School of Mathematics and Physics, UQ

$\begin{array}{c} {\rm MATH2001/MATH7000~practice~problems} \\ {\rm Sheet}~4 \end{array}$

(1) In $C[0, 2\pi]$, the set

$$\beta_n = \left\{ \frac{1}{\sqrt{2\pi}} \right\} \cup \left\{ \frac{1}{\sqrt{\pi}} \cos kx \, | \, k = 1, \dots, n \right\} \cup \left\{ \frac{1}{\sqrt{\pi}} \sin kx \, | \, k = 1, \dots, n \right\},$$

where $n \in \mathbb{N}_0$, is orthonormal with respect to the inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_0^{2\pi} f(x)g(x)dx.$$

Let $W_n = \operatorname{span}(\beta_n)$, and let $\mathbf{f}, \mathbf{g} \in C[0, 2\pi]$ such that $\mathbf{f}: x \mapsto x$ and $\mathbf{g}: x \mapsto x^2$.

- (a) For arbitrary n, find the orthogonal projection of \mathbf{f} onto W_n .
- (b) Find the least squares approximation of \mathbf{g} by an element of W_3 .
- (2) Find the Fourier series of $\sin^3(x)$.
- (3) Find the least squares approximation of e^x over the interval [0,1] by a polynomial of degree at most 1.
- (4) Describe the effect of the following linear transformations on the unit square.
 - (a) $\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$
 - (b) $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$
- (5) Let $\delta: M_{2,2}(\mathbb{R}) \longrightarrow \mathbb{R}$ be a function with the following three properties.
 - (i) δ is a linear function of each row of the matrix when the other row is held fixed.

1

- (ii) If the two rows of $A \in M_{2,2}(\mathbb{R})$ are identical, then $\delta(A) = 0$.
- (iii) If I is the 2×2 identity matrix, then $\delta(I) = 1$.

Prove that $\delta(A) = \det(A)$ for all $A \in M_{2,2}(\mathbb{R})$

- (6) Find the eigenvalues and eigenvectors of the following matrices.
 - (a) $\begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$
 - (b) $\begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix}$

(7) Find matrices which diagonalize the following matrices:

(a)
$$\begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$.

- (8) Diagonalize the matrix $A = \begin{pmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{pmatrix}$.
- (9) Which of the following matrices can be diagonalized?

(a)
$$\begin{pmatrix} 2 & 1 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
 (b) $\begin{pmatrix} 4 & -1 & 2 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ (c) $\begin{pmatrix} 7 & 4 & -4 \\ 4 & -8 & -1 \\ -4 & -1 & -8 \end{pmatrix}$.

(10) Solve the recurrence relation $x_{n+1} = x_n + 2x_{n-1}$, given that $x_0 = 1$ and $x_1 = 3$.

(11) Let
$$A = \begin{pmatrix} 2 & 3 & 6 \\ 0 & 5 & 12 \\ 0 & 0 & -1 \end{pmatrix}$$
.

(a) Find a non-singular matrix P which diagonalizes A.

Background for (b): If an $n \times n$ matrix A has n linearly independent eigenvectors, we have seen that $A = PDP^{-1}$, where D is a diagonal matrix of eigenvalues. We can write

$$D = \lambda_1 E_{11} + \lambda_2 E_{22} + \ldots + \lambda_n E_{nn},$$

where, for example, in the 3×3 case

$$E_{11} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_{33} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

We then have $A = \lambda_1 S_1 + \lambda_2 S_2 + \ldots + \lambda_n S_n$, where $S_i = P E_{ii} P^{-1}$. This expansion is called the *spectral decomposition* of A.

(b) Use your answer in part (a) to calculate the matrices S_1 , S_2 and S_3 for A, and hence write down the spectral decomposition of A.

Background for (c): Since there are three linearly independent eigenvectors for A, they form a basis of \mathbb{R}^3 . The matrix S_i projects onto the subspace of \mathbb{R}^3 spanned by the eigenvector \mathbf{v}_i corresponding to eigenvalue λ_i . This means that $S_i\mathbf{v}_i = \mathbf{v}_i$ and $S_i\mathbf{v}_j = \mathbf{0}$ (for $i \neq j$). In other words, if you take any vector

$$\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3$$

in \mathbb{R}^3 , multiplying by S_i extracts the \mathbf{v}_i component. Using the above expansion of \mathbf{w} , we have $S_i\mathbf{w}=a_i\mathbf{v}_i$. We call S_i a projection matrix. It turns out that a matrix S is a projection if and only if $S^2=S$, making them very easy to identify.

(c) Verify that the matrices S_1 , S_2 and S_3 obtained in part (b) are indeed projection matrices, then use this fact to write the vector $\boldsymbol{w} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ as a linear combination of eigenvectors of A.