Variáveis aleatórias contínuas e distribuições de probabilidade Função de distribuição acumulada e Valores esperados A distribuição Normal A distribuição Gama e distribuições relacionadas Outras distribuições contínuas

Introdução às Probabilidades

tradução do Jay Davore

índice

- Variáveis aleatórias contínuas e distribuições de probabilidade
 - Variáveis aleatórias contínuas
 - Distribuição Uniforme
- 2 Função de distribuição acumulada e Valores esperados
 - Função de distribuição acumulada
 - percentís
 - O valor esperado
 - O valor esperado de uma função
- A distribuição Normal
 - Definição e propriedades
 - A distribuição normal padrão
 - Distribuições normais Não padrões
 - Aproximação Normal para uma Binomial
- A distribuição Gama e distribuições relacionadas
 - A função Gama

Definição de variáveis aleatórias contínuas

• Uma v.a. X é contínua se o seu conjunto de valores possíveis é um intervalo de números (Se A < B, então qualquer número x entre A e B é um valor possível)

Distribuições de probabilidade

• Seja X uma v.a. continua. Então a distribuição de probabilidade ou função densidade de probabilidade (f.d.p.) de X é uma função f(x) tal que para dois números a e b quaisquer,

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

O grafo de f é a curva de densidade.

função densidade de probabilidade (fdp)

Para f(x) ser uma f.d.p:

- 1. f(x) > 0 para todos os valores de x
- 2. a área da região entre o grafo de f e o eixo x é igual a 1.

Figura: Representação de uma f.d.p.

f.d.p

Figura: função densidade de probabilidade de uma variável contínua

v.a.Uniforme

• uma v.a. contínua X é dita ter uma distribuição uniforme no intervalo [A,B] se a f.d.p de X é:

$$f(x; A, B) = \begin{cases} \frac{1}{B-A} & A \le x \le B\\ 0 & \text{caso contrário} \end{cases}$$

Probabilidade para uma v.a.contínua

Se X é uma v.a. contínua, então para qualquer número c,

- P(X = c) = 0.
- Para dois números a e b com a < b

$$P(a \le X \le B) = P(a < X \le b)$$
$$= P(a \le X < b)$$
$$= P(a < X < b)$$

F D A

A função de distribuição acumulada (F.D.A) para uma v.a. X é definida para cada número x por:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) \, dy$$

Para cada x, F(x) é a área abaixo da curva de densidade à esquerda de x

- O valor esperado
- O valor esperado de uma função

Utilizando F(x) para calcular probabilidades

Seja X uma v.a. contínua com f.d.p f(x) e F.D.A. F(x). Então, para qualquer número a

$$P(X > a) = 1 - F(a)$$

e para dois números qualquer a e b com a < b,

$$P(a \le X \le b) = F(b) - F(a)$$

- O valor esperado
- O valor esperado de uma função

Obtendo f(x) a partir de F(x)

Se X é uma v.a. contínua com f.d.p. f(x) e F.D.A. F(x), então em cada número x para a qual a derivada $F^{\iota}(x)$ existe,

$$F'(x) = f(x)$$

Função de distribuição acumulada percentís
O valor esperado
O valor esperado de uma função

cálculo dos percentís para v.a. contínuas

Seja p um número entre 0 e 1. O (100p)-ésimo percentíl da distribuição de uma v.a. contínua X denotada por $\eta(p)$, é definida por:

$$p = F(\eta(p)) = \int_{-\infty}^{\eta(p)} f(y) dy$$

Função de distribuição acumulada percentís
O valor esperado
O valor esperado de uma função

Median:

A mediana de uma distribuição contínua, denotada por $\tilde{\mu}$, é o 50-ésimo percentil. Assim, $\tilde{\mu}$ satisfaz:

$$0,5 = F(\tilde{\mu})$$

Isto é, metade da área abaixo da curva de densidade está ao lado esquerdo de $\tilde{\mu}$

O valor esperado

O valor esperado de uma função

O valor esperado

A média ou valor esperado de uma v.a. contínua X com $f.d.p.\ f(x)$ é :

$$\mu_X = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

- O valor esperado
- O valor esperado de uma função

O estatístico inconsciente

Se X é uma v.a. contínua com f.d.p. f(x) e h(x) é qualquer função de X, então:

$$E[h(x)] = \mu_{h(X)} = \int_{-\infty}^{\infty} h(x)f(x)dx$$

- O valor esperado
- O valor esperado de uma função

Variância e desvio padrão de uma v.a. contínua

A variância de uma v.a. contínua X com f.d.p. f(x) e média μ é:

$$\sigma_X^2 = V(x) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$
$$= E\left[(X - \mu)^2 \right]$$

O desvio padrão é $\sigma_X = \sqrt{V(X)}$

O valor esperado
O valor esperado de uma função

forma curta de cálculo da variância

$$V(X) = E(X^2) - [E(X)]^2$$

A f.d.p. norma

Uma v.a. contínua X é dita ter uma distribuição normal com parâmetros μ e σ , onde

•
$$-\infty < \mu < \infty$$
 e

$$\sigma > 0$$

se a f.d.p. de X é:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp^{(x-\mu)^2/(2\sigma^2)}$$

para
$$-\infty < x < \infty$$

f.d.p. de uma normal padrão

A distribuição normal com parâmetros $\mu=0$ e $\sigma=1$ é chamado de distribuição normal padrão. Esta v.a. é denotada por Z.

A f.d.p. é:

$$f(z; 0, 1) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$
 $-\infty < x < \infty$

A F.D.A é:

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} f(y; 0, 1) dy$$

Area da F D A de uma normal

Figura: area e uma F.D.A. de uma normal padrão

Exemplos

Seja Z uma v.a. normal padrão, encontre da tabela

- $\begin{array}{ll} \bullet \ \ 1. \ \ P(Z \leq 0, 85) \\ \text{Area à esquerda de } 0, 85 = 0, 8023 \end{array}$
- 2. P(Z > 1, 32) $1 - P(Z \le 1, 32) = 0,0934$
- 3. $P(-2, 1 \le Z \le 1, 78)$ Encontramos a area à esquerda de 1, 78 e subtraemos a area à esquerda de -2, 1

$$P(-2, 1 \le \le 1, 78) = P(Z \le 1, 78) - P(Z \le -2, 1)$$
$$= 0,9625 - 0,0179$$
$$= 0,9446$$

Tabela normal padrão (exemplo)

Figura: Como observar os valores na tabela (depende do tipo de tabela)

Definição e propriedades A distribuição normal padrão Distribuições normais Não padrões Aproximação Normal para uma Binomial

Tabela normal padrão (exemplo)

Distribución normal estándar Z~N(0,1)

Tabla de la función de distribución: $P(Z \le z) = p$

En la tabla figuran los valores de probabilidad acumulada p en función de z.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319

Notação Z_{α} (Exemplo

Se quisermos calcular $P(Z \geq z) = \alpha$, Z_{α} denotará o valor no eixo para o qual a área abaixo da curva z fica à direita de z_{α} .

Figura: Como observar o valor Z_{α}

Exemplo

Seja Z uma v.a. normal padrão. Encontre z se:

- a. P(Z < z) = 0,9278Observando na tabela na entrada = 0,9278 encontraremos que z = 1,46
- b. P(-z < Z < z) = 0.8132

$$P(-z < Z < z) = 2 \times P(0 < Z < z)$$

= $2 \times \left[P(Z < z) - \frac{1}{2} \right]$
= $2 \times P(Z < z) - 1 = 0,8132$
 $P(Z < z) = 0,9066$ portanto
 $z = 1.32$

Padronização de v.a.normais

Se X tem uma distribuição normal com média μ e desvio padrão σ , então:

$$Z = \frac{X - \mu}{\sigma}$$

tem distribuição normal padrão.

Notação : $Z \sim N(0,1)$

Curva Normal, regra empírica

Porcentagens aproximados de area para desvios padrões dados (regra empírica)

Figura: Probabilidades na curva normal- regra empírica

Exemplo

Seja X uma v.a. normal com média $\mu=80$ e desvio padrão $\sigma=20$, encontre $P(X\leq 65)$

$$P(X \le 65) = P(Z \le \frac{65 - 80}{20}$$
$$= P(Z \le -0.75)$$
$$= 0.2266$$

Exemplo

Em uma escola elemental tem-se estudado o tempo para desaparecer uma erupção cutânea. Se encontrou que o tempo entre o início e o fim da erupção é uma v.a. normal com média $\mu=6$ dias e desvio padrão $\sigma=1,5$ dias. Encontre a probabilidade que para um estudante selecionado ao acaso, a erupção demorará em desaparecer entre 3,75 e 9 dias. Seja X a v.a. tempo de duração da erupção, então:

$$P(3,75 \le X \le 9) = P(\frac{3,75-6}{1,5} \le Z \le \frac{9-6}{1,5}$$

$$= P(-1,5 \le Z \le 2)$$

$$= 0,9772 - 0,0668$$

$$= 0,9104$$

Aproximação para uma binomial

Seja X uma v.a binomial baseada em n ensaios, cada um com probabilidade de sucesso p. Se o histograma da binomial não é muito assimétrica, X pode ser aproximada por uma distribuição normal com parâmetros:

$$\mu = np, \qquad e$$

$$\sigma = \sqrt{npq}$$

$$P(X \le x) \approx \Phi\left(\frac{x + 0, 5 - np}{\sqrt{npq}}\right)$$

Exemplo

Numa escola a taxa de aprovação da disciplina de estatística é de 72%. Se 500 alunos estão matriculados no atual semestre, determine a probabilidade que no máximo 375 aprovarão a disciplina. Considerando a aproximação da normal, teremos:

$$\mu = np = 500 \times (0,72) = 360$$

$$\sigma = \sqrt{npq} = \sqrt{500 \times 0,72 \times 0,28} \approx 10$$

$$P(X \le 375) \approx \Phi\left(\frac{375,5 - 360}{10}\right) = \Phi(1,55) = 0,9394$$

A função Gama A distribuição Gama A distribuição exponencial A distribuição Qui-quadrado

A função Gamma, definição

Para $\alpha>0$ a função gamma $\Gamma(\alpha)$ é definida por:

Outras distribuições contínuas

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x}$$

definição da distribuição Gamma

Uma v.a.contínua X tem uma distribuição Gamma, se sua f.d.p. é:

$$f(x|\alpha,\beta) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-x\beta}, & x \ge 0\\ 0 & \text{caso contrário} \end{cases}$$

onde os parâmetros satisfazem: $\alpha>0$, $\beta>0$.

A distribuição Gamma padrão tem $\beta=1$

Média e Variância de uma Gamma

A média e variância de uma v.a. X com distribuição Gamma $f(x;\alpha,\beta)$ são:

$$E(X) = \mu = \frac{\alpha}{\beta}$$

$$V(X) = \sigma^2 = \frac{\alpha}{\beta^2}$$

Se na definição da distribuição for considerando o expoente $e^{-x/\beta}$, e $\frac{1}{\beta^{\alpha}\Gamma(\alpha)}$, então o valor esperado e a variância serão:

$$E(X) = \mu = \alpha\beta$$
$$V(X) = \sigma^2 = \alpha\beta^2$$

Probabilidades de uma distribuição Gamma

Outras distribuições contínuas

Seja X uma v.a. com distribuição Gamma com parâmetros α e β . Então, para qualquer x>0, a F.D.A. de X é dado por:

$$P(X \le x) = F(x; \alpha, \beta) = F(\frac{x}{\beta}; \alpha)$$

onde

$$F(x;\alpha) = \int_0^x \frac{y^{\alpha - 1} e^{-y}}{\Gamma(\alpha)} dy$$

Outras distribuições contínuas

A função Gama A distribuição Gama A distribuição exponencial A distribuição Qui-quadrado

Definição da exponencia

Uma v.a. contínua X tem uma distribuição exponencial com parâmetro λ , se sua f.d.p. é:

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{caso contrário} \end{cases}$$

média e variância de uma exponencia

Outras distribuições contínuas

A média e variância de uma v.a. X com distribuição exponencial é:

$$\mu = \alpha\beta = \frac{1}{\lambda}$$
$$\sigma^2 = \alpha\beta^2 = \frac{1}{\lambda^2}$$

Probabilidades de uma função exponencia

Seja X uma v.a. com distribuição exponencial. Então a F.D.A. de X é dada por:

$$F(x;\lambda) = \begin{cases} 0, & x < 0\\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$$

Aplicações de uma distribuição exponencia

Suponha que o número de eventos que ocorrem em qualquer intervalo de tempo de tamanho t têm uma distribuição de Poisson com parâmetro αt e que o número de ocorrências em intervalos não superpostos são independentes um dos outros. Então, a distribuição do tempo transcorrido entre ocorrências de dois eventos consecutivos é exponencial com parâmetro $\lambda=\alpha$.

Outras distribuições contínuas

A função Gama A distribuição Gama A distribuição exponencial A distribuição Qui-quadrado

Definição

Seja ν um inteiro possitivo. Então a v.a. X é dita ter uma distribuição Qui-quadrado com parâmetro ν se a f.d.p. de X é uma f.d.p. Gamma com parâmetros $\alpha=\frac{\nu}{2}$ e $\beta=2$. A f.d.p. de X é:

$$f(x:\nu) = \begin{cases} \frac{1}{2^{\nu/2}\Gamma(\nu/2)} x^{(\nu/2)-1} e^{-x/2}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

A distribuição Qui-quadrado

O parâmetro ν é chamado de número de graus de liberdade (g.l) de X. O símbolo χ^2 é usado em lugar de Qui-quadrado

Definição

Uma v.a. contínua X tem distribuição de Weibull se sua f.d.p. $\acute{\mathrm{e}}$:

$$f(x; \alpha, \beta) = \begin{cases} \frac{\alpha}{\beta^{\alpha}} x^{\alpha - 1} e^{-(x/\beta)^{\alpha}} &, x \ge 0\\ 0 &, x < 0 \end{cases}$$

onde os parâmetros satisfazem: $\alpha>0$ e $\beta>0$

Média e variância

A média e a variância de uma v.a. X com distribuição Weibull são:

$$\mu = \beta \Gamma \left(1 + \frac{1}{\alpha} \right)$$

$$\sigma^2 = \beta^2 \left\{ \Gamma \left(1 + \frac{2}{\alpha} \right) - \left[\Gamma \left(1 + \frac{1}{\alpha} \right) \right]^2 \right\}$$

F.D.A de uma Weibull

A F.D.A de uma v.a. X com distribuição Weibull com parâmetros α e β é:

$$F(x; \alpha, \beta) = \begin{cases} 1 - e^{-(x/\beta)^{\alpha}} &, x \ge 0\\ 0 &, x < 0 \end{cases}$$

Definição

Uma v.a. não negativa X tem uma distribuição lognormal se a v.a.

Y = ln(X) tem distribuição normal.

A f.d.p. tem parâmetros μ e σ e é:

$$f(x; \mu, \sigma) = \begin{cases} \frac{1}{\sqrt{2\pi}\alpha x} e^{-[\ln(x) - \mu]^2/(2\sigma^2)} &, x \ge 0\\ 0 &, x < 0 \end{cases}$$

Média e Variância de uma lognormal

A média e variância de uma v.a. X com distribuição lognormal são:

$$E(X) = e^{\mu + \sigma^2/2}$$

$$V(X) = e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1 \right)$$

F.D.A de uma lognorma

A F.D.A. de uma lognormal é dada por:

$$\begin{split} F(x;\mu,\alpha) &= P(X \leq x) = P[\ln(X) \leq \ln(x)] \\ &= P\left(Z \leq \frac{\ln(x) - \mu}{\sigma}\right) \\ &= \Phi\left(\frac{\ln(x) - \mu}{\sigma}\right) \end{split}$$

Definição

Uma v.a. X é dita ter uma distribuição Beta com parâmetro $\alpha>0$ e $\beta>0$ se sua f.d.p de X é

$$f(x;\alpha,\beta) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)*\Gamma(\beta)} \left(x\right)^{\alpha-1} \left(1-x\right)^{\beta-1} &, 0 < x < 1 \\ 0 &, \text{caso contrário} \end{cases}$$

Média e Variância

A média e variância de uma v.a. X com distribuição Beta, são:

$$\mu = \frac{\alpha}{\alpha + \beta}$$

$$\sigma^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

Percentil amostra

- ullet Ordene as n observações amostrais de menor a maior.
- A i-ésima menor observação na lista é tomada como o [100(i-0,5)/n]-ésimo percentil amostral

Grafo de probabilidade (Probability plot)

$$[100(i-0,5)/n] - \text{\'esimo percentil}, \qquad i-\text{\'esima}$$
da distribuição observação amostral

Se os percentis amostrais são proximos aos percentis correspondentes de distribuição populacional, o primeiro número pode ser muito proximo do segundo.

Grafo de probabilidade da normal(Normal Probability plot

Um plot de pares:

$$[100(i-0,5)/n]$$
 – z percentil, $i-$ ésima menor observação

Em um sistema bi-dimensional de coordenadas cartesianas, é chamado de plot de probabilidades da normal. Se os dados foram extraídos de uma normal, os pontos deverão ficar proximos a uma linha com inclinação σ e intercepto μ .

Além da norma

Considere uma família de distribuições de probabilidade envolvendo dois parâmetros θ_1 e θ_2 . Seja $F(x;\theta_1,\theta_2)$ a F.D.A correspondente. Os parâmetros θ_1 e θ_2 são ditos parâmetros de localização e escala se: $F(x;\theta_1,\theta_2)$ é uma função de $\frac{x-\theta_1}{\theta_2}$