Mathematical Logic: Assignment 3

Oct 31, 2022

Attention: To get full credits, you *must provide explanations to your answers*! You will get at most 1/3 of the points if you only provide the final results without any explanation.

- 1. (5pt) Prove the compactness theorem from its corollary. That is, given the following propositions:
 - (a) For any $\Gamma \vDash \alpha$, there is a finite set $\Delta \subseteq \Gamma$ such that $\Delta \vDash \alpha$;
 - (b) For any finitely satisfiable set Γ , Γ is satisfiable.

Prove that (a) implies (b). (Hint: consider proof by contradiction)

- 2. (8pt) Write down proof trees for the following propositions (attention: you must write down the whole tree without using any shortcut or derived rules):
 - (2pt) $(\neg A \lor \neg B) \to \neg (A \land B)$;
 - (3pt) $(B \to (A \leftrightarrow \neg A)) \to \neg B$;
 - (3pt) $((P \rightarrow Q) \rightarrow P) \rightarrow P$.

(Hint: some may need Law of Excluded Middle)

- 3. (6pt) Prove the following facts about provability:
 - (3pt) If $\Gamma \vdash \alpha$ and Δ ; $\alpha \vdash \beta$, then $\Gamma \cup \Delta \vdash \beta$;
 - (3pt) If Γ ; $\alpha \vdash \beta \leftrightarrow \neg \beta$, then $\Gamma \vdash \neg \alpha$.

(Hint: you need to construct new proof trees from existing trees)

- 4. (6pt) Prove the following properties:
 - (3pt) If $\vdash \alpha \lor \neg \alpha$ for any α , then $\vdash (\alpha \to \beta) \to (\neg \alpha \lor \beta)$ for any α and β ;
 - (3pt) If $\vdash (\alpha \to \beta) \to (\neg \alpha \lor \beta)$ for any α and β , then $\vdash \alpha \lor \neg \alpha$ for any α .

(Hint: note that $\vdash \alpha$ means α has a proof tree. Think about our proof of the equality between LEM and proof by contradiction in the class)

5. (5pt) Suppose we introduce a logical constant \bot representing "false". Then $\neg \alpha$ can be replaced by $\alpha \to \bot$, meaning α should never be true (otherwise, the conclusion is false). The \neg rules are replaced by introduction and elimination rules for \bot as follows:

$$\begin{array}{c} [\alpha] \\ \vdots \\ \frac{\bot}{\alpha \to \bot} \ (\bot - I) \qquad \frac{\bot}{\alpha} \ (\bot - E) \end{array}$$

Here, \perp -I is denotes that if we can prove \perp by assuming α , then we can prove $\alpha \to \perp$. \perp -E is the principle of explosion: if we can prove false (\perp) , then anything (any α) follows.

1

- (a) (2pt) Translate $\neg A \lor \neg B \to \neg (A \land B)$ into a wff without \neg by $\neg \alpha \equiv \alpha \to \bot$;
- (b) (3pt) Construct a proof tree for the transformed wff with the newly introduced rules.