PROBLEMA DOLLA SOLEZIONE DOLLG ATTIVITA' CON PESI

SISTEMA DI ATTIVITA' CON PESO (S, 9, f, ~)

- · S = {1, ..., m}
- · s: 5 1R+
- · f: 5 12+

TALI CHE Si < fi PER ie S

· W: S - IR (FUNZIONE PESO O VALORE)

IL PROBLEMA DOLLA SOLEZIONE DELLE ATTIVITÀ CON PESI

CONSISTE NEL DETERMINARE UN SOTTOINSIEME ASS

DI ATTIVITÀ NUTUAMENTE COMPATIBILI TALE CHE

IL PESO DI A DEFINITO DA W(A):= Z W(i)

IGA MASSIMO

できりのかり

- · SE W(i)=1, PER OGNI ieS, SI OTTIENE IL
 PROBLEMA DECLA SELEZIONE DELLE ATTIVITÀ (SENZA PESI)
- · SE $w(i) = f_i s_i$, PGR OGNI ie S, SI OTTIENE

 LA VARIANTE DEL PROBLEMA DECLA SELEZIONE DELLE

 ATTIVITÀ IN CUI SI INTENDE MASSIMIZZARE IL TEMPO

 COMPLESSIVO DELL'IMPIEGO DELLA RISORSA.
- SUPPORREMO CHE VALGA
 ∫, ≤ f₂ ≤ ... ≤ f๓

PGR IL PROBLEMA DELLA SELEZIONE DELLE ATTIVITÀ CON PESI L'APPROCCIO GREEDY IN GENERALE NON VALE

ES.

Scelta greedy: attività che termina per prima ... FAIL!

Scelta greedy: attività di peso massimo ... FAIL!

DATO UN SISTEMA DI ATTIVITA' (S, s, f),

OVE $S = \{1, ..., n\}$ E $f_1 \le f_2 \le ... \le f_m$, E'

UTILE CALCOLARE LA FUNZIONE

p: $S \longrightarrow S \cup \{0\}$

DEFINITA DA

alimilà compatible con)

de peadon) adainment

p(j):=

max {i | i < j & ai E a; sono compatible)

ALTRIMENTI

PER OGNI j E S.

· LA FUNZIONE p PUÒ ESSERE CALCOLATA IN
TEMPO (M Gon)

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

j	p(j)	
0	-	
ı	0	
2	0	
3	0	
4	_	
5	0	
6	2	
7	3	
8	5	

SOLUZIONE MEDIANTE PROGRAMMAZIONE DINAMICA

OPT(j):= VALORE DI UNA SOLUZIONE OPTIMA AL SOTTOPROBLEMA $\{1,2,...,j\}$

SOTTO STRUTTURA OTTIMA

SIA A UNA SOLUZIONE OPTIMA AL SOTTOPROBLEMA { 1,..., j }

CASO j & A:

A E' UNA SOLUZIONE OTTIMA

AL SOTTOPROBLEMA { 1,..., j-1}

PERTANTO OPT (j) PUD ESSERE DEFINITO RICORSIVAMENTE
COME SEGUE:

$$OPT(j) = \begin{cases} O \\ m_{pr} \left(w(j) + OPT(p(j)) \right), OPT(j-1) \right)$$
 ALTRIMENTI

SOLUZIONE RICORSIVA

SOLUZIONE BOTTOM-UP (PROGRAMMAZIONE DINAMICA)

COMPLESSITÀ: $\mathcal{O}(n)$

PREPROCESSING: $\mathcal{O}(n \log n)$ ordinamento delle attività + calcolo della funzione p

Scely, I mux tra I pero de d3=6 e el pero fire ad d2=32 w(j) p(j) opt[j] Time Uda marsimo

COSTRUZIONE DI UNA SOLUZIONE OTTIMA

COMPLESSITA': O(m)

j	w(j)	p(j)	opt[j]	
0	1	1	0	
1	3	0	3	
2	2	0	3	
3	6	0	6	
4	3	J	6	
5	5	0	6	
6	4	2	7	
7	4	3	10	
7	3	5	10	

$$w(j) + OPT[P(j)] > OPT[j-1]$$
 $w(8) + OPT[P(8)] > OPT[7]$
 $w(7) + OPT[P(7)] > OPT[6] \longrightarrow PRINT 7$

$$G$$
 + 0
 $W(3)$ + OPT[P(3)] > OPT[2] - PRINT 3
 $j=0$
 $A = \{3,7\}$ E' UNA SOLUZIONE OTTIMA

$$W(II) + OPT(p(II)) > OPT(IO) \longrightarrow PRINT II$$

$$W(9) + OPT(p(9)) \neq OPT(8)$$

$$W(8) + OPT(p(8)) \neq OPT(7)$$

$$W(7) + OPT(p(7)) > OPT(6) \longrightarrow PRINT 7$$

j	w(j)	P(j)	OPT(j)	
0	0	0	0	
1	3	0	3	
2	2	0	3	
3	6	0	6	—
4	2	2	6	
5	5	0	6	
6	4	2	7	
7	4	3	10	
9	3	5	10	
9	4	5	10	—
10	n	0	11	
П	2	9	12	←

$$W(3) + OPT(p(3)) > OPT(2) \longrightarrow PRINT 3$$

$$P(3) = P \quad STOP$$

$$A = \{3, 7, 11\} \quad E' \quad VNA \quad SOLUZIONE \quad OTTIMA \quad PER IL SISTEMA \quad (S, s, f, w)$$