Verovatnoća

1. Prostor elementarnih ishoda. Događaji i relacije i operacije sa njima

Slučajni eksperiment je kompleks uslova koji se mogu ponavljati, a ne dovode uvek do istog ishoda. Elementarni ishod (događaj) se ne definiše formalno kao tačke ili prave u geometriji, ali to je sve ono što logički može da se desi pri nekom slučajnom eksperimentu. Svi mogući ishodi jednog eksperimenta čine prostor elementarnih ishoda (Ω) tog slučajnog eksperimenta. On može biti konačan, prebrojiv i neprebrojiv. Primer:

- 1. bacanje dve kockice konačan
 - dobijene vrednosti: Ω_1 = {11, 12, ..., 16, ..., 66}, $|\Omega_1|$ = 36
 - zbir dobijenih vrednosti: Ω_2 = {2, 3, ..., 12}, $|\Omega_2|$ = 11
 - broj šestica: $\Omega_3 = \{0, 1, 2\}, |\Omega_3| = 3$
- 2. biranje broja iz nekog skupa sve dok ne odaberemo paran broj prebrojiv
 - Ω = {2, 4, 6, ..., 12, 14, 16, ...} \cup {*}, $|\Omega|$ = \mathcal{X}_0 (alef nula, kardinalnost skupa prirodnih brojeva N)
- 3. biranje broja iz skupa [0, 1] neprebrojiv
 - $\Omega = [0, 1], |\Omega| = c_0$ (kontinuum, kardinalnost skupa realnih brojeva R)

Primer: Posmatrajmo bacanje kockice. Skup elementarnih ishoda je $\Omega = \{1, 2, 3, 4, 5, 6\}$. Ako posmatramo samo vrednosti manje od 5, onda imamo događaj A = $\{1, 2, 3, 4\}$.

Događaj je podskup od Ω . Ako je Ω konačan ili prebrojiv, onda je svaki njegov podskup događaj. Kažemo da se događaj realizovao ako se desio elementarni ishod koji mu pripada. Posebni događaji su Ω koji se naziva **sigurni događaj** jer uvek mora da se desi, kao i \emptyset koji se naziva **nemogući događaj** jer se nikada ne može desiti.

Relacije:

1. Inkluzija: $A \subset B \rightarrow w \in A \Rightarrow w \in B$

2. Ekvivalencija: $A = B \rightarrow A \subset B \land B \subset A$

Operacije:

1. Unarna operacija - suprotan događaj: \overline{A} = {w | w \notin A}

2. Binarne operacije:

• **presek**: $A \cdot B = \{w \mid w \in A \land w \in B\}$, realizuje se akko se realizovao svaki od događaja A i B.

 unija: A ∪ B = {w | w ∈ A ∨ w ∈ B}, realizuje se akko se realizovao bar jedan od događaja A i B, odnosno akko postoji neki od događaja A i B koji se realizovao.

zbir: A + B → unija disjunktnih događaja.

Moguće je uopštiti operacije i na n događaja, a važi i za $+\infty$:

$$igcup_{i=1}^n A_i, \ igcap_{i=1}^n A_i, \ \sum_{i=1}^n A_i$$

Zakoni:

• zakon idempotencije: $\overline{\overline{A}}$ = A

• De-Morganovi zakoni: $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$

2. σ -algebra događaja

Definicija: Neka je Ω prostor elementarnih ishoda nekog slučajnog eksperimenta i \mathcal{F} klasa podskupova od Ω . Ako:

1. $\Omega \in \mathcal{F}$

2. $\forall A \in \mathcal{F} \Rightarrow \overline{A} \in \mathcal{F}$

3. $(\forall \ n \in N) A_n \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ (prebrojiva unija)

onda je \mathcal{F} σ -algebra podskupova (događaja) nad Ω . Ako umesto 3) važi $A,\ B\in\mathcal{F}\Rightarrow A\cup B\in\mathcal{F}$, onda je \mathcal{F} algebra.

Osobine:

- ∅ ∈ F
 △: Na osnovu 1 važi Ω ∈ F, a pošto je Ω = ∅ na osnovu 2 sledi tvrđenje.
- $(\forall \ n \in N)A_n \in \mathcal{F} \Rightarrow \bigcap_{n=1}^\infty A_n \in \mathcal{F}$ (prebrojiv presek) $\stackrel{\triangle:}{\forall} A_n \in \mathcal{F} \Rightarrow^2 \overline{A_n} \in \mathcal{F} \Rightarrow^3 \bigcup_{n=1}^\infty \overline{A_n} \in \mathcal{F} \Rightarrow^2 \overline{\bigcup_{n=1}^\infty \overline{A_n}} \in \mathcal{F} \Rightarrow^{de-Morgan} \bigcap_{n=1}^\infty \overline{\overline{A_n}} \in \mathcal{F}$ $\Rightarrow^{idempotencija} \bigcap_{n=1}^\infty A_n \in \mathcal{F} \blacksquare$
- $(\forall k \in \{1, \ldots, n\}) A_k \in \mathcal{F} \Rightarrow \bigcup_{k=1}^n A_k \in \mathcal{F}$ (konačna unija) $\triangle : \bigcup_{k=1}^n A_k = A_1 \cup \ldots \cup A_n \cup \emptyset \cup \ldots \cup \emptyset$ što je prebrojiva unija skupova koji pripadaju \mathcal{F} pa na osnovu 3 sledi tvrđenje.
- $(\forall k \in \{1, \ldots, n\}) A_k \in \mathcal{F} \Rightarrow \bigcap_{k=1}^n A_k \in \mathcal{F}$ (konačan presek) $^{\triangle :} \bigcap_{k=1}^n A_k = A_1 \ \cap \ \ldots \ \cap \ A_n \ \cap \ \Omega \ \cap \ \ldots \ \cap \ \Omega$ što je prebrojivi presek skupova koji pripadaju \mathcal{F} pa na osnovu druge osobine sledi tvrđenje.

Nad istim prostorom može se definisati više σ -algebri. **Primer**:

- trivijalna σ -algebra: $\mathcal{F} = \{\emptyset, \Omega\}$
- $\mathcal{F} = \{\emptyset, A, \overline{A}, \Omega\}$
- $\mathcal{F} = \mathcal{P}(\Omega)$

Lema: Presek proizvoljnog broja σ -algebri definisanih nad istim prostorom elementarnih ishoda Ω je σ -algebra.

 $^{\triangle}$: Neka su \mathcal{F}_i σ -algebre. Dokazaćemo sva tri svojstva iz definicije σ -algebre za njihov presek:

- 1. $(orall \ i \in I)\Omega \in \mathcal{F}_i \Rightarrow \Omega \in igcap_{i \in I} \mathcal{F}_i$
- 2. $A \in \bigcap_{i \in I} \mathcal{F}_i \Rightarrow (\forall \ i \in I) A \in \mathcal{F}_i \Rightarrow^2 (\forall \ i \in I) \overline{A} \in \mathcal{F}_i \Rightarrow \overline{A} \in \bigcap_{i \in I} \mathcal{F}_i$
- 3. $(\forall n \in N)A_n \in \bigcap_{i \in I} \mathcal{F}_i \Rightarrow (\forall n \in N)(\forall i \in I)A_n \in \mathcal{F}_i \Rightarrow (\forall i \in I)(\forall n \in N)A_n \in \mathcal{F}_i \Rightarrow (\forall i \in I)\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}_i \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \bigcap_{i \in I} \mathcal{F}_i \blacksquare$

Unija dve σ -algebre nije uvek σ -algebra. **Primer**:

$$\mathcal{F}_1 = \{\emptyset,\ A,\ \overline{A},\ \Omega\},\ \mathcal{F}_2 = \{\emptyset,\ B,\ \overline{B},\ \Omega\},\ \mathcal{F}_1\ \cup\ \mathcal{F}_2 = \{\emptyset,\ A,\ \overline{A},\ B,\ \overline{B},\ \Omega\},\ \text{ali nemamo}\ A\ \cup B.$$

Definicija: Neka je $\mathcal K$ kolekcija podskupova od Ω koja nije σ -algebra. **Minimalna** σ -algebra **definisana kolekcijom** $\mathcal K$ u oznaci $\sigma(\mathcal K)$ je najmanja σ -algebra koja sadrži $\mathcal K$ u smislu da za bilo koju drugu σ -algebru $\mathcal F$ koja sadrži $\mathcal K$ važi $\sigma(\mathcal K) \subset \mathcal F$.

Teorema: Minimalna σ -algebra generisana kolekcijom \mathcal{K} uvek postoji.

 $^{\triangle :}$ Važi $\mathcal{K} \subset P(\Omega)$, gde je $P(\Omega)$ σ -algebra. To znači da postoji bar jedna σ -algebra koja sadrži datu kolekciju. Obeležimo sa \mathcal{F}_i sve σ -algebre koje sadrže kolekciju \mathcal{K} . Njihov presek $\bigcap_{i \in I} \mathcal{F}_i$ će prema prethodnoj lemi takođe biti σ -algebra i sigurno će sadržati kolekciju \mathcal{K} jer je sadrži svaki od \mathcal{F}_i . Važi i da je ovo najmanja σ -algebra jer je presek svih drugih, pa ovo jeste minimalna σ -algebra generisana kolekcijom \mathcal{K} , tj. $\sigma(\mathcal{K}) = \bigcap_{i \in I} \mathcal{F}_i$

3. Borelova σ -algebra

Posmatrajmo prostor elementarnih ishoda $\Omega=R$. Na tom skupu definišemo kolekciju $\mathcal{K}=\{(a,\ b]|\ a,\ b\in R,\ a< b\}$ koja se sastoji od generatornih skupova koji sigurno ulaze u σ -algebru. Minimalna σ -algebra ovakve kolekcije naziva se **Borelova** σ -algebra u oznaci $\mathcal{B}=\sigma(\mathcal{K})$. Skupovi koji pripadaju Borelovoj σ -algebri nazivaju se **Borelovi skupovi**. Postoje podskupovi od R koji ne pripadaju \mathcal{B} . Sledeći skupovi su Borelovi:

- $\{a\} = \bigcap_{n=1}^{\infty} (a \frac{1}{n}, a]$, odnosno jednočlani skupovi pripadaju Borelovoj σ -algebri kao prebrojiv presek generatornih skupova.
- $[a, b] = \{a\} \cup (a, b]$, pa zatvoren interval pripada kao konačna unija Borelovih skupova.
- $(a,b)=\bigcup_{n=n_0}^{\infty}(a,\ b-\frac{1}{n}]$, gde je n_0 prvi takav da $b-\frac{1}{n_0}>a$. Otvoren interval je Borelov skup kao prebrojiva unija Borelovih skupova.
- $[a, b) = \{a\} \cup (a, b)$
- $(-\infty, b) = \bigcup_{n=1}^{\infty} (b-n, b)$. Isto važi i za $(-\infty, b]$.
- $(a, +\infty) = \bigcup_{n=1}^{\infty} (a, a+n)$. Isto važi i za $[a, +\infty)$.
- $R \text{ jer } \Omega = R$, a $\Omega \in \mathcal{B}$.
- $Q = \bigcup_{n=1}^{\infty} \{q_n\}$
- I jer $\overline{I}=Q$, a $Q\in\mathcal{B}$.

Uopštenje na $\Omega = R^n$: $\mathcal{K} = \{(a_1,\ b_1] \times \ldots \times (a_n,\ b_n] | \ \forall i \in \{1,\ \ldots,\ n\}\ a_i,\ b_i \in R,\ a_i < b_i\}$. Važi $\sigma(\mathcal{K}) = \mathcal{B}^n$. Primer:

4. Definicija verovatnoće. Osnovna svojstva verovatnoće

Definicija: Neka je Ω prostor elementarnih ishoda nekog slučajnog eksperimenta i neka je \mathcal{F} σ-algebra od Ω . Uređeni par (Ω, \mathcal{F}) naziva se **merljiv prostor**. Funkcija $P, P: \mathcal{F} \to R$, definisana na merljivom prostoru (Ω, \mathcal{F}) je **verovatnoća** ako važi:

- 1. nenegativnost: $(\forall A \in \mathcal{F})P(A) \geq 0$
- 2. normiranost: $P(\Omega) = 1$

3. σ -aditivnost: $P(\sum_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$

Na istom prostoru moguće je definisati više verovatnoća.

Teorema: Za verovatnoću $P, P: \mathcal{F} \rightarrow R$, važi:

a) verovatnoća nemogućeg događaja: $P(\emptyset)=0$

$$\triangle P(\emptyset) = P(\emptyset + \ldots + \emptyset) = P(\emptyset) + \ldots + P(\emptyset)$$
. Nakon skraćivanja dobijamo $0 = P(\emptyset) + \ldots + P(\emptyset) = P(\emptyset + \ldots + \emptyset) = P(\emptyset)$

b) konačna aditivnost: $P(\sum_{k=1}^{n} A_k) = \sum_{k=1}^{n} P(A_k)$

$$^{\triangle:} P(\sum_{k=1}^{n} A_k) = P(A_1 + \ldots + A_n + \emptyset + \ldots + \emptyset) = ^{3} P(A_1) + \ldots + P(A_n) + P(\emptyset) + \ldots + P(\emptyset) = ^{a} \sum_{k=1}^{n} P(A_k)$$

c) verovatnoća suprotnog događaja: $P(\overline{A}) = 1 - P(A)$

$$riangle : 1 = P(\Omega) = P(A + \overline{A}) = P(A) + P(\overline{A}) \Rightarrow P(\overline{A}) = 1 - P(A)$$

d) monotonost: $A \subset B \Rightarrow P(A) \leq P(B)$

$$^{\triangle:}$$
 $P(B)$ = $P(A + \overline{A}B)$ = b $P(A) + P(\overline{A}B) \ge P(A)$ jer $P(\overline{A}B) \ge ^1 0$ \blacksquare

e) "nula" pravilo: $(\forall A \in \mathcal{F}) \ 0 \leq P(A) \leq 1$

$$^{\triangle:}$$
 $(\forall A \in \mathcal{F}) \ \emptyset \subset A \subset \Omega \Rightarrow^d P(\emptyset) \leq P(A) \leq P(\Omega) \Rightarrow^{2,a} 0 \leq P(A) \leq 1$

f) lema o pokrivanju: $P(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} P(A_n)$

$$^{\triangle:} P(\bigcup_{n=1}^{\infty} A_n) = P(A_1 + \overline{A_1} A_2 + \overline{A_1} \ \overline{A_2} A_3 + \dots) = ^3 P(A_1) + P(\overline{A_1} A_2) + P(\overline{A_1} \ \overline{A_2} A_3) + \dots$$

$$\leq ^d P(A_1) + P(A_2) + P(A_3) + \dots = \sum_{n=1}^{\infty} P(A_n) \text{ jer } \overline{A_1} A_2 \subset A_2, \ \overline{A_1} \ \overline{A_2} A_3 \subset A_3, \dots \blacksquare$$

g) verovatnoća unije dva događaja: $P(A \cup B) = P(A) + P(B) - P(AB)$

$$\triangle P(B) = P(AB + \overline{A}B) = P(AB) + P(\overline{A}B)$$
 (*). Važi $P(A \cup B) = P(A + \overline{A}B) = P(A) + P(\overline{A}B) = P(A) + P(B) - P(AB)$

5. Formula uključenja i isključenja za verovatnoću. Svojstva neprekidnosti verovatnoće

Teorema: Za verovatnoću $P, P: \mathcal{F} \to R$, važi:

h) formula uključenja i isključenja za verovatnoću: $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$ - $\sum_{1 \leq i < j \leq n} P(A_i \cap A_j)$ + $\sum_{1 \leq i < j < k \leq n} P(A_i \cap A_j \cap A_k)$ - ... $(-1)^{n-1}P(A_1 \cap \ldots \cap A_n)$

 $^{ riangle}$: Dokazujemo putem matematičke indukcije. Baza n=2: $P(A_1 \cup A_2)$ =

 $P(A_1)+P(A_2)-P(A_1A_2)$ što važi na osnovu g). Pretpostavimo da formula važi za n (ih) i dokažimo da važi i za n+1: $P(\bigcup_{i=1}^{n+1}A_i)=P(\bigcup_{i=1}^nA_i\cup A_{n+1})=^gP(\bigcup_{i=1}^nA_i)+P(A_{n+1})$ -

$$P(\bigcup_{i=1}^{n}A_{i}(A_{n+1})) =^{distr} P(\bigcup_{i=1}^{n}A_{i}) + P(A_{n+1}) - P(\bigcup_{i=1}^{n}A_{i}A_{n+1}) =^{ih} \sum_{i=1}^{n}P(A_{i}) - \sum_{1 \leq i < j \leq n}P(A_{i}A_{j}) + \sum_{1 \leq i < j < k \leq n}P(A_{i}A_{j}A_{k}) - \dots (-1)^{n-1}P(A_{1}\dots A_{n}) + \underbrace{P(A_{n+1})} - (\sum_{i=1}^{n}P(A_{i}A_{n+1}) - \sum_{1 \leq i < j \leq n}P(A_{i}A_{n+1}A_{j}A_{n+1}) + \sum_{1 \leq i < j < k \leq n}P(A_{i}A_{n+1}A_{j}A_{n+1}A_{k}A_{n+1}) - \dots (-1)^{n-1}P(A_{1}A_{n+1}\dots A_{n}A_{n+1})) = \sum_{i=1}^{n+1}P(A_{i}) - \sum_{1 \leq i < j \leq n}P(A_{i}A_{j}) + \underbrace{\sum_{1 \leq i < j < k \leq n}P(A_{i}A_{j}A_{k})} - \dots (-1)^{n-1}P(A_{1}\dots A_{n}) - \underbrace{\sum_{i=1}^{n}P(A_{i}A_{n+1})} + \underbrace{\sum_{1 \leq i < j \leq n}P(A_{i}A_{j}A_{n+1})} - \dots (-1)^{n}P(A_{1}\dots A_{n}A_{n+1}) = \sum_{i=1}^{n+1}P(A_{i}) - \sum_{1 \leq i < j \leq n}P(A_{i}A_{j}A_{n+1}) - \dots (-1)^{n}P(A_{1}\dots A_{n}A_{n+1}) = \underbrace{\sum_{i=1}^{n+1}P(A_{i})} - \underbrace{\sum_{1 \leq i < j \leq n}P(A_{i}A_{j}A_{n+1})} - \dots (-1)^{n}P(A_{1}\dots A_{n}A_{n+1}) = \underbrace{\sum_{i=1}^{n+1}P(A_{i})} - \underbrace{\sum_{1 \leq i < j \leq n}P(A_{i}A_{j}A_{n+1})} - \dots (-1)^{n}P(A_{1}\dots A_{n}A_{n+1}) = \underbrace{\sum_{i=1}^{n+1}P(A_{i})} - \underbrace{\sum_{1 \leq i < j \leq n}P(A_{i}A_{j}A_{n+1})} - \dots (-1)^{n}P(A_{1}\dots A_{n}A_{n+1}) = \underbrace{\sum_{1 \leq i < j < k \leq n+1}P(A_{i}\cap A_{j}\cap A_{k})} - \dots (-1)^{n}P(A_{1}\cap A_{n}) = \lim_{n \to \infty}P(A_{n}) = \underbrace{\sum_{1 \leq i < j < k \leq n+1}P(A_{i}\cap A_{j}\cap A_{k})} - \dots (-1)^{n}P(A_{1}\cap A_{n}) = \lim_{n \to \infty}P(A_{n}) = \underbrace{\sum_{1 \leq i < j < k \leq n+1}P(A_{i}\cap A_{j}\cap A_{k})} - \dots (-1)^{n}P(A_{1}\cap A_{n}) = \lim_{n \to \infty}P(A_{n}) = \underbrace{\sum_{1 \leq i < j < k \leq n+1}P(A_{i}\cap A_{j}\cap A_{k})} - \dots (-1)^{n}P(A_{1}\cap A_{n}) = \lim_{n \to \infty}P(A_{n}) = \underbrace{\sum_{1 \leq i < j < k < n+1}P(A_{i}\cap A_{j}\cap A_{k})} - \dots (-1)^{n}P(A_{1}\cap A_{k}) = \lim_{n \to \infty}P(A_{n}) = \underbrace{\sum_{1 \leq i < j < k < n+1}P(A_{i}\cap A_{j}\cap A_{k})} - \dots (-1)^{n}P(A_{1}\cap A_{k}) = \lim_{n \to \infty}P(A_{n}) = \underbrace{\sum_{1 \leq i < j < k < n+1}P(A_{i}\cap A_{k})} - \dots (-1)^{n}P(A_{1}\cap A_{k}) = \lim_{n \to \infty}P(A_{n}) = \underbrace{\sum_{1 \leq i < j < k < n+1}P(A_{i}\cap A_{k})} - \dots (-1)^{n}P(A_{1}\cap A_{k}) = \lim_{n \to \infty}P(A_{n}) = \lim_{n \to \infty}P(A_{n}) = \lim_{n \to \infty}P(A_{n}) = \underbrace{\sum_{1 \leq i < j < k < n+1}P(A_{i}\cap A_{k})} - \dots (-1)^{n}P(A_{1}\cap A_{k}) = \underbrace{\sum_{1 \leq i < j < n+1}P(A_{i}\cap A_{k})} - \dots (-1)^{n}P(A_{1}\cap A_{$$

6. Prostor verovatnoće. Diskretan prostor verovatnoće. Geometrijska verovatnoća

Definicija(**Kolmogorovljeva aksioma**): Uređena trojka (Ω, \mathcal{F}, P) gde je Ω prostor elementarnih ishoda nekog slučajnog eksperimenta, \mathcal{F} σ -algebra podskupova od Ω , a P: $\mathcal{F} \to R$ verovatnoća, je **prostor verovatnoće** (**verovatnosni model**) tog slučajnog eksperimenta. Elementi od \mathcal{F} su (**slučajni**) **događaji**. Prostor verovatnoće zadat je unapred na osnovu iskustva, intuicije i matematičke statistike, a na osnovu njega se računaju verovatnoće složenijih događaja.

Definicija: Neka je $\Omega = \{w_1, w_2, \dots\}$ najviše prebrojiv prostor elementarnih ishoda i $\mathcal{F} = \mathcal{P}(\Omega)$. Neka su $p_i, i \in \{1, 2, \dots\}$, nenegativni realni brojevi pridruženi odgovarajućim elementarnim ishodima tako da je $\sum_i p_i = 1$. Funkcija $P: \mathcal{F} \to R$ definiše se na sledeći način: ako je $A = \{w_{j1}, w_{j2}, \dots\}$, onda je $P(A) = p_{j1} + p_{j2} + \dots$ Uređena trojka $(\Omega, \mathcal{P}(\Omega), P)$ je **diskretan prostor verovatnoće**.

U slučaju diskretnog prostora verovatnoće sa konačno mnogo ishoda ti ishodi mogu biti **jednako verovatni** (npr. bacanje kockice) ili **nejednako verovatni** (npr. bacanje kockice obeležene sa 2 2 2 2 4 4). U slučaju jednako verovatnih ishoda verovatnoća nekog događaja A se može izračunati po formuli $P(A) = \frac{broj\ povoljnih\ ishoda}{broj\ ukupnih\ ishoda}$ i to se zove **klasična definicija verovatnoće**.

Primer(**Paradoks De Merea**): Kockica se baca 3 puta. Zašto verovatnoće da se dobiju zbir 11 i 12 nisu iste? De Mere je pogrešno primenio klasičnu definiciju verovatnoće računajući kao da su ishodi jednako verovatni, što nije slučaj. Na primer, dobijena kombinacija $\{1, 4, 6\}$ zapravo predstavlja sledeće ishode: $\{1, 4, 6\}$, $\{1, 6, 4\}$, $\{4, 1, 6\}$, $\{4, 6, 1\}$, $\{6, 1, 4\}$, $\{6, 4, 1\}$. Važi $\Omega = \{111, 112, ..., 666\}$ pa je ukupan broj ishoda $6^3 = 216$ pa je verovatnoća pomenutog ishoda jednaka $\frac{6}{216}$. Slično važi i za ostale kombinacije:

$$11 = 6 + 4 + 1 \rightarrow 6 \quad 12 = 6 + 5 + 1 \rightarrow 6$$

$$= 6 + 3 + 2 \rightarrow 6 \quad = 6 + 4 + 2 \rightarrow 6$$

$$= 5 + 5 + 1 \rightarrow 3 \quad = 6 + 3 + 3 \rightarrow 3$$

$$= 5 + 4 + 2 \rightarrow 6 \quad = 5 + 5 + 2 \rightarrow 3$$

$$= 5 + 3 + 3 \rightarrow 3 \quad = 5 + 4 + 3 \rightarrow 6$$

$$= 4 + 4 + 3 \rightarrow 3 \quad = 4 + 4 + 4 \rightarrow 1$$

Dobija se $P(A_{11})=rac{27}{216}$ i $P(A_{12})=rac{25}{216}$ pa je verovatnije da se dobije zbir 11.

Primer: Bira se broj iz segmenta [0, 1]. Koja je verovatnoća da se dobije broj iz segmenta $[\frac{1}{2}, \frac{3}{4}]$? Verovatnoća ovog događaja je $\frac{1}{4}$.

Definicija: Ako je Ω deo prave (ravni, prostora) koji ima meru m - dužinu (površinu, zapreminu), onda se verovatnoća događaja A koji ima meru m računa kao $P(A) = \frac{m(A)}{m(\Omega)}$ i to se zove **geometrijska verovatnoća**. Ovde prostor elementarnih ishoda nije konačan pa se ne koristi klasična definicija verovatnoće.

7. Uslovna verovatnoća

Definicija: **Uslovna verovatnoća** događaja B pri uslovu A, tj. verovatnoća da se realizovao događaj B ako se realizovao događaj A, u oznaci $P(B|A),\ P(A)>0$, definiše se kao $P(B|A)=\frac{P(AB)}{P(A)}$.

Teorema: Neka je (Ω, \mathcal{F}, P) prostor verovatnoće nekog slučajnog eksperimenta. Za svaki događaj B, takav da je P(B)>0, funkcija $P_B\colon \mathcal{F}\to R$ definisana sa $(\forall A\in\mathcal{F})P_B(A)=P(A|B)$ je verovatnoća na (Ω,\mathcal{F}) .

 $^{\triangle:}$ Dokazaćemo da za P_B važe sve tri osobine verovatnoće:

1. $(\forall A \in \mathcal{F})P_B(A) = P(A|B) = \frac{P(AB)}{P(B)} \ge 0$ jer $P(AB) \ge 0$ na osnovu osobine verovatnoće i P(B) > 0 na osnovu uslova iz definicije.

2.
$$P_B(\Omega) = P(\Omega|B) = \frac{P(\Omega B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

3.
$$P_B(\sum_{n=1}^{\infty} A_n) = P(\sum_{n=1}^{\infty} A_n | B) = \frac{P((\sum_{n=1}^{\infty} A_n)B)}{P(B)} = distr \frac{P(\sum_{n=1}^{\infty} A_nB)}{P(B)} = 3 \frac{\sum_{n=1}^{\infty} P(A_nB)}{P(B)} = \sum_{n=1}^{\infty} \frac{P(A_nB)}{P(B)} = \sum_{n=1}^{\infty} P(A_n | B) = \sum_{n=1}^{\infty} P_B(A_n) \blacksquare$$

Osobine:

a)
$$P(A|A) = 1$$

$$riangle : P(A|A) = rac{P(AA)}{P(A)} = rac{P(A)}{P(A)} = 1$$

b)
$$A \subset B \Rightarrow P(B|A) = 1$$

$$^{ riangle}:P(B|A)=rac{P(AB)}{P(A)}=^{A\subset B}rac{P(A)}{P(A)}=1$$
 .

c)
$$P(\overline{B}|A) = 1 - P(B|A)$$

$$riangle : P(B|A) = rac{P(AB)}{P(A)} = rac{P(AB)}{P(AB) + P(\overline{B}A)}$$
. Odavde važi $1 - P(B|A) = 1 - rac{P(AB)}{P(AB) + P(\overline{B}A)} = 1 - \frac{P(AB)}{P(AB) + P($

$$\frac{P(AB) + P(\overline{B}A) - P(AB)}{P(AB) + P(\overline{B}A)} = \frac{P(\overline{B}A)}{P(A)} = P(\overline{B}|A) \blacksquare$$

d)
$$P(B_1 + B_2|A) = P(B_1|A) + P(B_2|A)$$

$$\triangle : P(B_1 + B_2 | A) = \frac{P((B_1 + B_2)A)}{P(A)} = \frac{P(B_1A + B_2A)}{P(A)} = \frac{kon. \ adit.}{P(B_1A) + P(B_2A)} = \frac{P(B_1A)}{P(A)} + \frac{P(B_2A)}{P(A)} = \frac{P(B_1A)}{P(A)} = \frac{P(B_1A)}{$$

$$P(B_1|A) + P(B_2|A) \blacksquare$$

e) formula množenja:
$$P(AB) = P(B)P(A|B) = P(A)P(B|A), P(B) > 0, P(A) > 0$$

△: Direktno iz definicije ■

f) uopštena formula množenja:

$$P(A_1...A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1...A_{n-1}), P(A_1...A_{n-1}) > 0$$

 $^{\triangle:}$ Dokazujemo putem matematičke indukcije. Baza (n=2) važi na osnovu e).

Pretpostavimo da formula važi za n (ih) i dokažimo da važi i za n+1: $P(A_1 \dots A_{n+1})$ =

$$P((A_1...A_n)A_{n+1}) = P(A_1...A_n)P(A_{n+1}|A_1...A_n) = ih$$

$$P(A_1)P(A_2|A_1)\dots P(A_n|A_1\dots A_{n-1})P(A_{n+1}|A_1\dots A_n)$$

8. Formula potpune verovatnoće. Bajesova formula

Teorema(Formula potpune verovatnoće): Neka su $H_1, ..., H_n$ disjunktni događaji takvi da je $(\forall i \in \{1, ..., n\})$ $P(H_i) > 0$ i $\sum_{i=1}^n H_i = \Omega$. Tada za svaki događaj A važi da je $P(A) = \sum_{i=1}^n P(H_i) P(A|H_i)$.

$$^{\triangle:} P(A) = P(A\Omega) = P(A(H_1 + \dots + H_n)) = ^{distr} P(AH_1 + \dots + AH_n) = ^{kon. \ aditivnost} P(AH_1) + \dots + P(AH_n) = ^{for. \ mn.} P(H_1)P(A|H_1) + \dots + P(H_n)P(A|H_n) = \sum_{i=1}^{n} P(H_i)P(A|H_i) \blacksquare$$

Formula se koristi kada računamo verovatnoću događaja pre koga se desilo nešto, pri čemu ne znamo šta se desilo ali znamo šta sve može da se desi. Događaj A možemo posmatrati kao posledicu, a događaje H_i kao uzroke (hipoteze). Formula važi i za prebrojivo mnogo H_i .

Teorema (Bajesova formula): Pri uslovima prethodne teoreme važi da je

$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{P(A)} = \frac{P(H_k)P(A|H_k)}{\sum_{k=1}^{n} P(H_k)P(A|H_k)}.$$

$$\triangle P(H_k|A) = \frac{P(H_kA)}{P(A)} = for. \ mn. \ \frac{P(H_k)P(A|H_k)}{P(A)} = for. \ \frac{P(H_k)P(A|H_k)}{\sum_{k=1}^{n} P(H_k)P(A|H_k)} = for. \ \frac{P(H_k)P($$

Formula se koristi kada računamo verovatnoću da je neki od H_k uzrok događaja A, odnosno za nalaženje verovatnoća pojedinačnih hipoteza u odnosu na posledicu.

9. Nezavisnost događaja

Ako važi P(A) = P(A|B) to znači da realizacija događaja B ne utiče na realizaciju događaja A. Iz ove jednakosti sledi $P(A) = \frac{P(AB)}{P(B)}$, odakle sledi $P(B) = \frac{P(AB)}{P(A)} = P(B|A)$ što znači da ni A ne utiče na događaj B.

Definicija: Događaji A i B iz istog prostora verovatnoće su **nezavisni** ako je P(AB) = P(A)P(B).

Lema: Ako su A i B nezavisni događaji onda su i \overline{A} i B, A i \overline{B} i \overline{A} i \overline{B} nezavisni.

- 1. $P(B) = P(AB) + P(\overline{A}B) = ^{nez} P(A)P(B) + P(\overline{A}B)$ odakle sledi da je $P(\overline{A}B) = P(B) P(A)P(B) = P(B)(1 P(A)) = P(B)P(\overline{A})$ pa su \overline{A} i B nezavisni.
- 2. A i B su nezavisni $\Rightarrow B i A$ su nezavisni $\Rightarrow^1 \overline{B} i A$ su nezavisni $\Rightarrow A i \overline{B}$ su nezavisni.
- 3. A i B su nezavisni $\Rightarrow^1 \overline{A}$ i B su nezavisni \Rightarrow B i \overline{A} su nezavisni $\Rightarrow^1 \overline{B}$ i \overline{A} su nezavisni \Rightarrow \overline{A} i \overline{B} su nezavisni.

Definicija(**Potpuna nezavisnost**): Događaji iz neprazne kolekcije $\mathcal K$ su potpuno nezavisni ako $(\forall n \in N)(n \geq 2)$ i različite događaje $A_{k1}, ..., A_{kn}$ važi $P(A_{k1}...A_{kn}) = P(A_{k1})...P(A_{kn})$. Za $|\mathcal K| = n$ imamo $\binom{n}{2} + ... + \binom{n}{n} = 2^n - \binom{n}{1} - \binom{n}{0} = 2^n - n - 1$ provera. Ako važi nezavisnost za neko n ne mora da važi za n+1 ili n-1.

10. Slučajna veličina

Definicija: Neka je (Ω, \mathcal{F}, P) prostor verovatnoće i (R, \mathcal{B}) merljiv prostor. Funkcija X: $\Omega \to R$ je **slučajna veličina** ako $(\forall B \in \mathcal{B}) X^{-1}(B) \in \mathcal{F}, X^{-1}(B) = \{w | X(w) \in B\}.$ (*)

Teorema: Slučajna veličina X definisana na prostoru verovatnoće (Ω, \mathcal{F}, P) definiše prostor verovatnoće (R, \mathcal{B}, P_x) gde je $P_x(B) = P(X^{-1}(B))$.

 \triangle : Dokazujemo da je P_x verovatnoća na merljivom skupu (R, \mathcal{B}) :

- 1. $(orall \ B \in \mathcal{B}) \ P_x(B) = P(X^{-1}(B)) > 0$ jer je P verovatnoća
- 2. $P_x(R) = P(X^{-1}(R)) = P(\Omega) = 1$
- 3. $P_x(\sum_{n=1}^{\infty}B_n) = P(X^{-1}(\sum_{n=1}^{\infty}B_n)) = P(\sum_{n=1}^{\infty}X^{-1}(B_n)) = \sigma \operatorname{adit}. \sum_{n=1}^{\infty}P(X^{-1}(B_n)) = \sum_{n=1}^{\infty}P_x(B_n)$

Definicija: Funkcija P_X : $\mathcal{B} \to R$ definisana kao (*) zove se **raspodela verovatnoće** slučajne veličine X. Ako znamo raspodelu verovatnoće slučajne veličine znamo sve o toj slučajnoj veličini.

Definicija: Funkcija F_X : $R \to R$ definisana sa $(\forall x \in R)$ $F_X(x) = P_X((-\infty, x]) = P\{X \le x\}$ je **funkcija raspodele verovatnoće** slučajne veličine X. Ako znamo funkciju raspodele verovatnoće slučajne veličine znamo sve o toj slučajnoj veličini i obrnuto.

Teorema: Za funkciju raspodele verovatnoće F_X slučajne veličine X važi da je:

- 1. neopadajuća: $x_1 < x_2 \Rightarrow F_X(x_1) < F_X(x_2)$
- 2. levo teži nuli, a desno jedinici: $\lim_{x o -\infty} F_X(x) = 0$, $\lim_{x o +\infty} F_X(x) = 1$
- 3. neprekidna zdesna: $(orall \; x_0 \in R) \; \lim_{x o x_0^+} F_X(x) = F_X(x_0)$

 \triangle :

1. $x_1 < x_2 \Rightarrow (-\infty, \ x_1] \subset (-\infty, \ x_2] \Rightarrow^{mon. \ P_X} P_X((-\infty, \ x_1]) \leq P_X((-\infty, \ x_2]) \Rightarrow F_X(x_1) \leq F_X(x_2) \Rightarrow F_X$ je neopadajuća.

- 2. Prema Hajneu važi $\lim_{x\to a} f(x) = b \Leftrightarrow (\forall \ x_n) \ \lim_{n\to\infty} x_n = a \Rightarrow \lim_{n\to\infty} f(x_n) = b$. Treba da dokažemo $\lim_{x\to -\infty} F_X(x) = 0$, odnosno po Hajneu treba dokazati $(\forall \ x_n) \ \lim_{n\to\infty} x_n = -\infty \Rightarrow \lim_{n\to\infty} F_X(x_n) = 0$, međutim pošto je F_X monotono neopadajuća dovoljno je ovo dokazati za svaki opadajući niz: $(\forall \ x_n) \ x_n \searrow -\infty \Rightarrow \ldots < x_2 < x_1 \Rightarrow (-\infty, \ x_1] \supset (-\infty, \ x_2] \supset \ldots$ pa važi $\lim_{n\to\infty} F_X(x_n) = \lim_{n\to\infty} P_X((-\infty, \ x_n]) = \stackrel{nepr.\ odozdo}{} P_X(\bigcap_{n=1}^\infty (-\infty, \ x_n]) = P_X(\emptyset) = 0 \Rightarrow^{Hajne} \lim_{x\to -\infty} F_X(x) = 0$. Sada dokazujemo $\lim_{x\to +\infty} F_X(x) = 1$. Zbog monotonosti je dovoljno pokazati da ovo važi za svaki rastući niz koji teži $+\infty$: $(\forall \ x_n) \ x_n \nearrow +\infty \Rightarrow x_1 < x_2 < \ldots \Rightarrow (-\infty, \ x_1] \subset (-\infty, \ x_2] \subset \ldots$ pa važi $\lim_{n\to\infty} F_X(x_n) = \lim_{n\to\infty} P_X((-\infty, \ x_n]) = \stackrel{nepr.\ odozgo}{} P_X(\bigcup_{n=1}^\infty (-\infty, \ x_n]) = P_X(R) = 1 \Rightarrow^{Hajne} \lim_{x\to +\infty} F_X(x) = 1$.
- 3. Zbog monotonosti znamo da važi $(\forall \ x_n \searrow x_0) \lim_{n \to \infty} x_n = x_0$ pa na osnovu Hajnea treba dokazati $\lim_{n \to \infty} F_X(x_n) = F_X(x_0)$: $x_0 \le \ldots < x_2 < x_1 \Rightarrow (-\infty, \ x_1] \supset (-\infty, \ x_2]$ $\supset \ldots$ pa važi $\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} P_X((-\infty, \ x_n]) = ^{nepr.\ odozdo} P_X(\bigcap_{n=1}^{\infty} (-\infty, \ x_n]) = P_X((-\infty, \ x_0]) = F_X(x_0) \Rightarrow^{Hajne} \lim_{x \to x_0^+} F_X(x) = F_X(x_0)$.

Važi i obrnuto, ako neka funkcija ima ove tri osobine, onda je ona funkcija raspodele neke slučajne veličine.

11. Osnovni tipovi slučajnih veličina. Primeri

Definicija: Slučajna veličina X je **diskretna** ako postoji najviše prebrojiv skup $S = \{a_1, a_2, \ldots\}$ tako da $P\{x \notin S\} = 0$. Diskretna slučajna veličina "uzima" konačno ili prebrojivo mnogo različitih vrednosti.

Zakon raspodele slučajne veličine:

$$\begin{pmatrix} a_1 & a_2 & \dots & a_n \\ p_1 & p_2 & \dots & p_n \end{pmatrix}$$

ili $P\{X=a_i\}=p_i,\,i=\overline{1,\;n}$. Postoji samo za diskretne slučajne veličine i važi $(\forall\;i\in\{1,\;\ldots,\;n\})\;p_i>0\;$ i $\sum_{i=1}^np_i=1$ (za konačan broj vrednosti).

Funkcija raspodele ima stepenast oblik:

$$F_X(x) = egin{cases} 0, \ x < a_1 \ p_1, \ a_1 \leq x < a_2 \ p_1 + p_2, \ a_2 \leq x < a_3 \ \dots \ 1, \ x \geq a_n \end{cases}$$

Primeri:

- Konstantna slučajna veličina $X: \binom{c}{1}$, tj. uzima vrednost c sa verovatnoćom 1. $F_X(x) = \begin{cases} 0, \ x < c \\ 1, \ x \geq c \end{cases}$
- Indikator događaja A: $I_A(w) = \begin{cases} 0, & w \notin A \\ 1, & w \in A \end{cases}$, tj. uzima vrednost 1 ako se A realizovao, a 0 ako nije. Zakon raspodele: $\begin{pmatrix} 0 & 1 \\ 1 P(A) & P(A) \end{pmatrix}$. Po uzoru na indikator događaja postoje indikatorske (Bernulijeve) slučajne veličine ili prosto indikator: $\begin{pmatrix} 0 & 1 \\ 1 p & p \end{pmatrix}$
- Slučajna veličina X meri broj uspeha u n nezavisnih pokušaja, a verovatnoća ostvarivanja svakog je p. Do zakona raspodele dolazimo na sledeći način: skup elementarnih ishoda je Ω = {0...0, 10...0, ..., 1...1}. Primećujemo da ishodi nisu jednako verovatni pa ne možemo koristiti klasičnu definiciju verovatnoće. Skup povoljnih ishoda ako posmatramo k uspeha je {1...10...0, 10011...01, ..., 0...01...1}, gde u svakom članu imamo k jedinica (uspeha) i n-k nula (neuspeha) pa je verovatnoća svakog ishoda $p^k(1-p)^{n-k}$. Ukupno ih ima $\binom{n}{k}$ pa dobijamo $P\{X=k\}=\binom{n}{k}p^k(1-p)^{n-k},\ n\in N,$ $p\in[0,1]$. Ova slučajna veličina ima **binomnu raspodelu**: $X\sim\mathcal{B}(n,p)$.
- Slučajna veličina X meri broj pokušaja do prvog uspeha, gde je verovatnoća uspeha svakog nezavisnog pokušaja p. Ako tražimo verovatnoću uspeha u k-tom pokušaju, onda imamo k − 1 neuspeha nakon čega sledi uspeh pa važi P{X = k} = (1 − p)^kp, k ∈ N. Slučajna veličina ima geometrijsku raspodelu: X ~ G(p).
- Slučajna veličina X meri broj uspeha u nekom vremenskom intervalu, gde je prosečan broj uspeha λ . Ova slučajna veličina ima **Puasonovu raspodelu**: $X \sim \mathcal{P}(\lambda)$ i važi $P\{X=k\} = \frac{e^{-\lambda}\lambda^k}{k!}, \ k \in N \cup \{0\}.$

Definicija: Slučajna veličina X je **apsolutno-neprekidna** ako postoji nenegativna funkcija f_X : $R \to R$ takva da je $F_X(x) = \int_{-\infty}^x f_X(t) dt$. Ova funkcija naziva se **gustina raspodele verovatnoće** slučajne veličine X i postoji samo za apsolutno-neprekidne slučajne veličine. Ako znamo gustinu raspodele verovatnoće slučajne veličine, onda znamo sve o toj slučajnoj veličini. Apsolutno-neprekidna slučajna veličina "uzima" neprebrojivo mnogo različitih vrednosti, ali nije svaka slučajna veličina koja "uzima" neprebrojivo mnogo različitih vrednosti apsolutno-neprekidna.

Ako znamo gustinu onda znamo i funkciju raspodele i obrnuto. Iz Njutn-Lajbnicove formule sledi:

- 1. za svaku tačku neprekidnosti f_X važi $F_X^\prime(x) = f_X(x)$
- 2. F_X je neprekidna

Osobine gustine:

1.
$$(\forall \ x \in R) \ f_X(x) \geq 0$$

$$2. \int_{-\infty}^{+\infty} f_X(x) dx = 1$$

Ako neka funkcija ima ove osobine ona je funkcija gustine neke slučajne veličine. Takođe važi i $P\{X=a\}=0$ pa je $P\{a < x \leq b\}$ = $P\{a \leq x \leq b\}$ = $P\{a \leq x < b\}$ = $P\{a < x < b\}$.

Primeri:

• Uniformna (ravnomerna) raspodela: $X \sim \mathcal{U}[a,\ b],\ a < b$

$$f_X(x) = rac{1}{b-a}, \; x \in [a, \; b], \; \; F_X(x) = egin{cases} 0, \; x < a \ rac{x-a}{b-a}, \; a \leq x < b \ 1, \; x \geq b \end{cases}$$

• Eksponencijalna raspodela: $X \sim \mathcal{E}(\lambda), \ \lambda > 0$

$$f_X(x) = \lambda e^{-\lambda x}, \; x \geq 0, \;\; F_X(x) = egin{cases} 0, \; x < 0 \ 1 - e^{-\lambda x}, \; x \geq 0 \end{cases}$$

 $f_X(x)$

• Normalna (Gausova) raspodela: $X \sim \mathcal{N}(m, \ \sigma^2), \ m \in R, \ \sigma > 0$

$$f_X(x) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{1}{2}rac{(x-m)^2}{\sigma^2}}, \; x \in R, \;\; F_X(x) = \int_{-\infty}^x f_X(t) dt, \; t \in R$$

Predstavnik je **standardna normalna raspodela**: $X^* \sim \mathcal{N}(0,\ 1)$

$$f_{X^*}(x) = rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}x^2}$$

Nije moguće rešiti integral i dobiti funkciju raspodele normalne raspodele, već se koriste statističke tablice. Tablice postoje samo za standardnu normalnu raspodelu, a vrednosti za ostale se dobijaju preko nje koristeći sledeću lemu.

Lema: Ako
$$X$$
 ima normalnu $\mathcal{N}(m,\,\sigma^2)$ raspodelu, onda $\frac{X-m}{\sigma}$ ima $\mathcal{N}(0,\,1)$ raspodelu.
 \triangle : Neka je $Y = \frac{X-m}{\sigma}$. Za $(\forall x \in R)$ važi $F_Y(x) = P\{Y \le x\} = P\{\frac{X-m}{\sigma} \le x\} = P\{X \le \sigma x + m\}$
$$= \int_{-\infty}^{\sigma x + m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(t-m)^2}{\sigma^2}} dt = \begin{pmatrix} t = \sigma s + m \\ dt = \sigma ds \end{pmatrix} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\frac{(\sigma s + m - m)^2}{\sigma^2}} \mathscr{p}' ds = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{s^2}{2}} ds = F_{X^*}(x) \Rightarrow \frac{X-m}{\sigma} = X^* : \mathcal{N}(0,\,1)$$

12. Višedimenzionalna slučajna veličina. Borelova funkcija slučajnih veličina

Definicija: Neka je (Ω, \mathcal{F}, P) prostor verovatnoće i (R^n, \mathcal{B}^n) merljiv prostor. Funkcija $X:\ \Omega \to R^n$ je n-dimenzionalna slučajna veličina ako $(\forall\ B \in \mathcal{B}^n)\ X^{-1}(B) \in \mathcal{F}.$

Teorema: Neka je (Ω, \mathcal{F}, P) prostor verovatnoće i $X_1, ..., X_n$: $\Omega \to R$ funkcije. Tada važi da je $(X_1, ..., X_n)$ n-dimenzionalna slučajna veličina akko je za svako $i \in \{1, ..., n\}$ X_i slučajna veličina.

Za proizvoljno
$$i \in \{1, \ldots, n\}$$
 važi $(\forall B \in \mathcal{B})$ $X_i^{-1}(B) = \{w|X_i(w) \in B\} = \{w|X_1(w) \in R, \ldots, X_{i-1}(w) \in R, X_i(w) \in B, X_{i+1}(w) \in R, \ldots, X_n(w) \in R\} = \{w|(X_1(w), \ldots, X_i(w), \ldots, X_n(w)) \in R \times \ldots \times R \times B \times R \times \ldots \times R\} = \{w|(X_1, \ldots, X_n)(w) \in R \times \ldots \times R \times B \times R \times \ldots \times R\} = \{w|X(w) \in R \times \ldots \times R \times B \times R \times \ldots \times R\} = \{w|X(w) \in R \times \ldots \times R \times B \times R \times \ldots \times R\} = X^{-1}(R \times \ldots \times R \times B \times R \times \ldots \times R) \in \mathcal{F} \text{ jer je } X \text{ n-dimenzionalna slučajna veličina, pa sledi da je X_i slučajna veličina.}$

Dokazaćemo da teorema važi za gradivne skupove, tj. za svako I_n = $(a_1,\ b_1] \times ... \times (a_n,\ b_n]$. Borelovi skupovi se mogu dobiti kao konačni ili beskonačni presek ili unija ili kao komplementaran skup i slično, pa će teorema na osnovu toga važiti i za njih. Važi $X^{-1}(I_n)$ =

 $\{w|X(w) \in (a_1,\ b_1] \times \ldots \times (a_n,\ b_n]\} = \{w|(X_1,\ \ldots,\ X_n)(w) \in (a_1,\ b_1] \times \ldots \times (a_n,\ b_n]\} = \{w|X_1(w) \in (a_1,\ b_1],\ \ldots,\ X_n(w) \in (a_n,\ b_n]\} = \{w|X_1(w) \in (a_1,\ b_1]\} \cap \ldots \cap \{w|X_n(w) \in (a_n,\ b_n]\} = X_1^{-1}((a_1,\ b_1]) \cap \ldots \cap X_n^{-1}((a_n,\ b_n]). \text{ Svi elementi preseka pripadaju } \mathcal{F} \text{ jer su } X_i \text{ slučajne veličine, pa i } X^{-1}(I_n) \in \mathcal{F} \text{ kao konačan presek. } \blacksquare$

Definicija: Funkcija $f: \mathbb{R}^n \to \mathbb{R}$ je **Borelova** ako $(\forall B \in \mathcal{B})$ $f^{-1}(B) \in \mathcal{B}^n$. Na primer, svaka neprekidna funkcija je Borelova.

Teorema: Neka je (Ω, \mathcal{F}, P) prostor verovatnoće i $X_1, ..., X_n$: $\Omega \to R$ slučajne veličine i $f: R^n \to R$ Borelova funkcija. Tada je $f(X_1, ..., X_n)$ slučajna veličina.

 $^{\triangle:}$ $(\forall B \in \mathcal{B})(f \circ X)^{-1}(B) = X^{-1} \circ f^{-1}(B) = X^{-1}(f^{-1}(B)) \in \mathcal{F}$ jer $f^{-1}(B) \in \mathcal{B}^n$ jer je f Borelova. \blacksquare

Definicija: Neka je X n-dimenzionalna slučajna veličina definisana na prostoru verovatnoće (Ω, \mathcal{F}, P) i neka je (R^n, \mathcal{B}^n) merljiv prostor. Funkcija P_X : $\mathcal{B}^n \to R$ definisana sa $(\forall B \in \mathcal{B}^n)$ $P_X(B) = P\{X^{-1}(B)\}$ zove se **raspodela verovatnoće** n-dimenzionalne slučajne veličine X.

Definicija: Neka je X n-dimenzionalna slučajna veličina definisana na prostoru verovatnoće (Ω, \mathcal{F}, P) i neka je (R^n, \mathcal{B}^n) merljiv prostor. Funkcija F_X : $R^n \to R$ definisana sa $(\forall (x_1, \ldots, x_n) \in R^n)$ $F_X((x_1, \ldots, x_n)) = P_X((-\infty, x_1] \times \ldots \times (-\infty, x_n]) = P\{X_1 \leq x_1, \ldots, X_n \leq x_n\}$ zove se **funkcija raspodele verovatnoće** n-dimenzionalne slučajne veličine X. Znamo sve o n-dimenzionalnoj slučajnoj veličini ako znamo bar jednu od ove dve funkcije.

Teorema: Za funkciju raspodele F_X definisanu kao iznad važe svojstva:

- 1. ($orall \ i \in \{1, \ \ldots, \ n\}$) $\lim_{x_i
 ightarrow -\infty} F_X(x_1, \ \ldots, \ x_n) = 0$
- 2. $\lim_{x_1 o +\infty, \, ..., \, x_n o +\infty} F_X(x_1, \, \ldots, \, x_n) = 1$
- 3. neprekidna je zdesna po svakoj koordinati
- 4. za svaki n-dimenzionalni interval I_n = $(a_1,\ b_1] imes\ldots imes(a_n,\ b_n]$ i njegova temena T = $\{x|x=(x_1,\ \ldots,\ x_n),\ \forall\ i\in\{1,\ \ldots,\ n\}\ x_i\in(a_i,\ b_i]\}$ važi da je

$$\Delta_{F_X}(I_n) = \sum_{x \in T} Z_{I_n}(x) F_X(x) \geq 0$$
, gde je $Z_{I_n}(x) = egin{cases} -1, \ broj \ a_i \ neparan \ 1, \ broj \ a_i \ paran \end{cases}$. Na primer, za $n=2$, tj. $I=(a_1,\ b_1] imes (a_2,\ b_2]$ važi $\Delta_{F_X}(I) = F_X(b_1,\ b_2) - F_X(b_1,\ a_2) - F_X(a_1,\ b_2) + F_X(a_1,\ a_2).$

Diskretne višedimenzionalne slučajne veličine uzimaju konačno ili prebrojivo mnogo vrednosti. Zakon raspodele se najčešće zapisuje u obliku tablice.

Apsolutno-neprekidne višedimenzionalne slučajne veličine uzimaju neprebrojivo mnogo vrednosti. Za gustinu $f_X:R^n\to R$ važi $(\forall\;(x_1,\;\ldots,\;x_n)\in R^n)\;f_X(x_1,\;\ldots,\;x_n)\geq 0$. Funkcija raspodele je $F_X(x_1,\;\ldots,\;x_n)=\int_{-\infty}^{x_1}\ldots\int_{-\infty}^{x_n}f_X(t_1,\;\ldots,\;t_n)dt_1\ldots dt_n$. Važi:

- ullet $(orall B\in B^n)$ $P\{X\in B\}=\int \ldots \int_B f_X(x_1,\ \ldots,\ x_n) dx_1\ldots dx_n$
- ullet $\int \ldots \int_{R^n} f_X(x_1,\ \ldots,\ x_n) dx_1 \ldots dx_n = 1$
- ullet za svaku tačku neprekidnosti f_X važi $f_X(x_1,\,\ldots,\,x_n)=rac{\partial^n F_X(x_1,\,\ldots,\,x_n)}{\partial x_1...\partial x_n}$

13. Marginalna raspodela

Definicija: **Marginalna raspodela** je raspodela bilo kog podvektora n-dimenzionalne slučajne veličine. Ako znamo raspodelu n-dimenzionalne slučajne veličine lako možemo naći bilo koju njenu marginalnu raspodelu, dok obrnuto ne važi.

Diskretan slučaj (n = 2) - znamo $P\{X=x_i,\ Y=y_j\}$ za $\forall\ i,\ j.$ Važi:

- $P\{X=x_i\}=\sum_j P\{X=x_i,\;Y=y_j\}$
- $P\{Y = y_j\} = \sum_i P\{X = x_i, Y = y_j\}$

Apsolutno-neprekidan slučaj (n = 2) - znamo $f_{X,\,Y}(x,\,y)$ za $orall\,x,\,y\in R$. Važi:

- $F_X(x)=P\{X\leq x\}=P\{X\leq x,\ Y\in R\}=\int_{-\infty}^x(\int_{-\infty}^{+\infty}f_{X,\ Y}(x,\ y)dy)dx$ pa kad uradimo parcijalni izvod po X dobijamo $f_X(x)$ = $\int_{-\infty}^{+\infty}f_{X,\ Y}(x,\ y)dy$
- $f_Y(y)=\int_{-\infty}^{+\infty}f_{X,\,Y}(x,\,y)dx$

14. Uslovna raspodela

Uslovna verovatnoća: $P(A|B)=rac{P(AB)}{P(B)},\,P(B)>0$, pa u opštem slučaju ako znamo $(X,\,Y)$ onda važi da je **uslovna raspodela** $F_{X|Y\in B}(x)$ = $\frac{P\{X\leq x,Y\in B\}}{P\{Y\in B\}}$, $P\{Y\in B\}>0$.

Diskretan slučaj - važi:

$$\begin{array}{l} \bullet \ \ P\{X=x_i|Y=y_j\}=\frac{P\{X=x_i,Y=y_j\}}{P\{Y=y_j\}}, \ P\{Y=y_j\}>0 \\ \bullet \ \ P\{Y=y_j|X=x_i\}=\frac{P\{X=x_i,Y=y_j\}}{P\{X=x_i\}}, \ P\{X=x_i\}>0 \end{array}$$

$$ullet \ P\{Y=y_j|X=x_i\}=rac{P\{X=x_i,Y=y_j\}}{P\{X=x_i\}},\ P\{X=x_i\}>0$$

• formula množenja: $P\{X = x_i, Y = y_i\} = P\{X = x_i | Y = y_i\} P\{Y = y_i\} = P\{X = x_i | Y = y_i\} P\{Y = y_i\}$ $P\{Y = y_i | X = x_i\} P\{X = x_i\}$

Apsolutno-neprekidan slučaj - za potrebe izvođenja podsetimo se posledice prve teoreme o srednjoj vrednosti: $f \in C(a, b) \to \exists c \in (a, b) \int_a^b f(x) dx = (b - a) f(c)$.

- Ako je $f_X(x)>0$ i ako su $f_X(x)$ i $f_{X,\,Y}(x,\,y)$ neprekidne u okolini x onda važi $F_{Y|X=x}(y)$ = $\lim_{h o 0} F_{Y|x-h \le X \le x+h}(y)$ = $\lim_{h o 0} P\{Y \le y|x-h \le X \le x+h\}$ = $\lim_{h \to 0} \frac{P\{x - h \le X \le x + h, Y \le y\}}{P\{x - h \le X \le x + h\}} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} dv \int_{x - h}^{x + h} f_{X,Y}(u, v) du}{\int_{x - h}^{x + h} f_{X}(u) du} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X}(c_2)} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h - (x - h)) f_{X,Y}(c_1, v) dv} dv} = \lim_{h \to 0} \frac{\int_{-\infty}^{y} (x + h - (x - h)) f_{X,Y}(c_1, v) dv}{(x + h -$ $\int_{-\infty}^y rac{f_{X,Y}(x,v)}{f_X(x)} dv$, pri čemu je $x-h \leq c_1, \ c_2 \leq x+h$. Parcijalnim izvodom po Y dobijamo $f_{Y|X=x}(y)$ = $\frac{f_{X,Y}(x,y)}{f_X(x)}$ • $f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$

Lema: Uslovna gustina raspodele definisana kao iznad je gustina raspodele. \triangle :

1.
$$(\forall \ y \in R) \ f_{Y|X=x}(y) = \frac{f_{X,Y}(x,y)}{f_X(x)} > 0 \ \text{jer} \ f_{X,Y}(x,y) \ge 0 \ \text{(gustina)} \ \text{i} \ f_X(x) > 0 \ \text{(po definiciji)}.$$
2. $\int_{-\infty}^{+\infty} f_{Y|X=x}(y) dy = \int_{-\infty}^{+\infty} \frac{f_{X,Y}(x,y)}{f_X(x)} dy = \frac{1}{f_X(x)} \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy = \frac{1}{f_X(x)} \cdot f_X(x) = 1$

15. Nezavisnost slučajnih veličina

Definicija: Slučajne veličine X_1, \ldots, X_n definisane na istom prostoru verovatnoće (Ω, \mathcal{F}, P) su **nezavisne** ako za proizvoljne $B_1, \ldots, B_n \in \Omega$ važi $P\{x_1 \in B_1, \ldots, x_n \in B_n\}$ $= P\{x_1 \in B_1\} \cdot \ldots \cdot P\{x_n \in B_n\}$

Teorema: Neka su F_{X_1}, \ldots, F_{X_n} funkcije raspodele slučajnih veličina X_1, \ldots, X_n definisaniih na istom prostoru verovatnoće $(\Omega,~\mathcal{F},~P)$ i $F_{X_1,~...,~X_n}$ funkcija raspodele ndimenzionalne slučajne veličine (X_1, \ldots, X_n) . Slučajne veličine X_1, \ldots, X_n su nezavisne akko $(\forall (x_1,\ldots,x_n)\in R^n)$ $F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=F_{X_1}(x_1)\cdot\ldots\cdot F_{X_n}(x_n)$

Teorema: Diskretne slučajne veličine X_1, \ldots, X_n definisane na istom prostoru verovatnoće (Ω, \mathcal{F}, P) su nezavisne akko

$$(orall \ (x_1, \ \ldots, \ x_n) \in R^n) \ P\{X_1 = x_1, \ \ldots, \ X_n = x_n\} = P\{X_1 = x_1\} \cdot \ \ldots \ \cdot P\{X_n = x_n\}$$

Teorema: Neka su f_{X_1}, \ldots, f_{X_n} gustine raspodele slučajnih veličina X_1, \ldots, X_n definisanih na istom prostoru verovatnoće (Ω, \mathcal{F}, P) i f_{X_1, \ldots, X_n} gustina raspodele n-dimenzionalne slučajne veličine (X_1, \ldots, X_n) . Apsolutno-neprekidne slučajne veličine X_1, \ldots, X_n su nezavisne akko skoro svuda važi

$$(orall \; (x_1, \; \ldots, \; x_n) \in R^n) \; f_{X_1, \; \ldots, \; X_n}(x_1, \; \ldots, \; x_n) = f_{X_1}(x_1) \cdot \; \ldots \; \cdot f_{X_n}(x_n)$$

Teorema: Neka su $f, g: R \to R$ Borelove funkcije i X i Y nezavisne slučajne veličine. Tada su i f(X) i g(Y) nezavisne slučajne veličine.

 $(\forall \ B_1,\ B_2\in B)\ P\{f(X)\in B_1,\ g(Y)\in B_2\}$ = $P\{X\in f^{-1}(B_1),\ Y\in g^{-1}(B_2)\}$. Funkcije f i g su Borelove pa $f^{-1}(B_1),\ g^{-1}(B_2)\in \mathcal{B}$ pa na osnovu nezavisnosti važi da je prethodna verovatnoća jednaka $P\{X\in f^{-1}(B_1)\}P\{Y\in g^{-1}(B_2)\}$ = $P\{f(X)\in B_1\}P\{g(Y)\in B_2\}$ pa su f(X) i g(Y) nezavisne slučajne veličine. \blacksquare

16. Matematičko očekivanje. Osnovna svojstva. Primeri

Matematičko očekivanje predstavlja srednju vrednost oko koje se ostale vrednosti grupišu. Veliki broj puta (n) vršimo eksperiment i dobijamo sledeće rezultate:

$$egin{aligned} x_1 & x_2 & \dots & x_k \ n_1 & n_2 & \dots & n_k \end{aligned}, \quad n_1 + \dots + n_k = n \ rac{x_1 n_1 + x_2 n_2 + \dots + x_k n_k}{n} &= x_1 rac{n_1}{n} + x_2 rac{n_2}{n} + \dots + x_k rac{n_k}{n} pprox x_1 p_1 + x_2 p_2 + \dots + x_k p_k \ X : egin{aligned} x_1 & x_2 & \dots & x_k \ p_1 & p_2 & \dots & p_k \end{aligned}$$

Definicija: Neka je X diskretna slučajna veličina koja uzima konačno mnogo vrednosti i za čiji zakon raspodele važi $X: \begin{pmatrix} x_1 & \dots & x_n \\ p_1 & \dots & p_n \end{pmatrix}$. Matematičko očekivanje ove slučajne veličine definiše se kao $E(X) = \sum_{k=1}^n x_k P\{X = x_k\} = \sum_{k=1}^n x_k p_k$

Definicija: Neka je X diskretna slučajna veličina koja uzima prebrojivo mnogo vrednosti i za čiji zakon raspodele važi $P\{X=x_n\}=p_n,\,n\in N.$ Matematičko očekivanje ove slučajne veličine definiše se kao $E(X)=\sum_{n=1}^\infty x_n P\{X=x_n\}=\sum_{n=1}^\infty x_n p_n$, ako ovaj red apsolutno konvergira, tj. $\sum_{n=1}^\infty |x_n| p_n < +\infty$.

Teorema: Ako je X diskretna slučajna veličina i $\varphi: R \to R$ Borelova funkcija, onda je $E(\varphi(X)) = \sum_n \varphi(x_n) P\{X = x_n\}$, ako ovaj red apsolutno konvergira.

Teorema: Ako je (X, Y) dvodimenzionalna diskretna slučajna veličina i $\varphi: R^2 \to R$ Borelova funkcija, onda je $E(\varphi(X, Y)) = \sum_i \sum_j \varphi(x_i, y_j) P\{X = x_i, Y = y_j\}$, ako ovaj red apsolutno konvergira.

Primer:

- Indikator $I:egin{pmatrix} 0 & 1 \ 1-p & p \end{pmatrix}$, $E(I)=0\cdot(1-p)+1\cdot p=p$
- Binomna raspodela $X:\mathcal{B}(n,\,p),\,E(X)=\sum_{k=0}^n kP\{X=k\}=\sum_{k=0}^n k\binom{n}{k}p^k(1-p)^{n-k}=\sum_{k=1}^n k\frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}=\sum_{k=1}^n \frac{n!}{(k-1)!(n-k)!}p^k(1-p)^{n-k}=np\sum_{k=1}^n \frac{(n-1)!}{(k-1)!(n-k)!}p^{k-1}(1-p)^{n-k}=np\sum_{k=1}^n \binom{n-1}{k-1}p^{k-1}(1-p)^{n-k}=(k-1=s)=np\sum_{s=0}^{n-1} \binom{n-1}{s}p^s(1-p)^{n-1-s}=np(p+1-p)^{n-1}=np$
- Puasonova raspodela $X:\mathcal{P}(\lambda)$, $E(X)=\sum_{k=0}^{\infty}kP\{X=k\}=\sum_{k=1}^{\infty}k\frac{e^{-\lambda}\lambda^k}{k!}=\sum_{k=1}^{\infty}\frac{e^{-\lambda}\lambda^k}{(k-1)!}=(k-1=s)$ = $\lambda\sum_{s=0}^{\infty}\frac{e^{-\lambda}\lambda^s}{s!}=\lambda$ jer je suma zbir verovatnoće Puasonove raspodele pa je jednaka 1.

Definicija: Matematičko očekivanje apsolutno-neprekidne slučajne veličine X, čija je gustina $f_X(x)$ se definiše kao $E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$, ako ovaj integral apsolutno konvergira, tj. $\int_{-\infty}^{+\infty} |x| f_X(x) dx < +\infty$.

Teorema: Ako je X apsolutno-neprekidna slučajna veličina čija je gustina $f_X(x)$ i $\varphi:R\to R$ Borelova funkcija, onda je $E(\varphi(X))=\int_{-\infty}^{+\infty}\varphi(x)f_X(x)dx$, ako ovaj integral apsolutno konvergira.

Teorema: Ako je (X, Y) dvodimenzionalna apsolutno-neprekidna slučajna veličina čija je gustina $f_{X,Y}(x, y)$ i $\varphi: R^2 \to R$ Borelova funkcija, onda je $E(\varphi(X, Y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \varphi(x, y) f_{X,Y}(x, y) dx dy$, ako ovaj integral apsolutno konvergira.

Primer:

- Uniformna raspodela $X:\mathcal{U}[a,\ b]$, $E(X)=\int_{-\infty}^{+\infty}xf_X(x)dx=\int_a^bx\frac{1}{b-a}dx=...=rac{a+b}{2}$
- Eksponencijalna raspodela $X: \mathcal{E}(\lambda), \ f_X(x) = \lambda e^{-\lambda x}, \ x \geq 0, \ E(X) = \int_0^{+\infty} x \lambda e^{-\lambda x} dx = \left(\frac{\lambda x = t}{\lambda dx = dt}\right) = \int_0^{+\infty} \frac{t}{\lambda} e^{-t} dt = \frac{1}{\lambda} \int_0^{+\infty} t e^{-t} dt = \frac{1}{\lambda} \Gamma(2) = \frac{1}{\lambda} \cdot 1! = \frac{1}{\lambda}$
- Normalna raspodela $X: \mathcal{N}(m, \ \sigma^2), \ E(X) = m$
- Košijeva raspodela $f_X(x) = \frac{1}{\pi} \frac{1}{1+x^2}, \ x \in R, \ E(X) = \int_{-\infty}^{+\infty} x \frac{1}{\pi} \frac{1}{1+x^2} dx = \frac{1}{\pi} \int_{-\infty}^{0} \frac{x}{1+x^2} dx + \frac{1}{\pi} \int_{0}^{+\infty} \frac{x}{1+x^2} dx = \left(\frac{1+x^2=t}{2x dx=dt}\right) = \frac{1}{2\pi} \int_{+\infty}^{1} \frac{1}{t} dt + \frac{1}{2\pi} \int_{1}^{+\infty} \frac{1}{t} dt = \frac{1}{2\pi} \ln|t| \Big|_{1}^{+\infty} \frac{1}{2\pi} \ln|t| \Big|_{1}^{+\infty} = \infty \infty \Rightarrow \text{nema očekivanje}.$
- $\begin{array}{l} \bullet \quad X: \mathcal{E}(\lambda), \ Y: \min\{1, \ X\}, \ E(Y) = E(\min\{1, \ X\}) = \int_0^\infty \min\{1, \ X\} \lambda e^{-\lambda x} dx = \int_0^1 x \lambda e^{-\lambda x} dx \\ + \int_1^\infty \lambda e^{-\lambda x} dx = \begin{pmatrix} -\lambda x = t \\ -\lambda dx = dt \end{pmatrix} = \dots = \frac{1-e^{-\lambda}}{\lambda} \end{array}$

Teorema: Za proizvoljne slučajne veličine za koje postoji očekivanje važi: (dokaz za diskretne, a slično se dokazuje i za apsolutno-neprekidne slučajne veličine) a) E(c)=c

$$\begin{array}{l} \sum\limits_{C:} \left(\begin{matrix} c \\ 1 \end{matrix} \right) \Rightarrow E(c) = 1 \cdot c = c \, \blacksquare \\ \\ b) \, E(cX) = cE(X) \\ \triangle \\ cX = \varphi(X) \Rightarrow E(cX) = \sum\limits_k cx_k P\{X = x_k\} = c \sum\limits_k x_k P\{X = x_k\} = cE(X) \, \blacksquare \\ c) \, E(X + Y) = E(X) + E(Y) \\ \triangle \\ X + Y = \varphi(X, Y) \Rightarrow E(X + Y) = \sum\limits_i \sum\limits_j (x_i + y_j) P\{X = x_i, Y = Y_j\} = \\ \sum\limits_i \sum\limits_j x_i P\{X = x_i, Y = Y_j\} + \sum\limits_i \sum\limits_j y_j P\{X = x_i, Y = Y_j\} = \sum\limits_i x_i \sum\limits_j P\{X = x_i, Y = Y_j\} \\ + \sum\limits_j y_j \sum\limits_i P\{X = x_i, Y = Y_j\} = \sum\limits_i x_i P\{X = x_i\} + \sum\limits_j y_j P\{Y = y_j\} = E(X) + E(Y) \, \blacksquare \\ d) \, E(cX + b) = cE(X) + b \\ \triangle \\ E(cX + b) = c^c E(cX) + E(b) = ^{a_i b} cE(X) + b \, \blacksquare \\ e) \, (\forall w \in \Omega) \, X(w) \geq 0 \Rightarrow E(X) \geq 0 \\ \triangle \\ E(X) = \sum\limits_k x_k P\{X = x_k\} \geq 0 \, \text{jer} \, x_k \geq 0 \, \text{(pretpostavka)} \, \text{i} \, P\{X = x_k\} \geq 0 \, \text{(verovatnoća)} \, \blacksquare \\ f) \, (\forall w \in \Omega) \, X(w) \geq Y(w) \Rightarrow E(X) \geq E(Y) \\ \triangle \\ (\forall w \in \Omega) \, X(w) \geq Y(w) \Rightarrow (\forall w \in \Omega) \, X(w) - Y(w) \geq 0 \Rightarrow (\forall w \in \Omega) \, (X - Y)(w) \geq 0 \Rightarrow ^c \\ E(X - Y) \geq 0 \Rightarrow E(X + (-Y)) \geq 0 \Rightarrow ^c E(X) + E(-Y) \geq 0 \Rightarrow ^b E(X) - E(Y) \geq 0 \Rightarrow E(X) \geq E(Y) \, \blacksquare \\ g) \, |E(X)| \leq E(|X|) \\ \triangle \\ (\forall w \in \Omega) \, - |X(w)| \leq X(w) \leq |X(w)| \Rightarrow ^f E(-|X|) \leq E(|X|) \Rightarrow ^b \\ - E(|X|) \leq E(X) \leq E(|X|) \Rightarrow |E(X)| \leq E(|X|) \, \blacksquare \\ h) \, X, \, Y \, \text{nezavisne} \Rightarrow E(XY) = E(X)E(Y) \, \blacksquare \\ \sum\limits_i \sum\limits_j x_i y_j P\{X = x_i\} P\{Y = y_j\} = \sum\limits_i x_i P\{X = x_i, Y = y_j\} = ^{nezavisnost} \\ \sum\limits_i \sum\limits_j x_i y_j P\{X = x_i\} P\{Y = y_j\} = \sum\limits_i x_i P\{X = x_i\} \cdot \sum\limits_j y_j P\{Y = y_j\} = E(X)E(Y) \, \blacksquare \\ \end{array}$$

17. Disperzija. Osnovna svojstva. Primeri

Slučajne veličine $X:\begin{pmatrix} -1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ i $Y:\begin{pmatrix} -1000 & 1000 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ imaju isto očekivanje (0), međutim X je pribijenija (skupljenija) uz svoje očekivanje, a Y je raspršenija. **Disperzija** meri raspršenost slučajne veličine oko svoje srednje vrednosti (očekivanja). U ovom slučaju važi D(X) < D(Y) jer je raspršenost X manja od Y.

Definicija: Neka je X proizvoljna slučajna veličina. Očekivanje $E(X^n)$ zove se n-ti moment slučajne veličine X. Očekivanje $E(|X|^n)$ zove se n-ti apsolutni moment slučajne veličine X. Očekivanje $E((X-E(X))^n)$ zove se n-ti centralni (centrirani) moment slučajne veličine X

.

Disperzija slučajne veličine X je **drugi centralni moment**, tj. $D(X) = E((X - E(X))^2)$. Dakle, disperzija meri srednje kvadratno odstupanje slučajne veličine od svog matematičkog očekivanja. Standardno odstupanje (devijacija) slučajne veličine X je $\sigma(X) = \sqrt{D(X)}$. Disperzija kod:

- diskretnih slučajnih veličina: $\sum_k (x_k E(X))^2 p_k$
- neprekidnih slučajnih veličina: $\int_{-\infty}^{+\infty} (x E(X))^2 f(x) dx$

Teorema: Za proizvoljnu slučajnu veličinu važi:

1.
$$D(X) = E(X^2) - (E(X))^2$$
 \triangle :
$$D(X) = E((X - E(X))^2) = E(X^2 - 2XE(X) + (E(X))^2) = E(X^2) + E(-2XE(X)) + E((E(X))^2) = E(X^2) - 2E(X)E(X) + (E(X))^2 = E(X^2) - 2(E(X))^2 + (E(X))^2 = E(X^2) - (E(X))^2$$
2. $0 \le D(X) \le E(X^2)$

$$D(X)=E((X-E(X))^2)\geq 0 \text{ jer } (X-E(X))^2\geq 0 \text{ i } D(X)=E(X^2)-(E(X))^2\leq E(X^2)$$
 jer $(E(X))^2\geq 0$

3. D(X) = 0 akko $P\{X = C\} = 1$ (X skoro sigurno konstanta)

⇐:

$$X: \begin{pmatrix} c \\ 1 \end{pmatrix} \Rightarrow D(X) = E(X^2) - (E(X))^2 = c^2 \cdot 1 - (c \cdot 1)^2 = 0$$

 \Rightarrow :

$$0=D(X)=E(X^2)-(E(X))^2=\sum_k(x_k-E(X))^2p_k\geq 0$$
 jer $p_k>0$ i $(x_k-E(X))^2\geq 0$. Svaki sabirak onda mora biti nula, tj. $(orall\,k)x_k-E(X)=0$, tj. $(orall\,k)x_k=E(X)$. Očekivanje

je neka konstanta c i važi $(orall\, k)x_k=c$ pa važi X=c, tj. $X:inom{c}{1}$ lacksquare

$$4. \ D(aX+b)=a^2D(X)$$

$$\begin{split} D(aX+b) = & ^{1}E((aX+b)^{2}) - (E(aX+b))^{2} = E(a^{2}X^{2} + 2abX + b^{2}) - (aE(X) + b)^{2} = \\ E(a^{2}X^{2}) + E(2abX) + E(b^{2}) - (a^{2}E(X)^{2} + 2abE(X) + b^{2}) = \\ a^{2}E(X^{2}) + 2abE(X) + b^{2} - a^{2}E(X)^{2} - 2abE(X) - b^{2} = a^{2}(E(X^{2}) - E(X)^{2}) = a^{2}D(X) \blacksquare \end{split}$$

5. $X i Y nezavisne \Rightarrow D(X + Y) = D(X) + D(Y)$

$$\begin{split} &D(X+Y) = E((X+Y)^2) - (E(X+Y))^2 = E(X^2 + 2XY + Y^2) - (E(X) + E(Y))^2 = ^{nez} \\ &E(X^2) + 2E(X)E(Y) + E(Y^2) - (E(X))^2 - 2E(X)E(Y) - (E(Y))^2 = \\ &E(X^2) - (E(X))^2 + E(Y^2) - (E(Y))^2 = D(X) + D(Y) \end{split}$$

Važi i
$$D(X-Y)=D(X+(-Y))=^{nez}D(X)+D(-Y)$$
 = $D(X)+(-1)^2D(Y)=D(X)+D(Y)$

Primer (diskretne slučajne veličine):

1.
$$I:egin{pmatrix} 0&1\ 1-p&p \end{pmatrix}$$
 $D(I)=E(I^2)-(E(I))^2=p-p^2=p(1-p)$

2. $X:\mathcal{B}(n,\ p)$ - prvi način: $D(X)=E(X^2)-(E(X))^2=\ldots$, drugi način: X = $I_1+\ldots+I_n\Rightarrow D(X)=D(I_1+\ldots+I_n)$ = nez $D(I_1)+\ldots+D(I_n)=np(1-p)$

$$3. \ X: \mathcal{P}(\lambda), \ E(X) = \lambda, \ E(X^2) = \sum_{k=0}^{\infty} k^2 \frac{e^{-\lambda} \lambda^k}{k!} = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^k}{(k-1)!} = \sum_{k=1}^{\infty} \frac{e^{-\lambda} \lambda^k}{(k-1)!} = \sum_{k=1}^{\infty} \frac{e^{-\lambda} \lambda^k}{(k-2)!} + \sum_{k=1}^{\infty} \frac{e^{-\lambda} \lambda^k}{(k-1)!} = \binom{s = k-2}{m = k-1} = \lambda^2 \sum_{s=0}^{\infty} \frac{e^{-\lambda} \lambda^s}{s!} + \lambda \sum_{m=0}^{\infty} \frac{e^{-\lambda} \lambda^m}{m!} = \lambda^2 + \lambda \Rightarrow D(X) = \lambda^2 + \lambda - \lambda^2 = \lambda$$

Primer (apsolutno-neprekidne slučajne veličine):

1.
$$X : \mathcal{N}(m, \sigma^2), \ D(X) = \sigma^2$$

2.
$$X: \mathcal{E}(\lambda), \ E(X) = \frac{1}{\lambda}, \ E(X^2) = \int_0^\infty x^2 \lambda e^{-\lambda x} dx = \begin{pmatrix} t = \lambda x \\ dt = \lambda dx \end{pmatrix} = \frac{1}{\lambda^2} \int_0^\infty t^2 e^{-t} dt = \frac{1}{\lambda^2} \Gamma(3) = \frac{2}{\lambda^2} \Rightarrow D(X) = \frac{2}{\lambda^2} - (\frac{1}{\lambda})^2 = \frac{1}{\lambda^2}$$

18. Koeficijent korelacije

Standardizovana slučajna veličina je $X^* = rac{X - E(X)}{\sqrt{D(X)}}$. Važi:

•
$$E(X^*)=E(\frac{X-E(X)}{\sqrt{D(X)}})=\frac{1}{\sqrt{D(X)}}E(X-E(X))$$
 = $\frac{1}{\sqrt{D(X)}}(E(X)-E(E(X)))=0$ jer $E(E(X))=E(X)$

•
$$D(X^*) = D(\frac{X - E(X)}{\sqrt{D(X)}}) = \frac{1}{D(X)}D(X - E(X)) = \frac{D(X)}{D(X)} = 1$$

Definicija: Neka su X i Y slučajne veličine sa konačnim disperzijama. **Kovarijacija** (**kovarijansa**) slučajnih veličina X i Y definisana je sa:

$$cov(X, Y) = E((X - E(X))(Y - E(Y))) = E(XY - E(X)Y - XE(Y) + E(X)E(Y)) = E(XY) - E(E(X)Y) - E(XE(Y)) + E(E(X)E(Y)) = E(XY) - E(X)E(Y) - E(Y)E(X) + E(X)E(Y) = E(XY) - E(X)E(Y)$$

Definicija: Neka su X i Y slučajne veličine sa konačnim i pozitivnim disperzijama. **Koeficijent korelacije** slučajnih veličina X i Y je kovarijansa standardizacija slučajnih veličina X i Y, odnosno:

$$\rho_{X,\,Y} = cov(X^*,\,Y^*) = E(X^*Y^*) - E(X^*)E(Y^*) = E(\frac{X - E(X)}{\sqrt{D(X)}} \frac{Y - E(Y)}{\sqrt{D(Y)}}) = \frac{E((X - E(X))(Y - E(Y)))}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{E(XY) - E(X)E(Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{cov(X,\,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

Definicija: Ako je $\rho_{X,Y} = 0$ onda su X i Y **nekorelirane** slučajne veličine.

Lema: Nezavisne slučajne veličine su nekorelirane. Obrnuto ne važi.

$$E(XY)=^{nez}E(X)E(Y)\Rightarrow
ho_{X,\,Y}=rac{E(XY)-E(X)E(Y)}{\sqrt{D(X)}\sqrt{D(Y)}}=0$$
 .

Teorema Neka su X i Y slučajne veličine sa konačnim i pozitivnim disperzijama. Tada važi: a) $|\rho_{X,Y}| \leq 1$

$$\begin{array}{l} 0 \leq D(Y^* \mp X^*) = E((Y^* \mp X^*)^2) - (E(Y^* \mp X^*))^2 = \\ E(Y^{*2} \mp 2Y^*X^* + X^{*2}) - (E(Y^*) \mp E(X^*))^2 = \\ E(Y^{*2}) \mp 2E(Y^*X^*) + E(X^{*2}) - (E(Y^*))^2 \pm 2E(X^*)E(Y^*) - (E(X^*))^2 = \\ D(Y^*) + D(X^*) \mp 2(E(X^*Y^*) - E(X^*)E(Y^*)) = 2 \mp 2\rho_{X,Y} \text{ odakle sledi } 2 - 2\rho_{X,Y} \geq 0 \Rightarrow \\ \rho_{X,Y} \leq 1 \text{ i } 2 + 2\rho_{X,Y} \geq 0 \Rightarrow \rho_{X,Y} \geq -1 \text{ pa važi } |\rho_{X,Y}| \leq 1 \text{ } \blacksquare \end{array}$$

b) $|
ho_{X,\,Y}|=1$ akko su X i Y skoro sigurno linearno zavisne, tj. $P\{Y=aX+b\}=1$ \Leftarrow :

⇒:

Ako je
$$\rho_{X,\,Y} = -1$$
 onda je $D(Y^* + X^*) = 2 + 2\rho_{X,\,Y} = 0 \Rightarrow Y^* + X^* \stackrel{ss}{=} c$. Važi $E(Y^* + X^*) = E(c) = c$ i $E(Y^* + X^*) = E(Y^*) + E(X^*) = 0$ pa je $c = 0$ odnosno $Y^* \stackrel{ss}{=} -X^*$ $\Rightarrow \frac{Y - E(Y)}{\sqrt{D(Y)}} \stackrel{ss}{=} -\frac{X - E(X)}{\sqrt{D(X)}} \Rightarrow Y \stackrel{ss}{=} -\frac{\sqrt{D(Y)}}{\sqrt{D(X)}} X + \frac{\sqrt{D(Y)}}{\sqrt{D(X)}} E(X) + E(Y) \Rightarrow Y \stackrel{ss}{=} aX + b$. Ako je $\rho_{X,\,Y} = 1$ onda je $D(Y^* - X^*) = 2 - 2\rho_{X,\,Y} = 0 \Rightarrow Y^* - X^* \stackrel{ss}{=} c$. Važi $E(Y^* - X^*) = E(c) = c$ i $E(Y^* - X^*) = E(Y^*) - E(X^*) = 0$ pa je $c = 0$ odnosno $Y^* \stackrel{ss}{=} X^* \Rightarrow \frac{Y - E(Y)}{\sqrt{D(Y)}} \stackrel{ss}{=} \frac{X - E(X)}{\sqrt{D(X)}} \Rightarrow Y \stackrel{ss}{=} \frac{\sqrt{D(Y)}}{\sqrt{D(X)}} X + \frac{\sqrt{D(Y)}}{\sqrt{D(X)}} E(X) + E(Y) \Rightarrow Y \stackrel{ss}{=} aX + b$. \blacksquare

Dakle, koeficijent korelacije je mera linearne zavisnosti slučajnih veličina X i Y. Što su vrednosti bliže -1 i 1 to je linearna zavisnost veća, a u ekstremnim slučajevima -1 i 1 to znači da se Y može prikazati kao aX+b što se naziva **potpuna linearna zavisnost**. Kada je vrednost -1 zavisnost je **negativna**, a kada je vrednost 1 u pitanju je **pozitivna linearna zavisnost**.

19. Karakteristična funkcija. Osnovna svojstva. Primeri

Do sada smo imali da za slučajne veličine važi $X:\Omega\to R$. Kao uopštenje, **kompleksna slučajna veličina** je slučajna veličina koja svakom događaju dodeljuje kompleksan broj X+iY, tj. $Z:\Omega\to\mathcal{C}$. Po definiciji važi E(Z)=E(X)+iE(Y).

Definicija: **Karakteristična funkcija** neke slučajne veličine, odnosno njene raspodele, je funkcija koja slika $R \to \mathcal{C}$ definisana sa $\varphi_X(t) = E(e^{itx})$

Ojlerova formula: $e^{i\varphi}=\cos\varphi+i\sin\varphi,\ e^{-i\varphi}=\cos(-\varphi)+i\sin(-\varphi)\equiv\cos\varphi-i\sin\varphi.$ Odavde važi $e^{i\varphi}+e^{-i\varphi}\equiv 2\cos\varphi\Rightarrow\cos\varphi=\frac{e^{i\varphi}+e^{-i\varphi}}{2}$ i $e^{i\varphi}-e^{-i\varphi}\equiv 2i\sin\varphi\Rightarrow\sin\varphi=\frac{e^{i\varphi}-e^{-i\varphi}}{2i}.$ Dakle, karakterističnu funkciju možemo zapisati i kao $\varphi_X(t)\equiv E(e^{itx})\equiv E(\cos(tx)+i\sin(tx))\equiv E(\cos(tx))+iE(\sin(tx)).$

- diskretan slučaj: $arphi_X(t) = \sum_k e^{itk} P\{X=k\}$
- neprekidan slučaj: $arphi_X(t) = \int_{-\infty}^{+\infty} e^{itx} f_X(x) dx$

Primer:

$$ullet \ I: egin{pmatrix} 0 & 1 \ 1-p & p \end{pmatrix}$$
 - $arphi_I(t) = E(e^{itx})$ = $e^{it0}(1-p) + e^{it1}p = 1-p + pe^{it}$

•
$$X: \mathcal{P}(\lambda)$$
 - $\varphi_X(t) = \sum_{k=0}^{\infty} e^{itk} P\{X=k\} = \sum_{k=0}^{\infty} e^{itk} \frac{e^{-\lambda}\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^{it})^k}{k!} = e^{-\lambda} e^{\lambda e^{it}} = e^{\lambda(e^{it}-1)} \text{ jer } \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$

$$ullet$$
 $X:\mathcal{U}[0,1]$ - $arphi_X(t)=\int_0^1 e^{itx}1dx=rac{e^{it}-1}{it}$

Teorema(Osobine karakteristične funkcije): Za karakterističnu funkciju $\varphi_X(t)$ slučajne veličine X važi:

1.
$$|arphi_X(t)| \leq arphi_X(0), \; arphi_X(0) = 1$$

$$arphi_X(0)=E(e^{i0x})=E(1)=1$$
 $lacksquare$

2.
$$\varphi_X(-t) = \overline{\varphi_X(t)}$$

$$\begin{aligned} \varphi_X(-t) &= E(e^{i(-t)x}) = E(\cos{(-tx)} + i\sin{(-tx)}) = E(\cos{(tx)} - i\sin{(tx)}) = \\ E(\cos{(tx)}) - iE(\sin{(tx)}) &= \overline{E(\cos{(tx)}) + iE(\sin{(tx)})} = \overline{E(\cos{(tx)} + i\sin{(tx)})} = \overline{E(e^{itx})} = \\ \overline{\varphi_X(t)} &= \overline{E(\cos{(tx)}) + iE(\sin{(tx)})} = \overline{E(\cos{(tx)}) + iE(\sin{(tx)})} = \overline{E(e^{itx})} = \\ \overline{\varphi_X(t)} &= \overline{E(\cos{(tx)}) + iE(\sin{(tx)})} = \overline{E(\cos{(tx)}) + iE(\cos{(tx)})} = \overline{E(\cos{(tx)}) + i$$

3.
$$arphi_{aX+b}(t)=e^{itb}arphi_X(at)$$

$$arphi_{aX+b}(t) = E(e^{it(aX+b)}) = E(e^{itb}e^{itax}) = e^{itb}E(e^{i(at)x}) = e^{itb}arphi_X(at)$$
 .

4. φ_X je ravnomerno neprekidna na R

Primer: Ako postoji, odrediti raspodelu slučajne veličine čija je karakteristična funkcija:

•
$$\cos t: arphi(t)=\cos t=rac{e^{it}+e^{-it}}{2}=e^{it(-1)}rac{1}{2}+e^{it1}rac{1}{2}$$
 pa važi $X:egin{pmatrix}-1&1\ rac{1}{2}&rac{1}{2}\end{pmatrix}$

• $\sin t : \varphi(0) = \sin 0 = 0 \neq 1$ pa φ_t nije karakteristična funkcija nijedne slučajne veličine. Uslov $\varphi(0) = 1$ je potreban, ali ne i dovoljan.

Primer: Naći karakterističnu funkciju normalne raspodele ako za standardnu normalnu raspodelu važi $\varphi_{X^*}(t)=e^{-\frac{t^2}{2}}$. Znamo $\frac{X-m}{\sigma}=X^*$, odnosno $X=\sigma X^*+m$ pa važi $\varphi_X(t)=\varphi_{\sigma X^*+m}(t)$ = $3e^{itm}\varphi_{X^*}(\sigma t)=e^{itm}e^{-\frac{(\sigma t)^2}{2}}=e^{itm-\frac{t^2\sigma^2}{2}}$

20. Svojstva karakteristične funkcije povezana sa momentima, nezavisnošću i funkcijom raspodele

Teorema: Neka je X slučajna veličina čija je karakteristična funkcija $\varphi_X(t)$. Ako za neko $n\in N$ važi da je $E(|X|^n)<+\infty$, onda za $\forall\;k\in N,\,k\leq n$, postoji $\varphi_X^{(k)}(t)$ i važi:

1.
$$E(X^k) = \frac{\varphi_X^{(k)}(0)}{i^k}$$

2.
$$arphi_X(t) = \sum_{k=0}^n rac{(it)^k}{k!} E(X^k) + o(t^n), \; t o 0$$

Ova teorema govori da ako znamo karakterističnu funkciju možemo naći momente i obrnuto.

Teorema (Teorema o proizvodu karakterističnih funkcija): Ako su X_1, \ldots, X_n nezavisne slučajne veličine i φ_X je karakteristična funkcija slučajne veličine $X=X_1+\ldots+X_n$, onda važi da je $\varphi_{X_1+\ldots+X_n}(t)=\varphi_{X_1}(t)\ldots\varphi_{X_n}(t)$

$$\varphi_{X_1+\ldots+X_n}(t) = E(e^{it(X_1+\ldots+X_n)}) = E(e^{itX_1}\ldots e^{itX_n}) = ^{nez} E(e^{itX_1})\ldots E(e^{itX_n}) = \varphi_{X_1}(t)\ldots \varphi_{X_n}(t) = e^{itX_n}$$

Primer: Za
$$X:\mathcal{B}(n,\,p)$$
 važi $\varphi_X(t)=\varphi_{I_1+\ldots+I_n}(t)$ = $\varphi_{I_1}(t)\ldots\varphi_{I_n}(t)$ = $(1-p+pe^{it})^n$

Teorema(**Formula inverzije**): Ako su a i b tačke neprekidnosti funkcije raspodele F_X slučajne veličine X, a $\varphi_X(t)$ njena karakteristična funkcija, onda važi:

$$F(b)-F(a)=\lim_{T o\infty}rac{1}{2\pi}\int_{-T}^Trac{e^{-ita}-e^{-itb}}{it}arphi_X(t)dt$$

Odavde važi:

$$F(b) = \lim_{a o -\infty} \lim_{T o \infty} rac{1}{2\pi} \int_{-T}^T rac{e^{-ita} - e^{-itb}}{it} arphi_X(t) dt,$$

pa ako znamo karakterističnu funkciju, znamo i funkciju raspodele.

Teorema(**Teorema o jedinstvenosti**): Ako neke dve funkcije raspodele imaju istu karakterističnu funkciju, onda su te dve funkcije raspodele identične.

Teorema: Neka su F_X funkcija raspodele i φ_X karakteristična funkcija slučajne veličine X. Ako je $\int_{-\infty}^{+\infty} |\varphi_X(t)| dt < +\infty$, odnosno konačan, onda je X apsolutno neprekidnog tipa i za njenu gustinu raspodele važi:

$$f_X(x) = rac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} arphi_X(t) dt$$

21. Normalna raspodela. Svojstva normalne raspodele

Normalna raspodela je $X \sim \mathcal{N}(m, \sigma^2), \ m \in R, \ \sigma > 0$. Očekivanje normalne raspodele je m, a disperzija σ^2 . Gustina normalne raspodele je:

$$f_X(x) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{1}{2}rac{(x-m)^2}{\sigma^2}}, \; x \in R$$

Funkcija raspodele je:

$$F_X(x)=\int_{-\infty}^xrac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{1}{2}rac{(t-m)^2}{\sigma^2}}dt,\ t\in R$$

Funkcija raspodele ne može da se reši elementarnim putem, pa zbog toga postoje statističke tablice. Normalna raspodela se najčešće javlja kod prirodnih procesa.

Standardna normalna raspodela je $X^* \sim \mathcal{N}(0,\ 1)$. Gustina standardne normalne raspodele je:

$$f_{X^*}(x) = rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}x^2}, \; x \in R$$

Lema: Ako X ima normalnu $\mathcal{N}(m,\ \sigma^2)$ raspodelu, onda $\frac{X-m}{\sigma}$ ima standardnu normalnu raspodelu.

Λ:

Neka je
$$Y=\frac{X-m}{\sigma}$$
. Tada važi $F_Y(x)=P\{Y\leq x\}$ = $P\{\frac{X-m}{\sigma}\leq x\}$ = $P\{X\leq \sigma x+m\}$ =
$$\int_{-\infty}^{\sigma x+m}\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\frac{(t-m)^2}{\sigma^2}}dt=\left(\frac{t-m}{\sigma}=s\right)=\sigma\int_{-\infty}^x\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{s^2}{2}}ds=\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}e^{-\frac{s^2}{2}}ds=F_{X^*}(x) \text{ pa sledi}$$
 $Y\sim\mathcal{N}(0,\ 1),\ \text{tj.}\ \frac{X-m}{\sigma}\sim\mathcal{N}(0,\ 1)$

Lema: Linearna kombinacija konačno mnogo nezavisnih slučajnih veličina koje imaju normalnu raspodelu takođe ima normalnu raspodelu.

Neka su $X_1:\mathcal{N}(m_1,\ \sigma_1^2),\ \dots,\ X_n:\mathcal{N}(m_n,\ \sigma_n^2)$ nezavisne slučajne veličine, a $X=a_1X_1+\dots+a_nX_n$ njihova linearna kombinacija. Tada važi $\varphi_{a_1X_1+\dots+a_nX_n}=^{nez}$ $\varphi_{a_1X_1}(t)\dots\varphi_{a_nX_n}(t)=\varphi_{X_1}(a_1t)\dots\varphi_{X_n}(a_nt)=e^{i(a_1t)m_1-\frac{(a_1t)^2\sigma_1^2}{2}}\dots e^{i(a_nt)m_n-\frac{(a_nt)^2\sigma_n^2}{2}}=e^{it(a_1m_1+\dots+a_nm_n)-\frac{t^2(a_1^2\sigma_1^2+\dots+a_n^2\sigma_n^2)}{2}}.$ Ovo je karakteristična funkcija normalne raspodele, pa na osnovu teoreme o jedinstvenosti sledi $X\sim\mathcal{N}(a_1m_1+\dots+a_nm_n,\ a_1^2\sigma_1^2+\dots+a_n^2\sigma_n^2)$

22. Konvergencija u raspodeli i u verovatnoći niza slučajnih veličina i odnos među njima

Neka su X_1, X_2, \ldots i X slučajne veličine definisane na prostoru verovatnoće (Ω, \mathcal{F}, P) , F_{X_1}, F_{X_2}, \ldots i F_X odgovarajuće funkcije raspodele i $\varphi_{X_1}, \varphi_{X_2}, \ldots$ i φ_X odgovarajuće karakteristične funkcije.

Definicija: Niz slučajnih veličina (X_n) **konvergira u verovatnoći** ka slučajnoj veličini X kad $n \to \infty$, u oznaci $X_n \xrightarrow[n \to \infty]{P} X$, ako

$$(orall \; \mathcal{E} > 0) \; \lim_{n o \infty} P\{w \mid |X_n(w) - X(w)| \geq \mathcal{E}\} = 0$$

Koristimo kraći zapis: $(\forall \ \mathcal{E} > 0) \ P\{|X_n(w) - X(w)| \geq \mathcal{E}\} \xrightarrow{n \to \infty} 0$

Definicija: Niz slučajnih veličina (X_n) **konvergira u raspodeli** ka slučajnoj veličini X kad $n \to \infty$, u oznaci $X_n \xrightarrow[n \to \infty]{R} X$, ako za svaku tačku neprekidnosti x funkcije raspodele F_X važi

$$\lim_{n o\infty}F_{X_n}(x)=F_X(x)$$

Teorema(**Metod karakteristične funkcije**): Neka su (F_n) niz funkcija raspodele i (φ_n) niz karakterističnih funkcija niza slučajnih veličina (X_n) .

- a) Ako važi $\lim_{n\to\infty}F_n(x)=F(x)$ za svaku tačku neprekidnosti funkcije F, gde je F neka funkcija raspodele, onda važi $(\forall\ t\in R)\ \lim_{n\to\infty}\varphi_n(t)=\varphi(t)$ i pri tome je φ karakteristična funkcija funkcije raspodele F.
- b) Ako $(\forall \ t \in R)$ postoji $\lim_{n \to \infty} \varphi_n(t) = \varphi(t)$ i ako je φ neprekidna u nuli, onda je φ karakteristična funkcija neke funkcije raspodele F i za svaku tačku neprekidnosti x funkcije F važi $\lim_{n \to \infty} F_n(x) = F(x)$.

Teorema: Ako niz slučajnih veličina (X_n) konvergira u verovatnoći ka slučajnoj veličini X, onda on konvergira u raspodeli ka toj slučajnoj veličini. Obrnuto ne važi.

$$X_n \stackrel{P}{\underset{n o \infty}{\longrightarrow}} X \; \Rightarrow \; X_n \stackrel{R}{\underset{n o \infty}{\longrightarrow}} X$$

Teorema: Ako niz slučajnih veličina (X_n) konvergira u verovatnoći ka konstanti C, onda on konvergira u raspodeli ka toj konstanti. Važi i obrnuto.

$$X_n \xrightarrow[n \to \infty]{P} C \Leftrightarrow X_n \xrightarrow[n \to \infty]{R} C, C = const$$

 \triangle :

$$X_n \xrightarrow[n \to \infty]{R} C \ \Leftrightarrow \ (\forall \ x \in R \backslash \{C\}) \ \lim_{n \to \infty} F_{X_n} = \begin{cases} 0, \ x < C \\ 1, \ x \geq C \end{cases} \text{, ali pišemo} > C \text{ jer nas ne}$$
 interesuje šta se dešava u tački C . Važi $(\forall \ \mathcal{E} > 0) \ 0 \leq P\{|X_n - C| \geq \mathcal{E}\} = P\{X_n - C \leq -\mathcal{E}\} + P\{X_n - C \geq \mathcal{E}\} = P\{X_n \leq C - \mathcal{E}\} + P\{X_n \geq C + \mathcal{E}\} = F_{X_n}(C - \mathcal{E}) + P\{X_n > C + \frac{\mathcal{E}}{2}\} = P\{X_n \leq C - \mathcal{E}\} + P\{X_n \leq C - \mathcal{E}\} + P\{X_n \leq C - \mathcal{E}\} + P\{X_n \leq C - \mathcal{E}\} = P\{X_n \leq C - \mathcal{E}\} + P\{X_n \leq C - \mathcal{E}\} + P\{X_n \leq C - \mathcal{E}\} = P\{X_n \leq C - \mathcal{E}\} + P\{$

 $F_{X_n}(C-\mathcal{E})$ + 1 - $F_{X_n}(C+rac{\mathcal{E}}{2}) \xrightarrow{n o \infty} 0 + 1 - 1 = 0$ pa na osnovu teoreme o dva policajca važi $(orall \ \mathcal{E} > 0) \ \lim_{n o \infty} P\{|X_n - C| \geq \mathcal{E}\} = 0$, odnosno $X_n \xrightarrow[n o \infty]{P} C$

23. Aproksimacija binomne raspodele normalnom raspodelom

Teorema(**Muavr-Laplas**): Ako slučajna veličina X ima binomnu $\mathcal{B}(n,\ p)$ raspodelu, onda:

1. **lokalna teorema**: za veliko $n \ge 30$ važi:

$$P\{X=k\} = rac{1}{\sqrt{2\pi n p (1-p)}} e^{-rac{1}{2}rac{(k-np)^2}{np(1-p)}}, \; k \in \{0, \; \dots, \; n\}$$

2. integralna teorema: za $(\forall x \in R)$ važi:

$$\lim_{n o\infty}P\{rac{X-np}{\sqrt{np(1-p)}}\leq x\}=\int_{-\infty}^xrac{1}{\sqrt{2\pi}}e^{-rac{1}{2}t^2}dt$$

۸.

Teorema tvrdi $\lim_{n \to \infty} F_{\frac{X_n - np}{\sqrt{np(1-p)}}}(x) = F_{X^*}(x)$ za svako $x \in R$ jer su kod standardne normalne raspodele sve tačke x tačke neprekidnosti. To znači da treba pokazati $\frac{X_n - np}{\sqrt{np(1-p)}} \xrightarrow{R} X^* : \mathcal{N}(0, 1). \text{ Pokažimo da važi} \ (\forall \ t \in R) \ \lim_{n \to \infty} \varphi_{\frac{X_n - np}{\sqrt{np(1-p)}}}(t) = \varphi_{X^*}(t) = e^{-\frac{t^2}{2}}. \text{ Važi} \ \lim_{n \to \infty} \varphi_{\frac{X_n - np}{\sqrt{np(1-p)}}}(t) = \lim_{n \to \infty} E(e^{it\frac{X_n - np}{\sqrt{np(1-p)}}}) = \lim_{n \to \infty} E(e^{i\frac{t}{\sqrt{np(1-p)}}X_n}e^{\frac{-itnp}{\sqrt{np(1-p)}}}) = \lim_{n \to \infty} e^{\frac{-itnp}{\sqrt{np(1-p)}}}E(e^{i\frac{t}{\sqrt{np(1-p)}}X_n}) = \lim_{n \to \infty} e^{\frac{-itnp}{\sqrt{np(1-p)}}}\varphi_{X_n}(\frac{t}{\sqrt{np(1-p)}}) = \lim_{n \to \infty} e^{\frac{-itnp}{\sqrt{np(1-p)}}}(1-p+pe^{i\frac{t}{\sqrt{np(1-p)}}})^n = \lim_{n \to \infty} ((1-p)e^{\frac{-itp}{\sqrt{np(1-p)}}}+pe^{it\frac{1-p}{\sqrt{np(1-p)}}})^n = \lim_{n \to \infty} e^{n\ln((1-p)e^{\frac{-itp}{\sqrt{np(1-p)}}}+pe^{it\frac{1-p}{\sqrt{np(1-p)}}}) = (e^x = 1+x+\frac{x^2}{2}+o(x^2), \ x \to 0) = \lim_{n \to \infty} e^{n\ln((1-p)e^{\frac{-itp}{\sqrt{np(1-p)}}}-\frac{t^2p^2}{2np(1-p)}+o(\frac{1}{n}))+p(1+\frac{it(1-p)}{\sqrt{np(1-p)}}-\frac{t^2(1-p)^2}{2np(1-p)}+o(\frac{1}{n})))} = \lim_{n \to \infty} e^{n\ln((1-p)\frac{t^2}{\sqrt{np(1-p)}}-\frac{t^2p^2}{2np(1-p)}+o(\frac{1}{n}))+p(1+\frac{it(1-p)}{\sqrt{np(1-p)}}-\frac{t^2(1-p)}{2n}+o(\frac{1}{n})))} = \lim_{n \to \infty} e^{n\ln((1-p)\frac{t^2}{\sqrt{np(1-p)}}-\frac{t^2p^2}{2n}+o(\frac{1}{n}))+p+\frac{it}{\sqrt{n}}\sqrt{p(1-p)}-\frac{t^2(1-p)}{2n}+o(\frac{1}{n}))} = \lim_{n \to \infty} e^{n\ln((1-\frac{t^2}{2n}+o(\frac{1}{n})))} = \lim_{n \to \infty} e^{n\ln((1-\frac{t^2}{2n}+o(\frac{1}{n}))}) = \lim_{n \to \infty} e^{n\ln((1-\frac{t^2}{$

Obe teoreme zapravo tvrde $X: \mathcal{B}(n,\ p) \approx \mathcal{N}(np,\ np(1-p))$, odakle $\frac{X-np}{\sqrt{np(1-p)}} \sim \mathcal{N}(0,\ 1)$. Na primer:

$$P\{a \leq X \leq b\} = P\{\frac{a - np}{\sqrt{np(1 - p)}} \leq \frac{X - np}{\sqrt{np(1 - p)}} \leq \frac{b - np}{\sqrt{np(1 - p)}}\} \approx F_{X^*}(\frac{b - np}{\sqrt{np(1 - p)}}) - F_{X^*}(\frac{a - np}{\sqrt{np(1 - p)}})$$

24. Aproksimacija binomne raspodele Puasonovom raspodelom

Teorema: Neka kod binomne $\mathcal{B}(n,\ p)$ raspodele važi $p=\frac{\lambda}{n}$. Tada za veliko $n\ (\geq 30)$, što povlači malo p, važi:

$$(\forall \ k \in \{0, \ \dots, \ n\}) \ \lim_{n \to \infty} \binom{n}{k} p^k (1-p)^{n-k} = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$\stackrel{\triangle:}{=} \lim_{n \to \infty} \binom{n}{k} p^k (1-p)^{n-k} = \lim_{n \to \infty} \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!} \frac{\lambda^k}{n^k} (1-\frac{\lambda}{n})^{n-k} =$$

$$\frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{n \cdot n \cdot \dots \cdot n} (1-\frac{\lambda}{n})^n \underbrace{(1-\frac{\lambda}{n})^n}_{n} =$$

$$\frac{\lambda^k}{k!} \lim_{n \to \infty} 1 \cdot \underbrace{\left(1 - \frac{1}{n}\right)^{-1} \cdot \ldots \cdot \left(1 - \frac{1}{n}\right)^{-\frac{n}{\lambda} \cdot (-\lambda)}}_{1} = \underbrace{\frac{e^{-\lambda} \lambda^k}{k!}}_{1} \blacksquare$$

Dakle, ako je $n \ge 30$ koristi se neka aproksimacija po sledećem šablonu:

- 1. $np < 10 \lor n(1-p) < 10 \Rightarrow$ Puasonova aproksimacija
- 2. $np \geq 10 \land n(1-p) \geq 10 \Rightarrow$ normalna aproksimacija

Može se desiti da šablon kaže da treba koristiti Puasonovu raspodelu, ali da p nije malo. U tom slučaju je potrebno da pređemo na suprotni događaj. Ako X meri broj uspeha i ima raspodelu $\mathcal{B}(n,\ p)$, onda \overline{X} meri broj neuspeha i ima raspodelu $\mathcal{B}(n,\ 1-p)$. Važi $P\{X=k\}=P\{\overline{X}=n-k\}$.

25. Čebišovljeva nejednakost. Bernulijev zakon velikih brojeva

Teorema(**Čebišovljeva nejednakost**): Neka je X proizvoljna slučajna veličina, a \mathcal{E} i r pozitivni brojevi. Tada važi:

$$P\{|X| \ge \mathcal{E}\} \le rac{E(|X|^r)}{\mathcal{E}^r}$$

۸.

Neka je
$$Y = \begin{cases} 0, \ |X| < \mathcal{E} \\ \mathcal{E}, \ |X| \geq \mathcal{E} \end{cases}$$
. Ovo je diskretna promenljiva - $Y : \begin{pmatrix} 0 & \mathcal{E} \\ 1 - P\{|X| \geq \mathcal{E}\} \end{pmatrix}$ pa važi $Y \leq |X| \Rightarrow Y^r \leq |X|^r \Rightarrow E(Y^r) \leq E(|X|^r) \Rightarrow 0^r (1 - P\{|X| \geq \mathcal{E}\}) + \mathcal{E}^r P\{|X| \geq \mathcal{E}\} \leq E(|X|^r) \Rightarrow P\{|X| \geq \mathcal{E}\} \leq \frac{E(|X|^r)}{\mathcal{E}^r} \blacksquare$

Specijalni slučaj formule za r=2:

$$P\{|X-E(X)| \geq \mathcal{E}\} \leq rac{E(|X-E(X)|^2)}{\mathcal{E}^2} = rac{D(X)}{\mathcal{E}^2}$$

Definicija: Neka je (X_n) niz slučajnih veličina definisanih na istom prostoru verovatnoće (Ω, \mathcal{F}, P) . Za taj niz važi **slabi zakon velikih brojeva** ako:

$$\frac{\sum_{k=1}^{n} X_k - E(\sum_{k=1}^{n} X_k)}{n} \xrightarrow[n \to \infty]{P} 0$$

Teorema(**Bernulijev zakon velikih brojeva**): Ako je X_n broj uspeha u n nezavisnih pokušaja, gde je verovatnoća uspeha u svakom od tih pokušaja p, onda važi:

$$rac{X_n}{n} \stackrel{P}{\longrightarrow} p$$

Slučajna veličina X_n ima binomnu raspodelu $\mathcal{B}(n, p)$, a istu raspodelu ima i suma indikatora:

$$rac{\sum_{k=1}^n I_k}{n} - rac{np}{n} = rac{\sum_{k=1}^n I_k}{n} - E(\sum_{k=1}^n I_k) rac{P}{n o\infty} \, 0$$

Δ:

$$(\forall \ \mathcal{E} > 0) \ 0 \leq P\{|\frac{X_n}{n} - p| \geq \mathcal{E}\} = P\{|X_n - np| \geq n\mathcal{E}\} \overset{\check{C}ebi\check{s}. \ nej. \ n=2}{\leq} \frac{E(|X_n - np|^2)}{n^2\mathcal{E}^2} = \frac{D(X_n)}{n^2\mathcal{E}^2} = \frac{np(1-p)}{n^2\mathcal{E}^2} \\ \xrightarrow{n \to \infty} 0 \text{ pa na osnovu teoreme o dva policajca važi } (\forall \ \mathcal{E} > 0) \ P\{|\frac{X_n}{n} - p| \geq \mathcal{E}\} \xrightarrow[n \to \infty]{} 0, \\ \text{odnosno} \ \xrightarrow[n \to \infty]{} p \ \blacksquare$$

26. Čebišovljev i Hinčinov zakon velikih brojeva

Teorema(Čebišovljev zakon velikih brojeva): Ako je (X_n) niz nezavisnih slučajnih veličina takav da postoji pozitivan broj C takav da $(\forall \ n \in N) \ D(X_n) \leq C$, onda za taj niz važi slabi zakon velikih brojeva.

$$(\forall \ \mathcal{E} > 0) \ 0 \leq P\{|\frac{\sum_{k=1}^n X_k - E(\sum_{k=1}^n X_k)}{n}| \geq \mathcal{E}\} = P\{|\sum_{k=1}^n X_k - E(\sum_{k=1}^n X_k)| \geq n\mathcal{E}\} \overset{\check{C}ebi\check{s}.\ nej.\ n=2}{\leq} \\ \frac{E(|\sum_{k=1}^n X_k - E(\sum_{k=1}^n X_k)|^2)}{n^2\mathcal{E}^2} = \frac{D(\sum_{k=1}^n X_k)}{n^2\mathcal{E}^2} = nez \ \frac{\sum_{k=1}^n D(X_k)}{n^2\mathcal{E}^2} \leq \frac{nC}{n^2\mathcal{E}^2} \overset{n \to \infty}{\longrightarrow} 0 \text{ pa na osnovu teoreme o dva policajca važi slabi zakon velikih brojeva, tj.} \frac{\sum_{k=1}^n X_k - E(\sum_{k=1}^n X_k)}{n} \xrightarrow[n \to \infty]{\check{P}} 0 \text{ } \blacksquare$$

Teorema(**Hinčinov zakon velikih brojeva**): Ako je (X_n) niz nezavisnih slučajnih veličina sa istom raspodelom i konačnim matematičkim očekivanjem jednakim m, onda za taj niz važi slabi zakon velikih brojeva, odnosno:

$$rac{\sum_{k=1}^{n}X_{k}}{n} \stackrel{P}{\longrightarrow} m$$

 $\begin{array}{l} \operatorname{Dokaza\acute{c}amo} \xrightarrow{\sum_{k=1}^n X_k} \xrightarrow{R} m \text{ koriste\acute{c}i metod karakteristi\acute{c}ne funkcije: } \lim_{n \to \infty} \varphi_{\frac{\sum_{k=1}^n X_k}{n}}(t) = \\ \lim_{n \to \infty} E(e^{it\frac{\sum_{k=1}^n X_k}{n}}) = \lim_{n \to \infty} E(e^{i\frac{t}{n}\sum_{k=1}^n X_k}) = \lim_{n \to \infty} \varphi_{\sum_{k=1}^n X_k}(\frac{t}{n}) = ^{nez} \lim_{n \to \infty} \prod_{k=1}^n \varphi_{X_k}(\frac{t}{n}) = ^{osobina \, momenta} \\ = \lim_{n \to \infty} \prod_{k=1}^n (1+i\frac{t}{n}m+o(\frac{t}{n})), \ \frac{t}{n} \to 0 = \lim_{n \to \infty} (1+i\frac{t}{n}m+o(\frac{1}{n}))^n = \\ \lim_{n \to \infty} e^{n\ln{(1+i\frac{t}{n}m+o(\frac{1}{n}))}} = \lim_{n \to \infty} e^{n(i\frac{t}{n}m+o(\frac{1}{n}))} = \lim_{n \to \infty} e^{itm+o(1)} = e^{itm} = \varphi_X(t). \text{ Niz} \\ \text{karakterističnih funkcija teži karakterističnoj funkciji } e^{itm} \text{ koja je neprekidna u nuli i zapravo je karakteristična funkcija za } X : \begin{pmatrix} m \\ 1 \end{pmatrix} \text{ pa sledi } \frac{\sum_{k=1}^n X_k}{n} \xrightarrow{R} m \Rightarrow \frac{\sum_{k=1}^n X_k}{n} \xrightarrow{P} m \end{array} \blacksquare$

Bernulijev zakon sledi iz Čebišovljevog i Hinčinovog zakona.

27. Centralna granična teorema

Teorema(**Centralna granična teorema**): Ako je (X_n) niz nezavisnih slučajnih veličina sa istom raspodelom i konačnom disperzijom većom od nule, onda važi:

$$rac{\sum_{k=1}^n X_k - E(\sum_{k=1}^n X_k)}{\sqrt{D(\sum_{k=1}^n X_k)}} \stackrel{R}{\longrightarrow} X^* : \mathcal{N}(0, \ 1)$$

 \triangle :

Uvodimo smenu $Y_k = X_K - E(X_k), \ D(X_k) = \sigma^2$. Važi: $E(Y_k) = E(X_k - E(X_k)) = E(X_k) - E(X_k) = 0$ i $D(Y_k) = D(X_k - E(X_k)) = D(X_k) = \sigma^2$. Sada treba da dokažemo $\frac{\sum_{k=1}^n Y_k}{\sigma \sqrt{n}} \xrightarrow[n \to \infty]{R} X^* : \mathcal{N}(0, \ 1).$ Koristimo metod karakteristične funkcije:

$$(\forall \ t \in R) \ \lim_{n \to \infty} \varphi_{\frac{\sum_{k=1}^n Y_k}{\sigma \sqrt{n}}}(t) = \lim_{n \to \infty} E(e^{it\frac{\sum_{k=1}^n Y_k}{\sigma \sqrt{n}}}) = \lim_{n \to \infty} E(e^{i\frac{t}{\sigma \sqrt{n}}\sum_{k=1}^n Y_k}) = \lim_{n \to \infty} \varphi_{\sum_{k=1}^n Y_k}(\frac{t}{\sigma \sqrt{n}}) = \lim_{n \to \infty} \prod_{k=1}^n \varphi_{Y_k}(\frac{t}{\sigma \sqrt{n}}) = \lim_{n \to \infty} \prod_{k=1}^n \varphi_{Y_k}(\frac{t}{\sigma \sqrt{n}}) = \lim_{n \to \infty} \prod_{k=1}^n (1 + \frac{it}{\sigma \sqrt{n}} \cdot 0 + \frac{(\frac{it}{\sigma \sqrt{n}})^2}{2!} \cdot \sigma^2 + o(\frac{1}{n})) = \lim_{n \to \infty} (1 - \frac{t^2 \sigma^2}{2\sigma^2 n} + o(\frac{1}{n}))^n = \lim_{n \to \infty} e^{n\ln(1 - \frac{t^2}{2n} + o(\frac{1}{n}))} = \lim_{n \to \infty} e^{n(-\frac{t^2}{2n} + o(\frac{1}{n}))} = \lim_{n \to \infty} e^{-\frac{t^2}{2} + o(1)} = e^{-\frac{t^2}{2}} \text{ its je karakteristična funkcija standardne normalne raspodele pa na osnovu metode karakteristične funkcije i teoreme o jedinstvenosti
$$\frac{\sum_{k=1}^n Y_k}{\sigma \sqrt{n}} \xrightarrow[n \to \infty]{} X^* : \mathcal{N}(0, 1), \text{ tj. } \underbrace{\sum_{k=1}^n X_k - E(\sum_{k=1}^n X_k)}_{n \to \infty} \xrightarrow[n \to \infty]{} X^* : \mathcal{N}(0, 1)$$$$

Teorema kaže da puno slučajnih veličina (≥ 30), isto raspodeljenih sa disperzijom većom od nule, možemo aproksimirati normalnom raspodelom. Integralna teorema Muavr-Laplasa je specijalni slučaj centralne granične teoreme kada X_n ima binomnu raspodelu.