オペレーションズ・リサーチ Ⅲ (3)

田中 俊二

shunji.tanaka@okayama-u.ac.jp

本文書のライセンスは CC-BY-SA にしたがいます

スケジュール

No.	内容
1	導入 (組合せ最適化,グラフ・ネットワーク,整数計画問題)
2	計算複雑さの理論
	グラフ・ネットワーク 1 (グラフの分類, 用語, 種々の問題)
4	グラフ・ネットワーク 2 (最短経路問題,動的計画法)
	グラフ・ネットワーク 3 (最小全域木,最大フロー問題)
	グラフ・ネットワーク 4 (マッチング)
7	整数計画 (緩和問題,分枝限定法,切除平面法)

グラフ

グラフG = (V, E)(復習)

- *V*: 頂点 (vertex), 節点 (node) の集合. 頂点数 *n* = |*V*|
- E: 辺, 枝 (edge) の集合. 辺数 m = |E|

無向グラフと有向グラフ

- 無向グラフ (undirected graph)
 - 辺に方向がない
 - (u,v)と(v,u)は同じ辺
- 有向グラフ (directed graph, digraph)
 - (u,v) は $u \to v$ の向き, (v,u) は $v \to u$ の向き
 - 有向グラフの辺は有向辺や孤 (arc) とも

無向グラフ

有向グラフ

グラフの種類:単純グラフ

ループ (loop)

同じ頂点を結ぶ辺(v,v)

並列辺 (parallel edge)

同じ辺 (u,v) が複数存在

単純グラフ (simple graph)

ループや並列辺を持たないグラフ

(u,v), $(v,u) \in E$ である有向グラフも単純グラフ. 辺の向きが違うので OK

単純グラフ・単純有向グラフのみ扱う. 辺集合は $E = \{(u,v) \mid u \neq v\}$ で表される

部分グラフ (subgraph)

グラフから一部の頂点と辺を取り出してできるグラフ.

グラフ G = (V, E) の部分グラフを G' = (V', E') とすると、 $V' \subseteq V, E' \subseteq E$

G 自身も G の部分グラフ. G と異なる部分グラフ: $\mathbf{\underline{p}}$ (proper) 部分グラフ

誘導部分グラフ (induced subgraph)

グラフから一部の頂点,および**その頂点を両端とする辺**を取り出してできるグラフ

G=(V,E)

部分グラフ (subgraph)

グラフから一部の頂点と辺を取り出してできるグラフ.

グラフ G = (V, E) の部分グラフを G' = (V', E') とすると、 $V' \subseteq V, E' \subseteq E$

G 自身も G の部分グラフ. G と異なる部分グラフ: $\mathbf{\underline{p}}$ (proper) 部分グラフ

誘導部分グラフ (induced subgraph)

グラフから一部の頂点、および**その頂点を両端とする辺**を取り出してできるグラフ

部分グラフ (subgraph)

グラフから一部の頂点と辺を取り出してできるグラフ.

グラフ G = (V, E) の部分グラフを G' = (V', E') とすると、 $V' \subseteq V, E' \subseteq E$

G 自身も G の部分グラフ. G と異なる部分グラフ: \mathbf{Q} (proper) 部分グラフ

誘導部分グラフ (induced subgraph)

グラフから一部の頂点、および**その頂点を両端とする辺**を取り出してできるグラフ

部分グラフ (subgraph)

グラフから一部の頂点と辺を取り出してできるグラフ.

グラフ G = (V, E) の部分グラフを G' = (V', E') とすると, $V' \subseteq V, E' \subseteq E$

G 自身も G の部分グラフ. G と異なる部分グラフ: $\mathbf{\underline{o}}$ (proper) 部分グラフ

誘導部分グラフ (induced subgraph)

グラフから一部の頂点、およびその頂点を両端とする辺を取り出してできるグラフ

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路 (辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路 (辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5 閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路 (辺の集合)
- 有向グラフの場合:**有向路** (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1.3.5 閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5 単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5 単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5 単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5 単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5 単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合:**有向路** (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5 単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

単純閉路:2,1,6,4,2

4/31

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路 (辺の集合)
- 有向グラフの場合:**有向路** (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5 単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5 単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5 単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

| 1月1日 ・2、1、3、3、1、0、4 | **公式日日 ワケ・**3、1、6、4、3

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5 単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路(辺の集合)
- 有向グラフの場合: 有向路 (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5

単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

隣接 (adjacent)

頂点と辺で直接接続すること

路・道 (path)

- 始点から終点まで至る経路 (辺の集合)
- 有向グラフの場合:**有向路** (directed path)
- 同じ頂点を 2 回以上訪れない路:とくに単純路 (simple path)

閉路 (cycle)

- 始点と終点が同じ路
- 有向グラフの場合は有向閉路 (directed cycle)
- 途中で同じ頂点を 2 回以上訪れない閉路:とくに単純閉路 (simple cycle)

隣接:2,3,5,6

路:1,3,4,2,5 単純路:1,3,5

閉路:2,1,3,5,1,6,4,2

単純閉路:2,1,6,4,2

4/31

連結グラフ (connected graph)

- 任意の2頂点間に路が存在するグラフ
- 連結でないグラフ: 非連結グラフ (disconnected graph)

連結成分 (connected component)

極大で連結な部分グラフ

極大 (maximal)

他の部分グラフの真部分グラフではない・これ以上頂点や辺を追加できないこと

連結グラフ (connected graph)

- 任意の2頂点間に路が存在するグラフ
- 連結でないグラフ: 非連結グラフ (disconnected graph)

連結成分 (connected component)

極大で連結な部分グラフ

極大 (maximal)

他の部分グラフの真部分グラフではない・これ以上頂点や辺を追加できないこと

連結グラフ (connected graph)

- 任意の2頂点間に路が存在するグラフ
- 連結でないグラフ: 非連結グラフ (disconnected graph)

連結成分 (connected component)

極大で連結な部分グラフ

極大 (maximal)

他の部分グラフの真部分グラフではない・これ以上頂点や辺を追加できないこと

連結成分は3個

連結グラフ (connected graph)

- 任意の2頂点間に路が存在するグラフ
- 連結でないグラフ:非連結グラフ (disconnected graph)

連結成分 (connected component)

極大で連結な部分グラフ

極大 (maximal)

他の部分グラフの真部分グラフではない・これ以上頂点や辺を追加できないこと

連結成分は3個

強連結 (strongly connected)

有向グラフにおいて,任意の 2 頂点間に<mark>有向路</mark>が存在

完全グラフ

完全グラフ (complete graph)・頂点の次数

- 任意の 2 頂点が辺で接続するグラフ. $\forall u, v \in V (u \neq v)$ について $(u,v) \in E$
- 有向グラフの場合は $(u,v),(v,u) \in E$
- 頂点 1 個のみのグラフも完全グラフとみなす
- 頂点数が n の完全無向グラフ: K_n と表す

次数 (degree)

- ある頂点に接続する辺の本数
- 有向グラフの場合
 - 頂点に入ってくる辺の本数:入次数 (in-degree)
 - 頂点から出ていく辺の本数: 出次数 (out-degree)

完全グラフ

 \Leftrightarrow

頂点の次数がすべて(頂点数)-1

頂点次数の応用例:オイラーグラフ (その 1)

オイラー路 (Eulerian path)

すべての辺をちょうど 1 回ずつ通る路

オイラー閉路 (Eulerian cycle, Eulerian circuit)

すべての辺をちょうど 1 回ずつ通る閉路

オイラーグラフ (Eulerian graph)

オイラー閉路が存在するグラフ

「オイラー」の由来は、数学者レオンハルト・オイラー (Leonhard Euler) がケーニヒスベルクの7つの橋の解を与えたことから

頂点次数の応用例:オイラーグラフ (その2)

ケーニヒスベルクの 7 つの橋 (Seven Bridges of Königsberg)

プロイセン西部の街ケーニヒスベルクには 7 つの橋が架かっている。すべての橋をちょうど 1 回ずつ通って出発地点に戻る閉路は存在するか

ケーニヒスベルクの7つの橋

グラフによる表現

頂点次数の応用例:オイラーグラフ (その3)

オイラーグラフと頂点次数の関係

連結グラフがオイラーグラフであるための必要十分条件は, すべての頂点の次 数が偶数

ケーニヒスベルクの7つの橋の頂点次数 いずれも奇数なので、オイラーグラフではない

一筆書き (オイラー路) と頂点次数の関係

連結グラフが一筆書き可能であるための必要十分条件は,奇数次数の頂点が 0 個あるいは 2 個

オイラーグラフ,もしくはオイラーグラフから辺を1本取り除いたグラフを考えればよい

次数が奇数の頂点 (存在する場合) は、一筆書きの始点と終点

森 (forest)

閉路を持たない (無向) グラフ

木 (tree)

連結な森. 森の連結成分

葉 (leaf)

次数1の木の頂点

森 (forest)

閉路を持たない (無向) グラフ

木 (tree)

連結な森. 森の連結成分

葉 (leaf)

次数1の木の頂点

森 (forest)

閉路を持たない (無向) グラフ

木 (tree)

連結な森. 森の連結成分

葉 (leaf)

次数 1 の木の頂点

森 (forest)

閉路を持たない (無向) グラフ

木 (tree)

連結な森. 森の連結成分

葉 (leaf)

次数 1 の木の頂点

森 (forest)

閉路を持たない (無向) グラフ

木 (tree)

連結な森. 森の連結成分

葉 (leaf)

次数 1 の木の頂点

根付き木 (rooted tree)

根 (root) を持つ木

• 根を一番上に、根からの距離 (通過する辺の本数) に応じて頂点を配置

親 (parent): 辺で接続された頂点のうち, 根に近い方

子 (child): 辺で接続された頂点のうち, 根から遠い方

兄弟 (sibling): 同じ親を持つ頂点

先祖 (ancestor): 根方向に辿ることのできる頂点. 親の親など

根付き木 (rooted tree)

根 (root) を持つ木

• 根を一番上に、根からの距離 (通過する辺の本数) に応じて頂点を配置

親 (parent): 辺で接続された頂点のうち, 根に近い方

子 (child): 辺で接続された頂点のうち、根から遠い方

兄弟 (sibling): 同じ親を持つ頂点

先祖 (ancestor): 根方向に辿ることのできる頂点. 親の親など

根付き木 (rooted tree)

根 (root) を持つ木

• 根を一番上に、根からの距離 (通過する辺の本数) に応じて頂点を配置

親 (parent): 辺で接続された頂点のうち, 根に近い方

子 (child): 辺で接続された頂点のうち, 根から遠い方

兄弟 (sibling): 同じ親を持つ頂点

先祖 (ancestor): 根方向に辿ることのできる頂点. 親の親など

根付き木 (rooted tree)

根 (root) を持つ木

• 根を一番上に、根からの距離 (通過する辺の本数) に応じて頂点を配置

親 (parent): 辺で接続された頂点のうち,根に近い方

子 (child): 辺で接続された頂点のうち, 根から遠い方

兄弟 (sibling): 同じ親を持つ頂点

先祖 (ancestor): 根方向に辿ることのできる頂点. 親の親など

根付き木 (rooted tree)

根 (root) を持つ木

• 根を一番上に、根からの距離 (通過する辺の本数) に応じて頂点を配置

親 (parent): 辺で接続された頂点のうち, 根に近い方

子 (child): 辺で接続された頂点のうち, 根から遠い方

兄弟 (sibling): 同じ親を持つ頂点

先祖 (ancestor): 根方向に辿ることのできる頂点.親の親など

二部グラフ

二部グラフ (bipartite graph)

- 頂点集合 V を 2 つの部分集合 A, B (A ∪ B = V, A ∩ B = Ø) に分割
- A の頂点同士, B の頂点同士は隣接しない (辺は A, B 間のみ)

完全二部グラフ (complete bipartite graph)

- A の任意の頂点 u と B の任意の頂点 v が隣接
- A の要素数を p = |A|, B の要素数を q = |B| として, $K_{p,q}$ と表す

二部グラフ

二部グラフ (bipartite graph)

- 頂点集合 V を 2 つの部分集合 A, B (A ∪ B = V, A ∩ B = Ø) に分割
- A の頂点同士, B の頂点同士は隣接しない (辺は A, B 間のみ)

完全二部グラフ (complete bipartite graph)

- A の任意の頂点 u と B の任意の頂点 v が隣接
- A の要素数を p = |A|, B の要素数を q = |B| として, $K_{p,q}$ と表す

完全二部グラフ $K_{3,4}$

グラフの練習問題

次の(1)~(3)のグラフに当てはまるものをすべて選べ.

(a) 単純グラフ, (b) 連結グラフ, (c) 完全グラフ, (d) 木, (e) 二部グラフ

グラフの練習問題

次の(1)~(3)のグラフに当てはまるものをすべて選べ.

(a) 単純グラフ, (b) 連結グラフ, (c) 完全グラフ, (d) 木, (e) 二部グラフ

解答

- (1) (a), (b)
- (2) (a), (b), (c)
- (3) (a), (b), (d), (e)

グラフの練習問題

次の(1)~(3)のグラフに当てはまるものをすべて選べ.

(a) 単純グラフ, (b) 連結グラフ, (c) 完全グラフ, (d) 木, (e) 二部グラフ

解答

- (1) (a), (b)
- (2) (a), (b), (c)
- (3) (a), (b), (d), (e)

接続行列 (incidence matrix)

•
$$G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$$

• 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ				
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) $ または $e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$	$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$				

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ				
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) $ または $e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$	$c_{ij} = egin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$				

無向グラフ

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e 9	e_{10}
v_1	(1	1	0	0	0	1	0	1	0	0)
v_2	1	0	1	1	0	0	0	0	0	0
<i>v</i> ₃	0	1	1	0	1	0	1	0	0	0
v_4	0	0	0	1	1	0	0	0	1	0
v_5	0	0	0	0	0	0	1	0	0	
v_6		0	0	0	0	0	0	1	1	0 1
v ₇	0	0	0	0	0	1	0	0	0	1)

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ				
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k)$ または $e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$	$c_{ij} = egin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$				

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}
v_1	1	1	0	0	0	1	0	1	0	0)
<i>v</i> ₂	1	0	1	1	0	0	0	0	0	0
v_3	0	1	1	0	1	0	1	0	0	0
<i>v</i> ₄	0	0	0	1	1	0	0	0	1	0
v ₅	0	0	0	0	0	0	1	0	0	0
v_6	0	0	0	0	0	0	0	1	1	1
v7 (0	0	0	0	0	1	0	0	0	0 0 0 0 0 0 0 1 1

ぼ向グラフ 辺々、 12接続する頂占の行

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ			
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \text{ または } e_j = (v_k, v_i) \\ 0, & \text{それ以外} \end{cases}$	$c_{ij} = egin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$			

無向	グラ	ラフ

			-							
	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}
v_1	<i>(</i> 1	1	0	0	0	1	0	1	0	0
v_2	1	0	1	1	0	0	0	0	0	0
<i>v</i> ₃	0	1	1	0	1	0	1	0	0	0
<i>v</i> ₄	0	0	0	1	1	0	0	0	1	0
v_5	0	0	0	0	0	0	1	0	0	0
v_6	0	0	0	0	0	0	0	1	1	1
v_7	0)	0	0	0	0	1	0	0	0	0 0 0 0 0 0 1

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ				
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k)$ または $e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$	$c_{ij} = egin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$				

無向:	グラ	フ
-----	----	---

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}
v_1	1	1	0	0	0	1	0	1	0	0 0
v_2	1	0	1	1	0	0	0	0	0	0
<i>v</i> ₃	0	1	1	0	1	0	1	0	0	0
v_4	0	0	0	1	1	0	0	0	1	0
v ₅	0	0	0	0	0	0	1	0	0	0
v_6	0	0	0	0	0	0	0	1	1	0 0 1 1
v ₇ \	0	0	0	0	0	1	0	0	0	1)

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) $ または $e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$	$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$

無	句	グ	ラ	フ	

		_								
	e_1	e_2	<i>e</i> ₃	e_4	<i>e</i> ₅	e_6	e_7	<i>e</i> ₈	e 9	e_{10}
v_1	₍₁	1	0	0	0	1	0	1	0	0 >
v_2	1	0	1	1	0	0	0	0	0	0
<i>v</i> ₃	0	1	1	0	1	0	1	0	0	0
<i>v</i> ₄	0	0	0	1	1	0	0	0	1	0
v_5	0	0	0	0	0	0	1	0	0	0
v_6	0	0	0	0	0	0	0	1	1	1
v_7	0	0	0	0	0	1	0	0	0	0 0 0 0 0 0 1

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \text{ または } e_j = (v_k, v_i) \\ 0, & \text{それ以外} \end{cases}$	$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$

v_5	0	0	0		
v_6	0	0	0	0	
<i>v</i> ₇	0	0 0 0	0	0	

辺 e_i に接続する頂点の行が 1 (2 箇所), それ以外 0

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) $ または $e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$	$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}
v_1	(1	1	0	0	0	1	0	1	0	0
v_2	1	0	1	1	0	0	0	0	0	0
v_3	0	1	1	0	1	0	1	0	0	0 0
<i>v</i> ₄	0	0	0	1	1	0	0	0	1	0
v_5	0	0	0	0	0	0	1	0	0	0
v_6	0	0	0	0	0	0	0	1	1	1
<i>v</i> ₇	0	0	0	0	0	1	0	0	0	0 0 1 1

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) $ または $e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$	$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$

	e_1	00	02	01	0=	00	07	e_8	00	010
114		$\frac{e_2}{1}$	<i>e</i> ₃	e_4	<i>e</i> ₅	<i>e</i> ₆	<i>e</i> ₇	1	<i>e</i> ₉	$e_{10} = 0$
V1	1	0	0	1	0	0	0	0	0	0
v_2		1	1	1	1	0	1	0	0	
v_3		1	1	1	1	0				0
v_4	0	0	0	1	1	0				0
v_5	0	0		0	0	0	1	0	0	0
v_6	0	0	0	0		0	0	1		1
v_7	0)	0	0	0	0	1	0	0	0	1,

無向グラフ

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \text{ または } e_j = (v_k, v_i) \\ 0, & \text{それ以外} \end{cases}$	$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	<i>e</i> 9	e_{10}
v_1	(1	1	0	0	0	1	0	1	0	0)
v_2	1	0	1	1	0	0	0	0	0	0
<i>v</i> ₃	0	1	1	0	1	0	1	0	0	0
v_4	0	0	0	1	1	0	0	0	1	0
v ₅	0	0	0	0	0	0	1	0	0	0
v_6	0	0	0	0	0	0		1	1	1
<i>v</i> ₇	0)	0	0	0	0	1	0	0	0	1)

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k)$ または $e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$	$c_{ij} = egin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$

無向	グラ	フ

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e 9	e_{10}
v_1	<i>(</i> 1	1	0	0	0	1	0	1	0	0)
v_2	1	0	1	1	0	0	0	0	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
<i>v</i> ₃	0	1	1	0	1	0	1	0	0	0
v_4	0	0	0	1	1	0		0	1	0
v_5	0	0	0	0	0	0	1			0
v_6	0	0	0	0	0	0	0	1	1	1
<i>v</i> ₇	0	0	0	0	0	1	0	0	0	1)

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ			
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) $ または $e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$	$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$			

無向グラフ

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ		
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) $ または $e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$	$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$		

辺 e_i に接続する頂点の行は -1 (入) と 1 (出). それ以外 0

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ		
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k)$ または $e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$	$c_{ij} = egin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$		

有向グラフ

辺 e_j に接続する頂点の行は -1 (入) と 1 (出). それ以外 0

接続行列 (incidence matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\} \ge 3$
- 接続行列 (incidence matrix): $n \times m$ 行列 $C = (c_{ij})$

無向グラフ	有向グラフ
$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) $ または $e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$	$c_{ij} = \begin{cases} 1, & e_j = (v_i, v_k) \\ -1, & e_j = (v_k, v_i) \\ 0, & それ以外 \end{cases}$

有向グラフ

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}
v_1	(1	1	0	0	0	-1	0	-1	0	0)
v_2	-1	0	-1	1	0	0	0	0	0	0
<i>v</i> ₃	0	-1	1	0	-1	0	1	0	0	0
v_4	0	0	0	-1	1	0	0	0	1	0
v ₅	0	0	0	0	0	0	-1	0	0	0
v_6	0	0	0	0	0	0	0	1	-1	-1
										1)

辺 e_j に接続する頂点の行は -1 (入) と 1 (出). それ以外 0

隣接行列 (adjacency matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\} \$ $\forall \$ $\forall \$
- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \text{ または } (v_j, v_i) \in E \\ 0, & \text{それ以外} \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$
$u_{ij} = \begin{cases} 0, & \text{CAUX/F} \end{cases}$	$u_{ij} = 0, \emptyset$

 $^{\dagger}(v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

	v_1	v_2 1 0 1 1 0 0 0 0	v_3	v_4	v_5	v_6	v_7
v_1	(0	1	1	0	1	1	0)
v_2	1	0	1	1	0	0	0
v_3	1	1	0	1	1	0	0
v_4	0	1	1	0	0	1	0
V5	1	0	1	0	0	0	0
v_6	1	0	0	1	0	0	1
v_7	0)	0	0	0	0	1	0)

隣接行列 (adjacency matrix)

- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \text{ または } (v_j, v_i) \in E \\ 0, & \text{それ以外} \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$

 $^{\dagger}(v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

<u>v</u> ₄)	
	V7)
(V2)	
V ₅	$\setminus $
	v ₆

無向グラフ

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	1	1	0	1	1	0)
v_2	1	0	1	1	0	0	0
<i>v</i> ₃	1	1	0	1	1	0	0
v_4	0	1	1	0	0	1	0
<i>v</i> ₅	1	0	1	0	0	0	0
v_6	1	0	0	1	0	0	1
v_7	0)	1 0 1 1 0 0 0	0	0	0	1	0)

隣接行列 (adjacency matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\} \$ $\forall \$ $\forall \$
- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \text{ または } (v_j, v_i) \in E \\ 0, & \text{それ以外} \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$

 $^{\dagger}(v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

<u>v</u> ₄	
	(v_7)
(V3)	
V ₅	\setminus
VI	v_6

無向	グ	ラ	フ

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	(0)	1	1	0	1	1	0)
v_2	1	0	1 0 1	1	0	0	0
	1	1	0	1	1	0	0
v_4	0	1	1	0	0	1	0
v ₅	1	0	1	0	0	0	0
v ₃ v ₄ v ₅ v ₆	1	0	0	1	0	0	1
v_7	0	0	0	0	0	1	0)

隣接行列 (adjacency matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\} \$ $\forall \$ $\forall \$
- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \text{ または } (v_j, v_i) \in E \\ 0, & \text{それ以外} \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$

 $^{\dagger}(v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

v_4	
	\ v ₇
(v ₂)	\ [
1 1 1 3	
(v_1)	V ₅)
Ŭ	v_6
無向。	グラフ

	v_1	v_2	v_3	v ₄ 0 1 1 0 0 1 0 0 1	V5	v_6	v_7
v_1	(0	1	1	0	1	ĩ	0
v_2	1	0	1	1	0	0	0
<i>V</i> 3	1	1	0	1	1	0	0
<i>v</i> ₄	0	1	1	0	0	1	0
<i>v</i> ₅	1	0	1	0	0	0	0
v_6	1	0	0	1	0	0	1
<i>v</i> 7	0	0	0	0	0	1	0 ,

隣接行列 (adjacency matrix)

- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \text{ または } (v_j, v_i) \in E \\ 0, & \text{それ以外} \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$
$u_{ij} = \begin{cases} 0, & \text{CAUX/F} \end{cases}$	$u_{ij} = 0, \emptyset$

 $^{\dagger}(v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

無向グラフ

v_1	v_2	v_3	v_4	v_5	<i>v</i> ₆	v_7
$v_1 \neq 0$	1	1	0	1	1	0
$\begin{array}{c} v_1 \\ v_2 \end{array} \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$	1 0 1	1	$v_4 = 0$ 1	0	0	0
$\begin{bmatrix} v_3 \\ v_4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	0	1	1	0	0
$v_4 \mid 0$	1	1	0	0	1	0
$\begin{array}{c c} v_5 & 1 \\ v_6 & 1 \end{array}$	0 0 0	1	0	0	0	0
$v_6 \mid 1$	0	0	1	0	0	1
$v_7 \setminus 0$	0	0	0	0	1	0)

隣接行列 (adjacency matrix)

- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \text{ または } (v_j, v_i) \in E \\ 0, & \text{それ以外} \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$

 $^{\dagger}(v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	(0	1	1	0	1	v ₆	0)
v_2	1	0	1	1	0	0	0
v_3	1	1	0	1	1	0	0
v_4	0	v_2 1 0 1 1 0	1	0	0	1	0
<i>v</i> ₅	1	0	1	0	0	0	0
v ₆	1	0	0 0	1	0	0	1
<i>v</i> ₇	0)	0 0	0	0	0	1	0)

隣接行列 (adjacency matrix)

- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \text{ または } (v_j, v_i) \in E \\ 0, & \text{それ以外} \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & \text{それ以外} \end{cases}$

 $\dagger (v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

無向グラフ	v. と v. が隣接するとき

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	(0	1	1	0	1	1	0)
v_2		0	1	1	0	0	0
<i>v</i> ₃	1	0 1 1	0	1	1	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
v_4	0	1	1	0	0	1	0
v ₂ v ₃ v ₄ v ₅	1	0	1	0	0	0	0
<i>v</i> ₆	1	0	0	1	0	0	1
<i>v</i> ₇	0	0	0	0	0	1	0)

隣接行列 (adjacency matrix)

- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \text{ または } (v_j, v_i) \in E \\ 0, & \text{それ以外} \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$

 $\dagger (v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

無向	グ	ラフ

	v_1	v_2	v_3	v_4	v_5	v ₆ 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1	v_7
v_1	0	1	1	0	1	1	0)
v_2	1	0	1	1	0	0	0
v_3	1	1	0	1	1	0	0
v_4	0	1	1	0	0	1	0
<i>v</i> ₅	1	0	1	0	0	0	0
v_6	1	0	0	1	0	0	1
<i>v</i> ₇	0)	0	0	0	0	1	0)

隣接行列 (adjacency matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\} \$ $\forall \$ $\forall \$
- 隣接行列 (adjacency matrix): $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \text{ または } (v_j, v_i) \in E \\ 0, & それ以外 \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$

 $^{\dagger}(v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

有向グラフ

	v_1	v_2	v_3	v_4	v ₅ 1 0 1 0 0 0 0 0	<i>v</i> ₆	<i>v</i> ₇
v_1	(0	ĩ	1	Ó	1	ĭ	0
v_2	1	0	1	1	0	0	0
v_3	1	1	0	1	1	0	0
v_4	0	1	1	0	0	1	0
v_5	1	0	1	0	0	0	0
v_6	1	0	0	1	0	0	1
v_7	0	0	0	0	0	1	0)

隣接行列 (adjacency matrix)

- 隣接行列 (adjacency matrix): $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E または (v_j, v_i) \in E \\ 0, & それ以外 \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$

 $^{\dagger}(v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

	(v_7)
(v_2) (v_3)	
V ₅	\downarrow
•	v_6

有向グラフ

	v_1	v_2 1 0 1 1 0 0 0	v_3	v_4	v_5	v_6	v_7
v_1	0	1	1	0	0	0	0)
v_2	1	0	1	1	0	0	0
<i>v</i> ₃	1	1	0	1	1	0	0
v_4	0	1	1	0	0	1	0
<i>v</i> ₅	1	0	1	0	0	0	0
v_6	1	0	0	1	0	0	1
v_7	0	0	0	0	0	0 0 0 1 0 0	0)

隣接行列 (adjacency matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\}$ $\forall \forall \forall \exists v_1, v_2, \dots, v_n \}$
- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E または (v_j, v_i) \in E \\ 0, & それ以外 \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$

 $^{\dagger}(v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

有向グラフ

	V1	Va	V2	V ₄	v ₅	V6	v_7
v_1	(0	v_2 1 0 1 1 0	1	0	0	$\stackrel{v_6}{0}$	
v_1 v_2	0	0	0	1	0	0	0
V2	1	1	0	1	1	0	0
v_4	0	1	1	0	0	1	0
v_5	1	1 0 0 0	1	0	0	0	0
v_6	1	0	0	1	0	0	0 0 0 0 0 1
<i>v</i> 7	0	0	0	0	0	1	0 ,

隣接行列 (adjacency matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\} \$ $\forall \$ $\forall \$
- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E または (v_j, v_i) \in E \\ 0, & それ以外 \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & \text{それ以外} \end{cases}$

 $^{\dagger}(v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

有向グラフ

	v_1	v_2	v_3	v_4 0 1 0 0 0 1 0 0 0	v_5	v_6	v_7
v_1	(0	1	1	0	0	0	0)
v_2	0	0	0	1	0	0	0
<i>v</i> ₃	0	1	0	0	1	0	0
<i>V</i> 4	0	1	1	0	0	1	0
v ₅	1	0	1	0	0	0	0
v_6	1	0	0	1	0	0	1
v_7	0	0	0	0	0	1	0)

隣接行列 (adjacency matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\} \ge 3$
- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E または (v_j, v_i) \in E \\ 0, & それ以外 \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$

 $\dagger (v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

有向グラフ

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	1	<i>v</i> ₃	0	0	0	
v_2	0	1 0	0	1	0	0	0
v ₁ v ₂ v ₃	0	1		0	1	0	0
v_4	0	0	1	0	0	1	0
v ₅	1	0	1	0	0	0	0
v ₅ v ₆	1	0	0	1	0	0	0 0 0 0 0 1
v_7	0)	0	0	0	0	1	0)

隣接行列 (adjacency matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\} \ge 3$
- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ		
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \text{ または } (v_j, v_i) \in E \\ 0, & \text{それ以外} \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$		

 $\dagger (v_i, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

	v_1	v_2	v ₃ 1 0 0 1 0 0 1 0 0	v_4	v_5	v_6	v_7
v_1	(0	1	1	0	Ö	$v_6 \\ 0$	0)
v_2	0	0	0	1	0	0	0
v_3	0	1	0	0	1		0
v_4	0	0	1	0	0	1	0
<i>V</i> 5	1	0	0	0	0	0	0
<i>v</i> ₆	1	0	0	1	0	0	0 0 0 0 0 1
v_7	0)	0	0	0	0	1	0)

隣接行列 (adjacency matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\} \$ $\forall \$ $\forall \$
- 隣接行列 (adjacency matrix): $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ		
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \text{ または } (v_j, v_i) \in E \\ 0, & それ以外 \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$		

 $\dagger (v_i, v_i) \in E$ のとき $a_{ii} = 1$ とする流儀もある

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	(0	1	1	0	0	0	0)
v_2	0	0	0	1	0	0	0
<i>v</i> ₃	0	1	0	0	1	0	0
v_4	0	0	1	0	0	1	0
v ₅	1	0	0	0	0	0	0
v_6	1	0	0	0	0	0	0
<i>v</i> ₇	0	0	0	0	0	1	$\begin{pmatrix} v_7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

隣接行列 (adjacency matrix)

- $G = (V, E), V = \{v_1, v_2, \dots, v_n\} \ge 3$
- 隣接行列 (adjacency matrix) : $n \times n$ 行列 $A = (a_{ij})$

無向グラフ (対称行列)	有向グラフ
$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E または (v_j, v_i) \in E \\ 0, & それ以外 \end{cases}$	$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E^{\dagger} \\ 0, & それ以外 \end{cases}$

 $^{\dagger}(v_j, v_i) \in E$ のとき $a_{ij} = 1$ とする流儀もある

有向グラフ

	v_1	v_2	v_3	v_4 0 1 0 0 0 0 0 0	V5	v_6	v_7
v_1	(0	1	1	0	0	Õ	0)
v_2	0	0	0	1	0	0	0
v_3	0	1	0	0	1	0	0
v_4	0	0	1	0	0	1	0
v ₅	1	0	0	0	0	0	0
v_6	1	0	0	0	0	0	0
<i>v</i> ₇	0)	0	0	0	0	0 0 1	0)

練習問題:接続行列と隣接行列

接続行列

 v_4 v_5 v_1 v_2

隣接行列

無向グラフ

有向グラフ

練習問題:接続行列と隣接行列

 v_4 e_4 v_3 e_6 e_7 v_1 e_1 v_2 e_7

有向グラフ

隣接行列

無向グラフ

練習問題:接続行列と隣接行列

$$e_1$$
 e_2 e_3 e_4 e_5 e_6 e_7 v_2 v_3 v_4 v_5 v_1 v_2 v_3 v_4 v_5 $v_$

グラフ彩色

グラフ彩色 (graph coloring)

- 無向グラフの頂点を色分けする問題
- 隣接する頂点は異なる色を割り当てる

辺彩色 (edge coloring) と区別して、頂点彩色 (vertex coloring) と呼ばれる場合も

彩色数 (chromatic number)

与えられたグラフを彩色するのに必要な色数の最小値

一般のグラフに対して彩色数を求める問題は強 NP 困難

4 色定理 (Four color Theorem)

地図 (境界線で区切られた平面上の領域) は 4 色で塗り分け可能

- 境界線を挟んで隣り合う領域は異なる色
- 一点で隣り合う領域は同じ色でも構わない

グラフ彩色との関係

平面グラフの彩色と等価

平面グラフ (planar graph)

地図の塗り分け

4 色定理 (Four color Theorem)

地図 (境界線で区切られた平面上の領域) は 4 色で塗り分け可能

- 境界線を挟んで隣り合う領域は異なる色
- 一点で隣り合う領域は同じ色でも構わない

グラフ彩色との関係

平面グラフの彩色と等価

平面グラフ (planar graph)

地図の塗り分け

4 色定理 (Four color Theorem)

地図 (境界線で区切られた平面上の領域) は 4 色で塗り分け可能

- 境界線を挟んで隣り合う領域は異なる色
- 一点で隣り合う領域は同じ色でも構わない

グラフ彩色との関係

平面グラフの彩色と等価

平面グラフ (planar graph)

地図の塗り分け

4 色定理 (Four color Theorem)

地図 (境界線で区切られた平面上の領域) は 4 色で塗り分け可能

- 境界線を挟んで隣り合う領域は異なる色
- 一点で隣り合う領域は同じ色でも構わない

グラフ彩色との関係

平面グラフの彩色と等価

平面グラフ (planar graph)

地図の塗り分け

平面グラフ

4色定理をめぐるあれこれ

- ケネス・アッペル (Kenneth Appel) とウォルフガング・ハーケン (Wolfgang Haken) が 1976 年に証明
- コンピュータを使って, 2000 通り近いパターンをしらみ潰しにチェックするというもの
- 後に見つかったミスを修正した証明は、「Every Planar Map is Four-Colorable」(1989) という本にまとめられている
- 現在でも、より洗練された証明は見つかっていない
- 2024年10月にも6ページの証明が発表されたが、間違いが見つかってすぐに取り下げられた

ネットワーク

ネットワーク (network)

辺に重み (距離やコストなど) を付加したグラフ

有向グラフ

ハミルトン路問題・ハミルトン閉路問題

ハミルトン路 (Hamiltonian path)

すべての頂点をちょうど 1 回ずつ巡る路

ハミルトン閉路 (Hamiltonian cycle, Hamiltonian circuit)

すべての頂点をちょうど 1 回ずつ巡る閉路

ハミルトン路問題・ハミルトン閉路問題

ハミルトン路問題: ハミルトン路が存在するかどうかを判定する問題

ハミルトン閉路問題: ハミルトン閉路が存在するかどうかを判定する問題

ハミルトン路問題・ハミルトン閉路問題はいずれも強 NP 完全

巡回セールスマン問題 (traveling salesman problem)

重み和が最小のハミルトン閉路を求める問題

巡回セールスマン問題は強 NP 困難

ハミルトングラフ

ハミルトングラフ (Hamiltonian graph)

ハミルトン閉路が存在するグラフ

頂点数 n が 3 以上のグラフがハミルトングラフとなるための十分条件

ディラックの条件: 頂点の次数がすべて n/2 以上

オーレの条件: 隣接しない 2 頂点の次数の和がすべて n 以上

- (1) ディラックの条件を満たさないが、オーレの条件は満たすハミルトングラフ
- (2) どちらも満たさないハミルトングラフ

ハミルトングラフ

ハミルトングラフ (Hamiltonian graph)

ハミルトン閉路が存在するグラフ

頂点数 n が 3 以上のグラフがハミルトングラフとなるための十分条件

ディラックの条件: 頂点の次数がすべて n/2 以上

オーレの条件: 隣接しない 2 頂点の次数の和がすべて n 以上

- (1) ディラックの条件を満たさないが、オーレの条件は満たすハミルトングラフ
- (2) どちらも満たさないハミルトングラフ

ハミルトングラフ

ハミルトングラフ (Hamiltonian graph)

ハミルトン閉路が存在するグラフ

頂点数 n が 3 以上のグラフがハミルトングラフとなるための十分条件

ディラックの条件: 頂点の次数がすべて n/2 以上

オーレの条件: 隣接しない 2 頂点の次数の和がすべて n 以上

- (1) ディラックの条件を満たさないが、オーレの条件は満たすハミルトングラフ
- (2) どちらも満たさないハミルトングラフ

最短経路問題

最短経路問題 (shortest path problem)

ネットワーク上で最短路 (辺の重みの和が最小の路) を求める問題

最短経路問題の種類

- 単一点対 (single-pair) 最短経路問題 2 頂点間の最短路を求める問題
- 単一始点 (single-source) 最短経路問題 ある頂点から残りすべての頂点への最短路を求める問題
- 全点対 (all-pairs) 最短経路問題 すべての 2 頂点の組に対して最短路を求める問題

上の最短経路問題はいずれも多項式時間で求解可能

マッチング

マッチング (matching)

無向グラフG = (V, E)のマッチング (matching) とは,辺の部分集合 $M \subseteq E$ で,頂点を共有する辺が含まれないもの

辺で接続した頂点を、重複がないようにペアリングしたもの

最大マッチング (maximum matching, maximum cardinality matching)

最大本数の辺からなるマッチング

最大重みマッチング (maximum weight matching)

辺の重みの合計が最大となるマッチング

マッチング

二部グラフのマッチング

マッチング

マッチング (matching)

無向グラフG = (V, E)のマッチング (matching) とは,辺の部分集合 $M \subseteq E$ で,頂点を共有する辺が含まれないもの

辺で接続した頂点を、重複がないようにペアリングしたもの

最大マッチング (maximum matching, maximum cardinality matching)

最大本数の辺からなるマッチング

最大重みマッチング (maximum weight matching)

辺の重みの合計が最大となるマッチング

マッチング

二部グラフのマッチング

完全二部グラフ $K_{n,n}$ の最大重みマッチング

バイト\シフト	午前	午後	深夜
X	5	6	7
Υ	4	5	8
Z	6	3	9

- 最大マッチング・最大重みマッチングはいずれも多項式時間で求解可能
- もちろん, 割当問題も多項式時間で求解可能

完全二部グラフ $K_{n,n}$ の最大重みマッチング

バイト\シフト	午前	午後	深夜
X	5	6	7
Υ	4	5	8
Z	6	3	9

10 から引いて最大化問題に変換

バイト \ シフト	午前	午後	深夜
X	5	4	3
Υ	6	5	2
Z	4	7	1

- 最大マッチング・最大重みマッチングはいずれも多項式時間で求解可能
- もちろん、割当問題も多項式時間で求解可能

完全二部グラフ $K_{n,n}$ の最大重みマッチング

午前	午後	深夜
5	6	7
4	5	8
6	3	9
	午前 5 4 6	

10 から引いて最大化問題に変換

バイト \ シフト	午前	午後	深夜
X	5	4	3
Υ	6	5	2
Z	4	7	1

- 最大マッチング・最大重みマッチングはいずれも多項式時間で求解可能
- もちろん、割当問題も多項式時間で求解可能

完全二部グラフ $K_{n,n}$ の最大重みマッチング

バイト\シフト	午前	午後	深夜
X	5	6	7
Υ	4	5	8
Z	6	3	9

10 から引いて最大化問題に変換

バイト \ シフト	午前	午後	深夜
X	5	4	3
Υ	6	5	2
Z	4	7	1

- 最大マッチング・最大重みマッチングはいずれも多項式時間で求解可能
- もちろん、割当問題も多項式時間で求解可能

全域木

全域木 (spanning tree)

すべての頂点を含む部分グラフのうち、木となっているもの

最小全域木 (minimum spanning tree)

辺の重みの和が最小となる全域木

「最小全域木」は「最小<mark>重み</mark>全域木」の意味で使われるのが一般的 (紛らわしい)

全域木

最小全域木は多項式時間で求まる

全域木

全域木 (spanning tree)

すべての頂点を含む部分グラフのうち、木となっているもの

最小全域木 (minimum spanning tree)

辺の重みの和が最小となる全域木

「最小全域木」は「最小重み全域木」の意味で使われるのが一般的 (紛らわしい)

全域木

最小全域木は多項式時間で求まる

- 始点の頂点 (source) から終点の頂点 (sink) までのフロー (モノの流れ) を最大化する問題
- 辺の重み:辺に流せる最大フロー・容量 (capacity)
- 最大フロー問題は多項式時間で求解可能
- 線形計画問題として扱うこともできる

- 始点の頂点 (source) から終点の頂点 (sink) までのフロー (モノの流れ) を最大化する問題
- 辺の重み:辺に流せる最大フロー・容量 (capacity)
- 最大フロー問題は多項式時間で求解可能
- 線形計画問題として扱うこともできる

- 始点の頂点 (source) から終点の頂点 (sink) までのフロー (モノの流れ) を最大化する問題
- 辺の重み:辺に流せる最大フロー・容量 (capacity)
- 最大フロー問題は多項式時間で求解可能
- 線形計画問題として扱うこともできる

- 始点の頂点 (source) から終点の頂点 (sink) までのフロー (モノの流れ) を最大化する問題
- 辺の重み:辺に流せる最大フロー・容量 (capacity)
- 最大フロー問題は多項式時間で求解可能
- 線形計画問題として扱うこともできる

最小カット問題 (minimum cut problem)

- 重み和が最小となるカットを見つける問題
- カット:取り除くとグラフやネットワークが2分割される辺集合

最大フロー最小カット定理 (max-flow min-cut theorem)

最小カット問題 (minimum cut problem)

- 重み和が最小となるカットを見つける問題
- カット:取り除くとグラフやネットワークが2分割される辺集合

最大フロー最小カット定理 (max-flow min-cut theorem)

最小カット問題 (minimum cut problem)

- 重み和が最小となるカットを見つける問題
- カット:取り除くとグラフやネットワークが2分割される辺集合

最大フロー最小カット定理 (max-flow min-cut theorem)

最小カット問題 (minimum cut problem)

- 重み和が最小となるカットを見つける問題
- カット:取り除くとグラフやネットワークが2分割される辺集合

最大フロー最小カット定理 (max-flow min-cut theorem)

最小カット問題 (minimum cut problem)

- 重み和が最小となるカットを見つける問題
- カット:取り除くとグラフやネットワークが2分割される辺集合

最大フロー最小カット定理 (max-flow min-cut theorem)

最大フロー:12

最小カット:4+3+3+2=12