

Especificação de um GLM

INTRODUÇÃO: Especificação de um GLM

Possíveis distribuições associadas a nossa variável resposta

Dados Contínuos

- Normal
- Gama
- Normal Inversa
- Log Normal

Dados Discretos

- Bernoulli
- Poisson
- Binomial
- Binomial negativa ...

Definir a distribuição de probabilidade para a variável resposta

Para variáveis discreta:

Para variáveis Contínuas:

- Proporção
- Contagem

- Simétrica
- Assimétrica

Tomar cuidado pois estamos avaliando o comportamento da variável resposta na presença das covariáveis

Especificação da resposta - assume valores reais positivos ou tem valores negativos e positivos

No GLM temos que especificar quem é a variável resposta Na regressão clássica especificávamos quem era nosso erro.

Como saber que meu modelo é adequado?

Características dos dados encaixam com as propriedade do modelo de probabilidade?

Suponha ter dados de contagem e selecionamos a Poisson: $Var(Y) = E(Y) = \mu$.

Adequabilidade do modelo Análise de resíduos.

- Definir uma distribuição de probabilidade para a variável resposta
- A variável resposta é discreta ou contínua? Sua distribuição é simétrica?
- Deve-se propor um modelo que tenha as propriedades compatíveis à distribuição dos dados
- Não se tendo convicção sobre uma particular escolha, pode-se testar diferentes alternativas.

Especificação do Componente Sistemático

- ☐ Quais variáveis explicativas devem ser consideradas?
- ☐ Como essas variáveis serão incorporadas ao modelo?
- Avaliar a necessidade de escalonar, transformar, categorizar ou incluir variáveis numérica, etc.
- ☐ Avaliar a necessidade de incluir efeitos de interação.

$$g(\mu_i) = \eta_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \dots + \beta_p x_{ip}$$

Especificação da função de ligação

- □ A função de ligação tem o papel de linearizar a relação entre os componentes aleatório e sistemático do modelo.
- Deve produzir valores no espaço paramétrico (μ) para qualquer valor produzido por

$$\square \ \eta_i = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

- Apresentar propriedades matemáticas e computacionais desejadas
- Proporcionar interpretações práticas para os parâmetros de regressão β's

Componente Aleatório Função de ligação Componente Sistemático

Especificação da função de ligação

Mas como assim linearizar?

$$\mu_i = g^{-1}(\eta_i) = g^{-1}(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip})$$

Por exemplo:

$$\mu_i = exp(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip})$$

Log para linearizar

$$\log(\mu_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

Papel da função de ligação: linearizar os dois componentes

Irá produzir valores no espaço paramétrico no formato:	
$\eta_i = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$	
É difícil é saber qual a função de ligação é prioritariamente interessante	
para cada caso.	
Pode existir mais de uma função de ligação -> mais de uma função de	
ligação que linearize esses dois componentes.	
A função de ligação deve ser aquela na qual quando adicionarmos os	
dados , estimar os parâmetros e achar os valores ajustados , esses	
valores devem estar no espaço paramétrico da média da distribuição.	
tem certos tipos de função de ligação que são interessantes de utilizar pelas suas propriedades matemáticas e computacionais.	

Distribuição	θ
Normal : N (μ , σ^2)	μ
Poisson: $P(\mu)$	$\log(\mu)$
Binomial: Bin(m, π)	$\log\left(\frac{\mu}{m-\mu}\right)$
Binomial Negativa: BinN(π , k)	$\log\left(\frac{\mu}{\mu+k}\right)$
Gama : $G(\mu, v)$	$-\frac{1}{\mu}$
Normal Inversa: IG (μ, σ^2)	$-\frac{1}{2\mu^2}$

Então na Poisson temos:

$$\log(\mu_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

O interesse é sempre utilizar a função de ligação canônica

Função de ligação canônica

A função de ligação g(.) que transforma a média no parâmetro canônico é a função de ligação canônica , isto é,

$$g(\mu_i) = \theta_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

Ex.: ligação logarítmica para a distribuição Poisson; a logito(logística) para a distribuição binomial a ligação identidade para a normal e etc.

