1

NCERT Physics 12.7 Q19

EE23BTECH11212 - MANUGUNTA MEGHANA SAI*

Question: Suppose the circuit in Exercise 7.18 (in Figure Fig. 1)has a resistance of 15 Ω . Obtain the average power transferred to each element of the circuit, and the total power absorbed.

Fig. 1. LCR Circuit

Solution: In Fig. 1 the following information is provided:

Symbol	Value	Description
L	80m H	Inductance
С	60 μF	Capacitance
R	15 Ω	Resistance
V	230 V	Voltage
f	50 Hz	Frequency
ω	$2\pi f = 100\pi$	Angular Frequency

TABLE I GIVEN PARAMETERS

Applying Kirchoff's Voltage Law:

Fig. 2. s domain circuit

$$V(s) = RI(s) + sLI(s) + \frac{1}{sC}I(s)$$
 (1)

$$\Rightarrow V(s) = I(s) \left(R + Ls + \frac{1}{sC} \right) \tag{2}$$

$$\Rightarrow I(s) = \frac{V(s)}{\left(R + Ls + \frac{1}{sC}\right)} \tag{3}$$

$$H(s) = \frac{V(s)}{I(s)} \tag{4}$$

$$H(s) = R + sL + \frac{1}{sC} \tag{5}$$

Substituting s with 1ω

$$H(j\omega) = R + j\omega L + \frac{1}{j\omega C}$$
 (6)

$$\Rightarrow |H(j\omega)| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 (7)

a) Average power transferred to the capacitor, P_C

$$P_C = 0 (8)$$

b) Average power transferred to the inductor, P_L

$$P_L = 0 (9)$$

c) Average Power transferred to the resistor, P_R :

$$P_R = (I(j\omega))^2 R \tag{10}$$

 $H(j\omega)$ is obtained by sustituting the numerical values from the Table I in equation (7):

$$H(j\omega) = 31.728 \ \Omega \tag{11}$$

Current flowing through the circuit $I(j\omega)$ is :

$$I(j\omega) = \frac{V}{H(j\omega)} = \frac{230}{31.728}$$
 (12)

$$= 7.25 A$$
 (13)

$$P_R = (I(j\omega))^2 \cdot R = (7.25)^2 \times 15$$
 (14)

$$= 788.44 W$$
 (15)

d)Total power absorbed by circuit:

$$= P_R + P_C + P_L \tag{16}$$

$$= 788.44 + 0 + 0 \tag{17}$$

$$= 788.44 W$$
 (18)

Total power absorbed by circuit is 788.44W

Fig. 3. Impedance vs ω