2011 Military Health System Conference

Military Infectious Diseases
Update on Vaccine Development

The Quadruple Aim: Working Together, Achieving Success
COL Julia Lynch, MD
24 January, 2011

Medical Research and Materiel Command

Military Infectious Diseases Research Program (MIDRP)

To conduct for the Department of Defense, a

focused and responsive world class infectious

diseases research and development program

leading to fielding of effective, improved means of protection and

treatment

to maintain maximal global operational capability with minimal morbidity and mortality

- -Force Health Protection

-Naturally Occurring Infectious Diseases

Military Infectious Diseases Research Program (MIDRP)

Naturally Occurring Infectious Diseases Impact U.S. Military Operations

Infectious Diseases...

- Can cause more casualties than enemy fire
- Are present wherever the military is deployed
- Require new tools to combat emerging diseases and evolving drug

Military Cost...

- Lost duty time
- Decreased combat effectivenes s
- Morbidity due to drugrelated side effects
- Medical logistical burden

US Military Infectious Disease Products						
Research Effort			Fielded Products			
Antipara sitic Drugs	Malaria	Development Intravenous Artesunate Tafenoquine	Atovaquone/Proguanil (Malarone, 2000) Doxycycline (Vibramycin®, 1992) Halofantrine (Halfan®, 1992) Mefloquine (Lariam ®, 1989)			
	Leishmaniasi s	Pentostam Topical drug	Sulfadoxine- Pyrimethamine (1983)	_		
Vaccines	Malaria Diarrhea Dengue Hemorrhagic fevers Scrub Typhus Meningitis	New Adenovirus Dengue Tetravalent HIV	Chloroquine-Primaquine Japahlese (2009) Reparaulae (2009) Japanese Encephalitis (1992) Oral Live Typhoid Ty21A (1989)			
Protecta Diagnosti	HIV Repellents Sand fly control Insect identification	Combined Camouflage Face Paint	Water Reed 1981) Water	_		

Insect Diagnosti **Leishmania PCR Laboratory**based assavs

Leishmania

Scrub Typhus Diagnostic Mគ្គាត្តប្រែទទ្ធិន្សpid Diagnostic Mនៃស៊ីកនៃប៉ាន់ថ្វិ៣០stic Kit (1996)

DEET-based Insect

Now

2011 Mis Conference

What Makes the MIDRP

- Focused on FDA/EPA approved products for the warfighter (adult indication)
 - Enhance global operational capability
 - Enhance Stability operations
- MRMC organized like a pharmaceutical company
 - Product development oriented organizational structure and processes
 - Decision Gate System integrates best industry business practices
 - Historical success of vaccines/therapeutics
- Core research program embedded in Military labs with uniformed researchers
 - Discipline and mission focus (requirements)
 - **■धिकिके** विश्व हे पर्वेड क्यार के platform Host nation

"Because, if we fail to protect them, who will protect us?" CAPT Mea Ryan

Critical Resource in Global Research

USAMRIID, Fort Detrick

WRAIR/NMRC, Silver Spring

NMRC-D, Lima
2011 MHS Conference

AFRIMS, Bangkok

USAMRU-K, Nairobi

NAMRU-2, Jakarta

Other Assets

Accredited Lab Animal Facilities

Pilot Vaccine Production Facility

Biosafety Level 4 Containment

Clinical Trials Units

HIGH Research Quality

WEB OF SCIENCE Malaria Vaccine Research

26% of top 100 authors are Army and Navy Investigators

Published Items in Each Year

Citations in Each Year

Vaccine Development Update

- Malaria
- Dengue
- Bacterial Diarrheal Pathogens
 - ETEC
 - Shigella
 - Campylobacter
- Top 3 Infectious Disease Threats
 - April 2010 ID Threat Prioritization Panel

A little about Malaria

- Four Major Human Species: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale.
- Sporozoite stage injected in bite of female Anopheles
 mosquito, invades liver, matures/multiplies producing blood
 stages that invade host erythrocytes to cause disease,
 further matures and is ingested by another mosquito to
- Acute febrile illness characterized by period fevers occurring every 48-72 hours
 - Plasmodium falciparum- severe disease cause coma and death
 - Plasmodium vivax -relapse or recrudesc over months or years
- Illness easily misdiagnosed

complete life cycle.

Burden of Malaria for Endemic Countries

- 243 million cases
 - 85% Africa
 - 10% SE Asia
- 863,000 deaths
 - 89% Africa
 - 6% E.Mediterranean
 - 5% SE Asia
- Risk groups
 - Infants & young children
 - Pregnant women
 - Travelers

Worldwide Malaria Distribution

Malaria Risk Map

Malaria Risk Map

The Threat:

- Historically the most feared and disabling epidemic disease for deployed forces.
- 80-100% attack rates experienced by US forces in WWII in Guadalcanal and New Guinea.
- Relapsing Plasmodium vivax malaria emerged in US forces following Korean war.

History of Recent Military Deployments

- 4			
	Country	Forces	Outcomes
	Haiti-2010	US Army/Navy	13 Cases
			6 Evacuations
		US Marines	80 Cases
	Liberia-2003	~225 for 2	44 evacuation
		Weeks	4 Severe &
			Complicated
	Afghanistan-	US Army	38 cases
	2002	Rangers	
		725 man force	
		4 months	
	Nigeria-2001	US Special	7 Cases
		Forces	2 Severe and
		300 for Short	Complicated
		Term	1 Death
2011 MHS Conference		Deployment	

Naturally Acquired Immunity(model for preventing disease & death)

- No deaths or severe disease after 10 yr age
- > 95% of children < 5 y/o parasitemic
 - Deaths
 - Severe anemia (0-2 y/o)
 - Cerebral malaria (3-5 y/o)
- Decreased incidence, prevalence, and density of infection with age
- Mechanism: Antibodies ? Cellular?
- Antigenic targets: parasite proteins expressed on surface ?

Approaches to Malaria Vaccine Development

Individual antigens delivered <u>as subunit</u> <u>vaccine</u>

-Hep B SAg, Tet toxoid

- RTS,S/AS0 (protein-based)
- NMRC-M3V-D/Ad-PfCA (gene-based)

Many antigens delivered as whole organism

- Licensed live vaccines (polio, MMR)
- Radiation-attenuated sporozoites
- Genetically-attenuated sporozoites

2011 MHS Conference

Whole Organism Approach- Irradiated Sporozoite vaccine

- Irradiated sporozoite vaccine gives greater than 70% sterile protection when administered by mosquito bite in man.
 - Not strain specific, duration at least 9 months
- Process developed to harvest sporozoites from mosquito salivary glands to allow needle delivery
- 2010 Clinical Trial
 - Mosquito Derived Vaccine safe and well tolerated
 - Protection was substantially less than prior study (2/44)
 - Problem likely the dose, route of deliverand/or administration schedule

Sanaria, MVI/Gates Foundation, NIAID and USMMVP.

Whole Organism Approach- Attenuation of Sporozoite via Genetic Knock-out

 Parasite genetically engineered to lack two genes essential for maturation from liver stage to blood stage parasites.

- 2010 Clinical Trial at WRAIR
 - Delivery via infected mosquito bite
 - Breakthrough clinical infections

Seattle Biomedical , Gates Foundation, WEHI and USMMVP

bd

Subunit approach- RTS,S Vaccine

RTS,S is expressed In yeast

PfCSP + Hepatitis B S Ag

Repeats T epitopes S antigen

S antigen

RTS,S particles assemble during purification

Subunit approach- RTS,S Vaccine

6/7 subjects receiving RTS,S/AS02B

A PRELIMINARY EVALUATION OF A RECOMBINANT CIRCUMSPOROZOITE PROTEIN VACCINE AGAINST PLASMODIUM FALCIPARUM MALARIA

JOSÉ A. STOUTE, M.D., MONCEF SLAOUI, PH.D., D. GRAY HEPPNER, M.D., PATRICIA MOMIN, PH.D., KENT E. KESTER, M.D., PIERRE DESMONS, PH.D., BRUCE T. WELLDE, PH.D., NATHALIE GARÇON, PH.D., URSZULA KRZYCH, PH.D., MARTINE MARCHAND, W. RIPLEY BALLOU, M.D., AND JOE D. COHEN, PH.D., FOR THE RTS.S MALARIA VACCINE EVALUATION GROUP*

ABSTRACT

Background The candidate vaccines against malaria are poorly immunogenic and thus have been ineffective in preventing infection. We developed a vaccine based on the circumsporozoite protein of Plasmodium falciparum that incorporates adjuvants selected to enhance the immune response.

Methods The antigen consists of a hybrid in which the circumsporozoite protein fused to hepatitis B surface antigen (HBsAg) is expressed together with unfused HBsAg. We evaluated three formulations of this antigen in an unblinded trial in 46 subjects who had never been exposed to malaria.

Results Two of the vaccine formulations were highly immunogenic. Four subjects had adverse systemic reactions that may have resulted from the intensity of the immune response after the second dose, which led us to reduce the third dose. Twenty-two vaccinated subjects and six unimmunized controls underwent a challenge consisting of bites from mosquitoes infected with P. falciparum. Malaria developed in all six control subjects, seven of eight subjects who received vaccine 1, and five of seven subjects who received vaccine 2. In contrast, only one of seven subjects who received vaccine 3 became infected (relative risk of infection, 0.14; 95 percent confidence interval, 0.02 to 0.88; P<0.005).

Conclusions A recombinant vaccine based on fusion of the circumsporozoite protein and HBsAg plus a potent adjuvant can protect against experimental challenge with *P. falciparum* sporozoites. After additional studies of protective immunity and the vaccination schedule, field trials are indicated for this new vaccine against *P. falciparum* malaria. (N Engl J Med 1997:336:86-91.)

M1007 Managhuanta Madical Contain

that inhibit the invasion of hepatocytes by sporozoites and induce cellular responses that kill sporozoiteinfected liver cells.2 Complete immunity against infection rarely develops from natural exposure, but immunization with radiation-attenuated sporozoites affords full protection.3 This vaccine strategy is not practical, since it requires repeated exposure to hundreds of infected, irradiated mosquitoes over a period of 6 to 10 months, and sporozoites cannot be cultured in vitro. Nonetheless, these findings revealed a critical role for the circumsporozoite protein in the development of immunity against sporozoite challenge and led to its development as a candidate vaccine.4,5 In clinical trials, however, the circumsporozoite protein is poorly immunogenic, and few subjects have been protected.6 To address these issues, we created a hybrid in which the circumsporozoite protein fused to hepatitis B surface antigen (HBsAg) was expressed together with unfused HBsAg. The resulting hybrid was significantly more potent than previous circumsporozoite-protein formulations. We hypothesized that more potent adjuvants could improve the efficacy of the vaccine. We therefore conducted a clinical trial to determine the safety and efficacy of three formulations of circumsporozoiteprotein vaccines against P. falciparum.

METHODS

Subjects

Forty-six subjects who had not been exposed to malaria (age, 18 to 45 years) were recruited by noncoercive means under a protocol approved by an institutional review board. Potential risks associated with participation in the study, including those associated

Stoute JA et al. *N Engl J Med* 1997; 336(2):86-91

RTS,S Protects 1-4 yo Children in Mozambique

Alonso, Lancet 2005: Efficacy against clinical malaria 30% (CI: 8-45%)

Efficacy against severe malaria 49% (CI: 12-

71%) 11 MHS Conference

Subunit approach- RTS,S Vaccine

Sites across Africa where RTS,S is being tested in Phase 3

FIGURE 1. 1, Institut de Recherche en Science de la Santé, Nanoro, Burkina Faso. 2, Kintampo Health Research Center (KHRC), Kintampo, Ghana. 3, Kumasi Center for Collaborative Research (KCCR)/School of Medical Sciences (SMS), Kumasi, Ghana. 4, Albert Schweitzer Hospital, Medical Research Unit Lambaréné, Gabon. 5, Kenya Medical Research Institute (KEMRI), Kisumu, Kenya. 6, KEMRI Wellcome Collaborative Research Program, Kilifi, Kenya. 7, Joint Malaria Program (JMP) Korogwe, Tanzania. 8, Ifakara Health Research and Development Center (IHRDC), Bagamoyo, Tanzania. 9, University of North Carolina Project, Lilongwe, Malawi. 10, Centro de Investigação em Saúde da Manhiça, Mozambique.

2011 MHS Conference Ballou WR, Cahill CP. Am J Trop Med Hyg. 2007; 77(6 Suppl):289-95

Subunit approach- RTS, S Vaccine

- Licensure anticipated in ~2015 in Europe
 - Expected to be available in high endemic settings as a pediatric vaccine
 - Anticipate significant public health impact
 - Funded by MVI/Gates Foundation, EU, USAID and GSK with USMMVP support
- Efficacy insufficient for travelers' (thus military) vaccine
- Current studies in planning to improve efficacy through combination with other immunogen in a heterologous primeboost approach

Subunit approach- DNA Prime/Ad Boost

- DNA plasmids [Prime]
 - Encoding malaria proteins CSP and AMAlmachinery to
- Adenovirus 5 (attenuated)[Boost]
 - Encoding malaria proteins CSP and AMA1malaria proteins

Uses host cell machinery to produce the

- Schedule of administration
 - 3x DNA
 - 1x Ad5
- Elicits strong cellular immunity (CD8>CD4)

Subunit approach- DNA Prime/Ad Boost

Clinical Results 2010- Proof of Principle

4/15 immunized volunteers sterilely protected

Day Post

- Challenge
 Major challenges to overcome to make this a viable product:
 - Improve protection
 - Require new Adenovirus-Malaria antigen construct
 - Regulatory requirements
 - Business complexity

Dengue Vaccines

Dengue Background

- Dengue viruses
 - Single-stranded RNA viruses
 - 4 antigenically distinct serotyp
 - (DENV-1, -2, -3 and -4)

- Daytime feeding
- Domestic/Peridomestic habits
 - Breeds in freshwater containe
 - Thrives in urban environment

Dengue: Epidemiology

- Leading vector-borne viral disease globally
 - -2.5 billion people at risk for infection
 - -Transmission in ~120 countries
 - Tropics and sub-tropics
 - Humans are the reservoir
 - 50 to 100 million infections annually
 - Undifferentiated Fever
 - Dengue Fever
 - Dengue Hemorrhagic Fever (DHF)/ Dengue Shock Syndrome (DSS) secondary

infections

Global Resurgence of Dengue

- Unprecedented global population growth
- Unplanned and uncontrolled urbanization
- Numerous man-made breeding grounds (trash)
- Lack of effective mosquito vector control
- Decay in public health infrastructure

2011 MHS CONTROLL SEED INTERNATIONAL air travel

Global distribution of dengue virus serotypes, 1970

22 October 2007
2011 MHS Conference

FOUO

Air Traffic Global Flight Patterns

Global distribution of dengue virus serotypes, 2004

2011 MHS Conference

Dengue in Puerto Rico: 1963-2003

Dengue Risk

Dengue Impact on the U.S. Military

- Philippines
- World War I
- Vietnam
- Philippines
- Haiti
- Somalia

Fort McKinley, Philippines

Dengue Outbreak: July – November 1906

~1/3 of troops infected

Unit	Strengt h	No. Cases	% Infected	
13 th U.S. Infantry	727	240	33 26 24	
16 th U.S. Infantry	613	162		
8 th U.S. Cavalry	378	89		
Total	1718	491	29	

Philippine Islands: 1902-

- Hospital admission rates
 - Decreases for all diseases
 - Consistent for dengue

Average loss to Army of 7,715 days per year

Daily Reported Cases During the Saipan Dengue Epidemic, Sep - Oct 1944

- -Dengue appears after 15 June island assault
- -By 11 Aug, Aedes species numerous (rainy season)
- -Combat operations created numerous breeding habitats (trash, tire ruts in roads...)

Table 12.—Daily report of new cases of dengue at height of the epidemic in Saipan,

14 September to 6 October 1944

Date	Number	Date	Number	
1944	202	1944—Continued	c	
September 14	393 426	September 26	6 8	
16	294	28	7	
17	306	29	7	
18	289	30	4	
19	275	October 1	3	
20	230	2	3	
21	137	3	2	
22	137 112	4	$\frac{2}{3}$	
24	93	6	2	
25	81	W		

Recent Experience

- 1966 Long Binh, Vietnam
 - 110 Cases of FUO at 93rd Evacuation Hospital
 - 28% were determined to be dengue by viral isolation or serology
- 1992 Operation Restore Hope, Somalia
 - 129 hospitalized with FUO
 - 60% were determined to be dengue by viral isolation or serology
- 1997 Haiti
 - 103 hospitalized with FUO
 - 29% were determined to be dengue by viral isolation or serology

Dengue

- Currently no U.S. FDA approved vaccine or pharmaceutical to protect or treat the Warfighter
- Current standard of care:
 - Supportive care
 - Careful fluid management and other supportive measures (10-14 LDD per episode)
 - Prevention
 - Effective vector control proven very difficult (requires sustained usage of products)
 - Personal Protective Measures (PPM) (repellents, bed nets, treated uniforms) difficult to sustain

Dengue and the US Military

 Mission-stopping disease threat to U.S. forces deployed throughout the tropics/sub-tropics

 #2 on US Military Infectious Disease Threat list

Target Product Profile

- Safety
 - Well tolerated injection
 - Does not cause dengue
 - Does not > risk of disease severe disease with secondary infection
- Efficacy
 - Vaccine Efficacy ≥ 80%
 - Durable immune response (>2 years)
 - -1-3 doses

Challenges in Dengue Vaccine Development

- Multiple (4) serotypes (4 vaccines in one)
 - Each capable of producing DF and DHF
 - Disease enhancement: Risk of DHF enhanced by pre-existing immune response to another serotype
- -Lack of an animal model of disease
- Unknown Surrogate marker of protection
- Incomplete understanding of pathophysiology

Dengue Vaccine Landscape

Sanofi pasteur/Acambis-W**RAIR**/**GS**/**A**

ΝΑΥJHU - Δ30 mut

NMRC - DNA

Merck - r80E

WRAIR/GSK - PIV

CDC/Inviragen DEN/DEN
Chimesis/Tetra

edennya varane DNAst/Global Vaccines -√AEE dengue NV replicon

Ligamds Conference

Tetravalent Dengue Virus (TDV) Vaccine - Landscape

- Chimerivax®
 - Chimeric of yellow fever vaccine backbone with Dengue membrane proteins
 - Safe, well tolerated and immunogenic in clinical studies
 - Dosing schedule: 0, 6, 12-month
 - Starting Phase 3 clinical trials FY11
 - AFRIMS
 - » Thailand, Philippines
 - Uncertain whether dosing schedule or level of efficacy will meet DoD needs

Virology Field Site Kamphaeng Phet Province

Virology Field Site Fivotal Trials Conducted Kamphaeng Phet Province by MRMC/Thai MoPH

Japanese encephalitis Virus (JE-VAX®) 1980's -Biken

Hepatitis A Vaccine (Havrix) 1990's -GSK

Dengue vaccine (Chimerivax) (2011)

Tetravalent Dengue Virus (TDV) Vaccine - Landscape

- Live attenuated vaccine (LAV)
- **gsk** GlaxoSmithKline
- Viruses (classically) attenuated through serial passage in non-human cell line

- Tetravalent formulation required balancing
- 2 doses: 0, 6 months
- 100% protection in animal models
- Safe and immunogenic in human trials
 - -Phase 2 study Puerto Rico
 - » 700 subjects
 - » 2-50y
 - » Safe and immunogenic

-Phase 3

Tetravalent Dengue Virus (TDV) Vaccine - Landscape

- e WRAIR
 1893
- Formalin inactivated, purified virus
- Combined with adjuvants
 - -Alum adjuvant
 - Novel adjuvants (GSK)
- 100% protection in animal models
- Shorter administration schedule
- Phase 1 clinical trials begin in FY

Tetravalent Dengue Virus (TDV) Vaccine - Landscape

- DNA Vaccine
 - DENV DNA vaccine closed circula double-stranded plasmid DNA
 - Full length genes encoding membrane proteins for DENV
 - Initial Phase 1 clinical study with DENV-1 DNA vaccine safe and immunogenic
 - TDV DNA Phase 1 clinical trial planned in

2011/12

Tetravalent Dengue Virus (TDV) Vaccine - Landscape

- Heterologous Prime Boost Strategy
 - Assess sequentially delivered combinations of different immunogens
 - -Increase and broaden immune response
 - Shorten time to development of protective response
 - Live attenuated (replicating) immunogen combined with non-replicating
 - -PIV
 - -DNA
 - More complex business development
 - More complex logistics
 - Suitable for DoD

Vaccines Against Bacterial Diarrhea and Dysentery

- Prevention of Diarrheal Diseases
 - Develop effective vaccines and other counter-measures against leading causes of infectious diarrhea and dysentery in deployed U.S. military personnel
 - Major research and development thrusts
 - Enterotoxigenic Escherichia coli (ETEC) vaccines
 - Shigella vaccines
 - Campylobacter jejuni vaccines

Burden

- Cumulative deployments and diarrhea/dysentery burden OEF/OIF '01-'07
 - # of deployments (mean 183 d)2,134,578
 - # of deployments (mean 19 d)145,871
 - Cases of diarrhea 3,857,002
 - Diarrhea days11,478,270
 - Visits to medical 850,444

2011 MH 65 ptalizations

17,356

Diarrhea and Dysentery Prevalence

2011 MHS Conference Easth. J. Trop. Med. Hyg., 74(5), 2006 Asia

Vaccines Against Bacterial Diarrhea and Dysentery

	Developer Type	Clinical Phase I	Clinical Phase II	Clinical Phase III	Comment
Sampy	ACE Subunit (ACE393) Bioscience		×		Failed to show protection
ETEC	Intercell LT, TCI (skin patch) USA TD Vaccines LA (ACE527)		×	×	Failed to show protection Failed to show protection
Shigella	NICHD PS conjugate GlycovaxyBioconjugate, Sd1 Institut Pastell (SC599), Sd1 Univ MD CVD (CVD1208S), Sf2a PATH/EVI Killed whole cell, Sf2a				S sonnei vaccine efficacious (Cohen '97): No pharm partner FIH Trial started Feb 2010 Safe, modest immunogenicity Currently on FDA clinical hold Phase 1 trial projected to start in EY11 under EVI

vaccines Against Dacterial Diarrhea and Dysentery -

- At risk populations
 - Military / Civilian travelers
 - Leading cause of travelers' diarrhea
 - Endemically exposed individuals
 - 500K deaths annually in young children
 - Major disease in young farm animals (calves, piglets)
 - Characterized by different colonization JB Kaper et al Nature Rev Microbiol

<u>Pathogenesis</u>

ETEC

2004:2:123.

2011 MHS CERTERS

Clear, clinical proof has yet to accrue for any ETEC vaccine

Adhesin-based vaccine

- Tip-localized adhesin ascribed role intestinal binding
- Adhesins exhibit greater antigenic conservation than major pilus-forming subunit
- Recombinant adhesin variants developed, which are
 - Stabilized in native conformation
 - Highly immunogenic when given by mucosal and skin vaccination with adjuvant
- Prototype adhesin (dscCfaE) proven as 2011 MHS confectective antigen

FIEC

2011 MHS Conference

- NHP Model: Proof of efficacy for ETEC adhesinbased vaccine
 - Nonhuman primate ETEC diarrhea model established in A. nancymaae that mimics human disease
 - Challenge models established with CFA/-ETEC type strain
 - Intranasal vaccination with dscCfaE alone or with LTB (CTB) elicits significant protection
 - Result: 83% protective efficacy using dscCfaE with LTB

ETEC

- Oral, passive protection with bovine milk IgG
 - Vaccinate pregnant cows with dscCfaE to g hyperimmune colostrum
 - Isolate hyperimmune bovine IgG (BIgG)
 - Two days before challenge take 3 oral doses/day
 BlgG at meals
 - Challenge with ETEC (homologous strain 1 x 10⁹ cfu)
 - 10 human subjects, ----7 fully protected, 2 with mild diarrhea, 1 with moderate diarrhea, 0 with severe
- 11 placebo subjects, ---- 9 with diarrhea, (6 2011 мнs 30 мене, 1 moderate, 2 mild)

- A first-in-human Phase 1 clinical trial of the prototype ETEC adhesin (dscCfaE)
 - sanofi pasteur

 The vaccines division of sanofi-aventis Group

- scheduled to begin in 2011,
 - active, skin patch vaccination
 - Challenge
- The adhesin-based vaccine IP has been licensed to sanofi pasteur (sp) vaccines
 - expanded preclinical evaluation of the components of a pentavalent adhesin-based ETEC vaccine
- US Army, NMRC, sanofi pasteur, PATH (nonprofit)

Shigella

- Shigellosis / Dysentery
 - Person-to-person, foodborne (food, water)
 - Inoculum size --- 10-200 organisms
 - Serotype diversity --- >50 different serotypes (LPS)
 - Pathogenesis --- invasion, spread, inflammatory response with cytotoxicity
 - Clinical syndrome --- dysentery

Vaccines Against Bacterial Diarrhea and Dysentery -

get further spread of infection

2011 MHS Conference

Diarrhea and Dysentery Shigella

- Shigella vaccine strategies
 - Live, attenuated Shigella vaccines (LASV)
 - Virulence-based mutations (virG) in Shigella (WRSS1) and further mutate toxins and immunomodulators (shET and msb) for less reactogenicity to create second generation vaccines (WRSs2 and WRSs3)
 - Recombinant
 - Invasion plasmid antigen (Ipa) proteins of Type Three Secretion System (TTSS) cloned, expressed and purified and added to Shigella LPS to create the "Invaplex" vaccine

Diarrhea and Dysentery Shigella

- Live attenuated Shigella vaccines
 - WRSS1 given to more than 100 volunteers, found to be safe and highly immunogenic but some side effects
 - WRSs2 and WRSs3 in phase 1 clinical trial to be conducted in April, FY11
 - To determine safety and immunogenicity
 - US Army, NIH funded

vaccines Against Dacterial **Diarrhea and Dysentery -**

Shigella

- Recombinant Shigella "Invaplex" vaccine
 - Cloned and purified proteins from the Type Three Secretion System (TTSS) mixed with Shigella LPS
 - Produces protective immune response in mice and guinea pig sanofi pasteur
 - Phase 1 clinical trial scheduled for F

JC Army canofi nactour

Injectisome 2011 MHS Conference extending

Injectisome

The vaccines division of sanofi-aventis Group

Injectisome graphic

Diarrhea and Dysentery -Campylobacter

- Campylobacter jejuni
 - Transmission: Foodborne
 - Inoculum size: low ($\geq 5 \times 10^2 \text{ orgs}$)
 - Reservoirs animals (poultry)
 - Serotype diversity 48 Penner serotypes
 - Pathogenic process adherence, invasion, inflammatory response
 - clinical syndrome acute inflammatory response
 - sequelae reactive arthritis,
 Guillian-Barre, irritable bowl
 syndrome

Diarrhea and Dysentery -Campylobacter

- C. jejuni polysaccharide capsules (CPS) first identified by genomics
- Major determinant of Penner serotype
- Proven C. jejuni virulence factor
- Polysaccharide antigens have required protein conjugation to be efficiently immunogenic as vaccines
 - Pneumococcus (Prevnar) H. influenzae B (HiB)
- Conjugate by reductive amination to CRM107 protein to elicit T-cell dependent res

Diarrhea and Dysentery -Campylobacter

- NHP model to prove efficacy for *C. jejuni* CPS-CRM197 conjugate vaccine
 - C. jejuni diarrhea model established in Aotus nancymaae that mimics human disease
 - SC vaccination with CPS81-76-CRM197 conjugate + alum
 - 100% protection from homologous (same serotype) challenge
- IND submission in FY11 for capsule-conjugate vaccine, phase 1 clinical trial beginning of FY13

Vaccines Against Bacterial Diarrhea and Dysentery

- Challenges
 - ETEC, Shigella and Campylobacter all have numerous serotypes
 - Each vaccine will have to be multivalent to cover relevant serotypes and to afford broad protection
 - The "Ideal" Diarrhea Vaccine will be multivalent, multi-pathogen

Summary

- Malaria
- Dengue
- Bacterial Diarrheal pathogens
- Challenges
 - Technical
 - Business
 - Cost
 - Time

Tetravalent Dengue Virus (TDV) Vaccine

Back-up Slides

South America: Dengue Risk to U.S. Forces

UNCLASSIFIED

February 2010

Dengue Vaccinologist

