

Fault Analysis of the ChaCha and Salsa Families of Stream Ciphers

Arthur Beckers, Benedikt Gierlichs, Ingrid Verbauwhede

CARDIS 2017

ChaCha/Salsa stream cipher

State matrix

General attack structure

- Attack output of the round functions
- Injected faults influence the distribution of R
- Attacker can observe either:
 - S (known plaintext (PT) ciphertext (CT))
 - CT with a constant but unknown PT

Distribution of R, S, CT

General attack structure

- Two fault models:
 - Stuck-at fault model
 - Biased fault model
- Verification of the attacks is done in simulation
- Splitting up R:

Stuck at fault model

- Some bits of R set to fixed 0 or 1
- Stuck bits location is constant

Example: 3 bits out of 8 stuck at 0

Stuck at exploitation

- At position S: $R' = R \coprod M \coprod M'$
- At position CT: $R' = R \coprod M \oplus PT \oplus PT' \coprod M'$
- The keyspace reduction criteria are deterministic:
 - Check the Hammingweight distribution
 - Check the stuck positions on bit level

Example: 2 out of 4 bits stuck

Stuck at exploitation

Keyspace reduction: calculate the intersection of K^a , K^b , K^c

Number of faults needed (99,9% sure to fill the bins)

# non-stuck bits	1	2	3	4	5	6	7
# faults	11	29	67	149	326	702	1500

Results stuck at attack

Biased fault model

- Bias introduced at bit level
- Bias is constant, but unknown
- HW of R_{faulted} is still a binomial distribution

			K				
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

0.7 0.7 0.7 0.7 0.7 0.7	0.7 0.7 0.7
-------------------------	-----------------

Impact modular addition/ XOR

Distinguishers

Requirement: work on unknown amount of bias

• SEI =
$$\sum_{i=0}^{N} \left[\frac{\#((HW_j)_{j=1}^n = i)}{n} - \Pr(i, N, 0.5) \right]^2$$

• T-test =
$$\frac{\mu - \bar{x}}{\sqrt{\frac{\sigma^2 + s^2}{n}}}$$

T-test gives better results

False positives due to XOR

$$R' = R \coprod M \oplus PT \oplus PT' \coprod M'$$

150

value

Results biased fault models

BIAS	50%	55%	60%	65%	70%	75%	80%	85%	90%	95%	100%
#faults: S	/	400	115	50	27	11	7	5	5	5	/
#faults: CT	/	1356	420	158	100	77	65	63	78	134	/

Summary

- Presented two fault attacks on ChaCha structure
 - Attacking S position feasible both biased and stuck at fault model
 - Attacking CT position only feasible with biased fault model
- When designing countermeasures against fault attacks you might want to check the distribution of R

Questions?