Quantité de Matière

Benjamin L'Huillier

August 24, 2025

1 Définitions fondamentales

Definition 1.1: Mole

Une **mole** est la quantité de matière d'un système contenant autant d'entités (atomes, ions, molécules) qu'il y a d'atomes dans 12 g de carbone 12. Ce nombre est appelé **constante d'Avogadro**:

$$\mathcal{N}_A = 6.022 \times 10^{23} \,\mathrm{mol}^{-1}$$

Example 1.1: Interprétation de la mole

Une mole d'eau contient $6.022\times 10^{23}\,\mathrm{mol}^{-1}$ molécules de $\mathrm{H}_2\mathrm{O}$ soit 1.204×10^{24} atomes d'hydrogène et 6.022×10^{23} atomes d'oxygène.

Definition 1.2: Masse molaire

La masse molaire M d'une espèce chimique est la masse d'une mole de cette espèce. Elle s'exprime en g/mol:

- Masse molaire atomique : Fe : $M_{\rm Fe} = 55.8 \, {\rm g/mol}$
- Masse molaire moléculaire : H_2O :

$$M_{\rm H_2O} = 2M_{\rm H} + M_{\rm O} = 2 \times 1.0 + 16.0 = 18.0 \,\rm g/mol$$

• Masse molaire ionique : Na⁺, Cl⁻ : même valeur que les atomes correspondants

Example 1.2: Calcul de masse molaire

• CO_2 (dioxyde de carbone) :

$$M_{\text{CO}_2} = M_{\text{C}} + 2M_{\text{O}} = 12.0 + 2 \times 16.0 = 44.0 \,\text{g/mol}$$

• CaCl₂ (chlorure de calcium) :

$$M_{\text{CaCl}_2} = M_{\text{Ca}} + 2M_{\text{Cl}} = 40.1 + 2 \times 35.5 = 111.1 \,\text{g/mol}$$

1

2 Relations fondamentales

Propriété 2.1: Quantité de matière et masse

 $n = \frac{m}{M}$ où : n = quantit'e de matière (mol), m = masse (g), M = masse molaire (g/mol)

Propriété 2.2: Quantité de matière et volume de gaz

$$n = \frac{V}{V_M}~~{\rm avec}~V_M = 24.0\,{\rm L/mol}$$
à 20 °C et 1 atm

Propriété 2.3: Concentration molaire

$$n = C \cdot V \quad \Rightarrow \quad C = \frac{n}{V}$$

avec C en mol/L, V en L, n en mol.

Propriété 2.4: Concentration en masse

$$t = \frac{m}{V}$$
 (avec t en g/L)

Propriété 2.5: Lien entre concentration molaire et en masse

$$t = C \cdot M \quad \Rightarrow \quad C = \frac{t}{M}$$

3 Exemples

Example 3.1: Calcul de quantité de matière

On dispose de 36.0 g d'eau (H₂O). Sachant que $M(H_2O) = 18.0$ g/mol, on a :

$$n = \frac{36.0}{18.0} = 2.0 \,\text{mol}$$

Example 3.2: Volume molaire d'un gaz

Quel volume occupe $0.50\,\mathrm{mol}$ de dioxygène O_2 à $20\,^{\circ}\mathrm{C}$?

$$V = n \cdot V_M = 0.50 \times 24.0 = 12.0 \, \mathrm{L}$$

Example 3.3: Concentration molaire

On dissout $5.0\,\mathrm{mol}$ de NaCl dans $500\,\mathrm{mL}$ d'eau.

$$C = \frac{5.0}{0.500} = 10.0\,\mathrm{mol/L}$$

2

Example 3.4: Concentration en masse

On dissout $18\,\mathrm{g}$ de glucose $(\mathrm{C_6H_{12}O_6})$ dans $250\,\mathrm{mL}$ de solution.

$$t = \frac{18}{0.250} = 72.0 \,\mathrm{g/L}$$

À retenir

- $n = \frac{m}{M}, n = \frac{V}{V_M}, n = C \cdot V$
- $C = \frac{n}{V}, t = \frac{m}{V}, t = C \cdot M$
- $V_M \approx 24.0 \, \mathrm{L/mol}$ à $20\,^{\circ}\mathrm{C}$