

Compendium of Material Composition Data for Radiation Transport Modeling

R.G. Williams III C.J. Gesh R.T. Pagh

April 2006

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Compendium of Material Composition Data for Radiation Transport Modeling

R.G. Williams III C.J. Gesh R.T. Pagh

April 2006

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

Foreword

Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: 1) to provide a quick reference of material compositions for analysts and 2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.

Three information blocks are provided for each material definition: 1) the base material information block, 2) MCNP material card block, and 3) CEPXS material card block. The base material information block contains the elemental composition of the material listed using standard elemental symbols. The elements are listed by weight fraction and atom fraction, both normalized to sum to one except where noted. The elements are also listed by atom density (atoms per barn-cm) based upon the provided density. It should be noted that density of materials can vary widely from typical or average values, especially for foams and insulating/shock absorbing materials. Project specific density values should always be used over the typical density values provided here. Finally, the base material information block contains any comments that analysts should be aware of with regards to the material and the reference from which the material was obtained.

The MCNP material card block provides the material definition according to the format required by the radiation transport code Monte Carlo N-Particle. Four distinct sub-blocks are provided to allow analysts flexibility in representing materials. For computational models involving the transport of neutrons or coupled neutrons and photons calculations the Neutron block provides the material definition. This Neutron block defines the material by either by weight fraction through the use of the minus signs or atom fraction by neglecting the minus signs. The elements are identified using the cross section identifiers found in Appendix G of Volume 1 of the MCNP Manual with the appropriate fraction identified to the right of the element identifier. The Photon block provides material definitions for models involving the transport of photons. This block is very similar to the Neutron block where the element identifier is followed by the weight fraction for negative values or atom fraction for positive values. Only one of the four sub-blocks will be used in any specific MCNP input deck. It is recommended to use the atom fraction definitions of the materials as the MCNP computer code will convert weight fraction to atom fraction based upon a set of data which may not match the values used to define weight fraction for this document. While the difference between the atom fraction listed in this document and that calculated by MCNP will be small, it provides a potential uncertainty in calculations. Density is not defined in the material block, rather it is provided in the cell definition of the model. See Volume 2 of the MCNP Manual for further information regarding material definition in the MCNP code.

The CEPXS material card block provides the material definition according to the format required by the cross section generation code CEPXS. The first section of the format block is the material composition. The word "material" is followed by a listing of elements defined by the standard elemental symbols followed by values defining the weight fraction of that element. CEPXS requires that the weight fraction of the elements sum to 1.0 within a small tolerance. For materials whose weight fractions do not sum to 1.0 in the base information block, the CEPXS block has been changed to meet the normalization

requirements. The second section of the format block is the material name. This is the name that will refer to this material in the cross section file generated by CEPXS. The third section of the formatblock contains the density information. Using the density provided in this document, CEPXS will generate macroscopic cross sections for use in radiation transport codes. To generate microscopic cross sections this density value will need to be modified to an appropriate value. The final element that may need to be present in the block is for gaseous material declaration. If a material is solid, then no information will be present. If a material is gaseous, then the word gas will appear.

Any materials used by analysts that are not in this document should be forwarded to the authors for inclusion into future revisions. Users of this document on the distribution list will be alerted when a new revision is released.

Contents

Foreword	iii
Contents	v
Acrylic glass	1
Acrylite	1
Air	1
Aluminum	2
Bakelite	3
Beryllium	4
Bismuth	4
Borax	5
Boron Carbide	6
Bricks, Common Silica	7
Cadmium	8
Carbon	
1: Amorphous Carbon	
2: Graphite	
Carbon Tetrachloride	10
Cesium Iodide	
Chromium	
Concrete	12
1: Ordinary Concrete	
2: Barite Concrete (Type BA)	
3: Portland	15
4: Type 04	17
5: LS	19
6: L	
7: ORNL	
8: Rocky Flats	
9: Magnetite	
10: Ferro-phosphorus	
11: Iron-limonite	
12: Iron-portland	
13: Colemanite-baryte	31
14: Boron Frits-baryte	
15: Lumnite-colemanite-baryte	
16: Lumnite-portland-colemanite-baryte	37
Explosive Compounds	39
1: TNT	
2: RDX	
3: HMX	41
4: NG (Nitroglycerin)	42

5: PETN	43
6: EGDN (Ethylene Glycol Dinitrate)	44
7: AN (Ammonium Nitrate)	45
8: NC (Nitrocellulose)	46
Ferrous Sulfate	47
Fertilizer	48
Gadolinium	50
Gallium Arsenide	51
Gasoline	51
Glass	52
1: Borosilicate	52
2: Lead Glass	53
3: Plate Glass	54
4: Pyrex	55
Granite	
Muriate of Potash	57
Inconel-600	57
Incoloy-800	58
Iron	
Kynar	60
Lead	61
Lithium	61
Lucite	62
Magnesium	63
Masonite	64
Molybdenum	65
Mylar	65
Nickel	66
Nylon	67
1: Nylon, Type 6 and Type 6/6	67
2: Nylon, Dupont Elvamide 8062	68
3: Nylon, Type 6/10	
4: Nylon, Type 11 (Rilsan)	
Oil	
1: Crude Oil	
2: Hydraulic Oil	
3: Lard Oil	
Paraffin Wax	
Perspex	
Photographic Emulsion	
1: Kodak Type AA	
2: Standard Nuclear	
Plastic Scintillator (PVT)	
Plexiglass	=0

Plutonium	78
1: DOE 3013 WGPu	78
2: Shefelbine WGPu	79
3: Aged WGPu (4-7% Pu-240)	80
4: Aged WGPu (10-13% Pu-240)	81
5: Aged WGPu (16-19% Pu-240)	82
6: Fuel Grade Plutonium	83
7: Power Grade Plutonium	84
PMMA	85
Polyethylene	85
1: Normal Polyethylene	
2: Polyethylene Terephthalate	86
Polyiso(cyanurate)	87
Polymethyl Methacrylate	88
Polystyrene	
Polytetrafluoroethylene	89
Polyurethane (Foam)	89
Polyvinyl Chloride	90
Polyvinyl Toluene	91
Propane	91
PTFE	92
PVC	92
Radiochromic Dye Film	92
Rock Salt	93
Rubber	94
1: Neoprene	94
2: Butyl Rubber	95
3: Natural Rubber	96
4: Silicone Rubber	96
5: Polychloroprene	97
6: Polyisobutylene	97
Standard Fricke	98
Steel	98
1: Carbon	98
2: Stainless 304	98
3: Stainless 316	99
4: Stainless 347	101
5: HT9 Stainless	102
Styrofoam	103
Tantalum	
Teflon	104
Thorium.	
Titanium	105
Uranium	106

1: US HEU Average	106
2: Russian HEU Average	
3: HPS HEU	108
4: Natural Uranium	109
5: Typical Depleted Uranium	109
6: Typical Commercial Enriched Uranium	
Water	
1: Water, Liquid	111
2: Water, Vapor	
Wood	
Zirconium	114

Acrylic glass

See Lucite.

Acrylite

See <u>Lucite</u>.

Air (Dry, near sea level)

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
C	0.000124	0.000151	0.000000007
N	0.755268	0.784437	0.000039128
О	0.231781	0.210750	0.000010512
Ar	0.012827	0.004671	0.000000233
Density $(g/cm^3) = 0.001205$			
Density (g)	cm = 0.001203		

Comments:

Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html

```
c Air, Dry (near sea level), rho = 0.001205
$ Neutron
   6000 -0.000124 $ C
   7014 -0.755268 $ N
   8016 -0.231781 $ O
   18000 -0.012827 $ Ar
   6000 0.000151 $C
   7014 0.784437 $ N
   8016 0.210750 $ O
   18000 0.004671 $ Ar
$ Photon
   6000 -0.000124 $ C
   7000 -0.755268 $ N
   8000 -0.231781 $ O
   18000 -0.012827 $ Ar
   6000 0.000151 $C
   7000 0.784437 $ N
   8000 0.210750 $ O
   18000 0.004671 $ Ar
```

 $\begin{array}{ll} \text{material} \;\; c \; 0.000124 \; n \; 0.755268 \; o \; 0.231781 \; ar \; 0.012827 \\ \text{matname} \;\; air \\ \text{density} \;\; 0.001205 \\ \text{gas} \end{array}$

Aluminum

Element Weight Fraction Atom Fraction Atom Density $\left(\frac{atoms}{b*cm}\right)$ Al 1.000000 1.000000 0.060238

Density $(g/cm^3) = 2.6989$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=013

MCNP Form

CEPXS Form

material al 1.000000 matname aluminum density 2.6989

13000 1.000000

Bakelite

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$	
Н	0.057444	0.431814	0.042900	
C	0.774589	0.488641	0.048546	
О	0.167968	0.079545	0.007903	
Density $(g/cm^3) = 1.25$				
Comments:				
Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html				

MCNP Form

MCM Form
c Bakelite, rho = $1.250E+00$
\$ Neutron
1001 -0.057444 \$ H
6000 -0.774589 \$ C
8016 -0.167968 \$ O
1001 0.431814 \$ H
6000 0.488641 \$ C
8016 0.079545 \$ O
\$ Photon
1000 -0.057444 \$ H
6000 -0.774589 \$ C
8000 -0.167968 \$ O
1000 0.431814 \$ H
6000 0.488641 \$ C
8000 0.079545 \$ O

CEPXS Form

material h 0.057443 c 0.774589 o 0.167968 matname bakelite density 1.25

Beryllium

Element Weight Fraction Atom Fraction Atom Density $\left(\frac{atoms}{b*cm}\right)$

Be 1.000000 1.000000 0.123487

Density $(g/cm^3) = 1.848$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=004

MCNP Form

c Beryllium, rho = 1.848 g/cc

\$ Neutron

4009 -1.000000

4009 1.000000

\$ Photon

4000 -1.000000

4000 1.000000

CEPXS Form

material be 1.000000 matname beryllium density 1.848

Bismuth

<u>Element</u> <u>Weight Fraction</u> <u>Atom Fraction</u> <u>Atom Density</u> $\left(\frac{atoms}{b*cm}\right)$

Bi 1.000000 1.000000 0.028088

Density $(g/cm^3) = 9.747$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=083

MCNP Form

c Bismuth, rho = 9.747 g/cc	
\$ Neutron	
83209 -1.000000	
83209 1.000000	
\$ Photon	
83000 -1.000000	
83000 1.000000	

CEPXS Form

material bi 1.000000 matname bismuth density 9.747

Borax

Element	Weight Fraction	Atom Fraction	Atom Density $\begin{pmatrix} atoms \\ b*cm \end{pmatrix}$	
Н	0.052859	0.465118	0.054636	
В	0.113391	0.093023	0.010927	
О	0.713187	0.395346	0.046440	
Na	0.120563	0.046511	0.005464	
Density $(g/cm^3) = 1.73$				
Comments:				
Reference: "Criticality Safety Analysis Resource Book, Part II: Atom				
Densities and Dimensional Parameters," August 1977, by E. B.				
Reppond.				

c Borax, $rho = 1.73 g/cc$
\$ Neutron
1001 -0.052859
5011 -0.113391
8016 -0.713187
11023 -0.120563
1001 0.465118
5011 0.093023
8016 0.395346
11023 0.046511
\$ Photon

1000 -0.052859	
5000 -0.113391	
8000 -0.713187	
11000 -0.120563	
1000 0.465118	
5000 0.093023	
8000 0.395346	
11000 0.046511	

material h 0.052859 b 0.113391 o 0.713187 na 0.120563 matname borax density 1.73

Boron Carbide

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$	
В	0.782610	0.799981	0.109858	
С	0.217390	0.200018	0.027468	
Density $(g/cm^3) = 2.52$				
Comments: Reference: Taken from NIST Listings, "Compositions of Materials used in STAR				
Databases" webpage:				
http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=121				

MCM Form
c Boron Carbide, rho = 2.52 g/cc
\$ Neutron
5011 -0.782610
6012 -0.217390
5011 0.799981
6012 0.200018
\$ Photon
5000 -0.782610
6000 -0.217390
5000 0.799981
6000 0.200018

material b 0.782610 c 0.217390 matname boron_carbide density 2.52

Bricks, Common Silica

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
О	0.524858	0.663062	0.035560
Al	0.005227	0.003916	0.000210
Si	0.449011	0.323140	0.017330
Ca	0.014419	0.007272	0.000390
Fe	0.007213	0.002610	0.000140

Density $(g/cm^3) = 1.80$

Comments: Weight Fractions are not normalized. The atom and weight fractions are calculated from the atom density in the reference.

Reference: "Criticality Safety Analysis Resource Book, Part II: Atom Densities and Dimensional Parameters," August 1977, by E. B. Reppond.

MCNP Form
c Bricks, Common Silica, rho = 1.80
\$ Neutron
8016 -0.524858
13027 -0.005227
14000 -0.449011
20000 -0.014419
26000 -0.007213
8016 0.663062
13027 0.003916
14000 0.323140
20000 0.007272
26000 0.002610
\$ Photon
8000 -0.524858
13000 -0.005227
14000 -0.449011
20000 -0.014419
26000 -0.007213
8000 0.663062
13000 0.003916
15000 0.005710

14000 0.323140 20000 0.007272 26000 0.002610

CEPXS Form

material o 0.524476 al 0.005223 si 0.448684 ca 0.014409 fe 0.007208 matname brick_silicon density 1.80

Cadmium

Element Weight Fraction Atom Fraction Atom Density $\left(\frac{atoms}{b*cm}\right)$ Cd 1.000000 1.000000 0.046340

Density $(g/cm^3) = 8.65$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=048

MCNP Form

c Cadmium, rho = 8.65 g/cc

\$ Neutron

48000 -1.000000

48000 1.000000

\$ Photon

48000 -1.000000

48000 1.000000

CEPXS Form

material cd 1.000000 matname cadmium density 8.65

Carbon

1: Amorphous Carbon

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
C	1.000000	1.000000	0.100280

Density $(g/cm^3) = 2.0$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=006

MCNP Form

c Carbon, Amorphous, rho = 2.0 g/cc

\$ Neutron

6012 -1.000000

6012 1.000000

\$ Photon

6000 -1.000000

6000 1.000000

CEPXS Form

material c 1.000000 matname carbon

density 2.0

2: Graphite

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
С	1.000000	1.000000	0.085238

Density $(g/cm^3) = 1.70$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=906

MCNP Form

c Carbon, Graphite, rho = 1.70 g/cc

\$ Neutron
6012 -1.000000

6012 1.000000

\$ Photon
6000 -1.000000

CEPXS Form

material c 1.000000 matname carbon_graphite density 1.70

6000 1.000000

Carbon Tetrachloride

_					
<u>Element</u>	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$		
C	0.078083	0.200003	0.006241		
Cl	0.921917	0.799985	0.024962		
Density $(g/cm^3) = 1.594$					
Comments:					
Reference: Taken from NIST Listings, "Compositions of Materials used in STAR					
Databases" webpage:					
http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=135					

WENT FORM
c Carbon Tetrachloride, rho = 1.594 g/cc
\$ Neutron
6012 -0.078083
17000 -0.921917
CO12 0 200002
6012 0.200003
17000 0.799985
\$ Photon
6000 -0.078083
17000 -0.921917
6000 0.200003
17000 0.799985

material c 0.078083 cl 0.921917 matname carbon_tetrachloride density 1.594

Cesium Iodide

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$		
I	0.488451	0.499999	0.010454		
Cs	0.511549	0.500012	0.010454		
Density $(g/cm^3) = 4.51$					
Comments:					
Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html					

MCNP Form

c Cesium Iodide, rho = 4.510
\$ Neutron
53127 -0.488451 \$ I
55133 -0.511549 \$ Cs
53127 0.499999 \$ I
55133 0.500012 \$ Cs
\$ Photon
53000 -0.488451 \$ I
55000 -0.511549 \$ Cs
53000 0.499999 \$ I
55000 0.500012 \$ Cs

CEPXS Form

material i 0.488451 cs 0.511549
matname cesium_iodide
density 4.51

Chromium

<u>Element</u>	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Cr	1.000000	1.000000	0.083158

Density $(g/cm^3) = 7.18$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=024

MCNP Form

c	Chromium,	rho =	7.18	g/cc
---	-----------	-------	------	------

\$ Neutron

24000 -1.000000

24000 1.000000

\$ Photon

24000 -1.000000

24000 1.000000

CEPXS Form

material cr 1.000000 matname chromium density 7.18

Concrete

1: Ordinary Concrete

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.022100	0.304245	0.030369
C	0.002484	0.002870	0.000286
О	0.574930	0.498628	0.049773
Na	0.015208	0.009179	0.000916
Mg	0.001266	0.000717	0.000072
Al	0.019953	0.010261	0.001024
Si	0.304627	0.150505	0.015023
K	0.010045	0.007114	0.000356
Ca	0.042951	0.014882	0.001485

Fe 0.006435 0.001599 0.000160

Density $(g/cm^3) = 2.30$

Comments:

Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html

MCNP Form			
c Concrete, Ordinary, rho = 2.300			
\$ Neutron			
1001 -0.022100			
6012 -0.002484			
8016 -0.574930			
11023 -0.015208			
12000 -0.001266			
13027 -0.019953			
14000 -0.304627			
19000 -0.010045			
20000 -0.042951			
26000 -0.006435			
1001 0.304245			
6012 0.002870			
8016 0.498628			
11023 0.009179			
12000 0.000717			
13027 0.010261			
14000 0.150505			
19000 0.007114			
20000 0.014882			
26000 0.001599			
\$ Photon			
1000 -0.022100			
6000 -0.002484			
8000 -0.574930			
11000 -0.015208			
12000 -0.001266			
13000 -0.019953			
14000 -0.304627			
19000 -0.010045			
20000 -0.042951			
26000 -0.006435			
1000 0.304245			
6000 0.002870			
8000 0.498628			
0000 0.470020			

material h 0.022101 c 0.002484 o 0.574930 na 0.015208 mg 0.001266 - al 0.019953 si 0.304627 k 0.010045 ca 0.042951 fe 0.006435 matname concrete_ordinary density 2.30

2: Barite Concrete (Type BA)

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.003585	0.109602	0.007175
О	0.311622	0.600193	0.039293
Mg	0.001195	0.001515	0.000099
Al	0.004183	0.004777	0.000313
Si	0.010457	0.011473	0.000751
S	0.107858	0.103654	0.006786
Ca	0.050194	0.038593	0.002527
Fe	0.047505	0.026213	0.001716
Ba	0.463400	0.103984	0.006808

Density $(g/cm^3) = 3.35$

Comments:

Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html

c Concrete, Barite (Type BA), rho = 3.350
\$ Neutron
1000 -0.003585
8000 -0.311622
12000 -0.001195
13000 -0.004183
14000 -0.010457
16000 -0.107858
20000 -0.050194
26000 -0.047505
56000 -0.463400
1000 0.109602

8000 0.600193	
12000 0.001515	
13000 0.004777	
14000 0.011473	
16000 0.103654	
20000 0.038593	
26000 0.026213	
56000 0.103984	
\$ Photon	
1001 -0.003585	
8016 -0.311622	
12000 -0.001195	
13027 -0.004183	
14000 -0.010457	
16000 -0.107858	
20000 -0.050194	
26000 -0.047505	
56138 -0.463400	
1001 0.109602	
8016 0.600193	
12000 0.001515	
13027 0.004777	
14000 0.011473	
16000 0.103654	
20000 0.038593	
26000 0.026213	
56138 0.103984	

material h 0.003585 o 0.311622 mg 0.001195 al 0.004183 si 0.010457 - s 0.107858 ca 0.050194 fe 0.047505 ba 0.463400 matname concrete_barite density 3.35

3: Portland

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.010000	0.168759	0.013742
C	0.001000	0.001416	0.000115
О	0.529107	0.562522	0.045806
Na	0.016000	0.011838	0.000964
Mg	0.002000	0.001400	0.000114
Al	0.033872	0.021354	0.001739

Si	0.337021	0.204115	0.016621	
K	0.013000	0.005656	0.000461	
Ca	0.044000	0.018674	0.001521	
Fe	0.014000	0.004264	0.000347	

Density $(g/cm^3) = 2.30$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=144

MCM FOIM	
c Concrete, Portland, rho = 2.30	
\$ Neutron	
1001 -0.010000	
6012 -0.001000	
8016 -0.529107	
11023 -0.016000	
12000 -0.002000	
13027 -0.033872	
14000 -0.337021	
19000 -0.013000	
20000 -0.044000	
26000 -0.014000	
1001 0.168759	
6012 0.001416	
8016 0.562522	
11023 0.011838	
12000 0.001400	
13027 0.021354	
14000 0.204115	
19000 0.005656	
20000 0.018674	
26000 0.004264	
\$ Photon	
1000 -0.010000	
6000 -0.001000	
8000 -0.529107	
11000 -0.016000	
12000 -0.002000	
13000 -0.033872	
14000 -0.337021	
19000 -0.013000	
20000 -0.044000	

26000 -0.014000	
1000 0.168759	
6000 0.001416	
8000 0.562522	
11000 0.011838	
12000 0.001400	
13000 0.021354	
14000 0.204115	
19000 0.005656	
20000 0.018674	
26000 0.004264	

material h 0.010000 c 0.001000 o 0.529107 na 0.016000 mg 0.002000 - al 0.033872 si 0.337021 k 0.013000 ca 0.044000 fe 0.014000 matname concrete_portland density 2.30

4: Type 04

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.005567	0.103697	0.007770
О	0.498825	0.585346	0.043860
Na	0.017159	0.014013	0.001050
Mg	0.002592	0.002002	0.000150
Al	0.045840	0.031896	0.002390
Si	0.315439	0.210863	0.015800
K	0.019177	0.009209	0.000690
Ca	0.082904	0.038836	0.002910
Fe	0.012306	0.004137	0.000310

Density $(g/cm^3) = 2.336$

Comments: Weight Fractions are not normalized. The atom and weight fractions are calculated from the atom density in the reference.

Reference: "Criticality Safety Analysis Resource Book, Part II: Atom

Densities and Dimensional Parameters," August 1977, by E. B.

Reppond.

```
c Concrete, Type 04, rho = 2.336
$ Neutron
   1001 -0.005567
   8016 -0.498825
   11023 -0.017159
   12000 -0.002592
   13027 -0.045840
   14000 -0.315439
   19000 -0.019177
   20000 -0.082904
   26000 -0.012306
   1001 0.103697
   8016 0.585346
   11023 0.014013
   12000 0.002002
   13027 0.031896
   14000 0.210863
   19000 0.009209
   20000 0.038836
   26000 0.004137
$ Photon
   1000 -0.005567
   8000 -0.498825
   11000 -0.017159
   12000 -0.002592
   13000 -0.045840
   14000 -0.315439
   19000 -0.019177
   20000 -0.082904
   26000 -0.012306
   1000 0.103697
   8000 0.585346
   11000 0.014013
   12000 0.002002
   13000 0.031896
   14000 0.210863
   19000 0.009209
   20000 0.038836
   26000 0.004137
```

material h 0.005568 o 0.498920 na 0.017162 mg 0.002592 al 0.045849 - si 0.315499 k 0.019181 ca 0.082920 fe 0.012308 matname concrete_type04 density 2.336

5: LS

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.006262	0.108068	0.008523
C	0.177318	0.256799	0.020253
О	0.403413	0.438586	0.034590
Na	0.000335	0.000254	0.000020
Mg	0.032954	0.023584	0.001860
Al	0.011112	0.007164	0.000565
Si	0.034804	0.021555	0.001700
K	0.001140	0.000507	0.000040
Ca	0.325043	0.141073	0.011126
Fe	0.007735	0.002409	0.000190

Density $(g/cm^3) = 2.278$

Comments: Composite aggregate of limestone and silicates. Weight Fractions are not normalized. The atom and weight fractions are calculated from the atom density in the reference.

Reference: "Criticality Safety Analysis Resource Book, Part II: Atom Densities and Dimensional Parameters," August 1977, by E. B. Reppond.

MCNP Form
c Concrete, LS, rho = 2.278
\$ Neutron
1001 -0.006262
6012 -0.177318
8016 -0.403413
11023 -0.000335
12000 -0.032954
13027 -0.011112
14000 -0.034804
19000 -0.001140
20000 -0.325043
26000 -0.007735
1001 0.108068
6012 0.256799
8016 0.438586

```
11023 0.000254
   12000 0.023584
   13027 0.007164
   14000 0.021555
   19000 0.000507
   20000 0.141073
   26000 0.002409
$ Photon
   1000 -0.006262
   6000 -0.177318
   8000 -0.403413
   11000 -0.000335
   12000 -0.032954
   13000 -0.011112
   14000 -0.034804
   19000 -0.001140
   20000 -0.325043
   26000 -0.007735
   1000 0.108068
   6000 0.256799
   8000 0.438586
   11000 0.000254
   12000 0.023584
   13000 0.007164
   14000 0.021555
   19000 0.000507
   20000 0.141073
   26000 0.002409
```

material h 0.006262 c 0.177297 o 0.403366 na 0.000335 mg 0.032950 - al 0.011111 si 0.034800 k 0.001140 ca 0.325005 fe 0.007734 matname concrete_ls density 2.278

<u>6: L</u>

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.005135	0.094080	0.007170
C	0.100250	0.154136	0.011747
О	0.485288	0.560122	0.042688
Mg	0.001710	0.001299	0.000099
Al	0.005138	0.003517	0.000268

Si	0.011974	0.007873	0.000600	
Ca	0.382590	0.176285	0.013435	
Fe	0.008134	0.002690	0.000205	

Density $(g/cm^3) = 2.337$

Comments: Principally limestone aggregate. Weight Fractions are not normalized.

The atom and weight fractions are calculated from the atom density in the

reference.

Reference: "Criticality Safety Analysis Resource Book, Part II: Atom

Densities and Dimensional Parameters," August 1977, by E. B.

Reppond.

c Concrete, L, rho = 2.337 Neutron 1001 -0.005135 6012 -0.100250 8016 -0.485288 12000 -0.001710 13027 -0.005138 14000 -0.011974 20000 -0.382590 26000 -0.008134
1001 -0.005135 6012 -0.100250 8016 -0.485288 12000 -0.001710 13027 -0.005138 14000 -0.011974 20000 -0.382590 26000 -0.008134
6012 -0.100250 8016 -0.485288 12000 -0.001710 13027 -0.005138 14000 -0.011974 20000 -0.382590 26000 -0.008134
8016 -0.485288 12000 -0.001710 13027 -0.005138 14000 -0.011974 20000 -0.382590 26000 -0.008134
12000 -0.001710 13027 -0.005138 14000 -0.011974 20000 -0.382590 26000 -0.008134
13027 -0.005138 14000 -0.011974 20000 -0.382590 26000 -0.008134
14000 -0.011974 20000 -0.382590 26000 -0.008134
20000 -0.382590 26000 -0.008134
26000 -0.008134
1001 0.094080 6012 0.154136 8016 0.560122 12000 0.001299 13027 0.003517 14000 0.007873
6012 0.154136 8016 0.560122 12000 0.001299 13027 0.003517 14000 0.007873
6012 0.154136 8016 0.560122 12000 0.001299 13027 0.003517 14000 0.007873
8016 0.560122 12000 0.001299 13027 0.003517 14000 0.007873
12000 0.001299 13027 0.003517 14000 0.007873
13027 0.003517 14000 0.007873
14000 0.007873
20000 0.176285
26000 0.002690
\$ Photon
1000 -0.005135
6000 -0.100250
8000 -0.485288
12000 -0.001710
13000 -0.005138
14000 -0.011974
20000 -0.382590
26000 -0.008134
1000 0.094080
6000 0.154136
8000 0.560122

12000 0.001299	
13000 0.003517	
14000 0.007873	
20000 0.176285	
26000 0.002690	

material h 0.005134 c 0.100228 o 0.485182 mg 0.001710 al 0.005137 - si 0.011971 ca 0.382506 fe 0.008132 matname concrete_l density 2.337

7: ORNL

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.006488	0.116933	0.008605
О	0.518069	0.588267	0.04329
Na	0.016577	0.013100	0.000964
Al	0.035137	0.023658	0.001741
Si	0.349085	0.225808	0.016617
K	0.015324	0.007121	0.000524
Ca	0.045057	0.020424	0.001503
Fe	0.014411	0.004688	0.000345

Density $(g/cm^3) = 2.220$

Comments: Principally silicate aggregate also referred to as concrete S. Weight Fractions are not normalized. The atom and weight fractions are calculated from the atom density in the reference.

Reference: "Criticality Safety Analysis Resource Book, Part II: Atom Densities and Dimensional Parameters," August 1977, by E. B. Reppond.

c Concrete, ORNL, rho = 2.220
\$ Neutron
1001 -0.006488
8016 -0.518069
11023 -0.016577
13027 -0.035137
14000 -0.349085
19000 -0.015324
20000 -0.045057
26000 -0.014411
1001 0.116933

8016 0.588267	
11023 0.013100	
13027 0.023658	
14000 0.225808	
19000 0.007121	
20000 0.020424	
26000 0.004688	
\$ Photon	
1000 -0.006488	
8000 -0.518069	
11000 -0.016577	
13000 -0.035137	
14000 -0.349085	
19000 -0.015324	
20000 -0.045057	
26000 -0.014411	
1000 0.116933	
8000 0.588267	
11000 0.013100	
13000 0.023658	
14000 0.225808	
19000 0.007121	
20000 0.020424	
26000 0.004688	

material h 0.006487 o 0.517992 na 0.016575 al 0.035132 si 0.349033 - k 0.015322 ca 0.045050 fe 0.014409
matname concrete_ornl
density 2.220

8: Rocky Flats

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.007500	0.136471	0.010401
C	0.055502	0.084748	0.006459
О	0.492926	0.565027	0.043063
S	0.179258	0.102527	0.007814
K	0.007497	0.003516	0.000268
Ca	0.229502	0.105020	0.008004
Fe	0.008191	0.002690	0.000205
Density $(g/cm^3) = 2.321$			

Comments: Weight Fractions are not normalized. The atom and weight fractions are calculated from the atom density in the reference.

Reference: "Criticality Safety Analysis Resource Book, Part II: Atom

Densities and Dimensional Parameters," August 1977, by E. B.

Reppond.

c Concrete, Rocky Flats, rho = 2.321
\$ Neutron
1001 -0.007500
6012 -0.055502
8016 -0.492926
16000 -0.179258
19000 -0.007497
20000 -0.229502
26000 -0.008191
1001 0.136471
6012 0.084748
8016 0.565027
16000 0.102527
19000 0.003516
20000 0.105020
26000 0.002690
\$ Photon
1000 -0.007500
6000 -0.055502
8000 -0.492926
16000 -0.179258
19000 -0.007497
20000 -0.229502
26000 -0.008191
1000 0.136471
6000 0.084748
8000 0.565027
16000 0.102527
19000 0.003516
20000 0.105020
26000 0.002690

material h 0.007650 c 0.056613 o 0.502793 s 0.182846 k 0.007647 - ca 0.234096 fe 0.008355
matname concrete_rockyflats
density 2.321

9: Magnetite

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.003000	0.083258	0.006184
О	0.320000	0.559481	0.041554
Mg	0.006000	0.006905	0.000513
Al	0.029000	0.030066	0.002233
Si	0.035000	0.034860	0.002589
P	0.001700	0.001535	0.000114
S	0.010700	0.009335	0.000693
Ca	0.007000	0.004886	0.000363
Ti	0.028000	0.016363	0.001215
Mn	0.000700	0.000356	0.000026
Fe	0.505000	0.252957	0.018788

Density $(g/cm^3) = 3.45$

Comments: Magnetite concrete.

Reference: H. E Hungerford, Reactor Handbook, Vol. I, Materials, C. R.

Tipton, Jr. (Ed.), p. 1086, Interscience Publishers, a division of

John Wiley & Sons, Inc., New York, 1960.

MCNP Form
c Concrete, Magnetite, rho = 3.45
\$ Neutron
1001 -0.003000
8016 -0.320000
12000 -0.006000
13027 -0.029000
14000 -0.035000
15031 -0.001700
16000 -0.010700
20000 -0.007000
22000 -0.028000
25055 -0.000700
26000 -0.505000
1001 0.083258
8016 0.559481
12000 0.006905

```
13027 0.030066
   14000 0.034860
   15031 0.001535
   16000 0.009335
   20000 0.004886
   22000 0.016363
   25055 0.000356
   26000 0.252957
$ Photon
   1000 -0.003000
   8000 -0.320000
   12000 -0.006000
   13000 -0.029000
   14000 -0.035000
   15000 -0.001700
   16000 -0.010700
   20000 -0.007000
   22000 -0.028000
   25000 -0.000700
   26000 -0.505000
   1000 0.083258
   8000 0.559481
   12000 0.006905
   13000 0.030066
   14000 0.034860
   15000 0.001535
   16000 0.009335
   20000 0.004886
   22000 0.016363
   25000 0.000356
   26000 0.252957
```

10: Ferro-phosphorus

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.005000	0.158643	0.014339
O Mg	0.104000 0.002000	0.207881 0.002632	0.018790 0.000238
Al Si	0.004000 0.034000	0.004741 0.038715	0.000429 0.003499
P	0.197000	0.203403	0.018385
Ca	0.042000	0.033514	0.003029
Fe	0.612000	0.350472	0.031678

Density $(g/cm^3) = 4.80$

Comments: Ferro-phosphorus concrete.

Reference: H. E Hungerford, Reactor Handbook, Vol. I, Materials, C. R.

Tipton, Jr. (Ed.), p. 1086, Interscience Publishers, a division of

John Wiley & Sons, Inc., New York, 1960.

MCNP Form	
c Concrete, Ferro-phosphorus, rho = 4.80	
\$ Neutron	
1001 -0.005000	
8016 -0.104000	
12000 -0.002000	
13027 -0.004000	
14000 -0.034000	
15031 -0.197000	
20000 -0.042000	
26000 -0.612000	
1001 0.158643	
8016 0.207881	
12000 0.002632	
13027 0.004741	
14000 0.038715	
15031 0.203403	
20000 0.033514	
26000 0.350472	
·	
\$ Photon	
1000 -0.005000	
8000 -0.104000	
12000 -0.002000	
13000 -0.004000	

14000 -0.034000	
15000 -0.197000	
20000 -0.042000	
26000 -0.612000	
1000 0.158643	
8000 0.207881	
12000 0.002632	
13000 0.004741	
14000 0.038715	
15000 0.203403	
20000 0.033514	
26000 0.350472	

material h 0.005000 o 0.104000 mg 0.002000 al 0.004000 si 0.034000 p 0.197000 ca 0.042000 fe 0.612000
matname concrete_ferro-phosphorus
density 4.80

11: Iron-limonite

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.000500	0.018192	0.001276
O	0.180000	0.412589	0.028930
Mg	0.002000	0.003018	0.000212
Al	0.005000	0.006796	0.000477
Si	0.014000	0.018281	0.001282
S	0.001000	0.001144	0.000080
Ca	0.061000	0.055818	0.003914
Mn	0.016000	0.010681	0.000749
Fe	0.721000	0.473478	0.033199

Density $(g/cm^3) = 4.27$

Comments: Iron-limonite concrete.

Reference: H. E Hungerford, Reactor Handbook, Vol. I, Materials, C. R.

Tipton, Jr. (Ed.), p. 1086, Interscience Publishers, a division of

John Wiley & Sons, Inc., New York, 1960.

MCNP Form

c Concrete, Iron-limonite, rho = 4.27

\$ Neutron

1001 -0.000500

8016 -0.180000

12000 -0.002000

```
13027 -0.005000
   14000 -0.014000
   16000 -0.001000
   20000 -0.061000
   25055 -0.016000
   26000 -0.721000
   1001 0.018192
   8016 0.412589
   12000 0.003018
   13027 0.006796
   14000 0.018281
   16000 0.001144
   20000 0.055818
   25055 0.010681
   26000 0.473478
$ Photon
   1000 -0.000500
   8000 -0.180000
   12000 -0.002000
   13000 -0.005000
   14000 -0.014000
   16000 -0.001000
   20000 -0.061000
   25000 -0.016000
   26000 -0.721000
   1000 0.018192
   8000 0.412589
   12000 0.003018
   13000 0.006796
   14000 0.018281
   16000 0.001144
   20000 0.055818
   25000 0.010681
   26000 0.473478
```

```
material h 0.000500 o 0.179910 mg 0.001998 al 0.004997 si 0.013993 - s 0.001000 ca 0.060970 mn 0.015992 fe 0.720640 matname concrete_iron-limonite density 4.27
```

12: Iron-portland

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.003300	0.135585	0.011436
О	0.058200	0.150645	0.012706
Mg	0.001300	0.002215	0.000187
Al	0.003300	0.005065	0.000427
Si	0.009100	0.013418	0.001132
S	0.000500	0.000646	0.000054
Ca	0.039600	0.040919	0.003451
Mn	0.003500	0.002638	0.000223
Fe	0.875000	0.648872	0.054727

Density $(g/cm^3) = 5.80$

Comments: Iron-portland concrete.

Reference: H. E Hungerford, Reactor Handbook, Vol. I, Materials, C. R.

Tipton, Jr. (Ed.), p. 1086, Interscience Publishers, a division of

John Wiley & Sons, Inc., New York, 1960.

WENT TOTAL
c Concrete, Iron-portland, rho = 5.80
\$ Neutron
1001 -0.003300
8016 -0.058200
12000 -0.001300
13027 -0.003300
14000 -0.009100
16000 -0.000500
20000 -0.039600
25055 -0.003500
26000 -0.875000
1001 0.135585
8016 0.150645
12000 0.002215
13027 0.005065
14000 0.013418
16000 0.000646
20000 0.040919
25055 0.002638
26000 0.648872
\$ Photon
1000 -0.003300
8000 -0.058200

```
12000 -0.001300
13000 -0.003300
14000 -0.009100
16000 -0.000500
20000 -0.039600
25000 -0.003500
26000 -0.875000
1000 0.135585
8000 0.150645
12000 0.002215
13000 0.005065
14000 0.013418
16000 0.000646
20000 0.040919
25000 0.002638
26000 0.648872
```

material h 0.003320 o 0.058563 mg 0.001308 al 0.003321 si 0.009157 - s 0.000503 ca 0.039847 mn 0.003522 fe 0.880459 matname concrete_iron-portland density 5.80

13: Colemanite-baryte

Element Wei	ght Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н 0	.008500	0.208729	0.016251
B 0	.009800	0.022437	0.001747
O 0	.348900	0.539753	0.042024
Na 0	.001100	0.001184	0.000092
Mg 0	.002200	0.002240	0.000174
Al 0	.006100	0.005596	0.000436
Si 0	.017600	0.015511	0.001208
S 0	.096300	0.074335	0.005788
Ca 0	.084600	0.052247	0.004068
Mn 0	.000100	0.000045	0.000004
Fe 0	.010300	0.004565	0.000355
Ba 0	.407000	0.073356	0.005711

Density $(g/cm^3) = 3.20$

Comments: Colemanite-baryte concrete.

Reference: H. E Hungerford, Reactor Handbook, Vol. I, Materials, C. R.

Tipton, Jr. (Ed.), p. 1086, Interscience Publishers, a division of

John Wiley & Sons, Inc., New York, 1960.

```
c Concrete, Colemanite-baryte, rho = 3.20
$ Neutron
   1001 -0.008500
   5011 -0.009800
   8016 -0.348900
   11023 -0.001100
   12000 -0.002200
   13027 -0.006100
   14000 -0.017600
   16000 -0.096300
   20000 -0.084600
   25055 -0.000100
   26000 -0.010300
   56138 -0.407000
   1001 0.208729
   5011 0.022437
   8016 0.539753
   11023 0.001184
   12000 0.002240
   13027 0.005596
   14000 0.015511
   16000 0.074335
   20000 0.052247
   25055 0.000045
   26000 0.004565
   56138 0.073356
$ Photon
   1000 -0.008500
   5000 -0.009800
   8000 -0.348900
   11000 -0.001100
   12000 -0.002200
   13000 -0.006100
   14000 -0.017600
   16000 -0.096300
   20000 -0.084600
   25000 -0.000100
   26000 -0.010300
   56000 -0.407000
   1000 0.208729
   5000 0.022437
   8000 0.539753
```

11000 0.001184	
12000 0.002240	
13000 0.005596	
14000 0.015511	
16000 0.074335	
20000 0.052247	
25000 0.000045	
26000 0.004565	
56000 0.073356	

material h 0.008563 b 0.009874 o 0.351537 na 0.001108 mg 0.002217 - al 0.006146 si 0.017733 s 0.097028 ca 0.085239 mn 0.000101 - fe 0.010378 ba 0.410076 matname concrete_colmanite-baryte density 3.20

14: Boron Frits-baryte

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.005600	0.147522	0.010372
В	0.010400	0.025543	0.001796
O	0.338000	0.560938	0.039439
F	0.002300	0.003214	0.000226
Na	0.012100	0.013975	0.000983
Mg	0.002300	0.002513	0.000177
Al	0.006400	0.006298	0.000443
Si	0.033100	0.031293	0.002200
S	0.091500	0.075769	0.005327
K	0.001000	0.000679	0.000048
Ca	0.062600	0.041473	0.002916
Mn	0.000200	0.000097	0.00007
Fe	0.021900	0.010413	0.000732
Zn	0.006600	0.002679	0.000188
Ba	0.401300	0.077592	0.005455

Density $(g/cm^3) = 3.10$

Comments: Boron frits-baryte concrete.

Reference: H. E Hungerford, Reactor Handbook, Vol. I, Materials, C. R.

Tipton, Jr. (Ed.), p. 1086, Interscience Publishers, a division of

John Wiley & Sons, Inc., New York, 1960.

```
c Concrete, Boron Frits-baryte, rho = 3.10
$ Neutron
   1001 -0.005600
   5011 -0.010400
   8016 -0.338000
   9019 -0.002300
   11023 -0.012100
   12000 -0.002300
   13027 -0.006400
   14000 -0.033100
   16000 -0.091500
   19000 -0.001000
   20000 -0.062600
   25055 -0.000200
   26000 -0.021900
   30000 -0.006600
   56138 -0.401300
   1001 0.147522
   5011 0.025543
   8016 0.560938
   9019 0.003214
   11023 0.013975
   12000 0.002513
   13027 0.006298
   14000 0.031293
   16000 0.075769
   19000 0.000679
   20000 0.041473
   25055 0.000097
   26000 0.010413
   30000 0.002679
   56138 0.077592
$ Photon
   1000 -0.005600
   5000 -0.010400
   8000 -0.338000
   9000 -0.002300
   11000 -0.012100
   12000 -0.002300
   13000 -0.006400
   14000 -0.033100
   16000 -0.091500
   19000 -0.001000
   20000 -0.062600
```

```
25000 -0.000200
26000 -0.021900
30000 -0.006600
56000 -0.401300
1000 0.147522
5000 0.025543
8000 0.560938
9000 0.003214
11000 0.013975
12000 0.002513
13000 0.006298
14000 0.031293
16000 0.075769
19000 0.000679
20000 0.041473
25000 0.000097
26000 0.010413
30000 0.002679
56000 0.077592
```

material h 0.005627 b 0.010449 o 0.339596 f 0.002311 na 0.012157 - mg 0.002311 al 0.006430 si 0.033256 s 0.091932 k 0.001005 - ca 0.062896 mn 0.000201 fe 0.022003 zn 0.006631 ba 0.403195 matname concrete_boron-frits-baryte density 3.10

15: Lumnite-colemanite-baryte

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.010900	0.247678	0.020189
В	0.008800	0.018643	0.001520
О	0.369500	0.528941	0.043114
Na	0.001100	0.001096	0.000089
Mg	0.001400	0.001319	0.000108
Al	0.017600	0.014940	0.001218
Si	0.009600	0.007829	0.000638
S	0.090600	0.064713	0.005275
Ca	0.054800	0.031316	0.002553
Ti	0.012700	0.006077	0.000495
Mn	0.001200	0.000500	0.000041
Fe	0.030700	0.012591	0.001026
Ba	0.385900	0.064360	0.005246

Density $(g/cm^3) = 3.10$

Comments: Lumnite-colemanite-baryte concrete.

Reference: H. E Hungerford, Reactor Handbook, Vol. I, Materials, C. R.

Tipton, Jr. (Ed.), p. 1086, Interscience Publishers, a division of

John Wiley & Sons, Inc., New York, 1960.

C Concrete, Lumnite-colemanite-baryte, rho = 3.10 Neutron 1001 -0.010900 5011 -0.008800 8016 -0.369500 11023 -0.001100 12000 -0.001400 13027 -0.017600 14000 -0.099600 16000 -0.099600 20000 -0.054800 22000 -0.012700 25055 -0.001200 26000 -0.030700 56138 -0.385900	MCNF FOIII	
1001 -0.010900 5011 -0.008800 8016 -0.369500 11023 -0.001100 12000 -0.001400 13027 -0.017600 14000 -0.09600 20000 -0.054800 22000 -0.012700 25055 -0.001200 26000 -0.030700 56138 -0.385900 1001 0.247678 5011 0.018643 8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.001316 22000 0.0012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.001400 13000 -0.001600	c Concrete, Lumnite-colemanite-baryte, rho = 3.10	
5011 -0.008800 8016 -0.369500 11023 -0.001100 12000 -0.001400 13027 -0.017600 14000 -0.009600 16000 -0.090600 20000 -0.054800 22000 -0.012700 25055 -0.001200 26000 -0.030700 56138 -0.385900		
8016 -0.369500 11023 -0.001100 12000 -0.001400 13027 -0.017600 14000 -0.096600 16000 -0.096600 20000 -0.054800 22000 -0.012700 25055 -0.001200 26000 -0.3685900	1001 -0.010900	
11023 -0.001100 12000 -0.001400 13027 -0.017600 14000 -0.009600 16000 -0.090600 20000 -0.054800 22000 -0.012700 25055 -0.001200 26000 -0.385900 1001 0.247678 5011 0.018643 8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006477 25055 0.000500 26000 0.012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.0017600 14000 -0.009600		
12000 -0.001400 13027 -0.017600 14000 -0.009600 16000 -0.090600 20000 -0.054800 22000 -0.012700 25055 -0.001200 26000 -0.030700 56138 -0.385900	8016 -0.369500	
13027 -0.017600 14000 -0.009600 16000 -0.090600 20000 -0.054800 22000 -0.012700 25055 -0.001200 26000 -0.0385900 1001 0.247678 5011 0.018643 8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000607 25055 0.000500 26000 0.012591 56138 -0.064360 Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600		
14000 -0.009600 16000 -0.090600 20000 -0.054800 22000 -0.012700 25055 -0.001200 26000 -0.030700 56138 -0.385900		
16000 -0.090600 20000 -0.054800 22000 -0.012700 25055 -0.001200 26000 -0.030700 56138 -0.385900 1001 0.247678 5011 0.018643 8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.0017600 14000 -0.009600		
20000 -0.054800 22000 -0.012700 25055 -0.001200 26000 -0.030700 56138 -0.385900 1001 0.247678 5011 0.018643 8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600		
22000 -0.012700 25055 -0.001200 26000 -0.030700 56138 -0.385900 1001 0.247678 5011 0.018643 8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 Photon		
25055 -0.001200 26000 -0.030700 56138 -0.385900 1001 0.247678 5011 0.018643 8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600		
26000 -0.030700 56138 -0.385900 1001 0.247678 5011 0.018643 8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600		
56138 -0.385900 1001 0.247678 5011 0.018643 8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600		
1001 0.247678 5011 0.018643 8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600		
5011 0.018643 8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 * Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	56138 -0.385900	
5011 0.018643 8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 * Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	1001_0.247678	
8016 0.528941 11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600		
11023 0.001096 12000 0.001319 13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 *Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.0017600 14000 -0.009600		
13027 0.014940 14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 *Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	11023 0.001096	
14000 0.007829 16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	12000 0.001319	
16000 0.064713 20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	13027 0.014940	
20000 0.031316 22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.08800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	14000 0.007829	
22000 0.006077 25055 0.000500 26000 0.012591 56138 -0.064360 \$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	16000 0.064713	
25055 0.000500 26000 0.012591 56138 -0.064360 Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	20000 0.031316	
26000 0.012591 56138 -0.064360 * Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	22000 0.006077	
\$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	25055 0.000500	
\$ Photon 1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	26000 0.012591	
1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	56138 -0.064360	
1000 -0.010900 5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600	\$ Photon	
5000 -0.008800 8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600		
8000 -0.369500 11000 -0.001100 12000 -0.001400 13000 -0.017600 14000 -0.009600		
12000 -0.001400 13000 -0.017600 14000 -0.009600		
13000 -0.017600 14000 -0.009600	11000 -0.001100	
14000 -0.009600	12000 -0.001400	
	13000 -0.017600	
16000 -0.090600	14000 -0.009600	
	16000 -0.090600	

```
20000 -0.054800
22000 -0.012700
25000 -0.001200
26000 -0.030700
56000 -0.385900
1000 0.247678
5000 0.018643
8000 0.528941
11000 0.001096
12000 0.001319
13000 0.014940
14000 0.007829
16000 0.064713
20000 0.031316
22000 0.006077
25000 0.000500
26000 0.012591
56000 -0.064360
```

material h 0.010959 b 0.008846 o 0.371431 na 0.001106 mg 0.001407 - al 0.017692 si 0.009650 s 0.091074 ca 0.055086 ti 0.012766 - mn 0.001206 fe 0.030860 ba 0.387917 matname concrete_lum-colem-baryte density 3.10

16: Lumnite-portland-colemanite-baryte

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.001100	0.248270	0.020374
В	0.010200	0.021463	0.001761
О	0.369800	0.525809	0.043149
Na	0.001100	0.001088	0.000089
Mg	0.002000	0.001872	0.000154
Al	0.013200	0.011129	0.000913
Si	0.014900	0.012069	0.000990
S	0.089700	0.063639	0.005222
Ca	0.076700	0.043537	0.003573
Ti	0.000710	0.000337	0.000028
Mn	0.000400	0.000166	0.000014
Fe	0.018700	0.007618	0.000625
Ba	0.380300	0.062999	0.005170
Density (g/	$(cm^3) = 3.10$		

Comments: Lumnite-portland-colemanite-baryte concrete.

Reference: H. E Hungerford, *Reactor Handbook*, Vol. I, Materials, C. R.

Tipton, Jr. (Ed.), p. 1086, Interscience Publishers, a division of

John Wiley & Sons, Inc., New York, 1960.

c Concrete, Lumnite-portland-colemanite-baryte, rho = 3.10	
\$ Neutron	
1001 -0.011000	
5011 -0.010200	
8016 -0.369800	
11023 -0.001100	
12000 -0.002000	
13027 -0.013200	
14000 -0.014900	
16000 -0.089700	
20000 -0.076700	
22000 -0.000710	
25055 -0.000400	
26000 -0.018700	
56138 -0.380300	
1001 0.248270	
5011 0.021463	
8016 0.525809	
11023 0.001088	
12000 0.001872	
13027 0.011129	
14000 0.012069	
16000 0.063639	
20000 0.043537	
22000 0.000337	
25055 0.000166	
26000 0.007618	
56138 -0.062999	
\$ Photon	
1000 -0.011000	
5000 -0.010200	
8000 -0.369800	
11000 -0.001100	
12000 -0.002000	
13000 -0.013200	
14000 -0.014900	
16000 -0.089700	
20000 -0.076700	
22000 -0.000710	

25000 -0.000400	
26000 -0.018700	
56000 -0.380300	
1000 0 240250	
1000 0.248270	
5000 0.021463	
8000 0.525809	
11000 0.001088	
12000 0.001872	
13000 0.011129	
14000 0.012069	
16000 0.063639	
20000 0.043537	
22000 0.000337	
25000 0.000166	
26000 0.007618	
56000 -0.062999	

material h 0.001123 b 0.010421 o 0.377806 na 0.001124 mg 0.002043 - al 0.013486 si 0.015223 s 0.091642 ca 0.078360 ti 0.000725 - mn 0.000409 fe 0.019105 ba 0.388533 matname concrete_lum-portland-colem-baryte density 3.10

Explosive Compounds

<u>1: TNT</u>

	Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
	Н	0.022189	0.238099	0.021928
	C	0.370160	0.333331	0.030698
	N	0.185004	0.142857	0.013156
	O	0.422648	0.285713	0.026312
ı				

Density $(g/cm^3) = 1.654$

Comments: TNT (2,4,6-Tinitrotoluene)

Reference: Modern Methods and Applications in Analysis of Explosives,

Jehuda Yinon and Shmuel Zitrin, p. 3, John Wiley & Sons, Inc.,

New York, 1993.

c TNT, $rho = 1.654$
\$ Neutron
1001 -0.022189
6012 -0.370160
7014 -0.185004
8016 -0.422648
1001 0.238099
6012 0.333331
7014 0.142857
8016 0.285713
\$ Photon
1000 -0.022189
6000 -0.370160
7000 -0.185004
8000 -0.422648
1000 0.238099
6000 0.333331
7000 0.142857
8000 0.285713

CEPXS Form

material h 0.022188 c 0.370160 n 0.185004 o 0.422648 matname explosive_tnt density 1.654

2: RDX

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b*cm} \right)$	
H C N	0.027227 0.162222 0.378361	0.285712 0.142857 0.285714	0.029379 0.014690 0.029379	
O	0.432190	0.285715	0.029379	
Density (g/cm³)= 1.806 Comments: RDX (1,3,5-Tinitro-1,3,5-triazacyclohexane) Reference: Modern Methods and Applications in Analysis of Explosives, Jehuda Yinon and Shmuel Zitrin, p. 5, John Wiley & Sons, Inc., New York, 1993.				

WCNI FOILII
c RDX, $rho = 1.806$
\$ Neutron
1001 -0.027227
6012 -0.162222
7014 -0.378361
8016 -0.432190
1001 0.285712
6012 0.142857
7014 0.285714
8016 0.285715
\$ Photon
1000 -0.027227
6000 -0.162222
7000 -0.378361
8000 -0.432190
4000 0 007740
1000 0.285712
6000 0.142857
7000 0.285714
8000 0.285715

CEPXS Form

material h 0.027227 c 0.162222 n 0.378361 o 0.432190 matname explosive_rdx density 1.806

3: **HMX**

			- (stoms)		
<u>Element</u>	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b^*cm}\right)$		
			` /		
Н	0.027227	0.285712	0.030940		
C	0.162222	0.142857	0.015470		
N	0.378361	0.285714	0.030941		
О	0.432190	0.285714	0.030941		
Density (g)	Density $(g/cm^3) = 1.902$				
Comments:	Comments: HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane)				
Reference: A	Modern Methods an	d Applications in A	Analysis of Explosives,		
Jehuda Yinon and Shmuel Zitrin, p. 6, John Wiley & Sons, Inc.,					
	New York, 1993.				
	(C), 1011, 1995.				

WICH FORM
c HMX, $rho = 1.902$
\$ Neutron
1001 -0.027227
6012 -0.162222
7014 -0.378361
8016 -0.432190
1001 0.285712
6012 0.142857
7014 0.285714
8016 0.285714
\$ Photon
1000 -0.027227
6000 -0.162222
7000 -0.378361
8000 -0.432190
1000 0.285712
6000 0.142857
7000 0.285714
8000 0.285714

CEPXS Form

material h 0.027227 c 0.162222 n 0.378361 o 0.432190 matname explosive_hmx density 1.902

4: NG (Nitroglycerin)

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{L^*}\right)$	
H C N	0.022193 0.158671 0.185040	0.250001 0.150000 0.150001	0.014983 0.008990 0.008990	
О	0.634096	0.450002	0.026970	
Density (g/cm³)= 1.13 Comments: NG (Nitroglycerin), Glycerol Trinitrate Reference: Modern Methods and Applications in Analysis of Explosives, Jehuda Yinon and Shmuel Zitrin, p. 8, John Wiley & Sons, Inc., New York, 1993.				

TCM FOIM	
NG, $rho = 1.13$	
Neutron	
1001 -0.022193	
6012 -0.158671	
7014 -0.185040	
8016 -0.634096	
1001 0.250001	
6012 0.150000	
7014 0.150001	
8016 0.450002	
Photon	
1000 -0.022193	
6000 -0.158671	
7000 -0.185040	
8000 -0.634096	
1000 0.250001	
6000 0.150000	
7000 0.150001	
8000 0.450002	

CEPXS Form

material h 0.022193 c 0.158671 n 0.185040 o 0.634096 matname explosive_nitroglycerin density 1.13

<u>5: PETN</u>

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$	
Н	0.025506	0.275859	0.027019	
С	0.189961	0.172414	0.016887	
N	0.177223	0.137931	0.013510	
О	0.607310	0.413794	0.040529	
Density (g/cm³)= 1.773 Comments: PETN (Pentaerythritol Tetranitrate) Reference: Modern Methods and Applications in Analysis of Explosives, Jehuda Yinon and Shmuel Zitrin, p. 9, John Wiley & Sons, Inc., New York, 1993.				

MCM Form
c PETN, $rho = 1.773$
\$ Neutron
1001 -0.025506
6012 -0.189961
7014 -0.177223
8016 -0.607310
1001 0.275859
6012 0.172414
7014 0.137931
8016 0.413794
\$ Photon
1000 -0.025506
6000 -0.189961
7000 -0.177223
8000 -0.607310
1000 0.275859
6000 0.172414
7000 0.137931
8000 0.413794

CEPXS Form

material h 0.025506 c 0.189961 n 0.177223 o 0.607310 matname explosive_petn density 1.773

6: EGDN (Ethylene Glycol Dinitrate)

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$	
Н	0.026514	0.285716	0.023604	
C	0.157970	0.142857	0.011802	
N	0.184222	0.142856	0.011802	
О	0.631294	0.428570	0.035405	
Density (g/cm³)= 1.490 Comments: EGDN (Ethylene Glycol Dinitrate) Reference: Modern Methods and Applications in Analysis of Explosives, Jehuda Yinon and Shmuel Zitrin, p. 11, John Wiley & Sons, Inc., New York, 1993.				

c EGDN, rho = 1.490	
\$ Neutron	
1001 -0.026514	
6012 -0.157970	
7014 -0.184222	
8016 -0.631294	
1001 0.285716	
6012 0.142857	
7014 0.142856	
8016 0.428570	
\$ Photon	
1000 -0.026514	
6000 -0.157970	
7000 -0.184222	
8000 -0.631294	
0000 -0.031294	
1000 0.285716	
6000 0.142857	
7000 0.142856	
8000 0.428570	

CEPXS Form

material h 0.026514 c 0.157970 n 0.184222 o 0.631294 matname explosive_egdn density 1.490

7: AN (Ammonium Nitrate)

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$	
Н	0.050370	0.444446	0.052064	
N	0.349978	0.222221	0.026032	
О	0.599652	0.333331	0.039047	
Density (g/cm³)= 1.730 Comments: AN (Ammonium Nitrate) Reference: Modern Methods and Applications in Analysis of Explosives, Jehuda Yinon and Shmuel Zitrin, p. 12, John Wiley & Sons, Inc., New York, 1993.				

VICINI TOTM	
AN, rho = 1.730	
S Neutron	
1001 -0.050370	
7014 -0.349978	
8016 -0.599652	
1001 0.444446	
7014 0.222221	
8016 0.333331	
Photon	
1000 -0.050370	
7000 -0.349978	
8000 -0.599652	
1000 0.444446	
7000 0.222221	
8000 0.333331	

CEPXS Form

material h 0.050370 n 0.349978 o 0.599652 matname explosive_ammonium-nitrate density 1.730

8: NC (Nitrocellulose)

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.028320	0.291664	0.028088
С	0.289258	0.250000	0.024076
N	0.168664	0.125000	0.012038
О	0.513758	0.333333	0.032101
Density (g/	$(cm^3) = 1.660$		

Comments: NC (Nitrocellulose)

Reference: Modern Methods and Applications in Analysis of Explosives,

Jehuda Yinon and Shmuel Zitrin, p. 13, John Wiley & Sons, Inc.,

New York, 1993.

MCM Form	
c NC, rho = 1.660	
\$ Neutron	
1001 -0.028320	
6012 -0.289258	
7014 -0.168664	
8016 -0.513758	
1001 0.291664	
6012 0.250000	
7014 0.125000	
8016 0.333333	
\$ Photon	
1000 -0.028320	
6000 -0.289258	
7000 -0.168664	
8000 -0.513758	
1000 0.291664	
6000 0.250000	
7000 0.125000	
8000 0.333333	

CEPXS Form

material h 0.028320 c 0.289258 n 0.168664 o 0.513758 matname explosive_nitrocellulose density 1.660

Ferrous Sulfate

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.108376	0.660238	0.066305
О	0.878959	0.337338	0.033878
Na	0.000022	0.000006	0.000001
S	0.012553	0.002404	0.000241
Cl	0.000035	0.000006	0.000001
Fe	0.000055	0.000006	0.000001
5	3 1021		
Density (g)	$(cm^3) = 1.024$		
Comments:	Standard Fricke		
Reference:	http://physics.nist.go	ov/PhysRefData/X1	rayMassCoef/tab2.html

MCNP Form	
c Ferrous Sulfate (Standard Fricke), rho = 1.024	
\$ Neutron	
1001 -0.108376	
8016 -0.878959	
11023 -0.000022	
16000 -0.012553	
17000 -0.000035	
26000 -0.000055	
1001 0.660238	
8016 0.337338	
11023 0.000006	
16000 0.002404	
17000 0.000006	
26000 0.000006	
\$ Photon	
1000 -0.108376	
8000 -0.878959	
11000 -0.000022	
16000 -0.012553	
17000 -0.000035	
26000 -0.000055	
1000 0.660238	
8000 0.337338	
11000 0.000006	
16000 0.002404	
17000 0.000006	
26000 0.000006	

CEPXS Form

```
material h 0.108376 o 0.878959 na 0.000022 s 0.012553 cl 0.000035 - fe 0.000055
matname ferrous_sulfate
density 1.024
```

Fertilizer

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.0000504	0.001848	0.000030
О	0.0007176	0.001657	0.000027
Na	0.0087350	0.014039	0.000227
Mg	0.0002058	0.000313	0.000005

S	0.0001590	0.000183	0.000003	
Cl	0.4778000	0.497978	0.008035	
K	0.5117000	0.483587	0.007803	
Ca	0.0002758	0.000254	0.000004	
Br	0.0003303	0.000153	0.000002	

Density $(g/cm^3) = 0.990$

Comments: Combination of "Evergro" and "Agrium". Muriate of Potash. Reference: Pallet Load of Potash as NORM by E.R. Siciliano (Feb. 2006),

http://www.agrium.com/uploads/muriate_potash_blender_coarse_grade_e.pdf,

http://www.growercentral.com/UPLOADS/PDFS/0-0-62%20muriate%20of%20potash%20fine%20label.pdf

MCNP FORM	
c Fertilizer (Muriate of Potash), rho = 0.990	
\$ Neutron	
1001 -0.0000504	
8016 -0.0007176	
11023 -0.0087350	
12000 -0.0002058	
16000 -0.0001590	
17000 -0.4778000	
19000 -0.5117000	
20000 -0.0002758	
35079 -0.0003303	
1001 0.001848	
8016 0.001657	
11023 0.014039	
12000 0.000313	
16000 0.000183	
17000 0.497978	
19000 0.483587	
20000 0.000254	
35079 0.000153	
\$ Photon	
1000 -0.0000504	
8000 -0.0007176	
11000 -0.0087350	
12000 -0.0002058	
16000 -0.0001590	
17000 -0.4778000	
19000 -0.5117000	
20000 -0.0002758	
35000 -0.0003303	

1000 0.001848	
8000 0.001657	
11000 0.014039	
12000 0.000313	
16000 0.000183	
17000 0.497978	
19000 0.483587	
20000 0.000254	
35000 0.000153	

material h 0.0000504 o 0.0007176 na 0.008735 mg 0.0002058 s 0.000159 - cl 0.4778 k 0.5117 ca 0.0002758 br 0.0003303 matname fertilizer density 0.990

Gadolinium

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$		
Gd	1.000000	1.000000	0.030256		
Density (g/cm^3) = 7.9004 Comments:					
Reference: Taken from NIST Listings, "Compositions of Materials used in STAR					
Databases" webpage:					
http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=064					

c Gadolinium, rho = 7.9004 g/cc \$ Neutron 64000 -1.000000	
64000 1.000000	
\$ Photon 64000 -1.000000	
64000 1.000000	

material gd 1.000000 matname gadolinium density 7.9004

Gallium Arsenide

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$	
Ga	0.482030	.500000	0.022108	
As	0.517970	.500004	0.022108	
Density $(g/cm^3) = 5.310$				
Comments:				
Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html				

MCNP Form

c Gallium Arsenide, rho = 5.310
\$ Neutron
31000 -0.482030
33075 -0.517970
31000 0.500000
33075 0.500004
\$ Photon
31000 -0.482030
33000 -0.517970
31000 0.500000
33000 0.500004

CEPXS Form

material ga 0.482030 as 0.517970 matname gallium_arsenide density 5.310

Gasoline

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
H C	0.160000 0.840000	0.694164 0.305836	0.065358 0.028796
Density $(g/cm^3) = 0.6837$			

Comments: Perry's Chemical Engineers Handbook, 4th edition, has gasoline constituents ranging from 83.5-85 wt% carbon, 15-15.8 wt% hydrogen with 0-1 wt% oxygen and nitrogen. Gasoline is a blend of many hydrocarbons and heptane is the primary constituent. This analysis will use heptane from the 74th CRC of Chem and Physics with a density of 0.6837. Heptane is C7 H16.

Reference: Perry's Chemical Engineers Handbook, 4th edition

MCNP Form

c Gasoline, rho = 0.6837	
\$ Neutron	
1001 -0.160000	
6012 -0.840000	
1001 0.694164	
6012 0.305836	
\$	
Photon	
1000 -0.160000	
6000 -0.840000	
1000 0.694164	
6000 0.305836	

CEPXS Form

material h 0.160000 c 0.840000 matname gasoline density 0.6837

Glass

1: Borosilicate

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$	
В	0.040066	0.070452	0.004977	
О	0.539559	0.641094	0.045289	
Na	0.028191	0.023311	0.001647	
Al	0.011644	0.008204	0.000580	
Si	0.377220	0.255328	0.018037	
K	0.003321	0.001615	0.000114	
Density $(g/cm^3) = 2.230$				
Comments:				
Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html				

c Glass, Borosilicate (Pyrex), rho = 2.230	
\$ Neutron	
5011 -0.040066	
8016 -0.539559	
11023 -0.028191	
13027 -0.011644	
14000 -0.377220	
19000 -0.003321	
5011 0.070452	
8016 0.641094	
11023 0.023311	
13027 0.008204	
14000 0.255328	
19000 0.001615	
\$ Photon	
5000 -0.040066	
8000 -0.539559	
11000 -0.028191	
13000 -0.011644	
14000 -0.377220	
19000 -0.003321	
5000 0.070452	
8000 0.641094	
11000 0.023311	
13000 0.008204	
14000 0.255328	
19000 0.001615	

CEPXS Form

material b 0.040066 o 0.539558 na 0.028191 al 0.011644 si 0.377220 - k 0.003321 matname glass_pyrex density 2.230

2: Lead Glass

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
О	0.156453	0.592955	0.036629
Si	0.080866	0.174593	0.010785
Ti	0.008092	0.010251	0.000633
As	0.002651	0.002146	0.000133

Pb 0.751938 0.220057 0.013594

Density $(g/cm^3) = 6.220$

Comments:

Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html

MCNP Form

c Glass, Lead, rho = 6.220

\$ Neutron

8016 -0.156453

14000 -0.080866

22000 -0.008092

33075 -0.002651

82000 -0.751938

8016 0.592955

14000 0.174593

22000 0.010251

33075 0.002146

82000 0.220057

\$ Photon

8000 -0.156453

14000 -0.080866

22000 -0.008092

33000 -0.002651

82000 -0.751938

8000 0.592955

14000 0.174593

22000 0.010251

33000 0.002146

CEPXS Form

material o 0.156453 si 0.080866 ti 0.008092 as 0.002651 pb 0.751938

matname glass_lead

density 6.220

3: Plate Glass

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
О	0.459800	0.603858	0.041536
Na	0.096441	0.088145	0.006063
Si	0.336553	0.251791	0.017319
Ca	0.107205	0.056205	0.003866

Density $(g/cm^3) = 2.40$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=171

MCNP Form

c Plate Glass, rho = 2.40 g/cc	
\$ Neutron	
8016 -0.459800	
11023 -0.096441	
14000 -0.336553	
20000 -0.107205	
8016 0.603858	
11023 0.088145	
14000 0.251791	
20000 0.056205	
\$ Photon	
8000 -0.459800	
11000 -0.096441	
14000 -0.336553	
20000 -0.107205	
8000 0.603858	
11000 0.088145	
14000 0.251791	
20000 0.056205	

CEPXS Form

```
material o 0.459800 na 0.096442 si 0.336553 ca 0.107205
matname glass_plate
density 2.40
```

4: Pyrex

See Borosilicate Glass.

Granite

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.001325	0.027122	0.002160

С	0.000292	0.000502	0.000040	
О	0.471188	0.607735	0.048400	
Na	0.028817	0.025866	0.002060	
Mg	0.021296	0.018081	0.001440	
Al	0.082089	0.062783	0.005000	
Si	0.280267	0.205927	0.016400	
K	0.026407	0.013938	0.001110	
Ca	0.036824	0.018960	0.001510	
Fe	0.051650	0.019086	0.001520	
	2			

Density $(g/cm^3) = 2.729$

Comments: Several densities for granite were found, with 2.729 being calculated based on the atom densities from the reference. Weight Fractions are not normalized. The atom and weight fractions are calculated from the atom density in the reference.

Reference: "Criticality Safety Analysis Resource Book, Part II: Atom Densities and Dimensional Parameters," August 1977, by E. B. Reppond.

C Granite, rho = 2.729 Neutron 1001 -0.001325 6012 -0.000292 8016 -0.471188 11023 -0.028817 12000 -0.021296 13027 -0.082089 14000 -0.280267 19000 -0.026407 20000 -0.036824 26000 -0.051650	MCNP Form	
1001 -0.001325 6012 -0.000292 8016 -0.471188 11023 -0.028817 12000 -0.021296 13027 -0.082089 14000 -0.280267 19000 -0.026407 20000 -0.036824 26000 -0.051650	c Granite, $rho = 2.729$	
6012 -0.000292 8016 -0.471188 11023 -0.028817 12000 -0.021296 13027 -0.082089 14000 -0.280267 19000 -0.036824 26000 -0.051650 	\$ Neutron	
8016 -0.471188 11023 -0.028817 12000 -0.021296 13027 -0.082089 14000 -0.280267 19000 -0.026407 20000 -0.036824 26000 -0.051650	1001 -0.001325	
11023 -0.028817 12000 -0.021296 13027 -0.082089 14000 -0.280267 19000 -0.026407 20000 -0.036824 26000 -0.051650 	6012 -0.000292	
12000 -0.021296 13027 -0.082089 14000 -0.280267 19000 -0.026407 20000 -0.036824 26000 -0.051650 	8016 -0.471188	
13027 -0.082089 14000 -0.280267 19000 -0.026407 20000 -0.036824 26000 -0.051650 	11023 -0.028817	
14000 -0.280267 19000 -0.026407 20000 -0.036824 26000 -0.051650 	12000 -0.021296	
19000 -0.026407 20000 -0.036824 26000 -0.051650 	13027 -0.082089	
20000 -0.036824 26000 -0.051650 1001 0.027122 6012 0.000502 8016 0.607735 11023 0.025866 12000 0.018081 13027 0.062783 14000 0.205927 19000 0.013938 20000 0.018960	14000 -0.280267	
26000 -0.051650 1001 0.027122 6012 0.000502 8016 0.607735 11023 0.025866 12000 0.018081 13027 0.062783 14000 0.205927 19000 0.013938 20000 0.018960	19000 -0.026407	
1001 0.027122 6012 0.000502 8016 0.607735 11023 0.025866 12000 0.018081 13027 0.062783 14000 0.205927 19000 0.013938 20000 0.018960	20000 -0.036824	
6012 0.000502 8016 0.607735 11023 0.025866 12000 0.018081 13027 0.062783 14000 0.205927 19000 0.013938 20000 0.018960	26000 -0.051650	
6012 0.000502 8016 0.607735 11023 0.025866 12000 0.018081 13027 0.062783 14000 0.205927 19000 0.013938 20000 0.018960		
8016 0.607735 11023 0.025866 12000 0.018081 13027 0.062783 14000 0.205927 19000 0.013938 20000 0.018960	1001 0.027122	
11023 0.025866 12000 0.018081 13027 0.062783 14000 0.205927 19000 0.013938 20000 0.018960	6012 0.000502	
12000 0.018081 13027 0.062783 14000 0.205927 19000 0.013938 20000 0.018960	8016 0.607735	
13027 0.062783 14000 0.205927 19000 0.013938 20000 0.018960	11023 0.025866	
14000 0.205927 19000 0.013938 20000 0.018960	12000 0.018081	
19000 0.013938 20000 0.018960	13027 0.062783	
20000 0.018960	14000 0.205927	
	19000 0.013938	
26000 0.019086	20000 0.018960	
	26000 0.019086	
\$ Photon		
1000 -0.001325		
6000 -0.000292	6000 -0.000292	

8000 -0.471188	
11000 -0.028817	
12000 -0.021296	
13000 -0.082089	
14000 -0.280267	
19000 -0.026407	
20000 -0.036824	
26000 -0.051650	
1000 0.027122	
6000 0.000502	
8000 0.607735	
11000 0.025866	
12000 0.018081	
13000 0.062783	
14000 0.205927	
19000 0.013938	
20000 0.018960	
26000 0.019086	

material h 0.001324 c 0.000292 o 0.471188 na 0.028817 mg 0.021296 - al 0.082089 si 0.280267 k 0.026407 ca 0.036824 fe 0.051650 matname granite density 2.729

Muriate of Potash

Reppond.

See <u>Fertilizer</u>.

Inconel-600

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$	
Cr	0.180027	0.197637	0.017577	
Fe	0.100015	0.102231	0.009092	
Ni	0.719894	0.700133	0.062267	
Density $(g/cm^3) = 8.43$				
Comments: Weight Fractions are not normalized. The atom and weight fractions are				
calculated from the atom density in the reference.				
Reference: "Criticality Safety Analysis Resource Book, Part II: Atom				
Densities and Dimensional Parameters," August 1977, by E. B.				

11201112 2 011112	
c Inconel-600, rho = 8.43	
\$ Neutron	
24000 -0.180027	
26000 -0.100015	
28000 -0.719894	
24000 0.197637	
26000 0.102231	
28000 0.700133	
\$ Photon	
24000 -0.180027	
26000 -0.100015	
28000 -0.719894	
24000 0.197637	
26000 0.102231	
24000 -0.180027 26000 -0.100015 28000 -0.719894 	

CEPXS Form

28000 0.700133

material cr 0.180039 fe 0.100021 ni 0.719940 matname inconel600 density 8.43

Incoloy-800

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$	
Cr	0.210033	0.225565	0.019485	
Fe	0.470055	0.470023	0.040602	
Ni	0.319960	0.304412	0.026296	
Density $(g/cm^3) = 8.01$				
Comments: Weight Fractions are not normalized. The atom and weight fractions are				
calculated from the atom density in the reference.				
Reference: "Criticality Safety Analysis Resource Book, Part II: Atom				
Densities and Dimensional Parameters," August 1977, by E. B.				
	Reppond.			

c Incoloy-800, rho = 8.01	
\$ Neutron	
24000 -0.210033	
26000 -0.470055	

28000 -0.319960	
24000 0.225565	
26000 0.470023	
28000 0.304412	
\$ Photon	
24000 -0.210033	
26000 -0.470055	
28000 -0.319960	
24000 0.225565	
26000 0.470023	
28000 0.304412	

material cr 0.210023 fe 0.470032 ni 0.319945 matname incoloy800 density 8.01

<u>Iron</u>

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Fe	1.000000	1.000000	0.084911
Density (g/cm³)= 7.874 Comments: Reference: Taken from NIST Listings, "Compositions of Materials used in STAR Databases" webpage: http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=026			

c Iron, rho = 7.874 g/cc	
\$ Neutron	
26000 -1.000000	
26000 1.000000	
\$ Photon	
26000 -1.000000	
26000 1.000000	

material fe 1.000000 matname iron density 7.874

Kynar

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$	
Н	0.031496	0.333333	0.033120	
C	0.375314	0.333333	0.033120	
F	0.593668	0.333333	0.033120	
Density (g	$(cm^3) = 1.76$			
Comments: Weight Fractions are not normalized. The atom and weight fractions are				
calculated from the atom density in the reference.				
Reference: "Criticality Safety Analysis Resource Book, Part II: Atom				
Densities and Dimensional Parameters," August 1977, by E. B.				
	Reppond.			

MCNP Form

WICHP FORM
c Kynar, $rho = 1.76 \text{ g/cc}$
\$ Neutron
1001 -0.031496
6012 -0.375314
9019 -0.593668
1001 0.333333
6012 0.333333
9019 0.333333
\$ Photon
1000 -0.031496
6000 -0.375314
9000 -0.593668
1000 0.333333
6000 0.333333
9000 0.333333

CEPXS Form

material h 0.031481 c 0.375135 f 0.593384 matname kynar density 1.76

Lead

ElementWeight FractionAtom FractionAtom Density $\left(\frac{atoms}{b*cm}\right)$ Pb1.0000001.0000000.032988

Density $(g/cm^3) = 11.35$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=082

MCNP Form

c Lead, rho = 11.35 g/cc

\$ Neutron

82000 -1.000000

93000 1 000000

82000 1.000000

\$ Photon

82000 -1.000000

82000 1.000000

CEPXS Form

material pb 1.000000

matname lead

density 11.35

Lithium

ElementWeight FractionAtom FractionAtom Density $\left(\frac{atoms}{b*cm}\right)$ Li1.0000001.0000000.046331

Density $(g/cm^3) = 0.534$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=003

c Lithium, rho = 0.534 g/cc
\$ Neutron
3007 -1.000000
3007 1.0000000
\$ Photon
3000 -1.000000
3000 1.000000

CEPXS Form

material li 1.000000 matname lithium density 0.534

Lucite

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.080538	0.533320	0.057262
C	0.599848	0.333345	0.035791
О	0.319614	0.133335	0.014316
1			

Density $(g/cm^3) = 1.19$

Comments: Acrylic glass, Acrylite, Perspex, Plexiglass, PMMA, Polymethyl

methacry late

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=223

c Lucite, rho = 1.19 g/cc
\$ Neutron
1001 -0.080538
6012 -0.599848
8016 -0.319614
1001 0.533320
6012 0.333345
8016 0.133335
\$ Photon
1000 -0.080538
6000 -0.599848

8000 -0.319614	
1000 0.533320	
6000 0.333345	
8000 0.133335	

material h 0.080538 c 0.599848 o 0.319614 matname lucite density 1.19

Magnesium

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$		
Mg	1.000000	1.000000	0.043113		
Density $(g/cm^3)=1.74$ Comments:					
Reference: Taken from NIST Listings, "Compositions of Materials used in STAR					
Databases" webpage:					
http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=012					

MCNP Form

c Magnes	sium, $rho = 1.74 \text{ g/cc}$
\$ Neutro	n
12000	-1.000000
12000	1.000000
\$ Photon	1
12000	-1.000000
12000	1.000000

CEPXS Form

material mg 1.000000 matname magnesium density 1.74

Masonite

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.062198	0.476242	0.048310
C	0.444603	0.285686	0.028980
O	0.493545	0.238072	0.024150

Density $(g/cm^3) = 1.30$

Comments: Weight Fractions are not normalized. The atom and weight fractions are calculated from the atom density in the reference.

Reference: "Criticality Safety Analysis Resource Book, Part II: Atom

Densities and Dimensional Parameters," August 1977, by E. B.

Reppond.

MCNP Form

c Masonite, rho = 1.30	
\$ Neutron	
'	
1001 -0.062198	
6012 -0.444603	
8016 -0.493545	
1001 0.476242	
6012 0.285686	
8016 0.238072	
\$ Photon	
1000 -0.062198	
6000 -0.444603	
8000 -0.493545	
1000 0.476242	
6000 0.285686	
8000 0.238072	
0000 0.230072	

CEPXS Form

material h 0.062177 c 0.444449 o 0.493374 matname masonite density 1.30

Molybdenum

Element Weight Fraction Atom Fraction Atom Density $\left(\frac{atoms}{b*cm}\right)$

Mo 1.000000 1.000000 0.064151

Density $(g/cm^3) = 10.22$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=042

MCNP Form

c Molybdenum, rho = 10.22 g/cc

\$ Neutron

42000 -1.000000

42000 1.000000

\$ Photon

42000 -1.000000

42000 1.000000

CEPXS Form

material mo 1.000000 matname molybdenum density 10.22

Mylar

See Polyethylene Terephthalate.

Nickel

ElementWeight FractionAtom FractionAtom Density $\left(\frac{atoms}{b*cm}\right)$ Ni1.0000001.0000000.091338

Density $(g/cm^3) = 8.902$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=028

MCNP Form

c Nickel, rho = 8.902 g/cc

\$ Neutron

28000 -1.000000

28000 1.000000

\$ Photon

28000 -1.000000

28000 1.000000

CEPXS Form

material ni 1.000000 matname nickel density 8.902

Nylon

1: Nylon, Type 6 and Type 6/6

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.097976	0.578932	0.066733
C	0.636856	0.315803	0.036402
N	0.123779	0.052632	0.006067
О	0.141389	0.052633	0.006067
Comments:			
		istings, "Composit	ions of Materials used in STAR
Databases"	webpage:		

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=209

MCNP Form

MCM Form	
c Nylon Type 6 and Type 6/6, rho = 1.14 g/cc	
\$ Neutron	
1001 -0.097976	
6012 -0.636856	
7014 -0.123779	
8016 -0.141389	
1001 0.578932	
6012 0.315803	
7014 0.052632	
8016 0.052633	
\$ Photon	
1000 -0.097976	
6000 -0.636856	
7000 -0.123779	
8000 -0.141389	
1000 0.578932	
6000 0.315803	
7000 0.052632	
8000 0.052633	

CEPXS Form

material h 0.097976 c 0.636856 n 0.123779 o 0.141389 matname nylon_type6 density 1.14

2: Nylon, Dupont Elvamide 8062

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.103509	0.593363	0.066791
C	0.648415	0.311933	0.035112
N	0.099536	0.041060	0.004622
О	0.148539	0.053643	0.006038

Density $(g/cm^3) = 1.08$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=208

MCNP Form

c Nylon, Dupont Elvamide 8062, rho = 1.08 g/cc	
\$ Neutron	
1001 -0.103509	
6012 -0.648415	
7014 -0.099536	
8016 -0.148539	
1001 0.593363	
6012 0.311933	
7014 0.041060	
8016 0.053643	
\$ Photon	
1000 -0.103509	
6000 -0.648415	
7000 -0.099536	
8000 -0.148539	
1000 0.593363	
6000 0.311933	
7000 0.041060	
8000 0.053643	

CEPXS Form

material h 0.103509 c 0.648416 n 0.099536 o 0.148539 matname nylon_type8062 density 1.08

3: Nylon, Type 6/10

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.107062	0.599986	0.072922
C	0.680449	0.320013	0.038894
N	0.099189	0.040001	0.004862
О	0.113300	0.040001	0.004862

Density $(g/cm^3) = 1.14$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=210

MCNP Form

WENT FORM
c Nylon, Type 6/10, rho = 1.14 g/cc
\$ Neutron
1001 -0.107062
6012 -0.680449
7014 -0.099189
8016 -0.113300
1001 0.599986
6012 0.320013
7014 0.040001
8016 0.040001
\$ Photon
1000 -0.107062
6000 -0.680449
7000 -0.099189
8000 -0.113300
1000 0.599986
6000 0.320013
7000 0.040001
8000 0.040001

CEPXS Form

material h 0.107062 c 0.680449 n 0.099189 o 0.113300 matname nylon_type6/10 density 1.14

4: Nylon, Type 11 (Rilsan)

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.115476	0.617633	0.098316
C	0.720819	0.323542	0.051502
N	0.076417	0.029412	0.004682
О	0.087289	0.029412	0.004682

Density $(g/cm^3) = 1.425$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=211

MCNP Form

WENT FORM
c Nylon, Type 11 (Rilsan), rho = 1.425 g/cc
\$ Neutron
1001 -0.115476
6012 -0.720819
7014 -0.076417
8016 -0.087289
1001 0.617633
6012 0.323542
7014 0.029412
8016 0.029412
\$ Photon
1000 -0.115476
6000 -0.720819
7000 -0.076417
8000 -0.087289
1000 0.617633
6000 0.323542
7000 0.029412
8000 0.029412

CEPXS Form

material h 0.115476 c 0.720818 n 0.076417 o 0.087289 matname nylon_type11 density 1.425

<u>Oil</u>

1: Crude Oil

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.120000	0.620069	0.069761
C	0.850000	0.368589	0.041468
N	0.010500	0.003904	0.000439
O	0.007750	0.002523	0.000284
S	0.030250	0.004913	0.000553

Density $(g/cm^3) = 0.973$

Comments: Average density of Mexican crude oil is 0.973 g/cc according to

http://www.simetric.co.uk/si_liquids.htm . It varies depending

upon the region.

Reference: Handbook of Petroleum Analysis, Nov 5, 2004, published by John Wiley

& Sons. Electronic ISBN: 1-59124-737-3 on Knovel Database

c Oil, Crude, rho = 0.973 g/cc Neutron
\$ Neutron
1001 -0.120000
6012 -0.850000
7014 -0.010500
8016 -0.007750
16000 -0.030250
1001 0.620069
6012 0.368589
7014 0.003904
8016 0.002523
16000 0.004913
\$ Photon
1000 -0.120000
6000 -0.850000
7000 -0.010500
8000 -0.007750
16000 -0.030250
1000 0.620069
6000 0.368589
7000 0.003904
8000 0.002523
16000 0.004913

material h 0.117820 c 0.834561 n 0.010309 o 0.007609 s 0.029701 matname oil_crude density 0.973

2: Hydraulic Oil

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.040509	0.392848	0.030980
C	0.585083	0.476160	0.037550
O	0.078042	0.047679	0.003760
P	0.037771	0.011920	0.000940
Cl	0.258941	0.071392	0.005630

Density $(g/cm^3) = 1.28$

Comments: Weight Fractions are not normalized. The atom and weight fractions are calculated from the atom density in the reference.

Reference: "Criticality Safety Analysis Resource Book, Part II: Atom

Densities and Dimensional Parameters," August 1977, by E. B.

Reppond.

c Oil, Hydraulic, rho = 1.28 g/cc
\$ Neutron
1001 -0.040509
6012 -0.585083
8016 -0.078042
15031 -0.037771
17000 -0.258941
1001 0.392848
6012 0.476160
8016 0.047679
15031 0.011920
17000 0.071392
\$ Photon
1000 -0.040509
6000 -0.585083
8000 -0.078042
15000 -0.037771
17000 -0.258941
1000 0.392848

6000 0.476160		
8000 0.047679		
15000 0.011920		
17000 0.071392		

material h 0.040495 c 0.584881 o 0.078015 p 0.037758 cl 0.258851 matname oil_hydraulic density 1.28

3: Lard Oil

Element	Weight Fraction	Atom Fraction	Atom Density (atoms)
	,, organization	110011111111111111111111111111111111111	$\frac{1}{b*cm}$
Н	0.117673	0.620706	0.064330
C	0.779024	0.344848	0.035740
О	0.103657	0.034446	0.003570
Density (g	$(cm^3) = 0.915$		
Comments:	Weight Fractions a	re not normalized.	The atom and weight fractions are
	calculated from the a	ntom density in the	reference.
Reference:	"Criticality Safety A	nalysis Resource l	Book, Part II: Atom
Densities and Dimensional Parameters," August 1977, by E. B.			
	Reppond.		

WICHI FOILI
c Oil, Lard, rho = 0.915 g/cc
\$ Neutron
1001 -0.117673
6012 -0.779024
8016 -0.103657
1001 0.620706
6012 0.344848
8016 0.034446
\$ Photon
1000 -0.117673
6000 -0.779024
8000 -0.103657
1000 0.620706
6000 0.344848
8000 0.034446

material h 0.117632 c 0.778748 o 0.103620 matname oil_lard density 0.915

Paraffin Wax

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.148605	0.675311	0.082572
C	0.851395	0.324689	0.039701

Density $(g/cm^3) = 0.930$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=213

MCNP Form

c Paraffin Wax, rho = 0.930 g/cc
\$ Neutron
1001 -0.148605
6012 -0.851395
1001 0 675211
1001 0.675311
6012 0.324689
\$ Photon
1000 -0.148605
6000 -0.851395
1000 0.675311
6000 0.324689

CEPXS Form

material h 0.148605 c 0.851395 matname paraffin density 0.930

Perspex

See <u>Lucite</u>.

Photographic Emulsion

1: Kodak Type AA

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.030500	0.440293	0.040090
C	0.210700	0.255254	0.023242
N	0.072100	0.074899	0.006820
О	0.163200	0.148420	0.013514
Br	0.222800	0.040572	0.003694
Ag	0.300700	0.040562	0.003693
D :. ($(cm^3) = 2.20$		

Density $(g/cm^3) = 2.20$

Comments:

Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html

MCNP Form	
c Photographic Emulsion (Kodak Type AA), rho = 2.200	
\$ Neutron	
1001 -0.030500	
6012 -0.210700	
7014 -0.072100	
8016 -0.163200	
35079 -0.222800	
47000 -0.300700	
1001 0.440293	
6012 0.255254	
7014 0.074899	
8016 0.148420	
35079 0.040572	
47000 0.040562	
\$ Photon	
1000 -0.030500	
6000 -0.210700	
7000 -0.072100	
8000 -0.163200	
35000 -0.222800	
47000 -0.300700	

1000 0.440293 6000 0.255254 7000 0.074899 8000 0.148420 35000 0.040572 47000 0.040562

CEPXS Form

material h 0.030500 c 0.210700 n 0.072100 o 0.163200 br 0.222800 - ag 0.300700 matname photoemulsion_kodak-aa density 2.200

2: Standard Nuclear

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.014100	0.407082	0.032139
C	0.072261	0.175079	0.013822
N	0.019320	0.040139	0.003169
О	0.066101	0.120227	0.009492
S	0.001890	0.001715	0.000135
Br	0.349104	0.127140	0.010038
Ag	0.474105	0.127902	0.010098
I	0.003120	0.000715	0.000056

Density $(g/cm^3) = 3.815$

Comments:

Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html

c Photographic Emulsion (Standard Nuclear), rho = 3.815
\$ Neutron
1001 -0.014100
6012 -0.072261
7014 -0.019320
8016 -0.066101
16000 -0.001890
35079 -0.349104
47000 -0.474105
53127 -0.003120
1001 0.407082
6012 0.175079
7014 0.040139

8016 0.120227	
16000 0.001715	
35079 0.127140	
47000 0.127902	
53127 0.000715	
\$ Photon	
1000 -0.014100	
6000 -0.072261	
7000 -0.019320	
8000 -0.066101	
16000 -0.001890	
35000 -0.349104	
47000 -0.474105	
53000 -0.003120	
1000 0.407082	
6000 0.175079	
7000 0.040139	
8000 0.120227	
16000 0.001715	
35000 0.127140	
47000 0.127902	
53000 0.000715	

material h 0.014100 c 0.072260 n 0.019320 o 0.066101 s 0.001890 br 0.349104 ag 0.474105 i 0.003120 matname photoemulsion_stdnuclear density 3.815

Plastic Scintillator (PVT)

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$		
Н	0.085000	0.525382	0.052410		
C	0.915000	0.474618	0.047346		
Density $(g/cm^3) = 1.032$					
Comments: Polyvinyl toluene					
Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html					

MCNP Form

c Plastic Scintillator, Vinyltoluene, rho = 1.032 **Neutron**1001 -0.085000

6012 -0.915000	
1001 0.525382	
6012 0.474618	
\$ Photon	
1000 -0.085000	
6000 -0.915000	
1000 0.525382	
6000 0.474618	

material h 0.085000 c 0.915000 matname plastic_scintillator density 1.032

Plexiglass

See <u>Lucite</u>.

Plutonium

1: DOE 3013 WGPu

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Pu-238	0.000500	0.000502	0.000025
Pu-239	0.935000	0.935270	0.046732
Pu-240	0.060000	0.059767	0.002986
Pu-241	0.004000	0.003968	0.000198
Pu-242	0.000500	0.000494	0.000025

Density $(g/cm^3) = 19.84$

Comments: DOE 3013 WGPu.

Reference: DOE Standard Stabilization, Packaging, and Storage of

Plutonium-Bearing Materials, DOE-STD-3013-2000, Table B-6,

U.S. Department of Energy, September 2000.

MCNP Form

c WGPu, DOE 3013, rho = 19.84

\$ Neutron

94238 -0.000500 94239 -0.935000

94240 -0.060000

94000	1.000000	
\$ Photon 94000	-1.000000	
94242	0.000494	
94241	0.003968	
94240	0.059767	
94239	0.935270	
94238	0.000502	
94242	-0.000500	
	-0.004000	

material pu 1.000000 matname plutonium_3013_wg density 19.84

2: Shefelbine WGPu

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Pu-238	0.000300	0.000301	0.000015
Pu-239	0.939000	0.939439	0.046932
Pu-240	0.057000	0.056789	0.002837
Pu-241	0.003000	0.002976	0.000149
Pu-242	0.000300	0.000296	0.000015
Am-241	0.000200	0.000198	0.000010

Density $(g/cm^3) = 19.84$

Comments: Shefelbine WGPu. Weight Fractions are not normalized. The atom fraction and atom density are calculated from the weight fraction in the reference

Reference: Preliminary Evaluation of the Characteristics of Defense Transuranic Wastes, SAND78-1850, Table 4, Sandia National Laboratory, November 1978.

MCNP Form (Note: Am-241 cross-sections may not exist)

c WGPu, Shefelbine, rho = 19.84 \$ Neutron 94238 -0.000300 94239 -0.939000 94240 -0.057000 94241 -0.003000 94242 -0.000300

95241	-0.000200
94238	0.000301
94239	0.939439
94240	0.056789
94241	0.002976
94242	0.000296
95241	0.000198
\$ Photon	
94000	-0.9996
95000	-0.0002
94000	0.999801
95000	0.000198

material pu 0.9998 am 0.0002 matname plutonium_shefel_wg density 19.84

3: Aged WGPu (4-7% Pu-240)

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Pu-238	0.000100	0.000100	0.000005
Pu-239	0.937700	0.936559	0.046867
Pu-240	0.060000	0.059677	0.002986
Pu-241	0.002000	0.001981	0.000099
Pu-242	0.000300	0.000296	0.000015
Am-241	0.001400	0.001387	0.000069

Density $(g/cm^3) = 19.84$

Comments: Aged WGPu (4-7% Pu-240). Weight Fractions are not normalized. The

atom fraction and atom density are calculated from the weight fraction in

the reference.

Reference: DOE Standard Stabilization, Packaging, and Storage of

Plutonium-Bearing Materials, DOE-STD-3013-2000, Table B-6,

U.S. Department of Energy, September 2000.

MCNP Form (Note: Am-241 cross-sections may not exist)

c WGPu, Aged (4-7% Pu-240), rho = 19.84

\$ Neutron

94238 -0.000100

94239 -0.937700

94240 -0.060000

94241	-0.002000
94242	-0.000300
95241	-0.001400
94238	0.000100
94239	0.936559
94240	0.059677
94241	0.001981
94242	0.000296
95241	0.001387
\$ Photon	
94000	-1.000100
95000	-0.001400
	0.000.440
	0.998613
95000	0.001387

material pu 0.998602 am 0.001398 matname plutonium_aged4wg density 19.84

4: Aged WGPu (10-13% Pu-240)

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Pu-238	0.000900	0.000897	0.000045
Pu-239	0.869400	0.862470	0.043453
Pu-240	0.118100	0.116670	0.005878
Pu-241	0.010000	0.009838	0.000496
Pu-242	0.001700	0.001666	0.000084
Am-241	0.008600	0.008460	0.000426

Density $(g/cm^3) = 19.84$

Comments: Aged WGPu (10-13% Pu-240). Weight Fractions are not normalized.

The atom fraction and atom density are calculated from the weight

fraction in the reference.

Reference: DOE Standard Stabilization, Packaging, and Storage of

Plutonium-Bearing Materials, DOE-STD-3013-2000, Table B-6,

U.S. Department of Energy, September 2000.

MCNP Form (Note: Am-241 cross-sections may not exist)

- c WGPu, Aged (10-13% Pu-240), rho = 19.84
- **\$ Neutron**

94238 -0.000900

94239	-0.869400
94240	-0.118100
94241	-0.010000
94242	-0.001700
95241	-0.008600
	0.000897
94239	0.862470
94240	0.116670
94241	0.009838
94242	0.001666
95241	0.008460
\$ Photon	
94000	-1.000100
95000	-0.008600
94000	0.991541
95000	0.008460

material pu 0.991474 am 0.008526 matname plutonium_aged10wg density 19.84

5: Aged WGPu (16-19% Pu-240)

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Pu238	0.002400	0.002347	0.000120
Pu239	0.806600	0.785422	0.040314
Pu240	0.169800	0.164652	0.008451
Pu241	0.014400	0.013905	0.000714
Pu242	0.006900	0.006635	0.000341
Am241	0.028000	0.027038	0.001388

Density $(g/cm^3) = 19.84$

Comments: Aged WGPu (16-19% Pu-240). Weight Fractions are not normalized.

The atom fraction and atom density are calculated from the weight

fraction in the reference.

Reference: DOE Standard Stabilization, Packaging, and Storage of

Plutonium-Bearing Materials, DOE-STD-3013-2000, Table B-6,

U.S. Department of Energy, September 2000.

c WGPu, Aged (16-19% Pu-240), rho = 19.84	
\$ Neutron	
94238 -0.002400	
94239 -0.806600	
94240 -0.169800	
94241 -0.014400	
94242 -0.006900	
95241 -0.028000	
94238 0.002347	
94239 0.785422	
94240 0.164652	
94241 0.013905	
94242 0.006635	
95241 0.027038	
\$ Photon	
94000 -1.000100	
95000 -0.028000	
94000 0.972961	
95000 0.027038	

CEPXS Form

material pu 0.972765 am 0.027235 matname plutonium_aged16wg density 19.84

6: Fuel Grade Plutonium

			(,,,,,,,)
<u>Element</u>	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{atom}\right)$
			b*cm
Pu-238	0.001000	0.001005	0.000050
Pu-239	0.861000	0.861559	0.043033
Pu-240	0.120000	0.119577	0.005973
Pu-241	0.016000	0.015880	0.000793
Pu-242	0.002000	0.001976	0.000099
Density $(g/cm^3) = 19.84$			
Comments: Fuel grade plutonium.			
Reference: DOE Standard Stabilization, Packaging, and Storage of			
Plutonium-Bearing Materials, DOE-STD-3013-2000, Table B-6,			
U.S. Department of Energy, September 2000.			

Ment form			
c Plutonium, Fuel Grade, rho = 19.84			
\$ Neutron			
94238 -0.001000			
94239 -0.861000			
94240 -0.120000			
94241 -0.016000			
94242 -0.002000			
94238 0.001005			
94239 0.861559			
94240 0.119577			
94241 0.015880			
94242 0.001976			
\$ Photon			
94000 -1.000000			
94000 1.000000			

CEPXS Form

material pu 1.000000 matname plutonium_fuel density 19.84

7: Power Grade Plutonium

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$	
Pu-238	0.010000	0.009965	0.000502	
Pu-239	0.630000	0.625153	0.031488	
Pu-240	0.220000	0.217396	0.010950	
Pu-241 0.120000 0.118086 0.005949				
Pu-242 0.030000 0.029399 0.001481				
Density $(g/cm^3) = 19.84$				
Comments: Power grade plutonium. Weight Fractions are not normalized. The atom				
fraction and atom density are calculated from the weight fraction in the				
reference.				
Reference: DOE Standard Stabilization, Packaging, and Storage of				
Plutonium-Bearing Materials, DOE-STD-3013-2000, Table B-6,				
U.S. Department of Energy, September 2000.				

c Plutonium, Power Grade, rho = 19.84
\$ Neutron
94238 -0.010000
94239 -0.630000
94240 -0.220000
94241 -0.120000
94242 -0.030000
94238 0.009965
94239 0.625153
94240 0.217396
94241 0.118086
94242 0.029399
\$ Photon
94000 -1.010000
94000 1.000000
7.000 1.00000

CEPXS Form

material pu 1.010000 matname plutonium_power density 19.84

PMMA

See <u>Lucite</u>.

Polyethylene

1: Normal Polyethylene

Element	Weight Fraction	Atom Fraction	$\frac{\text{Atom Density}}{b*cm} \left(\frac{atoms}{b*cm} \right)$
Н	0.143716	0.666662	0.079855
C	0.856284	0.333338	0.039929
Density $(g/cm^3) = 0.9300$			
Comments:			
Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html			

- c Polyethylene, rho = 0.9300
- **\$ Neutron**

1001 -0.143716 6012 -0.856284	
1001 0.666662 6012 0.333338	
\$ Photon 1000 -0.143716 6000 -0.856284	
1000 0.666662 6000 0.333338	

material h 0.143716 c 0.856384 matname polyethylene_normal density 0.9300

2: Polyethylene Terephthalate

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.041960	0.363632	0.034596
С	0.625016	0.454552	0.043247
О	0.333024	0.181816	0.017298
Density (g)	$(cm^3) = 1.380$		
Comments:			
Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html			

c Polyethylene Terephthalate (Mylar), rho = 1.380	
\$ Neutron	
1001 -0.041960	
6012 -0.625016	
8016 -0.333024	
1001 0.363632	
6012 0.454552	
8016 0.181816	
\$ Photon	
1000 -0.041960	
6000 -0.625016	
8000 -0.333024	

1000 0.363632
1000 0.505052
6000 0.454552
8000 0.434332

material h 0.041960 c 0.625016 o 0.333024 matname polyethylene_mylar density 1.380

Polyiso(cyanurate)

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.040305	0.345000	0.000773
С	0.719721	0.517000	0.001158
N	0.112019	0.069000	0.000155
O	0.127955	0.069000	0.000155

Density $(g/cm^3) = 0.0321$

Comments: MDI

Reference: http://en.wikipedia.org/wiki/Polyisocyanurate, M.A.L. Kelly, S.M. Otterside, D. Pemberton, Physical Properties of MDI and TDI: A Review,

International Isocyanate Institute, Inc., III Report Reference Number 11272, June

1997.

MCM Form
c Polyiso(cyanurate), rho = 0.0321
\$ Neutron
1001 -0.040305
6012 -0.719721
7014 -0.112019
8016 -0.127955
1001 0.345000
6012 0.517000
7014 0.069000
8016 0.069000
\$ Photon
1000 -0.040305
6000 -0.719721
7000 -0.112019
8000 -0.127955
1000 0.345000

6000 0.517000	
7000 0.069000	
8000 0.069000	

material h 0.040305 c 0.719721 n 0.112019 o 0.127955 matname polyisocyanurate density 0.0321

Polymethyl Methacrylate

See Lucite.

Polystyrene

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.077421	0.499994	0.049032
C	0.922579	0.500006	0.049033
Density (g)	$(cm^3) = 1.06$		

Comments: This is the solid form. The foamed form is Styrofoam with density of

about 0.1 g/cm³. Density may vary by application.

Reference: http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html

MCNP Form

WENT TOIM
c Polystyrene, rho = 1.060
\$ Neutron
1001 -0.077421
6012 -0.922579
1001 0.499994
6012 0.500006
\$ Photon
1000 -0.077421
6000 -0.922579
1000 0.499994
6000 0.500006

CEPXS Form

material h 0.077421 c 0.922579
matname polystyrene
density 1.06

Polytetrafluoroethylene

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
C	0.240183	0.333339	0.027096
F	0.759818	0.666661	0.054191
•	(cm^3) = 2.25		

 $Reference: \underline{http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html}$

MCNP Form

c Polytetrafluoroethylene (Teflon), rho = 2.25
\$ Neutron
6012 -0.240183
9019 -0.759818
6012 0.333339
9019 0.666661
\$ Photon
6000 -0.240183
9000 -0.759818
COND. 0.222220
6000 0.333339
9000 0.666661

CEPXS Form

material c 0.240183 f 0.759817 matname polytetra_teflon density 2.25

Polyurethane (Foam)

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Н	0.041000	0.360023	0.000514
C	0.544000	0.400878	0.000573
N	0.121000	0.076459	0.000109
О	0.294000	0.162639	0.000232

Density $(g/cm^3) = 0.021$

Comments: Density may vary by application.

Reference: "Criticality Calculations with MCNP5: A Primer 2nd Edition, Appendix

C," ed. Tim Goorley, Los Alamos Report LA-UR-04-0294,

WCNI FOILI
c Polyurethane (Foam), rho = 0.021
\$ Neutron
1001 -0.041000
6012 -0.544000
7014 -0.121000
8016 -0.294000
1001 0.360023
6012 0.400878
7014 0.076459
8016 0.162639
\$ Photon
1000 -0.041000
6000 -0.544000
7000 -0.121000
8000 -0.294000
1000 0.360023
6000 0.400878
7000 0.076459
8000 0.162639

CEPXS Form

material h 0.041000 c 0.544000 n 0.121000 o 0.294000 matname polyurethane density 0.021

Polyvinyl Chloride

).048382).384361	0.499995	0.040643
38/361	0.000010	
7.30 1 301	0.333340	0.027096
).567257	0.166665	0.013548
= 1.406		
	/D1 D (D : /X/	N. C. C. 101. 1
	= 1.406	

c Polyvinyl Chloride, rho = 1.406
\$ Neutron
1001 -0.048382
6012 -0.384361
17000 -0.567257
1001 0.499995
6012 0.333340
17000 0.166665
\$ Photon
1000 -0.048382
6000 -0.384361
17000 -0.567257
1000 0.499995
6000 0.333340

CEPXS Form

material h 0.048382 c 0.384361 cl 0.567257 matname polychloride density 1.406

Polyvinyl Toluene

17000 0.166665

See Plastic Scintillator.

Propane

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$		
Н	0.182855	0.727260	0.00020532		
С	0.817145	0.272740	0.00007700		
Danita (/ 3) 0.00197020					
Density $(g/cm^3) = 0.00187939$					
Comments:					
Reference: Taken from NIST Listings, "Compositions of Materials used in STAR					
Databases" webpage:					
http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=238					

c Propane, rho = 0.00187939 g/cc
\$ Neutron
1001 -0.182855
6012 -0.817145
1001 0.727260
6012 0.272740
© Dl. 4
\$ Photon
1000 -0.182855
6000 -0.817145
1000 0.727260
6000 0.272740

CEPXS Form

material h 0.182855 c 0.817145 matname propane density 0.00187939

PTFE

See Polytetrafluoroethylene.

PVC

See Polyvinyl Chloride.

Radiochromic Dye Film

<u>Element</u>	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
H	0.101996	0.589073	0.065815
C	0.654396	0.317171	0.035436
N	0.098915	0.041110	0.004593
O	0.144693	0.052646	0.005882
Density (g	$(cm^3) = 1.08$		
Comments:	Nylon Base		
	•	ov/PhysRefData/Xt	avMassCoef/tab2 html

c Radiochromic Dye Film, Nylon Base, rho = 1.08
\$ Neutron
1001 -0.101996
6012 -0.654396
7014 -0.098915
8016 -0.144693
1001 0.589073
6012 0.317171
7014 0.041110
8016 0.052646
\$ Photon
1000 -0.101996
6000 -0.654396
7000 -0.098915
8000 -0.144693
1000 0.589073
6000 0.317171
7000 0.041110
8000 0.052646

CEPXS Form

material h 0.101996 c 0.654396 n 0.098915 o 0.144693 matname radiochromic_dye_film density 1.08

Rock Salt

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Na	0.432538	0.500000	0.024700
Cl	0.667026	0.500000	0.024700
Comments:	calculated from the a "Criticality Safety A	ntom density in the nalysis Resource l	

c Rock Salt, rho = 2.18 g/cc
\$ Neutron
11023 -0.432538
17000 -0.667026
11023 0.500000
17000 0.500000
\$ Photon
11000 -0.432538
17000 -0.667026
11000 0.500000
17000 0.500000

CEPXS Form

material na 0.393372 cl 0.606628 matname rock_salt density 2.18

Rubber

1: Neoprene

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.056920	0.499985	0.041830
C	0.542646	0.400014	0.033466
Cl	0.400434	0.100001	0.008366
Density (a	$(cm^3) - 1.23$		

Density $(g/cm^3) = 1.23$

Comments: Polychloroprene rubber

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=244

c Neoprene (Rubber), rho = 1.23 g/cc
\$ Neutron
1001 -0.056920
6012 -0.542646
17000 -0.400434
1001 0.499985
6012 0.400014

17000 0.100001	
\$ Photon	•
1000 -0.056920	
6000 -0.542646	
17000 -0.400434	
1000 0.499985	
6000 0.400014	
17000 0.100001	

material h 0.056920 c 0.542646 cl 0.400434 matname rubber_neoprene density 1.23

2: Butyl Rubber

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$			
Н	0.143711	0.666653	0.078994			
С	0.856289	0.333347	0.039499			
Comments: Reference: 'Databases'	Density (g/cm³)= 0.920 Comments: Polyisobutylene Reference: Taken from NIST Listings, "Compositions of Materials used in STAR Databases" webpage: http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=242					

WENT TOLK
c Butyl Rubber, rho = 0.920 g/cc
\$ Neutron
1001 -0.143711
6012 -0.856289
1001 0.666653
6012 0.333347
 _
\$ Photon
1000 -0.143711
6000 -0.856289
1000 0.666653
6000 0.333347

material h 0.143711 c 0.856289 matname rubber_butyl density 0.920

3: Natural Rubber

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$	
Н	0.118371	0.615370	0.065065	
C	0.881629	0.384630	0.040668	

Density $(g/cm^3) = 0.920$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=243

MCNP Form

CEPXS Form

material h 0.118371 c 0.881629 matname rubber_natural density 0.920

4: Silicone Rubber

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
Н	0.080700	0.597039	0.049108

0.321100	0.199360	0.016398				
0.223500	0.104169	0.008568				
0.374500	0.099434	0.008179				
Density $(g/cm^3) = 1.0185$						
Comments: G.E. RTB12A						
Reference: "Criticality Calculations with MCNP: A Primer," LA-12827-M,						
	0.223500 0.374500 em^3)= 1.0185 G.E. RTB12A	0.223500 0.104169 0.374500 0.099434 em^3)= 1.0185 G.E. RTB12A	0.223500 0.104169 0.008568 0.374500 0.099434 0.008179 $em^3)= 1.0185$ G.E. RTB12A			

August 1994, by C.D. Armon, II et al.

MCNP Form

c Silicon Rubber (G.E. RTB12A), rho = 1.0185 g/cc
\$ Neutron
1001 -0.0807
6012 -0.3211
8016 -0.2235
14000 -0.3745
1001 0.597039
6012 0.199360
8016 0.104169
14000 0.099434
\$ Photon
1000 -0.0807
6000 -0.3211
8000 -0.2235
14000 -0.3745
1000 0.597039
6000 0.199360
8000 0.104169
14000 0.099434

CEPXS Form

material h 0.080716 c 0.321164 o 0.223545 si 0.374575 matname rubber_silicon density 1.0185

5: Polychloroprene

See Neoprene.

<u>6: Polyisobutylene</u>

See Butyl Rubber.

Standard Fricke

See Ferrous Sulfate.

Steel

1: Carbon

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$		
C	0.005000	0.022831	0.001960		
Fe	0.995000	0.977170	0.083907		
Density $(g/cm^3)=7.82$ Comments:					
Reference: "Criticality Calculations with MCNP: A Primer," LA-12827-M,					
August 1994, by C.D. Armon, II et al.					

MCNP Form

c Steel, Carbon,	rho = 7.82 g/cc	
\$ Neutron		
6012 -0.005		
26000 -0.995		
6012 0.022831		
26000 0.977170		
\$ Photon		
6000 -0.005		
26000 -0.995		
6000 0.022831		
26000 0.977170		

CEPXS Form

material c 0.005000 fe 0.995000 matname steel_carbon density 7.82

2: Stainless 304

<u>Element</u>	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Cr	0.190000	0.202087	0.017428
Mn	0.020000	0.020133	0.001736

Fe	0.695000	0.688268	0.059358
Ni	0.095000	0.089514	0.007720

Density $(g/cm^3) = 7.92$

Comments:

Reference: "Criticality Calculations with MCNP: A Primer," LA-12827-M,

August 1994, by C.D. Armon, II et al.

MCNP Form

c Steel, Stainless 304, rho = 7.92 g/cc

\$ Neutron

24000 -0.190 \$ Cr

25055 -0.020 \$ Mn

26000 -0.695 \$ Fe

28000 -0.095 \$ Ni

24000 0.202087 \$ Cr

25055 0.020133 \$ Mn

26000 0.688268 \$ Fe

28000 0.089514 \$ Ni

\$ Photon

24000 -0.190 \$ Cr

25000 -0.020 \$ Mn

26000 -0.695 \$ Fe

28000 -0.095 \$ Ni

24000 0.202087 \$ Cr

25000 0.020133 \$ Mn

26000 0.688268 \$ Fe

28000 0.089514 \$ Ni

CEPXS Form

material cr 0.190000 mn 0.020000 fe 0.695000 ni 0.095000

matname steel ss304

density 7.92

3: Stainless 316

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
Si	0.010000	0.019755	0.001698
Cr	0.170000	0.181400	0.015594
Mn	0.020000	0.020198	0.001736
Fe	0.655000	0.650753	0.055941
Ni	0.120000	0.113436	0.009751

Mo 0.025000 0.014458 0.001243Density (g/cm^3)= 7.92Comments:
Reference: "Criticality Calculations with MCNP: A Primer," LA-12827-M,

August 1994, by C.D. Armon, II et al.

MCNP Form

```
c Steel, Stainless 316, rho = 7.92 g/cc
$ Neutron
   14000 -0.010 $ Si
   24000 -0.170 $ Cr
   25055 -0.020 $ Mn
   26000 -0.655 $ Fe
   28000 -0.120 $ Ni
   42000 -0.025 $ Mo
   14000 0.019755 $ Si
   24000 0.181400 $ Cr
   25055 0.020198 $ Mn
   26000 0.650753 $ Fe
   28000 0.113436 $ Ni
   42000 0.014458 $ Mo
$ Photon
   14000 -0.010 $ Si
   24000 -0.170 $ Cr
  25000 -0.020 $ Mn
   26000 -0.655 $ Fe
   28000 -0.120 $ Ni
   42000 -0.025 $ Mo
   14000 0.019755 $ Si
   24000 0.181400 $ Cr
   25000 0.020198 $ Mn
   26000 0.650753 $ Fe
   28000 0.113436 $ Ni
   42000 0.014458 $ Mo
```

CEPXS Form

material si 0.010000 cr 0.170000 mn 0.020000 fe 0.655000 ni 0.120000 mo 0.025000
matname steel_ss316
density 7.92

4: Stainless 347

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{t * con}\right)$		
Si	0.010000	0.019524	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		
Cr	0.180000	0.189823	0.016511		
Mn	0.020000	0.019962	0.001736		
Fe	0.685000	0.672594	0.058504		
Ni	0.105000	0.098095	0.008532		
Density (g	Density $(g/cm^3) = 7.92$				
Comments:					
Reference:	"Criticality Calculat	ions with MCNP:	A Primer," LA-12827-M,		
	August 1994, by C.D. Armon, II et al.				

c Steel, Stainless 347, rho = 7.92 g/cc \$ Neutron 14000 -0.010 \$ Si 24000 -0.180 \$ Cr 25055 -0.020 \$ Mn 26000 -0.685 \$ Fe
14000 -0.010 \$ Si 24000 -0.180 \$ Cr 25055 -0.020 \$ Mn
24000 -0.180 \$ Cr 25055 -0.020 \$ Mn
25055 -0.020 \$ Mn
·
26000 0 695 \$ E ₂
20000 -0.083 \$ Fe
28000 -0.105 \$ Ni
14000 0.019524 \$ Si
24000 0.189823 \$ Cr
25055 0.019962 \$ Mn
26000 0.672594 \$ Fe
28000 0.098095 \$ Ni
\$ Photon
14000 -0.010 \$ Si
24000 -0.180 \$ Cr
25000 -0.020 \$ Mn
26000 -0.685 \$ Fe
28000 -0.105 \$ Ni
14000 0.019524 \$ Si
24000 0.189823 \$ Cr
25000 0.019962 \$ Mn
26000 0.672594 \$ Fe
28000 0.098095 \$ Ni

CEPXS Form

material si 0.010000 cr 0.180000 mn 0.020000 fe 0.685000 ni 0.105000 matname steel_ss347 density 7.92

5: HT9 Stainless

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$
C	0.002000	0.009183	0.000790
Si	0.004000	0.007854	0.000675
P	0.000300	0.000534	0.000046
S	0.000200	0.000344	0.000030
V	0.003000	0.003248	0.000279
Cr	0.115000	0.121971	0.010488
Mn	0.006000	0.006023	0.000518
Fe	0.849500	0.838895	0.072132
Ni	0.005000	0.004698	0.000404
Mo	0.010000	0.005748	0.000494
W	0.005000	0.001500	0.000129

Density $(g/cm^3) = 7.874$

Comments:

Reference: AFCI Materials Handbook, Rev. 4, Page 18-5. LA-CP-03-0868.

MUNP Form
c Steel, HT9 Stainless, rho = 7.874 g/cc
\$ Neutron
6012 -0.002000
14000 -0.004000
15031 -0.000300
16000 -0.000200
23000 -0.003000
24000 -0.115000
25055 -0.006000
26000 -0.849500
28000 -0.005000
42000 -0.010000
74000 -0.005000
6012 0.009183
14000 0.007854
15031 0.000534
16000 0.000344
23000 0.003248

```
24000 0.121971
   25055 0.006023
   26000 0.838895
   28000 0.004698
   42000 0.005748
   74000 0.001500
$ Photon
   6000 -0.002000
   14000 -0.004000
   15000 -0.000300
   16000 -0.000200
   23000 -0.003000
   24000 -0.115000
   25000 -0.006000
   26000 -0.849500
   28000 -0.005000
   42000 -0.010000
   74000 -0.005000
   6000 0.009183
   14000 0.007854
   15000 0.000534
   16000 0.000344
   23000 0.003248
   24000 0.121971
   25000 0.006023
   26000 0.838895
   28000 0.004698
   42000 0.005748
   74000 0.001500
```

CEPXS Form

Styrofoam

See Polystyrene.

Tantalum

ElementWeight FractionAtom FractionAtom Density $\left(\frac{atoms}{b*cm}\right)$ Ta1.0000001.0000000.055426

Density $(g/cm^3) = 16.654$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=073

MCNP Form

c Tantalum, rho = 16.654 g/cc

\$ Neutron

73181 -1.000000

73181 1.000000

\$ Photon

73000 -1.000000

73000 1.000000

CEPXS Form

material ta 1.000000 matname tantalum density 16.654

Teflon

See Polytetrafluoroethylene.

Thorium

Th 1.000000 1.000000 0.030417

Density $(g/cm^3) = 11.72$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=090

MCNP Form

c Thorium, rho = 11.72 g/cc

\$ Neutron

90232 -1.000000

90232 1.000000

\$ Photon

90000 -1.000000

90000 1.000000

CEPXS Form

material th 1.000000 matname thorium density 11.72

Titanium

ElementWeight FractionAtom FractionAtom Density $\frac{atoms}{b*cm}$ Ti1.0000001.0000000.057118

Density $(g/cm^3) = 4.54$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=022

MCNP Form

c Titanium, rho = 4.54 g/cc	
\$ Neutron	
22000 -1.000000	
22000 1 000000	
22000 1.000000	
\$ Photon	
22000 -1.000000	
22000 -1.000000	
22000 1.000000	

CEPXS Form

material ti 1.000000 matname titanium density 4.54

<u>Uranium</u>

1: US HEU Average

_				
<u>Element</u>	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$	
U-234	0.009800	0.009849	0.000478	
U-235	0.931550	0.932166	0.045229	
U-236	0.004500	0.004484	0.000218	
U-238	0.054150	0.053501	0.002596	
Density $(g/cm^3) = 18.95$				
Comments: US HEU Average.				
Reference: Personal communication with Andy Luksic based on Y-12				
information.				

WENT TOM
c HEU, US Average, rho = 18.95
\$ Neutron
92234 -0.009800
92235 -0.931550
92236 -0.004500
92238 -0.054150
92234 0.009849
92235 0.932166
92236 0.004484
92238 0.053501

\$ Photon

92000 -1.000000

92000 1.000000

CEPXS Form

material u 1.000000 matname uranium_heu_us density 18.95

2: Russian HEU Average

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
U-234	0.009670	0.009722	0.000472
U-235	0.898000	0.898982	0.043600
U-236	0.003810	0.003798	0.000184
U-238	0.088520	0.087498	0.004244

Density $(g/cm^3) = 18.95$

Comments: Russian HEU Average.

Reference: Personal communication with Andy Luksic based on Y-12

information.

MICHI FU	1111
c HEU, R	ussian Average, rho = 18.95
\$ Neutron	1
92234	-0.009670
92235	-0.898000
92236	-0.003810
92238	-0.088520
92234	0.009722
92235	0.898982
92236	0.003798
92238	0.087498
\$ Photon	
92000	-1.000000
92000	1.000000

CEPXS Form

material u 1.000000 matname uranium_heu_russia density 18.95

3: HPS HEU

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
U-234	0.010530	0.010582	0.000513
U-235	0.931730	0.932361	0.045238
U-236	0.002060	0.002053	0.000100
U-238	0.055670	0.055004	0.002669

Density $(g/cm^3) = 18.95$

Comments: Health Physics Society HEU. Weight Fractions are not normalized. The atom fraction and atom density are calculated from the weight fraction in the reference.

Reference: *Bioassay Programs for Uranium*, HPS 13.22-1995, American National Standards Institute, Inc., October 1995.

MCNP Form

MICHP FO	t III
c HEU, H	IPS, rho = 18.95
\$ Neutron	1
92234	-0.010530
92235	-0.931730
92236	-0.002060
92238	-0.055670
92234	0.010582
92235	0.932361
92236	0.002053
92238	0.055004
\$ Photon	
92000	-1.000000
02000	1,00000
92000	1.000000

CEPXS Form

material u 1.000000 matname uranium_heu_hps density 18.95

4: Natural Uranium

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$	
U-234	0.000057	0.000058	0.000003	
U-235	0.007204	0.007295	0.000349	
U-238	0.992739	0.992647	0.047466	
Density $(g/cm^3) = 18.90$				
Comments: Natural Uranium.				
Reference: The Health Physics and Radiological Health Handbook, p. 286.				

B. Shleien, editor, Scinta, Inc., 1992.

MCNP Form

WENT FORM
c Natural Uranium, rho = 18.90
\$ Neutron
92234 -0.000057
92235 -0.007204
92238 -0.992739
92234 0.000058
92235 0.007295
92238 0.992647
\$ Photon
92000 -1.000000
92000 1.000000

CEPXS Form

material u 1.000000 matname uranium_natural density 18.90

5: Typical Depleted Uranium

Element	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$
U-234	0.000005	0.000005	2.43E-07
U-235	0.002500	0.002532	0.000121
U-238	0.997500	0.997463	0.047693
Density $(g/cm^3) = 18.90$			

Comments: Typical depleted uranium. Weight Fractions are not normalized. The

atom fraction and atom density are calculated from the weight fraction in

the reference.

Reference: The Health Physics and Radiological Health Handbook, p. 286,

B. Shleien, editor, Scinta, Inc., 1992.

MCNP Form

c Depleted Uranium, rho = 18.90

\$ Neutron

92234 -0.000005

92235 -0.002500

92238 -0.997500

92234 0.000005

92235 0.002532

92238 0.997463

\$ Photon

92000 -1.000000

92000 1.000000

CEPXS Form

material u 1.000000

matname uranium_depleted

density 18.90

6: Typical Commercial Enriched Uranium

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b^*cm}\right)$
U-234 U-235	0.000300 0.029600	0.000305 0.029967	0.000015 0.001433
U-238	0.970100	0.969728	0.046383

Density $(g/cm^3) = 18.90$

Comments: Commercial enriched, typical.

Reference: The Health Physics and Radiological Health Handbook, p. 286,

B. Shleien, editor, Scinta, Inc., 1992.

MCNP Form

c Commercial Enriched Uranium, rho = 18.90

\$ Neutron

92234 -0.000300

92235 -0.029600

92238 -0.970100

92234 0.000305

92235 0.029967

92238 0.969728

\$ Photon

92000 -1.0000000

92000 1.0000000

CEPXS Form

material u 1.000000 matname uranium_commercial density 18.90

Water

1: Water, Liquid

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$		
Н	0.111894	0.666657	0.066853		
О	0.888106	0.333343	0.033428		
Density $(g/cm^3) = 1.00$					
Comments:					
Reference: Taken from NIST Listings, "Compositions of Materials used in STAR					
Databases" webpage:					
http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=276					

c Liquid	Water, $rho = 1.00 g/cc$
\$ Neutro	on
1001	-0.111894
8016	-0.888106
1001	0.666657
8016	0.333343
8016	0.333343

CEPXS Form

material h 0.111894 o 0.888106 matname water_liquid density 1.00

2: Water, Vapor

<u>Element</u>	Weight Fraction	Atom Fraction	$\underline{\text{Atom Density}} \left(\frac{atoms}{b * cm} \right)$	
Н	0.111894	0.666657	0.000050553	
О	0.888106	0.333345	0.000025278	
Density $(g/cm^3) = 0.000756182$				
Comments:				
Reference: Taken from NIST Listings, "Compositions of Materials used in STAR				
Databases" webpage:				
http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=277				

MCNP Form

W. V. 1 0.000757100 /
c Water Vapor, rho = 0.000756182 g/cc
\$ Neutron
1001 -0.111894
8016 -0.888106
1001 0.666657
8016 0.333345
\$ Photon
1000 -0.111894
8000 -0.888106
1000 0.666657
8000 0.333345

CEPXS Form

material h 0.111894 o 0.888106 matname water_vapor density 0.000756182

Wood

Element	Weight Fraction	Atom Fraction	Atom Density $\left(\frac{atoms}{b*cm}\right)$			
Н	0.057889	0.476190				
C	0.482667	0.285714				
О	0.459444	0.238095				
Density (g)	Density (g/cm^3) (cherry wood) = 0.433					
Density (g)	Density (g/cm^3) (walnut wood) = 0.593					
Density (g)	(cm ³)(southern pine	= 0.650				
Density (g/cm^3) (red oak) = 0.673						
Density (g/cm^3) (sugar maple) = 0.689						
Density (g/cm^3) (birch wood) = 0.705						
Density (g/cm^3) (mahogany) = 0.705						
Comments: Cherry wood density found at:						
http://www.mcelwee.net/html/densities_of_various_materials.html						
Reference: The Chemistry of Solid Wood, Advances in Chemistry Series 207,						
Roger Rowell (Ed.), p. 58, American Chemical Society, 1983. See						
í	also <u>http://en.wikipe</u>	<u>dia.org/wiki/Cellul</u>	lose.			

Wood	
Neutron	
1001 -0.057889	
6012 -0.482667	
8016 -0.459444	
1001 0.476190	
6012 0.285714	
8016 0.238095	
Photon	
1000 -0.057889	
6000 -0.482667	
8000 -0.459444	
1000 0.476190	
6000 0.285714	
8000 0.238095	

CEPXS Form (For Cherry Wood)

material h 0.057889 c 0.482667 o 0.459444 matname wood_cherry density 0.433

Zirconium

Density $(g/cm^3) = 6.506$

Comments:

Reference: Taken from NIST Listings, "Compositions of Materials used in STAR

Databases" webpage:

http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=040

MCNP Form

CEPXS Form

material zr 1.000000 matname zirconium density 6.506

Distribution

No. of Some No. of Copies Copies

OFFSITE

19 Pacific Northwest National Laboratory

ONSITE

AL Doherty	K8-34
E Ellis	K5-17
CJ Gesh	K8-34
WK Hensley	P8-01
EF Love	K8-34
RJ McConn	K3-54
GH Meriwether	K8-34
EA Miller	P8-20
RT Pagh	K8-34
SM Robinson	P7-80
B Runkle	P7-80
RI Scherpelz	K3-55
JE Schweppe	P7-80
ER Siciliano	K7-15
E Smith	P7-80
JR Starner	K8-34
RJ Traub	K3-55
Information Release Office (2)	P8-55