fishing

```
## -- Attaching packages ------ tidyverse 1.3.0 --
## v ggplot2 3.3.3
                   v purrr
                             0.3.4
## v tibble 3.1.1 v dplyr
                           1.0.5
          1.1.3
## v tidvr
                    v stringr 1.4.0
## v readr
          1.3.1
                   v forcats 0.5.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
## -- Attaching packages ------ tidymodels 0.1.3 --
               0.7.6
## v broom
                         v rsample
                                      0.0.9
## v dials
               0.0.9
                         v tune
                                       0.1.5
## v infer
               0.5.4
                         v workflows
                                       0.2.2
## v modeldata 0.1.0
                         v workflowsets 0.0.2
## v parsnip
                0.1.5
                         v yardstick
                                      0.0.8
## v recipes
                0.1.16
## -- Conflicts ------ tidymodels_conflicts() --
## x scales::discard() masks purrr::discard()
## x dplyr::filter() masks stats::filter()
## x recipes::fixed() masks stringr::fixed()
## x dplyr::lag()
                   masks stats::lag()
## x yardstick::spec() masks readr::spec()
## x recipes::step() masks stats::step()
## * Use tidymodels_prefer() to resolve common conflicts.
## gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
##
## gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
## Attaching package: 'gdata'
## The following objects are masked from 'package:dplyr':
##
##
      combine, first, last
## The following object is masked from 'package:purrr':
##
      keep
##
## The following object is masked from 'package:stats':
##
##
      nobs
## The following object is masked from 'package:utils':
##
##
      object.size
```

```
## The following object is masked from 'package:base':
##
       startsWith
##
#Let's load the data
## Parsed with column specification:
##
     year = col_double(),
##
     lake = col_character(),
##
     species = col_character(),
     grand_total = col_double(),
     comments = col_character(),
##
    region = col_character(),
##
     values = col_double()
## )
```

Some data exploratory analysis

'summarise()' has grouped output by 'year'. You can override using the '.groups' argument.

Total production throughout the years

Considering all species together and lakes separate

#It is not feasible to analyze the behaviour of each species on each lake.

10 1926 Erie Lake Whitefish

... with 8,672 more rows

```
fishing %>%
  group_by(year, lake, species) %>%
  summarise(year_production = sum(values, na.rm = T))
## 'summarise()' has grouped output by 'year', 'lake'. You can override using the '.groups' argument.
## # A tibble: 8,682 x 4
               year, lake [533]
   # Groups:
##
       year lake species
                                                year_production
                                                           <dbl>
##
      <dbl> <chr> <chr>
##
    1 1926 Erie Blue Pike
                                                           21655
    2 1926 Erie
                  Bullheads
                                                             20
                  Burbot
                                                            564
##
    3 1926 Erie
##
       1926 Erie
                  Carp
                                                           8603
##
    5
       1926 Erie
                  Channel Catfish
                                                              10
##
    6 1926 Erie
                  Channel Catfish and Bullheads
                                                            1452
##
       1926 Erie
                  Cisco
                                                           4471
##
       1926 Erie Freshwater Drum
                                                           2426
    9 1926 Erie Lake Sturgeon
                                                              64
##
```

2788

```
grand_total <- fishing %>%
  group_by(species, year) %>%
  slice_head(n = 1) %>%
  select(year, species, grand_total) %>%
```

```
drop_na() %>%
  ungroup() %>%
  group_by(species) %>%
  mutate(species_max = max(grand_total)) %>%
         #species = ifelse(species_max <= 10000, "Other", species)) %>% View()
  filter(species_max > 10000) %>%
  select(year, species, grand_total)
year_total <- grand_total %>%
  ungroup() %>%
  group_by(year) %>%
  summarise(grand_total = sum(grand_total)) %>%
  mutate(species = "Total")
grand_total <- bind_rows(grand_total, year_total)</pre>
grand_total %>%
  ggplot(aes(year, grand_total)) +
  geom_line(aes(color = species), size = 1) +
  scale_y_continuous(labels = label_number_si()) +
  labs(x = NULL,
       y = "Grand total (in pounds)",
       color = NULL,
       title = "Species that had at least one grand total of >10k")
```

Species that had at least one grand total of >10k

Let's try to predict the U.S. total production based on the production of Ohio only.

These two plots represent the data used on the model.

U.S. total production throughout the years

Considering all species and all lakes together


```
pivot_wider(names_from = region, values_from = region_production)

## 'summarise()' has grouped output by 'year'. You can override using the '.groups' argument.

# These are the regions that present at least one production of >10k,

#as shown on a previous plot.

region_production %>%
    ggplot(aes(year, `Ohio (OH)`)) +
```

Total production of the region of Ohio

title = "Total production of the region of Ohio",
subtitle = "Considering all species together")

scale_y_continuous(labels = label_number_si()) +
labs(x = NULL, y = "Production (in pounds)",

Considering all species together

geom_line(size = 1) +

Total production throughout the years

For regions that had, at least, one production of >10k

Now, let's define training and testing data.

```
data <- initial_split(region_production)

train_production <- training(data)
test_production <- testing(data)</pre>
```

Now, it is possible to fit the model and make the predictions right away.

```
lm_model <- linear_reg() %>% set_engine("lm")
model_fit <-
fit(lm_model, `U.S. Total` ~ `Ohio (OH)`, data = train_production)

prediction <- predict(model_fit, new_data = test_production)</pre>
```

We can apply some metrics to judge model effectiveness.

```
#Let's bind the real values and the predictions make on the test set.

prediction <- bind_cols(test_production, prediction) %>%
  ungroup() %>%
  select(-year)

prediction %>%
  ggplot(aes(`U.S. Total`, .pred)) +
```

```
geom_abline() +
geom_point() +
coord_obs_pred()
```



```
pred_metrics <- metric_set(rmse, mae)</pre>
prediction %>%
  ungroup() %>%
  pred_metrics(truth = `U.S. Total`, estimate = .pred)
## # A tibble: 2 x 3
##
     .metric .estimator .estimate
##
     <chr>
             <chr>
                             <dbl>
## 1 rmse
             standard
                            15482.
## 2 mae
             standard
                            13764.
```

This model produced a mean absolute error of 13k. Let's try adding more regions to the prediction.

Let's split the data again and fit the model.

#Let's bind the real values and the predictions make on the test set. prediction <- bind_cols(test_production, prediction) prediction %>% ggplot(aes(.pred, `U.S. Total`)) + geom_abline() +

geom_point() +
coord_obs_pred()


```
prediction %>%
  ungroup() %>%
  pred_metrics(truth = `U.S. Total`, estimate = .pred)
## # A tibble: 2 x 3
     .metric .estimator .estimate
##
##
     <chr>>
             <chr>
                             <dbl>
                            11365.
             standard
## 1 rmse
## 2 mae
             standard
                            10134.
```

Some regions fit the requirement of having least one production of >10k, but present data starting only at 1953. Let's try using them on our model.

```
region_production <- fishing %>%
  filter(year >= 1953) %>%
  group_by(year, region) %>%
```

```
summarise(region_production = sum(values, na.rm = T)) %>%
  ungroup() %>%
  group_by(region) %>%
  mutate(region_max_production = max(region_production)) %>%
  filter(region_max_production > 10000) %>%
  select(-region_max_production) %>%
  pivot_wider(names_from = region, values_from = region_production)
## 'summarise()' has grouped output by 'year'. You can override using the '.groups' argument.
region_production %>%
  pivot longer(cols = !starts with("year"),
               names_to = "region", values_to = "year_production") %>%
  ggplot(aes(year, year_production)) +
  geom_line(aes(color = region), size = 1) +
  scale_y_continuous(labels = label_number_si()) +
  labs(x = NULL,
       y = "Total Production (in pounds)",
       title = "Total production throughout the years",
       subtitle = "For regions that had, at least, one production of >10k",
       color = NULL)
```

Total production throughout the years

For regions that had, at least, one production of >10k


```
data <- initial_split(region_production)

train_production <- training(data)
test_production <- testing(data)</pre>
```

