Photovoltaic junctions

Overview

- Theoretical background
- Main idea
- Driving forces
- Junctions
- Surfaces and interfaces
- The p-n homojunction

Approach

This lecture

- Analysis of spatial energy band diagrams
- Little mathematical formalism
- Overview of function of main junctions

Next lecture

- Detailed derivation of the I-V characteristics of a semiconductor homojunction solar cell
 - 1. Ideal, infinite diode/"solar cell"
 - 2. Finite diode/solar cell with recombination

Theoretical background

Theoretical background

- Available voltage: $qV = E_{Fn} E_{Fp}$
 - Difference between quasi Fermi levels at points of contact
- A gradient in quasi Fermi levels required for net current

$$\boldsymbol{J}_{TOT} \! = \; \boldsymbol{\mu}_{n} \, \boldsymbol{n} \; \boldsymbol{\nabla} \boldsymbol{E}_{Fn} \! + \boldsymbol{\mu}_{p} \, \boldsymbol{p} \; \boldsymbol{\nabla} \boldsymbol{E}_{Fp}$$

 A mechanism for charge separation can be provided in many ways

Reminder: the importance of diffusion length

Theoretical background

 χ = electron affinity

 E_g = band gap energy

 E_F = Fermi level

 E_c = conduction band energy

 E_v = valence band energy

 $\Phi_{\rm w}$ = work function

Transport

$$J_{TOT} = J_n + J_p$$

$$J_{TOT} = \mu_n \, n \, \nabla E_{Fn} + \mu_p \, p \, \nabla E_{Fp}$$
 Electron current density:
$$J_n = + \, q \, D_n \, \nabla \, \delta n + \mu_n \, \delta n \, [qE - \nabla \chi - kT \, \nabla \, ln(N_c)]$$
 DIFFUSION DRIFT Hole current density:
$$J_p = - \, q \, D_p \, \nabla \, \delta n + \mu_p \, \delta n \, [qE - \nabla \chi - \nabla E_g + kT \, \nabla \, ln(N_c)]$$

A net current density can be obtained in many ways!

Transport in semiconductors

- Solar cell device operation:
 - The number of charge carriers must be conserved
 - 2. The electrostatic potential $\phi(x)$ obeys Poisson's equation

$$\delta n/\delta t = 1/q \cdot \delta/\delta x (J_n(x)) + G_n(x) - U_n(x)$$

Transport in steady state

$$\delta n/\delta t = 1/q \cdot \delta/\delta x (J_n(x)) + G_n(x) - U_n(x) = 0$$

$$\delta p/\delta t = 1/q \cdot \delta/\delta x(J_p(x)) + G_p(x) - U_p(x) = 0$$

$$(\delta/\delta x)^2 \phi(x) = (q/\epsilon_0 \epsilon_s)(-Q_{fixed} + n - p)$$

The transport problem

Electrons in the (neutral) p-region:

$$(\delta^2/\delta x^2)n + (qE/kT)(\delta/\delta x)n + G_n(x)/D_n - U_n(x)/D_n = 0$$

Holes in the (neutral) n-region:

$$(\delta^2/\delta x^2)p + (qE/kT)(\delta/\delta x)p + G_p(x)/D_p - U_p(x)/D_p = 0$$

$$L_n^2 = \tau_n D_n$$

Electrons in the (neutral) p-region:

$$(\delta^2/\delta x^2)n + (qE/kT)(\delta/\delta x)n + G_n(x)/D_n - (n - n_0)/L_n^2 = 0$$

Holes in the (neutral) n-region:

$$(\delta^2/\delta x^2)p + (qE/kT)(\delta/\delta x)p + G_p(x)/D_p - (p - p_0)/L_p^2 = 0$$

Main idea

Main idea

- The junction is responsible for supplying a driving force for the photocurrent in a solar cell
- It is worth recalling that we want to be able to collect excited h⁺ and e⁻ at separate contacts while maintaining as big a voltage difference as possible between the contacts

Main idea

- Alternative picture: the light absorbing material is connected to the external circuit through two paths of different resistance
 - Path 1: low resistance for h⁺, high resistance for e⁻
 - Path 2: low resistance for e⁻, high resistance for h⁺

Driving forces

Diffusive current

$$J_{diff} = q D_n \nabla \delta n - q D_p \nabla \delta n$$

- Carrier concentration gradients result from gradients in carrier generation or carrier removal (recombination, extraction) rates
- A solar cell driven only by diffusivity can only yield net current under steady-state conditions if diffusivities are different
 - The so-called Dember effect
 - The Dember effect is usually not strong enough for useful exploitation in photovoltaics

Electrostatic fields and band bending

 An electrostatic field will, due to Poisson's equation, lead to a redistribution of charge around the junction

$$dE(x)/dx = q\rho(x)/\epsilon_s$$

- A redistribution of charge manifests itself in the relative positions of the bands and the Fermi level in a spatial band diagram
 - Band bending
- In the following, this will be illustrated for a range of junctions

Work functions and electric fields

- The work function (Φ_w) of a material is the potential required to remove the least tightly bound electron from the material
 - $\bullet \quad \Phi_{\rm w} = E_{\rm vac} E_{\rm F}$
 - In metals: $\Phi_{\rm w} = \chi$
 - Spatial variations in Φ_w give spatial variations in E_{vac} , which correspond to an electrostatic field E

$$q \int_{x_1}^{x_2} E \, dx = \Phi_w(x_1) - \Phi_w(x_2)$$

Drift currents

- Gives a built-in
- Realization
 - Doping
 - Heterojunc.

- Gives an effective E
- Realization
 - Heterojunc

- Gives an effective E
- Realization
 - Heterojunc

- Gives an effective E
- Realization
 - Heterojunc

Junctions

Junctions

- Homojunctions
 - Exploits work function gradients
 - One material
 - Made by doping

- Heterojunctions
 - Can utilize any term in $\nabla E_{Fp,n}$
 - Two materials
 - Metal-semiconductor junctions
 - Semiconductor heterojunctions
 - Electrochemical junctions
 - Junctions in organic materials
 - (Surfaces and interfaces)
 - Metallurgical interface

- Spatial band diagram of junction depends on work function differences
- Example:
 - n-type semiconductor
 - $\Phi_n < \Phi_m$
- When brought in contact, Fermi levels must align in equilibrium!

- A result of the aligning of Fermi levels is that the vacuum level changes by $(\Phi_m \Phi_n)$
 - Band bending arises
 - An electrostatic field is established close to the junction
- We assume that no bending occurs within the metal
 - Perfectly conducting metal

- Far from the junction, n and p will have equilibrium values in the semiconductor
 - $n \sim N_d$
 - $p \sim n_i^2/N_d$
- What happens close to the junction?
 - Electrons flow from the n-type semiconductor into the metal until new equilibrium state is reached

$$n = N_c e^{-(E_c - E_F)/kT}$$

 The material becomes less n-type as we approach the junction

- Close to the junction, we get many fewer mobile electrons but only a few more mobile holes
- We can assume that the region is more or less depleted of charge carriers
- A so-called space charge region (SCR) is formed
 - Depleted of carriers
 - Also called depletion region

The illuminated junction

- The SCR separates photogenerated electrons and holes
 - Electrons will accumulate in semiconductor
 - Holes will accumulate in metal

The illuminated junction

- The semiconductor becomes negatively charged
 - Quasi Fermi level for electrons under illumination higher than Fermi level of semiconductor
 - The potential difference is often called the photovoltage (V)

$$qV = E_{Fn} - E_{F}$$

 The ability to sustain a difference in quasi Fermi levels under illumination is the key requirement to photovoltaic energy conversion!

I-V curve

- The current in an n-type semiconductor is almost purely electron current
 - Majority carrier device
- The current density is regulated by the voltage
 - Reverse bias (V < 0): barrier increased
 - Forward bias (V > 0): barrier lowered
- Rectifying junction
 - Junction resistance strongly dependent on applied voltage
 - Often called a Schottky barrier junction
- Analogous for a p-type semiconductor

Schottky diodes and Ohmic contacts

- $\Phi_{\rm m} > \Phi_{\rm n}$
- Barrier to electron flow
- Rectifying contact

Example: n-type semiconductor

•
$$\Phi_{\rm m} < \Phi_{\rm n}$$

- No barrier to electron flow
- Ohmic contact

The Schottky diode as a solar cell

- The very first solar cells were Schottky junction devices
- There are several limitations to the usefulness of this type of junctions in solar cells
 - Limited obtainable photovoltage
 - $qV < E_g/2$
 - Inversion gives accumulation of charge carriers at the junction
 - Limited SCR width (W)
 - Interface states will be generated
 - A limited choice of materials

The p-n homojunction

- The most common junction for use in solar cells by far
- By combining n- and p-type semiconductors, a built-in voltage $(V_{\rm bi})$ and a corresponding E is obtained
 - In equilibrium:

$$qV_{bi}=\Phi_p-\Phi_n$$

 Note, this spatial band diagram corresponds to a short-circuit condition!

The p-n homojunction

- Advantages
 - Large photovoltage obtainable
 - $qV \sim E_g$
 - No metallurgical junction
 - Relatively easy to manufacture
- Much more on this junction in subsequent lectures
- Real world
 - Limited physical extent
 - Rarely «abrupt»

Good solar cell

Good solar cell

What to do if diffusion length is *really* short?

The p-i-n junction

- A junction frequently used in materials with low lifetimes
 - Carriers generated in n and p-regions unlikely to contribute to current
 - Lifetime in i-region higher than in n and p-regions
- Advantages
 - Same obtainable $V_{\rm bi}$ as for a p-n homojunction
 - E is extended over a large distance, stimulating drift current
- Disadvantages
 - i-region highly resistive
 - High recombination in i-region where n and p are similar
 - Charged static defects will affect the useful thickness of the i-region

The p-n heterojunction

- A p-n junction made using materials systems with different material properties (e.g. $E_{\rm g}$) in combination with doping
- Motivation
 - Can increase photocurrent compared with homojunctions
 - Certain materials can only be doped in with one polarity
 - Surface passivation
- Band offsets determined by $\Phi,\,\chi$ and $E_{\rm F}$

The p-n heterojunction

- Examples
 - The HIT cell from Sanyo
 - a-Si:H on sc-Si
 - CIS/CIGS
 - Uses n-type CdS as the emitter material on p-type CIS/CIGS

The electrochemical junction

- A junction between an electrolyte and a semiconductor
- Advantages
 - Possibly very cost effective
 - Possibly easy to fabricate
- Disadvantages and challenges
 - Low efficiencies
 - ~ 10% in laboratory cells
 - Stability

The electrochemical junction

- How does it work?
 - The electrolyte contains so-called redox-couples
 - Ionic species with different possible oxidation states
 - Oxidation states give energy levels
 - The energy levels in the electrolyte are average values

The electrochemical junction

 At contact, electrons will flow from n-type semiconductor into electrolyte until equilibrium is reached

The Fermi energies match

• The charge on the electrolyte side is balanced within a very thin layer

- $\hbox{Most band bending occurs within}_{E_v} \\ \hbox{the semiconductor}$
- The current in the electrolyte is due to a flux of species from or towards the junction

- Organic (molecular) materials hold much promise for cost-effective solar cells
- In general, photons generate excitons within molecular materials
- From a photovoltaic view-point, we can divide organic materials into two types:
 - 1. Materials wherein intermolecular forces dominate
 - Excitons can be split easily into mobile e⁻ and h⁺
 - Cells can be made in a similar fashion to the inorganic junctions we have reviewed
 - Material types: crystalline organic solids
 - 2. Materials wherein intramolecular forces dominate
 - Excitons are not easily split by E, and are mobile carriers
 - Excitons can be split into mobile e- and h+ at certain interfaces
 - Material types: amorphous organic solids or polymers

- The challenge of making solar cells from materials wherein intramolecular forces dominate
 - Recombination is a big problem
 - L ~ 10 nm
 - Absorption is generally weak
 - $1/\alpha \sim 100 1000 \text{ nm}$
 - A planar interface will give a solar cell with poor performance
 - Solution: distribute the interface by making a porous material

- Principle of operation (schematic)
 - 1. An exciton is generation somewhere in the material
 - 2. The exciton is separated into mobile e⁻ and h⁺ at an interface
 - 3. The mobile e⁻ and h⁺ are transported through selective electron and hole conductors towards the external contacts
- A similar technique is also used in dye sensitized cells
 - Porous semiconductor

- Principle of operation (band diagram)
 - 1. Photon absorption
 - 2. Recombination
 - Unwanted loss mechanisms
 - 3. Exciton separation
 - 4. Carrier extraction

- Surfaces and interfaces are likely to contain defects
 - Intrinsic defects: defects due to an interrupted crystal structure
 - Extrinsic defects: e.g. Impurities adsorbed at the interface
- These defects often introduce states in the band gap
- These defects are localized at the interface and can trap charge
 - Will influence potential distribution across interface
 - Will affect band bending across interface

- States near E_v tend to trap e⁻
 - Acceptor states
- States near E_c tend to trap h⁺
 - Donor states
- Whether a state acts as a donor or acceptor state depends on the occupancy of the states and the $\rm E_{\rm F}$ of the semiconductor
- It is useful to define a **neutrality** level, Φ_0 , the level up to which the states are filled for a neutrally charged interface

- When a semiconductor and a surface are brought together, Φ_0 is in general at a different energy than $E_{\rm F}$
 - Charge must be exchanged to bring the semiconductor and the interface into equilibrium
 - Band bending will occur

- Φ_0 < E_F : surface exhibits acceptor-like behaviour
 - Surface traps e
- Φ_0 > E_F : surface exhibits donor-like behaviour
 - Surface traps h⁺
- Example: surface of an n-type semiconductor for which Φ_0 < E_F

- Upon contact, e⁻ flow from the semiconductor onto the surface until equilibrium occurs
 - e⁻ flow from the semiconductor, leaving a depletion zone with positively charged ions
 - Flow continues until the resulting potential barrier $V_{\rm bi}$ is large enough to hinder further flow

The charge at the surface, -Q_s, becomes negative and must be compensated by a positive charge +Q_s inside the semiconductor

The effect of interfaces on junctions

- At a junction, interface states may trap charge and influence the potential distribution
- Interface states do **not** affect the overall potential difference across the junction
 - This is determined by the difference in work functions

The effect of interfaces on p-n junctions

- Interface states can alter the way the potential is distributed between the two sides of the junction
- Extreme cases
 - 1. High density of interface states:
 - E_F at interface pinned at Φ_0
 - Two sides of junction screened from each other
 - 2. If Φ_0 is low enough for an acceptor-like surface, or high enough for a donor-like surface, the entire potential difference can be dropped on only one side of the junction

The effect of interfaces on Schottky junctions

- Interface states immediately at a perfect Schottky junction will not modify the potential distribution
- In real cells, a this insulator layer (oxide) can be present between the metal and the semiconductor
 - This layer can store charge
 - "MOS structure"
- This fixed charge will contribute to the change of work functions across the interface

 Next follows a detailed derivation of the I-V characteristics of a p-n homojunction

- The approach will be as follows
 - 1. Divide solar cell into three parts: two neutral parts and a space charge region (SCR) over which all change in potential and electric fields occur
 - Electrostatics
 - 2. Calculate SCR width and the electric field and potential across the SCR
 - Electrostatics
 - 3. Calculate Calculate carrier and current densities in neutral regions
 - Spatially varying minority carrier densities and diffusion currents
 - 4. Calculate carrier and current densities in SCR
 - Generation and recombination
 - 5. Calculate I-V characteristics of an ideal and infinite solar cell
 - Nice and readily interpretable solution
 - 6. Calculate I-V characteristics of a finite solar cell
 - Add surface recombination and get a messy solution
 - Discuss the various factor that affect the I-V characteristics

$$(\delta/\delta x)^2 \varphi(x) = (q/\epsilon_0 \epsilon_s)(-Q_{\text{fixed}} + n - p)$$

$$(\delta^2/\delta x^2)n + (qE/kT)(\delta/\delta x)n + G_n(x)/D_n - (n - n_0)/L_n^2 = 0$$

$$(\delta^2/\delta x^2)p + (qE/kT)(\delta/\delta x)p + G_p(x)/D_p - (p - p_0)/L_p^2 = 0$$

