北京化工大学 2018——2019 学年第一学期

《聚合物表征》期末考试试卷(A)

		课程代	码	Р	S	E	3	3	2	0	0	E	
		班级:_		_姓名:	!	:	学号 <u>:</u>		E课教师	币 <u>:</u>	分	数 <u>:</u>	
题号	_							总分			阅卷教师		
得分		1	2	3		4	5	6					
— ,	选技	 怿题(T	面每	个选择	 释题中	有一	个或多	多个正确	角答案	,每是	圆 2 分	·,共	 40 分)
1. 聚	合物的	り平衡熔	点(Tm ⁰)与实	际熔	点 (T_m)	之间	的关系	描述是	<u>.</u> C .			
	A. <i>T</i> _m	$0 \leq T_m$	В.	T_m	$0=T_m$	C.	T_m^0	T_m	D. <i>T</i> ₁	$n^0=T_m$ -	20		
2. X 射线衍射可用于分析结晶性聚合物的_AB_。													
A. 结晶度 B.晶型 C. 熔点 D. 球晶尺寸													
3. 红外光谱常用的制样方法有_ABD_。													
A. 粉末压片法 B. 热压成膜法 C. 载玻片夹层法 D. 溶液流延薄膜法													
4. 动态热机械分 <mark>析(DMTA)可</mark> 以进行的扫描模式有 <u>ABD</u> 。													
A	· 温度	<u>.</u> B.	时间	C	. 能结	及	D.	频率					
5. 聚	合物材	材料中 <mark>添</mark>	加无机	l粒子	一般	会导 <mark>致</mark>	女 DM	TA 测记	式中弹	性模量	<u> </u>)	
A. 变大 B.变小 C. 不变 D. 先变大, 再变小													
6. 利用 TGA 判断材料自身的热稳定性,应该采用的气氛条件是 C。													
\mathbf{A}	. 流z	动的 CO	2 B.	静止的	勺 O ₂	C.	流动的	的 N ₂	D.	静止的	勺 Air		
 A. 流动的 CO₂ B. 静止的 O₂ C. 流动的 N₂ D. 静止的 Air 7. 凝胶渗透色谱可以得到数据有 B 。 													
		B. 7			<u></u>		-	对重均 ₂	分子质	i量	D.	化学位	方移
		<u>△</u> 压片法) , , ,	· -	Σ.	101	<i></i>
		g B.							D 0.0	01~0.0)03 o		
		g 用伯比尔										D	
		K B								_177F 1	<i>少 纵</i> _	ע	

10. 红外光谱测试制样中经常使用的载体是 <u>C</u> 。
A. 硝酸钠晶体 B. 氯化钠晶体 C. 溴化钾晶体 D.硅酸盐晶体
11. <mark>等温结晶</mark> 的计算公式 <u>C</u> 。
A. Bragg 方程 B. Scherrer 方程 C. Avrami 方程 D. Hoffman-Weeks 方程
12. TGA 测试中,样品的状态最好是。
A. 粒径 2~3mm 颗粒 B. 长度 1cm 细管 C. 研磨过的粉末 D. 哑铃型样条
13. 聚合物材料中 <mark>添加增塑剂</mark> 会导致 DMTA 温度谱曲线中的 $tg\delta$ 。
A. 向低温移动 B.向高温,低温同时移动 C. 向高温移动 D. 不动
14. 热失重实验中得到 DTG 曲线的峰值代表的是 C 的温度。
A. 失重开始 B.失重达到 50% C. 失重速度最快 D. 失重结束
15. <mark>球晶生长过程可</mark> 以通过 <u>C</u> 观察并记录。
A. 热台 NMR B. 热台 SEM C. 热台 POM D. 热台 XRD
16. 某些结晶聚合物会在 <mark>升温过程中出现冷结晶峰</mark> ,此峰的位置位于 <u>BC</u>
A. 靠近 T_m 附近 B. 靠近 T_g 附近 C. 远离 T_m D.远离 T_g
17. GPC 测试中,色谱柱的温度控制是D。
A. 5 ℃/min 升温 B. 10 ℃/min 降温 C. 循环升温/降温 D. 恒温
18. DSC 法测定熔体等温结晶过程的正确操作是。
A. 将样品加热到 $T_{\rm m}$ 以上 $20\sim30^{\circ}\mathrm{C}$,恒温数分钟后迅速降温至等温结晶温度,记录谱图
B. 将样品加热到 T_m 以下 20~30℃,恒温数分钟后匀速升温至等温结晶温度,记录谱图
C . 将样品加热到 T_m 迅速降温至等温结晶温度,记录谱图
D. 将样品加热到 T_g 以上 $20\sim30$ °C,匀速升温至等温结晶温度,记录谱图
19.动态热机械分析(DMTA)的温度谱测试中,样品的状态是。
A. 粉末 B. 溶液 C. 1mm 厚度的样片 D. 圆锥体
20. DSC 实验中,使用以下哪个降温速度得到 <mark>的结晶温度值最低D</mark> 。
A. 5°C/min B. 2.5°C/min C. 10°C/min D. 15°C/min

二、简答题(每题10分,共60分)

1. PES 是一种半结晶性聚酯,其结晶行为在分别加入 5 wt%和 10wt%的 PEG-POSS 以后,通过 DSC 进行研究。以 10℃/min 升温得到的 DSC 曲线如右图所示,相关数据点的数据列于表中,分别说明 对应发生的物理过程。并说明 PEG-POSS 在 T1,T2 和 T3 时对 PES 发生的物理过程的影响。

	T ₁ /°C	T₂/°C	$\Delta H_2/(J/g)$	T₃/°C
PES	-16.7	48.8	55.0	110.4
PES/5%PEG-POSS	-19.1	37.0	53.0	102.1
PES/10%PEG-POSS	-21.9	31.2	46.2	96.9

1) T1:玻璃化转变区。随着 PEG-POSS 添加量增加, PES 的玻璃化转变向低温移动。

- 2) T2:冷结晶区。随着 PEG-POSS 添加量增加, PES 的冷结晶温度向低温移动。冷结晶部分的焓值(4H₂)降低。
- 3) T3:熔融区。随着 PEG-POSS 添加量增加, PES 的熔融温度向低温移动。

 T_3

从熔体状态以 2.5℃/min 降温得到的 DSC 曲线。说明 PEG-POSS 对 PES 结晶行为的影响。

	T _c /℃	$\Delta H_c/(J/g)$
PES	36.4	26.5
PES/5%PEG-POSS	38.7	54.2
PES/10%PEG-POSS	39.2	55.1

随着 PEG-POSS 添加量增加,结晶温度提高,说明 PEG-POSS

使 PES 更早发生。同时添加 PEG-POSS 以后,结晶焓值迅速提高,说明结晶度显著提高。

2. PHB 是一种生物降解结晶性聚合物,说明粘土含量对 PHB 结晶形貌的影响。

neat PHB PHB/2.5% clay PHB/5% clay

纯的 PHB 是一种结晶性聚合物,可以观察到清晰的球晶形貌及马耳他黑十字。球晶尺寸可以达到 100~200 μm。

纳米尺度的粘土 clay 加入会作为 PHB 的结晶成核剂,使 PHB 形成更多的晶核中心,球晶生长过程中,边缘相遇,限制了球晶的继续长大,随着粘土 clay 添加量增加,球晶数量增加,同时球晶的尺寸减小。

3. 某同学的毕业设计课题为结晶型聚丙烯 (PP) 与纳米粒子水滑石 (LDH) 复合材料的制备。分别说明以下 4 个结果是通过什么表征手段得到?

如果再想具体研究内容包括:

- (1) LDH 对 PP 的熔融行为及等温及非等温结晶动力学
- (2) LDH 对 PP 的热稳定性的影响
- (3) LDH 对 PP 的动态力学性能的影响

针对上述各项研究内容该同学应分别首选哪些主要仪器?

- 答: (a) 偏光-热台显微镜 POM; (b) X 射线衍射 (XRD); (c) 红外光谱 (FTIR); (d) 扫描电镜 (SEM)
 - (1) 等温及非等温结晶动力学: 差示扫描量热(DSC)
 - (2) 热稳定性: 热失重(TGA)
 - (3) 动态力学性能: 动态力学性能(DMTA)

- 4. 水滑石(LDH)是一种纳米片层物;片层间的 CO₃²·离子可以通过插层法取代为其他的功能性粒子。下图为由镁铝水滑石(Mg-Al-LDH)为原料,通过将磷钨酸分子(PWA)取代 CO₃²·离子,得到产物磷钨酸插层水滑石(PWA-LDH)。
- 1)请说明 XRD 谱图中(a)和(b)分别对应哪个物质?
- 2)请说明 (a)和(b)物质的(003)和(006)晶面分别对应以下哪个晶面间距的数值。说明判定依据。

0.38nm 0.49nm 0.77nm 1.08nm

	2θ(003)	2θ(006)
(a)	11.2	23.3
(b)	8.2	18.1

答: (a) Mg-A1-LDH

(b) PWA-LDH

- (a) Mg-A1-LDH 的 (003) 晶面的晶面间距是 0.77nm, 经过 PWA 插层改性以后,
- 扩大到(b) PWA-LDH中(003)晶面,其晶面间距是1.08nm。
- (a) Mg-A1-LDH 的 (006) 晶面的晶面间距是 0.38nm, 经过 PWA 插层改性以后,

扩大到(b) PWA-LDH中(006)晶面,其晶面间距是 0.49nm。

判定依据: Bragg 衍射方程 2d sin θ = λ

其中 d 为晶面间距 (nm), θ 为衍射角度, 为入射的 X 射线的波长 (nm)

衍射角度越低,对应的晶面间距越大。

- 5. <u>乙烯-醋酸乙烯酯共聚物(EVA)</u>中添加稳定剂 BTP-HTC 制备的 EVA 复合材料的 TGA 及 DTG 曲 线如图所示。
- (1)根据 EVA 的 TGA 曲线,结合分子式说明 EVA 的降解机理;
- (2)根据曲线说明稳定剂 BTP-HTC 对 EVA 热稳定的贡献;

注: EVA 分子式

$$\begin{array}{c|c} -\begin{pmatrix} H & H & H & H & H \\ C & C & \end{pmatrix}_n & \begin{pmatrix} C & C & C \\ C & C & \end{pmatrix}_m \\ \downarrow & \downarrow & \downarrow \\ C = O \\ \downarrow & \downarrow \\ CH_3 \end{array}$$

90 -			-	-				
80 -				,	1			
70 -					11			
60 -					1,			
60 - 50 - 40 -					1,			
40 -					11			
30 -					11			
20 -	8	EVA			- 15	i		
		EVA/BTI	P-HTC		- 1	1		
10 -			104076		- 1	_		10/
0	- 15	- 05	- 6	-1				1%
-		300	350	400	450	500	550	6

	T _{max1} /°C	T _{max2} /°C	Residue at 600 °C/%
EVA	340.0	454.5	0
EVA/BTP-HTC	352.5	462.9	11.0%

3

(1) EVA 分为两段降解

I: VA 段脱除醋酸, 形成双键(310-400℃);

- (2) 添加稳定剂 BTP-HTC 的 EVA 复合材料,两个热失重平台都向高温移动,说明稳定剂 BTP-HTC 改善了 EVA 的热稳定性。
- (3) 纯 EVA 最终没有残留物; 添加稳定剂 BTP-HTC 的 EVA 复合材料在 600℃产生了 11%的残留。

- 6. 从下面 13 个词分别归属到如下四张图中(可以重复选,每张图可以选择多个号码)

- (1)光学显微镜 (2)电子显微镜 (3)原子力显微镜 (4)扫描隧道显微镜 (5) 相差显微镜

- (13) STM
- (6)偏光显微镜 (7) 扫描电镜 (8) 透射电镜 (9)SEM (10)TEM (11)POM (12)AFM

分别描述四张图所使用的观察手段。在聚合物研究中有哪些具体应用以及在聚合物形态研究中的 区别。

(2) 电子显微镜 (7) 扫描电镜

(9) **SEM**

SEM:研究聚合物的表面或断面,可以看到纳米尺度的信息。 应用:聚合物共混物的相行为和形态研究、纳米粒子在聚合物基 体中的分散、聚合物的力学断裂机理、聚合物的降解机理等。

(1) 光学显微镜 (2) 偏光显微镜 (11) POM

POM:在微米尺度观察聚合物球晶的形貌及生长 应用:聚合物球晶的形貌及生长

(2) 电子显微镜 (8) 透射电镜 (10) TEM

TEM:研究聚合物的内部结构,可以看到纳米尺度的信息。 应用: 纳米粒子结构分析等。纳米粒子在聚合物基体中的分散

(3) 原子力显微镜 (12) AFM

应用:聚合物材料表面形貌的纳米探针扫描, 可以得到材料表面在高度维度上的信息。