Introduction to Deep Learning

Demystifying Neural Networks

Agenda

Introduction to deep learning:

- What is deep learning?
- Speaking deep learning: network types, development frameworks and network models
- Deep learning development flow
- Application spaces

Deep learning introduction

vehicles

road

What is deep learning?

Deep learning is way of classifying, clustering, and predicting things by using a neural network that has been trained on vast amounts of data.

background

person

Picture of deep learning demo done by TI's automotive driver assistance systems (ADAS) team.

What is deep learning?

Deep learning is way of classifying, clustering, and predicting things by using a neural network that has been trained on vast amounts of data.

Time of Flight

...any type of data you want to classify, cluster or predict

What is deep learning?

- Deep learning has its roots in neural networks.
- Neural networks are sets of algorithms, modeled loosely after the human brain, that are designed to recognize patterns.

What is deep learning?

Deep learning creates many layers of neurons, attempting to learn structured representation of big data, layer by layer.

Deep Neural Networks (DNN)

Multi Layer Perceptron (MLP)	 One of the most traditional types of DL architectures Every element of a previous layer, is connected to every element of the next layer. Such layer is called dense layer. Fell out of favor, in part because they are hard to train 	hidden layer 1 hidden layer 2 hidden layer 3 input layer output layer output layer
Convolution Neural Network (CNN)	 Type of feedforward deep neural network Takes a fixed size inputs and generates fixed-size outputs Mostly used in computer vision applications for object detection, classification and semantic segmentation Ideal for image and video processing 	Feed-forward network
Recurrent Neural Network (RNN)	 Feedforward neural networks extended to include feedback connections Use their internal memory to process arbitrary sequence of inputs, hence can handle arbitrary input/output length Useful for time series data where features representing the past are assumed to have bearing on the future Ideal for text and speech analysis 	cyclical connect

cyclical connect

Typical layers involved in CNN

Architecture of the network: Network models

- Deep neural networks are mathematical models of intelligence designed to mimic human brains.
- Network models define a set of network layers and how they interact.
- Questions to answer while designing a network models include:
 - Which layer type to use?
 - How many neurons to use in each layer?
 - How are layers arranged?
 - And more
- There are many standard CNN models available today which work great for many standard problems. Examples being AlexNet, GoogleNet, Inception-ResNet, VGG, etc.

ILSVRC annual contest year and winning model

VGG

The **ImageNet** project is a large visual database designed for use in visual object recognition software research. Since 2010, the ImageNet project runs an annual software contest - The ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where software programs compete to correctly classify and detect objects and scenes.

AlexNet

Deep learning frameworks

Building a deep learning solution is a big challenge because of its complexity.

Frameworks are tools to ease the building of deep learning solutions.

 Frameworks offer a higher level of abstraction and simplify potentially difficult programming tasks.

Popular Frameworks:

- TensorFlow:
 - Developed by Google
 - The most used deep learning framework
 - Based on Github stars and forks and Stack Overflow activity
- Caffe:
 - Developed by Berkeley Vision and Learning Center (BVLC)
 - Popular for CNN modeling (imaging/computer vision applications) and its Model Zoo (a selection of pre-trained networks)

Next to all these frameworks, there are also interfaces that are wrapped around one or multiple frameworks. The most well-known and widely-used interface for deep learning today is Keras. Keras is a high-level deep learning API, written in Python.

Deep learning development flow

- 1. Selection of a framework for development
- 2. Selecting labeled data set of classes to train the network upon
- 3. Designing initial network model
- 4. Training the network
- Saving the parameters and architecture in a binary file
- 6. Inference

Training Translate (PC/GPU) Translate (embedded device)

Deep learning development flow

Where can deep learning be used?

Anywhere you want to classify data ...

Industrial Factory & Automation

- Improving pick and place
- Predictive maintenance/failure

Agriculture

Optimize crop watering and harvesting

Retail

- Improve automated checkout
- Track shoppers and provide incentives

Deep learning: A few example uses

Industrial

- Object detection and localization
- Sorting
- Robotics
- Quality control and inspection
- AR (camera pose and location)
- Packaging

Smart Homes

- Vacuum cleaners
- Automatic lawn mowers
- · Intrusion and Hazard detection
- Smart lights, ovens, refrigerators, etc.

Smart Cities & Infrastructure

- Parking
- Traffic monitoring
- Security monitoring
- Road inspection

Retail

- Analytics
- Warehouse management
- Theft prevention
- Intelligent bar code scanners
- Monitoring and distribution control (shelf replenishment, etc.)

Drones

- Obstacle avoidance
- Path planning
- Flight control with radar and camera sensors

Food Industry

- Sorting
- Quality control

Entertainment/Gaming

- Gesture recognition
- User identification
- Emotional feedback
- Experience monitoring
- Advanced analytics

Agriculture

- Autonomous tractors and combines
- Fruit harvesting
- Weed control

Mission Critical

- Perimeter surveillance
- Target acquisition
- Fire-and-forget guidance
- Autonomous vehicles

Introduction to deep learning summary

- What is deep learning? Artificial intelligence, or AI, is an umbrella term for any computer program that does something smart. Machine learning is a subset of AI and Deep Learning is subset of Machine Learning.
- Deep learning has its roots in neural networks.
- Neural networks are sets of algorithms, modeled loosely after the human brain, that are designed to recognize patterns.
- Speaking deep learning: Network types, nodes, layers, development frameworks and network models.
- Deep learning solution development flow
- Application spaces

© Copyright 2018 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com