an equivalence relation.

Remark 1. Statements (1) - (3) can be equivalently replaced by the following comprehensive statement:

The prime quanta in an integral domain similar to a given one, with units form a multiplicative set which is

". thillidisivib to radered by divisibility."

pume

Proof. (1) Let q be a prime quantum and q, be a non unit factor of q. To prove that q, is a prime quantum we have to show that q, satisfies (1) and (2) of Definition J, (obvious—Ly q, is a quantum). Now for some n

Ly q_1 is a quantum), now let $a_p, q_g | q^n$ and so $q_p | q_g$ or $q_g | q_g$ i.e. (1) $q_p, q_g | q_g$ then $q_p, q_g | q_g$ and so $q_p | q_g$ or $q_g | q_g$ i.e. (1) of Definition 3, is satisfied.

Further if q_t is non co-prime to ab then so is q_t and every factor q_t of q_t which divides ab, being also a factor of q^n can be written as $q_t = q_u q_v$ where $q_u |$ a and $q_v |$ b, which is $q_v |$ of Definition (3).

(2) If q, , qs are similar prime quanta then let qs be a

non unit common factor of q_1 , q_2 . By (1) above q_3 is a prime quantum. So there exist in,n such that $q_1 | q_3$, $q_2 | q_3$ and thus $q_1 q_2 | q_3$ and $q_3 | q_4$ and by (1) of Definition 3, $q_4 | q_2$ or $q_2 | q_3$.

sgain a prime quantum (for every positive integral m). By

(1) of Def. 3, if x,y|q^m then x|y or y|x. So if a non unit

h|q^m, h|q or q|h. If h|q then there is n such that q|hⁿ

and so q^m|h^{nm}, and if q|h then q^m|h^m. Hence q^m is a guantum. Further if h₁, h₂ are factors of an integral power of quantum. Further if h₁, h₂ are factors of a power of q and so h₁|h₂ or h₂|h₁.

gimilarly if q^m is non co-prime to ab then so is q and it is similarly if q^m satisfies (2) of Def. 3.

Finally if q1, q2 are similar prime quanta and if q3 is is a non unit common factor then there exists an integer m