## Department of Medical Physics Bharathidasan University

Date: 14-10-2020

Attendance: 10

I fradient, Divergnce, Cul & Laplacian.

So on ain is to contend a surface

$$\phi(x,y,z)=C,$$

Example

 $\phi(x,y,2) = \chi + y + 2$ 

Let the constant (, = 3/1 e se



e reample

$$\phi(\chi,\chi,Z) = C,$$





| $\mathcal{X}$ | 4   | 7    | C , |
|---------------|-----|------|-----|
| ) 0 2         | 2   |      |     |
|               | 2   | 6    | 3   |
| 1.78          | 0   | 1-25 |     |
| 1.3           | 1.7 |      |     |



This is where our "gradient" enters the fricture. Let  $\phi(x,y,2)$  be some surface, Thun  $\frac{d\phi}{d\phi} = \frac{\partial\phi}{\partial x} \cdot dx + \frac{\partial\phi}{\partial y} \cdot dy + \frac{\partial\phi}{\partial z} \cdot dz$  $\frac{d\phi}{d\phi} \longrightarrow \frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial z} + \frac{\partial \phi}{\partial z} = \frac{\partial \phi}{\partial z} = \frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial z} = \frac$ Can we relate We wont a Scalar from a vector

At product

(dxe+dyj+d2k) Ab = De (dxi + dy; +dzi)  $= \left(\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial z} + \frac{\partial \phi}{\partial z} \right) \cdot (dx^2 + dy^2 + dz^2)$  $d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz$ 

dr = dritdyjtdek then we have de = De de Trector rector If  $\phi(x,y,2) = C_1$ , then  $d\phi = 0$ ( )c,y, 2) = 0 = 3 do = 0 Jon a nontace w. K.T  $\frac{\partial}{\partial x} = 0$   $\frac{\partial}{\partial x} = 0$ So for our care 36 Idé E Suface Generally of of target rector to the surface. Any redon I han to the tangent veton
in round veton 196° > 7 So the condumon is to Mu surface "p" a a point P a

## Do is me mormal vector

If we have a surface  $\beta(x,y,2) = C_1$ , thun  $(x',3) = C_1$ , then or mal to that surface.

**Example 16.** If  $\phi = 3x^2y - y^3z^2$ ; find grad  $\phi$  at the point (1, -2, -1).

**Example 19.** Find the unit normal to the surface  $xy^3z^2 = 4$  at (-1, -1, 2).

$$\Rightarrow 29^3 = 4$$

$$\Rightarrow 29^3 = 4$$

$$\Rightarrow 29^3 = 4$$

$$\Rightarrow 29^3 = 4$$

Directional Darivative: (DD) DD of "b" along any redon "d"; he dot produt of Sp and d'in Munuards DD & \$ \square \text{ES \ \forall \phi \ \delta \delta \ \delta \delta \ \d

**Example 18.** Find the directional derivative of  $x^2y^2z^2$  at the point (1, 1, -1) in the direction of the tangent to the curve  $x = e^t$ ,  $y = \sin 2t + 1$ ,  $z = 1 - \cos t$  at t = 0.

76-7=DD Quen  $\phi = \chi^2 j^2 z^2$ 7=xe+yj+2k 7 = d7 プタニ マスタマン・ナンスタマン・トマスタマン・

= 2i + 2j - 2k

 $\gamma$ 

y = min 2t+1 マニスルナダッヤシK 2=1-cont 7 = et t (1-cost) K

 $7 = \frac{dr}{dt} = \frac{dr}{dt} + 2con2tj + rintk$   $\frac{de}{dt} = \frac{dr}{dt} = \frac{de}{dt}$   $\frac{de}{dt} = \frac{dr}{dt} + 2con2tj + rintk$   $\frac{de}{dt} = \frac{dr}{dt} = \frac{de}{dt}$ 

Xzl

Directional Derivative of 
$$\phi$$
 along  $T$ 

DD ( $\phi$ ) along  $T = \nabla \phi \cdot T$ 

$$= (2\cdot 1) + (2\cdot 2) - (2\cdot 0)$$

$$= (3\cdot 1) + (2\cdot 2) - (2\cdot 0)$$

$$= 6/\sqrt{5}/\sqrt{6}$$

Home work for (15-10-20)

**Example 23.** Find the angle between the surfaces  $x^2 + y^2 + z^2 = 9$  and  $z = x^2 + y^2 - 3$  at the point (2, -1, 2). (Nagpur University, Summer 2002)

$$\phi_1 = x^2 + y^2 + 2^2 - 9$$

$$\phi_2 = x^2 + y^2 - 2 - 3$$

$$\phi_1 \circ \eta_2 = \eta_1 \eta_2 \cos \theta$$

$$\phi_2 = \eta_1 \eta_2 \cos \theta$$

$$\phi_2 = \cos^{-1}\left(\frac{\eta_1 \circ \eta_2}{\eta_1 \circ \eta_2}\right)$$

$$\phi_2 = \cos^{-1}\left(\frac{\eta_1 \circ \eta_2}{\eta_1 \circ \eta_2}\right)$$

$$\Theta = \cos^{-1} \frac{8}{3\sqrt{21}}$$