Data Communication BLM3051

Furkan ÇAKMAK

Lecture Information Form - Weekly Subjects

BLM3051 Data Communication

Veek	Date	Subjects
1	04,10,2022	Introduction to Data Communication Standards Used on Data Communication, Architectural models
2	11,10,2022	OSI Reference Model , Layers and Their Functions
3	18.10.2022	Signaling and Signal Encoding
4	25.10.2022	Parallel and Serial Transmission, Communication Media and Their Technical Specs., Multiplexing (TDM, FDM)
5	01.11.2022	Error Detection and Error Correction Techniques
6	08.11.2022	Data Link Control Techniques, Flow Control
7	15.11.2022	Asynchronous and Synchronous Data Link Protocols (BSC, HDLC)
8	22.11.2022	1. Vize Haftası
9	29.11.2022	LAN Technologies Continued, IEEE 802.4, 802.5, 802.11
10	06.12.2022	Connectionless and Connection Oriented Services, Switching
11	13.12.2022	Wide Area Networking Technologies (X.25, ISDN, FR, ATM, xDSL.)
12	20.12.2022	Communications Equipment's, TCP/IP Model, Security Issues
13	27.12.2022	Research Presentation 1
14	03.01.2022	Research Presentation 2

IEEE 802.11 - WiFi

BLM3051 Data Communication

Week 10

- RF
- Infrared
- Static
- · Mobile, Nomadic
 - Roaming
- Carrier
- Non-Line-of-Sight Propagation (NLSP)

Furkan Çakmak

3

IEEE 802.11 - WiFi - Con't

BLM3051 Data Communication

Week 10

- Continuation of the Ethernet
- CSMA/CD -> CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)
 - Antenna type: half-duplex
 - Fading
 - The signal decreases inversely with the square of the distance
 - Noise
 - · Detecting collisions is almost impossible
- IEEE 802.11 MAC
 - DCF (Distributed Coordination Function)
 - CMSA/CA
 - PCF (Point Coordination Function)
 - Polling

Furkan Çakmak

IEEE 802.11 - DCF-Distributed Coordination Function

BLM3051 Data Communicatior

Week 10

- DCF basic access method
 - Checks if the line is empty
 - If it sees that the line is empty for DIFS (DCF Inter-Frame Space) time, it switches to transmission.
 - If the line is busy, it delays its own transmission until the transmission is finished.
 - · Waits until DIFS (back-off) times is up
 - The back-off timer starts to decrease (DIFS)
 - It transmits when the back-off time value is 0.
 - · Timing slots
 - Receiving node sends acknowledgment (ACK) after waiting the time specified by SIFS (Short Inter Frame Space).
 - SIFS<DIFS
 - · In case a collision;
 - EIFS (Extended Inter Frame Space)

Furkan Cakmak

5

Service Area

• BSA - Basic Service Area
• ESA - Extended Service Area

Wired Distributed
System

Furkan Çakmak

BLM3051 Data Channel Usage Communication Week 10 Veri Hızı Örtüşmeyen Modülasyon Standart Bant İç Dış Genişliği Kanal Ortam Ortam IEEE 802.11 20 MHz ≤ 2Mbps @ 2.4GHz FHSS, DSSS 20m 100m IEEE 802.11a 20 MHz ≤ 54Mbps @ 5GHz **OFDM** 35m 120m IEEE 802.11b 20 MHz DSSS (CCK) 3 35m 140m ≤ 11Mbps @ 2.4GHz OFDM (>20Mbps) IEEE 802.11g 20 MHz ≤ 54Mbps @ 2.4GHz 3 38m 140m DSSS (<20Mbps) IEEE 802.11n 20 MHz 3/11 70m 250m ≤ 72Mbps @ 2.4GHz **OFDM** $40~\mathrm{MHz}$ (MIMO - 4 stream) ≤ 150Mbps @ 5GHz IEEE 802.11ac 20 MHz **OFDM** ≤ 87.6Mbps @ 5GHz 40 MHz (MIMO - 8 stream) ≤ 200Mbps @ 5GHz 80 MHz ≤ 433Mbps @ 5GHz 1600 MHz ≤ 866Mbps @ 5GHz Bluetooth Ver 3.0 ≤ 24Mbps @ 2.4GHz **FHSS** 79 100m HomeRF ≤ 10Mbps @ 2.4GHz **FHSS** HiperLAN/1 CSMA/CA ≤ 20Mbps @ 5GHz HiperLAN/2 OFDM ≤ 54Mbps @ 5GHz Furkan Cakmak

11

Security in Wireless Networks

BLM3051 Data Communication

Week 10

- Authentication
- Encryption
- Security types
 - Wired Equivalent Privacy (WEP)
 - Encryption only for data, not for header

 - RC4Encryption key is too weak.
 - Wi-Fi Protected Access (WPA)
 - >= 2003
 - Temporal Key Integrity Protocol (TKIP)
 - Authentication
 - WPA2 (2010)
 - Advanced Encryption Standard (AES)
 Extensible Authentication Protocol (EAP)
 - 2008 -> TKIP is unreliable

Furkan Çakmak

15

802.3	 Yaygın kullanım, sahip olunmuş deneyim Basit algoritma Basit kurulum. Yıldız ilingesinde yeni bir bilgisayar eklemek ağın çalışmasını etkilemez. Sayısal işaretleşme (Manchester) LSB öncelikli veri iletimi Düşük yüklerde gecikme sıfıra yakındır
Ethernet	 CD donanımı örneksel Yüklü çalışma durumunda veri bozulması (collision) olasılığı artar Non deterministic (Gerçek zamanlı uygulamalar için ideal değil) Öncelik mekanizması mevcut değil
	– En az 64'byte'lik çerçeveler – Sınırlı çerçeve büyüklüğü + Deterministic
802.4	+ Öncelik mekanizması (garanti edilmiş bant genişliği) + Yüklü çalışmada mükemmel sonuc + Birden fazla kanal üzerinden iletim imkânı (örneksel)
Token Bus	Örneksel yapı (modem, amplifier vs.) Son derece karmaşık protokol yapısı Düşük yüklerde gecikmeler artıyor Fiber kullanımına müsait değil
	+ Sayısal işaretleşme (Differential Manchester) MSB öncelikli veri transferi + Öncelik mekanizması ve 8 seviye + Rezervasyon imkânı + Yüklü calısmada yüksek verim
802.5 Token Ring	+ İletim ortamındaki çeşitlilik + Kısa ve uzun çerçeve yapıları kullanabilir. + Deterministic
	— Monitör fonksiyonu — Düşük yüklerde jeton iletiminde yaşanan gecikmeler + Zamana duyarlı veri iletimine öncelik verilmiştir.
FDDI	+ Çift halka kullanımı dolayısıyla çalışma süreklilik vardır. + Fiber kullanımı ile kapsadığı mesafe arttırılmıştır – Hız olarak ihtiyacların gerisinde kalmak üzeredir.
	 Mobil olma kavramını getirmiştir Fiziksel olarak kablo çekmenin mümkün olmadığı yerlerde son derece tatminkâr sonuçlar üretir.
WLAN	– Sınırlı mesafe içinde çalışmaktadır. – Kablolu ağlara nazaran iletisim hızları düsüktür.

