基于双向 KMPE loss 实现的 BIK-ICP 算法

目标

将传统 icp 的 mse 损失函数更改为 kmpe 损失函数,使得 icp 算法获得更好的健壮性,抗噪性并解决模型部分重合时的配准问题,这里将使用 kmpe 作为损失函数的 icp 称为 bik-icp 算法。损失函数公式如下

1.mse 损失函数

$$\left(\mathbf{R}_{k}, \vec{t}_{k}\right) = \underset{\mathbf{R}^{T}\mathbf{R} = I_{2}, \det(\mathbf{R}) = 1, \vec{t}}{\arg\min} \left(\sum_{i=1}^{N_{x}} \left\| \mathbf{R} \vec{x}_{i} + \vec{t} - \vec{y}_{c_{k}(i)} \right\|_{2}^{2} \right).$$

2.kmpe 损失函数

$$(\mathbf{R}^*, \vec{t}^*) = \underset{\mathbf{R}^T \mathbf{R} = \mathbf{I}_n, \det(\mathbf{R}) = 1, \vec{t}}{\arg \min} \sum_{i=1}^{N_x} (1 - \kappa_{\sigma} (\mathbf{R} \vec{x}_i + \vec{t} - \vec{y}_{c(i)}))^{p/2}$$

其中

$$\kappa_{\sigma}(X - Y) = \exp\left(-\|X - Y\|_2^2/2\sigma^2\right)$$

原理:

Fig. 1. Bidirectional loss function with different parameters: e_1 and e_2 denote the errors from two directions, respectively. (a) Bidirectional MSE: $e_1^2 + e_2^2$; (b) and (c) Bidirectional C-loss with Gauss kernel: $(1 - \kappa_{\sigma}(e_1)) + (1 - \kappa_{\sigma}(e_2))$, $\sigma = 0.5$ and 2; and (d)–(f) Bidirectional KMPE loss: $BiK(e_1, e_2)$, $\sigma = 1$ and p = 1, 2, 3.

(e)

(f)

和传统的基于二次幂累加的 mse 损失函数,基于高斯核函数累加的 kmpe 损失函数有 明显优势。如上图所示,高斯核函数的特点是当对应点的距离越小时,其增长速率越大,且 函数是有边界的; 而二次幂函数随着对应点的距离越大, 增长速率反而越快, 且无边界。这 和我们直觉是相反的,当对应点越接近时,权值应该越大,对应点距离越远,权值越小;其 次幂函数无边界,那么异常值,噪声和非重合的点对损失函数的影响过大,将无法获得正确 的旋转角和位移向量。

高斯核函数还有个优点就是可以调节幂 p 和 σ 参数, 其中 p 越小, 函数的底部就越尖锐, σ越大, 函数底部就越宽, 使其可配准各种不同初始状态下的目标模型。

步骤

通过 kdtree 获得双向对应点集 U. V step1

a. 定义和推导

(d)

我们通过 kdtree 获得对应点,即当两个点之间的距离最小则它们互为对应点。其中原 模型的点集为X,目标模型的点集为Y。为了解决不适定问题,这里我们取双向对应点。公 式如下:

1680

$$\begin{cases} c_k(i) = \arg\min_{j \in \{1, 2, \dots, N_y\}} & \| \left(\mathbf{W}_{k-1} \vec{x}_i + \vec{t}_{k-1} \right) - \vec{y}_j \|_2^2 \\ d_k(j) = \arg\min_{i \in \{1, 2, \dots, N_x\}} & \| \left(\mathbf{W}_{k-1} \vec{x}_i + \vec{t}_{k-1} \right) - \vec{y}_j \|_2^2. \end{cases}$$
(8)

 $c_k(i)$ 为了得到 $\vec{y_i}$ 向量到 $\vec{x_i}$ 向量的最短距离,对应点 $\vec{y_i}$ 向量和 $\vec{x_i}$ 向量互为对应点。 $c_k(j)$ 为了得到 $\vec{x_i}$,向量到 $\vec{y_i}$,向量到 $\vec{y_i}$,向量和 $\vec{y_i}$,向量和 $\vec{y_i}$,向量和 $\vec{y_i}$,向量五为对应点。

b.将双向匹配的点集融合成新的点集 U 和 V

将(8)中获得的对应点,融合成两个具有对应关系的新的点集 U 和 V $(N_x \in X$ 点集点的个数, $N_y \in Y$ 点集的点的个数),如下:

$$\vec{u}_i = \begin{cases} \vec{x}_i, & 1 \le i \le N_x \\ \vec{x}_{d_k(i-N_x)}, & N_x + 1 \le i \le N \end{cases}$$

$$\vec{v}_i = \begin{cases} \vec{y}_{c_k(i)}, & 1 \le i \le N_x \\ \vec{y}_{i-N_x}, & N_x + 1 \le i \le N. \end{cases}$$

因此我们获得新的点集 U, V, 此时损失函数可表示为:

$$\left(\mathbf{W}_{k}, \vec{t}_{k}\right) = \underset{W.\tilde{\mathbf{t}}}{\operatorname{arg\,min}} \frac{1}{N} \sum_{i=1}^{N} \left(1 - \kappa_{\sigma} \left(\mathbf{W} \vec{u}_{i} + \vec{t} - \vec{v}_{i}\right)\right)^{p/2}. \tag{9}$$

step2 求得σ

a. 分析

这里的σ是决定了高斯核的宽度,配准刚开始的时候,σ应尽量大些,这样可以更充分的利用点的信息,而不是将他们误归类为异常点。

b. 计算

The kernel width σ is an important parameter in PCA-KMPE. In general, one can employ the Silvermans rule [38], to adjust the kernel width

$$\sigma^2 = 1.06 \times \min \left\{ \sigma_E, \frac{R}{1.354} \right\} \times (n)^{-1/5}$$
 (30)

where σ_E is the standard deviation of $\|\mathbf{e}_i\|_2^2$ and R is the interquartile range.

step3 求得 tょ

a. 推导公式:

1. 根据(9)式对 t 求导可得:

$$\vec{t}_k = \sum_{i=1}^N \varphi(e_i)(\vec{v}_i - s\mathbf{R}\vec{u}_i) / \sum_{i=1}^N \varphi(e_i)$$
 (10)

where
$$\varphi(e_i) \stackrel{\Delta}{=} (1 - \kappa_{\sigma}(e_i))^{[(p-2)/2]} \kappa_{\sigma}(e_i)$$
 and $e_i = s\mathbf{R}\vec{u}_i + \vec{t} - \vec{v}_i$.

注意: (9)式中的 W 是一个仿射矩阵, 可定义为 W=s*R, s 是缩放系数, R 是旋转矩阵。

b. 求 $\varphi(e_i)$

由于 e_i 中含有 \vec{t} 向量,为了计算方便,用 $\overrightarrow{t_{k-1}}$ 近似代替,可近似为 $e_i = sR\overrightarrow{u_i} + \overrightarrow{t_{i-1}} - \overrightarrow{v_i}$

c. 求得 t_k

这里的 R 也用 R_{k-1} 近似代替,直接由(10)就可以计算得到(??? 是否可以先求出 R_k 后再代入(10)式)

step4 求点集 P和 Q

a. 公式推导

将(10)式中的花代入(9)式得,并定义

$$\begin{cases} \vec{p}_i \stackrel{\Delta}{=} \vec{u}_i - \sum_{i=1}^N \varphi(e_i) \vec{u}_i / \sum_{i=1}^N \varphi(e_i) \\ \vec{q}_i \stackrel{\Delta}{=} \vec{v}_i - \sum_{i=1}^N \varphi(e_i) \vec{v}_i / \sum_{i=1}^N \varphi(e_i) \end{cases}$$

通过化简. 可得新公式

$$(\mathbf{R}_k, s_k) = \underset{\mathbf{R}^T \mathbf{R} = \mathbf{I}_2, \det(\mathbf{R}) = 1, s}{\operatorname{arg \, min}} \frac{1}{N} \sum_{i=1}^{N} (1 - \kappa_{\sigma} (s \mathbf{R} \vec{p}_i - \vec{q}_i))^{p/2}.$$
(11)

因此可将原损失函数转化为点集 P 和 Q 相关的函数,其中 P, Q 是向量 $\vec{p_i}$ 和对应向量 $\vec{q_i}$ 的集合。

b. 求解

 $\varphi(e_i)$ 和集合 U,V 都是已知的,在 step3 中已经求出,只要按照上述定义计算即可获得 P, Q

step5 求得 s

a. 公式推导

公式(11)直接对 s 求导得:

$$s_k = \sum_{i=1}^N \vec{q}_i^T \mathbf{R}_k \varphi(e_i) \vec{p}_i / \sum_{i=1}^N \vec{p}_i^T \varphi(e_i) \vec{p}_i.$$
 (12)

b. 求解

 $\varphi(e_i)$ 和集合 P,Q 都是已知的,已经在 step4 和 step5 求出,使用 R_{k-1} 近似代替 R,就可以根据公式(12)轻松求出 s_k

step6 求得 R

a. 公式推导

论文中并没有直接给出,可参考 Robust rigid registration algorithm based on pointwise correspondence and correntropy

$$\mathbf{H} = \frac{1}{N} \sum_{i=1}^{N} s_k \vec{p}_i \varphi(e_i) \vec{q}_i^T$$

and then decompose $\underline{\mathbf{H}}$ by SVD as follows: $\underline{\mathbf{H}} = \underline{\mathbf{S}} \Lambda \underline{\mathbf{D}}$. Accordingly, $\mathbf{R}_{\underline{k}}$ can be estimated as

$$\underline{\mathbf{R}}_{\underline{k}} = \mathbf{S}\underline{\tilde{\mathbf{I}}}\mathbf{D}^{T} \tag{13}$$

where

$$\tilde{\textbf{I}} = \left\{ \begin{aligned} &\textbf{I}_2 & \text{det}(\textbf{H}) > 0 \\ &\text{diag}(1,-1) & \text{det}(\textbf{H}) < 0. \end{aligned} \right.$$

????这里的求解有疑问,不同的论文给出了不同的公式,且该公式在实验中无法获 得正确的 R_k ,我使用的是 $R_k = D\tilde{I}S^T$,但不具备论文实验数据的健壮性,只能偏离度数 10 度以内才可以正确配准

伪代码

TABLE I BIK-ICP ALGORITHM

Algorithm 1: BiK-ICP

Require: Two shape point sets $\mathbf{X} \stackrel{\Delta}{=} \{\vec{x}_i\}_{i=1}^{N_x}$ and $\mathbf{Y} \stackrel{\Delta}{=} \{\vec{y}_i\}_{i=1}^{N_y}$; Initial parameters: s_0 , $\mathbf{R_0}$ (or $\mathbf{A_0}$) and $\overline{t_0}$, σ_0 and p.

- 1: For k = 1, ..., K.
- Set up correspondences $c_k(i)$ and $d_k(j)$ via (8).
- Compute $\varphi(e_i)$ by s_{k-1} , \mathbf{R}_{k-1} , and t_{k-1} . Reconstruct matrices \mathbf{P} and \mathbf{Q} . 3:
- Solve s_k and \mathbf{R}_k via (12) and (13) or \mathbf{A}_k via (18). 5:
- Solve the translation vector \vec{t}_k via (10) or (14). 6:
- 7: Update σ .
- Compute the bidirectional MSE e_k . 8:
- 9: If $|e_k - e_{k-1}| \leq \varepsilon$.
- 10: break;
- end if. 11:
- 12: end for.

Return: the transformation parameters s, \mathbf{R} or \mathbf{A} and \vec{t} .

论文实验中初始化如下:

 $s_0=1$, $R_0=I_2$, $t_0=[0,0]$, σ_0 由 step2 计算得到, p=0.2, K=200

注意: 我们也可以通过粗配准得到初始的 s_0 , R_0 和 t_0 ; p 的取值范围在[0.2 , 8], 通过贪婪算法[0.2, 0.4, 0.6, ··· ,8]观察最佳效果确定 p (???目前还无靠谱的策略得到 p)