Lenguaje matemático, conjuntos y números

Pregunta 1 (2,5 puntos)

Se define en \mathbb{N}^* la relación \ll dada por:

$$x \ll y$$
 si y sólo si existe $k \in \mathbb{N}^*$ tal que $y = x^k$

- a) Demuestre que \ll es una relación de orden parcial en \mathbb{N}^* .
- b) Si $A = \{2, 8\}$ y $B = \{3, 5\}$ estudie la existencia, y en su caso explicítelos, de cotas superiores e inferiores, supremo e ínfimo, máximo y mínimo, maximales y minimales de los conjuntos A y B.

Solución: a) Veamos que \ll es una relación de orden total en \mathbb{N}^* .

Es reflexiva: para todo $x \in \mathbb{N}^*$ se tiene que $x \ll x$, basta tomar k = 1.

Es antisimétrica: para todo $x, y \in \mathbb{N}^*$ se tiene que si $x \ll y$ e $y \ll x$ entonces existen $k, p \in \mathbb{N}^*$ tales que $y = x^k$ y $x = y^p$. En consecuencia, $y = x^k = (y^p)^k = y^{pk}$. Por tanto y = 1 o pk = 1.

Si y = 1 entonces $x = y^p = 1$ y en consecuencia x = y.

Si pk=1, dado que $k,p\in\mathbb{N}^*$ resulta que p=k=1 en cuyo caso $x=y^1=y$.

Es transitiva: sean $x, y, z \in \mathbb{N}^*$ tales que $x \ll y$ e $y \ll z$. Entonces existen $k, p \in \mathbb{N}^*$ tales que $y = x^k$ y $z = y^p$. En consecuencia $z = y^p = (x^k)^p = x^{kp} = x^q$ siendo $q = kp \in \mathbb{N}^*$ Por tanto, $x \ll z$.

Además el orden es parcial pues por ejemplo existen elementos que no están relacionados entre sí. Por ejemplo, 3 y 6

b) Observemos que $8=2^3$ y por tanto $2\ll 8$. Se tiene que $2=\min(A)=\inf(A)$ también es minimal y $8=\max(A)=\sup(A)$ también es maximal. Además 2 es la única cota inferior de A pues no hay en \mathbb{N}^* ningún elemento $x\neq 2$ tal que $x\ll 2$. Los elementos de la forma 2^{3n} con $n\in\mathbb{N}^*$ son las cotas superiores de A.

Las cotas superiores de B son los elementos y tales que se cumple simultáneamente $3 \ll y$ e $5 \ll y$. Es decir existen $k, p \in \mathbb{N}^*$ tales que $y = 3^k = 5^p$. La igualdad anterior sólo es cierta para k = p = 0 que no es un elemento de \mathbb{N}^* . Por tanto no hay cotas superiores de A y en consecuencia no hay ni supremo ni máximo. Además 3 y 5 son maximales de A pues no existe en A ningún elemento $z \neq 3$ tal que $3 \ll z$ ni ningún elemento $m \neq 5$ tal que $5 \ll m$

Las cotas inferiores de B son los elementos y tales que se cumple simultáneamente $y \ll 3$ e $y \ll 5$. Es decir existen $k, p \in \mathbb{N}^*$ tales que $3 = y^k$ y $5 = y^p$. En consecuencia, $3^p = (y^k)^p = (y^p)^k = 5^k$ que no es posible si $k = p \in \mathbb{N}^*$. Por tanto no hay cotas inferiores de A y en consecuencia ni ínfimo ni mínimo. Además 3 y 5 son minimales de A pues no existe en A ningún elemento $z \neq 3$ tal que $z \ll 3$ ni ningún elemento $m \neq 5$ tal que $m \ll 5$.

Nota: el hecho de que los elementos de B no están relacionados no permite deducir que no hay cotas superiores, supremo, etc.. Por ejemplo, los elementos de $C = \{4,8\}$ no están relacionados y sin embargo C está acotado superiormente siendo 64 el supremo de C.

Pregunta 2 (2,5 puntos)

Sea
$$A = \left\{ x \in \mathbb{Q} \colon \exists (m, n) \in \mathbb{Z} \times \mathbb{N}^*, \text{ tal que } n \text{ impar y } x = \frac{m}{n} \right\}.$$

- a) Demuestre que A, con las operaciones de \mathbb{Q} restringidas a A, es un anillo unitario.
- b) Determine en el anillo A los elementos que son inversibles.

Solución: a) Veamos que $(A, +, \cdot)$ es un subanillo de $(\mathbb{Q}, +, \cdot)$, es decir, que $A \neq \emptyset$ y para todo $x, x' \in A$ se cumple que $x - x' \in A$ y $xx' \in A$.

cumple que $x - x' \in A$ y $xx' \in A$. En efecto, $1 = \frac{1}{1}$ y $1 \in \mathbb{Z}$ y $1 \in \mathbb{N}^*$ es impar por tanto $1 \in A$ y $A \neq \emptyset$.

Si $x, x' \in A$ entonces $\exists (m, n), (m', n') \in \mathbb{Z} \times \mathbb{N}^*$ tales que $x = \frac{m}{n}, x' = \frac{m'}{n'}$ y n y n' son impares. Teniendo en cuenta que el producto de números impares es impar se tiene:

$$x - x' = \frac{m}{n} - \frac{m'}{n'} = \frac{mn' - m'n}{n'n} \in A \text{ pues } mn' - m'n \in \mathbb{Z} \text{ y } n'n \in \mathbb{N}^* \text{ es impar.}$$
$$xx' = \frac{m}{n} \frac{m'}{n'} = \frac{mm'}{n'n} \in A \text{ pues } mm' \in \mathbb{Z} \text{ y } n'n \in \mathbb{N}^* \text{ es impar.}$$

A es unitario pues ya vimos que $1 \in A$.

b) Ya sabemos que 0 no es invertible. Buscamos los elementos $x \neq 0, x \in A$ tales que su inverso $\frac{1}{x} \in A$. Si $x \neq 0$ y $x \in A$, entonces $\exists (m,n) \in \mathbb{Z}^* \times \mathbb{N}^*$ tal que $x = \frac{m}{n}$ y n es impar. Por tanto $\frac{1}{x} = \frac{n}{m}$. Por tanto si $\frac{x}{1} \in A$ entonces $\exists (p,q) \in \mathbb{Z}^* \times \mathbb{N}^*$ tal que $\frac{n}{m} = \frac{p}{q}$ y q impar. Por tanto, nq = mp. Como n y q son impares, nq es impar y por tanto mp es impar y en consecuencia m es impar. Luego los elementos de A que tienen inverso en A son

$$\left\{x\in\mathbb{Q}\colon \exists (m,n)\in\mathbb{Z}^*\times\mathbb{N}^*, \text{ tal que } n,m \text{ impares y } x=\frac{m}{n}\right\}$$

Obsérvese que si $m \notin \mathbb{N}^*$ el inverso de $x = \frac{m}{n}$ se puede expresar con denominador positivo pues $\frac{1}{x} = \frac{n}{m} = \frac{-n}{-m}$.

Pregunta 3 (2,5 puntos)

Demuestre por inducción que para todo $n \in \mathbb{N} \setminus \{3\}$ se cumple que $2^n > n^2$.

Solución: Veamos por un lado que la desigualdad es cierta para n=0, n=1, n=2. En efecto

$$n = 0, 2^0 \ge 0^2$$
 pues $1 \ge 0$.

$$n = 1, 2^1 \ge 1^2 \text{ pues } 2 \ge 1.$$

 $n = 2, 2^2 \ge 2^2 \text{ pues } 4 \ge 4.$

$$n=2, 2^2 \ge 2^2$$
 pues $4 \ge 4$.

Para n = 3 no se cumple pues $2^3 = 8$ y $3^2 = 9$.

Veamos por inducción que la desigualdad es cierta para $n \geq 4$.

- i) Para $n = 4, 2^4 \ge 4^2$ pues $16 \ge 16$.
- ii) Supongamos que la igualdad es cierta para $n \ge 4$, esto es, esto es, $2^n \ge n^2$ tenemos que ver que es cierta para n+1, esto es, $2^{n+1} \ge (n+1)^2$ En efecto, aplicando la hipótesis de inducción a 2^n se tiene $2^{n+1} = 2 \cdot 2^n \ge 2n^2$. Veamos que $2n^2 \ge (n+1)^2$.

$$2n^2 \ge (n+1)^2 \iff 2n^2 \ge n^2 + 2n + 1 \iff n^2 - 2n - 1 \ge 0$$

Pero la ecuación $x^2 - 2x - 1 = 0$ tiene dos raíces que son $1 - \sqrt{2}$ y $1 + \sqrt{2}$. Por tanto, si $n \ge 4$ se cumple que $n^2 - 2n - 1 \ge 0.$

Pregunta 4 (2,5 puntos)

Utilice la fórmula de Moivre para expresar $\cos 5\alpha$ y sen 5α en función de $\cos \alpha$ y sen α .

Solución: Se calcula $(\cos \alpha + i \sin \alpha)^5$ mediante el desarrollo del Binomio de Newton y mediante la fórmula de Moivre. Se igualan entonces las partes reales o las partes imaginarias de ambas expresiones. Se tiene:

$$\cos 5\alpha + i \sin 5\alpha = (\cos \alpha + i \sin \alpha)^{5}$$

$$= \cos^{5} \alpha + 5i \cos^{4} \alpha \sin \alpha + 10 \cos^{3} \alpha (i \sin \alpha)^{2}$$

$$+ 10 \cos^{2} \alpha (i \sin \alpha)^{3} + 5 \cos \alpha (i \sin \alpha)^{4} + (i \sin \alpha)^{5}$$

$$= \cos^{5} \alpha - 10 \cos^{3} \alpha \sin^{2} \alpha + 5 \cos \alpha \sin^{4} \alpha$$

$$+ i (5 \cos^{4} \alpha \sin \alpha - 10 \cos^{2} \alpha \sin^{3} \alpha + \sin^{5} \alpha)$$

Por tanto, $\cos 5\alpha = \cos^5 \alpha - 10\cos^3 \alpha \, \sin^2 \alpha + 5\cos \alpha \, \sin^4 \alpha \, y \, \sin 5\alpha = 5\cos^4 \alpha \, \sin \alpha - 10\cos^2 \alpha \, \sin^3 \alpha + \sin^5 \alpha$.