

October 1987 Revised September 2001

MM74HC148 8-3 Line Priority Encoder

General Description

The MM74HC148 priority encoder utilizes advanced silicon-gate CMOS technology. It has the high noise immunity and low power consumption typical of CMOS circuits, as well as the speeds and output drive similar to LB-TTL.

This priority encoder accepts 8 input request lines 0–7 and outputs 3 lines A0–A2. The priority encoding ensures that only the highest order data line is encoded. Cascading circuitry (enable input El and enable output EO) has been provided to allow octal expansion without the need for external circuitry. All data inputs and outputs are active at the low logic level.

All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical propagation delay: 13 ns
- Wide supply voltage range: 2V-6V

Ordering Code:

Order Number	Package Number	Package Description
MM74HC148M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC148N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram

Truth Table

	Inputs							0	utpu	ts			
EI	0	1	2	3	4	5	6	7	A2	A 1	Α0	GS	EO
Н	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Н	Н	Н	Н	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
L	Х	Χ	Χ	Χ	Χ	Χ	Χ	L	L	L	L	L	Н
L	Х	Χ	Χ	Χ	Χ	Χ	L	Н	L	L	Н	L	Н
L	Х	Χ	Χ	Χ	Χ	L	Н	Н	L	Н	L	L	Н
L	Х	Χ	Χ	Χ	L	Н	Н	Н	L	Н	Н	L	Н
L	Х	Χ	Χ	L	Н	Н	Н	Н	Н	L	L	L	Н
L	Х	Χ	L	Н	Н	Н	Н	Н	Н	L	Н	L	Н
L	Х	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н

H = HIGH

L = LOW X = Irrelevant

Absolute Maximum Ratings(Note 1) (Note 2)

(Note 2)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V_{CC} +1.5V
DC Output Voltage (V _{OUT})	-0.5 to V_{CC} +0.5 V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I_{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to $+150^{\circ}\text{C}$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	

Operation Conditions

6	
O	V
V_{CC}	V
+85	°C
+125	°C
1000	ns
500	ns
400	ns
	+85 +125 1000 500

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating—plastic "N" package: -12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

(Soldering 10 sec.)

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	T _A = -40 to 85°C	T _A = -55 to 125°C	Units
Symbol	Parameter	Conditions	*cc	Тур		Guaranteed I	imits	Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage (Note 5)		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.7	3.96	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.2	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \leq 20 \; \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μΑ
	Supply Current	$I_{OUT}=0\;\mu A$						

260°C

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

Note 5: $\rm V_{IL}$ limits are currently tested at 20% of $\rm V_{CC}.$

AC Electrical Characteristics

Symbol	Parameter	Conditions	Тур	Guaranteed Limits	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay,		14		ns
	Any Input to Any Output				

AC Electrical Characteristics

 V_{CC} = 2.0V to 6.0V, C_{L} = 50 pF, $t_{\rm f}$ = $t_{\rm f}$ = 6 ns (unless otherwise specified)

Symbol	Parameter	V _{CC}	T _A = 25°C		-40°C to +85°C	-55°C to +125°C	Units
Syllibol		*cc	Тур		Guaranteed Limits		
t _{PHL} , t _{PLH}	Inputs 0–7	2.0V		140	175	210	ns
	to Outputs	4.5V	14	28	35	42	ns
	A0, A1, A2	6.0V		24	30	36	ns
t _{PHL} , t _{PLH}	Inputs 0–7	2.0V		140	175	210	ns
	to	4.5V	15	28	35	42	ns
	Output EO	6.0V		24	30	36	ns
t _{PHL} , t _{PLH}	Inputs 0–7	2.0V		160	200	240	ns
	to	4.5V	17	32	40	48	ns
	Output GS	6.0V		27	34	41	ns
t _{PHL} , t _{PLH}	Input EI	2.0V		160	200	240	ns
	to Outputs	4.5V	17	32	40	48	ns
	A0, A1, A2	6.0V		27	34	41	ns
t _{PHL} , t _{PLH}	Input EI	2.0V		100	125	150	ns
	to	4.5V	12	20	25	30	ns
	Output GS	6.0V		17	21	26	ns
t _{PHL} , t _{PLH}	Input EI	2.0V		100	125	150	ns
	to	4.5V	12	20	25	30	ns
	Output EO	6.0V		17	21	26	ns
t _f , t _r	Maximum	2.0V		75	95	110	ns
	Output Rise	4.5V	7	15	19	22	ns
	and Fall Time	6.0V		13	16	19	ns
C _{pd}	Power Dissipation	•	52				pF
F=	Capacitance (Note 6)						
C _{in}	Maximum Input Capacitance		5	10	10	10	pF

Note 6: C_{pd} determines the no load dynamic power consumption, and the no load dynamic current consumption.

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com