Experimento em Parcelas Subdivididas

Banzatto e Kronka (1992), apresentaram o ensaio citado por Steel e Torrie (1980), no qual são comparadas 4 variedades de aveia (A_1 - Vicland 1 infectada com o fungo *Helminthosporium victoriae*, A_2 - Vicland 2 não infectada, A_3 - Clinton resistente a *H. victoriae* e A_4 - Branch resistente a *H. victoriae*) e 4 tratamentos de sementes (B_1 - Testemunha, B_2 - Ceresan M, B_3 - Panogen e B_4 - Agros) quanto aos efeitos sobre a produção. As variedades foram distribuídas aleatoriamente nas parcelas de cada um dos quatro blocos do ensaio. Os tratamentos de sementes foram aleatoriamente distribuídos nas quatro subparcelas de cada parcela.

Os dados de produção de aveia foram:

			Blocos				
Variedades (A)	Tratamento de sementes (B)	1	2	3	4	Totais	
A_1	B ₁	42,9	41,6	28,9	30,8	144,2	
	B_2	53,8	58,5	43,9	46,3	202,5	
	B_3	49,5	53,8	40,7	39,4	183,4	
	B_4	44,4	41,8	28,3	34,7	149,2	
A ₂	B ₁	53,3	69,6	45,4	35,1	203,4	
	B_2	57,6	69,6	42,4	51,9	221,5	
	B_3	59,8	65,8	41,4	45,4	212,4	
	B_4	64,1	57,4	44,1	51,6	217,2	
A ₃	B ₁	62,3	58,5	44,6	50,3	215,7	
	B_2	63,4	50,4	45,0	46,7	205,5	
	B_3	64,5	46,1	62,6	50,3	223,5	
	B_4	63,6	56,1	52,7	51,8	224,2	
A ₄	B ₁	75,4	65,6	54,0	52,7	247,7	
	B_2	70,3	67,3	57,6	58,5	253,7	
	B_3	68,8	65,3	45,6	51,0	230,7	
	B_4	71,6	69,4	56,6	47,4	245,0	
Totais		965,3	936,8	733,8	743,9	3.379,8	

Modelo Estatístico:

$$y_{ijk} = \mu + \beta_i + a_i + \varepsilon_{ij} + b_k + (ab)_{ik} + \varepsilon_{ijk}$$

Descrever os termos do modelo estatístico:

Construção dos quadros auxiliares

Quadro auxiliar 1. Envolve a repetição (ou bloco) e o tratamento de parcela.

Variadadas (A)		Totais			
Variedades (A)	I	II	III	IV	Totals
A1	190,6 ⁽⁴⁾	195,7 ⁽⁴⁾	141,8 ⁽⁴⁾	151,2 ⁽⁴⁾	679,3 ⁽¹⁶⁾
A2	234,8 ⁽⁴⁾	$262,4^{(4)}$	173,3 ⁽⁴⁾	$184,0^{(4)}$	854,5 ⁽¹⁶⁾
A3	253,8 ⁽⁴⁾	211,1 ⁽⁴⁾	$204,9^{(4)}$	199,1 ⁽⁴⁾	$868,9^{(16)}$
A4	286,1 ⁽⁴⁾	$267,6^{(4)}$	213,8 ⁽⁴⁾	209,6 ⁽⁴⁾	977,1 ⁽¹⁶⁾
Totais	965,3 ⁽¹⁶⁾	936,8 ⁽¹⁶⁾	733,8 ⁽¹⁶⁾	743,9 ⁽¹⁶⁾	$3.379,8^{(64)}$

Quadro auxiliar 2. Envolve o tratamento de parcela e de subparcela.

Variedades (A)		Totais			
variedades (A)	B1	B2	В3	B4	Totals
A1	144,2 ⁽⁴⁾	$202,5^{(4)}$	183,4 ⁽⁴⁾	149,2 ⁽⁴⁾	$679,3^{(16)}$
A2	$203,4^{(4)}$	$221,5^{(4)}$	212,4 ⁽⁴⁾	$217,2^{(4)}$	$854,5^{(16)}$
A3	215,7 ⁽⁴⁾	$205,5^{(4)}$	$223,5^{(4)}$	$224,2^{(4)}$	$868,9^{(16)}$
A4	$247,7^{(4)}$	$253,7^{(4)}$	$230,7^{(4)}$	$245,0^{(4)}$	$977,1^{(16)}$
Totais	811,0 ⁽¹⁶⁾	883,2 ⁽¹⁶⁾	850,0 ⁽¹⁶⁾	835,6 ⁽¹⁶⁾	$3.379,8^{(64)}$

Tabela da Análise de Variância

Causas de Variação	gl	Somas de Quadrados	Quadrados Médios	Fcal	Ftab
Blocos					
Variedades					3,86
Resíduo (a)					
Parcelas					
Trat. Sementes					2,87
Var. x Trat. Sementes					2,15
Resíduo (b)					
Total	63	7.797,39			

Cálculo das Somas de Quadrados

Soma de Quadrado Total (utilizando a Tabela 1)

$$C = \frac{(\sum y_{ijk})^2}{n} = \frac{(42.9 + \dots + 47.4)^2}{64} = \frac{(3.379.8)^2}{64} = 178.485,1256$$

$$SQ \ Total = \sum_{ijk} y_{ijk}^2 - C = (42.9^2 + \dots + 47.4^2) - C = 7.797.39$$

Cálculo das Somas de Quadrados associadas às Parcelas

Soma de Quadrados de Blocos (utilizando a Tabela 1 ou quadro auxiliar 1)

$$C = 178.485,1256$$

$$SQ\ Blocos = \frac{1}{IK} \sum_{i} y_{.j.}^{2} - C = \frac{1}{4x4} (965,3^{2} + \dots + 743,9^{2}) - C = 2.842,8731$$

Soma de Quadrados de Variedades (utilizando quadro auxiliar 1)

$$C = 178.485.1256$$

$$SQ\ Variedades = \frac{1}{JK} \sum_{i} y_{i..}^{2} - C = \frac{1}{4x4} (679,3^{2} + \dots + 977,1^{2}) - C = 2.848,02$$

Soma de Quadrados de Parcelas (utilizando o interior do quadro auxiliar 1)

$$C = 178.485,1256$$

$$SQ\ Parcelas = \frac{1}{K} \sum_{i,j} y_{ij}^2 - C = \frac{1}{4} (190,6^2 + \dots + 209,6^2) - C = 6.309,19$$

Soma de Quadrados do Resíduo (a) (por diferença)

$$SQ$$
 Resíduo (a) = SQ Parcelas – SQ Variedades – SQ Blocos =

Cálculo das Somas de Quadrados associadas às Subparcelas

Soma de Quadrados de Tratamento de Sementes (utilizando o quadro auxiliar 2)

$$C = 178.485,1256$$

$$SQ\ Trat.\ Sementes = \frac{1}{IJ} \sum_{k} y_{..k}^2 - C = \frac{1}{4x4} (811,0^2 + \dots + 835,6^2) - C = 170,53$$

Soma de Quadrados da Interação Dose x Formas (utilizando tabela 1 ou interior do quadro auxiliar 2)

$$C = 178.485,1256$$

SQ Variedades e Trat. Sementes =
$$\frac{1}{J} \sum_{ik} y_{i,k}^2 - C = \frac{1}{4} (144,2^2 + \dots + 245,0^2) - C = 3.605,02$$

$$SQ\ Var\ x\ Trat.\ Sementes = SQ\ Var.\ e\ Trat.\ Sementes - SQ\ Variedades - SQ\ Trat.\ Sementes =$$

$$= 586.47$$

SQ Resíduo (b) = SQ Total – SQ Parcelas – SQ Trat. Sementes – SQ Var. x Trat. Sementes = 731,20

Como a interação (Variedades x Trat. Sementes) foi significativa, considerando um nível de significância de 5%, procedemos à seguinte análise:

1) Efeito do tratamento secundário dentro de cada nível do tratamento primário (Efeito de Tratamento de Sementes dentro de cada Variedade)

Obtenção das somas de quadrados:

$$SQ B d. A1 = \frac{1}{4} (144,2^{2} + 202,5^{2} + 183,4^{2} + 149,2^{2}) - \frac{(679,3)^{2}}{16} = 583,49$$

$$SQ B d. A2 = \frac{1}{4} (203,4^{2} + 221,5^{2} + 212,4^{2} + 217,2^{2}) - \frac{(854,5)^{2}}{16} = 45,21$$

$$SQ B d. A3 = \frac{1}{4} (215,7^{2} + 205,5^{2} + 223,5^{2} + 224,2^{2}) - \frac{(868,9)^{2}}{16} = 56,96$$

$$SQ B d. A4 = \frac{1}{4} (247,7^{2} + 253,7^{2} + 230,7^{2} + 245,0^{2}) - \frac{(977,1)^{2}}{16} = 71,34$$

Causas de Variação	gl	SQ	QM	Fcal	Ftab
B d. A1	3	583,49	194,50	9,58	2,87
B d. A2	3	45,21	15,07	0,74	2,87
B d. A3	3	56,96	18,99	0,94	2,87
B d. A4	3	71,34	23,78	1,17	2,87
Resíduo (b)	36	731,20	20,31		

Diferenças entre médias de tratamentos de sementes dentro da variedade Vicland 1 infectada com o fungo Helminthosporium victoriae

$$\Delta = q \sqrt{\frac{QM \ Residuo \ (b)}{J}} = 3.81 \sqrt{\frac{20.31}{4}} = 8.585$$

$$\hat{\mu}_{A1B2} = 50.625 \quad \text{a}$$

$$\hat{\mu}_{A1B3} = 45.850 \quad \text{a b}$$

$$\hat{\mu}_{A1B4} = 37.300 \quad \text{b c}$$

$$\hat{\mu}_{A1B1} = 36.050 \quad \text{c}$$

2) Efeito de tratamento primário dentro de cada nível do tratamento secundário (Efeito de Variedades dentro de cada nível de Tratamento de Sementes)

Quadrado Médio do Resíduo utilizado = Quadrado Médio do Resíduo Composto

$$QM$$
 Resíduo Composto =
$$\frac{QM$$
 Resíduo (a) + $(K-1)QM$ Resíduo (b)}{K}

No exemplo:

QM Resíduo Composto =
$$\frac{68,70 + (4-1)20,31}{4}$$
 = 32,41

Número de graus de liberdade do Quadrado Médio do Resíduo Composto (aproximação por Satterthwaite):

$$n' = \frac{[QM \ Residuo \ (a) + (K-1)QM Residuo \ (b)]^2}{\frac{[QM \ Residuo \ (a)]^2}{gl \ Residuo \ (a)} + \frac{[(K-1)QM \ Residuo \ (b)]^2}{gl \ Residuo \ (b)}}$$

No exemplo:

$$n' = \frac{[68,70 + (4-1)20,31]^2}{\frac{[68,70]^2}{9} + \frac{[(4-1)20,31]^2}{36}} \approx 26,78 \approx 27 \ gl$$

Obtenção das somas de quadrados:

$$SQ A d. B1 = \frac{1}{4} (144,2^{2} + 203,4^{2} + 215,7^{2} + 247,7^{2}) - \frac{(811,0)^{2}}{16} = 1.404,18$$

$$SQ A d. B2 = \frac{1}{4} (202,5^{2} + 221,5^{2} + 205,5^{2} + 253,7^{2}) - \frac{(883,2)^{2}}{16} = 412,97$$

$$SQ A d. B3 = \frac{1}{4} (183,4^{2} + 212,4^{2} + 223,5^{2} + 230,7^{2}) - \frac{(850,0)^{2}}{16} = 324,77$$

$$SQ A d. B4 = \frac{1}{4} (149,2^{2} + 217,2^{2} + 224,2^{2} + 245,0^{2}) - \frac{(835,6)^{2}}{16} = 1.292,57$$

Causas de Variação	gl	SQ	QM	Fcal	Ftab
A d. B1	3	1.404,18	468,06	14,44	2,96
A d. B2	3	412,97	137,66	4,25	2,96
A d. B3	3	324,77	108,26	3,34	2,96
A d. B4	3	1.292,57	430,86	13,29	2,96
Resíduo Composto	27		32,41		

Comparação das médias de variedades dentro de cada nível de tratamento de sementes:

$$\Delta = q \sqrt{\frac{QM Resíduo Composto}{J}} = 3,88 \sqrt{\frac{32,41}{4}} = 11,0$$

	B1	B2	В3	B4
	Testemunha	Ceresan M	Panogen	Agrox
A1 – Vicland 1	36,1 c	50,6 b	45,9 b	37,3 b
A2 – Vicland 2	50,9 b	55,4 ab	53,1 ab	54,3 a
A3 – Clinton	53,9 ab	51,4 b	55,9 ab	56,1 a
A4 – Branch	61,9 a	63,4 a	57,7 a	61,3 a