▼ Loading The Dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('/content/penguins size.csv')

df.head()
```

	species	island	${\tt culmen_length_mm}$	${\tt culmen_depth_mm}$	flipper_length_mm	podž
0	Adelie	Torgersen	39.1	18.7	181.0	
1	Adelie	Torgersen	39.5	17.4	186.0	
2	Adelie	Torgersen	40.3	18.0	195.0	
3	Adelie	Torgersen	NaN	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0	

df.shape (344, 7)

→ Checking NULL Values

```
df.isnull().any()
    species
                         False
    island
                        False
    culmen_length_mm
                          True
    culmen_depth_mm
                          True
    flipper_length_mm
    body_mass_g
                          True
    sex
    dtype: bool
df.isnull().sum()
    species
    island
    culmen_length_mm
    culmen_depth_mm
    flipper_length_mm
    body_mass_g
                          2
                         10
    sex
    dtype: int64
```

▼ Dealing With NULL Values

```
0    MALE
    Name: sex, dtype: object

##Dealing with NULL values

## Below features are type of float therefore we will deal the NULL values with median
df['culmen_length_mm'].fillna(df['culmen_length_mm'].median(),inplace=True)
df['culmen_depth_mm'].fillna(df['culmen_depth_mm'].median(),inplace=True)
df['flipper_length_mm'].fillna(df['flipper_length_mm'].median(),inplace=True)
df['body_mass_g'].fillna(df['body_mass_g'].median(),inplace=True)

## Below one is object type therefore we will deal the NULL values with mode
df['sex'].fillna('MALE',inplace=True)
```

df.head()

	species	island	culmen_length_mm	${\tt culmen_depth_mm}$	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.10	18.7	181.0	3750.0	MALE
1	Adelie	Torgersen	39.50	17.4	186.0	3800.0	FEMALE
2	Adelie	Torgersen	40.30	18.0	195.0	3250.0	FEMALE
3	Adelie	Torgersen	44.45	17.3	197.0	4050.0	MALE
4	Adelie	Torgersen	36.70	19.3	193.0	3450.0	FEMALE

```
df.isnull().any()
```

```
species False
island False
culmen_length_mm False
culmen_depth_mm False
flipper_length_mm False
body_mass_g False
sex False
dtype: bool
```

df.isnull().sum()

```
species 0
island 0
culmen_length_mm 0
culmen_depth_mm 0
flipper_length_mm 0
body_mass_g 0
sex 0
dtype: int64
```

Descriptive Analysis

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):
                       Non-Null Count Dtype
# Column
0
     species
                        344 non-null
                                         object
 1
    island
                        344 non-null
                                         object
    culmen_length_mm 344 non-null
culmen_depth_mm 344 non-null
                                         float64
                                         float64
     flipper_length_mm 344 non-null
                                         float64
                        344 non-null
                                         float64
     body_mass_g
                        344 non-null
    sex
                                         object
dtypes: float64(4), object(3)
memory usage: 18.9+ KB
```

df.describe()

		culmen_length_mm	${\tt culmen_depth_mm}$	flipper_length_mm	body_mass_g		
	count	344.000000	344.000000	344.000000	344.000000		
	mean	43.925000	17.152035	200.892442	4200.872093		
	std	5.443792	1.969060	14.023826	799.696532		
Univariate, Bi-Variate, and Multi-Variate Analysis							
	25%	39.2/5000	15.600000	190.000000	3550.000000		

▼ 1.Univariate

sns.distplot(df.culmen_length_mm)

<ipython-input-133-24e9b5890c61>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see $\underline{\texttt{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$

sns.distplot(df.culmen_length_mm)
<Axes: xlabel='culmen_length_mm', ylabel='Density'>

 ${\tt sns.distplot(df.culmen_depth_mm)}$

<ipython-input-134-4b07ffb4fe44>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

sns.distplot(df.flipper length mm)

<ipython-input-135-4c42e92ff055>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.flipper_length_mm)
<Axes: xlabel='flipper_length_mm', ylabel='Density'>

sns.distplot(df.body_mass_g)

<ipython-input-136-176964dae727>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.body_mass_g)
<Axes: xlabel='body_mass_g', ylabel='Density'>

plt.boxplot(df.culmen_length_mm)

plt.boxplot(df.culmen_depth_mm)

plt.boxplot(df.flipper_length_mm)

```
{'whiskers': [<matplotlib.lines.Line2D at 0x792965bb16f0>,
      <matplotlib.lines.Line2D at 0x792965bb1990>],
      'caps': [<matplotlib.lines.Line2D at 0x792965bb1c30>,
      <matplotlib.lines.Line2D at 0x792965bb1ed0>],
      'boxes': [<matplotlib.lines.Line2D at 0x792965bb1450>],
      'medians': [<matplotlib.lines.Line2D at 0x792965bb2170>],
      'fliers': [<matplotlib.lines.Line2D at 0x792965bb2410>],
      'means': []}
      230
      220
plt.boxplot(df.body_mass_g)
    {'whiskers': [<matplotlib.lines.Line2D at 0x792965c2caf0>,
      <matplotlib.lines.Line2D at 0x792965c2cd90>],
      'caps': [<matplotlib.lines.Line2D at 0x792965c2d030>,
      <matplotlib.lines.Line2D at 0x792965c2d2d0>],
      'boxes': [<matplotlib.lines.Line2D at 0x792965c2c850>],
      'medians': [<matplotlib.lines.Line2D at 0x792965c2d570>],
      'fliers': [<matplotlib.lines.Line2D at 0x792965c2d810>],
      'means': []}
      6000
      5500
      5000
      4500
      4000
      3500
      3000
```

▼ 2. Bi-Variate Analysis

sns.lineplot(x=df.culmen_length_mm,y=df.culmen_depth_mm)

sns.scatterplot(x=df.culmen_length_mm,y=df.culmen_depth_mm)

<Axes: xlabel='culmen_length_mm', ylabel='culmen_depth_mm'>

sns.barplot(x=df.culmen_length_mm,y=df.culmen_depth_mm)

sns.pairplot(df)

→ 3. Multi-Variate Analysis

sns.heatmap(df.corr(),annot=True)

<ipython-input-145-8df7bcac526d>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In
sns.heatmap(df.corr(),annot=True)

df.corr().flipper_length_mm.sort_values(ascending=False)

flipper_length_mm 1.000000 body_mass_g 0.871221 species 0.850819 culmen_length_mm 0.655858 sex 0.225848 island -0.562957 culmen_depth_mm -0.583832 Name: flipper_length_mm, dtype: float64

https://colab.research.google.com/drive/1g-Mvb37fimcFtFrEeunhq7DLc2E8uN4P?authuser=1#scrollTo=XF1vZahWW8Nd&printMode=true

→ Performing Encoding

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 344 entries, 0 to 343
    Data columns (total 7 columns):
                        Non-Null Count Dtype
     # Column
         -----
                      344 non-null
     0 species
         island 344 non-null culmen_length_mm 344 non-null culmen_depth_mm 344 non-null
                                               object
                                               float64
         flipper_length_mm 344 non-null
                           344 non-null
                                              float64
      5 body_mass_g
                              344 non-null
                                              object
     6 sex
    dtypes: float64(4), object(3) memory usage: 18.9+ KB
```

df.head()

	species	island	culmen_length_mm	culmen_depth_mm	${\tt flipper_length_mm}$	body_mass_g	sex
0	Adelie	Torgersen	39.10	18.7	181.0	3750.0	MALE
1	Adelie	Torgersen	39.50	17.4	186.0	3800.0	FEMALE
2	Adelie	Torgersen	40.30	18.0	195.0	3250.0	FEMALE
3	Adelie	Torgersen	44.45	17.3	197.0	4050.0	MALE
4	Adelie	Torgersen	36.70	19.3	193.0	3450.0	FEMALE

```
df.species = le.fit_transform(df.species)
df.island = le.fit_transform(df.island)
df.sex = le.fit_transform(df.sex)
```

df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	0	2	39.10	18.7	181.0	3750.0	2
1	0	2	39.50	17.4	186.0	3800.0	1
2	0	2	40.30	18.0	195.0	3250.0	1
3	0	2	44.45	17.3	197.0	4050.0	2
4	0	2	36.70	19.3	193.0	3450.0	1

▼ Splitting Data into Independent And Dependent Datas

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	2	39.10	18.7	181.0	3750.0	2

→ Scaling Data

from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()

X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)

X_scaled.head()

	island	${\tt culmen_length_mm}$	${\tt culmen_depth_mm}$	${\tt flipper_length_mm}$	body_mass_g	sex
0	1.0	0.254545	0.666667	0.152542	0.291667	1.0
1	1.0	0.269091	0.511905	0.237288	0.305556	0.5
2	1.0	0.298182	0.583333	0.389831	0.152778	0.5
3	1.0	0.449091	0.500000	0.423729	0.375000	1.0
4	1.0	0.167273	0.738095	0.355932	0.208333	0.5

▼ Splitting The Data Into Training And Testing

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X_scaled,y,test_size=0.3,random_state=2)
```

▼ Checking The Shape Of Splitted Training And Testing Dataset

X_train.shape

(240, 6)

X_test.shape

(104, 6)

y_train.shape

(240,)

y_test.shape

(104,)