Portfolio Rebalancing by Mutual Funds in Response to Government Policy

Working Paper Reena Aggarwal and Yuchen Luo, 2024 Reporter: Yanrui Zhou

June 27, 2025

Background and Motivation

- Tariffs are important policy tools.(Economic)
 - There has been considerable discussion on the impact of tariffs on inflation, economic growth, dollar, global supply chain.(Macro-Eco Level)
 - Import tariffs (reduction) can have effects on firms through market competition.(Firm Level)
- The impact they have on portfolio holdings and stock market returns of impacted industries has not been studied yet.(Finance)
- This paper studies whether tariffs influence portfolio holdings and stock returns.

Research Questions

- Q1: Whether import tariff reductions impact mutual funds' holdings?
 - Yes, fund tend to withdraw more from affected industries.
- Q2: In which case fund tend to withdraw more from affected industries?
 - When risk is higher and hard to tackle.
- Q3: Whether and how tariff reductions affect mutual funds' performance?
 - Tariff reductions make fund perform bad.

Contributions

- The literature on investment under uncertainty.
 - Past Studies: have been centered on the effect of general macroeconomic uncertainty.
 - Extension: the effect of prediction uncertainty caused by trade policy changes.
- The literature on the effect of disruptions and distractions on portfolio management.
 - Past Studies: focused on market events, social events, natural events and political events.
 - Extension: examines the disruption effect of policy events.

Data

- Time period: 1990-2022.
- Data Source:
 - 1 Mutual fund holdings data: Thomson Reuters mutual fund holdings database.
 - 2 Portfolio stock's 3-digit standard industry code: Compustat SIC codes.
 - **3** Fund characteristics data: CRSP survivor-bias-free U.S. mutual fund database.
 - 4 U.S. import tariff data: from Peter Schott's website (Schott, 2008)
- Focus on large and non-transient tariff shocks.
 - We focus on manufacturing industries and identify as the major tariff reduction events (Fr'esard, 2010; Valta, 2012).
 - 2 If an industry experienced multiple major tariff reductions during the sample period, we use the one with the largest tariff reduction.

Design

• We include observations that are within a 5-year event window ([-3,1])) for each identified import tariff shock. The final sample includes eight treatment years in which 23 industries experienced sudden and non-transient major tariff reductions.

1. The impact of import tariff reductions on portfolio choices

• Baseline regression: $Weight_{j,i,t} = \beta TariffCut \times Post + \gamma X_{i,t-1} + \delta_i + \theta_{j,t} + \epsilon_{j,i,t}$

Dependent Variable =	Weight (%)		
	(1)	(2)	(3)
$TariffCut \times Post$	-0.126*** (-2.859)	-0.165*** (-2.606)	-0.098*** (-2.679)

- A mutual fund, on average, reduces by 12.6 percentage points of its total equity assets in industries that experience major tariff reductions.
- (2)-(3) examine whether the effect is only limited to funds with pre-event equity positions in affected industries.

1. The impact of import tariff reductions on portfolio choices

- Balance of covariates:
 - 1 The two groups of industries were indistinguishable from each other along all observable dimensions of industry characteristics.
- Validity of pre-event parallel-trend assumption:
 - $Weight_{j,i,t} = \sum_{k=-1}^{+3} \beta_k TariffCut \times Year_k + \gamma X_{i,t-1} + \delta_i + \theta_{j,t} + \epsilon_{j,i,t}$
 - 2 The documented negative effect of major tariff reduction appears to be driven by significantly different post-event trends.

2. Heterogeneity effects: mechanism analysis

- Heterogeneity in fund characteristics:
 - ① we estimate a nested triple-difference OLS model: $Weight_{j,i,t} = \beta_1 TariffCut \times Post \times HighCon + \dots$
 - 2 HighCon is a dummy variable that equals one if the fund's in the top quartile sorted by the proxy of fund **portfolio concentration.**

Dependent Variable =	Wei	Weight (%)		
	$Fund\ HHI$	$Fund\ NumInd$		
	(1)	(2)		
$TariffCut \times Post \times HighCon \ (\beta_1)$	-0.167**	-0.220**		
$TariffCut \times Post \ (\beta_2)$	(-2.024) -0.093** (-2.302)	(-2.215) -0.078** (-2.084)		

2. Heterogeneity effects: mechanism analysis

- Heterogeneity by Industry Characteristics:
 - ① we estimate a nested triple-difference OLS model:

$$Weight_{j,i,t} = \beta_1 TariffCut \times Post \times HighBogIndex + \dots$$

 $Weight_{j,i,t} = \beta_1 TariffCut \times Post \times HighIndVol + \dots$

2 HighBogIndex captures accounting opacity; HighIndVol captures return volatility.

${\bf Dependent\ Variable} =$	Weight (%)		
	$(1) \qquad (2)$)	
$TariffCut \times Post \times HighBogIndex \ (\beta_1)$	-0.365*** (-3.223)		
$TariffCut \times Post \times HighIndVol~(\beta_1)$	-0.464 (-2.7		

- 3 Examine an industry's vulnerability to entry threat.
- **1** Puzzle: withdraw due to bad performance? $Performance_{i,t} = \beta TariffCut \times Post + \gamma X_{i,t-1} + \delta_i + \theta_{j,t} + \epsilon_{j,i,t}$

3. The impact of import tariff reductions on fund performance

• We estimate the following ordinary least square regression model:

$$FundAlpha_{j,t} = \alpha + \beta \operatorname{TariffExp} \times \operatorname{Post} + \gamma X_{j,t-1} + \theta_j + \delta_t + \epsilon_{j,t}.$$

- 1 Column (1): full sample;
- 2 Column (2)-(3): (never) reduce affected industries;
- 3 Column (4): use a nested triple-difference OLS model to test DiverseIndExp.

${\bf Dependent\ Variable} =$		Fund Alpha (%)			
	(1)	(2)	(3)	(4)	
$\textit{TariffExp} \times \textit{Post } (\beta_1)$	-0.042*** (-3.275)	-0.058 (-1.381)	-0.046*** (-3.064)	-0.049*** (-3.632)	
$TariffExp \times Post \times DiverseIndExp\ (\beta_2)$				$0.106*** \\ (2.753)$	

Ideas

- 1 Test tariff shock and risk especially downside risk.
- 2 Could consider flow from different investors.
- 3 More studies between mutual fund and policy.
 - Mutual funds could forecast future policy;
 - Mutual funds also react to current policy.