6.4 Details and Notation

A feature map is obtained by repeated application of a function across sub-regions of the entire image, in other words, by *convolution* of the input image with a linear filter, adding a bias term and then applying a non-linear function. If we denote the k-th feature map at a given layer as h^k , whose filters are determined by the weights W^k and bias b_k , then the feature map h^k is obtained as follows (for tanh non-linearities):

$$h_{ij}^k = \tanh((W^k * x)_{ij} + b_k).$$

Note: Recall the following definition of convolution for a 1D signal. $o[n] = f[n] * g[n] = \sum_{u=-\infty}^{\infty} f[u]g[n-u] = \sum_{u=-\infty}^{\infty} f[n-u]g[u]$.

This can be extended to 2D as follows: $o[m,n]=f[m,n]*g[m,n]=\sum_{u=-\infty}^{\infty}\sum_{v=-\infty}^{\infty}f[u,v]g[m-u,n-v].$

To form a richer representation of the data, each hidden layer is composed of *multiple* feature maps, $\{h^{(k)}, k=0..K\}$. The weights W of a hidden layer can be represented in a 4D tensor containing elements for every combination of destination feature map, source feature map, source vertical position, and source horizontal position. The biases b can be represented as a vector containing one element for every destination feature map. We illustrate this graphically as follows:

Figure 6.1: **Figure 1**: example of a convolutional layer

The figure shows two layers of a CNN. Layer m-1 contains four feature maps. Hidden layer m contains two feature maps (h^0 and h^1). Pixels (neuron outputs) in h^0 and h^1 (outlined as blue and red squares) are computed from pixels of layer (m-1) which fall within their 2x2 receptive field in the layer below (shown as colored rectangles). Notice how the receptive field spans all four input feature maps. The weights W^0 and

 W^1 of h^0 and h^1 are thus 3D weight tensors. The leading dimension indexes the input feature maps, while the other two refer to the pixel coordinates.

Putting it all together, W_{ij}^{kl} denotes the weight connecting each pixel of the k-th feature map at layer m, with the pixel at coordinates (i,j) of the l-th feature map of layer (m-1).

6.5 The Convolution Operator

ConvOp is the main workhorse for implementing a convolutional layer in Theano. ConvOp is used by theano.tensor.signal.conv2d, which takes two symbolic inputs:

- a 4D tensor corresponding to a mini-batch of input images. The shape of the tensor is as follows: [mini-batch size, number of input feature maps, image height, image width].
- a 4D tensor corresponding to the weight matrix W. The shape of the tensor is: [number of feature maps at layer m, number of feature maps at layer m-1, filter height, filter width]

Below is the Theano code for implementing a convolutional layer similar to the one of Figure 1. The input consists of 3 features maps (an RGB color image) of size 120x160. We use two convolutional filters with 9x9 receptive fields.

```
import theano
from theano import tensor as T
from theano.tensor.nnet import conv
import numpy
rng = numpy.random.RandomState(23455)
# instantiate 4D tensor for input
input = T.tensor4(name='input')
# initialize shared variable for weights.
w_{shp} = (2, 3, 9, 9)
w_bound = numpy.sqrt(3 * 9 * 9)
W = theano.shared( numpy.asarray(
            rng.uniform(
                low=-1.0 / w_bound
                high=1.0 / w_bound,
                size=w_shp),
            dtype=input.dtype), name ='W')
# initialize shared variable for bias (1D tensor) with random values
# IMPORTANT: biases are usually initialized to zero. However in this
# particular application, we simply apply the convolutional layer to
# an image without learning the parameters. We therefore initialize
# them to random values to "simulate" learning.
b shp = (2,)
b = theano.shared(numpy.asarray(
            rng.uniform(low=-.5, high=.5, size=b_shp),
            dtype=input.dtype), name ='b')
```

 W^1 of h^0 and h^1 are thus 3D weight tensors. The leading dimension indexes the input feature maps, while the other two refer to the pixel coordinates.

Putting it all together, W_{ij}^{kl} denotes the weight connecting each pixel of the k-th feature map at layer m, with the pixel at coordinates (i,j) of the l-th feature map of layer (m-1).

6.5 The Convolution Operator

ConvOp is the main workhorse for implementing a convolutional layer in Theano. ConvOp is used by theano.tensor.signal.conv2d, which takes two symbolic inputs:

- a 4D tensor corresponding to a mini-batch of input images. The shape of the tensor is as follows: [mini-batch size, number of input feature maps, image height, image width].
- a 4D tensor corresponding to the weight matrix W. The shape of the tensor is: [number of feature maps at layer m, number of feature maps at layer m-1, filter height, filter width]

Below is the Theano code for implementing a convolutional layer similar to the one of Figure 1. The input consists of 3 features maps (an RGB color image) of size 120x160. We use two convolutional filters with 9x9 receptive fields.

```
import theano
from theano import tensor as T
from theano.tensor.nnet import conv
import numpy
rng = numpy.random.RandomState(23455)
# instantiate 4D tensor for input
input = T.tensor4(name='input')
# initialize shared variable for weights.
w_{shp} = (2, 3, 9, 9)
w_bound = numpy.sqrt(3 * 9 * 9)
W = theano.shared( numpy.asarray(
            rng.uniform(
                low=-1.0 / w_bound
                high=1.0 / w_bound,
                size=w_shp),
            dtype=input.dtype), name ='W')
# initialize shared variable for bias (1D tensor) with random values
# IMPORTANT: biases are usually initialized to zero. However in this
# particular application, we simply apply the convolutional layer to
# an image without learning the parameters. We therefore initialize
# them to random values to "simulate" learning.
b shp = (2,)
b = theano.shared(numpy.asarray(
            rng.uniform(low=-.5, high=.5, size=b_shp),
            dtype=input.dtype), name ='b')
```

 W^1 of h^0 and h^1 are thus 3D weight tensors. The leading dimension indexes the input feature maps, while the other two refer to the pixel coordinates.

Putting it all together, W_{ij}^{kl} denotes the weight connecting each pixel of the k-th feature map at layer m, with the pixel at coordinates (i,j) of the l-th feature map of layer (m-1).

6.5 The Convolution Operator

ConvOp is the main workhorse for implementing a convolutional layer in Theano. ConvOp is used by theano.tensor.signal.conv2d, which takes two symbolic inputs:

- a 4D tensor corresponding to a mini-batch of input images. The shape of the tensor is as follows: [mini-batch size, number of input feature maps, image height, image width].
- a 4D tensor corresponding to the weight matrix W. The shape of the tensor is: [number of feature maps at layer m, number of feature maps at layer m-1, filter height, filter width]

Below is the Theano code for implementing a convolutional layer similar to the one of Figure 1. The input consists of 3 features maps (an RGB color image) of size 120x160. We use two convolutional filters with 9x9 receptive fields.

```
import theano
from theano import tensor as T
from theano.tensor.nnet import conv
import numpy
rng = numpy.random.RandomState(23455)
# instantiate 4D tensor for input
input = T.tensor4(name='input')
# initialize shared variable for weights.
w_{shp} = (2, 3, 9, 9)
w_bound = numpy.sqrt(3 * 9 * 9)
W = theano.shared( numpy.asarray(
            rng.uniform(
                low=-1.0 / w_bound
                high=1.0 / w_bound,
                size=w_shp),
            dtype=input.dtype), name ='W')
# initialize shared variable for bias (1D tensor) with random values
# IMPORTANT: biases are usually initialized to zero. However in this
# particular application, we simply apply the convolutional layer to
# an image without learning the parameters. We therefore initialize
# them to random values to "simulate" learning.
b shp = (2,)
b = theano.shared(numpy.asarray(
            rng.uniform(low=-.5, high=.5, size=b_shp),
            dtype=input.dtype), name ='b')
```