### Lensing Galaxies in the CFHT Legacy Survey

Rafael Küng<sup>1</sup> Prasenjit Saha<sup>1</sup> Elisabeth Baeten<sup>2</sup> Jonathan Coles<sup>3</sup> Claude Cornen<sup>2</sup> Christine Macmillan<sup>2</sup> Phil Marshall<sup>4</sup> Anupreeta More<sup>5</sup> Surhud More<sup>5</sup> Aprajita Verma<sup>6</sup> Julianne K. Wilcox<sup>2</sup>

<sup>1</sup>Physik–Institut, University of Zurich, Zurich, Switzerland
<sup>2</sup>Zooniverse, c/o Astrophysics Department, University of Oxford, Oxford, UK
<sup>3</sup>Exascale Research Computing Lab, Bruyeres-le-Chatel, France
<sup>4</sup>Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA
<sup>5</sup>Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa-shi, Japan
<sup>6</sup>Sub-department of Astrophysics, University of Oxford, Oxford, UK

MG14 - 17. July 2015



### Motivation

- Strong lensing analyzes wide field surveys
- Robots are not very good at finding and modelling lenses
- Human intervention is needed!
- ⇒ SpaceWarps citizen science project

## SpaceWarps Results and Outlook

- CHFT Legacy Survey: 150 deg<sup>2</sup>
- 50'000 volunteers; 11 mio classifications
- 59 candidates found (29 promising)<sup>1</sup>
- $\Rightarrow \approx 1$  lens every few deg<sup>2</sup>
  - DES, Pan-STARRS (now); LSST, Euclid, ... (2020+)
  - more area, better resolution, deeper images
- $\Rightarrow$  10'000 lenses over 10 years ( $\approx$  one per hour)

<sup>&</sup>lt;sup>1</sup>[A. More et al; arXiv:1504.05587]

### Outlook

#### A lot of computational- and manpower needed

Detecting lenses:

- Robots making progress (RingFinder; ArcFinder) in combination with
- Future SpaceWarps runs

Post processing?

- Robots not there (yet?)
- ⇒ Citizen science: SpaghettiLens

L Theory

# Theory

## Setup



# Alternative explanation







7 / 20





























































































































Simulation program: gravlens by C. Huwiler  $\,$ 









Figure: ASW0004q9e (SpaceWarps)







Figure: ASW0001a8c (SpaceWarps)

# SpaghettiLens

http://labs.spacewarps.org/spaghetti/



### SpaghettiLens: Model Result

http://labs.spacewarps.org/spaghetti/model/AJIBCHQ6EM

# SpaghettiLens: Model Tree



#### SpaghettiLens Results: Test of Performance

- Use simulated lenses
- Let volunteers model them
- Recover and compare Einstein Radii Θ<sub>E</sub>
- Volunteers perform well!
- ullet  $\Theta_{\mathsf{E}}$  is slightly over estimated

#### arxiv:1502.00008

Mon. Not. R. Astron. Soc. 447, 2170-2180 (2015)

Printed February 3, 2015

(MN IATEX style file v2.2)

#### Gravitational Lens Modelling in a Citizen Science Context

Rafael Küng, Prasenjit Saha, Anupreeta More, Elisabeth Baeten, Jonathan Coles, Claude Cornen, Christine Macmillan, Phil Marshall, Marshall,

Surhud More, Jonas Odermatt, Aprajita Verma and Julianne K. Wilcox

<sup>&</sup>lt;sup>1</sup> Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

<sup>&</sup>lt;sup>2</sup> Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi 277-8583, Japan <sup>3</sup> Zooniverse, c/o Astrophysics Department, University of Oxford, Oxford OXI 3RH, UK

<sup>&</sup>lt;sup>4</sup> Exascale Research Computing Lab, Campus Teratec, 2 Rue de la Piquetterie, 91680 Bruyeres-le-Chatel, France

<sup>&</sup>lt;sup>5</sup> Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94035, USA <sup>6</sup> Kantonsschule Zug, Lüsstueg 24, 6300 Zug, Switzerland <sup>7</sup> Sub-department of Astrophysics University of Oxford, Denus Wilkinson Building, Keble Road, Oxford, OXI 3RH, UK

# SpaghettiLens Results: Stellar vs Lensing Mass

- Lensing mass against the stellar mass of the candidate lens galaxies
- Stellar mass fraction of order 20 percent
- With decreasing trend for the most massive galaxies
- Expected for early type galaxies
- Outliers? Maybe non-lenses (not yet spectroscopically confirmed)



#### Conclusions and Outlook

#### Conclusions:

■ SpaghettiLens is set up and works

#### We are currently working on:

- Increase the number of users
- Fit parametrized models to the free-form mass distributions<sup>2</sup>
- Fit source profile to optimize resemblance to images
- Determination of photometric red shifts<sup>3</sup>
- Estimate stellar populations (using galfit, SExtractor)<sup>3</sup>
- Your idea!

<sup>&</sup>lt;sup>2</sup>Lucy Oswald; University of Oxford

<sup>&</sup>lt;sup>3</sup>Dominik Leier; University of Bologna

Questions?

### Thank you for your attention

Questions? rafael.kueng@uzh.ch