МЕТОДИЧЕСКИЕ УКАЗАНИЯ

для самостоятельной работы студентов всех специальностей по дисциплине «Высшая математика» по теме «ЛИНЕЙНАЯ АЛГЕБРА»

ОБРАЗЕЦ РЕШЕНИЯ ЗАДАНИЙ

1. Вычислить определитель второго порядка $\begin{vmatrix} \sin^2 \alpha & \cos^2 \alpha \\ \sin^2 \beta & \cos^2 \beta \end{vmatrix}$.

Решение. Используем правило вычисления определителя II порядка и преобразуем затем полученное выражение согласно тригонометрическим формулам:

$$\begin{vmatrix} \sin^2 \alpha & \cos^2 \alpha \\ \sin^2 \beta & \cos^2 \beta \end{vmatrix} = \sin^2 \alpha \cos^2 \beta - \sin^2 \beta \cos^2 \alpha = (\sin \alpha \cos \beta)^2 - (\sin \beta \cos \alpha)^2 =$$

 $= (\sin\alpha\cos\beta - \sin\beta\cos\alpha)(\sin\alpha\cos\beta + \sin\beta\cos\alpha) = \sin(\alpha - \beta)\sin(\alpha + \beta).$

2. Решить неравенство $\begin{vmatrix} x^2 + 5 & 3 \\ x + 1 & 1 \end{vmatrix} > 0$.

Решение. Раскрывая определитель, получаем неравенство:

$$\begin{vmatrix} x^2 + 5 & 3 \\ x + 1 & 1 \end{vmatrix} = x^2 - 3x + 2 = (x - 1)(x - 2) > 0.$$

Решение данного неравенства строим методом интервалов

Otbet: $x \in (-\infty;1) \cup (2;+\infty)$.

- 3. Вычислить определитель третьего порядка $\begin{vmatrix} 1 & 2 & 4 \\ -2 & 1 & -3 \\ 3 & -4 & 0 \end{vmatrix}$.
- а) Чтобы получить значение определителя III порядка воспользуемся правилом «треугольников», для чего добавим справа от определителя два первых его столбца, после чего выделим диагонали, содержащие положительные (отмечены) и отрицательные (отмечены —) произведения элементов определителя:

$$\begin{vmatrix} 1 & 2 & 4 & 1 & 2 \\ -2 & 1 & -3 & -4 & 0 & 3 & -4 \end{vmatrix}$$

Тогда значение определителя оказывается равным

$$\begin{vmatrix} 1 & 2 & 4 \\ -2 & 1 & -3 \\ 3 & -4 & 0 \end{vmatrix} = 1 \cdot 1 \cdot 0 + 2 \cdot (-3) \cdot 3 + 4 \cdot (-2) \cdot (-4) - 4 \cdot 1 \cdot 3 -$$

$$-1 \cdot (-3) \cdot (-4) - 2 \cdot (-2) \cdot 0 = 0 - 18 + 32 - 12 - 12 + 0 = -10.$$

б) Найдем значение данного определителя более рациональным, с вычислительной точки зрения, методом — преобразованием к «удобному» виду с последующим разложением по элементам строки (столбца). Преобразуем определитель добавлением ко второй строке \mathbf{II} удвоенной первой $2 \cdot \mathbf{I}$, и вычитанием из третьей строки определителя \mathbf{III} утроенной первой $3 \cdot \mathbf{I}$. Согласно свойствам определителя он не изменит своего значения:

$$\begin{vmatrix} 1 & 2 & 4 \\ -2 & 1 & -3 \\ 3 & -4 & 0 \end{vmatrix} \quad \mathbf{II} + 2 \cdot \mathbf{I} \quad = \begin{vmatrix} 1 & 2 & 4 \\ 0 & 5 & 5 \\ 3 & -4 & 0 \end{vmatrix} \mathbf{III} - \mathbf{3} \cdot \mathbf{I} \quad = \begin{vmatrix} 1 & 2 & 4 \\ 0 & 5 & 5 \\ 0 & -10 & -12 \end{vmatrix}$$

Спользуя разложение определителя по элементам первого столбца, так как он содоржит лишь один ненулевой элемент, получаем следующее значение определителя:

$$\begin{vmatrix} 1 & 2 & 4 \\ 0 & 5 & 5 \\ 0 & -10 & -12 \end{vmatrix} = a_{11}A_{11} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 5 & 5 \\ -10 & -12 \end{vmatrix} = -10 \cdot$$

Ответ: -10.

4. Найти
$$f(A)$$
, если $A = \begin{pmatrix} 5 & 2 & -3 \\ 1 & 3 & -1 \\ 2 & 2 & -1 \end{pmatrix}$; $f(A) = A^3 - 7A^2 + 13A - 5E$.

Решение.

По условию задачи
$$f(A)=A^3-7A^2+13A-5E$$
 , где $E=\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}$ - единичная матрица

III порядка. Вычислим степени A^3 , A^2 по правилу умножения двух матриц $A_{n\times m}\cdot B_{m\times p}=C_{n\times p}$, где элементы матрицы C ($C_{ij}=\sum_{k=1}^m a_{ik}b_{kj},\,i=1,2,...,n;\,j=1,2,...p$),

находятся как сумма произведений элементов i-ой строки матрицы A и j-го столбца матрицы B.

Получаем:

$$A^{2} = A \cdot A = \begin{pmatrix} 5 & 2 & -3 \\ 1 & 3 & -1 \\ 2 & 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 5 & 2 & -3 \\ 1 & 3 & -1 \\ 2 & 2 & -1 \end{pmatrix} =$$

$$= \begin{pmatrix} 5 \cdot 5 + 2 \cdot 1 - 3 \cdot 2 & 5 \cdot 2 + 2 \cdot 3 - 3 \cdot 2 & -5 \cdot 3 - 1 \cdot 2 + (-3) \cdot (-1) \\ 1 \cdot 5 + 3 \cdot 1 - 1 \cdot 2 & 1 \cdot 2 + 3 \cdot 3 - 1 \cdot 2 & -1 \cdot 3 - 3 \cdot 1 + (-1) \cdot (-1) \\ 2 \cdot 5 + 2 \cdot 1 - 1 \cdot 2 & 2 \cdot 2 + 2 \cdot 3 - 1 \cdot 2 & -2 \cdot 3 - 2 \cdot 1 + (-1) \cdot (-1) \end{pmatrix} =$$

$$= \begin{pmatrix} 21 & 10 & -14 \\ 6 & 9 & -5 \\ 10 & 8 & -7 \end{pmatrix};$$

$$A^{2} = A^{2} \cdot A = \begin{pmatrix} 21 & 10 & -14 \\ 6 & 9 & -5 \\ 10 & 8 & -7 \end{pmatrix} \cdot \begin{pmatrix} 5 & 2 & -3 \\ 1 & 3 & -1 \\ 2 & 2 & -1 \end{pmatrix} = \begin{pmatrix} 87 & 44 & -59 \\ 29 & 29 & -22 \\ 44 & 30 & -31 \end{pmatrix}.$$

По правилам умножения матрицы на скаляр и сложения матриц находим f(A):

$$f(A) = A^{3} - 7A^{2} + 13A - 5E = \begin{pmatrix} 87 & 44 & -59 \\ 29 & 29 & -22 \\ 44 & 30 & -31 \end{pmatrix} - 7 \begin{pmatrix} 21 & 10 & -14 \\ 6 & 9 & -5 \\ 10 & 8 & -7 \end{pmatrix} + 13 \begin{pmatrix} 5 & 2 & -3 \\ 1 & 3 & -1 \\ 2 & 2 & -1 \end{pmatrix} - 5 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 87 - 7 \cdot 21 + 13 \cdot 5 - 5 & 44 - 7 \cdot 10 + 13 \cdot 2 & -59 + 7 \cdot 14 - 13 \cdot 3 \\ 29 - 7 \cdot 6 + 13 \cdot 1 & 29 - 7 \cdot 9 + 13 \cdot 3 - 5 & -22 + 7 \cdot 5 - 13 \\ 44 - 7 \cdot 10 + 13 \cdot 2 & 30 - 7 \cdot 8 + 13 \cdot 2 & -31 + 7 \cdot 7 - 13 - 5 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Otbet:
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} .$$

5. Найти матрицу, обратную данной

$$\begin{pmatrix} 3 & 4 & -2 \\ 1 & 2 & 4 \\ 0 & 1 & 1 \end{pmatrix}.$$

Сделать проверку.

Решение.

Вычисляем определитель матрицы:

$$\Delta = \begin{vmatrix} 3 & 4 & -2 \\ 1 & 2 & 4 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 3 & 6 & -2 \\ 1 & -2 & 4 \\ 0 & 0 & 1 \end{vmatrix} = 1 \cdot (-1)^{3+3} \begin{vmatrix} 3 & 6 \\ 1 & -2 \end{vmatrix} = -6 - 6 = -12,$$

так как определитель матрицы $\Delta = -12 \neq 0$, то существует обратная матрица

$$A^{-1} = \frac{1}{\Delta} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix},$$

где A_{ii} – алгебраические дополнения элементов исходной матрицы.

Найдем алгебраические дополнения:

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix} = -2; A_{21} = (-1)^{2+1} \begin{vmatrix} 4 & -2 \\ 1 & 1 \end{vmatrix} = -6; A_{31} = (-1)^{3+1} \begin{vmatrix} 4 & -2 \\ 2 & 4 \end{vmatrix} = 20;$$

$$A_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 4 \\ 0 & 1 \end{vmatrix} = -1; A_{22} = (-1)^{2+2} \begin{vmatrix} 3 & -2 \\ 0 & 1 \end{vmatrix} = 3; A_{32} = (-1)^{3+2} \begin{vmatrix} 3 & -2 \\ 1 & 4 \end{vmatrix} = -14;$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1; A_{23} = (-1)^{2+3} \begin{vmatrix} 3 & 4 \\ 0 & 1 \end{vmatrix} = -3; A_{33} = (-1)^{3+3} \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix} = 2.$$
Строим обратную матрицу \mathbf{A}^{-1} .

$$A^{-1} = \frac{1}{-12} \begin{pmatrix} -2 & -6 & 20 \\ -1 & 3 & -14 \\ 1 & -3 & 2 \end{pmatrix} = \begin{pmatrix} 1/6 & 1/2 & -5/3 \\ 1/6 & -1/4 & 7/6 \\ -1/6 & 1/3 & -1/6 \end{pmatrix}.$$

Проверка полученного решения:

$$A \cdot A^{-1} = \frac{1}{-12} \begin{pmatrix} 3 & 4 & -2 \\ 1 & 2 & 4 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & -6 & 20 \\ -1 & 3 & -14 \\ 1 & -3 & 2 \end{pmatrix} =$$

$$= \frac{1}{-12} \begin{pmatrix} -6 - 4 - 2 & -18 + 12 + 6 & 60 - 56 - 4 \\ -2 - 2 + 4 & -6 + 6 - 12 & 20 - 28 + 8 \\ -1 + 1 & 3 - 3 & -14 + 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$= A^{-1} \cdot A = \frac{1}{-12} \begin{pmatrix} -2 & -6 & 20 \\ -1 & 3 & -14 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 & -2 \\ 1 & 2 & 4 \\ 0 & 1 & 1 \end{pmatrix} =$$

$$= \frac{1}{-12} \begin{pmatrix} -6 - 6 & -8 - 12 + 20 & 4 - 24 + 20 \\ -3 + 3 & -4 + 6 - 14 & 2 + 12 - 14 \\ 3 - 3 & 4 - 6 + 2 & -2 - 12 + 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E.$$

Otbet:
$$\begin{pmatrix} 1/6 & 1/2 & -5/3 \\ 1/6 & -1/4 & 7/6 \\ -1/6 & 1/3 & -1/6 \end{pmatrix}.$$

6. Решить систему линейных алгебраических уравнений

$$\begin{cases} 3x_1 - 2x_2 + 3x_3 = 4 \\ 5x_1 + 4x_2 - 7x_3 = 0 \\ x_1 - x_2 + 2x_3 = 3 \end{cases}$$

а) Решение системы по правилу Крамера.

Вычислим определитель системы:

$$\Delta = \begin{vmatrix} 3 & -2 & 3 \\ 5 & 4 & -7 \\ 1 & -1 & 2 \end{vmatrix} \mathbf{I} - 3 \cdot \mathbf{III} = \begin{vmatrix} 0 & 1 & -3 \\ 0 & 9 & -17 \\ 1 & -1 & 2 \end{vmatrix} = 1 \cdot (-1)^{3+1} \begin{vmatrix} 1 & -3 \\ 9 & -17 \end{vmatrix} = -17 + 27 = 10 \neq 0$$

Так как определитель системы отличен от нуля, то данная система имеет единственное решение. Чтобы воспользоваться формулами Крамера, находим дополнительные определители, полученные из определителя системы путем замены коэффициентов при немзрестном x_i столбцом свободных членов:

$$\Delta_1 = \begin{vmatrix} 4 & -2 & 3 \\ 0 & 4 & -7 \\ 3 & -1 & 2 \end{vmatrix} = 10; \ \Delta_2 = \begin{vmatrix} 3 & 4 & 3 \\ 5 & 0 & -7 \\ 1 & 3 & 2 \end{vmatrix} = 40; \ \Delta_1 = \begin{vmatrix} 3 & -2 & 4 \\ 5 & 4 & 0 \\ 1 & -1 & 3 \end{vmatrix} = 30.$$

Используя формулы Крамера, получаем решение системы:

$$x_1 = \frac{\Delta_1}{\Delta} = 1$$
; $x_2 = \frac{\Delta_2}{\Delta} = 4$; $x_3 = \frac{\Delta_3}{\Delta} = 3$.

b) Решение системы методом обратной матрицы.

10

$$X = A^{-1} \cdot B$$
.

В нашем случае

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, B = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix},$$

$$A^{-1}$$
 — матрица обратная к $A = \begin{pmatrix} 3 & -2 & 3 \\ 5 & 4 & -7 \\ 1 & -1 & 2 \end{pmatrix}$.

Находим матрицу A^{-1} (см. задание №5):

$$A^{-1} = \frac{1}{10} \begin{pmatrix} 1 & 1 & 2 \\ -17 & 3 & 36 \\ -9 & 1 & 22 \end{pmatrix}.$$

Тогда решение системы в матричном виде имеет следующий вид

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 1 & 1 & 2 \\ -17 & 3 & 36 \\ -9 & 1 & 22 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 4+6 \\ -68+108 \\ -36+66 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}.$$

Отсюда, имеем решение заданной системы: $x_1 = 1$; $x_2 = 4$; $x_3 = 3$.

с) Решение системы методом Гаусса.

Составим расширенную матрицу системы

$$\begin{pmatrix}
3 & -2 & 3 & | & 4 \\
5 & 4 & -7 & | & 0 \\
1 & -1 & 2 & | & 3
\end{pmatrix}.$$

Проведем элементарные преобразования над строками таким образом, чтобы все элементы, расположенные ниже главной диагонали, стали равными нулю.

$$\begin{pmatrix}
3 & -2 & 3 & | & 4 \\
5 & 4 & -7 & | & 0 \\
1 & -1 & 2 & | & 3
\end{pmatrix} \cong \begin{pmatrix}
1 & -1 & 2 & | & 3 \\
5 & 4 & -7 & | & 0 \\
3 & -2 & 3 & | & 4
\end{pmatrix} \mathbf{II} - \mathbf{5} \cdot \mathbf{I} \cong \mathbf{II} = \mathbf$$

В результате этих преобразований система принимает следующий вид

$$\begin{cases} x_1 - x_2 + 2x_3 = 3 \\ 9x_2 - 17x_3 = -15 \\ -10x_3 = -30 \end{cases}$$

Из последнего уравнения имеем $x_3=3$, подставив это значение во второе уравнение, получим $x_2=4$ и, наконец, из первого уравнения находим

$$x_1 = 3 - 2 \cdot x_3 + x_2 = 3 - 2 \cdot 3 + 4 = 1$$
.

Otbet: $x_1 = 1$; $x_2 = 4$; $x_3 = 3$.

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ 7x_1 + 5x_2 + 2x_3 = 0 \\ 4x_1 + 3x_2 + x_3 = 0 \end{cases}$$

Решение.

С помощью элементарных преобразований приведем матрицу системы к треугольному виду

$$\begin{pmatrix} 3 & 2 & 1 \\ 7 & 5 & 2 \\ 4 & 3 & 1 \end{pmatrix} \mathbf{II} - \mathbf{I} \cong \begin{pmatrix} 3 & 2 & 1 \\ 4 & 3 & 1 \\ 4 & 3 & 1 \end{pmatrix} \cong \begin{pmatrix} 3 & 2 & 1 \\ 4 & 3 & 1 \end{pmatrix} \mathbf{II} \cdot \mathbf{A} \cong \begin{pmatrix} 12 & 8 & 4 \\ 12 & 9 & 3 \end{pmatrix} \mathbf{II} - \mathbf{I} \cong \begin{pmatrix} 3 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

Отсюда следует, что ранг матрицы $\mathbf{r}(A)=2$, так как минор $\begin{vmatrix} 3 & 2 \\ 0 & 1 \end{vmatrix}=3\neq 0$. Данный минор

является базисным, при этом переменные x_1 и x_2 , при которых выбраны столбцы базисного минора, являются базисными. Переменная x_3 оказывается свободной.

Так как ранг системы меньше числа неизвестных системы $\mathbf{r}(A) < 3$, однородная система линейных уравнений имеет бесконечное множество решений. Найдем их, решая систему относительно базисных неизвестных

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}; \begin{cases} 3x_1 + 2x_2 = -x_3 \\ x_2 = x_3 \end{cases}; \begin{cases} x_1 = \frac{-x_3 - 2x_2}{3} \\ x_2 = x_3 \end{cases}; \begin{cases} x_1 = -x_3 \\ x_2 = x_3 \end{cases}.$$
 Свободная

переменная может принимать любые значения, поэтому положим $x_3 = C$. Тогда общее решение однородной системы может быть записано следующим образом $x_1 = -C, x_2 = C, x_3 = C$.

Otbet: $x_1 = -C, x_2 = C, x_3 = C$.

ЗАДАНИЯ ДЛЯ ИНДИВИДУАЛЬНОЙ РАБОТЫ

Задание №1. Вычислить определитель второго порядка:

1.1.
$$\begin{vmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{vmatrix}$$
 1.2. $\begin{vmatrix} \sin \alpha & \cos \alpha \\ \sin \beta & \cos \beta \end{vmatrix}$ 1.3. $\begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \beta & \cos \beta \end{vmatrix}$

1.4.
$$\begin{vmatrix} \operatorname{tg}\alpha & -1 \\ 1 & \operatorname{tg}\alpha \end{vmatrix}$$
 1.5. $\begin{vmatrix} a+b & b+d \\ a+c & c+d \end{vmatrix}$ 1.6. $\begin{vmatrix} 1+\sqrt{2} & 2-\sqrt{3} \\ 2+\sqrt{3} & 1-\sqrt{2} \end{vmatrix}$

1.7.
$$\begin{vmatrix} 1 & \log_b a \\ \log_a b & 1 \end{vmatrix}$$
 1.8. $\begin{vmatrix} a+b & a-b \\ a-b & a+b \end{vmatrix}$ 1.9. $\begin{vmatrix} x-1 & 1 \\ x^3 & x^3+x+1 \end{vmatrix}$

1.10.
$$\begin{vmatrix} \sqrt{a} - 1 & -1 \\ a & \sqrt{a} + 1 \end{vmatrix}$$
 1.11. $\begin{vmatrix} a^2 & ab \\ ab & b^2 \end{vmatrix}$ 1.12. $\begin{vmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{vmatrix}$

12

1.13.
$$\begin{vmatrix} \operatorname{tg}\alpha & \operatorname{tg}\alpha \\ \operatorname{ctg}\alpha & \operatorname{ctg}\alpha \end{vmatrix}$$
 1.14. $\begin{vmatrix} a-b & a+b \\ a+b & a-b \end{vmatrix}$ **1.15.** $\begin{vmatrix} \log_b a & 1 \\ 1 & \log_a b \end{vmatrix}$

1.16.
$$\begin{vmatrix} 1-\sqrt{5} & 1-\sqrt{7} \\ 1+\sqrt{7} & 1+\sqrt{5} \end{vmatrix}$$
 1.17. $\begin{vmatrix} a+b & a-b \\ a+b & a-b \end{vmatrix}$ **1.18.** $\begin{vmatrix} \sqrt{m}-\sqrt{n} & 1 \\ m+n & \sqrt{m}+\sqrt{n} \end{vmatrix}$

1.19.
$$\begin{vmatrix} \log_{\sqrt{2}} 2 & 3 \\ 2 & 2^{\log_2 3} \end{vmatrix}$$
 1.20. $\begin{vmatrix} \log_3 \frac{1}{9} & -2 \\ 3 & \log_2 8 \end{vmatrix}$ **1.21.** $\begin{vmatrix} \sin \frac{\pi}{4} & \cos \frac{\pi}{2} \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{4} \end{vmatrix}$

1.22.
$$\begin{vmatrix} \sin \frac{7\pi}{6} & \cos \frac{7\pi}{6} \\ \cos \frac{5\pi}{4} & \sin \frac{5\pi}{4} \end{vmatrix}$$
 1.23.
$$\begin{vmatrix} 0.25 & 2^{-3} \\ \frac{1}{2} & 2^{-2} \end{vmatrix}$$
 1.24.
$$\begin{vmatrix} 2^{\log_2 3 - \log_2 4} & \frac{1}{2} \\ 3 & \log_{\sqrt{2}} 2 \end{vmatrix}$$

1.25.
$$\begin{vmatrix} \log_{25} 5 & \frac{1}{4} \\ 2\cos\frac{\pi}{3} & \sin\frac{\pi}{6} \end{vmatrix}$$
 1.26. $\begin{vmatrix} 2^x & \log_1 \sqrt{2} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix}$ **1.27.** $\begin{vmatrix} \sqrt{39} - \sqrt{26} & 2 \\ \sqrt{3} - \sqrt{2} & \frac{1}{\sqrt{13}} \end{vmatrix}$

1.28
$$\begin{vmatrix} a-b & 3ab \\ a-b & a^2+ab+b^2 \end{vmatrix}$$
 1.29. $\begin{vmatrix} a^2-ab+b^2 & -3ab \\ a+b & a+b \end{vmatrix}$

1.30.
$$\begin{vmatrix} \cos 2\alpha & 2\sin^2 \frac{\alpha}{2} \\ 2\cos^2 \frac{\alpha}{2} & -1 \end{vmatrix}$$
.

Задание №2. Решить неравенство.

2.1.
$$\begin{vmatrix} x & 3x \\ 4 & 2x \end{vmatrix} < 14$$
 2.2. $\begin{vmatrix} x & x+5 \\ 2 & x \end{vmatrix} > -7$ **2.3.** $\begin{vmatrix} 3x-3 & 2 \\ x & 1 \end{vmatrix} > 0$ Other: $(-1,7)$. Other: $(-\infty,-1) \cup (3,+\infty)$. Other: $(3,+\infty)$.

2.4.
$$\begin{vmatrix} 1 & x+5 \\ 2 & x \end{vmatrix} < 0$$
 2.5. $\begin{vmatrix} 2x-2 & 1 \\ 7x & 2 \end{vmatrix} > 5$ **2.6.** $\begin{vmatrix} x & x \\ 2 & x \end{vmatrix} > -1$

Otbet:
$$(-10;+\infty)$$
. **Otbet:** $(-\infty,-3)$. **Otbet:** $(-\infty,l) \cup (l,\infty)$.

2.7.
$$\begin{vmatrix} 2x+1 & 1 \\ 5x & 3 \end{vmatrix} > 0$$
 2.8. $\begin{vmatrix} 5x+7 & 5 \\ x & 3 \end{vmatrix} > 0$ **2.9.** $\begin{vmatrix} 2x & 4 \\ 3x & x \end{vmatrix} > 0$

Other:
$$(-3;+\infty)$$
. Other: $(-2,1;+\infty)$ Other: $(-\infty,0) \cup (6,+\infty)$

2.10.
$$\begin{vmatrix} x & 2 \\ 3x - 4 & 5 \end{vmatrix} > 1$$
 2.11. $\begin{vmatrix} x & -1 \\ 5x + 6 & x \end{vmatrix} > 0$ **2.12.** $\begin{vmatrix} x & x + 5 \\ 2 & x \end{vmatrix} < -7$ Otbet: $(-\infty, -3) \cup (-2, +\infty)$ Otbet: $(-1; 3)$

2.13.
$$\begin{vmatrix} 3x-2 & x \\ -x & -1 \end{vmatrix} > 0$$
 2.14. $\begin{vmatrix} x & x-1 \\ 5 & x \end{vmatrix} > -1$ **2.15.** $\begin{vmatrix} x & 2 \\ x+5 & 1 \end{vmatrix} > 0$

OTBET:
$$(-\infty,1) \cup (2,+\infty)$$
. **OTBET:** $(-\infty,2) \cup (3,+\infty)$ **OTBET:** $(-\infty,-10)$

2.16.
$$\begin{vmatrix} 2 & x \\ x & x+5 \end{vmatrix} > 7$$
 2.17. $\begin{vmatrix} x & 2x+8 \\ -8 & x \end{vmatrix} \ge 0$ **2.18.** $\begin{vmatrix} 3x & 2 \\ 2 & 3x \end{vmatrix} \ge 0$

Otbet:
$$(-1,3)$$
 Otbet: $(-\infty,+\infty)$. **Otbet:** $(-\infty,-\frac{2}{3}] \cup [\frac{2}{3},+\infty)$

2.19.
$$\begin{vmatrix} x & 3x \\ 4 & 2x \end{vmatrix} > 14$$
 2.20. $\begin{vmatrix} 1 & x \\ 2 & 3x - 3 \end{vmatrix} < 0$ **2.21.** $\begin{vmatrix} x & 2 \\ x & x \end{vmatrix} < -1$

OTBET:
$$(-\infty,-1) \cup (7,+\infty)$$
 OTBET: $(-\infty,3)$ **OTBET:** $x \in \emptyset$.

2.22.
$$\begin{vmatrix} 2 & x \\ x & x+5 \end{vmatrix} < 7$$
 2.23. $\begin{vmatrix} 2 & 7x \\ 1 & 2x-2 \end{vmatrix} < 5$ **2.24.** $\begin{vmatrix} x & -16 \\ x+4 & x \end{vmatrix} \le 0$

Ответ:
$$(-\infty,-1) \cup (3,+\infty)$$
. Ответ: $(-3,+\infty)$. Ответ: $x = -8$.

2.25.
$$\begin{vmatrix} 2x & 4 \\ 3x & x \end{vmatrix} < 0$$
 2.26. $\begin{vmatrix} 3x & x \\ 6 & x \end{vmatrix} > 0$ **2.27.** $\begin{vmatrix} x & 5 \\ x-1 & x \end{vmatrix} < -1$

2.26.
$$\begin{vmatrix} 3x & x \\ 6 & x \end{vmatrix} > 0$$

2.27.
$$\begin{vmatrix} x & 5 \\ x-1 & x \end{vmatrix} < -1$$

OTBET: (0,6) **OTBET:** $(-\infty,0) \cup (2,+\infty)$ **OTBET:** (2,3)

2.28.
$$\begin{vmatrix} 2 & 2x \\ -x & 2x \end{vmatrix} < 0$$

2.28.
$$\begin{vmatrix} 2 & 2x \\ -x & 2x \end{vmatrix} < 0$$
 2.29. $\begin{vmatrix} x^2 & -x \\ 6 & 6 \end{vmatrix} \ge 0$ **2.30.** $\begin{vmatrix} x & 6 \\ x & 3x \end{vmatrix} \le 0$.

$$2.30. \begin{vmatrix} x & 6 \\ x & 3x \end{vmatrix} \le 0$$

Ответ: (-2;0). Ответ: $(-\infty,-1] \cup [0,+\infty)$ Ответ: [0;2]

Задание №3. Вычислить определитель третьего порядка.

$$\begin{array}{c|cccc}
3 & -2 & 1 \\
-2 & 1 & 3 \\
16 & 2 & 0 & -2
\end{array}$$

$$\begin{array}{c|cccc}
1 & 2 & 0 \\
0 & 1 & 3 \\
5 & 0 & -1
\end{array}$$

$$\begin{vmatrix} 2 & -1 & 3 \\ 3.5. & -2 & 3 & 3 \end{vmatrix}$$

$$3.5. \begin{vmatrix} 2 & -1 & 3 \\ -2 & 3 & 2 \\ 0 & 2 & 5 \end{vmatrix}$$

OTBET: -12. OTBET: -2. OTBET: 29.

3.4.
$$\begin{vmatrix} 2 & 0 & 5 \\ 1 & 3 & 16 \\ 0 & -1 & 10 \end{vmatrix}$$
3.5. $\begin{vmatrix} 2 & -1 & 3 \\ -2 & 3 & 2 \\ 0 & 2 & 5 \end{vmatrix}$
3.6. $\begin{vmatrix} 1 & 17 & -7 \\ -1 & 13 & 1 \\ 1 & 7 & 1 \end{vmatrix}$

$$3.7. \begin{vmatrix} 2 & 0 & 0 \\ 1 & 3 & 10 \\ 0 & -1 & 10 \end{vmatrix}$$

$$3.8. \begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix}$$

3.7.

$$\begin{vmatrix}
 2 & 0 & 0 \\
 1 & 3 & 10 \\
 0 & -1 & 10
 \end{vmatrix}$$

 3.8.

 $\begin{vmatrix}
 1 & 2 & 3 \\
 3 & 1 & 2 \\
 2 & 3 & 1
 \end{vmatrix}$

 3.9.

 $\begin{vmatrix}
 1 & 2 & 4 \\
 -2 & 1 & -3 \\
 3 & -4 & 2
 \end{vmatrix}$

 Otbet:
 80.
 Otbet:
 18.
 Otbet:
 0.

3.10.
$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{vmatrix}$$

$$3.10. \begin{vmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{vmatrix} \qquad 3.11. \begin{vmatrix} 3 & 2 & 1 \\ -2 & 3 & 2 \\ 4 & 5 & 3 \end{vmatrix} \qquad 3.12. \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$

3.12.
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$

$$3.14. \begin{vmatrix} 3 & 4 & -5 \\ 8 & 7 & -2 \\ 2 & -1 & 8 \end{vmatrix} \qquad 3.15. \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{vmatrix}$$

3.15.
$$\begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{vmatrix}$$

Otbet: -3.

$$\begin{array}{c|ccccc}
3.16. & 1 & 4 & 7 \\
0 & -3 & -6 \\
3 & 6 & 10
\end{array}$$

$$3.17. \begin{vmatrix} 1 & -1 & 2 \\ 3 & 5 & 0 \\ -2 & -3 & 1 \end{vmatrix} \qquad 3.18. \begin{vmatrix} 2 & 3 & 4 \\ 5 & -2 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$

$$3.18. \begin{vmatrix} 2 & 3 & 4 \\ 5 & -2 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$

$$3.19. \begin{vmatrix} 1 & 2 & -1 \\ 0 & 1 & -6 \\ 3 & 8 & -15 \end{vmatrix}$$

$$3.20. \begin{vmatrix} 1 & 2 & 5 \\ 3 & -4 & 7 \\ -3 & 12 & -15 \end{vmatrix} \quad 3.21. \begin{vmatrix} 2 & 8 & 0 \\ 0 & 0 & -6 \\ 1 & -4 & 2 \end{vmatrix}$$

3.22.
$$\begin{vmatrix} 2 & -3 & 1 \\ 6 & -6 & 2 \\ 2 & -1 & 2 \end{vmatrix}$$
 3.23. $\begin{vmatrix} 1 & 2 & -3 \\ -1 & -3 & 4 \\ 2 & 1 & -1 \end{vmatrix}$ 3.24. $\begin{vmatrix} 2 & -1 & 2 \\ 3 & 1 & 5 \\ 2 & -4 & 3 \end{vmatrix}$ OTBET: 10. OTBET: -2. OTBET: 17.

$$3.25. \begin{vmatrix} -1 & 3 & 2 \\ 1 & 0 & -3 \\ 1 & 1 & 2 \end{vmatrix} \qquad 3.26. \begin{vmatrix} 2 & 3 & -1 \\ 3 & -2 & 4 \\ 1 & -1 & 0 \end{vmatrix} \qquad 3.27. \begin{vmatrix} 1 & -2 & 3 \\ -2 & 1 & -5 \\ 3 & 2 & 7 \end{vmatrix}$$

$$3.28. \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} \qquad 3.29. \begin{vmatrix} 3 & 0 & 5 \\ 1 & 3 & 15 \\ 1 & -1 & 10 \end{vmatrix} \qquad 3.30. \begin{vmatrix} 1 & -2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{vmatrix}$$

Задание №4. Вычислить f(A) если

18

Задание №4. Вычислить
$$f(A)$$
 если

4.1. $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}$, $f(A) = 3A^2 - 2A + 5E$ Ответ: $\begin{pmatrix} 6 & 16 & 21 \\ 8 & 61 & 1 \\ 21 & 85 & 13 \end{pmatrix}$.

4.2. $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 0 & 2 \\ 3 & 1 & 2 \end{pmatrix}$, $f(A) = A^2 - A - 3E$. Ответ: $\begin{pmatrix} -3 & 2 & 6 \\ 6 & -3 & 2 \\ 6 & 0 & -1 \end{pmatrix}$.

4.3 $A = \begin{pmatrix} 3 & 0 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 5 \end{pmatrix}$, $f(A) = 2A^3 + 4A - 5E$. Ответ: $\begin{pmatrix} 61 & 0 & 24 \\ 6 & 19 & 66 \\ 24 & 66 & 265 \end{pmatrix}$.

4.4. $A = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $f(A) = A^2 + A + 2E$. Ответ: $\begin{pmatrix} 4 & 12 & 2 \\ 6 & 14 & 2 \\ 2 & 2 & 2 \end{pmatrix}$.

4.5. $A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$, $f(A) = A^2 - A + 2E$. Ответ: $\begin{pmatrix} 4 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

4.6. $A = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 3 & 0 \\ -1 & 4 & 2 \end{pmatrix}$, $f(A) = 6A^2 + 11A - 6E$. Ответ: $\begin{pmatrix} 11 & 2 & 0 \\ 0 & 81 & 0 \\ -5 & 140 & 40 \end{pmatrix}$.

4.7. $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $f(A) = A^3 - 3A^2 + 4E$ Ответ: $\begin{pmatrix} 6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

4.8. $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $f(A) = -A^3 + 5A^2 + 8E$ Ответ: $\begin{pmatrix} 8 & 4 & 0 \\ 0 & 8 & 4 \\ 0 & 0 & 8 \end{pmatrix}$.

4.2.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 0 & 2 \\ 3 & 1 & 2 \end{pmatrix}$$
, $f(A) = A^2 - A - 3E$. OTBET: $\begin{pmatrix} -3 & 2 & 6 \\ 6 & -3 & 2 \\ 6 & 0 & -1 \end{pmatrix}$.

$$A = \begin{pmatrix} 3 & 0 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 5 \end{pmatrix}, f(A) = 2A^3 + 4A - 5E. \text{ OTBET:} \begin{pmatrix} 61 & 0 & 24 \\ 6 & 19 & 66 \\ 24 & 66 & 265 \end{pmatrix}.$$

4.4.
$$A = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, $f(A) = A^2 + A + 2E$. OTBET: $\begin{pmatrix} 4 & 12 & 2 \\ 6 & 14 & 2 \\ 2 & 2 & 2 \end{pmatrix}$.

4.5.
$$A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$
, $f(A) = A^2 - A + 2E$. Other: $\begin{pmatrix} 4 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

4.6.
$$A = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 3 & 0 \\ -1 & 4 & 2 \end{pmatrix}, \ f(A) = 6A^2 + 11A - 6E \ . \ \text{OTBET:} \begin{pmatrix} 11 & 2 & 0 \\ 0 & 81 & 0 \\ -5 & 140 & 40 \end{pmatrix}.$$

4.7.
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ f(A) = A^3 - 3A^2 + 4E$$
 Other: $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

4.8.
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ f(A) = -A^3 + 5A^2 + 8E$$
 Other: $\begin{pmatrix} 8 & 4 & 0 \\ 0 & 8 & 4 \\ 0 & 0 & 8 \end{pmatrix}$.

4.9.
$$A = \begin{pmatrix} 2 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 2 & 3 \end{pmatrix}$$
, $f(A) = A^2 + 2A - 3E$ OTBET: $\begin{pmatrix} 5 & 15 & 0 \\ 15 & 5 & 0 \\ 0 & 8 & 12 \end{pmatrix}$.
4.10. $A = \begin{pmatrix} 2 & 1 & 4 \\ 1 & 2 & 4 \\ 4 & 2 & 1 \end{pmatrix}$, $f(A) = A^2 + 2A + 3E$ OTBET: $\begin{pmatrix} 11 & 3 & 24 \\ 3 & 11 & 24 \\ 24 & 8 & 6 \end{pmatrix}$.
4.11. $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $f(A) = A^2 - 3A + 2E$ OTBET: $\begin{pmatrix} 0 & -2 & -2 \\ -2 & 0 & -2 \\ -2 & -2 & 0 \end{pmatrix}$.
4.12. $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $f(A) = 2A^2 - 3A + E$ OTBET: $\begin{pmatrix} 0 & -1 & -1 \\ 0 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$

4.11.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, $f(A) = A^2 - 3A + 2E$ Other: $\begin{pmatrix} 0 & -2 & -2 \\ -2 & 0 & -2 \\ -2 & -2 & 0 \end{pmatrix}$.

4.12.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, $f(A) = 2A^2 - 3A + E$ Other: $\begin{pmatrix} 0 & -1 & -1 \\ 0 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$

4.13.
$$A = \begin{pmatrix} 2 & 0 & 6 \\ 6 & 2 & 0 \\ 0 & 2 & 6 \end{pmatrix}$$
, $f(A) = A^2 + A + E$ OTBET: $\begin{pmatrix} 7 & 0 & 42 \\ 42 & 7 & 0 \\ 0 & 6 & 43 \end{pmatrix}$.
4.14. $A = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $f(A) = A^3 - 2A + 3E$ OTBET: $\begin{pmatrix} 2 & -4 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
4.15. $A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix}$, $f(A) = A^2 - A - E$ OTBET: $\begin{pmatrix} 1 & 0 & 0 \\ 6 & -1 & 2 \\ 0 & 2 & -1 \end{pmatrix}$.

4.14.
$$A = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $f(A) = A^3 - 2A + 3E$ Other: $\begin{pmatrix} 2 & -4 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

4.15.
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix}, \ f(A) = A^2 - A - E$$
 Other:
$$\begin{pmatrix} 1 & 0 & 0 \\ 6 & -1 & 2 \\ 0 & 2 & -1 \end{pmatrix}$$

4.16.
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
, $f(A) = 2A^2 - 3A - 2E$ Other: $\begin{pmatrix} 7 & -1 & -1 \\ 2 & -3 & 2 \\ -1 & 2 & 7 \end{pmatrix}$.

4.17.
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 3 & 1 & 1 \end{pmatrix}$$
, $f(A) = A^2 + 4A + 4E$ OTBET: $\begin{pmatrix} 9 & 12 & 5 \\ 0 & 9 & 12 \\ 21 & 5 & 9 \end{pmatrix}$.
4.18. $A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$, $f(A) = 4A^2 + A + E$ OTBET: $\begin{pmatrix} 19 & 5 & 5 \\ 39 & 6 & 0 \\ 0 & 5 & 19 \end{pmatrix}$.

4.18.
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
, $f(A) = 4A^2 + A + E$ Other: $\begin{pmatrix} 19 & 5 & 5 \\ 39 & 6 & 0 \\ 0 & 5 & 19 \end{pmatrix}$.

4.19.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, f(A) = 4A^2 - 4A + E$$
 OTBET: $\begin{pmatrix} 1 & 0 & 8 \\ 8 & 9 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

4.20.
$$A = \begin{pmatrix} 2 & 3 & 1 \\ -1 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}$$
, $f(A) = 3A^2 - 3A - 3E$ OTBET: $\begin{pmatrix} 3 & 18 & 0 \\ 6 & -3 & 0 \\ 0 & 6 & 3 \end{pmatrix}$.
4.21. $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$, $f(A) = 2A^2 - 2A + 2E$ OTBET: $\begin{pmatrix} 2 & 4 & 0 \\ 4 & 2 & 4 \\ 0 & 4 & 14 \end{pmatrix}$.

4.21.
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
, $f(A) = 2A^2 - 2A + 2E$ OTBET: $\begin{pmatrix} 2 & 4 & 0 \\ 4 & 2 & 4 \\ 0 & 4 & 14 \end{pmatrix}$

4.22.
$$A = \begin{pmatrix} 4 & 1 & 1 \\ -4 & 2 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$
, $f(A) = A^2 + 3A + E$ Other: $\begin{pmatrix} 29 & 4 & 4 \\ 4 & 11 & 0 \\ 4 & 10 & 5 \end{pmatrix}$.

4.23. $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ -1 & 2 & 1 \end{pmatrix}$, $f(A) = 3A^2 - 2A + 4E$ Other: $\begin{pmatrix} 12 & 1 & 0 \\ 1 & 5 & 8 \\ 5 & 8 & 5 \end{pmatrix}$.

4.24. $A = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$, $f(A) = 5A^3 + A^2 + E$ Other: $\begin{pmatrix} 7 & 44 & -126 \\ 0 & 7 & 44 \\ 0 & 0 & 7 \end{pmatrix}$.

4.25. $A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$, $f(A) = 2A^2 + 3A + 2E$ Other: $\begin{pmatrix} 16 & 14 & 27 \\ 5 & 1 & 0 \\ -1 & 14 & 7 \end{pmatrix}$.

4.26. $A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix}$, $f(A) = A^2 - 5A + 3E$ Other: $\begin{pmatrix} -3 & -4 & -4 \\ -6 & -1 & -6 \\ -4 & 6 & 3 \end{pmatrix}$.

4.27. $A = \begin{pmatrix} 3 & 1 & -2 \\ 3 & -2 & 4 \\ -3 & 5 & -1 \end{pmatrix}$, $f(A) = A^2 + A - E$ Other: $\begin{pmatrix} 11 & 2 & 2 \\ 12 & 1 & 20 \\ 6 & 30 & -1 \end{pmatrix}$.

4.28. $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$, $f(A) = A^2 + 3A + E$ Other: $\begin{pmatrix} 5 & 10 & 18 \\ 10 & 29 & 54 \\ 18 & 54 & 109 \end{pmatrix}$.

4.29. $A = \begin{pmatrix} -1 & -2 & -4 \\ -1 & 2 & -4 \\ 1 & 2 & 4 \end{pmatrix}$, $f(A) = A^2 + 4A + 3E$ Other: $\begin{pmatrix} 0 & -4 & 0 \\ -3 & -1 & 0 \\ 5 & 12 & 35 \end{pmatrix}$.

4.30. $A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix}$, $f(A) = A^3 + 2A^2 + A$ Other: $\begin{pmatrix} 180 & 0 & 0 \\ 0 & 18 & 4 \\ 0 & 0 & 0 \end{pmatrix}$.

Залание №5. Найти матрицу обратную данной и сделать проверку

$$5.1. \begin{pmatrix} 1 & -2 & 3 \\ 4 & 0 & 5 \\ -1 & 2 & 3 \end{pmatrix} \qquad 5.2. \begin{pmatrix} 2 & -3 & 3 \\ -2 & 1 & -3 \\ 2 & 7 & 5 \end{pmatrix} \qquad 5.3. \begin{pmatrix} 4 & -8 & -5 \\ 4 & 7 & -1 \\ -3 & 5 & 1 \end{pmatrix}$$

$$5.4. \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 1 & 0 & 4 \end{pmatrix} \qquad 5.5. \begin{pmatrix} 1 & 1 & 1 \\ 2 & -3 & 1 \\ 4 & 1 & -5 \end{pmatrix} \qquad 5.6. \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$

$$5.7. \begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 2 \end{pmatrix} \qquad 5.8. \begin{pmatrix} 3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & 5 & 1 \end{pmatrix} \qquad 5.9. \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

$$5.10. \begin{pmatrix} 1 & -4 & 2 \\ 0 & 1 & 4 \\ 1 & 0 & 0 \end{pmatrix} \qquad 5.11. \begin{pmatrix} 2 & -2 & 3 \\ -2 & 1 & -3 \\ 2 & 7 & 5 \end{pmatrix} \qquad 5.12. \begin{pmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{pmatrix}$$

$$5.13. \begin{pmatrix} 2 & -1 & 0 \\ 5 & 3 & -6 \\ -1 & -2 & 3 \end{pmatrix} \quad 5.14. \begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 2 \end{pmatrix} \qquad 5.15. \begin{pmatrix} 4 & 5 & -5 \\ 1 & 2 & 2 \\ 5 & 7 & -2 \end{pmatrix}$$

$$5.16. \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \quad 5.17. \begin{pmatrix} 2 & -3 & 5 \\ 1 & 2 & -3 \\ 3 & -1 & -2 \end{pmatrix} \quad 5.18. \begin{pmatrix} 1 & -3 & 5 \\ 7 & 2 & -3 \\ 5 & -1 & -2 \end{pmatrix}$$

$$5.22. \begin{pmatrix} 2 & -3 & 1 \\ 1 & 2 & 7 \\ 3 & -1 & 5 \end{pmatrix} \qquad 5.23. \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix} \qquad 5.24. \begin{pmatrix} 2 & -3 & 5 \\ 1 & 2 & -3 \\ 3 & -1 & -2 \end{pmatrix}$$

$$5.25. \begin{pmatrix} 2 & -1 & 3 \\ -2 & 1 & -3 \\ 2 & 7 & 5 \end{pmatrix} \quad 5.26. \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix} \qquad 5.27. \begin{pmatrix} 1 & 1 & 2 \\ 2 & -1 & 2 \\ 4 & 1 & 4 \end{pmatrix}$$

$$5.28. \begin{pmatrix} 2 & 0 & 5 \\ 0 & 7 & 3 \\ 1 & -1 & 0 \end{pmatrix} \qquad 5.29. \begin{pmatrix} 5 & 1 & 2 \\ -3 & 2 & -3 \\ 1 & 1 & 5 \end{pmatrix} \qquad 5.30. \begin{pmatrix} 1 & 2 & -5 \\ 1 & -3 & 3 \\ 1 & 1 & -2 \end{pmatrix}$$

Задание №6. Решить систему линейных алгебраических уравнений по правилу Крамера, методом обратной матрицы и с помощью метода Гаусса.

6.1.
$$\begin{cases} x_1 + x_2 + x_3 = 6 \\ x_1 + 2x_2 + 2x_3 = 11 \\ 2x_1 + 3x_2 - 4x_3 = 3 \end{cases}$$
 6.2.
$$\begin{cases} x_1 + x_2 - x_3 = 36 \\ x_1 - x_2 + x_3 = 13 \\ -x_1 + x_2 + x_3 = 7 \end{cases}$$

Otbet: $x_1 = 1; x_2 = 3; x_3 = 2$. Otbet: $x_1 = 24,5; x_2 = 21,5; x_3 = 10$.

6.3.
$$\begin{cases} x_1 + x_2 - x_3 = 2 \\ -2x_1 + x_2 + x_3 = 3 \\ x_1 + x_2 + x_3 = 6 \end{cases}$$
 6.4.
$$\begin{cases} 2x_1 + 2x_2 - x_3 = 4 \\ 3x_1 - x_2 - 3x_3 = 7 \\ x_1 + x_2 - 2x_3 = 3 \end{cases}$$

Otbet: $x_1 = 1; x_2 = 3; x_3 = 2$. Otbet: $x_1 = \frac{5}{3}; x_2 = 0; x_3 = -\frac{2}{3}$.

6.5.
$$\begin{cases} x_1 - x_2 + x_3 = -2 \\ 2x_1 + x_2 - 2x_3 = 6 \\ x_1 + 2x_2 + 3x_3 = 2 \end{cases}$$
 6.6.
$$\begin{cases} 2x_1 + 3x_2 - x_3 = 4 \\ x_1 + x_2 + 3x_3 = 5 \\ 3x_1 - 4x_2 + x_3 = 0 \end{cases}$$

Otbet: $x_1 = 1; x_2 = 2; x_3 = -1$.

Otbet: $x_1 = 1; x_2 = 1; x_3 = 1$.

6.7.
$$\begin{cases} x_1 + 2x_2 - 3x_3 = 0 \\ 2x_1 - x_2 + 4x_3 = 5 \\ 3x_1 + x_2 - x_3 = 2 \end{cases}$$

6.7.
$$\begin{cases} x_1 + 2x_2 - 3x_3 = 0 \\ 2x_1 - x_2 + 4x_3 = 5 \\ 3x_1 + x_2 - x_3 = 2 \end{cases}$$
 6.8.
$$\begin{cases} 2x_1 - x_2 + x_3 = 2 \\ 3x_1 + 2x_2 + 2x_3 = -2 \\ x_1 + 2x_2 + x_3 = 1 \end{cases}$$

Otbet: $x_1 = 0.5$; $x_2 = 2$; $x_3 = 1.5$. Otbet: $x_1 = -14$; $x_2 = -5$; $x_3 = 25$.

6.9.
$$\begin{cases} 2x_1 - 3x_2 + x_3 = 2 \\ x_1 + 5x_2 - 4x_3 = -5 \\ 4x_1 + x_2 - 3x_3 = -4 \end{cases}$$
 6.10.
$$\begin{cases} 2x_1 - 4x_2 + 3x_3 = 1 \\ x_1 - 2x_2 + 4x_3 = 3 \\ 3x_1 - x_2 + 5x_3 = 2 \end{cases}$$
 Otbet: $x_1 = 5; x_2 = 6; x_3 = 10$. Otbet: $x_1 = -1; x_2$

6.10.
$$\begin{cases} 2x_1 - 4x_2 + 3x_3 = \\ x_1 - 2x_2 + 4x_3 = 3\\ 3x_1 - x_2 + 5x_3 = 2 \end{cases}$$

6.11.
$$\begin{cases} x_1 + 2x_2 - 3x_3 = 5 \\ 2x_1 - x_2 - x_3 = 1 \end{cases}$$

6.11.
$$\begin{cases} x_1 + 2x_2 - 3x_3 = 5 \\ 2x_1 - x_2 - x_3 = 1 \\ x_1 + 3x_2 + 4x_3 = 6 \end{cases}$$
 6.12.
$$\begin{cases} x_1 + 3x_2 - x_3 = -1 \\ 2x_1 + 4x_2 + 3x_3 = 3 \\ 3x_1 - 2x_2 + 5x_3 = 13 \end{cases}$$

Otbet: $x_1 = 1,3; x_2 = 1,7; x_3 = -0,1$. Otbet: $x_1 = \frac{8}{3}; x_2 = -\frac{40}{30}; x_3 = \frac{23}{30}$.

6.13.
$$\begin{cases} 2x_1 - x_2 + x_3 = 0 \\ 3x_1 - 2x_2 - x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \end{cases}$$

24

6.13.
$$\begin{cases} 2x_1 - x_2 + x_3 = 0 \\ 3x_1 - 2x_2 - x_3 = 5 \\ x_1 + x_2 + x_3 = 6 \end{cases}$$
 6.14.
$$\begin{cases} x_1 + x_2 - x_3 = 6 \\ 2x_1 + 3x_2 - 4x_3 = 21 \\ 7x_1 - x_2 - 3x_3 = 6 \end{cases}$$

et: $x_1 = 4$; $x_2 = 5$; $x_3 = -3$. Othet: $x_1 = 0$; $x_2 = 3$; $x_3 = -3$.

6.15.
$$\begin{cases} x_1 + 2x_2 + 4x_3 = 31 \\ 5x_1 + x_2 + 2x_3 = 20 \\ 3x_1 - x_2 + x_3 = 10 \end{cases}$$
 6.16.
$$\begin{cases} x_1 + x_2 + x_3 = -2 \\ 3x_1 + 3x_2 - x_3 = 6 \\ x_1 - x_2 + x_3 = -1 \end{cases}$$

$$6.16. \begin{cases} x_1 + x_2 + x_3 = -2 \\ 3x_1 + 3x_2 - x_3 = 6 \end{cases}$$

Otbet: $x_1 = 1$; $x_2 = \frac{1}{3}$; $x_3 = \frac{22}{3}$. Otbet: $x_1 = 1.5$; $x_2 = -0.5$; $x_3 = -3$.

$$\begin{cases} x_1 + 2x_2 + x_3 = 4 \\ 3x_1 - 5x_2 + 3x_3 = 4 \end{cases}$$

$$6.18. \begin{cases} x_1 + x_2 - x_3 - 1 \\ 3x_1 + 3x_2 - 6x_3 = 1 \end{cases}$$

6.17.
$$\begin{cases} x_1 + 2x_2 + x_3 = 4 \\ 3x_1 - 5x_2 + 3x_3 = 1 \\ 2x_1 + 7x_2 - x_3 = 8 \end{cases}$$
 6.18.
$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ 3x_1 + 3x_2 - 6x_3 = 2 \\ 4x_1 + x_2 - 3x_3 = 3 \end{cases}$$

Otbet: $x_1 = 1; x_2 = 1; x_3 = 1$. Otbet: $x_1 = \frac{8}{9}; x_2 = \frac{4}{9}; x_3 = \frac{1}{3}$.

6.19.
$$\begin{cases} x_1 - 2x_2 - 2x_3 = -3 \\ 3x_1 + x_2 + x_3 = 5 \\ 3x_1 - 5x_2 - 6x_3 = -7 \end{cases}$$
 6.20.
$$\begin{cases} 3x_1 + 4x_2 + 2x_3 = 8 \\ 2x_1 - x_2 - 3x_3 = 1 \\ x_1 + 5x_2 + x_3 = 11 \end{cases}$$

$$3x_1 + 4x_2 + 2x_3 =$$

6.20.
$$\begin{cases} 2x_1 - x_2 - 3x_3 = 1 \\ x_1 + 5x_2 + x_3 = 11 \end{cases}$$

Otbet: $x_1 = 1; x_2 = 2; x_3 = 0$. Otbet: $x_1 = \frac{2}{11}; x_2 = \frac{26}{11}; x_3 = -1$.

6.21.
$$\begin{cases} 2x_1 - x_2 - x_3 = 4 \\ 3x_1 + 4x_2 - 2x_3 = 11 \\ 3x_1 - 2x_2 + 4x_3 = 11 \end{cases}$$
 6.22.
$$\begin{cases} x_1 + x_2 + 2x_3 = -1 \\ 2x_1 - x_2 + 2x_3 = -4 \\ 4x_1 + x_2 + 4x_3 = -2 \end{cases}$$

Otbet: $x_1 = 3$; $x_2 = 1$; $x_3 = 1$. Otbet: $x_1 = 1$; $x_2 = 2$; $x_3 = -2$

6.23.
$$\begin{cases} 3x_1 + 2x_2 - 4x_3 = 8 \\ 2x_1 + 4x_2 - 5x_3 = 11 \\ 4x_1 - 3x_2 + 2x_3 = 1 \end{cases}$$
 6.24.
$$\begin{cases} 3x_1 - 3x_2 + 2x_3 = 2 \\ 4x_1 - 5x_2 + 2x_3 = 1 \\ 5x_1 - 6x_2 + 4x_3 = 3 \end{cases}$$

Otbet: $x_1 = 2$; $x_2 = 3$; $x_3 = 1$. Otbet: $x_1 = 1$; $x_2 = 1$; $x_3 = 1$

6. 25.
$$\begin{cases} 3x_1 - 2x_2 + x_3 = 3 \\ 5x_1 - 8x_2 + 9x_3 = 3 \\ 2x_1 + x_2 + x_3 = -1 \end{cases}$$
 6.26.
$$\begin{cases} -x_1 + 2x_2 + 3x_3 = 1 \\ 2x_1 + x_2 - x_3 = 3 \\ 3x_1 + 3x_2 + 2x_3 = 10 \end{cases}$$

Otbet: $x_1 = \frac{4}{7}$; $x_2 = -\frac{8}{7}$; $x_3 = -1$. Otbet: $x_1 = 3$; $x_2 = -1$; $x_3 = 2$.

6.27.
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 4 \\ x_1 + 4x_2 + 6x_3 = 3 \\ 3x_1 + x_2 - x_3 = 1 \end{cases}$$
 6. 28.
$$\begin{cases} 2x_1 - 4x_2 + x_3 = 1 \\ x_1 - 2x_2 + 4x_3 = 3 \\ 3x_1 + x_2 + 5x_3 = 2 \end{cases}$$

Otbet: $x_1 = 5; x_2 = -8.6; x_3 = 5.4$. Otbet: $x_1 = -\frac{3}{7}; x_2 = -\frac{2}{7}; x_3 = \frac{5}{7}$.

$$\begin{aligned} &6.29. & \begin{cases} 2x_1 - 3x_2 + x_3 = 2 \\ x_1 + 5x_2 - 4x_3 = -5 \\ 4x_1 + x_2 - 3x_3 = -4 \end{cases} & 6.30. & \begin{cases} 3x_1 + 2x_2 + x_3 = 5 \\ 2x_1 + 3x_2 + x_3 = 1 \\ 2x_1 + x_2 + 3x_3 = 11 \end{cases} \\ &\text{Otbet: } x_1 = 5; x_2 = 6; x_3 = 10. \end{aligned} & \text{Otbet: } x_1 = 2; x_2 = -2; x_3 = 3.$$

7.1.
$$\begin{cases} 3x_1 + 3x_2 + 2x_3 = 0 \\ 2x_1 - x_2 + 3x_3 = 0 \\ 3x_1 - 5x_2 + 4x_3 = 0 \\ x_1 + 17x_2 + 4x_3 = 0 \end{cases}$$
 7.2.
$$\begin{cases} 2x_1 - x_2 + x_3 = 0 \\ 3x_1 + 2x_2 - 3x_3 = 0 \\ x_1 + 3x_2 - 4x_3 = 0 \\ 5x_1 + x_2 - 2x_3 = 0 \end{cases}$$

$$\begin{cases} 2x_1 - x_2 + x_3 + 3x_4 = 0 \\ 5x_1 - 4x_2 - x_3 - 8x_4 = 0 \\ x_1 + x_2 + 2x_3 - x_4 = 0 \end{cases}$$
7.4.
$$\begin{cases} x_1 + x_2 - x_3 - x_4 = 0 \\ x_1 - x_3 - 5x_4 = 0 \\ x_1 + 2x_2 - x_3 - 3x_4 = 0 \end{cases}$$
7.5.
$$\begin{cases} 2x_1 - x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 - x_3 - 2x_4 = 0 \end{cases}$$
7.6.
$$\begin{cases} 3x_1 - 2x_2 + x_3 - x_4 = 0 \\ 3x_1 - 2x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 - x_3 - 2x_4 = 0 \end{cases}$$
7.6.
$$\begin{cases} 3x_1 - 2x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 - x_3 + x_4 = 0 \end{cases}$$
7.7.
$$\begin{cases} 3x_1 - 2x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 - x_3 + x_4 = 0 \end{cases}$$

7.7.
$$\begin{cases} x_1 + 2x_2 + 2x_3 = 0 \\ 2x_1 + 3x_2 + 4x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \end{cases}$$

7.7.
$$\begin{cases} x_1 + 2x_2 + 2x_3 = 0 \\ 2x_1 + 3x_2 + 4x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \end{cases}$$
 7.8.
$$\begin{cases} x_1 + 3x_2 + 4x_3 + x_4 = 0 \\ 2x_1 + 2x_2 + 3x_3 + x_4 = 0 \\ 3x_1 + 3x_2 + 4x_3 + x_4 = 0 \end{cases}$$

7.9.
$$\begin{cases} 3x_1 - 2x_2 + x_3 = 0 \\ -x_1 - 14x_2 + 15x_3 = 0 \\ x_1 + 2x_2 - 3x_3 = 0 \end{cases}$$
 7.10.
$$\begin{cases} -x_1 + 2x_2 + 3x_3 = 0 \\ x_1 - 4x_2 - 13x_3 = 0 \\ -3x_1 + 5x_2 + 4x_3 = 0 \end{cases}$$

7.10.
$$\begin{cases} -x_1 + 2x_2 + 3x_3 = 0 \\ x_1 - 4x_2 - 13x_3 = 0 \\ -3x_1 + 5x_2 + 4x_3 = 0 \end{cases}$$

7.11.
$$\begin{cases} 3x_1 - 2x_2 + x_3 = 0 \\ x_1 - 14x_2 + 15x_3 = 0 \\ x_1 + 2x_2 - 3x_3 = 0 \end{cases}$$
 7.12.
$$\begin{cases} 3x_1 + 4x_2 - 3x_3 = 0 \\ 2x_1 - x_2 + x_3 = 0 \\ 5x_1 + 3x_2 + 3x_3 = 0 \end{cases}$$

7.12.
$$\begin{cases} 3x_1 + 4x_2 - 3x_3 = 0 \\ 2x_1 - x_2 + x_3 = 0 \\ 5x_1 + 3x_2 + 3x_3 = 0 \end{cases}$$

7.13.
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 0 \\ x_1 - x_2 + x_3 = 0 \\ 5x_1 + 5x_2 - x_3 = 0 \end{cases}$$
 7.14.
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ 5x_1 + 4x_2 + 3x_3 = 0 \\ 4x_1 + 3x_2 + 2x_3 = 0 \end{cases}$$

7.14.
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ 5x_1 + 4x_2 + 3x_3 = 0 \\ 4x_1 + 3x_2 + 2x_3 = 0 \end{cases}$$

7.15.
$$\begin{cases} x_1 - x_2 + 2x_3 = 0 \\ 2x_1 - 2x_2 + 4x_3 = 0 \\ 5x_1 - 5x_2 + 10x_3 = 0 \end{cases}$$
 7.16.
$$\begin{cases} 2x_1 - 3x_2 + x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \\ 3x_1 - 2x_2 + 2x_3 = 0 \end{cases}$$

7.16.
$$\begin{cases} 2x_1 - 3x_2 + x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \\ 3x_1 - 2x_2 + 2x_3 = 0 \end{cases}$$

7.17.
$$\begin{cases} 2x_1 - x_2 + 3x_3 = 0 \\ x_1 + 2x_2 - 5x_3 = 0 \\ 3x_1 + x_2 - 2x_3 = 0 \end{cases}$$

7.18.
$$\begin{cases} 7x_1 - 4x_2 - x_3 = 0 \\ 3x_1 - x_2 - 2x_3 = 0 \\ x_1 - 2x_2 + 3x_3 = 0 \end{cases}$$

7.19.
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 4x_2 + 6x_3 = 0 \\ 3x_1 + 6x_2 + 9x_3 = 0 \end{cases}$$

7.20.
$$\begin{cases} 3x_1 + 4x_2 + 2x_3 = 0 \\ x_1 - x_2 + 4x_3 = 0 \\ 5x_1 + 2x_2 + 10x_3 = 0 \end{cases}$$

7.21.
$$\begin{cases} 2x_1 + x_2 - x_3 = 0 \\ x_1 + 2x_2 + x_3 = 0 \\ 2x_1 - x_2 + 3x_3 = 0 \end{cases}$$

7.22.
$$\begin{cases} x_1 - x_2 - x_3 = 0 \\ x_1 + 4x_2 + 2x_3 = 0 \\ 3x_1 + 7x_2 + 3x_3 = 0 \end{cases}$$

7.23.
$$\begin{cases} 3x_1 - 2x_2 + x_3 = 0 \\ 5x_1 - 14x_2 + 15x_3 = 0 \\ x_1 + 2x_2 - 3x_3 = 0 \end{cases}$$
 7.24.
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ 2x_1 + 5x_2 + 3x_3 = 0 \\ 3x_1 + 4x_2 + 2x_3 = 0 \end{cases}$$

7.24.
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ 2x_1 + 5x_2 + 3x_3 = 0 \\ 3x_1 + 4x_2 + 2x_3 = 0 \end{cases}$$

$$7.25 \begin{cases} 2x_1 - 3x_2 + x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \\ 3x_1 - 2x_2 + 2x_3 = 0 \end{cases}$$

$$7.26 \begin{cases} 3x_1 + 2x_2 - x_3 = 0 \\ 2x_1 - x_2 + 3x_3 = 0 \\ x_1 + 3x_2 - 4x_3 = 0 \end{cases}$$

$$7.27 \begin{cases} 3x_1 + 2x_2 - x_3 = 0 \\ 2x_1 - x_2 + 3x_3 = 0 \\ x_1 + x_2 - x_3 = 0 \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - x_3 = 0 \\ 2x_1 - x_2 + 3x_3 = 0 \\ x_1 + x_2 - x_3 = 0 \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - x_3 = 0 \\ 5x_1 - x_2 + 2x_3 = 0 \\ x_1 + 2x_2 + x_3 = 0 \end{cases}$$

$$\begin{cases} 3x_1 - x_2 + 2x_3 = 0 \\ 3x_1 + 2x_2 + x_3 = 0 \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ 3x_1 + 2x_2 + x_3 = 0 \end{cases}$$

7.29.
$$\begin{cases} 3x_1 - x_2 + 2x_3 = 0 \\ 2x_1 + 3x_2 - 5x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \end{cases}$$

7.29.
$$\begin{cases} 3x_1 - x_2 + 2x_3 = 0 \\ 2x_1 + 3x_2 - 5x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \end{cases}$$
 7.30.
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ 2x_1 + 5x_2 + 3x_3 = 0 \\ 3x_1 + 4x_2 + 2x_3 = 0 \end{cases}$$