

Binary Classification using Banknote Authentication Dataset

CPSC 6820: Special Topics: Hands-on Machine Learning

November 25, 2019

Submitted by: Tamanna Baig | Netra Inamdar

Clemson University

Problem Description

- → Banknote Authentication Dataset. This dataset was obtained from the UCI Machine Learning Repository and can be downloaded here.
- → A wavelet tool has been used to extract features from the images. Hence, the dataset has 5 distinct features that are explained in the Data Description.
- The aim of the project is to design a classification algorithm that will use the first 4 features as independent variables and predict a class outcome to distinguish between forged(0) and authentic(1) bank notes.

Data Description

- → The dataset is a text file with 1372 rows and 5 features.
- → Data was extracted from images that were taken from genuine and forged banknote-like specimen.
- → Each image was converted into grayscale with a resolution of about 660 DPI.
- → 5 Features were extracted from these images using a Wavelet Transform tool.

Attribute Information:

- I. variance of Wavelet Transformed image (continuous)
- 2. skewness of Wavelet Transformed image (continuous)
- 3. curtosis of Wavelet Transformed image (continuous)
- 4. entropy of image (continuous)
- 5. class (integer)

Data Set Characteristics:	Multivariate	Number of Instances:	1372	Area:	Computer
Attribute Characteristics:	Real	Number of Attributes:	5	Date Donated	2013-04-16
Associated Tasks:	Classification	Missing Values?	N/A	Number of Web Hits:	204945

Algorithms and Model

Binary Classification using kNN algorithm:

Binary Classification using Logistic Regression algorithm:

Description for train, test and validation methods

→ The dataset was split in a 80:20 ratio

→ Train set: 1097

→ Test set: 275

- → Feature Scaling: Normalization/Scaling was applied to match the scales on all the features.
- → Cross Validation: 5 fold cross validation was used in kNN algorithm along with train test split and normalization.

Evaluation of Results

	kNN		
Our Algorithm	Sklearn	Algorithm	
Best k-value: 7	Best k-value: 16	For k-value = 7	
TP, FP, TN, FN : 27 0 247 1	TP, FP, TN, FN: 149 0 126 0	TP, FP, TN, FN : 148 1 126 0	
Accuracy: 0.996	Accuracy: 1.0	Accuracy: 0.9963	
Recall: 1.0	Recall: 1.0	Recall: 1.0	
Precision: 0.964	Precision: 1.0	Precision: 0.9921	
F1 Score: 0.982	F1 Score: 1.0	F1 Score: 0.9960	

Logistic Regression				
Our Algorithm	Sklearn Algorithm			
TP, FP, TN, FN : 27 4 230 14	TP, FP, TN, FN : 148 1 125 1			
Accuracy: 0.935	Accuracy : 0.9927			
Recall: 0.659	Recall: 0.992			
Precision: 0.871	Precision: 0.992			
F1 Score: 0.753	F1 Score : 0.992			