PRÁCTICA CALIFICADA

Nombre y apellidos:.....NOTA:....

Ejercicio 1: operar y completar las fracciones siguientes

$8\left(\frac{1}{\sqrt{2}}\right)^2 =$	$\frac{\sqrt{10}}{1} * \frac{\sqrt{10}}{3} =$	$\left(\frac{4}{3}\right)^2 =$	$\sqrt{3} * \sqrt{3} =$
$420*\frac{5}{3}=$	tan(53°) =	$200*\frac{5}{4}=$	$\frac{7}{\sqrt{5}} - \frac{2}{\sqrt{5}} =$
$\sqrt{12} * \sqrt{3} =$	$\frac{4}{3} * \frac{3}{4} * \frac{5}{4} * \frac{4}{5} =$	$\sqrt{18} * \frac{\sqrt{18}}{2} =$	$4*\frac{3}{2}=$
$\frac{2}{\sqrt{3}} * \frac{2}{1} * \sqrt{3} =$	cos(37°) =	cos(53°) =	$\frac{2}{\sqrt{5}} * \frac{1}{\sqrt{5}} =$

Ejercicio 2: Calcular

 $(tan60^{\circ})^{2} + (sec60^{\circ})^{4} + 9. \cot (45^{\circ})$

Ejercicio 3: Sea el punto P(-5;12) y su ángulo " β " en posición normal. Calcular: $K=13.sen(\beta)+12.cot(\beta)$

Ejercicio 4: Calcular: $G = \frac{sen(270^{\circ})}{\csc(90)} - \cot(90^{\circ})$

Ejercicio 5: Si $\alpha \in IIC$ y $\beta \in IIIC$. Indicar el signo de: $M = \tan(\alpha) \cdot sen(\beta) \cdot \cos(\beta)$

PRÁCTICA CALIFICADA

Nombre y apellidos:.....NOTA:.....NOTA:....

Ejercicio 1: operar y completar las fracciones siguientes

$\left(\frac{5}{4}\right)^2 =$	$\left(\frac{\sqrt{3}}{2}\right)^2 =$	$\left(\frac{\sqrt{11}}{\sqrt{13}}\right)^2 =$	$\left(\frac{\sqrt{7}}{\sqrt{11}}\right)^2 =$
$1 + \frac{4}{5} =$	$\left(\frac{3}{\sqrt{13}}\right)^2 =$	$\sqrt{27} * \sqrt{3} =$	tan(45°) =
$\frac{2}{\sqrt{3}} * \frac{\sqrt{3}}{2} =$	cos(60°) =	$\sqrt{20} * \sqrt{5} =$	$\sqrt{11}^2 =$
$\sqrt{15}^2 =$	$\sqrt{25} * \sqrt{4} =$	cot(60°) =	sec(53°) =

Ejercicio 2: Calcular

 $(csc30^{\circ})^3 + 8.\cot(45^{\circ}) + \sqrt{2}.sec45^{\circ}$

Ejercicio 3: Sea el punto P(-6;-8) y su ángulo " β " en posición normal. Calcular: $K=12.sec(\beta)+18.\tan{(\beta)}$

Ejercicio 4: Calcular: $G = \frac{\csc(90^\circ) + (\cos 180^\circ)^2}{1 - \sec(180^\circ)}$

Ejercicio 5: Si $\alpha \in IIC$ y $\beta \in IVC$. Indicar el signo de: $M = \operatorname{Sen}(\alpha) \cdot \csc(\beta) \cdot \tan(\alpha)$

PRÁCTICA CALIFICADA

Nombre y apellidos:.....NOTA:....

Ejercicio 1: operar y completar las fracciones siguientes

$\left(\frac{1}{\sqrt{2}}\right)^2$	cot30° =	$\frac{5}{3} + \frac{3}{4} =$	$\left(\frac{3}{2}\right)^2 =$
$1 - \frac{1}{2} =$	$\frac{4}{3} + \frac{5}{3} =$	$\frac{12}{5} + \frac{15}{5} =$	$\sqrt{5} * \frac{1}{\sqrt{5}} =$
$\left(\sqrt{5}\right)^2 =$	sen(53°) =	cos60° =	$1 + \frac{3}{5} =$
$\sqrt{2} * \sqrt{2} =$	$\frac{1}{2} + \frac{3}{4} =$	$\frac{13}{12} + \frac{5}{12} =$	5 <u>4</u> = 5 3

Ejercicio 2: Calcular

 $2(cot30^{\circ})^{2} + 40. sen53^{\circ} + 20. cos60^{\circ}$

Ejercicio 3: Sea el punto P(8;-15) y su ángulo " β " en posición normal. Calcular: $K=17.\cos(\beta)-15.\cot(\beta)$

Ejercicio 4: Calcular "G+M": $G = (3.sen(90^{\circ}) - cos(180^{\circ}))^2$ $M = (sen(270^{\circ}) + cos(360^{\circ}))^2$

Ejercicio 5: Si $\alpha \in IIIC$ y $\beta \in IVC$. Indicar el signo de: $M = Csc(\alpha) . Tan(\beta) . cos(\beta)$

PRÁCTICA CALIFICADA

Nombre y apellidos:.....NOTA:....NOTA:

Ejercicio 1: operar y completar las fracciones siguientes

$\left(\frac{2}{\sqrt{5}}\right)^2 =$	$\sqrt{7} * \sqrt{7} =$	$1 + \frac{4}{5} =$	$\left(\frac{3}{\sqrt{13}}\right)^2 =$
$\left(\frac{\sqrt{3}}{\sqrt{5}}\right)^2 =$	sen(37°) =	$\frac{2}{\sqrt{3}} * \frac{\sqrt{3}}{2} =$	cos(60°) =
$\sqrt{19}^2 =$	csc (45°) =	$\sqrt{15}^2 =$	$\sqrt{25} * \sqrt{4} =$
sec(53°) =	$\frac{\frac{5}{4}}{\frac{5}{3}} =$	sen(45°) =	$(-3)^2 =$

Ejercicio 2: Calcular

 $\sqrt{2}$. sen45° + (csc45°)² + 10. cos60°

Ejercicio 3: Sea el punto P(4;-5) y su ángulo " β " en posición normal. Calcular: $K=\sqrt{41}.sen(\beta)-20.\cot(\beta)$

Ejercicio 4: Calcular "G+M": $G = (2.sen(180^\circ) - sen(90^\circ))^2$ $M = (3.cos(180^\circ) - cos(90^\circ))^2$ Ejercicio 5: Si $\alpha \in IC$ y $\beta \in IVC$. Indicar el signo de: $M = \operatorname{Sec}(\alpha) \cdot \operatorname{Csc}(\beta) \cdot \operatorname{Cot}(\beta)$