Notions communes

- Exercice 1 A quelle(s) condition(s) simple(s) l'intersection de trois plans de l'espace n'est elle pas réduit à un point ?
- **Exercice 2** L'ensemble des barycentres de trois points A, B, C non alignés est le plan (ABC).
- *Exercice 3* Soit A, B, C, D quatre points non coplanaires. On note $\mathcal{A}(.)$ l'aire d'un triangle. Montrer $\mathcal{A}(BCD) \leq \mathcal{A}(ABC) + \mathcal{A}(ABD) + \mathcal{A}(ACD)$.

Droites de l'espace

- Exercice 4 Une droite $\mathcal D$ coupe trois plans parallèles en des points A,B,C.

 Montrer que le rapport $\overline{\frac{A\,C}{A\,B}}$ ne dépend de la droite $\mathcal D$.
- Exercice 5 Soit \mathcal{D} (resp. \mathcal{D}') une droite passant par A (resp. B) et dirigée par \vec{u} (resp. \vec{v}). Montrer que \mathcal{D} et \mathcal{D}' sont coplanaires ssi les vecteurs \overrightarrow{AB} , \vec{u} et \vec{v} sont coplanaires.
- **Exercice 6** Soit \mathcal{D} et \mathcal{D}' deux droites non coplanaires. Décrire l'ensemble $\mathcal{S} = \{m[M,N]/M \in \mathcal{D}, N \in \mathcal{D}'\}$.
- *Exercice* 7 Soit \mathcal{D} et \mathcal{D}' deux droites distinctes sécantes de l'espace. Montrer que l'ensemble des points équidistants de \mathcal{D} et \mathcal{D}' est la réunion de deux plans.
- *Exercice 8* Soit $\mathcal{D}_1, ..., \mathcal{D}_n$ des droites de l'espace telles que : $\forall i, j \in \{1, ..., n\}^2, i \neq j \Rightarrow \mathcal{D}_i \cap \mathcal{D}_j \neq \emptyset$. Montrer que les droites $\mathcal{D}_1, ..., \mathcal{D}_n$ sont concourantes ou coplanaires.

Produits scalaire, vectoriel et mixte

- Exercice 9 Soit \vec{u} un vecteur non nul A un point et λ un réel. Déterminer les points M tels que $\overrightarrow{AM} \cdot \vec{u} = \lambda$.
- *Exercice 10* Soit $\vec{u}, \vec{v}, \vec{w}$ trois vecteurs de l'espace. Exprimer $\text{Det}(\vec{u} + \vec{v}, \vec{v} + \vec{w}, \vec{w} + \vec{u})$ en fonction de $\text{Det}(\vec{u}, \vec{v}, \vec{w})$.
- *Exercice 11* Soit $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ quatre vecteurs de l'espace. Montrer que $\text{Det}(\vec{a} \wedge \vec{b}, \vec{a} \wedge \vec{c}, \vec{a} \wedge \vec{d}) = 0$.
- *Exercice 12* Soit \vec{u} et \vec{v} deux vecteurs orthogonaux et non nuls de l'espace. Simplifier $(\vec{u} \wedge \vec{v}) \wedge \vec{u}$.
- Exercice 13 Soit A,B,C,D quatre points non coplanaires de l'espace Déterminer l'ensemble des points M vérifiant $(\overrightarrow{MA} \wedge \overrightarrow{MB}) \wedge (\overrightarrow{MC} \wedge \overrightarrow{MD}) = \vec{0}$.
- *Exercice 14* Montrer que pour tout points A,B,C,M, on a $\overrightarrow{MA} \wedge \overrightarrow{MB} + \overrightarrow{MB} \wedge \overrightarrow{MC} + \overrightarrow{MC} \wedge \overrightarrow{MA} = \overrightarrow{AB} \wedge \overrightarrow{AC}$.
- Exercice 15 Soit \vec{a}, \vec{b} des vecteurs de l'espace avec $\vec{a} \neq \vec{o}$.

 On désire déterminer les vecteurs \vec{x} tels que $\vec{a} \wedge \vec{x} = \vec{b}$.

a) Montrer que, si $\vec{a} \cdot \vec{b} \neq 0$, il n'y a pas de solution à cette équation.

On suppose maintenant $\vec{a} \cdot \vec{b} = 0$.

- b) Déterminer $\lambda \in \mathbb{R}$ tel que le vecteur $\vec{x}_0 = \lambda \vec{a} \wedge \vec{b}$ soit solution.
- c) Déterminer alors toutes les solutions.
- *Exercice 16* Soit \vec{a}, \vec{b} deux vecteurs de l'espace et l'équation vectorielle $\vec{x} + \vec{a} \wedge \vec{x} = \vec{b}$ d'inconnue \vec{x} .
 - a) Soit \vec{x} solution. Montrer que $\vec{a} \cdot \vec{x} = \vec{a} \cdot \vec{b}$ et en déduire une expression de \vec{x} .
 - b) Conclure.

Coordonnées cartésiennes dans l'espace

- Exercice 17 Montrer que l'ensemble formé des points $M\begin{vmatrix} x \\ y \\ z \end{vmatrix}$ avec $\begin{cases} x=2+s+2t \\ y=2+2s+t \text{ pour } (s,t) \in \mathbb{R}^2 \text{ est un plan} \\ z=1-s-t \end{cases}$ dont on formera une équation cartésienne.
- *Exercice 18* Déterminer une équation du plan parallèle à l'axe (Ox) passant par les points $A \begin{vmatrix} 0 \\ 1 \\ 2 \end{vmatrix}$ et $B \begin{vmatrix} 2 \\ 0 \\ 1 \end{vmatrix}$.
- Exercice 19 Soit \mathcal{P} le plan d'équation $\mathcal{P}: x+y+z=1$. Déterminer un repère orthonormé direct $\mathcal{R}=(\Omega,\vec{u},\vec{v},\vec{w})$ tel que $\Omega\in\mathcal{P}\cap(Oz)$ et $\vec{u},\vec{v}\in\operatorname{dir}\mathcal{P}$.
- *Exercice 20* On considère les cinq points de l'espace : $A \begin{vmatrix} 1 \\ 2 \\ -1 \end{vmatrix}, B \begin{vmatrix} 3 \\ 2 \\ 0 \end{vmatrix}, C \begin{vmatrix} 2 \\ 1 \\ -1 \end{vmatrix}, D \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix}$ et $E \begin{vmatrix} -1 \\ 1 \\ 1 \end{vmatrix}$.

 Déterminer un vecteur directeur de la droite intersection des plans (ABC) et (ADE).
- *Exercice 21* Montrer que les droites \mathcal{D} : $\begin{cases} x = 2z+1 \\ y = z-1 \end{cases}$ et \mathcal{D}' : $\begin{cases} x = z+2 \\ y = 3z-3 \end{cases}$ de l'espace affine \mathcal{E} sont coplanaires et former un équation de leur plan.
- **Exercice 22** On suppose l'espace muni d'un repère orthonormé direct $\mathcal{R} = (O; \vec{i}, \vec{j}, \vec{k})$.

Soit la droite \mathcal{D} : $\begin{cases} x+y+z=1 \\ x-2y-z=0 \end{cases}$ et le plan \mathcal{P} : x+3y+2z=6 de l'espace.

Déterminer l'image de la projection orthogonale de $\mathcal D$ sur le plan $\mathcal P$.

Distance d'un point à une droite, à un plan

Exercice 23 Calculer:

- a) la distance du point $A \begin{vmatrix} 1 \\ 2 \\ 1 \end{vmatrix}$ au plan $\mathcal{P}: x-y+z=2$
- b) la distance du point $B \begin{vmatrix} 1 \\ 0 \\ -1 \end{vmatrix}$ à la droite $\mathcal D$ paramétrée par : $\begin{cases} x = 1 + t \\ y = 1 t \\ z = 2t \end{cases}$ avec $t \in \mathbb R$
- c) la distance du point $C \begin{vmatrix} 0 \\ 1 \\ 2 \end{vmatrix}$ à la droite Δ définie par le système $\begin{cases} x+y-z=1 \\ x-y+z=3 \end{cases}$.
- *Exercice 24* Soit $A \begin{vmatrix} 1 \\ 1 \end{vmatrix}, B \begin{vmatrix} 2 \\ 1 1 \end{vmatrix}$, $C \begin{vmatrix} 1 \\ 0 \end{vmatrix}$ et $D \begin{vmatrix} 3 \\ 1 \end{vmatrix}$. Déterminer le volume du tétraèdre (ABCD).

Perpendiculaire commune

Exercice 25 Soit $\mathcal{D} = A + \text{Vect}(\vec{u})$ et $\mathcal{D}' = B + \text{Vect}(\vec{v})$ deux droites non coplanaires de l'espace.

On note H et H' les pieds de la perpendiculaire commune à \mathcal{D} et \mathcal{D}' .

a) Montrer que pour tout $M \in \mathcal{D}$ et tout $M' \in \mathcal{D}'$, on a $MM' \geq HH'$ et préciser le(s) cas dégalité.

On appelle distance de \mathcal{D} à \mathcal{D}' le réel $d(\mathcal{D}, \mathcal{D}') = HH'$.

b) Soit \vec{n} un vecteur non nul orthogonal à \vec{u} et \vec{v} .

Montrer que le produit scalaire $\overrightarrow{MM'} \cdot \overrightarrow{n}$ reste constants quand M et M' décrivent \mathcal{D} et \mathcal{D}' .

- c) En déduire que $d(\mathcal{D}, \mathcal{D}') = \frac{\left| \operatorname{Det}(\overrightarrow{AB}, \overrightarrow{u}, \overrightarrow{v}) \right|}{\|\overrightarrow{u} \wedge \overrightarrow{v}\|}$.
- b) Calculer la distance séparant les droites suivantes : $\mathcal{D}: \begin{cases} x+y+z=1 \\ x+y=1 \end{cases}$ et $\mathcal{D}': \begin{cases} x+y-2z=-1 \\ x-y=-1 \end{cases}$.
- **Exercice 26** Soit \mathcal{D} : $\begin{cases} x-y=1 \\ z=1 \end{cases}$ et \mathcal{D}' : $\begin{cases} x=1 \\ y-z=0 \end{cases}$ deux droites de l'espace.
 - a) Justifier que \mathcal{D} et \mathcal{D}' ne sont pas coplanaires.
 - b) Former un système d'équations cartésiennes de la perpendiculaire commune à \mathcal{D} et \mathcal{D}' .

Cylindres et sphères

- Exercice 27 Etudier l'intersection d'un cylindre et d'une sphère centrée sur l'axe du cylindre.
- Exercice 28 Montrer que deux cercles non coplanaires inscrits sur une sphère s'interceptent ssi la distance du centre de la sphère à la droite intersection des plans définissant les cercles est inférieure au rayon de la sphère.
- Exercice 29 Déterminez la sphère contenant les cercles d'équation :

$$\begin{cases} x^2 + y^2 = 9 \\ z = 0 \end{cases} \text{ et } \begin{cases} x^2 + y^2 = 25 \\ z = 2 \end{cases}.$$

Exercice 30 a) Soit \mathcal{C} un cercle de l'espace, de centre \mathcal{O} , de rayon \mathcal{C} , évoluant dans un plan \mathcal{C} .

Soit S une sphère de l'espace, de centre Ω et de rayon R.

Former une condition nécessaire et suffisante pour que la sphère $\mathcal S$ contienne le cercle $\mathcal C$.

b) On munit l'espace d'un repère orthonormé $\mathcal{R} = (O; \vec{i}, \vec{j}, \vec{k})$.

Montrer qu'il existe une unique sphère contenant les cercles suivants :

$$\mathcal{C}_1 : \begin{cases} 2x + 5y + 4z = 26 \\ x^2 + y^2 + z^2 - 4y - 8z = 16 \end{cases} \text{ et } \mathcal{C}_2 : \begin{cases} 2x + 3y + z = 15 \\ x^2 + y^2 + z^2 - 4x - 6y - 4z = 8 \end{cases}.$$

c) Soit C_1 et C_2 deux cercles non coplanaires de l'espace admettant deux points communs A et B.

Montrer qu'il existe une sphère unique $\,\mathcal{S}\,$ contenant $\,\mathcal{C}_{_{\! 1}}\,$ et $\,\mathcal{C}_{_{\! 2}}\,$.

Coordonnées cylindriques et sphériques

Exercice 31 On suppose l'espace muni d'un repère orthonormé direct $\mathcal{R} = (0; \vec{i}, \vec{j}, \vec{k})$.

Exprimer les coordonnées sphériques (r, φ, θ) d'un point M en fonction de ses coordonnées cylindriques (ρ, φ, z) et inversement.