CLAIMS

	-	•		
We	~ 1	ai	m	•
"	$\sim \pm$	α_{\perp}		•

1	1.	A method for monitoring a computer application,
2	com	prising:
3		
4		adjustably tuning performance evaluation bias between
5		processor and memory consumption; and
6		responsive to said bias, monitoring performance of said
7		computer application with respect to transaction time
8		parameters.
1	2.	The method of claim 1, further comprising:
2		receiving from a user a first tuning parameter for
3		allocating memory for said monitoring performance.
1	3.	The method of claim 1, further comprising:
2		receiving from a user a first tuning parameter for

allocating memory for said monitoring performance and a

- 4 second tuning parameter for specifying time out for in-
- flight units of work.
- 1 4. The method of claim 2, further comprising:
- 2 initializing said memory with an in-flight transactions
- yector table for anchoring synonym chains of in-flight
- 4 transaction cells;
- 5 accumulating time statistics for in-flight transactions
- in said in-flight transaction cells;
- 7 initializing said memory with a completed transactions
- 8 table for storing time statistics for completed
- 9 transactions;
- 10 receiving from said computer application a transaction
- log record for a unit of work;
- hashing said first transaction log record to select
- from said vector table an anchor to an in-flight
- transaction cells chain corresponding to said unit of
- work;

16	searching	said	in-flight	transaction	cells	chain	for
17	said unit	of wo	ork;				

18	responsive to finding said unit of work in said in-
19	flight transaction cells chain, capturing to said in-
20	flight transaction cell timing statistics from said
21	transaction log record;

responsive to not finding said unit of work in said inflight transaction cells chain, chaining a new inflight transaction cell to said chain and capturing to said new in-flight transaction cell timing statistics from said transaction log record; and

determining if said transaction log record completes a transaction and, if so, updating said completed transactions table with timing statistics for said transaction and removing said in-flight transaction cell from said in-flight transaction cells chain.

5. The method of claim 3, further comprising

2 initializing said memory with an in-flight transactions 3 vector table for anchoring synonym chains of in-flight

22

23

24

25

26

27

28

29

30

31

lls;

- 5 accumulating time statistics for in-flight transactions 6 in said in-flight transaction cells;
- initializing said memory with a completed transactions
 table for storing time statistics for completed
 transactions;
- receiving from said computer application a transaction log record for a unit of work;
- hashing said first transaction log record to select
 from said vector table an anchor to an in-flight
 transaction cells chain corresponding to said unit of
 work;
- searching said in-flight transaction cells chain for said unit of work;
- responsive to finding said unit of work in said inflight transaction cells chain, capturing to said inflight transaction cell timing statistics from said
 transaction log record;

responsive to not finding said unit of work in said inflight transaction cells chain, chaining a new inflight transaction cell to said chain and capturing to
said new in-flight transaction cell timing statistics
from said transaction log record;

determining if said transaction log record completes a transaction and, if so, updating said completed transactions table with timing statistics for said transaction and removing said in-flight transaction cell from said in-flight transaction cells chain; and

determining responsive to said second tuning parameter if a selected unit of work being accumulated in a selected in-flight transaction cell has timed out, and if so removing from said selected in-flight transaction cell from said in-flight transaction cell chain and selectively updating said completed transactions table with timing statistics for said selected unit of work.

- 6. A system for monitoring a computer application,
- 2 comprising:

a first user actuated tuning knob for allocating space

- 4 in memory for performance monitoring;
- a second user actuated tuning knob for a specifying
- time out value for in-flight units of work; and
- a transaction monitor responsive to said first and
- 8 second user actuated tuning knobs for accumulating in
- 9 synonym chain cells in said space timing statistics for
- a plurality of said in-flight units of work.
 - 1 7. The system of claim 6, further comprising:
 - 2 said memory including an in-flight transactions vector
 - 3 table for anchoring synonym chains of in-flight
 - 4 transaction cells;
 - 5 said in-flight transaction cells for accumulating time
 - 6 statistics for in-flight transactions;
 - 7 said memory including a completed transactions table
 - 8 for storing time statistics for completed transactions;
 - 9 a monitor for receiving from said computer application
- a transaction log record for a unit of work;

said monitor hashing said first transaction log record to select from said vector table an anchor to an inflight transaction cells chain corresponding to said unit of work;

said monitor for searching said in-flight transaction

cells chain for said unit of work;

said monitor further responsive to finding said unit of work in said in-flight transaction cells chain for capturing to said in-flight transaction cell timing statistics from said transaction log record;

said monitor further responsive to not finding said unit of work in said in-flight transaction cells chain for chaining a new in-flight transaction cell to said chain and capturing to said new in-flight transaction cell timing statistics from said transaction log record;

said monitor further for determining if said transaction log record completes a transaction and, if so, updating said completed transactions table with timing statistics for said transaction and removing

said in-flight transaction cell from said in-flight transaction cells chain; and

said monitor further for determining responsive to said 33 34 second tuning knob if a selected unit of work being accumulated in a selected in-flight transaction cell 35 has timed out, and if so removing from said selected 36 in-flight transaction cell from said in-flight 37 transaction cell chain and selectively updating said 38 completed transactions table with timing statistics for 39 said selected unit of work. 40

- 1 8. A program storage device readable by a machine,
- 2 tangibly embodying a program of instructions executable by a
- 3 machine to perform method steps for monitoring a computer
- 4 application, said method comprising:
- adjustably tuning performance evaluation bias between processor and memory consumption; and
- responsive to said bias, monitoring performance of said computer application with respect to transaction time
- 9 parameters.

- 1 9. The program storage device of claim 8, said method
- 2 further comprising:
- 3 receiving from a user a first tuning parameter for
- 4 allocating memory for said monitoring performance.
- 1 10. The program storage device of claim 8, said method
- 2 further comprising:
- 3 receiving from a user a first tuning parameter for
- 4 allocating memory for said monitoring performance and a
- 5 second tuning parameter for specifying time out for in-
- flight units of work.
- 1 11. The program storage device of claim 9, said method
- 2 further comprising:
- 3 initializing said memory with an in-flight transactions
- 4 vector table for anchoring synonym chains of in-flight
- 5 transaction cells;
- 6 accumulating time statistics for in-flight transactions
- 7 in said in-flight transaction cells;

8	initializing said memory with a completed transactions
9	table for storing time statistics for completed
10	transactions;
11	receiving from said computer application a transaction
12	log record for a unit of work;
13	hashing said first transaction log record to select
14	from said vector table an anchor to an in-flight
15	transaction cells chain corresponding to said unit of
16	work;
17	searching said in-flight transaction cells chain for
18	said unit of work;
19	responsive to finding said unit of work in said in-
20	flight transaction cells chain, capturing to said in-
21	flight transaction cell timing statistics from said
22	transaction log record;
23	responsive to not finding said unit of work in said in
24	flight transaction cells chain, chaining a new in-
25	flight transaction cell to said chain and capturing to
26	said new in-flight transaction cell timing statistics

27	from	said	transaction	log	record;	and

28	determining if said transaction log record completes a
29	transaction and, if so, updating said completed
30	transactions table with timing statistics for said
31	transaction and removing said in-flight transaction
32	cell from said in-flight transaction cells chain.

- 12. The program storage device of claim 10, said method
- 2 further comprising

- initializing said memory with an in-flight transactions

 vector table for anchoring synonym chains of in-flight
- 5 transaction cells;
- 6 accumulating time statistics for in-flight transactions
- 7 in said in-flight transaction cells;
- 8 initializing said memory with a completed transactions
- 9 table for storing time statistics for completed
- 10 transactions;
- 11 receiving from said computer application a transaction
- log record for a unit of work;

hashing said first transaction log record to select 13 from said vector table an anchor to an in-flight 14 . transaction cells chain corresponding to said unit of 15 work; 16 17 searching said in-flight transaction cells chain for

said unit of work; 18

> responsive to finding said unit of work in said inflight transaction cells chain, capturing to said inflight transaction cell timing statistics from said transaction log record;

responsive to not finding said unit of work in said inflight transaction cells chain, chaining a new inflight transaction cell to said chain and capturing to said new in-flight transaction cell timing statistics from said transaction log record;

determining if said transaction log record completes a transaction and, if so, updating said completed transactions table with timing statistics for said transaction and removing said in-flight transaction cell from said in-flight transaction cells chain; and

19

20

21

22

23

24

25

26

27

28

29

30

31

determining responsive to said second tuning parameter

if a selected unit of work being accumulated in a

selected in-flight transaction cell has timed out, and

if so removing from said selected in-flight transaction

cell from said in-flight transaction cell chain and

selectively updating said completed transactions table

with timing statistics for said selected unit of work.

- 1 13. A computer program product for monitoring a computer
- application according to the method comprising:
- adjustably tuning performance evaluation bias between
- 4 processor and memory consumption; and
- 5 responsive to said bias, monitoring performance of said
- 6 computer application with respect to transaction time
- 7 parameters.