Lógica Computacional I fausto.david.hernandez.jasso@ciencias.unam.mx Semántica de la Lógica de Proposiciones

2023-09-04

Significado de los conectivos lógicos 1.

Negación 1.1.

- Símbolo utilizado: ¬
- Correspondencia con el español: No, no es cierto que, es falso que, etc.
- Otros símbolos: $\sim \varphi, \ \overline{\varphi}$.

1.1.1. Tabla de verdad

$$egin{array}{ccc} arphi & \neg arphi \ 1 & 0 \ 0 & 1 \ \end{array}$$

Disyunción 1.2.

1.2.1. Descripción

La **disyunción** de las fórmulas φ, ψ es la fórmula $\varphi \vee \psi$. Las fórmulas φ, ψ se llaman **disyuntos**.

- Símbolo utilizado: ∨
- Correspondencia con el español: ó.
- Otros símbolos: $\varphi + \psi, \varphi \mid \psi$.

1.2.2. Tabla de verdad

φ	ψ	$\varphi \vee \psi$
1	1	1
1	0	1
0	1	1
0	0	0

1.3. Conjunción

1.3.1. Descripción

La **conjunción** de las fórmulas φ, ψ es la fórmula $\varphi \wedge \psi$. Las fórmulas φ, ψ se llaman **conyuntos**.

- Símbolo utilizado: ∧
- Correspondencia con el español: y, pero
- Otros símbolos: $\varphi \wedge \psi$, $\varphi \cdot \psi$ ó $\varphi \psi$

1.3.2. Tabla de verdad

φ	ψ	$\varphi \wedge \psi$
1	1	1
1	0	0
0	1	0
0	0	0

1.4. Implicación

1.4.1. Descripción

La **implicación** o **condicional** de las fórmulas φ, ψ es la fórmula $\varphi \to \psi$. La fórmula φ es el *antecedente* y la fórmula ψ es el *consecuente* de la implicación.

- Símbolo utilizado: \rightarrow
- Correspondencia con el español: $\varphi \to \psi$ significa: si φ entonces ψ ; ψ , si φ ; φ sólo si ψ ; φ es condición suficiente para ψ ; ψ es condición necesaria para φ .
- Otros símbolos: $\varphi \Rightarrow \psi$, $\varphi \supset \psi$

1.4.2. Tabla de verdad

φ	ψ	$\varphi \to \psi$
1	1	1
1	0	0
0	1	1
0	0	1

1.5. Doble implicación

1.5.1. Descripción

La equivalencia o bicondicional de las fórmulas φ, ψ es la fórmula $\varphi \leftrightarrow \psi$.

- Símbolo utilizado: ↔
- Correspondencia con el español: φ es equivalente a ψ ; φ si y sólo si ψ ; φ es condición necesaria y suficiente para ψ .
- \bullet Otros símbolos: $\varphi \Leftrightarrow \psi$, $\varphi \equiv \psi$

1.5.2. Tabla de verdad

φ	ψ	$\varphi \leftrightarrow \psi$
1	1	1
1	0	0
0	1	0
0	0	1

2. Semántica formal de los conectivos

2.1. Semántica formal de los conectivos lógicos

2.1.1. Tipo Bool

El tipo de valores booleanos denotado Bool se define como Bool= $\{0,1\}$.

2.1.2. Estado

Un estado o asignación de las variables (proposicionales) es una función

$$\mathcal{I} \; : \; VarP o \mathtt{Bool}$$

Dadas n variables proposicionales existen 2^n estados distintos para estas variables. Lo anterior tiene justificación a través del **principio de la multiplicación**.

2.1.3. Interpretación

Dado un estado de las variables $\mathcal{I}: VarP \to \mathsf{Bool}$, definimos la interpretación de las fórmulas con respecto a \mathcal{I} como la función $\mathcal{I}^\star: \mathsf{PROP} \to \mathsf{Bool}$ tal que:

- $\mathcal{I}^{\star}(p)=\mathcal{I}(p)$ para $p\in VarP$, es decir $\mathcal{I}^{\star}|_{VarP}=\mathcal{I}$
- $\mathcal{I}^{\star}(\top) = 1$
- $\mathcal{I}^*(\neg \varphi) = 1$ sí y solamente sí $\mathcal{I}^*(\varphi) = 0$.
- $\mathcal{I}^{\star}(\varphi \wedge \psi) = 1$ sí y solamente sí $\mathcal{I}^{\star}(\varphi) = \mathcal{I}^{\star}(\psi) = 1$.
- $\mathcal{I}^{\star}(\varphi \vee \psi) = 0$ sí y solamente sí $\mathcal{I}^{\star}(\varphi) = \mathcal{I}^{\star}(\psi) = 0$.
- $\mathcal{I}^{\star}(\varphi \to \psi) = 0$ sí y solamente sí $\mathcal{I}^{\star}(\varphi) = 1$ e $\mathcal{I}^{\star}(\psi) = 0$.
- $\mathcal{I}^*(\varphi \leftrightarrow \psi) = 1$ sí y solamente sí $\mathcal{I}^*(\varphi) = \mathcal{I}^*(\psi)$.

2.1.4. Sobrecarga de operadores

Obsérvese que dado un estado de las variables \mathcal{I} , la interpretación \mathcal{I}^* generada por \mathcal{I} está determinada de manera única por lo que de ahora en adelante escribiremos simplemente \mathcal{I} en lugar de \mathcal{I}^* .

2.2. Lema de coincidencia

Sean $\mathcal{I}_1, \mathcal{I}_2: VarP \to \mathsf{Bool}$ dos estados que coinciden en las variables proposicionales de la fórmula φ , es decir $\mathcal{I}_1(p) = \mathcal{I}_2(p)$ para toda $p \in vars(\varphi)$. Entonces $\mathcal{I}_1(\varphi) = \mathcal{I}_2(\varphi)$.

2.3. Estado modificado o actualizado

Sean $\mathcal{I}: VarP \to \mathsf{Bool}$ un estado de las variables, p una variable proposicional y $v \in \mathsf{Bool}$. Definimos la actualización de \mathcal{I} en p por v, denotado $\mathcal{I}[p/v]$ como sigue:

$$\mathcal{I}[p/v](q) = \begin{cases} v & \text{si } q = p \\ q & \text{si } q \neq p \end{cases}$$

2.4. Lema de sustitución

Sean \mathcal{I} una interpretación, p una variable proposicional y ψ una fórmula tal que $\mathcal{I}^*(\psi) = v$. Entonces

$$\mathcal{I}\left(\varphi\left[p := \psi\right]\right) = \mathcal{I}\left[p/v\right]\left(\varphi\right)$$

3. Ejercicios

3.1. Ejercicio 1

Defina utilizando los conectivos lógicos vistos en clase el operador ⊕ (ó exclusivo), cuya propiedad es:

$$\mathcal{I}\left(\varphi\oplus\psi\right)=1$$

sí y sólo sí

$$\mathcal{I}(\varphi) \neq \mathcal{I}(\psi)$$

3.2. Solución

Sabemos que

$$\mathcal{I}\left(\varphi\leftrightarrow\psi\right)=1$$
 sí y sólo sí
$$\mathcal{I}\left(\varphi\right)=\mathcal{I}\left(\varphi\right)$$

Entonces por contra-positiva tenemos que

$$\mathcal{I}\left(\varphi\leftrightarrow\psi\right)=0$$
 sí y sólo sí
$$\mathcal{I}\left(\varphi\right)\neq\mathcal{I}\left(\varphi\right)$$

Sabemos que

$$\mathcal{I}\left(\gamma
ight)=0$$
 sí y sólo sí
$$\mathcal{I}\left(\gamma\gamma
ight)=1$$

Consecuentemente

$$\mathcal{I}\left(\varphi\leftrightarrow\psi\right)=0$$
 sí y sólo sí
$$\mathcal{I}\left(\neg\left(\varphi\leftrightarrow\psi\right)\right)=1$$

Por lo tanto

$$\mathcal{I}\left(\neg\left(\varphi\leftrightarrow\psi\right)\right)=1$$
 sí y sólo sí
$$\mathcal{I}\left(\varphi\right)\neq\mathcal{I}\left(\varphi\right)$$

Podemos concluir que:

$$\neg \left(\varphi \leftrightarrow \psi \right) \equiv \varphi \oplus \psi$$

Por equivalencias lógicas

$$\begin{array}{ll} \neg \left(\varphi \leftrightarrow \psi \right) \equiv \neg \left(\left(\varphi \rightarrow \psi \right) \land \left(\psi \rightarrow \varphi \right) \right) & \text{Eliminación de} \leftrightarrow \\ & \equiv \neg \left(\left(\neg \varphi \lor \psi \right) \land \left(\neg \psi \lor \varphi \right) \right) & \text{Eliminación de} \rightarrow \\ & \equiv \neg \left(\neg \varphi \lor \psi \right) \lor \neg \left(\neg \psi \lor \varphi \right) & \text{De Morgan} \\ & \equiv \left(\neg \neg \varphi \land \neg \psi \right) \lor \left(\neg \neg \psi \land \neg \varphi \right) & \text{De Morgan} \\ & \equiv \left(\varphi \land \neg \psi \right) \lor \left(\psi \land \neg \varphi \right) & \text{Doble Negación} \\ & \equiv \left(\varphi \land \neg \psi \right) \lor \left(\neg \varphi \land \psi \right) & \text{Conmutatividad} \end{array}$$

Tenemos que

$$\varphi \oplus \psi \equiv \neg (\varphi \leftrightarrow \psi) \equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi)$$

Por transitividad podemos concluir que

$$\varphi \oplus \psi \equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi)$$

3.2.1. Tabla de verdad

φ	ψ	$\varphi \oplus \psi$
1	1	0
1	0	1
0	1	1
0	0	0