Homework 5

Dev Goyal

April 29, 2023

1 Problem 1

1.1 Task 1

To prove this we need to show that if $X \subseteq Y$ then $f(X) \subseteq f(Y)$

let $x \in f(X)$ This means that x is either 2 or 3, or there exists y such that $y-2 \in X$ or $y-3 \in X$ and x=y.

Case 1: when x = 2 or x = 3. Then x is in f(Y) since 2 and 3 are always in f(Y).

Case 2: $\exists y.(y-2 \in X \lor y-3 \in X) \land x=y$

since x = y and $X \subseteq Y$ then $y - 2 \in Y$ or $y - 3 \in Y$.

which means $y \in f(Y)$ and because x = y then $x \in f(Y)$

since we stared from an arbitrary element of f(X) and showed that it is in f(Y) then $f(X) \subseteq f(Y)$

hence the f is monotonic.

1.2 Task 2

to define the set S* corresponding to the LFP. We first start with the empty set S_0

$$S_0 = \{\}$$

then we apply the function f to it to get S_1

$$S_1 = f(S_0) = \{2, 3\}$$

then we apply the function f to it to get S_2

$$S_2 = f(S_1) = \{2, 3, 4, 5\}$$

then we apply the function f to it to get S_3 and we can continue this process to get the set S_*

$$S^* = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, \dots\} = N$$

2 Question 2

2.1 Task 1

$$\varphi_1 = \forall i (l_a(i) \implies (\exists j succ(i) = j \land l_b(j))) \land \forall i (\neg l_a(i) \implies l_b(i)) \land \exists i. (first(i) \land l_a(i))$$

This formula says that every a is followed by a b and we cannot have a b without an a(to prevent other symbols).

2.2 Task 2

$$\varphi_2(x,y) = \exists P(P(x) \land \neg(P(y)) \land \forall z (P(z) \implies z = x \lor (\exists u, v(succ(u) = z) \land \neg(u = y) \land succ(v) = u \land \neg(P(v)))))$$

This formula states that there exists a set P that contains x but not y, such that every position in P is either x or a position that can be reached from x by a finite sequence of successor operations, excluding y.

2.3 Task 3

$$\varphi_2(x) = l_a(x) \land \forall i (\varphi_2(x,i) \lor x = i \implies (l_a(i) \implies (\exists j succ(i) = j \land l_b(j))) \land \forall i (\neg l_a(i) \implies l_b(i)))$$

Basically this formula says that the x should be a and the formula in task 1 should hold true for all positions i >= x.

3 Question 3

3.1 Task 1

the given literals are:

$$\varphi : y < x, x < y, f(y) = f(7), x < 5$$

applying transformation 1 to the third literal we get 2 formulae: $\Sigma_1 - formula$:

$$y \le x \land x \le y \land x \le 5 \land w_1 = 7$$

 Σ_2 – formula:

$$f(y) = f(w1)$$

With $\{y, w_1\}$ being the shared variable

3.2 Task 2

for the first formula the arrangement is

$$x = y \wedge w_1 = 7 \wedge x \le 5$$

one satisfying assignment is $\{y = 5, x = 5, w_1 = 7\}$ (note this works for any value of x and y less than or equal to 5)

for the second formula the arrangement is

$$f(y) = f(w_1)$$

one satisfying assignment is $\{y=5, w_1=7\}$ with f being the function that maps every element to 1.

3.3 Task 3

from these two models we get the following model for the original formula:

$${y = 5, x = 5, w_1 = 7}$$

with f being the function that maps every element to 1.