Adressage IP (Corrigé)

1. Questions rapides

a) A quelles classes appartiennes les adresses suivantes :

```
10.10.10.10 ? A

150.150.3.4 ? B

127.127.2.2 ? A (Adresse de rebouclage 127.x.x.x)

192.0.1.7 ? C

214.255.255.10 ? C
```

b) Combien d'ordinateurs peuvent faire partie du même réseau que l'ordinateur dont l'adresse IP 130.1.1.13 ?

```
130.1.1.13 → adresse IP de la classe B → hostld est codé sur 16 bits.
```

- → 2¹6-2 = 65 534 machines possibles. Réponse : 65 533 (exclure notre machine)
- c) Un datagramme est destiné à l'ordinateur possédant l'adresse IP 127.127.1.1. Comment le routage va-t-il être réalisé ?

127.127.1.1 → Adresse de rebouclage (**localhost**) : le datagramme IP ne sera pas émis sur le réseau car il est destiné à la machine émettrice elle-même.

2. Masque de sous-réseau

Un ordinateur X a pour adresse IP 150.120.1.1. Le masque de sous-réseau mis en place est 255.255.25.0. Si l'adresse IP de destination d'un datagramme IP est une des cas suivantes, l'ordinateur de destination fait-il partie du même réseau que X ? Fait-il partie du même sous-réseau ?

Adresse IP 150.120.1.1 → classe B. Le masque 255.255.255.0 nous indique la création de sousréseaux codées sur 1 octet dans le réseau de classe B (**netId** codé sur 2 octets). Le 4^e octet est pour codé les **hostId**.

a) 150.120.10.10

Cette machine fait partie du même réseau que X (150.120.0.0) mais les deux appartiennent à des sous-réseaux IP différents (150.120.1.0) et (150.120.10.0)

b) 150.120.1.18

Même réseau et même sous-réseau

R2.04 Adressage IP 1/5

c) 192.10.10.7

Cette adresse n'est pas de classe B donc ne fait pas partie du même réseau que X.

3. Masque de sous-réseaux non complet

Le masque de sous-réseau 255.255.192.0 d'un réseau de classe B est un masque de sous-réseau qui n'utilise pas des octets complets pour représenter un sous-réseau, mais seulement certains bits (sous-réseaux de longueur variable)

a) Quelle est sa notion binaire?

11111111.11111111.11000000.00000000

b) Que signifie ce masque de sous-réseau ? Comme bien de sous-réseaux peuvent-ils être mis en place ?

En classe B → 2 octets (16 bits) pour **netId**

Ce masque a 18 bits 1 → donc les bits 17^e et 18^e constituent l'adresse du sous-réseau. Sur 2 bits, il est possible de coder 4 sous-réseaux possibles.

4. Compléter le tableau

Adresse IP	124.23.12.71	124.12.23.71	194.12.23.71
Masque de sous-réseau	255.0.0.0	255.255.255.0	255.255.255.240
Classe	A	A	C
Adresse du réseau auquel appartient la machine	124.0.0.0	124.0.0.0	194.12.23.0
Adresse de diffusion dans le réseau	124.255.255.255	124.255.255.255	194.12.23.255
Adresse du sous-réseau auquel appartient la machine	pas de sous-réseau	124.12.23.0	194.12.23.64
Adresse de diffusion dans le sous-réseau de la machine		124.12.23.255	194.12.23.79

5. Cas d'étude 1

Une PME désire de sécuriser son réseau informatique en mettant en place des sous-réseaux IP pour limiter les communications entre les différents services. Ces services sont les suivants :

- Direction
- Comptabilité
- Production
- Livraison
- Client

L'adresse du réseau de l'entreprise est 195.150.120.0/24. Le masque de sous-réseau en place initialement est 255.255.255.0

a) Proposer un masque de sous-réseau qui permette de créer les sous-réseaux voulus

195.150.120.0 et 255.255.255.0 → adresse et masque de classe C

Afin de limiter communications entre les différents services → créer un sous-réseau par service.

5 services → on a besoin de 5 sous-réseaux, donc on peut choisir de coder l'adresse d'un sous-réseau sur 3 bits : il sera donc possible de coder **2^3 = 8** sous-réseaux différents : de valeur 000, 001, 010, 011, 100, 101, 110 et 111.

b) Déterminer quelles sont les plages d'adresses IP correspondant à chacun de ces sousréseaux

Choix de 5 sous-réseaux dans les 8 possibilités suivantes. Attention : chacun de service peut mettre en place 2^5-2 = 30 ordinateurs au max.

R2.04 Adressage IP 3/5

Sous-réseau	Adresse le plus basse	Adresse la plus haute	
000	11000011.10010110.01111000. 000 00001	11000011.10010110.01111000. 000 11110	
	195.150.120.1	195.150.120.30	
001	11000011.10010110.01111000. 001 00001	11000011.10010110.01111000. 001 111110	
	195.150.120.33	195.150.120.62	
010	11000011.10010110.01111000. 010 00001	11000011.10010110.01111000. 010 11110	
	195.150.120.65	195.150.120.94	
011			
100			
101			
110			
111	11000011.10010110.01111000. 111 00001	11000011.10010110.01111000. 111 11110	
	195.150.120.225	195.150.120.254	

6. Cas d'étude 2

Une société veut se raccorder à Internet. Pour cela, elle demande une adresse réseau de classe B afin de contrôler ses 2 853 machines installées en France.

- a) Une adresse réseau de classe B sera-t-elle suffisante?
 - Oui, car une adresse de classe B permet d'adresser $2^{16} 2$ (65 534 machines), soit largement plus que le nombre de machines installées.
- b) L'organisme chargé de l'affectation des adresses réseau lui alloue plusieurs adresses de classe C consécutives au lieu d'une adresse de classe B. Combien d'adresses de classe C faut-il allouer à cette société pour qu'elle puisse gérer tous ses terminaux installés ?
 - Une adresse de classe C permet d'adresser 254 machines. Il faut 12 adresses de classe C pour adresser tous les terminaux.
- c) Finalement, la société a pu obtenir une adresse réseau de classe B. L'administrateur du réseau choisit de découper le réseau pour refléter la structure de la société, c'est-à-dire qu'il

crée autant de sous-réseaux que la société compte de services différents. L'administrateur a donc prévu 12 sous-réseaux, numérotés de 1 à 12. Proposez le masque de sous-réseau utilisé dans l'un des services de la société.

Il faut 4 bits pour identifier 12 sous-réseaux. Le masque vaut donc : 255.255.240.0 (avec 20 premiers bits à 1)

d) Combien reste-t-il de bits pour identifier les machines de chaque service ? Combien de machines peut-on identifier dans chaque service ?

Il reste 12 bits, c'est-à-dire qu'on peut adresser 2^12 – 2 machines soit 4 094 machines par sous-réseau.

e) L'adresse réseau de la société est : 139.47.0.0. Indiquez l'adresse réseau du sous-réseau n°9 en décimal.

1 bits pour coder les sous-réseaux : 0000 à 1111, correspondant à 0 à 15 en décimal Le sous-réseau n°9 en décimal aura pour adresse réseau : 139.47.144.0 (les 4 bits de sous-réseau valent 1001 soit 9 en décimal)

f) Dans le sous-réseau choisi, donnez l'adresse IP complète de la machine ayant comme identifiant de machine 7.48.

La machine 7.48 du sous-réseau 139.47.144.0 a pour adresse IP 139.47.151.48.

g) Donnez les adresses réseau et les adresses de diffusion du sous-réseau n°12 en décimal.

Adresse réseau du sous-réseau n°12 en décimal : 139.47.192.0 (avec 1100 en binaire) ; son adresse de diffusion vaut : 139.47.207.255.

R2.04 Adressage IP 5/5