北京大学数学科学学院期末试题

2012 - 2013 学年 第二学期

考试科目:		复变函数	考试	时间:	13 年	06 月	26 日
姓	名:		学	号:			3
本试题共 九		道大题满分 <u>100</u> <u>3</u>	分				

- 1. (10) 是否存在 \mathcal{C} 中的解析函数 f(z) 使得它同时满足 $f(\frac{1}{n}) = \frac{1}{n}$ 和 f(n) = $n^2(n=1,2,3....)$? (简要说明原因)
- 2. (20) 试问下述函数能否在 $0 < |z| < +\infty$ 展成 Laurent 级数 (说明理由), 若 能的话, 求出该级数.
 - (1) $\ln z$;
 - (2) $ze^{\frac{1}{z^2}}$.
- 3. (10) 设 $z = z_0$ 是 f(z) 本性奇点, $\phi(z)$ 是一个分式线性变换,证明: $z = z_0$ 是 $\phi(f(z))$ 始本地本 上 是 $\phi(f(z))$ 的本性奇点.
- 4. (10) 求 $f(z) = \sin z \sin \frac{1}{z}$ 在孤立奇点 (包括 ∞) 处的留数.
- 5. (10) 设 $f_n(z) = z^n + n^2 z + 1$. 分别求 $f_4(z)$ 和 $f_7(z)$ 在 |z| < 2 内的零点个 数.
- 6. (10) 设单连通区域 D 的边界为实轴与以 z = -i 为圆心半径为 1 的圆周所 组成, 求 D 到上半平面 H 的共形映射.
- 7. (15) (1) 叙述 Riemann 存在定理; (2) 设单连通区域 D 的边界多于一点且 $0 \in D$, 证明存在唯一的 r > 0, 使得存在 D 到圆盘 $\Delta_r = \{z, |z| < r\}$ 满足 f(0) = 0 且 f'(0) = 1 的共形映射 f(z).
- 8. (10) 设 f(z) 在复平面 C 上解析且非常数. 证明: 对于 C 内的任意一个圆周 $\Gamma = \{z; |z - z_0| = r\},$ 其中 $z_0 \in \mathcal{C}, r > 0, f(\Gamma)$ 不能全部落在一条直线上.
- 9. (5) 设 f(z) 在复平面 C 解析且不为多项式,再设 $a \in C$ 使得 f(z) a 只 有有限个零点. 证明: 存在 $z_n \in \mathcal{C}(n=1,2,...)$, 使得有 $\lim_{n\to\infty} z_n = \infty$ 和 $\lim_{n\to\infty} (z_n)^n f(z_n) = a.$