

#### **Automatic Control III**

Lecture 6 - Linearization and phase portraits



#### Alexander Medvedev

Division of Systems and Control Department of Information Technology Uppsala University.

Email: alexander.medvedev@it.uu.se,



#### Contents - lecture 6

- 1. Summary of lecture 5
- 2. General properties
- 3. Linearization and stationary points
- 4. Phase portraits



# Summary of lecture 5 (I/III)

 $\mathcal{H}_2$  and  $\mathcal{H}_{\infty}$  synthesis:

- Make  $W_nG_{wn}, W_SS, W_TT$  small.
- $\mathcal{H}_2$ : Minimize  $\int (|W_u G_{wu}|^2 + |W_S S|^2 + |W_T T|^2) d\omega$ .
- $\mathcal{H}_{\infty}$ : Set an upper bound for  $|W_u G_{wu}|, |W_S S|, |W_T T| \ \forall \ \omega$ .
- Results in algebraic Riccati equations.



# Summary of lecture 5 (II/III)

 $\mathcal{H}_2$ ,  $\mathcal{H}_{\infty}$  synthesis – pros and cons:

- (+) Directly handles the specifications on S,T and  $G_{wu}$
- (+) Let us know when certain specifications are impossible to achieve (via  $\gamma$ ).
- (+) Easy to handle several different specifications (in the frequency domain)
  - (-) Can be hard to control the behaviour in the time domain in detail.
  - (-) Often results in complex controllers (number of states in the controller = number of states in  $G, W_u, W_S, W_T$ ).



# Summary of lecture 5 (III/III)

Linear multivariable controller synthesis summary:

- 1. Perform an RGA analysis
- 2. Use simple SISO controllers of PID type if the RGA analysis indicates that it might be possible.
- 3. Otherwise make use of LQ, MPC or  $\mathcal{H}_2/\mathcal{H}_{\infty}$  synthesis.



## DC motor – saturated control signal (I/V)



- DC motor controlled using a lead controller.
- We want to control the motor angle.
- The saturation

$$u = \operatorname{sat}(\widetilde{u}) = \begin{cases} \widetilde{u} & |\widetilde{u}| \le 1, \\ 1 & \widetilde{u} > 1, \\ -1 & \widetilde{u} < -1. \end{cases}$$

renders the system nonlinear.



# DC motor – saturated control signal (II/V)

Step responses for two different amplitudes of the reference signal  $\it r$ .

Blue: Amplitude 1 Red: Amplitude 5 (scaled with 1/5)

Conclusion: The step response is amplitude dependent. If the system would have been linear the two step responses would have coincided





# DC motor – saturated control signal (II/V)

Step responses for two different amplitudes of the reference signal  $\it{r}$ .

Blue: Amplitude 1 Red: Amplitude 5 (scaled with 1/5)

Conclusion: The step response is amplitude dependent. If the system would have been linear the two step responses would have coincided.





#### DC motor – saturated control signal (III/V)

Red: Reference signal r. Blue: Output signal y.



Both the ramp (left) and the sine responses (right) are roughly the same as for a linear system.



#### DC motor – saturated control signal (IV/V)

Red: r. Blue: y. Green: y when r is a ramp (same as on the previous slide).





## DC motor – saturated control signal (IV/V)

Red: r. Blue: y. Green: y when r is a ramp (same as on the previous slide).



Something happens here: There is no sine present in the response and the ramp error has increased...

This violates the superposition principle and the frequency fidelity!



## DC motor – saturated control signal (V/V)

Red: before the saturation  $(\tilde{u})$ . Blue: after the saturation (u).





#### Linearization of a nonlinear system

We can approximate a nonlinear system

$$\dot{x} = f(x, u), \qquad y = h(x, u),$$

by linearizing the system around an equilibrium (stationary) point  $(x_0,u_0)$ . Intuitively this amounts to approximating the right-hand side of the system equation by a flat hyperplane (straight line in the scalar case).

Let 
$$\Delta x(t) = x(t) - x_0$$
,  $\Delta u(t) = u(t) - u_0$ ,  $\Delta y(t) = y(t) - y_0$ .

A Taylor expansion (only keeping the linear terms) results in

$$\frac{d}{dt}\Delta x = \underbrace{\frac{\partial f(x_0, u_0)}{\partial x}}_{Qx} \Delta x + \underbrace{\frac{\partial f(x_0, u_0)}{\partial u}}_{Qu} \Delta u,$$

$$\Delta y = \underbrace{\frac{\partial h(x_0, u_0)}{\partial x}}_{Qu} \Delta x + \underbrace{\frac{\partial h(x_0, u_0)}{\partial u}}_{Qu} \Delta u.$$



#### Phase portraits for linear systems

- Sign: Is the solution moving towards the origin or away from the origin (along the eigenvector)?
- Relative size: "fast" and "slow" eigenvectors, which is dominating the solution behaviour for  $t \approx 0$  and  $t \gg 0$ ?
- Complex/real: Complex conjugated eigenvalues result in circles and spirals.



## Phase portraits for linear systems

- **Sign**: Is the solution moving towards the origin or away from the origin (along the eigenvector)?
- Relative size: "fast" and "slow" eigenvectors, which is dominating the solution behaviour for  $t \approx 0$  and  $t \gg 0$ ?
- Complex/real: Complex conjugated eigenvalues result in circles and spirals.

#### Cases to consider:

- 1. Two distinct real-valued eigenvalues imply two eigenvectors.
- 2. Multiple eigenvalues.
- 3. Complex eigenvalues.



# Two distinct eigenvalues with the same sign

The solution is  $x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$ .

**Stable node:** For eigenvalues  $\lambda_1 < \lambda_2 < 0$ . The first term dominates for small t, the second term dominates for large t.



Unstable node: For eigenvalues  $0 < \lambda_1 < \lambda_2$ . Also here, the first term dominates for small t, the second term dominates for large t.





# Two distinct eigenvalues with the same sign

The solution is  $x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$ .

**Stable node:** For eigenvalues  $\lambda_1 < \lambda_2 < 0$ . The first term dominates for small t, the second term dominates for large t.



Unstable node: For eigenvalues  $0 < \lambda_1 < \lambda_2$ . Also here, the first term dominates for small t, the second term dominates for large t.





# Two distinct eigenvalues with opposite sign

For eigenvalues  $\lambda_1 < 0 < \lambda_2$  (with corresponding eigenvectors  $v_1, v_2$ ) the solution is

$$x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2.$$

Trajectories close to  $v_1$  will approach the origin.  $v_1$  is called the stable eigenvector.

Trajectories close to  $v_2$  will move away from the origin.  $v_2$  is called the unstable eigenvector.



#### Saddle point



# A multiple eigenvalue

For multiple eigenvalues  $\lambda_1 = \lambda_2$ .





Stable node (unstable: change direction).

Stable star node (unstable: change direction).



## Two examples in 3D

Example of a generalization to 3D.





Left: Focus + one real eigenvalue.

Right: Three real eigenvalues.



## A few concepts to summarize lecture 6

**Equilibrium points:** An equilibrium point is a point  $x_0, u_0$  where the system is at rest, i.e.  $f(x_0, u_0) = 0$ . Also referred to as stationary points.

**Linearization:** Find a Taylor expansion of the nonlinear system around an equilibrium point and only keep the linear parts. This means that we are approximating the system using a flat hyperplane.

Phase plane: A two-dimensional state space that is simple to visualize graphically.

Phase portraits: A plot where one state variable is plotted against another state variable.

**Limit cycle:** A limit cycle is a closed trajectory in phase space having the property that at least one other trajectory spirals into it either as time approaches  $\pm$  infinity.