HETEROCYCLE-CONDENSED PYRIMIDINONE DERIVATIVE AND HERBICIDE CONTAINING THE SAME

Publication number: JP2000247975
Publication date: 2000-09-12

Inventor: KUF

KUDO YOSHIHIRO; IKEDA EITATSU; SATO JUN; MAEDA KANESHIGE; WATANABE SHIGEOMI; NAKAHIRA KUNIMITSU; OKI TORU; HAMADA

NOBUYUKI

Applicant: NISSAN CHEMICAL IND LTD

Classification:

- International: C07D487/04; A01N43/90; C07D498/04; C07D513/04;

C07D519/00; C07D487/00; A01N43/90; C07D498/00; C07D513/00; C07D519/00; (IPC1-7): C07D487/04; A01N43/90; C07D487/04; C07D498/04; C07D513/04;

C07D519/00

- European:

Application number: JP19990047901 19990225
Priority number(s): JP19990047901 19990225

Report a data error here

Abstract of JP2000247975

PROBLEM TO BE SOLVED: To obtain a new compound having high safety to important crops including rice and soybean, having high herbicidal activity against weeds including Scirpus juncoides and Monochoria vaginalis, therefore useful as a herbicide. SOLUTION: This new compound is a compound of formula I (Rf is a 1-4C haloalkyl; X and Y are each C, N or the like; X-Y is N=N or the like; A is N or CH; Z is O, S or the like; Rg is H, cyano or the like; R1 and R5 are each H or a halogen; R2 is nitro or the like; R3 is a 3-8C alkenyloxycarbonyl 1-4C alkyl or the like; R4 is H, OH or the like), e.g. 8-[2,7-difluoro-3,4-dihydro-3-oxo-4-(2-propynyl)-2H-1,4-benzoxazin-6-yl]-7,8-dihydro-5-trifluorometh ylimidazo[1,2-a]pyrimidin-7-one. The compound of formula I is obtained, for example, by reaction between a compound of formula II (R' is a 1-4C alkyl) and a compound of formula III and the like to form a compound of formula IV (Me is CH3) which is then reacted with sodium azide.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-247975 (P2000-247975A)

(43)公開日 平成12年9月12日(2000.9.12)

(51) Int.Cl.7	酸別記号		FΙ				Ī	·-マコード(参考)
C 0 7 D 487/04	140		CO	7 D 48	7/04		1.40	4C050
	142						142	4 C 0 7 2
	144						144	4H011
	146						1.46	
	147						1.47	
		審査請求	未請求	請求項	頁の数 2	OL	(全 35 頁)	最終頁に続く
(21)出顧番号	特願平11-47901		(71)	出題人	00000	3986		
					日産イ	L 学工 業	株式会社	
(22) 出顧日	平成11年2月25日(1999.2.	25)			東京都	8千代田	区神田錦町3	丁目7番地1
			(72)	発明者	工藤	佳宏		
					千葉県	船橋市	坪井町722番は	01日産化学工
					業株式	(会社中	央研究所内	
			(72)	発明者	池田	栄達		
					千葉県	船橋市	坪井町722番山	01日産化学工
					業株式	(会社中	央研究所内	
			(72)	発明者	佐藤	絁		
					千葉県	船橋市	坪井町722番は	01日産化学工
					業株式	(会社中	央研究所内	
								最終頁に続く

(54) 【発明の名称】 ヘテロ環縮合ビリミジノン誘導体及びそれらを含む除草剤

(57)【要約】

【課題】

新規除草剤の検討。

【解決手段】

式(I):

【化1】

〔式中、Rfは C_1 - C_4 ハロアルキル基を表わし、X \sim YはN=N、CH=CH

【特許請求の範囲】 【請求項1】 式(1): 【化1】

〔式中、Rfは C_1 - C_4 ハロアルキル基を表わし、XおよびYはそれぞれ独立して炭素原子、窒素原子、酸素原子または硫黄原子を表わし、

 $X \sim Y l d N = N$, C(Ra) = C(Rb)(Ra, Rb)はそれぞれ独立して水素原子、ハロゲン原子、C1-C4 アルキル基、C₁ -C₄アルコキシ基、C₁ -C₄ハロア ルキル基、水酸基、アミノ基、メルカプト基、カルボキ シル基、ヒドロキシメチル基、カルバモイル基、ホルミ ル基、C₁ -C₄アルキルカルボニル基、C₁ -C₄アル コキシカルボニル基、C₁ -C₄アルキルアミノ基、C 2 - C₆アルケニル基、C₂ - C₆アルキニル基、C₁ -C₄アルキルメルカプト基、C₃-C₆アルケニルアミノ 基、C₃ -C₆アルキニルアミノ基、ベンジルオキシ 基、ベンジルアミノ基、C₁ -C₄アルキルスルフィニ ル基、C₁ -C₄アルキルスルホニル基、ピリジル基ま たは置換されていてもよいフェニル (SP1)基(置換 されていてもよいフェニル (SP1)基とは、ハロゲン 原子、 $C_1 - C_4$ アルキル基、 $C_1 - C_4$ アルコキシ基、 $C_1 - C_4$ ハロアルキル基、 $C_1 - C_4$ ハロアルコキシ基 またはフェニル基によって置換されていてもよいフェニ ル基を表わす。) を表わす。)、C (Ra) = N (Ra は前記と同様の意味を表わす。)、N=C(Ra)(R aは前記と同様の意味を表わす。)、CH(Ra)CH (Rb) (RaおよびRbは前記と同様の意味を表わ \dagger .), $CH_2CH_2CH_2$, $CH=CHCH_2$, CH_2C H=CH、NHC (Ra) Rb (RaおよびRbは前記 と同様の意味を表わす。)、C(Ra)(Rb)NH (RaおよびRbは前記と同様の意味を表わす。)、C $(=O) C (=O) CH_2C (=O) NH CH_2CH$ 2SO2、C(=O)CH(Ra)(Raは前記と同様の 意味を表わす。)、CH(Ra)C(=O)(Raは前 記と同様の意味を表わす。)、C(=O)NH、C(= S) NH, NHC (=0), NHC (=S), C (= O) C(Ra) = N(Raは前記と同様の意味を表わ す。)、C(=0)C(Ra)=C(Rb)(Raおよ びRbは前記と同様の意味を表わす。)、C(Ra)= C(Rb)C(=O)(RaおよびRbは前記と同様の 意味を表わす。)、N=C(Ra)C(=O)(Raは 前記と同様の意味を表わす。)、CH(Ra)C(= O) NH(Raは前記と同様の意味を表わす。)、C (=O)N(Ra)C(=O)(Raは前記と同様の意 味を表わす。)、C(Ra)=NC(=O)(Raは前 記と同様の意味を表わす。)、C(Ra)O(Raは前 記と同様の意味を表わす。)、C(=O)O、OC(= O)またはSC(=O)を表わし、

Aは窒素原子またはCHを表わし、

Zは酸素原子、硫黄原子、NRc(Rcは水素原子、C $_1$ $-C_4$ アルキル基、 C_1 $-C_4$ アルコキシカルボニル基、 C_1 $-C_4$ アルコキシカルボニルメチル基または置換されていてもよいフェニル(SP2)基(置換されていてもよいフェニル(SP2)基とは、ハロゲン原子、 C_1 $-C_4$ アルキル基、 C_1 $-C_4$ アルコキシ基またはC $_1$ $-C_4$ アルキル基によって置換されていてもよいフェニル基を表わす)またはNNHRc(Rcは前記と同様の意味を表わす。)を表わし、

R gは水素原子、ハロゲン原子、シアノ基、 C_1-C_4 アルコキシカルボニル基、 C_3-C_6 アルキニル基または C_1-C_4 アルキル基を表わし、

R1は水素原子またはハロゲン原子を表わし、 R5は水素原子またはハロゲン原子を表わし、

R 2は水素原子、ハロゲン原子、ニトロ基、シアノ基、 チオカルバモイル基、カルバモイル基、メルカプト基、 ヒドロキシル基、アミノ基、ホルミル基、カルボキシル 基、ビニル基、エチニル基、トリメチルシリルエチニル 基、シアノメチル基、スルファモイル基、フェニル基、 ベンジル基、C₁ -C₈アルキル基、C₃-C₈アルケニ ル基、 C_3 $-C_8$ アルキニル基、 C_1 $-C_4$ ハロアルキル 基、 $C_1 - C_4$ アルコキシ基、 $C_1 - C_4$ バロアルコキシ 基、C3 - C8ハロアルケニル基、C3 - C8ハロアルキ ニル基、 $C_1 - C_4$ アシル基、 $C_1 - C_4$ アルキルスルホ ニル基、C₁ -C₄アルキルチオ基、C₁-C₄アルコキ ル)基、-CON(C₁-C₄アルキル)₂基、-CON $H(C_1 - C_4 アルキル)$ 基、 $-NH-(C_1 - C_4 アル$ キル) 基、-N(C₁-C₄アルキル)₂基、-S-CO 2 (C₁ -C₄アルキル) 基、-O-Q-CO₂ (C₁ -C4アルキル) 基(但し、Qは飽和あるいは不飽和の分 岐していてもよく、ハロゲン原子、C₁ -C₄アルコキ シ基、 C_1 $-C_4$ アルコキシカルボニル基、シアノ基、 フェニル基、C₁ -C₄ハロアルキル基、C₁ -C₄アル コキシ (C₁ -C₄) アルコキシ基、C₁ -C₄ アシル 基、 C_1 $-C_4$ アルコキシ(C_1 $-C_4$)アルキル基ある いは酸素原子で置換されていてもよいC₁ - C₈のアル キレン鎖を表わす。)、フェニルエチル基、-Q-CO 2 (C₁ - C₄ アルキル) 基(但し、Qは前記と同様の意 味を表わす。) または-NH-Q-CO₂(C₁-C₄ア ルキル) 基(但し、Qは前記と同様の意味を表わす。) を表わし、

R3は、-O-R11(R11は C_3-C_8 シクロアルケニル基、 C_3-C_8 シクロアルケニル(C_1-C_4)アルキル基、シアノ(C_2-C_6)アルキル基、シアノ(フェ

ニル)メチル基、インダニル基、(C₁-C₄アルコキ シ)₂ ($C_1 - C_4$) アルキル基、 $C_1 - C_4$ アルコキシ (C_1-C_4) アルコキシ (C_1-C_4) アルキル基、 C_1 -C4ハロアルコキシ(C1-C4)アルキル基、C1-C $_4$ アルコキシ ($C_1 - C_4$) ハロアルキル基、 $C_1 - C_4$ ハ ロアルコキシ (C_1-C_4) アルコキシ (C_1-C_4) アル キル基、 $C_2 - C_6$ アルケニルオキシ ($C_1 - C_4$) アルキ ル基、 $C_2 - C_6$ アルキニルオキシ ($C_1 - C_4$) アルキル 基、C1-C4アルキルチオ(C1-C4)アルキル基、ケ ト(C_3-C_8)シクロアルキル基、 C_1-C_4 アシル(C $_1-C_4$) アルキル基、 C_1-C_4 アルキルスルホニル (C $_1-C_4$) アルキル基、 $(C_1-C_4$ アルコキシカルボニ ル)₂メチル基、ピリジル (C₁-C₄)アルキル基、5 -トリフルオロメチル-3-クロロ-2-ピリジル基、 (置換されていてもよいフェニル (SP3)基)カルボ ニル基、(置換されていてもよいフェニル(SP1)基 とは、ハロゲン原子、C₁ - C₄ハロアルキル基、C₁ $-C_4$ アルキル基、 C_1 $-C_4$ アルコキシ基、 C_1 $-C_4$ ハロアルコキシ基、メタンスルホニル基、C₁ -C₄ア ルコキシカルボニル基、ニトロ基、ヒドロキシル基、ア ミノ基、シアノ基、-O-CH(CH₃)CO₂(C₁- C_4 アルキル) 基または $-O-CH_2CO_2$ (C_1-C_4 ア ルキル)基によって置換されていてもよいフェニル基を 表わす)、(置換されていてもよいフェニル(SP1) 基) オキシ (C1-C4) アルキル基、(置換されていて もよいフェニル (SP1)基は前記と同様の意味を表わ す。)、(置換されていてもよいフェニル (SP1) 基)-Q-(C1-C4)アルキル基、(Qおよび置換さ れていてもよいフェニル(SP1)基は前記と同様の意 味を表わす。)、Het基(Het基とは酸素原子を1 あるいは2個含むことを特徴とする飽和あるいは不飽和 結合を含有する3~6員ヘテロ環を表わす。)または-Q-Het基(QおよびHet基は前記と同様の意味を 表わす。)を表わす。)、-NH-R11(R11は前 記と同様の意味を表わす。)、-S-R11(R11は 前記と同様の意味を表わす。)、C3-C8アルケニルオ キシカルボニル (C₁-C₄) アルキル基、C₃-C₈アル キニルオキシカルボニル(C₁-C₄)アルキル基、-N $HCO-(C_1-C_4)$ $PN+NT+>DNT-N(C_1)$ -C₄)アルキル基、-N(R15)CO-(C₁-C4) アルキルオキシカルボニル(C1-C4) アルキル 基(R 15は $C_1 - C_6$ アルキル基、 $C_3 - C_8$ アルケニ ル基、C₃ -C₈アルキニル基、C₁-C₄ハロアルキル 基、C3-C8ハロアルケニル基、C3-C8ハロアルキニ ル基、 $C_1 - C_6$ アシル基、ホルミル基、シアノ $(C_1 C_4$) アルキル基、 $C_1 - C_4$ アルコキシ($C_1 - C_4$) アルキル基、C₁ -C₄アルコキシカルボニル基または -C (=O) (置換されていてもよいフェニル (SP 3) 基) 基(但し、置換されていてもよいフェニル(S P3)基は前記と同様の意味を表わす。)を表わし、R

4は水素原子、ハロゲン原子、ニトロ基、水酸基、アミノ基、 $C_1 - C_4$ アルキル基、 $C_1 - C_4$ アルコキシ基またはメルカプト基を表わし、

R3とR4は酸素、窒素、硫黄、炭素原子を任意に含む ことを特徴とする飽和あるいは不飽和結合を有する5~ 6 員環を形成していてもよく、

R2とR3は式(a)から(f)に示すようなヘテロ環を形成していてもよく、

【化2】

なお、式(a)から式(f)のRf、Rg、A、X、 Y、Z、R1、R4およびR5は前記と同様の意味を表 わし、

R 1 7は水素原子、水酸基、アミノ基、 $C_1 - C_6$ アル キル基、C₃ -C₈アルケニル基、C₃ -C₈アルキニル 基、C₁-C₄ハロアルキル基、C₃-C₈ハロアルケニル 基、C3-C8ハロアルキニル基、C1-C8アシル基、 ホルミル基、ベンゾイル基、C₁-C₆アルコキシ基、C $_2-C_8$ アルケニルオキシ基、 C_2-C_8 アルキニルオキシ 基、 $C_1 - C_6$ ハロアルコキシ基、 $C_1 - C_4$ アルコキシ (C₁ -C₄)アルコキシ基、CH₂CONH₂、CH $(CO_2-(C_1-C_4P \nu + \nu))_2$ 基、 $CH_2-(ピリ$ ジル) 基、 C_1 $-C_6$ ハロアルキルカルボニル基、フェ ナシル基、 $C_3 - C_8$ シクロアルキル $(C_1 - C_4)$ アル キル基、 $C_1 - C_4$ アルコキシ ($C_1 - C_4$) アルキル 基、-Q-CO2(C1-C4)アルキル基(但し、Qは 前記と同様の意味を表わす。) - Q-C N基(但し、Q は前記と同様の意味を表わす。) または-Q-(置換さ れていてもよいフェニル (SP3)基)基(但し、Qお よび置換されていてもよいフェニル(SP3)基は前記 と同様の意味を表わす。)を表わし、

R 28およびR 29はそれぞれ独立して水素原子、シアノ基、ハロゲン原子、 C_1-C_8 アルキル基、 C_2-C_8 アルケニル基、 C_1-C_4 ハロアルキル基、 C_1-C_4 アンル基、 C_1-C_4 アンル基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルコキシ基、 C_1-C_4 アルコキシ基、 C_1-C_4

 $_4$ アルコキシカルボニル基、 $C_1 - C_4$ アルコキシ($C_1 - C_4$)アルキル基、 $C_1 - C_4$ アルキルチオ基または置換されていてもよいフェニル(SP3)基(置換されていてもよいフェニル(SP3)基は前記と同様の意味を表わす。)を表わし、

但し、式(a)のR28とR29がともに水素原子の場合と、式(b)のR28、R29およびR30が全て水素原子の場合を除き、R28とR29が一緒になって酸素原子を表わしていてもよく、

R30は水素原子、 C_1-C_6 アルキル基、 C_1-C_4 ハロアシル基、 C_1-C_6 ハロアルキル基、 C_2-C_8 アルケニル基、 C_1-C_6 アシル基、 C_1-C_6 アシル基、 C_1-C_4 アルコキシカルボニル基または C_1-C_4 アルコキシ(C_1-C_4)アルキル基を表わし、

但し、これらの化合物に光学異性体、ジアステレオマー、幾何異性体が存在する場合は、それぞれの化合物および単離された異性体の双方を包含する。〕で示される化合物およびその塩。

【請求項2】請求項1記載の化合物を有効成分とする除 草剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はヘテロ環縮合ピリミジノン誘導体を有効成分として含有する除草剤に関する ものである。

[0002]

【従来の技術および課題】従来から、重要作物、例えばイネ、大豆、小麦、トウモロコシ、ワタ、ビート等を雑草害から守り、これらの重要作物の生産性を高める為に多くの除草剤が実用化されてきたが依然として既存の薬剤は求められる機能を全て満たしているものではない。【0003】

【課題を解決する為の手段】本発明者らは、ヘテロ環縮合ピリミジノン誘導体の除草作用について鋭意検討した結果、下記式で示される本発明化合物が優れた除草作用を有することを見い出し本発明を完成するに至った。

【0004】即ち、本発明は式(I):

[0005]

【化3】

【0006】〔式中、Rfは C_1-C_4 ハロアルキル基を表わし、XおよびYはそれぞれ独立して炭素原子、窒素原子、酸素原子または硫黄原子を表わし、X~YはN=N、C(Ra)=C(Rb)(Ra、Rbはそれぞれ独立して水素原子、ハロゲン原子、 C_1-C_4 アルキル基、 C_1-C_4 アルコキシ基、 C_1-C_4 ハロアルキル

基、水酸基、アミノ基、メルカプト基、カルボキシル 基、ヒドロキシメチル基、カルバモイル基、ホルミル 基、C,-C₄アルキルカルボニル基、C,-C₄アルコ キシカルボニル基、C₁ -C₄アルキルアミノ基、C₂ $-C_6$ アルケニル基、 C_2 $-C_6$ アルキニル基、 C_1 -C4アルキルメルカプト基、C3-C6アルケニルアミノ 基、C₃ - C₆アルキニルアミノ基、ベンジルオキシ 基、ベンジルアミノ基、C₁ -C₄アルキルスルフィニ ル基、C1 -C4アルキルスルホニル基、ピリジル基ま たは置換されていてもよいフェニル (SP1)基(置換 されていてもよいフェニル (SP1)基とは、ハロゲン 原子、C₁ -C₄アルキル基、C₁ -C₄アルコキシ基、 C₁ -C₄ハロアルキル基、C₁ -C₄ハロアルコキシ基 またはフェニル基によって置換されていてもよいフェニ ル基を表わす。)を表わす。)、C(Ra)=N(Ra は前記と同様の意味を表わす。)、N=C(Ra)(R aは前記と同様の意味を表わす。)、CH(Ra)CH (Rb) (RaおよびRbは前記と同様の意味を表わ t.), CH₂CH₂CH₂, CH=CHCH₂, CH₂C H=CH、NHC(Ra) Rb(RaおよびRbは前記 と同様の意味を表わす。)、C(Ra)(Rb)NH (RaおよびRbは前記と同様の意味を表わす。)、C $(=O) C (=O) C CH_2C (=O) NH CH_2CH$ 2SO2、C.(=O) C.H(Ra) (Raは前記と同様の 意味を表わす。)、CH(Ra)C(=O)(Raは前 記と同様の意味を表わす。)、C(=O)NH、C(= S) NH, NHC (=0), NHC (=S), C (=O) C(Ra) = N(Raは前記と同様の意味を表わ す。)、C (=0) C (Ra) = C (Rb) (Raおよ びRbは前記と同様の意味を表わす。)、C(Ra)= C(Rb)C(=O)(RaおよびRbは前記と同様の 意味を表わす。)、N=C(Ra)C(=O)(Raは 前記と同様の意味を表わす。)、CH(Ra)C(= O) NH(Raは前記と同様の意味を表わす。)、C (=O) N (Ra) C (=O) (Raは前記と同様の意 味を表わす。)、C(Ra)=NC(=O)(Raは前 記と同様の意味を表わす。)、C(Ra)O(Raは前 記と同様の意味を表わす。)、C(=O)O、OC(= O) またはSC(=O) を表わし、Aは窒素原子または CHを表わし、Zは酸素原子、硫黄原子、NRc (Rc は水素原子、 $C_1 - C_4$ アルキル基、 $C_1 - C_4$ アルコキ シカルボニル基、C₁ -C₄アルコキシカルボニルメチ ル基または置換されていてもよいフェニル (SP2)基 (置換されていてもよいフェニル (SP2)基とは、ハ ロゲン原子、C₁ - C₄アルキル基、C₁ - C₄アルコキ シ基またはC₁ -C₄ハロアルキル基によって置換され ていてもよいフェニル基を表わす) またはNNHRc (Rcは前記と同様の意味を表わす。)を表わし、Rg は水素原子、ハロゲン原子、シアノ基、C₁ -C₄アル コキシカルボニル基、C3 - C6アルケニル基、C3 -

C₆アルキニル基またはC₁ - C₄アルキル基を表わし、 R1は水素原子またはハロゲン原子を表わし、R5は水 素原子またはハロゲン原子を表わし、R2は水素原子、 ハロゲン原子、ニトロ基、シアノ基、チオカルバモイル 基、カルバモイル基、メルカプト基、ヒドロキシル基、 アミノ基、ホルミル基、カルボキシル基、ビニル基、エ チニル基、トリメチルシリルエチニル基、シアノメチル 基、スルファモイル基、フェニル基、ベンジル基、C1 -C₈アルキル基、C₃-C₈アルケニル基、C₃-C₈ア ルキニル基、C₁ -C₄ハロアルキル基、C₁-C₄アル コキシ基、 C_1 $-C_4$ ハロアルコキシ基、 C_3 $-C_8$ ハロ アルケニル基、C3 -C8ハロアルキニル基、C1-C4 アシル基、C₁ -C₄アルキルスルホニル基、C₁ -C₄ アルキルチオ基、 $C_1 - C_4$ アルコキシ ($C_1 - C_2$) アル キル基、-CO₂(C₁-C₄アルキル)基、-CON $(C_1 - C_4 アルキル)_2$ 基、 $-CONH(C_1 - C_4 ア$ ルキル)基、 $-NH-(C_1-C_4$ アルキル)基、-N $(C_1 - C_4 アルキル)_2$ 基、 $-S-CO_2(C_1 - C_4 ア$ ルキル)基、 $-O-Q-CO_2(C_1-C_4 アルキル)$ 基 (但し、Qは飽和あるいは不飽和の分岐していてもよ く、ハロゲン原子、C₁ - C₄ アルコキシ基、C₁ - C₄ アルコキシカルボニル基、シアノ基、フェニル基、C、 $-C_4$ ハロアルキル基、 C_1 $-C_4$ アルコキシ(C_1 -C $_4$) アルコキシ基、 $C_1 - C_4$ アシル基、 $C_1 - C_4$ アル コキシ(C₁ -C₄)アルキル基あるいは酸素原子で置 換されていてもよいC₁ -C₈のアルキレン鎖を表わ す。)、フェニルエチル基、-Q-CO₂(C₁-C₄ア ルキル)基(但し、Qは前記と同様の意味を表わす。) または $-NH-Q-CO_2(C_1-C_4$ アルキル) 基(但 し、Qは前記と同様の意味を表わす。)を表わし、R3 は、-O-R11(R11はC3-C8シクロアルケニル 基、 $C_3 - C_8$ シクロアルケニル($C_1 - C_4$)アルキル 基、シアノ(C₂-C6)アルキル基、シアノ(フェニ ル)メチル基、インダニル基、(C₁-C₄アルコキシ) $_{2}$ ($C_{1}-C_{4}$) アルキル基、 $C_{1}-C_{4}$ アルコキシ ($C_{1}-C_{4}$ C_4) アルコキシ ($C_1 - C_4$) アルキル基、 $C_1 - C_4$ ハ ロアルコキシ(C₁-C₄)アルキル基、C₁-C₄アルコ キシ($C_1 - C_4$)ハロアルキル基、 $C_1 - C_4$ ハロアルコ キシ(C_1-C_4)アルコキシ(C_1-C_4)アルキル基、 $C_2 - C_6$ アルケニルオキシ ($C_1 - C_4$) アルキル基、C $_2-C_6$ アルキニルオキシ (C_1-C_4) アルキル基、 C_1 -C4アルキルチオ(C1-C4)アルキル基、ケト(C3 $-C_8$)シクロアルキル基、 C_1-C_4 アシル($C_1 C_4$) アルキル基、 $C_1 - C_4$ アルキルスルホニル ($C_1 C_4$) アルキル基、 $(C_1-C_4$ アルコキシカルボニル), メチル基、ピリジル (C₁-C₄) アルキル基、5-トリ フルオロメチルー3-クロロー2-ピリジル基、(置換 されていてもよいフェニル (SP3)基)カルボニル 基、(置換されていてもよいフェニル(SP1)基と は、ハロゲン原子、C₁ -C₄ハロアルキル基、C₁ -

C4アルキル基、C1 -C4アルコキシ基、C1 -C4ハ ロアルコキシ基、メタンスルホニル基、C, -C。アル コキシカルボニル基、ニトロ基、ヒドロキシル基、アミ ノ基、シアノ基、 $-O-CH(CH_3)CO_2(C_1-C)$ 4アルキル)基または-O-CH2CO2(C1-C4アル キル) 基によって置換されていてもよいフェニル基を表 わす)、(置換されていてもよいフェニル (SP1) 基) オキシ(C1-C4) アルキル基、(置換されていて もよいフェニル (SP1) 基は前記と同様の意味を表わ す。)、(置換されていてもよいフェニル(SP1) 基) -Q-(C₁-C₄)アルキル基、(Qおよび置換さ れていてもよいフェニル (SP1)基は前記と同様の意 味を表わす。)、Het基(Het基とは酸素原子を1 あるいは2個含むことを特徴とする飽和あるいは不飽和 結合を含有する3~6員へテロ環を表わす。)または-Q-Het基(QおよびHet基は前記と同様の意味を 表わす。)を表わす。)、-NH-R11(R11は前 記と同様の意味を表わす。)、-S-R11(R11は 前記と同様の意味を表わす。)、C3-C8アルケニルオ キシカルボニル (C₁-C₄) アルキル基、C₃-C₈アル キニルオキシカルボニル (C₁-C₄) アルキル基、-N HCO-(C₁-C₄) アルキルオキシカルボニル(C₁ -C₄)アルキル基、-N(R15)CO-(C₁-C4) アルキルオキシカルボニル(C1-C4) アルキル ル基、C₃ -C₈アルキニル基、C₁-C₄ハロアルキル 基、C₃-C₈ハロアルケニル基、C₃-C₈ハロアルキニ ル基、C₁ -C₆アシル基、ホルミル基、シアノ(C₁- C_4) アルキル基、 $C_1 - C_4$ アルコキシ($C_1 - C_4$) アルキル基、C₁ -C₄アルコキシカルボニル基または -C(=O)(置換されていてもよいフェニル(SP 3)基)基(但し、置換されていてもよいフェニル(S P3)基は前記と同様の意味を表わす。)を表わし、R 4は水素原子、ハロゲン原子、ニトロ基、水酸基、アミ ノ基、 $C_1 - C_4$ アルキル基、 $C_1 - C_4$ アルコキシ基また はメルカプト基を表わし、R3とR4は酸素、窒素、硫 黄、炭素原子を任意に含むことを特徴とする飽和あるい は不飽和結合を有する5~6員環を形成していてもよ く、R2とR3は式(a)から(f)に示すようなヘテ ロ環を形成していてもよく、

【0007】 【化4】

【0008】なお、式(a)から式(f)のRf、R g、A、X、Y、Z、R1、R4およびR5は前記と同 様の意味を表わし、R17は水素原子、水酸基、アミノ 基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ アルケニル基、C3 -C₈アルキニル基、C₁-C₄ハロアルキル基、C₃-C₈ハロアルケニル基、C₃-C₈ハロアルキニル基、C 」 -C₆アシル基、ホルミル基、ベンゾイル基、C₁-C $_6$ アルコキシ基、 C_2 - C_8 アルケニルオキシ基、 C_2 -C $_8$ アルキニルオキシ基、 $C_1 - C_6$ ハロアルコキシ基、C $_1 - C_4$ アルコキシ $(C_1 - C_4)$ アルコキシ基、 CH_9 $CONH_2$, $CH(CO_2-(C_1-C_4TN+N))$ $_2$ 基、 $CH_2-(ピリジル)$ 基、 C_1-C_6 ハロアルキル カルボニル基、フェナシル基、Cg-Cgシクロアルキル $(C_1 - C_4)$ アルキル基、 $C_1 - C_4$ アルコキシ(C_1 $-C_4$) アルキル基、 $-Q-CO_2$ (C_1 $-C_4$) アルキ ル基(但し、Qは前記と同様の意味を表わす。)-Q-CN基(但し、Qは前記と同様の意味を表わす。) また は-Q-(置換されていてもよいフェニル (SP3) 基)基(但し、Qおよび置換されていてもよいフェニル (SP3)基は前記と同様の意味を表わす。)を表わ し、R28およびR29はそれぞれ独立して水素原子、 シアノ基、ハロゲン原子、C₁-C₆アルキル基、C₂- C_8 アルケニル基、 $C_2 - C_8$ アルキニル基、 $C_1 - C_4$ ハ ロアルキル基、C₁-C₄アシル基、C₁-C₄アルコキシ (C_1-C_4) アルコキシ基、 C_1-C_4 アルコキシ基、 C_1 1-C4アルコキシカルボニル基、C1-C4アルコキシ (C_1-C_4) アルキル基、 C_1-C_4 アルキルチオ基また は置換されていてもよいフェニル (SP3) 基 (置換さ れていてもよいフェニル (SP3) 基は前記と同様の意 味を表わす。)を表わし、但し、式(a)のR28とR 29がともに水素原子の場合と、式(b)のR28、R 29およびR30が全て水素原子の場合を除き、R28 とR29が一緒になって酸素原子を表わしていてもよ く、R30は水素原子、 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ ハロアシル基、C1-C6ハロアルキル基、C2-C8アル

ケニル基、 C_2-C_8 アルキニル基、 C_1-C_6 アシル基、 C_1-C_4 アルコキシカルボニル基または C_1-C_4 アルコキシ(C_1-C_4)アルキル基を表わし、但し、これらの化合物に光学異性体、ジアステレオマー、幾何異性体が存在する場合は、それぞれの化合物および単離された異性体の双方を包含する。〕で示されるヘテロ環縮合ビリミジノン誘導体(以下、本発明化合物と称する。)、そしてそれらを有効成分として含有する除草剤である。

[0009]

[0010]

【発明の実施の形態】式 (I) 中、Rfとしては CF_3 、 CF_2C1 、 CF_2H 、CFC1H、 CF_3CF_2 、または CF_2C1CF_2 が挙げられ、好ましくは CF_3 が挙げられる。

【0011】RgとしてはH、F、CI、Br、C \equiv N、CO₂Me、CH₂CH=CH₂、CH₂C \equiv CH、Me、Et、Pr、iso-PrまたはBuが挙げられ、好ましくはHまたはFが挙げられる。

【0012】Zとしては酸素原子、硫黄原子、NH、NMe、NEt、NPr、NBu、N-tert-Bu、NCO₂Me、NCO₂Et、NCH₂CO₂Me、NCH₂CO₂Et、NPh、N-(4-C1-Pheny1)、N-(3-C1-Pheny1)、N-(2-C1-Pheny1)、NNHMe、NNHEt、NNHPr、NNHBu、NNH-tert-Bu、NNH-(4-C1-Pheny1)、NNH₂、NNH-(3-C1-Pheny1)、NNH-(2-C1-Pheny1)、NNH-(2-C1-Pheny1)、NNH-(2-C1-Pheny1)、NNHCH₂CO₂Et、NNHPh、NNHCO₂MeまたはNNHCO₂Etが挙げられ、好ましくは酸素原子が挙げられ、好ましくはNが挙げられる。

 $[0014]X\sim Y \in U \subset U = N, CH = N, N = C$ H, C(C1) = N, N = C(C1), C(Br) =N, N=C (Br), CH=CH, C (C1)=CH,CH=C(C1), C(Br)=CH, CH=C(Br), C(Me) = CH, CH = C(Me), N = C(Me), N=C(Ph), C(Me)=N, C(Ph) = N, C (Et) = CH, CH = C (Et), C $(Pr) = CH, CH = C(Pr), CH_2CH_2, CH$ 2CH (Me), CH (Me) CH2, CH2CH (E t) CH (Et) CH2 CH2CH (Pr) CH (Pr) CH₂, CH₂CH₂CH₂, CH=CHCH₂, $CH_2CH=CH$, CH_2C (=0) NH, CH_2CH_2S O_2 , C (=0) C (O=0), CH_2C (=0), (C =O) NH、(C=S) NH、NHC(=O)、NHC (=S), C (=O) CH=N, C (=O) CH=CH, CH=CHC (=O), N=CHC (=O), CH $_2$ C (=0) NH, C (=0) NHC (=0), C (= O) N (Me) C (=O) \downarrow CH=NC (=O) \downarrow CH

 $_2$ O、C(=O) O、OC(=O)、SC(=O)またはC(=O)Sが挙げられ、好ましくはCH=N、N=CH、CH=CH、CH $_2$ CH $_2$ C(CH $_3$)=CH、C(C $_2$ H $_5$)=CH、CH=C(CH $_3$)、CH=C(C $_2$ H $_5$)、CH(CH $_3$)CH $_2$ CH(C $_2$ H $_5$)、C(CH $_2$ CH(CH $_3$)、CH $_2$ CH(C $_2$ H $_5$)、C(CH $_2$ CH $_3$)=CH、またはCH=C(CH $_2$ CH $_2$ CH $_3$)が挙げられ、さらに好ましくはCH=CHが挙げられる。

【0015】R1としてはH、C1、F、Br、またはIが挙げられ、好ましくはH、C1、またはFが挙げられる。

【0016】R5としてはH、CI、FまたはBrが挙 げられ、好ましくはHが挙げられる。

[0017]R2 ξ L τ ldH、C1、F、Br、I、C $N, CSNH_2, CONH_2, C \equiv CH, C \equiv CSiMe$ 3、CH=CH₂、Me、Et、Pr、iso-Pr、O -Me, O-Et, SO₂NH₂, OCH₂CO₂Me, O $\texttt{CH}_2\texttt{CO}_2\texttt{Et}, \, \texttt{OCH}_2\texttt{CH}_2\texttt{CO}_2\texttt{Et}, \, \texttt{CF}_3, \, \texttt{CF}$ 2CF₃, CF₂C1, CF₂H, CF₃O, NO₂, HCF 2O, C1CH2, BrCH2, SMe, SO2Me, O H, SH, NH_2 , CHO, CO_2H , CO_2Me , CO_2 Et, CH₂CN, NHMe, NMe₂, OCH₂OM e, OCH₂Ph, OCH₂ (4-Cl-pheny 1), $OCH_2(4-Br-phenyl)$, OCH $_{2}(4-Me-phenyl), OCH_{2}(4-Cl-2)$ - (OCH (Me) CO₂Me) - phenyl) O $CH_2 (4-Me-2-(OCH(Me)CO_2Me)$ phenyl), OCH_2 (4-C1-2-(OCH $(Me)CO_2Et)$ -phenyl), $OCH_2(4 Me-2-(OCH(Me)CO_2Et)-pheny$ 1), OCH_2 (4-Et-2-(OCH (Me) CO₂ Me)-phenyl), $OCH_2(4-Et-2-$ (OCH (Me) CO₂Et) -phenyl), OC H_2 (4-Pr-2-(OCH (Me) CO_2 Me) -p henyl), OCH_2 (4-Pr-2-(OCH (M e) CO₂Et) -phenyl)、C≡CPh、CH $=CHCO_2Et$, $NHCH_2Ph$, $NHCH_2(4-C)$ l-phenyl), NHCH₂ (4-Br-phen yl), NHCH₂(4-Me-phenyl), NH $CH_2 (4-C1-2-(OCH(Me)CO_2Me)$ phenyl), $NHCH_2$ (4-Me-2-(OCH (Me)CO₂Me)-phenyl), SCH₂Ph, $SCH_2(4-C1-pheny1)$, $SCH_2(4-B)$ r-phenyl), SCH₂ (4-Me-pheny 1) $SCH_2(4-C1-2-(OCH(Me)CO_2)$ Me)-phenyl), SCH_2 (4-Me-2-(OCH (Me) CO₂Me) -phenyl), OC H (Me) CO₂Me, OCH (Me) CO₂Et, NH CH2CO2Me, NHCH2CO2Et, SCH2CO2M eまたは SCH_2CO_2E tが挙げられ、好ましくはF、CI、Br、I、CN、 NO_2 または $CSNH_2$ が挙げられる。

れる。 【0018】R3としては、OCH2SMe、O-(t etrahydrofuran-3-yl)、O-(2, 3-epoxypropy1), O-(3-C1)-5-CF₃-2-pyridyl), OCH₂OCH₂ Ph, O-(tetrahydrofuran-2-y 1), $OCH_2OCH_2CH_2OMe$, OC(=O) (4) -MeO-Phenyl), OC (=0) (4-F-P)henyl), OCH₂-(tetrahydrofu ran-2-y1), $OCH_2-(2, 2-dimet$ hyl-1, 3-dioxolane-4-yl), O CH(CH₂OEt)₂, -OCH₂-(tetrahy dropyran-2-yl), OCH (CO₂E t)₂, $OCH_2-(2-fury1)$, OCH_2CH_2O $CH=CH_2$, OCH_2CH_2SMe , O-(2-cyclohexen-1-y1), $OCH_2CH_2OCH_2C$ H_2C1 , $OCH_2CH_2OCH_2CH=CH_2$, OCH_2C H_2OPh , $OCH_2CH_2O-(2-C1-pheny)$ 1), OCH₂CH₂OCH₂CH₂OMe, OCH₂CH₂ $OCH_2CH_2OCH_2CH_2CI$, OCH_2CH (Me) OPh, OCH (Me) CH₂OPh, OCH₂-(te trahydrofuran-3-y1), OCH₂C H₂CH₂SMe, OCH₂CH₂OCH₂CH₂OEt, O -(indan-2-y1), O-(indan-1yl), O-(tetrahydropyran-4y1), OCH (CH₂C1) CH₂OMe, OCH₂-(2H, 3H-benzo(e) 1, 4-dioxin -2-y1), OCH₂COMe, OCH₂COEt, O CH₂COPr, OCH₂-(2-pyridyl), O $CH_2 - (3-pyridyl), OCH_2 - (3-me)$ thyloxetan-3-yl), OCH (Ph) C \equiv N, OCH (Me) C \equiv N, OCH (Et) C \equiv N, $OCH_2-(cyclohex-3-enyl), OC$ H (Pr) C≡N, OCH (Me) COMe, OCH (Et) COMe, OCH (Pr) COMe, OCH, CH₂SO₂Me, OCH (Me) COEt, OCH (M e) COPr, O-(cyclohexan-1-on e-2-y1) 、N (COCF₃) $CH_2C \equiv CH$ 、N (COPh) CH₂C≡CH, NHCOCH, OC (= O) Me, N (COCH₂OC (=O) Me) $CH_2C\equiv$ CH, CO_2C (Me) $_2CO_2CH_2CH=CH_2$ \sharp tC(=O)NHCH(Me)Phが挙げられる。 【0019】R4としてはH、F、CI、Me、Et、 Pr. iso-Pr. MeO, EtO, PrO, N O2, NH2, NHCO-tert-Bu, CH2C (M e) = CH_2 , $CH_2CH = CH_2$, $CH_2C \equiv CH$, 2, 3-エポキシ-2-メチルプロピルまたは2,3-エポ

キシプロピルが挙げられ、好ましくはHまたはFが挙げ

られる。なお、R4が2、3-xポキシー2-xチルプロピルまたは $CH_2C(Me)=CH_2$ のときは、R3としては酸素原子でフェニル基に結合している置換基が挙げられる。

【0020】R2とR3は環を巻いていてもよく、その 場合-R2~R3-は-OC(R28)(R29)C (=0) N (R17) - (-0) N (R17)-, -N=C (R28) C (=0) N (R17) -, - $OC(R28)(R29)SO_2N(R17) - - O$ C(R28)(R29)C(=NCH=C(R17)-)-N-、-SC(=O)N(R17)-または-N (R30) C (R28) (R29) C (=0) N (R17)-が挙げられる。好ましくは、-OC(R28) (R29) C(=O) N(R17) - が挙げられる。 【0021】R17としては以下の置換基が挙げられ る。Me、Et、Pr、iso-Pr、Bu、sec-Bu, iso-Bu, H, NH₂, OH, CH₂CONH 2, CH₂cyclo-Pr, CH₂CO₂Me, CH₂C O₂Et、COMe、COEt、COPr、CO-is o-Pr, COBu, CO-tert-Bu, CO-c yclo-Pr, COCF₃, CH (Me) CO₂Me, $CH(Me)CO_2Et, CH_2Ph, CH_2-(2-C)$ l-Phenyl), $CH_2-(3-Cl-Pheny$ 1) $CH_2 - (4-C1-Pheny1) CH_2 -$ (2-pyridyl), $CH_2-(3-pyridy$ 1) $CH_2 - (4-pyridyl)$ $CH(CO_2E$ t) $_2$, CH (CO $_2$ Me) $_2$, OPr, O-iso-P r, OBu, O-tert-Bu, $OCH_2CH=C$ H_2 , OCH (Me) CH=CH₂, OC (Me), CH $=CH_2$, $OCH_2C\equiv CH$, OCH (Me) $C\equiv CH$, OC (Me)₂C = CH, OCH₂CH₂CH₂F, OCH ₂CH₂F, OCH₂CH₂CF₃, OCH₂CH₂CH₂C 1, OCH (CH₂F)₂, OCH₂OMe, OCH₂OE t, OCH2CH2OMe, OCH2CH2OEt, OCH $_{2}CH_{2}OCH_{2}CH_{2}OMe$, $CH_{2}CH=CH_{2}$, CH_{2} $C \equiv CH$, $CH_2C \equiv N$, CH_2CH_2F , CH_2CH_2C 1, CH₂CH₂CH₂ F, CH₂OMe, OMe, OE t, CH2OEt, CH2CH2CH2C1, CH2CH2C H_2CH_2F , $CH_2CC1=CH_2$, $CH_2CBr=C$ H_2 , CH (Me) $C \equiv CH$, CH (Me) $CH = CH_2$ またはCH(Me)C≡N。

【0022】R28およびR29としては、それぞれ独立して以下の置換基が挙げられる。H、C \equiv N、F、C 1、Br、I、Me、Et、Pr、iso-Pr、Bu、sec-Bu、iso-Bu、tert-Bu、C H=CH $_2$ 、CH $_2$ CH=CH $_2$ 、CH (Me) CH=C H $_2$ 、C (Me) $_2$ CH=CH $_2$ 、CH (Et) CH=C H $_2$ 、C=CH、CH $_2$ C=CH、CH (Me) C=C H、C (Me) $_2$ C=CH、CH (Et) C=CH、C H (Pr) C=CH、CF $_3$ 、CF $_2$ CI、CH $_2$ CI、CH $_2$ CI、CH $_3$ CI、CH $_4$ CI、C

 $\begin{array}{l} \text{CH}_2\text{F, CHF}_2\text{, CH}_2\text{CF}_3\text{, CH}_2\text{CH}_2\text{CH}_2\text{F,}\\ \text{CH}_2\text{CH}_2\text{F, CHCI}_2\text{, CH}_2\text{CI, CH}_2\text{CI, CH}_2\text{CH}\\ \text{2CH}_2\text{CI, COMe, COEt, COPr, CO-t}\\ \text{ert-Bu, OMe, OEt, OPr, O-iso-Pr, OBu, O-iso-Bu, O-sec-Bu,}\\ \text{O-tert-Bu, CO}_2\text{Me, CO}_2\text{Et, CO}_2\text{Pr, CO}_2\text{-iso-Pr, CO}_2\text{-tert-Bu, C}\\ \text{H}_2\text{OMe, CH}_2\text{CH}_2\text{OMe, CH}_2\text{CH}_2\text{OEt, O}\\ \text{CH}_2\text{OMe, OCH}_2\text{CH}_2\text{OMe, CH}_2\text{SMe, Ph, 2-CI-Ph, 3-CI-Ph, 4-CI-Ph, 2-F-Ph, 3-F-Ph, 4-F-Ph} \\ \text{h, 2-F-Ph, 3-F-Ph, 4-F-Ph}_3\text{cl}_4\text{-Me-Ph,} \end{array}$

【0023】R28とR29が一緒になった場合、酸素原子が挙げられる。

【0024】R30としてはH、Me、Et、Pr、C H_2 CH=C H_2 、C H_2 C≡CH、CH (Me) C≡C H、COMe、COEt、COPr、CO-tert-Bu、CO $_2$ Me、CO $_2$ Et、C H_2 OMe、C H_2 OE t、C H_2 CH $_2$ OMe またはC H_2 CH $_2$ OE tが挙げられる。

【0025】R3とR4は環を巻いていてもよく、その場合、-R4~R3-としては-CH=CH-CH $_2$ -O-、-CH=CH-O-、-CH $_2$ CH $_2$ O-、-O-CH=CH-、-O-CH $_2$ CH $_3$ CH $_4$ CH $_4$ CH $_4$ CH $_5$ CH

【0026】なお、文中の記号は以下の意味を表わす。

 $Me:CH_3$ Et: CH₂ CH₃ Pr: CH2 CH2 CH3 $iso-Pr:CH(CH_3)_2$ cyclo-Pr:CH(CH₂)₂ Bu: CH2 CH2 CH2 CH3 sec-Bu: CH (CH₃) C₂ H₅ iso-Bu: CH₂ CH (CH₃)₂ tert-Bu:C(CH₃)₃ cyclo-Bu:CH(CH₂)₃ Pn: CH2 CH2 CH2 CH2 CH3 cyclo-Pn:CH(CH₂)₄ iso-Pn:CH₂ CH₂ CH (CH₃)₂ $neo-Pn; CH_2 C (CH_3)_3$ cyclo-Hex:CH(CH₂)₅ $tert-Pn:C(CH_3)_2C_2H_5$ Hex: (CH₂)₅ CH₃

Hep: $(CH_2)_6 CH_3$ Oct: $(CH_2)_7 CH_3$ Ph, Phenyl: C₆ H₅ 4-C1-Ph: 4-C1-Pheny1 本発明化合物のあるものは畑地、非耕地用除草剤とし て、土壌処理、茎葉処理のいずれの処理方法に於いて も、イヌホウズキ (Solanum nigrum) 、チョウセンアサ ガオ (Datura stramonium)等に代表されるナス科 (Sola naceae)雑草、イチビ (Abutilon theophrasti)、アメ リカキンゴジカ (Sida spinosa) 等に代表されるアオイ 科 (Malvaceae)雑草、マルバアサガオ (Ipomoea purpur ea) 等のアサガオ類 (Ipomoea spps.)やヒルガオ類 (Ca lystegia spps.) 等に代表されるヒルガオ科 (Convolvu laceae) 雑草、イヌビユ (Amaranthus lividus)、アオ ビユ (Amaranthus retroflexus) 等に代表されるヒユ科 (Amaranthaceae)雑草、オナモミ (Xanthium pensylvan icum)、ブタクサ (Ambrosia artemisiaefolia)、ヒマ ワリ (Helianthus annuus)、ハキダメギク (Galinsoga ciliata)、セイヨウトゲアザミ (Cirsium arvense)、ノ ボロギク (Senecio vulgaris)、ヒメジョン (Erigeron annus)等に代表されるキク科(Compositae)雑草、イ ヌガラシ (Rorippa indica)、ノハラガラシ (Sinapis arvensis)、ナズナ (Capsella Bursapastoris) 等に代 表されるアプラナ科 (Cruciferae) 雑草、イヌタデ (Po lygonum Blumei)、ソバカズラ (Polygonum convolvulu s)等に代表されるタデ科 (Polygonaceae) 雑草、スベリ ヒユ (Portulaca oleracea) 等に代表されるスペリヒユ 科 (Portulacaceae)雑草、シロザ (Chenopodium albu m)、コアカザ (Chenopodium ficifolium)、ホウキギ (Kochia scoparia)等に代表されるアカザ科 (Chenopod iaceae) 雑草、ハコベ (Stellaria media)等に代表され るナデシコ科 (Caryophyllaceae)雑草、オオイヌノフグ リ (Veronica persica) 等に代表されるゴマノハグサ科 (Scrophulariaceae) 雑草、ツユクサ (Commelina comm unis) 等に代表されるツユクサ科 (Commelinaceae)雑 草、ホトケノザ (Lamium amplexicaule)、ヒメオドリコ ソウ (Lamium purpureum) 等に代表されるシソ科 (Labi atae) 雑草、コニシキソウ (Euphorbia supina)、オオ ニシキソウ (Euphorbia maculata) 等に代表されるトウ ダイグサ科 (Euphorbiaceae)雑草、ヤエムグラ (Galium spurium)、アカネ (Rubia akane)等に代表されるアカ ネ科 (Rubiaceae)雑草、スミレ (Viola mandshurica)等 に代表されるスミレ科 (Violaceae)雑草、アメリカツノ クサネム (Sesbania exaltata)、エピスグサ (Cassia o btusifolia) 等に代表されるマメ科 (Leguminosae)雑草 等の広葉雑草(Broad-leaved weeds)、野生ソルガム (Sorgham bicolor)、オオクサキビ (Panicum dichotom iflorum)、ジョンソングラス (Sorghum halepense)、イ ヌビエ(Echinochloa crus-galli var. crus-galli)、 ヒメイヌビエ (Echinochloa crus-galli var. praticol

a)、栽培ビエ(Echinochloa utilis)、メヒシバ(Digi taria adscendens)、カラスムギ(Avenafatua)、オヒシバ(Eleusine indica)、エノコログサ(Setaria viri dis)、スズメノテッポウ(Alopecurus aegualis)等に代表されるイネ科雑草(Graminaceous weeds)、ハマスゲ(Cyperus rotundus, Cyperus esculentus)等に代表されるカヤツリグサ科雑草(Cyperaceous weeds)等の各種畑地雑草(Cropland weeds)に低薬量で高い殺草力を有する。

【0027】又、水田用除草剤として湛水下の土壌処理 および茎葉処理のいずれの処理方法に於いても、ヘラオ モダカ (Alisma canaliculatum)、オモダカ (Sagittar ia trifolia)、ウリカワ (Sagittaria pygmaea) 等に代 表されるオモダカ科 (Alismataceae) 雑草、タマガヤツ リ (Cyperus difformis)、ミズガヤツリ (Cyperus sero tinus)、ホタルイ (Scirpus juncoides)、クログワイ (Eleocharis kuroguwai) 等に代表されるカヤツリグサ 科 (Cyperaceae) 雑草、アゼナ (Lindernia pyxidari a) 等に代表されるゴマノハグサ科 (Scrothulariacea e) 雑草、コナギ (Monochoria vaginalis) 等に代表さ れるミズアオイ科 (Potenderiaceae) 雑草、ヒルムシロ (Potamogeton distinctus) 等に代表されるヒルムシロ 科 (Potamogetonaceae) 雑草、キカシグサ (Rotala ind ica)等に代表されるミソハギ科 (Lythraceae) 雑草、タ イヌビエ (Echinochloa oryzicola)、ヒメタイヌビエ (Echinochloa crus-galli var. formosensis)、イヌビ エ (Echinochloa crus-galli var.crus-galli) 雑草 等、各種、水田雑草 (Paddy weeds)に低薬量で高い殺草 力を有する。

【0028】さらに本発明化合物のあるものは、重要作物であるイネ、コムギ、オオムギ、ソルゴー、落花生、トウモロコシ、大豆、棉、ビート等に対して高い安全性を有する。

【0029】本発明化合物は例えばスキー $\Delta1$ から15に示す方法によって合成することができる(スキー $\Delta1$ から15のZ、A、Ra、Rc、Rf、RgおよびR1 ~R5は前記と同様の意味を表し、R' およびR'' はそれぞれ独立して C_1 $-C_4$ アルキル基を表し、Halk ハロゲン原子を表し、R1はR2あるいはR3の整数を表わす。)

【0030】 【化5】

【0031】 【化6】

(スキーム2)

【0032】 【化7】

【0033】 【化8】

[0034]

【化9】

【0035】 【化10】

【0036】 【化11】

(スキ・ム5)

【0037】 【化12】

(1:X --- Y--- CH_CH_ or CH_CH_CH_ . A=N, Z=0, n=2 or 3)

(スキ・・ム6)

【0038】 【化13】

【0039】 【化14】

【0040】 【化15】

【0041】 【化16】

【0042】 【化17】

(スキーム11)

【0043】 【化18】

【0044】 【化19】

(スキーム13)

【0045】 【化20】

[0046]

【化21】

(スキーム15)

【0047】(スキーム1)アミノクロトン酸エステル誘導体(II)とフェニルイソチオシアナート誘導体(III)を塩基の存在下、不活性溶媒中で反応させ、2ーメルカプトピリミジン誘導体(IV)を得ることができる。

【0048】化合物 (II) は、J. Org. Chem., 21, 1358-61 (1956); J. Heterocycl. Chem., 513 (1972); Zhur. Org. Kim., 22(8), 1603-9 (1986); 特開平5-140060号公報などを参考に合成できる。化合物 (III) は対応するアニリン誘導体からSandler, S. R., Karo, W.

"Organic Functional Group Preparations" Academic, New York, 1968, Vol. 1, pp312-3 15に記載の方法に準じて調製することができる。

【0049】化合物(IV)を例えばジメチル硫酸やヨウ化メチルのようなアルキル化剤(アルキルとしてMe, Etなどが好ましい)と塩基存在下反応させることにより、例えば、2-メチルメルカプトピリミジン誘導体(V)を合成できる。化合物(V)を例えば、過酸化水素、空気、メタクロル過安息香酸などの酸化剤を用いて2-メタンスルホニルピリミジン誘導体(VI)へ誘導することができる。化合物(VI)をアジ化ナトリウム(アジ化カリウムあるいはトリメチルシリルアジドでもよい。)と反応させ、本発明化合物(I:X~Y→N=N,A=N,Z=Oの場合)を合成できる。

【0050】化合物(VI)をアンモニアあるいは酢酸アンモニウムと反応させ2-アミノビリミジン誘導体(VII)へ、またヒドラジンと反応させ2-ヒドラジノビリミジン誘導体(VIII)へとそれぞれ導くことができる。

【0051】但し、反応条件を強くすることにより、化合物(VI)の代わりに化合物(V)を用いて化合物(VII)、(VIII)または($I:X\sim Y\rightarrow N=N$, A=N, Z=Oの場合)を合成することもできる。(スキーム2)化合物(VIII)を、例えば" $ComprehensiveHeterocyclicChemistry" Vol. 5, Part4A, 890に記載されている方法を参考にして、オルトエステル誘導体と反応させ本発明化合物(<math>I:X\sim Y\rightarrow C$ (Ra)=N, A=N, Z=Oの場合)を合成できる。

【0052】化合物 (VII) をChem, Pham. Bull. 40(1)235-237(1992) などを参考にハロゲノアセトアルデヒドジアルキルアセタール誘導体 (ハロゲン原子として塩素原子と臭素原子が好ましい。) と反応させ本発明化合物 ($I:X\sim Y\to CH=CRa$, A=N, Z=Oの場合) と、あるいは、本発明化合物 ($I:X\sim Y\to C(Ra)=CH$, A=N, Z=Oの場合) を合成することができる。

(スキーム3)スードチオウレア(IX)とホルミルア ニリン誘導体(X)からグアニジン誘導体(XI)へと 導く。さらに化合物(XI)を β -ケト酸エステル誘導 体(XII)とHelvetica Chimica Acta, Vol. 59, Fasc. 4(1976) p p1203-1212などに記載の方法を参考にして本発明化合物 ($I: X\sim Y\rightarrow CH_2CH_2$, A=N, Rg=H, Z=Oの場合)を得ることができる。

【0053】メチルメルカプト基を持った1, 2, 4 トリアゾール(XIII)とイミダゾール(XV)を、それぞれホルミルアニリン誘導体(X)と反応させ化合物(XIV)と(XVI)を合成することができる。引き続き、これらと、 β ーケトエステル誘導体(XII)をそれぞれ反応させることによって、本発明化合物

(I: X~Y→N=CRa, A=N, Rg=H, Z=Oの場合) および本発明化合物 (I: X~Y→C (Ra)=CHand/orCH=CRa, A=N, Rg=H, Z=Oの場合) を合成することができる。場合によっては、(XIII)や(XV)のMeS基を酸化し、MeSO₂基として反応に供する事もできる。

(スキーム4) 化合物 $(I:Z=O,A=N,Rg\ne C)$ Nの場合)を五硫化リン (P_2S_5) あるいはローソン試薬 (Lawesson's Reagent:2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide) といったチオカルボニル 化剤と反応させ本発明化合物 <math>(I:Z=S,A=N,R) $g\ne C$ Nの場合)を合成することができる。

(スキーム5) 化合物 (VI) とアジリジンから調製した化合物 (XVII) を、例えばJ. Org. Chem., Vol. 39, No. 24, 3508 (1974) などの方法を参考にしてヨウ化ナトリウムあるいはヨウ化カリウム存在下反応させ本発明化合物 ($I: X\sim Y\rightarrow CH_2$ CH2, A=N, Z=Oの場合)を合成できる。引き続き適当な酸化剤、例えば空気、NaOCI、DDQ、過マンガン酸カリウムあるいはクロラニル (Choranil) などを用い本発明化合物 ($I: X\sim Y\rightarrow CH=CH$, A=N, Z=Oの場合) へと導くことができる。

(スキーム6) YAKUGAKU ZASSHI, 94 (12) pp1503-1514 (1974) などに記載の方法を参考にして、化合物 (VI) とアミノアルコールより得られた化合物 (XVIII) を、塩化チオニルあるいはオキシ塩化リンと反応させ、化合物 (XIX) を得る。これを例えばDBU、ピリジン、KOH、ソジウムメトキサイドのような塩基と反応させ本発明化合物 (I: X \sim Y \rightarrow CH₂CH₂orCH₂CH₂CH₂, A=N, Z=O, n=2or3の場合) を得ることができる。

【0054】本反応に用いるアミノアルコールの炭素原子にメチル、フェニルといった置換基の入ったものを使えば本発明化合物のX~Yのメチレン部分に対応した置換基を導入することができる。

(スキーム7) 化合物 (VII) をハロゲノプロピルアルデヒド ジアルキルアセタール (ハロゲンは塩素、臭

素が好ましい。)と反応後、塩基で処理し、本発明化合物($I: X \sim Y \rightarrow CH_2CH = CH$, A = N, Z = Oの場合)と、あるいは本発明化合物($I: X \sim Y \rightarrow CH = CHCH_2$, A = N, Z = Oの場合)を合成できる。

(スキーム8) 化合物 (V) をアミノアセトアルデヒドジアルキルアセタール誘導体と、例えば J. Heterocyclic Chem., 26, 205-207 (1989) を参考に反応させ、2位へ2, 2-ジアルコキシエチルアミノ基を導入し、化合物 (XX) を合成できる。さらに化合物 (XX) を酸性条件下、例えば、濃硫酸、メタンスルホン酸、ポリリン酸、濃塩酸、パラトルエンスルホン酸等の存在下、閉環反応によって本発明化合物 (I: X~Y→CH=CH, A=N, Z=Oの場合)を合成することができる。

(スキーム9) 化合物 (I:Z=Oの場合) を、例えば EP168262 等を参考にして、オキシ塩化リンと反応後 NH_2-R Cと反応させて本発明化合物 (I:Z=NRc の場合)を合成することができる。

 $(スキ-\Delta 10)$ 化合物 (VII) をイソシアン酸塩 R'NCO(R'としてはカリウム、ナトリウムまたは アンモニウムが好ましい。) あるいはアルキルイソシアナートR'NCO(R'としては、メチル、エチル、プロピルなどが挙げられる。) と反応させ、ウレア誘導体 (XXI) を合成することができる。化合物 (XXI) をジメチルホルムアミドジメチルアセタールと反応させ、本発明化合物 $(I:X\sim Y\rightarrow CH=NC(=O)$. A=N,Z=Oo 場合)を合成することができる。 (OO55) 化合物 (XXI) を、例えばホスゲン、ホ

スゲンダイマー、トリホスゲンなどのホスゲン誘導体あるいはクロロギ酸エステルと反応させ、本発明化合物 (I:X〜Y→C(=O)N(R')C(=O), A= N, Z=Oの場合)を合成することができる。

【0056】化合物 (VII)を3、3-ジアルコキシプロピオン酸誘導体と反応させ、本発明化合物 (I:X \sim Y \rightarrow C(=O)CH=CH,A=N,Z=Oの場合)を合成することができる。

【0057】尚、化合物(VII)とクロロカルボニルイソシアナートを、例えばBull. Chem. Soc. Jpn.,61,2217-2219(1988)などを参考にして反応させることにより、一気に本発明化合物(I:X~Y→C(=O)NHC(=O),A=N,Z=Oの場合)を合成することができる。

【0058】化合物(VII)を無水酢酸あるいはアセチルクロライドと反応させ、アセトアミド誘導体(XXII)へと導くことができる。化合物(XXII)をDMFジメチルアセタールと反応させ、本発明化合物(I:X~Y→CH=CHC(=O), A=N, Z=Oの場合)を合成することができる。

(スキーム11) 化合物 (VII) をクロロ酢酸クロライドあるいはブロモ酢酸クロライドと反応させ、本発明

化合物 ($I: X \sim Y \rightarrow CH_2C$ (=O), A=N, Z=Oの場合)を合成することができる。

【0059】化合物(VII)をオキザリルクロライド と反応させ、本発明化合物($I: X\sim Y\rightarrow C$ (=0) C (=0), A=N, Z=Oの場合)を合成することができる

【0060】化合物(VII)とエテンスルホニルフルオライドあるいはクロロエチルスルホニルクロライドとを、例えばJ. Org. Chem., Vol. 44, No. 22, 3847-3858(1979)などを参考にして反応させることにより、本発明化合物(I・Ya-Ya-CH-CH-SO-A-N-7-00世

 $(I: X \sim Y \rightarrow CH_2CH_2SO_2, A=N, Z=O$ の場合) を合成することができる。

(スキーム12)化合物(VIII)をクロロ酢酸クロライドあるいはブロモ酢酸クロライドと反応させ、本発明化合物($I: X \sim Y \rightarrow CH_2C$ (= O)NH、A = N、Z = Oの場合)を合成することができる。

【0061】化合物(VIII)をグリオキシル酸(エステル体でもよい)あるいはグリオキシル酸ジメチルアセタールと反応させ、本発明化合物($I:X\sim Y\rightarrow C$ (=O)CH=N, A=N, Z=Oの場合)を合成することができる。

【 0062】化合物(VIII)を、例えばホスゲン、ホスゲンダイマー、トリホスゲンなどのホスゲン誘導体と反応させ、本発明化合物($I:X\sim Y\rightarrow C$ (=O)NH,A=N,Z=Oの場合)を合成することができる。(スキーム13)化合物(VI)とヒドロキシルアミンとを反応させ化合物(XXIII)とした後、引き続き例えばホスゲン、ホスゲンダイマー、トリホスゲンなどのホスゲン誘導体あるいはクロロギ酸エステルと反応させることにより、本発明化合物($I:X\sim Y\rightarrow C$ (=O)O,A=N,Z=Oの場合)を合成することができる

(スキーム14)化合物(XXIV)とプロモアセトアルデヒドあるいはクロロアセトアルデヒドとを、例えば J. Org. Chem., Vol.42, No.14. 2448-2454 (1977) などを参考にして反応させることにより、本発明化合物 ($I:X\sim Y\rightarrow CH=CH$, A=CH, Z=Oo場合)を合成することができる。

【0063】化合物(XXIV)をハロゲン化剤、例えばNBS、NCS、塩素あるいは臭素と、BPOまたはAIBN存在下で反応させることによりハロゲノメチル化合物(XXV)を合成し、引き続きホルムアミドと反応させて脱水環化させ本発明化合物($I:X\sim Y\rightarrow CH=N$, A=CH, Z=Oの場合)を合成することができる。

【 0 0 6 4 】 あるいは、化合物 (XXV) にアミノ基を 導入し、化合物 (XXVI) を得た後、例えばUSP 4、044、015などを参考にしてギ酸によってホル ミル化した後、オキシ塩化リンで脱水して、本発明化合物 ($I: X \sim Y \rightarrow CH = N, A = CH, Z = O$ の場合) を合成することができる。

(スキーム15)化合物(XXVII)と β -ケト酸エステル誘導体(XII)あるいは2, 2-エトキシビニルハロアルキルケトン(XXVIII)とを反応させ、本発明化合物($I:X\sim Y\rightarrow N=CH$, A=CH, Z=O, Rg=Hの場合)を合成することができる。

【0065】スキーム中の化合物(V)あるいは(VI)のメチルメルカプト基、メタンスルホニル基をそれぞれ脱離基として、次の反応に用いているが、脱離基として塩素原子の入った化合物を用いて反応を行ってもよい。

[0066]

【実施例】以下に本発明化合物および中間体の合成例を 実施例として具体的に述べるが、本発明はこれらによっ て限定されるものではない。

〔実施例1〕8-〔2、7-ジフルオロ-3、4-ジヒドロ-3-オキソ-4-(2-プロピニル)-2H-1、4-ベンゾオキサジン-6-イル〕-7、8-ジヒドロ-5-トリフルオロメチルイミダゾ〔1、2-a〕ピリミジン-7-オン(本発明化合物No.244)の合成

[0067]

【化22】

【0068】8-〔2.7-ジフルオロ-3,4-ジヒドロ-3-オキソー2H-1,4-ベンゾオキサジン-6-イル〕-7,8-ジヒドロ-5-トリフルオロメチルイミダゾ〔1,2-a〕ピリミジン-7-オン0.6g、プロパルギルブロミド1.0g、炭酸カリウム0.6g、アセトニトリル30mlの混合物を3時間加熱環流した。溶媒を減圧留去し、飽和食塩水200mlを加え、酢酸エチルで抽出した。抽出層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去後、シリカゲル分取薄層板(展開溶媒:酢酸エチル/ヘキサン=1/1)で精製し、0.45gの目的物を白色結晶として得た。

 $^{1}H-NMR$ (ppm) 2. 23 \sim 2. 24 (m, 1 H), 4. 61-4. 77 (m, 2H), 6. 06 (d, J=50Hz, 1H), 6. 64 (s, 1H),

7. $02\sim7$. $40 \text{ (m, 4H) (CDCI_3)}$ mp 102-104%

【実施例2〕8-〔3,4-ジヒドロ-3-オキソ-4-(2-プロピニル)-2,2,7-トリフルオロ-2H-1,4-ベンゾオキサジン-6-イル〕-7,8-ジヒドロ-5-トリフルオロメチルイミダゾ〔1,2-a〕ピリミジン-7-オン(本発明化合物No.245)の合成

[0069]

【化23】

【0070】8-〔3,4-ジヒドロ-3-オキソー2,2,7-トリフルオロ-2H-1,4-ベンゾオキサジン-6-イル〕-7,8-ジヒドロ-5-トリフルオロメチルイミダゾ〔1,2-a〕ピリミジン-7-オン0.3g、プロパルギルブロミド0.7g、炭酸カリウム0.3g、ジメチルホルムアミド10mlの混合物を130℃で30分攪拌した。混合物を飽和食塩水100ml中に注ぎ、酢酸エチルで抽出した。抽出層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去後、シリカゲル分取薄層板(展開溶媒:酢酸エチル/ヘキサン=1/1)で精製し、0.12gの目的物を淡黄色結晶として得た。

 $^{1}H-NMR (ppm) 2.39\sim2.42 (m, 1 H), 4.65-4.82 (m, 2H), 6.69 (s, 1H), 7.03\sim7.51 (m, 4H) (CD Cl₃)$

mp 192-194℃

前記実施例に準じて合成した本発明化合物の構造式と物 性を前記実施例を含めそれぞれ第1表に示す。

【0071】〔第1表〕

[0072]

【化24】

【0073】 【表1】

化合物				
No.	R2	R3	R4	
209	Cl	OCH₂SMe	Н	mp 39− 41°C
210	Cl	O-(tetrahydrofuran-3-y1)	Н	mp 133-135℃
211	Cl	0-(2,3-epoxypropyl)	Н	mp 126-128°C

	212	C1	0-(3-C1-5-CF ₃ -2-pyridy1)	Н	mp 61-65℃
	213	C1	OCH ₂ OCH ₂ Ph	H	n_0^{20} . 7 1.4368
[0074]					_
	214	C1	O-(tetrahydrofuran-2-y1)	H	mp 175-179℃
	215	C1	OCH ₂ OCH ₂ CH ₂ OMe	H	$n_0^{21.0}$ 1.5263
	216	Cl	OC (=0) - (4-MeO-pheny1)	H	mp 70-73℃
	217	C1	OC(=0)-(4-F-pheny1)	Н	mp 75-78℃
	218	Cl	OCH ₂ -(tetrahydrofuran-2-yl)	H	mp 134-137℃
	219	C1	OCH_2 -(2,2-dimethyl-1,3-dioxolane-4-yl)	Н	mp 45-48°C
	220	C1	$CO_2C(Me)_2CO_2CH_2CH=CH_2$	H	mp 129-131℃
	221	Cl	OCH(CH ₂ OEt) ₂	H	mp 86-88℃
	222	C1	OCH ₂ -(tetrahydropyran2-y1)	H	mp 167-169°C
	223	Cl	OCH(CO ₂ Et) ₂	H	mp 30-33℃
	224	C1	OCH ₂ -(2-furyl)	Н	mp 170-173℃
	225	C1	OCH ₂ CH ₂ OCH=CH ₂	H	шр 163-166°С
	226	Cl	OCH ₂ CH ₂ SMe	Н	mp 88− 90°C
	227	C1	0-(2-cyclohexen-1-yl)	Н	mp 37- 40℃
	228	Cl	OCH2 CH2 OCH2 CH2 C1	Н	mp 105−107°C
	229	Cl	OCH ₂ CH ₂ OCH ₂ CH=CH ₂	Н	mp 78−80°C
	230	Cl	OCH ₂ CH ₂ OPh	Н	mp 35− 38°C
[0075]			【表2】		
	化合物	ı			
	No.	R2	R3	R4	
	231	Cl	OCH ₂ CH ₂ O-(2-C1-phenyl)	Н	mp 137-139℃
	232	Cl	OCH ₂ CH ₂ OCH ₂ CH ₂ OMe	Н	mp 98-100℃
	233	Cl	OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₂ CI	H	mp 67-70℃
	234	Cl	OCH ₂ CH (Me) OPh	Н	mp 105-107℃
	235	Cl	OCH (Me) CH ₂ OC ₆ H ₅	Н	n _D ^{24.9} 1.4918
	236	Cl	OCH ₂ -(tetrahydrofuran-3-yl)	Н	mp 123−125°C
	237	Cl	OCH ₂ CH ₂ CH ₂ SMe	Н	mp 60-62°C
	238	Cl	OCH ₂ CH ₂ OCH ₂ CH ₂ OEt	Н	mp 98-100°C
•	239	Cl	0-(indan-2-y1)	Н	mp 151-153℃
	240	Cl	0-(indan-1-yl)	Н	mp 69- 71℃
	241	Cl	NHCOCH ₂ OC (=0) Me	H	mp 195-198℃
	242	Cl	$N(COCH_2OC(=0)Me)CH_2C=CH$	H	mp 140-142°C
	243		=0) N(CH2 C = CH)	н	mp 80-82°C
	244		F) $HC (=0) N (CH_2 C \equiv CH)$	H	mp 102-104℃
	245		C(=0) N(CH2C = CH)	 H	mp 192-194℃
	246	Cl	0-(tetrahydropyran-4-yl)	 H	mp 180-182°C
	247	Cl	OCH(CH ₂ CI)CH ₂ OMe	 H	mp 94-96°C
	248	Cl	OCH ₂ - (2H, 3H-benzo(e)1, 4-dioxin-2-y1)	 H	mp 63-66°C
	249	Cl	OCH ₂ COMe	H	mp 202-205°C
	250	Cl	OCH (Me) C≡N	n H	mp 182-184°C
	251		C(=0) NH	n H	шр 162-164 С шр 198-201°С
	252	Cl	OCH ₂ -(2-pyridyl)	n H	шр 196-201С шр 147-150℃
			- Congression of the congression		mp 141-100C
100561					

[0076]

化合物				
No.	R2	R3	R4	
253	Cl	OCH ₂ -(3-methyloxetan-3-y1)	Н	mp 156-158℃
254	Cl	OCH(Ph)C≡N	H	mp 80-88°C
255	Cl	OCH ₂ -(cyclohex-3-enyl)	H	mp 96-99℃
256	Cl	OCH(Me)COMe	H	mp 51-53℃
257	C1	OCH ₂ CH ₂ SO ₂ Me	H	шр 155-158℃
258	OCH ((Me)C(=0)NH	H	mp 123-125℃
259	OCH ((Me) C (=0) N (CH2 C = CH)	H	mp 199-202℃
260	OC (N	fe) ₂ C(=0)NH	H	mp 134-136℃
261	OC (N	$(CH_2C = CH)$	H	mp 201-204°C
262	Cl	0-(cyclohexan-1-one-2-yl)	H	mp 84-89°C
263	Cl		OCH ₂ CH=CH	mp 52-55℃
264	OCH ₂	C(=0) N(CH2 C(=0) NH2)	H	mp>280℃(dec.)
265	OCH ₂	C(=0)N(CH2-(2-pyridy1))	H	$n_0^{22.3} 1.5524$
266	OCH ₂	$C(=0) N(OCH_2C = CH)$	H	mp 84-86℃
267	OCH ₂	$C(=0)N(CH(CO_2Et)_2)$	H	mp 58-60℃
268	Cl		OC(Me)=CH	mp 185-188℃

前記スキームあるいは実施例に準じて合成される本発明 化合物を前記実施例で合成した化合物も含め第2表およ び第3表に示すが、本発明はこれらによって限定される ものではない。

【0077】〔第2表〕

[0078]

【化25】

【化27】

【0079】 【化26】

【0081】 【化28】

【0082】 【化29】

【0083】 【化30】

【0084】 【化31】

【0088】 【化35】

【0090】 【化37】

【0091】 【化38】

【0092】 【化39】

【0094】 【化41】

【0095】 【化42】

【0096】 【化43】

【0097】 【表4】

R 3

OCH₂SMe, O-(tetrahydrofuran-3-yl), O-(2. 3 - epoxypropy1), $O - (3 - C1 - 5 - CF_3 - 2 - pyr$ idyl), OCH2OCH2Ph, O-(tetrahydrofuran-2 -y1), OCH₂OCH₂CH₂OMe, OC (=0) (4-MeO-Phen y1), OC (=0) (4-F-Pheny1), OCH₂-(tetrahydrofuran-2-y1), $OCH_2-(2, 2-dimethyl-1,$ 3-dioxolane-4-yl), OCH (CH₂OEt)₂, $-OCH_2-$ (tetrahydropyran-2-y1), OCH (CO₂Et)₂, OC $H_2-(2-furyl)$, $OCH_2CH_2OCH=CH_2$, OCH_2CH_2SMe , O-(2-cyclohexen-1-y1), OCH₂CH₂OCH₂CH₂C1 $, OCH_2CH_2OCH_2CH=CH_2, OCH_2CH_2OPh, OCH_2CH_2O-($ 2-Cl-phenyl), OCH2CH2OCH2CH2OMe, OCH2CH2O CH₂CH₂OCH₂CH₂C1, OCH₂CH (Me) OPh, OCH (Me) C H₂OPh, OCH₂-(tetrahydrofuran-3-y1), OCH 2CH2CH2SMe, OCH2CH2OCH2CH2OEt, O-(indan-2 -yl)、O-(indan-1-yl)、O-(tetrahydropyr an-4-y1), OCH (CH₂C1) CH₂OMe, OCH₂-(2H, 3H -benzo(e)1, 4-dioxin-2-y1), OCH₂COMe, OCH₂COEt, OCH₂COPr, OCH₂-(2-pyridyl), OCH₂ -(3-pyridyl), OCH₂-(3-methyloxetan-3yl), $OCH(Ph)C\equiv N$, $OCH(Me)C\equiv N$, $OCH(Et)C\equiv N$ $OCH_2-(cyclohex-3-enyl), OCH(Pr)C\equiv N, O$ CH (Me) COMe, OCH (Et) COMe,

[0098]

【表5】

OCH (Pr) COMe, OCH₂CH₂SO₂Me, OCH (Me) COEt, OCH (Me) COPr, O-(cyclohexan-1-one-2-yl), N (COCF₃) CH₂C \equiv CH, N (COPh) CH₂C \equiv CH, NHCO CH₂OC (=O) Me, N (COCH₂OC (=O) Me) CH₂C \equiv CH, C O₂C (Me) $_2$ CO₂CH₂CH=CH $_2$ \$\text{t}\text{t}C (=O) NHCH (Me) Ph

(第3表)【0099】【化44】

【0100】 【化45】

【0101】 【化46】

【0103】 【化48】

【0104】 【化49】

【0105】 【化50】

【0106】 【化51】

【0107】 【化52】

【0108】 【化53】

【0109】 【表6】

R17

Me, Et, Pr, iso-Pr, Bu, sec-Bu, iso-Bu, H, N H_2 , OH, CH_2CONH_2 , $CH_2cyclo-Pr$, CH_2CO_2Me , CH_2 CO_2Et , COMe, COEt, COPr, CO-iso-Pr, COBu, CO-tert-Bu, CO-cyclo-Pr, $COCF_3$, CH (Me) C

 O_2Me , CH (Me) CO_2Et , CH_2Ph , $CH_2-(2-Cl-Pheny$ 1) $CH_2-(3-C1-Pheny1)$ $CH_2-(4-C1-Pheny1)$), $CH_2-(2-pyridyl)$, $CH_2-(3-pyridyl)$, CH_2 -(4-pyridyl), CH(CO₂Et)₂, CH(CO₂Me)₂, OPr 、O-iso-Pr、OBu、O-tert-Bu、OCH₂CH=CH₂、OC H (Me) $CH = CH_2$, OC (Me) $_2CH = CH_2$, $OCH_2C \equiv CH$, OCH $(Me) C \equiv CH, OC (Me)_2 C \equiv CH, OCH_2 CH_2 CH_2 F, OCH_2 C$ H_2F , $OCH_2CH_2CF_3$, $OCH_2CH_2CH_2CI$, $OCH(CH_2F)_2$, OCH_2CH_2CI CH₂OMe, OCH₂OEt, OCH₂CH₂OMe, OCH₂CH₂OEt, OC $H_2CH_2OCH_2CH_2OMe$, $CH_2CH=CH_2$, $CH_2C\equiv CH$, $CH_2C\equiv$ N, CH_2CH_2F , CH_2CH_2CI , $CH_2CH_2CH_2$ F, CH_2OMe , OMee CEt CH2OEt CH2CH2CH2C1 CH2CH2CH2CH2F C $H_2CC1=CH_2$, $CH_2CBr=CH_2$, $CH(Me)C\equiv CH$, CH(Me)CH=CH₂ またはCH (Me) C≡N

尚、表中の記号は以下の意味を表す。

 $Me:CH_3$ Et: CH2CH3 $Pr: CH_2CH_2CH_3$ $iso-Pr:CH(CH_3)_2$ cyclo-Pr:CH(CH₂)₂Bu: CH, CH, CH, CH, $sec-Bu:CH(CH_3)C_2H_5$ iso-Bu:CH₂CH(CH₃)₂tert-Bu: C(CH₃)₃ cyclo-Bu:CH(CH₂)₃ $Pn:CH_2CH_2CH_2CH_2CH_3$ cyclo-Pn:CH(CH₂)₄ $i so-Pn: CH_2CH_2CH(CH_3),$ $neo-Pn; CH_2C(CH_3)_3$ cyclo-Hex:CH(CH₂)₅ $tert-Pn:C(CH_3)_2C_2H_5$ Hex: (CH₂)₅CH₃Hep: (CH₂)₆CH₃ $Oct: (CH_2)_7 CH_3$ Ph, Phenyl: C₆H₅ 4-C1-Ph: 4-C1-Phenyl

本発明化合物を使用するにあたっては、通常適当な固体 担体又は液体担体と混合し、更に所望により界面活性 剤、浸透剤、展着剤、増粘剤、凍結防止剤、結合剤、固 結防止剤、崩壊剤、消泡剤、防腐剤および分解防止剤等 を添加して、液剤、乳剤、水和剤、水溶剤、顆粒水和 剤、顆粒水溶剤、懸濁剤、乳濁剤、サスポエマルジョ ン、マイクロエマルジョン、粉剤、粒剤およびゲル剤等 任意の剤型の製剤にて実用に供することができる。ま た、省力化および安全性向上の観点から、上記任意の剤 型の製剤を水溶性包装体に封入して供することもでき る。なお必要に応じて、製剤または散布時に複数の他の 除草剤、殺虫剤、殺菌剤、植物生長調整剤、肥料等と混 合使用することも可能である。

【0110】固体担体としては、例えば石英、カオリナ イト、パイロフィライト、セリサイト、タルク、ベント ナイト、酸性白土、アタパルジャイト、ゼオライトおよ び珪藻土等の天然鉱物質類、炭酸カルシウム、硫酸アン モニウム、硫酸ナトリウムおよび塩化カリウム等の無機 塩類、合成珪酸ならびに合成珪酸塩が挙げられる。

【0111】液体担体としては、例えばエチレングリコ ール、プロピレングリコールおよびイソプロパノール等 のアルコール類、キシレン、アルキルベンゼンおよびア ルキルナフタレン等の芳香族炭化水素類、ブチルセロソ ルブ等のエーテル類、シクロヘキサノン等のケトン類、 γ -ブチロラクトン等のエステル類、N-メチルピロリ ドンおよびNーオクチルピロリドン等の酸アミド類、大 豆油、ナタネ油、綿実油およびヒマシ油等の植物油なら びに水が挙げられる。

【0112】これら固体および液体担体は、単独で用い ても2種以上を併用してもよい。

【0113】界面活性剤としては、例えばポリオキシエ チレンアルキルエーテル、ポリオキシエチレンアルキル アリールエーテル、ポリオキシエチレンスチリルフェニ ルエーテル、ポリオキシエチレンポリオキシプロピレン ブロックコポリマー、ポリオキシエチレン脂肪酸エステ ル、ソルビタン脂肪酸エステルおよびポリオキシエチレ ンソルビタン脂肪酸エステル等のノニオン性界面活性 剤、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、 リグニンスルホン酸塩、アルキルスルホコハク酸塩、ナ フタレンスルホン酸塩、アルキルナフタレンスルホン酸 塩、ナフタレンスルホン酸のホルマリン縮合物の塩、ア ルキルナフタレンスルホン酸のホルマリン縮合物の塩、 ポリオキシエチレンアルキルアリールエーテル硫酸およ び燐酸塩、ポリオキシエチレンスチリルフェニルエーテ ル硫酸および燐酸塩、ポリカルボン酸塩およびポリスチ レンスルホン酸塩等のアニオン性界面活性剤、アルキル アミン塩およびアルキル4級アンモニウム塩等のカチオ ン性界面活性剤ならびにアミノ酸型およびベタイン型等

(合成含水珪酸:塩野義製薬(株)商品名)

以上を均一に混合粉砕した後、少量の水を加えて攪拌混

	•		
の両性界面活性剤が挙	げられる。	【0122】〔粉 剤〕	
	面活性剤の含有量は、特に限定さ		01~30部
	本発明の製剤100重量部に対		~99.99部
	0重量部の範囲が望ましい。ま	その他	0~5部
	は、単独で用いても2種以上を併	その他として、例えばドリフト防止	
用してもよい。		挙げられる。	
【0115】次に本発	明化合物を用いる場合の製剤の配	【0123】使用に際しては上記製	剝を水で1~100
	明の配合例は、これらのみに限定	00倍に希釈してまたは希釈せずに、	
	なお、以下の配合例において	タール (ha) 当たり O. OO1~5	
「部」は重量部を意味		0.01~10kgになるように散布	
【0116】〔水和剤	· - •	【0124】製剤例	, .
本発明化合物	0.1~80部	次に具体的に本発明化合物を有効成	分とする農薬制剤例
固体担体	5~98.9部	を示すがこれらのみに限定されるもの	
界面活性剤	1~10部	以下の配合例において「部」は重量	
その他	0~ 5部	【0125】〔配合例1〕水和剤	14 5 15 15 15 15 15 15 15 15 15 15 15 15 1
その他として、例えば	固結防止剤、分解防止剤等があげ	本発明化合物No. 243	20部
れらる。		パイロフィライト	74部
【0117】〔乳 剤)	ソルボール5039	4部
本発明化合物	0.1~30部	(非イオン性界面活性剤とアニオン	
液体担体	45~95部	合物:東邦化学工業(株)商品名)	11 mil 11/1/10 - 10/1
界面活性剤	4.9~15部	カープレックス#80D	2部
その他	0~1 0部	(合成含水珪酸:塩野義製薬(株)	
その他として、例えば	展着剤、分解防止剤等が挙げられ	以上を均一に混合粉砕して水和剤と	
る。		【0126】〔配合例2〕乳 剤	, ••
【0118】〔懸濁剤		本発明化合物No. 244	5部
本発明化合物	0.1~70部	キシレン	75部
液体担体	15~98.89部	N-メチルピロリドン	15部
界面活性剤	1~1 2部	ソルポール2680	5部
その他	0.01~30部	(非イオン性界面活性剤とアニオン	生界面活性剤との混
その他として、例えば	東結防止剤、増粘剤等が挙げられ	合物:東邦化学工業(株)商品名)	
る。		以上を均一に混合して乳剤とする。	
【0119】〔顆粒水	和剤)	【0127】〔配合例3〕懸濁剤(フロアブル剤)
本発明化合物	0.1~90部	本発明化合物No.245	25部
固体担体	0~98.9部	アグリゾールS-710	10部
界面活性剤	1~20部	(非イオン性界面活性剤: 花王 (株)商品名)
その他	0~ 10部	ルノックス1000C	0.5部
その他として、例えば	結合剤、分解防止剤等が挙げられ	(アニオン性界面活性剤: 東邦化学)	工業(株)商品名)
る。		キサンタンガム	0.2部
【0120】〔液 剤)	水	64.3部
本発明化合物	0.01~70部	以上を均一に混合した後、湿式粉砕	して懸濁剤とする。
液体担体	20~99.99部	【0128】〔配合例4〕顆粒水和	钊(ドライフロアブ
その他	0~ 10部	ル剤)	
	東結防止剤、展着剤等が挙げられ	本発明化合物No.250	75部
3.		ハイテノールNE-15	5部
【0121】〔粒 剤)	(アニオン性界面活性剤:第一工業	製薬(株)商品名)
本発明化合物	0.01~80部	バニレックスN	10部
固体担体	10~99.99部	(アニオン性界面活性剤:日本製紙	(株)商品名)
その他	0~1 0部	カープレックス#80D	10部
その他として 切けば	は合剤 分解防止剤等が溢げるれ	(本成今水柱砂、指照菜側送 /姓):	左日か \

その他として、例えば結合剤、分解防止剤等が挙げられ

る。

合し、押出式造粒機で造粒し、乾燥して顆粒水和剤とする。

【0129】〔配合例5〕粒 剤

本発明化合物No. 2595部ベントナイト50部

タルク 45部 以上を均一に混合粉砕した後、少量の水を加えて攪拌混

以上を均一に混合材砕した後、少量の水を加えて撹拌混合し、押出式造粒機で造粒し、乾燥して粒剤とする。

【0130】〔配合例6〕粉 剤

本発明化合物No.268

カープレックス#80D

3部 0.5部

(合成含水珪酸:塩野義製薬(株)商品名)

カオリナイト

95部

リン酸ジイソプロピル

1.5部

以上を均一に混合粉砕して粉剤とする。

【0131】使用に際しては上記水和剤、乳剤、フロアブル剤、粒状水和剤は水で50~1000倍に希釈して、有効成分が1ヘクタール(ha)当たり0.0001~10kgになるように散布する。

【0132】次に、本発明化合物の除草剤としての有用性を以下の試験例において具体的に説明する。

〔試験例−1〕湛水条件における雑草発生前処理による 除草効果試験

内径3.2cm、深さ9cmの円筒形プラスチックカップ中に沖積土壌を入れた後、水を入れて混和し、水深4cmの湛水条件とする。上記のポットに2葉期のイネを移植し、更にノビエ、ホタルイ、コナギの種子を混播した。ポットを25~30℃の温室内において植物を育成し、播種後1日目に水面へ所定の薬量になるように、配合例に準じて調製した本発明化合物を処理した。処理後3週間目に各種雑草に対する除草効果及びイネに及ぼす影響について下記の判定基準に従い目視により調査した。0は影響なし、5は完全枯死を示す5段階評価である。結果を第4−1表に示す。

【0133】なお、各表中のNo. は実施例に記載した 化合物No. に対応し、記号は次の意味を示す。

A: ノビエ、B: ホタルイ、C: コナギ、a: イネ 判定基準

5…殺草率90%以上(ほとんど完全枯死)

- 4…殺草率70%以上90%未満
- 3…殺草率40%以上70%未満
- 2…殺草率20%以上40%未満
- 1…殺草率5%以上20%未満
- 0…殺草率5%未満(ほとんど効果なし)

〔試験例−2〕湛水条件における雑草発生後処理による 除草効果試験

内径3.2cm、深さ9cmの円筒形プラスチックカップ中に沖積土壌を入れた後、水を入れて混和し、水深4cmの湛水条件とする。上記のボットにノビエ、ホタルイ、コナギの種子を混播した。ボットを25~30℃の

温室内において植物を育成し、播種後14日目に水面へ所定の薬量になるように、配合例に準じて調製した本発明化合物を処理した。処理後3週間目に各種雑草に対する除草効果について試験例-1の判定基準に従い目視により調査した。結果を第4-2表に示す。なお、各表中のNo. は実施例に記載した化合物No. に対応し、記号は次の意味を示す。

A:ノビエ、B:ホタルイ、C:コナギ

〔試験例-3〕土壌処理による除草効果試験

縦33cm、横33cm、深さ8cmのプラスティック 製箱に殺菌した洪積土壌を入れ、メヒシバ、エノコログ サ、カラスムギ、ブラックグラス、イチビ、ブタクサ、 アオゲイトウ、シロザ、イヌタデ、オオイヌノフグリ、 ハコベ、トウモロコシ、ダイズ、ワタ、コムギ、ビート の種子を混播、約1.5cm覆土した後、所定の薬量に なるように、配合例に準じて調製した本発明化合物を土 壌表面へ均一に散布した。薬液散布後3週間目に各種雑 草に対する除草効果及び作物に及ぼす影響について試験 例-1の判定基準に従い目視により調査した。0は影響 なし、5は完全枯死を示す5段階評価である。結果を第 4-3表に示す。

【0134】なお、各表中のNo. は実施例に記載した 化合物No. に対応し、記号は次の意味を示す。

D: X上シバ、E: Tノコログサ、F: Dラスムギ、G: Tラックグラス、H: 1 チビ、I: Tタクサ、J: Tオゲイトウ、K: Y2 シロザ、L: 14 メノフグリ、Y: Y3 は、Y: Y4 は、Y: Y5 は、Y: Y7 は、Y: Y9 は、

〔試験例-4〕 茎葉処理による除草効果試験

縦33cm、横33cm、深さ8cmのプラスティック製箱に殺菌した洪積土壌を入れ、メヒシバ、エノコログサ、カラスムギ、ブラックグラス、イチビ、ブタクサ、アオゲイトウ、シロザ、イヌタデ、オオイヌノフグリ、ハコベ、トウモロコシ、ダイズ、ワタ、コムギ、ビートの種子を混播、約1.5cm覆土した後、25~30℃の温室において植物を14日間育成し、所定の薬量になるように、配合例に準じて調製した本発明化合物を茎葉部へ均一に散布した。薬液散布後3週間目に各種雑草に対する除草効果及び作物に及ばす影響について試験例−1の判定基準に従い目視により調査した。0は影響なし、5は完全枯死を示す5段階評価である。結果を第4−4表に示す。

【0135】なお、各表中のNo. は実施例に記載した 化合物No. に対応し、記号は次の意味を示す。

D: XLシバ、E: TJコログサ、F: Dラスムギ、G: Tラックグラス、H: Aチビ、I: Tタクサ、J: Tオゲイトウ、K: YDザ、Y: A7 スティングリ、Y: A7 スティングリ、Y: A8 カラス・Y: A9 スティングリ、Y: A9 スティング・Y: A9 スティ

〔第4-1表〕

1	\cap	1	3	6	1
L	v	Τ.	,	v	ı

【表7】

化合物	薬量					
No.	g/a	Α	В	С	a	
209	0.64	5	5	5	2	
210	0.64	5	5	5	4	
211	0.64	0	5	5	1	
212	0.64	3	1	5	0	
213	0.64	5	5	5	1	
214	0.64	5	5	5	3	
215	0.64	5	5	5	3	
216	0.64	4	3	5	1	
217	0.64	4	5	5	1	
218	0.64	5	5	5	3	
219	0.64	5	4	5	4	
220	0.64	5	4	5	1	
221	0.64	5	4	5	1	
222	0.64	5	3	5	1	
223	0.64	3	1	5	0	
224	0.64	5	2	5	1	
225	0.64	5	3	5	1	
226	0.64	2	3	5	2	
227	0.64	5	3	5	1	
228	0.64	5	5	5	1	
229	0.64	5	5	5	1	
230	0.64	5	3	5	1	

[0137]

【表8)
-----	---

化合物 N o .	薬量 g/a	A	В	C	a	
231	0.64	5	2	5	0	
232	0.64	5	4	5	3	
233	0.64	5	5	5	1	
234	0.64	5	4	5	1	
235	0.64	5	[′] 5	5	2	
236	0.64	5	5	5	3	
237	0.64	3	2	5	. 1	
238	0.64	5	5	5	4	
239	0.64	5	1	5	0	
240	0.64	5	1	5	0	
241	0.64	2	3	5	0	
242	0.64	0	3	5	1	
243	0.64	5	5	5	3	
244	0.64	. 5	5	5	5	
245	0.64	5	5	5	5	
246	0.64	5	5	5	1	
247	0.64	5	5	5	2	

	248	0.64	5	4	5	1	
	249	0.64	5	5	5	3	
	250	0.64	5	5	5	4	
	251	0.64	5	5	5	1	
	252	0.64	5	5	5	1	
[0138]				表9】			
	化合物	薬量					
	No.	g/a	Α	В	C	a	
	253	0.64	5	 5	5	2	
	254	0.64	5	4	5	1	
	255	0.64	5	4	5	1	
	256	0.64	5	5	5	1	
	257	0.64	3	3	5	0	
	258	0.64	4	1	5	1	
	259	0.64	5	5	5	5	
	260	0.64	0	0	4	0	
	261	0.64	5	5	5	3	
	262	0.64	4	5	5	2	
	263	0.64	3	5	5	1	
	264	0.64	1	_	3	1	
	265	0.64	5	3	5	1	
	266	0.64	5	5	5	2	
	267	0.64	5	3	5	1	
〔第4-2表〕 【0139】				表10】			
	化合物	—————————————————————————————————————		表10】			
	化合物 N o .	薬量 g/a	A	表10】 ———— B	С		
	No. 209	g/a 0.64	A 4	B 4	C 4		
	No. 209 210	g/a 0.64 0.64	Α	В			
	No. 209 210 211	g/a 0.64 0.64 0.64	A 4 5 2	B 4	4		
	No. 209 210 211 213	g/a 0.64 0.64 0.64 0.64	A 4 5 2 3	B 4 5 5 3	4 5 5 5		
	No. 209 210 211 213 214	0.64 0.64 0.64 0.64 0.64	A 4 5 2 3 4	B 4 5 5 3 3 3	4 5 5		
	No. 209 210 211 213 214 215	0.64 0.64 0.64 0.64 0.64	A 4 5 2 3 4 5	B 4 5 5 3	4 5 5 5		
	No. 209 210 211 213 214 215 216	0.64 0.64 0.64 0.64 0.64 0.64	A 4 5 2 3 4 5 4	B 4 5 5 3 3 3	4 5 5 5 3		
	No. 209 210 211 213 214 215 216 217	0.64 0.64 0.64 0.64 0.64 0.64 0.64	A 4 5 2 3 4 5 4 5	B 4 5 5 3 3 0 0 2	4 5 5 5 3 5		
	No. 209 210 211 213 214 215 216 217 218	g/a 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.6	A 4 5 2 3 4 5 4 5 5 5	B 4 5 5 3 3 0 0	4 5 5 5 3 5 4		
	No. 209 210 211 213 214 215 216 217 218 219	0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	A 4 5 2 3 4 5 4 5	B 4 5 5 3 3 0 0 2	4 5 5 5 3 5 4 5		
	No. 209 210 211 213 214 215 216 217 218 219 220	0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	A 4 5 2 3 4 5 4 5 5 5	B 4 5 3 0 0 2 5 4 1	4 5 5 5 3 5 4 5 5		
	No. 209 210 211 213 214 215 216 217 218 219 220 221	0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	A 4 5 2 3 4 5 5 5 5 5	B 4 5 3 3 0 0 2 5 4	4 5 5 5 3 5 4 5 5 5		
	No. 209 210 211 213 214 215 216 217 218 219 220 221 222	g/a 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.6	A 4 5 4 5 4 5 5 5 1	B 4 5 3 0 0 2 5 4 1	4 5 5 5 3 5 4 5 5 5 2		
	No. 209 210 211 213 214 215 216 217 218 219 220 221	g/a 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.6	A 4 5 2 3 4 5 4 5 1 4	B 4 5 3 0 0 2 5 4 1 3	4 5 5 5 3 5 4 5 5 5 2 4		
	No. 209 210 211 213 214 215 216 217 218 219 220 221 222 223 224	0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	A 5 2 3 4 5 4 5 1 4 4	B 4 5 3 0 0 2 5 4 1 3 1 0 3	4 5 5 5 5 4 5 5 5 4 4 4 4		
	No. 209 210 211 213 214 215 216 217 218 219 220 221 222 223 224 225	g/a 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.6	A 4 5 2 3 4 5 5 1 4 4 1	B 4 5 3 0 0 2 5 4 1 3 1 0	4 5 5 5 5 4 5 5 5 4 2 4 4 2		
	No. 209 210 211 213 214 215 216 217 218 219 220 221 222 223 224	0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	A 4 5 2 3 4 5 4 5 1 4 4 1 4	B 4 5 3 0 0 2 5 4 1 3 1 0 3	4 5 5 5 5 4 5 5 5 4 2 4 4 2 4		

228 0.64 5 1 5 229 0.64 5 2 5 230 0.64 5 2 4 231 0.64 1 0 3		227	0.64	5	2	4	
229							
[0140] [表11] (Ach							
(0140) (表11) (表11) (社合物 薬量 No. g/a A B C							
化合物 東量 No. g/a A B C							
No. g/a	[0140]				表11】		
No. g/a		化合物					
233				Α	В	С	
234		232	0.64	5	2	4	
235		233	0.64	3	3	5	
236		234	0.64	3	2	4	
237		235	0.64	5	3	5	
238		236	0.64	5	3	5	
239		237	0.64	0	0	3	
240		238	0.64	4	4	4	
241		239	0.64	1	0	0	
241		240	0.64	1	0		
242		241	0.64				
243		242	0.64	0			
244		243					
245		244					
246							
247							
248							
249							
250 0.64 5 5 5 5 251 0.64 5 4 5 252 0.64 5 4 5 253 0.64 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							
251 0.64 5 4 5 252 253 0.64 5 4 5 253 0.64 5 4 5							
252 0.64 5 4 5 5 5 5 5 5 5							
(0141) (表12) (a) (a)							
化合物 薬量 No. g/a A B C 254 0.64 4 4 4 255 0.64 5 4 4 256 0.64 5 5 5 257 0.64 1 1 - 258 0.64 2 1 4 259 0.64 5 4 5 260 0.64 5 4 5 261 0.64 5 4 5 262 0.64 4 4 4 4 263 0.64 4 - 4							
No. g/a A B C 254 0.64 4 4 4 255 0.64 5 4 4 256 0.64 5 5 5 257 0.64 1 1 258 0.64 2 1 4 259 0.64 5 4 5 260 0.64 0 3 261 0.64 5 4 5 262 0.64 4 4 4 263 0.64 4 4	[0141]			[表12】		
No. g/a A B C 254 0.64 4 4 4 255 0.64 5 4 4 256 0.64 5 5 5 257 0.64 1 1 258 0.64 2 1 4 259 0.64 5 4 5 260 0.64 0 3 261 0.64 5 4 5 262 0.64 4 4 4 263 0.64 4 4				 -			
255 0.64 5 4 4 256 0.64 5 5 5 257 0.64 1 1 - 258 0.64 2 1 4 259 0.64 5 4 5 260 0.64 0 - 3 261 0.64 5 4 5 262 0.64 4 4 4 263 0.64 4 - 4				Α	В	С	
256 0.64 5 5 5 257 0.64 1 1 - 258 0.64 2 1 4 259 0.64 5 4 5 260 0.64 0 - 3 261 0.64 5 4 5 262 0.64 4 4 4 263 0.64 4 - 4		254	0.64	4	4	4	
257 0.64 1 1 - 258 0.64 2 1 4 259 0.64 5 4 5 260 0.64 0 - 3 261 0.64 5 4 5 262 0.64 4 4 4 263 0.64 4 - 4		255	0.64	5	4	4	
258 0.64 2 1 4 259 0.64 5 4 5 260 0.64 0 - 3 261 0.64 5 4 5 262 0.64 4 4 4 263 0.64 4 - 4		256	0.64	5	5	5	
259 0.64 5 4 5 260 0.64 0 - 3 261 0.64 5 4 5 262 0.64 4 4 4 263 0.64 4 - 4		257	0.64	1	1	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		258	0.64	2	1	4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		259	0.64				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		260			_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		261			4		
263 0.64 4 - 4							
_					_		
		264	0.64		_		

267	0.64	4	4 ———— 【表13】	4	
266	0.64	5	4	4	
265	0.64	4	3	3	

〔第4-3表〕 【0142】

化合物No.	薬量g/a	D	Е	F	G	H	I	J	K	L	М	N	b	с	d	e	f
209	1.6	5	 5	5	4	5	5	5	5	_	 5	5	3	1	0	4	5
210	1.6	5	5	4	4	5	5	5	5	-	5	5	4	1	0	4	5
211	1.6	5	1	1	0	5	4	5	5	5	1	1	0	0	0	0	5
212	1.6	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	1
213	1.6	1	2	1	0	2	0	3	4	5	5	5	1	0	0	0	5
214	1.6	4	4	4	3	5	3	1	5	3	5	3	4	4	3	4	5
215	1.6	5	5	4	4	5	4	5	5	5	5	5	4	3	5	3	5
216	1.6	3	3	1	0	5	1	1	5	0	3	0	0	1	0	0	0
217	1.6	4	4	1	2	5	2	0	5	1	2	1	4	3	3	1	4
218	1.6	5	5	2	3	5	5	5	5	5	5	5	4	4	3	1	5
219	1.6	5	5	2	3	5	5	5	5	5	5	5	4	3	3	2	5
220	1.6	3	3	0	1	3	4	5	4	4	-	0	2	0	0	1	1
221	1.6	5	4	1	1	5	0	4	5	5	5	1	5	4	3	1	5
222	1.6	5	5	1	2	5	5	5	5	5	5	4	5	4	4	2	5
223	1.6	0	0	0	0	0	0	0	-	0	4	1	0	0	0	1	2
224	1.6	4	3	0	0	3	0	4	4	5	0	0	0	0	0	0	2
225	1.6	5	4	0	0	4	4	5	5	5	5	5	0	1	2	0	5
226	1.6	2	0	0	0	3	2	5	5	5	0	0	1	0	0	0	5
227	1.6	5	4	-	4	5	1	5	-	5	5	5	1	0	0	1	5
228	1.6	5	5	-	4	5	5	5	_	5	5	5	4	1	0	2	5
229	1.6	5	5	-	5	5	5	5	-	5	5	5	4	1	0	3	5
230	1.6	5	4	5	5	3	2	5	-	5	5	5	0	0	0	5	5
231	1.6	2	1	0	-	3	5	4		5	5	5	0	0	0	0	4

[0143]

【表14】

化合物No.	薬量g/a	D	E	F	G	Н	I	J	K	L	M	N	b	С	đ	e	f
232	1.6	5	5	2	4	5	5	5	_	5	5	5	- 5	3	4	1	- <u>-</u> -
233	1.6	5	4	0	0	5	3	5	5	5	5	3	2	0	1	2	5
234	1.6	0	1	1	-	2	0	4	1	4	4	4	0	0	0	0	5
235	1.6	5	4	1	2	5	2	5	5	5	5	4	0	1	1	1	5
236	1.6	5	5	3	4	5	5	5	5	5	5	5	5	3	3	4	5
237	1.6	4	4	0	0	5	5	5	5	5	5	1	4	2	2	1	5
238	1.6	5	4	4	2	5	5	5	5	5	5	5	4	2	3	4	5
239	1.6	4	4	2	3	2	1	4	5	0	4	5	0	0	0	1	5
240	1.6	4	3	2	3	5	1	5	5	5	5	4	0	0	0	1	5
241	1.6	4	0	0	0	3	1	2	5	0	0	0	0	0	0	0	0
242	1.6	3	1	0	0	3	1	4	5	5	1	0	0	1	1	0	3
243	1.6	5	5	5	5	5	5	5	5	5	5	5	5	3	4	4	5
244	1.6	5	5	4	4	5	5	5	5	5	5	5	4	1	5	4	5

	245 246 247 248 249 250	1.6 1.6 1.6 1.6 1.6	5 5 5 4 5 5	5 3 4 4 4 5	5 2 2 0 2 4	4 3 3 0 2 4	5 5 5 3 4 5	5 3 4 1 2 5	5 5 5 4 4 5	5 5 5 5 5 5	5 5 4 5 5 5	5 5 5 5 2 5	5 4 5 4 5 5	5 1 4 0 0	1 1 0 0 0	5 2 0 0 0 4	4 4 3 0 3 4	5 5 4 4 5	
	251	1.6	5	5	1	5	5	4	5	5	5	5	5	4	1	1	3	5	
	252	1.6	5	4	1	2	5	3	5	5	3	5	5	0	0	0	3	5	
	253	1.6	5	5	3	3	5	4	5	5	5	5	5	3	1	1	3	5	
	254	1.6	5	4	1	1	5	3	5	5	4	5	4	0	0	0	1	5	
[0144]									【表	 ŧ 1	5 }		_						
	化合物No.	薬量g/a	D	Е	F	G	Н	I	J	K	L	M	N	b	С	đ	е	f	
	255	1.6	4	3	0	0	3	2	5	4	5	_	2	0	0	0	0	0	
	256	1.6	5	5	3	1	5	5	5	5	5	_	4	4	3	2	2	5	
	257	1.6	0	0	0	0	3	2	5	5	5	_	0	0	0	0	0	5	
	258	1.6	3	3	0	0	1	3	5	5	4	2	0	0	1	0	0	4	
	259	1.6	5	5	4	4	5	5	5	5	5	5	5	5	4	5	4	5	
	260	1.6	0	0	0	0	1	3	5	5	5	0	0	0	0	0	0	4	
	261	1.6	5	5	3	5	5	5	5	5	5	5	5	5	4	4	3	5	
	262	1.6	5	5	2	1	5	5	5	5	5	5	3	4	1	1	2	5	
	263	1.6	5	4	1	1	5	5	5	5	5	5	3	4	2	1	1	5	
	264	1.6	1	0	0	0	1	1	3	_	_	5	0	0	0	0	0	5	
	265	1.6	5	5	3	4	5	4	4	_	3	5	5	1	3	1	3	5	
	266	1.6	5	5	3	3	5	.4	5	5	-	5	5	3	0	1	1	5	
	267	1.6	5	5	1	3	5	4	5	5	4	5	5	4	1	3	1	5	
〔第4~4表〕 【0145】						_			【表	ŧ 1	6 }								•
	化合物No.	薬量g/a	D	E	F	G	Н	I	J	K	L	M	N	b	С	d	е	f	
	209	1.6	5	5	5	4	5	5	5	5	5	5	5	4	5	5	4	5	
	210	1.6	5	5	5	5	5	5	5	5	5	5	5	4	5	5	4	5	
	211	1.6	5	4	2	2	5	5	5	5	5	-	5	3	4	4	2	5	
	212	1.6	2	1	1	1	4	3	5	4	5	4	3	2	2	5	1	4	
	213	1.6	5	5	2	3	5	5	5	5	5	5	5	3	4	5	2	5	
	214	1.6	5	5	5	4	5	5	5	5	5	5	5	4	5	5	4	5	
	215	1.6	5	5	4	4	5	5	5	5	5	5	5	4	4	5	4	5	
	216	1.6	4	4	2	2	5	5	4	5	5	5	5	3	5	5	2	5	
	217	1.6	4	4	3	2	5	4	4	5	4	5	5	4	4	5	4	5	
	218	1.6	5	5	2	4	5	5	5	5	5	5	5	5	5	5	2	5	
	219	1.6	5	5	3	5	5	5	5	5	5	5	5	5	5	5	5	5	
	220	1.6	4	4	1	1	5	4	5	5	5	5	5	2	3	5	2	5	

1.6 5 4 1 2 5 4 4 5 5 5 5 5 4 5 1 3

1.6 5 5 1 3 5 5 5 5 5 5 5 5 4 5 1 5

1.6 0 0 1 0 3 4 5 5 5 1 3 0 2 3 1 1

1.6 3 2 1 2 5 4 5 5 5 5 5 1 2 5 1 5

221

222

223

224

```
225
                          1.6
                              2 1 1 1 5 5 5 5 5 5 5 0 3 5 1 1
                              3 4 1 1 5 5 5 5 5 5 5 5 5 5
                 226
                          1.6
                 227
                              5 5 3 2 5 5 5 5 5 5 5
                                                        4
                                                          5 5 1 5
                 228
                                5
                                     4
                                        5
                                          5
                                            5 5 5 5
                                                     5
                                                        4
                                                           4
                                                             5 2 5
                 229
                              5 5 5 5 5 5 5 5 5 5 5 3 5
                          1.6
                              4 5 5 3 5 5 5 5 5 5 5 3 5 5 2 5
                 230
                          1.6
                              0 2 1 0 5 4 5
                 231
                          1.6
                                               - 5 5 5 1 5 5 1 5
[0146]
                                            【表17】
               化合物No. 薬量g/a D E F G H I J K L M N b c d e f
                 232
                                                 5 5 5 5 5 5 3 5
                          1.6
                              5 5 4 5 5 5 5 -
                 233
                          1.6
                              4 4 2 3 5 5 5 5
                                                 5
                                                   5
                                                     5
                                                        1
                                                          4
                                                             5 1 5
                 234
                              2 3 0
                                     2 5
                                            5
                                              5
                                                 5
                                                   5
                                                      5
                                                        1
                                                           4
                                                             5 0 5
                 235
                              5 5
                          1.6
                                   5
                                     5
                                        5
                                          5
                                            5
                                               5
                                                 5
                                                   5
                                                      5
                                                        2
                                                           5
                                                             5
                 236
                              5 5 4
                          1.6
                                     3 5
                                          5
                                            5
                                                 5
                                               5
                                                   5
                                                      5
                                                        4
                 237
                          1.6
                              5 5 3 1
                                        5
                                          5
                                            5
                                              5
                                                5
                                                   5
                                                     4
                                                        2
                 238
                          1.6
                              5
                                5 3
                                     2
                                        5
                                          5
                                            5
                                               5
                                                 5
                                                   5
                                                      5
                                                        5
                                                          5
                                                             5
                 239
                          1.6
                              5 4 2
                                     4
                                        5
                                          5
                                            5
                                              5
                                                 5
                                                   5
                                                     5
                                                        2 3
                                                             5 2 5
                              5 5 0
                 240
                          1.6
                                          5
                                            5
                                               5
                                                 5
                                     4
                                        4
                                                   5
                                                      5
                                                        2
                                                          4
                                                             5
                 241
                          1.6
                              4
                                2 0
                                     0
                                       5
                                            5
                                          3
                                               5
                                                 4
                                                   5
                                                     3
                                                        1 2
                 242
                          1.6
                              3 1
                                   0
                                     0
                                       5
                                          3
                                            5
                                                 5
                                                      3
                                               4
                                                   3
                                                               0
                                                        1
                 243
                              5
                                        5
                                          5
                                            5
                          1.6
                                4
                                   5
                                     4
                                               5
                                                 5
                                                   5
                                                      5
                                                        4
                                                          5
                                                             5 5
                 244
                          1.6
                                5
                                  5
                                     5
                                        5
                                          5
                                            5
                                               5
                                                 5
                                                   5
                                                     5
                                                        4
                                                           5
                                                             5 4 5
                 245
                          1.6
                              5
                                5
                                   5
                                     5
                                        5
                                          5
                                            5
                                               5
                                                 5
                                                   5
                                                      5
                                                        5
                                                          5
                                                             5
                 246
                              5
                                     3 5
                                            5
                                               5
                                                 5
                          1.6
                                   4
                                          5
                                                   5
                                                      5
                                                        3
                 247
                          1.6
                              5
                                4 4
                                     3
                                       5
                                          5
                                            5
                                               5
                                                 5
                                                   5
                                                      5
                                                        3 5
                                                             5 2 5
                 248
                          1.6
                              5
                                4 1 2 5
                                          5
                                            5
                                              5
                                                 5
                                                   5
                                                      5
                                                        3
                                                          4
                                                             5 2 5
                 249
                          1.6
                              5 5 4
                                     2
                                        5
                                          5
                                            5
                                              5
                                                 5
                                                     5
                                                   5
                                                       3 5 5 3 5
                 250
                              5
                                   5
                                        5
                                            5
                          1.6
                                4
                                     5
                                          5
                                              5
                                                 5
                                                   5
                                                      5
                                                        5
                                                          5
                                                             5
                 251
                              5 5 1
                          1.6
                                     5 5
                                         4
                                            55
                                                5
                                                   5
                                                     54
                 252
                          1.6
                              5 4 5 5 5
                                          5 5 5
                                                   5 5 3 4
                                                             5 2 5
                 253
                              5 5 5 4 5 5 5 5 5 5 5
                                                       3 5 5 3 5
                          1.6
                 254
                          1.6
                              5 4 2 3 5 5 5 5 5 5 5 4 4 5 1 5
[0147]
                                            【表18】
               化合物No. 薬量g/a D E F G H I J K L M N b c d e f
                 255
                          1.6
                              5 4 1 0 5 5 5 5 1 5 5 3 4 5 1 5
                 256
                                5 2 3 5 5 5
                                              5
                                                5
                                                   5
                                                     5
                                                        4
                                                           4
                                                             5 1 5
                 257
                          1.6
                                1 1
                                     2
                                       5
                                          5 5
                                              5
                                                 5
                                                   5
                                                      5
                                                        2
                                                          4
                                                             5
                 258
                          1.6
                                4 1
                                     2 5
                                            5
                                              5
                                                 5
                                                   5
                                                     5
                                                        3 4
                                          4
                 259
                         1.6
                              5 5 5 5
                                       5
                                          5
                                            5
                                              5
                                                 5
                                                   5
                                                     5 5
                                                          5
                                                             5 5
                 260
                          1.6
                              2 1
                                   0 0
                                       5 3 5
                                              5
                                                5
                                                   5
                                                     2 3 3
                                                             5
                 261
                          1.6
                              5 5
                                       5
                                          5 5 5 5
                                                   5 5 5 4
                                  4
                                     4
                                                             5 3 5
                 262
                          1.6
                              5 5 3
                                     2 5
                                          4
                                            5 5
                                                5
                                                   5 5
                                                        4
                                                          4
                                                             5 2 5
                 263
                              5 5 2 1 5 5 5 5 5 5 4 4 4 5 1 5
                         1.6
                 264
                         1.6
                              5 3 1 1 5 5 5 - 3 5 4 3 3 5 1 5
```

265	1.6	5	5	5	4	5	4	5	-	4	5	5	5	5	5	3	5	
266	1.6	-	5	5	4	5	5	5	-	5	5	5	4	5	5	3	5	
267	1.6	5	4	4	5	5	5	5	5	5	4	5	5	4	5	2	5	

フロントペー	ージの続き			- •					
(51) Int. Cl.	7	識別記号	FΙ						(参考)
C07D	487/04	148	C07D	487/04		148	3		
A 0 1 N	43/90	104	A 0 1 N	43/90		104	l l		
		105				105	5		
		106				106	•		
C07D	498/04	105	C 0 7 D	498/04		105	5		
	513/04	381		513/04		381	-		
	519/00	301		519/00		301	_		
(72)発明者	前田 兼原	戏	(72) 発明者	新田	暢之				
	千葉県船	喬市坪井町722番地1日産化	学工	埼玉県	具南埼玉郡	白岡町	大字	白岡14	470日産化
	業株式会	社中央研究所内		学工業	族株式会社	生物科	学研	究所内]
(72)発明者	渡邊 重	至	Fターム(参考) 4	CO50 AA01	BB03	BB04	BB05	BB06
	埼玉県南地	奇玉郡白岡町大字白岡1470日	日産化		BB07	BB08	CC08	EE02	EE03
	学工業株式	式会社生物科学研究所内			EE04	EE05	FF02	FF03	FF05
(72)発明者	中平国	光			GG02	GG03	GG04	GG05	HH01
	埼玉県南地	奇玉郡白岡町大字白岡1470日	日産化		HH02				÷
		式会社生物科学研究所内		4	C072 AA01	BB02	CC03	CC11	CC16
(72)発明者	大木 亨				EE02	EE15	FF09	GG07	HH02
	埼玉県南地	奇玉郡白岡町大字白岡1470日	日産化		MM06	UU02			
	学工業株	式会社生物科学研究所内		4	H011 AB01	AB02	BA05	BB09	BC06
					BC07	DA02	DA13	DA15	DA16
					DD04				