## 1、实验名称及目的

基础实验:调节 PID 控制器的相关参数改善系统控制性能,并记录超调量和调节时间,得到一组满意的参数。在得到满意参数后,对系统进行扫频以绘制 Bode 图,观察系统幅频响应、相频响应曲线,分析其稳定裕度。

## 2、实验效果

调节 PID 控制器的参数,尝试得到一组满意的参数,并使用 MATLAB 系统分析工具得到整 个开环系统的 Bode 图,查看相应闭环系统的相位裕度和幅值裕度。

### 3、文件目录

| 文件夹/文件名称         |                           | 说明               |  |
|------------------|---------------------------|------------------|--|
| icon             | Init.m                    | 模型初始化参数文件。       |  |
|                  | FlightGear.png            | FlightGear 硬件图片。 |  |
|                  | pixhawk.png               | Pixhawk 硬件图片。    |  |
|                  | SupportedVehicleTypes.pdf | 机架类型修改说明文件。      |  |
|                  | F450.png                  | F450 飞机模型图片。     |  |
| PosCtrl_tune.slx |                           | Simulink 仿真模型文件。 |  |
| Init_control.m   |                           | 控制器初始化参数文件。      |  |

## 4、运行环境

| 序号   | 软件要求             | 硬件要求                  |    |
|------|------------------|-----------------------|----|
| 14.4 | 私什女水             | 名称                    | 数量 |
| 1    | Windows 10 及以上版本 | 笔记本/台式电脑 <sup>①</sup> | 1  |
| 2    | RflySim 平台免费版    | 卓翼 H7 飞控 <sup>②</sup> | 1  |
| 3    | MATLAB 2017B 及以上 | 数据线、杜邦线等              | 若干 |

- ①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 须保证平台安装时的编译命令为: droneyee\_zyfc-h7\_default, 固件版本为: 1.12.1。其他配套飞控请见: <a href="http://doc.rflysim.com/hardware.html">http://doc.rflysim.com/hardware.html</a>
- ③: 本实验演示所使用的遥控器为: 福斯 FS-i6S、配套接收器为: FS-iA6B。遥控器相关配置见: <a href="http://doc.rflysim.com/hardware.html">http://doc.rflysim.com/hardware.html</a>

## 5、实验步骤

#### Step 1:

### 模型初始设置

PID 参数步骤与姿态控制的参数调试步骤相同。先调试内环速度环,再调试外环的位置

环,先调高度再调水平位置。调试文件在"e6-PositionCtrl\PID-Config\e6.2\PosCtrl\_tune.slx"文件夹中。 调节参数的初始状态应是飞行器处于高空悬停状态,将初始高度设置为 100m, 电机的初始转速设置为 557.1420rad/s,这个初始条件对应于飞行器在空中 100m 处悬停。修改"Init\_control.m"文件中的对应参数如下。

```
ModelInit_PosE = [0, 0, -100];
ModelInit_VelB = [0, 0, 0];
ModelInit_AngEuler = [0, 0, 0];
ModelInit_RateB = [0, 0, 0];
ModelInit_Rads = 557.142;
```

#### Step 2:

#### 速度控制环参数调节:

首先调节内环 PID 参数。 打开 "e6-PositionCtrl\PID-Config\e6.2\tune\PosControl\_tune.sl x" 文件中的 "Control System" 子模块中的 "position\_control" 模块,即为位置控制系统模型。将其中 x 通道的速度期望部分换成阶跃输入,并将输入输出设置为 "Enable Data lo gging"。





在"Init\_control.m"文件中修改内环 PID 参数的值。先设定比例项参数,积分和微分参数设为 0, Kvxp 参数设置分别为 1.5、2.0 和 2.5,下图所示。



依次运行"Init\_control.m"文件。点击 Simulink 的 "Run"按钮开始仿真,在"Simul ation Data Inspector"中查看输入输出波形,如下图所示。



由小到大逐渐增大比例项系数值,得到阶跃响 应曲线如图。



### Step 3:

## 位置环参数调节:

使用步骤二中得到的速度环参数,在 "PosControl\_tune.slx" 文件中,将 "x\_desired" 换为阶跃输入,并将阶跃输入和 "x" 信号线设置为 "Enable Data Logging",如下图所示。



如下图在 "Init\_control.m" 由小增大位置环比例项系数,即 "Kpxp" 的值,分别为 0.6、 0.8、 1.0 和 1.2。



在"Simulation Data Inspector"观察阶跃响应。如下图



## Step 4:

# 扫频得到 Bode 图:

设定信号输入输出点。将"x\_desired"输入线设为"Open-loop Input"," x "设置为"Open-loop Output"如下图所示。



得到 Bode 图如下图。



# 6、参考文献

- [1]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版社,2018.
- [2]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社, 2020.