ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА **Рабочая тетрадь**

Преподователь: Навроцкая Л.В. Факультет: ЦиТХИН Студент: Мохов М.Г. Группа: КС-34 Вариант 11

Зачёт: ____ «__» _____ 2024г.

ЛИНЕЙНАЯ ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ ПОСТОЯННОГО ТОКА

Цель работы:

Исследовать цепи постоянного тока.

- 1. Рассчитать цепь при заданных параметрах.
- 2. Исследовать цепь при заданных параметрах.
- 3. сравнить результаты расчёта и исследования цепи.
- 4. Записать выводы по результатам.

Ход работы:

1. Расчитать цепь. рис. 1

рис. 1: Рассчётная цепь.

2. Заполнить таблицу.

Параметры цепи	0	100	310	610	710	910
Ток, I , $[A]$	2	1	0.49	0.33	0.25	0.2
Мощность источника, $P_{ ext{uct}} = E \cdot I[ext{Bt}]$	400	200	98	66	50	40
Мощность нагрузки, $P_{\scriptscriptstyle{\mathrm{Har}}} = I^2 \cdot R[\mathrm{Bt}]$	0	100	74.431	55.539	44.375	36.4
$K.П.Д.$ цепи, $\eta = \left(rac{P_{ ext{ iny Har}}}{P_{ ext{ iny MCT}}} ight) \cdot 100\%$	0	0.5	0.7595	0.8415	0.8875	0.91

табл. 1: Расчётная таблица

3. Графики.

рис. 2: График силы тока от напряжения резистора.

рис. 3: График мощности источника от напряжения резистора.

рис. 4: График мощности нагручки от напряжения резистора.

рис. 5: График К.П.Д. от напряжения.

Вывод

В ходе лабораторной работы я расчитал цепь рис. 1 при различных значениях напряжения в соответствии с заданными параметрами. При увеличении сопративления резистора мощность источника уменьшается. Так же при увеличении сопративления наблюдается уменьшение мощности нагрузки и сила тока. В свою очередь К.П.Д. возрастает по мере увеличения сопративления.

РЕАКТИВНЫЕ ЭЛЕМЕНТЫ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Цели.

- 1. Расчитать и построить зависимость сопротивления катушки и конденсатора от частоты питания.
- 2. Снять эксперементально и построить зависимость реактивного сопротивления катушки от частоты источника питания.
- 3. Сравнить рассчитанные и полученные результаты.
- 4. Записать вывод по результатам.

Ход решения.

1. Цепь.

рис. 6: Схема с катушкой.

рис. 7: Схема с конденсатором.

2. Рассчётные и экперементальные значения.

1	Элеме: раметј	нты и ры цепи					Часто	та, Гц				
	Расч	$X_L, [{ m Om}]$	30	40	50	60	70	80	90	100	110	120
Катушка		$U_L, [\mathrm{B}]$	9.07	12.1	15.12	18.14	21.17	24.19	27.21	30.24	33.26	36.29
Кату	Эксп	$I_L, [A]$	70.53	81.88	89.34	94.4	97.89	100.4	102.2	103.5	104.6	105.4
		$X_L = rac{U_L}{I_I}, [OM]$	7.67	6.68	5.83	5.13	4.56	4.09	3.7	3.38	3.1	2.87
	Расч	$X_C, [{ m Om}]$	9.2	12.26	15.32	18.39	21.45	24.52	27.59	30.63	33.73	36.79
нсатор		$U_C, [\mathrm{B}]$	25.28	18.96	15.17	12.64	10.83	9.48	8.43	7.58	6.89	6.32
Котденсатор	Эксп	$I_C, [{ m A}]$	100.7	94.82	88.64	82.48	76.64	71.23	66.31	61.87	57.84	54
		$X_C = rac{U_C}{I_I}, ext{[OM]}$	4.04	5.07	5.92	6.61	7.17	7.62	7.98	8.27	8.5	8.7

табл. 2: Результаты вычисления расчётных и эксперементальных значений.

3. Графики

рис. 8: Графики расчётных данных.

рис. 9: Графики эксперементальных данных.

рис. 10: Сравнение графиков расчётных и эксперементальных данных.

Из графиков видно, что данные расчётные данные совподают с эксперементальными в пределе допустимой погрешности.

Вывод

В ходе лабораторной работы я расчитал цепи рис. 6 и рис. 7 при заданных частотах источника. В результате сопротивление конденсатора обратно пропорционально частоте, а сопротивление катушки прямо пропорционально частоте. В результате графики эксперементальных данных достаточно точно совпали с графиками рассчётных данных.

Графики сопративления катушки и конденсатора пересекаются в точке ~ 50 , Γ ц. В этой точке происходит резонанс сопративлений ($X_L = X_C$). Таким образом точка резонанса находится около 50 Γ ц.

РЕЗОНАНСЫ В ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Цель

- Собрать цепь для наблюдения резонанса напряжения.
- Посчитать параметры цепи, в которой наблюдается резонанс напряжения.
- Собрать цепь для наблюдения резонанса токов.
- Посчитать параметры цепи, в которой наблюдается резонанс токов.

Ход решения.

№1 резонанс напряжения.

1. Цепь.

рис. 11: Цепь для наблюдения резонанса напряжения.

2. Экспериментальные значения.

$C,$ [мк Φ]	I,[A]	$U_R,[\mathrm{B}]$	$U_L,[\mathrm{B}]$	$U_C, [B]$
170	15.2	212.1	221.9	280.1
180	15.4	215.6	225.5	268.9
190	15.6	218	228	257.5
200	15.7	219.3	229.4	246.2
210	15.7	219.9	230	235.1
220	15.7	219.9	230	224.4
230	15.7	219.4	229.5	214.1
240	15.6	218.6	228.7	204.5
250	15.5	217.6	227.6	195.4

табл. 3: Таблица экспериментальных значений.

3. Расчётные данные. Значения были посчитаны по формулам:

$$\begin{split} R &= \frac{U_R}{I}; \ X_L = \frac{U_L}{I}; \ X_C = \frac{U_C}{I}; \ X = X_L - X_C; \ Z = \frac{U}{I} \\ P &= R*I^2; \ Q = X*I^2; \ S = U*I\varphi = \arctan\left(\frac{X}{R}\right) \end{split}$$

C	I	U_R	U_L	U_C	R	X_L	X_C	Z	X	P	Q	S	φ
170	15.2	212.1	221.9	280.1	14	14.6	18.5	14.5	-3.8	3213.3	-881.7	3333	-0.3
180	15.4	215.6	225.5	268.9	14	14.6	17.5	14.3	-2.8	3320.2	-668.4	3388	-0.2
190	15.6	218	228	257.5	14	14.6	16.5	14.1	-1.9	3394.3	-459.3	3425.4	-0.1
200	15.7	219.3	229.4	246.2	14	14.6	15.7	14	-1.1	3436.4	-263.3	3447.4	-0.1
210	15.7	219.9	230	235.1	14	14.6	15	14	-0.3	3454.6	-80.1	3456.2	0
220	15.7	219.9	230	224.4	14	14.6	14.3	14	0.4	3454.6	88	3456.2	0
230	15.7	219.4	229.5	214.1	14	14.6	13.7	14	1	3438	241.3	3447.4	0.1
240	15.6	218.6	228.7	204.5	14	14.6	13.1	14.1	1.5	3414.5	378	3436.4	0.1
250	15.5	217.6	227.6	195.4	14	14.6	12.6	14.2	2.1	3381.5	500.4	3418.8	0.1

рис. 12: Таблица расчётных значений.

4. Графики экспериментальных данных.

рис. 13: График Силы Тока. I(C), [A]

рис. 14: График напряжений. $U_R(C)$, [B], $U_L(C)$, [B], $U_C(C)$, [B]

5. Графики расчётных данных.

рис. 15: Графики сопротивлений. $R(C), [\mathsf{Om}], \, X_L(C), [\mathsf{Om}], \, X_C(C), [\mathsf{Om}]$

рис. 16: Графики сопротивлений. R(C), [OM], Z(C), [OM]

рис. 17: Графики мощностей. P(C), [Вт], S(C), [Вт]

рис. 18: График мощности.
 $Q(C)[{\rm Bt}]$

6. Векторная диаграмма резонанса напряжений.

рис. 19: Векторная диаграмма резонанса напряжений.

№2 резонанс токов.

1. Цепь.

рис. 20: Цепь для наблюдения резонанса токов.

2. Экспериментальные значения.

$C, [{ m mk}\Phi]$	$I, [{ t mA}]$	$I_R,[A]$	$I_L,[A]$	$I_C, [A]$
170	16	15.7	15	11.9
180	15.9	15.7	15	12.6
190	15.8	15.7	15	13.3
200	15.8	15.7	15	14
210	15.7	15.7	15	14.7
220	15.7	15.7	15	15.4
230	15.8	15.7	15	16.1
240	15.8	15.7	15	16.8
250	15.9	15.7	15	17.5

табл. 4: Таблица экспериментальных значений.

3. Расчётные данные.

$C,$ [мк Φ]	I,[A]	$I_R, [A]$	$I_L, [A]$	$I_C, [A]$	Y, [CM]	G, [CM]	B, [CM]	$S, [B_{ m T}]$	$P, [B_{ m T}]$	$\cos arphi$
170	16.02	15.71	15.03	11.9	0.073	0.071	-0.014	3524.4	3456.2	0.981
180	15.9	15.71	15.03	12.6	0.072	0.071	-0.011	3498	3456.2	0.988
190	15.81	15.71	15.03	13.3	0.072	0.071	-0.008	3478.2	3456.2	0.994
200	15.75	15.71	15.03	14	0.072	0.071	-0.005	3465	3456.2	0.997
210	15.72	15.71	15.03	14.7	0.071	0.071	-0.002	3458.4	3456.2	0.999
220	15.72	15.71	15.03	15.4	0.071	0.071	0.002	3458.4	3456.2	0.999
230	15.75	15.71	15.03	16.11	0.072	0.071	0.005	3465	3456.2	0.997
240	15.81	15.71	15.03	16.8	0.072	0.071	0.008	3478.2	3456.2	0.994
250	15.91	15.71	15.03	17.5	0.072	0.071	0.011	3500.2	3456.2	0.987

табл. 5: Таблица расчётных значений.

4. Графики

рис. 21: График сил тока от ёмкости конденсатора.

рис. 22: График проводимостей от ёмкости конденсатора.

рис. 23: График $\cos\varphi$ от ёмкости конденсатора.

рис. 24: Векторная диаграмма векторов токов в момент резонанса.

Вывод

В ходе лабораторной работы я подтвердил наличие резонансного поведения в исследуемых электрических цепях путём экспериментальных вычислений. Эксперимент проводился как для последовательного, так и для параллельных соединений. Результаты эксперимента совпали с теоретическими предположениями.

Эксперимент подтвердил, что резонанс в цепи возникает при равенстве сопротивлений (или электро проводимостей) реактивных элементов. Подобный эффект наблюдается и при последовательном, и при параллельных подключениях.

ТРЕХФАЗНЫЕ ЦЕПИ

Цель работы:

- 1. Изучить схемы соединения трехфазных цепей.
- 2. Экспериментально определить соотношения между фазными и линейными напряжениями и токами.
- 3. Построить векторные диаграммы напряжений и токов для симметричных режимов.

Ход работы:

Соединение «Звезда»:

1. Цепь.

рис. 25: Цепь «Звезда».

2. Расчётные и эксперементальные данные:

-						Изі	мери	ть					I	Рассч	итат	ь
	жим епи	U_A	U_B	U_C	U_n	U_{AB}	U_{AC}	U_{BC}	I_A	I_B	I_C	I_n	P_A	P_B	P_C	$P_{{ m I\hspace{1em}I}}$
С	симм.	220	220	220	-	381	381	381	2	2	2	0	440	440	440	1320
нейт. пров.	несимм.	220	220	220	-	381	381	381	4.4	2	1.5	2.7	968	440	330	1738
без	симм.	220	220	220	0	381	381	381	2	2	2	ı	2.7	440	440	440
нейт. пров.	несимм.	146	256	274	75.7	381	381	381	2.9	2.3	1.8	ı	2.7	423.4	588.8	493.2

табл. 6: Таблица значений цепи «Звезда».

3. Векторные диаграммы:

рис. 26: Векторная диаграмма симметричной цепи «Звезда» с нейтральным проводом.

рис. 28: Векторная диаграмма симметричной цепи «Звезда» без нейтрального провода.

рис. 27: Векторная диаграмма цепи не симметричной «Звезда» с нейтральным проводом.

рис. 29: Векторная диаграмма симметричной цепи «Звезда» без нейтрального провода.

Соединение «Треугольник»

1. Цепь

рис. 30: Цепь «Треугольник».

2. Расчётные и эксперементальные данные:

					Изм	ериті	5					Рассч	итать	
	ежим епи	U_{AB}	U_{AC}	U_{BC}	I_{AB}	I_{AC}	I_{BC}	I_A	I_B	I_C	P_A	P_B	P_C	$P_{ m s f \phi}$
C	имм.	381.1	381.1	381.1	3.5	3.5	3.5	6	6	6	1318.6	1318.6	1318.6	3955.8
несимм.	обрыв фазы	381.1	381.1	381.1	-	3.5	2.5	2.5	3.5	5.2	1318.6	1318.6	968	3605.2
несь	обрыв фазы	95.3	285.8	381.1	1.9	1.9	3.5	0	1.9	5.4	181	543	1318.6	2042.6

табл. 7: Таблица значений цепи «Треугольник».

3. Векторная диаграмма:

рис. 31: Векторная диаграмма симметричной цепи «Звезда» без нейтрального провода.

Вывод

В ходе лабораторной работы я изучил различные схемы соединения трёхфазных цепей: «Звезда», «Треугольник».

Проведённые эксперименты подтверждают теоретические соотношения между фазными и линейными напряжениями и токами. По результатам измерений видно, что для симметричных режимов трёхфазных цепей линейные и фазные величины находятся в определенной зависимости.

Векторные диаграммы демонстрируют изменения в напряжениях и токах при различных условиях, таких как наличие или отсутствие нейтрального провода и при возникновении обрывов фаз и линий.

ОДНОФАЗНЫЙ ТРАНСФОРМАТОР

Цель работы

Изучить устройство, принцип действия, режимы работы и снять характеристики однофазного трансформатора.

Ход работы

1. Посчитать схемы. (рис. 32, рис. 33, рис. 34)

рис. 32: Цепь при режиме холостого хода

рис. 33: Цепь при режиме короткого замыкания

рис. 34: Цепь при рабочем режиме

2. Заполнить таблицы

Измерит	ГЬ			Выч	ислить			
U_{1H},B	U_{2H},B	I_{1X}, A	P_X , BT	n	$\omega_1,$ витк.	$\omega_2,$ витк.	$\Delta P_M,$ BT	$\cos arphi_x$
220	45.67	0.027	0.902	4.82	1622	338	0.902	0.152

табл. 8: Значения цепи при режиме холостого хода

Измерит	ГЬ			Вычисл	ить			
U_{1H},B	I_{2K}, A	I_{2K}, A	P_K , BT	Z_K, Om	R_K , Ом	X_K , Om	$\Delta P_O, \mathrm{Bt}$	$\cos arphi_K$
220	1.356	6.478	242.5	162.24	131.88	94.49	242.5	0.813

табл. 9: Значения цепи при режиме короткого замыкания

R, Ом	U_1,D	I_1,A	$P_1,$ BT	U_2,D	I_2, A	P_2, Br	$\cos arphi$	$\eta,\%$
130	220	0.071	15.61	43.81	0.337	14.764	0.9994	94.5802
190	220	0.051	11.05	44.42	0.233	10.3499	0.9848	93.6639
210	220	0.046	10.01	44.49	0.212	9.4319	0.9891	94.2246
270	220	0.037	7.911	44.8	0.166	7.4368	0.9719	94.0058
340	220	0.04	6.992	44.88	0.132	5.9242	0.7945	84.7277

табл. 10: Значение цепи при рабочем режиме.

3. Построить графики:

Вывод

Во время лабораторного эксперимента, я изучил принцип работы однофазного трансформатора, его устройство и режимы работы. Я провел измерения в трех различных режимах: холостом ходу, коротком замыкании и нормальном режиме работы.

В нормальном режиме работы эффективность трансформатора варьировалась от 85% до 95% в зависимости от нагрузки. Самая высокая КПД была зафиксирована при сопротивлении 130

Ом, где она составила 95%. Это говорит о том, что трансформатор работает наиболее эффективно при оптимальной нагрузке, минимизируя потери энергии.

С увеличением нагрузки эффективность постепенно снижалась, что было вызвано увеличением потерь в обмотках и сердечнике трансформатора.

ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

Цель

- 1. Изучить устройство, принцип действия, схемы возбуждения и режимы работы двигателя постоянного тока.
- 2. Выбрать параметры двигателя постоянного тока параллельного возбуждения и снять его характеристики.
- 3. Записать выводы по результатам.

Ход работы

1. Посчитать цепь:

2. Заполнить таблицу

$R_{\mathtt{H}},\mathtt{O}_{\mathtt{M}}$	$\Delta t, c$	$n_{ m H}, rac{ m o6}{ m mm}$	$I_{\mathfrak{R}},A$	$M, H \cdot$	$R_{\mathtt{A}},\mathtt{O}_{\mathtt{M}}$	$\Delta t, c$	$n_{ m H}, rac{ m o6}{ m mm}$	I_{g},A	M, H.	$R_{\mathrm{g}},\mathrm{Om}$	$\Delta t, c$	$n_{ m H}, rac{06}{ m mm}$	$I_{\mathtt{R}},A$	M, H.
	0	0	0	0		0	0	0	0		0	0	0	0
	0.1	1478	7.1	50.4		0.2	1215	6.1	37.2		0.3	1089	5.3	28.1
	0.2	2078	7.1	50.4		0.4	1725	6.1	37.2		0.6	1534	5.3	28.1
0	0.3	2234	7.1	50.4	2	0.6	1901	6.1	37.2	4	0.9	1687	5.3	28.1
	0.4	2284	7.1	50.4	2	0.8	1966	6.1	37.2	4	1.2	1742	5.3	28.1
	0.5	2299	7.1	50.4		1	1991	6.1	37.2		1.5	1762	5.3	28.1
	0.6	2304	7.1	50.4		1.2	1998	6.1	37.2		1.8	1769	5.3	28.1
	0.7	2305	7.1	50.4		1.4	2003	6.1	37.2		2.1	1772	5.3	28.1
$R_{\mathrm{A}},\mathrm{Om}$	$\Delta t, c$	$n_{ m H}, rac{ m o6}{ m mnH}$	I_{R},A	$M, \mathrm{H} \cdot rac{\mathrm{M}}{\mathrm{M}}$	$R_{\mathrm{A}},\mathrm{Om}$	$\Delta t, c$	$n_{ m H}, rac{ m oo}{ m muH}$	I_{R},A	M, H.	$R_{\mathrm{A}},\mathrm{Om}$	$\Delta t, c$	$n_{ m H}, rac{00}{ m MMH}$	I_{A},A	M, H.
$R_{\mathtt{A}},Om$	\circ $\Delta t, c$	$\circ n_{\rm H^{1}\frac{o6}{MMH}}$	$\circ \left \begin{array}{c} \circ \\ I_{\mathtt{A}}, A \end{array} \right $	$\circ \left egin{array}{c} M, H \cdot M \end{array} \right $	$R_{\mathrm{g}},\mathrm{Om}$	\circ $\Delta t, c$	$\circ n_{\rm H}, \frac{{}^{\rm o6}}{{}^{\rm mu}}$	\circ $I_{\mathtt{g}},A$	o M,H·	$R_{\mathrm{A}},\mathrm{Om}$	\circ $\Delta t, c$	$\circ n_{\rm H}, \frac{{}^{\rm o6}}{{}^{\rm muH}}$	\circ I_{g},A	\sim $M, H \cdot$
R_{g} , Om					$R_{\mathrm{A}},\mathrm{Om}$					$R_{\mathfrak{R}},Om$				
$R_{\mathrm{A}},0_{\mathrm{M}}$	0	0	0	0	$R_{\mathfrak{R}}, O_{\mathtt{M}}$	0	0	0	0	$R_{\mathfrak{R}}, O_{\mathfrak{M}}$	0	0	0	0
	0 0.4	0 968	0 4.8	0 23		0 0.4	0 876	0 4.3	0 18.5		0 0.5	0 850	0 3.9	0 15.2
9 Вя, Ом	0 0.4 0.7	0 968 1334	0 4.8 4.8	0 23 23	$^{\circ}$ $R_{\mathtt{H}},\mathtt{Om}$	0 0.4 0.8	0 876 1220	0 4.3 4.3	0 18.5 18.5	$0 \\ R_{\mathtt{H}}, \mathtt{O}_{\mathtt{M}}$	0 0.5 1	0 850 1143	0 3.9 3.9	0 15.2 15.2
	0 0.4 0.7 1.1	0 968 1334 1476	0 4.8 4.8 4.8	0 23 23 23		0 0.4 0.8 1.2	0 876 1220 1354	0 4.3 4.3 4.3	0 18.5 18.5 18.5		0 0.5 1 1.5	0 850 1143 1246	0 3.9 3.9 3.9	0 15.2 15.2 15.2
	0 0.4 0.7 1.1 1.4	0 968 1334 1476 1531	0 4.8 4.8 4.8 4.8	0 23 23 23 23		0 0.4 0.8 1.2 1.6	0 876 1220 1354 1407	0 4.3 4.3 4.3 4.3	0 18.5 18.5 18.5 18.5		0 0.5 1 1.5 2	0 850 1143 1246 1282	0 3.9 3.9 3.9 3.9	0 15.2 15.2 15.2 15.2

3. Графики

Вывод

Во время лабораторного эксперимента изучались конструкция, принцип работы, схемы возбуждения и режимы работы двигателя постоянного тока. Двигатель состоит из статора, ротора, щёток и коллекторов, и его работа основана на взаимодействии магнитного поля и тока, проходящего через обмотки ротора, что приводит к вращению вала.

Были выбраны параметры двигателя постоянного тока параллельного возбуждения, и были зарегистрированы его характеристики, такие как число оборотов якоря, ток и момент. Таблицы показывают, что скорость якоря двигателя меняется в зависимости от приложенного напряжения и характеристик нагрузки в зависимости от сопротивления.

Построенные графики зависимостей показывают, что при увеличении тока увеличивается момент двигателя, что типично для двигателей постоянного тока.

В заключение, лабораторная работа обеспечила всеобъемлющее понимание конструкции, принципа работы и характеристик производительности двигателя постоянного тока, которые могут быть использованы для различных приложений, требующих управляемого движения.