Programación Lineal

Programación lineal

- La programación lineal es una técnica matemática reciente (siglo XX)
- Consiste en una serie de métodos y procedimientos que permiten resolver problemas de optimización
- Minimizar o maximizar una función lineal, cuyas variables están sujetas a una serie de restricciones que expresamos mediante un sistema de inecuaciones lineales

- El objetivo fundamental es entender la naturaleza del problema y el perfil computacional a que dan lugar estos métodos
- Desde un punto de vista práctico los procedimientos manuales de resolución no tienen mucho interés porque hoy día existen abundantes herramientas informáticas
- Comenzaremos introduciendo el método de resolución gráfico, que resulta muy intuitivo

Ejemplo 1

- Marta es una estudiante universitaria que acaba de comprarse un ordenador nuevo. Necesita 240 euros mensuales para pagar el préstamo. Tiene dos trabajos, la primera como camarera en un pub donde gana 10,00 euros la hora y la segunda en el aula de informática donde gana 7,50 euros la hora. Teniendo en cuenta el número de asignaturas de las que está matriculada, Marta puede trabajar un máximo de 30 horas cada mes.
- ¿Cuál es la máxima cantidad de dinero que puede ganar Marta?

- Para resolver el problema, debemos construir un modelo de programación lineal
- Hay que traducir el enunciado del problema a una descripción matemática equivalente
- Para ello hay que tener claro cuáles son las variables, cuáles son las restricciones y cuál es el objetivo

- Variables: las incógnitas, las decisiones que hay que tomar
 - X = número de horas trabajadas en el pub
 - Y = número de horas trabajadas en el aula de informática
 - Es importante notar que $X \ge 0$; $Y \ge 0$
- Restricciones dadas por el enunciado (o las reglas del juego), el número total de horas trabajadas

$$X + Y \leq 30$$

Deben utilizarse inecuaciones

 Objetivo: función lineal a optimizar, queremos que la cantidad que Marta gana sea máxima.

maximizar G(X, Y) = 10,00 X + 7,50 Y

$$X = 30$$

 $Y = 0$

Los valores que toman las variables están ligadas a las restricciones del problema

$$X + Y \leq 30$$

De todas las X, Y que satisfacen 10. las restricciones, buscamos la que maximiza G = 10X + 7,5Y

Suposiciones

- No hay interacciones entre las variables
- La función objetivo es lineal (parámetros conocidos)
- Las restricciones son lineales (parámetros conocidos)
- Las variables son continuas (en caso contrario hablamos de programación lineal entera)

Ejemplo 2

- Marta es una estudiante universitaria que acaba de comprarse un ordenador nuevo. Necesita 240 euros mensuales para pagar el préstamo. Tiene dos trabajos, la primera como camarera en un pub donde gana 10,00 euros la hora y la segunda en el aula de informática donde gana 7,50 euros la hora. Teniendo en cuenta el número de asignaturas de las que está matriculada, Marta puede trabajar un máximo de 30 horas cada mes.
- ¿Cuál es el número mínimo de horas que tiene que trabajar Marta para poder pagar el préstamo?

 Variables: las incógnitas, las decisiones que hay que tomar

X = número de horas trabajadas en el pub

Y = número de horas trabajadas en el aula de informática

Es importante notar que $X \ge 0$; $Y \ge 0$

 Restricciones dadas por el enunciado (o las reglas del juego), el número total de horas trabajadas y ganar para pagar el préstamo

$$X + Y \le 30$$

10,00 $X + 7,5 Y \ge 240$

Deben utilizarse inecuaciones

 Objetivo: función lineal a optimizar, queremos que las horas trabajadas sea mínima X = 24minimizar H(X, Y) = X + YY = 0

Los valores que toman las variables están ligadas a las restricciones del problema

$$X + Y \le 30$$

 $10,00 X + 7,5 Y \ge 240$
 $X \ge 0$

Y ≥ 0

De todas las X, Y que satisfacen 10. las restricciones, buscamos la que minimiza H = X + Y

EJEMPLO

Gepetto S.L., manufactura muñecos y trenes de madera

Cada tren:

- Produce un beneficio neto de 2 €
- Requiere 1 hora de trabajo de acabado
- Requiere 1 hora trabajo de carpintería

Cada muñeco:

- Produce un beneficio neto de 3 €
- Requiere 2 horas de trabajo de acabado
- Requiere 1 hora de trabajo de carpintería

Cada semana Gepetto puede disponer de:

- Todo el material que necesite
- Solamente 100 horas de acabado
- Solamente 80 horas de carpintería

También:

- La demanda de trenes puede ser cualquiera (sin límite)
- La demanda de muñecos es como mucho 40

Gepetto quiere maximizar sus beneficios. ¿Cuántos muñecos y cuántos trenes debe fabricar?

FORMULACIÓN DEL PROBLEMA

VARIABLES DE DECISIÓN

x = nº de muñecos producidos a la semana

v = nº de trenes producidos a la semana

RESTRICCIONES

Son desigualdades que limitan los posibles valores de las variables de decisión Vienen dadas por la disponibilidad de horas de acabado y carpintería y por la demanda de muñecos. También hav restricciones de signo

FUNCIÓN OBJETIVO

El objetivo de Gepetto es elegir valores de x e y para maximizar el beneficio

maximizar Z = 3x + 2y

Cuando *x* e *y* crecen, la función objetivo también crece. No puede crecer indefinidamente porque los valores de x e y están limitados por las restricciones

Restricción 1

no más de 100 horas de tiempo de acabado pueden ser usadas

$$2x + y \le 100$$

Restricción 2

no más de 80 horas de tiempo de carpintería pueden ser usadas

$$x + y \leq 80$$

Restricción 3

limitación de demanda, no deben fabricarse más de 40 muñecos x ≤ 40

Restricciones de signo

$$x \ge 0$$
; $y \ge 0$

Formulación matemática del PPL

MODELO DE OPTIMIZACIÓN

maximizar:	Z = 3x + 2y	(función objetivo)
sujeto a:	$2 x + y \le 100$	(restricción de acabado)
	$x + y \leq 80$	(restricción de carpintería)
	x ≤ 40	(restricción de demanda de muñecos)
	x ≥ 0	(restricción de signo)
	y ≥ 0	(restricción de signo)

Resolución gráfica de PPL

- No es muy práctica, sólo se puede aplicar con 2 o 3 variables
- Es bastante útil para interpretar visualmente los conceptos y procedimientos utilizados
- Para resolver gráficamente un PPL seguimos los siguientes pasos:
 - Dibujamos la región factible utilizando las ecuaciones de las rectas que resultan de convertir las restricciones en igualdades.
 - Evaluamos la función objetivo en la región factible y determinamos el de valor óptimo

Región factible de un PPL

- La región factible es el conjunto de todos los puntos que satisfacen todas las restricciones
- Para dos variables, es la región del plano delimitada por el sistema de desigualdades que forman las restricciones

Restricciones de Gepetto $2x + y \le 100$ (restricción acabado) $x + y \le 80$ (restricción carpintería) $x \leq 40$ (restricción demanda) (restricción signo) x ≥ 0 (restricción signo) v ≥ 0

$$x = 40$$
, $y = 20 \in RF$
satisface todas las restricciones
 $x = 15$, $y = 70 \notin RF$
no satisface la restricción de carpintería
 $15 + 70 > 80$

Solución óptima de PPL

- Para un problema de maximización (minimización), una **solución óptima** es un punto en la región factible en el cual la función objetivo tiene un valor máximo (mínimo)
- PPL puede tener
 - una solución óptima
 - un número infinito de soluciones óptimas
 - no tiene solución óptima
- Se puede demostrar que, de existir, la solución óptima de un PPL está siempre en la frontera de la región factible, en un vértice (si la solución es única) o en un segmento entre dos vértices contiguos (si hay infinitas soluciones)

Representación gráfica de la restricción, $2x + y \le 100$

- 1.- Dibujamos la recta 2x + y = 100
- 2.- Elegimos el semiplano que cumple la desigualdad (el semiplano que contiene un punto que satisface la desigualdad)

Representación gráfica de la restricción, x + y ≤ 80

- 1.- Dibujamos la recta x + y = 80
- 2.- Elegimos el semiplano que cumple la desigualdad

Representación gráfica de la restricción, x ≤ 40

- 1.- Dibujamos la recta x = 40
- 2.- Elegimos el semiplano que cumple la desigualdad

Representación gráfica de las restricciones, $x \ge 0$ $y \ge 0$

La región factible es la intersección de todos estos semiplanos (restricciones)

La región factible es la intersección de todos estos semiplanos (restricciones)

Una solución óptima es un punto en la región factible en el cual la función objetivo (Z = 3x + 2y)tiene un valor máximo

La solución óptima está siempre en la frontera de la región factible, en un vértice (si la solución es única) o en un segmento entre dos vértices contiguos (si hay infinitas soluciones)

La región factible es la intersección de todos estos semiplanos (restricciones)

Una solución óptima es un punto en la región factible en el cual la función objetivo (Z = 3x + 2y)tiene un valor máximo

IDEA INTUITIVA

Para hallar la solución óptima, dibujamos rectas para un mismo valor de Z

La figura muestra estas rectas para

$$Z = 0$$
, $Z = 100$, $Z = 180$ y $Z = 200$

La solución óptima está siempre en la frontera de la región factible, en un vértice (si la solución es única) o en un segmento entre dos vértices contiguos (si hay infinitas soluciones)

La región factible es la intersección de todos estos semiplanos (restricciones)

Una solución óptima es un punto en la región factible en el cual la función objetivo (Z = 3x + 2y)tiene un valor máximo

FORMALMENTE La solución óptima está en la frontera de la región factible (vértices o arista)

Vértices de la región factible

Vértices de la región factible

Los vértices de la región factible son intersecciones de dos rectas

El máximo valor de Z que toca la región factible indica la solución óptima, esto ocurre en el punto (x = 20, y = 60) para Z = 180

Resolución analítica

También podemos encontrar la solución óptima calculando el valor de Z en los vértices de la región factible

Beneficio
Z = 3.0 + 2.0 = 0
Z = 3.40 + 2.0 = 120
Z = 3.40 + 2.20 = 160
Z = 3.20 + 2.60 = 180
Z = 3.0 + 2.80 = 160

La solución óptima es:

x = 20 muñecos

y = 60 trenes

Z = 180 € de beneficio

EJEMPLO

IBAuto que fabrica y vende coches y furgonetas, quiere emprender una campaña publicitaria en TV durante reality shows y partidos de fútbol.

Sabemos que

- •Cada anuncio del reality show es visto por 6 millones de mujeres y 2 millones de hombres
- Cada anuncio del partido de fútbol es visto por 3 millones de mujeres y 8 millones de hombres.
- Un anuncio en el reality show cuesta 50.000 €
- Un anuncio en el partido de fútbol cuesta 100.000 €.
- IBAuto quiere que los anuncios sean vistos por lo menos por 30 millones de mujeres y 24 millones de hombres.

IBAuto quiere saber cuántos anuncios debe contratar en cada tipo de programa para que el coste de la campaña publicitaria sea mínimo.

FORMULACIÓN DEL PROBLEMA

VARIABLES DE DECISIÓN

RESTRICCIONES

FUNCIÓN OBJETIVO

x = nº de anuncios durante reality shows

 $y = n^{o}$ de anuncios durante partidos de fútbol

Son desigualdades que limitan los posibles valores de las variables de decisión vienen dadas por las condiciones de la campaña. También hay restricciones de signo

El objetivo de IBAuto es elegir valores de x e y para minimizar el coste de la campaña publicitaria (en miles de €)

minimizar Z = 50x + 100y

Restricción 1

nº de mujeres que ven los anuncios

$$6x + 3y \ge 30$$

Restricción 2

nº de hombres que ven los anuncios

$$2x + 8y \ge 24$$

Restricciones de signo

$$x \ge 0$$
; $y \ge 0$

Cuando x e y decrecen, la función objetivo también decrece. No puede decrecer indefinidamente porque los valores de x e y están limitados por las restricciones

Formulación matemática del PPL

MODELO DE OPTIMIZACIÓN

minimizar:	$Z = 50 \times + 100 \text{ y}$	función objetivo (en miles de €)
sujeto a:	$6 x + 3 y \ge 30$	restricción de mujeres (millones)
	2 x + 8 y ≥ 24	restricción de hombres (millones)
	x ≥ 0	restricción de signo
	y ≥ 0	restricción de signo

Restricciones

$$6x + 3y \ge 30$$

$$2x + 8y \ge 24$$

$$x, y \ge 0$$

CÁLCULO DE LOS VÉRTICES Y

$$6x + 3y = 30$$

 $2x + 8y = 24$

$$2x + 8y = 24$$
$$y = 0$$

CÁLCULO DE LOS VÉRTICES Y

$$6x + 3y = 30$$
$$x = 0$$

$$6x + 3y = 30$$

 $2x + 8y = 24$

$$2x + 8y = 24$$
$$y = 0$$

Resolución analítica

Evaluamos Z en los vértices

Vértice	Z = 50x + 100y
(0, 10)	Z = 50·0 + 100·10 = = 0+10000 = 10 000
(4, 2)	Z = 50·4 + 100·2 = = 200+200 = 400
(12, 0)	Z = 50·12 + 100·0 = = 6000+0 = 6 000

La solución óptima es:

x = 4 anuncios en reality shows y = 2 anuncios en partidos de fútbol Coste Z = 400 (mil €)

Resolución gráfica

minimizar: Z = 50 x + 100y

sujeto a: $6x + 3y \ge 30$

 $2x + 8y \ge 24$

 $x, y \ge 0$

Para hallar la solución óptima, dibujamos rectas para distintos valores de Z

Z = 400, Z = 600

El coste mínimo se obtiene en el punto (4,2)

La solución óptima es:

x = 4 anuncios en reality shows

y = 2 anuncios en partidos de fútbol

Coste Z = 400 (mil €)

Z = 60Q

PPL con 3 variables

Para 3 variables

- Dibujamos en el espacio
- Las restricciones son planos
- La región factible volumen limitado por planos
- Vértices se obtienen de un sistema lineal de 3 ecuaciones

PPL con 3 variables

Región factible = Politopos

Programación lineal

- Teorema básico: Si existe una solución óptima del PPL, está en la frontera de la región factible
 - Gráficamente: Basta con buscar soluciones en vértices o en aristas que unen los vértices
 - Método Símplex: Comienza en un vértice inicial, como puede ser el origen (0,0) y prueba vértices eficientemente hasta encontrar la solución

Probar vértices eficientemente

- ¿Qué vértices? Los contiguos
- ¿Cómo sabemos si son mejores? Prueba de optimalidad: Si un vértice (posible solución) no tiene vértices

EJEMPLO

Gepetto S.L., manufactura muñecos y trenes de madera

Cada tren:

- Produce un beneficio neto de 2 €
- Requiere 1 hora de trabajo de acabado
- Requiere 1 hora trabajo de carpintería

Cada muñeco:

- Produce un beneficio neto de 3 €
- Requiere 2 horas de trabajo de acabado
- Requiere 1 hora de trabajo de carpintería

Cada semana Gepetto puede disponer de:

- Todo el material que necesite
- Solamente 100 horas de acabado
- Solamente 80 horas de carpintería

También:

- La demanda de trenes puede ser cualquiera (sin límite)
- La demanda de muñecos es como mucho 40

Gepetto quiere maximizar sus beneficios. ¿Cuántos muñecos y cuántos trenes debe fabricar?

$$Z = 3x + 2y$$

 $2x + 1y \le 100$
 $1x + 1y \le 80$
 $x \le 40$
 $x, y \ge 0$

SOLUCIÓN INICIAL x = 0, y = 0, Z = 0

Vértices contiguos: el valor de Z crece más rápidamente si aumentamos x x = 40, y = 0, Z = 120

$$x = 40, y = 20, Z = 160$$

$$x = 20, y = 60, Z = 180$$

$$x = 0, y = 80, Z = 160$$

SOLUCIÓN ÓPTIMA x = 20, y = 60, Z = 180

Modelo general de PL

MODELO DE OPTIMIZACIÓN: n variables y m restricciones

EN FORMA MATRICIAL

maximizar:
$$Z = C \cdot X$$

sujeto a: $A \cdot X \leq B$
 $X \geq 0$
donde: $C = (c_1 \quad c_2 \quad \dots \quad c_n); \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}; \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \quad 0 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Método Símplex

- Usa álgebra de matrices, todas las relaciones matemáticas serán a base de ecuaciones lineales que deben contener todas las variables
- Requiere la conversión de las restricciones de desigualdad a igualdades estrictas y la inclusión de todas las variables

Se satisfacen exactamente dos restricciones Inexactamente una restricción

Se satisface exactamente una restricción Inexactamente dos restricciones

20

40

60

2x + y = 100

x = 40

x + y = 80

Transformaciones al modelo

 Una desigualdad "≤" puede transformarse en una ecuación si se suma al lado izdo una nueva variable, no-negativa

$$9X_1 + 7X_2 - 3X_3 \le 5$$

puede reemplazarse por

$$9X_1 + 7X_2 - 3X_3 + s = 5$$
, $s \ge 0$

s es variable de holgura

$$Z = 3x_1 + 2x_2$$

 $2x_1 + 1x_2 \le 100$
 $1x_1 + 1x_2 \le 80$
 $x_1 \le 40$
 $x_1, x_2 \ge 0$
Isformaciones al modelo

 Restricción 1: se s₁ son las horas de acabado no usadas variable de holgura positiva s₁

$$2x_1 + x_2 + s_1 = 100$$

 Restricción 2: s son las horas de carpintería no usadas variable de holgura positiva s₂

$$x_1 + x_2 + s_2 = 80$$

 Restricción 3: se sa la demanda de muñecas no usada variable de holgura positiva s3

$$x_2 + s_3 = 40$$

$$Z = 3x_1 + 2x_2 + 0s_1 + 0s_2 + 0s_3$$

$$2x_1 + 1x_2 + 1s_1 + 0s_2 + 0s_3 = 100$$

$$1x_1 + 1x_2 + 0s_1 + 1s_2 + 0s_3 = 80$$

$$0x_1 + 1x_2 + 0s_1 + 0s_2 + 1s_3 = 40$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

Problema de PL

FORMULACIÓN SÍMPLEX:

- introducción de variables de holgura,
- igualar Z a 0

$$\begin{array}{ll} \text{maximizar:} & Z - c_1 x_1 - c_2 x_2 - \ldots - c_n x_n = 0 \\ \text{sujeto a:} & a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n + 1 s_1 + 0 s_2 + \ldots + 0 s_m = b_1 \\ & a_{21} x_1 + a_{22} x_2 + \ldots + a_{2n} x_n + 0 s_1 + 1 s_2 + \ldots + 0 s_m = b_2 \\ & \ldots \\ & a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n + 0 s_1 + 0 s_2 + \ldots + 1 s_m = b_m \\ & x_i \geq 0, \ i = 1, 2, \ldots, \ n; \ s_j \geq 0, \ j = 1, 2, \ldots, \ m \end{array}$$

EN FORMA MATRICIAL

maximizar:
$$Z = C \cdot X$$

sujeto a: $A \cdot X + I \cdot S = B$
 $X \ge 0$; $S \ge 0$;
donde: $C = (c_1 \ c_2 \ \dots \ c_n)$; $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$; $S = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix}$

$$A = \begin{pmatrix} a_{11} \ a_{12} & \cdots & a_{1n} \\ a_{21} \ a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} \ a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
; $B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$ $0 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$

$$\begin{pmatrix} 1 & -C & 0 \\ 0 & A & I \end{pmatrix} \cdot \begin{pmatrix} Z \\ X \\ S \end{pmatrix} = \begin{pmatrix} 0 \\ B \end{pmatrix}$$

$$C = (c_1 \quad c_2 \quad \dots \quad c_n); \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}; \quad S = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}; \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \quad 0 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

EJEMPLO

"Hora Exacta" produce y vende 2 tipos de relojes

Reloj de hombre:

- Produce un beneficio neto de 4 €
- Requiere 2 horas producción
- Requiere 2 horas inspección y empaquetado

Reloj de mujer:

- Produce un beneficio neto de 6 €
- Requiere 4 horas de producción
- Requiere 3 horas de inspección y empaquetado

Cada semana "Hora Exacta" puede disponer de:

- Todo el material que necesite
- Solamente 120 horas producción
- Solamente 100 horas inspección y empaquetado

"Hora Exacta" quiere maximizar sus ganancias. ¿Cuántos relojes de hombre y de mujer debe fabricar semanalmente?

PASO 1: FORMULACIÓN INICIAL

x₁ = nº de relojes de hombre producidos a la semana

x₂ = nº de relojes de mujer producidos a la semana

maximizar: $Z = 4x_1 + 6x_2$ (función objetivo)

sujeto a: $2x_1 + 4x_2 \le 120$ (producción)

> $2x_1 + 3x_2 \le 100$ (inspección y empaquetado)

 $x_1 \ge 0; x_2 \ge 0$ (restricción de signo)

IMPORTANTE

PASO 2: FOF El número de variables de holgura es igual

- introducción al número de restricciones del problema, NO al número de variables de decisión
- igualar Z a 0

 $x_1 = n^0$ de relojes de hombre producidos a la semana $x_2 = n^2$ de relojes de mujer producidos a la semana

maximizar: $Z - 4x_1 - 6x_2 + 0s_1 + 0s_2 = 0$

sujeto a: $2x_1 + 4x_2 + 1s_1 + 0s_2 = 120$

 $2x_1 + 3x_2 + 0s_1 + 1s_2 = 100$

 $X_1, X_2, S_1, S_2 \ge 0$

UNA POSIBLE SOLUCIÓN: $x_1 = 0$; $x_2 = 0$; Z = 0; $s_1 = 120$; $s_2 = 100$

PASO 3: Construcción de la tabla inicial SIMPLEX:

- En las columnas aparecerán todas las variables del problema (de decisión y de holgura)
- En las filas, los coeficientes de las igualdades obtenidas,
 - La primera fila para la función objetivo
 - Una fila para cada restricción

$$\begin{pmatrix} 1 & -C & 0 \\ 0 & A & I \end{pmatrix} \cdot \begin{pmatrix} Z \\ X \\ S \end{pmatrix} = \begin{pmatrix} 0 \\ B \end{pmatrix}$$

	TABLA INICIAL												
		Variable de decisión		Variable de holgura		Solución							
	Z	X ₁ X ₂		S ₁	S ₂								
Z	1	-4	-6	0	0	0							
S ₁	0	2 4		1	0	120							
S ₂	0	2	3	0	1	100							

PASO 4: Encontrar la variable de decisión que entra en la base y la variable de holgura que sale de la base

- Para escoger la variable de decisión que entra en la base, nos fijamos en Z y escogemos la variable con el coeficiente más negativo (en valor absoluto)
 - Si hay dos o más coeficientes iguales que cumplan la condición anterior, entonces se elige cualquiera de ellos
 - Si Z no tiene ningún coeficiente negativo, se ha alcanzado la solución óptima. El proceso SIMPLEX acaba cuando Z no tiene coeficientes negativos
- La columna de la variable que entra en la base se llama columna pivote

x₂ entra en la base

	ITERACIÓN 1												
		Variable de decisión			ole de gura	Solución	ratio						
	Z	X ₁	X	S ₁	S ₂								
Z	1	-4	-6	0	0	0							
S ₁	0	2	2 4		0	120							
S ₂	0	2	3	0	1	100							

COLUMNA PIVOTE

- Para encontrar la variable de holgura que sale de la base, se divide cada término de la última columna (solución) por el término correspondiente de la columna pivote (siempre que sean mayores que cero)
 - Si hay algún elemento menor o igual que cero no se efectúa el cociente
 - Si todos los elementos son menores o iguales a cero, hay una solución no acotada y no se puede seguir
 - Si al calcular los cocientes, dos o más son iguales, cualquiera de las variables correspondientes pueden salir de la base
- El término que dé lugar al menor cociente positivo, indica la fila de la variable de holgura que sale de la base.
- Esta fila se llama fila pivote

x₂ entra en la base

	ITERACIÓN 1												
		Variable de decisión			ole de gura	Solución	ratio						
	Z	X ₁ X ₂		S ₁	S ₂								
Z	1	-4	-6	0	0	0							
S ₁	0	2	2 4		0	120							
S_2	0	2	3	0	1	100							

COLUMNA PIVOTE

x₂ entra en la base

ITERACIÓN 1											
		Variable de decisión holgura				Solución	ratio				
	Z X_1 X_2 S_1 S_2										
Z	1	-4	-6	0	0	0	FILA PIV	TC			
S ₁	0	2	4	1	0	120	30	>			
s ₂ 0 2 3 0 1 100/3											
COLUMNA DIVOTE											

COLUMNA PIVOTE

s₁ sale de la base

x₂ entra en la base

PASO 5. Encontrar los coeficientes para la nueva tabla de SIMPLEX

 Utilizando el elemento pivote, mediante la reducción gaussiana, hacemos ceros los restantes términos de la columna pivote, incluyendo la función objetivo Z

TABLA INICIAL											
		Variable de decisión			ble de gura	Solución	ratio				
	Z	X_1 X_2		S ₁	S ₂						
Z	1	-4	-6	0	0	0					
S ₁	0	2	4	1	0	120	30				
S ₂	0	2	3	0	1	100	100/3				

X ₂ 6	entra en la l	base y s	s ₁ sale	ITE	RACIÓN	l 1		
				ole de sión		ole de gura	Solución	ratio
		Z	X ₁	X_2	S ₁	S ₂		
	Z							
	$s_1 \leftarrow x_2$							
	S_2							

	TABLA INICIAL												
		Variable de decisión			ole de gura	Solución	ratio						
	Z	X ₁	X_1 X_2		S ₂								
Z	1	-4	-6	0	0	0							
S ₁	0	2	4	1	0	120	30						
S_2	0	2	3	0	1	100	100/3						

	ITERACIÓN 1											
		Variable de decisión holgura				Solución	ratio					
	Z	X ₁	X_2	S ₁	S_2							
Z												
$s_1 \leftarrow x_2$	0	1/2	1	1/4	0	30						
S_2												

	TABLA INICIAL												
		Variable de decisión			ole de gura	Solución	ratio						
	Z	X ₁	X ₂	S ₁	S ₂								
Z	1	-4	-6	0	0	0							
S ₄	0	2	4	1	0	120	30						
S ₂	0	2	3	0	1	100	100/3						

	ITERACIÓN 1												
		Variable de decisión		Variable de holgura		Solución	ratio						
	Z	X_1 X_2		S ₁	S ₂								
Z	1	-1	0	6/4	0	180							
$s_1 \leftarrow x_2$	0	1/2	1	1/4	0	30							
S_2													

	TABLA INICIAL												
		Variable de decisión			ole de gura	Solución	ratio						
	Z	X ₁	X ₂	S ₁	S ₂								
Z	1	-4	-6	0	0	0							
S ₁	0	2	4	1	0	120	30						
S ₂	0	2	3	0	1	100	100/3						

	ITERACIÓN 1											
	Variable de Variable de											
Como	Z tiene	valores	s negati	vos hay	que ite	erar de nuev	ratio /O					
	Z	X_1	X_2	S ₁	S_2							
Z	1	-1	0	6/4	0	180						
$s_1 \leftarrow x_2$	0	1/2	1	1/4	0	30						
S ₂	0	1/2	0	-3/4	1	10						

x₁ entra en la base

ITERACIÓN 1										
		Variable de decisión		Variable de holgura		Solución	ratio			
	Z	X ₁	X_2	S ₁	S_2					
Z	1	-1	0	6/4	0	180				
$s_1 \leftarrow x_2$	0	1/2	1	1/4	0	30				
S ₂	0	1/2	0	-3/4	1	10				

COLUMNA PIVOTE

x₁ entra en la base

ITERACIÓN 1										
			ole de sión			Solución	ratio			
	Z	X ₁	X_2	S ₁	S ₂					
Z	1	-1	0	6/4	0	180				
$s_1 \leftarrow x_2$	0	1/2	1	1/4	0	30	FILA PIV			
S ₂	0	1/2	0	-3/4	1	10	20			

COLUMNA PIVOTE

s₂ sale de la base

ITERACIÓN 1										
			Variable de decisión Variable de holgura		Solución	ratio				
	Z	X ₁	X ₂	S ₁	S ₂					
Z	1	-1	0	6/4	0	180				
$s_1 \leftarrow x_2$	0	1/2	1	1/4	0	30				
S_2	0	1/2	0	-3/4	1	10	20			

X₁ €	x ₁ entra y s ₂ sale de la base ITERACIÓN 2										
			Variable de decisión		Variable de holgura		Solución	ratio			
		Z	X ₁	X ₂	S ₁	S ₂					
	Z										
	$s_1 \leftarrow x_2$										
	$s_2 \leftarrow x_1$										

ITERACIÓN 1										
		Variable de decisión		Variable de holgura		Solución	ratio			
	Z	X ₁	X ₂	S ₁	S ₂					
Z	1	-1	0	6/4	0	180				
$s_1 \leftarrow x_2$	0	1/2	1	1/4	0	30				
S_2	0	1/2	0	-3/4	2	40	20			

ITERACIÓN 2										
		Variable de Variable de decisión holgura			Solución	ratio				
	Z	X ₁	X ₂	S ₁	S ₂					
Z										
$s_1 \leftarrow x_2$										
$s_2 \leftarrow x_1$	0	1	0	-3/2	1	20	_			

	ITERACIÓN 1											
			ble de isión		ole de gura	Solución	ratio					
	Z	X ₁	X ₁ X ₂ S ₁		S ₂							
Z	1	-1	0	6/4	0	180						
$s_1 \leftarrow x_2$	0	1/2	1	1/4	0	30						
S_2	0	1/2	0	-3/4	1	10	20					

ITERACIÓN 2											
			Variable de decisión Variable de holgura				ratio				
	Z	X ₁	X_1 X_2 S_1 S_2								
Z	1	0	0	0	1	200					
$s_1 \leftarrow x_2$											
$s_2 \leftarrow x_1$	0	1	0	-3/2	1	20					

	ITERACIÓN 1											
			ble de isión		ole de gura	Solución	ratio					
	Z	X ₁	X ₁ X ₂		S ₂							
Z	1	-1	0	6/4	0	180						
$s_1 \leftarrow x_2$	0	1/2	1	1/4	0	30						
S_2	0	1/2	0	-3/4	1	10	20					

	ITERACIÓN 2												
Variable de Variable de Z no tiene ningún coeficiente negativo, se ha alcanzado la solución óptima tio													
	Z X ₁ X ₂ S ₁ S ₂												
Z	1	0	0	0	1	200							
$s_1 \leftarrow x_2$	$s_1 \leftarrow x_2 $ 0 0 2 2 -2 40												
$s_2 \leftarrow x_1$	0	1	0	-3/2	1	20							

	TABLA FINAL											
		Variable de decisión Variable de holgura				Solución	ratio					
	Z	X ₁	X ₂	X_2 S_1 S_2								
Z	1	0	0	0 1		200						
x ₂	0	0	1	1 1 -1		20						
X ₁	0	1	0	-3/2	1	20						

SOLUCIÓN ÓPTIMA $X_1 = 20; X_2 = 20; Z = 200$

PASO 1: FORMULACIÓN INICIAL

Maximizar
$$z = 6x_1 + 4x_2$$

Sujeto a: $x_1 + x_2 \le 12$
 $x_1 - 2x_2 \le 6$
 $x_2 \le 8$
 $x_i \ge 0$

PASO 2: FORMULACIÓN SÍMPLEX

Maximizar
$$z - 6x_1 - 4x_2 + 0s_1 + 0s_2 + 0s_3 = 0$$

Sujeto a: $x_1 + x_2 + s_1 = 12$
 $x_1 - 2x_2 + s_2 = 6$
 $x_2 + s_3 = 8$
 $x_i \ge 0; s_j \ge 0$

	TABLA INICIAL											
			Variable de holgura decisión				Solución	ratio				
	Z	X ₁	X_1 X_2 S_1 S_2 S_3									
Z	1	-6	-4	0	0	0	0					
S ₁	0	1	1	1	0	0	12					
S ₂	0	1	1 -2 0 1 0				6					
S ₃	0	0	1	0	0	1	8					

Selecciona la variable que entra la base

			TA	ABLA IN	ICIAL			
			ble de isión	Varial	Solución	ratio		
	Z	X ₁	X ₂	S ₁	S ₂	S_3		
Z	1	-6	-4	0	0	0	0	
S ₁	0	1	1	1	0	0	12	
S ₂	0	1	-2	0	1	0	6	
$s_{\scriptscriptstyle 3}$	0	0	1	0	0	1	8	

Selecciona la variable de holgura que sale de la base

			TA	ABLA IN	ICIAL			
			ble de isión	Varial	Solución	ratio		
	Z	X ₁	X ₂	S ₁	S ₂	S_3		
Z	1	-6	-4	0	0	0	0	
S ₁	0	1	1	1	0	0	12	12
S_2	0	1	-2	0	1	0	6	6
S ₃	0	0	1	0	0	1	8	

Selecciona la variable de holgura que sale de la base

	TABLA INICIAL											
			ole de sión	Varial	ole de ho	olgura	Solución	ratio				
	Z	X ₁	X_2	S ₁	S ₂	S ₃						
Z	1	-6	-4	0	0	0	0					
S ₁	0	1	1	1	0	0	12	12				
S_2	0	1	-2	0	1	0	6	6				
S_3	0	0	1	0	0	1	8					

	ITERACIÓN 1											
			ole de sión	Varial	ole de ho	olgura	Solución	ratio				
	Z	X ₁	X ₂									
Z												
S ₁												
s ₂ ← x ₁												
s_3												

	TABLA INICIAL											
			ole de sión	Varial	ole de ho	olgura	Solución	ratio				
	Z	X ₁	X_2	S ₁	S ₂	S ₃						
Z	1	-6	-4	0	0	0	0					
S ₁	0	1	1	1	0	0	12	12				
S_2	0	1	-2	0	1	0	6	6				
S_3	0	0	1	0	0	1	8					

	ITERACIÓN 1											
			ole de sión	Varial	ole de h	olgura	Solución	ratio				
	Z	X ₁	X_2	S ₁	S ₂							
Z												
S ₁												
s ₂ ← x ₁	0	1	-2	0	1	6						
$s_{\scriptscriptstyle 3}$												

	TABLA INICIAL										
			ble de sión	Varial	ole de h	olgura	Solución	ratio			
	Z	X ₁	X_2	S ₁	S ₂	S ₃					
Z	1	-6	-4	0	0	0	0				
S ₁	0	1	1	1	0	0	12	12			
S_2	0	1	-2	0	1	0	6	6			
s ₃	0	0	1	0	0	1	8				

	ITERACIÓN 1											
			ole de sión	Varial	ble de h	olgura	Solución	ratio				
	Z	X ₁	X_2	S ₁	S ₂	S ₃						
Z												
S ₁												
s ₂ ← x ₁	0	1	-2	0	1	0	6					
$s_{\scriptscriptstyle 3}$	0	0	1	0	0	1	8					

	TABLA INICIAL										
			ble de sión	Varial	ole de h	olgura	Solución	ratio			
	Z	X ₁	X_2	S ₁	S ₂	S ₃					
Z	1	-6	-4	0	0	0	0				
S ₁	0	1	1	1	0	0	12	12			
S_2	0	1	-2	0	1	0	6	6			
s ₃	0	0	1	0	0	1	8				

	ITERACIÓN 1											
			ole de sión	Varial	ble de h	olgura	Solución	ratio				
	Z	X ₁	X_2	S ₁	S ₂	S ₃						
Z	1	0	-16	0	6	0	36					
S ₁												
s ₂ ← x ₁	0	1	-2	0	1	0	6					
s_3	0	0	1	0	0	1	8					

TABLA INICIAL										
			ble de sión	Varial	ole de h	olgura	Solución	ratio		
	Z	X ₁	X ₂	S ₁	S ₂	S ₃				
Z	1	-6	-4	0	0	0	0			
S ₁	0	1	1	1	0	0	12	12		
S_2	0	1	-2	0	1	0	6	6		
$s_{\scriptscriptstyle 3}$	0	0	1	0	0	1	8			

ITERACIÓN 1											
	Como 2	Como Z tiene valores negativos hay que iterar de nuevo plución									
	Z	X ₁	X ₂	S ₁	S ₂	S ₃					
Z	1	0	-16	0	6	0	36				
S ₁	0	0	3	1	-1	0	6				
s ₂ ← x ₁	0	1	-2	0	1	0	6				
s_3	0	0	1	0	0	1	8				

Margaret Miró-Julià Programación Lineal

	ITERACIÓN 1										
			ole de sión	Varial	ole de ho	olgura	Solución	ratio			
	Z	X ₁	X ₂	S ₁	S ₂	S ₃					
Z	1	0	-16	0	6	0	36				
S ₁	0	0	3	1	-1	0	6				
s ₂ ← x ₁	0	1	-2	0	1	0	6				
$s_{\scriptscriptstyle 3}$	0	0	1	0	0	1	8				

	ITERACIÓN 2											
			ole de sión	Varial	ole de ho	olgura	Solución	ratio				
	Z	X ₁	X ₂	S ₁	S ₂	S ₃						
Z												
S ₁												
s ₂ ← x ₁												
s_3												

x₂ entra a la base y s₁ sale de la base

ITERACIÓN 1											
			ble de sión	Varial	ole de ho	olgura	Solución	ratio			
	Z	X ₁	X ₂	S ₁	S ₂	S ₃					
Z	1	0	-16	0	6	0	36				
S ₁	0	0	3	1	-1	0	6	2			
s ₂ ← x ₁	0	1	-2	0	1	0	6				
$s_{\scriptscriptstyle 3}$	0	0	1	0	0	1	8	8			

	ITERACIÓN 2											
			ble de sión	Varial	ole de h	olgura	Solución	ratio				
	Z	X ₁	X_2	S ₁	S ₂	S ₃						
Z												
S ₁												
s ₂ ← x ₁												
$s_{\scriptscriptstyle 3}$												

	ITERACIÓN 1										
			ole de sión	Varial	ole de h	olgura	Solución	ratio			
	Z	X ₁	X_2	S ₁	S ₂	S ₃					
Z	1	0	-16	0	6	0	36				
S ₁	0	0	3	1	-1	0	6	2			
s ₂ ← x ₁	0	1	-2	0	1	0	6				
$s_{\scriptscriptstyle 3}$	0	0	1	0	0	1	8	8			

	ITERACIÓN 2											
			ole de sión	Varial	ole de ho	olgura	Solución	ratio				
	Z	X ₁	X ₂	S ₁	S ₂	S ₃						
Z												
$s_1 \leftarrow x_2$	0	0	1	1/3	-1/3	0	2					
s ₂ ← x ₁												
s_3												

			٦	ΓERACΙ	ÓN 1			
			ole de sión	Varial	ole de h	Solución	ratio	
	Z	X ₁	X ₂	S ₁	S ₂	S ₃		
Z	1	0	-16	0	6	0	36	
S ₁	0	0	3	1	-1	0	6	2
s ₂ ← x ₁	0	1	-2	0	1	0	6	
S ₃	0	0	1	0	8	8		

			I	ΓERACΙ	ŹN 2			
			Variable de holgura decisión					ratio
	Z	X ₁	X_2					
Z	1	0	0	16/3	2/3	0	68	
$s_1 \leftarrow x_2$	0	0	1	1/3	-1/3	0	2	
s ₂ ← x ₁								
s_3								

			ľ	ΓERACΙ	ÓN 1			
			ole de sión	Varial	Solución	ratio		
	Z	X ₁	X_2	S ₁	S ₂	S ₃		
Z	1	0	-16	0	6	0	36	
S ₁	0	0	3	1	-1	0	6	2
s ₂ ← x ₁	0	1	-2	0	1	0	6	
S ₃	0	0	1	0	8	8		

	ITERACIÓN 2											
			ole de sión	Solución	ratio							
	Z	X ₁	X ₂									
Z	1	0	0	16/3	2/3	0	68					
$s_1 \leftarrow x_2$	0	0	1	1/3	-1/3	0	2					
s ₂ ← x ₁	0	1	0	2/3	1/3	0	10					
s_3												

	ITERACIÓN 1											
			ole de sión	Varial	ble de h	olgura	Solución	ratio				
	Z	X ₁	X_2	S ₁	S ₂	S ₃						
Z	1	0	-16	0	6	0	36					
S ₁	0	0	3	1	-1	0	6	2				
s ₂ ← x ₁	0	1	-2	0	1	0	6					
$s_{\scriptscriptstyle 3}$	0	0	1	0	0	1	8	8				

	ITERACIÓN 2											
			1/0%:01									
Z no tiene ningún coeficiente negativo, se ha alcanzado la solución óptima ratio												
	400101011											
	$\begin{bmatrix} Z & X_1 & X_2 & S_1 & S_2 & S_3 \end{bmatrix}$											
Z		1	0	0	16/3	2/3	0	68				
s ₁ ←	X ₂	0	0	1	1/3	-1/3	0	2				
s₂←	X ₁	0	1	0	2/3	1/3	0	10				
s_3	}	0	0	0	-1/3	1/3	1	6				

TABLA FINAL												
			ole de sión	Varial	Solución	ratio						
	Z	X ₁	X ₂									
Z	1	0	0	16/3	2/3	0	68					
X ₂	0	0	1	1/3	-1/3	0	2					
X ₁	0	1	0	2/3	1/3	0	10					
s_3	0	0	0	-1/3	1/3	1	6					

La solución óptima es

$$X_1 = 10; X_2 = 2; Z = 68$$

Método SIMPLEX: condiciones

- Maximizar Z
- c_i valores reales
- Restricciones ≤
- $b_i \ge 0$

Método SIMPLEX: resumen

- Formulación inicial del problema
- Formulación SIMPLEX
- Tabla inicial
- Iteraciones
 - Columna pivote (vble que entra en la base), coeficientes de Z más negativo
 - Fila pivote (vble que sale), menor valor de la ratio (solución/columna pivote)
 - Poner ceros en la columna pivote usando elemento pivote (eliminación gaussiana)
 - Acaba cuando todos los coeficientes de Z son no negativos

EJEMPLO

Una empresa elabora dos productos A y B en una planta que consta de 3 departamentos: cortado, montaje y embalaje. Cada departamento trabaja un máximo de 8 horas diarias El proceso de producción del producto A es: primero es cortado y luego embalado. Cada tonelada de este producto emplea media hora de cortado y un tercio de hora de embalaje El proceso de producción del producto B es: primero se monta y luego se embala. Cada tonelada de este producto emplea una hora de montado y dos tercios de hora de embalaie.

Los productos A y B son vendidos con un beneficio de 40 y 30 euros por tonelada respectivamente. ¿Qué combinación de productos maximizará el beneficio total?

PASO 1: FORMULACIÓN INICIAL

Maximizar Z ci valores reales Restricciones ≤ $b_i \ge 0$

x₁ = toneladas elaboradas del producto A

x₂ = toneladas elaboradas del producto B

 $Z = 40x_1 + 30x_2$ maximizar: (función objetivo)

sujeto a: $1/2x_1 \le 8$ (departamento cortado)

> (departamento montaje) $X_2 \leq 8$

 $1/3x_1 + 2/3x_2 \le 8$ (departamento embalaje)

 $x_1, x_2 \ge 0$

PASO 1: FORMULACIÓN INICIAL

x₁ = toneladas elaboradas del producto A

x₂ = toneladas elaboradas del producto B

maximizar: $Z = 40x_1 + 30x_2$ (función objetivo)

sujeto a: x₁ ≤ 16 (departamento cortado)

> (departamento montaje) $x_2 \le 8$

 $x_1 + 2x_2 \le 24$ (departamento embalaje)

 $X_1, X_2 \ge 0$

PASO 2: FORMULACIÓN SIMPLEX

x₁ = toneladas elaboradas del producto A

x₂ = toneladas elaboradas del producto B

maximizar:
$$Z - 40x_1 - 30x_2 + 0s1 + 0s2 + 0s3 = 0$$

sujeto a:
$$x_1 + 0x_2 + 1s_1 + 0s_2 + 0s_3 = 16$$

$$0x_1 + 1x_2 + 0x_3 + 0s_1 + 1s_2 + 0s_3 = 8$$

$$x_1 + 2x_2 + 0s_1 + 0s_2 + 1s_3 = 24$$

$$X_1, X_2, S_1, S_2, S_3 \ge 0$$

	TABLA INICIAL											
			ble de isión	Variak	ole de h	olgura	Solución	ratio				
	Z	X	X ₂	S ₁	S ₂	S ₃						
Z	1	-40	-30	0	0	0	0					
S ₁	0	1	0	1	0	0	16					
S ₂	0	0	1	0	1	0	8					
$s_{\scriptscriptstyle 3}$	0	1	2	0	0	1	24					

TABLA INICIAL											
			ole de sión	Variak	ole de h	olgura	Solución	ratio			
	Z	X	X_2	S ₁	S ₂	S ₃					
Z	1	-40	-30	0	0	0	0				
S ₁	0	1	0	1	0	0	16	16			
S_2	0	0	1	0	1	0	8				
s_3	0	1 /	2	0	0	1	24	24			

TABLA INICIAL											
			ole de sión	Variak	ole de h	olgura	Solución	ratio			
	Z	X	X_2	S ₁	S ₂	S ₃					
Z	1	-40	-30	0	0	0	0				
S ₁	0	1	0	1	0	0	16	16			
S_2	0	0	1	0	1	0	8				
s_3	0	1 /	2	0	0	1	24	24			

			ole de sión	Variable de holgura			Solución	ratio
	Z	X ₁	X_2	S ₁	S ₂	S ₃		
Z								
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16	
S ₂								
s ₃								

	TABLA INICIAL											
			ble de sión	Variak	ole de h	olgura	Solución	ratio				
	Z	X	X ₂	S ₁	S ₂	S ₃						
Z	1	-40	-30	0	0	0	0					
S ₁	0	1	0	1	0	0	16	16				
S_2	0	0	1	0	1	0	8					
s_3	0	1 /	2	0	0	1	24	24				

		Variable de decisión		Variable de holgura			Solución	ratio
	Z	X ₁	X_2	S ₁	S ₂	S ₃		
Z								
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16	
S ₂	0	0	1	0	1	0	8	
s ₃								

	TABLA INICIAL											
			ble de sión	Variable de holgura			Solución	ratio				
	Z	X	X ₂	S ₁	S ₂	S ₃						
Z	1	-40	-30	0	0	0	0					
S ₁	0	1	0	1	0	0	16	16				
S_2	0	0	1	0	1	0	8					
s_3	0	1 /	2	0	0	1	24	24				

		Variable de decisión		Variable de holgura			Solución	ratio
	Z	X ₁	X_2	S ₁	S_2	S ₃		
Z	1	0	-30	40	0	0	640	
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16	
S ₂	0	0	1	0	1	0	8	
s ₃								

	TABLA INICIAL											
				ble de sión	Variable de holgura			Solución	ratio			
Γ		Z	X	X ₂	S ₁	S ₂	S ₃					
	Z	1	-40	-30	0	0	0	0				
lacksquare	S ₁	0	1	0	1	0	0	16	16			
	S_2	0	0	1	0	1	0	8				
	s_3	0	1	2	0	0	1	24	24			

	Como	Z tiene v	ratio					
	Z	X ₁	X_2	S ₁	S ₂	S ₃		
Z	1	0	-30	40	0	0	640	
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16	
S ₂	0	0	1	0	1	0	8	
$s_{\scriptscriptstyle 3}$	0	0	2	-1	0	1	8	

	ITERACIÓN 1											
		Variable de de holgura decisión					Solución	ratio				
	Z	X ₁	X	S ₁	S ₂	S ₃						
Z	1	0	-30	40	0	0	640					
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16					
S_2	0	0	1	0	1	0	8					
s_3	0	0	2	-1	0	1	8					

	ITERACIÓN 1											
			Variable de holgura decisión					ratio				
	Z	X ₁	X	S ₁	S ₂	S ₃						
Z	1	0	-30	40	0	0	640					
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16					
S ₂	0	0	1	0	1	0	8	8				
S_3	0	0	2	-1	0	1	8	4				

	ITERACIÓN 1											
			Variable de holgura decisión					ratio				
	Z	X ₁	X	S ₁	S ₂	S ₃						
Z	1	0	-30	40	0	0	640					
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16					
S ₂	0	0	1	0	1	0	8	8				
S_3	0	0	2	-1	0	1	8	4				

		Variable de decisión		Variable de holgura			Solución	ratio
	Z	X_1	X_2	S ₁	S ₂	S ₃		
Z								
$s_1 \leftarrow x_1$								
S ₂								
$s_3 \leftarrow x_3$	0	0	1	-1/2	0	1/2	4	

	ITERACIÓN 1											
			Variable de holgura decisión					ratio				
	Z	X ₁	X	S ₁	S ₂	S ₃						
Z	1	0	-30	40	0	0	640					
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16					
S ₂	0	0	1	0	1	0	8	8				
S_3	0	0	2	-1	0	1	8	4				

		Variable de decisión		Variable de holgura			Solución	ratio
	Z	X ₁	X_2	S ₁	S ₂	S ₃		
Z								
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16	
S ₂								
$s_3 \leftarrow x_3$	0	0	1	-1/2	0	1/2	4	

	ITERACIÓN 1											
			Variable de holgura decisión					ratio				
	Z	X ₁	X	S ₁	S ₂	S ₃						
Z	1	0	-30	40	0	0	640					
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16					
S ₂	0	0	1	0	1	0	8	8				
S_3	0	0	2	-1	0	1	8	4				

		Variable de decisión		Variable de holgura			Solución	ratio
	Z	X ₁	X_2	S ₁	S_2	S ₃		
Z	1	0	0	25	0	15	760	
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16	
S ₂								
$s_3 \leftarrow x_3$	0	0	1	-1/2	0	1/2	4	

	ITERACIÓN 1										
		Variak deci		Variak	ole de h	olgura	Solución	ratio			
	Z	X ₁	X	S ₁	S ₂	S ₃					
Z	1	0	-30	40	0	0	640				
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16				
S ₂	0	0	1	0	1	0	8	8			
S_3	0	0	2	-1	0	1	8	4			

x₂ entra en la base y s₃ sale

ITERACIÓN 2

Z no	tiene ning	gún coefi		egativo, s	e ha alca	nzado la	solución óp	tima ratio
	Z	X ₁	X_2	S ₁	S_2	S_3		
Z	1	0	0	25	0	15	760	
$s_1 \leftarrow x_1$	0	1	0	1	0	0	16	
S_2	0	0	0	1/2	1	-1/2	4	_
$s_3 \leftarrow x_3$	0	0	1	-1/2	0	1/2	4	

	TABLA FINAL										
			ble de sión	Variak	ole de h	olgura	Solución	ratio			
	Z	X ₁	X_2	S ₁	S ₂	S ₃					
Z	1	0	0	25	0	15	760				
X ₁	0	1	0	1	0	0	16				
S ₂	0	0	0	1/2	1	-1/2	4				
X ₃	0	0	1	-1/2	0	1/2	4				

La solución óptima es:

$$x_1 = 16$$
; $x_2 = 4$; $Z = 760$

Modelo general de PL

MODELO DE OPTIMIZACIÓN

```
minimizar: Z = c_1x_1 + c_2x_2 + ... + c_nx_n
sujeto a:
            a_{11}X_1 + a_{12}X_2 + ... + a_{1n}X_n \ge b_1
                  a_{21}X_1 + a_{22}X_2 + ... + a_{2n}X_n \ge b_2
                  a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \ge b_m
                 x_i \ge 0, i = 1, 2, ..., n
```

EN FORMA MATRICIAL

minimizar:
$$Z = C \cdot X$$

sujeto a: $A \cdot X \ge B$
 $X \ge 0$
donde: $C = (c_1 \quad c_2 \quad \dots \quad c_n); \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}; \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \quad 0 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Método SIMPLEX Dual

 Comienza con una solución inicial, que satisface la optimalidad pero que no pertenece a la región factible, y realiza operaciones hasta encontrar un punto óptimo que pertenezca a la región factible

Método SIMPLEX Dual: condiciones

SIMPLEX DUAL

- Minimizar Z
- $C_i \ge 0$
- Restricciones ≥
- b_i valores reales

SIMPLEX

- Maximizar Z
- c_i valores reales
- Restricciones ≤
- $b_i \ge 0$

Método SIMPLEX Dual: resumen

- Formulación inicial del problema
- Formulación SIMPLEX
- Tabla inicial
- Iteraciones
 - Fila pivote (vble que sale), solución más negativa
 - Columna pivote (vble que entra), menor valor de la ratio (Z/fila pivote)
 - Poner ceros en la columna pivote usando elemento pivote (eliminación gaussiana)
 - Acaba cuando todos los valores de la solución son no negativos

PASO 1: FORMULACIÓN INICIAL

Minimizar Z $C_i \ge 0$ Restricciones ≥ b_i valores reales

minimizar:
$$Z = 2x_1 + 3x_2$$

sujeto a:
$$2x_1 + 2x_2 \ge 30$$

$$x_1 + 2x_2 \ge 10$$

$$x_1, x_2 \ge 0$$

Transformaciones al modelo

 Cuando una desigualdad se multiplica por (-1), su sentido se invierte

$$2X_1 + 9X_2 - 4X_3 \ge 9$$

es matemáticamente equivalente a

$$-2X_1 - 9X_2 + 4X_3 \le -9$$

PASO 1: FORMULACIÓN INICIAL

minimizar: $Z = 2x_1 + 3x_2$

sujeto a: $2x_1 + 2x_2 \ge 30$

 $x_1 + 2x_2 \ge 10$

 $x_1, x_2 \ge 0$

minimizar: $Z = 2x_1 + 3x_2$

 $-2x_1 - 2x_2 \le -30$ sujeto a:

 $-x_1 - 2x_2 \le -10$

 $x_1, x_2 \ge 0$

PASO 2: FORMULACIÓN SIMPLEX

minimizar:
$$Z - 2x_1 - 3x_2 + 0s_1 + 0s_2 = 0$$

sujeto a:
$$-2x_1 - 2x_3 + s_1 + 0s_2 = -30$$

$$-x_1 - 2x_2 + 0s_1 + s_2 = -5$$

$$x_1, x_2, s_1, s_2 \ge 0$$

	TABLA INICIAL								
			ole de sión		ole de gura	Solución			
	Z	X ₁	X_2	S ₁	S ₂				
Z	1	-2	-3	0	0	0			
S ₁	0	-2	-2	1	0	-30			
$s_{\scriptscriptstyle 2}$	0	-1 -2		0	1	-10			
ratio						_			

TABLA INICIAL									
			ble de isión		ble de gura	Solución			
	Z	X	X_2	S ₁	S ₂				
Z	1	-2	-3	0	0	0			
S ₁	0	-2	-2	1	0	-30			
S_2	0	-1	-2	0	1	-10			
ratio		1/	3/2						

s₁ sale de la base y x₁ entra

	TABLA INICIAL								
			ble de isión		ole de gura	Solución			
	Z	X	X ₂	S ₁	S ₂				
Z	1	-2	-3	0	0	0			
S ₁	0	-2	-2	1	0	-30			
S_2	0	-1	-2	0	1	-10			
ratio		1	3/2						

s₁ sale de la base y x₁ entra ITERACIÓN 1

		Variable de decisión			ole de gura	Solución				
	Z	X ₁	X_2	S ₁	S_2					
Z										
$s_1 \leftarrow x_1$	0	1	1	-1/2	0	15				
S ₂										
ratio										

1									
	TABLA INICIAL								
			ble de isión		ole de gura	Solución			
	Z	X	X ₂	S ₁	S ₂				
Z	1	-2	-3	0	0	0			
S ₁	0	-2	-2	1	0	-30			
S_2	0	-1	-2	0	1	-10			
ratio		1/	3/2						

s₁ sale de la base y x₁ entra ITERACIÓN 1

	TILITATION									
		Variable de decisión		Variable de holgura		Solución				
	Z	X ₁	X_2	S ₁	S_2					
Z										
$s_1 \leftarrow x_1$	0	1	1	-1/2	0	15				
S ₂	0	0	-1	-1/2	1	5				
ratio										

TABLA INICIAL									
			ble de isión		ole de gura	Solución			
	Z	X	X_2	S ₁	S ₂				
Z	1	-2	-3	0	0	0			
S ₁	0	-2	-2	1	0	-30			
S_2	0	-1	-2	0	1	-10			
ratio		1/	3/2						

s₁ sale de la base y x₁ entra ITERACIÓN 1 Todos los valores de la solución son no negativos 30 0 0 -1 -1 15 -1/2 0 0 $s_1 \leftarrow x_1$ 5 0 0 -1 -1/2 1 S_2 ratio

	TABLA FINAL								
			ole de sión		ole de gura	Solución			
	Z	X ₁	X_2	S ₁	S ₂				
Z	1	0	-1	-1	0	30			
X ₁	0	1	1	-1/2	0	15			
S_2	0	0	-1	-1/2	1	5			
ratio									

SOLUCIÓN ÓPTIMA

$$x_1 = 15$$
; $x_2 = 0$; $Z = 30$