Properties of Context-Free Grammar

The Pumping Lemma for CFL

Parse tree

考虑一个 CNF 文法 G=(V,T,P,S) 的 parse tree,且其 yield 为 w ,若最长路 径长度为 n ,则有 $|w|\leqslant 2^{n-1}$

Proof. 根据 n 归纳即可

Basis. n=1 ,最长路径长为 1 的 parse tree 只有一个 root 和一个标记为 terminal 的叶节点,故 |w|=1 ,而 $2^{n-1}=2^0=1, |w|\leqslant 2^{n-1}$

Induction. 考虑最长路径为 n ,则根节点一定使用了产生式 $A\to BC$,则任意子树中最长路径都不超过 n-1 ,根据 I. H. ,两颗子树的 yield 长度均不超过 2^{n-2} ,则整棵树的 yield 长度不超过 2^{n-1}

Pumping Lemma

令 L 为一个 CFL,则存在常数 n ,对于任意属于 L 的 string z ,若 $|z| \geqslant n$,则可以将 z 写作 uvwxy ,并且满足

- $|vwx| \leqslant n$
- |vx| > 0
- 对任意 $i\geqslant 0$,有 $uv^iwx^iy\in L$

Proof.

考虑 L 的 CNF 文法 G=(V,T,P,S) ,满足 $L-\{\epsilon\}=L(G)$,则假设 G 中有 m 个 variable,令 $n=2^m$,令 z 为 L 中长度至少为 n 的 string,根据上文的结论,任何最长路径为 m 的 parse tree 其 yield 长度不超过 $2^{m-1}=n/2$,则 yield 为 z 的 parse tree 最长路径至少为 m+1

考虑最长路径,设其长度为 $k+1(k\geqslant m)$,则其路径上出现了 k+1 个 variable ,记为 A_0,A_1,\ldots,A_k ,而 G 中有 m 个不同的 variable,根据 PHP,路径上至少有两个 variable 是相同的,考虑路径上的最后 m+1 个 variable,即 A_{k-m} 到 A_k ,设 $A_i=A_i,k-m\leqslant i< j\leqslant k$

则可以划分 parse tree 的 yield,令 w 为子树 A_j 的 yield,令 vwx 为子树 A_i 的 yield,令 uvwxy 为整棵树的 yield。由于 CNF 没有 unit production,故 v,x 不同时为 ϵ

因此可以构造新的 parse tree,如使用 A_j 的子树代替 A_i 的子树,则 yield 为 uwy,对应 uv^iwx^iy 中 i=0 的情况。或是可以用 A_i 的子树代替 A_j 的子树,即 uv^2wx^2y ,同理可以得到 uv^3wx^3y , uv^4wx^4y , . . .

同时由于选择的是最后 m+1 个 variable,即 $k-m\leqslant i\leqslant k$,则 A_i 的子树中最长路径不会超过 m+1,则其产生的 string $|vwx|\leqslant 2^m=n$

Pumping Lemma 可以用于证明某 language 不是 CFL

Closure Properties of CFL

Substitutions

考虑 alphabet Σ ,为其中每个元素 a 选择一个语言 L_a ,这个语言可以是定义在任意 alphabet 上的任意语言,则可以定义一个函数 $L_a=s(a)$ 。对于 string $w=a_1a_2\dots a_n$

$$s(w) = \{x_1 x_2 \dots x_n : x_i \in s(a_i)\}$$

即 s(w) 是一系列 language $s(a_1), s(a_2), \ldots, s(a_n)$ 的 concatenation,则对一个语言 L

$$s(L) = \bigcup_{w \in L} s(w)$$

则有:若 L 是一个定义在 Σ 的 CFL ,且对于每个 $a\in\Sigma$,有 s(a) 为 CFL,则 s(L) 是 CFL

Proof. 基本思路为根据 L 的 CFG,将其中每个 terminal a 替换为 s(a) 的 CFG 的开始符号

设 L 的 CFG 为 G=(V,T,P,S) ,而 s(a) 的 CFG 为 $G_a=(V_a,T_a,P_a,S_a)$,且为了便于讨论,设 V 以及任意 V_a 的元素不重名。

则可以为 s(L) 构造一个新的 CFG G'=(V',T',P',S) ,其中

- V' 是 V 与所有 V_a 的 union
- T' 是所有 T_a 的 union
- P'包含
 - \circ 所有 P_a 的产生式
 - \circ 所有 P 的产生式,但将所有 terminal a 用 S_a 代替

则只需证明 $w \in L(G') \iff w \in s(L)$

(⇐): 考虑 $w \in s(L)$,则设 $x = a_1 a_2 \dots a_n \in L$,且 $x_i \in s(a_i)$,则有 $w = x_1 x_2 \dots x_n$,则原本从 G 推导出的 $a_1 a_2 \dots a_n$ 在 G' 中将推导出 $S_{a_1} S_{a_2} \dots S_{a_n}$ 。由于 G' 包含所有 G_a 中的产生式,则 $S_{a_i} \stackrel{*}{\Rightarrow} x_i$ 同样是 G' 中的推导,故有 $S \stackrel{*}{\Rightarrow} x_1 x_2 \dots x_n = w$,即 $w \in L(G')$

(⇒): 若 $w \in L(G')$,则在推导过程中一定有 $S \stackrel{*}{\Rightarrow} S_{a_1} S_{a_2} \dots S_{a_n}$,因为在推导的开始将只使用 G 中的产生式,直至推导出某个 S_a ,而在 S_a 的子树中将只使用 G_a 中的产生式,因此根据该推导过程的 parse tree,可以得到一个字符串 $a_1 a_2 \dots a_n \in L(G)$,且 $x_i \in s(a_i)$,满足

- $w = x_1 x_2 \dots x_n$
- 在 parse tree 中删除某些子树,其 yield 为 $S_{a_i}S_{a_2}\ldots S_{a_n}$

由于 $x_i \in s(a_i)$, 故易得 $w \in s(L)$

Applications of the Substitution Theorem

根据 substitution 的封闭性,可以得出 CFL 对于下列操作是封闭的

- union
- concatenation
- closure (*) and positive closure (+)
- homomorphism

Proof. 只需构造特定的 substitution 即可

- union: 对于 CFL L_1,L_2 , $L_1\cup L_2=s(L)$, 其中 $L=\{1,2\},s(1)=L_1,s(2)=L_2$
- concatenation: 对于 CFL L_1, L_2 , $L_1 \cup L_2 = s(L)$, 其中 $L=\{12\}, s(1)=L_1, s(2)=L_2$
- closure and positive closure:考虑 CFL L_1 , 令 $L=\{1\}^*, s(1)=L_1$,则 $L_1^*=s(L)$,同理,若 $L=\{1\}^+$,则 $L_1^+=s(L)$
- homomorphism : 考虑 L 是定义在 Σ 的 CFL,而 h 是定义在 Σ 的 homomorphism ,则对于任意 $a\in\Sigma$,定义 $s(a)=\{h(a)\}$,则 h(L)=s(L)

Reversal

如果 $L \oplus CFL$,则 L^R 也是 CFL

Proof. 构造 L 的文法 G=(V,T,P,S) 使得 L=L(G) ,则对于 L^R 其 CFG 为 $G^R=(V,T,P^R,S)$,其中 P^R 为每个产生式的 reversal,即若 $A\to\alpha\in G$,则 $A\to\alpha^R\in G^R$

Intersection

CFL 对 intersection 是不封闭的,考虑

$$egin{aligned} L_1 &= \{0^n 1^n 2^i : n \geqslant 1, i \geqslant 1\} \ L_2 &= \{0^i 1^n 2^n : n \geqslant 1, i \geqslant 1\} \end{aligned}$$

上述两个语言都是 CFL, 可以为其构造出对应的文法, 但是其 intersection

$$L = L_1 \cap L_2 = \{0^n 1^n 2^n : n \geqslant 1\}$$

不是 CFL (pumping lemma 即可证明)

但是 CFL 和 正则语言的 intersection 仍是 CFL,即

对于 CFL L 和正则语言 R , $L \cap R$ 仍是 CFL

Proof. 只需要平行地运行 PDA 和 DFA 即可

令 PDA
$$P=(Q_P,\Sigma,\Gamma,\delta_P,q_P,Z_0,F_P)$$
 满足 $L=L(P)$,令 DFA $A=(Q_A,\Sigma,\delta_A,q_A,F_A)$ 满足 $R=L(A)$

则可构造 PDA

$$P' = (Q_P \times Q_A, \Sigma, \Gamma, \delta, (q_P, q_A), Z_0, F_P \times F_A)$$

定义

$$\delta((q,p),a,X) = \{((r,s),\gamma) : s = \delta_A(p,a) \text{ and } (r,\gamma) \in \delta_P(q,a,X)\}$$

注意当 PDA 在 ϵ 上转换时,DFA 不改变状态

根据推导步数的归纳可以得出、

$$(q_P, w, Z_0) \vdash_P^* (q, \epsilon, \gamma) \text{ and } \delta_A(q_A, w) = p \iff ((q_P, q_A), w, Z_0) \vdash_{P'}^* ((q, p), \epsilon, \gamma)$$

且 (q,p) 为接收状态 $\iff q \in F_P \text{ and } p \in F_A$,故 $w \in L(P') \iff w \in L \text{ and } w \in A$

可以得出 $L(P') = L \cap R$

同样可以得出对于 CFL L, L_1, L_2 和正则语言 R 满足

- *L* − *R* 是 CFL
- \overline{L} 不一定是 CFL
- L_1-L_2 不一定是 CFL

Proof.

- $L-R=L\cap\overline{R}$, \overline{n} 是正则
- 若 \overline{L} 总是 CFL,则考虑 $L_1\cap L_2=\overline{L_1\cup L_2}$,这与上述结论矛盾
- 若 L_1-L_2 总是 CFL,则 $\Sigma^*-L=\overline{L}$ 也是 CFL,这与上述结论矛盾

Inverse Homomorphism

证明思路类似证明正则语言对 inverse homomorphism 是封闭的。构造一个 PDA,每当读入一个输入 a ,则将 h(a) 放入一个 buffer 中,每次读取其中一个符号,用于模拟 PDA 的运行,直至读入结束,再读入下一个符号

考虑 CFL L 和 homomorphism h ,则 $h^{-1}(L)$ 也是 CFL

Proof. 假设 h 定义在 Σ 上,且输出的 string 属于 T^* ,且假设 L 是定义在 T 上的语言,则有 PDA $P=(Q,T,\Gamma,\delta,q_0,Z_0,F)$ 满足 L=L(P) ,则构造一个新的 PDA

$$P' = (Q', \Sigma, \Gamma, \delta', (q_0, \epsilon), Z_0, F \times \{\epsilon\})$$

其中

Q' 中的元素 (q,x) 满足 $q\in Q$ 且 x 是某个 h(a) 的后缀,即用 x 来模拟 buffer

由于 $a\in \Sigma$ 是有限的,故 h(a) 也是有限的,则 Q' 中的状态也是有限的对于 δ' ,其定义分为两种情况

- buffer 为空,即 $\delta'((q,\epsilon),a,X)=\{((q,h(a)),X)\}$,此处的 $a\neq\epsilon$ 。即 当 buffer 为空,P' 读入下一个输入 a 并将 h(a) 放入 buffer
- buffer 不为空,则若 $(p,\gamma) \in \delta(q,b,X), b \in T \text{ or } b = \epsilon$,则

$$((p,x),\gamma) \in \delta'((q,bx),\epsilon,X)$$

即 P' 用 buffer 中第一个 symbol 模拟 P 的运行

则有

$$(q_0, h(w), Z_0) \vdash_P^* (p, \epsilon, \gamma) \iff ((q_0, \epsilon), w, Z_0) \vdash_{P'}^* ((p, \epsilon), \epsilon, \gamma)$$

证明基于对推导步数的归纳即可。需要注意的是 P' 在 buffer 非空时一定模拟 P 的运行,但是当 buffer 为空时仍有可能继续模拟 P 的运行

故
$$w \in L(P') \iff h(w) \in L(P)$$
, 即 $L(P') = h^{-1}(L(P))$

Decision Properties of CFL

对于 CFL 的 decision properties,有一些是有确定的算法可以解决的

- 判断 w 是否在 CFL L 中
- 判断 CFL L 是否为空
- 判断 CFL *L* 是否无限

而有一些没有算法可以解决,换言之这些问题是 undecidable 的

- 判断两个 CFL 是否相等
- 判断两个 CFL 是否 disjoint

Emptiness of CFL

测试 CFL L 是否为空只需要测试其开始符号 S 是否为 generating 即可

CFL L 非空 \iff 其开始符号 S 为 generating

Membership of CFL

有一种算法利用 DP 的思想,若 string 的长度为 n ,可以在 $O(n^3)$ 的时间内确定这个 string 是否在给定的 CFL 中,即 CYK 算法。

考虑 CFL L 及其 CNF 形式的文法 G=(V,T,P,S) ,设 $|w|=n,w=a_1a_2\dots a_n$,算法构造一个三角矩阵形如

其中

$$x_{ij} = \{A: A \stackrel{*}{\Rightarrow} a_i a_{i+1} \dots a_j\}$$

则

$$S \in x_{1n} \iff S \stackrel{*}{\Rightarrow} w$$

从底向上,第i行的条目都代表了一系列 variable,可以推导出长为i的 substring 计算表中条目是一个从底向上的归纳的过程

Basis. 即最底下一行, $x_{ii} = \{A: A \rightarrow a_i \in G\}$

Induction. 假设需要计算 x_{ij} ,位于第 j-i+1 行,且其下的条目都已计算,则任意推导过程

$$A\stackrel{*}{\Rightarrow}a_ia_{i+1}\dots a_j$$

都从 $A \rightarrow BC$ 开始,则对某个 $i \leq k < i$ 有

$$B \stackrel{*}{\Rightarrow} a_i \dots a_k$$
$$C \stackrel{*}{\Rightarrow} a_{k+1} \dots a_j$$

则需要找到所有满足

- $i \leqslant k < j$
- ullet $B\in x_{ik}$
- $C \in x_{k+1j}$
- $A \rightarrow BC \in G$

的 A ,这样的 A 即为 x_{ij} 的成员

CYK 算法的正确性从其归纳的计算过程中即可得出。

算法计算每个条目需要 O(n) 的时间,因为其要检查每个 (x_{ik},x_{k+1j}) 对,而表中一共有 $\frac{n(n+1)}{2}$ 个条目。故其运行时间为 $O(n^3)$

Infiniteness of CFL

Infiniteness 的测试思想与正则语言相同,对于 pumping lemma 的常数 n ,只需测试长度在 [n,2n-1] 的 string 是否都在 L 中即可

存在一个满足条件的 String 则 L 为无穷