コンピュータ科学特別講義Ⅳ

Parallel Algorithm Design (#9)

Masato Edahiro July 13, 2018

Please download handouts before class from http://www.pdsl.jp/class/utyo2018/

Contents of This Class

Our Target

Understand Systems and Algorithms on "Multi-Core" processors

Schedule (Tentative)

- #1 April 6 (= Today) What's "Multi-Core"?
- #2 April 13 : Parallel Programming Languages (Ex. 1)
- April 20, 27, May 4, 11, 18: NO CLASS
- #3 May 25 : Parallel Algorithm Design
- #4 June 1 (Fri) : Laws on Multi-Core
- #5 June 8 : Examples of Parallel Algorithms (1) (Ex. 2)
- June 15: NO CLASS
- #6 June 22: Examples of Parallel Algorithms (2)
- #7 June 29 : Examples of Parallel Algorithms (3)
- #8 July 6: Examples of Parallel Algorithms (4)
- #9 July 13: Examples of Parallel Algorithms (5) (Ex. 3)
- (July 20)
- If you want to graduate in August, ask Edahiro asap.

木構造探索

候補はどのくらいか

木の分岐数 (b) 38 (ave.) in チェス 80 (ave.) in 将棋 木の深さ(d) 80 (ave.) in チェス 115 (ave.) in 将棋 並列化による高速化に期待、 全体 どうやって? 38⁸⁰ (ave.) in チェス 80¹¹⁵ (ave.) in 将棋

深さ優先探索

メモリ使用量は少なくてすむ 深い木構造の場合、探索がどこまでも進む

幅優先探索

反復深化

メモリ使用量小、解より深い探索が進み過ぎない

ゲーム木探索

• AND-OR木

- ノードの値: (第一プレイヤの) ゲイン・利得
- ORノード (MAXノード)
 - 第一プレイヤの順番
 - 第一プレイヤはゲインを最大化したい (MAX)
 - 第一プレイヤは最も良いノードを選択、すなわちすべての条件を考慮する必要はない (OR)→勝てるパスが一つでもあれば、そこに突き進めばよい
- ANDノード (MINノード)
 - 第二プレイヤの順番
 - 第二プレイヤはゲインを最小化したい (MIN)
 - 第一プレイヤはすべての可能性を考慮する必要がある (AND)→負けるパスが一つでもあればそこに進まれる ので、すべての可能性で負けないことを確認

ゲーム木の例

Minimaxアルゴリズム

Alpha-Beta枝刈り手法 (1)

- (a, β)
 - 探索を行うべき値(ゲイン)の範囲
 - -初期値 = $(-\infty, \infty)$

Alpha-Beta枝刈りアルゴリズム

```
function minimax(node, depth)
   return alphabeta(node, depth, -\infty, +\infty)
function alphabeta(node, depth, α, β)
   if node is leaf or depth = 0
      return value of node
   if node is OR (MAX) node
      foreach child of node
         a = max(a, alphabeta(child, depth-1, a, \beta))
         if a \ge \beta
            return \beta // \beta-cut
     return a
   else node is AND (MIN) node
      foreach child of node
         β := min(β, alphabeta(child, depth-1, α, β))
         if a \ge \beta
            return a // a-cut
```

ORノードでは βより大きい子が ーつでもあれば 残りはcut! (β-cut)

ANDノードでは αより小さい子が 一つでもあれば 残りはcut! (α-cut)

return β

Alpha-Beta枝刈り手法(2)

Alpha-Beta枝刈り手法(3)

Alpha-Beta枝刈り手法(5)

Alpha-Beta枝刈り手法(6)

Alpha-Beta枝刈り手法(7)

解析

- Slagle and Dixon
 - alpha-betaアルゴリズムにおいて評価される葉 (最末端)ノードの数は
 - Opt(b, d) = $b^(ceiling(d/2)) + b^(floor(d/2)) 1$
 - b: 木の分岐数, d: 木の深さ

– J. R. Slagle and J. K. Dixon, "Experiments with Some Programs That Search Game Trees," J. ACM, Vol. 16, No. 2 (April 1969), pp. 189-207.

理想的探索順序に対する解析

に小さい値なので すべて調べる必要 d=0 OR(MAX) がある d=1 AND(MIN) d=2X X d=3d=4

αより小さい子。

その子たちはさら

理想的探索順序→最初のノードでa-cut

$X_d = N_{d-1}$

N_d = 深さdのノード数 X_d = 深さdのX側ノード数 Y_d = 深さdのY側ノード数

$Y_d = Y_{d-1}$ (d:偶数)、 $Y_d = B*Y_{d-1}$ (d:奇数)

P_1 から深さdまでのa- β 探索は、Pから深さd-1までの探索と同数のノードを評価

解析

- Slagle and Dixon
 - alpha-betaアルゴリズムにおいて評価される葉 (最末端)ノードの数は
 - Opt(b, d) = $b^(ceiling(d/2)) + b^(floor(d/2)) 1$
 - b: 木の分岐数, d: 木の深さ

– J. R. Slagle and J. K. Dixon, "Experiments with Some Programs That Search Game Trees," J. ACM, Vol. 16, No. 2 (April 1969), pp. 189-207.

高速化

- Aspiration Search (見積値による探索)
 - 見積値 v, 範囲 e
 - 初期値を (a, β) = (v-e, v+e) とする
 - もしもうまくいかなかったら (-∞, v-e) or (v+e, ∞)
- Iterative Deepening (反復深化)
 - 深さ、分岐ともに多い木に対する手法
 - 深さ優先探索: 毎回末端までたどる
 - 幅優先探索、最良値優先探索: メモリ量が大きい
 - 反復深化: 各「探索」において深さを制限、「良い」部分木について継続

並列alpha-beta探索

- 並列Aspiration Search
 - 例えば、3プロセッサあるときに(v-e, v+e), (-∞, v-e), (v+e, ∞)を並列探索
- 並列部分木評価
 - 良さそうに思えるが…
 - $Opt(b, d) \rightarrow Opt(b, d-1)$
 - b=38 (Chess), d=10
 - Opt(b, d) = 158,470,335
 - Opt(b, d-1) = 81,320,303
 - Amdahlの法則の意味でどうなのだろうか?

並列部分木評価

証明数と反証数

- 各ノードの評価値を決める手法の一つ
- 証明数 pn(n): あるノードが"true (win)" であることを証明するために評価すべき 最小ノード数
- 反証数 dn(n):あるノードが"false (lose)"
 であることを証明するために評価すべき 最小ノード数
- 証明数もしくは反証数が小さいような ノードに向けて探索を進める

証明数と反証数

- 葉ノード n に対して
 - ノード n が trueの場合: pn(n)=0, dn(n)=∞
 - ノード n が falseの場合: pn(n)=∞, dn(n)=0
 - その他の場合 (わからない場合): pn(n)=1, dn(n)=1
- 中間ノード n に対して
 - ORノード (MAXノード):
 pn(n)=MIN_child pn(child)
 dn(n)=Σ_child dn(child)
 - ANDノード (MINノード):

 $pn(n) = \Sigma_{child} pn(child)$ $dn(n) = MIN_{child} dn(child)$

並列探索

• しばしば、証明数、反証数が共に多い部分木に最適解がある

Fig. 1 An example of search tree.

階層的挟み撃ち法

- 一つのプロセッサは、評価値の良いノードに向けて探索 を進める
- 他のプロセッサは、上記探索経路の「兄弟ノード」を探 索する

図 2 階層的挟み撃ち探索

Fig. 2 Hierarchical pincers attack search.

図 4 AOHPAS の探索例

Fig. 4 An example of search of AOHPAS.

評価結果(1)

もとのアルゴリズムにおいてうまくいか ないデータに対し、大きな効果

表 2 PDS での探索時間別の高速化率

Table 2 Speedups by range of search time using PDS.

Range of Sequential Search Time $t[s]$	Number of Problems	avg.	max.	min.
0 < t < 1	3	0.17	0.37	0.07
$1 \le t < 10$	4	0.33	1.27	0.03
$10 \le t < 100$	5	1.59	13.12	0.52
$100 \le t < 1000$	4	2.40	6.86	0.58
$1000 \le t < 3600$	1	140.96	140.96	140.96
$3600 \le t$	10	15.09	214.93	1.57

評価結果(2)

図 10 プロセッサ数以下の高速化が見られる例 Fig. 10 An example of under linear speedup.

評価結果(3)

Fig. 9 An example of no speedup.

評価結果(4)

図 11 プロセッサ数以上の高速化が得られる例 Fig. 11 An example of super linear speedup.

演習3

- ・並列プログラミング または 並列アルゴリズム に関するレポート
 - 並列プログラミング
 - 次のページ
 - レポート課題
 - ・10頁程度の翻訳
- すべての提出物(プログラム, レポート, 理解度テスト, アンケート)は8月21日までにeda@ertl.jpに送ること

演習3: 並列アルゴリズム

- 問題を自由に選択し、2種類のアルゴリズム(少なくとも一種は並列であること)で実装を行い、並列アルゴリズムのスケーラビリティを評価せよ(〆切:8月21日:August 21, to eda@ertl.jp)
 - 1. 問題を自由に選択
 - 2. 同じ入出力になるはずの2種類のアルゴリズム(少なくとも一種は並列)を実装せよ。例えば:
 - 並列ソートやparallel prefixに関し、単純な逐次アルゴリズムと、巧妙な並列アルゴリズム
 - 3. レポートを提出
 - 1. 2種のアルゴリズムで結果の一致性を確認
 - 2. アムダールの法則の意味での並列可能部分の割合を算出し、並列アルゴリズムのスケーラビリティを評価せよ

演習3:レポート課題

- ・ 本の一部または論文を10頁程度翻訳する
 - 英語から母国語(英語を除く)
 - 日本語から母国語(日本語を除く)
 - レポート課題を選択する場合,希望する言語と共に7月末までに枝廣に連絡すること。それに応じて翻訳すべき課題を連絡する