Módulo 7: Algoritmos de optimización con Restricciones

Departamento MACC Matemáticas Aplicadas y Ciencias de la Computación Universidad del Rosario

Segundo Semestre de 2021

1/17

Agenda

- Métodos de penalidad y barrera
 - Método de penalidad
 - Método de barrera
 - Convergencia de los métodos de penalidad y barrera

min
$$f(x)$$

s.a. $g_j(x) \le 0, \ \forall j \in J$

Con $f, g, h \in C^1(\Omega)$. Consideraremos Ω al conjunto de puntos factibles.

$$\Omega = \{x \in \mathbb{R}^n : g_j(x) \le 0 \ \forall j \in J\}$$

Dos tipos de funciones de penalización:

- Función de penalidad exterior
- Función de penalidad interior

El problema NL se reescribe como un problema no restringido:

$$\min f(x) + \sum_{j \in J} \mu_j g_j(x)$$

s.a. $x \in \Omega$

Se introduce la función de penalidad

$$\min f(x) + \rho_k P(x), \quad x \in S$$

Donde:

- $S = \{g_j(x) \le 0 \ \forall j \in J\}$
- ρ_k es una sucesión

Minimizar f sobre R^n , con una penalización a los puntos que no están en $S. P : \mathbb{R}^n \to R$

- P es continua
- $P(x) \geq 0 \ \forall x \in \mathbb{R}^n$
- $P(x) \rightarrow 0$, cuando x se acerca al limite de S (Penalidad)
- $P(x) \to \infty$, cuando x se acerca al limite de S (Barrera)

s.a.
$$x \ge 1$$

- $q(\rho_k, x) = \{x + \rho_k \max\{0, 1 x\}\}$
- No hay penalización si $x \in \Omega$

min
$$(x-7)^2$$
 s.a. $x \ge 10$

•
$$q(\rho_k, x) = \{(x-7)^2 + \rho_k \max\{0, 10-x\}^2\}$$

Método de penalidad

El problema NL se reescribe como un problema no restringido:

min
$$f(x) + \sum_{j \in J} \rho_{k,j} \max \{0, g_j(x)\}^p\}$$

Donde:

- A medida que ρ_k crece, se genera una secuencia de valores mínimos que recae en la región no factible
- $q(\rho_k, x_k) \leq q(\rho_{k+1}, x_{k+1})$
- $P(x_k) \ge P(x_{k+1})$
- $f(x_k) \leq f(x_{k+1})$
- $\rho_k \to \infty$ el limite de la secuencia es la solución al problema

Método de penalidad

Funciones de penalización:

Si $\Omega = \{x : h_j(x) = 0; j \in J\}$ pueden considerarse las funciones:

- $P(x) = \sum_{j \in J} h_j^2(x)$
- $P(x) = \sum_{j \in J} |h_j(x)|$

Si $\Omega = \{x : g_i(x) \le 0; i \in I\}$ pueden considerarse las funciones:

• $P(x) = \sum_{i \in I} (\max\{0, g_j(x)\})^2$

Algoritmo - método de penalidad

Dado ρ_1

Paso 1: Encontrar x_k^*

min
$$f(x_k^*) + \rho_k \sum_{j \in J} \max \{0, g_j(x_k^*)\}^p\}$$

Paso 2:

if x_k^* satisface las restricciones then Stop.

else

$$\rho_{k+1} = \alpha \rho_k, \text{ con } \alpha > 1$$

Repetir

end if

k=k+1

Método de penalidad

Ejemplo

min
$$x_1^2 + 2x_2^2$$

s.a. $x_1 + x_2 - 1 \ge 0$

min
$$x_1 + x_2$$

s.a. $x_1^2 - x_2 \ge 2$

Método de barrera

Los métodos de barrera se aplican exclusivamente a problemas con restricciones de desigualdad.

min
$$f(x)$$

s.a. $g_i(x) \le 0, \ \forall i \in I$

El problema NL se reescribe como un problema no restringido:

$$\min f(x) + \sum_{j \in J} C_j B_j$$

Donde:

• Interior del conjunto factible $int(\Omega) = \{x \in \mathbb{R}^n : g_i(x)\} \neq \emptyset$

Método de barrera

Se reemplazo por una función de la forma $f(x) + \mu B(x)$, donde B(x) definida para $x \in int(\Omega)$,

- B es continua
- $B(x) \ge 0 \ \forall x \in int(\Omega)$
- Si $\{x_k\} \subset \Omega$, $g_j(x) < 0$, para algún $j \in \{1,...,p\}$ $\lim_{k \to \infty} g_j(x_k) = 0$ entonce $\lim_{k \to \infty} B(x_k) = \infty$
- A medida que C_k decrece, se genera una secuencia de valores mínimos que recae en la región factible
- $C_k \rightarrow 0$ el limite de la secuencia es la solución al problema

Algunas funciones de barrera:

- $B(x) = -\sum_{j \in J} \frac{1}{g_j(x)}$ (Función de barrera inversa)
- $B(x) = -\sum_{j \in J} ln(-g_j(x))$ (Función de barrera logarítmica)

Método de barrera

Ejemplo 1

$$\min 1 - x$$

s.a. $x \le 1$

min
$$x_1^2 + 2x_2^2$$

s.a. $x_1 + x_2 - 1 \ge 0$

Convergencia

Lema (Lema de penalización)

Propiedades básicas de los métodos de penalización.

- $P(x_k) \ge P(x_{k+1})$
- $f(x_k) \leq f(x_{k+1})$
- Función extendida $q(x_k) \le q(x_{k+1})$
- $f(x^*) \ge q(\mu_k, x_k) \ge f(x_k)$

Convergencia

Theorem

Sea $\{x_k\}$ una secuencia generada por el método de penalización. Entonces, cualquier punto en el limite de la secuencia es una solución al problema original.

La propiedades y teorema para el método de barrera son virtualmente las mismas que las del método de penalización.

Multiplicadores de Lagrange

Lemma

El método de penalidad se aplica al problema

min
$$f(x)$$

s.a. $g_i(x) \le 0, \forall i \in I$

usando una función de penalidad $P(x) = \gamma(g^+(x))$ con $\gamma \in C^1$ y $y_i = 0$, $\nabla \gamma_i = 0$. La secuencia $\{x_k\}$ generada por el método, define $\lambda_k = C \nabla \gamma(g^+(x_k))$. Si $x_k \to x^*$, y esta solución es un punto regular, entonces $\lambda_k = \lambda^*$, el multiplicador de Lagrange asociado al problema.

Restricciones de desigualdad: $\lambda_k = 2C(max\{0, g_i(x_k)\})$ Restricciones de igualdad: $\lambda_k = 2Ch_i(x_k)$

Multiplicadores de lagrange

min
$$x_1^2 + 2x_2^2$$

s.a. $x_1 + x_2 - 1 \ge 0$