Fonctions Numériques Limites de fonctions MPSI 2

1 Définitions

Définition 1.0.1

Soit $f \in \mathcal{F}(I, \mathbb{R})$

Soit $x_0 \in \mathbb{R}$, tel que $x_0 \in I$ ou x_0 est une extrémité de I.

Soit $l \in \mathbb{R}$

• f(x) tend vers l quand x tend vers x_0 :

$$\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Définition 1.0.2

Soit $f \in \mathcal{F}(I, \mathbb{R})$

Soit $x_0 \in \mathbb{R}$, tel que $x_0 \in I$ ou x_0 est une extrémité de I.

• f(x) tend vers $+\infty$ quand x tend vers x_0 :

$$\forall K \in \mathbb{R}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow K < f(x)$$

• f(x) tend vers $-\infty$ quand x tend vers x_0 :

$$\forall K \in \mathbb{R}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow f(x) < K$$

Propriété 1.0.1

Si $x_0 \in I$, alors la seule limite éventuelle de f(x) en x_0 est $f(x_0)$

On suppose qu'il existe l dans \mathbb{R} , tel que $f(x) \underset{x \to x_0}{\longrightarrow} l$

$$\boxed{\text{HA}} \ l \neq f(x_0)$$

① $l \in \mathbb{R}$

Alors $\forall \varepsilon \in \mathbb{R}^{+*}$, $\exists \alpha \in \mathbb{R}^{+*}$, $\forall x \in I$, $|x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$ Supposons $l > f(x_0)$

Posons $\varepsilon = \frac{l - f(x_0)}{2}$

Alors $f(x_0) \notin]\tilde{l} - \varepsilon, l + \varepsilon[.$

Soit α vérifiant les conditions de limites.

Donc $\forall x \in I, |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$

En particulier, avec $x = x_0$, on a $f(x_0) \in]l - \varepsilon, l + varepsilon[$

On a donc une contradiction.

(2) $l = +\infty$

Alors $\forall K \in \mathbb{R}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow K < f(x)$

Soit K un réel strictement supérieur à $f(x_0)$

Soit α un réel vérifiant les condition de limites.

Donc $\forall x \in I, |x - x_0| < \alpha \Rightarrow f(x) > K$

En particulier, avec $x = x_0$, on a $f(x_0) > K$

On a donc une contradiction.

(3) $l=-\infty$

On procède de même.

Conclusion: $l = f(x_0)$

Définition 1.0.3

Soit $f \in \mathcal{F}(I, \mathbb{R})$

• f(x) tend vers $l \in \mathbb{R}$ lorsque x tend vers $+\infty$:

$$\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists k \in \mathbb{R}, \ \forall x \in I, \ x > k \Rightarrow |f(x) - l| < \varepsilon$$

• f(x) tend vers $+\infty$ lorsque x tend vers $+\infty$:

$$\forall K \in \mathbb{R}, \ \exists k \in \mathbb{R}, \ \forall x \in I, \ x > k \Rightarrow f(x) > K$$

Propriété 1.0.2

Soit $f \in \mathcal{F}(I, \mathbb{R})$.

Soit $x_0 \in \mathbb{R}$ tel que x_0 soit un élément de I ou une extrémité de I.

Soit $(l, l') \in \overline{\mathbb{R}} \times \overline{\mathbb{R}}$.

Si f admet l et l' comme limite en x_0 , alors l = l'

Notations: $\lim_{\substack{x \to x_0 \\ x \in I}} f(x) = l \text{ et } f(x) \underset{x \in I}{\longrightarrow} l$

Cas où $x_0 \in \mathbb{R}$ et $l \in \mathbb{R}$ et $l' \in \mathbb{R}$

- ①: $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha_1 \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x x_0| < \alpha_1 \Rightarrow |f(x) l)| < \varepsilon$
- ②: $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha_2 \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x x_0| < \alpha_2 \Rightarrow |f(x) l'| < \varepsilon$

Supposons $l \neq l'$, et l > l'

Posons
$$\varepsilon = \frac{l-l'}{2}$$

On a donc $]l - \varepsilon, l + \varepsilon[\cap]l' - \varepsilon, l' + \varepsilon[=\varnothing]$

Soit α_1 et α_2 vérifiant ① et ②.

Soit $\alpha = \min(\{\alpha_1, \alpha_2\})$

Alors $\forall x \in I$, $|x - x_0| < \alpha \Rightarrow (|f(x) - l| < \varepsilon \text{ et } |f(x) - l'| < \varepsilon)$

Autrement dit: $\forall x \in I, |x - x_0| < \alpha \Rightarrow f(x) \in]l - \varepsilon, l + \varepsilon \cap [l' - \varepsilon, l' + \varepsilon]$

On a donc une contradiction.

Conclusion: l = l'

Remarques:

- Soit $l \in \mathbb{R}$. Alors $f(x) \underset{x \in I}{\longrightarrow} l \iff f(x) l \underset{x \in I}{\longrightarrow} 0$
- Soit $l \in \mathbb{R}^{+*}$. Alors $f(x) \underset{x \to x_0}{\overset{x \in I}{\longrightarrow}} l \iff \frac{f(x)}{l} \underset{x \to x_0}{\overset{x \in I}{\longrightarrow}} 1$ Soit $x_0 \in I$. Alors $f(x) \underset{x \to I}{\overset{x \to I}{\longrightarrow}} l \iff f(x_0 + h) \underset{h \to 0}{\overset{x \in I}{\longrightarrow}} l$

Propriété 1.0.3

On suppose que f(x) tend vers $l \in \mathbb{R}$ quand x tend vers $x_0 \in I$.

- $Si\ f(x) \in [a,b]$ au voisinage de x_0 , alors $l \in [a,b]$.
- Au voisinage de x_0 : l 1 < f(x) < l + 1
- Si $l \neq 0$ alors au voisinage de x_0 : $\frac{|l|}{2} < |f(x)| < \frac{3|l|}{2}$

 1^{er} point dans le cas où $x_0 = +\infty$

 $\overline{\text{Donc}}$ (1): $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists k \in \mathbb{R}, \ \forall x \in I, \ x > k \Rightarrow |f(x) - l| < \varepsilon$

On suppose $\exists k \in \mathbb{R}, \ \forall x \in I, \ x > k \Rightarrow f(x) \in [a, b]$

Montrer que $l \in [a, b]$

 $|HA| l \notin [a, b]$. Donc l < a ou l > b.

• Si l < a

Soit $\varepsilon = a - l \text{ (car } l < a)$

Donc ②: $\exists k \in \mathbb{R}, \ \forall x \in I, \ x > k \Rightarrow f(x) \in]2l - a, a[$

Soit k_1 et k_2 deux réels vérifiant (1) et (2).

On pose $k = \min\{k_1, k_2\}$

D'après (1) et (2): $\forall x \in I, \ x > k \Rightarrow f(x) \in]2l - a, a[\cap [a, b]]$

Or, $|2l - a, a| \cap [a, b] = \emptyset$

On a donc une contradiction.

• Si l > b, on procède de même.

On conclut que $l \in [a, b]$

 $2^{\rm \grave{e}me}$ point: On revient aux définitions avec $\varepsilon=1$

 $3^{\text{ème}}$ point: On revient aux définitions et on prend $\varepsilon = \frac{|l|}{2}$

Propriété 1.0.4

Soit $x_0 \in \mathbb{R}$.

• $Si\ f(x) \underset{x \to x_0}{\longrightarrow} l$, $avec\ l \in \mathbb{R}$, $Alors\ f\ est\ born\'ee\ au\ voisinage\ de\ x_0$.

• $Si\ f(x) \xrightarrow[x \to x_0]{} l$, $avec\ l \in \mathbb{R}^*$,

Alors |f(x)| est minoré par un nombre strictement positif au voisinage de x_0

• Si f(x) est de signe constant au voisinage de $+\infty$, et si $f(x) \underset{x \to x_0}{\longrightarrow} l$, Alors l est du même signe.

Utilisation des propriétés précédentes.

Définition 1.0.4

Soit $f \in \mathcal{F}(I, \mathbb{R})$.

Soit $x_0 \in I$.

On note $I^+ = I \cap]x_0, +\infty[$ et $I^- = I \cap]-\infty, x_0[$

- On appelle <u>limite à droite de f(x) en x_0 </u> la limite finie, si elle existe, de f(x) lorsque x tend vers x_0 sur I^+
- On appelle <u>limite</u> à gauche de f(x) en x_0 la limite finie, si elle existe, de f(x) lorsque x tend vers x_0 sur I^-

Notations: $\lim_{\substack{x\to x_0\\x\in I^+}}f(x)=f(x_0^+)$ et $\lim_{\substack{x\to x_0\\x\in I^-}}f(x)=f(x_0^-)$

Propriété 1.0.5

Soit $x_0 \in I$

- $Si\ f(x) \xrightarrow[x \to x_0]{} l$, $alors\ f(x_0^+) = f(x_0^-) = l$.
- Si f(x) admet une limite à droite et à gauche en x_0 , et si $f(x_0^+) = f(x_0^-) = f(x_0)$, Alors $f(x) \underset{x \to x_0}{\longrightarrow} f(x_0)$.

 $\frac{1^{\text{er}} \text{ point: On suppose } \forall \varepsilon \in \mathbb{R}^{+*}, \exists \alpha \in \mathbb{R}^{+*}, \forall x \in I, |x - x_0| < \alpha \Rightarrow |f(x) - l| < \varepsilon}{\text{Alors: } \forall \varepsilon \in \mathbb{R}^{+*}, \exists \alpha \in \mathbb{R}^{+*}, \forall x \in I^+, |x - x_0| < \alpha \Rightarrow |f(x) - l| < \varepsilon}$ Et: $\forall \varepsilon \in \mathbb{R}^{+*}, \exists \alpha \in \mathbb{R}^{+*}, \forall x \in I^-, |x - x_0| < \alpha \Rightarrow |f(x) - l| < \varepsilon}$ Donc f(x) admet une limite à droite et à gauche en x_0 , et $f(x_0^+) = f(x_0^-) = l$ $2^{\text{ème}}$ point: On suppose que $f(x_0^+) = f(x_0^-) = f(x_0)$.

```
Soit \varepsilon \in \mathbb{R}^{+*} fixé.

On a: \exists \alpha_1 \in \mathbb{R}^{+*}, \forall x \in I^+, |x - x_0| < \alpha_1 \Rightarrow |f(x) - f(x_0)| < \varepsilon

Et: \exists \alpha_2 \in \mathbb{R}^{+*}, \forall x \in I^-, |x - x_0| < \alpha_2 \Rightarrow |f(x) - f(x_0)| < \varepsilon

Soit \alpha_1 et \alpha_2 deux tels réels.

Soit \alpha = \min(\{\alpha_1, \alpha_2\})

D'où: \forall x \in I \setminus \{x_0\}, |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon

Par ailleurs, pour x = x_0: |x - x_0| < \alpha et |f(x) - f(x_0)| < \varepsilon

Donc: \forall x \in I, |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon

Ce raisonnement étant valable pour tout \varepsilon \in \mathbb{R}^{+*}, on conclut que f(x) \xrightarrow[x \to x_0]{} f(x_0)
```

2 Limites et continuité

```
Définition 2.0.5
Soit I un intervalle non vide.
Soit f une fonction numérique définie sur I.
Soit x_0 un élément de I.
On dit que f est continue en x_0 si:
\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon
```

Remarque: on peut prolonger certaines fonctions par continuité.

3 Limite de fonction et convergence de suites

Propriété 3.0.6

Caractérisation séquentielle de la limite

Soit $f \in \mathcal{F}(I, \mathbb{R})$.

Soit x_0 et l'deux éléments de \mathbb{R}

On a équivalence entre:

- $\bullet \ f(x) \underset{x \to x_0}{\longrightarrow} l$
- Pour toute suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de I convergeant vers x_0 , $f(x_n)\underset{n\to+\infty}{\longrightarrow} l$
 - On suppose que $f(x) \underset{x \to x_0}{\longrightarrow} l$. Donc ①: $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists \alpha \in \mathbb{R}^{+*}, \ \forall x \in I, \ |x - x_0| < \alpha \Rightarrow |f(x) - l| < \varepsilon$ Soit $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de I convergeant vers x_0 . Montrer que $f(x_n) \underset{n \to +\infty}{\longrightarrow} l$

Soit ε un réel strictement positif.

Soit α un réel vérifiant (1) pour ε .

De plus, (x_n) converge: $\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |x_n - x_0| < \alpha$

Soit n_0 un tel entier.

D'où: $\forall n \in \mathbb{N}, \ (n \geqslant n_0) \Rightarrow (|x_n - x_0| < \alpha) \Rightarrow (|f(x_n) - l| < \varepsilon)$

Donc $f(x_n) \xrightarrow[n \to +\infty]{} l$

C'est vrai pour toute suite d'éléments de I convergeant vers x_0 ,

Donc la proposition 2 est vérifiée.

• On suppose que pour toute suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de I convergeant vers x_0 , on ait: $f(x_n) \underset{n\to+\infty}{\longrightarrow} l$

 $\overline{\text{HA}}$ Supposons que f(x) ne tende pas vers l quand x tend vers x_0

Alors $\exists \varepsilon \in \mathbb{R}^{+*}, \ \forall \alpha \in \mathbb{R}^{+*}, \ \exists x \in \mathcal{I}, \ |x - x_0| < \alpha \text{ et } |f(x) - l| \geqslant \varepsilon$

Soit ε un tel réel.

Pour $n \in \mathbb{N}^*$, on pose $\alpha = \frac{1}{n}$: $\exists x \in I, |x - x_0| < \alpha \text{ et } |f(x) - l| \ge \varepsilon$

Soit x_n un tel réel.

On procède de même pour tout n de N*. On construit donc une suite $(x_n)_{n\in\mathbb{N}^*}$

- On a: \bullet $(x_n)_{n\in\mathbb{N}^*}$ est une suite d'éléments de I
 - $(x_n)_{n\in\mathbb{N}^*}$ converge vers x_0
 - $(f(x_n))_{n\in\mathbb{N}^*}$ ne converge pas vers l

On contredit l'hypothèse de départ, donc HA est fausse.

Donc $f(x_n) \xrightarrow[n \to +\infty]{} l$

4 Liens entre notion de limite et de monotonie

Propriété 4.0.7

Soit $f: I \to \mathbb{R}$ une application monotone sur I.

Alors f(x) admet une limite à droite et à gauche en tout point de I.

Soit x_0 un élément de I qui ne soit pas une extrémité de I

• Soit $I^+ = I \cap [x_0, +\infty[$ et $I^- = I \cap] -\infty, x_0[$

 I^+ et I^- ne sont pas vides car x_0 n'est pas une extrémité de I.

On considère $A^+ = f(I^+)$ et $A^- = f(I^-)$

f est une application, I^+ et I^- ne sont pas vides, donc A^+ et A^- ne sont pas vides. f est croissante, donc pour tout x de I:

$$x > x_0 \Rightarrow f(x) \geqslant f(x_0)$$

$$x < x_0 \Rightarrow f(x) \leqslant f(x_0)$$

Ainsi, $f(x_0)$ est un minorant de A^+ et un majorant de A^- .

Donc A^+ admet une borne inf notée M, et A^- admet une borne sup notée m.

On a ainsi $m \leqslant f(x_0) \leqslant M$

• Montrer que f(x) admet une limite à droite en x_0 , et que $f(x_0^+) = M$ Soit $\varepsilon \in \mathbb{R}^{+*}$ fixé.

Critère de borne inf avec ε :

$$\exists x_1 \in I^+, \ M \leqslant f(x_1) < M + \varepsilon$$

Soit x_1 un tel réel.

Donc
$$\forall x \in \mathbb{R}, \ (x_0 < x < x_1) \Rightarrow M \leqslant f(x) \leqslant f(x_1) < M + \varepsilon$$

Posons $\alpha = x_1 - x_0$

Alors
$$\begin{cases} x_0 < x < x_1 \\ x \in \mathbb{R} \end{cases} \iff \begin{cases} 0 < x - x_0 < \alpha \\ x \in I^+ \end{cases} \iff \begin{cases} |x - x_0| < \alpha \\ x \in I^+ \end{cases}$$

Finalement: $\forall x \in \mathcal{I}^+, (|x - x_0| < \alpha) \Rightarrow (M \leqslant f(x) < M + \varepsilon) \Rightarrow (|f(x) - M| < \varepsilon)$

Ce raisonnement est valable pour tout $\varepsilon \in \mathbb{R}^{+*}$,

Donc on conclut que f(x) admet une limite à droite, et que $f(x_0^+) = M$

• De même, on montre que $f(x_0^-)$ existe et vaut m.

Ce raisonnement est vrai en tout point x_0 de I.

On en conclut que f(x) admet une limite à droite et à gauche en tout point de I. \square

Propriété 4.0.8

Soit $f:[a,+\infty[\to\mathbb{R} \ une\ fonction\ numérique\ croissante.$

De deux choses l'une:

• f admet un majorant K.

Alors f(x) admet une limite l en $+\infty$, et $l \leq K$

• f n'est pas majorée.

Alors f(x) tend vers $+\infty$ quand x tend vers $+\infty$.