COMP3670/6670: Introduction to Machine Learning

Release Date. 18th August 2021

Due Date. 23:59pm, 19th September 2021

Maximum credit. 100

Errata: In Exercise 4, the loss function included a regulariser term $\|\mathbf{c}\|_{\mathbf{B}}^2$, which is undefined due to a dimensionality mismatch. This has been replaced with $\|\mathbf{c}\|_{\mathbf{A}}^2$.

Exercise 1 Inner Products induce Norms

20 credits

Let V be a vector space, and let $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ be an inner product on V. Define $||\mathbf{x}|| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. Prove that $||\cdot||$ is a norm.

(Hint: To prove the triangle inequality holds, you may need the Cauchy-Schwartz inequality, $\langle \mathbf{x}, \mathbf{y} \rangle \leq ||\mathbf{x}|| ||\mathbf{y}||$.)

Exercise 2

Vector Calculus Identities

10+10 credits

- 1. Let $\mathbf{x}, \mathbf{a}, \mathbf{b} \in \mathbb{R}^n$. Prove that $\nabla_{\mathbf{x}}(\mathbf{x}^T \mathbf{a} \mathbf{b}^T \mathbf{x}) = \mathbf{a}^T \mathbf{x} \mathbf{b}^T + \mathbf{b}^T \mathbf{x} \mathbf{a}^T$.
- 2. Let $\mathbf{B} \in \mathbb{R}^{n \times n}$, $\mathbf{x} \in \mathbb{R}^n$. Prove that $\nabla_{\mathbf{x}}(\mathbf{x}^T \mathbf{B} \mathbf{x}) = \mathbf{x}^T (\mathbf{B} + \mathbf{B}^T)$.

Exercise 3 Properties of Symmetric Positive Definiteness

10 credits

Let \mathbf{A}, \mathbf{B} be symmetric positive definite matrices. ¹ Prove that for any p, q > 0 that $p\mathbf{A} + q\mathbf{B}$ is also symmetric and positive definite.

Exercise 4 General Linear Regression with Regularisation (10+10+10+10+10+10 credits)

Let $\mathbf{A} \in \mathbb{R}^{N \times N}, \mathbf{B} \in \mathbb{R}^{D \times D}$ be symmetric, positive definite matrices. From the lectures, we can use symmetric positive definite matrices to define a corresponding inner product, as shown below. From the previous question, we can also define a norm using the inner products.

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbf{A}} := \mathbf{x}^T \mathbf{A} \mathbf{y}$$
$$\|\mathbf{x}\|_{\mathbf{A}}^2 := \langle \mathbf{x}, \mathbf{x} \rangle_{\mathbf{A}}$$
$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbf{B}} := \mathbf{x}^T \mathbf{B} \mathbf{y}$$
$$\|\mathbf{x}\|_{\mathbf{B}}^2 := \langle \mathbf{x}, \mathbf{x} \rangle_{\mathbf{B}}$$

Suppose we are performing linear regression, with a training set $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$, where for each $i, \mathbf{x}_i \in \mathbb{R}^D$ and $y_i \in \mathbb{R}$. We can define the matrix

$$\boldsymbol{X} = \left[\mathbf{x}_1, \dots, \mathbf{x}_N\right]^T \in \mathbb{R}^{N \times D}$$

and the vector

$$\mathbf{y} = [y_1, \dots, y_N]^T \in \mathbb{R}^N.$$

We would like to find $\boldsymbol{\theta} \in \mathbb{R}^D$, $\mathbf{c} \in \mathbb{R}^N$ such that $\mathbf{y} \approx \mathbf{X}\boldsymbol{\theta} + \mathbf{c}$, where the error is measured using $\|\cdot\|_{\mathbf{A}}$. We avoid overfitting by adding a weighted regularization term, measured using $\|\cdot\|_{\mathbf{B}}$. We define the loss function with regularizer:

$$\mathcal{L}_{\mathbf{A},\mathbf{B},\mathbf{y},\mathbf{X}}(\boldsymbol{\theta},\mathbf{c}) = ||\mathbf{y} - \boldsymbol{X}\boldsymbol{\theta} - \mathbf{c}||_{\mathbf{A}}^2 + ||\boldsymbol{\theta}||_{\mathbf{B}}^2 + ||\mathbf{c}||_{\mathbf{A}}^2$$

For the sake of brevity we write $\mathcal{L}(\boldsymbol{\theta}, \mathbf{c})$ for $\mathcal{L}_{\mathbf{A}, \mathbf{B}, \mathbf{y}, \mathbf{X}}(\boldsymbol{\theta}, \mathbf{c})$.

For this question:

¹A matrix is *symmetric positive definite* if it is both symmetric and positive definite.

- You may use (without proof) the property that a symmetric positive definite matrix is invertible.
- We assume that there are sufficiently many non-redundant data points for \mathbf{X} to be full rank. In particular, you may assume that the null space of \mathbf{X} is trivial (that is, the only solution to $\mathbf{X}\mathbf{z} = \mathbf{0}$ is the trivial solution, $\mathbf{z} = \mathbf{0}$.)
- 1. Find the gradient $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \mathbf{c})$.
- 2. Let $\nabla_{\theta} \mathcal{L}(\theta, \mathbf{c}) = \mathbf{0}$, and solve for θ . If you need to invert a matrix to solve for θ , you should prove the inverse exists.
- Find the gradient ∇_cL(θ, c).
 We now compute the gradient with respect to c.
- 4. Let $\nabla_{\mathbf{c}} \mathcal{L}(\boldsymbol{\theta}) = \mathbf{0}$, and solve for \mathbf{c} . If you need to invert a matrix to solve for \mathbf{c} , you should prove the inverse exists.
- 5. Show that if we set $\mathbf{A} = \mathbf{I}, \mathbf{c} = \mathbf{0}, \mathbf{B} = \lambda \mathbf{I}$, where $\lambda \in \mathbb{R}$, your answer for 4.2 agrees with the analytic solution for the standard least squares regression problem with L2 regularization, given by

$$\boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \mathbf{y}.$$