CIÊNCIA DE DADOS - 02

Prof. Júlio Cesar Nievola PPGIa – PUCPR 27/abril/2019

Classificação: Definição

- Dada uma coleção de registros (conjunto de treinamento)
 - Cada registro contém um conjunto de atributos e um dos atributos é a classe.
- Encontrar um modelo para o atributo classe como uma função dos valores dos outros atributos.
- Objetivo: aos <u>registros previamente desconhecidos</u> deve ser assinalada uma classe tão precisamente quanto possível.
 - Um conjunto de teste é usado para determinar a precisão do modelo. Geralmente o conjunto de dados fornecido é dividido em conjuntos de treinamento e testes, com o conjunto de treinamento sendo usado para construir o modelo e o conjunto de testes sendo usado para validá-lo.

Ilustrando a Tarefa de Classificação

Conjunto de Treinamento

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Conjunto de Teste

Exemplos da Tarefa de Classificação

- Prever se tumor em células é benigno ou maligno
- Classificar transações de cartão de crédito como legítimas ou fraude

 Classificar estruturas secundárias de proteínas como alpha-helix, beta-sheet, ou

random coil

 Categorizar textos novos como finanças, tempo, lazer, esportes, etc

Técnicas de Classificação

- Métodos baseados em Árvore de Decisão
- Métodos baseados em Regras
- Raciocínio baseado em Memória
- Redes Neurais Artificiais (e "Deep Learning")
- Naïve Bayes e Redes Baiesianas de Crença
- Máquinas de Vetores de Suporte SVM

MÉTODOS BASEADOS EM ÁRVORE DE DECISÃO

Exemplo de uma Árvore de Decisão

categórico continuos

		_		
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Atributos de Decisão Refund Yes No NO **MarSt** Married Single, Divorced **TaxInc** NO < 80K > 80K YES NO

Dados de Treinamento

Modelo: Árvore de Decisão

Outro Exemplo de Árvore de Decisão

categórico categórico continuos

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Pode haver mais de uma árvore que se ajusta aos mesmos dados!

Tarefa de Classificação com Árvore de Decisão

Conjunto de Treinamento

Attrib1	Attrib2	Attrib3	Class
No	Small	55K	?
Yes	Medium	80K	?
Yes	Large	110K	?
No	Small	95K	?
No	Large	67K	?
	No Yes Yes No	No Small Yes Medium Yes Large No Small	No Small 55K Yes Medium 80K Yes Large 110K No Small 95K

Conjunto de Teste

Iniciar na raiz da árvore.

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Indução de Árvore de Decisão

- Muitos Algoritmos:
 - Algoritmo de Hunt (um dos primeiros)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

Estrutura Geral do Algoritmo de Hunt

- Seja D_t o conjunto de registros de treinamento que chegam ao nó t
- Procedimento Geral:
 - Se D_t contém registros que pertencem à mesma classe y_t, então t é um nó folha com nome y_t
 - Se D_t é um conjunto vazio, então t é um nó folha com o nome da classe padrão y_d
 - Se D_t contém registros que pertencem a mais de uma classe, usar um teste em atributo para dividir os dados em sub-conjuntos menores. Aplicar recursivamente o procedimento para cada subconjunto.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Algoritmo de Hunt

Don't

Cheat

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Married

Don't

Cheat

Cheat

Indução de Árvores

- Estratégia gulosa.
 - Dividir os registros baseado sobre o teste do atributo que otimiza determinado critério.

- Pontos a considerar
 - Determinar como dividir os registros
 - ◆Como especificar a condição de teste do atributo?
 - ◆Como determinar a melhor divisão?
 - Determinar quando parar de dividir

Como especificar a condição de teste?

- Depende dos tipos de atributos
 - Nominal
 - Ordinal
 - Contínuo

- Depende do número de formas de dividir
 - 2-way split
 - Multi-way split

Critério de Parada para Árvores de Decisão

 Parar de expandir um nó quando todos os registros pertencem à mesma classe

 Parar de expandir um nó quando todos os registros tem valores de atributo similar

Terminação precoce

Classificação baseada em Árvore de Decisão

- Vantagens:
 - Sem dificuldades de construção
 - Extremamente rápida para classificar registros desconhecidos
 - Fácil de interpretar para árvores pequenas
 - Precisão comparável a outras técnicas de classificação para muitos conjuntos com dados simples

Exemplo: C4.5

Construção simples de busca em profundidade.

Usa Ganho de Informação

Ordena Atributos Contínuos em cada nó.

Todos os dados devem caber na memória.

- Não adequado para grandes bases de dados.
 - Necessita de ordenação out-of-core.

Outras Questões

Fragmentação de Dados

Superfície de Separação

Replicação de Árvore

Fragmentação de Dados

 Número de instâncias torna-se menor à medida que se caminha na árvore

 Número de instâncias nos nós folha pode ser muito pequeno para tomar qualquer decisão estatisticamente significante

Superfície de separação

- A linha limite entre duas regiões vizinhas com diferentes classes é conhecida como superfície de separação
- A superfície de separação é paralela aos eixos pois a condição de teste envolve um único atributo por vez

Replicação de Árvore

Mesma sub-árvore aparece em vários ramos

MÉTODOS BASEADOS EM REGRAS DE CLASSIFICAÇÃO

Classificadores Baseados em Regras

- Classificar registros usando uma coleção de regras "se...então..."
- Regra: (Condição) → y
 - em que
 - Condição é uma conjunção de atributos
 - ♦ y é o rótulo da classe
 - LHS: antecedente da regra ou condição
 - RHS: consequente da regra
 - Exemplos de regras de classificação:
 - ◆ (Blood Type=Warm) ∧ (Lay Eggs=Yes) → Birds
 - (Taxable Income < 50K) ∧ (Refund=Yes) → Evade=No

Classificador Baseado em Regras (Exemplo)

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
human	warm	yes	no	no	mammals
python	cold	no	no	no	reptiles
salmon	cold	no	no	yes	fishes
whale	warm	yes	no	yes	mammals
frog	cold	no	no	sometimes	amphibians
komodo	cold	no	no	no	reptiles
bat	warm	yes	yes	no	mammals
pigeon	warm	no	yes	no	birds
cat	warm	yes	no	no	mammals
leopard shark	cold	yes	no	yes	fishes
turtle	cold	no	no	sometimes	reptiles
penguin	warm	no	no	sometimes	birds
porcupine	warm	yes	no	no	mammals
eel	cold	no	no	yes	fishes
salamander	cold	no	no	sometimes	amphibians
gila monster	cold	no	no	no	reptiles
platypus	warm	no	no	no	mammals
owl	warm	no	yes	no	birds
dolphin	warm	yes	no	yes	mammals
eagle	warm	no	yes	no	birds

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) → Amphibians

Regras

 Uma regra r cobre uma instância x se os atributos da instância satisfazem a condição da regra

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) → Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	yes	no	no	?

A regra R1 cobre hawk => Bird

A regra R3 cobre grizzly bear => Mammal

Cobertura e Precisão de uma Regra

- Cobertura de uma regra:
 - Fração de registros que satisfazem o antecedente da regra
- Precisão de uma regra:
 - Fração dos registros que satisfazem tanto o antecedente quanto o conseqüente da regra

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(Status=Single) \rightarrow No

Cobertura = 40%, Precisão = 50%

Como um Classificador baseado em Regras Funciona?

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
lemur	warm	yes	no	no	?
turtle	cold	no	no	sometimes	?
dogfish shark	cold	yes	no	yes	?

Um lemur dispara R3, então é classificado como mammal Uma turtle dispara tanto R4 quanto R5 Um dogfish shark não dispara nenhuma das regras

Características dos Classificadores Baseados em Regras

- Regras mutuamente exclusivas
 - Classificador contém regras mutuamente exclusivas se as regras são independentes entre si
 - Cada registro é coberto por no máximo uma regra

- Regras exaustivas
 - Classificador tem cobertura exaustiva se ele leva em conta toda possível combinação dos valores dos atributos
 - Cada registro é coberto por pelo menos uma regra

De Árvores de Decisão para Regras

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Regras são mutuamente exclusivas e exaustivas

Conjunto de regras contém tanta informação quanto a árvore

Regras Podem ser Simplificadas

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Regra Inicial: (Refund=No) \land (Status=Married) \rightarrow No

Regra Simplificada: (Status=Married) → No

Efeito da Simplificação de Regras

- Regras deixam de ser mutuamente exclusivas
 - Um registro pode disparar mais de uma regra
 - Solução?
 - Conjunto de regras ordenadas
 - ◆Conjunto não ordenado de regras usar esquema de votação
- Regras deixam de ser exaustivas
 - Um registro pode não disparar nenhuma regra
 - Solução?
 - Usar uma classe default

Conjunto de Regras Ordenadas

- Regras são ordenadas de acordo com sua prioridade, chamada lista de decisão
- Quando um registro de teste é apresentado
 - Ele é assinalado ao rótulo de classe da regra de mais alta ordem que tenha sido disparada
 - Se nenhuma das regras dispara, é assinalado à classe default

```
R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
```

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) → Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
turtle	cold	no	no	sometimes	?

Construindo Regras de Classificação

- Método Direto:
 - Extrair regras diretamente dos dados
 - e.g.: RIPPER, CN2, 1R de Holte

- Método Indireto:
 - ◆Extrair regras de outros modelos de classificação (e.g. árvores de decisão, redes neurais etc.)
 - e.g: C4.5rules

Sumário do Método Direto

Crescer uma única regra

Remover Instâncias da regra

Podar a regra (se necessário)

Adicionar regra ao conjunto atual de regras

Repetir

Métodos Indiretos

Rule Set

r1: (P=No,Q=No) ==> -

r2: (P=No,Q=Yes) ==> +

r3: (P=Yes,R=No) ==> +

r4: (P=Yes,R=Yes,Q=No) ==> -

r5: (P=Yes,R=Yes,Q=Yes) ==> +

Exemplo

Name	Give Birth	Lay Eggs	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	no	yes	mammals
python	no	yes	no	no	no	reptiles
salmon	no	yes	no	yes	no	fishes
whale	yes	no	no	yes	no	mammals
frog	no	yes	no	sometimes	yes	amphibians
komodo	no	yes	no	no	yes	reptiles
bat	yes	no	yes	no	yes	mammals
pigeon	no	yes	yes	no	yes	birds
cat	yes	no	no	no	yes	mammals
leopard shark	yes	no	no	yes	no	fishes
turtle	no	yes	no	sometimes	yes	reptiles
penguin	no	yes	no	sometimes	yes	birds
porcupine	yes	no	no	no	yes	mammals
eel	no	yes	no	yes	no	fishes
salamander	no	yes	no	sometimes	yes	amphibians
gila monster	no	yes	no	no	yes	reptiles
platypus	no	yes	no	no	yes	mammals
owl	no	yes	yes	no	yes	birds
dolphin	yes	no	no	yes	no	mammals
eagle	no	yes	yes	no	yes	birds

C4.5 versus C4.5rules versus RIPPER

C4.5 versus C4.5 rules versus RIPPER

C4.5 e C4.5 rules:

		CLASSE PREVISTA				
		Amphibians	Fishes	Reptiles	Birds	Mammals
	Amphibians	2	0	0	0	0
CLASSE	Fishes	0	2	0	0	1
REAL	Reptiles	1	0	3	0	0
INLAL	Birds	1	0	0	3	0
	Mammals	0	0	1	0	6

RIPPER:

		CLASSE PREVISTA				
		Amphibians	Fishes	Reptiles	Birds	Mammals
	Amphibians	0	0	0	0	2
CLASSE	Fishes	0	3	0	0	0
REAL	Reptiles	0	0	3	0	1
IVEAL	Birds	0	0	1	2	1
	Mammals	0	2	1	0	4

Vantagens de Classificadores baseados em Regras

Tão expressivos quanto as árvores de decisão

Fáceis de interpretar

Fáceis de gerar

Podem classificar rapidamente novas instâncias

Desempenho comparável às árvores de decisão

MÉTODOS BASEADOS EM INSTÂNCIA ("LAZY LEARNING")

Classificadores baseados em Instância

Casos armazenados

Atr1	 AtrN	Classe
		A
		В
		В
		С
		A
		С
		В

- •Armazena os registros de treinamento
- •Usa registros de treinamento para prever o rótulo da classe para casos não-vistos

Casos Novos

Atr1	 AtrN

Classificadores baseados em Instância

• Exemplos:

- Rote-learner
 - Memoriza todos os dados de treinamento e realiza classificação somente se atributos do registro correspondem exatamente a um dos exemplos de treinamento

- Vizinho mais próximo
 - Usa k pontos "mais próximos" (vizinhos mais próximos) para realizar classificação

Classificadores Vizinho Mais Próximo

- Idéia Básica:
 - Se ele anda como um pato, grasna como um pato, então é provavelmente um pato

Classificadores Vizinho Mais Próximo

- Requer três coisas
 - Conjunto de registros armazenados
 - Métrica de distância para calcular distância entre registros
 - Valor de k, o número de vizinhos mais próximos a recuperar
- Para classificar registro desconhecido:
 - Calcular distância para outros registros de treinamento
 - Identificar k vizinhos mais próximos
 - Usar rótulos da classe dos vizinhos mais próximos para determinar o rótulo da classe do registro desconhecido (e.g., pelo voto da maioria)

Definição do Vizinho Mais Próximo

K-vizinhos mais próximos de um registro *x* são pontos de dados que tem a *k*-ésima menor distância para *x*

Vizinho Mais Próximo (1-NN)

Diagrama de Voronoi

Vizinho Mais Próximo – 1

- Escolhendo o valor de k:
 - Se k é muito pequeno, há sensibilidade ao ruído
 - Se k é muito grande, a vizinhança pode incluir pontos de outras classes

Vizinho Mais Próximo – 2

- Questões de escalamento
 - Atributos podem ter de ser escalados para evitar medidas de distâncias serem dominadas por um dos atributos
 - Exemplo:
 - altura de uma pessoa pode variar de 1.5m a 1.8m
 - peso de uma pessoa pode variar de 45kg a 150kg
 - renda de uma pessoa pode variar de \$1k a \$100k

Vizinho Mais Próximo – 3

- Classificador k-NN é lazy learner ("aprendizagem preguiçosa")
 - Não constrói explicitamente modelos
 - Diferente da "aprendizagem ávida" ("eager learner") como árvore de decisão e sistemas baseados em regras
 - Classificação de registros desconhecidos é relativamente cara computacionalmente

MÉTODOS BASEADOS EM TÉCNICAS ESTATÍSTICAS

Classificador Bayesiano

- Quadro probabilístico para resolução de problemas de classificação
- Probabilidade Condicional:

$$P(C \mid A) = \frac{P(A,C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

Teorema de Bayes:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Exemplo de Teorema de Bayes

Dados:

- Um médico sabe que meningite causa enrijecimento do pescoço em 50% dos casos
- Probabilidade a priori de paciente ter meningite é 1/50.000
- Probabilidade a priori de paciente ter pescoço rijo é 1/20
- Se um paciente tem pescoço rijo, qual é a probabilidade de ter meningite?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Classificador Naïve Bayes

- Assume independência entre atributos A_i quando a classe é dada:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_i) P(A_2 | C_i) ... P(A_n | C_i)$
 - Pode estimar $P(A_i | C_j)$ para todo $A_i \in C_j$.
 - Novo ponto é classificado como C_j se $P(C_i)$ Π $P(A_i | C_i)$ é máximo.

Naïve Bayes (Sumário)

- Robusto a pontos isolados de ruído
- Suporta valores faltantes ignorando a instância durante cálculos da estimativa de probabilidade
- Robusto a atributos irrelevantes
- Pressuposição de Independência pode não se sustentar para alguns atributos
 - Usar outros técnicas tais como Bayesian Belief Networks (BBN)

MÉTODOS BASEADOS EM REDES NEURAIS ARTIFICIAIS (E "DEEP LEARNING")

Estrutura Geral de uma RNA

MÉTODO BASEADOS EM SVM ("SUPPORT VECTOR MACHINES")

 Encontrar um hiperplano linear (superfície de decisão) que irá separar os dados

Uma possível solução

Outra solução possível

Outras soluções possíveis

- Qual é melhor? B1 ou B2?
- Como se define melhor?

Achar hiperplano que maximiza a margem => B₁ é melhor que B₂

E se o problema não for linearmente separável?

Não-linear Support Vector Machines – 8

E se a superfície de decisão não for linear?

Não-linear Support Vector Machines – 9

Transformar dados para espaço de maior dimensão

MÉTODOS BASEADOS NA COMBINAÇÃO DE VÁRIOS CLASSIFICADORES

Combinação de Classificadores

 Construir um conjunto de classificadores a partir dos dados de treinamento

 Prever o rótulo da classe de registros previamente desconhecidos através da agregação de previsões feitas por múltiplos classificadores

Idéia Geral

Questões Práticas de Classificação

Sub- e sobre-ajuste (Underfitting e Overfitting)

Valores Faltantes

Custos de Classificação

Sub- e Sobre-aiuste

Sub-ajuste: Quando o modelo é simples demais, tanto o erro de treinamento quando o erro de teste são elevados

Sobre-ajuste devido ao Ruído

Fronteira decisória é distorcida pelo ponto de ruído

Sobre-ajuste devido a Exemplos Insuficientes

- Falta de dados na metade inferior do diagrama torna difícil prever corretamente os rótulos da classe naquela região
- Número insuficiente de registros na região faz árvore de decisão prever exemplos de teste usando outros registros de treinamento que são irrelevantes para a tarefa de classificação

Observações – Sobreajuste

 Sobreajuste resulta em modelos que são mais complexos que o necessário

 Erro de treinamento não é mais uma boa estimativa de quão bem a árvore desempenhará em registros previamente desconhecidos

Necessita de novas formas para estimar erros

Estimando Erro de Generalização

<u>Erro de Re-substituição</u>: erro sobre treinamento (Σ e(t))

Erro de Generalização: erro sobre teste (Σ e'(t))

Navalha de Occam (Occam's Razor)

 Dados dois modelos com erro de generalização similares, deve-se preferir o modelo mais simples em relação ao modelo mais complexo

 Para modelos complexos, há uma maior chance que tenha sido ajustado acidentalmente pelos erros nos dados

 Portanto, deve-se incluir a complexidade do modelo durante a avaliação do modelo

Avaliação do Modelo

- Métricas para Avaliação de Desempenho
 - Como avaliar o desempenho de um modelo?

- Métodos para Avaliação de Desempenho
 - Como obter estimativas confiáveis?

- Métodos para Comparação de Modelos
 - Como comparar o desempenho relativo entre vários modelos?

Métricas para Avaliação de Desempenho – 1

- Foco na capacidade preditiva de um modelo
 - Em lugar de quão rápido ele classifica ou constrói modelos, escalabilidade, etc.
- Matriz de Confusão:

	CLASSE PREVISTA		
CLASSE REAL		Classe=Sim	Classe=Não
	Classe=Sim	а	b
	Classe=Não	С	d

a: TP (verdadeiro positivo)

b: FN (falso negativo)

c: FP (falso positivo)

d: TN (verdadeiro negativo)

Métricas para Avaliação de Desempenho - 2

	CLASSE PREVISTA			
CLASSE REAL		Classe=Sim	Classe=Não	
	Classe=Sim	a (TP)	b (FN)	
	Classe=Não	c (FP)	d (TN)	

Métrica mais comum de ser utilizada:

$$Precis\~ao = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitação da Precisão

- Considere um problema com 2 classes
 - Número de exemplos da Classe 0 = 9990
 - Número de exemplos da Classe 1 = 10

- Se o modelo prevê tudo como sendo classe 0, precisão é 9990/10000 = 99.9 %
 - Precisão pode enganar porque o modelo não detecta qualquer exemplo da classe 1

Medidas Sensíveis ao Custo

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F - measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

- Precision tem tendência para C(Sim|Sim) & C(Sim|Não)
- Recall tem tendência para C(Sim|Sim) & C(Não|Sim)
- F-measure tem tendência para todos exceto C(Não|Não)

Precisão Ponderada =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Métodos de Estimação

- Holdout
 - Reserva 2/3 para treinamento e 1/3 para teste
- Sub-amostragem aleatória
 - Holdout repetido
- Validação Cruzada
 - Particionar dados em k subconjuntos disjuntos
 - k-fold: treinar em k-1 partições, testar no restante
 - Leave-one-out: k = n
- Amostragem Estratificada
 - Sobre-amostragem versus sub-amostragem
- Bootstrap
 - Amostragem com reposição

