USO DE LAS INTEGRALES DOBLES EN CÁLCULO DE PROBABILIDADES

Con la FINALIDAD de

- Probar que una función bidimensional f es función de densidad, es decir

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = \int_{A} f(x,y) dx dy = 1$$

siendo A el recinto de R2 donde la función f toma valores no nulos.

 Calcular una probabilidad asociada a un vector aleatorio bidimensional continuo (X,Y) con función de densidad f(x,y), es decir

$$P[(X,Y) \in B] = \int_{B} f(x,y) dx dy$$

DEBEMOS integrar una función bidimensional en un recinto de R2

Para integrar una función en un recinto de IR2 debemos delimitar los límites de integración.

INTEGRALES ITERADAS

INTEGRALES ITERADAS

Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración, pero los límites exteriores de integración han de ser constantes con respecto a las dos variables de integración.

$$\int_{a}^{b} \int_{g_{2}(x)}^{g_{2}(x)} f(x, y) \, dy \, dx \qquad \qquad 6 \qquad \qquad \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \, dx \, dy$$

Una vez realizada la primera integración (con respecto a la variable interior, manteniendo fija la variable exterior) se llega a una integral definida ordinaria y al integrar por segunda vez se obtiene un número real.

En el caso más sencillo de que la región donde queremos integrar sea un

rectángulo, es decir,

$$\mathbf{A} = [\mathbf{a}, \mathbf{b}] \times [\mathbf{c}, \mathbf{d}]$$

los límites de integración son fáciles de identificar

$$\int_a^b \int_c^d f(x,y) \, dy \, dx$$

Ó

$$\int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$

Pero, ¿cómo se obtienen en situaciones más generales?

Definición 1

Se dice que A ⊂ R² es una REGIÓN REGULAR EN LA DIRECCIÓN DEL EJE Y si

$$A = \{(x, y) \in \mathbb{R}^2 / a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

donde g_1 y g_2 son continuas y $g_1 \le g_2$ en [a,b].

Definición 2

Se dice que $A \subset \mathbb{R}^2$ es una REGIÓN REGULAR EN LA DIRECCIÓN DEL EJE X si

$$A = \{(x, y) \in \mathbb{R}^2 / c \le y \le d, h_1(y) \le x \le h_2(y)\}$$

donde h_1 y h_2 son continuas y $h_1 \le h_2$ en [c,d].

Definición 3

Si una región es regular en la dirección de ambos ejes se dice que es REGULAR.

Regular en la dirección del eje y

Regular en la dirección del eje x

Ejercicio: Identifica de qué tipo son las siguientes regiones

Aquellas regiones que no sean regulares en alguna dirección, descomponlas en uniones disjuntas de regiones que sí lo sean.

Teorema de Fubini

• Si $A \subset \mathbb{R}^2$ es una región regular en la dirección del eje y, entonces

$$\int_A f = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \, dy \, dx$$

• Si $A \subset \mathbb{R}^2$ es una región regular en la dirección del eje x, entonces

$$\int_{A} f = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) dx dy$$

• Si $A \subset \mathbb{R}^2$ es una región regular, entonces $\int f$ se puede expresar de una de las dos formas anteriores.

Ejercicio: Para aquellas regiones regulares en alguna dirección, establecer los límites de integración

Extensión

Si la región sobre la que se desea integrar no es regular en la dirección de ninguno de los ejes, es necesario dividirla, mediante rectas paralelas a los ejes, en un número finito de dominios regulares en la dirección del eje x o y.

Entonces, la integral sobre la región de partida será la suma de las integrales sobre cada subdominio.