获得的答案

The class NP is closed under union and concatenation

NP - class:

NP is a class of languages that are decidable in nondeterministic polynomial time on a non – deterministic Turing machine.

Union:

- \bullet Let A and B be languages are decided by $N\!P\!=\!$ machines $T_{\!_A}$ and $T_{\!_B}.$
- Now we want to show that, there is a non deterministic poly time decider $T_{A \cup B}$ that decides union of A and B.
- The construction of $T_{A\cup B}$ is as follows:

 $T_{A \cup B} =$ "On input S:

- 1. Run $\mathit{T_{A}}$ on S. If $\mathit{T_{A}}$ accepts S, then accept.
- 2. Else run $T_{\scriptscriptstyle B}$ on S. If $T_{\scriptscriptstyle B}$ accepts S, then accept.
- 3. Else reject"

As the new TM $T_{A \cup B}$ calls T_A and T_B each once, it runs on $O(T_A + T_B)$,

as both are NP is $T_{A \cup B}$.

Concatenation:

- \bullet Let A and B be languages are decided by $N\!P$ machines $T_{\!\scriptscriptstyle A}$ and $T_{\!\scriptscriptstyle B}$.
- Now we want to show that, there is a non deterministic poly time decider $T_{A \cup B}$ that decides concatenation of A and B.
- The construction of $T_{A \circ B}$ is as follows:

 $T_{A \circ B}$ = "On input S:

- 1. Split S into S_1 , S_2 such that $S = S_1 S_2$.
- 2. Run the NP machine $\mathit{T}_{_{\!A}}$ on $\mathit{S}_{_{\!1}}.$ If $\mathit{T}_{_{\!A}}$ is rejected, then reject.
- 3. Else run $T_{\!\scriptscriptstyle B}$ on S_2 . If $T_{\!\scriptscriptstyle B}$ is rejected, then reject.
- 4. Else accept.

The time taken by step 1 is O(n) in a two tape Turing Machine. Thus, T is a poly-time non-deterministic decider for $A \circ B$.