Unit 2 – Particles & Waves Section 6 – Interference

2007 16. A beam of white light is passed through two optical components P and Q. Component P produces a number of spectra and component Q produces a spectrum as shown.

Which row in the table identifies the optical components and the colour of light seen at position X and position Y?

	Optical	Colour	Optical	Colour
	component	seen at	component	seen at
	P	X	Q	Y
A	grating	red	triangular prism	red
В	grating	red	triangular prism	violet
С	grating	violet	triangular prism	red
D	triangular prism	red	grating	violet
E	triangular prism	violet	grating	red

2008 13. Which of the following proves that light is transmitted as waves?

- A Light has a high velocity.
- B Light can be reflected.
- C Light irradiance reduces with distance.
- D Light can be refracted.
- E Light can produce interference patterns.

2008 14. A source of microwaves of wavelength λ is placed behind two slits, R and S.

A microwave detector records a maximum when it is placed at P.

The detector is moved and the **next** maximum is recorded at Q.

The path difference (SQ - RQ) is

- A 0
- B $\frac{\lambda}{2}$
- C λ
- D $\frac{3\lambda}{2}$
- E 2λ.

2009 14. A prism is used to produce a spectrum from a source of white light as shown.

The colour observed at X is noted.

The prism is then replaced by a grating to produce spectra as shown.

The colour observed at Y is noted.

Which row in the table gives the colour and wavelength of the light observed at X and the light observed at Y?

	Colour of light at X	Wavelength of light at X/nm	Colour of light at Y	Wavelength of light at Y/nm
A	Red	450	Red	450
В	Blue	450	Blue	450
C	Blue	650	Red	450
D	Blue	450	Red	650
Е	Red	650	Blue	450

2011 15. Two identical loudspeakers, L₁ and L₂, are connected to a signal generator as shown.

An interference pattern is produced.

 L_2

A minimum is detected at point T.

The wavelength of the sound is 40 mm.

The distance from L₁ to T is 500 mm.

The distance from L2 to T is

- A 450 mm
- B 460 mm
- C 470 mm
- D 480 mm
- E 490 mm.

2012 14. S₁ and S₂ are sources of coherent waves.

An interference pattern is obtained between X and Y.

The first order maximum occurs at P, where $S_1P = 200 \text{ mm}$ and $S_2P = 180 \text{ mm}$.

For the third order maximum, at R, the path difference (S_1R-S_2R) is

- A 20 mm
- B 30 mm
- C 40 mm
- D 50 mm
- E 60 mm.

2014 14. The spectrum of white light from a filament lamp may be viewed using a prism or a grating.

A student, asked to compare the spectra formed by the two methods, makes the following statements.

- I The prism produces a spectrum by refraction and the grating produces a spectrum by interference.
- II The spectrum formed by the prism consists of all the wavelengths present in the white light and the spectrum formed by the grating consists of only a few specific wavelengths.
- III The prism produces a single spectrum and the grating produces more than one spectrum.

Which of the statements is/are correct?

- A I only
- B II only
- C I and II only
- D I and III only
- E I, II and III

2015 13. Two identical loudspeakers, L_1 and L_2 , are operated at the same frequency and in phase with each other. An interference pattern is produced.

At position P, which is the same distance from both loudspeakers, there is a maximum.

The next maximum is at position R, where $L_1R = 5.6$ m and $L_2R = 5.3$ m.

The speed of sound in air is $340 \,\mathrm{m}\,\mathrm{s}^{-1}$.

The frequency of the sound emitted by the loudspeakers is

- A 8.8×10^{-4} Hz
- B $3\cdot 1 \times 10^1 \text{Hz}$
- C $1.0 \times 10^2 \text{Hz}$
- D $1.1 \times 10^3 Hz$
- E 3.7×10^3 Hz.

2016 13. A ray of monochromatic light is incident on a grating as shown.

The wavelength of the light is 633 nm.

The separation of the slits on the grating is

- A 1.96×10^{-7} m
- B 1.08×10^{-6} m
- C 2.05×10^{-6} m
- D $2.15 \times 10^{-6} \, \text{m}$
- E 4.10×10^{-6} m.

2017 11. A student makes the following statements about waves from coherent sources.

- I Waves from coherent sources have the same velocity.
- II Waves from coherent sources have the same wavelength.
- III Waves from coherent sources have a constant phase relationship.

Which of these statements is/are correct?

- A I only
- B II only
- C I and II only
- D I and III only
- E I, II and III

2018 13. Waves from two coherent sources, S_1 and S_2 , produce an interference pattern. Maxima are detected at the positions shown below.

The path difference $S_1P - S_2P$ is 154 mm.

The wavelength of the waves is

- A 15.4 mm
- B 25.7 mm
- C 28.0 mm
- D 30.8 mm
- E 34·2 mm.

2019 17. Waves from two coherent sources, S_1 and S_2 , produce an interference pattern. Maxima are detected at the positions shown.

The wavelength of the waves is 28 mm.

For the third minimum at P the path difference $(S_2P - S_1P)$ is

- A 42 mm
- B 56 mm
- C 70 mm
- D 84 mm
- E 98 mm.