投影算子

December 4, 2020

1 投影算子

Definition 1.1. 设 \mathcal{X} 是Banach 空间. 线性映射 $P: \mathcal{X} \to \mathcal{X}$ 若满足

$$P^2 = P$$
.

则称P 是X 上的投影算子. 记

$$\mathcal{R}(P) := \{ Px : x \in \mathcal{X} \} \quad \coprod \quad \mathcal{N}(P) := \{ x \in \mathcal{X} : Px = \theta \}.$$

Definition 1.2. 设 V_1 , V_2 是线性空间V 的两个线性子空间, 若对 $\forall x \in V_1 + V_2$, 分解

$$x = x_1 + x_2$$
, $\sharp P x_1 \in V_1$, $x_2 \in V_2$

是唯一的, 则称 $V_1 + V_2$ 是 V_1 和 V_2 的直和, 记为 $V_1 \oplus V_2$.

Proposition 1.3. 设义 是Banach 空间且P 是义 上的投影算子. 则

- (i) P 的不动点全体就是 $\mathcal{R}(P)$, 即对 $\forall x \in \mathcal{R}(P)$, Px = x;
- (ii) $\mathcal{R}(P) = \mathcal{N}(I P)$;
- (iii) $\mathcal{R}(P)$ 和 $\mathcal{N}(P)$ 是 \mathcal{X} 的两个线性子空间;
- (iv) $\mathcal{X} = \mathcal{R}(P) \oplus \mathcal{N}(P)$.

Theorem 1.4. 设 \mathcal{X} 是Banach 空间且P 是 \mathcal{X} 上的投影算子. P 有界当且仅当 $\mathcal{R}(P)$ 和 $\mathcal{N}(P)$ 闭.

Proof. 先证" ⇒ ". P 有界, 则 $\mathcal{N}(P)$ 闭. 而 $\mathcal{R}(P) = \mathcal{N}(I-P)$ 也闭, 因为I-P 有界. 再证" \Leftarrow ". 断言P 是闭算子. 事实上, 设 $\{x_n\} \subset \mathcal{X}$ 满足 $x_n \to x_0$ in \mathcal{X} 且 $Px_n \to y_0$ in \mathcal{X} . 则 $(I-P)x_n \to x_0 - y_0$ in \mathcal{X} . 注意到 $\{(I-P)x_n\}_{n\in\mathbb{N}} \subset \mathcal{N}(P)$ 且 $\mathcal{N}(P)$ 闭, 因此 $x_0 - y_0 \in \mathcal{N}(P)$. 又因为 $\{Px_n\}_{n\in\mathbb{N}} \subset \mathcal{R}(P)$ 且 $\mathcal{R}(P)$ 闭, 从而 $y_0 \in \mathcal{R}(P)$. 综上有

$$y_0 \stackrel{y \in \mathcal{R}(P)}{=} P y_0 \stackrel{x_0 - y_0 \in \mathcal{N}(P)}{=} P y_0 + P(x_0 - y_0) = P x_0.$$

故P 是闭算子. 由此及闭图像定理知, $P \in \mathcal{L}(\mathcal{X})$. Theorem 1.4 证毕.

Remark 1.5. Proposition 1.4 中 \mathcal{X} 的完备性是必须的.

Proof. 设 $\ell_{finite}^1 := \{\ell^1 \text{中有限项非0 的数列}\}$, 范数与 ℓ^1 一致, 令

$$P: \ \ell_{finite}^1 \to \ell_{finite}^1, \ x := \{x_k\}_{k \in \mathbb{N}} \to \left(\sum_{k=1}^{\infty} x_k, 0, 0, \dots\right).$$

则P 是投影算子且 $\mathcal{R}(P)$ 和 $\mathcal{N}(P)$ 闭, 但P 无界.

下证 $\mathcal{N}(P)$ 闭,其余显然. 设 $\{x^{(n)}\}_{n\in\mathbb{N}}\subset\mathcal{N}(P)$ 在 ℓ_{finite}^1 中收敛到 $x^{(0)}$. 存在 $N\in\mathbb{N}$ 使得对 $\forall k>N, x_k^{(0)}=0$. 对 $\forall n\in\mathbb{N}$,

$$\left| \sum_{k=1}^{\infty} x_k^{(0)} \right| = \left| \sum_{k=1}^{\infty} x_k^{(0)} - \sum_{k=1}^{\infty} x_k^{(n)} \right| \le \left\| x^{(n)} - x^{(0)} \right\|_{\ell_{finite}^1} \to 0, \quad \text{as } n \to \infty.$$

故 $\sum_{k=1}^{\infty} x_k^{(0)} = 0$, 即 $x^{(0)} \in \mathcal{N}(P)$. 从而 $\mathcal{N}(P)$ 闭.

2 Hilbert 空间上的正交补

Definition 2.1. 设升 是Hilbert 空间且 $M \subset \mathcal{H}$. 称

$$M^{\perp} := \{ x \in \mathcal{H} : \ \forall y \in M, \ (x, y) = 0 \}$$

为M的正交补.

Theorem 2.2 (正交分解). 设 \mathcal{H} 是Hilbert 空间且M 是 \mathcal{H} 的闭线性子空间. 则

$$\mathcal{H} = M \oplus M^{\perp}$$
.

Proposition 2.3. 设升 是Hilbert 空间且 $M \subset \mathcal{H}$. 则 M^{\perp} 是闭线性子空间且 $M^{\perp} = \overline{M}^{\perp}$.

Proposition 2.4. 设 \mathcal{H} 是Hilbert 空间且M 是 \mathcal{H} 的子集. 则

- (i) $M \subset M^{\perp \perp}$:
- (ii) 若M 是 \mathcal{H} 的线性子空间, 则 $\overline{M} = M^{\perp \perp}$.

Proof. 先证(i). 对任意 $x \in M$, 有 $x \perp M^{\perp}$, 从而 $x \in \overline{M}^{\perp \perp}$, 故 $M \subset \overline{M}^{\perp \perp}$. (i) 证毕. 再证(ii). 直观上来看, 由正交分解有

$$\overline{M} \oplus M^{\perp} = \mathcal{H} = M^{\perp} \oplus M^{\perp \perp},$$

又有 $\overline{M} \subset M^{\perp \perp}$ (这个不能少), 故 $\overline{M} = M^{\perp \perp}$.

另一个证明: 由(i) 及 $M^{\perp\perp}$ 闭知, $\overline{M} \subset M^{\perp\perp}$, 故只需证 $M^{\perp\perp} \subset \overline{M}$. 对任意固定 $x \in M^{\perp\perp}$, 由Proposition 2.3 知, $x \perp M^{\perp} = \overline{M}^{\perp}$. 由正交分解定理, 存在 $x_{\overline{M}} \in \overline{M}^{\perp}$ 使得

$$x = x_{\overline{M}} + x_{\overline{M}^{\perp}}.$$

进一步由 $x \perp \overline{M}^{\perp}$ 得

$$0 = \left(x, x_{\overline{M}^{\perp}}\right) = \left\|x_{\overline{M}^{\perp}}\right\|^{2}$$

因此

$$x = x_{\overline{M}} \in \overline{M}.$$

由 $x \in M^{\perp \perp}$ 的任意性知, $M^{\perp \perp} \subset \overline{M}$. (ii) 证毕. 至此, Proposition 2.4 证毕.

Remark 2.5. $A \oplus B = A \oplus C$ 不一定能推出B = C, 必须加上条件 $B \subset C$. 反例: 设 $\mathcal{H} := \mathbb{R}^2$, $A := \{(t,0): t \in \mathbb{R}\}$, $B := \{(0,t): t \in \mathbb{R}\}$, $C := \{(t,t): t \in \mathbb{R}\}$. 则 $A \oplus B = A \oplus C$ 但 $B \neq C$.

3 Hilbert 空间上的投影算子

Proposition 3.1. 设光 是*Hilbert* 空间, P 是光 上的有界投影算子. 则 $\mathcal{R}(P) = [\mathcal{N}(P)]^{\perp}$ 当且仅当P 是对称算子.

Proof. 先证" \Rightarrow ". 设 $\mathcal{R}(P) = [\mathcal{N}(P)]^{\perp}$, 则

$$(Px, y) = (Px, Py + (I - P)y) = (Px, Py)$$

= $(Px + (I - P)x, Py) = (x, Py).$

再证" \Leftarrow ". 设P 是对称算子, 则对 $\forall x \in \mathcal{R}(P), \forall y \in \mathcal{N}(P),$ 存在 $z \in \mathcal{H}$ 使得x = Pz, 因此

$$(x, y) = (Pz, y) = (z, Py) = 0.$$

故 $\mathcal{R}(P)$ ⊂ $[\mathcal{N}(P)]^{\perp}$. 又因为由正交分解有

$$\mathcal{N}(P) \oplus [\mathcal{N}(P)]^{\perp} = \mathcal{H} = \mathcal{N}(P) \oplus \mathcal{R}(P),$$

因此 $\mathcal{R}(P) = [\mathcal{N}(P)]^{\perp}$.

Remark 3.2. Proposition 3.1 中条件 $P \in \mathcal{L}(\mathcal{H})$ 应该不能去掉, 反例没想到.

Definition 3.3. 有界对称投影算子被称为正交投影算子(orthogonal projection), 有界非对称投影算子被称为斜投影算子(oblique projection).

Remark 3.4. 由正交分解来定义正交投影算子更为直观.

对 $\forall \alpha \in \mathbb{R}$, 定义 P_{α} : $\mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (0,\alpha x + y)$. 则 P_0 是正交投影算子, 对 $\forall \alpha \in \mathbb{R} \setminus \{0\}$, P_{α} 是斜投影算子.