MA 223: Functional Analysis

Naman Mishra

August 2025

Contents

Lectures

1	Mon, August 4														6)
1	Mon, August 4														4	4

The Course

Teams Code: xr80svy

Lecture 1. Monday August 4

The course name should be "Linear Functional Analysis".

X and Y are vector spaces. $T: X \to Y$ is a linear map. Given $y \in Y$, we want to "solve", that is, find $x \in X$ such that Tx = y.

All that changes from the linear algebra course is that the vector spaces need not be finite.

Examples.

- $C(\mathbb{R})$ may be an interesting infinite dimensional vector space.
- C([0,1]) and C((0,1)) are different spaces. For example, $\frac{1}{x}$.
- $C^k([0,1])$ and $C^k((0,1))$ are similarly different. The first is the set of functions on [0,1] which can be extended to a k-times differentiable function on a slightly larger open interval.

The map $f \mapsto f'$ is a linear map between two infinite-dimensional vector spaces. "Solving" in this context is solving linear PDEs.

For determining whether a solution exists for all images, the determinant suffices in the finite-dimensional case. With infinite dimensions, there's no hope.

We could instead use the rank-nullity theorem.

Theorem .1 (Rank-Nullity). Let X and Y be finite dimensional vector spaces, and let $T: X \to Y$ be a linear map. Then

$$\dim X = \mathcal{N}(T) + \dim \mathcal{R}(T),$$

where $\mathcal{N}(T)$ and dim $\mathcal{R}(T)$ are the rank and nullity of T, respectively.

Using this, we can do a lot.

Lemma .2. T is injective iff $ker(T) = \{0\}$.

Lectures 3

Proof. If T is injective, then ker T contains only the zero vector. Conversely, if ker $T = \{0\}$, then for any $x \in X$, Tx = 0 implies x = 0.

Proposition .3. Let X, Y be vector spaces of dimension $n < \infty$. Then a linear map $T: X \to Y$ is surjective iff it is injective.

Proof. Using rank-nullity, dim $\mathcal{R}(T) = n$, and the only *n*-dimensional subspace of Y is Y itself.

Claim. The only n-dimensional subspace of an n-dimensional vector space is itself.

Proof. Let V be an n-dimensional vector space with an n-dimensional subspace W. Assume there exists a $v \in V \setminus W$. There exists a basis \mathcal{B} of V containing v. Then $\mathcal{B} \setminus \{v\}$ is a basis of W, contradicting that it is n-dimensional.

But for infinite-dimensional vector spaces, ?? 1 does not hold. In fact, neither does proposition .3. The map $p \mapsto xp$ is an injective map over the space of polynomials, but is not surjective.

Definition .4 (ℓ^p spaces). For any $1 \leq p < \infty$, we define

$$\ell^p := \{ x \in \mathbb{R}^{\mathbb{N}} : \sum |x_n|^p < \infty \}.$$

We also define

$$\ell^{\infty} := \{ x \in \mathbb{R}^{\mathbb{N}} : \sup_{n} |x_{n}| < \infty \},$$

$$C := \{ x \in \mathbb{R}^{\mathbb{N}} : \lim_{n \to \infty} x_{n} \text{ exists} \},$$

$$C_{0} := \{ x \in \mathbb{R}^{\mathbb{N}} : \lim_{n \to \infty} x_{n} = 0 \},$$

$$C_{00} := \{ x \in \mathbb{R}^{\mathbb{N}} : x_{n} = 0 \text{ for all but finitely many } n \}.$$

On the set of sequences, we have natural shift operations

$$S_R(x_1, x_2, \dots) := (0, x_1, x_2, \dots),$$

 $S_L(x_1, x_2, \dots) := (x_2, x_3, \dots).$

These are both linear maps. The first is injective but not surjective, while the second is surjective but not injective. Moreover, $S_L \circ S_R = \mathrm{id}$, but

$$(S_R \circ S_L)(x_1, x_2, \dots) = (0, x_2, \dots).$$

We are fucked.

Lecture 1

4 Lectures

Theorem .5. Let $X = Y = \mathbb{R}^d$ and $T: X \to Y$ be a linear map. Suppose

(H1) [Approximate solvability] For every $y \in Y$, there exists a sequence $(x_n)_n$ in X such that $Tx_n \to y$ in the Euclidean sense.

(H2) [Quantitative injectivity] There exists a constant C > 0 such that $||x|| \le C||Tx||$.

Then T is surjective.

Note that the second hypothesis immediately provides injectivity, since if Tx = 0, then $||x|| \le C||Tx|| = 0$.

Proof 1 (local compactness). Let $y \in Y$. Then there is a sequence $(x_n)_n$ such that $Tx_n \to y$. By part (H2), we have that $||x_n||$ are uniformly bounded. Thus the sequence $(x_n)_n$ admits a subsequential limit $x = \lim_{k \to \infty} x_{n_k}$. Then

$$||Tx - y|| \le ||Tx - Tx_{n_k}|| + ||Tx_{n_k} - y|| \to 0.$$

Thus Tx = y.