Homework 5 - Functions

Michael Gould CS 506 - Online Foundations of CS

March 2, 2018

First, write a recursive algorithm to solve the problem.

Using pseudo-code, the recursive algorithm to solving the towers of hanoi is as follows:

```
\begin{array}{l} \operatorname{move}(n,\,\mathbf{A},\,\mathbf{B},\,\mathbf{C}) \\ \operatorname{if}(\mathbf{n}=0) \\ \operatorname{move} \operatorname{disk}\,n \text{ from A to B} \\ \operatorname{end} \\ \} \\ \operatorname{else} \\ \operatorname{move}(\mathbf{n}\text{-}1,\,\mathbf{A},\,\mathbf{C},\,\mathbf{B}) \\ \operatorname{move} \operatorname{disk}\,n \text{ from A to C} \\ \operatorname{move}(\mathbf{n}\text{-}1,\,\mathbf{C},\,\mathbf{B},\,\mathbf{A}) \\ \} \end{array}
```

Write a recurrence equation for f(n) and solve the recurrence. To get a better appreciation for this time complexity, tabulate f(n) for the values of n from 1 to 20.

$$f(n) = \begin{cases} 1, & n = 1\\ 2F_{n-1} + 1, & n > 1 \end{cases}$$
 (1)

f(n)	Output
F1	1
F2	2(1) + 1 = 3
F3	2(3) + 1 = 7
F4	2(7) + 1 = 15
F5	2(15) + 1 = 31
F6	2(31) + 1 = 63
F7	2(63) + 1 = 127
F8	2(127) + 1 = 255
F9	2(255) + 1 = 511
F10	$2(511) + 1 = 1{,}023$
F11	$2(1023) + 1 = 2{,}047$
F12	$2(2047) + 1 = 4{,}095$
F13	$2(4095) + 1 = 8{,}191$
F14	$2(8191) + 1 = 16{,}383$
F15	2(16383) + 1 = 32,767
F16	2(32767) + 1 = 65,535
F17	2(65535) + 1 = 131,071
F18	2(131071) + 1 = 262,143
F19	2(262143) + 1 = 524,287
F20	2(524287) + 1 = 1,048,575

Run your program for two values of n (e.g., 3 and 5).

4 Disks	3 Disks
Tower of Hanoi Solver	Tower of Hanoi Solver
Input number of disks (max 6): 4	Input number of disks (max 6): 3
1 Move disc 1 from A to C	1 Move disc 1 from A to B
2 Move disk 2 from A to B	2 Move disk 2 from A to C
3 Move disc 1 from C to B	3 Move disc 1 from B to C
4 Move disk 3 from A to C	4 Move disk 3 from A to B
5 Move disc 1 from B to A	5 Move disc 1 from C to A
6 Move disk 2 from B to C	6 Move disk 2 from C to B
7 Move disc 1 from A to C	7 Move disc 1 from A to B
8 Move disk 4 from A to B	
9 Move disc 1 from C to B	
10 Move disk 2 from C to A	
11 Move disc 1 from B to A	
12 Move disk 3 from C to B	
13 Move disc 1 from A to C	
14 Move disk 2 from A to B	
15 Move disc 1 from C to B	