Машинное обучение

Лекция 2. Линейные модели. Градиентный спуск

(10.02.2024)

Даниил Литвинов

Общие сведения

План

- 1. Линейная модель регрессии
- 2. Как линейные модели обучаются?
- 3. Линейная модель классификации

Что это такое?

х — баллы за экзамен по английскому 1

у — баллы за экзамен по английскому 2

X	у
1	5
3	11
9	35
10	33

Что это такое?

$$\hat{y} \simeq W_b + W_1 \times$$

А какая модель нам нужна?

Интерпретация коэффициентов

Зачем нужны линейные модели?

- 1. Предсказание интересующей нас величины
- 2. Оценка влияния различных факторов на нашу целевую переменную
- 3. Линейные модели очень легко использовать и интерпретировать
- 4. Линейные модели могут восстанавливать даже **нелинейные зависимости**

А если у нас много независимых переменных?

$$y=w_0+w_1x+w_2z+\ldots+w_nt+\epsilon$$

площадь	число комнат	школа ц близко	ена квартиры
50	2	нет 0	5000
1000	7	да) ′	11000
30	1	нет	3500
100	4	нет	33333

Множественная линейная регрессия дает нам плоскость

Производные

y = f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$
k, any constant	0
x	1
x^2	2x
x^3	$3x^2$
x^n , any constant n	nx^{n-1}
e^x	e^x
e^{kx}	e^x ke^{kx}
$\ln x = \log_{\mathrm{e}} x$	$\frac{1}{x}$
$\sin x$	$\cos x$
$\sin kx$	$k\cos kx$
$\cos x$	$-\sin x$
$\cos kx$	$-k\sin kx$

$$\psi(x, y, z) = 2x^2 + 3y^2 - 5in 2$$

$$\frac{\partial y}{\partial x} = \frac{4x}{6y}$$

Dy-yagusty

Производные

- · Tray, year, brang. Hand.
- · Lumuyay. ~ naovopot.

Производные

Как оценивать коэффициенты модели?

$$\hat{y} = \times w$$

Как оценивать коэффициенты модели?

$$MSE = \frac{1}{N} \left(\frac{y - \chi'w}{y - \chi'w} \right) \cdot \left(\frac{y - \chi'w}{y - \chi'w} \right) \cdot \left(\frac{y - \chi'w}{y - \chi'w} \right) = \frac{2}{N} \chi^{T} \left(\chi u - \frac{y}{y} \right)$$

$$9x1$$

$$9x1$$

$$9x1$$

Градиентный спуск

Формулы

$$\bigvee y = w_0 + w_1 x + \epsilon$$

$$rac{dLoss}{dw} =
abla Loss = 2X^T(Xw-y)$$

$$igvery$$
 $y=Xw$

$$igvee Loss = (y-Xw)^T(y-Xw)$$

$$w = (X^T X)^{-1} X^T y$$

Градиентный спуск

$$Loss = (y - Xw)^T(y - Xw)$$
 $\frac{dLoss}{dw} = \nabla Loss = 2X^T(Xw - y)$

$$w = np.random.randn(m + 1)$$

Пока grad(Loss) != 0:
 $w = \eta^* grad(Loss)$

Отдых -> логистическая регрессия

Связь событий и признаков

В зависимости от предикторов события могут происходить чаще или реже – логика, совпадающая с логикой связи количественной переменной отклика с набором предикторов.

Например, по мере роста температуры воздуха летом чаще будут встречаться люди в шортах: событие "встретился человек в шортах" положительно связано с температурой воздуха.

Событие "проведение исследования" явно связана с предиктором "объем полученного финансирования", однако эта связь может быть совсем непростой.

А что если хотим классификацию?

Допустим бинарная классификация

Отношение шансов

Шансы (odds) часто представляют в виде отношения шансов (odds ratio)

Если отношение шансов > 1, то вероятность наступления события выше, чем вероятность того, что оно не произойдет.

Если отношение шансов < 1, то наоборот.

Если можно оценить вероятность положительного события, то отношение шансов выглядит так:

$$odds = \frac{\pi}{1-\pi}$$

Отношение шансов варьируется от 0 до +∞.

Попробуем сами

Логиты

Отношение шансов можно преобразовать в логиты(logit):

$$ln(odds) = ln(\frac{\pi}{1 - \pi})$$

- Значения логитов это трансформированные оценки вероятности события.
- Логиты варьируют от -∞ до +∞.
- Логиты симметричны относительно 0, т.е. ln(1).
- Для построения моделей в качестве зависимой переменной удобнее брать логиты.

Считаем вероятность

Дискретные значения vs вероятности

Как такое учить? BCE Loss

Качество классификации

Качество классификации. ROC кривая

рисуем свою ROC кривую

Построение ROC кривой