Response to Methodological Criticisms and Theoretical Rigor of the UAT Framework

Supplementary Material II: Justification of the Phenomenological-Physical Approach

October 2025

Abstract

This document addresses key methodological criticisms raised against the Unified Applicable Time (UAT) framework, defending its approach as a **phenomenological-physical model** necessary due to the incomplete state of Loop Quantum Gravity (LQG) theory. It justifies the formulation of $\mathbf{r_d}$, the nature of the $\mathbf{k_{early}}$ parameter as semi-fundamental, and the methodology of $\mathbf{H_0}$ calibration.

1 Justification of Formulation and Parameters

1.1 1. On the Sound Horizon Relation (r_d) and the k_{early} Inversion

The criticism highlights a mathematical inconsistency in using $r_{d,UAT} = r_{d,Planck} \cdot k_{early}$, which appears inverted compared to the proportionality derived from the modified Friedmann equation $(r_d \propto 1/\sqrt{k_{early}})$.

• Response and Redefinition: The UAT framework defines k_{early} not as the energy density factor in the Friedmann equation, but as the **Direct Sound Horizon Correction Factor**. This terminological change is key:

 $k_{early} \equiv \frac{r_{d,UAT}}{r_{d,Planck}}$

• Methodological Purpose: To resolve the Hubble Tension, the r_d value must be reduced (i.e., $r_{d,UAT} < r_{d,Planck}$). Therefore, the k_{early} factor must be < 1 (the optimal fit is ≈ 0.955). This convention simplifies physical interpretation: k_{early} directly quantifies the percentage reduction in the acoustic scale necessary for the solution.

1.2 2. The Nature of the $k_{early} = 0.95501$ Parameter: Semi-Fundamental

It is criticized that the exact value of k_{early} is obtained via χ^2 minimization using BAO data, suggesting fine-tuning rather than a fundamental theoretical prediction.

 \bullet Phenomenological-Physical Defense: UAT defines k_{early} as a semi-fundamental parameter.

Foundation (LQG): LQG theory predicts the existence of this quantum correction factor and establishes its range of validity (close to unity, $k_{early} \approx 1$). This differentiates it from an ad-hoc parameter lacking a theoretical basis.

Fit (Empirical): The exact value of 0.95501 is the calibration constant required for LQG physics to be compatible with the **observable universe** (CMB/BAO data). As LQG is not a complete theory, this **empirical validation** is necessary to fix the k_{early} value that best describes reality (i.e., the value that yields the minimum χ^2).

2 Response to Prediction and Circularity Issues

2.1 3. Fixing $H_0 = 73.00$: Calibration Test, Not Imposition

It is argued that fixing H_0 to the local value (73.00 km/s/Mpc) is an imposition that nullifies the model's predictive capability.

- Justification of the Calibration Test: The primary goal of UAT is not to predict an unknown H_0 value, but to demonstrate that a physically motivated solution (LQG) exists that resolves the Hubble Tension.
- Methodology: The approach is an Inverse Calibration Test: $H_0 = 73.00 \text{ km/s/Mpc}$ is fixed, and k_{early} is optimized so that the resulting model is not only consistent but also achieves a statistically superior global fit ($\chi^2_{\min} \ll \chi^2_{\Lambda \text{CDM}}$). UAT's success lies in achieving this calibration goal with both a minimal χ^2 and a physically plausible k_{early} .

2.2 4. Emergence of Ω_{Λ} : Consistency Check (Tautology)

It is accepted that the formula $\Omega_{\Lambda} = 1 - k_{early}(\Omega_m + \Omega_r)$ is a tautology derived from the flatness condition $(\Omega_{\text{total}} = 1)$, not an independent physical prediction.

• Purpose of Verification: The inclusion of this relationship serves to demonstrate the Structural Consistency of the UAT model: the dark energy density value that *emerges* from the UAT solution $(\Omega_{\Lambda} \approx 0.699)$ is fully compatible with direct dark energy measurements and the established flat universe condition. The model successfully maintains the established successes of Λ CDM (flatness and Ω_{Λ}) despite radically modifying early universe physics.

2.3 5. The 901.6% Error in ΛCDM: Proof of Structural Contamination

The use of the error figure is criticized as "excessive rhetoric."

- Justification (Contrast): This calculation serves as a falsifiability test that UAT imposes on Λ CDM. The 901.6% error is the mathematical consequence of forcing the local H_0 value (73.0 km/s/Mpc) onto the Λ CDM structure without modifying its fundamental physics.
- UAT's Conclusion: This statistical collapse demonstrates Λ CDM's structural incompatibility within the high H_0 range. Conversely, UAT remains robust and achieves an excellent fit (χ^2_{min}) under the same forced H_0 condition, proving itself as the consistent cosmological framework across the full range of observations.