

☺Derwent Title: Prepn. of ceramic articles from aluminium powder - by forming, oxidising in atmos. of water vapour, and sintering at specified temp.

☺Original Title: SU1444080A1; METHOD OF PRODUCING CERAMIC ARTICLES FROM ALUMINIUM POWDER

☺Assignee: BELORUSSIAN POLY Standard company
 Other publications from BELORUSSIAN POLY.(BEPO)...

☺Inventor: AZAROV S M; ROMANENKO V E; SMIRNOV V G;

☺Accession/
 Update: 1989-176734 / 198924

☺IPC Code: B22F 3/10 ; C04B 38/00;

☺Derwent Classes: L02; M22; P53;

☺Manual Codes: L02-A01(Refractories, ceramics, cement - manufacturing methods, equipment [general]) , M22-H02(Powder metallurgy - powder treatment prior to use)

☺Derwent Abstract: (SU1444080A) Higher quality ceramic articles are obtid from Al powder as follows. The powder is placed in a form and oxidised with steam under the pressure of 1.5-4 atmos , at 110-150 deg , for 8 hours. This is followed by sintering for 2 hours at 400-600 deg and removal of the article from the form. The method finds use in the mfr of electrically insulating materials, catalyst supports and sorbents.
 Advantage - Strength and specific surface area increased by 2 and 8-10 times, sintering temps reduced from 1200 to 400-600 deg and porosity from 30.8 to 19%. Bul.46/15 12 88

Dwg 0/0

☺Family: POF Patent Pub. Date 1988-12-15 198924 2 English B22F 3/10
 SU1444080A * 1988-12-15 198924 2 English B22F 3/10
 Local appls : SU1987004235255 Filed: 1987-04-27 (87SU-4235255)

☺Priority Number:

Application Number	Filed	Original Title
SU1987004235255	1987-04-27	METHOD OF PRODUCING CERAMIC ARTICLES FROM ALUMINIUM POWDER

☺Title Terms: PREPARATION CERAMIC ARTICLE ALUMINIUM POWDER FORMING OXIDATION ATMOSPHERE WATER VAPOUR SINTER SPECIFIED TEMPERATURE

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1444080 A 1

(50) 4 В 22 F 3/10, С 04 В 38/00

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4235255/31-02

(22) 27.04.87

(46) 15.12.88. Бюл. № 46

(71) Белорусский политехнический ин-
ститут и Белорусское республиканс-
кое научно-производственное объе-
динение порошковой металлургии

(72) С.М. Азаров, В.Е. Романенков,
В.Г. Смирнов и Т.А. Смирнова

(53) 621.762.55 (088.8)

(56) Патент США № 3366479,
кл. В 22 F 3/10, опублик. 1968.
Авторское свидетельство СССР
№ 1047590, кл. В 22 F 3/10, 1983.
(54) СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКИХ
ИЗДЕЛИЙ ИЗ ПОРОШКА АЛЮМИНИЯ

(57) Изобретение относится к области
порошковой металлургии, в частности
к способам получения керамических
изоляционных материалов, и может
быть использовано для получения
электроизоляционных материалов нося-
телей катализаторов и сорбентов. Це-
лью является повышение прочности и
удельной поверхности изделий. Спо-
соб включает формование порошка
алюминия, его окисления в среде во-
дяного пара при 110–150°C и спекание
на воздухе при 400–600°C. Способ поз-
воляет повысить в 2 раза прочность и
в 8–10 раз удельную поверхность из-
делий. 1 табл.

(19) SU (11) 1444080 A 1

Изобретение относится к порошковой металлургии, в частности к способам получения керамических изоляционных материалов и может быть использовано для получения электроизоляционных материалов, носителей катализаторов и сорбентов.

Целью изобретения является повышение механической прочности изделий и удельной поверхности.

Сущность способа заключается в следующем. Порошок алюминия заключают в жесткую разъемную форму с отверстиями для подвода пара и помещают в камеру, куда непрерывно подводят водяной пар при $110-150^{\circ}\text{C}$ и давлении 1,5-4 атм. После окисления форму с порошком извлекают из камеры, отжигают на воздухе при $400-600^{\circ}\text{C}$ и извлекают изделие из формы.

В процессе окисления аморфная пленка Al_2O_3 на частицах алюминия гидратируется с образованием AlOOH . Через пары AlOOH осуществляется подвод пара к алюминию и отвод образующегося в процессе реакции водорода.

Пример 1 (по прототипу).

Порошок алюминия марки ПА-ВЧ загружают в жесткую разъемную металлическую форму, увлажняют водой и помещают в камеру автоклава. В камеру подают водяной пар с 180°C и окисляют порошок в течение 1,5 ч. Сформированное изделие извлекают из формы и сушат. Пористость изделия составила 34,5%, прочность на сжатие 25,0 МПа, удельная поверхность 180 $\text{m}^2/\text{г}$.

Изделие содержало $\sim 30\%$ AlOOH и 70% металлического алюминия. После отжига на воздухе при 1200°C в тече-

5

ние 5 ч изделие полностью состоит из $\gamma\text{-Al}_2\text{O}_3$ (корунда). Прочность на сжатие составила 36,5 МПа, удельная поверхность 14,5 $\text{m}^2/\text{т}$. Материал состоит из польх сфер $\gamma\text{-Al}_2\text{O}_3$, соединенных между собой.

Пример 2. Исходный порошок загружают в разъемную форму с отверстиями для доступа пара и помещают в герметичную камеру, куда подают водяной пар при $110-150^{\circ}\text{C}$ и окисляют порошок в течение 8,5 ч. Сформированное изделие имело пористость 18,5%, прочность на сжатие 72,5 МПа, удельную поверхность 180 $\text{m}^2/\text{г}$ и состояло из 85,5% AlOOH и 14,5% Al . После отжига при 400°C бемит трансформировался в $\delta\text{-Al}_2\text{O}_3$ с удельной поверхностью 140 $\text{m}^2/\text{г}$. Прочность изделия составила 98,0 МПа.

Результаты исследования изделий, полученных известным и предложенным способами, приведены в таблице.

Предложенный способ позволяет повысить прочность и удельную поверхность изделий в ~ 2 раза и в 8-10 раз соответственно по сравнению с прототипом.

Ф о р м у л а из о б р е т е н и я

Способ получения керамических изделий из порошка алюминия, включающий засыпку порошка алюминия в форму, его окисление и спекание на воздухе, отличающийся тем, что, с целью повышения прочности и удельной поверхности изделий, окисление проводят в среде водяного пара при $110-150^{\circ}\text{C}$, а спекание осуществляют при $400-600^{\circ}\text{C}$.

Способ получения	Подготовка порошка	Окисление паром, $^{\circ}\text{C}$	Длительность окисления, ч	Температура отжига, $^{\circ}\text{C}$	Длительность отжига, ч	Пористость, МПа	$\sigma_{\text{сж}}$	$S_{\text{уф}}$, $\text{m}^2/\text{г}$
------------------	--------------------	-------------------------------------	---------------------------	--	------------------------	-----------------	----------------------	---

Известный (прототип) Увлажнение водой 180 1,5 1200 5 $^{\circ}$ 30,8 36,5 14,0
18,0

Предложенный - 110 8 400 2 19 86 140