

Algorithm Design and Analysis (H) cs216

Prof. Shiqi Yu (于仕琪)

yusq@sustech.edu.cn

http://faculty.sustech.edu.cn/yusq/

2. Choosing Good Augmenting Paths

Ford-Fulkerson: Exponential Number of Augmentations

- Q. Is generic Ford-Fulkerson algorithm polynomial in input size?
- A. No. If max capacity is C, then algorithm can take C iterations.

Choosing Good Augmenting Paths

- Use care when selecting augmenting paths.
 - Some choices lead to exponential algorithms.
 - Clever choices lead to polynomial algorithms.
 - If capacities are irrational, algorithm not guaranteed to terminate!

- Goal: choose augmenting paths so that:
 - Can find augmenting paths efficiently.
 - > Few iterations.
- Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
 - Max bottleneck capacity.
 - Sufficiently large bottleneck capacity.
 - Fewest number of edges.

Capacity Scaling

- Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.
 - Don't worry about finding exact highest bottleneck path.
 - Maintain scaling parameter Δ .
 - Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ .

Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) {
    foreach e \in E f(e) \leftarrow 0
    \Delta \leftarrow smallest power of 2 greater than or equal to C
    G_f \leftarrow residual graph
    while (\Delta \geq 1) {
        G_f(\Delta) \leftarrow \Delta-residual graph
        while (there exists augmenting path P in G_f(\Delta)) {
            f \leftarrow augment(f, c, P)
            update G_f(\Delta)
        \Delta \leftarrow \Delta / 2
    return f
```


Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

 Integrality invariant. All flow and residual capacity values are integral.

- Correctness. If the algorithm terminates, then f is a max flow.
- Pf.
 - \triangleright By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
 - \blacktriangleright Upon termination of Δ = 1 phase, there are no augmenting paths. \blacksquare

Capacity Scaling: Running Time

- Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times.
- Pf. Initially $C \le \Delta < 2C$. Δ decreases by a factor of 2 each iteration. •
- Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow is at most $v(f) + m \Delta$. \leftarrow proof on next slide
- Lemma 3. There are at most 2m augmentations per scaling phase.
 - \blacktriangleright Let f be the flow at the end of the previous scaling phase Δ'
 - Let f* be the maximum flow.
 - ightharpoonup Lemma 2 \Rightarrow v(f*) \leq v(f) + m Δ ' = v(f) + m(2 Δ).
 - \triangleright Each augmentation in a Δ -phase increases v(f) by at least Δ .
- Theorem. The scaling max-flow algorithm finds a max flow in O(m log C) augmentations. It can be implemented to run in O(m² log C) time.

Capacity Scaling: Running Time

- Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then value of the maximum flow is at most v(f) + m Δ .
- Pf. (almost identical to proof of max-flow min-cut theorem)
 - We show that at the end of a Δ -phase, there exists a cut (A, B) such that c(A, B) \leq v(f) + m Δ .
 - \triangleright Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
 - \triangleright By definition of A, $s \in A$.
 - \triangleright By definition of f, t \notin A.
 - Let B be the set of all vertices not in $A, t \in B$, so (A, B) is an s-t cut.
 - Consider two cases: e is an edge in G

$$e = (u, v), u \in A \text{ and } v \in B$$

then $f(e) > c_e - \Delta$
 $e = (v, u), u \in B \text{ and } v \in A$
then $f(e) < \Delta$

original network

Capacity Scaling: Running Time

- Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then value of the maximum flow is at most v(f) + m Δ .
- Pf. (almost identical to proof of max-flow min-cut theorem)
 - We show that at the end of a Δ -phase, there exists a cut (A, B) such that c(A, B) \leq v(f) + m Δ .
 - \triangleright Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
 - \triangleright By definition of A, $s \in A$.
 - \triangleright By definition of f, t \notin A.
 - Let B be the set of all vertices not in $A, t \in B$, so (A, B) is an s-t cut.
 - Consider two cases: e is an edge in Ge = (u, v), $u \in A$ and $v \in B$ then f(e) > $c_e \Delta$ e = (v, u), $u \in B$ and $v \in A$ then f(e) < Δ

3. Bipartite Matching

Matching

- Matching.
 - ➤ Input: undirected graph G = (V, E).
 - \triangleright M \subseteq E is a matching if each node appears in at most one edge in M.
 - Max matching: find a max cardinality matching.

Bipartite Matching

- Bipartite matching.
 - \triangleright Input: undirected, bipartite graph G = (L \cup R, E).
 - \triangleright M \subseteq E is a matching if each node appears in at most one edge in M.
 - Max matching: find a max cardinality matching.

Bipartite Matching

- Bipartite matching.
 - \triangleright Input: undirected, bipartite graph G = (L \cup R, E).
 - \triangleright M \subseteq E is a matching if each node appears in at most one edge in M.
 - Max matching: find a max cardinality matching.

max matching

1-1', 2-2', 3-3', 5-5'

R

14

PEARSON

Bipartite Matching

- Max flow formulation.
 - \triangleright Create digraph G' = (L \cup R \cup {s, t}, E').
 - > Direct all edges from L to R, and assign infinite (or unit) capacity.
 - Add source s, and unit capacity edges from s to each node in L.
 - > Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.

Pf. ≤

- Given max matching M of cardinality k.
- Consider flow f that sends 1 unit along each of k paths.
- f is a flow, and has cardinality k. ■

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.

Pf. ≥

- Let f be a max flow in G' of value k.
- Integrality theorem \Rightarrow k is integral and can assume f is 0-1.
- Consider M = set of edges from L to R with f(e) = 1.
 - each node in L and R participates in at most one edge in M
 - |M| = k: consider cut $(L \cup s, R \cup t)$

Perfect Matching

 Def. A matching M ⊆ E is perfect if each node appears in exactly one edge in M.

- Q. When does a bipartite graph have a perfect matching?
- Structure of bipartite graphs with perfect matchings.
 - \triangleright Clearly we must have |L| = |R|.
 - What other conditions are necessary?
 - What conditions are sufficient?

Perfect Matching

- Notation. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.
- Observation. If a bipartite graph $G = (L \cup R, E)$, has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.
- Pf. Each node in S has to be matched to a different node in N(S).

No perfect matching:

$$S = \{ 2, 4, 5 \}$$

$$N(5) = \{ 2', 5' \}.$$

Marriage Theorem

- Marriage Theorem. [Frobenius 1917, Hall 1935] Let G = (L \cup R, E) be a bipartite graph with |L| = |R|. Then, G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subset L$.
- Pf. \Rightarrow This was the previous observation.

No perfect matching:

$$N(5) = \{ 2', 5' \}.$$

Proof of Marriage Theorem

- Pf. ← Suppose G does not have a perfect matching.
 - Formulate as a max flow problem and let (A, B) be min cut in G'.
 - \triangleright By max-flow min-cut, c(A, B) < | L |.
 - ightharpoonup Define $L_A = L \cap A$, $L_B = L \cap B$, $R_A = R \cap A$.
 - ightharpoonup c(A, B) = | L_B | + | R_A |.
 - $ightharpoonup Min cut : N(L_A) \subseteq R_A$ because c(A,B) not increased if so
 - $ightharpoonup |N(L_A)| \le |R_A| = c(A, B) |L_B| < |L| |L_B| = |L_A|.$
 - \triangleright Choose S = L_△. \blacksquare

 $L_A = \{2, 4, 5\}$ $L_B = \{1, 3\}$ $R_A = \{2', 5'\}$ $N(L_A) = \{2', 5'\}$

 $G' = (L \cup R \cup \{s, t\}, E')$

Bipartite Matching: Running Time

- Which max flow algorithm to use for bipartite matching?
 - \triangleright Generic augmenting path: O(m val(f*)) = O(mn).
 - \triangleright Capacity scaling: O(m² log C) = O(m²).
 - \triangleright Shortest augmenting path: O(m n^{1/2}).

- Non-bipartite matching.
 - Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
 - ➤ Blossom algorithm: O(n⁴). [Edmonds 1965]
 - ➤ Best known: O(m n¹/²). [Micali-Vazirani 1980]

4. Disjoint Paths

• Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

• Def. Two paths are edge-disjoint if they have no edge in common.

• Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

• Def. Two paths are edge-disjoint if they have no edge in common.

Max flow formulation: assign unit capacity to every edge.

- Theorem. Max number edge-disjoint s-t paths equals max flow value.
- Pf. ≤
 - \triangleright Suppose there are k edge-disjoint paths P_1, \ldots, P_k .
 - > Set f(e) = 1 if e participates in some path P_i ; else set f(e) = 0.
 - Since paths are edge-disjoint, f is a flow of value k.

• Max flow formulation: assign unit capacity to every edge.

- Theorem. Max number edge-disjoint s-t paths equals max flow value.
- Pf. ≥

27

- Suppose max flow value is k.
- \triangleright Integrality theorem \Rightarrow there exists 0-1 flow f of value k.
- \triangleright Consider edge (s, u) with f(s, u) = 1.
 - ✓ by conservation, there exists an edge (u, v) with f(u, v) = 1
 - ✓ continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

Network Connectivity

• Network connectivity. Given a digraph G = (V, E) and two nodes s and t, find min number of edges whose removal disconnects t from s.

• Def. A set of edges $F \subseteq E$ disconnects t from s if every s-t path uses at least one edge in F.

Edge Disjoint Paths and Network Connectivity

- Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.
- Pf. ≤
 - \triangleright Suppose the removal of $F \subseteq E$ disconnects t from s, and |F| = k.
 - Every s-t path uses at least one edge in F.
 Hence, the number of edge-disjoint paths is at most k.

Disjoint Paths and Network Connectivity

- Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.
- Pf. ≥
 - Suppose max number of edge-disjoint paths is k.
 - Then max flow value is k.
 - \triangleright Max-flow min-cut \Rightarrow exist cut (A, B) of capacity k.
 - Let F be set of edges going from A to B.
 - F| = k and disconnects t from s.

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

5. Extensions to Max Flow

Circulation with demands.

- Directed graph G = (V, E).
- Edge capacities c(e), $e \in E$.
- Node supply and demands d(v), $v \in V$.

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0

Def. A circulation is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ (capacity)
- For each $v \in V$: $f^{in}(v) f^{out}(v) = d(v)$ (conservation)

Circulation problem: given (V, E, c, d), does there exist a circulation?

Necessary condition: sum of supplies = sum of demands.

$$\sum_{v} d(v) = 0$$

Pf. Sum conservation constraints for every demand node v.

Max flow formulation.

- Max flow formulation.
 - Add new source s and sink t.
 - For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
 - For each v with d(v) > 0, add edge (v, t) with capacity d(v).
 - Claim: G has circulation iff G' has max flow of value D.

• Integrality theorem. If all capacities and demands are integers, and there exists a circulation, then there exists one that is integer-valued.

 Pf. Follows from max flow formulation and integrality theorem for max flow.

- Characterization. Given (V, E, c, d), there does not exist a circulation iff there exists a node partition (A, B) such that $\Sigma_{v \in B} d_v > \text{cap}(A, B)$
- Pf idea. Look at min cut in G'.

demand by nodes in B exceeds supply of nodes in B plus max capacity of edges going from A to B

Circulation with Demands and Lower Bounds

- Feasible circulation.
 - Directed graph G = (V, E).
 - \triangleright Edge capacities c(e) and lower bounds ℓ (e), $e \in E$.
 - \triangleright Node supply and demands d(v), $v \in V$.
- Def. A circulation is a function that satisfies:
 - For each $e \in E$: $\ell(e) \le f(e) \le c(e)$ (capacity)
 - For each $v \in V$: $f^{in}(v) f^{out}(v) = d(v)$ (conservation)

• Circulation problem with lower bounds. Given (V, E, ℓ, c, d), does there exist a a circulation?

Circulation with Demands and Lower Bounds

- Idea. Model lower bounds with demands.
 - Send ℓ (e) units of flow along edge e.
 - Update demands of both endpoints.

• Theorem. There exists a circulation in G iff there exists a circulation in G'. If all demands, capacities, and lower bounds in G are integers, then there is a circulation in G that is integer-valued.

d(w) - 2

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - ℓ(e) is a circulation in G'.

6. Survey Design

Survey Design

• Survey design.

- one survey question per product
- \triangleright Design survey asking n_1 consumers about n_2 products.
- Can only survey consumer i about product j if they own it.
- \triangleright Ask consumer i between c_i and c_i questions.
- \triangleright Ask between p_i and p_i consumers about product j.
- Goal. Design a survey that meets these specs, if possible.

• Bipartite perfect matching. Special case when $c_i = c_i' = p_i = p_i' = 1$.

Survey Design

- Algorithm. Formulate as a circulation problem with lower bounds.
 - Include an edge (i, j) if consumer j owns product i.
 - \triangleright Integer circulation \Leftrightarrow feasible survey design.

- Image segmentation.
 - Central problem in image processing.
 - Divide image into coherent regions.
- Ex: Three people standing in front of complex background scene. Identify each person as a coherent object.

Foreground / background segmentation.

- Label each pixel in picture as belonging to foreground or background.
- V = set of pixels, E = pairs of neighboring pixels.
- $a_i \ge 0$ is likelihood pixel i in foreground.
- $b_i \ge 0$ is likelihood pixel i in background.
- $p_{ij} \ge 0$ is separation penalty for labeling one of i and j as foreground, and the other as background.

Goals.

- Accuracy: if $a_i > b_i$ in isolation, prefer to label i in foreground.
- Smoothness: if many neighbors of i are labeled foreground, we should be inclined to label i as foreground.
- Find partition (A, B) that maximizes:

$$q(A, B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}.$$

Formulate as min cut problem.

- Maximization.
- No source or sink.
- Undirected graph.

Turn into minimization problem.

 $\text{Maximizing: } q(A,B) = Q - \sum_{i \in A} b_i - \sum_{j \in B} a_j - \sum_{(i,j) \in E, |A \cap \{i,j\}| = 1} p_{ij}$ where $Q = \sum_i (a_i + b_i)$

is equivalent to minimizing:

$$-q'(A,B) = \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{(i,j) \in E, |A \cap \{i,j\}| = 1} p_{ij}$$

or alternatively

- Formulate as min cut problem.
 - \rightarrow G' = (V', E').
 - Add source to correspond to foreground; add sink to correspond to background
 - Use two anti-parallel edges instead of undirected edge.

G'

Consider min cut (A, B) in G'.

A = foreground.

•
$$c(A,B) = \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{(i,j) \in E, |A \cap \{i,j\}| = 1} p_{ij} = q'(A,B)$$

Precisely the quantity we want to minimize.

if i and j on different sides, p_{ij} counted exactly once

