- تذكير:

العدد الكتلي (عدد النكليونات أو النويات (بروتونات + نيترونات)).	A	$A_{Z}X$	
العدد الذري أو العدد الشحني (عدد البروتونات).	Z	<i>L</i>	رمز النواة
عدد النيترونات	N	A = N + Z	
لها نفس العدد الذري وتختلف عن بعضها في العدد الكتلي وبالتالي في عدد النيترونات.	هي ذرات	${}^{A'}_{Z}X$, ${}^{A}_{Z}X$	النظائر

$rac{A_1}{Z_1} X_1 + rac{A_2}{Z_2} X_2 = rac{A_3}{Z_3} X_3 + rac{A_4}{Z_4} X_4 ({ m Soddy} $ معادلة تفاعل نووي (قانون سودي				
$A_1 + A_2 = A_3 + A_4$	إنحفاظ عدد النويات A			
$Z_1 + Z_2 = Z_3 + Z_4$	إنحفاظ عدد الشحنة Z			

معادلة التحول النووي		النشاط الاشعاعي	
${}^{A}_{Z}X = {}^{A-4}_{Z-2}Y + {}^{4}_{2}He$		يميز الأنوية الثقيلة $200>A>200$ وينتج عنه إصدار نواة الهيليوم 4_2He	النشاط الاشعاعي ه
${}^{A}_{Z}X = {}^{A}_{Z+1}Y + {}^{0}_{-1}e$	${}_{0}^{1}N = {}_{1}^{1}P + {}_{-1}^{0}e$	يميز الأنوية الغنية بالنيترونات وينتج عنه $0 = - 0$ انبعاث إلكترون	النشاط الاشعاعي -
${}_{Z}^{A}X = {}_{Z-1}^{A}Y + {}_{+1}^{0}e$	${}_{1}^{1}P = {}_{0}^{1}N + {}_{+1}^{0}e$	يميز الأنوية الغنية بالبروتونات وينتج عنه $0 \ e$ انبعاث البوزيترون e	β ⁺ النشاط الاشعاعي
${}^{A}_{Z}X^{*} = {}^{A}_{Z}X + {}^{0}_{0}\gamma$	هو إشعاع غير مشحون ذو طبيعة كهرومغناطيسية وينتج عنه إنتقال النواة من حالة مثارة إلى حالة أقل طاقة		النشاط الاشعاعي ٧

N(t) التناقص الاشعاعي				
عدد الأنوية المتبقية في اللحظة t	N(t)	$N(t) = N_0 e^{-\lambda t}$		
t=0 عدد الأنوية الإبتدائية في اللحظة	N_0			
كتلة العينة المتبقية في اللحظة t	m(t)	$m(t) = m_0 e^{-\lambda t}$		
كتلة العينة الإبتدائية في اللحظة t =0	m_0			
كمية المادة المتبقية في اللحظة t	n(t)	$n(t) = n_0 e^{-\lambda t}$		
كمية المادة الإبتدائية في اللحظة t =0	n_0			
عدد الأنوية المختفية	N'(t)	$N'(t) = N_0(1 - e^{-\lambda t})$		
كتلة العينة المختفية	m'(t)	$m'(t) = m_0(1 - e^{-\lambda t})$		
كمية المادة المختفية	n'(t)	$n'(t) = n_0(1 - e^{-\lambda t})$		
عدد الدقائق أوالذرات أو النويات	N	$n-\frac{N}{n}$		
$6.023 imes 10^{23}$ عدد أفوغادرو	N_A	$n=\frac{1}{N_A}$		

A(t) النشاط الاشعاعي			
النشاط الإشعاعي لعينة مشعة هو عدد التفككات التي تحدث في الثانية الواحدة. و يقدر بالبكريل (Bq)			A(t) تعريف النشاط الإشعاعي
نشاط العينة في اللحظة t	A(t)	$A(t) = \lambda N(t)$	$A(t) = -\frac{dN(t)}{dt}$
t=0 نشاط العينة الإبتدائي في اللحظة	A_0	$A_0 = \lambda N_0$	$A(t) = -\frac{1}{dt}$
$A(t) = \lambda N(t) \Rightarrow A(t)$	$\overline{(t)} = \overline{x}$	$\lambda N_0 e^{-\lambda t} \implies$	$A(t) = A_0 e^{-\lambda t}$

الوحدة	القانون	تعريف	
مقلوب الثانية	$\lambda = \frac{\ln 2}{\ln 2} = \frac{1}{2}$	يتعلق بطبيعة النواة ولا يتعلق بالزمن.	ثابت النشاط الاشعاعي أو
S^{-1}	$\lambda = \frac{ln2}{t_{1/2}} = \frac{1}{\tau}$		λ ثابت التفكك
الثانية	$t_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.69}{\lambda} = \tau. \ln 2$	هو الزمن اللازم لتفكك نصف العدد المتوسط	
S	$t_{1/2} - \frac{1}{\lambda} - \frac{1}{\lambda} = t.tt2$	$rac{N_0}{2}$ للأنوية المشعة	$t_{1/2}$ زمن نصف العمر
الثانية	$\tau = \frac{1}{\lambda} = 1.45 \times t_{1/2}$	هو الزمن المتوسط لعمر النواة علما أن بعض الأنوية	
S	$t = \frac{1.43}{\lambda} = 1.43 \times t_{1/2}$	تضمحل في مدة زمنية طويلة وأخرى في مدة زمنية	ثابت الزمن τ
		قصيرة.	
المقابل)	عنداللحظة $t=0$ مع محور الأزمنة (الشكل N	=f(t) ملاحظة: هندسيا يمثل $ au$ تقاطع مماس البيان	

إستعمال النشاط الإشعاعي في التأريخ $A(t) = A_0 e^{-\lambda t} \implies \frac{A(t)}{A_0} = e^{-\lambda t} \implies \ln \frac{A(t)}{A_0} = -\lambda t \implies -\ln \frac{A_0}{A(t)} = -\lambda t$ البرهان $N(t) = N_0 e^{-\lambda t} \implies \frac{N(t)}{N_0} = e^{-\lambda t} \implies \ln \frac{N(t)}{N_0} = -\lambda t \implies -\ln \frac{N_0}{N(t)} = -\lambda t$ $t = \frac{1}{\lambda} . \ln \frac{A_0}{A} = \frac{t_{1/2}}{\ln 2} . \ln \frac{A_0}{A} \qquad t = \frac{1}{\lambda} . \ln \frac{N_0}{N} = \frac{t_{1/2}}{\ln 2} . \ln \frac{N_0}{N}$ النتيجة

التوازن القربي (خاص بالشعب الرياضية)			
. ${f B}$ وفي نفس الوقت تتفكك نواة ${f A}$ وفي نفس الوقت تتفكك نواة			
$A_A(t) = A_B(t) \implies \lambda_A N_A(t) =$	$= \lambda_B N_B(t)$	القانون	

الطاقة النووية

$1u = \frac{1}{12}m_C = \frac{1}{12}$		$\frac{12}{10^{23}} = 1.67 \times 10^{-27} kg$	
$1 Mev = 10^6 ev$	1 <i>Mev</i> =1.6x10 ⁻¹³ <i>Jeul</i>	$1ev = 1.6 \times 10^{-19} Jeul$	وحدة الطاقة (Jeul)
$1u \Leftrightarrow 931.5 \ Mev/C^2$			تكافؤ كتلة – طاقة

الوحدة	القانون		تعریف	
Jeul(J)	طاقة الكتلة	E_0	F 62	طاقة الكتلة
kg	الكتلة	m	$E_0 = mC^2$	(علاقة أنشتاين)
$m.s^{-1}$	سرعة الضوء في الفراغ	C	$C = 3.10^8 \text{m. s}^{-1}$	()
$m_p = 1.$	كتلة البروتون 00728 <i>u</i>	m_p	_	
$m_n = 1$	كتلة النيترون 00866 <i>u</i> .	m_n	$\Delta m = [Z. m_p + (A - Z)m_n] - m(X)$	النقص الكتلي
	كتلة النواة	m(x)		
$E_{libir\acute{e}e} = \Delta mC^2 = \left[Z.m_p + (A - Z)m_n - m(X)\right] \times C^2$			طاقة التماسك (طاقة الربط)	
$E_{lib} \Delta mC^2 \left[Z.m_p + (A-Z)m_n - m(X) \right] \times C^2$			طاقة التماسك لكل	
$\frac{A}{A} = \frac{A}{A} = \frac{A}{A}$			نيكليون	
كلما كانت هذه النسبة أكبر \Leftrightarrow كانت النواة أكثر استقرار (نواة الابن أكثر استقرار من النواة المتفككة). $rac{E_{lib}}{A} > oldsymbol{0}$			استقرار الأنوية	

	الإنشطار والإندماج	
	يحدث فيه انقسام النواة الثقيلة الى نواتين خفيفتين (أكثر إستقرارا) مع تحرير طاقة.	الإنشطار النووي
$^{2}_{1}H + ^{3}_{1}H \longrightarrow ^{4}_{2}He + ^{1}_{0}n$: مثال	يحدث فيه إتحاد (إلتحام أو إنضمام) نواتين لتشكيل نواة أثقل منهما مع تحرير طاقة.	الإندماج النووي
	A>180 طار	– الأنوية القابة للإنش
	A < 50 ماج	– الأنوية القابلة للإنا
	50 < A < 180	– الأنوية المستقرة

	أنواع التحولات النووية	
غير مستقرة) تدعى نواة الأب الى نواة أخرى تدعى نواة الإبن معاعات كهرومغناطيسية	هو ظاهرة عفوية لتفاعل نووي تتحول أثنائه نواة مشعة (أكثر استقرارا، وذلك بإصدار نواة الأب لجسيمات أو اش	التفكك الاشعاعي الطبيعي
الخارجية، لا يمكن دراسة تطورها عشوائيا بل يستعمل مجموعة من	التناقص الإشعاعي هو سيرورة عشوائية لا تتأثر بالشروط الأنوية لنتكلم عن المتوسط.	الطابع العشوائي
ترافقها الطاقة الحركية لمختلف الجسيمات واشعاعات	تظهر هذه الطاقة على شكل طاقة حرارية بشكل أساسي كهرومغناطسية.	الطاقة المحورة
γ وجسیمات من نوع $lpha$ أو eta^+ أو eta^+ أو إشعاع γ .	نواة (عنصر)غير مستقرة، تتفكك تلقائيا لتعطي نواة أخرى	النواة المشعة أو عنصر مشع
ـديمها لنواة الذرة الساكنة لتفكيكها إلى مكوناتما المعزولة أو الساكنة	هي الطاقة اللازمة لتماسك النويات أو الطاقة الواجب تق أو هي طاقة تماسك النواة.	طاقة الربط النووي
.N = Z	الأنوية المستقرة توضع بجوار الخط البياني الذي معادلته لر	كيف توضع الأنوية على المخطط
	الأسباب المحتملة لعدم استقرار النواة	
و شحنتها معدومة)	تستخدم النيترونات لأنها متعادلة كهربائيا (غير مشحونة أ	لماذا تستخدم النيترونات عادة في قذف أنوية اليورانيوم
قوة تنافر الكتروستاتيكي القوة النووية القوية	تربط هذه القوة البروتونات و النيترونات مع بعضها بحيث يكون مدها قصير وتحافظ على تماسك النواة و إلاكان الانشطار	القوة النووية القوية
$ \begin{array}{c} $	إنشطار النواة الأولى لليورانيوم يعطي نترونات تؤدي بدورها إلى أنوية جديدة، وهكذا يتسلسل التفاعل الإنشطار.	الطابع التسلسلي لتفاعل الإنشطار
$Xe \cap A$	التفاعل تسلسلي مغذى ذاتيا	
$[\lambda] = \frac{[ln2]}{[t_{1/2}]} = \frac{1}{S} = S^{-1}$	التحليل البعدي لثابت التفكك ٨	
-تركيب يسمح بتحقيق تفاعل الانشطار النووي والتحكم فيه. -من أكبر مشاكل المفاعلات النووية هي الفضلات النووية نظرا لطول أنصاف الحياة لبعض العناصر (مثل اليود الذي له نصف حياة (1.75 × 10 ⁷ ans) لذا تستوجب شروط تخزين خاصة.		المفاعل النووي