

Math 1552

Section 10.4: Comparison Tests for Infinite Series

Math 1552 lecture slides adapted from the course materials
By Klara Grodzinsky (GA Tech, School of Mathematics, Summer 2021)

Recap of last class:

- *Divergence test*: if the limit is not 0, the series diverges
- *Integral test*: use with a function that has an “easy” antiderivative

$$\sum_{k=2}^{\infty} \frac{1}{k \ln k}$$

Basic Comparison Test: Part (a)

Let $\sum_k a_k$ be a series with $a_k \geq 0$ for all k .

If we can find a series $\sum_k c_k$ such that

$\sum_k c_k$ converges and $a_k \leq c_k$ for all but

finitely many terms, then $\sum_k a_k$ must also

converge.

Basic Comparison Test: Part (b)

Let $\sum_k a_k$ be a series with $a_k \geq 0$ for all k .

If we can find a series $\sum_k d_k$ such that

$\sum_k d_k$ diverges and $a_k \geq d_k \geq 0$ for all but

finitely many terms, then $\sum_k a_k$ must also

diverge.

Example: Does this series converge?

$$(A) \sum_{k=1}^{\infty} \frac{1}{1+2^k}$$

Example: Does this series converge?

$$(B) \sum_{k=2}^{\infty} \frac{1}{\sqrt{k} - 1}$$

Limit Comparison Test

Let $\sum_k a_k$ be a series with $a_k \geq 0$ for all k .

Select a series $\sum_k b_k$. If $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = c > 0$,

then both series converge or both series diverge.

NOTE: Use one of the series you *KNOW* converges or diverges (geometric, p -series, etc.).

This test is a good alternative to the comparison test.

Example: Does the series converge?

$$(A) \sum_{k=1}^{\infty} \frac{k+1}{k^3 + 4}$$

Example: Does the series converge?

$$(B) \sum_{k=1}^{\infty} \frac{k}{\sqrt{k^3 + 1}}$$

Challenge example: Does the series converge?

$$S = \sum_{n=2}^{\infty} \frac{e^{3n}}{e^{6n} + 16}$$

Math 1552

Section 10.5: The Ratio and Root Tests for Infinite Series

Math 1552 lecture slides adapted from the course materials
By Klara Grodzinsky (GA Tech, School of Mathematics, Summer 2021)

Recap of last class:

- *Divergence test*: if the limit is not 0, the series diverges
- *Comparison test*: find a bigger series that converges or a smaller series that diverges
- *Integral test*: use with a function that has an “easy” antiderivative

Recap of last class:

- *Limit Comparison test*: pick a series that you know converges or diverges.

(If the limit of the ratio of terms in your series to the given series approaches a finite, positive number, then both series either converge or diverge.)

Ratio Test

Let $\sum_{k=1}^{\infty} a_k$ be a series with all positive terms.

Let $L = \lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n}$.

- (a) If $L < 1$, then $\sum_{k=1}^{\infty} a_k$ converges.
- (b) If $L > 1$, then $\sum_{k=1}^{\infty} a_k$ diverges.
- (c) If $L = 1$, then the test is *INCONCLUSIVE!!!!*

Example 1:

Determine whether the next series converges or diverges.

$$\sum_{k=1}^{\infty} \frac{3^k}{k^2}$$

Example 2:

Determine whether the next series converges or diverges.

$$\sum_{k=1}^{\infty} \frac{k \cdot 3^k}{(2k)!}$$

Root Test

Let $\sum_{k=1}^{\infty} a_k$ be a series with all positive terms.

Let $R = \lim_{n \rightarrow \infty} \sqrt[n]{a_n}$.

(a) If $R < 1$, then $\sum_{k=1}^{\infty} a_k$ converges.

(b) If $R > 1$, then $\sum_{k=1}^{\infty} a_k$ diverges.

(c) If $R = 1$, then the test is *INCONCLUSIVE!!!!*

Example:

Determine if the series converges or diverges.

$$\sum_{k=1}^{\infty} \left(1 + \frac{2}{k}\right)^{k^2}$$

Tips: which test to use when?

- ALWAYS start with the divergence test.

Tips: which test to use when?

- ALWAYS start with the divergence test.
- Use the integral test if the function looks “easy” to integrate or can be solved with a u-substitution.

Tips: which test to use when?

- ALWAYS start with the divergence test.
- Use the integral test if the function looks “easy” to integrate or can be solved with a u-substitution.
- Use the harmonic series, geometric series, or p-series in the comparison and limit comparison tests.

Tips (continued)

- If you are unsure of which way the inequality may go, use the limit comparison test instead of the comparison test.

Tips (continued)

- If you are unsure of which way the inequality may go, use the limit comparison test instead of the comparison test.
- Use the root test when everything is raised to the k^{th} power.

Tips (continued)

- If you are unsure of which way the inequality may go, use the limit comparison test instead of the comparison test.
- Use the root test when everything is raised to the k^{th} power.
- Use the ratio test when you have factorials, or when no other test works.

Math 1552

Section 10.6: Alternating Series

Math 1552 lecture slides adapted from the course materials
By Klara Grodzinsky (GA Tech, School of Mathematics, Summer 2021)

Alternating Series Test

Let $\sum_k a_k$ be an alternating series.

- (a) If $\sum_k |a_k|$ converges, then the series *converges absolutely*.

Alternating Series Test (cont.)

Let $\sum_k a_k$ be an alternating series.

(b) If (a) fails, then if :

i) $\{a_n\}$ is a decreasing sequence, and

ii) $\lim_{n \rightarrow \infty} |a_n| = 0$,

then the series *converges conditionally*.

(c) Otherwise, the series *diverges*.

Example A:

Determine if the alternating series converges absolutely, converges conditionally, or diverges.

$$\sum_{k=1}^{\infty} (-1)^k \frac{1}{\sqrt{k+4}}$$

Example B:

Determine if the alternating series converges absolutely, converges conditionally, or diverges.

$$\sum_{k=1}^{\infty} (-1)^k \frac{k}{3^k}$$

Example C:

Determine if the alternating series converges absolutely, converges conditionally, or diverges.

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k^3}{k^3 + 2k + 1}$$

Estimating an Alternating Sum

Let $\sum_k a_k$ be a convergent alternating series with a sum of L.

$$\text{Then : } |s_n - L| < |a_{n+1}|.$$

Example:

Estimate the sum of the series below
within an error range of 0.001.

$$\sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)!}$$

Rearrangements

- If an alternating series converges *absolutely*, rearranging the terms will NOT change the sum.
- If an alternating series converges *conditionally*, then the sum changes when the terms are written in a different order.

Bonus Problem 1:

If $a_n = 1 - \frac{(-1)^n}{n}$, $n \geq 1$, evaluate $\sum_{n=1}^{\infty} (1 - a_n)$

Bonus Problem 2:

If $a_n = 1 - \frac{(-1)^n}{n}$, $n \geq 1$, evaluate $\sum_{n=1}^{\infty} (1 - a_{2n})$

