Methods Report on age and sex modeling of COVID-19 excess mortality

Giancarlo Camarda, Tim Riffe, Enrique Acosta, Simona Bignami

27 July 2021

Introduction

Summary of approaches taken

Data

Here data sources for deaths and exposures should be presented. I only add the table and items I presented in the talk.

- Criteria for selecting sources/year:
 - 2020 must be available
 - 2015-2019 when coming from the same source
 - prioritize source coherence with respect to longer periods
 - preference for more detailed age-groups
- Sources for the exposures: UN WPP (single year of age)
- Age-range: 0-100

Methods

For ease of presentation, we formulate the model on a given population, both sexes combined. Sex-specific estimations will be presented in the next sub-section

We suppose that we have deaths from different sources and in general they are provided by age-groups

, and exposures to risk, arranged in two matrices, Y = (yij) and E = (eij),

load("Outputs/OutPrepandemic2020.Rdata") ls()

Source	# of populations	2020		
Source		Total # deaths	Mean $\#$ of age-groups	
WHO	13	6.6	19	
STMF	27	4.6	18	
Statistical bureaus	7	4.0	78	
Eurostat	9	1.3	19	
UN PD	11	0.5	20	
Totals	67	6.6	25	

##	[11]	"C2"	"coeff"	"col1"	"col1T"	"col2"
##	[16]	"col2T"	"colc"	"colcou"	"colcouT"	"colcT"
##	[21]	"cold"	"coldT"	"Ddelta"	"delta.hat"	"delta.hatL"
##	[26]	"delta.hatU"	"Deta1"	"diagVbetas"	"dif.eta"	"e1"
##	[31]	"E1"	"e1g"	"e2"	"e2g"	"EE"
##	[36]	"EE.i"	"EEO"	"EE1"	"eta"	"eta.old"
##	[41]	"eta.st"	"eta1.hat"	"eta1.hatL"	"eta1.hatU"	"eta2.hat"
##	[46]	"eta2.hatL"	"eta2.hatU"	"fit1.0"	"fit2.0"	"G"
##	[51]	"G1"	"G2"	"gamma"	"GpP"	"H"
##	[56]	"HO"	"i"	"it"	"j"	"kappa"
##	[61]	"lambda.delta"	"lambda.eta1"	"len1"	"len2"	"LHS"
##	[66]	"lmx1g"	"lmx2g"	"low1"	"low2"	"m"
##	[71]	"max.it"	"mu"	"n1"	"n2"	"nt1"
##	[76]	"OUT"	"OUT.j"	"p"	"P"	"PLOT"
##	[81]	"pop"	"Pr"	"r"	"RHS"	"se.betas"
##	[86]	"se.c"	"se.delta"	"se.eta1"	"se.eta2"	"t1"
##	[91]	"tDDdelta"	"tDDeta1"	"tXr"	"U"	"UO"
##	[96]	"U1"	"U2"	"up1"	"up2"	"V.eta12"
##	[101]	"Vbetas"	"w"	"whi"	"x"	"X"
##	[106]	"y"	"y1"	"Y1"	"y1.st0"	"y2"
##	[111]	"Y2"	"y2.st0"	"YY"	"YY.i"	"YYO"
##	[116]	"YY1"				

Including sex

Results