Init

```
In [1]:
```

```
try:
    import os
    import glob
    import sys
    import math
    from typing import List, Optional
    from functools import partial
    import itertools
    import copy
except Exception as e:
    print(e)
    print("Some of the libraries needed to run this script were not installed or were not loaded. Please install the libraries before proceeding.")
```

In [2]:

```
sys.path.append(os.environ['DEV_AUTOTS'])
sys.path.append(os.environ['CAPSTONE_PYTHON_SOURCE'])
folder = os.environ['CAPSTONE_DATA']
```

```
In [3]:
```

```
try:
    # Data Tables
    import pandas as pd
    import numpy as np
    # Plotting
    import matplotlib.pyplot as plt
    import plotly.offline as py
   from plotly.offline import plot
    py.init_notebook_mode(connected=True)
   # EDA and Feature Engineering
    from scipy.spatial.distance import euclidean, pdist, squareform
    import statsmodels.api as sm
    # Auto Time Series
    import auto_ts as AT
   # Optimizer
   from skopt import gp_minimize
   from skopt.space import Real, Integer
   from skopt.plots import plot_convergence
except Exception as e:
    print(e)
    print("Some of the libraries needed to run this script were not installed or were not loaded. Please install the libraries befo
re proceeding.")
```

Running Auto Timeseries version: 0.0.24

In [4]:

%load_ext autoreload
%autoreload 2

```
from ETL.ETL import loadDataset, getTopProducts
   from similarity.similarity import mergeTopSimilar, loadSimilarity
   from charting.charting import surface3DChart
except Exception as e:
   print(e)
   print("Some of the libraries needed to run this script were not installed or were not loaded. Please install the libraries before proceeding.")
```

```
In [6]:
```

In [5]:

dataRaw= loadDataset(version=4)

Prep Data

```
In [7]:
```

```
#Parameters
#ChainMaster = 'SPECS'
#ProdCat='SUP PREM WHISKEY'
TOP_PRODUCTS = 3 # How many products to consider in the category
TOP_SIMILAR = 3 # Get TOP_SIMILAR most similar products
LOG_TRANSFORM = True # Take log of 9L cases to smooth out peaks and valleys
ZERO\_ADDER = 0.1
RESAMPLE\_FREQ = 'M'
# Pricing changes every 4 weeks
if RESAMPLE_FREQ == 'M':
                           FORECAST_PERIOD = 1
if RESAMPLE_FREQ == 'W': FORECAST_PERIOD = 4
if RESAMPLE_FREQ == '2W': FORECAST_PERIOD = 2
# Seasonal Period
if RESAMPLE_FREQ == 'M':
                           SEASONAL_PERIOD = 12 # Yearly
if RESAMPLE_FREQ == 'W': SEASONAL_PERIOD = 13 # Quarterly (we can also take yearly = 52, but SARIMAX becomes too slow)
if RESAMPLE_FREQ == '2W': SEASONAL_PERIOD = 13 # This becomes problematic --> for quarterly, should we take 6 biweekly periods or
7 bi-weekly periods. Instead I just took half yearly period
print("="*50)
print("Parameters being used...")
print("="*50)
print(f"Resample Frequency = {RESAMPLE_FREQ}")
print(f"Forecast Period = {FORECAST_PERIOD}")
print(f"Seasonal Period = {SEASONAL_PERIOD}")
```

Parameters being used...

Resample Frequency = M Forecast Period = 1

Seasonal Period = 12

Model Flow

Functions


```
In [8]:
```

```
COL TIME = 'WeekDate'
COL_PREDS = ['9L Cases'] #Demand
COL_PRICE= ['Dollar Sales per 9L Case'] #Price
def modelsLoadData(ProductsList, dataRaw, ChainMaster):
    all_data = []
    if(ChainMaster!=''):
        dfSimilarity = loadSimilarity(version=4)
    else:
        dfSimilarity = loadSimilarity(version=4,allCustomers=True)
   for i, Product in enumerate(ProductsList):
        (dataModel,colExog,colEnc,colDec) = mergeTopSimilar(dataRaw, dfSimilarity
                                                             ,ChainMaster=ChainMaster
                                                             ,Product=Product
                                                             ,ProductsList=ProductsList
                                                             ,topn=TOP_SIMILAR
                                                             ,periodCol = COL_TIME
                                                             ,resampleFreq=RESAMPLE_FREQ
                                                             ,encodeCols=True)
        if i == 0: print(f"Decoder: {colDec}")
        print("\n\n")
        print("-"*50)
        print(f"Product: {colDec.get(str(i))}")
        print("-"*50)
        #colExog = colExog + colEndog
        print(f"Exogenous Price Columns: {colExog}")
        allCols=[COL_TIME]+COL_PREDS+ colExog
        data=dataModel[allCols]
        print(f"% of weeks without a purchase: {sum(data['9L Cases'] == 0)/data.shape[0]*100}")
        all_data.append(data)
   all_data_non_transformed = copy.deepcopy(all_data)
    if LOG TRANSFORM:
        print("Log Transforming")
        for i in np.arange(len(all_data)):
            all_data_non_transformed[i] = all_data[i].copy(deep=True)
            all_data[i][COL_PREDS] = np.log10(all_data[i][COL_PREDS] + ZERO_ADDER)
```

```
print(f"\tProduct: {colDec.get(str(i))}")
    return(all data,all data non transformed,colExog,colEnc,colDec)
def ModelsWhiteNoise(all data)
    ## WHITE NOISE TEST
   white noise all = []
    white noise df all = []
    #check if there are 12, 24, 48 data points
    for i, data in enumerate(all data):
        lags=[12,24,48]
        lags=[x for x in lags if x < data.shape[0]]</pre>
        white noise_df = sm.stats.acorr_ljungbox(data[COL_PREDS], lags=lags, return_df=True)
        white noise df all.append(white noise df)
        if any(white noise df['lb pvalue'] > 0.05):
            white noise = True
        else:
            white noise = False
        white noise all.append(white noise)
        print(white noise df)
        print(f"\nIs Data White Noise: {white_noise}")
    return(white noise all)
def ModelsTestTrain(all data,all data non transformed):
    all train = []
    all test = []
    all train non transformed = []
    all test non transformed = []
    for i, data in enumerate(all data):
        train = all data non transformed[i].iloc[:-FORECAST PERIOD]
        test = all data non transformed[i].iloc[-FORECAST PERIOD:]
        all train non transformed.append(train)
        all test non transformed.append(test)
        train = data.iloc[:-FORECAST PERIOD]
        test = data.iloc[-FORECAST PERIOD:]
        all train.append(train)
        all test.append(test)
        print(train.shape,test.shape)
    return(all train,all test,all train non transformed,all test non transformed)
def ModelsFit(all data,all train,all test,withSimilar,model type=['SARIMAX','ML','prophet','auto SARIMAX']):
    from joblib import Parallel, delayed
```

```
def modelsFun(i):
        train = all train[i]
        test = all test[i]
        import auto ts as AT
        if(withSimilar==False):
            train = train[train.columns[0:3]] #3rd col has the curr product price
        print(train.columns)
        automl model = AT.AutoTimeSeries(
            score type='rmse', forecast period=FORECAST PERIOD, # time interval='Week',
            non seasonal pdq=None, seasonality=True, seasonal period=SEASONAL PERIOD,
            model type=model type,
            verbose=0)
        #colP = COL PREDS[COL PREDS in train.columns]
        automl model.fit(train, COL TIME, COL PREDS, cv=10, sep=',') #cv=10
        return(automl model)
    args = np.arange(len(all data))
    all models = Parallel(n jobs=-1, verbose=1
                          #, backend="threading"
                           , backend="loky"
                         )(
             map(delayed(modelsFun), args))
   return(all models)
def get rmse(predictions, targets):
    return np.sqrt(((np.array(predictions) - np.array(targets)) ** 2).mean())
def modelNaive(all data,all train,all test,all train non transformed,season=12,windowLength=8):
   from sktime.forecasting.naive import NaiveForecaster
    import statistics
   from tscv import GapWalkForward # type: ignore
   all naives=pd.DataFrame(columns=['ID', 'Best Type', 'Best RMSE'])
   types=['last','seasonal last','mean']
    #add window code
    NFOLDS=5
   for i, data in enumerate(all data):
        yTrain = pd.Series(all train[i][COL PREDS[0]])
        yTest = pd.Series(all test[i][COL PREDS[0]])
        yTrain = yTrain.append(yTest) # merging as we are gong to do cv
        rmses=[]
        naive_models=[]
        for t in types:
```

```
#naive_forecaster = NaiveForecaster(strategy="last")
            cv = GapWalkForward(n splits=10, gap size=0, test size=FORECAST PERIOD)
            cvRmse=[]
            for fold number, (train, test) in enumerate(cv.split(yTrain)):
                cv train = yTrain.iloc[train]
                cv test = yTrain.iloc[test]
                naive forecaster = NaiveForecaster(strategy=t,sp=season,window length=windowLength)
                naive forecaster.fit(cv train)
                yPred = naive forecaster.predict(np.arange(len(cv test)))
                rmse=get rmse(yPred, cv test)
                cvRmse.append(rmse)
            #naive models.append(naive forecaster) #last forecaster
            rmses.append(np.mean(cvRmse))
        bestRmse = np.argmin(rmses)
        bestModel = NaiveForecaster(strategy=types[bestRmse],sp=season)
        yTrainNonTrasformed = pd.Series(all train non transformed[i][COL PREDS[0]])
        bestModel.fit(yTrainNonTrasformed)
        all naives=all naives.append(
            {'ID':i
             , 'Best Type': types[bestRmse]
             ,'Best RMSE': rmses[bestRmse]
             , 'Best Naive': bestModel
             ,'All Types': [types]
             ,'All RMSEs': [rmses]
             ,'All Naives':naive_models
            ,ignore index=True)
    print(all naives)
    return(all naives)
def centerLog(text,w,pre='\n',post=''):
    t=int((w-len(text))/2-1)
    return(pre+'='*t+' '+text+' '+'='*(w-len(text)-t-2)+post)
def printLog(main, subs, linesPre=2, linesPost=1):
    import datetime
    if(isinstance(subs,list)== False): subs=[subs]
    maxw=max([len(x) for x in [main] + subs])+10
    print("\n"*linesPre
          +"="*maxw+" ("+str(datetime.datetime.now())+")"
          +centerLog(main,maxw)
          +''.join([centerLog(x,maxw) for x in subs])
          +"\n"+"="*maxw
          +"\n"*linesPost
```

Call Function

```
In [9]:
```

```
def runModels(ProductsList,dataRaw,ChainMaster):
    printLog("GET DATA", ChainMaster)
    all data, all data non transformed, colExog, colEnc, colDec = modelsLoadData(ProductsList, dataRaw, ChainMaster)
    printLog("WHITE NOISE", ChainMaster)
    white noise = ModelsWhiteNoise(all data)
    printLog("TEST/TRAIN", ChainMaster)
    all train, all test, all train non transformed, all test non transformed = ModelsTestTrain(all data, all data non transformed)
    all stats = pd.DataFrame()
    all stats['Product'] = ProductsList
    all stats['Chain Master'] = ChainMaster
    all stats['White Noise'] = white noise
    printLog("NAIVE", ChainMaster)
    naive = modelNaive(all data,all train,all test,all data non transformed,season=4,windowLength=8)
    all stats['Naive Best Type'] = [naive.iloc[x]['Best Type'] for x in np.arange(len(all data))]
    all stats['Naive Best RMSE'] = [naive.iloc[x]['Best RMSE'] for x in np.arange(len(all data))]
    all stats['Naive Best Model'] = [naive.iloc[x]['Best Naive'] for x in np.arange(len(all data))]
    printLog("Multivar P0", ChainMaster)
    multivarP0 = ModelsFit(all data,all train,all test,withSimilar = False)
    all stats['P0 Best Model Name'] = [multivarP0[x].get leaderboard().iloc[0]['name'] for x in np.arange(len(all data)) ]
    all stats['P0 Best Model RMSE'] = [multivarP0[x].get leaderboard().iloc[0]['rmse'] for x in np.arange(len(all data)) ]
    all stats['P0 Best Model'] = multivarP0 #[multivarP0[x] for x in np.arange(len(all data)) ]
    printLog("Multivar P0+Sim", ChainMaster)
    multivarP0Sim = ModelsFit(all data,all train,all test,withSimilar = True )
    all stats['P0+Sim Best Model Name'] = [multivarP0Sim[x].get leaderboard().iloc[0]['name'] for x in np.arange(len(all data))]
    all stats['P0+Sim Best Model RMSE'] = [multivarP0Sim[x].get leaderboard().iloc[0]['rmse'] for x in np.arange(len(all data)) ]
    all stats['P0+Sim Best Model'] = multivarP0Sim #[multivarP0Sim[x] for x in np.arange(len(all data)) ]
    return(all stats)
```

Loop

```
In [10]:
```

```
ChainMasters = [''] + dataRaw['Chain Master'].unique().tolist()
ProdCats = dataRaw['Category (CatMan)'].unique().tolist()
display(ChainMasters, ProdCats)

['', 'THE BARREL HOUSE', 'WESTERN BEV LIQ TX', 'SPECS']
['ECONOMY VODKA', 'SUP PREM WHISKEY']
```

Testing Models

```
In [12]:
#getting train test
if False:
    ChainMaster=ChainMasters[0]
    ProductsList = getTopProducts(dataRaw, ChainMaster='WESTERN BEV LIQ TX', ProdCat='SUP PREM WHISKEY', topN=TOP_PRODUCTS, timeCol
='WeekDate')
    all_data,all_data_non_transformed,colExog,colEnc,colDec = modelsLoadData(ProductsList,dataRaw,ChainMaster)
    all_train, all_test,all_train_non_transformed,all_test_non_transformed = ModelsTestTrain(all_data,all_data_non_transformed)
resampling to M
Decoder: {'0': 'JACK DANIELS BLK WHSKY 1.75L', '1': 'JACK DANIELS BLK WHSKY 750M', '2': 'JACK DANIELS BLK WHSKY 1
L'}
Product: JACK DANIELS BLK WHSKY 1.75L
Exogenous Price Columns: ['0', '2', '1']
% of weeks without a purchase: 1.1904761904761905
resampling to M
Product: JACK DANIELS BLK WHSKY 750M
Exogenous Price Columns: ['1', '2', '0']
% of weeks without a purchase: 0.0
resampling to M
Product: JACK DANIELS BLK WHSKY 1L
Exogenous Price Columns: ['2', '0', '1']
% of weeks without a purchase: 0.0
Log Transforming
        Product: JACK DANIELS BLK WHSKY 1.75L
        Product: JACK DANIELS BLK WHSKY 750M
        Product: JACK DANIELS BLK WHSKY 1L
(83, 5) (1, 5)
```

(83, 5) (1, 5) (83, 5) (1, 5)

```
In [14]:
```

```
#Fitting model
if False:
   i=1
   withSimilar=False
   train = all train[i]
   test = all test[i]
   import auto ts as AT
   if(withSimilar==False):
        train = train[train.columns[0:3]] #3rd col has the curr product price
    print(train.columns)
   #model_type=['SARIMAX','ML','prophet','auto_SARIMAX']
   model type=['prophet']
   automl model = AT.AutoTimeSeries(
        score type='rmse', forecast period=FORECAST PERIOD, # time interval='Week',
        non seasonal pdq=None, seasonality=True, seasonal period=SEASONAL PERIOD,
        model type=model type,
        verbose=0)
    #colP = COL PREDS[COL PREDS in train.columns]
   automl model.fit(train, COL TIME, COL PREDS, cv=1, sep=',') #cv=10
```

In [15]:

```
#prediction
if False:
    display(automl_model.get_leaderboard())
    df=pd.DataFrame({'WeekDate': [pd.to_datetime('2019-12-31')],'0':[266.51]})
    prediction=automl_model.predict(X_exogen = df,forecast_period=1)
    print(prediction)
```

Run

In [16]:

```
full_stats=pd.DataFrame()
ProdCats = ['SUP PREM WHISKEY']
for ProdCat in ProdCats:
    for ChainMaster in ChainMasters:
        printLog("Running ",[ProdCat,ChainMaster])
        ProductsList = getTopProducts(dataRaw, ChainMaster=ChainMaster, ProdCat=ProdCat, topN=TOP_PRODUCTS, timeCol='WeekDate')
        all_stats=runModels(ProductsList,dataRaw,ChainMaster)
        all_stats['Product Category']=ProdCat
        display(all_stats)
        full_stats=full_stats.append(all_stats,ignore_index=True)

printLog("Completed","")
```

```
====== Running ======
==== SUP PREM WHISKEY ====
==== GET DATA ====
==============
resampling to M
Decoder: {'0': 'JACK DANIELS BLK WHSKY 1L', '1': 'JACK DANIELS BLK WHSKY 1.75L', '2': 'JACK DANIELS BLK WHSKY 750
M'}
Product: JACK DANIELS BLK WHSKY 1L
Exogenous Price Columns: ['0', '1', '2']
% of weeks without a purchase: 0.0
resampling to M
Product: JACK DANIELS BLK WHSKY 1.75L
Exogenous Price Columns: ['1', '0', '2']
% of weeks without a purchase: 1.1904761904761905
resampling to M
Product: JACK DANIELS BLK WHSKY 750M
Exogenous Price Columns: ['2', '0', '1']
% of weeks without a purchase: 0.0
Log Transforming
      Product: JACK DANIELS BLK WHSKY 1L
      Product: JACK DANIELS BLK WHSKY 1.75L
```

Product: JACK DANIELS BLK WHSKY 750M

```
==== WHITE NOISE ====
lb_stat lb_pvalue
12 17.529696 0.130735
24 31.092108 0.151145
48 54.922995
          0.228882
Is Data White Noise: True
          lb_pvalue
    lb_stat
12 115.750529 4.333814e-19
24 214.169023 1.845834e-32
48 308.098428 1.176533e-39
Is Data White Noise: False
          lb_pvalue
    lb_stat
12 76.707883 1.745018e-11
24 131.122583 9.711501e-17
48 214.957410 5.416649e-23
Is Data White Noise: False
==== TEST/TRAIN ====
(83, 5) (1, 5)
(83, 5) (1, 5)
(83, 5) (1, 5)
==== NAIVE ====
==========
 ID Best Type Best RMSE All Naives \
0 0
                      mean
          0.043169
                      []
1 1
          0.324455
      last
                      2 2
      mean
          0.427990
```

```
1 [[0.3244545696539494, 0.4963154566538675, 0.34...
2 [[0.6704496090247218, 0.719929333484661, 0.427...
                 All Types
                                               Best Naive
0 [[last, seasonal last, mean]]
                         NaiveForecaster(sp=4, strategy='mean')
1 [[last, seasonal last, mean]]
                                      NaiveForecaster(sp=4)
2 [[last, seasonal_last, mean]] NaiveForecaster(sp=4, strategy='mean')
==== Multivar P0 ====
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 3 out of 3 | elapsed: 3.2min finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
==== Multivar P0+Sim ====
[Parallel(n_jobs=-1)]: Done 3 out of 3 | elapsed: 3.1min finished
```

0 [[0.07143315389555474, 0.11332894033533458, 0....

	Product	Chain Master	White Noise	Naive Best Type	Naive Best RMSE	Naive Best Model	P0 Best Model Name	P0 Best Model RMSE	P0 Best Model	P0+Sim Best Model Name	P0+Sim Best Model RMSE	I
0	JACK DANIELS BLK WHSKY 1L		True	mean	0.043169	NaiveForecaster(sp=4, strategy='mean')	SARIMAX	0.027899	<auto_ts.autotimeseries object at 0x00000228CD</auto_ts.autotimeseries 	SARIMAX	0.021390	<aut< td=""></aut<>
1	JACK DANIELS BLK WHSKY 1.75L		False	last	0.324455	NaiveForecaster(sp=4)	auto_SARIMAX	0.207729	<auto_ts.autotimeseries object at 0x00000228CD</auto_ts.autotimeseries 	auto_SARIMAX	0.240375	<aut< td=""></aut<>
2	JACK DANIELS BLK WHSKY 750M		False	mean	0.427990	NaiveForecaster(sp=4, strategy='mean')	SARIMAX	0.278152	<auto_ts.autotimeseries object at 0x00000228CD</auto_ts.autotimeseries 	auto_SARIMAX	0.312962	<aut< td=""></aut<>

```
====== Running ======
==== SUP PREM WHISKEY ====
==== THE BARREL HOUSE ====
====== GET DATA ======
==== THE BARREL HOUSE ====
_____
resampling to M
Decoder: {'0': 'JACK DANIELS BLK WHSKY 1L', '1': 'GENTLEMAN JACK WHSKY 6PK 1L', '2': 'JACK DANIELS BLK WHSKY LSE 50
M'}
Product: JACK DANIELS BLK WHSKY 1L
Exogenous Price Columns: ['0', '1', '2']
% of weeks without a purchase: 45.23809523809524
resampling to M
Product: GENTLEMAN JACK WHSKY 6PK 1L
Exogenous Price Columns: ['1', '0', '2']
% of weeks without a purchase: 32.926829268292686
resampling to M
Product: JACK DANIELS BLK WHSKY LSE 50M
_____
Exogenous Price Columns: ['2', '0', '1']
% of weeks without a purchase: 10.714285714285714
Log Transforming
      Product: JACK DANIELS BLK WHSKY 1L
```

Product: GENTLEMAN JACK WHSKY 6PK 1L
Product: JACK DANIELS BLK WHSKY LSE 50M

```
===== WHITE NOISE ======
==== THE BARREL HOUSE ====
lb_stat lb_pvalue
12 24.932218
           0.015147
24 47.266936
           0.003107
48 103.010327
           0.000007
Is Data White Noise: False
    lb_stat lb_pvalue
12 8.641692 0.733192
24 19.315056 0.734985
48 47.523727 0.492264
Is Data White Noise: True
    lb_stat lb_pvalue
12 17.236016 0.140933
24 26.001364
          0.353096
48 67.920769 0.030671
Is Data White Noise: True
===== TEST/TRAIN ======
==== THE BARREL HOUSE ====
(83, 5) (1, 5)
(81, 5) (1, 5)
(83, 5) (1, 5)
====== NAIVE =======
==== THE BARREL HOUSE ====
ID Best Type Best RMSE All Naives \
0 0
                       mean
          1.149908
1 1
      mean
           0.611153
                       2 2
           0.252773
      mean
```

```
1 [[0.7042605406907361, 0.7703384907350979, 0.61...
2 [[0.4339763671614111, 0.5139045586878941, 0.25...
                  All Types
                                                 Best Naive
0 [[last, seasonal last, mean]]
                           NaiveForecaster(sp=4, strategy='mean')
1 [[last, seasonal last, mean]]
                           NaiveForecaster(sp=4, strategy='mean')
2 [[last, seasonal_last, mean]] NaiveForecaster(sp=4, strategy='mean')
===== Multivar P0 ======
==== THE BARREL HOUSE ====
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 3 out of 3 | elapsed: 2.9min finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
==== Multivar P0+Sim =====
==== THE BARREL HOUSE ====
```

0 [[1.3378491195367055, 1.5550765479093094, 1.14...

[Parallel(n_jobs=-1)]: Done 3 out of 3 | elapsed: 2.8min finished

	Product	Chain Master	White Noise	Naive Best Type	Naive Best RMSE	Naive Best Model	P0 Best Model Name	P0 Best Model RMSE	P0 Best Model	P0+Sim Best Model Name	P0+Sim Best Model RMSE	P(
0	JACK DANIELS BLK WHSKY 1L	THE BARREL HOUSE	False	mean	1.149908	NaiveForecaster(sp=4, strategy='mean')	auto_SARIMAX	0.712256	<auto_ts.autotimeseries object at 0x00000228CC</auto_ts.autotimeseries 	ML	0.794521	<auto_< th=""></auto_<>
1	GENTLEMAN JACK WHSKY 6PK 1L	THE BARREL HOUSE	True	mean	0.611153	NaiveForecaster(sp=4, strategy='mean')	ML	0.191544	<auto_ts.autotimeseries object at 0x00000228CC</auto_ts.autotimeseries 	ML	0.191544	<auto_< th=""></auto_<>
2	JACK DANIELS BLK WHSKY LSE 50M	THE BARREL HOUSE	True	mean	0.252773	NaiveForecaster(sp=4, strategy='mean')	auto_SARIMAX	0.254032	<auto_ts.autotimeseries object at 0x00000228CC</auto_ts.autotimeseries 	ML	0.267358	<auto_< th=""></auto_<>

```
====== Running ======
==== SUP PREM WHISKEY =====
==== WESTERN BEV LIQ TX ====
====== GET DATA ======
==== WESTERN BEV LIQ TX ====
resampling to M
Decoder: {'0': 'JACK DANIELS BLK WHSKY 1.75L', '1': 'JACK DANIELS BLK WHSKY 750M', '2': 'JACK DANIELS BLK WHSKY 1
L'}
Product: JACK DANIELS BLK WHSKY 1.75L
Exogenous Price Columns: ['0', '2', '1']
% of weeks without a purchase: 17.5
resampling to M
Product: JACK DANIELS BLK WHSKY 750M
Exogenous Price Columns: ['1', '2', '0']
% of weeks without a purchase: 13.414634146341465
resampling to M
Product: JACK DANIELS BLK WHSKY 1L
Exogenous Price Columns: ['2', '1', '0']
% of weeks without a purchase: 0.0
Log Transforming
      Product: JACK DANIELS BLK WHSKY 1.75L
      Product: JACK DANIELS BLK WHSKY 750M
```

Product: JACK DANIELS BLK WHSKY 1L

```
====== WHITE NOISE ======
==== WESTERN BEV LIQ TX ====
_____
             lb_pvalue
    lb_stat
12 230.533574
          1.544168e-42
24 440.855949
          2.925831e-78
48 689.590939 1.731957e-114
Is Data White Noise: False
    lb_stat
            lb_pvalue
  77.815839 1.075181e-11
24 136.909527 8.579214e-18
48 201.387337 1.088599e-20
Is Data White Noise: False
    lb\_stat
           lb_pvalue
12 59.487140 2.799051e-08
24 75.433349 3.193517e-07
48 84.194254 9.632108e-04
Is Data White Noise: False
====== TEST/TRAIN ======
==== WESTERN BEV LIQ TX ====
(79, 5)(1, 5)
(81, 5) (1, 5)
(82, 5) (1, 5)
======= NAIVE =======
==== WESTERN BEV LIQ TX ====
ID Best Type Best RMSE All Naives \
0 0
       mean
          1.192388
                       1 1
      mean
          0.706690
                       2 2
           0.083096
                       mean
```

```
0 [[1.209792431243374, 1.8312196882995284, 1.192...
1 [[1.1305923379415006, 1.2624589917738127, 0.70...
2 [[0.12236276035592478, 0.0844886828891572, 0.0...
                  All Types
                                                  Best Naive
0 [[last, seasonal last, mean]]
                           NaiveForecaster(sp=4, strategy='mean')
1 [[last, seasonal last, mean]]
                           NaiveForecaster(sp=4, strategy='mean')
2 [[last, seasonal_last, mean]] NaiveForecaster(sp=4, strategy='mean')
===== Multivar P0 ======
==== WESTERN BEV LIQ TX ====
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 3 out of 3 | elapsed: 2.9min finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
==== Multivar P0+Sim =====
==== WESTERN BEV LIQ TX ====
_____
[Parallel(n_jobs=-1)]: Done 3 out of 3 | elapsed: 3.0min finished
```

	Product	Chain Master	White Noise	Naive Best Type	Naive Best RMSE	Naive Best Model	P0 Best Model Name	P0 Best Model RMSE	P0 Best Model	P0+Sim Best Model Name	P0+Sim Best Model RMSE	
0	JACK DANIELS BLK WHSKY 1.75L	WESTERN BEV LIQ TX	False	mean	1.192388	NaiveForecaster(sp=4, strategy='mean')	auto_SARIMAX	0.713414	<auto_ts.autotimeseries object at 0x00000228CD</auto_ts.autotimeseries 	SARIMAX	0.651764	<
1	JACK DANIELS BLK WHSKY 750M	WESTERN BEV LIQ TX	False	mean	0.706690	NaiveForecaster(sp=4, strategy='mean')	SARIMAX	0.578826	<auto_ts.autotimeseries object at 0x00000228CD</auto_ts.autotimeseries 	auto_SARIMAX	0.525101	<
2	JACK DANIELS BLK WHSKY 1L	WESTERN BEV LIQ TX	False	mean	0.083096	NaiveForecaster(sp=4, strategy='mean')	ML	0.099956	<auto_ts.autotimeseries object at 0x00000228CA</auto_ts.autotimeseries 	ML	0.099927	<

```
====== Running ======
==== SUP PREM WHISKEY ====
====== SPECS =======
==== GET DATA ====
===== SPECS ======
resampling to M
Decoder: {'0': 'JACK DANIELS BLK WHSKY 1L', '1': 'JACK DANIELS BLK WHSKY 1.75L', '2': 'JACK DANIELS BLK WHSKY 750
M'}
Product: JACK DANIELS BLK WHSKY 1L
Exogenous Price Columns: ['0', '1', '2']
% of weeks without a purchase: 0.0
resampling to M
Product: JACK DANIELS BLK WHSKY 1.75L
Exogenous Price Columns: ['1', '0', '2']
% of weeks without a purchase: 8.333333333333333
resampling to M
Product: JACK DANIELS BLK WHSKY 750M
Exogenous Price Columns: ['2', '0', '1']
% of weeks without a purchase: 2.380952380952381
Log Transforming
      Product: JACK DANIELS BLK WHSKY 1L
```

Product: JACK DANIELS BLK WHSKY 1.75L Product: JACK DANIELS BLK WHSKY 750M

```
==== WHITE NOISE ====
===== SPECS ======
lb_stat lb_pvalue
12 15.190957 0.231159
24 26.538512
           0.326419
           0.445959
48 48.667832
Is Data White Noise: True
    lb_stat lb_pvalue
12 29.265420 0.003598
24 41.411630 0.015005
48 54.239869 0.248702
Is Data White Noise: True
    lb_stat lb_pvalue
12 26.913026 0.007953
24 38.221972
           0.032900
48 54.395929
           0.244080
Is Data White Noise: True
==== TEST/TRAIN ====
===== SPECS ======
==============
(83, 5) (1, 5)
(83, 5) (1, 5)
(83, 5) (1, 5)
==== NAIVE ====
==== SPECS ====
==========
 ID Best Type Best RMSE All Naives \
0 0
                         mean
           0.060885
                         []
1 1
       mean
            0.159196
                         2 2
            0.276661
       mean
```

```
0 [[0.10753730489356994, 0.13940924570407018, 0....
1 [[0.1620938777280673, 0.22871564971857916, 0.1...
2 [[0.4671173585435577, 0.5316177371745061, 0.27...
                  All Types
                                                  Best Naive
0 [[last, seasonal last, mean]]
                           NaiveForecaster(sp=4, strategy='mean')
1 [[last, seasonal last, mean]]
                           NaiveForecaster(sp=4, strategy='mean')
2 [[last, seasonal_last, mean]] NaiveForecaster(sp=4, strategy='mean')
==== Multivar P0 ====
===== SPECS ======
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 3 out of 3 | elapsed: 2.3min finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
==== Multivar P0+Sim ====
====== SPECS ======
[Parallel(n_jobs=-1)]: Done 3 out of 3 | elapsed: 3.2min finished
```

	Product	Chain Master	White Noise	Naive Best Type	Naive Best RMSE	Naive Best Model	P0 Best Model Name	P0 Best Model RMSE	P0 Best Model	P0+Sim Best Model Name	P0+Sim Best Model RMSE	P0+S
0	JACK DANIELS BLK WHSKY 1L	SPECS	True	mean	0.060885	NaiveForecaster(sp=4, strategy='mean')	SARIMAX	0.037469	<auto_ts.autotimeseries object at 0x00000228CF</auto_ts.autotimeseries 	SARIMAX	0.033760	<auto_ts. <="" td=""></auto_ts.>
1	JACK DANIELS BLK WHSKY 1.75L	SPECS	True	mean	0.159196	NaiveForecaster(sp=4, strategy='mean')	SARIMAX	0.119452	<auto_ts.autotimeseries object at 0x00000228CD</auto_ts.autotimeseries 	SARIMAX	0.137105	<auto_ts.<i>I 0></auto_ts.<i>
2	JACK DANIELS BLK WHSKY 750M	SPECS	True	mean	0.276661	NaiveForecaster(sp=4, strategy='mean')	auto_SARIMAX	0.237800	<auto_ts.autotimeseries object at 0x00000228CD</auto_ts.autotimeseries 	SARIMAX	0.249464	<auto_ts.<i>I Ox</auto_ts.<i>
4												

Print out

In [15]:

full_stats[full_stats.columns.difference(['P0 Best Model','P0+Sim Best Model','Naive Best Model'],sort=False)]

Out[15]:

	Product	Chain Master	White Noise	Naive Best Type	Naive Best RMSE	P0 Best Model Name	P0 Best Model RMSE	P0+Sim Best Model Name	P0+Sim Best Model RMSE	Product Category
0	JACK DANIELS BLK WHSKY 1L		True	mean	0.043169	SARIMAX	0.027899	ML	0.030409	SUP PREM WHISKEY
1	JACK DANIELS BLK WHSKY 1.75L		False	last	0.324455	auto_SARIMAX	0.207729	auto_SARIMAX	0.186881	SUP PREM WHISKEY
2	JACK DANIELS BLK WHSKY 750M		False	mean	0.427990	SARIMAX	0.278152	SARIMAX	0.258481	SUP PREM WHISKEY
3	JACK DANIELS BLK WHSKY 1L	THE BARREL HOUSE	False	mean	1.149908	auto_SARIMAX	0.712256	ML	0.798112	SUP PREM WHISKEY
4	GENTLEMAN JACK WHSKY 6PK 1L	THE BARREL HOUSE	True	mean	0.611153	ML	0.191544	ML	0.191544	SUP PREM WHISKEY
5	JACK DANIELS BLK WHSKY LSE 50M	THE BARREL HOUSE	True	mean	0.252773	auto_SARIMAX	0.254032	auto_SARIMAX	0.261385	SUP PREM WHISKEY
6	JACK DANIELS BLK WHSKY 1.75L	WESTERN BEV LIQ TX	False	mean	1.192388	auto_SARIMAX	0.713414	Prophet	0.739690	SUP PREM WHISKEY
7	JACK DANIELS BLK WHSKY 750M	WESTERN BEV LIQ TX	False	mean	0.706690	SARIMAX	0.578826	auto_SARIMAX	0.514482	SUP PREM WHISKEY
8	JACK DANIELS BLK WHSKY 1L	WESTERN BEV LIQ TX	False	mean	0.083096	ML	0.099956	auto_SARIMAX	0.089549	SUP PREM WHISKEY
9	JACK DANIELS BLK WHSKY 1L	SPECS	True	mean	0.060885	SARIMAX	0.037469	ML	0.039430	SUP PREM WHISKEY
10	JACK DANIELS BLK WHSKY 1.75L	SPECS	True	mean	0.159196	SARIMAX	0.119452	SARIMAX	0.137262	SUP PREM WHISKEY
11	JACK DANIELS BLK WHSKY 750M	SPECS	True	mean	0.276661	auto_SARIMAX	0.237800	SARIMAX	0.233663	SUP PREM WHISKEY

Saving

```
In [16]:
```

#full_stats.to_pickle('all_Models_stats.pkl')

Optimizer

Functions

Optimizer Functions

```
In [17]:
```

```
def complex_objective(x: List
                      , ts_index_name: str
                      , ts_index: List
                      , all_models: List
                      , all data: List
                      , mask: Optional[List[bool]] = None
                      , verbose: int = 0
                      , return_individual: bool = False
                      , logT = False
                      , P0_only = False
                      #argument for P0 only
                      ):
    :param x A list of product pricing for which the revenue has to be computed
    :type x List
    :param mask: If the customer is not going to purchase a product in a period, we can choose to omit it from the revenue calculat
ion in the optimizer.
                 Default = None (considers all products in revenue calculation)
    :type mask Optional[List[bool]]
    param ts_index The index to use for the test data. This is needed for some models (such as ML) that use this to create feature:
    :type ts_index List
    :param return_individual If True, this returns the individual revenue values as well
                             Used mainly when this function is called standalone. Set of False for optimization
    :type return_individual bool
    :param verbose Level of verbosity (Default: 0). This is set to 1 or 2 (mainly for debug purposes)
    :type verbose int
    if verbose >0: print ("### Prediction Function ###")
   # Create test data from input
   index = [str(i) for i in np.arange(len(x))]
   x_df = pd.DataFrame(x, index = index)
    x_df = x_df.T
   # Set index (important for some models)
   x_df.index = ts_index
   x_df.index.name = ts_index_name
   # If mask is not provided, use all
    if mask is None:
        mask = [False for item in x]
```

```
if verbose >= 2:
    print(x df.info())
    print(x df.columns)
total revenue = 0
revenue = []
for i in np.arange(len(all data)):
    if verbose >= 1:
       print("\n" + "-"*50)
       print(f"Product Index: {i}")
    if not mask[i]:
        if P0 only: columns = [all data[i].columns[-(TOP SIMILAR+1)]]
       else: columns = all data[i].columns[-(TOP SIMILAR+1):].values #columns[-(TOP SIMILAR+2)] for the PO only type
        if verbose >= 2:
           print(f"All Columns in Test Data: {columns}")
           print('i:',i)
           print(x df[columns])
           print("----")
        test data = x df[columns]
       prediction = all models[i].predict(X exogen = test data, forecast period=1) #change this back when Nikhil fixes the auto
       if verbose >= 2: print(f"Prediction Type: {type(prediction)}")
       if verbose >= 1: print(f"Demand Prediction (transformed): {prediction}")
        # If model was created with log transformation
        if logT:
           prediction = 10**prediction
           if verbose >= 1:
               print("\nDemand Prediction (Original)")
               print(prediction)
        product revenue = prediction * x[i]
        # TODO: Clamping - Fix later (this gives an error with pandas. We need to pluck it out as a value)
       # product revenue = max(product revenue, 0) # Clamp at min value of 0 for predictions that are negative
       if verbose >= 1: print(f"Product Revenue: ${round(product revenue)}")
        if isinstance(product revenue, pd.Series):
           product revenue = product revenue.iloc[0]
        revenue.append(product revenue)
        # total revenue = total revenue + product revenue
    else:
```

TS

```
if verbose >= 1: print("This product's revenue was not included since it was not ordered by the customer in this period.")

product_revenue = 0
    revenue.append(product_revenue)

if verbose >= 1: print("-"*50 + "\n")

total_revenue = sum(revenue)

if verbose >= 1:
    print("\n\n" + "="*50)
    print(f"Total Revenue: ${round(total_revenue)}")
    print("="*50 + "\n\n")
    print("## Prediction Function END ###")

if return_individual is True: return -total_revenue

return -total_revenue
```

Core Functions

```
In [18]:
```

```
def opt get mask(all data,all test):
    # Did the customer actually want to but products in that period?
    # Only include the revenue in the objective if they actually ordered it
    # This model is not trying to predict if they would purchase a product when they were not going to purchase it earlier.
    # That requires a lot of human psychology and may not be captured in the model
    INCLUDE_MASKING = True
    mask: List[bool] = []
    for index in np.arange(len(all data)):
        if INCLUDE MASKING:
            if all_test[index].iloc[0]['9L Cases'] == 0:
                mask.append(True)
            else:
                mask.append(False)
        else:
            mask.append(False)
    print(f"Mask: {mask}")
    return(mask)
def opt_get_space(all_data,MARGIN=0.0):
    MARGIN = 0.0 # How much to go over or under the min and max price respectively during the search for optimial revenue
    space = []
    for index in np.arange(len(all_data)):
        #min val = all data[index][str(index)].min()
        min val = np.percentile(all_data[index][str(index)], 10)
        #max val = all data[index][str(index)].max()
        max_val = np.percentile(all_data[index][str(index)], 90)
        min_limit = min_val*(1-MARGIN)
        max limit = max val*(1+MARGIN)
        space.append(Real(low=min_limit, high=max_limit, prior='uniform'))
    return(space)
def opt_get_func(all_data,all_models,complex_objective,test_index_name,test_index,mask,verbose=0,P0_only=False):
    # create a new function with mask
    masked complex objective = partial(complex_objective, ts_index_name=test_index_name, ts_index=test_index, mask=mask, logT=LOG_T
RANSFORM, verbose=verbose
                                      ,all_models=all_models,all_data=all_data,P0_only=P0_only)
    if P0 only:
        print(f"Revenue P0: ${-round(complex_objective([266.51, 195.06, 205.3], ts_index_name=test_index_name, ts_index=test_index,
mask=mask,logT=LOG TRANSFORM,verbose=verbose,all models=all models,all data=all data,P0 only=True))}")
    else:
```

```
print(f"Revenue without masking: ${-round(complex objective([266.51, 195.06, 205.3], ts index name=test index name, ts index
x=test index, logT=LOG TRANSFORM, verbose=verbose, all models=all models, all data=all data))}")
        print(f"Revenue with masking: ${-round(masked complex objective([266.51, 195.06, 205.3], verbose=verbose, all models=all mode
ls,all data=all data))}")
    return(masked complex objective)
def opt get data(all data,all test non transformed):
    total test data revenue = 0
    for index in np.arange(len(all data)):
        product price = all test non transformed[index].iloc[0][str(index)]
        product demand = all test non transformed[index].iloc[0]['9L Cases']
        product revenue = product price * product demand
        print(f"Product {index} Price 9L Case: ${round(product price,2)} Revenue: ${round(product revenue)}")
        total test data revenue = total test data revenue + product revenue
    print(f"Total Revenue: ${round(total test data revenue)}")
    return(total test data revenue)
def opt naive(all models,all test non transformed):
    #uses test price and predict demand based on naive model
    product price=[]
    product demand=[]
    product revenue=[]
    for index in np.arange(len(all models)):
        product price.append(all test non transformed[index].iloc[0][str(index)])
        product demand.append(all models[index].predict([0]).tolist()[0])
        product revenue.append(product price[index] * product demand[index])
    total revenue = sum(product revenue)
    return(product price,product demand,product revenue,total revenue)
def opt get chart(all data,all models,space,ChainMaster,ProdCat,test index,test index name,verbose=1,STEPS=5,displayPlots=True,save
Path = '3d charts/'):
    math.ceil(space[0].low)
    math.floor(space[0].high)
    xs = np.arange(math.ceil(space[0].low), math.floor(space[0].high), step=5)
    ys = np.arange(math.ceil(space[1].low), math.floor(space[1].high), step=5)
    allp = [np.arange(math.ceil(space[i].low), math.floor(space[i].high), step=STEPS) for i in np.arange(len(all data))]
    if verbose >= 1:
        print("-"*100)
        print(f"Price intervals for product 0: {allp[0]}")
        print(f"Price intervals for product 1: {allp[1]}")
        print(f"Price intervals for product 2: {allp[2]}")
        print("-"*100, "\n")
    filenames=[]
    for i in np.arange(len(all data)):
        print("\n\n")
```

```
mask plot = [False if i == j else True for j in np.arange(len(all data))]
        if verbose >= 1:
            print(f"Product {i} --> Mask: {mask plot}")
        columns = all data[i].columns[-(TOP SIMILAR+1):].values
        if verbose >= 1:
            print(f"Products used in Model: {columns}")
        masked complex objective plot = partial(complex objective, ts index name=test index name, ts index=test index, mask=mask pl
ot, logT=LOG TRANSFORM, verbose=0
                                               ,all models=all models,all data=all data)
        finalx = []
        finaly = []
        finalrev = []
        xs = allp[int(columns[0])] # Main Product Price is in xs
        ys = allp[int(columns[1])] # Exogenous Product Price in in ys
        if verbose >= 1:
            print(f"Price intervals used for X-axis (product {int(columns[0])}): {xs}")
            print(f"Price intervals used for Y-axis (product {int(columns[1])}): {ys}")
        for x, y in itertools.product(xs, ys):
            price list = [0, 0, 0]
            # Fix price for product 0
            if int(columns[0]) == 0: # If the main product is product 0
                price list[0] = x
            elif int(columns[1]) == 0: # If exogenous product is product 0
                price list[0] = y
            else:
                price list[0] = 0
            # Fix price for product 1
            if int(columns[0]) == 1: # If the main product is product 1
                price list[1] = x
            elif int(columns[1]) == 1: # If exogenous product is product 1
                price list[1] = y
            else:
                price list[1] = 0
            # Fix price for product 2
            if int(columns[0]) == 2: # If the main product is product 2
                price list[2] = x
            elif int(columns[1]) == 2: # If exogenous product is product 2
                price list[2] = y
            else:
```

```
price list[2] = 0
            rev = -masked_complex_objective_plot(price_list)
            finalx.append(x)
            finaly.append(y)
            finalrev.append(rev)
        fig = surface3DChart(
            x=finalx, y=finaly, z=finalrev,
            title= 'Product ' + columns[0] + ' Revenue',
            xTitle= 'Product ' + columns[0] + ' Price',
            yTitle= 'Product ' + columns[1] + ' Price',
            width=1200,
            height=800
            )
        filename = "".join(ChainMaster.split()) + " " + "".join(ProdCat.split()) + " Top" + str(TOP PRODUCTS) + " Sim" + str(TOP SI
MILAR) + \
            "_Log" + str(LOG_TRANSFORM) + "_Add" + str(ZERO_ADDER) + \
            "Prod" + str(i) + "_Resample" + str(RESAMPLE_FREQ) + "_f" + str(FORECAST_PERIOD) + "_s" + str(SEASONAL_PERIOD) + ".htm
1"
        filenameFull = os.path.join(savePath,filename)
        if verbose >=1: print(filenameFull)
        filenames.append(filenameFull)
        py.plot(fig, filename = filenameFull,auto open=displayPlots)
   return(filenames)
```

Call Function

```
In [24]:
```

```
def runOptimizer(ProductsList,dataRaw,ChainMaster,modelsStats,verbose=0):
    opt stats = pd.DataFrame()
   numProducts = len(ProductsList)
   opt stats['Chain Master'] = [ChainMaster] * numProducts
   opt_stats['Product'] = ProductsList
    printLog("GET DATA", ChainMaster)
    all data,all data non transformed,colExog,colEnc,colDec = modelsLoadData(ProductsList,dataRaw,ChainMaster)
    printLog("TEST/TRAIN", ChainMaster)
   all_train, all_test, all_train_non_transformed, all_test_non_transformed = ModelsTestTrain(all_data,all_data_non_transformed)
   opt_stats['Actual Demand'] = [all_test_non_transformed[x]['9L Cases'].values[0] for x in np.arange(3)]
    opt_stats['Actual Price'] = [all_test_non_transformed[x].iloc[0][str(x)] for x in np.arange(3)]
   opt_stats['Actual Revenue'] = [opt_stats['Actual Demand'][x] * opt_stats['Actual Price'][x] for x in np.arange(numProducts)]
   opt_stats['Actual Chain Master Revenue'] = [sum(opt_stats['Actual Revenue'])] *numProducts
    printLog("NAIVE FORECAST", ChainMaster)
    all models = modelsStats['Naive Best Model']
   naive_price, naive_demand, naive_revenue , naive_total_revenue = opt_naive(all_models,all_test_non_transformed) #uses test price
and predict demand based on naive
   opt_stats['Naive Prices'] = naive_price
   opt_stats['Naive Demand'] = naive_demand
   opt stats['Naive Revenue'] = naive revenue
   opt_stats['Naive Chain Master Revenue'] = [naive_total_revenue] * numProducts
    printLog("MASK", ChainMaster)
   mask = opt_get_mask(all_data,all_test)
    opt stats['mask'] = mask
    printLog("SPACE", ChainMaster)
    space = opt_get_space(all_data)
    opt stats['space'] = space
    printLog("Test Index", ChainMaster)
    test index name = 'WeekDate'
   test_index = all_test_non_transformed[0][test_index_name].values
   opt_stats['test_index'] = [test_index] * numProducts# for i in ProductsList]
    ############
    ## P0 Only ##
   if True:
        printLog("GET FUNCTION PO", ChainMaster)
        all models = modelsStats['P0 Best Model']
        masked_complex_objective = opt_get_func(all_data,all_models,complex_objective,test_index_name,test_index,mask=mask,verbose=
```

```
verbose,P0 only=True)
        opt stats['masked complex objective'] = masked complex objective
        printLog("OPTIMIZING PO", ChainMaster)
        res = gp_minimize(masked_complex_objective,
                          space,
                          acq func="EI",
                          n calls=200,
                          n random starts=20,
                          random_state=42)
        opt stats['res'] = [res] * numProducts # for i in ProductsList]
        ## GET OUTPUT DATA ##
        printLog("OUTPUT PO", ChainMaster)
        opt stats['P0 Optimal Price'] = [round(price, 2) for price in res.x]
        opt_stats['P0 Chain Master Revenue'] = round(-res.fun)
        __,all_revenues = masked_complex_objective(res.x, return individual=True)
        opt_stats['P0 Demand'] = (np.array(all_revenues) / np.array(opt_stats['P0 Optimal Price'])).tolist()
        opt stats['P0 Revenue'] = all revenues
        total test data revenue = opt get data(all data,all test non transformed)
        opt stats['total test data revenue P0'] = total test data revenue
    ############
    ## P0+Sim ##
    printLog("GET FUNCTION PO+Sim", ChainMaster)
   all models = modelsStats['P0+Sim Best Model']
   masked complex objective = opt get func(all data,all models,complex objective,test index name,test index,mask,verbose=verbose,P
0 only=False)
    opt stats['masked complex objective'] = masked complex objective
    printLog("OPTIMIZING P0+Sim", ChainMaster)
    res = gp minimize(masked complex objective,
                      space,
                      acq func="EI",
                      n calls=200,
                      n random starts=20,
                      random state=42
    opt stats['res'] = [res] * numProducts # for i in ProductsList]
    ## GET OUTPUT DATA ##
    printLog("OUTPUT P0+Sim", ChainMaster)
    opt stats['P0+Sim Optimal Price'] = [round(price, 2) for price in res.x]
    opt stats['P0+Sim Chain Master Revenue'] = round(-res.fun)
     ,all_revenues = masked_complex_objective(res.x, return_individual=True)
```

Loop

In [25]:

```
#reading models data
#full_stats = pd.read_pickle('all_Models_stats.pkl')
#check mask.. change the iteration to 10 random and 20 full
```

```
In [26]:
```

```
ChainMasters = [''] + dataRaw['Chain Master'].unique().tolist()
ProdCats = dataRaw['Category (CatMan)'].unique().tolist()
display(ChainMasters, ProdCats)
```

```
['', 'THE BARREL HOUSE', 'WESTERN BEV LIQ TX', 'SPECS']
['ECONOMY VODKA', 'SUP PREM WHISKEY']
```

Testing Models

In [27]:

```
## testing Models Prediction
if False:
    ChainMaster = ChainMasters[2]#Western
    ProdCat = 'SUP PREM WHISKEY'
    modelsStats = full_stats[(full_stats['Chain Master']==ChainMaster) & (full_stats['Product Category']==ProdCat)].reset_index()
    display(modelsStats)
    #display(modelsStats)
    model = modelsStats['P0 Best Model'][1]
    #df=pd.DataFrame({'WeekDate': [pd.to_datetime('2019-12-31')],'0':[266.51],'1':[195.06],'2':[195.06]})
    df=pd.DataFrame({'WeekDate': [pd.to_datetime('2019-12-31')],'1':[266.51]})
    prediction=model.predict(X_exogen = df,forecast_period=1)
    print(prediction)
```

In [28]:

```
full_opt_stats=pd.DataFrame()
ProdCats = ['SUP PREM WHISKEY']
for ProdCat in ProdCats:
    for ChainMaster in ChainMasters:
        modelsStats = full_stats[(full_stats['Chain Master']==ChainMaster) & (full_stats['Product Category']==ProdCat)].reset_index
()

    printLog("Get Top Similar Products",[ProdCat,ChainMaster])
    ProductsList = getTopProducts(dataRaw, ChainMaster=ChainMaster, ProdCat=ProdCat, topN=TOP_PRODUCTS, timeCol='WeekDate')

    printLog("Running Optimizer",[ProdCat,ChainMaster])
    opt_stats=runOptimizer(ProductsList,dataRaw,ChainMaster,modelsStats,verbose=0)

#dispLay(opt_stats)
    full_opt_stats=full_opt_stats.append(opt_stats,ignore_index=True)

printLog("Completed","")
```

```
==== Get Top Similar Products ====
====== SUP PREM WHISKEY ======
==== Running Optimizer ====
==== SUP PREM WHISKEY =====
==== GET DATA ====
==============
resampling to M
Decoder: {'0': 'JACK DANIELS BLK WHSKY 1L', '1': 'JACK DANIELS BLK WHSKY 1.75L', '2': 'JACK DANIELS BLK WHSKY 750
M'}
Product: JACK DANIELS BLK WHSKY 1L
-----
Exogenous Price Columns: ['0', '1']
% of weeks without a purchase: 0.0
resampling to M
Product: JACK DANIELS BLK WHSKY 1.75L
Exogenous Price Columns: ['1', '0']
% of weeks without a purchase: 1.1904761904761905
resampling to M
```

```
Exogenous Price Columns: ['2', '0']
% of weeks without a purchase: 0.0
Log Transforming
    Product: JACK DANIELS BLK WHSKY 1L
    Product: JACK DANIELS BLK WHSKY 1.75L
    Product: JACK DANIELS BLK WHSKY 750M
==== TEST/TRAIN ====
(83, 4) (1, 4)
(83, 4) (1, 4)
(83, 4) (1, 4)
==== NAIVE FORECAST ====
==== MASK ====
======
==========
Mask: [False, False, False]
==== SPACE ====
====== =====
_____
==== Test Index ====
```

Product: JACK DANIELS BLK WHSKY 750M

```
==== GET FUNCTION P0 ====
Revenue P0: $272192.0
==== OPTIMIZING P0 ====
==== OUTPUT P0 ====
Product 0 Price 9L Case: $229.81 Revenue: $135402.0
Product 1 Price 9L Case: $185.65 Revenue: $72331.0
Product 2 Price 9L Case: $222.36 Revenue: $50031.0
Total Revenue: $257765.0
==== GET FUNCTION PO+Sim ====
Revenue without masking: $214111.0
Revenue with masking: $214111.0
==== OPTIMIZING P0+Sim ====
==== OUTPUT P0+Sim ====
```

```
Product 1 Price 9L Case: $185.65 Revenue: $72331.0
Product 2 Price 9L Case: $222.36 Revenue: $50031.0
Total Revenue: $257765.0
==== COMPLETED ====
-----
==== Get Top Similar Products ====
====== SUP PREM WHISKEY ======
====== THE BARREL HOUSE ======
==== Running Optimizer ====
==== SUP PREM WHISKEY =====
==== THE BARREL HOUSE =====
===== GET DATA ======
==== THE BARREL HOUSE ====
resampling to M
Decoder: {'0': 'JACK DANIELS BLK WHSKY 1L', '1': 'GENTLEMAN JACK WHSKY 6PK 1L', '2': 'JACK DANIELS BLK WHSKY LSE 50
M'}
Product: JACK DANIELS BLK WHSKY 1L
Exogenous Price Columns: ['0', '1']
% of weeks without a purchase: 45.23809523809524
resampling to M
```

Product 0 Price 9L Case: \$229.81 Revenue: \$135402.0

```
Product: GENTLEMAN JACK WHSKY 6PK 1L
Exogenous Price Columns: ['1', '0']
% of weeks without a purchase: 32.926829268292686
resampling to M
Product: JACK DANIELS BLK WHSKY LSE 50M
Exogenous Price Columns: ['2', '0']
% of weeks without a purchase: 10.714285714285714
Log Transforming
     Product: JACK DANIELS BLK WHSKY 1L
     Product: GENTLEMAN JACK WHSKY 6PK 1L
     Product: JACK DANIELS BLK WHSKY LSE 50M
===== TEST/TRAIN ======
==== THE BARREL HOUSE ====
(83, 4) (1, 4)
(81, 4) (1, 4)
(83, 4) (1, 4)
==== NAIVE FORECAST =====
==== THE BARREL HOUSE ====
====== MASK =======
==== THE BARREL HOUSE ====
Mask: [False, False, False]
====== SPACE =======
```

```
==== THE BARREL HOUSE ====
===== Test Index =====
==== THE BARREL HOUSE ====
==== GET FUNCTION P0 =====
==== THE BARREL HOUSE ====
Revenue P0: $557.0
==== OPTIMIZING P0 =====
==== THE BARREL HOUSE ====
===== OUTPUT P0 ======
==== THE BARREL HOUSE ====
Product 0 Price 9L Case: $239.01 Revenue: $636.0
Product 1 Price 9L Case: $286.87 Revenue: $1345.0
Product 2 Price 9L Case: $268.66 Revenue: $360.0
Total Revenue: $2341.0
==== GET FUNCTION P0+Sim ====
==== THE BARREL HOUSE =====
Revenue without masking: $867.0
Revenue with masking: $867.0
```

```
==== OPTIMIZING P0+Sim ====
==== THE BARREL HOUSE =====
==== OUTPUT P0+Sim =====
==== THE BARREL HOUSE ====
Product 0 Price 9L Case: $239.01 Revenue: $636.0
Product 1 Price 9L Case: $286.87 Revenue: $1345.0
Product 2 Price 9L Case: $268.66 Revenue: $360.0
Total Revenue: $2341.0
===== COMPLETED ======
==== THE BARREL HOUSE ====
==== Get Top Similar Products ====
====== SUP PREM WHISKEY ======
====== WESTERN BEV LIQ TX ======
==== Running Optimizer =====
==== SUP PREM WHISKEY =====
==== WESTERN BEV LIQ TX ====
====== GET DATA ======
==== WESTERN BEV LIQ TX ====
resampling to M
Decoder: {'0': 'JACK DANIELS BLK WHSKY 1.75L', '1': 'JACK DANIELS BLK WHSKY 750M', '2': 'JACK DANIELS BLK WHSKY 1
L'}
```

```
Product: JACK DANIELS BLK WHSKY 1.75L
Exogenous Price Columns: ['0', '2']
% of weeks without a purchase: 17.5
resampling to M
Product: JACK DANIELS BLK WHSKY 750M
   -----
Exogenous Price Columns: ['1', '2']
% of weeks without a purchase: 13.414634146341465
resampling to M
Product: JACK DANIELS BLK WHSKY 1L
    -----
Exogenous Price Columns: ['2', '1']
% of weeks without a purchase: 0.0
Log Transforming
      Product: JACK DANIELS BLK WHSKY 1.75L
      Product: JACK DANIELS BLK WHSKY 750M
      Product: JACK DANIELS BLK WHSKY 1L
====== TEST/TRAIN ======
==== WESTERN BEV LIQ TX ====
(79, 4) (1, 4)
(81, 4) (1, 4)
(82, 4) (1, 4)
===== NAIVE FORECAST =====
==== WESTERN BEV LIQ TX ====
```

```
======= MASK =======
==== WESTERN BEV LIQ TX ====
Mask: [False, False, False]
======= SPACE =======
==== WESTERN BEV LIQ TX ====
====== Test Index ======
==== WESTERN BEV LIO TX ====
==== GET FUNCTION P0 =====
==== WESTERN BEV LIQ TX ====
Revenue P0: $60042276.0
===== OPTIMIZING P0 ======
==== WESTERN BEV LIQ TX ====
====== OUTPUT P0 ======
==== WESTERN BEV LIQ TX ====
Product 0 Price 9L Case: $185.59 Revenue: $39085.0
Product 1 Price 9L Case: $222.36 Revenue: $34466.0
```

Product 2 Price 9L Case: \$230.79 Revenue: \$25476.0

Total Revenue: \$99027.0

```
==== GET FUNCTION PO+Sim ====
==== WESTERN BEV LIO TX =====
Building Forecast dataframe. Forecast Period = 1
Revenue without masking: $375471.0
Building Forecast dataframe. Forecast Period = 1
Revenue with masking: $375471.0
==== OPTIMIZING P0+Sim =====
==== WESTERN BEV LIO TX ====
Building Forecast dataframe. Forecast Period = 1
```

```
Building Forecast dataframe. Forecast Period = 1
```

```
Building Forecast dataframe. Forecast Period = 1
```

```
Building Forecast dataframe. Forecast Period = 1
```

```
Building Forecast dataframe. Forecast Period = 1
===== OUTPUT P0+Sim ======
==== WESTERN BEV LIQ TX ====
_____
Building Forecast dataframe. Forecast Period = 1
Product 0 Price 9L Case: $185.59 Revenue: $39085.0
Product 1 Price 9L Case: $222.36 Revenue: $34466.0
Product 2 Price 9L Case: $230.79 Revenue: $25476.0
Total Revenue: $99027.0
==== WESTERN BEV LIO TX ====
```

==== Get Top Similar Products ====

```
====== SUP PREM WHISKEY ======
======= SPECS ========
==== Running Optimizer ====
==== SUP PREM WHISKEY =====
======= SPECS =======
_____
==== GET DATA ====
==== SPECS =====
=============
resampling to M
Decoder: {'0': 'JACK DANIELS BLK WHSKY 1L', '1': 'JACK DANIELS BLK WHSKY 1.75L', '2': 'JACK DANIELS BLK WHSKY 750
M'}
Product: JACK DANIELS BLK WHSKY 1L
Exogenous Price Columns: ['0', '1']
% of weeks without a purchase: 0.0
resampling to M
 ______
Product: JACK DANIELS BLK WHSKY 1.75L
Exogenous Price Columns: ['1', '0']
% of weeks without a purchase: 8.333333333333333
resampling to M
Product: JACK DANIELS BLK WHSKY 750M
```

Exogenous Price Columns: ['2', '0']
% of weeks without a purchase: 2.380952380952381

```
Log Transforming
    Product: JACK DANIELS BLK WHSKY 1L
    Product: JACK DANIELS BLK WHSKY 1.75L
    Product: JACK DANIELS BLK WHSKY 750M
==== TEST/TRAIN ====
===== SPECS ======
============
(83, 4) (1, 4)
(83, 4) (1, 4)
(83, 4) (1, 4)
==== NAIVE FORECAST ====
====== SPECS ======
==== MASK =====
==== SPECS ====
===========
Mask: [False, False, False]
==== SPACE ====
==== SPECS ====
==========
==== Test Index ====
===== SPECS ======
==== GET FUNCTION P0 ====
```

```
Revenue P0: $189945.0
==== OPTIMIZING P0 ====
====== SPECS ======
==== OUTPUT P0 ====
===== SPECS =====
Product 0 Price 9L Case: $229.53 Revenue: $109290.0
Product 1 Price 9L Case: $185.59 Revenue: $32788.0
Product 2 Price 9L Case: $222.36 Revenue: $15343.0
Total Revenue: $157421.0
==== GET FUNCTION PO+Sim ====
======= SPECS =======
Revenue without masking: $90148.0
Revenue with masking: $90148.0
==== OPTIMIZING PO+Sim ====
==== OUTPUT P0+Sim ====
====== SPECS ======
Product 0 Price 9L Case: $229.53 Revenue: $109290.0
Product 1 Price 9L Case: $185.59 Revenue: $32788.0
Product 2 Price 9L Case: $222.36 Revenue: $15343.0
```

Total Revenue: \$157421.0

Print out

In [29]:

	Chain Master	Product	Actual Price	Actual Demand	Actual Revenue	Actual Chain Master Revenue	Naive Prices	Naive Demand	Naive Revenue	Naive Chain Master Revenue	P0 Optimal Price	P0 Demand
0		JACK DANIELS BLK WHSKY 1L	229.811232	589.19	135402.48	257764.62	229.811232	292.610723	67245.230832	90321.715676	227.71	296.250933
1		JACK DANIELS BLK WHSKY 1.75L	185.650112	389.61	72331.14	257764.62	185.650112	40.950000	7602.372072	90321.715676	184.44	184.916178
2		JACK DANIELS BLK WHSKY 750M	222.360000	225.00	50031.00	257764.62	222.360000	69.590361	15474.112771	90321.715676	223.78	169.864344
3	THE BARREL HOUSE	JACK DANIELS BLK WHSKY 1L	239.007519	2.66	635.76	2341.20	239.007519	9.200506	2198.990116	2900.866248	222.56	225.475606
4	THE BARREL HOUSE	GENTLEMAN JACK WHSKY 6PK 1L	286.874200	4.69	1345.44	2341.20	286.874200	1.169049	335.370107	2900.866248	295.95	1.484805
5	THE BARREL HOUSE	JACK DANIELS BLK WHSKY LSE 50M	268.656716	1.34	360.00	2341.20	268.656716	1.364217	366.506024	2900.866248	267.99	1.272531
6	WESTERN BEV LIQ TX	JACK DANIELS BLK WHSKY 1.75L	185.589744	210.60	39085.20	99027.48	185.589744	110.560063	20518.813797	44989.509807	191.28	166.023589
7	WESTERN BEV LIQ TX	JACK DANIELS BLK WHSKY 750M	222.360000	155.00	34465.80	99027.48	222.360000	41.041148	9125.909702	44989.509807	217.61	165.010479
8	WESTERN BEV LIQ TX	JACK DANIELS BLK WHSKY 1L	230.786122	110.39	25476.48	99027.48	230.786122	66.489207	15344.786307	44989.509807	224.24	58.682795
9	SPECS	JACK DANIELS BLK WHSKY 1L	229.533835	476.14	109290.24	157421.22	229.533835	217.722084	49974.584892	63726.848507	226.50	222.317808

	Chain Master	Product	Actual Price	Actual Demand	Actual Revenue	Actual Chain Master Revenue	Naive Prices	Naive Demand	Naive Revenue	Naive Chain Master Revenue	P0 Optimal Price	P0 Demand
10	SPECS	JACK DANIELS BLK WHSKY 1.75L	185.589744	176.67	32788.14	157421.22	185.589744	44.962771	8344.629157	63726.848507	184.04	49.283717
11	SPECS	JACK DANIELS BLK WHSKY 750M	222.360000	69.00	15342.84	157421.22	222.360000	24.319277	5407.634458	63726.848507	205.54	112.562539
4												•

In [30]:

Out[30]:

	Chain Master	Product	Actual Price	Actual Demand	Actual Revenue	Actual Chain Master Revenue	Naive Prices	Naive Demand	Naive Revenue	Naive Chain Master Revenue
0		JACK DANIELS BLK WHSKY 1L	229.811232	589.19	135402.48	257764.62	229.811232	292.610723	67245.230832	90321.715676
1		JACK DANIELS BLK WHSKY 1.75L	185.650112	389.61	72331.14	257764.62	185.650112	40.950000	7602.372072	90321.715676
2		JACK DANIELS BLK WHSKY 750M	222.360000	225.00	50031.00	257764.62	222.360000	69.590361	15474.112771	90321.715676
3	THE BARREL HOUSE	JACK DANIELS BLK WHSKY 1L	239.007519	2.66	635.76	2341.20	239.007519	9.200506	2198.990116	2900.866248
4	THE BARREL HOUSE	GENTLEMAN JACK WHSKY 6PK 1L	286.874200	4.69	1345.44	2341.20	286.874200	1.169049	335.370107	2900.866248
5	THE BARREL HOUSE	JACK DANIELS BLK WHSKY LSE 50M	268.656716	1.34	360.00	2341.20	268.656716	1.364217	366.506024	2900.866248
6	WESTERN BEV LIQ TX	JACK DANIELS BLK WHSKY 1.75L	185.589744	210.60	39085.20	99027.48	185.589744	110.560063	20518.813797	44989.509807
7	WESTERN BEV LIQ TX	JACK DANIELS BLK WHSKY 750M	222.360000	155.00	34465.80	99027.48	222.360000	41.041148	9125.909702	44989.509807
8	WESTERN BEV LIQ TX	JACK DANIELS BLK WHSKY 1L	230.786122	110.39	25476.48	99027.48	230.786122	66.489207	15344.786307	44989.509807
9	SPECS	JACK DANIELS BLK WHSKY 1L	229.533835	476.14	109290.24	157421.22	229.533835	217.722084	49974.584892	63726.848507
10	SPECS	JACK DANIELS BLK WHSKY 1.75L	185.589744	176.67	32788.14	157421.22	185.589744	44.962771	8344.629157	63726.848507
11	SPECS	JACK DANIELS BLK WHSKY 750M	222.360000	69.00	15342.84	157421.22	222.360000	24.319277	5407.634458	63726.848507

In [31]:

Out[31]:

	Chain Master	Product	P0 Optimal Price	P0 Demand	P0 Revenue	P0 Chain Master Revenue	P0+Sim Optimal Price	P0+Sim Demand	P0+Sim Revenue	P0+Sim Chain Master Revenue
0		JACK DANIELS BLK WHSKY 1L	227.71	296.250933	67459.300020	139577.0	228.75	208.300856	47648.820791	121133.0
1		JACK DANIELS BLK WHSKY 1.75L	184.44	184.916178	34105.939952	139577.0	169.93	244.776787	41594.919344	121133.0
2		JACK DANIELS BLK WHSKY 750M	223.78	169.864344	38012.242857	139577.0	224.13	142.278525	31888.885832	121133.0
3	THE BARREL HOUSE	JACK DANIELS BLK WHSKY 1L	222.56	225.475606	50181.850796	50962.0	234.28	1.199191	280.946564	1059.0
4	THE BARREL HOUSE	GENTLEMAN JACK WHSKY 6PK 1L	295.95	1.484805	439.428095	50962.0	296.93	1.484796	440.880342	1059.0
5	THE BARREL HOUSE	JACK DANIELS BLK WHSKY LSE 50M	267.99	1.272531	341.025472	50962.0	268.45	1.255788	337.116310	1059.0
6	WESTERN BEV LIQ TX	JACK DANIELS BLK WHSKY 1.75L	191.28	166.023589	31756.992175	80824.0	185.37	552.712908	102456.391798	123698.0
7	WESTERN BEV LIQ TX	JACK DANIELS BLK WHSKY 750M	217.61	165.010479	35907.930285	80824.0	217.87	26.238294	5716.537039	123698.0
8	WESTERN BEV LIQ TX	JACK DANIELS BLK WHSKY 1L	224.24	58.682795	13159.029857	80824.0	214.47	72.389591	15525.395586	123698.0
9	SPECS	JACK DANIELS BLK WHSKY 1L	226.50	222.317808	50354.983567	82561.0	229.22	246.414206	56483.064251	66969.0
10	SPECS	JACK DANIELS BLK WHSKY 1.75L	184.04	49.283717	9070.175337	82561.0	181.38	31.088421	5638.817880	66969.0
11	SPECS	JACK DANIELS BLK WHSKY 750M	205.54	112.562539	23136.104353	82561.0	209.29	23.160338	4847.227201	66969.0

In []: