LH532000B

CMOS 2M (256K \times 8/128K \times 16) MROM

FEATURES

- 262,144 words × 8 bit organization (Byte mode)
 131,072 words × 16 bit organization (Word mode)
- BYTE input pin selects bit configuration
- Access times: 120/150 ns (MAX.)
- Low-power consumption:
 Operating: 275 mW (MAX.)
 Standby: 550 μW (MAX.)
- Programmable OE/OE and OE₁/OE₁/DC
- Static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

40-pin, 600-mil DIP 40-pin, 525-mil SOP 48-pin, $12 \times 18 \text{ mm}^2 \text{ TSOP (Type I)}$

×16 word-wide pinout

DESCRIPTION

The LH532000B is a 2M-bit mask-programmable ROM with two programmable memory organizations, byte and word modes. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOP Packages

SHARP

LH532000B CMOS 2M MROM

Figure 2. Pin Connections for TSOP Package

CMOS 2M MROM LH532000B

Figure 3. LH532000B Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
A ₋₁	Address input (BYTE mode)	1
$A_0 - A_{16}$	Address input	
D ₀ – D ₁₅	Data output	1
CE	Chip enable input	
OE/OE	Output enable input	2

SIGNAL	PIN NAME	NOTE
OE ₁ /OE ₁ /DC	Output enable input or Don't care	2
BYTE	Byte/word mode switch	
V _{CC}	Power supply (+5 V)	
GND	Ground	

NOTES:

- D₁₅/A₋₁ pin becomes LSB address input (A₋₁) when the bit configuration is set in byte mode, and data output (D₁₅) when in word mode. BYTE input pin selects bit configuration.
- 2. The active levels of OE/OE and OE₁/OE₁/DC are mask-programmable. Selecting DC allows the outputs to be active for both high and low levels applied to this pin. It is recommended to apply either a HIGH or a LOW to the DC pin.

LH532000B CMOS 2M MROM

TRUTH TABLE

CE	OE/OE	OE ₁ /OE ₁	BYTE	A ₋₁	DATA (OUTPUT	ADDRES	SS INPUT	SUPPLY CURRENT	
OL.	ODOL	OL//OL/	DITE	(D ₁₅)	D ₀ – D ₇	D8 - D15	LSB	MSB	OOI I EI OOKKENI	
Н	Х	Х	Х	Х	High-Z	High-Z	_	_	Standby (I _{SB})	
L	L/H	Х	Х	Х	High-Z	High-Z	_	_	Operating (I _{CC})	
L	X	L/H	Х	Х	High-Z	High-Z	_	_	Operating (I _{CC})	
L	H/L	H/L	н	Input inhibit	D ₀ – D ₇	D ₈ – D ₁₅	A ₀	A ₁₆	Operating (Icc)	
L	H/L	H/L	L	L	$D_0 - D_7$	High-Z	A ₋₁	A ₁₆	Operating (I _{CC})	
L	H/L	H/L	L	Н	D ₈ – D ₁₅ High-Z A ₋₁ A ₁₆		Operating (I _{CC})			

NOTE:

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Supply voltage	Vcc	-0.3 to +7.0	V
Input voltage	V _{IN}	-0.3 to $V_{CC} + 0.3$	V
Output voltage	Vout	-0.3 to $V_{CC} + 0.3$	V
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS ($T_A = 0 \text{ to } +70^{\circ}\text{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	Vcc	4.5	5.0	5.5	V

DC CHARACTERISTICS (V_{CC} = 5 V \pm 10%, T_A = 0 to +70°C)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input 'Low' voltage	V _{IL}		-0.3		0.8	V	
Input 'High' voltage	V _{IH}		2.2		V _{CC} + 0.3	V	
Output 'Low' voltage	Vol	I _{OL} = 2.0 mA			0.4	V	
Output 'High' voltage	Voн	IoH = -400 μA	2.4			V	
Input leakage current		$V_{IN} = 0 V \text{ to } V_{CC}$			10	μΑ	
Output leakage current	110	$V_{OUT} = 0 V \text{ to } V_{CC}$			10	μΑ	1
Operating current	I _{CC1}	$t_{RC} = t_{RC} (MIN.)$			50	mA	2
	I _{CC2}	t _{RC} = 1 μs			45	IIIA	
	I _{CC3}	$t_{RC} = t_{RC} (MIN.)$			45	mA	3
I _{CC4}		t _{RC} = 1 μs			40	ША	3
Standby current	I _{SB1}	CE = V _{IH}			3	mA	
Standby Current	I _{SB2}	CE = V _{CC} - 0.2 V			100	μΑ	
Input capacitance	C _{IN}	f = 1 MHz			10	pF	
Output capacitance	C _{OUT}	T _A = 25°C			10	pF	

NOTES:

- 1. $OE/OE_1 = V_{IL}, \overline{CE/OE/OE_1} = V_{IH}$
- 2. $V_{IN} = V_{IH}$ or V_{IL} , $\overline{CE} = V_{IL}$, outputs open
- 3. $V_{IN} = (V_{CC} 0.2 \text{ V}) \text{ or } 0.2 \text{ V}, \overline{CE} = 0.2 \text{ V}, \text{ outputs open}$

^{1.} X = H or L, High-Z = High-impedance.

CMOS 2M MROM LH532000B

AC CHARACTERISTICS (V_{CC} = 5 V $\pm 10\%$, T_A = 0 to $\pm 70^{\circ}$ C)

PARAMETER	SYMBOL	120 ns		150 ns		UNIT	NOTE
	O TIMBOL	MIN.	MAX.	MIN.	MAX.	J. III	NOTE
Read cycle time	t _{RC}	120		150		ns	
Address access time	t _{AA}		120		150	ns	
Chip enable access time	tace		120		150	ns	
Output enable delay time	toE		55		70	ns	
Output hold time	toH	5		10		ns	
CE to output in High-Z	t _{CHZ}		55		70	ns	1
OE to output in High-Z	t _{OHZ}		55		70	ns	'

NOTE:

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	1TTL +100 pF

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the V_{CC} pin and the GND pin.

Figure 4. Timing Diagram

^{1.} This is the time required for the output to become high-impedance.

LH532000B CMOS 2M MROM

PACKAGE DIAGRAMS

40-pin, 600-mil DIP

40-pin, 525-mil SOP

CMOS 2M MROM LH532000B

48-pin, $12 \times 18 \text{ mm}^2$ TSOP (Type I)

ORDERING INFORMATION

SHARP 7