

# 고급 알고리즘

#### (출처) tech.kakao.com

#### 비밀지도 – 2018 카카오 공채 코딩 테스트 문제

- 지도는 한 변의 길이가 n인 정사각형 배열이며, 각 칸은 공백("") 또는 벽("#")의 두 종류로 이루어져 있음
- 전체 지도는 이런 두 장의 지도를 겹쳐서 얻을 수 있음
- 두 장의 지도를 겹쳐서 얻은 전체 지도에서 어느 하나의 지도라도 벽인 경우는 전체 지도에서 벽이고, 두 장 지도 모두 공백인 경우 전체 지도에서 공백임
- 각각의 지도 "지도 1"과 "지도 2"는 각각 정수 배열로 암호화되어 있다.
- 암호화된 배열은 지도의 각 가로줄에서 벽 부분을 1, 공백 부분을 0으로 부호화했을 때 얻어지는 이진수에 해당하는 값의 배열이다.

|   | # |   |   | # | 01001(2) = 9  |
|---|---|---|---|---|---------------|
| # |   | # |   |   | 10100(2) = 20 |
| # | # | # |   |   | 11100(2) = 28 |
| # |   |   | # |   | 10010(2) = 18 |
|   | # |   | # | # | 01011(2) = 18 |

|   | # | # | # | # |   | 11110(2) = 30 |
|---|---|---|---|---|---|---------------|
|   |   |   |   |   | # | 00001(2) = 1  |
|   | # |   | # |   | # | 10101(2) = 21 |
|   | # |   |   |   | # | 10001(2) = 17 |
| 1 | # | # | # |   |   | 11100(2) = 28 |



| # | # | # | # | # |
|---|---|---|---|---|
| # |   | # |   | # |
| # | # | # |   | # |
| # |   |   | # | # |
| # | # | # | # | # |

| (출처) t | tech.kakao.com                                                      | 비밀지도 – 2018 카카오 공채 코딩 테스트 문제         |                                                          |  |  |  |  |  |  |
|--------|---------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|
|        | 입력으로 지도의 힌                                                          | · 변 크기 n 과 2개의 정수 배열 arr1, arr2가 들어온 |                                                          |  |  |  |  |  |  |
| 입력     | -1≦n≦16                                                             |                                      |                                                          |  |  |  |  |  |  |
| 87     | - arrı, arr2는 길이 r                                                  | - arr1, arr2는 길이 n인 정수 배열로 주어진다.     |                                                          |  |  |  |  |  |  |
|        | - 정수 배열의 각 원소 x를 이진수로 변환했을 때의 길이는 n 이하이다. 즉, o ≦ x ≦ 2^n − 1을 만족한다. |                                      |                                                          |  |  |  |  |  |  |
| 출력     | 원래의 비밀지도를                                                           | 해독하여 "#", 공백으로 구성된 문자열 배열로 출         | 력하라.                                                     |  |  |  |  |  |  |
|        | <u>입력</u>                                                           |                                      | <u>출력</u>                                                |  |  |  |  |  |  |
| 입출력    | 5                                                                   |                                      | ["#####","# # #", "### #", "# ##", "#####"]              |  |  |  |  |  |  |
| 예      | [9, 20, 28, 18, 11]                                                 |                                      |                                                          |  |  |  |  |  |  |
|        | [30, 1, 21, 17, 28]                                                 |                                      |                                                          |  |  |  |  |  |  |
|        | <u>입력</u>                                                           |                                      | <u>출력</u>                                                |  |  |  |  |  |  |
|        | 6                                                                   |                                      | ["#####", "### #", "## ##", " #### ", " #####", "#### "] |  |  |  |  |  |  |
|        | [46, 33, 33,22, 31, 5                                               | o]                                   |                                                          |  |  |  |  |  |  |
|        | [27,56, 19, 14, 14, 1                                               | 0]                                   |                                                          |  |  |  |  |  |  |
|        |                                                                     |                                      |                                                          |  |  |  |  |  |  |

배경지식

#### 비트 연산 (AND, OR, XOR)

1 (배경지식) 비트 연산 (AND, OR, XOR)

|   |   | AND   | OR  | XOR |
|---|---|-------|-----|-----|
| a | b | a & b | a b | a^b |
| 0 | О | 0     | 0   | 0   |
| O | 1 | O     | 1   | 1   |
| 1 | О | O     | 1   | 1   |
| 1 | 1 | 1     | 1   | О   |

```
#include <stdio.h>
int main()
{
    unsigned char num1 = 1: // 0000 0001
    unsigned char num2 = 3: // 0000 0011

    printf("%d\n", num1 & num2); // 0000 0001
    printf("%d\n", num1 | num2); // 0000 0011

    printf("%d\n", num1 ^ num2); // 0000 0010
    return 0;
}
```

```
1
3
2
```

배경지식

#### 비트연산(shift)

12

```
a >> b
           a 값을 b비트 수 만큼 오른쪽으로 시프트
           a 값을 b비트 수 만큼 왼쪽으로 시프트
a << b
  12
           >>
                                                   3
0000 1100
                                    0000 0011
                      2
           12 / 2^2
   3
                                                   12
           <<
0000 0011
                      2
                                    00001100
           3 * 2<sup>2</sup>
```

(배경지식) 비트 연산 (shift)

```
#include <stdio.h>
int main()
{
    unsigned char num1 = 12: // 0000 1100
    unsigned char num2 = 3: // 0000 0011

    printf("%u\n", num1 >> 2): // 3: 0000 0011
    printf("%u\n", num2 << 2): // 12: 0000 1100
    return 0:
}</pre>
```

배경지식

#### 비트 연산자의 활용

(배경지식) 비트 연산자의 활용

flag = 1 << 3

0000 0001

3

0000 1000

오른쪽에서 4번째 bit를 1로 setting

&

<<

a

flag

0000 1100

0000 1000

0000 1000

a의 오른쪽에서 4번째 bit가 1 값인지 여부를 검사

```
#include <stdio.h>
int main()
  unsigned char flag;
  unsigned char a = 12;
  flag = 1 << 3;
  if (a & flag) printf("0000 1000\n"); // 0000 1000
  else printf("0000 0000\n");
  return 0;
```

0000 1000

#### (출처) tech.kakao.com

#### 비밀지도 – 2018 카카오 공채 코딩 테스트 문제

|   | # |   |   | # | 01001(2) = 9  |
|---|---|---|---|---|---------------|
| # |   | # |   |   | 10100(2) = 20 |
| # | # | # |   |   | 11100(2) = 28 |
| # |   |   | # |   | 10010(2) = 18 |
|   | # |   | # | # | 01011(2) = 18 |
|   |   |   |   |   | ( )           |





|     | <u>입력</u>                | <u> 줄력</u>                                                |
|-----|--------------------------|-----------------------------------------------------------|
| 입출력 | 5                        | ["#####","# # #","### #","# ##","#####"]                  |
| 예   | [9, 20, 28, 18, 11]      |                                                           |
|     | [30, 1, 21, 17, 28]      |                                                           |
|     | <u>입력</u>                | <u>출력</u>                                                 |
|     | 6                        | ["#####", "### #", "## ##", " #### ", " #####", "### # "] |
|     | [46, 33, 33, 22, 31, 50] |                                                           |
|     | [27,56, 19, 14, 14, 10]  |                                                           |
|     |                          |                                                           |

#### 알고리즘

```
#include <stdio.h>
#include <string.h>
int main()
  int arr1[] = { 9, 20, 28, 18, 11 };
  int arr2[] = { 30, 1, 21, 17, 28 };
  int n = sizeof(arr1) / sizeof(arr1[o]);
  int i, j;
  int row;
```

```
for (i = 0; i < n; i++) {
  row = arr1[i] | arr2[i];
           // row 값을 하위 5bit만 출력
return o;
```

#### 알고리즘

4 일

```
#include <stdio.h>
#include <string.h>
int main()
  int arr1[] = { 9, 20, 28, 18, 11 };
  int arr2[] = \{30, 1, 21, 17, 28\};
  int n = sizeof(arr1) / sizeof(arr1[0]);
  int i, j;
  int row;
```

```
for (i = 0; i < n; i++){
  row = arr1[i] | arr2[i];
          // row 값을 하위 5bit만 출력
return o;
```

```
printf("[");
for (j = n-1; j >= 0; j--) {
    if ( ((row >> j) & 1) == 1)
        printf("#");
    else
        printf(" ");
}
printf("]\n");
```

#### 알고리즘

```
row
                                                                                                   row
                                            printf("[");
                                                                                  00010101
                                                                                                      00010101
                                            for (j = n-1; j >= 0; j--)
for (i = 0; i < n; i++)
                                              if (((row >> j) & 1) == 1)
 row = arr1[i] | arr2[i];
                                                printf("#");
                                                                                row >> 4
                                                                                                   row >> 3
                                                                                                     00000010
                                              else
                                                                                  0000001
        // row 값을 하위 5bit만 출력
                                                printf(" ");
                                                                                (row >> 4) & 1
                                                                                                   (row >> 3) & 1
                                             printf("]\n");
                                                                                                      0000010
                                                                                  0000001
return o;
                                                                              &
                                              row
                                                                                  0000001
                                                                                                      0000001
                                                   00010101
                                                                                   0000001
                                                                                                     0000000
                                                       ###
```

# 1-비밀지도 (C 예시)

#### 알고리즘

4 알고리즘(입력) – IDE https://ide.geeksforgeeks.org/

|   | # |   |   | # | 01001(2) = 9  |
|---|---|---|---|---|---------------|
| # |   | # |   |   | 10100(2) = 20 |
| # | # | # |   |   | 11100(2) = 28 |
| # |   |   | # |   | 10010(2) = 18 |
|   | # |   | # | # | 01011(2) = 18 |

| # | # | # | # |   | 11110(2) = 30 |
|---|---|---|---|---|---------------|
|   |   |   |   | # | 00001(2) = 1  |
| # |   | # |   | # | 10101(2) = 21 |
| # |   |   |   | # | 10001(2) = 17 |
| # | # | # |   |   | 11100(2) = 28 |



```
С
                                          С
                       •
                                                     1 #include <stdio.h>
 2 #include <string.h>
 4 int main()
 5 * {
        int arr1[] = { 9, 20, 28, 18, 11 };
        int arr2[] = { 30, 1, 21, 17, 28 };
        int n = sizeof(arr1)/sizeof(arr1[0]);
10
        int i, j;
11
        int row;
12
13 -
        for (i = 0; i < n; i++) {
14
            row = arr1[i] | arr2[i];
15
16
            printf("[");
17 -
            for (j = n-1; j >= 0; j--) {
                if (((row >> j) \& 1) == 1)
18
                    printf("#");
19
20
                else
                    printf(" ");
21
22
            printf("]\n");
23
24
25
26
```

Input Goes Here..

#### Time(sec): 0

#### Output:

```
[####]
[# # #]
[### #]
[# ##]
```

# 1-비밀지도 (Java 예시)

#### 알고리즘

4

```
public class Solution {
  static int Answer;
  public static void main(String args[]) throws Exception {
    //int[] arr1 = { 9, 20, 28, 18, 11 };
    //int[] arr2 = { 30, 1, 21, 17, 28 };
        Scanner <u>sc = new Scanner(System.in);</u>
        int n = sc.nextInt();
        int[] arr1 = new int[n];
        int[] arr2 = new int[n];
       for (int i = 0; i < n; i++) {
            arr1[i] = sc.nextInt();
       for (int i = 0; i < n; i++) {
            arr2[i] = sc.nextInt();
    int row;
```

```
for (int i = 0; i < arr1.length; i++) {
  row = arr1[i] | arr2[i];
  System.out.printf("[");
  for (int j = arr1.length-1; j >= 0; j--) {
    if (((row >> j) & 1) == 1)
      System.out.printf("#");
    else
      System.out.printf(" ");
  System.out.printf("]\n");
```

#### Problem-2

### 문자열 압축 – 2020 카카오 공채 코딩 테스트 문제

|       | 압축할 문자열 S가 매개변수로 주어질                                | 때, 1개 이상 문자열을 잘라 압축하여 표현한 문자 | 열 중 가장 짧은 것의 길이를 구하시오 <b>.</b> |  |  |  |  |  |  |  |
|-------|-----------------------------------------------------|------------------------------|--------------------------------|--|--|--|--|--|--|--|
| 입력    | 단) 1<= s의 길이 <=1000                                 |                              |                                |  |  |  |  |  |  |  |
|       | s는 알파벳 소문자로만 이루어져 있습니다.                             |                              |                                |  |  |  |  |  |  |  |
|       | 문자열은 제일 앞부터 정해진 길이만                                 | 큼 잘라야 합니다.                   |                                |  |  |  |  |  |  |  |
| 출력    | 1개이상 단위로 문자열을 잘라 압축하여 표현한 문자열 중 가장 짧은 것의 길이를 출력하시오. |                              |                                |  |  |  |  |  |  |  |
|       | <u>입력</u>                                           | 문자열 1개단위 분할                  | <u>출력</u>                      |  |  |  |  |  |  |  |
|       | aabbaccc                                            | 2a2ba3c                      | 7                              |  |  |  |  |  |  |  |
|       | ababcdcdababcdcd                                    | 문자열8개단위분할                    | 9                              |  |  |  |  |  |  |  |
|       |                                                     | 2ababcdcd                    |                                |  |  |  |  |  |  |  |
|       |                                                     | 2ab2cd2ab2cd                 |                                |  |  |  |  |  |  |  |
| 입출력 예 | abcabcdede                                          | 문자열3개단위분할                    | 8                              |  |  |  |  |  |  |  |
| ᆸᆯ게   |                                                     | 2abcdede                     |                                |  |  |  |  |  |  |  |
|       |                                                     | Abcabc2de                    |                                |  |  |  |  |  |  |  |
|       | abcabcabcdededededede                               | 2게-abcabcabc6de              | 14                             |  |  |  |  |  |  |  |
|       |                                                     | 3개- 4abcdedededede           |                                |  |  |  |  |  |  |  |
|       |                                                     | 4개 - abcabcabcabc3dede       |                                |  |  |  |  |  |  |  |
|       |                                                     | 6개 - 2abcabc2dedede          |                                |  |  |  |  |  |  |  |

Problem-2

입출력 예

<u>입력</u>

abbcccdddd

<u>출력</u>

1a2b3c4d

(배경지식) RLE (Run Length Encoding)

압축기법: 문자열에 특정 패턴이 반복될 경우, 이를 이용하여 문자열을 좀 더 짧게 나타내는 기법

RLE(Run Length Encoding): 가장 기초적인 압축방식으로 문자와 반복횟수를 저장하는 방식

(예) "abbcccdddd"인 문자열의 경우, "1a2b3c4d"로 저장

| 문자  | а | b  | b | С  | С | С | d  | d | d | d |    |
|-----|---|----|---|----|---|---|----|---|---|---|----|
| 출현수 | 1 | 1  | 2 | 1  | 2 | 3 | 1  | 2 | 3 | 4 |    |
| 출력  |   | 1a |   | 2b |   |   | 3c |   |   |   | 4d |

#### Problem-2

 입출력
 입력
 출력

 예
 abbcccdddd
 1a2b3c4d

1 (배경지식) State Transition Diagram



- 상태와 상태천이를 표현하기 위해 도식화 해서 표현하는 그림
- 프로그램에서도 프로그램 실행이 진행하는 과정상, 상태를 통해 개념화 한 다음 추상화 해서 그림을 그리고 코딩을 하면 오류를 줄이는 문서로써 유효
- 특정 상태에서 입력 값을 받으면 특정 출력을 실행하면서 다른 상태로 전이
- 문제를 해결하기 위한 시스템의 흐름을 상태와 상태천이로 표현

Problem - 2

 입출력
 설력

 예
 abbcccdddd

 출력

 1a2b3c4d

A RLE (Run Length Encoding) state transition diagram 2



### 문자열1개

| 문자    | а | а | а | а | b  | b | а  | b | b | а  | b | b |    |
|-------|---|---|---|---|----|---|----|---|---|----|---|---|----|
| 문자열길이 | 1 | 2 | 3 | 4 | 1  | 2 | 1  | 1 | 2 | 1  | 1 | 2 |    |
| 출력    |   |   |   |   | 4a |   | 2b | а |   | 2b | а |   | 2b |

### 문자열2개

| 문자    | а | а | а | а | b   | b | а  | b | b  | а | b  | b |    |
|-------|---|---|---|---|-----|---|----|---|----|---|----|---|----|
| 문자열길이 |   | 1 |   | 2 |     | 1 |    | 1 |    | 1 |    | 1 |    |
| 출력    |   |   |   |   | 2aa |   | bb |   | ab |   | ba |   | bb |

### 문자열3개

| 문자    | а | а | а | а   | b | b | а | b | b | а | b | b |      |
|-------|---|---|---|-----|---|---|---|---|---|---|---|---|------|
| 문자열길이 |   |   | 1 |     |   | 1 |   |   | 2 |   |   | 3 |      |
| 출력    |   |   |   | aaa |   |   |   |   |   |   |   |   | 3abb |

### 문자열4개

| 문자    | а | а | а | а | b    | b | а | b | b    | а | b | b |      |
|-------|---|---|---|---|------|---|---|---|------|---|---|---|------|
| 문자열길이 |   |   |   | 1 |      |   |   | 1 |      |   |   |   |      |
| 출력    |   |   |   |   | aaaa |   |   |   | bbab |   |   |   | babb |

### 문자열5개

| 문자    | а | а | а | а | b | b     | а | b | b | а | b     | b |    |
|-------|---|---|---|---|---|-------|---|---|---|---|-------|---|----|
| 문자열길이 |   |   |   |   | 1 |       |   |   |   | 1 |       | 1 |    |
| 출력    |   |   |   |   |   | aaaab |   |   |   |   | babba |   | bb |

#### 문자열6개

| 문자    | а | а | а | а | b | b | а      | b | b | а | b | b |        |
|-------|---|---|---|---|---|---|--------|---|---|---|---|---|--------|
| 문자열길이 |   |   |   |   |   | 1 |        |   |   |   |   | 1 |        |
| 출력    |   |   |   |   |   |   | aaaabb |   |   |   |   |   | abbabb |

# 2-문자열 압축 (C++ 예시)

int len = s.length();

for (int j = 0; j < s.length(); j++) {

for (int count = 0, z = i; j + z < s.length(); z += i) {

16

17

18

```
if (s.substr(j, i) == s.substr(j + z, i))
                                                             19
                                                                                                                                  count++;
                                                             20
                                                                                   else {
                                                                                       len -= i * count;
                                                             21
                                                                                                      len += to_string(count + 1).length();
                                                                                       if (count)
                                                             22
                                                                                       j += z - 1;
                                                             23
소스.cpp* + X 13-2.c
                     13-1.c
                                                             24
                                                                                       break;
Project13
                                                             25
        ₽#include <string>
                                                                                   if (j + z + i >= s.length()) {
                                                             26
        #include <vector>
                                                                                       len -= i * count;
                                                             27
        using namespace std;
                                                                                       len += to string(count + 1).length();
                                                             28
                                                                                       j += z;
                                                             29
        int solution(string s);
                                                             30
        pint main(void) {
                                                             31
             string str = { "abcabcdede"};
                                                             32
             int answer = solution(str);
                                                                           if (len < answer)
                                                                                                answer = len;
                                                             33
             printf("%d", answer);
                                                             34
    10
                                                                      return answer;
                                                             35
    11
                                                             36

pint solution(string s) {
    12
             //int answer = 0;
    13
             int answer = s.length();
    14
             for (int i = 1; i <= s.length() / 2; i++) {
    15
```

# 2-문자열 압축 (Java 예시)

# 2-문자열 압축 (Java 예시)

```
public static int solution(String s ) {
12⊝
                                                                    42
13
           int answer = s.length();
                                                                    43
                                                                                         else{
<u>14</u>
15
           int len = s.length();
                                                                    44
                                                                                             if(cnt>1)
          // 길이가 1이라면 탐색의 필요 X
                                                                    45
                                                                                                  str+=cnt+comp;
16
           if(len==1){
                                                                    46
                                                                                             else
17
               return 1;
                                                                    47
                                                                                                  str+=comp;
18
19
                                                                    48
                                                                                             comp = s.substring(i, i+split);
           // 1~최대 압축 길이까지의 기준으로 문자열 압축
                                                                    49
                                                                                             cnt=1;
20
           for(int split=1; split<len/2 + 1; split++){</pre>
                                                                    50
21
               String str = new String();
                                                                    51
22
               // 0 ~ 압축 길이 만큼의 문자열 분리
                                                                    52
23
               String comp = s.substring(0, split);
                                                                    53
24
               int cnt=1;
                                                                                    if(cnt>1)
25
                                                                    54
                                                                                         str+=cnt+comp;
26
               for(int i=split;i<len;i+=split){</pre>
                                                                    55
                                                                                    else
27
                   // 현재 탐색의 분리 문자열이 초기 문자열의 길이를 넘어간다면
                                                                    56
                                                                                         str+=comp;
28
                  if(i+split>len){
                                                                    57
29
                      // 이전 까지의 비교를 결과에 포함
                                                                                    // 최소 길이 결과 갱신
                                                                    58
30
                       if(cnt>1)
                                                                    59
                                                                                    if(answer>str.length()){
31
                           str+=cnt+comp;
                                                                    60
                                                                                         answer=str.length();
32
                       else
                                                                    61
33
                           str+=comp;
                                                                    62
                      // 현재 부터 남은 문자열을 끝에 추가
34
                                                                    63
                       comp = s.substring(i);
                                                                                return answer;
35
                                                                    64
36
                       cnt=1;
37
                       continue;
                                                                    65 }
38
39
                  // 현재(i~split)의 문자열과 비교 문자열 비교
40
                   else if(comp.equals(s.substring(i, i+split)))
41
                       cnt++;
```