Tutorial T21 Toh Zhen Yu, Nicholas A0201406Y

1.

lw \$t6 -24(\$sp)

Binary: 100011 11101 01110 11111111111101000

Hex: 0x8FAEFFE8

Field	remarks	value	
RegDst	I type instruction	0	
MemRead	true	1	
Branch	false	0	
MemtoReg	Read data	1	
MemWrite	false	0	
ALUSrc	Use immediate	1	
RegWrite	true	1	
Instr[31-26]	lw	0x23	
Instr[25-21]	\$t6	29	
Instr[20-16]	\$sp	14	
Instr[15-11]	-24 in hex is FFE8	0b11111	
1	Value in \$sp + (-24)	0x7FFFEFDC	
2	Value in \$t6	0x00006200	
3		0b101000	
4	-24, sign extended	0xFFFFFE8	
5	PC+4-24*4	108	

2. a.

A.B'.E.L'.O.P'.T'.W.H' + A.L + A.L'.T'

= A.L'.T'.B'.E.O.P'.W.H' + A.L + A.L'.T' (commutative law)

= A.L'.T'.B'.E.O.P'.W.H' + A.L'.T' + A.L (commutative law)

= A.L'.T' + A.L (absorption 1)

= A.(L'.T' + L) (distributive law)

= A.(T' + L) (absorption 2)

= A.T' + A.L (distributive law)

b.

Number of Pls: 6 Number of EPls: 1

Simplest SOP: a'.b'.d' + a'.b'.c' + a.b.c' Simplest POS: (c' + d').(a + b').(a' + b)

c. Minterms are 1,7,9,12,13,14

Number of Pls: 4 Number of EPls: 4

Simplest SOP: b'.c' + a'.b.c.d + a.c' + a.d'

Simplest POS: (b + c').(a + b' + c).(a + d).(a' + c' + d')

3.

74LS83 4-Bit Binary Adder with Fast Carry.

It takes in two 4-bit numbers A and B, and carry-in C_0 , and outputs a 5-bit number VWXYZ, which can be treated as a 4-bit number WXYZ and a carry-out V. A and B are represented by $A_4A_3A_2A_1$ and $B_4B_3B_2B_1$ respectively.

4.

a.

Relevant prime numbers: 2,3,5,7,11,13,17,19,23

Don't care: 0,1,2,3,4,5,6,7

Minterms: 10,11,13,15,19,21,25,27,31

¹ Generated from https://www.charlie-coleman.com/experiments/kmap/

Map					
	$\overline{\mathrm{D.E}}$	D.E	D.E	$D.\overline{E}$	
$\overline{A}.\overline{B}.\overline{C}$	X	X	X	X	
A.B.C	X	X	X	X	
A.B.C	0	1	1	0	
$\overline{A}.B.\overline{C}$	0	0	1	1	
A.B.C	0	0	1	0	
$A.\overline{B}.C$	0	1	0	0	
A.B.C	0	0	1	0	
A.B.C	0	1	1	0	

b.

B.D.E + A'.C'.D + C'.D.E + A'.C.E + A.B.C'.E + B'.C.D'.E

C.

To be valid, the decimal equivalent of the raw input must be greater than or equal to 8. It is sufficient to check that A=1 or B=1. Hence we use a single OR gate.

5.

a.

K-map of G:

² Generated from

Let X1=A, X0=C, Y1=B, Y0=D, then G is the X<Y output

b.

