Cours de Mathématiques – Troisième

Thomas MUSARD

Année scolaire 2019–2020

Table des matières

Т	Arithmétique	2
2	Racine carrée, Théorème de Pythagore	4
3	Transformations	6
4	Calcul numérique	9
5	Triangles égaux et semblables, agrandissement et réduction	10
6	Calcul littéral	14
7	Théorème de Thalès et sa réciproque	15
8	Équations	17
9	Proportionnalité	19
10	Généralités sur les fonctions	23
11	Statistiques	25
12	Fonctions affines, linéaires, constantes	28
13	Trigonométrie	32
14	Probabilités	34
15	Grandeurs et mesures	36
16	Sections et repérage	39

Arithmétique

I) Rappels

Diviseurs et multiples

Division euclidienne de 45 par 15 :

 $45 = 3 \times 15 + 0$

45 est un multiple de 3 et 15 3 et 15 sont des diviseurs de 45

NOMBRES ENTIERS

Nombres premier

Les nombres premiers sont des nombres positifs qui possèdent exactement deux diviseurs: 1 et eux-mêmes. Par exemple, 13 est premier: il est divisible par 1 et 13 uniquement.

Critères de divisibilité

Un nombre est divisible par...

- 2 si son chiffre des unités est pair.
- 3 si la somme de ses chiffres est un multiple de 3.
- 5 si son chiffre des unités vaut 0 ou 5.
- 9 si la somme de ses chiffres est un multiple de 9.

Liste des nombres premiers inférieurs à 100.

	2	3	4	5	6	7	8	9	40
11	12	13	44	15	16	17	18	19	20
21	22	23	2 4	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

II) Décomposition en produits de facteurs premiers

Propriété. Tout nombre entier non premier peut s'écrire comme un produit de facteurs premiers.

Exemple. $15 = 3 \times 5$; $30 = 2 \times 3 \times 5$

Méthode. Décomposer 350 en produit de facteurs premiers.

1. On écrit 350 sous la forme d'un produit simple.

$$350 = 10 \times 35$$

2. On fait de même avec chacun des facteurs dans la mesure sur possible, jusqu'à obtenir des produits de facteurs premiers.

$$350 = 10 \times 35 = 2 \times 5 \times 5 \times 7 = 2 \times 5^2 \times 7$$

Avec la calculatrice.

- Sur une CASIO : 350 | EXE | Seconde | Décomp
- Sur une TI : 350 2nde décomp

III) Fractions irréductibles

Définition. Une fraction irréductible est une fraction simplifiée au maximum.

1. Avec des divisions successives

Méthode. rendre irréductible la fraction $\frac{1470}{1680}$

On utilisera les critères de divisibilité ou les tables de multiplication.

$$\frac{1\,470}{1\,680} = \frac{147\times10}{168\times10} = \frac{147}{168} = \frac{49\times3}{56\times3} = \frac{49}{56} = \frac{7\times7}{8\times7} = \frac{7}{8}$$

2. Avec la décomposition en produit de facteurs premiers

Méthode. Rendre irréductible la fraction $\frac{24}{36}$.

1. On décompose le numérateur et le dénominateur en produits de facteurs premiers.

$$24 = 2 \times 2 \times 2 \times 3$$

$$36 = 2 \times 2 \times 3 \times 3$$

2. On remplace et on simplifie.

$$\frac{24}{36} = \frac{2 \times 2 \times 2 \times 3}{2 \times 2 \times 3 \times 3} = \frac{2}{3}$$

Racine carrée, Théorème de Pythagore

I) Racine carrée d'un nombre positif

1. Généralités

Définition.

- 1. Le carré d'un nombre a est égal au produit du nombre a par lui-même. On note $a^2 = a \times a$.
- 2. La racine carrée de a est le nombre positif dont le carré est égal à a. Ce nombre est noté \sqrt{a} .

Exemple.

- 1. Le carré de 5 est 5^2 et est égal à $5 \times 5 = 25$.
- 2. Le carré de $\frac{2}{3}$ est $\left(\frac{2}{3}\right)^2$ et est égal à $\frac{2}{3} \times \frac{2}{3} = \frac{4}{9}$.
- 3. La racine carrée de 36 est $\sqrt{36} = 6$.

Remarque.

- 1. La racine carrée d'un nombre positif n'est pas forcément une valeur exacte! Par exemple, la racine carrée de 2 se note $\sqrt{2}$ et vaut environ 1,4142.
- 2. La racine carrée de -5 est le nombre dont le carré est -5. Un nombre au carré est toujours positif (règle des signes), donc la racine carrée d'un nombre négatif est impossible. Ainsi, $\sqrt{-5}$ n'existe pas!

2. Carrés parfaits

Définition. Un carré parfait est le carré d'un nombre entier positif.

Tableau à apprendre par coeur.

Nombre	1	2	3	4	5	6	7	8	9	10	11	12
Carré	1	4	9	16	25	36	49	64	81	100	121	144

3. Encadrer une racine carrée

Méthode. Encadrer $\sqrt{7}$ par deux nombres entiers.

- 1. Apprendre le tableau des carrés parfaits.
- 2. On encadre 7 par deux carrés parfaits :

3. On passe à la racine carrée.

$$\sqrt{4} < \sqrt{7} < \sqrt{9}$$

$$2 < \sqrt{7} < 3$$

II) Rappels

Calculer une longueur

Le triangle ABC est rectangle en B. AB = 1,2 m et BC = 3,5 m. Calculer AC.

Rédaction.

On sait que : le triangle ABC est rectangle en B Or, d'après le théorème de Pythagore

Donc :

$$AC^{2} = AB^{2} + BC^{2}$$

$$AC^{2} = 1,2^{2} + 3,5^{2}$$

$$AC^{2} = 1,44 + 12,25$$

$$AC^{2} = 13,69$$

$$AC = \sqrt{13,69}$$

$$AC = 3,7 m$$

Prouver qu'un triangle est rectangle

IJ = 89, IK = 39 et KJ = 80. Prouver que le triangle IJK est rectangle.

Rédaction.

Dans le triangle IJK, [IJ] est le plus grand côté. On calcule séparément :

• $IJ^2 = 89^2 = 7921$

•
$$IK^2 + KJ^2 = 39^2 + 80^2 = 7921$$

Donc on sait que : $IJ^2 = IK^2 + KJ^2$

Or, d'après la réciproque du théorème de Pythagore

Donc le triangle IJK est rectangle en K.

Prouver qu'un triangle n'est pas rectangle

IJ = 89, IK = 40 ex KJ = 80. Prouver que le triangle IJK n'est pas rectangle.

Rédaction.

Dans le triangle IJK, [IJ] est le plus grand côté.

On calcule séparément :

•
$$IJ^2 = 89^2 = 7921$$

•
$$IK^2 + KJ^2 = 40^2 + 80^2 = 8000$$

Donc on sait que : $IJ^2 \neq IK^2 + KJ^2$

Or, comme l'égalité de Pythagore n'est pas vérifiée,

Donc le triangle IJK n'est pas rectangle.

Transformations

I) Rappels

II) Homothéties

Définition. Effectuer une homothétie de centre O et de rapport k (non nul) revient à faire un agrandissement ou une réduction d'une figure.

Propriété. Le centre d'une homothétie, un point et son image sont alignés.

Propriété. Soit k un rapport d'homothétie.

- Si k < -1 ou k > 1, l'homothétie effectue un agrandissement.
- Si -1 < k < 1, l'homothétie effectue une réduction.

Remarque.

- Si k est négatif, la figure effectue un demi tour autour du centre. Une homothétie de rapport k=-1 est une symétrie centrale.

Propriété. Par une homothétie de rapport k > 0,

- Les mesures d'angles sont conservées.
- Les longueurs sont multipliées par k.
- Les aires sont multipliées par k^2 .
- Les volumes sont multipliés par k^3 .

Méthode. Construire l'image d'un point par une homothétie.

Vidéo: construction homothétie

Construire l'image du point A par l'homothétie de centre O et de rapport 3.

- 1. Tracer la droite (OA).
- 2. L'image de A, notée A', se trouve du même côté que A par rapport au point O.
- 3. Placer A' tel que $OA' = 3 \times OA$.

Construire l'image du point B par l'homothétie de centre O et de rapport -0,5.

- 1. On trace la droite (OB).
- 2. L'image de B, notée B' se trouve de l'autre côté de B par rapport au point O.
- 3. Placer B' tel que $OB' = 0, 5 \times OB$.

Calcul numérique

I) Fractions

Vidéo : calculs de fractions - Vidéo : exercice corrigé fractions

II) Puissances

Vidéo : calculs de puissances – Vidéo : exercice corrigé puissances

Préfixe	Symbole	Puissance (10 ⁿ)	Exemples
Giga	G	$10^9=1000000000$, un milliard	GigaOctet(taille d'un film numérique)
Méga	М	$10^6=1000000$, un million	MegaOctet (Image, Photo)
Kilo	k	$10^3=1000$, mille	1 kg de
Hecto	h	$10^2 = 100$	1 hL = 100 L
Déca	da	$10^1 = 10$	1 dam = 10 m; décathlon (10 épreuves)
		$10^0=1$	UNITE
Déci	d	$10^{-1}=0,1$, un dixième	1 dg = 0,1 g
Centi	С	$10^{-2}=0,01$, un centième	1 cL = 0,01 L; centimes
Milli	m	$10^{-3}=0,001$, un millième	1mm = 0,001 m
Micro	μ	$10^{-6}=0,000001$, un millionième	1μ m = 0,000 001m = 1 micron
Nano	n	$10^{-9}=0,00000001$, un milliardième	1 nm, étude de l'atome, nanotechnologie

Triangles égaux et semblables, agrandissement et réduction

I) Triangles égaux

Définition. Deux triangles sont égaux s'ils ont leurs côtés deux à deux de même longueur.

Exemple.

Remarque. Deux triangles égaux sont superposables.

Propriété. Deux triangles égaux ont leurs angles deux à deux de même mesure.

Exemple.

Vocabulaire. Si deux triangles sont égaux, alors les angles, les sommets et les côtés superposables sont dits homologues.

Exemple. Dans l'exemple précédent :

- 1. A et A' sont deux sommets homologues.
- 2. [BC] et [B'C'] sont deux côtés homologues.
- 3. \widehat{BAC} et $\widehat{B'A'C'}$ sont deux angles homologues.

Propriété. Si deux triangles ont un angle de même mesure compris entre deux côtés respectivement égaux, alors ils sont égaux.

Exemple.

- Je sais que AB = JH, AC = JI et $\widehat{BAC} = \widehat{HJI}$.
- Or, si deux triangles ont un angle de même mesure compris entre deux côtés respectivement égaux, alors ils sont égaux.
- **Donc** les triangles ABC et HIJ sont égaux.

Propriété. Si deux triangles ont un côté de même longueur compris entre deux angles de même mesure, alors ils sont égaux.

Exemple.

- Je sais que AB = LK, $\widehat{BAC} = \widehat{KLM}$ et $\widehat{ABC} = \widehat{LKM}$.
- Or, si deux triangles ont un côté de même longueur compris entre deux angles de même mesure, alors ils sont égaux.
- **Donc** les triangles ABC et LKM sont égaux.

II) Triangles semblables

Définition. Deux triangles sont semblables s'ils ont leurs côtés deux à deux proportionnels.

Exemple.

Pour vérifier si ces triangles sont semblables, on regroupe les données dans un tableau.

	« Petit »	« Moyen »	« Grand »
Côtés de ABC	AB = 7, 2	BC = 8, 2	AC = 8, 8
Côtés de DEF	DF = 10, 8	EF = 12, 3	DE = 13, 2

On calcule séparément.

$$\frac{DF}{AB} = \frac{10.8}{7.2} = 1.5 \; ; \; \frac{EF}{BC} = \frac{12.3}{8.2} = 1.5 \; ; \; \frac{DE}{AC} = \frac{13.2}{8.8} = 1.5$$

Les rapports sont les mêmes, donc les triangles sont semblables.

Remarque. Le coefficient de proportionnalité est appelé coefficient d'agrandissement et de réduction.

Propriété. Deux triangles semblables ont leurs angles deux à deux de même mesure.

Exemple.

Remarque. Pour montrer que deux triangles sont semblables, il suffit de vérifier que deux paires d'angles sont de même mesure. En effet, d'après la « règle des 180° », le dernier couple d'angles le sera également.

Méthode. Utiliser des triangles semblables.

Vidéo: triangles semblables

- 1. Prouver que les triangles ABC et DEF sont des triangles semblables.
 - Je sais que $\widehat{CAB} = \widehat{FDE}$ et $\widehat{BCA} = \widehat{FED} = 90^{\circ}$.
 - Or, si deux triangles ont leurs mesures d'angles respectivement égales, alors ils sont semblables.
 - **Donc** les triangles *ABC* et *DEF* sont semblables.
- 2. En déduire les longueurs CB et AB.
 - (a) Je sais que les triangles ABC et DEF sont semblables.
 - (b) Or, si deux triangles sont semblables, alors les longueurs de leurs côtés homologues sont proportionnelles.
 - (c) Donc, les longueurs du triangle ABC sont proportionnelles à celles du triangle EDF et on a :

$$\frac{CA}{ED} = \frac{BC}{FE} = \frac{BA}{DF}$$
$$\frac{1,6}{8} = \frac{BC}{6} = \frac{AB}{10}$$

Ainsi, $BC = 6 \times 1, 6 : 8 = 1, 2 \, cm$ et $AB = 10 \times 1, 6 : 8 = 2 \, cm$.

III) Agrandissement, Réduction

Définition. L'agrandissement ou la réduction d'une figure est la figure obtenue en multipliant toutes les longueurs par un même nombre k.

Formule. Le coefficient d'agrandissement ou de réduction k s'obtient avec :

$$k =$$
" $\frac{\text{longueur figure obtenue}}{\text{longueur figure de départ}}$ "

Propriétés.

- Si k > 1, il s'agit d'un agrandissement.
- Si k < 1, il s'agit d'une réduction.

Remarque.

- 1. Il y a proportionnalité entre les longueurs des deux figures (de coefficient de proportionnalité k).
- 2. Dans le cas de triangles, on obtient des triangles égaux si k=1 et des triangles semblables si $k\neq 1$.

Exemple.

- Le triangle A'B'C' est une réduction du triangle ABC de coefficient $k = \frac{B'C'}{BC} = \frac{2,3}{4,6} = 0,5$.

 Le triangle ABC est un agrandissement du triangle A'B'C' de coefficient $k = \frac{BC}{B'C'} = \frac{4,6}{2,3} = 2$.

Propriété. L'agrandissement ou la réduction conserve la mesure des angles.

Exemple.

Propriétés. Dans un agrandissement ou une réduction de coefficient k,

- Les longueurs sont multipliées par k
- Les aires sont multipliées par k^2
- Les volumes sont multipliés par k^3

Exemple.

Calcul littéral

I) Rappels – Développement, Factorisation

II) Double distributivité

Règle. Soient a, b, c et d des nombres.

$$(a+b)(c+d) = ac + ad + bc + bd$$

Exemple. Développer A = (3x+1)(x+4).

On distribue 3x et 1 à chaque terme de x + 4, puis on simplifie.

$$A = (3x + 1)(x + 4)$$

$$A = 3x \times x + 3x \times 4 + 1 \times x + 1 \times 4$$

$$A = 3x^{2} + 12x + x + 4$$

$$A = 3x^{2} + 13x + x$$

III) Identité remarquable

Propriété. Soient a et b deux nombres.

$$a^2 - b^2 = (a - b)(a + b)$$

Exemple.

1.
$$x^2 - 4 = x^2 - 2^2(x-2)(x+2)$$

2.
$$4x^2 - 1 = (2x)^2 - 1^2 = (2x - 1)(2x + 1)$$

Théorème de Thalès et sa réciproque

I) Théorème de Thalès

Théorème. Si les points A; B; M d'une part et A; C; N d'autre part sont alignés, et si les droites (BC) et (MN) sont parallèles, alors :

$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC} = "\frac{petit}{grand}"$$

Remarque. Le triangle ABC est l'image de l'homothétie de centre A du triangle ANM (de rapport positif dans la configuration « classique » et de rapport négatif dans la configuration « en papillon »).

Méthode. Utiliser le théorème de Thalès.

Les points A; O; C et B; O; D. Les droites (AB) et (CD) sont parallèles. Calculer OD.

- **Je sais que** les points A; O; C sont alignés d'une part, les points B; O; D sont alignés d'autre part et que les droites (AB) et (CD) sont parallèles.
- **Or**, d'après le théorème de Thalès,
- Donc :

$$\begin{aligned} \frac{OC}{OA} &= \frac{OD}{OB} = \frac{CD}{AB} \\ \frac{2,4}{3} &= \frac{OD}{3,6} \left(= \frac{CD}{AB} \right) \\ OD &= \frac{3,6 \times 2,4}{3} \\ OD &= 2,88 \end{aligned}$$

Ainsi, $OD = 2,88 \, cm$.

II) Réciproque du théorème de Thalès

Théorème (Réciproque). Si les points A; B; M sont alignés dans le même ordre que les points A; C; N et si :

$$\frac{AM}{AB} = \frac{AN}{AC}$$

alors les droites (BC) et (MN) sont parallèles

Méthode. Démontrer que deux droites sont parallèles. Les droites (MN) et (BC) sont-elles parallèles?

- $\begin{array}{l} \text{1. On calcule les rapport séparément.} \\ \text{-- D'une part}: \frac{AM}{AB} = \frac{4,5}{6} = 0,75 \\ \text{-- D'autre part}: \frac{AN}{AC} = \frac{3}{4} = 0,75 \end{array}$
- 2. On compare et on conclut.

Je sais que les points A, M, B sont alignés dans le même ordre que les points A, N, C et que $\frac{AM}{AB} = \frac{AN}{AC}$

Or, d'après la réciproque du théorème de Thalès,

Donc les droites (BC) et (MN) sont parallèles.

Équations

I) Tester une égalité

Méthode. L'égalité 2x + 1 = 5 + x est-elle vraie pour x = 1?

- 1. On remplace la lettre par la valeur proposée et on calcule séparément
 - Membre de gauche : $2x + 1 = 2 \times 1 + 1 = 2 + 1 = 3$
 - Membre de droite : 5 + x = 5 + 1 = 6
- 2. On compare et on conclut : puisque les deux membres n'ont pas la même valeur, alors l'égalité est fausse pour x=1.

II) Résolution d'équations

Résoudre une équation, c'est trouver toutes les valeurs de x pour laquelle une égalité est vraie. Ces valeurs sont appelées solutions.

A la fin de chaque résolution, on doit trouver une égalité de la forme :

"
$$x =$$
nombre"

Méthode. Résoudre l'équation 4x - 12 = -2x + 24.

1. On rassemble les termes en x d'un côté et les nombres « sans x » de l'autre et on réduit.

$$4x - 12 = -2x + 24$$

$$4x - 12 + 2x = -2x + 24 + 2x$$

$$6x - 12 = 24$$

$$6x - 12 + 12 = 24 + 12$$

$$6x = 36$$

2. On divise chaque membre par le nombre accroché à x (ici, 6).

$$6x = 36$$

$$\frac{6x}{6} = \frac{36}{6}$$

$$x = 6$$

3. On vérifie : $4 \times 6 - 12 = 12$ et $-2 \times 6 + 24 = 12$.

III) Résolution de problèmes

Méthode. Résoudre un problème avec une équation.

Pierre pense à un nombre. Il ajoute 34 à ce nombre et il obtient le triple du nombre qu'il avait choisi. Quel était ce nombre?

- 1. On définit notre inconnue, c'est-à-dire ce qu'on cherche : soit x le nombre de départ de Pierre.
- 2. On met le problème en équation : lorsque Pierre ajoute 34 au nombre, il obtient x + 34 qui correspond au triple du nombre de départ, c'est-à-dire 3x. Le problème se traduit alors par l'équation : 3x = x + 34.
- 3. On résout l'équation :

$$3x = x + 34$$
$$3x - x = x + 34 - x$$
$$2x = 34$$
$$\frac{2x}{2} = \frac{34}{2}$$
$$x = 17$$

4. On conclut : Pierre pense au nombre 17.

IV) Équation produit nul

Propriété. Si un produit de facteurs est nul alors, l'un au moins des facteurs est nul.

Méthode. Résoudre (4x + 6)(3 - 7x) = 0

Vidéo: équation produit nul

Si (4x+6)(3x-7) = 0, alors 4x+6 = 0 ou 3-7x = 0.

$$4x + 6 = 0$$

$$4x = -6$$

$$x = \frac{-6}{4}$$

$$x = \frac{-3}{2}$$

$$3 - 7x = 0$$

$$-7x = -3$$

$$x = \frac{-3}{7}$$

$$x = \frac{3}{7}$$

V) Équation de la forme $x^2=a$

Propriété. Soit a un nombre.

- Si a < 0 alors, l'équation $x^2 = a$ n'a pas de solution.
- Si a = 0 alors, l'équation $x^2 = a$ a une solution : x = 0.
- Si a > 0 alors, l'équation $x^2 = a$ admet deux solutions : $-\sqrt{a}$ et $+\sqrt{a}$.

Méthode. Résoudre $x^2 = 25$.

1ère solution : en utilisant la propriété ci-dessus.

$$x^{2} = 25$$

$$x = +\sqrt{25} \quad \text{ou} \quad x = -\sqrt{25}$$

$$x = 5 \quad \text{ou} \quad x = -5$$

2ème solution : avec l'identité remarquable.

$$x^{2} = 25$$

$$x^{2} - 25 = 0$$

$$(x - 5)(x + 5) = 0$$

$$x - 5 = 0 \quad \text{ou} \quad x + 5 = 0$$

$$x = 5 \quad x = -5$$

Proportionnalité

I) Reconnaître une situation de proportionnalité

1. Par le calcul (rappels)

Méthode 1. Voici un tableau regroupant l'évolution de la taille de Mila au cours de son âge. La taille de Mila est-elle proportionnelle à son âge?

Âge de Léna (en année)	11	12	13	14
Taille de Léna (en cm)	143	156	160	162

$$\frac{143}{11} = 13$$
; $\frac{156}{12} = 13$; $\frac{160}{13} \approx 12,3$

Puisque les rapports ne sont pas égaux, alors la taille de Léna n'est pas proportionnelle à son âge.

Méthode 2. Des ouvriers ont prélevé des morceaux de câble électrique et ils les ont pesés. La longueur du câble est-elle proportionnelle à sa masse?

Longueur (en m)	2	4	6	8
Masse (en kg)	5	10	15	20

$$\frac{5}{2} = 2,5; \frac{10}{4} = 2,5; \frac{15}{6} = 2,5; \frac{20}{8} = 2,5$$

Puisque les rapports sont égaux, alors la longueur du câble est proportionnelle à sa masse.

2. Par le graphique

Propriété. Si une situation est une situation de proportionnalité, alors les points de sa représentation sont alignés avec l'origine du repère.

Propriété (réciproque). Si une situation est une situation de proportionnalité, alors les points de sa représentation sont alignés avec l'origine du repère.

II) Produit en croix, Quatrième proportionnelle

1. Produit en croix

Propriété des produits en croix.

Dans un tableau de proportionnalité, on a l'égalité : $a \times d = b \times c$

Méthode. Avec $30 \, kg$ d'oranges, on obtient $18 \, L$ de cocktail. Quel volume de cocktail peut-on faire avec $48 \, kg$ d'oranges?

- 1. On regroupe les données dans un tableau.
 - Soit x le volume de cocktail réalisé avec 48 kg d'oranges.

Masse d'oranges (en kg)	30	48
Volume de cocktail (en L)	18	x

2. On écrit l'égalité des produits en croix.

$$30 \times x = 48 \times 18$$

3. On résout l'équation obtenue.

$$\frac{30x}{30} = \frac{48 \times 18}{30}$$
$$x = \frac{864}{30}$$
$$x = 28, 8$$

4. On conclut. On peut faire 28,8 L de cocktail avec 48 L d'oranges.

Remarque. On utilisait le produit en croix avec le théorème de Thalès.

2. Quatrième proportionnelle

Méthode de calcul en utilisant une quatrième proportionnelle. Dans un gâteau, la quantité de farine est proportionnelle à la quantité de beurre. Pour 250 g de farine, on met 150 g de beurre. Quelle quantité de beurre a-t-on besoin pour 400 g de farine?

1. On regroupe les données dans un tableau.

Soit x la masse de beurre nécessaire pour 400g de farine.

Masse de farine (en g)	250	400
Masse de beurre (en g)	150	\boldsymbol{x}

2. On écrit l'égalité de la quatrième proportionnelle.

$$x=\frac{400\times150}{250}$$

3. On calcule.

$$x = 140$$

4. On conclut. On a besoin de 140 q de beurre pour 400 q de farine.

III) Pourcentages

Règle. Calculer a % d'un nombre revient à multiplier ce nombre par $\frac{a}{100}$

Méthode. Appliquer un pourcentage.

Sur un montant total de 72 €, j'ai eu une remise de 25 %. Quel est le montant de la remise ?

1. Calculons 25 % de 72. On applique la règle.

$$72 \times \frac{25}{100} = 72 \times \frac{1}{4} = \frac{72}{4} = 18$$

2. On conclut avec une phrase : le montant de la remise est de 18 €.

Méthode. Rechercher un pourcentage.

Une automobile qui coûtait 8 000€ est vendue 6 800€. A quel pourcentage du prix initial correspond le nouveau prix?

1. Tableau de proportionnalité. Le prix total représente 100~% du prix (logique). Notons x le pourcentage que représente la remise.

Prix (en €)	8 000	6 800
Pourcentage	100	x

2. On utilise la quatrième proportionnelle.

$$x = \frac{100 \times 6\,800}{8\,000}$$

3. On calcule.

$$x = 6800 \times 0,0125 = 85$$

4. On conclut avec une phrase: le nouveau prix correspond à 85 % du prix initial.

2) Pourcentages d'augmentation et de réduction

Exemple. Le prix d'un survêtement est de 49 €. Il a augmenté de 8 %. Son nouveau prix est égal à :

$$49 + 49 \times \frac{8}{100} = 49 \times \left(1 + \frac{8}{100}\right) = 49 \times 1,08 = 52,92 \,$$

Règle.

1. Augmenter un nombre de a % revient à le multiplier par $1 + \frac{a}{100}$.

2. Diminuer un nombre de a % revient à le multiplier par $1 - \frac{a}{100}$.

Tableaux.

Augmentation	Calcul	Coefficient multiplicatif
20 %	$1 + \frac{20}{100} = 1 + 0, 20 = 1, 20$	1,20
5 %	$1 + \frac{5}{100} = 1 + 0,05 = 1,05$	1,05
50 %	$1 - \frac{50}{100} = 1 + 0,50 = 1,50$	1,50

Réduction	Calcul	Coefficient multiplicatif
20 %	$1 - \frac{20}{100} = 1 - 0,20 = 0,80$	0,80
5 %	$1 - \frac{5}{100} = 1 - 0,05 = 0,95$	0,95
50 %	$1 - \frac{50}{100} = 1 - 0,50 = 0,50$	0,50

Méthode. Appliquer une réduction et une augmentation.

Problème 1. Le prix d'un blouson qui coutait 160 € est réduit de 35%. Calculer le nouveau prix du blouson.

- 1. Diminuer 160 de 35 % revient à multiplier 160 par $1 \frac{35}{100} = 1 0,35 = 0,65$.
- 2. On effectue l'opération : $160 \times 0,65 = 104$.
- 3. On conclut le nouveau prix du blouson est de 104 \mathfrak{C} .

Problème 2. La facture d'électricité de Bertrand a subi une augmentation de 20 % sur un an. Il a payé 99 € l'année dernière. Calculer le prix qu'il devra payer cette année.

- 1. Augmenter 99 de 20 % revient à multiplier 99 par $1 + \frac{20}{100} = 1 + 0, 2 = 1, 2.$
- 2. On effectue l'opération : 99×1 , 2 = 118, 8.
- 3. On conclut : la facture s'élèvera à 118,80 $\ \in$ l'an prochain.

IV) Notion de ratio

Définition.

- 1. Deux nombres a et b sont dans le ratio 3 :4 (notation standardisée) si $\frac{a}{3} = \frac{b}{4}$.
- 2. Trois nombres a, b et c sont dans le ratio 2 :3 :7 (notation standardisée) si $\frac{a}{2} = \frac{b}{3} = \frac{c}{7}$.

Remarque. Un ratio est en fait un partage qui est inégal.

Méthode. Alix et Jeanne ont 24 bonbons qu'elles doivent partager selon un ratio 2 :4. Combien auront-elles de bonbons chacune?

Explication. Dans ce contexte, le ratio 2 :4 signifie que si Alix prend 2 bonbons, alors Jeanne en prendra forcément 4. Autrement dit, la proportion de bonbons pour Alix est de $\frac{2}{6}$ alors que la proportion de bonbons pour Jeanne est de $\frac{4}{6}$. Au total, il y a 24 bonbons. Combien chaque fille aura-t-elle de bonbons?

— Alix.

$$\frac{2}{6} = \frac{2 \times 4}{6 \times 4} = \frac{8}{24}$$

Alix aura 8 bonbons.

- Jeanne :
 - Solution 1. 24 8 = 16
 - Solution 2.

$$\frac{4}{6} = \frac{4 \times 4}{6 \times 4} = \frac{16}{24}$$

Jeanne aura 16 bonbons.

Méthode. 2, 5 kg de pommes coûtent 3, 10 $\mathfrak C$. Combien coûtent 1, 5 kg de pommes?

1. On présente les données dans un tableau de proportionnalité. Soit x le prix de $1,5\,kg$ de pommes.

Prix (en €)	3,10	x
Masse (en kg)	2,5	1,5

2. On calcule.

$$x = \frac{3,10 \times 1,5}{2,5} = 1,86$$

- 3. On conclut.
 - $1,5\,kg$ de pommes coûte 1,86 €.

Généralités sur les fonctions

I) Notion de fonction – Notations

Définition. Une fonction est un procédé (programme de calcul) qui à un nombre de départ associe un unique nombre d'arrivée.

Notation.

$$f: x \longmapsto f(x)$$

Exemple. $f: x \mapsto 5x - 2$ est la fonction qui à x associe l'unique nombre 5x - 2. On note également f la fonction telle que f(x) = 5x - 2. Si x = 1, alors $f(1) = 5 \times 1 - 2 = 5 - 2 = 3$.

II) Image – Antécédent

1. Vocabulaire

Vocabulaire. Soient x et y deux nombres et f une fonction. Si f(x) = y, alors

- -y est appelé image de x par la fonction f
- -x est appelé antécédent de y par la fonction f

Exemple. Soit $f: x \longmapsto 5x - 2$. On va vu que f(3) = 13, alors

- 13 est l'image de 3 par f
- -3 est un antécédent de 13 par f.

Propriété. Un nombre peut avoir plusieurs antécédents par une fonction, mais un nombre ne peut avoir qu'une seule image par une fonction.

2. Calcul d'image

Méthode. Calculer une image d'un nombre revient à remplacer x par ce nombre.

Exemple. Soit la fonction $f: x \longmapsto 4x^2 - x - 1$. Calculer l'image de -3 par f. On remplace tous les x par -3.

$$f(-3) = 4 \times (-3)^2 - (-3) - 1$$

$$f(-3) = 4 \times 9 + 3 - 1$$

$$f(-3) = 38$$

L'image de -3 par la fonction f est 38.

3. Calcul d'antécédent

Méthode. Calculer un antécédent revient à chercher le(s) nombre(s) de départ x en résolvant une équation.

Exemple. Soit la fonction $f: x \longmapsto 4x^2 - 1$. Calculer les antécédents de 3 par f. Cela revient à calculer f(x) = 3.

$$f(x) = 3$$

$$4x^{2} - 1 = 3$$

$$4x^{2} = 4$$

$$x^{2} = 1$$

$$x = \sqrt{1} \text{ ou } x = -\sqrt{1}$$

$$x = 1 \text{ ou } x = -1$$

Les antécédents de 3 par la fonction f sont 1 et -1.

III) Tableau de valeurs

Méthode. Compléter un tableau de valeurs. Soit la fonction $h: x \longmapsto 2x - 8$.

x	-2	0	4
h(x)	-12	-8	0

On calcule les images de -2 et 0.

$$h(-2) = 2 \times (-2) - 8 = -4 - 8 = -12$$

$$h(0) = 2 \times 0 - 8 = 0 - 8 = -8$$

On calcule l'antécédent de 0.

$$2x + 8 = 0$$
$$2x = 8$$
$$x = 4$$

Remarque. L'image de 0 par la fonction h est -8 alors que l'antécédent de 0 par la fonction h est 4.

IV) Lecture graphique

Méthode. Lire une image ou un antécédent à partir d'une courbe.

Lire l'image d'un nombre :

on place x sur l'axe des abscisses on se déplace verticalement pour rencontrer \mathcal{C}_f on lit f(x) sur l'axe des ordonnées

L'image de 1 par f est -2.

Trouver l'(les)antécédent(s) d'un nombre

on trace une horizontale passant par cette valeur

à partir des points d'intersection, on se déplace verticalement vers l'axe des abscisses pour lire les antécédents

Les antécédents de 1 par f sont 0 et 4.

Statistiques

I) Définitions générales

Définition. Une série statistique est une série de valeurs (des nombres ou des « mots »).

Exemple. Relevé des différentes pointures de la classe.

Définition. L'effectif d'une valeur est le nombre de fois où cette valeur apparaît.

Exemple. Pour l'exemple précédent, l'effectif total est ___. Il s'agit ici du nombre d'élèves dans la classe.

Définition. L'effectif d'une valeur est le nombre de fois où cette valeur apparaît.

Exemple. La pointure ___ apparaît ___ fois.

Formule.

 $"Fr\'equence = \frac{effectif de cette valeur}{effectif total}"$

Remarque. Une fréquence peut s'exprimer en pourcentage. Dans ce cas, on multiplie le résultat par 100.

Exemple. Fréquence d'apparition d'une pointure dans la classe.

II) Cas des séries de nombres

- 1. Moyenne
- a) Moyenne simple

Formule.

"Moyenne= $\frac{\text{somme de toutes les valeurs}}{\text{nombre total de valeurs}}$ "

Exemple. On considère la série de notes suivantes : 9 - 18 - 15 - 7 - 11 - 2. Déterminer la moyenne de cette série de notes.

b) Tableau des effectifs – Moyenne affectée de coefficients

Formule.

"Moyenne=
$$\frac{\text{somme(ligne1} \times \text{ligne 2})}{\text{effectif total}}$$
,"

Exemple. Pointures de la classe. On commence par faire un tableau des effectifs.

2. Médiane

Définition. La médiane d'une série statistique est une valeur telle qu'il y a :

- Au moins la moitié des valeurs inférieures ou égales à cette médiane
- Au moins la moitié des valeurs supérieures ou égales à cette médiane

Autrement dit, la médiane est la valeur centrale de la série quand celle-ci est ordonnée.

a) Effectif impair

Méthode. Si l'effectif total est impair, alors la médiane est la valeur du milieu.

Exemple. On considère la série de notes suivantes : 9 - 18 - 15 - 7 - 11. Déterminer la médiane de cette série.

b) Effectif pair

Méthode. Si l'effectif total est pair, alors toute valeur située entre les valeurs centrales est une médiane. En général, on prend la moyenne de ces deux valeurs centrales.

Exemple. On considère la série de notes suivantes : 9 - 18 - 15 - 7 - 11 - 2. Déterminer la médiane de cette série.

3. Étendue

Définition. L'étendue d'une série statistique est la différence entre la plus grande valeur et la plus petite valeur.

Exemple. Pointures de la classe :

III) Regroupement par classes, histogrammes

Méthode. Regroupement par classes.

Vidéo : exercice classes

On interroge les élèves d'une classe sur leur taille en cm. Voici les résultats de l'enquête :

$$174 - 160 - 161 - 166 - 177 - 172 - 157 - 175 - 162 - 169 - 160 - 165 - 170$$

$$152 - 168 - 156 - 163 - 167 - 169 - 158 - 164 - 151 - 162 - 166 - 156 - 165 - 179$$

- 1. Calculer l'étendue de la série de tailles : $179 151 = 28 \, cm$.
- 2. Regrouper les effectifs de cette série de tailles par classes de longueur $5\,cm$ et présenter les résultats dans un histogramme.

Tailles	[150; 155[[155; 160[[160; 165[[165; 170[[170; 175[[175; 180[
Effectif	2	4	7	8	3	3

3. Calculer les fréquences de chaque classe en % arrondies à l'unité.

Au total, il y a 27 élèves dans cette classe.

Tailles	[150; 155[[155; 160[[160; 165[[165; 170[[170; 175[[175; 180[
Effectif	2	4	7	8	3	3
Fréquence en %	$\frac{2}{27} \times 100 = 7$	15	26	30	11	11

4. Calculer la moyenne de la série après avoir centré les classes.

Tailles	[150; 155[[155; 160[[160; 165[[165; 170[[170; 175[[175; 180[
Centre de classe	$\frac{150 + 155}{2} = 152, 5$	157,5	162,5	167,5	172,5	177,5
Effectif	2	4	7	8	3	3

$$\frac{2\times152,5+4\times157,5+7\times162,5+8\times167,5+3\times172,5+3\times177,5}{27}=\frac{4\,462,5}{27}\approx165,3\,cm$$

Fonctions affines, linéaires, constantes

I) Généralités

1. Définition – Exemples

Définition. Soient a et b deux nombres. La fonction $f: x \longmapsto ax + b$ (ou bien f(x) = ax + b) est appelée fonction affine.

Exemple.

- 1. La fonction f définie par f(x) = 4x + 7 est une fonction affine où a = 4 et b = 7.
- 2. La fonction g définie par g(x) = -x + 0.5 est une fonction affine où a = -1 et b = 0.5.

2. Cas particuliers

Définition. Soit f la fonction affine définie par ax + b, avec a et b deux nombres.

- 1. Si b=0, alors f(x)=ax. On dit que f est une fonction linéaire.
- 2. Si a = 0, alors f(x) = b. On dit que f est une fonction constante.

Exemple.

- 1. La fonction k définie par k(x) = 2x est une fonction linéaire (a = 2 et b = 0).
- 2. La fonction m définie par m(x) = 9 est une fonction constante (a = 0 et b = 9).

II) Représentations graphiques

1. Généralités

Propriétés.

- 1. Une fonction affine est représentée graphiquement par une droite.
- 2. Une fonction linéaire est représentée graphiquement par une droite passant par l'origine.
- 3. Une fonction constante est représentée graphiquement par une droite parallèle à l'axe des abscisses.

Exemple.

- 1. C_f est la courbe représentative d'une fonction affine.
- 2. C_g est la courbe représentative d'une fonction linéaire.
- 3. C_h est la courbe représentative d'une fonction constante.

Remarque. Une fonction affine est une fonction qui traduit une situation de proportionnalité.

Vocabulaire. Soit f une fonction affine telle que $f: x \longmapsto ax + b$ où a et b sont deux nombres. Soit (C_f) la représentation graphique de f.

- 1. a est appelé coefficient directeur de (C_f) .
- 2. b est appelé ordonnées à l'origine de (C_f) .

Illustration.

Propriété. Soit f une fonction affine telle que $f: x \longmapsto ax + b$ où a et b sont deux nombres.

- 1. Si a > 0, alors la représentation graphique de f est une droite croissante (« qui monte »).
- 2. Si a < 0, alors la représentation graphique de f est une droite décroissante (« qui descend »).

2. Représenter graphiquement une fonction affine

Méthode. Tracer la droite (d) qui représente la fonction $f: x \longmapsto 2x + 1$.

Méthode 1. Avec la définition du coefficient directeur.

- 1. On place l'ordonnée à l'origine qu'on lit facilement dans 2x+1: c'est 1. Il faut alors placer le point de coordonnées (0;1).
- 2. On part du premier point obtenu. On avance d'une unité puis on montre verticalement de 2 carreaux (valeur du coefficient directeur). On a un deuxième point.
- 3. On trace la droite qui passe par les deux points obtenus.

Méthode 2. Avec un tableau de valeurs.

1. On cherche deux points A et B sur la droite. Pour cela, on calcule l'image de deux nombres simples, par exemple 0 et 1:

$$f(0) = 2 \times 0 + 1 = 1$$
; $f(1) = 2 \times 1 + 1 = 2 + 1 = 3$

On a alors deux points : A(0;1) et B(1;3).

2. On regroupe les informations dans un tableau de valeurs.

	Point A	Point B
Absisse	0	1
Ordonnée	1	3

3. On place les points dans le repère et on trace la droite passant par A et B.

3. Déterminer l'expression d'une fonction affine à partir de son graphe

Méthode. Déterminer l'expression d'une fonction affine à partir de sa représentation graphique. Puisque f est affine, alors elle s'écrit sous la forme f(x) = ax + b. Il faut déterminer a et b.

1. Détermination de a.

On part d'un point aux coordonnées faciles à lire. On avance de 1 et on rejoint verticalement la droite. La distance verticale correspond au coeffcient directeur. Ici, a = +2.

2. Détermination de b.

Il suffit de trouver le point d'intersection de la droie et de l'axe des ordonnées, puis lire l'ordonnée de ce point. Ici, b = -3.

3. Détermination de f: f(x) = 2x - 3.

Trigonométrie

I) Cosinus, Sinus, Tangente

Définition. Dans un triangle rectangle,

$$\cos{(Angle)} = "\frac{\text{Adjacent}}{\text{Hypoténuse}}" \; ; \; \sin{(Angle)} = "\frac{\text{Opposé}}{\text{Hypoténuse}}" \; ; \; \tan{(Angle)} = "\frac{\text{Opposé}}{\text{Adjacent}}"$$

Pour retenir cette formule.

CAH SOH TOA

« Casse-toi »

Exemple. Dans le triangle ABC rectangle en A:

$$\cos\left(\widehat{ACB}\right) = \frac{AC}{BC}$$
; $\sin\left(\widehat{ACB}\right) = \frac{AB}{BC}$; $\tan\left(\widehat{ACB}\right) = \frac{AB}{AC}$

II) Méthodes de calculs

1. Calculs de longueurs

Méthode. Calculer la longueur AB.

On connaît la longueur de l'hypoténuse ainsi que la mesure de l'angle \widehat{ABC} . On cherche la longueur du côté [AB] qui est adjacent à l'angle \widehat{ABC} . On utilise alors $\cos\left(\widehat{ABC}\right)$.

- Je sais que le triangle ABC est rectangle en A, BC = 8 cm et $\widehat{ABC} = 50^{\circ}$.
- Or,

$$\cos\left(\widehat{ABC}\right) = \frac{AB}{BC}$$

$$\cos(50^\circ) = \frac{AB}{8}$$

$$\frac{\cos(50^\circ)}{1} = \frac{AB}{8}$$

$$AB = \frac{8 \times \cos(50^\circ)}{1}$$

$$AB \approx 5, 1$$

— Donc $AB \approx 5, 1 \, cm$.

2. Calculs d'angles

Méthode. Calculer la mesure de l'angle \widehat{RTS} .

On connaît la longueur de l'hypoténuse ainsi que la longueur du côté opposé à l'angle \widehat{RTS} . On utilise alors \widehat{RTS}

- Je sais que le triangle RST est rectangle en R, $ST = 10 \, cm$ et $RS = 3 \, cm$.
- Or,

$$\sin\left(\widehat{RTS}\right) = \frac{RS}{ST}$$
$$\sin\left(\widehat{RTS}\right) = \frac{3}{10}$$

Calculatrice : Seconde | sin | (| 3 | \div | 10 |) | EXE

$$\widehat{RTS} \approx 17^{\circ}$$

— Donc $\widehat{RTS} \approx 17^{\circ}$.

Probabilités

I) Rappels

Exemple. Un sac contient 5 boules noires, 3 grises et 1 blanche. On tire au hasard une boule du sac. On considère les événements :

- N: "On tire une boule noire".
- G: "On tire une boule grise".
- -B: "On tire une boule blanche".

Quelle est la probabilité de chaque événement?

Au total, on a 9 boules (5+3+1).

$$p(N) = \frac{5}{9} \ ; \ p(G) = \frac{3}{9} = \frac{1}{3} \ ; \ p(B) = \frac{1}{9}$$

Propriétés.

- 1. La somme des probabilités d'obtenir chaque issue est égale à 1.
- 2. Soit A un événement. La probabilité de l'événement contraire de A vaut : $p(\overline{A}) = 1 p(A)$

35

Exemple.

- Les probabilités trouvées dans l'exemple précédent sont toutes comprises entre 0 et 1.
- $p(N) + p(G) + p(B) = \frac{5}{9} + \frac{3}{9} + \frac{1}{9} = \frac{9}{9} = 1$ La probabilité de tirer une boule orange vaut 0 puisqu'il n'y a pas de boule orange dans le tirage.
- La probabilité de tirer une boule noire ou grise ou blanche vaut 1.
- Soit A l'événement : « obtenir une boule grise ». Son événement contraire est \overline{A} « obtenir une boule noire ou blanche ».

$$p(\overline{A}) = 1 - p(A) = 1 - \frac{3}{9} = \frac{9}{9} - \frac{3}{9} = \frac{6}{9} = \frac{2}{3}$$

II) Expérience aléatoire à deux épreuves

Méthode. Expérience à deux épreuves.

On dispose d'un dé cubique équilibré. On lance deux fois ce dé.

1. Quelle est la probabilité d'obtenir deux fois le « 1 »?

	1	2	3	4	5	6
1	(1;1)	(2;1)	(3;1)	(4;1)	(5;1)	(6;1)
2	(1;2)	(2;2)	(3;2)	(4;2)	(5;2)	(6;2)
3	(1;3)	(2;3)	(3;3)	(4;3)	(5;3)	(6;3)
4	(1;4)	(2;4)	(3;4)	(4;4)	(5;4)	(6;4)
5	(1;5)	(2;5)	(3;5)	(4;5)	(5;5)	(6;5)
6	(1;6)	(2;6)	(3;6)	(4;6)	(5;6)	(6;6)

Une seule case sur les 36 correspond à l'événement « obtenir deux fois le 1 ». La probabilité de rencontrer deux fois le 1 est donc de $\frac{1}{36}$

2. Quelle est la probabilité d'obtenir un chiffre autre que 1, puis le chiffre 1?

	1	2	3	4	5	6
1	(1;1)	(2;1)	(3;1)	(4;1)	(5;1)	(6;1)
2	(1;2)	(2;2)	(3;2)	(4;2)	(5;2)	(6;2)
3	(1;3)	(2;3)	(3;3)	(4;3)	(5;3)	(6;3)
4	(1;4)	(2;4)	(3;4)	(4;4)	(5;4)	(6;4)
5	(1;5)	(2;5)	(3;5)	(4;5)	(5;5)	(6;5)
6	(1;6)	(2;6)	(3;6)	(4;6)	(5;6)	(6;6)

5 sur les 36 correspondent à cet événement. La probabilité d'obtenir un chiffre autre que 1, puis le chiffre 1 est donc de $\frac{5}{36}$

Grandeurs et mesures

I) Grandeur produit, grandeur quotient

Définition. On appelle grandeur produit une grandeur formée par le produit de plusieurs unités.

Exemple.

- 1. L'aire d'un rectangle \mathcal{A} (en $cm^2 = cm \times cm$) s'exprime en fonction de sa longueur L (en cm) et de sa largeur l (en cm) avec la formule : $\mathcal{A} = L \times l$.
- 2. L'énergie consommée E (en watt-heure : Wh) s'exprime en fonction de la puissance P (en watt : W) et du temps t (en heure : h) avec la formule $E = P \times t$.

Définition. On appelle grandeur quotient une grandeur formée par le produit de plusieurs unités.

Exemple.

- 1. La vitesse moyenne v (en km/h) s'exprime en fonction de la distance d (en km) et du temps t (en h) : $v = \frac{d}{t}$.
- 2. Le débit d (en L/mn) s'exprime en fonction du volume V (en L) et du temps t (en mn) : $d = \frac{V}{t}$.

II) Vitesse moyenne, Distance, Temps

1. Généralités

Définition. Le mouvement d'un objet est dit **uniforme** si la durée du parcours est proportionnelle à la distance parcourue. Dans ce cas, le coefficient de proportionnalité est appelé vitesse moyenne du mobile (cf. 3ème formule).

Formules. On note d la distance, t la durée et v la vitesse moyenne.

$$v = \frac{d}{t}$$
 ; $t = \frac{d}{v}$; $d = v \times t$

Schéma mnémotechnique.

Rappel.

2. Exemples et méthodes

Méthode 1. Calculer une vitesse connaissant la distance et le temps.

Un aigle parcourt $1, 2 \, km$ en $30 \, s$. Quelle est sa vitesse en m/s?

- 1. On écrit la formule. Puisqu'on cherche une vitesse, on utilisera la formule : $v = \frac{d}{t}$.
- 2. On veut un résultat en m/s. On convertit alors 1, 2km en m (inutile de convertir $30 \, \mathrm{sici}$).

$$1,2 \, km = 1,2 \times 1000 = 1200 \, m$$

3. On remplace dans la formule et on calcule.

$$v = \frac{d}{t} = \frac{1200}{30} = 40$$

4. On conclut : l'aigle a une vitesse de $40 \, m/s$.

Méthode 2. Calculer une distance connaissant la vitesse et le temps.

Une voiture roule à la vitesse moyenne de $65 \, km/h$ pendant 1h12mn. Calculer la distance parcourue en km.

- 1. On écrit la formule. Puisqu'on cherche une distance, on utilisera la formule : $d = v \times t$.
- 2. On veut un résultat en km sachant que la vitesse est en km/h et le temps en heures et minutes. Il faut donc convertir 1h12mn en h.

$$1h12mn = 1h + 12mn$$
$$= 1h + \frac{12}{60}h$$
$$= 1h + 0, 2h$$
$$= 1, 2h$$

3. On remplace dans la formule et on calcule.

$$d = v \times t = 65 \times 1, 2 = 78$$

4. On conclut: la voiture a parcouru $78 \, km$.

Méthode 3. Calculer un temps connaissant la distance et la vitesse.

Un avion a parcouru $3\,400\,km$ à une vitesse moyenne de $800\,km/h$. Calculer la durée du vol en heures et minutes.

- 1. On écrit la formule. Puisqu'on cherche un temps, on utilisera la formule : $t = \frac{d}{v}$.
- 2. Rien à convertir ici : on a une bonne concordance des unités. On remplace et on calcule.

$$t = \frac{d}{v} = \frac{3400}{800} = 4,25$$

3. La durée du vol est de $4,25\,h$. Il faut convertir ce résultat en heures-minutes.

$$4,25h = 4h + 0,25h$$

= $4h + 0,25 \times 60mn$
= $4h + 15mn$
= $4h15mn$

4. On conclut : la durée du vol est de 4h15mn.

III) Longueurs, Aires, Volumes

Sections et repérage

I) Sections

1. Section d'un pavé droit par un plan

- La section d'un pavé droit par un plan P parallèle à une face est un rectangle.
- La section d'un pavé droit par un plan P parallèle à une arête est un rectangle.

P parallèle à la face ADHE

P parallèle à l'arête [AE]

2. Section d'un cylindre de révolution par un plan

- La section d'un cylindre de révolution de rayon R par un plan perpendiculaire à l'axe est un cercle de rayon R et dont le centre appartient à cet axe.
- La section d'un cylindre de révolution par un plan parallèle à l'axe est un rectangle.

3. Section d'une pyramide ou d'un cône par un plan

- La section d'une pyramide par un plan parallèle à la base est un polygone de même forme que la base : ses côtés sont parallèles à ceux de la base.
- La section d'un cône de révolution par un plan parallèle à la base est un cercle dont le centre appartient à la hauteur du cône.

Remarque.

- 1. Puisque ABCD est un carré, alors IJKL est aussi un carré et (IJ)//(AB); (JK)//(BC); etc.
- 2. La section d'une pyramide ou d'un cône de révolution par un plan parallèle à la base est une réduction du polygone ou du cercle de la base.

II) Repérage

