

b Universität Bern

Variant annotation

Irene Keller

Department for Biomedical Research, University of Bern

Variant annotation

b Universität Bern

Total number of variants (= differences to reference genome) detected in two example datasets:

	Whole exome (WES)	Whole genome (WGS)
Total nbr variants	106'693	4'175'605

We need to prioritise these variants to be able to identify possible disease causing mutations

Gene-level annotation

b Universität Bern

Annotation for the **entire gene**. For example:

- Selective constraint: How often is the gene mutated?

From Eilbeck et al. 2017 Nature Methods

- Is the gene known to be associated with a particular (disease) phenotype?

Variant-level annotation

b Universität Bern

Annotation for individual variant, e.g. SNP

From Cooper & Shendure 2011 Nature Reviews Genetics

Identify coding variants

b Universität Bern

	WES	WGS
Total nbr variants	106'693	4'175'605
Coding variants	10'494	10'263

Of course, non-coding variants can also have functional effects but these are, in general, more poorly understood

Variant ranking

b Universität Bern

Based on allele frequency in the general (healthy) population. Important to consider the correct reference population!

Allele frequencies for rs79444516

Eilbeck et al. 2017 Nature Methods

	WES	WGS
Total nbr variants	106'693	4′175′605
Coding variants	10'494	10'263
Coding, rare (<1%) variants	411	

b Universität Bern

Based on effect prediction scores (see Ritchie & Flicek 2014 Genome Medicine for a very good overview)

Cooper & Shendure 2011 Nature Reviews Genetics

- For the human genome, many of these scores have been precomputed: https://sites.google.com/site/jpopgen/dbNSFP
- Important: For many of these predictors, it has been shown that the average scores differ between known deleterious and putatively neutral variants but, often, there is quite some overlap and individual variants may be misassigned

Issues/difficulties with variant annotation

b Universität Bern

- **Different annotations** for the same species, for example Ensembl, RefSeq etc

- Annotations are regularly updated
- → It is critical to keep track of exact annotation + version used in each project!

Issues/difficulties with variant annotation

- Many genes have multiple isoforms
- Annotation may differ between isoforms

Eilbeck et al. 2017 Nature Methods

→ Most annotation tools will select one annotation based on certain criteria, e.g. most serious effect

Issues/difficulties with variant annotation

b Universität Bern

Annotation may depend on tool that is used > But big efforts to improve consistency

http://andrewjesaitis.com/2017/03/the-state-of-variant-annotation-in-2017/

Variant Effect Predictor VEP

b UNIVERSITÄT BERN

http://grch37.ensembl.org/Homo_sapiens/Tools/VEP

