Tensorflow and Keras 1

Tensorflow

TensorFlow is the premier open-source deep learning framework developed and maintained by Google

Keras

- Using TensorFlow directly can be challenging,
- In TensorFlow 2, Keras has become the default high-level API
- No need to separately install keras
- The modern tf.keras API brings Keras's simplicity and ease of use to the TensorFlow project.

Why keras?

- easy to build and use giant deep learning models
- Light-weight and quick
- can support other backends as well besides tensorflow, eg: Theano
- Open source

Ways of writing code in Keras

- Seguential API
- Functional API

Keras Sequential API

- The simplest and recommended API to start with
- Called as "Sequential" because we add layers to the model one by one in a
- linear manner, from input to output.
- You can select optimizers, loss functions, and metrics while writing code

The dense layer helps us define one layer of a Feedforward NN.

Example model using Sequential API

Note: The layers in the sequential model interact with each other therefore we don't need to define the input shape for all the layers.

We can check model weights using model.weights

model.add()

 Instead of passing the list of layers as an argument while creating a model instance, we can use the add method.

```
model = Sequential()
model.add(Dense(64, activation="relu", input_shape=(11,)))
model.add(Dense(4, activation="softmax"))
```

model.summary()

To print the summary of the model we have created

Plotting model

Weights and Bias Initializer

in the Dense layer,

- 1) the biases are set to zero (zeros) by default
- 2) the weights are set according to glorot_uniform

For our own custom initializer, we can use bias_initialiser and kernel_initialiser

Compiler - loss and optimizer

What things to decide while compiling the model?

- Loss
- Optimizer

we can define a list of metrics that we might want to track during the training, like accuracy

- Another way to define optimizer = keras.optimizers.Adam(learning_rate=0.01)
- We can also pass customized loss and optimizer functions in keras models.
- These metrics will be calculated and saved after each epoch (one pass of whole data to update the model).

Epoch

- To avoid memory issues, data is passed in small batches instead of whole
- Each pass of the mini-batch is called an iteration.
- Each pass of whole datasets is called an Epoch.
- One epoch means that each sample in the training dataset has had an opportunity to update the internal model parameters.

Training: model.fit ()

It means updating the weights using the optimizer and loss functions on the dataset.

```
model.fit(X_train, y_train)

X_train = (num_samples, num_features)

y_train = (num_samples, num_classes) or y_train = (num_samples, )
```

Arguments we can pass to this method

- epochs (number of epochs you want to train for)
- batch_size (Batch size usually in form of 2^x like 4,8,16,32)
- Validation_split (size of validation data)
- verbose (0 for silent training, 1 to print each iteration)

```
model.fit(X_train, y_train, epochs=10, batch_size=256, validation_split=0.1, verbose=1)
   ## no of iterations: ( 10847 (training size) - 1084.7 (validation split) )/(256) == 39
Epoch 1/10
   Epoch 2/10
   39/39 [====
                   =========] - 0s 3ms/step - loss: 1.2592 - accuracy: 0.4327 - val_loss: 1.2054 - val_accuracy: 0.4525
   Epoch 3/10
                    =========] - 0s 3ms/step - loss: 1.1722 - accuracy: 0.4666 - val loss: 1.1224 - val accuracy: 0.4876
  39/39 [====
   Epoch 4/10
                                 ] - 0s 3ms/step - loss: 1.0951 - accuracy: 0.4942 - val loss: 1.0554 - val accuracy: 0.5051
   39/39 [===
  Epoch 5/10
   39/39 [===
                                 ] - 0s 3ms/step - loss: 1.0361 - accuracy: 0.5233 - val loss: 1.0032 - val accuracy: 0.5318
```

Note: After training, weights now will follow normal distribution and biases will not be Zero now **History object**

- model.fit returns a history object which contains the record of progress NN training.
- History object contains records of loss and metrics values for each epoch.
- It's an alternative to dir(). __dict__ attribute can be used to retrieve all the keys associated with the object on which it is called.

```
history = model.fit(X_train, y_train, validation_data = (X_val, y_val), epochs=500, batch_size=512, verbose=0)
history.__dict__.keys()

dict_keys(['validation_data', 'model', '_chief_worker_only', '_supports_tf_logs', 'history', 'params', 'epoch'])
```

The model has saved all the loss and metrics values for each epoch inside the history dictionary where all the values are stored in different lists.

```
epochs = history.epoch
loss = history.history["loss"]
accuracy = history.history["accuracy"]
val_loss = history.history["val_loss"]
val_accuracy = history.history["val_accuracy"]
```

Prediction and Evaluation

Evaluate the model

loss, accuracy = model.evaluate(X_test, y_test)

model.evaluate returns the loss value & metrics value for the model.

 weights/parameters are not updated during evaluation (and prediction) which means only forward pass, no backward pass

Predictions

pred = model.predict(X test)

- To get predictions on unseen data, model.predict method is used
- It returns the raw output from the model (i.e. probabilities of an observation belonging to each one of the 4 classes
- the sum of probabilities of an observation belonging to each of the 4 classes will be 1 i.e,
 np.sum(pred, axis=1)

To know the class an observation belongs to, using these 4 probability values

- Find the index having the largest probability and that will be the predicted class.
- pred_class = np.argmax(pred, axis = 1)

To check the accuracy of the model using sklearn's accuracy score

```
from sklearn.metrics import accuracy_score

acc_score = accuracy_score(y_test, pred_class)
```