Relatório do 2º Projeto ASA 2024/2025

Grupo: AL019

Alunos: João Matreno (110246) e Samuel Gomes (110274)

Explicação da solução

- Construir a matriz de adjacência das linhas, tal que, se duas linhas partilharem uma estação existe um arco entre elas no grafo, para isso mantemos umas lista das linhas a que um ponto pertence;
- Transformar a matriz numa lista de adjacência;
- Fazer uma BFS nesse grafo, e, sempre que se descobre uma nova linha, marcar as estações dessa linha como visitadas e colocar a sua distância como a distância da linha a que pertencem, isto se a estação ainda não tiver sido visitada. Retorna a maior distância das estações, ou "-1" caso alguma não tenha sido visitada;
- Repetir começando sempre num vertice diferente, desde que a linha correspondente não se encontre vazia de estações;
- Retornar o maior valor de todas as BFS's, ou caso alguma BFS dê "-1" ou "0", retornar esse valor imediatamente.

Exemplo:

Análise Teórica da Solução Proposta

- ullet Leitura dos dados de entrada e construção da matriz de adjacência: $\mathbf{O}(\mathbf{ml})$
 - número de ligações lidas: m
 - para cada ligação existe a possibilidade de alguma das estações já pertencer a outra linha então conectamos todas as linhas dessa estação à nova linha, que no pior caso custa: O(l)
- \bullet Transformação de matriz para lista de adjacências: $\mathbf{O}(\mathbf{l^2})$
- ullet Aplicação do algoritmo indicado para cálculo do valor pedido: $\mathbf{O}(\mathbf{ml} + \mathbf{l^3})$
 - número de vezes que chamamos a BFS: l
 - a parte de atravessar o grafo das linhas tem um custo $O(l+l^2) \in O(l^2)$
 - para cada linha com x_l+1 estações são necessárias x_l ligações, então para visitar todas as estações temos $\sum_{l\in L}(x_l+1)=m+l\in O(m)$
 - vermos se todas as estções foram visitadas, e qual a maior distância registada: O(n)
- \bullet Complexidade global da solução: $O(ml+l^3)$

Relatório do $2^{\underline{0}}$ Projeto ASA 2024/2025

Grupo: AL019

Alunos: João Matreno (110246) e Samuel Gomes (110274)

Avaliação Experimental da Solução Proposta

Para fazer a análise experimental do nosso código medimos o tempo que demorava para encontrar a solução para inputs de diferentes tamanhos, tal que:

$$n = 150000 + 20000k_1, k_1 \in \mathbb{Z}, 0 \le k_1 \le 9$$

 $m = 2n + 50000k_2, k_2 \in \mathbb{Z}, 0 \le k_2 \le 5$
 $l = 100 + 30k_3, k_3 \in \mathbb{Z}, 0 \le k_3 \le 7$

Neste gráfico temos que $\mathbf{f}(\mathbf{n}, \mathbf{m}, \mathbf{l}) = \mathbf{ml} + \mathbf{l^3}$ e como podemos ver o tempo cresce linearmente em função de f(n, m, l), o que confirma o esperado pela análise teórica de que a complexidade temporal do algoritmo é tal que $\mathbf{T}(\mathbf{f}(\mathbf{n}, \mathbf{m}, \mathbf{l})) \in \mathbf{O}(\mathbf{ml} + \mathbf{l^3})$.

O que se verifica também é que a partir de um certo valor de l, com m constante, o tempo cresce linearmente com $\mathbf{l^3}$, mas, antes desse valor, o tempo cresce linearmente com \mathbf{ml} , confirmando mais uma vez o esperado pela análise teórica.