

# VibrationRotation Energies of Planar ZXY2 Molecules Part II. The Quantum Mechanical Hamiltonian and the Energy Values

Samuel Silver

Citation: The Journal of Chemical Physics 10, 565 (1942); doi: 10.1063/1.1723766

View online: http://dx.doi.org/10.1063/1.1723766

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/10/9?ver=pdfcov

Published by the AIP Publishing

#### Articles you may be interested in

A simple method for the derivation of exact quantummechanical vibration—rotation Hamiltonians in terms of internal coordinates

J. Chem. Phys. 102, 3945 (1995); 10.1063/1.468571

Quantummechanical isomerization of a rotationally and vibrationally excited triatomic model molecule J. Chem. Phys. **95**, 4044 (1991); 10.1063/1.460760

Quantummechanical theory for electronic vibrational rotational energy transfer in atom–diatom collisions: Analysis of the Hamiltonian

J. Chem. Phys. 79, 765 (1983); 10.1063/1.445827

On the QuantumMechanical Calculation of the Cohesive Energy of Molecules and Crystals. Part II. Treatment of the Alkali Metals with Numerical Applications to Sodium

J. Chem. Phys. 19, 1579 (1951); 10.1063/1.1748126

VibrationRotation Energies of Planar ZXY2 Molecules Part I. The Vibrational Modes and Frequencies J. Chem. Phys. **10**, 559 (1942); 10.1063/1.1723765



# Vibration-Rotation Energies of Planar ZXY<sub>2</sub> Molecules

### Part II. The Quantum-Mechanical Hamiltonian and the Energy Values<sup>1</sup>

SAMUEL SILVER

Mendenhall Laboratory of Physics, The Ohio State University, Columbus, Ohio,\* and Department of Physics, University of Oklahoma, Norman, Oklahoma (Received June 11, 1942)

Nielsen's treatment of the vibration-rotation energies of a general polyatomic molecule is applied to the planar  $ZXY_2$  molecular model. Due to the low symmetry of the model, the vibrational modes are non-degenerate, and, if the frequencies are well separated in their values, Nielsen's general formulation can be applied directly. For this case the elements of the secular equation are evaluated to include all the first- and second-order terms in the Hamiltonian. With the view of applying the theory to the analysis of the fundamental bands of formaldehyde, the effect of an approximate degeneracy between a pair of perpendicular vibrations, of symmetry types  $B_1$  and  $B_2$ , respectively, is considered. For this case, the vibration-rotation energies of the states giving rise to the fundamental bands are investigated to the first order of approximation. It is shown how, by a modification of Nielsen's general treatment, the secular equations can be set up with little difficulty to include all the first-order terms in the Hamiltonian. The secular equations for values of J=0, 1, 2, 3, 4 are given-explicitly.

THE quantum-mechanical calculation of the vibration-rotation energies and the associated spectra of planar ZXY2 molecules has been carried out previously subject to a number of simplifying assumptions.<sup>2</sup> Recently Nielsen<sup>3</sup> expanded the Wilson-Howard Hamiltonian for the vibration-rotation energies of a general polyatomic molecule and delineated a procedure for evaluating the energies to the second order of approximation. In the present paper the general treatment is applied to the planar  $ZXY_2$  model and the constants appearing in the elements of the secular equation are evaluated in terms of the coefficients of the normal coordinate transformation, developed in the preceding paper (Part I), and the coefficients of the cubic and quartic anharmonic terms in the potential energy.

## 1. THE QUANTUM-MECHANICAL HAMILTONIAN†

The quantum-mechanical Hamiltonian for the system, arranged in terms according to orders of magnitude, is

$$H_0 = \frac{1}{2} \left( \frac{P_x^2}{I_0^0} + \frac{P_y^2}{I_{yy}^0} + \frac{P_z^2}{I_{zz}^0} \right) + \frac{1}{2} \sum_{k=1}^{6} \hbar \omega_k \left( \frac{p_{qk}^2}{\hbar^2} + q_k^2 \right); \quad \omega_k = 2\pi c \nu_k.$$
 (1a)

$$H_{1} = -\frac{i\hbar^{\frac{1}{2}}}{4} \sum_{k=1}^{3} \sigma_{k} p_{q_{k}} - \frac{\hbar^{\frac{1}{2}}}{2} \sum_{k=1}^{3} \left[ a_{k} \frac{P_{x}^{2}}{I_{xx}^{0}} + b_{k} \frac{P_{y}^{2}}{I_{yy}^{0}} + c_{k} \frac{P_{z}^{2}}{I_{zz}^{0}} \right] q_{k} / \omega_{k}^{\frac{1}{2}}$$

$$+\frac{\hbar^{\frac{1}{2}}}{2I_{yy}^{0}I_{zz}^{0}}(P_{y}P_{z}+P_{z}P_{y})\sum_{k=4}^{5}e_{k}q_{k}/\omega_{k}^{\frac{1}{2}}-\left[\frac{p_{x}P_{x}}{I_{xx}^{0}}+\frac{p_{y}P_{y}}{I_{yy}^{0}}+\frac{p_{z}P_{z}}{I_{zz}^{0}}\right]+U_{1}. \quad (1b)$$

$$H_{2} = -\frac{i\hbar}{2} \sum_{k=1}^{6} s_{kk} q_{k} p_{q_{k}} + \frac{1}{2} \sum_{k=1}^{6} \frac{\hbar}{\omega_{k}} q_{k}^{2} \left[ \epsilon_{xk} \frac{P_{x}^{2}}{I_{xx}^{0}} + \epsilon_{yk} \frac{P_{y}^{2}}{I_{yy}^{0}} + \epsilon_{zk} \frac{P_{z}^{2}}{I_{zz}^{0}} \right] + \frac{1}{2} \left( \frac{p_{x}^{2}}{I_{xx}^{0}} + \frac{p_{y}^{2}}{I_{yy}^{0}} + \frac{p_{z}^{2}}{I_{yy}^{0}} \right) + U_{2}, \tag{1c}$$

<sup>&</sup>lt;sup>1</sup> This paper was presented at the meeting of Section B, The American Association for the Advancement of Science, held in Dallas, December, 1941. Abstract, Phys. Rev. 61, 383 (1942).

<sup>\*</sup> The work covered by this and the preceding paper was initiated at the Ohio State University while the author was in residence there during 1940–1941.

2 H. H. Nielsen, Phys. Rev. 38, 1432 (1931); J. Chem. Phys. 5, 818 (1937); Phys. Rev. 55, 289 (1939).

<sup>&</sup>lt;sup>3</sup> H. H. Nielsen, Phys. Rev. **60**, 794 (1941) † Only the essential results are given here. For the details of the development of the Hamiltonian, the reader is referred to reference 3 above.

plus terms which make no contribution to the second order of approximation.  $q_k$  is related to the normal coordinate  $Q_k$  by  $q_k = (\omega_k/\hbar)^{\frac{1}{2}}Q_k$ ;  $p_k$  is the momentum conjugate to  $q_k$ ;  $U_1$  and  $U_2$  are the cubic and quartic anharmonic terms in the potential energy. From the symmetry properties of the normal coordinates (and hence, the  $q_k$ ), it is seen that the most general forms for  $U_1$  and  $U_2$  are

$$\begin{split} U_{1} = hc \{\beta_{111}q_{1}^{3} + \beta_{222}q_{2}^{3} + \beta_{333}q_{3}^{3} + \beta_{112}q_{1}^{2}q_{2} + \beta_{113}q_{1}^{2}q_{3} + \beta_{221}q_{2}^{2}q_{1} + \beta_{223}q_{2}^{2}q_{3} + \beta_{331}q_{3}^{2}q_{1} + \beta_{332}q_{3}^{2}q_{2} \\ + \beta_{441}q_{4}^{2}q_{1} + \beta_{442}q_{4}^{2}q_{2} + \beta_{443}q_{4}^{2}q_{3} + \beta_{551}q_{5}^{2}q_{1} + \beta_{552}q_{5}^{2}q_{2} + \beta_{553}q_{5}^{2}q_{3} + \beta_{661}q_{6}^{2}q_{1} + \beta_{662}q_{6}^{2}q_{2} \\ + \beta_{663}q_{6}^{2}q_{3} + \beta_{123}q_{1}q_{2}q_{3} + \beta_{145}q_{1}q_{4}q_{5} + \beta_{245}q_{2}q_{4}q_{5} + \beta_{345}q_{3}q_{4}q_{5} \}, \quad (2) \end{split}$$

$$U_{2} = hc \{ \sum_{k=1}^{6} \gamma_{kkkk}q_{k}^{4} + \gamma_{1112}q_{1}^{3}q_{2} + \gamma_{1113}q_{1}^{3}q_{3} + \gamma_{2221}q_{2}^{3}q_{1} + \gamma_{2223}q_{2}^{3}q_{3} + \gamma_{3331}q_{3}^{3}q_{1} + \gamma_{3332}q_{3}^{3}q_{2} + \gamma_{4445}q_{4}^{3}q_{5} + \gamma_{5554}q_{5}^{3}q_{4} + \gamma_{1122}q_{1}^{2}q_{2}^{2} + \gamma_{1133}q_{1}^{2}q_{3}^{2} + \gamma_{1144}q_{1}^{2}q_{4}^{2} + \gamma_{1155}q_{1}^{2}q_{5}^{2} + \gamma_{1166}q_{1}^{2}q_{6}^{2} + \gamma_{2233}q_{2}^{2}q_{3}^{2} + \gamma_{2244}q_{2}^{2}q_{4}^{2} + \gamma_{2255}q_{2}^{2}q_{5}^{2} + \gamma_{2266}q_{2}^{2}q_{6}^{2} + \gamma_{3344}q_{3}^{2}q_{4}^{2} + \gamma_{3355}q_{3}^{2}q_{5}^{2} + \gamma_{3366}q_{3}^{2}q_{6}^{2} + \gamma_{4455}q_{4}^{2}q_{5}^{2} + \gamma_{4466}q_{4}^{2}q_{6}^{2} + \gamma_{5566}q_{5}^{2}q_{6}^{2} + \gamma_{1233}q_{1}q_{2}q_{3}^{2} + \gamma_{1244}q_{1}q_{2}q_{4}^{2} + \gamma_{1255}q_{1}q_{2}q_{5}^{2} + \gamma_{1266}q_{1}q_{2}q_{6}^{2} + \gamma_{1322}q_{1}q_{3}q_{2}^{2} + \gamma_{1344}q_{1}q_{3}q_{4}^{2} + \gamma_{1355}q_{1}q_{3}q_{5}^{2} + \gamma_{1366}q_{1}q_{3}q_{6}^{2} + \gamma_{2311}q_{2}q_{3}q_{1}^{2} + \gamma_{2344}q_{2}q_{3}q_{4}^{2} + \gamma_{2355}q_{2}q_{3}q_{5}^{2} + \gamma_{1145}q_{1}^{2}q_{4}q_{5} + \gamma_{2245}q_{2}^{2}q_{4}q_{5} + \gamma_{3345}q_{3}^{2}q_{4}q_{5} + \gamma_{6645}q_{6}^{2}q_{4}q_{5} + \gamma_{2345}q_{2}q_{3}q_{4}q_{5}^{2} \}.$$

$$+ \gamma_{1245}q_{1}q_{2}q_{4}q_{5} + \gamma_{1345}q_{1}q_{3}q_{4}q_{5} + \gamma_{2345}q_{2}q_{3}q_{4}q_{5}^{2} \}.$$

Although the coordinates  $q_4$  and  $q_5$  cannot appear singly in the first degree, the product term  $q_4q_5$  is admissible since both coordinates transform in the same way under the operations of the symmetry group.

The operators  $p_x$ ,  $p_y$ ,  $p_z$  are the components of the vibrational angular momentum and are given by:

$$\begin{aligned}
p_{x} &= \sum_{k=1}^{3} \left\{ \zeta_{k} \left\{ \left( \frac{\nu_{k}}{\nu_{4}} \right)^{\frac{1}{2}} q_{4} p_{q_{k}} - \left( \frac{\nu_{4}}{\nu_{k}} \right)^{\frac{1}{2}} q_{k} p_{q_{4}} \right\} + \zeta_{k} \left\{ \left( \left( \frac{\nu_{k}}{\nu_{5}} \right)^{\frac{1}{2}} q_{5} p_{q_{k}} - \left( \frac{\nu_{6}}{\nu_{k}} \right)^{\frac{1}{2}} q_{k} p_{q_{5}} \right\} \right\}, \\
p_{y} &= \sum_{k=1}^{3} \left\{ \zeta_{k} \left\{ \left( \left( \frac{\nu_{6}}{\nu_{k}} \right)^{\frac{1}{2}} q_{k} p_{q_{6}} - \left( \frac{\nu_{k}}{\nu_{6}} \right)^{\frac{1}{2}} q_{6} p_{q_{k}} \right\} \right\}, \\
p_{z} &= \sum_{k=4}^{5} \left\{ \zeta_{k} \left\{ \left( \left( \frac{\nu_{k}}{\nu_{6}} \right)^{\frac{1}{2}} q_{6} p_{q_{k}} - \left( \frac{\nu_{6}}{\nu_{k}} \right)^{\frac{1}{2}} q_{k} p_{q_{6}} \right\} \right\}.
\end{aligned} \tag{4}$$

The constants appearing in H are defined by

$$\sigma_{k} = \omega_{k} \frac{1}{I_{xx}^{0}} \left( \frac{a_{k}}{I_{yy}^{0}} + \frac{b_{k}}{I_{yz}^{0}} + \frac{c_{k}}{I_{zz}^{0}} \right),$$

$$s_{kk} = \frac{A_{kk}}{I_{xx}^{0}} + \frac{B_{kk}}{I_{yy}^{0}} + \frac{C_{kk}}{I_{zz}^{0}} - \frac{1}{2} \left( \frac{a_{k}^{2}}{I_{yz}^{0}} + \frac{b_{k}^{2}}{I_{yy}^{0}} + \frac{c_{k}^{2}}{I_{zz}^{0}} \right), \quad k = 1, 2, 3$$

$$s_{kk} = \frac{A_{kk}}{I_{xx}^{0}} + \frac{B_{kk}}{I_{yy}^{0}} + \frac{C_{kk}}{I_{zz}^{0}} - \frac{e_{k}^{2}}{I_{yy}^{0}} - \frac{e_{k}^{2}}{I_{yy}^{0}} - \frac{e_{k}^{2}}{I_{zz}^{0}}, \quad k = 4, 5$$

$$s_{66} = \frac{B_{66}}{I_{yy}^{0}} + \frac{C_{66}}{I_{zz}^{0}},$$

$$\epsilon_{xk} = \frac{a_{k}^{2}}{I_{0x}^{0}} - A_{kk}; \quad \epsilon_{yk} = \frac{b_{k}^{2}}{I_{0x}^{0}} - B_{kk} + \frac{e_{k}^{2}}{I_{0x}^{0}}; \quad \epsilon_{zk} = \frac{c_{k}^{2}}{I_{0x}^{0}} - C_{kk} + \frac{e_{k}^{2}}{I_{0x}^{0}},$$

$$(5)$$

where

$$a_{k} = 2 \left[ \left[ \frac{2m_{Y}m_{Z}}{m_{Z} + 2m_{Y} \cos^{2}\beta_{0}} \right]^{\frac{1}{2}} (r_{0} - R_{0} \cos \beta_{0}) l_{1k} + \left[ \frac{m_{X}M}{m_{Z} + 2m_{Y}} \right]^{\frac{1}{2}} z_{1}^{0} l_{2k}$$

$$- \left[ \frac{2m_{Y}}{(m_{Z} + 2m_{Y})(m_{Z} + 2m_{Y} \cos^{2}\beta_{0})} \right]^{\frac{1}{2}} M z_{1}^{0} \sin \beta_{0} l_{3k} \right], \quad k = 1, 2, 3$$

$$b_{k} = 2 \left[ \left[ \frac{2m_{Y}m_{Z}}{m_{Z} + 2m_{Y} \cos^{2}\beta_{0}} \right]^{\frac{1}{2}} (z_{2}^{0} - z_{3}^{0}) \cos \beta_{0} l_{1k} + \left[ \frac{m_{X}M}{m_{Z} + 2m_{Y}} \right]^{\frac{1}{2}} z_{1}^{0} l_{2k}$$

$$+ m_{Z} \left[ \frac{2m_{Y}}{(m_{Z} + 2m_{Y})(m_{Z} + 2m_{Y} \cos^{2}\beta_{0})} \right]^{\frac{1}{2}} z_{1}^{0} l_{2k}$$

$$c_{k} = 2 \left[ \left[ \frac{2m_{Y}m_{Z}}{m_{Z} + 2m_{Y} \cos^{2}\beta_{0}} \right]^{\frac{1}{2}} y_{3}^{0} \sin \beta_{0} l_{1k} - \left[ \frac{2m_{Y}(m_{Z} + 2m_{Y})}{m_{Z} + 2m_{Y} \cos^{2}\beta_{0}} \right]^{\frac{1}{2}} y_{3}^{0} \cos \beta_{0} l_{3k} \right], \quad k = 1, 2, 3$$

$$a_{k} = b_{k} = c_{k} = 0, \quad (k > 1, 2, 3); \quad c_{k} = 0, \quad (k = 1, 2, 3, 5); \quad c_{k} = 2 \left[ \frac{1}{v_{y}v_{1}^{0}} l_{x}^{2} l_{x}^{2}$$

 $\zeta_{k6} = l_{4k}, \quad (k = 4, 5).$ 

The coefficients  $l_{kj}$  and the equilibrium coordinates  $z_k^0$  are given in Part I.

#### 2. TRANSFORMATION OF THE HAMILTONIAN AND THE ENERGY VALUES

Shaffer, Nielsen, and Thomas have shown that the perturbation calculation can be simplified to a considerable extent by applying a contact transformation to the operator H,  $H' = THT^{-1}$ , which carries terms of first order in H into second-order terms in H'. Details of the method are to be found in the paper by SNT; a table of the operators comprising the transformation function T, appropriate for the coordinates used here, has been published by Silver and Shaffer.<sup>5</sup>

Due to the low symmetry of the system, the vibrational modes of the planar  $ZXY_2$  molecule are all non-degenerate. In this case, it is possible to remove all the terms from  $H_1$  into  $H_2$ . The transformed Hamiltonian is

$$\begin{split} H_0' &= H_0; \quad H_1' = 0; \\ H_2' &= -hc \{\tau_{xxxx} P_x^4 + \tau_{yyyy} P_y^4 + \tau_{zxxx} P_x^4 + \tau_{xxyy} (P_x^2 P_y^2 + P_y^2 P_x^2) + \tau_{yyxx} (P_y^2 P_x^2 + P_x^2 P_y^2) \\ &+ \tau_{xxxx} (P_x^2 P_x^2 + P_x^2 P_x^2) + \tau_{yxyx} (P_y P_x + P_x P_y)^2 \} \\ &+ \left\{ \left( \sum_{k=1}^6 a_{kk} q_k^2 \right) \frac{P_x^2}{P_x^2} + \left( \sum_{k=1}^6 b_{kk} q_k^2 \right) \frac{P_y^2}{P_y^2} + \left( \sum_{k=1}^6 c_{kk} q_k^2 \right) \frac{P_x^2}{P_x^2} \right\} + hc g_0 + \frac{1}{2} \left( \frac{p_x^2}{P_x^2} + \frac{p_y^2}{P_y^2} + \frac{p_x^2}{P_y^2} \right) \\ &- hc \left\{ \sum_{k=1}^3 \frac{3}{P_y} \frac{g_k^2}{h^2} + 1 + \frac{3}{2} q_k^4 \right\} + hc \left\{ \sum_{k=1}^6 \gamma_{kkk} q_k^4 + \sum_{j=1}^5 \sum_{k>j} (\gamma_{jjkk} - N_{ijkk}) q_j^2 q_k^2 \right\} \\ &- hc \left\{ \sum_{j=1}^3 \sum_{k=1}^3 \frac{g_{jjk}^2}{2 \nu_k (4 \nu_i^2 - \nu_k^2)} \left[ (2 \nu_i^2 - \nu_k^2) q_i^4 + 4 \nu_j \nu_k q_j^2 q_k^2 + 2 \nu_j^2 q_j^2 p_{ij}^2 / h^2 \right] \right\} \\ &- hc \left\{ \sum_{j=4}^6 \sum_{k=1}^3 \frac{3}{2 \nu_k (4 \nu_j^2 - \nu_k^2)} \left[ \left( 2 \nu_j^2 - \nu_k^2 \right) q_j^4 + 4 \nu_j \nu_k q_j^2 q_k^2 + 2 \nu_j^2 q_j^2 p_{ij}^2 / h^2 \right] \right\} \\ &+ \tau_{xxxx} = \frac{1}{8 hc T_{0k}^0} \left( \frac{a_1^2}{a_1^2} + \frac{a_2^2}{a_2^2} + \frac{a_3^2}{a_3^2} \right), \\ &\tau_{yyyy} = \frac{1}{8 hc T_{0k}^0} \left( \frac{c_1^2}{a_1^2} + \frac{c_2^2}{a_2^2} + \frac{b_3^2}{a_3^2} \right), \\ &\tau_{xxxy} = \frac{1}{8 hc T_{0k}^0} \left( \frac{c_1^2}{a_1^2} + \frac{c_2^2}{a_2^2} + \frac{c_3^2}{a_3^2} \right), \\ &\tau_{yyyz} = \frac{1}{8 hc T_{0k}^0} \left( \frac{c_1^2}{a_1^2} + \frac{c_2^2}{a_2^2} + \frac{b_3^2}{a_3^2} \right), \\ &\tau_{xxxy} = \frac{1}{8 hc T_{0k}^0} \left( \frac{c_1^2}{a_1^2} + \frac{c_2^2}{a_2^2} + \frac{b_3^2}{a_2^2} \right), \\ &\tau_{xxxy} = \frac{1}{8 hc T_{0k}^0} \left( \frac{c_1^2}{a_1^2} + \frac{c_2^2}{a_2^2} + \frac{b_3^2}{a_2^2} \right), \\ &\tau_{xxxz} = \frac{1}{8 hc T_{0k}^0} \left( \frac{c_1^2}{a_1^2} + \frac{c_2^2}{a_2^2} + \frac{c_3^2}{a_2^2} \right), \\ &\tau_{xxxy} = \frac{1}{8 hc T_{0k}^0} \left( \frac{c_1^2}{a_1^2} + \frac{c_2^2}{a_2^2} + \frac{c_3^2}{a_2^2} \right), \\ &\tau_{xxxz} = \frac{1}{8 hc T_{0k}^0} \left( \frac{c_1^2}{a_1^2} + \frac{c_2^2}{a_2^2} + \frac{c_3^2}{a_2^2} \right), \\ &\tau_{xxxz} = \frac{1}{8 hc T_{0k}^0} \left( \frac{c_1^2}{a_1^2} + \frac{c_2^2}{a_2^2} + \frac{c_3^2}{a_2^2} \right), \\ &\tau_{xxxz} = \frac{1}{8 hc T_{0k}^0} \left( \frac{c_1^2}{a_1^2} + \frac{c_2^2}{a_2^2} + \frac{c_3^2}{a_2^2} \right), \\ &\tau_{xxxz} = \frac{1}{8 hc T_{0k}^0} \left( \frac{c_1^2}{a_1^2} + \frac{c_2^2}{a_2^2} + \frac{c_3^$$

$$S = -a_{klm} \left\{ \omega_k (\omega_k^2 - \omega_l^2 - \omega_m^2) \frac{p_k q_l q_m}{\hbar^2} + \omega_l (\omega_l^2 - \omega_m^2 - \omega_k^2) \frac{q_k p_l q_m}{\hbar^2} + \omega_m (\omega_m^2 - \omega_k^2 - \omega_l^2) \frac{q_k q_l p_m}{\hbar^2} - 2\omega_k \omega_l \omega_m p_k p_l p_m / \hbar^2 \right\} / \hbar (\omega_k^2 + \omega_l^4 + \omega_m^4 - 2\omega_k^2 \omega_l^2 - 2\omega_l^2 \omega_m^2 - 2\omega_m^2 \omega_k^2)$$

to remove the  $a_{klm}q_kq_lq_m$  term from  $H_1$ .

<sup>&</sup>lt;sup>4</sup> W. H. Shaffer, H. H. Nielsen, and L. H. Thomas, Phys. Rev. **56**, 895 (1939). <sup>5</sup> S. Silver and W. H. Shaffer, J. Chem. Phys. **9**, 599 (1941). In addition to the elements given in this table we need

$$\begin{split} \frac{a_{hb}}{hc} &= \frac{\epsilon_{xb}}{8\pi^2 c^2 \nu_h} + \sum_{i=1}^3 \frac{(1+2\delta_{ik})}{2h^4 \omega_i^3} a_i \beta_{ikkj} + \frac{1}{8\pi^2 c^2 \nu_k} \sum_{j=4}^5 \frac{s_{jk}^2}{\nu_k^2 - \nu_j^2}, \quad (k=1,2,3) \\ \frac{a_{kb}}{hc} &= \frac{\epsilon_{xk}}{8\pi^2 c^2 \nu_k} + \sum_{j=2}^3 \frac{a_j \beta_{kkj}}{2h^4 \omega_j^4} + \frac{1}{8\pi^2 c^2 \nu_k} \sum_{j=1}^3 \frac{\delta_{jk}}{\nu_k^2 - \nu_j^2}, \quad (k=4,5) \\ \frac{a_{65}}{hc} &= \frac{\epsilon_{xb}}{8\pi^2 c^2 \nu_k} + \sum_{j=2}^3 \frac{a_j \beta_{kkj}}{2h^4 \omega_j^4} + \frac{1}{8\pi^2 c^2 \nu_k} \sum_{j=2}^3 \frac{\delta_{jk} \delta_{jk}}{2h^2 \omega_j^3}, \quad (k=4,5) \\ \frac{b_{kk}}{hc} &= \frac{\epsilon_{yk}}{8\pi^2 c^2 \nu_k} + \sum_{j=1}^3 \frac{(1+2\delta_{jk})b_j \beta_{kkj}}{2h^4 \omega_j^4} + \frac{\delta_{kk}^2}{8\pi^2 c^2 \nu_k (\nu_k^2 - \nu_k^2)}, \quad (k=1,2,3) \\ \frac{b_{kb}}{hc} &= \frac{\epsilon_{yk}}{8\pi^2 c^2 \nu_k} + \sum_{j=1}^3 \frac{b_j \beta_{kkj}}{2h^4 \omega_j^4} + \frac{1}{8\pi^2 c^2 \nu_k (\nu_k^2 - \nu_k^2)}, \quad (k=1,2,3) \\ \frac{b_{66}}{hc} &= \frac{\epsilon_{yk}}{8\pi^2 c^2 \nu_k} + \sum_{j=1}^3 \frac{b_j \beta_{kkj}}{2h^4 \omega_j^4} + \frac{1}{8\pi^2 c^2 \nu_k (\nu_k^2 - \nu_k^2)}, \quad (k=1,2,3) \\ \frac{b_{66}}{hc} &= \frac{\epsilon_{yk}}{8\pi^2 c^2 \nu_k} + \sum_{j=1}^3 \frac{\delta_{jkkj}}{2h^4 \omega_j^4} + \frac{1}{8\pi^2 c^2 \nu_k (\nu_k^2 - \nu_k^2)}, \quad (k=4,5) \\ \frac{c_{kk}}{hc} &= \frac{\epsilon_{yk}}{8\pi^2 c^2 \nu_k} + \sum_{j=1}^3 \frac{c_j \beta_{kkj}}{2h^4 \omega_j^4} + \frac{\delta_{xk}^2 c_j \nu_k (\nu_k^2 - \nu_k^2)}{8\pi^2 c^2 \nu_k (\nu_k^2 - \nu_k^2)}, \quad (k=4,5) \\ \frac{c_{kk}}{hc} &= \frac{\epsilon_{yk}}{8\pi^2 c^2 \nu_k} + \sum_{j=1}^3 \frac{\beta_{jkkj}}{2h^4 \omega_j^4} + \frac{\delta_{xk}^2 c_j \nu_k (\nu_k^2 - \nu_k^2)}{8\pi^2 c^2 \nu_k (\nu_k^2 - \nu_k^2)}, \quad (k=4,5) \\ \frac{c_{66}}{hc} &= \frac{\epsilon_{xk}}{8\pi^2 c^2 \nu_k} + \sum_{j=1}^3 \frac{\beta_{jkkj}}{2h^4 \omega_j^4} + \frac{\delta_{xk}^2 c_j \nu_k (\nu_k^2 - \nu_k^2)}{8\pi^2 c^2 \nu_k (\nu_k^2 - \nu_k^2)}, \quad (k=4,5) \\ g_{66} &= \frac{\epsilon_{xk}}{8\pi^2 c^2 \nu_k} + \sum_{j=1}^3 \frac{\beta_{jkkj}}{4h^4 \nu_k \nu_k} + \frac{\delta_{xk}^2 c_j \nu_k (\nu_k^2 - \nu_k^2)}{8\pi^2 c^2 \nu_k (\nu_k^2 - \nu_k^2)}, \quad (k=4,5) \\ g_{66} &= \frac{\epsilon_{xk}}{8\pi^2 c^2 \nu_k} + \sum_{j=1}^3 \frac{\beta_{jkkj} \beta_{kkj}}{4h^4 \nu_k \nu_k} + \frac{\delta_{xk}^2 \nu_k (\nu_k^2 - \nu_k^2 - \nu_k^2)}{8\pi^2 c^2 \nu_k (\nu_k^2 - \nu_k^2 - \nu_k^2)}, \quad (k=1,2,3) \\ N_{kkjj} &= \frac{\delta_{kkk}}{2h^4 \nu_k \nu_k} + \frac{\delta_{kkj}}{2h^4 \nu_k \nu_k} + \frac{\delta_{kkj}}{2h^4 \nu_k \nu_k \nu_k} + \frac{\delta_{kkj}} 2\mu_k (\nu_k^2 - \nu_k^2 - \nu_k^2)}{2D_{kkj}}, \quad (k=1,2,3) \\ N_{kkj6} &= \sum_{j=1}^3 \frac{(1+2\delta_{kj})\beta_{kkj}\beta_{kkj}}{\nu_k} + \frac{\delta_{kk$$

The general procedure is to set up the matrix of H' using as basic wave functions the harmonic oscillator functions  $\psi v_i(q_i)$  corresponding to vibrational quantum numbers  $V_i$ , and the symmetrical top functions  $\psi_R^0(J, K, M)$ . H' is diagonal in the vibrational quantum numbers (to the second order of approximation) and in the quantum numbers, J and M, and has only (K|K),  $(K|K\pm 2)$ ,

 $(K|K\pm 4)$  elements in the quantum numbers  $K=-J, -J+1, \cdots, J$ . As is well known, the consequence of the latter fact is that the sub-matrix for a given vibrational state and J value can be reduced to a pair of sub-matrices corresponding to even and odd values of K, respectively. It was shown by Wilson<sup>6</sup> and in more detail by Shaffer and Nielsen<sup>7</sup> that by taking suitable linear combinations of the  $\psi_R{}^0(J,K,M)$  each of the latter sub-matrices can be further reduced. The reduction indicated by Wilson can be effected also in the present case where  $(K|K\pm 4)$  elements are involved. Accordingly, we take as our set of basis functions

$$\Psi_{gK} = \prod_{i=1}^{6} \psi_{V_{i}}(q_{i}) \Lambda_{K} = \psi_{V} \frac{1}{\sqrt{2}} \{ \psi_{R}^{0}(J, -K, M) + \psi_{R}^{0}(J, K, M) \} K > 0, 
\Psi_{g0} = \sum_{i=1}^{6} \psi_{V_{i}}(q_{i}) \Lambda_{0} = \psi_{V} \psi_{R}^{0}(J, O, M), 
\Psi_{uK} = \prod_{i=1}^{6} \psi_{V_{i}}(q_{i}) \Phi_{K} = \psi_{V} \frac{1}{\sqrt{2}} \{ \psi_{R}^{0}(J, -K, M) - \psi_{R}^{0}(J, K, M) \} K > 0.$$
(10)

In terms of these we have

$$(\Psi_{g}^{*}|H'|\Psi_{u}) = (\Psi_{u}^{*}|H'|\Psi_{g}) = 0 \tag{11}$$

and the following non-vanishing elements:

$$\begin{aligned} &(V,\Lambda_K|V,\Lambda_K) \\ &(V,\Phi_K|V,\Phi_K) \\ &(V,\Phi_K|V,\Phi_K) \\ &= (R_0 + R_2K^2 + R_3K^4) \pm \delta_{K1}(R_4 + 2R_5)f \pm \delta_{K2}R_6f(f-2), \quad (K=0,1,\cdots,J) \\ &(V,\Lambda_6|V,\Lambda_2) = (V,\Lambda_2|V,\Lambda_0) = (R_4 + 4R_5)[2f(f-2)]^{\frac{1}{3}}, \\ &(V,\Lambda_K|V,\Lambda_{K+2}) \\ &(V,\Phi_K|V,\Phi_{K+2}) \\ &= (R_4 + R_5[K^2 + (K+2)^2])[\{f-K(K+1)\}\{f-(K+1)(K+2)\}]^{\frac{1}{3}} \\ &\pm \delta_{K1}R_6f[(f-2)(f-6)]^{\frac{1}{3}}, \quad (K>0) \\ &(V,\Lambda_K|V,\Lambda_{K-2}) \\ &(V,\Phi_K|V,\Phi_{K-2}) \\ &= (R_4 + R_5[K^2 + (K-2)^2])[\{f-K(K-1)\}\{f-(K-1)(K-2)\}]^{\frac{1}{3}} \\ &\pm \delta_{K3}R_6f[(f-2)(f-6)]^{\frac{1}{3}}, \quad (K>2) \\ &(V,\Lambda_6|V,\Lambda_6) \\ &(V,\Lambda_6|V,\Lambda_6) = (V,\Lambda_4|V,\Lambda_0) = R_6[2f(f-2)(f-6)(f-12)]^{\frac{1}{3}}, \quad (K>2) \\ &(V,\Lambda_6|V,\Lambda_{K\pm 4}) \\ &(V,\Phi_K|V,\Phi_{K\pm 4}) \\ &= R_6[\{f-K(K\pm 1)\}\{f-(K\pm 1)(K\pm 2)\}\{f-(K\pm 2)(K\pm 3)\} \\ &\times \{f-(K\pm 3)(K\pm 4)\}]^{\frac{1}{3}}, \quad (K+4\geq 5,K-4\geq 1) \\ &\text{where } f = J(J+1), \text{ and } \\ &R_0 = \frac{E_v}{hc} + J(J+1) \Big\{\frac{X_c}{2}\Big[1+2\sum_{k=1}^6 \frac{a_{kk}}{I_0^2}(V_k+\frac{1}{2})\Big] + \frac{h^4}{64\pi^4} \{\pi_{xxxx} + \tau_{yyyy} - 2\tau_{xxyy} - 2\tau_{yxyz}\}\} - D_JJ^2(J+1)^2 \\ &\text{with } \\ &X_c = \frac{h}{8\pi^2cI_0^9}; \quad Y_c = \frac{h}{8\pi^2cI_0^9}; \quad D_J = \frac{h^4}{128\pi^4} \{3(\tau_{xxxx} + \tau_{yyyy}) + 2\tau_{xxyy}\}; \\ &R_2 = Z_c \Big[1+2\sum_{k=1}^6 \frac{c_{kk}}{I_0^9}(V_k+\frac{1}{2})\Big] - \frac{X_c}{2}\Big[1+2\sum_{k=1}^6 \frac{a_{kk}}{I_0^9}(V_k+\frac{1}{2})\Big] - \frac{Y_c}{2}\Big[1+2\sum_{k=1}^6 \frac{b_{kk}}{I_0^9}(V_k+\frac{1}{2})\Big] - \frac{S_ch^4}{128\pi^4} \{\tau_{xxxx} + \tau_{yyyy} - 2\tau_{xxyy} - 4\tau_{yxyz}\} - D_JKJ(J+1) \Big\} \\ &= \frac{S_ch^4}{128\pi^4} \{\tau_{xxxx} + \tau_{yyyy} - 2\tau_{xxyy} - 4\tau_{yxyz}\} - D_JKJ(J+1) \Big\} \\ &= \frac{S_ch^4}{128\pi^4} \{\tau_{xxxx} + \tau_{yyyy} - 2\tau_{xxyy} - 4\tau_{yxyz}\} - D_JKJ(J+1) \Big\} \\ &= \frac{S_ch^4}{128\pi^4} \{\tau_{xxxx} + \tau_{yyyy} - 2\tau_{xxyy} - 4\tau_{yxyz}\} - D_JKJ(J+1) \Big\} \\ &= \frac{S_ch^4}{128\pi^4} \{\tau_{xxxx} + \tau_{yyyy} - 2\tau_{xxyy} - 2\tau_{xxyy} - 2\tau_{xxyy}\} - D_JKJ(J+1) \Big\} \\ &= \frac{S_ch^4}{128\pi^4} \{\tau_{xxxx} + \tau_{yyyy} - 2\tau_{xxyy} -$$

E. B. Wilson, Jr., J. Chem. Phys. 4, 313 (1936).
 W. H. Shaffer and H. H. Nielsen, Phys. Rev. 56, 188 (1939).

<sup>11. 11.</sup> Shaner and 11. 11. Hielben, 1 hyb. Rev. bo, 100 (1909).

with

$$Z_{e} = \frac{h}{8\pi^{2}cI_{zz}^{0}}; \quad D_{JK} = \frac{h^{4}}{8\pi^{4}} \{ \tau_{yzyz} + \frac{1}{2} (\tau_{yyzz} + \tau_{zzxx}) - \frac{1}{4}\tau_{xxyy} - \frac{3}{8} (\tau_{xxxx} + \tau_{yyyy}) \} ;$$

$$R_3 = \frac{h^4}{8\pi^4} \left\{ \tau_{yzyz} + \frac{1}{2} (\tau_{yyzz} + \tau_{zzxx}) - \frac{1}{8} \tau_{xxyy} - \frac{1}{2} \tau_{zzzz} - \frac{3}{16} (\tau_{xxxx} + \tau_{yyyy}) \right\};$$

$$R_4 = \frac{X_e}{4} \left[ 1 + 2 \sum_{k=1}^{6} \frac{a_{kk}}{I^0} (V_k + \frac{1}{2}) \right] - \frac{Y_e}{4} \left[ 1 + 2 \sum_{k=1}^{6} \frac{b_{kk}}{I^0} (V_k + \frac{1}{2}) \right] - \frac{5h^4}{64\pi^4} \tau_{yzyz} - \frac{h^4}{64\pi^4} (\tau_{xxxx} - \tau_{yyyy}) J(J+1) ;$$

$$R_{5} = \frac{h^{4}}{128\pi^{4}} \{ (\tau_{xxxx} - \tau_{yyyy}) - 2\tau_{zzxx} + 2\tau_{yyzz} + 4\tau_{yzyz} \} ;$$

$$R_6 = \frac{h^4}{128\pi^4} \{ \tau_{xxyy} - \frac{1}{2} (\tau_{xxxx} + \tau_{yyyy}) \}. \tag{13}$$

The vibrational term in  $R_0$  is defined by

$$\frac{E_{\nu}}{hc} = G_0 + \sum_{k=1}^{6} \left( V_k + \frac{1}{2} \right) \nu_k + \sum_{k=1}^{6} G_{kk} \left( V_k + \frac{1}{2} \right)^2 + \sum_{k=1}^{5} \sum_{i>k}^{6} G_{kj} \left( V_k + \frac{1}{2} \right) \left( V_j + \frac{1}{2} \right), \tag{14}$$

where

$$G_0 = g_0 - \frac{7}{16} \sum_{k=1}^{3} \frac{\beta_{kkk}^2}{\nu_k} + \frac{3}{8} \sum_{k=1}^{6} \gamma_{kkkk} + \frac{3}{16} \left[ \frac{\beta_{112}^2 \nu_2}{4\nu_1^2 - \nu_2^2} + \frac{\beta_{113}^2 \nu_3^2}{4\nu_1^2 - \nu_3^2} + \frac{\beta_{221}^2 \nu_1}{4\nu_2^2 - \nu_1^2} + \frac{\beta_{223}^2 \nu_3}{4\nu_2^2 - \nu_3^2} + \frac{\beta_{331}^2 \nu_1}{4\nu_3^2 - \nu_1^2} \right]$$

$$+\frac{\beta_{332}^{2}\nu_{2}}{4\nu_{3}^{2}-\nu_{2}^{2}}+\sum_{k=1}^{3}\sum_{j=4}^{6}\frac{\beta_{jjk}^{2}\nu_{k}}{4\nu_{j}^{2}-\nu_{k}^{2}}\right]-\frac{X_{e}}{2}\sum_{k=1}^{3}(\zeta_{k4}^{2}+\zeta_{k5}^{2})-\frac{Y_{e}}{2}\sum_{k=1}^{3}\zeta_{k6}^{2}-\frac{Z_{e}}{2}(\zeta_{46}^{2}+\zeta_{56}^{2});$$

$$G_{kk} = \frac{3}{2} \gamma_{kkkk} - \frac{15}{4} \frac{\beta_{kkk}^2}{\nu_k} - \sum_{l=1}^3 (1 - \delta_{kl}) \frac{(8\nu_k^2 - 3\nu_l^2)}{4\nu_l (4\nu_k^2 - \nu_l^2)} \beta_{kkl}^2; \quad (k = 1, 2, 3)$$

$$G_{kk} = \frac{3}{2} \gamma_{kkkk} - \sum_{j=1}^{3} \frac{(8\nu_k^2 - 3\nu_j^2)}{4\nu_j(4\nu_k^2 - \nu_j^2)} \beta_{kkj}^2; \quad (k = 4, 5, 6)$$

$$G_{jk} = \gamma_{jjkk} - N_{jjkk} - 2 \left[ \frac{\beta_{jjk}^2 \nu_j}{4\nu_j^2 - \nu_k^2} + \frac{\beta_{kkj}^2 \nu_k}{4\nu_k^2 - \nu_j^2} \right]; \quad (k, j = 1, 2, 3)$$

$$G_{jk} = \gamma_{ijkk} - N_{ijkk} - \frac{2\beta_{kkj}^2 \nu_k}{4\nu_k^2 - \nu_j^2} + g_k \zeta_{jk}^2 \left(\frac{\nu_j}{\nu_k} + \frac{\nu_k}{\nu_j}\right); \quad (j = 1, 2, 3; k = 4, 5)$$

$$g_4 = X_e$$
;  $g_5 = Y_e$ ;  $g_6 = Z_e$ .

 $G_{45} = \gamma_{4455} - N_{4455}$ ;

$$G_{k6} = \gamma_{kk66} - N_{kk66} + Z_e \zeta_{k6}^2 \left( \frac{\nu_k}{\nu_6} + \frac{\nu_6}{\nu_k} \right); \quad (k = 4, 5).$$
 (15)

The energies (in term value form) are the roots of the secular equations

$$\left| \left( \Psi_{g,K}^* \middle| H' \middle| \Psi_{g,K'} \right) - \epsilon \delta_{KK'} \middle| = 0 \right| \tag{16a}$$

and

$$\left| \left( \Psi_{u,K}^* \middle| H' \middle| \Psi_{u,K'} \right) - \epsilon \delta_{KK'} \middle| = 0. \right|$$
 (16b)

It is evident from Eqs. (12) that (16a) and (16b) can each be factored into sub-determinants corresponding to even and odd values of K, respectively. Illustrations of this reduction are given by Shaffer and Nielsen.<sup>7</sup>

# 3. TREATMENT OF AN APPROXIMATE DEGENERACY

The planar  $ZXY_2$  model is of particular interest in connection with the formaldehyde molecule. Ebers and Nielsen<sup>8</sup> have attributed the complex structure of its infra-red absorption spectrum in the 7.5–10 $\mu$  region to a Coriolis type interaction between a pair of perpendicular vibrations,†† one of class  $B_1$  and one of class  $B_2$ . Their point of view is that such interactions may become prominent when two fundamental frequencies happen to be nearly equal. Nielsen<sup>3</sup> has considered the effect for a restricted model,



Fig. 1. Matrix of the transformed Hamiltonian when an approximate degeneracy exists between a pair of vibrational frequencies.

assuming formaldehyde to be a symmetrical top and neglecting the anharmonic terms in the potential energy. Wilson<sup>6</sup> has given a more general discussion for the asymmetrical top, but likewise neglected the anharmonic terms and other perturbing influences. He derived certain symmetry conditions which must be satisfied by the wave functions for the Coriolis perturbation to be significant. The states associated with the

<sup>a</sup> H. H. Nielsen, J. Chem. Phys. 5, 818 (1937).

frequencies noted above satisfy these conditions. In the present section we present a more complete treatment for the lower energy states associated with these frequencies, taking into account all the first-order terms in the Hamiltonian. We denote the frequencies as  $\nu_5$  (class  $B_2$ ) and  $\nu_6$  (class  $B_1$ ), respectively.

The effect of the accidental degeneracy makes itself felt in applying the contact transformation to remove from  $H_1$  the  $\zeta_{56}$  term in the  $p_z$  component of the vibrational angular momentum (Eq. (4)). The element in the transformation function T required to remove this term is<sup>5</sup>

$$\left. \left\{ \frac{P_z}{I_0^6} \left\{ \frac{(\omega_{5}^2 + \omega_{6}^2) q_{5} q_{6} + 2\omega_{5} \omega_{6} p_{q_{5}} p_{q_{6}} / \hbar^2}{(\omega_{5} \omega_{6})^{\frac{1}{2}} (\omega_{6}^2 - \omega_{5}^2)} \right\} \right\}.$$

When the denominator becomes small, requirements as to orders of magnitude make such a term inadmissible. However, the contact transformation can be applied to remove all other terms in  $H_1$ , and we obtain in this case,

$$H_0' = H_0;$$

$$H_1' = -\frac{\zeta_{56} P_z}{I_0^0} \left[ \left( \frac{\nu_5}{\nu_6} \right)^{\frac{1}{2}} q_6 p_{q_5} - \left( \frac{\nu_6}{\nu_5} \right)^{\frac{1}{2}} q_5 p_{q_6} \right]. \quad (17)$$

 $H_2'$  retains the same form as in 8(b) except that we delete the  $\zeta_{56}$  terms from the definitions of  $c_{55}$  and  $c_{66}$ . (18)

Using the set of wave functions defined in Eq. (10) as basis functions, we proceed as in Section 2 to set up the matrix of H'. As before, H' is diagonal in J and  $V_1, \dots, V_4$ . The infinite sub-matrix for a given J value and set of vibrational quantum numbers  $V_1, \dots, V_4$  has the form shown in Fig. 1, corresponding to the totality of values of  $V_5$  and  $V_6$ . The diagonal elements  $A, A', A'', \cdots$  arise entirely from  $H_0'$ and  $H_2'$  and have precisely the same form as the sub-matrices of H' for given vibrational states developed in the preceding section. The definitions of  $R_0, \dots, R_6$  carry over completely except for the modification noted in (18). The nondiagonal elements are contributed entirely by  $H_1'$ . Elements A'A'' connect the pairs of states between which the approximate degeneracy exists, i.e.,  $V_5$ ,  $V_6$  and  $V_5\pm 1$ ,  $V_6\mp 1$ . Elements B', B'',  $\cdots$  connect the states  $V_5$ ,  $V_6$  and  $V_5 \pm 1$ ,  $V_6\pm 1$ . The ratio of the orders of magnitude of the B' elements to the A'A'' elements is

<sup>&</sup>lt;sup>8</sup> E. S. Ebers and H. H. Nielsen, J. Chem. Phys. **5**, 822 (1937).

<sup>††</sup> The abstract in reference 1 contains an error of statement concerning the pair of modes considered in this section.

<sup>9</sup> H. H. Nielsen, J. Chem. Phys. 5, 818 (1937).

(27)

 $(\nu_5 - \nu_6)/(\nu_5 + \nu_6)$ , while the contribution of the elements B' to the energies of the lower states is of order of magnitude  $(\nu_5 - \nu_6)^2/\nu^3$ . We are interested here in the ground state and the first excited states which give rise to the fundamental bands  $\nu_5$  and  $\nu_6$ . To the first order of approximation, we may, therefore, neglect the elements B', B'',  $\cdots$ . Accordingly, the energies of the ground state are given by the developments in Section 2, setting  $V_i = 0$ . For the first excited states we set up the matrix using the set of functions

$$\Psi_{ga}(K) = \Psi_{g}(V_{5} = 1, V_{6} = 0, K);$$

$$\Psi_{gb}(K) = \Psi_{g}(V_{5} = 0, V_{6} = 1, K),$$

$$\Psi_{ua}(K) = \Psi_{u}(V_{5} = 1, V_{6} = 0, K);$$

$$\Psi_{ub}(K) = \Psi_{u}(V_{5} = 0, V_{6} = 1, K).$$
(19)

The elements of A' and A'', as noted above, are given by Eq. (12). Since

$$P_{z}\Lambda_{k} = -K\hbar\Phi_{k}; \quad P_{z}\Lambda_{0} = 0;$$

$$P_{z}\Phi_{k} = -K\hbar\Lambda_{k},$$
(20)

the only non-vanishing elements of A'A'' and A''A' are:

$$(\Psi_{ga}^{*}|H_{1}'|\Psi_{ub}) = (\Psi_{ua}^{*}|H_{1}'|\Psi_{gb}) = -(\Psi_{ub}^{*}|H_{1}'|\Psi_{ga})$$
$$= -(\Psi_{gb}|H_{1}'|\Psi_{ua}^{*}) = iR_{1}Khc; \quad (21)$$

where

$$R_1 = \frac{\zeta_{56}h}{8\pi^2 c I_0^0} \left[ \frac{\nu_5 + \nu_6}{(\nu_5 \nu_6)^{\frac{1}{4}}} \right]. \tag{21a}$$

From these results and the discussion in Section 2 of the elements entering into A' and A'' it is evident that the matrix can be reduced to two sub-matrices involving elements of  $\Psi_{ga}$  with  $\Psi_{ub}$  and  $\Psi_{gb}$  with  $\Psi_{ua}$ , respectively, and that each sub-matrix can be further reduced into a set of two according to odd and even values of K, respectively. The secular equations for  $J=0, \dots, 4$  are given below:

$$J=0$$

$$J=1$$

$$\epsilon = R_{0a}; \quad \epsilon = R_{0b}. \quad (22)$$

$$\epsilon = R_{0a}; \quad \epsilon = R_{0b}. \quad (23)$$

$$\epsilon^{2} - \left[ R_{0a} + R_{2a} + R_{3a} + R_{0b} + R_{2b} + R_{3b} + \left\{ R_{4a} - R_{4b} + 2(R_{5a} - R_{5b}) \right\} f \right] \epsilon 
+ \left[ R_{0a} + R_{2a} + R_{3a} + (R_{4a} + 2R_{5a}) f \right] \left[ R_{0b} + R_{2b} + R_{3b} - (R_{4b} + 2R_{5b}) f \right] - R_{1}^{2} = 0, \quad (24)$$

$$\epsilon^{2} - \left[ R_{0a} + R_{2a} + R_{3a} + R_{0a} + R_{2b} + R_{3b} - \left\{ R_{4a} - R_{4b} + 2(R_{5a} - R_{5b}) \right\} f \right] \epsilon 
+ \left[ R_{0a} + R_{2a} + R_{3a} - (R_{4a} + 2R_{5a}) f \right] \left[ R_{0b} + R_{2b} + R_{3b} + (R_{4b} + 2R_{5b}) f \right] - R_{1}^{2} = 0. \quad (25)$$

J=2 Equations (24) and (25), and

$$\begin{vmatrix}
R_{0a} - \epsilon & (R_{4a} + 4R_{5a})[2f(f-2)]^{\frac{1}{2}} & 0 \\
(R_{4a} + 4R_{5a})[2f(f-2)]^{\frac{1}{2}} & R_{0a} + 4R_{2a} + 16R_{3a} & 2iR_1 \\
+ R_{6a}f(f-2) - \epsilon & \\
0 & -2iR_1 & R_{0b} + 4R_{2b} + 16R_{3b} \\
- R_{6b}f(f-2) - \epsilon
\end{vmatrix} = 0. \quad (26)$$

Equations (26) with a and b interchanged.

J=3 Equations (26) and (27), and

$$\begin{vmatrix}
R_{0a} + R_{2a} + R_{3a} & [R_{4a} + 10R_{5a} + R_{6a}f] & iR_{1} & 0 \\
+ (R_{4a} + 2R_{5a})f - \epsilon & \times \{(f-2)(f-6)\}^{\frac{1}{2}} & \\
[R_{4a} + 10R_{5a} + R_{6a}f] & R_{0a} + 9R_{2a} & 0 & 3iR_{1} \\
\times \{(f-2)(f-6)\}^{\frac{1}{2}} & +81R_{3a} - \epsilon \\
-iR_{1} & 0 & R_{0b} + R_{2b} + R_{3b} & [R_{4b} + 10R_{5b} - R_{6b}f] \\
& & -(R_{4b} + 2R_{5b})f - \epsilon & \times \{(f-2)(f-6)\}^{\frac{1}{2}} \\
0 & -3iR_{1} & [R_{4b} + 10R_{5b} - R_{6b}f] & R_{0b} + 9R_{2b} \\
& \times \{(f-2)(f-6)\}^{\frac{1}{2}} & +81R_{3b} - \epsilon
\end{vmatrix} = 0. (28)$$

Equation (28) with a and b interchanged.

(29)

J=4

Equations (28) and (29), and

Equation (30) with a and b interchanged and  $R_1$  replaced by  $-R_1$ . (31)

 $R_{ka}$  is the value of the constant  $R_k$  for the state  $V_5=1$ ,  $V_6=0$ , and the given J-value;  $R_{kb}$  is the corresponding constant for the state  $V_5=0$ ,  $V_6=1$ . The secular equations for the state  $V_5=V_6=0$  can be obtained from the above by setting  $R_1=0$  in each case and deleting the subscripts a and b. In the latter case only one of a pair of equations (e.g., (26) and (27)) need be used. The reduction of the secular equation, discussed in Section 2, effected by the use of the basis functions (10) is directly evident in the above equations.

The treatment above has given more than is required for a first-order approximation since the definitions of constants  $R_k$  contain terms contributed by  $H_2$ . These can be dropped from the final results with little difficulty. It should be noted that when the degeneracy is complete, i.e.,  $\nu_5 - \nu_6 = 0$ , the non-diagonal elements B', B'',  $\cdots$  vanish and the secular Eqs. (22)-(31) give the energies to the second order of approximation.

The application of the results obtained in this paper to the analysis of the formaldehyde spectrum is in progress and will be reported in a later publication.

#### ACKNOWLEDGMENTS

The author takes pleasure in expressing his appreciation to Professor Harald H. Nielsen of The Ohio State University for many helpful discussions. He is particularly indebted to Professor Nielsen for having put his paper on the general molecule at the author's disposal before its publication.