Formulario Probabilidad

Abel Doñate Muñoz abel.donate@estudiantat.upc.edu

Tabla de distribuciones discretas

Modelo	p(X = k)	E[X]	Var[X]	$G_X(z)$
	$\begin{cases} p(X=1) = p \\ p(X=0) = 1 - p \end{cases}$	p	p(1 - p)	(1-p)+pz
Binomial $\sim Bin(N, p)$	$\binom{N}{k} p^i (1-p)^{N-k}$	Np	Np(1-p)	$((1-p)+pz)^N$
Uniforme $\sim U(1,N)$	$\frac{1}{N}$	$\frac{N+1}{2}$	$\frac{N^2 - 1}{12}$	$\frac{1}{N} \frac{z(z^N - 1)}{z - 1}$
Poisson $\sim Po(\lambda)$	$\frac{\lambda^k}{k!}e^{-\lambda}$	λ	λ	$e^{\lambda(z-1)}$
	$p(1-p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pz}{1 - (1 - p)z}$
$\begin{array}{c} \textbf{Binomial negativa} \\ \sim BinN(r,p) \end{array}$	$\begin{cases} 0 & \text{si } k < r \\ \binom{k-1}{r-1} p^r (1-p)^{k-r} & \text{si } k \ge r \end{cases}$	$\frac{r}{p}$	$r\frac{1-p}{p^2}$	$\left(\frac{pz}{1-(1-p)z}\right)^r$

Tabla de distribuciones continuas

Modelo	$f_X(x)$	E[X]	Var[X]	$G_X(z)$
Uniforme	1 ,,	b+a	$(b-a)^2$	$e^{ibt} - e^{iat}$
$\sim U(a,b)$	$\frac{1}{b-a}\mathbb{I}_{[a,b]}$		12	$1 \text{ en } t = 0, \frac{e^{iot} - e^{iat}}{it(b-a)}$
Exponencial	$\lambda e^{-\lambda x}, x \ge 0, \lambda > 0$	1	1	λ
$\sim Exp(\lambda)$	/ = /	$\overline{\lambda}$	$\overline{\lambda^2}$	$\lambda - it$
Normal	$\frac{1}{e^{-\frac{(x-\mu)^2}{2\sigma^2}}}$	μ	σ^2	$e^{i\mu t - \frac{\sigma^2 t^2}{2}}$
$\sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	Ü	C -
Gamma	λ^{τ} $a^{\tau-1}e^{-\lambda x}$ $a>0$ $\lambda >0$	τ	τ	$\left(1-\frac{it}{\lambda}\right)^{-\tau}$
$\sim Gamma(\lambda, \tau)$	$\frac{\lambda^{\tau}}{\Gamma(\tau)} x^{\tau - 1} e^{-\lambda x}, x > 0, \lambda, \tau > 0$	$\overline{\lambda}$	$\overline{\lambda^2}$	
Beta	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}, x \in [0,1]$	<u>α</u>	$\alpha\beta$	Sin forma sencilla
$\sim Beta(\alpha, \beta)$	$\Gamma(\alpha)\Gamma(\beta) \qquad (1-x) \qquad , x \in [0,1]$	$\alpha + \beta$	$(\alpha + \beta)^2(\alpha + \beta + 1)$	
Weibull	$\frac{\alpha}{\beta} \left(\frac{x}{\beta} \right)^{\alpha - 1} e^{-(x/\beta)^{\alpha}}, x, \alpha, \beta > 0$	$\beta\Gamma\left(1+\frac{1}{-}\right)$	$\beta^2 \left[\Gamma(1 + \frac{2}{\alpha}) - \Gamma^2(1 + \frac{1}{\alpha}) \right]$	$\sum_{k \geq 0} \frac{(it)^k \beta^k}{k!} \Gamma(1 + \frac{k}{\alpha})$
$\sim Weibull(\alpha, \beta)$	$\overline{\beta}$ $(\overline{\beta})$ e^{-x} , x , α , $\beta > 0$	$\beta 1 \left(1 + \frac{\pi}{\alpha}\right)$	$\begin{bmatrix} \beta & \begin{bmatrix} 1 & (1+\frac{1}{\alpha}) & -1 & (1+\frac{1}{\alpha}) \end{bmatrix} \end{bmatrix}$	$\sum_{k\geq 0} \frac{1}{k!} \left(1 + \frac{1}{\alpha}\right)$
Cauchy	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	No definida	No definida	$e^{\theta it - \gamma t }$
$\sim Cauchy(\theta, \gamma)$	$\frac{1}{\pi\gamma} \frac{1}{1 + (\frac{x-\theta}{\gamma})^2}, \gamma > 0$	110 delilida	rvo dennida	C
χ_p^2	$\frac{1}{\Gamma(p/2)2^{p/2}}x^{\frac{p}{2}-1}e^{-\frac{x}{2}}, x > 0, p \in \mathbb{N}$	p	2p	$(1-2it)^{-\frac{p}{2}}$
Doble expon	$\frac{1}{2}e^{-\frac{ x-\mu }{\gamma}}, \gamma > 0$,,	$2\gamma^2$	$e^{\mu it}$
$\sim DobExp(\mu, \gamma)$	$L = 2\gamma$	μ	27	$1 + \gamma^2 t^2$
Lognormal	$\frac{1}{\sqrt{2}} \frac{1}{e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}}, x, \sigma > 0$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2(\mu+\sigma^2)} - e^{2\mu+\sigma^2}$	Sin forma sencilla
$\sim LogN(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}} \frac{1}{x} e^{-\frac{2\sigma^2}{2\sigma^2}}, x, \sigma > 0$			om forma sentina

1 Espacio de probabilidad

Lemma (Desigualdades de Bonferroni).

$$p\left(\bigcup A_i\right) \begin{cases} \leq \sum p(A_i) \\ \geq \sum p(A_i) - \sum p(A_i \cap A_j) \\ \leq \sum p(A_i) - \sum p(A_i \cap A_j) + \sum p(A_i \cap A_j \cap A_k) \end{cases}$$

 $\begin{tabular}{ll} \bf Definition (Probabilidad condicionada). $La \ probabilidad $de \ A \ condicionada \ a \ B \ es \end{tabular}$

$$p(A|B) = \frac{p(A \cap B)}{p(B)} = \frac{p(B|A)p(A)}{p(B)}$$

Theorem (Bayes). Sea $\{A_1, \ldots, A_n\}$ un conjunto de sucesos mutuamente excluyentes y exhaustivos. Entonces si B es otro suceso:

$$p(A_i|B) = \frac{p(B|A_i)p(A_i)}{\sum p(B|A_k)p(A_k)}$$

Borel-Cantelli

Definition (Límites superior e inferior). Sea $\{A_n\} \in \mathcal{A}$ definimos los límites superior e inferior como

$$\limsup A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \qquad y \qquad \liminf A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

Proposition. Sea $\{A_n\}$ succession. $p(\lim A_n) = \lim p(A_n) = p(A)$

Theorem (Borel-Cantelli). Sea $\{A_n\}$ una sucesión de eventos

- 1. $\sum_{n>1} p(A_n) < \infty \Rightarrow p(\limsup A_n) = 0$
- 2. Si $\{A_n\}$ independent $y \sum_{n\geq 1} p(A_n) = \infty \Rightarrow p(\limsup A_n) = 1$

2 Variables aleatorias

Definition (Esperanza). Sea X una variable aleatoria y P_x su probabilidad asociada P_x se define la esperanza como

$$E[X] = \int_{\Omega} X dp = \int_{\mathbb{R}} x dP_x$$

Definition (Momento). El momento de orden r de X es $E[X^r]$

Definition (Varianza). $Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$

Definition (Covarianza). Cov[X, Y] = E[(X - E[X])(Y - E[Y]j] = E[XY] - E[X]E[Y]

Definition (Desviación típica). $\sigma(X) = \sqrt{Var[X]}$

Algunas propiedades de la esperanza y la varianza

- E[a] = a
- E[aX + bY] = aE[X] + bE[Y]
- $E[I_A] = p(A)$
- $|E[X]| \le E[|X|]$
- $E[X^2] = \sum k^2 p(x = k)$
- Var[a] = 0
- Var[a + X] = Var[X]
- $Var[aX] = a^2 Var[X]$
- E[E[Y|X]] = E[Y]
- X, Y independientes $\Rightarrow Var[X + Y] = Var[X] + Var[Y]$

Proposition. Designaldades

- *Hölder* $E[|XY|] \le E[|X|^p]^{\frac{1}{p}} E[|X|^q]^{\frac{1}{q}} \quad (\frac{1}{p} + \frac{1}{q} = 1)$
- Minkowsky $E[|X+Y|^p]^{\frac{1}{p}} \le E[|X|^p]^{\frac{1}{p}} + E[|Y|^p]^{\frac{1}{p}}$

Theorem (Designaldad de Markov). Sea X > 0 una variable aleatoria $y \ a \in \mathbb{R}^+$. Se cumple

$$p(X \ge a) \le \frac{E[X]}{a}$$

Theorem (Designaldad de Chebyshev). Sea X una variable aleatoria con $E[X] < \infty, Var[X] < \infty, Var[X] \neq 0, k > 0$

$$p(|X - E[X]| \ge kVar[X]^{\frac{1}{2}}) \le \frac{1}{k^2}$$

3 VA Discretas

Definition (Función generadora). Asociamos a la variable aleatoria X la función generadora

$$G_X(z) = \sum_{n \ge 0} p(X = n)z^n = E[z^X]$$

Las funciones generadoras satisfacen las siguientes propiedades

- $G_X(0) = p(X = 0), \qquad G_X(1) = 1$
- $E[X(X-1)\cdots(X-k+1)] = G^{(k)}(1)$
- $Var(X) = G''(1) + G'(1) G'(1)^2$
- X, Y independientes $\Rightarrow G_{X+Y} = G_X G_Y$

Árboles de Galton Watson

$$G_{Z_n} = G_x \circ \cdots \circ \cdots G_X, \quad \mu = E[X], \quad \eta = P(ext)$$

- $E[Z_n] = E[X]^n$
- $\bullet \ Var[Z_n] = \begin{cases} nVar[X] & \text{si } E[X] = 1 \\ Var[X]E[X]^{n-1} \frac{E[X]^n 1}{E[X] 1} & \text{otherwise} \end{cases}$
- n = G(n)

4 VA Continuas

Definition (Absolutamente continua). μ_1 abs cont respecto μ_2 ($\mu_1 \ll \mu_2$) si

$$\forall A \in \mathcal{A}, \quad \mu_2(A) = 0 \Rightarrow \mu_1(A) = 0$$

Theorem (Radon-Nikodyn).

$$\forall A \in \mathcal{A}, \quad \mu_1(A) = \int_A d\mu_1$$

 $\forall A \in \mathcal{B}, \quad P_X(A) = \int_A f_X d\lambda$

Proposition. En vectores de v.a.

- (X,Y) abs. cont. $\Rightarrow X,Y$ abs. cont.
- X, Y abs. cont. $\Rightarrow (X, Y)$ abs.cont.

Proposition. Si X,Y son independientes $f_{(X,Y)}(u,v) = f_X(u)f_y(v)$

Definition (Esperanza y varianza).

$$E[(X,Y)] = (E[X], E[Y])$$

$$Var[(X,Y)] = \begin{pmatrix} Var[X] & Cov(X,Y) \\ Cov(X,Y) & Var[Y] \end{pmatrix}$$

Proposition. $X, Y \ indep \Rightarrow Var[(X, Y)] \ diagonal$

$$F_{Y|X}(y,x) = \frac{1}{f_X(x)} \int_{-\infty}^{y} f_{(X,Y)}(x,v)dv$$
$$E[Y|X=x] = \int_{-\infty}^{\infty} y f_{Y|X}(y,x)dy = \psi(x)$$

Definition (Marginal). Si la fdp de (X,Y) es $f_{(X,Y)}$ las fdp marginales son f_X , f_Y

Definition (Distribución normal).

$$N(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

Theorem (Moivre-Laplace).

$$p\left(a \le \frac{X_n - np}{\sqrt{np(1-p)}} \le b\right) \xrightarrow{n \to \infty} \frac{1}{\sqrt{2\pi}} \int_a^b e^{\frac{-x^2}{2}} dx$$

Proposition. Si $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$ independientes $\Rightarrow X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Definition (Distribución χ^2). Sea $X_i \sim N(0,1)$ tenemos

$$\chi_n^2 \sim X_1^2 + \dots + X_n^2 \sim \Gamma\left(\lambda = \frac{1}{2}, \tau = \frac{n}{2}\right)$$

Definition (Distribución de Fisher-Snedecor).

$$F \sim \frac{\chi_{d_1}^2/d_1}{\chi_{d_1}^2/d_2}$$

Definition (Distribución de Student).

$$t \sim \frac{N(0, 1)}{\sqrt{\chi_k^2/k}}$$

Definition (Normal multivariante).

$$f_{\overline{X}} = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(\overline{x} - \overline{\mu})^T \Sigma^{-1}(\overline{x} - \overline{\mu})}$$

Theorem (Descomposición normal). Si \overline{X} normal multivariante $\Rightarrow \exists A$ no singular, b tal que $\overline{X} = A\overline{U} + \overline{b}$ con $U \sim N(0,1)$

Proposition. $E[\overline{X}] = \overline{\mu}, \quad \Sigma_{ij} = Cov[X_i, X_j]$

Theorem. $\overline{X} \sim N(\overline{\mu}, \Sigma) \ y \ M \ matrix \ m \times n \ con \ rango \ m.$ Sea $\overline{Y} = M \overline{X}$. Entonces

$$\overline{Y} \sim N(M\overline{\mu}, M\Sigma M^T)$$

Definition (Esperanza muestral). $\hat{X} = \frac{X_1 + \dots + X_n}{n}$

Definition (Varianza muestral). $S^2 = \frac{1}{n-1} \sum (X_i - \hat{X})^2$

Proposition. $E[\hat{X}] = \mu, Var[\hat{X}] = \frac{\sigma^2}{n}, E[S^2] = \sigma^2$

Theorem (Fisher). Sean $X_i \sim N(\mu, \sigma^2)$ indep. Entonces \hat{X}, S^2 indep. y

$$\hat{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right), \qquad S^2 = \frac{n-1}{\sigma^2} \xi_{n-1}^2$$

Proposition. Sea \overline{X} absolutamente continua con $f_{\overline{X}}(x_1,\ldots,x_n)$. Sea $g:\mathbb{R}^n\to\mathbb{R}^n\in\mathcal{C}^1$ biyectiva. Si $g(\overline{X})=\overline{Y}$ encontramos $f_{\overline{Y}}$ de la siguiente forma:

Sea $h := g^{-1}$:

$$f_{\overline{Y}}(y_1,\ldots,y_n)=f_{\overline{X}}(h(y_1,\ldots,y_n))|J_h(y_1,\ldots,y_n)|$$

5 Funciones características

Definition (Función generadora de momentos).

$$M_X(s) = E[e^{sX}] = \sum \frac{E[X^i]}{i!} s^i$$

La serie de potencias puede tener radio de convergencia 0

Propiedades

- 1. $Y = aX + b \Rightarrow M_Y(s) = e^{bs}M_Y(as)$
- 2. $\frac{d^k}{ds^k} M_X(s)|_{s=0} = E[X^k]$
- 3. $X, Y \text{ indep } \Rightarrow M_{X+Y}(s) = M_X(s)M_Y(s)$

Theorem (Chernoff). $X = \sum X_i$, $X_i \sim Be(p_i)$

$$p(X \ge (1+\delta)\mu) \le e^{-\frac{\delta^2}{2+\delta}\mu}, \quad \delta \ge 0$$
$$p(X \le (1-\delta)\mu) \le e^{-\frac{\delta^2}{2}\mu}, \quad \delta \in (0,1)$$

Deducimos $p(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\delta^2}{3}\mu}$

Definition (Función característica).

$$\phi_X(t) = E[e^i t X] = \int_R e^{itx} f_X(x) dx$$

Theorem (Inversión).

Preserved (inversion).
$$P_X((a,b)) + \frac{P_X(a) + P_X(b)}{2} = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt \ X_n \xrightarrow{r} X \Longrightarrow X_n \xrightarrow{s} X$$

Propiedades de ϕ_X

- 1. $\varphi_X(0) = 1$, $|\phi_X(t)| \le 1$
- 2. $\phi_X(t)$ unif cont
- 3. $\forall t_i \in \mathbb{R} \ \forall z_i \in \mathbb{C}, \sum \phi_X(t_i t_k) z_i \overline{z}_k \ge 0$

Definition (Familias exponenciales). $parámetros \overline{\theta} = (\theta_1, \dots, \theta_n)$

$$p(X, \overline{\theta}) = p(X|\theta) = g(x)e^{\sum \theta_i t_i(x) - c(\overline{\theta})}$$

Definition (Familia exponencial natural). $\exists k : t_k = x$

$$\phi_X(t) = e^{c(\theta_1 + it, \dots, \theta_n) - c(\overline{\theta})}$$

6 Convergencia

Definition (Tipos de convergencia). .

• Casi-segura

$$X_n \xrightarrow{qs} X \iff p(\{\omega \in \Omega : X_n(\omega) \xrightarrow{n} X(\omega)\}) = 1$$

• En media de orden r

$$X_n \xrightarrow{r} X \iff E[|X_n - X|^r] \xrightarrow{n} 0$$

• En probabilidad

$$X_n \xrightarrow{p} X \iff p(|X_n - X| > \varepsilon) \xrightarrow{n} 0$$

• En distribución

$$X_n \xrightarrow{d} X \iff F_{X_n}(x) \xrightarrow{n} F_X(x) \ \forall x \in \mathbb{R} : F_X \ continua \ tribuidas, \ E[X_i] = \mu, Var[X_i] = \sigma^2$$

Si $r \geq s \geq 1$ tenemos

Propiedades conv $X_n \xrightarrow{qs} X_s Y_n \xrightarrow{qs} Y$

- p(X = Y) = 1
- $X_n + Y_n \xrightarrow{qs} X + Y$
- $\bullet X_n Y_n \xrightarrow{qs} XY$
- $\forall c \in \mathbb{R}, cX_n \xrightarrow{qs} cX$
- $\forall g$ función continua, $g(X_n) \xrightarrow{qs} g(X)$

Theorem (Ley fuerte de los grandes números). Sean $\{X_i\}$ independientes tal que $X_i \sim X$ con $E[|X|] < \infty$.

$$E[X] = \mu, \quad S_n = \sum_{i=1}^n X_i \quad \Rightarrow \begin{cases} \frac{S_n}{n} \xrightarrow{qs} \mu \\ E\left[\left(\frac{S_n}{n} - \mu\right)^2\right] = \frac{\sigma^2}{n} \end{cases}$$

Proposition. $X_n \xrightarrow{d} X, Y_n \xrightarrow{d} \alpha \in \mathbb{R}$ entonces

$$X_n + Y_n \xrightarrow{d} X + \alpha$$

Theorem (Representación de Skorokhod). Sea $\{X_n\}$ con $X_n \stackrel{d}{\to} X$. Entonces existe un nuevo espacio de probabilidad (Ω', A', p') donde definimos $\{Y_n\}$ tal que

1. $F_{X_n}(x)=F_{Y_n}(x)$ i $F_X(x)=F_Y(x)$ $\mu-gairreb\'e$ arreu 2. $Y_n\stackrel{q-s}{\longrightarrow} T$

Proposition. g continua $g(X_n) \xrightarrow{d} g(X)$

Theorem (Lévy). $\{X_n\}$ con las características $\{\phi_n(t)\}$

- $Si X_n \xrightarrow{d} X \Rightarrow \phi_n(t) \xrightarrow{n} \varphi(t)$ puntualmente
- $Si \phi_n(t) \xrightarrow{n} \phi(t)$ puntualmente $y \phi(t)$ es continua en $t = 0 \Rightarrow \exists X : X_n \xrightarrow{d} X$

Theorem (Límite central). X_i identicamente distribuidas $E[X_i] = \mu |Var[X_i]| = \sigma^2$

$$S_n = \sum X_i \quad \Rightarrow \quad \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \stackrel{d}{\to} N(0,1)$$

3