

Техническая спецификация. Микросхема W5500

Версия 1.0.9

W5500

Микросхема W5500 - это встраиваемый Ethernet-контроллер для обеспечения проводного соединения TCP/IP, обеспечивающий более легкое интернет-подключение к встроенным системам. Микросхема W5500 позволяет пользователям получить интернет-подключение через приложения посредством использования единого чипа со встроенным стеком протоколов TCP/IP, Ethernet MAC и PHY.

Аппаратные решения для TCP/IP компании WIZnet - это популярные на рынке технологии, которые поддерживают протоколы TCP, UDP, IPv4, ICMP, ARP, IGMP и PPPoE. Микросхема W5500 имеет 32 кбайт внутренней буферной памяти для обработки Ethernet-пакетов. При использовании W5500 Ethernet-приложение можно реализовать всего лишь добавлением простой программы для сокета. Это быстрее и проще, чем любое другое решение с использованием встроенных Ethernet-устройств. Пользователи могут одновременно использовать 8 независимых аппаратных сокетов.

Для простой интеграции с внешними управляющими микроконтроллерами (MCU) имеется интерфейс SPI (последовательный интерфейс периферийных устройств). Интерфейс SPI микросхемы W5500 поддерживает новый быстрый (80 Мгц) и эффективный SPI-протокол, что обеспечивает высокоскоростные сетевые коммуникации. Для снижения потребления энергии системой, чип W5500 обеспечивает режимы пробуждения полокальной сети (WOL, Wake on LAN) и выключения питания.

Основные характеристики

- Поддержка протоколов проводного соединения TCP/IP: TCP, UDP, ICMP, IPv4, ARP, IGMP, PPPoE
- Одновременная поддержка 8 независимых сокетов
- Поддержка режимов выключения питания
- Поддержка пробуждения по локальной сети через протокол UDP
- Поддержка высокоскоростного последовательного интерфейса периферийных устройств (SPI MODE 0, 3)
- 32 кбайт встроенной буферной памяти для TX/RX
- Встроенный Ethernet-протокол физического уровня PHY для стандарта 10BaseT/100BaseTX
- Поддержка автоматического определения типа сети (дуплекс и полудоплекс, 10 и 100-based)
- Отсутствие поддержки ІР-фрагментации
- Напряжение питания 3,3 В с реализацией толерантности к сигналам ввода-вывода 5 В
- Выводы под световую LED индикацию (дуплекс/полудуплекс, соединение, скорость, активное состояние)
- LQFP-корпус с 48 контактами, не содержащий свинец (7х7 мм, шаг между проводниками 0.5 мм)

Целевые применения

Микросхема W5500 подходит для следующих встроенных приложений:

- Устройства домашней сети: STB-приставки, персональные видеозаписывающие устройства, цифровые медиа адаптеры
- С преобразованием Serial-to-Ethernet: устройства управления доступом, светодиодные табло, беспроводные реле для точек доступа и т.д.
- С преобразованием Parallel-to-Ethernet: POS-принтеры/мини-принтеры, копировальные устройства
- С преобразованием USB-to-Ethernet: устройства хранения данных, сетевые принтеры
- С преобразованием GPIO-to-Ethernet: Датчики домашней сети
- Системы безопасности: устройства цифровой видеозаписи, сетевые камеры, информационные киоски
- Автоматизация производственных и строительных процессов
- Медицинская контрольно-управляющая аппаратура
- Встроенные серверы

Структурная блок-схема

1	Разв	водка кон	ітактов	7
	1.1	Опи	сание контактов	7
2	Xoc	т-интерф	ейс	12
	2.1.	Опе	рационный режим SPI	13
	2.2.	SPI-	фрейм	14
		2.2.1	Фаза адреса	14
		2.2.2	Фаза контроля	15
		2.2.3	Фаза данных	17
	2.3.	Реж	им данных переменной длины (VDM)	17
		2.3.1	Доступ для записи в режиме VDM	18
		2.3.2.	Доступ для чтения в режиме VDM	21
	2.4.	Реж	им данных фиксированной длины (FDM)	24
		2.4.1	Доступ для записи в режиме FDM	25
		2.4.2	Доступ для чтения в режиме FDM	26
3	Орга	анизация	регистра и памяти	27
	3.1.	Блог	к регистра общего назначения	29
	3.2.	Блог	к регистра сокета	30
	3.3.	Пам	ять	31
4	Опи	сания ре	гистров	32
	4.1	Реги	истры общего назначения	32
	4.2	Реги	истры сокета	44
5	Эле	ктрическ	ие характеристики	58
	5.1	Абсо	олютные максимально допустимые значения	58
	5.2	Абсо	олютные максимально допуст. значения (электр. чувствительность).	58
	5.3	Хара	актеристики постоянного тока	59
	5.4	Paco	сеяние мощности	60
	5.5	Хара	актеристики переменного тока	60
		5.5.1	Хронометрирование сброса	60
		5.5.2	Время пробуждения	60
		5.5.3	Характеристики чипа	60
		5.5.4	Хронометрирование SPI	61
		5.5.5	Характеристики трансформатора	62
		5.5.6	MDIX	62
6	_	dun ton	ипературы инфракрасной пайки (без свинца)	63
	Hpo	филь тем		
7	•	-	рпуса	

Список рисунков

Рисунок 1. Схема контактов W55007
Рисунок 2. Внешний эталонный резистор
Рисунок 3. Схема калибровки кристалла
Рисунок 4. Режим данных переменной длины (SCSn управляется хостом) 12
Рисунок 5. Режим данных фиксированной длины (SCSn всегда подключен к земле (Ground)
Рисунок 6. Режим SPI 0 и 3
Рисунок 7. Формат SPI-фрейма
Рисунок 8. Запись SPI-фрейма в режиме VDM
Рисунок 9. Запись регистра SIMR в режиме VDM
Рисунок 10. Запись 5 байт данных в буферный блок ТХ сокета 1 0x0040 в режиме VDM 20
Рисунок 11. Чтение SPI-фрейма в режиме VDM
Рисунок 12. Чтение S7_SR в режиме VDM
Рисунок 13. Чтение данных длиной 5 байт из буферного блока RX сокета 3 0х0100 в режиме VDM
Рисунок 14. SPI-фрейм записи данных длиной 1 в режиме FDM
Рисунок 15. SPI-фрейм записи данных длиной 2 байта в режиме FDM 25
Рисунок 16. SPI-фрейм записи данных длиной 4 байта в режиме FDM 25
Рисунок 17. SPI-фрейм для чтения данных длиной 1 байт в режиме FDM 26
Рисунок 18. SPI-фрейм для чтения данных длиной 2 байта в режиме FDM 26
Рисунок 19. SPI-фрейм для чтения данных длиной 4 байта в режиме FDM 26
Рисунок 20. Организация регистра и памяти
Рисунок 21. Хронометрирование INTLEVEL
Рисунок 22. Хронометрирование
Рисунок 23. Хронометрирование SPI
Рисунок 24. Тип трансформатора
Рисунок 25. Температура инфракрасной пайки
Рисунок 26. Размеры корпуса 64

1 Разводка контактов

Рисунок 1. Схема контактов W5500

1.1 Описание контактов

Таблица 1. Система обозначений типов контактов

Тип	Описание
I	Ввод
0	Вывод
1/0	Ввод/Вывод
А	Аналоговый
PWR	Напряжение 3,3 В
GND	Земля

Таблица 2. Описание контактов микросхемы W5500

№ контак- та	Символ	Внутр. смещение ¹	Тип	Описание
1	TXN	-	AO	Дифференциальная пара TXP/TXN
2	TXP	-	AO	Дифференциальная передача данных к носителю осуществляется по
				дифференциальной паре TXP/TXN.
3	AGND	-	GND	Аналоговая земля
4	AVDD	-	PWR	Аналоговый ввод питания 3,3 В
5	RXN	-	Al	Дифференциальная пара RXP/RXN
6	RXP	-	Al	Дифференциальные данные от носителя принимаются по дифферен-
				циальной паре RXP/RXN.
7	DNC	-	AI/O	Не подсоединяйте контакт
8	AVDD	-	PWR	Аналоговый ввод питания 3,3 В
9	AGND	-	GND	Аналоговая земля
10	EXRES1	-	AI/O	Внешний эталонный резистор
				Должен быть подключен к внешнему эталонному резистору (12,4 кОм,
				1%), необходимому для смещения внутренних аналоговых цепей.
				Подробности см. на рисунке 2. «Внешний эталонный резистор».
11	AVDD	-	PWR	Аналоговый ввод питания 3,3 В
12	-		-	NC
13	-		-	NC
14	AGND	-	GND	Аналоговая земля
15	AVDD	-	PWR	Аналоговый ввод питания 3,3 В
16	AGND	-	GND	Аналоговая земля
17	AVDD	-	PWR	Аналоговый ввод питания 3,3 В
18	VBG	-	AO	Источник выходного с напряжением запрещенной зоны
				На этом контакте должно быть напряжение 1,2 В при
				температуре 25℃. Он должен быть оставлен свободным.
19	AGND	-	GND	Аналоговая земля
20	TOCAP	-	AO	Внешний эталонный конденсатор
				Этот контакт должен быть подключен к конденсатору емкостью
				4,7 мкФ. Длина вывода к конденсатору должна быть короткой,
				чтобы стабилизировать внутренние сигналы.
21	AVDD	-	PWR	Аналоговый ввод питания 3,3 В
22	1V2O	-	AO	Выходное напряжение стабилизатора 1,2 В

¹ Внутреннее смещение после аппаратного сброса

				Этот контакт должен быть подключен к конденсатору емкостью 10 нФ.
				Это выходное напряжение внутреннего стабилизатора.
23	RSVD	Pull-down	I	Он должен быть подключен к GND.
24	SPDLED	-	0	Светодиодный индикатор быстродействия
				Показывает состояния скорости подключенного канала связи. Низ-
				кая: 100 Мбит/с
				Высокая: 10 Мбит/с
25	LINKLED	-	0	Светодиодный индикатор подключения
				Показывает состояние подключения. Низкое: Связь установлена
				Высокое: Связь не установлена
26	DUPLED	-	0	Светодиодный индикатор дуплекса
				Показывает статус дуплекса для подключенного канала связи.
				Низкий: Режим дуплекса
				Высокий: Режим полудуплекса
27	ACTLED	-	0	Светодиодный индикатор активности
				Он показывает, что осуществляется контроль несущей (CRS) от
				активного физического подуровня, зависимого от среды (PMD) во
				время активности ТХ или RX.
				Низкий: Контроль несущей от активного PMD.
				Высокий: Отсутствует контроль несущей
28	VDD	-	PWR	Цифровой ввод питания 3,3 B
29	GND	-	GND	Цифровая земля
30	XI/CLKIN	-	Al	Ввод кристалла / ввод внешней синхронизации
				Внешний ввод кристалла частотой 25 МГц.
				Этот контакт также должен быть подключен к несимметричному
				TTL-осциллятору (CLKIN). К вводу внешней синхронизации должен
				быть подключен тактовый генератор с напряжением 3,3 В. При
				реализации данного метода контакт ХО должен быть оставлен
				свободным.
				Подробности см. на рисунке 3 «Схема калибровки кристалла».
31	XO	-	AO	Вывод кристалла
				Внешний вывод кристалла 25 МГц
				Примечание: Оставьте этот вывод свободным, если использу-
				ете внешнюю синхронизацию через XI/CLKIN
32	SCSn	Pull-up	I	Сигнал обращения к микросхеме для SPI-шины
				Этот контакт должен быть установлен на низком уровне,
				чтобы выбрать режим работы W5500 с SPI-интерфейсом.
				Низкий: выбран Высокий: выбор отменен

33	SCLK	-	I	Ввод синхронизации SPI
				Этот контакт используется для получения синхронизирующего сигнала SPI от ведущего SPI.
34	MISO	-	0	Вход ведущего SPI, выход ведомого (W5500)
				При низком SCSn этот контакт выводит SPI-данные.
				При высоком SCSn этот контакт становится высокоимпедансным
				(логически отключенным).
35	MOSI	-	I	Выход ведущего SPI, вход ведомого (W5500)
36	INTn	-	0	Выход прерывания
				(Активен при низком уровне)
				Низкий: Активируется прерывание от W5500
				Высокий: Отсутствует прерывание
37	RSTn	Pull-up	I	Сброс
				(Активен при низком уровне)
				Для сброса W5500 RESET должен быть на низком уровне в
				течение 500 мкс как минимум.
38	RSVD	Pull-down	I	NC
39	RSVD	Pull-down	I	NC
40	RSVD	Pull-down	I	NC
41	RSVD	Pull-down	I	NC
42	RSVD	Pull-down	I	NC
43	PMODE2	Pull-up	I	Контакты выбора операционного режима РНҮ
44	PMODE1	Pull-up	l	Эти контакты определяют режим работы сети. Подробности см. в
45	PMODE0	Pull-up	I	таблице ниже.
				РМОDE [2:0] Описание
				2 1 0
				0 0 10ВТ полудуплекс, авто-согласование отключено
				0 0 1 10ВТ дуплекс, авто-согласование отключено
				0 1 0 100BT полудуплекс, авто-согласование от- ключено
				0 1 1 100ВТ дуплекс, авто-согласование отключено
				1 0 0 100BT полудуплекс, авто-согласование включено
				1 0 1 Не используется
				1 1 0 Не используется
46	-	-	-	NC
47	-	-	-	NC
48	AGND	-	GND	Аналоговая земля
		1		1

Резистор с сопротивлением 12,4 кОм (1%) следует подключить между контактом EXRES1 и аналоговой землей (AGND), как показано ниже.

Рисунок 2. Внешний эталонный резистор

Схема калибровки кристалла показана ниже.

Рисунок 3. Схема калибровки кристалла

2 Хост-интерфейс

Микросхема W5500 предоставляет интерфейс шины SPI (последовательного интерфейса периферийных устройств) с 4 типами сигналов (SCSn, SCLK, MOSI, MISO) для внешнего хост-интерфейса и работает в качестве SPI-ведомого.

SPI-интерфейс W5500 может быть подключен к устройству управления многосторонней связью (MCU), как показано на рисунке 4 и рисунке 5 в соответствии с его операционным режимом (режимы данных переменной длины/фиксированной длины), описание которых приведено в главе 2.3 и главе 2.4.

На рисунке 4 шину SPI можно разделить с другими устройствами SPI. Поскольку шина SPI обслуживает W5500, ее нельзя разделить с другими устройствами SPI. Это показано на рисунке 5.

В режиме данных переменной длины (как показано на рисунке 4), имеется возможность разделить шину SPI с другими устройствами SPI. Однако в режиме данных фиксированной длины (как показано на рисунке 5), шина SPI обслуживает W5500 и не может быть разделена с другими устройствами.

Рисунок 4. Режим данных переменной длины (SCSn управляется хостом)

Рисунок 5. Режим данных фиксированной длины (SCSn всегда подключен к земле (Ground)

Протокол SPI определяет четыре операционных режима (Mode 0, 1, 2, 3). Режимы отличаются друг от друга полярностью и фазой тактового сигнала SCLK. SPI-режимы Mode 0 и Mode 3 отличаются друг от друга только полярностью сигнала SCLK в нерабочем состоянии.

В режимах SPI Mode 0 и 3 данные всегда фиксируются на переднем фронте сигнала SCLK и всегда выводятся на заднем фронте сигнала SCLK.

Микросхема W5500 поддерживает режимы SPI Mode 0 и Mode 3. Передача сигналов, как в режиме MOSI, так и в режиме MISO при отправке сигнала MOSI и приеме сигнала MISO использутт последовательность передачи от самого старшего разряда (MSB) к самому младшему разряду (LSB). Сигналы MOSI и MISO всегда отправляются или принимаются последовательно от самого старшего разряда (MSB) к самому младшему разряду (LSB).

Рисунок 6. SPI-режим 0 и 3

2.1 Операционный режим SPI

Микросхема W5500 управляется SPI-фреймом (см. Также главу 2.2 «SPI-фрейм»), который обменивается информацией с внешним хостом. SPI-фрейм W5500 состоит из 3 фаз: фазы адреса, фазы контроля и фазы данных.

Фаза адреса задает 16 бит адреса смещения для регистра W5500 или памяти TX/RX. Фаза контроля задает сегмент, которому принадлежит смещение (заданное фазой адреса), а также задает режим доступа для чтения/записи и операционный режим SPI (режим данных переменной длины/данных фиксированной длины).

Наконец, фаза данных задает данные случайной длины (N-байт, $1 \le N$) или данные длиной 1 байт, 2 байта и 4 байта.

Если операционный режим SPI установлен как режим данных переменной длины (VDM), сигнал шины SPI SCSn должен управляться внешним хостом с шагом SPI-фрейма.

В режиме данных переменной длины, SCSn Control Start (активация (High-to-Low)) сообщает W5500 о старте SPI-фрейма (фаза адреса), а SCSn Control End (деактивация (Low-to-High)) сообщает W5500 об окончании SPI-фрейма (конец фазы данных случайных N байт).

2.2 SPI-фрейм

SPI-фрейм W5500 состоит из 16 бит адреса смещения в фазе адреса, 8 бит фазы контроля и N байт фазы данных, как показано на рисунке 7.

8-битная фаза контроля реконфигурируется разрядами выбора сегмента (BSB[4:0]), разрядом режима доступа для чтения/записи (RWB) и операционным режимом SPI (OM[1:0]).

Разряды выбора сегмента задают сегмент, которому принадлежит адрес смещения.

Рисунок 7. Формат SPI-фрейма

Микросхема W5500 поддерживает последовательное чтение/запись данных. Она обрабатывает данные от базы (адрес смещения, который установлен для последовательной обработки данных длиной 2/4/N байт) и последующие данные путем увеличения адреса смещения (нарастающая авто-адресация) на 1.

2.2.1 Фаза адреса

Фаза адреса задает 16 бит адреса смещения для регистров W5500 и буферные сегменты TX/RX.

16-битная величина адреса смещения передается последовательно от MSB к LSB. SPI-фрейм с фазой данных длиной 2/4/N байт поддерживает последовательные чтение/запись данных, при которых адрес смещения автоматически возрастает на 1 при обработке 1 байта данных.

2.2.2 Фаза контроля

Фаза контроля задает сегмент, которому принадлежит адрес смещения (заданный фазой адреса), режим доступа для чтения/записи и операционный режим SPI.

7	6	5	4	3	2	1	0
BSB4	BSB3	BSB2	BSB1	BSB0	RWB	OM1	OM0

Разряд	Символ		Описание
		Разряды выбора сегм	ента
		Микросхема W5500 им	меет регистр общего назначения, 8 регистров
		сокетов, буферные сег	менты для каждого сокета.
		В следующей таблице г щью BSB[4:0].	приведены сегменты, выбираемые с помо-
		BSB [4:0]	Значение
		00000	Выбирает регистр общего назначения.
		00001	Выбирает регистр сокета 0
		00010	Выбирает буфер сокета 0 TX
		00011	Выбирает буфер сокета 0 RX
		00100	Зарезервирован
		00101	Выбирает регистр сокета 1
		00110	Выбирает буфер сокета 1 TX
		00111	Выбирает буфер сокета 1 RX
	DCD 54 01	01000	Зарезервирован
7~3	BSB [4:0]	01001	Выбирает регистр сокета 2
		01010	Выбирает буфер сокета 2 TX
		01011	Выбирает буфер сокета 2 RX
		01100	Зарезервирован
		01101	Выбирает регистр сокета 3
		01110	Выбирает буфер сокета 3 TX
		01111	Выбирает буфер сокета 3 RX
		10000	Зарезервирован
		10001	Выбирает регистр сокета 4
		10010	Выбирает буфер сокета 4 TX
		10011	Выбирает буфер сокета 4 RX
		10100	Зарезервирован
		10101	Выбирает регистр сокета 5
		10110	Выбирает буфер сокета 5 TX
		10111	Выбирает буфер сокета 5 RX

		11000	Зарезервирован
		11001	Выбирает регистр сокета 6
		11010	Выбирает буфер сокета 6 TX
		11011	Выбирает буфер сокета 6 RX
		11100	Зарезервирован
		11101	Выбирает регистр сокета 7
		11110	Выбирает буфер сокета 7 TX
		11111	Выбирает буфер сокета 7 RX
		сти W5500.	ных разрядов может привести к неисправно-
		Разряд режима доступ	
2	RWB	Устанавливает режим д чтения/записи. '0': Чт	
		'1': Запись	тение
		1 . Jannes	
1~0	OM [1:0]	ных переменной длины - Режим данных пере : Длина данных упр Внешний хост про Low) и сообщает W! Затем внешний хост После передачи N о ется (Low-to-High) и фрейма. В режиме стом через блок SPI - Режим данных фик : В режиме FDM д ОМ[1:0], в нем вели должен быть в сост ветствующий едини ветствии с величин	

OM[1:0]	Значение
00	Режим данных переменной длины, фаза данных N
	байт (1 ≤ N)
01	Режим данных фиксированной длины, длина данных 1 байт (N = 1)
10	Режим данных фиксированной длины, длина данных 2 байта (N = 2)
11	Режим данных фиксированной длины, длина данных 4 байта (N = 4)

2.2.3 Фаза данных

В то время, как фаза контроля устанавливается разрядами ОМ[1:0] операционного режима SPI, фаза данных задается двумя типами различной длины, один тип соответствует длине N байт (режим VDM), а другой - 1/2/4 байтам (режим FDM).

В то же время, 1 байт данных передается посредством сигнала MOSI или MISO от самого старшего разряда (MSB) к самому старшему разряду (LSB) последовательно.

2.3 Режим данных переменной длины (VDM)

В режиме VDM длина фазы данных SPI-фрейма определяется сигналом контроля SCSn внешнего хоста. Это означает, что длина фазы данных может быть случайной величиной (любая длина от 1 до N байт), соответствующей сигналу контроля SCSn.

В режиме VDM величина OM[1:0] фазы контроля должна быть равна '00'.

2.3.1 Доступ для записи в режиме VDM

Рисунок 8. Запись SPI-фрейма в режиме VDM

Рисунок 8 демонстрирует SPI-фрейм при получении внешним хостом доступа к W5500 для записи.

В режиме VDM сигнал RWB равен '1' (Запись), OM[1:0] в фазе контроля SPI-фрейма имеет значение '00'. В то же время внешний хост активирует (High-to-Low) сигнал SCSn перед передачей SPI-фрейма. Затем хост передает все разряды SPI-фрейма чипу W5500 посредством сигнала MOSI. Все разряды синхронизированы с задним фронтом сигнала SCLK. После окончания передачи SPI-фрейма хост деактивирует сигнал SCSn (Low-to-High).

При низком уровне сигнала SCSn и продолжении фазы данных возможна поддержка последовательной записи данных.

Пример доступа для записи 1 байта

Если хост записывает данные 0хАА в 'регистр масок прерываний сокета' (SIMR) блока регистра общего назначения при использовании режима VDM, данные записываются с посощью SPI-фрейма, представленного ниже.

```
Offset Address = 0x0018

BSB[4:0] '00000'

RWB '1'

OM[1:0] '00'

1st Data = 0xAA
```

Перед передачей SPI-фрейма внешний хост активирует (High-to-Low) сигнал SCSn, затем хост передает 1 бит с синхронизацией переключателя SCLK. Внешний хост деактивирует (Low-to-High) сигнал SCSn в конце передачи SPI-фрейма. (См. также рисунок 9)

Рисунок 9. Запись регистра SIMR в режиме VDM

Пример доступа для записи N байт

Если хост записывает данные длиной 5 байт (0x11, 0x22, 0x33, 0x44, 0x55) в буферный блок ТХ сокета 1 с адресом 0x0040 в режимы VDM, 5 байт данных записываются с помощью SPI-фрейма, приведенного ниже.

```
Offset Address = 0x0040
BSB[4:0]
                = '00110'
RWB
                = '1'
OM[1:0]
                = '00'
1st Data
                = 0x11
2nd Data
                = 0x22
3rd Data
                = 0x33
4th Data
                = 0x44
5th Data
                = 0x55
```

Доступ для записи N байт представлен на рисунке 10.

5 байт данных (0х11, 0х22, 0х33, 0х44, 0х55) записаны последовательно в буферный блок ТХ сокета 1 с адресом 0х0040 \sim 0х0044.

Внешний хост активирует (High-to-Low) сигнал SCSn перед передачей SPI-фрейма.

Внешний хост деактивирует (Low-to-High) сигнал SCSn в конце передачи SPI-фрейма.

SCSn_																																
							Ad	dres	s Ph	ase									C	ontr	ol Pł	nase					D	ata	Phas	е		
	(0x0040)									BSB RWB OM							М			Dat	ta 1s	t (0x	11)									
Bit Order	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
MOSI	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	1	0	0	0	1
MISO																																
SCSn																																/
	Data Phase																															
	Data 2nd (0x22) Data 3rd (0x33) Data 4th (0x44) Data 5th (0x55)																															
Bit Order	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
MOSI	0	0	1	0	0	0	1	0	0	0	1	1	0	0	1	1	0	1	0	0	0	1	0	0	0	1	0	1	0	1	0	1
MISO																																

Рисунок 10. Запись 5 байт данных в буферный блок TX сокета 1 0x0040 в режиме VDM

2.3.2 Доступ для чтения в режиме VDM

Рисунок 11. Чтение SPI-фрейма в режиме VDM

Рисунок 11 показывает SPI-фрейм в момент получения доступа к W5500 внешним хостом для чтения в режиме VDM, сигнал RWB равен '0' (Запись), OM[1:0] имеет значение '00' в фазе контроля SPI-фрейма. В то же время внешний хост активирует (High-to-Low) сигнал SCSn перед передачей SPI-фрейма.

Затем хост передает W5500 все разряды фаз адреса и контроля посредством сигнала MOSI. Все разряды синхронизированы с задним фронтом сигнала SCLK.

Затем хост получает все разряды фазы данных с синхронизацией переднего фронта выборочного сигнала SCLK с помощью сигнала MISO.

По окончании получения фазы данных хост деактивирует сигнал SCSn (Low-to-High).

Если сигнал SCSn находится на низком уровне и продолжается прием фазы данных, возможна поддержка последовательного чтения данных.

Пример доступа для чтения 1 байта

Когда хост читает 'регистр статуса сокета' (S7_SR) блока регистра сокета 7 в режиме VDM, данные читаются с помощью SPI-фрейма, приведенного ниже. Пусть S7_SR равен 'SOCK_ESTABLISHED (0x17)'.

```
Offset Address = 0x0003

BSB[4:0] = '11101'

RWB = '0'

OM[1:0] = '00'

1st Data = 0x17
```

Перед передачей SPI-фрейма внешний хост активирует (High-to-Low) сигнал SCSn, затем хост передает W5500 фазы адреса и контроля посредством сигнала MOSI. Затем хост получает фазу данных от сигнала MISO.

После окончания получения фазы данных хост деактивирует сигнал SCSn (Low-to-High). (См. также рисунок 12)

Рисунок 12. Чтение S7_SR в режиме VDM

Пример доступа для чтения N байт

Если хост читает данные длиной 5 байт (0хАА, 0хВВ, 0хСС, 0хDD, 0хЕЕ) из буферного блока RX сокета 3 по адресу 0х0100 в режиме VDM, 5 байт данных читаются с помощью SPI-фрейма, приведенного ниже.

```
Offset Address = 0x0100
BSB[4:0]
                = '01111'
RWB
                = '0'
OM[1:0]
                = '00'
1st Data
                = 0xAA
2nd Data
                 = 0xBB
3rd Data
                 = 0xCC
4th Data
                 = 0xDD
5th Data
                 = 0xEE
```

Дооступ для чтения N байт показан на рисунке 13.

Данные длиною 5 байт (0хAA, 0хBB, 0хСС, 0хDD, 0хEE) прочитаны последовательно из буферного блока RX сокета 3 по адресу $0x0100 \sim 0x0104$.

Внешний хост активирует (High-to-Low) сигнал SCSn перед передачей SPI-фрейма. Внешний хост деактивирует (Low-to-High) сигнал SCSn в конце фазы данных SPI-фрейма.

SCSn																																
							Ad	dres	s Ph	ase									(ontr	ol Pl	nase					[Data	Phas	se		
								(0x0)	100)										BSB			RWB	0	M			Dat	ta 1s	t (0x	AA)		
Bit Order	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
MOSI	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0								
MISO																									1	0	1	0	1	0	1	0
SCSn_																																
																Data	Pha	ise														
			Dat	a 2n	d (0:	xBB)					Dat	a 3r	d (0x	CC)					Da	ita 4	th (0	xDD)					Dat	a 5t	h (0x	EE)		
Bit Order	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
MOSI																																
MISO	1	0	1	1	1	0	1	1	1	1	0	0	1	1	0	0	1	1	0	1	1	1	0	1	1	1	1	0	1	1	1	0

Рисунок 13. Чтение данных длиной 5 байт из буферного блока RX сокета 3 0x0100 в режиме VDM

2.4 Режим данных фиксированной длины (FDM)

Режим FDM может быть использован, если внешний хост не может управлять сигналом SCSn.

Сигнал SCSn должен быть связан с низким уровнем (всегда подключен к земле GND), шину SPI невозможно разделить с другими устройствами SPI. (См. также рисунок 5)

В режиме VDM длина фазы данных управляется сигналом контроля SCSn. Однако в режиме FDM длина фазы данных управляется величиной OM[1:0] ('01' / '10' / '11'), которая является разрядами операционного режима SPI фазы контроля.

Поскольку SPI-фрейм в режиме FDM является точно таким же, как SPI-фрейм в режиме VDM (SPI-фрейм длиной 1 байт, 2 байта, 4 байта) за исключением контроля сигнала SCSn и установок OM[1:0], подробности режима FDM не описаны в данном разделе.

Не рекомендуется использовать режим FGM, если этого возможно избежать. Кроме того, используйте только SPI-фреймы длиной 1/2/4 байта, как описано в главе 2.4.1 и главе 2.4.2'. Использование SPI-фрейма с другой длиной данных приведет к неисправности микросхемы W5500.

2.4.1 Доступ для записи в режиме FDM

Доступ для записи 1 байта

							Ad	dres	s Ph	ase									C	ontr	ol Pł	nase)ata	Phas	e		
								(A	ny)									BS	В (А	ny)		RWB	0	M			Da	ta 1	st (aı	ny)		
Bit Order	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
MOSI	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1	0	1	*	*	*	*	*	*	*	*
MISO																																

Рисунок 14. SPI-фрейм записи данных длиной 1 байт в режиме FDM

Доступ для записи 2 байтов

							Ad	dres	s Ph	ase									C	ontr	ol Pł	nase						ata	Phas	е		
								(Aı	ny)										BSB			RWB	0	М			Da	ta 1:	st (aı	ny)		
Bit Order	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
MOSI	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1	1	0	*	*	*	*	*	*	*	*
MISO																																

			С)ata	Phas	е		
			Da	ta 2r	nd (a	ny)		
Bit Order	7	6	5	4	3	2	1	0
MOSI	*	*	*	*	*	*	*	*
MISO								

Рисунок 15. SPI-фрейм записи данных длиной 2 байта в режиме FDM

Доступ для записи 4 байтов

							Ad	dres	s Ph	ase									C	ontr	ol Pł	nase						ata	Phas	е		
								(Aı	ny)										BSB			RWB	0	М			Da	ta 1	st (aı	ny)		
Bit Order	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
MOSI	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1	1	1	*	*	*	*	*	*	*	*
MISO																																

,)ata	Phas	e						Data	Phas	e						Data	Pha	ise		
			Da	ta 2r	nd (a	ny)					Da	ita 3	rd (a	ny)					D	ata 4	4th (any)		
Bit Order	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
MOSI	*	* * * * * * * *							*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
MISO																								

Рисунок 16. SPI-фрейм записи данных длиной 4 байта в режиме FDM

2.4.2 Доступ для чтения в режиме FDM

Доступ для чтения 1 байта

							Ad	dres	s Ph	ase									C	ontr	ol Pł	nase)ata	Phas	e		
								(Aı	ny)									BS	В (А	ny)		RWB	0	М			Da	ta 19	st (Aı	ny)		
Bit Order	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
MOSI	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	0	0	1								
MISO																									*	*	*	*	*	*	*	*

Рисунок 17. SPI-фрейм для чтения данных длиной 1 байт в режиме FDM

Доступ для чтения 2 байтов

							Ad	dres	s Pha	ase									C	ontr	ol Pł	nase)ata	Phas	e		
								(Aı	ny)									BS	В (А	ny)		RWB	0	М			Da	ta 19	st (A	ny)		
Bit Order	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
MOSI	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	0	1	0								
MISO																									*	*	*	*	*	*	*	*

				ata	Phas	е		
			Dat	ta 2r	nd (A	ny)		
Bit Order	7	6	5	4	3	2	1	0
MOSI								
MISO	*	*	*	*	*	*	*	*

Рисунок 18. SPI-фрейм для чтения данных длиной 2 байта в режиме FDM

Доступ для чтения 4 байтов

							Ad	dres	s Ph	ase									C	ontr	ol Pł	nase)ata	Phas	e		
								(Aı	ny)									BS	В (А	ny)		RWB	0	М			Da	ta 1:	st (A	ny)		
Bit Order	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
MOSI	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	0	1	1								
MISO																									*	*	*	*	*	*	*	*

				ata	Phas	e)ata	Phas	e						Data	Pha	ise		
			Dat	ta 2r	nd (A	ny)					Da	ta 3ı	d (A	ny)					D	ata 4	lth (Any)		
Bit Order	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
MOSI																								
MISO	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Рисунок 19. SPI-фрейм для чтения данных длиной 4 байта в режиме FDM

3 Организация регистра и памяти

Микросхема W5500 имеет один блок регистра общего назначения, восемь блоков регистров сокетов и буферные блоки TX/RX, размещенные в каждом сокете. Каждый блок выбирается значением BSB[4:0](разряд выбора блока) SPI-фрейма. Рисунок 20 показывает выбранный значением BSB[4:0] блок и допустимый диапазон значений адреса смещения буферных блоков TX/RX сокета. Буферный блок ТX каждого сокета существует физически в одном диапазоне памяти величиной 16 кбайт и изначально размещен в 2 кбайтах памяти.

Точно также, буферный блок RX каждого сокета существует физически в одном диапазоне памяти величиной 16 кбайт и изначально размещен в 2 кбайтах.

Независимо от размера размещения буфера TX/RX каждого сокета, доступ к нему может быть получен в 16-битном диапазоне адреса смещения (от 0x00000 до 0xFFFF).

См. главу 3.3' для более подробной информации об организации 16 кбайт памяти TX/RX и методах доступа.

Рисунок 20. Организация регистра и памяти

3.1 Блок регистра общего назначения

Блок регистра общего назначения задает конфигурацию общей информации чипа W5500, такой, как Ip-адрес и MAC-адрес. Этот блок может быть выбран с помощью величины BSB[4:0] SPI-фрейма. Таблица 3 определяет адреса смещений регистров в этом блоке. Для более детальной информации о каждом регистре см. главу 4.1.

Таблица 3. Адрес смещения для регистра общего назначения

Смеще- ние	Регистр	Сме- щение	Регистр	Смеще-	Регистр
	Режим		Таймер низкого уровня прерывания	0x0021	(PHAR3)
0x0000	(MR)	0x0013	(INTLEVELO)	0x0022	(PHAR4)
	Адрес шлюза	0x0014	(INTLEVEL1)	0x0023	(PHAR5)
0x0001	(GAR0)		Прерывание		Идентификация сессии РРР
0x0002	(GAR1)	0x0015	(IR)	0x0024	(PSIDO)
0x0003	(GAR2)		Маска прерываний	0x0025	(PSID1)
0x0004	(GAR3)	0x0016	(IMR)		Максимальный размер сегмента РРР
	Адрес маски подсети		Прерывание сокета	0x0026	(PMRU0)
0x0005	(SUBRO)	0x0017	(SIR)	0x0027	(PMRU1)
0x0006	(SUBR1)		Маска прерывания сокета		Недоступный ІР-адрес
0×0007	(SUBR2)	0x0018	(SIMR)	0x0028	(UIPRO)
0×0008	(SUBR3)		Время повторной попытки	0x0029	(UIPR1)
	Физический адрес отпра- вителя	0x0019	(RTR0)	0x002A	(UIPR2)
0x0009	(SHAR0)	0x001A	(RTR1)	0x002B	(UIPR3)
0x000A	(SHAR1)		Число повторных попыток		Недоступный порт
0x000B	(SHAR2)	0x001B	(RCR)	0x002C	(UPORTRO)
0x000C	(SHAR3)		Таймер запроса PPP LCP	0x002D	(UPORTR1)
0x000D	(SHAR4)	0x001C	(PTIMER)		Конфигурация РНҮ
0x000E	(SHAR5)		Магическое число PPP LCP	0x002E	(PHYCFGR)
	lp-адрес отправителя	0x001D	(PMAGIC)	0x002F	
0x000F	(SIPRO)		МАС-адрес получателя РРР	~	Зарезервирован
0x0010	(SIPR1)	0x001E	(PHAR0)	0x0038	
0x0011	(SIPR2)	0x001F	(PHAR1)		Версия чипа
0x0012	(SIPR3)	0x0020	(PHAR2)	0x0039	(VERSIONR)
0x003A ~	0xFFFF	Зарезерв	ирован		

3.2 Блок регистра сокета

Микросхема W5500 поддерживает 8 сокетов для каналов связи. Каждый сокет управляется блоком регистра сокета n (если $0 \le n \le 7$). Величину n регистра сокета n можно выбрать с помощью значения BSB[4:0] SPI-фрейма. В таблице 4 определены 16-битные адреса смещения регистров в блоке регистра сокета n.

Для более подробной информации по каждому регистру см. главу 4.2.

Таблица 4. Адрес смещения блоке регистра сокета п (0≤n≤7)

Смещение	Регистр	Смещение	Регистр	Смещение	Регистр
0x0000	Сокет п Режим (Sn_MR)	0x0010	Порт назначения coкета n (Sn_DPORT0)	0x0024	Сокет n TX Write Указатель
	Команда сокета n (Sn_CR)	0x0011	(Sn_DPORT1)	0x0025	(Sn_TX_WR0)
0x0001					(Sn_TX_WR1)
			Сокет п		Сокет n Полученный RX
	Socket n Interrupt		Максимальный	0x0026	Размер
0x0002	(Sn_IR)	0x0012	размер сегмента (Sn_MSSR0)	0x0027	(Sn_RX_RSR0)
		0x0013	(Sn_MSSR1)		(Sn_RX_RSR1)
	Socket n Status				Socket n RX Read Pointer
0x0003	(Sn_SR)	0x0014	Зарезервирован	0x0028	(Sn_RX_RD0)
	Socket n Source Port		Socket n IP TOS	0x0029	(Sn_RX_RD1)
0x0004	(Sn_PORT0)	0x0015	(Sn_TOS)		Сокет n RX Write
0x0005	(Sn_PORT1)		Socket n IP TTL	0x002A	Указатель
	Сокет п Назна-	0x0016	(Sn_TTL)	0x002B	(Sn_RX_WR0)
	чение Физический адрес				(Sn_RX_WR1)
0x0006	(Sn_DHAR0)	0x0017			Маска прерывания сокета п
0x0007	(Sn_DHAR1)	~	Зарезервирован	0x002C	(Sn_IMR)
0×0008	(Sn_DHAR2)	0x001D			Socket n Fragment
0x0009	(Sn_DHAR3)		Приемный буфер сокета n		Смещение в заголовке IP
0x000A	(Sn_DHAR4)	0x001E	Размер	0x002D	(Sn_FRAG0)
0x000B	(Sn_DHAR5)		(Sn_RXBUF_SIZE)	0x002E	(Sn_FRAG1)
			Сокет п		
		0x001F	Размер буфера передачи (Sn_TXBUF_SIZE)	0x002F	Таймер постоянного соединения (Sn_KPALVTR)
	Сокет п		Socket n TX Free		
	Ір-адрес назначения	0x0020	Size (Sn_TX_FSR0)	0x0030	Зарезервирован
0x000C	(Sn_DIPR0)	0x0021	(Sn_TX_FSR1)	~	
0x000D	(Sn_DIPR1)		Socket n TX Read	0xFFFF	
0x000E	(Sn_DIPR2)	0x0022	Pointer (Sn_TX_RD0)		
0x000F	(Sn_DIPR3)	0x0023	(Sn_TX_RD1)		

3.3 Память

Микросхема W5500 имеет один участок памяти TX размером 16 кбайт для буферных блоков TX сокета n и один участок памяти RX размером 16 кбайт для буферных блоков RX сокета n.

16 кбайт памяти ТХ изначально размещены в памяти размером 2 кбайта для буферного блока каждого сокета ТХ (2кбайт X 8 = 16кбайт). Изначально размещеннные 2 кбайта памяти буфера сокета n TX могут быть переразмещены c помощью команды 'Socket n TX Buffer Size Register (Sn_TXBUF_SIZE)'.

Как только все регистры Sn_TXBUF_SIZE сконфигурированы, буфер сокета ТХ размещен в конфигурируемой памяти ТХ размером 16 кбайт, назначенной последовательно сокетам от 0 до 7. Адрес его физической памяти автоматически задается в памяти ТХ размером 16 кбайт. Следовательно, в случае ошибки передачи данных, общая сумма Sn_TXBUF_SIZE не должна превышать 16.

Метод распределения памяти RX размером 16 кбайт не отличается от метода распределения памяти TX размером 16 кбайт. 16 кбайт памяти RX изначально размещены в буферном блоке размером 2 кбайта для каждого сокета (2кбайт X 8 = 16кбайт). Изначально размещенные 2 кбайта памяти буфера сокета n RX могут быть переразмещены с помощью команды 'Socket n RX Buffer Size Register (Sn_RXBUF_SIZE)'.

Как только все регистры Sn_RXBUF_SIZE сконфигурированы, буфер сокета RX размещен в конфигурируемой памяти RX размером 16 кбайт, назначенной последовательно сокетам от 0 до 7. Адрес физической памяти буфера RX сокета автоматически задается в памяти RX размером 16 кбайт. Следовательно, общая сумма Sn_RXBUF_SIZE не должна превышать 16, в случае превышения может случиться ошибка приема данных.

Для распределения 16 кбайт памяти TX/RX используются Sn_TXBUF_SIZE и Sn_RXBUF_SIZE, см. главу 4.2.

Буферный блок ТХ сокета n, размещенный в 16 кбайтах памяти ТХ является буфером для хранения данных, которые должен отправить хост. 16 бит адреса смещения буферного блока ТХ сокета n имеет адресное пространство размером 64 кбайт в диапазоне от 0х0000 до 0хFFFF и конфигурируется с помощью команд 'Socket n TX Write Pointer Register (Sn_TX_WR)' и 'Socket n TX Read Pointer Register(Sn_RX_RD)'. Однако, 16 бит адреса смещения автоматически конвертируются в физический адрес для получения доступа к 16 кбайтам памяти ТХ, как показано на рисунке 20. Информацию о Sn_TX_WR и Sn_TX_RD см. в главе 4.2.

Буферный блок RX сокета n, размещенный в 16 кбайт памяти RX является буфером для хранения данных, полученных через Ethernet. 16 бит адреса смещения буферного блока RX сокета n имеет адресное пространство размером 64 кбайт в диапазоне от 0х0000 до 0хFFFF и конфигурируется с помощью команд 'Socket n RX RD Pointer Register (Sn_RX_RD)' и 'Socket n RX Write Pointer Register (Sn_RX_WR)'. Однако, 16 бит адреса смещения автоматически конвертируются в физический адрес для получения доступа к 16 кбайтам памяти RX, как показано на рисунке 20. Информацию о Sn_RX_RD и Sn_RX_WR см. в главе 4.2.

4 Описания регистров

4.1 Регистры общего назначения

MR (Регистр режима работы) [R/W] $[0x0000] [0x00]^2$

MR используется для сброса S/W, режима блокировки ping и режима PPPoE.

7	6	5	4	3	2	1	0
RST	Зарезерви- рован	WOL	PB	PPPoE	Зарезерви- рован	FARP	Зарезерви- рован

Раз ряд	Символ	Описание						
7	RST	Если этот разряд равен '1', все внутренние регистры будут инициализированы. При сбросе S/W он будет автоматически сброшен на '0'.						
6	Зарезер- вирован	Зарезервирован						
		Пробуждение при подключении к локальной сети LAN						
		0 : Отключить режим WOL 1 :						
		Включить режим WOL						
		Если режим WOL включен и полученный по протоколу UDP магический пакет						
		(magic packet) успешно обработан, PIN прерывания (INTn) активируется на низкий						
		уровень. При использовании режима WOL сокет UDP должен открываться номером						
5	WOL	порта любого источника. (Используйте Socket n Mode Register (Sn_MR) для открытия						
		сокета.)						
		Примечание: Магический пакет UDP, поддерживаемый W5500, состоит из 6 байт						
		потока синхронизации ('0xFFFFFFFFFFFF') и 16 раз поток Мас-адресов приемника в						
		полезной нагрузке UDP. Такая опция, как пароль, игнорируется.						
		Для режима WOL можно использовать номер порта любого UDP-источника.						
		Режим блокировки ping						
4	РВ	0 : Отключить блокировку ping						
		1: Включить блокировку ping						
		Если этот разряд равен '1', блокируется отклик на запрос ping.						
		Режим РРРоЕ						
2	DDD - F	0 : Отключить режим РРРоЕ 1:						
3	PPPoE	Включить режим РРРоЕ						
		При использовании линии ADSL, этот разряд должен быть равен '1'.						
2	Зарезер- вирован	Зарезервирован						
1	FARP	Принудительное использование протокола ARP						

² Запись регистра: [Read/Write/ReadClearWrite1] [Address] [Reset value]; ReadClearWrite1 (RCW1) ПО имеет возможность как прочитать этот разряд, так и очистить его путем записи 1. Запись '0' не меняет значение разряда.

		0 : Отключить режим форсирования ARP 1: Включить режим форсирования ARP В режиме форсирования ARP принудительно отправляется запрос ARP при каждой отправке данных.
0	Зарезер- вирован	Зарезервирован

GAR (регистр Ір-адреса шлюза) [R/W] [0x0001 - 0x0004] [0x00]

GAR конфигурирует адрес шлюза по умолчанию.

Ex) В случае "192.168.0.1"

0x0001	0x0002	0x0003	0x0004
192 (0xC0)	168 (0xA8)	0 (0x00)	1 (0x01)

SUBR (Регистр маски подсети) [R/W] [0x0005 - 0x0008] [0x00]

SUBR конфигурирует адрес маски подсети.

Ex) В случае "255.255.255.0"

0x0005	0x0006	0x0007	0x0008	
255 (0xFF)	255 (0xFF)	255 (0xFF)	0 (0x00)	

SHAR (Регистр физического адреса источника) [R/W] [0x0009 - 0x000E] [0x00]

SHAR конфигурирует физический адрес источника.

Ex) В случае "00.08.DC.01.02.03"

0x0009	0x000A	0x000B	0x000C	0x000D	0x000E
0x00	0x08	0xDC	0x01	0x02	0x03

SIPR (Регистр IP-адреса источника) [R/W] [0x000F - 0x0012] [0x00]

SIPR конфигурирует IP-адрес источника.

Ex) В случае "192.168.0.2"

0x000F	0x0010	0x0011	0x0012	
192 (0xC0)	168 (0xA8)	0 (0x00)	2 (0x02)	

INTLEVEL (Регистр таймера низкого уровня прерывания) [R/W] [0x0013 - 0x0014] [0x0000]

INTLEVEL устанавливает время ожидания активации прерывания (I_{AWT}). При прерывании PIN прерывания (INTn) активирует низкий уровень по прошествии времени INTLEVEL.

$$I_{AWT} = (INTLEVEL + 1) imes rac{1}{PLL_{clk}^3} imes 4 ext{ (when INTLEVEL > 0)}$$

Уравнение 1 времени ожидания активации прерывания

Рисунок 21. Хронометрирование INTLEVEL

- а. При возникновении прерывания из-за истечения времени ожидания битам SO_IR[3] и SIR[0] присваивается значение '1', а затем INTn PIN активируется на низкий уровень.
- b. Если прерывание соединения сокета 1 возникает перед тем, как завершена обработка предыдущего прерывания, разрядам S1_IR[0] и SIR[1] присваивается значение '1', а INTn PIN по-прежнему находится на низком уровне.
- с. Если хост полностью обработал предыдущее прерывание путем учистки разряда $SO_IR[3]$, INTn PIN деактивируется на высокий уровень, но $S1_IR[0]$ и SIR[1] попрежнему равны '1'.
- d. Несмотря на то, что разряды S1_IR[0] и SIR[1] равны '1', INTn не может быть активирован на низкий уровень в течение времени INTLEVEL. По истечении времени INTLEVEL INTn будет активировано на низкий уровень.

³ PLL_{clk} is 150MHz

IR (Регистр прерывания) [R/W] [0x0015] [0x00]

IR указывает статус прерывания. Каждый разряд IR может быть очищен, если хост запишет значение '1' в каждый разряд. Если IR неравен '0x00', INTn PIN активирован на низком уровне до тех пор, пока IR не станет равным '0x00'.

7	6	5	4	3	2	1	0
CONFLICT	UNREACH	PPPoE	MP	Зарезер- вирован	Зарезер- вирован	Зарезер- вирован	Зарезер- вирован

Разряд	Символ	Описание
		Конфликт IP
7	CONFLICT	Разряду присваивается значение '1', если в полученном запросе
		ARP собственный IP-адрес источника совпадает с IP-адресом от-
		правителя.
		Адресат недоступен
		При получении пакета ІСМР (Порт назначения недоступен), это-
6	UNREACH	му разряду присваивается значение '1'.
O	UNREACH	Если этот разряд равен '1', информация адресата, такая, как IP-
		адрес и номер порта, может быть проверена с помощью соответ-
		ствующих UIPR и UPORTR.
5	PPPoE	Закрытие подключения РРРоЕ
5	FFFOL	Этот разряд устанавливается, если в течение режима РРРоЕ связь по протоколу РРРоЕ отключается.
		Магический пакет
4	MP	Этот разряд устанавливается, если включен режим WOL и полу-
		чен магический пакет по UDP.
3~0	Зарезерви- рован	Зарезервирован

IMR (Регистр маски прерывания) [R/W][0x0016][0x00]

IMR используется, чтобы маскировать прерывания. Каждый разряд IMR соответствует разряду IR. Если какой-нибудь разряд IMR равен '1' и соответствующий разряд IR равен '1', то произойдет прерывание. Иными словами, если какойнибудь разряд IMR равен '0', прерывание не произойдет, даже если соответствующий разряд IR равен '1'.

7	6	5	4	3	2	1	0
IM_IR7	IM_IR6	IM_IR5	IM_IR4	Зарезерви-	Зарезерви-	Зарезерви-	Зарезерви-
				рован	рован	рован	рован

Разряд	ц Символ	Описание
		Маска прерывания конфликта IP
7	IM_IR7	0: Отключить прерывание
		конфликта IP 1: Включить
		прерывание конфликта IP
		Маска прерывания из-за недоступного адресата
6	IM_IR6	0: Отключить прерывание из-за недоступ-
		ного адресата 1: Включить прерывание
		из-за недоступного адресата
		Маска прерывания закрытия РРРоЕ
5	IM_IR5	0: Отключить прерывание за-
		крытия РРРоЕ 1: Включить пре-
_		рывание закрытия РРРоЕ
		Маска прерывания магического пакета
4	IM_IR4	0: Отключить прерывание маги-
		ческого пакета 1: Включить
		прерывание магического пакета
3~0	Зарезер- вирован	Зарезервирован

SIR (Регистр прерывания сокета) [R/W] [0x0017] [0x00]

SIR указывает на статус прерывания сокета. Каждый разряд SIR будет равен '1' до тех пор, пока хост не очистит Sn_IR . Если Sn_IR не равен '0x00', n-й разряд SIR равен '1' и INTn PIN активирован до тех пор, пока SIR не станет равным '0x00'.

7	6	5	4	3	2	1	0	
S7_INT	S6_INT	S5_INT	S4_INT	S3_INT	S2_INT	S1_INT	S0_INT	

Разряд	Сим- вол	Описание
7		При прерывании сокета n, n-й разряд SIR становится равным
~	Sn_INT	'1'.
0		

SIMR (Регистр маски прерывания сокета) [R/W] [0x0018] [0x00]

Каждый разряд SIMR соответствует разряду SIR. Прерывание произойдет, если какой-нибудь разряд SIMR станет равным '1' и соответствующий разряд SIR станет равен '1' Иными словами, если какой-нибудь разряд SIMR равен '0', прерывание не произойдет, даже если соответствующий разряд SIR равен '1'.

7	6	5	4	3	2	1	0
S7_IMR	S6_IMR	S5_IMR	S4_IMR	S3_IMR	S2_IMR	S1_IMR	SO_IMR

Раз- ряд	Символ	Описание
7		Маска прерывания сокета n (Sn_INT)
~	Sn_IMR	0: Отключить прерывание сокета n
0		1: Включить прерывание сокета n

RTR (Регистр времени выполнения повторных попыток) [R/W] [0x0019 - 0x001A] [0x07D0]

RTR определяет период тайм-аута повторной передачи. Единица периода таймаута равна 100 мкс и по умолчанию RTR равно '0х07D0' или '2000'. Таким образом, период тайм-аута по умолчанию равен 200 мс (100 мкс X 2000).

В течение времени, заданного, W5500 ждет ответа на пакет, отправленный с помощью Sn_CR(комманды CONNECT, DISCON, CLOSE, SEND, SEND_MAC, SEND_KEEP) от равноправного участника сети. Если участник сети не отвечает в течение времени RTR, W5500 снова отправляет пакет или запускает тайм-аут.

Ex) Если период тайм-аута установлен равным 400 мс, RTR = (400 мс / 1 мс) X 10 = 4000(0x0FA0)

0x0019	0x001A
0x0F	0xA0

RCR (Регистр счетчика повторных попыток) [R/W] [0x001B] [0x08]

RCR задает число попыток повторной передачи. Если повторная передача происходит 'RCR+1' раз, запускается прерывание тайм-аута ($Sn_R[T] = '1'$).

Ex) RCR = 0x0007

Конфигурация тайм-аута W5500 может быть осуществлена с помощью RTR и RCR. W5500 имеет два типа тайм-аута, таких, как протокол переопределения адресов (ARP) и повторная передача по протоколу TCP.

При использовании ARP (См. стандарт, http://www.ietf.org/rfc.html) при тайм-ауте повторной передачи W5500 автоматически посылает ARP-запрос на IP-адрес участника сети, чтобы получить информацию о MAC-адресе (использованного для коммуникации IP, UDP или TCP). Во время ожидания ARP-ответа от участника сети, если ответ не приходит в течение заданного времени RTR, запускается временный тайм-аут и снова посылается ARP-запрос. Это повторяется 'RCR + 1' раз. Если после повторения ARP-запросов 'RCR+1' раз на них не приходит ответа, запускается окончательный тайм-аут и Sn_IR(TIMEOUT) становится равным '1'. Время окончательного тайм-аута (ARP_{TO}) ARP-запросов вычисляется по формуле, приведенной ниже.

$$ARP_{TO} = (RTR \times 0.1ms) \times (RCR + 1)$$

При тамйм-ауте повторной передачи TCP-пакета W5500 отсылает TCP-пакеты (пакеты SYN, FIN, RST, DATA) и ожидает подтверждения (ACK) в течение времени, заданного RTR и RCR. Если нет подтверждения ACK от участника сети, запускается временный тайм-аут и повторно отсылается TCP-пакет.

Повторные передачи происходят 'RCR+1' раз. Если повторная передача ТСР-пакета происходит 'RCR+1' раз и ответа на отправку ТСР нет, запускается окончательный тайм-аут и Sn_IR(TIMEOUT) становится равным '1'. Время окончательного тайм-аута (TCPTO) поавторных TCP-передач вычисляется по формуле, приведенной ниже.

$$\mathit{TCP}_{\mathit{TO}} = \left(\sum_{N=0}^{M} (\mathit{RTR} \times 2^{N}) + \left((\mathit{RCR} - \mathit{M}) \times \mathit{RTR}_{\mathit{MAX}} \right) \right) \times 0.1 \mathit{ms}$$

N : Счетчик повторных передач, 0≤N ≤ M

М : Минимальная величина, если RTR x $2^{(M+1)}$ > 65535 and 0 ≤ M ≤ RCR RTRMAX : RTR x 2^{M}

Ex) Если RTR = 2000(0x07D0), RCR = 8(0x0008),

$$ARP_{TO} = 2000 \times 0.1 \text{ mc} \times 9 = 1800 \text{ mc} = 1.8 \text{ c}$$

 $TCP_{TO} = (0x07D0+0x0FA0+0x1F40+0x3E80+0x7D00+0xFA00+0xFA00+0xFA00+0xFA00) X 0,1mc$

$$= (2000 + 4000 + 8000 + 16000 + 32000 + ((8 - 4) \times 64000)) \times 0,1$$
mc

 $= 318000 \times 0.1 \text{ MC} = 31.8 \text{ C}$

PTIMER (Регистр таймера запроса протокола управления каналом PPP) [R/W] [0x001C] [0x0028]

PTIMER задает время отправки эхо-запросов LCP. Единица времени равна 25 мс.

Ex) в случае, если PTIMER равен 200,

$$200 * 25(мc) = 5000(мc) = 5 секунд$$

PMAGIC (Регистр магического числа протокола управления каналом PPP) [R/W] [0x001D] [0x00]

PMAGIC конфигурирует магическое число размером 4 байта, которое используется при эхо-запросах LCP.

Ex) PMAGIC = 0x01

0x001D
0x01

Магическое число LCP = 0x01010101

PHAR (Регистр физического адреса адресата в режиме

PPPoE) [R/W] [0x001E-0x0023] [0x0000]

PHAR должен быть записан в физический адрес сервера PPPoE, полученный в процессе подключения по PPPoE

Ех) В случае, если физический адрес адресата равен 00:08:DC:12:34:56

0x001E	0x001F	0×0020	0x0021	0x0022	0x0023
0x00	0x08	0xDC	0x12	0x34	0x56

PSID (Регистр ID сессии в режиме PPPoE) [R/W] [0x0024-0x0025] [0x0000]

PSID должен быть записан в ID сессии сервера PPPoE, полученный в процессе подключения по PPPoE.

Ex) В случае, если ID сессии равен 0x1234

0x0024	0025
18 (0x12)	52(0x34)

PMRU (Максимальный размер данных в режиме PPPoE) [R/W] [0x0026-0x0027] [0xFFFF]

PMRU задает максимальный размер данных, передаваемых по протоколу PPPoE.

Ex) в случе, если максимальный размер данных, передаваемых по протоколу PPPoE, равен 0x1234

0x0026	0027
18 (0x12)	52 (0x34)

UIPR (Регистр недоступного IP-адреса) [R] [0x0028-0x002B] [0x00000000] UPORTR (Регистр недоступного порта) [R] [0x002C-0x002D] [0x0000]

Микросхема W5500 получает ICMP-пакет (Порт назначения недоступен), если данные отправлены по номеру порта, сокет которого не открыт, и разряд UNREACH IR становится равным '1' и UIPR и UPORTR обозначают IP-адрес и номер порта соответственно.

Ex) В случае "192.168.0.11"

0x0028	0x0029	0x002A	0x002B		
192 (0xC0)	168 (0xA8)	0 (0x00)	11 (0x0E)		

Ex) В случае "0x1234"

0x002C	002D
18 (0x12)	52(0x34)

PHYCFGR (Регистр конфигурации PHY W5500) [R/W] [0x002E] [0b10111XXX]

PHYCFGR задает операционный режим и сбрасывает PHY. Кроме того, PHYCFGR указывает на такие статусы PHY, как дуплекс, скорость, соединение (duplex, Speed, Link).

Разряд	Символ	Описание							
		Reset [R/W]					
7	RST	Если этот разряд равен '0', внутренний протокол РНҮ установлен в исходное по-							
		ложени	е. По	сле	сброса РНҮ, параметру должно быть присвоено значение '1'.				
6	OPMD	1: Конф ние с по Этот ра: OPMDC[RSTn PII PINs по конфигу ватель:	Способ конфигурирования операционного режима PHY 1: Конфигурирование с помощью OPMDC[2:0] в PHYCFGR 0: Конфигурирование с помощью H/W PINs(PMODE[2:0]) Этот разряд конфигурирует операционный режим PHY с помощью разрядов OPMDC[2:0] или PMODE[2:0] PINs. Если W5500 перезагружен с помощью POR или RSTn PIN, операционный режим PHY конфигурируется посредством PMODE[2:0] PINs по умолчанию. После сброса POR или RSTn, пользователь может изменить конфигурацию операционного режима PHY с помощью OPMDC[2:0]. Если пользователь хочет изменить конфигурацию с помощью OPMDC[2:0], следует сбросить PHY путем присвоения разряду RST значения '0' после того, как пользователь присвоил этому разряду '1' и OPMDC[2:0]. Разряд конфигурации операционного режима [R/W]						
		Эти раз	ояды	выб	бирают операционный режим РНҮ, как описано в следующей таблице.				
		5	4	3	Описание				
		0	+	0	10ВТ полудуплекс, авто-согласование отключено				
		0	0	1	10ВТ дуплекс, авто-согласование отключено				
5~3	OPMDC	0		0	100ВТ полудуплекс, авто-согласование отключено				
		0		1	100ВТ дуплекс, авто-согласование отключено				
		1	0	0	100ВТ полудуплекс, авто-согласование включено				
		1	0	1	Не используется				
		1	1	0	Режим выключения питания				
		1	1	1	Возможны все варианты, авто-согласование включено				
2	DPX			лек	ca [Read Only]				
		1: Дупл							
		0: Полу,	-						
1	SPD	Статус скрости [Read Only]							
		1: 100 Мбит/c based							
		0: 10 M6							
0	LNK	Статус подключения [Read Only]							
		1: Подк.							
		0: Отклі	очен	0					

VERSIONR (Регистр версии чипа W5500) [R] [0x0039] [0x04]

VERSIONR всегда показывает версию W5500 version как 0x04.

4.2 Регистры сокета

Sn^4 _MR (Регистр режима сокета n) [R/W] [0x0000] [0x00]

Sn_MR задает опцию или тип протокола сокета n.

7	6	5	4	3	2	1	0	
MULTI/	BCASTB	ND / MC	UCASTB	D2	DO	D1	DO	
MFEN		/MMB	MIP6B	P3	P2	PI	P0	

Разряд	Символ	Описание
		Мультивещание в режиме UDP
		0 : отключить мультивещание
		1 : включить мультивещание
		Этот разряд используется только в режиме UDP (P[3:0] = '0010').
		Для использования мультивещания необходимо задать конфигурацию Sn_DIPR
		и Sn_DPORT соответственно с помощью Ip-адреса и номера порта группы мно-
		гоадресной передачи перед тем, как сокет п откроется командой ОРЕМ
		Sn_CR.
7	MULTI/	Включение MAC-фильтра в режиме MACRAW
	MFEN	0 : отключить фильтрацию
		МАС 1 : включить фильтрацию
		MAC
		Этот разряд используется только в режиме MACRAW (P[3:0] = '0100').
		Если этот разряд равен '1', W5500 может получать только пакеты вещания
		или пакеты, отправленные себе. Если этот разряд равен '0', W5500 может
		получать все пакеты по Ethernet. Если пользователь желает реализовать ги-
		бридный стек TCP/IP, рекомендуется, чтобы этот разряд был равен '1' для
		снижения затрат хоста на обработку всех получаемых пакетов.
		Блокировка вещания в режиме MACRAW и режиме UDP
		0 : отключить блокировку вещания
6	BCASTB	1 : включить блокировку вещания
		Этот разряд блокирует получения пакетов вещания в режиме UDP (P[3:0] = '0010').
		Кроме того, этот бит блокирует в режиме MACRAW (P[3:0] = '0100')
		Использование подтверждения АСК без задержки
5	ND/MC	0 : Отключить опцию АСК без задержки
J	/MMB	1 : Включить опцию АСК без задержки
		Этот бит используется только в режиме ТСР (Р[3:0] = '0001').

⁴n - это номер сокета (0, 1, 2, 3, 4, 5, 6, 7). n задается 'SNUM[2:0]' в множестве управляющих битов.

		Если этот ра	зряд р	авен '1	', ACK-г	акет отправляется без задер	жки, как		
		только получен пакет данных от участника сети. Если этот разря							
		вен '0', АСР	времени						
		тайм-аута, заданного RTR.							
		Мультикаст							
		0 : использов	ание г	ротокол	na IGMP	версии 2			
		1 : использов	ание г	версии 1					
		Этот разряд используется только в режиме UDP (P[3:0] = '0010') и при							
		MULTI =	'1'.	Он :	задает	версию для сообщени	й IGMP		
		(Join/Leave	Repor	t).					
		Блокировка	муль	гикаста	в режи	ме MACRAW			
		0 : отключить	ь блоки	іровку					
		мультикаста	1 : вкл	ючить					
		блокировку м	ульти	каста					
			Этот разряд используется только в режиме MACRAW (P[3:0] = '0100'). Он блокирует получение пакета с MAC-адресом групповой передачи.						
		Блокировка одноадресной передачи в режиме UDP							
		0 : отключить блокировку							
		одноадресной передачи 1							
		: включить блокировку							
		одноадресной передачи							
4	UCASTB	Этот разряд блокирует получение одноадресного пакета в режи-							
	MIP6B	ме UDP (P[3:0] = '0010') и при MULTI = '1'.							
		Блокировка пакета lpv6 в режиме MACRAW							
		0: отключить блоки-							
		ровку IPv6 1 : включить							
		блокировку ІРу6							
		Этот бит исг	ользуе	ется тол	ько в ре	ежиме MACRAW (P[3:0] = '010	0').		
		Он блокирует	получ	нение па	акета IP	v6.			
2	D 2	Протокол							
3	P3	Здесь происх	одит к	онфигу	рация р	ежима протокола в сокете n.			
		P3	P2	P1	P0	Значе-			
2	P2			0		ние			
		0	0	0	0	Закрыт			
1	P1	0	0	0	1	TCP			
		0	0	1	0	UDP			
0	P0	0	1	0	0	MACRAW			
-		* В сокете 0 должен использоваться только режим MACRAW.							
		2 control o Acriment Methoripsoparisen Tombito pentinin minerati.							

Sn_CR (Регистр команды сокета n) [R/W] [0x0001] [0x00]

Здесь устанавливаются команды, такие, как OPEN, CLOSE, CONNECT, LISTEN, SEND и RECEIVE, для сокета п. После того, как чип W5500 принял команду, регистр Sn_CR автоматически очищается, получая значение 0x00. Хотя Sn_CR имеет значение 0x00, команда все еще обрабатывается. Для проверки, завершено ли выполнение команды или нет, пожалуйста, проверьте Sn_IR или Sn_SR.

Величина	Символ	Описание					
		Сокет п инициализирован и открыт в соответствии с протоколом, выбранным с помощью Sn_MR (P3:P0). Таблица ниже показывает значения Sn_SR, соответствующие Sn_MR.					
0x01	OPEN	Sn_MR (P[3:0]) Sn_SR Sn_MR_CLOSE ('0000') - Sn_MR_TCP ('0001') SOCK_INIT (0x13) Sn_MR_UDP ('0010') SOCK_UDP (0x22) S0_MR_MACRAW ('0100') SOCK_MACRAW (0x42)					
0x02	LISTEN	Эта команда действительна только в режиме TCP (Sn_MR(P3:P0) = Sn_MR_TCP). В этом режиме сокет п работает как 'сервер TCP' и ожидает запрос на установление соединения (SYN-пакет) от любого 'клиентаTCP'. Sn_SR меняет состояние от SOCK_INIT к SOCKET_LISTEN. Если запрос на установление соединения от 'клиента TCP' успешно удовлетворен, Sn_SR меняет значение от SOCK_LISTEN к SOCK_ESTABLISHED и Sn_IR(0) становится равным '1'. Однако, если при запросе на установление соединения от 'клиента TCP' произошел сбой, Sn_IR(3) становится равным '1' и значение Sn_SR меняется на SOCK_CLOSED.					
0x04	CONNECT	Эта команда действительна только в режиме ТСР и действует, если сокет п работает в качестве 'клиента ТСР'. Для подключения, запрос на установление соединения (SYN-пакет) отправляется 'серверу ТСР', конфигурация которого задана Sn_DIPR и Sn_DPORT (адрес назначения и порт). Если запрос на установление соединения успешен, значение Sn_SR меняется на SOCK_ESTABLISHED и Sn_IR(0) становится равным '1'. При запросе на установление соединения сбой происходит в трех случаях. 1. Если ARP _{TO} оказывается равным (Sn_IR(3)='1'), потому что физический адрес назначения не получен в процессе ARP. 2. Если пакет SYN/ACK не получен и TCP _{TO} (Sn_IR(3) = '1) 3. Если вместо пакета SYN/ACK получен пакет RST.					

		2 22 2021 21 22 2
		В этих случаях, значение Sn_SR меняется на SOCK_CLOSED.
		Действительна только в режиме ТСР.
		Независимо от того, происходит ли работа в режиме 'сервера ТСР' или
		'клиента TCP', команда DISCON обрабатывает процесс завершения связ
		('Active close' или 'Passive close').
		Active close: передает запрос на завершение связи (FIN-пакет) под-
		ключенному участнику сети
		Passive close: Когда от участника сети получен FIN-пакет,
		обратный FIN-пакет отправляется в ответ к
		участнику.
80x0	DISCON	Если процесс завершения связи успешен (то есть, FIN/ACK-пакет успец
		но получен), значение Sn_SR меняется на SOCK_CLOSED. Иначе, возн
		кает TCP _{TO} (Sn_IR(3)='1)= и затем Sn_SR меняется на SOCK_CLOSED.
		cf> Если вместо DISCON используется CLOSE, только значение Sn_SR ме
		няется на SOCK_CLOSED, процесс завершения связи не происходит.
		Если в процессе коммуникации от участника сети получен RST-пакет,
		Sn_SR безусловно меняется на SOCK_CLOSED.
		Закрывает сокет n.
0x10	CLOSE	Sn_SR меняется на SOCK_CLOSED.
		Команда SEND отправляет все данные в буфер ТХ сокета n. Более п
		дробно см. Socket n TX Free Size Register (Sn_TX_FSR), Socket n TX Wri
0x20	SEND	Pointer Register(Sn_TX_WR) и Socket n TX Read Pointer Reg
		ter(Sn_TX_RD).
		Действительна только в режиме UDP.
		Эта базовая операция действует так же, как SEND. Обычно команда SEN
		передает данные после получения физического адреса назначения
0x21	SEND_MAC	автоматическом ARP-процессе (протокол переопределения адресов
		Команда же SEND_MAC передает данные без автоматического AR
		процесса. В это случае физический адрес назначения читается не
		APR-процессе, а из переменной Sn_DHAR, заданной хостом.
		Действительна только в режиме ТСР.
		Она проверяет статус соединения путем отправки пакетов постоянно
		соединения (keep-alive packet) размером 1 байт. Если участник сети н
		ответит на пакет постоянного соединения в течение времени тайм-аут
	SEND_KEEP	произойдет завершение соединения и запуск прерывания тайм-аута.
0x22	JUIND_NEEP	I Произоится завершение состинения и запуск прерывания такм-аута

ных RX сокета n (Sn_RX_RSR), регистре указателя записи RX сокета n Register (Sn_RX_WR) и регистре указателя чтения RX сокета n (Sn_RX_RD).	0x40	RECV	
--	------	------	--

Sn_IR (Регистр прерывания сокета n) [RCW1] [0x0002] [0x00]

Sn_IR указывает на статус прерывания сокета, такой, как установление, завершение, получение денных, тайм-аут. Если возникает прерывание и соответствующий разряд Sn_IMR равен '1', соответствующий разряд Sn_IR становится равным '1'.

Для того, чтобы очистить разряд Sn_IR, хост должен записать в него '1'.

7	6	5	4	3	2	1	0	
Зарезер-	Зарезер-	Зарезер-	SEND_OK	TIMEOUT	RECV	DISCON	CON	ı
вирован	вирован	вирован						i

Раз- ряд	Символ	Описание
7~5	Зарезер- вирован	Зарезервирован
4	CENID OK	Прерывание Sn_IR(SENDOK)
4	SEND_OK	Оно возникает при завершении команды SEND.
3	TIMEOUT	Прерывание Sn_IR(TIMEOUT)
3	TIMEOUT	Оно возникает, когда случается ARP_TO или TCP_TO .
2	RECV	Прерывание Sn_IR(RECV)
2		Оно возникает при каждом получении данных от участника сети.
	DICCON	Прерывание Sn_IR(DISCON)
1 DISCON		Оно возникает, когда от участника сети получен FIN-пакет или FIN/ACK-пакет.
		Прерывание Sn_IR(CON)
0	CON	Оно возникает один раз, при успешном установлении соедмнения с
		участником сети и дальнейшем изменении Sn_SR на
		SOCK_ESTABLISHED.

Sn_SR (Регистр статуса сокета n) [R] [0x0003] [0x00]

 Sn_SR указывает на статус сокета n. Статус сокета n меняется c помощью Sn_CR или некоторого специального контрольного пакета, такого, как SYN-пакет, FIN-пакет в режиме TCP.

Величина	Символ	Описание			
0x00	SOCK_CLOSED	Она указывает на то, что сокет n освобожден.			
		При DISCON выдается команда CLOSE, либо, при возникнове-			
		нии тайм-аута, она меняется на SOCK_CLOSED независимо от			
		предыдущего статуса.			
0x13	SOCK_INIT	Она указывает, что сокет n открыт в режиме TCP.			
		Меняется на SOCK_INIT, если Sn_MR (P[3:0]) = '0001' и выдана			
		команда OPEN.			
		После SOCK_INIT, пользователь может использовать команды LISTEN /CONNECT.			
0x14	SOCK_LISTEN	Она указывает на то, что сокет п работает в режиме 'сервер			
		TCP' и ожидает запроса на установление соединения (SYN-			
		пакет) от участника сети ('клиента ТСР').			
		Изменится на SOCK_ESTALBLISHED, если запрос на установле-			
		ние единения будет успешно принят.			
		В противном случае она изменится на SOCK_CLOSED после того, как произойдет TCPTO (Sn_IR(TIMEOUT) = '1').			
0x17	SOCK_ESTABLISHED	Она указывает на статус соединения сокета n.			
		Меняется на SOCK_ESTABLISHED, если 'сервер TCP' обработал			
		SYN-пакет от 'клиента TCP' во время SOCK_LISTEN, либо если			
		команда CONNECT успешно выполнена. Во время			
		SOCK_ESTABLISHED, DATA-пакет может быть передан с помощью			
		команд SEND или RECV.			
0x1C	SOCK_CLOSE_WAIT	Она указывает на то, что сокет п получил запрос на отключе-			
		ние соединения (FIN-пакет) от подключенного участника сети.			
		Это наполовину завершенный статус, данные могут быть пе-			
		реданы. Для полного отключения используется команда			
		DISCON. Однако для неполного отключения используется ко-			
		манда CLOSE.			
0x22	SOCK_UDP	Она указывает на то, что сокет n открыт в режиме UDP (Sn_MR(P[3:0]) = '0010').			
		Меняется на SOCK_UDP, если Sn_MR(P[3:0]) = '0010') и выдана			
		команда OPEN.			
		В отличие от режима ТСР, данные могут быть переданы без			

0x42	SOCK_MACRAW	Она указывает на то, что сокет 0 открыт в режиме
		MACRAW (S0_MR(P[3:0]) = '0100'). Действительна только
		для сокета 0.
		Меняется на SOCK_MACRAW, если SO_MR(P[3:0] = '0100' и
		выдана команда OPEN.
		Как сокет, работающий в режиме UDP, сокет 0 в режиме
		MACRAW может передавать MAC-пакет (Ethernet-фрейм)
		без процесса установления соединения.

В следующей таблице приведены временные индикаторы статусов, возникающие во время изменения статуса сокета n.

Величина	Символ	Описание
0x15	SOCK_SYNSENT	Она указывает на то, что сокет п отправил участнику сети пакет запроса на установление соединения (SYN-пакет). Он сохраняется на время, в течение которого Sn_SR меняет значение от SOCK_INIT к SOCK_ESTABLISHED при выполнении команды СОNNECT. Если запрос на установление соединения принят участником сети (получен SYN/ACK-пакет) при наличии SOCK_SYNSENT, она меняется на SOCK_ESTABLISHED. В противном случае она меняется на SOCK_CLOSED после возникновения TCPTO (Sn_IR[TIMEOUT] = '1').
0x16	SOCK_SYNRECV	Она указывает на то, что сокет п успешно получил от участника сети пает запроса на установление соединения (SYN-пакет). Если сокет п успешно отправляет ответ (SYN/ACK-пакет) участнику сети, она меняется на SOCK_ESTABLISHED. Если нет, она меняется на SOCK_CLOSED при возникновении тайм-аута (Sn_IR[TIMEOUT] = '1').
0x18	SOCK_FIN_WAIT	Она указывает на то, что сокет п закрывается. Она указана в процессе отключения соединения, таком, как актив-
0x1A	SOCK_CLOSING	ное закрытие и пассивное закрытие.
0X1B	SOCK_TIME_WAIT	Когда процесс отключения соединения успешно завершен либо, если возникает тайм-аут, она меняется на SOCK_CLOSED.
0X1D	SOCK_LAST_ACK	Она указывает на то, что сокет п ожидает ответ (FIN/ACK-пакет) на запрос на отключение соединения (FIN-пакет) в процессе пассивного закрытия. Она меняется на SOCK_CLOSED, когда сокет п успешно получает ответ, либо, если возникает тайм-аут (Sn_IR[TIMEOUT] = '1').

Sn_PORT (Регистр порта источника сокета n) [R/W] [0x0004-0x0005] [0x0000]

Sn_PORT задает номер порта источника сокета n. Он действителен, если сокет n используется в режиме TCP/UDP. Он должен быть установлен перед тем, как будет выдана команда OPEN.

Ex) В случае сокета 0 Port = 5000(0x1388), конфигурация показана ниже,

0x0004	0x0005		
0x13	0x88		

Sn_DHAR (Регистр физического адреса назначения сокета n)

[R/W] [0x0006-0x000B] [0xFFFFFFFFFF]

Sn_DHAR задает физический адрес назначения сокета n при использовании команды SEND_MAC в режиме UDP либо указывает на то, что он получен в процессе ARP с помощью команды CONNECT/SEND.

Ex) В случае, если физический адрес назначения сокета 0 = 08.DC.00.01.02.10, конфигурация соответствует приведенной ниже.

0x0006	0x0007	0x0008	0x0009	0x000A	0x000B
0x08	0xDC	0x00	0x01	0x02	0x0A

Sn_DIPR (Регистр IP-адреса назначения сокета n)

[R/W] [0x000C-0x000F] [0x00000000]

Sn_DIPR задает или указывает на IP-адрес назначения сокета n. Он действителен, если сокет n используется в режиме TCP/UDP.

В режиме клиента TCP он задает IP-адрес 'сервера TCP' перед использованием команды CONNECT.

В режиме сервера TCP, он указывает на IP-адрес 'клиента TCP' после успешного установления соединения.

В режиме UDP, он задает IP-адрес участника сети, который должен быть получен в UDP-пакете при использовании команд SEND или SEND_MAC.

Ex) В случае IP-адреса назначения сокета 0 = 192.168.0.11, конфигурация соответствует приведенной ниже.

0x000C	0x000D	0x000E	0x000F	
192 (0xC0)	168 (0xA8)	0 (0x00)	11 (0x0B)	

Sn_DPORT (Регистр порта назначения сокета n) [R/W] [0x0010-0x0011] [0x00]

Sn_DPORT задает или указывает номер порта назначения сокета n. Он действителен, если сокет n используется в режиме TCP/UDP.

В режиме клиента TCP, он задает номер порта прослушивания 'сервера TCP' перед использованием команды CONNECT.

В режиме сервера ТСР, он показывает номер порта 'клиента ТСР' после успешного установления соединения.

В режиме UDP, он задает номер порта участника сети, который должен быть передан в UDP-пакете с помощью команды SEND/SEND_MAC.

Ex) В случае порта назначения сокета 0 = 5000(0x1388), конфигурация соответствует приведенной ниже,

0x0010	0x0011
0x13	0x88

Sn_MSSR (Регистр максимального размера сегмента сокета n) [R/W] [0x0012-0x0013] [0x0000]

Этот регистр используется для MSS (максимального размера сегмента) протокола TCP, он отображает MSS, установленный другой стороной при активации TCP в пассивном режиме.

Ex) В случае MSS сокета 0 = 1460 (0x05B4), конфигурация соответствует приведенной ниже,

0x0012		0x0013		
	0x05	0xB4		

Sn_{TOS} (Регистр типа обслуживания IP сокета n) [R/W] [0x0015] [0x00]

Sn_TOS задает TOS(поле типа обслуживания в Ip-заголовке) сокета n.

Он задается перед использованием команды OPEN.

Для более подробной информации см. http://www.iana.org/assignments/ip-parameters.

Sn_TTL (Регистр TTL сокета n) [R/W] [0x0016] [0x80]

Sn_TTL задает TTL(поле времени жизни в IP-заголовке) сокета. ОН задается перед использованием команды OPEN.

Для более подробной информации см. http://www.iana.org/assignments/ip-parameters.

Sn_RXBUF_SIZE (Регистр размера буфера RX сокета n) [R/W] [0x001E] [0x02]

Sn_RXBUF_SIZE задает размер буферного блока RX сокета n. Конфигурация размера буферного блока RX сокета n может быть задана из ряда 1, 2, 4, 8 и 16 кбайт. Если задан другой размер, данные от участника сети не могут быть нормально получены.

Хотя размер буферного блока RX сокета п задан изначально как 2 кбайта, пользователь может изменить его конфигурацию, используя Sn_RXBUF_SIZE. Полная сумма Sn_RXBUF_SIZE не может превышать 16 кбайт. Если она превысит это значение, произойдет ошибка получения данных.

Когда все значения Sn_RXBUF_SIZE заданы, буфер RX сокета n размещен в выделенной RX памяти размером 16 кбайт и последовательно назначен сокетам от 0 до 7.

Доступ к буферному блоку RX сокета n можно получить с помощью 16-битного адреса смещения в диапазоне от 0x0000 до 0xFFFF независимо от заданного размера. (См. Sn_RX_RD и Sn_RX_WR).

Величина (дес.)	0	1	2	4	8	16
Размер буфера	0 кбайт	1 кбайт	2 кбайта	4 кбайта	8 кбайт	16 кбайт

Ex) Размер буфера RX сокета 0 = 8 кбайт

0x001E

0x08

Sn_TXBUF_SIZE (Регистр размера буфера TX сокета n) [R/W] [0x001F] [0x02]

Sn_TXBUF_SIZE задает размер буферного блока TX сокета n. Размер буферного блока TX сокета n может быть задан из ряда 1, 2, 4, 8 и 16 кбайт. Если задан другой размер, данные не могут быть нормально переданы участнику сети.

Хотя изначально размер буферного блока ТХ сокета n задан равным 2 кбайт, пользователь может изменить его конфигурацию, используя Sn_TXBUF_SIZE. Полная сумма Sn_TXBUF_SIZE не может превышать 16 кбайт. Если она превысит эту величину, случится ошибка передачи данных.

Когда все значения Sn_TXBUF_SIZE заданы, буфер TX сокета n размещен в выделенной TX памяти размером 16 кбайт и последовательно назначен сокетам от 0 до 7.

Доступ к буферному блоку ТХ сокета n можно получить c помощью 16-битного адреса смещения g диапазоне от g 0x0000 до 0xFFFF независимо от заданного размера. (См. g 5m TX_WR g Sn_TX_RD).

Величина (дес.)	0	1	2	4	8	16
Размер буфера	0 кбайт	1 кбайт	2 кбайта	4 кбай- та	8 кбайт	16 кбайт

Ех) Размер буфера ТХ сокета 0 = 4 кбайта

0x001F

0x04

Sn_TX_FSR (Регистр свободного размера ТХ сокета n) [R] [0x0020-0x0021] [0x0800]

Sn_TX_FSR отображает свободный размер буферного блока TX сокета n. Он инициализируется значением заданного с помощью Sn_TXBUF_SIZE размера. Данные размером боле, чем Sn_TX_FSR, не следует сохранять в буфер TX сокета n, потому что данные большего размера буду записаны поверх ранее сохраненных и еще не отправленных данных. Поэтому перед сохранением данных в буфер TX сокета n проверьте их размер, и, если он меньше или равен проверенному размера буфера, передавайте данные с помощью команды SEND/SEND_MAC после их сохранения в буфер TX сокета n.

Однако, если размер данных больше, чем проверенный размер буфера, передавайте данные после деления их на части с размером буфера и сохранения в буфере ТХ сокета n.

Если $Sn_MR(P[3:0])$ не равен режиму TCP ('0001'), он будет автоматически вычислен как разность между 'Указатель записи TX сокета n (Sn_TX_WR)' и 'Указатель чтения TX сокета n (Sn_TX_RD)'.

Если Sn_MR(P[3:0]) равен режиму TCP ('0001'), он автоматически вычисляется как разность между Sn_TX_WR и внутренним указателем ACK, который обозначает размер данных, уже полученных подключенным участником сети.

Ex) В случае 2048(0x0800) в S0_TX_FSR,

0x0020	0x0021		
0x08	0x00		

Примечание) Поскольку данный регистр для представления информации о размере составляет 16 бит, невозможно прочитать все байты одновременно. По-ка операция чтения 16 бит не завершена, величину можно изменять.

Поэтому рекомендуется считывать все 16 бит дважды или более до получения одной и той же величины.

Sn_TX_RD (Регистр указателя чтения TX сокета n) [R] [0x0022-0x0023] [0x0000]

Sn_TX_RD инициализируется командой OPEN. Однако, если Sn_MR(P[3:0]) равен режиму TCP ('0001'), он инициализируется заново в процессе соединения по TCP.

После инициализации, он автоматически увеличивается командой SEND. Команда SEND передает сохраненные данные от текущего Sn_TX_RD к Sn_TX_WR в буфере TX сокета п. После передачи сохраненных данных команда SEND увеличивает Sn_TX_RD на такую же величину, как Sn_TX_WR.

Если величина приращения превышает максимальную величину 0xFFFF, (больше, чем 0x10000, и содержит бит переноса), то бит переноса игнорируется, и величина автоматически обновляется значением, меньше 16 бит.

Sn_TX_WR (Регистр указателя записи ТХ сокета n) [R/W] [0x0024-0x0025] [0x0000]

Sn_TX_WR инициализируется командой OPEN. Однако, если Sn_MR(P[3:0]) равен режиму TCP ('0001'), он инициализируется заново в процессе соединения по TCP. Он должен быть прочитан или обновлен согласно следующему алгоритму.

- 1. Прочитать начальный адрес для сохранения передаваемых данных.
- 2. Сохранить передаваемые данные, начиная с начального адреса буфера ТХ сокета n.

- 3. После сохранения передаваемых данных обновить Sn_TX_WR величиной, увеличинной на размер передаваемых данных. Если величина приращения превышает максимальную величину 0xFFFF, (больше, чем 0x10000, и содержит бит переноса), то бит переноса игнорируется, и величина автоматически обновляется значением, меньше 16 бит.
- 4. Передать сохраненные данные в буфер ТХ сокета n c помощью команды SEND/SEND.

Sn_RX_RSR (Регистр размера полученных данных сокета n) [R] [0x0026-0x0027] [0x0000]

 Sn_RX_RSR указывает размер данных, полученных и сохраненных в буфере RX сокета n. Sn_RX_RSR не превышает Sn_RXBUF_SIZE и вычисляется как разность между 'Указателем записи RX сокета n (Sn_RX_WR)' и 'Указателем чтения RX сокета n (Sn_RX_RD)'.

Ex) В случае 2048(0x0800) в S0_RX_RSR,

0x0026	0x0027
0x08	0x00

Примечание) Поскольку данный регистр для представления информации о размере составляет 16 бит, невозможно прочитать все байты одновременно. По-ка операция чтения 16 бит не завершена, величину можно изменять.

Поэтому рекомендуется считывать все 16 бит дважды или более до получения одной и той же величины.

Sn_RX_RD (Регистр указателя чтения данных RX сокета n) [R/W] [0x0028-0x0029] [0x0000]

Sn_RX_RD инициализируется командой OPEN. Убедитесь, что чтение или обновление происходит по следующему алгоритму.

- 1. Прочитать начальный адрес сохранения полученных данных.
- 2. Прочитать данные, начиная с начального адреса буфера RX сокета n.
- 3. После чтения полученных данных обновить Sn_RX_RD величиной, увеличенной на размер читаемых данных. Если величина приращения превышает максимальную величину 0xFFFF, больше, чем 0x10000, и содержит бит переноса, обновите его значением, меньшим 16 бит с проигнорированным битом переноса.
- 4. Выдать команду RECV для уведомления W5500 об обновленном Sn_RX_RD.

Ex) В случае 2048(0x0800) в S0_RX_RD,

0x0028	0x0029
0x08	0x00

Sn_RX_WR (Регистр указателя записи RX сокета n) [R] [0x002A-0x002B] [0x0000]

Sn_RX_WR инициализируется командой OPEN и автоматически увеличивется при получении данных.

Если величина приращения превышает максимальную величину 0xFFFF, (больше, чем 0x10000, и содержит бит переноса), то бит переноса игнорируется, и величина автоматически обновляется значением, меньше 16 бит.

Ex) В случае 2048(0x0800) в S0_RX_WR,

0x002A	0x002B
0x08	0x00

Sn_IMR (Регистр маски прерывания сокета n) [R/W] [0x002C] [0xFF]

Sn_IMR маскирует прерывание сокета n. Каждый разряд соответствует разряду Sn_IR. Если возникло прерывание сокета n и соответствующий разряд Sn_IMR равен '1', соответствующий разряд Sn_IR становится равным '1'.

Если оба соответствующие разряды Sn_IMR и Sn_IR равны '1' и n-й разряд SIR равен '1', работа хоста прерывается активацией INTn PIN на низкий уровень.

7	6	5	4	3	2	1	0
Зарезер-	Зарезер-	Зарезер-	SEND_OK	TIMEOUT	RECV	DISCON	CON
вирован	вирован	вирован					

Раз ряд	Символ	Описание	
7~5	Зарезер- вирован	Зарезервирован	
4	SENDOK	Маска прерывания Sn_IR(SENDOK)	
3	TIMEOUT	Маска прерывания Sn_IR(TIMEOUT)	
2	RECV	Маска прерывания Sn_IR(RECV)	
1	DISCON	Маска прерывания Sn_IR(DISCON)	
0	CON	Маска прерывания Sn_IR(CON)	

Sn_FRAG (Регистр фрагмента сокета n) [R/W] [0x002D-0x002E] [0x4000]

Sn_FRAG задает FRAG (поле фрагмента в IP-заголовке).

Ex) $Sn_FRAG0 = 0x0000$ (не фрагментировать)

0x002D	0x002E
0x00	0x00

$Sn_KPALVTR$ (Регистр времени поддержания постоянного соединения сокета n) [R/W] [0x002F][0x00]

Sn_KPALVTR конфигурирует таймер передачи пакета 'постоянного соединения (KA)' сокета n. Он действителен только в режиме TCP, игнорируется в других режимах. Единица времени равна 5 с.

Ка-пакет можно передавать после того, как Sn_SR изменен на SOCK_ESTABLISHED, и после того, как данные переданы или получены, по крайней мере, один раз участнику сети или от него.

В случе, если 'Sn_KPALVTR > 0', W5500 автоматически передает Ка-пакет после некого временного периода для проверки TCP-соединения (автоматический процесс поддержания постоянного соединения).

В случае, если 'Sn_KPALVTR = 0', автоматический процесс поддержания постоянного соединения не действует, и Ка-пакет передается хостом с помощью команды SEND_KEEP (ручной процесс процесс поддержания постоянного соединения). Ручной процесс поддержания постоянного соединения игнорируется, если 'Sn KPALVTR > 0'.

Ex) Sn_KPALVTR = 10 (Пакет поддержания постоянного соединения (Кеер Alive) будет отправляться каждые 50 секунд.)

0x002F	
0x0A	

5 Электрические характеристики

5.1 Абсолютные максимально допустимые значения

Символ	Параметр	Номинальные зна- чения	Единица
V _{DD}	Напряжение питания постоянного тока	-0,5 до 4,6	В
VIN	Входное напряжение постоянного тока	-0,5 до 6	В
Vоит	Выходное напряжение постоянного тока	-0,5 до 4,6	В
lın	Входной постоянный ток	±5	мА
Тор	Рабочая температура	-40 до +85	°C
Тумах	Максимальная температура перехо- да	125	°C
Тѕтс	Температура хранения	-65 до +150	°C

^{*}Комментарий: Выход за абсолютно максимально допустимые значения может привести к необратимым повреждениям прибора.

5.2 Абсолютные максимально допустимые значения (электрическая чувствительность)

Электростатический разряд (ESD)

Символ	Параметр	Испытательный режим	Класс	Максимальная величина (1)	Единица
VESD(HBM)	Напряжение электроста-	TA = +25 °C	2	2000	В
	тического разряда (мо-	в соответствии с ме-			
	дель человеческого те-	тодом MIL-STD 883F			
	ла)	Method 3015.7			
VESD(MM)	Напряжение электроста-	TA = +25 °C	В	200	В
	тического разряда (че-	в соответствии со			
	ловеко-машинная мо-	стандартом JEDEC			
	дель)	EIA/JESD22 A115-A			
VESD(CDM)	Напряжение электроста-	TA = +25 °C	III	500	В
	тического разряда (мо-	в соответствии со			
	дель с заряженным при-	стандартом JEDEC			
	бором)	JESD22 C101-C			

Статическая защелка

Символ	Параметр	Испытательный ре- жим	Класс	Максимумаль- ная величина (1)	Единица
LU	Класс статической защелки	TA = +25 °C в соответствии со стандартом JESD78A	I	≥ ±200	мА

5.3 Характеристики постоянного тока

(Испытательный режим: Ta = -40 до $85^{\circ}C$)

03 C)						
Символ	Параметр	Испытательный режим	Min	Тур	Max	Еди- ница
V _{DD}	Напряжение питания	Приложение VDD, AVDD	2,97	3,3	3,63	В
Vıн	Входное напряжение высокого уровня		2,0		5,5	В
VIL	Входное напряжение низкого уровня		- 0,3		0,8	В
V_{T}	Пороговое значение	Все входы за исключением XI	1,30	1,41	1,53	В
V T+	Пороговое значение перехода от низкого уровня к высокому для тригера Шмитта	Все входы за исключением XI	1,53	1,64	1,73	В
V T-	Пороговое значение перехода от высокого уровня к низкому триггера Шмитта	Все входы за исключением XI	0,95	1,02	1,09	В
TJ	Температура перехода		-40	25	125	°C
IL	Входной ток утечки				±1	μΑ
Rpu	Подтягивающий pull-up резистор	SCSn, RSTn, PMODE[2:0]	62	77	112	кОм
RPD	Подтягивающий pull- down резистор	RSVD(Pin 23, Pin 38 ~ Pin 42)	48	85	174	кОм
Vol	Выходное напряжение низкого уровня	IOL = 8 мА, Все выходы за исключением XO			0,4	В
Vон	Высокий уровень выходного напряжения	IOH = 8 мА, Все выходы за исключени- ем XO	2,4			В
Ю	Низкий уровень выход- ного тока	VOL = 0,4 B, Все выходы за исключением XO	8,6	13,9	18,9	мА
Іон	Высокий уровень вы- ходного тока	VOH = 2,4 B, Все выходы за исключением XO	12,5	26,9	47,1	мА
IDD1	Ток источника (нор- мальный рабочий режим)	VDD=3,3 B, AVDD=3,3 B, Ta = 25°C		132		мА
l _{DD2}	Ток источника (режим выключенного питания)	Режим выключенного питания PHY, VDD=3,3 B, AVDD=3,3 B, Ta = 25°C		13		мА

5.4 Рассеяние мощно-

СТИ

(Испытательный режим: VDD=3,3 B, AVDD=3,3 B, Ta = 25°C)

Условие	Min	Тур	Max	Едини- ца
Соединение 100 Мбит/с	-	128	-	мА
Соединение 10 Мбит/с	-	75	-	мА
Отмена свяи (режим автосогласования)	-	65	-	мА
Передача 100 Мбит/с	-	132	-	мА
Передача 10 Мбит/с	-	79	-	мА
Режим выключения питания	-	13	-	мА

5.5 Характеристики переменного тока

5.5.1 Хронометрирование сброса

Рисунок 22. Хронометрирование сброса

Сим-	Описание	Min	Max
Trc	Время цикла сброса	500 мкс	-
T _{PL}	RSTn на внутреннем PLOCK (PLL Lock)	-	1 мс

5.5.2 Время пробуждения

Время пробуждения стабилизатора напряжения: 10 мкс

5.5.3 Характеристики чипа

Параметр	Диа- пазон
Частота	25 МГц
Допуск по частоте (при 25°)	±30 ppm
Шунтирующая емкость	7 пФ максимум
Уровень пуска	59,12 мкВт
Емкость нагрузки	18 пФ
Изменение в результате старения (при $25^{\circ}\!$	±3 ppm / год максимум

5.5.4 Хронометрирование SPI

Рисунок 23. Хронометрирование SPI

Символ	Описание	Min	Max	Единицы
Fsck	Тактовая частота SCK		80/33.35	МГц
Тwн	Время высокого уровня SCK	6		НС
TwL	Время низкого уровня SCK	6		НС
Tcs	Время высокого уровня SCSn	30		НС
Tcss	Время установки SCSn	5	-	НС
Тсѕн	Время ожидания SCSn	5		НС
T _{DS}	Время установки входных данных	3		НС
Тон	Время ожидания входных данных	3		НС
Tov	Эффективное время выхода		5	НС
Тон	Время ожидания выхода	0		НС
Тснz	Высокий уровень SCSn на выход Hi-Z		2,16	НС

⁵ Теоретически гарантируемая скорость

Хотя теоретическая проектная скорость равна 80 МГЦ, сигнал на высокой скорости может искажаться из-за перекрестных помех в цепи и протяженности сигнальной линии. Минимальная гарантированная скорость SCLK равна 33,3 Мгц, что протестировано и измерено с помощью устойчивой волны.

Пожалуйста, см. указания по применению SPI, в которых содержатся условия испытаний и результаты испытаний WIZnet.

62,1 нс наблюдаются, если pn-переход нагружен емкостью 30 п Φ . С уменьшением емкости время уменьшается.

5.5.5 Характеристики трансформатора

Параметр	Сторона пе- редачи	Сторона приема
Коэффициент трансформа- ции	1:1	1:1
Индуктивность	350 мкГн	350 мкГн

Рисунок 24. Тип трансформатора

5.5.6 MDIX

W5500 не поддерживает авто-MDIX.

Следовательно, пользователь для подключения к другим ключам или роутерам должен использовать кабели с прямыми разъемами, а для подключения к таким устройствам, как серверы, рабочие станции или другие микросхемы W5500 - кабели с перекрестными разъемами. Однако, пользователь может использовать и те, и другие виды кабелей при подключении к устройствам с авто-MDIX, интерфейс будет автоматически корректировать любое некорректное кабельное подключение.

6 Профиль температуры инфракрасной пайки (без свинца)

Уровень чувствительности к влажности: 3

Требование сухой упаковки: Да

Средний темп увеличения	3° С/секунда максимально.
(Ts _{max} до Тр)	
Предварительное нагревание	
- Минимальная температура (Ts _{min})	150 °C
- Максимальная температура (Ts _{max})	200 °C
- Время (ts _{min} до ts _{max})	60-120 секунд
Время поддержания	
- Температура (TL)	217 °C
- Время (tL)	60-150 секунд
Пиковая температура/Разброс (Тр)	265 + 0/-5°C
Время в пределах 5 °C действующей пиковой температуры (tp)	30 секунд
Темп понижения	6 °С/секунду максимально.
Время 25 °C до пиковой температуры	8 минут максимально.

Рисунок 25. Температура инфракрасной пайки

7 Описание корпуса

Примечание

- 1. Данные размеры не включают в себя выступающие части формы.
- 2. () стандарт.
- 3. [] качество сборки.
- 4. ЕДИНИЦЫ: мм

Рисунок 26. Размеры корпуса

Информация об изменениях документации

Версия	Дата	Описание
Ver. 1.0.0	1 августа 2013	Начальный выпуск
Ver. 1.0.1	13 сентября 2013	Исправлены дублированные операторы и опечатки (Р.14, 23, 24, 28, 39, 51) Исправлены описания (Р.35)
Ver. 1.0.2 2013	14 ноября	1. Изменены "описания контактов в 1.1 Описания контактов" (Р.10) От него должен быть подключен к GND к NC(PIN38-42) 2. Исправлены опечатки: от 0x02 до 0x42 величин SOCK_MACRAW в регистрах сокета 4.2 (Р.50)
Ver. 1.0.3 2014	29 мая	1. Исправлено "Sn_MSSR в регистре сокета 4.2"(P.53) Неправильное описание Sn_MSSR о FMTU/MTU
Ver. 1.0.4	13 июня 2014	 Добавлено примечание о величине регистра размера чтения (Р.56, 58) Добавлен температурный профиль инфракрасной пайки (Р.66)
Ver. 1.0.5	10 ноября 2014	1. Добавлено описание контакта MISO (P.11) Сигнал SCSn определяет выходное значение на контакте MISO. 2. Изманена нотация регистра (P.33), изменен регистр нотация "Sn_IR в регистре сокета 4.2" (P.49) от [R] до [RCW1] 3. Исправлены опечатки: от DICON до DISCON Sn_SR в регистре сокета 4.2 (P.50)
Ver. 1.0.6	30 декабря 2014	1. Исправлены опечатки: величина от 0x02 до 0x42 SOCK_MACRAW "Sn_CR в регистре сокета 4.2"(P.47)
Ver. 1.0.7 ля 2016	24 февра-	 Исправлено (Время ожидания активации прерывания) (Р.34) Информация о ³ (Р.34)
Ver. 1.0.8 2017	19 мая	1. Исправлена единица диапазона уровня запуска мкВт/МГц на мкВт (5.5.3 Характеристики чипа) (Р.60)
Ver. 1.0.9 2019	22 мая	1. Исправлено описание Sn_IMR (P.55) 2. Исправлена минимальная величина температуры перехода T_J (P.57)

3. Добавлена максимальная температура перехода T_{JMAX} (P.58)

Уведомление об авторских правах

Copyright 2013 WIZnet Co., Ltd. Все права защищены.

Техническая поддержка: support@wiznet.co.kr
Сбыт & распределение: sales@wiznet.co.kr

Для дальнейшей информации посетите наш сайт http://www.wiznet.co.kr