	11	For	.nov1~	10	10	0 v D	YPV:0	10	yei	PIPE	(+40	ЧP	FON Y	:64	(604	ma	PXS	'nΛe	٠٧٠:٥	оı.	4	44	1900	/0 ~t	PłY:
- 1	•			1							04)12					1.0									

$$\frac{1}{250} - \left(-\frac{1}{250}\right) - \frac{1}{50}$$
, $\frac{1}{50} = \frac{1}{50}$

$$\xi \in \left[-\frac{10}{2}, \frac{10}{2} \right]$$

$$X(k) = A^{2} \left[\frac{1}{2} - \frac{1}{2} \cos(2.2\pi \text{ fol}) \right]$$

 $X(k) = \frac{A^{2}}{2} - \frac{A^{2}}{2} \cos(2.2\pi \text{ fol})$

$$Q_0 = \frac{A^2}{2}, C_0 - \frac{A^2}{2}$$

(which we have
$$0.2 = -\frac{A^2}{2}$$

SU espectro en forma trigonometrica

$$X(f) = \frac{4}{5} - \frac{5}{4} \cos(5.511 \text{ for})$$

$$CO = QO = \frac{A^2}{2}, CD = \frac{QD - JbD}{2}$$

$$X(f)=\sum_{N}C_{N}G_{N}$$

$$\frac{2}{4^2} : 0=0$$

Para el evroy velativo

$$Px = \frac{1}{70} \int |x(\xi)|^2 d\xi = \frac{1}{10} \int |\frac{\Lambda^2}{2} - \frac{\Lambda^2}{2} \cos(2.2 \pi \text{ FOE})|^2 d\xi$$

=
$$\frac{1}{10} \left[\frac{A^2}{2} \right] dt - \frac{A^4}{2} \int co_3(2.21) fot) dt + \frac{A^4}{4} \int cos^2(2.21) fot) dt$$

3)

La transformada de fourier a la serial modulada

Usando la tabla de transformadas de fourier

Usando otra vez las tablas de trans Formadas de Fourier

M(E) C(E) = M(E) [AC S:0 (2# FEE)]

→ F {·}

