1Georgia Institute of Technology College of Computing CS 1371 Computing for Engineers Final Exam Version D - Fall Semester 2006

0	0	0	0	0	0	0	0	0	↑ Print v	our V	Veh	СТи	seri	าลm	e in the	spaces	
1	1	1	1	1	1	1	1	1	↑ Print your WebCT username in the spaces provided, and shade the boxes of the								
2	2	2	2	2	2	2	2	_									
3	<u>3</u>	3	3	3	3	3	3	3	corresponding numbers and/or letters.								
5	5	<u>4</u> 5	5	<u>4</u> 5	<u>4</u> 5	4 5	<u>4</u> 5	-									
6	6	6	6	6	6	6	6	5 6	I hereby	hereby signify that this examination paper							
7	7	7	7	7	7	7	7		contains	mv	own	wor	k ex	clusi	velv. an	d l have	
8	8	8	8	8	8	8	8		neither g								
9	9	9	9	9	9	9	9	9	during th								
Α	Α	Α	Α	Α	Α	Α	Α	Α	_		_						
В	В	В	В	В	В	В	В		compliar								
С	С	С	С	С	С	С	С	C	Academ	ic Ho	onor	Coa	e of	Geo	orgia Te	ch.	
D E	D E	D E	D E	D E	D E	D E	D E	D E									
F	F	F	F	F	F	F	F	F	Name (p	rint)	•						
Ġ	G	Ġ	G	G	G	G	Ġ	G	, tao (p								
Н	Н	Н	Н	Н	Н	Н	Н	- 11	C: 4								
		Ι	_	_	Ι	I	Ι	_	Signatur	e:							
J	J	J	J	J	J	J	J	J									
K	K	K	K	K	K	K	K		TA / Sec	TA / Section:							
_ <u>L</u> _	L	L	L	L	L	L	L	L_									
M	M N	M N	M N	M N	M N	M N	M	M		ТР	oss.	TE	arne	М	Lost		
N O	O	0	0	0	0	O	N O	N O	Prob.	1	oss. Pts	-	Pts	, u	Pts	Grader	
P	P	P	P	P	P	P	P	P	(00)(0F)		เอ	_	r to		r to		
Q	Q	Q	Q	Q	Q	Q	Q	Q	(cover)	-	-	_					
R	R	R	R	R	R	R	R	R	1	-	10	_					
S	S	S	S	S	S	S	S	S	2		20						
T	T	T	T	T	T	T	T	T	3		20						
V	V	V	V	V	V	V	V	V	4		20						
W	W	W	W	W	W	W	W	W	5		20						
X	X	X	X	X	X	X	X	X	6		20						
Υ	Υ	Y	Υ	Υ	Y	Y	Υ	Υ	7		20	+					
Z	Z	Z	Z	Z	Z	Z	Z	Z	8		20						
									TOTAL		150						
									Please No will cost you Pleas phone	ote: I ou 5% e turi s, be	=ailur 6 of yenn 9 off epers	our g (or s s/ pag t you	rade. ilenc ers, _l	e) an perso e in y	d put aw onal radio our poss	heet correcti ay any cell os or music ession	

CS1371 - Computing for Engineers Final Exam Version D 2006

December 15th,

Academic misconduct (including - but not limited to - examples on the list below) could result in a zero score on this examination, an "F" final grade in the course, and/or other disciplinary action:

- Failure to cooperate with or follow directions given by a proctor.
- Failure to stop writing when the allotted time is up (as reported by a proctor).
- Communication with anyone other than a proctor for ANY reason in ANY language in ANY manner.
- Sharing of ANYTHING (e.g. pencils, erasers, paper).
- Writing on paper that is not given to you by a proctor.
- Using cell phones, beepers, personal radios or music players, etc. during the exam.
- Using calculators (unless explicitly permitted) or hand-held computers during the exam.
- Using books or other reference material during the exam.
- Disruption of the exam setting.

Reference Section:

```
diag (m) - returns the diagonal elements of the matrix m
factorial(n) - returns n!
find (m) - returns the indices of the true elements of m
image(x) - display the image from the matrix x.
imread (filename) - returns a matrix representation of an image
newy = interp1(x, y, newx) - Interpolates to find newy, the values of the underlying
function Y at the points in newx.
iscell(a) - checks if a is of class cell (a cell array)
ischar (a) - checks if a is of class char (a string)
isempty (here) - checks if here is null (usually represented by [], the empty vector
(x/y/z) label (str) – labels the plot axes with the given string
length(a) - largest dimension of a
length(a) - largest dimension of a
magic (n) - builds a n * n magic square
max (a) - value and index of the max value in a
mesh(x, y, z) - plot the surface defined by the x, y and z arrays with colored lines and
white faces
[xx, yy] = meshgrid(x, y) - compute the plaid from the x and y vectors
min (a) - value and index of the min value in a
mod (a, b) - the remainder when a is divided by b
mod (a, b) - the remainder when a is divided by b
ones (rows, cols) - generate a matrix filled with 1
p = polyfit(x, y, n) - Finds the coefficients of a polynomial P(X) of degree N that fits the
y = polyval(p, x) - Evaluates the polynomial p, at all points in x
prod (v) - compute the product of all the elements in a vector v
sin(th) - sin of the angle in radians
size (a) - all the dimensions of a
sort (v) - arranges the vector v in ascending numerical order
newy = spline(x, y, newx) - Performs cubic spline interpolation to find newy, the values of
the underlying function Y at the points in newx.
sum (v) - total all the elements in the vector v
surf (x, y, z) - plot the surface defined by the x, y and z arrays with colored faces and
title(str) - titles the plot with the given string
[x, fs] = wavread(file) - gives the waveform and sampling frequency for a .wav file
[x, y, z] = xlsread(filename) - Returns the numeric, text and raw data respectively
from an .xls file
xlswrite (filename, array) - Writes the array to the .xls file
```

CS1371 - Computing for Engineers Final Exam Version D 2006

December 15th,

zeros (rows, cols) — generate a matrix filled with 0

Problem 1 - Computing [10 Points]

Match the terms described below to the statements further below:

A. Ethernet connection	B. Processor	C. RAM memory	D. Disk storage		
E. Printer	F. Monitor	G. Keyboard	H. Sound System		
1"I'm the recomparisons."	eal brain of the computer—	the part that does compu	itation and		
2 "I'm the puthat go to the sp	part of the computer that take peaker."	xes in digital data and tur	rns that into voltages		
	able into me and you can us nters, and other resources."	e me for reaching the In	ternet, other		
4 "I'm whe everything."	re the computer stores short	t-term data—when the p	ower stops, I forget		
5 "I'm an ii	nput device—users can ente	er text into the computer	through me."		
6 "I'm youi	main output device—it's v	where graphical informat	tion is displayed."		
7 "I'm a sec paper."	condary output device—I ta	ke digital data and conv	ert it to marks on		
	re the computer stores longer the power is turned off."		e data gets stored that's		

Problem 2 – Sorting [20 Points]

ν	Vh	at d	oes th	ne Big-	O of an	ıy algor	rithm represent'?
_							
_							
V	Vr	ite c	out the	e Big-C) (algor	rithm ef	fficiency) of the following sorting algorithm
a		-		Sort:			
b. Merge Sort:c. Quick Sort:d. Bubble Sort:							
				Sort:			
S	or	t the	e follo	owing v	vector u	ısing M	Ierge Sort:
1			18	20	5	8	2]

Problem 3 – Graphs [20 Points]

1. Point out one node, one edge, and one cycle in the graph below.

2. Use Dijkstra's algorithm to find the quickest path between A and G in the tree above.

Priority Queue	Dequeued Paths

Problem 4 – Plotting [20 Points]

1. Circle all of the following functions that can be used to plot a 3-dimensional surface in MATLAB.

```
A. plot3(xx,yy,zz)
B. meshgrid(xx,yy,zz)
C. surf(xx,yy,zz)
D. mesh(xx,yy,zz)
```

2. You want to plot a surface of rotation for $y = -x^3 + 5x^2 - 21x + 43$ around the x and z axes. Given the following commands:

```
v = linspace(1,10,50);
th = linspace(0,2*pi,36);
[vv tth] = meshgrid(v,th);
```

About which axis does the following code make a surface of rotation?

```
xx = vv;
rr = -xx.^3 + 5*xx.^2 - 21*xx + 43;
yy = rr.*cos(tth);
zz = rr.*sin(tth);
surf(xx,yy,zz);
```

3. Write the commands that will make a rotational surface of this function around the other axis.

4. Write the proper commands to make the plot above *smooth* and add appropriate titles and labels.

Problem 5 – Images/Sounds[20 Points]

1. Consider the following "image" (assume it is a perfect square), saved under the file 'mysquare.jpg':

1	2
3	4

And the following code:

```
b = imread('mysquare.jpg');
[n,m,1] = size(b);
a = b(1:end, 1:n/2, :);
c = b(1:end, (n/2 + 1):end, :);
b = [c; a];
image(b);
```

Which of these will the picture shown on the last line most resemble?

A.

B.

C.

D.

2 3

4

2. Given the file *soundtest.wav*, the following commands are executed:

```
[x fs] = wavread('soundtest.wav');
L = length(x);
```

The time duration in seconds of *soundtest.wav* is:

```
A. fs*L/(L+1)
B. fs/L
C. L/fs
D. L*fs
E. fs*L/(fs+1)
```

3. Given an image file called 'american_flag.jpg' in which the colors are only red, white, and blue:

What happens in the resulting image?

- A. The red sections become white, the blue sections become red, and the white sections become blue.
- B. The white sections become red, the red sections become blue, and the blue sections become white.
- C. The blue sections become red, the red sections become blue, and the white sections become black.
- D. The blue sections become white, the red sections become black, and the white sections become red.
- 4. The fft() function is used to analyze and convert the signal from:
 - A. Frequency domain to time domain
 - B. Time domain to frequency domain
 - C. Amplitude domain to power domain
 - D. Power domain to amplitude domain

Problem 6 – Vector Manipulations/Matrices [20 Points]

1. Consider the following code:

```
earth = linspace(10,20,10)
earth_age = length(earth)
water = floor(earth)
fire = abs(water.*length(earth))
air = sum(find(earth==19))
heart = islogical(isnumeric(air, 'double'))
```

What are the values of the following variables: (If you think that the expression will give an error, write 'error' as the answer)

earth_age:	
water:	
fire:	
air:	
heart:	

2. Given:

$$3x + 4y + 3z = 10$$

 $2x + 5y + z = 12$
 $x + y + z = 5$

Write the code to solve the above system of equations.

Problem 7 – Miscellaneous [20 Points]

- 1. List the three conditions required for a function be recursive:
- 1.
- 2.
- 3.
- 2. Which one(s) evaluate to a logical(boolean) 'true'?

I.
$$(5>4) & ((8+4)<11)$$

II. $\sim (((6+4*3)>20))$
III. $\sim ((4\sim=4)|(\sim(6<(4*2/8+4))))$

- A. I only
- B. II only
- C. III only
- D. I and III
- E. II and III
- 3. If the following command is typed in the Matlab command window, what is returned?

- A. error
- B. 2
- C. 4
- D. 0
- 4. You have x-data and y-data points which best fit a 4th order polynomial. You now want to evaluate the same polynomial at different x-data points. Which function(s) will you need to obtain the above?

Problem 8 – Cell Arrays/Recursion [20 Points]

Given the following two functions:

```
function y = cellfunc_1(x, d)

if d == 0
    y = x;
else
    y = cellfunc_1( {x}, d-1 );
end

-------

function y = cellfunc_2( x )

if ~iscell(x)
    y = x;
else
    y = cellfunc_2( x{1} );
end
```

What are the results of the following function calls?

```
A = [1,5,7];
B = cellfunc_1(A,0);
C = cellfunc_1(B,3);
D = cellfunc_2(C);
E = cellfunc_2(D);
```

CS1371 - Computing for Engineers Final Exam Version D 2006

December 15th,

This page intentionally left blank for any extra work.