

ĐẠI HỌC QUỐC GIA TP.HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN – ĐIỆN TỬ

BỘ MÔN ĐIỆN TỬ

BÁO CÁO

BÀI TẬP LỚN CẦU TRÚC MÁY TÍNH

Đề tài:

Thiết kế CPU chạy đơn chu kỳ và Pipeline dựa trên cấu trúc CPU RV32

GVHD:Thầy Trần Hoàng Linh SVTT:Dương Nhật Huy – 181016

1. Thiết kế CPU RV32

a) Phân tích

CPU RV32 có tổng cộng 32 lệnh hợp ngữ, trong đó mỗi lệnh có độ dài 32bit và có 7 bit [6:0] (opcode) để xác định loại lệnh.

LUI	0110111	rd			imm[31:12]	
AUIPO	0010111	rd		-5-541	imm[31:12]	101
JAL	1101111	rd		1:12	m[20]10:1 11 19	
JALR	1100111	rd	000	rs1	0]	imm[11:0
BEQ	1100011	imm[4:1 11]	000	rsl	rs2	imm[12 10:5]
BNE	1100011	imm[4:1 11]	001	rs1	rs2	imm[12 10:5]
BLT	1100011	imm[4:1 11]	100	rs1	rs2	imm[12]10:5]
BGE	1100011	imm[4:1 11]	101	rsl	rs2	imm[12 10:5]
BLTU	1100011	imm[4:1 11]	110	rsl	rs2	imm[12 10:5]
BGEU	1100011	imm[4:1 11]	111	rs1	rs2	imm[12[10:5]
LB	0000011	rd	000	rsl	0]	imm[11:0
LH	0000011	rd	001	rs1	0]	imm[11:0
LW	0000011	rd	010	rsl	0]	imm[11:0
LBU	0000011	rd	100	rs1	0]	imm[11:0
LHU	0000011	rd	101	rs1	0]	imm[11:0
SB	0100011	imm[4:0]	000	rsl	rs2	imm[11:5]
SH	0100011	imm[4:0]	001	rs1	rs2	imm[11:5]
SW	0100011	imm[4:0]	010	rs1	rs2	imm[11:5]
ADDI	0010011	rd	000	rs1	0]	imm[11:0
SLTI	0010011	rd	010	rsl	0]	imm[11:0
SLTIU	0010011	rd	011	rsl	0]	imm[11:0
XORI	0010011	rd	100	rsl	0]	imm[11:0
ORI	0010011	rd	110	rsl	0]	imm[11:0
ANDI	0010011	rd	111	rsl	0	imm[11:0
SLLI	0010011	rd	001	rs1	shamt	0000000
SRLI	0010011	rd	101	rs1	shamt	0000000
SRAI	0010011	rd	101	rs1	shamt	0100000
ADD	0110011	rd	000	rs1	rs2	0000000
SUB	0110011	rd	000	rs1	rs2	0100000
SLL	0110011	rd	001	rs1	rs2	0000000
SLT	0110011	rd	010	rs1	rs2	0000000
SLTU	0110011	rd	011	rs1	rs2	0000000
XOR	0110011	rd	100	rs1	rs2	0000000
SRL	0110011	rd	101	rs1	rs2	0000000
SRA	0110011	rd	101	rsI	rs2	0100000
OR	0110011	rd	110	rs1	rs2	0000000
AND	0110011	rd	111	rs1	rs2	0000000

- Tập lệnh của RV32 còn được gọi là tập lệnh kiểu load-store, điều đó có nghĩa là data trong bộ nhớ muốn được thực thi thì trước hết phải được lấy ra bỏ vào băng thanh ghi rồi mới được tính toán. Sau khi tính toán, data sẽ được lưu lại vào memory.

Các thanh ghi trong băng thanh ghi (Register Bank) có độ dài 32 bits và có 32 thanh ghi (từ xo − x31) ⇒ Cần có 5 bits để xác định địa chỉ của các thanh ghi trong băng thanh ghi. Trong đó, chức năng của 32 thanh ghi được cho như ở bảng dưới.

Register	ABI Name	Description	Saver
х0	zero	Hard-wired zero	-
x1	ra	Return address	Caller
x2	sp	Stack pointer	Callee
x3	gp	Global pointer	_
x4	tp	Thread pointer	_
x 5	t0	Temporary/alternate link register	Caller
x6-7	t1-2	Temporaries	Caller
x8	s0/fp	Saved register/frame pointer	Callee
x9	s1	Saved register	Callee
x10-11	a0-1	Function arguments/return values	Caller
x12-17	a2-7	Function arguments	Caller
x18-27	s2-11	Saved registers	Callee
x28-31	t3-6	Temporaries	Caller

Thanh ghi xo luôn có giá trị bằng 0x00000000 và không thay đổi giá trị này.

- Nhóm lệnh R-Format:

Nhóm lệnh này bao gồm các lệnh có cấu trúc như ở hình sau:

0000000	rs2	rs1	000	$^{\mathrm{rd}}$	0110011	ADD
0100000	rs2	rs1	000	$^{\mathrm{rd}}$	0110011	SUB
0000000	rs2	rs1	001	$^{\mathrm{rd}}$	0110011	SLL
0000000	rs2	rs1	010	$^{\mathrm{rd}}$	0110011	SLT
0000000	rs2	rs1	011	$_{\mathrm{rd}}$	0110011	SLTU
0000000	rs2	rs1	100	$^{\mathrm{rd}}$	0110011	XOR
0000000	rs2	rs1	101	$^{\mathrm{rd}}$	0110011	SRL
0100000	rs2	rs1	101	$^{\mathrm{rd}}$	0110011	SRA
0000000	rs2	rs1	110	$_{ m rd}$	0110011	OR
0000000	rs2	rs1	111	$^{\mathrm{rd}}$	0110011	AND

Nhóm lệnh này có opcode là [6:0] = 0110011

Nhóm lệnh này thực hiện lấy hai giá trị lưu ở thanh ghi rs1 và rs2 thực hiện đưa vào khối ALU để tính toán, sau đó lưu kết quả vào thanh ghi rd.

- Nhóm lệnh I (Tính toán):

imm[1	1:0]	rs1	000	rd	0010011	addi
imm[1:	1:0]	rs1	010	rd	0010011	slti
imm[1	1:0]	rs1	011	rd	0010011	sltiu
imm[1	1:0]	rs1	100	rd	0010011	xori
imm[1	1:0]	rs1	110	rd	0010011	ori
imm[1	1:0]	rs1	111	rd	0010011	andi
0000000	shamt	rs1	001	rd	0010011	slli
900000	shamt	rs1	101	rd	0010011	srli
0100000	shamt	rs1	101	rd	0010011	srai

Nhóm lệnh này có opcode là [6:0] = 0010011

Nhóm lệnh này (trừ 3 lệnh SRAI, SRLI, SLLI) thực hiện lấy giá trị lưu ở thanh ghi rs1 và giá trị lưu ở imm[11:0] (được mở rộng dấu), thực hiện đưa vào khối ALU để tính toán. Kết quả được lưu vào thanh ghi rd.

- Nhóm lệnh I (Load data)

imm[11:0]	rs1	000	rd	0000011	1b
imm[11:0]	rs1	010	rd	0000011	1h
imm[11:0]	rs1	011	rd	0000011	lw
imm[11:0]	rs1	100	rd	0000011	lbu
imm[11:0]	rs1	110	rd	0000011	lhu

Nhóm lệnh này có opcode là [6:0] = 0000011

Nhóm lệnh này thực hiện lấy hai giá trị lưu ở thanh ghi rs1 và giá trị lưu ở imm[11:0] (được mở rộng dấu) để tính tổng rs1 + ext(imm[11:0]). Sau đó lấy giá trị lưu trong data memory tại địa chỉ rs1 + ext(imm[11:0]). Với lb,lh,lw lần lượt lấy 8 , 16 , 32 bit của giá trị này lưu vào rd. Do lb và lh chỉ lấy 8 , 16 bit nên các bit trống của rd được lấp đầy bằng dấu của giá trị lấy ra từ data memory

- Nhóm lệnh S (Store data)

Imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	sb
Imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	sh
Imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	sw

Nhóm lệnh này có opcode là [6:0] = 0100011

Nhóm lệnh này thực hiện lấy hai giá trị lưu ở thanh ghi rs1 và giá trị lưu ở imm[11:5] và imm[4:0] (ghép lại và mở rộng dấu) để tính tổng rs1 + ext(imm[11:5]imm[4:0]). Sau đó lấy giá trị lưu trong thanh ghi rs2 . Với các lệnh sb , sh , sw lưu 8 , 16 ,32 bit thấp của giá trị này vào DMEM tại địa chỉ rs1 + ext(imm[11:5]imm[4:0]).

- Nhóm lệnh B (rẽ nhánh)

imm[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011	BEQ
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	BNE
imm[12 10:5]	rs2	rs1	100	imm[4:1 11]	1100011	BLT
imm[12 10:5]	rs2	rs1	101	imm[4:1 11]	1100011	BGE
imm[12 10:5]	rs2	rs1	110	imm[4:1 11]	1100011	BLTU
imm[12 10:5]	rs2	rs1	111	imm[4:1 11]	1100011	BGEU

Nhóm lênh này có opcode là [6:0] = 1100011

Nhóm lệnh này sẽ thực hiện chuyển giá trị của thanh ghi PC thành giá trị được lưu trong các phần imm giá trị lưu trong rs1 và rs2 thỏa điều kiện câu lệnh (bằng, không bằng, nhỏ hơn, nhỏ hơn không dấu, lớn hơn không dấu)

Khi lấy giá trị lưu ở phần imm ta phải ghép lại cho đúng thứ tự và mở rộng dấu, bit LSB luôn luôn bằng 0.

- Nhóm lênh U

31	12	11 7	6 0
imm[31:12]		rd	opcode

+ Với lệnh LUI:

Opcode = 0110111. Lệnh này load giá trị imm[31:12]000000000000 vào thanh ghi rd.

+ Với lênh AUIPC

Opcode = 0010111. Lệnh này load giá trị ở PC vào thanh ghi rd.

- Nhóm lênh J (nhảy không điều kiên)

imm[20 10:1	11[19:12]		rd	1101111	JAL
imm[11:0]	rs1	000	rd	1100111	JALR

- + Với lênh JAL:
 - x[rd] = pc+4; pc = pc + ext(imm);
- + Với lênh JALR:
 - $x[rd] = pc+4; pc = (x[rs1]+ext(imm)) \& \sim 1;$

b) Thiết kế CPU RV32

i) Sơ đồ khối đơn chu kỳ:

ii) Mô tả

- Inputs:
- + clk_i, rst_ni: xung clock và tín hiệu reset dữ liệu.
- + take bit: quyết định thực hiện lệnh nào trong các lệnh lw, lh, lb, lbu, lbhu, sw, sb, sh
- + addr: 32 bit địa chỉ đọc hoặc ghi dữ liệu
- + st_data: 32 bit dữ liệu cần lưu giữ trong LSU
- + st_en: 1 nếu ghi dữ liệu, 0 đọc dữ liệu.
- + io_sw: 18-bit data từ 18 switches trên Kit DE2
- Output:
- + ld_data: 32 bit load data.
- + io_lcd: 32 bit data to drive LCD.
- + io_ledg: 32-bit data to drive green LEDs.
- + io_ledr: 32-bit data to drive red LEDs.
- + io_hex0 .. io_hex7: 8 32-bit data to drive 8 7-segment LEDs.
- Tiến hành lập bảng bao gồm các lệnh, các tín hiệu vào, tín hiệu ra và phân tích câu lệnh:

1									0 => PC =PC+4	000 => Inst[31:20], ext sign	0=> ReadOnly	0 => sign	0 => B	0 => A	0000 => Add	0 => Read			00 => DMEM
2									1 => PC from ALU	001 => Inst[31:20], ext usign	1 => Write	1 => usign	1 => imm	1 => PC	0001 => Sub	1 => Write	01 => B	001 => W -> extB	01 => ALU
3										010 => Inst[24:20], ext usign					0010 => ShiftLeft		10 => HW	010 => W -> extHW	10 => PC +4
4										011 => Inst[31:25][11:7], ext sign								101 => W -> extUB	
5										100 => Inst[31][7][30:25][11:8]0, ext sign								110 => W -> extUHW	
6										101 => Inst[31:12]00									
7										110 => Inst[31][19:12][20][30:21]0, ext sign									
8																			
9 N	No ?	Type			Inst[14:12]		BrEq	BrLT	PCSel	ImmSel	RegWEn	BrUN	Bsel	Asel	ALUSel	MemRW	DataIn	DataOutAddj	WBSel
0	1	R	ADD	0	000	01100	X	x	0	x	1	x	0	0	0000	0	x	x	01
1 2	2	R	SUB	1	000	01100	X	x	0	x	1	x	0	0	0001	0	x	x	01
2 3	3	R	SLL	0	001	01100	X	x	0	x	1	x	0	0	0010	0	x	x	01
3 4	4	R	SLT	0	010	01100	X	x	0	x	1	x	0	0	0011	0	x	x	01
4 :	5	R	SLTU	0	011	01100	X	x	0	x	1	x	0	0	0100	0	x	x	01
5 (6	R	XOR	0	100	01100	x	x	0	x	1	x	0	0	0101	0	x	x	01
6		R	SRL	0		01100	X	x	0	x	1	x	0	0	0110	0	х	x	01
7 8	8	R	SRA	1	101	01100	x	x	0	x	1	x	0	0	0111	0	x	x	01
8 9	9	R	OR	0		01100	x	x	0	x	1	x	0	0	1000	0	x	x	01
9 1	0	R	AND	0	111	01100	x	x	0	x	1	x	0	0	1001	0	x	x	01
0																			
1 1	1	I	ADDI	x	000	00100	x	x	0	000	1	x	1	0	0000	0	x	x	01
2 1		I	SLTI	x	010	00100	x	x	0	000	1	x	1	0	0011	0	x	x	01
3 1	3	I	SLTIU	x	011	00100	x	x	0	001	1	x	1	0	0100	0	x	x	01
4 1	4	I	XORI	x	100	00100	x	x	0	000	1	x	1	0	0101	0	x	x	01
5 1		I	ORI	x	110	00100	X	x	0	000	1	x	1	0	1000	0	x	x	01
5 1		I	ANDI	x	111	00100	X	x	0	000	1	x	1	0	1001	0	x	x	01
7 1		I	SLLI	0	001	00100	X	x	0	010	1	x	1	0	0010	0	x	x	01
8 1		I	SRLI	0	101	00100	X	X	0	010	1	X	1	0	0110	0	X	X	01
9 1	9	I	SRAI	1	101	00100	X	x	0	010	1	x	1	0	0111	0	x	X	01
0																			L
1 2		L	LB	x	000	00000	X	x	0	000	1	x	1	0	0000	0	x	001	00
2 2		L	LH	х	001	00000	x	x	0	000	1	x	1	0	0000	0	х	010	00
3 2		L	LW	х	010	00000	x	x	0	000	1	x	1	0	0000	0	х	000	00
4 2		L	LBU	x	100	00000	х	x	0	000	1	x	1	0	0000	0	x	101	00
5 2	4	L	LHU	х	101	00000	x	x	0	000	1	x	1	0	0000	0	x	110	00

c) Kiểm tra thiết kế

Sử dụng phần mềm thực hiện các lệnh trong risc -v.

```
lui x1, 983041
addi x1, x1,31
addi x3, x3, 8
sw x1, 8(x0)
lb x2, 0(x3)
lbu x4, 0(x3)
blt x1,x2,LABLE
addi x4,x3,10
LABLE: addi x4,x4,32
```

Chuyển đổi các câu lệnh sang mã thập lục phân và lưu vào file instdata.mem

```
instmem.data -
File Edit Format
f00010b7
01f08093
00818193
00102423
00018103
0001c203
0020c463
00a18213
02020213
```

dk_i	1h1																	
rst_ni	1'h0																	
nxt_pc_o	32'h	32'h00000004		32'h000000	08	321	000000)c	32h000000	10	32'h000000	14	32'h000000	18	32'h000000	20	32'h000000	24
pc_o	32'h	(32'h00000000		32'h000000)4	321	000000	08	32'h000000)c	32'h000000	10	32'h000000	14	32'h000000	18	32'h000000	20
pc_four_o	32'h	(32'h00000004		32'h000000	08	321	000000	c	32h000000	10	32'h000000	14	32'h000000	18	32'h000000	1c	32'h000000	24
rs1_data_o	32'h	(32'h00000000		32'hf000100	0	321	000000	00	32h000000	00	32'h000000	08			32'hf00010	f	32hffffff1f	
rs2_data_o	32'h	(32'h00000000							32hf000101	f	32'h000000	00			32'hffffff1f		32'h000000	00
instr_o	32'h	32'hf00010b7		32'h01f0809	3	321	008181	93	32h001024	23	32'h000181	03	32'h0001c20	3	32'h0020c4	53	32'h020202	13
imm_o	32'h	(32'hf0001000		32'h000000	1f	321	000000	08			32'h000000	00			32'h000000	08	32'h000000	20
alumux1_o	32'h	(32'h00000000		32'hf000100	0	321	000000	00			32'h000000	08			32'h000000	18	32'hffffff1f	
alumux2_o	32'h	32'hf0001000		32'h000000	1f	321	000000	08			32'h000000	00			32'h000000	08	32'h000000	20
alu_data_o	32'h	(32'hf0001000		32'hf000101	f	321	000000	08			32'h000000	08			32'h000000	20	32'hffffff3f	
ld_data_o	32'h											32'hffffff1f						
wb_data_i	32'h	32'hf0001000		32'hf00010:	f	321	000000	08				32hffffff1f					32hffffff3f	
br_less_o	1'h0																	
br_equal_o	1h1																	
br_sel_i	1'h0																	
op_a_sel_i	1h0																	
op_b_sel_i	1h1																	
rd_wren_i	1h1																	
mem_wren_i	1'h0																	
br_unsigned_i	1hx																	
imm_sel_i		(3'h3		31h0					3h1		3'h0				3'h2		3h0	
alu_op_i	4'h0	(4'hb		4h0														
wb_sel_i	2h1	(2h1									2'h0						2h1	
ctrl_o	18'h	18'hXXXX9		18 hxXX01					18 h 10 X 0 X		18'h00X00				18'hxX18X		18'hxXX01	
take_bit_i	3'hx	3'hX							3h2		3'h0							

```
- Câu lênh 1:
```

- + pc = 0
- + x1 = f0001000h
- Câu lệnh 2:
 - + pc = 4h

$$+ x1 = x1 + 31 = f000101fh$$

- Câu lênh 3:

$$+ pc = 8h$$

$$+ x3 = x3 + 8 = 0 + 8 = 8$$

- Câu lênh 4:

$$+ pc = ch$$

+ Lưu giá trị x1 = f000101fh vào địa chỉ x0 + 8h = 8h trong datamem

Câu lênh 5:

$$+ pc = 10h$$

+ Vào datamem tại địa chỉ x3 + 0 = 8h, lấy 8 bit lưu vào x2. Do dùng lệnh lb và giá trị f0001000h là một số âm nếu là số có dấu nên các bit trống x2 điền giá trị 1.

X2 = ffffff1fh

Câu lệnh 6:

$$+ pc = 14h$$

+ Vào datamem tại địa chỉ x3 + 0 = 8h, lấy 8 bit lưu vào x2. Do dùng lệnh lbu nên các bit trống x4 điền giá trị 0. x4 = 1fh

Câu lênh 7:

$$+ pc = 18h$$

+ Nếu x1<x2 (có dấu) thì nhảy đến chỗ LABLE . Do x1 = f000101f < ffffff1f = x2 nếu so sánh có dấu nên nhảy qua câu lệnh 8 đến câu lệnh 9 (pc = 20h)

Câu lênh 9:

$$+ pc = 20h$$

$$+ x4 = x4 + 32 = 3fh$$

d) Kết quả mô phỏng

j	1h1													
 :_ni	1'h0				1									
_ t_pc_i	32'h	(32'h00000004			132'h00000008	32h0	00000c	32'h00000010	32'h000000	14 [32]	'h000000	18	32'h00000020	32'h00000024
	32'h	(32'h00000000			132h00000004	132h0	0000008	132'h0000000c	32h000000	10 [32	'h000000	14	32h00000018	32'h00000020
four_i	32'h	(32'h00000004			32'h00000008	32h0	00000c	32'h00000010	32'h000000	14 32	'h000000	18	32'h0000001c	32'h00000024
_addr_i	5'h00	(5'h00			5'h01	5h03		5'h00	5°h03				5h01	[5h04
_addr_i	5'h00	(5'h00			5h1f	5h08		5'h01	5°h00				5h02	5'h00
addr_i	5'h01	(5'h01				5 h03		5'h08	5 h02	. 5'h	104		5'h08	[5h04
data_i	32'h	(32'h00000000			32'hf0001000	32°h0	0000000		32°h000000	08			32hf000101f	32'h000000 1f
data_i	32'h	(32'h00000000						32'hf000101f	32°h000000	00			32hffffff1f	32'h00000000
	32'h	(32hf00010b7			32h01f08093	32h0	0818193	32'h00102423	32h000181	32	'h0001c2	3	32h0020c463	32'h02020213
	32'h	32'hf0001000			32'h0000001f	32h0	800000		32h000000	00			32h00000008	32'h00000020
	32'h	32'h00000000			32'hf0001000	32h0	0000000		32'h000000	08			32h00000018	32'h0000001f
	32'h	32'hf0001000			32'h000000 1f	32h0	800000		32h000000	00			32h00000008	32'h00000020
data_i	32'h	32'hf0001000			32'hf000101f	32h0	800000		32'h000000	08			32'h00000020	32'h0000003f
ata_i	32'h									32'hffffff1f		32'h000000	1f	
data_i	32'h	32'hf0001000			32'hf000101f	32h0	800000			32'hffffff1f		32'h000000	1f	32'h0000003f
	1'h0													
	1h1													
	1'h0													
	1hx													
	1h1													
	1h1			nglecycle/o	p_b_sel_i @	81 ns								
	1'h0		1'h1											
nsigne	1hx													
	3'h3	(3'h3			3'h0			3'h1	3°h0				3h2	[3h0
	4hb	(4'hb			4'h0									
	2h1	(2h1							2'h0					2'h1
	18'h	18'hXXXX9			18'hxXX01			18'h10X0X	18'h00X00	18'	h20X00		18"hxX18X	18'hxXX01

```
regfile.data
File Edit Forr
// memory c
// instance
// format=1
00000000
f000101f
fffffff1f
00000008
0000003f
```

File datamem.data

```
datamem.data -
File Edit Format
// memory data
// instance=/s
// format=bin
aaaa
0000
0000
0000
0000
9999
1111
0000
0001
9999
0000
```

e) Kết luận

Thiết kế chạy đúng với bài test đặt ra

2. Câu hỏi

a.Write a code to find the largest number of the Fibonacci sequence less than 32'd500. You will put the ceiling number in register x10 and save the value you find in 0x400

```
addi x1 , x0 , 1
addi x2 , x0 , 0x0500
addi x4, x0, 1
```

```
LABLE:
add x1, x1, x4
add x4, x1, x0
addi x10, x10, 1
blt x1, x2, LABLE
```

```
sw x4, 0x0400 (x0)
```

b. Write a code in which you read an 8-bit binary in the address 0x500, convert it into 3 decimal digits, and then write them into 0x420, 0x410, and 0x400, respectively. For example, the value in 0x500 is 0xEE, which is 238, so "2" will be in 0x420, "3" in 0x410, and "8" in 0x400

1bu x1, 0x500(x0)

addi x1, x1, 0xEE

addi x2, x0, 0

addi x3, x0, 1

addi x4, x0, 100

LABLE0:

addi x2, x2, 100

addi x5, x5, 1

blt x2, x1, LABLE0

sub x5,x5,x3

sub x2,x2,x4

sub x1,x1,x2

addi x2, x0, 0

addi x4, x0,10

LABLE1:

addi x2, x2, 10

addi x6, x6, 1

blt x2, x1, LABLE1

sub x2,x2,x4

sub x6,x6,x3

sub x7,x1,x2

sb x5,0x420(x0)

sb x6,0x410(x0)

sb x7,0x400(x0)