Interpretación geométrica de las derivadas parciales

Las derivadas parciales tienen las siguiente interpretación geométrica. Dada una función $f: U \to \mathbb{R}$, definida en U, un abierto de \mathbb{R}^2 :

- $\partial_x f(x_0, y_0)$ es la pendiente de la recta tangente, que pasa por el punto $(x_0, f(x_0, y_0))$, a la gráfica que se obtiene al cortar la gráfica de f con el plano $y = y_0$.
- $\partial_y f(x_0, y_0)$ es la pendiente de la recta tangente, que pasa por el punto $(y_0, f(x_0, y_0))$, a la gráfica que se obtiene al cortar la gráfica de f con el plano $x = x_0$.

Ejemplo 1. Considera la función $f(x,y) = x^2 + xy + y^3$.

1. Define g(x) = f(x, 0). Nota que g es una parábola y que $g'(x) = \partial_x f(x, 0)$. Así las pendientes de las rectas tangentes a g están dadas por $\partial_x f(x, 0)$.

El plano rojo es el plano y=0. Nota que la intersección con la gráfica de f (en verde) es una parábola, muy sutil, pero es una parábola. Esta parábola es la gráfica de g y las pendientes de las rectas tangentes están dadas por $\partial_x f(x,0)$.

2. Define h(y) = f(0, y). Nota que h es una cúbica y que $h'(y) = \partial_y f(0, y)$. Así las pendientes de las rectas tangentes a h están dadas por $\partial_y f(0, y)$.

El plano verde es el plano x=0 y la intersección con la gráfica de f es una cúbica, que es la gráfica de h.

De manera más general, dados x_0, y_0 define

$$g_{y_0}(x) := f(x, y_0), \quad h_{x_0}(y) = f(x_0, y)$$

Nota que g_{y_0} es una parábola y que h_{x_0} es una cúbica.

En el dibujo de arriba, el plano naranja es el plano y=4 y la rosa es y=-4. Ambas curvas representan cuadráticas. Con la notación de arriba, la linea que se obtiene al intersectar la naranja con la verde es la gráfica de $g_4(x)$ y la de la intersección con el plano rosa es la gráfica de $g_{-4}(x)$. La derivada parcial $\partial_x f(x,4)$ da las pendientes de las rectas tangentes a la gráfica de $g_4(x)$ y $\partial_x f(x,-4)$ da las pendientes de las rectas tangentes a $g_{-4}(x)$.

En la figura de abajo

Se da las intersecciones con x=3 (azul) y x=-3 (naranja). Nota que ambas son cúbicas.

3. Por $G(g_{y_0})$ y $G(h_{x_0})$ denotamos las gráficas de g_{y_0} y h_{x_0} , respectivamente. Encuentra los puntos (x_0, y_0) , para las cuales las rectas tangentes a $G(g_{y_0})$ y a $G(h_{x_0})$, que pasan por $(1, g_{y_0}(1))$ y $(1, h_{x_0}(1))$ respectivamente, tienen pendiente iguales.

Proof. Las pendientes de las rectas tangentes están dadas por $g'_{y_0}(1)$ y $h'_{x_0}(1)$. Pero, $g'_{y_0}(1) = \partial_x f(1,y_0)$ y $h'_{x_0}(1) = \partial_y f(x_0,1)$. Así pues, buscamos los puntos (x_0,y_0) para los cuales se cumple $\partial_x f(1,y_0) = \partial_y f(x_0,1)$. Ahora, un cálculo directo muestra

$$\partial_x f(x,y) = 2x + y, \quad \partial_y f(x,y) = x + 3y^2$$

Por lo tanto $\partial_x f(1,y_0) = 2 + y_0$, $\partial_y f(x_0,1) = x_0 + 3$. Así que $\partial_x f(1,y_0) = \partial_y f(x_0,1)$ sii $2 + y_0 = x_0 + 3$ sii $0 = x_0 - y_0 + 1$. Así, todo punto en la recta 0 = x - y + 1 satisface la condición.