SECTION -A (30 M)

Choose the correct answer from the given options for each question given below and each carries 2 marks.

- 1. The domain of the function $f(x) = log(x^2 4x + 3)$ is
- A. $(-\infty, 1) \cup (3, \infty)$ B. $(-\infty, -1) \cup (3, \infty)$ C. (1,3) D. [-1,3]

- 2. If $f(x) = \frac{\cos^2 x + \sin^4 x}{\sin^2 x + \cos^4 x}$, $\forall x \in \mathbf{R}$ then f(2022) =
- A. 0

B. 1

C. 2

D. 3

- 3. $3n^5 + 5n^3 + 7n$, $\forall n \in \mathbb{N}$ is divisible by
- A. 2

B. 4

C. 15

D.10

- 4. If $\begin{vmatrix} x & y & z \\ -x & y & z \\ x & -y & z \end{vmatrix} = kxyz$, then $k = \frac{1}{2}$

D. 4

- 5. If the matrix $\begin{pmatrix} 1 & x & 2x \\ 1 & 3x & 5x \\ 1 & 2 & 4 \end{pmatrix}$ is singular then $x = \frac{1}{2}$

D. 3

- 6. The rank of the matrix $\begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 6 & 2 \\ 1 & 2 & 2 & 3 \end{pmatrix}$ is
 - A. 1

B. 2

C. 3

D. 4

7. If A lies in III quadrant and 3tanA - 4 = 0, then

 $5\sin 2A + 3\sin A + 4\cos A =$

- A. $-\frac{24}{5}$
- B. $\frac{5}{24}$
- C. 0

D. $\frac{24}{5}$

- 8. $\cos^2\frac{\pi}{10} + \cos^2\frac{2\pi}{5} + \cos^2\frac{3\pi}{5} + \cos^2\frac{9\pi}{10} =$
 - A. 8

- B. 6
- c. 4

- D. 2
- 9. If $A + B + C = \pi$ and cosA = cosB.cosC then cotB.cotC =
 - A. $\frac{1}{2}$

B. 1

C. 2

D. $-\frac{1}{2}$

- 10. If $\sqrt{3} \cos\theta \sin\theta = 1$, then $\theta =$
 - A. $\frac{\pi}{2}$

C. $\frac{\pi}{4}$

D. $\frac{\pi}{2}$

- 11. The general solution of $tan\theta$. $tan2\theta = 1$ is
 - A. $n\pi + \frac{\pi}{4}$ B. $n\pi + \frac{\pi}{2}$ C. $n\frac{\pi}{2} + \frac{\pi}{2}$ D. $n\pi + \frac{\pi}{6}$

- 12. $\cos \left[\cos^{-1} \left(-\frac{2}{3} \right) \sin^{-1} \left(\frac{2}{3} \right) \right] =$
 - A. $\frac{1}{2}$ B. -1

C. 1

- D. 0
- 13. If $Tan^{-1}x + Tan^{-1}y + Tan^{-1}z = \frac{\pi}{2}$, then $1 xy yz zx = \frac{\pi}{2}$
 - A. 0

B. 1

C. 2

- D. -1
- 14. If $Cos^{-1}\frac{5}{13} + Cos^{-1}\frac{3}{5} = Cos^{-1}x$, then x =
 - A. $\frac{3}{65}$
- B. $-\frac{33}{65}$ C. $-\frac{36}{65}$
- D. -1

- 15. The value of cosh(2) + sinh(2) =
 - A. *e*

- B. $\frac{e}{2}$
- $C. e^2$

 $D.\frac{e^2}{2}$

Section B $(3 \times 10 = 30 M)$

Answer any Three of the following questions

16.

- a. Let $f: A \to B$, $g: B \to C$ be bijections then prove that $g \circ f: A \to C$ is a bijection.
- b. Prove that the real valued function $f(x) = \frac{x}{e^{x}-1} + \frac{x}{2} + 1$ is an even function on $R \setminus \{0\}$.

17.

a. Use mathematical induction to prove that $49^n + 16n - 1$ is divisible by 64 for all positive integers n.

b. Show that
$$\begin{vmatrix} b+c & c+a & a+b \\ a+b & b+c & c+a \\ a & b & c \end{vmatrix} = a^3 + b^3 + c^3 - 3abc$$
.

18.

a. Solve the system of equation by Matrix Inversion Method:

$$2x - y + 3z = 8$$
$$-x + 2y + z = 4$$
$$3x + y - 4z = 0$$

b. If $A+B+C=\pi$, then prove that

$$\cos^{2}\frac{A}{2} + \cos^{2}\frac{B}{2} + \cos^{2}\frac{C}{2} = 2\left(1 + \sin\frac{A}{2} \cdot \sin\frac{B}{2} \cdot \sin\frac{C}{2}\right)$$

- a. Prove that $\sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8} + \sin^4 \frac{5\pi}{8} + \sin^4 \frac{7\pi}{8} = \frac{3}{2}$.
- b. Solve sin x + sin 2x + sin 3x = cos x + cos 2x + cos 3x.

20.

a. Show that the solutions of $cosp\theta + cosq\theta = 0, p \neq \pm q$ forms two series and each of which is in arithmetic progression and also find the common difference of each arithmetic progression.

b. If
$$Sin^{-1}x + Sin^{-1}y + Sin^{-1}z = \pi$$
 then prove that
$$x^4 + y^4 + z^4 + 4x^2y^2z^2 = 2(x^2y^2 + y^2z^2 + z^2x^2)$$

21.

- a. Prove that $tan\left[\frac{\pi}{4} + \frac{1}{2}cos^{-1}\left(\frac{a}{b}\right)\right] + tan\left[\frac{\pi}{4} \frac{1}{2}cos^{-1}\left(\frac{a}{b}\right)\right] = \frac{2b}{a}$.
- b. For any $x \in [1, \infty)$ prove that $\cosh^{-1} x = \log_e(x + \sqrt{x^2 1})$