AD-A275 960

NSWCDD/TR-92/160

HYPERVELOCITY TUNNEL 9 MACH 10/14 CALIBRATION

BY DAN MARREN

STRATEGIC AND SPACE SYSTEMS DEPARTMENT

31 JANUARY 1994

Approved for public release; distribution is unlimited.

94-05619

DIC OUTLING THE S

NAVAL SURFACE WARFARE CENTER

DAHLGREN DIVISION • WHITE OAK DETACHMENT

Silver Spring, Maryland 20903-5640

UTIC QUALITY INSPECTED &

HYPERVELOCITY TUNNEL 9 MACH 10/14 CALIBRATION

BY DAN MARREN STRATEGIC AND SPACE SYSTEMS DEPARTMENT

31 JANUARY 1994

Accesion For	
NTIS CRA&I DTIC TAB Unannounced Justification	9
By	
Availability	Codes
Dist Avail and Specia	

Approved for public release; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER

DAHLGREN DIVISION • WHITE OAK DETACHMENT

Silver Spring, Maryland 20903-5640

FOREWORD

This report documents the Mach 10/14 Calibration test program (WTR 1608) performed in the Naval Surface Warfare Center White Oak Detachment (NSWCWODET) Hypervelocity Tunnel 9. The National Aerospace Plane Joint Project Office (NASP JPO) was the sponsor for this test entry. The primary objective for this test program was to supplement previous calibrations of the NSWCWODET Tunnel 9 free stream conditions.

Approved by:

R. L. SCHMIDT, Head

Strategic and Space Systems Department

ABSTRACT

This report documents the Tunnel 9 Mach 10/14 Calibration test program (WTR 1608) performed at the Naval Surface Warfare Center, White Oak, Maryland. This effort was sponsored by the National Aerospace Plane Joint Program Office (NASP JPO). Free stream flow field parameter distributions were obtained for both the Mach 10 and 14 nozzles spanning the Reynolds number range. A total of four Mach 10, and ten Mach 14 runs were performed during this test program. The test period was 7 to 22 May 1991. Results from this test entry were combined with previous test data in the final analysis. Data from the test reveal that high quality uniform flow exists and that deviations in core flow field parameters are comparable with the calibration data taken in the past.

CONTENTS

	Page
INTRODUCTION	1
TEST FACILITY	1
TEST HARDWARE	2
•	
INSTRUMENTATION	2
TUNNEL INSTRUMENTATION	2
PITOT RAKE INSTRUMENTATION	2
CALIBRATION AND TEST PROCEDURES	2
PRESSURE TRANSDUCER CALIBRATION	2
RUN SETUP AND INITIATION	3
	•
DATA ACQUISITION AND REDUCTION	3
DIGITAL FILTERS	3
MEASUREMENT UNCERTAINTY	3
RESULTS	4
PRESENTATION OF RESULTS	4
TEMPORAL UNIFORMITY	4
RADIALSYMMETRY	5
RUN REPEATABILITY	5
COMBINING CALIBRATION RESULTS WITH TEST DATA	5
MACH 10 SPATIAL UNIFORMITY	6
DEVIATION OF PITOT PRESSURE WITH REYNOLDS NUMBER	6
FIRST WINDOW STATION	6
DEVIATIONS OF PITOT PRESSURE WITH AXIAL POSITION	6
REYNOLDS NUMBER = 20×106/FT	6
MACH 14 SPATIAL UNIFORMITY	6
DEVIATIONS OF PITOT PRESSURE WITH REYNOLDS NUMBER	6
FIRST WINDOW STATION	6
SECOND WINDOW STATION	6
THIRD WINDOW STATION	6
DEVIATIONS OF PITOT PRESSURE WITH AXIAL POSITION	7
REYNOLDS NUMBER = $4.0 \times 10^6 / \text{FT}$	7
REYNOLDS NUMBER = $2.0 \times 10^6/\text{FT}$	7
REYNOLDS NUMBER = $0.5 \times 10^6 / \text{FT}$	7
REVNOLDS NUMBER = 0.1×106/FT	7

CONTENTS (Continued)

	Page
SUMMARY	7
REFERENCES	25
GLOSSARY	27
APPENDIX A—FREE STREAM FLOW FIELD PARAMETERS FOR ALL NOMINAL TEST CONDITIONS	Λ-1
DISTRIBUTION	(1)

ILLUSTRATIONS

Figure		Page
1	. NSWCWODET HYPERVELOCITY WIND TUNNEL 9	8
2	TUNNEL 9 CALIBRATION SETUP	9
3	TUNNEL 9 CALIBRATION STATIONS	10
4	TUNNEL 9 SUPPLY CONDITIONS	11
5	TUNNEL 9 TEMPORAL UNIFORMITY	12
6	COMPARISON OF HORIZONTAL AND VERTICAL PROFILES	12
7	COMPARISON OF RUN REPEATABILITY	12
8	MACH 10 NORMALIZED PITOT PROFILES AT FIRST WINDOW	
	STATION	13
9	MACH 10 NORMALIZED PITCT PROFILES AT	
	REYNOLDS # = 20 MILLION/FT	14
10	MACH 14 NORMALIZED PITOT PROFILES AT FIRST WINDOW	
4.	STATION	15
11	MACH 14 NORMALIZED PITOT PROFILES AT SECOND WINDOW	
••	STATION	16
12	MACH 14 NORMALIZED PITOT PROFILES AT THIRD WINDOW	3.77
13	STATION MACH 14 NORMALIZED PITOT PROFILES AT	17
10	REYNOLDS # = 4 MILLION/FT	18
14	MACH 14 NORMALIZED PITOT PROFILES AT	10
14	REYNOLDS # = 2 MILLION/FT	19
15	MACII 14 NORMALIZED PITOT PROFILES AT	19
10	REYNOLDS # = 0.5 MILLION/FT	20
16	MACH 14 NORMALIZED PITOT PROFILES AT	20
10	REYNOLDS # = 0.1 MILLION/FT	20
	RESTROLISS # 22 0.1 MILLINGTOFF 1	20
	TABLES	
Table		Page
		⊻مني۔
1	HYPERVELOCITY TUNNEL 9 CAPABILITIES	21
2	TUNNEL 9 SUPPLY/PITOT PRESSURE INSTRUMENTATION	21
3	TUNNEL 9 SUPPLY TEMPERATURE INSTRUMENTATION	22
4	ESTIMATE OF MEASUREMENT UNCERTAINTY	22
5	NSWCWODET TUNNEL 9 CALIBRATION DATA	23

INTRODUCTION

Calibration of wind tunnel facilities is necessary to properly evaluate and understand the data obtained during a test program. The Naval Surface Warfare Center White Oak Detachment (NSWCWODET) Hypervelocity Tunnel 9 frequently engages in facility calibrations. When Tunnel 9 was originally brought on-line, a complete characterization of the flow was completed. Periodic tests are performed to obtain additional calibration data relative to new capabilities or specific customer needs.

The National Aerospace Plane (NASP) program is a national initiative by the Department of Defense and National Aeronautics and Space Administration (NASA). The program objective is to develop hypersonic technologies for an experimental X-30 aircraft and eventually demonstrate single- stage-to-orbit flight. This program will perform multiple tests in Tunnel 9 over a wide range of test conditions. The purpose of these experiments is to evaluate various airframe, inlet, and propulsion configurations. Discrete calibration conditions were chosen which encompassed the planned testing range for the NASP program. The test data in this report includes test conditions where calibration data was previously unavailable.

This test was designed to calibrate the uniformity of the free stream flow field parameters in the Mach 10 and Mach 14 nozzles. This effort was combined with previous tunnel calibrations to create this inclusive calibration report.

TEST FACILITY

The NSWCWODET Hypervelocity Wind Tunnel 9 is a blow-down facility which operates at Mach numbers of 8, 10, and 14. Ranges for Reynolds numbers and supply conditions are listed in Table 1.

Tunnel 9 uses nitrogen as the working fluid. The test section is over 12 feet long and 5 feet in diameter, which enables testing of large scale model configurations. A schematic of Tunnel 9 is shown in Figure 1.

During a typical run, a vertical heating vessel is used to pressurize and heat a fixed volume of nitrogen to a predetermined pressure and temperature. The test section and vacuum sphere are evacuated to a low pressure and are separated from the heater by a pair of metal diaphragms. When the nitrogen in the heater reaches the desired temperature and pressure, the diaphragms are ruptured and the gas flows from the top of the heater, expands through the contoured nozzle, into the test section at the desired test conditions. As the hot gas exits the top of the heater, cooler

nitrogen (~300°F) from three pressurized driver vessels enters the heater base. The cold gas drives the hot gas in a piston-like fashion, thereby maintaining constant conditions in the test section during the run. More detailed information concerning the facility can be obtained from Reference 1.

TEST HARDWARE

Calibration hardware for this test consisted of a fixed Pitot rake mounted on a straight sting and a traversing Pitot rake as shown in Figure 2. The fixed Pitot rake consisted of 25 Pitot pressure probes, one at the centerline of the tunnel and the others placed 2 inches apart, horizontally spanning both sides of the tunnel. A traversing mechanism was fitted with three Pitot pressure probes to survey the vertical plane of the test section. One probe was mounted at the centerline, and two probes mounted 1 inch to either side. The traversing probe surveyed from 4.3 inches above the tunnel centerline to 3.0 inches from the tunnel wall.

INSTRUMENTATION

TUNNEL INSTRUMENTATION

The instrumentation used to monitor wind tunnel supply conditions included one supply pressure transducer, two supply temperature thermocouples, and two of the Pitot rake mounted pressure transducers in the test cell. Tables 2 and 3 list the transducers and valid ranges. Both sets of thermocouples were fabricated in-house.

PITOT RAKE INSTRUMENTATION

Instrumentation for both the fixed Pitot rake and the traversing Pitot rake coincide with Table 2 for Pitot pressure. Reference 2 provides more detail on Kulite transducers. All gauges were mounted inside the rake and were connected to the taps with flexible Tygon tubing. Tubing lengths were sized to minimize pressure lag as outlined in Reference 1.

CALIBRATION AND TEST PROCEDURES

PRESSURE TRANSDUCER CALIBRATION

Calibration of the pressure instrumentation was accomplished prior to each wind tunnel run. The data system recorded transducer response during evacuation of the test cell. The test cell evacuation was accomplished in steps where the test cell pressure was held constant at each step. Typically eight calibration points were

obtained from atmospheric pressure to approximately 1 mm Hg. Two MKS Baratron type 145 transducers with ranges of 1000 and 10 mm Hg were used as calibration standards. For each transducer, output voltage was recorded and a slope and intercept were calculated using a least squares method.

RUN SETUP AND INITIATION

After the pressure transducer calibration, preheat static tares were obtained on all transducers. The heating cycle, approximately 25 minutes in duration, was then started. A final tare was obtained at the end of the heating cycle for final instrumentation intercept corrections just prior to diaphragm rupture. Once flow was established, the sequencer triggered the data acquisition, traversing probe, photographic, and other tunnel control systems.

The fixed horizontal rake was held at 0 degree angle of attack. The traversing probe started at 4.3 inches above centerline and traversed into the boundary layer to approximately 3.0 inches from the wall during steady flow conditions.

DATA ACQUISITION AND REDUCTION

Data were sampled and recorded using the NSWCWODET Data Acquisition and Recording Equipment (DARE) VI. DARE VI is a simultaneous-sample-and-hold, single-amplifier-per-channel system with ± 14 bit resolution. The input signals from all DARE channels were amplified and fed through six-pole, low-pass Bessel filters with a cutoff frequency of 50 Hz, thus eliminating high frequency background noise. Each channel was sampled at 251 Hz. Reference 1 gives a full description of the DARE VI system.

DIGITAL FILTERS

Data taken using the DARE VI were digitally filtered using a digital representation of a sixth order, low-pass Butterworth filter. Digital filtering allows the filter cutoff frequency to be chosen after recording and changed, if necessary, to eliminate erroneous noise. Spectral analysis may be performed to aid in choosing the cutoff frequency to prevent inadvertent distortion of the data. Time delays are avoided by filtering the data twice and reversing the data in time between the two applications of the filter. A more complete description of filtering techniques can be found in Reference 1. A cutoff frequency of 10 Hz was used for tunnel supply conditions, test cell Pitots, and all calibration rake Pitots.

MEASUREMENT UNCERTAINTY

Tunnel supply conditions and test cell Pitot pressure measurements were obtained. Free stream flow properties were then calculated using the fixed rake Pitot probes. Two Pitot probes were used to obtain free stream Pitot pressure. The Pitots were chosen to represent the Pitot position during aerodynamic model testing, based on their horizontal position in the test cell. Supply thermocouples and Pitot

transducers were averaged. From Reference 3, an estimate of the uncertainty of measured and derived flow quantities is given in Table 4.

RESULTS

Table 5 represents the data runs used in the calibration. Data were obtained at six anial stations in the test section. As shown in Figure 3, station 0 corresponds to the nozzle exit. Stations -1, 1, 2, and 3 correspond to the respective positions of -20, 24, 66, and 108 inches downstream of the nozzle exit. Run 2241 was run with an axial rake position of 72 inches downstream of the nozzle exit.

PRESENTATION OF RESULTS

Results from the Pitot rake surveys are presented for each test condition. Tabulated free stream flow field parameters are listed versus radial distance from the centerline in Appendix A. Pitot pressure at each probe on the Pitot rake was normalized by the average of two Pitots located at the edge of the inviscid core (PTAVG). Data from the Pitot pressure probes, supply pressure, and supply temperature were used to compute local free stream flow field parameters, based on an assumption of thermodynamic equilibrium in the isentropic core flow. Real gas effects were accounted for by computing an equivalent perfect gas supply pressure and temperature as outlined in Reference 5. Inviscid core size was determined qualitatively for each run based on the character of the profile. One horizontal profile, averaged over the useful run time run is chosen to represent each run condition. This can be accomplished based on the tunnels temporal uniformity, symmetry in horizontal and vertical planes, and run-to-run repeatability. The next sections give examples of each characteristic.

TEMPORAL UNIFORMITY

Control valves regulate the flow of hot nitrogen through the tunnel and keep relatively constant Reynolds number conditions over the total run time. For a more complete description of Tunnel 9 operation consult Reference 1. Figure 4 shows a plot of supply conditions versus time for a standard tunnel run. The diaphragms are burst and a start-up period follows where pressure and temperature are ramped to the run values. The run values are then held constant over the usable run time. To assess the degree of temporal uniformity, normalized Pitot pressure profiles were plotted at snapshots in time during a tunnel run. Figure 5 shows five normalized Pitot pressure profiles at various times during the usable run time. As shown, the profiles vary little with time, and for all conditions, observed temporal deviations were typically on the order of 1 percent or less in pressure. Based on these observations, Pitot pressure profiles were averaged during the usable run time to obtain the spatial deviations presented in the following sections.

RADIAL SYMMETRY

To check the radial symmetry in the horizontal and vertical plane of the test section, two Pitot rakes were used. For each station and Reynolds number, the local Mach number was plotted as a function of absolute distance from the centerline. The Pitot probes were mounted at 2-inch increments radially from the centerline of the tunnel. In this manner, radial asymmetric deviations can be assessed in the horizontal flow profile. For runs where traversing Pitot data were available, the radial symmetry could be investigated between the vertical and horizontal planes. Figure 6 shows an example of how radial symmetry data was analyzed. Generally, for all run conditions asymmetric deviation was 2 percent or less in pressure, where the greater deviation of fixed Pitot or traversing Pitot reading was used. Even though the traversing probe samples each point at slightly different points in time, there was good agreement with the fixed Pitot rake. Only those Pitots that fall inside the inviscid core were used for the calculation.

RUN REPEATABILITY

For each run condition, one run is selected for a representative Pitot pressure profile. Figure 7 shows a normalized Pitot pressure plot of three separate Mach 10 runs. Notice that the profiles are very repeatable from run to run. The Mach 14 nozzle exhibits similar characteristics in run repeatability.

COMBINING CALIBRATION RESULTS WITH TEST DATA

The uniformity data presented in the preceding sections of this report represent a large amount of data. The ultimate purpose for the generation of this data is to aid in the definition of the flow profile during a test program. When a model is tested aerodynamically, the Pitot calibration rake will not be installed in the test cell. Free stream conditions are calculated as described earlier based on PO, TO, and the average of two strut-mounted Pitot probes. Refer back to Figure 2 for test cell arrangement. The calibration data can provide a definition of the flow conditions throughout the nozzle. To use the calibration data in conjunction with the aerodynamic test data, the following procedure exists. Each wind tunnel data package will contain the average supply conditions and free stream flow field parameters for the run. The average free stream flow field parameters are calculated based on measured supply conditions and the average of two strut mounted Pitot probes (PTAVG). This approach assumes constant flow field parameters across the test section. If more detailed definition of the free stream flow field is required, Appendix A lists each flow field parameter as a fraction of the PTAVG calculated quantities for each run condition and axial position. For completeness, this data should be combined with the measurement uncertainty data from Table 4.

Figures 8 through 16 are included for pretest planning purposes. The uniformity for each run condition and axial station can be compared to decide on model placement in the test section.

MACH 10 SPATIAL UNIFORMITY

Deviation of Pitot Pressure With Reynolds Number

First Window Station. For Mach 10, calibration data versus Reynolds number are available only at the first window station. Pitot pressure profiles at nominal free stream Reynolds numbers of 20×10^6 , 17×10^6 , 12×10^6 , 5.5×10^6 , and 1.0×10^6 /ft are presented in Figure 8. A constant core of 40 inches was observed. The best uniformity was observed at the 20×10^6 /ft condition which is closest to the nozzle design condition. 6.7

Deviations of Pitot Pressure With Axial Position

Reynolds Number = 20×106 /ft. Mach 10 calibration data obtained as a function of axial station are available at stations 0, 1, 2, and 3. Pitot Pressure profiles at a nominal free stream Reynolds number of 20×10^6 /ft are plotted in Figure 9. The best uniformity occurred at the first window station, 24 inches downstream of the nozzle exit. The inviscid core was approximately 40 inches at all stations except the third window station. At this station the inviscid core was 32 inches. Test models are generally tested in the first two window stations at these conditions.

MACH 14 SPATIAL UNIFORMITY

Deviations of Pitot Pressure With Reynolds Number

First Window Station. At the first window station, 24 inches downstream from the nozzle exit, data were obtained at nominal free stream Reynolds numbers of 4.0×10^6 , 2.0×10^6 , 0.5×10^6 , and 0.1×10^6 /ft. Figure 10 shows local normalized Pitot pressure plotted versus radial distance from the centerline as a function of Reynolds number. As the Reynolds number increased toward the nozzle design condition, the profiles become more uniform across the test section with a lower pressure at the center 9 inches of the test section. A constant core of approximately 36 inches in diameter was observed except for the lowest Reynolds number condition where the core was 28 inches in diameter.

Second Window Station. At the second window station, 66 inches downstream from the nozzle exit, data were obtained at nominal free stream Reynolds numbers of 4.0x10⁶, 2.0x10⁶, and 0.5x10⁶/ft. Figure 11 shows local normalized Pitot pressure plotted versus radial distance from centerline as a function of Reynolds number. A constant 36-inch diameter inviscid core was observed, except for the lowest Reynolds number condition where the core was 32 inches in diameter.

Third Window Station. At the third window station, 108 inches downstream from the nozzle exit, data were obtained at nominal free stream Reynolds numbers of 4.0x106, 2.0x106, and 0.5x106/ft. Figure 12 shows local Mach number plotted versus radial distance from the centerline as a function of Reynolds number. A constant 36-inch diameter inviscid core was observed, except for the lowest Reynolds number condition where the core was 28 inches in diameter, and the pressure drops as the centerline is approached.

Deviations of Pitot Pressure With Axial Position

Reynolds Number = 4.0×10^6 /ft. Data at the maximum Reynolds number condition were obtained axially at six locations in the test section from 20 inches upstream of the nozzle exit to 108 inches downstream of the nozzle exit. Figure 13 is a plot of local normalized Pitot pressure versus radial distance from centerline at each of the six axial stations. A constant inviscid core was 36 inches in diameter. Pitot pressure was a minimum at the center of the test section for axial distances up to 48 inches. Pressure deviations at the second and third window stations were typically smaller without a dip in pressure at the center.

Reynolds Number = 2.0×10^6 /ft. Data at a nominal Reynolds number of 2.0×10^6 /ft were obtained axially at three locations in the test section at 24, 66, and 108 inches downstream of the nozzle exit. Figure 14 shows a plot of local normalized Pitot pressure versus radial distance from centerline at each of the three axial stations. A constant inviscid core of 36 inches in diameter was observed. Deviations were centered about a median value, except for the first window station where the local Pitot pressure decreased as the centerline was approached.

Reynolds Number $\approx 0.5 \times 10^6$ /ft. Data at 0.5×10^6 /ft were obtained axially at three locations in the test section at 24, 66, and 108 inches downstream of the nozzle exit. Figure 15 shows a plot of local normalized Pitot pressure versus radial distance from centerline at each of the three axial stations. A constant 36-inch diameter inviscid core was observed, except for the third window position where the core was 28 inches in diameter, and the pressure drops as the centerline is approached. Deviations were centered about a median value, except for the third window station where pressure decreased as the centerline was approached.

Reynolds Number = 0.1×10^6 /ft. Data at 0.1×10^6 /ft were obtained at only one station 24 inches downstream of the nozzle exit. Figure 16 shows a plot of local normalized Pitot pressure versus radial distance from the centerline. The inviscid core was 28 inches in diameter. Pitot pressure generally decreased as the centerline was approached.

SUMMARY

Calibration data obtained in NSWCWODET Hypervelocity Tunnel 9 verify that high quality uniform flow exists at Mach 10 and 14. Spatial and temporal uniformity as well as symmetry were investigated. Flow uniformity was found to be the best in the second and third window stations, with uniformity in Mach number nominally less than ± 0.75 percent. In general, higher Reynolds number free stream conditions tend to exhibit better uniformity. Calibration data from the Mach 8 and Mach 18 nozzle will be subsequently added to this report when that data becomes available.

FIGURE 1. NSWCWODET HYPERVELOCITY TUNNEL 9

Test Cell Configuration For Aerodynamic Model Testing

Test Cell Configuration For Tunnel Calibration

FIGURE 2. TUNNEL 9 CALIBRATION SETUP

Mach 10

	3RD Window	2ND Window	1ST Window	Exit
Re# = 20 Million/fL	•	•	•	•
Red = 17 Million/ft.	0	0	•	0
Re# = 12 Million/ft.	0	0	•	. 0
Ref = 8 Million/fL	0	0	•	0
Ro# = 1 Million/IL	0	0	•	0

Mach 14

<u>Extl</u>	1ST Window	2ND Window	3RD Window	
0	•	•	•	Re# = 3.8 Million/fL
0	•	•	•	Ref = 2.0 Million/ft.
0	•	•	•	Red = 0.5 Million/fL
0	•	0	0	Re# = 0,1 Million/fL
		1		

FIGURE 3. TUNNEL 9 CALIBRATION STATIONS

FIGURE 4. TUNNEL 9 SUPPLY CONDITIONS

FIGURE 5. TUNNEL 9 TEMPORAL UNIFORMITY

FIGURE 6. COMPARISON OF HORIZONTAL AND VERTICAL PROFILES

FIGURE 7. COMPARISON OF RUN REPEATABILITY

DISTANCE FROM TEST CELL CENTERLINE (Inches)

FIGURE 8. MACH 10 NORMALIZED PITOT PROFILES AT FIRST WINDOW STATION

FIGURE 9. MACH 10 NORMALIZED PITOT PROFILES AT REYNOLDS # = 20 MILLION/FT

FIGURE 10. MACH 14 NORMALIZED PITOT PROFILES AT FIRST WINDOW STATION

FIGURE 11. MACH 14 NORMALIZED PITOT PROFILES AT SECOND WINDOW STATION

FIGURE 12. MACH 14 NORMALIZED PITOT PROFILES AT THIRD WINDOW STATION

DISTANCE FROM TEST CELL CENTERLINE (Inches)

FIGURE 13. MACH 14 NORMALIZED PITOT PROFILES AT REYNOLDS # = 4 MILLION/FT

FIGURE 14. MACH 14 NORMALIZED PITOT PROFILES AT REYNOLDS # = 2 MILLION/FT

FIGURE 15. MACH 14 NORMALIZED PITOT PROFILES AT REYNOLDS # = 0.5 M LLION/FT

FIGURE 16. MACH 14 NORMALIZED PITOT PROFILES AT REYNOLDS # = 0.1 MILLION/FT

TABLE 1. HYPERVELOCITY TUNNEL 9 CAPABILITIES

Contoured Nozzle	Supply Pressure Range (psia)	Nominal Supply Temperature (°F)	Reynolds Number Range (X106/ft)	Run Time Range (s)
8	4,000 to 12,000	1,100	17.6 to 50.0	0.33 to 1.3
10	500 to 14,000	1,350	0.86 to 20.0	0.23 to 8
14	100 to 20,000	2,750	0.072 to 3.8	0.7 to 15

TABLE 2. TUNNEL 9 SUPPLY/PITOT PRESSURE INSTRUMENTATION

Free Stream Nominal Reynolds Number	Supply Pressure Transducer (Range)	Pitot Pressure Transducer (Range)				
	Mach 10					
Re# = 1 million/ft	Kulite model XCW-093-15A (0 to 15 psia)					
Re# =7 million/ft	Viatran model 304 (0 to 10,000 psia)	Statham model PA288'FC (0 to 50 psia)				
Re# = 12 million/ft	Viatran model 214 (0 to 20,000 psia)	Statham model PA288TC (0 to 50 psia)				
Re# = 20 million/ft	Viatran model 214 (0 to 20,000 psia)	Statham model PA288TC (0 to 50 psia)				
	Mach 14					
Re# = 0.1 million/ft	Statham model PA24TC (0 to 1,000 psia)	Kulite model XCW-062-5A (0 to 5 psia)				
Re# = 0.5 million/ft	Viatran model 214 (0 to 50,000 psia)	Kulite model XCW-093-15A (0 to 15 psia)				
Re# =2 million/ft	Viatran model 214 (0 to 50,000 psia)	Kulite model XCW-093-15A (0 to 15 psia)				
Re# = 3.8 million/ft	Viatran model 214 (0 to 50,000 psia)	Kulite model XCW-093-15A (0 to 15 psia)				

TABLE 3. TUNNEL 9 SUPPLY TEMPERATURE INSTRUMENTATION

Freestream Nominal Mach Number	Supply Temperature Transducer (Range)
Mach 10	chromel /alumel (0 to 2200°F)
Mach 14	tungsten-5% rhenium/tungsten-26% (0 to 4200°F)

TABLE 4. ESTIMATE OF MEASUREMENT UNCERTAINTY

Measured Quantity	Uncertainty
P0	± 0.4%
TO	-1.7 to + 0.5%
Pitot	± 0.3%
Derived Quantity	
Minf	-0.2 to +0.14%
Tinf	-1.9 to +0.6%
Pinf	-0.6 to +0.5%
Qinf	± 0.3%
RHOinf	-1.6 to +0.55%
Uinf	-0.8 to +0.2%
Reinf/L	-2.6 to +0.8%

TABLE 5. NSWCWODET TUNNEL 9 CALIBRATION DATA

CORE DIAMETER (inches)		40	40	40	40	40	28	36	36	36	30	36		40	36	36	38	3		32	28	36	36
DEVIATION IN PRESSURE ± %		+1% to -5.8%	+1% to -5.2%	+2% to -4.4%	+2% to -4.6%	+1% to -1.6%	-+ 2% to -7.7%	+ 4% to -4.5%	100 to 9 500	20.0-m 2/1+	+1% to -8.4%	+1% to 9.5%		0 to -4.6%	0 to -9.0%	+1% to -5.4%	1 001 1- 1 901	a-C-#-01 0.7 +		+3.8% to -9.3%	+1% to 10.8%	+0 to 6.1%	+2% to -4.3%
PTmean/ PTAVG		0.979	0.977	0.979	0.984	1.00	0.965	0.986	000	0.980	0.981	0.984		0.982	0.949	626.0	200	0.982		0.991	0.935	0.967	0.983
PTAVG (psia)	STATION	2.07	12.04	26.85	36.16	47.14	0.21	1 53		5.73	12.66	12.38	VSTATION		1.67	7 A O. A	26.0	11.79	STATION	47.33	1.53	6.24	11.82
SUPPLY TEMP (°F)	FIRST WINDOW STATION	1140	1290	1350	1320	1255	2290	0076		2500	2660	2375	SECOND WINDOW	1320	9550	2016	7100	2880	THIRD WINDOW STATION	1300	2475	2650	2700
SUPPLY PRESSURE (psia)	FIRST	580	3600	8000	11600	14000	29.5		7017	8750	20100	20200	SECON	14250	9950	6227	nezs	19500	THIR	14100	9100	9500	20000
AXIAL STATION (inches)		76	76	24	77	5 6	76	F 3	47	24	-20	24		a a	3 8	00	99	72		108	108	200	108
RE#/FT x 106		1 07	1 N	11.7	14.1	10.0	20.00	0.0	0.55	2.03	4.10	4.81		0.00	0.52	0.54	1.88	3.43		91.8	2 2	20.0	3.84
MACH #		73 0	£0.5	9.91	10.10	10.40	C#-01	12.45	13.21	13.70	14.19	14.45		10.04	10.01	13.10	13.70	14.16		10.42	CF.01	13.17	14.35
RCN #		910,	7,01	16/4	1011	0561	2572	1408	2262	2267	2240	2243			6077	2264	2265	2241		0,00	0077	72261	8966

REFERENCES

- 1. Boyd, C., Hypervelocity Wind Tunnel 9 Handbook, Third Edition, NAVSWC TR 91-616, Jul 1993, NAVSWC, Silver Spring, MD.
- 2. Kulite Semiconductor Products Inc., Kulite Miniature IS Silicon Diaphragm Pressure Transducer Catalog, Bulletin KS-10000, Ridgefield, NJ.
- 3. NAVSWC K24-MEK Memorandum, Subj: Update on Uncertainties in Derived Tunnel Conditions, White Oak, MD, Mar 92.
- 4. Brahinsky, H.S., and Neel, C.A., Tables of Equilibrium Thermodynamic Properties of Nitrogen, Volume III. Constant Entropy, AEDC TR-69-126, Final Report, Jan 66-Jan 69, AEDC, Arnold AF Station, TN.
- 5. Culotta, S., and Richards, B.E., Methods for Determining Conditions in Real Nitrogen Expanding Flows, VKI TN 58, Feb 1970, VKI, Rhode St. Genese, Belgium.
- 6. Glowacki, W.J., NOL Hypervelocity Wind Tunnel, Report No. 2: Nozzle Design, NOLTR 71-6, Apr 1971.
- 7. Harris, E.L., Glowacki, W.J., NOL Hypervelocity Wind Tunnel, Report No. 1: Aerodynamic Design, NOLTR 71-5, Feb 1971.

GLOSSARY

a Velocity of the local speed of sound, ft/s

CL Centerline of wind tunnel

CP Pressure coefficient (P - Pinf)/Qinf

Mach Free stream Mach number, Mach = Uinf/a

Pinf Free stream static pressure, psia

PO, Po Tunnel supply pressure, psia

PO1 Equivalent perfect gas supply pressure, psia

PTAVG Average of strut mounted Pitot pressure probes, psia

PT5 Rake pressure transducer, -16 in. from CL, psia

PT21 Rake pressure transducer, 16 in. from CL, psia

PTN Tunnel Pitot pressure, north side, psia

PTRAV Traverse Pitot pressure transducer, psia

PTS Tunnel Pitot pressure, south side, psia

Qinf Free stream dynamic pressure, psia

Reinf/L Free stream Reynolds number, ft-1

Tinf Free stream static temperature, °F

To Tunnel supply temperature, °F

TO1 Equivalent perfect gas supply temperature, °F

Uinf Free stream velocity, ft/s

APPENDIX A

FREE STREAM FLOW FIELD PARAMETERS FOR ALL NOMINAL TEST CONDITIONS

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WTR 1436, RUN 1408, STATION 12 inches

ď	VIP ft**1/2	58E-02	VIP	2. 233 5 2455 2 3 5 2 4 5 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2
.21 psia	•	5.4.	RHO	00.00 00
0	RHOINF 1bm/ft	2.99E-0	đ	1.0000 1.0000
PTAVG	INF :/sec	979.	AL RE	0.510 0.510 0.525 0.525 0.985 0.993 0.962 0.962 0.963
90. degF	M CONDITIONS REINF UINF 1/ft ft/s	ഗ) NOMINAL P	00.326 00.336 00.336 00.336 00.936 00.933 00.952 00.952 00.963 00
T0 = 229	ESTREAM CON REINI 1/ft	INF sia 6E-03 7.	NORMALIZED TO Q T	0.55 0.00
sia	FRE INF sia			00000000000000000000000000000000000000
225.	NOMINAL DE TINF PER		PROFILES M	11.2558 11.2558 11.2558 11.0005 11.0005 11.0001 11.0001 11.0001 11.0001 11.0001 11.0001 11.0001 11.0001 11.0001 11.0001 11.0001 11.0001
H 0	TIN	92.	PT (00000000000000000000000000000000000000
H = 12,45	QINF psia	0.115	Dist. from center (in)	1111111 4221111111111111111111111111111
МАСН	МАСН	12.45	Probe #	22222222222222222222222222222222222222

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WTR 1436, RUN 1409, STATION 24 inches

40. degF PTAVG = 0.09 psia	RHOINF VIP lbm/ft3 ft**1/2	94E-02	VIP	11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000
		4.	RHO	00.00000000000000000000000000000000000
		2.06E-05	ם	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
	CONDITIONS INF UINF ft ft/sec	04 4739.	AL RE	0.000 0.000
			o nominal P	0.137 0.0585 0.0992 0.0992 0.0992 0.0992 0.777 0.789 0.988 0.9880 0.9880 0.9980 0.939
TO = 13	STREAM CONI REINF 1/ft	6.54E+04	LIZED TO T	00000000000000000000000000000000000000
psia	NOMINAL FREEST TINF PINF degR psia	48E-04	S NORMALIZ Q	0.000000000000000000000000000000000000
ຜ		56.7 4.	PROFILES M	11111111111111111111111111111111111111
P0 =			PT	0.0394 0.0993 0.0993 0.0993 0.0993 0.0932 0.0934 0.0936 0.0936 0.0936 0.0936 0.0936 0.0936 0.0936 0.0936 0.0936
ж = 12.62	QINF psia	0.050	Dist. from center (in	111111 42221 1111111 12221 1111111 1222 1320 1320
MACH	МАСН	12.62	Probe #	44522222222222222222222222222222222222

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WTR 1436, RUN 1411, STATION 24 inches

3 = 0.23 psia	RHOINF VIP lbm/ft3 ft**1/2	00E-02	VIP	11.12693 1.321 1.321 1.321 1.321	
		4.	RHO	6.000000000000000000000000000000000000)
		3.71E-05	Þ	00000000000000000000000000000000000000	•
PTAVG	NF /sec	630.	i. Re	00000111000000000000000000000000000000	
00. degF	CONDITIONS SINF UINI /ft ft/	വ	NOMINAL P	0.000110000000000000000000000000000000	- + •
TO = 200	STREAM CON REINF 1/ft	1.05E+05	LIZED TO	00000000000000000000000000000000000000	:
psia	NOMINAL FREESTI TINF PINF degR psia	08E-03	S NORMALIZED Q T	00000000000000000000000000000000000000	00.
290.		9 1.0	PROFILES M	11.000.00.00.00.00.00.00.00.00.00.00.00.	7.
P0		75.	PT	00000111000000000000000000000000000000	. 0.
H = 12.96	QINF psia	0.127	Dist. from center (in)	111111 4224 4224 4224 4224 4226 4226 600 600 600 600 600 600 600 600 600	4.
MACH	MACH	12.96	Probe #	せん とくり はっしょうしょう くり	

TUNNEL, 9 FLOW UNIFORMITY CALIBRATION WIR 1459, RUN 1669, STATION 24 inches

`	VIP ft**1/2	27E-03	VIP	1.123	.00	96	.00.	.01	.01	.02	.02	200	. 02	.01	90.	7.0		00.	.99	99	00.	
65 psi	~	4.	RHO	0.967	96.	وي م	96.	.97	.97	. 9.	.95	ი ი	.95	.97	90	9.	ν σ α	00.	.00	.01	φ. α	•
= 11.	RHOINF lbm/ft3	2.69E-03	D	1.000	000.	000	000.	000.	000	000.	000.	000.	000.	000	000.	000.		000	000.	000.	000.	200.
F PTAVG	NS UINF ft/sec	.999	AL RE	0.873	96.	99	. 90	.98	80.0	, v , v	.97	.97	.67	.98	00.	90.0	י ט ט	00	00.	00.	900	0
90. degF	AM CONDITIONS REINF UIN 1/ft ft/	76 4	O NOMINAL P	0.727	9.69	99.	. 98	96.	96.	, 6 0 0	.93	40.0	• • • • • • • • • • • • • • • • • • •	96.	00.	96	ω α α	000	.01	.01	98 1	٠.
TO = 129	STREAM COI REINI 1/ft	5.38E+06	NORMALIZED TO Q T	0.913	99.	960	. 60	.99	86.		. 98	86.0	, . 0 &	.98	00.	96,	• 000	000	00.	.00	96	7 %
psia	FREE PINF psia	18E-02		0.800	99.	900	, . , . o .	.97	.97	.97	.95	96	ທຸດ ບຸດ	.97	.00	.97	86.		00.	.01	86.0	8.
3500.	NOMINAL F R	1 9.	PROFILES M	1.049	200	00.	000	.00	00.	.00	.01	.00	.01	00.	00.	00.	000	90	• • • • • • • • • • • • • • • • • • •	.99	00.	• •
P0 =	N TINF degR	86	F	0.800	96.	96	, 0 0 0	.97	.97	.97	.95	96	0 0	.97	.00	.97	86.0		00.	.01	86.	8.
H = 9.91	QINF psia	6.313	Dist. from center (in)	-24.00	0.0 180.0	16.	12.0	10.0	ώ,	0 4 0 0	2.0	0.0	? 0		8.0	0.0	2.0	† (c	0 0	0.0	•	4. Q
МАСН	МАСН	9.91	Probe	Н 27 (w 4	ເດ	۷ ۵	. α	ס יָ	10	12	13	15 15	16	17	18	13) r	22	23	24	22

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WTR 1459, RUN 1670, STATION 24 inches

ď	P **1/2	7E-03	VIP	0.977	9 0 4 0	.87	88	, a	88	88	χ. Σ. α.	89	9,0	φα	000	.89	.88	. 88	.87	90.	92	4 0	9
O psi	VIP ft**;	3.4	RHO	224	.10	.30	.27	2.55	.26	.26	. 23	. 23	.23	. 24 4 c	.00	.25	.27	.27	. 29	99	17	77.	ν
VG = 19.2	RHOINF 1bm/ft3	4.18E-03	a	1.000 1 0.998 1	. 000 000	866.	866.	800°	866.	866.	800°	866.	866.	866.	.000	866.	866.	866.	.998	000.	866.	٠ ٢ ٢ ٢	000.
F PTAVG	NS UINF ft/sec	799.	AL RE	1.027	.06	.17	.15	31.	14	.15	.13	.13	.13	. 13	00.	.14	.15	.15	• 16	66.	5.50	.0.	٠ ص
40. degF	OITIC	76 4	o nominal P	1.065	.15	. 44	.39		388	38	34 4	34	.34	.35	00.	.37	.40	.40	. 44	.98	. 25	.17	. 99
T0 = 13,	STREAM CONI REINF 1/ft	9.29E+06	LIZED TO T	1.018	.04	. 11	.10	000	000	.09	80.0	.08	.08	.09	, 0	. 09	.10	.10	. 11	.99	90.	.04	. 99
psia	FREE PINF psia	33E-01	S NORMALIZED Q T	1.045	.10	29	.26	.26	. 25	.25	. 23	. 23	.23	. 23	47.	. 25	.27	.26	.29	99	.17	.12	66.
7250.	NOMINAL F R	6 1.	PROFILES M	0.991	97	. 94	.95	و و و		.95	დი ი		.95	. 95	000	. 50	.95	.95	.94	.00	96.	.97	.00
P0 ==	N TINF degr	82.	FG	1.045	.10	29	.26	. 26	. 25	. 25	. 23	. 23	.23	. 23	470	25.	.27	.26	.29	.99	.17	. 12	.99
N = 10.59	QINF psia	10.408	Dist. from center (in)	-24.00	20.0	16.0	14.0	200	18.0	6.0	4.0	0.0	0,	0.0		0.0	2,0	4.0	6.0	0.	0.0	2.0	4.0
MACH	МАСН	10.59	Probe #	72	e 4	r LO	9	~ 0	0 თ			13											

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1459, RUN 1671, STATION 24 inches

ઌ	P **1/2	5E-03	VIP	. 12	.01	99	7.66.0	.01	.01	٠٥.	.01	.01	.02	. 02	10.	.02	.01	0.	00.	.01	.01	.01	00.	00.	99	00.	60.
.85 psi	F VIP	03 2.9	RHO	.79	.97	.0	1.006	97	.97	96.	.97	.97	96.	. 95	96	9.0	96.	96.	00.	96.	.97	.97	.99	.99	.01	9	84
= 26	RHOINF lbm/ft	5.81E-	n	.00	00.	00.	1.000	000	00.	.00	00.	00.	8.	• 00	00.	00.	00.	00.	00.	90.	90.	00.	00.	00.	00.	8	00.
F PTAVG	NS UINF ft/sec	813.	AL RE	.87	.98	.01	1.004	86.	.98	.98	.98	.98	.97	.97	.97	.97	.97	.97	00.	.98	.98	.98	.99	66.	00.	.99	.90
50. degF	CONDITIONS INF UI	+07 4	O NOMINAL P	.73	96.	. 02	1.008	96	96	.95	96.	96.	.94	.93	. 95	. 94	. 94	.94	00.	.95	96.	96.	66.	66.	.01	.98	. 78
TO = 13	STREAM CO) REIN: 1/ft	1.17E+	LIZED TO T	.91	99	00.	1.002	900	.98	.98	.99	.99	.98	.98	.98	.98	.98	.98	00.	.98	.98	.99	.99	.99	00.	.99	.93
psia	FREE PINF psia	03E-01	S NORMALIZ Q	.80	.97	.01	1.006	9.0	.97	96.	.97	6.	96.	.95	96.	. 95	96.	96.	.00	96.	.97	.97	.99	.99	.01	66.	.84
8000.	OMINAL	2 2.	PROFILE M	.04	00.	99	000000000000000000000000000000000000000	00.	.00	00.	.00	00.	.00	.01	.00	.00	00.	00.	00.	00.	.00	00.	00.	.00	.99	00.	.03
P0 =	N(TINF degr	91.	PT	.80	.97	.01	1.006	9.0	97	96	.97	.97	96.	.95	96.	.95	96.	96.	.00	96.	.97	.97	96	99	.01	99	.84
2H = 10.10	QINF psia	14.544	Dist. from center (in)	4.0	22.0	20.0	18.00	14.0	12.0	10.0	8.0	6.0	4.0	2.0	0.	٥.	•	0	٥.	0.0	2.0	4.0	6.0	8.0	0	2.0	4.0
MACH	МАСН	10.10	Probe #	н	7	ന	寸 ((n w	· (~	ω	σ			12													

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1459, RUN 1672, STATION 24 inches

В	VIP ft**1/2	30E-03	VIP	1.266	0.	000	36	70.	.61	0.	.01	70.			01	10.	00	.0	.03	00.	9	V (00.	ם טינ	. 40
o7 psi	VI) 3 ft	9	RHO	0.629	97	9	α α	, 0	.97	.97	.97	96.	0 0	. 6	96.	.97	00.	.97	.94	დ. (200	90.	0 0	ž,	. 64
ll 23.	RHOINF 1bm/ft	5.36E-04	Þ	005	000	000		000	000	000.	000	000.	000.		000.	000.	.000	000.	.001	000.	000.	000.	000.	700.	.004
f PTAVG	NS UINF ft/sec	405.	AL RE	0.758	9,6	99	9	ν Q σ	86	96	.98	98	ω, c	ν σ σ	9,0	.98	00.	8	96.	9	96.	00.	9	9,1	• 76
40. degF	OITIC	4	TO NOMINAL P	0.523	97	99	80,0	ν. ο σ	96	.97	.97	, 95	დ. ი	ბი	, 0 , 0	.97	00.	.97	.91	.98	.99	00.	99	.83	. 53
TO = 114	STREAM CONI REINF 1/ft	1.07E+06	ED	0.831	99	96	9	מש	, 0 , 0	.99	.99	.98	80,0	ω α	, 0	66.	00.	.99	.97	.99	.99	00.	66.	. 95	.83
psia	FREESTI PINF psia	73E-02	S NORMALIZ	0.635	0 0	.99	86.0	200	70	97	.97	96.	96.	76.	, o	. 97	00	.97	.94	.99	66.	.00	.99	.88	. 64
580.	OMINAL	0 1.	PROFILES M	1.102	00.	00	00.			00:	00.	.00	00.	000			00	00.	.01	00.	00.	.99	.00	.02	• 00
₽0 ■	N(TINF degR	84.(FIG	0.635	200	99	98	. 97	, 0	76	.97	96.	96.	.97	ر د د	. 6	00	76.	94	999	99	00.	٠ ص	.88	.64
н = 9.64	QINF psia	1.123	Dist. from center (in)	24.0	122.00	0.84	16.	4. 2.	, 7 C	9 00		4	2.0	0	•	Ċ	9		2.0	4.0	0.9	8	Ō	2.0	4.0
MACH	масн	9.64	Probe #	н.	77 17) 4	ស	Φı	<u>~</u> c	οσ	, E	11	12	13	4 r	0 Y E	7 7	α	10	20	21	22	23	24	2.5

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1459, RUN 1674, STATION 24 inches

rd	; t*1/2	1E-03	VIP	15	1.000	00.	00.	io.	00.	.01	70.	. O.	20.	2 C	0.0	. 02	.01	00.	.01	00.	00.	99	9	96.	5.0	. 12
04 psia	VIP 3 ft**3	4.2	RHO	.75	0.948	.99	.99	.97	86.	.97	96	96.	4.0	φ. α	, 0 A	 	96.	00.	.97	.98	.98	00.	00.	.01	0 : 0 :	• 78
= 12.	RHOINF 1bm/ft	2.77E-03	ū	.003	100	000.	000.	000.	000	000.	000.	000.	.001	100.		000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	.002
PTAVG	S INF t/sec	67.	L RE	.84	0.968	99	.99	.98	98	98	86.	.97	96.	• • •	, ע י	. 97	.97	00.	.98	66.	.99	00.	00.	00,	98	.86
0. degF	CONDITIONS SINF UI	6 46	NOMINAL P	979.	0.927	.987	986.	.965	.975	.959	.955	.952	. 929	.930	426. 400	.933	.951	000.	.959	.981	.981	.004	.013	.020	.973	.716
0 = 129	STREAM CON REINF 1/ft	5.55E+06	IZED TO T	.89	0.979	96	.99	.99	.99	.98	.98	.98	.97	.97	Σ, ς	. 0	.98	.00	.98	.99	.99	.00	.00	00.	.99	.90
sia T	FREE INF Sia	9E-02	NORMALIZED Q T	.76	0.949	, 0	.99	.97	.98	.97	96.	96.	94	0.	36.		96	00.	.97	.98	.98	00.	.00	.01	.98	.79
3600. p	NOMINAL F R p	4.6	PROFILES M	90.	1.011	000	00.	.00	00.	00.	00.	00.	.01	.01	.01	10.	00.	00	.00	.00	.00	96.	.99	66.	.00	.05
₽0 	N TINF degR	89.2	TA La	.76	0.949	. 6	99	.97	.98	.97	96.	96.	.94	.95	. 95	γ ο 4 π	96	00.	.97	.98	.98	.00	.00	.01	.98	٠79
н = 9.91	QINF psia	6.522	Dist. from center (in)	24.0	-22.00	20.00	16.0	14.0	12.0	10.0	8.0	6.0	4.0	2.0	0.0		? .	0	0.0	2.0	4.0	6.0	8.0	0.	2.0	4.0
МАСН	МАСН	9.91	Probe #	н	0, 0	า ส	ب س	9	7	φ	O)	10	11	12	13	ך ר ה ת) Y	17	· 82	19	20	21	22	23	24	25

4700459089987740087841886

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WTR 1459, RUN 1678, STATION 24 inches

MACH	CH = 10.23	11 04	8250.	psia	T0 = 13	50. degF	F PTAVG	= 26	.31 ps	ia
МАСН	QINF psia	TIN	NOMINAL TINF P	FREES INF sia	TREAM CO REIN 1/ft	AM CONDITIONS REINF UIN 1/ft ft/	NS UINF ft/sec	RHOINF lbm/ft	~	VIP ft**1/2
10.23	14.255	89.	3 1.	95E-01	1.17E+07	07. 4	819.	5.68E-	03 2.9	98E-03
Probe #	Dist. from center (in	PT (PROFILE: M	S NORMALIZE Q	g.	TO NOMINAL P	AL RE	Ω	RHO	VIE
н (20	0.797	1.049	0.798	0.912	0.724	0.871	1.002	0.794	1.124
7 m	200	000		.00	00.	.00	000	00.	.00	.00
つか	18.0	.00	96	.00	00.	00.	00.	.00	.00	Oi.
ሆ)	16.0	.99	00.	.99	.99	.99	66.	00.	96	00.
9	14.0	.97	00.	.97	.98	96.	86	00.	.97	.01
r~	2.0	.97	00.	.97	98	. 95	80.1	00.	9,0	. O.
∞	10.0	.96	00.	96.	.98	. 94	.97	00.	96.	0.
σ	8.0	96.	00.	96.	.98	. 95	.97	00.	96.	.01
	6.0	.96	.00	.96	.98	. 95	. 98	00.	96.	.01
	4.0	.95	.01	.95	98	. 93	.97	00.	30.	. 02
	2.0	.94	.01	.94	6.	. 92	96	90	94	. 02
	0	.95	.01	.95	.97	. 92	96.	.00	46,	.02
	۰.	.95	.01	.95	.98	. 93	6	00.	و و ا	. 02
	0	.95	.01	.95	98	.93	.97	00.	. 95	. 02
	0	96.	.00	96.	.98	.94	.97	.00	96.	.02
	0.	.00	00.	00.	00.	90.	00.	00.	00.	00.
	0.0	96.	00.	96.	.98	.95	.97	00.	96.	.01
	2.0	.97	00.	.97	.99	96.	.98	00.	.97	.01
	4.0	.97	.00	.97	.99	96.	.98	00.	.97	.01
	6.0	99.	00.	.99	.99	.98	96.	00.	.99	00.
	8	96	00.	.99	.99	.99	.99	00.	.99	00.
	0.0	.01	60	.01	.00	.02	00.	00.	.01	و. وي
	2.0	99	.00	.99	.99	.99	.99	00.	66.	00
25	۰.	.83	.04	.83	.92	.77	.89	00.	83	.0

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1459, RUN 1679, STATION 24 inches

	*1/2	5E-03	VIP	1.132	99.	96.	70.	.02	200	.03	.03	.03	.03	.02	00.	. 02	, ,	00.	00.	.99	.01	.12
o psia	VIP ft**	2.95	RHO	.783	00	99	9 9 9	95	ט מט	9,7	93	ᢐᢐ	9,0	95	00	დ ი დ ი	יי טימ	9 8	99	00	6	Œ.
25.60	RHOINF 1bm/ft3	E-03		000	00	0 0	00	0 0	00	о О	0 1	o c	, c	0 0	0	00		0	0 0	T 0	0	~
= 5∆	RHO 15m	5.72	Þ	1.00	00	0.0	. 0	0.	0,0	. 0	0	0.0	. 0	0	0	•	?	? 0	0	0.	0	0
F PTAVG	NS UINF ft/sec	740.	AL RE	0.864	00.	96	ν. 2 γ.	. 97	.97	96.	96.	96.	. 96	.97	00.	.97		66	9,	.00	.98	.87
00. degF	DITIC	4	то NOMINAL Р	0.710	.00	96	2 2 5 5	.93	46.	9.4	.91	.91	.92	.93	00.	ω, ι	ຸ ນຸດ ບຸດ	0.0	98	.01	96	.73
TO = 130	STREAM CONI REINF 1/ft	1.18E+0		0.907	00.	96	ω. α. α.	.98	φ. α ο	9.60	.97	. 97	.60	.98	00.	96.	Σο	. 0	66	00.	.99	.91
psia	FREE PINF osia	92E-01	S NORMALIZED Q T	0.787	80.	9	.97	.95	و ر	. 4	.93	46.	9.40	95	00.	. 95	9,0	ο α ο	66	00.	.97	80
7800.	NOMINAL F R	.	PROFILES M	1.052	00.	000	000	.01	90		.01	.01	. 01	.01	00.	.61	00.		00	99.	.00	.04
P0 ==	N(TINF degR	87.5	g T	0.787	00.	66.	9.	.00	ال	. 9 0 4	.93	46.0	y . Q	.95	.00	0	96.	ο α • σ	0	.00	.97	.80
H = 10.16	QINF psia	13.872	Dist. from center (in)	-24.00 -22.00	20.02	16.0	14.0	10.0	8.0	0.0	2.0	0.0		0	8.0	0.0	0.0	י כי	0 0	0.0	2.0	4.0
MACH	МАСН	10.16	Probe.	Н 0	m 4	٠ M ٠	97	- ω) C												

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1459, RUN 1680, STATION 24 inches

_	**1/2	5E-03	VIP	1.142 0.993 0.993 0.993 1.002 1.005 1.005 1.012 1.012 1.012 1.013 1.017 1.010 1.000 0.999 0.999 1.005
.16 psia	VIP 3 ft**1,	3 2.5	RHO	0.959 1.005 1.005 1.005 1.005 0.9997 0.995 0.953 0.963 0.967 0.988 0.988 0.988 0.988 0.995 0.995
= 36	RHOINF 15m/ft3	7.79E-0	Þ	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PTAVG	INF C/sec	825.	AL RE	0.855 0.9755 0.0975 0.0998 0.0998 0.0972 0.0988 0.0988 0.0993 0.0993 0.0993 0.0993 0.0993
20. degF	IDITIONS UIN] ft/	な	NOMINAL P	0.695 1.004 1.006 1.006 1.006 0.996 0.985 0.985 0.985 0.983 0.993 1.009 0.993 0.993 0.993 0.993 0.993
TO = 132	STREAM CONDITI REINF 1/ft	1.68E+07	LIZED TO T	0.0901 0.9901 0.9900 0.9990 0.9981 0.9981 0.9981 0.9992 0.9992 0.99981 0.9998 0.9998
s S S	FREE INF sia	56E-01	S NORMALIZED Q T	0.774 1.0016 1.0016 1.003 0.990 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953
11600.	NOMINAL TINF P	2.5	PROFILES M	1.000 1.0056 1.0999 1.00999 1.0002 1.0003 1.0004 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003
P0 = 1	TINI	85.6	Ą	0.0960 0.989 0.9972 0.9989 0.9989 0.9959 0.9959 0.9988 0.9988 0.9996 0.9996 0.9996 0.9996
H = 10.46	QINF psia	19.595	Dist. from center (in)	222.101.11.12.20.00 111.20.00 112.000 12.000 12.000 12.000 14.000 14.000 15.000 16.000 17.000 18.000 19.000 19.000 19.000
МАСН	МАСН	10.46	Probe #	10000000000000000000000000000000000000

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1605, RUN 2240, STATION -12 inches

	1/2	3-03	VI	1.427	0.4	000	2 6		00	.01	.01	90	70		, ,	50	50.	90.	00.	.99	99	8	.03	4.	χ. υ
6 psia	VIP ft**1/2	7.01E	RHO	0.496	918	991	א א א נ	999 994	984	979	981	.963	963	9 T 6	200	- a	978	.988	966.	. 005	.002	866.	.943	.770	. 521
3 = 12.6	RHOINF 1bm/ft3	1.43E-03	Ω	003	000	000.	000	000	000	000.	.000	000.	000.	000.			000	000	000.	000.	000.	000.	000.	.001	.003
PTAVG	NF /sec	673.	l RE	554	950	995	999	997 799	000	987	886	.977	978	948	7/6	980	0 00	0 6 6	966	.003	.001	666.	.965	.854	.674
660. degF	CONDITIONS INF UIN ft ft/:	9	NOMINAL P	0.374	88	98	9	9	00	97	.97	94	94	8	س ر	9.0	, 0	, a	9 0	00	0	9	9	9.	.40
T0 = 266	STREAM CONI REINF 1/ft	4.10E+06	IZED TO	0.755	96	99	99	900	ם מע	9	66	98	98	96.	φ. ω	9	2) C	, 0	, 0		00.	6	9	96.	.77
sia	FREE INF Sia	88E-02	S NORMALIZE Q T		9.1	99	99	0.995	יים מע	, 6	8	96	96.	.91	. 95	. 97		, c	, 0	,		. 0	9,0	.77	. 52
0100. E	NOMINAL TINF GegR	4.8	PROFILES M	15	200	00	00	1.001	9 6		000	00	00:	.0	.01	00.	90	50	2 6		, 0		20	0	14
P0 = 2	TINI	89.0	PT	49	76	9	99	0.995	9	0 0	· α	96	9	.91	.95	.97	86.		, 0,0	• v c	,		. 4		. 52
MACH = 14.19	QINF psia	6.871	Dist. from center (in)	24.0	22.0	0.80	16.0	-14.00	12.0		י טע	4	0	0	0	0	0	α Ο () (, . , .	4 A	00	0 C	ָ 	
MAC	MACH	14.19	Probe #	Н	(2)	า 4	י וני	9	۲ - ۱	∞ c	ש כ) r	 	1 m	14	15	16	17	8 6	٦ ر د د	200	7 C	7 6) K	7 Y

TUNNEL S FLOW UNIFORMITY CALIBRATION WIR 1605, RUN 2241, STATION 72 inches

ત	P **1/2	4E-03	VIP	11.01000000000000000000000000000000000	0000016
9 psi	VIP ft**;	7.64E	RHO	00000000000000000000000000000000000000	000000000000000000000000000000000000000
G = 11.7	RHOINF 1bm/ft3	1.24E-03	ħ		0000
PTAVG	NS UINF ft/sec	.806	AL RE	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	00. 00. 88. 70
880. degF	CONDITIONS SINF UI	9	NOMINAL P	00011 00000000000000000000000000000000	00000004
TO = 288	ESTREAM CON REINF 1/ft	3.43E+06	LIZED TO T	00011100000000000000000000000000000000	000.000
sia	FRE INF Sia	56E-02	S NORMALIZED Q T	0.093 0.093 0.093 0.993 0.993 0.993 0.952 0.952 0.952 0.952 0.953	000000000000000000000000000000000000000
.9500. 1	NOMINAL TINF degr p	4.	PPOFILES M	11.000	000000000000000000000000000000000000000
P0 = 1	N TINF degF	95.8	F. T.d	0.001100000000000000000000000000000000	.00 .00 .01 .01 .01 .02 .03 .03
H = 14.16	QINF psia	6.398	Dist. from center (in)	400004000040004000	
MACH	масн	14.16	Probe	14444444444444444444444444444444444444	

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1605, RUN 2242, STATION 48 inches

ಣ	VIP ft**1/2	9E-03	VIP	1.389	.03	2, Q 2, Q	00.	00.	900	.07	.02	.02	40.	200	.01	.99	99	00.	00.	00.	969	.02	٦.	.37
03 psi	_	3 7.0	RHO	0.523	.94		.99	.99	.98	.97	.94	.94	16.	א את	96.	00.	.01	00.	9	99.	00.	9,00	8 6	53
G = 12.	RHOINF lbm/ft	1.38E-0	b	1.003	.00	000	.00	00.	000	.00	.00	• 00	00.	000	00.	00.	00.	.00	90	90	00.	00.	00.	.00
PTAVG	INF :/sec	514.	NL RE	0.676	96.	000	99	.99	9,0	986.	96.	96.	.94	.95	0,00	.00	00.	00.	99	90	.00	.97	.86	• 68
10. degF	CONDITIONS SINF UIN ft ft/	99 90	NOMINAL P	0.403	.92	000	96.	.99	ه د د	96.	.92	.92	.87	90.	, 0 , 0 , 10	00.	.01	00.	.99	.99	00.	.93	. 71	.41
TO = 261	STREAM CON REINI 1/ft	4.06E+	LIZED TO T	0.771	.97	000	99.	.99	٠ و و و	986	.97	.97	96.	. 60	986	.00	.00	00.	.99	.99	00.	.98	.90	.77
sia	FREE INF sia	56E-02	S NORMALIZE Q	0.526	,94	000	96.	.99	99.	.97	.94	.94	.91	92	96	00.	.01	.00	.99	.99	.00	.95	. 78	.53
19750.	NOMINAL TINF degr p	0 4.5	PROFILES M	1.142	.01	9	000	.00	00.	, o	0.	.01	.01	. 01	9 0	00	99	00	00 5	00"	99	.01	. 05	. 13
P0 = 1	TINI	86.0	I IId	0.525	94	000	9 6	.99	9,0	. 97	9.	.94	.91	. 92	, , , , ,	00.	.01	.00	.99	.99	00.	.95	. 78	. 53
CH = 14.30	QINF psia	6.532	Dist. from center (in)	-24.00	20.0	18.0	14.0	12.0	10.0	, o	4.0	2.0	•	0.0			0.0	2.0	4.0	6.0	8.0	0	2.0	4.0
MACH	масн	14.30	Probe #	нα	ı m	4 . π	n vo	7	Φ (7 7										

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1605, RUN 2243, STATION 24 inches

æ	VIP ft**1/2	9E-03	VIP	1.388	.04	9	υ ς	.00	.99	00.	99	. 02	4 C	.04	.02	96.	20.0	200	• 90.	99.	00.	96.	.02	.14	.36
38 psi		3 6.5	RHO	0.523	.92	00.	30	9.00	00.	00.	.01	96.	, , , ,	, 0 0 0	.94	00.	90.	.00	00.	00.	96.	.01	. 95	.77	54
G = 12.	RHOINF lbm/ft3	1.54E-0	Þ	1.003	00.	.00	200	38	00.	00.	00.	00.	30	30	00.	00.	. 00	00.	8	00.	00.	00.	00.	00.	00.
PTAVG	INF C/sec	353.	AL RE	0.676	. 95	.00	00.	9 <i>e</i>	00.	.00	00.	٠ د د	ປັ	, o	96.	00.	00.	00.	00.	00.	66.	00.	.97	.85	69.
75. degF	CONDITIONS SINF UINF /ft ft/s	90 93	NOMINAL P	0.404	.89	00.	00.	9.0	.00	.99	.01	.94	200	0 00	.92	00.	00.	.01	.01	00.	.99	.01	.93	• 69	.42
To = 237	STREAM CON REINI 1/ft	4.81E+06	LIZED TO T	0.772	.97	00.	00.	0 6	00.	00.	00.	98	9	0 0	.97	.00	.00	00.	00.	00.	.99	00.	.98	90	.78
psia	FREESTI PINF psia	59E-02	S NORMALIZED Q T	0.526	92	00.	00.	00.	00.	.00	.01	96.	. 92	200	. 9	00.	00.	• 00	00.	00.	66.	.01	.95	.77	. 54
20200. 1	OMINAL	4	PROFILES M	40	010.	99	9	660	66.	.00	.99	00.	.01	20.	.01	.00	99	.99	9	.99	00.	.99	.01	.05	.13
P0 = 2	N TINF degR	7.77	PT	. 52	92	00.	00.		00	00.	.01	96.	92	200	40	00.	00.	00.	00.	00.	.99	.01	.95	12.	.54
1 = 14.45	QINF psia	6.716	Dist. from center (in)	0.0	20.02	18.0	16.0	-14.00	10.0	8.0	6.0	4.0	2.0	9	0	0	8.0	0.0	2.0	4.0	6.0	0.8	0.0	0.	4.0
MACH	МАСН	14.45	Probe [нς	4 M	4	ഹ '	9 /	- 60	, Φ				13											

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1605, RUN 2244, STATION 12 inches

Ø	VIP ft**1/2	6E-03	VIP	39	.17	.04	00.	0.000	00.	.00	00.	00.	.01	.04	.04	0.4	.02	00.	00.	0.	.99	.99	00.	.99	. 02	.14	.37
51 psia	m	6.5	RHO	.51	. 73	.92	0 C	1.002	.99	.99	.99	.98	.97	. 92	.91	.92	.95	.98	.99	.99	00.	.00	.99	00.	. 95	.76	. 53
VG = 12.	RHOINF 1bm/ft	1.56E-03	n	.003	.001	.000	000.	1.000	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	.001	.003
F PTAVG	NS UINF ft/sec	353.	AL RE	.67	.82	9	٠ ص د	1.001	99	.99	.99	.99	.98	.95	.94	.95	.97	.99	.00	.99	00.	00.	66.	00.	.97	.84	• 68
75. degF	CONDITIONS SINF UIN /ft ft	9 90	O NOMINAL P	.39	. 64	89	و د	1.003	99	.99	.99	. 93	96.	.89	.88	.89	.93	.98	66.	66.	.01	.00	.99	00.	. 93	. 68	.41
23	REAM COI REINI 1/ft	4.84E+06	LIZED TO T	.76	.88	96.	0 0	1.001	9	.99	.99	.99	.98	.96	96.	96.	φ. 8	66.	00.	66:	00.	00.	66.	.00	.98	.89	.77
psia	FREESTREAM PINF PSia 1/	67E-02	S NORMALIZ	. 52	. 73	.92	900	1.004	99	.99	.99	.98	.97	.92	.91	.92	.95	.98	.99	.99	00.	.00	.99	.00	.95	.76	.53
20200.	NOMINAL TINF P	.1 4.	PROFILES M	1.4	90.	0.	000	1,000	00.	.00	.00	.00	.00	.01	.01	.01	.01	00°	.00	.00	66.	00.	00.	66,	.01	.05	.13
P0 ==	TIN	78.	PT	. 52	. 73	.92	96	1.004	96	.99	.99	.98	.97	.92	.91	.92	. 95	.98	.99	.99	00.	.00	.99	00.	.95	.76	.53
CH = 14.42	QINF psia	6.790	Dist. from center (in)	24.0	22.0	20.0	18.0	-14.00	12.0	10.0	8.0	6.0	4.0	2.0	0	0	0	•	•	0.0	2.0	4.0	6.0	8.0	0	2.0	4.0
МАСН	МАСН	14.42	Probe #	ч	7	m ·	≺ †' L	റ ഗ	· /-	∞	σ														23		

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WTR 1605, RUN 2247, STATION 0 inches

હ	P **1/2	9E-03	VIP	1.161	9.0	00.	00.	00.	90	90	, 0	.98	.97	.97	97	200	200	00.	36	18	00.	00.	96	96	99	10
.71 psi	; VIP :3 ft**1	02 2.19	RHO	0.745	.00	.99	9	.98	თ ი		.01	.02	.04	.04	.05	.03	.02	00.	2:	.71	98	99	00.	.01	00.	82
45	RHOINF 1bm/ft3	1.04E-(D	1.003	.00	00.	00.	00.	00.	90	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.
F PTAVG	NS UINF ft/sec	4704.	AL RE	0.838	.00	66.	96	99	9	v c	.01	.01	.02	.02	.03	.02	.01	00.	00.	.87	.99	.99	00.	00.	00.	.88
20. degF	DITIC		O NOMINAL P	0.662	.01	66,	.99	.97	99	ص د	02	.03	90.	90.	.07	.05	.03	00.	00.	. 62	.98	.98	00.	.01	• 00	. 75
TO = 12	STREAM CON REINF 1/ft	2.28E+07	LIZED TO T	0.889	.00	.99	.99	66.	66.	٠ و د		.01	.01	.01	.02	.01	00.	00.	00.	.87	.99	.99	.00	.00	00.	.92
psia	FREE PINF psia	25E-01	S NORMALIZE Q 1	0.749	.00	.99	.99	.98	99	وي د	90	.02	.04	.04	.04	.03	.02	00.	00.	.72	8 ₅ .	.99	.00	.01	.00	.82
13500.	NOMINAL F	9 3.	PROFILE M	1.063	 	00.	00.	00.	00.	800	, o	9	66,	. 99	66.	96	99	00,	.00	. 07	00	00,	00.	99	00	. 04
P0 =	N(TINF degR	81.	PT (0.749	00.	.99	.99	.98	99	ور د	0.0	.02	.04	.04	.04	.03	.02	00.	.00	.72	.98	,99	00.	.01	.00	.82
MACH = 10.43	QINF psia	24.767	Dist. from center (in)	22.0	0.0	18.0	16.0	14.0	12.0	0.0	900	4.0	2.0	ó	٥.	0	•	8.0	0.0	2.0	4.0	6.0	8.0	0.	2.0	4.0
MAC	MACH	10.43	Probe #	н	4 m	4	വ	9	7	ω (14											

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WTR 1605, RUN 2248, STATION 24 inches

ಸ	P **1/2	9E-03	VIP	.20	1.048	00.	.00	00.	8	00.	00•	00	9.	9	00.	وي ر	ي ر	9	9	96.	96.	.99	99	99	99	0.	13
14 psi	VIP 13 ft**	2 2.1	RHO	69	0.912	, 0	.98	99.	.99	99	.99	.99	.99	00.	96.	00.	00.	.0	00.	.01	.01	00.	00.	00.	00.	97	.77
/G = 47.	RHOINF 1bm/ft	1.04E-0	Ð	00.	1,001	000	00.	00.	00.	00.	00.	90.	00.	00.	00.	9	00.	8	00.	00.	00.	00.	00.	00.	00.	00.	00.
F PTAVG	NS UINF ft/sec	762.	AL RE	.80	0.946	, o	. 99	.99	96	.99	.99	. 93	.99	00.	.99	.00	00.	00.	00.	.00	00.	00.	00.	.00	00.	.98	.86
55. degF	DITIC	17 47	O NOMINAL P	.60	0.879	.00	9.0	.99	.99	.99	.99	.99	.99	00.	.99	00.	.01	.01	.01	.01	.01	00.	.00	.01	.01	96.	.70
TO = 12!	TREAM CONI REINF 1/ft	2.27E+07	LIZED TO T	.86	0.964	000	99	99	99	66.	99	96	99	00.	66.	00.	00.	00.	00.	00.	00.	.00	00.	00.	.00	.98	.90
psia	FREESTI PINF psia	34E-01	S NORMALIZED Q T	.70	0.913	. 0	9,6	.99	.99	.99	.99	.99	.99	00.	.99	00.	00.	.01	00.	00.	.01	.00	.00	.00	.00	.97	.78
14000. 1	OMINAL	9	PROFILES M	. 07	1,020		80	.00	00.	00.	00.	00.	00.	66.	00.	66.	.99	.99	.99	.99	96	96	.99	99	.99	.00	.05
₽0	N TINF degr	83.	PT	.70	0,913	00	9,0	.99	.99	.99	96.	.99	.99	.00	.99	00.	00.	.01	00.	.00	.01	00.	.00	.00	00.	.97	78
ж = 10.45	QINF psia	25.542	Dist. from center (in)	24.0	-22.00	ο α Ο α	16.0	14.0	12.0	0.0	8.0	6.0	4.0	2.0	0	•	0	0	0	0.0	2.0	4.0	6.0	8.0	0.0	2.0	0
MACH	МАСН	10.45	Probe #	н	2 0	າ ∀	ب بن	ø	7	ω	თ																25

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1608, RUN 2258, STATION 24 inches

ĸ	VIP ft**1/2	20E-03	VIP	1.0000 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003
2 psi	VII ft:	2.	RHO	7.000000000000000000000000000000000000
48.6	RHOINF 1bm/ft3	05E-02	Ω	### 0000000000000000000000000000000000
PTAVG	U	29. 1	L RE	0.000000000000000000000000000000000000
0. degF	CONDITIONS EINF UINF /ft ft/se	48	NOMINAL P	0.0999 0.0999 0.0999 0.0999 0.0999 0.0999 0.0999 0.0999 0.0999 0.0999 0.0999 0.0999
T0 = 1300.	STREAM CON REINF 1/ft	2.23E+07	LIZED TO T	0.000000000000000000000000000000000000
psia	FREE PINF psia	48E-01	S NORMALIZED Q T	0.000000000000000000000000000000000000
14200.	NOMINAL IF	8 3.	PROFILES M	11111111111111111111111111111111111111
P0 #	N TINF degR	86.	PT	00000000000000000000000000000000000000
H = 10.40	QINF psia	26.343	Dist. from center (in)	111111 42221 4221 4221 111111 1111 1111
МАСН	МАСН	10.40	Probe #	11111111111111111111111111111111111111

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1608, RUN 2259, STATION 66 inches

ಹ	P **1/2	1E-03	VIP	11.0003 1.010 1.0000 1.0000 1.0000 1.0000 1.0010 1.0001 1.0000 1.0000 1.0000 1.0000	1
.10 psia	VI ft	02 2.2	RHO	00.011.000.000.000.000.000.000.000.000.	•
49	RHOINF 1bm/ft	1.04E-	Þ	44444444444444444444444444444444444444	
F PTAVG	NS UINF ft/sec	858.	AL RE	00.01.000.000.000.000.000.000.000.000.0	9
20. degF	CONDITIONS SINF UIN ft ft/	4	O NOMINAL P	0.000000000000000000000000000000000000	9
TO = 133	TREAM CON REINI 1/ft	2.20E+07	LIZED TO T	00000000000000000000000000000000000000	0
sia	FREES INF sia	53E-01	S NORMALIZED Q T	0.0000 0.000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00	7
14250. 1	NOMINAL Y	3.5	FROFILES M	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	٠.0
 0d	TINI degi	88	PT	00.00 00	7.4
H = 10.37	QINF psia	26.603	Dist. from center (in)	4.00 8 6 4 6 0 0 4 4 0 0 0 4 4 0 8 0 0 0 0 0 0 0 0 0	4.0
MACH	МАСН	10.37	Probe #	10000000000000000000000000000000000000	

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1608, RUN 2260, STATION 108 inches

ari.	**1/2	3E-03	VIP	1.166	9 0	03	96	86.0	200	, v o	, v c	90	,0	, 0	00.	00.	00.	900	00.	س ر	, y, c	- K	4. 0	000		·
33 psia	VIP 3 ft**3	2.2	RHO	0.739	χς	92	0.	03	. 02	7.5	ન	36			9	.99	98	66.	00.	00.	20.	2			ם ני	7
= 47.	RHOINF 1bm/ft3	1.02E-02	Þ	003	7.5	100	000	000	000	000	000				000	000.	000.	000.	000.	000	000.	000.	.001	.001	700.	.003
PTAVG	INF C/sec	829.	AL RE	83	0.928	9,0	01	.02	.01	.01	900	200	900		. 6	66.	.99	.99	90.	90.	.01	80.	. 95	46.	26.	.82
00. degF	CONDITIONS EINF UINF /ft ft/se	4	NOMINAL P	65	0.840	y 0	02	0.5	03	02	10	000	2 6	2.5	9 6	9	86.	99	30.	.01	.02	.97	88.	.87	.80	. 63
T0 = 130	STREAM CONI REINF 1/ft	2.18E+07	LIZED TO	88	0.951	, o	00	01	.01	00	00	00.	00.	30	9	, 0	.99	96	00.	00.	00.	.99	9	96.	.94	.87
sia	FREE INF sia	36E-01	S NORMALIZE Q	74	0.885	מני	0.1	.03	.02	.01	.01	00.	00.	00.	70	, 0	86	96	.00	.00	.02	.98	.91	.90	.85	.72
14100 }	NOMINAL TINF degR p	 ε	PROFILES M	90	1.026	7 5	166	9	96	99	99	00.	ם. ס	თ. (י מכ		00	00	00	ο. Ο	ָ ס	00.	.01	.02	.63	.07
P0 = 1	TINI	86.3	PT	74	0.885	93	היר	03	02	.01	.01	00.	00.	00.	0.0	ν α •	, α	66	00.	00	.02	.98	.91	90	.85	.72
ж = 10.43	QINF psia	25.645	Dist. from center (in)	24.0	-22.00	20.0	200	14.0	12.0	10.0	8.0	0.9	4.0	2.0	9		9 9			2.0	4.0	6.0	0	0.0	2.0	4.0
MACH	MACH	10.43	Probe	F	7	ო •	4° m	n ve) (~	ω	9	10	11	12	13	υ u	7 7) t	- α) o	20	21	22	23	24	25

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WTR 1608, RUN 2261, STATION 108 inches

	VIP ft**1/2	E-02	VIP	1.638 1.050 1.050 1.050 1.050 1.050 1.053 1.053 1.034 1.037	333
3 psia	VIP ft*	1.82	RHO	6.93	88 74 74 38
1.5	RHOINF 1bm/ft3	E-04		000000000000000000000000000000000000000	2327
JG =	RHO 11bm	1.98	D	000000000000000000000000000000000000000	0000
PTAVG	ons UINF ft/sec	33.	i R	00.00 00	.92 .83 .71
5. degF	CONDITIONS SINF UI	5 62	NOMINAL P	0.256 0.431 0.953 0.953 0.953 0.859 0.859 0.859 0.962 0.993	. 84 . 66 . 45
TO = 247	REAM CON REINF 1/ft	5.24E+0	IZED TO T	0.00 0.00	.951 .890 .798 .681
psia T	FREESTREAM PINF RE psia 1/	83E-03	S NORMALIZED Q T	0.00 0.00	. 88 . 74 . 57 . 38
2100.	OMINAL	0	PROFILES M	1.221 1.131 1.0020 1.0020 1.0020 1.0023 1.0023 1.0015 1.0015	. 02 . 06 . 1.2 . 21
P0 =	N TINF degR	90.	Гď	0.000000000000000000000000000000000000	. 38 . 38 . 38
CH = 13.17	QINF psia	0.829	Dist. from center (in)	11	0000
MACH	масн	13.17	Probe #	400409788010045978801	

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1608, RUN 2262, STATION 24 inches

๙	VIP ft**1/2	9E-02	VIP	68	טיר	10	1.002	00.	00.	6.	7.0	7.0	70	v c	66	. 02	.02	00.	00,	00.	وي و	و. و (.02	10	٠ ا ا) ·
52 psi	m	04 1.7	RHO	3		٠ د د	966.0	00.	96	96	96.	.97	0 (200	* C	96.	.95	9	.98	99	00	00.	. 95	.82	, 56	٠ 4
G = 1.	RHOINF 1bm/ft	2.02E-0	Ω	00.	900		1.000	90.	00.	00.	00	00	000	9	900	8	00.	00.	00.	00.	00.	00.	00.	00.	900	00.
PTAVG	INF :/sec	145.	AL RE	53	600	00	0.998	.00	66.	98	.97	98	.97	00.	200	. 60	.97	.99	.98	.99	00.	00.	.97	.888	.71	.52
400. degF	CONDITIONS INF UIN) ft	5 6	NOMINAL P	.23	43	7 0	0.934	00.	66.	.95	.94	96.	. 95	,01	900	. 6	94	66.	.97	.99	.01	. 00	.94	.75	45	. 22
TO = 240	STREAM CON REINJ 1/ft	5.47E+0	LIZED TO T	99.	.78		0.998 1880	00.	.99	.98	.98	.99	.98	00.	.01	200	86	.99	.99	.99	00.	.03	.98	. 92	.79	. 65
psia	FREESTI PINF psia	75E-03	s normalized Q T	.36	. 25	y r	0.996	.00	.99	96.	96.	.97	96.	00.	40.	96	000	9	.98	.99	.00	00.	.95	.82	.57	.35
2100. 1	OMINAL	9 0	PROFILES M	.23	13	.04	1.010	00.	.00	.00	.00	.00	.00	66.	9	y C	000	00.	00	00.	.99	.99	00.	.04	.12	. 24
P0 =	N TINF degR	87.(전	.36	.55	.79	0.955	.00	99	96.	96.	.97	96.	00.	.04	200	, ה ה	9.6	86	96	00.	00.	9.5	.82	.57	.35
н = 13.21	QINF psia	0.825	Dist. from center (in)	4.0	22.0	20.0	-18,00 -16,00	14.0	12.0	10.0	8.0	6.0	4.0	2.0	0.	<u>،</u> د	9		0	2.0	4.0	9	8.0	0	2.0	4.0
МАСН	МАСН	13.21	Probe #	ч	7	m	4. π	ט ר		- 00	, o					Ч. Ф.П										

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1608, RUN 2264, STATION 66 inches

ď	P **1/2	8E-02	VIP	1.721	.15	.01	90.	. 02	0.0	.05	.03	.03	.02	40.	200	.03	.03	.03	.02	.02	.00	.01	.14	37	.71
.67 psi	3 ft**;	1.7	RHO	0.342	74	.97	00.	95	4 0	90	.93	94	96	92		. 63	.93	.93	.94	.95	.00	80	.76	. 53	.34
ii	RHOINF lbm/ft3	2.10E-04	D	1.005	00.	.00	00.	00.		00.	00.	00.	00.	00.		00.	.00	.00	00.	90.	00.	00.	00.	00.	00.
PTAVG	NS UINF ft/sec	.20.	IL RE	0.523	.84	.98	00.	76.	ນ ວັດ	. 94	.95	96.	96.	ວຸດ ເກັເ	ນ. ນັດ	96	96.	96.	96.	.97	00.	.98	.85	. 68	. 52
50. degF	DITIC	15 63	NOMINAL P	0.223	. 66	.95	00.	. 93		.87	.90	.92	. 92	989	0 0 6	. 91	.91	.91	.92	.94	.00	.97	. 68	.41	. 22
TO = 255	STREAM CONT REINF 1/ft	5.43E+0	LIZED TO	0.651	. 89	.98	00.	900	7.0	96	.97	.97	.97	96.	. 6	. 6.	.97	.97	.97	دع	.00	.99	.89	.77	.65
psia	FREESTI PINF psia	53E-03	NORMALIZE Q	0.346	 	.97	00.	.95	4. C	, 6	.93	.94	.94	.92	. 93	9.6	.93	.93	94	.95	.00	.98	.76	.53	.35
2250. 1	OMINAL	6 7.5	PROFILES M	1.245	90	00.	.00	.00	70.	02	.01	.01	.01	.01	.01	10	0.	0.	.01	00.	.00	00;	. 05	133	. 24
P0 =	N(TINF degR	93.6	I.	0.345	75	.97	00.	.95	• 4 0	9.7	.93	.94	.94	.92	0 0	90	9	.93	94	.95	.00	.98	.76	.53	.34
H = 13.10	QINF psia	0.905	Dist. from center (in)	-24.00	20.02	18.0	16.0	14.0	12.0	-8.0	6.0	4.0	2.0	0.	0,0		0	0.0	2.0	4.0	6.0	8.0	0	2.0	4.0
MACH	MACH	13.10	Probe #	нс	1 m	ক	ណ	ΨΙ	~ 0	ა თ					44										

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1608, RUN 2265, STATION 66 inches

	VIP ft**1/2	00E-02	VIP	11.01.01.01.01.01.00.01.01.00.01.01.01.0	.46
6 psia	VIP ft*	1.00	RHO	4.086999999999999999999999999999999999999	4.7
5.96	NF ft3	-04		000000000000000000000000000000000000000	0
il Il	RHOINI lbm/ft	6.91E	Ω		00.
PTAVG	NF /sec	83.	L RE	0.000000000000000000000000000000000000	. 63
), degF	CONDITIONS SINF UINF ft ft/s	9 65	NOMINAL P	$\begin{array}{c} u \\ u $.349
0 = 2700.	—	1.88E+06	IZED TO T	00.00000000000000000000000000000000000	.740
psia TO	FREESTREAM PINF Psia	46E-02	S NORMALIZED Q T	00000000000000000000000000000000000000	.475
9250.]	NOMINAL DE TINF PER	2.4	PROFILES M	11.0000 10.00000 10.0000 10	.16
P0 =	TINI	92.8	E G	00000000000000000000000000000000000000	.47
H = 13.70	QINF psia	3,234	Dist. from center (in)	11111111111111111111111111111111111111	4.0
MACH	MACH	13.70	Probe	1111111111122222 122222222222222222222	25

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WTR 1608, RUN 2266, STATION 24 inches

ĸ	VIP ft**1/2	6E-03	VIP	1.333 0.000 1.000
7 psi		7.2	RHO	
/G = 11.8	RHOINF 1bm/ft3	1.33E-03	D	11111111111111111111111111111111111111
F PTAVG	NS UINF ft/sec	6689.	AL RE	0.000 0.000
80. degF	DITIC		o nominal P	0.7450 0.0936 0.9337 0.9998 0.9937 0.9998 0.9998 0.7450 0.9998
TO = 26		3.85E+06	LIZED TO T	0.000000000000000000000000000000000000
psia	, FREESTREAM PINF psia 1/	53E-02	S NORMALIZ	0.5568 0.0955 0.9957 0.9958 0.9958 0.9958 0.9998 0.9998 0.9998 0.9998 0.9998
19500.	NOMINAL F R	6 4.	PROFILES M	11.0000 11.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
P0 =	N TINF degR	88	PT (0.000000000000000000000000000000000000
CH = 14.25	QINF psia	6.442	Dist. from center (in	22211111111111111111111111111111111111
MACH	MACH	14.25	Probe #	14444444444444444444444444444444444444

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1608, RUN 2267, STATION 24 inches

	*1/2	E-03	VIP	1.451	.05	00.	00.	96	900	30.	.01	200	200	٠ ٥ د	0.0	.02	.01	00.	9	99	900	ي ر	טינ	.04	ρŢ.	• ₩
9 psia	VIF ft**1/;	9.63E	RHO		900	.99	99	86.	86.	966.	٠ 8	ω α	٠ د د	U C	. 6	.95	.97	.98	00.	00.	.99	00.	.01	[6]	. 7.1	47
5.7	RHOINF 1bm/ft3	7.21E-04	Þ	1.003 0	.001	000.	000.	000.	000.	000	000.	000.	000.	200.	100	000.	000.	000.	000.	000.	000.	000.	000.	000.	.002	.003
PTAVG	NF /sec	50.	i. Re	642	. 936 936	.997	.997	.991	.993	.994	686.	066.	.975	. v.	44.0 1.0.0	.973	986.	.992	900.	.004	.997	.003	800.	.949	814	.642
0. degF	CONDITIONS EINF /ft ft/se	9 63	NOMINAL P	0.357	ט מ ערני	9	.99	.97	.98	.98	.97	. 97	94		0 0	9.6	96.	.98	.01	00.	.99	00.	.01	.88	. 62	.35
T0 = 250	STREAM CONI REINF 1/ft	2.03E+06	LIZED TO	7.	oι	9	.99	.99	.99	.99	.99	99	96.	φ, α,	900	. 60	96	.99	.00	00.	.99	00.	.00	96,	.87	. 74
psia 1	FREESTI PINF psia	39E-02	s NORMALIZ Q	.48	0,00 0,00 0,00 0,00	9 9	99	.98	.98	.99	.98	.98	96.	. 95	0 0	95	.97	.98	00.	.00	9,00	.00	.01	.91	.71	.48
8750. E	OMINAL	2.:	PROFILES M	.16	1.078	000	00.	.00	00.	00.	.00	.00	00.	00.	0.5	- 0	00	00.	99	99	00.	9	9	.01	.07	.16
P0 =	N TINF degR	86.4	I Tđ	. 48	0.695	. 6	99	.98	.98	.99	.98	.98	96.	.95	90	7 0	.97	86	00.	.00	.99	.00	.01	.91	.71	.48
H = 13.70	QINF psia	3.139	Dist. from center (in)	24.0	-22.00	0.80	16.0	14.0	12.0	10.0	8.0	6.0	4.0	2.0	0.0		2	. 0	0.0	2.0	4.0	6.0	8.0	0.0	2.0	0
МАСН	MACH	13.70	Probe]	н	۲ د	า ซ	ינה	9	7	ω	, O				13											

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WTR 1608, RUN 2268, STATION 108 inches

ø	VIP ft**1/2	2E-03	VIP	1.317	.05	00.	99	9	02	.02	.01	.01	90.	10.	70	.01	.01	.02	.01	90.	. 99	.01	.05	۳. ا	31
82 psia	~	7.3	RHO	0.580	.90	99	00.	00.	, Q	.95	96.	.97	96.	.97	νο ο ο	76	96.	96.	.97	.99	.01	.97	68	.77	. 58
= 11.	RHOINF 1bm/ft	1.32E-03	Þ	1.002	.001	000.	000.	000.		000	000.	000.	000.	000.	000	000	000.	000.	000	000.	000.	000.	.001	.001	.002
F PTAVG	NS UINF ft/sec	6718.	AL RE	0.720	.93	.99	0.	00.	, 0,0	.97	.97	.98	66.	86.	200	96	986	.97	.98	.99	00.	.98	.93	.85	.72
2700. degF	OLTIC		O NOMINAL P	0.467	.86	.98	.01	9	, 0 4	94	.95	96.	99	.97	. 6	96	.95	.94	.97	.99	.02	.97	.85	.70	.46
TO = 27		3.84E+06	LIZED TO T	0.804	.95	.99	00.	00.	ν ο ν α	96	.98	96.	99	99	000	, 6	9.8	.98	.99	.99	00.	.99	.95	.90	.80
sia	FREESTREAM PINF PSia 1/	46E-02	S NORMALIZED Q T	0.583	90	.99	00.	.00	7 0	96	96.	.97	66.	.97	800	0	96	96.	.97	.99	.01	.97	80	.77	. 58
20000.	NOMIN'AL TINF P	2 4.	PROFILES M	1.118	.02	.00	.99	200	30	00.	.00	.00	00.	00.	00.		00.	00.	.00	.00	99	00.	.03	.05	.11
P0 =	TIN	88	Ę	0.583	000	.99	00.	.00	7.0	96	96.	.97	.99	.97	80,0		96	96	.97	.99	.01	.97	8,9	.77	.58
Ж = 14.35	QINF psia	6.418	Dist. from center (in)	-24.00	20.0	18.0	16.0	14.0	200	-8-0	6.0	4.0	2.0	0	0,0	•	? •	0.0	2.0	4.0	6.0	8.0	0.	2.0	4.0
MACH	МАСН	14.35	Probe #	ц,	സ	4	Ŋ	Oι	~ α	ത					⊄† U										

TUNNEL 9 FLOW UNIFORMITY CALIBRATION WIR 1608, RUN 2269, STATION 108 inches

ď	VIP ft**1/2	5E-03	VIP	.43	. 23	80.	1.001	.01	.02	.03	.03	.02	. 02	.01	. 03	00.	.02	.02	.02	.01	.01	99	00.	.06	. 20	43
24 psi	m	04 9.6	кно	.49	.66		2/2°0 0°0°0	.97	96.	.94	.93	. 95	. 95	96.	4.0 4.0	, o	96.	.95	.95	.97	.98	00.	.99	.87	. 68	4.0
9 11	RHOINF lbm/ft	7.36E-0	D	.00	00.	.00	1.000	.00	.00	00.	00.	00.	00.	00.	900	00.	.00	.00	.00	00.	00.	00.	00.	00.	00.	00.
F PTAVG	NS UINF ft/sec	530.	AL RE	• 65	. 78	46.	0.999	.98	.97	96.	96.	96.	.97	.97	96.	, 0,	.97	.97	.97	.98	.98	00.	.99	.92	.79	. 65
50. degF	OITIC	9	NOMINAL P	.36	. 56	08.	0.971	.97	.94	.91	.91	.93	.94	. 95	.91	4.0	94	.93	.93	.95	.97	00.	.98	.83	. 59	.36
T0 = 269	STREAM CONI REINF 1/ft	2.01E+06	LIZED TO T	.75	.84	94	1.000	99	.98	.97	.97	.98	.98	98	.97	, y o	98	.98	.98	.98	.99	.00	.99	.94	.86	.75
psia	FREE PINF psia	59E-02	S NORMALIZ Q	4.9	99.	.86	0.979	986	96.	.94	.93	.95	96.	96.	4. c	ν. υ. α	96	.95	.95	.97	.98	.00	.99	.87	. 69	.49
.0056	NOMINAL F R	7 2.	PROFILES M	1.5	. 08	.03	1,004	00.	.00	.01	.01	.01	.00	00.	.01		00.	.01	.01	00.	.00	00.	00.	.02	.07	.15
P0 =	N TINF degR	91.	PT	49	99.	98	0.979	986	96.	.94	.93	.95	96.	96.	40.	ນ ນູດ ນູດ	96	.95	.95	.97	.98	.03	.99	.87	69.	.49
ж = 13.68	QINF psia	3.389	Dist. from center (in)	4.0	22.0	20.0	-18.00 -16.00	14.0	12.0	0.0	0	0.	4.0	0	0.	, c	0	0	0.0	2.0	4.0	0,	8.0	0.0	2.0	4.0
МАСН	МАСН	13.68	Probe #	ч	7	m ·	4 r.	9	1	œ	Q	10	11	12	H ;	ተ 4 ር	16	17	18	19	20	21	22	23	24	25

DISTRIBUTION

	Copies
DOD ACTIVITIES (CONUS)	
DEFENSE TECHNICAL INFORMATION CENTER	
CAMERON STATION	
ALEXANDRIA VA 22304-6145	12
ATTN CODE E29L	4
COASTAL SYSTEMS STATION	
DAHLGREN DIVISION	
NAVAL SURFACE WARFARE CENTE	CR.
6703 WEST HIGHWAY 98	
PANAMA CITY FL 32407-7001	
NON-DOD ACTIVITIES	
ATTN GIFT AND EXCHANGE DIV	7 4
LIBRARY OF CONGRESS	
WASHINGTON DC 20540	
CENTER FOR NAVAL ANALYSES	
4401 FORD AVENUE	
ALEXANDRIA VA 22302-0268	1
NATIONAL AEROSPACE PLANE	
JOINT PROGRAM OFFICE	
WRIGHT PATTERSON AFB	
OH 45433	1
INTERNAL	
E231	2
E232	3
K24	1
K24 (D MARREN)	1

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	TYPE AND DATES COVERED								
	31 January 1994										
4. TITLE AND SUBTITLE Hypervelocity Tunnel 9 Mac	h 10/14 Calibration	5. FUN	DING NUMBERS								
6. AUTHOR(S)											
Dan Marren		-									
7. PERFORMING ORGANIZATION N	7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PER										
Naval Surface Warfare Cen 10901 New Hampshire Aver Silver Spring, MD 20903-56		ORT NUMBER CDD/I'R-92/160									
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)		NSORING/MONITORING ENCY REPORT NUMBER								
11. SUPPLEMENTARY NOTES											
12a. DISTRIBUTION/AVAILABILITY	-	12b. D	ISTRIBUTION CODE								
Approved for public release	; distribution is unlimited.										
the Naval Surface Warfare Aerospace Plane Joint Prog obtained for both the Mach Mach 10, and ten Mach 14 r	the Tunnel 9 Mach 10/14 Ce Center, White Oak, Maryla gram Office (NASP JPO). F 10 and 14 nozzles spanning uns were performed during from this test entry were con that high quality uniform flo	and. This effort was spore stream flow field pathe Reynolds number rest this test program. The mbined with previous tewexists and that deviat	nsored by the National rameter distributions were ange. A total of four test period was st data in the final analysis.								
14. SUBJECT TERMS	1		15. NUMBER OF PAGES								
Hypervelocity Wind Tunne Uniformity Calibration	:1		66 16. PRICE CODE								
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICAT	ION 20. LIMITATION OF								
UNCLASSIFIED	OF THIS PAGE UNCLASSIFIED	OF ABSTRACT UNCLASSIFIED	ABSTRACT UL								
NSN 7540-01-280-5500		Standard Form 298 (Rev. 2-8)									

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and its title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

- Block 1. Agency Use Only (Leave blank).
- Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.
- Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 -30 Jun 88).
- Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
- Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

Contract

PR - Project TA - Task

 Grant G PE - Program

WU - Work Unit

Accession No. Element

- BLOCK 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
- Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.
- **Block 8.** Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.
- **Block 9.** Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.
- Block 10. Sponsoring/Monitoring Agency Report Number. (If Known)
- Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution

Statements on Technical Documents."

DOE - See authorities.

NASA - See Handbook NHB 2200.2

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

- Enter DOE distribution categories DOE from the Standard Distribution for

Unclassified Scientific and Technical Reports.

NASA - Leave blank.

NTIS - Leave blank.

- Block 13. Abstract. Include a brief (Maximum 200) words) factual summary of the most significant information contained in the report.
- **Block 14.** Subject Terms. Keywords or phrases identifying major subjects in the report.
- **Block 15.** Number of Pages. Enter the total number of pages.
- Block 16. Price Code. Enter appropriate price code (NTIS only)
- Blocks 17.-19. Security Classifications. Selfexplanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED) If form contains classified information, stamp classification on the top and bottom of the page.
- **Block 20.** Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.