Reserved Cells

Ex. 1	
Ex. 2	
Ex. 3	
Ex. 4	
Ex. 5	
Ex. 6	
Tot.	

Algorithms and Programming 13 February 2018

Part I: Theory

Register Number		ie	First Name														
Cours	e: C) 01 <i>OG</i>	DLP	10 c	redit		(\bigcirc (020	GD.	LM 12	credit :					
No books or notes are allowed. Solve exercises directly within the reserved space. Added sheets are accepted only when strictly necessary. Examination time: 50 minutes.												s are					
1. (2.0 points) Sort in ascending order	er with shell	sort the	followi	ng arı	ray of	inte	egers:										
	10	8 5 4	1 8 5	5 3	6 1	9	12	9	15	13	0						
Use the Knuth's seque	ence $h = 3 \cdot h$	h+1 (1,	4, 13,	etc.).	Repo	rt al	ll ma	in s	teps	to o	btain the	final	l order	•			

2. (1.0 points)

Sort in ascending order with counting sort the following array of integers:

 $1 \quad 4 \quad 5 \quad 3 \quad 2 \quad 7 \quad 8 \quad 2 \quad 1 \quad 9 \quad 0 \quad 2 \quad 6 \quad 9 \quad 3$

Show the content of the arrays A, B and C, and all relevant intermediate steps on the array C.

3. (2.0 **points**)

10 credit course (01OGDLP)

A correct BST contain integer keys in the range 1-1000. The user searches for key 871. Among these sequences, which are the ones that cannot occur? Why?

 $530 \quad 750 \quad 971$ 898 871 500 991

12 credit course (02OGDLM)

Using a greedy algorithm find an optimal Huffman code for the following symbols with the specified frequencies:

 $A:12 \quad B:32 \quad C:10 \quad D:8 \quad E:9 \quad F:17 \quad G:13 \quad H:4 \quad I:11 \quad J:8$

4. (2.0 points)

Given the sequence of keys

 $101 \quad 124 \quad 157 \quad 172 \quad 98 \quad 133 \quad 44 \quad 205 \quad 16 \quad 78 \quad 189$

draw the final configuration of an initially empty hash table of size 23 where insertion of the previous sequence occurs. Assume open addressing with double hashing and hash functions $h_1(k) = k\%23$, $h_2(k) = 1 + k\%97$. Show relevant intermediate steps.

5. (1.0 **point**)

10 credit course (01OGDLP)

Given the following BST perform the following operations:

$$+3 +27 +98 +43 +39 +60 +32 -30 -45 -67$$

where each + symbol indicates and insertion in the leaves, and each - symbol represents an extraction.

12 credit course (02OGDLM)

Partition the following BST around key 58:

6. (1.0 + 2.0 + 1.0 points)

Suppose to have the following directed graph:

- Represent it as an adjacency matrix.
- Visit it in depth-first starting at node A. Label nodes with discovery and end-processing times in the format $time_1/time_2$.
- Redraw it labeling each edge as T (tree), B (back), F (forward), C (cross).

Whenever necessary consider nodes in alphabetical order.