

SF1624 Algebra och geometri Lösningsförslag till tentamen 2013-01-07

DEL A

1. Betrakta det linjära ekvationssystemet

$$\begin{cases} x + y + 2z = 0 \\ x + 2y + az = 1 \\ 3x + 4y + 6z = b \end{cases}$$

i de tre obekanta x, y och z.

- (a) Undersök för vilka värden på konstanterna *a*, *b* som ekvationssystemet har precis en lösning, oändligt många lösningar, respektive ingen lösning. (2 p)
- (b) Bestäm alla lösningar till systemet i de fall det har oändligt många lösningar.

(2 p)

Lösningsförslag. a) Totalmatrisen till ekvationssystemet är

$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 1 & 2 & a & 1 \\ 3 & 4 & 6 & b \end{bmatrix}.$$

Vi bestämmer lösningsmängden vid Gauss-Jordan elimination. Vi tar och adderar -1 rad 1 till rad2. Sedan adderar vi -3 rad 1 till rad 3. Och slutligen så byter vi plats på raderna 2 och 3. Och med dessa nya rader; vi adderar -1 rad2 till rad 3, och har då matrisen

$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & b \\ 0 & 0 & a-2 & 1-b \end{bmatrix}$$

Nu ser vi att om $a \neq 2$, då kan vi dela rad 3 med a-2, och erhåller en unik lösning, för alla värden av b. Om a=2, och $b\neq 1$, då ser vi av den nedersta raden att vi har inga lösningar. Om a=2 och b=1 då har vi oändligt många lösningar.

b) Vi är interesserad i ekvationssystemet

$$\begin{cases} x + y + 2z = 0 \\ x + 2y + 2z = 1 \\ 3x + 4y + 6x = 1 \end{cases}$$

Av beräkningarna ovan ger detta, efter Gauss-Jordan, matrisen

$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

Lösningsmängden ges av z = t, y = 1 och x = -1 - 2t.

- (a) Unik lösning $a \neq 2$, ingen lösning a = 2 och $b \neq 1$. Oändligt många lösningar a = 2, b = 1.
- (b) Linjen (-1-2t,1,t) godtyckliga tal t.

- 2. Alla delrum i \mathbb{R}^n kan ses både som nollrum och som bildrum till linjära avbildningar. Det finns i allmänhet många linjära avbildningar som ger samma nollrum och samma bildrum. Låt W vara det delrum i \mathbb{R}^3 som ges av ekvationen x+4y-3z=0. (a) Bestäm matriserna för två olika avbildningar $S_1, S_2 \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ som har W som
 - nollrum. (3 p)
 - (b) Bestäm en 3×3 -matris, på reducerad trappstegsform, som har W som nollrum.

(1 p)

Lösningsförslag. Planet W ges av ekvationen x+4y-3z=0. Vi söker avbildningar $S_1,S_2\colon\mathbb{R}^3\longrightarrow\mathbb{R}^3$ som har W som nollrum. Orthogonala projektionen ned på normallinjen till W är ett exempel. Vi skall ge matrisrepresentationer för dessa avbildningar, och det räcker då att ge två olika (3×3) -matriser som har W som nollrum. Matriserna

$$A_1 = \begin{bmatrix} 1 & 4 & -3 \\ 1 & 4 & -3 \\ 1 & 4 & -3 \end{bmatrix} \quad \text{och} \quad A_2 = \begin{bmatrix} 1 & 4 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

är olika. Nollrummen till båda matriserna är precis W, och matrisen A_2 är även på reducerad trappstegsform.

- (a) -
- (b) -

3. Bestäm alla värden av parametern a så att matrisen

$$A = \left[\begin{array}{cc} 2 & a \\ 1 & 3 \end{array} \right]$$

är diagonaliserbar.

(4 p)

Lösningsförslag. Vi börjar med att bestämma det karakteristiska polynomet c(A) till matrisen A. Vi har att

$$c(A) = (\lambda - 2)(\lambda - 3) - a = \lambda^2 - 5\lambda + 6 - a.$$

Nollställerna till polynomet c(A), vilket ger egenvärden, är det nästa vi bestämmer. Vi har att $c(A)=0=(\lambda-\frac{5}{2})^2+6-a-\frac{25}{4}$, vilket ger

$$\lambda = \frac{5}{2} \pm \sqrt{a + \frac{1}{4}}.$$

Av detta ser vi att om $a<-\frac{1}{4}$ då har c(A) inga reella rötter, men komplexa sådana. Då kan inte matrisen vara diagonaliserbar. Om $a>-\frac{1}{4}$ då har c(A) två olika, reella rötter. Och då vet vi att matrisen är diagonaliserbar. Vi kollar explicit specialfallet med en dubbelrot, dvs $a=-\frac{1}{4}$. Med $a=-\frac{1}{4}$ har vi det dubbla egenvärdet $\frac{5}{2}$, och vi vill vet om egenrummet har dimension två eller bara dimension ett. Insätter vi in egenvärdet $\lambda=\frac{5}{2}$ i matrisen, så ges egenrummet som nollrummet till matrisen

$$\frac{5}{2}I - A = \begin{bmatrix} \frac{5}{2} - 2 & \frac{1}{4} \\ -1 & \frac{5}{2} - 3 \end{bmatrix}$$

Detta är inte nollmatrisen, vilket betyder att egenrummet har dimension 1, och att matrisen inte är diagonaliserbar.

Svar.

(a) Diagonaliserbar med $a > -\frac{1}{4}$.

DEL B

4. Bestäm standardmatrisen för den linjär avbildning $f: \mathbb{R}^2 \to \mathbb{R}^2$ vars matris med avseende till basen $\mathfrak{B} = (\left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right], \left[\begin{smallmatrix} 0 \\ 2 \end{smallmatrix} \right])$ är

$$\begin{pmatrix} -1 & 11 \\ 2 & -8 \end{pmatrix}.$$
 (4 p)

Lösningsförslag. Matrisen $A = \begin{bmatrix} -1 & 11 \\ 2 & -8 \end{bmatrix}$ representerar avbildningen $T \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ med avseende på basen $\mathfrak{B} = (\vec{u}, \vec{v})$ där

$$\vec{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$

Detta betyder att första kolumnen i matrisen A är koordinatmatrisen till vektorn $[T(\vec{u})]_{\mathfrak{B}}$, och andra kolumnen är vektorn $[T(\vec{v})]_{\mathfrak{B}}$. Det vill säga

$$T(\vec{u}) = -\vec{u} + 2\vec{v} = \begin{bmatrix} -1\\3 \end{bmatrix}$$

och att

$$T(\vec{v}) = 11\vec{u} - 8\vec{v} == \begin{bmatrix} 11\\ -15 \end{bmatrix}.$$

Vidare så vill vi uttrycka standardbasen (\vec{e}_1, \vec{e}_2) i basen \mathfrak{B} . Vi har att

$$\vec{e}_1 = \vec{u} - \frac{1}{2}\vec{v}$$
 och $\vec{e}_2 = \frac{1}{2}\vec{v}$.

Detta ger nu att

$$T(\vec{e}_1) = T(\vec{u}) - \frac{1}{2}T(\vec{v}) = \begin{bmatrix} -1\\3 \end{bmatrix} - \frac{1}{2}\begin{bmatrix} 11\\-5 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} -13\\11 \end{bmatrix}.$$

Och på liknande sätt erhåller vi att $T(\vec{e}_2)=\frac{1}{2}\begin{bmatrix}11\\-5\end{bmatrix}$. Standardmatrisen för avbildningen blir då

$$A = \frac{1}{2} \begin{bmatrix} -13 & 11\\ 11 & -5 \end{bmatrix}.$$

Svar.

(a) Standardmatrisen är $A = \frac{1}{2} \begin{bmatrix} -13 & 11 \\ 11 & -5 \end{bmatrix}$.

5. Vid en mätning av två storheter har vi fått följande mätvärden

Två forskare tvistar om det finns ett linjärt samband U=RI, eller om det krävs en konstantterm för att förklara sambandet, $U=RI+U_0$.

- (a) Ställ upp de två minsta-kvadratproblem som fås från de givna mätdata för att bestämma de okända parametrarna i de två modellerna. (2 p)
- (b) Lös minsta-kvadratproblemen och formulera adekvata slutsatser. (1 p)
- (c) Förklara varför minsta-kvadratavvikelsen säkerligen är mindre i det andra fallet.

(1 p)

Lösningsförslag. a) Den första modellen ger ett ekvationssystem med fyra ekvationer och en okänd x, medan den andra modellen ger ett ekvationssystem med fyra ekvationer och två okända x och a. Om vi låter

$$A_1 = \begin{bmatrix} 0 \\ 2 \\ 4 \\ 6 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 1 \\ 2 & 1 \\ 4 & 1 \\ 6 & 1 \end{bmatrix} \quad \text{och} \quad B = \begin{bmatrix} 1 \\ 7 \\ 8 \\ 10 \end{bmatrix},$$

då ges den första modellen av matrisekvationen $A_1\left[x\right]=B$, och den andra modellen ges av matrisekvationen

$$A_2 \begin{bmatrix} x \\ a \end{bmatrix} = B.$$

Dessa båda ekvationssystem är inkonsistenta. Minsta-kvadratproblemet ges av de konsistenta ekvationssystemen

$$A_1^T A_1 \begin{bmatrix} x \end{bmatrix} = A_1^T \quad \text{och} \quad A_2^T A_2 \begin{bmatrix} x \\ a \end{bmatrix} = A_2^T B.$$

Skriver vi ut dessa matrisprodukt, får vi

$$56x = 106$$
 och $\begin{bmatrix} 56 & 12 \\ 12 & 4 \end{bmatrix} \begin{bmatrix} x \\ a \end{bmatrix} = \begin{bmatrix} 106 \\ 26 \end{bmatrix}$.

b) Lösningen till den första modellen ges av $x=\frac{53}{28}$. Lösningen till den andra modellen ges av

$$\begin{bmatrix} x \\ a \end{bmatrix} = \frac{1}{80} \begin{bmatrix} 4 & -12 \\ -12 & 56 \end{bmatrix} \begin{bmatrix} 106 \\ 26 \end{bmatrix} = \frac{1}{80} \begin{bmatrix} 8(53 - 3 \cdot 13) \\ 8(2 \cdot 91 - 3 \cdot 53) \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 14 \\ 23 \end{bmatrix}.$$

Vilket ger den bästa, i minsta-kvadrat meningen, approximationen till problem, med given modell.

c) I den andra modellen har vi två okända, vilket ger mera flexibilitet, och följdaktligen mindre avvik, att anpassa modellen (linjen) till mätdata (punkt i planet).

- (a) -
- (b) -
- (c) -

- 8
- 6. Låt ℓ vara linjen (1,0,1) + t(2,1,-1) och m vara linjen (0,1,2) + t(1,2,1).
 - (a) Det finns många plan i \mathbb{R}^3 som varken skär ℓ eller m. Alla dessa är parallella. Bestäm en normalvektor till dem.
 - (b) Bestäm en ekvation för det plan i \mathbb{R}^3 som varken skär ℓ eller m och som har samma avstånd till ℓ som till m.

Lösningsförslag. a) En riktningsvektor för linjen ℓ är vektorn $\vec{u} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$, och specielt är

linjen $\ell' = t\vec{u}$, tal t, parallell med linjen ℓ . Vektorn $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ är en riktningsvektor för

linjen m. Planet genom origo, som innehåller vektorerna \vec{u} och \vec{v} har normalvektor

$$\vec{n} = \begin{bmatrix} 2\\1\\-1 \end{bmatrix} \times \begin{bmatrix} 1\\2\\1 \end{bmatrix} = \begin{bmatrix} 3\\-3\\3 \end{bmatrix}.$$

Plan med normalvektor \vec{n} vill vara parallella med linjerna ℓ och m. Av dessa plan vill ett ändlig antal (en eller två) innehålla linjen ℓ eller m.

b) Planet vi söker ges av ekvationen

$$x - y + z + d = 0,$$

där talet d kvarstår att bestämma. Vi vet att linjerna ℓ och m är parallella med planet. Specielt har vi att avståndet mellan planet och linjen ℓ är lika med avståndet $d(\ell)$ mellan planet och vilken som helst punkt på linjen ℓ , tex (1,0,1). Avståndet är alltså

$$d(\ell) = \frac{|1 - 0 + d|}{\sqrt{3}}.$$

Och på samma sätt har vi att avståndet från planet till linjen m ges som avståndet d(m)från planet till punkten (0, 1, 2). Vi har

$$d(m) = \frac{|0 - 1 + 2 + d|}{\sqrt{3}}.$$

Talet d bestäms av sambandet |2+d|=|1+d|. Detta ger antingen att 2+d=1+d, vilket inte har någon lösning. Eller att 2+d=-1-d, vilket har lösningen $d=-\frac{3}{2}$. En ekvation till det sökta planet är 2x - 2y + 2z - 3 = 0.

- (a) Normalvektor är $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. (b) En ekvation till planet är 2x-2y+2z-3=0.

DEL C

7. Låt A vara en symmetrisk 3×3 -matris. Antag att 1 är ett egenvärde till A, och att alla vektorer \vec{v} som ligger i planet x - y + 2z = 0 uppfyller $A\vec{v} = 2\vec{v}$. Bestäm

$$A \left[\begin{array}{c} 2 \\ 2 \\ 3 \end{array} \right].$$

(4 p)

Lösningsförslag. Vi använder följande två egenskaper för symmetriska matriser(se kapitel 8 i kursboken):

- (E1.) Varje symmetrisk matris kan diagonaliseras.
- (E2.) Egenvektorer för en symmetrisk matris som hör till olika egenvärden är ortogonala. Först väljer vi två linjärt oberoende egenvektorer som ligger i planet x-y+2z=0 och hör till egenvärdet 2. Vi kan t ex välja

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ och } \vec{v}_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

Enligt antagandet hör vektorerna \vec{v}_1 och \vec{v}_2 till egenvärdet 2. Enligt (E1.) är en egenvektor \vec{v}_3 som hör till egenvärdet 1 ortogonal mot alla vektorer som hör till egenvärdet 2. Därför kan vi välja

$$\vec{v}_3 = \vec{v}_1 \times \vec{v}_2 = \left(\begin{array}{c} 1 \\ -1 \\ 2 \end{array} \right).$$

Om vi betecknar

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 0 & 1 & 2 \end{bmatrix} \text{ och } D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

har vi

$$P^{-1} = \frac{1}{6} \begin{bmatrix} 5 & 1 & -2 \\ -2 & 2 & 2 \\ 1 & -1 & 2 \end{bmatrix}.$$

Härav

$$A = PDP^{-1} = \frac{1}{6} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 1 & -2 \\ -2 & 2 & 2 \\ 1 & -1 & 2 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 11 & 1 & -2 \\ 1 & 11 & 2 \\ -2 & 2 & 8 \end{bmatrix}$$

Sluligen

$$A \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$$

Svar.

(a) Den sökta vektorn är $\begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$.

8. Den linjära avbildningen $T: \mathbb{R}^3 \to \mathbb{R}^3$ bestäms av

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix} \quad T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\\1\end{bmatrix} \quad \text{och} \quad T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-1\\0\end{bmatrix}.$$

Delrummet W av \mathbb{R}^3 ges av ekvationen 3x+4y-5z=0. Vi får en *inducerad* linjär avbildning $T_W\colon W\to\mathbb{R}^3$ som skickar \vec{w} i W till $T(\vec{w})$. Bestäm en matris för T_W med avseende på någon bas för W.

Lösningsförslag. För att bestämma vilka vektorer som ligger i W löser vi ekvationen 3x + 4y - 5z = 0 och får $x = -\frac{4}{3}y + \frac{5}{3}z$. Om vi betecknar fria variabler y = 3s och z = 3t får vi

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{4}{3}s + \frac{5}{3}t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} -\frac{4}{3} \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} \frac{5}{3} \\ 0 \\ 1 \end{pmatrix}$$

Vi kan bilda en bas för W med t ex

$$ec{b}_1 = \left(egin{array}{c} -4 \ 3 \ 0 \end{array}
ight) ext{ och } ec{b}_2 = \left(egin{array}{c} 5 \ 0 \ 3 \end{array}
ight).$$

Notera att avbildningen $T: \mathbb{R}^3 \to \mathbb{R}^3$ har matrisen

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 2 & 0 & -1 \\ 3 & 1 & 0 \end{array} \right]$$

Bilderna av \vec{b}_1 och \vec{b}_2 bestämmer vi med hjälp av matrisen A:

$$T(\vec{b}_1) = A\vec{b}_1 = \begin{pmatrix} -1\\ -8\\ -9 \end{pmatrix}$$
$$T(\vec{b}_2) = A\vec{b}_2 = \begin{pmatrix} 8\\ 7\\ 15 \end{pmatrix}$$

Vektorerna $T(\vec{b}_1)$ och $T(\vec{b}_2)$ bildar kolonner i den sökta matrisen för avbildningen T_w . Alltså

$$\begin{bmatrix} -1 & 8 \\ -8 & 7 \\ -9 & 15 \end{bmatrix}$$

är matrisen för avbildningen T_w i basen (\vec{b}_1,\vec{b}_2)

Svar.

(a) -

9. Låt

$$U = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\2\\0\\1 \end{bmatrix} \right\} \quad \text{och} \quad V = \operatorname{span} \left\{ \begin{bmatrix} -2\\0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0\\0 \end{bmatrix} \right\}.$$

Låt vidare W vara det delrum i \mathbb{R}^5 som består av alla vektorer som ligger i både U och V. Bestäm en bas för W.

Lösningsförslag. Om en vektor \vec{v} ligger i både U och Vdå finns det skalärer x,y,z och w sådana att

$$\vec{v} = x \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 2 \end{bmatrix} + y \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix} = z \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + w \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{bmatrix}.$$

Detta leder till systemet

$$\begin{cases} x+y &= -2z+w \\ 0 &= 0 \\ x+2y &= z-w \\ 0 &= 0 \\ 2x+y &= z \end{cases} \sim \begin{cases} x & +y & +2z & -w &= 0 \\ 0 &= 0 \\ x & +2y & -z & +w &= 0 \\ 0 &= 0 \\ 2x & +y & -z &= 0 \end{cases}$$

$$\sim \begin{cases}
x + y + 2z - w = 0 \\
y - 3z + 2w = 0 \\
-y - 5z + 2w = 0 \\
0 = 0
\end{cases}
\sim \begin{cases}
x + y + 2z - w = 0 \\
y - 3z + 2w = 0 \\
-8z + 4w = 0 \\
0 = 0 \\
0 = 0
\end{cases}$$

Systemet har oändligt många lösningar: x=t, y=-t, z=t, w=2t. Varje vektor \vec{v} som ligger i både U och V har följande form:

$$\vec{v} = x \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 2 \end{bmatrix} + y \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix} = t \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 2 \end{bmatrix} - t \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix} = t \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

Alltså
$$V_3=\mathrm{span}(\begin{bmatrix}0\\0\\-1\\0\\1\end{bmatrix})$$
 Därför är vektorn $\vec{b}=\begin{bmatrix}0\\0\\-1\\0\\1\end{bmatrix}$ en basvektor till $W.$

(a) En bas utgörs av vektorn
$$\begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$
.