Dokumentation Gewächshaussteuerung

KÜHNEL, DANIEL; ULLMANN, MAX

Inhalt

Einleitung	2
Übersicht Sensoren	3
DHT11 Datenblatt:	4
BH1750 Datenblatt:	5
Blockschaltplan	7
Struktogramme	8
Inbetriebnahmeprotokoll	10
Anlagen	11

Einleitung

Für den Auftraggeber Floristik GmbH auf der Kaditzer Straße 4 – 10 in 01139 Dresden soll ein vorhandene Gewächshaussteuerung in Betrieb genommen und erweitert werden. Die Anzeige der Temperatur, mit dem DHT11 – Sensor, findet über eine Siebensegmentanzeige und eine LCD-Anzeige statt. Der verwendete Code und der dazugehörige Programmablaufplan befinden sich im weiteren Verlauf dieses Dokuments.

Übersicht Sensoren

In der folgenden Übersicht können die Daten und Toleranzen zu den verwendeten Sensoren entnommen werden. Beigefügt wurden die Datenblätter als Verlinkung, für genauere Informationen.

	Lichtsensor	Temperatursensor	Feuchtigkeitssensor	
	(BH1750)	(DHT11)	(DHT11)	
Messbereich	1 - 65535 Lux	0-50°C	20-80%	
Toleranzen	+/- 20%	+/- 2°C	+/- 5%	

DHT11 Datenblatt¹:

Parameters	Conditions	Minimum	Typical	Maximum
Humidity				
Resolution		1%RH	1%RH	1%RH
			8 Bit	
Repeatability			±1%RH	
Accuracy	25℃		±4%RH	
	0-50℃			±5%RH
Interchangeability	Fully Interchange	able		
Measurement	0℃	30%RH		90%RH
Range	25℃	20%RH		90%RH
	50℃	20%RH		80%RH
Response Time	1/e(63%)25℃,	6 S	10 S	15 S
(Seconds)	1m/s Air			
Hysteresis			±1%RH	
Long-Term Stability	Typical		±1%RH/year	
Temperature				
Resolution		1 ℃	1℃	1 ℃
		8 Bit	8 Bit	8 Bit
Repeatability			±1℃	
Accuracy		±1℃		±2°C
Measurement		0℃		50℃
Range				
Response Time	1/e(63%)	6 S		30 S
(Seconds)				

Abbildung 1 - DHT11 Datenblatt

-

 $^{^{1} \ \}underline{\text{https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-}} \\ \underline{\text{Version-1143054.pdf}}$

BH1750 Datenblatt²:

Maximalwerte

Parameter	Symbol	Ratings	Units
Supply Voltage	Vmax	4.5	٧
Operating Temperature	Topr	-40 ~ 85	°C
Storage Temperature	Tstg	-40~100	°C
SDA Sink Current	Imax	7	mA
Power Dissipation	Pd	260 [™]	mW

^{※ 70}mm × 70mm × 1.6mm glass epoxy board. Derating in done at 3.47mW/°C for operating above Ta=25°C.

Abbildung 2 - BH1750 Datenblatt (Maximalwerte)

Betriebsbedingungen

Parameter	Symbol		Units		
		Min.	Typ.	Max.	Uillis
Vcc Voltage	Vcc	2.4	3.0	3.6	٧
I ² C Reference Voltage	VDVI	1.65	-	Vcc	٧

Abbildung 3 - BH1750 Datenblatt (Betriebsbedingungen)

_

² https://www.mouser.com/datasheet/2/348/bh1750fvi-e-186247.pdf

elektrische Eigenschaften

Parameter	Symbol		Limits		Units	Conditions
i didilictei	Cynnool	Min.	Тур.	Max.		
Supply Current	lcc1	_	120	190	μΑ	Ev = 100 lx 361
Powerdown Current	lcc2	-	0.01	1.0	μΑ	No input Light
Peak Wave Length	λр	-	560	_	nm	
Measurement Accuracy	S/A	0.96	1.2	1.44	times	Sensor out / Actual lx EV = 1000 lx ^{361, 362}
Dark (0 lx) Sensor out	S0	0	0	3	count	H-Resolution Mode ³⁸³
H-Resolution Mode Resolution	THR	-	1	_	lx	
L-Resolution Mode Resolution	rlr.	_	4	_	lx	
H-Resolution Mode Measurement Time	thr	-	120	180	ms	
L-Resolution Mode Measurement Time	tlr	_	16	24	ms	
Incandescent / Fluorescent Sensor out ratio	rlF	_	1	_	times	EV = 1000 lx
ADDR Input 'H' Voltage	VAH	0.7 * VCC	-	_	٧	
ADDR Input 'L' Voltage	VAL	_	-	0.3 * VCC	٧	
DVI Input 'L' Voltage	VDVL	-	-	0.4	٧	
SCL, SDA Input 'H' Voltage 1	ViH1	0.7 * DVI	-	-	٧	DVI ≧ 1.8V
SCL, SDA Input 'H' Voltage 2	ViH2	1.26	-	_	٧	1.65V ≦ DVI <1.8V
SCL, SDA Input 'L' Voltage 1	VIL1	-	-	0.3 * DVI	٧	DVI ≧ 1.8V
SCL, SDA Input 'L' Voltage 2	VIL2	-	-	DVI – 1.26	٧	1.65V ≦ DVI < 1.8V
SCL, SDA, ADDR Input 'H' Current	lін	-	-	10	μА	
SCL, SDA, ADDR Input 'L' Current	lıL	-	_	10	μА	
² C SCL Clock Frequency	fscL	_	_	400	kHz	
I ² C Bus Free Time	teur	1.3	_	_	μs	
² C Hold Time (repeated) START Condition	thdsta	0.6	-	_	μs	
² C Set up time for a Repeated START Condition	tsusta	0.6	_	_	μs	
² C Set up time for a Repeated STOP Condition	tsusto	0.6	_	_	μs	
² C Data Hold Time	thodat	0	_	0.9	μs	
² C Data Setup Time	tsudat	100	_	_	ns	
² C 'L' Period of the SCL Clock	tLow	1.3	_	_	μs	
² C 'H' Period of the SCL Clock	thigh	0.6	_	_	μs	
² C SDA Output 'L' Voltage	Vol	0	_	0.4	٧	loL = 3 mA

Abbildung 4 - BH1750 Datenblatt (elektrische Eigenschaften)

^{%1} White LED is used as optical source.
%2 Measurement Accuracy typical value is possible to change '1' by "Measurement result adjustment function".
%3 Use H-resolution mode or H-resolution mode2 if dark data (less than 10 lx) is need.

Blockschaltplan

Der Blockschaltplan zeigt die Wirkungen der Bauteile untereinander von der Gewächshaussteuerung.

Abbildung 5 - Blockschaltplan

Struktogramme

Im Folgenden befindet sich das Struktogramm für die Darstellung der Temperatur- und Luftfeuchtigkeitswerte auf der Siebensegmentanzeige. Das Skript kann der Anlage 2 (Funktionalitätsprüfung) und 3 entnommen werden.

Abbildung 6 - Struktogramm Siebensegmentanzeige

Die Werte werden in einer Schleife ausgelesen und dabei neu in die Siebensegmentanzeige "geschrieben". Damit die Eintragung als eine Zweistellige Zahl funktioniert, muss zuerst der Temperaturwert durch 10 geteilt werden und der Einer wird in das Segment 0 geschrieben. Danach wird das Modulo des Temperaturwerts gebildet und damit das Segment 1 beschrieben.

Das Verfahren für die Anzeige der Luftfeuchtigkeit gleicht, nur wird hier Segment 2 und 3 beschrieben.

Im Folgenden befindet sich das Struktogramm für die Darstellung der Temperatur- und Feuchtigkeitswerte auf dem LCD – Display.

Es werden 20-mal neue Werte auf der LCD-Anzeige angezeigt. Nach dem

Abbildung 7 - Struktogramm LCD-Display

Ende der Schleife wird die LCD-Anzeige "bereinigt" und am Anfang der Schleife mit neuen Werten beschrieben.

Inbetriebnahmeprotokoll

Das Inbetriebnahmeprotokoll kann der Anlage 1 entnommen werden.

Anlagen

Anlage 1: Inbetriebnahmeprotokoll

Anlage 2: Skript temperature.py

Anlage 3: Skript segment.py