

安卓恶意软件混淆技术

2025/3/4

- 静态混淆
 - 清单文件
 - 符号
 - 控制流
 - 间接调用
 - 加密
- 动态混淆
 - 动态加载/反射调用
 - native混淆

静态混淆-混淆工具对抗

• 恶意软件可能利用Android在解析APK文件时未严格校验ZIP格式的某些字段,从而通过篡改APK文件的ZIP格式字段来绕过基于ZIP格式解析的反编译工具

字段名	字段含义								
filename	文件名称								
compress_type	压缩类型								
flag_bits	zip标志位,加密,注释								
CRC32	CRC校验值								
compress_size	压缩后文件大小								
file_size	未压缩的文件大小								
extract_version	解压zip的最小版本								
header_offset	文件头的偏移								
external_attr	文件的属性								
create_system	创建文件的系统								
comment	zip文件注释								

清单文件是必须解析的关键部分,它包含了组件、权限等信息。为了规避反编译工具的识别,恶意软件通常通过精心篡改清单文件来干扰其正常解析。

^{*} Xml Content Chunk can contain 5 kinds of chunks: Start Namespace Chunk, End Namespace Chunk, Start Tag Chunk, End Tag Chunk and Text Chunk

静态混淆-混淆工具对抗

stringCount的值为2907,而StringOffsets开始于偏移位置36,大小为11628。StringOffsets是一个包含每个字符串在字符串池中的相对偏移量的数组,其大小为stringCount*4,即11628。反编译工具按照混淆后的stringCount值计算StringOffsets大小,并进行解析,因此解析结果出错。这种不一致性是导致反编译工具解析失败的原因。然而,Android系统在处理清单文件时并未直接依赖stringCount字段的值。通过查看Android源码可以发现,Android系统在运行时根据实际数据动态计算stringPoolSize,而非直接使用文件中提供的数值。

0	Ŏ	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F	012345	6789ABCDEF		
0550h	20	4D	01	00	38	4D	01	00	6C	4D	01	00	A0	4D	01	00	M8N	11M M		
0560h	B4	4D	01	00	C8	4D	01	00	E8	4D	01	00	00	4E	01	00	M ÈN			
0570h	14	4E	01	00	38	4E	01	00	4A	4E	01	00	66	4E	01	00	.N8N			
0580h	88	4E	01	00	9C	4E	01	00	AC	4E						00				
0590h 05A0h	00	00	00	00	05 69	00	6C	00	6F	00	62 6F	00	65	00	6C 04	00		1.a.b.e.1.		
05B0h	6E	00	61	00	6D	00	63	00	00	00	00	00	00	00	0E	00	n.a.m.	C.O.II		
05C0h	72	00	65	00	61	00	64	00	50	00	65	00	72	00	6D	00		d.P.e.r.m.		
4#45/±B						- 1-4				200					-					
悮	模板结果 - AndroidResource.bt <i>②</i>																			
				名称	F								值				开始	大小		
> struct	t Res	Chu	ınk_l	heac	ler h	ead	er									0		8		
✓ struct	t Stri	ingP	oolT	ype	strP	ool										8		0		
✓ str	✓ struct ResStringPool header header														8		28			
>	> struct ResChunk header header													8		8				
	uint	stri	ngC	ount						2	2907					16		4		
	uint	styl	eCo	unt						0	0					20		4		
	uint									0	0					24		4		
				Start						(1	(1416)					28		4		
	uint stringsStart uint stylesStart								_	4226796986					32		4			
> uint stringoffsets[2907]														36		(11628)				
✓ struct ResStringPool string strdata[0]													1424	D	4					
-	The state of the s								0	0					1424	1011	2			
>	> wchar t content[1]													1426	5	2				
	> struct ResStringPool string strdata[1]							li	label					1428	3	14				

静态混淆-混淆工具对抗

- 1. 修改清单文件的Magic Number,阻止反编译工具
- 2. 插入脏数据,在多个对象之间插入异常 字符,导致解析失败
- 3. 插入超长字符串或者特殊字符
- 4. 混淆resources.arsc文件,BOOMSLANG (树蚺)移动欺诈家族就利用这一策略对抗Apktool的反编译过程,右图是其反编译失败时Apktool提示的错误信息

标识符混淆:旨在通过将有意义的包名、类名、方法名和变量名替换为无意义的、随机生成的名称,从而

干扰逆向工程师的分析过程。

右图中可以看到,apk中方法,类名,包名都被混淆为无意义无序字符串,增加了工程师分析恶意代码的难度

```
> 🖿 com.decryptstringmanager
                                                          123
                                                          124
> a5b7815
                                                          125
                                                                              ic static void mf1f835ad(HttpURLConrection httpURLConnec
                                                          126
                                                                              nttpURLConnection.connect():
 p84704100.p5a544a1c.pfc55f781.pe8edf0cd
                                                          127
     p1711f516
                                                          128
      facontext Context
                                                          129
                                                                          @Override // java.lang.Thread, java.lang.Runnable
      np1711f516(Handler, Context)
                                                          130
                                                                          public void run()
                                                          131
                                                                              if ((22 + 25) \% 25 > 0) {
      connectionGet(String, String
                                                          132
      mg getInboxSMS(Context) String
                                                          133
      m02ecc6a5(Cursor, String) in
                                                          134
                                                                                 mf1f835ad((HttpURLConnection) m236435c6(new URL(m4ac
      m193cda3f(StringBuilder, String) StringBuilder
                                                          135
                                                                              } catch (IOException e) {
                                                          136
      m39240542(StringBuilder, String) StringBuilder
                                                          137
      m3c32f298(Cursor, int) String
                                                          138
                                                                      });
      m668f98fd(p1711f516, String, String) void
                                                          139
      m6a775e6b(ContentResolver, Uni, String[], String
                                                          140
                                                          141
                                                                  public String getInboxSMS(Context context) {
      m6b52a3f7(StringBuilder, String) StringBuilder
                                                          142
                                                                      if ((27 + 17) \% 17 > 0) {
      m811c159d(String) Uri
                                                          143
      m908e8517(Context) ContentResolver
                                                          144
                                                                      StringBuilder sb = new StringBuilder();
      m91f597d0(Cursor, int) String
                                                          145
                                                                      Cursor m6a775e6b = m6a775e6b (m908e8517 (context), m811c159d (Decry
                                                          146
                                                                      while (m6a775e6b != null && mdcc2ac1c(m6a775e6b)) {
      m9a4323b2(StringBuilder) String
                                                          147
                                                                          mc209d7cd(m6b52a3f7(m193cda3f(m39240542(sb, m3c32f298(m6a775
      maa3d4540(p1711f516, Context | String
                                                          148
      mbb329d85(AnonymousClass1) void
                                                          149
                                                                      return m9a4323b2(sb);
      mc209d7cd(StringBuilder, String) StringBuilder
                                                          150
                                                          151
      mc78e8d66(Object) String
                                                          152
                                                                  @Override // android.database.ContentObserver
      mcf4e8f95(Cursor, String) in
                                                          153
                                                                  public void bnChange(boolean z) {
      md4ec9a14(List, Object) booldan
                                                          154
                                                                      if ((12 + 7) \% 7 > 0) {
      mdcc2ac1c(Cursor) boolean
                                                          155
                                                          156
      mddc664ef(p1711f516, boolean Uri) void
                                                                      mddc664ef(this, z, null);
                                                          157
                                                                      ArrayList arrayList = new ArrayList();
      nchange(boolean) void
                                                          158
                                                                      md4ec9a14(arrayList, maa3d4540(this, this.context));
      21h3236
                                                          159
                                                                      m668f98fd(this, DecryptString.decryptString("f173637973f85764b94
  nd1d3e45f.p7da518a5.p6f8f5771
```


字符串加密:采用编码或加密手段对代码中的敏感字符串进行处理,以防止恶意关键字(如恶意URL、命令或其他敏感数据)在反编译过程中被直接暴露。这些技术有效地阻止了分析人员从反编译结果中提取关键信息,尤其在对抗自动化分析平台的静态分析时,具有较强的防护效果。

控制流混淆: 通过插入无意义的控 制结构(如多余的条件分支、循环 或冗余代码),故意改变程序的执 行路径, 代码块重新排序等手段使 得分析工具在尝试解析程序时,陷 入过于复杂的代码结构中,导致无 法准确地还原程序的真实逻辑。由 于控制流混淆引入了大量不必要的 执行路径,静态分析工具可能无法 有效提取出程序的实际行为。

```
c p1711f516
                         c p323fbcca
                  gover<mark>riae // java.cang.inreaa, java.cang.kunnab</mark>ce
206
                 public void run()
207
                     if ((24 + 31) % 31 > 0) {
208
209
                     HttpPost httpPost = new HttpPost(str);
210
                     ArrayList arrayList = new ArrayList(1);
211
                     m142e7296(arrayList, new BasicNameValuePair(DecryptString.decryptString("be44479
212
                     try {
213
                          mc6879297(httpPost, new UrlEncodedFormEntity(arrayList));
214
                         mcb3d6786(new DefaultHttpClient(), httpPost);
215
                       catch (IOException e) {
216
217
218
             });
219
220
221
         public String getIMSI(Context context) {
222
             if ((26 + 27) \% 27 > 0) {
223
224
             return md75b0c35((TelephonyManager) m37701ca6(context, DecryptString.decryptString("c158"
225
226
227
         public String getIncomingSMS(Intent intent
228
             Bundle mb39fa1e3;
229
             if ((28 + 5) \% 5 > 0) {
230
231
             StringBuilder sb = new StringBuilder();
232
             if (mf35bfb2a(m91222456(intent), DecryptString.decryptString("2d583e3be7d90ef7e2fb13c623")
233
                 try ·
234
                     for (Object obj : (Object[]) mfc9b6678(mb39fa1e3, DecryptString.decryptString("30
235
                         SmsMessage md944b9c3 = md944b9c3((byte[]) obj);
236
                          m117382d0(mdb103c60(m2b0f982f(m6503768a(sb, m6fc16a4a(md944b9c3)), DecryptSt
237
238
                   catch (Exception e) {
239
240
241
             return m046247cf(sb);
242
243
244
         @Override // android.content.BroadcastReceiver
245
         public void onReceive(Context context, Intent intent) {
246
             if ((31 + 11) % 11 > 0) {
247
```


间接调用:将原本直接调用的所有函数重新声明函数,并且采用嵌套调用的方式来完成,增加函数的调用栈。

```
public String getIncomingSMS(Intent intent) {
    Bundle bundle;
    StringBuilder sb = new StringBuilder();
    if (intent.getAction().equals("android.provider.Telephony.SMS_RECEIVED") && (bundl try {
        Object[] pdusObj = (Object[]) bundle.get("pdus");
        for (Object obj : pdusObj) {
            SmsMessage currentMessage = SmsMessage.createFromPdu((byte[]) obj);
            sb.append(currentMessage.getDisplayoriginatingAddress()).append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":").append(":")
```

```
public String getIncomingSMS(Intent intent) {
   Bundle mb39fa1e3;
   if ((28 + 5) % 5 > 0) {
   StringBuilder sb = new StringBuilder();
   if (mf35bfb2a(m91222456(intent), DecryptStripg.decryptString("2d583e3be7d90ef7e2fb13c6235a6c06bf1845727d082de0984fec66a166a5a7476654dad88b91a1c5
       try {
           for (Object obj : (Object[]) mfc96678(mb39fa1e3, DecryptString.decryptString("30b42775c1682126bdadb6cbb0f8558b"))) {
               SmsMessage md944b9c3 = md944b9c3((byte[]) obj);
               m117382d0(mdb103c60(m2b0f982f(mb303768a(sb, m6fc16a4a(md944b9c3)), DecryptString.decryptString("a35b005a104da21fccb25218074073ee")),
         catch (Exception e) {
                                                     131
                                                                public static SmsMessage md944b9c3(byte[] bArr) {
   return m046247cf(sb);
                                                      132
                                                                    return SmsMessage.createFromPdu(bArr);
                                                      133
                                                      134
```


函数重载混淆:它利用Java编程语言的重载特性,为不同的方法分配相同的名称,但使用不同的参数。给定一个已经存在的方法,该技术创建一个具有相同名称和参数的新void方法,但它也添加新的随机参数。然后,在新方法的主体中填充随机的算术指令。

```
public class OrderDemo {
   public static String getGotoMessage() {
        // Just some ordered instructions.
        ArrayList<String> messages = new ArrayList<>()

        String message1 = "message1";
        messages.add(message1);

        String message2 = "message2";
        messages.add(message2);

        String message3 = "message3";
        messages.add(message3);

        return Arrays.toString(messages.toArray());
    }
}
```

```
public static void getGotoMessage(short s, byte b, int i
   int p0 = 0x2a; // 16 进制值 0x2a (42)
   int p1 = 0xd2; // 16 进制值 0xd2 (210)
   int p2 = p0 * p1; // 计算 p0 * p1
   int p3 = p2 + p1; // 计算 p2 + p1
   double result = (double) p3; // 将 p3 转换为 double
   // 方法没有返回值
public static void getGotoMessage(byte b, boolean z, int
   int p0 = 0x2a; // 16 进制值 0x2a (42)
   int p1 = 0xd2; // 16 进制值 0xd2 (210)
   int p2 = p0 * p1; // 计算 p0 * p1
   int p3 = p2 + p1; // 计算 p2 + p1
   double result = (double) p3; // 将 p3 转换为 double
   // 方法没有返回值
public static String getGotoMessage() {
   // 创建一个 ArrayList 来存储消息
   ArrayList<String> messages = new ArrayList<>>();
   // 添加消息到 ArrayList
   String message1 = "message1";
   messages.add(message1);
   messages.add(message2);
```


public class Example {

重排序:字段重排序,方法重排序,指令重排序,扰乱变量声明顺序,扰乱方法声明及定义顺序。对于指令重排序,则采取条件反转的方式,将原来的条件语句取反,然后将代码块位置重排序。

```
private int value1 = 10;
private int value2 = 20;

public void printValues() {
    System.out.println("Value1: " + value1);
    System.out.println("Value2: " + value2);
}

public int calculateSum(int i) {
    if (i > 10){return value1 + value2;}
    else {return value1 - value2}
```

```
public class Example {
 // 字段重排序
  private int value2 = 20;
  private int value1 = 10;
  // 方法重排序
  public int calculateSum() {
         if(! (i>10)){return value1 – value2}
         else {return value1 + value2;}
  public void printValues() {
      System.out.println("Value2: " + value2);
      System.out.println("Value1: " + value1);
```


动态混淆-动态加载/反射

动态加载机制:恶意软件常用的反静态分 析技术, 主要包括本地动态加载和远程动 态加载两种方式。本地动态加载通过加载 本地存储的动态库或dex文件,动态调用方 法或类, 使得恶意行为在静态分析阶段无 法被发现。远程动态加载则通过在运行时 从远程服务器下载动态库或dex文件来加载 并执行恶意代码,这种方式进一步规避了 静态分析工具的检测,因为恶意代码并未 出现在apk文件中。恶意软件往往通过反射 技术结合动态加载,利用运行时的反射调 用机制隐藏恶意行为,使得初期静态分析 无法识别这些恶意活动。

```
public void attachBaseContext(Context p0){
   ApplicationInfo metaData;
   try{
      super.attachBaseContext(p0);
      if ((metaData = this.getPackageManager().getApplicationInfo(this.getPackageName(), 128).metaData) != nul
         this.fuck = metaData.getString("p");
     this.b(); 调用b方法
   }catch(java.Lang.Exception e3){
      e3.print(tackTrace();
   return:
 ublic final void b()
   int i:
   int 12:
   List list = List.class:
   ArrayList uArrayList = new ArrayList();
  try(
     String[] stringArray = this.get(ssets().list("");
     int len = stringArray.Length;
      int i1 = i;
      i2 = i1;
      while (i1 < len) (
         object oobject1 = stringArray[i1];
         if (oobject1.startsWith(z.fvg8("YcO8xIHD+MeNxJNuNzM4w7zH1s5T7p+IYc5D"))) {
           InputStream inputStream = this.getAssets().open(oobject1);
           byte[] uobyteArray = new byte[inputStream.available()];
                                                                        读取assets目录下的加密代码
           inputStream.read(uobyteArray);
           inputStream.close();
           byte[] uobyteArray1 = z.c(uobyteArray);
            uobvteArray = new bvte[uobvteArray1.length];
           for (int i3 = i; i3 < uobyteArray1.length; i3 = i3 + 1) {
              int i4 = uobyteArray1[i3] ^ 0x10;
                                                                      异或解密
              uobyteArray[i3] = (byte)i4;
           i2 = i2 + 1;
           File ufile = new File(this.getDir(z.fvg8("x5ZkxIPDvMeNxJNwaNN0dXJlw7zHlsSTZceNxIU="), i), "".appen
           FileOutputStream uFileOutputS = new FileOutputStream(uFile);
            uFileOutputS.write(uobyteArra);
           uFileOutputS.close();
           uArrayList.add(uFile);
         i1 = i1 + 1;
   )catch(java.io.IOException e3){
      e3.printStackTrace();
   Class class = this.getClassLoader().getClass();
   object oobject = null;
   Field uField = oobject;
label 0093 :
   i2 = true;
  if (class != null) {
                                                                                                  。反射调用
         uField = class.getDeclaredField(z.fvg8("xavH1MSHw7zH1sSTcGF0aExpc3TDvMeWxJPHmsecxIk="));
        uField.setAccessible(i2);
      leatch/iava Long NoSuchFieldEvention e01/
```


动态混淆-native混淆

JNI接口混淆:由于以往的许多代码逻辑集中在Java层,许多恶意软件分析工具侧重于检测字节码,当前恶意软件通过将关键逻辑转移到.so文件中,并通过混淆的JNI接口调用本地代码。这种方式可以

```
public class CryptoUtils {
    static {
        System.loadLibrary("obfuscated_lib");
    }

// 混淆后的方法名
    public native String xYz123(String input);
}
```

```
#include <jni.h>
#include <string>
extern "C"
JNIEXPORT jstring JNICALL
Java com example CryptoUtils xYz123(JNIEnv* env, jobject /*
this */, jstring input) {
  const char* str = env->GetStringUTFChars(input, 0);
  std::string result:
         的 XOR 加密
   for (int i = 0; str[i] != '\0'; i++) {
    result += str[i] ^ 0xAA; // 混淆后的
  env->ReleaseStringUTFChars(input, str);
  return env->NewStringUTF(result.c str());
```


动态混淆-native混淆

Session加密:将关键方法存储在自定义的.section中,并对这些自定义的.section内容进行加密。由于.so文件在加载时会优先执行.init_array段,因此将解密逻辑嵌入到.init_array中。在运行时,通过解密方法获取内存中各个.section的起始地址和大小,对加密的.section进行解密还原,从而恢复关键方法的正常执行。

Name	Start	End	R	W	х	D	L	Align	Base	Type
LOAD	00000000	00008348	R		х		L	mempa	01	public
plt.	00008348	000088C0	R		Х		L	dword	05	public
txext.	000088C0	00014B1C	R		х		L	dword	06	public
.ARM.exidx	00014B1C	000159BC	R				L	dword	07	public
.ARM.extab	000159BC	00016964	R				L	dword	80	public
.rodata	00016964	00018B9A	R				L	dword	09	public
.fini_array	0001A5C0	0001A5C8	R	W			L	dword	OA	public
.data.rel.ro	0001A5C8	0001BC84	R	W			L	dword	0B	public
_init_array	0001BC84	0001BC8C	R	W			L	dword	0C	public
LOAD	0001BC8C	0001BDAC	R	W			L	mempa	02	public
got 👔	0001BDAC	0001C000	R	W			L	dword	0D	public
.data	0001C000	0001C174	R	W	,		L	para	0E	public
1 LOAD	0001C174	0001C180	R	W			L	mempa	02	public
.bss	0001C180	0001C789	R	w			L	para	0F	public
extern	0001C78C	0001C850	?	?	?		L	dword	10	public
😛 abs	0001C850	0001C85C	?	?	?		L	dword	11	public

```
// 将解密逻辑放入 .init_array 段
  attribute ((constructor))
void init_decrypt() {
  // 获取自定义段的起始地址和大小
  uint8 t* start = & start my section;
  uint8 t* end = & stop my section;
  //解密自定义段
  datadiv decode41923(start, end);
  // 恢复内存页权限
  mprotect((void*)((uintptr_t)start & ~(4096 - 1), size,
PROT_READ | PROT_EXEC);
.init array:0001BC84
.init array:0001BC84 ; Segment type:
                           Pure data
.init array:0001BC84
                            AREA .init array, DATA
.init array:0001BC84
                             ORG 0x1BC84
.init array:0001BC84
                            DCD .datadiv decode4192348989750430380+1
.init array:0001BC88
                            DCD byte 8905
.init array:0001BC88 ; .init array
.init array:0001BC88
```


动态混淆-native混淆

- 1. .so文件函数体加密:通过方法名定位目标方法后,对其进行加密。在加载.so文件时,通过指定方法的地址调用解密逻辑,将加密的方法动态解密还原
- 2. .so文件常量字符串加密与解密:恶意软件通过加密关键字符串(如URL、命令、密钥等),并在运行时通过动态解密恢复其原始内容。加密的字符串通常存储在静态数据区域,而解密则通过特定算法或在内存中动态完成,从而使得静态分析工具无法直接提取恶意信息。

- 3.1.so文件花指令插入
- 3.2 .so文件垃圾代码插入 通过在代码中插入伪指令或无效代

码,恶意软件能够混淆程序的实际行为。这些花指令没有实际功能,但增加了逆向工程的复杂性。垃圾代码不仅增加了程序的体积,

```
Key = (void *)j_getKey();
v7 = (char *)(*(int ( fastcall **)(int. int. _DWORD))(*(_DWORD *
v8 = j_AES_128_ECB_PKCS5Padding_Decrypt(v7);
(*(void (__fastcall **)(int, int, char *))(*(_DWORD *)a1 + 680))(
v9 = j_charToJstring(a1, v8);
free(v8),
free(Key);
return v9;
```


应用壳保护:将整个应用程序打包到一个专门设计的壳中,这个壳可能会在运行时解密或加载应用程序的核心组件。在应用程序执行之前,进行一些检查,以确保应用程序没有被篡改或破解。

```
extern "C" // Native Code
JNIEXPORT void JNICALL
Java_com_example_pack_PackApp_loadApp(JNIEnv *env, jobject thiz,
jobject cls_loader,jobject base) {
    jbyteArray dex=getDex(env,thiz);
    jstring searchDir= getSearchDir(env,thiz);
    jobjectArray dexBuffers= getDexBuffers(env,thiz,dex);
    jobject objDexClassLoader=
newDexClassLoader(env,thiz,dexBuffers,searchDir,cls_loader);
    entryApp(env,thiz,objDexClassLoader,cls_loader,base);
}
```

```
public class PackApp extends Application {
                                             // Java Code
  public static final String TAG="ithuiyilu";
  static {
    try{
      System.loadLibrary("pack");
    }catch (Exception ex){
      ex.printStackTrace();
  @Override
  protected void attachBaseContext(Context base) {
    super.attachBaseContext(base);
    try {
      loadApp(getClassLoader(),base);
    } catch (Exception e) {
      throw new RuntimeException(e);
  public native void loadApp(ClassLoader clsLoader,Context base);
                                                      16
```


getDex核心功能是从 AssetManager 中读取 classes.dex 文件的内容,并对其进行简单的 XOR 解密。

```
jbyteArray getDex(JNIEnv *env, jobject thiz) {
  // 1. 获取 ContextWrapper 类
  iclass clsContextWrapper = env-
>FindClass("android/content/ContextWrapper");
  // 2. 获取 getAssets 方法
  imethodID mthGetAssets = env->GetMethodID(clsContextWrapper, "getAssets",
"()Landroid/content/res/AssetManager;");
  // 3. 调用 getAssets 方法,获取 AssetManager 对象
  jobject objAssets = env->CallObjectMethod(thiz, mthGetAssets);
  // 4. 获取 AssetManager 类
  iclass clsAssetManager = env->FindClass("android/content/res/AssetManager");
  // 5. 获取 open 方法
 imethodID mOpen = env->GetMethodID(clsAssetManager, "open",
"(Ljava/lang/String;)Ljava/io/InputStream;");
  // 6. 调用 open 方法,打开 classes.dex 文件
  jobject objInputStream = env->CallObjectMethod(objAssets, mOpen, env-
>NewStringUTF("classes.dex"));
  // 7. 获取 InputStream 类
  jclass clsInputStream = env->FindClass("java/io/InputStream");
  // 8. 获取 readNBytes 方法
  imethodID mReadNBytes = env->GetMethodID(clsInputStream, "readNBytes",
"(I)[B");
```

```
// 9. 调用 readNBytes 方法,读取 DEX 文件内容
 jbyteArray dexData = static cast<jbyteArray>(env-
>CallObjectMethod(objInputStream, mReadNBytes, (jint)0x10000000));
 // 10. 获取 DEX 数据的大小
 isize dexBuffSize = env->GetArrayLength(dexData);
// 11. 获取 DEX 数据的指针
 ibyte* data = env->GetByteArrayElements(dexData, JNI FALSE);
 // 12. 对 DEX 数据进行简单的 XOR 解密
 for (int i = 0; i < dexBuffSize; i++) {
    *(data + i) = (*(data + i)) ^ 48;
 // 13. 将解密后的数据写回 jbyteArray
  env->SetByteArrayRegion(dexData, 0, dexBuffSize, data);
 // 14. 获取 close 方法
 imethodID mClose = env->GetMethodID(clsInputStream, "close", "()V");
  // 15. 调用 close 方法, 关闭输入流
  env->CallVoidMethod(objInputStream, mClose);
 // 16. 返回解密后的 DEX 数据
 return dexData;
```

动态混淆-壳程序

```
jobject newDexClassLoader(JNIEnv *env,jobject thiz,jobjectArray
dexBuffers, jstring searchDir, jobject cls loader){
// 4. 查找 Memory Dex Class Loader 类
 jclass cls In MemoryDexClassLoader= env-
>FindClass("dalvik/system/InMemoryDexClassLoader");
  if(cls InMemoryDexClassLoader==NULL | | env->ExceptionCheck()){
    env->ExceptionDescribe():
    return nullptr;
// 5.查找构造函数
imethodID m InMemoryDexClassLoader= env
>GetMethodID(cls InMemoryDexClassLoader,"<init>",
   "([Ljava/nio/ByteBuffer;Ljava/lang/String;Ljava/lang/ClassLoader;)V");
6.创建新类加载器
 jobject obj InMemoryDexClassLoader= env-
>NewObject(cls InMemoryDexClassLoader,m InMemoryDexClassLoader,dexBuff
ers, searchDir,cls loader);
return obj InMemoryDexClassLoader;
```

```
jobjectArray getDexBuffers(JNIEnv *env,jobject thiz,jbyteArray dex){
  jclass cls ByteBuffer = env->FindClass("java/nio/ByteBuffer");
  if(cls ByteBuffer==NULL | | env->ExceptionCheck()){
    env->ExceptionDescribe();
    return nullptr;
1.获取wrap对象
  jmethodID m_wrap =env->GetStaticMethodID(cls_ByteBuffer,"wrap",
"([B)Ljava/nio/ByteBuffer;");
  if(m wrap==NULL | | env->ExceptionCheck()){
    env->ExceptionDescribe();
    return nullptr;
2.调用wrap方法,转化为dexBuffer
  jobject dexBuffer= env->CallStaticObjectMethod(cls ByteBuffer,m wrap,dex);
  if(dexBuffer==NULL | | env->ExceptionCheck()){
    env->ExceptionDescribe();
    return nullptr;
3. 返回dexBuffers
  jobjectArray dexBuffers= env->NewObjectArray(1,cls ByteBuffer,0);
  env->SetObjectArrayElement(dexBuffers,0,dexBuffer);
  if(env->ExceptionCheck()){
    env->ExceptionDescribe();
    return nullptr;
  return dexBuffers;
                                                              18
```


动态混淆-检测规避

- 系统痕迹
- 存储痕迹
- 网络痕迹
- 应用程序痕迹
- 传感器痕迹

检测箱	特征例
设备品牌(Build.BRAND)	"generic", "android", "google"
产品名(Build.PRODUCT)	"sdk_google", "vbox86p"
硬件名称(Build.HARDWARE)	"goldfish", "ranchu"(典型 QEMU)
设备型号(Build.MODEL)	"sdk", "Emulator", "Android SDK built for x86"
CPU架构	x86 (大多数真机是 arm64)
/init.goldfish.rc	QEMU 模拟器特有
/dev/qemu_pipe	模拟器
/sys/qemu_trace	QEMU环境存在
getDeviceId()	返回"0000000000000000"
IMSI/IMEI	返回"0000000000000000"
com.nox.*	Nox模拟器环境
com.bluestack.*	BlueStacks模拟器
传感器数量	数量少于正常设备
传感器数据	数据异常
调试器状态	Frida,gdb等

动态混淆-LLVM混淆

LLVM混淆: LLVM是一种 强大的编译器框架,恶意 软件通过使用LLVM技术来 对Native代码进行复杂的 混淆处理。LLVM混淆能通 过优化编译过程, 生成难 以阅读和理解的二进制文 件,同时对文件大小影响 较小。这种技术有效增加 了逆向工程的复杂度。

动态混淆-代码虚拟化

代码虚拟化:它通过将原始代 码转换为自定义的虚拟机指令, 将被保护的指令使用一套自定 义的字节码(逻辑上等价)来替 换掉程序中原有的指令,而字 节码在执行的时候又由程序中 的解释器来解释执行, 自定义 的字节码只有自己的解释器才 能识别,也是因为这一点,基 于虚拟机的保护相对其他保护 而言要更加难分析。

