PROCESSAMENTO DE LINGUAGEM NATURAL

Aprendizado Bayesiano

TÓPICOS

- 1. Aprendizado Bayesiano
- 2. Classificador Naïve Bayes
- 3. Análise

CLASSIFICAÇÃO

TEOREMA DE BAYES

$$p(c_j|x_1 = a, x_2 = b, ... x_m = z) = \frac{p(x_1 = a, x_2 = b, ... x_m = z|c_j) \times p(c_j)}{p(x_1 = a, x_2 = b, ... x_m = z)}$$

Mas há um problema!

• Estimar a probabilidade condicional $p(x_1 = a, x_2 = b, ... x_m = z | c_j)$ e a evidência $p(x_1 = a, x_2 = b, ... x_m = z)$ demandaria uma quantidade mínima de exemplos de cada combinação possível de valores dos atributos $x_1, x_2, ..., x_m$

IMPRATICÁVEL, ESPECIALMENTE PARA QUANTIDADES ELEVADAS DE ATRIBUTOS!!

POSSÍVEL SOLUÇÃO?

Assumir independência entre atributos!

$$p(X_1, X_2, ..., X_m) = p(X_1) \square p(X_2) \square ... \square p(X_m)$$
 [independência]
$$p(X_1, X_2, ..., X_m \mid C_j) = p(X_1 \mid C_j) \square p(X_2 \mid C_j) \square ... \square p(X_m \mid C_j)$$
 [independência condicional]

 Reescrevendo o Teorema de Bayes com a hipótese de independência condicional:

$$p(c_j \mid X_1, X_2, ..., X_m) = \frac{p(c_j) \square \square p(x_j \mid c_j)}{\square p(x_j \mid c_j)}$$

$$\square p(x_j \mid x_j, x_j, ..., x_m) = \frac{\prod_{i=1}^{m} p(x_i \mid c_j)}{\square p(x_i \mid c_j)}$$

TÓPICOS

- 1. Aprendizado Bayesiano
- 2. Classificador Naïve Bayes
- 3. Análise

CLASSIFICADOR NAÏVE BAYES

 Mais simples e bem difundido classificador baseado no Teorema de Bayes

Thomas Bayes 1702 - 1761

NAÏVE BAYES

- Também conhecido por Idiot Bayes ou Simple Bayes
- Naïve = ingênuo
- Hipótese de independência entre atributos é quase sempre violada!
- Na prática, porém, Naïve Bayes se mostra bastante competitivo!

$$p(c_{j}) \square \square p(x_{i} | c_{j})$$

$$p(c_{j} | x_{1}, x_{2}, ..., x_{m}) = \frac{\sum_{i=1}^{m} p(x_{i} | c_{j})}{\sum_{i=1}^{m} p(x_{i})}$$

Outlo	ok (A ₁)		Temp	erature	(A ₂)	Humi	dity (A	3)	Wind	ly (A ₄)	Play	(B)
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny			Hot			High			False				
Overcast			Mild			Normal			True				
Rainy			Cool										
Sunny			Hot			High			False				
Overcast			Mild			Normal			True				
Rainy			Cool										

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

	$p(c_j) \square \square p(x_i \mid c_j)$
$p(c_j x_1, x_2,, x_m) =$	i=1
	<i>i</i> =1

Outloo	ok (A ₁)		Tempe	erature	(A ₂)	Humi	dity (A	3)	Wir	ndy (A ₄)	Play	/ (B)
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	O No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1						6		0
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								v.

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

	$p(c_j) \square \square p(x_i \mid c_j)$
$p(c_j X_1, X_2,, X_m) =$	<u>i=1</u> m
	i=1

Outlo	ok (A ₁)		Temp	erature	(A ₂)	Humi	dity (A	3)	Wir	ndy (A ₄)	Pla	y (B)
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	O No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1						6		0-0-
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Outlook	tlook Temp. Ηι		Windy	Play
Sunny	Cool	High	True	???

P(Yes|Sunny, Cool, High, True) = (2/9x3/9x3/9x3/9x9/14) / P(Sunny, Cool, High, True)<math>P(No|Sunny, Cool, High, True) = (3/5x1/5x4/5x3/5x5/14) / P(Sunny, Cool, High, True)

Outloo	ok (A ₁)		Tempe	erature	(A ₂)	Humi	dity (A	3)	Wir	ndy (A ₄	.) 🧹	Pla	y (B)
•	Yes	No		Yes	No		Yes	No		Yes	No	Yes	O No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1						6		0-0-
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	???

P(Yes|Sunny, Cool, High, True) = 0.0053 / P(Sunny, Cool, High, True)
P(No|Sunny, Cool, High, True) = 0.0206 / P(Sunny, Cool, High, True)
Play = No

PROBLEMA: FREQUÊNCIA ZERO

- O que acontece se um determinado valor de atributo não aparece no treino mas aparece no teste?
 - Ex: "Outlook = Overcast" para classe "No"
 - Probabilidade correspondente será zero
 - P(Overcast | "No") = 0
 - Probabilidade a posteriori também será zero!
 - P("No" | Overcast, ...) = 0
 - Não importam as probabilidades dos demais atributos!
 - Muito radical, especialmente considerando que a base de treino pode n\u00e3o ser totalmente representativa
 - Por exemplo, classes minoritárias com instâncias raras

PROBLEMA: FREQUÊNCIA ZERO

- Possível solução (Estimador de Laplace)
 - Adicionar 1 unidade fictícia para cada combinação de valor-classe
 - Como resultado, probabilidades nunca serão zero!
 - Exemplo (atributo Outlook classe No):

$$\begin{array}{cccc} 3+1 & 0+1 & 2+1 \\ \hline 5+3 & \overline{5+3} & \overline{5+3} \\ \textbf{\textit{Sunny}} & \textbf{\textit{Overcast}} & \textbf{\textit{Rainy}} \end{array}$$

 Nota: deve ser feito para todas as classes para não inserir viés nas probabilidades de apenas uma classe.

ATRIBUTOS NUMÉRICOS

- Alternativa 1: Discretização
- Alternativa 2: Assumir ou estimar alguma função de probabilidades
 - Usualmente a distribuição Gaussiana (Normal)

$$\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{j}^{(i)}$$

$$\sigma_{j}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} \left(x_{j}^{(i)} - \mu_{j} \right)^{2}$$

$$f(x_{j}^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma_{i}} e^{-\frac{\left(x_{j}^{(i)} - \mu_{j} \right)^{2}}{2\sigma_{j}^{2}}}$$

ESTATÍSTICAS

Outlook (A ₁)			Temperature (A ₂)		Humidity (A ₃)		Windy (A ₄)			Play (B)	
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65, 71,		70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72, 80,	65, 70, 70, 75, 80,	90, 91,	True	3	3		
Rainy	3	2	72,	85,		95,			6		<u></u>
Sunny	2/9	3/5	µ = 73	μ = 75	μ = 79	μ = 86	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	$\sigma = 6.2$	σ = 7.9	σ = 10.2	$\sigma = 9.7$	True	3/9	3/5		6
Rainy	3/9	2/5									

• Valor de densidade:

$$f(temperature = 66|yes) = \frac{1}{\sqrt{2\pi6.2}}e^{-\frac{(66-73)^2}{2\times6.2^2}} = 0.0340$$

REPRESENTAÇÃO

 O classificador Naïve Bayes é frequentemente representado por este tipo de grafo...

 Note a direção das setas, que dizem que cada classe causa certas combinações de atributos com uma determinada probabilidade

REPRESENTAÇÃO

 Naïve Bayes é rápido e eficiente em termos de memória

 As probabilidades podem ser calculadas com uma única varredura da base e armazenadas em uma (pequena) tabela...

Sexo	> 190 _{cm}			
Masc	Sim	0.15		
	Não	0.85		
Fem	Sim	0.01		
	Não	0.99		

TÓPICOS

- 1. Aprendizado Bayesiano
- 2. Classificador Naïve Bayes
- 3. Análise

ATRIBUTOS IRRELEVANTES

- Naïve Bayes NÃO É sensível a atributos irrelevantes...
- Suponha que estejamos tentando rotular o gênero de uma pessoa baseado em vários atributos, dentre eles a cor dos olhos. (É claro que a cor dos olhos é irrelevante na previsão do gênero de uma pessoa)

 No entanto, estamos assumindo que temos estimativas boas o suficiente: quanto mais dados, melhor!

FRONTEIRA DE DECISÃO

O classificador
 Naïve Bayes gera
 uma fronteira de
 decisão quadrática

CONCLUSÕES

Vantagens:

- Rápido para treinar (varredura única)
- Rápido para classificar
- Insensível a atributos irrelevantes
- Lida com dados discretos e contínuos
- Lida bem com fluxos de dados (data streams)

Desvantagem:

- Assume independência dos atributos
- Caso haja alta redundância entre atributos, seleção de atributos resolve o problema!
- Caso contrário, utilizar abordagem mais robusta (ex.: Redes Bayesianas)

O QUE VIMOS?

- Aprendizado Bayesiano
- Classificador Naïve Bayes
- Análise

PRÓXIMA VIDEOAULA

Prática: Aprendizado de Máquina