Architettura del SW 2018/2019

Ceresola Davide Ceriani Massimiliano Colombo Paolo

Problem Architecture - Casi D'uso

Problem Architecture - Diagramma Dominio

Problem Architecture - Activity Diagrams

Problem Architecture - Activity Diagrams

Problem Architecture - Activity Diagrams

Logical Architecture

11	ım	NΔľ	าดเ	oni
\boldsymbol{L}		ıcı	131	VIII

Abstraction

Complexity

Frequency

Intra flows

extra flows

Sharing

Criterio di partizionamento scelto: Per dominio applicativo

Logical Architecture - Gestore Ordini

Dimensione	Valore	Valore Numerico	Motivo
Abstraction	Low	10	Il componente si interessa solo delle bolle e degli ordini, astraendo completamente il compito di comunicare gli stessi o rilevare modifiche
Complexity	Medium	50	Il componente ha la funzione di raccordo tra le informazioni prodotte dalle bolle e dal servizio che ne genera i percorsi estraendo le informazioni.
Frequency	Medium	30	Se considerassimo la produzione di ordine giornalieri sarebbe low, invece l'acquisizione della bolla ne determina un innalzamento.
Intra flows	Low	10	Il componente pur essendo unico dato che assume un ruolo fondamentale è previsto l'instanziamento di 3 istanze di questo componente che però non interagiscono tra di loro se non in modo irrilevante.
extra flows	High	80	L'acquisizione dei percorsi e l'invio degli ordini giornalieri coinvolge gli altri due componenti logici.
Sharing	High	100	L'instanziamento di più istanze di tale componente comporta un alto livello di questa dimensione, in quanto vengono condivise le informazioni su cui poi ogni componente

Valore Numerico rispetto a Dimensione

Logical Architecture - Info e comunicazione

Dimensione	Valore	Valore Numerico	Motivo
Abstraction	High	70	Il componente per poter generare i percorsi e le informazioni relative ad essi utilizza anche le bolel
Complexity	Medium	50	Il componente non include tutte le attività
Frequency	Medium	50	La frequenza delle azioni svolte da questo componente sono direttamente proporzionali a quelle svolte dal componente gestore degli ordini.
Intra flows	Low	10	Il componente non necessita passaggio di informazioni tra le diverse istanze di esso in quanto ciascuna indipendentemente e senza stato.
extra flows	Medium	30	La notifica di acquisizione delle bolle e l'invio del messaggio di segnalazione rappresentano i soli punti di comunicazione con gli altri componenti logico
Sharing	High	100	L'instanziamento di più istanze di tale componente comporta un alto livello di questa dimensione, in quanto vengono condivise le diverse informazioni quali le bolle da dove poi partire per processare le informazioni.

Valore Numerico rispetto a Dimensione

Logical Architecture - Rilevatore Modifiche

Dimensione	Valore	Valore Numerico	Motivo
Abstraction	High	90	Il componente si focalizza principalmente sulle informazioni ottenute dai percorsi, sull bolle e sulle informazioni. Coinvolgendo quindi le principali entita del sistema.
Complexity	Low	20	Il componente deve recuperare le informazioni e verificare scostamenti temporali o spaziali, task non particolarmente complesso da implementare.
Frequency	Low	30	le due frequenze da prendere in considerazione per questo componente non sono elevate, in quanto ci si mantiene sull'unità di misura dei minuti.
Intra flows	Low	5	Il componente con multiplicità 1 non necessita di flussi di informazioni interni.
extra flows	High	80	Come espresso in precedenza, tale componente pur eseguendo un compito non di complessità elevata, utilizza tutti le informazioni prodotte dagli altri due servizi e li coinvolge al termine delle proprie.
Sharing	Hig	100	Il componente utilizza tutte le informazioni prodotte dagli altri servizi.

Valore Numerico rispetto a Dimensione

Concrete Architecture - Class Diagram

Concrete Architecture - Sequence Diagram

Notifica Info E Comunicazione

Single Executor usari pet notificare o calcolare i percorsi. SI noti come la notifica a MT data la sua rilevanza avviene in modo SYNC

Concrete Architecture - Sequence Diagram

Gestione e ricezione bolla

Concrete Architecture - Sequence Diagram

Rilevazioni Modifiche

System Quality Attributes

Disponibilità

- Il sistema deve essere sempre disponibile, 24/24 7/7, in quanto lo spostamento delle merci non ha orari lavorativi predefiniti. Per esempio anche la notte i mezzi effettuano i loro compiti segnalando continuamente la loro posizione.
- Con il fine di garantire una elevata disponibilità, si è scelto di **Dockerizzare** ognuno dei tre componenti precedentemente descritti, in modo da poter gestire velocemente il loro deployment.
- I vari container vengono successivamente orchestrati i tramite Kubernetes su un cluster di almeno 2 nodi, in modo da essere esente da eventuali fault.
- Per la stessa ragione ogni servizio è replicato almeno due volte in nodi diversi.

System Quality Attributes

Sicurezza

- La sicurezza delle comunicazioni tra i dati relativi al GPS di ogni mezzo vengono acquisiti e trasmessi tramite il protocollo MQTT. Per proteggere questo flusso di informazioni è stato scelto di utilizzare il servizio di IOT messo a disposizione da AWS. Questa scelta deriva dal fatto che il servizio in questione consente una mutua autenticazione tra le parti tramite chiave pubblica/privata e mediante l'utilizzo di certificati. Tale accortezza consente di evitare l'integrità e confidenzialità di questi dati.
- La visualizzazione delle bolle essendo le stesse confidenziali, è limitata ai soli utenti aventi diritto, mediante un meccanismo gerarchico di autorizzazioni date per step, tale permessi sono richiesti a ogni accesso, anche per utenti già autenticati.
- I servizi disponibili verso l'esterno sono protetti da un ingress (il nome che **Kubernetes** fornisce al proprio servizio di API Gateway come punto di ingresso ai servizi sul cluster) che gestirà le richieste previa autenticazione. L'accesso al cluster, deployato sul servizio EKS di Amazon, è inoltre definito da determinate policy che limitano gli accessi ai soli utenti autorizzati, per prevenire l'eventuale manomissione dei dati.
- Come servizio di **DNS** è stato usato quello di Cloudflare che, tra le altre caratteristiche come la bassa latenza, offre un servizio di protezione per attacchi **DDoS**.

System Quality Attributes

Performance

- Utilizzando **Kubernetes** inoltre risulta facile rendere il sistema reattivo a picchi di carico. Quando è necessario infatti l'orchestratore aumenta le repliche dei servizi di cui lo necessitano, consentendo al sistema di poter reggere il nuovo carico.
- Per rendere possibile ciò si sfruttano gli **HPA**, horizontal pod autoscaler, che permettono di deployare diversi container replicando il servizio sui nodi disponibili quando la CPU supera una certa soglia. Inoltre i servizi di cluster autoscaling di Kubernetes permettono di scalare accendendo o spegnendo nuove macchine **ec2** (incrementando quindi il numero di nodi), in base alla necessità di aggiungere/rimuovere container.

Testabilità e Modificabilità

- Il sistema essendo suddiviso in servizi, rende ogni singolo servizio testabile indipendentemente. La modifica di uno di essi inoltre potrebbe essere deployata nel cluster già in esecuzione, rimuovendola in caso di problemi senza impattare l'intero sistema. Questo permette di analizzare e testare le nuove modifiche in modo safe.