Vormoptimalisatie in softrobotics

Vladomeare Obolonskyy Begeleider: Wim Vanroose

27 mei 2024

Inhoud

- 1 Probleemstelling
- 2 Theoretische uitwerking
 - 2D model
 - uitbreiding naar 3D model
- 3 Praktische uitwerking
- 4 Resultaten
- 5 Vragen?

1. Probleemstelling

Probleemstelling

Inspiratiebron

Inspiratie soft robot

Probleemstelling

Formulering

- Vormoptimalisatie
- Benadering van een aparte onderdeel

- Drukkracht
- lacktriangle Laplaciaan \sim "veerkracht"

2D model

Druk

Stel p druk, F_{\perp} kracht orthogonaal op oppervlak A of omtrek S

$$p = \frac{F_{\perp}}{A} \Leftrightarrow F_{\perp} = p \cdot A$$

Druk

Stel p druk, F_{\perp} kracht orthogonaal op oppervlak A of omtrek S

$$p = \frac{F_{\perp}}{A} \Leftrightarrow F_{\perp} = p \cdot A$$

$$\xrightarrow{\text{Doorsnede}} p = \frac{F_{\perp}}{S} \Leftrightarrow F_{\perp} = p \cdot S$$

Laplaciaan

Neem 3 opeenvolgende punten $(x_{i-1}, y_{i-1}), (x_i, y_i)$ en (x_{i+1}, y_{i+1}) .

Minimalisatie
probleem \sim Gemiddelde zoeken

$$\begin{cases} x_i = \frac{x_{i-1} + x_{i+1}}{2} \\ y_i = \frac{y_{i-1} + y_{i+1}}{2} \end{cases}$$

x hangt niet af van y en andersom

Laplaciaan

We streven naar eentjes op de diagonaal!

$$L_{1D} = \frac{1}{2} \begin{bmatrix} -2 & 1 & & & 1 \\ 1 & -2 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ 1 & & & 1 & -2 \end{bmatrix}$$

Laplaciaan

Als resultaat krijgen we volgende Laplaciaan matrix voor een twee dimensionaal geval

$$L_{2D} = \begin{bmatrix} L_{1D} & 0 \\ 0 & L_{1D} \end{bmatrix}$$

uitbreiding naar 3D model

Laplaciaan

Elke punt heeft meerdere buren, wat aanleiding geeft tot

$$L_{1D}(i,j) = egin{cases} -1 & i=j \ rac{1}{k_i} & ext{als j-de punt een buur is} \ 0 & ext{anders} \end{cases}$$

Laplaciaan

Resulterende Laplaciaan matrix is

$$L_{3D} = \begin{bmatrix} L_{1D} & 0 & 0 \\ 0 & L_{1D} & 0 \\ 0 & 0 & L_{1D} \end{bmatrix}$$

Restricties

- Convexe problemen
- Geordende verzameling punten (mesh structuur)

Algoritme

Dit algoritme is algemeen, alles wat overbodig is voor 2 dimensionaal geval staat in rood

- Voorafgaand aan de hoofdprogramma
 - (Vergladding)
 - Structuurvorming (mesh/geordende lijst)
 - Laplaciaan samenstellen
- Hoofdprogramma
 - Massamiddelpunt zoeken
 - Volume/oppervlakte zoeken
 - Drukvectoren zoeken (!!!)
 - Resulterende vector berekenen
 - Plotten

Probleempunten: Mesh

- Hangt af van programma waar die is opgemaakt
- Definitie binnen- en buitenkant

Probleempunten: definitie normaal Hoe definieren we normaal op een discrete verzamleing?

Probleempunten: definitie normaal

Hoe definieren we normaal op een discrete verzamleing?

Probleempunten: definitie normaal

Probleempunten: definitie normaal

Probleempunten: definitie normaal

4. Resultaten

Resultaten

Startsituatie

Resultaten

Eindsituatie (iteratie 3000)

Resultaten

Convergentie van onze berekeningen

5. Vragen?

