Cronograma

O cronograma será seguido como descrito na Tab. 1 com as atividades detalhadas a seguir:

- projeto protótipo 2: projeto de nova mecânica dado as necessidades levantadas no primeiro protótipo;
- prototipagem mecânica: envio da peça para usinagem e acompanhamento;
- projeto do controlador : projetar controle para estabilização do mancal visando a implementação em eletrônica embarcada;
- validação do protótipo : validar o protótipo com o modelo em elementos finitos (forças);
- projeto eletrônica : projetar eletrônica (processamento, sensoriamento e potência) com os requisitos levantados durante a pesquisa;
- prototipagem eletrônica : confecção e montagem de placa de circuito impresso além de compra de materiais;
- validação eletrônica : validar a eletrônica (programação do microprocessador, atuadores e sensores);
- validação do conjunto : implementação das leis de controle e teste do controle do mancal
- documentação : tempo reservado para a documentação e escrita da dissertação.

	20	2014		2015		
Bimestre	5°	6°	1º	2°	3°	4º
Projeto protótipo 2	х					
Prototipagem mecânica		х				
Projeto do controlador	х	х	х			
Validação do protótipo		х		x		
Projeto eletrônica			х	х		
Prototipagem eletrônica				х		
Validação eletrônica					х	
Validação do conjunto					х	х
Documentação						х

Figura 1: Cronograma proposto

Sumário Estruturado da Dissertação

1	Inti	rodução	4
	1.1	Objetivo	4
	1.2	Justificativa	4
	1.3	Revisão bibliográfica	4
		1.3.1 Graus de liberdade	4
		1.3.2 Topologias com aplicação em rodas de reação	4
		1.3.3 Sensoriamento	4
		1.3.4 Mancais auxiliares	4
		1.3.5 Técnicas de controle	4
		1.3.6 Macais magnéticos auto girantes	4
	1.4	Metodologia	4
	3.4		_
2		ncal magnético	5
	2.1	Visão Geral	5
	2.2	Estator externo	5 5
	2.3	Rotor	
	2.4	Estator interno	5
	2.5	Batente	5
	2.6	Base	5
	2.7	Eletrônica	5
		2.7.1 Atuador - Potência	5
		2.7.2 Sensoreamento	5
		2.7.3 Processamento	5
	2.8	Prototipagem	5
3	Mo	delagem Eletromagnética do Mancal	6
	3.1	Circuito passivo	6
		3.1.1 Campo magnético no entreferro	6
		3.1.2 Força	6
		3.1.3 Escolha dos parâmetros	6
		3.1.4 Simulações	6
		3.1.5 Elementos Finitos	6
		3.1.6 Validação	6
	3.2	Circuito Ativo	6
		3.2.1 Modelo sem saturação	6

		3.2.2 Indutância	6								
	3.3	Escolha dos parâmetros	6								
		3.3.1 Simulações	6								
		3.3.2 Elementos Finitos	6								
		3.3.3 Validação	6								
4	Modelagem Dinâmica 7										
	4.1	Rotor	7								
	4.2	Estator externo	7								
	4.3	Estator interno	7								
		4.3.1 Linearização da força	7								
	4.4	Característica do sistema e diagrama de blocos	7								
	4.5	Simulações	7								
	4.6	Validação	7								
5	Projeto do controlador										
	5.1	Técnicas de controle	8								
	5.2	Simulações	8								
	5.3	Implementação	8								
	5.4	Validação	8								
6	Con	nclusões	ç								

Introdução

- 1.1 Objetivo
- 1.2 Justificativa
- 1.3 Revisão bibliográfica
- 1.3.1 Graus de liberdade
- 1.3.2 Topologias com aplicação em rodas de reação
- 1.3.3 Sensoriamento
- 1.3.4 Mancais auxiliares
- 1.3.5 Técnicas de controle
- 1.3.6 Macais magnéticos auto girantes
- 1.4 Metodologia

Mancal magnético

- 2.1 Visão Geral
- 2.2 Estator externo
- 2.3 Rotor
- 2.4 Estator interno
- 2.5 Batente
- 2.6 Base
- 2.7 Eletrônica
- 2.7.1 Atuador Potência
- 2.7.2 Sensoreamento
- 2.7.3 Processamento
- 2.8 Prototipagem

Modelagem Eletromagnética do Mancal

- 3.1 Circuito passivo
- 3.1.1 Campo magnético no entreferro
- 3.1.2 Força
- 3.1.3 Escolha dos parâmetros
- 3.1.4 Simulações
- 3.1.5 Elementos Finitos
- 3.1.6 Validação
- 3.2 Circuito Ativo
- 3.2.1 Modelo sem saturação
- 3.2.2 Indutância
- 3.3 Escolha dos parâmetros
- 3.3.1 Simulações
- 3.3.2 Elementos Finitos
- 3.3.3 Validação

Modelagem Dinâmica

- 4.1 Rotor
- 4.2 Estator externo
- 4.3 Estator interno
- 4.3.1 Linearização da força
- 4.4 Característica do sistema e diagrama de blocos
- 4.5 Simulações
- 4.6 Validação

Projeto do controlador

- 5.1 Técnicas de controle
- 5.2 Simulações
- 5.3 Implementação
- 5.4 Validação

Conclusões