Please check the examination deta	ils below befo	ore entering y	our candidate information
Candidate surname		Othe	er names
Pearson Edexcel International GCSE	Centre Nu	mber	Candidate Number
Time 2 hours	Pap refe	erence	4PM1/01
Further Pure Market Paper 1	athei	matic	
Calculators may be used.			Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Series

Arithmetic series

Sum to *n* terms,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1	The	quadratic	equation

$$3(k+2)x^2 + (k+5)x + k = 0$$

has real roots.

Find	the	set	of	possible	val	lues	of	k	ί.
------	-----	-----	----	----------	-----	------	----	---	----

(6)

(Total for Question 1 is 6 marks)

2 Angle α is acute such that $\cos \alpha = \frac{3}{5}$

Angle β is obtuse such that $\sin \beta = \frac{1}{2}$

- (a) Find the exact value of
 - (i) $\tan \alpha$
 - (ii) $\tan \beta$

(3)

(b) Hence show that

$$\tan(\alpha + \beta) = \frac{m\sqrt{3} - n}{n\sqrt{3} + m}$$

where m and n are positive integers whose values are to be found. (3)

Question 2 continued	
	Total for Question 2 is 6 marks)

3 A curve C has equation $y = \frac{ax - 3}{x + 5}$ where a is a constant and $x \neq -5$

The gradient of C at the point on the curve where x = 2 is $\frac{18}{49}$

(a) Show that a = 3

(3)

Hence

- (b) write down an equation of the asymptote to C that is
 - (i) parallel to the *x*-axis,
 - (ii) parallel to the y-axis,

(2)

- (c) find the coordinates of the point where C crosses
 - (i) the x-axis,
 - (ii) the y-axis.

(2)

(d) Sketch the curve C, showing clearly its asymptotes and the coordinates of the points where C crosses the coordinate axes.

(3)

|
 |
|------|------|------|------|------|------|------|
|
 |
|
 |
|
 |

Question 3 continued	

Question 3 continued	

4	The n th term of an arithmetic series is u_n where	
	$u_n = (n+1)\ln 4$	
	Given that the sum of the first n terms of the series is S_n	
	show that $S_n = \ln 2^{(n^2 + an)}$ where a is an integer whose value is to be found.	(5)
		(5)

5	(a) Expand $(1 + ax)^n$ in ascending powers of x up to and including the term in x^3	
	Express each coefficient of x in terms of a and n where a and n are constants and $n > 2$	(0)
		(2)
	The coefficient of x is 15 and the coefficient of x^2 is equal to the coefficient of x^3	
	(b) Find the value of a and the value of n .	(6)
	(c) Find the coefficient of x^3	
		(2)

12

	Question 5 continued
AREA	
VTHIS.	
NOT WRITE IN	
NOTA	
OC	
IS AREA	
E IN TH	
T WRITE IN	
DO NO	
SEA	
THIS A	
SITE IN	
OO NOT WRITE IN THIS AREA	
DO	
	(Total for Question 5 is 10 marks)

6 (a) Show that $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$

(3)

The quadratic equation $x^2 - 7kx + k^2 = 0$, where k is a positive constant, has roots α and β where $\alpha > \beta$

(b) Show that $\alpha - \beta = 3k\sqrt{5}$

(3)

(c) Hence form a quadratic equation with roots $\alpha+1$ and $\beta-1$

Give your equation in the form $x^2 + px + q = 0$ where p and q should be given in terms of k.

(4)

Question 6 continued

- The curve C has equation $y = \frac{x}{x^2 + 4}$
 - (a) Using calculus, find the coordinates of the stationary points on C.

(5)

(b) Show that $\frac{d^2y}{dx^2} = \frac{2x(x^2 - 12)}{(x^2 + 4)^3}$

(4)

(c) Hence, or otherwise, determine the nature of each of these stationary points.

(2)

Question 7 continued	

Question 7 continued	
	(Total for Question 7 is 11 marks)

8	Given that n satisfies the equation	
	$\log_a n = \log_a 3 + \log_a (2n - 1)$	
	(a) find the value of n .	(3)
	Given that $\log_p x = 3$ and $\log_p y - 3 \log_p 2 = 4$	
	(b) (i) express x in terms of p ,	
		(1)
	(ii) express xy in terms of p .	(4)
•••••		

Question 8 continued	

Question 8 continued	
	(Total for Question 8 is 8 marks)

9	Find an equation of the normal to the curve with equation			
	$y = (x^3 - 2x)e^{(1-x)}$			
	at the point on the curve with coordinates $(1, -1)$			
		(5)		

Question 9 continued
(Total for Question 9 is 5 marks)

10

Figure 1

Figure 1 shows triangle *OAB* and triangle *OCD*.

$$\overrightarrow{OA} = 5\mathbf{p}$$
 $\overrightarrow{AB} = 3\mathbf{q}$ $\overrightarrow{OC} = \frac{3}{2}\overrightarrow{OB}$ $\overrightarrow{OD} = \frac{3}{5}\overrightarrow{OA}$

(a) Find \overrightarrow{DC} as a simplified expression in terms of **p** and **q**.

(3)

Diagram **NOT** accurately drawn

The line DC meets the line AB at F.

(b) Using a vector method, find \overrightarrow{OF} as a simplified expression in terms of **p** and **q**.

(7)

The point G lies on OB such that FG is parallel to AO.

(c) Using a vector method, find \overrightarrow{OG} as a simplified expression in terms of **p** and **q**.

(4)

	Question 10 continued
*	
×	
×	
×	

Question 10 continued

Question 10 continued	
	(Total for Question 10 is 14 marks)
	(

(3)

11 (a) Using a formula from page 2, show that $\cos 2x = 1 - 2\sin^2 x$

Figure 2 shows a sketch of part of the curves with equations $y = \sin x + 2$ and $y = \cos 2x + 2$

The points A, B and C, shown in Figure 2, are three points that are common to both curves.

(b) Find the coordinates of each of these points.

(4)

 R_1 and R_2 , shown shaded in Figure 2, are two regions enclosed by the two curves.

(c) Use calculus to find, in its simplest form, the ratio

area of
$$R_1$$
: area of R_2 (8)

Question 11 continued

Question 11 continued	
	(Total for Question 11 is 15 marks)
	TOTAL FOR PAPER IS 100 MARKS