18.06 Problem Set 7 Solutions

Total: 100 points

Prob. 16, Sec. 5.2, Pg. 265: F_n is the determinant of the 1, 1, -1 tridiagonal matrix of order n:

$$F_2 = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2$$
 $F_3 = \begin{vmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = 3$ $F_4 = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{vmatrix} \neq 4.$

Expand in cofactors to show that $F_n = F_{n-1} + F_{n-2}$. These determinants are *Fibonacci numbers* 1, 2, 3, 5, 8, 13,.... The sequence usually starts 1, 1, 2, 3 (with two 1's) so our F_n is the usual F_{n+1} .

Solution (see pg. 535, 4 pts.): The 1, 1 cofactor of the n by n matrix is F_{n-1} . The 1, 2 cofactor has a 1 in column 1, with cofactor F_{n-2} . Multiply by $(-1)^{1+2}$ and also (-1) from the 1, 2 entry to find $F_n = F_{n-1} + F_{n-2}$ (so these determinants are Fibonacci numbers).

Prob. 32, Sec. 5.2, Pg. 268: Cofactors of the 1, 3, 1 matrices in Problem 21 give a recursion $S_n = 3S_{n-1} - S_{n-2}$. Amazingly that recursion produces every second Fibonacci number. Here is the challenge.

Show that S_n is the Fibonacci number F_{2n+2} by proving $F_{2n+2} = 3F_{2n} - F_{2n-2}$. Keep using Fibonacci's rule $F_k = F_{k-1} + F_{k-2}$ starting with k = 2n + 2.

Solution (see pg. 535, 12 pts.): To show that $F_{2n+2} = 3F_{2n} - F_{2n-2}$, keep using Fibonacci's rule:

$$F_{2n+2} = F_{2n+1} + F_{2n} = F_{2n} + F_{n-1} + F_{2n} = 2F_{2n} + (F_{2n} - F_{2n-2}) = 3F_{2n} - F_{2n-2}.$$

Prob. 33, Sec. 5.2, Pg. 268: The symmetric Pascal matrices have determinant 1. If I subtract 1 from the n, n entry, why does the determinant become zero? (Use rule 3 or cofactors.)

$$\det \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix} = 1 \text{ (known)} \qquad \det \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & \mathbf{19} \end{bmatrix} = \mathbf{0} \text{ (to explain)}.$$

Solution (see pg. 535, 12 pts.): The difference from 20 to 19 multiplies its cofactor, which is the determinant of the 3 by 3 Pascal matrix, so equal to 1. Thus the det drops by 1.

Prob. 8, Sec. 5.3, Pg. 279: Find the cofactors of A and multiply AC^{T} to find det A:

$$A = \begin{bmatrix} 1 & 1 & 4 \\ 1 & 2 & 2 \\ 1 & 2 & 5 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 6 & -3 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \quad \text{and} \quad AC^{\mathrm{T}} = \underline{\qquad}.$$

If you change that 4 to 100, why is det A unchanged?

Solution (see pg. 536, 4 pts.): Straightforward computation yields C and $\det A = 3$:

$$C = \begin{bmatrix} 6 & -3 & 0 \\ 3 & 1 & -1 \\ -6 & 2 & 1 \end{bmatrix} \text{ and } AC^{\mathrm{T}} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}. \text{ This is } (\det A)I \text{ and } \det A = 3.$$
 The 1, 3 cofactor of A is 0. Multiplying by 4 or by 100: no change.

Prob. 28, Sec. 5.3, Pg. 281: Spherical coordinates ρ , ϕ , θ satisfy $x = \rho \sin \phi \cos \theta$ and $y = \rho \sin \phi \sin \theta$ and $z = \rho \cos \phi$. Find the 3 by 3 matrix of partial derivatives: $\partial x/\partial \rho$, $\partial x/\partial \phi$, $\partial x/\partial \theta$ in row 1. Simplify its determinant to $J = \rho^2 \sin \phi$. Then dV in spherical coordinates is $\rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$ the volume of an infinitesimal "coordinate box".

Solution (4 pts.): The rows are formed by the partials of x, y, z with respect to ρ, ϕ, θ :

$$\begin{bmatrix} \sin\phi\cos\theta & \rho\cos\phi\cos\theta & -\rho\sin\phi\sin\theta \\ \sin\phi\sin\theta & \rho\cos\phi\sin\theta & \rho\sin\phi\cos\theta \\ \cos\phi & -\rho\sin\phi & 0 \end{bmatrix}.$$

Expanding its determinant J along the bottom row, we get

$$J = \cos\phi(\rho^2\cos\phi\sin\phi)(\cos^2\theta + \sin^2\theta) + \rho^2\sin^3\phi(\cos^2\theta + \sin^2\theta)$$
$$= \rho^2\sin\phi(\cos^2\phi + \sin^2\phi) = \rho^2\sin\phi.$$

Prob. 40, Sec. 5.3, Pg. 282: Suppose A is a 5 by 5 matrix. Its entries in row 1 multiply determinants (cofactors) in rows 2–5 to give the determinant. Can you guess a "Jacobi formula" for det A using 2 by 2 determinants from rows 1–2 *times* 3 by 3 determinants from rows 3–5? Test your formula on the -1, 2, -1 tridiagonal matrix that has determinant 6.

Solution (12 pts.): A good guess for det A is the sum, over all pairs i, j with i < j, of $(-1)^{i+j+1}$ times the 2 by 2 determinant formed from rows 1–2 and columns i, j times the 3 by 3 determinant formed from rows 3–5 and the complementary columns (this formula is more commonly named after Laplace than Jacobi). There are $\binom{5}{2}$ terms. In the given case, only the first two are nonzero:

$$\det A = \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} \begin{vmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & -1 & 2 \end{vmatrix} - \begin{vmatrix} 2 & 1 \\ -1 & -1 \end{vmatrix} - \begin{vmatrix} 2 & 1 \\ -1 & -1 \end{vmatrix} \begin{vmatrix} -1 & -1 \\ & 2 & -1 \\ & -1 & 2 \end{vmatrix} = (3)(4) - (-2)(-3) = 6.$$

Prob. 41, Sec. 5.3, Pg. 282: The 2 by 2 matrix AB = (2 by 3)(3 by 2) has a "Cauchy–Binet formula" for det AB:

 $\det AB = \text{sum of } (2 \text{ by } 2 \text{ determinants in } A) (2 \text{ by } 2 \text{ determinants in } B).$

- (a) Guess which 2 by 2 determinants to use from A and B.
- (b) Test your formula when the rows of A are 1, 2, 3 and 1, 4, 7 with $B = A^{T}$.

Solution (12 pts.): (a) A good guess is the sum, over all pairs i, j with i < j, of the product of the 2 by 2 determinants formed from columns i, j of A and rows i, j of B.

(b) First,
$$AA^{\mathrm{T}} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 7 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 7 \end{bmatrix} = \begin{bmatrix} 14 & 30 \\ 30 & 66 \end{bmatrix}$$
. So det $AA^{\mathrm{T}} = 924 - 900 = 24$.

On the other hand, $\begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ 1 & 7 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 3 & 7 \end{vmatrix} + \begin{vmatrix} 2 & 3 \\ 4 & 7 \end{vmatrix} \begin{vmatrix} 2 & 4 \\ 3 & 7 \end{vmatrix} = 4 + 16 + 4 = 24.$

Prob. 19, Sec. 6.1, Pg. 295: A 3 by 3 matrix B is known to have eigenvalues 0, 1, 2. This is information is enough to find three of these (give the answers where possible):

- (a) the rank of B,
- (b) the determinant of $B^{T}B$,
- (c) the eigenvalues of $B^{T}B$,
- (d) the eigenvalues of $(B^2 + I)^{-1}$.

Solution (4 pts.): (a) The rank is at most 2 since B is singular as 0 is an eigenvalue. The rank is not 0 since B is not 0 as B has a nonzero eigenvalue. The rank is not 1 since a rank-1 matrix has only one nonzero eigenvalue as every eigenvector lies in the column space. Thus the rank is 2.

- (b) We have $\det B^{T}B = \det B^{T} \det B = (\det B)^{2} = 0 \cdot 1 \cdot 2 = 0$.
- (c) There is not enough information to find the eigenvalues of $B^{T}B$. For example,

$$\text{if } B = \begin{bmatrix} 0 & \\ & 1 & \\ & & 2 \end{bmatrix}, \text{ then } B^{\mathsf{T}}B = \begin{bmatrix} 0 & \\ & 1 & \\ & & 4 \end{bmatrix}; \text{ if } B = \begin{bmatrix} 0 & 1 & \\ & 1 & \\ & & 2 \end{bmatrix}, \text{ then } B^{\mathsf{T}}B = \begin{bmatrix} 0 & \\ & 2 & \\ & & 4 \end{bmatrix}.$$

However, the eigenvalues of a triangular matrix are its diagonal entries.

(d) If $Ax = \lambda x$, then $x = \lambda A^{-1}x$; also, any polynomial p(t) yields $p(A)x = p(\lambda)x$. Hence the eigenvalues of $(B^2 + I)^{-1}$ are $1/(0^2 + 1)$ and $1/(1^2 + 1)$ and $1/(2^2 + 1)$, or 1 and 1/2 and 1/5.

Prob. 29, Sec. 6.1, Pg. 296: (Review) Find the eigenvalues of A, B, and C:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}.$$

Solution (4 pts.): Since the eigenvalues of a triangular matrix are its diagonal entries, the eigenvalues of A are 1, 4, 6. Since the characteristic polynomial of B is

$$\det(B - \lambda I) = (-\lambda)(2 - \lambda)(-\lambda) - 1(2 - \lambda)3 = (2 - \lambda)(\lambda^2 - 3),$$

the eigenvalues of B are 2, $\pm\sqrt{3}$. Since C is 6 times the projection onto (1,1,1), the eigenvalues of C are 6,0,0.

Prob. 6, Sec. 6.2, Pg. 308: Describe all matrices S that diagonalize this matrix A (find all eigenvectors):

$$A = \begin{bmatrix} 4 & 0 \\ 1 & 2 \end{bmatrix},$$

Then describe all matrices that diagonalize A^{-1} .

Solution (see pg. 537, 4 pts.): The columns of S are nonzero multiples of (2,1) and (0,1): either order. Same for A^{-1} . Indeed, since the eigenvalues of a triangular matrix are its diagonal entries, the eigenvalues of A are 4, 2. Further, (2,1) and (0,1) obviously span the nullspaces of

$$\begin{bmatrix} 0 & 0 \\ 1 & -2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 2 & 0 \\ -1 & 0 \end{bmatrix}.$$

Prob. 16, Sec. 6.2, Pg. 309: (Recommended) Find Λ and S to diagonalize A_1 in Problem 15:

$$A_1 = \begin{bmatrix} .6 & .9 \\ .4 & .1 \end{bmatrix}.$$

What is the limit of Λ^k as $k \to \infty$? What is the limit of $S\Lambda^kS^{-1}$? In the columns of the matrix you see the _____.

Solution (4 pts.): The columns sum to 1; hence, $A_1 - I$ is singular, and so 1 is an eigenvalue. The two eigenvalues sum to 0.6+0.1; so the other one is -0.3. Further, the nullspaces of

$$\begin{bmatrix} -0.4 & 0.9 \\ 0.4 & -0.9 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0.9 & 0.9 \\ 0.4 & 0.4 \end{bmatrix}$$

are obviously spanned by (9,4) and (-1,1). Therefore,

$$\Lambda = \begin{bmatrix} 1 \\ -0.3 \end{bmatrix} \quad \text{and} \quad S = \begin{bmatrix} 9 & -1 \\ 4 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda^k \to \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{and} \quad S\Lambda^k S^{-1} \to \begin{bmatrix} 9 & -1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \frac{1}{9+4} \begin{bmatrix} 1 & 1 \\ -4 & 9 \end{bmatrix} = \frac{1}{13} \begin{bmatrix} 9 & 9 \\ 4 & 4 \end{bmatrix}.$$

In the columns of the last matrix you see the steady state vector.

Prob. 37, Sec. 6.2, Pg. 311: The transpose of $A = S\Lambda S^{-1}$ is $A^{\rm T} = (S^{-1})^{\rm T}\Lambda S^{\rm T}$. The eigenvectors in $A^{\rm T}y = \lambda y$ are the columns of that matrix $(S^{-1})^{\rm T}$. They are often called *left eigenvectors*. How do you multiply matrices to find this formula for A?

Sum of rank-1 matrices
$$A = S\Lambda S^{-1} = \lambda_1 x_1 y_1^{\mathrm{T}} + \dots + \lambda_n x_n y_n^{\mathrm{T}}$$
.

Solution (see pg. 539, 12 pts.): Columns of S times rows of ΛS^{-1} will give r rank-1 matrices (r = rank of A).

Challenge problem: in MATLAB (and in GNU Octave), the command A=toepliz(v) produces a symmetric matrix in which each descending diagonal (from left to right) is constant and the first row is v. For instance, if $v = [0\ 1\ 0\ 0\ 0\ 1]$, then toepliz(v) is the matrix with 1s on both sides of the main diagonal and on the far corners, and 0s elsewhere. More generally, let v(n) be the vector in \mathbb{R}^n with a 1 in the second and last places and 0s elsewhere, and let $\mathbb{A}(n)$ =toepliz($\mathbb{v}(n)$).

- (a) Experiment with n = 5, ..., 12 in MATLAB to see the repeating pattern of det A(n).
- (b) Expand $\det A(n)$ in terms of cofactors of the first row and in terms of cofactors of the first column. Use the known determinant C_n of problem 5.2.13 to recover the pattern found in part (a).

Solution (12 pts.): (a) The output 2, -4, 2, 0, 2, -4, 2, 0 is returned by this line of code:

for n = 5:12; v=zeros(1,n); v(2)=1; v(n)=1; det(toeplitz(v)), endfor.

(b) Expand det A(n) along the first row and then down both first columns to get

$$\det A(n) = -C_{n-2} - (-1)^n + (-1)^{n+1} + (-1)^{n+1} (-1)^n C_{n-2} \quad \text{where } C_n = \begin{cases} 0, & n \text{ odd;} \\ (-1)^{n/2}, & n \text{ even.} \end{cases}$$

Thus det $A(n) = 2(C_n - (-1)^n)$, which recovers the pattern found in part (a).

MIT OpenCourseWare http://ocw.mit.edu

18.06 Linear Algebra Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.