Конкурс Avito-2016: «Распознавание марки и модели автомашин на изображениях»

Евгений Нижибицкий

BMK МГУ, Rambler&Co

28 мая 2016 г.

Описание задачи

- Цель конкурса создание эффективного алгоритма классификации изображений автомобилей
- «Эффективность» измеряется в Accuracy

Особенности данных

- Три выборки по 310000, 92000 и 217000 картинок (A/B/C)
- В использовалась для «public leaderboard» а до 1-го дедлайна
- После 1-го дедлайна ответы для В тоже были выданы
- С использовалась для «private leaderboard» 'а
- Всего 236 классов, но все они безымянные

Нейросети наше всё

- Обученный на ImageNet человек 5%
- 4x144 Inception-v3¹ (Декабрь 2015) 3.58%

¹Rethinking the Inception Architecture for Computer Vision

Вычислительные ресурсы

- Intel i7-4790K
- GeForce GTX 980 Ti
- SSD 500 MB/sec

RAMBLER&Co

- Intel i7-6700
- 2×GeForce GTX TITAN X
- SSD 500 MB/sec

Обзор моделей I

Model	Source	Scheme	Top5	Top1
AlexNet	caffe	1x1	19.80	42.90
GoogLeNet	caffe	1x1	11.10	31.30
ResNet-18	torch	1x1	10.76	30.43
GoogLeNet	pdf	1x1	10.07	-
ResNet-18	torch	1×10	9.42	28.22
GoogLeNet	pdf	1×10	9.15	-
ResNet-34	torch	1x1	8.74	26.73
Inception-v3	tf	1x1	-	26.50
GoogLeNet	pdf	7x1	8.09	-
GoogLeNet	pdf	1x144	7.89	-
GoogLeNet	pdf	7x10	7.62	-

Обзор моделей II

Model	Source	Scheme	Top5	Top1
GoogLeNet	pdf	7x10	7.62	-
ResNet-34	torch	1×10	7.35	24.76
ResNet-50	torch	1x1	7.02	24.01
GoogLeNet	pdf	7x144	6.67	-
ResNet-50	torch	1×10	6.21	22.44
ResNet-101	torch	1x1	6.08	22.24
Inception-v3	pdf	1x1	5.60	21.20
ResNet-101	torch	1×10	5.35	21.08
Inception-v3	pdf	1×10	4.48	19.47
Inception-v3	pdf	1x144	4.20	18.77
Inception-v3	pdf	4x144	3.58	17.20

GoogleNet

Обучение на 90% выборки А с валидацией на остатке:

GoogleNet

Качество на 10%-валидации:

Итерации	Кропы	Точность
400k	1x1	91.06
400k+200k	1x1	92.13
400k	1×10	92.63
400k+200k	1×10	93.54
400k+200k+500k	1×10	93.71

Сделанные посылки:

Итерации	Кропы	Точность
200k	1×1	89.78
400k+200k	1x10	92.89

Небольшое отступление

После GoogleNet в последующих моделях на большинстве графиков будет рассматриваться качество для такого разбиения подвыборок:

- 384000 изображений обучение
- 12000 изображений валидация
- ~7000 изображений проверка скриптов для теста

Подходы к решению ResNet-34 / Torch

Microsoft Research Asia — Deep Residual Learning for Image Recognition

https://github.com/facebook/fb.resnet.torch

Что делаем:

- Используем 256х256 без сохранения пропорций
- Используем стандартную стратегию LR из репозитория
- Модифицируем несколько lua-файлов для получения возможности сохранять айдишники картинок вместе с содержимым и записывать вероятности в HDF5-файлы
- В остальном все в основном как в инструкции по ссылке

Что не понравилось:

- По умолчанию (частые) дампы моделей занимают гигабайты
- Пришлось написать adhoc-скрипт в crontab

Подходы к решению ResNet-34 / Torch

Качество одной модели ResNet-34 на валидации

Inception-v3 / Tensorflow

Google Inc. — Rethinking the Inception Architecture for Computer Vision

• https://github.com/tensorflow/models

Что делаем:

- Используем исходные картинки делаем бинарные шарды
- Делаем много своих файлов на основе таковых для имаджнета с более мягкими условиями искажений для создания картинок на лету, добавляем возможность сохранять айдишники картинок вместе с содержимым и записывать вероятности в HDF5-файлы
- Разные интервалы для генерации искажений уменьшаем раза в 2
- Оставляем как минимум 40% исходных изображений (а не 8!)

Что не понравилось:

- Не удалось получить валидную выдачу всех предсказаний с id
- Пришлось гонять сессии tensorflow с 1 картинкой

Inception-v3 / Tensorflow

Качество одной модели Inception-v3 на валидации

Итерации	Точность
5000	0.7735
10000	0.9031
15000	0.9262
20000	0.9347
30000	0.9446
60000	0.9518
90000	0.9544
120000	0.9571

Объединение различных моделей

Качество для различных смесей (рассматривались различные сценарии того, что успеет обучиться и предсказаться):

Модель	Точность
ResNet34 _{1-crop}	0.9497
ResNet34 _{10-crop}	0.9537
$2 \times ResNet34_{10-crop}$	0.9559
Inception-v3 _{1-crop}	0.9564
Inception-v3 _{10-crop}	0.9588
$\sqrt{\text{ResNet34}_{10\text{-crop}} \cdot \text{Inception-v3}_{1\text{-crop}}}$	0.9594
$\sqrt{\text{ResNet34}_{10\text{-crop}} \cdot \text{Inception-v3}_{10\text{-crop}}}$	0.9608
$2 \times \text{Inception-v3}_{10\text{-crop}}$	0.9613
$\sqrt{2 \times \text{ResNet34}_{10\text{-crop}} \cdot 2 \times \text{Inception-v3}_{10\text{-crop}}}$	0.9627

Результат

Итоговая модель

Предсказания — arg max вероятностей, полученных по формуле

 $\mathsf{ResNet34}^{0.15}_{10\text{-crop}} \cdot \mathsf{ResNet34}^{0.15}_{10\text{-crop}} \cdot \mathsf{Inception} \cdot \mathsf{v3}^{0.35}_{10\text{-crop}} \cdot \mathsf{Inception} \cdot \mathsf{v3}^{0.35}_{10\text{-crop}}$

Результат

Вычислительная сложность

ResNet-34:

- 32 картинки в батче
- 3250МВ памяти на батч
- 12000 батчей на эпоху
- 1 эпоха за 45 минут
- Полное обучение (90 эпох) 60 часов

Inception-v3:

- 32 картинки в батче
- 11750МВ памяти на батч
- 12000 батчей на эпоху
- 1 эпоха за 4 часа
- Полное обучение (12 эпох) 48 часов

Результат

Финальный рейтинг

# 🖂	Никнейм участника 🖂	Результат	M
1	Евгений Нижибицкий	0.9615	
2	Lesseps	0.9557	
3	n01z3	0.9405	
4	BucketNet	0.9355	
5	rasim	0.9339	
6	kwentar	0.9229	
7	sovcharenko	0.9092	
8	Expasoft	0.9000	
9	Osborn	0.8840	

Спасибо!