NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT

ORIGINALLY ISSUED

May 1945 as Memorandum Report L5D03

A METHOD FOR CORRELATING THE COOLING DATA OF LIQUID-COOLED

ENGINES AND ITS APPLICATION TO THE ALLISON V-3420-11 ENGINE

By George F. Kinghorn, Albert H. Schroeder, and William K. Hagginbothom, Jr.

Langley Memorial Aeronautical Laboratory

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

MEMORANDUM REPORT

for the

Army Air Forces, Air Technical Service Command

A METHOD FOR CORRELATING THE COOLING DATA OF LIQUID-COOLED

ENGINES AND ITS APPLICATION TO THE ALLISON V-3420-11 ENGINE

By George F. Kinghorn, Albert H. Schroeder and William K. Hagginbothom, Jr.

SUMMARY

A study has been made of the heat-transfer processes in liquid-cooled engines and an equation has been developed that relates the heat rejection to the coolant and the engine operating conditions. Tests of an Allison V-3420-11 engine have been made to check the accuracy of the equation and to establish the cooling characteristics of the engine. By determining the few constants of the equation, the heat rejection to the coolant may be predicted with good accuracy for any particular engine operating condition. The tests showed that the rate of heat dissipation to the coolant was only slightly affected by either the rate of coolant flow or the relative proportions of ethylene glycol and water composing the coolant mixture.

INTRODUCTION

An analysis has been made of the heat-transfer processes in liquid-cooled engines to determine the effects of the various engine and cooling parameters upon the heat rejection to the coolant. This analysis parallels the analysis of heat-transfer processes in air-cooled engines presented in reference 1.

In the analysis of reference 1, equations were developed that relate the cylinder temperatures and the engine operating conditions. These equations have proved very useful in providing a means of completely determining the cooling characteristics of air-cooled engines with a

minimum of testing. In the present report somewhat similar equations are developed that give the heat rejection of liquid-cooled engines as a function of the engine operating conditions.

Tests of an Allison V-3420-11 24-cylinder, liquid-cooled engine installed in an XB-39 nacelle were made to check the analysis and to determine the heat-rejection characteristics of this engine. The tests were made over a wide range of engine operating conditions. The coolants used were ethylene glycol, water, and two mixtures of ethylene glycol and water.

SYMBOLS

- A, A', B, a, b, d, f, m, n constants
- cp specific heat of fluid at constant pressure,
 Btu per pound per OF
- cpa specific heat of air at constant pressure, Btu per pound per of
- cpc specific heat of coolant at constant pressure,
 Btu per pound per OF
- opg specific heat of combustion gases at constant pressure, Btu per pound per of
- g acceleration due to gravity, feet per second per second
- H rate of heat transfer, Btu per second
- H_c rate of heat transfer from cylinder walls to coolant, Btu per second
- Hg rate of heat transfer from combustion gases to cylinder walls, Btu per second
- h surface heat-transfer coefficient, Btu per second per square foot per OF
- J mechanical equivalent of heat, foot-pounds per Btu
- k thermal conductivity of fluid, Btu per second per square foot per oF through 1 foot

	k _c	thermal conductivity of coolant, Btu per second per square foot per of through 1 foot
	kg	thermal conductivity of combustion gases, Btu pe second per square foot per OF through 1 foot
	ı	linear dimension of fluid passageway, feet
	S	surface area in contact with fluid, square feet
	tc	average coolant temperature through engine, of
	tcarb	carburetor-air temperature, CF
	tf	average temperature of fluid, OF
	tg	effective gas temperature, OF
	tgo	effective gas temperature for 0° F intake-air temperature, °F
	tw	average cylinder-wall temperature, oF
4.	t _w '	temperature of cylinder wall measured with embedded thermocouples at locations shown in figure 3, or
	A	average velocity of fluid, feet per second
	v_t	impeller tip speed, feet per second
T.F.A	Wc	coolant flow rate, pounds per second
	We	engine-air flow rate, pounds per hour
	Δt _b	blower temperature rise, OF
• 1	ΔTc	coolant temperature rise through engine, oF
	The state of the s	absolute viscosity of fluid, slugs per second per foot
+- ,	μς	absolute viscosity of coolant, slugs per second per foot
	μg	absolute viscosity of combustion gases, slugs per second per foot
	ρ	density of fluid, slugs per cubic foot

N engine speed, rpm

pm manifold pressure, inches of mercury absolute

$$Z = \frac{1}{\frac{k_c}{\mu_c^d} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^{0.4} w_c^d}$$

F correction factor applied to obtain Z (fig. 9(b))

K correction factor for fuel-air ratio (fig. 13)

K_N correction factor for engine speed (fig. 13)

ANALYSIS

An understanding of the factors determining the amount of heat rejected to the coolant in a liquid-cooled engine can be obtained from a study of the processes by which heat is transferred from the combustion gases to the cylinder walls and from the cylinder walls to the coolant. It has been shown that nearly all the heat transferred from the combustion gases to the cylinder walls is transferred by forced convection. Heat may be transferred from the cylinder walls to the coolant either by forced convection or, if the temperature of the coolant is sufficiently high, by a combination of forced convection and boiling.

Tests have shown that, in general, moderate boiling or vaporization of the coolant in a liquid-cooled engine has little effect upon the over-all rate of heat transfer. Results of tests of an Allison V-1710-81 engine at the NACA Aircraft Engine Research Laboratory, Cleveland, Ohio, indicated that reducing the coolant pressure from 30 to 15 pounds per square inch absolute increased the heat transfer not more than about 3 percent, even though in some cases violent boiling occurred. During the present investigation of the Allison V-3420-11 engine, preliminary tests showed that varying the coolant temperature as much as 80° F resulted in a variation in heat transfer approximately equal to that which would be expected for a forced-convection process. Some evidence indicates that with

very violent boiling, particularly at low coolant flows, the heat transfer is affected to a fairly large degree. For normal engine operation, however, the effect of moderate boiling may be neglected and in the present report the heat to the coolant will be considered to be transferred entirely by forced convection.

Dimensional analysis has shown and experiment has verified that for heat transfer by forced convection the Nusselt number $\frac{h\,l}{k}$ is a function of the Reynolds number $\frac{\rho V\,l}{\mu}$ and the Prandtl number $\frac{c_{\rho}\mu g}{k}$. Test data have indicated that these functions are simple exponential functions for either laminar flow or fully developed turbulent flow; that is,

$$\frac{hl}{k} \propto \left(\frac{\rho V l}{\mu}\right)^m \left(\frac{c_p \mu g}{k}\right)^n \tag{1}$$

where m and n are constant over fairly wide ranges of Reynolds and Prandtl numbers, except in the transition region between laminar and turbulent flow. The rate of heat transfer is given by the relationship

$$H = hS(t_f - t_w)$$
 (2)

where S is the surface area over which the fluid flows and $t_{\rm f}$ and $t_{\rm w}$ are the average temperatures of the fluid and wall, respectively. Equations (1) and (2) may be combined to give

$$H \propto S_{\overline{l}}^{k} \left(\frac{\rho V l}{\mu}\right)^{m} \left(\frac{c_{p} \mu g}{k}\right)^{n} (t_{f} - t_{w})$$
 (3)

For the heat-transfer process from the combustion gases to the cylinder walls, l in equation (3) is some representative internal dimension of the cylinder. Since l and S are constant for a particular engine and since the engine-air flow $W_{\rm e}$ is proportional to ρV , the heat transferred from the combustion gases is

$$H_{g} \propto W_{e}^{a} \frac{k_{g}}{\mu_{g}} \left(\frac{c_{p_{g}} \mu_{g} g}{k_{g}}\right)^{b} \quad (t_{g} - t_{w}) \tag{4}$$

where t_g is the effective temperature of the gases within the cylinder over the entire cycle and the values of k_g , μ_g , and c_{p_g} are also effective values over the entire cycle. It is indicated in reference 1 that the value of the term $\frac{k_g}{\mu_o} \left(\frac{c_{p_g} \mu_g g}{k_g} \right)^b$ does not vary

appreciably with changes in engine operating conditions. More recent data on the effect of temperature and fuel-air ratio upon the physical properties of mixtures of fuel and air after combustion (references 2

mixtures of fuel and sir after combustion (references 2 and 3) indicate that $\frac{k_g}{\mu_g} \left(\frac{c_{p_g} \mu_g g}{k_g} \right)^b$ may vary appreciably

with changes in engine fuel-air ratio. Since tg is also a function of fuel-air ratio, however, the variations

a function of fuel-air ratio, however, the variation of
$$\frac{k_g}{\mu_g} \left(\frac{c_{Dg}\mu_g g}{k_g}\right)^b$$
 may, to a first approximation, be

included in the effective gas temperature. Equation (4) may therefore be written

$$H_g \propto W_e^a (t_g - t_w)$$
 (5)

where tg may be defined as the temperature that most nearly satisfies equation (5) and is a function of only fuel-air ratio, intake-air temperature, spark timing, and exhaust back pressure. A large number of tests have shown that equation (5) is very accurate for air-cooled engines; this equation may be expected to be equally accurate for liquid-cooled engines.

The rate of heat transfer from the cylinder walls to the coolant is, by a similar analysis,

$$H_c \propto W_c^d \frac{k_c}{\mu_c^d} \left(\frac{c_{p_c}\mu_c g}{k_c}\right)^f (t_w - t_c)$$

or

$$H_{c} = AW_{c}^{d} \frac{k_{c}}{\mu_{c}^{d}} \left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{f} (t_{w} - t_{c})$$
 (6)

The value of the term $\frac{k_c}{\mu_c d} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^f$ in this case depends

upon the proportions of ethylene glycol and water used as the coolant and upon the coolant temperature.

Because of the heat generated by friction between the piston rings and the cylinder barrels, the cooling of the pistons and barrels by the oil, and the cooling of the exposed surfaces of the cylinder block, the heat transferred from the combustion gases to the cylinder walls H_g is not equal to the heat transferred to the coolant H_c. It is assumed, however, that

$$H_{c} \propto H_{g}$$

Therefore, from equation (5),

$$H_{c} = BW_{e}^{a} \left(t_{g} - t_{w}\right) \tag{7}$$

or

$$t_{w} = t_{g} - \frac{H_{c}}{BW_{e}}$$

Substituting $t_g - \frac{H_c}{BW_e}$ for t_w in equation (6) yields

$$H_{c} = AW_{c}^{d} \frac{k_{c}}{\mu_{c}^{d}} \left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{f} \left(t_{g} - t_{c} - \frac{H_{c}}{BW_{e}^{a}}\right)$$

and.

$$\frac{t_{g} - t_{c}}{H_{c}} = \frac{1}{BW_{e}^{a}} + \frac{1}{A \frac{k_{c}}{\mu_{c}} \left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{f}W_{c}^{d}}$$
(8)

Equation (8) is used in the present report to correlate the data obtained on the V-3420-11 engine.

For a single coolant mixture and coolant temperature, the physical properties of the coolant are constant and equation (8) may be rewritten as

$$\frac{t_{g} - t_{c}}{H_{c}} = \frac{1}{BW_{e}} + \frac{1}{A'W_{c}}$$
 (9)

ENGINE AND INSTRUMENTATION

The Allison V-3420-11 engine tested is a 24-cylinder, double-vee, liquid-cooled engine, having a normal-power rating of 2100 horsepower at 2600 rpm and a military-power rating of 2600 horsepower at 3000 rpm. The engine has a compression ratio of 6.65:1, a propeller-gear ratio of 3.13:1, and a blower-gear ratio of 6.9:1. The impeller diameter is 10 inches. The engine is equipped with a Bendix-Stromberg PR58B3 carburetor. A view of the engine nacelle as set up for the tests is shown in figure 1.

The coolant system for this engine installation had two radiators, one for each half of the engine. The coolant flow from each half of the engine was measured by an annular-orifice flowmeter. A close agreement with these flow measurements was obtained from pitot-static

flowmeters that measured the flow into the individual cylinder blocks.

The coolant temperature rise was measured by three thermocouples across each half of the engine. The hot and cold junctions of these thermocouples were located in the coolant piping near the engine outlet and inlet, respectively. A hand-balanced potentiometer was used to indicate the coolant temperature difference existing between the hot and cold junctions. In general, the coolant temperature rise through the engine is difficult to measure accurately. Some of the difficulty is due to the fact that the over-all temperature difference is small throughout the engine operating range. Limitations in space available for the installation of thermocouples present an additional practical problem. The accuracy of the method used in these tests is estimated to be the percent. The temperature of the coolant entering the engine was measured by a resistance thermometer in conjunction with a special microammeter.

A sketch of part of the coolant system, which shows the points of flow and temperature measurement for the left half of the engine, is given as figure 2. The instrumentation for the coolant system on the right half of the engine was similar to that shown for the left half.

Cylinder temperatures were measured by embedded thermocouples and spark-plug-gasket thermocouples. Embedded thermocouples were located between the intake valves, between the exhaust valves, and in the exhaust spark-plug bosses (as shown in fig. 3) of cylinders 1, 2, 3, 4, 5, and 6 of the left bank and 1, 3, and 6 of each of the other three banks. Cylinder-barrel temperatures were not measured because of the difficulty of installing thermocouples. The carburetor-air temperature was measured by two thermocouples soldered to the carburetor screen.

The engine-air flow was measured by a calibrated venturi (fig. 1). Fuel flow was measured by rotameters and a weigh tank. Standard aircraft instruments were used to measure manifold pressure and engine speed. A special mercury U-tube manometer was also used to measure manifold pressure for some of the tests.

METHODS AND TESTS

Tests were made with the following four coolant mixtures: (a) 100 percent ethylene glycol (AN-E-2), (b) 80 percent by volume ethylene glycol (AN-E-2) and 20 percent water, (c) 30 percent by volume ethylene glycol (AN-E-2) and 70 percent water, and (d) water.

In order to reduce coolant boiling during the tests with the 30-70 mixture and with water, the coolant system was pressurized by applying compressed air to the expansion tank. A sight glass was installed to indicate the coolant level. No appreciable increase in the coolant level was observed during any of the tests - an indication that large vapor pockets did not form.

The properties of the coolants were obtained from reference 4. Curves showing these properties for mixtures of pure ethylene glycol and water have been plotted from the data of reference 4 and are presented in figure 4. Ethylene glycol (AN-E-2) was considered to be 97 percent by volume pure ethylene glycol and 3 percent water, with the effect of the inhibitor neglected.

The heat rejection to the coolant was determined by use of the following equation:

$$H_{c} = W_{c}c_{p_{c}} \Delta T_{c}$$
 (10)

where ΔT_c is the temperature rise of the coolant measured across the engine.

The constant f in equation (6) was assumed to equal O.4 as found by Sherwood and Petrie (reference 5). The constants A and d were determined from a plot of

$$\frac{k_{c}\left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{0, 4}}{\left(t_{w}-t_{c}\right)}$$

against $W_{\text{c}}/\mu_{\text{c}}$ on logarithmic paper. The term t_{w} - t_{c} was found from the equation

$$t_{\rm w} - t_{\rm c} = 0.64(t_{\rm w}' - t_{\rm c})$$
 (11)

where tw' is the average temperature measured by the thermocouples embedded in the cylinder block between the intake valves, between the exhaust valves, and in the exhaust spark-plug bosses. The factor 0.64 was obtained from unpublished data from tests at the Cleveland Laboratory of an Allison V-1710 engine in which temperatures were measured at various other points on the cylinder in addition to those between the valves and in the exhaust spark-plug boss. It was found that equation (11) holds closely for all operating conditions. Inasmuch as the cylinders of the V-3420-11 and V-1710 engines are nearly identical, it may be expected that this relationship is also valid for the V-3420-11 engine.

No tests were made to determine the effects of spark timing, exhaust back pressure, or intake-air temperature upon tg. There is no provision on the V-3420-11 engine for varying the spark timing and all the tests were made with normal spark timing. The exhaust back pressure was approximately 30 inches of mercury absolute throughout the tests. The results are not applicable, therefore, at high altitude except for a turbosupercharger installation with the engine operating at high powers.

It has been assumed that, as was found for the cylinder head of an air-cooled engine (reference 6), tg increases approximately 0.8° per degree rise in intake-air temperature; that is,

$$t_g = t_{g_0} + 0.8(t_{carb} + \Delta t_b)$$

where t_{carb} is the carburetor-air temperature and Δt_b is the blower temperature rise. The blower rise was calculated from the following equation:

$$\Delta t_b = \frac{v_t^2}{c_{p_a} Jg}$$

where c_{p_a} is the specific heat of air at constant pressure and V_t is the impeller tip speed. For the V-3420-11 engine, this equation may be written

$$\Delta t_{\rm b} = 0.0000151N^2$$

where N is engine speed in revolutions per minute.

In order to determine the actual value of $t_{\rm So}$ at a fuel-air ratio of 0.08, tests were made at constant engine operating conditions and varying coolant temperatures. Since, with constant $W_{\rm e}$,

$$\propto t_{g_0} + 0.8(t_{carb} + \Delta t_b) - t_w$$

 t_{g_0} was found by plotting t_w - 0.8(t_{carb} + Δt_b) against H_c and extrapolating the resulting curves to H_c = 0 for which

$$t_{g_0} = t_w - 0.8(t_{carb} + \Delta t_b)$$

The values of two used were obtained from the equation

$$t_{w} = \frac{H_{c}}{A \frac{k_{c}}{\mu_{c}} \left(\frac{c_{p_{c}} \mu_{c} g}{k_{c}}\right)^{0.4} + t_{c}} + t_{c}$$

The coolant mixture used for these tests was 100 percent ethylene glycol (AN-E-2).

Tests were made at various fuel-air ratios with engine speed and engine-air flow held constant to determine the value of t_{g_o} at fuel-air ratios other than 0.08. With t_c , w_c , and w_e held constant, the value of t_{g_o} could be found for the different fuel-air ratios from the

equati on

$$\frac{t_g - t_c}{H_c} = Constant$$

The value of the constant was determined from the measured values of t_c and H_c at a fuel-air ratio of 0.08 and the value of t_{g_o} + 0.8(t_{carb} + Δt_b) previously determined for a fuel-air ratio of 0.08.

Tests were made at various engine speeds, engine powers, and fuel-air ratios with each of the four coolants. The value of

$$\frac{t_{g}-t_{c}}{H_{c}}-\frac{1}{A\frac{k_{c}}{\mu_{c}}\left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{f}W_{c}}d}$$

was determined for each test and plotted against We on logarithmic coordinates.

RESULTS AND DISCUSSION

The plot of
$$\frac{H_{c}}{k_{c}\left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{0.4}}(t_{w}-t_{c})$$

against W_c/μ_c from which the values of d and A of equations (6) and (8) were determined is shown in figure 5. It may be seen that the slope d of the curve of figure 5 is not constant but decreases with increasing W_c/μ_c , as is usually observed for the transition region between laminar and fully developed turbulent flow.

Separate values of d and A were selected from figure 5 for each of the coolants tested. These values are as follows:

Coolant mixt (percent by vo			
Ethylene glycol (AN-E-2)	Water	đ	A
100	. 0	0.34	309
80	20	.28	728
30	70	.17	3,750
0	100	.095	11,600

The value of t_{g_0} at a fuel-air ratio of 0.08 was determined from the plot shown in figure 6. On an average the data indicate that t_{g_0} for the entire cylinder is approximately 700° F. Because of the large extrapolation necessary in figure 6, values of 600° F and 800° F for t_{g_0} at a fuel-air ratio of 0.08 were also used in calculating the test data. Closer correlation between the heat rejection to the coolant and the engine operating conditions was obtained by using 700° F than by using either 600° F or 800° F. The data obtained by using 600° F and 800° F are not given in the present report.

A value of approximately 900° F for t₈₀ for the entire cylinder of an air-cooled engine was calculated from data given in reference 1 for a Pratt & Whitney R-1340-H cylinder and in reference 6 for a Wright R-1820-G cylinder. The reason for the lower value of 700° F obtained for t₈₀ for the V-3420-11 cylinder is not entirely understood but this lower value may in part be due to better scavenging of the V-3420-11 cylinder, which has two intake and exhaust valves with a comparatively large valve overlap of 65°. Differences in cylinder construction, compression ratio, or spark timing may also have contributed to the differences in t₈₀ between these engines.

The effect of fuel-air ratio upon $\,t_{g_{_{0}}}\,$ is shown in figure 7. Figure 8 shows

$$\frac{t_{g}-t_{c}}{H_{c}} = \frac{1}{A \frac{k_{c}}{\mu_{c}^{d}} \left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{0.4} w_{c}^{d}}$$

plotted against $W_{\rm e}$. Some of the scatter in figure 8 can be attributed to the limited accuracy of the method used to measure the coolant temperature rise.

The heat-transfer equations obtained from equation (8) and figures 8 and 5 are as follows:

Coolant : (percent by		
Ethylene glycol (AN-E-2)	Water	Heat-transfer equation
100	0	$\frac{t_{g} - t_{c}}{H_{c}} = \frac{1}{309 \frac{k_{c}}{\mu_{c}} \frac{c_{p_{c}} \mu_{c} g}{k_{c}} 0.34} = 135 M_{e}^{-0.52}$
80	20	$\frac{t_{g} - t_{c}}{H_{c}} = \frac{1}{728 \frac{k_{c}}{\mu_{c}^{0.28}} \left(\frac{c_{p_{c}} \mu_{c} g}{k_{c}}\right)^{0.14} w_{c}^{0.28}} = 135 w_{e}^{-0.52}$
30	70	$\frac{t_g - t_c}{H_c} = 135W_e^{-0.52}$ $\frac{k_c}{\mu_c^{0.17}} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^{0.14} W_c^{0.17}$
0	100	$\frac{t_{g} - t_{c}}{H_{c}} = 135W_{e}^{-0.52}$ $11,600 \frac{k_{c}}{\mu_{e}^{0.095}} \left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{0.14} W_{c}^{0.095}$

The values of the second term of these equations

$$\frac{1}{A \frac{k_c}{\mu_c^d} \left(\frac{c_{p_c}\mu_c g}{k_c}\right)^{0.4} W_c^d}$$

for various coolant mixtures, coolant temperatures, and coolant flow rates are presented in figure 9. For convenience in the use of these curves,

$$\frac{1}{A \frac{k_c}{\mu_c^d} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^{0.14}} W_c^d$$

is denoted by Z in figure 9.

The small effect of changes in coolant flow rate and coolant properties upon the engine heat rejection may be seen from the foregoing heat-transfer equations. The value of the term

$$\frac{1}{309 \frac{k_{c}}{\mu_{c}^{0.34}} \left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{0.4}} W_{c}^{0.34}$$

for 100 percent ethylene glycol (AN-E-2) at normal power is approximately 0.20, whereas $\frac{t_g - t_c}{H_c}$ is approxi-

mately 1.15. An increase in coolant flow W_c of 50 percent results in an increase in heat transfer of only 2.5 percent if other conditions remain constant. A change in coolant to a mixture of 30 percent ethylene glycol (AN-E-2) and 70 percent water results in a value

of

$$\frac{1}{3750 \frac{k_{c}}{\mu_{c}^{0.17}} \left(\frac{c_{p_{c}} \mu_{c} g}{k_{c}}\right)^{0.4} w_{c}^{0.17}}$$

of approximately 0.145, which would cause an increase in heat transfer of about 5 percent.

The variation in average cylinder-wall temperature $t_{\rm w}$ with changes in coolant flow rate or coolant properties may be found from the resulting change in $\rm H_{\rm c}$ and from the equation

$$H_c = BW_e^a(t_g - t_w)$$

If We is constant,

Because of the small effect upon the heat rejection of variations in

$$\frac{1}{A \frac{k_c}{\mu_c^d} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^{0.4} w_c^d}$$

with changes in coolant flow rate W_c and average engine coolant temperature t_c , the test data for individual coolant mixtures may be plotted as shown in figure 10. By plotting $\frac{H_c}{t_g-t_c}$ against W_e , curves are obtained

By plotting $\frac{H_c}{t_g-t_c}$ against W_e , curves are obtained from which the heat rejection H_c may be determined with only a small sacrifice in accuracy much more easily than from figure δ .

It was assumed in the analysis that the heat generated by friction between the piston rings and the cylinder barrels has little effect upon the heat rejection to the coolant. Tests were made with constant engine-air consumption at various engine speeds to determine the error involved in the use of this assumption. The data indicated that

$$\frac{t_{g}-t_{c}}{H_{c}} = \frac{1}{\frac{k_{c}}{\mu_{c}^{d}}} \left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{0.14} w_{c}^{d}$$

decreases slightly with increasing engine speed, but an accurate evaluation of this effect was not possible primarily because of the limited accuracy of the method used to measure the coolant temperature rise.

In order to relate the cooling characteristics of the engine to variables measured by the usual engine instruments, calibration curves of $W_{\mathbf{c}}$ and $W_{\mathbf{e}}$ are presented in figures 11 and 12, respectively. Figure 11 shows that the proportions of water and ethylene glycol used for the coolant have little effect upon the rate of coolant flow. If cavitation occurs at the coolant pump inlet, however, the flow may be considerably less than that shown in figure 11. In preparing figure 12, the engine-air flow We was assumed to be a function of only the engine speed, manifold pressure, exhaust back pressure, and the sum of the absolute carburetor-air temperature and the blower temperature rise t carb + 460 + Atb. Data from the Allison Division of General Motors Corp. indicate that the engine-air flow varies inversely as $\sqrt{t_{carb}} + 460 + \Delta t_b$. Curves of

$$\frac{W_{e}}{\sqrt{t_{carb} + 460 + \Delta t_{b}}}$$
 against engine speed are plotted in

figure 12 for various manifold pressures. Throughout the tests, the maximum difference between the measured engine-air flow and the corresponding values given by figure 12 was less than 4 percent. No data were available concerning the effect of exhaust back pressure upon engine-air flow.

The variation of brake horsepower with engine operating conditions may be determined from the following empirical relation obtained from the Allison Division:

where

pm manifold pressure, inches of mercury absolute

tcarb carburetor-air temperature, oF

K_N correction factor for engine speed (fig. 13)

KF correction factor for fuel-air ratio (fig. 13)

The data obtained during the tests are presented in table I.

APPLICATION

Through the use of the curves presented in the present report, the heat rejection to the coolant for the Allison V-3420-11 engine may be determined for any particular engine operating condition. The following example, based on engine operation at military power (2600 bhp at 3000 rpm and a manifold pressure of 44.5 into f mercury absolute), illustrates the procedure: Typical operating conditions assumed are

For engine operation at 3000 rpm and 44.5 inches of mercury absolute, figure 12 indicates that

$$\frac{W_e}{\sqrt{t_{carb} + l_460 + \Delta t_b}} = 697$$

The blower temperature rise is

$$\Delta t_b = \frac{v_t^2}{c_{p_a} J_g}$$
= 0.0000151N²
= 0.0000151(3000)²
= 135.9° F

Solving for the engine-air flow yields

$$W_{e} = 697\sqrt{t_{carb} + 460 + \Delta t_{b}}$$
$$= 697\sqrt{80 + 460 + 136}$$

= 18,100 pounds per hour

For an engine-air flow of 18,100 pounds per hour (fig. 8),

$$\frac{t_g - t_c}{H_c} = 0.820$$

$$A \frac{k_c}{\mu_c^d} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^{0.14} W_c^d$$

In order to determine the value of

$$\frac{1}{A \frac{k_c}{\mu_c^d} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^{0.14} W_c^d}$$

it is necessary to know the coolant flow rate $W_{\rm c}$ and the average engine coolant temperature $t_{\rm c}$. From figure 11, $W_{\rm c}=78$ pounds per second at 3000 rpm. It was found during the tests that the average engine coolant temperature was approximately $5^{\rm o}$ F lower than the coolant temperature out of the engine over a wide range of operating conditions; therefore, let $t_{\rm c}=245^{\rm o}$ F. Then, from figure 9(a), for a coolant mixture of 70 percent by volume ethylene glycol (AN-E-2), a coolant flow rate of 78 pounds per second, and an average engine coolant temperature of 250° F, the term

$$\frac{1}{A \frac{k_c}{\mu_c^d} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^{0.4} w_c^d}$$

denoted by $Z(t_c=250)$ is equal to 0.160. In order to correct this term to the desired value of t_c , 245° F, for the same W_c and coolant mixture, the correction factor F in figure 9(b) is found to be 0.993. Therefore,

$$Z = FZ(t_c=250)$$

$$= 0.993 \times 0.160$$

$$= 0.159$$

Then

$$\frac{t_g - t_c}{H_c} - 0.159 = 0.820$$

or

$$H_{c} = \frac{t_{g} - t_{c}}{0.979}$$

For a fuel-air ratio of 0.095, $t_{g_0} = 649^{\circ}$ F from figure 7.

Then

$$t_g = t_{g_0} + 0.8(t_{carb} + \Delta t_b)$$

$$= 649 + 0.8(80 + 136)$$

$$= 822^{\circ} F$$

Since $t_c = 245^{\circ} F$,

$$H_{c} = \frac{t_{g} - t_{c}}{0.979}$$
$$= \frac{822 - 245}{0.979}$$

= 589 Btu per second

The Allison Division guarantees that the heat rejection to the coolant at military power shall not exceed 608 Btu per second, which is approximately 3 percent above the heat rejection calculated in the preceding example.

CONCLUSTONS

As a result of an analysis made of the heat-transfer processes in liquid-cooled engines, an equation has been developed that relates the heat rejection to the coolant and the engine operating conditions. Tests of an Allison

V-3420-11 engine over a wide range of operating conditions and for several coolant mixtures showed that:

- 1. By determining the constants of the equation, the heat rejection to the coolant may be predicted with good accuracy for any particular operating condition.
- 2. The rate of coolant flow had only a slight effect upon the rate of heat dissipation to the coolant; also, the effect of the relative proportions of ethylene glycol and water composing the coolant mixture upon the heat-dissipation rate was small.
- 3. Changes in engine friction with engine speed had a small effect upon the heat rejection to the coolant; an accurate evaluation of this effect was not made.
- h. The effective gas temperature for an entire cylinder of the V-3420-11 engine was approximately 700° F for a fuel-air ratio of 0.08 and an intake-air temperature of 0° F.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.

REFERENCES

- 1. Pinkel, Benjamin: Heat-Transfer Processes in Air-Cooled Engine Cylinders. NACA Rep. No. 612, 1938.
- 2. Tribus, Myron, and Boelter, L. M. K.: An Investigation of Aircraft Heaters. II Properties of Gases.
 NACA ARR, Oct. 1942.
- 3. Pinkel, Benjamin, and Turner, L. Richard: Thermodynamic Data for the Computation of the Performance of Exhaust-Gas Turbines, NACA ARR No. 4B25, 1944.
- 4. Cragoe, C. S.: Physical Properties of Aqueous Ethylene Glycol Solutions. Rep. of Phys. Prop. Group, CFR Aviation Fuels Div., Cooperative Res. Council, 1943.
- 5. Sherwood, T. K., and Petrie, J. M.: Heat Transmission to Liquids Flowing in Pipes. Ind. and Eng. Chem., vol. 24, no. 7, July 1932, pp. 736-745.
- 6. Pinkel, Benjamin, and Ellerbrock, Herman H., Jr.:
 Correlation of Cooling Data from an Air-Cooled
 Cylinder and Several Multicylinder Engines. NACA
 Rep. No. 683, 1940.

TABLE I .- RESULTS OF TESTS ON ALLISON V-3420-11 ENGINE

Engine serial no. 42-271081; compression ratio, 6.65 to 1; spark timing, intake 28° B.T.C., exhaust 34° B.T.C.: carburetor, Bendix-Stromberg PR58B3; fuel, AN-F-28; oil, AN-VV-0-446, grade 1120]

							w air						Average			. (tempe	er-wall rature F)		
Test	Manifold pressure (in. Hg abs.)	Engine speed (rpm)	Carburetor- air tem- perature (°F)	Barometric pressure (in. Hg abs.)	Fuel flow (lb/hr)	Engine- air flow (1b/hr)		system pressure (1b/sq	Coolant tempera- ture into engine	(°F).		engine coolant tempera- ture	-			Embedded thermo-	Spark-plug- gasket thermo- couple	Engine heat rejection (Btu/sec)	0il tempera- ture into engine	
								in. gage)	(oF)	Lef hal	Right half	Av.	(°F)	Left	Right	Total		Av. Max.		(oF)
						C	oolant	mixture,	80 percent	by	volume	ethyle	ne glycol	(AN-1	E-2)					
1234567890123456739012245673901234567390123456739012	00000000000000000000000000000000000000	1900 1900 1900 1900 1900 1900 1500 1500	996777788888888888888888888888888888888	30.16 30.32 30.32 30.32 30.32 30.03 30.00 30.00 30.00 29.95 30.19 30.00 29.95 30.19 30.00 30	6194176222150 619757510222150 61975751063221455742704550 61975756637357422704550 619775766677466511588 611888	7050 7100 71100 71100 71100 71100 71100 71100 11010 11	.08528 .08528 .077361 .0693 .0693 .0798 .0798 .0798 .0798 .0798 .0798 .0798 .0798 .0861 .0804 .0804 .0804 .0804 .0808 .0		223 2220 220 220 200 200 200 200 200 200	10.10.10.10.10.10.10.10.10.10.10.10.10.1	8.72 1.26	10.7 9.4 11.5 11.7 12.0 11.5 10.6 9.2 10.6 11.6 11.6 11.6 11.7 11.6 11.6 11.7 11.6 11		2d. 12 2d. 2	22.1 22.2 22.2 22.2 22.2 22.2 22.3 17.0 110.9 19.5 19.4 19.5 19.4 19.5 19.4 19.5 19.4 19.5 19.4 19.5 19.4 19.5 19.4 19.5 19.5 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	6.66.66.44.76.99.27.12.74.30.29.90.93.03.997.49.29.55.49.90.78.70.75.73.47.42.48.3	327 L159 314 L129 337 L432 337 L432 337 L432 336 L440 336 L383 331 366 283 331 361 283 384 287 352 352 L112 352 L122 353 361 248 353 361 362 363 368 363 363 368 363 363 368 363 363 368 363 368 363 363 368 363 363 368 363 363 368 363 363 368 363 363 368 363 363 368 363 363 368 363 363 368 363 363 368 363 363 368 363 368 363 368 3	258 281 264 286 251 268 261 285 261 285 262 290 266 289 266 289 266 290 266 289 266 290 266 290 266 290 266 290 266 290 266 290 266 290 266 290 277 297 277 298 277 298 277 298 277 298 277 306 277 298 278 310 266 292 277 306 277 307 306 277 307 307 307 307 307 307 307 307 307 3	556677888 32275481702964448219334344332233333333333333332233333434433223333434444104444444444	166 167 167 167 168 161 165 165 165 165 165 165 165

MR

No.

TABLE I.- RESULTS OF TESTS ON ALLISON V-3420-11 ENGINE - Continued

Want foli										nt Engine coolant			Average	To add		lant			r-wal			
Test	Manifold pressure (in. Hg abs.)		Carburetor- air tem- perature (°F)	Barometric pressure (in. Hg abs.)	flow	Engine- air flow (lb/hr)	air	coolant- system pressure (lb/sq	Coolant tempera- ture into engine	temperature rise		e rise	tempera-	(flow lb/sec)	Embedded thermo-		- thermo-		Engine heat rejection (Btu/sec)	
	00017							in. gage)	(oF)	Left	Right	Av.	(°F)	Left	Right	Total			Av.			(°F)
5345567890612345667890	2h.0 26.1 37.1 35.0 352.1 28.0 21.0 20.0 30.1 30.2 30.0 30.2	1500 1710 2595 2400 2259 2150 1850 1105 1200 2200 2200 2200 2200 2200 22	761 779 882 887 880 880 887 888 888 888 888 888	30.27 30.26 30.15 30.19 30.09 30.00 30.10 30.06 30.07 30.06 30.07 30.04 30.04 30.04	295 405 1305 1305 1301 8455 476 157 126 189 704 810 614 584 584 584	\$250 \$5500 \$2500 \$2500 \$2500 \$2500 \$1000 \$2500 \$1000 \$2200 \$760 \$7100 \$6700 \$690 \$700	0.0694 .0733 .0983 .0872 .0836 .0773 .0900 .0867 .0900 .0851 .0927 .0655 .0671 .0676		205 206 203 205 205 204 204 205 206 204 206 204 203 203 204 203 205 206 204 205 206 205 206 205 206 205 206 205 205 205 205 205 205 205 205 205 205	11.6 10.9 11.0 11.3 11.8 12.1 10.6 7.7 9.1	10.1 10.5 11.1 11.3 9.3 11.0 8.4 9.3 10.3 11.1 11.0 9.3	11.9 11.25 10.77 10.8 11.47 9.22 10.8 8.12 10.4 9.8 11.0 9.8 11.0	211 211 209 210 209 210 210 211 209 211 209 211 208 209 210 209 210 209 210	33.66 32.66 30.67 24.66 14.22 16.77 15.76 29.66 29.66 29.66	17.5 20.0 30.2 29.1 27.5 26.1 22.26 11.2 26.9 21.3 26.9 226.9 226.9 226.9 226.9	928718886936755255	306 322 350 350 347 346 295 2743 322 2743 3341	374 3793 4431 4432 4433 3339 4443 4432 4433 4444 4411 4411 4411 4417	261 261 282 281 279 278 278 237 249 230 234 276 267	288 299 313 333 300 55 51 17 77 77 77 79 22 23 23 23 23 23 23 23 23 23 23 23 23	330 3555 596 4769 471 111 1257 151 202 2447 466 471 466 433	161 167 1655 1655 1655 1655 1661 162 1632 181 1761
10	50.0	2200	00	50.04	704		GXL	mixture, 1			1		-								1	
77777778901234567899012345667899012345697899012034	37.0 35.1 27.0 28.1 30.1 30.1 30.0 17.0 18.0 17.0 18.0 17.0 20.1 17.0 20.1 17.0 20.1	2600 2l,00 1700 11,95 1850 2000 2000 2600 1300 1100 1260 2250 900 2200 2205 1700 2600 2250 900 2205 1700 2500 2250 2250 2250 2250 2250 2250 2	8449142244440003377884777536652309133366	29.75 29.75 29.75 29.74 29.74 29.73 29.73 29.89 29.88 29.98 29.98 29.97 30.20 30.19 30.19 30.19 30.02 29.98 30.19 30.02 29.98 29.98 30.20 30.02 29.98 29.98 30.02 29.98	1258 1060 3261 4791 5552 214 9555 214 1255 1345 1346 1346 1346 1469 1469 1470 1469 1470 1469 1470 1469 1470 1470 1470 1470 1470 1470 1470 1470	13110 115µ0 5½0 5½0 5½0 6690 9280 7970 10010 2620 1160 11530 1120 1120 1120 1210 2210 6260 6260 626	0919 0707 0709 0707 0692 0692 0809 0817 0884 0957 0851 0706 0706 0716 0716 0716 0716 0716 071		205 205 205 205	12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	10.68 10.8 11.9 10.9 13.4 13.4 13.4 10.4 13.9 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	11.5 11.8 12.0 12.0 12.1 12.1 12.5 12.7 13.8 12.7 10.9 11.4 10.4 12.7 10.4 12.7 10.4 12.7 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	210 210 211 211 211 212 212 213 210 210 210 209 208 211 207 208 210 209 212 212 212 211 210 209 212 212 211 210 209 212 212 211 210 209 210 209 210 210 210 210 210 210 210 210 210 210	22.6.7.9.5.7.2.6.4.3.5.6.9.9.1.9.9.6.4.3.5.6.9.9.3.1.9.9.2.6.4.3.7.8.3.0.1.9.9.2.6.4.8.3.7.2.2.6.4.8.3.7.2.2.6.4.8.3.7.2.2.6.4.8.3.7.2.2.6.4.8.3.7.2.2.6.4.8.3.7.2.2.6.4.8.3.7.2.2.6.4.8.3.7.2.2.6.4.8.3.7.2.2.6.3.7.3.4.8.3.7.2.2.6.3.7.2.2.6.3.7.2.2.6.3.7.2.2.6.3.7.3.4.8.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	28.54.49.11.21.77.41.21.77.41.21.77.41.21.77.41.21.77.41.21.77.41.21.77.41.21.77.41.21.21.21.21.21.21.21.21.21.21.21.21.21	50,886.5156.476.178.552.68 53,228.556.3559.446.81	3198960796372009355127554472185 335574596372009355127554472185	4383985561235990251750778874056	289.06.24.45.1 230.62.44.51.2 230.62.44.51.2 230.62.44.51.2 230.62.44.51.2 24.51.2 24.79.74.2 24.79.74.2 24.79.74.2 24.79.2 24	\$35353535352222352235223533535 6411067775862142992577621609	467 467 2881 4495 4495 4416 486 221 472 430 1822 3458 37157 4210 2367 2410 2567 2678 27157	166 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NATIONAL ADVISORY COMMITTEE FOR MERONAUTICS

TABLE I. - RESULTS OF TESTS ON ALLISON V-3420-11 ENGINE - Concluded

													Average						r-wall rature		
Test	Manifold pressure (in. Hg abs.)		Carburetor- sir tem- perature (°F)	Barometric pressure (in. Hg abs.)	Fuel flow (lb/hr)	Engine- air flow (1b/hr)	air	Coolant- system pressure (lb/sq in. gage)	tempera- ture into engine	into (OF)		e rise	engine		flow (lb/se	c)	Embedd thermo	led -	Spark-plug gasket thermo- couple	Engine heat rejection (Btu/sec)	oil tempera- ture into engine (°F)
								1111 84807		hali	half	Av.		half	half	Total	Av. Ma	x.	Av. Max.		
									Coolant,		1										
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	22.1 26.1 28.0 17.0 30.0 32.1 36.0 30.1 36.1 21.1 21.1 21.1 21.1	1600 2000 2205 1200 1000 2400 2400 2400 2500 2000 2000 2000 1800 1800 1800	82 891 993 991 985 885 87988 894	50.15 50.18 50.18 50.18 50.17 50.14 50.13 50.18 50.18 50.18 50.18 50.18 50.18 50.18 50.18	280 475 576 161 123 712 214 1000 1037 1260 692 692 432 432 432	3830 6480 7990 1940 9300 2830 10880 11150 12140 8040 8040 8020 5090 5080 5070	0.0731 .0733 .0721 .0830 .0954 .0756 .0919 .0930 .0860 .0860 .0862	5 5 10 5 14 13 	178 176 1776 178 178 1791 1791 195 195 195 186 178 186 1902	888767877788888887	8.862 7.28.88.87.77.77.77.77.77.77.77.77.77.77.77	8.88.7.68.87.7.7.88.88.7.7.7.7.7.7.7.88.88.7.7.7.7.7.7.88.88	182 180 180 182 181 185 182 198 199 191 180 199 191 180 199	26.9 30.0 15.8 12.9 33.7 18.4 37.8 27.2 27.2 24.1 24.1	12.1	41.2.3.8.3.0.5.5.1.2.8.0.0.7.5.6.7.2.6.6.6.7.2.6.6.6.7.2.6.6.6.6.7.2.6.6.6.6	256 2789 2789 2790 2790 2790 2790 2790 2790 2790 279	78 71 30 954 32 57 928 7	214 250 223 248 209 246 195 207 233 257 204 262 240 263 237 259 230 244 211 233 217 231 225 248 230 248	34528 4528 516 527 720 720 720 720 720 720 720 720 720 7	169 172 172 165 1761 161 164 165 1661 160
161	-4.2	1000	74		47-	1	-	mixture,					ene glyco								
122 124 125 126 127 128 129 131 132 133 134 136 137 141	20.0 20.0 20.0 32.1 34.1 36.0 28.1 24.0 24.1 30.1 30.1 30.1 30.1 18.0 22.0 17.0	11,000 11,100 11,100 2,600 2,100 2,600 2,600 2,200 1800 1,800 2,000 2,100 2,100 2,100 2,100 2,100 1,100 1,100 1,100	92 3 3 1 2 0 7 2 5 5 5 7 2 2 3 5 5 5 4 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	30.08 30.07 30.05 30.17 30.18 30.19 30.19 30.19 30.19 30.19 30.17 30.09 30.09 30.11 30.11 30.11 30.13	213 212 212 2140 9463 11180 1280 3559 3684 7685 7665 7665 7665 7665 7665 7665 7665	2800 2800 18900 10910 11110 12510 12500 7880 1980 1960 6380 9160 9160 9110 9110 9110	.0761 .0757 .0757 .086* .0906 .0916 .0762 .0721 .0721 .0726 .0759 .0810 .0808 .0810 .0810 .0810 .0810	133333443333333333333333333333333333333	177 195 215 196 195 196 195 217 195 2177 195 196 195 196 195	98889099899888887	52130331813436594	8.090.78.6.4.1.1.4.3.6.58.9.9.6.4.1.1.4.3.6.58.9.9.6.4.1.1.4.3.6.58.9.9.6.4.1.1.4.3.6.58.9.9.6.4.1.1.4.3.6.58.9.9.6.4.1.1.4.3.6.58.9.9.6.4.1.1.4.3.6.58.9.9.6.4.1.1.4.3.6.58.9.9.6.4.1.1.4.3.6.58.9.9.6.4.1.1.4.3.6.58.9.9.6.4.1.1.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.58.9.9.6.4.4.3.6.5.8.9.9.6.4.4.3.6.5.8.9.9.6.4.4.3.6.5.8.9.9.6.4.4.3.6.5.8.9.9.6.4.4.4.3.6.5.8.9.9.9.6.4.4.3.6.5.8.9.9.9.9.4.4.4.3.6.5.8.9.9.9.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	217 200 199 200 200 200 200 216 182 200 182 217 200 199 199 200 200	18.0 36.0 33.4 32.4 24.0 24.0 24.0 25.3 35.3 35.3 35.3 35.3 15.1 21.1 21.1	30.7 32.2 27.8 27.2 22.3 22.3 22.3 22.3 22.3 23.3	34-93-76-81-6-72-3-5-6-5-7-1-9-5-6-3-3-1-6-7-2-3-5-6-5-7-1-9-5-6-3-3-1-6-7-3-1-6-1-9-5-6-3-3-1-6-1-9-5-6-3-3-1-6-1-9-5-6-3-3-1-9-5-6-3-3-1-9-5-6-3-3-1-9-5-6-3-3-1-9-5-6-3-3-1-9-5-6-3-3-1-9-5-6-3-3-1-9-5-6-3-3-1-9-5-6-3-3		18 33 94 98	210 230 22ll 2lll 2llo 260 2ll 7 27l 2ll6 278 2ll 7 277 2ll4 270 2ll 2 267	287 278 266 517 527 572 469 369 444 501 506 507 506 517	161 1656 1656 1559 1661 1655 1665 1665 1
							1	mixture,	1	nt by	volur	e ethy				1-(-					
142 143 144 145 146 147 148 150 151 152 153 154 155	30.0 30.2	2200 2200 2200 2200 2200 1800 1800 1800	7555677756775677567758758833	30.28 30.28 30.30 30.30 30.30 30.228 30.28 30.11 30.11 30.13	672222266665565555555555555555555555555	8390 83970 8350 8340 6310 6310 6270 10450 10370 10370	0.080 .080 .080 .080 .080 .080 .080 .08	5 to 15	208 247 268 185 231 231 231 189 268 247 177 209 191 249 268	10	6 8. 6 10. 9 9. 9 11. 7 9. 8 8. 7 9. 8 11. 10. 8 9.	9.1 11.8 10.6 10.1 11.6 11.6 12.4 12.4 12.6 12.6 10.7	272 191 236 236 195 272 272 252 183 214 197 236	23. 23. 24. 23. 32. 32.	29.3	45.4 45.6 45.6 45.7 61.7 62.5				384 37726 4265 3311 332560 4844 4545 420	

MR

Figure 1.- Engine-nacelle test setup for cooling tests of the Allison V-3420-l1 engine.

Figure 2.-Location of coolant flowmeter and thermocouples for left half of engine.

Figure 3.- Location of embedded thermocouples in cylinder wall.

Figure 4.- Physical properties of mixtures of pure ethylene glycol and water.

(From reference 4.)

Percent by volume ethylene glycol

(c) Absolute viscosity.

Figure 4.- Concluded.

Figure 5.- The effect of W_c/μ_c on the rate of heat transfer from the cylinder walls to the coolant.

Figure 6.- The variation of the heat transfer from the cylinder walls to the coolant with the average cylinder-wall temperature; fuel-air ratio, 0.08.

Figure 7.- The variation of tgo with fuel-air ratio.

Figure 8.- Heat-rejection characteristics of the Allison V-3420-11 engine.

Percent by volume ethylene glycol (AN-E-2)

(a) Values of Z for an average engine coolant temperature of 250° F.

Percent by volume ethylene glycol (AN-E-2)

(b) Correction factor to be applied to $Z_{(t_0=250)}$ to obtain Z for average engine coolant temperatures other than 250° F.

Figure 9.- Curves for determining Z or $\frac{1}{\frac{A^{\frac{k_c}{\mu_c}\left(\frac{c_{p_c}\mu_cg}{k_c}\right)^{0.\frac{l_s}{\mu_c}d}}{k_c}}} \text{ for various}$

coolant mixtures, average engine coolant temperatures, and coolant flow rates. $Z = FZ(t_a=250)^*$

Figure 10.- The effect of engine-air flow on the heat rejection to the coolant for each of the coolant mixtures used in the tests. Effect of variation in coolant temperature on coolant properties neglected.

Figure 11.- The effect of engine speed on the coolant flow rate for various coolant mixtures.

Figure 12.- Variation of engine-air flow with engine operating conditions.

Exhaust back pressure, 30 inches of mercury absolute.

(a) Variation of KF with fuel-air ratio.

(b) Variation of K_N with engine speed.

Figure 13.- Correction factors used to calculate the brake horsepower for the