

Bodeplot for $G(s) = \frac{10}{5(s+1)(s+2)}$ by Madlab and by hand to fix the hand made bodefeld a point is needed We choose w = 0.1 - a decade from a pole $|G(j \cdot 0.1)| = \frac{10}{|G_{0.1}|^{2} |G_{0.1}|^{2} + 1^{2} |G_{0.1}|^{2} + 2^{2}} |S| \frac{10}{|G_{0.1}| \cdot 1 \cdot 2} = \frac{10}{|G_{0.2}|} = 50$ 50 = 34 dB Bode Diagram 100 fix painl 34 dB - be displace -50 -100 -150 -135 -180 phase margin 6 -225 100 101 10² 10-2 10-1 Frequency (rad/s) phase margin G (handmeade) ~ -150 phase morgin 6 (Modles) v -20° Can moger (Chance made) a 15 dB G (Madlas) ~

Demand for the contralled

phase morgin = 45°

Gein margin > 10 db

To obtain this we need (worst case)

phase: 45 + 20 = 65° (Mallab)

Gain : 10db + 15dB = 25 dB (harmade)

A PD controller or a lead controller

can give more phase

We Will like a lead compensator as we don't want high gain at high frequencies

lead : K (s+a) a Lb

The frequency where we get most phase is between a and b (in the meddle on a logarithmic axis)

In this Case we choose to raise the phase for $\omega = 2$.

In du plots you can see results for

 $D_{lead}(s) = \frac{5+0.2}{5+20}$ $\frac{5+0.5}{5+10}$ $\frac{5+0.8}{5+4}$

duy all full fill the gain and place morgin demands. One Way to choose between ythe controllers

Can be to make a closed loop

steptesponse and choose the most

desired response

In this Case I choose 5+6.5

It gives a fast response without

oversheet.

$$D_{lead}(s) = \frac{5+0.2}{s+20}$$

Bode Plead 6 =
$$\frac{5+6.2}{5+20} \frac{16}{5(5+1)(5+2)}$$

Closed loop Step response

$$OL : \frac{3+0.2}{5+20} \frac{10}{5(5+1)(5+2)}$$

$$D_{lead} \cdot G = \frac{5+0.5}{5+10} \frac{10}{5(5+1)(5+2)}$$

Closed loop step response
$$\frac{5+0.5}{5+10} = \frac{10}{5(5+1)(5+2)}$$

$$D_{lead} = \frac{5+0.8}{5+4}$$

$$G \cdot D_{ladd} = \frac{s + o \cdot \delta}{s + 4} \frac{10}{s(s + 1)(s + 2)}$$

Closed loop stepresponse

OL: $\frac{5+0.8}{5+4} = \frac{10}{5(5+1)(5+2)}$

Calculate
$$K_V$$
 $K_V = \lim_{S \to 0.5} SD(S)G(S)$
 $S \to 0.5$
 $S \to 0$

6 = 0.0001 = asmount a = 0.004

Bode Diagram

Step Response

Lead Lag Cantrolled system

<u>\$\frac{5+0.600025}{5+0.0001} \frac{5+0.5}{5+10} \frac{16}{5(5+1)(5+2)}
\$\$
\$\frac{5+phspanse}{5+phspanse} - closed loop</u>

