

Introduction to Virtual Machines

[1] E. Bugnion, J. Nieh, and D. Tsafrir, "<u>Hardware and Software Support For Virtualization</u>," *Synth. Lect. Comput. Archit.*, vol. 12, no. 1, pp. 1–206, Feb. 2017.

Readings: Chapter 1 [1]

Abstraction and Layering

- Abstraction: the only way of dealing with complex systems
 - Divide world into objects, each with an...
 - o Interface: knobs, behaviors, knobs → behaviors
 - o Implementation: "black box"
 - Specialists deal with implementation; others interface
 - Example: car drivers vs. mechanics
- Layering: abstraction discipline makes life even simpler
 - Removes need to even know interfaces of most objects
 - Divide objects in system into layers
 - Layer X objects
 - Implemented in terms of interfaces of layer X-1 objects
 - Don't even need to know interfaces of layer X-2 objects
 - Example: cab passenger vs. mechanics

Abstraction, Layering, and Computers

- Computers are complex systems, built in layers
 - Applications
 - O/S, compiler
 - Firmware, device drivers
 - Processor, memory, raw I/O devices
 - Digital circuits, digital/analog converters
 - Gates
 - Transistors
- 99% of users don't know hardware layers implementation
- 90% of users don't know implementation of any layer
- That's OK, world still works just fine
 - But unfortunately, the layers sometimes have to break
 - Someone has to understand what's "under the hood"

Virtualization

Definition:

- Virtualization is the application of the layering principle through **enforced modularity**, where the exposed virtual resource is identical to the underlying physical resource being virtualized.
- Virtualization Example in Computer Architecture
 - Virtual memory modularity enforced through MMU
- Virtualization within the Operating System
 - Expose real resources (CPU, Memory, I/O) to processes in a controlled way
- Virtualization in I/O subsystems
 - RAID controllers and Disks

Implementation Techniques in Virtualization

Combination of these three techniques in the hypervisor

Virtual Machines: Definitions

- Virtualization is the application of the layering principle through enforced modularity, whereby the exposed virtual resource is identical to the underlying physical resource being virtualized
- **A virtual machine** is an abstraction of a complete compute environment through the combined virtualization of the processor, memory, and I/O components of a computer.
- The hypervisor is a specialized piece of system software that manages and runs virtual machines.
- **The virtual machine monitor** (VMM) refers to the portion of the hypervisor that focuses on the **CPU** and **memory** virtualization (beware)

Virtual Machines

A virtual machine is a complete compute environment with its own isolated processing capabilities, memory, and communication channels.

Classes of Virtual Machines

- Language-based virtual machines
 - For portability reasons, synthetic ISA to compile.
 - ISA is translated on runtime into hardware ISA
 - Not our focus
 - Ej: JVM
- Lightweight virtual machines,
 - Rely on a combination of hardware and software isolation mechanisms to ensure that applications **running directly on the processor** (e.g., as native x86 code) are securely isolated.
 - Ej: containers

System Level Virtual Machines

System Level Virtual Machines

- Compute environment that resembles the hardware of a computer with enough detail to run a standard, commodity operating system and its applications
- Full isolation from the other virtual machines and the rest of the environment.
- Applies the virtualization principle to an entire computer system.
- Each virtual machine has its own copy of the underlying hardware, or at least, its own copy of some of it
- Each virtual machine runs its own independent operating system instance, called the <u>Guest Operating System (GuestOS)</u>

Platforms

- Machine Simulators (full system simulators)
 - Implemented as a user-level application
 - Models functionally (and **timing**) hardware details of the platform to study (processor, memory, I/O, etc). Platform can be single-system or muti-system
 - Very slow
 - Useful to hardware/software codesign, computer architecture research, etc..
 - Example: gem5

Hypervisor

- Relies on direct execution on the CPU
- Should emulate non-user level instructions somehow
- Models functionally other less performance sensitive components (Disk, net)
- ... if supported, can be used directly
- Example: Xen, KVM

Virtual Machine Monitor (VMM)

Popek and Goldberg Definition

A virtual machine is taken to be an **efficient**, **isolated duplicate** of the real machine. We explain these notions through the idea of a virtual machine monitor (VMM). As a piece of software, a VMM has three essential characteristics. First, the VMM provides an environment for programs which is essentially identical with the original machine; second, programs running in this environment show at worst only minor decreases in speed; and last, the VMM is in complete control of system resources.

Equivalence

Duplicating real resources

Safety

Isolation between VM and hypervisor

Performance

Separates Hypervisors from Simulators

Type-1 and Type-2 hypervisors

Multiplexing and Emulation

Case of VMWare (Early versions, No HW support)

	Virtual Hardware (front-end)	Back-end
Multiplexed	1 virtual x86-32 CPU	Scheduled by the host operating system
		with one or more x86 CPUs
	Up to 512 MB of contiguous	Allocated and managed by the host OS
	DRAM	(page-by-page)
Emulated	PCI Bus	Fully emulated compliant PCI bus with
		B/D/F addressing for all virtual mother-
		board and slot devices
	4 x 4IDE disks	Either virtual disks (stored as files) or direct
	7 x Buslogic SCSI Disks	access to a given raw device
	1 x IDE CD-ROM	ISO image or real CD-ROM
	2 x 1.44 MB floppy drives	Physical floppy or floppy image
	1 x VGA/SVGA graphics card	Appears as a Window or in full-screen mode
	2 x serial ports COM1 and COM2	Connect to Host serial port or a file
	1 x printer (LPT)	Can connect to host LPT port
	1 x keyboard (104-key) and mouse	Fully emulated
	AMD PCnet NIC (AM79C970A)	Via virtual switch of the host

Names for Memory

- Eskimos and Snow, Computer Architects and Memory
 - Virtual memory concept is the most significant enhancement over the original Von-Neumman Model

- Virtual Memory
 - Byte addressable namespace used by instruction sequences executed by the processor
- Physical Memory
 - Byte addressable resource accessed by the memory hierarchy (typically DRAM)
 - Guest-Physical memory or Host-physical Memory in a VM

Approaches to Virtualization

Full (software) virtualization

- Hypervisors designed to maximize hardware compatibility
- Run unmodified operating systems on architectures without full support for it (usually by the means of dynamic binary translation)

Hardware Virtualization (HVM)

- Hypervisors built for hardware with architectural support for virtualization
- (mostly) Rely on direct execution

Paravirtualization

- Initially, hypervisors for platform without architectural support for virtualization using modified operating system to avoid binary translation (via hyper-calls)
- Today, a mix of paravirtualization and HVM is usual

Benefits of Virtual Machines

- Operating system diversity (on same hardware)
- Server consolidation
 - Best IT practices mandates single app per "server"
- Rapid provisioning
 - Simplify app/server deployment
- Security
 - Additional OS Isolation, OS introspection, external control (e.g., firewall interposing)
- High-availability
 - Near-zero operational impact from hardware failures
- Distributed resource scheduling
 - Live migration techniques convert a group of hypervisors in a common resource pool
- Cloud computing
 - Mix customers (tenants) in a shared resource pool. Requires network virtualization

History of sVM

- Mid/late-60s IBM 360/67 -- CP-67
 - First 360 with VM.
 - CMS an essential part (Multiuser in a single user OS)
- Late 60s/early 70s
 - VMs blossomed as a research topic
- Early 70s several VM implementations
 - Honeywell
 - DEC
 - RCA
 - Several university projects
- **□**

sVM on cheap HW (x86)

- Software Explosion
 - VMWare (v1.0 1999)
 - Targets Windows
 - From Stanford Disco Project (mainly SimOS)
 - Xen (v1.0 2003)
 - Targets Linux
 - AWS
 - From Cambridge Univ.
- Hardware
 - Intel: Vanderpool (VT-x): Pentium 4 (2005)
 - AMD: Pacifica (AMD-v) Athlon64 Processors (2006)