

SN2 Reaction

Inversion of Configuration

(Attacking nucleophile)

The process can take an alternate path too: (Not SN2)

Here the intermediate state is formed.

4 Distance i very large before reaction

The change of energy state could take one or more forms, but at N=1 and N=0, the energy level must be the same.

· SN2 1N2 •

? :: same state w/ corbon apart from inversion.

Arrhenius' Law

Rate of Reaction : K & Re-E/KT

SN2 reaction whereas of quantum One of the lines represents

quantum calculati

Lecture 2

Subject: CIS1 Classical Mechanics
Quantum Mechanism

Classical Mechanics MOSTLY suffices for biomolecular simulation.

Newtonian mechanics cares about 7 mass (m) Position (r)

Lartesian coordinates.

CEach of these vary with time]

$$\frac{d^2}{dt^2}$$
r(t)

Acceleration:
$$\frac{d^2r(t)}{dt^2} = \frac{d^2x}{dt^2} + \frac{d^2y}{dt^2} + \frac{d^2z}{dt^2}$$

[bx/bt= dx/dt if bt→0]
Slope ≈ Derivative

momentum: mv. At a time t, p; = m; v; (weful if max varies)

(P)

Net Force on Object: Independent on object of concern, doesn't depend on (Fext)

internal properties.

Interactions Possible w/ object

(i) Electrical

(ii) Gravitational (for large enough bodies)

(iii) Hooke's law: Spring forces!

Atomic Structure

Nucleus < Protons (+1) → Det. net charge in nucleus. neutrons (+0) → Man, stability of nucleus

Neutrons DON'T determine chemical properties.

same reactivity and them prop.

Quantum Chemistry (orbitals and structure) Approximath Parabola (H)(H) 📦 (H) H) 1s1 (covalently bonded H) CRUCIAL OBSERVATION! We attempt to model all atoms in a classical mechanics approach using a spring. ightarrow Most of the times γm Assume spring to have constant 'k' k is obtained by fitting the energy function (as above) into a parabola Assume function f(x){**(**⟨**X**)} Taylor expansion: Approximating function about a given find f(xo). Thun f'(xo), f"(xo) until required. $x_1, x_0 \in [\alpha, b], f(x) = f(x_0)$ let Now, given $x \in [a,b]$, f(x) = ?x= (dsb), ((x) ≈ ((x)) (other approx.) $f(x) \longrightarrow Accuracy w more terms.$ (1st order approx) \Rightarrow $f(x_0) + df(x_0)$ - 1 (dif) (x-x)2 (2nd order approx)

At minimal maxima, $\left(\frac{df}{dx}\right)_{k} = 0$. We can eliminate encirled term.

- This equation is parabolic.

Constant → NVT Number Volume
in Simulat | Temp
-ion | NVE Number Volume

Energy

- · Molecular dynamics Biomolecular dynamics
- · Force field: Setup system/PBC/Temperature minimise

We can measure the same in an NVT simulation also, there t may not be constant

why? otherwise it would imply nonconstant temperature.

- Trajectory could be of 2 forms: (1) At equilibriation phase (not constant phase)
 - O During production phase Determines equilibrium state.

Thermodynamics: Free energy, Average energy, Heat capacity, Entropy

•
$$E = \frac{1}{M} \stackrel{\text{def}}{=} \frac$$

$$\overline{K} = \underline{1} \leq K_i$$
 Average KE

(Equipartion

Theorem)

 $\bar{K} = N \cdot d \cdot \underline{L} \quad K_b T = \frac{3}{2} \quad N K_B T$ Dimensionality

(2 for normies)

- · Simulat at an arbitrary temperature, so, $\vec{p} = [-k(x-x_0) 8p + F_R]$
- · over time, x. varies as:

· Frictional const.

Here, E(t) is not a constant

(This represents a 10-sitm)

$$\frac{p^2}{2m} + \frac{1}{2} K(x-x_0) \left[p(t), x(t) \right]$$

() L From the above page.

The NVM varies as:

$$x(t) = x_0 + (x(0) - x_0) \cdot \cos \omega t$$

DU≠~ lOKT (PEnotateq)

such a reaction is like a stochastic process. some states are preserved for longer periods of times.

· States that have less free energy. They occur for the majority of time.

of occurrence

Landau's Free energy:

Highest when not at x, or x2.

Order Parameter (1)

interpretable as

$$di = |\overline{R}_{p}^{cH}(i) - \overline{R}_{L}^{cH}(i)|$$

$$\overline{R}_{A}^{cM} = \frac{1}{M_{a}} \underset{i \in A}{\leq} m_{i} \overline{r_{i}}$$

$$M_{a}^{i \in A} \underset{i \in A}{|A|} molecule$$

$$Protein \qquad ligand$$

Order parameter: 7

1) Statistics on these - properties.

Proof

$$\left(\frac{1}{M}\sum_{i=1}^{M}\left(E_{i}-\overline{E}\right)^{2}=\frac{1}{M}\sum_{i=1}^{M}\left(E_{i}^{2}-\overline{E}^{2}\right)^{2}$$

$$\frac{1}{M}\left(\sum_{i=1}^{M}E_{i}^{2}+\sum_{i=1}^{M}\left(\overline{E}\right)^{2}-2\sum_{i=1}^{M}E_{i}\overline{E}\right)^{2}$$

$$\Rightarrow \frac{1}{M}\left(\sum_{i=1}^{M}E_{i}^{2}+M(\overline{E})^{2}-2\overline{E}\sum_{i=1}^{M}E_{i}\right)^{2}$$

$$\Rightarrow \frac{1}{M}\left(\sum_{i=1}^{M}E_{i}^{2}+M(\overline{E})^{2}-2\overline{E}\left(\overline{E}\right)M\right)^{2}$$

$$\Rightarrow \frac{1}{M}\sum_{i=1}^{M}E_{i}^{2}+(\overline{E})^{2}-2(\overline{E})^{2}$$

 $\Rightarrow \frac{1}{M} \stackrel{M}{\underset{i=1}{\overset{}{\succeq}}} E_i^2 - (\bar{E})^2$

we have kept bond length constant & vanied angle As usual we can model this w/a parabola

approx 1045 degrees

$$V_{eq}$$
 $\frac{1}{2} k_{oH} (d_{oH_{1}} d_{oH_{2}}^{\bullet} d_{oH_{2}}^{\bullet})^{2} + \frac{1}{2} k_{oH} (d_{oH_{2}} d_{oH_{2}}^{\bullet})^{2} + \frac{1}{2} k_{oH} (\theta - \theta_{o})^{2}$

Parameter is ation for equilibrium condition.

Here the particles' U cancels

If config of atoms is given, position, etc, we can calculate the force on it particle as follows:

$$\overline{F}_{i}(\overline{r_{i}},\overline{r_{1}},\overline{r_{3}}) = \left(-\right)\left(\frac{\partial v}{\partial r_{i}}\right)_{j\neq i} = -\left(\frac{\partial v}{\partial x_{i}},\frac{\partial v}{\partial y_{i}},\frac{\partial v}{\partial z_{i}}\right)$$

we use an approximath to find \overline{f}_i , using which we will be able to calculate the momentum of particles at a time t.

$$\rho_i = M \frac{d\overline{r_i}}{dt}$$
 & $\frac{d\overline{p_i}}{dt} = \overline{F_i}$

(nomuntum after an infinitesimal time t)

$$\frac{d\overline{r_i}}{dt} \approx \frac{\Delta \overline{r_i}}{\Delta t} = \left[\overline{r_i}(t + \Delta t) - \overline{r_i}(t)\right] = \frac{1}{m} p_i(t)$$

using aboves we can obtain:

$$\frac{d\overline{r_i}}{dt} = \frac{1}{m} \overline{p_i}(t) \implies r_i(t + \Delta t) = \frac{1}{m} \overline{p_i}(t) \cdot \Delta t + \overline{r_i}(t)$$

we have not made any assumptions about the particle, and from a classical mechanics standpoints this sufficed for any general particle.

let's consider an ethane molecule

freely rotated. 'H' positions' variation can be evaluated using torsion angle.

Potential energy graph: A combination of cosines'

, This sum represents tortion

ki: Some calculated unique/arbitrary const

n: Changes for each molecule

(number of times central angle has to multiply to obtain original config)

Types of bonds and Bond angles in C2H6

Lenneard Jones, equation potential energies

Repulsive (strongly) (+)

weakly attractive (-)

$$U = 4E \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right)$$
(Leannard Jones')

Partial charges & Hydrogen

- → · Here we observe partial charges
 - · The charge of each atom will be atmost

+1 or -1. (Almost never possible)

Dipole interactions.

Biomolecular simulation - we have motivated the construction of PE as some fois

Total PE (--- Lovalent Bonding (Modelled as a spring) L, Bond rotation (quadratic graph) Nonbonding (leonard jones' vanderwaal's forces)

These are the 4 important interactions.

Potential Energy

$$V(\vec{r_1}, \vec{r_2}, \vec{r_3}, ..., \vec{r_N}) \equiv V(\vec{r_N})$$
 This is for the centre of mass position vector Potential energy of of 1st particle with N atoms. Chosen arbitrary centre.

$$\overline{F_i} = -\left(\frac{\partial U}{\partial r_i}\right)_{j \neq i} \equiv -\left(\left(\frac{\partial U}{\partial x_i}\right), \left(\frac{\partial U}{\partial y_i}, \frac{\partial U}{\partial z_i}\right)\right)$$
Combination of 3N partial derivative

Equations of motion

①
$$\frac{d\vec{p_i}}{dt} = \vec{F_i} \quad \forall i \in [1, N] \rightarrow 3N \text{ such equations}$$
② $\frac{d\vec{r_i}}{dt} = \frac{1}{m} \vec{p_i} \quad \forall i \in [1, N] \rightarrow 3N \text{ such equations}$

We can also obtain integrators:

$$\left\{\begin{array}{l} \overline{r_i(t)} \\ \overline{p_i(t)} \end{array}\right\} \longrightarrow \left\{\begin{array}{l} \overline{r_i(t+dt)} \\ \overline{p_i(t+at)} \end{array}\right\}$$

Euler scheme (Explaining above)

$$\vec{r}_i(t+\Delta t) = \vec{r}_i(t) + \frac{1}{m} \vec{p}_i(t) \Delta t$$
 order of Δt^2 (0(Δt^2))

 $\vec{p}_i(t+\Delta t) = \vec{p}_i(t) + \vec{F}_i(t) \Delta t$ Decause of approximation, we use till 2 terms for culer's tigher order terms are removed

Higher order terms are removed.

In a simulation we save configuration every 100 or x timesteps:

- ·· · Saves memory
 - · tach timestep represents an actual change in configuration.

Newton's second haw: Total energy is conserved.

· { ri(t), pi(t)} ~ parameters of ith particle at time t.

- · A wt of volusions -> 1023 ish per second would happen
- some of them are elastic, but some inclustic.

· Total energy: Varying :: cxchanges w/surrounding. · KE: Varying :: Inclustic collisions System

Energy

Equal temp > {(E(t)-Ē)`> Related to Cv. Tof the system

E(t)

Langerin

Fi -
$$\sqrt{p_i}$$
 + $\overline{F_{k,i}}$

For object Frictional force Random force - undetermined

Stouhastic Differential eq. (SDE)

- · This is theoretical.
- At T_2 system $\stackrel{\longleftarrow}{\longleftarrow}$ surrounding. $T(y_2, F_R)$ (function)

 $\forall i, \frac{d\overline{\rho_i}}{dt} = \frac{1}{m_i}\overline{\rho_i}$

Consider a system of Ar atoms (1)

- · This will have only learnard Jones' Interactions.
- we observe some kind of scattering
- Simulation time & (Diameter)312 or & Volume2 when we take bigger molecules, like protein bulk and edge molecules have diff. properties we increase volume to homogenise distributions

ndomnesse Simulation time I so we choose a moderate value.

Periodic Boundary condition.

of or cuystal structures.
On Many shapes

·If you insert something it will still interact we infinite other outside cell.

- This is observed in simulation.

Infinite lattice

May not be cube, would be

2D order parameter - 1, 12

- Functions of portions of n-particles

The reaction pathways are:

- Most likely puth Metastable puth
- least likely puth 4

→ Why? The reaction Must follow this. i.e. it must go through the metastate.

Similar graphs

- · why have the axes been
 - flipped?
- · why 1, and 1,?

Reaction mechanism

Consists of metastable states, transition states, local minimums in FEP's states

Minima: Metastable state Maxima: Transition state

Free energy surfaces

The equation for free energy as a function of n's can be given as follows

$$F(\lambda_1,\lambda_2) = -kt \ln P(\lambda_1,\lambda_2)$$

Method 1:

- An extended duration MD simulation
- · About 1 or 2 years
- · Plot the histogram

Steps:

- 1 Girid the graph
- (2) Calculate P(n, , n2) for each grid
- 3 use the egn $F(\lambda_1,\lambda_2) = -KTen(P(\lambda_1,\lambda_2))$ for each grid (formula above)

Method 2: (used more often) - Developed by Torre & valeau

- · We call this " umbrella sampling"
- · This is used to improve sampling of a system (or different system) where ERGIODICITY

from method 1:

- P(x) Method 2 U'(x) (x) 1 U(x)

- Biased energy Ubj (x)
- · Utistogram
- · weignted analysis method.

Here the sampling is incomplete.

≈ system trapped

\cdot Star Simulation from U(x)

Suggested: 1/2 Kj (x-xi)2

why v'(x) ? Because it is a closer minima

Steps:

- 1 Decide on an order parameter
- 2 setup m independent bias simulation. such that all of the order parameters are obtained
- 3 unbias (involves (M) LO WHAM (Next)

p before and after bias:

After bice:

$$\dot{p} = -\frac{\partial u}{\partial x} - \frac{\partial u_{b_1}}{\partial x} - rp + Fr$$

WHAM (weighted Histogram analysis method)

- Plot graphs, i'e histograms for all simulations
- @ Take weighted average of the histograms : All processes do not contribute equally to weight.
- Plot the weighted histogram.

from F(x) v/s x

- we get F(R) z measured F(R) thermal props.
 - Ea → Rate: (or actival = ?)
 - Identification of TS

(if order parameter is carefully considered)

We consider 2 ranges of order parameters.

The system traverses between these values of order parameters.

Landau's method

energy surfaces)

profile"

· The most <u>naive</u> way to calculate wing

the landau free energy method.

· Calculate free energy at each and every point Height of nisto of time using the following equation

here gives us the requat that E

 $f(\lambda_1,\lambda_2) = -kTen P(\lambda_1,\lambda_2)$

· We can just make a histogram of freedingy

· Using landau we calc the probabilities of where a system will be, given the value of the order parameter

Here, E: Freeenergy

· We use the frequencist'approach that says: probability = frequency

· If the system cannot sample the whole data in the given time, it will resort to sampling a very small region of the sample

·To avoid this -> whe non boltzmann sampling > umbrella sampling.

Here we add an additional bias: This additional bias most commonly is a narmonic potential whose centre will be away from the centre if there wasn't a bias.

Add Bias → Sample → weighted histogram

(ecusion to do) (remove bias) [WHAM]

Too much time r

The system in boltzmann sampling is rustricted to only sumpling this chunk

Another method: REPLICA EXCHANGE

ID simple harmonic oscillator

This reaction is done under constant temperature.

$$U(x) = \frac{1}{2} k(x-x)^2$$

How? → Modify Newton's equation:

