무선공학개론

- 문 1. 마이크로웨이브(microwave) 통신의 특징으로 옳은 것은?
 - ① 전파가 전리층의 영향을 받아 감쇠와 왜곡이 심하다.
 - ② 사용 주파수 범위가 넓어 광대역 전송이 가능하다.
 - ③ 1[GHz] ~ 10[GHz]의 주파수 영역에서는 전자기 잡음레벨이 상대적으로 매우 높다.
 - ④ 동작주파수가 높아 고이득, 고지향성 안테나의 구현이 불가능하다.
- 문 2. 송신안테나의 출력전력이 10[W]이고 안테나이득이 20[dB]인 경우 실효등방성방사전력(EIRP)[W]는?
 - ① 10
 - ② 100
 - 3 1,000
 - 4) 10,000
- 문 3. 전파의 성질에 대한 설명으로 옳지 않은 것은?
 - ① 전파는 횡파이며 평면파이다.
 - ② 균일 매질에서 전파하는 전파는 직진한다.
 - ③ 주파수가 높을수록 회절작용이 심하다.
 - ④ 서로 다른 매질의 경계면에서 굴절과 반사되는 성질이 있다.
- 문 4. 신호 $s(t) = 10\cos(4 \times 10^9 \pi t)$ 를 반파장 다이폴 안테나로 수신할 경우, 안테나의 길이[cm]는? (단, 전파의 속도는 3×10^8 [m/s]이다)
 - ① 5
 - 2 7.5
 - ③ 10
 - 4 12.5
- 문 5. 다음 그림은 반송파주파수 950 [kHz]로 진폭변조된 신호를 중간 주파수 455 [kHz]로 변환하는 슈퍼헤테로다인(superheterodyne) 수신기이다. 하측 튜닝(low-side tuning)을 사용하는 국부발진기의 주파수[kHz]는?

- ① 40
- 2 495
- ③ 1405
- 4) 1860

- 문 6. 정지궤도 위성과 극궤도 위성에 대한 설명으로 옳은 것은?
 - ① 극궤도 위성의 공전주기는 지구의 자전주기와 같다.
 - ② 극궤도 위성은 적도 상공에 궤도를 유지하면서 지구 주위를 회전한다.
 - ③ 정지궤도 위성은 남극과 북극을 통과하는 궤도를 따라 지구 주위를 공전한다.
 - ④ 정지궤도 위성의 고도는 극궤도 위성의 고도에 비해 높다.
- 문 7. PCM(Pulse Code Modulation) 방식에 대한 설명으로 옳은 것은?
 - ① 왜곡을 발생시키지 않는 최소 표본화 주파수를 나이키스트 주파수라고 한다.
 - ② 양자화 이후에 표본화를 진행한다.
 - ③ 적은 비트 수로 입력신호의 넓은 범위를 양자화하기 위해서는 균일 양자화가 적합하다.
 - ④ 양자화 비트 수가 증가할수록 양자화 잡음은 증가한다.
- 문 8. 지구국과 위성 사이의 거리가 $22,500 \, [\mathrm{km}]$ 떨어져 있을 때, 지구국에서 전파를 발사하여 지구국으로 되돌아올 때까지 걸리는 시간[ms]은? (단, 위성에서의 지연시간은 무시하고, 전파의 속도는 $3 \times 10^8 \, [\mathrm{m/s}]$ 이다)
 - ① 100
 - ② 150
 - ③ 200
 - 4) 250
- 문 9. 다음 그림에서 입력전력 $(P_{\rm in})$ 이 1[W]일 때, 전력이득 $(P_{\rm out}/P_{\rm in})$ 과 출력전력 $(P_{\rm out})$ [dBm]은? (단, $\log_{10}2=0.3$ 이다)

- ① 0.05, -13
- 2 0.05, 17
- ③ 0.1, -13
- **4** 0.1, 17
- 문 10. 진폭변조(AM)된 신호 $A_c[1+am(t)]\cos(2\pi f_c t)$ 의 포락선검파가 왜곡 없이 가능한 경우는? (단, A_c 는 반송파 진폭, f_c 는 반송파 주파수, m(t)는 메시지 신호, f_m 은 메시지 신호의 주파수이다)
 - ① $a = 0.1, m(t) = 12\cos(2\pi f_m t)$
 - ② $a = 0.2, m(t) = 8\cos(2\pi f_m t)$
 - ③ $a = 0.3, m(t) = 4\cos(2\pi f_m t)$
 - $a = 0.4, m(t) = \cos(2\pi f_m t)$
- 문 11. 다음 중 비선형 변조방식은?
 - ① SSB(Single Sideband)
 - ② VSB(Vestigial Sideband)
 - ③ PM(Phase Modulation)
 - 4 AM(Amplitude Modulation)

- 문 12. 주파수변조(FM)에 대한 설명으로 옳은 것은?
 - ① 변조된 신호의 전력은 변조되기 전 반송파의 전력보다 크다.
 - ② 변조된 신호의 진폭이 시간에 따라 변화한다.
 - ③ 변조지수가 작을수록 S/N비를 개선할 수 있다.
 - ④ 프리엠퍼시스와 디엠퍼시스 기술을 이용하여 성능을 개선할 수 있다.
- 문 13. 이상적인 두 개의 등방성(isotropic) 안테나 사이의 거리를 d [m], 전파의 파장을 λ_0 [m]라고 할 때, 자유공간경로손실은?
- 문 14. 마이크로웨이브 전송시스템에서 송신출력이 30 [dBm], 송수신 안테나이득이 각각 20 [dB], 자유공간경로손실이 130 [dB], 수신기의 최소수신감도가 -75 [dBm]일 때, 링크마진(link margin)[dB]는? (단, 잡음은 무시한다)
 - ① 5
 - ② 10
 - ③ 15
 - 4) 20
- 문 15. 다음 그림과 같이 A단과 B단이 연결되어 있을 경우, 전송선 ab 지점에서 A단과 B단 사이에 최대 전력이 전달되는 조건은? (단, Z_a 는 ab지점에서 바라본 A단의 출력임피던스, Z_b 는 ab지점에서 바라본 B단의 입력임피던스, $i=\sqrt{-1}$ 이다)

- ① $Z_b = 50 + j50$
- ② $Z_b = 50 j50$
- ③ $Z_b = j50$
- $4 Z_b = -j50$

- 문 16. 반송파 전송 양측파대(DSB-TC) 변조방식에 대한 설명으로 옳은 것은?
 - ① 변조된 신호의 진폭이 변하지 않는다.
 - ② 힐버트(Hilbert) 변환이 반드시 사용된다.
 - ③ 메시지신호의 대역폭이 B[Hz]이면 변조된 신호의 대역폭은 2B[Hz]이다.
 - ④ 왜곡 없이 비동기식 복조를 하려면 변조 지수는 1보다 커야 한다.
- 문 17. 직교 주파수 분할 다중화(OFDM) 전송방식에 대한 설명으로 옳지 않은 것은?
 - ① PAPR(Peak-to-Average Power Ratio)이 높아 송신기의 전력효율이 낮아진다.
 - ② 인접심벌 간 간섭을 제거하기 위해 보호구간(guard interval)을 추가한다.
 - ③ 전송할 직렬 스트림 형태의 입력데이터를 병렬데이터 스트림 으로 나누어 각각에 부반송파를 할당한다.
 - ④ 직교성이 유지되기 위해 각 부반송파의 주파수 스펙트럼이 중첩되지 않아야 한다.
- 문 18. 레이더의 성능에 대한 설명으로 옳은 것은?
 - ① 빔의 폭이 좁을수록 방위분해능이 좋아진다.
 - ② 최대 탐지거리를 2배로 하려면 송신전력을 4배로 해야 한다.
 - ③ 유효반사면적이 작을수록 탐지거리가 증가한다.
 - ④ 펄스폭이 넓을수록 거리분해능이 좋아진다.
- 문 19. 무선통신 시스템의 다이버시티(diversity) 기법에 대한 설명으로 옳지 않은 것은?
 - ① CDMA 시스템의 경우 RAKE 수신기를 활용하여 다이버시티 이득을 얻을 수 있다.
 - ② 다수의 수신안테나들을 파장의 1/2 크기 미만으로 가깝게 위치시키면 공간다이버시티를 얻기 용이하다.
 - ③ 동일 신호를 서로 다른 시점에서 송신하고, 이를 결합하여 시간다이버시티를 얻을 수 있다.
 - ④ 동일 신호를 서로 다른 주파수 대역에서 송신하고, 이를 결합하여 주파수다이버시티를 얻을 수 있다.
- 문 20. 다중입출력안테나(MIMO) 통신시스템에 대한 설명으로 옳은 것은?
 - ① 여러 개의 안테나를 사용해 데이터를 여러 경로로 전송한다.
 - ② 공간 다중화 기법에서 복호 가능한 공간 스트림의 최대 개수는 송신기와 수신기 안테나 개수 중 큰 수이다.
 - ③ 다이버시티 기법에서 페이딩의 영향을 증가시킨다.
 - ④ 범형성 기법에서 수신신호의 전력이 최소가 되도록 전송한다.