Grupos. Parte 3.

Silvio Reggiani

Complementos de Matemática II (LCC) Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

27 de octubre de 2020

Ejemplo no abeliano

▶
$$G = GL(2, \mathbb{R})$$
 matrices invertibles 2×2 ,

$$\blacktriangleright H = SI(2 \mathbb{R}) = \{A \in GI(2 \mathbb{R}) : \det A = \emptyset\}$$

$$H = SL(2,\mathbb{R}) = \{A \in GL(2,\mathbb{R}) : \det A = 1\},$$

 $\det(BAB^{-1}) = (\det B)(\det A)(\det B)^{-1} = \det A = 1$

▶
$$H = SL(2, \mathbb{R}) = \{A \in GL(2, \mathbb{R}) : \det A = 1\},$$
▶ $H < G: A, B \in H \implies \det(AB^{-1}) = (\det A)(\det B)^{-1} = 1$,

 \blacktriangleright $H \triangleleft G$: si $A \in H \lor B \in G$, entonces

v por ende $BAB^{-1} \in H$.

ightharpoonup ¿Qué grupo es $GL(2,\mathbb{R})/SL(2,\mathbb{R})$?

- ► Sea *D_n* el grupo de simetrías de un polígono regular de *n* lados.
 - \triangleright $D_n = \langle R, \tau \rangle$.
 - $ightharpoonup R = \text{rotación en } \frac{2\pi}{n} \text{ radianes.}$
 - τ = una reflexión.
 - ▶ $H := \langle R \rangle \triangleleft D_n$. En efecto,

$$[D_n:H] = \frac{|D_n|}{|H|} = \frac{2n}{n} = 2 \stackrel{\text{ejercicio}}{\Longrightarrow} H \triangleleft D_n.$$

▶ $D_n/H \simeq \mathbb{Z}_2$ (es la única posibilidad).

Si $\varphi: G \to H$ es un morfismo de grupos, entonces

$$\ker \varphi = \{ g \in G : \varphi(g) = e \} \triangleleft G.$$

En efecto.

$$\triangleright$$
 si $\varphi(k) = e$, entonces $\forall g \in G$,

$$\varphi(gkg^{-1}) = \varphi(g)\varphi(k)\varphi(g^{-1})$$

$$= \varphi(g)\varphi(g^{-1})$$

$$= \varphi(g)\varphi(g)^{-1}$$

$$= e.$$

▶ ¿Qué grupo es $G/\ker \varphi$?

Teoremas de isomorfismo

Teorema (de factorización)

Sean $H \triangleleft G$ y $\varphi : G \rightarrow K$ un morfismo de grupos tal que $H \subset \ker \varphi$. Entonces existe un único morfismo de grupos $\bar{\varphi} : G/H \rightarrow K$ tal que $\bar{\varphi} \circ \pi = \varphi$.

Demostración.

- ▶ Definimos $\bar{\varphi}(gH) := \varphi(g)$. (Esto implica la **unicidad.**)
- Buena definición:

$$g_1H = g_2H \implies g_1^{-1}g_2 \in H$$

$$\implies \varphi(g_1^{-1}g_2) = e \qquad [H \subset \ker \varphi]$$

$$\implies \varphi(g_1)^{-1}\varphi(g_2) = e$$

$$\implies \varphi(g_1) = \varphi(g_2).$$

 $ightharpoonup \bar{\varphi}$ es morfismo:

$$egin{aligned} ar{arphi}((g_1H)(g_2H)) &= ar{arphi}((g_1g_2)H) \ &= arphi(g_1g_2) \ &= arphi(g_1)arphi(g_2) \ &= ar{arphi}(g_1H)ar{arphi}(g_2H). \end{aligned}$$

Corolario (primer teorema de isomorfismo)

Si $\varphi: G \to K$ es un morfismo de grupos entonces im $\varphi \simeq G/\ker \varphi$. En particular, si φ es un epimorfismo, entonces $K \simeq G/\ker \varphi$.

Demostración.

- Aplicamos el teorema anterior a $H = \ker \varphi$.
- ightharpoonup Debemos ver que $\bar{\varphi}$ es inyectiva.

$$\bar{\varphi}(g_1H) = \bar{\varphi}(g_2H) \iff \varphi(g_1) = \varphi(g_2)$$

$$\iff \varphi(g_1)^{-1}\varphi(g_2) = e$$

$$\iff \varphi(g_1^{-1}g_2) = e$$

$$\iff g_1^{-1}g_2 \in H = \ker \varphi$$

$$\iff g_1H = g_2H.$$

Corolario (segundo teorema de isomorfismo)

Si G, H son subgrupos de un grupo K y H es normal en K, entonces

$$\frac{GH}{H} \simeq \frac{G}{G \cap H}.\tag{1}$$

Demostración.

Antes que nada notemos que los cocientes (1) son efectivamente grupos. En efecto,

- ▶ $H \triangleleft K \implies H \triangleleft GH \implies GH/H$ es grupo.
- ▶ Si $h \in G \cap H$ y $g \in G$, entonces $ghg^{-1} \in H$ pues $H \triangleleft K$ y $ghg^{-1} \in G$ pues H es subgrupo. Luego $ghg^{-1} \in G \cap H$ y por lo tanto $G \cap H$ es normal en G.

Demostración (cont.).

▶ Definimos $\varphi : G \rightarrow GH/H$ como sigue

$$G \longrightarrow GH \xrightarrow{\pi} \frac{GH}{H}.$$

- ▶ ker $\varphi = G \cap H$. (En realidad esto implica que $G \cap H \triangleleft G$, por lo que no hacía falta probarlo antes.)
- φ es sobre: cualquier elemento en GH es de la forma gh. En efecto, en primer lugar notemos que si $g \in G, h \in H$, entonces

$$hg = gg^{-1}hg = gh', \qquad h' \in H.$$
 (2)

IMPORTANTE: esto sólo se puede hacer porque H es normal.

Demostración (cont.).

Como un elemento genérico en GH tiene la forma $x = a_1 a_2 \cdots a_n$ con $a_i \in G \cup H$ podemos usar (2) para reescribir

$$x = a'_1 \cdots a'_s a''_1 \cdots a''_t, \qquad a'_i \in G, \ a''_i \in H.$$

Finalmente,

$$\frac{G}{\ker \varphi} \simeq \frac{G}{G \cap H} \simeq \operatorname{im} \varphi = \frac{GH}{H}.$$

Corolario (tercer teorema de isomorfismo)

Sean $K \subset H \subset G$ subgrupos tales que $K \triangleleft G$, $H \triangleleft G$. Entonces

$$G/H \simeq \frac{G/K}{H/K}$$
.

Ejercicio importante

Sea $K \triangleleft G$. Probar que:

- ▶ Los subgrupos de G/K son todos de la forma H/K con H subgrupo de G tal que $K \subset H$;
- ▶ si $H \triangleleft G$ y $K \subset H$, entonces $H/K \triangleleft G/K$.

Usando este ejercicio vemos que todos los cocientes en el enunciado del corolario son grupos.

Demostración.

$$G \xrightarrow{\pi_H} G/H$$

$$\pi_K \downarrow \qquad \exists ! \varphi$$

$$G/K$$

$$K = \ker \pi_K \subset H = \ker \pi_H \implies \exists ! \varphi.$$

$$\pi_H \text{ epi } \implies \varphi \text{ epi.}$$

$$\ker \varphi = H/K. \text{ En efecto,}$$

$$\varphi(gK) = \varphi(\pi_K(g)) = \pi_H(g) = gH$$

y por ende

$$\varphi(gK) = e(= eH) \iff g \in H.$$

Luego,

$$G/H = \operatorname{im} \varphi \simeq \frac{G/K}{\ker \varphi} = \frac{G/K}{H/K}.$$

Ejemplo

Si G es un grupo cíclico, entonces $G \simeq \mathbb{Z}$ o $G \simeq \mathbb{Z}_n$. En efecto,

- $ightharpoonup G = \langle g \rangle.$
- ▶ Defino $\varphi : \mathbb{Z} \to G$, $\varphi(n) = g^n$ (epi de grupos).
- ightharpoonup Analizamos el núcleo de φ :

 - $\blacktriangleright \ker \varphi \neq 0 \implies (\exists n, \ker \varphi = n\mathbb{Z}) \implies G \simeq \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n.$

ightharpoonup cis : $\mathbb{R} \to \mathbb{C} - \{0\}$,

$$cis(t) := e^{2\pi it} = cos(2\pi t) + i sin(2\pi t).$$

- ▶ cis es morfismo de grupos: $e^{2\pi i(t_1+t_2)} = e^{2\pi it_1}e^{2\pi it_2}$ (probarlo como ejercicio). Recordar que \mathbb{R} es un grupo con la suma y $\mathbb{C} \{0\}$ es un grupo con la multiplicación.
- ▶ im cis = $S^1 = \{z \in \mathbb{C} : |z| = 1\}.$
- \blacktriangleright ker cis = $\{t \in \mathbb{R} : e^{2\pi it} = 1\} = \mathbb{Z}$.
- ▶ Por el 1er teorema de isomorfismo tenemos que

$$S^1=\mathbb{R}/\mathbb{Z}$$
.

- ▶ det : $GL(2,\mathbb{R}) \to \mathbb{R} \{0\}$ es epi de grupos ¿por qué?
- ▶ ker det = $\{A \in GL(2,\mathbb{R}) : \det A = 1\} = SL(2,\mathbb{R}).$

Ejemplo

El mismo argumento funciona para matrices (cuadradas) de cualquier tamaño:

$$\frac{GL(n,\mathbb{R})}{SL(n,\mathbb{R})} \simeq \mathbb{R} - \{0\},\,$$

incluso se pueden cambiar los reales por otro cuerpo, por ejemplo

$$\frac{GL(n,\mathbb{C})}{SL(n,\mathbb{C})}\simeq \mathbb{C}-\{0\}.$$

Comentario

Estos grupos continuos son muy importantes en geometría.

$$\frac{\mathbb{Z}_{mn}}{\mathbb{Z}_m}\simeq\mathbb{Z}_n.$$

- ▶ Lo primero que hay que entender es qué significa que \mathbb{Z}_m sea un subgrupo de \mathbb{Z}_{mn} .
- ▶ \mathbb{Z}_m es un subgrupo cíclico de orden m y el único subgrupo cíclico de orden m en \mathbb{Z}_{mn} es el generado por n, es decir, $n\mathbb{Z}/mn\mathbb{Z}$.
- Luego,

$$\frac{\mathbb{Z}_{mn}}{\mathbb{Z}_m} = \frac{\mathbb{Z}/mn\mathbb{Z}}{n\mathbb{Z}/mn\mathbb{Z}} \simeq \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n \qquad \text{[3er Teor. Isom.]}.$$

Ejercicio

Si G es un grupo cíclico de orden n y $q \mid n$, entonces G tiene exactamente un subgrupo (cíclico) de orden q.

Ejemplo (grupo producto)

ightharpoonup G, H grupos $\implies G \times H$ es un grupo definiendo

$$(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2)$$
 (ejercicio).

▶ $G_1 \triangleleft G$, $H_1 \triangleleft H \implies G_1 \times H_1 \triangleleft G \times H$. En efecto,

$$(g,h)(g_1,h_1)(g,h)^{-1} = (g,h)(g_1,h_1)(g^{-1},h^{-1})$$

= $(\underbrace{gg_1g^{-1}}_{\in G_1},\underbrace{hh_1h^{-1}}_{\in H_1}) \in G_1 \times H_1.$

$$G \times H \xrightarrow{\pi_{G} \times \pi_{H}} \frac{G}{G_{1}} \times \frac{H}{H_{1}}$$

$$G \times H \xrightarrow{\pi_{G} \times \pi_{H}} \frac{G}{G_{1}} \times \frac{H}{H_{1}}$$

$$G \times H \xrightarrow{\pi_{G} \times \pi_{H}} \frac{G}{G_{1}} \times \frac{H}{H_{1}}$$

$$G \times H \xrightarrow{\pi_{G} \times \pi_{H}} \frac{G}{G_{1}} \times \frac{H}{H_{1}}$$

$$G \times H \xrightarrow{G \times H_{1}} \frac{G}{G_{1}} \times \frac{H}{H_{1}}$$

Grupo libre

Sea X un conjunto. El **grupo libre** F_X en X consiste de todas las palabras

$$x_1x_2\cdots x_n$$

en donde aplican las siguientes reglas:

- $\triangleright x \in X \implies x^{-1} \notin X$,
- $x_i \in X \text{ ó } x_i \in X^{-1} := \{x^{-1} : x \in X\},$
- ightharpoonup () = e (notación).
- Multiplicación: yuxtaposición de palabras.
- ▶ Reglas de reducción: $\forall x \in X$,
 - $xx^{-1} = e$,
 - $> x^n = xx \cdots x \ (n \text{ veces}).$

Palabras reducidas

Se simplifica todo lo que se pueda simplificar. Por ejemplo, si $x,y,z\in X$,

- $\rightarrow xy^3x^{-1}zxy$, xy, x, yx^2 son palabras reducidas;
- $\rightarrow x^3x$, $x^3yy^{-1}x$, $xy^2zy(zy)^{-1}x^{-1}$ no son palabras reducidas.

Proposición

 F_X es un grupo.

Observación

- \triangleright $X = \varnothing \implies F_X = \{e\}.$
- $ightharpoonup X = \{*\} \implies F_X \simeq \mathbb{Z}.$
- ▶ $|X| \ge 2 \implies F_X$ es no abeliano.

Definición

Un grupo G se dice **libre** si existe un conjunto X tal que $G \simeq F_X$.

Proposición (propiedad universal)

Sean X un conjunto, G un grupo y $f: X \to G$ una función. Entonces existe un único morfismo de grupos $\varphi: F_X \to G$ tal que el siguiente diagrama conmuta

Más aún, F_X está univocamente determinado, salvo isomorfismo, por esta propiedad.

Aclaración

Decir que un grupo \tilde{F} tiene la misma propiedad universal que F_X significa que en el diagrama anterior podemos reemplazar F_X por \tilde{F} y \hookrightarrow por una función inyectiva $i: X \to \tilde{F}$.

Idea de la prueba.

ightharpoonup Para $x \in X$ definimos

$$f(x^{-1}) = f(x)^{-1}$$
.

▶ Dada una palabra $x_1x_2\cdots x_n \in F_X$ chequear que

$$\varphi(x_1x_2\cdots x_n):=f(x_1)f(x_2)\cdots f(x_n)$$

está bien definida y es un morfismo de grupos (observar que el lado derecho garantiza la unicidad).

Idea de la prueba (cont.)

Si un grupo \tilde{F} tiene la misma propiedad universal que F_X , podemos construir morfismos

- $\varphi_2 \circ \varphi_1 = id_{F_X}$ (coinciden en todo $x \in X$).
- $\varphi_1 \circ \varphi_2 = id_{\tilde{F}}$ (coinciden en todo $i(x) \in i(X)$).
- $ightharpoonup \varphi_1$ isomorfismo con inversa φ_2 .

Corolario

Si X es biyectivo con Y, entonces $F_X \simeq F_Y$.

Demostración.

- ▶ Sea $f: X \rightarrow Y$ una biyección.
- Construimos un morfismo

 $\triangleright \varphi$ es un isomorfismo (ejercicio).

Corolario

Cualquier grupo G es imagen mórfica de un grupo libre.

Demostración.

- Considerar X un conjunto de generadores de G y F_X el grupo libre en X.
- Construimos un epimorfismo

Comentario

Uno puede hacer la construcción anterior eligiendo los generadores de G de manera más inteligente.

Generadores y relaciones

Presentamos una forma de construir el grupo "más libre posible" en una familia de generadores sujetos a ciertas relaciones (es decir, que satisfacen ciertas ecuaciones).

- ▶ Sea S un conjunto, F_S el grupo libre en S y \mathcal{R} una familia de "relaciones" que involucran elementos de S. Por ejemplo,
 - ► $S = \{a, b\}, \mathcal{R} = \{ab = ba\};$
 - $ightharpoonup S = \{a, b, c\}, \ \mathcal{R} = \{a^3 = b^2 = abc^{-1} = e\}.$
- Cualquier familia de relaciones R puede escribirse como

$$\{E_1=E_2=\cdots=e\},$$

en donde los E_i son elementos de F_S , y por ende, es común identificar \mathcal{R} con $\{E_1, E_2, \ldots\}$.

▶ Sea N_R el subgrupo normal generado por R:

$$N_{\mathcal{R}} := \bigcap_{\mathcal{R} \subset H \triangleleft F_S} H.$$

Definición

El grupo presentado por los generadores S y las relaciones ${\mathcal R}$ es

$$\langle S \mid \mathcal{R} \rangle := F_S/N_{\mathcal{R}}.$$

Observación/Ejercicio

- ▶ $\langle S \mid \mathcal{R} \rangle$ está generado por $\{\pi(s) : s \in S\}$, en donde $\pi : F_S \to F_S/N_{\mathcal{R}}$ es la proyección al cociente.
- ▶ Todas las relaciones o ecuaciones de \mathcal{R} se satisfacen en $\langle S \mid \mathcal{R} \rangle$.

Ejemplo

- $\langle S \mid \varnothing \rangle = F_S.$

Para probar esto es útil el siguiente resultado.

Proposición

Sea G un grupo. Supongamos que $G = \langle S \rangle$ y que los elementos de S satisfacen las relaciones de \mathcal{R} . Entonces existe un epimorfismo de grupos

$$\varphi: \langle S \mid \mathcal{R} \rangle \to G.$$

En otras palabras, $\langle S \mid \mathcal{R} \rangle$ es el grupo más general posible que está generado por S en el que se cumplen las relaciones de \mathcal{R} .

Idea de la prueba (completar los detalles como ejercicio).

- φ existe por la propiedad universal del grupo libre F_S .
- ightharpoons $\bar{\varphi}$ existe por teorema de factorización. En efecto,

$$\mathcal{R} \subset \ker \varphi \implies N_{\mathcal{R}} \subset \ker \varphi$$
.

Volvamos al ejemplo $\langle S \mid \mathcal{R} \rangle = \langle a, b \mid aba^{-1}b^{-1} \rangle \simeq \mathbb{Z} \times \mathbb{Z}$.

▶ En primer lugar, sabemos que $\mathbb{Z} \times \mathbb{Z}$ está generado por a = (1,0), b = (0,1) y satisfacen la relación $aba^{-1}b^{-1} = e$, que en notación aditiva es

$$a + b - a - b = 0$$
.

O sea, tenemos un grupo abeliano generado por a y b.

Por la proposición sabemos que existe un epimorfismo

$$\varphi: \langle S \mid \mathcal{R} \rangle \to \mathbb{Z} \times \mathbb{Z}.$$

- ▶ Todo elemento en $\langle S \mid \mathcal{R} \rangle$ tiene la forma $x = a^m b^n$, pues a y b conmutan.
- ▶ $x \in \ker \varphi \iff (0,0) = \varphi(x) = \varphi(a^m b^n) = (m, n)$. Luego $\ker \varphi = \{e\}$ y por ende $\langle S \mid \mathcal{R} \rangle \simeq \operatorname{im} \varphi = \mathbb{Z} \times \mathbb{Z}$.

Ejemplo/Ejercicio

$$ightharpoonup \langle a \mid a^n = e \rangle \simeq \mathbb{Z}_n.$$

La construcción por generadores y relaciones también sirve para construir grupos con "ciertas propiedades" deseables. Por ejemplo,

$$ightharpoonup D_{\infty}:=\langle a,b\mid b^2=(ab)^2=e
angle \ ext{(chequear que }|D_{\infty}|=\infty).$$

Ejercicio

Pensar en una presentación por generadores y relaciones para el grupo simétrico S_n .