G		. STATION MS.		
				l

à

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - 4

MARBA Technical Note 183

Navai Ocean Research and Development Activity NSTL Station, Minimippi 39529

A Bathythermograph to Sound Velocity Profile Program for the HP-41CV Calculator, Including a Northern Hemisphere Salinity Profile Library

THE FILE COPY

Approved for Public Release Distribution Unlimited

S.A. Kerr

Ocean Science and Technology Laboratory Numerical Modeling Division

January 1983

BS 07 26 084

ABSTRACT

This technical note documents a program written specifically for the HP-41CV calculator to convert a bathythermograph profile to a sound speed profile. The format of the report follows the guidelines set forth by the Navy Tactical Support Activity, Fleet Mission Program Library.

The program documented herein differs from existing calculator programs used for a similar purpose (Kerr, 1982) in that an archival salinity profile library is included with the program.

Magnetic card copies of the program and salinity profile library may be obtained from the Naval Oceanographic Office, Code 9200.

Accession	For		
NTIS GRAD DTIC TAB Unannounc Justifica	ed	X	
By		des	Paris Proprieta
AVO	il and/ pecial		
A		÷	

ACKNOWLEDGMENTS

The author wishes to thank Mr. Richard Lauer, Naval Ocean Research and Development Activity (NORDA), Code 323, for his support and most helpful suggestions during the pereparation of this report. The author is grateful to Ms. Charlene Parker, NORDA Code 323, for her help during the preparation of the typed manuscript.

This project was funded by the Tactical Anti-Submarine Warfare Environmental Acoustic Support Project (PE63785N), Mr. Edward Chaika, program manager.

- martin comment

NAVY TACTICAL SUPPORT ACTIVITY

FLEET MISSION PROGRAM LIBRARY

PROGRAM SUBMITTAL FORM

(U) SUMMARY	IDEN	TIFICATION NUME	BER/MOD
A. (U) PROGRAM TYPE: TACTICSASW TACTICSSEARCHLOCALIZATIONTRACKING/ATDIRECT SUPPOAAW TACTICSSURFACE WARFARE TA	TACK RT CTICS	-	COMMUNICATIONS SENSOR OPERATIONS ENVIRONMENT NAVIGATION LOGISTICS ENGINEERING ADMINISTRATIVE
B. (U) PROGRAM CLASSIFICAT			
c. (U) PROGRAM TITLE: Bat	<u>hythermograph→Sc</u>	ound Velocity Pro	file
E. (U) COMMAND: ORIGINA	ron: G. A. Kerr,		ANCELLED:
CONTACT F. (U) TACTICAL REFERENCE 1. TITLE ()	. G. A. Kerr, N s: None	ORDA Code 323 T	EL: <u>A/V 485-4627</u>
REPORT NO.			
2. TITLE ()			
		•	
		FTL ACC NO	
G. (U) APPLICATION EQUIPMENT HP-41CV	,		
SOFTWARE/LANGUAGE			
H. (U) STORAGE MEDIA: _	MAGNETIC CARDS CASSETTE	MAGNETIC TA	
I. (U) PLATFORM:			
X SHORE BASED PATROL X CARRIER BASED ASW A X ROTARY WING AIRCRA	AIRCRAFT X IRCRAFT X	_ TACTICAL AIRCRAFT _ SURFACE SHIP _ SUBMARINE	SHORE ACTIVITIES ALL FLEET UNITS
IAMAE 3		IF CLASS	IFIED, STAMP SECURITY MARKING HERE

UNCLASSIFIED

CHANGE 1

I.

- II. (U) OPERATING GUIDELINES
 - A. (U) GENERAL GUIDELINES AND LIMITATIONS
- 1. When prompted for a salinity profile, "NEW SAL?", the response will be either a yes (Y) or a no (N). If a Y response is given, the program will prompt the user for magnetic cards (CARD). The cards containing the salinity profile to be entered are found in the accompanying library of salinity profiles. If an N response is given, the calculator will use the salinity profile stored from the previous program run.
- 2. Depth-temperature (BT) data is entered directly into the program as depth (FT) and temperature (°F). The data points may be entered in any order, i.e., depth does not have to be strictly increasing. However, entering data in order of increasing depth will reduce data entry time. If an error is made, simply reenter the same depth as the error and the correct temperature. A maximum of 20 depth-temperature pairs may be entered. The maximum depth which may be entered is 6561 feet. The message "TOO DEEP" will appear if this limit is exceeded. The initial BT data entry portion of the program is ended by entering a negative depth of any number for the temperature.
- 3. Additional corrections can be made to the entered BT data when the program prompts for addition corrections (CORRECTIONS?). A response of yes (Y) will result in the calculator prompting for the depth of the point to be replaced (BAD DEPTH). If the depth entered does not exactly match a depth entered during the initial data entry portion of the program, an error message (D NOT FND) will appear and the program will return with a CORRECTIONS? prompt. If the depth entered matches an initial entry depth then the initial data point is deleted and a prompt for the input of a new data (NEW PT) is generated. New depth-temperature points are entered as in the initial data entry phase. Any number of points may be replaced. If a response of no (N) is made to the CORRECTIONS? prompt the program will proceed to calcualte the sound speed from the existing data set.
- 4. The sound speed is output in the form depth (FT) and sound speed (FT/sec).
- 5. The sound speed profile in the form depth (FT) sound speed (FT/sec) can be saved on magnetic cards by responding with a yes (Y) to the prompt "SVP ON CRD." This data can be used in the "Sound Velocity Profile Propagation Loss." program written for the HP41CV.

II. B. (U) USER INSTRUCTIONS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Adjust Calculator Memory	153	XEO .	
			ALPHA	
		f		
				
		}	ALPHA	
2	Load Dugguam Cando (6)	 		
	Load Program Cards (6)	 		
3	Begin Program Execution	 	LXED	
			ALPHA	<u> </u>
· · · · · · · · · · · · · · · · · · ·		ļ		
			لالع_ا	
		<u> </u>		
			ALPHA	
4	Respond to "NEW SALINITY" Prompt			
	(a) To input new salinity			
	profile		Y R/S	
	or(b) To use previous salinity			
	profile		N R/S	
}	If a new salinity profile is to be entered do to step 5, if not go to step 6.			<u> </u>
	to step 3, 11 not go to step 0.			
	NOTE: A salinity profile must be entered for			
	the first application of the program			
	the first application of the prodram			
·				ļ
	D. A. HOADDII D			
5	Respond to "CARD" Prompt	 		
		ļ		
ـــــا	Insert magnetic cards as instructed, e.g.	ļ		
	side one of the first card, followed by side	ļ		
·	two of the first card. etc.			
!	•			
	3			
	,			

IDENTIFICATION NUMBER/MOD B. (U) USER INSTRUCTIONS (CONT'D)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	Enter Depth	Df/ _o FT		
7	Enter Temperature	Te/F	R/S	D _F T _F
İ				
·	Enter first depth temperature point after			
	"DTH TEMP" prompt. Repeat steps 6 and 7 for			
	up to 20 points. Output for each entry is			
:	depth (FT) and temperature (^O F).	<u> </u>		
	To terminate input enter a negative depth any			ļ
	number for temperature.	·		
	If an incorrect temperature is entered, simply			ļ
	If an incorrect temperature is entered; simply			
	reenter the same depth as the error and the			
·	correct temperature.			
-				
	If a 'TOO DEEP' message appears in the display the depth entered was larger than the maximum			
;				
	(6561 ft.) allowed. Go to step 6.			
8	Respond to "CORRECTIONS?" Prompt			
. —			Y R/S	
	(a) To make corrections		N R/S	
	or (b) To skip corrections			
	If corrections are to be made go to step 9,			
	if not go to step 11.			
9	Respond to "BAD DEPTH" Prompt			
	Enter the depth of the depth-temperature point	De/FT	R/S	
	to be replaced.	WŦ/11		
	If "D NOT FND" message appears in the display			
	the depth entered in step 9 could not be			
	matched with any of those entered in step 6.			
	Go to step 8.			
	•			

IDENTIFICATION NUMBER/MOD B. (U) USER INSTRUCTIONS (CONT'D)

The output for each entry is depth (FT) and Iemperature (OF). Return to Step 8 11. Sound Speed Profile Output For each depth - temperature point entered a depth (FT) and sound speed (FT/SEC) is output. 12. Respond to "SSP ON CRD" Prompt (a) To store the sound speed profile on magnetic cards or (b) To skip to the end of the program If the sound speed profile is to be stored, go to Step 13.	OUTPUT ATA'UNITS	KEYS	K!	INPUT DATA/UNITS	INSTRUCTIONS	STEP
Ine output for each entry is depth (FT) and Inemperature (OF) Return to Step 8 11. Sound Speed Profile Output For each depth - temperature point entered a depth (FT) and sound speed (FT/SEC) is output 12. Respond to "SSP ON CRD" Prompt (a) Io store the sound speed profile on magnetic cards or (b) To-skip to the end of the program If the sound speed profile is to be stored, go to Step 13. 13. Insert Blank, Unprotected Magnetic Cards as Requested. Output will be of the form depth (FT). Sound Speed (FT/SEC) NOTE: To enter a different set of data points,		11 ,	[]		Respond to "NEW PI" PROMPT:	10
The output for each entry is depth (FT) and Iemperature (OF). Return to Step 8 11 Sound Speed Profile Outputone Df For each depth - temperature point entered a depth (FT) and sound speed (FT/SEC) is output 12 Respond to "SSP ON CRD" Prompt Y R/S on magnetic cards or (b) To skip to the end of the program N R/S If the sound speed profile is to be stored, go to Step 13. 13 Insert Blank, Unprotected Magnetic Cards as Requested. Output will be of the form depth (ET). Sound Speed (FT/SEC) NOTE: To enter a different set of data points.			1	D _{f/FT}	(a) Enter the new depth	
Temperature (OF). Return to Step 8	f f		[R/S]	T _f / ^o f	and (b) Enter the new temperature	
Return to Step 8 11 Sound Speed Profile Output					,	
For each depth - temperature point entered a depth (FT) and sound speed (FT/SEC) is output 12 Respond to "SSP ON CRD" Prompt (a) To store the sound speed profile on magnetic cards or (b) To skip to the end of the program If the sound speed profile is to be stored, go to Step 13. 13 Insert Blank, Unprotected Magnetic Cards as Requested. Dutput will be of the form depth (FT). Sound Speed (FT/SEC) NOTE: To enter a different set of data points,						
depth (FT) and sound speed (FT/SEC) is output 12 Respond to "SSP ON CRD" Prompt (a) To store the sound speed profile on magnetic cards or (b) To skip to the end of the program If the sound speed profile is to be stored, go to Step 13. 13 Insert Blank, Unprotected Magnetic Cards as Requested. Output will be of the form depth (FT). Sound Speed (FT/SEC) NOTE: To enter a different set of data points,	f SS _f			none	Sound Speed Profile Output	11
Respond to "SSP ON CRD" Prompt (a) To store the sound speed profile on magnetic cards or (b) To skip to the end of the program If the sound speed profile is to be stored, go to Step 13. Insert Blank, Unprotected Magnetic Cards as Requested. Output will be of the form depth (FT). Sound Speed (FT/SEC) NOTE: To enter a different set of data points.					•	
(a) To store the sound speed profile on magnetic cards or (b) To skip to the end of the program If the sound speed profile is to be stored, go to Step 13. 13 Insert Blank, Unprotected Magnetic Cards as Requested. Dutput will be of the form depth (FT). Sound Speed (FT/SEC) NOTE: To enter a different set of data points,						
or (b) To-skip-to-the end-of the program If the sound speed profile is to be stored, go to Step 13. Insert Blank, Unprotected Magnetic Cards as Requested. Output will be of the form depth (FT). Sound Speed (FT/SEC) NOTE: To enter a different set of data points,		R/S	Υ		(a) To store the sound speed profile	12
go to Step 13. Insert Blank, Unprotected Magnetic Cards as Requested. Output will be of the form depth (FT). Sound Speed (FT/SEC) NOTE: To enter a different set of data points.		R/S	. N	1	,	
Requested. Output will be of the form depth (FT). Sound Speed (FT/SEC) NOTE: To enter a different set of data points.						
NOTE: To enter a different set of data points.	f. SSf				1	13
				, i		ماد مید. ماد است. داد مید.
5			1 1		5	

II. C. (U) EXAMPLE AND IN-FLIGHT PAGES

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	CUTPUT DATA UNITS
1	Adjust calculator memory	153	XEO	
			ALPHA	
			1	
			7	
			F	
			ALPHA	
	<u></u>			·
2	Load Program Cards (6)]
	Load Program Cards (b)			
3	Execute Program		LXEO L	
			ALPHA	
			R	
			T	
			SIL	
				
				<u> </u>
			ALPHA	
				
	"New Salinity" Prompt			
	Y for new salinity profile N for previously loaded profile			
4	"New Salinity"		Y R/S	
	For a "N" response go to Step 6			
	- tot a in response yo to step o		一一	
				
	#04PD# D			
	"CARD" Prompt			
5	Insert new salinity profile cards			
$\neg \neg$	Depth (Ft)/Temperature (OF)			f
	<u>Depth (Ft)/Temperature (^OF)</u> Data may be entered in any order		一一一	
		0 Ft.		0.0 Ft.
-6-	Depth		,	75.0 °F
-	Temperature	75.0 °F		/5.0 %
	Repeat Steps 6 and 7 for up to 20 points			
-	6			
				
				}

II. C. (U) EXAMPLE AND IN-FLIGHT PAGES (CONT'D)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	Depth	100 Ft.	T T	100.0 Ft
7	Temperature	68.0 °F	R/S	68.0 ^o F
6	Depth	600 Ft.	1	600.0 Ft
7	Temperature	52.0 °F	R/S	52.0 ⁰ F
	End initial input with a negative depth and any temperature			
6	Depth	-1 Ft.		
7	Temperature	3 ⁰ F	R/S	, •
	"Corrections" Prompt Y to make corrections			
	N to skip corrections and calculate sound sp	eds ·		
	For a no (N) response skip to Step 11			
8	"Corrections"		Y R/S	
	"Bad Depth"	100 Ft	R/S	
	If the depth entered cannot be found the message "D NOT FND" will appear.			
	Go to Step 8.			
		-		
	"NEW PT." Prompt Enter the new depth (FT) temperature			
	of point			
10	"NEW PT"			
	(a) Depth	120 Ft.		120.0 Ft.
	(b) Temperature	67 ⁰ F	R/S	67.0 ^O F
	Steps 8, 9 and 10 may be repeated as many			
	times as necessary to obtain a correct temperature profile.			
<u> </u>				
		ļ		
\vdash				
		<u></u>		
}	7		<u> </u>	
	<u> </u>	·		
L		ļ		

Ţ

,

]

IDENTIFICATION NUMBER/MOD II. C. (U) EXAMPLE AND IN-FLIGHT PAGES (CONT'D)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Sound Speed Profile			
	Sound Speed for up to 20 input depth-			0.0 5015.0
	temperature points. Output = D (FT) and			120.0 4988.4
	sound speed (FT/SEC) for each point.	, in the second		600.0 4912.3
	Note: Your sound speed results will probabl	V		
	differ from those given here because the sam	<u> </u>		
	salinity profiles were not used.			
	"SSP ON CRD" Prompt			
	Y to store the sound speed profile on cards			
	N to not store and end the program			
12	"SSP_ON_CRD"		Y [R/S	
:	Store sound speed profile on cards			
13	Insert blank cards as requested. $OUTPUT = D$ (F	T)		0.5015
	• Sound Speed (FT/SEC)			120.4988
				600.4912
				ļ
		!		

				<u> </u>
				
				ļ
				
				
-	8			
			<u> </u>	

;

ł

I

III. (U) PROGRAM DOCUMENTATION

A. (U) DISCUSSION/ANALYSIS

This program generates a sound speed profile from an input temperature profile. The program must be provided with a salinity profile from which interpolated salinities can be determined at input temperature depths.

The major sections within this program identified by beginning labels are:

- 1. LBL "C" (used to issue data entry instructions). Stores and prints instructions in the print buffer. If a printer is not attached (FLG 55 set) messages throughout the program are held in the display for one PSE.
- 2. LBL "B" (used to enter, and store depth-temperature points). Points are stored in order of increasing depth. Registers 5 and 6 are used for temporary storage of depth and temperature respectfully. Register 18 is used to store the total number of points entered; and register 17 is used to store the deepest depth entered. If the depth of a newly entered point is larger than the deepest stored depth, then the new point is stored in the next sequential storage register locations. If the depth entered is less than the deepest stored depth, then the point is stored in the appropriate location by depth replacing an existing point in memory. The replaced point is stored in temporary storage locations previously used by the new data point and the "fitting by depth" procedure is repeated until all data points are in the correct order. Flag 3 is clear to indicate the program is in the original data entry made. A maximum of 20 points may be entered.
- 3. LBL "COR" (used to make final corrections to the entered depth-temperature data). Given the depth of the bad data point, the point is deleted from memory and the points located at deeper depths are moved up one memory location. Storage of correcting data is handled by the same procedures used to store the original data points. Flag 3 is set to indicate the program is in the correction mode.
- 4. LBL "DSP" (used to print input data points). Accumulates depth and temperature values to the print buffer for printing.
- 5. LBL "INTR" (used to calculate, through linear interpolation, the salinity at each entered depth). Register 15 is used to store the location of the temperature profile depth (d_T). Register 16 is used to store the location of the salinity profile depth (d_2) deeper than d_T . Register 7 is used to store the location of the salinity profile depth (d_1) shallower than d_T . Register 12 is used to store relative location of the interpolated salinity (S_T). Register 18 is used to store the location of salinity (S_1) corresponding to d_1 . Register 19 is used to store the location of the salinity (S_2) corresponding to d_2 . ST is found from:

$$ST = \frac{d_T - d_1}{d_2 - d_1}(S_2 - S_1) + S_1$$

III. (U) PROGRAM DOCUMENTATION

- A. (U) DISCUSSION/ANALYSIS (Cont'd)
- 6. LBL "SSPD" (used to calculate the sound speed from temperature (T), salinity (S), and depth (D).) For each input D the following data are calculated and stored (storage register): T(0), $T^2(1)$, $T^3(2)$, S(3), D(4), and $D^2(5)$. The speed of sound (S) is calculated using Mackenzie's (1981) equation modified for English units. the modified equation is:
 - $S = 3.2808 \quad (1295.97 + 3.9229T 2.0278T^2 \times 10^{-2} + 4.071 \times 10^{-5} \text{ T}^3 + 4.9683 \times 10^{-3}D + 1.5562 \times 10^{-8} D^2 + 1.522 \text{ S}$

 - $-5.6944 \times 10^{-3} TS$

The 10^{-13}TD^3 term of the original equation was omitted since this term would be insignificant for the depths considered in the program (\leq 6561 FT).

IDENTIFICATION NUMBER/MOD

A. DISCUSSION/ANALYSIS (CONT'D)
The Flow of the Main Program is as follows:

IDENTIFICATION NUMBER/MOD

A. DISCUSSION/ANALYSIS (CONT'D)
Flow of Main Program Cont'd:

IDENTIFICATION NUMBER/MOD

A. DISCUSSION/ANALYSIS (CONT'D)
Flow of Main Program Cont'd

15.32

B. (U) REFERENCES

- Nine-term Equation for Sound Speed in the Oceans, Mackenzie, K. V., The Journal of the Acoustical Society of America, 1981, Vol. 70, Number 3, p. 807-812.
- 2. An Evaluation of Fleet Mission Program Library Program V10011/B (Bathythermograph Sound Velocity Profile, Kerr, G. A., Naval Ocean Research and Development Activity. Technical Note 192, 1983.

C. (U) PROGRAM DATA

DATA REGISTERS

(0) through (19)	USED
(20) through (30)	BT DEPTH (OUTPUT SSP)
(40) through (59)	BT TEMPERATURE
(60) through (79)	INTERPOLATED SALINITY
(80) through (99)	CALCULATED SOUND SPEED
(100) through (125)	SALINITY PROFILE DEPTH
(126) through (151)	SALINITY PROFILE SALINITY
(152)	NO. OF POINTS IN SAL. PROF.

FLAGS

- 01) SET WHEN NEW DATA HAS BEEN STORED
- 02) SET WHEN IN CORRECTION MODE 03) SET WHEN ENTERED DEPTH IS LARGER THAN ALL DEPTHS ENTERED PREVIOUSLY

	LABELS		
(SUBROUTINES)	(OTHER)		
	01	L	
DSP	03 through 09	REP	
PAC	20	AX	
	30	INTR	
	BTS\$	BEG	
	AF	XAC	
	٧	AJ	
	BZ	INTP	
	ВА	SSPD	
	COR		

D. (U) PROGRAM LISTING

STEP/KEY ENTRY	COMMENT	STEP/KEY ENTRY	COMMENT
<u> </u>			
02 5- 11 0- 5-4		60 263 ES	
FEX.L.		58 FC? 53	
94 1×*		59 PSE	
as asto y		68 CLA	
ee them SAL ?"	New Salinity	61 "ANY NO IRSI"	
at adm	Profile Prompt	es yaien	
et prompt		63 FCT 55	
€5 4570 x		64 PSE	
10 AOFF		65 CLA	
11 8=13		66 ADL	
12 GTC *AF*		67 "DTH TEKP"	
73 01 86		- 68 PYIEN	
14 188.152	Read New Salinity	65 CLR	
	Profile Cards	700181 8	Coton Donth
15 \$70 X		71 STOP	Enter Depth-
16 RETAX		? X X Y	Temperature
17+LBL "AF"			Check for End
is ader		77 6	of Input Data
19 28	Initialize	28 67A3 2	Of Theat bata
20 570 11	Registers	75 GTG - COR*	Make Corrections
21 0		ือ คีปก	Check for
22 870 16		77 6561	Too Large A
23 370 19		78 ANT	Depth
24 CLX		79 GTC 151	DCP sti.
25 7 6		80 ~TGC DEEP*	
26•LBL C		8) AVIEW	
		32 014	
27 FTG ENTER"		83 670 E	
28 AVIEW		840181	
29 807 55			
38 PS E		85 JF 83	
71 369	Dodat Dota	86 FOL 2	
DE TEMP PROFT	Print Data	<u> </u>	Store Temp.
33 AVIEW	Entry	88 80 3	
34 502 55	Instructions	89 STE 25	Store Depth
25 FSE	••	98 ROL 1:	No. PT Entered
36 CLA		91 ROL 18	Find Deepest
37 604		92 +	•
38 FDEPTH SENTER."		93 1	Depth Entered
32 AVIEN		94 -	
46 FQ2 55		95 STO 17	
4. PSE		96 ROL IND 17	
42 OLA		97 FCL 85	Compare Depth
		98 X.=Y^	Against
43 TEMP RS:		93 670 -62-	
44 AVIEW		186 FOL 17	Deepest
45 FC2 55			Store Depth
46 PSE	•	i 01 1	
47 C <u>L</u> R		182 +	
48 SBM		103 STG 17	
49 "IF DONE"		184 FCL 85	
sa avieb		:85 STO IND 17	
51 FC? 55		186 RGL 17	
52 PSE		197 28	Store
53 CLA		10€ +	Temperature
54 "HEG"		109 870 17	. unput u uut u
55 018		110 PCL 66	
56 THEG & ENTER"		111 STO INP 17	
	16	THE COURTS	
S7 AVIEK			

Ĭ

E. (U) PROGRAM LISTING (CONT'D)

STEP/KEY ENTPY	COMMENT	STEP/KEY ENTRY	COMMENT
	Data Has Data China		Find Temp.
<u>1.2 % 68</u> 1.3•181 °£2°	Data Has Been Stored	167 20	Location for
114 PQE 05	Recall Data	168 + 169 STO 04	Bad Depth
115 901 86		170 ROL 02	On loss
136+LB1 *BA*	Go Store Point in	171 1	Replace Depth With
117 XEG "DSP"	Alpha Registers	172 +	Next Deepest
118 FS7 0 3	Data in Array?	173 STO 6 3	Mext beebest
119 677 65		174 ROL 1ND 83	
126 (26 *PAC* 121 = 1 62	Place Out of Seq. Data	175 STG IND 02	
121	In Correction Mode?	176 FOL 84	Replace Temp.
ide ato the	Go to Corrections	177 1	With Next
183 RTN	Section	178 +	Deepest
184+LBL TOOR	Beginning of Corrections	179 870 65	·
125 FC? 55	Section	180 PCL 1KD 05	
126 PSE		181 STO INE 84	
1 <u>27 CF 63</u>		182 ROL 82	Increment
126 "M" :co ceta V		163 1	Depth Pointer
129 ASTO Y 130 MORRECTIONS?"	Are Corrections Required	184 +	
131 AGN		195 STO 62 186 FCL 0+	
132 PROMET		167 1	Increment
133 RSTO X		188 -	Temperature
134 AGFF		189 376 64	Pointer
735 754		:90 155 €.	Enter Array Bumped?
136 STO *1476*	Go Perform Interpolation	191 GTC "REF"	Bumped? Go to Rep. Rec
137 SF 03	Corrections Being Made	192 FCL 18	•
.38 "BAD BEFTH"	Enter Depth of	193 i	Decrement No.
139 PROMPT	Bad Data Point	194 -	of Pts.
146 ୧୮୦ ଖିଡି		195.916 18	
141 FDL 18	Recall Number of Points	196 "NEW PT"	Get Replace-
142 1966	Entered and Set Up	197 HYIER	ment Point
143 /	Loop	198 STOP	
144] 145 +	•	199 GTO "64" 200 STOP	Put PT. in
140 4 146 570 0.		501 + FBF - 122 -	Arrays
(47 19	Set Up Pointer to Depth	201 CLA	
148 870 82	500 op 10111501 50 50p011	207 ARCL Y	
1490_81 "1"	Yanan and Balaka	204 ASTO #1	
150 PCL 02	Increment Pointer to	205 CLA	Store Entered
151 /	Depth	206 APCL X	Point in Alph
153 +		207 ASTO 02	Registers for
153 STA 02		2 0 8 CLA	Printing
154 ROL EB	Recall Bad Depth and	205 RCL 18	_
155 PCL IND 02	Array Depth and Compare	210 ;	
156 X=Y2		211 +	
157 GTO *REP*	Go Make Replacement	212 570 18	
156 156 61	All Depths Checked?	217 * *	
159 GTO "L"	Go Get Next Depth	214 ASTO 64	
168 TENUT FROM 161 AVIEW	Print Error Message	215 CLA 216 RDN	
162 F(7 55	and Return to Correction	217 X.77	
167 PSE	Beginning	218 PTN	
164 GTS "COR"		219•18: "PAC"	Place_out of
165+LBL *REP*	Beginning of Replacement	228 970 85	Seq. Pts.
166 FOL 62	•	221 801 7	Store Depth
	1-		

17

E. (U) PROGRAM LISTING (CONT'D)

STEP/KEY ENTRY	COMMENT	STEP/KEY ENTRY	COMMENT
cta &:	Store Temp. to be	277 5 70 6 3	
222 STO 06	Placed in Array		
113 FOL 18	Find No. of Pts.	276 ROL 96	
224 :	Entered	279 STO IND 88	
225 -		280 GTO 65	
224 ENTER?		281 • LBL 64	For Exact
227 A=02	First Point Treat	282 STO IND 68	Depth Match
<u>228 670 06</u>	as First Pt.	283 ROL Z	Replace Data
234 1 24		284 20	PT with New
23e /	Set Up Loop	285 +	PT
23) (286 STO 08	
232 +		287 PCL 06	
233 510 87		288 STO IND 0 8	
234 RCL 11		269 ROL 18	
235+LBL 0 1	Recall Depth from Array	398 1	
236 STG 00		291 -	
237 POL IND 83	·	292 970 18	
238 FOL 05	Recall New Depth and	293+LBL 05	
239 878	Compare	294 CLA	Print New
149 GTO 6 3	oompar o	295 CUX	Point
24; A=¥?		396 ARCL 01	
242 610 84		297 ARSL 84	
243 SF 01	Location for New Data Found		
	Location for New Data Found	299 AVIEW	
7440 BL "N/"		292 Histor 300 OF 61	
945 ROL IND đô	Ol D it and Tame		
946 STO 8 8	Place Depth and Temp.	301 FS: 02	In Correction
247 POL 85	in Arrays and Store	392 GTO "COR"	Mode?
248 STC IND 88	Replaced Data in Depth	393 GTO B	
249 ROL 00	and Temp. Temporary	364+∟8∟ 86	Store First
258 970 85	Locations	305 RCL 65	Data Point
35: FOL 08		366 570 20	
352 2 8 1		307 PCL 66	
253 +		308 STO 40	
254 5 70 0 5		<u>309 GTO 05</u>	
255 PCL IND 08		310+L8L 87	Increment
256 370 0 0		311 RCL 03	Depth Counter
257 PCL 9 6		312 1	Check Mode and
258 570 IND 08		3:3 +	Go Accordingly
259 RCL 88		314 FC? 8 1	20 7.0007 41119.5
260 970 86		315 GTO 01	
261 PCL 88		316 970 00	
262 20		317 GTO *AX*	
263 -		318+LBL "INTR"	
264 STO 08		319 ABV	Begin Inter-
245 4 185 83		320 CF 02	polation of
266 186 67	Have Arrays Been	321 CLA	
267 GTO 67	Exhaus ted?	322 "INTERPOLATED"	Salinity Profile for
ୁର୍ଶ ହିଠା ପର		323 AVIEN	Profile for
269 1	•	324 CLA	Entered Depth
270 +	Store Last Array	325 "SALINITY"	
27, 570 6 8	Points	326 A+1EW	
27, 310 00 272 ROL 05	, . , , , , ,	327 0	
273 STG IND 68		328 STG 13	
274 RDN		329-20 776-070-15	
275 20	••	330 870 15	
276 +	18	33: 100	

E. (U) PROGRAM LISTING (CONT'D)

STEP/KEY ENTRY	COMMENT	STEP/KEY ENTRY	COMMENT
332 33 (15 333 4454 (1554	Store Location of First Depth of Sal.Prof. Compare Entered Depths w/	397 FIN 386 XNY	
334 FCL IND 16 335 FCL IND 15 336 XXY?	Sal.Prof. Depths	. 789 PC) Z 390 - 391 RCL Y	
337 GTO "AJ"	Interp. Possible	392 ROL T	
336 X=19	Exact Match?	393 -	
339 010 .XMC.	Exact Haten.	391 /	
340 PCL 16	Decrement Sal. Depth	395 ROL 16	Perform Linea
341 1 342 -		396-26 397-+	Interpolation
343 970 16		398 570 88	Between Sal. Profile Depths
344 GTO "6EG"		399 ROL 87	rioiile bepail.
345+LBL "XAC"	For Exact Match Find	486 26	
346 FCL 16	Salinity Location and	401 4	
347-26	Store	402 STO 19	
348 + 349 \$70 #8		483 RBN 494 RBN	
750 FCL IND 63		485 POL IND 88	
351+181 88	Find Location for Inter-	486 POL IND 15	
352 POL 15	polated Salinity and	407 -	
353 40	Store	485 4	
354 +		489 RCL IND 19	
<u>355 \$70 12 </u>	Store Int. Sal.	418 + 411_GTG 88	
306 4571 357 870 18D 12	Store Int. Sal.	412+18L *5SFL*	
350 ROL 18	Keep Track of the Number	413 CLA	Get Ready to
359 RCL 13	of Pts for which Sal.	414 - *	Calculate the
360-1	was Calculated	415 A370 10	Sound Speed
10. T		416 0F 29	
362 310 13 363 X2Y2	Co Coloulota Count Count	417 CLA 418 TSOUND SFD*	
364 670 "\$\$P\$"	Go Calculate Sound Speed If all Depths Have Salinity		
765 ROL 15	if not continue Interp.	420 "PROFILE"	
366-1	W. West contented and pr	421 GVIER	
367 +		422 CLA	
368 370 15		423 ABY	
<u>169 GTO "8EG"</u> 370•LBL "AU"	Make Sure Entered Depth	424 "BTH SSPD" 425 DYIEB	
771 PEL 16	is Between Salinity `	426 CLR	
372 1	Depths	427 POL 18	Set Up Loop
373 +	•	428 i E3	and Pointer
374 STO 16	·	429 /	and romeer
375 RDH		430 1	
376 RCL IND 16 377 X3Y2		431 + 432 \$10 85	
778 QTO *INTF	Go Perform Interp.	433 19	
ଞ୍ଚଳ ହୁମ୍ମ "ଅଞ୍ଜି"	Go to Beginning of Proc.	434 STG 89	
Bont BL "INTE		435+181 69	_
381 FOL 16		436 CLA	Increment
332 1		437 ROL 69	Pointer
583 - 364 STG 87		438 i 475 +	
385 POL IND 87		448 571 88	
366 PAN	19	est April int 66	
Street Control	• •	· · ·	

STEP/KEY ENTRY	COMMENT	STEP/KEY ENTRY	COMMENT
442 BRCL 10		497 3.2666	
443 ROL IND 89		498 *	
444 519 64 .	Store Depth	499 RCL 89	
445 RCL IND 89	STATE DEPTH	508 28	
446 #		581 +	
447 870 65	Store Depth:**2	582 870 89	Calculate
446 RCL 69		- 593 RCL Y	Card Output
449 30		504 STO IND 09	Form for SSP
45ê +		505 1 54	Point
451 970 0 9		506 /	
452 FOL IND 09	<u></u>	507 PCL 84	
453 STO 00	Store Temperature	T. 508 INT	
454 RCL IND 89		7 509 +	
455 *		510 STG 11	
456 STO 01	Store Temp **2	511 ARCL IND 09	Print Depth
457 RCL THD 69		T 512 AVIE	and SS
458 ≉		513 FC? 55	
459 STO 02		5 <u>14 PSE</u>	
468 RCL 09		515 FOL 09	Store Card
461 20	•	516 69	Format Profile
462 +	·	517 -	Point in Depth
463 STO 0 9		518 570 89	Locations
464 RCL IND 69		519 Fix 4	Eoca c rons
465 870 03	Store Salinity	- 526 ROL 11	
456 RCL 90	Supplied Sup	— 521 STO INI €	Have Sound
467 3.9229	•	522 FIX 1	Speeds Been
468 *	,	523 ISG 0 8	Calculated for
469 RCL 01		524 GTO 09	All Depths?
470 2.0278 E-2		525+181 20	711 beptils:
471 *		526 ABY	
472 -		527 ADV	
473 RCL 6 2		528 ADV	SSP on Cards?
474 4.67 1 E-5		529 TMT	
475 ¥		530 ASTO Y	
476 +		531 "SSF ON CRD"	
477 RCL 84		532 AON	
473 4.9683 E- 3	Calculate Sound Speed	533 PROMAT	
479 *		534 ASTO X	
483 +		535 A0FF	
481 PCL 65	•	536 X=Y?	•
482 1.5562 E-8		537 GTO 30	
483 *		533 ROL 18	Output SSP
484 +		539 19	to Cards
485 PCL 03		546 + 541 1 E3	
486 1.522	·	542 /	
487 •		543-28	
488 +		544 +	
489 5.6944 E-3		545 STO A	
456 RCL 88		546 ANTAN	
491 # 440 00: 07		547+L8L 38	
492 RCL 83		548 CLX	End of Progra
453 *		549 RTN	
494 -		550 .EN⊉.	
495 1295, 97	80	JUC . CRE.	
496 +	20		

Appendix A. HP-41CV BT Sound Speed Profile Program

Areas of Salinity Profile Coverage.

I. Discussion

Contained within this Apendix are figures illustrating the areas of coverage of selected (ICAPS) salinity profiles for the North Atlantic, North Pacific, and North Indian Oceans, and the Mediterranean Sea. The method used to select these representative profiles and listings of the profiles selected may be found in Apendix B.

The profile number to be used in an area of interest corresponds to the number of lines used to crosshatch that area in the figures which follow. Areas without crosshatching are represented by profile zero; areas with single line crosshatching by profile one; etc.

Areas of coverage for the North Atlantic Ocean are seasonally dependent, i.e., a specific area may be represented by a different profile number in each season. Areas of coverage for all other bodies of water are presented on an annual basis. Profile number two in the Mediterranean Sea and profile number four in the North Atlantic Ocean are seasonally dependent, i.e., there is a specific seasonal salinity profile for those areas represented by these profiles.

To find the appropriate salinity profile, first consult Figure 1 for the N. Atlantic Ocean and Mediterranean Sea, Figure 2 for the N. Pacific Ocean, or Figure 3 for the N. Indian Ocean. These figures contain the reference page numbers to consult for the detailed description of each broad ocean area (and season for the N. Atlantic Ocean). From the referenced page map determine the representative salinity profile number and select the appropriately labeled set (2) of magnetic cards from the salinity profile library.

Figure 2. North Pacific Ocean Salinity Profile Area Location Chart. (Reference pages are given in parentheses).

Figure 3. North Indian Ocean Salinity Profile Area Location Chart. (Reference pages are given in parentheses).

MEDITERRANEAN SEA

AG

NORTH ATLANTIC WINTER

WINTER

NORTH ATLANTIC SPRING

A14

NORTH ATLANTIC SUMMER

SUMMER

Σ.

¥0t

15W

20W

25W

30W

50W 45W 40W 35W

S5W

75W 70W 65W 60W

40N

Nos +

10E

SE

\$

₩0I

15W

20W

25W

30W

35W

40W

45W

80W 55W 50W

+ NOS

SUMMER

NORTH ATLANTIC FALL

;

돮

FAL

NORTH PACIFIC OCEAN

Ì

; !

1

15N G - 7 - 5N 175W 170W 180 **G** - 6 17 SE G - 13 3071 G - 5 16 SE G - 12 160£ 155E 155E PACIFIC AREA G 140E 145E 150E 150E G - 11 145E 140E 135E G - 3 6-9 130E 135E G - 10 130E 125E 125E 6-1 120E 120E 11SE 115E G - 8 30E 30€ 105 10 S.E NS. NO Z.

ALL SEASONS

NO N

175W 170W

180

17.SE

17.0E

165

160E

NORTH INDIAN OCEAN

ALL SEASONS INDIAN AREA B

ALL SEASONS INDIAN AREA C

Appendix B. Creation of the HP41CV BT to Sound Velocity Program Salinity Profile Data Base

I. Introduction

In order to insure a reasonable sound speed determination from only in-situ temperature versus depth (BT) information, salinity profiles representative of variable oceans had to be determined. Because of funding and time constraints, it was decided to employ the ICAPS water mass data base, which contains representative seasonal salinity profiles for the major oceans of the Northern Hemisphere.

II. Methods

For each season the ICAPS data base contained 401 salinity profiles; 160 in the Atlantic Ocean, 16 in the Mediterranean Sea, 152 in the Pacific Ocean, and 73 in the Indian Ocean. The raw data were received from NAVOCEANO on magnetic tape compatible with the NORDA Cyber computer.

It was decided to compare the salinity value at each standard depth with the corresponding salinity in every profile for each season within each ocean. A maximum allowable salinity difference was selected on the basis of the resulting sound speed difference. If the absolute difference between salinity values exceeded the maximum allowable, a counter was incremented. The analysis results consisted of an NxN symmetric matrix containing the counts of the number of times each salinity profile differed significantly from every other salinity profile for each season and ocean at each standard depth. The total number of standard depth differences detected for each profile was also calculated to aid in interpretation.

If the maximum allowable salinity difference was made too large than all profiles would appear similar. If the maximum allowable salinity difference was made too small then interpretation of the results become difficult. For the final analysis a maximum salinity difference of 2.25 ppt was used in all oceans. This difference resulted in an approximate sound speed difference of 3 m/sec under a constant temperature condition.

From the analysis outlined above, a "best" salinity profile was selected as being that profile which had the lowest difference count of all profiles. All salinity profiles differing from the "best" were examined against each other to determine if any of these could be considered similar. Finally, the frequency of occurence of the selected ICAPS water masses (more than one water mass usually occupied an ICAPS area) were examined to insure that the salinity profiles selected to represent small areas were representative most of the time.

III. Results

A "best" salinity profile was selected in all oceans. For the North Atlantic Ocean, there were four salinity regimes which could not be described by the "best" profile; in the Mediterranean Sea and North Pacific Ocean there were three additional regimes; and in the North Indian Ocean there were two.

Because the differences in salinity at standard depths were small (0.7 ppt) across the seasons, and because of the desire to keep the size of the salinity library as small as possible, in a majority of instances a single salinity profile was chosen to represent the salinity field for all seasons. The annual salinity profile was the seasonal profile which best approximated (smallest absolute total difference at standard depth) the mean across season profile.

Table 1 lists the salinity values by season for the "best" representative profile for the North Atlantic Ocean. Table 2 through Table 5 lists the salinity values for chose profiles differing significantly from the best. Table 6 lists the "best" salinity profile for the Mediterranean Sea; Tables 7 through 9 present the profiles which differed from the "best." Table 10 gives the salinity values for the "best" North Pacific Ocean profiles; Tables 11 through 13 give the salinity profiles which were unlike the "best." Table 14 lists the "best"

salinity profile for the North Indian Ocean; Table 15 and 16 present those which were different. In the tables, an asterisk is used to identify the seasonal profile which was chosen to represent all seasons.

In several instances, the ICAPS salinity profiles selected did not extend to 2000 meters. In these cases, the salinity values at those depths for which information was not available were estimated from neighboring ICAPS areas.

Suggestions for further improvement

The selection of representative salinity profiles was based on a rather large salinity (sound speed) difference of 2.25 ppt (≈3 m/sec). Reducing the allowable salinity difference would increase the size of the profile library to perhaps unmanageable proportions depending on the user's environment. The complete seasonal ICAPS salinity field library would require 3208 magnetic cards. This number could be halved if the standard depths at which salinity values are given were provided in the calculator program and not by the data card.

A better alternative to a complete magnetic card library would be to provide the user with a computer listing of the ICAPS salinity data base from which the user could select profiles in their area of interest. These profiles could then be transferred to a magnetic card, using a creation program, for utilization with the sound speed calculation program.

TABLE 1. NORTH ATLANTIC OCEAN

Library Profile Q.ICAPS Profile No. 108, Seasonal Salinities

	2,2,2,3,1,0,1,0,1,0			
cepth (m)	Winter	Spring*	Summer	Fall
0	34.86	34.68	34.39	34.71
10	34.85	34.68	34.46	34.71
2 0	34.86	34.72	34.57	34.72
30	34.86	34.76	34.67	34.73
50	34.86	34.82	34.83	34.76
<i>1</i> 5	34.86	34.86	34.90	34.81
⁵ 00	34.85	34.88	34.92	34.84
125	34.84	34.88	34.92	34.87
100	34.84	34.88	34.92	34. 89
. J 0	34.84	34.88	34.89	34.88
/5 0	34.85	34.89	34.89	34.86
.00	34.86	34.89	34.88	34 .36
400	34.88	34.90	34.89	34.88
:00	34.88	34.90	34.90	34.90
J 00	34.88	34.91	34.91	34.90
300	34.89	34.91	34.92	34.90
1000	34.91	34.91	34.91	34.91
3.2 <mark>00</mark>	34.91	34.91	34.91	34.91
500	34.91	34.91	34.91	34.91
J00	34.90	34.90	34.91	34.90

TABLE 2. NORTH ATLANTIC OCEAN
Library Profile 1, ICAPS Profile No. 47, Seasonal Salinities

Depth (m)	Winter	Spring	Summer	Fall*
0	36.53	36.31	36.40	36.40
10	36.52	36.32	36.38	36.39
20	36.51	36.33	36.35	36.39
30	36.52	36.35	36.34	36.39
50	36.58	36.40	36.39	36.41
75	36.66	36.46	36.47	36.44
100	36.82	36.58	36.61	36.55
125	37.04	36.73	36.83	37.00
150	37.26	36.88	37.09	37.30
200	38.00	37.62	37.71	37.66
250	38.30	38.10	38.08	37.98
300	38.39	38.23	38.24	38.22
400	38.45	38.34	38.35	38.37
500	38.46	38.35	38.38	38.39
600	38.48	38.40	38.40	38.40
800	38.46	38.40	38.39	38.40
1000	38.37	38.40	38.39	38.39
1200	38.39	38.41	38.38	38.39
1500	38.39	38.41	38.39	38.40
2000	38.40	38.42	38.40	38.40

TABLE 3. NORTH ATLANTIC OCEAN

Library Profile 2, ICAPS Profile No. 67, Seasonal Salinities

Depth (m) Winter	Spring	Summer*	Fall
0	32.03	32.33	31.75	32.00
10	32.07	32.39	31.91	32.04
20	32.13	32.46	32,20	32.10
30	32.20	32.55	32.41	32.18
50	32.35	32.81	32.73	32.41
75	32.64	33.27	32.94	32.77
100	33.00	33.61	33.26	33.27
125	33.50	33.94	33.56	33.76
150	33.88	34.23	33.89	34.15
200	34.55	34.75	34.56	34.54
250	34.63	34.78	34.67	34.61
300	34.71	34.80	34.70	34.68
400	34.80	34.85	34.75	34.78
500	34.83	34.86	34.80	34.83
600	34.85	34.81	34/85	34.85
800	34.87	34.81	34.87	34.87
1000	34.87	34.81	34.87	34.87
1200	34.88	34.82	34.88	34.88
1500	34.90	34.84	34.90	34.90
2000	34.93	34.87	34.93	34.93

TABLE 4. NORTH ATLANTIC OCEAN

Library Profile 3, ICAPS Profile No. 147, Seasonal Salinities

Depth (m)	Winter	Spring*	Summer	Fall
0	37.09	37.04	37.29	37.29
10	37.09	37.14	37.29	37.28
20	37.09	37.14	37.29	37.28
30	37.09	37.13	37.28	37.27
50	37.09	37.11	37.21	37.26
75	37.09	37.08	37.03	37.07
100	37.05	37.03	36.95	36.93
125	36.93	36.91	37.84	36.81
150	36.83	36.79	36.73	36.70
200	36.63	36.54	36.51	36.52
250	36.42	36.40	36.37	36.38
300	36.25	36.22	36.25	36.25
400	35.95	35.94	36.01	36.00
500	35.72	35.80	35.79	35.77
600	35.52	35,60	35.63	35.59
800	35.21	35.32	35.36	35.30
1000	35.09	35.15	35.22	35.17
1200	35.11	35.11	35.20	35.16
1500	35.10	35.12	35.15	35.13
2000	35.01	35.04	35.02	35.04

TABLE 5. NORTH ATLANTIC OCEAN
Library Profile 4, ICAPS Profile No. 156, Seasonal Salinities

	•			
Depth (m)	Winter	Spring	Summer	Fall
0	33.09	32.17	34.00	32.24
10	33.45	32.58	34.11	33.07
20	34.14	33.79	34.37	34.02
30	35.05	35.32	34.97	34.71
50	35.72	35.83	35.70	35.44
75	35.74	35.79	35.72	35.62
100	35.67	35.68	35.63	35.57
125	35.60	35.60	35.56	35.54
150	35.53	35.53	35.50	35.51
200	35.36	35.40	35.36	35.41
250	35.17	35.20	35.16	35.23
300	34.99	35.00	34.99	35.06
400	34.79	34.79	34.80	34.83
500	34.64	34.65	34.68	34.66
600	34.57	34.58	34.62	34.60
800	34.55	34.53	34.55	34.56
1000	34.65	34.64	34.60	34.65
1200	34.80	34.80	34.75	34.79
1500	34.93	34.92	34.92	34.92
2 000	34.95	34.95	34.95	34.95

TABLE 6. MEDITERRANEAN SEA

Library Profile O, ICAPS Profile No. 11, Seasonal Salinities

Depth	(m) Wi	inter	Spring	Summer*	Fall
0	38	3 .94	38.97	39.05	39.12
10	38	3.94	38.97	39.05	39.11
20	38	3.94	38.98	39.04	39.13
30	38	3.94	38.98	39.00	39.10
50	38	3.94	38.98	38.97	39.01
75	38	3.96	38.99	38.97	38.95
100	38	8.96	39.00	38.98	38.98
125	3	8.96	38.99	38.98	38.99
150	3	8.96	38.99	38.98	38.99
200	3	8.96	38.98	38.97	38.98
250	3	8.95	38.96	38.96	38.96
300	3	8.94	38.93	38.94	38.94
400	3	8.90	38.90	38 .9 0	38.89
500	3	8.86	38.86	38.86	38.86
600	3	8.83	38.83	38.83	38.83
800	3	8.80	38.80	38.80	38.80
1000	3	8.79	38.78	38.79	38.81
1200	3	8.81	38.79	38.77	38.81
1500	3	8.81	38.78	38.72	38.82
2000	3	8.81	38.74	38.70	38.81

TABLE 7. MEDITERRANEAN SEA

Library Profile 1, ICAPS Profile No. 2, Seasonal Salinities

Depth	(m)	Winter	Spring	Summer*	Fall
0		36.53	36.31	36.40	36.40
10		36.52	36.32	36.38	36.39
20		36.51	36.33	36.35	36.39
30		36.52	36.35	36.34	36.39
50		36.58	36.40	36.39	36.41
75		36.66	36.46	36.47	36.44
100		36.82	36.58	36.61	36.55
125		37.04	36.73	36.83	37.00
150		37.26	36.88	37.09	37.30
200		38.00	37.62	37.71	37.66
250		38,30	38.10	38.08	37.98
300		38.39	38.23	38.24	38.22
400		38.45	38.34	38.35	38.37
500		38.46	38.35	38.38	38.39
600		38.48	38.40	38.40	38.40
800		38.46	38.40	38.39	38.40
1000		38.37	38.40	38.39	38.39
1200		38.39	38.41	38.38	38.39
1500		38.39	38.41	38.39	38.40
2000		38.40	38.42	38.40	38.40

TABLE 8. MEDITERRANEAN SEA

Library Profile 2, ICAPS Profile No. 15, Seasonal Salinities

Depth (m)	Winter	Spring	Summer	Fall
0	22.00	23.00	21.26	26.16
10	26.00	27.00	22.14	26.44
20	30.00	31.00	28.63	30.94
30	34.00	35.00	37.24	35.82
50	38.40	38.45	38.45	38.53
75	38.55	38.50	38.54	38.56
100	38.55	38.55	38.55	38.57
125	38.55	38.55	38.55	38.57
150	38.54	38.54	38.55	38.57
200	38.54	38.53	38.54	38.56
250	38.53	38.52	38.53	38.54
300	38.53	38.52	38.52	38.54
400	38,52	38.52	38.52	38.53
500	38,52	38.52	38.52	38.53
600	38,52	38.52	38.51	38.52
800	38.51	38.52	38.53	38.53
1000	38.50	38.51	38.51	38.51
1200	38.49	38.49	38.49	38.50
1500	38.48	38.48	38.48	38.48
2000	38.45	38.45	38.45	38.45

TABLE 9. MEDITERRANEAN SEA

Library Profile 3, ICAPS Profile No. 16, Seasonal Salinities

10 18.30 18.08 18.00 18. 20 18.32 18.19 18.13 18. 30 18.39 18.27 18.23 18. 50 18.66 18.49 18.46 18. 75 19.30 19.13 19.28 19. 100 19.98 19.80 20.02 20. 125 20.44 20.35 20.57 20. 150 20.78 20.71 20.93 20. 200 21.24 21.21 21.34 21. 250 21.47 21.47 21.47 21.56 21. 300 21.63 21.65 21.71 21. 400 21.85 21.86 21.90 21. 500 21.96 22.00 22.03 21. 800 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22.23 22.26 22. 1200 22.23 22.36 22.30 22.26 22.	Depth	(m)	Winter	Spring*	Summer	Fall
20 18.32 18.19 18.13 18. 30 18.39 18.27 18.23 18. 50 18.66 18.49 18.46 18. 75 19.30 19.13 19.28 19. 100 19.98 19.80 20.02 20. 125 20.44 20.35 20.57 20. 150 20.78 20.71 20.93 20. 200 21.24 21.21 21.34 21. 250 21.47 21.47 21.56 21. 300 21.63 21.65 21.71 21. 400 21.85 21.86 21.90 21. 500 21.96 22.00 22.03 21. 600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22.21 1200 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30	0		18.26	17.97	17.87	17.95
30 18.39 18.27 18.23 18. 50 18.66 18.49 18.46 18. 75 19.30 19.13 19.28 19. 100 19.98 19.80 20.02 20. 125 20.44 20.35 20.57 20. 150 20.78 20.71 20.93 20. 200 21.24 21.21 21.34 21. 250 21.47 21.47 21.47 21.56 21. 300 21.63 21.65 21.71 21. 400 21.85 21.86 21.90 21. 500 21.96 22.00 22.03 21. 600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22.21 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30	10		18.30	18.08	18.00	18.08
50 18.66 18.49 18.46 18. 75 19.30 19.13 19.28 19. 100 19.98 19.80 20.02 20. 125 20.44 20.35 20.57 20. 150 20.78 20.71 20.93 20. 200 21.24 21.21 21.34 21. 250 21.47 21.47 21.56 21. 300 21.63 21.65 21.71 21. 400 21.85 21.86 21.90 21. 500 21.96 22.00 22.03 21. 600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22.23 22.20 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30 22.30	20		18.32	18.19	18.13	18.13
75 19.30 19.13 19.28 19. 100 19.98 19.80 20.02 20. 125 20.44 20.35 20.57 20. 150 20.78 20.71 20.93 20. 200 21.24 21.21 21.34 21. 250 21.47 21.47 21.56 21. 300 21.63 21.65 21.71 21. 400 21.85 21.86 21.90 21. 500 21.96 22.00 22.03 21. 600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22.20 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30 22.30	30		18.39	18.27	18.23	18.21
100 19.98 19.80 20.02 20.125 125 20.44 20.35 20.57 20.150 150 20.78 20.71 20.93 20.20 200 21.24 21.21 21.34 21. 250 21.47 21.47 21.56 21. 300 21.63 21.65 21.71 21. 400 21.85 21.86 21.90 21. 500 21.96 22.00 22.03 21. 600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22. 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30 22.30	50		18.66	18.49	18.46	18.53
125 20.44 20.35 20.57 20. 150 20.78 20.71 20.93 20. 200 21.24 21.21 21.34 21. 250 21.47 21.47 21.56 21. 300 21.63 21.65 21.71 21. 400 21.85 21.86 21.90 21. 500 21.96 22.00 22.03 21. 600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22. 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30	75		19.30	19.13	19.28	19.37
150 20.78 20.71 20.93 20. 200 21.24 21.21 21.34 21. 250 21.47 21.47 21.56 21. 300 21.63 21.65 21.71 21. 400 21.85 21.86 21.90 21. 500 21.96 22.00 22.03 21. 600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22. 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30	100		19.98	19.80	20.02	20.09
200 21.24 21.21 21.34 21. 250 21.47 21.47 21.56 21. 300 21.63 21.65 21.71 21. 400 21.85 21.86 21.90 21. 500 21.96 22.00 22.03 21. 600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22. 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30	125		20.44	20.35	20.57	20.58
250 21.47 21.47 21.56 21. 300 21.63 21.65 21.71 21. 400 21.85 21.86 21.90 21. 500 21.96 22.00 22.03 21. 600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22. 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30	150		20.78	20.71	20.93	20.89
300 21.63 21.65 21.71 21. 400 21.85 21.86 21.90 21. 500 21.96 22.00 22.03 21. 600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22. 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30	200		21.24	21.21	21.34	21.28
400 21.85 21.86 21.90 21. 500 21.96 22.00 22.03 21. 600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22. 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30	250		21.47	21.47	21.56	21.48
500 21.96 22.00 22.03 21. 600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22. 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30	300		21.63	21.65	21.71	21.61
600 21.85 22.07 22.13 21. 800 21.98 22.20 22.23 22. 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30	400		21.85	21.86	21.90	21.83
800 21.98 22.20 22.23 22. 1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.30	500		21.96	22.00	22.03	21.98
1000 22.23 22.30 22.26 22. 1200 22.23 22.36 22.30 22.	600		21.85	22.07	22.13	21.95
1200 22.23 22.36 22.30 22.	800		21.98	22.20	22.23	22.08
	1000		22.23	22.30	22.26	22.12
1500 00 00 00 00 00 00 00 00 00 00 00 00	1200		22.23	22.36	22.30	22.13
1500 22.35 22.31 22.	1500		22.36	22.35	22.31	22.30
2000 22.33 22.34 22.34 22.	2000		22.33	22.34	22.34	22.34

TABLE 10. NORTH PACIFIC OCEAN
Library Profile 0, ICAPS Profile No. 68, Seasonal Salinities

Depth (m)	Winter*	Spring	Summer	Fall
0	34.23	33.97	33.83	34.03
10	34.10	33.97	33.96	34.01
20	34.10	33.98	34.03	34.00
30	34.10	33.99	34.09	34.03
50	34.11	34.01	34.20	34.11
75	34.12	34.06	34.23	34.15
100	34.12	34.08	34.22	34.21
125	34.12	34.08	34.17	34.16
150	34.12	34.07	34.13	34.13
200	34.07	34.05	34.06	34.08
250	34.04	34.04	34.04	34.04
300	34.04	34.04	34.03	34.01
400	34.03	34.05	34.04	34.00
500	34.04	34.07	34.05	34.00
600	34.05	34.06	34.09	34.05
800	34.07	34.04	34.10	34.10
1000	34.09	34.04	34.10	34.10
1200	34.10	34.05	34.10	34.10
1500	34.09	34.06	34.09	34.08
2000	34.08	34.08	34.08	34.08

TABLE 11. NORTH PACIFIC OCEAN
Library Profile 1, ICAPS Profile No. 14, Seasonal Salinities

Depth	(m) Winter	Spring	Summer	Fall*
0	32.48	32.24	32.14	32.36
10	32.49	32.28	32.20	32.36
20	32.51	32.41	32.39	32.39
30	32.53	32.49	32.52	32.44
50	32.58	32.59	32.68	32.65
75	32.82	32.82	32.86	32.94
100	33.21	33.19	33.12	33.23
125	33.52	33.50	33.41	33.48
150	33.72	33.71	33.64	33.68
200	33.89	33.89	33.87	33.88
250	33.94	33.94	33.93	33.93
300	33.97	33.97	33.96	33.96
400	34.03	34.03	34.03	34.02
500	34.10	34.11	34.10	34.09
600	34.18	34.18	34.18	34.17
800	34.30	34.31	34.30	34.30
1000	34.39	34.40	34.39	34.39
1200	34.45	34.45	34.45	34.45
1500	34.52	34.52	34.51	34.52
2000	34.59	34.59	34.59	34.59

TABLE 12. NORTH PACIFIC OCEAN
Library Profile 2, ICAPS Profile No. 99, Seasonal Salinities

Depth (m)	Winter	Spring*	Summer	Fall
0	33.06	32.78	32.50	32.33
10	33.04	32.79	32.55	32.33
20	33.05	32.84	32.68	32.37
30	33.07	32.89	32.79	32.58
50	33.10	32.98	32.92	32.84
75	33.14	33.04	33.02	32.99
100	33.17	33.13	33 10	33.08
125	33.25	33.22	33.19	33.19
150		33.29	33.26	33.26
200	33.50	33.38	33.35	33.35
250	33.60	33.45	33.41	33.40
300	33.65	33.51	33.47	33.46
400	33.66	33.63	33.59	33.59
500	33.70	33.75	33.74	33.71
600	33.85	33. 9 0	33.94	33.89
800	34.15	34.14	34.21	34.14
1000	34.30	34.32	34.35	34.32
1200	34.42	34.44	34.43	34.44
1500	34.50	34.50		
2000		34.54		

TABLE 13. NORTH PACIFIC OCEAN
Library Profile 3, ICAPS Profile No. 104, Seasonal Salinities

Depth	(m)	Winter	Spring*	Summer	Fall
0		32.18	32.00	31.96	31.88
10		32.19	32.04	32.01	31.92
20		32.22	32.11	32.12	31.99
30		32.25	32.18	32.24	32.08
50		32.33	32.31	32.45	32.32
75		32.50	32.51	32.66	32.62
100		32.82	32.81	32.90	32.93
125		33.16	33.13	33.22	33.23
150		33,39	33.37	33.49	33.46
200		33.63	33.62	33.74	33.69
250		33.74	33.73	33.82	33.79
300		33,81	33.81	33.88	33.84
400		33.97	33.96	33.98	33.95
500		34.07	34.06	34.07	34.05
600		34.16	34.16	34.14	34.14
800		34,28	34.29	34.27	34.28
1090		34.36	34.37	34.34	34.37
1200		34.43	34.43	34.40	34.44
1500		34.51	34.51	34.50	34.52
2000		34.59	34.58	34.58	34.57

TABLE 14. NORTH INDIAN OCEAN
Library Profile O, ICAPS Profile No. 13, Seasonal Salinities

Depth (m)	Winter	Spring	Summer*	Fall
0	34.41	34.43	34.43	34.41
10	34.40	34.43	34.43	34.40
20	34.48	34.43	34.43	34.48
30	34.63	34.46	34.46	34.63
50	34.82	34.65	34.65	34.82
75	35.10	34.91	34.91	35.10
100	35.12	35.09	35.09	35.12
125	35.04	35.14	35.14	35.04
150	35.01	35.13	35.13	35.01
200	35.03	35.07	35.07	35.03
250	35.08	35.06	35.06	35.08
300	35.08	35.05	35.05	35.08
400	35.06	35.03	35.03	35.06
500	35.05	35.02	35.02	35.05
600	35.03	35.01	35.01	35.03
800	34.99	34.98	34.98	34.99
1000	34.94	34.93	34.93	34.94
1200	34.90	34.89	34.89	34.90
1500	34.85	34.84	34.84	34.85
2000	34.78	34.77	34.77	34.78

TABLE 15. NORTH INDIAN OCEAN
Library Profile 1, ICAPS Profile No. 1, Seasonal Salinities

Depth (m)	Winter	Spring*	Summer	Fa11
0	39.02	38.76	38.76	39.02
10	39.01	38.76	38.76	39.01
20	39.02	38.83	38.83	39.02
30	39.08	38.89	38.89	39.08
50	39.21	39.01	39.01	39.21
75	39.54	39.48	39.48	39.54
100	39.98	40.03	40.03	39.98
125	40.22	40.29	40.29	40.22
150	40.35	40.42	40.42	40.35
200	40.45	40.50	40.50	40.45
250	40.49	40.54	40.54	40.49
300	40.51	40.57	40.57	40.51
400	40.54	40.58	40.58	40.54
500	40.56	40.61	40.61	40.56
600	40.56	40.61	40.61	40.56
800	40.57	40.63	40.63	40.57
1000	40.58	40.65	40.65	40.58
1200	40.60	40.63	40.63	40.60
1500	40.60	40.65	40.65	40.60
2000	40.70	40.66	40.66	40.70

TABLE 16. NORTH INDIAN OCEAN
Library Profile 2, ICAPS Profile No. 23, Seasonal Salinities

Depth (m)	Winter	Spring*	Summer	Fall
0	36.25	36.51	36.51	36.25
10	36.22	36.46	36.46	36.22
20	36.20	36.32	36.32	36.20
30	36.22	36.24	36.24	36.22
50	36.18	36.06	36.06	36.18
75	36.10	35.97	35.97	36.10
100	35.80	35.91	35.91	35.80
125	35.75	35.90	35.90	35.75
150	35.70	35.89	35.89	35.70
200	35.67	35.87	35.87	35.67
250	35.80	36.19	36.19	35.80
300	36.05	36.54	36.54	36.05
400	36.35	37.07	37.07	36.35
500	36.61	37.12	37.12	36.61
600	36.93	37.18	37.18	36.93
800	37.22	37.25	37.25	37.22
1000	37.35	37.45	37.45	37.35
1200	37.34	37.51	37.51	37.34
1500	37.30	37.50	37.50	37.30
2000		37.25		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
INORDA Technical Note 193	3. RECIPIENT'S CATALOG NUMBER			
A Bathythermograph to Sound Velocity Profile Program for the HP-41CV Calculator, Including	5. TYPE OF REPORT & PERIOD COVERED Final			
A Northern Hemisphere Salinity Profile Library	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(s)	S. CONTRACT OR GRANT NUMBER(s)			
George A. Kerr				
P. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Ocean Research and Development Activity	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Ocean Science and Technology Laboratory NSTL Station, Mississippi 39529	P.E. 63785N			
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE January 1983			
same	13. NUMBER OF PAGES			
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)			
	Unclassified			
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report)				
Distribution unlimited				
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)				
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)				
Bathythermograph Sound velocity HP-41CV Calculator program				
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)				
This technical note documents a program written specifically for the HP-41CV calculator to convert a bathythermograph profile to a sound speed profile. The format of the report follows the guidelines set forth by the Navy Tactical Support Activity, Fleet Mission Program Library.				
The program documented herein differs from exist for a similar purpose (Kerr, 1983) in that an archins included with the program.	ting calculator programs used ival salinity profile library			

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 15 OBSOLETE S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) Magnetic card copies of the program and salinity profile library may be obtained from the Naval Oceanographic Office, Code 9200.

