Procenjivanje minimalne površine pravougaonih i konveksnih kontejnera za problem pakovanja konveksnih poligona koristeći translacije

Prikaz naučnog rada u okviru kursa Geometrijski algoritmi Matematički fakultet

Ivan Ristović

decembar 2018.

Sažetak

Algoritmi za efikasno pakovanje objekata imaju važne primene. Sam problem ima raznorazne varijante, od kojih su autori izabrali pakovanje konveksnih poligona u kontejner oblika pravougaonika pri čemu su dozvoljene samo translacije poligona. Autori predstavljaju algoritam vremenske složenosti $O(n\log n)$ za aproksimaciju rešenja datog problema uz dokaz da je dobijena površina najviše 17.45 puta veća od optimalne, što je prvi poznati dokaz da se ovakvi NP-teški problemi uopšte mogu aproksimirati. Takođe, autori daju aproksimaciju rešenja problema pakovanja konveksnih poligona u konveksne kontejnere sa ocenom površine najviše 27 puta većom od optimalne. Rad je objavljen 2017. godine u časopisu Journal of Computational Geometry pod imenom Approximating minimum-area rectangular and convex containers for packing convex polygons, čiji su autori Helmut Alt, Mark de Berg i Christian Knauer.

Sadržaj

1	Uvod	2
2	Pakovanje u pravougaone kontejnere 2.1 Pakovanje poligona iz jedne visinske klase	
	2.2 Generisanje i pakovanje mini-kontejnera2.3 Detalji implementacije	. 3
3	Pakovanje u konveksne kontejnere	4
Li	teratura	4

1 Uvod

Problem efikasnog pakovanja objekata u kontejnere ima raznolike varijacije i ogromne primene. Dvodimenzionalne verzije problema se javljaju u tzv. pakovanju u trake [4], gde se dati skup objekata pakuje u pravougaone trake fiksne širine minimizujući širinu trake. U tri dimenzije, problem se prirodno javlja u minimizaciji prostora prilikom transportovanja objekata.

Oblik objekata je od velikog uticaja na složenost problema. U dve dimenzije možemo razmatrati pravilne poligone, pravougaonike, proste ili konveksne poligone. Pritom, mora se specifikovati koje transformacije objekata su dozvoljene - da li ih je dozvoljeno rotirati ili samo translirati.

Već su jednostavne varijante ovog problema NP-teške, recimo pakovanje skupa pravougaonika sa stranicama paralelnim koordinatnim osama koristeći samo translacije, što je pokazano u [3] tako da se polinomijalni algoritmi mogu konstruisati samo ukoliko je broj objekata konstantan [1, 2]. Stoga su konstruisani razni algoritmi za aproksimaciju koristeći svakojake heuristike, ali mali je broj takvih algoritama za problem nalaženja kontejnera minimalne površine za objekte.

S obzirom da je problem pakovanja proizvoljnog broja objekata NP-težak, postavlja se pitanje: Da li je moguće efikasno aproksimirati rešenje problema pakovanja n objekata? Autori rada odgovaraju potvrdno, dajući algoritam za aproksimaciju problema pakovanja skupa P konveksnih poligona u pravougaoni kontejner minimalne površine (opisan u delu 2). Koristeći ove rezultate moguće je takođe aproksimirati minimalni konveksni kontejner za P (opisan u delu 3). Oba algoritma imaju vremensku složenost $O(n\log n)$.

2 Pakovanje u pravougaone kontejnere

Definicija 2.1. Neka je $P = \{p_1, p_2, ..., p_k\}$ skup k konveksnih poligona sa ukupno n temena. Pravougaonik sa stranicama paralelnim koordinatnim osama u koji možemo da spakujemo sve poligone bez njihove prethodne rotacije nazivamo kontejner za P.

Cilj je pronaći kontejner za P minimalne površine, u daljem tekstu optimalni kontejner. Neka je b_{opt} optimalni kontejner za P i neka je njegova površina OPT. Algoritam koji autori predstavljaju nalazi kontejner površine ne veće od $17.45 \cdot \text{OPT}$.

Definicija 2.2. Visina (Širina) poligona p, u oznaci height(p) (width(p)), se definiše kao razlika njegove maksimalne i minimalne y (x) koordinate.

Definicija 2.3. Maksimalna visina (širina) skupa P, u oznaci $h_{max}(w_{max})$, se definiše kao maksimum visina (širina) svih poligona iz P.

Rešenje se zasniva na particionisanju P u visinske klase P_0, P_1, \ldots po visini: Poligoni sa visinom između h_{max} i αh_{max} se nalaze u P_0 , poligoni sa visinom između αh_{max} i $\alpha^2 h_{max}$ se nalaze u P_1 , itd. Parametar α se kasnije bira tako da je aproksimativni faktor optimalan. Algoritam se sastoji iz dva velika koraka:

- Spakovati svaku visinsku klasu P_i zasebno u kontejner B_i visine h_i .
- Zameniti svaki neprazni kontejner B_i kolekcijom mini-kontejnera poravnatih sa koordinatnim osama koji nisu previše široki. Spakovati sve mini-kontejnere u jedinstveni kontejner B.

2.1 Pakovanje poligona iz jedne visinske klase

Bez umanjenja opštosti, izaberimo proizvoljnu visinsku klasu P_i . Poligoni iz te klase imaju visine u opsegu $(\alpha h_i, h_i]$. Neka je $\sigma = [0, \infty) \times [0, h_i]$ polu-beskonačna traka visine h_i . Poligoni se u σ stavljaju pohlepno.

Definicija 2.4. Za poligon p, neka je s(p) duž koja spaja najniže i najviše teme poligona p posmatrajući y-koordinatu. s(p) nazivamo $ki\check{c}mom$ poligona p.

Poligone iz P_i sortiramo po nagibu njihovih kičmi i postavljamo ih jedan po jedan u σ , pomerajući svaki ulevo sve dok ne dodiruje drugi poligon ili granicu od σ (videti sliku 2.1). Kad se svi poligoni ubace u σ , trivijalno se formiraju granice kontejnera B_i .

Slika 2.1: Primer pakovanja poligona iz iste visinske klase

Lema 2.5. Površina kontejnera B_i formiranog na gore opisani način zadovoljava:

$$area(B_i) \le 2/\alpha \cdot \sum_{p \in P_i} area(p) + 2h_i \cdot \max_{p \in P_i} width(p)$$

2.2 Generisanje i pakovanje mini-kontejnera

Primenom koraka opisanog u delu 2.1 za sve visinske klase dobijamo kolekciju kontejnera B_i različitih dužina l_i . Svaki kontejner sadrži sve poligone iz visinske klase P_i . Zamenjujemo svaki kontejner B_i minikontejnerima jednakih dužina na sledeći način: Neka je w_{max} maksimalna dužina poligona iz P. Prvo, particionišemo B_i u kutije dužine cw_{max} (vrednost za c se određuje kasnije) i visine h_i . Svaki poligon $p \in P$ se razvrstava u kutiju b koja sadrži njegovo najlevlje teme 2 . Sada generišemo mini-kontejner za svaku kutiju b tako što proširujemo b udesno sve dok njena širina ne postane tačno $(c+1)w_{max}$. Dobijamo kolekciju $\overline{R_i}$ od najviše $l_i/(cw_{max})+1$ mini-kontejnera gde svaki ima istu dužinu. Stoga:

$$\sum_{b \in \overline{R_i}} area(b) \le (1 + 1/c) \cdot area(B_i) + (c+1)w_{max}h_i$$

Neka je $\overline{R} = \cup \overline{R_i}$ kolekcija svih mini-kontejnera dobijenih iznad. Nalaženje kontejnera za R se obavlja trivijalno bez gubitka površine postavljanjem mini-kontejnera jedan na drugi ³. Tako formiramo kontejner B.

Može se pokazati da važi:

$$area(B) \le \underbrace{\left(\left(1 + \frac{1}{c}\right) \cdot \frac{2 + c\alpha}{\alpha - \alpha^2}\right)}_{f(c,\alpha)} \text{OPT}$$

 $^{^{1}\}mathrm{Osim}$ poslednje kutije, koja može da ima dužinu manju od $w_{max}.$

²Ako najlevlje teme leži na granici između dve kutije, dodeljujemo ga desnoj.

 $^{^3{\}rm Ovo}$ je moguće jer svi mini-kontejneri imaju istu dužinu.

Kako bi se minimizovao aproksimatvni faktor, moraju se naći optimalne vrednosti za α i c, tj. $\alpha \approx 0.407$ i $c \approx 2.214$, dajući vrednost aproksimativnog faktora $f(c,\alpha) \approx 17.449$.

2.3 Detalji implementacije

Kako bi se ispunila obećana vremenska složenost, posmatrajmo složenosti svakog od koraka algoritma. Prvo, particionisanje poligona iz P u visinske klase se radi u $O(n\log n)$ vremenu.

Pakovanje poligona opisano u delu 2.1 se može efikasno uraditi održavanjem balansiranog binarnog drveta pretrage T. U svakom čvoru se čuvaju temena skupa P' poligona već spakovanih vidljivih sa desna (videti sliku 2.2), uređenih po y-koordinati. Stoga se ažuriranje T radi u $O(\log n)$ vremenu za svako teme, ukupno $O(n \log n)$.

Slika 2.2: Struktura podataka za ubacivanje poligona.

3 Pakovanje u konveksne kontejnere

Potrebno je pronaći odgovarajuću orijentaciju ϕ , pronaći odgovarajući kontejner B te orijentacije na osnovu algoritma opisanog u delu 2 i vratiti B kao rešenje.

Za dati skup poligona P, biramo $\phi*$ minimizujući $h_{max}(\phi)w_{max}(\phi)$, gde je $h_{max}(\phi)$ maksimalni doseg bilo kog poligona u smeru normalnom na ϕ a $w_{max}(\phi)$ maksimalni doseg u smeru ϕ . Postoje algoritmi za računanje $\phi*$ u $O(n \log n)$ [1].

Autori tvrde i pokazuju da, ukoliko označimo optimalni konveksni kontejner sa $\mathcal{C}_{opt},$ važi:

$$area(B_{opt}) \leq 2 \cdot area(C_{opt})$$

Slično kao u prethodnom odeljku, nalaze se optimalne vrednosti za α i c, naime $\alpha=1/3$ i c=2, što daje optimizacioni faktor $f(\alpha,c)=27$.

Literatura

- [1] H. Ahn, H. Alt, S. W. Bae, and D. Park. Bundling three convex polygons to minimize area or perimeter. In *Algorithms and Data Structures 13th International Symposium, WADS 2013*, August 2013.
- [2] H.-K. Ahn and O. Cheong. Aligning two convex figures to minimize area or perimeter. Algorithmica, 2000.
- [3] R. J. Fowler, M. Paterson, and S. L. Tanimoto. Optimal packing and covering in the plane are np-complete. *Inf. Process. Lett.*, 12(3):133–137, 1981.
- [4] R. Harren, K. Jansen, L. Prädel, and R. van Stee. A (5/3 + e)-approximation for strip packing. *Comput. Geom.*, 47(2):248-267, 2014.