MATH405: Linear Algebra

Michael Li

(:	<u>_</u>	n	tο	n	$\mathbf{t}\mathbf{s}$	1
v	v	11	UC	.11	.U.	1

1	Vec	etor Space	:
	1.1	Definitions	,

1 Vector Space

Goals of this course is to discuss

- Vector spaces
- Linear transformations between vector spaces
- Other operations on vector spaces

1.1 Definitions

Definition - Field: A set of numbers containing 0,1 that can be added, subtracted, multiplied, and divided (except cannot divide by 0) that satisfy the following **Field Axioms**

- 1. $a, b \in K \implies a + b, ab \in K$
- 2. $+, \times$ are commutative so a + b = b + a and ab = ba
- 3. +, \times are associative so (a+b)+c=a+(b+c) and a(bc)=(ab)c
- 4. Distributive Law: a(b+c) = ab + ac
- 5. Additive Identity: a + 0 = 0 + a = a
- 6. Multiplicative Identity: $a \cdot 1 = 1 \cdot a = a$
- 7. Additive Inverse: $\forall a \in K, \exists b \text{ such that } a+b=0, \text{ namely } b=-a \text{ which is unique}$
- 8. Multiplicative Inverse: $\forall a \in K, \exists b \text{ such that } ab = 1, \text{ name } b = 1/a \text{ which is unique}$
- Example: R, Q are fields. Z is not a field since there is no multiplicative inverse of 2

Example: $C = \{a + bi \mid a, b \in R\}$, where $i = \sqrt{-1}$ is a field under

- +: (a+bi) + (c+di) = (a+c) + (b+d)i
- \times : (a+bi)(c+di) = (ac-bd) + (ad+bc)i

Example: $F_2 = \{0, 1\}$ is a field under

• +: where

$$0 + 0 = 0$$

$$0+1=1+0=1$$

$$1 + 1 = 0$$

• \times : where

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

Example: For a prime p, let $F_p = \{0, \dots, p-1\}$. Then F_p is a field under

- $+: a+b \pmod{p}$
- $\times : ab \pmod{p}$

Definition - Vector Space: For an arbitrary field K, a K-vector space is a set V with a distinguished element O such that any 2 elements in V can be added and scalar multiplied by $c \in K$

- $u, v \in V \implies u + v \in V$
- $c \in K, u \in V \implies cu \in V$

Satisfying the following properties

- 1. Commutative Addition: u + v = v + u
- 2. Associative Addition: (u+v)+w=u+(v+w)
- 3. Additive Identity: u + O = u

- 4. Additive Inverse: $\forall u \in V, \exists v \in V \text{ such that } u + v = O, \text{ namely } v = -u \text{ which is unique}$
- 5. Distributive Laws: $\forall a, b \in K, a(u+v) = au + av$ and (a+b)u = au + bu
- 6. Commutative Scalar Multiplication: (ab)u = a(bu)
- 7. Multiplicative Identity: $1 \cdot u = u$

Example: R^3 is an R-vector space defined by the operations

$$R^3 = \{(x, y, z) \mid x, y, z \in R\}$$

- +: add componentwise so (a, b, c) + (d, e, f) = (a + d, b + e, c + f)
- Scalar \times : for $r \in R$, r(a, b, c) = (ra, rb, rc)
- Additive Identity is O = (0, 0, 0)

Example: For any field K, K^2 is a K-vector space defined by the oppartions

$$K^2 = \{(x, y) \mid x, y \in K\}$$

- +: add componentwise so (a,b)+(c,d)=(a+c,b+d)
- Scalar \times : for $k \in K$, k(a,b) = (ka,kb)
- Additive Identity is O = (0,0)

Example: R is an R-vector space since clearly the properties hold

Example R is a Q-vector space since clearly the properties hold

• Notably, for $q \in Q$ and $r \in R$, we have $qr \in R$. Thus scalar multiplication is closed

Example: For any field K, the set $\{O\}$ is a K-vector space

Example: Let X be any non-empty set and let $\mathcal{F}(X)$ be the set of all functions $f: X \to R$. Then \mathcal{F} is an R-vector space under the operations

- +: for $f, g \in \mathcal{F}(X)$, define f + g := (f + g)(x)
- Scalar \times : let $r \in R$, then define rf := r(f(x))
- Additive Identity is O = f(x) = 0, the function that takes any x to 0

Example: Take X = N and let $F(X) = \{$ all functions $f: N \to R \}$ is a vector space

• Note: $f: N \to R$ is a sequence (a_0, \ldots, a_n) where $a_n = f(n)$

Lemma 1 - Cancellation: For $u, v, w \in V$ and if u + v = w + v, then u = w

Proof: $v \in V$ has an additive inverse, namely -v. Thus we have

$$u + v - v = w + v - v \implies u = w$$

Lemma 2 - Unique Additive Inverse: For all $v \in V$, there is a unique additive inverse, namely -v

Proof: Suppose u, w are both additive inverses of v. Then we have

$$v + u = v + w \implies u = w$$

Lemma 3 - 0 Times a Vector: For all $v \in V$, 0v = O

Proof:
$$v = 1v = (0+1)v = 0v + 1v = 0v + v \implies 0v = 0$$

Lemma 4 - (-1)v is the Additive Inverse: For all $v \in v$, (-1)v is the unique additive inverse of v

Proof: (-1)v + v = (-1+1)v = 0v = 0. Thus (-1)v is the additive inverse of v, which is unique by Lemma 2

Definition - Subspace: For a K-vector space V and a non-empty subset $W \subseteq V$, W is a subspace if it satisfies

- $w_1, w_2, \in W \implies w_1 + w_2 \in W$
- $\forall a \in K, w \in W \implies aw \in W$

Theorem 1: Every subspace of a K-vector space is a K-vector space

Proof: We need to show that $W \subseteq V$ satisfies all the necessary properties of a vector space

1. Verify $O \in W$

Since W is non-empty and closed under scalar multiplication, take $0w = O \in W$ by Lemma 3

- 2. $u, v \in W \implies u + v \in W$ and $a \in K, v \in W \implies aw \in W$ by definition of subspace
- 3. Every $w \in W$ has an additive inverse, namely -w

Since W is closed under scalar multiplication, $(-1)w = -w \in W$ by Lemma 4

4. Other conditions (e.g. associative addition, commutative addition, etc.) hold because $u, v, w \in V \implies u, v, w \in W$ For example, choose $u, v \in V$, then u + v = v + u, which also holds under W. Thus commutative addition is satisfied

Example: Take $(5,3,2) \in \mathbb{R}^3$. Then let $W = \{r(5,3,2) \mid r \in \mathbb{R}\}$

Then W is an R-vector space. We prove this by showing that W is a subspace of \mathbb{R}^3

• +: Choose 2 arbitrary elements of $W, \ r(5,3,2)$ and s(5,3,2) for $r,s\in R$

Then
$$r(5,3,2) + s(5,3,2) = (r+s)(5,3,2) \in W$$

• \times : Choose $r(5,3,2) \in W$ and take $s \in R$

Then
$$s(r(5,3,2)) = (sr)(5,3,2) \in W$$

Example: Let $U = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 3y = 0\}$. We show that U is a vector space by showing it's a subspace of \mathbb{R}^3

• +: Take (x_1, y_1, z_1) and $(x_2, y_2, z_2) \in U \implies 2x_1 + 3y_1 = 0$ and $2x_2 + 3y_2 = 0$

Then
$$2(x_1 + x_2) + 3(y_1 + y_2) = 0$$

Thus
$$(x_1 + x_2, y_1 + y_2, z_1 + z_2) \in U$$

• \times : Let $(x, y, z) \in U$ and $r \in R$

Then
$$2x + 3y = 0 \implies r(2x + 3y)2rx + 3ry = 0$$

Thus $r(x, y, z) \in U$

Example: Consider $\sin(x)$, $\cos(x) \in \mathcal{F}(R)$ and let $W = \{a\sin(x) + b\cos(x) \mid a, b \in R\}$. Then W is a subspace of $\mathcal{F}(R)$

- +: Take $a_1 \sin(x) + b_1 \cos(x)$ and $a_2 \sin(x) + b_2 \cos(x) \in W$. Then $(a_1 + a_2) \sin(x) + (b_1 + b_2) \cos(x) \in W$
- \times : Take $r \in R$. Then $r(a\sin(x) + b\cos(x)) = (ra)\sin(x) + (rb)\cos(x) \in W$