0.1 Effect Weakening Definition

Introduce a relation $\omega : \Phi' \triangleright \Phi$ relating effect-environments.

0.1.1 Relation

•
$$(Id) \frac{\Phi \ 0k}{\iota : \Phi \triangleright \Phi}$$

• (Project)
$$\frac{\omega \colon \Phi' \triangleright \Phi}{\omega \pi \colon (\Phi', \alpha) \triangleright \Phi}$$

• (Extend)
$$\frac{\omega \colon \Phi' \rhd \Phi}{\omega \times \colon (\Phi', \alpha) \rhd (\Phi, \alpha)}$$

0.1.2 Weakening Properties

0.1.3 Effect Weakening Preserves Ok

$$\omega : \Phi' \triangleright \Phi \wedge \Phi \quad \mathsf{Ok} \Leftarrow \Phi' \quad \mathsf{Ok} \tag{1}$$

Proof

Case: ι

$$\Phi \ \, \mathsf{Ok} \wedge \iota {:}\, \Phi \triangleright \Phi \Leftarrow \Phi \ \, \mathsf{Ok}$$

Case: $\omega \pi$ By inversion,

$$\omega \colon \Phi' \triangleright \Phi \land \alpha \notin \Phi' \tag{2}$$

So, by induction, Φ' Ok and hence (Φ', α) Ok

Case: $\omega \times$ By inversion,

$$\omega \colon \Phi' \triangleright \Phi \land \alpha \notin \Phi' \tag{3}$$

So

$$(\Phi, \alpha)$$
 Ok $\Rightarrow \Phi$ Ok (4)

$$\Rightarrow \Phi'$$
 Ok (5)

$$\Rightarrow (\Phi', \alpha)$$
 Ok (6)

(7)

0.1.4 Domain Lemma

$$\omega : \Phi' \triangleright \Phi \Rightarrow (\alpha \notin \Phi \Rightarrow \alpha \notin \Phi')$$

Proof By trivial Induction.

0.1.5 Weakening Preserves Effect Well-Formed-Ness

If $\omega: \Phi' \triangleright \Phi$ then $\Phi \vdash \epsilon \implies \Phi' \vdash \epsilon$

Proof By induction over the well-formed-ness of effects

Case Ground By inversion, Φ 0k $\wedge \epsilon \in E$. Hence by the ok-property, Φ' 0k So $\Phi' \vdash \epsilon$

Case Var $\Phi = \Phi'', \alpha$

So either:

Case: $\Phi' = \Phi''', \alpha$ So $\omega = \omega' \times$ So $\omega' : \Phi''' \triangleright \Phi''$, and hence:

$$(\operatorname{Var}) \frac{\Phi''', \alpha \quad 0k}{\Phi''', \alpha \vdash \alpha} \tag{8}$$

Case: $\Phi' = \Phi''', \beta$ and $\beta \neq \alpha$

So $\omega = \omega' \pi$

By induction, $\omega' : \Phi''' \triangleright \Phi$ so

$$(\text{Weaken}) \frac{\Phi''' \vdash \alpha}{\Phi' \vdash \alpha} \tag{9}$$

Case Weaken By inversion, $\Phi = \Phi'', \beta$.

So $\omega = \omega' \times$

And, $\Phi' = \Phi''', \beta$ So By inversion $\omega' : \Phi''' \triangleright \pi_1''$

So by induction

$$(\text{weak}) \frac{\Phi''' \vdash \alpha}{\Phi' \vdash \alpha} \tag{10}$$

Case Monoid By inversion, $\Phi \vdash \epsilon_1$ and $\Phi \vdash \epsilon_2$. So by induction, $\Phi' \vdash \epsilon_1$ and $\Phi' \vdash \epsilon_2$, and so:

$$\Phi' \vdash \epsilon_1 \cdot \epsilon_2 \tag{11}$$

0.1.6 Weakening Preserves Type-Well-Formed-Ness

If $\omega: \Phi' \triangleright \Phi$ and $\Phi \vdash A$ then $\Phi' \vdash A$.

Proof:

Case Ground: By inversion, Φ 0k, hence by property 1 of weakening, Φ' 0k. Hence $\Phi' \vdash \gamma$.

Case Function: By inversion, $\Phi \vdash A$, $\Phi \vdash B$. So by induction $\Phi' \vdash A$, $\Phi' \vdash B$, hence,

$$\Phi' \vdash A \to B$$

Case Computation: By inversion $\Phi \vdash A$, and $\Phi \vdash \epsilon$.

So by induction and the effect-well-formed-ness theorem,

$$\Phi' \vdash A \text{ and } \Phi' \vdash \epsilon$$

So

$$\Phi' \vdash \mathtt{M}_{\epsilon}A$$

Case For All: By inversion, $\Phi, \alpha \vdash A$ Picking $\alpha \notin \Phi'$ using α -conversion.

So
$$\omega \times : (\Phi', \alpha) \triangleright (\Phi, \alpha)$$

So
$$(\Phi', \alpha) \vdash A$$

So $\Phi \vdash \forall \alpha.A$

0.1.7 Corollary

$$\omega : \Phi' \triangleright \Phi \land \Phi \vdash \Gamma \text{ Ok} \implies \Phi' \vdash \Gamma \text{ Ok}$$

Case Nil: By inversion Φ Ok so $\Phi \vdash \Diamond$ Ok

Case Var: By $\operatorname{inversion}\Phi \vdash \Gamma$ Ok, $x \in \operatorname{dom}(\Gamma), \Phi \vdash A$

So by induction $\Phi' \vdash \Gamma$ Ok, and $\pi'_1 \vdash \Gamma$ Ok

So $\Phi' \vdash (\Gamma, x: A)$ Ok

0.1.8 Effect Weakening preserves Type Relations

$$\Phi \mid \Gamma \vdash v : A \land \omega : \Phi' \triangleright \Phi \implies \Phi' \mid \Gamma \vdash v : A \tag{12}$$

Proof:

Case Constants: If $\Phi \vdash \Gamma$ Ok then $\Phi' \vdash \Gamma$ Ok so:

$$(\operatorname{Const}) \frac{\Phi' \vdash \Gamma \quad 0k}{\Phi' \mid \Gamma \vdash C^{A} : A}$$
 (13)

Case Variables: If $\Phi \vdash \Gamma$ Ok then $\Phi' \vdash \Gamma$ Ok so: So, $\Phi' \mid G \vdash x : A$, if $\Phi \mid G \vdash x : A$

Case Lambda: By inversion, $\Phi \mid \Gamma, x: A \vdash v: B$, so by induction $\Phi' \mid \Gamma, x: A \vdash v: B$. So,

$$\Phi' \mid \Gamma \vdash \lambda x : A.v : A \to B \tag{14}$$

Case Apply: By inversion $\Phi \mid \Gamma \vdash v_1: A \to B$ and $\Phi \mid \Gamma \vdash v_2: A$.

Hence by induction, $\Phi' \mid \Gamma \vdash v_1: A \to B$ and $\Phi' \mid \Gamma \vdash v_2: A$.

So

$$\Phi' \mid \Gamma \vdash \mathsf{app} v_1 v_2 : \underline{B}$$

Case Return: By inversion $\Phi \mid \Gamma \vdash v : A$

So by induction $\Phi' \mid \Gamma \vdash v : A$ Hence $\Phi' \mid \Gamma \vdash \mathtt{return} \ v : \mathtt{M}_1 \ A$

Case Bind: By inversion $\Phi \mid \Gamma \vdash v_1 : M_{\epsilon_1} A$ and $\Phi \mid \Gamma, x : A \vdash \epsilon_2 : M_{\epsilon_2} A$.

Hence by induction $\Phi' \mid \Gamma \vdash v_1 : \mathbf{M}_{\epsilon_1} A$ and $\Phi' \mid \Gamma, x : A \vdash v_2 : \mathbf{M}_{\epsilon_2} A$. So

$$\Phi' \mid \Gamma \vdash \mathsf{do} \ x \leftarrow v_1 \ \mathsf{in} \ v_2 : \mathsf{M}_{\epsilon_1 \cdot \epsilon_2} B \tag{15}$$

Case If: By inversion $\Phi \mid \Gamma \vdash v \colon \mathsf{Bool}, \ \Phi \mid \Gamma \vdash v_1 \colon A, \ \mathsf{and} \ \Phi \mid \Gamma \vdash v_2 \colon A.$ Hence by induction $\Phi' \mid \Gamma \vdash v \colon \mathsf{Bool}, \ \Phi' \mid \Gamma \vdash v_1 \colon A, \ \mathsf{and} \ \Phi' \mid \Gamma \vdash v_2 \colon A.$ So

$$\Phi' \mid \Gamma \vdash \text{if}_A \ v \text{ then } v_1 \text{ else } v_2 : A \tag{16}$$

Case Subtype: By inversion $\Phi \mid \Gamma \vdash v : A$, and $A \leq : B$.

So by induction: $\Phi' \mid \Gamma \vdash v : A$, and $A \leq : B$.

So

$$\Phi' \mid \Gamma \vdash v : B \tag{17}$$

Case Effect-Lambda: By inversion Φ , $\alpha \mid \Gamma \vdash v : A$

By picking $\alpha \notin \Phi'$ using α -conversion.

$$\omega \times : \Phi', \alpha \triangleright \Phi, \alpha \tag{18}$$

So by induction, Φ' , $\alpha \mid \Gamma \vdash v : A$

Hence,

$$\Phi' \mid \Gamma \vdash \Lambda \alpha. v : \forall a. A \tag{19}$$

Case Effect-Apply: By inversion, $\Phi \mid \Gamma \vdash v : \forall \alpha.A$, and $\Phi \vdash \epsilon$.

So by induction, $\Phi' \mid \Gamma \vdash v : \forall \alpha. A$

And by the well-formed-ness-theorem $\Phi' \vdash \epsilon$

Hence,

$$\Phi' \mid \Gamma \vdash v \; \epsilon : A \left[\epsilon / \alpha \right] \tag{20}$$

0.2 Type Environment Weakening

0.2.1 Relation

We define the ternary weakening relation $\Phi \vdash w: \Gamma' \triangleright \Gamma$ using the following rules.

•
$$(\mathrm{Id}) \frac{\Phi \vdash \Gamma \ \mathsf{Ok}}{\Phi \vdash \iota \colon \Gamma \triangleright \Gamma}$$

$$\bullet \ (\operatorname{Project}) \frac{\Phi \vdash \omega \colon \Gamma' \rhd \Gamma \qquad x \not\in \operatorname{dom}(\Gamma')}{\Phi \vdash \omega \pi \colon \Gamma, x : A \rhd \Gamma}$$

$$\bullet \ \ (\mathrm{Extend}) \frac{\Phi \vdash \omega \colon \Gamma' \rhd \Gamma \qquad x \not\in \mathrm{dom}(\Gamma') \qquad A \leq : B}{\Phi \vdash w \times : \Gamma', x : A \rhd \Gamma, x : B}$$

0.2.2 Domain Lemma

If $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$, then $dom(\Gamma) \subseteq dom(\Gamma')$.

Proof:

Case Id: Then $\Gamma' = \Gamma$ and so $dom(\Gamma') = dom(\Gamma)$.

Case Project: By inversion and induction, $dom(\Gamma) \subseteq dom(\Gamma') \subseteq dom(\Gamma' \cup \{x\})$

Case Extend: By inversion and induction, $dom(\Gamma) \subseteq dom(\Gamma')$ so

$$\operatorname{dom}(\Gamma, x : A) = \operatorname{dom}(\Gamma) \cup \{x\} \subseteq \operatorname{dom}(\Gamma') \cup \{x\} = \operatorname{dom}(\Gamma', x : A)$$

0.2.3 Theorem 1

If $\Phi \vdash \omega \colon \Gamma' \triangleright \Gamma$ and $\Phi \vdash \Gamma$ Ok then $\Phi \vdash \Gamma'$ Ok

Proof:

Case Id:

$$(\mathrm{Id})\frac{\Phi \vdash \Gamma \ \mathtt{Ok}}{\Phi \vdash \iota \colon \Gamma \triangleright \Gamma}$$

By inversion, $\Phi \vdash \Gamma$ Ok.

Case Project:

$$(\text{Project}) \frac{\Phi \vdash \omega \colon \Gamma' \triangleright \Gamma \qquad x \notin \text{dom}(\Gamma')}{\Phi \vdash \omega \pi \colon \Gamma, x : A \triangleright \Gamma}$$

By inversion, $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$ and $x \notin dom(\Gamma')$.

Hence by induction $\Phi \vdash \Gamma'$ Ok, $\Phi \vdash \Gamma$ Ok. Since $x \notin \text{dom}(\Gamma')$, we have $\Phi \vdash \Gamma', x : A$ Ok.

Case Extend: (Extend) $\frac{\Phi \vdash \omega : \Gamma' \triangleright \Gamma \qquad x \notin \text{dom}(\Gamma') \qquad A \leq : B}{\Phi \vdash w \times : \Gamma' \quad x : A \triangleright \Gamma \quad x : B},$

By inversion, we have

$$\Phi \vdash \omega : \Gamma' \triangleright \Gamma, \ x \notin dom(\Gamma').$$

Hence we have $\Phi \vdash \Gamma$ $\mathsf{Ok}, \Phi \vdash \Gamma'$ $\mathsf{Ok}, \text{ and by the domain Lemma, } \mathsf{dom}(\Gamma) \subseteq \mathsf{dom}(\Gamma'), \text{ hence } x \notin \mathsf{dom}(\Gamma).$ Hence, we have $\Phi \vdash \Gamma, x : A$ Ok and $\Phi \vdash \Gamma', x : A$ Ok

0.2.4 Theorem 2

If $\Phi \mid \Gamma \vdash t : \tau$ and $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$ then there is a derivation of $\Phi \mid \Gamma' \vdash t : \tau$

Proof: We induct over the structure of typing derivations of $\Phi \mid \Gamma \vdash t : \tau$, assuming $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$ holds.

Case Var and Weaken: We case split on the weakening ω .

Case: $\omega = \iota$ Then $\Gamma' = \Gamma$, and so $\Phi \mid \Gamma' \vdash x : A$ holds and the derivation Δ' is the same as Δ

Case: $\omega = \omega' \pi$ Then $\Gamma' = (\Gamma'', x' : A')$ and $\Phi \vdash \omega' : \Gamma'' \triangleright \Gamma$. So by induction, there is a tree, Δ_1 deriving $\Phi \mid \Gamma'' \vdash x : A$, such that:

$$(\text{Weaken}) \frac{\Delta_1}{\Phi \mid \Gamma'' \vdash x : A}$$

$$\Phi \mid \Gamma'', x' : A' \vdash x : A$$
(21)

Case: $\omega = \omega' \times$ Then

$$\Gamma' = \Gamma''', x' : B \tag{22}$$

$$\Gamma = \Gamma'', x' : A' \tag{23}$$

$$B \le : A \tag{24}$$

Case: x = x' Then A = A'.

Then we derive the new derivation, Δ' as so:

$$(Sub-type) \frac{(\text{var})\Phi \mid \Gamma''', x : B \vdash x : B \qquad B \le : A}{\Phi \mid \Gamma' \vdash x : A}$$
 (25)

Case: $x \neq x'$ Then

$$\Delta = (\text{Weaken}) \frac{\Delta_1}{\Phi \mid \Gamma'' \vdash x : A}$$

$$\Delta = (1 + \frac{\Delta_1}{\Phi \mid \Gamma \vdash x : A})$$
(26)

By induction with $\Phi \vdash \omega : \Gamma''' \triangleright \Gamma''$, we have a derivation Δ_1 of $\Phi \mid \Gamma''' \vdash x : A$

We have the weakened derivation:

$$\Delta' = (\text{Weaken}) \frac{\Delta'_1}{\Phi \mid \Gamma''' \vdash x : A}$$

$$\Phi \mid \Gamma' \vdash x : A$$
(27)

Case Constant: The constant typing rules, (), true, false, C^A , all proceed by the same logic. Hence I shall only prove the theorems for the case C^A .

$$(Const) \frac{\Gamma \quad 0k}{\Gamma \vdash \mathbf{c}^A : A} \tag{28}$$

By inversion, we have $\Phi \vdash \Gamma$ Ok, so we have $\Phi \vdash \Gamma'$ Ok. Hence

$$(Const) \frac{\Phi \vdash \Gamma' \quad 0k}{\Phi \mid \Gamma' \vdash C^A: A}$$
 (29)

Holds.

Case Lambda: By inversion, we have a derivation Δ_1 giving

$$\Delta = (\operatorname{Fn}) \frac{\Delta_1}{\Phi \mid \Gamma, x : A \vdash v : B}$$

$$\Delta = (\operatorname{Fn}) \frac{\Phi \mid \Gamma \vdash \lambda x : A \vdash v : B}{\Phi \mid \Gamma \vdash \lambda x : A \cdot v : A \to B}$$
(30)

Since $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$, we have:

$$\Phi \vdash \omega \times : (\Gamma, x : A) \triangleright (\Gamma, x : A) \tag{31}$$

Hence, by induction, using $\Phi \vdash \omega \times : (\Gamma, x : A) \triangleright (\Gamma, x : A)$, we derive Δ'_1 :

$$\Delta' = (\operatorname{Fn}) \frac{\Delta'_1}{\Phi \mid \Gamma', x : A \vdash v : B}$$

$$\Delta' = (\operatorname{Fn}) \frac{\Phi \mid \Gamma', x : A \vdash \lambda x : A \vdash v : B}{\Phi \mid \Gamma', x : A \vdash \lambda x : A \cdot v : A \to B}$$
(32)

Case Sub-typing:

$$(Sub-type) \frac{\Phi \mid \Gamma \vdash v: A \qquad A \leq : B}{\Phi \mid \Gamma \vdash v: B}$$

$$(33)$$

by inversion, we have a derivation Δ_1

$$\frac{\Delta_1}{\Phi \mid \Gamma \vdash v : A} \tag{34}$$

So by induction, we have a derivation Δ'_1 such that:

$$(Sub-type) \frac{\Delta'_1}{\Phi \mid \Gamma' \vdash v : a} \qquad A \le B$$

$$\Phi \mid \Gamma' \vdash v : B \qquad (35)$$

Case Return: We have the sub-derivation Δ_1 such that

$$\Delta = (\text{Return}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v : A}$$

$$\Delta = (\text{Return}) \frac{\Phi \mid \Gamma \vdash v : A}{\Phi \mid \Gamma \vdash \text{return } v : M_1 A}$$
(36)

Hence, by induction, with $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$, we find the derivation Δ'_1 such that:

$$\Delta' = (\text{Return}) \frac{\Delta'_1}{\Phi \mid \Gamma' \vdash v : A}$$

$$\Phi \mid \Gamma' \vdash \text{return } v : M_1 A$$
(37)

Case Apply: By inversion, we have derivations Δ_1 , Δ_2 such that

$$\Delta = (\text{Apply}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : A \to B} \frac{\Delta_2}{\Phi \mid \Gamma \vdash v_2 : A}$$

$$\Delta = (\text{Apply}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : v_2 : B}$$
(38)

By induction, this gives us the respective derivations: Δ'_1, Δ'_2 such that

$$\Delta' = (\text{Apply}) \frac{\Delta'_1}{\Phi \mid \Gamma' \vdash v_1 : A \to B} \frac{\Delta'_2}{\Phi \mid \Gamma' \vdash v_2 : A}$$

$$\Phi \mid \Gamma' \vdash v_1 \ v_2 : B$$
(39)

Case If: By inversion, we have the sub-derivations $\Delta_1, \Delta_2, \Delta_3$, such that:

$$\Delta = (\text{If}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v : \text{Bool}} \frac{\Delta_2}{\Phi \mid \Gamma \vdash v_1 : A} \frac{\Delta_3}{\Phi \mid \Gamma \vdash v_2 : A}$$

$$\Phi \mid \Gamma \vdash \text{if}_A \text{ } v \text{ then } v_1 \text{ else } v_2 : A$$

$$(40)$$

By induction, this gives us the sub-derivations $\Delta'_1, \Delta'_2, \Delta'_3$ such that

$$\Delta' = (\text{If}) \frac{\frac{\Delta'_1}{\Phi \mid \Gamma' \vdash v : \text{Bool}} \quad \frac{\Delta'_2}{\Phi \mid \Gamma' \vdash v_1 : A} \quad \frac{\Delta'_3}{\Phi \mid \Gamma' \vdash v_2 : A}}{\Phi \mid \Gamma' \vdash \text{if}_A \ v \ \text{then} \ v_1 \ \text{else} \ v_2 : A}$$

$$(41)$$

Case Bind: By inversion, we have derivations Δ_1, Δ_2 such that:

$$\Delta = (\text{Bind}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : M_{\mathbb{E}_1} A} \frac{\Delta_2}{\Phi \mid \Gamma, x : A \vdash v_2 : M_{\epsilon_2} B}$$

$$\Phi \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : M_{\epsilon_1, \epsilon_2} B$$

$$(42)$$

If $\Phi \vdash \omega : \Gamma' \rhd \Gamma$ then $\Phi \vdash \omega \times : \Gamma', x : A \rhd \Gamma, x : A$, so by induction, we can derive Δ'_1, Δ'_2 such that:

$$\Delta' = (\text{Bind}) \frac{\Delta'_1}{\Phi \mid \Gamma' \vdash v_1 : \mathbf{M}_{\mathbb{E}_1} A} \frac{\Delta'_2}{\Phi \mid \Gamma', x : A \vdash v_2 : \mathbf{M}_{\epsilon_2} B}$$

$$\Phi \mid \Gamma' \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : \mathbf{M}_{\epsilon_1, \epsilon_2} B$$
(43)

Case Effect-Abstraction: By inversion, we have derivation Δ_1 deriving

$$(\text{Effect-Abs}) \frac{\Delta_1}{\Phi, \alpha \mid \Gamma \vdash v : A}$$

$$\frac{\Phi}{\Phi \mid \Gamma \vdash \Lambda \alpha . v : \forall \alpha . A}$$

$$(44)$$

By α -conversion, we have $\iota \pi : \Phi, \alpha \triangleright \Phi$, So we have $\Phi, \alpha \vdash \omega : \Gamma' \triangleright \Gamma$ so by induction, there exists Δ_1 deriving:

$$\Delta' = (\text{Effect-Abs}) \frac{\Delta_1}{\Phi, \alpha \mid \Gamma' \vdash v : A}$$

$$\Phi \mid \Gamma' \vdash \Lambda \alpha . v : \forall \alpha . A$$
(45)

Case Effect-Application: By inversion we have derivation Δ_1 deriving

$$(\text{Effect-App}) \frac{\frac{\Delta_{1}}{\Phi \mid \Gamma \vdash v : \forall \alpha. A} \quad \Phi \vdash \epsilon}{\Phi \mid \Gamma \vdash v \; \epsilon : A \left[\epsilon / \alpha\right]}$$

$$(46)$$

So by induction, we have Δ_1' deriving

$$(\text{Effect-App}) \frac{\Delta_{1}'}{\Phi \mid \Gamma' \vdash v : \forall \alpha. A} \quad \Phi \vdash \epsilon$$

$$\Phi \mid \Gamma' \vdash v \; \epsilon : A \left[\epsilon / \alpha \right]$$

$$(47)$$