The group G is isomorphic to the group labelled by [720, 764] in the Small Groups library. Ordinary character table of $G \cong A6 : C2$:

	1a	2a	2b	3a	4a	5a	5b	8a	8b	10a	10b
χ_1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	1	1	1	-1	-1	-1	-1
χ_3	8	2	0	-1	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$	0	0	$E(5) + E(5)^{} 4$	$E(5)^2 + E(5)^3$
χ_4	8	-2	0	-1	0	$-E(5) - E(5)^{} 4$	$-E(5)^2 - E(5)^3$	0	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$
χ_5	8	2	0	-1	0	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^{} 4$
χ_6	8	-2	0	-1	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$	0	0	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$
χ_7	9	1	1	0	1	-1	-1	-1	-1	1	1
χ_8	9	-1	1	0	1	-1	-1	1	1	-1	-1
χ_9	10	0	2	1	-2	0	0	0	0	0	0
χ_{10}	10	0	-2	1	0	0	0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0
χ_{11}	10	0	-2	1	0	0	0	$E(8) - E(8)^{} 3$	$-E(8) + E(8)^3$	0	0

Trivial source character table of $G \cong A6$: C2 at p = 2

Trivial source character table of $G = A0$. C2 at $p = 2$															
$Normalisers N_i$			N_1			N_2		N_3	N_4	N	$_{5}$ N	$I_6 \mid N$	$V_7 \mid N_8$	N_9	N_{10}
$p-subgroups \ of \ G \ up \ to \ conjugacy \ in \ G$			P_1			P_2		P_3	P_4	P	$_{5}$ P_{6}	P_6 P_7	P_7 P_8	P_9	P_{10}
Representatives $n_j \in N_i$	1 <i>a</i>	3a	5a	5b	1 <i>a</i>	5b	5a	1a	1a 3a	<i>i</i> 10	$a = 1\epsilon$	$a \mid 1a$	$a \mid 1a$	$a \mid 1a$	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 2 \cdot \chi_9 + 2 \cdot \chi_{10} + 2 \cdot \chi_{11}$	80	8	0	0	0	0	0	0	0 0	(0	0 () 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11}$	48	3	-2	-2	0	0	0	0	0 0	(0) 0) 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	16	-2	$-2*E(5) - 2*E(5)^4$	$-2*E(5)^2 2 - 2*E(5)^3$	0	0	0	0	0 0	(0) 0) 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	16	-2	$-2*E(5)^2 - 2*E(5)^3$	$-2*E(5) - 2*E(5)^4$	0	0	0	0	0 0	(0) 0) 0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11}$	40	4	0	0	2	2	2	0	0 0	(0	0) 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	8	-1	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^{} 4$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	0 0	(0	0 0) 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	8	-1	$-E(5) - E(5)^{} 4$	$-E(5)^2 - E(5)^3$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^{} 4$	0	0 0	(0) 0) 0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 2 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	40	4	0	0	0	0	0	8	0 0	(0	0) 0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	12	3	2	2	0	0	0	4	2 2	0	0	0 () 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	28	1	-2	-2	0	0	0	4	$2 - \frac{1}{2}$	1 (0) 0) 0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	20	2	0	0	0	0	0	4	0 0		. 0	0 () 0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	20	2	0	0	2	2	2	4	0 0	(2	2 0) 0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	10	1	0	0	2	2	2	2	0 0	2	2 2	2 2	2 0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	10	1	0	0	0	0	0	2	0 0	2	0	0 () 2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	2	2	2	2	0	0	0	2	2 2	2	0	0) 0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	1	1	1	1	1	1	1	1	1 1	1	. 1	. 1	$\overline{1}$	1	1

```
P_1 = Group([()]) \cong 1
```

 $P_2 = Group([(1,3)(2,7)(4,9)(5,6)(8,10)]) \cong C2$

 $P_3 = Group([(2,4)(5,10)(6,8)(7,9)]) \cong C2$

 $P_4 = Group([(1,3)(5,7)(6,8)(9,10),(2,4)(5,10)(6,8)(7,9)]) \cong C2 \times C2$

 $P_5 = Group([(2,6,4,8)(5,7,10,9),(2,4)(5,10)(6,8)(7,9)]) \cong C4$

 $P_6 = Group([(1,3)(2,7)(4,9)(5,6)(8,10),(2,4)(5,10)(6,8)(7,9)]) \cong C2 \times C2$

 $P_7 = Group([(1,3)(2,7)(4,9)(5,6)(8,10),(2,6,4,8)(5,7,10,9),(2,4)(5,10)(6,8)(7,9)]) \cong D8$

 $P_8 = Group([(2,6,4,8)(5,7,10,9),(2,4)(5,10)(6,8)(7,9),(2,5,8,9,4,10,6,7)]) \cong C8$

 $P_9 = Group([(1,3)(5,7)(6,8)(9,10),(2,6,4,8)(5,7,10,9),(2,4)(5,10)(6,8)(7,9)]) \cong D8$

 $P_10 = Group([(1,3)(5,7)(6,8)(9,10),(2,4)(5,10)(6,8)(7,9),(2,5,8,9,4,10,6,7)]) \cong D16$

 $N_1 = Group([(2,3,4)(5,7,8)(6,9,10),(1,2)(3,5)(4,6)(7,8)(9,10)]) \cong A6 : C2$

 $N_2 = Group([(1,3)(2,7)(4,9)(5,6)(8,10),(2,4)(5,10)(6,8)(7,9),(1,2)(3,7)(4,10)(8,9)]) \cong D20$

 $N_3 = Group([(1,3)(5,7)(6,8)(9,10),(2,4)(5,10)(6,8)(7,9),(2,10,8,7,4,5,6,9)]) \cong D16$

 $N_4 = Group([(1,3)(5,7)(6,8)(9,10),(1,3)(2,8)(4,6)(7,9),(2,4)(5,10)(6,8)(7,9),(1,8)(2,4)(3,6)(9,10)]) \cong S4$

 $N_5 = Group([(1,3)(5,7)(6,8)(9,10),(2,6,4,8)(5,7,10,9),(2,4)(5,10)(6,8)(7,9),(2,10,8,7,4,5,6,9)]) \cong D16$

 $N_6 = Group([(1,3)(2,7)(4,9)(5,6)(8,10),(2,4)(5,10)(6,8)(7,9),(1,3)(2,10)(4,5)(6,7)(8,9)]) \cong D8$

 $N_7 = Group([(1,3)(5,7)(6,8)(9,10),(1,3)(2,7)(4,9)(5,6)(8,10),(2,6,4,8)(5,7,10,9),(2,4)(5,10)(6,8)(7,9)]) \cong D16$

 $N_8 = Group([(1,3)(5,7)(6,8)(9,10),(2,6,4,8)(5,7,10,9),(2,4)(5,10)(6,8)(7,9),(2,5,8,9,4,10,6,7)]) \cong D16$

 $N_9 = Group([(1,3)(5,7)(6,8)(9,10),(2,6,4,8)(5,7,10,9),(2,4)(5,10)(6,8)(7,9),(2,10,8,7,4,5,6,9)]) \cong D16$

 $N_10 = Group([(1,3)(5,7)(6,8)(9,10),(2,4)(5,10)(6,8)(7,9),(2,5,8,9,4,10,6,7)]) \cong D16$