Experimentación en un motor DC ante un voltaje de entrada y una resistencia de armadura

Bastian Quiero Emilio Álvarez Joaquín Toro

Introducción

En la siguiente presentación se muestra la investigación y experimentación de la **corriente de armadura**, **velocidad angular** ante la variación del voltaje de entrada y resistencia de armadura en un motor DC

Motor DC

Un motor DC es aquel que puede transformar la energía eléctrica en energía mecánica, Esto mediante el principio de **inducción electromagnética**, de manera que se polarice la bobina siendo empujada o atraída por uno de los imanes situados dentro del motor, generando así la rotación del eje.

Imagen 1: Motor DC de imanes permanentes.

Ecuaciones del modelo

Ley de Kirchhoff (LKV)

Esta ley formula ecuaciones en cada bucle, representando la suma de voltajes en cada bucle como cero.

$$L_{a} \frac{di_{a}}{dt} = v_{s} - Ri_{a} - V_{Ea}$$

La ecuación analítica de la ley de Kirchhoff está dada por:

$$i_a(t) = \frac{V_t}{R_a} (1 - e^{-\frac{R_a^* t}{L_a}})$$

Variables

- La corriente de armadura será la (En la imagen 2 es l)
- El voltaje de entrada será **Vs** o **Vt**
- El voltaje Ve será dependiente de Ka y la frecuencia angular

Imagen 2: Representación del circuito de un motor de corriente continua

$$V_{Ea} = K_a \omega_m$$

Voltaje inducido (FEM)

:Tensión generada en la armadura del motor debida a la rotación de esta dentro del campo magnético de los imanes

2.ª ley de Newton rotacional

Esta es una ecuación análoga de la segunda ley de Newton que describe la dinámica rotacional del motor.

$$J^{\frac{d\omega_{m}}{dt}} = T_{m} - T_{b}$$

La ecuación analítica está dada por

$$\omega_{m}(t) = \frac{K_{m}V_{t}}{B^{*}R_{a}}(t - e^{-\frac{B^{*}t}{J}}) - \frac{K_{m}V_{t}L_{a}}{R_{a}(BL_{a}-JR_{a})}(e^{-\frac{R_{a}t}{L_{a}}} - e^{-\frac{Bt}{J}})$$

Variables

- Torque del motor (Tm) estara dado como:

$$T_m = K_m i_a$$

- Momento de inercia del motor (J)
- Tb estará dado por : $T_{b}^{}=B\omega_{m}^{}$

Imagen 3: Variables aplicadas en el torque del motor

Posición angular

Ángulo que un punto de referencia en el objeto en rotación ha recorrido desde una posición inicial a lo largo de un eje de rotación fijo.

$$\int \omega(t)dt$$

Donde la solución analítica está dada por:

$$\theta(t) = \left(\frac{\frac{K_{m}V_{t}}{B^{*}R_{a}}(t + \frac{J}{B}e^{-\frac{B^{*}t}{J}}) - \frac{K_{m}V_{t}L_{a}}{R_{a}(BL_{a}-JR_{a})}\left(\frac{L_{a}}{R_{a}}e^{-\frac{R_{a}t}{L_{a}}} - \frac{J}{B}e^{-\frac{Bt}{J}}\right)$$

Tiempo (s)	RK2 (Velocidad Angular)	RK3 (Velocidad Angular)	RK4 (Velocidad Angular)	Referencial
0.00	0.00000	0.00000	0.00000	0.00000
0.05	1.23991	1.26872	1.27749	1.27843
0.10	3.51654	3.55938	3.57211	3.57106
0.15	5.87929	5.92422	5.93742	5.93656
0.20	8.23742	8.28241	8.29553	8.29410
0.25	10.58235	10.62713	10.64009	10.63824
0.30	12.91333	12.95786	12.97067	12.96855
0.35	15.23036	15.27465	15.28730	15.28505
0.40	17.53352	17.57756	17.59007	17.58764
0.45	19.82290	19.86670	19.87905	19.87636
0.50	22.09857	22.14213	22.15433	22.15146
Error Absoluto Promedio	0.28818	0.24811	0.23652	

Tiempo (s)	RK2 (Corriente Armadura)	RK3 (Corriente Armadura)	RK4 (Corriente Armadura)	Referencial
0.00	0.00000	0.00000	0.00000	0.00000
0.05	43.41337	43.89936	44.04243	44.04328
0.10	47.51693	47.60334	47.62688	47.61839
0.15	47.86586	47.87603	47.87852	47.86855
0.20	47.85641	47.85605	47.85586	47.84576
0.25	47.81297	47.81134	47.81085	47.80081
0.30	47.76655	47.76479	47.76427	47.75429
0.35	47.72009	47.71832	47.71781	47.70790
0.40	47.67389	47.67212	47.67161	47.66177
0.45	47.62795	47.62620	47.62569	47.61592
0.50	47.58229	47.58055	47.58005	47.57034
Error Absoluto Promedio	0.12246	0.03344	0.00907	

Tiempo (s)	RK2 (Posición Angular)	RK3 (Posición Angular)	RK4 (Posición Angular)	Referencial
0.00	0.00000	0.00000	0.00000	0.00000
0.05	0.01486	0.01530	0.01544	0.02943
0.10	0.12149	0.12375	0.12443	0.16216
0.15	0.34454	0.34899	0.35033	0.41246
0.20	0.68572	0.69242	0.69441	0.78084
0.25	1.14454	1.15349	1.15613	1.26669
0.30	1.72033	1.73152	1.73480	1.86932
0.35	2.41240	2.42580	2.42973	2.58804
0.40	3.22003	3.23565	3.24020	3.42214
0.45	4.14255	4.16036	4.16554	4.37094
0.50	5.17926	5.19926	5.20505	5.43375
Error Absoluto Promedio	0.12216	0.11308	0.11042	

Tiempo (s)	RK2 (Torque)	RK3 (Torque)	RK4 (Torque)	Referencial
0.00	0.00000	0.00000	0.00000	0.00000
0.05	0.43413	0.43899	0.44042	0.44043
0.10	0.47517	0.47603	0.47627	0.47618
0.15	0.47866	0.47876	0.47879	0.47869
0.20	0.47856	0.47856	0.47856	0.47846
0.25	0.47813	0.47811	0.47811	0.47801
0.30	0.47767	0.47765	0.47764	0.47754
0.35	0.47720	0.47718	0.47718	0.47708
0.40	0.47674	0.47672	0.47672	0.47662
0.45	0.47628	0.47626	0.47626	0.47616
0.50	0.47582	0.47581	0.47580	0.47570
Error Absoluto Promedio	0.00122	0.00033	0.00009	

Discusión de los resultados

Se puede concluir que el método de RK4 fue el más preciso de los tres métodos utilizados y esto se evidencia en los gráficos y tablas vistas anteriormente.

Se utilizaron los siguientes parámetros del motor para calcular la corriente de armadura, velocidad angular, posición angular y torque del motor:

- Inductancia de la armadura (La): 0.01 H
- Resistencia de la armadura (Ra): 0.5Ω (valor nominal)
- Inercia del rotor (J): 0.01 kg·m²
- Coeficiente de fricción viscosa (B): 0.001 N·m·s/rad
- Constante de fuerza contraelectromotriz (Ka): 0.01 V⋅s/rad
- Constante de par (Km): 0.01 N·m/A
- Voltaje de alimentación (Vt): 24 V

Problemas propuestos

Problema 1

Se analizará la sensibilidad del motor ante la variación de voltaje de entrada

Consideraciones:

- Los parámetros a analizar serán la corriente de armadura, velocidad angular y posición angular.
- Los voltajes de entrada estarán en un rango de 20 a 28 Voltios.
- El paso utilizado será de h=0.0001.
- Dado que el paso es muy pequeño las soluciones numéricas seran similares en los métodos RK2,RK3 y RK4.

Gráfico 1

Gráfico 2

Conclusión de los gráficos

Los gráficos muestran cómo las variaciones en el voltaje de alimentación afectan las distintas variables del motor.

A medida que aumenta el voltaje, la corriente de armadura y el torque también aumentan, lo que se refleja en una mayor velocidad angular y posición.

Problema 2

- Para analizar cómo las variaciones en la resistencia de armadura afectan las variables del motor, se utilizó el mismo método de Runge-Kutta de orden 4 (RK4) con un paso de tiempo muy pequeño.
- Se variaron las resistencias dentro del rango de 0.3 a 0.7

Gráfico 1

Gráfico 2

Conclusión de los gráficos

- Los gráficos muestran cómo las variaciones en la resistencia de armadura afectan las distintas variables del motor.
- A medida que aumenta la resistencia, la corriente de armadura y el torque disminuye, lo que se refleja en una menor velocidad angular y posición angular

Conclusión final

- La corriente de armadura y el torque aumentan con un mayor voltaje de alimentación y disminuyen con una mayor resistencia de armadura.
- La velocidad angular y la posición angular también son directamente afectadas por el voltaje y la resistencia de armadura.
- El método de Runge-Kutta de orden 4 (RK4) proporciona resultados más precisos en comparación con RK2 y RK3, con menores errores absolutos.