# Deep Learning - Introduction

# Syllabus

| Syllabus:                                                                                                                                                                                                                              | Teaching<br>Hours |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| UNIT I Review of Artificial Neural Networks: Perceptron Learning, Feed Forward Neural Networks, Backpropagation, Unstable Gradient Problem, Limitations of Feed Forward Neural Networks for Computer Vision Problems                   | 6                 |
| <b>UNIT 2 Convolutional Neural Networks:</b> Convolution & Pooling, Dropout, Batch Normalization, State-of-the-art CNNs                                                                                                                | 9                 |
| UNIT 3 Transfer Learning & Domain Adaptation: Transfer Learning Scenarios, Applications of Transfer Learning, Transfer Learning Methods, Fine Tuning and Data Augmentation, Supervised, Semi Supervised and Unsupervised Deep Learning | 5                 |
| UNIT 4 Convolutional Neural Networks for Computer Vision: Image Classification, Image Classification with Localization, Semantic Segmentation, Object Detection                                                                        | 9                 |
| <b>UNIT 5 Sequence Models:</b> Recurrent Neural Networks (RNN), Language Modeling, Long-Short Term Memory Network, Gated Recurrent Unit, Bidirectional RNN, Deep RNN, Applications of Sequence Models                                  | 9                 |
| <b>UNIT 6 Miscellaneous:</b> Auto encoders and Stacked Auto encoders, Generative Adversarial Networks, Deep Reinforcement Learning                                                                                                     | 10                |

purpose

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press
- 2. Charu C. Aggarwal, Neural Networks and Deep Learning - A Textbook, Springer
- 3. Adam Gibson, Josh Patterson, Deep Learning, O'Reilly Media, Inc.
- 4. Duda, R.O., Hart, P.E., and Stork, D.G., Pattern Classification, Wiley.
- 5. Theodoridis, S. and Koutroumbas, K., Pattern Recognition. Academic Press
- 6. Russell, S. and Norvig, N. Artificial Intelligence: A Modern Approachese Pirentice Hall be Series in Artificial Intelligence

  prepared from various sources for teaching purpose

- 7. Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press.
- 8. Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning, Springer
- 9. Koller, D. and Friedman, N. Probabilistic Graphical Models. MIT Press
- 10. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer

#### 11. Research Papers and Web Links

# Blog and Course Site

#### Course Site:

https://sites.google.com/a/nirmauni.ac.in/it7f4---deep-learning/

# Teaching & Evaluation Scheme

#### Teaching Scheme:

| Theory | Tutorial | Practical | Credits |
|--------|----------|-----------|---------|
| 3      | 0        | 2         | 4       |

#### Evaluation Scheme:

|                        | LPW                                                 | SEE      | CE                       |
|------------------------|-----------------------------------------------------|----------|--------------------------|
| Exam Duration          | Continuous Evaluation + 2 Hrs.<br>End Semester Exam | 3.0 Hrs. | Continuous<br>Evaluation |
| Component<br>Weightage | 0.2                                                 | 0.4      | 0.4                      |

# Teaching & Evaluation Scheme

#### Breakup of CE

|                              | Unit 1     | Unit 2         | Unit 3      |
|------------------------------|------------|----------------|-------------|
| Exam                         | Class Test | Sessional Exam | Assignments |
| Inter<br>Component Weightage | 0.35       | 0.35           | 0.3         |
| Numbers                      | 1          | 1              | 1           |
| Marks of Each                | 35         | 50             | 30          |

#### Introduction

> AI, ML and DL



Source: [1]

These slides are not original and have been prepared from various sources for teaching purpose

#### Introduction

> Machine Learning vs Deep Learning



#### Introduction

> Machine Learning vs Deep Learning



Source of the Image: https://editor.analyticsvidhya.com/uploads/51518iris%20img1.png

- > Four Major Architectures:
  - Unsupervised Pretrained Networks (UPNs)
  - Convolutional Neural Networks (CNNs)
  - Recurrent Neural Networks
  - Recursive Neural Networks

- > Four Major Architectures:
  - Unsupervised Pretrained Networks (UPNs)
    - > Autoencoders
    - Deep Belief Networks (DBNs)
    - > Generative Adversarial Networks (GANs)
    - > Use Cases:

Source: [3]

- Feature Extraction
- Initialization
- Synthesizing

- > Four Major Architectures:
  - > Convolutional Neural Networks (CNNs)
    - > Lenet-5
    - > AlexNet
    - > VGGNet
    - GoogleNet (Inception)
    - > ResNet
    - > ResNext
    - > DenseNet
    - > RCNN (Region Based CNN)
    - > YOLO (You Only Look Once)
    - > SqueezeNet
    - > SegNet

- > Four Major Architectures:
  - > Convolutional Neural Networks (CNNs)
  - > Use Cases:
    - > Computer Vision
    - Natural Language Processing

- > Four Major Architectures:
  - > Recurrent Neural Networks
    - > Hopfield Network
    - Long Short-Term Memory (LSTM)
    - Gated Recurrent Unit (GRU)
  - > Use Cases:
    - Sentiment Classification
    - Image Captioning
    - Language Translation
    - Video Captioning

- > Four Major Architectures:
  - Recursive Neural Networks
    - > Recursive Autoencoder
    - Recursive Neural Tensor Network
  - Use Cases:
    - Image scene decomposition
    - > NLP
    - Audio-to-text transcription

- Feature Engineering
- Loss of Structural Information
- Difference in Indented Part, Orientation, Backdrop, Size, Location
- Noise
- Scalability

Loss of Structural Information





purpose

- Difference in Indented Part, Orientation, Backdrop, Size, Location
- Noise



Scalability

# Backpropagation



An example of a multilayer feed-forward neural network.

# Vanishing Gradient Problem

$$Sigmoid = S(\alpha) = \frac{1}{1 + e^{-\alpha}}$$



$$\frac{1}{1+e^{-\alpha}} \left[ 1 - \frac{1}{1+e^{-\alpha}} \right]$$

Simply: S(1-S)



prince of mages are not original purpose

## Vanishing Gradient Problem

- > How does ReLU solve (delay) the problem?
- > Dead Neuron in case of RELU and its implication
- > Leaky/Parameterized ReLU

# Vanishing Gradient Problem

| Name                                                              | Plot | Equation                                                                                          | Derivative                                                                                       |
|-------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Identity                                                          | /    | f(x) = x                                                                                          | f'(x) = 1                                                                                        |
| Binary step                                                       |      | $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$               | $f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$            |
| Logistic (a.k.a<br>Soft step)                                     |      | $f(x) = \frac{1}{1 + e^{-x}}$                                                                     | f'(x) = f(x)(1 - f(x))                                                                           |
| TanH                                                              |      | $f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$                                                     | $f'(x) = 1 - f(x)^2$                                                                             |
| ArcTan                                                            |      | $f(x) = \tan^{-1}(x)$                                                                             | $f'(x) = \frac{1}{x^2 + 1}$                                                                      |
| Rectified<br>Linear Unit<br>(ReLU)                                |      | $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$               | $f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$             |
| Parameteric<br>Rectified<br>Linear Unit<br>(PReLU) <sup>[2]</sup> |      | $f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$        | $f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$        |
| Exponential<br>Linear Unit<br>(ELU) <sup>[3]</sup>                |      | $f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$ | $f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$ |
| SoftPlus                                                          |      | $f(x)$ Finders (det $x^x$ ) not original and have be prepared from various sources for teachi     | $ef'(x) = \frac{1}{1 + e^{-x}}$                                                                  |

24

### Disclaimer

These slides are not original and have been prepared from various sources for teaching purpose.

- 1. <a href="https://towardsdatascience.com/the-10-deep-learning-methods-ai-practitioners-need-to-apply-885259f402c1">https://towardsdatascience.com/the-10-deep-learning-methods-ai-practitioners-need-to-apply-885259f402c1</a>
- 2. <a href="https://semiengineering.com/deep-learning-spreads/">https://semiengineering.com/deep-learning-spreads/</a>
- 3. <a href="https://www.safaribooksonline.com/library/view/deep-learning/9781491924570/ch04.html">https://www.safaribooksonline.com/library/view/deep-learning/9781491924570/ch04.html</a>

- 4. Data mining: concepts and techniques, J. Han, and M. Kamber. Morgan Kaufmann, (2006)
- 5. Elements of Artificial Neural Networks, Kishan Mehrotra, Chilukuri K. Mohan, Sanjay Ranka. MIT Press, (1997)
- 6. Matlab Neural Network Tollbox Documentation
- 7. LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.
- 8. Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal of Machine Learning Research 15.1 (2014): 1929-1958.

  prepared from various sources for teaching prepared from various prepared from various sources for teaching prepared from various pre

- 9. <a href="https://ayearofai.com/rohan-lenny-2-convolutional-neural-networks-5f4cd480a60b">https://ayearofai.com/rohan-lenny-2-convolutional-neural-networks-5f4cd480a60b</a>
- 10. <a href="http://cs231n.github.io/convolutional-networks/">http://cs231n.github.io/convolutional-networks/</a>
- 11. <a href="https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/">https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/</a>
- 12. Xu, Bing, et al. "Empirical evaluation of rectified activations in convolutional network." arXiv preprint arXiv:1505.00853 (2015).

### Disclaimer

These slides are not original and have been prepared from various sources for teaching purpose.