# THE GUIDE FOR ME250: DRAWINGS, MFG PLANS, APPROVAL PACKS, DRILL CHARTS AND TABLES, ALUMINUM AND STEEL SPEEDS

## **A: Engineering Drawings**

- 1. At least **two** views (except for waterjet and lasercut parts only top view required)
- 2. Use ONE datum point, preferable top right corner (reference spot from which all dimensions should originate)
- 3. NO hidden lines in **isometric** view, YES hidden lines in **non-isometric** view
- 4. Centerlines AND centermarks for all holes and slots
- 5. Text orientation is horizontal (ANSI format)
- 6. For more than 5 or so holes in one part, use a **HOLE TABLE** < <u>howtoaddholetable</u>> http://help.solidworks.com/2016/english/solidworks/sldworks/t create hole table.htm
- 7. Mill and lathe parts need a **drawing and manufacturing plan** (use solidworks template file on Canvas)
- 8. Lasercut, waterjet, and 3D printed parts need just a drawing (NO mfg plan)
- 9. Export dwg and mfg plan to pdf using solidworks, and print. DO NOT screenshot and print!
- 10. Diameter AND location of holes (OD) needs 3 decimals
- 11. Diameter of holes should match intended use (free fit vs. tapped for specific fastener)
- 12. Tapped holes have dimension as "#4-40 Tapped"
- 13. Clearance holes have dimension "4X Ø.250"
- 14. Press fit holes are dimensioned as "Measure OD of {diameter} bearing/bushing/shaft {part number here} and ream for interference fit of 0.001" in place of diameter dimension on drawing (see image)
- 15. Tap drills are NOT the screw size, they are smaller (see "imperial drill/tap chart" at end)
- 16. Free fit/clearance drills are NOT the screw size, they are bigger (see "imperial drill/tap chart" at end)

| Quick Look-Up for Fasteners |                |                           |                |                           |  |  |  |  |
|-----------------------------|----------------|---------------------------|----------------|---------------------------|--|--|--|--|
|                             | Тарре          | Free Fit                  |                |                           |  |  |  |  |
| Type of screw               | OD on drawings | Drill bit # in Manu. Plan | OD on drawings | Drill bit # in Manu. Plan |  |  |  |  |
| #4-40                       | 0.089          | 43                        | 0.1285         | 30                        |  |  |  |  |
| #6-32                       | 0.1065         | 36                        | 0.1495         | 25                        |  |  |  |  |
| #8-32                       | 0.136          | 29                        | 0.177          | 16                        |  |  |  |  |
| #10-24                      | 0.1495         | 25                        | 0.201          | 7                         |  |  |  |  |
| #1/4 - 20                   | 0.201          | 7                         | 0.266          | Н                         |  |  |  |  |



Measure OD of ½" bearing (57155K304) for interference fit of 0.001"

- 17. E-clip groove has tolerance of +0.003/-0.000 on depth AND axial location
- 18. Title block has team # and part # corresponding to BOM
- 19. Machined gears must have fully dimensioned dwg and mfg plan (do not dimension teeth, just pitch dia)
- 20. Drill press parts do NOT need approval package
- 21. Sheet metal part dwg must be shown in FLAT state, ISO should be shown in BENT state
- 22. Sheet metal part will have dashed line for bend, dimension that line AND write bend angle along line
- 23. Waterjet parts must have at least one repeated weight saving features dimensioned
- 24. Waterjet parts do NOT need artwork or text dimensioned
- 25. Waterjet parts need ONE dwg, even if waterjet then mill. Call out milled featured on dwg.
- 26. Tapped holes can NOT be done on Waterjet, ONLY clearance holes
- 27. State "Waterjet", "Lasercut", or "3D printed" in dwg title block for parts
- 28. Waterjet, lasercutter, and 3D printed parts ONLY need GSI signoff to work in shop. Will have "N/A" in "shop approval" field.

## **B:** Manufacturing Plans

- 1. If machining is required post-waterjet, state in the mfg plan "Outside shape has been waterjetted"
- 2. Label holes and other features as "waterjet" or "milled", if there is a mix of features
- 3. First step, "cut raw material on vertical band saw >.125"
- 4. Second step, machine both ends of part to get fully machined surfaces for measuring accurately
- 5. Special steps for bushing/bearing (note: 0.015" undersize, round to nearest 1/64" drill size!)

| Step# | Process Description                   | Machine | Fixture(s) | Tool(s)            | Speed<br>(RPM) |
|-------|---------------------------------------|---------|------------|--------------------|----------------|
| Х     | Measure OD of bearing/bushing         | -       | -          | Caliper            |                |
| Х     | Select drill bit and pre-drill 0.015" | Mill    | Vise       | Selected drill bit | 1000           |
|       | below measured diameter               |         |            |                    |                |
| Х     | Select reamer 0.001" below measured   | Mill    | Vise       | Selected reamer    | 100            |
|       | diameter                              |         |            |                    |                |

7. Typical first steps for mill part:

|        |                                          |          |            |                         | Speed  |
|--------|------------------------------------------|----------|------------|-------------------------|--------|
| Step # | Process Description                      | Machine  | Fixture(s) | Tool(s)                 | (RPM)  |
| 1      | Cut (using band saw) >.125" of finish    | Band Saw | -          | -                       | 300    |
|        | length and deburr                        |          |            |                         | ft/min |
| 2      | Mill both ends of the part, just enough  | Mill     | Vise       | 3/4" two flute endmill, | 400    |
|        | to provide a fully machined surface      |          |            | collet                  |        |
| 3      | Measure the part with caliper and bring  | Mill     | Vise       | 3/4" two flute endmill, | 400    |
|        | to the certain dimension, taking several |          |            | collet                  |        |
|        | passes at .050" or less per pass         |          |            |                         |        |
|        |                                          |          | ı          |                         | I      |

8. Typical first steps for lathe part:

| Step# | Process Description                   | Machine  | Fixture(s) | Tool(s)      | Speed<br>(RPM) |
|-------|---------------------------------------|----------|------------|--------------|----------------|
| 1     | Cut (using band saw) >.125" of finish | Band Saw | -          | -            | 300            |
|       | length and deburr                     |          |            |              | ft/min         |
| 2     | Face one end to create a flat surface | Lathe    | Collet     | Cutting tool | 750            |

- 9. Edge finder = 1000 RPM, Centerdrill = 1000 RPM, ream, counterbore, countersink = 100 RPM
- 10. When reaming, use low gear and one smooth downward motion to ream hole
- 11. Recommended milling, drilling, and cutting speeds

| Milling Alun             | ninum        | Drilling A | luminum      | Turning Aluminumm |              |  |
|--------------------------|--------------|------------|--------------|-------------------|--------------|--|
| <b>End Mill Diameter</b> | Speed        | Drilling   | Speed        | Drill Diameter    | Speed        |  |
| 0.125                    | 1800 or less | 0.125      | 1600 or less | 0.125             | 2000 or less |  |
| 0.1875                   | 1600 or less | 0.1875     | 1400 or less | 0.1875            | 1800 or less |  |
| 0.25                     | 1400 or less | 0.25       | 1200 or less | 0.25              | 1600 or less |  |
| 0.3125                   | 1200 or less | 0.3125     | 1000 or less | 0.3125            | 1400 or less |  |
| 0.375                    | 1000 or less | 0.375      | 800 or less  | 0.375             | 1200 or less |  |
| 0.5                      | 800 or less  | 0.5        | 600 or less  | 0.5               | 1000 or less |  |
| 0.625                    | 700 or less  | 0.625      | 400 or less  | 0.625             | 600 or less  |  |
| 0.75                     | 500 or less  | 0.75       | 350 or less  | 0.75              | 400 or less  |  |
| 0.875                    | 500 or less  | 0.875      | 350 or less  | 0.875             | 300 or less  |  |
| 1                        | 400 or less  | 1          | 300 or less  | 1                 | 300 or less  |  |

| Milling Plain Carbor     | Milling Plain Carbon Steel 1006-1026 |          | arbon Steel 1006-1026 | Turning Plain Carbon Steel 1006-1026 |              |  |
|--------------------------|--------------------------------------|----------|-----------------------|--------------------------------------|--------------|--|
| <b>End Mill Diameter</b> | Speed                                | Drilling | Speed                 | Drill Diameter                       | Speed        |  |
| 0.125                    | 1500 or less                         | 0.125    | 1500 or less          | 0.125                                | 2000 or less |  |
| 0.1875                   | 1300 or less                         | 0.1875   | 1300 or less          | 0.1875                               | 1800 or less |  |
| 0.25                     | 1100 or less                         | 0.25     | 1000 or less          | 0.25                                 | 1600 or less |  |
| 0.3125                   | 1000 or less                         | 0.3125   | 850 or less           | 0.3125                               | 1000 or less |  |
| 0.375                    | 950 or less                          | 0.375    | 850 or less           | 0.375                                | 900 or less  |  |
| 0.5                      | 800 or less                          | 0.5      | 700 or less           | 0.5                                  | 700 or less  |  |
| 0.625                    | 700 or less                          | 0.625    | 650 or less           | 0.625                                | 600 or less  |  |
| 0.75                     | 550 or less                          | 0.75     | 450 or less           | 0.75                                 | 450 or less  |  |
| 0.875                    | 500 or less                          | 0.875    | 400 or less           | 0.875                                | 400 or less  |  |
| 1                        | 400 or less                          | 1        | 350 or less           | 1                                    | 300 or less  |  |

### C: Approval Process

- 1. Create ONE approval packet (drawing and mfg plan) using the Solidworks drawing template on Canvas for EACH UNIQUE PART on your RMP (it's a lot, we know)
- 2. Follow the Online Approval Process explained in the DW6 Lab Slides and the Document "DRAWING APPROVAL PROCESS" in Files -> Project Resources
- 3. Wait for GSI and Shop Approval
- 4. If either GSI OR MACHINE SHOP reject, comments will be added to the pdf and your team should make the changes and resubmit following the process guidelines.
- 5. Allow 3 school days to get packages graded.
- 6. Will not be allowed to work in machine shop if you don't have both GSI and machine shop signatures
- 7. DO NOT use other machine shops to do work (i.e. Wilson center). We will know and there are penalties.

## D: Waterjet and Lasercutter

- 1. Lasercutter beam is 0.008" in diameter. Will cut on the toolpath! (left)
- 2. Waterjet stream is 0.030" in <sup>1</sup>/<sub>4</sub>" aluminum. Will cut on **outside of toolpath! (right)**





- 3. Lasercutter material is wood, delrin, acrylic. Check staff for others. NO PVC OR METALS!!!
- 4. Waterjet material is aluminum, steel, basically any plastic. Check with staff to make sure.
- 5. Lasercutter is first come first serve basis, you do the process. Instructions at lasercutter.
- 6. To prep waterjet file, see instructions on Canvas under project resources.
- 7. Waterjet run by shop staff. Each team gets **ONE 30-min slot per day**. Locked in at 8am each day.

## **E:** Assembly of Components

- 1. For attaching a BaneBots wheel, use ArborPress to press fit hex stock into wheel hole
- 2. For attaching polypropylene wheel:
  - a. Measure OD of shaft, and OD of bushing, with micrometer
  - b. Ream inside of bushing to 0.001 interference fit with shaft OD
  - c. Ream inside of wheel hole to 0.001 interference fit with bushing OD
  - d. Press fit bushing into wheel, and shaft into bushing, using the ArborPress

3. Use M3 screws to mount metal motor (two holes **on front face**)







- 4. Using spring pin to attach axles or gears to motors (center image)
  - a. Drill hole in end of axle to fit snugly over motor shaft
  - b. Slide axle or gear onto shaft, and clamp in fixture provided by machine shop
  - c. Clamp in vise on mill, and drill a 1/16" hole through both parts
  - d. Use hammer to pound spring pin into hole, fastening axle/gear to motor shaft
- 5. Using set screw to attach axles or gears to motors (left image)
  - a. Drill hole in end of axle to fit snugly over motor shaft
  - b. Use an endmill to machine a flat surface onto motor shaft
  - c. Drill and tap a hole for a #4-40 screw into the axle or gear hub
  - d. Ensure flat portion of motor shaft is under the set screw hole, and tighten set screw
- 6. If gear hole is too big to fit over motor shaft OR there is not enough material to tap into on hub, machine a "sleeve" to account for this. (right image)







Spring pin assembly



Plastic spur gear with brass insert

- 7. Set screws **good** because disassemble, **bad** because they loosen very easily and don't constrain axial motion.
- 8. Spring pins **good** because will not come out and constrain all degrees of motion, but **bad** because cannot disassemble parts

#### F: General Professionalism and Best Practices

- 1. Bolts should NOT protrude more than 1.5 times the bolt diameter
- 2. Shafts that extend greater than **3x the diameter** MUST be double-supported
- 3. Do not stack washers as spacers
- 4. Do not leave any sharp edges
- 5. Use a drop of solder to attach wires and capacitor to motor terminals

## ME250 | University of Michigan

- 6. Do not let leads of capacitor touch each other, OR motor terminal. Will short circuit the motor!
- 7. Provide strain relief to wires, to prevent wires from ripping off motor
- 8. Cover any bare wire with shrink tubing
- 9. To prevent nuts from falling off, use two nuts, locknuts, or locktite fluid

## H: Tables and Charts

|                       | Imperial Tap Drill Chart |                              |               |               |                                                                            |               |                   |               |                   |               |                   |
|-----------------------|--------------------------|------------------------------|---------------|---------------|----------------------------------------------------------------------------|---------------|-------------------|---------------|-------------------|---------------|-------------------|
|                       |                          |                              |               | Tap Drills    |                                                                            |               |                   |               | Clearance         | Hole Dr       | IIs               |
| Maa                   | la i a a                 | Number                       |               |               | ninum,                                                                     | Stainle       | ss Steel.         |               | All Ma            | terials       |                   |
| Machine<br>Screw Size |                          | of<br>Threads<br>Per<br>Inch | Minor<br>Dia. | Pla           | Brass & Steels & Iron 75% Thread  Stainless Steel Steels & Iron 50% Thread |               | s & Iron          | Clo           | se Fit            | Fre           | e Fit             |
| No. or<br>Dia.        | Major<br>Dia.            |                              |               | Drill<br>Size | Decimal<br>Equiv.                                                          | Drill<br>Size | Decimal<br>Equiv. | Drill<br>Size | Decimal<br>Equiv. | Drill<br>Size | Decimal<br>Equiv. |
| 0                     | .0600                    | 80                           | .0447         | 3/64          | .0469                                                                      | 55            | .0520             | 52            | .0635             | 50            | .0700             |
| ,                     | 0730                     | 64                           | .0538         | 53            | .0595                                                                      | 1/16          | .0625             | 40            | 0760              | 46            | 0010              |
| 1                     | .0730                    | 72                           | .0560         | 53            | .0595                                                                      | 52            | .0635             | 48            | .0760             | 46            | .0810             |
| 2                     | .0860                    | 56                           | .0641         | 50            | .0700                                                                      | 49            | .0730             | 43            | .0890             | 41            | .0960             |
| 2                     | .0860                    | 64                           | .0668         | 50            | .0700                                                                      | 48            | .0760             | 43            | .0890             | 41            | .0900             |
| 3                     | .0990                    | 48                           | .0734         | 47            | .0785                                                                      | 44            | .0860             | 37            | .1040             | 35            | .1100             |
| 3                     | .0990                    | 56                           | .0771         | 45            | .0820                                                                      | 43            | .0890             | 31            |                   | 33            | .1100             |
| 4                     | .1120                    | 40                           | .0813         | 43            | .0890                                                                      | 41            | .0960             | 32            | .1160             | 30            | .1285             |
| 4                     | .1120                    | 48                           | .0864         | 42            | .0935                                                                      | 40            | .0980             | 32            | .1100             | 50            | .1203             |
| 5                     | .1250                    | 40                           | .0943         | 38            | .1015                                                                      | 7/64          | .1094             | 30            | .1285             | 29            | .1360             |
| ,                     | .1230                    | 44                           | .0971         | 37            | .1040                                                                      | 35            | .1100             | 50            | .1265             | 29            | .1300             |
| 6                     | .1380                    | 32                           | .0997         | 36            | .1065                                                                      | 32            | .1160             | 27            | .1440             | 25            | .1495             |
|                       | .1360                    | 40                           | .1073         | 33            | .1130                                                                      | 31            | .1200             |               | .1440             | 23            | .1493             |
| 8                     | .1640                    | 32                           | .1257         | 29            | .1360                                                                      | 27            | .1440             | 18            | .1695             | 16            | .1770             |
|                       | .1040                    | 36                           | .1299         | 29            | .1360                                                                      | 26            | .1470             | 10            | .1055             | 10            | .1770             |
| 10                    | .1900                    | 24                           | .1389         | 25            | .1495                                                                      | 20            | .1610             | 9             | .1960             | 7             | .2010             |
| 10                    | .1900                    | 32                           | .1517         | 21            | .1590                                                                      | 18            | .1695             |               | .1500             |               | .2010             |
|                       |                          | 24                           | .1649         | 16            | .1770                                                                      | 12            | .1890             |               |                   |               |                   |
| 12                    | .2160                    | 28                           | .1722         | 14            | .1820                                                                      | 10            | .1935             | 2             | .2210             | 1             | .2280             |
|                       |                          | 32                           | .1777         | 13            | .1850                                                                      | 9             | .1960             |               |                   |               |                   |
|                       |                          | 20                           | .1887         | 7             | .2010                                                                      | 7/32          | .2188             |               |                   |               |                   |
| 1/4                   | .2500                    | 28                           | .2062         | 3             | .2130                                                                      | 1             | .2280             | F             | .2570             | Н             | .2660             |
|                       |                          | 32                           | .2117         | 7/32          | .2188                                                                      | 1             | .2280             |               |                   |               |                   |

# ME250 | University of Michigan

|           | Metric Tap Drill Chart |             |                   |                     |                   |                     |  |  |  |
|-----------|------------------------|-------------|-------------------|---------------------|-------------------|---------------------|--|--|--|
| Tap size  | Major<br>Dia (mm)      | Threads per | Tap Drill<br>(mm) | Tap Drill<br>(inch) | Clearance<br>(mm) | Clearance<br>(inch) |  |  |  |
| M1.6x0.35 | 1.6                    | 0.35        | 1.25              | #55                 | 1.8               | #49                 |  |  |  |
| M2x0.4    | 2.0                    | 0.40        | 1.60              | #52                 | 2.4               | #41                 |  |  |  |
| M2.5x0.45 | 2.5                    | 0.45        | 2.05              | #46                 | 2.9               | #32                 |  |  |  |
| M3x.05    | 3.0                    | 0.50        | 2.50              | #39                 | 3.4               | #29                 |  |  |  |
| M3.5x0.6  | 3.5                    | 0.60        | 2.90              | #32                 | 3.9               | #23                 |  |  |  |
| M4x0.7    | 4.0                    | 0.70        | 3.30              | #30                 | 4.5               | #16                 |  |  |  |
| M5x0.8    | 5.0                    | 0.80        | 4.20              | #19                 | 5.5               | 7/32                |  |  |  |
| M6x1      | 6.0                    | 1.00        | 5.0               | #8                  | 6.6               | G                   |  |  |  |
| M8x1.25   | 8.0                    | 1.25        | 6.8               | Н                   | 9.0               | T                   |  |  |  |
| M8x1      | 8.0                    | 1.00        | 7.0               | J                   | 9.0               | T                   |  |  |  |
|           |                        |             |                   |                     |                   |                     |  |  |  |

# **ALUMINUM 6061 SPEEDS:**

| Endmill/Drill Dia | Milling (RPM) | Drilling (RPM) | Turning (RPM) |
|-------------------|---------------|----------------|---------------|
| 0.125 (1/8")      | 1800 or less  | 1600 or less   | 2000 or less  |
| 0.188 (3/16")     | 1600 or less  | 1400 or less   | 1800 or less  |
| 0.250 (1/4")      | 1400 or less  | 1200 or less   | 1600 or less  |
| 0.313 (5/16")     | 1200 or less  | 1000 or less   | 1400 or less  |
| 0.375 (3/8")      | 1000 or less  | 800 or less    | 1200 or less  |
| 0.500 (1/2")      | 800 or less   | 600 or less    | 1000 or less  |
| 0.625 (5/8")      | 700 or less   | 400 or less    | 600 or less   |
| 0.750 (3/4")      | 500 or less   | 350 or less    | 400 or less   |
| 0.875 (7/8")      | 500 or less   | 350 or less    | 300 or less   |
| 1.000             | 400 or less   | 300 or less    | 300 or less   |

## **STEEL SPEEDS:**

| Endmill or    | Plain Carbon Steel (1027-1052) |          |         | Stainless Steel (302, 303, 304, 308, 316) |          |               |  |
|---------------|--------------------------------|----------|---------|-------------------------------------------|----------|---------------|--|
| Drill Dia.    | Milling                        | Drilling | Turning | Milling                                   | Drilling | Turning       |  |
| 0.125 (1/8")  | ≤ 1300                         | ≤ 1300   | ≤ 1800  | ≤ 1000                                    | ≤ 1000   | ≤ 1200        |  |
| 0.188 (3/16") | ≤ 1200                         | ≤ 1100   | ≤ 1600  | ≤ 900                                     | ≤ 850    | ≤ 1000        |  |
| 0.250 (1/4")  | ≤ 950                          | ≤ 900    | ≤ 1400  | ≤ 850                                     | ≤ 750    | ≤ 1000        |  |
| 0.313 (5/16") | ≤ 900                          | ≤ 700    | ≤ 900   | ≤ 800                                     | ≤ 600    | ≤ 750         |  |
| 0.375 (3/8")  | ≤ 850                          | ≤ 700    | ≤ 800   | ≤ 650                                     | ≤ 500    | ≤ 750         |  |
| 0.500 (1/2")  | ≤ 700                          | ≤ 500    | ≤ 600   | ≤ 450                                     | ≤ 400    | ≤ 500         |  |
| 0.625 (5/8")  | ≤ 600                          | ≤ 400    | ≤ 550   | ≤ 350                                     | ≤ 300    | ≤ <b>4</b> 50 |  |
| 0.750 (3/4")  | ≤ 500                          | ≤ 350    | ≤ 400   | ≤ 350                                     | ≤ 300    | ≤ 350         |  |
| 0.875 (7/8")  | ≤ 400                          | ≤ 300    | ≤ 350   | ≤ 300                                     | ≤ 250    | ≤ 250         |  |

| 1.000 ≤ 400 ≤ 250 ≤ 300 ≤ 3 | 350 ≤ 200 ≤ 200 |
|-----------------------------|-----------------|
|-----------------------------|-----------------|

## Fractional reamers available from Tool Crib:

1/16", 5/64", 3/32", 7/64", 1/8", 9/64", 5/32", 11/64", 3/15", 13/64", 7/32", 15/64", 1/4", 17/64", 9/32", 19/64", 5/16", 21/64", 11/32", 23/64", 3/8", 25/64", 13/32", 27/64", 7/16", 29/64", 15/32", 31/64", 1/2", 9/16", 19/32", 5/8", 21/32", 11/16", 23/32", 3/4", 25/32", 13/16", 27/32", 7/8", 29/32", 15/16", 32/32, 1"

## Off size reamers available from Machine Shop Staff:

.050", .0938", .1240", .1243", .1260", .1265", .1280", .1575", .1610", .1654", .1865", .1885", .1960", .1990", .2020", .2030", .2355", .2360", .2365", .2490", .2495".2503.2510", .2520", .2525", .2530", .2540", .3725", .3740", .3745", .3760", .3775", .3920", .3937", .3940", .4365", .4385", .4985", .4990", .4995", .5005", .5010", .6245", .6260", .7495", .8732", .8740", 8760", .9062", .9375", 1.005".

#### Two flute end mill sizes, available from Tool Crib:

1/8", 3/16", 1/4", 5/16", 3/8", 1/2", 5/8", 3/4", 7/8", 1"

## I: Machine Shop Fixtures



**Block and Stop:** always use this to grip L stock in vise, so it is not deformed! Don't drill into it, move to the side when creating any holes in part



**Punch:** Use for hole locations on drill press, or approximating hole locations on mill



**Gear Fixture:** use to drill hole in face of gear. Datum off edges of fixture, and move 3" in X and Y for center.



**Shaft Fixture:** use to drill hole in the side of a shaft. Clamp in the mill, and datum off the sides of the fixture.

## ME250 | University of Michigan



**Motor fixture:** use to clamp motor and drill hole in shaft, or face shaft. Can also have axle clamped, to drill spring pin hole



**Gear and Axle Fixture:** use to drill spring pin hole through a gear and axle at the same time