Faculté de technologie Département génie électrique Module : Electronique de puissance

3° année LMD (Automatique) Année Universitaire 2021-2022 Durée : 01 :30 h

EXAMEN FINAL

Question de cours	:	(2 pt)	
-------------------	---	--------	--

	Quelles sont les intérêts du redressement commandé ?
	- Modéfications 3) regulation du tension obtenue
	- du factour de Puissauco.
	_ Possibilité de sécrépération de l'energie
1	C 1/4/1 + 11 · · · · · · ONT

Complété le tableau suivant par OUI ou NON :

	Réversible en tension	Réversible en courant	Commandable à la fermeture	Commandable a l'ouverture
Diode	Non	Non	Non	Non
Thyristor	Oui	Non	PUL	Non

2) Tracer la forme de la tension redressée et de la tension inverse aux bornes d'une diode D₁.

3) Calculer la valeur moyenne de la tension redressée et déduire la valeur moyenne du courant redressé.

II. En remplaçant les diodes du montage précédent par des thyristors, et $Q = \frac{Lw}{R}$; On demande :

a) On indiquera la forme de la tension redressée et la tension inverse aux bornes de Th₁ (pour $\alpha = \pi/6$ (conduction continue)

b) Calculer la valeur moyenne de la tension redressée.

Exercice 2: (10 pt)

On désire alimenter une charge de type « R-L » par un hacheur dévolteur, alimenté par une source de tension continue E supposée parfaite, comme l'indique la figure suivante :

Les semi-conducteurs H et D sont des interrupteurs, supposés parfaits.

L'interrupteur H est commandé à la fermeture et à l'ouverture, par une carte de commande, comme suit:

* 1^{ere} phase : pour $t \in [0, \alpha T]$, H est commandé.

* 2^{ème} phase : pour t∈ [αT, T], H est bloqué.

Sachant que : E=100V; $R=1\Omega$; L=100 mH

T: est la période de fonctionnement du hacheur; T = 10kHz.

 α : est le rapport cyclique du hacheur; $\alpha = 0.4$

Le régime de fonctionnement est supposé continu.

- 1) Analyser le fonctionnement du hacheur durant une période de fonctionnement et déterminer l'expression instantanée de $U_d(t)$ et $I_d(t)$.
- Calculer la valeur moyenne de $U_d(t)$ et $I_d(t)$. 2)
- 3) Déterminer les expressions de I_{dmin} et I_{dmax} respectivement valeur min et max du courant dans la charge.
- 4) Représenter alors l'allure $I_d(t)$ et $U_d(t)$ et en déduire celle de :
- $i_{\rm H}(t)$, courant dans l'interrupteur H.

