Machine Learning I

Supervised learning framework - Optimal predictions

Souhaib Ben Taieb

March 11, 2022

University of Mons

Table of contents

Regression with squared error loss

Classification with zero-one loss

A note on the data distribution

Bias and variance

Optimal prediction function

$$f = \underset{h:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \; \underset{h \in \mathcal{H}}{E_{\operatorname{out}}(h)} \qquad g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \; \underset{h \in \mathcal{H}}{E_{\operatorname{in}}(h)}$$

Recall that the **optimal prediction function** is given by

$$f = \underset{h:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \underbrace{\mathbb{E}_{x} \left[E_{\operatorname{out}}(h, x) \right]}_{E_{\operatorname{out}}(h)}, \tag{1}$$

where

$$E_{\text{out}}(h,x) = \mathbb{E}_{y|x}[L(y,h(x))|x].$$

and $L(\cdot, \cdot)$ is the loss function.

It sufficed to minimize the error pointwise, i.e. compute

$$f(x) = \underset{h:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \ E_{\operatorname{out}}(h, x), \tag{2}$$

for all $x \in \mathcal{X}$.

Table of contents

Regression with squared error loss

Classification with zero-one loss

A note on the data distribution

Bias and variance

Optimal predictions in regression (squared error loss)

With the squared error loss function $L(y, \hat{y}) = (y - \hat{y})^2$, the optimal prediction function is given by

$$f(x) = \underset{h:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \ \mathbb{E}_{y|x}[(y - h(x))^2 | x]$$
 (3)

$$= \mathbb{E}_{y|x}[y|x], \tag{4}$$

i.e. the conditional expectation, also known as the **regression function**.

In other words, when best is measured by expected squared error, the best prediction for y at any point x is the conditional expectation at x.

Optimal predictions in regression (squared error loss)

$$E_{\rm out}(h,x) \tag{5}$$

$$= \mathbb{E}_{y|x}[(y - h(x))^2|x] \tag{6}$$

$$= \mathbb{E}[y^2 - 2yh(x) + h(x)^2 | x] \tag{7}$$

$$= \mathbb{E}[y^{2}|x] - 2h(x)\mathbb{E}[y|x] + h(x)^{2}$$
 (8)

$$= Var(y|x) + (\mathbb{E}[y|x])^2 - 2h(x)\mathbb{E}[y|x] + h(x)^2$$
 (9)

$$= \operatorname{Var}(y|x) + (\mathbb{E}[y|x] - h(x))^2 \tag{10}$$

- The second term is non-negative, and will be equal to zero if $h(x) = \mathbb{E}[y|x]$.
- The first term corresponds to the inherent unpredictability, or noise, of the output, and is called the Bayes error. It is the smallest error any learning algorithm can achieve.

Table of contents

Regression with squared error loss

Classification with zero-one loss

A note on the data distribution

Bias and variance

Optimal predictions in regression (zero-one loss)

For a multi-class classification problem with K categories, i.e. $y \in \mathcal{C} = \{C_1, \dots, C_K\}$ and the zero-one loss function $L(y, \hat{y}) = \mathbb{1}\{y \neq \hat{y}\}$, the optimal prediction function is given by

$$f(x) = \underset{h:\mathcal{X} \to \mathcal{C}}{\operatorname{argmin}} \ \mathbb{E}_{y|x}[\mathbb{1}\{y \neq h(x)\}|x] \tag{11}$$

$$= \underset{h:\mathcal{X}\to\mathcal{C}}{\operatorname{argmax}} \mathbb{P}(y = h(x)|x). \tag{12}$$

The optimal classifier is called the **Bayes classifier**, which has the following error rate at x:

$$1 - \max_{k=1,\dots,K} \mathbb{P}(y = C_k | x),$$

also called the **Bayes error rate**, which gives the lowest possible error rate that could be achieved if we knew $\mathbb{P}(y|x)$.

Optimal predictions in regression (zero-one loss)

$$E_{\text{out}}(h,x) = \mathbb{E}_{y|x}[\mathbb{1}\{y \neq h(x)\}|x]$$

$$= \sum_{k=1}^{K} \mathbb{1}\{C_k \neq h(x)\} \ \mathbb{P}(y = C_k|x)$$

$$= \sum_{k:C_k \neq h(x)} 1 \times \mathbb{P}(y = C_k|x) + 0 \times \mathbb{P}(y = h(x)|x)$$

$$= \sum_{k:C_k \neq h(x)} \mathbb{P}(y = C_k|x)$$

$$= \sum_{k:C_k \neq h(x)} \mathbb{P}(y = C_k|x) + \mathbb{P}(y = h(x)|x) - \mathbb{P}(y = h(x)|x)$$

$$= \sum_{k=1}^{K} \mathbb{P}(y = C_k|x) - \mathbb{P}(y = h(x)|x)$$

$$= 1 - \mathbb{P}(y = h(x)|x).$$

Optimal predictions in classification

Using the fundamental bridge, we can directly write

$$\mathbb{E}_{y|x}[\mathbb{1}\{y \neq h(x)\}|x]$$

$$= \mathbb{P}(y \neq h(x)|x)$$

$$= 1 - \mathbb{P}(y = h(x)|x).$$

In conclusion, we have

$$f(x) = \underset{h: \mathcal{X} \to \mathcal{C}}{\operatorname{argmin}} \ \mathbb{E}_{y|x}[\mathbb{1}\{y \neq h(x)\}|x] \tag{13}$$

$$= \underset{h:\mathcal{X} \to \mathcal{C}}{\operatorname{argmin}} \ 1 - \mathbb{P}(y = h(x)|x) \tag{14}$$

$$= \underset{h: \mathcal{X} \to \mathcal{C}}{\operatorname{argmax}} \mathbb{P}(y = h(x)|x). \tag{15}$$

Table of contents

Regression with squared error loss

Classification with zero-one loss

A note on the data distribution

Bias and variance

Data distribution in regression

The data distribution $p_{x,y}$ is often **implicitly specified**, i.e. $p_{x,y}$ is not given explicitly. In regression, the following (additive error) data generating process is often considered:

$$y = f(x) + \varepsilon, \tag{16}$$

where

- $x \sim p_x$ (e.g. $p_x(x) = \frac{1}{2}$ for $x \in [-1, 1]$)
- f is a fixed unknown function (e.g. $f(x) = x^2$)
- \bullet ε is random noise, where
 - $\mathbb{E}[\varepsilon|x] = 0$
 - $Var(\varepsilon|x) = \sigma^2$, with $\sigma \in [0, \infty)$.

Note that we have

•
$$\mathbb{E}[y|x] = f(x)$$
 and $Var[y|x] = \sigma^2$

i.e. $p_{v|x}$ depends on x only through the conditional mean.

Data distribution in regression

ightarrow Try to visualize $p_{x,y}$

Data distribution in regression

Data distribution in classification

Using Bayes' rule, we can write

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} \propto p(x|y)p(y) \stackrel{y \text{ uniform}}{\propto} p(x|y)$$

Data distribution in classification

Using Bayes' rule, we can write

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} \propto p(x|y)p(y) \stackrel{y \text{ uniform}}{\propto} p(x|y)$$

Table of contents

Regression with squared error loss

Classification with zero-one loss

A note on the data distribution

Bias and variance

- Previously, we considered the unrealistic scenario where we know p_{x,y}. As a result, we were able to compute the optimal hypothesis/predictions for different loss functions.
- In practice, we only observe a **dataset** \mathcal{D} where each data point is assumed to be an i.i.d. realization from $p_{x,y}$.
- Overly simple models underfit and complex models overfit.
 There is an approximation-generalization tradeoff:

$$E_{\mathrm{out}}(g) - E_{\mathrm{out}}(f) = \underbrace{\left[E_{\mathrm{out}}(g^*) - E_{\mathrm{out}}(f)\right]}_{\text{Approximation error}} + \underbrace{\left[E_{\mathrm{out}}(g) - E_{\mathrm{out}}(g^*)\right]}_{\text{Estimation error}}$$

 The bias-variance decomposition allows to <u>quantify</u> this tradeoff for the squared error loss function.

An experiment

- Consider an experiment where we sample lots of training sets independently from $p_{x,y}$.
- Pick a fixed query point x_* .
- Let's run our learning algorithm on each training set, and compute its prediction $g(x_*)$ at the query point x_* .
- We can view $g(x_*)(=g_D(x_*))$ as a random variable, where the randomness comes from the training set D.

An experiment - Classification

An experiment - Regression

An experiment (continued)

- Fix a query point x_* .
- Repeat:
 - Sample a dataset \mathcal{D} i.i.d. from $p_{x,y}$
 - ullet Run the learning algorithm on ${\mathcal D}$ to obtain g
 - Compute the prediction for x_* , i.e. $g(x_*)$
 - Sample the (true) output y_* from $p_{y|x}(\cdot|x=x_*)$
 - Compute the loss $L(y_*, g(x_*))$

 $L(y_*, g(x_*))$ contains two sources of randomness: \mathcal{D} and y_* . This gives a distribution over the loss at x_* .

An experiment (continued)

- Fix a query point x_* .
- Repeat:
 - Sample a dataset \mathcal{D} i.i.d. from $p_{x,y}$
 - ullet Run the learning algorithm on ${\mathcal D}$ to obtain g
 - Compute the prediction for x_* , i.e. $g(x_*)$
 - Sample the (true) output y_* from $p_{y|x}(\cdot|x=x_*)$
 - Compute the loss $L(y_*, g(x_*))$

 $L(y_*, g(x_*))$ contains two sources of randomness: \mathcal{D} and y_* . This gives a distribution over the loss at x_* .

Let us compute

$$\mathbb{E}_{\mathcal{D}}\left[\underbrace{\mathbb{E}_{y|x}\left[L(y,g(x))|x\right]}_{E_{\text{out}}(g,x)}\right]$$

for the squared error loss $L(y, g(x)) = (y - g(x))^2$.

Previously, we proved that

$$E_{\text{out}}(g,x) = \mathbb{E}_{y|x}[(y-g(x))^2|x] = \text{Var}(y|x) + (f(x)-g(x))^2,$$

where $f(x) = \mathbb{E}[y|x]$.

We can write

$$\mathbb{E}_{\mathcal{D}}[E_{\text{out}}(g,x)]$$
=?

Previously, we proved that

$$E_{\text{out}}(g,x) = \mathbb{E}_{y|x}[(y-g(x))^2|x] = \text{Var}(y|x) + (f(x)-g(x))^2,$$
 where $f(x) = \mathbb{E}[y|x]$.

We can write

$$\begin{split} &\mathbb{E}_{\mathcal{D}}[E_{\text{out}}(g,x)] \\ &= \text{Var}(y|x) + \mathbb{E}_{\mathcal{D}}[(f(x) - g(x))^2] \\ &= \text{Var}(y|x) + f(x)^2 - 2f(x)\mathbb{E}_{\mathcal{D}}[g(x)] + \mathbb{E}_{\mathcal{D}}[g(x)^2] \\ &= \text{Var}(y|x) + f(x)^2 - 2f(x)\mathbb{E}_{\mathcal{D}}[g(x)] + \text{Var}(g(x)) + \mathbb{E}_{\mathcal{D}}[g(x)]^2 \\ &= \underbrace{\text{Var}(y|x)}_{\text{Bayes error at } x} + \underbrace{(f(x) - \mathbb{E}_{\mathcal{D}}[g(x)])^2}_{\text{Bias at } x} + \underbrace{\text{Var}(g(x))}_{\text{Variance at } x} \end{split}$$

$$\mathbb{E}_{\mathcal{D},y|x}[(y-g(x))^2|x] = \underbrace{\operatorname{Var}(y|x)}_{\text{Bayes error at }x} + \underbrace{(f(x) - \mathbb{E}_{\mathcal{D}}[g(x)])^2}_{\text{Bias at }x} + \underbrace{\operatorname{Var}(g(x))}_{\text{Variance at }x}$$

We split the expected error at x into three terms:

- Bayes error: the inherent unpredictability of the output
- bias: how wrong the expected prediction is (underfitting)
- variance: the variability of the predictions (overfitting)

If we take the expectation with respect to x, we obtain

$$\mathbb{E}_{\mathcal{D},y,x}[(y-g(x))^{2}] = \underbrace{\operatorname{Var}(y)}_{\text{Bayes error}} + \underbrace{\mathbb{E}_{x}[(f(x) - \mathbb{E}_{\mathcal{D}}[g(x)])^{2}]}_{\text{Bias}} + \underbrace{\mathbb{E}_{x}[\operatorname{Var}(g(x))]}_{\text{Variance}}$$

While the analysis only applies to squared error, we often use "bias" / "variance" as synonyms for "underfitting" / "overfitting".

Throwing darts = predictions for each draw of a dataset

