Ha DE LA PROGRAMACIÓN PARA PROGRAMADORAS y PROGRAMADORES

Primer ordenador programable

 ENIAC (1946, Universidad de Pennsylvania, USA) es considerado el primer ordenador electrónico de propósito general.

No almacenaba el programa, se programaba conectando y cableando

módulos y entre sí.

Two women operating the ENIAC's main control panel

Primer ordenador comercial

- Primera máquina en ejecutar un programa: Small Scale Experimental Machine o Manchester Baby, Universidad de Manchester, UK, en 1948 (muy limitado).
- Manchester Baby fue Precursora del Ferranti Mark I o Manchester Mark I (1951) considerado el primer ordenador comercial del que se vendieron 2 ejemplares.
- Primero disponible para su compra.

Primero ordenador en España

- IBM 650 Magnetic Drum Data-Processing Machine
- Adquirido por Renfe en 1959.
- Se encuentra en el Museo Nacional de Ciencia y Tecnología de A Coruña

Dennis McAlistair Ritchie (9/11/1941-12/10/2011)

60's

- Matemáticas en Harvard
- AT&T Bell Labs 1967 (New Jersey)
- Adquirido por Nokia en 2016 (Nokia Bell Labs)
- Permanece allí hasta que se retira en 2007

Ritchie en mayo de 2011

1972

- Principal diseñador del Lenguaje C
- Co-creador de UNIX (con Ken Thompson)

Ritchie y Thompson en los 70's

Lenguaje C

- **1972**
- Un modo simple, claro y elegante de programar en la nueva era de computadoras que comenzaba
- Una forma de acercarse al hardware sin ofuscarse con él
- Muy sencillo
- La programación y los lenguajes de programación al alcance de todos
- Sin interés económico se distribuye por universidades e instituciones de todo el mundo...

1978

K&R C Book, 228 pág., un modelo de "technical writing", primer "hello world", etc.

El lenguaje C hoy

- Influencia sobre prácticamente todos los lenguajes de programación que existen
- Uno de los lenguajes de programación más utilizado en el mundo (TIOBE index http://www.tiobe.com)
- Objetive-C, C++ y C#, derivados de C, también de los más usados
- Java o PHP tienen sintaxis similar.
- https://en.wikipedia.org/wiki/List_of_Cfamily_programming_languages
- En todos los centros de formación de informática del mundo
- Todas las plataformas, todos los sistemas, aplicaciones de todo tipo

UNIX

- Un sistema para la nueva era de distribución masiva de ordenadores que comenzaba
- Muy sencillo y muy portable (hecho en "C" en 1972)
- Portable, multiusiario, multitarea
- Sin interés económico se distribuye por universidades e instituciones de todo el mundo...

DEC PDP-7 donde Ken Thompson escribío el primer UNIX en PDP-7 assembler Fuente: https://www.bell-labs.com/usr/dmr/www/chist.html

Punched paper tape

UNIX

- MULTICS (Multiplexed Information and Computing Service) 1964 en PL/1 y Ensamblador
- UNICS (UNiplexed Information and Computing Service) 1970
- UNIX, 1970
- UNIX en "C" en 1972
- Sin interés económico se distribuye por universidades e instituciones de todo el mundo...

UNIX

- GNU/Linux
- El sistema de los servidores del mundo: Google, Amazon, etc.
- Fundamento de todos los sistemas de Apple
- Android
- Existen otros muchos UNIXs de IBM, HP, Sun, AT&T, Microsoft, Google, GNU/Linux, BSD, Data General, Digital, Compaq, Fujitsu, Intel, Novell, SCO, Unisys, Univac, FreeBSD, NetBSD, (hay miles....)

UNIX y otros...

- MS-DOS 1981
- Macintosh 1984
- Windows 1985 como complemento a MS-DOS
- Estandarización: Single UNIX Specification (SUS)...POSIX (Portable Operating Sistem Interface for uniX)

Máquina Analítica de Charles Babbage (1837, aunque hay ingenios mecanícos anteriores en la H^a, incluso BCE) Ada ("la encantadora de números") era colaboradora de Babbage.

Considerado el primer diseño de un computador moderno turing-compatible (turing-compatible/equivalente se usa para describir cualquier ordenador moderno)

- Hija del poeta Lord Byron y abandonada por él con menos de 1 año.
- Su madre decidió que estudiara ciencias.
- Muchas dificultades para desarrollar su carrera en un mundo de hombres, que quizá hubieran podido llegar a inventar computadores 100 años antes.
- Su obra quedó en relativa oscuridad hasta 1953.

	Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.)																					
					Diagram for the c	ompi	utation	n by	the E	ngine	of the	Num	bers o	f Bern	oulli.	. See Note G. (pag	e 722 et seg	7.)				
ation.	tion.				190	1V ₁	Data.	1V ₃	0V4	ov,	ov ₆ ov ₇ ov ₈ ov ₉				°V ₁₀	Working Variables.	°V ₁₂ °V ₁₃		Result Variables.			
of Operation.	of Operation.	Variables acted	Variables receiving	Indication of change in the value on any	Statement of Results.	000	0	0	0	0	0 0	°V ₇ ○ 0	0V ₈	0	000	0	°V ₁₂ ○ 0 0	0	B, in a decimal O, fraction.	B ₃ in a decimalO ₁ fraction.	imal C	0 0
Number	Nature o	upon.	results.	Variable.	Statement of Actions	1	2	4 n	0	0	0	0	0	0	0	0	0	0	B ₁	B ₃	Bs	0 B ₇
1	×	V ₂ × 1V ₃	1V ₄ , 1V ₅ , 1V ₆	$ \left\{ \begin{array}{l} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{1}V_{3} = {}^{1}V_{3} \end{array} \right\} $	= 2 n		2	n	2 n	2 n	2 n								-1 6			
2 3	4		2V4	$ \left\{ \begin{array}{l} 1V_4 = {}^{2}V_4 \\ 1V_1 = {}^{1}V_1 \end{array} \right\} $ $ \left\{ \begin{array}{l} 1V_1 = {}^{2}V_1 \end{array} \right\} $	= 2 n - 1	1			2 n - 1	L											-	
4			² V ₅	$ \left\{ $	= 2n + 1 $= \frac{2n - 1}{2n + 1}$	1			0	2 n+ 1 0	2.7					$\frac{2n-1}{2n+1}$		or some to the				
5	+	V ₁₁ ÷1V ₂	2V ₁₁	$ \begin{cases} {}^{1}V_{11} = {}^{2}V_{11} \\ {}^{1}V_{2} = {}^{1}V_{2} \end{cases} $ $ \int {}^{2}V_{11} = {}^{0}V_{11} $	$=\frac{1}{2}\cdot\frac{2n-1}{2n+1}$		2								***	$\frac{1}{2} \cdot \frac{2n-1}{2n+1}$		1 2n-1				
6 7			V ₁₃	$ \begin{cases} {}^{1}V_{13} = {}^{1}V_{13} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases} $	$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} = \Lambda_0 \qquad \dots$ $= n-1 \ (=3) \qquad \dots$			n							 n - 1	0		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=\Lambda_0$				
8	+				= 2 + 0 = 2		2					2					1			- 50		olga
9	+	V6 +1V7	3V ₁₁	$ \begin{cases} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{0}V_{7} = {}^{1}V_{7} \\ {}^{1}V_{6} = {}^{1}V_{6} \\ {}^{0}V_{11} = {}^{3}V_{11} \end{cases} $	$= \frac{2n}{2} = \Lambda_1 \dots \dots$						2 n	2				$\frac{2 n}{2} = \Lambda_1$				100		7 50
10			V ₁₂	$ \begin{cases} {}^{1}V_{21} = {}^{1}V_{21} \\ {}^{3}V_{11} = {}^{3}V_{11} \end{cases} $ $ \int {}^{1}V_{12} = {}^{6}V_{12} \downarrow $	$\begin{vmatrix} = B_1 \cdot \frac{2n}{2} = B_1 A_1 & \dots \\ = -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} & \dots \end{vmatrix}$											$\frac{2n}{2} = \Lambda_1$	$B_1 \cdot \frac{2\pi}{2} = B_1 A_1$		B ₁			Land
12		Sec. 20	² V ₁₀	$ \left\{ \begin{smallmatrix} 1 V_{13} = 2 V_{13} \\ {}^{1}V_{10} = {}^{2}V_{10} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{smallmatrix} \right\} $	$2 2n+1 \cdot \cdot$										n - 2		0	$\left\{ -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \right\}$	H and			
13	5-		2V ₆	$\left\{ \begin{matrix} {}^{1}V_{6} = {}^{2}V_{6} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{matrix} \right\}$	= 2 n - 1	1					2 n - 1							1 L B=				
14	2		² V ₇	$\begin{bmatrix} {}^{1}V_{7} = {}^{2}V_{7} \\ {}^{2}V_{6} = {}^{2}V_{6} \end{bmatrix}$	= 2 + 1 = 3	1					 2 n – 1	3	2n - 1						1.0	127		
16			4V ₁₁	$\begin{cases} {}^{2}V_{7} = {}^{2}V_{7} \\ {}^{1}V_{8} = {}^{0}V_{8} \\ {}^{3}V_{11} = {}^{4}V_{11} \end{cases}$	$=\frac{3}{2}\cdot\frac{2n-1}{3}\dots$								3 0			$\frac{2n}{2} \cdot \frac{2n-1}{3}$						
17			3V ₆	$ \left\{ \begin{cases} 2V_6 = {}^{3}V_6 \\ 1V_1 = {}^{1}V_1 \\ 2V_7 = {}^{3}V_7 \end{cases} \right\} $	= 2 n - 2 = 3 + 1 = 4	1					2n - 2	1 30										
19	2	${}^{1}V_{1} + {}^{2}V_{7}$ ${}^{3}V_{6} + {}^{3}V_{7}$	ıv ₉	$ \left\{ \begin{array}{l} 1V_1 = 1V_1 \\ 3V_6 = 3V_6 \\ 3V_7 = 3V_7 \end{array} \right\} $	$=\frac{2n-2}{4}$						 2 n - 2	4		$\frac{2n-2}{4}$		$\left\{\frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3}\right\}$		A COLUMN		ALC: N	100	20
20	THE REAL PROPERTY.			$\begin{cases} {}^{1}V_{9} = {}^{0}V_{9} \\ {}^{4}V_{11} = {}^{5}V_{11} \end{cases}$	$=\frac{2n}{2}\cdot\frac{2n-1}{3}\cdot\frac{2n-2}{4}=A_3$		1.5							0		l = As J			1710	CHRIST	2000	-
21 22				$\begin{cases} {}^{1}V_{22} {=} {}^{1}V_{22} \\ {}^{0}V_{12} {=} {}^{2}V_{12} \end{cases}$ $\begin{cases} {}^{2}V_{12} {=} {}^{0}V_{12} \\ {}^{2}V_{13} {=} {}^{3}V_{13} \end{cases}$	$= B_3 \cdot \frac{2^n}{2} \cdot \frac{2^{n-1}}{3} \cdot \frac{2^{n-2}}{3} = B_3 A$ $= A_0 + B_1 A_1 + B_3 A_3 \dots$											0	B ₃ A ₃	$\left\{ A_3 + B_1 A_1 + B_3 A_3 \right\}$		Ba	41 11 1	City
23			3V ₁₀	$ \begin{cases} {}^{2}V_{10} = {}^{3}V_{10} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases} $	= n - 3 (= 1)	. 1									n-3			[[+		- 110	-	
	1		lu.	[4V ₁₂ =0V ₁₋]	I and the second			I	Iere foll	1	1	1	1	13 11	1	ty-three.			Arriva I	Park I		1
24	100			1111 111	= B ₇	1		n+1			0	0										В,
25	+	1V ₁ + 1V ₂	'V ₃	$\begin{cases} {}^{4}V_{6} = {}^{6}V_{6} \\ {}^{5}V_{7} = {}^{6}V_{7} \end{cases}$	by a Variable-card. by a Variable card.							1						Historia.				

Diagrama de Lovelace considerado el primer algoritmo informático publicado (1842)

Ada Lovelace (1815-1852)

Día de Ada Lovelace: segundo martes de octubre

Ada Lovelace y Babbage en la web Microsiervos (con su Lego): https://www.microsiervos.com/archivo/ciencia/dia-de-ada-lovelace-celebrar-presencia-mujeres-en-ciencia-tecnologia-ingenieria-y-matematicas.html

- 1940s Assembly Language
- 1950s First high-level programming language (computer specific, Z1, a German mechanical computer by Konrad Zuse)
- Short Code. AutoCode
- 1954. FORTRAN by John Backus. IBM.
- Mid 1950s ALGOL
- 1958 LISP
- 1959 COBOL
- 1963 CPL (forerunner to C)
- 1964 BASIC
- 1967 BCPL (forerunner to C)

- 1968 Logo
- 1969 B (forerunner to C)
- 1970 Pascal
- 1972 C
- 1972 Smalltalk
- 1972 Prolog
- 1978 SQL
- 1980 C++
- 1983 Ada
- 1985 Eiffel

- 1991 Python
- 1991 Visual Basic
- 1995 Ruby
- 1995 Java
- 1995 Javascript
- 1995 PHP
- 2001 C#
- 2009 Go
- **.** . . .

Wikipedia History of Programming Languages.
 Prominent People:

https://en.wikipedia.org/w/index.php?title=History_of_programming_languages§ion=7#Prominent_people

Sinclair ZX81

- Sucesor del ZX80
- 1981
- 1K RAM
- Teclas plástico con instrucciones BASIC
- FOR-NEXT de 1 a 1.000 tardaba 19 segundos
 - 70 libras

ZX Spectrum

- **1982**
- 16 o 48K RAM
- BASIC
- Juegos
- 125 libras

- **1982**
- 64 kilobytes de RAM
- BASIC
- Juegos con 16 colores
- Se vendieron casi 2M de unidades
- Increíbles ~500\$

- John G. Kemen y Thomas Eugene Kurtz 1963-1964
- Lenguaje limitado pero muy sencillo transformó la forma en que las personas interactuaban con los ordenadores

```
10 INPUT "Ingrese el primer número: ", A
```

20 INPUT "Ingrese el segundo número: ", B

30 LET C = A + B

40 PRINT "La suma de "; A; " y "; B; " es

50 END

RUN

The C64 review – a captivatingly precise replica of the joys of 80s gaming:

https://www.theguardian.com/games/2019/dec/19/the-c64-review-precise-replica-80s-gaming

ZX Spectrum: the legacy of a computer for the masses:

https://www.theguardian.com/technology/gamesblog/2012/apr/23/zx-spectrum-computer-masses-games

From the ZX Spectrum to Apple II: 80s computers in pictures:

https://www.theguardian.com/technology/gallery/2012/apr/23/zx-spectrum-to-apple-ii-home-computers

APPLE

- Apple II.
- Primera máquina de producción masiva de Apple
- 1977[¯]
- **\$1298**
- 4K RAM
- Procesador 6502 de MOS Technology de 8 bits

IBM PC

- 1981
- \$1565
- Arq. 8 bits 16K RAM

IBM PC

- IBM PC Compatible
- Clones desde 1982 como este de Compaq Portable del fabricante Compaq

 Desde los 90 se ejerce el dominio Intel + Windows: Wintel

Otros nombres que investigar

- Donald Ervin Knuth (The Art of Computer Programming)
- Egser Wybe Dijkstra (Algorítmica, Progr. Estruct., Lenguajes, etc.)
- Alan Turing (Algoritmo, máquina de Turing, etc...)
- Von Neumann (Máquina de Von Neumann)
- Claude Shannon (Teoría de la información, encriptación)
- Richard Stallman (GNU), Linus Torvalds (Linux)
- John Backus (FORTRAN)
- Etc...

Referencias

- Historia de la Tecnología: Ada Lovelace, la primera programadora https://hipertextual.com/2013/10/ada-lovelace-primera-programadora
- Ídolos de la computación: Ada Lovelace https://hipertextual.com/archivo/2014/06/ada-lovelace/
- Historia del Software: Ada Lovelace https://hipertextual.com/archivo/2012/03/historia-del-software-ada-lovelace/
- Álvaro Ibález (@Alvy), Javier Pedreira (@Wicho). Se Suponía que Esto Era el Futuro. Penguin Random House Grupo Editorial. 2021.

