1 Komplexe Differenzierbarkeit

1.1 Grundlegendes

1.1.1 Vorbemerkungen zu C

Wir fassen \mathbb{R}^2 als Körper \mathbb{C} auf, indem wir $z=(x,y),\,w=(u,v)\in\mathbb{R}^2$ wie folgt verknüpfen:

$$z + w = \begin{pmatrix} x + u \\ y + v \end{pmatrix}, \qquad z \cdot w = zw = \begin{pmatrix} xu - yv \\ yu + xv \end{pmatrix}.$$

Wir fassen \mathbb{R} als Teilmenge von \mathbb{C} auf, indem wir $x \in \mathbb{R}$ mit $(x,0) \in \mathbb{R}^2 \cong \mathbb{C}$ identifizieren.

Beachte: $(0,1) \cdot (0,1) = (-1,0)$. Mit i := (0,1) folgt also

$$i^2 = -1$$
.

Schreibe also

$$z = \begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix} = x + iy,$$

hierbei sei stets $x, y \in \mathbb{R}$.

Sei weiter $w = u + iv \ (u, v \in \mathbb{R})$. Dann:

$$zw = (x + iy)(u + iv) = xu + i^2yv + ixv + iyu = (xu - yv) + i(yu + xv).$$

Setze Rez:=x (Realteil), Imz:=y (Imaginärteil), wenn $z=x+\mathrm{i} y$ mit $x,y\in\mathbb{R}$. Real- und Imaginärteil sind eindeutig bestimmt. Das Konjugiert-Komplexe ist $\overline{z}:=x-\mathrm{i} y$. Damit ist

$$\operatorname{Re} z = \frac{1}{2}(z + \overline{z}), \quad \operatorname{Im} z = \frac{1}{2}(z - \overline{z}), \quad \overline{z + w} = \overline{z} + \overline{w}, \quad \overline{zw} = \overline{z} \cdot \overline{w}.$$

Der komplexe Betrag ist

$$|z| := \sqrt{x^2 + y^2} = \left| \begin{pmatrix} x \\ y \end{pmatrix} \right|_2,$$

also gilt: $|z|^2 = x^2 + y^2 = z \cdot \overline{z}$.

Es gelten:

$$|\text{Re } z|, |\text{Im } z| \le |z| \le \sqrt{2} \max\{|\text{Re } z|, |\text{Im } z|\}$$
 (1.1)

sowie:

$$|z| = 0 \iff z = 0, \quad |wz| = |w||z|, \quad |w+z| \le |w| + |z| \quad (\forall w, z \in \mathbb{C}).$$

Polarkoordinaten: Für $\phi, \psi \in \mathbb{R}$ setze

$$e^{i\phi} := \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} = \cos \phi + i \sin \phi.$$

Es gelten nach Ana 1:

$$e^{i\phi}e^{i\psi} = e^{i(\phi+\psi)}, \quad e^{i0} = 1, \quad \left|e^{i\phi}\right| = 1, \quad e^{i(\phi+2k\pi)} = e^{i\phi} \quad (\forall k \in \mathbb{Z}).$$

Sei $z \in \mathbb{C}$. Dann gilt (für $z \neq 0$):

$$z = r \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} = r e^{i\phi} \quad (= x + iy),$$

wobei r der Abstand von z zum Nullpunkt, also |z|, ist und

$$\phi = \arg z = \sphericalangle \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right) \in (-\pi, \pi], \quad \phi = \begin{cases} \operatorname{sign}(y) \arccos \frac{x}{r}, & z \in \mathbb{C} \setminus \mathbb{R}_{-} \\ \pi, & z \in (-\infty, 0). \end{cases}$$

Sei weiter $w=s\mathrm{e}^{\mathrm{i}\psi}$ $(s\geq 0).$ Dann

$$wz = se^{i\psi}re^{i\phi} = rse^{i(\phi+\psi)}.$$

Also entspricht die komplexe Multiplikation der Multiplikation der Beträge und Addition der Winkel (mod 2π). Somit ist $z \mapsto wz$ für jedes feste w eine Drehstreckung.

Einheitswurzeln: Sei $n \in \mathbb{N}$ fest. Sei $z^n = 1$ für $z = re^{i\phi} \in \mathbb{C}$. Dann gilt: $1 = |1| = |z|^n = r^n$, also r = 1. Folglich:

$$1 = \left(e^{i\phi}\right)^n = e^{in\phi} = \cos(n\phi) + i\sin(n\phi).$$

Der Vergleich von Real- und Imaginärteil liefert $n\phi = 2\pi k$ für ein $k \in \mathbb{Z}$. Es gilt also:

$$z^n = 1 \iff z = e^{i\frac{2\pi k}{n}}, \quad k = 0, 1, \dots, n - 1.$$

$$n=6$$
: \hat{i} :

Ferner: Für $z_n, z \in \mathbb{C}$ sagen wir, dass $z_n \longrightarrow z \ (n \to \infty)$, wenn

$$|z - z_n| \longrightarrow 0 \stackrel{\text{(1.1)}}{\Longleftrightarrow} \operatorname{Re} z_n \longrightarrow \operatorname{Re} z \text{ und } \operatorname{Im} z_n \longrightarrow \operatorname{Im} z \quad (n \to \infty).$$

Somit haben \mathbb{R}^2 und \mathbb{C} den gleichen Konvergenzbegriff und außerdem die gleichen offenen und abgeschlossenen Kugeln:

$$B(z_0, r) := \{ z \in \mathbb{C} : |z_0 - z| < r \},$$

$$\overline{B(z_0, r)} := \{ z \in \mathbb{C} : |z_0 - z| \le r \}, \quad (\forall z_0 \in \mathbb{C}, \ r > 0).$$

Sei $M\subseteq\mathbb{C}$. Betrachte $z=x+\mathrm{i}y\in M$ als $z=\begin{pmatrix}x\\y\end{pmatrix}$ mit $x=\mathrm{Re}\,z,\,y=\mathrm{Im}\,z.$ Sei $f\colon M\to\mathbb{C}.$ Setze

$$u(x,y) = \operatorname{Re} f(x,y), \qquad v(x,y) = \operatorname{Im} f(x,y).$$

Also:

$$f(x,y) = u(x,y) + iv(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}.$$

Somit ist $f: M \to \mathbb{C}$ genau dann stetig (d.h. $z_n \to z$ (in M) $\Longrightarrow f(z_n) \to f(z)$), wenn $u, v: M \to \mathbb{R}$ stetig sind.

Fazit: Konvergenz, Offenheit, Abgeschlossenheit, Kompaktheit, Stetigkeit, etc. sind in \mathbb{R}^2 und \mathbb{C} gleich.

1.1.2 Komplexe Differenzierbarkeit

Stets sei $D \subseteq \mathbb{C}$ offen und nichtleer, das heißt:

$$\forall z \in D \ \exists \ r = r(z) > 0 \ \text{mit} \ B(z,r) \subseteq D \implies \overline{B(z,\frac{r}{2})} \subseteq D.$$

Definition 1.1. Eine Funktion $f: D \to \mathbb{C}$ heißt (komplex) differenzierbar in $z_0 \in D$, wenn

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0)$$

existiert. Dann heißt $f'(z_0)$ die Ableitung von f bei z_0 . Wenn f bei allen $z_0 \in D$ komplex differenzierbar ist, dann heißt f holomorph. Wir schreiben dann $f \in H(D)$. Iterativ definiert man höhere Ableitungen.

Bemerkung 1.2. (a) Offenbar sind die Funktionen f(x) = 1, g(z) = z auf \mathbb{C} holomorph mit f'(z) = 0, g'(z) = 1.

- (b) Genau wie in Analysis 1 zeigt man: Seien $f,g: D \to \mathbb{C}$ in $z \in D$ differenzierbar und $\alpha, \beta \in \mathbb{C}$. Dann sind auch $\alpha f + \beta g$, $f \cdot g$ und $\frac{1}{f}$ (wenn $f(z) \neq 0$) in z differenzierbar und es gelten die bekannten Regeln. Ebenso gilt die Kettenregel.
- (c) Polynome p sind auf \mathbb{C} und rationale Funktionen $f = \frac{p}{q}$ mit einem Polynom $q \neq 0$ sind auf $\{z \in \mathbb{C} : q(z) \neq 0\}$ holomorph mit den reellen Formeln für p', f'.

Erinnerung an Analysis 1: Gegeben seien $a_n \in \mathbb{C}$ $(n \in \mathbb{N}_0)$ und ein $c \in \mathbb{C}$. Die Potenzreihe

$$f(z) = \sum_{n=0}^{\infty} a_n (z - c)^n$$

konvergiert absolut für alle z mit

$$|z-c| < \rho := \left(\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}\right)^{-1} \in [0, \infty]$$

und divergiert, falls $z \notin \overline{B}(c, \rho)$.

Reduktion auf c = 0: Betrachte

$$h(w) := f(c+w) = \sum_{n=0}^{\infty} a_n w^n,$$

wobei $w = z - c \in B(0, \rho), z = c + w.$

Satz 1.3 (vgl. Analysis 1, Theorem 4.12). Sei

$$f(z) = \sum_{n=0}^{\infty} a_n (z - c)^n, \ z \in B(c, \rho),$$

eine Potenzreihe mit Konvergenzradius $\rho > 0$. Dann ist $f \in H(B(c, \rho))$ und

$$f'(z) = \sum_{n=1}^{\infty} na_n(z-c)^{n-1} =: g(z) \ (\forall z \in B(c,\rho)),$$

wobei die Potenzreihe g den gleichen Konvergenzradius ρ hat.

Sei $m \in \mathbb{N}$. Iterativ folgt:

$$\exists f^{(m)}(z) = \sum_{n=m}^{\infty} n \cdot \ldots \cdot (n-m+1) a_n(z-c)^{n-m}, \forall z \in B(c,\rho).$$

Beweis. Wie in Analysis 1 zeigt man: g hat Konvergenzradius ρ . Sei oBdA c=0.

Seien $z \in B(0, \rho)$, $\varepsilon > 0$, r > 0 mit $|z| < r < \rho$. Sei $w \in \overline{B}(0, r)$ mit $w \neq z$.

Da $\sum_{n=1}^{\infty} na_n r^{n-1}$ absolut konvergiert, existiert ein $N=N_{\varepsilon}\in\mathbb{N}$ mit

$$0 \le \sum_{n=N+1}^{\infty} n|a_n|r^{n-1} \le \varepsilon. \tag{*}$$

Ferner:

$$0 \le d(w) := \left| \frac{f(w) - f(z)}{w - z} - g(z) \right| = \left| \sum_{n=1}^{\infty} a_n \underbrace{\left(\frac{w^n - z^n}{w - z} - nz^{n-1} \right)}_{=:p_n(w)} \right|$$

mit $p_n(w) = w^{n-1} + zw^{n-2} + \cdots + z^{n-1} - nz^{n-1}$. Dabei gelten:

• $p_n(w) \to 0, w \to z$ (für jedes feste $n \in \mathbb{N}$)

•
$$|p_n(w)| \le r^{n-1} + rr^{n-2} + \dots + r^{n-1} + nr^{n-1} = 2nr^{n-1}$$
 (**)

Damit folgt:

$$0 \le d(w) \le \sum_{n=1}^{\infty} |a_n| |p_n(w)| \stackrel{(**)}{\le} \sum_{n=1}^{N} |a_n| |p_n(w)| + \sum_{n=N+1}^{\infty} 2n |a_n| r^{n-1}$$

$$\stackrel{(*)}{\le} N \max\{|a_1| |p_1(w)|, \cdots, |a_n| |p_n(w)|\} + 2\varepsilon \to 2\varepsilon \ (w \to z) \ (N = N_{\varepsilon} \text{ fest!})$$

$$\implies \lim_{w \to z} d(w) \le 2\varepsilon$$
. Da $\varepsilon > 0$ beliebig war, folgt $\lim_{w \to z} d(w) = 0$.

Beispiele mit $\rho = \infty$.

(a)
$$\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}, \ \exp'(z) = \sum_{n=1}^{\infty} \frac{z^{n-1}}{(n-1)!} = \exp(z).$$

(b)
$$\sin(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}, \ \sin'(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} = \cos(z).$$

(c)
$$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n},$$

$$\cos'(z) = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)!} z^{2n-1} \stackrel{l=n-1}{=} \sum_{l=0}^{\infty} \frac{(-1)^{l+1}}{(2l+1)!} z^{2l+1} = -\sin(z).$$

Seien $f: D \to \mathbb{C}, z_0 \in D, z \in D$. Setze wieder $u = \operatorname{Re} f, v = \operatorname{Im} f, x_0 = \operatorname{Re} z_0, y_0 = \operatorname{Im} z_0$, also

$$f(x,y) = u(x,y) + iv(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}.$$

Sei $z \neq z_0$ und f bei z_0 komplex differenzierbar. Dann gilt:

$$\frac{1}{|z-z_0|}|f(z)-f(z_0)-f'(z_0)(z-z_0)| = \left|\frac{f(z)-f(z_0)}{z-z_0}-f'(z_0)\right| \longrightarrow 0, \ z \to z_0.$$

Die Zahl $f'(z_0) \in \mathbb{C}$ kann als \mathbb{C} -lineare Abbildung $w \mapsto f'(z_0)w$ aufgefasst werden. Diese ist dann auch \mathbb{R} -linear auf \mathbb{R}^2 , kann also durch eine reelle 2×2 -Matrix dargestellt werden. Nach Analysis 2 ist nun f in $z_0 = (x, y)$ reell differenzierbar und somit existieren die partiellen Ableitungen von u und v und es gilt

$$f'(x_0, y_0) = \begin{pmatrix} \frac{\partial u}{\partial x}(x_0, y_0) & \frac{\partial u}{\partial y}(x_0, y_0) \\ \frac{\partial v}{\partial x}(x_0, y_0) & \frac{\partial v}{\partial y}(x_0, y_0) \end{pmatrix}. \tag{+}$$

Satz 1.4. Sei $f: D \to \mathbb{C}$, $z_0 = x_0 + \mathrm{i} y_0 \in D$. Dann sind äquivalent:

- (a) f ist in z_0 komplex differenzierbar.
- (b) f ist in z_0 reell differenzierbar und es gelten die Cauchy-Riemannschen Differentialgleichungen

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0), \quad \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0).$$
 (CR)

Insbesondere ist $f'(z_0)$ schiefsymmetrisch.

Beweis. Die letzte Behauptung folgt aus (+) und $(CR)_2$.

(a) \implies (b): Sei r > 0 mit $B(z_0, r) \subseteq D$, $t \in \mathbb{Q}$ mit 0 < |t| < r. Dann gelten

$$f'(z_0) = \lim_{t \to 0} \frac{1}{t} (f(z_0 + t) - f(z_0))$$

$$= \lim_{t \to 0} \left(\frac{1}{t} (u(x_0 + t, y_0) - u(x_0, y_0)) + \frac{i}{t} (v(x_0 + t, y_0) - v(x_0, y_0)) \right)$$

$$= \frac{\partial u}{\partial x} (x_0, y_0) + i \frac{\partial v}{\partial x} (x_0, y_0)$$
(1.2)

und

$$f'(z_0) = \lim_{t \to 0} \frac{1}{it} (f(z_0 + it) - f(z_0))$$

$$= \lim_{t \to 0} \left(-i \frac{1}{t} (u(x_0, y_0 + t) - u(x_0, y_0)) + \frac{i}{it} (v(x_0, y_0 + t) - v(x_0, y_0)) \right)$$

$$= -i \frac{\partial u}{\partial y} (x_0, y_0) + \frac{\partial v}{\partial y} (x_0, y_0).$$
(1.3)

Vergleichen von Real- und Imaginärteil liefert (CR).

 $(b) \implies (a)$: Setze

$$w = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0) \stackrel{\text{(CR)}}{=} \frac{\partial v}{\partial y}(x_0, y_0) - i \frac{\partial u}{\partial y}(x_0, y_0) \in \mathbb{C}.$$

Dann gilt:

$$w(z - z_0) = (\operatorname{Re} w)(x - x_0) - (\operatorname{Im} w)(y - y_0) + i((\operatorname{Re} w)(y - y_0) + (\operatorname{Im} w)(x - x_0))$$

$$\stackrel{\text{Def. } w}{=} \begin{pmatrix} \frac{\partial u}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial u}{\partial y}(x_0, y_0)(y - y_0) \\ \frac{\partial v}{\partial y}(x_0, y_0)(y - y_0) + \frac{\partial v}{\partial x}(x_0, y_0)(x - x_0) \end{pmatrix} \text{ (in } \mathbb{R}^2).$$

$$\implies |f(z) - f(z_0) - w(z - z_0)| \frac{1}{|z - z_0|}$$

$$= \left| \binom{x - x_0}{y - y_0} \right|_2^{-1} \left| \binom{u(x, y) - u(x_0, y_0) - \left(\nabla u(x_0, y_0) \mid \binom{x - x_0}{y - y_0}\right)}{v(x, y) - v(x_0, y_0) - \left(\nabla v(x_0, y_0) \mid \binom{x - x_0}{y - y_0}\right)} \right|_2 \to 0,$$

für $(x_0, y_0) = z_0 \rightarrow z = (x, y)$, da u, v differenzierbar.

Beispiel 1.5. (a) $f(z) = \overline{z}$, $z \in \mathbb{C}$, ist nirgends komplex differenzierbar, obwohl $f(x,y) = \begin{pmatrix} x \\ -y \end{pmatrix}$ reell C^{∞} ist. Denn u(x,y) = x, v(x,y) = -y; also

$$\frac{\partial u}{\partial x}(x,y) = 1 \neq -1 = \frac{\partial v}{\partial y}(x,y),$$

was $(CR)_1$ widerspricht.

(b) $f(z)=|z|^2=x^2+y^2,\,z\in\mathbb{C}$, ist nur in z=0 komplex differenzierbar, denn hier ist $u(x,y)=x^2+y^2,\,v(x,y)=0$ und somit:

$$\frac{\partial u}{\partial x}(x,y) = 2x \stackrel{!}{=} \frac{\partial v}{\partial y}(x,y) = 0 \iff x = 0,$$

$$\frac{\partial u}{\partial y}(x,y) = 2y \stackrel{!}{=} -\frac{\partial v}{\partial x}(x,y) = 0 \iff y = 0.$$

(c)
$$f(z) = \frac{1}{z} = \frac{\overline{z}}{|z|^2} = \underbrace{\frac{x}{x^2 + y^2}}_{=x} + i \underbrace{\frac{-y}{x^2 + y^2}}_{=x}$$
 ist holomorph für $z \neq 0$ (Bem. 1.2).

Bemerkung 1.6. Sei f in z = x + iy komplex differenzierbar. Nach (+) und (CR) gilt:

$$A := f'(z) = \begin{pmatrix} \frac{\partial u}{\partial x}(x, y) & \frac{\partial u}{\partial y}(x, y) \\ -\frac{\partial u}{\partial y}(x, y) & \frac{\partial u}{\partial x}(x, y) \end{pmatrix} = \begin{pmatrix} \frac{\partial v}{\partial y}(x, y) & -\frac{\partial v}{\partial x}(x, y) \\ \frac{\partial v}{\partial x}(x, y) & \frac{\partial v}{\partial y}(x, y) \end{pmatrix}. \tag{1.4}$$

Also gilt $\rho := \det A = \frac{\partial u}{\partial x}(x,y)^2 + \frac{\partial u}{\partial y}(x,y)^2 = \frac{\partial v}{\partial x}(x,y)^2 + \frac{\partial v}{\partial y}(x,y)^2 \ge 0$ und $f'(z) \ne 0 \iff \det A > 0$. Ferner ist $A^T A = (\det A)I$. Sei $f'(z) \ne 0$. Dann gilt

$$\frac{1}{\sqrt{\rho}}A$$
 orthogonal (*)

$$\implies |Av|_2 = \sqrt{\rho} |v|_2 \quad (\forall v \in \mathbb{R}^2). \tag{**}$$

Sei $\gamma_j \in C^1((-1,1), \mathbb{R}^2)$ eine Kurve in D mit $\gamma_j(0) = (x,y), \gamma_j'(0) =: v_j \in \mathbb{R}^2 \setminus \{(0,0)\}$ (j=1,2). Dann ist $Av_j = f'(x,y)\gamma_j'(0) = (f \circ \gamma_j)'(0)$ ein Tangentenvektor der Bildkurve $f \circ \gamma_j$ bei f(x,y) (j=1,2). Weiter gilt:

$$\frac{(v_1 \mid v_2)}{|v_1|_2 |v_2|_2} \ \stackrel{(*),(**)}{=} \ \frac{\frac{1}{\rho}(Av_1 \mid Av_2)}{\frac{1}{\rho} |Av_1|_2 |Av_2|_2},$$

woraus durch Anwenden des Arcuscosinus folgt: $\triangleleft(v_1, v_2) = \triangleleft(Av_1, Av_2)$ (Winkel ohne Orientierung).

Also ist der Winkel der Urbildtangenten gleich dem Winkel der Bildtangenten unter f. Falls also $f'(z) \neq 0$, dann ist f bei z = x + iy winkeltreu ("konform"). Ferner ist f orientierungstreu, da det A > 0.

Definition 1.7. Seien $U, V \subseteq \mathbb{C}$ offen und nichtleer. Sei $f: U \to V$ bijektiv und $f \in H(U)$, $f^{-1} \in H(V)$. Dann heißt f biholomorph. (Dann heißen U und V auch "konform äquivalent".)

Satz 1.8. (a) Seien $U, V \subseteq \mathbb{C}$ offen und nichtleer, $f: U \to V$ biholomorph. Dann ist $f'(z) \neq 0$ für alle $z \in U$ und es gilt

$$(f^{-1})'(f(z)) = (f^{-1})'(w) = \frac{1}{f'(f^{-1}(w))} = \frac{1}{f'(z)} \quad (\forall z \in U, \ \forall w = f(z) \in V).$$

(b) Seien $f \in H(D) \cap C^1(D, \mathbb{R}^2)$, $z_0 \in D$, $f'(z_0) \neq 0$. Dann existeren offene $U, V \subseteq \mathbb{C}$ mit $z_0 \in U$, $f(z_0) \in V$, sodass $f: U \to V$ biholomorph ist. Somit ist a) auf f für alle $z \in U$ und $w = f(z) \in V$ anwendbar.

Beweis. (a) Nach Bem. 1.2 und $z = f^{-1}(f(z))$ ($\forall z \in U$) folgt $1 = (f^{-1})'(f(z))f'(z)$. Durchdividieren ergibt Behauptung a).

(b) Nach Bem. 1.6 ist $f'(z_0)$ als 2×2 -Matrix invertierbar. Der Umkehrsatz aus Analysis 2 liefert Behauptung b).

Definition. Eine Funktion $u \in C^2(D, \mathbb{R})$ heißt harmonisch auf D, wenn für alle $(x, y) \in D$ gilt:

$$\Delta u(x,y) := \frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = 0.$$

Satz 1.9. (a) Sei $f \in H(D) \cap C^2(D, \mathbb{R}^2)$. Dann sind u = Re f, v = Im f harmonisch auf D.

(b) Sei $u \in C^2(D, \mathbb{R})$ auf D harmonisch, $B_0 := B((x_0, y_0), r) \subseteq D$ für ein r > 0, $(x_0, y_0) \in D$. Dann existiert ein $f \in H(B_0)$ mit u = Re f.

Beweis. (a) Der Satz von Schwarz aus Analysis 2 (Satz 2.21) liefert

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \stackrel{\text{(CR)}}{=} \frac{\partial}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial}{\partial y} \frac{\partial v}{\partial x} = 0.$$

(b) Setze für $(x, y) \in B_0$

$$v(x,y) = -\int_{x_0}^{x} \frac{\partial u}{\partial y}(s,y_0) ds + \int_{y_0}^{y} \frac{\partial u}{\partial x}(x,s) ds.$$

Beachte: die Strecken von (x_0, y_0) nach (x, y_0) und von (x, y_0) nach (x, y) liegen in B_0 . Analysis 1 und 2 liefern: $v \in C^1(B_0)$ und

$$\frac{\partial v}{\partial x}(x,y) = -\frac{\partial u}{\partial y}(x,y_0) + \int_{y_0}^{y} \frac{\partial^2 u}{\partial x^2}(x,s) \, ds \qquad \text{Beachte hier: } \frac{\partial^2 u}{\partial x^2}(x,s) = -\frac{\partial^2 u}{\partial y^2}(x,s)$$
$$= -\frac{\partial u}{\partial y}(x,y_0) - \frac{\partial u}{\partial y}(x,y) + \frac{\partial u}{\partial y}(x,y_0) = -\frac{\partial u}{\partial y}(x,y)$$

 \Longrightarrow (CR)₂. Ferner $\frac{\partial v}{\partial y}(x,y)=\frac{\partial u}{\partial x}(x,y)$ \Longrightarrow (CR) gilt. Mit Satz 1.4 folgt: $f=u+\mathrm{i}v$ ist auf B_0 holomorph.

Beispiel. Sei $f(z)=z^3=(x+\mathrm{i}y)^3=x^3+3\mathrm{i}x^2y-3xy^2-\mathrm{i}y^3$. Satz 1.9 liefert: $u(x,y)=\mathrm{Re}\,f(x,y)=x^3-3xy^2$ ist harmonisch auf $\mathbb C$.

1.2 Elementare Funktionen

1.2.1 Möbiustransformationen

Sei $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{22}(\mathbb{C})$ mit det $A = ad - bc \neq 0$ (dann ist $c \neq 0$ oder $d \neq 0$). Setze

$$m_A(z) = rac{az+b}{cz+d}$$
 für $z \in D_A := \begin{cases} \mathbb{C} \setminus \left\{-rac{d}{c}\right\}, & c \neq 0, \\ \mathbb{C}, & c = 0. \end{cases}$

 m_A heißt Möbius-Transformation. Offensichtlich ist $m_A \in H(D_A)$.

Eigenschaften: Sei A wie oben und $\tilde{A} = \begin{pmatrix} \tilde{a} & \tilde{b} \\ \tilde{c} & \tilde{d} \end{pmatrix} \in M_{22}(\mathbb{C})$ mit det $\tilde{A} \neq 0$.

(a) Es gilt

$$m_A(z) = z \ (\forall z \in D_A) \iff A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \text{ für ein } a \in \mathbb{C} \setminus \{0\}.$$

Beweis. " \Leftarrow ": einsetzen! " \Rightarrow ": Für alle $z \in D$ gilt:

$$m_A(z) = z \implies cz^2 + (d-a)z - b = 0 \ (\forall z \in D_A)$$

$$\implies c = 0, d = a, b = 0 \implies A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}.$$

- (b) Für alle $\alpha \in \mathbb{C}$ gilt $m_{\alpha A} = m_A$.
- (c) Es gilt $m_A(m_{\tilde{A}}(z)) = m_{A\tilde{A}}(z)$ (soweit alles definiert).

Beweis. Für passende z:

$$m_A(m_{\tilde{A}}(z)) = \frac{a\frac{\tilde{a}z+\tilde{b}}{\tilde{c}z+\tilde{d}} + b}{c\frac{\tilde{a}z+\tilde{b}}{\tilde{c}z+\tilde{d}} + d} = \frac{(a\tilde{a}+b\tilde{c})z + (a\tilde{b}+b\tilde{d})}{(c\tilde{a}+d\tilde{c})z + (c\tilde{b}+d\tilde{d})} = m_{A\tilde{A}}(z). \qquad \Box$$

(d) Es gilt:
$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
. Damit folgt: $D_{A^{-1}} = \begin{cases} \mathbb{C} \setminus \left\{ \frac{a}{c} \right\}, & c \neq 0, \\ \mathbb{C}, & c = 0. \end{cases}$

Man zeigt leicht, dass gilt:

$$m_A(D_A) \subseteq D_{A^{-1}},\tag{*}$$

$$m_{A^{-1}}(D_{A^{-1}}) \subseteq D_A. \tag{**}$$

Also folgt aus c): $m_A(D_A) = D_{A^{-1}}$ (wende auf (**) m_A an), $m_{A^{-1}}(D_{A^{-1}}) = D_A$ (wende auf (*) $m_{A^{-1}}$ an) und $(m_A)^{-1} = m_{A^{-1}}$.

Insbesondere sind $m_A: D_A \to D_{A^{-1}}, m_{A^{-1}}: D_{A^{-1}} \to D_A$ biholomorph.

(e) Sei c=0 (also $d\neq 0$). Dann ist $m_A(z)=\frac{a}{d}z+\frac{b}{d}$ eine affine Abbildung, also $m_A=T\circ S$ mit $Tw=w+\frac{d}{d}$ (Translation) und $Sw=\frac{a}{d}w$ (Drehstreckung). Sei nun $c\neq 0$. Dann gilt $m_A=A_2\circ J\circ A_1$, wobei $A_1w=cw+d$, $A_2w=\frac{a}{c}-\frac{ad-bc}{c}w$ (affin) und $Jw=\frac{1}{w}$ ($w\neq 0$) (Inversion).

Beweis. Es gilt
$$\frac{az+b}{cz+d} = \frac{a}{c} - \frac{ad-bc}{c} \frac{1}{cz+d} = A_2(J(A_1(z))).$$

Fasse jede Gerade in $\mathbb C$ als verallgemeinerten Kreis über ∞ auf. Also ist ein verallgemeinerter Kreis K entweder eine Gerade oder eine echte Kreislinie. Beachte: K wird durch die Angabe dreier verschiedener Punkte in $\mathbb C_\infty$ eindeutig bestimmt.

(f) Jede Möbiustransformation bildet einen verallgemeinerten Kreis bijektiv auf einen verallgemeinerten Kreis ab.

Beweis. Nach 1.9(e) ist die Behauptung nur für Translationen T, Drehstreckungen S und die Inversion J zu zeigen. Klar: T, S sind "verallgemeinert kreistreu".

Zu J: Sei r > 0, $z_0 \in \mathbb{C}$. Dann:

$$z \in K := \partial B(z_0, r) \iff r^2 = |z - z_0|^2 = (z - z_0)(\overline{z} - \overline{z_0}) = |z|^2 - z_0\overline{z} - \overline{z_0}z + |z_0|^2$$
.

Damit:

$$K = \{ z \in \mathbb{C} : \alpha |z|^2 + c\overline{z} + \overline{c}z + \delta = 0 \}$$
 (*)

für feste α , $\delta \in \mathbb{R}$, $c \in \mathbb{C}$ mit $|c|^2 > \alpha \delta$, wobei $z_0 = -\frac{c}{\alpha}$, $r^2 = \frac{|c|^2}{\alpha^2} - \frac{\delta}{\alpha}$, falls $\alpha \neq 0$.

 \rightsquigarrow Für $\alpha \neq 0$ beschreibt (*) die echte Kreislinie $\partial B(z_0, r)$. Für $\alpha = 0$ beschreibt (*) die Gerade Re $(\bar{c}z) = -\frac{\delta}{2}$ (Beachte: $c \neq 0$). Multipliziere (*) mit $\frac{1}{|z|^2}$. Dann erfüllt $w = Jz = \frac{1}{z} = \frac{\bar{z}}{|z|^2}$ die Gleichung:

$$0 = \underline{\alpha} + \underline{c} w + \overline{c} \overline{w} + \underline{\delta} |w|^2.$$

$$=:\delta' =:-\overline{c}' =:-c' =:\alpha'$$

Weiter gilt: $|c'|^2 - \alpha' \delta' = |c|^2 - \alpha \delta > 0$. Wenn K durch (*) beschrieben wird, dann folgt also $J(K) \subseteq K'$, wobei K' ein verallgemeinerter Kreis ist. Genauso: $J(K') \subseteq K$. Da $J^2 = \operatorname{id}$ folgt $K' = J^2(K') \subseteq J(K) \implies J(K) = K'$.

Definition 1.10. Setze $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$, $\mathbb{R}_{\infty} = \mathbb{R} \cup \{\infty\}$, wobei gelten soll:

$$\begin{split} \forall z \in \mathbb{C} : z \infty = \infty + z = \infty, \ \tfrac{z}{\infty} = 0, \\ \forall z \in \mathbb{C} \setminus \{0\} : z \cdot \infty = \infty \cdot z = \infty, \ \tfrac{z}{\bar{0}} = \infty. \end{split}$$

Verboten: $0 \cdot \infty$, $\infty \cdot 0$, $\frac{0}{0}$, $\frac{\infty}{\infty}$.

Wir schreiben $z_n \to \infty$, wenn $|z_n| \to +\infty$ $(n \to +\infty)$.

Beachte: Dieses ∞ ist ein anderes als $\pm \infty$ in \mathbb{R} aus Analysis 1.

Setze bezüglich dieser "Konvergenz" m_A "stetig" fort durch

$$m_A(\infty) := \begin{cases} \frac{a}{c}, c \neq 0 \\ \infty, c = 0 \end{cases}$$
.

Beachte:

$$m_A(z) = \frac{a + \frac{b}{z}}{c + \frac{d}{z}} \ (z \neq 0), \ m_A\left(-\frac{d}{c}\right) = \infty$$

(beachte: $-\frac{ad}{c} + b \neq 0$, da det $A \neq 0$).

Mit etwas Rechnung folgt: $m_A : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ ist bijektiv mit $(m_A)^{-1} = m_{A^{-1}} : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$.

Sei $\mathcal{M} := \{m_A \colon \mathbb{C}_{\infty} \to \mathbb{C}_{\infty} \mid \det A \neq 0\}$. Mit obigen Eigenschaften (und etwas Rechnung bezüglich ∞) folgt:

- *M* ist eine Gruppe bezüglich der Komposition.
- $\Phi: GL(2,\mathbb{C}) \to \mathcal{M}, A \mapsto m_A$ ist ein surjektiver Gruppenhomomorphismus mit Kern $\Phi = \{\alpha I \mid \alpha \in \mathbb{C} \setminus \{0\}\}.$

Beispiel 1.11 (Cayley-Transformation). Sei $C = \begin{pmatrix} 1 & -\mathrm{i} \\ 1 & \mathrm{i} \end{pmatrix} (\rightsquigarrow \det C = 2\mathrm{i} \neq 0) \rightsquigarrow M_C(z) = \frac{z-\mathrm{i}}{z+\mathrm{i}}$.

Dabei: $M_C(-\mathrm{i}) = \frac{-2}{0} = \infty$, $M_C(\infty) = \frac{1 - \frac{\mathrm{i}}{\infty}}{1 + \frac{\mathrm{i}}{\infty}} = 1$. Weiter: $M_C(0) = -1$, $M_C(1) = \frac{1 - \mathrm{i}}{1 + \mathrm{i}} = -\mathrm{i}$. Durch $\{0, 1, \infty\}$ läuft der verallgemeinerte Kreis $\mathbb{R}_{\infty} = \mathbb{R} \cup \{\infty\}$. Nach verläuft der Bildkreis $M_C(\mathbb{R}_{\infty})$ durch die Bilder -1, $-\mathrm{i}$, 1. Dies ist $\mathbb{S} = \partial \mathbb{D}$ mit $\mathbb{D} = B(0, 1)$. Also $M_C(\mathbb{R}_{\infty}) = \mathbb{S}$.

Ferner: Für $b \in \mathbb{R} \setminus \{-1\}$ gilt $M_C(ib) = \frac{b-1}{b+1}$, insbesondere $M_C(i) = 0$. $i\mathbb{R}_{\infty}$ verläuft durch $0, i, \infty$. \mathbb{R}_{∞} verläuft durch die Bildpunkte $-1, 0, 1 \implies M_C(i\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$. Mit Analysis 1: $M_C(i\mathbb{R}_+) = [-1, 1)$.

Die Gerade $K : ib + x, x \in \mathbb{R}$, (b > 0 fest) wird auf den verallgemeinerten Kreis K' durch $M_C(ib) \in (-1,1)$ und $1 = M_C(\infty)$ abgebildet. Nach Bem. 1.6 und da K die imaginäre Achse im Winkel $\frac{\pi}{2}$ schneidet, schneidet $M_C(K)$ die reelle Achse $(= M_C(i\mathbb{R}_{\infty}))$ auch senkrecht in $M_C(ib)$. $\Longrightarrow M_C(K)$ ist symmetrisch zur x-Achse und liegt in \mathbb{D} . $\Longrightarrow M_C(\mathbb{H}_+) \subseteq \mathbb{D}$, mit $\mathbb{H}_+ = \{z \in \mathbb{C} : \text{Im } z > 0\}$. Sei weiter $w \in \mathbb{D}$. Sei K der Kreis durch w und 1, der symmetrisch zur x-Achse ist. Sei $a \in (-1,1)$ der zweite Schnittpunkt von K mit der x-Achse. \Longrightarrow Es gibt genau ein $b \in (0,\infty)$ mit $a = \frac{b-1}{b+1}$. Also: Ist $w \in M_C(ib+\mathbb{R}_{\infty})$ $\Longrightarrow M_C(\mathbb{H}_+) = \mathbb{D}$ $\Longrightarrow M_C : \mathbb{H}_+ \to \mathbb{D}$ ist biholomorph.

1.2.2 Potenzen und Wurzeln

Sei $n \in \mathbb{N}$, $n \geq 2$. Mit $\sqrt[n]{x}$ wird stets die reelle Wurzel bezeichnet. Für $\theta \in (0, \pi]$ definiere den (offenen) Sektor:

$$\Sigma_{\theta} := \{ z \in \mathbb{C} \setminus \{0\} : |\arg z| < \theta \}$$

Speziell: $\Sigma_{\pi} = \mathbb{C} \setminus \mathbb{R}_{-}$ (geschlitzte Ebene), $\Sigma_{\frac{\pi}{2}} = \{z \in \mathbb{C} : \operatorname{Re} z > 0\} = \mathbb{C}_{+}$ (rechte Halbebene)

Betrachte: $P_n(z) = z^n, z \in \mathbb{C}$. Dann: $P_n(re^{i\phi}) = r^n e^{i\phi n}$. Also bildet P_n den Halbstrahl $\{re^{i\phi}, r > 0\}$ mit Winkel $\phi \in (-\pi, \pi]$ bijektiv auf den Halbstrahl $\{se^{i\phi n}, s > 0\}$ mit n-fachem Winkel (modulo 2π) ab.

Setze $p_n := P_n|_{\Sigma_{\frac{\pi}{n}}}$. Dann ist $p_n \colon \Sigma_{\frac{\pi}{n}} \to \Sigma_{\pi}$ bijektiv.

Beachte: P_n ist schon auf $\overline{\sum_{\frac{\pi}{n}}}$ nicht mehr injektiv. Beispiel für n=2:

$$+i, -i \in \overline{\Sigma_{\frac{\pi}{2}}} = \overline{\mathbb{C}_+}, \ P_2(i) = -1 = P_2(-i).$$

Definition 1.12. Der Hauptzweig der n-ten Wurzel ist die Umkehrabbildung $r_n = p_n^{-1} \colon \Sigma_{\pi} \to \Sigma_{\frac{\pi}{n}}$. Man schreibt $r_n(w) =: w^{\frac{1}{n}}$ für $w \in \Sigma_{\pi}$.

Per Definition haben wir $r_n(z^n) = z \ (\forall z \in \Sigma_{\frac{\pi}{n}}), \ r_n(w)^n = w \ (\forall w \in \Sigma_{\pi}).$ Es gilt:

$$r_n(se^{i\psi}) = \sqrt[n]{s}e^{i\frac{\psi}{n}} \quad (\forall s > 0, \ |\psi| < \pi)$$
(1.5)

(denn: $z = \sqrt[n]{s}e^{i\frac{\psi}{n}} \in \Sigma_{\frac{\pi}{n}}$ und $z^n = se^{i\psi}$)

Insbesondere: $r_n(x) = \sqrt[n]{x}$ für x > 0.

Weiter: $p_n'(z) = nz^{n-1} \neq 0 \ (\forall z \in \Sigma_{\frac{\pi}{n}}).$

Mit Satz 1.8 sind $r_n \in H(\Sigma_{\pi})$ und

$$p_n: \quad \frac{\sum_{\frac{\pi}{n}} \to \sum_{\pi}}{r_n: \quad \sum_{\frac{\pi}{n}} \to \sum_{\frac{\pi}{n}}}$$
 biholomorph

Abbildungsverhalten der Quadratfunktion

• Vertikale Gerade Re z=a mit einem festen a>0. Also gilt für $z=x+\mathrm{i} y$, dass $w:=z^2=a^2-y^2+\mathrm{i}\cdot 2ay$ (mit a=x) ($y\in\mathbb{R}$ ist Parameter). Also ist $\mathrm{Im}\, w=2ay$, also $y=\frac{\mathrm{Im}\, w}{2a}$. Damit folgt:

Re
$$w = a^2 - y^2 = a^2 - \frac{(\operatorname{Im} w)^2}{4a^2} \le a^2$$
.

Also ist $\operatorname{Im} w = \pm 2a\sqrt{a^2 - \operatorname{Re} w}$ eine nach links offene Parabel mit Scheitel $(a^2, 0)$.

• Horizontale Gerade Im z=b mit einem festen b>0. Also gilt für $z=x+\mathrm{i} y$, dass $w:=z^2=x^2-b^2+\mathrm{i}\cdot 2bx$ (mit y=b) ($x\in\mathbb{R}$ ist Parameter). Wie oben erhält man Im w=2bx, also $x=\frac{\mathrm{Im}\,w}{2b}$ und $\mathrm{Re}\,w=x^2-b^2$. Also ist $\mathrm{Im}\,w=\pm 2b\sqrt{b^2+\mathrm{Re}\,w}$ eine nach rechts offene Parabel mit Scheitel $(-b^2,0)$.

Weitere Zweige der Wurzel

Sei $\beta \in (-\pi, \pi]$. Setze

$$E_{\beta} = \{ t e^{i\psi} \mid t > 0, \psi \in (\beta, \beta + 2\pi) \} = \mathbb{C} \setminus \{ r e^{i\beta} \mid r \ge 0 \}.$$

Sei nun n=2, dann ist

$$W_{\alpha,2} = \{ s e^{i\phi} \mid s > 0, \phi \in (\alpha, \alpha + \pi) \}$$

eine gedrehte Halbebene. Da $\frac{\beta}{2} < \phi < \frac{\beta}{2} + \pi \iff \beta < 2\phi < \beta + 2\pi$, ist $p_2^o := P_2|_{W_{\frac{\beta}{2},2}}$ eine Bijektion

$$p_2^o \colon W_{\frac{\beta}{2},2} \to E_{\beta}.$$

Da $E_{\beta}=\{t\mathrm{e}^{\mathrm{i}\psi}\mid t>0, \psi\in(\beta-2\pi,\beta)\}$, ist ebenso $p_2^u:=P_2|_{W_{\frac{\beta}{2}-\pi,2}}$ eine Bijektion

$$p_2^u \colon W_{\frac{\beta}{2}-\pi,2} \to E_\beta.$$

Also erhalten wir für jedes $\beta \in (-\pi, \pi]$ genau zwei Zweige der Wurzel

$$r_2^o = (p_2^o)^{-1} \colon E_\beta \to W_{\frac{\beta}{2},2},$$

 $r_2^u = (p_2^u)^{-1} \colon E_\beta \to W_{\frac{\beta}{2}-\pi,2}.$

Eigenschaften: Sei t > 0, $\psi \in (\beta, \beta + 2\pi)$, $z = te^{i\psi}$. Es gilt

- $r_2^o\left(te^{i\psi}\right) = \sqrt{t}e^{i\frac{\psi}{2}} =: w^o$ Denn: $(w^o)^2 = \left(\sqrt{t}e^{i\frac{\psi}{2}}\right)^2 = te^{i\psi} = z \text{ und } \frac{\psi}{2} \in (\frac{\beta}{2}, \frac{\beta}{2} + \pi), \text{ also } w^o \in W_{\frac{\beta}{2}, 2}.$
- $r_2^u (te^{i\psi}) = \sqrt{t}e^{i\frac{\psi}{2}}e^{-i\pi} =: w^u$ Denn: $(w^u)^2 = \left(\sqrt{t}e^{i\frac{\psi}{2}}e^{-i\pi}\right)^2 = te^{i\psi}e^{-2\pi i} = z \text{ und } \frac{\psi}{2} - \pi \in (\frac{\beta}{2} - \pi, \frac{\beta}{2}), \text{ also } w^u \in W_{\frac{\beta}{2} - \pi, 2}.$

Beispiel. Sei $\beta = \frac{\pi}{4}$. Gefordert ist also im Urbild der Wurzel, dass $\psi \in (\frac{\pi}{4}, 2\pi + \frac{\pi}{4})$, sowie t > 0. Sei $\psi = \pi$, t = 1, also $z = e^{i\pi} = -1$. Dann $r_2^o(-1) = e^{i\frac{\pi}{2}} = i$, $r_2^u(-1) = e^{i\frac{\pi}{2}}e^{-i\pi} = -i$. Sei $\psi = 2\pi$, $z = t = te^{2\pi i} > 0$. Dann $r_2^o(t) = \sqrt{t}e^{i\pi} = -\sqrt{t}$, $r_2^u(t) = \sqrt{t}e^{i\pi}e^{-i\pi} = \sqrt{t}$.

Entsprechend erhält man für jedes $\beta \in (-\pi, \pi]$ genau n Zweige der n-ten Wurzel (mit jeweils passenden $\alpha!$).

1.2.3 Exponentialfunktion und Logarithmus

Aus Analysis 1 haben wir: Seien $z, w \in \mathbb{C}, z = x + \mathrm{i} y$. Dann gelten:

$$\exp(z+w) = \exp(z)\exp(w), \quad \exp(-z) = \frac{1}{\exp(z)} \neq 0$$
 (1.6)

$$e^z = \exp(z) = e^x e^{iy} = e^x (\cos y + i \sin y) \qquad (x, y \in \mathbb{R}!)$$
(1.7)

$$\exp(z) = \exp(z + 2\pi i)$$
 (exp ist $2\pi i$ -periodisch) (1.8)

$$e^z = 1 \iff z = 2\pi i k \text{ für ein } k \in \mathbb{Z}$$
 (1.9)

Mit (1.7) folgt:

- Horizontale Gerade $y = \text{Im } z = b \ (b \in \mathbb{R} \text{ fest})$. Die Exponentialfunktion liefert dann einen Ursprungsstrahl $e^x(\cos b + i \sin b)$, wobei $x \in \mathbb{R}$ ein Parameter ist. Hierbei ist exp bijektiv, da das reelle exp bijektiv ist.
- Vertikale Gerade $x = \text{Re } z = a \ (a \in \mathbb{R} \text{ fest})$. Die Exponentialfunktion bildet diese Gerade ab auf den Kreis $\partial B(0, e^a)$ (lasse in (1.7) $y \in \mathbb{R}$ laufen). Dies ist surjektiv, aber nicht injektiv.

Definiere den vertikalen Streifen $S_{\mathbf{r}}(a_1, a_2) = \{z \in \mathbb{C} \mid \text{Re } z \in (a_1, a_2)\} \text{ (mit } a_1 < a_2, a_1, a_2 \in \mathbb{R})$ und den horizontalen Streifen $S_{\mathbf{i}}(b_1, b_2) = \{z \in \mathbb{C} \mid \text{Im } z \in (b_1, b_2)\} \text{ (wobei } 2\pi k - \pi \leq b_1 < b_2 < 2\pi k + \pi, k \in \mathbb{Z}. \text{ Dann ist}$

exp:
$$S_{\mathbf{r}}(a_1, a_2) \to B(0, e^{a_2}) \setminus B(0, e^{a_1})$$

surjektiv, aber nicht injektiv, und

exp:
$$S_i(b_1, b_2) \rightarrow \{z \in \mathbb{C} \setminus \{0\} \mid \arg z \in (\theta_1, \theta_2)\}$$

bijektiv (wobe
i $\theta_j=\arg{(\cos{b_j}+\mathrm{i}\sin{b_j})}$ für j=1,2). Sei speziel
l $S_\mathrm{i}=S_\mathrm{i}(-\pi,\pi).$ Wegen $\cos{b_j}+\mathrm{i}\sin{b_j}=1,\,\theta_1=-\pi,\,\theta_2=\pi,$ ist dann

$$\exp |_{S_i} : S_i \to \Sigma_{\pi}$$

bijektiv.

Definition 1.13. Der Hauptzweig des Logarithmus ist

$$\log := (\exp |_{S_i})^{-1} : \Sigma_{\pi} \to S_i.$$

Bemerkung. In bezeichnet stets den reellen Logarithmus. $\exp|_{S_i+i\alpha}$ liefert andere Zweige des Logarithmus auf passenden E_{α} .

Per Definition gelten

$$\log (\exp (z)) = z \quad (\forall z \in S_i),$$

$$\exp (\log (z)) = z \quad (\forall z \in \Sigma_{\pi}).$$

Da für alle z gilt $\exp'(z) = \exp(z) \neq 0$, liefert Satz 1.8, dass

$$\exp: S_i \to \Sigma_{\pi}, \quad \log: \Sigma_{\pi} \to S_i$$

biholomorph sind, und es existiert die Ableitung

$$\log'(w) = \frac{1}{\exp'(z)} = \frac{1}{\exp(z)} = \frac{1}{w}$$

für alle $w=\mathrm{e}^z\in\Sigma_\pi,$ wobei $z\in S_\mathrm{i}.$ Für $w=r\mathrm{e}^{\mathrm{i}\phi}$ mit r>0, $\phi\in(-\pi,\pi)$ gilt

$$\log\left(r\mathrm{e}^{\mathrm{i}\phi}\right) = \ln\left(r\right) + \mathrm{i}\phi,\tag{1.10}$$

denn $\exp(\ln(r) + i\phi) \stackrel{(1.7)}{=} re^{i\phi}$ und $\ln(r) + i\phi \in S_i$.

Beispiel. $\log(r) = \ln(r), \quad \log(i) = \log\left(e^{i\frac{\pi}{2}}\right) = i\frac{\pi}{2}.$

wobei: $e^{x+i\pi} = e^x e^{i\pi} = -e^x$, $e^{x-i\pi} = e^x e^{-i\pi} = -e^x$, $e^{x+ib} = e^x e^{ib}$ für $x \in \mathbb{R}$, $b \in (-\pi, \pi)$ und es gilt:

$$\log r e^{ib} = \ln(r) + ib \tag{1.11}$$

wobei r > 0 und $b \in (-\pi, \pi)$, also $re^{ib} \in \Sigma_{\pi}$.

Vorsicht: Logarithmusgesetz gilt in \mathbb{C} nur eingeschränkt. Beispiel: Seien $\phi, \psi \in (-\pi, \pi)$, $\phi + \psi > \pi \implies \phi + \psi - 2\pi \in (-\pi, \pi)$. Damit:

$$\log(e^{i\phi}e^{i\psi}) = \log e^{i(\phi + \psi - 2\pi)} \stackrel{\text{(1.11)}}{=} i(\phi + \psi - 2\pi) \neq i\phi + i\psi \stackrel{\text{(1.11)}}{=} \log(e^{i\phi}) + \log(e^{i\psi}).$$

Definition 1.14. Seien $z = re^{i\phi} \in \Sigma_{\pi}, r > 0, \phi \in (-\pi, \pi), w = x + iy, x, y \in \mathbb{R}$. Setze

$$z^w := \exp(w \log z) \stackrel{\text{(1.11)}}{=} \exp((x + \mathrm{i}y)(\ln(r) + \mathrm{i}\phi)) = \underbrace{\mathrm{e}^{x \ln r}}_{=|z|^x} \mathrm{e}^{-y\phi} \mathrm{e}^{\mathrm{i}(x\phi + y \ln(r))}.$$

Beispiel. $i^i \leadsto r = 1, \ \phi = \frac{\pi}{2}, \ x = 0, \ y = 1 \implies i^i = e^{-\frac{\pi}{2}}.$

Bemerkung 1.15. Seien z, w wie in Definition 1.14, $n \in \mathbb{N}$, $w_k = x_k + \mathrm{i} y_k$ $(k = 1, 2), x_k, y_k \in \mathbb{R}$. Dann:

(a)
$$z^n \stackrel{1.14}{=} \exp(n \log z) \stackrel{(1.6)}{=} \exp(\log z) \cdots \exp(\log z) \stackrel{1.14}{=} \underbrace{z \cdots z}_{n\text{-fach}} \stackrel{\text{alte}}{=} z^n$$
.

•
$$z^0 = \exp(0 \log z) = 1$$
.

•
$$z^{-1} \stackrel{1.14}{=} \exp(-\log z) \stackrel{(1.6)}{=} \frac{1}{\exp(\log z)} = \frac{1}{z}$$
.

⇒ Def. 1.14 passt zu ganzen Exponenten.

(b)
$$z^{w_1+w_2} \stackrel{1.14}{=} \exp((w_1+w_2)\log z) \stackrel{(1.6)}{=} \exp(w_1\log z) \cdot \exp(w_2\log z) \stackrel{1.14}{=} z^{w_1}z^{w_2}$$

 $\implies z = z^{\frac{1}{n}+\dots+\frac{1}{n}} = \underbrace{z^{\frac{1}{n}}\cdots z^{\frac{1}{n}}}_{n\text{-fach}} = (z^{\frac{1}{n}})^n.$

 \implies Für $w=\frac{1}{n}$ stimmen Definition 1.14 und 1.12 überein.

(c)
$$\frac{\partial}{\partial z} z^w = \frac{\partial}{\partial z} \exp(w \log z) = \exp(w \log z) \frac{w}{z} \stackrel{\text{(b)}}{=} w z^{w-1},$$

 $\frac{\partial}{\partial w} z^w = \frac{\partial}{\partial w} \exp(w \log z) = \log(z) z^w.$

(d)
$$|z^w| \stackrel{1.14}{=} |z|^{\text{Re } w} e^{-\text{Im } (w) \arg(z)} \le |z|^{\text{Re } w} e^{\pi |\text{Im } w|}$$
.

1.2.4 Sinus und Kosinus

Seien $z, w \in \mathbb{C}, z = x + \mathrm{i} y \ (x, y \in \mathbb{R})$ Aus den Reihendarstellungen folgen (Analysis 1):

$$\sin(-z) = -\sin(z), \quad \cos(-z) = \cos(z) \tag{1.12}$$

$$\exp(iz) = \cos(z) + i\sin(z), \quad \cos^2(z) + \sin^2(z) = 1$$
 (1.13)

mit
$$(1.12)$$
: $\cos(z) = \frac{1}{2} (e^{iz} + e^{-iz}), \quad \sin(z) = \frac{1}{2i} (e^{iz} - e^{-iz})$ (1.14)

$$\begin{array}{c} \xrightarrow{\text{(i.7)}} & \cos z = \frac{1}{2} (\mathrm{e}^{\mathrm{i}x} \mathrm{e}^{-y} + \mathrm{e}^{\mathrm{i}x} \mathrm{e}^{y}) = \frac{1}{2} \mathrm{e}^{-y} (\cos x + \mathrm{i}\sin x) + \frac{1}{2} \mathrm{e}^{y} (\cos x - \mathrm{i}\sin x) \\ & = \cos(x) \cosh(y) + \mathrm{i}\sin(x) \sinh(y) \end{array}$$
 (1.15)

wobei
$$\cosh(y) = \frac{1}{2}(e^y + e^{-y}), \ \sinh(y) = \frac{1}{2}(e^y - e^{-y})$$

Genauso:
$$\sin z = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$$
 (1.16)

→ sin, cos sind in imaginärer Richtung unbeschränkt.

Aus (1.14) folgt ferner (Analysis 1):

$$\cos(z) - \cos(w) = -2\sin\left(\frac{z+w}{2}\right)\sin\left(\frac{z-w}{2}\right) \tag{1.17}$$

Weiter gilt mir (1.14) und (1.6):
$$\cos\left(z + \frac{\pi}{2}\right) = \frac{1}{2} \left(e^{iz} \underbrace{e^{i\frac{\pi}{2}}}_{=i} + e^{-iz} \underbrace{e^{-i\frac{\pi}{2}}}_{=-i}\right) = -\sin(z).$$

Genauso: $\sin(z + \frac{\pi}{2}) = \cos z$.

$$\implies \cos(z + 2\pi) = \cos(z), \quad \sin(z + 2\pi) = \sin(z).$$

Nullstellen: $\sin(z) = 0 \stackrel{\text{(1.14)}}{\Longleftrightarrow} e^{iz} = e^{-iz} \stackrel{\text{(1.7)}}{\Longleftrightarrow} e^{-y}(\cos x + i\sin x) = e^y(\cos x - i\sin x)$

$$\iff \left\{ \begin{array}{l} \text{Imagin\"{a}rteil: } \sin x = 0 \text{ } (\text{da } \mathrm{e}^y \neq -\mathrm{e}^{-y}) \\ \text{Realteil: } \cos x = 0 \text{ } \text{oder } \mathrm{e}^y = \mathrm{e}^{-y} \text{ } (\iff y = 0) \end{array} \right\} \iff z = k\pi \text{ f\"{u}r } \text{ein } k \in \mathbb{Z}.$$

Damit: $cos(z) = 0 \iff z = k\pi + \frac{\pi}{2}$ für ein $k \in \mathbb{Z}$

Zusammengefasst: \sin , \cos haben auf \mathbb{C} nur die reellen Nullstellen und Perioden. (1.18)

Wenn der reelle sin
$$bzw$$
. cos $auf(a,b) \subseteq \mathbb{R}$ injektiv ist,
dann ist der komplexe sin bzw . cos $auf(a,b)$ injektiv. (1.19)

Beweis. (für cos): Nach Vorraussetzung muss cos auf (a, b) strikt monoton sein. $\implies (a, b) \subseteq (k\pi, (k+1)\pi)$ für ein $k \in \mathbb{Z}$.

Seien also
$$z, w \in S_r(a, b)$$
 (wobei $z \neq w$) $\Longrightarrow z + w, z - w \neq 2j\pi \ (\forall j \in \mathbb{Z})$

$$\xrightarrow{(1.11)} \cos z - \cos w \neq 0.$$

 \implies cos ist auf $S_r(0,\pi)$ injektiv, sin ist auf $S_r(-\frac{\pi}{2},\frac{\pi}{2})$ injektiv.

Bild von cos **auf** $S_r(0,\pi) =: S_r$: Horizontale Gerade: z = x + ib mit $x \in \mathbb{R}$ und festem $b \in \mathbb{R}$. Mit (1.15):

$$\cos(t) = \cosh(b)\cos(x) + i\sinh(b)\sin(x)$$

 \implies Bild der Geraden ist eine Ellipse E(b) mit Scheiteln $(\pm \cosh(b), 0)$ und $(0, \pm \sinh(b))$.

Für $x \in (0, \pi)$ erhalten wir für b > 0 den oberen Bogen von E(b), den unteren Bogen für b < 0. Da $x \neq 0, \pi$ sind diese Bogen ohne die Endpunkte:

$$(\pm \underbrace{\cosh(b)}_{\geq 1}, 0) \implies \cos(S_r) \subseteq D := \mathbb{C} \setminus ((-\infty, -1] \cup [1, \infty)).$$

Klar: $\cos((0,\pi)) = (-1,1)$. Sei $w \in D \setminus (-1,1)$, also $\mathbb{C} \setminus \mathbb{R}$, da hier $w = u + \mathrm{i} v$, $u \in \mathbb{R}$, $v \in \mathbb{R} \setminus \{0\}$. Such $u \in \mathbb{R} \setminus \{0\}$ mit

$$w \in E(b) \iff f(b) := \frac{u^2}{\cosh^2(b)} + \frac{v^2}{\sinh^2(b)} \stackrel{!}{=} 1.$$

1 Komplexe Differenzierbarkeit

So ein b existiert, da f stetig ist (ZWS): $f(b) \to 0$ für $b \to \pm \infty$, $f(b) \to \pm \infty$ für $b \to 0$, da $v \neq 0$. \implies cos: $S_r \to D$ bijektiv \implies haben Hauptzweig des Arcuscosinus:

$$\arccos: D \to S_r, \quad \arccos = (\cos|_{S_r})^{-1}.$$

Da
$$\cos'(z) = -\sin(z) \neq 0 \ \forall z \in S_r \text{ sind}$$

$$\cos: S_r \to D$$
, $\arccos: D \to S_r$

biholomorph. Mit Verschiebung: sin: $S_r(-\frac{\pi}{2}, \frac{\pi}{2}) \to D$ ist biholomorph mit Inversem arcsin.