Evolution of Firewalls

- When organizations first had access to the internet, typically only a small number of people wanted access to the internet.
- Acess to the internet was provided by a internet gateway, a machine with two network cards, one connected to the internet, the other connected to the corporate network (LAN).

Evolution of Firewalls

- Users would then logon to this host to access the Internet.
- Once logged on, typically the user would use email, telnet and ftp (this was before the Web).

<u>Firewalls - Two Main Types</u>

- The above was replaced by two types of firewall
 - Packet Filtering (IP layer)
 - Proxy Servers (Application Layer)
- Both provide a certain level of security (from the Internet) to an Enclave.

Firewall and Enclave

Packet Filtering Firewalls

- Before Packet Filtering Firewalls were available, routers were used to provide packet filtering.
- The routing tables of routers could be configured to only allow certain packets into the LAN.
- This evolved into Packet Filtering Firewalls.

Packet Filtering Firewalls

- Packet Filtering Firewalls examine TCP/IP packets and filter them based on
 - Source address
 - Destination address
 - Protocol (Source and Destination port number)

Packet Filtering Firewalls (cont.)

- Packet Filtering Firewalls can be used to for example
 - prohibit all telnet (port 23) access into a site.
 - only allow Web access to a specified Web server
 - prohibit all TCP/IP connections to certain machines.
 - prohibit all connections on a specific port from outside the site.

Packet Filtering Firewalls (cont.)

- Packet Filtering Firewalls can be used to for example
 - Allow only HTTP (port 80) traffic
 - only allow ftp'ing of data into a site
- [Filtering decisions based on source IP address are unsafe as source addresses can be forged.]

Proxy Server/ Application Gateway

- Two problems with Packet Filters
 - They can not impose restrictions on users of a service
 - The IP address of the client is exposed in a TCP/IP connection.
- Proxy Servers, also known as Application Gateways address both these issues.

Proxy Server

Proxy Web Server plus Packet Filtering Firewall

Proxy Web Server plus Packet Filtering Firewall

- Typically Packet Level Filters and Proxy Server or Application Gateways are used together.
- The Packet Filter blocks all traffic on a specific port except to the Proxy Server.
- The Proxy Server can then filter the service requests.
- A Proxy Server can also boost performance by caching data.

Proxy Web Servers

 Clients (Chrome, Firefox, IE) must be configured to send all requests to the Proxy Server.

Network Address Translation

Network Address Translation

- Allows the use of one set of network addresses internally and another externally.
- Internal address are concealed.
- The router can direct incoming traffic to an internal node based on a NAT table.

NAT Table

- You can associate a port with an internal address.
- All requests on that port are sent to the appropriate internal node.
- Will require a static internal IP address instead of the more usual dynamic address assigned using DHCP.

Personal Firewall

Personal Firewalls

- Controls network traffic to and from a single computer.
- Allows the user to control which programs can access the network.
- Can notify the user when programs access the network.

Virtual Private Networks

Virtual Private Networks

- Most firewalls now support Virtual Private Networks.
- Traffic between firewalls belonging to the same VPN is transparently encrypted.
- Some firewalls support the extension of VPN membership to home users PCs.

Virtual Private Network

<u>DMZ</u>

Web Servers behind Firewalls

Pros:

The Web server itself is protected

Cons:

Web Servers often host Web applications which can be a security loophole and can reduce the security of other hosts inside the firewall.

Web Server outside Firewall Enclave

Pros:

Everything else inside the enclave is safer.

Cons:

- It is very difficult to protect the Web Server itself.
- → It is difficult to get data (HTTP post) securely into the Firewall Enclave.

<u>DMZ</u>

DMZ

- Web servers put in an outside enclave, protected by a packet-filtering firewall.
- Corporate network inside an (inner) enclave.
- The outer fire either directs traffic to Web Server or inside firewall.
- The middle network sometimes known as a DMZ (Demilitarized Zone).
- Sometimes the DMZ provides a VPN to allow remote administration of Web Server.

Problems with Firewalls

- Firewalls can be a problem for users (not allowed to do what they want to do, for example downloading ZIP files).
- Maven needs to be configured for proxy server.
 (Plugins downloaded as JAR files).
- Grails plugins downloaded as zip files.
- [Dan's Guardian (&Squid) configured with grails.org added to a whitelist of sites.]
- This requires communication with the firewall administrator.

Firewalls and RMI

- Firewalls are a problem for developers of distributed applications using RMI.
- Firewalls on the client side are normally not under the control of the distributed application developer.
- They often (always?) forbid the client server interaction over JRMP (Java Remote Method Protocol).
- (Port number 1099.)
- This is a problem for internet application but not intranet applications.

Firewalls and RMI

Web Services

- JRMP (or IIOP) are binary protocols.
- They were never designed to run over HTTP.
- Hence the evolution of Web Services.
 - Run over HTTP
 - Text messages (XML or JSON)
- No problem with client side firewalls.

-