

pst-rubans

Plotting 3D bands – an extension of pst-solides3d; v.1.2

June 6, 2011

Package author(s):
Manuel Luque
Herbert Voß

Contents 2

Contents

1	introduction			3	
2	Ruban enroulé autour d'un cylindre			3	
	2.1	Nombre de rubans rubans=1		3	
	2.2	Nombre de rubans rubans=2, nombre de spires spires=2		3	
	2.3	Nombre de rubans rubans=3, nombre de spires spires=2		4	
	2.4	Nombre de rubans rubans=4, nombre de spires spires=2		4	
	2.5	Nombre de rubans rubans=4, on fait varier la hauteur [h=2,3,4,5]		4	
	2.6	Rubans disposés sur un plan		5	
3	Rub	oan enroulé autour d'un tore		5	
4	Rub	oan enroulé autour d'un paraboloïde		7	
5	Ruban enroulé autour d'une sphère			8	
6	Rub	Rubans enroulés autour d'un cône		11	
7	List of all optional arguments for pst-ruban			13	
R	eferei	nces		13	

1 introduction 3

1 introduction

pst-rubans est une extension de pst-solides3d qui permet de tracer des rubans sur certains solides de révolution : cylindre, tore, sphère, paraboloïde et cône. La largeur du ruban, le nombre de spires, la couleur de la face externe ainsi que celle de la face interne peuvent être paramétrées. Dans le cas des hélices circulaire et conique, on peut aussi choisir le nombre de rubans.

2 Ruban enroulé autour d'un cylindre

On peut paramétrer le rayon R=2, la hauteur h=6, l'épaisseur(ou largeur) du ruban dZ=0.5, le nombre de spires spires=10 de chaque hélice, le nombre de rubans rubans=1, le nombre d'éléments par ruban resolution=36, la couleur de l'intérieur et de l'extérieur du ruban.

La base et le couvercle ne font pas partie de la commande.

2.1 Nombre de rubans rubans=1

```
\pshelices [Options] (x_0,y_0,z_0)
```



```
begin{pspicture}(-2,-1)(2,7)
psSolid[object=cylindre,r=1.5,h=0.2,ngrid=1 36](0,0,-0.2)
pshelices[incolor=yellow!50,R=1.5,h=6,hue=0 1,grid](0,0,0)
psSolid[object=cylindre,r=1.5,h=0.2,ngrid=1 36](0,0,6)
end{pspicture}
```

2.2 Nombre de rubans rubans=2, nombre de spires spires=2


```
begin{pspicture}(-2,-1)(2,7)
psSolid[object=cylindre,r=1.5,h=0.2,ngrid=1 36](0,0,-0.2)

pshelices[incolor=yellow!50,R=1.5,h=6,hue=0 1,rubans=2,grid ](0,0,0)

psSolid[object=cylindre,r=1.5,h=0.2,ngrid=1 36](0,0,6)

end{pspicture}
```

2.3 Nombre de rubans rubans=3, nombre de spires spires=2

2.4 Nombre de rubans rubans=4, nombre de spires spires=2

2.5 Nombre de rubans rubans=4, on fait varier la hauteur [h=2,3,4,5]

2.6 Rubans disposés sur un plan


```
psset{lightsrc=30 5 17,Decran=50,resolution=90,spires=2}
begin{pspicture}(-4,-1)(4,4)

psset{R=1,h=2,dZ=0.2,linewidth=0.5\pslinewidth,viewpoint=50 60 10}

psSolid[object=grille,base=-5 5 -5 5]%

psSolid[object=cylindre,r=1,h=0.2,ngrid=1 36](-3,-3,0)

psSolid[object=cylindre,r=1,h=0.2,ngrid=1 36](-3,3,0)

psSolid[object=cylindre,r=1,h=0.2,ngrid=1 36](3,3,0)

psSolid[object=cylindre,r=1,h=0.2,ngrid=1 36](3,-3,0)

pshelices[incolor=red!50,rubans=2](-3,-3,0.2)

pshelices[incolor=yellow!50,rubans=2](-3,3,0.2)

pshelices[incolor=green!50,rubans=2](3,3,0.2)

pshelices[incolor=gray!50,rubans=2](3,-3,0.2)

lend{pspicture}
```

3 Ruban enroulé autour d'un tore

```
\psSpiralRing [Options] (x_0,y_0,z_0)
```

On peut paramétrer le rayon moyen r1=2, le rayon intérieur r0=1, l'épaisseur du ruban dPHI=2, en degrés suivant la latitude, le nombre de spires spires=10 du ruban, le nombre de brins du ruban resolution=36, la couleur de l'intérieur et de l'extérieur du ruban.


```
1 \psset{unit=0.75}
2 \begin{pspicture}(-5,-5)(5,5)
3 \psframe*(-5,-5)(5,5)
4 \psSpiralRing[incolor=yellow!20,r1=4,r0=1,
5 fillcolor=orange,grid,dPHI=10,spires=5]%
7 \end{pspicture}
```


4 Ruban enroulé autour d'un paraboloïde

```
\psSpiralParaboloid [Options] (x_0,y_0,z_0)
```

On peut paramétrer la hauteur du paraboloïde h=6, l'épaisseur du ruban dz=.25, le nombre de spires spires=10 du ruban, le nombre de brins du ruban resolution=36, le paramètre de la parabole p=2, la couleur de l'intérieur et de l'extérieur du ruban.


```
psset{lightsrc=40 25 17}
psset{unit=0.75,viewpoint=50 30 20,Decran=50}
begin{pspicture}(-7,-3)(7,8)
psspiralParaboloid[incolor=yellow!50,h=6,hue=0 1,resolution=360,spires=5,grid,dZ=0.5]
pridIIID[QZ=3,Zmin=0,Zmax=6](-5,5)(-5,5)
end{pspicture}
```


5 Ruban enroulé autour d'une sphère

```
\psSphericalSpiral [Options] (x_0,y_0,z_0)
```

On peut paramétrer le rayon R=2, l'épaisseur du ruban dPHI=2, en degrés suivant la latitude, le nombre de spires spires=10 de chaque hélice, le nombre de brins du ruban resolution=36, la couleur de l'intérieur et de l'extérieur du ruban.


```
psset{unit=0.75}
begin{pspicture}(-5,-5)(5,5)

defFunction[algebraic]{helicespherique}(t){4*cos(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)*cos(t)}{4*sin(10*t)
```



```
psset{unit=0.75}
begin{pspicture}(-5,-5)(5,5)

psset{viewpoint=50 20 10,Decran=50,resolution=180}

pssphericalSpiral[incolor=yellow!50,R=4,hue=0 1,lightsrc=30 5 17]%

pridIIID[Zmin=-4,Zmax=4](-4,4)(-4,4)

end{pspicture}
```



```
| \psset{unit=0.75}
| \text{begin{pspicture}(-5,-5)(5,5)} |
| \psset{viewpoint=50 20 30,Decran=50,resolution=360} |
| \pssphericalSpiral[incolor=yellow!20,R=4,fillcolor=orange,lightsrc=40 15 25,grid,dPHI = 10](0,0,0) |
| \text{end{pspicture}} |
| \text{psset}{unit=0.75} |
| \text{viewpoint=50 20 30,Decran=50,resolution=360} |
| \text{pssphericalSpiral[incolor=yellow!20,R=4,fillcolor=orange,lightsrc=40 15 25,grid,dPHI = 10](0,0,0) |
| \text{end{pspicture}} |
| \text{psset}{unit=0.75} |
| \text{ps
```



```
begin{pspicture}(-4,-4)(4,4)

psframe*(-4,-4)(4,4)

psset{unit=0.6}

psset{viewpoint=50 20 10,Decran=50,resolution=360}

psSphericalSpiral[incolor=yellow!50,R=4,fillcolor=green!50,lightsrc=32 38 -10,grid]

white%

gridIIID[Zmin=-4,Zmax=4,linecolor=white](-4,4)(-4,4)

end{pspicture}
```

6 Rubans enroulés autour d'un cône

```
\psSpiralCone [Options] (x_0,y_0,z_0)
```

On peut paramétrer le rayon R=2, la hauteur h=6: il s'agit d'un double cône vertical, l'épaisseur(ou largeur) du ruban dZ=0.5, le nombre de spires spires=10 de chaque hélice, le nombre de rubans rubans=1, le nombre d'éléments par ruban resolution=36, la couleur de l'intérieur et de l'extérieur du ruban.


```
begin{pspicture}(-7,-8)(7,9)
psframe*(-7,-8)(7,9)

psset{viewpoint=50 20 30 rtp2xyz,Decran=50,lightsrc=viewpoint,spires=10,rubans=4}

psSpiralCone[incolor=yellow!50,h=10,R=5,fillcolor=green!50,resolution=720,dZ=0.1,grid]%

end{pspicture}
```

References 13

7 List of all optional arguments for pst-ruban

Key	Type	Default
dZ	ordinary	[none]
spires	ordinary	[none]
rubans	ordinary	[none]
dPHI	ordinary	[none]
p	ordinary	[none]

References

- [1] Hendri Adriaens. xkeyval package. CTAN:/macros/latex/contrib/xkeyval, 2004.
- [2] Bill Casselman. *Mathematical Illustrations a manual of geometry and PostScript*. Cambridge University Press, Cambridge, 2005.
- [3] Denis Girou. Présentation de PSTricks. Cahier GUTenberg, 16:21-70, April 1994.
- [4] Michel Goosens, Frank Mittelbach, Sebastian Rahtz, Denis Roegel, and Herbert Voß. *The LATEX Graphics Companion*. Addison-Wesley Publishing Company, Reading, Mass., 2nd edition, 2007.
- [5] Alan Hoenig. *T_EX Unbound: L^AT_EX & T_EX Strategies, Fonts, Graphics, and More.* Oxford University Press, London, 1998.
- [6] Frank Mittelbach and Michel Goosens et al. *The LATEX Companion*. Addison-Wesley Publishing Company, Boston, 2nd edition, 2004.
- [7] Sebastian Rahtz. An introduction to PSTricks, part I. *Baskerville*, 6(1):22–34, February 1996.
- [8] Sebastian Rahtz. An introduction to PSTricks, part II. *Baskerville*, 6(2):23–33, April 1996.
- [9] Herbert Voß. PSTricks Grafics for T_FX and L^AT_FX. UIT, Cambridge, 2011.
- [10] Timothy Van Zandt and Denis Girou. Inside PSTricks. *TUGboat*, 15:239–246, September 1994.

Index

```
dPHI, 5, 8
dZ, 3, 11
dz, 7
h, 3, 7, 11
Keyword
   dPHI, 5, 8
   dZ, 3, 11
   dz, 7
   h, 3, 7, 11
   p, 7
   R, 3, 8, 11
   r0, 5
   r1, 5
   resolution, 3, 5, 7, 8, 11
   rubans, 3, 11
   spires, 3, 5, 7, 8, 11
Macro
   \pshelices, 3
   \psSphericalSpiral, 8
   \psSpiralCone, 11
   \psSpiralParaboloid, 7
   \psSpiralRing, 5
p, 7
Package
   pst-rubans, 3
   pst-solides3d, 3
\pshelices, 3
\psSphericalSpiral, 8
\psSpiralCone, 11
\psSpiralParaboloid, 7
\psSpiralRing, 5
pst-rubans, 3
pst-solides3d, 3
R, 3, 8, 11
r0, 5
r1, 5
resolution, 3, 5, 7, 8, 11
rubans, 3, 11
spires, 3, 5, 7, 8, 11
```