In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as tcr
%matplotlib inline
import seaborn as sns
```

In [2]:

```
#reading data as excel as csv file is too big
dating = pd.read_excel('/home/amybirdee/hobby_projects/dating_site/profiles.xlsx')
```

In [3]:

dating.head(3)

Out[3]:

	age	body_type	diet	drinks	drugs	education	essay0	essay1	
0	22.0	a little extra	strictly anything	socially	never	working on college/university	about me: />\n />\ni would love to think	currently working as an international agent fo	l /> abo
1	35.0	average	mostly other	often	sometimes	working on space camp	i am a chef: this is what that means. br />\n1	dedicating everyday to being an unbelievable b	b _i r a
2	38.0	thin	anything	socially	NaN	graduated from masters program	i'm not ashamed of much, but writing public te	i make nerdy software for musicians, artists,	im in alte

3 rows × 31 columns

In [4]:

#checking number of rows and columns
dating.shape

Out[4]:

(59949, 31)

In [5]:

```
#checking datatypes
dating.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 59949 entries, 0 to 59948
Data columns (total 31 columns):

Data	•	al 31 columns):			
#	Column	Non-Null Count	Dtype		
0	age	59946 non-null	float64		
1	body_type	54650 non-null	object		
2	diet	35551 non-null	object		
3	drinks	56961 non-null	object		
4	drugs	45866 non-null	object		
5	education	53318 non-null	object		
6	essay0	54456 non-null	object		
7	essay1	52361 non-null	object		
8	essay2	50287 non-null	object		
9	essay3	48457 non-null	object		
10	essay4	49405 non-null	object		
11	essay5	49087 non-null	object		
12	essay6	46154 non-null	object		
13	essay7	47488 non-null	object		
14	essay8	40709 non-null	object		
15	essay9	47328 non-null	object		
16	ethnicity	54263 non-null	object		
17	height	59940 non-null	float64		
18	income	59943 non-null	float64		
19	job	51745 non-null	object		
20	last_online	59943 non-null	object		
21	location	59943 non-null	object		
22	offspring	24383 non-null	object		
23	orientation	59943 non-null	object		
24	pets	40023 non-null	object		
25	religion	39717 non-null	object		
26	sex	59943 non-null	object		
27	sign	48887 non-null	object		
28	smokes	54431 non-null	object		
29	speaks	59893 non-null	object		
30	status	59943 non-null	object		
dtype	es: float64(3)), object(28)	•		
	44.0 MD				

memory usage: 14.2+ MB

In [6]:

```
#descibing the data
dating.describe(include = 'all')
```

Out[6]:

	age	body_type	diet	drinks	drugs	education	essay0	essay1
count	59946.000000	54650	35551	56961	45866	53318	54456	52361
unique	NaN	12	18	6	3	32	54348	51503
top	NaN	average	mostly anything	socially	never	graduated from college/university		enjoying it.
freq	NaN	14652	16585	41780	37724	23959	12	61
mean	32.340290	NaN	NaN	NaN	NaN	NaN	NaN	NaN
std	9.452779	NaN	NaN	NaN	NaN	NaN	NaN	NaN
min	18.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
25%	26.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
50%	30.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
75%	37.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
max	110.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN

11 rows × 31 columns

In [7]:

#checking column names
dating.columns

Out[7]:

In [8]:

In [9]:

dating.head()

Out[9]:

	age	body_type	diet	drinks	drugs	education	ethnicity	height	income
0	22.0	a little extra	strictly anything	socially	never	working on college/university	asian, white	75.0	-1.(
1	35.0	average	mostly other	often	sometimes	working on space camp	white	70.0	80000.0
2	38.0	thin	anything	socially	NaN	graduated from masters program	NaN	68.0	-1.(
3	23.0	thin	vegetarian	socially	NaN	working on college/university	white	71.0	20000.(
4	29.0	athletic	NaN	socially	never	graduated from college/university	asian, black, other	66.0	-1.(
4									•

In [10]:

```
#filling in nan values - using median for age since dataset is right skewed and average
s for rest of numeric values.
#Using most common values for some non-numeric variables where there are only a few mis
sing values.
#Otherwise filling with 'no response given'
dating['age'] = dating.age.fillna(dating['age'].median())
dating['body_type'] = dating.body_type.fillna('average')
dating['diet'] = dating.diet.fillna('no response given')
dating['drinks'] = dating.drinks.fillna('no response given')
dating['drugs'] = dating.drugs.fillna('no response given')
dating['education'] = dating.education.fillna('no response given')
dating['ethnicity'] = dating.ethnicity.fillna('no response given')
dating['height'] = dating.height.fillna(dating['height'].mean())
dating['income'] = dating.income.fillna(dating['income'].mean())
dating['job'] = dating.job.fillna('no response given')
dating['location'] = dating.location.fillna('no response given')
dating['offspring'] = dating.offspring.fillna('no response given')
dating['orientation'] = dating.orientation.fillna('no response given')
dating['pets'] = dating.pets.fillna('no response given')
dating['religion'] = dating.religion.fillna('no response given')
dating['sex'] = dating.sex.fillna('no response given')
dating['sign'] = dating.sign.fillna('no response given')
dating['smokes'] = dating.smokes.fillna('no response given')
dating['speaks'] = dating.speaks.fillna('no response given')
dating['status'] = dating.status.fillna('no response given')
```

In [11]:

```
#apostrophes are being replaces with ''' - fixing this
dating['offspring'] = dating['offspring'].str.replace('doesn't', "doesn't")
dating['sign'] = dating['sign'].str.replace('doesn't', "doesn't")
```

In [12]:

```
#converting numeric fields to integers rather than floats
dating['age'] = dating.age.astype(int)
dating['height'] = dating.height.astype(int)
dating['income'] = dating.income.astype(int)
```

In [13]:

```
#all records now filled in
dating.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 59949 entries, 0 to 59948
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	age	59949 non-null	int64
1	body_type	59949 non-null	object
2	diet	59949 non-null	object
3	drinks	59949 non-null	object
4	drugs	59949 non-null	object
5	education	59949 non-null	object
6	ethnicity	59949 non-null	object
7	height	59949 non-null	int64
8	income	59949 non-null	int64
9	job	59949 non-null	object
10	location	59949 non-null	object
11	offspring	59949 non-null	object
12	orientation	59949 non-null	object
13	pets	59949 non-null	object
14	religion	59949 non-null	object
15	sex	59949 non-null	object
16	sign	59949 non-null	object
17	smokes	59949 non-null	object
18	speaks	59949 non-null	object
19	status	59949 non-null	object

dtypes: int64(3), object(17)

memory usage: 9.1+ MB

In [14]:

```
#checking age distribution - shows a right skew
plt.figure(figsize = (8,8))
ax = plt.subplot()
dating['age'].hist(bins = 40, color = 'red')
#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
#function to add comma separator to labels. Function takes tick label and tick position
def comma(x, pos):
    return format(x, ",.0f")
#this code adds a comma separater to the y tick marks
ax.yaxis.set major formatter(tcr.FuncFormatter(comma))
plt.xlabel('Age', fontsize = 12)
plt.ylabel('Number of people in each age bracket', fontsize = 12)
plt.tick_params(axis = 'x', labelsize = 12)
plt.tick_params(axis = 'y', labelsize = 12)
plt.title('Distribution of ages on dating site', fontsize = 12)
plt.grid(None)
plt.savefig('Age - histogram', bbox_inches = 'tight')
```


In [15]:

```
#grouping by age to see the data - a couple of ages over 100 - anomalies or might be fa
Lse data
Age = dating.groupby('age').size().reset_index().rename(columns = {0: 'count_of_age'})
Age.head()
```

Out[15]:

	age	count_of_age
0	18	309
1	19	611
2	20	953
3	21	1282
4	22	1934

In [16]:

```
#plotting a scatter plot of ages - most people are mid 20s-30
plt.figure(figsize = (6,6))
ax = plt.subplot()

plt.scatter(Age['age'], Age['count_of_age'], color = 'red')

#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)

#this code adds a comma separater to the y tick marks
ax.yaxis.set_major_formatter(tcr.FuncFormatter(comma))

plt.xlabel('Age', fontsize = 12)
plt.ylabel('Number of people', fontsize = 12)
plt.tick_params(axis = 'x', labelsize = 12)
plt.tick_params(axis = 'y', labelsize = 12)

plt.title('Count of age for dating site members', fontsize = 12)
plt.savefig('Age - scatter plot')
```


In [17]:

```
#grouping ages into 7 groups for barplot using pd.cut to cut the age column
bins = [17, 19, 29, 39, 49, 59, 69, np.inf]
labels = ['<20', '20-29', '30-39', '40-49', '50-59', '60-69', '70+']
Age['age_range'] = pd.cut(Age['age'], bins = bins, labels = labels)
Age.head()
```

Out[17]:

	age	count_of_age	age_range
0	18	309	<20
1	19	611	<20
2	20	953	20-29
3	21	1282	20-29
4	22	1934	20-29

In [18]:

```
#grouping age ranges
age_range = Age.groupby('age_range').count_of_age.sum().to_frame().reset_index()
age_range
```

Out[18]:

	age_range	count_of_age
0	<20	920
1	20-29	27821
2	30-39	19849
3	40-49	7338
4	50-59	2860
5	60-69	1159
6	70+	2

In [19]:

```
#barplot of ages - ci = None removes the confidence intervals
plt.figure(figsize = (8,8))
ax = sns.barplot(x = age_range['age_range'], y = age_range['count_of_age'], color = 'gr
ey', ci = None)

#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.yaxis.set_major_formatter(tcr.FuncFormatter(comma))

plt.xlabel('Age range', fontsize = 12)
plt.ylabel('Count of age range', fontsize = 12)
plt.tick_params(axis = 'x', labelsize = 12)
plt.tick_params(axis = 'y', labelsize = 12)

plt.title('Dating site members by age range', fontsize = 12)
plt.savefig('Age - barplot', bbox_inches = 'tight')
```


In [20]:

```
#checking height distribution - shows a relatively normal distribution
plt.figure(figsize = (8,8))
ax = plt.subplot()
dating['height'].hist(bins = 15, range = [50, 90], color = 'red')

#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.yaxis.set_major_formatter(tcr.FuncFormatter(comma))

plt.xlabel('Height (inches)', fontsize = 12)
plt.ylabel('Number of people in each height bracket', fontsize = 12)
plt.tick_params(axis = 'x', labelsize = 12)
plt.tick_params(axis = 'y', labelsize = 12)

plt.title('Distribution of heights on dating site', fontsize = 12)
plt.grid(None)
plt.savefig('Height - histogram', bbox_inches = 'tight')
```


In [21]:

```
#grouping by height to see the data - most people are 60-70 inches but 20 are 95 inche
s. A few people in the 1-9 inch
#category - these are likely incorrect datapoints which haven't been filled in properly
height = dating.groupby('height').size().reset_index().rename(columns = {0: 'count_of_h
eight'})
height.head()
```

Out[21]:

	height	count_of_height
0	1	1
1	3	1
2	4	1
3	6	1
4	8	1

In [22]:

```
#plotting a scatter plot of heights - have excluded the very low heights that were clea
rly wrong
plt.figure(figsize = (8,8))
ax = plt.subplot()
plt.scatter(height['height'], height['count_of_height'], color = 'red')
#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.yaxis.set_major_formatter(tcr.FuncFormatter(comma))
ax.set_xlim(20, 100)
plt.xlabel('Height', fontsize = 12)
plt.ylabel('Number of people', fontsize = 12)
plt.tick_params(axis = 'x', labelsize = 12)
plt.tick_params(axis = 'y', labelsize = 12)
plt.title('Count of height for dating site members', fontsize = 12)
plt.savefig('Height - scatter plot')
```


In [23]:

```
#grouping heights into groups for barplot using pd.cut to cut the height column
bins = [0, 40, 50, 60, 70, 80, 90, np.inf]
labels = ['<40', '40-50', '50-60', '60-70', '70-80', '80-90', '90+']
height['height_range'] = pd.cut(height['height'], bins = bins, labels = labels)
height.head()</pre>
```

Out[23]:

	height	count_of_height	height_range
0	1	1	<40
1	3	1	<40
2	4	1	<40
3	6	1	<40
4	8	1	<40

In [24]:

```
#barplot of heights
plt.figure(figsize = (8,8))
ax = sns.barplot(x = height['height_range'], y = height['count_of_height'], color = 'gr
ey', ci = None)

#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)

ax.yaxis.set_major_formatter(tcr.FuncFormatter(comma))

plt.xlabel('Height range', fontsize = 12)
plt.ylabel('Count of height range', fontsize = 12)
plt.tick_params(axis = 'x', labelsize = 12)
plt.tick_params(axis = 'y', labelsize = 12)
plt.title('Dating site members by height range', fontsize = 12)
plt.savefig('Height - barplot')
```


In [25]:

```
#checking income distribution - most people are on lower incomes but many did not fill
 this fields in. A few people also
#said their income was $1,000,000 which propbably isn't true - have excluded from chart
plt.figure(figsize = (8,8))
ax = plt.subplot()
dating['income'].hist(bins = 10, range = [20000, 100000], color = 'red')
#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.yaxis.set_major_formatter(tcr.FuncFormatter(comma))
plt.xlabel('Income (US$)', fontsize = 12)
plt.ylabel('Number of people in each income bracket', fontsize = 12)
plt.tick_params(axis = 'x', labelsize = 12)
plt.tick_params(axis = 'y', labelsize = 12)
plt.title('Distribution of incomes on dating site', fontsize = 12)
plt.grid(None)
plt.savefig('Income - histogram')
```


In [26]:

```
#grouping by income to see the data - 81% of people put -1 for this which likely means
  they didn't answer the question
income = dating.groupby('income').size().reset_index().rename(columns = {0: 'count_of_i
  ncome'})
income.head()
```

Out[26]:

	income	count_of_income
0	-1	48440
1	20000	2952
2	20033	6
3	30000	1048
4	40000	1004

In [27]:

```
#plotting a scatter plot of income - have excluded the very low and high incomes that w
ere clearly wrong or incomplete
plt.figure(figsize = (6,6))
ax = plt.subplot()
plt.scatter(income['income'], income['count_of_income'], color = 'red')
#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.yaxis.set_major_formatter(tcr.FuncFormatter(comma))
ax.xaxis.set_major_formatter(tcr.FuncFormatter(comma))
ax.set_xlim(20000, 100000)
ax.set_ylim(0, 5000)
plt.xlabel('Income')
plt.ylabel('Number of people')
plt.title('Count of income for dating site members')
plt.savefig('Income - scatter plot')
```


In [28]:

```
#grouping income into groups for barplot using pd.cut to cut the income column bins = [0, 40000, 60000, 80000, 100000, np.inf] labels = ['<40', '40-60', '60-80', '80-100', '100+'] income['income_range'] = pd.cut(income['income'], bins = bins, labels = labels) income
```

Out[28]:

	income	count_of_income	income_range
0	-1	48440	NaN
1	20000	2952	<40
2	20033	6	<40
3	30000	1048	<40
4	40000	1004	<40
5	50000	975	40-60
6	60000	736	40-60
7	70000	707	60-80
8	80000	1111	60-80
9	100000	1621	80-100
10	150000	631	100+
11	250000	149	100+
12	500000	48	100+
13	1000000	521	100+

In [29]:

```
#barplot of income - have excluded those who didn't fill this in
plt.figure(figsize = (8,8))
ax = sns.barplot(x = income['income_range'], y = income['count_of_income'], color = 'gr
ey', ci = None)

#removing chart borders
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.yaxis.set_major_formatter(tcr.FuncFormatter(comma))

plt.xlabel('Income range (US$)', fontsize = 12)
plt.ylabel('Count of income range', fontsize = 12)
plt.tick_params(axis = 'x', labelsize = 12)
plt.tick_params(axis = 'y', labelsize = 12)
plt.title('Dating site members by income range', fontsize = 12)
plt.savefig('Income - barplot')
```

Dating site members by income range

In [30]:

#converting dating dataframe to csv as will continue analysising categorical values in
 a new notebook
dating = dating.to_csv('/home/amybirdee/hobby_projects/dating_site/dating_clean.csv', i
ndex = False)

In []: