Presentation of Assignment 8

Quantum Information and Computing, A.Y. 2022/2023

Paolo Zinesi 09/01/2023

Theoretical introduction

We consider again a one-dimensional system with N $\frac{1}{2}$ -spins, described by

$$\hat{H} = \lambda \sum_{i=1}^{N} \sigma_i^z + \sum_{i=1}^{N-1} \sigma_i^x \sigma_{i+1}^x.$$

Our goal is to find the ground state (g.s.) energy of a many-body quantum system described by the Hamiltonian \hat{H} .

In the previous assignment, it was not possible to exactly simulate systems with ${\it N}>14$ because of memory limitations. With approximate algorithms we are able to simulate larger systems by performing some simplifications. We follow three approaches:

- Mean Field. The total wavefunction is factorized into a product of wavefunctions of each spin. The interaction between spins is usually oversimplified.
- Real Space Renormalization Group (RSRG). Using a coarse-graining iterative procedure, at each step the system size is doubled and the total Hamiltonian is reduced to an effective Hamiltonian by keeping the lowest 2^N eigenenergies.
- Infinite Density Matrix Renormalization Group (Infinite DMRG). Two spins are added at each iteration step and the total Hamiltonian is reduced to an effective one by keeping the largest *m* populations of the reduced density matrices.

Code development - Real Space RG

Algorithm:

- 1. Choose the number N of initial subsystems.
- 2. Initialize $\mathcal{H}_{N}^{(0)}$ with the original Hamiltonian and the interaction terms

$$\mathcal{A}_{N}^{(0)} = \mathbb{I}_{N-1} \otimes \sigma_{X}$$
 and $\mathcal{B}_{N}^{(0)} = \sigma_{X} \otimes \mathbb{I}_{N-1}$. Set $k = 0$.

- 3. Construct the matrix $\mathcal{H}_{2N}^{(k)} = \mathcal{H}_{N}^{(k)} \otimes \mathbb{I}_{N} + \mathbb{I}_{N} \otimes \mathcal{H}_{N}^{(k)} + \mathcal{A}_{N}^{(k)} \otimes \mathcal{B}_{N}^{(k)}$.
- 4. Diagonalize $\mathcal{H}_{2N}^{(k)}$ and construct the projector $\mathcal{P}^{(k)}$ that spans the subspace of the lowest 2^N eigenvalues.
- 5. Define matrices of the new iteration step as:

$$\mathcal{H}_{N}^{(k+1)} \longleftarrow \frac{1}{2} \mathcal{P}^{(k)\dagger} \mathcal{H}_{2N}^{(k)} \mathcal{P}^{(k)} = \frac{1}{2} \operatorname{diag}(E_{0}, E_{1}, \dots, E_{2N-1})$$

$$\cdot \ \mathcal{A}_{N}^{(k+1)} \longleftarrow \frac{1}{\sqrt{2}} \mathcal{P}^{(k)\dagger} \left(\mathbb{I}_{N} \otimes \mathcal{A}_{N}^{(k)} \right) \mathcal{P}^{(k)}$$

$$\cdot \,\, \mathcal{B}_{N}^{(k+1)} \longleftarrow \tfrac{1}{\sqrt{2}} \mathcal{P}^{(k)\,\dagger} \left(\mathcal{B}_{N} \otimes \mathbb{I}_{N}\right) \mathcal{P}^{(k)}$$

- 6. Compute $\varepsilon^{(k+1)} = E_0/2N$
- 7. If stopping condition is not met, set $k \leftarrow k+1$ and go to step 3.

Notes

- The algorithm stops when a maximum number of iterations is reached or when the update in energy $\Delta \varepsilon^{(k)} = |\varepsilon^{(k)} \varepsilon^{(k-1)}|$ goes below a given threshold value.
- In our implementation, we make use of the subroutines contained in ManyBodyUtils_mod.f90 to manage tensor product operations and of the LAPACK subroutines DSYEVX and DGEMM to perform, respectively, diagonalization and matrix-matrix multiplication.

Code development - Infinite Density Matrix RG

Algorithm:

- 1. Choose the number m_{max} of most populated states to keep at each iteration.
- 2. Initialize $\mathcal{H}_{i}^{(0)} = \sigma_{i}^{z}$ (for i=1,2,3,4) and $\mathcal{H}_{i,i+1}^{(0)} = \sigma_{i}^{x}\sigma_{i+1}^{z}$ (for i=1,2,3). Set $m^{(0)} = 2$ and k=0.
- 3. Set $m^{(k+1)} = \min(m_{max}, 2 \cdot m^{(k)})$.
- 4. Construct the matrix $\mathcal{H}^{(k)} = \sum_{i=1}^4 \mathcal{H}_i^{(k)} + \sum_{i=1}^3 \mathcal{H}_{i,i+1}^{(k)}$
- 5. Find the ground state $|\Psi^{(k)}\rangle$ with energy $E_0^{(k)}$ of $\mathcal{H}^{(k)}$ and construct the density matrix $\rho^{(k)} = |\Psi^{(k)}\rangle\langle\Psi^{(k)}|$.
- 6. Compute $\varepsilon^{(k)} = E_0^{(k)}/(4+2k)$
- 7. Compute the reduced density matrices $ho_{\rm L}^{(k)}=\mathop{\rm Tr}_{\rm R}\left[
 ho^{(k)}\right]$ and $ho_{\rm R}^{(k)}=\mathop{\rm Tr}_{\rm L}\left[
 ho^{(k)}\right]$.
- 8. Diagonalize $\rho_L^{(k)}$ and construct the projector $\mathcal{P}_L^{(k)}$ that spans the subspace of the largest $m^{(k+1)}$ populations (i.e, the $m^{(k+1)}$ largest eigenvalues). Repeat for $\rho_R^{(k)}$.
- 9. Define matrices of the new iteration step as:

$$\cdot \ \mathcal{H}_{1}^{(k+1)} \longleftarrow \mathcal{P}_{L}^{(k)\dagger} \ \left(\mathcal{H}_{1}^{(k)} \otimes \mathcal{I}_{2} + \mathbb{I}_{m^{(k)}} \otimes \mathcal{H}_{2}^{(k)} + \mathcal{H}_{12}^{(k)}\right) \, \mathcal{P}_{L}^{(k)}$$

- $\cdot \mathcal{H}_{2}^{(k+1)} \longleftarrow \mathcal{H}_{2}^{(k)} = \lambda \sigma_{z}$
- $\cdot \ \mathcal{H}_{12}^{(k+1)} \longleftarrow \left(\mathcal{P}_{\mathsf{L}}^{(k)\dagger}\left(\mathbb{I}_{\mathsf{m}^{(k)}}\otimes\sigma_{\mathsf{X}}\right)\mathcal{P}_{\mathsf{L}}^{(k)}
 ight)\otimes\sigma_{\mathsf{X}}$
- $\cdot \mathcal{H}_{23}^{(k+1)} \longleftarrow \mathcal{H}_{23}^{(k)} = \sigma_{X}\sigma_{X}$
- · Repeat similarly for $\mathcal{H}_3^{(k+1)}$, $\mathcal{H}_4^{(k+1)}$, $\mathcal{H}_{34}^{(k+1)}$ (with proper symmetrizations).
- 10. If stopping condition is not met, set $k \leftarrow k+1$ and go to step 3.

Results - Real Space RG

Figure 1: Evolution of $\varepsilon^{(k)}$.

Figure 2: Relative updates of $\varepsilon^{(k)}$.

In Figure 1 the evolution of the ground state (g.s.) energy density estimate is shown for different iteration steps. At each iteration the system of initial size N is doubled in size, so that the effective system dimension at k-th iteration is $N_{eff}=2^kN$. The true g.s. energy density of a system with N=14 is plotted in dashed lines for comparison, and is consistent with the RSRG results.

In Figure 2 the updates of energy density are plotted as a function of λ . A difference between $\lambda < 1$ and $\lambda > 1$ is clearly visible in the convergence speed of the algorithm, suggesting a possible change of behaviour (maybe a phase transition?) of the energy density for $\lambda = 1$.

Results - Infinite Density Matrix RG

Figure 3: Computation of ε .

The ground state energy densities of RSRG and DMRG algorithms stay below the MF solution for $\lambda \gtrsim 0.7$. For $\lambda < 1$, the three solutions are comparable. The exact solution with N = 14 is plotted for comparison.

The Renormalization Group results presented in Figures 3,4 are obtained with a precision of 10^{-10} and are similar within a relative difference of 1%. The main difference is in the number of iterations for convergence: 10-30 iterations for RSRG with N=5 (depending on λ) of duration $\Delta t=0.5$ s each, and 70-250 iterations for **DMRG** with $m_{max} = 16$ and similar Δt . The RSRG algorithm converges quickly, but DMRG gives more accurate results for systems with boundary conditions.