SOLUŢII ŞI BAREMURI

Etapa județeană și a municipiului București 5 martie 2005

CLASA A VII-a

Subiectul 1. $S_a = a^{2005} + (10+a)^{2005} + (20+a)^{2005} + \dots + (90+a)^{2005} \dots 3 \text{ puncte}$ $S_a = \text{multiplu de } 10 + 10 \cdot a^{2005} \dots 3 \text{ puncte}$ implică S_a multiplu de $10 \dots 1 \text{ punct}$ **Subiectul 2.**

Din $\frac{400+5y^2-5x}{40} \in \mathbf{Q}$ rezultă $\sqrt{5y}$ natural adică $y=5m^2, x=5n^2,$
$m, n \in \mathbb{N}$
Rezultă $m + n = 4$. Cum $n < m$ avem $n = 1, m = 3$ și în fine $x = 5, y = 1$
45
Subiectul 4. Fie O centrul cercului circumscris triunghiului ABC .
Rezultă că triunghiurile AOB,BOC și AOC sunt isoscele. Dacă O este
centrul cercului înscris triunghiului BCD atunci semidreptele (CO ,(DO și
$(BO \text{ sunt bisectoarele unghiurilor triunghiului } BCD \dots 2 \text{ puncte}$
Unghiurile triunghiului ABC au măsurile $36^{\circ}, 72^{\circ}, 72^{\circ}, \dots 2$ puncte
Triunghiurile CAD și BCA sunt asemenea 2 puncte
De aici rezultă $AC^2 = AD \cdot AB$