SPRAWOZDANIE Z LABORATORIUM Przedmiot:			rok akademicki
Teoria Sterowania			2020/21
Temat ćwiczenia: Badanie układów dynamicznych			termin zajęć: wtorek 13:30 – 15:00
Wydział, kierunek, semestr, grupa: WI, AiR, VI, A2/L4 15.03.2021	Imię i Nazwisko: 1. Konrad Borowik	Pun	kty:

1. Odpowiedź czasowa na wymuszenie skokowe dla:

Odpowiedź czasowa na wymuszenie sin(2t) dla:

Układ jest wyprowadzany ze stanu równowagi za pomocą siły **F**. Sprężyna **k** dąży do przywrócenia stanu równowagi, natomiast tłumik **b** redukuje siłę **F**. Wykres zależności **ksi(t)** reprezentuje położenie w danej chwili czasu, natomiast **ksi'(t)** - prędkość.

W przypadku wymuszenia skokiem jednostkowym, układ bez tłumika wpada w stałe oscylacje wynikające z nie zanikającej prędkości. Z tłumikiem, prędkość po pewnym czasie spada do zera i wtedy też układ przestaje się ruszać.

Dla wymuszenia sinusoidalnego układ zawsze będzie oscylować, ze względu na stale zmieniające się wymuszenie. Układ bez tłumika wykonuje okresowo ten sam ruch. Natomiast z tłumikiem dąży do stałych oscylacji wokół punktu równowagi.

2.1

Zmienne stanu wahadła fizycznego:

$$x = [x1, x2] = [\theta, \theta']$$
 $dx = [dx1, dx2]$

Równania stanu wahadła fizycznego

$$dx1 = \theta' = x2$$

$$dx2 = \theta'' = -\frac{b}{m^*l^2+l}\theta' - \frac{m^*g^*l}{m^*l^2+l}sin(\theta) + \frac{u}{m^*l^2+l}$$

Równanie wyjścia

$$y = [l * sin(x1) l * cos(x1)]$$

wymuszenie = 0; b = 0,1 Im większe tłumienie w wahadle, tym szybciej układ się zatrzyma.

Okres drgań wahadła dla **b** = 0 wynosi około 1,85s. W przypadku niezerowego tłumienia nie da się jednoznacznie określić okresu drgań, ponieważ ten nieustannie zmierza do 0.

Ze wzoru na okres drgań wahadła liniowego:

$$T = 2 * \pi * \sqrt{\frac{l}{g}},$$

otrzymałem T = 1,42 s, co oznacza, że przybliżenie $sin(\theta) \approx \theta$ dla kąta $\theta = 90^{\circ}$ jest nieuzasadnione. Takie przybliżenie można wykonać jedynie dla małych odchyleń (<10°).

Ze względu na stale zmieniające się wymuszenie sinusoidalne, układ po pewnym czasie wpada w stałe oscylacje. Ten czas będzie tym krótszy im częstotliwość będzie mniejsza.