7. Proposition: Let $a, b \in \mathbb{R}$ such that 0 < a < b. Then $a < \sqrt{ab} < \frac{a+b}{2} < b$.

Proof.

First we find an inequality relating a, b and \sqrt{ab} . Observe that

$$0 < a < b \Longrightarrow \left((0 < a^2 < ab) \land (0 < ab < b^2) \right)$$

$$\Longrightarrow 0 < a^2 < ab < b^2$$

$$\Longrightarrow 0 < \sqrt{a^2} < \sqrt{ab} < \sqrt{b^2}$$

$$\Longrightarrow a < \sqrt{ab} < b.$$

Now we find an inequality relating a, b and $\frac{a+b}{2}$. Observe that

$$0 < a < b \Longrightarrow \Big((a + b < 2b) \land (2a < a + b) \Big)$$
$$\Longrightarrow 2a < a + b < 2b$$
$$\Longrightarrow a < \frac{a + b}{2} < b.$$

Finally, we find show that $\sqrt{ab} < \frac{a+b}{2}$. Observe that

$$\sqrt{ab} < \frac{a+b}{2} \iff 2\sqrt{ab} < a+b \iff$$

$$(2\sqrt{ab})^2 < (a+b)^2 \iff$$

$$4ab < a(a+b) + b(a+b)$$

$$= a^2 + 2ab + b^2 \iff$$

$$0 < a^2 - 2ab + b^2$$

$$= a(a-b) - b(a-b)$$

$$= (a-b)^2$$

Since the square of any number is non-negative, and $a < b \Longrightarrow a - b \neq 0$, clearly $0 < (a - b)^2$, which implies $\sqrt{ab} < \frac{a + b}{2}$. Combining the three inequalities, we get $a < \sqrt{ab} < \frac{a + b}{2} < b$ for $a, b \in \mathbb{R}$.