RL notes

MARKOV DECISION PROCESSES (MDP)

The at time t the state is $S_t \in \mathcal{S}$, the action is $A_t \in \mathcal{A}$, and the reward (received before seeing the state and doing the action) is $R_t \in \mathcal{R}$, where \mathcal{S} is the state space, \mathcal{A} is the action space, and $\mathcal{R} \subset \mathbb{R}$ is the reward space.

The **trajectory** is

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$$
 (1)

The probability of getting to state s' and gettign reward r after taking action a in state s is well defined, and given by

$$p(s', r \mid s, a) = \Pr \left\{ S_t = s', R_t = r \mid S_{t-1}, A_{t-1} = a \right\}$$
 (2)

where the function p defines **dynamics** of the MDP, and is called the **dynamics function**. The probabilities given p completely characterize the environment's dynamics. This also confirms that an MDP has the Markov property.

We can obtain the state-transition probabilities with

$$p(s' \mid s, a) = \Pr(S_t = s' \mid S_{t-1} = s, A_{t-1} = a) = \sum_{r \in \mathcal{R}} p(s', r \mid s, a)$$
(3)

And the expected rewards for a state-action pair:

$$r(s, a) = \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r \mid s, a)$$
(4)

and the expected reward given the next state:

$$r(s, a, s') = \mathbb{E}\left[R_t \mid S_{t-1} = s, A_{t-1} = a, S_t = s'\right] = \sum_{r \in \mathcal{R}} r \frac{p(s', r \mid s, a)}{p(s' \mid s, a)}$$
(5)

RETURNS AND EPISODES

The **return** is the discounted sum of rewards (if we are using discounting).

In an episodic task, this is

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{T-t-1} R_T$$
 (6)

where T is the final time step. We think of each episode ending in the **same** terminal state - can be though of as an artificial state that occurs right after the real terminal state of the episode.

The final reward is given in this final terminal state.

For continuing tasks, the return is

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \tag{7}$$

If we define the reward to be zero after the final state, this also holds for episodic tasks.

There is a recursive relationship between G_t and G_{t+1} :

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \tag{8}$$

$$=R_t + \sum_{k=1}^{\infty} \gamma^k R_{t+k+1} \tag{9}$$

$$= R_t + \gamma \sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k+1}$$
 (10)

$$=R_t + \gamma \sum_{k=0}^{\infty} \gamma^k R_{t+k+2} \tag{11}$$

$$=R_t + \gamma G_{t+1} \tag{12}$$

(13)

POLICIES AND VALUE FUNCTION

The value function is defined to be

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right] \tag{14}$$

$$= \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \,\middle|\, S_t + s\right] \tag{15}$$

and the action-value function is

$$q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s, A_t = a \right] \tag{16}$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \middle| S_t = s, A_t = a \right]$$
 (17)

(18)

The Bellman equation for the value function is

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right] \tag{19}$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma G_{t+1} \mid S_t = s \right] \tag{20}$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r = \gamma \mathbb{E}_{\pi} \left[G_{t+1} \mid S_{t+1} = s' \right] \right]$$
 (21)

$$= \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma v_{\pi}(s') \right]$$
 (22)

(23)