

Ministry of Higher Education and Scientific Research University of Basrah College of Education for Pure Sciences Department of Mathematics

Bernstein Sequence

Submitted to the Department of Mathematics, College of Education for Pure Sciences, and is part of the requirements for obtaining the Bachelors degree in Mathematics

By Sara Abbas

Supervisor

•

Contents

2	Bernstein Sequence		
	2.1	Bernstein Sequence	2
		The <i>m</i> -th Order Moment	5

Chapter 2 Bernstein Sequence

2.1 Bernstein Sequence

Definition 2.1.1

Suppose that $f(t) \in C[0, 1]$. The *n*-th order Bernstein operators are defined as

$$B_n(f(t);x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right)$$

Theorem 2.1.1

The functions $b_{n,k}(x)$ have the following properties

1.
$$\sum_{k=0}^{n} b_{n,k}(x) = 1$$

2.
$$\sum_{k=0}^{n} k b_{n,k}(x) = nx$$

3.
$$\sum_{k=0}^{n} k^2 b_{n,k}(x) = n(n-1)x^2 + nx$$

4.
$$\sum_{k=0}^{n} k^3 b_{n,k}(x) = n(n-1)(n-2)x^3 + 3n(n-1)x^2 + nx$$

Proof:

We have

1.

$$\sum_{k=0}^{n} b_{n,k}(x) = \sum_{k=0}^{n} x^{k} (1-x)^{n-k} = (x+1-x)^{n} = 1$$

$$\sum_{k=0}^{n} k b_{n,k}(x) = \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} x^{k} (1-x)^{n-k}$$

$$= 0 + \sum_{k=1}^{n} k \frac{n!}{k!(n-k)!} x^{k} (1-x)^{n-k}$$

$$= \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} x^{k} (1-x)^{n-k}$$

$$= \sum_{k=0}^{n-1} \frac{n(n-1)!}{k!(n-1-k)!} x^{k+1} (1-x)^{n-1-k}$$

$$= nx \sum_{k=0}^{n-1} b_{n-1,k}(x) = nx$$

3.

$$\sum_{k=0}^{n} k^{2} b_{n,k}(x) = \sum_{k=0}^{n} k^{2} \frac{n!}{k!(n-k)!} x^{k} (1-x)^{n-k}$$

$$= 0 + \sum_{k=1}^{n} k^{2} \frac{n!}{k!(n-k)!} x^{k} (1-x)^{n-k}$$

$$= \sum_{k=1}^{n} k \frac{n!}{(k-1)!(n-k)!} x^{k} (1-x)^{n-k}$$

$$= \sum_{k=0}^{n-1} (k+1) \frac{n(n-1)!}{k!(n-1-k)!} x^{k+1} (1-x)^{n-1-k}$$

$$= nx \sum_{k=0}^{n-1} (k+1) b_{n-1,k}(x)$$

$$= nx \left\{ \sum_{k=0}^{n-1} k b_{n-1,k}(x) + \sum_{k=0}^{n-1} b_{n-1,k}(x) \right\}$$

$$= nx \left\{ (n-1)x + 1 \right\}$$

$$= n(n-1)x^{2} + nx$$

$$\sum_{k=0}^{n} k^{3} b_{n,k}(x) = \sum_{k=0}^{n} k^{3} \frac{n!}{k!(n-k)!} x^{k} (1-x)^{n-k}$$

$$= 0 + \sum_{k=1}^{n} k^{3} \frac{n!}{k!(n-k)!} x^{k} (1-x)^{n-k}$$

$$= \sum_{k=1}^{n} k^{2} \frac{n!}{(k-1)!(n-k)!} x^{k} (1-x)^{n-k}$$

$$= \sum_{k=0}^{n-1} (k+1)^{2} \frac{n(n-1)!}{k!(n-1-k)!} x^{k+1} (1-x)^{n-1-k}$$

$$= nx \sum_{k=0}^{n-1} (k+1)^2 b_{n-1,k}(x)$$

$$= nx \sum_{k=0}^{n-1} (k^2 + 2k + 1) b_{n-1,k}(x)$$

$$= nx \Big[(n-1)(n-2)x^2 + (n-1)x + 2 \Big[(n-1)x \Big] + 1 \Big]$$

$$= n(n-1)(n-2)x^3 + (1+2)n(n-1)x^2 + nx$$

$$= n(n-1)(n-2)x^3 + 3n(n-1)x^2 + nx$$

Theorem 2.1.2 [Korovkin's Theorem]

Suppose that f(t) is continuous function on [a,b] or on $[0,\infty)$ and $B_n(f;x)$ satisfying the conditions

1.
$$B_n(1;x) \to 1 \text{ as } n \to \infty$$

2.
$$B_n(t;x) \to x \text{ as } n \to \infty$$

3.
$$B_n(t^2; x) \rightarrow x^2 \text{ as } n \rightarrow \infty$$

Then $B_n(f;x) \to f(x)$ as $n \to \infty$

Proof:

We have

1.
$$B_n(1;x) = \sum_{k=0}^n b_{n,k}(x) \cdot 1 = 1 \to 1 \text{ as } n \to \infty.$$

2.
$$B_n(t;x) = \sum_{k=0}^n b_{n,k}(x) \cdot \left(\frac{k}{n}\right) = \frac{1}{n} \cdot nx = x \to x \text{ as } n \to \infty.$$

3.
$$B_n(t^2; x) = \sum_{k=0}^n b_{n,k}(x) \cdot \left(\frac{k^2}{n^2}\right) = \frac{1}{n^2} \cdot [n(n-1)x^2 + nx] \to x^2 \text{ as } n \to \infty.$$

Therefore $B_n(f;x) \to f(x)$ as $n \to \infty$. \square

Example

Find an approximation polynomial of degree 3 for the function $\sin t \in C[0, 1]$.

Solution:

The approximation by Bernstein sequence gives an approximation polynomial of degree n, so we use Bernstein polynomials for this.

$$B_3(\sin t; x) = \sum_{k=0}^{3} b_{3,k}(x) \sin\left(\frac{k}{3}\right)$$

$$= b_{3,0}(x) \sin\left(\frac{0}{3}\right) + b_{3,1}(x) \sin\left(\frac{1}{3}\right) + b_{3,2}(x) \sin\left(\frac{2}{3}\right) + b_{3,3}(x) \sin\left(\frac{3}{3}\right)$$

2.2 The *m*-th Order Moment

Definition 2.2.1

We define the m-th order moment for Bernstein sequence $B_n(f;x)$ as follows

$$T_{n,m}(x) = B_n((t-x)^m; x) = \sum_{k=0}^n b_{n,k}(x) \left(\frac{k}{n} - x\right)^m$$

Theorem 2.2.1

We have

1.
$$T_{n,0}(x) = 1$$

2.
$$T_{n,1}(x) = 0$$

3.
$$T_{n,2}(x) = \frac{x(1-x)}{n}$$

Proof:

1.

$$T_{n,0}(x) = B_n((t-x)^0; x) = B_n(1; x) = 1$$

$$T_{n,1}(x) = B_n((t-x)^1; x)$$

$$= B_n(t - x; x)$$

$$= B_n(t; x) - B_n(x; x)$$

$$= x - xB_n(1; x) = x - x = 0$$

$$T_{n,2}(x) = B_n((t-x)^2; x)$$

$$= B_n(t^2 - 2xt + x^2; x)$$

$$= B_n((t^2; x) - 2xB_n(t; x) + x^2B_n(1; x)$$

$$= \frac{1}{n^2} \Big[n(n-1)x^2 + nx \Big] - 2x \cdot x + x^2$$

$$= \frac{x(1-x)}{n}$$