Решения на примерните задачи за матрица на линейно изображение и действия с линейни изображения

Задача 1. Нека e_1, e_2, e_3 е базис на линейно пространство V над полето $\mathbb C$ на комплексните числа u

$$f_1 = e_1 + 2e_2 - e_3$$
, $f_2 = -2e_1 + e_2 - e_3$, $f_3 = e_1 - e_2 + e_3$.

Да се докаже, че за произволни вектори $v_1, v_2, v_3 \in V$ съществува единствен линеен оператор $\varphi: V \to V$ с $\varphi(f_i) = v_i$ за всички $1 \le i \le 3$.

 $A\kappa o \ \psi : V \to V \ e$ линейният оператор с

$$\psi(f_1) = 3f_1 + 8f_2 + 13f_3, \quad \psi(f_2) = -f_1 - f_2 - f_3, \quad \psi(f_3) = -f_2 - 2f_3,$$

да се намерят векторите $\psi(e_1), \psi(e_2), \psi(e_3)$ като линейни комбинации на e_1, e_2, e_3 .

Решение: Достатъчно е да докажем, че f_1, f_2, f_3 е базис на V, за да твърдим, че за произволни вектори $v_1, v_2, v_3 \in V$ съществува единствен линеен оператор $\varphi: V \to V$ с $\varphi(f_i) = v_i$ за всички $1 \le i \le 3$. За целта, разглеждаме матрицата

$$T = \left(\begin{array}{rrr} 1 & -2 & 1 \\ 2 & 1 & -1 \\ -1 & -1 & 1 \end{array}\right),$$

образувана по стълбове от координатите на f_1, f_2, f_3 спрямо базиса e_1, e_2, e_3 . Достатъчно е да проверим, че T е неособена или обратима, за да твърдим, че $f = (f_1, f_2, f_3)$ е базис на V.

Ако f е базис на V, то матрицата на ψ спрямо базиса f_1, f_2, f_3 е образувана по стълбове от координатите на $\psi(f_1), \psi(f_2), \psi(f_3)$ спрямо базиса $f = (f_1, f_2, f_3)$ и е

$$B = \left(\begin{array}{rrr} 3 & -1 & 0 \\ 8 & -1 & -1 \\ 13 & -1 & -2 \end{array}\right).$$

Еквивалентно, $\psi(f)=fB$. Ако $A\in M_{3\times 3}(\mathbb{C})$ е матрицата на ψ спрямо базиса e, то $\psi(e)=eA$. Комбинирайки с f=eT получаваме

$$e(AT) = (eA)T = \psi(e)T = \psi(eT) = \psi(f) = fB = (eT)B = e(TB).$$

Съгласно линейната независимост на базиса $e = (e_1, e_2, e_3)$, оттук следва, че AT = TB или $A = TBT^{-1}$. Достатъчно е да намерим обратната матрица T^{-1} на T, за да получим,

че T е неособена и f=eT е базис на V. С елементарни преобразувания по редове към матрицата

$$\left(\begin{array}{ccc|ccc} 1 & -2 & 1 & 1 & 0 & 0 \\ 2 & 1 & -1 & 0 & 1 & 0 \\ -1 & -1 & 1 & 0 & 0 & 1 \end{array}\right),$$

привеждаме лявата половина към единичната матрица E_3 . Тогава дясната половина е T^{-1} . По-точно, умножаваме първия ред по (-2) и прибавяме към втория. Събираме първия ред към третия и свеждаме към

$$\left(\begin{array}{ccc|ccc|c}
1 & -2 & 1 & 1 & 0 & 0 \\
0 & 5 & -3 & -2 & 1 & 0 \\
0 & -3 & 2 & 1 & 0 & 1
\end{array}\right).$$

Удвояваме третия ред, прибавяме към втория и получаваме

$$\left(\begin{array}{ccc|ccc} 1 & -2 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 1 & 2 \\ 0 & -3 & 2 & 1 & 0 & 1 \end{array}\right).$$

Умножаваме втория ред по (-2) и прибавяме към първия. Умножаваме втория ред по (-3), прибавяме към третия и свеждаме към

$$\left(\begin{array}{ccc|ccc|c} 1 & 0 & -1 & 1 & -2 & -4 \\ 0 & -1 & 1 & 0 & 1 & 2 \\ 0 & 0 & -1 & 1 & -3 & -5 \end{array}\right).$$

Изваждаме третия ред от първия, прибавяме го към втория и свеждаме към

$$\left(\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & -1 & 0 & 1 & -2 & -3 \\ 0 & 0 & -1 & 1 & -3 & -5 \end{array}\right).$$

Умножаваме втори и трети ред по (-1) и получаваме

$$\left(\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & -1 & 2 & 3 \\ 0 & 0 & 1 & -1 & 3 & 5 \end{array}\right).$$

Следователно

$$T^{-1} = \left(\begin{array}{rrr} 0 & 1 & 1 \\ -1 & 2 & 3 \\ -1 & 3 & 5 \end{array}\right).$$

Съществуването на T^{-1} доказва, че $f=(f_1,f_2,f_3)$ е базис на V. Матрицата $A\in M_{3\times 3}(\mathbb{C})$ на ψ спрямо базиса $e=(e_1,e_2,e_3)$ е

$$A = TBT^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & -1 & 0 \\ 8 & -1 & -1 \\ 13 & -1 & -2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 3 \\ -1 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 3 \\ -1 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Следователно

$$\psi(e_1) = e_2, \quad \psi(e_2) = e_3, \quad \psi(e_3) = \mathcal{O}_V.$$

Задача 2. Спрямо базис $e = (e_1, e_2, e_3)$ на линейно пространство U над поле F и базис $f = (f_1, f_2)$ на линейно пространство V над F са дадени линейните изображения

$$\varphi: U \longrightarrow V$$
 c $\varphi(e_1) = f_1 - f_2, \quad \varphi(e_2) = f_1, \quad \varphi(e_3) = f_2,$
 $\psi: U \longrightarrow V$ c $\psi(e_1) = f_2, \quad \psi(e_2) = f_1, \quad \psi(e_3) = 2f_1 - f_2,$
 $\theta: U \longrightarrow V$ c $\theta(e_1) = f_1 + f_2, \quad \theta(e_2) = -f_1 + f_2, \quad \theta(e_3) = f_1 + 3f_2,$

- (i) Да се докаже, че φ, ψ, θ е линейно независима система вектори от пространството Hom(U,V) на линейните изображения на U във V.
- (ii) Ако \mathcal{A}_{φ} , \mathcal{A}_{ψ} , $\mathcal{A}_{\theta} \in M_{2\times 3}(F)$ са матриците на φ , ψ и θ спрямо базиса e на U и базиса f на V, да се намерят необходими и достатъчни условия върху елементите a_{ij} на матрица

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{array}\right),$$

npu κουπο $A \in l(A_{\varphi}, A_{\psi}, A_{\theta}).$

Решение: (i) Матрицата на φ спрямо базиса $e=(e_1,e_2,e_3)$ на U и базиса $f=(f_1,f_2)$ на V е

$$\mathcal{A}_{arphi} = \left(egin{array}{ccc} 1 & 1 & 0 \ -1 & 0 & 1 \end{array}
ight).$$

Матрицата на ψ спрямо e и f е

$$\mathcal{A}_{\psi} = \left(egin{array}{ccc} 0 & 1 & 2 \ 1 & 0 & -1 \end{array}
ight),$$

а матрицата на θ спрямо тези базиси е

$$\mathcal{A}_{\theta} = \left(\begin{array}{ccc} 1 & -1 & 1 \\ 1 & 1 & 3 \end{array}\right).$$

Знаем, че съответствието

$$\mathcal{A}: \operatorname{Hom}(U,V) \to M_{2\times 3}(F),$$

съпоставящо на линейно изображение на U във V матрицата на това изображение спрамо базиса e на U и базиса f на V е линеен изоморфизъм. Следователно, φ, ψ, θ са линейно независими вектори от $\mathrm{Hom}(U,V)$ тогава и само тогава, когато матриците $\mathcal{A}_{\varphi}, \mathcal{A}_{\psi}, \mathcal{A}_{\theta}$ образуват линейно независима вектори от $M_{2\times 3}(F)$. Еквивалентно, φ, ψ, θ са линейно зависими точно когато $\mathcal{A}_{\varphi}, \mathcal{A}_{\psi}, \mathcal{A}_{\theta}$ са линейно зависими, защото линейните изоморфизми \mathcal{A} и \mathcal{A}^{-1} трансформират линейно зависима система вектори в линейно зависима система.

За да установим лиенйната независимост на $\mathcal{A}_{\varphi}, \mathcal{A}_{\psi}, \mathcal{A}_{\theta} \in M_{2\times 3}(F)$ предполагаме, че

за някакви $x_1, x_2, x_3 \in F$. Тогава $(x_1, x_2, x_3) \in F^3$ е решение на хомогенната система линейни уравнения с матрица от коефициенти

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 0 & 2 & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & -1 & 3 \end{pmatrix}.$$

С подходящи кратни на петия ред, прибавени към останалите редове, анулираме елементите на трети стълб извън пети ред без промяна на елементите в останалите колони и получаваме

$$\left(\begin{array}{cccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 2 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right).$$

С подходящи кратни на първия ред, прибавени към останалите редове, анулираме елементите на първи стълб под първи ред, без промяна на елементите в останалите стълбове и свеждаме към

$$\left(\begin{array}{cccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right).$$

От първо, второ и пето уранение следва $x_1 = x_2 = x_3 = 0$. Това доказва линейната независимост на матриците $\mathcal{A}_{\varphi}, \mathcal{A}_{\psi}, \mathcal{A}_{\theta} \in M_{2\times 3}(F)$, а оттам и линейната независимост на линейните изображения $\varphi, \psi, \theta \in \text{Hom}(U, V)$.

(ii) Трябва да намерим хомогенна система линейни уравнения с пространство от решения $l(A_{\varphi}, A_{\psi}, A_{\theta})$. За целта, разглеждаме хомогенната система линейни уравнения

$$\begin{vmatrix} a_{11} & +a_{12} & -a_{21} & +a_{23} & = 0 \\ a_{12} & +2a_{13} & +a_{21} & -a_{23} & = 0 \\ a_{11} & -a_{12} & +a_{13} & +a_{21} & +a_{22} & +3a_{23} & = 0 \end{vmatrix}.$$

Относно стълба от неизвестни $a = (a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23})^t$, матрицата на тази хомогенна система линейни уравнения е

$$\left(\begin{array}{cccccc} 1 & 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 2 & 1 & 0 & -1 \\ 1 & -1 & 1 & 1 & 1 & 3 \end{array}\right).$$

Изваждаме първия ред от третия. Изваждаме втория ред от първия и свеждаме към

$$\left(\begin{array}{cccccc} 1 & 0 & -2 & -2 & 0 & 2 \\ 0 & 1 & 2 & 1 & 0 & -1 \\ 0 & -2 & 1 & 2 & 1 & 2 \end{array}\right).$$

Удвояваме втория ред, прибавяме го към третия и получаваме

$$\left(\begin{array}{ccccccc}
1 & 0 & -2 & -2 & 0 & 2 \\
0 & 1 & 2 & 1 & 0 & -1 \\
0 & 0 & 5 & 4 & 1 & 0
\end{array}\right).$$

Получената хомогенна система линейни уравнения

$$\begin{vmatrix} a_{11} & -2a_{13} & -2a_{21} & +2a_{23} & = 0 \\ a_{12} & +2a_{13} & +a_{21} & -a_{23} & = 0 \\ 5a_{13} & +4a_{21} & +a_{22} & = 0 \end{vmatrix}$$

има общо решение

$$a_{11} = 2a_{13} + 2a_{21} - 2a_{23}, \quad a_{12} = -2a_{13} - a_{21} + a_{23}, \quad a_{22} = -5a_{13} - 4a_{21}$$

за произволни $a_{13}, a_{21}, a_{23} \in F$. Следователно пространството от решения е 3-мерно и има базис

$$b_1 = (2, -2, 1, 0, -5, 0)^t$$
, $b_2 = (2, -1, 0, 1, -4, 0)^t$, $b_3 = (-2, 1, 0, 0, 0, 1)$.

Оттук, $l(\mathcal{A}_{\varphi}, \mathcal{A}_{\psi}, \mathcal{A}_{\theta})$ е пространството от решения на хомогенната система линейни уравнения

$$\begin{vmatrix} 2a_{11} & -2a_{12} & +a_{13} & -5a_{22} & = 0 \\ 2a_{11} & -a_{12} & +a_{21} & -4a_{22} & = 0 \\ -2a_{11} & +a_{12} & +a_{23} & = 0 \end{vmatrix}$$
(1)

И

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \in l(\mathcal{A}_{\varphi}, \mathcal{A}_{\psi}, \mathcal{A}_{\theta})$$

тогава и само тогава, когато елементите a_{ij} на A изпълняват равенствата (1).