模拟试题 (一)参考答案

1. 设 A, B 为两个随机事件, 若 P(AB) = 0, 则下列命题中正确的是()

一 单项选择题	(每小题 2 分,共 16 分)	

在

(A)	A与 B 互不相容		(B) A	4 与 B 独立	江	
(C)	$P(A) = 0 \overrightarrow{\boxtimes} P(B)$	=0	(D) A	AB 未必是	上不可	能事件
解	若AB为零概率事	件, 其未必为	不可能	事件.本是		D.
2. 设金	每次试验失败的概率	率为 p ,则在	3 次独	由立重复词	(验中	至少成功一次
的概率为	()					
(A)	3(1-p) (B)	$(1-p)^3$	(C) 1	$-p^3$	(D)	$C_3^1(1-p)p^2$
解	所求事件的对立事	事件为"3次者	『不成	功",其椆	逐为	p^3 ,故所求概
率为1-	p^3 . 若直接从正面	去求较为麻烦.	本题	应选 C.		
3. 若i 的是(函数 $y = f(x)$ 是一	·随机变量 <i>ξ</i> 的	力概率	密度,则下	面说	法中一定成立
(A)	<i>f</i> (x) 非负		(B)	f(x)的值	域为[0,1]
	=					
解	由连续型随机变量					
上的非负	t函数,且满足∫ _{-∞} ∫	$f(x)dx = 1$, \mathfrak{M}	f以 A	一定成立.	而其	它选项不一定
成立. 例	如服从 $[\frac{1}{3}, \frac{1}{2}]$ 上的:	均匀分布的随	机变量	也的概率 密	度	
		$f(x) = \begin{cases} 6, \\ 0, \end{cases}$	$\frac{1}{3} \le x$ \ddagger	i≤ 1/2, 他		
	与 $x = \frac{1}{2}$ 处不连续,	,且在这两点的	的函数/	值大于 1.	因而る	本题应选 A.
4. 若	随机变量 X 的概率	率密度为 $f(x)$	$(x) = \frac{1}{2x}$	$\frac{1}{\sqrt{\pi}}e^{-\frac{(x+3)}{4}}$	$\frac{1}{2}$ (- ∞	$0 < x < +\infty$,
	$\sim N(0,1)$		_	•		

(A) $\frac{X+3}{\sqrt{2}}$ (B) $\frac{X+3}{2}$ (C) $\frac{X-3}{\sqrt{2}}$

X 的数学期望 EX = -3,方差 $DX = \sqrt{2}$,令 $Y = \frac{X+3}{\sqrt{2}}$,则其服 从标准正态分布. 故本题应选 A.

5. 若随机变量 X, Y 不相关, 则下列等式中不成立的是(

(A)
$$cov(X,Y) = 0$$

(B)
$$D(X+Y) = DX + DY$$

(c)
$$DXY = DX \cdot DY$$

(D)
$$EXY = EX \cdot EY$$

解 因为 $\rho = 0$,故

$$cov(X,Y) = \rho \sqrt{DX} \cdot \sqrt{DY} = 0$$
,

 $D(X+Y) = DX + DY + 2\operatorname{cov}(X,Y) = DX + DY.$ 但无论如何, 都不成立 $DXY = DX \cdot DY$, 故本题应选 C.

6. 设样本 X_1, X_2, \cdots, X_n 取自标准正态分布总体X,又 \overline{X}, S 分别为样本 均值及样本标准差.则(

(A)
$$\overline{X} \sim N(0,1)$$

(B)
$$n\overline{X} \sim N(0,1)$$

(C)
$$\sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$$

(D)
$$\frac{X}{S} \sim t(n-1)$$

解 $\overline{X} \sim N(0,\frac{1}{n})$, $n\overline{X} \sim N(0,n)$, $\frac{\sqrt{n} \cdot \overline{X}}{S} \sim t(n-1)$, 只有 C 选项成 立. 本题应选 C.

7. 样本 X_1, X_2, \dots, X_n $(n \ge 3)$ 取自总体X,则下列估计量中,() 不 是总体期望 μ 的无偏估计量

(A)
$$\sum_{i=1}^{n} X_{i}$$

(B) \overline{X}

(C)
$$0.1(6X_1 + 4X_n)$$

(D)
$$X_1 + X_2 - X_3$$

解 由无偏估计量的定义计算可知, $\sum_{i=1}^{n} X_{i}$ 不是无偏估计量,本题应选 A.

- 8. 在假设检验中, 记 H_0 为待检假设, 则犯第一类错误指的是(

 - (A) H_0 成立, 经检验接受 H_0 (B) H_0 成立, 经检验拒绝 H_0
 - (C) H_0 不成立, 经检验接受 H_0 (D) H_0 不成立, 经检验拒绝 H_0
 - 解 弃真错误为第一类错误, 本题应选 B.
- 二.填空题(每空2分.共14分)

1. 同时掷三个均匀的硬币, 出现三个正面的概率是_____, 恰好出现一个正面的概率是______,

$$\frac{1}{8}$$
; $\frac{3}{8}$.

2. 设随机变量 X 服从一区间上的均匀分布,且 EX = 3, $DX = \frac{1}{3}$,则 X的概率密度为______.

解 设
$$X \sim [a,b]$$
,则 $EX = \frac{a+b}{2} = 3$, $DX = \frac{(b-a)^2}{12} = \frac{1}{3}$,解得 $a = 2$, $b = 4$,所以 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{2}, & 2 \le x \le 4, \\ 0, &$ 其他.

3. 设随机变量 X 服从参数为 2 的指数分布, Y 服从参数为 4 的指数分布, 则 $E(2X^2 + 3Y) = _____.$

$$E(2X^2 + 3Y) = 2EX^2 + 3EY = 2[DX + (EX)^2] + 2EY = \frac{7}{4}.$$

4. 设随机变量 X 和 Y 的数学期望分别为-2 和 2, 方差分别为 1 和 4, 而相关系数为-0. 5, 则根据切比雪夫不等式, 有 $P\{|X+Y| \ge 6\} \le$

解 根据切比雪夫不等式,

$$P\{|X+Y| \ge 6\} \le \frac{D(X+Y)}{6^2} = \frac{DX+DY+2Cov(X,Y)}{36} = \frac{1}{12}.$$

5. 假设随机变量 X 服从分布 t(n) , 则 $\frac{1}{X^2}$ 服从分布_____ (并写出其参数).

解 设
$$X = \frac{Y}{\sqrt{\frac{Z}{n}}} \sim t(n)$$
, 其中 $Y \sim N(0,1)$, $Z \sim \chi^2(n)$, 且 $Y^2 \sim \chi^2(1)$,

从而
$$\frac{1}{X^2} = \frac{\frac{Z}{n}}{Y^2} \sim F(n,1)$$
.

6. 设 X_1, X_2, \dots, X_n (n > 1) 为来自总体 X 的一个样本, 对总体方差 DX 进行估计时, 常用的无偏估计量是______.

解
$$S^2 = \frac{1}{n-1} (\sum_{i=1}^n X_i - \overline{X})^2$$
.

三.(本题 6 分)

设
$$P(A) = 0.1$$
, $P(B \mid A) = 0.9$, $P(B \mid A) = 0.2$, 求 $P(A \mid B)$.

解 由全概公式可得

$$P(B) = P(A)P(B \mid A) + P(\overline{A})P(B \mid \overline{A}) = 0.1 \cdot 0.9 + 0.9 \cdot 0.2 = 0.27$$
.

$$P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B \mid A)}{P(B)} = \frac{1}{3}.$$

四.(本题 8 分)

两台车床加工同样的零件,第一台出现废品的概率为0,03,第二台出现废 品的概率为 0.02.加工出来的零件放在一起,又知第一台加工的零件数是第 二台加工的零件数的 2 倍. 求:

- (1) 仟取一个零件是合格品的概率.
- (2) 若任取一个零件是废品,它为第二台车床加工的概率.

解 设 A_1, A_2 分别表示第一台,第二台车床加工的零件的事件.B表示产 品是合格品的事件.

(1) 由全概公式可得

$$P(B) = P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2) = \frac{2}{3} \cdot 0.97 + \frac{1}{3} \cdot 0.98 \approx 0.973$$
.

(2)
$$P(A_2 \mid \overline{B}) = \frac{P(A_2 \overline{B})}{P(\overline{B})} = \frac{P(A_2)P(\overline{B} \mid A_2)}{P(\overline{B})} = \frac{\frac{1}{3} \cdot 0.02}{1 - 0.973} \approx 0.247$$
.

五.(本题 14 分)

袋中有 4 个球分别标有数字 1, 2, 2, 3, 从袋中仟取一球后, 不放问再取一 球,分别以X,Y记第一次,第二次取得球上标有的数字,求:

- (1) (X,Y) 的联合分布; (2) X,Y 的边缘分布;
- (3) X.Y 是否独立: (4) E(XY).

解

(2)
$$P(X = 1) = \frac{1}{4}$$
, $P(X = 2) = \frac{1}{2}$, $P(X = 3) = \frac{1}{4}$.
 $P(Y = 1) = \frac{1}{4}$, $P(Y = 2) = \frac{1}{2}$, $P(Y = 3) = \frac{1}{4}$.

(3) 因为
$$P(X = 1, Y = 1) = 0 \neq \frac{1}{16} = P(X = 1)P(Y = 1)$$
, 故 X, Y 不独

立.

(4)
$$E(XY) = 1 \cdot 2 \cdot \frac{1}{6} + 1 \cdot 3 \cdot \frac{1}{12} + 2 \cdot 1 \cdot \frac{1}{6} + 2 \cdot 2 \cdot \frac{1}{6} + 2 \cdot 3 \cdot \frac{1}{6}$$

六.(本题 12 分)

设随机变量 X 的密度函数为

$$f(x) = Ax^2 e^{-|x|} \qquad (-\infty < x < +\infty),$$

试求:

(1) A 的值; (2) $P(-1 < X \le 2)$; (3) $Y = X^2$ 的密度函数.

解 (1) 因
$$\int_{-\infty}^{+\infty} f(x) dx = 2A \int_{0}^{+\infty} x^2 e^{-x} dx = 4A = 1$$
, 从而 $A = \frac{1}{4}$;

(2)
$$P(-1 < X \le 2) = \int_{-1}^{2} f(x) dx = \frac{1}{4} \int_{-1}^{0} x^{2} e^{x} dx + \frac{1}{4} \int_{0}^{2} x^{2} e^{-x} dx$$

$$= 1 - \frac{5}{2} e^{-2} - \frac{5}{4} e^{-1};$$

(3)
$$\stackrel{\text{def}}{=} y \le 0$$
 iff , $F_Y(y) = 0$; $\stackrel{\text{def}}{=} y \le 0$ iff ,
$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y})$$
$$= F_X(\sqrt{y}) - F_X(-\sqrt{y}),$$

所以, 两边关于 y 求导可得,

$$f_Y(y) = \frac{1}{4} y \cdot e^{-\sqrt{y}} \cdot \frac{1}{2\sqrt{y}} - \frac{1}{4} y \cdot e^{-\sqrt{y}} \cdot \frac{-1}{2\sqrt{y}} = \frac{1}{4} \sqrt{y} \cdot e^{-\sqrt{y}}.$$

故Y的密度函数为

$$f_{Y}(y) = \begin{cases} 0, & y \le 0, \\ \frac{1}{4}\sqrt{y} \cdot e^{-\sqrt{y}}, & y > 0. \end{cases}$$

七.(本题 6 分)

某商店负责供应某地区 1000 人商品,某种产品在一段时间内每人需用一件的概率为 0.6. 假定在这段时间,各人购买与否彼此无关,问商店应预备多少件这种商品,才能以99.7%的概率保证不会脱销? (假定该商品在某一段时间内每人最多买一件).

解 设
$$X_i = \begin{cases} 0, & \text{第}i$$
人不购买该种商品, $(i = 1, 2, \dots, 1000), X$ 表示 $1, & \text{第}i$ 人购买该种商品

购买该种商品的人数,则 $X \sim B(1000,0.6)$. 又设商品预备 n 件该种商品,依题意,由中心极限定理可得

$$P(X \le n) = P(\frac{X - EX}{\sqrt{DX}} \le \frac{n - EX}{\sqrt{DX}}) = P(\frac{X - 600}{\sqrt{240}} \le \frac{n - 600}{\sqrt{240}})$$
$$\approx \Phi(\frac{n - 600}{\sqrt{240}}) = 0.997.$$

查正态分布表得 $\frac{n-600}{\sqrt{240}}$ = 2.75,解得 $n = 642.6 \approx 643$ 件.

八.(本题 10 分)

- 一个罐内装有黑球和白球,黑球数与白球数之比为 R.
- (1) 从罐内任取一球,取得黑球的个数 X 为总体,即 $X = \begin{cases} 1, & \mathbb{X} \\ 0, & \text{白球,} \end{cases}$ 求总体 X 的分布:
- (2) 从罐内有放回的抽取一个容量为n的样本 X_1, X_2, \dots, X_n , 其中有m个白球, 求比数R的最大似然估计值.

解

(1)
$$X = \begin{bmatrix} 1 & 0 \\ P & \frac{R}{1+R} & \frac{1}{1+R} \end{bmatrix}$$

$$\mathbb{H} P(X = x) = \left(\frac{R}{1+R}\right)^{x} \left(\frac{1}{1+R}\right)^{1-x} = \frac{R^{x}}{1+R} \quad (x = 0,1);$$

(2)
$$L(R) = \prod_{i=1}^{n} P(X_i = x_i) = \frac{R^{\sum x_i}}{(1+R)^n},$$

两边取对数,

$$ln L(R) = R \sum x_i - n \ln(1+R) ,$$

两边再关于 R 求导, 并令其为 0, 得

$$\sum x_i - n \frac{1}{1+R} = 0,$$

从而
$$\hat{R} = \frac{\sum x_i}{n - \sum x_i}$$
,又由样本值知, $\sum x_i = n - m$,故估计值为 $\hat{R} = \frac{n}{m} - 1$.

九.(本题 14 分)

对两批同类电子元件的电阻进行测试, 各抽 6 件, 测得结果如下(单位: Ω):

A 批: 0. 140, 0. 138, 0. 143, 0. 141, 0. 144, 0. 137:

B 批: 0. 135, 0. 140, 0. 142, 0. 136, 0. 138, 0. 141.

已知元件电阻服从正态分布,设 $\alpha = 0.05$,问:

- (1) 两批电子元件的电阻的方差是否相等?
- (2) 两批电子元件的平均电阻是否有显著差异?

$$(t_{0.025}(10) = 2.2281, F_{0.025}(5,5) = 7.15)$$

$$\mathbf{H}$$
 (1) H_0 : $\sigma_1^2 = \sigma_2^2$, H_1 : $\sigma_1^2 \neq \sigma_2^2$.

检验统计量为

$$F = \frac{S_1^2}{S_2^2} \sim F(5,5)$$
 (在 H_0 成立时),

由
$$\alpha = 0.05$$
,查得临界值 $F_{\alpha/2} = F_{0.025}(5,5) = 7.15$, $F_{1-\alpha/2} = \frac{1}{7.15}$.

由样本值算得
$$F = \frac{0.0000075}{0.0000078} = 0.962$$
,由于 $F_{1-\alpha/2} < F < F_{\alpha/2}$,故不

能拒绝 H_{10} ,即认为两批电子元件的电阻的方差相等.

(2)
$$H_0$$
: $\mu_1 = \mu_2$, H_1 : $\mu_1 = \mu_2$.

统计量

$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_1^2 + S_2^2}{6}}} \sim t(10)$$
 (在 H_0 成立时),

查表得临界值 $t_{\alpha/2} = t_{0.025}(10) = 2.228$. 再由样本值算得

$$\left|T\right| = \frac{0.1405 - 0.139}{\sqrt{\frac{0.0000075 + 0.0000078}{6}}} = 1.148,$$
 因为 $\left|T\right| < t_{\alpha/2}$,故接收 H_0 .即认为两批电子元件的平均电阻无显著差异.

模拟试题(二)参考答案

一.单项选择题	(每小题 2 分.共 16 分)	

- 1. 设 A, B, C 表示 3 个事件, 则 A B C 表示 (

 - (A) A, B, C 中有一个发生 (B) A, B, C 中不多于一个发生
 - (C) A, B, C 都不发生
- (D) A, B, C 中恰有两个发生

解 本题应选 C.

2. 己知
$$P(A) = P(B) = \frac{1}{3}, P(A \mid B) = \frac{1}{6}, 则P(\overline{A}\overline{B}) = ($$
).

- (A) $\frac{7}{18}$ (B) $\frac{11}{18}$ (C) $\frac{1}{3}$

$$P(AB) = P(A)P(B \mid A) = \frac{1}{18},$$

$$P(\overline{A}\overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - P(A) - P(B) + P(AB) = \frac{7}{18}$$
.
故本题应选 A.

3. 设两个相互独立的随机变量 X 与 Y 分别服从正态分布 N(0.1) 和 N(1,1),则()

(A)
$$P\{X + Y \le 0\} = \frac{1}{2}$$
 (B) $P\{X + Y \le 1\} = \frac{1}{2}$

(B)
$$P\{X + Y \le 1\} = \frac{1}{2}$$

(C)
$$P\{X - Y \le 0\} = \frac{1}{2}$$
 (D) $P\{X - Y \le 1\} = \frac{1}{2}$

(D)
$$P\{X - Y \le 1\} = \frac{1}{2}$$

解 $X + Y \sim N(1.2)$, $X - Y \sim N(-1.2)$, 故本题应选 B.

4. 设 X 与 Y 为 两 随 机 变 量 , 且 DX = 4, DY = 1, $\rho_{yy} = 0.6$, 则 D(3X - 2Y) = ()

- (A) 40
- (B) 34
- (C) 25, 6
- (D) 17.6

解 $\operatorname{cov}(X,Y) = \rho_{YY} \sqrt{DX} \cdot \sqrt{DY} = 1.2$,

D(3X - 2Y) = 9DX + 4DY - 12 cov(X, Y) = 25.6.

故本题应选 C.

5. 若随机变量 X 服从参数为 λ 的泊松分布, 则 X^2 的数学期望是(

(A)
$$\lambda$$
 (B) $\frac{1}{\lambda}$ (C) λ^2 (D) $\lambda^2 + \lambda$

 $\mathbf{E}X^2 = DX + (\mathbf{E}X)^2 = \lambda + \lambda^2$, 本题应选 D.

6. 设 X_1, X_2, \cdots, X_n 是来自于正态总体 $N(\mu, \sigma^2)$ 的简单随机样本, \overline{X} 为样本方差,记

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 $S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$

$$S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2 \qquad S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

则服从自由度为n-1的t分布的随机变量是()

(A)
$$t = \frac{\overline{X} - \mu}{S_1 / \sqrt{n-1}}$$
 (B) $t = \frac{\overline{X} - \mu}{S_2 / \sqrt{n-1}}$

(C)
$$t = \frac{\overline{X} - \mu}{S_3 / \sqrt{n-1}}$$
 (D) $t = \frac{\overline{X} - \mu}{S_4 / \sqrt{n-1}}$

解 $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$, $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim t(n-1)$,再由t分布的定义知,本题应选 B.

7. 设总体 X 均值 μ 与方差 σ^2 都存在, 且均为未知参数, 而 X_1, X_2, \cdots , X_n 是该总体的一个样本, \overline{X} 为样本方差, 则总体方差 σ^2 的矩估计量是 ()

(A)
$$\overline{X}$$
 (B) $\frac{1}{n}\sum_{i=1}^{n}(X_i - \mu)^2$

(C)
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 (D) $\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$

解 本题应选 D.

- 8. 在假设检验时, 若增大样本容量, 则犯两类错误的概率 ()
 - (A) 都增大

(B) 都减小

(C) 都不变

(D) 一个增大一个减小

解 本题应选 B.

二.填空题 (每空 2 分,共 14 分)

- 1. 设 10 件产品中有 4 件不合格品, 从中任取 2 件, 已知所取 2 件中有 1 件是不合格品,则另外 1 件也是不合格品的概率为
- 解 设 A 表示两件中有一件不合格品,B 表示两件都是不合格品. 则所求的极限为 $P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(B)}{P(A)} = \frac{1}{5}$
 - 2. 设随机变量 X 服从 B(1,0.8) 分布,则 X 的分布函数为 . .

解
$$X$$
 服从 0 -1 分布, 其分布函数为 $f(x) =$
$$\begin{cases} 0, & x < 0, \\ 0.2, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

3. 若随机变量 X 服从均值为 2, 方差为 σ^2 的正态分布, 且 $P\{0 < X < 4\} = 0.6$, 则 $P\{X < 0\} =$ _____.

解 $\mu = 2$, 即其密度函数关于 x = 2 对称. 由对称性知

$$P{X < 0} = \frac{1 - 0.6}{2} = 0.2.$$

4. 设总体 X 服从参数为 p 的 0-1 分布, 其中 $p(0 未知. 现得一样本容量为 8 的样本值: 0, 1, 0, 1, 1, 0, 1, 1, 则样本均值是______, 样本方差是_____.$

解 由定义计算知
$$\overline{X} = \frac{5}{8}$$
; $S^2 = \frac{15}{56}$.

5. 设总体 X 服从参数为 λ 的指数分布, 现从 X 中随机抽取 10 个样本, 根据测得的结果计算知 $\sum_{i=1}^{10} x_i = 27$, 那么 λ 的矩估计值为_____.

$$\widehat{R} \qquad \widehat{\lambda} = \frac{1}{\overline{X}} = \frac{10}{27} \,.$$

6. 设总体 $X\sim N(\mu,\sigma^2)$, 且 σ^2 未知, 用样本检验假设 $H_0:\mu=\mu_0$ 时, 采用的统计量是

解
$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$$
 $(H_0$ 为真时).

三. (本题 8 分)

设有三只外形完全相同的盒子, I 号盒中装有 14 个黑球, 6 个白球; II 号盒中装有 5 个黑球, 25 个白球; III号盒中装有 8 个黑球, 42 个白球. 现在从三个盒子中任取一盒, 再从中任取一球, 求:

- (1) 取到的球是黑球的概率:
- (2) 若取到的是黑球, 它是取自 [号盒中的概率.

解 设 A_1, A_2, A_3 分别表示从第I, II, III号盒中取球, B表示取到黑球.

(1) 由全概公式可得

$$P(B) = \sum_{i=1}^{3} P(A_i) P(B \mid A_i) = \frac{1}{3} \cdot \frac{14}{20} + \frac{1}{3} \cdot \frac{5}{30} + \frac{1}{3} \cdot \frac{8}{50} \approx 0.342;$$

(2) 由贝叶斯公式得

$$P(A_1 \mid B) = \frac{P(A_1)P(B \mid A_1)}{P(B)} \approx 0.682.$$

四.(本题6分)

设随机变量X的概率密度为

$$f(x) = \begin{cases} \frac{1}{2} \cos \frac{x}{2}, & 0 \le x \le \pi, \\ 0, & 其他, \end{cases}$$

对 X 独立地重复观察 4 次,用 Y 表示观察值大于 $\frac{\pi}{3}$ 地次数,求 Y^2 的数学期望.

解
$$P(X > \frac{\pi}{3}) = \int_{\frac{\pi}{2}}^{\pi} \frac{1}{2} \cos \frac{x}{2} dx = \frac{1}{2}, Y \sim B(4, \frac{1}{2}),$$
从而

$$EY^2 = DY + (EY)^2 = 5$$
.

五. (本题 12分)

设(X,Y)的联合分布律为

V	0	1	9	
$\frac{\Lambda}{1}$	0. 1	0.05	0. 35	
2	0.3	0. 1	0.1	
			227	

问:(1) X,Y 是否独立;

- (2) 计算P(X = Y)的值;
- (3) EY = 2 的条件下 X 的条件分布律.

解 (1) 因为

$$P(X=1,Y=0)=0.1 \neq 0.2=0.5 \cdot 0.4 = P(X=1)P(Y=0)$$
,
所以 X . Y 不独立:

(2)

$$P(X = Y) = P(X = 1, Y = 1) + P(X = 2, Y = 2) = 0.05 + 0.1 = 0.15$$
;

(3)
$$P(X = 1 | Y = 2) = \frac{P(X = 1, Y = 2)}{P(Y = 2)} = \frac{0.35}{0.45} = \frac{7}{9},$$

 $P(X = 2 | Y = 2) = 1 - \frac{7}{9} = \frac{2}{9}.$

六. (本题 12 分)

设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 12y^2, & 0 \le y \le x \le 1, \\ 0, & \text{ #.d.}, \end{cases}$$

- 求:(1) X 的边缘密度函数 $f_X(x)$;
 - (2) E(XY);
 - (3) P(X+Y>1).

解 (1)

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^x 12y^2 dy, & 0 \le x \le 1, \\ 0, & 其他 \end{cases} = \begin{cases} 4x^3 & 0 \le x \le 1, \\ 0, & 其他. \end{cases}$$

(2)
$$E(XY) = \int_0^1 dx \int_0^x 12xy^3 dy = \frac{1}{2};$$

(3)
$$P(X+Y>1) = \int_{\frac{1}{2}}^{1} dx \int_{1-x}^{x} 12y^2 dy = \frac{7}{8}$$
.

七. (本题 6 分)

一部件包括 10 部分,每部分的长度是一个随机变量,它们相互独立,且服从同一均匀分布,其数学期望为 2mm,均方差为 0.05,规定总长度为

(20±0.1) mm 时产品合格, 试求产品合格的概率.

解 设 X_i 表示第 i 部分的长度, $i=1,2,\cdots,10$,X 表示部件的长度. 由 题意知 $EX_i=2$, $DX_i=0.0025$,且 $X=\sum_{i=1}^{10}X_i$,EX=20,DX=0.025. 由独立同分布的中心极限定理知,产品为合格品的概率为

$$\begin{split} P(\mid X - 20 \mid \leq 0.1) &= P(\mid \frac{X - 20}{\sqrt{0.025}} \mid \leq \frac{0.1}{\sqrt{0.025}}) \\ &= 2\Phi(\frac{0.1}{\sqrt{0.025}}) - 1 = 0.4714 \,. \end{split}$$

八. (本题 7 分)

设总体 X 具有概率密度为

$$f(x) = \begin{cases} \frac{\theta^k}{(k-1)!} x^{k-1} e^{-\theta x}, & x > 0, \\ 0, & \text{ #...} \end{cases}$$

其中k为已知正整数, 求 θ 的极大似然估计。

解 设 X_1, X_2, \cdots, X_n 是来自总体 X 的样本, 当 $x_1, x_2, \cdots, x_n > 0$ 时, 似 然函数

$$L(\theta) = \prod_{i=1}^{n} f(x_i) = \frac{\theta^{nk}}{[(k-1)!]^n} \sum_{i=1}^{n} x_i^{k-1} e^{-\theta \sum_{i=1}^{n} x_i},$$

两边取对数,

$$\ln L(\theta) = nk \ln \theta - n \ln(k-1)! + \ln \sum_{i=1}^{n} x_i^{k-1} - \theta \sum_{i=1}^{n} x_i,$$

关于 θ 求导,并令其为0,得

$$\ln L(\theta) = \frac{nk}{\theta} - \sum_{i=1}^{n} x_i = 0,$$

从而解得 θ 的极大似然估计为

$$\hat{\theta} = \frac{nk}{\sum_{i=1}^{n} X_i} = \frac{k}{\overline{X}}.$$

九.. (本题 14 分)

从某锌矿的东、西两支矿脉中,各抽取样本容量分别为 9 与 8 的样本进行测试,得样本含锌平均数及样本方差如下:

东支:
$$\bar{x}_1 = 0.230$$
, $s_{n_1}^2 = 0.1337$, $(n_1 = 9)$
西支: $\bar{x}_2 = 0.269$, $s_{n_2}^2 = 0.1736$, $(n_2 = 8)$

若东、西两支矿脉的含锌量都服从正态分布, 问东、西两支矿脉含锌量的平均值是否可以看作一样? ($\alpha = 0.05$)

(
$$F_{0.025}(8,7) = 4.53$$
, $F_{0.025}(7,8) = 4.90$, $t_{0.0025}(15) = 2.1315$)

解 本题是在未知方差,又没有说明方差是否相等的情况下,要求检验两总体均值是否相等的问题,故首先必须检验方差是否相等,在相等的条件下,检验总体均值是否相等.

第一步假设
$$\mathbf{H}_0: \sigma_1^2 = \sigma_2^2$$
,统计量 $F = \frac{s_1^2}{s_2^2} {}^{\sim} F(n_1 - 1, n_2 - 1)$,

经检验,接受 H_0 : $\sigma_1^2 = \sigma_2^2$;

第二步假设 $H_0: \mu_1 = \mu_2$,

统计量
$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{(\frac{1}{n_1} + \frac{1}{n_2})\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}} \sim t(n_1 + n_2 - 2)$$

经检验,接受 H_0 ,即可认为东、西两支矿脉含锌量的平均值相等.(请参见模拟试题(一)第九大题)

十. (本题 5 分)

设总体 X 的密度函数为

$$f(x) = \begin{cases} \frac{3}{\theta^3} x^2, & 0 \le x \le \theta, \\ 0, & \sharp \ \ \ \ \ \end{cases}$$

其中 θ 为未知参数, X_1,X_2,\cdots,X_n 为来自总体X的样本,证明: $\frac{4}{3}\overline{X}$ 是 θ 的无偏估计量.

证明
$$E(\frac{4}{3}\overline{X}) = \frac{4}{3}E\overline{X} = \frac{4}{3}EX = \frac{4}{3}\int_{-\infty}^{+\infty} xf(x)dx$$

$$=\frac{4}{3}\int_0^\theta \frac{3}{\theta^3}x^3 dx = \theta,$$

故 $\frac{4}{3}\overline{X}$ 是 θ 的无偏估计量.

模拟试题 (三)参考答案

一.填空题(每小题2分,共14分)

1. 一射手对同一目标独立地进行四次射击, 若至少命中一次的概率为 80 81, 则该射手的命中率为______.

解 设A表示一次射击中击中目标,依题意,四次都没击中的概率为

$$P(\overline{A})^4 = 1 - \frac{80}{81}$$
,解得 $P(\overline{A}) = \frac{1}{3}$,从而射手的命中率为 $P(A) = \frac{2}{3}$.

2. 若事件 A, B 独立, 且 P(A) = p, $P(B) = q 则 P(A + B) = ____.$

$$P(A \cup B) = P(A) + P(B) - P(A)P(B) = 1 - p + pq$$
.

3. 设离散型随机变量 X 服从参数为 λ ($\lambda > 0$) 的泊松分布,已知 P(X=1) = P(X=2),则 $\lambda = _____$.

解
$$P(X=1) = \lambda e^{-\lambda} = \frac{\lambda^2}{2} e^{-\lambda} = P(X=2)$$
,从而解得 $\lambda = 2$.

4. 设相互独立的两个随机变量 X, Y 具有同一分布律, 且 X 的分布律为:

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline P & \frac{1}{2} & \frac{1}{2} \end{array}$$

则随机变量 $Z = \max\{X,Y\}$ 的分布律为_____

解 Z的可能取值为 0, 1.

$$P(Z=0) = P(X=0, Y=0) = P(X=0)P(Y=0) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

$$P(Z=1) = 1 - \frac{1}{4} = \frac{3}{4}.$$

5. 设随机变量 X , Y 的方差分别为 DX=25 , DY=36 , 相关系数 $\rho_{XY}=0.4$, 则 Cov(X,Y)=_______.

解
$$\operatorname{cov}(X,Y) = \rho_{XY} \sqrt{DX} \cdot \sqrt{DY} = 12$$
.

6. 设总体 X 的期望值 μ 和方差 σ^2 都存在, 总体方差 σ^2 的无偏估计量 是 $\frac{k}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$,则k=______.

解
$$k = \frac{n}{n-1}$$
.

7. 设总体 $X \sim N(\mu, \sigma^2)$, μ 未知, 检验 H_0 : $\sigma^2 = \sigma_0^2$, 应选用的统计 量是 _____.

解
$$\frac{\sum\limits_{i=1}^{n}(X_{i}-\overline{X})^{2}}{\sigma_{0}^{2}}\sim \chi^{2}(n-1)$$
 (H₀为真时)

- 二 .单项选择题 (每小题 2 分,共 16 分)
- 1.6本中文书和4本外文书任意往书架上摆放,则4本外文书放在一起 的概率为()
 - (A) $\frac{4!6!}{10!}$ (B) $\frac{7}{10}$ (C) $\frac{4!7!}{10!}$ (D) $\frac{4}{10}$

解 本题应选 C.

- 2. 若事件 A.B 相互独立, 则下列正确的是 ()
- (A) P(B | A) = P(A | B) (B) P(B | A) = P(A)

- (C) $P(A \mid B) = P(B)$ (D) $P(A \mid B) = 1 P(A)$

解 由独立性的定义知, P(A|B) = P(A) = 1 - P(A), 故本题应选 D.

- 3. 设随机变量X服从参数为n,p的二项分布,且 EX = 1.6, DX = 1.28, 则 n, p 的值为 (
 - (A) n = 8, p = 0.2
- (B) n = 4, p = 0.4
- (C) n=5, p=0.32
- (D) n = 6, p = 0.3

由 np = 1.6, np(1-p) = 1.28, 解得 n = 8, p = 0.2, 本题应选 A.

- 4. 设随机变量 X 服从正态分布 N(2,1), 其概率密度函数为 f(x), 分布 函数为F(x),则有()
 - (A) $P(X \ge 0) = P(X \le 0) = 0.5$

- (B) $P(X \ge 2) = P(X \le 2) = 0.5$
- (c) $f(x) = f(-x), x \in (-\infty, +\infty)$
- (D) $F(-x) = 1 F(x), x \in (-\infty, +\infty)$

解 EX = 2. 故其密度函数关于 x = 2 对称. 故本题应选 B.

- 5. 如果随机变量 X 与 Y 满足: D(X + Y) = D(X Y), 则下列式子正 确的是()
 - (A) **X**与**Y**相互独立
- (B) X 与 Y 不相关

(C) DY = 0

(D) $DX \cdot DY = 0$

解 由 D(X+Y) = D(X-Y), 可得 cov(X,Y) = 0, 从而可知 X 与 Y不相关, 故本题应选 B.

6. 设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本, \overline{X} 为样本均值,

$$\Rightarrow Y = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2}, \quad \text{以} Y \sim ()$$

- (A) $\chi^2(n-1)$ (B) $\chi^2(n)$ (C) $N(\mu, \sigma^2)$ (D) $N(\mu, \frac{\sigma^2}{n})$

解 本题应选 A.

7. 设 X_1, X_2, \dots, X_n 是取自总体 $N(0, \sigma^2)$ 的样本,可以作为 σ^2 的无偏 估计量的统计量是(

$$\text{(A)} \quad \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \qquad \text{(B)} \quad \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2} \quad \text{(C)} \quad \frac{1}{n} \sum_{i=1}^{n} X_{i} \qquad \text{(D)} \quad \frac{1}{n-1} \sum_{i=1}^{n} X_{i}$$

解 由无偏估计的定义及期望的性质知,

 $E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}) = \frac{1}{n}\sum_{i=1}^{n}EX_{i}^{2} = EX^{2} = DX + (EX)^{2} = DX = \sigma^{2}$, then A is A. 择正确, 同理验算其他选项, B, C, D 均不正确. 故本题应选 A.

8. 样本 X_1, X_2, \cdots, X_n 来自正态总体 $\mathbf{N}(\mu, \sigma^2)$, 若进行假设检验, 当

() 时,一般采用统计量
$$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$$

- (A) μ 未知, 检验 $\sigma^2 = \sigma_0^2$ (B) μ 已知, 检验 $\sigma^2 = \sigma_0^2$
- (C) σ^2 未知, 检验 $\mu = \mu_0$ (D) σ^2 已知, 检验 $\mu = \mu_0$

解 本题应选 C.

三. (本题 8 分)

有两台车床生产同一型号螺杆,甲车床的产量是乙车床的1.5倍,甲车床的废品率为2%,乙车床的废品率为1%,现随机抽取一根螺杆检查,发现是废品,问该废品是由甲车床生产的概率是多少?

解 设 A_1 , A_2 分别表示螺杆由甲, 乙车床生产的事件. **B** 表示螺杆是废品的事件. 由贝叶斯公式可得

$$P(A_1 \mid B) = \frac{P(A_1)P(B \mid A_1)}{P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2)}$$
$$= \frac{\frac{3}{5} \cdot 0.02}{\frac{3}{5} \cdot 0.02 + \frac{2}{5} \cdot 0.01} = 0.75.$$

四. (本题 8 分)

假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周五个工作日里无故障,可获利润10万元,发生一次故障获利润5万元,发生两次故障获利润0万元,发生三次或三次以上故障就要亏损2万元,问一周内期望利润是多少?

解 设 X 表示一周中所获的利润, 其分布律为:

从而由期望的定义计算可得 EX = 5.216.

五. (本题 12 分)

1. 设随机向量X, Y的联合分布为:

$X \setminus Y$	1	2	3
1	0	1	1
	1	6 1	12 1
2	$\frac{1}{6}$	- 6	6
3	$\frac{1}{12}$	$\frac{1}{2}$	0
	12	6	

(1) 求 X . Y 的边际分布: (2) 判断 X . Y 是否独立.

$$\mathbf{H}$$
 (1) \mathbf{X} 的边际分布为:

$$Y$$
 的边际分布为:

- (2) X 与 Y 不相互独立。
- 2. 设随机变量(X,Y)的联合密度函数为:

$$f(x,y) = \begin{cases} e^{-y}, & 0 < x < y, \\ 0, & 其他, \end{cases}$$

求概率 $P(X+Y\leq 1)$.

解
$$P(X + Y \le 1) = \int_0^{\frac{1}{2}} dx \int_x^{1-x} e^{-y} dy = 1 + e^{-1} - 2e^{-\frac{1}{2}}.$$

六. (本题 8 分)

设连续型随机变量 X 的分布函数为:

$$F(x) = \begin{cases} A + Be^{-\frac{x^2}{2}}, & x > 0, \\ 0, & x \le 0, \end{cases}$$

求: (1) 系数 $A \otimes B$;

- (2) 随机变量 X 的概率密度:
- (3) $P(\sqrt{\ln 4} \le X \le \sqrt{\ln 9})$.

解 (1) 由分布函数的性质知

$$F(+\infty) = \lim_{x \to +\infty} (A + Be^{-\frac{x^2}{2}}) = A = 1,$$

$$\lim_{x\to 0^+} F(x) = \lim_{x\to 0^+} (A + Be^{-\frac{x^2}{2}}) = A + B = 0 = F(0), \text{ if } B = -1;$$

(2) 分布函数的导数即为其概率密度,即

$$f(x) = \begin{cases} xe^{-\frac{x^2}{2}}, & x > 0, \\ 0, & x \le 0 \end{cases}$$

(3)
$$P(\sqrt{\ln 4} \le X \le \sqrt{\ln 9}) = F(\sqrt{\ln 9}) - F(\sqrt{\ln 4}) = \frac{1}{6}$$
.

七. (本题 8 分)

设 X_1, X_2, \dots, X_n 为总体X的一个样本,X的概率密度为:

$$f(x) = \begin{cases} \sqrt{\theta} x^{\sqrt{\theta} - 1}, & 0 \le x \le 1, \\ 0, & 其他, \end{cases}$$

其中 $\theta > 0$, 求未知参数 θ 的矩估计量与极大似然估计量.

解 令
$$EX = \int_0^1 \sqrt{\theta} x^{\sqrt{\theta}} dx = \frac{\sqrt{\theta}}{\sqrt{\theta} + 1} = \overline{X}$$
,从而解得 θ 的矩估计量为
$$\hat{\theta} = (\frac{\overline{X}}{1 - \overline{X}})^2.$$

极大似然估计为:

$$\widehat{\theta} = \frac{n + \sum_{i=1}^{n} \ln X_{i}}{\sum_{i=1}^{n} \ln X_{i}}.$$
 (具体做法类似与模拟试卷二第八题)

八. (本题10分)

设某次考试的考生成绩服从正态分布,从中随机地抽取 36 位考生的成绩,算得平均成绩为 66.5 分,标准差为15 分,问在显著水平 0.05 下,是否可认为全体考生的平均成绩为 70 分?

 \mathbf{H} 假设 \mathbf{H}_0 : $\boldsymbol{\mu} = 70$, 选取统计量

$$T = \frac{\overline{X} - \mu}{s / \sqrt{n}} \sim t(n-1), \quad (H_0 \, \text{为真时})$$

在 $\alpha = 0.05$ 下,查t分布的双侧临界值表知 $t_{0.025} = 2.0301$.

另一方面, 计算统计量的值

$$|T| = \left| \frac{66.5 - 70}{15 / \sqrt{36}} \right| = 1.4 < 2.0301,$$

从而接受原假设,即可认为全体考生的平均成绩为70分.

九. (本题12分)

两家银行分别对 21个储户和16个储户的年存款余额进行抽样调查,测得其平均年存款余额分别为 x=2600 元和 y=2700 元,样本标准差相应地为 $S_1=81$ 元和 $S_2=105$ 元,假设年存款余额服从正态分布,试比较两家银行的

储户的平均年存款余额有无显著差异? ($\alpha = 0.10$)

解 此题要求检验 $\mu_1 = \mu_2$,由于 t 检验必须在方差相等的条件下进行,因此必须先检验 σ_1^2 与 σ_2^2 是否相等.

第一步假设
$$\mathbf{H}_0$$
: $\sigma_1^2 = \sigma_2^2$, 统计量 $F = \frac{s_1^2}{s_2^2} {}^{\sim} F(n_1 - 1, n_2 - 1)$,

经检验,接受 H_0 : $\sigma_1^2 = \sigma_2^2$;

第二步假设 $H_0: \mu_1 = \mu_2$,

统计量
$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{(\frac{1}{n_1} + \frac{1}{n_2})\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}} \sim t(n_1 + n_2 - 2)$$

经检验, 拒绝 H_0 , 即两家银行的储户的平均年存款余额有显著差异. (请参见模拟试题(一)第九大题)

十. (本题 4 分)

设总体 X 服从参数为 λ 的泊松分布, λ 为未知参数,

证明: T(X) 是 $e^{-2\lambda}$ 的一个无偏估计量.

证明
$$E[T(X)] = T \sum_{x=0}^{\infty} T(x) P(X = x)$$

$$= \sum_{x=0}^{\infty} T(x) \frac{\lambda^{x}}{x!} e^{-\lambda} = \sum_{n=0}^{\infty} (-1)^{n} \frac{\lambda^{n}}{n!} e^{-\lambda} = e^{-2\lambda},$$

所以T(X)是 $e^{-2\lambda}$ 的一个无偏估计量.

模拟试题 (四)参考答案

一.填空题(每小题 2分,共20分)

1. 设
$$P(A)$$
 = 0. 4, $P(B)$ = 0. 5. 若 $P(A|B)$ = 0.7, 则 $P(A+B)$ = _____.

$$P(A + B) = P(A) + P(B) - P(B)P(A \mid B) = 0.55$$

2. 若随机变量 X 服从二项分布, 即 $X \sim B(5,0.1)$, 则 D(1-2X) = ...

$$M = D(1-2X) = 4DX = 4 \cdot 5 \cdot 0.1 \cdot 0.9 = 1.8$$
.

3. 三次独立重复射击中,若至少有一次击中的概率为 $\frac{37}{64}$,则每次击中的概率为______.

解 $\frac{3}{4}$.

4. 设随机变量 X 的概率密度是: $f(x) = \begin{cases} 3x^2, & 0 < x < 1, \\ 0, & 其他, \end{cases}$ 且 $P(X \ge a) = 0.784$,则a =______.

解 由
$$P(X \ge a) = 0.784$$
 知, $0 < \alpha < 1$. 故

$$P(X \ge a) = \int_{\alpha}^{1} 3x^2 dx = 1 - \alpha^3 = 0.784$$
, $\text{Mm } \alpha = 0.6$.

5. 利用正态分布的结论, 有:
$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} (x^2 - 4x + 4) e^{-\frac{(x-2)^2}{2}} dx = \underline{\qquad}.$$

解 令
$$x-2=t$$
,则原式 = $\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} t^2 e^{-\frac{t^2}{2}} dt = DX + (EX)^2 = 1$,这里 $X \sim N(0,1)$.

6. 设总体 X 的密度函数为:

$$f(x) = \begin{cases} \alpha x^{\alpha - 1}, & 0 < x < 1, \\ 0, & \not\equiv \&, \end{cases}$$

(其中 α 为参数 $\alpha > 0$), x_1, x_2, \dots, x_n 是来自总体 X 的样本观测值,则样本的似然函数 $L(x_1, x_2, \dots, x_n; \alpha) =$ ______.

解
$$\alpha^n \prod_{i=1}^n x_i^{\alpha-1}$$
.

解 完全相关.

解 t(n-1).

9. 设 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, X 与 Y 相互独立. 从 X, Y 中分别抽取容量为 n_1 , n_2 的样本, 样本均值分别为 \overline{X} , \overline{Y} , 则 \overline{X} — \overline{Y} 服从分布______.

解
$$N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$
.

10. 设随机变量 X 和 Y 的相关系数为 0. 9, 若 Z = X - 0.4, 则 Y 与 Z 的相关系数为______.

$$\text{FW}$$
 $\text{cov}(Y, Z) = \text{cov}(Y, X - 0.4) = \text{cov}(Y, X) = 0.9$.

- 二.单项选择题(每小题 2 分,共 12 分)
- 1. 设随机变量 X 的数学期望 EX 与 $DX = \sigma^2$ 均存在, 由切比雪夫不等式估计概率 $P\{|X EX| < 4\sigma\}$ 为()

(A)
$$\geq \frac{1}{16}$$
 (B) $\leq \frac{1}{16}$ (C) $\geq \frac{15}{16}$ (D) $\leq \frac{15}{16}$

解 本题应选 C.

2. A, B 为随机随机事件, 且 $B \subset A$, 则下列式子正确的是().

(A)
$$P(A \cup B) = P(A)$$
 (B) $P(B-A) = P(B) - P(A)$

(C)
$$P(AB) = P(A)$$
 (D) $P(B|A) = P(B)$

解 本题应选 A.

3. 设随机变量
$$X$$
 的密度函数为 $f(x) = \begin{cases} Ax + B, & 0 \le x \le 1, \\ 0, & 其他, \end{cases}$

(A)
$$A = 1, B = -0.5$$

(B)
$$A = -0.5, B = 1$$

(C)
$$A = 0.5, B = 1$$

(D)
$$A = 1$$
, $B = 0.5$

解 令 $\int_0^1 (Ax+B) dx = 1$, $\int_0^1 (Ax+B) x dx = \frac{7}{12}$, 解得 A=1, B=0.5, 故本题应选 D.

- 4. 若随机变量 X 与 Y 不相关, 则有().
- (A) D(X 3Y) = D(X) 9D(Y)
- (B) $D(XY) = D(X) \times D(Y)$
- (C) $E\{[X E(X)][Y E(Y)]\} = 0$
- (D) P(Y = aX + b) = 1

解 本题应选 C.

5. 已知随机变量 $F\sim F(n_1,n_2)$,且 $P\{F>F_\alpha(n_1,n_2)\}=\alpha$,则 $F_{1-\alpha}(n_1,n_2)=($).

(A)
$$\frac{1}{F_{\alpha}(n_1, n_2)}$$

(B)
$$\frac{1}{F_{1-\alpha}(n_2, n_1)}$$

(C)
$$\frac{1}{F_{\alpha}(n_2, n_1)}$$

(D)
$$\frac{1}{F_{1-\alpha}(n_1, n_2)}$$

解

6. 将一枚硬币独立地掷两次,记事件: $A_1 = \{$ 掷第一次出现正面 $\}$, $A_2 = \{$ 掷第二次出现正面 $\}$, $A_3 = \{$ 正、反面各出现一次 $\}$, $A_4 = \{$ 正面出现两次 $\}$,则事件().

- (A) A₁, A₂, A₃相互独立
- (B) A₂, A₃, A₄ 相互独立
- (C) A_1, A_2, A_3 两两独立
- (D) A_2, A_3, A_4 两两独立

解 $P(A_1) = \frac{1}{2}$, $P(A_2) = \frac{1}{2}$, $P(A_3) = \frac{1}{2}$, $P(A_4) = \frac{1}{4}$, 再由事件独立的充分必要条件可知 A_1 , A_2 , A_3 两两独立, 本题应选 C.

三.计算题(每小题 8 分,共 48 分)

1. 某厂由甲, 乙, 丙三个车间生产同一种产品, 它们的产量之比为 3:2:1, 各车间产品的不合格率依次为 8%, 9%, 12%. 现从该厂产品中任意抽取一件, 求:(1) 取到不合格产品的概率; (2) 若取到的是不合格品, 求它是由甲厂生产的概率.

解 (1) 运用全概公式, 0.09;

- (2) 运用贝叶斯公式, 0.44.(具体做法参见模拟试卷(一)第四颗)
- 2. 一实习生用一台机器接连独立地制造三个同样的零件, 第i个零件是不合格品的概率为 $p_i = \frac{1}{1+i}$ (i=1,2,3), 以 X 表示三个零件中合格品的个数, 求: (1) X 的概率分布; (2) X 的方差 DX.

解 (1)

(2)
$$EX = \frac{1}{4} + 2 \cdot \frac{11}{24} + 3 \cdot \frac{1}{4} = \frac{23}{12}$$
,

$$EX^2 = \frac{1}{4} + 4 \cdot \frac{11}{24} + 9 \cdot \frac{1}{4} = \frac{7}{2}$$
, $\&DX = EX^2 - (EX)^2 = 0.521$.

3. 设总体 $X \sim N(0, \sigma^2)$, σ^2 为未知参数, x_1, x_2, \dots, x_n 是来自总体 X 的一组样本值, 求 σ^2 的最大似然估计.

解 似然函数
$$L(\sigma^2) = (\frac{1}{\sqrt{2\pi}\sigma})^n e^{-\frac{\sum\limits_{i=1}^n x_i^2}{2\sigma^2}} = (\frac{1}{\sqrt{2\pi}\sigma^2})^{\frac{n}{2}} e^{-\frac{\sum\limits_{i=1}^n x_i^2}{2\sigma^2}},$$

两边取对数

$$\ln L(\sigma^{2}) = -\frac{n}{4} \ln 2\pi - \frac{n}{2} \ln \sigma^{2} - \frac{\sum_{i=1}^{n} x_{i}^{2}}{2\sigma^{2}},$$

关于 σ^2 求导,并令其为零,得

$$-\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{\sum_{i=1}^n x_i^2}{2(\sigma^2)^2} = 0,$$

从而解得极大似然估计量为 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n x_i^2$.

4. 二维随机变量(X,Y)的联合概率密度:

$$f(x,y) = \begin{cases} 2e^{-(x+2y)}, & x > 0, y > 0, \\ 0, & \text{ } \sharp \dot{\Xi}, \end{cases}$$

求: (1) X 与Y 之间是否相互独立, 判断 X 与Y 是否线性相关;

(2) $P(Y + X \le 1)$.

$$\mathbf{f}_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{0}^{+\infty} 2e^{-(x+2y)} dy, & x > 0, \\ 0, & x \le 0 \end{cases}$$

$$= \begin{cases} e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

同理

$$f_Y(y) = \begin{cases} e^{-2y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

从而

$$f(x, y) = f_{y}(x) f_{y}(y),$$

故X与Y相互独立,因而X与Y一定不相关.

(2)
$$P(Y+X \le 1) = \int_0^1 dx \int_0^{1-x} 2e^{-(x+2y)} dy = (1-e^{-1})^2$$
.

- 5. 某人乘车或步行上班, 他等车的时间 X (单位:分钟) 服从参数为 $\frac{1}{5}$ 的指数分布, 如果等车时间超过 10 分钟他就步行上班. 若此人一周上班 5 次, 以 Y 表示他一周步行上班的次数. 求 Y 的概率分布; 并求他一周内至少有一次步行上班的概率.
 - 解 此人每天等车时间超过 10 分钟也即步行上班的概率为

$$P(X > 10) = \int_{10}^{+\infty} \frac{1}{5} e^{-\frac{x}{5}} dx = e^{-2}.$$

故 $Y \sim B(5, e^{-2})$.

$$P(Y \ge 1) = 1 - (1 - e^{-2})^5$$
.

6. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{3 \cdot \sqrt[3]{x^2}}, & x \in [1, 8], \\ 0, & \text{ 其他}, \end{cases}$$

F(x) 是 X 的分布函数. 求随机变量 Y = F(X) 的概率分布.

$$\mathbf{F}(x) = \begin{cases} 0, & x \le 1, \\ x^{\frac{1}{3}} - 1, & 1 < x \le 8, \\ 1, & x > 8. \end{cases}$$

(3) 当 y < 0 时, $F_Y(y) = P(Y \le y) = 0$; 当 $0 \le y < 1$ 时,

$$F_Y(y) = P(Y \le y) = P(X^{\frac{1}{3}} - 1 \le y) = P(X \le (y+1)^3)$$

= $F_X((y+1)^3) = y$;

当 $y \ge 1$ 时, $F_y(y) = P(Y \le y) = 1$.

故对 $F_{Y}(y)$ 求导可得Y的概率密度,

$$f_{Y}(y) = \begin{cases} 1, & 0 < y < 1, \\ 0, & \text{其它,} \end{cases}$$

即 $Y \sim U[0,1]$

四.应用题(第1题7分、第2题8分,共15分)

1. 假设对目标独立地发射 400 发炮弹,已知每一发炮弹的命中率等于 0. 2,用中心极限定理计算命中 60 发到 100 发之间的概率.

解 设
$$X_i = \begin{cases} 0, & $i$$$
 发炮弹没有命中, $(i = 1, 2, \dots, 400)$,则 $1, & $i$$ 发炮弹命中

$$X = \sum_{i=1}^{400} X_i \sim B(400, 0.2)$$

表示 400 发炮弹命中的发数,且EX = 80, DX = 64,故由中心极限定理知,

$$P(60 < X < 100) = P(|X - 80| < 20) = P(|\frac{X - 80}{\sqrt{64}}| < \frac{20}{\sqrt{64}})$$
$$= 2\Phi(\frac{20}{8}) - 1 = 0.9876.$$

2. 某厂生产铜丝, 生产一向稳定. 现从该厂产品中随机抽出 10 段检查其 折断力, 测后经计算: $\bar{x}=287.5$, $\sum_{i=1}^{n}(x_i-\bar{x})^2=160.5$. 假定铜丝折断力服 从正态分布, 问是否可以相信该厂生产的铜丝的折断力方差为 16? ($\alpha=0.1$)

解
$$H_0$$
: $\sigma^2 = 16$, H_1 : $\sigma^2 \neq 16$.

采用统计量

$$\chi^2 = \frac{n-1}{\sigma^2} S^2$$
, $E(x) = \frac{n-1}{\sigma^2} S^2$, $E(x) = \frac{n-1}{\sigma^2$

由 $\alpha = 0.1$, 查得临界值

$$\chi^2_{1-\alpha/2} = \chi^2_{0.95}(9) = 3.325$$
, $\chi^2_{\alpha/2} = \chi^2_{0.05}(9) = 16.919$,

由样本值算得 $\chi^2 = \frac{160.5}{16} \approx 10.03$,由于 $\chi^2_{1-\alpha/2} < \chi^2 < \chi^2_{\alpha/2}$,所以不拒绝 H_0 ,即该厂生产的铜丝的折断力方差为 16.

五.证明题(5分)

若 随 机 变 量 X 的 密 度 函 数 f(x) , 对 任 意 的 $x \in R$, 满 足: f(x) = f(-x) , F(x) 是其分布函数. 证明: 对任意实数 a , 有

$$F(-a) = \frac{1}{2} - \int_0^a f(x) dx.$$
证明
$$F(-a) = \int_{-\infty}^{-a} f(x) dx = \int_{-\infty}^0 f(x) dx + \int_0^{-a} f(x) dx$$

$$= \frac{1}{2} + \int_0^{-a} f(x) dx \quad (\diamondsuit t = -x)$$

$$= \frac{1}{2} - \int_0^a f(-t) dt = \frac{1}{2} - \int_0^a f(t) dt = \frac{1}{2} - \int_0^a f(x) dx.$$