Übungen zur Vorlesung "Stochastik für Studierende der Informatik"

Anwesenheitsaufgaben

Aufgabe 1

Berechnen Sie die folgenden Reihen:

(a)
$$\sum_{k=2}^{\infty} \frac{2^k}{k!}$$

(b)
$$\sum_{k=1}^{\infty} 5 \left(\frac{1}{4}\right)^{k-1}$$

(a)
$$\sum_{k=2}^{\infty} \frac{2^k}{k!}$$
 (b) $\sum_{k=1}^{\infty} 5\left(\frac{1}{4}\right)^{k-1}$ (c) $\sum_{k=2}^{\infty} (k^2 - k)q^{k-2}$ für $|q| < 1$.

Aufgabe 2

Berechnen Sie die folgenden Integrale:

(a)
$$\int_0^\infty \lambda e^{-\lambda x} dx$$

(b)
$$\int_0^{\pi/2} \cos(x) \sin(x) dx$$

(c)
$$\int_{e}^{e^2} \frac{\log^2(x)}{x} dx$$

Aufgabe 3

Wir definieren die *Indikatorfunktion* $\mathbb{1}_A$ einer Menge A durch

$$\mathbb{1}_A(x) := \begin{cases} 1, & \text{falls } x \in A, \\ 0, & \text{falls } x \notin A. \end{cases}$$

- (a) Zeigen Sie, dass $\mathbb{1}_{A^c}(x) = 1 \mathbb{1}_A(x)$ und $\mathbb{1}_{A \cap B}(x) = \mathbb{1}_A(x) \cdot \mathbb{1}_B(x)$.
- (b) Berechnen Sie die Integrale

$$\int_0^{10} \mathbb{1}_{[2,7]}(x) \cdot \mathbb{1}_{[4,8]}(x) \, dx, \qquad \int_{-\infty}^{\infty} \mathbb{1}_{[0,3]}(x) x^2 \, dx, \qquad \int_0^5 \int_0^7 \mathbb{1}_{[2,4]^2}(x,y) \, dx dy.$$

Aufgabe 4

Es sei A eine endliche Menge mit |A| = n. Zeigen Sie mittels vollständiger Induktion, dass in diesem Fall für die Mächtigkeit der Potenzmenge $\mathcal{P}(A)$ gilt $|\mathcal{P}(A)| = 2^n$.

Aufgabe 5

Wir erinnern an die Definition der Fakultät einer natürlichen Zahl $n \in \mathbb{N}$, die definiert ist durch 0!=1, und für $n \geq 1$ durch

$$n! := n(n-1)(n-2)\cdots 2\cdot 1 = \prod_{k=1}^{n} k.$$

Damit definieren wir den Binomialkoeffizienten $\binom{n}{k}$ für $n, k \in \mathbb{N}$ durch $\binom{n}{k} = 0$, falls k > n, und im Fall $n \ge k$ setzen wir

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}.$$

- (a) Zeigen Sie, dass $\binom{n}{k} = \binom{n}{n-k}$.
- (b) Berechnen Sie den folgenden Ausdruck:

$$3! \binom{10}{5}$$
.

(c) Beweisen Sie folgende Summenformel für die alternierenden Binomialkoeffizienten:

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$$

Aufgabe 6

Es sei eine Folge von nicht-negativen Zahlen $(p_n)_{n\in\mathbb{N}}$ gegeben mit $\sum_{n\in\mathbb{N}}p_n=1$. Zeigen Sie, dass auf dem Grundraum $\Omega=\mathbb{N}$ genau ein Wahrscheinlichkeitsmaß \mathbb{P} gibt, sodass $\mathbb{P}(\{n\})=p_n$ für alle $n\in\mathbb{N}$.