E2 - Linear Algebra (MA 4020)

Deadline: Tuesday, October 5, 2021; 3 PM Maximum Marks 18

Instructions.

- 1. Write your name and roll number on the answered pages/papers.
- 2. Scan the document in the pdf file format.
- 3. Rename the scanned document with your name-E2.
- 4. Upload the **pdf** file on the Google classroom. (No .jpeg or .jpg file please)

Note. Write answers carefully. Anyone found copying, even for a single question, will be awarded zero marks. Late submission by default will get zero marks. Upload your answers in time, with as many questions as you have done.

- 1. Let V be a vector space over \mathbb{R} . Prove that V is not the union of finitely many proper subspaces.
- **2.** Let $V = \mathbb{R}^n$ be the vector space.
 - (i) Let $W_1 = \{(x_1, \dots, x_n) \mid x_1 + \dots + x_n = 0\}$. Find a basis and dimension of W_1 .
 - (ii) Let $W_2 = \{(x_1, \dots, x_n) \mid \text{ such that } x_k = 0 \text{ if } k \text{ is even} \}$. Find a basis and dimension of W_2 .
- **3.** Let $W \subset \mathbb{R}^4$ be the subspace defined by

$$W = \{x \in R^4 \mid Ax = 0\}$$

where

$$A = \begin{bmatrix} 2 & 1 & 2 & 3 \\ 1 & 1 & 3 & 0 \end{bmatrix}$$

Write down a basis for W.

- **4.** Which of the following sets of vectors form a basis for \mathbb{R}^3 ?
 - (i) $\{(-1,0,0),(1,1,1),(1,2,3)\}$
 - (ii) $\{(0,1,2),(1,1,1),(1,2,3)\}$
 - (iii) $\{(-1,1,0),(2,0,0),(0,1,1)\}$
- 5. Let W_1 be the real vector space of all 5×2 matrices such that the sum of the entries in each row is zero. Let W_2 be the real vector space of all 5×2 matrices such that the sum of the entries in each column is zero. Then the dimension of the subspace $\dim(W_1 \cap W_2)$ is ——. (Justify your claim)

- **6.** Let X and Y are non-empty subsets of the vector space V. We denote by X+Y the subset $\{x+y\mid x\in X,y\in Y\}$. Let W be a vector subspace of V. Answer the following:
 - (i) What is w + W if $w \in W$?
 - (ii) What is W + W?
 - (iii) Is it true that w + W = W if and only if $w \in W$?
 - (iv) Let W_1 and W_2 be vector subspaces of a vector space V. Then $W_1 \cup W_2$ is a subspace if and only if ----. Fill in the blanks and prove your claim.