LECTURER: NGHIA DUONG-TRUNG

DATA SCIENCE

TOPIC OUTLINE

Introduction to Data Science	1
Use Cases and Performance Evaluation	2
Data Preprocessing	3
Processing of Data	4
Selected Mathematical Techniques	5
Selected Artificial Intelligence Techniques	6

SELECTED ARTIFICIAL INTELLIGENCE TECHNIQUES

On completion of this unit, you will have learned ...

- data classification by support vector machines.
- the feedforward neural network structure.
- the back propagation algorithm in neural networks. how to develop an artificial neural networks prediction model.
- recurrent networks and reinforcement learning.
- basics about genetic algorithms, fuzzy logic, and Naïve Bayes classification.

- 1. Explain the concept of Support Vector Machines (SVM) and the usage of the kernel tricks.
- 2. Name two activation functions. Can you draw them?
- 3. Describe the usage of Gradient Descent in Neural Networks.

SUPPORT VECTOR MACHINES

- model used for regression & classification tasks
- identify hyperplane in data space that maximizes the margin between support vectors
- apply kernel trick for nonlinearly separable datasets

- It is a binary linear classification whose decision boundary is explicitly constructed to minimize generalization error
- Very powerful and versatile machine learning model
- Suited for the classification of complex structures
- If observations are linearly separable, it fits the "decision boundary"
- Decision boundary defined by the largest margin between the closest points for each class, called Maximum Margin Hyperplane (MMH)

OPTIMIZING LINEAR SVM

- Feature scaling
- -StandardScaler
- -MinMaxScaler
- -RobustScaler
- Codes: Session6_codes\01

Further references:

https://www.youtube.com/watch?v=_YPScrckx28

NEURAL NETWORKS

- Neural networks are what most people think about, when they think about AI
- They are modelled loosely after the human brain:
 - Very powerful
 - Very easy to execute
 - Very hyped
- Both supervised and unsupervised learning algorithm

Hype Cycle for Artificial Intelligence, 2021

gartner.com

- 1. calculate weighted sum a from $X_1 \& X_2$ $a = 2 \cdot 0.5 + 100 \cdot 1.5 = 151$
- 2. apply Activation Function f(a) to get z

FEEDFORWARD NEURAL NETWORKS W = 0.5# of rooms house price X_2 sqm **Input Layer** Hidden Layer **Output Layer** Forward Pass

Forward Pass

- 1. calculate weighted sum a from $X_1 \& X_2$ $a = 2 \cdot 0.5 + 100 \cdot 1.5 = 151$
- 2. apply Activation Function f(a) to get z

Rectified Linear Unit (ReLU)

 $z = \max(a, 0)$

FEEDFORWARD NEURAL NETWORKS

Hidden Layer

Forward Pass

Output Layer

Forward Pass

- 1. calculate weighted sum a from $X_1 \& X_2$ $a = 2 \cdot 0.5 + 100 \cdot 1.5 = 151$
- 2. apply Activation Function f(a) to get z z = f(151) = 151

... repeat until Output Neuron

Rectified Linear Unit (ReLU)

$$z = \max(a, 0)$$

Input Layer

FEEDFORWARD NEURAL NETWORKS

... how do we define network weights w?→ backpropagation

Source of the graphic: IU International University, Course Book DLMBDSA01.

GRADIENT DESCENT

- Algorithm for finding a local minimum of a differentiable function
- in ML: find weights that
 minimize the error function
- calculate the gradient of the error function with respect to network weights

BACKPROPAGATION ALGORITHM

- 1. Randomly initialize weights
- 2. Calculate output of every neuron
- 3. Calculate the error for 2.
- 4. Update the weights with GD

- 5. Start new forward pass with updated weights
- 6. Repeat steps 2-4 until no improvement in Error achieved

Feedforward Neural Networks

Input Hidden Layers Output Layer Layer

Recurrent Neural Networks

- Allow connections to previous layers
- Memory cells to
 retain information in
 deeper neural
 networks

- Further references:
 - https://www.youtube.com/watch?v=GvQwE2OhL8I
 - https://www.analyticsvidhya.com/blog/2021/05/beginners-guide-to-artificial-neural-network/
 - https://playground.tensorflow.org/
 - Gradient descent: https://www.youtube.com/watch?v=sDv4f4s2SB8
- Codes: Session6_codes\02

REINFORCEMENT LEARNING

- Algorithm learns a policy how to act in a given environment through trial-and-error actions
- goal: maximize the reward for the agent

MARKOV DECISION PROCESS

- framework to solvereinforcement learningproblems
- set of states $\{s_{0, s_{1, s_{2}}}\}$
- set of actions to take a path $\{a_{0, a_1}, \ldots\}$
- set of rewards {+10,+40,-50}
- policy for selected path $\{s_0 \rightarrow s_1 \rightarrow s_2\}$

You have learned ...

- data classification by support vector machines.
- the feedforward neural network structure.
- the back propagation algorithm in neural networks. how to develop an artificial neural networks prediction model.
- recurrent networks and reinforcement learning.
- basics about genetic algorithms, fuzzy logic, and Naïve Bayes classification.

SESSION 6

TRANSFER TASK

TRANSFER TASK

- 1. Discuss the parameter of *learning rate* η in the context of Gradient Descent.
- 2. How does it influence the process?
- 3. Can you foresee challenges in choosing the adequate learning rate?

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

- 1. The Naïve Bayes approach assumes that the independent variables are...
 - a) random variables.
 - b) orthogonal variables.
 - c) normalized variables.
 - d) structured data variables.

2. A memory cell is a concept which exists in ...

- a) feedforward networks.
- b) recurrent networks.
- c) reinforcement learning.
- d) support vector machines.

3. The Kernel trick is employed in support vector machines to...

- a) maximize the margin between the two classes.
- b) minimize the classification error.
- c) deal with nonlinearly separable dataset.
- d) define the set of support vectors.

How did you like the course?

LIST OF SOURCES

Alvarez, W. (2017). Markov Decision Process [Image]. https://commons.wikimedia.org/wiki/File:Markov_Decision_Process.svg, CC BY-SA 4.0.

Géron, A. (2019). Hands-on machine learning with scikit-learn, keras, and tensorflow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media, Incorporated.

Larhmam (2018). SVM-Margin [Image]. https://commons.wikimedia.org/wiki/File:SVM_margin.png, CC BY-SA 4.0.

Jordon, J. (2018). Setting the learning rate of your neural network. [Image]. https://www.jeremyjordan.me/nn-learning-rate/

© 2021 IU Internationale Hochschule GmbH
This content is protected by copyright. All rights reserved.
This content may not be reproduced and/or electronically edited, duplicated, or distributed in any kind of form without written permission by the IU Internationale Hochschule GmbH.