1.4 Estimation procedure

Introduction

This section is about obtaining

- Point estimates
- Interval estimates

In many settings, analytical solutions are not available, so we will need **numerical methods** (e.g., Newton-Raphson algorithm).

Recommended reading:

• A. J. Dobson & A. G. Barnett (2018) An introduction to generalised linear models, Chapman and Hall. Chapters 3,4,5.

Estimation procedure

Let's consider a dataset including lifetimes (times to failure in hours) of Kevlar epoxy strand pressure vessels at 70% stress level. (see Andrews and Herzberg, 1985.)

```
pressure <- c(1051, 1337, 1389, 1921, 1942, 2322, 3629, 4006, 4012, 4063, 4921, 5445, 5620, 5817, 5905, 5956, 6068, 6121, 6473, 7501, 7886, 8108, 8546, 8666, 8831, 9106, 9711, 9806, 10205, 10396, 10861, 11026, 11214, 11362, 11604, 11608, 11745, 11762, 11895, 12044, 13520, 13670, 14110, 14496, 15395, 16179, 17092, 17568, 17568)
```

Histogram of pressure

The Weibull distribution

A commonly used model for times to failure (or survival times) is the **Weibull distribution**:

$$f(y|\lambda, \theta) = \frac{\lambda y^{\lambda - 1}}{\theta^{\lambda}} \exp\left[-\left(\frac{y}{\theta}\right)^{\lambda}\right]$$
 (1.4.1)

where

- $ullet \ y>0$ is the time to failure
- ullet λ is the shape parameter
- θ is the scale parameter

The pdf of the Weibull distribution (1.4.1) can be rewritten as

$$f(y|\lambda, \theta) = \exp\left[\log \lambda + (\lambda - 1)\log y - \lambda\log \theta - \left(\frac{y}{\theta}\right)^{\lambda}\right]$$
 (1.4.2)

Do you know what this means?

Likelihood function for the Weibull distribution

Let Y_1, \ldots, Y_N be the data and N=49. Let's assume that the pressure vessels are independent and identically distributed; then the **likelihood** is

$$f(y_1,\ldots,y_N|\lambda, heta) = \prod_{i=1}^N rac{\lambda y_i^{\lambda-1}}{ heta^\lambda} \exp\left[-\left(rac{y_i}{ heta}
ight)^\lambda
ight]$$

and the log-likelihood

$$\ell(heta,\lambda;y_1,\ldots,y_N) = \sum_{i=1}^N \left[(\lambda-1)\log y_i + \log \lambda - \lambda\log \theta - \left(rac{y_i}{ heta}
ight)^{\lambda}
ight] \qquad (1.4.3)$$

Estimation of the Weibull parameters

Let's focus on θ and consider for the moment λ as known.

To obtain the maximum likelihood estimator we need to derive the *derivative of the log-likelihood with* respect to θ . This is also known as the **score function**:

$$\frac{d\ell}{d\theta} = U = \sum_{i=1}^{N} \left[-\frac{\lambda}{\theta} + \frac{\lambda y_i^{\lambda}}{\theta^{\lambda+1}} \right]$$
 (1.4.4)

and the **maximum likelihood estimator** is obtained by setting $\mathrm{U}=0$

Let's suppose $\lambda=2$. In this simple case the MLE is

$$\sum_{i=1}^{N} \left[-\frac{\lambda}{\theta} + \frac{\lambda y_i^{\lambda}}{\theta^{\lambda+1}} \right] = 0$$

$$\iff -\frac{N\lambda}{\theta} + \frac{\lambda}{\theta^{\lambda+1}} \sum_{i=1}^{N} y_i^{\lambda} = 0$$

$$\iff \frac{-N\lambda\theta^{\lambda} + \lambda \sum_{i=1}^{N} y_i^{\lambda}}{\theta^{\lambda+1}} = 0$$

Consequently we have $\lambda \sum_{i=1}^N y_i^\lambda = N \lambda heta^\lambda$ which implies

$$\hat{ heta} = \left(rac{\sum_{i=1}^N y_i^{\lambda}}{N}
ight)^{1/\lambda} = 9,892.177$$

Newton-Raphson algorithm in 1D

Suppose $f:\mathbb{R}\to\mathbb{R}$ is differentiable and attains the value 0 at x_0 . The **Newton-Raphson** algorithm finds x_0 iteratively. The slope of f at a value $x^{(m-1)}$ is given by

$$\left\lceil rac{df}{dx}
ight
ceil_{x=x^{(m-1)}} = f'(x^{(m-1)}) pprox rac{f(x^{(m)}) - f(x^{(m-1)})}{x^{(m)} - x^{(m-1)}}$$

if the distance $x^{(m)}-x^{(m-1)}$ is small (mean value theorem). If $x^{(m)}=x_0$ is the required solution so that $f(x^m)=0$ holds, then the above can be re-arranged to

$$x^{(m)} = x^{(m-1)} - rac{f(x^{(m-1)})}{f'(x^{(m-1)})}$$

Iterating this algorithm creates a sequence $x^{(m)}$ which approaches x_0 .

See here for a nice visualisation on Wikipedia by Ralf Pfeifer.

For the **Weibull distribution** with $\lambda=2$ we have

$$\mathrm{U} = -rac{2N}{ heta} + rac{2\sum_{i=1}^{N}y_i^2}{ heta^3}$$

and the derivative

$$rac{d\mathrm{U}}{d heta} = \mathrm{U}' = rac{2N}{ heta^2} - rac{2 imes 3 imes \sum_{i=1}^N y_i^2}{ heta^4}$$
 (1.4.5)

Practice: Implement the Newton-Raphson algorithm in $\bf R$ to estimate the scale parameter of the Weibull parameter as a function of ${\bf y}$ (data), θ_0 (starting value), λ and the number of iterations. See the next slide for RStudio and solution.

Practice using R

Implement the Newton-Raphson algorithm in **R** to estimate the scale parameter of the Weibull parameter as a function of \boldsymbol{y} (data), θ_0 (starting value), λ and the number of iterations.

Newton-Raphson algorithm in pD

Assume here that $oldsymbol{ heta}$ denotes a vector of parameters of length p.

Define $U_j := \partial \ell / \partial \theta_j$ as the score with respect to θ_j , and write $\mathbf{u} := (U_1, \dots, U_p)$. Similarly to $x^{(m)}$, we now construct a vector sequence $\boldsymbol{\theta}^{(m)}$ converging to $\hat{\boldsymbol{\theta}}$, where $\mathbf{u}(\hat{\theta}) = 0$. We write $\mathbf{u}^{(m)} := \mathbf{u}(\theta^{(m)})$. Again, by the mean value theorem, we have

$$\mathbf{u}^{(m)} - \mathbf{u}^{(m-1)} pprox H_{\ell}^{(m-1)} \left(oldsymbol{ heta}^{(m)} - oldsymbol{ heta}^{(m-1)}
ight)$$

where the Hessian H_ℓ is the p imes p-matrix with entry $rac{\partial^2\ell}{\partial heta_j\partial heta_k}$ at position (j,k).

Aiming for $\mathbf{u}^{(m)}=0$ as before, we arrive at a Newton-Raphson step

$$\boldsymbol{\theta}^{(m)} = \boldsymbol{\theta}^{(m-1)} - (H_{\ell}^{(m-1)})^{-1} \mathbf{u}^{(m-1)}. \tag{1.4.6}$$

Method of scoring

It is possible to calculate $H_\ell^{(m)}$ at each iteration step $\pmb{\theta}^{(m)}$ via chain rule. However, it has been shown empirically that no significant loss of accuracy is suffered when $H_\ell^{(m)}$ is replaced by minus the information matrix $-\mathcal{I}:=\mathbb{E}[\mathbf{U}']$.

That is, instead of (1.4.6) one iterates:

$$\boldsymbol{\theta}^{(m)} = \boldsymbol{\theta}^{(m-1)} + (\mathcal{I}^{(m-1)})^{-1} \mathbf{u}^{(m-1)};$$
 (1.4.7)

This is called the **method of scoring**.

Likelihood maximisation

Practice: Write some **R** code to reproduce this plot. See next slide for RStudio and solution.

As we have seen, the MLE is $\hat{\theta}=9892.17$. The **curvature** of the function ℓ in the vicinity of the maximum gives information about how reliable the MLE is.

The curvature of ℓ is defined by the rate of change of U, i.e. U' or $\mathbb{E}[U']$:

- if U' is small, then ℓ is flat and U is small for a wide interval of values for θ
- ullet if U' is large, then ℓ is concentrated around $\hat{ heta}$

We will see that the variance of $\hat{ heta}$ is inversely related to $\mathcal{I}=\mathbb{E}[-\mathrm{U}']$, i.e.

$$s.e.(\hat{\theta}) = \sqrt{\frac{1}{\mathcal{I}}} \tag{1.4.8}$$

Practice using R

Write some ${\bf R}$ code to reproduce this plot:

Check your understanding

This is a non-assessed self-practice. Attempt the question and then press submit to be able to see the solution.

Question

[See slide: Estimation procedure]

Consider the **pressure** dataset used in the Estimation procedure slide and also available in Dobson and Barnett (2018, page 65).

```
library(dobson)
data("failure")
attach(failure)
```

Assume that we are interested in fitting a Weibull distribution to the data with fixed shape $\lambda=2$.

- 1. Implement the Newton-Raphson algorithm in ${\bf R}$ to estimate the scale parameter of the Weibull parameter as a function of ${\bf y}$ (data), θ_0 (starting value), λ and the number of iterations. Run the algorithm with θ_0 set to be the sample mean and reproduce Table 4.2 from Dobson and Barnett (2018) without applying any rounding (the results might be slightly different for that reason).
- 2. Plot the log-likelihood function as a function of the scale parameter θ . Indicate the maximum likelihood estimator and the maximised value of the log-likelihood

No response