

Rapport de stage : Simulations moléculaires d'électrodes capacitives

LOU CHAO Heiarii M2 Physique Numérique

Établissement d'accueil : Laboratoire de Mécanique et de

Génie Civil

Encadrants: Katerina Ioannidou, Romain Dupuis

Table des matières

1	Présentation du système modèle	2
	1.1 Description du modèle	2
	1.2 Construction du modèle	2
	1.3 Déroulement et détails des simulations	4
2	Présentation des méthodes utilisées	8
	2.1 Présentation de ReaxFF	8
	2.2 Présentation d' <i>EChemDID</i>	8
3	Résultats et discussion	9
	3.1 Comparaison de deux méthodes pour la molécule d'eau	9
4	Conclusion	14
\mathbf{A}	Construction des configurations initiales avec $Packmol$	i
В	Conversion des fichiers de configurations initiales au format <i>LAMMPS</i>	ii
	B.1 Conversion pour <i>ReaxFF</i>	ii
	B.2 Conversion pour le modèle SPC/E	ii

Introduction

En 2019, la consommation mondiale d'énergie finale a doublé par rapport à 1973 et a dépassé la barre des $400\,\mathrm{EJ}$, dont $19.7\,\%$ d'électricité [1].

Les énergies renouvelables sont une des solutions pour répondre à cette demande croissante d'électricité tout en respectant l'environnement. Cependant, les périodes de production ne coïncidant pas nécessairement avec les périodes de consommation – le cycle diurne étant un exemple – il est nécessaire de pouvoir stocker efficacement l'énergie produite en attendant qu'elle soit consommée.

Les supercondensateurs sont une bonne piste pour le stockage d'énergie. Ils sont composés d'électrodes poreuses séparées par une membrane perméable et plongées dans un électrolyte. Ceci permet le déplacement des charges d'une électrode à l'autre lorsque l'appareil est en charge ou en décharge (Fig. 0.1).

Ils se situent entre les batteries et les condensateurs en termes de densité d'énergie et de puissance, ainsi leur utilisation est répandue pour les véhicules électriques, systèmes d'alimentation sans fil ou encore appareils portables.

FIGURE 0.1 – Schéma d'un supercondensateur

Les supercondensateurs ont été le sujet d'un bon nombre d'études. En effet, des recherches se basant sur la Dynamique Moléculaire ont déjà été réalisées sur : les électrolytes[2], les matériaux d'électrodes[3], et leurs performances[4].

Malgré son importance, la complexité de la structure de ces électrodes est trop grande pour l'étude que nous avons envisagée, notamment à cause de leur porosité, de la présence de réseaux de pores et de défauts[5]. Ainsi, nous avons choisi d'étudier un système modèle pour nous concentrer sur l'observation des mécanismes de base de ces appareils, comme l'adsorption des ions et la formation de la Double Couche Électrique (EDL). En faisant cela, nous espérons pouvoir mieux comprendre le fonctionnement des supercondensateurs.

Dans un premier temps, nous présentons ce système modèle : ses caractéristiques, sa construction et sa mise en place. Puis, nous discutons des outils que nous utilisons dans nos simulations, à savoir le potentiel réactif ReaxFF[6][7][8], la mise en place de la polarisation du système à l'aide d'EChemDID[9], et leur implémentation au sein de LAMMPS. Enfin, nous présentons les résultats obtenus et observations faites lors de cette étude, notamment par rapport à l'adsorption des ions à la surface des électrodes, l'influence de leurs défauts, et la répartition des charges en leur sein.

1 Présentation du système modèle

Comme mentionné précédemment, à cause de la complexité du système il est préférable pour cette étude de considérer un sytème modèle. Dans cette section, nous décrivons le modèle et ses caractéristiques, avant de détailler sa construction, et de discuter des simulations dans lesquelles il intervient.

1.1 Description du modèle

Le système modèle est composé d'électrodes en graphites immergées dans un électrolyte aqueux d'hydroxyde de sodium, sa structure est présentée à la Fig. 1.1 et ses caractéristiques au TAB. 1.1.

FIGURE 1.1 – Schéma de la structure du système modèle

Groupe	Caractéristique	Valeur	
Système	Dimensions	$(22.104, 21.270, \sim 40)$	Å
	Particules	~ 3000	
Électrodes	Séparation	~ 20	Å
	Atomes (par électrode)	540	
Électrolyte	Molécules d'eau	314	
	Concentration	~ 1.0	$\mathrm{mol.L}^{-1}$
	Ions	6	

Table 1.1 – Caractéristiques du système

1.2 Construction du modèle

FIGURE 1.2 – Démarche de construction de la structure

Pour construire la structure du modèle, la démarche Fig. 1.2 a été adoptée afin d'obtenir le système aux dimensions et caractéristiques désirées, avec une configuration initiale des particules convenable.

Obtention des structures

Les données sur les structures des molécules ont été obtenues grâce à la Crystallography Open Database (COD) et celles-ci sont présentées à la Fig. 1.3.

FIGURE 1.3 – Structures des molécules provenant de la COD

Obtention de la super-cellule

La structure de graphite de base a pu être étendue grâce à un logiciel tier[10], 9 fois selon la direction [OX) et 5 fois selon la direction [OY) afin que les dimensions dans ces directions soient du même ordre, pour obtenir une électrode de graphite (TAB. 1.2 et Fig. 1.4).

Structure	X [Å]	Y [Å]	Z [Å]
Graphite de base	2.456	4.254	6.696
Électrode de graphite	22.104	21.270	6.696

Table 1.2 – Dimensions des schructures

FIGURE 1.4 – Électrode obtenue après duplication du réseau de graphite

Agencement des particules

Les particules ont pu être disposées pour construire le modèle à l'aide de Packmol[11], détails à l'Annexe A.

Pour obtenir des configurations initiales suffisamment stables nous avons choisi de répartir les entités en les séparant d'au moins 2.5 Å : entre les molécules et ions de l'électrolyte, et entre les particules de l'électrolyte et les électrodes.

Et pour respecter les conditions aux limites périodiques, cette séparation a également été appliquée aux bords du système : nous ajoutons un retrait égal à la moitité de cette séparation à chaque bord.

Finalement, nous obtenons la configuration présentée à la figure Fig. 1.5.

FIGURE 1.5 – Structure finale obtenue après agencement des molécules

1.3 Déroulement et détails des simulations

Étape	Paramètre	Valeur	
Toutes	timestep	0.1	fs
	potentiel	ReaxFF	
Minimisation	maxiter	1000	
	maxeval	10 000	
	etol	10^{-5}	
	ftol	10^{-6}	$kcal.mol^{-1}.Å^{-1}$
Relaxation et Stabilisation	durée	200 000	
		20.0	ps
	T_target	300.0	K
	P_target	1.0	atm
Simulation	durée	10 000 000	
	polarisation	EChemDID	
		1.0	ns
	T_target	300.0	K

Table 1.3 – Récapitulatif des paramètres des simulations

Figure 1.6 – Déroulement des simulations

Toutes les simulations suivent le déroulement de la Fig. 1.6 afin de définir les paramètres de simulation, de préparer le système, et de lui permettre de s'équilibrer.

Paramétrisation

Elle consiste à définir les paramètres clés de la simulation. Par exemple :

- le pas de temps (timestep) sélectionné pour les simulations est de 0.1 fs
- les interactions sont basés sur le potentiel réactif ReaxFF (détaillé à la Sec. 2.1)
- la mise en place de la différence de potentiel entre les électrodes est réalisée grâce à EChemDID (détaillé à la SEC. 2.2)

Ajout du système

Ceci est effectué avec une commande *LAMMPS* de lecture de données. Pour ce faire, il est nécessaire de convertir les données des positions des particules du système (détails à la SEC. 1) en données *LAMMPS* (détails à l'ANNEXE B).

Minimisation

Cette étape est essentielle au démarrage d'une simulation : elle sert à s'assurer que la configuration de départ de la simulation soit "correcte" et que le système soit stable.

Elle consiste à déplacer les particules du système sans dynamique de manière à minimiser l'énergie potentielle et les forces totales du système. Cette procédure suit un algorithme de gradient conjugué avec pour fonction objectif l'énergie potentielle totale :

$$E(r_1, \dots, r_N) = \sum_{i,j} E_{pair}(r_i, r_j) + \dots + \sum_{i,j} E_{fix}(r_i)$$

où sont prises en compte les énergies : des interactions de paires, des liaisons et angles si présents, des interactions *improper* ou *dihedral*, et des fix imposés lors de la minimisation (ex : ajout de contraintes, de forces appliquées sur les atomes, etc.).

Relaxation et stabilisation

Ces étapes utilisent un thermostat et barostat de Nosé-Hoover pour atteindre les conditions physiques recherchées et les stabiliser.

Les conditions de pression et de température recherchées sont $T=300\,\mathrm{K}$ et $P=1\,\mathrm{atm}$, et les évolutions des quantités thermodynamiques lors de ces étapes sont typiquement celles des Fig. 1.7.

Simulation

Cette étape sert à récolter des données et informations sur le système après qu'il a atteint l'équilibre.

Elle se déroule avec un thermostat de Nosé–Hoover à 300 K et pour une durée $\geq 1\,\mathrm{ns}$ (Fig. 1.8).

FIGURE 1.7 – Allures des grandeurs thermodynamiques pendant de la relaxation et la stabilisation (chaque étape a lieu en 100 000 timesteps soit $10\,\mathrm{ps}$)

FIGURE 1.8 – Allures des grandeurs thermodynamiques pendant la simulation principale

2 Présentation des méthodes utilisées

2.1 Présentation de ReaxFF

FIGURE 2.1 – Interactions et énergies au sein de ReaxFF (tiré de [7])

ReaxFF[7][8] est un potentiel utilisant les ordres de liaison pour modéliser des interactions atomiques en prenant aussi en compte les réactions chimiques (Fig. 2.1).

Il a été conçu de façon à obtenir des résultats dont la précision se rapproche des méthodes quantiques, en mettant en jeu autant d'atomes que les méthodes classiques.

Cette méthode se base sur le formalisme des ordres de liaison, où l'énergie d'une liaison entre un atome i et un atome j est donnée par :

$$BO_{ij} = \exp\left[p_{bo,1} \left(\frac{r_{ij}}{r_o}\right)^{p_{bo,2}}\right] + \exp\left[p_{bo,3} \left(\frac{r_{ij}^{\pi}}{r_o}\right)^{p_{bo,4}}\right] + \exp\left[p_{bo,5} \left(\frac{r_{ij}^{\pi\pi}}{r_o}\right)^{p_{bo,6}}\right]$$
(1)

en s'appuyant sur un bon nombre de paramètres $-p_{bo,1}, \ldots, p_{bo,6}, r_o$ – issus de calculs ab initio, et dépendant de la nature des atomes mis en jeu, et du type de liaison considéré. Et pour les molécules, ce potentiel corrige l'énergie calculée pour l'utiliser lors du calcul des énergie d'angles, de torsions, etc..

Enfin, ce potentiel a été comparé à un modèle existant de la molécule d'eau à la SEC. 3.1.

2.2 Présentation d'*EChemDID*

3 Résultats et discussion

3.1 Comparaison de deux méthodes pour la molécule d'eau

Puisque l'eau joue un rôle important dans le système que nous étudions, nous voulons explorer plusieurs approches pour la modélisation de la molécule d'eau :

- le modèle Extended Simple Point Charge (abrégé SPC/E)[12][13]
- le potentiel réactif *ReaxFF* (présenté à la Sec. 2.1)

Nous faisons d'abord une brève comparaison des fonctionnements théoriques des deux méthodes, puis mettons en place des simulations d'un même système avec ces deux approches, et finalement comparons leurs résultats.

Comparaison des fonctionnements

Alors que le potentiel ReaxFF est réactif et se base sur les ordres de liaison (voir Sec. 2.1), le modèle SPC/E est rigide et les interactions intermoléculaires ne considèrent que les atomes d'oxygène avec un potentiel de Lennard–Jones.

Caractéristiques	ReaxFF	SPC/E
Modèle de liaisons	Ordres de liaison	Rigide/Harmonique
Modèle d'angles	Ordres de liaison	Rigide/Harmonique
Modèle de molécules	Aucun	Rigide
Interactions intermoléculaires	ReaxFF	Lennard-Jones

Table 3.1 – Comparaison des fonctionnements des modèles

De fait, ReaxFF est un potentiel objectivement plus flexible que le modèle SPC/E mais implique une charge de calcul beaucoup plus grande.

Par ailleurs, puisque le modèle SPC/E fait appel à des molécules/liaisons/angles rigides, son utilisation avec LAMMPS nécessite l'utilisation d'un format de données de configuration initiale plus complet que ReaxFF. La conversion des données dans ce format est détaillée à l'Sec. B.2.

Mise en place des simulations

Pour faciliter la comparaison des résultats obtenus par simulations aux résultats expérimentaux, les conditions de simulations sont : $T = 300 \,\mathrm{K}, P = 1 \,\mathrm{atm}$, et les simulations suivent le déroulement présenté à la Sec. 1.3. Les différentes quantités thermodynamiques relevées au cours de ces simulations sont présentées aux Fig. 3.1 et 3.2.

FIGURE 3.1 – Quantités thermodyanmiques lors de la relaxation

Figure 3.2 – Quantités thermodynamiques lors de la simulation

Proriétés comparées

Pour cette étude, nous comparons les propriétés structurales et de diffusion des deux modèles avec la Radial Distribution Function et le Mean Squared Displacement.

En effet, pour rappel, la première des deux grandeurs nous informe sur la probabilité de trouver deux atomes à une distance donnée l'un de l'autre en comparaison à un gaz parfait :

$$g(r) = \frac{\langle \rho(r) \rangle}{\rho} = \frac{\mathrm{d}n(r)}{4\pi r^2 \mathrm{d}r\rho}$$
 (2)

où $\rho(r)$ est la densité locale de particules, $\langle \cdot \rangle$ est la moyenne sur l'ensemble, dn(r) est le nombre de particules à l'intérieur de la coquille sphérique située à r et d'épaisseur dr, et ρ est la densité numérique moyenne de la paire considérée.

Quant à la deuxième quantité, pour des temps sufisamment longs elle nous donne indirectement le coefficient de diffusion du système :

$$MSD(t) \equiv \left\langle \left| \vec{r}(t) - \vec{r}(t_0) \right|^2 \right\rangle = 2dDt$$

où \vec{r} est la position d'une particule, $\langle \cdot \rangle$ est la moyenne sur l'ensemble, t_0 est un temps de référence, d est le nombre de dimensions du problème, D est le coefficient de diffusion du système et t est le temps.

Cependant, pour obtenir une meilleur précision quant au coefficient de diffusion, nous utilisons le *Mean Squared Displacement* moyenné sur les décalages en temps :

$$\overline{MSD}(\tau) = \frac{1}{N_{\tau}} \sum_{i=0}^{N_{\tau}} \left\langle |\vec{r}(\tau) - \vec{r}(t_0)|^2 \right\rangle = 2dDt$$
(3)

où τ est un décalage de configurations, et N_{τ} le nombre de configurations pouvant être décalées de τ dans la trajectoire. \overline{MSD} est donc, pour chaque décalage de configurations, une moyenne sur l'ensemble de la trajectoire.

Résultats obtenus

LES RÉSULTATS!!

(a) Comparaison des Radial Distribution Func- (b) Comparaison des Mean Squared Displacetions ments

FIGURE 3.3 – Comparaison des résultats obtenus

4 Conclusion

A Construction des configurations initiales avec Packmol

- B Conversion des fichiers de configurations initiales au format LAMMPS
- B.1 Conversion pour ReaxFF
- B.2 Conversion pour le modèle SPC/E

Références

- [1] Dr Fatih Birol. "Key World Energy Statistics 2021". In: ().
- [2] Cheng Zhong et al. "A review of electrolyte materials and compositions for electrochemical supercapacitors". In: *Chemical Society Reviews* 44.21 (2015), p. 7484-7539. ISSN: 0306-0012, 1460-4744. DOI: 10.1039/C5CS00303B. URL: http://xlink.rsc.org/?DOI=C5CS00303B (visité le 16/07/2023).
- [3] Zaharaddeen S. Iro, C. Subramani et S.S. Dash. "A Brief Review on Electrode Materials for Supercapacitor". In: *International Journal of Electrochemical Science* 11.12 (déc. 2016), p. 10628-10643. ISSN: 14523981. DOI: 10.20964/2016.12.50. URL: https://linkinghub.elsevier.com/retrieve/pii/S1452398123179211 (visité le 17/07/2023).
- [4] Lei Zhang et al. "A review of supercapacitor modeling, estimation, and applications: A control/management perspective". In: Renewable and Sustainable Energy Reviews 81 (jan. 2018), p. 1868-1878. ISSN: 13640321. DOI: 10.1016/j.rser.2017.05.283. URL: https://linkinghub.elsevier.com/retrieve/pii/S1364032117309292 (visité le 05/07/2023).
- [5] Zheng Bo et al. "Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations". In: Nano-Micro Letters 10.2 (avr. 2018), p. 33. ISSN: 2311-6706, 2150-5551. DOI: 10.1007/s40820-018-0188-2. URL: http://link.springer.com/10.1007/s40820-018-0188-2 (visité le 05/07/2023).
- [6] Adri C. T. VAN DUIN et al. "ReaxFF: A Reactive Force Field for Hydrocarbons". In: The Journal of Physical Chemistry A 105.41 (1er oct. 2001), p. 9396-9409. ISSN: 1089-5639, 1520-5215. DOI: 10.1021/jp004368u. URL: https://pubs.acs.org/doi/10.1021/jp004368u (visité le 05/07/2023).
- [7] Michael F. Russo et Adri C.T. van Duin. "Atomistic-scale simulations of chemical reactions: Bridging from quantum chemistry to engineering". In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269.14 (juill. 2011), p. 1549-1554. ISSN: 0168583X. DOI: 10.1016/j.nimb.2010.12.053. URL: https://linkinghub.elsevier.com/retrieve/pii/S0168583X10009869 (visité le 16/03/2023).
- [8] Thomas P. Senftle et al. "The ReaxFF reactive force-field: development, applications and future directions". In: npj Computational Materials 2.1 (4 mars 2016). Number: 1 Publisher: Nature Publishing Group, p. 1-14. ISSN: 2057-3960. DOI: 10.1038/npjcompumats.2015.11. URL: https://www.nature.com/articles/npjcompumats201511 (visité le 16/03/2023).
- [9] Nicolas Onofrio et Alejandro Strachan. "Voltage equilibration for reactive atomistic simulations of electrochemical processes". In: *The Journal of Chemical Physics* 143.5 (7 août 2015), p. 054109. ISSN: 0021-9606, 1089-7690. DOI: 10.1063/1. 4927562. arXiv: 1504.03621 [cond-mat]. URL: http://arxiv.org/abs/1504.03621 (visité le 03/07/2023).
- [10] Koichi MOMMA et Fujio IZUMI. "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data". In: Journal of Applied Crystallography 44.6 (1er déc. 2011), p. 1272-1276. ISSN: 0021-8898. DOI: 10.1107/S0021889811038970. URL: https://scripts.iucr.org/cgi-bin/paper?S0021889811038970 (visité le 17/07/2023).
- [11] L. Martínez et al. "PACKMOL: A package for building initial configurations for molecular dynamics simulations". In: *Journal of Computational Chemistry* 30.13 (oct. 2009), p. 2157-2164. ISSN: 01928651, 1096987X. DOI: 10.1002/jcc.21224.

- $\mathtt{URL}: \mathtt{https://onlinelibrary.wiley.com/doi/10.1002/jcc.21224}$ (visité le 23/06/2023).
- [12] H. J. C. Berendsen et al. "Interaction Models for Water in Relation to Protein Hydration". In: Intermolecular Forces. Sous la dir. de Bernard Pullman. T. 14. Series Title: The Jerusalem Symposia on Quantum Chemistry and Biochemistry. Dordrecht: Springer Netherlands, 1981, p. 331-342. ISBN: 978-90-481-8368-5 978-94-015-7658-1. DOI: 10.1007/978-94-015-7658-1_21. URL: http://link.springer.com/10.1007/978-94-015-7658-1_21 (visité le 20/03/2023).
- [13] H. J. C. Berendsen, J. R. Grigera et T. P. Straatsma. "The missing term in effective pair potentials". In: *The Journal of Physical Chemistry* 91.24 (1er nov. 1987). Publisher: American Chemical Society, p. 6269-6271. ISSN: 0022-3654. DOI: 10.1021/j100308a038. URL: https://doi.org/10.1021/j100308a038 (visité le 20/03/2023).