- A bird is flying along a straight line with velocity v = (6-2t) m/s. The distance travelled by the bird in $t_1 = 2 \text{ s to } t_2 = 5 \text{ s is}$ (1) 5 m (2) Zero
- (3) 4 m

- A bird is flying along a straight line with velocity v = (6-2t) m/s. The distance travelled by the bird in $t_1 = 2 \text{ s to } t_2 = 5 \text{ s is}$ (1) 5 m (2) Zero
- (3) 4 m

2. A particle is moving on x-y plane so that its x coordinate varies with time as $x = \frac{t^2}{2}$, and y

coordinate varies as $y = \frac{x^2}{2}$. The velocity of the particle at t = 2 s is

(1)
$$\vec{v} = (2\hat{i} + 3\hat{j}) \text{ m/s}$$

(2)
$$\vec{v} = (2\hat{i} + 2\hat{j}) \text{ m/s}$$

(3)
$$\vec{v} = (3\hat{i} + 4\hat{j}) \text{ m/s}$$

(4)
$$\vec{v} = (2\hat{i} + 4\hat{j}) \text{ m/s}$$

A projectile is thrown from the ground as shown. This distance between two vertical walls is 90 m. The range of projectile is

(1) 125 m (2) 180 m

(3) 225 m (4) 250 r

- A man can swim in still water with speed *v*, speed of water in the river is *u* and the width of the river is *d*. Select the correct statement(s)
 - (1) Man cannot reach the point exactly opposite on the bank if u > v.(2) Man can reach exactly opposite point on the
 - hank in time $t = \frac{d}{dt}$
 - bank in time $t = \frac{a}{\sqrt{v^2 u^2}}$ if u > v
 - (3) The minimum time in which man can cross the
 - river is $\frac{d}{v}$ (4) Both (1) & (3)

An external force F is applied on a block at angle θ from horizontal as shown. The minimum value of force required to keep the block stationary is

(1)
$$\frac{mg}{\mu \sin \theta}$$
 (2) $\frac{mg}{\sin \theta + \mu \cos \theta}$

(3)
$$\frac{mg}{\sin\theta - \mu\cos\theta}$$
 (4)
$$\frac{mg \, \mu \tan\theta}{\sqrt{\mu^2 + 1}}$$

- For the reaction of one mol zinc with two mol hydrochloric acid in a bomb calorimeter, ΔU and W correspond to
 - (1) $\Delta U < 0$, W = 0 (2) $\Delta U < 0$, W < 0
- (3) $\Delta U > 0$, W = 0 (4) $\Delta U > 0$, W > 0

7. The correct order of dipole moment is given by (1) $CHF_3 > CHCl_3$ (2) $PCl_3Br_2 > PBr_3Cl_2$

(4) All of these

(3) HI > HBr

Which is the correct graph between radial probability density vs radial distance for 2s orbital?

- The ratio of wavelength of limiting line of Paschen series for Li⁺² to that of lst line of visible series for He⁺ will be
- He⁺ will be
 (1) $\frac{1}{3}$ (2) $\frac{3}{1}$

2HBr(g) \longrightarrow H₂(g) + Br₂(g)

If 15 ml of H₂ reacts with 20 ml of Br₂ in one litre vessel and at equilibrium 20 ml of HBr is formed

(1) 40 (2) 20

(1) 40
 (2) 20
 (3) 0.125
 (4) ∞

10. The equilibrium constant for the reaction