

AW-CM256SM

IEEE 802.11a/b/g/n/ac Wi-Fi with Bluetooth 4.2 **Combo Stamp Module**

> 01 **Datasheet**

> > Version 0.9

Revision History

Document	Date	Modification	Initials	Approved
Release				
Version 0. 1	2015/10/26	First Release	Amos Fu	Chihhao Liao
Version 0. 2	2016/07/26	1. Add the table of contents	Licheng Wang	Chihhao Liao
		2. Change the Connector Pin-out		
		Definitions		
		 Change the diagram 		
		Pin21 NC→ VIN_LDO_OUT	~ (Y
		Pin23 NC→ VIN_LDO	, ,	
		Pin37 NC→ GPIO_6	L	
		Pin38 ERCX_LTERX→GPIO_3		
		Pin39 ERCX_LTETX→GPIO_5) '	
Version 0.3	2016/08/17	Add Pin29 NC→GPIO_7	Licheng Wang	Chihhao Liao
Version 0.4	2016/08/22	1. Update the Block Diagram	Licheng Wang	Chihhao Liao
		2. Change Pin29 definition		
Version 0.5	2016/12/22	1. Update General Specifications	Licheng Wang	Chihhao Liao
		2. Update ESD rate		
Version 0.6	2016/12/28	1. Update General Specifications	Licheng Wang	Chihhao Liao
		2. Update VBAT Specifications		
Version 0.7	2017/02/16	1. Update General Specifications	Licheng Wang	Chihhao Liao
		2. Update Recommended Operating		
		Conditions		
		3. Update Mechanical Dimensions		
		4. Remove Power consumption		
Version 0.8	2017/02/22	Update General Specifications	Licheng Wang	Chihhao Liao
Version 0.9	2017/03/20	Update to BT 4.2	Licheng Wang	Chihhao Liao

Table of Contents

1. Introduction	4
2. Features	5
3. Block Diagram	6
4. General Specifications	7
4-1. Recommended Operating Conditions	9
4-2. DC Characteristics for Host I/O	9
4-3. SDIO Host Interface Specification	9
4-4. UART Interface	10
5. Connector Pin-out Definitions	15
6. Mechanical Dimensions	18
7. Assembly note	18

1. Introduction

AzureWave Technologies, Inc. introduces the pioneer of the IEEE 802.11 a/b/g/n/ac WIFI with Bluetooth 4.2 combo SDIO and UART Stamp Module --- AW-CM256SM. The AW-CM256SM IEEE 802.11 a/b/g/n/ac WIFI with Bluetooth 4.2 combo module is a highly integrated wireless local area network (WLAN) solution to let users enjoy the digital content through the latest wireless technology without using the extra cables and cords. It combines with Bluetooth 4.2 and provides a complete 2.4GHz Bluetooth system which is fully compliant to Bluetooth 4.2 and v2.1 that supports EDR of 2Mbps and 3Mbps for data and audio communications. It enables a high performance, cost effective, low power, compact solution that easily fits onto the SDIO and UART combo stamp module.

Compliant with the IEEE 802.11a/b/g/n/ac standard, AW-CM256SM uses Direct Sequence Spread Spectrum (DSSS), Orthogonal Frequency Division Multiplexing (OFDM), BPSK, QPSK, CCK and QAM baseband modulation technologies.

Compare to 802.11n technology, 802.11ac standard makes big improvement on speed and range.

AW-CM256SM module adopts Broadcom solution. The module design is based on the Broadcom BCM43455 single chip.

2. Features

High speed wireless connection up to 433.3Mbps transmit/receive PHY rate using 80MHz bandwidth

- 1 antennas to support 1(Transmit) × 1(Receive) technology and Bluetooth
- WCS (Wireless Coexistence System)
- Low power consumption and high performance
- Enhanced wireless security
- Fully qualified Bluetooth BT4.2
- Enhanced Data Rate(EDR) compliant for both 2Mbps and 3Mbps supported
- Fully speed operation with Piconet and Scatternet support
- High speed UART and PCM for Bluetooth
- 12mm(L) x 12mm(W) x1.65mm(H) LGA package
- Dual band 2.4 GHz and 5GHz 802.11 a/b/g/n/ac

3. Block Diagram

4. General Specifications

Model Name	AW-CM256SM
Product Description	IEEE 802.11 a/b/g/n/ac Wi-Fi with Bluetooth 4.2 combo stamp module
BlueTooth Standard	IEEE 802.11a/b/g/n/ac, Wi-Fi compliant / Bluetooth4.2 Standard
Host Interface	Wi-Fi :SDIO , BT : UART
Major Chipset	BCM43455
Wi-Fi SSV/PID	1A3B / 2256
Dimension	12 mm X 12mm x 1.65 mm
Weight	1 g
Operating Conditions	
Voltage	VBAT: 3.2 ~ 4.8V ; typical: 3.6V
	VIO: 1.8 ~ 3.3V
Temperature	-20~75°C
Storage temperature	-40~85°C
Electrical Specifications	
Frequency Range	Wi-Fi: 2.4 GHz ISM Bands 2.412-2.472 GHz/
	5.15-5.25 GHz (FCC UNII-low band) for US/Canada and Europe
	5.25-5.35 GHz (FCC UNII-middle band) for US/Canada and Europe
	5.47-5.725 GHz for Europe
	5.725-5.825 GHz (FCC UNII-high band) for US/Canada
	BT: 2402MHz~2483MHz
	802.11b:
	USA, Canada and Taiwan – 1 ~ 11
	Most European Countries – 1 ~ 13
	802.11g:
	USA and Canada – 1 ~ 11
Number of Channels	Most European Countries – 1 ~ 13
realiser of chamicis	802.11n:
	USA and Canada – 1 ~ 11
	Most European Countries – 1 ~ 13
	802.11a:
	USA – 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128,
	132, 136, 140, 149, 153, 157, 161, 165
	Wi-Fi:
	802.11a/g/n/ac: OFDM
Modulation	802.11b: CCK(11, 5.5Mbps), DQPSK(2Mbps), BPSK(1Mbps)
	BT:
	Header GFSK
	Payload 2M: 4-DQPSK

	Payload 3M: 8DPSK
Output Power	Wi-Fi: 802.11a: 15 dBm +/- 1.5 dBm (54Mbps) 802.11b: 18 dBm +/- 1.5 dBm (11Mbps) 802.11g: 16 dBm +/- 1.5 dBm (54Mbps) 802.11n @2.4GHz: 15 dBm +/- 1.5 dBm (HT20 MCS7) 802.11n @2.4GHz: 14 dBm +/- 1.5 dBm (HT40 MCS7) 802.11n @5GHz: 15 dBm +/- 1.5 dBm (HT20 MCS7) 802.11n @5GHz: 13 dBm +/- 1.5 dBm (HT40 MCS7) 802.11ac @5GHz: 14 dBm +/- 1.5 dBm (HT40 MCS7)
	802.11ac @5GHz: 13 dBm +/- 1.5 dBm (VHT40 MCS9) 802.11ac @5GHz: 12 dBm +/- 1.5 dBm (VHT80 MCS9) BT: Output Power ≤ 12 dBm (Conductive)
Receive Sensitivity	 WLAN: 2.4G: 11b (11Mbps): -87 dBm (Typical) 11g (54Mbps): -76 dBm (Typical) 11n (HT20 MCS7): -74 dBm (Typical) 11n (HT40 MCS7): -71 dBm (Typical) 5G: 11a (54Mbps): -73 dBm (Typical) 11n (HT20 MCS7): -71 dBm (Typical) 11n (HT40 MCS7): -68 dBm (Typical) 11ac (VHT20 MCS8): -66 dBm (Typical) 11ac (VHT40 MCS9): -63 dBm (Typical) 11ac (VHT80 MCS9): -59 dBm (Typical) Bluetooth: GFSK: -88 dBm π/4-DQPSK: -95 dBm 8-DPSK: -88 dBm
Operating Range	Wi-Fi: Open Space: (300m) / Indoor:(100m) (The transmission speed may vary according to the environment) BT: 10m~20m (depending on environment and NB model)
ESD rating	HBM: >1KV per JEDEC EID/JESD22-A114 CDM: >250V per JEDEC EIA/JESD22-C101

Recommended Operating Conditions 4-1.

Symbol	Parameter	Туре	Min	Тур	Max	Units
VBAT	Power supply for Internal Regulators and FEM	Input	3.2	3.6	4.8	V
VDDIO	DC supply voltage for digital I/O	Input	1.8	-	3.3	V

4-2. DC Characteristics for Host I/O

Symbol	Parameter	Condition	Min	Тур	Max	Units
		5	T			
V_{IH}	Input high voltage (V _{DDIO})	VDDIO=1.8V	1.17	<		V
V _{IL}	Input low voltage (V _{DDIO})	VDDIO=1.8V	-	1	0.63	V
V _{OH}	Output High Voltage @ 2mA	VDDIO=1.8V	1.35	(-)	-	V
V _{OL}	Output Low Voltage @ 2mA	VDDIO=1.8V		-	0.45	V
V _{IH}	Input high voltage (V _{DDIO})	VDDIO=3.3V	2.0	-	-	
V _{IL}	Input low voltage (V _{DDIO})	VDDIO=3.3V	-	-	0.8	
V _{OH}	Output High Voltage @ 2mA	VDDIO=3.3V	2.9	-	-	
V _{OL}	Output Low Voltage @ 2mA	VDDIO=3.3V	-	-	0.4	

4-3. SDIO Host Interface Specification

SDIO Timing Data

Symbol	Parameter	Condition	Min	Max	Units
£.	CLV Fraguency	Normal	0	25	N/11-
f_{pp}	CLK Frequency	High Speed	0	50	MHz
+	CLV High Time	Normal	10	-	
t _{wh}	CLK High Time	High Speed	7	-	
+	CLK Low Time	Normal	10	-	
t _{WL}	CLK LOW TIME	High Speed	7	-	
tTLH	CLK rise Time	Normal	-	10	
(ILI	CLK rise filme	High Speed	-	3	
tTHL	CLK fall Time	Normal	1	10	ns
LIME	CLK Idii Time	High Speed	-	3	ns
+	Innut Satur Tima	Normal	5	-	
t _{ISU}	Input Setup Time	High Speed	6	-	
_	Input Hold Time	Normal	5	-	
t _{IH}	Input Hold Time	High Speed	2	-	
+	Output Dolay Time	Normal	1	14	
t _{odly}	Output Delay Time	High Speed		14	

4-4. UART Interface

The AW-NM256SM shares a single UART for Bluetooth . The UART is a standard 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates from 9600 bps to 4.0 Mbps. The interface features an automatic baud rate detection capability that returns a baud rate selection. Alternatively, the baud rate may be selected through a vendor-specific UART HCI command.

UART has a 1040-byte receive FIFO and a 1040-byte transmits FIFO to support EDR. Access to the FIFOs is conducted through the AHB interface through either DMA or the CPU. The UART supports the Bluetooth 4.0 UART HCl specification: H4, a custom Extended H4, and H5. The default baud rate is 115.2 Kbaud.

The UART supports the 3-wire H5 UART transport, as described in the Bluetooth specification ("Three-wire UART Transport Layer"). Compared to H4, the H5 UART transport reduces the number of signal lines required by eliminating the CTS and RTS signals.

Normally, the UART baud rate is set by a configuration record downloaded after device reset, or by automatic baud rate detection, and the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is included through a vendor-specific command that allows the host to adjust the contents of the baud rate registers. The AW-NM256SM UARTs operate correctly with the host UART as long as the combined baud rate error of the two devices is within ±2%.

UART Interface Signals

PIN No.	Name	Description	Туре
42	BT_UART_TXD	Bluetooth UART Serial Output. Serial data output for the HCI UART Interface	0
43	BT_UART_RXD	Bluetooth UART Series Input. Serial data input for the HCI UART Interface	I
41	BT_UART_RTS_N	Bluetooth UART Request-to-Send. Active-low request-to-send signal for the HCI UART interface	0
44	BT_UART_CTS_N	Bluetooth UART Clear-to-Send. Active-low clear-to-send signal for the HCI UART interface.	I

UART Timing

UART Timing

UART Timing Specifications

Ref No.	Characteristics Min	nimum	Typical	Maximum	Unit
1	Delay time, UART_CTS_N low to UART_TXD valid —		_	1.5	Bit periods
2	Setup time, UART_CTS_N high before midpoint of stop bit	7	_	0.5	Bit periods
3	Delay time, midpoint of stop bit to UART_RTS_N high		_	0.5	Bit periods

.Power-Up Sequence and Timing

4-4. Sequencing of Reset and Regulator Control Signals

The AW-NM256SM has three signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN, and internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the signals for various operational states. The timing values indicated are minimum required values; longer delays are also acceptable.

Note:

- The WL REG ON and BT REG ON signals are ORed in the AW-NM256SM. The diagrams show both signals going high at the same time (as would be the case if both REG signals were controlled by a single host GPIO). If two independent host GPIOs are used (one for WL REG ON and one for BT REG ON), then only one of the two signals needs to be high to enable the AW-NM256SM regulators.
- The AW-NM256SM has an internal power-on reset (POR) circuit. The device will be held in reset for a maximum of 110 ms after VDDC and VDDIO have both passed the POR threshold. Wait at least 150 ms after VDDC and VDDIO are available before initiating SDIO accesses.

Description of Control Signals

The AW-NM256SM has two signals that enable or disable the Bluetooth and WLAN circuits and the internal regulator blocks, allowing the host to control power consumption.

Power-Up/Power-Down/Reset Control Signals

Signal	Description
	This signal is used by the PMU (with BT_REG_ON) to power up the WLAN section.
	It is also ORgated with the BT_REG_ON input to control the internal AW-NMNF
	regulators. When this pin is high, the regulators are enabled and the WLAN
WL_REG_ON	section is out of reset. When this pin is low, the WLAN section is in reset. If
	BT_REG_ON and WL_REG_ON are both low, the regulators are disabled. This pin
	has an internal 200 k Ω pull-down resistor that is enabled by default. It can be
	disabled through programming.
	This signal is used by the PMU (with WL_REG_ON) to decide whether or not to
	power down the internal AW-NM256SM regulators. If both BT_REG_ON and
BT REG ON	WL_REG_ON are low, the regulators will be disabled. When this pin is low and
BI_REG_ON	WL_REG_ON is high, the BT section is in reset. This pin has an internal 200 $k\Omega$
	pull-down resistor that is enabled by default. It can be disabled through
	programming.

Note: For both the WL_REG_ON and BT_REG_ON pins, there should be at least a 10 msec time delay between consecutive toggles (where both signals have been driven low). This is to allow time for the CBUCK regulator to discharge. If this delay is not followed, then there may be a VDDIO in-rush current on the order of 36 mA during the next PMU cold start.

Control Signal Timing Diagrams

WLAN = ON, Bluetooth = ON

WLAN = OFF, Bluetooth = OF

Notes:

- 1. VBAT should not rise faster than 40 microseconds or slower than 100 milliseconds.
- 2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

WLAN = ON, Bluetooth = OFF

WLAN = OFF, Bluetooth = ON

2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

5. Connector Pin-out Definitions

AW-NM256SM Top View PCB Layout Footprint

Note: The pin name and direction are defined on module side.

P	in No	Definition	Basic Description	Туре
	1	GND	Ground.	GND
	2	WL_BT_ANT	WLAN/BT RF TX/RX path.	RF
	3	GND	Ground.	GND
	4	NC	Floating Pin, No connect to anything.	Floating
	5	NC	Floating Pin, No connect to anything.	Floating
	6	BT_WAKE	BT Device Wake	I
	7	BT_HOSTWAKE	BT Host Wake	0
	8	NC	Floating Pin, No connect to anything.	Floating
	9	VBAT	3.3V power pin	VCC
	10	XTAL_IN	Crystal Input	I
	11	XTAL_OUT	Crystal Output	0
			Used by PMU to power up or power down the internal	
			regulators used by the WLAN section. Also, when deasserted,	
	12	WL_REG_ON	this pin holds the WLAN section in reset. This pin has an	I
			internal 200k ohm pull down resistor that is enabled by	
			default. It can be disabled through programming.	
	13	WL_SDIO_HOSTW AKE	WL Host Wake	0
	14	SDIO_DATA2	SDIO Data Line 2	1/0
	15	SDIO_DATA3	SDIO Data Line 3	1/0
	16	SDIO_CMD	SDIO Command Input	1/0
	17	SDIO_CLK	SDIO Clock Input	l
	18	SDIO_DATA0	SDIO Data Line 0	1/0
	19	SDIO_DATA1	SDIO Data Line 1	1/0
	20	GND	Ground.	GND
	21	VIN_LDO_OUT	Internal Buck voltage generation pin	VCC
	22	VDDIO	1.8V-3.3V VDDIO supply for WLAN and BT	VCC
	23	VIN_LDO	Internal Buck voltage generation pin	VCC
	24	SUSCLK_IN	External 32K or RTC clock	I
	25	BT_PCM_OUT	PCM data Out	0
	26	BT_PCM_CLK	PCM Clock	1/0
	27	BT PCM IN	PCM data Input	ı
	28	BT_PCM_SYNC	PCM Synchronization control	0
	23	51_1 6141_51146	SDIO mode selection pin	9
	29	GPIO_7	1.8V:pull up,connect to 1.8V	ı
	23	S. 10_/	3.3V:pull down,connect to GND with using a 10K resistor or less	

			-	37
30	NC	Floating Pin, No connect to anything.	Floating	
31	GND	Ground.	GND	
32	NC	Floating Pin, No connect to anything.	Floating	
33	GND	Ground.	GND	
34	BT_REG_ON	Used by PMU to power up or power down the internal regulators used by the Bluetooth section. Also, when deasserted, this pin holds the Bluetooth section in reset. This pin has an internal 200k ohm pull down resistor that is	I	
		enabled by default. It can be disabled through programming.		
35	NC	Floating Pin, No connect to anything.	Floating	
36	GND	Ground.	GND	
37	GPIO_6	GPIO configuration pin	I/O	
38	GPIO_3	GPIO configuration pin	I/O	
39	GPIO_5	GPIO configuration pin	I/O	
40	GPIO_2	GPIO configuration pin	I/O	
41	BT_UART_RTS_N	High-Speed UART RTS	0	
42	BT_UART_TXD	High-Speed UART Data Out	0	
43	BT_UART_RXD	High-Speed UART Data In	I	
44	BT_UART_CTS_N	High-Speed UART CTS	I	

6. Mechanical Dimensions

7. Assembly note

- AW-CM256SM removed from the vacuum packaging must be within 168 hours do SMT process and had finished Reflow.
- If AW- CM256SM cannot reflow finished within the specified time, it must be according to the baking conditions 2 hours at temperature of 125 degrees C and then re-bake for vacuum packaging.
- Reflow (Reflow) temperature need to be based on the size of the motherboard (generally in accordance with the solder paste used by customers Reflow Profile may be).
- Need to pick up the WIFI module, operating in accordance with ESD protection norms.

