VE320 Homework 6

Due: 26/06/2019 10:00 am

1.

A silicon pn junction in thermal equilibrium at T = 300 K is doped such that $E_F - E_{Fi} = 0.365$ eV in the n region and $E_{Fi} - E_F = 0.330$ eV in the p region. (a) Sketch the energy-band diagram for the pn junction. (b) Find the impurity doping concentration in each region. (c) Determine V_{bi} .

2.

(a) Consider a uniformly doped silicon pn junction at T = 300 K. At zero bias, 25 percent of the total space charge region is in the n-region. The built-in potential barrier is $V_{bi} = 0.710$ V. Determine (i) N_a , (ii) N_d , (iii) x_n , (iv) x_p , and (v) $|E_{max}|$. (b) Repeat part (a) for a GaAs pn junction with $V_{bi} = 1.180$ V.

3.

An "isotype" step junction is one in which the same impurity type doping changes from one concentration value to another value. An n-n isotype doping profile is shown in Figure P7.12. (a) Sketch the thermal equilibrium energy-band diagram of the isotype junction. (b) Using the energy-band diagram, determine the built-in potential barrier. (c) Discuss the charge distribution through the junction.

Figure P7.12 | Figure for Problem 7.12.

4.

An abrupt silicon pn junction at T=300 K has impurity doping concentrations of $N_a=5\times 10^{16}$ cm⁻³ and $N_d=10^{15}$ cm⁻³. Calculate (a) V_{bi} , (b) W at (i) $V_R=0$ and (ii) $V_R=5$ V, and (c) $|E_{\rm max}|$ at (i) $V_R=0$ and (ii) $V_R=5$.

5.

An ideal one-sided silicon p⁺n junction at T = 300 K is uniformly doped on both sides of the metallurgical junction. It is found that the doping relation is $N_a = 80$ N_d and the built-in potential barrier is $V_{bi} = 0.740$ V. A reverse-biased voltage of $V_R = 10$ V is applied. Determine (a) N_a , N_d ; (b) x_p , x_n ; (c) $|E_{\text{max}}|$; and (d) C'_i .

6.

A silicon pn junction at T = 300 K has the doping profile shown in Figure P7.28. Calculate (a) V_{bi} , (b) x_n and x_p at zero bias, and (c) the applied bias required so that $x_n = 30 \ \mu\text{m}$.

Figure P7.28 | Figure for Problem 7.28.

7.

Consider a silicon n⁺p junction diode. The critical electric field for breakdown in silicon is approximately $E_{crit} = 4 \times 10^5$ V/cm. Determine the maximum p-type doping concentration such that the breakdown voltage is (a) 40 V and (b) 20 V.

8.

- (a) The doping concentrations in a silicon pn junction are $N_d = 5 \times 10^{15}$ cm⁻³ and $N_a = 5 \times 10^{16}$ cm⁻³. The minority carrier concentration at either space charge edge is to be no larger than 10 percent of the respective majority carrier concentration. (i) Determine the maximum forward-bias voltage that can be applied to the junction and still meet the required specifications. (ii) Is the n-region or p-region concentration the factor that limits the forward-bias voltage? (b) Repeat part (a) if the doping concentrations are $N_d = 3 \times 10^{16}$ cm⁻³ and $N_a = 7 \times 10^{15}$ cm⁻³.
- 9.

A one-sided p⁺n silicon diode has doping concentrations of $N_a = 5 \times 10^{17}$ cm⁻³ and $N_d = 8 \times 10^{15}$ cm⁻³. The minority carrier lifetimes are $\tau_{n0} = 10^{-7}$ s and $\tau_{p0} = 8 \times 10^{-8}$ s. The cross-sectional area is $A = 2 \times 10^{-4}$ cm². Calculate the (a) reverse-biased saturation current, and (b) the forward-bias current at (i) $V_a = 0.45$ V, (ii) $V_a = 0.55$ V, and (iii) $V_a = 0.65$ V.

10.

Can you explain in your own words how a depletion region is formed after a p-type semiconductor is in contact with an n-type semiconductor?

11.

A silicon p⁺n junction has doping concentrations of $N_a = 2 \times 10^{17}$ cm⁻³ and $N_d = 2 \times 10^{15}$ cm⁻³. The cross-sectional area is 10^{-5} cm². Calculate (a) V_{bi} and (b) the junction capacitance at reverse bias V_R (i) $V_R = 1V$, (ii) $V_R = 3V$, and (iii) $V_R = 5 V$. (c) plot $1/C^2$ versus V_R and identify how the slope and intercept at the voltage axis are related to N_d and V_{bi} , repectively.