Questions for Jeremy

If you have your own questions that is even better, but here are some if you want to choose one instead!

1. OHSU is at the forefront of a digital revolution in medicine

- **1.1.** What is different about Oregon Health and Science University (OHSU) and a regular university like Portland State University?
- **1.2.** What is the difference between genetic sequencing and molecular sequencing?
- 1.3. How are computer algorithms used to help discover new drugs?

2. My research: using physics and python codes to predict cell behavior by making cell-state maps

- **2.1.** What does predicting the behavior of one cell have to do with treating a patient?
- **2.2.** Why does the cancer cell look so crazy?
- 2.3. What is complete or incomplete for prediction mean?
- **2.4.** What is your dog doing right now?

3. Cell-state maps are built from microscope images of cells which are analyzed using python code

- **3.1.** I see a class definition... what is a python class?
- **3.2.** What are the green boundaries around the cells and why do some cells not have them?

4. Cell-state maps from trajectories allow cell behavior to be predicted

- **4.1.** What are the orange arrows in the picture?
- 4.2. I see the shape of the cell changes a little. Does that mean anything?
- **4.3.** Can you only predict cell behavior you have already seen?

5. Current work: Combine cell-state maps with molecular information

- **5.1.** How do you know by looking at a picture of a cell what molecules are there?
- 5.2. You say molecular information... what types of molecules?
- **5.3.** What is your dog doing right now?

6. Future work: combine cell-state maps with computer-based models of cancer cells

- **6.1.** Are there people at OHSU working on computer models of cancer?
- **6.2.** If scientists just share their code, does that mean people just come and steal their work?
- **6.3.** How could little dots on a screen represent something as complex as a cell?

7. Long-term future work: Can computer-based models predict the best way to treat a patient's cancer?

- 7.1. What type of information about a patient's cancer could you use?
- **7.2.** A tumor has millions of cells interacting with millions of other cells in the tissue and different organs. How do you know how what to put in a simplified model?
- **7.3.** How do you know what different drugs will do to the cells?
- 8. Acknowledgements