

Team Ember

Directory

- 1 Analysis
- 2 Algorithms

- 3 Implementation
- 4 Conclusion

Network Anomaly Detection

Data

Complex network devices produce large amount of log data

Detection

Network or device faults information buried inside data

Intelligence

Fast and smart way to analysis and detect anomaly is required

Dataset

- Two different datasets
- More than 1M lines of unstructured log data
- Trainset only contains normal data

sysmonitor

Summary

messages

Smaller dataset. Contains log produced by sysmonitor, e.g., signals, processes start/stop.

Larger dataset. Contains log produced by different sources, e.g., system, kernel.

Process Structure

Traditional Log Parsing

- Manually Analysis
 - Depend on individuals' experience
 - Time consuming and costly to company
 - Prone to human error
- Keywords/Regular Expression Matching
 - High chance to be inaccurate
 - Need manually construct keywords or regular expression
 - Only applicable to certain dataset

Automatic Template Parsing

OID 1.3.6.1.4.1.2011.6.10.2.1 configure changed. System stratum changes from 16 to 10. Received block blk_3587 of size 67108864 from /10.251.42.84.

OID <*> configure changed. System stratum changes from <*> to <*>. Received block blk <*> of size <*> from <*>.

Log Parsing

Fixed Depth Tree Parser(Drain)

Traditional Unsupervised Learning

- Clustering
 - Fast at predicting after training when few clusters found
 - Not effective if anomalies don't form significant clusters
- PCA
 - Works better with numeric data
 - Need a lot of resources to scale to very large datasets
- Isolation Forest
 - Fast at predicting after training when tree is built
 - Score depends on the contamination parameter which implies the percentage of the data is anomalous is known beforehand
 - Branching bias may occur depending on how the tree is built

Unsupervised Learning

Forget Gate: Decide what information to discard from cell

Input Gate: Decide what information to add to cell

Output Gate: Decide what information in cell to output

Unsupervised Learning X_1 Input Layer t=2 t=0t=1 Inputs LSTM Model Hidden Layer Prediction t=3 t=3**Feature** Output Layer

Unsupervised Training: using normal log feature in a time windows as input and use the next feature as output.

 O_1

Time Series Model

Model Predicting: produce predicted feature within a time windows and deicide the feature is matched or not.

Code Structure

Log Parser

Log Feature

Log Trainer

Log Tester

Code Implementation

- Log Parser
 - Fixed depth parser based on Drain to extract template
- Log Feature
 - Extract template id and assign index
 - Extract time slice and create sequence dataset for LSTM
- Log Trainer
 - Using sequence dataset as input and label at each window as true output
 - Train a LSTM neural network model using extracted feature entries
- Log Tester
 - Take new serial data and predict outcome, if time window label is not in candidates, the series is abnormal

Result

- Parameters
 - window size = 10
 - hidden size = 64
 - num layers = 2
 - batch size = 2048
 - optimizer = adam
- Training

- Parsing speed = 0.5 millisecond per log
- Training speed = 12 second per epoch
- Predicting
 - Predict speed = 65 millisecond per time slice
 - F1 score = 0.8205

Conclusion

- Achievement
 - Uses AI knowledge to analyze problem and dataset effectively
 - Achieves accurate log parsing using fixed depth parser based on Drain
 - Implements LSTM detection model, resulting SOTA accuracy
 - Optimizes algorithms and parameters to fast execution
 - Create robust and well-organized code that can be deployed easily
- Outlook
 - More model tuning for LSTM model
 - Use template content alongside to provide contextual information
 - Use multiple algorithms to create fusion or boost methods
 - Use network topological information to locate faulty device

Team Ember

