MP10k

Summary

General

fastp version:	0.19.4 (https://github.com/OpenGene/fastp)				
sequencing:	paired end (151 cycles + 151 cycles)				
mean length before filtering:	151bp, 151bp				
mean length after filtering:	150bp, 150bp				
duplication rate:	70.067729%				
Insert size peak:	0				

Before filtering

total reads:	446.717352 M
total bases:	67.454320 G
Q20 bases:	62.581933 G (92.776761%)
Q30 bases:	57.303928 G (84.952198%)
GC content:	44.969723%

After filtering

total reads:	388.457622 M
total bases:	58.364281 G
Q20 bases:	55.595814 G (95.256573%)
Q30 bases:	51.419543 G (88.101047%)
GC content:	42.682058%

Filtering result

reads passed filters:	388.457622 M (86.958257%)
reads with low quality:	43.425834 M (9.721099%)
reads with too many N:	4.586000 K (0.001027%)
reads too short:	14.685600 M (3.287448%)
reads with low complexity:	143.710000 K (0.032170%)

Adapters

Adapter or bad ligation of read1

The input has little adapter percentage ($\sim\!0.396219\%$), probably it's trimmed before.

Sequence	Occurrences
A	73927
AG	69294
AGA	70800
AGAT	68279
AGATC	

AGATCGG 66726 AGATCGG 63439 AGATCGGA 60059 AGATCGGAACA 60059 AGATCGGAAGA 60070 AGATCGGAAGA 59743 AGATCGGAAGA 59369 AGATCGGAAGAG 58055 AGATCGGAAGAGC 56139 AGATCGGAAGAGCA 56139 AGATCGGAAGAGCA 5865 AGATCGGAAGAGCACA 5865 AGATCGGAAGAGCACA 5865 AGATCGGAAGAGCACACACACACACACACACACACACACA		68658
AGATCGGA 60859 AGATCGGAA 60870 AGATCGGAAG 60870 AGATCGGAAGA 59743 AGATCGGAAGAC 59369 AGATCGGAAGAC 58055 AGATCGGAAGACC 56139 AGATCGGAAGACCA 56413 AGATCGGAAGACCAC 53885 AGATCGGAAGACCAC 53885 AGATCGGAAGACCACA 53866 AGATCGGAAGACCACAC 59719 AGATCGGAAGACCACACG 48312 AGATCGGAAGACCACACGTC 48210 AGATCGGAAGACCACACGTCT 46842 AGATCGGAAGACCACACGTCTG 45625 AGATCGGAAGACCACACGTCTGA 4556 AGATCGGAAGAGCACACGTCTGA 4556 AGATCGGAAGAGCACACGTCTGA 44556 AGATCGGAAGAGCACACGTCTGA 41029 AGATCGGAAGAGCACACGTCTGAAC 41219 AGATCGGAAGAGCACACGTCTGAACTC 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40438 AGATCGGAAGAGCACACGTCTGAACTCCAG 40438 AGATCGGAAGAGCACACGTCTGAACTCCAG 40438	AGATCG	66726
AGATCGGAA 66570 AGATCGGAGG 59743 AGATCGGAGGA 59369 AGATCGGAAGAG 58855 AGATCGGAAGAGC 56139 AGATCGGAAGAGCA 56413 AGATCGGAAGAGCAC 53685 AGATCGGAAGAGCACA 53857 AGATCGGAAGAGCACAC 58866 AGATCGGAAGAGCACACG 59719 AGATCGGAAGAGCACACGT 48312 AGATCGGAAGAGCACACGT 48842 AGATCGGAAGAGCACACGTT 46842 AGATCGGAAGAGCACACGTTG 45625 AGATCGGAAGAGCACACGTTGA 4556 AGATCGGAAGAGCACACGTTGAA 44556 AGATCGGAAGAGCACACGTTGAA 44556 AGATCGGAAGAGCACACGTTGAAC 43315 AGATCGGAAGAGCACACGTTGAACT 41029 AGATCGGAAGAGCACACGTTGAACT 41219 AGATCGGAAGAGCACACGTTGAACTC 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40394 AGATCGGAAGAGCACACGTCTGAACTCCAG 40394 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCGTCTGAACTCCAGTCATCCAGTCATCCAGTCATCCAGTCTCAGCATCCAGTCTCTGACTCCAGTCACCGTCTGAACTCCAGTCATCAGTCATCCAGTCTCTGACTCCAGTCTCTGACTCTGACTCTGACTCTGATCTCTGATTCTCGTTTACCGTCTTCTGCTTGACT	AGATCGG	63439
AGATCGGAAGA 59743 AGATCGGAAGA 59369 AGATCGGAAGAG 58055 AGATCGGAAGAGC 56139 AGATCGGAACAGCA 56413 AGATCGGAACAGCAC 53685 AGATCGGAACAGCAC 53857 AGATCGGAAGAGCACAC 58866 AGATCGGAAGAGCACCAC 58966 AGATCGGAAGAGCACACGT 48312 AGATCGGAAGAGCACACGT 48210 AGATCGGAAGAGCACACGTCT 46842 AGATCGGAAGAGCACACGTCTG 45625 AGATCGGAAGAGCACACGTCTGA 45562 AGATCGGAAGAGCACACGTCTGAA 44556 AGATCGGAAGAGCACACGTCTGAA 44556 AGATCGGAAGAGCACACGTCTGAAC 41029 AGATCGGAAGAGCACACGTCTGAACT 41219 AGATCGGAAGAGCACACGTCTGAACTC 40438 AGATCGGAAGAGCACACGTCTGAACTCC 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40394 AGATCGGAACAGCACCGTCTGAACTCCAGTCACTCTGAACTCCAGTCATTCACTCTGATCTCGTTTCGCTTTCGCTT 45958 AGATCGGAAGAGCACACCGTCTGAACTCCAGTCACTCTGTAATCTCCGTTGAACTCTTGTATCTCGTTTGAACTTCTGCTTTGAACTCTCGTTTGAACTCTCGTTTGAACTCTCGTTTGAACTCTCGTTTGAACTCTCGTTTTGAACTTCTCGTTTGAACTTCTCGTTTGAACTCTCGTTTCGAACTCTCGTTTCTGAACTCTCGTTTCTTGA	AGATCGGA	60059
AGATCGGAAGAG 59369 AGATCGGAAGAG 58055 AGATCGGAAGAGC 56139 AGATCGGAAGACA 56413 AGATCGGAAGAGCA 53685 AGATCGGAAGAGCAC 53857 AGATCGGAAGAGCACA 50866 AGATCGGAAGAGCACACG 50719 AGATCGGAAGAGCACACGT 48312 AGATCGGAAGAGCACACGTC 48210 AGATCGGAAGAGCACACGTCT 46842 AGATCGGAAGAGCACACGTCTGA 45625 AGATCGGAAGAGCACACGTCTGA 45562 AGATCGGAAGAGCACACGTCTGAA 44556 AGATCGGAAGAGCACACGTCTGAA 43315 AGATCGGAAGAGCACACGTCTGAACT 41029 AGATCGGAAGAGCACACGTCTGAACT 41219 AGATCGGAAGAGCACACGTCTGAACTC 40438 AGATCGGAAGAGCACACGTCTGAACTCC 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40394 AGATCGGAACAGCACCGCTCTGAACTCCAG 40394 AGATCGGAACACCACGTCTGAACTCCAGTCACTCTGAACTCCAGTCACTCTGAACTCCAGTCACTCTGAACTCCAGTCACTCTGAACTCCAGTCACTCTGAACTCCAGTCACTCTGAACTCCAGTCACTCTGAACTCCAGTCACTCTGAACTCCAGTCACTCTGAACTCCAGTCTCTGAACTCCAGTCTCTGAACTCCAGTCACTCTGAACTCCAGTCTCTGAACTCCAGTCACTCTGAACTCCAGTCTCTGAACTCCAGTCTCTGAACTCCAGTCTCTGAACTCCAGTCTCTGAACTCCAGTCTCTGAACTCCAGTCTCTGAACTCCAG	AGATCGGAA	60570
AGATCGGAAGAG 58055 AGATCGGAAGAGC 56139 AGATCGGAAGAGCA 56413 AGATCGGAAGAGCAC 53685 AGATCGGAAGAGCACA 53857 AGATCGGAAGAGCACAC 50866 AGATCGGAAGAGCACACG 50719 AGATCGGAAGAGCACACGT 48312 AGATCGGAAGAGCACACGT 48210 AGATCGGAAGAGCACACGTC 46842 AGATCGGAAGAGCACACGTCTG 45625 AGATCGGAAGAGCACACGTCTGA 4556 AGATCGGAAGAGCACACGTCTGAA 44556 AGATCGGAAGAGCACACGTCTGAA 44556 AGATCGGAAGAGCACACGTCTGAAC 41029 AGATCGGAAGAGCACACGTCTGAACT 41219 AGATCGGAAGAGCACACGTCTGAACTC 40438 AGATCGGAAGAGCACACCTCTGAACTCC 40438 AGATCGGAAGAGCACACCTCTGAACTCCA 40394 AGATCGGAAGAGCACACCTCTGAACTCCAG 38577 AGATCGGAAGAGCACACCTCTGAACTCCAGCTCGAACTCCGTCTTGAACTCCAGTCTCGATTCTCGCTTTCTGCTTTCAGATAGCCGTCTTTCAGACTCCAGCTCTCAACTCCAGTCCACCTTCTGAACTCCAGTCTCTGATACTCCGTCTTCTGCTTTCTGCTTTCAACTCCTGAACACCGTCTCAACTCCAGTCCACCTTCTGAACTCCAGTCTCTGCACTCTTGAACTCCTGTTTCTGCTTTCTGCTTTCAACTCCTGAACACCGTCTCAACTCCAGTCCACCTTCTGAACTCCCTCTTGAACTCCCGTCTTCTTCTCTCTTTCTGCTTTCAACTTCTCTTCTTCTTCTTCTTCTTCTTCTTCTTC	AGATCGGAAG	59743
AGATCGGAAGAGC 56139 AGATCGGAAGAGCA 56413 AGATCGGAAGAGCAC 53685 AGATCGGAAGAGCACA 53857 AGATCGGAAGAGCACAC 58866 AGATCGGAAGAGCACACG 50719 AGATCGGAAGAGCACACGT 48312 AGATCGGAAGAGCACACGTC 48210 AGATCGGAAGAGCACACGTC 46842 AGATCGGAAGAGCACACGTCTG 45625 AGATCGGAAGAGCACACGTCTGA 455280 AGATCGGAAGAGCACACGTCTGA 44556 AGATCGGAAGAGCACACGTCTGAAC 43315 AGATCGGAAGAGCACACGTCTGAAC 41029 AGATCGGAAGAGCACACGTCTGAACT 41029 AGATCGGAAGAGCACACGTCTGAACT 41219 AGATCGGAAGAGCACACGTCTGAACTC 40438 AGATCGGAAGAGCACACGTCTGAACTCC 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40394 AGATCGGAAGAGCACACGTCTGAACTCCAGCCACGTCTGAACTCCAGCCACGTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGACTCCAGTCACCTCTGACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCCTTGAACTCCAGTCACCTTGAACTCCAGTCACCCTTGAACTCCAGTCACCTTGAACTCCTGATCACCTTGAACTCCTGATCACCTTGAACT	AGATCGGAAGA	59369
AGATCGGAAGAGCA 56413 AGATCGGAAGAGCAC 53685 AGATCGGAAGAGCACA 53857 AGATCGGAAGACACAC 50866 AGATCGGAAGACCACAC 50719 AGATCGGAAGAGCACACGT 48312 AGATCGGAAGAGCACACGTC 48210 AGATCGGAAGAGCACACGTCT 46842 AGATCGGAAGAGCACACGTCTG 45625 AGATCGGAAGAGCACACGTCTGA 45566 AGATCGGAAGAGCACACGTCTGA 4556 AGATCGGAAGAGCACACGTCTGAA 44556 AGATCGGAAGAGCACACGTCTGAAC 43315 AGATCGGAAGAGCACACGTCTGAACT 41029 AGATCGGAAGAGCACACGTCTGAACTC 40438 AGATCGGAAGAGCACACGTCTGAACTCC 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40438 AGATCGGAAGAGCACACGTCTGAACTCCAG 38577 AGATCGGAAGAGCACACGTCTGAACTCCAGCTCCAGACTCCAGTCTCAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTCTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCAGTCACCTTGAACTCCA	AGATCGGAAGAG	58055
AGATCGGAAGAGCAC 53685 AGATCGGAAGAGCACAC 53857 AGATCGGAAGAGCACAC 50866 AGATCGGAAGAGCACACG 50719 AGATCGGAAGAGCACACGT 48312 AGATCGGAAGAGCACACGTC 48210 AGATCGGAAGAGCACACGTCT 46842 AGATCGGAAGAGCACACGTCTG 45625 AGATCGGAAGAGCACACGTCTGA 4556 AGATCGGAAGAGCACACGTCTGAA 44556 AGATCGGAAGAGCACACGTCTGAAC 43315 AGATCGGAAGAGCACACGTCTGAACT 41029 AGATCGGAAGAGCACACGTCTGAACTC 41219 AGATCGGAAGAGCACACGTCTGAACTCC 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40394 AGATCGGAAGAGCACACGTCTGAACTCCAG 40394 AGATCGGAAGAGCACACGTCTGAACTCCAG 40394 AGATCGGAAGAGCACACGTCTGAACTCCAG 40394 AGATCGGAAGAGCACACGTCTGAACTCCAG 45958 AGATCGGAAGAGCACACGTCTGAACTCCAGCTCTGAACTCCAGTCTACACTCTGTATACTCCGTATCCCGTCTTCTGCTTTGAACTC 45958 AGATCGGAAGAGCACACGTCTGAACTCCAGCTCTGAACTCCAGTCTACCTTGTATACTCCGTATCCCGTCTTCTGCTTTGAACTC 50994	AGATCGGAAGAGC	56139
AGATCGGAAGGCCACA 53857 AGATCGGAAGAGCACAC 50866 AGATCGGAAGAGCCACGC 50719 AGATCGGAAGAGCACACGT 48312 AGATCGGAAGAGCACACGTC 48210 AGATCGGAAGAGCACACGTCT 46842 AGATCGGAAGAGCACACGTCTG 45625 AGATCGGAAGAGCACACGTCTGA 4556 AGATCGGAAGAGCACACGTCTGAA 44556 AGATCGGAAGAGCACACGTCTGAAC 43315 AGATCGGAAGAGCACACGTCTGAACT 41029 AGATCGGAAGAGCACACGTCTGAACTC 40438 AGATCGGAAGAGCACACGTCTGAACTCC 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40394 AGATCGGAAGAGCACACGTCTGAACTCCA 40394 AGATCGGAAGAGCACACGTCTGAACTCCAG 45958 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCCTGTAACTCCAGTCACCCTTGTAACTCCAGTCACCCTTGTAACTCCGTTTCTGCTTTCGCTTTCGCTTTCGACTTCGAACTCCAGTCACCCTTGAACTCCAGTCACCCTTGTAACTCCGTTCTGCTTTCTGCTTTGAACTCCGTTCTGAACTCCAGTCACCCTTGTAACTCCAGTCACCCTTGTAACTCCGTTCTGCTTTCTGCTTTGAACTCCTTTCTGAACTCCAGTCACCCTTGTAACTCCAGTCACCCTTGTAACTCCGTTCTTCTGCTTTGAACT 50994	AGATCGGAAGAGCA	56413
AGATCGGAAGAGCACAC 50866 AGATCGGAAGAGCACACG 50719 AGATCGGAAGAGCACACGT 48312 AGATCGGAAGAGCACACGTC 48210 AGATCGGAAGAGCACACGTCT 46842 AGATCGGAAGAGCACACGTCTG 45625 AGATCGGAAGAGCACACGTCTGA 45280 AGATCGGAAGAGCACACGTCTGAA 44556 AGATCGGAAGAGCACACGTCTGAAC 43315 AGATCGGAAGAGCACACGTCTGAACT 41029 AGATCGGAAGAGCACACGTCTGAACTC 40438 AGATCGGAAGAGCACACGTCTGAACTCC 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40394 AGATCGGAAGAGCACACGTCTGAACTCCAG 38577 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCCTTGTAATCTCGTATGCCGTCTTCTGCTT 45958 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCCTTGTAATCTCGTATGCCGTCTTCTGCTT 45958	AGATCGGAAGAGCAC	53685
AGATCGGAAGAGCACACGT AGATCGGAAGAGCACACGT AGATCGGAAGAGCACACGT AGATCGGAAGAGCACACGTC AGATCGGAAGAGCACACGTC AGATCGGAAGAGCACACGTC AGATCGGAAGAGCACACGTCT AGATCGGAAGAGCACACGTCT AGATCGGAAGAGCACACGTCTGA AGATCGGAAGAGCACACGTCTGA AGATCGGAAGAGCACACGTCTGA AGATCGGAAGAGCACACGTCTGAA AGATCGGAAGAGCACACGTCTGAA AGATCGGAAGAGCACACGTCTGAACT AGATCGGAAGAGCACACGTCTGAACT AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCCAGTCACTCTGATCTCTGCTTGATCTCTGCTTGAAACTCCTGAACTCCAGCCTCTTCTGCTTGAAACTCCTGAACTCCAGTCCTGAACTCCCAGTCCTGAACTCCAGTCCTGTAATCTCGTATGCCGTCTTCTGCTTTGAAACTCCGTAGAACGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTTGAAAA AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTTGAAAA AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTTGAAAA AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTTGAAAA AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTTGAAAA AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTTGAAAA AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTTGAAAA AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTTGAAAA AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTTGAAACTCCGTATGCACTTCTGCATGCA	AGATCGGAAGAGCACA	53857
AGATCGGAAGAGCACACGTC 48312 AGATCGGAAGAGCACACGTCT 48210 AGATCGGAAGAGCACACGTCT 46842 AGATCGGAAGAGCACACGTCTG 45625 AGATCGGAAGAGCACACGTCTGA 45280 AGATCGGAAGAGCACACGTCTGAA 44556 AGATCGGAAGAGCACACGTCTGAAC 43315 AGATCGGAAGAGCACACGTCTGAACT 41029 AGATCGGAAGAGCACACGTCTGAACTC 41219 AGATCGGAAGAGCACACGTCTGAACTCC 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40394 AGATCGGAAGAGCACACGTCTGAACTCCAG 38577 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCCTTGTAATCTCGTATGCCGTCTTCTGCTT 45958 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA 50994	AGATCGGAAGAGCACAC	50866
AGATCGGAAGAGCACACGTCT AGATCGGAAGAGCACACGTCTG AGATCGGAAGAGCACACGTCTG AGATCGGAAGAGCACACGTCTG AGATCGGAAGAGCACCACGTCTGA AGATCGGAAGAGCACCACGTCTGA AGATCGGAAGAGCACCACGTCTGAA AGATCGGAAGAGCACCACGTCTGAAC AGATCGGAAGAGCACCACGTCTGAAC AGATCGGAAGAGCACCACGTCTGAAC AGATCGGAAGAGCACCACGTCTGAAC AGATCGGAAGAGCACCACGTCTGAAC AGATCGGAAGAGCACCACGTCTGAACT AGATCGGAAGAGCACCACGTCTGAACTC AGATCGGAAGAGCACCACGTCTGAACTC AGATCGGAAGAGCACCACGTCTGAACTCC AGATCGGAAGAGCACCACGTCTGAACTCC AGATCGGAAGAGCACCACGTCTGAACTCC AGATCGGAAGAGCACCACGTCTGAACTCCA AGATCGGAAGAGCACCACGTCTGAACTCCA AGATCGGAAGAGCACCACGTCTGAACTCCA AGATCGGAAGAGCACCACGTCTGAACTCCAG AGATCGGAAGAGCACCACGTCTGAACTCCAG AGATCGGAAGAGCACCACGTCTGAACTCCAGGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACCACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACCACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACCACCGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACCACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACCACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA BOPPA	AGATCGGAAGAGCACACG	50719
AGATCGGAAGAGCACACGTCTG AGATCGGAAGAGCACACGTCTG AGATCGGAAGAGCACACGTCTGA AGATCGGAAGAGCACACGTCTGA AGATCGGAAGAGCACACGTCTGAA AGATCGGAAGAGCACACGTCTGAA AGATCGGAAGAGCACACGTCTGAAC AGATCGGAAGAGCACACGTCTGAAC AGATCGGAAGAGCACACGTCTGAACT AGATCGGAAGAGCACACGTCTGAACT AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCCA AGATCGGAAGAGCACACGTCTGAACTCCA AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTT	AGATCGGAAGAGCACACGT	48312
AGATCGGAAGAGCACACGTCTGA 45280 AGATCGGAAGAGCACACGTCTGAA 44556 AGATCGGAAGAGCACACGTCTGAAC 43315 AGATCGGAAGAGCACACGTCTGAACT 41029 AGATCGGAAGAGCACACGTCTGAACTC 41219 AGATCGGAAGAGCACACGTCTGAACTC 40438 AGATCGGAAGAGCACACGTCTGAACTC 40394 AGATCGGAAGAGCACACGTCTGAACTCCAGCACTCGAACTCC 40394 AGATCGGAAGAGCACACGTCTGAACTCCAGCACTCGAACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGACTCCAGCACTCCTGAACTCCAGCACTCCTGAACTCCAGCACTCCTGAACTCCAGCACTCCTGAACTCCAGCACTCCTGAACTCCAGCACTCCTGAACTCCAGCACTCCTGAACTCCAGCACTCTGAACTCCGTCTTCTGCTTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTT 45958 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA 50994	AGATCGGAAGAGCACACGTC	48210
AGATCGGAAGAGCACACGTCTGAA AGATCGGAAGAGCACACGTCTGAA AGATCGGAAGAGCACACGTCTGAAC AGATCGGAAGAGCACACGTCTGAAC AGATCGGAAGAGCACACGTCTGAACT AGATCGGAAGAGCACACGTCTGAACT AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCCA AGATCGGAAGAGCACACGTCTGAACTCCA AGATCGGAAGAGCACACGTCTGAACTCCA AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA	AGATCGGAAGAGCACACGTCT	46842
AGATCGGAAGAGCACACGTCTGAAC AGATCGGAAGAGCACACGTCTGAAC AGATCGGAAGAGCACACGTCTGAACT AGATCGGAAGAGCACACGTCTGAACT AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCCA AGATCGGAAGAGCACACGTCTGAACTCCA AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA	AGATCGGAAGAGCACACGTCTG	45625
AGATCGGAAGAGCACACGTCTGAACT AGATCGGAAGAGCACACGTCTGAACT AGATCGGAAGAGCACACGTCTGAACTC 41029 AGATCGGAAGAGCACACGTCTGAACTC 41219 AGATCGGAAGAGCACACGTCTGAACTCC 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40394 AGATCGGAAGAGCACACGTCTGAACTCCAG 38577 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT 45958 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAAA 50994	AGATCGGAAGAGCACACGTCTGA	45280
AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCC AGATCGGAAGAGCACACGTCTGAACTCCA AGATCGGAAGAGCACACGTCTGAACTCCA AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA 50994	AGATCGGAAGAGCACACGTCTGAA	44556
AGATCGGAAGAGCACACGTCTGAACTCC 41219 AGATCGGAAGAGCACACGTCTGAACTCC 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40394 AGATCGGAAGAGCACACGTCTGAACTCCAG 38577 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT 45958 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA 50994	AGATCGGAAGAGCACACGTCTGAAC	43315
AGATCGGAAGAGCACACGTCTGAACTCCA 40438 AGATCGGAAGAGCACACGTCTGAACTCCA 40394 AGATCGGAAGAGCACACGTCTGAACTCCAG 38577 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT 45958 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA 50994	AGATCGGAAGAGCACACGTCTGAACT	41029
AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAG 38577 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT 45958 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA 50994	AGATCGGAAGACCACGTCTGAACTC	41219
AGATCGGAAGAGCACACGTCTGAACTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA 50994	AGATCGGAAGACCACGTCTGAACTCC	40438
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT 45958 AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA 50994	AGATCGGAAGACCACCGTCTGAACTCCA	40394
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA 50994	AGATCGGAAGACCACGTCTGAACTCCAG	38577
	AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTT	45958
other adapter sequences 2029764	AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAA	50994
	other adapter sequences	2029764

Adapter or bad ligation of read2

The input has little adapter percentage (~0.347312%), probably it's trimmed before.

Sequence	Occurrences
A	73924
AG	69319
AGA	70763
AGAT	68718
AGATC	68941
AGATCG	67205
AGATCGG	64632
AGATCGGA	60215
AGATCGGAA	60367

AGATCGGAAGA 5936 AGATCGGAAGAG 5866 AGATCGGAAGAGC 5667 AGATCGGAAGAGCG 5661 AGATCGGAAGAGCGT 5122 AGATCGGAAGAGCGTC 5422 AGATCGGAAGAGCGTCG 5113 AGATCGGAAGAGCGTCGT 4855	
AGATCGGAAGAGCG AGATCGGAAGAGCG AGATCGGAAGAGCGT AGATCGGAAGAGCGTC AGATCGGAAGAGCGTC 5122 AGATCGGAAGAGCGTC 5113	568
AGATCGGAAGAGCGT AGATCGGAAGAGCGTC AGATCGGAAGAGCGTC 5122 AGATCGGAAGAGCGTC 5123	
AGATCGGAAGAGCGTC AGATCGGAAGAGCGTC 5122 AGATCGGAAGAGCGTC 5113	576
AGATCGGAAGAGCGTC 5422 AGATCGGAAGAGCGTCG 5113	516
AGATCGGAAGAGCGTCG 5113	222
	225
AGATCGGAAGAGCGTCGT 4855	137
	558
AGATCGGAAGAGCGTCGTG 4977	770
AGATCGGAAGAGCGTCGTGT 4696	900
AGATCGGAAGAGCGTCGTGTA 4745	1 55
AGATCGGAAGAGCGTCGTGTAG 4476	764
AGATCGGAAGAGCGTCGTGTAGG 5536	309
AGATCGGAAGAGCGTCGTGTAGGG 4541	114
AGATCGGAAGAGCGTCGTGTAGGGA 4531	315
AGATCGGAAGAGCGTCGTGTAGGGAA 3971	710
AGATCGGAAGAGCGTCGTGTAGGGAAA 6061	519
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGT 5196	962
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTG 6365	556
other adapter sequences 2106	

Duplication

duplication rate (70.067729%)

Insert size estimation

Insert size distribution (83.584125% reads are with unknown length)

This estimation is based on paired—end overlap analysis, and there are 83.584125% reads found not overlapped. The nonoverlapped read pairs may have insert size <30 or >272, or contain too much sequencing errors to be detected as overlapped.

Before filtering

Before filtering: read1: quality

Before filtering: read1: base contents

Value of each position will be shown on mouse over.

Before filtering: read1: KMER counting

Darker background means larger counts. The count will be shown on mouse over.

	AA	AT	AC	AG	TA	TT	TC	TG	CA	CT	CC	CG	GA	GT	GC	GG
AAA	AAAA	AAAAT	AAAAC	AAAAG	AAATA	AAATT	AAATC	AAATG	AAACA	AAACT	AAACC	AAACG	AAAGA	AAAGT	AAAGC	AAAGG
AAT	AATAA	AATAT	AATAC	AATAG	AATTA	AATTT	AATTC	AATTG	AATCA	AATCT	AATCC	AATCG	AATGA	AATGT	AATGC	AATGG
AAC	AACAA	AACAT	AACAC	AACAG	AACTA	AACTT	AACTC	AACTG	AACCA	AACCT	AACCC	AACCG	AACGA	AACGT	AACGC	AACGG
AAG	AAGAA	AAGAT	AAGAC	AAGAG	AAGTA	AAGTT	AAGTC	AAGTG	AAGCA	AAGCT	AAGCC	AAGCG	AAGGA	AAGGT	AAGGC	AAGGG
ATA	ATAAA	ATAAT	ATAAC	ATAAG	ATATA	ATATT	ATATC	ATATG	ATACA	ATACT	ATACC	ATACG	ATAGA	ATAGT	ATAGC	ATAGG
ATT	ATTAA	ATTAT	ATTAC	ATTAG	ATTTA	ATTTT	ATTTC	ATTTG	ATTCA	ATTCT	ATTCC	ATTCG	ATTGA	ATTGT	ATTGC	ATTGG
ATC	ATCAA	ATCAT	ATCAC	ATCAG	ATCTA	ATCTT	ATCTC	ATCTG	ATCCA	ATCCT	ATCCC	ATCCG	ATCGA	ATCGT	ATCGC	ATCGG
ATG	ATGAA	ATGAT	ATGAC	ATGAG	ATGTA	ATGTT	ATGTC	ATGTG	ATGCA	ATGCT	ATGCC	ATGCG	ATGGA	ATGGT	ATGGC	ATGGG
ACA	ACAAA	ACAAT	ACAAC	ACAAG	ACATA	ACATT	ACATC	ACATG	ACACA	ACACT	ACACC	ACACG	ACAGA	ACAGT	ACAGC	ACAGG
ACT	ACTAA	ACTAT	ACTAC	ACTAG	ACTTA	ACTTT	ACTTC	ACTTG	ACTCA	ACTCT	ACTCC	ACTCG	ACTGA	ACTGT	ACTGC	ACTGG
ACC	ACCAA	ACCAT	ACCAC	ACCAG	ACCTA	ACCTT	ACCTC	ACCTG	ACCCA	ACCCT	ACCCC	ACCCG	ACCGA	ACCGT	ACCGC	ACCGG
ACG	ACGAA	ACGAT	ACGAC	ACGAG	ACGTA	ACGTT	ACGTC	ACGTG	ACGCA	ACGCT	ACGCC	ACGCG	ACGGA	ACGGT	ACGGC	ACGGG
AGA	AGAAA	AGAAT	AGAAC	AGAAG	AGATA	AGATT	AGATC	AGATG	AGACA	AGACT	AGACC	AGACG	AGAGA	AGAGT	AGAGC	AGAGG
AGT	AGTAA	AGTAT	AGTAC	AGTAG	AGTTA	AGTTT	AGTTC	AGTTG	AGTCA	AGTCT	AGTCC	AGTCG	AGTGA	AGTGT	AGTGC	AGTGG
AGC	AGCAA	AGCAT	AGCAC	AGCAG	AGCTA	AGCTT	AGCTC	AGCTG	AGCCA	AGCCT	AGCCC	AGCCG	AGCGA	AGCGT	AGCGC	AGCGG
AGG	AGGAA	AGGAT	AGGAC	AGGAG	AGGTA	AGGTT	AGGTC	AGGTG	AGGCA	AGGCT	AGGCC	AGGCG	AGGGA	AGGGT	AGGGC	AGGGG
TAA	TAAAA	TAAAT	TAAAC	TAAAG	TAATA	TAATT	TAATC	TAATG	TAACA	TAACT	TAACC	TAACG	TAAGA	TAAGT	TAAGC	TAAGG
TAT	TATAA	TATAT	TATAC	TATAG	TATTA	TATTT	TATTC	TATTG	TATCA	TATCT	TATCC	TATCG	TATGA	TATGT	TATGC	TATGG
TAC	TACAA	TACAT	TACAC	TACAG	TACTA	TACTT	TACTC	TACTG	TACCA	TACCT	TACCC	TACCG	TACGA	TACGT	TACGC	TACGG
TAG	TAGAA	TAGAT	TAGAC	TAGAG	TAGTA	TAGTT	TAGTC	TAGTG	TAGCA	TAGCT	TAGCC	TAGCG	TAGGA	TAGGT	TAGGC	TAGGG
TTA	TTAAA	TTAAT	TTAAC	TTAAG	TTATA	TTATT	TTATC	TTATG	TTACA	TTACT	TTACC	TTACG	TTAGA	TTAGT	TTAGC	TTAGG
TTT	TTTAA	TTTAT	TTTAC	TTTAG	TTTTA	TTTTT	TTTTC	TTTTG	TTTCA	TTTCT	TTTCC	TTTCG	TTTGA	TTTGT	TTTGC	TTTGG
TTC	TTCAA	TTCAT	TTCAC	TTCAG	TTCTA	TTCTT	TTCTC	TTCTG	TTCCA	TTCCT	TTCCC	TTCCG	TTCGA	TTCGT	TTCGC	TTCGG
TTG	TTGAA	TTGAT	TTGAC	TTGAG	TTGTA	TTGTT	TTGTC	TTGTG	TTGCA	TTGCT	TTGCC	TTGCG	TTGGA	TTGGT	TTGGC	TTGGG
TCA	TCAAA	TCAAT	TCAAC	TCAAG	TCATA	TCATT	TCATC	TCATG	TCACA	TCACT	TCACC	TCACG	TCAGA	TCAGT	TCAGC	TCAGG
TCT	TCTAA	TCTAT	TCTAC	TCTAG	TCTTA	TCTTT	TCTTC	TCTTG	TCTCA	TCTCT	TCTCC	TCTCG	TCTGA	TCTGT	TCTGC	TCTGG
TCC	TCCAA	TCCAT	TCCAC	TCCAG	TCCTA	TCCTT	TCCTC	TCCTG	TCCCA	TCCCT	TCCCC	TCCCG	TCCGA	TCCGT	TCCGC	TCCGG

TCG	TCGAA	TCGAT	TCGAC	TCGAG	TCGTA	TCGTT	TCGTC	TCGTG	TCGCA	TCGCT	TCGCC	TCGCG	TCGGA	TCGGT	TCGGC	TCGGG
TGA	TGAAA	TGAAT	TGAAC	TGAAG	TGATA	TGATT	TGATC	TGATG	TGACA	TGACT	TGACC	TGACG	TGAGA	TGAGT	TGAGC	TGAGG
TGT	TGTAA	TGTAT	TGTAC	TGTAG	TGTTA	TGTTT	TGTTC	TGTTG	TGTCA	TGTCT	TGTCC	TGTCG	TGTGA	TGTGT	TGTGC	TGTGG
TGC	TGCAA	TGCAT	TGCAC	TGCAG	TGCTA	TGCTT	TGCTC	TGCTG	TGCCA	TGCCT	TGCCC	TGCCG	TGCGA	TGCGT	TGCGC	TGCGG
TGG	TGGAA	TGGAT	TGGAC	TGGAG	TGGTA	TGGTT	TGGTC	TGGTG	TGGCA	TGGCT	TGGCC	TGGCG	TGGGA	TGGGT	TGGGC	TGGGG
CAA	CAAAA	CAAAT	CAAAC	CAAAG	CAATA	CAATT	CAATC	CAATG	CAACA	CAACT	CAACC	CAACG	CAAGA	CAAGT	CAAGC	CAAGG
CAT	CATAA	CATAT	CATAC	CATAG	CATTA	CATTT	CATTC	CATTG	CATCA	CATCT	CATCC	CATCG	CATGA	CATGT	CATGC	CATGG
CAC	CACAA	CACAT	CACAC	CACAG	CACTA	CACTT	CACTC	CACTG	CACCA	CACCT	CACCC	CACCG	CACGA	CACGT	CACGC	CACGG
CAG	CAGAA	CAGAT	CAGAC	CAGAG	CAGTA	CAGTT	CAGTC	CAGTG	CAGCA	CAGCT	CAGCC	CAGCG	CAGGA	CAGGT	CAGGC	CAGGG
CTA	CTAAA	CTAAT	CTAAC	CTAAG	CTATA	CTATT	CTATC	CTATG	CTACA	CTACT	CTACC	CTACG	CTAGA	CTAGT	CTAGC	CTAGG
CTT	CTTAA	CTTAT	CTTAC	CTTAG	CTTTA	CTTTT	CTTTC	CTTTG	CTTCA	CTTCT	CTTCC	CTTCG	CTTGA	CTTGT	CTTGC	CTTGG
CTC	CTCAA	CTCAT	CTCAC	CTCAG	CTCTA	CTCTT	CTCTC	CTCTG	CTCCA	CTCCT	CTCCC	CTCCG	CTCGA	CTCGT	CTCGC	CTCGG
CTG	CTGAA	CTGAT	CTGAC	CTGAG	CTGTA	CTGTT	CTGTC	CTGTG	CTGCA	CTGCT	CTGCC	CTGCG	CTGGA	CTGGT	CTGGC	CTGGG
CCA	CCAAA	CCAAT	CCAAC	CCAAG	CCATA	CCATT	CCATC	CCATG	CCACA	CCACT	CCACC	CCACG	CCAGA	CCAGT	CCAGC	CCAGG
CCT	CCTAA	CCTAT	CCTAC	CCTAG	CCTTA	CCTTT	CCTTC	CCTTG	CCTCA	ССТСТ	CCTCC	CCTCG	CCTGA	CCTGT	CCTGC	CCTGG
CCC	CCCAA	CCCAT	CCCAC	CCCAG	CCCTA	CCCTT	CCCTC	CCCTG	CCCCA	CCCCT	CCCCC	CCCCG	CCCGA	CCCGT	CCCGC	CCCGG
CCG	CCGAA	CCGAT	CCGAC	CCGAG	CCGTA	CCGTT	CCGTC	CCGTG	CCGCA	CCGCT	CCGCC	CCGCG	CCGGA	CCGGT	CCGGC	CCGGG
CGA	CGAAA	CGAAT	CGAAC	CGAAG	CGATA	CGATT	CGATC	CGATG	CGACA	CGACT	CGACC	CGACG	CGAGA	CGAGT	CGAGC	CGAGG
CGT	CGTAA	CGTAT	CGTAC	CGTAG	CGTTA	CGTTT	CGTTC	CGTTG	CGTCA	CGTCT	CGTCC	CGTCG	CGTGA	CGTGT	CGTGC	CGTGG
CGC	CGCAA	CGCAT	CGCAC	CGCAG	CGCTA	CGCTT	CGCTC	CGCTG	CGCCA	CGCCT	CGCCC	CGCCG		CGCGT	CGCGC	CGCGG
CGG	CGGAA	CGGAT	CGGAC	CGGAG	CGGTA	CGGTT	CGGTC	CGGTG	CGGCA	CGGCT	CGGCC	CGGCG	CGGGA	CGGGT	CGGGC	CGGGG
GAA	GAAAA	GAAAT	GAAAC	GAAAG	GAATA	GAATT	GAATC	GAATG	GAACA	GAACT	GAACC	GAACG	GAAGA	GAAGT	GAAGC	GAAGG
GAT	GATAA	GATAT	GATAC	GATAG	GATTA	GATTT	GATTC	GATTG	GATCA	GATCT	GATCC	GATCG	GATGA	GATGT	GATGC	GATGG
GAC	GACAA	GACAT	GACAC	GACAG	GACTA	GACTT	GACTC	GACTG	GACCA	GACCT	GACCC	GACCG	GACGA	GACGT	GACGC	GACGG
GAG	GAGAA	GAGAT	GAGAC	GAGAG	GAGTA	GAGTT	GAGTC	GAGTG	GAGCA	GAGCT	GAGCC	GAGCG	GAGGA	GAGGT	GAGGC	GAGGG
GTA	GTAAA	GTAAT	GTAAC	GTAAG	GTATA	GTATT	GTATC	GTATG	GTACA	GTACT	GTACC	GTACG	GTAGA	GTAGT	GTAGC	GTAGG
GTT	GTTAA	GTTAT	GTTAC	GTTAG	GTTTA	GTTTT	GTTTC	GTTTG	GTTCA	GTTCT	GTTCC	GTTCG	GTTGA	GTTGT	GTTGC	GTTGG
GTC	GTCAA	GTCAT	GTCAC	GTCAG	GTCTA	GTCTT	GTCTC	GTCTG	GTCCA	GTCCT	GTCCC	GTCCG	GTCGA	GTCGT	GTCGC	GTCGG
GTG	GTGAA	GTGAT	GTGAC	GTGAG	GTGTA	GTGTT	GTGTC	GTGTG	GTGCA	GTGCT	GTGCC	GTGCG	GTGGA	GTGGT	GTGGC	GTGGG
GCA	GCAAA	GCAAT	GCAAC	GCAAG	GCATA	GCATT	GCATC	GCATG	GCACA	GCACT	GCACC	GCACG	GCAGA	GCAGT	GCAGC	GCAGG
GCT	GCTAA	GCTAT	GCTAC	GCTAG	GCTTA	GCTTT	GCTTC	GCTTG	GCTCA	GCTCT	GCTCC	GCTCG	GCTGA	GCTGT	GCTGC	GCTGG
GCC	GCCAA	GCCAT	GCCAC	GCCAG	GCCTA	GCCTT	GCCTC	GCCTG	GCCCA	GCCCT	GCCCC	GCCCG	GCCGA	GCCGT	GCCGC	GCCGG
GCG	GCGAA	GCGAT	GCGAC	GCGAG	GCGTA	GCGTT	GCGTC	GCGTG	GCGCA	GCGCT	GCGCC	GCGCG	GCGGA	GCGGT	GCGGC	GCGGG
GGA	GGAAA	GGAAT	GGAAC	GGAAG	GGATA	GGATT	GGATC	GGATG	GGACA	GGACT	GGACC	GGACG	GGAGA	GGAGT	GGAGC	GGAGG
GGT	GGTAA	GGTAT	GGTAC	GGTAG	GGTTA	GGTTT	GGTTC	GGTTG	GGTCA	GGTCT	GGTCC	GGTCG	GGTGA	GGTGT	GGTGC	GGTGG
GGC	GGCAA	GGCAT	GGCAC	GGCAG	GGCTA	GGCTT	GGCTC	GGCTG	GGCCA	GGCCT	GGCCC	GGCCG	GGCGA	GGCGT	GGCGC	GGCGG
GGG	GGGAA	GGGAT	GGGAC	GGGAG	GGGTA	GGGTT	GGGTC	GGGTG	GGGCA	GGGCT	GGGCC	GGGCG	GGGGA	GGGGT	GGGGC	GGGGG

Before filtering: read1: overrepresented sequences

overrepresented sequence	count (% of bases)	distribution: cycle 1 ~ cycle 151
AAAGATGTGTATAAGAGACA	86282 (0.102329%)	
AAGATGTGTATAAGAGACAG	149980 (0.177874%)	
AAGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	17427 (0.041336%)	
ACACACACACACACACACACACACACACACACAA	2326 (0.005517%)	
AC	58007 (0.137591%)	
ACACACACACACACACACACACACACACACACACACACA	1568 (0.003719%)	
ACACACACACACACACACCTGTCTCTTATACACATC	15516 (0.036804%)	
ACACACACACCTGTCTCTTATACACATCTAGATGTGTA	11379 (0.026991%)	
ACACACACCTGTCTCTTATACACATCTAGATGTGTATA	1309 (0.003105%)	
ACACACACCTGTCTCTTATACACATCTAGATGTGTATAAG	1667 (0.003954%)	
ACACACCTGTCTCTTATACACATCTAGATGTGTATAAGAG	3488 (0.008273%)	
ACACATCTAGATGTGTATAAGAGACAGCACACACACACAC	157 (0.000372%)	
ACACATCTAGATGTGTATAAGAGACAGGTGTGTGTGTGTG	157 (0.000372%)	
ACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	21275 (0.050464%)	
ACAGATGTGTATAAGAGACA	98384 (0.116682%)	
ACATCTAGATGTGTATAAGAGACAGGTGTGTGTGTGTGTG	199 (0.000472%)	
ACCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	27626 (0.065528%)	
ACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	31832 (0.075505%)	
ACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	15738 (0.037330%)	

ACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	23027 (0.054619%)	
AG	12233 (0.029016%)	
AGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	261 (0.001548%)	
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCGCGTATGCCGTCTTCGGCTTGAAAAGGG GGGGGGGGGG	4095 (0.036182%)	
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCGCGTATGCCGTCTTCTGCTTGAAAAGGG GGGGGGGGGG	34267 (0.302770%)	
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCGGCTTGAAAAGGG GGGGGGGGGG	9238 (0.081623%)	
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCGTGAAAAGGG GGGGGGGGGG	7055 (0.062335%)	
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAAGGG GGGGGGGGGG	129027 (1.140032%)	
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAATGG GGGGGGGGGG	13776 (0.121719%)	
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGTAAAGGGGGGGG	7570 (0.066886%)	
AGATGTGTATAAGAGACACACACACACACACACACACAC	18099 (0.042930%)	
AGATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTG	16003 (0.037959%)	
AGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	28786 (0.068280%)	
AGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	30967 (0.073453%)	
AGGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	29079 (0.068975%)	
ANATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAAGGGGGGGG	74 (0.000654%)	
ATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTGTG	72 (0.000171%)	
ATACACATCTAGATGTATAAGAGACAGCACACACAC	199 (0.000472%)	
ATACACATCTAGATGTATAAGAGACAGGTGTGTGTG	151 (0.000358%)	
ATCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	20309 (0.048172%)	
ATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCGCGTATGCCGTCTTCTGCGTGAAAAGGGGGGGG	4 (0.000035%)	
ATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCGCGTATGCCGTCTTCTGCTTGAAAAGGGGGGGG	41 (0.000362%)	
ATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCGCGTATGCCGTCTTCTGCTTGAAAATGGGG GGGGGGGGGG	14 (0.000124%)	
ATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCGGCTTGAAAAAGGGG GGGGGGGGGG	10 (0.000088%)	
ATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCGTGAAAAAGGGGG GGGGGGGGGG	24 (0.000212%)	
ATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAAAGGGG GGGGGGGGGG	123 (0.001087%)	
ATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAAGGGGG GGGGGGGGGG	152 (0.001343%)	
ATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAATGGGG GGGGGGGGGG	78 (0.000689%)	
ATCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	38484 (0.091283%)	
ATGCCGTCGTCTGAAAAGGGGGGGGGGGGGGGGGGGGGG	244 (0.001447%)	

ATGCCGTCTTCGGCGTGAAAAGGGGGGGGGGGGGGGGGG	166 (0.000984%)	
ATGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	28028 (0.066482%)	
ATGTGTATAAGAGACAGACACACACACACACACACACACA	208 (0.000493%)	
ATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTG	138 (0.000327%)	
ATGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	18805 (0.044605%)	
CAAGATGTGTATAAGAGACA	112826 (0.133810%)	
CACACACACACACACACACACACACACACACAAA	1317 (0.003124%)	
CACACACACACACACACACACACACACACACACACACA	20429 (0.048457%)	
CACACACACACACACACCTGTCTCTTATACACATCT	1900 (0.004507%)	
CACACACACCTGTCTCTTATACACATCTAGATGTGTAT	1449 (0.003437%)	
CACACACCTGTCTCTTATACACATCTAGATGTGTATAA	1300 (0.003084%)	
CACACACCTGTCTCTTATACACATCTAGATGTGTATAAGA	2705 (0.006416%)	
CACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	6115 (0.014505%)	
CACATCTAGATGTGTATAAGAGACAGGTGTGTGTGTGT	163 (0.000387%)	
CACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	22230 (0.052729%)	
CAGATGTGTATAAGAGACAG	118433 (0.140460%)	
CATCTAGATGTGTATAAGAGACAGGTGTGTGTGTGTGT	180 (0.000427%)	
CCAGATGTGTATAAGAGACA	108700 (0.128917%)	
CCCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	22605 (0.053619%)	
CCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	44789 (0.106238%)	
CCGTCGTCTGCTTGAAAAGGGGGGGGGGGGGGGGGGGGG	94 (0.000557%)	
CCGTCTTCGGCGTGAAAAGGGGGGGGGGGGGGGGGGGGG	62 (0.000368%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	833 (0.001976%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	1856 (0.004402%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	2539 (0.006022%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	421 (0.000999%)	
CGTATGCCGTCGTCTGAAAAGGGGGGGGGGGGGGGGGGG	7067 (0.041907%)	
CGTATGCCGTCTTCGGCGTGAAAAGGGGGGGGGGGGGGG	3268 (0.019379%)	
CGTCTTCGGCTTGAAAAGGGGGGGGGGGGGGGGGGGGGG	8733 (0.051786%)	
CGTCTTCTGCTTGTAAAGGGGGGGGGGGGGGGGGGGGGG	6466 (0.038343%)	
CTCACACACACACACACACACACACACACACACACA	13926 (0.033032%)	
стстстстстстстстстстстстстстст	5915 (0.014030%)	
CTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	23047 (0.054667%)	

CTCTTATACACATCTAGATGTGTATAAGAGACAGCACACA	81 (0.000192%)	
CTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTGT	63 (0.000149%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAC	2673 (0.006340%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAT	3189 (0.007564%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCA	682 (0.001618%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCC	367 (0.000871%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCT	384 (0.000911%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGA	350 (0.000830%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGC	343 (0.000814%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGG	461 (0.001093%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGT	839 (0.001990%)	
CTGTCTCTTATACACATCTC	388845 (0.461165%)	
CTGTCTCTTATACACATCTG	331290 (0.392906%)	
CTGTCTCTTATACACATCTT	344261 (0.408289%)	
CTTATACACATCTAGATGTGTATAAGAGACAGCACACACA	83 (0.000197%)	
CTTATACACATCTAGATGTGTATAAGAGACAGGTGTGTGT	41 (0.000097%)	
GACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	29208 (0.069281%)	
GACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	27175 (0.064458%)	
GA	11165 (0.026483%)	
GAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	228 (0.001352%)	
GAGATGTGTATAAGAGACAG	243269 (0.288514%)	
GAGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	25076 (0.059480%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCGCGTATGCCGTCTTCGGCTTGAAAAGGGG GGGGGGGGGG	2208 (0.019509%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCGCGTATGCCGTCTTCTGCGTGAAAAGGGG GGGGGGGGGG	6937 (0.061293%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCGCGTATGCCGTCTTCTGCTTGAAAAGGGG GGGGGGGGGG	20573 (0.181775%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCGCGTATGCCGTCTTCTGCTTGAAAATGGG GGGGGGGGGG	7476 (0.066055%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCGGCTTGAAAAAGGG GGGGGGGGGG	1124 (0.009931%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCGGCTTGAAAAGGGG GGGGGGGGGG	5466 (0.048295%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCGTGAAAAGGGG GGGGGGGGGG	5335 (0.047138%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAAAAGGG GGGGGGGGGG	20856 (0.184275%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAAGGGG GGGGGGGGGG	65436 (0.578167%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGAAAATGGG		

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	17067 (0.150797%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTGTAAAGGGG GGGGGGGGGG	4211 (0.037207%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTTTGCCGTCTTCTGCTTGAAAAGGGG GGGGGGGGGG	2943 (0.026003%)	
GATGTGTATAAGAGACAGCACACACACACACACACACACA	139 (0.000330%)	
GATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGT	142 (0.000337%)	
GCACACACACACACACACACACACACACACACACACACA	23470 (0.055670%)	
GCCGTCGTCTGAAAAGGGGGGGGGGGGGGGGGGGGGGGG	37 (0.000219%)	
GCCGTCTTCGGCGTGAAAAGGGGGGGGGGGGGGGGGGGG	11 (0.000065%)	
GCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	7907 (0.018755%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	2749 (0.006521%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	5701 (0.013523%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	8751 (0.020757%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	1450 (0.003439%)	
GGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	26137 (0.061996%)	
GGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	21053 (0.049937%)	
GGGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	25376 (0.060191%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1185805 (2.812700%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2231 (0.013230%)	
GGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	28075 (0.066593%)	
GGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	10878 (0.025802%)	
GTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTG	72 (0.000171%)	
GTATGCCGTCGTCTGAAAAGGGGGGGGGGGGGGGGGGGG	12 (0.000071%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGCACA	159 (0.000377%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTAT	40 (0.000095%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGT	153 (0.000363%)	
GTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	28088 (0.066624%)	
GTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	16550 (0.039256%)	
стесесесесесесесесесесесесесесесесесесе	26294 (0.062369%)	
GTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTG	107 (0.000254%)	
GTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	2611 (0.006193%)	
GTGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGA	2185 (0.005183%)	
GTGTGTGTGCTGTCTCTTATACACATCTAGATGTGTATAA	3503 (0.008309%)	
GTGTGTGTGTGTCTCTTATACACATCTAGATGTGTAT	2425 (0.005752%)	

GTGTGTGTGTGTGTGTGTCTCTTATACACATCT	1545 (0.003665%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGA	1060 (0.002514%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	27027 (0.064107%)	
TACACACACACACACACA	102139 (0.121136%)	
TACACATCTAGATGTGTATAAGAGACAGCACACACACA	177 (0.000420%)	
TACACATCTAGATGTGTATAAGAGACAGGTGTGTGTGT	128 (0.000304%)	
TACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	37765 (0.089578%)	
TATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTGTGT	35 (0.000083%)	
TATACACATCTAGATGTGTATAAGAGACAGCACACACACA	136 (0.000323%)	
TATACACATCTAGATGTGTATAAGAGACAGGTGTGTGT	133 (0.000315%)	
TATCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	18576 (0.044062%)	
TCACACACACACACACACACACACACACACACACACACA	6531 (0.015491%)	
TCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	42264 (0.100249%)	
тстстстстстстстстстстстстстстстс	8042 (0.019075%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGCACAC	81 (0.000192%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTG	61 (0.000145%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	2930 (0.006950%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	5939 (0.014087%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	9041 (0.021445%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGCACACAC	35 (0.000083%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGGTGTGTG	31 (0.000074%)	
TGAGATGTGTATAAGAGACA	141907 (0.168300%)	
TGCCGTCGTCTGCTTGAAAAGGGGGGGGGGGGGGGGGGG	175 (0.001038%)	
TGCCGTCTTCGGCGTGAAAAGGGGGGGGGGGGGGGGGGG	105 (0.000623%)	
TGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	25426 (0.060310%)	
TGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	31303 (0.074250%)	
TGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTGT	47 (0.000111%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCAC	293 (0.000695%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCAT	122 (0.000289%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCC	81 (0.000192%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCT	88 (0.000209%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCTC	95 (0.000225%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCTG	64 (0.000152%)	

TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCTT	56 (0.000133%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGAA	68 (0.000161%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGAG	86 (0.000204%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGAT	79 (0.000187%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGCA	62 (0.000147%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGCT	95 (0.000225%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGG	101 (0.000240%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGT	88 (0.000209%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTA	137 (0.000325%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTC	78 (0.000185%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTG	261 (0.000619%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTT	99 (0.000235%)	
TGTCTCTTATACACATCTCA	891 (0.001057%)	
TGTCTCTTATACACATCTCT	623 (0.000739%)	
TGTCTCTTATACACATCTTG	655 (0.000777%)	
TGTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	17648 (0.041861%)	
TGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	11772 (0.027923%)	
TGTGTATAAGAGACACACACACACACACACACACACACAC	36 (0.000085%)	
TGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGT	49 (0.000116%)	
TGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAG	4414 (0.010470%)	
TGTGTGTGCTCTCTTATACACATCTAGATGTGTATAAG	2093 (0.004965%)	
TGTGTGTGTGTCTCTTATACACATCTAGATGTGTATA	3993 (0.009471%)	
TGTGTGTGTGTGTCTCTTATACACATCTAGATGTGTA	13161 (0.031218%)	
TGTGTGTGTGTGTGTGTGTCTCTTATACACATC	16029 (0.038020%)	
тдтдтдтдтдтдтдтдтдтдтдтдтдтдтд	39916 (0.094680%)	
тдтдтдтдтдтдтдтдтдтдтдтдтдтдт	1082 (0.002566%)	
TTATACACATCTAGATGTGTATAAGAGACAGCACACAC	70 (0.000166%)	
TTATACACATCTAGATGTGTATAAGAGACAGGTGTGTGTG	36 (0.000085%)	
TTCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	20890 (0.049551%)	

Before filtering: read2: quality

Before filtering: read2: base contents

Before filtering: read2: KMER counting

Darker background means larger counts. The count will be shown on mouse over.

	AA	AT	AC	AG	TA	TT	TC	TG	CA	СТ	CC	CG	GA	GT	GC	GG
AAA	AAAAA AATAA	AAAAT AATAT	AAAAC AATAC	AAAAG AATAG	AAATA AATTA	AAATT AATTT	AAATC AATTC	AAATG AATTG	AAACA AATCA	AAACT AATCT	AAACC AATCC	AAACG AATCG	AAAGA AATGA	AAAGT AATGT	AAAGC AATGC	AAAGG AATGG
AAC	AACAA	AACAT	AACAC	AACAG	AACTA	AACTT	AACTC	AACTG	AACCA	AACCT	AACCC	AACCG	AACGA	AACGT	AACGC	AACGG
AAG	AAGAA	AAGAT	AAGAC	AAGAG	AAGTA	AAGTT	AAGTC	AAGTG	AAGCA	AAGCT	AAGCC	AAGCG	AAGGA	AAGGT	AAGGC	AAGGG
ATA	ATAAA	ATAAT	ATAAC	ATAAG	ATATA	ATATT	ATATC	ATATG	ATACA	ATACT	ATACC	ATACG	ATAGA	ATAGT	ATAGC	ATAGG
ATT	ATTAA ATCAA	ATTAT ATCAT	ATTAC ATCAC	ATTAG ATCAG	ATTTA ATCTA	ATTTT ATCTT	ATTTC ATCTC	ATTTG ATCTG	ATTCA ATCCA	ATTCT ATCCT	ATTCC ATCCC	ATTCG ATCCG	ATTGA ATCGA	ATTGT ATCGT	ATTGC ATCGC	ATTGG ATCGG
ATG	ATGAA	ATGAT	ATGAC	ATGAG	ATGTA	ATGTT	ATGTC	ATGTG	ATGCA	ATGCT	ATGCC	ATGCG	ATGGA	ATGGT	ATGGC	ATGGG
ACA	ACAAA	ACAAT	ACAAC	ACAAG	ACATA	ACATT	ACATC	ACATG	ACACA	ACACT	ACACC	ACACG	ACAGA	ACAGT	ACAGC	ACAGG
ACT	ACTAA	ACCAT	ACTAC	ACTAG	ACCTA	ACCTT	ACCTC	ACTTG	ACTCA	ACTCT	ACTCC	ACTCG	ACTGA	ACTGT	ACTGC	ACTGG
ACC	ACCAA ACGAA	ACCAT ACGAT	ACCAC ACGAC	ACCAG ACGAG	ACCTA ACGTA	ACCTT ACGTT	ACCTC ACGTC	ACCTG ACGTG	ACCCA ACGCA	ACCCT ACGCT	ACCCC ACGCC	ACCCG ACGCG	ACCGA ACGGA	ACCGT ACGGT	ACCGC ACGGC	ACCGG ACGGG
AGA	AGAAA	AGAAT	AGAAC	AGAAG	AGATA	AGATT	AGATC	AGATG	AGACA	AGACT	AGACC	AGACG	AGAGA	AGAGT	AGAGC	AGAGG
AGT	AGTAA	AGTAT	AGTAC	AGTAG	AGTTA	AGTTT	AGTTC	AGTTG	AGTCA	AGTCT	AGTCC	AGTCG	AGTGA	AGTGT	AGTGC	AGTGG
AGC	AGCAA	AGCAT	AGCAC	AGCAG	AGCTA	AGCTT	AGCTC	AGCTG	AGCCA	AGCCT	AGCCC	AGCCG	AGCGA	AGCGT	AGCGC	AGCGG
TAA	AGGAA TAAAA	AGGAT TAAAT	AGGAC TAAAC	AGGAG TAAAG	AGGTA TAATA	AGGTT TAATT	AGGTC TAATC	AGGTG TAATG	AGGCA TAACA	AGGCT TAACT	AGGCC TAACC	AGGCG TAACG	AGGGA TAAGA	AGGGT TAAGT	AGGGC TAAGC	AGGGG TAAGG
TAT	TATAA	TATAT	TATAC	TATAG	TATTA	TATTT	TATTC	TATTG	TATCA	TATCT	TATCC	TATCG	TATGA	TATGT	TATGC	TATGG
TAC	TACAA	TACAT	TACAC	TACAG	TACTA	TACTT	TACTC	TACTG	TACCA	TACCT	TACCC	TACCG	TACGA	TACGT	TACGC	TACGG
TAG	TAGAA	TAGAT	TAGAC	TAGAG	TAGTA	TAGTT	TAGTC	TAGTG	TAGCA	TAGCT	TAGCC	TAGCG	TAGGA	TAGGT	TAGGC	TAGGG
TTA	TTAAA TTTAA	TTAAT TTTAT	TTAAC TTTAC	TTAAG TTTAG	TTATA TTTTA	TTATT	TTATC TTTTC	TTATG TTTTG	TTACA TTTCA	TTACT TTTCT	TTACC TTTCC	TTACG TTTCG	TTAGA TTTGA	TTAGT TTTGT	TTAGC TTTGC	TTAGG TTTGG
TTC	TTCAA	TTCAT	TTCAC	TTCAG	TTCTA	TTCTT	TTCTC	TTCTG	TTCCA	TTCCT	TTCCC	TTCCG	TTCGA	TTCGT	TTCGC	TTCGG
TTG	TTGAA	TTGAT	TTGAC	TTGAG	TTGTA	TTGTT	TTGTC	TTGTG	TTGCA	TTGCT	TTGCC	TTGCG	TTGGA	TTGGT	TTGGC	TTGGG
TCA	TCAAA	TCAAT	TCAAC	TCAAG	TCATA	TCATT	TCATC	TCATG	TCACA	TCACT	TCACC	TCACG	TCAGA	TCAGT	TCAGC	TCAGG
TCT	TCTAA TCCAA	TCTAT TCCAT	TCTAC TCCAC	TCTAG TCCAG	TCTTA TCCTA	TCTTT TCCTT	TCTTC TCCTC	TCTTG TCCTG	TCTCA TCCCA	TCTCT TCCCT	TCTCC TCCCC	TCTCG TCCCG	TCTGA TCCGA	TCTGT TCCGT	TCTGC TCCGC	TCTGG TCCGG
TCG	TCGAA	TCGAT	TCGAC	TCGAG	TCGTA	TCGTT	TCGTC	TCGTG	TCGCA	TCGCT	TCGCC	TCGCG	TCGGA	TCGGT	TCGGC	TCGGG
TGA	TGAAA	TGAAT	TGAAC	TGAAG	TGATA	TGATT	TGATC	TGATG	TGACA	TGACT	TGACC	TGACG	TGAGA	TGAGT	TGAGC	TGAGG
TGT	TGTAA	TGTAT	TGTAC	TGTAG	TGTTA	TGTTT	TGTTC	TGTTG	TGTCA	TGTCT	TGTCC	TGTCG	TGTGA	TGTGT	TGTGC	TGTGG
TGC	TGCAA TGGAA	TGCAT TGGAT	TGCAC TGGAC	TGCAG TGGAG	TGCTA TGGTA	TGCTT TGGTT	TGCTC TGGTC	TGCTG TGGTG	TGCCA TGGCA	TGCCT TGGCT	TGCCC TGGCC	TGCCG TGGCG	TGCGA TGGGA	TGCGT TGGGT	TGCGC TGGGC	TGCGG TGGGG
CAA	CAAAA	CAAAT	CAAAC	CAAAG	CAATA	CAATT	CAATC	CAATG	CAACA	CAACT	CAACC	CAACG	CAAGA	CAAGT	CAAGC	CAAGG
CAT	CATAA	CATAT	CATAC	CATAG	CATTA	CATTT	CATTC	CATTG	CATCA	CATCT	CATCC	CATCG	CATGA	CATGT	CATGC	CATGG
CAC	CACAA	CACAT	CACAC	CACAG	CACTA	CACTT	CACTC	CACTG	CACCA	CACCT	CACCC	CACCG	CACGA	CACGT	CACGC	CACGG
CAG	CAGAA CTAAA	CAGAT CTAAT	CAGAC CTAAC	CAGAG CTAAG	CAGTA CTATA	CAGTT CTATT	CAGTC CTATC	CAGTG CTATG	CAGCA CTACA	CAGCT CTACT	CAGCC CTACC	CAGCG CTACG	CAGGA CTAGA	CAGGT CTAGT	CAGGC CTAGC	CAGGG CTAGG
CTT	CTAAA	CTTAT	CTTAC	CTTAG	CTTTA	CTTTT	CTTTC	CTTTG	CTTCA	CTTCT	CTTCC	CTTCG	CTTGA	CTTGT	CTAGC	CTTGG
CTC	CTCAA	CTCAT	CTCAC	CTCAG	CTCTA	СТСТТ	СТСТС	CTCTG	CTCCA	СТССТ	СТССС	CTCCG	CTCGA	CTCGT	CTCGC	CTCGG
CTG	CTGAA	CTGAT	CTGAC	CTGAG	CTGTA	CTGTT	CTGTC	CTGTG	CTGCA	CTGCT	CTGCC	CTGCG	CTGGA	CTGGT	CTGGC	CTGGG
CCA	CCAAA CCTAA	CCAAT CCTAT	CCAAC CCTAC	CCAAG CCTAG	CCATA CCTTA	CCATT CCTTT	CCATC CCTTC	CCATG CCTTG	CCACA CCTCA	CCACT CCTCT	CCACC CCTCC	CCACG CCTCG	CCAGA CCTGA	CCAGT CCTGT	CCAGC CCTGC	CCAGG CCTGG
CCC	CCCAA	CCCAT	CCCAC	CCCAG	CCCTA	CCCTT	CCCTC	CCCTG	CCCCA	CCCCT	CCCCC	CCCCG	CCCGA	CCCGT	CCCGC	CCCGG
	CCGAA								CCGCA			CCGCG				CCGGG
CGA	CGAAA	CGAAT	CGAAC		CGATA		CGATC	CGATG					CGAGA	CGAGT	CGAGC	
CGT	CGTAA CGCAA	CGTAT CGCAT	CGTAC CGCAC	CGTAG	CGTTA CGCTA	CGTTT CGCTT	CGTTC CGCTC	CGTTG CGCTG	CGTCA CGCCA	CGTCT CGCCT	CGTCC CGCCC	CGTCG CGCCG	CGTGA CGCGA	CGTGT CGCGT	CGTGC CGCGC	CGTGG CGCGG
CGG	CGGAA	CGCAT	CGCAC	CGCAG	CGGTA	CGGTT	CGGTC	CGGTG	CGCCA	CGGCT	CGGCC	CGGCG	CGCGA	CGCGT	CGGGC	CGGGG
GAA	GAAAA	GAAAT	GAAAC	GAAAG	GAATA	GAATT	GAATC	GAATG	GAACA	GAACT	GAACC	GAACG	GAAGA	GAAGT	GAAGC	GAAGG
GAT	GATAA	GATAT	GATAC	GATAG	GATTA	GATTT	GATTC	GATTG	GATCA	GATCT	GATCC	GATCG	GATGA	GATGT	GATGC	GATGG
GAC	GACAA GAGAA	GACAT GAGAT	GACAC GAGAC	GACAG GAGAG	GACTA GAGTA	GACTT GAGTT	GACTC GAGTC	GACTG GAGTG	GACCA GAGCA	GACCT GAGCT	GACCC GAGCC	GACCG GAGCG	GACGA GAGGA	GACGT GAGGT	GACGC GAGGC	GACGG GAGGG
GTA	GTAAA	GTAAT	GTAAC	GTAAG	GTATA	GTATT	GTATC	GTATG	GTACA	GAGCT	GTACC	GTACG	GTAGA	GTAGT	GTAGC	GTAGG
GTT	GTTAA	GTTAT	GTTAC	GTTAG	GTTTA	GTTTT	GTTTC		GTTCA	GTTCT	GTTCC	GTTCG	GTTGA	GTTGT	GTTGC	GTTGG
GTC	GTCAA	GTCAT	GTCAC	GTCAG	GTCTA	GTCTT	GTCTC	GTCTG	GTCCA	GTCCT	GTCCC	GTCCG	GTCGA	GTCGT	GTCGC	GTCGG
GTG		GTGAT	GTGAC	GTGAG	GTGTA	GTGTT		GTGTG		GTGCT	GTGCC	GTGCG	GTGGA	GTGGT	GTGGC	GTGGG
GCA	GCAAA GCTAA	GCAAT GCTAT	GCAAC GCTAC	GCAAG GCTAG	GCATA GCTTA	GCATT GCTTT	GCATC GCTTC	GCATG GCTTG	GCACA GCTCA	GCACT GCTCT	GCACC GCTCC	GCACG GCTCG	GCAGA GCTGA	GCAGT GCTGT	GCAGC GCTGC	GCAGG GCTGG
GCC	GCCAA	GCCAT	GCCAC	GCCAG	GCCTA	GCCTT	GCCTC	GCCTG	GCCCA	GCCCT	GCCCC	GCCCG	GCCGA	GCCGT	GCCGC	GCCGG
GCG	GCGAA	GCGAT	GCGAC	GCGAG	GCGTA	GCGTT	GCGTC	GCGTG	GCGCA	GCGCT	GCGCC	GCGCG	GCGGA	GCGGT	GCGGC	GCGGG
GGA	GGAAA	GGAAT	GGAAC	GGAAG	GGATA	GGATT	GGATC	GGATG	GGACA	GGACT	GGACC	GGACG	GGAGA	GGAGT	GGAGC	GGAGG
GGT	GGTAA GGCAA	GGTAT GGCAT	GGTAC GGCAC	GGTAG GGCAG	GGTTA GGCTA	GGTTT GGCTT	GGTTC GGCTC	GGTTG GGCTG	GGTCA GGCCA	GGTCT GGCCT	GGTCC GGCCC	GGTCG GGCCG	GGTGA GGCGA	GGTGT GGCGT	GGTGC GGCGC	GGTGG GGCGG
GGG	GGGAA	GGGAT	GGGAC		GGGTA	GGGTT	GGGTC				GGGCC	GGGCG	GGGGA	GGGGT		GGGGG

Before filtering: read2: overrepresented sequences

overrepresented sequence	count (% of bases)	distribution: cycle 1 ~ cycle 151
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	10218 (0.024237%)	
AAAATGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	26622 (0.063147%)	
AAATGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	5980 (0.014184%)	
AACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	25390 (0.060224%)	

AAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGGGGGGG	40 (0.000095%)	
AAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTC	213 (0.000505%)	
AAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGGGGGG	58 (0.000138%)	
AAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGGGGTG	34 (0.000081%)	
AAGATGTGTATAAGAGACAG	346094 (0.410463%)	
AATGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3669 (0.008703%)	
ACACACACACACACACACACACACACACACACA	2132 (0.005057%)	
AC	50726 (0.120321%)	
ACACACACACACACACACACACACACACACACACACAC	182 (0.001079%)	
AC	1494 (0.003544%)	
ACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	45731 (0.108473%)	
ACCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	23554 (0.055870%)	
ACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	1507 (0.003575%)	
ACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	20874 (0.049513%)	
ACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	30250 (0.071752%)	
AG	11004 (0.026101%)	
AGAGATGTGTATAAGAGACA	114506 (0.135803%)	
AGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGGGGGGG	18 (0.000043%)	
AGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCG	83 (0.000197%)	
AGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGGGGGGG	14 (0.000033%)	
AGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGGGGTGG	11 (0.000026%)	
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTC	105355 (0.249899%)	
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTC	58965 (0.139864%)	
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTATATCTC	50938 (0.120824%)	
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTATTTCTC	36655 (0.086945%)	
AGATGTGTATAAGAGACACACACACACACACACACACACA	18849 (0.044709%)	
AGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	24246 (0.057511%)	
AGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCC	276 (0.000655%)	
AGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGGGGGGGGC	26 (0.000062%)	
AGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	66143 (0.156890%)	
AGGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	25302 (0.060016%)	
ATACACATCTAGATGTGTATAAGAGACAGCACACACAC	161 (0.000382%)	
ATACCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	16474 (0.039076%)	
ATCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	17659 (0.041887%)	

ATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGG	687 (0.001630%)	
ATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGG	208 (0.000493%)	
ATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTATATCTCGG	221 (0.000524%)	
ATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTATTTCTCGG	58 (0.000138%)	
ATCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	47838 (0.113471%)	
ATGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	23649 (0.056095%)	
ATGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	8667 (0.020558%)	
ATTTCTCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	23 (0.000136%)	
CACACACACACACACACACACACACACACACACACACA	17607 (0.041763%)	
CACACACACACACACACACACACACACACACACACACA	243 (0.001441%)	
CACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	18648 (0.044233%)	
CAGATGTGTATAAGAGACAG	217594 (0.258064%)	
CCAGATGTGTATAAGAGACA	109741 (0.130151%)	
CCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	58647 (0.139109%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	696 (0.001651%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	1421 (0.003371%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	1900 (0.004507%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	307 (0.000728%)	
CGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGGG	21 (0.000050%)	
CGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTG	53 (0.000126%)	
CGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGGG	6 (0.000014%)	
CGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGTG	17 (0.000040%)	
CGGAAGAGCGTCGTGTAGGGAAAGAGTGTATATCTCGGTG	17 (0.000040%)	
CGGAAGAGCGTCGTGTAGGGAAAGAGTGTATTTCTCGGGG	6 (0.000014%)	
CGGAAGAGCGTCGTGTAGGGAAAGAGTGTATTTCTCGGTG	11 (0.000026%)	
CGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	36 (0.000213%)	
CGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	21402 (0.050765%)	
CGGGTCATTAAAAAAGGGGGGGGGGGGGGGGGGGGGGGG	5188 (0.030765%)	
CGGGTCATTTAAAAGGGGGGGGGGGGGGGGGGGGGGGGG	2178 (0.012915%)	
CGGGTGAGTAAAAAGGGGGGGGGGGGGGGGGGGGGGGGG	518 (0.003072%)	
CGGGTGATTAAAAAAGGGGGGGGGGGGGGGGGGGGGGGG	4105 (0.024342%)	
CGGGTGATTTAAAAGGGGGGGGGGGGGGGGGGGGGGGGG	1249 (0.007406%)	
CGGTGGGGGCCGGGTGATTAAAAAGGGGGGGGGGGGGGG	13 (0.000077%)	

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		
CGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	7 (0.000042%)	
CGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	24 (0.000142%)	
CGGTGGTGGCCGGGTGATTAAAAAGGGGGGGGGGGGGGG	6 (0.000036%)	
CGGTGGTGGCCGGGTCATTAAAAAGGGGGGGGGGGGGGG	23 (0.000136%)	
CGGTTGATTAAAAAGGGGGGGGGGGGGGGGGGGGGGGGG	933 (0.005533%)	
CGTCGTGTAGGGAAAGAGTGTAGTTCTCGGGGGGGGGGG	47 (0.000111%)	
CTCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	25060 (0.059442%)	
стстстстстстстстстстстстстстст	7388 (0.017524%)	
CTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	19590 (0.046467%)	
CTCTTATACACATCTAGATGTGTATAAGAGACAGCACACA	91 (0.000216%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAA	1289 (0.003057%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAC	3422 (0.008117%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAG	1760 (0.004175%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAT	3993 (0.009471%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCA	465 (0.001103%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCC	262 (0.000621%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCT	274 (0.000650%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGA	255 (0.000605%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGC	328 (0.000778%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGG	313 (0.000742%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGT	593 (0.001407%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGTC	1898 (0.004502%)	
CTGTCTCTTATACACATCTC	355414 (0.421517%)	
CTGTCTCTTATACACATCTG	297770 (0.353152%)	
CTGTCTCTTATACACATCTT	312084 (0.370128%)	
CTTATACACATCTAGATGTGTATAAGAGACAGCACACACA	60 (0.000142%)	
GAAAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	9637 (0.022859%)	
GAAAGAGTGTATTTCTCGGGGGGGGGGGGGGGGGGGGGG	612 (0.003629%)	
GAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGGGGG	80 (0.000190%)	
GAAGAGCGTCGTGTAGGAAAGAGTGTAGATCTCGGTGGG	144 (0.000342%)	
GAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGT	348 (0.000825%)	
GAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGGGGGG	91 (0.000216%)	
GAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGGGGGT	53 (0.000126%)	

GAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGTGGG	124 (0.000294%)	
GAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGTGGT	90 (0.000213%)	
GAAGAGCGTCGTGTAGGGAAAGAGTGTATTTCTCGGTGGG	53 (0.000126%)	
GACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	25199 (0.059771%)	
GA	10232 (0.024270%)	
GAGATGTGTATAAGAGACAG	129152 (0.153173%)	
GAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGC	73 (0.000173%)	
GAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGGGGGGGG	10 (0.000024%)	
GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCG	167 (0.000396%)	
GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCG	85 (0.000202%)	
GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTATATCTCG	105 (0.000249%)	
GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTATTTCTCG	53 (0.000126%)	
GATGTGTATAAGAGACAGCACACACACACACACACACACA	150 (0.000356%)	
GCACACACACACACACACACACACACACACACACACACA	20823 (0.049392%)	
GCCGGGGGATTAAAAAGGGGGGGGGGGGGGGGGGGGGGG	82 (0.000486%)	
GCCGGGTCATTAAAAAGGGGGGGGGGGGGGGGGGGGGGG	2420 (0.014350%)	
GCCGGGTCATTTAAAAGGGGGGGGGGGGGGGGGGGGGGG	313 (0.001856%)	
GCCGGGTGATTAAAAAGGGGGGGGGGGGGGGGGGGGGGG	483 (0.002864%)	
GCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	50401 (0.119550%)	
GCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCG	158 (0.000375%)	
GCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGGGGGGGGCG	11 (0.000026%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	2499 (0.005928%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	4927 (0.011687%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	7663 (0.018176%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	1298 (0.003079%)	
GGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGGGG	66 (0.000157%)	
GGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGG	264 (0.000626%)	
GGAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGGGG	61 (0.000145%)	
GGAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGTGG	90 (0.000213%)	
GGAAGAGCGTCGTGTAGGGAAAGAGTGTATATCTCGGTGG	115 (0.000273%)	
GGAAGAGCGTCGTGTAGGGAAAGAGTGTATTTCTCGGGGG	44 (0.000104%)	
GGAAGAGCGTCGTGTAGGGAAAGAGTGTATTTCTCGGTGG	44 (0.000104%)	
GGCCGGGGGATTAAAAAGGGGGGGGGGGGGGGGGGGGGG	428 (0.002538%)	

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		
GGCCGGGTCATTAAAAAGGGGGGGGGGGGGGGGGGGGGG	2855 (0.016930%)	
GGCCGGGTCATTTAAAAGGGGGGGGGGGGGGGGGGGGGG	1224 (0.007258%)	
GGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	115 (0.000682%)	
GGCGGGTCATTAAAAAAGGGGGGGGGGGGGGGGGGGGGG	630 (0.003736%)	
GGCGGGTCATTAAAAAGGGGGGGGGGGGGGGGGGGGGGG	1172 (0.006950%)	
GGCGGGTGAGTAAAAAGGGGGGGGGGGGGGGGGGGGGGG	87 (0.000516%)	
GGCGGGTGATTAAAAAGGGGGGGGGGGGGGGGGGGGGGG	503 (0.002983%)	
GGCGGGTGATTTAAAAGGGGGGGGGGGGGGGGGGGGGGG	198 (0.001174%)	
GGCGGTTGATTAAAAAGGGGGGGGGGGGGGGGGGGGGGG	199 (0.001180%)	
GGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	18662 (0.044266%)	
GGGCGGGGGATTAAAAAGGGGGGGGGGGGGGGGGGGGGG	1316 (0.007804%)	
GGGCGGGTCATTAAAAAAGGGGGGGGGGGGGGGGGGGGG	979 (0.005805%)	
GGGCGGGTGAGTAAAAAGGGGGGGGGGGGGGGGGGGGGG	910 (0.005396%)	
GGGCGGGTGATTAAAAAGGGGGGGGGGGGGGGGGGGGGG	2436 (0.014445%)	
GGGCGGGTGATTTAAAAGGGGGGGGGGGGGGGGGGGGGG	1434 (0.008504%)	
GGGCGGTTGATTAAAAAGGGGGGGGGGGGGGGGGGGGGG	1952 (0.011575%)	
GGGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	22736 (0.053929%)	
GGGGCCGGGTGATTAAAAAGGGGGGGGGGGGGGGGGGGG	5 (0.000030%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	44 (0.000261%)	
GGGGGCCGGGTGATTAAAAAGGGGGGGGGGGGGGGGGGG	753 (0.004465%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3 (0.000018%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3 (0.000018%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	9 (0.000053%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	7 (0.000042%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	527 (0.003125%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3129 (0.018555%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3045 (0.018057%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	96 (0.000569%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	36 (0.000213%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	62 (0.000368%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	114 (0.000676%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	172 (0.001020%)	

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	449 (0.002663%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	540 (0.003202%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	678 (0.004020%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1046 (0.006203%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	951 (0.005639%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1311 (0.007774%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	21 (0.000125%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2238 (0.013271%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1106432 (2.624430%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	11841 (0.070216%)	
GGGGGGG	9584 (0.084680%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	5769 (0.013684%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	4623 (0.027414%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	610 (0.003617%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	772 (0.004578%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1301 (0.007715%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1646 (0.009761%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3184 (0.018881%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	60 (0.000356%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3677 (0.021804%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3166 (0.018774%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	42 (0.000249%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	643 (0.003813%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3113 (0.018460%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	710 (0.004210%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	34 (0.000202%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	484 (0.002870%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2132 (0.012643%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	529 (0.003137%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1605 (0.009518%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	348 (0.002064%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1106 (0.006559%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2713 (0.016088%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	331 (0.001963%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	927 (0.005497%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	158 (0.000937%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	254 (0.001506%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	642 (0.003807%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	113 (0.000670%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	164 (0.000973%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	395 (0.002342%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	82 (0.000486%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	105 (0.000623%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	378 (0.002242%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	107 (0.000635%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	218 (0.001293%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	39 (0.000231%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	284 (0.001684%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	307 (0.001820%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	526 (0.003119%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	691 (0.004098%)	
GGGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1224 (0.007258%)	
GGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1682 (0.009974%)	
GGGTCATTAAAAAAGGGGGGGGGGGGGGGGGGGGGGGGG	75 (0.000445%)	
GGGTCATTAAAAAGGGGGGGGGGGGGGGGGGGGGGGGGG	168 (0.000996%)	
GGGTCATTTAAAAGGGGGGGGGGGGGGGGGGGGGGGGGG	96 (0.000569%)	
GGGTGAGTAAAAAGGGGGGGGGGGGGGGGGGGGGGGGGG	48 (0.000285%)	
GGGTGATTAAAAAAGGGGGGGGGGGGGGGGGGGGGGGG	117 (0.000694%)	
GGGTGATTAAAAAGGGGGGGGGGGGGGGGGGGGGGGGG	300 (0.001779%)	
GGGTGATTTAAAAGGGGGGGGGGGGGGGGGGGGGGGGG	252 (0.001494%)	
GGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3500 (0.020755%)	
GGTGGCCGGGTCATTAAAAAGGGGGGGGGGGGGGGGGGG	2174 (0.012892%)	
GGTGGCCGGGTGATTAAAAAGGGGGGGGGGGGGGGGGGG	443 (0.002627%)	
GGTGGGCGGGTCATTAAAAAGGGGGGGGGGGGGGGGGGG	939 (0.005568%)	
GGTGGGGGCCGGGTGATTAAAAAGGGGGGGGGGGGGGGG	13 (0.000077%)	
GGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	17 (0.000101%)	

GGGGGGGGGGGGGGGGGGGGGG		
GGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	62 (0.000368%)	
GGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	46 (0.000273%)	
GGTGGTGGCCGGGTGATTAAAAAGGGGGGGGGGGGGGGG	10 (0.000059%)	
GGTGGTGGGCGGGTCATTAAAAAGGGGGGGGGGGGGGGG	16 (0.000095%)	
GGTTGATTAAAAAGGGGGGGGGGGGGGGGGGGGGGGGG	156 (0.000925%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGCACA	144 (0.000342%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGT	137 (0.000325%)	
GTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	39143 (0.092846%)	
GTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	14792 (0.035086%)	
GTGGCCGGGTCATTAAAAAGGGGGGGGGGGGGGGGGGGG	6 (0.000036%)	
GTGGCCGGGTGATTAAAAAGGGGGGGGGGGGGGGGGGGG	3 (0.000018%)	
GTGGGCGGGTCATTAAAAAGGGGGGGGGGGGGGGGGGGG	3 (0.000018%)	
GTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	73 (0.000433%)	
GTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	2296 (0.005446%)	
GTGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	4982 (0.029543%)	
GTGTGTGCTCTCTTATACACATCTAGATGTGTATAAGA	1921 (0.004557%)	
GTGTGTGTGTCTCTTATACACATCTAGATGTGTATAA	2913 (0.006910%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGA	1542 (0.003658%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	36160 (0.085771%)	
GTGTTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1753 (0.010395%)	
GTTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2433 (0.014428%)	
GTTTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3182 (0.018869%)	
TACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	16238 (0.038516%)	
TATACACATCTAGATGTGTATAAGAGACAGCACACACA	103 (0.000244%)	
TCACACACACACACACACACACACACACACACACACACA	17047 (0.040435%)	
TCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	30866 (0.073213%)	
TCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGG	10 (0.000024%)	
TCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGT	18 (0.000043%)	
TCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTCGGT	6 (0.000014%)	
TCGGAAGAGCGTCGTGTAGGGAAAGAGTGTATATCTCGGT	6 (0.000014%)	
TCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	310 (0.001838%)	
TCGGTGGGGGCCGGGTGATTAAAAAGGGGGGGGGGGGGG	39 (0.000231%)	

TCGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	585 (0.003469%)	
TCGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	165 (0.000978%)	
TCGGTGGTGGCCGGGTGATTAAAAAGGGGGGGGGGGGGG	44 (0.000261%)	
TCGGTGGTGGGCGGGTCATTAAAAAGGGGGGGGGGGGGG	93 (0.000551%)	
TCTCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	649 (0.003849%)	
TCTCGGTGGGGGCCGGGTGATTAAAAAGGGGGGGGGGGG	731 (0.004335%)	
TCTCGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	462 (0.002740%)	
TCTCGGTGGTGGCCGGGTGATTAAAAAGGGGGGGGGGGG	500 (0.002965%)	
TCTCGGTGGTGGGCGGGTCATTAAAAAGGGGGGGGGGGG	1051 (0.006232%)	
тстстстстстстстстстстстстстстстс	10129 (0.024026%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGCACAC	74 (0.000176%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTG	37 (0.000088%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	181 (0.000429%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	403 (0.000956%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	583 (0.001383%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGCACACAC	49 (0.000116%)	
TGAGATGTGTATAAGAGACA	143977 (0.170755%)	
TGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	27467 (0.065151%)	
TGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1513 (0.008972%)	
TGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	114 (0.000676%)	
TGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3075 (0.018235%)	
TGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2741 (0.016254%)	
TGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2130 (0.012631%)	
TGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	4342 (0.025748%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCAC	299 (0.000709%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCAT	99 (0.000235%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCC	101 (0.000240%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCT	98 (0.000232%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCTC	142 (0.000337%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGAG	127 (0.000301%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGCA	77 (0.000183%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGA	70 (0.000166%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGC	109 (0.000259%)	

TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGG	83 (0.000197%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGT	109 (0.000259%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTA	143 (0.000339%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTC	123 (0.000292%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTG	345 (0.000818%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTT	117 (0.000278%)	
TGTCTCTTATACACATCTCA	1066 (0.001264%)	
TGTCTCTTATACACATCTCT	911 (0.001080%)	
TGTCTCTTATACACATCTGG	710 (0.000842%)	
TGTCTCTTATACACATCTGT	756 (0.000897%)	
TGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	10101 (0.023959%)	
TGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	5635 (0.033415%)	
TGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAG	3726 (0.008838%)	
TGTGTGTGTCTCTTATACACATCTAGATGTGTATAAG	1650 (0.003914%)	
TGTGTGTGTGTCTCTTATACACATCTAGATGTGTATA	21153 (0.050174%)	
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	51013 (0.121002%)	
TGTTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2182 (0.012939%)	
TTATACACATCTAGATGTGTATAAGAGACAGCACACAC	59 (0.000140%)	
TTCTCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	715 (0.004240%)	
TTCTCGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1073 (0.006363%)	
TTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	16181 (0.038381%)	
TTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	28 (0.000166%)	
TTTCTCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	109 (0.000646%)	
TTTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	13 (0.000077%)	
TTTTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2100 (0.012453%)	
TTTTTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	5536 (0.032828%)	

After filtering

After filtering: read1: quality

After filtering: read1: base contents

After filtering: read1: KMER counting

Darker background means larger counts. The count will be shown on mouse over.

	AA	AT	AC	AG	TA	TT	TC	TG	CA	CT	CC	CG	GA	GT	GC	GG
١.	AAAAA	AAAAT	AAAAC	AAAAG	AAATA	AAATT	AAATC	AAATG	AAACA	AAACT	AAACC	AAACG	AAAGA	AAAGT	AAAGC	AAA
	AATAA	AATAT	AATAC	AATAG	AATTA	AATTT	AATTC	AATTG	AATCA	AATCT	AATCC	AATCG	AATGA	AATGT	AATGC	AA
	AACAA	AACAT	AACAC	AACAG	AACTA	AACTT	AACTC	AACTG	AACCA	AACCT	AACCC	AACCG	AACGA	AACGT	AACGC	AA(
; 	AAGAA	AAGAT	AAGAC	AAGAG	AAGTA	AAGTT	AAGTC	AAGTG	AAGCA	AAGCT	AAGCC	AAGCG	AAGGA	AAGGT	AAGGC	AA(
	ATAAA	ATAAT	ATAAC	ATAAG	ATATA	ATATT	ATATC	ATATG	ATACA	ATACT	ATACC	ATACG	ATAGA	ATAGT	ATAGC	ATA
	ATTAA	ATTAT	ATTAC	ATTAG	ATTTA	ATTTT	ATTTC	ATTTG	ATTCA	ATTCT	ATTCC	ATTCG	ATTGA	ATTGT	ATTGC	ATT
	ATCAA	ATCAT	ATCAC	ATCAG	ATCTA	ATCTT	ATCTC	ATCTG	ATCCA	ATCCT	ATCCC	ATCCG	ATCGA	ATCGT	ATCGC	ATO
;	ATGAA	ATGAT	ATGAC	ATGAG	ATGTA	ATGTT	ATGTC	ATGTG	ATGCA	ATGCT	ATGCC	ATGCG	ATGGA	ATGGT	ATGGC	ATO
À	ACAAA	ACAAT	ACAAC	ACAAG	ACATA	ACATT	ACATC	ACATG	ACACA	ACACT	ACACC	ACACG	ACAGA	ACAGT	ACAGC	ACA
	ACTAA	ACTAT	ACTAC	ACTAG	ACTTA	ACTTT	ACTTC	ACTTG	ACTCA	ACTCT	ACTCC	ACTCG	ACTGA	ACTGT	ACTGC	AC
	ACCAA	ACCAT	ACCAC	ACCAG	ACCTA	ACCTT	ACCTC	ACCTG	ACCCA	ACCCT	ACCCC	ACCCG	ACCGA	ACCGT	ACCGC	ACC
						-			-							
	ACGAA	ACGAT	ACGAC	ACGAG	ACGTA	ACGTT	ACGTC	ACGTG	ACGCA	ACGCT	ACGCC	ACGCG	ACGGA	ACGGT	ACGGC	ACC
١.	AGAAA	AGAAT	AGAAC	AGAAG	AGATA	AGATT	AGATC	AGATG	AGACA	AGACT	AGACC	AGACG	AGAGA	AGAGT	AGAGC	AGA
	AGTAA	AGTAT	AGTAC	AGTAG	AGTTA	AGTTT	AGTTC	AGTTG	AGTCA	AGTCT	AGTCC	AGTCG	AGTGA	AGTGT	AGTGC	AG
	AGCAA	AGCAT	AGCAC	AGCAG	AGCTA	AGCTT	AGCTC	AGCTG	AGCCA	AGCCT	AGCCC	AGCCG	AGCGA	AGCGT	AGCGC	AGO
3 	AGGAA	AGGAT	AGGAC	AGGAG	AGGTA	AGGTT	AGGTC	AGGTG	AGGCA	AGGCT	AGGCC	AGGCG	AGGGA	AGGGT	AGGGC	AGO
4	TAAAA	TAAAT	TAAAC	TAAAG	TAATA	TAATT	TAATC	TAATG	TAACA	TAACT	TAACC	TAACG	TAAGA	TAAGT	TAAGC	TA
	TATAA	TATAT	TATAC	TATAG	TATTA	TATTT	TATTC	TATTG	TATCA	TATCT	TATCC	TATCG	TATGA	TATGT	TATGC	TAT
	TACAA	TACAT	TACAC	TACAG	TACTA	TACTT	TACTC	TACTG	TACCA	TACCT	TACCC	TACCG	TACGA	TACGT	TACGC	TAC
G .	TAGAA	TAGAT	TAGAC	TAGAG	TAGTA	TAGTT	TAGTC	TAGTG	TAGCA	TAGCT	TAGCC	TAGCG	TAGGA	TAGGT	TAGGC	TAC
A	TTAAA	TTAAT	TTAAC	TTAAG	TTATA	TTATT	TTATC	TTATG	TTACA	TTACT	TTACC	TTACG	TTAGA	TTAGT	TTAGC	TT
r I	TTTAA	TTTAT	TTTAC	TTTAG	TTTTA	TTTTT	TTTTC	TTTTG	TTTCA	TTTCT	TTTCC	TTTCG	TTTGA	TTTGT	TTTGC	
	TTCAA	TTCAT	TTCAC	TTCAG	TTCTA		ттстс	TTCTG	TTCCA	TTCCT	TTCCC	TTCCG	TTCGA	TTCGT	TTCGC	
_=						TTCTT										
3	TTGAA	TTGAT	TTGAC	TTGAG	TTGTA	TTGTT	TTGTC	TTGTG	TTGCA	TTGCT	TTGCC	TTGCG	TTGGA	TTGGT	TTGGC	TTC
Α	TCAAA	TCAAT	TCAAC	TCAAG	TCATA	TCATT	TCATC	TCATG	TCACA	TCACT	TCACC	TCACG	TCAGA	TCAGT	TCAGC	TCA
Г	TCTAA	TCTAT	TCTAC	TCTAG	TCTTA	TCTTT	ТСТТС	TCTTG	TCTCA	TCTCT	TCTCC	TCTCG	TCTGA	TCTGT	TCTGC	TCT
	TCCAA	TCCAT	TCCAC	TCCAG	TCCTA	TCCTT	ТССТС	TCCTG	TCCCA	TCCCT	ТСССС	TCCCG	TCCGA	TCCGT	TCCGC	TC
3 	TCGAA	TCGAT	TCGAC	TCGAG	TCGTA	TCGTT	TCGTC	TCGTG	TCGCA	TCGCT	TCGCC	TCGCG	TCGGA	TCGGT	TCGGC	TCC
۱ ا	TGAAA	TGAAT	TGAAC	TGAAG	TGATA	TGATT	TGATC	TGATG	TGACA	TGACT	TGACC	TGACG	TGAGA	TGAGT	TGAGC	TGA
	TGTAA	TGTAT	TGTAC	TGTAG	TGTTA	TGTTT	TGTTC	TGTTG	TGTCA	TGTCT	TGTCC	TGTCG	TGTGA	TGTGT	TGTGC	TGT
	TGCAA	TGCAT	TGCAC	TGCAG	TGCTA	TGCTT	TGCTC	TGCTG	TGCCA	TGCCT	TGCCC	TGCCG	TGCGA	TGCGT	TGCGC	TGO
3	TGGAA	TGGAT	TGGAC	TGGAG	TGGTA	TGGTT	TGGTC	TGGTG	TGGCA	TGGCT	TGGCC	TGGCG	TGGGA	TGGGT	TGGGC	TGO
A	CAAAA	CAAAT	CAAAC	CAAAG	CAATA	CAATT	CAATC	CAATG	CAACA	CAACT	CAACC	CAACG	CAAGA	CAAGT	CAAGC	CAA
r I	CATAA	CATAT	CATAC	CATAG	CATTA	CATTT	CATTC	CATTG	CATCA	CATCT	CATCC	CATCG	CATGA	CATGT	CATGC	CAT
_=									-	CATCT					CACGC	CAC
	CACAA	CACAT	CACAC	CACAG	CACTA	CACTT	CACTC	CACTG	CACCA		CACCC	CACCG	CACGA	CACGT		
G	CAGAA	CAGAT	CAGAC	CAGAG	CAGTA	CAGTT	CAGTC	CAGTG	CAGCA	CAGCT	CAGCC	CAGCG	CAGGA	CAGGT	CAGGC	CAC
4	CTAAA	CTAAT	CTAAC	CTAAG	CTATA	CTATT	CTATC	CTATG	CTACA	CTACT	CTACC	CTACG	CTAGA	CTAGT	CTAGC	CT/
Г	CTTAA	CTTAT	CTTAC	CTTAG	CTTTA	CTTTT	СТТТС	CTTTG	CTTCA	СТТСТ	CTTCC	CTTCG	CTTGA	CTTGT	CTTGC	CTI
	CTCAA	CTCAT	CTCAC	CTCAG	CTCTA	СТСТТ	СТСТС	CTCTG	CTCCA	CTCCT	СТССС	CTCCG	CTCGA	CTCGT	CTCGC	CT(
G 📗	CTGAA	CTGAT	CTGAC	CTGAG	CTGTA	CTGTT	CTGTC	CTGTG	CTGCA	CTGCT	CTGCC	CTGCG	CTGGA	CTGGT	CTGGC	CTO
Α 📗	CCAAA	CCAAT	CCAAC	CCAAG	CCATA	CCATT	CCATC	CCATG	CCACA	CCACT	CCACC	CCACG	CCAGA	CCAGT	CCAGC	CCA
Г	CCTAA	CCTAT	CCTAC	CCTAG	CCTTA	CCTTT	ссттс	CCTTG	CCTCA	ССТСТ	ССТСС	CCTCG	CCTGA	CCTGT	CCTGC	CCT
	CCCAA	CCCAT	CCCAC	CCCAG	CCCTA	CCCTT	CCCTC	CCCTG	CCCCA	CCCCT	CCCCC	CCCCG	CCCGA	CCCGT	CCCGC	CCC
G	CCGAA	CCGAT	CCGAC	CCGAG	CCGTA	CCGTT	CCGTC	CCGTG	CCGCA	CCGCT	CCGCC	CCGCG	CCGGA	CCGGT	CCGGC	
A	CGAAA	CGAAT	CGAAC	CGAAG	CGATA	CGATT	CGATC	CGATG	CGACA	CGACT	CGACC	CGACG	CGAGA	CGAGT	CGAGC	CGA
Γ												CGTCG			CGTGC	
	CGCAA	CCCAT	CCCAC	CGTAG	CCCTA	CGTTT	CGTTC	CGTTG	CGTCA	CGTCT	CGTCC		CGTGA	CGTGT		CGT
	CGCAA	CGCAT	CGCAC	CGCAG	CGCTA	CGCTT	CGCTC	CGCTG	CGCCA	CGCCT	CGCCC	CGCCG	CGCGA	CGCGT	CGCGC	CGC
	CGGAA	CGGAT	CGGAC	CGGAG	CGGTA	CGGTT	CGGTC	CGGTG	CGGCA	CGGCT	CGGCC	CGGCG	CGGGA	CGGGT	CGGGC	CGC
A	GAAAA	GAAAT	GAAAC	GAAAG	GAATA	GAATT	GAATC	GAATG	GAACA	GAACT	GAACC	GAACG	GAAGA	GAAGT	GAAGC	GA/
	GATAA	GATAT	GATAC	GATAG	GATTA	GATTT	GATTC	GATTG	GATCA	GATCT	GATCC	GATCG	GATGA	GATGT	GATGC	GA
	GACAA	GACAT	GACAC	GACAG	GACTA	GACTT	GACTC	GACTG	GACCA	GACCT	GACCC	GACCG	GACGA	GACGT	GACGC	GA
; 	GAGAA	GAGAT	GAGAC	GAGAG	GAGTA	GAGTT	GAGTC	GAGTG	GAGCA	GAGCT	GAGCC	GAGCG	GAGGA	GAGGT	GAGGC	GA(
4	GTAAA	GTAAT	GTAAC	GTAAG	GTATA	GTATT	GTATC	GTATG	GTACA	GTACT	GTACC	GTACG	GTAGA	GTAGT	GTAGC	GT/
	GTTAA	GTTAT	GTTAC	GTTAG	GTTTA	GTTTT	GTTTC	GTTTG	GTTCA	GTTCT	GTTCC	GTTCG	GTTGA	GTTGT	GTTGC	GTT
	GTCAA	GTCAT	GTCAC	GTCAG	GTCTA	GTCTT	GTCTC	GTCTG	GTCCA	GTCCT	GTCCC	GTCCG	GTCGA	GTCGT	GTCGC	GTO
3	GTGAA	GTGAT	GTGAC	GTGAG	GTGTA	GTGTT	GTGTC	GTGTG	GTGCA	GTGCT	GTGCC	GTGCG	GTGGA	GTGGT	GTGGC	GTO
1	GCAAA	GCAAT	GCAAC	GCAAG	GCATA	GCATT	GCATC		GCACA	GCACT	GCACC	GCACG	GCAGA	GCAGT	GCAGC	GCA
							•	GCATG								
	GCTAA	GCTAT	GCTAC	GCTAG	GCTTA	GCTTT	GCTTC	GCTTG	GCTCA	GCTCT	GCTCC	GCTCG	GCTGA	GCTGT	GCTGC	GCT
C	GCCAA	GCCAT	GCCAC	GCCAG	GCCTA	GCCTT	GCCTC	GCCTG	GCCCA	GCCCT	GCCCC	GCCCG	GCCGA	GCCGT	GCCGC	GCC
G	GCGAA	GCGAT	GCGAC	GCGAG	GCGTA	GCGTT	GCGTC	GCGTG	GCGCA	GCGCT	GCGCC	GCGCG	GCGGA	GCGGT	GCGGC	GCC
4 📗	GGAAA	GGAAT	GGAAC	GGAAG	GGATA	GGATT	GGATC	GGATG	GGACA	GGACT	GGACC	GGACG	GGAGA	GGAGT	GGAGC	GGA
T	GGTAA	GGTAT	GGTAC	GGTAG	GGTTA	GGTTT	GGTTC	GGTTG	GGTCA	GGTCT	GGTCC	GGTCG	GGTGA	GGTGT	GGTGC	GGT
-		GGCAT	GGCAC	GGCAG	GGCTA	GGCTT	GGCTC	GGCTG	GGCCA	GGCCT	GGCCC	GGCCG	GGCGA	GGCGT	GGCGC	GGC
	GGCAA	UUCAL	UUCAC.													

After filtering: read1: overrepresented sequences

overrepresented sequence	count (% of bases)	distribution: cycle 1 ~ cycle 151
AAAGATGTGTATAAGAGACA	82577 (0.113170%)	
AAGATGTGTATAAGAGACAG	142516 (0.195314%)	
AAGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	17095 (0.046856%)	
ACACACACACACACACACACACACACACACACACA	1655 (0.004536%)	
AC	47647 (0.130598%)	
AC	1316 (0.003607%)	

ACACACACACACACACACCTGTCTCTTATACACATC	14714 (0.040330%)	
ACACACACACCTGTCTCTTATACACATCTAGATGTGTA	10869 (0.029791%)	
ACACACACCTGTCTCTTATACACATCTAGATGTGTATA	1230 (0.003371%)	
ACACACCTGTCTCTTATACACATCTAGATGTGTATAAG	1593 (0.004366%)	
ACACACCTGTCTCTTATACACATCTAGATGTGTATAAGAG	3323 (0.009108%)	
ACACATCTAGATGTGTATAAGAGACAGCACACACACAC	149 (0.000408%)	
ACACATCTAGATGTGTATAAGAGACAGGTGTGTGTGTGTG	114 (0.000312%)	
ACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	20423 (0.055978%)	
ACAGATGTGTATAAGAGACA	93125 (0.127625%)	
ACATCTAGATGTGTATAAGAGACAGGTGTGTGTGTGTG	174 (0.000477%)	
ACCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	26441 (0.072473%)	
ACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	30505 (0.083613%)	
ACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	15135 (0.041484%)	
ACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	22258 (0.061008%)	
AG	10439 (0.028613%)	
AGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	271 (0.001857%)	
AGATGTGTATAAGAGACAGCACACACACACACACACACAC	16008 (0.043877%)	
AGATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTG	13677 (0.037488%)	
AGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	27759 (0.076086%)	
AGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	30239 (0.082884%)	
AGGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	28046 (0.076873%)	
ATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTGTG	55 (0.000151%)	
ATACACATCTAGATGTGTATAAGAGACAGCACACACAC	163 (0.000447%)	
ATACACATCTAGATGTGTATAAGAGACAGGTGTGTGTGT	133 (0.000365%)	
ATCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	19572 (0.053646%)	
ATCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	37008 (0.101437%)	
ATGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	27518 (0.075425%)	
ATGTGTATAAGAGACAGCACACACACACACACACACACAC	145 (0.000397%)	
ATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTG	115 (0.000315%)	
ATGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	16401 (0.044954%)	
CAAGATGTGTATAAGAGACA	105762 (0.144944%)	
CACACACACACACACACACACACACACACACAAA	914 (0.002505%)	
CACACACACACACACACACACACACACACACACACA	15905 (0.043595%)	
CACACACACACACACACCTGTCTCTTATACACATCT	1794 (0.004917%)	

CACACACACCTGTCTCTTATACACATCTAGATGTGTAT	1514 (0.004150%)	
CACACACCTGTCTCTTATACACATCTAGATGTGTATAA	1226 (0.003360%)	
CACACACCTGTCTCTTATACACATCTAGATGTGTATAAGA	2568 (0.007039%)	
CACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	5941 (0.016284%)	
CACATCTAGATGTGTATAAGAGACAGGTGTGTGTGTGT	133 (0.000365%)	
CACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	21127 (0.057908%)	
CAGATGTGTATAAGAGACAG	113028 (0.154902%)	
CATCTAGATGTGTATAAGAGACAGGTGTGTGTGTGTGT	151 (0.000414%)	
CCAGATGTGTATAAGAGACA	103373 (0.141670%)	
CCCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	21814 (0.059791%)	
CCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	42989 (0.117831%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	774 (0.002121%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	1760 (0.004824%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	2430 (0.006661%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	398 (0.001091%)	
CTCACACACACACACACACACACACACACACACACA	11921 (0.032675%)	
стстстстстстстстстстстстстстст	4865 (0.013335%)	
CTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	22256 (0.061003%)	
CTCTTATACACATCTAGATGTGTATAAGAGACAGCACACA	96 (0.000263%)	
CTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTGT	49 (0.000134%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAC	2718 (0.007450%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAT	3101 (0.008500%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCA	584 (0.001601%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCC	345 (0.000946%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCT	319 (0.000874%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGA	319 (0.000874%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGC	343 (0.000940%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGG	444 (0.001217%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGT	814 (0.002231%)	
CTGTCTCTTATACACATCTC	370290 (0.507473%)	
CTGTCTCTTATACACATCTG	318051 (0.435881%)	
CTGTCTCTTATACACATCTT	331418 (0.454200%)	
CTTATACACATCTAGATGTGTATAAGAGACAGCACACACA	58 (0.000159%)	

CTTATACACATCTAGATGTGTATAAGAGACAGGTGTGTGT	35 (0.000096%)	
GACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	28212 (0.077328%)	
GACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	26047 (0.071393%)	
GA	9705 (0.026601%)	
GAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	228 (0.001562%)	
GAGATGTGTATAAGAGACAG	230555 (0.315970%)	
GAGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	24209 (0.066356%)	
GATGTGTATAAGAGACAGCACACACACACACACACACACA	148 (0.000406%)	
GATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGT	129 (0.000354%)	
GCACACACACACACACACACACACACACACACACACACA	19921 (0.054602%)	
GCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	7728 (0.021182%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	2617 (0.007173%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	5580 (0.015294%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	8314 (0.022788%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	1357 (0.003719%)	
GGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	25331 (0.069431%)	
GGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	20278 (0.055581%)	
GGGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	24221 (0.066388%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	39 (0.000107%)	
GGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	24 (0.000066%)	
GGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	9379 (0.025707%)	
GTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTGTG	56 (0.000153%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGCACA	135 (0.000370%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTAT	50 (0.000137%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGT	138 (0.000378%)	
GTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	27480 (0.075321%)	
GTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	15878 (0.043521%)	
GTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	27 (0.000074%)	
GTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTG	123 (0.000337%)	
GTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	2518 (0.006902%)	
GTGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGA	2047 (0.005611%)	
GTGTGTGTGTCTCTTATACACATCTAGATGTGTATAA	3404 (0.009330%)	
GTGTGTGTGTGTCTCTTATACACATCTAGATGTGTAT	2245 (0.006153%)	

GTGTGTGTGTGTGTGTGTCTCTTATACACATCT	1409 (0.003862%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	828 (0.002270%)	
GT	23346 (0.063990%)	
TACACACACACACACA	87313 (0.119660%)	
TACACATCTAGATGTGTATAAGAGACAGCACACACACACA	147 (0.000403%)	
TACACATCTAGATGTGTATAAGAGACAGGTGTGTGTGT	108 (0.000296%)	
TACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	36917 (0.101188%)	
TATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTGTGTGT	28 (0.000077%)	
TATACACATCTAGATGTGTATAAGAGACAGCACACACACA	98 (0.000269%)	
TATACACATCTAGATGTGTATAAGAGACAGGTGTGTGTT	79 (0.000217%)	
TATCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	17904 (0.049074%)	
TCACACACACACACACACACACACACACACACACAC	5414 (0.014839%)	
TCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	41050 (0.112516%)	
тстстстстстстстстстстстстстстстстс	6341 (0.017380%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGCACAC	75 (0.000206%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTG	50 (0.000137%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	2830 (0.007757%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	5698 (0.015618%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	8667 (0.023756%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGCACACAC	43 (0.000118%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGGTGTGTG	16 (0.000044%)	
TGAGATGTGTATAAGAGACA	136004 (0.186390%)	
TGCCTGTCTTATACACATCTAGATGTGTATAAGAGACA	24963 (0.068422%)	
TGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	30250 (0.082914%)	
TGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTGTGT	43 (0.000118%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCAC	218 (0.000598%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCAT	132 (0.000362%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCC	79 (0.000217%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCT	96 (0.000263%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCTC	102 (0.000280%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCTG	56 (0.000153%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCTT	54 (0.000148%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGAA	62 (0.000170%)	

TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGAG	80 (0.000219%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGAT	91 (0.000249%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGCA	56 (0.000153%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGCT	104 (0.000285%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGG	89 (0.000244%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGT	98 (0.000269%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTA	114 (0.000312%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTC	72 (0.000197%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTG	243 (0.000666%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTT	88 (0.000241%)	
TGTCTCTTATACACATCTCA	749 (0.001026%)	
TGTCTCTTATACACATCTCT	566 (0.000776%)	
TGTCTCTTATACACATCTTG	559 (0.000766%)	
TGTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	17239 (0.047251%)	
TGTGCTGTCTTATACACATCTAGATGTGTATAAGAGAC	11371 (0.031167%)	
TGTGTATAAGAGACACACACACACACACACACACACACAC	29 (0.000079%)	
TGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGT	37 (0.000101%)	
TGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAG	4228 (0.011589%)	
TGTGTGTGTCTCTTATACACATCTAGATGTGTATAAG	1933 (0.005298%)	
TGTGTGTGTGTCTCTTATACACATCTAGATGTGTATA	3942 (0.010805%)	
TGTGTGTGTGTCTCTTATACACATCTAGATGTGTA	12604 (0.034547%)	
TGTGTGTGTGTGTGTGTGTCTCTTATACACATC	15567 (0.042668%)	
тстстстстстстстстстстстстстстс	34347 (0.094143%)	
тстстстстстстстстстстстстстстт	870 (0.002385%)	
TTATACACATCTAGATGTGTATAAGAGACAGCACACAC	58 (0.000159%)	
TTATACACATCTAGATGTGTATAAGAGACAGGTGTGTGTG	36 (0.000099%)	
TTCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	20104 (0.055104%)	

After filtering: read2: quality

After filtering: read2: base contents

position

After filtering: read2: KMER counting

Darker background means larger counts. The count will be shown on mouse over.

Daik		kgi oullu		Larger	Counts		Ouiit wi		SIIOWII OI	I IIIOUSE			C 4	СТ		
	AA	AT	AC	AG	TA	TT	TC	TG	CA	CT	CC	CG	GA	GT	GC	GG
AAA	AAAAA	AAAAT	AAAAC	AAAAG	AAATA	AAATT	AAATC	AAATG	AAACA	AAACT	AAACC	AAACG	AAAGA	AAAGT	AAAGC	AAAGG
AAT	AATAA	AATAT	AATAC	AATAG	AATTA	AATTT	AATTC	AATTG	AATCA	AATCT	AATCC	AATCG	AATGA	AATGT	AATGC	AATGG
AAC	AACAA	AACAT	AACAC	AACAG	AACTA	AACTT	AACTC	AACTG	AACCA	AACCT	AACCC	AACCG	AACGA	AACGT	AACGC	AACGG
AAG	AAGAA	AAGAT	AAGAC	AAGAG	AAGTA	AAGTT	AAGTC	AAGTG	AAGCA	AAGCT	AAGCC	AAGCG	AAGGA	AAGGT	AAGGC	AAGGG
ATA	ATAAA	ATAAT	ATAAC	ATAAG	ATATA	ATATT	ATATC	ATATG	ATACA	ATACT	ATACC	ATACG	ATAGA	ATAGT	ATAGC	ATAGG
ATT	ATTAA	ATTAT	ATTAC	ATTAG	ATTTA	ATTTT	ATTTC	ATTTG	ATTCA	ATTCT	ATTCC	ATTCG	ATTGA	ATTGT	ATTGC	ATTGG
ATC	ATCAA	ATCAT	ATCAC	ATCAG	ATCTA	ATCTT	ATCTC	ATCTG	ATCCA	ATCCT	ATCCC	ATCCG	ATCGA	ATCGT	ATCGC	ATCGG
ATG	ATGAA	ATGAT	ATGAC	ATGAG	ATGTA	ATGTT	ATGTC	ATGTG	ATGCA	ATGCT	ATGCC	ATGCG	ATGGA	ATGGT	ATGGC	ATGGG
ACA	ACAAA	ACAAT	ACAAC	ACAAG	ACATA	ACATT	ACATC	ACATG	ACACA	ACACT	ACACC	ACACG	ACAGA	ACAGT	ACAGC	ACAGG
ACT	ACTAA	ACTAT	ACTAC	ACTAG	ACTTA	ACTTT	ACTTC	ACTTG	ACTCA	ACTCT	ACTCC	ACTCG	ACTGA	ACTGT	ACTGC	ACTGG
ACC	ACCAA	ACCAT	ACCAC	ACCAG	ACCTA	ACCTT	ACCTC	ACCTG	ACCCA	ACCCT	ACCCC	ACCCG	ACCGA	ACCGT	ACCGC	ACCGG
ACG	ACGAA	ACGAT	ACGAC	ACGAG	ACGTA	ACGTT	ACGTC	ACGTG	ACGCA	ACGCT	ACGCC	ACGCG	ACGGA	ACGGT	ACGGC	ACGGG
AGA	AGAAA	AGAAT	AGAAC	AGAAG	AGATA	AGATT	AGATC	AGATG	AGACA	AGACT	AGACC	AGACG	AGAGA	AGAGT	AGAGC	AGAGG
AGT	AGTAA	AGTAT	AGTAC	AGTAG	AGTTA	AGTTT	AGTTC	AGTTG	AGTCA	AGTCT	AGTCC	AGTCG	AGTGA	AGTGT	AGTGC	AGTGG
AGC	AGCAA	AGCAT	AGCAC	AGCAG	AGCTA	AGCTT	AGCTC	AGCTG	AGCCA	AGCCT	AGCCC	AGCCG	AGCGA	AGCGT	AGCGC	AGCGG
AGG	AGGAA	AGGAT	AGGAC	AGGAG	AGGTA	AGGTT	AGGTC	AGGTG	AGGCA	AGGCT	AGGCC	AGGCG	AGGGA	AGGGT	AGGGC	AGGGG
TAA	TAAAA	TAAAT	TAAAC	TAAAG	TAATA	TAATT	TAATC	TAATG	TAACA	TAACT	TAACC	TAACG	TAAGA	TAAGT	TAAGC	TAAGG
TAT	TATAA	TATAT	TATAC	TATAG	TATTA	TATTT	TATTC	TATTG	TATCA	TATCT	TATCC	TATCG	TATGA	TATGT	TATGC	TATGG
TAC	TACAA	TACAT	TACAC	TACAG	TACTA	TACTT	TACTC	TACTG	TACCA	TACCT	TACCC	TACCG	TACGA	TACGT	TACGC	TACGG
TAG	TAGAA	TAGAT	TAGAC	TAGAG	TAGTA	TAGTT	TAGTC	TAGTG	TAGCA	TAGCT	TAGCC	TAGCG	TAGGA	TAGGT	TAGGC	TAGGG
TTA	TTAAA	TTAAT	TTAAC	TTAAG	TTATA	TTATT	TTATC	TTATG	TTACA	TTACT	TTACC	TTACG	TTAGA	TTAGT	TTAGC	TTAGG
TTT	TTTAA	TTTAT	TTTAC	TTTAG	TTTTA	TTTTT	TTTTC	TTTTG	TTTCA	TTTCT	TTTCC	TTTCG	TTTGA	TTTGT	TTTGC	TTTGG
TTC	TTCAA	TTCAT	TTCAC	TTCAG	TTCTA	TTCTT	TTCTC	TTCTG	TTCCA	TTCCT	TTCCC	TTCCG	TTCGA	TTCGT	TTCGC	TTCGG
TTG	TTGAA	TTGAT	TTGAC	TTGAG	TTGTA	TTGTT	TTGTC	TTGTG	TTGCA	TTGCT	TTGCC	TTGCG	TTGGA	TTGGT	TTGGC	TTGGG
TCA	TCAAA	TCAAT	TCAAC	TCAAG	TCATA	TCATT	TCATC	TCATG	TCACA	TCACT	TCACC	TCACG	TCAGA	TCAGT	TCAGC	TCAGG
TCT	TCTAA	TCTAT	TCTAC	TCTAG	TCTTA	TCTTT	TCTTC	TCTTG	TCTCA	TCTCT	TCTCC	TCTCG	TCTGA	TCTGT	TCTGC	TCTGG
TCC	TCCAA	TCCAT	TCCAC	TCCAG	TCCTA	TCCTT	тсстс	TCCTG	TCCCA	TCCCT	TCCCC	TCCCG	TCCGA	TCCGT	TCCGC	TCCGG
TCG	TCGAA	TCGAT	TCGAC	TCGAG	TCGTA	TCGTT	TCGTC	TCGTG	TCGCA	TCGCT	TCGCC	TCGCG	TCGGA	TCGGT	TCGGC	TCGGG
TGA	TGAAA	TGAAT	TGAAC	TGAAG	TGATA	TGATT	TGATC	TGATG	TGACA	TGACT	TGACC	TGACG	TGAGA	TGAGT	TGAGC	TGAGG
TGT	TGTAA	TGTAT	TGTAC	TGTAG	TGTTA	TGTTT	TGTTC	TGTTG	TGTCA	TGTCT	TGTCC	TGTCG	TGTGA	TGTGT	TGTGC	TGTGG
TGC	TGCAA	TGCAT	TGCAC	TGCAG	TGCTA	TGCTT	TGCTC	TGCTG	TGCCA	TGCCT	TGCCC	TGCCG	TGCGA	TGCGT	TGCGC	TGCGG
TGG	TGGAA	TGGAT	TGGAC	TGGAG	TGGTA	TGGTT	TGGTC	TGGTG	TGGCA	TGGCT	TGGCC	TGGCG	TGGGA	TGGGT	TGGGC	TGGGG
CAA	CAAAA	CAAAT	CAAAC	CAAAG	CAATA	CAATT	CAATC	CAATG	CAACA	CAACT	CAACC	CAACG	CAAGA	CAAGT	CAAGC	CAAGG
CAT	CATAA	CATAT	CATAC	CATAG	CATTA	CATTT	CATTC	CATTG	CATCA	CATCT	CATCC	CATCG	CATGA	CATGT	CATGC	CATGG
CAC	CACAA	CACAT	CACAC	CACAG	CACTA	CACTT	CACTC	CACTG	CACCA	CACCT	CACCC	CACCG	CACGA	CACGT	CACGC	CACGG
CAG	CAGAA	CAGAT	CAGAC	CAGAG	CAGTA	CAGTT	CAGTC	CAGTG	CAGCA	CAGCT	CAGCC	CAGCG	CAGGA	CAGGT	CAGGC	CAGGG
CTA	СТААА	CTAAT	CTAAC	CTAAG	CTATA	CTATT	CTATC	CTATG	CTACA	CTACT	CTACC	CTACG	CTAGA	CTAGT	CTAGC	CTAGG
CTT	CTTAA	CTTAT	CTTAC	CTTAG	CTTTA	СТТТТ	СТТТС	CTTTG	CTTCA	СТТСТ	СТТСС	CTTCG	CTTGA	CTTGT	CTTGC	CTTGG
CTC	CTCAA	CTCAT	CTCAC	CTCAG	CTCTA	СТСТТ	СТСТС	CTCTG	CTCCA	СТССТ	СТССС	CTCCG	CTCGA	CTCGT	CTCGC	CTCGG
CTG	CTGAA	CTGAT	CTGAC	CTGAG	CTGTA	CTGTT	CTGTC	CTGTG	CTGCA	CTGCT	CTGCC	CTGCG	CTGGA	CTGGT	CTGGC	CTGGG
CCA	CCAAA	CCAAT	CCAAC	CCAAG	CCATA	CCATT	CCATC	CCATG	CCACA	CCACT	CCACC	CCACG	CCAGA	CCAGT	CCAGC	CCAGG
CCT	CCTAA	CCTAT	CCTAC	CCTAG	CCTTA	CCTTT	CCTTC	CCTTG	CCTCA	CCTCT	CCTCC	CCTCG	CCTGA	CCTGT	CCTGC	CCTGG
CCC	CCCAA	CCCAT	CCCAC	CCCAG	CCCTA	CCCTT	CCCTC	CCCTG	CCCCA	CCCCT	CCCCC	CCCCG	CCCGA	CCCGT	CCCGC	CCCGG
CCG	CCGAA	CCGAT	CCGAC		CCGTA	CCGTT	CCGTC		CCGCA	CCGCT	CCGCC	CCGCG	CCGGA	CCGGT	CCGGC	
CGA	CGAAA	CGAAT	CGAAC	CGAAG	CGATA	CGATT	CGATC	CGATG	CGACA	CGACT	CGACC	CGACG	CGAGA	CGAGT	CGAGC	CGAGG
CGT	CGTAA	CGTAT	CGTAC	CGTAG	CGTTA	CGTTT	CGTTC	CGTTG	CGTCA	CGTCT	CGTCC	CGTCG	CGTGA	CGTGT	CGTGC	CGTGG
CGC	CGCAA	CGCAT	CGCAC	CGCAG	CGCTA	CGCTT	CGCTC	CGCTG	CGCCA	CGCCT	CGCCC	CGCCG		CGCGT	CGCGC	CGCGG
CGG	CGGAA	CGGAT	CGGAC	CGGAG	CGGTA	CGGTT	CGGTC	CGGTG	CGGCA	CGGCT	CGGCC	CGGCG	CGGGA	CGGGT	CGGGC	CGGGG
GAA	GAAAA	GAAAT	GAAAC	GAAAG	GAATA	GAATT	GAATC	GAATG	GAACA	GAACT	GAACC	GAACG		GAAGT	GAAGC	GAAGG
GAT	GATAA	GATAT	GATAC	GATAG	GATTA	GATTT	GATTC	GATTG	GATCA	GATCT	GATCC	GATCG		GATGT	GATGC	GATGG
GAC	GACAA	GACAT	GACAC	GACAG	GACTA	GATTT	GACTC	GACTG	GACCA	GACCT	GACCC	GACCG	GACGA	GACGT	GACGC	GACGG
GAG	GAGAA	GAGAT	GAGAC	GAGAG	GAGTA	GAGTT	GAGTC	GAGTG	GAGCA	GAGCT	GAGCC	GAGCG	GAGGA	GAGGT	GAGGC	GAGGG
GTA	GTAAA	GTAAT	GAGAC	GTAAG	GTATA	GTATT	GTATC	GTATG	GTACA	GTACT	GTACC	GTACG		GAGGT	GTAGC	GTAGG
GTT	GTAAA	GTTAT	GTTAC	GTTAG	GTTTA	GTTTT	GTTTC		GTTCA	GTTCT	GTTCC		GTTGA	GTTGT	GTTGC	GTTGG
							GTCTC	GTTTG				GTTCG GTCCG			GTCGC	
GTC	GTCAA	GTCAT	GTCAC	GTCAG	GTCTA	GTCTT		GTCTG	GTCCA	GTCCT	GTCCC	GTGCG		GTCGT	GTGGC	GTCGG
GTG	GTGAA	GTGAT	GTGAC	GTGAG	GTGTA	GTGTT		GTGTG	GTGCA	GTGCT	GTGCC			GTGGT		GTGGG
GCA	GCAAA	GCAAT	GCAAC	GCAAG	GCATA	GCATT	GCATC	GCATG	GCACA	GCACT	GCACC	GCACG	GCAGA	GCAGT	GCAGC	GCAGG
GCT	GCTAA	GCTAT	GCTAC	GCTAG	GCTTA	GCTTT	GCTTC	GCTTG	GCTCA	GCTCT	GCTCC	GCTCG		GCTGT	GCTGC	GCTGG
GCC	GCCAA GCGAA	GCCAT	GCCAC	GCCAG	GCCTA	GCCTT	GCCTC	GCCTG	GCCCA	GCCCT	GCCCC	GCCCG		GCCGT	GCCGC	GCCGG
GCG	EL EVAVA	GCGAT	GCGAC	GCGAG	GCGTA	GCGTT	GCGTC GGATC	GCGTG	GCGCA GGACA	GCGCT	GCGCC	GCGCG	GCGGA	GCGGT	GCGGC	GCGGG
CCA		CCAAT					$I = I \cup I \cup I$	GGATG	Ι (1(1Δ(Δ	GGACT	GGACC	GGACG	GGAGA	GGAGT	GGAGC	GGAGG
GGA	GGAAA	GGAAT	GGAAC	GGAAG	GGATA	GGATT										CCTCC
GGT	GGAAA GGTAA	GGTAT	GGTAC	GGTAG	GGTTA	GGTTT	GGTTC	GGTTG	GGTCA	GGTCT	GGTCC	GGTCG	GGTGA	GGTGT	GGTGC	GGTGG
	GGAAA															GGTGG GGCGG GGGGG

After filtering: read2: overrepresented sequences

overrepresented sequence	count (% of bases)	distribution: cycle 1 ~ cycle 151
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	182 (0.000499%)	
AACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	24838 (0.068102%)	
AAGATGTGTATAAGAGACAG	335251 (0.459605%)	
ACACACACACACACACACACACACACACACACACACA	1578 (0.004327%)	
AC	44138 (0.121020%)	

ACACACACACACACACACACACACACACACACACACAC	183 (0.001254%)	
ACACACACACACACACACACACACACACACACACACA	1260 (0.003455%)	
ACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	44849 (0.122970%)	
ACCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	22905 (0.062802%)	
ACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	1398 (0.003833%)	
ACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	19973 (0.054763%)	
ACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	29892 (0.081960%)	
AG	9472 (0.025971%)	
AGAGATGTGTATAAGAGACA	111540 (0.152913%)	
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTC	204 (0.000559%)	
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGTTCTC	57 (0.000156%)	
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTATATCTC	78 (0.000214%)	
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTATTTCTC	9 (0.000025%)	
AGATGTGTATAAGAGACAGCACACACACACACACACAC	16945 (0.046461%)	
AGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	23964 (0.065706%)	
AGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	65648 (0.179998%)	
AGGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	24141 (0.066191%)	
ATACACATCTAGATGTGTATAAGAGACAGCACACACAC	107 (0.000293%)	
ATACCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	15975 (0.043801%)	
ATCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	17026 (0.046683%)	
ATCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	46725 (0.128113%)	
ATGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	23411 (0.064190%)	
CACACACACACACACACACACACACACACACACACA	14290 (0.039181%)	
CACACACACACACACACACACACACACACACACACACA	251 (0.001721%)	
CACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	18397 (0.050442%)	
CAGATGTGTATAAGAGACAG	211246 (0.289603%)	
CCAGATGTGTATAAGAGACA	105990 (0.145305%)	
CCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	57335 (0.157204%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	618 (0.001694%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	1390 (0.003811%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	1911 (0.005240%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	311 (0.000853%)	
CGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	33 (0.000090%)	
CTCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA		

	24294 (0.066611%)	
стстстстстстстстстстстстстстстстст	6509 (0.017847%)	
CTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	19153 (0.052515%)	
CTCTTATACACATCTAGATGTGTATAAGAGACAGCACACA	87 (0.000239%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAA	1322 (0.003625%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAC	3395 (0.009309%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAG	1705 (0.004675%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAT	3978 (0.010907%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCA	472 (0.001294%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCC	258 (0.000707%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCT	245 (0.000672%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGA	226 (0.000620%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGC	288 (0.000790%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGG	313 (0.000858%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGT	591 (0.001620%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGTC	1818 (0.004985%)	
CTGTCTCTTATACACATCTC	346673 (0.475264%)	
CTGTCTCTTATACACATCTG	289353 (0.396682%)	
CTGTCTCTTATACACATCTT	305120 (0.418298%)	
CTTATACACATCTAGATGTGTATAAGAGACAGCACACACA	66 (0.000181%)	
GACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	24839 (0.068105%)	
GA	8682 (0.023805%)	
GAGATGTGTATAAGAGACAG	124164 (0.170220%)	
GATGTGTATAAGAGACAGCACACACACACACACACACACA	146 (0.000400%)	
GCACACACACACACACACACACACACACACACACAC	18857 (0.051703%)	
GCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	49259 (0.135061%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	2315 (0.006347%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	4840 (0.013271%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	7342 (0.020131%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	1289 (0.003534%)	
GGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	18700 (0.051273%)	
GGGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	22191 (0.060845%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	45 (0.000123%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGCACA	110 (0.000302%)	

GTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGT	117 (0.000321%)	
GTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	38180 (0.104684%)	
GTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	14173 (0.038860%)	
GTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	2274 (0.006235%)	
GTGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGA	1811 (0.004966%)	
GTGTGTGTGCTCTCTTATACACATCTAGATGTGTATAA	2913 (0.007987%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGA	1215 (0.003331%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	31155 (0.085423%)	
TACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	15668 (0.042959%)	
TATACACATCTAGATGTGTATAAGAGACAGCACACACACA	85 (0.000233%)	
TCACACACACACACACACACACACACACACACACACACA	15346 (0.042077%)	
TCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	30209 (0.082829%)	
тстстстстстстстстстстстстстстстс	8746 (0.023980%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGCACAC	76 (0.000208%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTG	45 (0.000123%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	183 (0.000502%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	357 (0.000979%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	553 (0.001516%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGCACACAC	48 (0.000132%)	
TGAGATGTGTATAAGAGACA	138851 (0.190355%)	
TGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	26751 (0.073347%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCAC	295 (0.000809%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCAT	105 (0.000288%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCC	108 (0.000296%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCT	91 (0.000250%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCTC	124 (0.000340%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGAG	91 (0.000250%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGCA	68 (0.000186%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGA	98 (0.000269%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGC	109 (0.000299%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGG	107 (0.000293%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGT	106 (0.000291%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTA	124 (0.000340%)	

TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTC	134 (0.000367%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTG	358 (0.000982%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTT	135 (0.000370%)	
TGTCTCTTATACACATCTCA	951 (0.001304%)	
TGTCTCTTATACACATCTCT	791 (0.001084%)	
TGTCTCTTATACACATCTGG	663 (0.000909%)	
TGTCTCTTATACACATCTGT	752 (0.001031%)	
TGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	9797 (0.026862%)	
TGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAG	3702 (0.010150%)	
TGTGTGTGCTCTCTTATACACATCTAGATGTGTATAAG	1671 (0.004582%)	
TGTGTGTGTGTCTCTTATACACATCTAGATGTGTATA	20876 (0.057239%)	
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	42541 (0.116641%)	
TTATACACATCTAGATGTGTATAAGAGACAGCACACAC	56 (0.000154%)	
TTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	15670 (0.042965%)	

fastp -i ../RAW_READS/10-12kb_S17_L002_R1_001.fastq.gz -I ../RAW_READS/10-12kb_S17_L002_R2_001.fastq.gz -o MP10k_F.trimmed.fq.gz -0 MP10k_R.trimmed.fq.gz -n 5 -q 20 -u 30 --length_required=70 --low_complexity_filter --complexity_threshold=20 --cut_by_quality5 --cut_window_size=4 --cut_mean_quality=20 --trim_poly_g --poly_g_min_len=10 --overrepresentation_analysis --json=MP10k.json --html=MP10k.html --report_title=MP10k --thread=8

fastp 0.19.4, at 2018-12-19 16:16:28