Adversarial Search and Game-Playing

Note: this material was originated from the slides provided by Prof. Padhraic Smyth

Typical assumptions

- Two agents(game players) whose actions are alternate
- Utility values for each agent are the opposite of the other
 - If a utility value increases for one player, then it decreases for the other player
 - This property creates the adversarial situation
- In game theory terms:
 - Deterministic: The result of any action is expectable
 - turn-taking: There are two players whose actions must alternate
 - zero-sum games: For example, if one player wins a game of chess by +1, then the other player necessarily loses -1.
 - perfect information: all current game states are fully observable

Search versus Games

- (Just) Search no adversary
 - Solution is a method for finding goal or a path to goal
 - Some Heuristics techniques can find optimal solution
 - Evaluation function is an estimate of cost from start to goal through a given node
 - Examples: path finding, 8-puzzle
- Games adversary
 - Solution is strategy that specifies move for every possible opponent reply
 - In many cases, time limits force an approximate solution
 - Utility function is an evaluation about "goodness" of game state
 - Examples: chess, checkers, Othello, Go

Game Setup

- · Two players(MAX and MIN) exist
- · MAX moves first and they take turns until the game is over
 - Winner gets award, loser gets penalty.
- · Games as search: 4 components
 - Initial state: e.g. board configuration of chess
 - Successor function: list of legal moves at the current game state
 - Terminal test: Is the game finished?
 - Utility function: Gives numerical value of terminal states. E.g. win (+1), lose (-1) and draw (0) in tic-tac-toe or chess
- So, MAX uses a usually very big search tree to determine next move

Size of search trees is estimated approximately

- b = branching factor
- d = the number of legal moves performed by both players
- Search tree is O(bd)
- In Chess
 - $-b \sim 35$
 - d ~100
 - search tree is $\sim 10^{154}$ (extremely big !!!)
 - completely impractical to search this
- Game-playing emphasizes being able to make optimal decisions in a finite amount of time

Game tree (2-player, deterministic, turns)

An important problem: How can we search this big tree to find the optimal move?

Minimax strategy

- Find the optimal strategy for MAX assuming an infallible MIN opponent
 - Need to compute this all the down the tree
- Assumption: Both players play optimally! → infallible palyers!
- Given a game tree, the optimal strategy can be determined by using the minimax value of each node:

```
\begin{split} & \text{MINIMAX-VALUE}(n) = \\ & \text{UTILITY}(n) &, & \text{If } n \text{ is a terminal} \\ & \max_{s \; \in \; successors(n)} \text{MINIMAX-VALUE}(s) \;, & \text{If } n \text{ is a max node} \\ & \min_{s \; \in \; successors(n)} \text{MINIMAX-VALUE}(s) \;, & \text{If } n \text{ is a min node} \end{split}
```


What happens if MIN does not play optimally?

- Definition of optimal play for MAX assumes MIN plays optimally(infalliblely):
 - So, Minmax strategy maximizes worst-case outcome for MAX
- But even though MIN does not play optimally, MAX will do even better
 - Because MAX will be better if MIN moves to $\rm A_{12}$ or $\rm A_{13}$ instead of $\rm A_{11}$

Minimax Algorithm

- Complete depth-first exploration of the game tree
- Assumptions:
 - Max depth = d, b legal moves at each node
 - E.g., Chess: d ~ 100, b ~35

Criterion	Minimax
Time	⊗ O(p _q)
Space	O(bd)
	\odot

Multiplayer games

- Games allow more than two players
- Single minimax values become vectors
 - e.g. for three palyers, just use a vector (UtilityForA, UtilityForB, UtilityForC>

Aspects of multiplayer games

- Previous slide (standard minimax analysis) assumes that each player operates to maximize only their own utility
- In practice, players make alliances
 - e.g, C strong, A and B both weak
 - May be best for A and B to attack C together rather than each other
- If game is not zero-sum (i.e., utility(A) = utility(B) then alliances can be useful even with 2 players
 - $-\,$ e.g., both cooperate to maximize the sum of the utilities
 - This makes minimax strategy so complicated!

Practical problem with minimax search

- Number of game states is exponential in the number of moves.
 - Solution: Do not search every node of a possible extremely big game tree => pruning!
 - Remove branches that do not influence final decision
- Revisit the example from the next slide ...

Alpha-beta Pruning Algorithm - Summary

 Depth first search – only considers nodes along a single path at any time

alpha-value = highest-value choice we have found at any choice point along the DFS path for MAX

beta-value = lowest-value choice we have found at any choice point along the DFS path for MIN

• Update values of α -value and β -value during each search and prunes remaining branches as soon as the value is known to be worse than its anscester's α -value or β -value for MAX or MIN

Effectiveness of Alpha-Beta Pruning Search

- Worst-Case: O(bd)
 - branches are very specially ordered so that no pruning takes place.
 In this case, alpha-beta pruning search gives no improvement over minimax search
- Best-Case complexity: O(b(d/2))
 - each player's best move is the left-most alternative so that every possible pruning takes place
- In practice, average performance is closer to the best-case one rather than worst-case
 - It means that alpha-beta pruning often get $O(b^{(d/2)})$ rather than $O(b^d)$ in practice
 - this is the same as having a branching factor of sqrt(b),
 - since $(\operatorname{sqrt}(b))^d = b^{(d/2)}$
 - e.g., in chess go from b \sim 35 to b \sim 6
 - this permits much deeper search in the same amount of time
 - It means that alpha-beta pruning makes it possible for a player to move more optimally than a simple minimax search

Additional Comments about Alpha-Beta Pruning

- Alpha-beta pruning produces the same results as minimax algorithm
- In the best case, most of entire subtrees can be pruned
- Sometimes, good move *ordering* improves effectiveness of alpha-beta pruning

Utility(or Evaluation) Functions

- A Utility(or Evaluation) Function:
 - estimates how good the current board configuration is for a player.
 - Typically, one figures how good it is for the player, and how good it is for the opponent, and subtracts the opponent's score from the player's score
 - Othello: Number of white pieces Number of black pieces
 - Chess: (weighted sum of white pieces) (weighted sum of black pieces)
- Typical values from -infinity (loss) to +infinity (win) or [-1, +1].
- If the board(game state) evaluation is X for a player at a time, it's -X for the opponent at that time
- Example:
 - Evaluating chess boards,
 - Checkers
 - Tic-tac-toe

Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically *linear* weighted sum of features

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

e.g., $w_1 = 9$ with

 $f_1(s) =$ (number of white queens) – (number of black queens), etc.

Chapter 5, Sections 1–5 1

The State of Playing Games in the World

· Checkers:

 Chinook(computer program) ended 40-year-reign of human world champion Marion Tinsley in 1994

· Chess:

 Deep Blue(computer program based on alpha-beta search) defeated human world champion Garry Kasparov in a six-game match in 1997

Othello:

 human champions refuse to compete against computers: because computer programs are too much better than the human champions

• Go(바둑):

- human champions refuse to compete against computers: computer programs are too much worse than the human champions
- What does it means? the size of game tree is too big to be searched (Imagine b > 300 and d >> 150 of Go, then 300¹⁵⁰ (!)

Summary

- Game playing can be effectively modeled as a search problem
- Game trees represent alternate computer/opponent moves
- Evaluation functions estimate the quality of a given board configuration for the Max player
- Minimax is a procedure which chooses moves by assuming that the opponent will always choose the move which is best for them
- Alpha-Beta is a procedure which can prune large parts of the search tree and allow search to go deeper into game tree
- For many well-known games, computer algorithms based on the adversarial search out-perform human world champions