Überblick Blatt 3: Eigenschaften von P/T-Netzen

Aufgabe 3.1 Betrachte die beiden Darstellungen des Producer/Consumer Szenarios.

- 1. Was bedeuten die Anschriften an Plätzen und Transition an der rechten Abbildungen? Beachte, dass sie mehrfach vorkommen!
- 2. Welchen Prozess beschreibt das Netz?
- 3. Wieso ist das rechte Netz zyklenfrei?
- 4. Wenn das rechte Netz bis zum "Schluß" schaltet, welche Markierung beschreibt es?
- 5. Kann man sagen, dass beide Netze das gleiche Szenario beschreiben, wenn auch anders?

Aufgabe 3.2 Prozesse von P/T-Netzen.

1. Konstruieren Sie zu folgendem P/T Netz einen Prozess, der die Schaltfolge w=abca beschreibt! Zeichnen Sie den Prozess in den vorgegebenen Kasten!

- 2. Zeichnen Sie in Ihre Graphik einen Stellen-Schnitt ein!
- 3. Zeichnen Sie in Ihre Graphik eine Linie des Prozesses ein!

4. Ist der Prozess zu dieser Schaltfolge w = abca eindeutig festgelegt? Wenn "Ja", dann geben Sie eine Begründung an! Wenn "Nein", dann beschreiben Sie, wie ein weiterer Prozess aussieht!

Aufgabe 3.3 Gegeben ein Petrinetz $N = (P, T, F, W, \mathbf{m}_0)$ sowie ein dazu passender Prozess: $R = (B, E, \lessdot)$:

- 1. Geben Sie die Abbildung ϕ an, die dem Prozess R zugrunde liegt.
- 2. Bestimmen Sie die Mengen ${}^{\circ}R$ (Menge der Minima) und R° (Menge der Maxima). Diese Mengen sind wie folgt definiert:

$${}^{\circ}R := \{b \in B \mid {}^{\bullet}b = \emptyset\}$$

 $R^{\circ} := \{b \in B \mid b^{\bullet} = \emptyset\}$

- 3. Geben Sie eine Fortsetzung R' des Prozesses R an. Gibt es mehrere mögliche Fortsetzungen?
- 4. Bestimmen Sie für den um die Transition c verlängerten Prozess R' die Relationen <,<, li und co.

Stellen Sie die Relationen « und < jeweils als gerichtete und die Relationen li und co als ungerichtete Graphen dar.

- 5. Geben Sie je einen möglichst großen P-Schnitt und T-Schnitt für R' an.
- 6. Zeichnen Sie alle konstruierbaren Prozesse des Netzes.

Aufgabe 3.4 Sei $N = (P, T, F, W, \mathbf{m}_0)$ ein beliebiges P/T-Netz und $f : P \to \mathbb{N} \setminus \{0\}$ eine Abbildung mit der Eigenschaft:

$$\forall t \in T : \sum_{p \in \bullet} f(p) \cdot W(p, t) = \sum_{p \in t^{\bullet}} f(p) \cdot W(t, p) \tag{*}$$

1. Zeige für solches N und f, dass eine Konstante $c_{N,f} \in \mathbb{N}$ existiert, so dass gilt:

$$\forall \mathbf{m} \in \mathbf{R}(\mathbf{m}_0) : \sum_{p \in P} f(p) \cdot \mathbf{m}(p) = c_{N,f}$$
 (**)

- 2. Bestimme den Wert von $c_{N,f}!$
- 3. Zeige für solches N und f, dass unabhängig wie die Initialmarkierung \mathbf{m}_0 beschaffen ist die Markierung aller Stellen beschränkt sind, d.h.

$$\exists k \in \mathbb{N} : \forall \mathbf{m} \in \mathbf{R}(\mathbf{m}_0) : \forall p \in P : \mathbf{m}(p) < k$$

Aufgabe 3.5 Eine Transition t heißt quasilebendig, wenn eine Markierung $\mathbf{m} \in \mathcal{R}(\mathcal{N}, \mathbf{m_0})$ mit $\mathbf{m} \xrightarrow{t} \text{existient.}$

Aufgabe 3.6 Ein P/T-Netz \mathcal{N} heißt T-fortsetzbar, wenn zu jeder Markierung $\mathbf{m} \in \mathcal{R}(\mathcal{N}, \mathbf{m_0})$ eine unendliche Schaltfolge aktviert ist, in der jede Transition $t \in T$ unendlich oft vorkommt.

Zeigen Sie, dass man diese Eigenschaft mit Hilfe der Algorithmen für Markierungs- bzw Lebendigkeitsinvarianz entscheiden kann!

Aufgabe 3.7 Der Algorithmus zur Erzeugung des Überdeckungsgraphen arbeitet nichtdeterministisch. Der erzeugte Überdeckungsgraph hängt von der Auswahl der unbearbeiteten Knoten ab.

Betrachte das folgende Petrinetz N in der Initialmarkierung $m_0 = (1, 0, 0, 0)$.

- 1. Zeige, dass die Markierung m = (0, 0, 1, 0) erreichbar ist.
- 2. Konstruiere den Überdeckungsgraphen, und wähle im Algorithmus die Markierung m=(0,0,1,0) so früh wie möglich zur Bearbeitung aus. Dokumentiere beim Einfügen von ω -Komponenten, welche Markierung überdeckt wurde!
- 3. Das gleiche wie oben, nur wähle m=(0,0,1,0) so spät wie möglich.
- 4. Bestimme die unbeschränkten Plätze!

Aufgabe 3.8 Nach einem Satz der VL gilt für den Überdeckungsgraphen G(N) eines P/T Netzes N folgendes:

Gilt $m_0 \xrightarrow{w} m$ im Netz, so existiert diese Schaltfolge als Pfad w in G(N), so dass (der Pfad w in G(N) von m_0 nach m_1 existiert) $m_0 \xrightarrow{*} m_1$ und $m \le m_1$.

Wir können $m \leq m_1$ hier sogar noch konkretisieren: Es gilt $\forall p: m_1(p) = m(p) \vee m_1(p) = \omega$. Beweise dies!

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

--/-/+/++

Übungsaufgabe 3.1 Betrachte die beiden Darstellungen des Producer/Consumer Szenarios.

- 1. Was bedeuten die Anschriften an Plätzen und Transition an der rechten Abbildungen? Beachte, dass sie mehrfach vorkommen!
- 2. Welchen Prozess beschreibt das Netz?
- 3. Wieso ist das rechte Netz zyklenfrei?
- 4. Wenn das rechte Netz bis zum "Schluß" schaltet, welche Markierung beschreibt es?
- 5. Kann man sagen, dass beide Netze das gleiche Szenario beschreiben, wenn auch anders?

Teamnr.	Vorname (lesbar!)	Name (lesbar!)
	1	
	2	
	3	

--/-/+/++

Übungsaufgabe 3.2 Prozesse von P/T-Netzen.

P/T Netz

1. Konstruieren Sie zu folgendem P/T Netz einen Prozess, der die Schaltfolge w=abca beschreibt! Zeichnen Sie den Prozess in den vorgegebenen Kasten!

- 2. Zeichnen Sie in Ihre Graphik einen Stellen-Schnitt ein!
- 3. Zeichnen Sie in Ihre Graphik eine Linie des Prozesses ein!
- 4. Ist der Prozess zu dieser Schaltfolge w=abca eindeutig festgelegt? Wenn "Ja", dann geben Sie eine Begründung an! Wenn "Nein", dann beschreiben Sie, wie ein weiterer Prozess aussieht!

Teamnr.	Vorname (lesbar!)	Name (lesbar!)
	1	
	2	
	3	

--/-/+/++

Übungsaufgabe 3.3 Gegeben ein Petrinetz $N=(P,T,F,W,\mathbf{m}_0)$ sowie ein dazu passender Prozess: $R=(B,E,\lessdot)$:

- 1. Geben Sie die Abbildung ϕ an, die dem Prozess Rzugrunde liegt.
- 2. Bestimmen Sie die Mengen °R (Menge der Minima) und R° (Menge der Maxima). Diese Mengen sind wie folgt definiert:

$${}^{\circ}R := \{ b \in B \mid {}^{\bullet}b = \emptyset \}$$

$$R^{\circ} := \{ b \in B \mid b^{\bullet} = \emptyset \}$$

- 3. Geben Sie eine Fortsetzung R' des Prozesses R an. Gibt es mehrere mögliche Fortsetzungen?
- 4. Bestimmen Sie für den um die Transition c verlängerten Prozess R' die Relationen <,<, li und \mathbf{co} .

Stellen Sie die Relationen < und < jeweils als gerichtete und die Relationen li und \mathbf{co} als ungerichtete Graphen dar.

- 5. Geben Sie je einen möglichst großen P-Schnitt und T-Schnitt für R' an.
- 6. Zeichnen Sie alle konstruierbaren Prozesse des Netzes.

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

--/-/+/++

Übungsaufgabe 3.4 Sei $N = (P, T, F, W, \mathbf{m}_0)$ ein beliebiges P/T-Netz und $f : P \to \mathbb{N} \setminus \{0\}$ eine Abbildung mit der Eigenschaft:

$$\forall t \in T : \sum_{p \in {}^{\bullet}t} f(p) \cdot W(p, t) = \sum_{p \in t^{\bullet}} f(p) \cdot W(t, p) \tag{*}$$

1. Zeige für solches N und f, dass eine Konstante $c_{N,f} \in \mathbb{N}$ existiert, so dass gilt:

$$\forall \mathbf{m} \in \mathbf{R}(\mathbf{m}_0) : \sum_{p \in P} f(p) \cdot \mathbf{m}(p) = c_{N,f}$$
 (**)

- 2. Bestimme den Wert von $c_{N,f}$!
- 3. Zeige für solches N und f, dass unabhängig wie die Initialmarkierung \mathbf{m}_0 beschaffen ist die Markierung aller Stellen beschränkt sind, d.h.

$$\exists k \in \mathbb{N} : \forall \mathbf{m} \in \mathbf{R}(\mathbf{m}_0) : \forall p \in P : \mathbf{m}(p) \le k$$

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

Übungsaufgabe 3.5 Eine Transition t heißt quasilebendig, wenn eine Markierung $\mathbf{m} \in \mathcal{R}(\mathcal{N}, \mathbf{m_0})$ mit $\mathbf{m} \xrightarrow{t}$ existiert.

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

--/-/+/++

Übungsaufgabe 3.6 Ein P/T-Netz \mathcal{N} heißt T-fortsetzbar, wenn zu jeder Markierung $\mathbf{m} \in \mathcal{R}(\mathcal{N}, \mathbf{m_0})$ eine unendliche Schaltfolge aktviert ist, in der jede Transition $t \in T$ unendlich oft vorkommt.

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

--/-/+/++

Übungsaufgabe 3.7 Der Algorithmus zur Erzeugung des Überdeckungsgraphen arbeitet nichtdeterministisch. Der erzeugte Überdeckungsgraph hängt von der Auswahl der unbearbeiteten Knoten ab.

Betrachte das folgende Petrinetz N in der Initialmarkierung $m_0 = (1, 0, 0, 0)$.

- 1. Zeige, dass die Markierung m = (0, 0, 1, 0) erreichbar ist.
- 2. Konstruiere den Überdeckungsgraphen, und wähle im Algorithmus die Markierung m=(0,0,1,0) so früh wie möglich zur Bearbeitung aus. Dokumentiere beim Einfügen von ω -Komponenten, welche Markierung überdeckt wurde!

- 3. Das gleiche wie oben, nur wähle m=(0,0,1,0) so spät wie möglich.
- 4. Bestimme die unbeschränkten Plätze!

Teamnr.		Vorname (lesbar!)	Name (lesbar!)
	1		
	2		
	3		

--/-/+/++

Übungsaufgabe 3.8 Nach einem Satz der VL gilt für den Überdeckungsgraphen G(N) eines P/T Netzes N folgendes:

Gilt $m_0 \xrightarrow{w} m$ im Netz, so existiert diese Schaltfolge als Pfad w in G(N), so dass (der Pfad w in G(N) von m_0 nach m_1 existiert) $m_0 \xrightarrow[w]{*} m_1$ und $m \le m_1$.

Wir können $m \leq m_1$ hier sogar noch konkretisieren: Es gilt $\forall p: m_1(p) = m(p) \vee m_1(p) = \omega$. Beweise dies!

1	Team:	2	Team:
3	Team:	4	Team:

Übungsaufgabe 3.1: Betrachte die beiden Darstellungen des Producer/Consumer Szenarios.

- 1. Was bedeuten die Anschriften an Plätzen und Transition an der rechten Abbildungen? Beachte, dass sie mehrfach vorkommen!
- 2. Welchen Prozess beschreibt das Netz?
- 3. Wieso ist das rechte Netz zyklenfrei?
- 4. Wenn das rechte Netz bis zum "Schluß" schaltet, welche Markierung beschreibt es?
- 5. Kann man sagen, dass beide Netze das gleiche Szenario beschreiben, wenn auch anders?

1	Team:	2	Team:
3	Team:	4	Team:

Übungsaufgabe 3.2: Prozesse von P/T-Netzen.

1. Konstruieren Sie zu folgendem P/T Netz einen Prozess, der die Schaltfolge w=abca beschreibt! Zeichnen Sie den Prozess in den vorgegebenen Kasten!

- 2. Zeichnen Sie in Ihre Graphik einen Stellen-Schnitt ein!
- 3. Zeichnen Sie in Ihre Graphik eine Linie des Prozesses ein!
- 4. Ist der Prozess zu dieser Schaltfolge w=abca eindeutig festgelegt? Wenn "Ja", dann geben Sie eine Begründung an! Wenn "Nein", dann beschreiben Sie, wie ein weiterer Prozess aussieht!

1	Team:	2	Team:
3	Team:	4	Team:

Übungsaufgabe 3.3: Gegeben ein Petrinetz $N=(P,T,F,W,\mathbf{m}_0)$ sowie ein dazu passender Prozess: $R=(B,E,\lessdot)$:

- 1. Geben Sie die Abbildung ϕ an, die dem Prozess R zugrunde liegt.
- 2. Bestimmen Sie die Mengen °R (Menge der Minima) und R° (Menge der Maxima). Diese Mengen sind wie folgt definiert:

$${}^{\circ}R := \{ b \in B \mid {}^{\bullet}b = \emptyset \}$$

$$R^{\circ} := \{ b \in B \mid b^{\bullet} = \emptyset \}$$

- 3. Geben Sie eine Fortsetzung R' des Prozesses R an. Gibt es mehrere mögliche Fortsetzungen?
- 4. Bestimmen Sie für den um die Transition c verlängerten Prozess R' die Relationen <,<, li und \mathbf{co} .

Stellen Sie die Relationen < und < jeweils als gerichtete und die Relationen li und \mathbf{co} als ungerichtete Graphen dar.

- 5. Geben Sie je einen möglichst großen P-Schnitt und T-Schnitt für R' an.
- 6. Zeichnen Sie alle konstruierbaren Prozesse des Netzes.

1	Team:	2	Team:
3	Team:	4	Team:

Übungsaufgabe 3.4: Sei $N=(P,T,F,W,\mathbf{m}_0)$ ein beliebiges P/T-Netz und $f:P\to\mathbb{N}\setminus\{0\}$ eine Abbildung mit der Eigenschaft:

$$\forall t \in T : \sum_{p \in {}^{\bullet}t} f(p) \cdot W(p, t) = \sum_{p \in t^{\bullet}} f(p) \cdot W(t, p) \tag{*}$$

1. Zeige für solches N und f, dass eine Konstante $c_{N,f} \in \mathbb{N}$ existiert, so dass gilt:

$$\forall \mathbf{m} \in \mathbf{R}(\mathbf{m}_0) : \sum_{p \in P} f(p) \cdot \mathbf{m}(p) = c_{N,f}$$
 (**)

- 2. Bestimme den Wert von $c_{N,f}$!
- 3. Zeige für solches N und f, dass unabhängig wie die Initialmarkierung \mathbf{m}_0 beschaffen ist die Markierung aller Stellen beschränkt sind, d.h.

$$\exists k \in \mathbb{N} : \forall \mathbf{m} \in \mathbf{R}(\mathbf{m}_0) : \forall p \in P : \mathbf{m}(p) \leq k$$

	<u> </u>				
1		Team:	2		Team:
3		Team:	4		Team:

Übungsaufgabe 3.5: Eine Transition t heißt quasilebendig, wenn eine Markierung $\mathbf{m} \in \mathcal{R}(\mathcal{N}, \mathbf{m_0})$ mit $\mathbf{m} \xrightarrow{t}$ existiert.

1	Team:	2	Team:
3	Team:	4	Team:

Übungsaufgabe 3.6: Ein P/T-Netz \mathcal{N} heißt T-fortsetzbar, wenn zu jeder Markierung $\mathbf{m} \in \mathcal{R}(\mathcal{N}, \mathbf{m_0})$ eine unendliche Schaltfolge aktviert ist, in der jede Transition $t \in T$ unendlich oft vorkommt.

1	Team:	2	Team:
3	Team:	4	Team:

Übungsaufgabe 3.7: Der Algorithmus zur Erzeugung des Überdeckungsgraphen arbeitet nichtdeterministisch. Der erzeugte Überdeckungsgraph hängt von der Auswahl der unbearbeiteten Knoten ab.

Betrachte das folgende Petrinetz N in der Initialmarkierung $m_0 = (1, 0, 0, 0)$.

- 1. Zeige, dass die Markierung m = (0, 0, 1, 0) erreichbar ist.
- 2. Konstruiere den Überdeckungsgraphen, und wähle im Algorithmus die Markierung m=(0,0,1,0) so früh wie möglich zur Bearbeitung aus. Dokumentiere beim Einfügen von ω -Komponenten, welche Markierung überdeckt wurde!

- 3. Das gleiche wie oben, nur wähle m=(0,0,1,0) so spät wie möglich.
- 4. Bestimme die unbeschränkten Plätze!

	<u> </u>				
1		Team:	2		Team:
3		Team:	4		Team:

Übungsaufgabe 3.8: Nach einem Satz der VL gilt für den Überdeckungsgraphen G(N) eines P/T Netzes N folgendes:

Gilt $m_0 \xrightarrow{w} m$ im Netz, so existiert diese Schaltfolge als Pfad w in G(N), so dass (der Pfad w in G(N) von m_0 nach m_1 existiert) $m_0 \xrightarrow[w]{*} m_1$ und $m \le m_1$.

Wir können $m \leq m_1$ hier sogar noch konkretisieren: Es gilt $\forall p: m_1(p) = m(p) \vee m_1(p) = \omega$. Beweise dies!