Chapter 5

Pushdown Automata

Regular Languages (Review)

- Regular languages are,
 - described by regular expressions.
 - generated via regular grammars.
 - accepted by
 - deterministic finite automata DFA
 - nondeterministic finite automata NFA
 - There is an equivalence between the deterministic and nondeterministic versions.
- Every regular language RL is CFL.
- But some CFL are not regular:
 - $L = \{a^n b^n : n \ge 1\}$ has CFG.
 - $S \rightarrow aSb \mid ab$
 - The language $\{ww^R : w \in \{a, b\}^*\}$ has CFG.
 - $S \rightarrow aSa \mid bSb \mid \varepsilon$

Context-Free Languages (Review)

- CFL are generated by a context-free grammar CFG.
- A grammar G = (NT, T, S, P) is CFG if all production rules have the form.
 - $A \rightarrow y$, where $A \in NT$, and $y \in (NT \cup T)^*$
 - i.e., there is a single NT on the left hand side.
- A language L is CFL iff there is a CFG G such that L = L(G).
- All regular languages, and some non-regular languages, can be generated by CFGs.
 - regular languages are a proper subset of context-free languages.

Stack Memory

- The language $L = \{wcw^R : w \in \{a, b\}^*\}$ is CFL but not RL
 - We can not have a DFA for L.
 - Problem is memory, DFA's cannot remember left hand substring.

- What kind of memory do we need to be able to recognize strings in *L*?
 - Answer: a stack.

Stack Memory...

- Example: $u = aaabbcbbaaa \in L$.
 - We push the first part of the string onto the stack and
 - after the c is encountered.
 - start popping characters off of the stack and matching them with each character.
 - if everything matches, this string $\in L$.

Stack Memory...

- We can also use a stack for counting out equal numbers of a's and b's.
- Example:
 - $L = \{a^n b^n : n \ge 0\}$
 - $w = aaaabbbb \in L$
 - **Push** the a's onto the stack, then **pop** an a off and match it with each b.
 - If we finish processing the string successfully (and there are no more a's on our stack), then the string belongs to L.

Nondeterministic Push-Down Automata

- A language is *context free* (CFL) iff some **Nondeterministic PushDown Automata** (NPDA) recognizes (accepts) it.
 - Intuition: **NPDA** = **NFA** + one **stack** for memory.
 - Stack remembers info about previous part of string.
 - E.g., to accept a^nb^n
- Deterministic PushDown Automata (DPDA) can accept some but not all of the CFLs.
- Thus, there is no longer an equivalence between the deterministic and nondeterministic versions,
 - i.e., languages recognized by DPDA are a proper subset of context-free languages.

- You can only access the top element of the stack.
- To access the top element of the stack, you have to pop it off the stack.
 - Once the top element of the stack has been popped, if you want to save it, you need to push it back onto the stack.
- Symbols from the input string must be read one symbol at a time.
 You cannot back up.
- The current configuration (state, string, stack) of the NPDA includes:
 - the current state,
 - the remaining symbols left in the input string, and
 - the entire contents of the stack.

- NPDA consists of,
 - Input file, Control unit, Stack.
 - Output
 - output is yes/no.
 - indicates string belongs to given language.

Each move

- reads a symbol from the input.
 - ε-moves are legal.
- pops a symbol from the stack.
 - no move is possible if stack is empty.
- pushes a string, right-to-left, onto the stack.
- move to the target state.

- A **NPDA** is a seven-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ where,
 - Q finite set of states
 - Σ finite set of input alphabet
 - \(\Gamma\) finite set of stack alphabet
 - δ transition function from
 - $Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow$ finite subsets of $Q \times \Gamma^*$
 - $\delta(q_n, a, A) = \{(q_m, B)\}$
 - q_0 start state $q_0 \in Q$
 - z initial stack symbol $z \in \Gamma$
 - F final states $F \subseteq Q$

• There are **three** things in a NPDA:

- The transition function deserves further explanation.
 - $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow \text{finite subsets of } Q \times \Gamma^{*}$
 - A 3-tuple mapped onto one or more 2-tuples.
- Transition function now depends upon three items:
 - current state, input symbol, and stack symbol.

 Note that in a DFA, each transition told us that when we were in a given state and saw a specific symbol, we moved to a specified state.

 In a NPDA, we read an input symbol, but we also need to know what is on the stack before we can decide what new state to move to.

• When moving to the new state, we also need to decide what to do with the stack.

- What it does mean if $\delta(q_n, a, A) = (q_m, B)$?
- It means if
 - the current state is q_n
 - the current input letter is a
 - the top of the stack is A
- Then the machine should
 - change the state to q_m
 - process input letter a
 - pop A off the stack
 - push B onto the stack

- What it does mean if $\delta(q_n, a, A) = (q_m, \varepsilon)$?
- It means if
 - the current state is q_n
 - the current input letter is a
 - the top of the stack is A
- Then the machine should
 - change the state to q_m
 - process input letter a
 - pop A off the stack
 - don't push anything onto the stack

- What it does mean if $\delta(q_n, a, A) = (q_m, BA)$?
 - change the state to q_m
 - process input letter a
 - don't pop anything from the stack
 - push *B* onto the stack

- What it does mean if $\delta(q_n, \varepsilon, A) = (q_m, B)$?
 - change the state to q_m
 - don't process any input letter
 - pop A from the stack
 - push **B** onto the stack

- What it does mean if $\delta(q_n, a, A) = (q_m, A)$?
 - change the state to q_m
 - process input letter a
 - don't pop anything from the stack
 - don't push anything onto the stack

- Language: $L = \{a^nb^n : n \ge 0\}$
- $M = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, where

•
$$Q = \{q_0, q_1, q_2, q_3\}$$

•
$$\Sigma = \{a, b\}$$

•
$$\Gamma = \{Z, a\}$$

- δ
- q_0 is the start state
- Z is the initial stack symbol

•
$$F = \{q_3\}$$

input popped pushed $\delta(q_{0}, a, Z) = \{(q_{1}, aZ)\}$ $\delta(q_{0}, \epsilon, Z) = \{(q_{3}, \epsilon)\}$ $\delta(q_{1}, a, a) = \{(q_{1}, aa)\}$ $\delta(q_{1}, b, a) = \{(q_{2}, \epsilon)\}$ $\delta(q_{2}, b, a) = \{(q_{2}, \epsilon)\}$ $\delta(q_{2}, \epsilon, Z) = \{(q_{3}, \epsilon)\}$

- Can be modeled with graph
 - edge triplet is (input, popped, pushed)

- Language: $L = \{a^nb^n : n \ge 0\}$
- $M = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, where

A NPDA configuration is represented by,

```
• [q_n, \mathbf{u}, \alpha] where
```

• q_n : current state

• *u* : unprocessed input

• α : current stack content

• if $\delta(q_n, a, A) = (q_m, B)$ then $[q_n, au, A\alpha] \vdash [q_m, u, B\alpha]$.

• The notation $[q_n, u, \alpha] \vdash [q_m, v, \beta]$ indicates that configuration $[q_m, v, \beta]$ is obtained from $[q_n, u, \alpha]$ by a *single* transition of the NPDA.

• The notation $[q_n, u, \alpha] \models^* [q_m, v, \beta]$ indicates that configuration $[q_m, v, \beta]$ is obtained from $[q_n, u, \alpha]$ by zero or more transitions of the NPDA.

• A **computation** of a NPDA is a sequence of transitions beginning with **start state**.

- The language accepted by NPDA M is
- $L(M) = \{w \in \Sigma^* :$
 - Accept when out of input at a final state.
 - $[q_0, w, z] \vdash^* [q_i, \varepsilon, u]$ with $q_i \in F$
 - Accept when out of input at an empty stack.
 - $[q_0, w, z] \vdash^* [q_i, \varepsilon, \varepsilon]$ q_i may not be in F
 - Accept when out of input at a final state and empty stack.
 - $[q_0, w, z] \vdash^* [q_i, \varepsilon, \varepsilon]$ with $q_i \in F$

- Language: $L = \{a^nb^n : n \ge 0\}$
- The computation generated by the input string aaabbb is

state	string	stack
q_0	aaabbb	Z
q_1	aabbb	aΖ
q_1	abbb	aaZ
q_1	bbb	aaaZ
q_2	bb	aaZ
q_2	b	aΖ
q_2	λ	Z
q_3	λ	λ

• $L=\{wcw^{R} \mid w\in\{a,b\}^{*}\}\$ is CFL and accepted by NPDA $\{Q=\{q_{0},q_{1},q_{2}\},\Sigma=\{a,b,c\},q_{0},\Gamma=\{A,B,Z\},Z,F=\{q_{2}\}\}$

$$\delta(q_0, a, Z) = (q_0, AZ)$$

 $\delta(q_0, a, A) = (q_0, AA)$
 $\delta(q_0, a, B) = (q_0, AB)$
 $\delta(q_0, b, Z) = (q_0, BZ)$
 $\delta(q_0, b, A) = (q_0, BA)$

$$\delta(q_0,\,b,\,B)=(q_0,\,BB)$$

$$\delta(q_0, c, Z) = (q_1, Z)$$

$$\delta(q_0, c, A) = (q_1, A)$$

$$\delta(q_0, c, B) = (q_1, B)$$

$$\delta(q_1, a, A) = (q_1, \epsilon)$$

$$\delta(q_1, b, B) = (q_1, \epsilon)$$

$$\delta(q_1, \epsilon, Z) = (q_2, Z)$$

The computation generated by the input string abcba is

Consider w = aabcaaa

dead configuration, w = aabcaaa ∉ L

- A deterministic pushdown accepter (which we have not yet considered) must have only one transition for any given input symbol and stack symbol.
- A nondeterministic pushdown accepter *may have no transition or several transitions* defined for a particular input symbol and stack symbol.
- In a npda, there may be several "paths" to follow to process a given input string. Some of the paths may result in accepting the string. Other paths may end in a non-accepting state.
- As with an nfa, an npda magically (and correctly) "guesses" which path to follow through the machine in order to accept a string (if the string is in the language).

- Language: L = {ww^R : w ∈ {a, b}*}
- M = (Q, Σ, Γ, δ, q₀, Z, F), where
 - Q = {q₀, q₁, q₂}
 - $\Sigma = \{a, b\}$
 - $\Gamma = \{Z, a, b\}$
 - 8 ·····
 - q₀ is the start state
 - Z is the initial stack symbol
 - F = {q₃}
- Explanation
 - stack a's remember input a's
 - stack b's remember input b's
 - switch states when required
 - pop a's and b's as long as they match
 - λ-move to final state if Z at top of stack

$$\begin{split} &\delta(q_0,\,a,\,Z) = \{(q_0,\,aZ)\} \\ &\delta(q_0,\,b,\,Z) = \{(q_0,\,bZ)\} \\ &\delta(q_0,\,a,\,a) = \{(q_0,\,aa)\} \text{ remember} \\ &\delta(q_0,\,b,\,a) = \{(q_0,\,ba)\} \text{ input string} \\ &\delta(q_0,\,a,\,b) = \{(q_0,\,ab)\} \\ &\delta(q_0,\,b,\,b) = \{(q_0,\,bb)\} \end{split}$$

$$\delta(q_0, a, a) = \{(q_1, a)\}$$
 found center $\delta(q_0, b, b) = \{(q_1, b)\}$ (magically)

$$\begin{array}{l} \delta(q_1,\,a,\,a) = \{(q_1,\,\lambda)\} \\ \delta(q_1,\,b,\,b) = \{(q_1,\,\lambda)\} \end{array}$$

$$\delta(q_1,\lambda,Z)=\{(q_2,\lambda)\}$$

pop if match, else die

goto final if good string

- Language: $L = \{a^n b^{2n} : n > 0\}$
- $M = (Q, \Sigma, \Gamma, \delta, q_0, Z, F)$, where

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{a, b\}$$

- q₀ is the start state
- Z is the initial stack symbol

Explanation

- 2 stack a's for each input a
- switch states and start popping when b appears
- pop a's as long as they match input b's
- λ-move to final state if Z at top of stack

$$\delta(q_0, a, Z) = \{(q_0, aaZ)\}$$
 two a's per $\delta(q_0, a, a) = \{(q_0, aaa)\}$ input a $\delta(q_0, \lambda, Z) = \{(q_2, \lambda)\}$ also $\lambda \in L$

$$\delta(q_0, b, a) = \{(q_1, \lambda)\}$$
 pop matching $\delta(q_1, b, a) = \{(q_1, \lambda)\}$ a's, else die

$$\delta(q_1,\lambda,Z)=\{(q_2,\lambda)\}$$

goto final if good string

Language: L = {aⁿb²ⁿ : n ≥ 0}

Consider w = aabbbb ∈ L

$$(q_0, aabbbb, Z) \vdash (q_0, abbbb, aaZ) \vdash (q_0, bbbb, aaaaZ) \vdash (q_1, bbb, aaaZ) \vdash (q_1, bb, aaZ) \vdash (q_1, b, aZ) \vdash (q_1, \lambda, Z) \vdash (q_2, \lambda, \lambda)$$

Consider u = aabb ∉L

$$(q_0, aabb, Z) \vdash (q_0, abb, aaZ) \vdash (q_0, bb, aaaaZ) \vdash (q_1, b, aaaZ) \vdash (q_1, \lambda, aaZ)$$

dead configuration, *u* = *aabb* ∉*L*

Consider v = λ ∈ L

$$(q_0,\lambda,Z)\vdash (q_2,\lambda,\lambda)$$

PDA & CFL

- Every CFL is accepted by PDA.
 - For any CFL L, there exists a PDA M such that L(M) = L.
 - The reverse is true as well.

• Let G be the CFG of L such that L(G) = L.

- Construct a PDA M such that L(M) = L(G) = L.
 - M is constructed from CFG G.
 - CFG \Rightarrow PDA

 Given a context-free grammar in GNF, the basic idea is to construct a npda that does a leftmost derivation of any string in the language.

• Rules:

- always have ε -production from start state to push S onto the stack.
- push NTs on the right hand side onto the stack.
- the single terminal on the right hand side is treated as input.
- NT on the left hand side is the top of the stack to be popped.
- have ε -production to accepting state if Z on top of stack.

- Always start with $\delta(q_0, \varepsilon, Z) = (q_1, SZ)$
 - begin in state q_0 , pop Z, move to q_1 without reading input, push SZ.
- Repeatedly apply rule.
 - If $A \rightarrow aX$ add $\delta(q_1, a, A) = (q_1, X)$
 - note always start and end in state q_1
 - begin in state q_1 , pop A, move to state q_1 while reading input a, push X.
- Always end with $\delta(q_1, \varepsilon, Z) = (q_f, \varepsilon)$
 - note Z must be at top of stack.
 - begin in state q_1 , pop Z, move to state q_f without reading input symbol.

• Input Grammar in Greibach NF $G = (NT, \Sigma, P, S)$.

- Output NPDA M = $(Q, \Sigma, \Gamma, \delta, q_0, Z, F)$
 - $Q = \{q_0, q_1, q_f\}, \Sigma = \Sigma, \Gamma = NT \cup \{Z\}, F = \{q_f\}$
- δ:

•
$$\delta(q_0, \varepsilon, Z) = (q_1, SZ)$$

//always

•
$$\delta(q_1, a, A)$$

$$= (q_1, w)$$

if
$$A \rightarrow aw \in P$$

•
$$\delta(q_1, \varepsilon, Z)$$

$$=(q_f, \varepsilon)$$

- Simple example:
 - CFG $G = (\{S,A\},\{a,b\}, S, \{S \to aSA \mid a,A \to aA \mid b\})$

production

transition

(always)
$$\delta(q_0, \varepsilon, Z) = \{(q_1, SZ)\}$$

$$S \rightarrow aSA \mid a\varepsilon \qquad \delta(q_1, a, S) = \{(q_1, SA), (q_1, \varepsilon)\}$$

$$A \rightarrow aA \qquad \delta(q_1, a, A) = \{(q_1, A)\}$$

$$A \rightarrow b\varepsilon \qquad \delta(q_1, b, A) = \{(q_1, \varepsilon)\}$$
(always)
$$\delta(q_1, \varepsilon, Z) = \{(q_f, \varepsilon)\}$$

GNF grammar

$$S \rightarrow aSA \mid a$$

 $A \rightarrow aA$
 $A \rightarrow b$

Derivation of w = aaabb

$$S\Rightarrow aSA\Rightarrow aaaAA\Rightarrow aaabA\Rightarrow aaabA\Rightarrow aaabb$$

- Equivalent npda
 - recall: (input, popped, pushed)

Acceptance of w = aaabb

$$egin{aligned} (q_0,aaabb,Z)‐(q_1,aaabb,SZ)‐\ (q_1,aabb,SAZ)‐(q_1,abb,SAAZ)‐\ (q_1,bb,AAZ)‐(q_1,b,AZ)‐\ (q_1,\lambda,Z)‐(q_f,\lambda,\lambda) \end{aligned}$$

• Let $G_{\text{GNF}} = (V, \Sigma, S, P) = (\{S, A, B, C\}, \{a, b, c\}, S, P)$ have production rules $S \to aA$ $A \to aABC \mid bB \mid a$ $B \to b$ $C \to c$

Convert to a npda

production
(always) $S \rightarrow aA$ $A \rightarrow aABC \mid a$ $A \rightarrow bB$ $B \rightarrow b$ $C \rightarrow c$ (always)

transitions (δ)

1.
$$\delta(q_0, \lambda, Z) = \{(q_1, SZ)\}$$

2.
$$\delta(q_1, \mathbf{a}, S) = \{(q_1, \mathbf{A})\}$$

3.
$$\delta(q_1, \mathbf{a}, A) = \{(q_1, ABC), (q_1, \lambda)\}$$

4.
$$\delta(q_1, b, A) = \{(q_1, B)\}$$

5.
$$\delta(q_1, \mathbf{b}, B) = \{(q_1, \lambda)\}$$

6.
$$\delta(q_1, c, C) = \{(q_1, \lambda)\}$$

7.
$$\delta(q_1, \lambda, Z) = \{(q_f, \lambda)\}$$

• Thus, $M = (Q, \Sigma, \Gamma, \delta, q_0, Z, F) = (\{q_0, q_1, q_f\}, \Sigma, V \cup \{Z\}, \delta, q_0, Z, \{q_f\})$

- Input CFG $G = \{\{S, A, B\}, \{a, b\}, S, P\}$
 - *P*:
 - $S \rightarrow aAB \mid aB$
 - $A \rightarrow aAB \mid aB$
 - $B \rightarrow b$
- What is NPDA?

What is L(G)?

Computation of aaabbb

```
[q_0, aaabbb, Z]
                             [q_1, aaabbb, SZ]
                             [q_1, aabbb, ABZ]
\Rightarrow aAB
                             [q_1, abbb, ABBZ]
\Rightarrow aaABB
                             [q_1, bbb, BBBZ]
⇒ aaaBBB
                             [q_1, bb, BBZ]
⇒ aaab<u>BB</u>
\Rightarrow aaabbB
                             [q_1, b, BZ]
                             [q_1, \epsilon, Z]
\Rightarrow aaabbb
                             [q_f, \epsilon,
                                              [3]
```

On your own, draw computation trees for other strings not in the language and see that they are not accepted.

- Let CFG G = ({S, A, B}, {a, b}, S, P) where P is

•
$$S \rightarrow aAA$$
 $A \rightarrow aB \mid bB \mid a$

 $B \rightarrow c$

- Construct NPDA M:
 - $(\{q_0, q_1, q_f\}, \{a, b\}, \{S, A, B, Z\}, \delta, q_0, \{q_f\})$
- where
 - $\delta(q_0, \varepsilon, Z) = (q_1, SZ)$
 - $\delta(q_1, a, S) = (q_1, AA)$

- $S \rightarrow aAA$
- $\delta(q_1, a, A) = \{(q_1, B), (q_1, \varepsilon)\}$
- $A \rightarrow aB \mid a\varepsilon$

• $\delta(q_1, b, A) = (q_1, B)$

 $A \rightarrow bB$

• $\delta(q_1, c, B) = (q_1, \varepsilon)$

 $B \rightarrow c\epsilon$

• $\delta(q_1, \varepsilon, Z) = (q_f, \varepsilon)$

- A PDA is deterministic if its transition function satisfies both of the following properties.
 - For all $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$,
 - the set $\delta(q, \alpha, X)$ has **at most** one element.
 - there is only one move for any input and stack combination.
 - For all $q \in Q$ and $X \in \Gamma$,
 - if $\delta(q, \varepsilon, X) \neq \{\}$, then $\delta(q, \alpha, X) = \{\} \forall \alpha \in \Sigma$
 - an ε -transition has no input-consuming alternatives, i.e., there cannot exist another move with stack = X from the same state q.

- A language L is a deterministic context-free language if and only if there is a DPDA that accepts L.
- Some context-free languages which are initially described in a nondeterministic way via a NPDA can also be described in a deterministic way via DPDA.
- Some context-free languages are inherently nondeterministic, e.g., $L = \{w \in (a \mid b)^* : w = w^R\}$ cannot be accepted by any dpda.
- Deterministic PDA (DPDA) can only represent a subset of CFL, e.g., $L = \{ww^R \mid w \in (a \mid b)^*\}$ cannot be represented by DPDA.
- A key point in all this is that the equivalence between deterministic and nondeterministic finite automata is not found with deterministic and nondeterministic pushdown automata.
- Unless otherwise stated, we assume that a PDA is nondeterministic.

L = $\{a^n \mid n \ge 0\} \cup \{a^nb^n \mid n \ge 0\}$ is CFL and accepted by a **non-deterministic** PDA M.

$$Q = \{q_0, q_1, q_2\}, \ \Sigma = \{a, b\}, \ \Gamma = \{Z, A\}, q_0, Z, F = \{q_2\}\}$$

$$\delta(q_0, a, Z) = (q_0, AZ), \ \delta(q_0, b, A) = (q_1, \varepsilon)$$

$$\delta(q_0, \varepsilon, Z) = (q_2, \varepsilon)$$

$$\delta(q_1, b, A) = (q_1, \varepsilon)$$

$$\delta(q_1, \varepsilon, Z) = (q_1, \varepsilon)$$

$$\delta(q_1, \varepsilon, Z) = (q_1, \varepsilon)$$

$$\delta(q_2, \varepsilon, Z) = (q_2, \varepsilon)$$

$$\delta(q_2, \varepsilon, A) = (q_2, \varepsilon)$$

 $\delta(q_0, a, A) = (q_0, AA)$ a, A/AA a, Z/AZ $b, A/\varepsilon$ q_0 $\varepsilon, Z/\varepsilon$ $\varepsilon, A/\varepsilon$ $\varepsilon, Z/\varepsilon$ $\varepsilon, Z/\varepsilon$ $\varepsilon, Z/\varepsilon$ $\varepsilon, Z/\varepsilon$

The language of (strings over $\{a, b\}$ of *even* length and spelled the same forwards and backwards) = $\{ww^R \mid w \in \{a, b\}^*\}$ is CFL and accepted by a **non-deterministic** PDA M.

Language L = {w ∈ {a, b}* : n_a(w) > n_b(w)} accepted via a npda

$$\delta(q_0, a, Z) = \{(q_0, aZ)\}$$

$$\delta(q_0, b, Z) = \{(q_0, bZ)\}$$

$$\delta(q_0, a, a) = \{(q_0, aa)\}$$

$$\delta(q_0, b, b) = \{(q_0, bb)\}$$

$$\delta(q_0, a, b) = \{(q_0, \lambda)\}$$

$$\delta(q_0, b, a) = \{(q_0, \lambda)\}$$

$$\delta(q_0, \lambda, a) = \{(q_1, a)\}$$

This is a npda because these transitions violate the 2nd rule associated with dpda,

$$\delta(q,\lambda,b)
eq \emptyset \Rightarrow orall c \in \Sigma \quad \delta(q,c,b) = \emptyset$$

- Operation of npda
 - start in state q₀, read first symbol and push it onto the stack, then...
 - if input and stack symbols match, push both symbols onto the stack
 - if input and stack symbols differ, discard both
 - when no more input, if a on top of stack, λ-move to accepting state q₁

Same language L = {w ∈ {a, b}* : n_a(w) > n_b(w)} accepted via a dpda

$$\delta(q_0, a, Z) = \{(q_1, Z)\}$$

$$\delta(q_0, b, Z) = \{(q_0, bZ)\}$$

$$\delta(q_0, a, b) = \{(q_0, \lambda)\}$$

$$\delta(q_0, b, b) = \{(q_0, bb)\}$$

$$\delta(q_1, a, Z) = \{(q_1, aZ)\}$$

$$\delta(q_1, b, Z) = \{(q_0, Z)\}$$

$$\delta(q_1, a, a) = \{(q_1, aa)\}$$

$$\delta(q_1, b, a) = \{(q_1, \lambda)\}$$

 $L = \{w \in \{a, b\}^* : n_a(w) > n_b(w)\}$ is accepted by a dpda. By definition 7.4, it is therefore a deterministic context-free language

- Operation of dpda
 - state q₀ means n_a(w) ≤ n_b(w)
 - state q₁ means n_a(w) > n_b(w)
 - jump between states based on input and current top of stack
 - when input ends, halt; q₁ is accepting state

- 7.3.1 show L = {aⁿb²ⁿ : n ≥ 0} is a deterministic context-free language
- Per definition 7.4 we need to find a dpda that accepts L
- M = (Q, Σ, Γ, δ, q₀, Z, F)
- M = ({q₀, q₁, q₂, q₃}, {a, b}, {a, Z}, δ, q₀, Z, {q₀, q₃})
 δ(q₀, a, Z) = {(q₁, aaZ)}
 δ(q₁, a, a) = {(q₁, aaa)}
 δ(q₁, b, a) = {(q₂, λ)}
 δ(q₂, b, a) = {(q₂, λ)}
 δ(q₂, λ, Z) = {(q₃, λ)}

- Operation of dpda
 - state q₀ accepts λ, if input is a, push 2 a's and goto q₁
 - state q₁ pushes 2 a's for each input a, if input is b, pop a and goto q₂
 - state q₂ pops a for each b, λ-move to q₃ if Z on top and no more input
 - state q₃ accepts aⁿb²ⁿ: n > 0

- 7.3.5 show example 7.4 is a npda but that L = {w ∈ {a, b}* : n_a(w) = n_b(w)} is a deterministic context-free language.
- Machine is npda

$$\delta(q_0, a, 0) = \{(q_0, 00)\}$$

$$\delta(q_0, b, 1) = \{(q_0, 11)\}$$

$$\delta(q_0, a, Z) = \{(q_0, 0Z)\}$$

$$\delta(q_0, b, Z) = \{(q_0, 1Z)\}$$

$$\delta(q_0, a, 1) = \{(q_0, \lambda)\}$$

$$\delta(q_0, b, 0) = \{(q_0, \lambda)\}$$

$$\delta(q_0, \lambda, Z) = \{(q_1, Z)\}$$

This is a npda because these transitions violate the 2nd rule associated with dpda,

$$\delta(q_0, \lambda, Z) \neq \emptyset \Rightarrow \forall c \in \Sigma \quad \delta(q_0, c, Z) = \emptyset$$

- 7.3.5 (continued) show that L = {w ∈ {a, b}* : n_a(w) = n_b(w)} is a deterministic context-free language. δ(q, λ, b) ≠ Ø ⇒ ∀c ∈ Σ δ(q, c, b) = Ø
- A dpda that accepts L; M = ({q₀, q₁, q₂}, {a, b}, {a, b, Z}, δ, q₀, Z, {q₀})

$$\begin{split} \delta(q_0, \, a, \, Z) &= \{(q_1, \, aZ)\} \\ \delta(q_0, \, b, \, Z) &= \{(q_2, \, bZ)\} \\ \delta(q_1, \, a, \, a) &= \{(q_1, \, aa)\} \\ \delta(q_1, \, b, \, a) &= \{(q_1, \, \lambda)\} \\ \delta(q_1, \, \lambda, \, Z) &= \{(q_0, \, Z)\} \\ \delta(q_2, \, b, \, b) &= \{(q_2, \, bb)\} \\ \delta(q_2, \, a, \, b) &= \{(q_2, \, \lambda)\} \\ \delta(q_2, \, \lambda, \, Z) &= \{(q_0, \, \lambda)\} \end{split}$$

- Operation of dpda
 - state q₀ accepts strings in the language (n_a(w) = n_b(w) including λ)
 - state q₁ adds a's and subtracts b's; on empty stack λ-move back to q₀
 - state q₂ adds b's and subtracts a's; on empty stack λ-move back to q₀