

# Ejercicio de postulación | Ingeniero/a de datos junior

### Introducción

El presente ejercicio tiene como objetivo evaluar tus competencias técnicas en el ámbito de la ingeniería de datos. Se plantea un desafío ficticio, sin ningún fin comercial ni estratégico.

#### Desafío

El dataset adjunto (<u>Sample Analytics Dataset</u>), contiene información sobre cuentas, clientes y transacciones de una aplicación de servicios financieros. Tu misión es analizar estos datos para responder las siguientes preguntas:

- 1. ¿Cuál es el promedio, mínimo, máximo y desviación estándar del límite de las cuentas de usuarios?
- 2. ¿Cuántos clientes poseen más de una cuenta?
- 3. ¿Cuál es el monto promedio y el número de transacciones del mes de junio?
- 4. ¿Cuál es el id de cuenta con la mayor diferencia entre su transacción más alta y más baja?
- 5. ¿Cuántas cuentas tienen exactamente 3 productos y, además, uno de esos productos es "Commodity"?
- 6. ¿Cuál es el nombre del cliente que, en total entre todas sus cuentas, ha realizado la mayor cantidad de transacciones de tipo sell?
- 7. ¿Cuál es el usuario del cliente cuya cuenta tiene entre 10 y 20 transacciones de tipo "buy", y que presenta el promedio de inversión más alto por operación de este tipo?
- 8. ¿Cuál es el promedio de transacciones de compra y de venta por acción (campo "symbol")?
- 9. ¿Cuáles son los diferentes beneficios que tienen los clientes del tier "Gold"?
- 10. Obtener la cantidad de clientes por rangos etarios ([10–19], [20–29], etc.), que hayan realizado al menos una compra de acciones de "amzn". La edad debe calcularse como la diferencia entre la fecha de corte 2025-05-16 y el campo "birthdate".

### Solución requerida

- 1. **Diseño del Data Warehouse**: Debes crear el diagrama de un data warehouse (DW) basado en el dataset proporcionado. Puedes utilizar el enfoque que consideres más apropiado según los requerimientos, entre ellos:
  - Modelado dimensional (Kimball)
  - One Big Table (OBT)
  - Data Vault
  - Modelado normalizado

Según el diseño elegido, entregar una breve justificación del enfoque escogido.

- 2. Implementación en SQLite: Después de diseñar el modelo del DW, debes:
  - Crear las tablas, relaciones (si existen) y restricciones en SQLite
  - Desarrollar un script en el lenguaje de programación de tu elección que realice el proceso ETL:
    - Extracción: Lectura de los archivos JSON
    - o Transformación: Ajuste de los datos al modelo DW creado
    - o Carga: Inserción de los datos en las tablas SQLite



 Consultas SQL: Finalmente, debes desarrollar las consultas SQL que respondan a cada uno de los 10 requerimientos planteados.

## **Consideraciones importantes**

- Solo es necesario almacenar los campos del dataset que sean utilizados para responder a los requerimientos.
- No redondees los campos almacenados en la base de datos.
- Queda a tu criterio convertir campos de texto a valores numéricos si lo consideras apropiado.
- Todas las consultas SQL deben realizar el redondeo de valores numéricos a 2 decimales.
- Es obligatorio utilizar control de versiones (Git y GitHub).
- Para dudas adicionales, puedes consultar el documento de preguntas frecuentes.

## **Entregables**

- Archivo con el diagrama realizado junto a la justificación del diseño escogido en formato PDF.
- Archivo .db con la base de datos SQLite junto a los datos ya cargados.
- Archivo .sql con las consultas que respondan los requerimientos.
- Código fuente en repositorio <u>privado</u> de GitHub, y acceso al usuario postulaciones-bsale
- Enviar mediante este formulario la siguiente información:

| Ш | CV en formato PDF.                  |
|---|-------------------------------------|
|   | Diagrama del DW en formato PDF      |
|   | Archivo con la base de datos SQLite |
|   | Archivo con las consultas SQL       |
|   | URL del repositorio de GitHub.      |
|   | Respuestas a los requerimientos.    |

¡Mucho éxito! 😎