Курсовая работа по дискретной математике

- 1. Определить для орграфа, заданного матрицей смежности:
 - а) матрицу односторонней связности;
 - б) матрицу сильной связности;
 - в) компоненты сильной связности;
 - в) матрицу контуров.
- **2.** Используя алгоритм Терри, определить замкнутый маршрут, проходящий ровно по два раза (по одному в каждом направлении) через каждое ребро графа.
- **3.** Используя алгоритм "фронта волны", найти все минимальные пути из первой вершины в последнюю орграфа, заданного матрицей смежности.
- **4.** Используя алгоритм Форда, найти минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг.
 - 5. Найти остовное дерево с минимальной суммой длин входящих в него ребер.

Значения $X_1 - X_{13}$ приведены в задании, значения $X_{14} - X_{17}$ равны 5.

- **6.** Пусть каждому ребру неориентированного графа соответствует некоторый элемент электрической цепи. Составить линейно независимые системы уравнений Кирхгофа для токов и напряжений. Пусть первому и пятому ребру соответствуют источники тока с ЭДС E_1 и E_2 (полярность выбирается произвольно), а остальные элементы являются сопротивлениями. Используя закон Ома, и, предполагая внутренние сопротивления источников тока равными нулю, получить систему уравнений для токов.
 - 7. Построить максимальный поток по транспортной сети.

Значения величин a, b, c, d, e, f, g приведены в задании. Начинать с окаймляющих цепей.

R

- 1. Изучить алгоритм.
- 2. Составить программу алгоритма (На оценку отлично с «окошками» и рис. графа).
- 3. Отладить тестовые примеры.
- 4. Провести оценку сложности алгоритма.
- 5. Составить прикладную задачу, для решения которой используется данный алгоритм.

Отчет по курсовой работе оформлять на листах формата А4

Отчет по №8 содержит

- А. Задание.
- Б. Теоретическое описание алгоритма.
- В. Описание разработанной программы с оценкой сложности (программы не прилагать).
- Г. Тестовые примеры.
- Д. Прикладную задачу.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2.

 ∞ ∞ ∞ 12 ∞ ∞ ∞ 3 ∞ 6 ∞ 3 2 ∞ ∞ ∞ ∞ ∞ 2 3 ∞ ∞ ∞ ∞ ∞ 2 5 13 ∞ ∞ ∞ ∞ 2 ∞ 6 ∞ ∞ ∞ ∞ 3 8 2 4 7

5. 1,2,1,4,2,7,2,1,8,3,2,4,5

6.

7. 3,4,5,8,4,9,3

8. Кратчайшие пути между всеми парами вершин графа. Липский В. Комбинаторика для программистов.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

2.

2 ∞ ∞ ∞ ∞ 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4 $\infty \infty 4$ ∞ 2 ∞ ∞ 13

5. 5,1,6,1,4,3,2,5,6,7,2,1,4 **6.**

7.4,3,6,7,3,10,4

8. Эйлеровы и гамильтоновы пути (циклы).

Липский В. Комбинаторика для программистов

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 0
\end{pmatrix}$$

4.
$$\begin{pmatrix}
\infty & 4 & 5 & 3 & \infty & \infty & \infty \\
10 & \infty & 2 & \infty & 3 & \infty & \infty \\
\infty & 2 & \infty & 3 & 1 & 4 & 7 \\
\infty & \infty & 2 & \infty & \infty & 7 & \infty \\
\infty & \infty & 1 & \infty & \infty & \infty & 4 \\
\infty & \infty & 4 & \infty & \infty & \infty & 2 \\
2 & \infty & 3 & \infty & 5 & 7 & \infty
\end{pmatrix}$$

5. 2,5,6,7,1,2,3,4,2,5,6,7,8

- **7.** 3,4,6,10,2,9,2
- 8. Нахождение компонент сильной связности графа; Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

2.

 ∞ 6 ∞ ∞ ∞ ∞ ∞ $2 \infty \infty$ 4 ∞ 3 5 ∞ 7 6 ∞ ∞ ∞ 2 ∞ $\infty \quad \infty$ 6 ∞ ∞ ∞ 11 $\infty \infty \infty \infty$

5. 7,1,2,8,9,7,4,6,7,1,3,5,6

6.

7. 3,3,4,9,2,7,5

8. Перечисление путей ориентированного графа методом латинской композиции.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

4.
$$\begin{pmatrix} \infty & 3 & 5 & \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & 1 & 9 & \infty & 5 & \infty & \infty \\ 13 & 1 & \infty & \infty & 4 & \infty & 3 & \infty \\ \infty & \infty & \infty & \infty & 2 & \infty & \infty & 3 \\ \infty & \infty & \infty & 2 & \infty & \infty & 6 \\ \infty & \infty & \infty & 3 & \infty & \infty & 2 & \infty \\ \infty & \infty & \infty & \infty & 2 & 2 & \infty & \infty \\ 2 & 3 & \infty & 5 & 4 & \infty & 8 & \infty \\ \end{pmatrix}$$

5. 4,3,2,5,4,7,8,2,3,7,1,8,5 **6.**

7. 3,5,5,10,3,11,5

8..Нахождение максимального пути в нагруженном графе. Кофман А. Введение в прикладную комбинаторику

8. Вариант №6

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{vmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ \end{vmatrix}$$

 ∞ 6 ∞ ∞ 3 ∞ ∞ 8 ∞ ∞ 1 2 9 ∞ ∞ ∞ ∞ **2** ∞ 4 ∞ ∞ ∞ 1 ∞ 4 ∞ ∞ ∞ 1 2 ∞ ∞ ∞ ∞ 4 ∞ 2 7 6 ∞ ∞ 15 ∞ ∞ ∞ $\infty \quad \infty$

5. 1,5,4,8,9,2,3,4,6,7,1,8,2

6.

7.3,4,6,7,5,10,3

8. Нахождение наименьшего покрытия простого графа. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

2.

$$\begin{pmatrix}
\infty & 6 & 2 & 8 & \infty & \infty & \infty \\
\infty & \infty & \infty & 5 & 3 & \infty & \infty \\
9 & \infty & \infty & 6 & \infty & 3 & \infty \\
\infty & 5 & 6 & \infty & 1 & 2 & 2 \\
\infty & \infty & \infty & 1 & \infty & \infty & 9 \\
\infty & \infty & \infty & 2 & \infty & \infty & 4 \\
\infty & 3 & \infty & \infty & 6 & 7 & \infty
\end{pmatrix}$$

5. 5,6,3,4,2,1,6,7,3,5,4,2,5

- 7. 4,3,7,8,4,8,5
- 8. Раскраска вершин графа.
- . Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

4.
$$\begin{pmatrix}
\infty & 5 & 2 & 7 & \infty & \infty & \infty & \infty \\
3 & \infty & 2 & 3 & \infty & \infty & \infty & \infty \\
\infty & 2 & \infty & \infty & 3 & \infty & \infty & \infty \\
5 & \infty & \infty & \infty & 1 & 4 & \infty & 9 \\
4 & \infty & \infty & 1 & \infty & \infty & 2 & \infty \\
6 & \infty & \infty & \infty & \infty & \infty & 4 & 5 \\
\infty & \infty & \infty & \infty & \infty & \infty & 4 & \infty & 9 \\
8 & \infty & \infty & \infty & \infty & \infty & \infty & 15 & \infty
\end{pmatrix}$$

5. 6,1,3,5,4,3,9,2,6,7,2,3,1

6.

7. 4,2,4,9,5,9,4

8. Пересчет прадеревьев ориентированного графа и их построение. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

					/			
	0	0	0	0	0	1	1	0)
	1	0	1	0	1	0	0	1
	1	0	0	1	1	1	0	0
2	0	0	1	0	1	0	0	0
3.	0	1	1	1	0	1	1	0
	1	0	1	0	0	0	1	0
	1	0	1	1	0	0	0	0
	1	0	1	0	1	1 0 1 0 1 0 0	1	0)

	∞	2	5	∞	6	∞	∞	∞
	∞	∞	2	7	∞	∞	∞	∞
	∞	∞	∞	3	1	∞	∞	∞
4	9	∞	∞	∞	∞	4	5	∞
4.	∞	∞	∞	∞	∞	3	∞	4
	∞	∞	∞	∞	∞	∞	2	9
	∞	8						
	2	α	α	3	5	00	8	α

5. 1,3,5,4,3,2,6,7,8,1,5,4,3

6.

7. 5,5,5,10,4,8,2

8. Нахождение минимального потока в транспортной сети. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

2.

3 ∞ ∞ $\infty \quad \infty$ ∞ 2 5 3 ∞ ∞ ∞ 13 2 ∞ ∞ 10 ∞ 7 ∞ 7 $\infty \quad \infty$ $\infty \infty 7$ ∞ ∞ ∞ $\infty \infty 1$ $\infty \quad \infty$ ∞ ∞ 2 $\infty \quad \infty$ ∞ ∞ 2 3 8 ∞ ∞

5. 2,3,5,4,1,6,7,1,4,5,8,9,2

- **7.** 5,4,6,7,2,9,4
- 8. Нахождение максимального паросочетания в двудольном графе. Кофман А. Введение в прикладную комбинаторику https://www.youtube.com/watch?v=ZMKCdtqvsBo

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

2.

6 ∞ 6 ∞ 12 3 ∞ ∞ ∞ ∞ $1 \infty \infty$ 1 ∞ 3 ∞ ∞ 6 2 ∞ ∞ 1 ∞ ∞ ∞ 3 $\infty \infty$ 4 $2 \infty \infty 2 \infty$ ∞ ∞ 3 $\infty \infty 6$ ∞ ∞ 13 ∞ ∞

5. 3,4,2,1,5,7,6,2,4,3,6,7,8

6.

7. 4,3,4,8,4,10,4

8. Построение максимальной клики в графе.

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

2.

4.
$$\begin{pmatrix}
\infty & 5 & 2 & 7 & \infty & \infty & \infty \\
\infty & \infty & \infty & 3 & 6 & \infty & \infty \\
12 & \infty & \infty & 5 & \infty & 3 & \infty \\
\infty & 3 & 5 & \infty & 4 & 1 & 7 \\
\infty & \infty & \infty & 4 & \infty & \infty & 2 \\
\infty & \infty & \infty & 1 & \infty & \infty & 8 \\
\infty & 3 & 6 & 4 & 5 & 7 & \infty
\end{pmatrix}$$

5. 5,1,3,2,6,9,7,8,1,4,5,6,3

- **7.** 3,5,5,9,5,8,5
- 8. Нахождение максимально внутрение устойчивых подмножеств графа. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2.

4.
$$\begin{pmatrix}
\infty & 3 & 5 & 6 & \infty & \infty & \infty & \infty \\
4 & \infty & 1 & 4 & \infty & \infty & \infty & \infty \\
5 & 1 & \infty & \infty & 7 & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & 3 & 10 & \infty & 13 \\
7 & \infty & \infty & 3 & \infty & \infty & 5 & \infty \\
\infty & \infty & \infty & \infty & \infty & \infty & 1 & 2 \\
6 & \infty & \infty & \infty & \infty & 1 & \infty & 4 \\
8 & \infty & \infty & 17 & \infty & \infty & \infty & \infty
\end{pmatrix}$$

5. 3,9,8,7,6,1,5,4,3,2,7,8,2

- **7.** 3,4,6,10,2,9,2
- 8. Нахождение минимальных внешне устойчивых подмножеств графа. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

 ∞ 8 2 6 ∞ ∞ ∞ ∞ ∞ ∞ 2 3 ∞ ∞ 13 5 ∞ ∞ ∞ ∞ 1 ∞ 9 ∞ ∞ ∞ ∞ ∞ 6 2 ∞ ∞ ∞ ∞ ∞ ∞ 5 8 3 6 7

5. 1,2,5,4,6,7,8,2,7,2,5,4,3

6.

7. 4,3,4,7,3,10,3

8. Кодирование и декодирование с использованием матричного кодирования, групповые коды.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{vmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

5 ∞ 2 ∞ 3 2 10 ∞ ∞ ∞ 3 11 7 6 ∞ ∞ ∞ ∞ 2 ∞ ∞ ∞ ∞ 2 5 $\infty \quad \infty$ ∞ ∞ ∞ ∞ 7 2 ∞ 2 ∞ 3 ∞ ∞ ∞ ∞ 8 17 $\infty \quad \infty$

5. 2,5,6,7,1,2,3,4,2,5,6,7,8

6.

7. 5,5,5,8,3,8,6

8. Перечисление контуров ориентированного графа методом латинской композиции.

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

2.

4.
$$\begin{pmatrix}
\infty & 10 & 6 & 5 & \infty & \infty & \infty & \infty \\
\infty & \infty & 3 & \infty & 15 & \infty & \infty & \infty \\
\infty & 3 & \infty & 1 & \infty & 7 & \infty & \infty \\
17 & \infty & 1 & \infty & \infty & \infty & 3 & \infty \\
\infty & \infty & \infty & \infty & \infty & 4 & \infty & 3 \\
\infty & \infty & \infty & \infty & \infty & 4 & \infty & 2 & 8 \\
\infty & \infty & \infty & \infty & \infty & 2 & \infty & 10 \\
4 & 7 & \infty & 6 & 5 & 8 & \infty & \infty
\end{pmatrix}$$

5. 8,9,1,2,4,3,5,6,7,9,8,9,1

- **7.** 5,4,6,9,6,9,3
- 8. Построение графа группы по образующим и определяющим соотношениям. Гросман, Магнус. Группы и их графы.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

2.

$(0 \ 0 \ 1 \ 0)$	0	1	0	0
1 0 1 1	1	1	1	0
1 0 0 0	1	1	1	0
1 1 1 0	1	0	0	1
3. 1 1 1 0	0	0	1	0
0 0 1 0	1	1	1	0
1 1 1 0	1	1	1	0
3. \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}	0	0	1	0)

5. 5,4,2,3,8,1,2,7,2,4,1,2,1 **6.**

7. 4,3,7,10,6,10,4

8. Раскраска ребер графа.

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

 $2 \propto \infty$ 1 ∞ ∞ 2 ∞ **4** ∞ 6 ∞ ∞ ∞ 3 $\infty \quad \infty$ $\infty \quad \infty \quad \infty$ ∞ ∞ ∞ 4 ∞ 4 $\infty \quad \infty \quad \infty$ 5 ∞ $\infty \quad \infty$ ∞ ∞ ∞ 6 5 7 4 8 ∞

5. 4,1,2,7,6,5,2,3,4,1,6,1,5 **6.**

- 7. 3,3,4,7,4,8,6
- 8. Разложение графа на максимально сильно связные пдграфы. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

4.
$$\begin{pmatrix}
\infty & 7 & 1 & \infty & \infty & 2 & \infty & \infty \\
6 & \infty & \infty & \infty & \infty & \infty & 2 & 6 \\
4 & \infty & \infty & 5 & \infty & 3 & \infty & \infty \\
7 & \infty & \infty & \infty & 4 & \infty & 2 & \infty \\
\infty & 3 \\
\infty & 6 & \infty & 3 & \infty & \infty & \infty & \infty \\
5 & \infty & \infty & \infty & 1 & \infty & \infty & 5 \\
8 & \infty & \infty & \infty & \infty & 11 & \infty & \infty
\end{pmatrix}$$

5. 6,5,3,4,2,11,8,1,5,4,6,2,3

- 7. 3,4,5,8,6,9,5
- 8. Раскраска планарных графов. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2.

6 ∞ 13 ∞ 2 9 ∞ ∞ $\infty \infty 5 \infty 2$ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 ∞ ∞ ∞ ∞ $2 \infty \infty \infty$ ∞ 5 ∞ 2 8

5. 6,5,3,1,7,6,4,7,9,8,2,1,7

6.

- 7. 2,5,6,9,5,10,6
- 8. Построение таблицы Кэли группы, заданной образующими и определяющими соотношениям.

В лекции на диске.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

2.

4.
$$\begin{pmatrix}
\infty & 4 & \infty & 4 & \infty & 7 & \infty & \infty \\
4 & \infty & 8 & 1 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & 1 & \infty & \infty & 5 \\
\infty & 1 & \infty & \infty & 9 & 2 & \infty & \infty \\
6 & \infty & 1 & \infty & \infty & \infty & 2 & 3 \\
7 & \infty & \infty & 2 & \infty & \infty & 4 & \infty \\
5 & \infty & \infty & \infty & 2 & \infty & \infty & \infty
\end{pmatrix}$$

5. 5,8,1,7,3,2,8,7,4,5,2,3,4

- 7. 5,4,4,10,6,8,6
- 8. Построение плоского графа, изоморфного данному. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

2.

12 ∞ ∞ 6 ∞ ∞ 5 7 ∞ ∞ 1 ∞ ∞ 3 ∞ ∞ 3 $\infty \infty \infty 5$ ∞ 2 ∞ 2 3 7) ∞

5. 2,8,1,7,6,4,3,2,9,8,4,5,1

6.

- 7. 6,3,5,7,2,9,6
- 8. Раскраска вершин гиперграфа.

Емеличев В.А. Лекции по теории графов.

Кристофиди. Теория графов. Алгоритмический подход.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

 ∞ ∞ $2 \propto 10$ ∞ ∞ ∞ 3 6 $\infty \quad \infty$ ∞ ∞ 1 3 $\infty \quad \infty$ 1 5 ∞ $\infty \quad \infty$ ∞ 3 3 7 $\infty \quad \infty$ ∞ ∞ ∞ 5 ∞ ∞ ∞

5. 5,2,4,5,3,7,6,1,2,4,3,6,5

- 7. 5,5,6,8,6,10,6
- 8. Граф конденсации для графа, заданного матрицей смежности. http://e-maxx.ru/algo/strong_connected_components

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

		`	$\overline{}$						
	0	0	0	1	1	0	0	0)	
	1	0	1	1	0	1	0	0	
	1	1	0	1	1	1	0	0	
2	0	0	0	0	1	0	1	0	
Э.	0	0	0	1	0	0	0	0	
	1	1	1	0	1	0	0	1	
	0	1	0	1	1	0	0	0	
	0 1 1 0 0 1 0	1	1	0	0	0	1	0	

	\begin{pmatrix} \infty & \inothered & \infty & \infty & \infty & \infty & \infty & \infty & \	9	2	∞	∞	6	∞	∞
	∞	∞	∞	∞	∞	∞	2	8
	∞	∞	∞	5	∞	3	∞	∞
1	∞	∞	∞	∞	6	∞	3	∞
4.	∞	∞	∞	∞	∞	∞	∞	4
	13	1	∞	1	∞	∞	∞	∞
	∞	∞	∞	∞	2	∞	∞	5
	3	6	2	∞	7	8	∞	∞

5. 1,3,2,8,6,2,9,3,4,5,3,1,6

6.

7. 4,4,7,9,6,8,4

8. Ядро неориентированного графа.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

	∞	4	∞	∞	5	∞	∞	∞
	5	∞	7	∞ 10 2 ∞ ∞ 3 ∞	2	∞	∞	∞
	∞	∞	∞	2	∞	2	∞	∞
4	6	∞	∞	∞	∞	∞	3	5
4.	3	2	∞	∞	∞	3	11	∞
	4	∞	2	∞	∞	∞	7	∞
	8	∞	∞	3	∞	∞	∞	3
	(∞)	∞	∞	∞	17	∞	∞	∞

5. 3,4,5,1,8,7,6,2,3,4,5,3,1

6.

7. 6,3,4,10,4,9,6

8. Построение функции Гранди графа. Изучить возможность построения функции Гранди для графа, содержащего контуры.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2.

2 9 **5** ∞ ∞ ∞ 3 1 ∞ 4 ∞ ∞ ∞ ∞ ∞ 2 ∞ $2 \infty \infty \infty$ ∞ ∞ ∞ 2 4 ∞ ∞ 13

5. 7,1,2,8,9,7,4,6,7,1,3,5,6

6.

7. 3,4,6,7,5,10,3

8. Планарный граф. Распознать является ли граф планарным: выделить соответствующие подграфы из теоремы Понтрягина- Куратовского. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

2.

	0	0	0	1	0	0	1	0)
	1	0	1	0	1	0	1	0
	0	1	0	1	0	1	0	1
2	1	0	0 1 0 0 1 0 0 1	0	0	1	1	0
3.	1	0	1	1	0	0	1	0
	0	1	0	1	1	0	1	0
	0	0	0	1	0	1	0	0
	1	1	1	1	0	0	0	0
_								

4.
$$\begin{pmatrix}
\infty & 7 & 1 & \infty & \infty & 2 & \infty & \infty \\
11 & \infty & \infty & \infty & \infty & \infty & 2 & 6 \\
\infty & \infty & \infty & 5 & \infty & 3 & \infty & \infty \\
\infty & \infty & \infty & \infty & 4 & \infty & 2 & \infty \\
\infty & 3 \\
\infty & 6 & \infty & 3 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & 1 & \infty & \infty & 5 \\
6 & \infty & \infty & 4 & 7 & 5 & 8 & \infty
\end{pmatrix}$$

5. 8,9,1,2,4,3,5,6,7,9,8,9,1

6.

7. 3,4,5,8,6,9,5

8. Раскраска планарного графа. Раскраска географических карт. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

2.

 ∞ 6 ∞ ∞ ∞ ∞ 1 4 ∞ ∞ ∞ ∞ ∞ 1 7 ∞ ∞ 3 10 13 17 ∞ ∞ $\infty \quad \infty$ 5 3 ∞ ∞ ∞ ∞ 1 2 ∞ $\infty \quad \infty$ ∞ ∞ ∞ 4 1 ∞ ∞ ∞ ∞ ∞ ∞ 8 4 7 6 ∞

5. 2,8,1,7,6,4,3,2,9,8,4,5,1

- 7. 5,5,6,8,6,10,6
- 8. Перечисление контуров орграфа методом латинской композиции. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

2.

1 0

6 ∞ ∞ 3 ∞ ∞ ∞ ∞ 2 ∞ $\infty \quad \infty$ 2 ∞ 5 9 ∞ 1 3 4 ∞ 5 ∞ 12

5. 5,6,3,4,2,1,6,7,3,5,4,2,5

6.

7. 4,2,4,9,5,9,4

8. Построение таблицы Кэли группы по образующим и определяющим соотношениям.

Лекции на диске.

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

	∞	1	4	6	∞	∞	∞	∞
	2	∞	1	∞	12	∞	∞	∞
	∞	1	∞	3	∞	6	∞	∞
4.	3	∞	3	6 ∞ 3 ∞ ∞	∞	∞	2	∞
	4	∞	∞	∞	∞	3	∞	2
	7	∞	∞	∞	3	∞	2	5
	∞	∞	∞	∞ ∞ 13	∞	2	∞	6
	8	∞	∞	13	∞	∞	∞	∞

5. 2,5,6,7,1,2,3,4,2,5,6,7,8

6.

7. 3,4,6,10,2,9,2

8. Нахождение компонент связности неориентированного графа. Кофман А. Введение в прикладную комбинаторику