ITK: The Insight Segmentation and Registration Toolkit

SciPy Conference July 11th, 2018

Matthew McCormick¹, Francois Budin¹, Dženan Zukić¹, Deepak Chittajallu¹, Beatriz Paniagua¹, Jean-Christophe Fillion-Robin¹

Ikitware, Inc.**

Kitware

Kitware

Ikitware

Outline

- 1. Background
 - a. Introduction to ITK
 - b. Python Wrapping History
- 2. New Developments
 - a. Python Packages
 - b. Module Packages Developed on GitHub
 - c. Pythonic Interface
 - d. NumPy Bridge
 - e. itk-jupyter-widgets
- 3. Learn More, Get Involved!

ITK: Insight into Images

What is the Insight Toolkit (ITK)?

- The Insight Segmentation and Registration Toolkit (ITK) is an open-source, freely available, cross-platform system for high-performance, N-dimensional image analysis
- Extensive suite of algorithms for processing, registering, segmenting, analyzing, and quantifying scientific data.
- https://www.itk.org/

What are ITK's primary features?

Segmentation

Registration

ITK Transforms Visualized in 3D Slicer

Code and algorithms - how much?

- 1.7 million lines of code¹
- Estimated 497 years of person-effort (COCOMO model)¹
- First commit in January, 2000¹
- 48,690 commits²
- Over 130 modules³

Module dependencies²

- 1 https://www.openhub.net/p/itk
- 2 https://github.com/InsightSoftwareConsortium/ITK
- 3 https://doi.org/10.3389/fninf.2014.00013

Image input-output formats - 22

- BMP
- NIFTI
- MRC
- DICOM
- Stimulate
- GE formats
- TIFF
- VTK
- IPL

- GIPL
- LSM
- HDF5
- PNG
- MINC
- BioRad
- Metalmage
- NRRD
- RAW

- Siemens
- SCIFIO-supported
- JPEG
- PhilipsREC

Types of filtering algorithms - 16

Comparison	Smoothing	Distance Map	Image Label
Thresholding	Mathematical Morphology	Gradient	Compose
FFT	Bias Correction	Interpolation	Noise
Denoising	Convolution	Deconvolution	Features

Types of segmentation algorithms - 6

LevelSets

Watersheds

Connected Components

Label Voting

Region Growing

Classifiers

Types of registration algorithms - 3

Registration Optimization Framework

PDE Deformable Registration (Demons)

FEM Registration

What is the size of the community and what are the software quality practices?

- 2,818 regression tests¹
- 88.63% code testing coverage¹
- Over 6,000 code reviews²

Peer code reviews over 3 years²

Fix-up commits before and after code review²

Nightly testing results on CDash²

- 1 https://open.cdash.org/index.php?project=Insight
- 2 https://doi.org/10.3389/fninf.2014.00013

Where has ITK been in the SciPy community?

Initial ITK Python wrapping

Brad King

Circa 2002

King B., Schroeder W., Automated Wrapping of Complex C++ Code, C/C++ Users Journal, 2003

CableSWIG and GCC_XML

<GCC_XML

description="XML output for GCC"/>

Home

Sponsors

Running

Download

Install

FAQ

Bug Tracker

News

Links

Copyright

Note: GCC-XML has been succeeded by CastXML.

Welcome to GCC-XML, the XML output extension to GCC!

Introduction

Development tools that work with programming languages benefit from their ability to understand the code with which they work at a level comparable to a compiler. C++ has become a popular and powerful language, but parsing it is a very challenging problem. This has discouraged the development of tools meant to work directly with the language.

There is one open-source C++ parser, the C++ front-end to GCC, which is currently able to deal with the language in its entirety. The purpose of the GCC-XML extension is to generate an XML description of a C++ program from GCC's internal representation. Since XML is easy to parse, other development tools will be able to work with C++ programs without the burden of a complicated C++ parser.

GCC-XML was developed by Brad King at Kitware to be used by CABLE, which was developed as part of the NLM Insight Segmentation and Registration Toolkit project.

Heroic efforts to improve the wrapping

New wrapping infrastructure: WrapITK - 2008 to 2010

Gaëtan Lehmann

pygccxml

- The original author is Roman Yakovenko (2004-2011).
- Forked multiple times by different authors to add Python 3 support.
- In May 2014, Michka Popoff and the Insight Software Consortium revived pygccxml.

Michka Popoff

Francois Budin

Lucas Gandel

Thomas "Hastings" Greer

Mayeul Chassagnard

Bradley Lowekamp

Linux and Homebrew ITK Python packages

Steve Robbins

Gianfranco Costamagna

Gert Wollny

Christopher Mullins

Breaking down barriers: scikit-build

Mike Sarahan

pip install itk

conda install -c conda-forge itk

Anthony Scopatz

Python packages from ITK modules on GitHub

python -m pip install cookiecutter
python -m cookiecutter gh:InsightSoftwareConsortium/ITKModuleTemplate

Fill in the information requested at the prompts

Python packages from ITK modules on GitHub

```
python -m pip install cookiecutter
python -m cookiecutter gh:InsightSoftwareConsortium/ITKModuleTemplate
# Fill in the information requested at the prompts
```

pip install %s

- itk-anisotropicdiffusionlbr
- itk-bonemorphometry
- itk-cuberille
- itk-isotropicwavelets
- itk-krcahsheetness
- itk-morphologicalcontourinterpolation

- itk-polartransform
- itk-ringartifact
- itk-texturefeatures
- itk-ultrasound
- itk-binarythinning3d

Towards a more Pythonic API

Python interface reflects C++-based, object-oriented API for pipeline streaming:

Optional, procedural, more Pythonic, snake_case interface (ITK 5):

```
result = itk.median_image_filter(input_image, radius=radius)
```


NumPy Bridge

NumPy

- Python Buffer Protocol
- Arrays
- Array Views

itk-jupyter-widgets

scikit-image: In the context of thresholding, hysteresis means that areas above some low threshold are considered to be above the threshold if they are also connected to areas above a higher, more stringent, threshold.

Learn More, Get Involved!

Jupyter Tutorial - https://goo.gl/L1EwAf

ITK Software Guide - https://itk.org/ITKSoftwareGuide/html/

Sphinx Examples - https://itk.org/ITKExamples/

Discourse - https://discourse.itk.org/

Slides: bit.ly/scipy2018-itk-talk

matt.mccormick@kitware.com

https://twitter.com/thewtex

Enjoy ITK!

