CLASSIFICATION

Logistic Regression K-Nearest Neighbors Support Vector Machine

Kernel SVM

Naïve Bayes

Decision Tree

Random Forest

Project Brief

- The objective is to build a classification model that predicts whether a customer is likely to purchase the product based on the Technical Suitability and Cost benefit incurred. This model will help the company optimize their client targeting strategy and improve their return on investment (ROI).
- This will help the marketing team to focus better and present company in a suitable manner for conversion of deals into success

Business Objective:

The main business objective is to build a classification model that can predict whether a customer is likely to
make a purchase after being targeted by the marketing team. By doing so, the company aims to identify
potential customers who are more likely to convert and optimize their advertising budget to target those
customers more effectively.

LOGISTIC REGRESSION

Technical Suitability 3

Cost benefit

Logistic Regression (Test set)

K-NEAREST NEIGHBORS

K-NN (Test set)

SUPPORT VECTOR MACHINE

SVM (Test set)

KERNEL SVM

B 7 **Technical Suitability** 0 Ņ 3 -3 Cost benefit

Kernel SVM (Test set)

NAÏVE BAYES

Naive Bayes (Training set)

Naive Bayes (Test set)

DECISION TREE

Decision Tree Classification (Test set)

RANDOM FOREST

Random Forest Classification (Training set)

Training Set

Random Forest Classification (Test set)

