

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB Departamento de Computação – DECOM

Disciplina: BCC201 – Introdução a Programação

Professores: Túlio A. M. Toffolo, Puca Huachi V. Penna e Alan R. R. de Freitas

Aula Prática P-06

- * Todos os exercícios que envolvem programas devem ser resolvidos através de programas em C/C++.
- * A entrega será feita até às 23h55 do dia da aula prática no Moodle, sem zipar (entregue apenas o código fonte)
- * Inclua seu número de matrícula, nome e turma em um comentário no início de cada arquivo com código fonte.
- * Você só pode utilizar conhecimento prévios à aula para resolver o exercício. Caso use uma matéria que ainda não foi dada sua nota será penalizada.
- * Códigos que não compilam serão zerados.

Questão 01

O valor aproximado do número π pode ser calculado por meio da seguinte forma: $\pi = \sqrt[3]{S \times 32}$, onde S é dada pela série:

$$S = 1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \frac{1}{9^3} - \cdots$$

Codifique um programa para ler o número termos (quanto maior, melhor a precisão), calcular e imprimar o valor de π .

O cálculo deve ser feito por uma função que recebe o número de termos como parâmetro e retorna o valor de π .

Questão 02

Quando se está trabalhando em um sistema corporativo, é comum a necessidade de validar CPF. Para o CPF ser válido não basta apenas atender à máscara "###.###.### – ##" (onde o caractere '#' representa um número). Existe uma regra matemática que também deve ser verificada para um CPF ser considerado válido.

Faça um programa que leia um CPF (<u>somente números</u>) e verifique se ele é válido. O cálculo deve ser feito em uma função, que recebe o CPF e retorna 1, se for válido e 0, caso contrário. O programa e a função deverão usar o tipo long para armazenar o CPF.

É obrigatório o uso de comandos de repetição na separação dos algarismos e no cálculo da verificação.

O cálculo para validar um CPF é especificado pelo Ministério da Fazenda. Vamos entender como funciona:

O CPF é formado por 11 dígitos numéricos que seguem a máscara "###.###.### – ##", a sua verificação acontece utilizando os 9 primeiros dígitos e, com um cálculo simples, verificando se o resultado corresponde aos dois últimos dígitos (depois do símbolo '-').

Note que, para efetuar cálculos com estes dígitos, o programa deve se utilizar de operações matemáticas para identificar estes algarismos dentro do número completo do tipo long.

Vamos usar como exemplo, um CPF fictício 52998224725.

Validação do primeiro dígito

1. Inicialmente, multiplicam-se os 9 primeiros dígitos pela sequência decrescente de números de 10 à 2 e somam-se os resultados. Exemplo:

$$5 \times 10 + 2 \times 9 + 9 \times 8 + 9 \times 7 + 8 \times 6 + 2 \times 5 + 2 \times 4 + 4 \times 3 + 7 \times 2 = 295$$

- 2. No próximo passo da verificação basta multiplicar esse resultado por 10 e pegar o resto da divisão inteira por 11: $295 \times 10/11 = 268$ e o RESTO é '2'
- 3. Se o resto for igual ao primeiro dígito verificador (primeiro dígito depois do '-'), a primeira parte da validação está correta. Isso significa que o nosso CPF exemplo passou na validação do primeiro dígito.

Observação Importante: Se o resto da divisão for igual a 10, nós o consideramos como 0.

Validação do segundo dígito

- 1. Na validação do segundo dígito, vamos considerar os 9 primeiros dígitos, mais o primeiro dígito verificador, e vamos multiplicar esses 10 números pela sequência decrescente de 11 a 2. Vejamos: $5 \times 11 + 2 \times 10 + 9 \times 9 + 9 \times 8 + 8 \times 7 + 2 \times 6 + 2 \times 5 + 4 \times 4 + 7 \times 3 + 2 \times 2 = 347$
- 2. Seguindo o mesmo processo da primeira verificação, multiplicamos por 10 e pegamos o resto da divisão 11: $347 \times 10/11 = 315$ e o RESTO é '5'.
- 3. Finalmente, comparamos o resto (5), com o segundo dígito verificador (5). Com essa verificação, constatamos que o CPF nº 529.982.247-25 é válido.

Questão 03

Desde a aula de ontem, *Bart Simpson* continua tentando aprender a jogar xadrez. Ele aprendeu como uma Torre se move, mas tem dificuldade em saber para qual direção ele pode mover um **Bispo**. Sabendo que um tabuleiro de xadrez é composto por 8 linhas e 8 colunas, e que o **Bispo** se move nas diagonais:

- Escreva um programa que solicite ao *Bart* o número da linha e da coluna que indicam a posição do **Bispo**. O programa deve imprimir quais são os possíveis movimentos.
- Utilize "-" para indicar uma casa para a qual o **Bispo** não pode ser movido e "x" para indicar uma casa para a qual ele pode ser movido. Para indicar a posição do bispo use "o" .

Exemplo de execução (valores digitados pelo usuário destacados em azul):

```
Movimentos de um Bispo no xadrez!
   Digite a linha em que o Bispo se encontra: 6
   Digite a coluna em que o Bispo se encontra: 3
   Movimentos possíveis:
             2 3 4 5 6
8
9
10
    2
    3
11
         X
12
    5
13
    6
14
    7
                   х
15
    8 |
```