EQUILIBRIUM AND THERMODYNAMICS: RELATING K TO AG

REAC
$$\Longrightarrow$$
 PROD $K = \frac{[PROD]}{[REAC]}$ $\triangle G^\circ = G_{PROD} - G_{REAC}$
 $K = e^{-\Delta G^\circ RT}$

REAC \Longrightarrow PROD $K > 1$ $\frac{G_{REAC}}{PROD}$ $\triangle G^\circ < 0$ $\frac{\Delta G^\circ}{-30RT}$ $\frac{K = e^{-\Delta G^\circ RT}}{e^{30} = 10^{13}}$
 $-3RT$ $e^3 = 20$
 $-RT$ $e^1 = 2.7$

REAC
$$\Rightarrow$$
 PROD $K = 1$ G_{REAC} G_{PROD} REGISTRATE $\Phi^{-1} = \frac{1}{2.7} = 0.37$

REAC \Rightarrow PROD $K < 1$ G_{REAC} G_{PROD} $\Phi^{-1} = \frac{1}{2.7} = 0.37$

REAC \Rightarrow PROD $K < 1$ G_{REAC} $\Phi^{-1} = \frac{1}{2.0} = 0.05$

AT ROOM TEMPERATURE (T=25°C=298K)
RT=(8.314
$$\frac{1}{mol \cdot k}$$
)(298K) = 2479 $\frac{1}{mol}$ = 2.5 $\frac{kl}{mol}$

$$\triangle G^{\circ} \qquad K_{\text{FORMATION}} = e^{-\Delta G^{\circ}_{\text{RT}}}$$

$$COVALENT BOND \qquad \approx 400 \frac{\text{kJ}}{\text{mol}} = 160 \text{ RT} \qquad e^{5} = 10^{70}$$

$$HYDROGEN BOND \qquad \approx 25 \frac{\text{kJ}}{\text{mol}} = 5 \text{ RT} \qquad e^{2} = 150$$

$$VAN DER WAALS CONTACT \approx 5 \frac{\text{kJ}}{\text{mol}} = 2 \text{ RT} \qquad e = 7$$