수치해석 HW11

2018008613 안상욱

1. 이미지 수집

■ 다음과 같은 10장의 이미지를 구해서 picture1,, picture10 으로 저장했습니다.

2. 코드 작성

- 먼저 그림과 같이 그림을 읽어온 뒤 BGR 형식으로 n이라는 변수에 저장해 놓습니다.
- 그 후 yuv라는 변수에 BGR 형식으로 읽어온 것을 YUV 형식으로 변환하여 저장합니다.
- 2중 for문을 통해 RGB의 R, G, B 원소를 나누고, Y, U,
 V 원소를 각각 나누어 줍니다.
- Y, U, V 원소에 각각의 Y, U, V값을 1차원 배열에 저장합니다.
- Cv2.imshow를 이용해 Y, U, V 각각의 이미지를 출력합니다.

```
n = cv2.imread("picture1.jpg")
yuv = cv2.cvtColor(n, cv2.COLOR_BGR2YUV)
yuv1 = copy.deepcopy(yuv)
yuv2 = copy.deepcopy(yuv)
xs = len(n)
ys = Ien(n[0])
n = np.array(n)
nr = np.zeros((xs,ys,3))
ng = np.zeros((xs.vs.3))
nb = np.zeros((xs,ys,3))
SR = np.zeros((xs,ys))
SG = np.zeros((xs,ys))
SB = np.zeros((xs,ys))
U = []
V = [1]
for i in range(xs):
    for j in range(ys):
        SR[i][j] = n[i][j][2]
        SG[i][j] = n[i][j][1]
        SB[i][j] = n[i][j][0]
        nr[i][j][2] = n[i][j][2]
        ng[i][j][1] = n[i][j][1]
        nb[i][j][0] = n[i][j][0]
        yuv1[i][j][0] = yuv1[i][j][1]
        yuv1[i][j][1] = 0
        yuv2[i][j][0] = 0
        yuv2[i][i][1] = 0
        Y.append(yuv[i][i][0])
        U.append(yuv[i][i][1])
        V.append(yuv[i][i][2])
cv2.imshow('Y', yuv[:,:,0])
cv2.imshow('U'. vuv1)
cv2.imshow('V', yuv2)
```

2. 코드 작성

- Plt.imshow를 이용해 R, G, B 각각의 이미지를 출력합니다.
- R, G, B 각각의 변수에 R, G, B 값을 1차원 배열에 저장합니다.

```
nr = nr.astype(np.int64)
ng = ng.astype(np.int64)
nb = nb.astype(np.int64)
nr = list(np.array(nr))
ng = list(ng)
nb = list(nb)
plt.imshow(nr)
plt.show()
plt.imshow(ng)
plt.show()
plt.imshow(nb)
plt.show()
SR = SR.astype(np.int64)
SG = SG.astype(np.int64)
SB = SB.astvpe(np.int64)
SR = list(SR)
SG = list(SG)
SB = list(SB)
R = []
for i in range(xs):
    for j in range(ys):
        R.append(SR[i][j])
G = []
for i in range(xs):
    for j in range(ys):
        G.append(SG[i][j])
B = []
for i in range(xs):
    for j in range(ys):
        B.append(SB[i][j])
```

2. 코드 작성

■ Arr 배열에 R, G, B 값을 각각 담고 있는 1차원 배열을 넣고, yuvarr 배열에 Y, U, V 값을 각각 담고 있는 1차원 배열을 담은 뒤 pandas 모듈을 이용해 R과 G, G와 B, B와 R의 correlation coefficient와 Y와 U, U와 V, V와 Y의 correlation coefficient 값을 구해 출력해줍니다.

```
arr = [R, G, B]

df = pd.DataFrame(arr).T
corr = df.corr(method = 'pearson')
print(corr)

yuvarr = [Y, U, V]
yuvdf = pd.DataFrame(yuvarr).T
yuvcorr = yuvdf.corr(method = 'pearson')
print(yuvcorr)
```

- Picure1의 사진입니다.
- 왼쪽은 순서대로 R, G, B이고, 오른쪽은 순서대로 V, Y, U 이미지입니다.
- correlation coefficient 값은 다음과 같이 나왔는데, 이를 엑셀에서 정리하면 다음과 같은 결과를 확인할 수 있습니다. 왼쪽에서부터 RG, RB, GB, YU, YV, UV에 대한 correlation coefficient 값을 의미합니다.

```
0 1.000000 0.853406 0.673066
1 0.853406 1.000000 0.663643
2 0.673066 0.663643 1.000000
0 1 2
0 1.000000 -0.260237 0.420621
1 -0.260237 1.000000 -0.265349
2 0.420621 -0.265349 1.000000
```


	R G	R B	G B	ΥU	YV	UV
1	0.853406	0.673066	0.663643	-0.26024	0.420621	-0.26535

- Picure2의 사진입니다.
- 왼쪽은 순서대로 R, G, B이고, 오른쪽은 순서대로 V, Y, U 이미지입니다.
- correlation coefficient 값은 다음과 같이 나왔는데, 이를 엑셀에서 정리하면 다음과 같은 결과를 확인할 수 있습니다. 왼쪽에서부터 RG, RB, GB, YU, YV, UV에 대한 correlation coefficient 값을 의미합니다.

	RG	R B	G B	ΥU	YV	UV	
2	0.816919	0.398149	0.728353	-0.13344	-0.09418	-0.72588	

- Picure3의 사진입니다.
- 왼쪽은 순서대로 R, G, B이고, 오른쪽은 순서대로 V, Y, U 이미지입니다.
- correlation coefficient 값은 다음과 같이 나왔는데, 이를 엑셀에서 정리하면 다음과 같은 결과를 확인할 수 있습니다. 왼쪽에서부터 RG, RB, GB, YU, YV, UV에 대한 correlation coefficient 값을 의미합니다.

	R G	R B	G B	ΥU	YV	UV
3	0.846525	0.451724	0.79989	-0.53053	0.230285	-0.83163

- Picure4의 사진입니다.
- 왼쪽은 순서대로 R, G, B이고, 오른쪽은 순서대로 V, Y, U 이미지입니다.
- correlation coefficient 값은 다음과 같이 나왔는데, 이를 엑셀에서 정리하면 다음과 같은 결과를 확인할 수 있습니다. 왼쪽에서부터 RG, RB, GB, YU, YV, UV에 대한 correlation coefficient 값을 의미합니다.

	R G	R B	G B	ΥU	YV	UV
4	0.956503	0.685689	0.86001	-0.35467	0.297383	-0.96812

- Picure5의 사진입니다.
- 왼쪽은 순서대로 R, G, B이고, 오른쪽은 순서대로 V, Y, U 이미지입니다.
- correlation coefficient 값은 다음과 같이 나왔는데, 이를 엑셀에서 정리하면 다음과 같은 결과를 확인할 수 있습니다. 왼쪽에서부터 RG, RB, GB, YU, YV, UV에 대한 correlation coefficient 값을 의미합니다.

```
0 1 2
0 1.000000 0.900710 -0.243707
1 0.900710 1.000000 -0.078518
2 -0.243707 -0.078518 1.000000
0 1 2
0 1.000000 -0.537373 0.691477
1 -0.537373 1.000000 -0.833667
2 0.691477 -0.833667 1.000000
```


- Picure6의 사진입니다.
- 왼쪽은 순서대로 R, G, B이고, 오른쪽은 순서대로 V, Y, U 이미지입니다.
- correlation coefficient 값은 다음과 같이 나왔는데, 이를 엑셀에서 정리하면 다음과 같은 결과를 확인할 수 있습니다. 왼쪽에서부터 RG, RB, GB, YU, YV, UV에 대한 correlation coefficient 값을 의미합니다.

	R G	R B	G B	ΥU	YV	UV
6	0.946907	0.666531	0.748904	0.221438	-0.495	-0.65456

- Picure7의 사진입니다.
- 왼쪽은 순서대로 R, G, B이고, 오른쪽은 순서대로 V, Y, U 이미지입니다.
- correlation coefficient 값은 다음과 같이 나왔는데, 이를 엑셀에서 정리하면 다음과 같은 결과를 확인할 수 있습니다. 왼쪽에서부터 RG, RB, GB, YU, YV, UV에 대한 correlation coefficient 값을 의미합니다.

	R G	R B	G B	ΥU	ΥV	UV
7	0.948069	0.7925	0.853629	-0.40551	0.615782	-0.62928

- Picure8의 사진입니다.
- 왼쪽은 순서대로 R, G, B이고, 오른쪽은 순서대로 V, Y, U 이미지입니다.
- correlation coefficient 값은 다음과 같이 나왔는데, 이를 엑셀에서 정리하면 다음과 같은 결과를 확인할 수 있습니다. 왼쪽에서부터 RG, RB, GB, YU, YV, UV에 대한 correlation coefficient 값을 의미합니다.

	R G	R B	G B	ΥU	YV	UV
8	0.917567	0.820304	0.953164	0.245027	0.190414	-0.71087

- Picure9의 사진입니다.
- 왼쪽은 순서대로 R, G, B이고, 오른쪽은 순서대로 V, Y, U 이미지입니다.
- correlation coefficient 값은 다음과 같이 나왔는데, 이를 엑셀에서 정리하면 다음과 같은 결과를 확인할 수 있습니다. 왼쪽에서부터 RG, RB, GB, YU, YV, UV에 대한 correlation coefficient 값을 의미합니다.

```
0 1.000000 0.890983 0.637145
1 0.890983 1.000000 0.902320
2 0.637145 0.902320 1.000000
0 1 2
0 1.000000 -0.015535 0.093790
1 -0.015535 1.000000 -0.941269
2 0.093790 -0.941269 1.000000
```


	R G	R B	G B	ΥU	YV	UV
9	0.890983	0.637145	0.90232	-0.01554	0.09379	-0.94127

- Picure10의 사진입니다.
- 왼쪽은 순서대로 R, G, B이고, 오른쪽은 순서대로 V, Y, U 이미지입니다.
- correlation coefficient 값은 다음과 같이 나왔는데, 이를 엑셀에서 정리하면 다음과 같은 결과를 확인할 수 있습니다. 왼쪽에서부터 RG, RB, GB, YU, YV, UV에 대한 correlation coefficient 값을 의미합니다.

	RG	R B	G B	ΥU	YV	UV
10	0.967293	0.792538	0.897029	-0.62609	0.458531	-0.86971

4. 결과 분석

- 실행 결과 다음과 같은 결과가 나옴을 확인해 볼 수 있었습니다.
- 대체적으로 RGB간의 correlation coefficient 값이 YUV 간의 correlation coefficient 값보다 큰 것을 확인해 볼 수 있었습니다.
- YUV를 이용해 출력한 이미지는 RGB를 이용해 출력한 이미지보다 흐릿하고 correlation coefficient 값도 상대적으로 작으므로 영상의 크기를 줄여서 DCT하여 압축하면 더 작은 픽셀을 가지고 복원한 이미지를 만들어도 큰 차이가 없을 것입니다.
- 즉, 압축률이 높아지므로 저장해야 할 픽셀의 양이 적어진다는 결과를 확인해 볼 수 있었습니다.

	R G	R B	G B	ΥU	YV	UV
•	0.853406	0.673066	0.663643	-0.26024	0.420621	-0.26535
í	0.816919	0.398149	0.728353	-0.13344	-0.09418	-0.72588
3	0.846525	0.451724	0.79989	-0.53053	0.230285	-0.83163
4	0.956503	0.685689	0.86001	-0.35467	0.297383	-0.96812
1	0.90071	-0.24371	-0.07852	-0.53737	0.691477	-0.83367
(0.946907	0.666531	0.748904	0.221438	-0.495	-0.65456
	0.948069	0.7925	0.853629	-0.40551	0.615782	-0.62928
}	0.917567	0.820304	0.953164	0.245027	0.190414	-0.71087
ć	0.890983	0.637145	0.90232	-0.01554	0.09379	-0.94127
10	0.967293	0.792538	0.897029	-0.62609	0.458531	-0.86971