Técnicas de Validación. Métricas y medidas de performance

Conjunto de test

¿ Cómo obtener una estimación insesgada de la performance del modelo?

Conjunto de test

¿ Cómo obtener una estimación insesgada de la performance del modelo?

 Durante el aprendizaje el modelo no debe acceder bajo ningún motivo a datos del conjunto de test.

 Si las anotaciones en el conjunto de test influencian de cualquier manera el aprendizaje, las estimaciones de performance estarán sesgadas.

Conjunto de validación

¿ Cómo obtener una estimación insesgada de la performance del modelo durante el entrenamiento? (ajuste de hiperparámetros)

Limitación de usar sólo un conjunto de train/test

- Los datos pueden ser insuficientes para crear conjuntos de entrenamiento y test lo suficientemente grandes.
 - Un conjunto de test grande nos da una mejor medida de la performance del modelo y menos variable del rendimiento del modelo.
 - Un conjunto de entrenamiento grande es más representativo del universo de entradas posibles y permite aprender y generalizar a datos nuevos.
- Un solo conjunto de entrenamiento no nos da información sobre la sensibilidad del modelo ante cambios en los conjuntos de entrada.

Remuestreo aleatorio

• podemos abordar el segundo punto mediante remuestreo

Muestreo estratificado

• Podemos requerir que las proporciones de clases se mantengan en cada subconjunto

Validación cruzada (cross validation)

 podemos considerar conjuntos de validación independientes y obtener una estimación respecto de la sensibilidad

Demo con notebook <u>06 Selección de Modelos.ipynb</u>

Métricas (clasificación)

Función de costo vs métricas

- La función de costo es solo un proxy al problema en el mundo real
- Las métricas ayudan a capturar objetivos reales en forma cuantitativa (no todos los errores son iguales)
- Ayudan a la organización del trabajo de los equipos en función de los requerimientos del problema
- Permiten cuantificar diferencias en:
 - performance deseada vs modelo base
 - o performance deseada vs actual
 - o evolución del tiempo
- Deberían ser el objetivo del entrenamiento, pero a veces es difícil

Clasificación binaria

- Entrada: x, salida y (valores 0/1 0 -1/+1)
- Predicción del modelo: $\hat{y} = h(x)$
- Dos tipos de modelos:
 - Modelos que predicen directamente una variable categórica (kNN, árboles de decisión)
 - Modelos que predicen un puntaje (score) (SVM, regresión logística)
 - Se necesita elegir un umbral (func. de decisión)
 - Nos enfocaremos en esta última clase de modelo. Los anteriores se pueden ver como un caso especial

Modelos basados en score

Matriz de confusión

- la suma total de todos los valores es fija (total de la muestra)
- la suma por columnas es fija (muestras por clase)
- la calidad del modelo y el valor del umbral de deciden el agrupamiento de filas
- queremos que los elementos diagonales tengan valores grandes y lo nos diagonales valores chicos

Matriz de confusión

- true positives (TP)=9
- true negatives (TN)=8
- false positives (FP)=2
- false negatives (FN)=1

Type I error (false positive)

Type II error

(false negative)

Métricas puntuales: exactitud (accuracy)

Th	TP	TN	FP	FN	Acc
0.5	9	8	2	1	0.85

$$Accuracy = \frac{TP + TN}{N}$$

Métricas puntuales: precisión

Th	TP	TN	FP	FN	Acc	Pr
0.5	9	8	2	1	0.85	0.81

$$Pre = \frac{TP}{TP + FP}$$

- De todas las instancias predichas como positivas por el modelo, ¿cuántas son realmente positivas?
- Prec 100%= todos bajo el umbral salvo el de score más alto (siempre que sea correcto)

Métricas puntuales: sensitividad (recall)

Th	TP	TN	FP	FN	Acc	Pr	Recal
0.5	9	8	2	1	0.85	0.81	0.9

$$Recall = \frac{TP}{TP + FN}$$

- De todas las instancias que son realmente positivas, ¿cuántas fueron correctamente identificadas por el modelo?
- Recall 100%= todos los puntos por encima del umbral

Métricas puntuales: F1-score

Th	TP	TN	FP	FN	Acc	Pr	Recal	F1
0.5	9	8	2	1	0.85	0.81	0.9	0.857

$$F_1 = \frac{2}{\text{recall}^{-1} + \text{precision}^{-1}} = 2 \cdot \frac{\text{precision.recall}}{\text{precision} + \text{recall}}$$

- Valor: El F1-Score varía entre 0 y 1, donde 1 es el mejor valor posible, indicando una precisión y sensibilidad perfectas, y 0 es el peor valor posible.
- Equilibrio: Penaliza más fuertemente valores extremos de una métrica en detrimento de la otra.
- **Uso**: donde se tiene un desequilibrio de clases

Métricas puntuales: cambio de umbral

Th	TP	TN	FP	FN	Acc	Pr	Recal	F1
0.6	7	8	2	3	0.75	0.77	0.7	0.733

umbrales efectivos= # ejemplos +1

Threshold Scanning Score = 1

Threshold = 1.00

Threshold	TP	TN	FP	FN	Accuracy	Precision	Recall	Specificity	F1
1.00	0	10	0	10	0.50	1	0	1	0
0.95	1	10	0	9	0.55	1	0.1	1	0.182
0.90	2	10	0	8	0.60	1	0.2	1	0.333
0.85	2	9	1	8	0.55	0.667	0.2	0.9	0.308
0.80	3	9	1	7	0.60	0.750	0.3	0.9	0.429
0.75	4	9	1	6	0.65	0.800	0.4	0.9	0.533
0.70	5	9	1	5	0.70	0.833	0.5	0.9	0.625
0.65	5	8	2	5	0.65	0.714	0.5	0.8	0.588
0.60	6	8	2	4	0.70	0.750	0.6	0.8	0.667
0.55	7	8	2	3	0.75	0.778	0.7	0.8	0.737
0.50	8	8	2	2	0.80	0.800	0.8	0.8	0.800
0.45	9	8	2	1	0.85	0.818	0.9	0.8	0.857
0.40	9	7	3	1	0.80	0.750	0.9	0.7	0.818
0.35	9	6	4	1	0.75	0.692	0.9	0.6	0.783
0.30	9	5	5	1	0.70	0.643	0.9	0.5	0.750
0.25	9	4	6	1	0.65	0.600	0.9	0.4	0.720
0.20	9	3	7	1	0.60	0.562	0.9	0.3	0.692
0.15	9	2	8	1	0.55	0.529	0.9	0.2	0.667
0.10	9	1	9	1	0.50	0.500	0.9	0.1	0.643
0.05	10	1	9	0	0.55	0.526	1	0.1	0.690
0.00	10	0	10	0	0.50	0.500	1	0	0.667

Threshold = 0.00

Score = 0

Métricas resumen : curvas ROC (rotada)

specificity=tnr=TN/Neg=TN/(TN+FP) sensitivity=tpr=TP/Pos=TP/(TP+FN) métrica AUC=área bajo la curva ROC

- AUC = 1: Representa un modelo perfecto.
- AUC = 0.5: Indica un modelo que no tiene capacidad de discriminación, equivalente a una clasificación aleatoria.
- AUC < 0.5: Indica un rendimiento peor que el azar

Métricas resumen : curvas ROC (rotada)

Uso Práctico de la Curva ROC

 Comparación de Modelos: Las curvas ROC permiten comparar diferentes modelos de clasificación. Un modelo con una curva ROC más cerca del punto (0,1) y un AUC mayor es generalmente mejor.

 Selección del Umbral de Decisión: La curva ROC puede ayudar a seleccionar un umbral de decisión que balancee la tasa de verdaderos positivos y la tasa de falsos positivos de acuerdo a las necesidades específicas del problema.

3. **Evaluación General del Modelo**: Proporciona una evaluación completa del rendimiento del modelo a lo largo

Métricas de resumen: curvas PR

precisión=TP/(pos predichos) (=VPP)
recall=TP/(pos verdaderos)
(=SENSIBILIDAD)
AUPR=área bajo la curva PR

La curva de
Precisión-Recall es
especialmente útil
cuando nos interesa más
minimizar los falsos
positivos que los falsos
negativos

Curvas ROC y PR en validación cruzada

Opción 1:

- Asumir que magnitudes de los scores son comparables entre corridas
- Acumular predicciones de todas las corridas
- Trazar la curva usando predicciones acumuladas

Opción 2:

- Trazar las curvas individuales para cada partición
- Considerar la "curva promedio"

Resumen curvas ROC y PR

- Permiten evaluaciones cuantitativas a distintos niveles de "confianza"
- Asumen problemas binarios
- Se pueden resumir en medidas del tipo "área bajo la curva"
- Las curvas ROC son insensibles a cambios en la distribución de clases en el conjunto de test
- Las curvas PR muestran la fracción de las predicciones que son FP
- Las curvas PR son útiles en problemas con una proporción de muestras negativas muy alta
- Permiten determinar umbrales óptimos para distintos puntos de operación

Problemas multiclases

- La mayoría de las métricas se analizan como N problemas binarios (OVA)
 - El desbalance crece con el número de clases

Problemas multiclase: macro avg

- Variantes multiclase de métricas AUC:
 - micros vs macro average
 - macro: calcula la métrica de rendimiento de cada clase y luego toma la media aritmética de todas las clases.
 - Útil cuando te interesa evaluar el rendimiento del modelo en cada clase por igual, sin importar el desbalance de clases.

$$\frac{\mathsf{Precision}}{\mathsf{Class}\,\mathsf{A}} = \frac{\mathsf{TP}_{\mathsf{Class}\,\mathsf{A}}}{\mathsf{TP}_{\mathsf{Class}\,\mathsf{A}} + \mathsf{FP}_{\mathsf{Class}\,\mathsf{A}}}$$

$$\frac{\mathsf{Recall}}{\mathsf{Class}\,\mathsf{A}} = \frac{\mathsf{TP}_{\mathsf{Class}\,\mathsf{A}}}{\mathsf{TP}_{\mathsf{Class}\,\mathsf{A}} + \mathsf{FN}_{\mathsf{Class}\,\mathsf{A}}}$$

Label	True Positive (TP)	False Positive (FP)	False Negative (FN)	Precision	Recall	F1 Score
Airplane	2	1	1	0.67	0.67	2 * (0.67 * 0.67) / (0.67 + 0.67) = 0.67
≜ Boat	1	3	0	0.25	1.00	2*(0.25 * 1.00) / (0.25 + 1.00) = 0.40
€ Car	3	0	3	1.00	0.50	2 * (1.00 * 0.50) / (1.00 + 0.50) = 0.67

Macro-Averaged F1 Score
 0.67 + 0.40 + 0.67
3
= 0.58

Problemas multiclase: micro avg

- Útil cuando te interesa el rendimiento global del modelo, considerando todas las instancias por igual.
- Es especialmente relevante en situaciones donde las clases están desbalanceadas y quieres que el modelo tenga un buen rendimiento general

$$(F_1)_{micro} = 2 \cdot \frac{\text{precision}_{micro} \text{recall}_{micro}}{\text{precision}_{micro} + \text{recall}_{micro}} = \frac{\frac{\sum TP}{\sum (TP + FP)}}{\frac{\sum TP}{\sum (TP + FN)}}$$

Label	True Positive (TP)	False Positive (FP)	False Negative (FN)	Micro-Averaged F1 Score
Airplane	2	1	1	TP 6
≜ Boat	1	3	0	$\frac{1P}{\text{TP} + \frac{1}{2}(\text{FP} + \text{FN})} = \frac{6}{6 + \frac{1}{2}(4 + 4)}$
⇔ Car	3	0	3	= 0.60
TOTAL	6	4	4	- 0.00

Demo con notebook 07 Metricas.ipynb