Generic interest distribution for a pool

Context

 We have a pool holding some assets. There are "owners" who contribute proportionally to this pool of assets, and get back "pool ownership tokens"

total

- Let's say at time t, the total amount of "pool ownership tokens" is $S_t^{ au au au}$
- Overtime, the assets in the pool will generate "yield tokens". These "yield tokens" might or might not generate more "yield tokens" overtime.
 - Let's call the amount of yield tokens at time t to be n_t^{yield}
 - From time t to t+1, an existing amount n_t^{yield} of yield tokens will grow to n_t^{yield} \times m_t . In the case where yield tokens don't grow, m_t is always 1
- At any time, a pool owner can claim back his **rightful** portion of yield tokens that were generated. We need to distribute the yield tokens to the owners such that:
 - From time t to t+1, the yield tokens generated from the assets in the pool should be equally distributed to the current pool owners, proportionally to their share of the pool
 - If a certain portion of yield tokens in the pool is entitled to a user A, any interest generated from this portion is also entitled to A.
- Basically, this scenario can be applied to:
 - A market, where the assets consists of the XYTs and base tokens, and the "pool ownership tokens" are the LP tokens
 - For an Aave-based market (XYTs are derived from aTokens), the
 "vield tokens" which is aTokens will generate even more yield tokens
 - For a Compound-based market (XYTs are derived from cTokens), the "yield tokens" do not generate more yield tokens. As such, m_{t} is always 1
 - A liquidity mining pool's sub-pool that consists of LPs for a certain market
 - The assets are basically the LP tokens staked
 - The "pool ownership tokens" are also the LP tokens being staked
 - The "yield tokens" could be aTokens or cTokens, depending on the type of market of the LP tokens.
 - Each of these sub-pool is basically a PendleLpHolder contract

Formula:

At t:

- User A deposits s_A new ownership tokens

- The pool now has $s_t^{total} = s_{t-1}^{total} + s_A$ ownership tokens

- A now owns $\frac{S_A}{S_t}$ of the pool.

- We now have n_t^{yield}

- E.g 1000 aUSDT

At t+1: something happened that changed n^{yield} , s^{total}

- We now have n_{t+1}^{yield} . E.g 1100, m(t) = 1.01

- The interest generated by existing yield tokens was: $n_t^{yield} \times m_t$

- As such, the interest generated by the assets in the pool is:

$$R_t = n_{t+1}^{yield} - n_t^{yield} \times m_t$$

E.g = 1100 - 1000*1.01

Let $\boldsymbol{I}_{t-t+n}^{A}$ be the interests for A (who deposited at t) at t+n, then:

$$I_{t-t+1}^{A} = \frac{s_{A}}{s_{t}^{total}} \times R_{t}$$

<u>At t+2:</u> something else happened that changed n^{yield} , s^{total}

- We now have n_{t+2}^{yield}
- The interest generated by existing yield tokens was: $n_{t+1}^{yield} \times m_{t+1}$
- As such, the interest generated by the assets in the pool is:

$$\boldsymbol{R}_{t+1} = \boldsymbol{n}_{t+2}^{yield} - \boldsymbol{n}_{t+1}^{yield} \times \boldsymbol{m}_{t+1}$$

- Hence, from t to t+2, A is entitled to:

$$I_{t-t+2}^{A} = \frac{s_{A}}{s_{t+1}^{total}} \times R_{t+1} + I_{t-t+1}^{A} \times m_{t+1}$$

$$= \frac{s_A}{s_{t+1}^{total}} R_{t+1} + \frac{s_A}{s_t^{total}} R_t \times m_{t+1}$$

At t+3: Similarly, from t to t+3, A is entitled to receive:

$$\begin{split} I_{t-t+3}^{A} &= \frac{s_{A}}{s_{t+2}^{total}} \times R_{t+2} + I_{t-t+2}^{A} \times m_{t+2} \\ &= \frac{s_{A}}{s_{total}^{total}} R_{t+2} + \left(\frac{s_{A}}{s_{t+1}^{total}} R_{t+1} + \frac{s_{A}}{s_{t}^{total}} R_{t} \times m_{t+1} \right) \times m_{t+2} \\ &= \frac{s_{A}}{s_{t+2}^{total}} R_{t+2} + \\ &= \frac{s_{A}}{s_{t+1}^{total}} R_{t+1} \times m_{t+2} + \frac{s_{A}}{s_{t}^{total}} R_{t} \times m_{t+1} \times m_{t+2} \\ &= s_{A} \left(\frac{R_{t+2}}{s_{t+2}^{total}} + \frac{R_{t+1}}{s_{t+1}^{total}} \times m_{t+2} + \frac{R_{t}}{s_{t}^{total}} \times m_{t+1} \times m_{t+2} \right) \end{split}$$

As such, we can generalise it:

$$I_{t-t+n}^{A} = s_{A} \times \left(\frac{R_{t+n-1}}{s_{t+n-1}^{total}} + \dots + \frac{R_{t+1}}{s_{t+1}^{total}} m_{t+2} m_{t+3} \dots m_{t+n-1} + \frac{R_{t}}{s_{t}^{total}} m_{t+1} m_{t+2} \dots m_{t+n-1}\right)$$

Let's define:

$$\begin{split} H_{t-t+n} &= \frac{I_{t-t+n}^A}{s_A} \text{, which is the interest per ownership token from t to t+n} \\ &= \frac{\frac{R_{t+n-1}}{s_{t+n-1}}}{s_{t+n-1}^{total}} + \ldots + \frac{\frac{R_{t+1}}{s_{t+1}^{total}}}{s_{t+1}^{total}} m_{t+2} m_{t+3} \ldots m_{t+n-1} + \frac{\frac{R_t}{s_t^{total}}}{s_t^{total}} m_{t+1} m_{t+2} \ldots m_{t+n-1} \end{split}$$

Let's also define:

$$L_t = H_{0-t} = {}_{
m intuitively,\ interest\ per\ LP}$$
 for anyone staking from the very start

 $N_t = m_1 m_2 \dots m_{t-1} = {\rm current~income~index~/~initial~income~index}$ We can observe that:

$$L_{t+n} = \frac{R_{t+n-1}}{s_{t+n-1}^{total}} + \dots + \frac{R_{t+1}}{s_{t+1}^{total}} m_{t+2} m_{t+3} \dots m_{t+n-1} + \frac{R_0}{s_0^{total}} m_1 m_2 \dots m_{t+n-1}$$

$$= L_{t} \times m_{t} m_{t+1} ... m_{t+n-1} + H_{t-t+n}$$

$$= L_{t} \times \frac{{}^{m_{1}m_{2}\dots m_{t+n-1}}}{{}^{m_{1}m_{2}\dots m_{t-1}}} + H_{t-t+n}$$

$$= L_t \times \frac{N_{t+n}}{N_t} + H_{t-t+n}$$

In other words,

$$H_{t-t+n} = L_{t+n} - L_t \times \frac{N_{t+n}}{N_t}$$

Another way to explain the formula:

The amount of interest for a user A staking from t to t+n is:

Amount of interest if A has staked from the start to t+n

minus "the amount of interest if A has staked from the start to t, and compounded separately from t to t+n"

Universe 1: user A stake from 0 -> t Universe

Also, we can get \boldsymbol{L}_{t+1} recursively from $\,\boldsymbol{L}_t$:

$$L_{t+1} = L_t \times m_{t+1} + \frac{R_{t+1}}{s_t^{total}}, \text{ where } R_t = n_{t+1}^{yield} - n_t^{yield} \times m_t$$

Implementation

We notice that L and N are **global variables** that can be updated every time there is a change to n^{yield} or s^{total}

As such, we just need to save L and N for each user at the time when their interest was last claimed, and we will be able to get their current interest at t+n as:

$$I_{t-t+n}^{A} = s_A \times H_{t-t+n} = s_A \times \left(L_{t+n} - L_t \times \frac{N_{t+n}}{N_t}\right)$$

Further observation:

For Aave:

 $normalizedIncome_t$ is the normalizedIncome of the corresponding Aave's asset at time t_0

We have:

 $m_1 = normalizedIncome_1/normalizedIncome_0$

 $m_2 = normalizedIncome_2/normalizedIncome_1$

- - - -

 $m_t = normalizedIncome_t/normalizedIncome_{t-1}$

$$=> m_1 \times m_2 \times \times m_t = \frac{normalizedIncome_t}{normalizedIncome_0}$$

Hence,
$$\frac{N_{t+n}}{N_{t}} = \frac{normalizedIncome_{t+n}}{normalizedIncome_{t}}$$