1. LSTM-based Language Decoder

After training, based model can produce a caption for a bird image.

The output of the bird image is: a bird sitting on a branch of a tree.

Run eval.py, the output is:

{'reflen': 972, 'guess': [986, 886, 786, 686], 'testlen': 986, 'correct': [610, 262, 104,

38]}

ratio: 1.01440329218

Bleu_1: 0.619

Bleu_2: 0.428

Bleu_3: 0.289

Bleu_4: 0.191

METEOR: 0.196

ROUGE_L: 0.456

CIDEr: 0.671

SPICE: 0.133

2. Implement My LSTM

After training, my model can produce a caption for a bird image.

The output of the bird image is: a close up of a bird perched on a tree branch.

Run eval.py, the output is:

{'reflen': 953, 'guess': [960, 860, 760, 660], 'testlen': 960, 'correct': [612, 267, 94,

32]}

ratio: 1.0073452256

Bleu 1: 0.637

Bleu_2: 0.445

Bleu 3: 0.290

Bleu 4: 0.186

METEOR: 0.192

ROUGE_L: 0.456

CIDEr: 0.682

SPICE: 0.126

3. Compute against Microsoft's Al

Test image 1: COCO_val2014_000000000042.jpg

Microsoft's Al: a dog sitting in a basket.

My model: a teddy bear sitting on a couch with a teddy bear.

Explanation: In this example, Microsoft's Al performs better. My model recognizes a teddy dog as a teddy bear.

Test image 2: COCO_val2014_00000000536.jpg

Microsoft's Al: a couple of people that are standing in a room.

My model: a woman is holding a cell phone in her hand.

Explanation: In this example, however, I guess my model performs better. First of all, not all the people are standing, so Microsoft's Al makes a mistake. Second, my model recognizes "woman" while Microsoft's Al just recognizes "people". Moreover, my model recognizes the woman holds a cell phone, while Microsoft's Al doesn't.

Test image 3: COCO_val2014_00000000873.jpg

Microsoft's Al: it's a tall building in a city.

My model: a group of people walking around a city street.

Explanation: In this example, Microsoft's Al performs better. My model is totally wrong, because there is no people in the image, but building and street.

4. New ideas

We can use Adversarial Training.

Define a discriminator D. We have can define original captioning model as a generator G.

First of all, we can pre-train G and D.

We set the label of generative sentences as 0, and set the label of ground truth sentences as 1 for discriminator. In this step, we just update the parameter of discriminator.

When training G, we set the label of generative sentences as 1 and feed them into discriminator. We backpropagate the loss of discriminator to update the parameter of G (but keep parameters of D).

Evaluation Metrics for Image Captioning

1. BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. It uses a modified form of precision to compare a candidate translation against multiple reference translations.

Limitation of BLEU:

- 1) There is no guarantee that an increase in BLEU score is an indicator of improved translation quality.
- 2) The approach of comparing by how much a computer translation differs from just a few human translations is flawed.
- 2. METEOR (Metric for Evaluation of Translation with Explicit Ordering) is a metric for the evaluation of machine translation output. The metric is based on the harmonic mean of unigram precision and recall, with recall weighted higher than precision.

Limitation of METEOR:

- 1) Compare the translation with each reference separately and select the reference with the best match, which uses multiple reference translations in a weak way.
- 2) Once all the stages have been run, unigrams mapped through different mapping modules are treated the same.