Vorlesung: Prof. Dr. Vollmer

Übung: Luisa Simmet, Thorsten Kluge

Freitag, 24. April 2015

Gruppe 1: 13:00 - 14:30 Gruppe 2: 15:00 - 16:30 Gruppe 3: 17:00 - 18:30 Gebäude 3703 / Raum 224

Logik und formale Systeme 1. Übung (Aussagenlogik)

Aufgabe 1

Gegeben ist die Formel

$$\varphi := p_1 \vee p_2 \to (p_3 \leftrightarrow p_2) \wedge (p_1 \to p_3).$$

a) Fülle die folgende Wahrheitstafel aus:

p_1	p_2	p_3	$p_1 \lor p_2$	$p_3 \leftrightarrow p_2$	$p_1 \rightarrow p_3$	$(p_3 \leftrightarrow p_2) \land (p_1 \to p_3)$	φ

- b) Ist φ erfüllbar, unerfüllbar oder eine Tautologie? Falls φ erfüllbar ist: Gib ein Modell für φ an.
- c) Ermittle $sub(\varphi)$. $(sub(\varphi) \text{ ist die Menge aller Teilformeln von } \varphi.)$
- d) Zeichne den Ableitungsbaum zu φ .
- e) Stelle φ als logischen Schaltkreis dar. Verwende ausschließlich folgende logische Gatter:

- f) Stelle φ als Boole'schen Schaltkreis dar.
- g) Erzeuge das Wort $p_1 \vee p_2 \rightarrow (p_3 \leftrightarrow p_2) \wedge (p_1 \rightarrow p_3)$ mit Hilfe folgender Grammatik:

$$\begin{split} G &:= (\Sigma_{AL}, \{S, V, C\}, P, S) \\ \Sigma_{AL} &:= \{p, I, 0, 1, \wedge, \vee, \neg, \rightarrow, \leftrightarrow, (,)\} \\ P &:= \begin{cases} S \rightarrow V \mid C \mid \neg S \mid S \wedge S \mid S \vee S \mid S \rightarrow S \mid S \leftrightarrow S \mid (S) \\ V \rightarrow p \mid VI \\ C \rightarrow 0 \mid 1 \end{cases} \end{split}$$

Aufgabe 2

Gegeben ist

$$\psi := (\neg p_1 \vee p_2 \vee \neg p_3) \wedge (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (\neg p_1 \vee p_3) \wedge (\neg p_2 \vee p_3).$$

a) Sind ψ und φ (aus Aufgabe 1) semantisch äquivalent? Verifiziere oder widerlege dies durch eine Wahrheitstafel.

p_1	p_2	p_3	$\neg p_1 \lor p_2 \lor \neg p_3$	$\neg p_1 \vee \neg p_2 \vee p_3$	$\neg p_1 \lor p_3$	$\neg p_2 \lor p_3$	ψ	φ

- b) Falls $\psi \equiv \varphi$ gilt, so Verifiziere dies durch geeignete Äquivalenzumformungen.
- c) In welcher Form befindet sich ψ ?
- d) Schreibe ψ in Implikationen-Schreibweise.