

STL190N4F7AG

Automotive-grade N-channel 40 V, 1.68 mΩ typ., 120 A STripFET™ F7 Power MOSFET in a PowerFLAT™ 5x6 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	lο
STL190N4F7AG	40 V	$2.00~\text{m}\Omega$	120 A

- Designed for automotive applications and AEC-Q101 qualified
- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness
- Wettable flank package

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packaging
STL190N4F7AG	190N4F7	PowerFLAT™ 5x6	Tape and reel

Contents STL190N4F7AG

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	5
3	Test cir	cuits	7
4	Packag	e mechanical data	8
	4.1	PowerFLAT™ 5x6 WF type C package information	8
	4.2	PowerFLAT™ 5x6 packing information	11
5	Revisio	n history	13

STL190N4F7AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V_{GS}	Gate-source voltage	±20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	120	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	120	Α
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	480	Α
Ртот	Total dissipation at T _C = 25 °C	127	W
I _{AV}	Avalanche current, repetitive or not repetitive (pulse width limited by maximum junction temperature)	35	Α
Eas	Single pulse avalanche energy (T _J = 25 °C, I _D = 17.5 A, V _{DD} = 22 V)	300	mJ
Tj	Operating junction temperature range	EE to 175	°C
T _{stg}	Storage temperature range	-55 to 175	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	31.3	°C/W
R _{thj-case}	Thermal resistance junction-case	1.18	°C/W

Notes:

 $^{^{(1)}\}mbox{D}\mbox{rain current}$ is limited by package, the current capability of the silicon is 183 A at 25 °C.

⁽²⁾Pulse width limited by safe operating area

 $^{^{(1)}}$ When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 s.

Electrical characteristics STL190N4F7AG

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	40			V
I _{DSS}	Zero gate voltagedrain current	V _{GS} = 0 V V _{DS} = 40 V			1	μΑ
Igss	Gate-body leakage current	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 17.5 A		1.68	2.00	mΩ

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance	V 05 V (4 MI)	1	3000	1	pF
Coss	Output capacitance	vapacitance $V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0 \text{ V}$		850	1	pF
Crss	Reverse transfer capacitance	VGS- 0 V	ı	70	1	pF
Q_g	Total gate charge	$V_{DD} = 20 \text{ V}, I_D = 35 \text{ A},$	-	41	-	nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	15	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	7	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 20 \text{ V}, I_D = 17.5 \text{ A},$	-	19	-	ns
tr	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	6.4	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13: "Test circuit	ı	25	-	ns
t _f	Fall time	for resistive load switching times"and Figure 18: "Switching time waveform")	-	6.5	-	ns

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 35 A, V _{GS} = 0 V	ı		1.2	V
t _{rr}	Reverse recovery time	$I_D = 35 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	-	43		ns
Qrr	Reverse recovery charge	$V_{DD} = 32 \text{ V}$	-	43		nC
I _{RRM}	Reverse recovery current	(see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	2		А

Notes:

 $^{^{(1)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area GIPD211220150945SOA (A) Operation in this area is limited by RDS(on) $t_p = 100 \mu \text{s}$ 10^2 $T_j \le 175 \text{ °C}$ $T_a = 25 \text{ °C}$ $t_p = 1 \text{ms}$

t_p= 10ms

10¹

 $\bar{V}_{DS}(V)$

single pulse

10°

100

Figure 3: Thermal impedance GIPD211220151013ZTH δ=0.5 0.2 0.1 10-0.05 0.02 Z_{th} =k*R_{thj-c} δ =tp/T0.01 Single pulse 10⁻² t_p (s) 10-4 10⁻³ 10⁻²

Figure 9: Normalized on-resistance vs temperature

R_{DS(on)} GIPG1012150D48A1LRON

1.6 V_{GS} = 10 V

1.4 1.2 1.0 0.8 0.6 -75 -25 25 75 125 T_j (°C)

Figure 10: Normalized V(BR)DSS vs temperature $V_{\text{(BR)DSS}} = \frac{\text{GIPG}1012150D48A1LBDV}{\text{(norm.)}}$ 1.04 1.00 0.96 0.92 -75 -25 25 75 125 $T_{\text{j}} (^{\circ}\text{C})$

STL190N4F7AG Test circuits

3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω D.U.T.

12 V 47 KΩ VGD

14 VGD

14 VGD

14 VGD

15 VGD

16 CONST

100 Ω OVG

17 VGD

18 VGD

18 VGD

18 VGD

18 VGD

18 VGD

18 VGD

19 VGD

10 VGD

Figure 15: Test circuit for inductive load switching and diode recovery times

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT™ 5x6 WF type C package information

Figure 19: PowerFLAT™ 5x6 WF type C package outline BOTTOM VIEW D6 D3 5 6 E7 E3 E2 Detail A E3 Scale 3:1 80.0 D5(x4) L(x4) b(x8) e(x6) D4 SIDE VIEW A Detail ŏ TOP VIFW 8231817_WF_typeC_r14

Table 8: PowerFLAT™ 5x6 WF type C mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.10
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.10
D5	0.25	0.40	0.55
D6	0.15	0.30	0.45
е		1.27	
Е	6.20	6.40	6.60
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.85	1.00	1.15
E9	4.00	4.20	4.40
E10	3.55	3.70	3.85
K	1.05		1.35
L	0.90	1.00	1.10
L1	0.175	0.275	0.375
θ	0°		12°

Figure 20: PowerFLAT™ 5x6 recommended footprint (dimensions are in mm)

4.2 PowerFLAT™ 5x6 packing information

Figure 21: PowerFLAT™ 5x6 WF tape (dimensions are in mm)

Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

PART NO.

R25.00

R25.

Figure 23: PowerFLAT™ 5x6 reel (dimensions are in mm)

STL190N4F7AG Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
07-Jan-2016	1	First release.
		Updated package silhouette and Figure 1: "Internal schematic diagram" in cover page.
23-Jun-2016	2	Updated Section 6.1: "PowerFLAT™ 5x6 WF type C package information".
		Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

