1 Differenciation

1. (a) Verify whether the function f defined by

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$$

is continuous at x = 0 or not.

- (b) Check for differentiability of the function f defined by f(x) = |x-5|, at the point x = 5.
- 2. (a) Find $\frac{dy}{dx}$, if $(\cos x)^y = (\cos y)^x$.
 - (b) If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$.
- 3. If $x = a \sin^3 \theta$, $y = b \cos^3 \theta$, then find $\frac{d^2 y}{dx^2}$ at $\theta = \frac{\pi}{4}$.
- 4. (a) Find the particular solution of the differential equation ${dy\over dx}-2xy=3x^2e^{x^2};\ y(0)=5.$
 - (b) Solve the following differential equation : $x^2 dy + y(x+y)dx = 0$