MULTIMEDIA		UNIVERSITY
------------	--	------------

STUDENT ID NO								
		_						

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2017/2018

TMA1101 - CALCULUS

(All sections / Groups)

14 OCTOBER 2017 2:30 p.m. – 4:30 p.m. (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of six pages with **FIVE** questions.
- 2. Attempt **ALL** questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the answer booklet provided.
- 4. No calculators are allowed.
- 5. You are required to write proper steps.

ANSWER ALL QUESTIONS.

QUESTION 1 [10 marks]

1 (a) Find the following limits.

[You must show at least one intermediate step where $\lim_{n \to \infty}$ is still needed.]

(i)
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x^2 - 4}$$

(ii)
$$\lim_{x \to \infty} \frac{x^2 + x - 2}{3x^2 + 6x}$$

[2 marks]

(b) Given
$$f(x) = \begin{cases} x+7, & \text{if } x < 3 \\ 2x & \text{if } x = 3 \\ x^2 + 1, & \text{if } x > 3 \end{cases}$$

- (i) Find f(3).
- (ii) Determine $\lim_{x\to 3^-} f(x)$ and $\lim_{x\to 3^+} f(x)$.

[For this part, you must show at least one intermediate step where $\lim_{x\to 3^-}$ or $\lim_{x\to 3^+}$ is still needed.]

- (iii) Does $\lim_{x\to 3} f(x)$ exist? Give your reason. If it exists, state its value.
- (iv) Is the function f continuous at 3? Give the reason for your answer.

[4.5 marks]

- (c) (i) State the Intermediate Value Theorem (i.e., the full statement including the hypothesis and the conclusion).
 - (ii) Show that there is a root of the equation $x^4 3x^2 3 = 0$ in the interval [1, 2].

You must write proper steps to arrive at the conclusion; just writing some calculations would not be enough.

[3.5 marks]

Continued

QUESTION 2 [10 marks]

- (a) Use the formal definition of derivative to find f'(3) when $f(x) = x^2 x$. You are reminded to write proper steps. [2.5 marks]
- (b) Find $\frac{dy}{dx}$ with y as given.

 [Use the product rule or the quotient rule for differentiation; show proper steps.]
- (i) $y = \sqrt{x} \sin x$
- (ii) $y = \frac{2x^3}{1 + e^x}$

[3 marks]

(c) The point (4, 2) lies on the curve $3x + y^3 - xy = 12$. Use implicit differentiation to obtain $\frac{dy}{dx}$ in terms of x and y.

Then determine the gradient of the tangent to the curve $3x + y^3 - xy = 12$ at the point (4, 2).

[4.5 marks]

Continued

QUESTION 3 [10 marks]

- (a) (i) Use $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ and $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$ to find the values of A and B which make the equation $\sin 4x \cos 5x = A \sin 9x + B \sin x$ an identity.
 - (ii) Evaluate $\int_0^{\pi} \sin 4x \cos 5x \, dx$

[3.5 marks]

(b) (i) Determine the values of A and B in the following partial fraction decomposition.

$$\frac{5x}{2x^2 - 3x - 2} = \frac{A}{2x + 1} + \frac{B}{x - 2}$$

(ii) Integrate

$$\int \frac{5x}{2x^2 - 3x - 2} dx$$

[3 marks]

- (c) The figure shows a region bounded by the parabola $y = x^2 x$ and the straight line y = 2 2x.
 - (i) Determine the x-coordinates of the points of intersection between the parabola and the straight line.

(ii) Write down a definite integral that can be used to find the area of this region and proceed to find the area.

[3.5 marks]

Continued

QUESTION 4 [10 marks]

- (a) (i) Given an infinite series $\sum_{n=1}^{\infty} a_n$ with all terms positive and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$, discuss, according to the ratio test, how the value of L can be used to decide on the convergence or divergence of $\sum_{n=1}^{\infty} a_n$.
 - (ii) Let $a_n = \frac{3^n}{n^3}$. Determine $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.

Then use the ratio test to determine whether the infinite series $\sum_{n=1}^{\infty} \frac{3^n}{n^3}$ is convergent.

[3 marks]

(b) Find the Taylor polynomial of degree 3 for $f(x) = \ln x$ at x = 1. Show proper steps.

[3 marks]

(c) A periodic function f with period 2π is defined as

$$f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ \pi, & 0 \le x < \frac{\pi}{2} \\ 0, & \frac{\pi}{2} \le x < \pi \end{cases}$$

- (i) Sketch the graph of f on the interval $[-2\pi, 2\pi]$.
- (ii) The Fourier series of f has the form

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

Find the value of b_3 .

[4 marks]

Continued

QUESTION 5 [10 marks]

(a) Given $F(x, y) = x^2 + \cos(xy) - e^y$, find the partial derivatives $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$.

[1 mark]

(b) Solve the first order separable equation $\frac{dy}{dx} = \frac{(x-1)(x+2)}{y(y+2)}$

subject to the initial condition y(0) = 1.

You may leave your answer in implicit form.

[2.5 marks]

(c) You are told that e^x is an integrating factor for the first order linear equation $\frac{dy}{dx} + y = 8$ subject to the initial condition y(0) = 1.

Solve the equation and give your solution in explicit form.

[3 marks]

(d) (i) Find the roots of the **characteristic equation** of the homogeneous differential equation

$$y''-3y'-10y=0$$

Then write down the general solution y_k of this homogeneous differential equation.

- (ii) If $y = Ae^{3x}$ is a **particular solution** of the differential equation $y''-3y'-10y = 2e^{3x}$. Determine the value of A.
- (iii) Hence, write down the **general solution** for the differential equation $y''-3y'-10y=2e^{3x}$.

[3.5 marks]

End of Page