Randomized Quick Sort

Fahad Panolan

Department of Computer Science and Engineering Indian Institute of Technology Hyderabad, India

26-Jan-2021

Basics of Discrete Probability

Definition

A discrete probability space is a pair (Ω, Pr) where

- Ω is a countable set, called the set of elementary events.
- $\Pr: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Definition

A discrete probability space is a pair (Ω, Pr) where

- Ω is a countable set, called the set of elementary events.
- $\Pr: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Examples

• An unbiased coin.

1

Definition

A discrete probability space is a pair (Ω, Pr) where

- Ω is a countable set, called the set of elementary events.
- $\Pr: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Examples

• An unbiased coin. $\Omega = \{H, T\}$ and $\Pr[H] = \Pr[T] = 1/2$.

1

Definition

A discrete probability space is a pair (Ω, Pr) where

- Ω is a countable set, called the set of elementary events.
- $\Pr: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Examples

- An unbiased coin. $\Omega = \{H, T\}$ and $\Pr[H] = \Pr[T] = 1/2$.
- A 6-sided unbiased die.

Definition

A discrete probability space is a pair (Ω, Pr) where

- Ω is a countable set, called the set of elementary events.
- $\Pr: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Examples

- An unbiased coin. $\Omega = \{H, T\}$ and $\Pr[H] = \Pr[T] = 1/2$.
- A 6-sided unbiased die. $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Pr[i] = 1/6$ for all $i \in \Omega$.

Definition

A discrete probability space is a pair (Ω, Pr) where

- Ω is a countable set, called the set of elementary events.
- $\Pr: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Examples

- An unbiased coin. $\Omega = \{H, T\}$ and $\Pr[H] = \Pr[T] = 1/2$.
- A 6-sided unbiased die. $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Pr[i] = 1/6$ for all $i \in \Omega$.
- A pair of independent dice.

Definition

A discrete probability space is a pair (Ω, Pr) where

- Ω is a countable set, called the set of elementary events.
- $\Pr: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Examples

- An unbiased coin. $\Omega = \{H, T\}$ and $\Pr[H] = \Pr[T] = 1/2$.
- A 6-sided unbiased die. $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Pr[i] = 1/6$ for all $i \in \Omega$.
- A pair of independent dice. $\Omega = \{(i,j) \mid 1 \leq i \leq 6, 1 \leq j \leq 6\}$ and $\Pr[(i,j)] = 1/36$ for all $(i,j) \in \Omega$.

1

Events

Definition

Given a probability space (Ω, \Pr) an <u>event</u> is a subset of Ω . In other words an event is a collection of elementary events. The probability of an event A, denoted by $\Pr[A]$, is $\sum_{\omega \in A} \Pr[\omega]$.

The <u>complement event</u> of an event $A \subseteq \Omega$ is the event $\Omega \setminus A$ frequently denoted by \overline{A} .

Events

Definition

Given a probability space (Ω, \Pr) an <u>event</u> is a subset of Ω . In other words an event is a collection of elementary events. The probability of an event A, denoted by $\Pr[A]$, is $\sum_{\omega \in A} \Pr[\omega]$.

The <u>complement event</u> of an event $A \subseteq \Omega$ is the event $\Omega \setminus A$ frequently denoted by \overline{A} .

Example

A pair of independent dice. $\Omega = \{(i, j) \mid 1 \le i \le 6, 1 \le j \le 6\}.$

Let A be the event that the sum of the two numbers on the dice is even.

Then $A = \{(i, j) \in \Omega : (i + j) \text{ is even}\}.$

$$Pr[A] = |A|/36 = 1/2.$$

2

Random Variables and Expectation

Random Variable

Given a probability space (Ω, \Pr) a random variable X over Ω is

$$X:\Omega \to \mathbb{R}$$
.

Random Variables and Expectation

Random Variable

Given a probability space (Ω, Pr) a random variable X over Ω is

$$X:\Omega\to\mathbb{R}.$$

Expectation

For a random variable X over a probability space (Ω, Pr) the expectation of X is defined as

$$\sum_{\omega \in \Omega} \Pr[\omega] X(\omega).$$

In other words, the expectation is the average value of X according to the probabilities given by $\Pr[\cdot]$.

Expectation: examples

Example

A 6-sided unbiased die. $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Pr[i] = 1/6$ for $1 \le i \le 6$.

• $X: \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$. Then

$$\mathbf{E}[X] = \sum_{i=1}^{6} \Pr[i] \cdot X(i) = \frac{1}{6} \sum_{i=1}^{6} X(i) = \frac{1}{2}.$$

Expectation: examples

Example

A 6-sided unbiased die. $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Pr[i] = 1/6$ for $1 \le i \le 6$.

• $X: \Omega \to \mathbb{R}$ where $X(i) = i \mod 2$. Then

$$\mathbf{E}[X] = \sum_{i=1}^{6} \Pr[i] \cdot X(i) = \frac{1}{6} \sum_{i=1}^{6} X(i) = 1/2.$$

• $Y: \Omega \to \mathbb{R}$ where Y(i) = i. Then

$$\mathbf{E}[Y] = \sum_{i=1}^{6} \frac{1}{6} \cdot i = 3.5.$$

4

Suppose X al of one two vandom

Namables new (52, Pr).

Then ETaX+by = aETA+bETM.

(Linearity of expection).

Randomized Algorithms

Randomized Algorithms

Randomized Algorithms

Randomized Quick Sort

, have = C (# comprisons)

Quick Sort

- Pick a pivot element from array (last element as pivot)
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and equal to pivot.
- Recursively sort the subarrays, and concatenate them.

Randomized Quick Sort

- Pick a pivot element uniformly at random from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and equal to the pivot.
- Recursively sort the subarrays, and concatenate them.

The owning The is motion sangle.

7x A

Let Q(A) be number of comparisons done on input array A:

- For $1 \le i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.
- X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij} = 1$ if rank i is compared with rank j element, otherwise 0.

Let Q(A) be number of comparisons done on input array A:

- For $1 \leq i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.
- X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij} = 1$ if rank i is compared with rank j element, otherwise 0.

$$Q(A) = \sum_{1 \le i < j \le n} X_{ij}$$

and hence by linearity of expectation,

7

 $R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $Pr[R_{ij}]$?

 $R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $Pr[R_{ij}]$?

7 5 9 1 3 4 8 6

Ranks: 6 4 8 1 2 3 7 5

 $R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $Pr[R_{ij}]$?

7 5 9 1 3 4 8 6

Ranks: 6 4 8 1 2 3 7 5

Probability of comparing 5 to 8 is $Pr[R_{4,7}]$.

 $R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $Pr[R_{ij}]$?

Ranks: 6 4 8 1 2 3 7 5 Probability of comparing 5 to 8 is $Pr[R_{4,7}]$.

• If pivot too small (say 3 [rank 2]). Partition and call recursively:

Decision if to compare 5 to 8 is moved to subproblem.

• If pivot too large (say 9 [rank 8]):

Decision if to compare 5 to 8 moved to subproblem.

• If pivot is 5 (rank 4).

• If pivot is 8 (rank 7).

• If pivot in between the two numbers (say 6 [rank 5]):

5 and 8 will never be compared to each other.

Question: What is $Pr[R_{i,j}]$?

Question: What is $Pr[R_{ij}]$?

Question: What is $Pr[R_{ij}]$?

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

Question: What is $Pr[R_{ij}]$?

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: If pivot is chosen outside S then all of S either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from \underline{S} for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation.

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be sort of A. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation.

Observation: Given that pivot is chosen from S the probability that it is a_i or a_j is exactly $\frac{2}{|S|} = \frac{2}{(j-i+1)}$ since the pivot is chosen uniformly at random from the array.

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathbf{E}[Q(A)] = \sum_{1 \le i < j \le n} \Pr[R_{ij}]$$

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathbf{E}[Q(A)] = \sum_{1 \le i < j \le n} \Pr[R_{ij}] = \sum_{1 \le i < j \le n} \frac{2}{j - i + 1}$$

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathbf{E}[Q(A)] = \sum_{1 \le i < j \le n} \Pr[R_{ij}] = \sum_{1 \le i < j \le n} \frac{2}{j - i + 1}$$
$$= 2 \sum_{i=1}^{n-1} \sum_{i < j}^{n} \frac{1}{j - i + 1}$$

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathbf{E}[Q(A)] = \sum_{1 \le i < j \le n} \Pr[R_{ij}] = \sum_{1 \le i < j \le n} \frac{2}{j - i + 1}$$

$$= 2 \sum_{i=1}^{n-1} \sum_{i < j}^{n} \frac{1}{j - i + 1}$$

$$\leq 2 \sum_{i=1}^{n-1} \sum_{\Delta = \mathbb{P}}^{n-i+1} \frac{1}{\Delta}$$

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathbf{E}[Q(A)] = \sum_{1 \le i < j \le n} \Pr[R_{ij}] = \sum_{1 \le i < j \le n} \frac{2}{j - i + 1}$$

$$= 2 \sum_{i=1}^{n-1} \sum_{i < j}^{n} \frac{1}{j - i + 1}$$

$$\leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n+1} \frac{1}{\Delta}$$

$$\leq 2 \sum_{1 \le i < n} H_n$$

 $H_n = \sum_{i=1}^n \frac{1}{i}$ is the *n*'th harmonic number

$$\bullet \ H_n = \Theta(1).$$

$$H_n = \Theta(\log \log n).$$

$$H_n = \Theta(\log n). \checkmark$$

$$H_n = \Theta(\log^2 n).$$

 $\bullet \ H_n = \Theta(\log^2 n).$

Theorem

Randomized Quick Sort sorts a given array of length n in $O(n \log n)$ expected time.

Theorem

Randomized Quick Sort sorts a given array of length n in $O(n \log n)$ expected time.

Note: On every input randomized Quick Sort takes $O(n \log n)$ time in expectation. On every input it may take $O(n^2)$ time with some small probability.

Randomized algorithm \mathcal{A} for a problem Π :

• Let R(x) be the time for A to run on input x of length |x|.

Randomized algorithm \mathcal{A} for a problem Π :

- Let R(x) be the time for A to run on input x of length |x|.
 R(x) is a random variable: depends on random bits used by

Randomized algorithm \mathcal{A} for a problem Π :

- Let R(x) be the time for \mathcal{A} to run on input x of length |x|.
- R(x) is a random variable: depends on random bits used by R.
- $\mathbf{E}[R(x)]$ is the expected running time for x

Randomized algorithm \mathcal{A} for a problem Π :

- Let R(x) be the time for \mathcal{A} to run on input x of length |x|.
- R(x) is a random variable: depends on random bits used by R.
 - $\mathbf{E}[R(x)]$ is the expected running time for R on x
- Expected time on worst input of size n

0 (h by n)

Thank You.