Scale invariant interest points/regions

Scale invariance - motivation

Description regions have to be adapted to scale changes

• Interest points have to be repeatable under scale changes

Overview

- Scale invariance motivation
- Multi-scale detection
- Scale selection
- State of the art on scale invariant points/regions

Harris detector + scale changes

Scale adaptation

Scale change between two images

$$I_{1} \binom{x_{1}}{y_{1}} = I_{2} \binom{x_{2}}{y_{2}} = I_{2} \binom{SX_{1}}{Sy_{1}}$$

Scale adapted derivative calculation

$$I_{l} \binom{x_{1}}{y_{1}} \otimes G_{l_{1}...l_{n}} (\sigma) = s^{n} I_{2} \binom{x_{2}}{y_{2}} \otimes G_{l_{1}...l_{n}} (s\sigma)$$

Scale adaptation

Scale adapted auto-correlation matrix

$$S^2G(s\widetilde{\sigma})\otimes \left[egin{array}{ccc} L_x^2(s\sigma) & L_xL_y(s\sigma) \ L_xL_y(s\sigma) & L_y^2(s\sigma) \end{array}
ight]$$

Matching results

Scale change of 5.7

Scale selection

- · In a point compute a value (gradient, Laplacian etc.) at several scales
- Normalization of the values with the scale factor e.g. Laplacian $|s^2(L_x + L_y)|$
- Select scale s^* at the maximum \rightarrow characteristic scale

· Exp. results show that the Laplacian gives best results

Matching results

100% correct matches (13 matches)

Scale selection

Scale invariance of the characteristic scale

scale

• Relation between characteristic scales $s \cdot s_1^* = s_2^*$

Scale-invariant detectors

- Harris-Laplace (Mikolajczyk & Schmid'01)
- Laplacian detector (Lindeberg'98)
- Difference of Gaussian (Lowe'99)

Harris-Laplace

multi-scale Harris points

maximum of Laplacian selection of points at

invariant points + associated regions [Mikolajczyk & Schmid, ICCV'01]

Matching results

Matching results

58 points are initially matched

213 / 190 detected interest points

Matching results

Matching results

all matches are correct (33)

Laplacian of Gaussian [Lindeberg'98]

Image retrieval

• Convolution with the Laplacian of Gaussian (LOG)

 $LOG = G_{xx}(\sigma) + G_{yy}(\sigma)$

Determine maxima & minima in space and scale

image rotationscale factor of 4partial visibility

LOG - Blob detector

Difference of Gaussian (DOG)

- Difference of Gaussian (DOG) approximates the Laplacian $DOG = G(k\sigma) - G(\sigma)$

 Fast computation by taking the difference between Gaussian smoothed images + sub-sampling