8 Algoritmi

8.1 Divide et impera

È una tecnica di risoluzione di problemi che consiste in tre passi:

- Dividere il problema in 2 o più sotto problemi identici ma di dimensione ridotta rispetto a quello originale
- Risolvere i sotto problemi ricorsivamente
- Combinare le soluzioni dei sotto problemi per ottenere la soluzione del problema iniziale

8.2 Ordinamento

Definizione 8.1 (Algoritmo stabile). Un algoritmo di ordinamento si dice stabile quando preserva l'ordine iniziale tra due elementi con la stessa chiave.

8.2.1 Merge sort

L'idea è di usare la tecnica precedentemente descritta del **Divide et Impera** e di spezzare l'array in due sotto-array di uguale dimensione, ordinarli e poi fonderli in uno unico.

La fusione verrà fatta confrontando i primi due elementi di ogni sotto-array, copiando il più piccolo nell'array finale, e proseguendo con il confronto del più grande con il successivo.

Esempio di implementazione:

```
void merge_sort(int a[], size_t dim, char order) {
2
        sort(a, 0, dim-1, order);
3
4
     void sort(int a[], size_t inizio, size_t fine, char order) {
5
6
        if ((fine - inizio) >= 1) {
7
          // Passo ricorsivo
          size_t centro1 = (inizio + fine)/2;
9
         zie_t centro2 = centro1 + 1;
10
11
          sort(a, inizio, centro1, order);
12
         sort(a, centro2, fine, order);
13
         merge(a, inizio, centro1, centro2, fine, order);
14
15
16
           Il caso base non serve, un array di un elemento e' ordinato
17
18
19
     void merge(int a[], size_t sin, size_t centro1, size_t centro2, size_t dx, char
         order) {
20
        size_t sin i = sin;
```

```
21
        size_t dx_i = centro2;
22
        size_t fondi i = 0;
        int temp_a[dx - sin + 1];
23
24
        while (sin_i <= centro1 && dx_i <= dx) {
25
26
          switch (order) {
            case 'I':
27
28
               if (a[sin_i] <= a[dx_i]) {</pre>
                 temp_a[fondi_i++] = a[sin_i++];
29
              } else {
30
31
                 temp_a[fondi_i++] = a[dx_i++];
32
              }
33
              break;
34
             default:
               if (a[sin_i] <= a[dx_i]) {</pre>
35
                 temp_a[fondi_i++] = a[dx_i++];
36
37
               } else {
38
                 temp_a[fondi_i++] = a[sin_i++];
              }
39
40
               break;
41
          }
        }
42
43
44
        // Se esaurisco il sotto-array sinistro
45
        if (sin_i == centro2) {
46
          while (dx_i <= dx) {</pre>
47
            temp_a[fondi_i++] = a[dx_i++];
48
49
        } else {
50
          // Se esaurisco quello destro
51
          while (sin_i <= centro1) {</pre>
            temp_a[fondi_i++] = a[sin_i++];
52
53
54
        }
55
56
        // Copio l'array temporaneo in quello originale
        for (size_t i = sin; i <= dx; i++) {</pre>
57
          a[i] = temp_a[i-sin];
59
        }
60
      }
```

Listing 11: Algoritmo merge sort

8.2.2 Insertion sort

Proprietà: al termine del passo j-esimo dell'algoritmo l'elemento j-esimo viene in inserito al posto giusto e i primi j + 1 elementi sono ordinati.

```
insertionSort(A) =
1
2
      var j:Int = 0;
      var i:Int = 0;
3
      var k:int = 0;
4
5
      for (j=1; j< n; j++) {
                                   n-1 volte
        k = A[j];
6
7
        i = j-1;
                       \Theta(1) n-1 volte
        while(i >= 0 && A[i]>k) {
8
                                   \Theta(1) \sum\limits_{j=1}^{n-1} (t_j-1) volte
9
           A[i+1] = A[i];
10
           i=i-1;
        }
11
12
         A[i+1] = k;
                          \Theta(1) n-1 volte
```

Listing 12: Algoritmo insertion sort

Complessità:

$$\sum_{j=1}^{n-1} t_j$$

8.2 Ordinamento 18

0	1	2	3	4	5	j	i	k	while
5	2	4	6	1	3	0	0	0	no
5	2	4	6	1	3	1	0	2	si
5	5	4	6	1	3	1	-1	2	no
2	5	4	6	1	3	1	-1	2	no
2	5	4	6	1	3	2	1	4	si
2	5	5	6	1	3	2	0	4	no
2	4	5	6	1	3	2	0	4	no
2	4	5	6	1	3	3	2	6	no
2	4	5	6	1	3	3	2	6	no

Table 2: Esempio di esecuzione

- Caso pessimo: l'array è ordinato decrescente e quindi ogni volta devo scalare l'elemento fino alla prima posizione. Abbiamo che $t_j = j$ e $\sum_{j=1}^{n-1} j = \frac{n(n-1)}{2}$, quindi $O(n^2)$
- Caso migliore: l'array è ordinato crescente e quindi per ogni iterazione non entro nel while perché la condizione è falsa. Abbiamo $t_j = 1$ e $\sum_{j=1}^{n-1} j = n-1$, quindi O(n)
- Caso medio: come il caso pessimo $O(n^2)$

Correttezza:

- dimostro l'**invariante di ciclo** per assicurarmi che la mia proprietà venga mantenuta durante tutta l'esecuzione. Lo faccio tramite *induzione*:
 - Caso base: per j=1
 - Hp induttiva: per j = n'
 - Passo induttivo: dimostro che vale anche per j = n' + 1
- verifico la **terminazione**: il for è eseguito esattamente n-1 volte e il while al più j-1 volte, quindi tutte le iterazioni sono finite e l'algoritmo termina.

Memoria impiegata: ordina in loco quindi non usa memoria aggiuntiva.

8.2.3 Selection sort

Proprietà: al termine del passo j-esimo dell'algoritmo i primi j + 1 elementi di A sono ordinati e contengono i j + 1 elementi più piccoli di A.

```
1 insertionSort(A) = 
2 var j:Int = 0; 
3 var i:Int = 0;    \Theta(1)
4 var min:int = 0; 
5 for (i=0; i<n-1; i++) {    n-1 volte
6    min = i;    \Theta(1)    n-1 volte
7 for (j=i+1; j<n; j++) {
8    if A[j] < A[min] {min = j};    \Theta(1) \sum_{j=1}^{n-1} (t_j-1) volte
9 }
10 swap(A[i],A[min]); \Theta(1) n-1 volte
```

Listing 13: Algoritmo selection sort

Complessità

$$\sum_{j=1}^{n-1} j = \frac{n(n-1)}{2} \in O(n^2)$$

8.2 Ordinamento 19

0	1	2	3	4	5	j	i	min
5	2	4	6	1	3	0	0	0
1	2	4	6	5	3	1	0	4
1	2	4	6	5	3	2	1	1
1	2	3	6	5	4	3	2	5
1	2	3	4	5	6	4	3	3
1	2	3	4	5	6	5	4	4

Table 3: Esempio di esecuzione

• Caso pessimo: $O(n^2)$

• Caso migliore: $O(n^2)$

• Caso medio: $O(n^2)$

Correttezza:

- dimostro l'invariante di ciclo per assicurarmi che la mia proprietà venga mantenuta durante tutta l'esecuzione. Sempre tramite induzione.
- verifico la **terminazione** in maniera analoga all'insertion sort.

Memoria impiegata: ordina in loco quindi non usa memoria aggiuntiva.

8.2.4 Bubble sort

Questo algoritmo scorre l'array e, a coppie, ordina gli elementi facendo più passate. Il nome *bubble* deriva dal fatto che ad ogni passata i numeri più grandi (o piccoli) si spostano verso la fine dell'array come le bolle d'aria salgono a galla.

```
void bubble_sort (int a[], size_t dim, char order) {
2
3
        for (unsigned int passate = 0; passate < dim; passate++) {</pre>
          for (size_t i=0; i < (dim - 1); i++) {</pre>
             switch (order) {
5
               case
                 if (a[i] > a[i+1]) {
                   temp = a[i];
g
                   a[i] = a[i+1];
10
                   a[i+1] = temp;
12
                 break;
13
               default:
14
                 if (a[i] < a[i+1]) {</pre>
15
                   temp = a[i];
16
                   a[i] = a[i+1];
                   a[i+1] = temp;
17
18
                     break;
19
20
            }
21
          }
22
        }
23
      }
```

Listing 14: Algoritmo bubble sort

Complessità

Il primo for esegue n cicli e quello interno ne esegue n-1. Di conseguenza la complessità è $n \cdot (n-1)$, ovvero \mathbf{n}^2 .

8.3 Linear sort

Gli algoritmi di ordinamento di questo tipo sfruttano il fatto che l'array da ordinare abbia determinate proprietà.

8.3 Linear sort 20

Esempio 8.1. Dato un array A di n interi compresi tra 1 e k:

```
\forall 0 < j \le n. A[j] \in [1, \dots, k]
```

```
linearSort(A:[Int], B:[Int], k:Int) -> Void {
2
          // Inizializzo un array che tiene conto dei numeri da 1 a k
          for (var i:Int = 1; i<=k; i++) C[i] = 0; \Theta(k)
3
4
          var j:Int = 1;
5
          // Conto quante volte compare ogni numero nell'array originale
          for (j=1; j<=n; j++) C[A[j]] += 1; \Theta(n)
7
9
10
          var z:Int = 1;
11
          // Dispongo ogni numero nell'array finale in ordine sapendo quante volte compare
          for (z=1; z <= k; z++) { \Theta(k)
12
13
            for (var v:Int = 0; v < C[z]; v++) { \Theta(n)
              B[j] = z;
14
15
              j++;
            }
16
17
         }
18
       }
```

Listing 15: Algoritmo linear sort

Complessità

In questo caso la complessità è $\Theta(n+k)$ e si usa quando $k \in O(n)$.

8.3.1 Radix sort

Questo algoritmo funziona in maniera simile a come il cervello umano ordina gruppi di numeri: si ordinano (tramite un algoritmo di ordinamento **stabile** prima le cifre delle migliaia, poi quelle delle centinaia, quelle delle decine ed infine le unità. Notiamo però che il risultato NON è corretto.

1 094	9 86	10 9 4	125	1120
986	234	125	112 0	234
234	125	1120	234	1094
125	1094	2 3 4	986	125
1 120	1120	986	1094	986

Per farlo funzionare dobbiamo ordinare le cifre partendo da quelle meno significative, quindi dalle unità.

1094	1120	1120	1094	125
986	10 9 4	125	1 120	234
234	234	2 34	125	986
125	125	9 86	234	1094
112 0	9 8 6	1 0 94	986	1120

9 Complessità

9.1 Notazione asintotica

Quando scriviamo un algoritmo, per calcolarne il costo, bisogna fare una serie di assunzioni sulla macchina astratta su cui lavoriamo:

- L'accesso alle celle di memoria avviene in tempo costante.
- Le operazioni elementari avvengono in tempo costante:
 - Operazioni aritmetiche e logiche della ALU