BAŞKENT ÜNİVERSİTESİ

Mühendislik Fakültesi - Elektrik-Elektronik Mühendisliği Bölümü EEM 312 – Sayısal Elektronik

Yazılım Laboratuarı

Deney No: 10

Deney Adı: Statik ve dinamik güç

Amaç:

• Tersleyicinin üzerinde harcanan güç ve bu değeri etkileyen faktörlerin incelenmesi

• Tersleyicde kullanılan teknolojiye uygun çalışma voltajının seçilmesi

Laboratuar Calışması:

1. Tablo 1'de verilen model tanımlamalarını kullanarak Şekil 1'de verilen devrenin ağ listesini oluşturun. PMOS için 1.2u/5.4u (L/W), NMOS için 1.2u/1.8u (L/W) değerlerini kullanın. Tablo 2'de verilen benzetimleri gerçekleştirin ve soruları cevaplayın.

Şekil 1 – CMOS Tersleyici dinamik modeli

Tablo 1 - Model parametreleri

.MODEL MOSN NMOS LEVEL=2 LD=0.15U TOX=200.0E-10

- + NSUB=5.36726E+15 VTO=0.743469 KP=8.00059E-05 GAMMA=0.543
- + PHI=0.6 U0=655.881 UEXP=0.157282 UCRIT=31443.8
- + DELTA=2.39824 VMAX=55260.9 XJ=0.25U LAMBDA=0.0367072
- + NFS=1E+12 NEFF=1.001 NSS=1E+11 TPG=1.0 RSH=70.00
- + CGDO=4.3E-10 CGSO=4.3E-10 CJ=0.0003 MJ=0.6585
- + CJSW=8.0E-10 MJSW=0.2402 PB=0.58

.MODEL MOSP PMOS LEVEL=2 LD=0.15U TOX=200.0E-10

- + NSUB=4.3318E+15 VTO=-0.738861 KP=2.70E-05 GAMMA=0.58
- + PHI=0.6 U0=261.977 UEXP=0.323932 UCRIT=65719.8
- + DELTA=1.79192 VMAX=25694 XJ=0.25U LAMBDA=0.0612279
- + NFS=1E+12 NEFF=1.001 NSS=1E+11 TPG=-1.0 RSH=120.6
- + CGDO=4.3E-10 CGSO=4.3E-10 CJ=0.0005 MJ=0.5052
- + CJSW=1.349E-10 MJSW=0.2417 PB=0.64

Tablo 2 - Sorular

Analiz ve Parametreler	Sorular
	Giriş gerilimine göre devrenin statik harcadığı gücü
DC analiz	değişen vdd gerilimleri için elde edin, en yüksek
Vdd=0-5V arası	değerini nerede almaktadır belirtin.
	• Vdd voltajının etkisi nedir, oranlar vererek açıklayın.

$\begin{array}{c} \text{Geçici Durum Analizi} \\ C_L=0.1p \\ \text{Per}=200n \\ \text{Vdd}=5V \\ \\ \text{Geçici Durum Analizi} \\ C_L=0.1p \\ \text{Per}=100n \\ \text{Vdd}=5V \\ \end{array}$	 Devrenin anahtarlama süresince hangi durumda en yüksek güç tüketimine sahiptir. Devrenin anahtarlama süresince ortalama ne kadar güç tüketmektedir? Benzetim sonuçlarına göre ortalama güç tüketim oranının değişimi nedir?
$\begin{array}{c} \text{Geçici Durum Analizi} \\ C_L=0.2p \\ \text{Per}=100n \\ \text{Vdd}=5V \\ \hline \text{Geçici Durum Analizi} \\ C_L=0.2p \\ \text{Per}=100n \\ \text{Vdd}=3V \\ \end{array}$	 Devrenin anahtarlama süresince ortalama ne kadar güç tüketmektedir? Benzetim sonuçlarına göre ortalama güç tüketim oranının değişimi nedir?
Geçici Durum Analizi C_L =0.1p Per =100n Vdd =5V Geçici Durum Analizi C_L =0.2p Per =100n Vdd =5V	 Devrenin anahtarlama süresince ortalama ne kadar güç tüketmektedir? Benzetim sonuçlarına göre ortalama güç tüketim oranının değişimi nedir?

2. Şekil 1'de verilen devre için Tablo 3'de verilen benzetimleri gerçekleştirin ve soruları yanıtlayın.

Analiz ve Parametreler	Sorular
Geçici durum analizi Vdd= 1V, 1.5V, 2V, 2.5V, 3V, 4V, 5V için, C _L =0.1p Per=100n	 Devrenin verilen Vdd değerleri için ortalama güç tüketimini elde edin. Geçici durum analiznden gecikme süresini bularak güç-geçikme çarpanını bulun. Vdd değerine karşı güç-gecikme çarpanını kabaca çizin, hangi değerde en iyi performansı vermektedir açıklayın. Devrede kullanılan mosfetler kısa kanal olsaydı sonuçlara etkisi ne olurdu açıklayın.

Değerlendirme:

Değerlendirme ile ilgili bilgileri ilgili web sayfasında bulabilirsiniz. Raporlarınızı laboratuar web sayfasına teslim süresinden önce yüklemeniz gerekmektedir. Yükleme ile ilgili detaylar web sayfasında yer almaktadır

http://www.baskent.edu.tr/~engcif