ARYTMETYKA

Oznaczenia:

Expr – dowolne wyrażenie, przyjmujące wartość będącą liczbą zmiennoprzecinkową albo całkowitą.

IntExpr – wyrażenie o wartościach całkowitych

Int – liczba całkowita

Predykaty

Predykat	Związek
between(+Low, +High, ?Value)	Low i High liczbami całkowitymi, High ≥ Low. Jeżeli Value
	jest liczbą całkowitą, to $Low \leq Value \leq High$. Jeżeli $Value$
	jest zmienną, to po kolei są jej przyporządkowywane liczby
	całkowite między Low i High.
succ(?Int1, ?Int2)	Zachodzi, jeżeli <i>Int2= Int1+</i> 1. Przynajmniej jeden z
	argumentów musi być ukonkretniony przez liczbę całkowitą.
plus(?Int1, ?Int2, ?Int3)	Zachodzi jeśli <i>Int3= Int1+ Int2</i> . Przynajmniej dwa spośród
	trzech argumentów muszą być ukonkretnione przez liczby
	całkowite.
+ <i>Expr1</i> > + <i>Expr2</i>	Zachodzi, jeżeli wartość wyrażenia Expr1 jest większa niż
	wartość wyrażenia Expr2.
+Expr1 < +Expr2	Zachodzi, jeżeli wartość wyrażenia Expr1 jest mniejsza niż
	wartość wyrażenia Expr2.
+Expr1 = < +Expr2	Zachodzi, jeżeli wartość wyrażenia Expr1 jest mniejsza lub
	równa wartości wyrażenia Expr2.
+ <i>Expr1</i> >= + <i>Expr2</i>	Zachodzi, jeżeli wartość wyrażenia Expr1 jest większa lub
	równa wartości wyrażenia Expr2.
+Expr1 =:= +Expr2	Zachodzi, jeżeli wartość wyrażenia Expr1 jest równa (=:=),
+Expr1 = +Expr2	różna (=\=) od wartości wyrażenia Expr2.
-Number is +Expr	Zachodzi, jeżeli argument <i>Number</i> daje się uzgodnić z warto-
	ścią wyrażenia Expr. Wartość wyrażenia jest przedstawiana w
	postaci liczby całkowitej tam , gdzie to jest możliwe!

Funkcje arytmetyczne:

Funkcja	Rezultat
- +Expr	-Expr
+Expr1 + +Expr2	Expr1+ Expr2
+Expr1 - +Expr2	Expr1- Expr2
+Expr1 * +Expr2	Expr1×Expr2
+Expr1 / +Expr2	Expr1
	Expr2
+IntExpr1 // +IntExpr2	Dzielenie całkowite
+IntExpr1 mod +IntExpr2	IntExpr1 - (IntExpr1 // IntExpr2) × IntExpr2
+Expr1 ** +Expr2	$Expr1^{Expr2}$
+Expr1 ^ +Expr2	To samo co **/2

Inne funkcje arytmetyczne patrz: SWI Prolog Manual, rozdział 4.26

Dołączanie funkcji arytmetycznych.

Prologowe predykaty mogą pełnić rolę funkcji arytmetycznych. Wtedy ostatni argument predykatu jest wartością funkcji, a pozostałe argumentami.

Funkcje arytmetyczne dodajemy za pomocą predykatu arithmetic function/1

Na przykład, mając zdefiniowana relację

spełnioną, gdy Z jest największym współnym dzielnikiem liczb naturalnych X iY, definujemy funkcję dwuargumentową nwd za pomocą klauzuli:

```
:- arithmetic_function(mwd/2).
```

Wtedy funkcji tej możemy używać w wyrażeniach arytmetycznych, np.