

Data Collection and Preprocessing Phase

Date	21 June 2024
Team ID	739812
Project Title	Eudaimonia Engine: Machine Learning Delving into Happiness Classification
Maximum Marks	6 Marks

Data Exploration and Preprocessing Report

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	Description										
	Dimension: 143 rows × 7 columns Descriptive statistics: infoavail housecost schoolquality policetrust streetquality events happy										
	count	143.000000	143.000000	143.000000	143.000000	143.000000	143.000000	143.000000			
Data Overview	mean	4.325175	2.513986	3.265734	3.699301	3.615385	4.216783	0.538462			
	std	0.765126	1.068011	0.992586	0.888383	1.131639	0.848693	0.500271			
	min	2.500000	1.000000	1.000000	1.000000	1.000000	1.000000	0.000000			
	25%	4.000000	2.000000	3.000000	3.000000	3.000000	4.000000	0.000000			
	50%	5.000000	3.000000	3.000000	4.000000	4.000000	4.000000	1.000000			
	75%	5.000000	3.000000	4.000000	4.000000	4.000000	5.000000	1.000000			
	max	5.000000	4.500000	5.000000	5.000000	5.000000	5.000000	1.000000			
Univariate Analysis											

0

0

3 3 5

Outliers and Anomalies 4.0 -[1.0, 6.5] [1.0, 6.5, 2.5] df["infoavail"] = np.where(df["infoavail"] == 6.5, 6.5, np.where(df["infoavail"] == 2.5, 2.5, df["infoavail"])) $$\label{eq:cost} \begin{split} & \text{IQt} = [] \\ & \text{IQt-append(df["housecost"].quantile(0.75)} & & & & & & & \\ & & \text{IQt} \\ & & \text{IQt} \end{split}$$ [1.0] upper = [] IQt.append(df["housecost"].quantile(0.75) + 1.5 * IQt[0]) IQt [1.0, 4.5] lower=[] IQt.append(df["housecost"].quantile(0.25) - 1.5 * IQt[0]) IQt [1.0, 4.5, 0.5] plt.figure(figsize=(5,5)) for i in df: plt.boxplot(df[i]) plt.title(i) plt.show() **Data Preprocessing Code Screenshots** [] #READ THE DATASET df=pd.read_csv("/content/happydata.csv") infoavail housecost schoolquality policetrust streetquality ëvents happy Loading Data 0 3 3 3 4 2 4

3 2 3 5

3

4 5 4 3 3 3 5 0

5 4

Handling Missing Data	<pre>#DATA PREPARATION #HANDLING MISSING VALUES df.isnull().any()</pre>				df.dupl:	WG DUPLICATES						
	₹	infoavail housecost schoolquality policetrust streetquality ëvents happy dtype: bool	False False False False False False	_	0 3 3 3 4 2 1 3 2 3 5 4					2 4 3	3	0 0 1
	[]	df.isnull().sum(O		5	5	5	3	5	5	5	1
	→	infoavail housecost schoolquality policetrust streetquality ëvents happy dtype: int64	0 0 0 0 0 0		137 138 139 141 142 125 rows	5 5 5 4 5 ×7 columns	2 3 2 3 3	3 3 3 3 2	4 1 4 4 4 5	4 3 2 4 5	3 5 5 5 5	1 0 1 0
Data Transformation	<pre>[] # Separate the independent variables x = df.drop(columns='happy',axis=1) # Separate the target variable y = df['happy'] from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2, random_state=0)</pre>											
Feature Engineering	Attached are the codes in the final submission.											
Save Processed Data	-											