EJERCICIO 4.3: TRAYECTORIA Y ALCANCE DE PROYECTIL CON Y SIN ROZAMIENTO

He hecho un programa en Python "Ejercicio4.3.py" para determinar el alcance de un proyectil con y sin rozamiento en función del ángulo, entre 30º y 55º en intervalos de 1º, mediante el método de Runge-Kutta de orden 4 con un intervalo temporal dt = 0.1 segundos.

Se muestra a continuación una tabla con los datos de alcances obtenidos en función de los ángulos y del rozamiento:

Ángulo (grados)	Alcance sin rozamiento (km)	Alcance con rozamiento (km)
30	43.30125	21.28432
31	44.14737	21.45622
32	44.9397	21.60607
33	45.67727	21.73428
34	46.35918	21.84124
35	46.98461	21.9273
36	47.55281	21.99278
37	48.06307	22.03801
38	48.51477	22.06323
39	48.90738	22.06873
40	49.24038	22.05473
41	49.51339	22.02148
42	49.72609	21.96917
43	49.87819	21.898
44	49.96953	21.80815
45	49.99999	21.69979
46	49.96953	21.57307
47	49.87819	21.42816
48	49.72608	21.26518
49	49.5134	21.08427
50	49.24038	20.88556
51	48.90737	20.66916
52	48.51478	20.43519
53	48.06308	20.18376
54	47.55282	19.91496
55	46.98463	19.62891

Se puede ver que para el caso sin rozamiento el ángulo en el que se obtiene el alcance máximo es a 45º mientras que para el caso con rozamientos es 39º, un valor más acorde a lo que nos dice la experiencia en la vida real. Además, otra diferencia notable es que sin rozamiento los alcances rondan entre 40 y 50 km mientras que con rozamiento se reducen aproximadamente a la mitad de la distancia (entre 19 y 23 km).

Se pide también mostrar un gráfico con las trayectorias del proyectil con y sin rozamiento entre 30º y 55º en intervalos de 5º. A continuación, se muestran estos gráficos:

Sin rozamiento:

Con rozamiento:

Trayectorias proyectil con rozamiento. Ángulos 30,35,40,45,50 y 55 grados

Podemos ver la misma información de la tabla, pero representada gráficamente.

Por último, se pide mostrar dos gráficas del alcance del proyectil en función del ángulo para todos los ángulos entre 30º y 50º (en intervalos de 1º), para el caso sin rozamiento y con rozamiento respectivamente. Y se pide incluir una leyenda con los datos del alcance máximo y el ángulo correspondiente.

- Sin rozamiento:

- Con rozamiento:

