Stability in z Plane

EPD 30.114 ADVANCED FEEDBACK & CONTROL

Stability in s Plane

- For continuous-time systems, the poles of the system must be on the left half plane on the *s*-plane for the system to be absolutely stable
- If it is on the imaginary axis (non-repeated), it is marginally stable or possesses neutral stability
- If there exists repeated conjugate poles on imaginary axis or any of the pole are on the right half plane of the s-plane, the system is unstable
- For this system: R(s) $G(s) = \frac{C(s)}{R(s)}$

$$G(s) = \frac{C(s)}{R(s)} = K \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n} = K \frac{N(s)}{D(s)}$$

Where K, a and b are constants and $m \le n$. (proper fraction)

- Roots of the Characteristic Equation D(s)=0 determine stability of the (closed-loop) system
- Recall the Routh-Hurwitz Stability Criterion!

Stability in z Plane

- For discrete-time systems, the poles of the system must lie within the unit circle in the z-plane
- If it is on the unit circle (z=1) (non-repeated), it is marginally stable or possesses neutral stability
- If there exists repeated conjugate poles on the unit circle or any of the pole are outside the unit circle, the system is unstable
- For this system: R(z) G(z) $G(z) = \frac{C(z)}{R(z)}$

$$G(z) = \frac{C(z)}{R(z)} = K \frac{b_0 z^m + b_1 z^{m-1} + \dots + b_{m-1} z + b_m}{a_0 z^n + a_1 z^{n-1} + \dots + a_{m-1} z + a_m} = K \frac{N(z)}{D(z)}$$

Where K, a and b are constants and $m \le n$. (proper fraction)

- Roots of the Characteristic Equation D(z)=0 determine stability of the (closed-loop) system
- Is there an analogous "Routh-Hurwitz Stability Criterion"?

Jury Stability Criterion

- The Jury Stability Criterion is a method of determining the stability of a linear discrete time system by analysing the coefficients of its characteristic polynomial
- It is the discrete time analogue of the Routh–Hurwitz stability criterion.
- The Jury Stability Criterion requires that the system poles are located inside the unit circle centred at the origin (z-plane), while the Routh-Hurwitz stability criterion requires that the poles are in the left half of the complex plane (s-plane).
- The Jury Criterion is named after Iraqi-born American Eliahu Ibraham Jury who devised it in 1981.
- Like the Routh-Hurwitz Stability Criterion, it provides the necessary and sufficient conditions for stability.

Jury Stability Criterion

• For a given (closed-loop) discrete-time system, the characteristic equation is a polynomial in z and given by:

$$P(z) = a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z + a_n = 0$$

- a_0 MUST be positive. (if it is not, multiply -1 to make it so)
- First check the following 3 conditions:

$$\circ ||a_n| < a_0$$

$$\left. \left| P(z) \right|_{z=1} > 0 \right.$$

$$|P(z)|_{z=-1}$$
 $\begin{cases} > 0 & \text{for } n \text{ even} \\ < 0 & \text{for } n \text{ odd} \end{cases}$

• If any of these 3 conditions fail, the system is unstable. If not, a **Jury Table** needs to be constructed. (Not enough information to tell if stable or unstable at this point).

General Form of Jury Table

• Construct the Jury Table as follows: $|P(z) = a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z + a_n = 0|$

		,						
Row	z^0	\mathbf{z}^1	\mathbf{z}^2	\mathbf{z}^3	•••	$\mathbf{z}^{\text{n-2}}$	\mathbf{z}^{n-1}	$\mathbf{Z}^{\mathbf{n}}$
1	a_n	a_{n-1}	a_{n-2}	a_{n-3}	•••	a_2	a_{I}	a_0
2	a_0	a_1	a_2	a_3	•••	a_{n-2}	a_{n-1}	a_n
3	b_{n-1}	b_{n-2}	b_{n-3}	b_{n-4}		b_{I}	b_0	
4	b_0	b_{I}	b_2	b_3		b_{n-2}	b_{n-1}	
5	C_{n-2}	C_{n-3}	C_{n-4}	C_{n-5}		c_0		
6	c_0	c_{I}	c_2	c_3		C_{n-2}		
•••								
2n-5	p_3	p_2	p_1	p_0				
2 <i>n</i> –4	p_0	p_1	p_2	p_3				
2n-3	q_2	q_1	q_0					

Notice that the elements in the first row consists of the coefficients in P(z) arranged in ascending order of powers of z and the 2^{nd} row are arranged in descending order. Also last row of the table will always consist of 3 elements.

Computation of Jury Elements

• The elements for row 3 through 2n-3 are given by the following determinants:

$$b_{k} = \begin{vmatrix} a_{n} & a_{n-1-k} \\ a_{0} & a_{k+1} \end{vmatrix} \qquad k = 0, 1, 2, ..., n-1$$

$$c_{k} = \begin{vmatrix} b_{n-1} & b_{n-2-k} \\ b_{0} & b_{k+1} \end{vmatrix} \qquad k = 0, 1, 2, ..., n-2$$

$$q_{k} = \begin{vmatrix} p_{3} & p_{2-k} \\ p_{0} & p_{k+1} \end{vmatrix} \qquad k = 0, 1, 2$$

- Also notice that the elements in any even-numbered row are the reverse of the preceding odd-numbered row
- With the constructed table, finally check for the 4th and final conditions:

$$||b_{n-1}| > |b_0|$$
, $|c_{n-2}| > |c_0|$, \dots , $|q_2| > |q_0|$

• If any of these conditions are not met, the system is unstable.

Illustrative Example

• Construct the Jury Stability Table for the following characteristic equation: $a_0>0$. What are the conditions for stability?

$$P(z) = a_0 z^4 + a_1 z^3 + a_2 z^2 + a_3 z + a_4$$

$$|a_4| < a_0$$

$$|P(z)|_{z=1} = a_0 + a_1 + a_2 + a_3 + a_4 > 0$$

$$|P(z)|_{z=-1} = a_0 - a_1 + a_2 - a_3 + a_4 > 0$$

$$\begin{vmatrix}
|b_3| > |b_0|, \\
|c_2| > |c_0|
\end{vmatrix}$$

Illustrative Example

Using a modified Jury Stability Table:

Row	\mathbf{z}^0	\mathbf{z}^{1}	\mathbf{z}^2	\mathbf{z}^3	\mathbf{z}^4	
1	a_4	a_3	a_2	a_1	a_0	
2	a_0	a_1	a_2	a_3	a_4	
	a_4				a_0	$= b_3$
	$ a_0 $				a_4	
	a_4			a_1		$=b_2$
	$ a_0 $			a_3		
	a_4		a_2			$= b_1$
	$ a_0 $		a_2			
	a_4	a_3				$= b_0$
	$ a_0 $	a_1				
3	b_3	b_2	b_1	b_0		
4	b_0	b_1	b_2	b_3		

Illustrative Example

Row	\mathbf{z}^0	\mathbf{z}^1	\mathbf{Z}^2	\mathbf{z}^3	\mathbf{z}^4	
1	a_4	a_3	a_2	a_1	a_0	
2	a_0	a_1	a_2	a_3	a_4	
3	b_3	b_2	b_1	b_0		
4	b_0	b_1	b_2	b_3		
	$egin{aligned} b_3 \ b_0 \end{aligned}$			$egin{array}{c} b_0 \ b_3 \ \end{array}$		= <i>c</i> ₂
	$egin{aligned} egin{aligned} b_3 \ b_0 \end{aligned}$		$egin{array}{c} b_1 \ b_2 \ \end{array}$			$=c_1$
	$egin{aligned} b_3 \ b_0 \end{aligned}$	$egin{array}{c} b_2 \ b_1 \ \end{array}$				$=c_0$
5	c_2	c_1	c_0			

$$||b_3| > |b_0|, \quad |c_2| > |c_0||$$

Exercise

Examine the stability of the following characteristic equation:

$$P(z) = z^4 - 1.2z^3 + 0.07z^2 + 0.3z - 0.08$$

 $a_0 = 1, a_1 = -1.2, a_2 = 0.07, a_3 = 0.3, a_4 = -0.08$

$$P(z)|_{z=1} = a_0 + a_1 + a_2 + a_3 + a_4 > 0$$
 $1 - 1.2 + 0.07 + 0.3 - 0.08 = 0.09 > 0$

$$P(z)\big|_{z=-1} = a_0 - a_1 + a_2 - a_3 + a_4 > 0 1 + 1.2 + 0.07 - 0.3 - 0.08 = 1.89 > 0$$

First 3 conditions satisfied. So need to construct Jury Stability Table

|0.08| < 1

Exercise

Row	\mathbf{z}^0	\mathbf{z}^1	\mathbf{z}^2	\mathbf{z}^3	\mathbf{z}^4	
1	-0.08	0.3	0.07	-1.2	1	
2	1	-1.2	0.07	0.3	-0.08	
	$\begin{vmatrix} -0.08 \\ 1 \end{vmatrix}$				1 -0.08	$=b_3$ = - 0.994
	$\begin{vmatrix} -0.08 \\ 1 \end{vmatrix}$			-1.2 0.3		$=b_2$ = 1.176
	-0.08 1		0.07			$=b_1$ = - 0.0756
	$\begin{vmatrix} -0.08 \\ 1 \end{vmatrix}$	0.3				$=b_0$ = - 0.204
3	b_3	b_2	b_1	b_0		
4	b_0	b_1	b_2	b_3		

Exercise

Row	\mathbf{z}^0	\mathbf{z}^{1}	\mathbf{z}^2	\mathbf{z}^3	\mathbf{z}^4	
1	-0.08	0.3	0.07	-1.2	1	
2	1	-1.2	0.07	0.3	-0.08	
3	-0.994	1.176	-0.0756	-0.204		
4	-0.204	-0.0756	1.176	-0.994		
	-0.994 -0.204			-0.204 -0.994		$= c_2$ = 0.946
	-0.994 -0.204		-0.0756 1.176			$= c_1$ = -1.184
	-0.994 -0.204	1.176 -0.0756				$= c_0$ = 0.315
5	c_2	c_1	c_0			

$$|b_3| > |b_0|$$
, $|c_2| > |c_0|$

$$|0.994| > |0.204|$$
, $|0.946| > |0.315|$

All conditions satisfied. System is stable. All poles lie within unit circle.

$$P(z) = (z - 0.8)(z + 0.5)(z - 0.5)(z - 0.4) = 0$$