

Sistemas de Visão e Percepção Industrial

Trabalho Prático nº 3 - Maio/Junho 2022 Inspeção de Propriedades e Inconformidades de Peças Industriais

Objetivos

Desenvolvimento de uma aplicação em Sherlock que elabore um registo de inconformidades das peças presentes num conjunto de imagens de acordo com uma lista de especificações fornecidas. O registo consiste num ficheiro ASCII (com o nome tp3_nnnnnn.txt, sendo nnnnnn o número mecanográfico do estudante) em que cada entrada, constituída pelos dados detetados de uma imagem, deve estar numa linha, e os campos de cada entrada devem estar separados por vírgulas.

Enquadramento

As imagens são obtidas por um sistema de visão com captação ortogonal ao plano das peças a inspecionar, e sobre as quais são feitas incidir duas linhas de luz de laser (de cores diferentes) emitidas com um ângulo de incidência de 45°. As peças poderão estar em qualquer posição e orientação na imagem. As imagens serão em formato JPG e estarão nomeadas numa sequência ordenada a começar num múltiplo de 100.

Propriedades a inspecionar nas peças

Figura 1: Ilustração dos principais elementos de inspeção.

Reportando-se à figura 1, as propriedades a inspecionar serão as seguintes:

- 1. Comprimento da peça: 500 pixels nominal (tolerância para ser conforme: \pm 20 pixels).
 - Medido entre os extremos à esquerda e à direita da peça quando em posição horizontal.
 - Se a peça ficar em contacto com o bordo, não será possível medir o seu comprimento (deverá ser dado como 0).

2. Furos:

- Número total e parcial de furos [no máximo: 7 quadrados + 3 circulares + 1 retangular].
- 3. Padrões de furos:
 - Os padrões 1, 2 e 3 (ver figura) podem ocorrer em vários arranjos (tipos) como descrito à frente.
- 4. Altura da peça obtida por separação de linha laser e medida em *pixels*: 90 *pixels* nominal (tolerância para ser conforme: \pm 20 *pixels*).
 - · Há duas linhas de cores diferentes mas indicam a mesma medida.
 - Pode dar-se o caso das linhas não existirem, ou nenhuma delas intersetar a peça. Nesses casos, não é possível medir a altura da peça (deverá ser dada como 0).
- 5. Existência dos entalhes 1 e 2 nos bordos da peça.
- 6. Medição do ângulo guia da peça (convexo dos lados esquerdo e direito da peça, mas similar)
 - O seu valor nominal é 127° (tolerância para ser conforme: \pm 5°).
- 7. Código numérico do lote colocado em dois locais da peça (a detetar por OCR).

As variações para os padrões 1 (coluna 1 de quadrados), 2 (coluna 2 de quadrados) e 3 (conjunto dos círculos) podem ser as seguintes:

- **Tipo 0** Ausência completa do padrão (0 furos nesse padrão) (gera inconformidade)
- **Tipo 1** Apenas 1 furo do padrão existe (gera inconformidade)
- **Tipo 2** Existem 2 furos do padrão, mas em posição adjacente (padrão aceitável)
- **Tipo 3** Existem 2 furos mas em posições não adjacentes (padrão aceitável)
- **Tipo 4** O padrão está completo com os 3 furos (padrão aceitável)

A figura 2 ilustra algumas situações que podem ocorrer nas imagens a analisar.

Figura 2: Exemplos de tipos para os três padrões de furos esperados numa peça (P1|P2|P3).

Formato do ficheiro de conformidades a gerar

O programa em Sherlock, quando executado, deve gerar um ficheiro com o nome tp3_nnnnnn.txt onde em cada linha deverão figurar as campos da inspeção separados por vírgulas e nesta ordem:

NM,NI,NTF,NFC,NFQ,AP,CP,P1,P2,P3,EE,AG,NTI,NDC,CN

NM Número mecanográfico do aluno.

NI Número da imagem - inteiro de 5 dígitos que pode estar presente em qualquer um dos quatro cantos da imagem e extraível por OCR.

- NTF Número total de furos (1 a 11) (inclui os furos permanentes).
- NFC Número de furos circulares (0 a 3).
- **NFQ** Número de furos quadrados (1 a 7).
- **AP** Altura da peça (em *pixels*) (será 0 se não se puder medir por falta das linhas laser, ou se nenhuma linha interseta a peça!).
- **CP** Comprimento da peça (em *pixels*) (0 se não se puder medir por tocar no bordo).
- P1 Padrão 1 de furações quadradas (0, 1, 2, 3 ou 4).
- P2 Padrão 2 de furações quadradas (0, 1, 2, 3 ou 4).
- P3 Padrão 3 de furações circulares (0, 1, 2, 3 ou 4).
- **EE** Número total de entalhes (0, 1 ou 2).
- AG Ângulo guia ângulo em graus, arredondado às unidades, dos cortes à esquerda ou à direita na peça.
- NTI Número total de inconformidades da peça (ver adiante a definição de uma inconformidade).
- NDC Número de dígitos do código numérico.
- **CN** Código numérico do lote (número inteiro).

Existe uma inconformidade para cada uma das seguintes situações:

- 1. NTF diferente de 11.
- 2. NFC diferente de 3.
- 3. NFQ diferente de 7.
- 4. P1 < 2 (aceitam-se como válidos, padrões de 2 ou 3 furos por padrão).
- 5. P2 < 2 (idem).
- 6. P3 < 2 (idem).
- 7. CP igual a 0, ou para além da tolerância indicada.
- 8. AP igual a 0, ou para além da tolerância indicada.
- 9. EE diferente de 2.
- 10. AG para além da tolerância indicada.

Assim, poderá haver um total de até 10 inconformidades por peça.

Medição do ângulo guia

O ângulo guia pode ser medido à direita ou à esquerda da peça e o seu valor nominal é em torno dos 127°. A sua definição é a ilustrada na figura 3.

Figura 3: Medição do ângulo guia.

Critérios principais de avaliação do trabalho

- 1. Grau de adequação do ficheiro de conformidades para a sequência de imagens face às especificações do enunciado.
- 2. Eficiência e robustez do software desenvolvido.

Exemplos de imagens e sua análise

As figuras 4 e 5 ilustram dois exemplos de imagens a analisar. Num caso não há inconformidades e no outro há! O número mecanográfico 999999 é meramente indicativo; cada aluno deverá substituir pelo seu próprio número mecanográfico.

Figura 4: Exemplo de imagem de uma peça sem inconformidades.

Figura 5: Exemplo de imagem de uma peça com diversas inconformidades.

Observações

O diâmetro dos furos circulares e o alinhamento entre elementos de um mesmo padrão pode variar, e isso não representa por si só uma inconformidade. O código numérico do lote pode por vezes aparecer invertido (rotação de 180°) mas isso também não é uma inconformidade!

Indicações e Recomendações

O que deve ser entregue para avaliação. Será entregue um único ficheiro (arquivo zip, rar, etc.) com todos os ficheiros criados (a investigação Sherlock e ficheiros anexos criados pelo próprio programa). Para isso, cada aluno deve criar uma pasta específica e nela desenvolver o trabalho – sugere-se usar o número mecanográfico como o nome da pasta. Esta recomendação deve-se ao facto do Sherlock criar ficheiros auxiliares que também se devem entregar.

O ficheiro tp3_nnnnnn.txt resultante da execução deve ser criado na pasta C:\tmp Esta recomendação é imperativa porque se for especificado um caminho (path) não existente no computador onde é executado, o ficheiro pode não ser criado e logo NÃO poderá haver avaliação. Os nomes das pastas e ficheiros indicados no enunciado são para cumprir exatamente conforme expresso.

O ficheiro a entregar dever ser um arquivo (zip, rar, ou similar) de toda a pasta do trabalho. Esta recomendação é imperativa porque o Sherlock pode criar ficheiros associados à investigação (*.ivs) que são essenciais ao bom funcionamento do programa. Os resultados do programa podem ser dramaticamente alterados se esses ficheiros auxiliares não existirem. O nome do arquivo a entregar deve ser TP3_nnnnn.zip, onde nnnnnn é o número mecanográfico do aluno.

A versão de Sherlock onde os trabalhos serão testados é a disponibilizada no e-learning. Programas criados com versões diferentes poderão não funcionar, donde devem ser evitadas. As configurações a usar serão as de defeito de instalação. OS ângulos serão em radianos!

As imagens a processar devem estar na pasta C:\imgtmp\ Esta recomendação é importante para uniformizar o nome e a localização das imagens para a execução. Os alunos devem criar esta pasta nos seus computadores e dar este caminho para a sequência de imagens que o Sherlock lerá.

Figura 6: Janela do Sherlock que mostra o local de onde se deve carregar a sequência a inspecionar. Embora se possa indicar o diretório para ler as imagens todas de lá (figura da direita), é preferível usar o formato de sequência ilustrado na imagem da esquerda.

Não são dadas indicações de quantas imagens o programa terá de processar; por isso o programa deve ter mecanismos internos para parar ao fim de 50 imagens processadas.

No processo de carregamento de imagens da sequência, o tempo de atraso entre imagens sucessivas deve ser pequeno (recomenda-se 30 ms ou menos) para que a execução total do programa não se prolongue excessivamente.