Лабораторная работа №5

Использования метода наименьших квадратов для аппроксимации результатов совместных измерений

К.С. Пилипенко 🔾

2023

Пусть имеется два набора экспериментальных данных: x_i и y_i , где i=1,...n такие что между ними предполагается зависимость вида y=f(x). Вводится некоторая (в простейшем случае линейная) функция $f(x,\{a_i\})$, которая определяется множеством неизвестных параметров $\{a_i\}$, где i=1,...n.

Ставится задача получить такое множество, чтобы совокупность погрешностей $r_i = y_i - f(x_i, \{a_i\})$ была в некотором смысле минимальной.

Согласно методу наименьших квадратов решением этой задачи является набор параметров $\{a_i\}$, который минимизирует некоторую функцию:

$$g(\{a_i\}) = \sum_{i=0}^{n} (y_i - f(x_i, \{a_i\}))^2.$$
 (1)

Пусть между данными предположительно имеется линейная зависимость, того n=2 и $\{a_i\}=\{a_1,a_2\}$, а функция $f(x,a_1,a_2)=a_1x+a_2$. Чтобы функция $g(a_1,a_2)$ из уравнения 1 была минимальна достаточным условием является равенство нулю её частных производных:

$$\begin{cases}
\left(\frac{\partial g(a_1, a_2)}{\partial a_1}\right)_{a_2} = 0 \\
\left(\frac{\partial g(a_1, a_2)}{\partial a_2}\right)_{a_1} = 0
\end{cases}$$
(2)

где $\left(\frac{\partial g(a_1,a_2)}{\partial a_1}\right)_{a_2}$ — производная функции по a_1 при постоянной a_2 .

Ход работы

1. Аппроксимировать зависимость будем квадратичной функцией вида $f(x,a,b,c) = ax^2 + bx + c;$

2.

Приложение

Листинг 1: Код генератора выборки

```
Dim i As Long
1
       Dim mean As Integer
2
       Dim sigma As Integer
3
       Dim random As Double
4
5
6
       mean = 10 * Rnd + 6
       sigma = 3 * Rnd + 2
7
       i = 501
8
9
       Range ("A1"). Select
10
       For i = 2 To i
           random = WorksheetFunction. NormInv(Rnd, mean,
11
              sigma)
           ActiveCell.Value = random
12
13
           ActiveCell.Offset(1, 0).Select
14
       Next i
```