

Olimpiada Națională de Matematică Etapa Judeţeană/a Sectoarelor Municipiului Bucureşti, 16 martie 2019 CLASA a IX-a

Problema 1. Fie $n \in \mathbb{N}, n \geq 2$ si numerele strict pozitive $a_1, a_2, ..., a_n$. respectiv $b_1, b_2, ..., b_n$ astfel încât $a_1 + a_2 + ... + a_n = b_1 + b_2 + ... + b_n = S$.

a) Demonstrați că $\sum_{k=1}^{n} \frac{a_k^2}{a_k + b_k} \ge \frac{S}{2}$. b) Demonstrați că $\sum_{k=1}^{n} \frac{a_k^2}{a_k + b_k} = \sum_{k=1}^{n} \frac{b_k^2}{a_k + b_k}$.

Gazeta Matematică

Problema 2. Fie H ortocentrul triunghiului ascuțitunghic ABC. În planul triunghiului ABC considerăm un punct X astfel încât triunghiul X.AH este dreptunghic isoscel cu ipotenuza \overrightarrow{AH} , iar \overrightarrow{B} şi \overrightarrow{X} sunt de o parte şi de alta a dreptei \overrightarrow{AH} . Demonstrați că $\overrightarrow{XA} + \overrightarrow{XC} + \overrightarrow{XH} = \overrightarrow{XB}$ dacă şi numai dacă $\angle BAC = 45^{\circ}$.

Problema 3. Fie $(a_n)_{n\in\mathbb{N}}$ un şir de numere reale cu proprietatea

$$2(a_1 + a_2 + ... + a_n) = na_{n+1}$$

pentru orice $n \geq 1$.

- a) Demonstrați că șirul $(a_n)_{n\in\mathbb{N}}$. este o progresie aritmetică.
- b) Dacă $[a_1] + [a_2] + ... + [a_n] = [a_1 + a_2 + ... + a_n]$, pentru orice $n \in \mathbb{N}^*$. demonstrați că toți termenii șirului sunt numere întregi. (cu [x] s-a notat partea întreagă a numărului real x)

Problema 4. Determinați toate numerele naturale nenule p pentru care există $n \in \mathbb{N}^*$ astfel încât $p^n + 3^n$ să dividă numărul $p^{n+1} + 3^{n+1}$.

Timp de lucru 4 ore.

Fiecare problemă este notată cu 7 puncte.