Computação Digital ENG 1448

Laboratório 09

Objetivos:

Fazer o display Conversor Analógico Digital (ADC) funcionar

Descrição:

Assim como vimos no caso de conversores D/A, a quantidade de aplicações para conversores A/D também é praticamente ilimitada nos dias de hoje, a conversão da velocidade do carro no painel digital, os inúmeros exames médicos que demandam leituras a partir de pequenos sinais elétricos do corpo humano (eletrocardiograma, eletroencefalograma, etc...), a voz que ouvimos no telefone fixo ou celular teve que ser convertida na origem, a música que ouvimos do celular/MP3 player que um dia foi tocada em um estúdio e convertida em informação digital, etc. Esses são apenas alguns poucos exemplos do que pode ser feito com conversores A/D.

Você configurará o nosso kit para fazer o conversor Analógico Digital funcionar, de forma que o amplificador opere com ganho -1, de forma que o sinal a ser lido pelo canal A seja de 0.4 V a 2.9 V.

Uma vez armazenada a palavra de 14 bits que traduz o valor do sinal (ainda que proporcional), você fará com que os LEDs discretos acendam na proporção do valor. Tenha a liberdade para usar o Excel ou alguma outra ferramenta para definir as faixas de valores em cada LED do *gauge* ascenderá.

A imagem acima mostra um potenciômetro (resistência variável) conectada à entrada ${
m Vin}_{
m A}$ e os LEDs discretos indicando máxima leitura.

Abaixo, o diagrama esquemático da ligação do potenciômetro. Repare que devemos sempre iniciar o experimento com ele no meio do curso, de forma que a tensão de saída não ultrapasse os 2.9 V, nem seja inferior aos 0.4 V.

Implementação:

A base teórica está no capítulo 10 do User Guide.

Lembrando que a fórmula do valor obtido é:

$$D[13:0] = GAIN \times \frac{(V_{IN} - 1.65 \text{ V})}{1.25 \text{ V}} \times 8192$$

Portanto, os valores obtidos estarão "shiftados", ie:

 $2^{14} = 16384$

V_{IN}	D		
0.40 V	8192		
0.81 V	5505		
1.23 V	2753		
1.65 V	0		
2.07 V	-2753		
2.48 V	-5439		
2.90 V	-8192		

Lembrando que é necessário assegurar que os demais dispositivos que compartilham o protocolo SPI no kit estejam devidamente desabilitados.

Table 10-4: Disable Other Devices on SPI Bus

Signal	Disabled Device	Disable Value
SPI_SS_B	SPI Serial Flash	1
AMP_CS	Programmable Pre-Amplifier	1
DAC_CS	DAC	1
SF_CE0	StrataFlash Parallel Flash PROM	1
FPGA_INIT_B	Platform Flash PROM	0

- ✓ O período mínimo do clock do circuito de ganho é de 100 ns, e o período mínimo do clock do ADC é de 20 ns.
- ✓ O tamanho da mensagem enviada ao Amplificador possui 8 bits, e a mensagem enviada ao ADC possui 34 bits.

A dica é fazer um controle adequado do SPI_SCK!

Boa experiência!