

智能网络与优化实验室

Intelligent Network and Optimization Laboratory, Renmin University

Hierarchical Core Maintenance on Large Dynamic Graphs

Zhe Lin, Fan Zhang, Xuemin Lin, Wenjie Zhang, Zhihong Tian

VLDB 2021

Xiaowei Lv

Problems: Hierarchical core maintenance with edge insertion or deletion

Fig. 3.1: An example graph and its k-cores

k-cores:

Maximal connected subgraph in which every vertex is connected to at least k other vertices in the same subgraph.

Hierarchical structure (Core Hierarchy Tree):

k-core-hierarchy: T(G)

k-core: C_i^k

Tree node: n_1 $V(n_1) = \{v | v \in C_i^k \land core(v) = k\}$

Tree edge: $n_1 - C_i^{k_1} n_2 - C_i^{k_2}$

$$iff\ i)\ k_1 < k_2\ ii)\ C_i^{k_2} \subset C_i^{k_1}$$

iii) for any node $k_1 < k' < k_2$, the associate node is not the parent of n_2

Root: record isolated vertices

Fundamentals

Constructs k-core hierarchy:

Algorithm 3: CoreHierarchy: compute the core hierarchy tree of a graph

Input: A graph G = (V, E), a degeneracy ordering seq of vertices, and the core numbers $core(\cdot)$ of vertices

Output: A core hierarchy tree CoreHT of G

- 1 Initialize an empty CoreHT, and a disjoint-set data structure F for V;
- 2 for each vertex $u \in V$ do
- Add a node r_u , with weight core(u) and containing vertex u, to CoreHT;
- 4 Point u to r_u ;

Fundamentals

```
5 for each vertex u in seq in reverse order do
        for each neighbor v of u in G that appear later than u in seq do
 6
            Let r_v and r_u be the nodes of CoreHT pointed by the representatives of the sets
            containing v and u in \mathcal{F}, respectively;
            if r_v \neq r_u then
8
                 /* Update the CoreHT
                 if the weight of r_v equals the weight of r_u then
 9
                     Move the content (i.e., vertices and children) of r_v to r_u;
10
                 else Assign r_u as the parent of r_v in the CoreHT;
11
                 /* Update the disjoint-set data structure F
                 Union u and v in \mathcal{F}, and point the updated representative of the set containing
12
                 u to r_u;
13 return CoreHT;
```


Fundamentals

Fig. 6: The k-order for G in Fig. 3

(a) Identification of V^* in the Insertion Algorithm

[1] Zhang Y, Yu J X, Zhang Y, et al. A fast order-based approach for core maintenance[C]//2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, 2017: 337-348.

(b) Maintenance of k-Orders

Insert (x_1, x_2) $K = core(x_1, G_0) \le core(x_2, G_0)$

Coreness Update:

- For each vertex $v \in V^*$, we have $core(v, G_0) = K$ and $core(v, G^*) = K + 1.$
- If $core(x_1, G_0) < core(x_2, G_0)$, we have $V^* \subseteq V(C(x_1))$, the subgraph induced by V^* on G_0 is connected, and $x_1 \in V^*$.
- If $core(x_1, G_0) = core(x_2, G_0)$, we have $V^* \subseteq \{V(C(x_1)) \cup G(x_1)\}$ $V(C(x_2))$. The subgraph induced by V^* on G_0 either is connected, or consists of two connected components that one contains x_1 and the other contains x_2 .
- The induced subgraph of V^* in G^* is connected.

Hierarchy Analysis:

- (i) k > K + 1. For every vertex v with $core(v, G_0) > K + 1$, we have $core(v, G^*) = core(v, G_0)$. C_i^k keeps the same after the insertion, as C_i^k does not contain x_1, x_2 , or any vertex in V^* .
- (ii) $\underline{k} \leq K$. (a) If C_i^k contains either x_1 or x_2 . W.l.o.g, suppose we have $x_1 \in C_i^k$, the insertion of (x_1, x_2) will connect (merge) C_i^k and $C^k(x_2)$. (b) Besides, if k = K, the coreness of each vertex in V^* increases to K + 1 from K. C_i^k may lose some vertices(i.e., in V^*) and we will discuss this case in details later.
- (iii) $\underline{k = K + 1}$. The vertices in V^* may connect to C_i^k on G^* . We will discuss this case later too.

THEOREM 1. For any tree node $n_0 \in T_0$ satisfying $G_0[n_0] \cap \{C(x_1) \cup C(x_2)\} = \emptyset$, we have $T'(n_0)$ keeps the same in T^* .

PROOF. Let $k_0 = core(n_0)$. As $G_0[n_0] \cap \{C(x_1) \cup C(x_2)\} = \emptyset$ and $V^* \subseteq V(C(x_1) \cup C(x_2))$, in core decomposition of G^* , the vertices in all ancestors of n_0 will still be deleted when we compute the k_0 -core set of G^* . Thus, $T'(n_0)$ keeps the same in T^* .

Algorithm 1: InsertOne

```
Input : a graph G_0, the k-core hierarchy T_0, an edge
                  (x_1,x_2) \notin E(G_0)
    Output : T^*
 1 T \leftarrow T_0; G \leftarrow G_0; K \leftarrow core(x_1) (suppose core(x_1) \leq core(x_2));
 2 V^* \leftarrow vertices with coreness changed by inserting (x_1, x_2) to G;
 3 n_1 \leftarrow node(x_1); n_2 \leftarrow node(x_2);
 4 while n_1 \neq n_2 do
          swap n_1 and n_2 if core(n_1) > core(n_2);
 5
         p_1 \leftarrow P(n_1); p_2 \leftarrow P(n_2);
         if core(n_1) = core(n_2) then
               n_0 \leftarrow \text{merge } n_1 \text{ and } n_2 \text{ in } T;
               P(n_0) \leftarrow p_1 or p_2 whose coreness is larger;
 9
               n_1 \leftarrow p_1; n_2 \leftarrow p_2;
10
          else
11
               P(n_2) \leftarrow n_1 \text{ if } core(n_1) > core(p_2);
12
               n_2 \leftarrow p_2;
13
```


THEOREM 2. (i) There is a node $n'_1 \in T_1$ satisfying $V^* \subseteq V(n'_1)$. (ii) For any node $n_0 \in T_1$ with $G^*[n_0] \cap G^*[n_1'] = \emptyset$, $T'(n_0)$ keeps the same in T^* .

PROOF. (i) When $core(x_1, G_0) < core(x_2, G_0)$, we have $n'_1 =$ $node(x_1, T_1)$ and $V^* \subseteq V(n'_1)$. When $core(x_1, G_0) = core(x_2, G_0)$, since $node(x_1, T_0)$ and $node(x_2, T_0)$ are merged in T_1 , we have $V(n'_1)$ = $V(node(x_1, T_0)) \cup V(node(x_2, T_0))$, and thus $V^* \subseteq V(n'_1)$. (ii) Similar to Theorem 1, for any node n_0 with $G^*[n_0] \cap G^*[n_1'] = \emptyset$, core decomposition on $G^*[n_0]$ is the same to that on $G[n_0]$. Thus, $T'(n_0)$ keeps the same in T^* .

THEOREM 3. There is a node $n^* \in T^*$ satisfying $V^* \subseteq V(n^*)$.


```
14 T_1 \leftarrow T; n' \leftarrow node(V^*) of T;
15 create a node n^+ on L_{K+1} in T as a child of n';
16 move v to V(n^+) from V(n') for each v \in V^*;
17 NC = \{cn(n', u, T) \mid u \in N(V^*, G^*)\}; T_2 \leftarrow T;
18 for each n_c \in NC do
        if core(n_c, G^*) = K + 1 then
19
             merge n_c into n^+;
20
        else
21
          P(n_c,T) \leftarrow n^+;
22
23 if V(n') = \emptyset then
        P(n_0) \leftarrow P(n') for each child n_0 of n';
24
        remove n' from T;
25
26 return T (i.e., T^*)
```


$$cn(n_0, v_0) = \{n_c | P(n_c) = n_0 \text{ and } T'(n_c) \text{ contains } v_0\}$$

 $NC = \{cn(n'_2, u) | u \in N(V^*, G^*)\}$ $N(V^*, G^*) = \bigcup_{v \in V^*} N(v, G^*)$

THEOREM 4. For each $n_c \in NC$, $G^*[n_c] \subseteq G^*[n^*]$ holds.

- $i) core(n_c) \ge core(n^+) = K + 1$
- *ii*) $\exists v_1 \in n_c, v_2 \in n^+ \ satisfying (v_1, v_2) \in E(G^*)$


```
14 T_1 \leftarrow T; n' \leftarrow node(V^*) of T;
15 create a node n^+ on L_{K+1} in T as a child of n';
16 move v to V(n^+) from V(n') for each v \in V^*;
17 NC = \{cn(n', u, T) \mid u \in N(V^*, G^*)\}; T_2 \leftarrow T;
18 for each n_c \in NC do
        if core(n_c, G^*) = K + 1 then
19
             merge n_c into n^+;
20
        else
21
          P(n_c,T) \leftarrow n^+;
22
23 if V(n') = \emptyset then
        P(n_0) \leftarrow P(n') for each child n_0 of n';
24
        remove n' from T;
25
26 return T (i.e., T^*)
```


Algorithm 5: FindSubroot

```
Input : a node n_0, a vertex v_0
   Output: the node n_c, i.e., cn(n_0, v_0)
1 A \leftarrow \text{empty set}; n_c \leftarrow n_1 \leftarrow node(v_0);
2 while n_1 \neq n_0 do
      A \leftarrow A \cup \{n_1\};
    n_c \leftarrow n_1; n_1 \leftarrow Jump(n_1);
5 Jump(n_2) \leftarrow n_c for each node n_2 \in \{A \setminus n_c\};
6 return nc
```


Algorithm 1: InsertOne

```
Input : a graph G_0, the k-core hierarchy T_0, an edge
                  (x_1,x_2) \notin E(G_0)
    Output : T^*
 1 T \leftarrow T_0; G \leftarrow G_0; K \leftarrow core(x_1) (suppose core(x_1) \leq core(x_2));
 2 V^* \leftarrow vertices with coreness changed by inserting (x_1, x_2) to G;
 3 n_1 \leftarrow node(x_1); n_2 \leftarrow node(x_2);
 4 while n_1 \neq n_2 do
          swap n_1 and n_2 if core(n_1) > core(n_2);
 5
         p_1 \leftarrow P(n_1); p_2 \leftarrow P(n_2);
 6
         if core(n_1) = core(n_2) then
               n_0 \leftarrow \text{merge } n_1 \text{ and } n_2 \text{ in } T;
 8
               P(n_0) \leftarrow p_1 or p_2 whose coreness is larger;
               n_1 \leftarrow p_1; n_2 \leftarrow p_2;
10
          else
11
               P(n_2) \leftarrow n_1 \text{ if } core(n_1) > core(p_2);
12
13
               n_2 \leftarrow p_2;
```

```
14 T_1 \leftarrow T; n' \leftarrow node(V^*) of T;
15 create a node n^+ on L_{K+1} in T as a child of n';
16 move v to V(n^+) from V(n') for each v \in V^*;
17 NC = \{cn(n', u, T) \mid u \in N(V^*, G^*)\}; T_2 \leftarrow T;
18 for each n_c \in NC do
        if core(n_c, G^*) = K + 1 then
19
             merge n_c into n^+;
20
        else
21
          P(n_c,T) \leftarrow n^+;
23 if V(n') = \emptyset then
        P(n_0) \leftarrow P(n') for each child n_0 of n';
24
        remove n' from T;
25
26 return T (i.e., T^*)
```


Algorithm 1: InsertOne

```
Input : a graph G_0, the k-core hierarchy T_0, an edge
                 (x_1,x_2) \notin E(G_0)
    Output : T^*
 1 T \leftarrow T_0; G \leftarrow G_0; K \leftarrow core(x_1) (suppose core(x_1) \leq core(x_2));
 2 V^* \leftarrow vertices with coreness changed by inserting (x_1, x_2) to G;
                                                                                                   O(\log \max\{|O_K|, |O_{K+1}|\} \times \sum_{v \in V^+} |N(v, G^*)|)
 3 n_1 \leftarrow node(x_1); n_2 \leftarrow node(x_2);
 4 while n_1 \neq n_2 do
          swap n_1 and n_2 if core(n_1) > core(n_2);
 5
         p_1 \leftarrow P(n_1); p_2 \leftarrow P(n_2);
 6
         if core(n_1) = core(n_2) then
                                                                                                  O(k_{max})
               n_0 \leftarrow \text{merge } n_1 \text{ and } n_2 \text{ in } T;
 8
               P(n_0) \leftarrow p_1 or p_2 whose coreness is larger;
              n_1 \leftarrow p_1; n_2 \leftarrow p_2;
10
         else
11
              P(n_2) \leftarrow n_1 \text{ if } core(n_1) > core(p_2);
12
              n_2 \leftarrow p_2;
13
```



```
14 T_1 \leftarrow T; n' \leftarrow node(V^*) of T;
                                                     15 create a node n^+ on L_{K+1} in T as a child of n';
                  O(|O_K|)
                                                     16 move v to V(n^+) from V(n') for each v \in V^*;
                                                     17 NC = \{cn(n', u, T) \mid u \in N(V^*, G^*)\}; T_2 \leftarrow T;
                                                     18 for each n_c \in NC do
O(|T'(node(x_1))| + |T'(node(x_2))|)
                                                             if core(n_c, G^*) = K + 1 then
                                                     19
                                                                  merge n_c into n^+;
                                                     20
                                                             else
                                                     21
                                                               P(n_c,T) \leftarrow n^+;
                                                     22
                                                     23 if V(n') = \emptyset then
                                                             P(n_0) \leftarrow P(n') for each child n_0 of n';
                                                     24
                                                             remove n' from T;
                                                     25
                                                     26 return T (i.e., T^*)
```


Algorithm 2: InsertX

```
Input : a graph G_0, the k-core hierarchy T_0, an edge set
                 E' \nsubseteq E(G_0)
   Output : T^*, i.e., the updated T_0
1 V^* \leftarrow \emptyset; C \leftarrow \emptyset; G^* \leftarrow G_0; T \leftarrow T_0;
2 for each e \in E' do
         V' \leftarrow vertices with coreness changed by inserting e to G^*;
         \mathbb{N} \leftarrow \text{the set of } node(v) \text{ in } T \text{ for each } v \in V';
         n' \leftarrow any node from \mathbb{N};
5
         create n^* on (core(n') + 1)^{th} layer in T as a child node of n';
         C \leftarrow C \cup \{(n^*, n_0)\} for each n_0 \in \mathbb{N};
         move each v \in V' to V(n^*); remove empty nodes in T;
        G_0 \leftarrow G_0 + \{e\}; V^* \leftarrow V^* \cup V';
```

```
10 T_1 \leftarrow T;

11 for each (u, v) \in E' do

12 C \leftarrow C \cup (node(u, T), node(v, T));

13 for each v \in V^* do

14 for each u \in N(v, G^*) with core(u, G^*) > core(v) do

15 C \leftarrow C \cup (node(u, T), node(v, T));
```



```
16 for each integer K from k_{max} to 0 do
           n_0 \leftarrow an unvisited node in a node pair of C with core(n_0) = K;
17
           \mathbb{N}_1 \leftarrow \{n_0\}; \mathbb{N}_2 \leftarrow \emptyset;
18
           while there is an unvisited node n_1 in \mathbb{N}_1 do
19
                 \mathbb{N}_2 \leftarrow \mathbb{N}_2 \cup \{P(n_1)\}; n_1 \leftarrow \text{visited};
20
                 for each node n_2 with (n_1, n_2) \in C do
21
                        if core(n_2) = K then
22
                          \mathbb{N}_1 \leftarrow \mathbb{N}_1 \cup \{n_2\};
23
                        else
24
                         \mid \mathbb{N}_2 \leftarrow \mathbb{N}_2 \cup \{n_2\};
25
           n' \leftarrow a node in \mathbb{N}_2 with the largest coreness;
26
           C \leftarrow C \cup (n', n_2) for each n_2 \in \mathbb{N}_2;
27
           merge n_1 into n_0 for each n_1 \in \mathbb{N}_1;
28
           P(n_0) \leftarrow n';
29
30 return T, i.e., T^*;
```


Complexity: $O(\sum |V^*| + x.(k_{max} + |T_0|))$

Coreness Update:

- For every vertex $v \in V^*$, we have $core(v, G_0) = K$ and $core(v, G^*) = K - 1.$
- We have $V^* \subseteq V(C(x_1, G_0))$, and the induced subgraph of V^* in G_0 is connected.

k-core hierarchy Update:

- (i) The k-cores with k > K. For every vertex v with core(v) > K, we have $C(v, G^*) = C(v, G_0)$, because $(x_1, x_2) \notin C(v, G_0)$. Thus, the hierarchy of k-cores (the subtrees rooted on L_k) with k > K keeps the same in G_0 and G^* .
- (ii) The k-cores with $k \le K$. For every vertex v with core(v) < K, we have $core(v, G^*) = core(v, G_0)$. The removal of (x_1, x_2) will move the vertices in V^* to L_{K-1} from L_K . Besides, the ancestors of $node(x_1)$ or $node(x_2)$ may split, because some k-cores become disconnected by the removal of (x_1, x_2) and the move of the vertices in V^* .

Algorithm 3: RemoveOne

```
Input : a graph G_0, the k-core hierarchy T_0, an edge
                (x_1,x_2)\in E(G_0)
   Output : T^*, i.e., the updated T_0
 1 T \leftarrow T_0;
 2 V^* ← vertices with coreness changed by removing (x_1, x_2) from G_0;
 n' \leftarrow \text{node}(x_1) \text{ in } T \text{ (suppose } core(x_1) \leq core(x_2));
 a n^* \leftarrow P(n');
 5 if V^* \neq \emptyset then
         if core(P(n')) \neq K-1 then
              create n_0 on L_{K-1} as a child node of n^*;
             n^* \leftarrow n_0;
 8
             P(n') \leftarrow n^*;
 9
         move each vertex in V^* from n' to n^*;
10
```



```
11 T_1 \leftarrow T;
                                                                           8 for each vertex u \in V_r do
    12 T_2 \leftarrow \mathbf{SplitNode}(n', T_1);
                                                                                  for each vertex v \in N(u, G^*) do
                                                                                      if core(v, G^*) = K then
                                                                          10
                                                                                           merge node(u) and node(v);
                                                                          11
Algorithm 4: SplitNode
                                                                                      else if core(v, G^*) > K then
                                                                          12
  Input : a subtree rooted at n_r to split, the k-core hierarchy T
                                                                                           n_c \leftarrow cn(n_r, v);
                                                                                                                           /* FindSubroot(n', v) */
                                                                          13
  Output: the updated T
                                                                                           if P(n_c) = n_r then
                                                                          14
1 n_r^* \leftarrow P(n_r); V_r \leftarrow V(n_r); K = core(n_r);
                                                                                               P(n_c) \leftarrow node(u);
                                                                          15
2 for each vertex u \in V(n_r) do
                                                                                           else
                                                                          16
       create an empty node n_c on L_K as a child node of n_r;
                                                                                               merge node(u) and P(n_c);
                                                                          17
       move u to n_c from n_r;
5 for each node n_c \in n_r.children do
                                                                          18 for each node n_c \in n_r.children do
       for each node n_d \in T'(n_c) do
                                                                                P(n_c) \leftarrow n_r^*;
           cn(n_r, n_d) \leftarrow n_c;
                                                                          20 remove n_r from T;
                                                                          21 return T, i.e., updated T
```


 $delete(v_2, v_{17})$


```
11 T_1 \leftarrow T;
12 T_2 \leftarrow \mathbf{SplitNode}(n', T_1);
13 flag ← true;
14 i \leftarrow 2;
15 while flag = true do
        i \leftarrow i + 1; n_i^* = P(n_{i-1}^*);
        T_i \leftarrow \mathbf{SplitNode}(n_i^*, T_{i-1});
       flag \leftarrow (T_{i-1} \neq T_i);
19 T^* \leftarrow T_i;
20 return T*
```


Algorithm 3: RemoveOne

```
Input : a graph G_0, the k-core hierarchy T_0, an edge
                  (x_1,x_2)\in E(G_0)
    Output : T^*, i.e., the updated T_0
 1 T \leftarrow T_0;
 2 V^* \leftarrow vertices with coreness changed by removing (x_1, x_2) from G_0;
 n' \leftarrow \text{node}(x_1) \text{ in } T \text{ (suppose } core(x_1) \leq core(x_2));
                                                                               11 T_1 \leftarrow T;
 a n^* \leftarrow P(n');
                                                                               12 T_2 \leftarrow \mathbf{SplitNode}(n', T_1);
 5 if V^* \neq \emptyset then
                                                                               13 flag ← true;
          if core(P(n')) \neq K-1 then
                                                                               14 i \leftarrow 2;
               create n_0 on L_{K-1} as a child node of n^*;
                                                                               15 while flag = true do
               n^* \leftarrow n_0;
 8
                                                                                     i \leftarrow i + 1; n_i^* = P(n_{i-1}^*);
               P(n') \leftarrow n^*;
                                                                                     T_i \leftarrow \mathbf{SplitNode}(n_i^*, T_{i-1});
 9
                                                                                     flag \leftarrow (T_{i-1} \neq T_i);
          move each vertex in V^* from n' to n^*;
10
                                                                               19 T^* \leftarrow T_i;
                                                                               20 return T*
```


Algorithm 6: RemoveX

```
Input : a graph G_0, the k-core hierarchy T_0, an edge set E' \subseteq E(G_0)
    Output: T^*, i.e., the updated T_0
 1 T \leftarrow T_0; G \leftarrow G_0; C \leftarrow \emptyset;
 2 for each (u, v) \in E' do
         V^* \leftarrow vertices with coreness changed by removing (u, v) from G;
        G \leftarrow G - (u, v);
        node' \leftarrow node(u, T_i) (suppose K = core(u, G) \leq core(v, G));
        if core(P(node')) = K - 1 then
             node^* \leftarrow P(node');
        else
 8
             create an empty node node^* on L_{K-1} as a child of P(node');
             P(node') \leftarrow node^*;
10
         move each vertex v \in V^* from node' to node*;
11
        C \leftarrow C \cup \{node', node^*\};
```

```
13 T_1 \leftarrow T; G^* \leftarrow G; i = 1;
14 for each n' \in C in descending order of coreness do
         i \leftarrow i + 1;
        T_i \leftarrow SplitNode(n', T_{i-1});
       C \leftarrow C \cup \{P(n')\} \text{ if } T_{i-1} \neq T_i;
18 return T, i.e., T^*
```


Datasets

Table 2: Statistics of Datasets

Dataset	V	E	davg	kmax	T
Gowalla	196,591	950,327	9.7	51	75
D BLP	317,080	1,049,866	6.6	113	767
Human-Jung	784,262	267,844,669	683.1	1200	4088
Hollywood	1,069,126	56,306,653	105.3	2208	679
Skitter	1,696,415	11,095,298	13.1	131	903
Orkut	3,072,441	117,185,083	76.3	253	254
Wiki	12,150,976	378,142,420	62.2	1122	5049
Rgg	16,777,216	132,557,200	15.8	20	117422
Twitter	41,652,230	1,468,365,182	8.8	2488	3049
FriendSter	65,608,366	1,806,067,135	55.1	304	451

1. Background 2. Fundamentals 3. Algorithms 4. Evaluation 5. Conclusion

Performance

Figure 5: Performance on All the Datasets

Performance

Figure 6: Performance on Inserting/Removing x Edges

Performance

Table 3: The engagement of users in node n_1 , compared with the parent node of n_1 (T-edge), or the nodes with smaller subtrees (T-size), on DBLP from Year 19-20 (Win Percent)

k	1	2	3	4	5	6	7	8	total
T-edge(%)	-	100	99.7	98.9	100	100	100	100	99.44
T-size(%)	80.9	78.6	86.2	93.4	80.6	44.1	100	100	84.58

1. Background 2. Fundamentals 3. Algorithms 4. Evaluation 5. Conclusion

Conclusion and Future Work

Problem: Maintaining the k-core hierarchy on dynamic graphs

- We propose effective local update techniques.
- Our algorithms for updating the *k*-core hierarchy largely outperform the baselines for one or a small batch of updated edge(s).
- Our approach may be adapted to other decompositions if they hold the same hierarchical structure
- Besides, the framework of our algorithms may inspire a sound solution for parallel maintenance of k-core hierarchy.

THANK YOU

Xiaowei Lv

