ECN 6338 Cours 1

Introduction

William McCausland

2025-09-05

Quelques observations

- L'économie et la recherche des implications des modèles.
- La difficulté d'exprimer ces implications en forme analytique.
- L'importance de l'optimisation et des espérances mathématiques
 - dans les problèmes d'agents économiques,
 - dans les problèmes économétriques.
- L'apport de l'analyse numérique en microéonomie, macroéconomie et économétrie.
- ► Le site web QuantEcon donne une bonne idée de la diversité d'applications.

L'optimisation

Par les agents des modèles économiques

- 1. Maximisation de l'utilité (avec ou sans contraintes)
 - a. choix de panier (statique)
 - b. choix travail/loisir/consommation/placements (dynamiques)
 - c. choix d'action dans les jeux (enchères, négociation, signalisation)
- 2. Maximisation du profit (choix des quantités de production)
 - a. choix de panier d'intrants (statique)
 - b. choice d'investissement, de niveau de R&D (dynamiques)
 - c. choix d'action dans les jeux
 - i. jeux d'oligopole : cournot, bertrand, stackelberg
 - ii. jeux en organisation industrielle : d'entrée

L'optimisation (suite)

Par les économètres

- 1. Estimation par Extremum
 - a. maximum de vraisemblance
 - b. moindres carrés non linéaires
 - c. méthode des moments généralisés
 - d. régression quantile

L'intégration

Par les agents

- 1. Évaluation de l'espérance de l'utilité, du profit
- 2. Évaluation de l'utilité dans les modèles macro en temps continu
- 3. Évaluation des fonctions d'enchère

Par les économètres

- 1. Inférence bayésienne : calcul des moyennes a posteriori
- 2. Simulation Monte Carlo : des estimateurs, du couvrage, ...
- 3. Simulation bootstrap

D'autres opérations

D'autres opérations numériques jouent souvent un rôle de soutien

- Résolution de systèmes d'équation
 - reliée à l'optimisation, à la recherche des racines
 - recherche d'un équilibre
- Approximation de fonctions
- Résolution d'équations différentielles
- Simulation de variables aléatoires
 - pour l'intégration (méthodes Monte Carlo)
 - pour l'optimisation (recuit simulé = simulated annealing)

Ce cours, relatif au livre classique de Judd

Relatif au livre de Judd, je mets un accent sur

- l'économétrie (cependant, ce n'est pas un cours d'économétrie)
 - exemples dans le domaine de choix discret
 - maximum de vraisemblance
 - inférence bayésienne
- la simulation
 - intégration par simulation (utile en grandes dimensions)
 - optimisation par recuit simulé
 - applications en inférence bayésienne

Je mets moins d'emphase sur l'optimisation dynamique. Le but ici est de présenter les cas les plus simples pour vous préparer pour la matière plus avancée.

Évaluation

Type	Date	Pondération
\sim 10 interrogations (10 min)	début de cours	20%
4 exercices computationnels	26 septembre, 17 octobre, 14 novembre, 5 décembre	40%
Examen final	20 avril	40%

Documents et Communication

Site GitHub du cours

- 1. Diapositives (code source en R Markdown, pdf)
- 2. Démonstrations (en R)
- 3. Lectures, exercices
- 4. Devoirs avec computation
- 5. Liens vers les enregistrements des cours à distance
- 6. README.md comme page d'acceuil

Site StudiUM du cours

- 1. Messages aux étudiants
- 2. Documents avec droit d'auteur
- 3. Téléversement de vos devoirs computationnels

Logiciels (pour les travaux pratiques, votre choix)

- graticiel, accent sur la statistique, beaucoup d'applications
- utilisé pour les démonstrations du cours
- recommandé, introduction pendant la première séance TP

Python

graticiel, général, beaucoup d'applications

Julia

- graticiel, général, moins utilisé que les autres
- très rapide, élégant

Matlab

- commercial mais disponible à l'université, général, beaucoup d'applications
- ▶ son importance diminue en faveur de R et python

Notation pour les dérivées multivariées

- Soit x un vecteur $n \times 1$, y = f(x) un vecteur $m \times 1$.
- ► La matrice jacobienne (m × n) contient toutes les dérivées de première ordre:

$$f_x = \frac{\partial y}{\partial x},$$
 où $\left[\frac{\partial y}{\partial x}\right]_{ij} = \frac{\partial y_i}{\partial x_j}.$

- Le gradient est un cas spécial du Jacobien où y est scalaire, un vecteur ligne $1 \times n$.
- ▶ La matrice hessienne (n × n) contient toutes les dérivées de deuxième ordre pour y scalaire:

$$f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x} \right)^{\top} = \frac{\partial^2 y}{\partial x \partial x^{\top}}.$$

La notation ci-haut suit la convention "numerator layout" ici

Quelques propriétés des dérivées multivariées

À la même page il y a des tableaux de propriétés, telles que :

▶ Pour une matrice constante A, $m \times n$,

$$\frac{\partial Ax}{\partial x} = A.$$

▶ Règle du produit : pour les vecteurs u(x) et v(x), $m \times 1$,

$$\frac{\partial u^{\top} v}{\partial x} = u^{\top} \frac{\partial v}{\partial x} + v^{\top} \frac{\partial u}{\partial x}.$$

Règle des fonctions composées, de la chaîne : pour z = g(y); y = f(x); x, y et z multivariés,

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} = \frac{\partial g(y)}{\partial y} \frac{\partial f(x)}{\partial x}.$$

Analyse de l'erreur

Deux sources d'erreur numérique :

- Précision finie des nombres réels
- Troncation de calculs séquentiels infinis

Les erreurs se propagent à travers les computations.

La représentation virgule flottante

L'ordinateur représente un nombre réel x comme

$$x = \pm m \times 2^{\pm e}$$
,

οù

- $ightharpoonup m \in \mathbb{N}$ est la mantisse et
- ▶ $e \in \mathbb{N}$ est l'exposant.

Le nombre de bits pour représenter *m* détermine la précision numérique.

Le nombre de bits pour représenter e détermine les points de dépassement et soupassement numérique (overflow/underflow).

Quatre constantes méchanique

Pour une machine donnée, les constantes suivantes décrivent les points de dépassement et soupassement, ainsi que la précision.

Constante	description
double.xmax	$x > 0$ le plus grand distinct de ∞ .
double.xmin	x > 0 le plus petit distinct de 0.
double.eps	x > 0 le plus petit tel que $1 + x$ et 1 sont distincts.
double.neg.eps	x>0 le plus petit tel que $1-x$ et 1 sont distincts.

On appele

- double.xmax l'infini de la machine,
- double.eps l'epsilon de la machine.

Trouver ces constantes avec R

```
m = .Machine
m$double.eps
## [1] 2.220446e-16
m$double.neg.eps
## [1] 1.110223e-16
m$double.xmin
## [1] 2.225074e-308
m$double.xmax
## [1] 1.797693e+308
```

Propogation de l'erreur

- ▶ L'erreur relative du résultat d'un calcul peut être très différente de l'erreur relative des intrants.
- Supposez qu'on évalue la dérivée numérique suivante, pour approximer la dérivée de la fonction $f(x) = e^x$ à x = 0:

$$d_h = \frac{f(0+h) - f(0-h)}{2h} = \frac{e^h - e^{-h}}{2h},$$

où h > 0 est très petit.

- ▶ Mettons que les erreurs relatives maximales de e^h et e^{-h} sont ϵ .
- ▶ Puisque $e^x = 1$ à x = 0, les erreurs absolues sont pareilles.
- ▶ Par une expansion de Taylor,

$$d_h \approx \frac{2h \pm 2\epsilon}{2h} = 1 \pm \frac{\epsilon}{h} = f'(0) + \frac{\epsilon}{h}$$

L'erreur (relative et absolue) du résultat peut être aussi grande que ϵ/h .

Expansions de Taylor et de Mercator de la fonction $\log x$

L'expansion de Taylor de $\log x$ autour de x = 1:

$$\log x = \sum_{k=1}^{\infty} \frac{(-1)^k (x-1)^k}{k} = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \dots$$

L'expansion de Mercator :

$$\log(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^k x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

- Si on veux évaluer log(1+x) pour x petit, ne calcule pas 1+x comme résultat intermédiaire.
- La fonction log1p en R (et autres langages) évalue la fonction $f(x) = \log(1+x)$ directement avec l'expansion de Mercator.
- ▶ Exemple économique : pour le rendement net simple R, le rendement continument composé est log(1 + R).

La fonction log1p

```
x = seq(-2e-15, 2e-15, length.out=1000)
plot(x, log1p(x), 'l')
lines(x, log(1+x), col='red')
```


Troncation mathématique

La deuxième source d'erreur est la troncation mathématique.

La valeur exacte de la fonction exponentielle est

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!},$$

mais on pratique il faut tronquer et utiliser un nombre fini ${\it N}$ de termes :

$$\sum_{n=0}^{N} \frac{x^n}{n!}.$$

Troncation mathématique, plus généralement

- Souvent un algorithme iteratif génére une suite de vecteurs x^k , k = 1, 2, ..., qui converge au résultat voulu $x^* \equiv \lim_{k \to \infty} x^k$.
- ▶ Il faut accepter une valeur approximative x^k , pour k fini.
- Évaluer l'erreur $||x^k x^*||$ est infaisable.
- ▶ On peut utiliser $||x^{k+1} x^k||$, ...
- ... mais prudemment, parce que (par exemple) pour

$$x^k = \sum_{j=1}^k \frac{1}{j}$$

- $|x^k x^{k-1}| = 1/k \to 0$,
- ightharpoonup mais x^k diverge.

Exemple, maximisation de f(x)

Règles d'arrêt

- ► En pratique, on veut arreter quand $||x^k x^{k+1}||$ est petit relatif et à $||x^k||$ et à zéro.
- Par exemple, arreter quand :

$$\frac{\|x^k - x^{k+1}\|}{1 + \|x^k\|} \le \epsilon.$$

▶ Si on peut trouver un β < 1 tel que

$$\forall k, \ \|x^{k+1} - x^*\| \le \beta \|x^k - x^*\|,$$

on a un garantie que $||x^k - x^*|| \le ||x^k - x^{k+1}||/(1 - \beta)$.

lacktriangle Des fois, la convergence est *linéaire* : il existe eta tel que

$$\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} \le \beta < 1,$$

auquel cas, on peut estimer β et espérer que cela marche.

Analyse (de la complexité) d'algorithmes

Notation $O(\cdot)$

- ▶ Pour des fonctions f et g sur \mathbb{N} , on écrit f(n) = O(g(n)) s'il existe M > 0 tel que $|f(n)| \le Mg(n)$ pour chaque n.
- Par exemple $f(n) = 6n^2 + 8n + 2 = O(n^2)$

La complexité de certains algorithmes

- ► O(1) : nombre d'opérations pour trouver le i-ième élément dans un n-vecteur;
- ► $O(\log n)$: nombre de comparaisons pour trouver un élément donnée dans un n-vecteur trié, par recherche binaire;
- ► O(n) : pour trouver un élément donnée dans un n-vecteur, par recherche exhaustive;
- ▶ $O(n^2)$: nombre de multiplications scalaires pour multiplier une matrice $n \times n$ et un vecteur $n \times 1$;
- ▶ $O(n^3)$: multiplier deux matrices $n \times n$ (méthode évidente);
- $ightharpoonup O(n^{2.81})$: même chose, algorithme de Strassen

L'évaluation des polynomes avec la méthode de Horner

Trois méthodes pour évaluer $a_0 + a_1x + \cdots + a_nx^n$:

1. Évaluation naïve, $O(n^2)$ multiplications, O(1) registres :

$$a_0 + a_1 * x + a_2 * x * x + a_3 * x * x * x + \cdots$$

- 2. Meilleure, avec 2n multiplications, O(n) registres :
 - a. Calculer $x^{i} = x^{i-1} * x$, i = 2, ..., n.
 - b. Calculer $a_0 + a_1 * x + \cdots + a_n * x^n$.
- 3. La méthode de Horner, n multiplications, O(1) registres :

$$a_0 + x * (a_1 + x * (a_2 + x * (a_3 + \cdots + x * (a_{n-1} + x * a_n) \cdots)))$$

Parallélisme

Deux types de problème où vous pouvez profitez des processeurs en parallèle :

- problèmes avec l'embarras du parallélisme (embarrassingly parallel problems) où il n'y a pas de communication entre processeurs avant la fin des computations.
- 2. problèmes SIMD (single instruction multiple data)

Questions pratiques en commun :

- Les tâches individuelles doivent être suffisamment grandes relatif aux coûts fixes de communication entre processeurs.
- Ces couts fixes varient beaucoup :
 - coeurs multiples d'un processeur
 - processeurs multiples d'une machine
 - machines multiples d'un cluster

L'embarras du parallelisme

Problèmes avec l'embarras du parallelisme

- 1. Évaluation d'une fonction sur une grille de points
- 2. Intégration numérique
- 3. Simulation Monte Carlo indépendant
- 4. Évaluation d'une fonction de log vraisemblance (souvent)

$$L(\theta; y) = \sum_{t=1}^{T} \log f(y_t | \theta).$$

5. Multiplication des matrices

Problèmes sans l'embarras du parallelisme

- 1. Méthodes itératives d'optimisation
- 2. Méthodes itératives pour trouver un point fixe
- 3. Simulation Markov chain Monte Carlo (MCMC)

SIMD (Single Instruction, Multiple Data)

- Les GPUs (processeurs graphiques) peuvent executer les mêmes instructions pour plusieurs vecteurs différents de données.
- Convenable pour les problèmes où les boucles locales ont le même nombre d'itérations.
- Quand la structure de contrôle (control flow) est variable (if-else, do-while, etc.) les programmes marchent mais avec gaspillage.
- Prenons encore l'évaluation d'une fonction de log vraisemblance

$$L(\theta; y) = \sum_{t=1}^{T} \log f(y_t | \theta).$$

- Si l'évaluation de $\log f(y_t|\theta)$ utilise les mêmes instructions, peu importe la valeur de y_t , le problème est disposé à SIMD.
- Si la suite des instructions dépend de y_t, SIMD est moins intéressant.