MATRICES ET APPLICATIONS LINÉAIRES

MATRICE D'UNE APPLICATION LINÉAIRE

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Matrices associées aux applications linéaires

Soient E et F deux espaces vectoriels sur \mathbb{K} , de dimension n et p respective, et f une application linéaire de E dans F. Soient $\mathcal{B}=(e_1,e_2,...,e_n)$ une base de E et $\mathcal{B}'=(f_1,f_2,...,f_p)$ une base de F. Les images par f des vecteurs $e_1,e_2,...,e_n$ se décomposent sur la base \mathcal{B}' :

$$\begin{split} f(e_1) &= a_{1,1}f_1 + a_{2,1}f_2 + \ldots + a_{p,1}f_p, \\ f(e_2) &= a_{1,2}f_1 + a_{2,2}f_2 + \ldots + a_{p,2}f_p, \\ \ldots \\ &\ldots \\ f(e_n) &= a_{1,n}f_1 + a_{2,n}f_2 + \ldots + a_{p,n}f_p. \end{split}$$

Définition 1 On appelle matrice de f relativement aux bases \mathcal{B} et \mathcal{B}' , la matrice notée $Mat_{\mathcal{B},\mathcal{B}'}(f) \in M_{p,n}(\mathbb{K})$ dont les colonnes sont les composantes des vecteurs $f(e_1), f(e_2), ..., f(e_n)$ dans la base \mathcal{B}' :

$$Mat_{\mathcal{B},\mathcal{B}'}(f) = \begin{pmatrix} f(e_1) & f(e_2) \dots & f(e_n) \\ f_1 & f_2 & a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \dots & a_{p,n} \end{pmatrix}$$

Remarque 1 Si $\mathcal{B} = \mathcal{B}'$, on note $Mat_{\mathcal{B}}(f)$.

2 Opérations sur les applications linéaires et les matrices

Proposition 1 Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie. Soient f et g deux applications linéaires de E dans F, \mathcal{B} une base de E et \mathcal{B}' une base de F. Alors

- 1. $Mat_{\mathcal{B},\mathcal{B}'}(f+g) = Mat_{\mathcal{B},\mathcal{B}'}(f) + Mat_{\mathcal{B},\mathcal{B}'}(g)$.
- 2. $\forall \lambda \in \mathbb{K}$, $Mat_{\mathcal{B},\mathcal{B}'}(\lambda f) = \lambda Mat_{\mathcal{B},\mathcal{B}'}(f)$.

Proposition 2 Soient E, F et G trois \mathbb{K} -espaces vectoriels de dimension finie. Soient f une application linéaire de E dans F et g une application linéaire de F dans G. Considérons \mathcal{B} une base de E, \mathcal{B}' une base de F et \mathcal{B}'' une base de G. Alors

$$Mat_{\mathcal{B},\mathcal{B}''}(gof) = Mat_{\mathcal{B}',\mathcal{B}''}(g) \times Mat_{\mathcal{B},\mathcal{B}'}(f).$$

1 IONISX

MATRICES ET APPLICATIONS LINÉAIRES

MATRICE D'UNE APPLICATION LINÉAIRE

Corollaire 1 Soient E un espace vectoriel de dimension finie et $\mathcal B$ une base de E. Soit f une application linéaire de E dans E. Alors

$$\forall n \in \mathbb{N}, \ Mat_{\mathcal{B}}(f^n) = (Mat_{\mathcal{B}}(f))^n.$$

Théorème 1 Soient E et F deux espaces vectoriels de même dimension n sur \mathbb{K} , \mathcal{B} une base de E, \mathcal{B}' une base de F. Une application linéaire $f:E\to F$ est bijective (c'est-à-dire est un isomorphisme) si et seulement si $Mat_{\mathcal{B},\mathcal{B}'}(f)$ est inversible. Dans ce cas là

$$Mat_{\mathcal{B}',\mathcal{B}}(f^{-1}) = (Mat_{\mathcal{B},\mathcal{B}'}(f))^{-1}$$
.

2 IONISX