2019 AIME I #9

Tristan Shin

13 Mar 2019

Let $\tau(n)$ denote the number of positive integer divisors of n. Find the sum of the six least positive integers n that are solutions to $\tau(n) + \tau(n+1) = 7$.

We have that $\{\tau(n), \tau(n+1)\}$ is one of $\{1,6\}, \{2,5\}, \{3,4\}$. Note that $\tau(m) = 1$ if and only if m = 1, so $\{1,6\}$ is impossible.

- $\{\tau(n), \tau(n+1)\} = \{2, 5\}$. Note that $\tau(m) = 2$ if and only if m = p for a prime p and $\tau(m) = 5$ if and only if $m = q^4$ for a prime q. So we need solutions to $|p q^4| = 1$. So one of p, q^4 is even. Checking all possibilities gives the only solution to be n = 16.
- $\{\tau(n), \tau(n+1)\} = \{3, 4\}$. Note that $\tau(m) = 3$ if and only if $m = p^2$ for a prime p and $\tau(m) = 4$ if and only if $m = q^3$ for a prime q or m = qr for primes q, r. So we need solutions to $|p^2 q^3| = 1$ or $|p^2 qr| = 1$. If p = 2 we have no solutions, so p^2 is odd and thus we can say q = 2. In the case of $p^2 q^3$, we get a solution of n = 8. In the case of $p^2 qr$, we can compute p^2 for p = 3, 5, 7, 11, 13, 17, 19 and check if $p^2 \pm 1$ is twice a prime. We get p = 3, 5, 11, 19 have that $p^2 + 1$ is twice a prime but $p^2 1$ is not twice a prime by difference of squares. So the valid n are n = 8, 9, 25, 121, 361.

Combining these, the sum of the first six n is $8+9+16+25+121+361=\boxed{540}$ as desired.