BMD ENG 301 Quantitative Systems Physiology (Nervous System)

Overview of the Motor System 2022_v1

Professor Malcolm A. MacIver

Note correction to lecture 17: Not 200,000 motor units, rather 500,000 motor units in human body. Updated on Canvas (pptx and pdf) for Lecture 17.

Motor System Lecture Plan

- Organization of the motor system
- Alpha motor neuron and the motor unit
- Muscle and the neuromuscular junction
- Spinal reflexes
 - Myotatic reflex
 - Gamma motor neuron
 - Golgi tendon organ
 - Flexor reflex
- Central pattern generators
- Locomotion
- Central motor program
- Basal ganglia
- Cerebellum

Motor System Lecture Plan

- Organization of the motor system
- Alpha motor neuron and the motor unit
- Muscle and the neuromuscular junction
- Spinal reflexes
 - Myotatic reflex
 - Gamma motor neuron
 - Golgi tendon organ
 - Flexor reflex
- Central pattern generators
- Locomotion
- Central motor program
- Basal ganglia
- Cerebellum

dPM: dorsal pre-motor cortex

M1: primary motor cortex

PF: prefrontal cortex

SMA: supplementary motor area

S1: primary somatosensory cortex

V1: primary visual cortex

BG: basal ganglia

C: cerebellum

RF: reticular formation

RN: red nucleus

VN: vestibular nucleus

Nature Reviews | Neuroscience

What is missing?

dPM: dorsal pre-motor cortex

M1: primary motor cortex

PF: prefrontal cortex

SMA: supplementary motor area

S1: primary somatosensory cortex

V1: primary visual cortex

BG: basal ganglia

C: cerebellum

RF: reticular formation

RN: red nucleus

VN: vestibular nucleus

Nature Reviews | Neuroscience

Thalamus

Red: Motor control

Blue: Somatosensation (proprioception)

Black: Intrabrain communication

Green: Vision

Nature Reviews | Neuroscience

FIGURE 16.1 Organization of neural structures involved in the control of movement

NEUROSCIENCE 6e, Figure 16.1
© 2018 Oxford University Press

Hierarchy of Motor Control

STRUCTURE	BEHAVIORS
Spinal Cord and Muscle	Basic reflexes and "preflexes"; basic coordination patterns
Brainstem	Multi-limb reflexes; postural stabilization
Cortex/telencephalon	Goals and planning; flexible sensorimotor tuning; adaptation

Preflexes are zero delay viscoelastic responses of muscle that correct for unintended stretch

FIGURE 16.5 The motor unit

NEUROSCIENCE 6e, Figure 16.5 © 2018 Oxford University Press

FIGURE 16.2 Distribution of lower motor neurons in the ventral horn of the spinal cord

FIGURE 16.2 Distribution of lower motor neurons in the ventral horn of the spinal cord

Motor neuron pools

NEUROSCIENCE 6e, Figure 16.3
© 2018 Oxford University Press

FIGURE 16.4 Local circuit neurons in the spinal cord gray matter

NEUROSCIENCE 6e, Figure 16.4 © 2018 Oxford University Press

<u>Twitch</u>: The cycle of muscle contraction and relaxation resulting from a single α motor neuron action potential

Motor Unit

Single α motor neuron and the muscle fibers that its axon innervates

Smallest unit of force generated by the motor system Motor units and α motor neurons vary in size

Small alpha motoneurons

- Innervate few fibers
- Generates small forces
- Enable precise movements

 (i.e., fractionation of movement, eye movement)

Large alpha motoneurons

- Innervate many fibers
- Generate strong, powerful forces
- Ex: Gastrocnemius

After Burke et al. (1973) J. Physiol. 234: 723–748.

NEUROSCIENCE 6e, Figure 16.6 © 2018 Oxford University Press

Types of motor units

	Slow	Fast Fatigue Resistant	Fast Fatigable
Innervated by:	Small α motor neurons	I N	Large α motor neurons
Made of:	Small red muscle fibers	T E	Larger pale muscle fibers
Fatigue:	Resistant to fatigue	R M	Easily fatigued
Speed of contraction:	Slow	E D	Fast
Force generated:	Small	A T	Large
Used for:	Posture	E	Running, jumping

Types of motor units

	Slow	Fast Fatigue Resistant	Fast Fatigable
Innervated by:	Small α motor neurons	I N	Large α motor neurons
Made of:	Small red muscle fibers	T E	Larger pale muscle fibers
Fatigue:	Resistant to fatigue	R M	Easily fatigued
Speed of contraction:	Slow	E D	Fast
Force generated:	Small	A T	Large
Used for:	Posture	E	Running, jumping

Motor neuron recruitment in the cat medial gastrocnemius muscle under different behavioral conditions

NEUROSCIENCE 5e, Figure 16.7

© 2012 Sinauer Associates, Inc.

SIZE PRINCIPLE