VERİ MADENCİLİĞİ

(Veri Ön İşleme-2)

Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

Genel İçerik

- Veri Madenciliğine Giriş
- Veri Madenciliğinin Adımları
- Veri Madenciliği Yöntemleri
 - Sınıflandırma
 - Kümeleme
 - İlişkilendirme/birliktelik kuralları
- Metin madenciliği
- WEB madenciliği
- Veri Madenciliği Uygulamaları

Veri Önişleme

- Veri
- Veri Önişleme
- Veriyi Tanıma
- Veri temizleme
- Veri birleştirme
- Veri dönüşümü
- Veri azaltma
- Benzerlik ve farklılık

Veri Dönüşümü

- Veri, veri madenciliği uygulamaları için uygun olmayabilir
- Seçilen algoritmaya uygun olmayabilir
 - Veri belirleyici değil
- Çözüm
 - Veri düzeltme
 - Bölmeleme
 - Kümeleme
 - Eğri Uydurma
 - Biriktirme
 - Genelleme
 - Normalizasyon
 - Nitelik oluşturma

Normalizasyon

- min-max normalizasyon
 - min-max normalleştirmesi ile orijinal veriler yeni veri aralığına doğrusal dönüşüm ile dönüştürülürler. Bu veri aralığı genellikle 0-1 aralığıdır.
- z-score normalizasyon
 - z Skor normalleştirmede (veya 0 ortalama normalleştirme) ise değişkenin her hangi bir y değeri, değişkenin ortalaması ve standart sapmasına bağlı olarak bilinen Z dönüşümü ile normalleştirilir.

ondalık normalizasyon

- ölçekleme Ondalık normalleştirmede ise, alınan değişkenin değerlerinin ondalık kısmı hareket ettirilerek normalleştirme gerçekleştirilir. Hareket edecek ondalık nokta sayısı, değişkenin maksimum mutlak değerine bağlıdır. Ondalık Ölçeklemenin formülü aşağıdaki şekildedir:
- Örneğin 900 maksimum değer ise, n=3 olacağından 900 sayısı 0,9 olarak normalleştirilir.

Normalizasyon

min-max normalizasyon

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

z-score normalizasyon

$$v' = \frac{v - mean A}{stand dev A}$$

ondalık normalizasyon

$$v' = \frac{v}{10^j}$$
 j: Max($|v'|$)<1 olacak şekildeki en küçük tam sayı

Nitelik Oluşturma

- Yeni nitelikler yarat
 - orjinal niteliklerden daha önemli bilgi içersin
 - alan=boy x en
 - veri madenciliği algoritmalarının başarımı daha iyi olsun

Veri Azaltma

Veri Azaltma

- Veri miktarı çok fazla olduğu zaman veri madenciliği algoritmalarının çalışması ve sonuç üretmesi çok uzun sürebilir
 - veriyi azaltma başarımı artırır
 - sonucun (nerdeyse) hiç değişmemesi gerekir
- Veri azaltma
 - nitelik birleştirme
 - nitelik azaltma
 - veri sıkıştırma
 - veri ayrıştırma ve kavram oluşturma
 - veri küçültme
 - eğri uydurma
 - kümeleme
 - histogram
 - örnekleme

Nitelik Birleştirme

 Sorgulama için gerekli olan boyutlar kullanılıyor.

Nitelik Seçme - Nitelik Azaltma

- Nitelik Seçme
 - Nitelikler kümesinin bir alt kümesi seçilerek veri madenciliği işlemi yapılır.
- Nitelik azaltma
 - d boyutlu veri kümesi k<d olacak şekilde k boyuta taşınır.

Nitelik Seçme

Nitelik seçme

- Veri madenciliği uygulaması için gerekli olan niteliklerin seçilmesi
- Nitelikler altkümesi kullanılarak elde edilen sınıfların dağılımları gerçek dağılıma eşit ya da çok yakın olmalı
- Veri madenciliği işlemi yer ve zaman karmaşıklığını azaltma
- Sistemin başarımını artırma
 - Sezgisel yöntemler kullanılarak nitelikler seçilebilir.
 - istatistiksel anlamlılık testi (statistical significance)
 - bilgi kazancı (information gain)
 - karar ağaçları

Örnek

Başlangıç nitelikler kümesi:
{A1, A2, A3, A4, A5, A6}

A1?

Class 1

Class 2

Class 1

Class 2

Seçilen nitelik kümesi: {A1, A4, A6}

Nitelik Azaltma

- Çok boyutlu veriyi daha küçük boyutlu uzaya taşıma
- d nitelikten oluşan n adet veri D={x₁, x₂, ...,x_n} k boyutlu uzaya taşınır:

$$\mathbf{x}_i \in \mathbf{R}^d \to \mathbf{y}_i \in \mathbf{R}^k (k << d)$$

- Veri kümesinde yer alan bütün nitelikler kullanılır
 - Niteliklerin doğrusal kombinasyonu
- Niteliklerin ayırıcılığına artırma

Veri Sıkıştırma

- Verinin boyutunu azaltır
 - daha az saklama ortamı
 - veriye ulaşmak daha çabuk
- Kayıplı ve kayıpsız veri sıkıştırma
 - bazı yöntemler bazı veri tiplerine uygun
 - her veri tipi için kullanılan yöntemler de var
- Eğer veri madenciliği yöntemi sıkıştırılmış veri üzerinde doğrudan çalışabiliyorsa elverişli

Veri Ayrıştırma

- Bazı veri madenciliği algoritmaları sadece ayrık veriler ile çalışır.
- Sürekli bir nitelik değerini bölerek her aralığı etiketler.
- Verinin değeri, bulunduğu aralığın etiketi ile değişir.
- Veri boyutu küçülür.
- Kavram oluşturmak için kullanılır.

Kavram Oluşturma

- Sayısal veriler
 - çok geniş aralıkta olabilir
 - değerleri çok sık değişebilir
- Sayısal veriler için kavram oluşturma
 - bölmeleme
 - histogram
 - kümeleme
 - entropi

Veri Küçültme

- Veriyi farklı şekillerde gösterme
 - parametrik
 - eğri uydurma
 - parametrik olmayan
 - histogram
 - kümeleme
 - örnekleme

Histogram ile Veri Küçültme

- Verinin dağılımı
- Veriyi bölerek her bölüm için veri değerini gösterir (toplam, ortalama)
 - eşit genişlik (equi-width): bölmelerin genişliği eşit
 - eşit yükseklik (equi-height): her bölmedeki veri sayısı eşit
 - v-optimal: en az varyansı olan histogram Σ(countb*valueb)
 - MaxDiff: bölme genişliğini kullanıcı belirler

Kümeleme ile Veri Küçültme

- Veri kümelere ayrılır
- Veri kümeleri temsil eden örnekler (küme merkezleri) ve aykırılıklar ile temsil edilir
- Etkisi verinin dağılımına bağlı.
- Hiyerarşik kümeleme yöntemleri kullanılabilir.

Örnekleme ile Veri Küçültme

- Büyük veri kümesini daha küçük bir alt küme ile temsil etme
- Alt küme nasıl seçiliyor?
 - yerine koymadan örnekleme (SRSWOR)
 - yerine koyarak örnekleme (SRSWR)
 - küme örnekleme (yerine koymadan veya koyarak)
 - katman örnekleme (katman: nitelik değerine göre grup)

Benzerlik ve Farklılık

Benzerlik ve Farklılık

Benzerlik

- iki nesnenin benzerliğini ölçen sayısal değer
- nesneler birbirine daha benzer ise daha büyük
- genelde 0-1 aralığında değer alır

Farklılık

- iki nesnenin birbirinden ne kadar farklı olduğunu gösteren sayısal değer
- nesneler birbirine daha benzer ise daha küçük
- en küçük farklılık genelde 0
- üst sınır değişebilir.

Uzaklık Çeşitleri

- Öklid(Euclid)
- Minkowski
- Manhattan

Öklid Uzaklığı

Veri kümesi

Uzaklık matrisi

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

- Öklid uzaklığı (Euclidean Distance) nesneler arası farklılığı bulmak için kullanılır.
 - p adet niteliği (boyutu) olan / ve j nesneleri arasındaki uzaklık

$$d(i, j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2}$$

Minkowski Uzaklığı

Öklid uzaklığının genelleştirilmiş hali

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$
q: positif tam sayı

q=1 → Manhattan uzaklığı

Uzaklık Özellikleri

- q=1⇒ Manhattan Uzaklığı
- q=2 ⇒ Öklid Uzaklığı
- Uzaklık ölçütünün sağlaması gereken özellikler:
 - 1. d(i,j)≥0
 - d(i,i)=0
 - d(i,j)=d(j,i)
 - 4. d(i,j)≤d(i,h)+d(h,j)
- Uzaklıklar ağırlıklı olarak da hesaplanabilir:

$$d(i,j) = \sqrt{w_1 |x_{i1} - x_{j1}|^2 + w_2 |x_{i2} - x_{j2}|^2 + \dots + w_p |x_{ip} - x_{jp}|^2}$$

Benzerlik Özellikleri

- İki nesne arası benzerlik özellikleri
- \blacksquare 1. sim(i,j)>=0
- 2. sim(i,j)=sim(j,i)

İkili Değişkenler Arası Benzerlik

- İkili bir değişkenin 0 veya 1 olarak iki değeri olabilir.
- Bir olasılık tablosu oluşturulur:

		Nesne j
		0 1
Nesne i	0	$M_{00} \ M_{01}$
	1	M_{l0} M_{ll}

M₀₀: i nesnesinin 0, j nesnesinin 0 olduğu niteliklerin sayısı M₁₀: i nesnesinin 1, j nesnesinin 0 olduğu niteliklerin sayısı M₀₁: i nesnesinin 0, j nesnesinin 1 olduğu niteliklerin sayısı M₁₁: i nesnesinin 1, j nesnesinin 1 olduğu

Yalın uyum katsayısı (simple matching coefficient): ikili değişkenin simetrik olduğu durumlarda

$$sim(i,j) = \frac{M_{11} + M_{00}}{M_{00} + M_{01} + M_{10} + M_{11}}$$

niteliklerin savısı

Jaccard katsayısı (İkili değişkenin asimetrik olduğu durumlar):

$$d(i,j) = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}$$

Kosinüs Benzerliği

d₁ ve d₂ iki doküman. Kosinüs benzerliği cos(d₁,d₂)=d₁●d₂ / ||d₁|| ||d₂|| d₁●d₂: iki dokümanın vektör çarpımı ||d₁||: d₁ dokümanının uzunluğu

Örnek

$$d_1 = 3205000200$$

$$d_2 = 1000000102$$

$$d_1 \cdot d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_1|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(d_1 \cdot d_2) = .3150$$