Traffic Management & Traffic Engineering

Outline

- Economic principles
- Traffic classes
- Time scales
- Mechanisms
- Some open problems

Traffic classes

- Networks should match offered service to source requirements (corresponds to utility functions)
- Example: telnet requires low bandwidth and low delay
 - utility increases with decrease in delay
 - network should provide a low-delay service
 - or, telnet belongs to the low-delay traffic class
- Traffic classes encompass both user requirements and network service offerings
 - Applications match the traffic to the service offering
 - Request resources from the network accordingly

Traffic classes - details

- A basic division: guaranteed service and best effort
 - like flying with reservation or standby

Guaranteed-service (GS)

- utility is zero unless app gets a minimum level of service quality
 - bandwidth, delay, loss
- open-loop flow control with admission control (reserve resources)
- e.g. telephony, remote sensing, interactive multiplayer games

Best-effort (BE)

- send and pray
- ◆ closed-loop flow control
- ◆ e.g. email, net news

GS vs. BE (cont.)

Degree of synchrony

- time scale at which peer endpoints interact
- ◆ GS are typically *synchronous* or *interactive*
 - interact on the timescale of a round-trip time
- ◆ BE are typically *asynchronous* or *non-interactive*
 - interact on longer time scales
 - e.g. e-mail

Sensitivity to time and delay

- ◆ GS apps are *real-time*
 - performance depends on wall clock
- ◆ BE apps are typically indifferent to real time
 - automatically scale back during overload

Best Effort (Flow Control)

Explicit

- ◆ Network tells the rate at which the source should send the packets
- Network elements may compute connection fair-share based on Max-Min allocation (e.g, ABR service in ATM Networks)
- ◆ Or it can be based on 1-bit congestion indicator (e.g., EFCI (Explicit Forward Congestion Indication) in ABR of ATM Networks)

Implicit

◆ Packet drop is detected by the source and adjusts the window transmission (e.g., TCP)

No flow control

- Packets are dropped by the network nodes
- ◆ Sources may not react (e.g, UDP, UBR)
- Problems are caused if these two types are mixed!!

Traffic subclasses (roadmap)

- ATM (Asynchronous Transfer Mode) Forum
 - based on sensitivity to bandwidth
 - **♦** GS
 - CBR (Constant Bit Rate)
 - VBR (Variable Bit Rate)
 - ◆ BE
 - ABR (Available Bit Rate)
 - UBR (Unspecified Bit Rate)

- IETF (Internet Engineering Task Force) (ietf.org)
 - based on ToS (Type-of-Service)
- IETF based on RSVP (Resource Reservation Protocol)
 - based on sensitivity to delay
 - **♦** GS
 - Intolerant, tolerant
 - ◆ BE
 - interactive burst, interactive bulk, asynchronous bulk
- IETF based in DiffServ (Differentiated Services)
 - ◆ PHB (Per-Hop Behavior)
 - ◆ EF, 4 AFs and BE

ATM Applications and Network Objectives

ATM Vision

The Ultimate Integrated Services Network

- ATM network moves cells (fixed length packets) with low delay and low delay variation at high speeds
- Devices at ends translate (e.g., segment and reassemble) between cells and original traffic

ATM Cell (simplified)

Header	Payload
5 bytes	48 bytes

 Header contains information to allow cell to be forwarded to its destination

ATM Applications and Network Objectives

- All traffic carried via the same network elements (potentially multi-vendor)
- Optimize use of network resources
- Meet stringent QoS requirements specific to each application
- Protects networks and users to achieve network performance objectives

Virtual Connections

The ATM Forum © Copyright 1999 The ATM Forum

		Connection	ii iabie	
	Port	VPI/VCI	Port	VPI/VC
/ideo	1	0/37	3	0/76
Data	1	0/42	5	0/52
/ideo	2	0/37	6	0/22
/oice	2	0/78	4	0/88

Virtual Paths and Virtual Channels

Physical Link

ATM Service Architecture Five Service Categories

CBR

Constant Bit Rate

rt-VBR

Real-Time Variable Bit Rate

nrt-VBR

Non-Real Time Variable Bit Rate

ABR

Available Bit Rate

UBR

Unspecified Bit Rate

<u>Example</u>

-voice

-video

-frame relay

-data

-data

ATM Forum Service Categories

Attribute	ATM Layer Services Categories					
, ittilbate	CBR	rt-VBR	nrt-VBR	ABR	UBR	
CLR	specified			network specific	unspecified	
CTD and CDV	sp	ecified	unspecified	unspecified	unspecified	
PCR and CDVT 1	specified			specified	specified	
SCR and BT	n/a specified		n/a			
MCR	n/a			specified	n/a	
Feedback	unspecified			specified	unspecified	

Notes:

1. CVDT is not signalled, it is network specific.

Traffic Contract Quality of Service (QoS)

- Rate Guarantees
 - On PCR, SCR, MCR, and ACR
- Delay Guarantees
 - On Cell Transfer Delay CTD
 - On Cell Delay Variation CDV
- Loss Guarantees
 - On Cell Loss Ratio CLR (Lost cells/Total cells)

Virtual Paths and Virtual Channels

ATM Switch or Network

- Bundles of Virtual Channels are switched via Virtual Paths
- Virtual Path service from a carrier allows reconfiguration of Virtual Channels without service orders to carrier

ATM Basics

- Logical or Virtual Connection
- Connection is first established using a signaling protocol
 - Route from the source to the destination is chosen
 - The same route is used for all cells (fixed size packets) of the connection
- No routing decision for every cell (they are switched in the same path)

CLP = Cell Loss Priority

Virtual Circuits in ATM

Virtual Circuit Identifier is represented jointly by:

- ◆ Virtual Channel Identifier (VCI)
- ◆ Virtual Path Identifier (VPI)

Virtual Channel (VC)

- ◆ Path for cell associated with a connection
- ◆ Supports transportation of a data stream
- ◆ Each VC is assigned a unique VCI on a link

Virtual Channels in ATM

Virtual Path (VP)

- Grouping of virtual channels on a physical link
- Switching can be performed on the path basis:
 - ◆ reduced overheads
- Each virtual path is assigned Virtual Path Identifier (VPI)

VCs In ATM

Virtual Path Switch (VP - Switch)

VP / VC Switch

ATM Network Example

- Each connection has its own traffic descriptors such as PCR, SCR, MBS, CDVT, CLR, MCR
- A Connection Admission Control algorithm (CAC) will check for the resources at queuing points to make a decision on admissibility
- Network efficiency depends upon the CAC

ATM Forum GS subclasses

- Constant Bit Rate (CBR)
 - ◆ constant, cell-smooth traffic
 - mean and peak rate are the same
 - e.g. telephone call evenly sampled and uncompressed
 - constant bandwidth, variable quality
- Variable Bit Rate (VBR)
 - long term average with occasional bursts
 - try to minimize delay
 - can tolerate loss and higher delays than CBR
 - ◆ e.g. compressed video or audio with constant quality, variable bandwidth

ATM Forum BE subclasses

- Available Bit Rate (ABR)
 - users get whatever is available
 - zero loss if network signals (in RM cells) are obeyed
 - no guarantee on delay or bandwidth
- Unspecified Bit Rate (UBR)
 - ◆ like ABR, but no feedback
 - no guarantee on loss
 - presumably cheaper
- Guaranteed Frame Rate (GFR)
 - ◆ like UBR/ABR, expressed in terms of frame rate

ATM Attributes

- How do we describe a flow (connection) of ATM Service?
 - **♦** Service Category
 - ◆ Traffic Parameters or descriptors
 - ◆ QoS parameters
 - ◆ Congestion (for ABR)
 - ◆ Other (for UBR)
 - ◆ Cell Loss Priority (CLP=0 or CLP=0+1)
- Connections are signaled with various parameters
- A Connection Admission Control (CAC) procedure checks for resources in the network
- If connection is accepted, a "traffic contract" is awarded to the user (Service Level Agreement)

Traffic Descriptors or Parameters

- Connection Traffic Descriptor
 - ◆ *Source Traffic Descriptor*: PCR, SCR, MBS, MCR, MFS
 - Cell Delay Variation Tolerance (τ): upper bound on amount of cell delay that is introduced by the network interface and the UNI (due to interleaving, physical layer overhead, multiplexing, etc.)
 - ◆ <u>Conformance Definition</u>: unambiguous specification of conforming cells of a connection at the User-Network-Interface UNI (a policing function is used to check for conformance such as Generic Cell Rate Algorithm (GCRA))

Traffic Parameters (Source Traffic Descriptor)

- Peak Cell Rate (PCR): upper bound on traffic submitted by source (PCR = 1/T, where T = minimum cell spacing)
- Sustainable Cell Rate (SCR): upper bound on "average rate" of traffic submitted by source (over a larger T)
- Maximum Burst Size (MBS): maximum number of cells sent continuously at Peak Cell Rate (PCR)
- Minimum Cell Rate (MCR): used with ABR, and GFR minimum cell rate requested, access to unused capacity up to PCR (elastic capacity = PCR-MCR)
- Maximum Frame Size (MFS): maximum size of a frame in cells available for GFR service

Cell Rates

Peak Cell Rate (PCR), Line Cell Rate (LCR)

Sustained Cell Rate (SCR) = PCR*(Ton/Ton+Toff)

Quality of Service

- Cell Transfer Delay (CTD)
- Cell Delay Variation (CDV)

Cell Transfer Delay Probability Density

QoS Parameters

- Peak-to-peak cell delay variation (CDV): acceptable delay variation at destination. The peak-to-peak CDV is the (1α) quantile of the CTD minus the fixed CTD that could be experienced by any delivered cell on a connection during the entire connection holding time.
- Maximum Cell Transfer Delay (maxCTD): maximum time between transmission of first bit of a cell at the source UNI to receipt of its last bit at the destination UNI
- <u>Cell Loss Ratio</u>: ratio of lost cells to total transmitted cells on a connection = <u>Lost Cells/Total Transmitted Cells</u>

Other Attributes

- Congestion Control
 - defined only for ABR service category
 - uses network feedback controls
 - ABR flow control mechanism (more later)
- Other Attributes (introduced July 2000)
 - Behavior class selector (BCS):
 - for IP differentiated services (DiffServ)
 - provides for different levels of service among UBR connections
 - implementation dependent, no guidance in specs
 - Minimum desired cell rate (MDCR):
 - UBR application minimum capacity objective

Attributes of Each Service Category

Г	ATM Layer Service Category						
Attribute	CBR	rt-VBR	nrt-VBR	UBR	ABR	GFR	
Traffic Parameters ⁴							
PCR, CDVT ⁵		Specified			Specified ³	Specified	
SCR, MBS, CDVT ⁵	N/A Specified				N/A		
MCR	N/A			Specified	N/A		
MCR, MBS, MFS, CDVT5	N/A					Specified	
		QoS I	Parameters				
Peak-to-peak CDV	Specified Unspecified						
Max CTD	Specified Unspecified						
CLR	Specified U			Unspecified	See note 1	See note 6	
Congestion Control							
Feedback	Unspecified				Specified	Unspecified	
Other Attributes							
BCS	Unspecified			Optional	Unspecified		
MDCR ⁷	N/A			Optional	N/A		

Service Paradigm

- Quantitative Commitments
 - Sets explicit values
 - Ensures service quality through resource allocation and traffic policing
- Qualitative Commitments
 - ◆ Relative measure and no explicit guarantees
 - ◆ Some unspecified level of quality through "network engineering"

Quantitative Commitments

- Generally connection oriented transport
- Network nodes maintain per-flow state info
- QoS (or GOS) requirements of each connection is explicitly specified and signaled
- Network enforces traffic regulation (policing, shaping) if necessary and allocates resources for each connection
- Examples: Voice networks (POTS), ATM, FR
- Expensive and under-utilized

Qualitative Commitments

- Generally connection less transport
- no per-flow state info is maintained due to flow aggregation
- QoS requirements are not explicitly specified
- Network may not enforce traffic regulation
- May allocate resources for logical groups (such as VPN)
- Examples: IP, LANs
- Cheap and over-utilized

QoS Building Blocks

Backbone supporting QoS: speed and scale

Packet / Service classification (sorting)

Bandwidth management and admission control

Queue management

Congestion management

Granular measurements

Functions Needed

- Admission control some way to limit usage relative to resources.
- Packet scheduling some way to treat different packets differently.
- Classifier mechanism some way to sort packets into different treatment groups.
- Policies and rules for allocating resources.

IETF (Internet Engineering Task Force)

- Internet currently provides only single class of "best-effort" service.
 - No admission control and no assurances about delivery
- Existing applications are elastic.
 - ◆ Tolerate delays and losses
 - ◆ Can adapt to congestion
- Future "real-time" applications may be inelastic.
- Should we modify these applications to be more adaptive or should we modify the Internet to support inelastic behavior?

IETF ToS (1-byte Type-of-Service)

- Bits 0-2: Precedence.
- Bit 3: 0 = Normal Delay, 1 = Low Delay.
- Bits 4: 0 = Normal Throughput, 1 = High Throughput.
- Bits 5: 0 = Normal Relibility, 1 = High Relibility.
- Bit 6-7: Reserved for Future Use

IETF int-serv (Integrated Services)

- Focus on per-flow QoS.
 - ◆ Support specific applications such as video streaming.
 - Based on mathematical guarantees.
- Many concerns:
 - ◆ Complexity
 - **♦** Scalability
 - ◆ Business model
 - **♦** Charging
- Uses RSVP (Resource-Reservation Protocol)
 - ◆ To signal QoS requirements

IETF int-serv (Integrated Services)

Guaranteed service

- ◆ Targets hard real-time applications.
- ◆ User specifies traffic characteristics and a service requirement.
- Requires admission control at each of the routers.
- ◆ Can mathematically guarantee bandwidth, delay, and jitter.

Controlled load.

- ◆ Targets applications that can adapt to network conditions within a certain performance window.
- User specifies traffic characteristics and bandwidth.
- Requires admission control at each of the routers.
- ◆ Guarantee not as strong as with the guaranteed service.
 - e.g., measurement-based admission control.

Best effort

RSVP

- Sender sends PATH message to network
- 2. PATH leads data through the network
- 3. Routers install per-flow state
- 4. Receiver responds with RESV
- 5. RESV follows PATH trail back towards sender
- 6. Routers accept resource request (commit resources to flow) or reject resource request
- 7. Data is handled in network elements

IETF GS subclasses

Tolerant GS

- nominal mean delay, but can tolerate "occasional" variation
- not specified what this means exactly
- ◆ uses controlled-load service
- even at "high loads", admission control assures a source that its service "does not suffer"
- it really is this imprecise!

Intolerant GS

- need a worst case delay bound
- equivalent to CBR+VBR in ATM Forum model

IETF BE subclasses

- Interactive burst
 - bounded asynchronous service, where bound is qualitative, but pretty tight
 - e.g. paging, messaging, email
- Interactive bulk
 - bulk, but a human is waiting for the result
 - ♦ e.g. FTP
- Asynchronous bulk
 - ♦ junk traffic
 - e.g netnews

IETF Diff-Serv (Differentiated Services)

- Intended to address the following difficulties with Intserv and RSVP;
- Scalability: maintaining states by routers in high speed networks is difficult due to the very large number of flows
- Flexible Service Models: Intserv has only two classes, want to provide more qualitative service classes; want to provide 'relative' service distinction (Platinum, Gold, Silver, ...)
- Simpler signaling: (than RSVP) many applications and users may only want to specify a more qualitative notion of service

Diffserv PHB (Per-Hop-Behavior)

- Packet is marked in the Type of Service (TOS) in IPv4, and Traffic Class in IPv6.
- 6 bits used for Differentiated Service Code Point (DSCP) and determine PHB that the packet will receive.
 - ◆ EF, 4 classes of AF, each with 3 drop priorities (AF11, AF12, AF13, AF21, AF22, AF23, AF31, AF32, AF33, AF41, AF42, AF43) and Best-Effort (BE)
- 2 bits are currently unused.

PHB: Class Selector

- Derived from IP Precedence values
- 6 bit diff-serv code point (DSCP) determines per-hop behavior of packet treatment
 - ◆ Expedited Forwarding (EF): low loss and latency
 - ◆ Assured Forwarding (AF): 4 classes, 3 drop precedence
 - ◆ Best Effort (BE): classical IP
- No absolute guarantees

DiffServ

- Routers configured for certain PHBs (Per Hop Behavior)
- Resources are allocated to PHBs
- 3. Edge routers are configured to mark DSCP (requests PHB) based on classification information
- 4. Traffic arriving at edge router marked with DSCP
- 5. Traffic in core routers go to PHB requested by DSCP

Diff-Serv Network Architecture

- Packet classification
- Bandwidth management
- L3 metering
- Security filtering
- Access aggregation

Backbone Functions

- High-speed switching and transport
- QoS enforcement
- QoS interworking

Packet Classification

- Up to six traffic classes via ToS precedence bits
- Classification by physical port, IP address, application, IP protocol, etc.
- Network or external assignment

Multi-field Packet Classification

	L3-DA	L3-SA		L4-PROT	
	Field 1	Field 2	0 0 0	Field k	Action
Rule 1	5.3.40.0/21	2.13.8.11/32		UDP	A_1
Rule 2	5.168.3.0/24	152.133.0.0/16		ТСР	A_2
Rule N	5.168.0.0/16	152.0.0.0/8		ANY	A _N

Example: packet (5.168.3.32, 152.133.171.71, ..., TCP)

Packet Classification: Find the action associated with the highest priority rule matching an incoming packet header.

Formal Problem Definition

Given a classifier C with N rules, R_j , $1 \le j \le N$, where R_j consists of three entities:

- 1) A regular expression $R_j[i]$, $1 \le i \le d$, on each of the d header fields,
- 2) A number, $pri(R_j)$, indicating the priority of the rule in the classifier, and
- 3) An action, referred to as $action(R_j)$.

For an incoming packet P with the header considered as a d-tuple of points $(P_1, P_2, ..., P_d)$, the d-dimensional packet classification problem is to find the rule R_m with the highest priority among all the rules R_j matching the d-tuple; i.e., $pri(R_m) > pri(R_j)$, $\forall j \neq m, 1 \leq j \leq N$, such that P_i matches $R_j[i]$, $1 \leq i \leq d$. We call rule R_m the best matching rule for packet P.

Routing Lookup: Instance of 1D Classification

- One-dimension (destination address)
- Forwarding table ≡ classifier
- Routing table entry ≡ rule
- Outgoing interface = action
- Prefix-length ≡ priority

Example 4D Classifier

Rule	L3-DA	L3-5A	L4- DP	L4- PROT	Action
R1	152.163.190.69/255. 255.255.255	152.163.80.11/25 5.255.255.255	*	*	Deny
R2	152.168.3/255.255. 255	152.163.200.157/ 255.255.255.255	eq www	udp	Deny
R3	152.168.3/255.255. 255	152.163.200.157/ 255.255.255.255	range 20-21	udp	Permit
R4	152.168.3/255.255. 255	152.163.200.157/ 255.255.255.255	eq www	tcp	Deny
R5	*	*	*	*	Deny

Example Classification Results

Pkt Hdr	L3-DA	L3-5A	L4- DP	L4- PROT	Rule, Action
P1	152.163.190.69	152.163.80.11	www	tcp	R1, Deny
P2	152.168.3.21	152.163.200.157	www	udp	R2, Deny

Classification algorithms

Types

- ◆ Linear search
- Associative search
- ◆ Trie-based techniques
- **♦** Crossproducting
- ♦ Heuristic algorithms

Algorithms So far

- ◆ Good for two fields, but do not scale to more than two fields, OR
- ◆ Good for very small classifiers (< 50 rules) only, OR
- Have non-deterministic classification time, OR
- ◆ Either too slow or consume too much storage

DiffServ Routers

Edge Router/Host Functions

- Classification: marks packets according to classification rules to be specified.
- Metering: checks whether the traffic falls within the negotiated profile.
- Marking: marks traffic that falls within profile.
- Conditioning: delays and then forwards, discards, or remarks other traffic.

Core Functions

Forwarding: according to "Per-Hop-Behavior" or PHB specified for the particular packet class; such PHB is strictly based on class marking (no other header fields can be used to influence PHB).

BIG ADVANTAGE:

No state info to be maintained by routers!

Forwarding (PHB)

- PHB results in a different observable (measurable) forwarding performance behavior.
- PHB does not specify what mechanisms to use to ensure required PHB performance behavior.
- Examples:
 - ◆ Class A gets x% of outgoing link bandwidth over time intervals of a specified length.
 - ◆ Class A packets leave first before packets from class B.

Forwarding (PHB)

Expedited Forwarding (EF):

- Guarantees a certain minimum rate for the EF traffic.
- ◆ Implies isolation: guarantee for the EF traffic should not be influenced by the other traffic classes.
- ◆ Admitted based on peak rate.
- ◆ Non-conformant traffic is dropped or shaped.
- Possible service: providing a virtual wire.

Forwarding (PHB)

Assured Forwarding (AF):

- ◆ AF defines 4 classes with some bandwidth and buffers allocated to them.
- ◆ The intent is that it will be used to implement services that differ relative to each other (e.g., gold, silver,...).
- ◆ Within each class, there are three drop priorities, which affect which packets will get dropped first if there is congestion.
- ◆ Lots of studies on how these classes and drop priorities interact with TCP flow control.
- ◆ Non-conformant traffic is remarked.

Example of EF: A Virtual Leased Line Service

- Service offers users a dedicated traffic pipe.
 - Guaranteed bandwidth between two points.
 - ◆ Very low latency and jitter since there should be no queuing delay (peak rate allocation).
- Admission control makes sure that all links in the network core have sufficient EF bandwidth.
 - ◆ Simple case: sum of all virtual link bandwidth is less than the capacity of the slowest link.
- Traffic enforcement for EF traffic limits how much EF traffic enters the network.

Differentiated Services Issues

- The key to making Diffserv work is bandwidth management in the network core.
 - ◆ Simple for simple services such as the virtual pipe, but it is much more challenging for complex service level agreements.
 - ◆ Notion of a "bandwidth broker" that manages the core network bandwidth.
- Definition of end-to-end services for paths that cross networks with different forwarding behaviors
 - ◆ Some packets will be handled differently in different routers.
 - ◆ Some routers are not DiffServ capable.
- Per-Domain Behavior (PDB)

Some points to ponder

- The only thing out there is CBR and asynchronous bulk!
- There are application requirements. There are also organizational requirements (link sharing)
- Users needs QoS for other things too!
 - billing
 - privacy and security
 - reliability and availability

Outline

- Economic principles
- Traffic classes
- Time scales
- Mechanisms
- Some open problems

Time scales

- Some actions are taken once per call
 - ◆ tell network about traffic characterization and request resources
 - ◆ in ATM networks, finding a path from source to destination
- Other actions are taken during the call, every few round trip times
 - feedback flow control
- Still others are taken very rapidly, during the data transfer
 - ◆ scheduling
 - policing and regulation
- Traffic management mechanisms must deal with a range of traffic classes at a range of time scales

Summary of mechanisms at each time scale

- Less than one round-trip-time (cell or packet level)
 - ◆ Scheduling and buffer management
 - Regulation and policing
 - Policy routing (datagram networks)
- One or more round-trip-times (burst-level)
 - ◆ Feedback flow control
 - Retransmission
 - ◆ Renegotiation

Summary (cont.)

- Session (call-level)
 - **♦** Signaling
 - ◆ Admission control
 - ◆ Service pricing
 - Routing (connection-oriented networks)
- Day
 - ◆ Peak load pricing
- Weeks or months
 - ◆ Capacity planning