INSURANCE CROSS SELL PREDICTION

Roma Coffin

Brown University

Data 1030 Project

12/3/20

https://github.com/romacoffin/Health-Insurance-Cross-Sell-Prediction

RECAP-INTRODUCTION

Leverage machine learning techniques to *predict* if someone will be interested in purchasing vehicle insurance (classification)

Dataset is from a health insurance provider leveraging their own customer's data

The *target variable* is the *customer's response*, if they are interested in purchasing insurance

RECAP-EXPLORATORY DATA ANALYSIS

Those with prior vehicle damage experiences are more likely to be interested in purchasing vehicle insurance when compared to customers with no past vehicle damage

CROSS VALIDATION

- □ Data split basic train test and then kfold
- ☐ Preprocessed data-numerical(standard scaler), categorical (onehot and ordinal)
- ☐ Kfold Cross Validation/GridSearchCV
- ☐ Three machine learning algorithms were selected: Logistic Regression, Random Forest Classifier, Support Vector Machine
- ☐ Evaluation Metric Accuracy Score
- ☐ See details for hyperparameters which were tuned in table below

ML Algorithm	1-Parameter	1-Values	2-Parameter	2-Values
LR	С	logspace(-2, 2, num=8)	NA	NA
RF	Max Depth	1, 3, 10	Max Features	.5-1
SVM	С	logspace(-3, 4, num=8)	Gamma	logspace(-3, 4, num=8)

RESULTS-MODEL OUTCOMES

The machine learning algorithms do not reflect a significantly improved accuracy score when compared to the baseline model

Baseline = .877

Machine Learning Algorithm	Mean	SD	Best Parameters
Logistic Regression	.867	.001	C= .01
Random Forest Classifier	.892	.011	Max Depth = 1, Max Features = .5
Support Vector Classifier	.892	.012	C= .001, Gamma= .001

RESULTS-FEATURE IMPORTANCE & CONFUSION MATRICES

Feature importance shows us that the features were really not that important

*Logistic Regression

Confusion Matrices were developed for each algorithm to help measure effectiveness of the model

OUTLOOK

Look into more than *three machine learning algorithms* used in the model approach

Tune *additional hyperparameters* which can provide additional confidence in the predictions

Dive deeper into feature selection by performing *a more comprehensive EDA process* or use various mixtures of features to produce additional features

QUESTIONS?

APPENDIX

PREPROCESSING DATA

The data was preprocessed inside the machine learning pipeline. See below on why a specific preprocessor was chosen for each feature.

Feature	Numerical/Categorical	Preprocessor	Reason
Gender	Categorical	OneHotEncoder	Categorical can't be ordered
Age	Numerical	StandardScaler	Numerical reasonable bounds
Driving License	Categorical-0,1	OneHotEncoder	Categorical can't be ordered
Region Code	Numerical	StandardScaler	Numerical
Previously Insured	Categorical-0,1	OneHotEncoder	Categorical can't be ordered
Vehicle Age	Categorical	OrdinalEncoder	Categorical can be ordered
Vehicle Damage	Categorical-0,1	OneHotEncoder	Categorical can't be ordered
Annual Premium	Numerical	StandardScaler	Numerical, tailed distribution
Policy Sales Channel	Numerical	StandardScaler	Default
Response/Target	Categorical-0,1	OneHotEncoder	Default

Customers between the ages of 35-50 are more likely to be interested in purchasing vehicle insurance when compared to customers between the ages of 20 to 30

Region Code and Policy Sales Channel show us a relationship that can better understand sales distribution options

