Universidad Autónoma Metropolitana

UNIDAD CUAJIMALPA

GREEN-VRP

Proyecto Terminal

QUE PRESENTA:

NOMBRE DEL ALUMNO

LICENCIATURA EN ...

Departamento de Matemáticas Aplicadas e Ingeniería

División de Ciencias Naturales e Ingeniería

Asesor y Responsable de la tesis: NOMBRE DEL ASESOR(ES)

Mes y año (de finalización)

Índice general

1.	Resumen	1			
2.	Introducción	3			
3.	. Conocimientos preliminares				
	3.1. Problema de Optimización	5			
	3.2. Tipos de Optimización	5			
	3.2.1. Optimización Discreta	6			
	3.2.2. Optimización Combinatoria	6			
4.	Desarrollo del proyecto	7			
5.	6. Conclusiones v trabajo futuro				

Índice de figuras

Resumen

Introducción

Conocimientos preliminares

3.1. Problema de Optimización

La optimización es una rama de las matemáticas aplicadas que se enfoca en el desarrollo de principios y métodos para resolver problemas cuantitativos en diversas disciplinas como la física, biología, ingeniería y economía, así como en cualquier campo donde sea necesaria la toma de decisiones dentro de un conjunto de opciones, con el objetivo de encontrar la mejor o una de las mejores soluciones de manera eficiente.

En términos formales, consideramos una función $f: S \to \mathbb{R}$, donde $S \subseteq \mathbb{R}^n$. Denominaremos a f como función objetivo, y a S lo llamaremos conjunto factible o conjunto de soluciones posibles.

3.2. Tipos de Optimización

Dentro de la optimización, existen dos tipos principales: la optimización discreta y la optimización continua.

La optimización discreta se aplica cuando el dominio S de la función objetivo es un conjunto discreto. En este contexto, el conjunto de soluciones posibles es finito o numerablemente infinito. La optimización discreta a menudo involucra la búsqueda de soluciones en combinaciones específicas y puede in-

volucrar problemas como la programación lineal entera o los problemas de asignación. Las soluciones óptimas pueden ser difíciles de encontrar debido a la naturaleza combinatoria del problema.

Por otro lado, la optimización continua se refiere a situaciones en las que el conjunto S de la función objetivo es un conjunto continuo. En este caso, el dominio es un intervalo o un subconjunto de \mathbb{R}^n que no es discreto. Aquí se buscan soluciones que maximizan o minimizan la función objetivo sobre un espacio continuo, y los métodos comunes incluyen la programación lineal, la programación no lineal y el cálculo de variaciones. La optimización continua suele implicar el uso de técnicas de cálculo y análisis matemático.

3.2.1. Optimización Discreta

3.2.2. Optimización Combinatoria

Desarrollo del proyecto

Conclusiones y trabajo futuro

Bibliografía