RDBE Setup and Operations

Chet Ruszczyk
IVS 9th TOW 2017

Agenda

- System overview
 - Hardware components
 - Firmware components
 - Software components
- Features
- Command set
- Basic operation
- Next Generation
- Demonstration (time permitting)

System Overview

- RDBE ROACH Digital Backend System
 - Originally a joint collaboration between NRAO and Haystack
 - Name is assigned to a specific base system
 - Specific hardware components
 - Was available from Digicom (ROACH reached EOL)
 - Variations are expected
 - Represented by hyphenating the name RDBE-X
 - X represents the hardware components of the RDBE
 - Presently there are RDBE-H, RDBE-S, RDBE-G
 - This overview covers the new RDBE-G

RDBE-X Block Diagram

- ROACH Board
 - Reconfigurable Open Architecture Computing Hardware
 - Developed by the CASPER group at Berkeley / NRAO / KAT
- Virtex 5 FPGA
- 440 PPC processor
- 2G RAM
- 2 ZDOK connectors
 - iADC
- RS232 interface
- 1G / 100M Ethernet
- 4 CX4 10G Ethernet ports
- 1 XPORT interface

• iADC

- Analog to Digital Converter (sampler board)
 - Developed by the CASPER group
- 2GHz bandwidth
- 1 Giga sample / sec
- 8 bits / sample
- 2 iADC cards supported per ROACH

- Synthesizer / timing board
 - Developed AEER
 - Inputs
 - 10 or 5 MHz
 - Jumper configurable
 - 1pps
 - Outputs
 - 1pps
 - four SMA's
 - 1024 MHz
 - four SMA's

- Attenuators
 - Analog level control (ALCs)
 - Off the shelf
 - Mini-circuits
 - 1 IFs in / 1IFs out
 - Two boards per system
 - 0-31.5 dB attenuator
 - 0.5dB steps
 - No 20dB solar attenuation

- GPIO Board
 - Mated to high speed differential connector on ROACH Board
- Developed to support interfaces to:
 - LCD front panel
 - Diode control (calibration)
 - Attenuator control communication
 - etc.

Miscellaneous

- Power supply
 - 90 ~ 132 VAC or 180 ~ 264 VAC auto sensing
- 1pps LED
 - Indicates 1pps internal to FPGA code (DOT Clock)
- 5MHz lock LED
- Power LED
- 4 SMA connectors front
 - Output
- 8 SMA connectors back
 - Inputs + Diode control out + pps

RDBE-G Front Panel

RDBE-G Back Panel

RDBE Firmware

- •4 Personality types (FPGA code)
 - Polyphase filter bank-geodesy (PFBG) Ver. 3.0
 - Input is two 512MHz IFs
 - Standard output is sixteen of 32 possible 32-MHz channels (2Gbps)
 - Mode of all thirty-two 32 MHz channels available (4Gbps)
 - Output is a 8224 byte VDIF data format (next slide)
 - Complex Data
 - Standard 32 byte header
 - eVLBI VTP protocol available

RDBE Firmware

- Original Polyphase filter bank-geodesy (PFBG)
 Ver. 1.4
 - Input is two 512MHz IFs
 - Output is sixteen of 32 possible 32-MHz channels
 - Output is a 5008 byte Mark5B data format
- Polyphase filter bank-astronomy (PFBA) Ver. 1.5
 - Input is four 512 MHz IFs
 - Output uses two of the four 10Gbps CX4 interfaces
 - 2-bit quantized
 - 4Gbps / interface
 - 8224 byte packets using the VDIF format.

RDBE Firmware

Digital down converter (DDC)

- Input is two 512MHz IFs
- Output is four tunable channels
- \bullet Bandwidths 128 / 64 / $\circ\!\circ\!\circ$ / 1 MHz (same for all 4 channels)
 - Data rate proportional to bandwidth
- Tunable in 15.625 kHz quanta (testing incomplete)
- Output is in 5008 byte Mark5B format 2 bits / sample
- 250-kHz common quantum with 10-kHz on legacy systems

VDIF Payload Options

VDIF Header (8 words)

1024 64 bit complex words

Standard VDIF Payload

64 bit PSN

VDIF Header (8 words)

1024 64 bit complex words

VTP Compliant Payload

RDBE Software

RDBE Software

- rdbe_dev.ko
 - Linux kernel device driver
 - Allows the application to read / write to the FPGA personality
- rdbe_server
 - Version 3.0 will be required for operation with FS
 - Accepts VSI-S commands
 - Verifies and takes actions on valid commands
 - Specified in the RDBE command set version 3.0
 - Not backward compatible with 1.4/1.5/DDC

Ver. 3.0 RDBE Command Set - (VSI-S)

dbe_1pps_mon	Set the 1pps monitoring broadcast state
dbe_atten	Set / get the attenuator setting for INPUT 0/1
dbe_bstate?	Quantizer state counts in percent for all channels
dbe_chsel	Set / get the input to output channel assignments
dbe_chsel_en	Set / get the data rate (2/4Gbps), chsel enabled/disabled, psn enabled / disabled
dbe_arp	Set / get the IP to MAC address resolution
dbe_data_connect	Set / get the destination IP the data is being sent
dbe_data_send	Transmit a data stream out of the DBE 10G interface
dbe_diode	Set ./ get diode control frequency and blank time in micro-seconds
dbe_dot	Set / get the Data Observable Time (DOT) clock information
dbe_dot_inc	Increment the DOT clock, default is 1 second
dbe_gps_offset?	Get the GPS offset in mico-seconds to 1pps DOT clock
dbe_hw_version?	Get the hardware version information from the DBE
dbe_ifconfig	Set / get DBE 10G network interface configuration
dbe_init	Resets FPGA sampler, clocks and enables PPS interrupt
dbe_mac	Set / get the 10 CX4 port MAC address
dbe_ntpdate	Set / get the NTP server's IP address to synchronize to
dbe_option	Set / get formatting options (spaces, long time format - fractional seconds)
dbe_pcal	Set / get phase cal frequency in hertz (default is 0 Hz)
dbe_personality	Set / get the RDBE FPGA bit code personality
dbe_pps_mon	Set / get the once per second multicast data IP address and port.
dbe_pps_offset?	Get the pps offset to the incoming MASER pps signal
dbe_quantize	Set / get present channel quantization data
dbe_raw?	Get 100 raw samples for an interface from the DBE
dbe_reboot	Set the number of seconds before the DBE reboots
dbe_status?	Get system status (query only)
dbe_sw_version?	Get the software version information from the DBE
dbe_tsys?	Get 16 Tsys on values followed by 16 off values normalized to 1000000

Basic Operations

- Topics addressed on the following slides
 - Boot Up
 - rdbe_server daemon communication
 - dbe_data_send operational modes
 - Monitoring capabilities
 - 1pps
 - tsys
 - pcal
 - raw capture mode
 - PPS / GPS offsets
 - Software utilities

Boot Up

U-Boot options

- Environment variables defining what the boot loader will execute
 - location of the kernel in flash (address)
 - location of the root file system
 - USB
 - NFS
 - SDRAM
 - bootp
 - Network configuration
 - Static
 - Dynamic
- Details are beyond the scope of this talk
 - · Detail documentation available if needed

rdbe_server

- Loading the FPGA personality
 - Located where the root file system is mounted
 - /home/roach/personalities
- Initialization

Field

System

- Setting the FPGA registers
- Setting the DOT time
 - system time
 - manually
- Quantization
 - Formats the filter bank channels at 2 bits / sample
- Monitoring capabilities
- Set for normal operations
 - Transmitting data out CX4 interface
 - Status / etc.

10 Channel Selection

- Capability to set the input output channel assignment for the VLBI Payload
 - Feature for PFBG personality only
 - Input is two 512MHz IFs
 - Output is 8 out of 16 per IF possible 32-MHz channels
 - Version 1.4/1.5 has any possible combination
 - Version 3.0 does not
 - The command
 - dbe_chsel = <input>:<channel(s)>;
 - input
 - 0 or 1 for IF0 or IF1
 - channel(s)
 - individual channels

Configuration

- Initialization of static information
 - e.g. 10G IP, MAC, ARP entry, etc.
 - Handled with command
 - run_conffile=/path/filename
 - /home/roach/personalities/conf/filename
 - See next page for example / explanation
 - New version of rdbe_server automates this process
- The channel ordering
 - The present geodetic personality
 - The default dbe_chsel? {0,1} returns
 - dbe_chsel ? 0: 0 : 1 : 3 : 5 : 7 : 9 : 11 : 13: 15 ;
 - dbe_chsel ? 0: 1 : 1 : 3 : 5 : 7 : 9 : 11 : 13: 15 ;

Static Configuration File

Command Executed	Comments
ifconfig= up : 9000 : 4 : 192.168.1.102 : 1	10G Network setup = State : payload size : TCP : Source IP : Network Interface Source IP Address
mac=00.00.11.22.33.42	MAC Address of the 10G, made up unique for each RDBE
chsel_en=2 : chsel_enable : psn_enable	# 2 Gbps data rate, with Channel select and PSN enabled
arp= 192.168.1.3 : 00.60.dd.44.9f.81	ARP entry for destination Mark6 IP address and MAC Address
data_connect=192.168.1.3 : 9002 : 0xBdC : 1	# Set the configuration for IP / UDP / VDIF header. destination IP address: UDP port: Station / RDBE Identifier: Thread ID
pps_mon=disable	Disable previous initialized multicast transmission
pps_mon=enable : 239.0.5.50 : 20055	Multicast enabled: Unique Multicast IP, unique Port. Set these to RDBE IP address
pcal=1.4e6	Set pcal for UDC factional portion
data_send=on	Start transmitting data over 10G interface
option=time_long	Use fractional time long format when replying to requests

Data Transmission

- In the past data were always available and the gating function was performed on the recording device
 - Record = on / off commands
 - Supported with dbe_data_send=on
- One can also gate at the source and destination for transmission over WANs:
 - To gate at the RDBE
 - Since the start and end time are known a priori
 - use the dbe_data_send to gate the output on the 10G

Design Philosophy

- •start time <= present DOT time < end time</pre>
 - Personality will transmit valid packets
 - Times are specified as integer seconds
- •Start and end times are programmed into the FPGA using the command:
 - dbe_data_send
 - command format
 - dbe_data_send = < state > : [< ts >] : [<te>] : [<delta>];
 - state either "on" or "off"
 - start and end times (ts, te) are of the format YYYYDDDHHMMSS
 - delta specified in integer seconds.

dbe_data_send options

- Specify start / end time
 - YYYYDDDHHMMSS
- Or specify start and delta time
 - t2 is generated as t1 + delta
 - delta is integer seconds

- Ability to abort an active transmission
 - send the off state with
 - a specified time
 - no time meaning next integer second

Monitoring Capabilities

1pps monitoring

- Multcast monitoring data broadcast 1 per second (1pps)
- dbe_1pps_mon = <enable> : <multicast IP address> : <port>;
- Use rdbe_mon.py on a system attached to same network to receive multicast data
- Tsys monitoring
 - System temperature measurement
 - On power / off power of the receive chain
 - tsys data is summed every second
- Raw Capture Mode
 - Provides ability to see the incoming signal from the iADC before it is processed by the FPGA personality
 - 32000 samples are captured

Software Utilities

•rbde_client -h <machine>

- Command line interface to RDBE
- -h <machine> is the target RDBE systems IP address (defaults to localhost).
- rdbe_server must be running on <machine>
- rdbe30_mon.py -h <multicast addr> -p <port> -H <RDBE addr> -P <rdbe_server port>
 - Graphical command and monitoring application
 - Sends commands / displays multicast output graphically
 - Very CPU intensive, to be used only for snap shot of RDBE

RDBE Next Generation Development

• R2DBE-G:

- ROACH 2 board
 - Vertex 6
 - 4 SFP+ Connectors
 - Fiber or Copper
 - Leveraged ADC FPGA code from Event Horizon Telescope
 - Code must be ported, extended for Geodetic filter bank features
 - Existing server code must be ported to new platform
- 2 ADC
 - 2G Samples
- New GPIO interface board

RDBE Next Generation Development (cont)

- Same form factor as RDBE-G
- Order from Digi-com
- Undergoing zero base-line testing
- Expected by Sept. 2017

Demonstration time permitting

