Ejercicio 3. Backtracking

En el puerto de Algeciras hay un conjunto de contenedores dispuestos para ser embarcados. Se nos pide hacer uso de la técnica de backtracking para seleccionar qué contenedores deberán ser embarcados en el siguiente carguero y en qué orden embarcarlos teniendo en cuenta las siguientes restricciones:

- 1) Los contenedores seleccionados no pueden superar la capacidad del carguero.
- 2) El tiempo de embarque de los contenedores seleccionados no puede superar el tiempo disponible para tal fin.
- 3) La diferencia entre el número de contenedores embarcados de tipo 1 y tipo 2 será menor o igual a 3.
- 4) El orden en que se seleccionen los contenedores influye en el beneficio obtenido. Dicho beneficio se calculará utilizando la siguiente formula:

beneficio_contenedor = precio_ofertado *
$$\left(1 + \frac{1}{1 + \text{orden_en_que_se_embarca}}\right)$$

Se pide:

a) Completar la siguiente ficha:

Embarque de Contenedores					
Técnica: Vuelta atrás					
Propiedades Compartidas	contenedoresDisponibles: List <contenedor></contenedor>				
	capacidadDelCargero: Integer				
	tiempoParaEmbarcar: Integer				
Propiedades del Estado	ordenDeEmbarque: List <integer></integer>				
	capacidadRestante: Integer				
	tiempoRestante: Integer				
	tipo1, tipo2: Integer				
	beneficio: Double				
Solución: // TODO					

Objetivo: Encontrar una solución que obtenga el máximo beneficio sin superar la capacidad del carguero y el tiempo para embarcar, de forma qué la diferencia entre el número de contenedores embarcados de tipo 1

y tipo 2 sea menor o igual a 3.

Definiciones:

c(k)=contenedoresDisponibles.get(k)

csize()=contenedoresDisponbles.size()

oesize()=ordenDeEmbarque.size()

Alternativas: $A = \begin{cases} k \in [0..csize()-1] / k \notin ordenDeEmbarque \& c(k).getPeso() \le capacidadRestante & \\ c(k).getTiempoDeCarga() \le tiempoRestante & \\ \end{cases}$

Estado Inicial: ([],capacidadDelCargero,tiempoParaEmbarcar,0,0,0)

Estado Final: // TODO

Avanza(k): // **TODO**

- b) Implementar los siguientes métodos de la clase EstadoContenedores:
 - b.1) **public** List<Integer> getAlternativas()
 - b.2) **public void** avanza(Integer contenedor)
 - b.4) **public boolean** isFinal()
 - b.5) **public** List<Contenedor> getSolucion()
 - b.6) **public** Double getObjetivo()

Ejemplo:

Contenedores Disponibles:

						
ID	Peso	Tiempo De Embarque	Tipo	Precio Oferta		
0	10	30	1	2		
1	10	15	1	3		
2	25	20	2	4		
3	30	10	1	4		
4	15	5	1	5		
5	20	10	2	6		
6	25	10	1	5		

Capacidad del carguero: 70

Tiempo para embarcar contenedores: 100

Orden de carga:

ID	Peso	Tiempo	Tipo	Precio	Beneficio
5	20	10	2	6	12
1	10	15	1	3	4.5
4	15	5	1	5	6,6
6	25	10	1	5	6,25

Beneficio orden de carga: 29.35

Peso orden de carga: 70 Tiempo orden de carga: 40

Diferencia entre tipos de contenedores: 2

Diagrama de Clases:

SOLUCIÓN

a)

	Embarque de Contenedores					
Técnica: Vuelta atrás						
Propiedades Compartidas	contenedoresDisponibles: List <contenedor></contenedor>					
	capacidadDelCargero: Integer					
	tiempoParaEmbarcar: Integer					
Propiedades del Estado	ordenDeEmbarque: List <integer></integer>					
	capacidadRestante: Integer					
	tiempoRestante: Integer					
	tipo1: Integer					
	tipo2: Integer					
	beneficio: Double					
Solución: List <contenedor></contenedor>						
Objetivo: Encontrar una soluci	ión que obtenga el máximo beneficio sin superar la capacidad del carguero y					
el tiempo para embarcar, de fo	rma que la diferencia entre el número de contenedores de tipo 1 y tipo 2 sea					
menor o igual a 3.						
Definiciones:						
c(k)=contenedoresDisponibles.get(k)						
csize()=contenedoresDisponbles.size()						
oesize()=ordenDeEmbarque.size()						
Alternativas: $A = \int_{k \in [0]} e^{-iz} e^{-iz} dx$ $11/k \notin ordenDeEmparque \& c(k).getPeso() \le capacidadDeEmbarque & $						
Alternativas: $A = \begin{cases} k \in [0csize()-1] / k \notin ordenDeEmparque \& c(k).getPeso() \le capacidadDeEmbarque & \\ c(k).getTiempoDeCarga() \le tiempoRestante \end{cases}$						
Estado Inicial: ([],capacidadDe	elCargero,tiempoParaEmbarcar,0,0,0)					
Estado Final: $A.size() == 0$						
Avanza(k): (ordenDeEmbarque+[k], capacidadRestante-c(k).getPeso(), /						
tiempoRestante-c(k).getTiempoDeCarga(),						
tipo1+(c(k).getTipo()=1?1:0), tipo2+(c(k).getTipo()=2?1:0),						
beneficio + c(k).getPrecioOferta()* $\left(1 + \frac{1}{1 + oesize()}\right)$)						

```
b.1)
public List<Integer> getAlternativas() {
   List<Integer>la =
          IntStream.range(0,ProblemaContenedores.contenedoresDisponibles.size())
    .boxed()
    .filter(pos -> ordenDeEmbarque.indexOf(pos)<0)</pre>
    .filter(pos -> capacidadRestante>=
ProblemaContenedores.contenedoresDisponibles.get(pos).getPeso())
    .filter(pos -> tiempoRestante>=
ProblemaContenedores.contenedoresDisponibles.get(pos).getTiempoDeEmbarque())
    .collect(Collectors.toList());
    return la;
}
b.2)
public void avanza(Integer contenedor) {
   Contenedor c = ProblemaContenedores.contenedoresDisponibles.get(contenedor);
   capacidadRestante-=c.getPeso();
   tiempoRestante-=c.getTiempoDeEmbarque();
   if (c.getTipo()==1) tipo1++;
if (c.getTipo()==2) tipo2++;
   beneficio+= c.getPrecioOferta() * (1+(1/(1+ordenDeEmbarque.size())));
   ordenDeEmbarque.add(contenedor);
}
b.3) public boolean isFinal() {
   return getAlternativas().isEmpty();
b.4) public List<Contenedor> getSolucion() {
    List<Contenedor> sol = null;
    if (Math.abs(tipo1-tipo2)<=3) {</pre>
       sol = this.ordenDeEmbarque.stream()
         .map(pos-> ProblemaContenedores.contenedoresDisponibles.get(pos))
         .collect(Collectors.toList());
    return sol;
}
b.5)
public Double getObjetivo() {
    return beneficio;
```