Lab 2

Björn Edblom (bjoed735) och Eskil Brännerud (eskbr129)

2023-10-11

Uppgift 3.1.1

```
set.seed(4711)
  x1 \ll rgamma(n=10, shape = 4, scale = 1)
 x2 \ll rgamma(n=100, shape = 4, scale = 1)
(1).
  llgama <- function(x, alpha, beta){</pre>
     return((alpha - 1) * sum(log(x)) - (beta*sum(x)) + length(x) * (alpha * log(beta) - lgamma(alpha)) 
 print(llgama(x1,2,2))
## [1] -75.18981
(2).
  alpha <- 4
  beta_values \leftarrow seq(0.01, 3, 0.01)
  #create an array
  y1 <- numeric(0)</pre>
  for(beta in beta_values){
    y1 <- c(y1, llgama(x1, alpha, beta))
  y2 <- numeric(0)
  for(beta in beta_values){
    y2 <- c(y2, llgama(x2, alpha, beta))
    plot(beta_values, y1)
```


b_max1 <- beta_values[which.max(y1)]
print(paste("Max värde =", b_max1))</pre>

[1] "Max värde = 0.77"
 plot(beta_values, y2)


```
b_max2 <- beta_values[which.max(y2)]
print(paste("Max värde =", b_max2))</pre>
```

[1] "Max värde = 0.96"

(3).

```
alpha_values <- seq(0.01, 10, 0.01)
beta <- 1
#create an array
y1 <- numeric(0)
for(alpha in alpha_values){
   y1 <- c(y1, llgama(x1, alpha, beta))
}
y2 <- numeric(0)
for(alpha in alpha_values){
   y2 <- c(y2, llgama(x2, alpha, beta))
}
plot(alpha_values, y1)</pre>
```



```
a_max1 <- alpha_values[which.max(y1)]
print(paste("Max värde =", a_max1))</pre>
```

```
## [1] "Max värde = 5"
plot(alpha_values, y2)
```

```
25 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 0
```

```
a_max2 <- alpha_values[which.max(y2)]
print(paste("Max varde =", a_max2))

## [1] "Max varde = 4.13"</pre>
```

(4).

```
llnorm <- function(x,mu,sigma2){
    n <- length(x)
    return((-n/2)*log(2*pi*sigma2)+(-1/(2*sigma2)*sum((x-mu)^2)))
}
print(llnorm(x=x1,mu=2,sigma2=1))</pre>
```

[1] -87.25743

(5).

```
sigma2 <- 1
mu_seq <- seq(0, 10, 0.01)
y1 <- numeric(0)
for ( mu in mu_seq) {
   y1 <- c(y1, llnorm(x1, mu, sigma2))
}

y2 <- numeric(0)
for ( mu in mu_seq) {
   y2 <- c(y2, llnorm(x2, mu, sigma2))
}

plot(mu_seq,y1)</pre>
```


Genom att kolla på grafen ser första ut som en standardföredlning och den andra ser ut som en gammafördelning

```
sigma2 <- 1
mu_seq <- seq(0, 10, 0.01)
y1 <- numeric(0)
for (mu in mu_seq) {
    y1 <- c(y1, llnorm(x = x1, mu = mu, sigma2 = sigma2))</pre>
```

```
}
y2 <- numeric(0)
for (mu in mu_seq) {
    y2 <- c(y2, llnorm(x = x2, mu = mu, sigma2 = sigma2))
}
plot(mu_seq, y1)</pre>
```



```
m_max1 <- mu_seq[which.max(y1)]
print(paste("Max värde =", m_max1))</pre>
```

```
## [1] "Max värde = 5.21"

plot(mu_seq, y2)
```



```
m_max2 <- mu_seq[which.max(y2)]
print(paste("Max värde =", m_max2))</pre>
```

[1] "Max värde = 4.16"
hist(y1)

Histogram of y1

Histogram of y2

y3 <- dnorm(x1, mean = m_max1, sd = 1) hist(y3)

Histogram of y3

y4 <- dnorm(x2, mean = m_max2, sd = 1) hist(y4)

Histogram of y4

hist(x1)

Histogram of x1

Histogram of x2

3.2.1

```
gamma_beta_mle <- function(x,alpha){
  n<-length(x)
  a<-alpha
  coolSum <- n*a*(sum(unlist(x)))^-1;

  return(coolSum)
}
print(gamma_beta_mle(x1,2))</pre>
```

[1] 0.3841892

För x1 så maximeras chansen för att få dessa värden då beta är 0.768 För x2 så maximeras chansen för att få dessa värden då beta är 0.961

```
#1
test_x <- 1:10
norm_mu_mle <- function(x){
    n<-length(x)
    coolSum <- (1/n)*sum(unlist(x));
    return(coolSum)
}

norm_sigma2_mle <- function(x){
    xMean <- mean(unlist(x))
    coolSum = 0
    for(i in x){</pre>
```

```
coolSum = coolSum + ((i-xMean)^2)
  }
  return((1/length(x))*coolSum)
  }
print(norm mu mle(test x))
## [1] 5.5
print(norm_sigma2_mle(test_x))
## [1] 8.25
set.seed(42)
y10 <- rnorm(10,10,2)
y10000 <- rnorm(10000,10,2)
print("Uppgift 2")
## [1] "Uppgift 2"
print(norm_mu_mle(y10))
## [1] 11.09459
print(norm_sigma2_mle(y10))
## [1] 2.512709
print(norm_mu_mle(y10000))
## [1] 9.9762
print(norm_sigma2_mle(y10000))
## [1] 4.048198
#Visar att fler dragningar i norm_mu_mle(x) gör att värdet närmar sig medelvärdet/variansen
##3.3.1 ###1
  log_likelihood_beta <- function(params, data) {</pre>
    alpha <- params[1]</pre>
    beta <- params[2]</pre>
    log_likelihood <- sum(dbeta(data, alpha, beta, log = TRUE))</pre>
    return(-log_likelihood) # Returnera negativt värde eftersom optim() minimiserar
  }
###2
  simulated_data <- rbeta(100, shape1 = 0.2, shape2 = 2)</pre>
  hist(simulated_data)
```

Histogram of simulated_data

##3.4.1 ###1

```
n <- 2000
beta1 <- numeric(n)</pre>
beta2 <- numeric(n)</pre>
m1 <- numeric(n)</pre>
m2 <- numeric(n)</pre>
sigma1 <- numeric(n)</pre>
sigma2 <- numeric(n)</pre>
for (i in 1:n) {
    y1 <- rnorm(n = 10, mean = 10, sd = 2)
    y2 < -rnorm(n = 10000, mean = 10, sd = 2)
    m1[i] \leftarrow norm_mu_mle(x = y1)
    m2[i] \leftarrow norm_mu_mle(x = y2)
    sigma1[i] <- norm_sigma2_mle(x = y1)</pre>
    sigma2[i] <- norm_sigma2_mle(x = y2)</pre>
    x1 \leftarrow rgamma(n = 10, shape = 4, rate = 1)
    x2 \leftarrow rgamma(n = 10000, shape = 4, rate = 1)
    beta1[i] \leftarrow gamma_beta_mle(x = x1, alpha = 4)
    beta2[i] \leftarrow gamma_beta_mle(x = x2, alpha = 4)
}
hist(beta1)
```

Histogram of beta1

hist(beta2)

Histogram of beta2

hist(sigma1)

Histogram of sigma1

hist(sigma2)

Histogram of sigma2

hist(m1)

Histogram of m1

hist(m2)

Histogram of m2

slutsats är att när vi höjer värdet på
n så minskar variansen. ###2

n <- 2000 m1 <- numeric(n)

Vår

```
m2 <- numeric(n)
  beta1 <- numeric(n)</pre>
  beta2 <- numeric(n)</pre>
  sigma1 <- numeric(n)</pre>
  sigma2 <- numeric(n)</pre>
  x1 \leftarrow rgamma(n = 10, shape = 4, rate = 1)
  x2 < - rgamma(n = 10000, shape = 4, rate = 1)
  y1 <- rnorm(n = 10, mean = 10, sd = 2)
  y2 < -rnorm(n = 10000, mean = 10, sd = 2)
for (i in 1:n) {
    sigma1[i] <- norm_sigma2_mle(x = sample(y1, 10, replace = TRUE))</pre>
      sigma2[i] <- norm_sigma2_mle(x = sample(y2, 10000, replace = TRUE))</pre>
      beta1[i] <- gamma_beta_mle(x = sample(x1, 10, replace = TRUE), alpha = 4)</pre>
      beta2[i] <- gamma_beta_mle(x = sample(x2, 10000, replace = TRUE), alpha = 4)
      m1[i] <- norm_mu_mle(x = sample(y1, 10, replace = TRUE))</pre>
      m2[i] <- norm_mu_mle(x = sample(y2, 10000, replace = TRUE))</pre>
  }
  hist(beta1)
```

Histogram of beta1

Histogram of beta2

hist(sigma1)

Histogram of sigma1

hist(sigma2)

Histogram of sigma2

hist(m1)

Histogram of m1

Histogram of m2

längre använder oss a populationen utan istället kör på stickprov så kommer vår data ej bli lika exakt.