The Prints of the Generalized Equations of $z_1^{-1}c_1z_1c_1^{-1}=_F 1$ in a Free Group

Bilal Khan * M-K Solver †

1 Generalized Equation #1

Quadratic System: $z_1^{-1}c_1z_1c_1^{-1} =_F 1$.

GE Information: Carrier: [0-1:z1-.] ; Carrier Dual: [2-3:z1+.] ; Critical Boundary: 1; **Prints**

Print 0: =0=3*<1=2*

Total number of prints: 1 Next, we consider

car, we constact

Print 1: =0=3*<1=2*

^{*}Department of Mathematics and Computer Science, John Jay College of Criminal Justice, City University of New York (CUNY).

[†]This report was generated automatically by software developed with support from the National Security Agency Grant H98230-06-1-0042.

Sequence of Actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1-.] to (new) boundaries 3 - 2.

Step 2: Moved (old) base [0-1:z100+.] to (new) boundaries 3 - 2.

Step 3: Collapsed (new) base [2-3:z1+.] to the empty base (3,3).

<u>Step 4</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Summarizing, the GE we obtain after applying

is shown below:

The GE above is non-degenerate.

This completes the consideration of Print 1.

2 Generalized Equation #2

Quadratic System: $z_1^{-1}c_1z_1c_1^{-1} =_F 1$.

GE Information: Carrier: [0-1:z1-.]; Carrier Dual: [2-5:z1+.]; Critical Boundary: 1; **Prints**

Print 0: =0=5*<4*<3*<1=2*

Total number of prints: 1 Next, we consider

Print 1: =0=5*<4*<3*<1=2*

Sequence of Actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1-.] to (new) boundaries 5 - 2.

Step 2: Moved (old) base [0-1:z102+.] to (new) boundaries 5 - 2.

Step 3: Collapsed (new) base [2-5:z1+.] to the empty base (5,5).

<u>Step 4</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Summarizing, the GE we obtain after applying

Print 1: =0=5*<4*<3*<1=2*

Observe the following facts about this GE: The base [1-4:z102-.] and its dual are of the same polarity, yet one properly contains the other. The base [2-3:z102-.] and its dual are of the same polarity, yet one properly contains the other. These observations show that the GE above is degenerate.

This completes the consideration of Print 1.

3 Generalized Equation #3

Quadratic System: $z_1^{-1}c_1z_1c_1^{-1} =_F 1$.

GE Information: Carrier: [0-1:z1-.] ; Carrier Dual: [2-3:z1+.] ; Critical Boundary: 1; **Prints**

Print 0: =0=3*<1=2*

Total number of prints: 1 Next, we consider

Print 1: =0=3*<1=2*

Sequence of Actions in performing the Print 1:

Step 1: Moved (old) base [0-1:z1-.] to (new) boundaries 3 - 2.

Step 2: Moved (old) base [0-1:z101+.] to (new) boundaries 3-2.

Step 3: Collapsed (new) base [2-3:z1+.] to the empty base (3,3).

<u>Step 4</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Summarizing, the GE we obtain after applying

Print 1: =0=3*<1=2*

The GE above is non-degenerate.

This completes the consideration of Print 1.

4 Generalized Equation #4

Quadratic System: $z_1^{-1}c_1z_1c_1^{-1} =_F 1$.

GE Information: Carrier: [0-2:z1-.] ; Carrier Dual: [3-5:z1+.] ; Critical

Boundary: 2; **Prints**

Print 0: =0=5*<1=4*<2=3* Print 1: =0=5*<1<4*<2=3* Print 2: =0=5*<4*<1<2=3*

Total number of prints: 3

Next, we consider

Print 1: =0=5*<1=4*<2=3*

Sequence of Actions in performing the Print 1:

Step 1: Moved (old) base [0-2:z1-.] to (new) boundaries 5 - 3.

Step 2: Moved (old) base [0-1:z101+.] to (new) boundaries 5 - 4.

Step 3: Moved (old) base [1-2:z102+.] to (new) boundaries 4 - 3.

Step 4: Collapsed (new) base [3-5:z1+.] to the empty base (5,5).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 6</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Summarizing, the GE we obtain after applying

is shown below:

The GE above is non-degenerate.

This completes the consideration of Print 1.

Next, we consider

Print 2: =0=5*<1<4*<2=3*

Sequence of Actions in performing the Print 2:

Step 1: Added (new) boundary 5.

Step 2: Moved (old) base [0-2:z1-.] to (new) boundaries 6 - 3.

 $\overline{\text{Step 3}}$: Moved (old) base [0-1:z101+.] to (new) boundaries 6 - 5.

Step 4: Moved (old) base [1-2:z102+.] to (new) boundaries 5 - 3.

Step 5: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

<u>Step 6</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 7: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Summarizing, the GE we obtain after applying

is shown below:

The GE above is non-degenerate.

This completes the consideration of Print 2.

Next, we consider

Print 3: =0=5*<4*<1<2=3*

Sequence of Actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z1-.] to (new) boundaries 6 - 3.

Step 3: Moved (old) base [0-1:z101+.] to (new) boundaries 6 - 4.

Step 4: Moved (old) base [1-2:z102+.] to (new) boundaries 4 - 3.

 $\overline{\text{Step 5}}$: Collapsed (new) base [3-6:z1+.] to the empty base (6.6).

Step 6: Deleted (new) boundary 0 because it is not used inside any base. This

will cause renumbering of higher numbered boundaries.

<u>Step 7</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Summarizing, the GE we obtain after applying

is shown below:

Observe the following facts about this GE: The base [0-1:z100+.] has constraints with its dual that stretch the constant segment 0 - 1 to length different from 1. The base [4-5:z101-.] has constraints with its dual that stretch the constant segment 4 - 5 to length different from 1. These observations show that the GE above is degenerate.

This completes the consideration of Print 3.

5 Generalized Equation #5

Quadratic System: $z_1^{-1}c_1z_1c_1^{-1} =_F 1$.

GE Information: Carrier: [0-2:z1-.] ; Carrier Dual: [3-5:z1+.] ; Critical Boundary: 2; **Prints**

Print 0: =0=5*<1=4*<2=3* Print 1: =0=5*<1<4*<2=3* Print 2: =0=5*<4*<1<2=3*

Total number of prints: 3

Next, we consider

Print 1: =0=5*<1=4*<2=3*

Sequence of Actions in performing the Print 1:

Step 1: Moved (old) base [0-2:z1-.] to (new) boundaries 5 - 3.

 $\overline{\text{Step 2}}$: Moved (old) base [0-1:z100+.] to (new) boundaries 5 - 4.

 $\overline{\text{Step 3}}$: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 3.

Step 4: Collapsed (new) base [3-5:z1+.] to the empty base (5,5).

<u>Step 5</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 6</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Summarizing, the GE we obtain after applying

The GE above is non-degenerate.

This completes the consideration of Print 1.

Next, we consider

Print 2: =0=5*<1<4*<2=3*

Sequence of Actions in performing the Print 2:

Step 1: Added (new) boundary 5.

Step 2: Moved (old) base [0-2:z1-.] to (new) boundaries 6 - 3.

Step 3: Moved (old) base [0-1:z100+.] to (new) boundaries 6 - 5.

 $\overline{\text{Step 4}}$: Moved (old) base [1-2:z101+.] to (new) boundaries 5 - 3.

Step 5: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

<u>Step 6</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 7: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Summarizing, the GE we obtain after applying

Print 2: =0=5*<1<4*<2=3*

Observe the following facts about this GE: The base [0-1:z101-.] has constraints with its dual that stretch the constant segment 0 - 1 to length different from 1. The base [4-5:z102-.] has constraints with its dual that stretch the constant segment 4 - 5 to length different from 1. These observations show that the GE above is degenerate.

This completes the consideration of Print 2.

Next, we consider

Print 3: =0=5*<4*<1<2=3*

Sequence of Actions in performing the Print 3:

Step 1: Added (new) boundary 4.

Step 2: Moved (old) base [0-2:z1-.] to (new) boundaries 6 - 3.

 $\overline{\text{Step 3}}$: Moved (old) base [0-1:z100+.] to (new) boundaries 6 - 4.

 $\overline{\text{Step 4}}$: Moved (old) base [1-2:z101+.] to (new) boundaries 4 - 3.

Step 5: Collapsed (new) base [3-6:z1+.] to the empty base (6,6).

Step 6: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

<u>Step 7</u>: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Summarizing, the GE we obtain after applying

The GE above is non-degenerate.

This completes the consideration of Print 3.

6 Generalized Equation #6

Quadratic System: $z_1^{-1}c_1z_1c_1^{-1} =_F 1$.

GE Information: Carrier: [0-3:z1-.] ; Carrier Dual: [4-5:z1+.] ; Critical

Boundary: 3; **Prints**

Print 0: =0=5*<1<2<3=4*

Total number of prints: 1 Next, we consider

Print 1: =0=5*<1<2<3=4*

Sequence of Actions in performing the Print 1:

Step 1: Added (new) boundary 5.

Step 2: Added (new) boundary 6.

Step 3: Moved (old) base [0-3:z1-.] to (new) boundaries 7 - 4.

Step 4: Moved (old) base [2-3:z100+.] to (new) boundaries 5 - 4.

 $\overline{\text{Step 5}}\text{: Moved (old) base [0-1:z101+.] to (new) boundaries 7-6.}$

Step 6: Moved (old) base [1-2:z102+.] to (new) boundaries 6 - 5.

 $\overline{\text{Step 7}}$: Collapsed (new) base [4-7:z1+.] to the empty base (7,7).

<u>Step 8</u>: Deleted (new) boundary 0 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 9: Deleted (new) boundary 1 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Step 10: Deleted (new) boundary 2 because it is not used inside any base. This will cause renumbering of higher numbered boundaries.

Summarizing, the GE we obtain after applying

Print 1: =0=5*<1<2<3=4*

is shown below:

Observe the following facts about this GE: The base [2-3:z102-.] and its dual are of the same polarity, yet one properly contains the other. The base [1-4:z102-.] and its dual are of the same polarity, yet one properly contains the other. These

observations show that the GE above is degenerate.

This completes the consideration of Print 1.