

• Fully Qualified Bluetooth V2.0+EDR 3Mbps Modulation.

- Low Power 1.8V Operation, 1.8 to 3.6V I/O.
- PIO control.
- UART interface with programmable baud rate.
- Integrated PCB antenna.
- Bee compatible headers.

Software Features

- Default Baud rate: 38400, Data bits:8, Stop bit:1,Parity:No parity, Data control: has.
- Supported baud rate: 9600,19200,38400,57600,115200,230400,460800.
- Use CTS and RTS to control the data stream.
- When a rising pulse is detected in PIO0, device will be disconnected.
- Status instruction port PIO1: low-disconnected, high-connected;
- PIO10 is connected to red led, PIO11 is connected to green led. When master and slave are paired, red and green led blinks 1time / 2s in interval, while disconnected only green led blinks 2 times/ s.
- Auto-connect the last device on power as default.
- Permit matched device connect by default.
- Default PINCODE:0000.
- Auto-reconnect in 30 min when disconnected as a result of beyond the range of connection.

!!!Cautions The supply voltage of this module is 3.3V, higher than this may cause permanent damage to the device.

Hardware Installation

Connecting Bluetooth to PC through Uart Bee

The Bluetooth provides a standard XBee socket. In here we use a UartSBee V5 to connect Bluetooth and PC, ensure the supply voltage was selected as 3.3V by slider.

Connecting Bluetooth to Arduino

Here we use XBee Shield as a bridge between Bluetooth and Seeeduino Lotus.

Since the hardware UART of Seeedino was used as debug with PC, We choose D2 and D3 to simulate software UART to communicate with Bluetooth. please refer to the jumper setting on below picture

Software Instruction

Conventions

• Factory default setting:

o Name: HMSoft;

■ Baud: 9600, N, 8, 1;

■ Pin code: 1234;

■ transmit Version.

- AT Command format:
 - $\circ\,$ Uppercase AT command format. string format, without any other symbol. (e.g. \r or \n).
 - Any incorrect command would be no response.

AT Commands

1. Test Command

Send	Receive	Parameter
AT	ОК	None

2. Query/Set baud rate

Send	Receive	Parameter
		Para1: Baud rate No.
		11200
		22400
AT+BAUD?	OK+Set:[para1]	34800
		49600
		519200
		638400
	OK+Set:[para1]	757600
		8115200
		9230400
		A460800
AT+BAUD[para1]		B921600
		C1382400
		Default: 4(9600)

3. Query/Set Parity bit

Send	Receive	Parameter
Query: AT+CHK?	OK+CHK:[para1]	Para1: 0,1,2

		0:None
		1:ODD
Set: AT+CHK[para1]	OK Satisparall	2:EVEN
Set. AT+CHK[para1]	OK+Set:[para1]	Default: 0 (None)

4. Query/Set Stop bit

Send	Receive	Parameter
AT+STOP?	OK+STOP:[para1]	Para1:1, 2 1: One stop bit
AT+STOP[para1]	OK+Set:[para1]	2: Two stop bit Default: 1 (One stop bit)

5. Query/Set Baud rate, parity bit, stop bit

Send	Receive	Parameter
AT+UART?	OK+UART:[para1],[para2],[para3]	Para1: Baud rate Value: 1~C Default: 4(9600) Para2: Parity bit Value: 0,1,2
AT+UART[para1][para2][para3]	OK+Set:[para1] [para2] [para3]	Default: 0 (None) Para3: Stop Bit Value: 1, 2 Default: 1(One Bit)

6. Module self check command

Send	Receive	Parameter
AT+SECH?	OK+SECH:OKAY or OK+SECH:FAIL	None

7. Module application sectors check command

Send	Receive	Parameter
AT+APCH?	OK+APCH:OKAY or OK+APCH:FAIL	None

8. Query module temperature command

Send	Receive	Parameter
AT+TEMP?	OK+TEMP:[temp value]	None

9. Query/Set module discoverable status

Send	Receive	Parameter
AT+DISC?	OK+DISC:[para1]	Para1: 0,1,2 0: discoverable and connectable 1: only discoverable not connectable
AT+DISC [para1]	OK+Set:[para1]	2: only connectable Default: 0

10. Query/Set PIO0 function (System KEY)

Send	Receive	Parameter
AT+KEY?	OK+KEY:[para1]	Para1: 0, 1 0: Cancel current status. 1: Cancel current status and restore
AT+ KEY[para1]	OK+Set:[para1]	factory setup. Default: 0

11. Query/Set PIO1 output status (System LED)

Send	Receive	Parameter
AT+LED?	OK+LED:[para1]	Para1: 0, 1 0:Unconnected Output 500ms High 500ms Low, Connected output High.
AT+ LED [para1]	OK+Set:[para1]	1:Unconnected output Low, Connected output High. Default: 0

12. Query/Set module PIO Pins output status

	Send	Receive	Parameter
AT+	PIO?	OK+PIO:[para1]	Para1: Length 10, every bit value is 1 or 0.
AT+	PIO[para1]	OK+Set:[para1]	0: output low; 1:output high Default: 0000000000

13. Query/Set PIO pins output high or low

Send	Receive	Parameter
AT+PIO[para1]?	OK+PIO:[para1][para2]	Para1: 2~B Para2: 0, 1 Para1 is which PIO pin you want to Query/Set Value:2,3,4,5,6,7,8,9,A,B.
AT+PIO[para1][para2]	OK+Set:[para1][para2]	Para2 is Query or setup value. 0 is low and 1 is high

14. Query/Set Module name

Send	Receive	Parameter
AT+NAME?	OK+NAME[para1]	Para1: module name,Max length is 12.
AT+NAME[para1]	OK+Set[para1]	Default: HMSoft

15. Restore all setup value to factory setup

Send	Receive	Parameter
AT+DEFAULT	OK+DEFAULT	None

16. Restart module

Send	Receive	Parameter
AT+RESTART	OK+RESTART	None

17.Query/Set Master and Slaver Role

Send	Receive	Parameter
AT+ROLE?	OK+ROLE:[para1]	Para1: M, S M: Master
AT+ROLE[para1]	OK+Set:[para1]	S: Slaver Default: S

18. Query/Set Pin Code

Send	Receive	Parameter
AT+PIN?	OK+PIN:[para1]	Para1 is Pin Code, Max length is 12,
AT+PIN[para1]	OK+Set:[para1]	Allow A~Z, a~z, 0~9 Default: 1234

19. Clear Connected device address

Send	Receive	Parameter
AT+CLEAR	OK+CLEAR	None

20. Scan slave device

Send	Receive	Parameter
AT+SCAN?	OK+SCANS OK+SCAN[MAC] OK+SCANE	None

21. Connect to a slave device MAC address

Send	Receive	Parameter
AT+LNK[para1]	OK+CONNS(start conn) OK+CONN(conn ok) OK+CONNF(conn failed)	Para1 is MAC Address string.

22. Query Software Version

Send	Receive	Parameter
AT+VERSION AT+VERSION?	Version Information	None

23.System Help Information

Send	Receive	Parameter
AT+HELP?	Help Information	None

24. Query Last Connected Device Address

Send	Receive	Parameter
AT+RADD?	OK+ADDR:MAC Address	None

25. Query module address

Send	Receive	Parameter
AT+LADD? AT+ADDR?	OK+LADD:MAC Address	None

26. Query/Set Module work type

Send	Receive	Parameter
AT+IMME?	OOK+IMME:[para1]	Para1: 0, 1 0: When module is powered on, only respond the AT Command, don't do
AT+IMME[para1]	OK+Set:[para1]	anything. until AT + WORK is received 1: When power on, work immediately Default: 1

27. Work immediately

Send	Receive	Parameter
AT+WORK	OK+WORK	None

28. Query/Set module connect remote device timeout value

Send	Receive	Parameter
AT+TCON?	OK+TCON:[para1]	Para1 is timeout value. when time is up module will not connect this address anymore, then enter search

			mode.
AT+TC	ON[para1]	OK+Set:[para1]	Para1 allowed value: 0000~9999 Unit is second. Default: 0000 Connect forever

27. Work immediately

Send	Receive	Parameter
AT+WORK	OK+WORK	None

29 .Query/Set Module Work Mode

Send	Receive	Parameter
AT+TYPE?	OK+TYPE:[para1]	Para1: 0~2 0:Transmission Mode
AT+TYPE[para1]	OK+Set:[para1]	1:Remote Control Mode 2:PIO Collection Mode Default: 0

30. Query/Set report PIO states string delay time(unit ms)

Send	Receive	Parameter
AT+TPIO?	OK+TPIO:[para1]	Para1 value is between 0000 and 9999 ms If value >0, when PIO states is changed, module will send PIO
AT+TPIO[para1]	OK+Set:[para1]	states string to remote device delay this value. Default: 0 send once

31. Switch Remote Control Mode to Transmission Mode(Only this time)

Send	Receive	Parameter
AT+START	OK+START	None

32. Query/Set Buffer save parameter

Send	Receive	Parameter
AT+BUFF?	OK+BUFF:[para1]	None
AT+BUFF[para1]	OK+Set:[para1]	Para1: 0~1 0: Not save 1:Save Default: 0

33. Query/Set Search Filter

Send	Receive	Parameter
AT+FILT?	OK+FILT:[para1]	Para1: Allow Type Value: 0~C
AT+FILT[para1]	OK+Set:[para1]	Default: C (All)

34. Query/Set Module Notification

Send	Receive	Parameter
AT+NOTI?	OK+NOTI:[para1]	None
AT+NOTI[para1]	OK+Set:[para1]	Par1 value is 0, 1. 0: Don't notify(default) 1:Notify when connected or disconnected

35.Query/Set Module Class Of Device

Send	Receive	Parameter
AT+COD?	OK+COD:[para1]	None
AT+COD[para1]	OK+Set:[para1]	Par1 is COD value. Value: 0000~0xFFFF Default: 0x1F00 (unknown device)

Programming

Configure the Bluetooth module with Serial Port under Windows

This section shows how to configure Bluetooth with PC, some basic methods of setting could be learn.

Set up hardware connection refer to "Hardware Installation" section. You will find the blue LED on the module flashes illustrate no connection is set up.

Open a serial terminal and set Baud Rate:9600, Databits: 8, Stopbits: 1 and No Flow Control. Send "AT" to Bluetooth with the serial terminal and "OK" will be return if all goes well. The Bluetooth only respond AT commands when no connection was set up, or all commands were seen as string and sent out. You can distinguish the status through LED indicates.

Then some useful configurations could be sent. Here's are some samples of commands and response.

- 1. Test serial connection, send "AT", will return "OK".
- 2. Obtain firmware version, send "AT+VERSION?", return "OK+VERSION:HMSoft V621".
- 3. Restore factory settings, send "AT+DEFAULT", return "OK+DEFAULT".
- 4. Restart module, send "AT+RESTART", return "OK+RESTART".
- 5. Reset baud rate of serial port, send "AT+BAUD4", return "OK+Set:9600".
- ${\it 6. Enable authentication, send "AT+AUTH1", return "OK+SetAuth:1"}.$
- 7. Query module address , send "AT+LADD?", return "OK+LADD:000EEACF1A57".
- $8.\ Query\ Last\ Connected\ Device\ Address\ ,\ send\ "AT+RADD?",\ return\ "OK+RADD:0000000000000".$
- 9. Set Module name, send "AT+NAMEHM-01", return "OK+Set:HM-01".

- 10. Set Pin Code, send "AT+PIN8888", return "OK+SetPin:8888".
- 11. Enable notify information of connection, send "AT+NOTI1", return "OK+Set:1".
- 12. Set to master mode, send "AT+ROLEM", return "OK+Set:M".

Or Set to Slave mode, send "AT+ROLES", return "OK+Set:S".

We use two Bluetooth connected with PC, one was set as Central while the other is Peripheral. Several seconds later they find each other and the LED stop flash, connected!

Communicate with Android

This kind of Bluetooth module is compatible with Bluetooth Specification V2.1+EDR、V2.0+EDR、V2.1、V2.0, it can communicate with any device has one of these protocols. We use a Android phone to demonstrate how to use a cellphone to interact with Bluetooth module.

Power the module and configure it as Slave role(send "AT+ROLES" to module). Search and install an APP called "Bluetooth SPP pro" in Android phone. Launch the app, it will scan all Bluetooth device automatically. Select "HMSoft" and touch "Connect" button, and then "Byte stream mode". Then we can send data to PC, write some words in the text field at the bottom of the Phone and hit send button. Also PC can transfer data to phone with serial terminal.

Data transmission between Two Arduinos

Are you ready to code? It's time to do something after practice. Prepare a pair of Bluetooth, and Arduino or other platform to control them. Here we use two Arduino Uno. Set up the connection as mentioned in section "Hardware Installation".

The program of Central and Peripheral use the same code, the only difference is the micro define at the beginning of the program. To assign the Bluetooth to Central role, Just need to modify the text to "#define MASTER 1", or "#define MASTER 1" if Peripheral role was assigned.

The initialization program flow please refer to the following flow chart. First of all we need to distinguish the presetting baud rate of the Bluetooth. After this, send commands to restore factory settings, and change baud rate from 115200 to 9600 since

software serial will not working well at high baud rate. Then other parameters were configured to the Bluetooth with Reset command in the final.

After the initialization, the Central and Peripheral will do different things, the Central will send message to Peripheral interval and print what received from Peripheral while the Peripheral only responds the Central.

Click here to download the test code and open HM-13_SW.ino with Arduino IDE, compile and download to Arduino Uno. Remember to configure the Bluetooth to different role by modify the macro at the beginning. If you have any problem about how to start Arduino, please click here for some help.

After downloading program, open two serial terminal windows, the LEDs on Bluetooth will flash, several seconds later, they stop to flash and keep on, this indicates that they connected to each other. According to the program is written, the Central sends message to the Peripheral continually and get feedback every time.

© 2017 GitHub, Inc. Terms Privacy Security Status Help

Contact GitHub API Training Shop Blog About