Test1.1

- 1.) Si $\lim_{n\to\infty} a_n = 0$, alors $\sum_{n=0}^{\infty} a_n$ converge. NON, la série harmonique diverge
- 2.) Si $f: [0, \infty[\to \mathbb{R} \text{ est tq } f(x) > x, \forall x, \text{ alors } f \text{ n'est pas strictement contractante.}]$ OUI, si elle était strictement contractante elle aurait un point fixe dans $[0, \infty[$.
- 3.) Si f et g sont continues de $\mathbb{R} \to \mathbb{R}$, alors max(f,g) est continue. OUI, si f(x) > g(x), c'est encore vrai dans un voisinage de x et c'est donc la continuité de f qui s'applique. Idem pour l'autre inégalité. si f(x) = g(x), pour toute suite x_n convergeant vers x, $max(f(x_n), g(x_n))$ converge vers max(f(x), g(x)) puisque $f/g(x_n)$ converge vers f/g(x). On peut aussi utiliser la relation $max(f(x), g(x)) = \frac{1}{2}(f(x) + g(x) + |f(x) - g(x)|)$.
- 4.) Si $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ convergent, alors $\sum_{n=0}^{\infty} \min(a_n, b_n)$ converge. NON, il suffit de prendre $a_n = \frac{(-1)^n}{n}$ et $b_n = \frac{(-1)^{n+1}}{n}$, $n = 1, \ldots$
- 5.) Si $\exists x_n$ convergeant vers x tq $f(x_n)$ converge vers f(x), alors f est continue en x. NON, on peut prendre f(x) = 1, si x >= 0,0 sinon et f pas continue en 0 alors que toutes les suites "positives" "marchent".
- 6.) Une suite qui n'est pas bornée n'a pas de sous-suite convergente. NON, $a_n = n$ si n pair, $a_n = 0$ si n impair n'est pas bornée et admet une sous-suite qui converge vers 0.
- 7.) Si S est tel que toute suite de S admette une sous-suite convergente, S est borné. OUI, Si S pas borné, alors $\forall n \geq 0$, il existe $x_n \in S$ tq $|x_n| > n$. La suite n'a pas de sous-suite convergente.
- 8.) Si f est uniformément continue et si a_n est de Cauchy, alors f(a_n) est de Cauchy.
 OUI, Soit ε > 0. f u.c. implique ∃δ > 0 tq |x y| < δ implique |f(x) f(y)| < ε. a_n de Cauchy, implique ∃N ∈ N tq m, n > N implique |a_n a_m| < δ et donc |f(a_n) f(a_m)| < ε.
 On peut aussi dire:
 Si a_n est de Cauchy, elle converge, vers a. f continue en a donne f(a_n) converge vers f(a) et donc f(a_n) est de Cauchy.

1

On définit la suite a_n par

(1)
$$a_1 = 2$$
,

(2)
$$a_{n+1} = a_n \left(1 + \frac{1}{n^2}\right)$$
.

Montrer que $\lim_{n\to\infty} a_n$ existe.

Indication: $\exists \ln :]0, \infty[\to \mathbb{R}$ continue, croissante, $\operatorname{tq} \ln(1+x) \le x, \ln(ab) = \ln(a) + \ln(b)$. Solution:

(1)
$$a_1 = 2$$
,

(2)
$$a_{n+1} = a_n \left(1 + \frac{1}{n^2} \right)$$
.

Montrer que $\lim_{n\to\infty} a_n$ existe.

Indication: $\exists \ln :]0, \infty[\to \mathbb{R}$ continue, croissante, $\operatorname{tq} \ln(1+x) \le x, \ln(ab) = \ln(a) + \ln(b).$ On a $0 < a_0 = 2 < a_1 \ldots < a_n < a_{n+1} \ldots$ On pose $b_n = \ln a_n$ et on a $b_{n+1} = b_n + \ln(1 + \frac{1}{n^2})$. Donc b_n est croissante, et $0 < \ln(1 + \frac{1}{n^2}) < \frac{1}{n^2}$. Ainsi, $b_{n+1} = (b_{n+1} - b_n) + (b_n - b_{n-1}) + \ldots + (b_1 - b_0) < (b_1 - b_-) + \frac{\pi^2}{6}$ et donc b_n est bornée. Elle converge et donc $a_n = \exp(b_n)$ aussi. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable avec $\sup_{x \in \mathbb{R}} |f'(x)| < 1$ et la suite $a_0 = 1$, $a_{n+1} = f(a_n)$. Montrer que

$$\sum_{n=0}^{\infty} |a_{n+1} - a_n| < \infty.$$

Solution:

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable avec $\sup_{x \in \mathbb{R}} |f'(x)| < 1$ et la suite $a_0 = 1$, $a_{n+1} = f(a_n)$. Montrer que

$$\sum_{n=0}^{\infty} |a_{n+1} - a_n| < \infty.$$

Posons $r = \sup_{x \in \mathbb{R}} |f'(x)| < 1$.

Par le TAF, on a, pour $x, y \in \mathbb{R}$, que $f(y) = f(x) + f'(y_x)(y - x)$ et ainsi $|f(y) - f(x)| \le r|y - x|$. Appliquant à la suite, il vient :

$$|a_{n+1} - a_n| = |f(a_n) - f(a_{n-1})| \le r|a_n - a_{n-1}|.$$

Et donc,

$$|a_{n+1} - a_n| = \le r^n |a_1 - a_0|.$$

On a donc la convergence de la série par celle de la série géométrique.

Si $f: \mathbb{R} \to \mathbb{R}$ est périodique avec $\lim_{x \to \infty} f(x)$ existe, alors f est constante.

Solution:

Si $f: \mathbb{R} \to \mathbb{R}$ est périodique avec $\lim_{x \to \infty} f(x)$ existe, alors f est constante. On pose $\ell = \lim_{x \to \infty} f(x)$. Supposons $x_1 \neq x_2$ tq $f(x_1) \neq f(x_2)$. Posons $\varepsilon = vert f(x_1) - f(x_2)$. Il exists M tq $\forall x > M$, $|f(x) - \ell| < \varepsilon/2$ et donc pour x, y > M, on a $|f(x) - f(y)| < \varepsilon$. Or, f est périodique de période T et il existe n tq $x_1 + nT, x_2 + nT > M$.

Si f est C^3 et f a un min en x, et que f''(x)=0, alors f'''(x)=0. Vous n'avez pas le droit d'utiliser un théorème pas vu au cours! Solution :

Si f est C^3 et f a un min en x, et que f''(x) = 0, alors f'''(x) = 0. Vous n'avez pas le droit d'utiliser un théorème pas vu au cours! Un théorème du cours, dit que puis que f a un min en x, alors f'(x) = 0. Puisque f est C^3 , on a

$$f(x+h) = f(x) + \frac{1}{6}f'''(x)h^3 + o(h^3)$$

et donc

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h^3} = \frac{1}{6} f'''(x)$$