$$P(y_{i}=1|x_{i})=P(y_{i}^{*}>0|x_{i})$$

$$=P\left(\frac{y_{i}^{*}-x_{i}^{*}\beta}{1}>\frac{0-x_{i}^{*}\beta}{1}|x_{i}\right)$$

$$=P\left(\frac{y_{i}^{*}-x_{i}^{*}\beta}{1}|x_{i}\right)$$

$$=P\left(\frac{y_{i}^{*}-x_{i}^{*}\beta}{1}|x_{i}\right)$$

$$=P\left(\frac{y_{i}^{*}-x_{i}^{*}\beta}{1}|x_{i}\right)$$

$$=P\left(\frac{y_{i}^{*}-x_{i}^{*}\beta}{1}|x_{i}\right)$$

$$=P\left(\frac{y_{i}^{*}-x_{i}^{*}\beta}{1}|x_{i}\right)$$

$$=P\left(\frac{y_{i}^{*}-x_{i}^{*}\beta}{1}|x_{i}\right)$$

$$=P\left(\frac{y_{i}^{*}-x_{i}^{*}\beta}{1}|x_{i}\right)$$

$$=P\left(\frac{y_{i}^{*}-x_{i}^{*}\beta}{1}|x_{i}\right)$$

$$=P\left(\frac{y_{i}^{*}-x_{i}^{*}\beta}{1}|x_{i}\right)$$

$$= 1 - \overline{\Phi}(-X_i'\beta)$$

$$= \overline{\Phi}(X_i'\beta)$$
by symmetry of the normal distribution

Question 2

4: * (x(β, 1)

" = I (j; " >0)

\$ ~ N4 (b., 80)

^{大(y*/8 | y /×) ← L(y | y*, f, x) 大(y*) 大(f)}

~ \frac{\int_{\text{1}} \left[1 \left(y, \frac{1}{2} \right) \right) \frac{1}{12} \left[\left(y, \frac{1}{2} \right) \right) \right] \frac{1}{12} \left[\left(y, \frac{1}{2} \right) \right) \right] \left[\left(\frac{1}{2} \right) \frac{1}{2} \right) \right] \left[\left(\frac{1}{2} \right) \right] \left(\frac{1}{2} \right) \frac{1}{2} \right) \right] \left(\frac{1}{2} \right) \right) \right] \left(\frac{1}{2} \right) \right) \right] \left(\frac{1}{2} \right) \right] \left(\frac{1}{2} \right) \right) \right] \left(\frac{1}{2} \right) \right) \right] \left(\frac{1}{2} \right) \right] \left(\frac{1}{2} \right) \right) \right] \left(\frac{1}{2} \right) \right] \l

ス(y:*1月,y:=1,X) × exp[- コリ:*-x:月)~] 1(y:*70)

* (3: * 1 B, y: = 0, x) ~ exp [- 1 (y: * - x: * B)] 1 (y: * < 0)

yi* 1 \$, yi=1, x ~ N+ (xi' \$, 1)

yi* 1 \$, yi=0, x ~ N_ (xi' \$, 1)

~(β|y*,y,x) α exp[-½ (-2β'x;y;*+β'x;x';β)] exp[-½(β'β₀'β-2β'β₀'b₀)] α exp[-½[β'(Ĉx;x;'+β₀')β-2β'(Ĉx;y;*+β₀'b₀)]]

引力*,y,x~ Ny((党xixi'+Bo")"(党xiyi*+Bo"bo),(党xixi'+Bo")")

Logistic regression case

Gibbs sampling in the logistic regression case is more difficult because the normal distribution B is not a conjugate prior for the logistic regression likelihood,

Lab 11

Using the full conditionals above and prior $b_0 = (0, 0, 0, 0)'$ and $B_0 = I$, I performed 10,000 iterations of Gibbs sampling. Below are the trace plots for the elements of β and one y_i^* :

Trace plot for beta.0

Trace plot for beta.1

Trace plot for beta.2

Trace plot for beta.3

Trace plot for y.star.1

10 burn-ins were thrown out for each parameter for the analysis to follow.

26-year old TA

For each iteration, I calculated the probability of an accident [probability that a draw from $N(x'\beta,1)>0$] for the TA x=(1,26,0,1)'. Below is a histogram of these probabilities:

Posterior predictive probability of accident for 26-year-old TA

The mean probability that the TA was involved in an accident in the last six months is **0.2950**.

Mercedes parking

For each iteration, I calculated the probability of an accident [probability that a draw from $N(x_i'\beta,1) > 0$] for $x_1' = (1,17,1,0)$ and $x_2' = (1,18,1,1)$. The mean probability for x_1 is 0.1837 and the probability for x_1 is 0.3659. **Thus, I would rather have the 17-year-old who has done a driver's education course and hates statistics park my Mercedes**.