Supervised Learning Methods

classes of label "Type"

Reminder: Data: Nomenclature

Features (input variables)

Targets/Labels (output variables)

Weight	Height	Exterior	Wings?	Lika- bility	N _{legs}
0.1	0.1	feath.	true	1	2
3.5	0.3	fur	false	1	4
12.0	0.7	fur	false	1	4
500	1.8	skin	false	2	4
800	3.0	fur	true	3	4
2.5	0.5	fur	false	1	4
•••			•••		

Pet?	Type		
true	bird		
true	cat		
true	dog		
false	rhinoceros		
false	chimera		
true	cat		

edal ed continuous continuous categorical

Examples

binary ordinal integer

binary categorical

(multi-class)

Reminder: Learning Stage

Reminder: Prediction Stage

k Nearest Neighbors

- Non-parametric classifier/regressor
- Classification: output is class affiliation based on class majority among k nearest neighbors
- Regression: output is mean value of k nearest neighbors
- Hyperparameter k controls regularization

Decision Trees

Decision Trees

- Non-parametric model for classification and regression
- Hyperparameters (Complexity/Regularization):
 - maximum depth
 - maximum number of features
 - minimum number of samples for split
 - minimum number of samples for leaf
- Great interpretability but unlikely to generalize well

Ensemble Models

- Combine the results from different models to compensate for shortcomings
- Final results through averaging, weighted averaging, or majority vote
- Individual models are "weak models" with low complexity

Random Forest

- Combination of N decision trees
- Good generalization by keeping depths and number of features low

The Fancy Stuff: Gradient-Boosted Tree-based Models

- Build individual trees in a random forest such that THEIR SUM minimizes the loss function
- Models like xgboost or lightGBM if tuned properly – can perform as well as deep learning models
- Python implementations for both models have sklearn interfaces – you can use them like all the other models we used