AMENDMENTS TO THE CLAIMS

Please cancel claim 3 without prejudice or disclaimer of the subject matter set forth therein.

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of claims:

1. (currently amended) A process for preparing a polar olefin copolymer comprising:

copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising

(A0) a compound of a transition metal selected from Groups $\frac{3}{5}$ to $\frac{11}{4}$, $\frac{5}{6}$, or $\frac{11}{6}$ of the periodic table, which is represented by the following formula (1):

$$L_{m}MX_{n} \tag{1}$$

wherein M is a transition metal atom selected from Groups $\frac{3}{4}$

m is an integer of 1 to 6,

n is a number satisfying a valence of M,

L is a ligand coordinated to M and each ligand L has a feature that when the value obtained by subtracting the total sum of the whole energy, as determined by a density functional method, of the compounds on the left-hand member from the whole energy, as determined by a density functional method, of the

compound on the right-hand member in the following chemical formula (2) and the value obtained by the same subtraction in the following chemical formula (3) are defined as coordination energy E_1 of ethylene and coordination energy E_2 of methyl acrylate, respectively, the difference ΔE ($\Delta E = E_1 - E_2$) between the coordination energy E_1 of ethylene and the coordination energy E_2 of methyl acrylate is 50 kJ/mol or less,

$$\begin{bmatrix} Ae \\ La-M \end{bmatrix}^b + \begin{bmatrix} Ae \\ La-M \end{bmatrix}^b$$
(2)

$$\begin{bmatrix} Ae \\ La-M \end{bmatrix}^{b} + OMe = \begin{bmatrix} Me \\ La-M-O \\ OMe \end{bmatrix}^{b}$$
(3)

wherein M is the same transition metal atom selected from Groups 3 to 11 4, 5, 6, or 11 of the periodic table as M in the formula (1), a is an integer of 1 to 3, b is an electric charge of the compound in the blankets [] and is 0 or 1, and Me is a methyl group,

and

X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-

containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residual group, silicon-containing group, a germanium-containing group and or a tin-containing group, and when n is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring.

- 2. (currently amended) A process for preparing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising
- (A0) a compound of a transition metal selected from Groups $\frac{3 + 11}{4}$, $\frac{4}{5}$, $\frac{6}{6}$, or $\frac{11}{6}$ of the periodic table, which is represented by the formula (1) as defined in claim 1, and
- (B) at least one compound selected from the group consisting of
 - (B-1) an organometallic compound,
 - (B-2) an organoaluminum oxy-compound, and
- (B-3) a compound which reacts with a transition metal compound (A0) to form an ion pair.
 - 3. (canceled).

- 4. (original) A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:
 - (A1) a reaction product of
- (C) a compound of a transition metal selected from Groups 4, 5, 6 and 11 of the periodic table which is represented by the following formula (c):

$$M'X_k$$
 ...(c)

k is a number satisfying a valence of M', and

X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, a sulfurcontaining group, a nitrogen-containing group, a containing group, an aluminum-containing group, a phosphoruscontaining group, a halogen-containing group, a heterocyclic compound residual group, a silicon-containing group, germanium-containing group or a tin-containing group, and when k is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring, and

(A-i) a compound represented by the following formula (I):

wherein A is an oxygen atom, a sulfur atom or a selenium atom, or a nitrogen atom having a substituent R^6 , and

R¹ to R⁶ may be the same or different, they are each a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to each other to form a ring; and

- (B) at least one compound selected from the group consisting of:
 - (B-1) an organometallic compound,
 - (B-2) an organoaluminum oxy-compound, and
- (B-3) a compound which reacts with the reaction product (A1) to form an ion pair.

- 5. (withdrawn) A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:
 - (A2) a reaction product of
- (C) a compound of a transition metal selected from Groups 4, 5, 6 and 11 of the periodic table which is represented by the following formula (c):

$$M'X_k$$
 ...(c)

k is a number satisfying a valence of M', and

X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, and when k is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring, and

(A-ii) a compound represented by the following formula (II):

wherein D is a nitrogen atom or a phosphorus atom,

Q is a nitrogen atom or a phosphorus atom, or a carbon atom substituted with a substituent \mathbb{R}^{13} ,

S is a nitrogen atom or a phosphorus atom, or a carbon atom substituted with a substituent $\ensuremath{\mathbb{R}}^{14},$

T is a nitrogen atom or a phosphorus atom, or a carbon atom substituted with a substituent \mathbb{R}^{15} ,

R¹¹ to R¹⁶ may be the same or different, they are each a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to each other to form a ring; and

- (B) at least one compound selected from the group consisting of:
 - (B-1) an organometallic compound,
 - (B-2) an organoaluminum oxy-compound, and

- (B-3) a compound which reacts with the reaction product (A2) to form an ion pair.
- 6. (original) A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:
 - (A3) a reaction product of
- (C') a compound of a transition metal selected from Groups 3 to 11 of the periodic table, which is represented by the following formula (c'):

$$\mathsf{MX}_k$$
 ...(C')

k is a number satisfying a valence of M, and

X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, a sulfurcontaining group, a nitrogen-containing group, a containing group, an aluminum-containing group, a phosphoruscontaining group, a halogen-containing group, a heterocyclic compound residual group, a silicon-containing group, germanium-containing group or a tin-containing group, and when k is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring, and

(A-iii) a compound represented by the following formula (III):

wherein A is an oxygen atom, a sulfur atom or a selenium atom, or a nitrogen atom having a substituent R^{26} , and

R²¹ to R²⁸ may be the same or different, they are each a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to each other to form a ring.

- 7. (original) A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:
 - (A3) a reaction product of

(C') a compound of a transition metal selected from Groups $_3$ to 11 of the periodic table, which is represented by the following formula (c'):

$$MX_k$$
 ...(c')

wherein M is a transition metal atom selected from Groups 3 to 11 of the periodic table,

k is a number satisfying a valence of M, and

X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, and when k is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring, and

(A-iii) a compound represented by the following formula (III):

$$\begin{array}{c|c}
R^{22} & R^{21} \\
R^{23} & N \\
R^{24} & A \\
R^{25} & R^{27}
\end{array} (III)$$

wherein A is an oxygen atom, a sulfur atom or a selenium atom, or a nitrogen atom having a substituent R^{26} , and

R²¹ to R²⁸ may be the same or different, they are each a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to each other to form a ring; and

- (B) at least one compound selected from the group consisting of:
 - (B-1) an organometallic compound,
 - (B-2) an organoaluminum oxy-compound, and
- (B-3) a compound which reacts with the transition metal compound (A3) to form an ion pair.
- 8. (currently amended) The process for producing a polar olefin copolymer as claimed in claim 6 or 7, wherein the compound of a transition metal represented by the formula (c') is a compound of a transition metal selected from Groups 4, 5, 6 or and 11 of the periodic table.

- 9. (withdrawn) A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:
- (A4) a compound of a transition metal selected from Groups 4, 5, 6 and 11 of the periodic table, which is represented by the following formula (IV):

$$R^{3}$$
 R^{4}
 R^{4}

m is an integer of 1 to 6,

A is an oxygen atom, a sulfur atom or a selenium atom, or a nitrogen atom having a substituent \mathbb{R}^6 ,

R¹ to R⁴ and R⁶ may be the same or different, they are each a hydrogen atom, a halogen atom, a hydrocarbon group, a heterocyclic compound residual group, an oxygen-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a sulfur-containing group, a phosphorus-containing group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to each other to form a ring, and

when m is 2 or greater, one group of R^1 to R^4 and R^6 contained in one ligand and one group of R^1 to R^4 and R^6 contained in other ligands may be bonded, and R^1 s, R^2 s, R^3 s, R^4 s or R^6 s may be the same or different,

n is a number satisfying a valence of M', and

X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, sulfurcontaining group, a nitrogen-containing group, containing group, an aluminum-containing group, a phosphoruscontaining group, a halogen-containing group, a heterocyclic compound residual group, a silicon-containing group, germanium-containing group or a tin-containing group, and when n is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring;

and

- (B) at least one compound selected from the group consisting of:
 - (B-1) an organometallic compound,
 - (B-2) an organoaluminum oxy-compound, and
- (B-3) a compound which reacts with the transition metal compound (A4) to form an ion pair.

- 10. (withdrawn) A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:
- (A5) a compound of a transition metal selected from Groups 4, 5, 6 and 11 of the periodic table which is represented by the following formula (V)

m is an integer of 1 to 6,

D is a nitrogen atom or a phosphorus atom,

Q is a nitrogen atom or a phosphorus atom, or a carbon atom substituted with a substituent \mathbb{R}^{13} ,

S is a nitrogen atom or a phosphorus atom, or a carbon atom substituted with a substituent \mathbb{R}^{14} ,

T is a nitrogen atom or a phosphorus atom, or a carbon atom substituted with a substituent \mathbb{R}^{15} ,

R¹¹ to R¹⁵ may be the same or different, they are each a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-

containing group, a phosphorus-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to each other to form a ring, and when m is 2 or greater, one group of R¹¹ to R¹⁵ contained in one ligand and one group of R¹¹ to R¹⁵ contained in other ligands may be bonded, and R¹¹s, R¹²s, R¹³s, R¹⁴s or R¹⁵s may be the same or different,

n is a number satisfying a valence of M', and

X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, group, a nitrogen-containing group, containing boroncontaining group, an aluminum-containing group, a phosphoruscontaining group, a halogen-containing group, a heterocyclic compound residual group, a silicon-containing germanium-containing group or a tin-containing group, and when n is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring;

- and
- (B) at least one compound selected from the group consisting of:
 - (B-1) an organometallic compound,
 - (B-2) an organoaluminum oxy-compound, and

- (B-3) a compound which reacts with the transition metal compound (A5) to form an ion pair.
- 11. (withdrawn) A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:
- (A6) a compound of a transition metal selected from Groups 3 to 11 of the periodic table, which is represented by the following formula (VI):

m is an integer of 1 to 6,

A is an oxygen atom, a sulfur atom or a selenium atom, or a nitrogen atom having a substituent R^{26} ,

 R^{21} to R^{27} may be the same or different, they are each a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygencontaining group, a sulfur-containing group, a nitrogencontaining group, a boron-containing group, an aluminum-

containing group, a phosphorus-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to each other to form a ring, and when m is 2 or greater, one group of R²¹ to R²⁷ contained in one ligand and one group of R²¹ to R²⁷ contained in other ligands may be bonded, and R²¹s, R²²s, R²³s, R²⁴s, R²⁵s, R²⁶s or R²⁷s may be the same or different,

n is a number satisfying a valence of M, and

X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, and when n is 2 or greater, plural atoms or groups indicated by X may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring.

12. (withdrawn) A process for producing a polar olefin copolymer comprising copolymerizing a non-polar olefin and a polar olefin in the presence of a catalyst comprising:

(A6) a compound of a transition metal selected from Groups 3 to 11 of the periodic table, which is represented by the following formula (VI):

$$R^{22}$$
 R^{23}
 R^{23}
 R^{24}
 R^{25}
 R^{27}
 R^{27}
 R^{21}
 R^{22}
 R^{21}
 R^{21}
 R^{21}
 R^{22}
 R^{23}
 R^{24}
 R^{25}
 R^{27}

wherein M is a transition metal atom selected from Groups 3 to 11 of the periodic table,

m is an integer of 1 to 6,

A is an oxygen atom, a sulfur atom or a selenium atom, or a nitrogen atom having a substituent \mathbb{R}^{26} ,

R²¹ to R²⁷ may be the same or different, they are each a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a heterocyclic compound residual group, a silicon-containing group, a germanium-containing group or a tin-containing group, two or more of them may be bonded to each other to form a ring, and when m is 2 or greater, one group of R²¹ to R²⁷ contained in one ligand and one group of R²¹ to R²⁷ contained in other ligands may

be bonded, and $R^{21}s$, $R^{22}s$, $R^{23}s$, $R^{24}s$, $R^{25}s$, $R^{26}s$ or $R^{27}s$ may be the same or different,

n is a number satisfying a valence of M, and

X is a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group, an oxygen-containing group, a sulfurcontaining group, a nitrogen-containing group, a containing group, an aluminum-containing group, a phosphoruscontaining group, a halogen-containing group, a heterocyclic compound residual group, a silicon-containing group, germanium-containing group or a tin-containing group, and when n is 2 or greater, plural atoms or groups indicated by ${\tt X}$ may be the same or different, and plural groups indicated by X may be bonded to each other to form a ring;

and

- (B) at least one compound selected from the group consisting of:
 - (B-1) an organometallic compound,
 - (B-2) an organoaluminum oxy-compound, and
- (B-3) a compound which reacts with the transition metal compound (A6) to form an ion pair.
- 13. (withdrawn) The process for producing a polar olefin copolymer as claimed in claim 11 or 12, wherein the compound of a transition metal represented by the formula (VI) is a compound

of a transition metal selected from Groups 4, 5, 6 and 11 of the periodic table.

14. (withdrawn - previously presented) A polar olefin copolymer obtained by the process according to claim 1.