TRIGONOMETRY Chapter 04

INTRODUCCIÓN A LAS RAZONES TRIGONOMÉTRICAS

TRIGONOMETRÍA SACO OLIVEROS

¿ QUÉ SE ENTIENDE POR RAZÓN TRIGONOMÉTRICA DE UN ÁNGULO AGUDO ?

Es el COCIENTE entre las longitudes de dos lados de un triángulo rectángulo, con respecto a uno de sus ángulos interiores agudos.

α: Ángulo interior agudo de referencia

H: Longitud de la hipotenusa

CO: Longitud del cateto opuesto a α

CA: Longitud del cateto adyacente a a

Teorema de Pitágoras : $H^2 = (CA)^2 + (CO)^2$

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO α

senα	cosα	tanα	cotα	secα	csca
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

MÉTODO NEMOTÉCNICO: "COCA COCA HELADA HELADA"

EJEMPLO: Calcula las razones trigonométricas (RT) de α

senα	cosa	tanα	cota	seca	cscα
$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{7}}{3}$	$rac{\sqrt{2}}{\sqrt{7}}$	$\frac{\sqrt{7}}{\sqrt{2}}$	$\frac{3}{\sqrt{7}}$	$\frac{3}{\sqrt{2}}$

Del gráfico, efectúe:

$$\mathsf{E} = \sqrt{21} \; (\; \mathsf{csc}\theta + \mathsf{cot}\theta \;)$$

senα	cosα	tanα	cotα	secα	cscα
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

RESOLUCIÓN

Teorema de Pitágoras:

$$(CO)^2 + 2^2 = 5^2$$

$$(CO)^2 + 4 = 25$$

$$\bigcirc$$
 CO = $\sqrt{21}$

Calculamos E:

$$E = \sqrt{21}(\frac{5}{\sqrt{21}} + \frac{2}{\sqrt{21}})$$

Si sec β = 1,2 ; donde β es un ángulo agudo, efectúe $L = \sqrt{11}(\cot \beta + \csc \beta)$.

RESOLUCIÓN

Recordar:

$$\sec \beta = \frac{H}{CA}$$

$$\cot \beta = \frac{CA}{CO}$$

$$\mathbf{csc}\beta = \frac{\mathbf{H}}{\mathbf{CO}}$$

Teorema de Pitágoras:

$$(CO)^2 + 5^2 = 6^2$$

 $(CO)^2 + 25 = 36$
 $CO = \sqrt{11}$

Calculamos L:

$$L = \sqrt{11} \left(\frac{5}{\sqrt{11}} + \frac{6}{\sqrt{11}} \right)$$

En un triángulo rectángulo ABC $(m \not= C = 90^{\circ})$, se sabe que senA = $\frac{7}{25}$ y la longitud de la hipotenusa mide 75 m .- Determine el perímetro del triángulo ABC .

RESOLUCIÓN

Dato: sen A =
$$\frac{7K}{25K} = \frac{CO}{H}$$

Teorema de Pitágoras:

$$(CA)^2 + (7K)^2 = (25 k)^2$$

$$(CA)^2 + 49 k^2 = 625 k^2$$

$$(CA)^2 = 576 k^2$$
 $CA = 24K$

Además: 25K = 75m | K = 3m

Calculamos perímetro:

$$2p = 25K + 7K + 24K = 56K = 56(3m)$$

∴ 2p = 168 m

En un triángulo rectángulo ABC (m $\angle C = 90^{\circ}$), se sabe que tanB . $cotA = \frac{9}{16}$. Efectúe Q = cscA + tanB

RESOLUCIÓN

Dato: $tanB \cdot cotA = \frac{9}{16}$

$$\frac{b}{a} \cdot \frac{b}{a} = \frac{9}{16} \Rightarrow \frac{b^2}{a^2} = \frac{9}{16} \Rightarrow \frac{b}{a} = \frac{3}{4}$$

Teorema de Pitágoras:

$$c^2 = 4^2 + 3^2 = 16 + 9$$
 $c = 5$

Efectuamos: Q = cscA + tanB

tanα	cotα
CO	CA
CA	CO

$$Q = \frac{5}{4} + \frac{3}{4}$$

Del gráfico, calcule senα si AQ = QC

RESOLUCIÓN

Sea:
$$AQ = QC = a$$

En
$$\triangle$$
 ABC: sen $\alpha = \frac{10}{2a} = \frac{5}{a}$

$$En \triangleright PQC : sen \alpha = \frac{a}{8}$$

Luego:
$$\frac{a}{8} = \frac{5}{a} \implies a^2 = 40$$

 $a = 2\sqrt{10}$

$$\operatorname{sen}\alpha = \frac{2\sqrt{10}}{8}$$

$$sen \alpha = \frac{\sqrt{10}}{4}$$

En la figura se muestra el perfil de la instalación de una tubería de desagüe. - Si el buzón A está ubicado a 1 m de la superficie, determine la altura a la que se encuentra el buzón B sabiendo que la pendiente de la tubería AB es de 2%.

Dato: Pendiente
$$AB = 2\%$$

$$tan\alpha = \frac{2K}{100K} = \frac{CO}{CA}$$

Calculamos
$$h_B$$
: $h_B = 4 m + 1 m$

$$h_{\rm B} = 5 \, \rm m$$

CHicho es un albañil muy dedicado en su trabajo y se le contrata para tarrajear una pared, tal como se muestra en la figura.- Sabiendo que el valor de a es un número entero positivo, determine la altura de dicha pared.

RESOLUCIÓN

Teorema de Pitágoras :

$$a^2 + (a-4)^2 = (a+4)^2$$

$$a^2 = (a+4)^2 - (a-4)^2$$

$$a^2 = 4(a)(4)$$
 $a = 16$

Calculamos la altura de la pared :

$$h = (a-4) m = (16-4) m$$

$$\therefore$$
 h = 12 m

