

1

Born-Oppenheimer approximation

Assumes that the motion of atomic nuclei and electrons in a molecule can be separated

Difference in mass between nuclei and electrons

Molecular mechanics: Atoms are represented as localized particles carrying a point charge

2

Molecular mechanics

Ball and stick model: atoms are the smallest particle and are represented by spheres of a given radius

- Component of the energy function:
 Deviations of bonds and angles from their reference values
- Rotation around bonds
 Interaction between non-bonded parts of the systems

Force fields are empirical, there is no "correct" energy function or parameters

Molecular mechanics: Equation

$$\begin{split} U_{pot} &= \sum_{bonds} \frac{1}{2} k_b \cdot \left(r - r_0\right)^2 + \sum_{angles} \frac{1}{2} k_\theta \left(\theta - \theta_0\right)^2 + \\ &= \sum_{dihedrals} K_{\varphi} \cdot \left(1 + \cos\left(n \cdot \varphi - \delta\right)\right) + \\ &= \sum_{\substack{improper \\ dihedrals}} \frac{1}{2} k_{\xi} \left(\xi - \xi_0\right)^2 + \end{split}$$

 $\sum_{\text{atom pairs}} \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \frac{q_i q_j}{r_{ij}} + \frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^6}$

4

Atom types

- Atom type is used to define a particular bonding situation, e.g. aliphatic carbon atom in a sp³ bonding has different properties than a carbon atom found in a His ring
- Need to minimize the of atom types => type specific
- Polar atoms (O, N etc) are more influenced by their neighboring atoms => more types

5

Atom types

atom	type	description
carbon	CT	any sp ³ carbon
	C	any carbonyl sp2 carbon
	CA	any aromatic sp2 carbon and (Ce of Arg)
	CM	any sp2 carbon, double bonded
	CC	sp ² aromatic in 5-membered ring with one substituent + next to nitrogen (Cy in His)
	CV	sp ² aromatic in 5-membered ring next to carbon and lone pair nitrogen (e.g. Cδ in His (δ))
	CW	sp ² aromatic in 5-membered ring next to carbon and NH (e.g. Cδ in His (ε) and in Trp)
	CR	sp ² aromatic in 5-membered ring next to two nitrogens (Cγ and Cε in His)
	СВ	sp ² aromatic at junction of 5- and 6-membered rings (Cô in Trp) and both junction atoms in Ade and Gua
	C*	sp ² aromatic in 5-membered ring next to two carbons (e.g. Cy in Trp)
	CN	sp ² junction between 5- and 6-membered rings and bonded to CH and NH (C∈ in Trp)
	CK	sp ² carbon in 5-membered aromatic between N and N-R (C8 in purines)

Bond stretching

The contribution to the total energy depends on the deviation from the $\mbox{\bf reference value} \; \mbox{\bf r}_0$

7

Bond stretching

• Harmonic $E_{str}(\Delta R^{AB}) = k_2^{AB}(\Delta R^{AB})^2 + k_3^{AB}(\Delta R^{AB})^3 + k_4^{AB}(\Delta R^{AB})^4 + \dots$ potential

· Simplest functional form

· Works well since bonds does not deviate much

8

Bond stretching

· Morse potential:

$$E_{str}(\Delta R^{AB}) = D[1 - e^{\alpha \Delta R}]^2$$

$$\alpha = \sqrt{k/2D}$$

- D= Dissociation energy
 Accurate actual behavior
 Problems
 computation time
 poor geometry, slow convergence

Hands-on: Morse vs harmonic

• Construct the potential energy surface for bond stretching of the following bond:

CT1 - CT1

Harmonic: k=445 kcal/molÅ² $r_0=1.54$ Å

Morse: D=55.62 kcal/mol α =2 Å-2

11

Angle bending Requires less energy compared to bonds $E_{bend}(\theta^{ABC} - \theta_0^{ABC}) = k^{ABC}(\theta^{ABC} - \theta_0^{ABC})^2$ $H_0 - C_{H_5}$ C_{H_5} C_{H_5} C_{H_5} C_{H_5}

12

Torsion

$$E_{tors}(\omega) = \sum_{n=1} V_n \cos(n\omega)$$

- Depending on the situation some of $\,V_n\,$ terms are set to 0
 - n=1: periodic by 360 degree
 - -n=2: periodic by 180 degree
 - n=3: periodic by 120 degree
 - Ethane : three minima and three maxima
 - n = 3,6,9,... can have V_n

14

Torsions

15

Torsion

- Many FFs use only one term for the expansion
- Some FFs use general torsional potential: H-C-C-H H-C-C-C C-C-C-C
 All three would have the same torsional term
- MM2 is an example of a force field that use several terms for each torsion
- Including more terms requires many parameters to model even small simple molecules

Torsion

V(x) = 1.5(1+cos(3x))+0.5(1+cos(2x))

V(x) = 1.5(1+cos(3x))+0.5(1+cos(3x))+0.5(1+cos(2x))

V(x) = 1.5(1+cos(3x))+0.5(1+cos(3x

17

Torsion

- Most of the variation in structures and relative energies are interplay between torsion and nonbonded potentials
- Always expressed as a cosine series expansion
- Description of complex potential requires several terms

18

Improper torsions

- Several chemical systems are planar e.g. aromatic rings
- Planarity is taken care of by using either improper torsions or out-of-plane bending terms
 - Improper torsions are between four atoms that are not in a "sequence"

$$U_{imp} = k(1-cos2\varpi)$$

Improper torsions

- Improper torsions can also be used to keep things at a certain degree out-of-plane
- Angle between planes defined by atoms i-j-k and i-k-l

20

Improper torsion

· Harmonic potential

21

Improper torsions

Peptide bonds have "double bond" character

- Shorter and stiffer than normal
- Different torsion potentials
- Higher rotation barriers

van der Waals interactions

6-12 Lennard Jones potential $E_{tJ}(R) = \varepsilon \left[\left(\frac{R_0}{R} \right)^{12} - 2 \left(\frac{R_0}{R} \right)^6 \right]$ Lennard Jones interatomic Potential $U_{tJ} = 4\varepsilon \left(\frac{Q^{1/2}}{R} \right)^{12} - 2 \left(\frac{R_0}{R} \right)^6$

23

24

Electrostatic interactions

• Point charge electrostatics:

- Coulombic potential
- · No dipole induced effects

26

Hands-on: Maestro

- Build a serine molecule (Use builder and templates)
- Do a rapid torsion scan of the Cα-Cβ bond (Edit =>Rapid torsion scan)
- Plot the potential energy surface
- Can you explain the barriers?

27

Cross-terms

- coupling between internal coordinates: e.g. stretching of two bonds adjoining an angle
- · Main terms to include:

Cross-terms (CVFF)

29

Class I and II force fields

- · Class I: harmonic terms and no cross-terms
- Class II: anharmonic terms and cross-terms
 - Unusual systems (e.g. strain)
 - Vibrational spectra
 - Isolated small molecules and condensed phases

30

Water models

Aim: accuracy and efficiency (many water molecule!)

Simple models: SPC, SPC/e, TIP3P, TIP4P, ST2 Use three to five interaction points Fixed geometry

Force fields are usually parameterized with a restricted number of water models

