Analysis of Bank Loan Data

Katie Adamson, Brian Bruno, Colin McCunney, Brandon Rank

Table of Contents

- Project Motivation
- Variable Overview
- Data Explanation
- Data Preparation
- Models
- Conclusion

Project Motivation

- Examine dataset: bank loans and corresponding customers
- Long-term success in banking: How to evaluate quality of potential customers?
 - ➤ How to determine the likelihood that an applicant will default on their loan?
- ❖ Availability of data and software innovations changes application decision & risk calculation: human experience → data analysis
- * How can different models perform on the dataset we found? What does this tell us about methods that businesses might use to improve operations?

Variable Overview

Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit
Annual_Income	Input	Interval	No		No		
Bankruptcies	Input	Interval	No		No		
Credit_Score	Input	Interval	No		No		
Current_Credit_	Input	Interval	No		No		
Current_Loan_A	Input	Interval	No		No		
Customer_ID	ID	Nominal	No		No		
Home_Ownersh	Input	Nominal	No		No		
Loan_ID	ID	Nominal	No		No		
Loan_Status	Target	Nominal	No		No		
Maximum_Open	Input	Interval	No		No		
Monthly_Debt	Input	Interval	No		No		
Months_since_la	Input	Interval	No		No		
Number_of_Cre	Input	Interval	No		No		
Number_of_Ope	Input	Interval	No		No		
Purpose	Input	Nominal	No		No		
Tax_Liens	Input	Interval	No		No		
Term	Input	Nominal	No		No		
Years_in_curren	Input	Nominal	No		No		
Years_of_Credit	Input	Interval	No		No		

Data Explanation

- 99,990 records, 19,000 missing values
 - Model performance concerns
- 19 variables: 2 identifiers, both interval (12) and nominal (5) values

Baseline model comparison statistic

Data Preparation

- Extraneous record removal
- Credit Score cleaning
- Replacement of "NA" and "n/a" values
 - Allows SAS to properly interpret missing values
- SAS filtering
 - > Removal of only outliers
- Imputation
 - Mean for interval variables
 - Count for nominal variables
- Data Partition, 70/30

Model Selection and Implementation

SAS EM Diagram

Models

- Logistic regression
- 3 decision tree variations
- Clustering analysis and segment profile
- Variable selection and auto neural network

Logistic Regression Analysis

- Default SAS settings
- Training Set
 - ➤ Misclassification Rate 22.4382%
 - > ASE 16.263%
- Validation
 - Misclassification Rate 22.4346%
 - > ASE 16.3053%
- High number of false positives

Decision Tree #1 - Maximum Branch of 2, Depth of 6

- Default tree settings except:
 - Assessment measure of ASE
- Training set
 - Misclassification Rate 22.4414%
 - > ASE 16.1942%
- Validation set
 - Misclassification Rate 22.442%
 - > ASE 16.2928%
- Once again, high false positive rate

Decision Tree #2 - Maximum Branch of 3, Depth of 6

- Default tree settings except:
 - Assessment measure of ASE
 - Max. branch set to 3
- Training set
 - Misclassification Rate 22.4158%
 - > ASE 16.0913%
- Validation set
 - Misclassification Rate 22.4458%
 - > ASE 16.2289%
- High false positive rate

Decision Tree #3 - Maximum Branch of 3, Depth of 3

- Default tree settings except:
 - Assessment measure of ASE
 - Max. branch set to 3
 - Max. depth set to 3
- Training set
 - ➤ Misclassification Rate 22.4158%
 - > ASE 16.0913%
- Validation set
 - Misclassification Rate 22.4458%
 - > ASE 16.2289%
- High false positive rate

Clustering Analysis

- Default SAS settings except:
 - Ward cluster method used
- 2 clusters found with extreme frequency inequality
- Experimented with various settings
 - No change found
 - Changed clustering method
 - Adjusted minimum allowed clusters

Clustering Criterion	Maximum Relative Change in Cluster Seeds	Improver in Clusterin Criterion	Segment Id	Frequency of Cluster	:-Mean-S re dard ation	Maximum Distance from Cluster Seed	Nearest Cluster	Distance to Nearest Cluster
0.642657	0.011478		1	62376	.616279	10.17421	2	13.3721
0.642657	0.011478		2	130	.360589	24.91556	1	13.3721

Auto Neural Network and Variable Selection

Variable Selection

- Default settings
- Done to reduce computational requirements
- Reduced number of variables down to 4 (R² evaluation)

Variable Name	Role	Measurement Level	Туре	
IMP_Annual_Income	Input	Interval	Numeric	
IMP_Bankruptcies	Rejected	Interval	Numeric	
IMP_Credit_Score	Rejected	Interval	Numeric	
IMP_Current_Credit_Balance	Rejected	Interval	Numeric	
IMP_Current_Loan_Amount	Input	Interval	Numeric	
IMP_Home_Ownership	Rejected	Nominal	Character	
IMP_Maximum_Open_Credit	Rejected	Interval	Numeric	
IMP_Monthly_Debt	Rejected	Interval	Numeric	
IMP_Number_of_Credit_Problems	Rejected	Interval	Numeric	
IMP_Number_of_Open_Accounts	Rejected	Interval	Numeric	
IMP_Purpose	Rejected	Nominal	Character	
IMP_Tax_Liens	Rejected	Interval	Numeric	
IMP_Term	Input	Nominal	Character	
IMP_Years_in_current_job	Rejected	Nominal	Character	
IMP_Years_of_Credit_History	Rejected	Interval	Numeric	

Auto Neural Network and Variable Selection

Auto Neural Network

- Changed number of hidden units to 3
- Training Set
 - Misclassification Rate 22.4414%
 - ➤ ASE 17.4052%
- Validation Set
 - Misclassification Rate 22.442%
 - > ASE 17.4056%
- False positive rate

Model Comparison and Conclusion

Model Comparison

- Logistic regression was the chosen model
 - > 0.74% better misclassification rate as compared to other models
- Ranked order below

Selected Model	Predecessor Node	Model Node	Model Description	Target Variable	Target Label	Selection Criterion: Valid: Misclassifica tion Rate
Y	Reg2	Reg2	Logistic Re	Loan_Status	Loan Status	0.224346
	Tree	Tree	Dec. Tree 2	Loan_Status	Loan Status	0.22442
	Tree3	Tree3	Dec. Tree 3	Loan_Status	Loan Status	0.22442
	AutoNeural	AutoNeural	AutoNeural	Loan_Status	Loan Status	0.22442
	Tree2	Tree2	Dec. Tree 3	Loan_Status	Loan Status	0.224458

Conclusion

- Baseline model statistics
 - 22.6383% misclassification rate expected
- Logistic regression statistics

- 22.4346% misclassification rate
- There is a small improvement in our overall performance by using the logistic regression

	ution of Class m 500 observati		. Segment Variab. d)	les	
Data Ro	le=TRAIN				
Data	ata Variable F				
Role	Name	Role	Level	Count	Percent
TRAIN	Loan_Status	TARGET	Fully Paid	77353	77.3607
TRAIN	Loan_Status	TARGET	Charged Off	22636	22.6383
TRAIN	Loan_Status	TARGET		1	0.0010

Limitations and Considerations

- Attempted PCA analysis prior to model running
 - > Overall effect was negligible, and led some models to perform slightly worse
- Large number of missing values
 - Although imputed, having a complete dataset would be preferred
- Inequality in class target variable
 - Possible solutions include technique known as oversampling
- Oversampling
 - Not conducted here
 - Draws a greater number of sample records from the class considered to be a "rare event"

References

Arafa, A. (2020, August 8). Bank Loans. Retrieved March 2022, from https://www.kaggle.com/code/abdelrahmanarafa/bankloans34.

Papers. Retrieved April 2022, from https://support.sas.com/resources/papers/proceedings15/3282-2015.pdf