An Overview of Probabilistic Model Checking

Presented by Mahsa Varshosaz

Probabilistic model checking

- Probabilistic model checking...
 - is a formal verification technique for modelling and analysing systems that exhibit probabilistic behaviour
- Formal verification...
 - is the application of rigorous,
 mathematics-based techniques
 to establish the correctness
 of computerised systems

Verification via model checking

New challenges for verification

- Many properties other than correctness are important
- Need to guarantee...
 - safety, reliability, performance, dependability
 - resource usage, e.g. battery life
 - security, privacy, trust, anonymity, fairness
 - and much more...
- Quantitative, as well as qualitative requirements:
 - "how reliable is my car's Bluetooth network?"
 - "how efficient is my phone's power management policy?"
 - "is my bank's web-service secure?"

Probabilistic model checking

Probabilistic model checking inputs

- Models: variants of Markov chains
 - discrete-time Markov chains (DTMCs)
 - · discrete time, discrete probabilistic behaviours only
 - continuous-time Markov chains (CTMCs)
 - · continuous time, continuous probabilistic behaviours
 - Markov decision processes (MDPs)
 - · DTMCs, plus nondeterminism
- Specifications
 - informally:
 - · "probability of delivery within time deadline is ..."
 - "expected time until message delivery is ..."
 - "expected power consumption is ..."
 - formally:
 - probabilistic temporal logics (PCTL, CSL, LTL, PCTL*, ...)
 - e.g. $P_{<0.05}$ [F err/total>0.1], $P_{=?}$ [$F^{\le t}$ reply_count=k]

Discrete-time Markov chains

State-transition systems augmented with probabilities

States

 set of states representing possible configurations of the system being modelled

Transitions

 transitions between states model evolution of system's state; occur in discrete time-steps

Probabilities

 probabilities of making transitions between states are given by discrete probability distributions

Markov property

- If the current state is known, then the future states of the system are independent of its past states
- i.e. the current state of the model contains all information that can influence the future evolution of the system
- also known as "memorylessness"

Simple DTMC example

- Modelling a very simple communication protocol
 - after one step, process starts trying to send a message
 - with probability 0.01, channel unready so wait a step
 - with probability 0.98, send message successfully and stop
 - with probability 0.01, message sending fails, restart

Discrete-time Markov chains

- Formally, a DTMC D is a tuple (S,s_{init},P,L) where:
 - S is a set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - P : S × S → [0,1] is the transition probability matrix where $\Sigma_{s' \in S}$ P(s,s') = 1 for all s ∈ S
 - L : S → 2^{AP} is function labelling states with atomic propositions (taken from a set AP)

Simple DTMC example

$$D = (S, s_{init}, P, L)$$

$$S = {s_0, s_1, s_2, s_3}$$

 $s_{init} = s_0$

AP = {try, fail, succ}

$$L(s_0) = \emptyset$$
,
 $L(s_1) = \{try\}$,
 $L(s_2) = \{fail\}$,
 $L(s_3) = \{succ\}$

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

PCTL

- Temporal logic for describing properties of DTMCs
 - PCTL = Probabilistic Computation Tree Logic [HJ94]
 - essentially the same as the logic pCTL of [ASB+95]
- Extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- Example
 - send → $P_{>0.95}$ [$F^{\leq 10}$ deliver]
 - "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95"

PCTL syntax

- where a is an atomic proposition, $p \in [0,1]$ is a probability bound, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- A PCTL formula is always a state formula
 - path formulae only occur inside the P operator

PCTL semantics for DTMCs

- Semantics for non-probabilistic operators same as for CTL:
 - $-s \models \phi$ denotes "s satisfies ϕ " or " ϕ is true in s"
 - $-\omega \models \psi$ denotes "ω satisfies ψ " or " ψ is true along ω "
- For a state s of a DTMC (S,s_{init},P,L):
 - $-s \models true$

always

- $-s \models a \Leftrightarrow a \in L(s)$
- $-s \models \varphi_1 \land \varphi_2 \qquad \Leftrightarrow s \models \varphi_1 \text{ and } s \models \varphi_2$
- $-s \vDash \neg \varphi \Leftrightarrow s \not\vDash \varphi$
- For a path ω of a DTMC (S, s_{init} , P,L):

 - $-\omega \models X \varphi \Leftrightarrow \omega(1) \models \varphi$

 - $-\omega \models \varphi_1 \cup \varphi_2 \Leftrightarrow \exists i \leq k \text{ such that } \omega(i) \models \varphi_2$ and $\forall j < i, \omega(j) \models \phi_1$

 - $-\omega \models \varphi_1 \cup \varphi_2 \quad \Leftrightarrow \exists k \geq 0 \text{ s.t. } \omega(k) \models \varphi_2 \text{ and } \forall i < k \omega(i) \models \varphi_1$

U≤k not in CTL

(but could easily

be added)

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
 - informal definition: $s \models P_{\sim p} [\psi]$ means that "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ "
 - example: $s \models P_{<0.25}$ [X fail] \Leftrightarrow "the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25"
 - formally: $s \models P_{\sim p} [\psi] \Leftrightarrow Prob(s, \psi) \sim p$
 - where: Prob(s, ψ) = Pr_s { $\omega \in Path(s) \mid \omega \models \psi$ }

PCTL examples

- P_{<0.05} [F err/total>0.1]
 - "with probability at most 0.05, more than 10% of the NAND gate outputs are erroneous?"
- $P_{\geq 0.8}$ [$F^{\leq k}$ reply_count=n]
 - "the probability that the sender has received n acknowledgements within k clock-ticks is at least 0.8"
- $P_{<0.4}$ [$\neg fail_A$ U $fail_B$]
 - "the probability that component B fails before component A is less than 0.4"
- $\neg oper \rightarrow P_{>1} [F(P_{>0.99} [G^{<=100} oper])]$
 - "if the system is not operational, it almost surely reaches a state from which it has a greater than 0.99 chance of staying operational for 100 time units"

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
 - inputs: DTMC D=(S, s_{init}, P, L), PCTL formula ϕ
 - output: $Sat(\phi) = \{ s \in S \mid s \models \phi \} = set \text{ of states satisfying } \phi$
- What does it mean for a DTMC D to satisfy a formula ϕ ?
 - sometimes, want to check that $s \models \varphi \forall s \in S$, i.e. $Sat(\varphi) = S$
 - sometimes, just want to know if $s_{init} = \phi$, i.e. if $s_{init} \in Sat(\phi)$
- Sometimes, focus on quantitative results
 - e.g. compute result of P_{=?} [F error]
 - e.g. compute result of $P_{=?}$ [$F^{\leq k}$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of φ
 - example: ϕ = (¬fail ∧ try) → P_{>0.95} [¬fail U succ]
- For the non-probabilistic operators:
 - Sat(true) = S
 - $Sat(a) = \{ s \in S \mid a \in L(s) \}$
 - $\operatorname{Sat}(\neg \varphi) = \operatorname{S} \setminus \operatorname{Sat}(\varphi)$
 - $-\operatorname{Sat}(\varphi_1 \wedge \varphi_2) = \operatorname{Sat}(\varphi_1) \cap \operatorname{Sat}(\varphi_2)$
- For the $P_{\sim p}$ [ψ] operator:
 - need to compute the probabilities Prob(s, ψ) for all states s ∈ S
 - $Sat(P_{\sim p} [\psi]) = \{ s \in S \mid Prob(s, \psi) \sim p \}$

Probability computation

- Three temporal operators to consider:
- Next: P_{~p}[X ♠]
- Bounded until: $P_{\sim p}[\varphi_1 U^{\leq k} \varphi_2]$
 - adaptation of bounded reachability for DTMCs
- Until: $P_{\sim p}[\varphi_1 \cup \varphi_2]$
 - adaptation of reachability for DTMCs
 - graph-based "precomputation" algorithms
 - techniques for solving large linear equation systems

PCTL next for DTMCs

- Computation of probabilities for PCTL next operator
 - $Sat(P_{\sim p}[X \varphi]) = \{ s \in S \mid Prob(s, X \varphi) \sim p \}$
 - need to compute Prob(s, X ϕ) for all s \in S
- Sum outgoing probabilities for transitions to φ-states
 - Prob(s, X ϕ) = $\Sigma_{s' \in Sat(\phi)}$ **P**(s,s')

- Compute vector <u>Prob</u>(X φ) of probabilities for all states s
 - $\underline{\mathsf{Prob}}(\mathsf{X} \; \boldsymbol{\varphi}) = \mathbf{P} \cdot \underline{\boldsymbol{\varphi}}$
 - where $\underline{\phi}$ is a 0-1 vector over S with $\underline{\phi}(s) = 1$ iff $s = \overline{\phi}$
 - computation requires a single matrix-vector multiplication

PCTL next - Example

- Model check: P_{>0.9} [X (¬try ∨ succ)]
 - Sat (\neg try \lor succ) = ($S \setminus Sat(try)$) $\cup Sat(succ)$ = ($\{s_0, s_1, s_2, s_3\} \setminus \{s_1\}$) $\cup \{s_3\} = \{s_0, s_2, s_3\}$
 - <u>Prob(X (¬try \lor succ)) = P \cdot (¬try \lor succ) = ...</u>

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.99 \\ 1 \\ 1 \end{bmatrix}$$

- Results:
 - $Prob(X (\neg try \lor succ)) = [0, 0.99, 1, 1]$
 - Sat($P_{\geq 0.9}$ [X ($\neg try \lor succ$)]) = {s₁, s₂, s₃}

PCTL bounded until for DTMCs

- Computation of probabilities for PCTL U≤k operator
 - $\; Sat(P_{\sim p}[\; \varphi_1 \; U^{\leq k} \; \varphi_2 \;]) = \{ \; s \in S \; | \; Prob(s, \, \varphi_1 \; U^{\leq k} \; \varphi_2) \sim p \; \}$
 - need to compute Prob(s, $\varphi_1 \ U^{\leq k} \ \varphi_2)$ for all $s \in S$
- First identify (some) states where probability is trivially 1/0
 - $S^{yes} = Sat(\phi_2)$
 - $S^{no} = S \setminus (Sat(\phi_1) \cup Sat(\phi_2))$

PCTL bounded until for DTMCs

• Let:

$$- S^{yes} = Sat(\varphi_2)$$

$$- S^{no} = S \setminus (Sat(\varphi_1) \cup Sat(\varphi_2))$$

And let:

$$- S^? = S \setminus (S^{yes} \cup S^{no})$$

Compute solution of recursive equations:

$$Prob(s,\,\varphi_1\,U^{\leq k}\,\varphi_2) \,=\, \left\{ \begin{array}{cc} 1 & \text{if } s \in S^{yes} \\ 0 & \text{if } s \in S^{no} \\ \sum_{s \in S} P(s,s') \cdot Prob(s',\varphi_1\,U^{\leq k-1}\,\varphi_2) & \text{if } s \in S^? \text{ and } k = 0 \\ \text{if } s \in S^? \text{ and } k > 0 \end{array} \right.$$

PCTL bounded until for DTMCs

- Simultaneous computation of vector $\underline{\text{Prob}}(\phi_1 \ U^{\leq k} \ \phi_2)$
 - i.e. probabilities Prob(s, $\phi_1 \cup U^{\leq k} \phi_2$) for all $s \in S$
- Iteratively define in terms of matrices and vectors
 - define matrix P' as follows: P'(s,s') = P(s,s') if $s \in S^{?}$, P'(s,s') = 1 if $s \in S^{yes}$ and s=s', P'(s,s') = 0 otherwise
 - $-\operatorname{\underline{Prob}}(\varphi_1 \mathsf{U}^{\leq 0} \varphi_2) = \underline{\varphi}_2$
 - $\underline{\text{Prob}}(\varphi_1 \ U^{\leq k} \ \varphi_2) = \mathbf{P'} \cdot \underline{\text{Prob}}(\varphi_1 \ U^{\leq k-1} \ \varphi_2)$
 - requires k matrix-vector multiplications
- Note that we could express this in terms of matrix powers
 - $-\underline{\text{Prob}}(\varphi_1\ U^{\leq k}\ \varphi_2)=(\mathbf{P'})^k\cdot\underline{\varphi}_2$ and compute $(\mathbf{P'})^k$ in $\log_2 k$ steps
 - but this is actually inefficient: (P')k is much less sparse than P'

PCTL bounded until – Example

• Model check:
$$P_{>0.98}$$
 [$F^{\leq 2}$ succ] $\equiv P_{>0.98}$ [true $U^{\leq 2}$ succ]

- Sat (true) =
$$S = \{s_0, s_1, s_2, s_3\}$$
, Sat(succ) = $\{s_3\}$

$$- S^{yes} = \{s_3\}, S^{no} = \emptyset, S^? = \{s_0, s_1, s_2\}, P' = P$$

- Prob(true U≤0 succ) = succ = [0, 0, 0, 1]

$$\underline{\text{Prob}}(\text{true } \mathsf{U}^{\leq 1} \, \text{succ}) \, = \, \mathsf{P'} \cdot \underline{\text{Prob}}(\text{true } \mathsf{U}^{\leq 0} \, \text{succ}) \, = \, \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.98 \\ 0 \\ 1 \end{bmatrix}$$

$$\underline{\text{Prob}}(\text{true } \ \mathsf{U}^{\leq 2} \ \text{succ}) \ = \ \mathsf{P'} \cdot \underline{\text{Prob}}(\text{true } \ \mathsf{U}^{\leq 1} \ \text{succ}) \ = \ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0.98 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.98 \\ 0.9898 \\ 0 \\ 1 \end{bmatrix}$$

- Sat(
$$P_{>0.98}$$
 [$F^{\leq 2}$ succ]) = { s_1, s_3 }

PCTL until for DTMCs

- Computation of probabilities Prob(s, $\phi_1 \cup \phi_2$) for all $s \in S$
- First, identify all states where the probability is 1 or 0
 - $S^{yes} = Sat(P_{\geq 1} [\varphi_1 U \varphi_2])$
 - $S^{no} = Sat(P_{\leq 0} [\varphi_1 U \varphi_2])$
- Then solve linear equation system for remaining states
- Running example:

P_{>0.8} [¬a U b]

PCTL until – linear equations

- Probabilities Prob(s, ϕ_1 U ϕ_2) can now be obtained as the unique solution of the following set of linear equations
 - essentially the same as for probabilistic reachability

$$Prob(s,\,\varphi_1\,U\,\varphi_2) \ = \ \begin{cases} 1 & \text{if } s\in S^{yes} \\ 0 & \text{if } s\in S^{no} \\ \sum_{s'\in S} P(s,s')\cdot Prob(s',\,\varphi_1\,U\,\varphi_2) & \text{otherwise} \end{cases}$$

• Can also be reduced to a system in $|S^?|$ unknowns instead of |S| where $S^? = S \setminus (S^{yes} \cup S^{no})$

PCTL until – linear equations

- Example: $P_{>0.8}$ [¬a U b]
- Let $x_i = Prob(s_i, \neg a \cup b)$

$$S^{no} =$$
 $Sat(P_{\leq 0} [\neg a \cup b])$

$$S^{yes} = Sat(P_{>1} [\neg a U b])$$

$$x_1 = x_3 = 0$$

$$x_4 = x_5 = 1$$

$$x_2 = 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = 8/9$$

$$x_0 = 0.1x_1 + 0.9x_2 = 0.8$$

$$Prob(\neg a \cup b) = \underline{x} = [0.8, 0, 8/9, 0, 1, 1]$$

$$Sat(P_{>0.8} [\neg a U b]) = \{ s_2, s_4, s_5 \}$$

Probability vs. nondeterminism

- Labelled transition system
 - (S,s₀,R,L) where R ⊆ S×S
 - choice is nondeterministic

- Discrete-time Markov chain
 - (S,s_0,P,L) where P: $S\times S\rightarrow [0,1]$
 - choice is probabilistic

How to combine?

Markov decision processes

- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several discrete probability distributions over successor states

Markov decision processes

- Formally, an MDP M is a tuple (S,s_{init},Steps,L) where:
 - S is a finite set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - Steps: S → 2^{Act×Dist(S)} is the transition probability function where Act is a set of actions and Dist(S) is the set of discrete probability distributions over the set S
 - L : S → 2^{AP} is a labelling with atomic propositions

Notes:

- Steps(s) is always non-empty,
 i.e. no deadlocks
- the use of actions to label distributions is optional

Simple MDP example

- Modification of the simple DTMC communication protocol
 - after one step, process starts trying to send a message
 - then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
 - if the latter, with probability 0.99 send successfully and stop
 - and with probability 0.01, message sending fails, restart

Simple MDP example 2

- Another simple MDP example with four states
 - from state s_0 , move directly to s_1 (action a)
 - in state s₁, nondeterministic choice between actions b and c
 - action b gives a probabilistic choice: self-loop or return to s₀
 - action c gives a 0.5/0.5 random choice between heads/tails

Simple MDP example 2

```
AP = {init,heads,tails}
               M = (S, s_{init}, Steps, L)
                                                          L(s_0) = \{init\},\
                                                         L(s_1) = \emptyset,
               S = \{s_0, s_1, s_2, s_3\}
                                                          L(s_2)=\{\text{heads}\},\
               s_{init} = s_0
                                                          L(s_3)=\{tails\}
Steps(s_0) = { (a, s_1 \mapsto 1) }
Steps(s_1) = { (b, [s_0 \mapsto 0.7, s_1 \mapsto 0.3]), (c, [s_2 \mapsto 0.5, s_3 \mapsto 0.5]) }
                                                                                             {heads}
Steps(s_2) = { (a, s_2 \mapsto 1) }
Steps(s_3) = { (a, s_3 \mapsto 1) }
                                                                                                 S<sub>2</sub>
                                                                                     0.5
                                              {init}
                                                                             S_1
                                                        S_0
                                                                                       0.5
                                                              0.7 b
                                                                                                  S<sub>3</sub>
                                                                   0.3
                                                                                               {tails}
```

The transition probability function

- It is often useful to think of the function **Steps** as a matrix
 - non-square matrix with |S| columns and $\Sigma_{s \in S} |Steps(s)|$ rows
- Example (for clarity, we omit actions from the matrix)

Steps(
$$s_0$$
) = { (a, $s_1 \mapsto 1$) }
Steps(s_1) = { (b, [$s_0 \mapsto 0.7, s_1 \mapsto 0.3$]), (c, [$s_2 \mapsto 0.5, s_3 \mapsto 0.5$]) }
Steps(s_2) = { (a, $s_2 \mapsto 1$) }
Steps(s_3) = { (a, $s_3 \mapsto 1$) }

Steps =
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ \hline 0.7 & 0.3 & 0 & 0 \\ \hline 0 & 0 & 0.5 & 0.5 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

Paths and probabilities

- A (finite or infinite) path through an MDP
 - is a sequence of states and action/distribution pairs
 - e.g. $s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$
 - such that $(a_i, \mu_i) \in \mathbf{Steps}(s_i)$ and $\mu_i(s_{i+1}) > 0$ for all $i \ge 0$
 - represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling
- Path(s) = set of all paths through MDP starting in state s
 - $Path_{fin}(s) = set of all finite paths from s$
- Paths resolve both nondeterministic and probabilistic choices
 - how to reason about probabilities?

Adversaries

- To consider the probability of some behaviour of the MDP
 - first need to resolve the nondeterministic choices
 - ...which results in a DTMC
 - ...for which we can define a probability measure over paths
- An adversary resolves nondeterministic choice in an MDP
 - also known as "schedulers", "policies" or "strategies"
- Formally:
 - an adversary σ of an MDP M is a function mapping every finite path $\omega = s_0(a_0, \mu_0)s_1...s_n$ to an element $\sigma(\omega)$ of **Steps**(s_n)
 - i.e. resolves nondeterminism based on execution history
- Adv (or Adv_M) denotes the set of all adversaries

Adversaries – Examples

- Consider the previous example MDP
 - note that s_1 is the only state for which |Steps(s)| > 1
 - i.e. s₁ is the only state for which an adversary makes a choice
 - let μ_b and μ_c denote the probability distributions associated with actions b and c in state s_1
- Adversary σ₁
 - picks action c the first time
 - $\sigma_1(s_0s_1) = (c, \mu_c)$
- Adversary σ₂
 - picks action b the first time, then c
 - $\sigma_2(s_0s_1)=(b,\mu_b), \ \sigma_2(s_0s_1s_1)=(c,\mu_c), \ \sigma_2(s_0s_1s_0s_1)=(c,\mu_c)$

(Note: actions/distributions omitted from paths for clarity)

Adversaries and paths

- Path $\sigma(s) \subseteq Path(s)$
 - (infinite) paths from s where nondeterminism resolved by σ
 - i.e. paths $s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2...$
 - for which $\sigma(s_0(a_0, \mu_0)s_1...s_n)) = (a_n, \mu_n)$
- Adversary σ_1
 - (picks action c the first time)
 - Path $\sigma_1(s_0) = \{ s_0 s_1 s_2^{\omega}, s_0 s_1 s_3^{\omega} \}$

- Adversary σ₂
 - (picks action b the first time, then c)
 - $\ Path^{\sigma_2}(s_0) = \{ \ s_0s_1s_0s_1s_2^{\ \omega}, \ s_0s_1s_0s_1s_3^{\ \omega}, \ s_0s_1s_1s_2^{\ \omega}, \ s_0s_1s_1s_3^{\ \omega} \}$

Adversaries – Examples

- Fragment of induced DTMC for adversary σ_1
 - $-\sigma_1$ picks action c the first time

Adversaries – Examples

MDPs and probabilities

- Prob $\sigma(s, \psi) = Pr_s \{ \omega \in Path(s) \mid \omega \models \psi \}$
 - for some path formula ψ
 - e.g. Prob $^{\sigma}$ (s, F tails)
- MDP provides best-/worst-case analysis
 - based on lower/upper bounds on probabilities
 - over all possible adversaries

$$p_{min}(s,\psi) = \inf_{\sigma \in Adv} Prob^{\sigma}(s,\psi)$$
$$p_{max}(s,\psi) = \sup_{\sigma \in Adv} Prob^{\sigma}(s,\psi)$$

$$p_{max}(s, \psi) = \sup_{\alpha \in Adv} Prob^{\alpha}(s, \psi)$$

Examples

- Prob $^{\sigma_1}$ (s₀, F tails) = 0.5
- Prob $^{\sigma 2}$ (s₀, F tails) = 0.5
 - (where σ_i picks b i-1 times then c)
- ...
- $p_{max}(s_0, F \text{ tails}) = 0.5$

- Prob $^{\sigma 1}$ (s₀, F tails) = 0.5
- Prob^{σ 2}(s₀, F tails) = 0.3+0.7·0.5 = 0.65
- Prob^{σ 3}(s₀, F tails) = 0.3+0.7·0.3+0.7·0.5 = 0.755
- ...
- $p_{max}(s_0, F \text{ tails}) = 1$

PCTL semantics for MDPs

- PCTL formulas interpreted over states of an MDP
 - $-s \models \phi$ denotes ϕ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas and of path formulas are identical to those for DTMCs:
- For a state s of the MDP (S,s_{init},Steps,L):
 - $\begin{array}{lll} -s \vDash a & \Leftrightarrow & a \in L(s) \\ -s \vDash \varphi_1 \wedge \varphi_2 & \Leftrightarrow & s \vDash \varphi_1 \text{ and } s \vDash \varphi_2 \\ -s \vDash \neg \varphi & \Leftrightarrow & s \vDash \varphi \text{ is false} \end{array}$
- For a path $\omega = s_0(a_1, \mu_1)s_1(a_2, \mu_2)s_2...$ in the MDP:
 - $-\omega \models X \varphi \Leftrightarrow s_1 \models \varphi$
 - $-\omega \models \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \quad \exists i \leq k \text{ such that } s_i \models \varphi_2 \text{ and } \forall j < i, \ s_j \models \varphi_1$
 - $-\omega \models \varphi_1 \cup \varphi_2 \quad \Leftrightarrow \exists k \geq 0 \text{ such that } \omega \models \varphi_1 \cup \varphi_2$

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
 - can only define probabilities for a specific adversary σ
 - $s \models P_{\sim p}$ [ψ] means "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all adversaries σ "
 - formally $s \models P_{\neg p} [\psi] \Leftrightarrow Prob^{\sigma}(s, \psi) \sim p$ for all adversaries σ
 - $\text{ where } Prob^{\sigma}\!(s,\,\psi) = Pr^{\sigma}_{\ s} \, \{ \, \omega \in Path^{\sigma}\!(s) \mid \omega \vDash \psi \, \}$

Minimum and maximum probabilities

Letting:

- $-p_{max}(s, \psi) = sup_{\sigma \in Adv} \operatorname{Prob}^{\sigma}(s, \psi)$
- $\ p_{min}(s, \, \psi) = inf_{\sigma \in Adv} \ Prob^{\sigma}(s, \, \psi)$

• We have:

- $\text{ if } \sim \in \{\geq, >\}\text{, then } s \vDash P_{\sim p} \left[\right. \psi \left. \right] \ \Leftrightarrow \ p_{min}(s, \, \psi) \sim p$
- if \sim ∈ {<,≤}, then s \models P $_{\sim p}$ [ψ] \Leftrightarrow p $_{max}$ (s, ψ) \sim p
- Model checking $P_{\sim p}[\psi]$ reduces to the computation over all adversaries of either:
 - the minimum probability of ψ holding
 - the maximum probability of ψ holding

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
 - inputs: MDP $M=(S,s_{init},Steps,L)$, PCTL formula ϕ
 - output: $Sat(\phi) = \{ s \in S \mid s \models \phi \} = set \text{ of states satisfying } \phi$
- Often, also consider quantitative results
 - e.g. compute result of $P_{min=?}$ [$F^{\leq t}$ stable] for $0 \leq t \leq 100$
- Basic algorithm same as PCTL for DTMCs
 - proceeds by induction on parse tree of φ
- For the non-probabilistic operators:
 - Sat(true) = S
 - $Sat(a) = \{ s \in S \mid a \in L(s) \}$
 - $\operatorname{Sat}(\neg \varphi) = \operatorname{S} \setminus \operatorname{Sat}(\varphi)$
 - $-\operatorname{Sat}(\varphi_1 \wedge \varphi_2) = \operatorname{Sat}(\varphi_1) \cap \operatorname{Sat}(\varphi_2)$

PCTL model checking for MDPs

- Main task: model checking $P_{\sim p}$ [ψ] formulae
 - reduces to computation of min/max probabilities
 - i.e. $p_{min}(s, \psi)$ or $p_{max}(s, \psi)$ for all $s \in S$
 - dependent on whether \sim ∈ {≥,>} or \sim ∈ {<,≤}
- Three cases:
 - next (X φ)
 - bounded until ($φ_1$ U≤k $φ_2$)
 - unbounded until ($\phi_1 \cup \phi_2$)

PCTL next for MDPs

- Computation of probabilities for PCTL next operator
- Consider case of minimum probabilities...
 - $Sat(P_{\sim p}[X \varphi]) = \{ s \in S \mid p_{min}(s, X \varphi) \sim p \}$
 - need to compute $p_{min}(s, X \varphi)$ for all s ∈ S
- Recall in the DTMC case
 - sum outgoing probabilities for transitions to φ-states
 - Prob(s, X ϕ) = $\Sigma_{s' \in Sat(\phi)}$ **P**(s,s')
- For MDPs, perform computation for each distribution available in s and then take minimum:

$$-p_{min}(s, X \varphi) = min \{ \Sigma_{s' \in Sat(\varphi)} \mu(s') \mid (a,\mu) \in Steps(s) \}$$

Maximum probabilities case is analogous

PCTL next - Example

- Model check: P_{>0.5} [X heads]
 - lower probability bound so minimum probabilities required
 - Sat (heads)= $\{s_2\}$
 - $e.g. p_{min}(s_1, X heads) = min(0, 0.5) = 0$
 - can do all at once with matrix-vector multiplication:

Steps · heads =
$$\begin{bmatrix} \frac{0}{0.7} & \frac{1}{0.3} & \frac{0}{0} & \frac{0}{0.7} & \frac{0}{0.5} & \frac{0}{0.5}$$

- Extracting the minimum for each state yields
 - $\underline{p}_{min}(X \text{ heads}) = [0, 0, 1, 0]$
 - $Sat(P_{\geq 0.5} [X heads]) = \{s_2\}$

PCTL bounded until for MDPs

- Computation of probabilities for PCTL U≤k operator
- Consider case of minimum probabilities...
 - $\; Sat(P_{\sim p}[\; \varphi_1 \; U^{\leq k} \; \varphi_2 \;]) = \{ \; s \in S \; | \; p_{min}(s, \, \varphi_1 \; U^{\leq k} \; \varphi_2) \sim p \; \}$
 - need to compute $p_{min}(s, \varphi_1 \cup U^{\leq k} \varphi_2)$ for all $s \in S$
- First identify (some) states where probability is 1 or 0

$$- S^{yes} = Sat(\varphi_2)$$
 and $S^{no} = S \setminus (Sat(\varphi_1) \cup Sat(\varphi_2))$

Then solve the recursive equations:

Maximum probabilities case is analogous

PCTL bounded until for MDPs

- Simultaneous computation of vector $\underline{p}_{min}(\varphi_1 \cup U^{\leq k} \varphi_2)$
 - i.e. probabilities $p_{min}(s,\,\varphi_1\;U^{\leq k}\;\varphi_2)$ for all $s\in S$
- Recursive definition in terms of matrices and vectors
 - similar to DTMC case
 - requires k matrix-vector multiplications
 - in addition requires k minimum operations

PCTL bounded until - Example

- Model check: $P_{<0.95}$ [$F^{\le 3}$ init] $\equiv P_{<0.95}$ [true $U^{\le 3}$ init]
 - upper probability bound so maximum probabilities required
 - Sat (true) = S and Sat (init) = $\{s_0\}$
 - $-S^{yes} = \{s_0\} \text{ and } S^{no} = \emptyset$
 - $S^? = \{s_1, s_2, s_3\}$
- The vector of probabilities is computed successively as:
 - $\underline{p}_{max}(true \ U^{\leq 0} \ init) = [1, 0, 0, 0]$
 - $\underline{p}_{max}(true U^{\leq 1} init) = [1, 0.7, 0, 0]$
 - $\underline{p}_{max}(true U^{\leq 2} init) = [1, 0.91, 0, 0]$
 - $p_{\text{max}}(\text{true } U^{\leq 3} \text{ init }) = [1, 0.973, 0, 0]$
- Hence, the result is:
 - Sat($P_{<0.95}$ [$F^{\le 3}$ init]) = { s_2, s_3 }

PCTL until for MDPs

- Computation of probabilities for all $s \in S$:
 - $-p_{min}(s, \varphi_1 \cup \varphi_2)$ or $p_{max}(s, \varphi_1 \cup \varphi_2)$
- Essentially the same as computation of reachability probabilities (see previous lecture)
 - just need to consider additional ϕ_1 constraint
- Overview:
 - precomputation:
 - · identify states where the probability is 0 (or 1)
 - several options to compute remaining values:
 - value iteration
 - · reduction to linear programming

Method 1 - Value iteration (min)

- Minimum probabilities satisfy:
 - $-p_{min}(s, \phi_1 \cup \phi_2) = \lim_{n\to\infty} x_s^{(n)}$ where:

$$X_{s}^{(n)} = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \end{cases}$$

$$\text{min } \left\{ \sum_{s' \in S} \mu(s') \cdot X_{s'}^{(n-1)} \mid (a,\mu) \in \text{Steps } (s) \right\} \quad \text{if } s \in S^{?} \text{ and } n > 0$$

$$\text{Approximate iterative solution:}$$

- Approximate iterative solution:
 - compute vector $\underline{\mathbf{x}}^{(n)}$ for "sufficiently large" n
 - in practice: terminate iterations when some pre-determined convergence criteria satisfied
 - e.g. max_s $| \underline{\mathbf{x}}^{(n)}(s) \underline{\mathbf{x}}^{(n-1)}(s) | < \varepsilon$ for some tolerance ε

Method 1 – Value iteration (max)

Similarly, maximum probabilities satisfy:

$$-p_{max}(s, \varphi_1 \cup \varphi_2) = \lim_{n\to\infty} x_s^{(n)}$$
 where:

$$X_{s}^{(n)} = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \end{cases}$$

$$\max \left\{ \sum_{s' \in S} \mu(s') \cdot X_{s'}^{(n-1)} \mid (a, \mu) \in \text{Steps}(s) \right\} \quad \text{if } s \in S^{?} \text{ and } n > 0$$

…and can be approximated iteratively

PCTL until – Example

- Model check: $P_{>0.5}$ [F a] $\equiv P_{>0.5}$ [true U a]
 - lower probability bound so minimum probabilities required

PCTL until – Example

- Model check: $P_{>0.5}$ [F a] $\equiv P_{>0.5}$ [true U a]
 - lower probability bound so minimum probabilities required

Method 2 – Linear optimisation problem

- Probabilities for states in $S^? = S \setminus (S^{yes} \cup S^{no})$ can also be obtained from a linear optimisation problem
- Minimum probabilities:

maximize
$$\sum_{s \in S^?} x_s$$
 subject to the constraints: $x_s \le \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$ for all $s \in S^?$ and for all $(a, \mu) \in Steps(s)$

Maximum probabilities:

minimize
$$\sum_{s \in S^?} x_s$$
 subject to the constraints:
 $x_s \ge \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$
for all $s \in S^?$ and for all $(a, \mu) \in Steps(s)$

PCTL until – Example

Let
$$x_i = p_{min}(s_i, F a)$$

Syes:
$$x_2 = 1$$
, S^{no} : $x_3 = 0$

For
$$S^? = \{s_0, s_1\}$$
:

Maximise x_0+x_1 subject to constraints:

- $X_0 \le X_1$
- $x_0 \le 0.25 \cdot x_0 + 0.5$
- $x_1 \le 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$

PCTL until – Example

Let
$$x_i = p_{min}(s_i, F a)$$

Syes:
$$x_2 = 1$$
, S^{no} : $x_3 = 0$

For
$$S^? = \{s_0, s_1\}$$
:

Maximise x_0+x_1 subject to constraints:

•
$$x_0 \le x_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$

PCTL until - Example

$$\underline{p}_{min}(F a) = [2/3, 14/15, 1, 0]$$

$$Sat(P_{>0.5} [F a]) = {s_0, s_1, s_2}$$

Let
$$x_i = p_{min}(s_i, F a)$$

Syes:
$$x_2 = 1$$
, S^{no} : $x_3 = 0$

For
$$S^? = \{s_0, s_1\}$$
:

Maximise x_0+x_1 subject to constraints:

- $X_0 \le X_1$
- $x_0 \le 2/3$
- $x_1 \le 0.2 \cdot x_0 + 0.8$

