Superposition states that whenever a linear system is excited, or driven, by more than one independent source of energy, the total response is the sum of the individual responses.

An individual response is the result of an independent source

acting along 6Ω 6Ω

Real-world applications (sensitivity Analysis)

- It is not possible to fabricate dentical electrical components.
- For example, resistors produced from the same manufacturing process can vary in value by as much as 20%.
- Therefore, in creating an electrical system, the designer must consider the impact that component variation will have on the performance of the system.
- Sensitivity analysis permits the designer to calculate the impact of variations in the component values on the output of the system.

$$v_{1} = \frac{R_{1}\{R_{3}R_{4}I_{g2} - [R_{2}(R_{3} + R_{4}) + R_{3}R_{4}]I_{g1}\}}{(R_{1} + R_{2})(R_{3} + R_{4}) + R_{3}R_{4}},$$

$$v_{2} = \frac{R_{3}R_{4}[(R_{1} + R_{2})I_{g2} - R_{1}I_{g1}]}{(R_{1} + R_{2})(R_{3} + R_{4}) + R_{3}R_{4}}.$$

$$I_{g1}$$

$$v_{1} \neq R_{1}$$

$$v_{2} \neq R_{3} \neq R_{4}$$

$$V_{1} \neq R_{2}$$

$$V_{2} \neq R_{3} \neq R_{4}$$

$$V_{3} \neq R_{4} \neq R_{2}$$

$$V_{1} \neq R_{3}$$

$$V_{2} \neq R_{3} \neq R_{4} \neq R_{4}$$

$$V_{1} \neq R_{3}$$

$$V_{2} \neq R_{3} \neq R_{4} \neq R_{4}$$

$$V_{2} \neq R_{3} \neq R_{4} \neq R_{4}$$

$$V_{1} \neq R_{3}$$

$$V_{2} \neq R_{3} \neq R_{4} \neq R_{4}$$

$$V_{2} \neq R_{3} \neq R_{4} \neq R_{4}$$

$$V_{3} \neq R_{4} \neq R_{4} \neq R_{4}$$

$$V_{4} \neq R_{4} \neq R_{4} \neq R_{4}$$

$$V_{1} \neq R_{4} \neq R_{4} \neq R_{4}$$

$$V_{2} \neq R_{3} \neq R_{4} \neq R_{4}$$

$$V_{1} \neq R_{1} \neq R_{2} \neq R_{3} \neq R_{4} \neq R_{4}$$

$$V_{1} \neq R_{1} \neq R_{2} \neq R_{3} \neq R_{4} \neq R_{4}$$

$$V_{1} \neq R_{1} \neq R_{2} \neq R_{3} \neq R_{4} \neq R$$

Assume the nominal values of the components in the circuit in Fig. 4.74 are: $R_1 = 25 \ \Omega$; $R_2 = 5 \ \Omega$; $R_3 = 50 \ \Omega$; $R_4 = 75 \ \Omega$; $I_{g1} = 12 \ A$; and $I_{g2} = 16 \ A$. Use sensitivity analysis to predict the values of v_1 and v_2 if the value of R_1 is different by 10% from its nominal value.

$$v_1 = \frac{25\{3750(16) - [5(125) + 3750]12\}}{30(125) + 3750} = 25 \text{ V}$$

$$v_2 = \frac{3750[30(16) - 25(12)]}{30(125) + 3750} = 90 \text{ V}$$

$$\frac{dv_1}{dR_1} = \frac{[3750 + 5(125)] - [3750(16) - [3750 + 5(125)]12]}{[(30)(125) + 3750]^2}$$

$$\frac{dv_2}{dR_1} = \frac{3750[3750(16) - [5(125) + 3750]12]]}{(7500)^2}$$

$$= 0.5 \text{ V}/\Omega.$$

that R_1 is 10% less than its <u>nominal</u> value, that is, $R_1=22.5~\Omega$. Then $\Delta R_1=-2.5~\Omega$ and Eq. 4.51 predicts that Δv_1 will be

$$\Delta v_1 = \left(\frac{7}{12}\right)(-2.5) = -1.4583 \text{ V.} \quad v_1 = 25 - 1.4583 = 23.5417 \text{ V.}$$

$$\Delta v_2 = 0.5(-2.5) = -1.25 \text{ V},$$
 $v_2 = 90 - 1.25 = 88.75 \text{ V}.$
 $v_1 = 23.4780 \text{ V},$
 $v_2 = 88.6960 \text{ V}.$

that for a 10% change in R_1 , the percent error between the predicted and exact values of v_1 and v_2 is small. Specifically, the percent error in $v_1 = 0.2713\%$ and the percent error in $v_2 = 0.0676\%$.