Assignment 14, Authomata Theory

Oleg Sivokon

<2015-12-18 Fri>

Contents

1	Pro	blems														2
	1.1	Proble	m 1													2
		1.1.1	Answer	1												2
		1.1.2	Answer	2												2
		1.1.3	Answer	3			•									3
	1.2	Proble	m 2													4
		1.2.1	Answer	4												4
	1.3	Proble	m 3				•			•			•			6
		1.3.1	Answer	5			•									7
	1.4	Proble	m 4				•			•			•			7
		1.4.1	Answer	6												7

1 Problems

1.1 Problem 1

For each language below over the alphabet $\Sigma = \{a, b\}$ specify the number of equivalence classes and the distinguishing extension that distinguishes between the said classes:

- 1. $L = \{b, bb, bbb, bba\}.$
- 2. All words which begin and end in ba.
- 3. $L = \{c^i b^i a^i \mid i \ge 0\}.$

1.1.1 Answer 1

We can distinguish between words having one character by appending ϵ , since $b.\epsilon$ is in the language and $a.\epsilon$ isnt. There are four words of length 2, namely aa, ab, ba and bb, and we can distinguish between bb and the rest of the words by appending ϵ , since, again, only bb is in the language. Finally, there are 8 words of length 3, of which bba and bbb can be distinguished from the rest by appending ϵ . Words of length 4 and greater are indistinguishable since no word in L is that long. Hence, there must be in total 4 equivalence classes.

1.1.2 Answer 2

At first, I will define δ for this language, thus simultaneously showing it is regular:

	a	b
q_0	q_f	q_1
q_1	q_2	q_f
$*q_2$	q_3	q_4
q_3	q_3	q_4
q_4	q_5	q_3
$*q_5$	q_3	q_4

Thus establishing the upper bound on number of classes: 6. Now, I will use a "representative" of every class to find the distinguishing extension.

	b	ba	baa	bab
baba	ba		ϵ	a
bab	ba	a	a	
baa	ba	ϵ		
ba	ϵ			

Apparently, baba and ba are indistinguishable, i.e. q_2 and q_5 could be unified. Hence, the minimal automata has 5 states. Hence, according to Myhill-Nerode there are 5 equivalence classes.

1.1.3 Answer 3

Not only this language doesn't answer the requirement of having only two letters in its alphabet, it is also not a regular language. Once I prove the language isn't regular, it immediately follows that it has infinitely many equivalence classes.

Suppose, for contradiction, L is regular. If this is the case, its automaton must have a finite number of classes, say n. Now consider all words in L starting with c^0 , c^1 and so on trhough to c^n . In total, there would be n+1 such words, which, by pigeonhole principle implies that at least two of them belong in the same class, i.e. must end in the same suffix, but clearly for any two c^k and c^r , where $k \neq r$ it is also the case that $a^k b^k \neq a^r b^r$, hence the initial assumption must be false. Hence L is not regular and, consequently, has infinitely many equivalence classes.

1.2 Problem 2

Build the reduced DFA of the given NFA:

1.2.1 Answer 4

In the first step, notice that there are no arrows leading to q_4 , this means we can safely remove it and all the arrows leading from it:

In the next step, we can replace all ϵ -transitions by the arcs leading directly to the nodes inside ϵ -closure of the source node.

Now we can create product automation to obtain a DFA:

Now we are ready to build the table of "representatives" of the classes:

	a	b	aa	ab	ba	aab
aba	a	a		a	a	a
aab	b	aa	b		b	
ba	aa	b	a	b		
ab		aa	a			
aa	a	a				
b	b					

Which means that q_5 and q_3 can be unified, similarly q_1 and q_6 and $\{q_3,q_6\}$ with q_1 . This gives us the following reduced DFA:

1.3 Problem 3

Prove that the language $L=\{0^r1^s2^t0^{t+3}\mid r,s,t\geq 1\}$ is not regular using Myhill-Nerode theorem.

1.3.1 Answer 5

Assume, for contradiction, L is regular. Then according to Myhill-Nerode theorem the free monoid Σ^* where $\Sigma = \{0,1,2\}$ is partitioned into finite number of equivalence classes by the relation R_L defined on L, where words in Σ^* are related iff they don't have a distinguishing extension. Let the number of equivalence classes created by R_L be n. Consider the set of words where r=1, s=1 and $t=1\ldots n+1$. By pigeonhole principle there must be two words in this set in the same equivalence class. Suppose without loss of generality $w_1=0^11^12^i$ and $w_2=0^11^12^j$ where $i\neq j$ are these words. Then it follows that there does not exist a distinguishing extension for them, but if we choose 0^{i+3} to be the distinguishing extension, then w_1 is in the language, but w_2 isn't since $0^{i+3}\neq 0^{j+3}$. Hence the initial claim is false, hence the language is not regular.

1.4 Problem 4

Given alphabet Σ s.t. $|\Sigma| \geq 2$ and $1, 0 \in \Sigma$, in how many equivalence classes does the relation R_L partition its free monoid, if the language for this relation is given by regular expression $\Sigma\Sigma^+10\Sigma$?

1.4.1 Answer 6

In the first step I'll design a DFA to accept this language:

Let's verify whether every two "representatives" of this automaton have a distinguishing extension:

For the ease of notation $\Omega = \Sigma \setminus 1$.

	Σ	$\Sigma\Sigma$	$\Sigma\Sigma 1$	$\Sigma\Sigma10$
$\Sigma\Sigma10\Omega$	ϵ	ϵ	ϵ	ϵ
$\Sigma\Sigma10$	1	1	1	
$\Sigma\Sigma 1$	0	0		
$\Sigma\Sigma$	101			

Since we could find a distinguishing extension for each pair of the states in the automaton, it follows that the number of equivalence classes is the same as the number of the states, i.e. 7.