

CHIA ĐỂ TRỊ

Mục tiêu

- Giúp sinh viên nắm rõ tư tưởng của phương pháp chia để trị một bài toán
- •Cài đặt được phương pháp chia để trị cho các bài toán cụ thể

Chia để trị

- 1. Ý tưởng
- 2. Phương pháp
- 3. Lược đồ tổng quát
- 4. Bài toán tìm kiếm phần tử x trong phạm vi 1..n
- 5. Bài toán tìm kiếm phần tử x trong dãy đã sắp thứ tự
- 6. Tìm giá trị max và min trong dãy

1. Ý tưởng

- •Để giải bài toán có kích thước n, ta chia bài toán đã cho thành một số bài toán con có kích thước nhỏ hơn
 - Các bài toán con lại được tiếp tục chia thành các bài toán con nhỏ hơn nữa
 - Quá trình này tiếp tục cho tới khi ta
 được các bài toán mà chúng đã có lời giải
 hoặc dễ dàng giải được bài toán cơ sở

1.Ý tưởng (tiếp...)

2.Phương pháp

- •Gồm 2 quá trình:
 - Phân tích bài toán đã cho thành các bài toán cơ sở
 - Tổng hợp kết quả từ các bài toán cơ sở để có lời giải của bài toán ban đầu

3.Lược đồ tổng quát

Chia để trị (A,x) {tìm nghiệm x của bài toán A}

Bước 1: Nếu A đủ nhỏ thì GiảiBàiToán(A)

ngược lại thì thực hiện:

Bước 2: Phân tích A thành các bài toán con A₁, A₂, ..., A_m

Bước 3: Giải các bài toán $A_1, A_2, ..., A_m$ để được các nghiệm $x_1, x_2, ..., x_m$ tương ứng

Bước 4: Kết hợp các nghiệm x_i (i=1,2...m) của các bài toán con A_i (i =1,2..m) để được nghiệm của bài toán A_i

Bài toán: Tìm kiếm nhị phân phần tử x trong dãy đã được sắp xếp

- ■VD: Cho dãy số $A=\{a_1=3; a_2=15; a_3=28; a_4=32; a_5=45; a_6=50; a_7=67; a_8=69; a_9=71; a_{10}=93\}$ đã được sắp theo thứ tự tăng dần.
- ■Hỏi phần tử x = 32 có trong dãy trên không?

- Phương pháp:
 - Chia dãy A[1..n] thành 3 dãy con : A[1..k-1], A[k], A[k+1..n]
 - Nếu x = A[k] thì dãy A chứa phần tử x
 - Nếu x <A[k] ta chỉ tìm trên dãy con A[1.. k-1], còn nếu x>A[k] ta tìm trên dãy con A[k+1 ..n]
 - •Để tìm x trên dãy con A[1..k-1] hoặc A[k+1..n] ta lại áp dụng cách phân chia như đã làm với A[1..n]

So sánh 45 với x cần tìm.

Nếu x<45 Ta chỉ tìm kiếm trong dãy con bên trái Nếu x>45 Ta chỉ tìm kiếm trong dãy con bên phải Nếu x=45, thì trả lời có x trong dãy

- ■TìmKiếm(A,i,j,x)
 - **■**B1:
 - •l=i,r=j;
 - B2: Nếu (l > r) thì Trả lời Không tìm thấy, ngược lại làm các bước sau:
 - ■DiêmChia = [l+r] /2;
 - Nếu x < A_{DiểmChia} thì TìmKiếm(A,i,DiểmChia − 1,x)
 - ■Nếu $x > A_{DiểmChia}$ thì TìmKiếm(A,DiểmChia +1,j,x)
 - Ngược lại Trả lời Tìm thấy

- $A=\{a_1=3; a_2=15; a_3=28; a_4=32; a_5=45; a_6=50; a_7=67; a_8=69; a_9=71; a_{10}=93\}$
- ■TìmKiếm(A,1,10,32)
 - ■1 =1; r=10;
 - •Diêmchia = (1+10)/2;
 - •Vì $a_5 = 45 > 32$ nên TìmKiếm(A,1,4,32);

Bài toán: Tìm giá trị max và min trong dãy A

- •Chia dãy A[1..n] thành 2 dãy con A[1..k] và A[k+1..n] (k=n/2)
- Ta tìm max và min của dãy A[1..n] thông qua việc tìm max và min của dãy A[1..k] và A[k+1..n]
- •Để tìm được max và min trên các mảng con ta lại tiếp tục chia đôi chúng

- ■Dãy A={ a_1 =3; a_2 =15; a_3 =67; a_4 = 28; a_5 =50; a_6 =45; a_7 =69; a_8 =32; a_9 =93; a_{10} =71}
- Tìm giá trị max và min

- MaxMin(A,i,j,max,min) (A: dãy số a_i...a_j, max, min lưu giá trị max, min của dãy A)
 - ■B1: Nếu (i=j) thì thực hiện các bước B1.1 và B1.2, ngược lại thực hiện B2
 - ■B1.1: $max = a_i$;
 - ■B1.2: $min = a_i$;
 - ■B2: Nếu (j=i+1) thì thực hiện B3, ngược lại thực hiện B4

B3: Nếu $(a_i < a_j)$ thì max = a_j ; min = a_i ; ngược lại max = a_i ; min = a_j ;

■B4:

- ■DiểmChia = (i+j) / 2;
- •MaxMin(A,i,DiêmChia,maxLeft,minLeft);
- •MaxMin(A,DiểmChia+1,j,maxRight,minRig ht);
- •Nếu (maxLeft <maxRight) thì max = maxRight; ngược lại max =maxLeft;
- •Néu (minLeft < minRight) thì min = minLeft; ngược lại min = minRight;

Tổng kết

 Chiến lược được áp dụng rất nhiều trong giải quyết bài toán

