基于小样本学习的医学影像分割

王浩 2021/06/20

小样本学习

小样本学习(Few-shot learning)

- 小样本数据的学习
- 学习目标任务需要的知识
- 符合自然认知过程

ats of the second of the secon

深度学习模式

- 学习一种模式,目标是基于输入数据,得到目标输出
- 数据量要求较高,小样本难以实现效果

深度学习模式

- 学习一种模式,目标是基于输入数据,得到目标输出
- 数据量要求较高,小样本难以实现效果

Deep Learning

深度学习模式

- 学习一种模式,目标是基于输入数据,得到目标输出
- 数据量要求较高,小样本难以实现效果

Deep Learning

- 小样本学习与元学习存在交集
- 元学习Meta Learning——学习"如何学习"leaning to learn

- 小样本学习与元学习存在交集
- 元学习Meta Learning——学习"如何学习"leaning to learn

- 小样本学习与元学习存在交集
- 元学习Meta Learning——学习"如何学习"leaning to learn

- 小样本学习与元学习存在交集
- 元学习Meta Learning——学习"如何学习"leaning to learn

元学习

- 给定的新样本被称之为 Support set
- 相应的测试集合被称之为 Query set
- 每训练一次被称为一个 Episode
- 用来训练F的 Task 被称之为 Training task,验证F有效性的被称为 Testing task

对比

Deep Learning

Meta Learning

对比

Deep Learning

N-Way-M-Shot

■ 元学习基于一个 Task 的支持集中给出的 N 个新类(Way) M 个实例 (shot) 中学到一个认识模型 F

5-Way-1-Shot

2-Way-4-Shot

• x1, x2, x3表示三个类别的数据,每类别只有一个, x2表示测试数据

元学习分类

■ 基于度量的方法: Prototypical Network、 Matching Network

■ 基于模型的方法: MANN、Meta Networks

■ 基于优化的方法: MAML、Reptile

- 1. Chang J R, Chen Y S. Pyramid stereo matching network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 5410-5418.
- 2. Snell J, Swersky K, Zemel R S. Prototypical networks for few-shot learning ∏. arXiv preprint arXiv:1703.05175, 2017.
- 3. Santoro A, Bartunov S, Botvinick M, et al. Meta-learning with memory-augmented neural networks[C]//International conference on machine learning. PMLR, 2016: 1842-1850.
- 4. Munkhdalai T, Yu H. Meta networks [C] // International Conference on Machine Learning. PMLR, 2017: 2554-2563.
- 5. Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//International Conference on Machine Learning. PMLR, 2017: 1126-1135.
- 6. Nichol A, Achiam J, Schulman J. On first-order meta-learning algorithms[J]. arXiv preprint arXiv:1803.02999, 2018.

元学习分类

- 基于度量的方法: Prototypical Network、Matching Network
- 基于模型的方法: MANN、Meta Networks
- 基于优化的方法: MAML、Reptile

- 1. Chang J R, Chen Y S. Pyramid stereo matching network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 5410-5418.
- 2. Snell J, Swersky K, Zemel R S. Prototypical networks for few-shot learning[]]. arXiv preprint arXiv:1703.05175, 2017.
- 3. Santoro A, Bartunov S, Botvinick M, et al. Meta-learning with memory-augmented neural networks[C]//International conference on machine learning. PMLR, 2016: 1842-1850.
- 4. Munkhdalai T, Yu H. Meta networks[C]//International Conference on Machine Learning. PMLR, 2017: 2554-2563.
- 5. Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//International Conference on Machine Learning. PMLR, 2017: 1126-1135.
- 6. Nichol A, Achiam J, Schulman J. On first-order meta-learning algorithms[]]. arXiv preprint arXiv:1803.02999, 2018.

原型网络

对于一个类别k而言,所有属于k类别的数据的集合记作 S_k

Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 4080-4090.

原型中心点:

$$c_k = rac{1}{|{S}_k|} \sum_{(x_i,y_i) \in S_k} f_\phi \left(x_i
ight)$$

x属于原型k的概率,只要求d(x)可导:

$$p_{\phi}\left(y = k | x
ight) = rac{\exp\left(-d\left(f_{\phi}(x), c_{k}
ight)
ight)}{\sum_{k'} \exp\left(-d\left(f_{\phi}(x), c_{k'}
ight)
ight)}$$

原型中心点:

$$c_k \! = \! rac{1}{\left|{S}_k
ight|} \! \sum_{(x_i,y_i) \in S_k} \! \! \left|\! f_\phi\left(x_i
ight)\!
ight|$$

x属于原型k的概率,只要求d(x)可导:

$$p_{\phi}\left(y = k | x
ight) = rac{\exp\left(-d\left(f_{\phi}(x), c_{k}
ight)
ight)}{\sum_{k'} \exp\left(-d\left(f_{\phi}(x), c_{k'}
ight)
ight)}$$

Algorithm 1 Training episode loss computation for Prototypical Networks. N is the number of examples in the training set, K is the number of classes in the training set, $N_C \leq K$ is the number of classes per episode, N_S is the number of support examples per class, N_Q is the number of query examples per class. RandomSample(S, N) denotes a set of N elements chosen uniformly at random from set S, without replacement.

Input: Training set $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$, where each $y_i \in \{1, \dots, K\}$. \mathcal{D}_k denotes the subset of \mathcal{D} containing all elements (\mathbf{x}_i, y_i) such that $y_i = k$.

Output: The loss J for a randomly generated training episode.

the loss
$$J$$
 for a randomly generated training episode. $V \leftarrow \mathsf{RANDOMSAMPLE}(\{1,\ldots,K\},N_C)$ \triangleright Select class indices for episode for k in $\{1,\ldots,N_C\}$ do $S_k \leftarrow \mathsf{RANDOMSAMPLE}(\mathcal{D}_{V_k},N_S)$ \triangleright Select support examples $Q_k \leftarrow \mathsf{RANDOMSAMPLE}(\mathcal{D}_{V_k}\setminus S_k,N_Q)$ \triangleright Select query examples

 $\mathbf{c}_k \leftarrow \frac{1}{(N_S)} \sum_{(\mathbf{x}_i, y_i) \in S_k} f_{\phi}(\mathbf{x}_i)$ > Compute prototype from support examples

end for

$$J \leftarrow 0$$
 \triangleright Initialize loss

for k in $\{1, \ldots, N_C\}$ do for (\mathbf{x}, y) in Q_k do

$$J \leftarrow J + \frac{1}{N_C N_Q} \left[d(f_{\phi}(\mathbf{x}), \mathbf{c}_{k})) + \log \sum_{k'} \exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_{k'})) \right]$$
 \triangleright Update loss

end for end for

算法执行时,对于每个类别而言 首先会为当前 episode 从 $\{1,...,K\}$ 选择 N_C 个类,称之 为 N-Ways。接着在选定的 N_C 个 类别中,分别遍历每个类别,对 于特定的类别k,支持集 S_{i} 是从 当前 episode 的数据集中所有类 别为k的数据中选取 N_s 个数据, 类别k 下有 n 个数据. 称之为 N-Shot。接着在当前 eposide 剩余的 数据 $(D_V \setminus S_k)$ 中选取 N_O 个数 据作为 Query Set。

当前支持集所对应的原型:

$$c_k \leftarrow rac{1}{N_S} \sum_{(x_i,y_i) \in S_k} f_\phi(x_i)$$

该类所有对于Qk数据的损失:

$$J\!\leftarrow\!J+rac{1}{N_{C}N_{Q}}[d\left(f_{\phi}(x),c_{k}
ight)\!+\!\log\sum_{k'}\exp\left(-d\left(f_{\phi\left(x
ight)},c_{k'}
ight)
ight)]$$

推导:

$$J_i^k \! = \! -\log(rac{\exp(-d\left(f_\phi(x_i),c_k
ight))}{\sum\limits_{i=1}^{N_Q} \exp(-df_\phi(x_i),c_j)}) \! = \! d\left(f_{\phi(x_i)},c_k
ight) \! + \log\sum\limits_{j=1}^{N_Q} \exp(-d\left(f_\phi(x_i),c_j
ight))$$

原理

- 原型网络实际上是数据分布密度估计
- 度量两个不同分布的距离

$$d_{\varphi}(z,z') = \varphi(z) - \varphi(z') - (z-z') \nabla \varphi(z')$$
 , $\varphi(z)$ 必须是凸函数

■ 已有文献证明原型的最小距离是Bergman散度

$$p_{\psi}(z| heta) = \exp\{z^{T} heta - \psi(heta) - g_{\psi}(z)\} = \exp\{-d_{arphi}(z,\mu(heta)) - g_{arphi}(z)\}$$

■ 对于给定的指数族分布 $\Gamma = \{\theta_k, \pi_k\}_{k=1}^K$:

$$p\left(z \,|\, \Gamma
ight) = \sum_{k=1}^{K} \pi_k \, p_{\psi}\left(z \,|\, heta_k
ight) = \sum_{k=1}^{K} \pi_k \exp\left(-\, d_{arphi}\!\left(z, \mu\left(heta_k
ight)
ight) - g_{arphi}\!\left(z
ight)
ight)$$

■ 对于给定的 Γ ,对于张量Z属于类别k的概率可记作:

$$p\left(y = k \,|\, z
ight) = rac{\pi_k \mathrm{exp}\left(\!-d_{arphi}\left(z, \mu\left(heta_k
ight)
ight)
ight)}{\sum_{k'} \pi_{k'} \mathrm{exp}\left(\!-d_{arphi}\left(z, \mu\left(heta_k
ight)
ight)
ight)}$$

原理

- 对于距离度量
- 使用欧氏距离时:

■ 元学习的就是一个图嵌入

原理

- 对于距离度量
- 使用欧氏距离时:

$$egin{aligned} d\left(z,z'
ight) &= \parallel z-z' \parallel \ &-d\left(f_{\phi}(x),c_{k}
ight) &
ightarrow - \lVert f_{\phi}(x)-c_{k} \rVert^{2} = -f_{\phi}(x)^{ op}f_{\phi}(x) + 2c_{k}^{ op}f_{\phi}(x) - c_{k}^{ op}c_{k} \end{aligned}$$
 $\mathcal{F}_{\phi}(x) - c_{k}^{ op}c_{k} = w_{k}^{ op}f_{\phi}(x) + b_{k} \quad , \ w_{k} = 2c_{k}, \ b_{k} = -c_{k}^{ op}c_{k} \end{aligned}$

■ 元学习的就是一个图嵌入

A Location-Sensitive Local Prototype Network For Few-Shot Medical Image Segmentation

Yu, Qinji, Kang Dang, Nima Tajbakhsh, Demetri Terzopoulos, and Xiaowei Ding In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)

医学影像中的小样本学习

- 典型影像数据数量少
- 精确标注成本过高
- 较少的数据辅助保护隐私

基本流程

Yu, Qinji, Kang Dang, Nima Tajbakhsh, Demetri Terzopoulos, and Xiaowei Ding. A Location-Sensitive Local Prototype Network For Few-Shot Medical Image Segmentation. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 262 – 66, 2021.

局部信息敏感的原型提取

■ 原型提取:

其中 $M_{i,c}^s(x,y)$ 表示平均池化, $F_i^s(x,y)$ 表示提取器的特征图, p_{c,g_m}^s 与位置相关

基于网格的小样本分割

■ 概率计算:

$$P_{j,c}^q(x,y) = Softmax(sim(F_j^q(x,y), \mathcal{P}))$$
,其中 \mathcal{P} 表示支持集的原型

■ 相似度计算:

$$\sin\left(F_{j}^{\,q}(x,y),\mathcal{P}
ight)=\max_{g_{m}\,\in\,\Omega}\left(\cos\left(F_{j}^{\,q}(x,y),p_{c,g_{m}}^{\,s}
ight)
ight)$$

实验效果

Method	liver	spleen	kidney	psoas	Mean
PANet [7]	59.4	24.1	23.7	15.6	30.7
SENet [10]	70.0	60.7	46.4	49.9	56.7
Our Result	77.9	71.5	67.5	49.9	66.7
w/ Added Classes	79.3	73.3	76.5	52.4	70.3
ALPNet [16]	78.3	70.9	72.1	-	-

1-Way-1-Shot

Reference

- Lilian Weng. Meta-Learning: Learning to Learn Fast. https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html. 2018-11-30
- Cyprien NIELLY. Few-shot Learning with Prototypical Networks. https://towardsdatascience.com/few-shot-learning-with-prototypical-networks-87949de03ccd
- Daisukelab. Prototypical Networks as a Fine Grained Classifier. https://www.kaggle.com/c/humpback-whale-identification/discussion/81085
- Hung-yi Lee. Meta Learning https://www.youtube.com/watch?v=EkAqYbpCYAc
- Chelsea Finn. Meta-Learning https://meta-learning.fastforwardlabs.com/

Q&A

Hao Wang https://blog.waynehfut.com/2020/11/02/prototypical_ne twork_for_few_shot_learning/