Relational algebra is a query language for relational data.

- Selection $\sigma_p(R)$
- \bullet Projection $\Pi_{A_1,\dots,A_k}(R)$
 - Product $R \times S$
- Union $R \cup S$
- ullet Difference R-S
- Renaming $\rho_{S(A_1,...,A_k)}(R),\;\rho_S(R)$

Simple: (1) a small set of core operations; (2) semantics are easy to grasp.

Declarative: each operation only defines what data are needed.

Relational Database language

Procedural: specify what data are needed and how to get the data.

• Declarative: specify what data are needed without specifying how to get the data.

• DDL (data definition language): Specification notation for defining the database schema.

• DML (data manipulation language): DML is also known as query language.

SQL: Part (I)

Spring, 2024

Qiang Yin

SQL

SQL is the standard query language supported by most DBMS.

• SQL: Structured Query Lanuage

Pronounced "S-Q-L" or "sequel"

A brief history

• IBM system R, early 1970s

ANSI/ISO SQL-86 (SQL1)

• ANSI SQL-89

ANSI/ISO SQL-92 (SQL2)

ANSI/ISO SQL:1999 (SQL3)

SQL:2003, SQL:2005, SQL:2008, SQL:2011, SQL:2016, SQL:2019

• SQL:2023, adds data type JSON, add SQL/PGQ for property graph queries

SQL DE

Example

SQL DDL

create table department
 (dept_name varchar(20), -- sql is insensitive to white spaces
 building varchar(15), -- everything from '--' to the end of
 budget numeric(12,2), -- line is ignored

- primary key(dept_name)); -- primary key constraint
 - drop table department;

Built-in data types in SQL

char(n)	fixed-length string with len=n
varchar(n)	variable-length string with $\max_{}$ len= $\mathfrak n$
int, smallint	integer, small integer
numeric(p,d)	fixed point number
	floating point and double-precision
real, uouble precision	floating point numbers
float(n)	floating-point number, with
noat(II)	precision at least n digits

Table: Basic data types in SQL

- Machine dependent types: int, smallint, real, double precision.
- Each type has a special value called NULL.
- NULL means that the value is unknown or not applicable.
 - SQL introduce special rules for dealing with NULL's.

▶ Integrity constraints

```
CREATE TABLE instructor (

ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department);
```

- primary key (A_1, \ldots, A_n) : attributes A_1, \ldots, A_n form the primary key for the relation.
- foreign key (A_1, \ldots, A_n) references S: the values of attributes (A_1, \ldots, A_k) must correspond to values of the primary key of table S.
- not null: the null value is not allowed for the specified attribute.
- Primary keys are not nullable.

Basic database modification

Insertion: insert a tuple into table R

```
INSERT INTO R(A_1,..,A_n) VALUES (v_1,...,v_n);
```

Example:

INSERT INTO instructor VALUES('10211', 'Turing', 'Comp. Sci.', 95000); INSERT INTO instructor(ID, name) VALUES('10222', 'Root');

• Deletion: purge tuples satisfying a given condition from table R

```
DELETE FROM R WHERE condition
```

Example:

- o DELETE FROM instructor WHERE name='Turing';
- o DELETE FROM student;
- DBMS will prevent any update to the database that would violate an integrity constraint.

Basic SQL queries

 $\begin{array}{l} \text{SELECT } A_1, \ A_2, \ ..., \ A_n \\ \text{FROM } R_1, \ R_2, \ ..., \ R_m \\ \text{WHERE } P; \end{array}$

A basic sql query can be expressed by a SELECT-FROM-WHERE statement as shown above.

- \bullet $A_1,\,A_2,\,...,\,A_n\colon$ a list of desired attributes in the query.
- R_1 , R_2 , ..., R_m : a list of tables accessed during the query evaluation.
- \bullet P: a filtering predicate involving the attributes from $R_1,\,R_2,\,...,\,R_m.$

Example

List the ID and name of every instructor from the Computer Science department.

• SELECT ID, name FROM instructor WHERE dept_name = 'Comp. Sci.';

► Basic SQL Queries

More examples

6

- The WHERE clause is optional.
- SELECT * from instructor; -- * is a shorthand for all attributes
- Use logical connectives AND, OR and NOT in the WHERE clause.

SELECT list can contain expressions

SELECT ID, name, salary/12 FROM instructor;

• Use a relation name prefix to distinguish attributes with the same name.

SELECT student.name, instructor.name
FROM student, advisor, instructor
WHERE student.ID = advisor.S_ID
AND advisor.i_ID = instructor.ID;

11

for each tuple $t_1 \in R_1$ do

for each tuple $t_m \in R_m$ do if P is true w.r.t. $t_1,...,\ t_m$ then

evaluate A_1, \ldots, A_n according to t_1, \ldots, t_m to produce a tuple in the result

 $t_1,\,...,\,t_m$ to produce a tuple in the result

Table: SELECT $A_1,\,A_2,\,...,\,A_n$ FROM $R_1,\,R_2,\,...,\,R_m$ WHERE P

Question. Is the above SQL query equivalent to the following relational algebra query?

 $\Pi_{A_1,\dots,A_m}(\sigma_P(R_1\times\dots\times R_m)).$

String operations

- Strings literals (case sensitive) are quoted by single quotes.
- SELECT ID, name FROM instructor WHERE dept_name = 'Comp. Sci';
- Comparison: str₁ < str₂ w.r.t. the lexicographic order.
 - Similar for =, ≥, <, ≤, <>.
- Pattern matching: LIKE matches a string against a pattern.
- The percent (%) character matches any string of zero or more characters.
 SELECT name FROM instructor WHERE name LIKE 'Kandk';
- \circ The underscore (_) character matches any single character.
- SELECT ID FROM instructor WHERE name LIKE '___'; Use keyword escape to specify an escape character.
- SELECT ID FROM instructor WHERE name LIKE 'ab\%cd' ESCAPE '\';

Bag semantics vs. set semantics

- SQL adopts bag (i.e., multiset) semantics by default.

 That is, duplicates are allowed in query results.
- Use keyword DISTINCT to eliminate duplicates explicitly.

dept_name
Finance
History
Comp. Sci.
Physics
History
Comp. Sci.

dept_name Finance History Comp. Sci. Physics SELECT DISTINCT dept_name from instructor;

14

13

SELECT dept_name from instructor;

▶ Renaming

Keyword AS in the SELECT to rename attributes.

SELECT ID, salary/12 AS month_salary FROM instructor;

Keyword AS in the FROM clause to rename relations.

SELECT DISTINCT name
FROM instructor, advisor AS S, advisor AS T
WHERE instructor.ID=S.i_ID AND
S.i_ID = T.i_ID AND S.s_ID <> T.s_ID;

• The keyword AS is optional. SELECT ID, salary/12 month_salary FROM instructor;

15

```
SELECT ... FROM ... [WHERE ...]
ORDER BY ..., column[ASCIDESC], ...;
```

Append a ORDER BY clause at the end of a SFW query to sort the query result.

```
    DESC = descending, ASC=ascending.
    ASC is the default option.
```

• List all instructors, sort them by salary (descending) and name (ascending)

```
SELECT * FROM instructor
ORDER BY salary DESC, name;
```

Set operations

```
SELECT . FROM . WHERE ...
UNION | INTERSECT | EXCEPT
SELECT ... FROM ... WHERE ...;
```

- SQL supports UNION, INTERSECT and EXCEPT as in RA
- They all eliminate duplicates by default.
- To retain all duplicates in query results, explicitly use keyword ALL
- UNION ALL, INTERSECT ALL, EXCEPT ALL

► Limit output

- ullet A LIMIT $\mathfrak n$ clause can be append to a query to limit the number of tuples in output.
- ullet We can write top- $\mathfrak n$ queries by combing an ORDER BY clause and a LIMIT $\mathfrak n$ clause.

Example

- SELECT * FROM instructor LIMIT 2;
- SELECT name FROM instructor ORDER BY salary DESC LIMIT 1;
- SELECT ID FROM STUDENT ORDER BY tot_cred LIMIT 3;

17

Examples

Find the courses taught in Fall 2017 or in Spring 2018.

```
SELECT course_id FROM section
WHERE semester = 'Fall' AND year = 2017
UNION
SELECT course_id FROM section
WHERE semester = 'Spring' AND year = 2018;
```

Find the courses taught in Fall 2017 but not in Spring 2018.

```
SELECT course_id FROM section
WHERE semester = 'Fall' AND year = 2017
EXCEPT
SELECT course_id FROM section
WHERE semester = 'Spring' AND year = 2018;
```

19

- SELECT-FROM-WHERE statements
- SQL uses bag semantics by default
- Use keyword AS for renaming when needed
 - ORDER BY clause: ordering output
 - LIMIT clause for top-n queries
- Set operations: UNION, INTERSECT, EXCEPT