$\begin{array}{c} {\rm Primitives\ et\ int\'egrales} \\ {\rm \tiny Corrig\'e} \end{array}$

DARVOUX Théo

Octobre 2023

F	Exercices.		
	Exercice 8.1	2	
	Exercice 8	2	
	Exercice 8.3	3	

Exercice 8.1 $[\phi \Diamond \Diamond]$

Donner les primitives des fonctions suivantes (on précisera l'intervalle que l'on considère).

$$a: x \mapsto \cos x e^{\sin x}; \qquad b: x \mapsto \frac{\cos x}{\sin x}; \qquad c: x \mapsto \frac{\cos x}{\sqrt{\sin x}}; \qquad d: x \mapsto \frac{1}{3x+1};$$

$$\ln x \qquad \qquad 1 \qquad \qquad x + x^2$$

$$e: x \mapsto \frac{\ln x}{x}; \qquad f: x \mapsto \frac{1}{x \ln x}; \qquad g: x \mapsto \sqrt{3x+1}; \qquad h: x \mapsto \frac{x+x^2}{1+x^2}.$$

$$A: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto e^{\sin x} + c \end{cases} ; \quad B: \begin{cases} \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\} \to \mathbb{R} \\ x \mapsto \ln(\sin x) + c \end{cases} ;$$

$$C: \begin{cases}]2k\pi, (2k+1)\pi[, k \in \mathbb{Z} \to \mathbb{R} \\ x \mapsto 2\sqrt{\sin x} + c \end{cases}; \quad D: \begin{cases} \mathbb{R} \setminus \{-\frac{1}{3}\} \to \mathbb{R} \\ x \mapsto \frac{1}{3}\ln(3x+1) + c \end{cases};$$

$$E: \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \frac{1}{2} \ln^2 x + c \end{cases}; \quad F: \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \ln(\ln x) + c \end{cases};$$

$$G: \begin{cases} \left[-\frac{1}{3}, +\infty\right] \to \mathbb{R} \\ x \mapsto \frac{2}{9}(3x+1)^{\frac{3}{2}} + c \end{cases} ; \quad H: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{1}{2}\ln(1+x^2) + x - \arctan(x) + c \end{cases}$$

Avec c les constantes d'intégration.

Exercice 8.2 $[\Diamond \Diamond \Diamond]$ Issu du cahier de calcul

On rappelle que $\int_a^b f(x)dx$ est l'aire algébrique entre la courbe représentative de f et l'axe des abscisses.

1. Sans chercher à les calculer, donner le signe des intégrales suivantes.

$$\int_{-2}^{3} e^{-x^2} dx; \qquad \int_{5}^{-3} |\sin x| dx; \qquad \int_{1}^{a} \ln^{7}(x) dx (a \in \mathbb{R}_{+}^{*}).$$

2. En vous ramenant à des aires, calculer de tête

$$\int_{1}^{3} 7dx; \qquad \int_{0}^{7} 3x dx; \qquad \int_{-2}^{1} |x| dx.$$

1.

La première est positive car -2 < 3 et la fonction est positive sur [-2,3]e.

La seconde est négative car 5 > -3 et la fonction est positive sur [-3, 5].

La dernière est positive lorsque $a \ge 1$ et négative lorsque $a \le 1$ car \ln^7 est positive sur $[1, +\infty[$.

La première vaut $2 \times 7 = 14$.

La seconde vaut $\frac{7^2 \times 3}{2} = \frac{147}{2}$. La dernière vaut $\frac{1}{2} + \frac{2 \times 2}{2} = 2.5$

Exercice 8.3 $[\Diamond \Diamond \Diamond]$

Calculer les intégrales ci-dessous :

$$I_{1} = \int_{0}^{1} x \sqrt{x} dx, \quad I_{2} = \int_{-1}^{1} 2^{x} dx, \quad I_{3} = \int_{1}^{e} \frac{\ln^{3}(t)}{t} dt, \quad I_{4} = \int_{0}^{1} \frac{x}{2x^{2} + 3} dx,$$

$$I_{5} = \int_{0}^{1} \frac{1}{2x^{2} + 3} dx, \quad I_{6} = \int_{0}^{\frac{\pi}{2}} \cos^{2} x dx, \quad I_{7} = \int_{0}^{\pi} |\cos x| dx, \quad I_{8} = \int_{0}^{\frac{\pi}{2}} \cos^{3} x dx$$

$$I_{9} = \int_{0}^{\frac{\pi}{4}} \tan^{3} x dx.$$

$$I_{1} = \left[\frac{2}{5}x^{\frac{5}{2}}\right]_{0}^{1} = \frac{2}{5}, \quad I_{2} = \left[\frac{1}{\ln 2}e^{x\ln 2}\right]_{-1}^{1} = \frac{3}{\ln 4}, \quad I_{3} = \left[\frac{\ln^{4}t}{4}\right]_{1}^{e} = \frac{1}{4},$$

$$I_{4} = \left[\frac{1}{4}\ln(2x^{2}+3)\right]_{0}^{1} = \frac{1}{4}\left(\ln\left(\frac{5}{3}\right)\right), \quad I_{5} = \left[\frac{1}{\sqrt{6}}\arctan\left(\sqrt{\frac{2}{3}}x\right)\right]_{0}^{1} = \frac{1}{\sqrt{6}}\arctan\left(\sqrt{\frac{2}{3}}\right),$$

$$I_{6} = \frac{1}{2}\int_{0}^{\frac{\pi}{2}}\cos 2x dx + \frac{\pi}{4} = \frac{1}{2}\left[-2\sin(2x)\right]_{0}^{\frac{\pi}{2}} + \frac{\pi}{4} = \frac{\pi}{4}, I_{7} = \left[2\sin x\right]_{0}^{\pi} = 2,$$

$$I_{8} = \int_{0}^{\frac{\pi}{2}}\cos x - \cos x\sin^{2}(x) dx = \left[\sin x\right]_{0}^{\frac{\pi}{2}} - \left[\frac{1}{3}\sin^{3}x\right]_{0}^{\frac{\pi}{2}} = \frac{2}{3},$$

$$I_{9} = \int_{0}^{\frac{\pi}{4}}\tan^{3}x + \tan x - \tan x dx = \int_{0}^{\frac{\pi}{4}}\tan x(\tan^{2}x + 1) dx - \frac{\ln 2}{2} = \left[\frac{1}{2}\tan^{2}(x)\right]_{0}^{\frac{\pi}{4}} - \frac{\ln 2}{2}$$

$$= \frac{1 - \ln 2}{2}$$