

Lecture 3. Filters and Convolutions
Linear systems

Juan Carlos Niebles and Jiajun Wu
CS131 Computer Vision: Foundations and Applications

Applications of Linear systems and Filters

De-noising

Salt and pepper noise

In-painting

Systems and Filters

Filtering:

 Forming a new image whose pixel values are transformed from original pixel values

Goals:

- Extract useful information from images, or transform images to modify/enhance image properties
 - Features (edges, corners, blobs...)
 - Super-resolution; in-painting; de-noising

- Images are usually digital (discrete):
 - Sample the 2D space on a regular grid

Represented as a matrix of integer values

		m						
I	62	79	23	119	120	05	4	0
	10	10	9	62	12	78	34	0
ı	10	58	197	46	46	0	0	48
ļ	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

pixel

Cartesian coordinates

- An Image as a function f from \mathbb{R}^2 to \mathbb{R}^M :
 - f[x, y] gives the **intensity** at position [x, y]
 - Defined over a rectangle, with a finite range:

$$f: [a, b] \times [c, d] \rightarrow [0,255]$$

Domain range support

- An Image as a function f from \mathbb{R}^2 to \mathbb{R}^M :
 - f[x, y] gives the **intensity** at position [x, y]
 - Defined over a rectangle, with a finite range:

$$f: [a, b] \times [c, d] \rightarrow [0,255]$$

Domain range support

• A color image: $f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$

System and Filters

- We define a system as a unit that converts an input function f[n,m] into an output function g[n,m], where [n, m] are the independent variables.
 - In the case of images, [n, m] represents the **spatial position in the image**.

$$f[n,m] \rightarrow \boxed{\text{System } \mathcal{S} } \rightarrow g[n,m]$$

System and Filters

• S is the **system operator**, defined as a mapping/assignment that transforms the input f into the output g.

$$f[n,m] \rightarrow \boxed{\text{System } \mathcal{S} } \rightarrow g[n,m]$$

$$g = \mathcal{S}[f], \quad g[n, m] = \mathcal{S}\{f[n, m]\}$$

$$f[n,m] \xrightarrow{\mathcal{S}} g[n,m]$$

2D moving average over a 3 × 3 neighborhood window

Smoothed image

g[n,m]

g[n,m]

g[n,m]

g[n,m]

2D moving average over a 3 × 3 window of neighborhood

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$$

Filter "kernel", "mask"

•		• • •	
1	1	1	1
<u> </u>	1	1	1
9	1	1	1

Filter "kernel" "mask"

h

1	1	1	1	
9	1	1	1	
9	1	1	1	

g[n,m]										
0	10	20	30	30						

2D moving average over a 3×3 window of neighborhood

Sum over rows

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$$

Filter "kernel", "mask"

h

1 1 1

2D moving average over a 3 × 3 window of neighborhood

Sum over rows

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$$

h
1/9 1/9 1/9
1/9 1/9

1/9

In summary:

 This filter "transforms" each pixel value into the average value of its neighborhood. $h[\times,\times]$

 Achieve smoothing effect (remove sharp features)

2D moving average over a 3 × 3 neighborhood window

Smoothed image

Filter example #2: Image Segmentation

Image segmentation based on a simple threshold:

$$g[n, m] = \begin{cases} 255, & f[n, m] > 100 \\ 0, & \text{otherwise.} \end{cases}$$

Systems can be classified based on their <u>properties</u>

- Amplitude properties:
 - Additivity
 - Homogeneity
 - Superposition
 - Stability
 - Invertibility
- Spatial properties
 - Causality
 - Shift invariance
 - Memory

Shift-Invariant (SI) Systems

• If
$$f[n,m] \xrightarrow{\mathcal{S}} g[n,m]$$

then, S is Shift Invariant if

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

for every input image f[n,m] and shifts n₀, m₀.

What does shifting an image look like?

Cartesian coordinates

Is the moving average system shift invariant?

f[n,m]

g[n,m]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Is the moving average system shift invariant?

Let's start with passing f through our system

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

• Now, let's see what we get when we pass in a shifted version of the input f:

$$f[n - n_0, m - m_0] \xrightarrow{S} \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[(n - n_0) - k, (m - m_0) - l]$$

$$= g[n - n_0, m - m_0]$$

Systems can be classified based on their <u>properties</u>

- Amplitude properties:
 - Additivity
 - Homogeneity
 - Superposition
 - Stability
 - Invertibility
- Spatial properties
 - Causality
 - Shift invariance
 - Memory

Linear Systems (filters)

$$f[n,m] \rightarrow \boxed{\text{System } \mathcal{S} } \rightarrow g[n,m]$$

- Linear filtering:
 - Form a new image whose pixels are a weighted sum of original pixel values
 - Use the same set of weights at each point
- **S** is a linear system (function) if and only if it *satisfies*

$$S\{\alpha f_1[n,m] + \beta f_2[n,m]\} = \alpha S\{f_1[n,m]\} + \beta S\{f_2[n,m]\}$$

superposition property

30

Linear Systems (filters)

$$f[n,m] \rightarrow \boxed{\text{System } \mathcal{S} \mid \rightarrow g[n,m]}$$

Is the moving average a linear system?

Yes!

• Is thresholding a linear system? We could have $f_1[n,m] + f_2[n,m] > T$, when $f_1[n,m] < T$ and $f_2[n,m] < T$

No!

Systems can be classified based on their <u>properties</u>

- Amplitude properties:
 - Additivity
 - Homogeneity
 - Superposition
 - Stability
 - Invertibility
- Spatial properties
 - Causality
 - Shift invariance
 - Memory

Linear Shift Invariant (LSI) systems

An LSI system satisfies two properties:

Superposition property

$$S\{lpha f_1[n,m] + eta f_2[n,m]\} = lpha S\{f_1[n,m]\} + eta S\{f_2[n,m]\}$$

Shift invariance

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

Linear Shift Invariant (LSI) systems

An LSI system is completely specified by its impulse response.

$$\begin{array}{c} \delta_2[n,m] \xrightarrow{S} h[n,m] \\ \hline \text{Pass in an impulse function} \end{array}$$
 Record its response

• By passing an impulse function into an LSI system, we get it's impulse response.

2D impulse function $\delta_2[n,m]$

- 1 at [0,0].
- 0 everywhere else

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

Recall the expression for our 3x3 moving average filter:

$$f[n,m] \xrightarrow{S} \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$$

• We can use it to obtain an expression for the impulse response

$$\delta_2[n,m] \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

	? h[0,0]	

$$\delta_2[n,m] \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

1

	1/9 h[0,0]	? h[0,1]	

$\delta_2[n,m] \xrightarrow{S} h$	[n,m]
$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}$	$\sum_{l=1}^{\infty} \delta_2[n-k,m-l]$

	1/9 h[0,0]	1/9 h[0,1]	
		? h[1,1]	

$$\delta_{2}[n,m] \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[n-k,m-l]$$

	1/9 h[0,0]	1/9 h[0,1]	
		1/9 h[1,1]	

$$\delta_2[n,m] \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

F

	1/9 h[0,0]	1/9 h[0,1]	? h[0,2]
		1/9 h[1,1]	

$$\delta_2[n,m] \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

	1/9 h[0,0]	1/9 h[0,1]	O h[0,2]
		1/9 h[1,1]	

$$\delta_2[n,m] \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

0	0	0	0	0
0	1/9 h[-1,-1]	1/9	1/9	0
0	1/9	1/9 h[0,0]	1/9 h[0,1]	O h[0,2]
0	1/9	1/9	1/9 h[1,1]	0
0	0	0	0	0

$$\delta_2[n,m] \xrightarrow{S} h[n,m]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

$$h[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

$$= \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

Ī		h	
1	1	1	1
	1	1	1
9	1	1	1

An LSI system is completely specified by its impulse response.

$$\begin{array}{c} \delta_2[n,m] \xrightarrow{S} h[n,m] \\ \hline \text{Pass in an impulse function} \end{array}$$
 Record its response

• By passing an impulse function into an LSI system, we get it's impulse response.

- An LSI system is completely specified by its impulse response.
 - For any input f, we can compute the output g in terms of the impulse response h.

$$f[n,m] \xrightarrow{S} g[n,m]$$

- In the following, we'll derive an expression for g in terms of h.
- We know the LSI system satisfies the superposition property and the shift-invariance property. We also know h:

$$\delta_2[n,m] \xrightarrow{S} h[n,m]$$

3 properties we need:

We know what happens when we send a delta function through an LSI system:

$$\delta_2[n,m] \rightarrow \left| \text{System } \mathcal{S} \right| \rightarrow h[n,m]$$

• We also know that LSI systems shift the output if the input is shifted:

$$\delta_2[n-k,m-l] \rightarrow \boxed{\text{System } \mathcal{S} \rightarrow h[n-k,m-l]}$$

• Finally, the superposition principle:

$$S\{lpha f_1[n,m] + eta f_2[n,m]\} = lpha S\{f_1[n,m]\} + eta S\{f_2[n,m]\}$$

Key idea: write down f as a sum of impulses

Let's say our input f is a 3x3 image:

f[0,0]	f[0,1]	f[1,1]
f[1,0]	f[1,1]	f[1,2]
f[2,0]	f[2,1]	f[2,2]

	f[0,0]	0	0
=	0	0	0
	0	0	0

	0	f[0,1]	0
+	0	0	0
	0	0	0

+ +	0	0	0
	0	0	0
	0	0	f[2,2]

$$= f[0,0] \cdot \delta_2[n,m] + f[0,1] \cdot \delta_2[n,m-1] + \ldots + f[2,2] \cdot \delta[n-2,n-2]$$

Key idea: write down f as a sum of impulses

More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

$$\xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]\}$$

Key idea: write $\operatorname{down} f$ as a sum of impulses

• We have:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

$$\xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]\}$$

Recall, by the shift invariance property that:

$$S\{\delta_2[n-k, m-l]\} = h[n-k, m-l]$$

$\hbox{Key idea: write down } f \hbox{ as a sum of impulses} \\$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

$$\xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]\}$$

Which means,

$$f[n,m] \xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

- An LSI system is completely specified by its impulse response.
 - For any input f, we can compute the output g in terms of the impulse response h.

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] \xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Discrete Convolution

$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

An LSI system is completely specified by its impulse response.

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$g[n,m] = f[n,m] * h[n,m]$$

$$f[n,m]*h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Summary

- Images as functions
- Systems and Filters
- LSI systems and convolution

