ESc201: Introduction to Electronics

Sequential Circuits

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

SR latch (recap)

S	R	Q	Q	State
1	0	1	0	SET
0	1	0	1	RESET
0	0	Q	Q	HOLD
1	1	0	0	INVALID

NAND Latch (recap)

S	R	Q	Q	State
0	1	1	0	SET
1	0	0	1	RESET
1	1	Q	Q	HOLD
0	0	1	1	INVALID

RS NAND Latch with Enable (recap)

Hold State

Enable	S R	QQ	State
0	хх	ю О	Hold
1	1 0	1 0	Set
1	0 1	0 1	Reset
1	0 0	Q	Hold
1	1 1	0 0	Invalid

D latch (recap)

Enable	S R	l Q Q	State
0	хх	l а	Hold
1	1 0	1 0	Set
1	0 1	0 1	Reset
1	0 0	QQ	Hold
1	1 1	0 0	Invalid

If EN = 1 then Q = D otherwise the latch is in Hold state

Edge Triggered Latch or Flip-flop (recap)

Positive edge triggered flipflop

Negative Edge Triggered Latch or Flip-flop (recap)

Characteristic table (recap)

Given a input and the present state of the flip-flop, what is the next state of the flip-flop

Inputs	(D)	Q(t+1)
	0	0
	1	1

Characteristic equation: Q(t+1) = D

JK Flip-flop

Inputs J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

Characteristic equation: Q(t+1) = JQ(t) + KQ(t)

JK Flip-flop (characteristic equation)

Q	J	K	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$Q(t+1) = J\overline{Q}(t) + \overline{K}Q(t)$$

Toggle or T Flip-flop (recap)

Inputs (T)	Q(t+1)
0	Q(t)
1	Q(t)

Characteristic equation:
$$Q(t+1) = T \oplus Q(t)$$

T	Q(t)	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Toggle or T Flip-flop (recap)

Inputs	(T)	Q(t+1)
	0	Q(t)
	1	Q(t)

Characteristic equation:

$$Q(t+1) = T \oplus Q(t)$$

Excitation Table

What inputs are required to effect a particular state change

Q	Т	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Excitation	Table	Inputs
-------------------	--------------	--------

Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

JK Flip-flop excitation table (recap)

clk — K

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

Characteristic Table

Inputs

Q(t)	Q(t+1)	J K
0	0	0 X
0	1	1 X
1	0	X 1
1	1	X 0

Excitation Table

Q	J	K	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

D Flip flop excitation table

D	Q(t+1)
0	0
1	1

Characteristic Table

Q	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

Inputs

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Excitation Table

Convert a D FF to JK FF

J	K	Q	Q(t+1)	D
0	X	0	0	0
1	X	0	1	1
X	1	1	0	0
X	0	1	1	1

Inputs

Q(t)	Q(t+1)	J K
0	0	0 X
0	1	1 X
1	0	X 1
1	1	X 0

Excitation Table

Inputs

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Excitation Table

Convert a D FF to JK FF

Convert a D FF to JK FF

Inputs J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

Q	J	K	D	Q(t+1)
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

Sequential Circuits

The binary information stored in the storage elements at any given time defines the *state* of the sequential circuit at that time

Output is a function of input as well as the present state of the storage elements.

Next state is also a function of the present state and the external inputs.

Synchronous Sequential Circuits

Employs signals that affect the storage elements only at discrete instants of time.

Synchronization is achieved via the *clock pulses*.

Synchronous Clocked Sequential Circuits

Analysis

Output z depends on the input x and on the state of the memory (A,B)

The memory has 2 FFs and each FF can be in state 0 or 1. Thus there are four possible states: AB: 00,01,10,11.

To describe the behavior of a sequential circuit, we need to show

- 1. How the system goes from one memory state to the next as the input changes
- 2. How the output responds to input in each state

Analysis of Sequential Circuits

$$D_A = A.x + B.x$$
; $D_B = A.x; z = (A + B).x$

State Transition Table

A(t+1) = A(t).x + B(t).x
$B(t+1) = \overline{A(t)}.x$
$z = (A + B).\overline{x}$

Present State		Input	Next State		Output
Α	В	Х	Α	В	z
0 0	0	0	0	0 1	0
0 0	1	0	0 1	0 1	1 0
1 1	0 0	0	0	0	1 0
1 1	1	0	0 1	0	1 0

State Transition Table Present State Input **Next State** Output В Α Α В Χ Ζ 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

0

00 Memory state in which FF A& B have output values 00

If x = 0 then z = 0, When the clock edge comes the system would stay in 00 state.

If x = 1 then z = 0. When the clock edge comes the system would go to 01 state.

Analysis of Sequential Circuits

1	Present State Input		Next State		Output	
	Present State		input	I Next State		Output
	Α	В	X	Α	В	Z
	0	0	0	0	0	0
	0	0	1	0	1	0
	0	1	0	0	0	1
	0	1	1	1	1	0
	1	0	0	0	0	1
	1	0	1	1	0	0
	1	1	0	0	0	1
		4		_	_	

Quiz-2 Solution Discussion