Þurrgufun Joðs

Emil Gauti Friðriksson og Garðar Árni Skarphéðinsson ${\rm Jan\'uar}~2019$

1 Inngangur

Varmafræðilegri hegðun efna má lýsa með bæði varmafræði og með safneðlisfræði. Hér verður fjallað um fasajafnvægi joðs við þurrgufun, $I_2(s) = I_2(g)$, og líkön byggð á báðum fræðunum borin saman við mældar niðurstöður.

2 Líkan

Þegar jafnvægi er á milli gasfasa og fasts kristalfasa er efnamætti fasanna einnig í jafnvægi, þ.e.

$$\mu_s(T) = \mu_q(T) \tag{1}$$

Með safneðlisfræðilegum líkönum fást kórsummur fasanna tveggja og frá þeim fást efnamættin:

$$\mu_s(T) = \frac{RT}{2} \left[\prod_{j=1}^{12} (1 - e^{-\Theta_j/T}) \right],$$
 (2)

$$\mu_g(T) = \Delta E_0^0 - RT \ln \left[\left(\frac{2\pi mkT}{h^2} \right)^{3/2} \frac{kT}{p} \frac{T}{\sigma \Theta_{rot}} (1 - e^{-\Theta_{vib}/T})^{-1} \right]$$
 (3)

Nákvæmari útleiðslur má finna í vinnuseðli. Stærðirnar í jöfnunum að ofan eru eftirfarandi:

$$\Theta_j = \frac{h\nu_j}{k}, \quad \Theta_{rot} = \frac{hcB_0}{k}, \quad \Theta_{vib} = \Theta_{j=0}$$
(4)

T: Hitastig

p: Hlutþrýstingur
c: Hraði í lofttæmi
h: Fasti Plancks
k: Fasti Boltzmanns

R: Gasfastinn

 u_j : Titringstíðni I_2 sameindar $\Delta \widetilde{E}_0^0$: Uppgufunarorka per mól

m: Massi sameindar B_0 : Snúningsfasti

 σ : Samhverfutala, $\sigma = 2$.

Athugum nú tvær leiðir til þess að ákvarða uppgufunarvarma joðsins, $\Delta \widetilde{H}_{sub}$. Sú fyrri er með því að bera saman mældan þrýsting og hitastig við Clausius-Clapeyron venslin $\ln(p) = C - \Delta \widetilde{H}_{sub}/RT$, þar sem C er fasti. Besta lína grafs $\ln(p)$ sem fall af 1/T myndi þá hafa hallatölu $\Delta \widetilde{H}_{sub}/R$. Athugum að þrýsting má ákvarða út frá ljósgleypni joðsins, A, með jöfnunni:

$$p = \frac{RTA}{d\epsilon} \tag{5}$$

Par sem ϵ er mólar gleypnistuðull joðs og d er breiddin sem afmarkar hreyfingu gassins, þ.e. breidd íláts.

Önnur aðferð til þess að ákvarða $\Delta \widetilde{H}_{sub}$ væri að reikna óreiðuna í fösunum, þ.e. afleiður efnamættisins:

$$\widetilde{S}_s = -\left(\frac{\partial \mu_s}{\partial T}\right)_p = \frac{R}{2} \sum_{n=1}^{12} \left[\frac{\Theta_j/T}{e^{\Theta_j/T} - 1} - \ln(1 - e^{-\Theta_j/T}) \right]$$
 (6)

$$\widetilde{S}_g = -\left(\frac{\partial \mu_g}{\partial T}\right)_p = \frac{\Delta \widetilde{E}_0^0 - \mu_g}{T} + \frac{7}{2}R + R\frac{\Theta_{vib}/T}{e^{\Theta_{vib}/T} - 1}$$
(7)

Par sem bæði óreiðurnar og uppgufunarvarminn eru beintengd Gibbs-fríorkunni fást venslin:

$$\Delta \widetilde{H}_{sub} = T \Delta \widetilde{S}_{sub} = T(\widetilde{S}_q - \widetilde{S}_s) \tag{8}$$

P.a. besta lína grafs af $\Delta \widetilde{S}_{sub}$ sem fall af 1/T ætti að gefa hallatölu $\Delta \widetilde{H}_{sub}$.

Tafla 2: Mólgleypnistuðull I_2 fyrir $\lambda = 520 \,\mathrm{nm}$. Brúuð gildi eru skáletruð

Tafla 1: Reiknuð gildi á θ_j út frá jöfnu 4

j	$\theta_j[K]$	j	$\theta_j[K]$
1	30.21	7	83.45
2	38.13	8	84.89
3	47.48	9	108.48
4	58.99	10	125.75
5	70.50	11	259.99
6	74.10	12	272.65

T[K]	$\epsilon[\mathrm{m}^2\mathrm{mol}^{-1}]$
298	68.65
303	68.2
308	67.7
313	67.2
318	66.75
323	66.3
328	65.85
333	65.4
338	65
343	64.6
348	64.2
353	63.8

3 Framkvæmd

Kristölluðu joði var komið fyrir á botni íláts af breidd $d\approx 0.01\,\mathrm{m}$. Ílátinu, og samskonar tómu íláti, var komið fyrir í hitastýrðu umhverfi og notað sem skotmark fyrir ljósgeisla. Ljósgleypni gassins í ílátunum var síðan mæld fyrir mismunandi hitastig. Bæði voru skoðaðar gleypnimælingar fyrir ljósgeisla með bylgjulengd 700 nm og 520 nm, en seinni bylgjulengdin gefur hámarks gleypni, á meðan sú fyrri gefur mjög litla gleypni.

Nettógleypni fæst með mismuni þessara tveggja mælinga, þ.e. $A_{I_2} = A_{I_2,520} - A_{I_2,700}$ fyrir ílátið með I_2 sýninu og $A_0 = A_{0,520} - A_{0,700}$ fyrir tóma ílátið. Loks skilgreinum við $A = A_{I_2} - A_0$, en þá ætti A að vera einungis gleypni I_2 -gassins.

4 Niðurstöður

Mynd 1: $\ln(p)$ sem fall af 1/T. Hallatalan svarar til $-\Delta \widetilde{H}_{sub}/R$

Mynd 2: S_{sub} sem fall af 1/T. Hallatalan svarar til $\Delta \widetilde{H}_{sub}$

Út frá mynd 1 fáum við að $\Delta \widetilde{H}_{sub}^{(1)}/R = 5088\,\mathrm{K}$ sem gefur okkur $\Delta \widetilde{H}_{sub}^{(1)} = 42\,304\,\mathrm{J/mol}$

Út frá mynd 2 fáum við að $\Delta \widetilde{H}_{sub}^{(2)} = 27\,778\,\mathrm{J/mol}$

Við fáum því tvö tiltölulega ólík gildi fyrir $\Delta \tilde{H}_{sub}^{(i)}$, en skekkjan er um $\sim 34\%$. Þetta má líklega útskýra með ónákvæmni í mælingum og gömlum mælibúnaði. Reynt var að nota mæligögn frá öðrum hópi en niðurstöðurnar sem fengust þar voru $\Delta \tilde{H}_{sub}^{(1')} = 32\,841\,\mathrm{J/mol}$ og $\Delta \tilde{H}_{sub}^{(2')} = 47\,350\,\mathrm{J/mol}$. Ástæða misræmis í þessum mismunandi niðurstöðum má mögulega

rekja til ónákvæmni í framkvæmd, hitabaðið sem mæliglasið var í var óþétt og gæti hafa safnast vatnsgufa á hliðum mæliglassins. Þau gögn ásamt python kóða sem notuð voru í úrvinnslu þessarar tilraunar má nálgast á slóðinni github.com/EmilGauti/dryodine.