	Dept. or		T			
CALCULUS I	School		Year	pro	octor	
2014 Spring Final Exam	Student ID		Name			
¥ Your answer must be provided with descriptions how to get the answer.		be a curve in the				
.(5 points) Find the volume of the solid obtained by rotating	1	$s\theta - \sin\theta\cos\theta$, $y =$		$0^2\theta$, $0 \le \theta$	$\leq 2\pi$.	
the region bounded by the curve $y = \frac{\sin(\ln x)}{x}$ where	(a)(3 poi	nts) Find the leng	in or C.			
$e^{\frac{\pi}{4}} \le x \le e^{\frac{\pi}{2}}$ and the line $y = 0$ about the y -axis .						
		,				
	·					
	(b)(3 po	ints) Find the area	of the reg	gion enclosed	by C	χ.
	`					
•						
		×				
	8					
	1					

3.(4 points)	Find the	number	b su	uch	that	the	average	value
of $f(x) = 2$	+6x-3x	on the	interv	val	[0, b]	is	3.	

4. Find all values of p for which the following series convergent. (**You must give a reason.)

(a)(3 points)
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

(b)(3 points)
$$\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{1}{n^p}\right)$$

CALCULUS I	Dept. or School	Year	proctor
2014 Spring Final Exam	Student ID	Name	
5. Let $f(x) = \ln\left(\frac{1+x}{1-x}\right)$. Answer the questions (a) and (b). (a)(4 points) Find a power series representation for $f(x)$.	(b)(2 points) By using your find the sum of the series	answer in (a), $\sum_{n=0}^{\infty} \frac{1}{(2n+1)617^{2n}}$	+1 .

6. Let $f(x) = \ln(1+3x)$. Answer the questions (a) and (b). (a)(4 points) Find a Taylor polynomial $T_3(x)$ representing up to degree 3 for f(x) centered at a=1.

7.(6 points) Find x to solve the equation $\begin{vmatrix} 1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ 2 & -5 & -3 & 8 \\ -2 & x & -4 & 1 \end{vmatrix} = 154$

(b)(3 points) From your answer $T_3(x)$ in (a), estimate maximum error of $|f(x)-T_3(x)|$ where $\frac{1}{3} \le x \le \frac{5}{3}$.