Data Operations

Lesson

Why is it important to know the type of an attribute?

Importance of Attribute Types

Why is it important to know the type of an attribute?

This dictates:

- What statistics and tests can be calculated
- What transformations can be performed
- How learning algorithms can use the attribute

- The most common value for an attribute
- Can be calculated for all data types

 -3
 2
 2
 4
 5
 7
 7
 7
 10

Median

- The Median is the middle-ranked value
 - Sort all your values, take the middle one
 - If the count is even, average the two middle values
- Summary of distribution that is robust to outliers
- Can be calculated for the following data types:
 - Ordinal
 - Interval _3 2
 - -3 2 2 4 **5** 7 7 10

- Ratio

Mean

Unweighted arithmetic mean

Weighted arithmetic mean

$$\overline{x} = \frac{1}{\underline{n}} \sum_{i=1}^{n} x_i$$

$$\overline{X} = \frac{\sum_{i=1}^{n} w_i X_i}{\sum_{i=1}^{n} w_i}$$

- Can be calculated for Interval and Ratio data types
- Can you take the mean of an ordinal attribute?

Spread

- Range: max-min
 Variance: s²

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

- Standard Deviation: s
 - Square root of the variance
 - Measures spread about the mean
 - Zero if and only if all the values are equal

Median Absolute Deviation

Al Median of distances from the mean

Low Standard Deviation

High Standard Deviation

Transformation: Z-score Normalization

Values normalized by mean and standard deviation

$$z(x_i) = \frac{\underline{x_i} - \overline{\underline{x}}}{\underline{s}}$$

- Centered around 0
- Distance in units of standard deviation
- Can be calculated for Ratio and Interval data
- Remember Z-values when we talk about normalization

More Summary Statistics & Tests

- **Nominal:** mode, entropy, Chi-squared (χ^2) test
- Ordinal: median, percentiles, rank correlation, rank sum test, sign test
- Interval: mean, standard deviation, Pearson's correlation, *t*-test, *z*-score
- Ratio: Geometric mean, harmonic mean, percent variation
- Each type can use the stats above too (e.g. Ratio data can have a median)

Learning Objectives: Operations

You now should be able to:

Identify operations and transformations that can applied to different types of data

Data Operations

Exercises

Practice Question: Operations

Which of these following operations can be applied to **ordinal** data?

- A. Mean
- B. Median
- C. Standard Deviation
- D. Mode

