# C-CoRN: The Constructive Coq Repository @ Nijmegen

Dutch Proof Tools Day, 9 July 2004

Luís Cruz-Filipe

University of Nijmegen, Netherlands

Center for Logic and Computation, Portugal





1. Overview of CoRN and C-CoRN

- 1. Overview of CoRN and C-CoRN
- 2. History



- 1. Overview of CoRN and C-CoRN
- 2. History
- 3. Features

- 1. Overview of CoRN and C-CoRN
- 2. History
- 3. Features
- 4. Some Examples

- 1. Overview of CoRN and C-CoRN
- 2. History
- 3. Features
- 4. Some Examples
- 5. Future Directions



What?

Where?



A library of constructive mathematics formalized in Coq

Where?

#### What?

A library of constructive mathematics formalized in Coq

#### Where?

Repository: University of Nijmegen (NL)

#### What?

A library of constructive mathematics formalized in Coq

#### Where?

Repository: University of Nijmegen (NL)

Users: (some day) all over the world...

#### What?

A library of constructive mathematics formalized in Coq

#### Where?

Repository: University of Nijmegen (NL)

Users: (some day) all over the world...

#### Why?

Formalize mathematics in a systematic way

#### What?

A library of constructive mathematics formalized in Coq

#### Where?

Repository: University of Nijmegen (NL)

Users: (some day) all over the world...

#### Why?

Formalize mathematics in a systematic way

Analyze the process of formalizing mathematics



**Objective:** Show it is possible to formalize a non-trivial piece of mathematics.

**Objective:** Show it is possible to formalize a non-trivial piece of mathematics.

Goal: Formalize the FTA in a modular and reusable way.

**Objective:** Show it is possible to formalize a non-trivial piece of mathematics.

Goal: Formalize the FTA in a modular and reusable way.

Period: 1999-2001

**Objective:** Show it is possible to formalize a non-trivial piece of mathematics.

Goal: Formalize the FTA in a modular and reusable way.

Period: 1999-2001

#### **Achievements:**

Algebraic Hierarchy with axiomatic real numbers; Specialized automation strategies; Model of  $\mathbb{R}$ .

**Objective:** Show it is possible to formalize a non-trivial piece of mathematics.

Goal: Formalize the FTA in a modular and reusable way.

Period: 1999-2001

#### **Achievements:**

Algebraic Hierarchy with axiomatic real numbers;

Specialized automation strategies;

Model of  $\mathbb{R}$ .

**People:** H. Barendregt, H. Geuvers, M. Niqui, R. Pollack, F. Wiedijk, J. Zwanenburg



Objectives: Reuse, test and extend the FTA library.

Objectives: Reuse, test and extend the FTA library.

Goal: Formalize  $1^{\rm st}$  year real calculus and identify the main problems.

Objectives: Reuse, test and extend the FTA library.

Goal: Formalize  $1^{st}$  year real calculus and identify the main problems.

Period: Sep/2001-Dec/2002

Objectives: Reuse, test and extend the FTA library.

**Goal:** Formalize  $1^{st}$  year real calculus and identify the main problems.

Period: Sep/2001-Dec/2002

#### **Achievements:**

Partial functions;

Differential & integral calculus;

Specialized tactics;

Library of transcendental functions.

Objectives: Reuse, test and extend the FTA library.

Goal: Formalize  $1^{st}$  year real calculus and identify the main problems.

Period: Sep/2001-Dec/2002

#### **Achievements:**

Partial functions;

Differential & integral calculus;

Specialized tactics;

Library of transcendental functions.

People: L. Cruz-Filipe



Goal: Expand in new directions:

Program extraction (L. Cruz-Filipe, B. Spitters, Oct/2002–Dec/2003)

- Program extraction (L. Cruz-Filipe, B. Spitters, Oct/2002–Dec/2003)
- 6 Group theory (H. Barendregt, D. Synek, Jun/2003-)

- 6 Program extraction (L. Cruz-Filipe, B. Spitters, Oct/2002–Dec/2003)
- 6 Group theory (H. Barendregt, D. Synek, Jun/2003–)
- 6 Complex exponential (S. Hinderer, Jun-Jul/2003)

- 6 Program extraction (L. Cruz-Filipe, B. Spitters, Oct/2002–Dec/2003)
- 6 Group theory (H. Barendregt, D. Synek, Jun/2003–)
- 6 Complex exponential (S. Hinderer, Jun–Jul/2003)
- 6 Automation (L. Cruz-Filipe, D. Hendriks, F. Wiedijk)

- Program extraction (L. Cruz-Filipe, B. Spitters, Oct/2002–Dec/2003)
- 6 Group theory (H. Barendregt, D. Synek, Jun/2003–)
- 6 Complex exponential (S. Hinderer, Jun–Jul/2003)
- 6 Automation (L. Cruz-Filipe, D. Hendriks, F. Wiedijk)
- 6 Education (I. Loeb, L. Mamane, Feb/2004–)

- 6 Program extraction (L. Cruz-Filipe, B. Spitters, Oct/2002–Dec/2003)
- 6 Group theory (H. Barendregt, D. Synek, Jun/2003–)
- 6 Complex exponential (S. Hinderer, Jun–Jul/2003)
- 6 Automation (L. Cruz-Filipe, D. Hendriks, F. Wiedijk)
- 6 Education (I. Loeb, L. Mamane, Feb/2004—)
- Theoretical aspects (H. Barendregt, L. Cruz-Filipe, H. Geuvers, B. Spitters, F. Wiedijk)

# Methodology



# Methodology



6 Aim at generality

### Methodology



- 6 Aim at generality
- Constructive reasoning, compatible with classical axioms

### Methodology



- 6 Aim at generality
- Constructive reasoning, compatible with classical axioms
- Two-sorted logic

### Methodology



- 6 Aim at generality
- Constructive reasoning, compatible with classical axioms
- Two-sorted logic
- 6 Applications: algebraic reasoning, program extraction





Internal coherence



- Internal coherence
  - structured according to subject



- Internal coherence
  - structured according to subject
  - syntax conventions



- 6 Internal coherence
  - structured according to subject
  - syntax conventions
- Visibility



- 6 Internal coherence
  - structured according to subject
  - syntax conventions
- Visibility
  - documentation vs. presentation...



- 6 Internal coherence
  - structured according to subject
  - syntax conventions
- Visibility
  - documentation vs. presentation...
  - focus on mathematical and metaformalization issues



6 from the library:

- from the library:
  - algebra:  $\forall_{f:R[\mathbb{C}]}.(\text{nonConstant } f) \Rightarrow \exists_{z:\mathbb{C}}.f(z) = 0$

- from the library:
  - algebra:  $\forall_{f:R[\mathbb{C}]}.(\text{nonConstant } f) \Rightarrow \exists_{z:\mathbb{C}}.f(z) = 0$
  - trigonometry:  $\forall_{x:\mathbb{R}} \cdot \cos^2(x) + \sin^2(x) = 1$

- from the library:
  - algebra:  $\forall_{f:R[\mathbb{C}]}.(\text{nonConstant } f) \Rightarrow \exists_{z:\mathbb{C}}.f(z) = 0$
  - trigonometry:  $\forall_{x:\mathbb{R}} \cdot \cos^2(x) + \sin^2(x) = 1$
  - ho complex numbers:  $e^{i\pi} + 1 = 0$



o program extraction: computed values of constants

program extraction: computed values of constants

| approximation | value of $e$                          |
|---------------|---------------------------------------|
| 0             | $\frac{0}{1} = 0$                     |
| 1             | $\frac{1}{1} = 1$                     |
| 2             | $\frac{2}{1} = 2$                     |
| 5             | $\frac{65}{24} \approx 2.70833$       |
| 10            | $\frac{98641}{36288} \approx 2.71828$ |

oprogram extraction: computed values of constants

| approximation | value of $\sqrt{2}$                  |
|---------------|--------------------------------------|
| 0             | $\frac{0}{1} = 0$                    |
| 1             | $\frac{3}{3} = 1$                    |
| 2             | $\frac{3}{3} = 1$                    |
| 5             | $\frac{35}{27} \approx 1.2963$       |
| 10            | $\frac{27755}{19683} \approx 1.4101$ |





6 More users

- 6 More users
- 6 More topics

- 6 More users
- 6 More topics
  - complex analysis

- 6 More users
- 6 More topics
  - complex analysis
  - number theory

- More users
- 6 More topics
  - complex analysis
  - number theory
- More applications