Problem 2: Adam Nadoba (Fakultet: Język R 215542)

Daty	Wartosci	Obok znajduje się tabela 17 danych w której zawar-
2008-02	1.398	te są indeksy dyskontowe obligacji dziesięcioletniej
2008-03	1.082	TP10J18 emitowanej przez rząd USA.
2008-04	1.321	Indeksy te zostały uśrednione w okresach miesięcz-
2008-05	1.430	nych. W kolumnie pierwszej znajdują się daty okre-
2008-06	1.586	ślające przedziały czasowe uśrednienia. Rzeczywiste
2008-07	1.534	dane (17 obserwacji) można uzyskac ze strony inter-
2008-08	1.668	netowej
2008-09	1.842	research.stlouisfed.org/fred2/series/TP10J18
2008-10	2.820	Zaprezentowane dane pochodzą z 2 sierpnia 2009 r.
2008-11	3.126	i dlatego ostatnia wartość jaką wzięto pod uwagę w
2008-12	2.386	liczeniu średnich jest z dnia 2009-07-02 .
2009-01	2.136	
2009-02	1.918	Narysować wykres szeregu czasowego załączonych 17
2009-03	1.853	danych.
2009-04	1.600	Obliczyć średnią chronologiczną.
2009-05	1.727	Obliczyć szereg czasowy indeksów łańcuchowych.
2009-06	1.843	

Obliczyć indeksy jednopodstawowe przyjmując za podstawę datę 2008-02

	1	2	3	4	5	6	7	8	9	10
2008-02 = 100%		?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?			

Obliczyć średni indeks (średnią geometryczną) dla indeksów łańcuchowych i indeksów jednopodstawowych.

Problem 2: Adam Nadoba (Fakultet: Jezyk R 215542 / Seed: 114212683)

Odpowiedzi

$$\begin{array}{l} 100 \cdot \frac{x_t}{x_{t-1}} = \\ 77.40,\ 122.09,\ 108.25,\ 110.91,\ 96.72,\ 108.74,\ 110.43,\ 153.09, \\ 110.85,\ 76.33,\ 89.52,\ 89.79,\ 96.61,\ 86.35,\ 107.94,\ 106.72 \end{array}$$

$$100 \cdot \frac{x_t}{x_1} =$$
77.40, 94.49, 102.29, 113.45, 109.73, 119.31, 131.76, 201.72, 223.61, 170.67, 152.79, 137.20, 132.55, 114.45, 123.53, 131.83

Średnia chronologiczna: = 1.85

Średnia indeks łańcuchowy: = 1.02%

Średnia indeks jednopodstawowy: = 1.29%

Problem 2: Adam Nadoba (Fakultet: Jezyk R 215542 / Seed: 114212683)

Kod źródłowy

```
#Adam Nadoba
#Problem 2
# pakiety 'zoo' i 'ts' sa uzywane do Szeregow czasowych
#install.packages('zoo')
library(zoo)
setwd('c:/r-laboratoria/Zadanie02')
sczytaneIndeksy <- read.csv(file='Dane02.csv', head=TRUE)
IloscRekordow <- nrow(sczytaneIndeksy)</pre>
indeksy <- sczytanelndeksy[,0-2]
indeksy[,1] <- as.yearmon(paste(sczytaneIndeksy[,1],
sczytaneIndeksy[,2], sep="-"))
names(indeksy)[1] <- 'data'
indeksy[,2] <- sczytaneIndeksy[,3]
szereg <- zoo(indeksy$wartosc, indeksy$data)</pre>
plot.zoo(szereg, xlab="Oś czasu", ylab="Indeks dyskontowy obligacji TP10J18", xaxt="n", type="b")
axis(1, at = indeksy[,1], labels = format(indeksy[,1], "%m-%Y"))
# srednia chronologiczna
# ostatnie wyniki sie inaczej wazy, przy sumowaniu dodajemy tylko polowe pierwszego i ostatniego
elementu
# i dzielimy przez liczbe elementow-1
sredniaChrono <- (1/2*indeksy[,2][1] +</pre>
sum(indeksy[,2][2:(IloscRekordow-1)]) + 1/2*indeksy[,2][IloscRekordow])/ (IloscRekordow-1)
print(round(sredniaChrono, digits = 2))
# szereg czasowy indekow lancuchowych
indeksyLancuchowe <- (indeksy[,2][-1] / indeksy[,2][-lloscRekordow])
print(round(indeksyLancuchowe * 100, digits = 2))
# jednopodstawowe
indeksyJednopodstawowe <- (indeksy[,2][-1] / indeksy[,2][1])
print(round(indeksyJednopodstawowe * 100, digits = 2))
# gdy mowimy o indeksach zawsze mamy na mysli sredniageometryczna
# iloczyn elementow od 1 do n a potem calosc do potegi 1/n
# i po uproszczeniu e do potegi
sredniaIndeksLancuchowy <- exp(mean(log(indeksy[,2][-1]/ indeksy[,2][lloscRekordow])))
print(round(sredniaIndeksLancuchowy, digits = 2))
sredniaIndeksJednopodstawowy <- exp(mean(log(indeksy[,2][-1]/ indeksy[,2][1])))</pre>
print(round(sredniaIndeksJednopodstawowy, digits = 2))
```