Principles of Database Systems (CS307)

Lecture 8: Database Design using E-R Model

Zhong-Qiu Wang

Department of Computer Science and Engineering Southern University of Science and Technology

- Most contents are from slides made by Stéphane Faroult and the authors of Database System Concepts (7th Edition).
- Their original slides have been modified to adapt to the schedule of CS307 at SUSTech.
- The slides are largely based on the slides provided by Dr. Yuxin Ma

Announcements

- Project I, due date: 23:59 on November 10th 2024, Beijing Time
 - Only accept project report in English
 - The class is designed as an English class
 - Can avoid potential unfairness when grading Chinese and English reports

Entity-Relationship Model (E-R Model) Entity-Relationship Diagram (E-R Diagram)

The New Running Example

Design Phases

- Initial phase: characterize fully the data needs of the prospective database users
 - Interact extensively with domain experts
 - The outcome is a specification of user requirements

Design Phases

- Second phase: choosing a data model
 - E.g., relational model, entity-relationship model, semi-structured data model, and object-oriented data model
 - Applying the concepts of the chosen data model
 - Translating these requirements into a conceptual schema of the database
 - Detailed overview of the enterprise
 - A fully developed conceptual schema indicates the functional requirements of the enterprise
 - Describes operations (e.g., update, retrieval, delete) that will be performed on the data
- Entity-relationship model is typically used
 - Outcome is an E-R diagram that provides a graphic representation of the schema
 - Entities that are represented in the database
 - Attributes of the entities
 - Relationships among entities
 - Constraints on the entities and relationship

Design Phases

- Final Phase: Moving from an abstract data model to the implementation of the database
 - Logical Design Deciding on the database schema
 - Database design requires that we find a "good" collection of relation schemas
 - Business decision
 - What attributes should we record in the database?
 - Computer Science decision
 - What relation schemas should we have, and how should the attributes be distributed among the various relation schemas?
 - Physical Design Deciding on the physical layout of the database
 - E.g., the form of file organization and choice of index structures
 - Physical schema is easy to change after application is built
 - But logical schema is not, because changes may affect a number of queries and updates scattered across application code

Design Alternatives

- In designing a database schema, we must ensure that we avoid two major pitfalls
 - Redundancy: a bad design may result in repeated information
 - E.g., store course identifier and title of a course for each course offering
 - Only store course identifier is sufficient
 - Redundant representation of information may lead to data inconsistency among the various copies of information
 - E.g., update is not performed on all the copies
 - **Incompleteness**: a bad design may <u>make certain aspects</u> of the enterprise <u>difficult or impossible to model</u>
 - E.g., only have entity for course offering, but without entity for courses
 - Impossible to model new courses that are not offered yet

Design Alternatives

- Avoiding bad designs is not enough
 - There may be many good designs from which we must choose
- For example, a customer who buys a product
 - The sale activity is a relationship between the customer and the product?
 - The sale activity is a relationship among the customer, the product, and the sale itself?
 - i.e., the sale can be considered as an entity
- Database design can be difficult
 - When #entities and #relationships are large

Design Approaches

- Entity-Relationship Model (covered in this chapter)
 - Specifies an enterprise schema representing overall logical structure of a database
 - Models an enterprise as <u>a collection of</u> entities and relationships
 - Represented diagrammatically by an entity-relationship diagram (E-R diagram)
 - Express overall logical structure of a database graphically
- Normalization Theory (coming in the next few weeks)
 - Formalize what designs are bad, and test for them

Entity and Entity Sets

- An entity is an object that exists and is distinguishable from other objects
 - Concrete entity: specific person, company, plant, book
 - Abstract entity: flight reservation, course, course offering
- An entity set is a set of entities of the same type that share the same properties
 - Example: set of all persons, companies, trees, holidays
 - Entity sets may not be disjoint (e.g., person vs. instructor and student)

Entity and Entity Sets

- An entity is represented by a set of attributes; i.e., descriptive properties possessed by all members of an entity set
- Example:

```
instructor = (ID, name, salary)
course = (course_id, title, credits)
```

- <u>A subset of the attributes</u> form a primary key of the entity set; i.e., uniquely identifying each member of the set
 - Government-issued ID number as the primary key
 - May have privacy and security issues
 - Enterprise-issued ID number

Representing Entity sets in ER Diagram

- Entity sets can be represented graphically as follows:
 - Rectangles represent entity sets.
 - Attributes listed inside entity rectangle
 - <u>Underline</u> indicates primary key attributes

instructor

<u>ID</u>
name
salary

student

<u>ID</u>
name
tot_cred

Relationship Sets

- A relationship is <u>an association</u> among several entities
 44553 (Peltier) advisor 22222 (Einstein)
 student entity relationship set instructor entity
- A relationship set is a set of relationships of the same type (e.g., advising)
 - A mathematical relation among $n \ge 2$ (possibly non-distinct) entities, each taken from entity sets

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship, or relationship instance

- Example: (44553,22222) ∈ advisor
- The association between entity sets is referred to as participation
 - Entity sets E₁, E₂, ..., E_n participate in relationship set R

Relationship Sets

- Example: we define the relationship set advisor to denote the <u>associations</u> between students and the instructors who act as their advisors.
 - Pictorially, we draw a line between related entities

Representing Relationship Sets via E-R Diagrams

Use diamonds to represent relationship sets

Relationship Sets (Cont.)

- A descriptive attribute can be associated with a relationship set.
 - E.g., the advisor relationship set between entity sets instructor and student may have the attribute date, which tracks when the student started being associated with the advisor

Relationship Sets with Attributes

- Represented by using an undivided rectangle
- Linked to the diamond representing the relationship set via a dashed line

Roles

- Entity sets of a relationship need not be distinct (i.e., can be the same entity set)
 - We can create self-pointing relationships for an entity set
 - Each occurrence of an entity set <u>plays a</u> "role" in the relationship
 - Example: A relationship set to represent the prerequisites of a course
 - E.g., Data Structure depends on Introduction to Programming
 - The labels *course_id* and *prereq_id* are called roles

- If the entity sets participating in a relationship are distinct,
 - Their roles are implicit and usually are not specified

Degree of a Relationship Set

- Defined as the number of entity sets participating in a relationship set
- Binary relationship
 - Involve two entity sets (or degree two)
 - Most relationship sets in a database system are binary
- Relationships between more than two entity sets are rare
 - E.g., <u>students</u> work on <u>research projects</u> under the guidance of an <u>instructor</u>
 - relationship proj_guide is a ternary relationship among instructor, student, and project
 - A particular student is guided by a particular instructor on a particular project

Non-binary Relationship Sets

- Although most relationship sets are binary,
 - There are occasions when it is more convenient to represent relationships as nonbinary
- E-R Diagram with a Ternary Relationship

Complex Attributes

- Attribute types
 - Simple (i.e., not divided into subparts) and composite (i.e., divided into subparts) attributes

Composite Attributes

- Composite attributes allow us to divided attributes into subparts
 - Sometimes we may only use part of the attributes
 - In this case, composite attribute is a good design choice
- Allow us to group together related attributes, making the modeling cleaner
- A composite attribute may appear as a hierarchy

instructor IDname first name middle initial last name address street street number street_name apt number citu state zip { phone number } date of birth age ()

E-R notation

Complex Attributes

- Attribute types
 - Simple (i.e., not divided into subparts) and composite (i.e., divided into subparts) attributes
 - Single-valued and multivalued attributes
 - Single-valued attribute: e.g., for a student, only one student_id
 - Multivalued attribute
 - phone_numbers: a person can have 0, 1, or multiple phone numbers at the same time
 - grades: each student may have multiples grades in a course
 - dependent_name: an instructor may be hired by 0, 1, or multiple departments
 - Derived attributes
 - Can be computed from other attributes
 - Example: age computed based on date_of_birth, #students advised by an instructor
- Domain: set of permitted values for each attribute
 - course_id might be the set of all text strings of a certain length
 - semester might be strings from the set {Fall, Winter, Spring, Summer}

E-R notation of Composite Attributes

- E-R notations for
 - Composite attributes
 - Multivalued attributes
 - Derived attributes

instructor

```
\underline{ID}
name
   first_name
   middle_initial
   last_name
address
   street
      street_number
      street_name
      apt_number
   city
   state
   zip
{ phone_number }
date_of_birth
age ()
```

Mapping Cardinality Constraints

- Mapping Cardinality (映射基数)
 - Express the number of entities to which another entity can be associated via a relationship set
 - Most useful in describing binary relationship sets
 - Can also help describe non-binary relationship sets
- For a binary relationship set, the mapping cardinality must be one of the following
 - One to one, one to many, many to one, many to many

Mapping Cardinalities

- Every entity in A is associated with at most one entity in B
- Same for entity set B

One to one

One to many

- Every entity in A is associated with 0,
 1, or more entities in B
- Every entity in B is associated with at most one entity in A

Note: Some entities in A and B may not be mapped to any entities in the other set

Mapping Cardinalities

- Every entity in A is associated with at most one entity in B
- Every entity in
 B is associated
 with 0, 1 or
 more entities in
 A

Many to one

Many to many

- Every entity in A
 is associated
 with 0, 1, or
 more entities in
 B
- Same for B

Note: Some entities in A and B may not be mapped to any entities in the other set

- We express cardinality constraints by:
 - drawing either a directed line (\rightarrow) , signifying "one"
 - or an undirected line (—), signifying "many"
- ... between the relationship set and the entity set
- One-to-one relationship between an instructor and a student :
 - A student is associated with at most one instructor via the relationship advisor

- One-to-many relationship between an instructor and a student
 - An instructor is associated with several (including 0) students via advisor
 - A student is associated with at most one instructor via advisor

- In a many-to-one relationship between an instructor and a student,
 - An instructor is associated with at most one student via advisor
 - A student is associated with several (including 0) instructors via advisor

- Many-to-many relationship:
 - An instructor is associated with several (possibly 0) students via advisor
 - A student is associated with several (possibly 0) instructors via advisor

Total and Partial Participation

- Total participation (indicated by undirected double line, i.e., =)
 - Every entity in the entity set participates in at least one relationship in the relationship set
 - E.g., Participation of student in advisor relation is total
 - i.e., every student must have an associated instructor
- Partial participation (undirected line, i.e., —)
 - Some entities may not participate in any relationship in the relationship set
 - E.g., participation of instructor in advisor is partial

Notation for Expressing More Complex Constraints

- A line may have an associated minimum and maximum cardinality, shown in the form *l..h*, where I is the minimum and h the maximum cardinality
 - An entity can participate in at minimum I and at maximum h relationships
 - A minimum value of 1 indicates total participation
 - A maximum value of 1 indicates that the entity participates in at most one relationship
 - A maximum value of * indicates no limit

- Example
 - Instructor can advise 0 or more students
 - A student must have 1 advisor; cannot have multiple advisors

one to many, not many to one

Primary Key

- Superkey, candidate key, and primary key apply to entity and relationship sets (like in relation schemas)
- Primary key provides a way to specify how entities and relations are distinguished

Primary Key for Entity Sets

- By definition, individual entities are distinct
 - From database perspective, their differences must be expressed in terms of their attributes
- The values of the attributes of an entity must be such that they can uniquely identify the entity
 - No two entities in an entity set are allowed to have exactly the same value for all attributes
- A key for an entity is a set of attributes that suffice to distinguish entities from each other

Primary Key for Relationship Sets

- To distinguish among the various relationships of a relationship set, we use the individual primary keys of the entities in the relationship set.
 - Let R be a relationship set involving entity sets E1, E2, .. En
 - The primary key for R consists of the <u>union</u> of the <u>primary keys of entity sets</u> E1, E2, ..En
 - Form a superkey
 - If the relationship set R has attributes a_1 , a_2 , ..., a_m associated with it, the primary key of R also includes the attributes a_1 , a_2 , ..., a_m
- Example: relationship set "advisor"
 - The primary key consists of instructor.ID and student.ID
- The choice of the primary key for a relationship set depends on the mapping cardinality of the relationship set

Choice of Primary key for Binary Relationship

- Many-to-Many relationships
 - The union of the primary keys is a minimal superkey and is chosen as the primary key
- One-to-one relationships
 - The primary key of either one of the participating entity sets forms a minimal superkey, and either one can be chosen as the primary key.

- * *K* is a **superkey** of *R* if values for *K* are sufficient to identify a unique tuple of each possible relation *r*(*R*)
 - Example: {ID} and {ID,name} are both superkeys of instructor.

Choice of Primary key for Binary Relationship

- One-to-Many relationships
 - The primary key of the "Many" side is a minimal superkey and is used as the primary key
 - E.g., each student can have at most one advisor → then the primary key of advisor is simply the primary key of student.
- Many-to-one relationships
 - The primary key of the "Many" side is a minimal superkey and is used as the primary key

- Consider a section entity, which is uniquely identified by course_id, semester, year, and sec_id
 - Clearly, section entities are related to course entities
 - Suppose we create a relationship set sec_course between section and course
 - The information in sec_course is redundant, since section already has an attribute course_id,
 which identifies the course with which the section is related
 - One option to deal with this redundancy is to get rid of the relationship sec_course
 - However, by doing so, the relationship between section and course becomes implicit in an attribute, which is not desirable

- An alternative way to deal with this redundancy is to NOT store the attribute *course_id* in the section entity and to only store the remaining attributes *section_id*, *year*, and *semester*
 - However, section then does not have enough attributes to identify a particular section entity uniquely
 - Although each section entity is distinct, sections for different courses may share the same sec id, year, and semester

- To deal with this problem, we treat the relationship sec_course as a special relationship that provides extra information, in this case, course_id, to identify section entities uniquely
- A weak entity set is one whose existence is dependent on another entity, called its identifying entity
 - Entity set that does not have sufficient attributes to form a primary key
- Instead of associating a primary key with a weak entity, we use the identifying entity, along with extra attributes called <u>discriminator</u> to uniquely identify a weak entity

- An entity set that is <u>not a weak entity set</u> is termed a strong entity set (强实体集)
- Every weak entity must be associated with an identifying entity
 - The weak entity set is said to be existence-dependent on the identifying entity set
 - The identifying entity set is said to own the weak entity set that it identifies
 - The relationship associating the weak entity set with the identifying entity set is called the identifying relationship
- The relational schema, eventually created for section, does have the attribute course_id,
 - Even though we have dropped the attribute course_id from section in E-R diagram

Expressing Weak Entity Sets

- In E-R diagrams, a weak entity set is depicted via a double rectangle
 - We underline the discriminator of a weak entity set with a dashed line
 - The relationship set connecting the weak entity set to the identifying strong entity set is depicted by a double diamond
 - The identifying relationship is many-to-one from the weak entity set to the identifying entity set
 - The participation of the weak entity set in the relationship is total
 - The identifying relationship set should not have any descriptive attributes, since any such attributes can instead be associated with the weak entity set

Expressing Weak Entity Sets

- Primary key for section: (course_id, sec_id, semester, year)
 - Primary key of identifying (strong) entity set, plus discriminators of weak entity set
 - We have constraints on the section schema, with the attribute course_id referencing the primary key of the course schema

Removing Redundant Attributes in Entity Sets

Redundant Attributes

- Database usually starts with
 - Identifying entity sets that should be included
 - E.g., in university organization, we have instructors and students
 - Choosing appropriate attributes
 - Represent the various values we want to capture in the database
 - Depending on the designer, who has a good understanding of the enterprise
 - E.g., for instructor, we can record
 - ID, name, dept name, and salary
 - phone number, office number, home page, and others
- Once entities and attributes are chosen, relationship sets among the entities are formed
 - The relationship sets may lead some attributes to be redundant, and need to be removed

Redundant Attributes

- Suppose we have entity sets:
 - student = {ID, name, tot_cred, dept_name}
 - department = {dept_name, building, budget}
- We model the fact that each student has an associated department using a relationship set stud_dept
- The attribute dept_name in student replicates the one in the relationship and is redundant
 - and needs to be removed

- BUT: when converting back to tables from E-R diagrams, in some cases the attribute gets reintroduced
 - Depending on the mapping cardinality (e.g., when each student has at most one department)
- A good entity-relationship design does not contain redundant attributes

Quick Example

- Each instructor must have exactly one associated department
- Each instructor can have at most one associated department
- Every course must be in some department
- Every student must be majoring in some department
- A course (and a student) can be related to only one department
- Relationship set takes has a descriptive attribute grade
- Each student has at most one advisor
- section is a weak entity set, with attributes sec_id, semester, and year forming the discriminator
- sec_course is the identifying relationship set relating weak entity set section to the strong entity set course

Reduction to Relation Schemas

Reduction to Relation Schemas

- Both E-R model and relational database model are abstract, logical representations of real-world enterprises
 - We can convert an E-R design into a relational design
- Entity sets and relationship sets can be expressed uniformly as relation schemas that represent the contents of the database
- A database which conforms to an E-R diagram can be represented by a collection of schemas
 - For each entity set and relationship set, there is a unique schema that is assigned the name
 of the corresponding entity set or relationship set
 - Each schema has a number of attributes, with unique names

Representing Entity Sets

- A strong entity set reduces to a schema with the same attributes
 - Each tuple in a relation on this schema corresponds to one entity of the entity set student(<u>ID</u>, name, tot_cred)
- A weak entity set becomes a table that includes a column for the primary key of the identifying strong entity set

section (course id, sec id, sem, year)

Example

Representation of Entity Sets with Composite Attributes

- Composite attributes are flattened out by creating a separate attribute for each component attribute
 - E.g., given entity set instructor with composite attribute name with component attributes first_name and last_name the schema corresponding to the entity set has two attributes name_first_name and name_last_name
 - Prefix omitted if there is no ambiguity (e.g., name_first_name could be first_name)
- Ignoring multivalued attributes, extended instructor schema is

```
    instructor(ID,
        first_name, middle_initial, last_name,
        street_number, street_name,
        apt_number, city, state, zip_code,
        date_of_birth)
```

instructor

```
<u>ID</u>
name
  first_name
   middle_initial
   last_name
address
   street
      street_number
      street_name
      apt_number
   city
   state
   zip
{ phone_number }
date_of_birth
age ()
```

Representation of Entity Sets with Multivalued Attributes

- A multivalued attribute M of an entity E is represented by a separate schema EM
 - Schema EM has attributes corresponding to the primary key of E and an attribute corresponding to multivalued attribute M
 - E.g., multivalued attribute phone_number of instructor is represented by a schema
 - Foreign-key constraint on inst_phone: ID references the instructor relation
 inst_phone= (ID, phone number)
 - Each value of the multivalued attribute maps to a separate tuple of the relation schema EM
 - E.g., an instructor entity with primary key 22222 and phone numbers 456-7890 and 123-4567 maps to two tuples:

(22222, 456-7890) and (22222, 123-4567)

Representing Relationship Sets

- A many-to-many relationship set is represented as a schema with
 - Attributes consisted of the primary keys of the two participating entity sets
 - Descriptive attributes of the relationship set
- Example: schema for relationship set advisor
 - With two foreign keys created

$$advisor = (\underline{s} i\underline{d}, \underline{i} i\underline{d})$$

Redundancy of Schemas

- Many-to-one and one-to-many relationship sets that are total on the many-side can be represented by adding an extra attribute to the "many" side, containing the primary key of the "one" side
 - Example: Instead of creating a schema for relationship set inst_dept, add an attribute dept_name to the schema arising from entity set instructor

Redundancy of Schemas

- For one-to-one relationship sets, either side can be chosen to act as the "many" side
 - That is, an extra attribute can be added to either of the tables corresponding to the two entity sets
- * If participation is partial on the "many" side, replacing a schema by an extra attribute in the schema corresponding to the "many" side could result in nulls

Redundancy of Schemas

- The schema corresponding to <u>a relationship set linking</u> a weak entity set to its identifying strong entity set is **redundant**
 - Example: The *section* schema already contains the attributes that would appear in the *sec_course* schema
- Primary key for section: (course_id, sec_id, semester, year)
 - Primary key of identifying (strong) entity set, plus discriminators of weak entity set
 - We have constraints on the section schema, with the attribute course_id referencing the primary key of the course schema

Design Issues

Examples of erroneous E-R diagrams

(a) Unnecessary attribute in entity set

... which is the primary key of another entity

Problem: data redundancy

 The relationships are already presented in the relationship set stud_dept

- Examples of erroneous E-R diagrams
 - (b) Unnecessary attribute in relationship set
 - Designate the primary-key attributes of the related entity sets as attributes of the relationship set
 - Problem: data redundancy
 - primary-key attributes are already implicit in the relationship set*

^{*} When we create a relation schema from the E-R schema, the attributes may appear in a schema created from the stud_dept relationship set; however, they should not appear in the stud_dept relationship set in the E-R diagram

Examples of erroneous E-R diagrams

(c) Erroneous relationship attributes

Use a relationship with a single-valued attribute in a situation that requires a multivalued attribute

Problem: cannot represent multiple
 assignments released in the same section
 for a given student-section pair

(b) Erroneous use of relationship attributes

(b) Erroneous use of relationship attributes

- Examples of erroneous E-R diagrams
 - (c) Erroneous relationship attributes
 - Use a relationship with a single-valued attribute in a situation that requires a multivalued attribute
 - Problem: cannot represent multiple assignments released in the same section for a given student-section pair

Solutions:

- 1) Weak entity set
 - model assignment as a weak entity identified by section
 - add a relationship marks_in between assignment and student
 - marks_in has an attribute marks

• Examples of erroneous E-R diagrams (b) Erroneous use of relationship attributes

- (c) Erroneous relationship attributes
 - Problem: cannot represent multiple assignments released in the same section

- Solutions:
 - 1) Weak entity set
 - 2) Composite attributes
 - use a multivalued composite attribute {assignment marks}, where assignment_marks has component attributes assignment and marks

(d) Correct alternative to erroneous E-R diagram (b)

(b) Erroneous use of relationship attributes

- Examples of erroneous E-R diagrams
 - (b) Erroneous relationship attributes
 - Problem: cannot represent multiple assignments released in the same section

(c) Correct alternative to erroneous E-R diagram (b)

- Solutions:
 - 1) Weak entity set
 - 2) Composite attributes

(d) Correct alternative to erroneous E-R diagram (b)

Using weak entity set is better, since it allows recording other information about the assignment, such as maximum marks or deadlines

Use of Entity Sets vs. Attributes

Use entity sets or attributes?

- Use of phone as an entity allows extra information about phone numbers
 - E.g. location (Home phone, mobile (cell) phone, office phone), phone type / brand
 - Allow each instructor to have multiple (including zero) phone numbers
- Treating phone_number as an attribute implies that instructors have precisely one phone number each
 - But this can be avoided by configuring phone_number as a multi-valued attribute
- Treating phone as an entity is more general than treating it as an attribute
 - We can keep extra information about a phone

- Use entity sets or relationship sets? sometimes it is difficult to answer
 - A possible guideline: Use a relationship set to describe an <u>action</u> that <u>occurs</u> between entities

• Example: *takes* ← − − − −

• Use entity sets or relationship sets? sometimes it is difficult to answer

• A possible guideline: Use a relationship set to describe an <u>action</u> that <u>occurs between entities</u>

- Using take could be more compact and probably preferable
- But by using a registration entity, we can associate other info with a course-registration record

- Use entity sets or relationship sets? sometimes it is difficult to answer
 - A possible guideline: Use a relationship set to describe an action that occurs between entities
 - This guideline can be used for <u>designing relationship attributes</u>
 - For example, attribute *date* as attribute of advisor or as attribute of student

Binary vs. Non-Binary Relationships

• Although it is possible to replace any <u>non-binary</u> (n-ary, for n > 2) relationship set by <u>a number of distinct binary relationship sets</u>, an n-ary relationship set shows <u>more clearly</u> that <u>several entities participate in a single relationship</u>.

Binary vs. Non-Binary Relationships

- Relationships in databases are often binary
- Some relationships that appear to be non-binary may be better represented using binary relationships
 - E.g., a ternary relationship *parents*, relating a child to his/her father and mother, is best replaced by <u>two binary relationships</u>, *father* and *mother*
 - Using two binary relationships allows partial information (e.g., only mother being known)
 - If parent is used, a null value would be required if only mother is known

Binary vs. Non-Binary Relationships

- Relationships in databases are often binary
- Some relationships that appear to be non-binary may be better represented using binary relationships
 - E.g., a ternary relationship *parents*, relating a child to his/her father and mother, is best replaced by <u>two binary relationships</u>, *father* and *mother*
 - Using two binary relationships allows partial information (e.g., only mother being known)
 - But there are some relationships that are naturally non-binary

Binary vs. Non-Binary Relationships

- It is possible to replace any <u>non-binary</u> (n-ary, for n > 2) relationship set by <u>a number of distinct</u> <u>binary relationship sets</u>
 - Replace relationship set R with entity set E, and relationship sets R_A, R_B and R_C
 - Participation of E in R_A, R_B and R_C is total
 - Any descriptive attributes in R are assigned to E; a special identifying attribute is created for E
 - This could make the design complicated and cost more storage
- n-ary relationship set shows more clearly several entities participate in a single relationship
- Some constraints on ternary relationship cannot be translated into constraints on binary relationships
 - E.g., R, which is many-to-one from A, B to C, cannot be easily satisfied by R_A, R_B and R_C
- Some relationships that are naturally non-binary
 - Better not using binary relationships to model

E-R Design Decisions

- The use of an attribute or entity set to represent an object
- Whether a real-world concept is best expressed by an entity set or a relationship set
- The use of a ternary relationship vs. a pair of binary relationships
- The use of a <u>strong</u> or <u>weak</u> entity set

- * Extra:
 - * The use of specialization/generalization contributes to modularity in the design
 - * The use of aggregation can treat the aggregate entity set as a single unit without concern for the details of its internal structure

Self Study: Alternative ER Notations

- No universal standard for E-R diagram notation, and different books and E-R diagram software use different notations.
- Chapter 7.10, Database System Concepts (7th Edition)

entity set E with simple attribute A1, composite attribute A2, multivalued attribute A3, derived attribute A4, and primary key A1

Summary

- Database design mainly involves the design of the database schema
 - To represent overall logical structure of the database
- E-R model provides a convenient graphical representation to view data, relationships, and constraints
- Entity, entity set, relationship, relationship sets
- Superkey, candidate key, and primary key apply to entity and relationship sets (like in relation schemas)
 - Primary key of a relationship set is composed of attributes from one or more of the related entity sets
- Mapping cardinality: number of entities another entity can be associated to via a relationship set
- Weak entity set: entity set that does not have sufficient attributes to form a primary key
- Strong entity set: entity set with a primary key
- Concepts and objects may, in certain cases, be represented by entities, relationships, or attributes
- A database design based on an E-R diagram can be represented by a collection of relation schemas
- Common mistakes to avoid in E-R design

Normalization: A First Look

Design Alternatives

- In designing a database schema, we must ensure that we avoid two major pitfalls
 - Redundancy: a bad design may result in repeated information
 - E.g., store course identifier and title of a course for each course offering
 - Only store course identifier is sufficient
 - Redundant representation of information may lead to data inconsistency among the various copies of information
 - E.g., update is not performed on all the copies
 - **Incompleteness**: a bad design may <u>make certain aspects</u> of the enterprise <u>difficult or impossible to model</u>
 - E.g., only have entity for course offering, but without entity for courses
 - Impossible to model new courses that are not offered yet

Design Alternatives

- Avoiding bad designs is not enough
 - There may be many good designs from which we must choose
- For example, a customer who buys a product
 - The sale activity is a relationship between the customer and the product?
 - The sale activity is a relationship among the customer, the product, and the sale itself?
 - i.e., the sale can be considered as an entity
- Database design can be difficult
 - When #entities and #relationships are large
- Do we have any guidelines on how to get a good design?
 - Normal Forms (范式)!

Normalization (规范化)

In practice, we usually just satisfy 1NF, 2NF and 3NF

U				3NF	EKNF	BCNF	4NF	ETNF	5NF	DKNF	6NF
	(1970)	(1970)	(1971)	(1971)	(1982)	(1974)	(1977)	(2012)	(1979)	(1981)	(2003)
Primary key (no duplicate tuples) ^[4]	1	1	1	1	1	1	1	1	1	1	1
Atomic columns (cells cannot have tables as values) ^[5]	X	1	1	1	1	1	1	1	1	1	1
Every non-trivial functional dependency either does not begin with a proper subset of a candidate key or ends with a prime attribute (no partial functional dependencies of non-prime attributes on candidate keys) ^[5]	x	x	1	1	1	1	1	1	1	1	1
Every non-trivial functional dependency either begins with a superkey or ends with a prime attribute (no transitive functional dependencies of non-prime attributes on candidate keys) ^[5]	x	x	X	1	1	1	1	1	1	1	1
Every non-trivial functional dependency either begins with a superkey or ends with an elementary prime attribute	X	X	X	X	1	1	1	1	1	1	N/A
Every non-trivial functional dependency begins with a superkey	X	X	X	X	X	1	1	1	1	1	N/A
Every non-trivial multivalued dependency begins with a superkey	X	X	X	X	X	X	1	1	1	1	N/A
Every join dependency has a superkey component ^[8]	X	X	X	X	X	X	X	1	1	1	N/A
Every join dependency has only superkey components	X	X	X	X	X	X	X	X	1	1	N/A
Every constraint is a consequence of domain constraints and key constraints	X	X	X	X	X	X	X	X	X	1	X
Every join dependency is trivial	X	X	X	X	X	X	X	X	X	X	1

First Normal Form (1NF, 第一范式)

- A relational schema R is in 1NF if the domains of all attributes of R are atomic
 - Domain is atomic if its elements are considered to be indivisible units
 - Examples of non-atomic domains:
 - Set of names, composite attributes
 - Identification numbers like CS307 that can be broken up into parts
 - However, in practice, we can also consider it atomic
 - Non-atomic values complicate storage and encourage redundant (repeated) storage of data

• Example: Non-atomic attribute

station_id \$	I name	\$ location	\$
1	Luohu(罗湖)	114.11833 , 22.53111	
2	Guomao(国贸)	114.11889 , 22.54	
3	Laojie(老街)	114.11639 , 22.54444	
4	Grand Theater(大剧院)	114.10333 , 22.54472	
5	Science Museum(科学馆)	114.08972 , 22.54333	
6	Huaqiang Rd(华强路)	114.07889 , 22.54306	
7	Gangxia(岗厦)	114.06306 , 22.53778	
8	Convention and Exhibition Center Station(会展中心)	114.05472 , 22.5375	
9	Shopping Park(购物公园)	114.05472 , 22.53444	
10	Xiangmihu(香蜜湖)	114.034 , 22.5417	

• Fix it by splitting the names into two columns

👣 station_id 🛊	. english_name	thinese_name \$	□ longitude \$	latitude ‡
1	Luohu	罗湖	114.11833	22.53111
2	Guomao	国贸	114.11889	22.54
3	Laojie	老街	114.11639	22.54444
4	Grand Theater	大剧院	114.10333	22.54472
5	Science Museum	科学馆	114.08972	22.54333
6	Huaqiang Rd	华强路	114.07889	22.54306
7	Gangxia	岗厦	114.06306	22.53778
8	Convention and Exhibition Cent	会展中心	114.05472	22.5375
9	Shopping Park	购物公园	114.05472	22.53444
10	Xiangmihu	香蜜湖	114.034	22.5417

- Another example: Starring
 - Problems: 1) Redundant names; 2) difficulties in updating/deleting a specific person; 3) extra cost in splitting names; 4) difficulties in making statistics

Movie ID	Movie Title	Country	Year	Director	Starring
0	Citizen Kane	US	1941	welles, o.	Orson Welles, Joseph Cotten
1	La règle du jeu	FR	1939	Renoir, J.	Roland Toutain, Nora Grégor, Marcel Dalio, Jean Renoir
2	North By Northwest	US	1959	HITCHCOCK, A.	Cary Grant, Eva Marie Saint, James Mason
3	Singin' in the Rain	US	1952	Donen/Kelly	Gene Kelly, Debbie Reynolds, Donald O'Connor
4	Rear Window	US	1954	Alfred Hitchcock	James Stewart, Grace Kelly

- Fix it by treating the column as a multi-valued attribute
 - movie_starring table has two foreign keys, movid_id and star_id

Movie ID	Movie Title	Country	Year	Director
0	Citizen Kane	US	1941	welles, o.
1	La règle du jeu	FR	1939	Renoir, J.
2	North By Northwest	US	1959	HITCHCOCK, A.
3	Singin' in the Rain	US	1952	Donen/Kelly
4	Rear Window	US	1954	Alfred Hitchcock

Star ID	Firstname	Lastname	Born	Died
1				
2				
3				

movie_starring

Second Normal Form (2NF, 第二范式)

- A relation satisfying 2NF must:
 - be in 1NF
 - not have any non-prime attribute that is dependent on any proper subset of any candidate key of the relation
 - A non-prime attribute of a relation is an attribute that is not a part of any candidate key of the relation
 - 不包含只依赖于主键中部分属性的非主属性
 - "非主属性"是指不属于任何候选键的属性

Second Normal Form (2NF)

• Example: consider this table with the <u>composite primary key</u> (*station_id*, *line_id*)

station_id :	<pre>english_name</pre>	<pre>chinese_name</pre>	0	district :	line_id the line id the l	line_color \$	perator operator
1	1 Luohu	罗湖		Luohu	1	Green	Shenzhen Metro Corporation
	2 Guomao	国贸		Luohu	1	Green	Shenzhen Metro Corporation
1	3 Laojie	老街		Luohu	1	Green	Shenzhen Metro Corporation
4	4 Grand Theater	大剧院		Luohu	1	Green	Shenzhen Metro Corporation
	4 Grand Theater	大剧院		Luohu	11	Purple	Shenzhen Metro Corporation
	4 Grand Theater	大剧院		Luohu	2	Orange	Shenzhen Metro Corporation
	3 Laojie	老街		Luohu	3	DeepSkyBlue	Shenzhen Metro No.3 Line

- The columns line_color and operator are not related to station_id
 - They are only related to line_id, which is only part of (a subset of) the primary key
- Similarly, english_name, chinese_name, and district are not related to line_id
 - They are only related to station_id, which is only part of (a subset of) the primary key
- 非主属性 line_color, operator, english_name, chinese_name, district 只依赖于主键中的部份 属性

Second Normal Form (2NF)

• Example: Consider this table with the <u>composite primary key</u> (<u>station_id</u>, line_id)

- Problem when not meeting 2NF: Insertion and deletion anomaly
 - We CANNOT insert a new station with no lines assigned yet (unless using NULLs)
 - If we delete a line, all stations associated with this line will be deleted as well

Second Normal Form (2NF)

- Fix it by
 - Splitting the two unrelated parts into two different tables of entities
 - And create a relationship set (if it is the many-to-many relationship between the two entities)
- By the way...
 - A relation with a single-attribute primary key is <u>automatically in</u> 2NF once it meets 1NF

Third Normal Form (3NF, 第三范式)

- A relation satisfying 3NF must:
 - be in 2NF
 - all the attributes in a table are determined only by the candidate keys of that relation, not by any non-prime attributes
 - 所有属性 只依赖于主键,不依赖于任意非主属性

Third Normal Form (3NF)

- Example: Consider this table which describes the bus lines and their stops
 - Primary key (<u>bus line</u>)

bus_line	\$ station_id ‡	I chinese_name	\$ english_name :	district
B796	21	鲤鱼门	Liyumen	Nanshan
M343	21	鲤鱼门	Liyumen	Nanshan
M349	21	鲤鱼门	Liyumen	Nanshan
M250	26	坪洲	Pingzhou	Bao'an
374	61	安托山	Antuo Hill	Futian
B733	61	安托山	Antuo Hill	Futian
B828	120	临海	Linhai	Nanshan

- station_id depends on the primary key (bus_line)
- However, the columns chinese_name, english_name, and district depend on station_id, which is not the primary key.
 - They only have "indirect/transitive" dependence on the primary key
- Problem: Data redundancy

Third Normal Form (3NF)

- Example: Consider this table which describes the bus lines and their stops
 - Primary key (bus_line)

■ bus_line	\$ <pre> station_id </pre>	I≣ chinese_name	\$ english_name \$	I≣ district
B796	21	鲤鱼门	Liyumen	Nanshan
M343	21	鲤鱼门	Liyumen	Nanshan
M349	21	鲤鱼门	Liyumen	Nanshan
M250	26	坪洲	Pingzhou	Bao'an
374	61	安托山	Antuo Hill	Futian
B733	61	安托山	Antuo Hill	Futian
B828	120	临海	Linhai	Nanshan
B828	not meeting		Linhai	Nanshan

- Problem when not meeting 3NF:
 - Data redundancy: as you can see in the table, the attributes for a station have been stored multiple times
 - Insertion and deletion anomaly: inserting a new bus line with no station becomes impossible without NULLs; deleting a station/bus line may also delete corresponding bus lines/stations.

Third Normal Form (3NF)

- Fix it by:
 - Create a new table with station_id as the primary key
 - i.e., the column which chinese_name, english_name, and district depend on
 - Move all columns which depend on the new primary key into the new table
 - ... and, only leave the primary key of the new table (station_id) in the original table
 - (*In practice, if necessary) Add a foreign-key constraint
 - Not related to relational database modeling, only in implementations

Normalization

In practice, we usually just satisfy 1NF, 2NF and 3NF

	UNF	1NF	2NF	3NF	EKNF	BCNF	4NF	ETNF	5NF	DKNF	6NF
	(1970)	(1970)	(1971)	(1971)	(1982)	(1974)	(1977)	(2012)	(1979)	(1981)	(2003)
Primary key (no duplicate tuples) ^[4]	1	1	1	1	1	1	1	1	1	1	1
Atomic columns (cells cannot have tables as values) ^[5]	X	1	1	1	1	1	1	1	1	1	1
Every non-trivial functional dependency either does not begin with a proper subset of a candidate key or ends with a prime attribute (no partial functional dependencies of non-prime attributes on candidate keys) ^[5]	x	x	1	1	1	1	1	1	1	1	1
Every non-trivial functional dependency either begins with a superkey or ends with a prime attribute (no transitive functional dependencies of non-prime attributes on candidate keys) ^[5]	x	x	x	1	1	1	1	1	1	1	1
Every non-trivial functional dependency either begins with a superkey or ends with an elementary prime attribute	X	X	X	X	1	1	1	1	1	1	N/A
Every non-trivial functional dependency begins with a superkey	X	X	X	X	X	1	1	1	1	1	N/A
Every non-trivial multivalued dependency begins with a superkey	X	X	X	X	X	X	1	1	1	1	N/A
Every join dependency has a superkey component ^[8]	X	X	X	X	X	X	X	1	1	1	N/A
Every join dependency has only superkey components	X	X	X	X	X	X	X	X	1	1	N/A
Every constraint is a consequence of domain constraints and key constraints	X	X	X	X	X	X	X	X	X	1	X
Every join dependency is trivial	X	X	X	X	X	X	X	X	X	X	1

Normalization

Every non key attribute must provide a fact about the key, the whole key, and nothing but the key. 2NF 3NF

William Kent (1936 - 2005)

William Kent. "A Simple Guide to Five Normal Forms in Relational Database Theory", Communications of the ACM 26 (2), Feb. 1983, pp. 120–125.