Air Quality in Madrid

Prepared By: Mairuo (Michael) Liu, Hairun (Helen) Wang

Agenda

- Introduction & Business Problem
- Assumptions
- Data Properties & Transformation
- Time Series Model
- Model Selection
- Results
- Future Work

Poor air quality can be hazardous

- Air pollution is a tremendous problem in big cities, where health issues and traffic restrictions are continuously increasing
- There are some pollutants that cause immense disturbance to environment
- We will be exploring the Air Quality in Madrid and will forecast it with time series algorithms.

Take action on air pollution to save lives, and the planet, urges UN chief

Is Madrid about to reverse the traffic restrictions that solved its pollution problem?

Beijing's battle to clean up its air

LOS ANGELES RANKED HIGHEST IN U.S. FOR DEATHS LINKED TO AIR POLLUTION

We have several assumptions before performing any analysis

- Air quality data may have some seasonality caused by human activities
 - Special events, weekdays, economic/industrial life cycle
- Government policies or interventions can lead to diminishing trend in time series
- Time series of air quality data is autocorrelated

Data transformation is necessary due to properties of data set

- Multiple pollutants data observed from 2001/01 to 2018/04; ~4MM
- Only focused on 2 pollutants that cause threat to human health (also those 2 columns have less missing values):
 - O3: Emitted by cars, power plants, industrial boilers, refineries, chemical plants
 - PM10: Formed from construction sites, unpaved roads, fields, smokestacks or fires
- Each observation is based on hour
- 30 different observations measured at 30 different stations at every hour
- Impute missing values with linear interpolation

Aggregate data to reduce noises

Data distribution is normal and no additional transformation needed

Ozone

Bimodal

PM10

• Approx. Normal

Decompose the time series to gain clearer insights

Seasonal ARIMA on Ozone Series

SARIMA(2,0,0)(0,1,1)[12] with drift

- Multiplicative Seasonality
- Stochastic trend

Seasonal ARIMA on PM10

SARIMA(4,1,1)(2,0,1)[12]

- Additive Seasonality
- Trend captured by I=1
- Performance not ideal (more on this eason)

Seasonal Holt-Winters and Exponential Smoothing State Space Model

Exponential Smoothing State Space Model (called by ets())

 simple exponential smoothing with additive errors, additive trend and additive season type (AAA)

Holt-Winters (called by HoltWinters())

- Triple Exponential Smoothing
- Multiplicative seasonality
- Higher accuracy for Ozone

Seasonal Holt-Winters and Exponential Smoothing State Space Model

Does not perform as well as SARIMA.

Neural Network Model

1 Hidden Layer

10 Hidden Nodes

Fully connected

A closer look at the quarterly plot of PM 10

- Obvious drop of PM10 value since 2008
- The plot can infer that this is a step response intervention with slope

Air quality and atmosphere protection. Law 34/2007, of 15 November 2007, on Air Quality and Atmosphere Protection (Law 34/2007) aims to prevent air pollution and to monitor and protect air quality. Law 34/2007 provides that both state and regional authorities must:

- · Establish limits to air emissions.
- · Establish air pollution prevention plans.
- Create an authorisation/notification system for potentially polluting activities that are not covered by the Recast Act on Integrated Pollution Prevention and Control (passed by Royal Decree Legislative 1/2016, of 16 December 2016) (IPPC Law).

^{*}Source:https://uk.practicallaw.thomsonreuters.com/1-638-3346?transitionType=Default&contextData=(sc.Default)&firstPage=true&comp=pluk&bhcp

Hypothesis: PM10's drop happened because of intervention

```
Define the intervention time
pm.outliers <- 1*(seg(pm10.train)>=35)
pm.pulse <- arimax(pm10.train,order=c(4,1,1),seasonal=list(order=c(2,0,1),
                period=12),xtransf=data.frame(pm.outliers),
                transfer=list(c(0,0)), method='ML')
pm.pulse
                                                                                             Find level change and temp
NaNs produced
                                                                                             change as outliers
Call:
arimax(x = pm10.train, order = c(4, 1, 1), seasonal = list(order = c(2, 0, 1),
    period = 12), method = "ML", xtransf = data.frame(pm.outliers), transfer = list(c(0, 0))
    0)))
                                                                                             Feed data into ARIMAX model
Coefficients:
               ar2
                                                            sma1 pm.outliers-MA0
        ar1
                                                                                             and plot the results
     0.2320 0.2188
                   -0.1245 -0.0508 -0.9176 0.5524
                                                                         1.5301
s.e. 0.0907 0.0780
                    0.0800
                            0.0797
                                    0.0431 0.3339 0.1296
                                                          0.3484
                                                                         3.1591
sigma^2 estimated as 27.56: log likelihood = -605.47, aic = 1228.95
                                                                                              Hypothesis vs actual results
```

How do we validate the models?

Metrics:

- sMAPE
- AIC, BIC
- Box-Ljung Test for residuals

Method for CV:

Hold-out set of 12 month worth of data

Here are the results model evaluation of each model:

O_3	sMAPE	AIC	BIC
SARIMA	0.0689216	1097.53179765031	1113.6335767757
Exponential Smoothing State Space	0.0866228	1666.88809993114	1722.70256331968
Holt-Winter Exponential Smoothing	0.0593831	1600ish	1700ish
Neural Net	0.1118940	NA	NA

PM10	SMAPE	AIC	BIC
SARIMA	0.1357926	1229.18553402543	1258.68856595851
Exponential Smoothing State Space	0.1494271	1707.09253011805	1756.34058604912
Holt-Winter Exponential Smoothing	0.1475189	1700ish	1700ish
Neural Net	0.1474199	NA	NA

Future Work

- Better implementation of Intervention Analysis
- Explore and perform more time series analysis for pollutants such as NO_2, SO_2,
 PM25 etc
- Combine weather, traffic data with air quality data and identify if any correlation or causality exists among those data sets -- regression model