Università degli Studi di Bergamo, Scuola di Ingegneria, Dalmine Laurea Magistrale in Ingegneria Edile

Dinamica, Instabilità e Anelasticità delle Strutture a.a. 2018/2019

II ELABORATO

1) Si consideri il seguente *sistema discreto* strutturale semplicemente compresso avente aste rigide e molle elastiche lineari (molle rotazionali relative e molla rotazionale d'estremità):

ove n è il numero di tratti in cui è stata suddivisa la lunghezza totale l fissa (n > 1; in fig. è rappresentato il caso n = 4). Il parametro adimensionale positivo μ descrive la cedevolezza elastica della molla rotazionale d'estremità.

Richieste:

- Si considerino i tre casi con n = 3, n = 4 e n = 5:
 - calcolare il carico critico euleriano P^E_{cr,n} di ogni caso utilizzando il metodo energetico ed il metodo statico (si parta da equazioni valide per spostamenti arbitrariamente grandi per poi giungere a relazioni valide in regime di spostamenti geometricamente piccoli);
 - rappresentare l'andamento dei carichi critici P^E_{cr,n} così determinati in funzione del parametro μ, ponendoli a confronto:
 - fornire in tabella il valore dei $P_{cr,n}^E$ per i valori $\mu \to 0$, $\mu = \mu_a$, $\mu \to \infty$, con parametro allievo $\mu_a = 5 + (N C)/5$ (N = numero lettera iniziale del nome, C = numero lettera iniziale del cognome);
 - ullet rappresentare le corrispondenti deformate critiche per gli stessi valori di μ .
- Facoltativo: determinare il carico critico P^E_{cr,n} per ulteriori n successivi (n > 5); rappresentarne l'andamento al variare di n, indagando l'eventuale comportamento asintotico per n crescenti ed individuando i nessi con quanto segue.
- 2) Si consideri quindi il *sistema continuo* corrispondente, costituito da un'asta semplicemente compressa di lunghezza l, deformabile solo flessionalmente (con rigidezza flessionale elastica EJ) e avente la medesima molla rotazionale d'estremità.

Richieste:

- Determinare il carico critico euleriano P_{cr}^{E} mediante il metodo statico per $\mu \to 0$, $\mu = \mu_{a}$, $\mu \to \infty$. Studiare e rappresentare la dipendenza di P_{cr}^{E} dal parametro positivo μ .
- Determinare e rappresentare la deformata critica ottenuta nei vari casi, esprimendo la stima della lunghezza di libera inflessione l₀.
- Confrontare il valore ottenuto di P^E_{cr} con quello ricavabile mediante la formula di Newmark, indicando l'errore percentuale con essa commesso.
- Dati E = 30000 MPa, l = 6 m, sezione trasversale rettangolare 25 cm x 30 cm, effettuare la verifica di stabilità per $\mu = \mu_a$ con P = 5000 kN.