论文《Controllable Unsupervised Text Attribute Transfer via Editing Entangled Latent Representation》阅读笔记

论文来源: 2019 NIPS

论文主要贡献:提出了一种非监督方式的文本属性转换框架,通过改变文本属性分类器的属性来对

latent representation 【就是原始风格文本经过encoder部分后得到的表示】进行一些修改。

论文代码: https://github.com/Nrgeup/controllable-text-attribute-transfer

论文主要内容

作者说他们不同于传统的方法,将属性和内容表示分开进行建模,作者直接使用内容和属性缠绕在一起的表示。

文中的模型主要分为两部分,一个是基于transformer的AutoEncoder,一个是Attribute Classifier[属性分类器]。

- 作者首先将AutoEncoder和Attribute Classifier分开来训练
- 然后使用encoder部分去获得source sentence的隐层表示
- 再用FGIM算法去不断编译这个隐层表示,直到这个表示能够被分类器判定为target属性
- 最后在使用decoder从这个隐层表示获取target text.

文中提出的模型结构如下:

Figure 1: Model architecture.

如图所示,作者对encoder在encoder部分是两层的transformer结构,并在其后接了一层GRU。经过encoder后得到一个latent representation,但是目前的这个latent representation是source风格的,我们希望这个latent representation是target风格的,那么作者是怎么将这个latent representation由source风格转为target风格的呢?作者提出了一个FGIM算法来修改这个latent representation.
FGIM算法的伪代码如下:

```
Algorithm 1 Fast Gradient Iterative Modification Algorithm.
```

```
Input: Original latent representation z; Well-trained attribute classifier C_{\theta_c}; A set of weights w = \{w_i\};
      Decay coefficient \lambda; Target attribute y'; Threshold t;
Output: An optimal modified latent representation z';
 1: for each w_i \in \boldsymbol{w} do
           z^* = z - w_i \nabla_z \mathcal{L}_c(C_{\theta_c}(z), y');
 2:
                                                                                    \bigcirc
 3:
          for s-steps do
                if |\boldsymbol{y'} - C_{\theta_c}(\boldsymbol{z}^*)| < t then \boldsymbol{z'} = \boldsymbol{z}^*; Break;
 4:
 5:
 6:
                w_i = \lambda w_i;
                z^* = z^* - w_i \nabla_{z^*} \mathcal{L}_c(C_{\theta_s}(z^*), \boldsymbol{y'});
 7:
 8:
          end for
 9: end for
10: return z';
```

FGIM算法的流程如下:

- 输入包括:
 - 。 原始的latent representation z;
 - 。 一个训练好的Attribute Classifier C_{θ_c} ;

- \circ 一个权重集合 w = $\{w_i\}$,
- 。 一个迭代衰减系数 λ ,取值为0~1,用来不断降低当前的权重 w_i 的值,每s步 w_i 就乘以一次 λ ;
- 。 目标风格属性标签值y'
- 。 阈值t, 当Attribute Classifier对于当前的latent representation进行判断时, 结果与y'的差值小于t就结束迭代;

• 具体步骤

- 。 对于权重集合w中的每个权重 w_i 进行实验,这里的权重是从小到大进行实验的,作者说这样做可以避免我们的优化落入局部最优值;
- 然后每次计算了损失函数后,都来更新隐层表示z,这里可以看做是本文的亮点,作者固定了
 Attribute Classifier的参数值,只改变输入z的值,使z来适应分类器
- 。 同时每一个权重 w_i 还会乘以一个系数 λ ,来不断降低其值
- 。 直到Attriibuter Classifier将当前隐层向量z判定的风格值与y'的差值小于t

实验结果,作者在三个数据集上进行了实验:

Table 2: Automatic evaluation results. ↓ means the smaller the better. We underline the results of our model and bold the best results.

Methods	Yelp			Amazon			Captions		
	Acc	BLEU	PPL ↓	Acc	BLEU	PPL ↓	Acc	BLEU	PPL ↓
CrossAlign [28]	72.3%	9.1	50.8	70.3%	1.9	66.2	78.3%	1.8	69.8
MultiDec [5]	50.2%	14.5	84.5	67.3%	9.1	60.3	68.3%	6.6	60.2
StyleEmb [5]	10.2%	21.1	47.9	43.6%	15.1	60.1	56.2%	8.8	57.1
CycleRL [38]	53.6%	18.8	98.2	52.3%	14.4	183.2	45.2%	5.8	50.3
BackTrans [26]	93.4%	2.5	49.5	84.6%	1.5	48.3	78.3%	1.6	68.3
RuleBase [17]	80.3%	22.6	66.6	67.8%	33.6	52.1	85.3%	19.2	35.6
DelRetrGen [17]	88.8%	16.0	49.6	51.2%	29.3	55.4	90.4%	12.0	33.4
UnsupMT [41]	95.2%	22.8	53.9	84.2%	33.9	57.9	95.5%	12.7	31.2
Ours	95.4 %	24.6	46.2	85.3%	<u>34.1</u>	<u>47.4</u>	92.3%	<u>17.6</u>	23.7