8.3.4 Relation to Directed Graphs

Pattern Recognition And Machine Learning

Hyewon Park

02/28/2019

University of Seoul

Outline

- Converting Directed Graph into Undirected Graph

 - ▷ "Head-to-Head"
- Expression of Conditional Independence Properties

into Undirected Graph

Converting Directed Graph

Converting Directed Graph into Undirected Graph

Convert any distribution specified by a factorization over a directed graph into one specified by a factorization over an undirected graph.

- The clique potentials of the undirected graph are given by the conditional distributions of the directed graph.
- The set of variables that appears in each of the conditional distributions is a member of at least one clique of the undirected graph.

Chain of Nodes

• In (b), the maximal cliques are the pairs of neighbouring nodes.

$$p(\mathbf{x}) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_n \mid x_{n-1})$$
 (1)

$$p(\mathbf{x}) = \frac{1}{7} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{n-1,n}(x_{n-1}, x_n)$$
 (2)

• If you want to convert from (1) to (2), the clique potentials of (b) are given by the conditional distributions of (a).

Chain of Nodes

$$p(\mathbf{x}) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_n \mid x_{n-1})$$

$$p(\mathbf{x}) = \frac{1}{Z}\psi_{1,2}(x_1, x_2)\psi_{2,3}(x_2, x_3) \cdots \psi_{n-1,n}(x_{n-1}, x_n)$$

$$\psi_{1,2}(x_1, x_2) = p(x_1)p(x_2 \mid x_1)$$

$$\psi_{2,3}(x_2, x_3) = p(x_3 \mid x_2)$$

$$\vdots$$

$$\psi_{n-1,n}(x_{n-1}, x_n) = p(x_n \mid x_{n-1})$$

(1)

(2)

"Head-to-Head"

- $p(x) = p(x_1)p(x_2)p(x_3)p(x_4 \mid x_1, x_2, x_3)$
- x₁, x₂, x₃ and x₄ must all belong to a single clique.

- Moralization: Marrying the parents.
- Moral graph: The resulting undirected graph.

Expression of Conditional

Independence Properties

Definitions

- I(·): A set of conditional independence properties.
- D-map (dependency map): I(P) ⊆ I(G).
 e.g. A completely disconnected graph.
- I-map (independence map): I(G) ⊆ I(P).
 e.g. A fully connected graph.
- Perfect map: I(P) = I(G).

The two types of graph can express different conditional independence properties.

Example1: Directed Graph

• $A \perp \!\!\!\perp B \mid \emptyset, A \not \perp \!\!\!\perp B \mid C$

- ▷ This directed graph is a perfect map.
- ▶ There is no corresponding undirected graph over three variables that is a perfect map.

Example2: Undirected Graph

• $A \perp\!\!\!\perp B \mid \emptyset$, $C \perp\!\!\!\!\perp D \mid \emptyset$, $A \not\perp\!\!\!\!\perp B \mid C \cup D$, $C \not\perp\!\!\!\!\perp D \mid A \cup B$

- ▶ This undirected graph is a perfect map.
- ➤ There is no directed graph over four variables that implies the same set of conditional independence properties.

Summary

- Converting Directed Graph into Undirected Graph: Moral graph.
 - 1. Add additional undirected links between all pairs of parents for each node in the graph.
 - 2. Drop the arrows on the original links.
- The two types of graph can express different conditional independence properties.

Thank You :D