ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ ½ Er₂O₃ – SrO – ½ Fe₂O₃ ПРИ 1373 К НА ВОЗДУХЕ

Ширинкина Т.С., Аксенова Т.В. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

Сложные оксидные со структурой перовскита на протяжении последних десятилетий вызывают интерес отечественных и зарубежных ученых, что связано с возможностью их практического использования в качестве катодов ТОТЭ, кислородпроницаемых мембран, химических сенсоров и катализаторов. Настоящая работа посвящена установлению областей гомогенности, изучению кристаллической структуры и кислородной нестехиометрии твердых растворов, образующихся в системе $\frac{1}{2}$ $Er_2O_3 - SrO - \frac{1}{2}$ Fe_2O_3 при 1373 K на воздухе.

Согласно данным РФА в квазитройной системе $\frac{1}{2}$ $Er_2O_3 - SrO - \frac{1}{2}$ Fe_2O_3 в условиях эксперимента образуются два типа твердых растворов: $Er_{1-x}Sr_xFeO_{3-\delta}$ с $0.75 \le x \le 0.95$ и $Sr_{3-z}Er_zFe_2O_{7-\delta}$ с $0.0 \le z \le 0.2$.

Рентгенограммы оксидов $\text{Er}_{1-x}\text{Sr}_x\text{FeO}_{3-\delta}$ в интервале составов $0.75 \le x \le 0.95$ были проиндицированы в рамках кубической элементарной ячейки (пр. гр. Pm-3m). Замещение Er^{3+} (r=1.06 Å) большими по размеру катионами Sr^{2+} (r=1.44 Å) приводит к монотонному увеличению параметров и объема элементарных ячеек оксидов $\text{Er}_{1-x}\text{Sr}_x\text{FeO}_{3-\delta}$ ($0.75 \le x \le 0.95$), что связано с размерным эффектом. Составы с $0.1 \le x \le 0.7$ в равновесии содержали феррит эрбия ErFeO_3 с орторомбической структурой (пр. гр. Pbnm) и граничный твердый раствор $\text{Er}_{0.25}\text{Sr}_{0.75}\text{FeO}_{3-\delta}$ с кубической структурой (пр. гр. Pm-3m).

Область гомогенности оксидов $Sr_{3-z}Eu_zFe_2O_{7-\delta}$ лежит в интервале составов $0.0 \le z \le 0.2$. Подобно незамещенному ферриту стронция $Sr_3Fe_2O_{7-\delta}$, твердые растворы $Sr_{3-z}Er_zFe_2O_{7-\delta}$ ($0.0 \le z \le 0.2$) имеют тетрагональную структуру и кристаллизуются в пространственной группе I4/mmm. Внутри области гомогенности параметр ячейки c монотонно уменьшается с увеличением содержания эрбия, а параметр a растет. В целом замещение стронция на эрбий приводит к уменьшению объема элементарных ячеек твердых растворов $Sr_{3-z}Eu_zFe_2O_{7-\delta}$, что также определяется размерным фактором.

Кислородную нестехиометрию (δ) сложных оксидов $Er_{1-x}Sr_xFeO_{3-\delta}$ с x=0.8; 0.9 и 0.95 и $Sr_{3-z}Er_zFe_2O_{7-\delta}$ с z=0.0 и 0.1 изучали методом термогравиметрического анализа как функцию температуры в интервале 298–1373 К на воздухе. Установлено, что величина кислородной нестехиометрии возрастает с увеличением температуры и содержанием стронция в образцах.

По результатам РФА всех исследованных образцов, закаленных на комнатную температуру, диаграмма состояния системы $\frac{1}{2}$ Er₂O₃ – SrO – $\frac{1}{2}$ Fe₂O₃ при 1373 K на воздухе была разбита на 14 фазовых полей.