LAB4

Experimental Results

Training curve

Evaluate curve

Testing result

我最好的成果是 changing reward function。

```
Evaluating...
C:\Users\a2320\miniconda3\envs\pytorch_env\lib\site-packages\gym\utils\passive_env_checker.py:233: Deprecat
ionWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24)
 if not isinstance(terminated, (bool, np.bool8)):
Episode: 1 Length: 969
Episode: 2 Length: 759
                                Total reward: 883.58
                                Total reward: 917.53
Episode: 3
              Length: 657
                                Total reward: 926.54
              Length: 969
                                Total reward: 855.94
Episode: 4
Episode: 5
               Length: 748
                                Total reward: 918.30
              Length: 840
Episode: 6
                                Total reward: 909.89
Episode: 7
              Length: 743
                                Total reward: 918.68
Episode: 8
               Length: 716
                                Total reward: 921.18
Episode: 9
               Length: 722
                                Total reward: 920.73
Episode: 10
               Length: 711
                                Total reward: 921.78
average score: 909.4155608567492
```

Bonus

single Q-networks

training curve

training curve (smoothed)

evaluate curve

dicussion

理論上 original td3 有 twin-q-networks 會更不容易 over-estimate,使得更新的 target 值更加準確,但我這邊訓練的結果看起來 single-q-network 的表現其實沒有差異很大,整體的訓練曲線沒有差到太多,只是在我每 100 個 training epoch 進行 evaluate 時,可能剛好抽到比較好的 model,或是 evaluete 時的賽道剛好是 model 有學習到如何應對的,所以 single q network 最好的結果比較好。

disabling target policy smoothing

training curve

training curve (smoothed)

evaluate curve

dicussion

理論上有 target smoothing 做 regularization 的 original td3 應該會更抗干擾,加上 noise 才進行更新,某種程度上確保了選擇的 best action 受到一點擾動還是會有不錯 的表現,但其實在我這邊訓練曲線也沒有顯著差異,雖然 evaluate 的成果有比較好,但 感覺還是誤差範圍內。

disabling delayed update steps

training curve

training curve (smoothed)

evaluate curve

dicussion

理論上讓 Actor 更新頻率小於 Critic 可以讓 Actor 不容易因為 Critic 震盪而練歪,但是 我這邊 disable 好像也沒有練得比較震盪,甚至在 500 k 後的表現好像更穩定一點。

chaning different exploration noise level

training curve

training curve (smoothed)

evaluate curve

dicussion

我這邊簡單的把 exploration noise 乘以三倍,他在 training 的表現看起來顯著比較好,但在 evaluate 的時候表現卻不太好,其實挺不合理的。我猜測 training 時 exploration noise 過大會讓他學習到抵抗很強的 noise 的能力,但同時 evaluete 時這個 noise 又不存在,導致他反而不會在沒有 noise 的環境下跑出好成績。

```
# exploration degree
sigma = max(0.1*(1-episode/self.total_episode), 0.01)
# sigma = 3 * max(0.1*(1-episode/self.total_episode), 0.01)
```

補充:我發現我的 total_episode 使用預設值沒有改動為 100000,所以 sigma 應該幾乎會是 3 * 0.1 = 0.3 上下(我大概都跑幾千個 episode 而已),我在 evaluate 時也加上 0.3 的 noise 後,其實就跟 training 時跑得差不多好了,雖然看起來有點像是在強風中前進的車子,緩慢穩定的前進,有稍微異常就煞車重開的感覺。

```
action = self.decide_agent_actions(state, sigma=0.3)
```

```
C:\Users\a2320\miniconda3\envs\pytorch_env\lib\site-packages\gym\utils\passive_env_checker.py:233: Deprecat
ionWarning: `np.bool8` is a deprecated alias for `np.bool_`. (Deprecated NumPy 1.24)
 if not isinstance(terminated, (bool, np.bool8)):
Episode: 1 Length: 969
                              Total reward: 716.56
Episode: 2
              Length: 969
                              Total reward: 778.42
                           Total reward: 774.19
             Length: 969
Episode: 3
                           Total reward: 658.10
             Length: 969
Episode: 4
Episode: 5
                              Total reward: 862.56
             Length: 969
Episode: 6
               Length: 969
                              Total reward: 637.22
             Length: 969
Episode: 7
                              Total reward: 772.57
Episode: 8
             Length: 969 Total reward: 776.33
             Length: 968
Length: 969
Episode: 9
                              Total reward: 895.55
                           Total reward: 627.59
Episode: 10
average score: 749.908831642909
```

changing reward funtion

這邊我設計了兩個版本,兩者差異在係數和有無到草地上即 terminate,首先我有先讓 part_image 裁的更置中一點,sample code 裁的有點偏左,然後根據路寬和車寬選擇 了裁減的寬度。

大致上的目標有兩點:

- 1. 我希望他開在盡量靠路中間,不要靠到路邊,所以我裁得更小一點,並且懲罰他開在路邊看到草會扣與 grass pixel 成正比的 reward。
- 2. 有時候他會漏掉一些格子,導致他跑第三圈時,在第一圈把大部分的格子都吃完後,他就沒有開在路上的 reward,只會隨著時間慢慢扣分,所以我也獎勵了與 road pixel 成正比的 reward,讓他開在路上可以抵銷時間的扣分,並且有一點點微 微的加分。

我發現他完全在路上大概會有 250 個 road pixel,完全在草地上大概會有 250 個 grass pixel,我希望他看到草地的懲罰是大的,並且比時間的自然扣分還大,所以初步就設了 0.02,讓他每個 frame 會扣 0~5 分。同時我不希望待在路面上給的獎勵高過前進吃格子給的獎勵,所以我設 0.001,讓他每個 frame 會加 0~0.2 分,

```
1 reward = reward - 0.02 * grass_pixel_count
2 reward = reward + 0.001 * road_pixel_count
```

training curve

training curve (smoothed)

evaluate curve

我觀察後覺得上個 reward function 練出來的結果還是有點波動,因為有時候他會不小心開到草地上,就直接 terminate 掉,他沒有學習到救車回路上的能力。

所以我接著嘗試了另一組參數如下,給予更多的草地懲罰以及路面獎勵,並且把到草地上會直接 terminate 這個條件拔掉,雖然訓練明顯花了更久,但是他在不小心衝出去道路外時,就會想辦法回到路上後繼續跑,相對穩定不少。

```
1 reward = reward - 0.03 * grass_pixel_count
2 reward = reward + 0.002 * road_pixel_count
```

training curve

training curve (smoothed)

evaluate curve

唯一缺點是他偶爾會在彎道處漏掉一兩格獎勵,導致第一圈結束後沒有直接 terminate 吃到完整的時間懲罰,接著第二圈又來不及吃到,所以最後分數就會在 880~900 之間。

compare

最後附上比較圖,可以在 evaluate 的圖上看出沒有 terminate 版本的明顯比其他兩個還要更厲害,但同時也練得比有 terminate 的版本更久一點。

Training curve (smoothed)

Evaluate curve (smoothed)

