多阶段生产系统优化模型的验证

1. 引言

本节旨在对前文提出的多阶段生产系统优化模型进行全面验证。我们将分别验证抽样检测方案 (问题1)、单一产品生产决策(问题2)、多道工序生产决策(问题3)以及基于抽样检测的生 产决策(问题4)。通过这些验证,我们将评估模型的准确性、稳定性和适用性。

2. 符号说明

符号	描述	单位
d_i	第i个零配件的真实次品率	无量纲
\hat{d}_i	第i个零配件的估计次品率	无量纲
p_i	第i个零配件的购买单价	元/件
c_i	第i个零配件的检测成本	元/件
D_j	第j个半成品/成品的真实次品率	无量纲
$\hat{D_j}$	第j个半成品/成品的估计次品率	无量纲
A_{j}	第j个半成品/成品的装配成本	元/件
C_{j}	第j个半成品/成品的检测成本	元/件
R_{j}	第j个半成品/成品的拆解费用	元/件
M	最终产品的市场售价	元/件
L	不合格成品的调换损失	元/件
n	抽样检测的样本量	件
x_i	是否检测第i个零配件的决策变量	二元(0或1)
y_{j}	是否检测第j个半成品/成品的决策变量	二元(0或1)
z_{j}	是否拆解第j个半成品/成品的决策变量	二元(0或1)
α	置信水平	无量纲
β	检验功效	无量纲
δ	可接受的误差范围	无量纲

3. 抽样检测方案验证(问题1)

3.1 数学模型

抽样检测方案基于二项分布检验。给定真实次品率 p,样本量 n,和观察到的不合格品数量 X,我们的假设检验如下:

 $H_0:p\leq p_0$ (次品率不超过标称值) $H_1:p>p_0$ (次品率超过标称值) 其中 p_0 是标称次品率。

3.2 验证方法

我们使用蒙特卡罗模拟来验证抽样方案的有效性。主要步骤如下:

1. 计算所需样本量:

$$n=rac{z_lpha^2p_0(1-p_0)}{\delta^2}$$

其中 z_{α} 是标准正态分布的 α 分位数。

2. 模拟抽样过程:

对于给定的真实次品率 p, 生成二项随机变量 $X \sim Binomial(n, p)$

3. 进行假设检验:

计算 p 值:
$$P(X \ge x|H_0) = 1 - B(x-1;n,p_0)$$

其中 B(x; n, p) 是二项分布的累积分布函数。

4. 重复步骤2-3多次,计算拒绝率(当 $p>p_0$ 时)和接受率(当 $p< p_0$ 时)。

3.3 验证结果

通过模拟,我们得到以下结果:

- 当真实次品率为11%时(高于标称值10%), 拒绝率为95.11%
- 当真实次品率为9%时(低于标称值10%),接受率为90.39%

这些结果验证了我们的抽样方案在95%置信度下能够正确拒绝次品率超标的情况,并在90%置信度下正确接受次品率不超标的情况。

4. 单一产品生产决策验证(问题2)

4.1 数学模型

我们定义总成本函数 $C(x_1, x_2, y, z)$ 如下:

$$C = \sum_{i=1}^{2} [p_i(1+d_i(1-x_i)) + c_ix_i] + A + Cy + D[zR + (1-z)(p_1+p_2+A)] + (1-y)DL$$

其中 x_1, x_2, y, z 是二元决策变量。

4.2 验证方法

我们使用穷举搜索来验证最优决策:

- 1. 对所有可能的决策组合 $(x_1, x_2, y, z) \in \{0, 1\}^4$ 计算总成本。
- 2. 找出成本最低的决策组合。
- 3. 将找到的最优决策与给定决策比较。

4.3 验证结果

验证结果显示:

• 最优决策: $(x_1, x_2, y, z) = (0, 0, 0, 1)$

• 最低成本: 29.10元

这与给定的决策完全一致、验证了问题2的解答是正确的。

5. 多道工序生产决策验证(问题3)

5.1 数学模型

扩展问题2的模型, 我们定义总成本函数 $C(\mathbf{x}, \mathbf{y}, \mathbf{z})$ 如下:

$$C = \sum_{i=1}^{8} [p_i(1+d_i(1-x_i)) + c_ix_i] + \sum_{j=1}^{3} [A_j + C_jy_j + D_j(z_jR_j + (1-z_j)(\sum_{i=1}^{8} p_i + A_j))] + (1-y_3)D_3L$$

其中 $\mathbf{x} = (x_1, ..., x_8)$, $\mathbf{y} = (y_1, y_2, y_3)$, $\mathbf{z} = (z_1, z_2, z_3)$ 是决策向量。

5.2 验证方法

使用与问题2相同的穷举搜索方法,但搜索空间扩大到 $\{0,1\}^{14}$ 。

5.3 验证结果

验证结果显示:

• 最优决策: $\mathbf{x} = (0, 0, 0, 0, 0, 0, 0, 0), \mathbf{y} = (0, 0, 0), \mathbf{z} = (1, 1, 1)$

• 最低成本: 100.54元

这与给定的决策完全一致,验证了问题3的解答是正确的。

6. 基于抽样检测的生产决策验证(问题4)

6.1 数学模型

我们引入抽样检测的不确定性,将次品率视为随机变量。对于每个零配件和半成品/成品,我们有:

$$\hat{d}_i \sim Beta(k_i+1,n_i-k_i+1)~\hat{D_j} \sim Beta(K_j+1,N_j-K_j+1)$$

其中 k_i, K_j 是观察到的不合格品数量, n_i, N_i 是样本量。

总成本函数变为期望成本:

$$E[C] = E[\sum_{i=1}^{8} [p_i(1+\hat{d}_i(1-x_i)) + c_ix_i] + \sum_{j=1}^{3} [A_j + C_jy_j + \hat{D}_j(z_jR_j + (1-z_j)(\sum_{i=1}^{8} p_i + A_j))] + (1-y_3)\hat{D}_3L]$$

6.2 验证方法

我们使用蒙特卡罗模拟来验证基于抽样检测的决策:

- 1. 对每个零配件和半成品/成品、模拟抽样检测过程、得到估计次品率。
- 2. 使用这些估计次品率、计算不同决策组合下的期望总成本。
- 3. 重复步骤1-2多次(如1000次),得到每种决策组合的平均期望成本。
- 4. 选择平均期望成本最低的决策组合作为最优策略。

6.3 验证结果

通过1000次模拟, 我们得到以下结果:

- 最常见的最优决策: $\mathbf{x} = (0, 0, 0, 0, 0, 0, 0, 0), \mathbf{y} = (0, 0, 0), \mathbf{z} = (1, 1, 1)$
- 平均最优成本: 101.60 ± 0.05元

这个结果与给定的决策一致,验证了问题4的解答在考虑抽样检测不确定性的情况下仍然是最优的。

7. 结论

通过对四个问题的全面验证, 我们可以得出以下结论:

- 1. 抽样检测方案(问题1)在给定的置信水平下能够有效地识别次品率超标和不超标的情况。
- 2. 单一产品生产决策(问题2)和多道工序生产决策(问题3)的最优策略在确定性环境下被准确识别。
- 3. 基于抽样检测的生产决策(问题4)在考虑不确定性后仍然保持稳健,验证了原始决策的有效性。

这些验证结果不仅确认了我们模型的正确性,还展示了模型在面对不确定性时的稳健性。然而,需要注意的是,在实际应用中,可能需要考虑更多的因素,如生产能力限制、市场需求波动等,以进一步完善模型。