Problem 7

Alright so this one is the linear variational technique. In class, and in Professor Manassah's lectures, this method is also known as finite basis approximation (two-state, in this case).

Wait...this is literally Chapter 4 - Problem 6.

Hopefully you'll get this, but we'll just solve it and hopefully we all have the same answer!

Avocado and Mochi

Part A.

Compute as a function of α , the eigenvalues of the system in the two state basis approximation.

In[723]:= Clear["Global`*"] $\phi 1[x_{-}] = \left(\frac{\alpha}{Pi}\right)^{\frac{1}{4}} * Exp\left[-\frac{\alpha * x^{2}}{2}\right];$ $\phi 2[x_{-}] = \left(\frac{\alpha}{Pi}\right)^{\frac{1}{4}} * \frac{\left(2 * \alpha * x^{2} - 1\right)}{Sqrt[2]} * Exp\left[-\frac{\alpha * x^{2}}{2}\right];$

we know the Hamiltonian from the Schrodinger Equation

Schrodinger's Equation (in some normalized units):

$$-\frac{d^2}{dx^2}\phi(x) + x^4\phi(x) = \epsilon\phi(x)$$

is:

Hamiltonian (in some normalized units):

$$H = -\frac{d^2}{dx^2} + x^4$$

Since we'll be using the finite basis approximation, we can build the matrix as such:

$$H = \begin{bmatrix} H_{11} - En & H_{12} \\ H_{21} & H_{22} - En \end{bmatrix}$$

Where we define

 $H_{nm} = \langle \phi_n | H | \phi_m \rangle$ where H is the Hamiltonian

Performing this for n = 1, m = 1

```
ln[726] = kineticEnergy11 = Integrate[<math>\phi 1[x] * -1 * D[\phi 1[x], \{x, 2\}],
           {x, -Infinity, Infinity}, Assumptions \rightarrow Re[\alpha] > 0];
       potentialEnergy11 = Integrate [\phi 1[x] * x^4 * \phi 1[x],
           \{x, -Infinity, Infinity\}, Assumptions \rightarrow Re[\alpha] > 0\};
       H11 = kineticEnergy11 + potentialEnergy11;
       n = 1, m = 2
ln[729]:= kineticEnergy12 = Integrate [\phi 1[x] * -1 * D[\phi 2[x], \{x, 2\}],
           {x, -Infinity, Infinity}, Assumptions \rightarrow \text{Re}[\alpha] > 0];
       potentialEnergy12 = Integrate [\phi 1[x] * x^4 * \phi 2[x],
           \{x, -Infinity, Infinity\}, Assumptions \rightarrow Re[\alpha] > 0\};
       H12 = kineticEnergy12 + potentialEnergy12;
       n = 2, m = 1
ln[732] = kineticEnergy21 = Integrate[<math>\phi 2[x] * -1 * D[\phi 1[x], \{x, 2\}],
           {x, -Infinity, Infinity}, Assumptions \rightarrow \text{Re}[\alpha] > 0];
       potentialEnergy21 = Integrate \phi 2[x] * x^4 * \phi 1[x],
           \{x, -Infinity, Infinity\}, Assumptions \rightarrow Re[\alpha] > 0];
```

$$n = 2, m = 2$$

In[735]:= kineticEnergy22 = Integrate[
$$\phi$$
2[x] * -1 * D[ϕ 2[x], {x, 2}], {x, -Infinity, Infinity}, Assumptions \rightarrow Re[α] > 0]; potentialEnergy22 = Integrate[ϕ 2[x] * x^4 * ϕ 2[x], {x, -Infinity, Infinity}, Assumptions \rightarrow Re[α] > 0]; H22 = kineticEnergy22 + potentialEnergy22; In[740]:= det = (H11 - en) * (H22 - en) - (H12) * (H21)

Out[740]:= $\left(-\text{en} + \frac{3}{4\alpha^2} + \frac{\alpha}{2}\right) \left(-\text{en} + \frac{39}{4\alpha^2} + \frac{5\alpha}{2}\right) - \left(\frac{3}{\sqrt{2}\alpha^2} - \frac{\alpha}{\sqrt{2}}\right)^2$

In[741]:= Solve[det == 0, en]

Out[741]:= $\left\{\left\{\text{en} \rightarrow \frac{1}{4} \left(\frac{21}{\alpha^2} + 6\alpha - \frac{2\sqrt{3}\sqrt{33 + 8\alpha^3 + 2\alpha^6}}{\alpha^2}\right)\right\}, \left\{\text{en} \rightarrow \frac{1}{4} \left(\frac{21}{\alpha^2} + 6\alpha + \frac{2\sqrt{3}\sqrt{33 + 8\alpha^3 + 2\alpha^6}}{\alpha^2}\right)\right\}\right\}$

These are the two "lambdas" that the Professor is looking for.

Part B.

We just have to find the lowest one out of these two equations, after solving and plugging in α .

In[746]:= en1 =
$$\frac{1}{4} \left(\frac{21}{\alpha^2} + 6 * \alpha - \frac{2 * \sqrt{3} * \sqrt{33 + 8 * \alpha^3 + 2 * \alpha^6}}{\alpha^2} \right)$$
;
en2 = $\frac{1}{4} \left(\frac{21}{\alpha^2} + 6 * \alpha + \frac{2 * \sqrt{3} * \sqrt{33 + 8 * \alpha^3 + 2 * \alpha^6}}{\alpha^2} \right)$;
In[748]:= denergy1 = D[en1, {\alpha, 1}];
denergy2 = D[en2, {\alpha, 1}];
In[751]:= Solve[denergy1 == \text{0, } {\alpha}]
Out[751]:= $\left\{ \left\{ \alpha \to -(-11)^{1/3} \right\}, \left\{ \alpha \to -(-3)^{1/3} \right\}, \left\{ \alpha \to 3^{1/3} \right\}, \left\{ \alpha \to (-1)^{2/3} 3^{1/3} \right\}, \left\{ \alpha \to 11^{1/3} \right\}, \left\{ \alpha \to (-1)^{2/3} 11^{1/3} \right\}, \left\{ \alpha \to \left(\frac{1}{2} \left(8 - \sqrt{34} \right) \right)^{1/3} \right\}, \left\{ \alpha \to (-1)^{2/3} \left(\frac{1}{2} \left(8 - \sqrt{34} \right) \right)^{1/3} \right\} \right\}$

These are the roots corresponding to the first energy equation. Now we just have to use the real parts, and see what the energy is at that point.

$$\begin{array}{l} & \text{In} [764] = & \alpha = 3^{1/3} \text{;} \\ & \text{N} [\text{en1}] \\ & \alpha = 11^{1/3} \text{;} \\ & \text{N} [\text{en1}] \\ & \alpha = \left(\frac{1}{2} \left(8 - \sqrt{34} \right)\right)^{1/3} \text{;} \\ & \text{N} [\text{en1}] \end{array}$$

Out[765]= **1.08169**

Out[767]= 1.06145

Out[769]= 1.07084

so far, our winner is $\alpha = \mathbf{1}\mathbf{1}^{1/3}$ but before we decide, we have to repeat the process for the second energy equation.

In[771]:= **Clear**[α]

Solve [denergy2 == 0, $\{\alpha\}$]

$$\text{Out} [772] = \left. \left\{ \left\{ \alpha \to - \left(\frac{1}{2} \, \left(-8 - \sqrt{34} \, \right) \right)^{1/3} \right\} \text{, } \left\{ \alpha \to \left(\frac{1}{2} \, \left(8 + \sqrt{34} \, \right) \right)^{1/3} \right\} \text{, } \left\{ \alpha \to \left(-1 \right)^{2/3} \, \left(\frac{1}{2} \, \left(8 + \sqrt{34} \, \right) \right)^{1/3} \right\} \right\} \right\}$$

$$ln[775]:= \alpha = \left(\frac{1}{2} \left(8 + \sqrt{34}\right)\right)^{1/3};$$

N[en2]

Out[776]= 7.54028

our winner is definitely $\alpha=$ 11 $^{1/3}$, so our corresponding lowest energy value is : en_{min} = λ_{min} = 1.06145

In some normalized units.