

Copyright © 2020 Marc de Falco Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

- 1	Introduction			
1	Introduction	11		
I	Feuille de route	11		
2	Introduction à l'informatique	13		
ı	Données, Problème, Algorithme	13		
l.1	Données	13		
1.2	Problèmes	14		
1.3	Algorithme	14		
П	Modèle de calcul, Machines, Programmes	14		
II.1	Exemple : ordinateur	15		
11.2	Exemple : les machines à deux compteurs	15		
11.3	Exemple: le noyau fonctionnel pur d'OCaml	16		
11.4	Exemple : Jeu de la vie	16		
11.5	Exemple: FRACTRAN			
11.6	Modèle Turing complets	20		
Ш	Langages, Compilateur, Interprète	20		
III.1	Langages	20		
111.2	Compilateur			
III.3	Interprète			
111.4	Unité de compilation, modules	21		
IV	Paradigmes	21		
IV.1	Impératif structuré	21		
IV.2	Fonctionnel déclaratif	22		
IV.3	Programmation logique	22		

Ш	Programmation

3	Introduction à la programmation (impérative)	25
I	Introduction	25
l.1	Les quatre étages de la programmation	. 26
1.2	Exemple	
1.3	Se remettre sans cesse à l'ouvrage	. 27
II	Représenter	28
II.1	Les données simples	. 28
11.2	Les données composées ou structurées	. 28
Ш	Manipuler	30
III.1	Variables	. 30
III.2	État d'exécution	. 30
III.3	Instructions et blocs	. 31
111.4	Portée	. 32
111.5	Manipuler des données composées mutables	
III.6	Instruction conditionnelle	
111.7	Entrées et sorties	. 37
IV	Répéter	37
IV.1	Répéter n fois	
IV.2	Répéter pour chaque élément	
IV.3	Répéter tant qu'une condition est vérifiée	
IV.4	Choisir la structure de boucle adaptée	
IV.5	Boucles imbriquées et dimensionnalité	. 38
V	Abstraire	38
V.1	Définir et appeler des fonctions	
V.2	Action d'une fonction et valeur de retour	
V.3	Fonctions et portée	
V.4	Structurer des programmes avec des fonctions	
V.5	Les fonctions comme valeurs	. 38
4	Récursivité	39
ı	La récursivité	39
l.1	Principe et exemples	. 39
1.2	Implémentation pratique	. 40
1.3	Programmer en récursif	. 41
1.4	Récursivité croisée	. 41
II	L'arbre d'appels	41
11.1	Définition	. 41
11.2	Complexité en nombre d'appels	. 41
11.3	Terminaison	. 41
Ш	Récursivité terminale	41
III.1	Présentation	. 41
III.2	Optimisation	. 41
III.3	Techniques	. 41
IV	Types inductifs et induction structurelle	41
IV.1	Définition naïve des types inductifs	. 41

5	Type option en OCaml	3
ı	Principe 4	3
П	Syntaxe 4	3
Ш	Utilisation concrète 4	4
III.1	Définir une fonction partielle	4
III.2	Appeler une fonction partielle	
III.3	Données partielles	
III.4	Chaîne de traitement	5
6	Exceptions en OCaml 4	7
I	Syntaxe des exceptions 4	7
II	Exceptions pour la gestion d'erreurs 4	8
Ш	Programmer avec des exceptions 4	9
III.1	Retour prématuré	.9
Ш	Structures de données	
7	Structures de données abstraites et implémentations 5	5
i	Introduction 5	
•		
II	Structure de données abstraite 5)
8	Séquences et ses implémentations : tableaux, listes chaînées 5	7
I	Structure abstraite séquence ou liste 5	7
П	Implémentations 5	7
Ш	Implémentations concrètes des Listes chaînées 5	7
III.1	En C	7
111.2	En OCaml	
III.3	Structure de la mémoire	
IV	Travaux pratiques 6	
IV.1 IV.2	Tableaux non statiques et tableaux dynamiques	
9	Piles et files : structures abstraites et implémentations 8	5
ı	Piles 8	
l.1	Principe	
1.2	Représentation visuelle	
1.3	Implémentations	
1.4	Applications	8
П	Files 8	8
11.1	Principe	
11.2	Implémentations	
11.3	Applications	0

10	Arbres	91
I	Arbres binaires	91
I.1	Définition inductive	91
1.2	Vocabulaire	92
П	TP - Arbres en OCaml	93
II.1	Premières fonctions	
II.2 II.3	Parcours	
II.3 II.4	Dessin d'arbres	
11.5	Génération aléatoire d'arbres	
11	Graphes	99
I	Graphes	99
IV	Algorithmique	
12	Introduction à l'analyse des algorithmes	103
ı	État d'un programme	103
П	Terminaison	104
II.1	Variant de boucle	105
11.2	Exemple de la recherche dichotomique	
11.3	Exemple du tri à bulle	
II.4 II.5	Lien avec la récursivité	
III	Correction	108
III.1	Invariant de boucle	
111.2	Exemple du tri par sélection	
IV	Complexité	111
IV.1	Complexité dans le pire des cas	111
IV.2	Comparer des complexités	
IV.3	Complexités en temps classiques	
IV.4 IV.5	Carcelouité à plusique paramètres	
IV.5 IV.6	Complexité à plusieurs paramètres	
IV.7	Complexité amortie	
IV.8	Pertinence de la complexité spatiale	
V	Exercices	121
13	Complexité amortie	125
I	Introduction	125
l.1	Implémentation d'une file avec deux piles	
1.2	Les tableaux dynamiques	
Ш	Techniques de calcul	129
II.1	Cadre	
II.2 II.3	Calcul naïf	
11.5	memore du panquiei	130

11.4	Méthode du potentiel	133
14	Recherche par Force brute	. 135
I	Principe	135
l.1	Problème de décision et exploration exhaustive	135
1.2	Problème d'optimisation et exploration exhaustive	136
П	Recherche par retour sur trace (backtracking)	136
II.1	Construction itérative de candidats	136
11.2	Évaluation partielle et raccourcis	138
11.3	Énumération de toutes les solutions	141
11.4	TP: tours du cavalier	
II.5	TP : jeu du solitaire	143
Ш	Stratégies d'énumération	148
III.1	Combinatoire élémentaire	
III.2	Enumération d'arbres	149
IV	Droite de balayage	149
IV.1	Principe	
IV.2	Plus proche paire	149
15	Algorithmes gloutons	. 157
ı	Principe	157
11	Construction de l'arbre de Huffman	159
	Preuve d'optimalité	162
IV	Sélection d'activités	163
IV.1	Description	
IV.2 IV.3	Algorithme glouton et implémentation	
V.5	·	
V V.1	Ordonnancement de tâches	165
V.1 V.2	Description	
V.2 V.3	Preuve d'optimalité	
		200
16	Diviser pour regner	. 171
I	Diviser pour régner	171
l.1	Principe	171
1.2	Tri fusion	171
1.3	Nombre d'inversions	
1.4	Points les plus proches	
1.5	Sous-ensemble de somme donnée	
I.6 I.7	Recherche dichotomique	
1.7	Converture par des segments egans	114
17	Algorithmique des textes	. 177
I	Recherche dans un texte	177
l.1	Principe de la recherche	
1.2	Algorithme naïf en force brute	
1.3	Algorithme de Boyer-Moore	179

1.4	Algorithme de Rabin-Karp	188
П	Compression	191
II.1	Principe	191
11.2	Algorithme d'Huffman	
II.3	Algorithme de Lempel-Ziv-Welch	196
Ш	Problèmes supplémentaires	204
III.1	Transformation de Burrows-Wheeler	204
III.2	Move to front	204
111.3	La structure de données corde	204
111.4	L'algorithme de Knuth-Morris-Pratt	204
111.5	Extensions à l'analyse d'images	204
V	Systèmes	
	- ,	
18	Gestion de la mémoire dans un programme compilé	207
ı	Organisation de la mémoire	207
П	Pointeurs	210
Ш	Portée d'un identificateur	210
IV	Piles d'exécution, variables locales et paramètres	212
V	Allocation dynamique	214
V.1	Allocation	214
V.2	Libération	
V.2	Protection mémoire	
V.4	Réalisation d'un système d'allocation de mémoire	
	•	

Introduction

1	Introduction	11
l	Feuille de route	
_		
2	Introduction à l'informatique	13
I	Données, Problème, Algorithme	
II	Modèle de calcul, Machines, Programmes	
Ш	Langages, Compilateur, Interprète	
IV	Paradigmes	

Ce site présente des documents personnels autour du programme de MP2I/MPI, et donc également du programme d'option informatique de MPSI/MP et du tronc commun.

Il s'agit pour le moment d'un premier jet, et il est amené à beaucoup évoluer. Il correspond à mon interprétation personnelle de certaines notions.

Des problèmes sont présentés au cours des documents, ils peuvent donner lieu à des développements en classe, des séances de travaux pratiques ou des problèmes. Plutôt que de donner un découpage figé en questions, ils sont souvent présentés tels quels.

Mon idée principale avec ces ressources est de proposer un contenu assez riche, plutôt à destination des enseignants. Certains points un peu pointus ne sont pas forcément essentiels pour tous les étudiants.

Le but ici n'est pas de surpasser des références sur chaque domaine, je n'ai pas cette prétention, mais de présenter un livre *tout-en-un* ce qui implique des compromis dans les notions traités et la présentation.

I Feuille de route

- Faire une présentation uniforme pour les problèmes avec un index.
- Rajouter des macros pour compiler/exécuter et inclure la sortie des bouts de code.
- Rajouter les TP.
- Des roadmaps sont données dans chaque chapitre.

2. Introduction à l'informatique

■ Note 2.1 Roadmap:

• tout reprendre. Je suis peu satisfait du résultat.

Dans ce chapitre, on présente de manière très survolée l'informatique. On aura l'occasion de revenir en détail sur certaines notions. L'objectif est avant totu d'avoir une vision claire même si elle est naïve de

- ce qu'est un problème informatique
- ce qu'est un programme
- ce qu'est une machine
- ce que signifie de résoudre informatiquement un problème

Cela permet de répondre à des questions comm :

- qu'est-ce qui permet de dire qu'on programme en OCaml alors qu'on a l'impression de ne faire que des suites de définitions?
- peut-on se contenter de programmer sans chercher à comprendre?

Précisons ici qu'on parle d'informatique mais que le terme le plus proche de ce que l'on étudie en anglais est *computer science* par complémentarité avec des notions comme celles de *computer engineering* plus proches de considérations matérielles. Il n'y a pas une *unique* vision de l'informatique mais plutôt une grande richesse de point de vue.

Données, Problème, Algorithme

I.1 Données

Définition I.1 Une donnée informatique est un élément d'information fini qu'on peut stocker ou transmettre.

Selon le niveau d'abstraction auquel on se place, on peut considérer une donnée comme étant une succession de bits, c'est-à-dire de valeur valant 0 ou 1, ou comme une donnée plus structurées, comme un texte, une image, un graphe, ...

En informatique, on adapte souvent son point vue sur les notions de base comme celle-ci. Si

on fait de la transmission ou de la compression de données, c'est important d'en avoir une représentation la plus primitive possible comme des mots binaires. Mais si s'intéresse à des notions de chemins dans un graphe, il est plus adéquat de considérer un graphe comme un élément de données même si la question de sa représentation n'est pas immédiate.

I.2 Problèmes

Définition 1.2 Un problème informatique est un ensemble de questions parametrées par des données (les *entrées*) et dont les réponses peuvent être

- soit Oui ou Non, auquel cas on parle de problème de décision
- ou d'autres données dépendant des entrées : les sorties, on parle alors de problème de recherche ou de construction.
- Exemple 2.1 Étant donné un entier, déterminer s'il est premier ou non.
 - Étant donnés deux entiers, calculer leur PGCD.
 - Étant donné un graphe pondéré et deux sommets, déterminer un chemin de longueur minimale permettant d'aller de l'un à l'autre.
 - Étant un programme informatique et une entrée, déterminer si le programme va s'arrêter ou non.
 - Étant donné une image et une base de donnée de visages, déterminer les personnes présentes sur l'image.

On voit que certains de ces problèmes n'ont pas eu besoin d'attendre l'informatique, comme les problèmes d'arithmétique.

On peut prouver qu'un problème comme le problème de l'arrêt ne pourra jamais être résolu par un ordinateur (on dira qu'il est *indécidable*).

I.3 Algorithme

Définition 1.3 Un *algorithme* est un procédé systématique et mécanisable permettant de résoudre un problème informatique.

Ce qu'on signifie ici par le mot systématique est que le procédé de calcul est précis et non ambigu et par *mécanisable* qu'il s'agit d'un calcul qui puisse être fait par une *machine* dans un sens à venir.

Une autre manière de voir les problèmes est de dire que ce sont des fonctions mathématiques des entrées vers les sorties. Un algorithme est alors une description de la réalisation d'une telle fonction.

II Modèle de calcul, Machines, Programmes

On donne ici des définitions volontairement naïves et imprécises. Elles pourraient être précisées en fixant un cadre théorique plus conséquent, ce qui est prématuré à ce stade.

Définition II.1 Un modèle de calcul est un cadre permettant de décrire comment calculer la solution de problèmes en fonction des entrées.

Définition II.2 Une *machine* est un modèle de calcul défini par un ensemble de *configurations* et des opérations élémentaires, aussi appelées *instructions*, permettant de passer d'une configuration à une autre.

Ces instructions sont regroupées sous la forme d'une suite finie appelée un *programme*. Pour éxecuter un programme, il y a dans la configuration un entier qui s'appelle le *pointeur*

d'instruction et qui donne le numéro dans le programme de l'instruction courante. Généralement, on part de la première instruction en passant ensuite, sauf contre-ordre, à l'instruction suivante, jusqu'à la fin du programme.

II.1 Exemple : ordinateur

Un ordinateur est naturellement un exemple de machine. Une configuration est la donnée de l'état des registres du processeur, de la mémoire et aussi des périphériques d'entrée-sortie. Un programme est une suite d'instructions exécutées par le processeur.

II.2 Exemple : les machines à deux compteurs

Les configurations d'une machine à deux compteurs sont des triplets (A,B,PC) où A et B sont deux compteurs entiers naturels, en général initialisés avec les entrées et dans lesquels on pourra lire les sorties, et PC est le pointeur d'intruction, initialisé à la première instruction.

Un programme est une suite finie et numérotée d'instructions élémentaires parmi les suivantes :

- INCA: incrémenter A, c'est-à-dire ajouter 1 à la valeur qu'il contient
- DECA: décrementer A, c'est-à-dire soustraire 1 à la valeur qu'il contient
- IFA i j sauter à l'instruction numéro i si A est nul, sinon sauter à l'instruction numéro j.
- ullet les instructions INCB, DECB et IFB i j respectives vis-à-vis du compteur B. Ainsi, on peut considérer le programme suivant
- 1: IFA 6 2
- 2: DECA
- 3: INCB
- 4: INCB
- 5: IFA 1 1
- 6: INCA
- 7: DECA

Si on initialise les compteurs (A,B) à (n,0) et qu'on exécute le programme, on obtient alors (0,2n) dans les compteurs. Ce programme réalise ainsi un doublement du compteur A et place le résultat dans le compteur B.

Exercice 2.1 1. Écrire un programme permettant de passer de la configuration (a,b) à (0,a+b).

2. Écrire un programme permettant de passer de la configuration (n,0) à (0,0) si n est pair ou (0,1) sinon.

1: IFA 5 2 2: DECA 3: INCB 4: IFA 1 1 5: INCA

6: DECA

1.

1: IFA 7 2
2: DECA
3: IFA 6 4
4: DECA
5: IFA 1 1
6: INCA
7: INCA
8: DECA

2..

II.3 Exemple: le noyau fonctionnel pur d'OCaml

On considère ici le noyau OCaml avec les entiers, leurs opérations élémentaires, les fonctions, les définitions (récursives ou non) et ce qui correspond à l'évaluation.

Ainsi le terme 0Caml suivant fun $n \rightarrow 2 * n$ peut être vu simplement comme prenant en entrée un entier n et renvoyant son double.

Ce qui est important ici, sans qu'on s'attarde sur la définition précise de l'évaluation, c'est de comprendre qu'il s'agit d'un modèle de calcul sans avoir de notion de machine, d'instructions ou de programme.

Bien entendu, quand on interprète ou qu'on compile un programme OCaml, cela se passe sur un ordinateur, donc une machine.

On considère que les termes sont les programmes dans un tel langage de programmation. La différence principale entre un programme vu ainsi et un dans le sens usuel, comme un programme Python, c'est que l'on n'a pas conscience de la réalité la machine quand on programme : il n'y a pas de notion d'instructions. Bien sûr, on verra qu'il est possible de retrouver cela dans OCaml et ainsi de se ramener en terrain connu, mais c'est important de comprendre que ce noyau existe indépendamment d'une notion de machine.

■ Remarque 2.1 C'est Alonzo Church qui a défini ce noyau, qu'on appelle le λ -calcul, en 1933 alors qu'il souhaitait présenter un cadre pour exprimer les fonctions calculables.

II.4 Exemple : Jeu de la vie

Le jeu de la vie défini en 1970 par John Conway dans le but d'être une récréation mathématique s'est révélé être un modèle de calcul très important.

Il s'agit d'un cas particulier d'une plus grande classe de modèles de calcul appelés les **automates cellulaires**.

Une configuration du jeu de la vie est une grille bidimensionnelle de valeur booléenne. On appelle chaque case une *cellule* et on dirait que le booléen permet de déterminer si elle *vivante* ou *morte*.

L'évaluation de ce modèle consiste à définir une nouvelle configuration en appliquant la règle suivante pour chaque cellule :

- si la cellule est vivante et a deux ou trois voisines vivantes, elle reste vivante dans la nouvelle configuration, sinon elle meurt.
- si la cellule est morte, elle devient vivante si et seulement si elle a exactement trois voisines vivantes.

Quand on parle de cellules voisines, on fait référence aux huit voisines directe sur la grille (on compte ainsi les diagonales).

Le point essentiel dans cette procédure permettant de passer d'une configuration à une autre est qu'on ne modifie pas la configuration courante, tout se passe comme si chaque cellule était modifié simultanément.

La configuration initiale est à la fois le programme et ses entrées. Un point critique ici c'est qu'il n'existe pas de notion de fin d'évaluation. En effet, même des configurations très simples n'atteignent pas un point fixe. On devra donc choisir en fonction du problème que l'on cherche à résoudre, comment déterminer la fin du calcul.

II.5 Exemple : FRACTRAN

FRACTRAN est un modèle de calcul également inventé par John Conway en 1987. Un programme FRACTRAN est une suite finie de fractions d'entiers naturels comme :

$$P = \left(\frac{17}{91}, \frac{78}{85}, \frac{19}{51}, \frac{23}{38}, \frac{29}{33}, \frac{77}{29}, \frac{95}{23}, \frac{77}{19}, \frac{1}{17}, \frac{11}{13}, \frac{13}{11}, \frac{15}{2}, \frac{1}{7}, \frac{55}{1}\right)$$

Une entrée est un entier et pour *exécuter* un tel programme, on considère un entier courant n, initialisé à la valeur de l'entrée, et on parcourt les fractions de gauche à droite jusqu'à trouve une fraction $\frac{p}{q}$ tel que $n\frac{p}{q}$ soit un entier. Dans ce cas, c'est la nouvelle valeur de n et on recommence le processus. Sinon, le programme termine.

■ Exemple 2.2 $(\frac{3}{10}, \frac{4}{3})$ sur l'entrée 14 va s'arrêter tout de suite, sur l'entrée 15, on va avoir 20, 6 puis 8 et s'arrêter.

Exercice 2.2 Exécuter P sur l'entrée 2 suffisament longtemps pour noter les quatres premières puissances de 2 prises par l'entier courant. Attention, cela nécessite sûrement de programmer l'évaluation.

Démonstration.

On remarque que les puissances de 2 qui apparaissent sont dans l'ordre : 2^2 , 2^3 , 2^5 , 2^7 , 2^{11} , 2^{13} , Ainsi ce programme énumère les nombres premiers.

Comment fonctionne FRACTRAN? En fait, chaque fraction va être de la forme

$$\frac{p_1^{a_1} \dots p_k^{a_k}}{q_1^{b_1} \dots q_l^{b_l}}$$

où les p_i et les q_i sont des nombres premiers distincts.

Pour qu'on sélectionne cette fraction, il faut que n soit divisible par le dénominateur, donc si on écrit n en produit de facteurs premiers, il faut que les puissances correspondant à chaque q_i soit $\geq b_i$. On va alors les diminuer de b_i puis augmenter les puissances correspondant à chaque p_i de a_i .

Ainsi, si on considère qu'un nombre n s'écrit $n=\prod_{i\in\mathbb{N}}p_i^{a_i}$, avec les a_i presque tous nuls et $p_0< p_1< p_2<\dots$ une énumération des nombres premiers, on voit qu'un nombre n'est alors qu'une configuration d'une infinité de compteurs indexés par des entiers et qui sont presque tous à 0. Une fraction est alors une règle de la forme :

$$C[i_1] \ge b_1, \dots, C[i_k] \ge b_k \to C[i_1] - b_1, \dots, C[i_k] - b_k, C[j_1] + a_1, \dots, C[j_l] + a_l$$

où on a nommé $C[0], C[1], \dots$ les compteurs.

FRACTRAN est donc une sorte de machine à compteurs dont les instructions sont exécutées comme dans un filtrage OCaml en cherchant de gauche à droite la première règle qui s'applique. Le point le plus délicat c'est que la condition permettant d'appliquer une règle est destructrice : on divise, et on ne peut pas utiliser le même compteur pour la condition et pour le résultat, car sinon on simplifierait la fraction.

\blacksquare Remarque 2.2 Comment fonctionne le programme P?

Pour cela, on va réecrire P en suivant la syntaxe précédente, comme on a forcément des décrements de compteurs correspondant à la condition d'application, il est inutile de les répeter et on écrira juste

```
2:-2 3:-2 |> 1:+2 0:+1
```

pour la fraction $\frac{18}{1225}=\frac{2.3^2}{5^2.7^2}$ car $p_0=2,p_1=3,p_2=5$ et $p_3=7$. Par soucis de lisibilité, on peut de plus nommer les compteurs par des lettres en commençant à a et donc écrire

Comme les régles de P ne font intervenir que des +1 et des -1, on pourra encore abréger en écrivant a – plutôt que a–1 et b+ plutôt que b+1.

Ainsi, P devient la suite de règles suivantes (numérotées pour y faire référence ensuite).

```
0: d-f- |> g+
 1: c-g- |> a+b+f+
2: b-g- |> h+
 3: a-h- |> i+
4: b-e- |> j+
       |> d+e+
       |> c+h+
         |> d+e+
         |>
        |> e+
10: e- |> f+
11: a-
12: d-
        |>
13:
         |> c+e+
```

On commence avec la configuration $n=2=2^1$ donc uniquement 1 dans le compteur a et 0 dans les autres. On notera

a:1

cette configuration.

On remarque donc que si on a la configuration

$$a : n - 1$$

on va appliquer la règle 11 jusqu'à obtenir la configuration

$$b: n-1, c: n-1$$

Ensuite, on applique la règle 13 puis successivement les règles 4 et 5 jusqu'à être dans la configuration

$$c: n, d: n-1, e: 1$$

La règle 10 permet de passer à

$$c: n, d: n-1, f: 1$$

On va effectuer une succession de règle afin de déterminer si n-1 divise n. En fait, cette sucession de règle va déterminer si d divise c. Imaginons donc qu'on a la configuration

on applique successivement les règles 0 et 1 pour obtenir la configuration

$$a:m,b:m,c:n-m,f:1$$

La règle 9 s'applique alors pour passer à

$$a:m,b:m,c:n-m,e:1$$

et on effectue alors la succession des règles 4 et 5 qu'on a déjà vu pour passer à

$$a:m,c:n-m,d:m,e:1$$

Comme il n'y a plus rien dans b c'est la règle 10 qui s'applique et on repasse à

$$a:m,c:n-m,d:m,f:1$$

On repasse alors dans les règles 0 et 1 jusqu'à obtenir

```
a:2m, b:m, c:n-2m, f:1
```

et ainsi de suite. Pour l'arret, deux cas peuvent alors se produire :

• Soit on a vidé c en effectuant la soustraction de m, ce qui correspond au cas où m ne divise pas n, et alors la règle 1 ne pourra plus s'appliquer car elle nécessite $c \geq 1$. Si n = qm + r avec 0 < r < n, on aboutit alors avec une dernière application de 0 en

$$a:n,b:r,d:m-r-1,g:1$$

Comme la règle 1 ne s'applique plus, on passe alors à la règle 2 vers

$$a:n,b:r,d:m-r-1,h:1$$

on enchaine alors les règles 3 et 6 jusqu'à obtenir la configuration

$$b: r-1, c: n, d: m-r-1, h: 1$$

On ne peut alors qu'apppliquer la règle 7 qui permet de passer à

$$b: r-1, c: n, d: m-r, e: 1$$

puis l'alternance 4 et 5 transfère b dans d vers

$$c: n, d: m-1, e: 1$$

Dans ce cas, si on a m-1>0 et on va alors repasser dans la règle 10 pour tester la divisibilité de n par m-1. Mais ce qui est subtil ici, c'est que le cas m-1=0 a déjà été pris en compte car il correspond à m=1, c'est-à-dire à une divisibilité qui aboutit forcément et qui est donc traité par le cas suivant.

• Soit m divise n, donc n=km et on va aboutir forcément par soustraction après une règle 0 à une configuration de la forme

```
a: n, d: m-1, g: 1
```

Donc, contrairement au cas précédent, la règle 2 ne s'applique pas car b=0. On passe donc à la règle 8 qui produit

```
a: n, d: m-1
```

C'est ici qu'on peut produire un nombre premier, car si m-1=0, cela veut dire que la seule divisiblité s'est produite pour 1, donc que n est premier. Or, on a alors uniquement n dans le compteur a, et ainsi ça correspond au 2^n .

On poursuit alors par une étape de nettoyage pour passer à l'entier n+1 et continuer. Pour cela, on applique la règle 11 comme précédemment. Le seul changement c'est qu'avant de passer à la règle 13, on va appliquer la règle 12 pour vider le compteur d.

Ainsi, ce programme pourrait être traduit par le code Python suivant :

```
a = 1
while True:
    a = a+1
    for d in reversed(range(1,a)):
        b = a
        reste = False
        while b != 0:
            for i in range(d):
                if b == 0:
                     reste = True
                     break
                b = b-1
        if not reste:
            break
    if d == 1:
        print(a,' est premier')
```

II.6 Modèle Turing complets

Tous les exemples présentés ci-dessus sont équivalents : ils permettent de calculer les mêmes fonctions mathématiques pourvu qu'on précise la manière dont on donne l'entrée et comment on lit la sortie.

Par exemple, s'il n'est pas possible de réaliser l'incrémentation en FRACTRAN, il est possible d'écrire un programme permettant de passer de 2^a à 3^{a+1} .

On dit que ces modèles sont **Turing-complet** en référence au modèle de calcul de référence : les machines de Turing.

III Langages, Compilateur, Interprète

III.1 Langages

Un langage de programmation est une manière de représenter textuellement un programme. Cela peut être un programme en lien avec une notion de machine mais aussi une notion plus abstraite comme on va le voir. IV Paradigmes 21

Comme on l'a vu, un ordinateur est une machine. Un programme pour cette machine est ce qu'on appelle un binaire et l'ensemble des instructions s'appelle le langage machine. C'est le langage naturel d'un ordinateur et il dépend de son processeur. Ainsi, un binaire pour un téléphone n'est pas directement utilisable sur son ordinateur, car les premiers ont des processeurs utilisant un jeu d'instructions arm et les seconds un jeu d'instructions x86_64.

III.2 Compilateur

Un **compilateur** est un traducteur d'un langage à un autre. On considère le plus souvent des compilateurs vers un langage machine, qu'il soit lié à des processeurs réels ou une machine spécifique appelée une machine virtuelle.

III.3 Interprète

Un interprète est un programme qui va lire un programme écrit dans un langage donné et l'évaluer en interprétant les instructions. Cela diffère d'une machine virtuelle dans le fait que le programme utilise toute la richesse du langage de programmation dans lequel il a été programmé pour son interprète. De plus, le fait de ne pas passer par une machine virtuelle permet de plus facilement relier l'environnement de l'interprète et celui du langage interprété. Un autre avantage discutable et la possibilité dans le langage cible de faire référence à l'interpréte. Cela permet notamment de permettre l'évaluation dynamique de code (eval en Python).

Pour autant, les interprètes ont de nombreux défauts qui font qu'on a de plus en plus recours à des compilateurs vers des machines virtuelles. Parmi ceux-ci, citons le fait de devoir relire directement le programme à chaque fois qu'on va l'exécuter, ce qui est particulièrement critique quand on veut faire appels à des fonctions définies ailleurs, ou le fait que l'interprète lui-même est souvent très verbeux.

III.4 Unité de compilation, modules

Un programme est souvent structuré sous la forme de nomnbreux sous-programmes reliés entre eux. C'est une bonne pratique pour regrouper des fonctions selon un même thème et permettre la réutilisation du code sans duplication. On utilise pour cela la notion de modules ou de bibliothèques. Cela correspond au niveau du programme à rajouter du code existant au moment de la compilation ou de l'interprétation. Il est alors possible de réutiliser une partie de la compuilation sur ce code, et ainsi, on utilise en général une version intermédiaire qui est du code pre-compilé utilisable par un autre programme, soit en copiant le résultat dans le programme ou en faisant réference à des versions définies dans le système (bibliothèque dynamique). Un programme est chargé de faire le lien entre les différentes bibliothèques et le programme, c'est l'éditeur de liens.

IV Paradigmes

Un paradigme de programmation est une manière de concevoir des programmes. On va citer ici trois paradigmes.

IV.1 Impératif structuré

Un programme impératif est un programme construit plus ou moins directement en lien avec une notion de machines comme une suite d'instructions. Afin de permettre de programmer convenablement, un tel langage fourni une notion de structure qui permet de structurer le code. D'une certaine manière, la notion de classe et la programmation objet enrichi ce paradigme en permettant de structurer le code autour d'une notion d'objets.

IV.2 Fonctionnel déclaratif

On a vu qu'en programmation fonctionnelle, tout n'est qu'une expression, un terme, qu'on évalue. Un programme fonctionnel déclaratif est ainsi consistué d'une succession de définitions de valeurs ou de fonctions. C'est ainsi qu'en OCaml n'est qu'une suite de let ou let rec.

Comment calcule un tel programme? En évaluant chacune des déclarations, certaines vont effectivement produire des effets de bords et permettre la lecture ou l'écriture. L'usage en OCaml est ainsi de finir un programme par une déclaration nommée main ou _ qui va se charger d'appeler les déclarations précédentes.

IV.3 Programmation logique

Le paradigme de la programmation logique est sûrement le plus déroutant des trois. Un programme logique est en fait une formule logique dont une solution correspond à son résultat. Sans rentrer dans les détails, on remarquera que cela correspond à ce qu'on fait en SQL pour les bases de données où une requête de recherche est définie sous une forme de formule logique qui décrit les propriétés qui doivent être vérifiés par les éléments qu'on cherche.

Programmation

3	Introduction à la programmation (impérative)
l	Introduction
II	Représenter
Ш	Manipuler
IV	Répéter
V	Abstraire
4	Récursivité
T I	
ı 	La récursivité
	L'arbre d'appels
	Récursivité terminale
IV	Types inductifs et induction structurelle
5	Type option en OCaml 43
ı	Principe
II	Syntaxe
Ш	Utilisation concrète
6	Exceptions en OCaml 47
I	
="	Syntaxe des exceptions
II 	Exceptions pour la gestion d'erreurs
Ш	Programmer avec des exceptions

Source de l'image: https://www.flickr.com/photos/binaryape/5151286161/

■ Note 3.1 Roadmap:

- finir l'écriture avec Python.
- rajouter OCaml et C.
- en profiter pour faire une introduction aux référence en OCaml quitte à rajouter une partie spécifique.
- rajouter beaucoup d'exemples et d'exercices.

Introduction

Dans ce chapitre introductif sur la programmation, on va présenter celle-ci à travers quatre notions permettant de comprendre ce que signifie programmer. Un certain soin a été porté au fait de rendre cette présentation indépendante du langage tout en permettant qu'elle serve de support pour l'apprentissage d'un langage particulier. Ainsi, les éléments propres à un langage donnée sont clairement séparé.

Comme nous l'avons vu dans le chapitre d'introduction, la programmation consiste à décrire des algorithmes et la manière dont ils sont mis en œuvre sur une machine. En cela, le modèle que l'on suit ici est celui de la programmation dite impérative structurée. Pour autant, de nombreuses notions présentées ici restent valides dans d'autres paradigmes.

La présentation faite ici est indépendante du langage sous réserve que celui-ci comporte des traits impératifs structurés. Pour autant, selon les langages certaines notions sont plus ou moins riches. Des paragraphes spécifiques complètent ainsi le texte et on encourage le lecteur à basculer d'un langage à un autre tout au long de la lecture.

Python est le langage d'abord le plus aisé sur ces notions, mais aussi celui pour lequel il est vraiment nécessaire d'avoir une discipline d'utilisation afin de ne pas faire n'importe quoi. Ainsi, on a fait le choix de faire une présentation sans artifice qui n'utilise pas de structures

ou de mécanismes propres à Python et problématiques. Ceux-ci sont esquissés en remarque en précisant en quoi ils sont effectivement à manipuler avec parcimonie.

I.1 Les quatre étages de la programmation

Programmer c'est

- représenter des données, allant du booléen valant vrai ou faux, jusqu'aux bases de données permettant de modéliser des relations complexes
- manipuler ces données en lien avec un environnement, ce qui signifie autant de pouvoir les stocker que de pouvoir les transformer
- répéter ces manipulations élémentaires, car les données sont d'une taille finie, mais non connue à l'avance
- **abstraire** les notions précédentes pour ne pas avoir à se répéter, à -ravers la notion de fonctions

I.2 Exemple

Prenons un exemple simple pour comprendre les différents étages où le but est final est de pouvoir calculer des sommes comme $1+2+\cdots+n$.

Représenter Un entier comme 3 est une donnée qu'on pourra représenter telle quelle dans la plupart des langages avec cependant des limitations à garder en tête : la mémoire étant finie, on ne peut pas représenter des entiers quelconques, car il y en a une infinité. Déjà, à ce stade, on peut se poser la question de savoir si on ne veut représenter que des entiers dans un intervalle fixe, afin de borner leur occupation mémoire, ou si on veut les représenter en arbitraire. On peut opérer sur ces entiers avec un opérateur tel que + pour l'addition, mais le choix de la représentation aura son importance sur ce qui se cache derrière cette opération. L'addition de deux très grands entiers en précision arbitraire prendra plus de temps.

A l'aide de cela, on peut ainsi écrire 1 + 2 + 3 + 4 + 5.

Manipuler On peut aussi les stocker directement en mémoire à l'aide de variable. Ainsi

```
x = 3
```

permettra de définir une variable nommée x et contenant la valeur entière 3. On peut alors manipuler cette variable en changeant sa valeur à l'aide des opérations :

```
x = x + 2
```

Avec ces instructions de manipulation, on peut reprendre le calcul précédent de $1+2+\cdots+5$ avec une suite d'instructions :

```
white s = 0
s = s + 1*1
s = s + 2*2
s = s + 3*3
s = s + 4*4
s = s + 5*5
```

Répeter En fait, les 5 instructions d'ajout qu'on vient d'écrire ont la même structure : il s'agit d'ajouter une valeur i^2 à la variable s avec i prenant tour à tour les valeurs 1, 2, 3, 4 et 5. Une structure comme une boucle va permettre d'éviter cette répétition et d'écrire qu'il existe une

I Introduction 27

variable i prenant ces valeurs et les instructions à réaliser pour chaque valeur de i. On pourra donc écrire :

```
s = 0

for i in range(1,5+1):

    s = s + i*i
```

C'est en fait très proche de la notation $1+2+\cdots+5=\sum_{i=1}^5 i$. En fait, on cette notation mathématique est très proche d'une boucle.

Abstraire imaginons qu'on ait besoin d'effectuer le calcul précédent $\sum_{i=1}^{n} i^2$ à plusieurs reprises pour différentes valeurs de n, on pourrait à chaque fois recopier ces lignes en changeant la valeur maximale prise par i. Mais c'est inefficace pour plusieurs raisons :

- en recopiant du code, on risque de propager et répéter des erreurs. Si jamais on découvre une meilleure manière de faire le calcul, il faudra ainsi changer le code à chaque endroit où on l'a copié.
- là où on a besoin de ce calcul, il est possible que ce soit pour faire d'autres choses avec et donc qu'il s'inscrive dans une logique complexe. En copiant le code, on rend le programme plus compliqué à comprendre, car la boucle pour calculer cette somme est mise sur le même plan que le code qui nous intéresse.

Pour faire un parallèle avec les mathématiques, c'est comme si on recopiait une preuve dans un cas particulier chaque fois qu'on a besoin d'appliquer un théorème.

On introduit ainsi une notion d'abstraction les fonctions qui vont nous permettre de faire un code générique de calcul en prenant n en paramètre.

```
def somme_carres(n):
    s = 0
    for i in range(1,n+1):
        s = s + i*i
    return s
```

Comme on le verra, une telle fonction est caractérisée par son nom qui nous permet d'y faire référence, comme lorsqu'on applique le théorème de Thalès, ainsi que des arguments qui seront, à l'exécution, remplacé par les valeurs qui nous intéressent, comme le fait que Thalès est démontré dans un triangle *générique* mais on l'applique sur un triangle particulier et une valeur de retour qui correspond à ce que la fonction calcule.

On peut alors, quand on a besoin de faire le calcul de $\sum_{i=1}^5 i^2$ juste écrire :

```
somme_carres(5)
```

1.3 Se remettre sans cesse à l'ouvrage

De notre présentation *étagée*, on pourrait retenir une hiérarchisation des différents étages. Il n'en est rien.

Ainsi, autant il peut être assez direct de représenter des données, comme dans le cas précédent, autant cela peut être une étape cruciale que de choisir la meilleure représentation. C'est le cas quand on s'intéresse au choix d'une structure de données la plus adaptée ou quand on conçoit un schéma de base de données.

La programmation, et plus largement l'informatique, sont ainsi à rapprocher d'un art martial comme l'Aïkido où on travaille tout au long de sa pratique les mêmes gestes simples en se perfectionnant sans cesse. Aller au bout de ce chapitre ne sera donc pas le signe qu'on maîtrise

Tout au long des autres chapitres, on verra ainsi des méthodes, des notions, qui permettent de mieux comprendre et de mieux pratiquer la programmation. Mais au moment où se retrouvera à programmer, on ne sortira pas de ces quatre étages.

II Représenter

Les données sont regroupées en informatique autour de la notion de types. Un type de données peut être vu en première approximation comme un ensemble de données de même nature. On considère, par exemple, usuellement le type des entiers naturels ou celui des nombres à virgule flottante.

II.1 Les données simples

Les données les plus simples sont celles qui correspondent à des valeurs numériques. Elles dépendent assez souvent des langages de programmation, mais on retrouve toujours un type pour les booléens, un type pour les entiers et un type pour les nombres à virgule flottante, c'est-à-dire pour des représentations de certains nombres réels.

On a ainsi:

- le type int des entiers en précision arbitraire muni des opérations usuelles + *
 // % ** en prenant garde au fait que // est la division entière. Ces opérations prennent d'autant plus de temps que les nombres ont beaucoup de chiffres.
- le type float des nombres à virgule flottante comme 1.4 ou -3.14. On verra plus loin les nombres de \mathbb{R} qui sont ainsi représentables. Les opérations sont alors + * / **. On remarque qu'on a une **vraie division** avec / et ainsi 1 / 2 renvoie un float correspondant à $\frac{1}{2}$.
- le type bool des booléens qui ne comporte que deux valeurs True et False et des opérations suivantes :
 - * la négation not qui permet de passer de True à False et réciproquement.
 - ★ la conjonction and telle que b1 and b2 soit True lorsque b1 et b2 sont égaux à True et False sinon
 - ★ la disjonction or telle que b1 or b2 soit False lorsque b1 et b2 sont égaux à False et True sinon

Les booléens sont particulièrement important, car ils correspondent aux types des comparaisons. On dispose sur tous les types des opérateurs de comparaison == != > > = < < =qui correspondent aux relations mathématiques $= \neq > \ge < \le$.

• le type Nonetype assez particulier qui ne contient qu'une seule valeur None et aucune opération. Ce type permet de donner un sens à l'absence de valeur, comme pour une fonction qui ne renvoie rien.

II.2 Les données composées ou structurées

Les données simples permettent de tout représenter. En effet, l'élément de donnée le plus primitif est le bit qui correspond à un booléen. Ainsi, la mémoire d'un ordinateur est entièrement constituée de booléens. Mais en disant cela, on ne dit pas grand-chose, car il ne s'agit pas d'une soupe informe de booléens, mais d'une organisation structurée. C'est ainsi qu'on considère des données composées comme les tableaux ou les couples.

On distingue deux types de données composées :

• les données *immuables*, c'est-à-dire celles qui ne permettent pas de changer les valeurs qu'elles regroupent ni leur structure après leur création

thon

II Représenter 29

• les données mutables qui le permettent.

Les principaux types de données composées sont :

• (immuable) les tuples qui permettent de représenter des n-uplets de valeurs de types quelconques. On les écrit comme en mathématiques : (1, 3.2, 4). Un tuple ne contenant qu'un seul élément doit tout de même faire apparaître la virgule pour le distinguer d'une valeur. Ainsi on écrit (1,) car (1) est juste la valeur 1. Le tuple vide s'écrit ().

On dispose d'un opérateur de concaténation + qui permet de créer un tuple obtenu en mettant bout à bout deux autres tuples. Ainsi (1,2)+(3,4,5) est le tuple (1,2,3,4,5). En mathématiques, si b est entier naturel on a $a\times b=a+\ldots+a$ où on ajoute b fois a. De même, on dispose d'une opération \star telle que $(1,2)\star 3$ corresponde à (1,2)+(1,2)+(1,2), c'est-à-dire au tuple (1,2,1,2,1,2). On obtient la taille d'un tuple à l'aide de len. En effet, len (1,2,3) renvoie 3. Attention aux doubles parenthèses ici, on le verra, len est une fonction et les parenthèses sont nécessaires pour l'appliquer, mais le tuple lui-même s'écrit avec des parenthèses.

On accède aux différentes composantes d'un tuple avec la construction t[i] où t est un tuple et i est l'indice de la composante en commençant par numéroter à 0. Ainsi (1, 3.2, 4) [1] est la valeur 3.2. Les accès s'effectuent modulo la longueur, et ainsi on peut écrire t[-1] plutôt que t[len(t)-1] pour accéder à la dernière composante.

- (immuable) les str ou chaînes de caractère qui permettent de représenter des textes comme 'bonjour' ou "au revoir". On utilise indifférement 'ou " mais il faut que ce soit le même symbole qui ouvre et ferme une chaîne. Il n'y a pas de type spécifique pour les caractères en Python: ce sont des chaînes de longueur 1 comme 'a'.

 Les opérations sont les mêmes que pour les tuples avec + pour la concaténation, len pour la longueur ou [i] pour accéder au ième caractère. C'est quelque chose qu'on retrouvera pour la plupart des types composés qui sont des suites d'éléments, on parle de séquences.
- (mutable) les list ou tableaux qui correspondent à des tuples dont peut modifier les valeurs ou même modifier la structure, comme en ajoutant ou en supprimant des éléments. Cela correspond alors à des manipulations et non des opérations, et on les verra au paragraphe suivant.
 - Pour définir un tableau, on écrit comme un couple mais avec des crochets. Ainsi on peut écrire [1,3.2,3]. Le tableau vide est [] et comme il n'y pas d'ambiguité, un tableau contenant un unique élément se note juste [1].
 - Là encore, on dispose des opérations communes de concaténation, longueur et accès.
- (mutable) les dict ou dictionnaires, qui permettent de réaliser des associations entre des valeurs immuables et d'autres valeurs. On peut ainsi considérer une valeur comme { 'nom' : 'Michel', 'prenom' : 'Louise', 42 : True } les valeurs à gauche du : sont les clés qui permettent d'accèder aux valeurs, comme lorsqu'on cherche un mot dans un dictionnaire pour accéder à sa définition. Ici, on ne dispose plus de concaténation, car ça ne voudrait pas dire grand-chose d'ajouter deux dictionnaires (que fait-on si une même clé est associée?). On dispose toutefois de len pour le nombre d'associations et il est possible d'accéder à la valeur associée à une clé en écrivant d[cle] où d est une valeur de type dict et cle une clé présente dans d.

Le dictionnaire vide est {} et on verra dans le paragraphe suivant comment

manipuler un dictionnaire pour ajouter ou supprimer des associations.

III Manipuler

III.1 Variables

L'élément clé permettant de manipuler des valeurs est de pouvoir les placer à un endroit et de changer la valeur qui s'y trouve. C'est ce qu'on appelle une **variable**. Même si cela ne correspond pas à une réalité selon les langages, il est d'usage de considérer une variable comme une case mémoire disposant d'un nom et dans laquelle on place des valeurs.

On a alors trois éléments:

- définir une variable, souvent en la limitant à un certain type de donnée, on parle de déclaration
- accéder à sa valeur
- changer sa valeur, on parle d'assignation

Les noms de variables sont le plus souvent composés de lettres, de chiffres et du symbole _, ils doivent commencer par une lettre.

Il n'existe pas de mécanisme spécifique pour déclarer une variable distinct de l'assignation. Ainsi, on écrira x = 3 à la fois pour déclarer une variable nommée x contenant la valeur 3 et pour changer la valeur de x.

Pour accéder à la valeur d'une variable, il suffit d'écrire son nom directement dans une expression. Ainsi, on pourra écrire x+2 pour la valeur obtenue en ajoutant 2 à la valeur de x. Les valeurs en Python sont typées mais pas les variables. Ainsi on pourra tout à fait écrire

```
x = 3 # déclare une variable x contenant un entier
# puis plus loin
x = 'Bonjour' # maintenant x contient une chaîne
```

III.2 État d'exécution

L'ensemble des variables et des valeurs auxquelles elles sont associées à un moment de l'exécution d'un programme est un état d'exécution. Les instructions de déclaration et d'assignation modifient ainsi l'état.

Suite aux instructions

```
a = 3
b = 2
```

l'état est alors

variable	valeur
a	3
b	2

Si on exécute ensuite l'instruction

```
b = a
```

il devient

a	3
b	3

Dans la suite, on pourra noter a=3, b=3 un tel état. Ici, le = permet une notation intuitive.

III.3 Instructions et blocs

Les programmes qu'on va écrire vont maintenant être des suites d'instructions, comme

Ces instructions sont regroupées ensemble sous une notion de blocs. Suivant les langages, ces blocs sont plus ou moins explicites.

Un bloc est un groupement d'instructions à la suite qui sont toutes alignées dans le texte du programme. On dispose ainsi d'une indentation signifiante, c'est-à-dire que cet alignement a du sens et il est directement compris par Python pour savoir si une instruction appartient à un bloc ou non.

Ainsi, on ne pourra pas écrire

```
x = 3

y = x + 2 \# non aligné avec le reste du bloc

<math>x = y
```

Derrière cette notion de bloc on trouve une notion implicite qui est celle de flot d'exécution et qui régit la manière dont les instructions sont exécutées. En accord avec la manière dont on écrit les programmes, les instructions sont exécutées de haut en bas. L'état d'exécution est alors modifié le long du flot.

Une analogie qui sera utile dans la suite est de voir l'état d'un programme comme un train qui circule à travers les rails du flot de contrôle, en rajoutant ou modifiant des wagons à chaque instruction présentée comme un arrêt. Cette image assez naïve permet de faire passer une idée très importante qui est celle de l'ordre d'évaluation et du contexte associé.

vthon

Un exemple important est celui de l'échange du contenu de deux variables a et b. On ne peut pas écrire

```
p = a a = p
```

car comme on vient de le voir, la valeur de b est déjà perdue après la première assignation. Une solution consiste alors à introduire une variable temporaire qui ne va servir que de support pour pouvoir garder la valeur de b. On écrira ainsi :

```
temp = b
b = a
a = temp
```

III.4 Portée

Une variable a une durée de vie, souvent, elle n'existe que localement dans un programme. Par exemple, uniquement au sein de la fonction ou du bloc dans laquelle on l'a définie. On parle de portée d'une variable pour désigner l'ensemble des instructions dans lesquelles ont peut y accéder.

La portée des variables est assez dynamique. On peut ainsi définir une variable uniquement dans certains cas comme on le verra avec une instruction conditionnelle. Ce qui fait que selon l'état d'un programme, on définira différemment la portée d'une même variable.

III.5 Manipuler des données composées mutables

Les types de données mutables permettent de modifier leur valeur. Ce sont le plus souvent des **collections**, c'est-à-dire des arrangements structurés de valeurs, comme un tableau qui les arrange en ligne de la première à la dernière. Lorsqu'on peut faire un accès direct à une valeur, on peut alors la modifier comme si c'était une variable. Il peut également être possible de faire des modifications sur la structure de la collection elle-même, comme enlever ou rajouter des

éléments.

III.5.i Modification des valeurs des éléments

On a vu deux types mutables: les tableaux (list) et les dictionnaires (dict).

• Pour une variable t contenant un tableau de n éléments, on peut accéder à t[i] pour $i \in [\![0,n-1]\!]$ comme si c'était une variable. Ainsi, on pourra écrire t[i] = 3 pour changer la valeur à la ième case par 3. Un tableau peut ainsi être vu comme une suite finie de variables. Si jamais on accède en lecture comme en écriture à t[j] quand $j \notin [\![0,n-1]\!]$, cela va déclencher une erreur et non ajouter une association entre j et cette valeur.

Ainsi, il n'est pas possible de changer la structure d'un tableau par des assignations. Si on exécute la suite d'instructions

```
t = [1, 0, 2]
t[0] = 3
t[2] = t[1]
```

L'état va alors passer de t=[1, 0, 2] à t=[3, 0, 2] puis t=[3, 2, 2].

Tout se passe comme si on avait trois variables t0, t1, t2 avec les instructions :

• Pour une variable d contenant un dictionnaire, on peut accéder à d[c], où c est un clé présente dans d, en lecture comme en écriture. Si on assigne une valeur à d[c] alors que c n'est pas une clé présente dans le dictionnaire, elle sera alors ajoutée. Ce qui fait que, contrairement au cas des tableaux, il est possible de modifier la structure du dictionnaire à l'aide d'assignation.

Si on considère la suite d'instructions

```
d = { 'a' : 2, 'test' : 3 }
d['a'] = 4
d['b'] = d['test']

On passe de l'état d={ 'a' : 2, 'test' : 3 } à d={ 'a' : 4, 'test' : 3 } puis
d={ 'a' : 4, 'b' : 3, 'test' : 3 }.
```

III.5.ii Partages de valeurs composées entre plusieurs variables

Il y a une différence fondamentale entre écrire

```
a = 3
b = a
a = 2
```

et écrire

```
a = [ 3 ]
b = a
a[0] = 2
```

Dans le premier cas, lors de l'assignation b = a, il n'y a pas de lien entre la valeur 3 dans a

hon

et celle dans b. Dans le second cas, après b = a, on a b et a qui pointent vers le même tableau. On notera b, a = [3] cet état. Ainsi, quand on exécute l'instruction a [0] = 2 on modifie le tableau qui est également associé à b. Donc a **et** b sont associées au tableau [2].

En fait, quand on écrit a = [3], on ne **stocke** pas la valeur du tableau dans a. On crée le tableau [3] en mémoire et on place dans a une référence vers ce tableau. Quand on exécute alors b = a, on place dans b une autre référence mais vers le même tableau. Une manière simple de voir cela est de représenter les références par des flèches, ainsi l'état pourrait en fait se représenter ainsi :

Si on considère un tableau de tableau comme [[0], [1]] on aura alors dans les cases du tableau principal des références vers les deux tableaux [0] et [1]:

Ainsi, si on écrit

on aura alors les deux références qui pointent vers le même tableau, et quand on modifie t[1][0], on modifie donc forcément t[0][0] également pour aboutir à l'état :

On peut remarque que plus rien ne fait référence ici au tableau [1]. Il y a un mécanisme dans Python qui détecte cela et qui supprime de la mémoire le tableau.

Ce qui vient d'être dit pour les tableaux en Python est encore vrai avec le dictionnaires, et plus généralement avec la plupart des données.

III.5.iii Modification de la structure des données composées

Pour parler de modification de tableaux ou de dictionnaires, il est nécessaire de comprendre que Python est un langage objet. On se contentera ici de dire qu'un objet est une donnée munie d'opérations de manipulation sur cette donnée.

Ainsi, si t est un tableau, on pourra écrire t.append(x) pour ajouter la valeur x comme une nouvelle case à la fin du tableau. t.append(x) est une instruction, elle ne renvoie pas un nouveau tableau avec cette modification mais elle modifie directement t. On dit que .append est une méthode de la classe list de t. Il est tout à fait possible d'utiliser Python sans écrire de classes, mais dans la mesure où c'est un langage objet dans son cœur, on manipulera forcément des objets.

Par exemple, la suite d'instructions:

III Manipuler 35

```
t = []
t.append(2)
t.append(3)
```

```
va faire passer l'état de t = [] à t = [2] puis t = [2, 3].
```

Il existe beaucoup de méthodes pour les types list et dict. On les verra selon les besoins dans la suite. Il est toutefois possible, et souhaitable, de se référer à la documentation pour avoir une description détaillée de celles-ci.

III.6 Instruction conditionnelle

L'instruction conditionnelle va permettre d'enrichir le flot de contrôle avec des branchements. Elle permet d'orienter le flot d'exécution dans un bloc ou dans un autre selon qu'une condition soit vérifiée ou non.

On écrit

```
if condition:
    # bloc si la
    # condition est vérifiée
else:
    # bloc si la
    # condition n'est pas
    # vérifiée
```

Si on reprend l'analogie des trains et des rails, une instruction conditionnelle est un échangeur qui, selon que le train vérifie ou pas la condition va le faire circuler dans une branche ou une autre. Il est important de comprendre qu'une fois une branche exécutée, les flots se rejoignent sur l'instruction qui suit l'instruction conditionnelle.

Il arrive qu'on n'ait rien à faire dans une branche, on peut alors placer un bloc vide, mais, en général, on préfère, quitte à nier la condition, ne pas écrire de else comme dans :

```
if condition:

# bloc si la

# condition est vérifiée

# le flot saute directement ici si

# la condition n'est pas vérifiée
```


■ Remarque 3.1 En Python, un bloc vide se note pass comme dans le programme suivant :

```
if x == 3:

y = y + 1 # incrémente y si x vaut 3

else:

pass # ne fait rien sinon
```

qu'on aurait pu écrire:

```
if x == 3:
y = y + 1 # incrémente y si x vaut 3
```

On pourrait être tenter d'écrire l'instruction a priori inoffensive y = y dans le bloc du else, mais une telle assignation n'est jamais gratuite. En effet, pour certaines données, il peut se produire une duplication coûteuse pour la réaliser et c'est une bonne pratique de ne pas écrire des opérations qui, si pour nous elles ne font rien comme y = y + 0, peuvent en fait avoir un coût caché.

Une principe clé de la programmation est la compositionnalité des instructions de gestion de flot : on peut placer des instructions conditionnelles dans le corps d'une des branches. On pourra donc écrire

IV Répéter 37

```
if condition1:
    if condition2:
        # bloc si condition 1 et condition 2 sont vérifiées
    else:
        # bloc si condition 1 est vérifiée mais condition 2 ne l'est pas
elese:
    if condition2:
        # bloc si condition 1 n'est oas vérifiée et condition 2 l'est
else:
        # bloc si condition 1 et condition 2 ne le sont pas
```

III.6.i Conditions et opérations sur les booléens

Le rôle des conditions est central dans l'usage des instructions conditionnelles et ainsi c'est très important de bien comprendre le fonctionnement des booléens et de leurs opérations.

Une condition est une formule logique constituée

- de formules atomiques portant sur l'état comme x == 3, x < 2, ...
- d'opérateurs booléens pour relier ces formules : not, and ou or

III.6.ii Inversion de point de vue par rapport aux mathématiques

En mathématiques, il est courant d'avoir des définitions de valeurs par cas. Par exemple, on pourrait écrire

$$x = \begin{cases} \frac{y}{2} & \text{si } y \text{ pair} \\ \frac{y-1}{2} & \text{sinon.} \end{cases}$$

On pourrait le traduire alors aisément ainsi :

```
if y % 2 == 0:

    x = y / 2

else:

    x = (y-1) / 2
```

Mais en faisant cela, on a inversé le point de vue en plaçant la condition avant l'affection de x.

III.6.iii Instructions conditionnelles en cascade

III.7 Entrées et sorties

IV Répéter

Jusqu'ici, on a vu des instructions permettant de manipuler l'état d'exécution, éventuellement de manière différente selon sa valeur à l'aide d'instructions conditionnelles. Mais étant donné un état de départ, on connait déjà les instructions qui seront exécutées et surtout on connait leur nombre qui est majoré par le nombre total d'instructions. En effet, pour reprendre l'analogie des trains, ceux-ci ne font que descendre le long du flot et le nombre d'arrêts rencontrés est majoré par le nombre d'arrêts total.

Cependant, la force principale de l'informatique vient du fait qu'on peut, à l'aide d'un nombre d'instructions fini, avoir la potentialité d'exécuter un nombre arbitrairement grand d'instructions. A cette fin, nous allons introduire un élément fondamental : la notion de répétition ou de boucles.

On pourrait être étonné de la formulation précédente sur ce nombre arbitrairement grand car la mémoire, et même le temps d'exécution en pratique, étant fini, tout est borné. Si on consi-

dère un programme qui va calculer la somme des éléments d'un tableau et qu'on sait que la longueur d'un tel tableau est majorée, on pourrait imaginer une énorme boucle conditionnelle

- IV.1 Répéter n fois
- IV.2 Répéter pour chaque élément
- IV.2.i Accumulateur
- IV.2.ii Drapeau
 - IV.3 Répéter tant qu'une condition est vérifiée
 - IV.4 Choisir la structure de boucle adaptée
 - IV.5 Boucles imbriquées et dimensionnalité
 - **V** Abstraire
 - V.1 Définir et appeler des fonctions
 - V.2 Action d'une fonction et valeur de retour
 - V.3 Fonctions et portée
 - V.4 Structurer des programmes avec des fonctions
 - V.5 Les fonctions comme valeurs

I.1 Principe et exemples

On dit qu'une fonction est récursive lorsqu'elle va s'appeler elle-même lors de son exécution. Le plus souvent, cet appel sera directement visible depuis le corps de la fonction.

Par exemple, la fonction fact suivante permettant de calculer n! est récursive :

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

On utilise ici un exemple mathématique pour la simplicité des fonctions écrites. En effet, on ne voit rien d'autre dans fact que ces appels récursifs et ils correspondent directement à la définition mathématique :

$$n! = egin{cases} 1 & ext{si } n = 0 \ n imes (n-1)! & ext{sinon.} \end{cases}$$

■ Remarque 4.1 En fait, la définition mathématique se fait plutôt en posant :

$$0! = 1$$
 $(n+1)! = (n+1) \times n!$

Donc, pour retraduire une telle définition en tant que fonction, il est souvent nécessaire de décaler les rangs.

On remarque tout de suite deux choses:

- il y a un valeur pour laquelle on ne fait aucun appel
- ullet dans les autres cas, quand on fait un appel, l'argument n-1 diminue strictement.

Cela permet d'être sûr qu'on ne va pas s'arrêter indéfiniment. On verra dans la suite comment on peut s'en assurer pour des fonctions plus complexes.

Quand on évalue fact 5 on va effectuer une série d'appels:

Pour calculer la valeur il faut descendre le long des appels récursifs jusqu'à tomber sur un cas de base puis remonter.

1.2 Implémentation pratique

Comme on vient de le voir, pour calculer une valeur avec une fonction récursive, il est nécessaire de remonter. Pour cela, on a besoin d'interrompre l'évaluation d'une fonction le temps que l'appel récursif se termine, puis de revenir dans l'évaluation là où on en était. On parle alors de contexte d'évaluation ou contexte d'exécution pour l'information qu'il faut sauvegarder afin de reprendre là où on en était. En première approximation, on peut se dire qu'un contexte est la donnée de la position de l'instruction courante, ou de la sous-expression en train d'être évaluée si on raisonne en fonctionnel, ainsi que de l'ensemble des valeurs des variables locales. Il est donc nécessaire de sauvegarder la succession des contextes tout au long des appels récursifs.

On remarque que ce mécanisme est déjà présent pour n'importe quel appel de fonction. La différence principale avec la récursivité, c'est que le nombre d'appels imbriqués à tout moment du programme n'est pas borné à priori, il dépend des paramètres récursifs, et donc il ne peut être connu qu'à l'exécution. On a ainsi besoin d'un mécanisme qui permettent de stocker un nombre quelconque de contextes.

Pour cela, on passe par ce qu'on appelle la pile d'appels. On verra plus tard qu'elle peut être organisée de manière très efficace pour des programmes binaires, mais pour le moment, on se contente d'imaginer que cette pile est vide au début de l'evaluation, puis, à chaque appel, on **empile** le contexte courant, on exécute l'appel, une fois la valeur de retour obtenue, on **dépile** le contexte pour reprendre l'exécution là où on en était avant l'appel mais avec cette valeur de retour calculée.

II L'arbre d'appels 41

- **I.3** Programmer en récursif
- I.4 Récursivité croisée
- II L'arbre d'appels
- II.1 Définition
- II.2 Complexité en nombre d'appels
- II.3 Terminaison
- **III** Récursivité terminale
- III.1 Présentation
- III.2 Optimisation
- III.3 Techniques
 - IV Types inductifs et induction structurelle
- IV.1 Définition naïve des types inductifs

5. Type option en OCaml

Principe

Dans de très nombreux contextes, on a besoin de pouvoir exprimer une notion de partialité en programmant. Cela apparait en général dans deux cas :

- On veut réaliser une fonction qui ne va pas pouvoir renvoyer une valeur dans tous les cas. Exemple : renvoyer la tête d'une liste chaînée ne fonctionne pas si on passe la liste vide. La fonction est en fait une fonction partielle au sens mathématiques
- On souhaite construire progressivement une donnée et il faut qu'on puisse avoir une notion de valeurs indéterminées. Exemple : on veut remplir au fur et à mesure une grille de Sudoku, à la fin, c'est une matrice de nombres, mais il faut pouvoir gérer les cases vides de manière intermédiaires.

En C, on résout ces questions en utilisant des valeurs comme -1 ou le pointeur nul NULL. En OCaml, le système de types nous pousse à chercher une meilleure solution.

II Syntaxe

La solution en OCaml est très simple, mais demande de la pratique pour l'utiliser à bon escient. Il s'agit, pour tout type 'a de définir un type 'a option permettant de représenter, soit une valeur de type 'a, soit une absence de valeur.

Ce type est défini ainsi:

```
type 'a option = None | Some of 'a
```

Cela signifie qu'on a remplacé les valeurs b par des valeurs Some b et que l'absence de valeur est maintenant une vraie valeur None.

Aucune difficulté pour définir une valeur de type option, on se contente d'appeler un des deux constructeurs. Ainsi Some lest un int option et Some "test" un string option. La valeur None est polymorphe dans le même sens que [].

Pour manipuler une valeur o du type 'a option, on effectue un filtrage comme pour les autres types somme :

```
match o with

| None -> (* ... *)
| Some a -> (* ici on peut accèder au contenu a *)
```

Il est également possible de revenir sur le comportement précédent avec une fonction comme

```
let unwrap o =
    match o with
    | None -> failwith "None"
    | Some a -> a
```

Qui permet de déballer une valeur 'a option en faisant l'hypothèse que ce n'est pas None.

■ Remarque 5.1 Une erreur classique avec le type option, qui est la même qu'avec le type list, c'est de se focaliser sur None en commençant par écrire :

```
if o = None
then (* .. *)
else (* et ici on est bloqué, car o est emballé *)

Donc, une règle : si on a une valeur option, on effectue un filtrage!
```

III Utilisation concrète

III.1 Définir une fonction partielle

Il se trouve qu'on a déjà vu un mécanisme permettant de définir une fonction qui peut échouer: les exceptions, notamment avec failwith. Si on considère une fonction f: 'a -> 'b on a ainsi deux types de valeurs dans le type 'a:

- Les valeurs x qui permettent d'obtenir une valeur f x du type 'b
- Les valeurs y pour lesquelles f y produit une erreur.

Schématiquement, si note A les valeurs du type 'a, on a donc $A=A_s\cup A_e$ où l'union est disjointe et A_s sont les valeurs pour lesquelles f ne produit par d'erreurs et A_e les valeurs produisant des erreurs. Si on prend la définition usuelle de fonctions en mathématiques, A_s est le domaine de f et on considère en fait une **application** de A_s dans B les valeurs du type 'b.

L'idée avec le type option, c'est de transformer toute fonction partielle $f:A\to B$ en une application $f^\star:A\to B\cup\{\star\}$ où \star est un élément spécial $\star\not\in B$ qui correspond à une valeur erreur. Cela correspond à une réification de l'erreur au rang de valeur. L'application f^\star est ainsi définie :

$$f^*: A \to B \cup \{\star\}$$

$$a \mapsto \begin{cases} f(a) & \text{si } a \in A_s \\ \star & \text{si } a \in A_e \end{cases}$$

La valeur \star est ce qu'on appelle un *puit*, c'est ici qu'on redirige toutes les entrées invalides. Il n'y a pas de type correspondant directement à l'union $B \cup \{\star\}$ en OCaml et c'est pour cela qu'on utilise le type 'b option qui nous force à *emballer* un retour.

III Utilisation concrète 45

Ainsi à chaque fois qu'on aurait renvoyé une valeur b, on va renvoyer plutôt une valeur Some b, et à la place de produire une erreur, on renvoie None.

Par exemple, le code suivant :

```
let tete l =
    match l with
    | t :: q -> t
    | [] -> failwith "Liste vide"
```

va s'écrire

```
let tete_opt l =
    match l with
    | t :: q -> Some t
    | [] -> None
```

III.2 Appeler une fonction partielle

Pour appeler une fonction partielle, il n'y a pas de difficulté, il suffit de faire l'appel de fonction et de manipuler ensuite le type option comme vu plus haut. Cela signifie qu'on effectuera en général l'appel directement dans l'expression d'un filtrage :

```
match f a with
| None -> (* ... *)
| Some b -> (* ... *)
```

III.3 Données partielles

Pour tout type polymorphe 'a t on peut en déduire un type partiel 'a option t dans lequel les valeurs peuvent ne pas être définies. Ainsi, un int option array permettra pour chaque case du tableau de :

- soit être définie, et ce sera alors une valeur de la forme Some k où k est un int,
- soit être indéfinie avec la valeur None.

Ainsi, une grille de Sudoku qu'on remplirait progressivement aurait le type int option array array. Une case valant None signifiant qu'elle n'est pas encore remplie. Bien entendu, une fois la grille remplie, toutes les valeurs seraient de la forme Some k. On peut ainsi imaginer une transformation de int option array array vers int array array consistant à passer d'une grille pouvant être partielle, mais pleinement remplie à une grille d'entiers :

III.4 Chaîne de traitement

On pourrait se dire que le type option n'est qu'en fait une version un peu lourde de la production d'erreurs. Mais en fait, la force du type option est justement que c'est un type comme

un autre. Cela permet d'effectuer de nombreux traitements en manipulant des fonctions partielles pour définir des données partielles et d'attendre uniquement au dernier moment pour déballer les valeurs. L'idée forte est de manipuler la partialité naturellement.

Un exemple cela peut-être d'avoir une série de traitement à appliquer sur une liste, chaque traitement va possiblement faire apparaître des None qu'on va traiter naturellement avec éventuellement une étape finale pour retirer les options :

```
[ a1; a2; a3; a4; a5; ... ]

↓
[ None; Some b2; Some b3; None; Some b5; ... ]

↓
[ None; None; Some c3; None; Some c5; ... ]

↓
[ c3; c5; ... ]
```

On remarque que ce style de programmation est de plus en plus privilégié par la bibliothèque standard de OCaml:

- de nombreuses fonctions partielles f : 'a -> b' ont une variante f_opt : 'a -> 'b option
- il y a des fonctions manipulant directement des _opt comme List.filter_map qui effectue un map avec une fonction 'a -> 'b option et filtre les None en sortie.
- Le nouveau module Option contient beaucoup de fonctions pour se simplifier la vie quand on programme avec les types option. **Attention**, cela correspond à une utilisation bien plus pointue de OCaml que dans le reste de ce cours. Notamment, cela fait beaucoup de sens en lien avec l'opérateur |> qu'on n'utilise pas ici.

6. Exceptions en OCaml

Les exceptions sont un mécanisme présent dans de nombreux langages de programmation afin de permettre à la fois d'indiquer qu'une erreur s'est produite en interrompant l'exécution d'une fonction et aussi de pouvoir, pour l'appelant **rattraper** cette erreur afin de poursuivre l'exécution comme il se doit.

En OCaml, ce mécanisme va permettre, de plus, de pouvoir interrompre le flot de contrôle, notamment de retrouver des mécanismes comme break, continue et surtout return.

Syntaxe des exceptions

Les exceptions forment un type exn qui est extensible : il est possible de rajouter un nouveau constructeur pour ce type en écrivant :

```
(* Pour une exception sans paramètre *)
exception NomDeLException

(* Pour une exception avec paramètre de type t*)
exception NomDeLException of t
```

On peut alors lancer cette exception à l'aide de raise:

```
(* Pour une exception sans paramètre *)
raise NomDelException

(* Pour une exception avec paramètre de valeur v *)
  (* Attention aux parenthèses *)
raise (NomDelException v)
```

Il est possible d'évaluer une expression en permettant d'évaluer une autre expression en cas d'exception :

```
try
expression
with ExceptionsARattraper -> expression'
```

En fait, ce with est un filtrage, un match, sur les valeurs du type exn mais sans vérification d'exhaustivité. On peut donc effectuer plusieurs cas :

```
try
expression
with motif1 -> expr1
| motif2 -> expr2
| ...
```

En cas de try... with imbriqués, c'est le try le plus proche de l'exception qui la rattrape. SI une exception n'est pas rattrapée, elle va produire une erreur qui stoppera l'exécution d'un programme. On peut très bien lancer une exception depuis un with ... ->.

II Exceptions pour la gestion d'erreurs

Il s'agit ici de l'utilisation la plus *logique* des exceptions. On a déjà pu rencontrer des exceptions en OCaml:

```
# let t = [|1;2|];;
val t : int array = [|1; 2|]
# t.(2);;
Exception: Invalid_argument "index out of bounds".
# List.hd [];;
Exception: Failure "hd".
```

Dans les deux cas, ces exceptions sont plutôt le signe d'une erreur de programmation qu'il faut corriger qu'un comportement limite qu'il faudrait prendre en compte. Dans le cas d'une fonction comme List.hd, on a également vu qu'il était préférable d'utiliser un type option pour pouvoir gérer l'erreur derrière avec :

```
let hd_opt l =
    match l with
    | [] -> None
    | t :: _ -> Some t
```

Pour autant, il y a des erreurs importantes à gérer en OCaml, ce sont celles qui sont inévitables quand il n'est pas possible de prévoir si un opération va réussir. Citons deux cas :

- la lecture d'un fichier va produire une exception End_of_file une fois atteinte la fin de celui-ci;
- des structures de données qui ne fournissent comme seul moyen efficace de savoir si elles sont vides que d'essayer d'en extraire un élément et d'échouer.

Ainsi, dans le premier cas, on pourra écrire une fonction comme :

Cette fonction prend un input_channel et renvoie toutes les lignes qu'il contient sous la forme d'une liste. Le rattrapage d'exception est crucial, c'est lui qui permet d'avoir un cas de base pour la récurrence.

■ Remarque 6.1 Attention, on peut être tenté d'écire :

```
let rec input_all_lines ic =
    try
        input_line ic :: input_all_lines ic
    with End_of_file -> []
```

Or, il se trouve que OCaml évalue tous les arguments du constructeur :: et il le fait de la droite vers la gauche. Le code précédent va donc effectuer des appels récursifs sans jamais lire une seule ligne.

III Programmer avec des exceptions

III.1 Retour prématuré

Si on considère le programme C suivant :

```
int recherche_element(int t[],
          unsigned int nb_elts, int x)
{
     for(int i = 0; i < nb_elts; i++)
          if(t[i] == x)
          return i;
     return -1;
}</pre>
```

On peut l'écrire sous la forme suivante en OCaml:

```
let recherche_element t x =
   let indice = ref None in
   for i = 0 to Array.length t - 1 do
        if !indice = None && t.(i) = x
        then indice := Some i
   done;
   !indice
```

Cela correspond à ce qu'on aurait fait en C pour se passer du return dans la boucle mais cela présente plusieurs problèmes :

- on inhibe les itérations d'une boucle explicitement;
- avec plusieurs boucles imbriquées, c'est peu lisible.

Notons que cette interruption du flot de controle est très naturelle dans un langage utilisant beaucoup la récursivité. Le code suivant récursif suivant a la même structure que le code C :

```
let recherche_element t x =
    let rec rech_aux i =
    if i = Array.length t
    then None
    else if t.(i) = x then Some i
    else rech_aux (i+1)
```

```
in rech_aux 0
```

En effet, on remarque deux feuilles possibles pour l'arbre d'appels récursifs : soit None en fin de tableau, soit Some i quand on a trouvé l'élément.

Traduire des programmes impératifs sous cette forme est également peu satisfaisant.

À l'aide des exceptions, on peut retrouver exactement la structure du code C initiale ainsi:

```
exception Trouve of int

let recherche_element t x =
    try
    for i = 0 to Array.length t - 1 do
        if t.(i) = x
        then raise (Trouve i)
        done;
    None
    with Trouve i -> Some i
```

Ou même, en utilisant l'exception Not_found prédéfinie :

```
exception Trouve of int

let recherche_element t x =
    try
    for i = 0 to Array.length t - 1 do
        if t.(i) = x
        then raise (Trouve i)
    done;
    raise Not_found
    with Trouve i -> i
```

L'expression raise (Trouve i) est ainsi exactement le pendant du return i;.

```
Au lieu d'écrire

return v

...

raise (Return v)

...

failwith "Unreachable"

with Return v -> v
```

III.1.i break et continue

On a déjà vu que break permettait de sortir d'une boucle et continue de passer à l'itération suivante.

Retrouver ces mécanismes avec OCaml est plus anecdotiques mais on peut le faire. On définit tout d'abord deux exceptions :

```
exception Break exception Continue
```

Pour un break dans une boucle

```
Au lieu d'écrire
```

```
for ... do

break

done
```

```
on écrit

try
for ... do
...
raise Break (* sortie *)
...
done
with Break -> ()
```

Et pour un continue:

```
Au lieu d'écrire
```

```
for ... do

continue

...
done
```

```
for ... do
try
...
raise Continue
...
with Continue -> ()
done
```

Structures de données

7	Structures de données abstraites et implémentations
L	Introduction
II	Structure de données abstraite
8	Séquences et ses implémentations : ta-
	bleaux, listes chaînées 57
l II	Structure abstraite séquence ou liste
II III	Implémentations Implémentations concrètes des Listes chaînées
IV	Travaux pratiques
ıv	Travaux pratiques
9	Piles et files : structures abstraites et implémentations
ı	Piles
II	Files
10	Arbres
ı	Arbres binaires
II	TP - Arbres en OCaml
11	Graphes

Introduction

On va étudier dans ce chapitre la notion de structures de données. Une structure de données est une manière de stocker des données et d'interagir avec elles. On peut regrouper de grandes classes de structures données en faisant abstraction de la manière dont les données sont stockées en se concentrant uniquement sur les interactions possibles. Cela permet de définir la notion d'une structure de données abstraites.

Dans un second temps, on s'intéresse à la notion d'implémentation d'une structure de données abstraites qui correspond à un choix concret de stockage et donc à une réalisation de l'interface attendue.

Il Structure de données abstraite

Définition II.1 On appelle structure de données abstraite la donnée d'un type t et d'une interface

I Structure abstraite séquence ou liste

La structure abstraite *liste*, ou également *séquence* dans des contextes, comme en OCaml, où le terme liste fait références aux listes chaînées, est la structure la plus simple pour stocker des données.

Une séquence d'éléments de type t est un type S(t) dont les éléments représentent des valeurs du type t rangées séquentiellement dans un ordre, de la première à la dernière valeur. La vision logique la plus proche de cela est d'imaginer des cases ayant un indice, en commençant en général à l'indice 0, et contenant des valeurs.

II Implémentations

III Implémentations concrètes des Listes chaînées

III.1 En C

III.1.i Représentation et type

Il existe de nombreuses possibilités d'implémentation des listes chaînées en C. On présente ici les opérations autour d'une implémentation et on discutera ensuite des alternatives.

Dans les limites du programme, on ne présente que des listes permettant de contenir un même type, ici des entiers.

Une liste est ainsi un pointeur sur un maillon et un maillon est un couple (valeur, suivant) représenté dans une struct où suivant pointe vers le prochain maillon de la chaîne. Le pointeur nul, de valeur NULL, permet ainsi de représenter la liste vide.

```
struct maillon {
    int valeur;
    struct maillon *suivant;
};
typedef struct maillon maillon;
typedef maillon *liste;
```

On représentera graphiquement le pointeur nul par une croix et les maillons par des blocs contenant une valeur et un pointeur. Ainsi, le dernier maillon de la liste contient une croix. La liste l correspondant à la valeur qu'on pourrait noter [1,2,3] sera représentée ainsi:

III.1.ii Constructeur

On parle de constructeur pour des fonctions qui permettent d'allouer et d'initialiser une valeur d'une structure de donnée. Ici, comme les listes sont des pointeurs sur des maillons, il s'agit uniquement de créer un maillon. Pour cela, on va utiliser malloc pour allouer dynamiquement un nouveau maillon.

```
maillon *maillon_creer(int valeur, maillon *suivant)
{
    maillon *m = malloc(sizeof(maillon));
    m->valeur = valeur;
    m->suivant = suivant;
    return m;
}
```

En fait, ce constructeur pourrait être découpé en deux parties : l'allocation qui va se charger de récupérer un emplacement mémoire pour le maillon et l'initialisation qui va attribuer des valeurs.

```
maillon *maillon_allouer()
{
    return malloc(sizeof(maillon));
}

void maillon_initialiser(maillon *m, int valeur, maillon *suivant)
{
    m->valeur = valeur;
    m->suivant = suivant;
}

maillon *maillon_creer(int valeur, maillon *suivant)
{
    maillon *m = maillon_allouer();
    maillon_initialiser(m, valeur, suivant);
    return m;
}
```

On peut alors commencer à créer des listes en enchainant les maillons :

```
maillon *m1 = creer_maillon(1, NULL); // pas de suivant, c'est le dernier maillon
maillon *m2 = creer_maillon(2, m1);
maillon *m3 = creer_maillon(3, m2);
liste l = m3; // la liste pointe sur le premier maillon
```


Comme le pointeur sur le premier maillon suffit ici, on aurait pu directement écrire :

```
liste l = creer_maillon(3,
creer_maillon(2,
creer_maillon(1, NULL)));
```

III.1.iii Destructeur

Pour détruire un maillon, il suffit de libérer l'espace qu'on lui a attribué.

```
void maillon_detruire(maillon *m)
{
    free(m);
}
```

Pour détruire une liste, on va par contre avoir besoin de parcourir l'ensemble des maillons qui la constitue. Comme pour les autres parcours, on a alors deux choix :

• parcours récursif on a un cas de base quand la liste est vide et dans le cas général, un éventuel appel récursif sur le pointeur suivant.

```
void liste_detruire(liste l)
{
    if (l != NULL)
    {
        liste_detruire(l->suivant);
        maillon_detruire(l); // Attention à l'ordre pour l->suivant
    }
}
```

• parcours impératif on boucle tant que la liste est non nulle. On fait ici attention à ne pas accéder à ->suivant après avoir libéré le maillon.

```
void liste_detruire(liste l)
{
    while (l != NULL)
    {
        liste suivante = l->suivant;
        maillon_detruire(l);
        l = suivante;
    }
}
```

III.1.iv Ajout et suppression en tête

Pour ajouter ou supprimer un maillon en tête de la liste, on va avoir besoin de modifier le pointeur vers le premier maillon. Pour cela, on a deux approches possibles :

• passer un pointeur vers la liste elle-même, c'est-à-dire un pointeur sur un pointeur sur un maillon, ce qui en C aura le type maillon **, qui s'écrit aussi liste *. On aura alors le prototype:

```
void liste_ajout_en_tete(liste *l, int valeur);
```

• renvoyer un pointeur vers le nouveau premier maillon. On aura alors le prototype :

```
liste liste_ajout_en_tete(liste l, int valeur);
```

On présente ici les versions renvoyant une nouvelle liste :

```
liste liste_ajout_en_tete(liste l, int valeur)
{
    maillon *m = maillon_creer(valeur, l);
    return m;
}
```

Si l est la liste précédente contenant 3, 2, 1 et qu'on ajoute 4 en tête, on va donc directement créer un nouveau maillon et renvoyer un pointeur vers celui-ci.


```
liste liste_suppr_en_tete(liste l)
{
    assert(l != NULL);
    liste queue = l->suivant;
    maillon_detruire(l); // Attention, on détruit juste le maillon, pas la liste
    return queue;
}
```

Si l est la liste précédente contenant 3,2,1 et qu'on supprime le maillon de tête, on va renvoyer un pointeur sur le second maillon. **Attention**, ici le pointeur initial l est devenu invalide.

III.1.v Longueur de la liste

On présente ici le calcul de la longueur comme exemple de parcours de la liste. C'est encore très proche du parcours effectué dans le destructeur.

```
int liste_longueur(liste l)
{
    int longueur = 0;
    while(l != NULL)
    {
       longueur = longueur + 1;
       l = l->suivant;
    }
    return longueur;
}
```

III.1.vi Accès au nième maillon de la liste

On effectue un parcours similaire pour accéder au nième maillon.

```
maillon *liste_nieme(liste l, int n)
{
    while(n > 0)
    {
        assert(l != NULL);
        l = l->suivant;
        n = n-1;
    }
    assert(l != NULL);
    return l;
}
```

Toujours avec un programme similaire, on peut chercher un maillon avec sa valeur:

```
maillon *liste_recherche(liste l, int x)
{
    while(l != NULL && l->valeur != x)
    {
        l = l->suivant;
    }
    return l;
}
```

Ici, pas besoin d'asserts, en cas d'échec de la recherche, on renvoie un pointeur nul.

III.1.vii Ajout/Suppression ailleurs qu'en tête

Pour ajouter ou supprimer ailleurs qu'en tête, il est nécessaire de pouvoir repérer précisément un maillon. Pour cela, on peut le faire :

- par son indice, celui utilisé dans liste_nieme;
- par sa valeur, avec une recherche;
- ou encore directement par un pointeur sur le maillon.

Une fois le maillon ajouté/supprimé, on peut procéder comme pour un ajout/suppression en tête, cependant il va falloir reconnecter le pointeur suivant du maillon précédent. Pour cela deux choix :

- soit on considère qu'on ajoute après, auquel cas on dispose du precédent
- soit on considère qu'on ajoute avant/suprprime et pour cela on effectue une boucle pour déterminer le maillon précédent.

```
void liste_ajout_apres(liste l, maillon *m, int x)
{
    m->suivant = liste_ajout_en_tete(m->suivant, x);
}

void liste_ajout_avant(liste l, maillon *m, int x)
{
    liste prec = NULL;

    while(l != m)
    {
        assert(l != NULL);
        prec = l;
        l = l->suivant;
    }
}
```

```
prec->suivant = liste_ajout_en_tete(m, x);
}
```

Si on reprend la liste l contenant 3,2,1 et qu'on souhaite insérer la valeur 4 avant la valeur 1, on va passer un pointeur m vers le maillon contenant 1 et effectuer un parcours jusqu'à avoir prec et l dans la configuration :

On dispose alors des pointeurs permettant de réaliser l'ajout :


```
void liste_suppr_non_en_tete(liste l, maillon *m)
{
    liste prec = NULL;

    while(l != m)
    {
        assert(l != NULL);
        prec = l;
        l = l->suivant;
    }
    prec->suivant = liste_suppr_en_tete(m);
}
```

En fait, lorsqu'on regarde le parcours précédent, on remarque deux points :

- comme on a donné le maillon concerné, le parcours a uniquement pour but de repérer le maillon qui le précède;
- on pourrait se contenter d'utiliser uniquement un pointeur sur le maillon précédent lors du parcours car le maillon qui le suit est accessible avec ->suivant.

III.1.viii Autres implémentations

Une autre implémentation standard consiste à cacher le pointeur sur le premier maillon, ce qui permet de donner également un pointeur sur le dernier maillon. En effet, le pointeur sur le dernier maillon permet de réaliser un ajout en fin de liste en O(1) car il n'y a pas besoin de parcourir la liste pour faire cet ajout.

On obtient alors un type comme:

```
struct maillon {
    int valeur;
    struct maillon *suivant;
};
```

```
typedef struct maillon maillon;

struct liste {
    maillon *premier;
    maillon *dernier;
};

typedef struct liste liste;
```

Cette implémentation est l'occasion de se poser la question sur la répartition entre pile et tas pour les données. On peut légitimement penser que les listes ici ne sont que des couples de pointeurs, et qu'ainsi les passer par copie est léger comparativement à la complexité induite par une allocation sur le tas.

III.2 En OCaml

III.2.i Cas des 'a list

Tout d'abord, il faut se rendre compte que le type par défaut

```
type 'a list = (::) of 'a * 'list | []
```

fait intervenir des maillons et des pointeurs. La différence principale avec C est qu'on ne peut pas changer la valeur des pointeurs.

III.2.ii Type des listes chaînées

Pour retrouver la richesse du type précédent, on peut définir un type comme :

```
type 'a maillon = {
    mutable valeur : 'a;
    mutable suivant : 'a liste
} and 'a liste = Vide | Lien of 'a maillon
```

Ici, le type est une traduction directe du type précédent. On remarque que les types sont mutuellement récursifs car un maillon contient une liste. Le type somme 'a liste ressemble fortement à un pointeur qui peut être nul ou pointer sur un maillon. On remarque qu'on aurait pu aussi se contenter d'écrire le type suivant :

```
type 'a maillon = {
    mutable valeur : 'a;
    mutable suivant : 'a maillon option
}

type 'a liste = 'a maillon option
```

Mais on va préférer le premier type qui a l'avantage de permettre de bien faire apparaître la structure.

III.2.iii Ajout et suppression en tête

Pour rajouter un maillon en tête, on peut écrire :

```
let cons x l = Lien { valeur = x; suivant = l}
```

On remarque que la fonction est beaucoup plus simple que celle en C car l'allocation est automatique et l'initialisation se fait naturellement dans la syntaxe. Cette fonction renvoie une

nouvelle liste, on aurait pu aussi rajouter une référence pour les listes afin de permettre de les rendre modifiables, c'est la même discussion que dans la partie précédente.

La suppression en tête, cela revient à renvoyer la queue de la liste comme le fait List.tl:

On remarque le filtrage imbriqué | Lien { valeur = t; suivant = q } qui correspond au filtrage | t :: q du type a list.

III.2.iv Exemple de parcours sans modification : calcul de la longueur

Vu les remarques précédentes, il n'est pas étonnant que le parcours d'une liste de manière récursive soit très proche de ce qu'on a déjà pu voir avec les listes de base.

```
let rec longueur l = match l with
| Vide -> 0
| Lien { valeur = _; suivant = q } -> 1 + longueur q
```

On en déduit de même une fonction renvoyant un maillon par son indice :

```
let rec nieme l n = match l with
| Vide -> failwith "Liste vide"
| Lien m -> if n = 0 then m else nieme m.suivant (n-1)
```

■ Remarque 8.1 Il est possible de réecrire la fonction précédente en permettant à la fois de donner un nom, ici m, au maillon et de faire un filtrage sur ce qu'il contient. Pour cela, on utilise le mot clé as en OCaml :

III.2.v Exemple de parcours avec modification : ajout d'une maillon en fin de liste

On va montrer un exemple de modification de liste en rajoutant un maillon en fin d'une liste non vide. Ici, on effectue un parcours jusqu'à tomber sur le dernier maillon auquel on rajoute le nouveau à la suite.

```
let rec ajout_fin l x =
    match l with
    | Vide -> failwith "Liste vide"
    | Lien m ->
        if m.suivant = Vide
        then m.suivant <- Lien { valeur = x; suivant = Vide }
        else ajout_fin m.suivant x</pre>
```

III.2.vi Raffinement pour permettre l'ajout à la fin en temps constant

Le programme précédent est à comparer au programme suivant :

```
let rec ajout_fin l x =
    match l with
    | [] -> [x]
    | t::q -> t :: ajout_fin q x
```

On n'a pas l'impression d'avoir vraiment gagné en expressivité ou en efficacité.

Cependant, on peut se dire qu'en changeant le type 'a liste on peut tirer partie des maillons pour obtenir un ajout en fin de liste en temps constant. Le programme suivant présente une interface permettant de le faire.

```
type 'a maillon = {
    mutable valeur : 'a;
    mutable suivant : 'a maillon_ptr
and 'a maillon_ptr = 'a maillon option
and 'a liste = {
      mutable premier : 'a maillon_ptr;
      mutable dernier : 'a maillon_ptr
  }
let liste_vide () = { premier = None; dernier = None }
let ajout_debut l x =
    l.premier <- Some { valeur = x; suivant = l.premier };</pre>
    if l.dernier = None
    then l.dernier <- l.premier</pre>
let suppr_debut l =
    match l.premier with
    | None -> failwith "Liste vide"
    | Some { valeur = _; suivant = l' } ->
            l.premier <- l'</pre>
let ajout_fin l x =
    let m = { valeur = x; suivant = None } in
    (match l.dernier with
     Some m' -> m'.suivant <- Some m
     None -> () );
    l.dernier <- Some m;</pre>
    if l.premier = None
    then l.premier <- l.dernier</pre>
```

Quelques remarques sur ce programme:

- comme on change directement premier et dernier, il est nécessaire de générer une nouvelle liste vide, ce qui est assuré ici par le paramètre ();
- les pointeurs sont représentés par des options dans des champs mutables;
- afin de préserver l'intégrité des deux pointeurs, on est obligé de gérer les cas où il n'y a qu'un seul maillon;
- attention à la priorité du cas de filtrage sur ; qui oblige à mettre des parenthèses dans ajout fin.

III.3 Structure de la mémoire

En mémoire, les maillons d'une liste chaînée, comme celle vue en C, sont sur le tas et de manière désorganisée. Cela signifie qu'il n'y a aucune raison que deux maillons proches dans une liste soient proches en mémoire.

Or, les processeurs optimisent la gestion de la mémoire à l'aide d'un cache qui, au lieu de n'accéder qu'à une seule valeur située à une adresse, va charger une zone mémoire autour de cette adresse. Ceci encourage une cohérence spatiale dans l'organisation de la mémoire afin de profiter au maximum de cette mise en cache.

Une stratégie pour réaliser des listes chaînées efficacement peut consiste à allouer un tableau de maillons et à gérer ensuite les allocations parmi cette réserve.

IV Travaux pratiques

On présente ici deux énoncés de travaux pratiques en C en lien avec ce chapitre.

IV.1 Tableaux non statiques et tableaux dynamiques

On va définir ici une structure de donnée pour gérer des tableaux dont la taille ne sera connu qu'à l'exécution. Pour simplifier, ce seront des tableaux d'entiers int mais la méthode s'adapte naturellement pour des tableaux de n'importe quoi.

IV.1.i Type array

On définit le type suivant :

```
struct array {
    int *elements;
    unsigned int size;
};
typedef struct array array;
```

Un array est donc une structure qui contient:

- un pointeur vers un tableau elements d'entiers
- un entier indiquant la taille de ce tableau

Remarque importante quand on copie un pointeur, on copie uniquement un entier qui est l'adresse pointée. Ainsi, quand on copie un array, ce n'est finalement qu'un couple d'entiers qu'on copie. C'est pourquoi, dans la suite, on passe tous les array par valeur. C'est-à-dire que pour définir une fonction de recherche d'un élément dans un array on va écrire :

```
int search(array t, int x)
{
    for(int i = 0; i < t.size; i++)
    {
        if(t.elements[i] == x)
        {
            return i;
        }
    }
    return -1;
}</pre>
```

Quand on va appeler la fonction, on va avoir une copie de l'argument, c'est-à-dire du array, mais le tableau elements lui sera toujours à la même place. L'alternative serait de passer les valeurs array par pointeurs comme dans la variante suivante :

```
int search(array *t, int x)
{
    for(int i = 0; i < t->size; i++)
    {
        if(t->elements[i] == x)
        {
            return i;
        }
    }
    return -1;
}
```

On n'a rien à gagner au surplus de complexité induit par cela. L'unique avantage serait de permettre de modifier les paramètres de la structure passée en argument, mais on réservera ça aux fonctions qui le nécessitent.

IV.1.ii Allocation, Initialisation, Libération

Pour les fonctions suivantes, on fera usage de malloc et free.

Question IV.1 Écrire une fonction de prototype array array_alloc (unsigned int size) qui alloue un tableau de size entiers avec malloc et renvoie le array pointant dessus.

Conformément à ce qui est écrit au-dessus, on peut créer un array en variable locale et le renvoyer avec return, ce qui compte c'est la mémoire pointée.

Démonstration.

```
array array_alloc(unsigned int size)
{
    array a;
```

```
a.elements = (int *)malloc(sizeof(int) * size);
a.size = size;
return a;
```

Question IV.2 Écrire une fonction de prototype void array_free(array t) qui libère le tableau pointé par t avec free. A partir de ce moment, on ne peut plus utiliser cette adresse sans faire d'erreurs.

Démonstration.

```
void array_free(array a)
```

Question IV.3 Le tableau alloué n'est pas initialisé, écrire une fonction de prototype array array_make(unsigned int size, int def) qui alloue un tableau et initialise toutes les valeurs de celui-ci à def.

Démonstration.

```
array array_make(unsigned int size, int def)
    array a = array_alloc(size);
    for(int i = 0; i < size; i++)</pre>
        a.elements[i] = def;
    return a;
```

Question IV.4 Il est possible de mesurer le temps pris par un programme à l'aide de la fonction time:

```
$> time ./main
./main 0.38s user 0.00s system 99% cpu 0.379 total
```

Comparer le temps d'exécution d'un programme qui

- alloue puis libère 100 fois un tableau d'un million d'entiers
- alloue *en initialisant* à 0 avec make puis libère 100 fois un tableau d'un million d'entiers. Que peut-on en conclure?

Démonstration.

On se rend compte que l'allocation est presque instantanée alors que l'initilisation prend un temps linéaire en la taille des données. Ceci est cohérent avec le fait que la mémoire est allouée de manière paresseuse. On s'en rend d'autant plus compte en examinant l'empreinte mémoire des programmes.

■ Remarque 8.2 Il existe d'autres fonctions que malloc comme

```
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);
```

qui permettent:

- pour calloc d'allouer un tableau de nmemb membres qui sont chacun de taille size et d'initialiser les octets à 0. Cette fonction prend donc un temps linéaire en le nombre d'octets.
- pour realloc de déplacer en mémoire un tableau en changeant sa taille (en plus ou en moins). Si jamais il y a de la place on ne bouge pas le tableau. C'est donc forcément plus efficace que de le faire à la main.

Ces deux fonctions sont hors programme!

IV.1.iii Affichage, copie

Question IV.5 Écrire une fonction void array_print(array a) qui affiche [a1,a2,...,an] si a contient les éléments de a1 à an.

Remarque cette fonction vous sera utile pour tester ce que vous avez fait dans la suite.

Démonstration.

```
void array_print(array a)
{
    printf("[");
    for(int i = 0; i < a.size; i++)
    {
        printf("%d", a.elements[i]);
        if(i < a.size - 1)
            printf(",");
    }
    printf("]\n");
}</pre>
```

Question IV.6 Écrire une fonction de prototype

qui copie len éléments depuis le tableau src à partir de l'indice src_start dans le tableau dst à partir de l'indice dst_start.

Remarque on a déjà écrit cette fonction en OCaml, vous pouvez vous en inspirer.

Démonstration.

IV.1.iv Implémentation d'une pile non bornée

Question IV.7 Écrire une fonction de prototype void $array_push(array *a, int x)$ qui rajoute x à la fin du array a, c'est-à-dire:

- on va allouer un nouveau array b dont le tableau contient a->size+1 éléments
- on va copier les anciennes valeurs de *a dans b
- écrire x
- libérer *a
- remplacer avec *a = b.

Remarque On peut tout à faire écrire *a = b pour que a ait les mêmes valeurs que b en dehors de la fonction;

Rappel pour une struct par pointeurs, on utilise -> pour accéder aux champs. Donc a->elements et a->size ici.

Remarque Faites des tests comme en créant un tableau de taille 0 et en empilant les entiers de 1 à 10 et en affichant le résultat. Faites les tests avec -fsanitize=address.

Démonstration.

```
void array_push(array *a, int x)
{
    array b = array_alloc(a->size+1);
    array_blit(*a, 0, b, 0, a->size);
    b.elements[a->size] = x;
    array_free(*a);
    *a = b;
}

// Note qu'on aurait pu proposer une interface persistante pour push/pop ainsi
// pas de pointeurs mais on renvoie le nouveau array
array array_push_2(array a, int x)
{
    array b = array_alloc(a.size+1);
    array_blit(a, 0, b, 0, a.size);
    b.elements[a.size] = x;
    // pas de raison de faire de free ici de a, c'est
    // a l'appelant de gérer.
    return b;
}
```

Question IV.8 Écrire une fonction int array_pop(array *a) qui retire le dernier élément du tableau a et renvoie sa valeur. Il faudra donc :

- allouer un nouveau array b dont le tableau contient a->size-1 éléments
- copier les anciennes valeurs sauf une
- récupèrer dans une variable x la valeur de la dernière case de a (parce qu'il n'est pas possible d'y accéder après l'étape suivante)
- libérer l'ancien tableau
- remplacer avec *a = b.

Démonstration.

```
int array_pop(array *a)
{
    array b = array_alloc(a->size-1);
    array_blit(*a, 0, b, 0, a->size-1);
    int x = a->elements[a->size-1];
    array_free(*a);
    *a = b;
    return x;
}
```

IV.1.v Tableaux dynamiques

Reprendre toutes les questions précédentes en changeant la structure de donnée pour permettre de faire des tableaux dynamiques. Il faudra ainsi avoir deux entiers : int p_size qui contiendra la taille *physique* en mémoire et int l_size qui contiendra la taille *logique* c'est-à-dire les éléments signifiants stockés.

Quand on a besoin de reallouer la mémoire, on choisira de doubler la taille physique. Le pop ne libérera jamais de taille physique.

Démonstration.

```
#include <stdio.h>
#include <stdlib.h>

struct array {
    int *elements;
    unsigned int p_size;
    unsigned int l_size;
};

typedef struct array array;

array array_alloc(unsigned int size)
{
    array a;
    a.elements = (int *)malloc(sizeof(int) * size);
    a.p_size = size;
    a.l_size = 0;
```

```
return a;
}
void array_free(array a)
    free(a.elements);
array array_make(unsigned int size, int def)
    array a = array_alloc(size);
    for(int i = 0; i < size; i++)</pre>
        a.elements[i] = def;
    }
    a.l_size = size;
    return a;
}
void array_print(array a)
    printf("[");
    for(int i = 0; i < a.l_size; i++)</pre>
        printf("%d", a.elements[i]);
        if(i < a.l_size - 1)</pre>
            printf(",");
    printf("]\n");
void array_blit(array src, int src_start,
            array dst, int dst_start, int len)
    for(int i = 0; i < len; i++)</pre>
        dst.elements[i + dst_start] =
            src.elements[i + src_start];
}
void array_push(array *a, int x)
    if (a->l_size < a->p_size)
        a->elements[a->l_size] = x;
        a->l_size += 1;
    }
    else
    {
        array b = array_alloc(2*a->l_size);
        array_blit(*a, 0, b, 0, a->l_size);
        b.elements[a->l_size] = x;
        b.l_size = a->l_size + 1;
        array_free(*a);
        *a = b;
    }
```

IV.2 Listes chaînées

IV.2.i Listes simplement chaînées

On va définir des fonctions sur les listes chaînées en utilisant le type suivant :

```
struct maillon {
    int valeur;
    struct maillon *suivant;
};
typedef struct maillon maillon;

struct liste {
    maillon *premier;
    maillon *dernier;
};
typedef struct liste liste;
```

■ Remarque 8.3 Invariants à maintenir

- Dans un maillon, suivant est soit NULL si c'est le dernier maillon de la chaîne, soit un pointeur vers le maillon qui le suit.
- Si la liste est vide alors premier et dernier valent NULL. Sinon, ils pointent respectivement sur le premier et le dernier maillon de la chaîne.

Question IV.9 Écrire une fonction de prototype

```
oliste liste_vide();
```

qui renvoie la liste vide. Ici, on pourrait dire **une** liste vide mais cela correspond à une unique valeur de la structure liste.

Démonstration.

```
liste liste_vide()
{
    liste l;
    l.premier = NULL;
    l.dernier = NULL;
    return l;
}
```

```
Question IV.10 Écrire une fonction de prototype

void liste_affiche(liste l);

qui affiche le contenu de la liste sous la forme [1,2,3].
```

Démonstration.

```
void liste_affiche(liste l)
{
    putchar('[');
    maillon *m = l.premier;
    while(m != NULL)
    {
        printf("%d", m->valeur);
        if(m->suivant != NULL)
            putchar(',');
        m = m->suivant;
    }
    putchar(']');
    putchar('\n');
}
```

```
Question IV.11 Écrire une fonction de prototype

maillon *maillon_creer(int valeur, maillon *suivant);

qui alloue et initialise un nouveau maillon.
```

```
maillon *maillon_creer(int valeur, maillon *suivant)
{
    maillon *m = malloc(sizeof(maillon));
    m->valeur = valeur;
    m->suivant = suivant;
    return m;
}
```

Question IV.12 Écrire une fonction de prototype void maillon_detruire(maillon *m); qui détruit, c'est-à-dire libère, la mémoire associée à un maillon. Écrire une fonction de prototype void chaine_detruire(maillon *m); qui détruit la chaîne de maillon accessible depuis le maillon m. En déduire une fonction de prototype void liste_detruire(liste l); qui détruit la chaîne pointée par une liste.

Démonstration.

```
void maillon_detruire(maillon *m)
    free(m);
}
void chaine_detruire(maillon *m)
    while(m != NULL)
        maillon *suivant = m->suivant;
        maillon_detruire(m);
        m = suivant;
}
void liste_detruire(liste l)
    chaine_detruire(l.premier);
```

Question IV.13 Écrire une fonction de prototype

```
int liste_longueur(liste l);
qui renvoie la longueur de la liste 1.
```

```
int liste_longueur(liste l)
    int longueur = 0;
```

```
maillon *m = l.premier;
while(m != NULL)
{
    longueur += 1;
    m = m->suivant;
}
return longueur;
}
```

Question IV.14 Écrire des fonctions de prototype

```
int liste_tete(liste l);
liste liste_queue(liste l);
```

qui renvoient respectivement la tête et la queue d'une liste. **Attention**, ici, contrairement au type vu plus haut, le maillon suivant n'est pas une liste.

Démonstration.

```
int liste_tete(liste l)
{
    assert(l.premier != NULL);
    return l.premier->valeur;
}

liste liste_queue(liste l)
{
    assert(l.premier != NULL);
    liste q;
    q.premier = l.premier->suivant;
    q.dernier = l.dernier;
    return q;
}
```

Question IV.15 Écrire une fonction de prototype

```
void liste_ajout_en_tete(liste *l, int valeur);
```

qui ajoute un maillon en tête de la liste pointée par \mathbb{I} en O(1). On fera attention au cas où \mathbb{I} pointe la liste vide.

■ **Note 8.1** Dans cette fonction et les suivantes, on a fait le choix de passer des pointeurs sur des listes pour permettre de modifier les valerus des pointeurs premier et dernier. Alternativement, on aurait pu faire en sorte que ces fonctions renvoient des liste par copie.

```
void liste_ajout_en_tete(liste *l, int valeur)
{
    l->premier = maillon_creer(valeur, l->premier);
    if(l->dernier == NULL) // la liste était vide
        l->dernier = l->premier;
}
```

Question IV.16 Écrire une fonction de prototype

```
void liste_suppr_en_tete(liste *l);
```

qui supprime un maillon en tête de la liste l'supposée non vide en O(1). On fera attention au cas où on supprime l'unique maillon de la liste.

Démonstration.

```
void liste_suppr_en_tete(liste *l)
{
    assert(l->premier != NULL);
    maillon *m = l->premier;
    l->premier = m->suivant;
    maillon_detruire(m); // on libère la mémoire
    if(l->premier == NULL) // on a vidé la liste
        l->dernier = NULL;
}
```

Question IV.17 Écrire une fonction de prototype

```
void liste_ajout_en_fin(liste *l, int valeur); qui ajoute un maillon en fin de la liste l en O(1).
```

Démonstration.

```
void liste_ajout_en_fin(liste *l, int valeur)
{
    maillon *m = l->dernier;
    l->dernier = maillon_creer(valeur, NULL);
    m->suivant = l->dernier;
    if(l->premier == NULL) // la liste était vide
        l->premier = l->dernier;
}
```

Question IV.18 Écrire une fonction de prototype

```
maillon *liste_cherche_maillon(liste l, int valeur);
```

qui renvoie un pointeur sur le premier maillon de valeur valeur ou renvoie NULL s'il n'y en a pas.

Démonstration.

```
maillon *liste_cherche_maillon(liste l, int valeur)
{
    maillon *m = l.premier;
    while(m != NULL && m->valeur != valeur)
    {
        m = m->suivant;
    }
    return m;
}
```

Question IV.19 Écrire une fonction de prototype

```
void liste_ajout_maillon_apres(liste *l, maillon *m, int valeur);
```

qui insère en O(1) un maillon après le maillon m. On fera en sorte que l'insertion soit valide même si m est le dernier maillon de la liste.

Démonstration.

```
void liste_ajout_maillon_apres(liste *l, maillon *m, int valeur)
{
    m->suivant = maillon_creer(valeur, m->suivant);
}
```

Question IV.20 Écrire une fonction de prototype

ບ 【

qui ajoute un maillon avant m. Dans le cas où m est le premier ou le dernier maillon, l'insertion sera en ${\cal O}(1)$.

```
void liste_ajout_maillon_avant(liste *l, maillon *m, int valeur)
{
    if (m == l->premier)
        liste_ajout_en_tete(l, valeur);
    else if (m == l->dernier)
        liste_ajout_en_fin(l, valeur);
    else
    {
```

```
maillon *prec = l->premier;
while(prec->suivant != m)
{
    prec = prec->suivant;
}
prec->suivant = maillon_creer(valeur, m);
}
}
```

Question IV.21 Écrire une fonction de prototype

```
void liste_suppr_maillon(liste *l, maillon *m);
```

qui supprime un maillon. Dans le cas où ${\bf m}$ est le premier maillon, la suppression sera en O(1).

Démonstration.

```
void liste_suppr_maillon(liste *l, maillon *m)
{
    if (m == l->premier)
        liste_suppr_en_tete(l);
    else
    {
        maillon *prec = l->premier;
        while(prec->suivant != m)
        {
            prec = prec->suivant;
        }
        prec->suivant = m->suivant;
        maillon_detruire(m);
    }
}
```

IV.2.ii Listes doublement chaînées

Pour les listes doublement chaînées, on va adapter le type précédent en rajoutant juste un pointeur precedent dans les maillons :

```
struct maillon {
    int valeur;
    struct maillon *suivant;
    struct maillon *precedent;
};
typedef struct maillon maillon;

struct liste {
    maillon *premier;
    maillon *dernier;
};
typedef struct liste liste;
```

■ Remarque 8.4 Invariants à maintenir

- Dans un maillon, suivant est soit NULL si c'est le dernier maillon de la chaîne, soit un pointeur vers le maillon qui le suit.
- Dans un maillon, precedent est soit NULL si c'est le premier maillon de la chaîne, soit un pointeur vers le maillon qui le précède.
- Si la liste est vide alors premier et dernier valent NULL. Sinon, ils pointent respectivement sur le premier et le dernier maillon de la chaîne.

Question IV.22 Reprendre les questions précédentes avec ce nouveau type.

Démonstration.

Peu de modifications à faire.

```
liste liste_vide()
    liste l;
    l.premier = NULL;
    l.dernier = NULL;
    return l;
}
void liste_affiche(liste l)
    putchar('[');
    maillon *m = l.premier;
    while(m != NULL)
        printf("%d", m->valeur);
        if(m->suivant != NULL)
            putchar(',');
        m = m->suivant;
    putchar(']');
    putchar('\n');
maillon *maillon_creer(int valeur,
        maillon *precedent, maillon *suivant)
    maillon *m = malloc(sizeof(maillon));
    m->valeur = valeur;
    m->suivant = suivant;
    m->precedent = precedent;
    return m;
void maillon_detruire(maillon *m)
{
    free(m);
}
```

```
void chaine_detruire(maillon *m)
   while(m != NULL)
        maillon *suivant = m->suivant;
        maillon_detruire(m);
        m = suivant;
    }
}
void liste_detruire(liste l)
    chaine_detruire(l.premier);
}
int liste_longueur(liste l)
    int longueur = 0;
    maillon *m = l.premier;
   while(m != NULL)
        longueur += 1;
        m = m->suivant;
    return longueur;
}
int liste_tete(liste l)
    assert(l.premier != NULL);
    return l.premier->valeur;
}
liste liste_queue(liste l)
    assert(l.premier != NULL);
   liste q;
    q.premier = l.premier->suivant;
    q.dernier = l.dernier;
    return q;
}
void liste_ajout_en_tete(liste *l, int valeur)
    l->premier = maillon_creer(valeur, NULL, l->premier);
    if(l->dernier == NULL) // la liste était vide
        l->dernier = l->premier;
}
void liste_suppr_en_tete(liste *l)
    assert(l->premier != NULL);
   maillon *m = l->premier;
   l->premier = m->suivant;
    l->premier->precedent = NULL;
```

```
maillon_detruire(m); // on libère la mémoire
    if(l->premier == NULL) // on a vidé la liste
        l->dernier = NULL;
}
void liste_ajout_en_fin(liste *l, int valeur)
    maillon *m = l->dernier;
    l->dernier = maillon_creer(valeur, m, NULL);
    m->suivant = l->dernier;
    if(l->premier == NULL) // la liste était vide
        l->premier = l->dernier;
maillon *liste_cherche_maillon(liste l, int valeur)
    maillon *m = l.premier;
    while(m != NULL && m->valeur != valeur)
        m = m->suivant;
    return m;
}
void liste_ajout_maillon_apres(liste *l, maillon *m, int valeur)
    m->suivant = maillon_creer(valeur, m, m->suivant);
```

```
Question IV.23 Écrire une fonction de prototype void liste_suppr_en_fin(liste *l); qui supprime en O(1) le dernier maillon.
```

Démonstration.

```
void liste_suppr_en_fin(liste *l);
{
    maillon *fin = l->dernier;
    l->dernier = fin->precedent;
    l->dernier->suivant = NULL;
    if (l->dernier == NULL)
        l->premier = NULL;
    maillon_detruire(fin);
}
```

Question IV.24 Écrire une fonction de prototype

```
void liste_ajout_maillon_avant(liste *1, maillon *m, int valeur);  \text{qui ajoute un maillon avant men } O(1).
```

Démonstration.

```
Question IV.25 Écrire une fonction de prototype void liste_suppr_maillon(liste *1, maillon *m); qui supprime en O(1) le maillon m.
```

```
void list_suppr_maillon(liste *1, maillon *m)
{
    if (m == l->premier)
        liste_suppr_en_tete(l);
    else
    {
        m->precedent->suivant = m->suivant;
        m->suivant->precedent = m->precedent;
        maillon_detruire(m);
    }
}
```

Piles

I.1 Principe

Une pile est une structure de donnée abstraite permettant d'ajouter et de retirer des éléments selon le principe

LIFO: Last In First Out

C'est-à-dire que le premier élément retiré sera celui qui a été ajouté en dernier. La bonne manière de se représenter une pile est donc d'imaginer une pile de dossiers à traiter sur un bureau. Chaque nouveau dossier est empilé et on traite à chaque fois le dossier sur le dessus.

■ Remarque 9.1 Ce n'est sûrement pas la manière la plus efficace de gérer des dossiers et l'on risque d'avoir des dossiers empilés depuis très longtemps sans être traités.

On va avoir quatre opérations:

- Créer une pile vide
- Tester si une pile est vide
- Ajouter un élément à une pile, on appelle cette opération empiler et en anglais push
- Retirer un élément à une pile et le renvoie, on appelle cette opération *dépiler* et en anglais *pop*

Le comportement opérationnel de cette structure abstraite est donné par le principe **LIFO** précédent.

On considère qu'il est très important que ces quatre opérations soient de complexité en temps constante, éventuellement amorti. Par contre, il est possible de limiter le nombre maximum d'éléments. C'est une vision qui est en accord avec le rôle des piles pour gérer des tâches à traiter pour lesquelles on a souvent un majorant sur leur nombre.

1.2 Représentation visuelle

Comme souvent, la représentation visuelle est importante car c'est elle qui permet de raisonner efficacement. Ici, on va représenter une pile verticalement ou horizontalement avec un côté fermé : le *fond* de pile et un côté ouvert permettant d'empiler et de dépiler des éléments.

3	5			←	2
3	5	2		←	1
3	5	2	1	_	\rightarrow
3	5	2			
1					

1.3 Implémentations

I.3.i Dans un tableau borné

Reprenant la remarque précédente, on va présenter une implémentation très standard des piles dans des tableaux de taille fixe. L'idée est de considérer un tableau $\mathsf t$ de taille N muni d'un entier fond indiquant l'indice du prochain élément libre.

Au départ, fond vaut 0. Chaque fois qu'on empile un élément, on le place à l'indice indiqué par fond et on l'incrémente. Pour dépiler, on décrémente fond et on renvoie l'élément à cet indice. En fait, les éléments ne sont pas vraiment retirés. Il s'agit exactement du comportement de la pile d'exécution du compilateur vue au chapitre sec:pileexec.

Le choix de la valeur N donnant le nombre maximum d'éléments empilables est critique : il faut qu'elle soit grande devant l'estimation qu'on peut faire du nombre d'empilements. L'implémentation d'une telle pile se fait en général dans des conditions où l'on va éviter de vérifier l'absence de dépassement. Dans le code qui va suivre, on a fait le choix de passer par des assert pour vérifier ces conditions uniquement en mode développement.

■ Remarque 9.2 En C, on passera le plus souvent par un tableau statique avec N défini à une grande valeur entière par un #define. On présente une version plus dans l'esprit de ces chapitres structures de données.

On va ainsi définir un type pile avec des pointeurs :

```
struct pile {
   int *t;
   int fond;
};

typedef struct pile pile;
```

Pour ajouter et retirer un élément, comme on va manipuler l'entier fond, il est nécessaire de passer pile par pointeur. On fait ainsi ce choix pour l'ensemble des fonctions.

I Piles 87

L'opération de création doit faire une allocation et cela va donc nécessiter une opération explicite de destruction :

```
int N = 1000; // La pile sera de 1000 éléments au maximum

pile *pile_creer()
{
    pile *p = malloc(sizeof(pile));
    p->t = malloc(sizeof(int) * N);
    p->fond = 0;
    return p;
}

void pile_detruire(pile *p)
{
    free(p->t);
    free(p);
}
```

Empiler et dépiler correspond directement à la description précédente.

```
void empiler(pile *p, int x)
{
    assert(p->fond < N);
    p->t[p->fond] = x;
    p->fond++;
}

int retirer(pile *p)
{
    assert(p->fond > 0);
    p->fond--;
    return p->t[p->fond];
}

bool est_vide(pile *p)
{
    return p->fond == 0;
}
```

I.3.ii Dans un tableau dynamique

On a vu qu'on pouvait définir des tableaux redimensionnables et que cela permettait d'effectuer des ajouts et des suppressions en complexité amortie constante.

On peut donc directement réaliser une pile à l'aide de cette structure en ajoutant et supprimant des éléments. C'est l'interface usuelle avec le type list de Python qui propose déjà cela avec les fonctions append et pop. On peut rajouter une surcouche superficielle pour retrouver la nomenclature précédente :

```
def creer_pile():
    return []

def est_vide(p):
    return p == []
```

```
def empiler(p, x):
    p.append(x)

def depiler(p):
    return p.pop()
```

I.3.iii Avec des listes chaînées

Avec des listes chaînées, l'idée est d'ajouter et de supprimer des éléments en tête. En effet, on a vu que ces deux opérations étaient en temps constant, ce qui est particulièrement adapté aux piles.

En OCaml, on remarque que les listes par défaut conviennent, cependant, il est nécessaire de changer de liste pour rajouter ou supprimer un élément, c'est pourquoi on définit le type 'a pile comme une 'a list ref c'est-à-dire un pointeur sur un maillon de tête comme on aurait pu le faire en C.

On définit ainsi directement les quatre opérations :

```
type 'a pile = 'a list ref

let cree_pile () = ref []

let est_vide p = !p = []

let empile p x = p := x :: !p

let depile p =
    match !p with
    | [] -> failwith "Pile vide"
    | x::q -> p := q; x
```

1.4 Applications

I.4.i Parenthésage

I.4.ii Évaluation d'expressions

!subsubsubsection(Expression postfixe)!subsubsubsection(Expression infixe)

II Files

II.1 Principe

Une file est une structure de donnée abstraite permettant d'ajouter et de retirer des éléments selon le principe

FIFO: First In First Out

C'est-à-dire que le premier élément retiré sera celui qui a été ajouté le plus anciennement. La bonne manière de se représenter une file est donc d'imaginer la file d'attente à la caisse d'un magasin.

II.2 Implémentations

II.2.i Dans un tableau borné

On peut reprendre l'implémentation dans un tableau des piles. Ici, on va conserver deux indices : l'indice de fin et 'indice du début de la file.

L'idée est de représenter une file comme une plage de cases dans un tableau circulaire :

II Files

Pour enfiler, il suffit de décaler fin d'une case vers la droite et d'ajouter à cette case l'élément. Ainsi si on enfile 3 dans l'exemple précédent on obtient :

Pour défiler, on va renvoyer l'élément pointé par début et décaler celui-ci d'une case vers la droite. Dans l'exemple précédent, on obtient alors la valeur 1 et le tableau devient :

Si, comme pour les piles, on suppose que la taille de la file ne dépassera jamais le nombre de cases du tableau circulaire, il n'y a pas de risques de dépassement. La question qui se pose alors est celle de l'implémentation d'un tableau circulaire de N cases dans un tableau usuel de N cases.

La technique consiste à couper le tableau arbitrairement entre deux cases et à l'aplatir:

Maintenant, la question du bord se pose : les décalages doivent se faire modulo la longueur du tableau pour avoir le même comportement qu'un tableau circulaire.

On traduit ensuite directement cette représentation en C:

```
struct file {
    int *t;
    int debut;
    int fin;
};

typedef struct file file;
```

- II.2.ii Avec des listes chaînées
- II.2.iii Avec deux piles
 - **II.3** Applications

Arbres binaires

I.1 Définition inductive

Définition I.1 Un arbre binaire étiqueté par \mathcal{E} est :

- ullet soit vide, et on le note alors nil ou ot
- soit un triplet (g, x, d) où $x \in \mathcal{E}$ et g et d sont des arbres binaires.
- Remarque 10.1 Cette définition inductive ressemble à la définition des listes.

On peut la formaliser en introduisant $T_b(\mathcal{E})$ l'ensemble des arbres étiquetés par \mathcal{E} . C'est le **plus petit ensemble** tel que :

- $\operatorname{nil} \in T_b(\mathcal{E})$
- $\forall x \in \mathcal{E}, \forall g, d \in T_b(\mathcal{E}), (g, x, d) \in T_b(\mathcal{E})$

Les conséquences de la précision plus petit ensemble sont importantes :

- les arbres sont nécessairement des expressions finis, c'est-à-dire qu'il ne comportent qu'un nombre finis de constructions. C'est automatique car l'ensemble des arbres finis vérifie les conditions précédentes;
- pour tout triplet (g, x, d) il ne peut exister qu'un arbre, sinon, en enlevant un arbre en double on vérifierait encore les deux conditions précédentes.

On en déduit directement la notion de preuve par induction structurelle sur les arbres :

$$\forall a \in T_b(\mathcal{E}), P(a) \iff \begin{cases} P(\mathsf{nil}) \\ \forall x \in \mathcal{E}, \forall g, d \in T_b(\mathcal{E}), P(g) \land P(d) \Rightarrow P(g, x, d) \end{cases}$$

Cette induction correspond à un pseudo principe de récurrence qui nous permettra de faire les preuves.

Pour démontrer cette inégalité, il suffit de vérifier que $T_P = \{t \in T_b(\mathcal{E}), P(t)\}$ vérifie les relations de la définition inductive et $T_P \subset T_b(\mathcal{E})$ et par minimalité, on a bien $T_P = T_b(\mathcal{E})$.

- **Exemple 10.1** Si $\mathcal{E} = \mathbb{N}$, les éléments suivants sont des arbres :
 - nil
 - (nil, 2, nil)
 - ((nil, 1, nil), 2, nil)

On adoptera une représentation graphique très naturelle pour les arbres binaires où un

■ Exemple 10.2 Les trois arbres précédentes sont donc représentés par :

Afin d'alléger la notation, on omettra nil, sauf pour l'arbre vide. On fera cependant attention à conserver les arêtes donnant sur nil pour ne pas confondre (nil, 1, nil(nil, 2, nil)) et ((nil, 2, nil), 1, nil). Ainsi on représentera les arbres précédents par :

I.2 Vocabulaire

Définition 1.2 Soit a un arbre binaire. Les arbres non vides présents dans a sont appelés les **nœuds** de a. Parmi ceux-ci on distingue ceux qui sont de la forme (nil, x, nil). appelés des **feuilles**. Les nœuds qui ne sont pas des feuilles sont appelés des **nœuds internes**. Le nœud a lui-même est appelé la racine de l'arbre. On note N(a) les nœuds de a.

Si $n \in N(a)$ n'est pas pas la racine, il est le fils gauche ou le fils droit d'un unique nœud appelé le **père** de x.

Si $n \in N(a)$, on appelle **sous-arbre** de a l'arbre dont n est la racine.

■ Remarque 10.2 En partant de la définition inductive, il y a une identification entre un sousarbre et sa racine. Mais afin de raisonner, on distinguera un nœud en tant qu'emplacement au sein d'un arbre et le sous-arbre lui-même.

Définition 1.3 Soit *a* un arbre binaire.

• On appelle **taille** de a, et on note |a| le nombre de nœuds de a.

II TP - Arbres en OCaml

93

• On appelle **hauteur** de a l'entier

$$h(a) = \begin{cases} -1 & \text{si } a = \text{nil} \\ 1 + h(g) + h(d) & \text{si } a = (g, x, d) \end{cases}$$

Définition 1.4 Soit a un arbre binaire et $n \in N(a)$. On appelle **profondeur** de n l'unique entier p(a) tel qu'il existe une suite finie $(n_0, n_1, \ldots, n_{p(a)})$ de n vérifiant :

- n_0 est la racine de a
- $\bullet \ n_{p(a)} = n$
- pour tout i, n_i est le père de n_{i+1}

Cette suite finie est le **chemin** de la racine à n. Il est nécessairement unique car chaque nœud autre que la racine a un unique père.

Théorème I.1 Soit a un arbre, si a est non vide, alors $h(a) = \max_{n \in N(a)} p(n)$.

Démonstration.

Par induction structurelle sur a.

- Initialisation Si a = nil la prémisse est fausse, donc l'implication est trivialement vérifiée.
- **Hérédité** Supposons la propriété vérifiée pour deux arbres g et d, soit $x \in \mathcal{E}$, on va montrer qu'elle est vérifiée pour a = (g, x, d). On a quatre cas pour le couple (g, d):
 - \star Soit $g \neq \text{nil}$ et $d \neq \text{nil}$. Dans ce cas, par hypothèse $h(g) = \max_{n \in N(g)} p_g(n)$ où p_g est la profondeur de n en tant que nœud de l'arbre g. Or, mis à part la racine de a, le chemin menant dans a au nœud n est dans g. On a donc directement $p_g(n) = p(n) 1$. Ainsi $h(g) = \max_{n \in N(g)} p(n) 1$. De même, $h(d) = \max_{n \in N(d)} p(n) 1$. On a

$$h(a) = 1 + \max(h(g), h(d)) = \max(\max_{n \in N(g)} p(n), \max_{n \in \mathbb{N}(d)} p(n))$$

Or, le seul nœud de a qui n'est ni dans g ni dans d est sa racine, qui est de profondeur nulle donc $h(a) = \max_{n \in N(a)} p(n)$.

- * Soit g= nil et $d\neq$ nil. Ainsi h(g)=-1 et donc $h(a)=1+h(d)=\max_{n\in N(d)}p(n)$ par l'analyse précédente. On conclut donc avec la propriété voulue.
- * Soit $g \neq \text{nil}$ et d = nil. Cas symétrique du précédent.
- \star Soit g=d= nil. Auquel cas, h(a)=0 qui est bien la profondeur de son unique nœud.

On a bien montré la propriété voulue par induction structurelle.

II TP - Arbres en OCaml

II.1 Premières fonctions

On va considérer le type des arbres binaires 'a arbre défini par:

type 'a arbre = Nil | Noeud of 'a arbre * 'a * 'a arbre

Question II.1 Écrire des fonctions: (* Calcule le nombre de noeuds de a *) let taille (a : 'a arbre) : int (* Calcule la hauteur de a *) let hauteur (a : 'a arbre) : int

(* Indique si a est réduit à une feuille *)
let feuille (a : 'a arbre) : bool

Question II.2 Écrire une fonction sous_arbres qui renvoie la liste des sous-arbres non vides d'un arbre.

En déduire des fonctions noeuds, feuilles et noeuds_internes qui renvoient la liste des étiquettes des noeuds correspondants.

Pour accéder à un nœud de l'arbre, on descend en partant de la racine et en allant à gauche ou à droite. On peut donc représenter un tel chemin par une liste de déplacements :

```
type deplacement = Gauche | Droite
type chemin = deplacement list
```

Question II.3 Écrire une fonction chemin_noeud : 'a arbre -> chemin -> 'a option qui renvoie l'étiquette d'un nœud donné par son chemin. On utilise un type option en cas de chemin invalide.

II.2 Parcours

Sur le même modèle que l'exploration par *backtracking*, on va réaliser un parcours en profondeur d'un arbre en explorant à gauche puis à droite ses sous-arbres de manière récursives. Chaque nœud est donc vu trois fois :

- une première fois quand on le découvre avant d'explorer son sous-arbre gauche
- entre les deux explorations
- enfin quand on a fini d'explorer son sous-arbre droit.

Question II.4 Écrire des fonctions affiche_avant, affiche_milieu et affiche_apres qui parcourt et affiche les étiquettes d'un string arbre selon les trois cas précédents. Note: il s'agit essentiellement du même code à une ligne près.

Question II.5 On peut représenter une expression arithmétique comme (2+3)\times 4 en tant qu'arbre avec des opérations pour les nœuds internes et des valeurs pour les feuilles. Quitte à utiliser des string dans les deux cas, qu'obtient-on sur une telle expression avec les trois opérations précédentes?

On redonne ici l'implémentation d'une pile et d'une file en OCaml:

Ces deux structures de données ont la même interface mais deux comportements différents. On va utiliser un unique type pour les représenter afin de permettre à une fonction d'utiliser soit une pile soit une file.

```
type ('a, 'b) taches = {
    creation : unit -> 'a;
    ajouter : 'a -> 'b -> unit;
    retirer : 'a -> 'b;
    est_vide : 'a -> bool
let taches_pile = {
    creation = pile_creer;
    ajouter = pile_empile;
    retirer = pile_depile;
    est_vide = pile_est_vide
let taches_file = {
    creation = file_creer;
    ajouter = file_enfile;
    retirer = file_defile;
    est_vide = file_est_vide
    }
```

■ Remarque 10.3 Ici, on a une limitation du système de types. On aimerait paramètrer taches par ('a 'b, 'a) où 'b est un type paramètré, ainsi on aurait soit ('a pile, 'a) où ('a file, 'a) comme pour les deux case. Cependant, ce n'est pas possible, les types génériques ne sont pas paramètriques. C'est pour cela qu'on a un ('a, 'b) sans avoir de lien apparent entre 'a et 'b.

On pourra alors écrire une fonction prenant un gestionnaire de tâches en paramètre :

```
let f t a =
    let a_traiter = t.creation () in
    for i = 0 to Array.length a - 1 do
        t.ajouter a_traiter a.(i)
    done;
    while not (t.est_vide a_traiter) do
        print_int (t.retirer a_traiter)
    done
```

Ainsi f taches_pile [|1;2;3|] va afficher 321 et f taches_file [|3;2;1|] va afficher 123.

Question II.6 En déduire une fonction

```
parcours : ('a, 'b) taches -> 'b arbre -> unit
```

qui effectue un parcours de l'arbre en affichant les étiquettes des nœuds visités dans l'ordre induit par le gestionnaire de tâches passé en paramètre.

II.3 Arbres binaires stricts

Pour représenter des arbres dont les nœuds ont tous deux fils non vides, on va utiliser le type

```
type ('a, 'b) arbre_bin = Feuille of 'a
| Noeud of ('a, 'b) arbre_bin * 'b * ('a, 'b) arbre_bin
```

Ce type permet de représenter naturellement des expressions arithmétiques comme :

```
Noeud(Noeud( Feuille 2, '+', Feuille 3), '*', Feuille 5)
```

Question II.7 Écrire une fonction evalue : (int, char) arbre_bin -> int qui évalue une telle expression.

Si on considère le type

```
type ('a, 'b) etiquette = F of 'a | N of 'b
```

On peut passer d'un ('a, 'b) arbre_bin à un ('a, 'b) etiquette arbre et, dans certains cas, d'un ('a, 'b) etiquette arbre à un ('a, 'b) arbre_bin.

```
Question II.8 Écrire ainsi deux fonctions de conversion :
```

```
arbre_bin_vers_arbre : ('a, 'b) arbre_bin -> ('a, 'b) etiquette arbre arbre_vers_arbre_bin : ('a, 'b) etiquette arbre -> ('a, 'b) arbre_bin option
```

II TP - Arbres en OCaml 97

II.4 Dessin d'arbres

On va réaliser dans cette partie une fonction de dessin d'arbres avec graphics. L'idée est de placer la racine et de dessiner les sous-arbres gauche et droit en dessous. Pour cela, il va falloir connaître la taille de ces sous-arbres en pixels.

On pourra consulter la documentation de graphics ici: Graphics

Question II.9 Écrire une fonction largeur_pixels : int arbre -> int qui estime la largeur en pixels d'un arbre dans son affichage.

Question II.10 En déduire une fonction dessine : int arbre -> int -> int -> unit tel que dessine a x y dessine l'arbre a en plaçant la racine en (x,y).

II.5 Génération aléatoire d'arbres

Dans cette partie, ce qui nous intéresse est de générer aléatoirement des arbres pour en observer la structure. Les étiquettes ne sont pas pertinentes, on pourra donc au choix, soit considérer des unit arbre, soit redéfinir un type d'arbre non étiquettés.

On va réaliser ici deux modèles de génération aléatoire d'arbres. Le premier modèle consiste, pour générer un arbre de n nœuds, à choisir aléatoirement k dans [0, n], à générer aléatoirement un arbre g à k nœuds et un arbre d à n-k nœuds puis à renvoyer l'arbre Noeud (g, (), d).

Question II.11 Implémenter ce modèle avec une fonction genere_arbre_1 : int -> unit arbre.

Tester votre fonction, notamment avec l'affichage de la partie précédente.

Pour le deuxième modèle, on va choisir un sous-arbre vide uniformément et le remplacer par un nœud.

Question II.12 Écrire une fonction chemins_vides : 'a arbre -> chemin list qui étant donné un arbre renvoie la liste des chemins permettant d'aboutir à un sous-arbre vide.

Question II.13 Écrire une fonction remplit : 'a arbre -> chemin -> 'a arbre qui remplace un sous-arbre vide donnée par son chemin par un nœud.

Question II.14 En déduire une fonction genere_arbres_2 : int -> unit arbre qui prend un entier n et construit un arbre à n nœuds en partant de l'arbre vide et en réalisant n remplacement d'un arbre vide par un nœuds, le choix de l'arbre vide se faisant uniformément. Note: on pourra utilser List.nth et Random.int Voir par exemple Random

Graphes

Algorithmique

12 	Introduction à l'analyse des algorithmes État d'un programme Terminaison Correction Complexité Exercices	103
13 	Complexité amortie	125
14 	Recherche par Force brute Principe Recherche par retour sur trace (backtracking) Stratégies d'énumération Droite de balayage	135
15 V V	Algorithmes gloutons Principe Construction de l'arbre de Huffman Preuve d'optimalité Sélection d'activités Ordonnancement de tâches	157
16	Diviser pour regner Diviser pour régner	171
17 	Algorithmique des textes Recherche dans un texte Compression Problèmes supplémentaires	177

12. Introduction à l'analyse des algorithmes

Source de l'image d'en-tête XKCD #1667

■ Note 12.1 Roadmap:

- reprendre les exemples dans les trois langages.
- rajouter plus exercices.
- **Remarque 12.1** Ce chapitre présente les trois grands principes qui nous serviront de guide pour analyser les algorithmes et les programmes :
 - La **terminaison** : l'algorithme termine-t-il au bout d'un nombre fini d'étapes quelle que soit l'entrée?
 - La correction : le résultat rendu est-il celui qui était attendu?
 - La **complexité** : combien de temps prend le programme selon la taille de l'entrée ? Combien d'espace mémoire occupe-t-il ?

Savoir répondre à ces questions, c'est pouvoir prédire, avant d'avoir écrit la moindre ligne de code, ce qui va se passer.

l État d'un programme

Avant de commencer à raisonner sur les algorithmes, il est nécessaire de préciser la notion d'état qui correspond à un instantané de l'environnement d'exécution d'un programme lorsque son exécution est interrompue. Bien entendu, la description complète d'un tel état ne serait pas forcément pertinent, car cela prendrait en compte l'ensemble de la mémoire. Le plus souvent, on considère uniquement ce qui est important pour ce qu'on étudie.

Ainsi, si on considère le programme suivant :

```
int a = 3;
int b = 2;
a = b;
```

L'état du programme à l'entrée de la ligne 4 est

variable	valeur
a	3
b	2

et l'état à la sortie de la ligne 4 est

a	2
b	2

Parfois, on aura besoin de plus d'information dans l'état comme la position en mémoire de certaines données. Mais assez souvent, pour les algorithmes qui nous intéressent, on pourra adopter un point de vue assez abstrait de l'état d'un algorithme comme étant une fonction partielle des noms vers les valeurs.

Pour la terminaison et la correction, on va considérer des propriétés logiques dépendant de l'état. Par exemple $a \geq 0 \land b \geq a$.

II Terminaison

Définition II.1 On dit qu'un algorithme **termine** quand il n'exécute qu'un nombre fini d'étapes sur toute entrée.

■ Remarque 12.2 Cela n'empêche pas que ce nombre d'étapes puisse être arbitrairement grand en fonction des entrées.

Un algorithme qui n'utilise ni boucles inconditionnelles ni récursivité termine toujours. Ainsi, la question de la terminaison n'est à considérer que dans ces deux cas.

Considérons par exemple l'algorithme suivant qui, étant donné un entier naturel n strictement positif, inférieur à 2^{30} , détermine le plus petit entier k tel que $n \le 2^k$:

```
def plus_grande_puissance2(n):
    k = 0
    p = 1

while p < n:
    k = k+1
    p = p*2

return k</pre>
```

On remarque que p prend successivement pour valeurs toutes les puissances de 2 jusqu'à une éventuelle sortie de boucle. Or, il existe une puissance de 2 supérieure ou égale à n, donc, une fois atteinte, la condition de la boucle while n'est plus remplie et l'algorithme termine.

II Terminaison 105

■ Remarque 12.3 Prouver la terminaison n'est pas une question facile, elle peut-même être insoluble. Par exemple, si on considère le programme suivant :

être capable de prouver sa terminaison revient à prouver la conjecture de Collatz (encore dite de Syracuse).

On peut aussi considérer le tri suivant :

```
def bogo(t):
    while not est_trie(t):
    melange(t)
```

Il semble très improbable que cet algorithme ne termine pas, d'ailleurs on peut prouver qu'il termine avec probabilité 1, mais on ne peut pas exclure le cas où il mélange indéfiniment.

II.1 Variant de boucle

Pour prouver la terminaison d'une boucle conditionnelle, on utilise un variant de boucle.

Définition II.2 Un variant de boucle est une quantité entière positive à l'entrée de chaque itération de la boucle et qui diminue strictement à chaque itération.

Dans l'exemple précédent, la quantité n-p est un variant de boucle :

- Au départ, n > 0 et p = 1 donc n p > 0
- Comme il s'agit d'une différence de deux entiers, c'est un entier. Et tant que la condition de boucle est vérifiée p < n donc n p > 0.
- Lorsqu'on passe d'une itération à la suivante, la quantité passe de n-p à n-2p or 2p-p>0 car $p\geq 1$. Il y a bien une stricte diminution.
- Remarque 12.4 Ici, en sortie de boucle, $n-p \le 0$. On fait donc bien attention de préciser que la quantité est positive tant que la condition de boucle est vérifiée.

Si on a un variant de boucle qui vaut initialement n avant d'entrer dans la boucle, celle-ci effectue au plus n itérations car le variant diminue au moins de 1 à chaque étape.

Théorème II.1 Si une boucle admet un variant de boucle, elle termine.

II.2 Exemple de la recherche dichotomique

On considère ici la recherche dichotomique dans un tableau trié d'entiers. Étant donné un tableau t de taille n>0 et un entier x dont on cherche à déterminer sa présence dans le tableau entre les indices i et j, on considère l'algorithme suivant :

- Si i > j, alors il n'y a pas de sous-tableau et on renvoie false.
- Sinon, soit m l'élément d'indice $p = \left\lfloor \frac{i+j}{2} \right\rfloor$.
 - \star Si x=m, on renvoie true
 - $\star~$ Si x < m, on continue la recherche dans le sous-tableau des indices i à p-1.
 - \star Si x > m, on continue la recherche dans le sous-tableau des indices p + 1 à j.

Le programme suivant présente une implémentation de cet algorithme en C.

```
def rech_dicho(t, x):
    i = 0
    j = len(t) - 1

while i <= j:
    p = (i+j)//2
    m = t[p]
    if x == m:
        return p
    elif x < m:
        j = p-1
    else:
        i = p+1

return None</pre>
```

■ Remarque 12.5 On aurait pu écrire i+(j-i)/2 et non (i+j)/2 afin d'éviter des erreurs de dépassement dans le calcul de i+j.

Ici, la terminaison n'est pas immédiate, on va la prouver à l'aide d'un variant de boucle. On considère ainsi la quantité d(i,j)=j-i.

- Comme le tableau est non vide, $d(0, n-1) \ge 0$. Ensuite, la condition de boucle est équivalente à $d(i,j) \ge 0$, donc cette quantité est bien entière et positive à l'entrée de chaque itération.
- Quand on passe à l'itération suivante, on passe
 - \star soit de d(i,j) à d(i,p-1). Or $d(i,p-1)=p-1-i=\left\lfloor\frac{i+j}{2}\right\rfloor-1-i<\frac{i+j}{2}-i\leq j-i=d(i,j)$.
 - $\star \text{ soit de } d(i,j) \text{ à } d(p+1,j). \text{ Or } d(p+1,j) = j-p-1 = j-\left\lfloor \frac{i+j}{2} \right\rfloor -1 < j-\frac{i+j}{2} \leq j-i = d(i,j).$

Dans tous les cas, d(i,j) diminue strictement.

Ainsi, il s'agit d'un variant de boucle et l'algorithme termine.

■ **Remarque 12.6** On remarque que le programme récursif suivant réalise également cet algorithme.

II Terminaison 107

```
(* rech_dicho : int array -> int -> int -> int option *)
let rec rech_dicho t i j x =
    if i <= j
    then let p = (i+j)/2 in
        let m = t.(p) in
        if x = m
        then Some p
        else if x < m
        then rech_dicho t i (p-1) x
        else rech_dicho t (p+1) j x
        else None</pre>
```

Il suffit alors d'appeler rech_dicho t 0 (Array.length t - 1) x pour faire une recherche sur tout le tableau.

Ici, il n'y a pas explicitement de boucle, mais le même principe peut être mis en place pour prouver que le nombre d'appels récursifs est majoré, et donc que toute exécution termine. En effet, la quantité d(i,j)=j-i diminue pour les mêmes raisons à chaque appel récursif et reste entière positive.

II.3 Exemple du tri à bulle

On considère le tri à bulles dans une implémentation naïve. On effectue ainsi une série de balayages d'un tableau : on parcourt le tableau de gauche à droite et si deux éléments consécutifs sont dans le désordre, on les permute. À l'issu d'un tel balayage, si on a effectué au moins un échange, on recommence, sinon on s'arrête, car c'est le signe que le tableau est trié qu'on le prouvera à la fin de ce paragraphe.

On obtient alors le code suivant :

Si la question de la terminaison de la boucle for ne se pose pas, celle de la boucle while mérite de s'y attarder pour deux raisons :

- premièrement pour la terminaison elle-même
- deuxième pour savoir si on peut majorer le nombre d'itérations, une question qu'on reverra avec la question de la complexité.

On va prouver la terminaison pour un type d'algorithme de tri qui généralise le tri à bulle. Pour cela, on commence par définir la notion d'inversion pour un tableau t de |t| éléments :

Définition II.3 On dit qu'un couple $(i, j) \in [0, |t| - 1,]$ 2 est une **inversion** pour t si i < j et t[i] > t[j].

On note Inv(t) l'ensemble des inversions de t et inv(t) = |Inv(t)| le nombre d'inversions.

On dira qu'une inversion de la forme (i, i + 1) est une **inversion directe**.

On considère donc un algorithme qui résout une inversion directe dès qu'il y en a au moins une.

```
def tri(t):
    while existe_inversion_directe(t):
        i = debut_d_une_inversion_directe(t)
        echange(t, i, i+1)
```

Le tri à bulles est alors une manière de réaliser l'algorithme précédent en effectuant des inversions alors qu'on avance dans le tableau.

Théorème II.2 Pour un tableau t les propositions suivantes sont équivalentes :

- 1. t est trié dans l'ordre croissant
- 2. t n'a pas d'inversions
- 3. t n'a pas d'inversions directes

Démonstration.

- 1) \rightarrow 3) naturellement si t es trié dans l'ordre croissant, i < i + 1 entraine $t[i] \le t[i+1]$, donc il ne peut il y avoir d'inversions directes.
- 2) \rightarrow 1) si i < j, comme t n'a pas d'inversions, on a $t[i] \not> t[j]$, c'est-à-dire $t[i] \le t[j]$. Ainsi, le tableau est bien trié dans l'ordre croissant.
- 3) \to 2) pour tout i < |t| 1 on a $t[i] \le t[i+1]$. Soit i < j, on variasonner par récurrence sur j-i pour montrer que $t[i] \le t[j]$.
 - \star si j i = 1, on n'a pas d'inversion directe donc $t[i] \leq t[j]$.
 - * si j i > 1 et que $t[i] \le t[j 1]$, car i < j 1 avec j 1 i = (j i) 1, alors $t[i] \le t[j 1] \le t[j]$ car (j 1, j) n'est pas une inversion.

Ainsi, dans tous les cas on a bien $t[i] \le t[j]$. Donc, t est trié par ordre croissant.

II.4 Lien avec la récursivité

II.5 Boucles imbriquées

III Correction

Pour parler de correction d'un algorithme, il est nécessaire d'identifier précisément ce qui doit être calculé par l'algorithme. Pour cela, on considère ici informellement des spécifications dépendant des entrées et du résultat de l'algorithme. On verra dans le chapitre sur la logique qu'il s'agit ici de prédicats logiques.

Voici des exemples de spécifications :

• le tableau t en sortie est trié dans l'ordre croissant

III Correction 109

• la valeur renvoyée est le plus petit indice de x dans le tableau ou -1 s'il ne le contient pas.

Définition III.1 Un algorithme est **correct** vis-à-vis d'une spécification lorsque quelle que soit l'entrée

- il termine
- le résultat renvoyé vérifie la spécification.

On considère également la correction partielle en l'absence de terminaison :

Définition III.2 Un algorithme est **partiellement correct** vis-à-vis d'une spécification lorsque quelle que soit l'entrée le résultat renvoyé vérifie la spécification.

III.1 Invariant de boucle

Définition III.3 On considère ici une boucle (conditionnelle ou non).

Un prédicat est appelé un invariant de boucle lorsque

- il est vérifié avant d'entrer dans la boucle
- s'il est vérifié en entrée d'une itération, il est vérifié en sortie de celle-ci.

Quand la boucle termine, on déduit alors que l'invariant est vérifié en sortie de boucle. On cherche donc un invariant qui permette de garantir la spécification en sortie de boucle.

■ Remarque 12.7 Pour les boucles inconditionnelles, il y a une gestion implicite de l'indice de boucle qui va se retrouver dans l'invariant. On peut alors considérer que la sortie de boucle s'effectue après être passé à l'indice suivant.

Dans le cas d'une boucle conditionnelle portant sur la condition P et ayant un invariant de boucle I, en sortie le prédicat $\neg P \land I$ (non P et I) sera vérifié.

On peut illustrer cela en reprenant la fonction plus_grande_puissance2 vue à la partie Terminaison. On considère ici le prédicat $I(k,p):=2^{k-1}< n$ et $p=2^k$.

- En entrée de boucle, on a bien $2^{-1} < n$.
- Si le prédicat est vérifié en entrée d'itération. On a alors $2^{k-1} < n$ et comme on est entrée dans cette itération $p=2^k < n$. Donc en sortie d'itération on aura bien I(k+1,2p), car $2p=2^{k+1}$.

Ainsi, ce prédicat est bien un invariant et en sortie de boucle (ce qui arrive nécessairement, car l'algorithme termine), le prédicat I(k,p) signifie que $2^{k-1} < n$ et la condition de sortie de boucle qu'on a $n < 2^k$.

La valeur renvoyée est bien k tel que $2^{k-1} < n \le 2^k$ ce qui était la spécification annoncée du programme.

III.2 Exemple du tri par sélection

Le programme suivant présente un algorithme de tri, appelé le *tri par sélection* dont on va analyser la complexité. Il s'agit d'un tri qui repose sur un principe simple, on va chercher le plus petit élément du tableau à trier et le placer à la position courante. On définit ainsi trois fonctions :

- echange réalise l'échange de valeurs entre deux cases du tableau
- indice_minimum renvoie l'indice de la plus petite valeur entre deux indices donnés
- tri_par_selection réalise le tri en parcourant le tableau du premier au dernier indice et en plaçant à la position courante le minimum restant.

```
void echange(int *tableau, int i, int j)
{
```

Il n'y a pas de problèmes de terminaison ici, car toutes les boucles sont inconditionnelles. Pour prouver sa correction, on va considérer séparément les deux boucles.

- Boucle dans indice_minimum: on va valider l'invariant $I(i,j) := \forall k \in [\![i,j-1]\!]$, tableau $[i] \leq \text{tableau}[k]$.
 - \star En entrée de boucle, on a $I(\min_indice, \min_indice + 1)$ vérifié directement.
 - \star Si en entrée d'itération, I(i,j) est vérifié, ce qui signifie que tableau[i] est plus petit que les valeurs compris entre les indices i et j-1. Alors, on distingue deux cas :
 - soit tableau[j] < tableau[i] et alors en sortie i devient i'=j. On a alors tableau[i'] = tableau[j] < tableau[i] ≤ tableau[k] pour $k \in [1, j-1]$. Donc I(i', j+1) est vérifié.
 - soit tableau[i] \leq tableau[j] et ainsi on a pu prolonger le prédicat à I(i, j + 1).

Ce prédicat est bien un invariant. Ainsi, en sortie de boucle, et donc avant de renvoyer sa valeur, on a bien $I(i, \mathrm{taille})$ donc $\mathrm{tableau}[i]$ est la plus petite valeur du tableau.

- Boucle dans tri_par_selection: on va valider l'invariant T(i) := le sous-tableau tableau [0..i-1] des indices 0 à i 1 est trié et ne contient que des valeurs plus petites que celles du sous-tableau tableau [i..taille-1].
 - * En entrée de boucle, le sous-tableau est vide donc trié.
 - * Si en entrée d'itération, le prédicat est vérifié. On récupère l'indice j du minimum du sous-tableau [i..taille-1] à l'aide la fonction indice_minimum, par hypothèse tableau[j] est alors supérieur ou égal à chaque élément de tableau [0..i-1], en le plaçant à l'indice i, on a bien tableau [0..i] qui est trié et par construction la valeur de tableau[i] est inférieure à toutes celels de tableau[i+1..taille-1]. On a ainsi T(i+1) vérifié en sortie d'itération.

Ce prédicat est bien un invariant. Ainsi, en sortie de boucle, $T({\rm taille})$ est vérifié : le tableau est trié.

IV Complexité 111

Complexité

Complexité dans le pire des cas

Considérons un algorithme pour lequel on peut associer à chaque entrée une notion de taille (par exemple le nombre d'éléments d'un tableau). Pour $n \in \mathbb{N}$, on note ainsi I_n l'ensemble des entrées de taille n pour cet algorithme. Pour une entrée e, on note t(e) le temps pris, par exemple en seconde, par l'algorithme sur l'entrée e. De même, on note s(e) l'espace mémoire maximal, par exemple en octets, occupé par l'algorithme au cours de cette exécution sans compter la taille des entrées.

Définition IV.1 On appelle :

- complexité temporelle dans le pire des cas, la suite $(C_n^t)_{n\in\mathbb{N}}$ telle que pour tout $n\in$ \mathbb{N} , $C_n^t = \max_{e \in I_n} t(e)$.

 • complexité spatiale dans le pire des cas, la suite $(C_n^s)_{n \in \mathbb{N}}$ telle que pour tout $n \in \mathbb{N}$,
- $C_n^s = \max_{e \in I_n} s(e).$

Comme on va le voir, calculer explicitement ces suites n'a pas beaucoup d'intérêt tant elles sont dépendantes de la manière dont on mesure le temps et l'espace. Ce qui compte ici, c'est de connaître l'ordre de grandeur de ces complexités en fonction de n.

Pour un tableau de taille n, ce programme va effectuer n itérations et sa complexité est ainsi de l'ordre de n. Il est possible d'être très précis en considérant les temps pris

- pour mettre en place l'appel de fonction et le passage des arguments
- par la gestion de l'indice de la boucle for
- pour la comparaison, puis pour l'affectation éventuelle
- pour mettre en place la valeur de retour afin que le résultat soit lu

On peut remarquer que la notion de pire cas dépend de la précision à laquelle on se place. Ici, si on ne s'intéresse qu'à l'ordre de grandeur, tous les tableaux de taille n sont équivalents. Par contre, si on cherche avec précision le pire cas, il est atteint avec un tableau trié par ordre croissant, car c'est le cas qui effectue une affectation à chaque itération.

```
int maximum(int *tableau, int taille)
    for(int i=0; i<taille; i++)</pre>
             M = tableau[i];
    return M;
```

Comparer des complexités

Avant de pouvoir comparer les complexités des algorithmes ou des programmes, il est nécessaire de mettre en place des outils pour en parler à la fois avec précision mais également sans rentrer dans des détails d'implémentation non pertinents.

En effet, comparons les deux fonctions suivantes permettant de chercher un élément dans un tableau.

La fonction de droite semble moins efficace que celle de gauche, car la seconde sort tout de suite de la fonction dès qu'on a trouvé l'élément alors que la première continue à parcourir t.

Mais on doit se poser la question de la pertinence de cette optimisation selon le pire des cas. Ici, le pire des cas correspond à ne pas avoir elem dans le tableau, et à ce moment-là les deux fonctions fonctionnent de la même manière.

■ Remarque 12.8 En fait, la fonction de droite sera souvent à privilégier, car il est souvent plus facile d'interrompre le flot que de faire en sorte de préserver l'état à la place du return pour pouvoir renvoyer la bonne valeur à la fin de la fonction.

De la même manière, il faut déterminer ce que l'on souhaite compter précisément :

- si on s'intéresse au temps mis, certaines opérations prennent moins de temps que d'autre (par exemple une addition par rapport à une multiplication) mais est-ce vraiment important à l'échelle considérée?
- si on s'intéresse à l'espace mémoire, doit-on considérer la taille précise en octets ou se contenter d'une estimation plus grossière?

Mis à part dans certains cadres assez spécifiques, on se contente le plus souvent d'un ordre de grandeur pour ces complexités. Pour cela, on utilise des relations de comparaisons de suites et une échelle de grandeur usuelle pour les comparer.

IV.2.i La notation grand O

Définition IV.2 Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de nombres réels non nuls, on dit que la suite $(u_n)_n$ est dominée par $(v_n)_n$ lorsque la suite quotient $\left(\frac{u_n}{v_n}\right)_n$ est bornée. On note alors $u_n = O(v_n)$.

Cette dernière notation se lit u_n est un grand 0 de v_n .

■ Remarque 12.9 C'est bien cette locution qu'il faut avoir en tête quand on pense aux grands O et il faut faire attention de ne pas considérer l'égalité en tant que telle sans s'assurer que ce l'on fait est licite. Quand on écrira par la suite $O(v_n)$ on signifiera n'importe quelle suite qui soit un $O(v_n)$.

Si $u_n = O(v_n)$, cela signifie qu'il existe un facteur M > 0 tel que pour tout entier n, on ait $-M|v_n| \le u_n \le M|v_n|$. Les variations de la suite $(u_n)_n$ sont ainsi entièrement contrôlées par

•

IV Complexité 113

les variations de $(v_n)_n$.

En informatique, on ne considère pour la complexité que des suites positives, ce qui permet de simplifier la relation : si $(u_n)_n, (v_n)_n$ sont des suites de réels strictement positifs, alors $u_n = O(v_n) \iff \exists M>0, \forall n\in\mathbb{N}, u_n\leq Mv_n$. C'est le cadre dans lequel on se place implicitement dans la suite de ce document.

On peut visualiser graphiquement cette relation:

On a $u_n = O(v_n)$ si et seulement s'il est possible de multiplier les ordonnés de chaque point (n, v_n) par une constante afin que ces nouveaux points soient tous au-dessus des points (n, u_n) . On peut voir que la courbe déduite des v_n enveloppe, à un facteur près, celle des u_n .

Remarque : On a relié ici les valeurs des suites pour mieux mettre en valeur cette notion d'enveloppe.

Cette relation est une notion **asymptotique** : elle n'a d'intérêt que lorsqu'on considère des rangs au voisinage de l'infini. En effet, pour un nombre fini de termes, il est toujours possible de trouver un tel M, mais pour un nombre infini, ce n'est pas le cas.

Ici, on compare asymptotiquement les suites $(u_n)_n$ et $(v_n)_n$ où pour $n \in \mathbb{N}$, $u_n = n + n\log_2 n$ et $v_n = n\log_2 n$. Pour simplifier la visualisation, on a tracé les fonctions correspondantes. On remarque qu'on a bien $n + n\log_2 n = O(n\log_2 n)$.

Par contre, si on compare les suites $(u_n)_n$ et $(v_n)_n$ où pour $n \in \mathbb{N}$, $u_n = n^2$ et $v_n = n \log_2 n$, on remarque que quelle que soit la valeur choisie pour M, il y aura un rang à partir duquel $u_n > Mv_n$.

Ici,
$$n^2 \neq O(n \log_2 n)$$
.

■ Remarque 12.10 On a ici utilisé le logarithme en base 2, noté \log_2 , qui est essentiel informatique : si $x = \log_2(n)$ alors $n = 2^x$ où x est un réel. On considère aussi $p = \lceil \log_2(n) \rceil$ qui est le plus petit entier égal ou supérieur à $\log_2(n)$. On parle de **partie entière supérieure** et on a alors $2^{p-1} < n \le 2^p$. Cet entier p correspond alors au plus petit nombre de chiffre nécessaire pour pouvoir écrire n en binaire. On a $\lceil \log_2(n) \rceil = O(\log_2(n))$ et ainsi, le plus souvent, on ne considère pas la partie entière explicitement. De la même manière, $\log_2(n) = \frac{\ln n}{\ln 2} = O(\ln n)$.

Un cas important de grand O est celui des O(1). Si $u_n = O(1)$, cela signifie que $(u_n)_{n \in \mathbb{N}}$ est une suite bornée.

IV.2.ii Échelle de comparaison

On rappelle les limites obtenues en mathématiques que l'on nomme **croissances compa**rées :

$$\forall \alpha,\beta>0, \lim_{n\to +\infty}\frac{(\ln n)^\alpha}{n^\beta}=0$$

$$\forall \alpha \in \mathbb{R}, \forall \beta > 1, \lim_{n \to +\infty} \frac{n^{\alpha}}{\beta^n} = 0$$

Or, si $\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 0$ a fortiori le quotient est borné et $u_n = O(v_n)$. Ainsi, on a les relations suivantes :

$$\forall \alpha, \beta > 0, (\log_2 n)^\alpha = O(n^\beta)$$

$$\forall \alpha \in \mathbb{R}, \forall \beta > 1, n^{\alpha} = O(\beta^n)$$

De plus, si $\alpha \geq \beta > 0$, $n^{\beta} = O(n^{\alpha})$, $(\log_2 n)^{\beta} = O((\log_2 n)^{\alpha})$ et $\beta^n = O(\alpha^n)$.

On se ramène souvent à des complexités qui sont des grand O de produits de ces suites.

IV.2.iii Ordre de grandeur et relation Θ

On vient de voir que $\log_2 n = O(n)$, mais on a également $\log_2 = O(n^2)$. Quand on cherche à caractériser la complexité par un grand O, on va souvent chercher le grand O le plus proche de la suite.

.

IV Complexité 115

Il est possible de définir cela précisément en considérant des suites qui sont chacune des grand O l'une de l'autre.

Par exemple, on a vu que $n\log_2 n + n = O(n\log_2 n)$, mais on a également $n\log_2 n = O(n + n\log_2 n)$.

Quand $u_n = O(v_n)$ et $v_n = O(u_n)$, on note $u_n = \Theta(v_n)$ qui est une relation symétrique qui correspond à la notion avoir le même ordre de grandeur. Très souvent, lorsque l'on parle de complexité, on utilise des grand O quand, en fait, on exprime des Θ . Par exemple, l'accès à un élément dans un tableau est en O(1) et il ne serait pas précis de dire que c'est en O(n) même si c'est parfaitement correct.

On peut visualiser cette relation Θ en considérant qu'il existe ainsi M,M'>0 tels que $u_n\leq Mv_n$ et $v_n\leq M'u_n$. Mais on a alors

$$1/M'v_n \le u_n \le Mv_n$$

Ainsi, $u_n = \Theta(v_n)$ signifie qu'on peut encadrer $(u_n)_n$ entre deux multiples de $(v_n)_n$.

En reprenant la figure précédente, on observe visuellement

$$n\log_2 n \leq n\log_2 n + n \leq 2n\log_2 n$$

Avoir $u_n = \Theta(v_n)$ signifie donc que u_n évolue entre deux guides suivant les variations de v_n .

IV.2.iv Opérations sur les grands O

Si $u_n = O(w_n)$ et $v_n = O(w_n)$ alors $u_n + v_n = O(w_n)$. Ainsi, des grand O de même ordre s'ajoutent.

■ Remarque 12.11 Comme on l'a vu précédemment, un grand O n'est pas très précis, et il est possible que par ajout on puisse obtenir un meilleur grand O. Par exemple : n = O(n) et $\log_2 n - n = O(n)$ mais $n + \log_2 n - n = \log_2 n = O(n)$. Comme on ne considère ici que des suites strictement positifs, ce phénomène de compensation n'aura pas lieu.

Si $u_n = O(v_n)$ et w_n est une autre suite de réels strictement positifs, alors $u_n w_n = O(v_n w_n)$. On en déduit ainsi un principe qui nous sera utile par la suite nO(1) = O(n).

IV.3 Complexités en temps classiques

On parle ici de complexité par raccourci pour parler de complexité dans le pire des cas en temps.

IV.3.i Complexité constante

On dit qu'un algorithme a une complexité constante quand $C_n^t = O(1)$. Il existe ainsi une constante M telle que le temps pris par l'algorithme **sur une entrée quelconque** soit inférieur à M.

De nombreuses opérations sont en temps constant sur les structures de données usuelles. Parmi celles-ci, citons-en deux essentielles :

- accéder à une case d'indice quelconque dans un tableau
- accéder à la tête ou à la queue d'une liste chaînée

Les algorithmes ou opérations en temps constant jouent un rôle primordiale dans l'analyse de la complexité d'algorithmes, comme on le verra dans la partie suivante, car elles permettent de se concentrer sur les répétitions de ces opérations pour déterminer la complexité : une boucle qui se répète n fois et n'effectue que des opérations en temps constant dans son corps sera de complexité nO(1) = O(n).

IV.3.ii Complexité linéaire

On dit qu'un algorithme a une complexité linéaire quand $C_n^t = O(n)$.

Cette complexité correspond à un traitement de temps constant sur chaque élément d'une entrée de taille n. C'est le cas de la recherche d'un élément dans un tableau ou de la recherche de son maximum.

Pour la recherche linéaire d'un élément, correspondant par exemple au programme ci-dessous, le pire cas correspond à ne pas avoir x dans tableau ce qui oblige à effectuer toutes les itérations. On a bien une complexité temporelle en pire cas de O(n).

```
int recherche(int *tableau, int taille, int x)
{
    /* renvoie le plus petit indice i tel que tableau[i] = x
        ou -1 si x n'est pas dans le tableau */
    for(int i = 0; i < taille; i++)
    {
        if (tableau[i] == x)
            return i;
    }
    return -1;
}</pre>
```

IV.3.iii Complexité quadratique, polynomiale

On dit qu'un algorithme a une complexité quadratique quand $C_n^t=O(n^2)$. Par extension, on dit qu'il a une complexité polynomiale quand il existe $k\in\mathbb{N}$ tel que $C_n^t=O(n^k)$. Par extension, on parle parfois de complexité polynomiale pour des complexité plus précise en $O(n^\alpha)$ où α est un réel strictement positif.

L'exemple classique d'un algorithme quadratique est celui dû à un double parcours d'un tableau. On reprend ici l'algorithme de tri par sélection vu dans la partie Exemple du tri par sélection.

Afin d'analyser sa complexité, on procède fonction par fonction pour un tableau de taille n:

- echange est en temps constant. O(1)
- indice_minimum réalise un parcours du tableau et effectue des opérations en temps constant à chaque étape. La complexité est donc linéaire. O(n)
- tri_par_selection réalise également un parcours du tableau mais à chaque étape, on appelle indice_minimum qui est en O(n), la complexité est donc en $nO(n) = O(n^2)$: elle est quadratique.

IV Complexité 117

V.3.iv Complexité logarithmique

On dit qu'un algorithme a une complexité logarithmique quand $C_n^t = O(\log_2 n)$.

Pour illustrer cette complexité, on reprend l'algorithme de recherche dichotomique vu dans la partie Exemple de la recherche dichotomique.

Chaque opération effectuée étant en temps constant, la complexité de cet algorithme correspond au nombre d'itérations, soit ici au nombre d'appels récursifs.

Si on considère un sous-tableau de n=j-i+1 éléments lors de l'appel, un appel récursif se fera nécessairement sur un sous-tableau de $\lfloor n/2 \rfloor$ éléments. Ainsi, si $2^{k-1} < n \leq 2^k$, l'algorithme effectue moins de k itérations. En passant au logarithme, on a donc $k-1 < \log_2 n \leq k$. Donc, le nombre d'itérations est en $O(\log_2 n)$ et c'est ainsi la complexité de l'algorithme.

■ **Note 12.2** Esquisser dès maintenant le lien entre longueur d'une branche dans un arbre de décision et complexité logarithmique?

IV.3.v Complexité quasi-linéaire

On dit qu'un algorithme a une complexité quasi-linéaire quand $C_n^t = O(n\log_2 n)$. C'est le cas de la plupart des algorithmes efficaces de tri de n éléments. On peut même montrer qu'il s'agit de la complexité optimale.

Comme de nombreux algorithmes commencent par effectuer un tri avant d'effectuer un traitement linéaire, on retrouve des algorithmes quasi-linéaire par simple utilisation de ce tri.

IV.3.vi Complexité exponentielle

On dit qu'un algorithme a une complexité exponentielle quand $C_n^t = O(a^n)$ pour a > 0.

Un exemple fondamental d'un tel algorithme est celui de l'énumération de données, par exemple pour chercher une solution par force brute. En effet, il y a 2^n entrées codées sur n bits et un algorithme cherchant une solution ainsi parmi ces entrées aura une complexité en $O(2^n)$.

IV.3.vii Estimation de l'impact des complexités sur le temps

Afin de mesurer l'impact d'une complexité, on va considérer un algorithme qui s'exécute en 1 seconde sur un entrée de taille n, et on va calculer combien de temps prendrait ce même algorithme sur une entrée de taille 10n.

Pour simplifier, on considère à chaque fois que ${\cal C}_n^t$ correspond exactement à l'ordre du grand 0.

Complexité	Temps pour 10n	Temps pour 100n		
1	1s	1s		
$\log_2 n$	1,003s	1,007s		
n	10s	1m40s		
$n \log_2 n$	14,7s	3m13s		
n^2	1m40s	2h46m40s		
2^n	10^{19} années	10^{289} années.		

Remarque 12.12 Pour déterminer ces valeurs, on a considéré une unité de mesure de $1000 \, \mathrm{ms}$ afin d'en déduire une valeur de n.

Ainsi, si $\log_2 n = 1000$ on a $n = 2^{1000}$. Bien sûr, ici, ce nombre 2^{1000} n'est pas réaliste. Dans un contexte de mémoire finie, une complexité logarithmique est identifiable à une complexité constante. Cela justifie la terminologie quasi-linéaire.

Si $n \log_2 n = 1000$ alors $n \approx 140, 2$. Or, $1402 \log_2 1402 \approx 14700 ms$.

_

```
Si 2^n=1000, alors n\approx 10. Or 2^{100}\approx 10^{30}.
```

IV.4 Calculer des complexités

Deux principes fondamentaux pour calculer des complexités :

- Si on effectue deux passes successives chacune en $O(u_n)$ alors la complexité globale est en $O(u_n)$. Il ne s'agit que de reformuler l'addition des grand O. Quand on a deux passes de complexité différente, il suffit d'utiliser la plus grande complexité. Par exemple, un algorithme qui commence par un tri en $O(n\log_2 n)$ et qui effectue ensuite un traitement en O(n) sera de complexité globale $O(n\log_2 n)$ car le traitement est également en $O(n\log_2 n)$.
- Si on effectue u_n itérations et que chaque itération est en $O(v_n)$ alors l'algorithme a une complexité de $O(u_nv_n)$. Cela permet de compter le nombre de boucles imbriquées et de se contenter de regarder ce qui se passe dans le corps des boucles.

IV.5 Complexité à plusieurs paramètres

Jusqu'ici on a considéré des entrées dépendant d'un unique paramètre n, mais il est possible d'avoir des données dépendant de plusieurs paramètres.

On adapte directement la notation des grands O : si $(u_{n,p})$ et $(v_{n,p})$ sont deux suites de réels non nuls dépendant de deux paramètres, on note toujours $u_{n,p} = O(v_{n,p})$ quand le quotient est borné.

IV.5.i Données multidimensionnelles

Le cas le plus usuel de complexité dépendant de plusieurs paramètres est celui des données multidimensionnelle comme une image.

Si on considère une opération effectuant un traitement en temps constant sur chaque pixel d'une image de $w \times h$ pixels, cette opération aura une complexité en O(wh). On ne peut plus parler de complexité linéaire ou quadratique ici car cela dépend d'une éventuelle relation entre w et h: si on ne travaille que sur des images de taille $1 \times h$ alors la complexité est O(h), mais on ne travaille que sur des images carrées, donc pour lesquelles w = h, la complexité est $O(h^2)$.

Plus généralement, si on considère des données organisées dans des tableaux imbriqués, on effectuera un traitement sur chaque donnée à l'aide de boucles imbriquées non conditionnelles. La complexité sera alors celle du corps de boucles multipliée par le produit du nombre d'itérations de chaque boucle.

IV.5.ii Compromis entre paramètres

Dans certains cas, en particulier pour les graphes, on peut effectuer des traitements successifs dont la complexité ne s'exprime pas en fonction du même paramètre. Imaginons par exemple un programme ayant la structure suivante :

```
for (int i = 0; i<n; i++)
{
      /* corps de boucle en O(1) */
}

for (int j = 0; j<p; j++)
{
      /* corps de boucle en O(1) */
}</pre>
```

La complexité de la première boucle est en O(n) et celle de la deuxième en O(p). La complexité globale est en O(n+p) car $n \le n+p$ et $p \le n+p$.

IV Complexité 119

Complexité en moyenne

On reprend ici les notations de la partie Complexité dans le pire des cas.

Définition IV.3 Lorsque pour tout $n \in \mathbb{N}$, I_n est fini, on appelle :

- complexité temporelle en moyenne la suite $(C_n^{t,m}) = \frac{1}{|I_n|} \sum_{e \in I_n} t(e)$. complexité spatiale en moyenne la suite $(C_n^{s,m}) = \frac{1}{|I_n|} \sum_{e \in I_n} s(e)$.

On peut étendre cette définition à un cadre infini en considérant une distribution de probabilité sur I_n et T_n la variable aléatoire associée à t sur I_n . Si T_n est d'espérance finie, on pourra parler de complexité en moyenne pour la suite des ${\cal E}(T_n)$. Concrètement, on considère alors une fonction $p_n:I_n\to[0,1]$ telle que $\sum_{e\in I_n}p(e)=1$ et, lorsque la somme est définie, on note ainsi

$$C_n^{t,m} = \sum_{e \in I_n} p(e)t(e)$$

$$C_n^{s,m} = \sum_{e \in I_n} p(e)s(e)$$

Un exemple usuel de calcul de complexité en moyenne est celui des tris. En effet, même si les entrées de taille n sont infinies, on peut considérer qu'un tableau de valeurs deux à deux distinctes est l'image par une permutation du tableau triée. Si le tableau est de taille n, on aura ainsi n! permutations ce qui permet, du moment que l'algorithme de tri considéré ne dépend que cette permutation, de calculer la complexité en moyenne sur l'ensemble des permutations.

■ Remarque 12.13 Les permutations d'un ensemble sont les applications bijectives de cet ensemble dans lui-même. Si l'ensemble contient n éléments, il y a n! permutations.

Par exemple, les six permutations sur l'ensemble $\{1, 2, 3\}$ correspondent aux diagrammes sagittaires suivants:

Ces six permutations correspondant elles-mêmes, de gauche à droite et de haut en bas, aux tableaux {1,2,3}, {1,3,2}, {3,2,1}, {2,1,3}, {2,3,1} et {3,1,2}.

IV.6.i Exemple de calcul de complexité temporelle en moyenne

On considère la recherche linéaire vue dans la partie Complexité linéaire. L'ensemble des entrées est ici infini, on va donc supposer pour faire le calcul qu'on ne considère que des tableaux de valeurs deux à deux distinctes et qu'on recherche un élément présent dans le tableau, chaque élément étant équiprobable.

Si on recherche le i-ème élément du tableau, l'algorithme effectue i itérations avant d'y accéder et de renvoyer son indice. Ainsi, le temps pour cet entrée est de iC où C est le coût d'une itération.

La complexité temporelle en moyenne est alors $C_n^{t,m}=\sum_{i=1}^n\frac{1}{n}iC=\frac{(n+1)C}{2}=O(n)$. On retrouve ici la même complexité que la complexité dans le pire des cas. La sortie prématurée de la boucle n'a donc aucune influence sur la complexité.

Complexité amortie

Dans le cadre de l'étude des structures de données, il est fréquent de considérer non pas la complexité dans le pire des cas d'une opération mais celle d'une succession d'opérations divisée par le nombre d'opérations effectuées. Ainsi, on peut très bien avoir une opération ponctuellement plus coûteuse que les autres, mais en procédant ainsi on lisse le surcoût sur l'ensemble des opérations. On parle alors de complexité amortie.

L'étude de la complexité amortie est traitée dans le chapitre TODO.

Pertinence de la complexité spatiale

Même si la complexité temporelle est le plus souvent celle qui est importante à calculer, certains algorithmes ont une complexité temporelle faible mais en contrepartie une complexité spatiale élevée. On parle alors de compromis temps-mémoire.

Un exemple classique d'un tel compromis est celui de la programmation dynamique où on passe d'une complexité temporelle exponentielle à une complexité temporelle polynomiale en stockant des valeurs intermédiaires pour ne pas les recalculer. En procédant ainsi, on passe d'une complexité spatiale constante à polynomiale.

Cela est illustré dans le programme suivant qui permet de déterminer le n-ième terme de la suite de Fibonacci, ce qui n'a pas d'intérêt informatique mais est caractéristique de récurrence que l'on résoudra par la programmation dynamique.

```
(* Fibonacci exponentiel *)
let rec fibo n =
    if n = 0
    then ⊙
    else if n = 1
    else fibo (n-1) + fibo (n-2)
(* Fibonacci linéaire *)
let fibo n =
    let prec = Array.make (n+1) 0 in
    prec.(0) <- 0;
   prec.(1) <- 1;
    for i = 2 to n do
        prec.(i) <- prec.(i-1) + prec.(i-2)</pre>
    prec.(n)
```

V Exercices 121

Exercices

Exercice 12.1 On considère le programme suivant :

Python

On suppose que $c \geq 2$.

- 1. Montrer que cet algorithme termine.
- 2. Montrer que pour $x, y \in \mathbb{N}$, il renvoie le produit xy.
- 3. Réecrire ce programme en récursif. Peut-on déduire des preuves précédentes que l'algorithme termine et qu'il est correct.

Démonstration.

- 1. Comme $c \ge 2$, on a y/c < y ainsi y est un variant de boucle.
- 2. On va commencer par noter x_0 et y_0 les valeurs initiales respectives de x et de y. On va également tenir compte du nombre d'itérations, ce qui revient à rajouter un compteur i au programme. On va également noter $y_0 = \sum_{j=0}^n a_j c^j$.
 - $y = \left\lfloor \frac{y_0}{c^i} \right\rfloor = \sum_{j=i}^n a_j c^{j-i}$ et $x = x_0 c^i$ sont des invariants directement validés.
 - On va maintenant prouver l'invariant $I(i,m) = "m = x_0 \sum_{i=0}^{i-1} a_i c^i$ ".
 - * Initialisation avant la première itération, on a $I(0,0,x_0,y_0)$ qui est vérifié car 0 = 0.
 - * **Hérédité** si l'invariant est vérifié au début de la ième itération on a m+x(y%c)= $m+x_0a_ic^i=m+x_0\sum_{j=0}^ia_jc^j$ donc I(i+1,m+x(y%c)) est vérifié. Ainsi, en sortie de boucle, on a $m=x_0\sum_{j=0}^na_jc^j=x_0y_0$.

3. En récursif, cela ne change pas la validité des preuves précédentes mais il faudrait présenter l'invariant différemment.

```
int multiplication(int x, int y, int c)
 if (y == 0) return 0;
return x * (y % c) + multiplication(x * c, y / c, c);
```

Exercice 12.2 On considère un polynôme $P = \sum_{i=0}^{n} c_i X^i$ représenté comme un tableau de n+1 coefficients tel que pour tout $i \in [0, n], P[i] = c_i$.

On veut calculer P(a) pour une valeur a. Pour simplifier, on va considérer ici que les valeurs sont toutes entières.

```
int horner(P, int a)
```

- 1. Montrer que ce programme est correct.
- 2. Combien effectue-t-il de multiplications et d'additions?

3. Comparer avec l'algorithme obtenu en ajoutant chaque c_ia^i pour i croissant et en maintenant une variable pour a^i .

Démonstration.

- 1. On considère l'invariant $I(v,i) = v = c_{i+1} + c_{i+2}a + \cdots + c_na^{n-i-1}v$
 - Initialisation avant la première itération on a I(0,n) vérifié car $v=0=c_{n+1}$.
 - **Hérédité** si l'invariant est vérifié en début d'itération, on passe à $I(av+c_i,i-1)$ en fin d'itération or, si $v=c_{i+1}+\cdots+c_na^{n-i-1}$ on a bien $av+c_i=c_i+c_{i+1}a+\cdots+c_na^{n-i}$ et donc l'invariant est vérifié en fin d'itération.

En sortie de boucle, on a alors I(v,-1) donc $v=c_0+c_1a+\cdots+c_na^n=P(a)$.

- 2. On effectue n+1 itérations et à chaque itérations une multiplication et une addition, donc n+1 multiplications et n+1 additions.
- 3. Pour cet algorithme, on devrait faire une multiplication de plus à chaque itération pour maintenir a^i .

Exercice 12.3 On considère le problème du drapeau hollandais : étant donné un tableau t et un indice i, on note p=t[i], on cherche à permuter les éléments de t de sorte qu'il y ait trois zones dans le tableau : les éléments < p, les éléments = p puis les éléments > p.

Ainsi, si on considère t = [5, 2, 3, 5, 1, 4] et p=t[2] = 3 on pourra obtenir [2, 1, 3, 5, 5, 4] à l'issue de cet algorithme.

- 1. Écrire un programme résolvant ce problème en temps linéaire.
- 2. Prouver sa correction.

Démonstration.

Le programme:

```
void echange(int *t, int i, int j)
{
    int temp = t[i];
    t[i] = t[j];
    t[j] = temp;
}

void drapeau(int *t, int nb, int i)
{
    int v = t[i];
    int l = 0;
    int c = nb-1;
    int r = nb-1;

    while (l <= c)
    {
        int w = t[l];
        if (w < v)
        {
            l = l+1;
        }
        else if (w == v)
        {
</pre>
```

V Exercices 123

```
echange(t, l, c);
    c = c-1;
}
else
{
    echange(t, l, c);
    echange(t, c, r);
    c = c-1;
    r = r-1;
}
}
```

L'idée de cet algorithme est d'avoir trois indices l,c et r (pour left, center et right) qui délimitent trois zones :

- ullet celle des indices 0 à l-1 qui contient des valeurs < v
- ullet celle des indices c+1 à r qui contient des valeurs égales à v
- celle des indices r + 1 à nb 1 qui contient des valeurs > v.

Au départ, ces trois zones sont triviales et au fur à mesure de l'algorithme, elles augmentent jusqu'à couvrir l'ensemble du tableau. Comme soit l croit soit c décroit a chaque itération, on a la distance c-l qui est un variant de boucle et on effectue exactement |t| itérations.

On va montrer que le découpage des zones est effectivement un invariant :

- **Initialisation** au départ, comme on l'a vu, ces trois zones sont vides donc l'invariant est trivialement vérifié
- **Hérédité** si l'invariant est vrai au début d'une itération, on va faire trois cas selon la position de w par rapport à v :
 - \star Si w < v alors la zone des indices de 0 à l contient toujours des valeurs < v et les autres zones n'ont pas bougé, l'invariant est encore vérifié.
 - * Si w = v alors on place cette valeur w au début de la zone centrale en faisant l'échange puis en décalant c vers la gauche. Les autres zones ne sont pas touchées, donc l'invariant est encore vérifié.
 - * Si w > v alors on veut le placer en tête de la zone de droite, mais l'élément qui s'y trouve est peut-être une valeur de la zone centrale si celle-ci est non triviale. On place alors cette valeur là en début de la zone centrale ce qui revient à la décaler d'un cran vers la gauche. La valeur w peut alors etre échangée. La première zone n'a pas bougé et les autres zones vérifient encore les conditions voulues, l'invariant est donc vérifié.!TODO(On devrait être plus précis ici)

On a donc validé l'invariant. En sortie de boucle, on a x=y+1>y et donc les trois zones couvrent l'intégralité du tableau.

13. Complexité amortie

Source de l'image d'en-tête XKCD #1667

Introduction

Dans le cadre de l'étude des structures de données, il est fréquent de considérer non pas la complexité dans le pire des cas d'une opération mais celle d'une succession d'opérations divisée par le nombre d'opérations effectuées. Ainsi, on peut très bien avoir une opération ponctuellement plus coûteuse que les autres, mais en procédant ainsi on lisse le surcoût sur l'ensemble des opérations. On parle alors de **complexité amortie**.

■ Remarque 13.1 Cette notion ne masque pas le fait qu'une opération puisse prendre ponctuellement plus de temps. Dans des contextes temps réel où il est important de maitriser pleinement les complexités, il est peu judicieux d'utiliser de telles complexités. Par exemple, dans une visualisation en 3D, pour maintenir un débit constant d'images par secondes, chaque image doit prendre un temps similaire. Se reposer sur une structure de donnée ayant une faible complexité amortie mais une complexité dans le pire des cas importante, c'est risquer d'avoir des saccades avec une image qui prendrait plus de temps pour être calculée.

On va reprendre ici deux exemples simples déjà traité par ailleurs.

I.1 Implémentation d'une file avec deux piles

On considère une file réalisée avec deux piles in et out (voir le chapitre Piles et files). Comme on l'a vu, on enfile en O(1) en empilant sur la pile in et on défile :

- soit en O(1) en dépilant sur out si elle est non vide
- soit en O(n) en déversant in dans out puis en se ramenant au cas précédent.

Ainsi, en pire cas, on est en O(n) pour l'opération défiler mais la bascule permettra de faire ensuite cette même opération en O(1).

1.2 Les tableaux dynamiques

Les tableaux dynamiques sont une structure de données de haut niveau pour implémenter le type abstrait des listes. La différence principale entre cette structure de données et celle des tableaux de C est qu'on peut ajouter et supprimer des éléments.

Un tableau dynamique d'entiers est un triplet (t,c,l) où t est un tableau de taille c, appelée la capacité du tableau dynamique, et l est un autre entier représentant la longueur logique du tableau. A tout moment $c \geq l$. Dans t il y a ainsi c-l cases déjà allouées qui permettent de rajouter un élément en temps constant. Quand c=l, on alloue une nouvelle zone mémoire, souvent de taille 2c, on déplace le tableau t dans cette zone et on a donc pour cet ajout prévu un certain nombre de cases d'avance.

La figure suivante présente une succession d'ajouts :

$$c = 0$$
 $l = 0$
 $c = 1$ $l = 1$ 1
 $c = 2$ $l = 2$ 1 2
 $c = 4$ $l = 3$ 1 2 3 4
 $c = 4$ $l = 4$ 1 2 3 4 5
 $c = 8$ $l = 5$ 1 2 3 4 5

■ Remarque 13.2 Une implémentation de ces opérations est proposée dans le programme suivant :

I Introduction

```
#include <stdio.h>
#include <stdlib.h>
typedef struct {
    int *t;
    size_t c;
    size_t l;
} tableau_dynamique ;
tableau_dynamique tableau_dynamique_creer()
    tableau_dynamique d;
    d.t = NULL;
    d.c = 0;
    d.l = 0;
    return d;
}
void tableau_dynamique_ajout(tableau_dynamique *d, int x)
    if (d->c == d->l) {
        if (d->c == 0)
             d->c = 1;
             d->t = malloc(sizeof(int));
        }
        else
         {
             d \rightarrow c = 2 * d \rightarrow c;
             d->t = realloc(d->t, d->c * sizeof(int));
         }
    d\rightarrow t[d\rightarrow l] = x;
    d->l++;
}
void tableau_dynamique_print(tableau_dynamique d)
    printf("c=%d\tl=%d\t|", d.c, d.l);
    for (size_t i = 0; i < d.l; i++) {</pre>
        printf("%d|", d.t[i]);
    for (size_t i = d.l; i < d.c; i++) {</pre>
        printf(" |");
    printf("\n");
}
int main(void) {
    tableau_dynamique d = tableau_dynamique_creer();
    tableau_dynamique_print(d);
    for (int i = 1; i < 6; i++) {</pre>
         tableau_dynamique_ajout(&d,i);
        tableau_dynamique_print(d);
    }
```

Ce programme, une fois exécuté produit la sortie suivante qui permet de retrouver exactement le comportement attendu :

```
c=0 l=0 |
c=1 l=1 |1|
c=2 l=2 |1|2|
c=4 l=3 |1|2|3| |
c=4 l=4 |1|2|3|4|
c=8 l=5 |1|2|3|4|5| | |
```

Avec une analyse en pire cas, l'ajout d'un élément peut entrainer un doublement de taille et une recopie, donc coûter O(c) opérations où c est la capacité avant doublement. Cependant, on constate que ce doublement permettra plusieurs ajouts ensuite en temps constant, ainsi, le pire cas ne semble pas le plus pertinent.

II Techniques de calcul

II.1 Cadre

On considère une structure de données, pour simplifier initialemet vide, et une sucessions $o_1, ..., o_n$ d'opérations valides sur cette structure de donnée. En reprenant l'exemple précédent, cela peut être une succession d'ajouts ou de suppressions dans une file mais sans jamais essayer de retirer des éléments à une file vide.

On considère de plus que pour chaque opération o_i , on connait le coût temporel c_i en terme d'opérations élémentaires. La question que l'on se pose est d'estimer $\frac{1}{n}\sum_{i=1}^n c_i$, c'est-à-dire le coût moyen de chaque opération. L'objectif est de montrer que ce coût moyen est O(f(n)), avec assez souvent O(1), c'est-à-dire que $\sum_{i=1}^n c_i = O(nf(n))$.

II.2 Calcul naïf

Une approche n'aive consiste à calculer directement la somme des coûts. Tout le problème ici est qu'on ne connait pas les opérations et l'ordre dans lequel elles ont été effectuées.

II.2.i Exemple de la file avec deux piles

On va commencer par calculer c_i pour les différentes opérations :

- S'il s'agit d'un ajout sur in ou d'un dépilement sur out, on a $c_i = 1$
- Si l'opération est un dépilement nécessitant un renversement, on a $c_i=2p+1$ où p est la taille de in.

Le problème du calcul na $\ddot{\text{i}}$ ici est de connaitre l'ordre des opérations. On peut regrouper les opérations o_1,\ldots,o_n par paquet : ajouts, suppression avec renversement, ajouts ou suppressions sans reversement, suppression avec renversement... On va noter p_i la taille de in avant le ième renversement. On a donc p_{i+1} ajouts entre le ième et le (i+1)ème renversement. Ainsi, on a effectué p_i-1 suppressions sans renversements entre les deux.

Comme cela correspond au pire cas, on peut supposer que o_n est une suppression avec renversement.

On obtient alors

$$\sum_{i=1}^{n} c_{i} = p_{1} + (2p_{1} + 1) + p_{2} + (p_{1} - 1) + (2p_{2} + 1)$$

$$+ \dots + p_{r} + (p_{r-1} - 1) + (2p_{r} + 1)$$

$$\leq 4(p_{1} + p_{2} + \dots + p_{r})$$

Pour conclure, il est nécessaire de relier le nombre d'opérations aux p_i . Or, on a

$$n = p_1 + 1 + p_2 + p_1 - 1 + \dots + p_r + p_{r-1} - 1 + 1$$

= $2p_1 + 2p_2 + \dots + 2p_{r-1} + p_r \ge p_1 + \dots + p_r$

Ainsi
$$\frac{1}{n} \sum_{i=1}^{n} c_i \leq 4$$
.

■ Remarque 13.3 Cette analyse est assez pénible à mettre en oeuvre car elle demande de compter avec précision ce qui se passe.

II.2.ii Exemple du tableau dynamique

Ici, les opérations sont toutes des ajouts d'éléments, mais certains provoquent une recopie tandis que d'autres sont en temps constant. Cependant, on a la même distribution des coûts, la suite des c_i est toujours $1, 2, 3, 1, 5, 1, 1, 1, 9, 1, 1, 1, \dots$

Plus précisément,
$$c_i = \begin{cases} 2^p+1 & \text{si } i=2^p+1 \\ 1 & \text{sinon} \end{cases}$$
. Donc si $2^{p-1} < n \leq 2^p$ on a $\sum_{i=1}^n c_i = n + \sum_{k=1}^{p-1} 2^k = n + 2^p \leq 3n$. On en déduit que $\frac{1}{n} \sum_{i=1}^n c_i \leq 3$ c'est-à-dire que c'est un $O(1)$.

II.2.iii Améliorer la méthode naïve

Une amélioration de la méthode naïve va consister à considérer non pas le coût réel c_i de l'opération o_i mais un coût amorti c_i' tel qu'à la fin des opérations on ait $\sum_{i=1}^n c_i \leq \sum_{i=1}^n c_i'$ où cette dernière somme est facile à majorer.

On fera souvent en sorte que la majoration soit valide tout au long des opérations, c'est-à-dire que

$$\forall k \in [1, n], \sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} c'_i$$

II.3 Méthode du banquier

On va imaginer maintenant que les opérations coûtent un certain nombre de crédits, comme si l'ordinateur marchait avec des pièces de monnaie.

Des opérations vont alors accumuler des crédits dans une réserve et d'autres opérations vont consommer ces crédits. L'idée est de payer un peu plus pour chaque opération peu coûteues afin de couvrir les coûts des opérations coûteuses.

Précisément, on considère pour chaque opération o_i :

- une quantité a_i de crédits qui seront accumulés dans la réserve
- ullet et une quantité d_i de crédits qu'il faudra dépenser.

On pose alors $c_i' = c_i + a_i - d_i$. On s'arrange pour faire en sorte que $c_i' \leq Af(n)$ où A est une constante. Dans le cas d'une complexité constante amortie, on s'assurera que $c_i' \leq A$.

On va maintenir un invariant sur les crédits qui est que

$$\forall k \in [1, n], \sum_{i=1}^{k} a_i \ge \sum_{i=1}^{k} d_i$$

Cela signifie qu'à tout moment la réserve de crédit est positive ou nulle : on ne dépense pas de crédits n'ayant pas été accumulés.

_

On a alors directement la majoration voulu de $\sum_i c_i$: soit $k \in [1, n]$,

$$\sum_{i=1}^{k} c_i' = \sum_{i=1}^{k} c_i + \left(\sum_{i=1}^{k} a_i - \sum_{i=1}^{k} d_i\right) \ge \sum_{i=1}^{k} c_i$$

II.3.i Exemple de la file avec deux piles

Pour chaque élément enfilé on va allouer deux crédits correspondant au futur dépilement de in puis empilement sur out qui auront lieu lors du renversement.

On pose donc pour chaque opération o_i , $c'_i = c_i + a_i - d_i$ où :

- $a_i = 2$ et $d_i = 0$ si l'opération est un ajout
- $a_i = d_i = 0$ si l'opération est un défilement ne nécessitant pas de renversement
- ullet $a_i=0$ et $d_i=2p$ où p est la taille de in dans le cas d'un défilement provoquant un

On a donc $\sum_{i=1}^k a_i = 2A$ où A est le nombre d'ajouts effectués par les k premières opérations. Si on a effectué des renversements successifs de p_1, p_2, \ldots, p_r éléments dans in, on a

$$\sum_{i=1}^{k} d_i = 2p_1 + \dots + 2p_r$$

$$= 2(p_1 + \dots + p_r)$$

$$\leq 2A$$

$$\leq \sum_{i=1}^{k} a_i$$

La majoration venant du fait qu'un élément n'est ajouté qu'une seule fois dans in et donc que la somme $p_1 + \cdots + p_r$ des longueurs de in au cours des opérations ne peut dépasser le nombre A d'éléments empilés.

On a ainsi vérifié l'invariant sur les crédits et on a donc la majoration $\sum_{i=1}^k c_i \leq \sum_{i=1}^k c_i'$. Pour conclure, il suffit de calculer c'_i selon les cas :

- Si l'opération est un ajout, on a $c_i^\prime=1+2-0=3$.
- Si l'opération est une suppression sans renversement, on a $c_i'=1$ Si l'opération est une suppression avec renversement, on a $c_i'=2p+1+0-2p=1$

Dans tous les cas, on a donc $c_i' \leq 3$. On en déduit la majoration $\sum_{i=1}^n c_i \leq \sum_{i=1}^n c_i' \leq 3n$ qui est plus fine que la majoration obtenue précédemment.

11.3.ii Exemple du tableau dynamique

On va considérer qu'on alloue 2 crédits pour chaque opération d'ajout d'un élément :

- Un crédit pour la première recopie de cet élément
- Un crédit pour copier l'élément qui lui est symétrique par rapport à la demi-capacité :

Ainsi, juste avant un doublement de capacité, on dispose d'un crédit pour chaque recopie :

Plus précisément, on définit pour chaque opération o_i : $c_i' = c_i + a_i - d_i$ où $a_i = \begin{cases} 1 & \text{si } i = 1 \\ 2 & \text{sinon} \end{cases}$

$$\operatorname{et} d_i = \begin{cases} 2^p & \text{si } i = 2^p + 1 \\ 0 & \text{sinon} \end{cases}.$$
 On a donc $c_i' = 3$ dans tous les cas.

Théorème II.1
$$\forall n \in \mathbb{N}^*, \sum_{i=1}^n a_i \geq \sum_{i=1}^n d_i$$
.

Démonstration.

On a
$$\sum_{i=1}^{n} a_i = 2n - 1$$
 et si $2^p < n \le 2^{p+1}$,

$$\sum_{i=1}^{n} d_{i} = d_{2} + d_{3} + d_{5} + \dots + d_{2^{p}+1}$$

$$= 1 + 2 + 2^{2} + \dots + 2^{p}$$

$$= 2^{p+1} - 1 \le 2n - 1$$

L'inégalité est bien vérifiée.

Ainsi.

$$3n = \sum_{i=1}^{n} c_i' = \sum_{i=1}^{n} c_i + \left(\sum_{i=1}^{n} a_i - \sum_{i=1}^{n} d_i\right) \ge \sum_{i=1}^{n} c_i$$

On retombe sur une complexité amortie en O(1).

Présentation de la méthode

La présentation qui vient d'être faiter de cette méthode est assez lourde bien que précise. En général, on se contente de présenter informellement la distribution de crédits en s'assurant qu'on a couvert les opérations coûteuses.

Une manière de bien s'en assurer est de décorer les structures de données en rendant les crédits apparents.

Si on reprend les tableaux dynamiques, on va rajouter sous une case le nombre de crédits dont elle dispose. Si on reprend la séquence d'ajouts précédente on pourra la représenter ainsi :

II.4 Méthode du potentiel

L'idée de la méthode du potentiel est de définir une fonction sur Φ qui associe à chaque valeur de la structure de données un nombre réel. Ce réel correspond à la notion physique de potentiel : si on considère un pendule simple dans sa trajectoire son énergie potentielle est maximale au sommet quand sa vitesse, et donc son énergie cinétique est nulle. À l'inverse son énergie potentielle est nulle au point le plus bas et sa vitesse maximale.

L'idée ici est que le potentiel va correspondre aux gains de temps obtenus par des opérations peu coûteuses. Chaque opération va ainsi faire évoluer le potentiel. On peut prendre l'image d'un empilement de tuiles de bois, comme des Kapla, chaque ajout d'une tuile de bois augmente le potentiel jusqu'à un éventuel effondrement. On retrouve ici la dualité entre les opérations rapides et les opérations coûteuses liées à un basculement.

Précisement, on va noter t_i la structure obtenue à l'issue de l'opération o_i . On considère que t_0 est la structure vide et $\Phi(t_0)=0$. On pose $c_i'=c_i+\Phi(t_i)-\Phi(t_{i-1})$ ce qui correspond à considérer la différence de potentiel.

On a donc

$$\sum_{i=1}^{k} c_i' = \sum_{i=1}^{k} c_i + \sum_{i=1}^{k} \Phi(t_i) - \Phi(t_{i-1}) = \sum_{i=1}^{k} c_i + \Phi(t_k)$$

Pour conclure par une majoration de $\sum_{i=1}^k c_i$, il suffit de s'assurer que le potentiel ne soit jamais négatif.

II.4.i Exemple de la file avec deux piles

On va poser $\Phi(t)=2|\text{in}|$ où |in| est la taille de la pile d'entrée. Pour reprendre le parallèle physique, on peut s'imaginer que la pile in est au dessus de la pile out et que les éléments menacent de s'y deverser. Ce qui permet d'avoir l'image du potentiel comme pour le pendule au sommet de sa trajectoire.

On a directement la majoration car $\Phi(t) \geq 0$.

Pour conclure, il faut calculer c'_i dans chaque cas :

- Si l'opération est un ajout, in augmente d'un élément et donc $c_i^\prime=c_i+2=3$
- Si l'opération est une suppression sans renversement, le potentiel ne change pas et $c_i'=1$
- ullet Si l'opération est une suppression avec renversement et que $\verb"in"$ contient p éléments, on a $c_i' = 2p + 1 + 0 - 2p = 1.$

On retombe exactement sur le calcul précédent avec la méthodde du banquier.

II.4.ii Exemple du tableau dynamique

On pose ici $\Phi(t) = 2l(t) - c(t)$ où l(t) est la longueur de t et c(t) est sa capacité.

Ici, ce potentiel se comprend mieux en écrivant 2(l(t) - c(t)/2) car l(t) - c(t)/2 correspond aux éléments ajoutés après doublement.

Comme $c(t)\geq l(t)\geq \frac{c(t)}{2}$ on a $\Phi(t)\geq 0$ ce qui valide la majoration. On calcule c_i' dans les deux cas d'ajout :

• Si c'est un ajout sans doublement, alors $l(t_i) = 1 + l(t_{i-1}), c(t_i) = c(t_{i-1})$ et ainsi

$$c'_{i} = c_{i} + \Phi(t_{i}) - \Phi(t_{i-1})$$

$$= 1 + 2l(t_{i-1}) - c(t_{i-1}) - 2l(t_{i-1}) + c(t_{i-1}) = 1$$

• Si c'est un ajout avec doublement de capacité, alors $l(t_{i-1}) = c(t_{i-1}) = A$, $l(t_i) = 1 +$ $l(t_{i-1}) = 1 + A$, $c(t_i) = 2c(t_{i-1}) = 2A$ et $c_i = A + 1$. On a donc:

$$c'_i = c_i + \Phi(t_i) - \Phi(t_{i-1})$$

= $A + 1 + 2(A+1) - 2A - 2A + A$
= 3

Ainsi, $3n \geq \sum_{i=1}^n c_i' \geq \sum_{i=1}^n c_i$. On retombe sur la majoration voulue.

Comparatif des méthodes

On remarque que la méthode du potentiel et la méthode du banquier sont très proches. En fait, on peut montrer qu'elles sont équivalentes. La différence entre les deux est que la méthode du banquier demande de regarder avec précision les opérations pour lesquelles il va falloir allouer des crédits alors que pour la méthode du potentiel il suffit de trouver son expression. Cependant, trouver l'expression du potentiel est parfois plus complexe que de définir les crédits.

On cherchera donc la méthode la mieux adaptée aux problèmes considérés. Dans l'exemple de la file, le potentiel est très facilement défini, dans le cas du tableau dynamique, la méthode du banquier peut paraitre plus naturelle.

Source image: https://www.flickr.com/photos/x6e38/3440634940/

Principe

1.1 Problème de décision et exploration exhaustive

Considérons un problème du type trouver un $x \in V$ vérifiant une propriété P(x).

- Exemple 14.1 V est l'ensemble des chaînes de caractères et P vérifié si si une chaîne est un mot de passe qu'on cherche.
 - V est l'ensemble des indices possibles dans un tableau t et P vérifie si la valeur à l'indice i est une valeur x que l'on cherche.
 - ullet V est l'ensemble des grilles complétées d'un problème de Sudoku et P vérifie si la grille est valide.
 - *V* est l'ensemble d'assemblages de pièces d'un puzzle et *P* vérifie si le puzzle est correcte, c'est-à-dire si deux pièces côtes à côtés ont des côtés compatibles.

Dans certains problèmes, un tel x n'est pas unique et on cherche à tous les énumérer.

Une recherche par force brute ou recherche exhaustive, consiste à énumérer l'ensemble V jusqu'à obtenir une solution en testant P pour chaque valeur rencontrée.

Des problèmes précédents, la recherche linéaire est le plus simple et le programme suivant est caractéristique d'une recherche exhaustive :

```
exception Trouve of int

let recherche t x =
    try
    for i = 0 to Array.length t - 1 do
        if t.(i) = x
        then raise (Trouve i)
```

```
done;
  raise Not_found
  with Trouve i -> i
```

La forme usuelle sera alors

```
pour chaque v dans V
si P(v) est vérifié
s'arrêter avec la solution v
```

On rappelle que pour pouvoir s'arrêter au cours de l'énumération en OCaml, si on programme en impératif, on utilise en général des exceptions comme dans le chapitre Exceptions en OCaml.

Cela pose naturellement la question de l'énumération des éléments de V. Si c'est immédiat dans l'exemple peu pertinent de la recherche dans un tableau, c'est beaucoup plus complexe pour l'énumération des assemblages de pièces d'un puzzle, par exemple.

Pour la recherche du mot de passe, on pourrait commencer par énumérer les chaînes de longueur 1, puis de longueur 2, et ainsi de suite.

Le plus souvent, l'ensemble V est fini (pour les mots de passe, cela peut consister à limiter la longueur maximale du mot de passe). Ainsi, une recherche par force brute effectue O(|V|) itérations.

1.2 Problème d'optimisation et exploration exhaustive

On retrouve la notion d'exploration exhaustive ou force brute pour des problèmes d'optimisation. Il s'agit de problèmes de la forme : déterminer $x \in V$ tel que f(x) soit minimale ou maximale.

L'exploration exhaustive consiste alors à calculer toutes les images par f des éléments de V afin de déterminer un extremum.

II Recherche par retour sur trace (backtracking)

II.1 Construction itérative de candidats

Dans de nombreux cas, l'ensemble V peut se décrire une processus itératifs de construction de ses éléments. Une manière de voir cela est de parler de positions et de mouvements, ou coups.

Par exemple, considérons un puzzle comme le puzzle Eternity II constitué de 256 pièces carrées. Une configuration finale du puzzle consiste à avoir placé les 256 pièces. Parmi celles-ci, les configurations valides sont celles satisfaisant les contraintes de chaque côté.

Comme pour tous les puzzles, la position initiale est un plateau vide et chaque mouvement consiste à placer une pièce disponible dans un emplacement disponible. Cela correspond à la manière dont on procéderait à la main :

Ainsi, on peut représenter la construction de V sous la forme d'un arbre dont les nœuds sont les positions et les arêtes les mouvements. Les positions complètes sont les feuilles de l'arbre, elles correspondent aux éléments de V et ce sont donc celles-ci qu'on va explorer pour y trouver une solution.

L'avantage de cette représentation arborescente est qu'elle découle naturellement d'un parcours récursif des positions.

Tout d'abord, il va falloir définir un type de positions partielles comme on a pu le voir dans le chapitre Options en OCaml.

Comme indiqué dans ce chapitre, si le type d'une grille de Sudoku remplie est int array array, pour pouvoir représenter des grilles en cours de remplissage, on va utiliser le type int option array array. On rappelle que l'utilisation de la valeur None permettra de représenter une partie non construite comme une case vide.

On considère ainsi un type position des positions partielles, un type mouvement et des fonctions

```
(* les mouvements accessibles depuis une position.
  [] si la position est complète *)
val mouvements : position -> mouvement list
  (* applique un mouvement *)
val applique : position -> mouvement -> position
  (* vérifie si une position est complete *)
val complete : position -> bool
  (* vérifie si une position complete est valide *)
val valide : position -> bool
```

Schématiquement, un algorithme d'énumération aura la structure suivante en OCaml:

```
exception Solution of position

let rec enumere pos =
    if complete pos
    then begin
    if valide pos
    then raise (Solution pos)
    end else
    List.iter (fun mouv -> enumere (applique pos mouv))
        (mouvements pos)
```

■ Remarque 14.1 Ici, l'usage de List.iter permet de faire l'équivalent d'une boucle for mais sur une liste. Pour s'en passer, on peut écrire une fonction auxiliaire récursive ou, quand les mouvements sont en petit nombre, une conversion en array suivie d'une boucle for.

Si la position initiale est pos0, on pourra résoudre le problème ainsi :

```
let resout () =
    try
        enumere pos0;
    raise Not_found
    with Solution pos -> pos
```

Cet algorithme de parcours des solutions est appelé le *retour sur trace*, ou *backtracking* en anglais. Il tire partie de la récursivité pour remonter les positions après avoir essayé en vain une construction.

■ Remarque 14.2 Il est possible de reprendre la construction précédente avec des données mutables et une manière de *défaire* les mouvements :

II.2 Évaluation partielle et raccourcis

Si on reprend la construction itérative précédente, on se rend compte qu'elle n'est pas très intelligente : faut-il remplir l'intégralité d'un puzzle avant de se rendre compte qu'il est invalide en raison des deux premières pièces?

On peut donc raffiner l'approche précédente en introduisant une notion de mouvements valides qui sont les mouvements qui préservent la correction partielle.

En pratique, il suffit de remplacer la fonction mouvements par une fonction mouvements_valides.

C'est un changement réduit qui peut avoir un grand impact sur l'arbre des positions. En reprenant l'illustration précédente, on peut imaginer que cela reviendrait à ne pas parcourir les mouvements rouges et les sous-arbres associés :

II.2.i Problème : résolution de Sudoku

La recherche par retour sur trace se prête très bien à la résolution de problèmes comme le Sudoku. On va ici tout simplement tenter de remplir chaque case du haut vers le bas tant qu'on satisfait les contraintes du Sudoku. Le programme sera ainsi très proche de la résolution des huit reines.

Commençons par rappeler le principe du Sudoku:

• On part d'une grille de 81 cases réparties en une grille de 3x3 sous-grilles de 3x3 cases et comportant des chiffres de 1 à 9 dans certaines cases.

1								6
		6		2		7		
7	8	9	4	5		1		3
			8		7			4
				3				
	9				4	2		1
3	1	2	9	7			4	
	4			1	2		7	8
9		8						

- L'objectif est de remplir chaque case avec un chiffre de 1 à 9 de sorte que chaque ligne, chaque colonne et chaque sous-grille 3x3 comporte une et une seule fois chaque chiffre.
- Un sudoku admet une unique solution.

Pour représenter une grille de Sudoku en OCaml on utilise un (int option) array array, la valeur None signifiant que la case est vide et la valeur Some $\,$ x qu'elle est remplie avec la valeur x.

```
type grille = (int option) array array
```

On fait le choix de représenté la grille par un tableau de lignes, ce qui signiie que pour accèder à la case de coordonnée (x, y) dans g il faut écrire g. (y). (x).

Le problème donné précédemment est alors représenté par la valeur suivante :

```
let probleme = [|
                [| Some 1; None; None;
                                                                                                                          None; None; None;
                                                                                                                                                                                                            None; None; Some 6 |];
                [ None; None; Some 6; None; Some 2; None;
                                                                                                                                                                                                                     Some 7; None; None |];
                [| Some 7; Some 8; Some 9;
                                                                                                                                        Some 4; Some 5; None;
                                                                                                                                                                                                                                             Some 1; None; Some 3 |];
                          None; None; None;
                                                                                                                  Some 8; None; Some 7;
                                                                                                                                                                                                                     None; None; Some 4 [];
                          None; None; None;
                                                                                                                  None; Some 3; None; None; None; None |];
                [| None; Some 9; None;
                                                                                                                 None; None; Some 4; Some 2; None; Some 1 [];
                           Some 3; Some 1; Some 2;
                                                                                                                                          Some 9; Some 7; None;
                                                                                                                                                                                                                                             None; Some 4; None [];
                [| None; Some 4; None; None; Some 1; Some 2; None; Some 7; Some 8 |];
                          Some 9; None; Some 8; None; No
```

Afin de définir la fonction de résolution, on définit une première fonction suivant de signature :

```
val suivant : grille -> (int * int) -> (int * int) option
```

telle que l'appel à suivant g (x,y) renvoie Some (xi,yi) quand (x_i,y_i) sont les coordonnées de la prochaine case libre, dans l'ordre gauche à droite puis haut vers bas, après (x, y)ou None quand il n'existe pas de telle case libre. Cela signifie alors que la grille est entièrement remplie.

```
let rec suivant g(x,y) =
   if y > 8
   then None
   else if g.(y).(x) = None
   then Some (x,y)
    else if x < 8 then suivant g (x+1, y)
    else suivant g (0, y+1)
```

On définit également une fonction valide de signature

```
val valide : grille -> int -> int -> bool
```

telle que l'appel à valide g x y renvoie true si et seulement si la valeur placée en coordonnée (x, y) n'invalide pas la grille. Ne pas prendre cette valeur en paramètre permettant d'écrire un peu plus simplement cette fonction. La fonction est assez directe, étant donné (x,y)on va parcourir sa ligne, sa colonne et sa sous-grille pour vérifier qu'un nombre n'a pas été placé deux fois à l'aide d'un tableau de drapeaux :

```
let valide g x y =
    let v = ref true in
    let vus_colonne = Array.make 9 false in
    for y0 = 0 to 8 do
        match g.(y0).(x) with
         None -> ()
          Some k ->
                if vus_colonne.(k-1)
                then v := false;
                vus_colonne.(k-1) <- true</pre>
    done;
   let vus_ligne = Array.make 9 false in
    for x0 = 0 to 8 do
        match g.(y).(x0) with
         None -> ()
        | Some k ->
                if vus_ligne.(k-1)
                then v := false;
                vus_ligne.(k-1) <- true</pre>
    let vus_grille = Array.make 9 false in
    let xb = (x / 3) * 3 in
    let yb = (y / 3) * 3 in
    for xd = 0 to 2 do
        for yd = 0 to 2 do
```

On peut alors définir la fonction resout qui va résoudre le Sudoku en effectuant tous les remplissages tant qu'on a une grille valide. Dès qu'une solution est trouvée, on s'arrête. Pour cela, on utilise le mécanisme des exceptions pour permettre une sortie prématurée. On a fait le choix de travailler en place dans la grille, ainsi à la fin de l'exécution de la fonction, la grille correspond à la solution.

```
exception Solution
let resout g =
    let rec aux xi yi = match suivant g (xi, yi) with
         | None -> raise Solution
          Some (x,y) \rightarrow
             for i = 1 to 9 do
                  g.(y).(x) \leftarrow Some i;
                  if valide g x y
                  then begin
                      aux x y
                  end
             done;
             g.(y).(x) \leftarrow None
    in
    try
        aux 0 0
    with Solution -> ()
```

II.3 Énumération de toutes les solutions

Le problème précédent du Sudoku n'avait par définition qu'une unique solution. Cependant, il existe des problèmes pour lesquels plusieurs solutions existent et pour lesquels on souhaite les énumérer.

La fonction précédente pourra alors devenir :

■ Remarque 14.3 La fonction List.concat permet de concaténer une 'a list list d'un coup comme dans :

```
# List.concat [ [1;2]; [3]; []; [4;5;6] ];;
- : int list = [1; 2; 3; 4; 5; 6]
```

II.3.i Problèmes des huit reines

L'exemple classique de ce problème est celui des huit reines : étant donné un échiquier, peuton placer huit reines de sorte qu'aucune reine ne puisse prendre une autre reine? Plus précisément : sur un plateau de 8x8 cases, peut-on placer huit pions tels que deux pions quelconques ne soient jamais sur la même ligne ou la même diagonale?

Exemple de solution:

Ce problème admet effectivement des solutions partielles en ne considérant que k reines à placer. Pour énumérer les solutions, on peut même se contenter de solutions partielles où les k reines sont placées sur les k premières rangées.

Voici ainsi un algorithme pour énumérer les solutions :

- Supposons que k reines aient été placées et qu'on dispose d'une solution partielle.
 - \star Si k=8 alors toutes les reines sont placées et la solution est complète, on la comptabilise
 - \star Sinon, on continue la recherche pour chaque position de la k+1 reine sur la k+1 rangée qui préserve le fait d'être une solution partielle.

Ici, quand on dit qu'on continue la recherche, ce qu'on signifie, c'est qu'on effectue un appel récursif.

Pour programmer cette méthode, on va définir une fonction récursive de signature :

```
val resout_reines : (int * int) list -> (int * int) list list
```

Un appel à resout_reines part va ainsi renvoyer la liste des solutions complètes construites à partir de la solution partielle part. Les solutions sont représentées par des listes de couples de coordonnées sur l'échiquier, donc dans $[|0;7|]^2$

Voici une implémentation où on explore les solutions à l'aide d'une boucle impérative dans l'appel récursif. La fonction valide permet de tester si le placement d'une reine est possible avant d'effectuer un appel.

```
let rec valide (x1,y1) l =
    match l with
    | [] -> true
    | (x2,y2)::q \rightarrow
        x1 <> x2 && abs (x2-x1) <> abs(y2-y1) && valide (x1,y1) q
let rec resout_reines part =
    let k = List.length part in
    if k = 8
    then [ part ]
    else begin
        let resultats = ref [] in
        for x = 0 to 7 do
            let essai = (x,k) :: part in
            if valide (x,k) part
            then begin
                 resultats := (resout_reines essai) @ !resultats;
            end
        done;
        !resultats
    end
```

et, ici, une autre implémentation purement récursive à l'aide d'une fonction récursive.

Une partie de l'arbre de recherche est présenté sur l'image suivante :

Arbre de recherche pour les huit reines

L'arbre complet comporte 2057 nœuds dont 92 feuilles correspondant aux solutions du problème. À titre de comparaison, l'arbre exhaustif correspondant à faire tous les choix de placement à raison d'une reine par ligne compterait $8^8=16777216$ nœuds. On voit bien que le backtracking est plus économe en exploration.

II.4 TP: tours du cavalier

II.5 TP: jeu du solitaire

On considère ici le jeu du solitaire. On a un plateau comportant 33 emplacements et initialement 32 pions, représenté par des ronds blancs, et un emplacement vide au centre :

Les différents mouvements possibles consiste à passer d'une configuration $\bullet \bullet \circ$ à $\circ \circ \bullet$ et ainsi à diminuer d'un pion le nombre total de pions. Ces configurations peuvent être rencontrées dans les directions horizontales ou verticales.

On considère que la partie est gagnée quand il n'y a plus qu'un pion sur le plateau.

II.5.i Première implémentation naïve

On va représenter un plateau par le type OCaml:

```
type case = Vide | Pion | Invalide
type plateau = case array array
let n = 7
(* Un plateau est une matrice 7x7 avec des cases invalides aux coins *)
```

Question II.1 Définir une fonction print_plateau qui affiche un plateau sous un format textuel lisible.

Démonstration.

Question II.2 Écrire une fonction plateau_initial: unit -> plateau qui renvoie un plateau correspondant à la configuration de départ.

Démonstration.

Un mouvement peut être assimilé à un triplet de coordonnées décrivant, dans l'ordre • • o les trois cases concernées. Il se trouve que la case centrale est toujours le milieu des deux autres, on peut donc se contenter de donner un couple de coordonnées pour décrire un mouvement.

```
type mouvement = (int * int) * (int * int)
```

Question II.3 Écrire une fonction mouvements : plateau -> mouvement list qui renvoie la liste des mouvements possibles sur le plateau passé en paramètre.

Démonstration.

```
let possible p (i1,j1) (i3,j3) =
    let i2, j2 = (i1+i3)/2, (j1+j3)/2 in
    p.(i1).(j1) = Pion \&\& p.(i2).(j2) = Pion \&\& p.(i3).(j3) = Vide
let mouvements p =
    (* on utilise une pile *)
    let l = ref [] in
    for i = 0 to n-1 do
        for j = 0 to n-3 do
             if possible p (i,j) (i,j+2)
             then l := ( (i,j), (i,j+2) ) :: !l;
             if possible p (i,j+2) (i,j)
             then l := ( (i,j+2), (i,j) ) :: !l;
             if possible p (j+2,i) (j,i)
             then l := ( (j+2,i), (j,i) ) :: !l; if possible p (j,i) (j+2,i)
             then l := ((j,i), (j+2,i)) :: !l
        done
    done;
    !l
```

Question II.4 Écrire une fonction compte_pions : plateau -> int qui renvoie le nombre de pions sur un plateau.

En déduire une fonction valide : plateau -> bool qui indique si un plateau correspond à une partie gagnante.

Démonstration.

```
let compte_pions p =
    let c = ref 0 in
    for i = 0 to n-1 do
        for j = 0 to n-1 do
            if p.(i).(j) = Pion
            then incr c
        done
    done;
    !c

let valide p = compte_pions p = 1
```

Question II.5 Écrire deux fonctions faire et defaire de type plateau -> mouvement -> unit permettant de faire et défaire un mouvement.

Démonstration.

```
let applique p mouv =
    let (i1,j1), (i3,j3) = mouv in
    let i2, j2 = (i1+i3)/2, (j1+j3)/2 in
    p.(i1).(j1) <- Vide;
    p.(i2).(j2) <- Vide;
    p.(i3).(j3) <- Pion

let defaire p mouv =
    let (i1,j1), (i3,j3) = mouv in
    let i2, j2 = (i1+i3)/2, (j1+j3)/2 in
    p.(i1).(j1) <- Pion;
    p.(i2).(j2) <- Pion;
    p.(i3).(j3) <- Vide</pre>
```

Question II.6 Écrire une fonction enumere : plateau -> mouvement list -> unit telle que enumere pos cheminénumère les plateaux accessibles depuis pos jusqu'à obtenir une solution et sachant que chemin est la liste de mouvements, du plus récent au plus ancien, qui ont conduit jusqu'à pos.

En cas de succès, on produira une exception Solution of mouvement listrenvoyant la liste des mouvements ayant conduits à une solution.

En déduire une fonction resout : unit -> mouvement list qui renvoie une liste de mouvement permettant de résoudre le solitaire. On prendra garde à renverser le chemin obtenu pour que le premier mouvement de la liste soit le premier mouvement effectué.

_

Démonstration.

Ce code ne permet pas de calculer la solution car il prend beaucoup trop de temps en raison du nombre de positions étudiées.

II.5.ii Cache des mauvaises positions

On se rend compte que de nombreuses positions sont réetudiées alors qu'on sait déjà qu'elles ne peuvent permettre d'aboutir à une solution. En effet, il y a souvent des coups indépendants pouvant être joués au même moment, ce qui fait qu'on peut aboutir à une même position de beaucoup de manière différente, ce qui augmente exceptionnellement le nombre d'appels récursifs.

Une stratégie consiste a maintenir un ensemble de configurations mauvaises. Pour réaliser un tel ensemble, on va utiliser une table de hâchage dont les clés sont les positions et les valeurs unit. Si une position a une valeur associée dans la table, c'est qu'elle sera mauvaise.

Cela pose la question de la représentation persistante et immuable des positions. Une première stratégie peut consister à transformer le plateau en case list list. Cette stratégie est beaucoup trop coûteuse et elle ne permet pas de répondre instantanément. On va profiter du fait qu'il n'y est que 49 cases dans le plateau pour le représenter par un entiers sur 49 bits : $a_{00} + a_{10}2 + a_{20}2^2 + ... + a_{60}2^6 + a_{01}2^7 + ... + a_{66}2^{48}$ où a_{ij} vaut 1 lorsqu'il y a un pion sur la jième ligne et la ième colonne, c'est-à-dire quand p. (i). (j) = Pion.

Indication l'entier ${\tt l}$ ls l ${\tt n}$ est 2^n . ls l signifie qu'on décale le chiffre ${\tt l}$ de ${\tt n}$ bits vers la droite dans son écriture binaire.

```
Question II.7 Écrire une fonction code : plateau -> int qui renvoie le numéro associé à un plateau.
```

Démonstration.

```
let code p =
let c = ref 0 in
for j = 0 to 6 do
for i = 0 to 6 do
```

```
if p.(i).(j) = Pion
    then c := !c + 1 lsl (7*j+i)
done
done;
!c
```

Pour manipuler un ensemble, on va définir

```
let mauvaises = Hashtbl.create 42
let ajoute x = Hashtbl.add mauvaises x ()
let contient x = Hashtbl.mem mauvaises x
```

L'appel à ajoute x rajoute x dans l'ensemble des mauvaises positions et contient x vérifie si x est dans cet ensemble.

Question II.8 Reprendre la fonction enumere avec un ensemble de mauvais codes.

Démonstration.

```
let rec enumere pos chemin =
    if valide pos
   then raise (Solution chemin)
    else
       let c = code pos in
       if not (contient c)
        then begin
            let l = mouvements pos in
            List.iter (fun mouv ->
                        applique pos mouv;
                        enumere pos (mouv :: chemin);
                        defaire pos mouv) l;
            (* Si on est ici c'est que le noeud ne permet pas de trouver
               une solution *)
            ajoute c
        end
```

Normalement, le code doit pouvoir permettre de réaliser la résolution instantanément.

- Remarque 14.4 Possibles extensions:
 - rajouter un affichage de la résolution
 - déterminer la proportion de recalculs évités
 - gérer les symétries des plateaux

III Stratégies d'énumération

III.1 Combinatoire élémentaire

produits, combinaisons, permutations

III.2 Enumération d'arbres

Imaginons que l'on souhaite énumérer des arbres binaires non étiquettés pour trouver le premier arbre binaire à n nœuds vérifiant une certaine propriété. On suppose ainsi défini un type

```
type arbre = Nil | Noeud of arbre * arbre
```

et une fonction pour tester le prédicat :

```
val : valide : arbre -> bool
```

Une première possibilité est d'effectuer un simple parcours récursif:

```
let rec recherche n =
   if n = 0
   then
```

normale, par passage de continuation

IV Droite de balayage

IV.1 Principe

Il est parfois possible d'ordonner V pour tirer pour permettre de trouver une solution plus vite, voir d'ordonner des données basique pour ne pas énumérer V mais énumérer un $V' \subset V$ plus petit.

C'est un procédé classique dans le contexte de la géométrie algorithmique dans le plan : étant donné un ensemble V de candidats qu'on déduit d'un ensemble de points du plan, par exemple l'ensemble des paires de points, on va énumérer V à l'aide d'un parcours des points de gauche à droite (ou tout autre direction géométrique) pour ne pas énumérer tout V mais seulement une partie plus petite. Tout se passe comme si on balayait avec un droite l'ensemble des points, d'où le nom de droite de balayage.

Du point de vue de la complexité temporelle, on obtient le plus souvent un algorithme en $O(n \log n)$ où n est le nombre de points. Cela signifie que l'étape la plus coûteuse en temps est le tri initial.

On va présenter ici deux exemples d'utilisation d'une droite de balayage. Il est assez clair qu'il sera nécessaire dans ces cas de réfléchir géométriquement. Les exemples présentés sont donc assez simples d'un point de vue informatique, mais plutôt complexes d'un point de vue mathématiques.

IV.2 Plus proche paire

On considère le problème

Problème - PLUSPROCHEPAIRE

- Entrées :
 - Un ensemble P de n points.
- Sortie: Une paire $\{p, p'\}$ de points telle que $dist(p, p') = ||\vec{pp'}||$ soit minimale.

IV.2.i Recherche exhaustive

Considérons le problème *PlusProchePaire* qui, étant donné un ensemble de n points ($n \ge 2$), détermine la paire constituée des deux points les plus proches.

Une implémentation naïve de la recherche par force brute consiste à énumérer les $\frac{n(n-1)}{2}$ paires et donc à effectuer $O(n^2)$ itérations.

```
let plus_proche_paire points =
    let n = Array.length points in
    let min_paire = ref (distance points.(0) points.(1), (0, 1)) in
    for i = 0 to n - 1 do
        for j = i+1 to n - 1 do
            let d = distance points.(i) points.(j) in
            if d < fst !min_paire
            then min_paire := (d, (i, j))
        done
    done;
    snd !min_paire</pre>
```

IV.2.ii Raffinement : droite de balayage

Il est parfois possible d'accélérer la recherche par force brute en ordonnant le parcours des candidats pour pouvoir éviter de tester certains d'entre eux.

En géométrie algorithmique, une approche classique consiste à ordonner les objets selon leur abscisse et à parcourir les objets par abscisse croissante. On parle alors de **droite de balayage** (en anglais, *sweep line*) car cela revient à balayer le plan par une droite verticale en ne traitant que les objets avant cette ligne.

Reprenons le problème précédent, on considère que les points sont triés par abscisse croissante : $(x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$. On va parcourir les points dans cet ordre en maintenant un ensemble de points à gauche du point courant, appelés *points actifs*, et en ne calculant que les intersections avec les points actifs.

Si on a parcouru les N premiers points et qu'on a obtenu que la plus petite distance était d, lorsqu'on considère le point (x_N,y_N) , il est inutile de tester les points qui sont forcément à distance >d de celui-ci. C'est-à-dire qu'on peut éliminer les points qui ne sont pas dans le rectangle $[x_N-d,x_N] \times [y_N-d,y_N+d]$ du test. Les points dont l'abscisse est $<x_N-d$ peuvent être éliminés définitivement vu que l'on raisonne par abscisse croissante, par contre, les points d'ordonnées invalides doivent être conservés pour les points ultérieurs.

Ce rectangle est représenté sur le schéma suivant ainsi qu'une ligne imaginaire qui correspond à l'abscisse du point courant et qu'on peut imaginer parcourant le plan de gauche à droite pour traiter les points au fur et à mesure.

Afin de déterminer la complexité de cet algorithme, il est nécessaire de connaître le nombre maximal de points dans le rectangle. Comme ces points ont été pris en compte précédemment, ils sont forcément à distance au moins d les uns des autres. Il s'agit donc de déterminer le nombre maximum de points qu'on peut placer dans ce rectangle à distance au moins d. On remarque tout d'abord qu'on peut placer six points ainsi :

Si jamais on avait au moins sept points, on peut voir qu'il y a forcément un des six sous-rectangles suivants qui contiendrait au moins deux points :

Or, ces sous-rectangles sont de longueur $\frac{1}{2}d$ et de hauteur $\frac{2}{3}d$, donc la distance maximale entre deux de leurs points correspond à la longueur des diagonales : $\sqrt{\frac{1}{4} + \frac{4}{9}}d = \frac{5}{6}d < d$.

Comme un de ces six points est le point courant, il y a toujours au plus 5 points dans l'ensemble des points actifs.

Voici le principe de l'algorithme que l'on va implémenter :

- On trie le tableau points par ordre croissant. **Complexité** : $O(n \log n)$
- On initialise la plus petite distance d courante à la distance entre les deux premiers points
- On crée un ensemble actifs, ordonné par les ordonnées, de points contenant initialement les deux premiers points
- Pour chaque point (x, y) en partant du deuxième :
 - * On supprime les points (x', y') tels que x' < x d de actifs. **Complexité**: sur l'ensemble des itérations on ne pourra jamais supprimer deux fois un point, donc on effectue au maximum n suppressions chacune en $O(\log n)$ donc $O(n \log n)$.
 - \star On parcourt les points de actifs dont les ordonnées sont comprises entre y-d et y+d. Complexité: pour récupérer le premier point de l'ensemble, il faut $O(\log n)$ en pire cas (tous les points actifs) et ensuite on effectue au plus 5 itérations comme on vient de le prouver.

On remarque ainsi que la complexité en temps et en pire cas de cet algorithme est de $O(n \log n)$. Ici, le fait d'avoir la structure actifs ordonnée par les ordonnées est crucial pour garantir la complexité. Pour la réalisation d'une structure d'ensemble ordonnée ayant ces complexités, voir le chapitre FIXME.

Ici, on utilise le module Set d'OCaml pour réaliser la structure d'ensemble, pour cela on commence par créer le module PointSet pour les ensembles de points :

```
module Point = struct
    type t = float * float
    let compare (x1,y1) (x2,y2) = Stdlib.compare y1 y2
end

module PointSet = Set.Make(Point)
```

Puis on définit une fonction permettant de parcourir les points entre deux ordonnées :

```
let set_iter_entre f set bas haut =
    try
    let e = PointSet.find_first (fun p -> snd p >= bas) set in
    let seq = PointSet.to_seq_from e set in
    let rec aux seq =
        match seq () with
    | Seq.Nil -> ()
    | Seq.Cons (p, seq_suite) ->
        if snd p <= haut
        then begin
        f p;
        aux seq_suite
    end
    in aux seq
    with Not_found -> ()
```

On implémente alors assez directement l'algorithme décrit précédemment :

```
let plus_proche_paire_balayage points =
   let compare (x1,y1) (x2,y2) =
        if x1 = x2
       then if y1 < y2 then -1 else 1
       else if x1 < x2 then -1 else 1
   Array.sort compare points;
   let n = Array.length points in
   let d = ref (distance points.(0) points.(1)) in
   let couple = ref (points.(0), points.(1)) in
   let actifs = ref (PointSet.empty
            |> PointSet.add points.(0) |> PointSet.add points.(1)) in
   let gauche = ref 0 in
   for i = 2 to n-1 do
       let xi, yi = points.(i) in
       while fst points.(!gauche) < xi -. !d do
            actifs := PointSet.remove points.(!gauche) !actifs;
            incr gauche
       done;
       set_iter_entre (fun pj ->
            let dip = distance points.(i) pj in
```

```
if dip < !d
    then begin
        couple := (points.(i), pj);
        d := dip
    end) !actifs (yi -. !d) (yi +. !d);

actifs := PointSet.add points.(i) !actifs
done;
!d</pre>
```

IV.2.iii Problème : test d'intersection pour un ensemble de segments

Considérons le problème suivant IntersectionEnsemble: étant donné n segments dans le plan, il s'agit de déterminer si au moins deux des segments s'intersectent.

■ Remarque 14.5 On peut considérer ici que l'on dispose d'une fonction

```
intersecte : (float * float) * (float * float)
-> (float * float) * (float * float) -> bool
```

qui teste l'intersection entre deux segments.

Cependant, il est possible d'écrire une telle fonction avec un peu de géométrie élémentaire.

Si on considère que les deux segments sont $[A_1B_1]$ et $[A_2B_2]$, avec $A_1 \neq B_1$ et $A_2 \neq B_2$, alors chaque point du segment $[A_1B_1]$ est de la forme $A_1 + t\overline{A_1B_1}$ où $t \in [0,1]$. De même les points du segment $[A_2B_2]$ sont de la forme $A_2 + u\overline{A_2B_2}$ où $u \in [0,1]$.

S'il y a une intersection, c'est qu'il existe $(t, u) \in [0, 1]^2$ tel que

$$A_1 + t \overrightarrow{A_1 B_1} = A_2 + u \overrightarrow{A_2 B_2} \iff \overrightarrow{A_2 A_1} + t \overrightarrow{A_1 B_1} = u \overrightarrow{A_2 B_2}$$

L'idée est alors d'utiliser une opération appelée **produit vectoriel** sur les vecteurs. Comme ici, tout est plan, le produit vectoriel est uniquement déterminé par sa troisième coordonnée, celle qui sort du plan, et on peut se contenter de calculer celle-ci. On note ainsi $(x,y) \times (x',y') = xy' - yx'$ cette coordonnée. On a donc $u \times u = 0$.

On peut alors composer l'égalité par $\times \overrightarrow{A_2B_2}$:

$$\overrightarrow{A_2A_1} \times \overrightarrow{A_2B_2} + t\left(\overrightarrow{A_1B_1} \times \overrightarrow{A_2B_2}\right) = 0$$

Notons $\Delta = \overrightarrow{A_1B_1} \times \overrightarrow{A_2B_2}$, si $\Delta \neq 0$, alors

$$t = -\frac{\overrightarrow{A_2A_1} \times \overrightarrow{A_2B_2}}{\Delta} = \frac{\overrightarrow{A_1A_2} \times \overrightarrow{A_2B_2}}{\Delta}$$

On procède de même avec $\times \overrightarrow{A_1B_1}$ pour obtenir une expression de $u: \overrightarrow{A_2A_1} \times \overrightarrow{A_1B_1} = u\left(\overrightarrow{A_2B_2} \times \overrightarrow{A_1B_1}\right) = -u\Delta$ et donc

$$u = -\frac{\overrightarrow{A_2 A_1} \times \overrightarrow{A_1 B_1}}{\Delta} = \frac{\overrightarrow{A_1 A_2} \times \overrightarrow{A_1 B_1}}{\Delta}$$

Si $\Delta \neq 0$, on peut donc alors exprimer u et t et vérifier qu'ils sont dans [0,1]. Si $\Delta = 0$ c'est que les deux segments sont de directions parallèles ou confondues.

- Si $\overline{A_1A_2} \times \overline{A_1B_1} \neq 0$ alors $\overline{A_1A_2}$ et $\overline{A_1B_1}$ sont non colinéaires donc les deux segments sont sur des droites parallèles distinctes et ne peuvent s'intersecter.
- Sinon, les segments reposent sur une même droite et il s'agit de vérifier leurs positions sur la droite. Pour cela, on exprime $A_2 = A_1 + t_A \overline{A_1B_1}$ de même pour $B_2 = A_1 + t_B \overline{A_1B_1}$. Plus précisement, on calcule $\overline{A_1A_2} \cdot \overline{A_1B_1} = t_A ||\overline{A_1B_1}||^2$ à l'aide du produit scalaire et on a $t_A = \frac{\overline{A_1A_2} \cdot \overline{A_1B_1}}{||\overline{A_1B_1}||^2}$. De même, $t_B = \frac{\overline{A_1B_2} \cdot \overline{A_1B_1}}{||\overline{A_1B_1}||^2}$. On doit alors vérifier si

l'intervalle $[t_A, t_B]$ (ou $[t_B, t_A]$ selon leur position) intersecte [0, 1]. Voici une fonction *OCaml* qui correspond à ce raisonnement

```
let intersecte (a1,b1) (a2,b2) =
    let vec (x1,y1) (x2,y2) = (x2-.x1,y2-.y1) in
    let cross (x1,y1) (x2,y2) = x1 *. y2 -. y1 *. x2 in
    let dot (x1,y1) (x2,y2) = x1 *. x2 +. y1 *. y2 in
    let proche0 x = let eps = 1e-20 in
        if x < 0. then -.x < eps else x < eps in
    let a1b1 = vec a1 b1 in let a2b2 = vec a2 b2 in
    let a1a2 = vec a1 a2 in let a1b2 = vec a1 b2 in
    let delta = cross a1b1 a2b2 in
    if proche0 delta
    then
         if proche0 (cross ala2 alb1)
         then let na1b1 = dot a1b1 a1b1 in (* colinéaires *)
              let tA = (dot ala2 alb1) /. nalb1 in
              let tB = (dot a1b2 a1b1) /. na1b1 in
              if tA < tB
              then not (tB < 0. || tA > 1.)
              else not (tA < 0. \mid \mid tB > 1.)
         else false (* parallèles *)
    else let t = (cross a1a2 a2b2) /. delta in (* se croisent *)
         let u = (cross a1a2 a1b1) /. delta in
         t \ge 0. && t \le 1. && u \ge 0. && u \le 1.
```

■ Note 14.1 réécrire cela avec le déterminant de deux vecteurs du plan qui est au programme de mathématiques de seconde.

La recherche par force brute va alors énumérer l'ensemble des paires de segments distincts et tester deux à deux les intersections. On peut ainsi écrire le programme suivant qui est assez simple et effectuera effectivement $O(|v|^2)$ itérations dans le pire cas, i.e. lorsqu'il n'y a pas d'intersections.

TODO approche par droite de balayage : algorithme de Shamos et Hoey (1976)

Principe

On considère ici un problème d'énumération comme dans la section précédente muni d'une fonction d'objectifs qui attribue une valeur numérique aux solutions et aux solutions partielles.

Soit $f:P\to\mathbb{R}$ une telle fonction, où $S\cup P$ est l'ensemble des solutions du problème d'énumération et P l'ensemble des solutions partielles, on se pose maintenant le problème de l'optimalité vis-à-vis de f: déterminer $x\in S$ tel que $f(x)=\max_{y\in S}f(y)$ on note souvent $x=\operatorname{argmax}_{y\in S}f(y)$. On parle alors de problème d'optimisation combinatoire.

- Remarque 15.1 En considérant $g:y\mapsto -f(y)$, on transforme un problème de maximisation en un problème de minimisation.
 - Il y a une ambiguïté sur $\arg\max_{y\in S}f(y)$ quand plusieurs éléments de S réalisent ce maximum. Dans la plupart des algorithmes gloutons qu'on va considérer, on commence par donner un ordre sur S et on considère le plus petit y pour cet ordre réalisant le maximum. L'ordre choisi est alors crucial dans la preuve de correction. C'est aussi une des raisons pour lesquelles les algorithmes gloutons sont souvent de complexité temporelle $O(n\log_2 n)$.

Une première stratégie très élémentaire consiste alors à énumérer S, de manière exhaustive ou avec une stratégie plus fine comme le retour sur trace, puis à déterminer un élément maximal de manière directe.

Cela revient donc à déterminer l'arbre des solutions puis à trouver une feuille maximisant l'objectif :

Un algorithme glouton va suivre une approche beaucoup plus efficace : à chaque étape de construction de la solution, on choisit la branche qui maximise la fonction d'objectif. C'est-à-dire que si en partant d'une solution partielle $x \in P$ il est possible de l'étendre en d'autres solutions partielles $p_x = \{y_1, ..., y_n\}$, on va choisir $y = \operatorname{argmax}_{t \in p_x} f(t)$ la solution qui maximise localement f.

Sur l'arbre précédent, cela reviendrait à n'emprunter qu'une seule branche :

Cela a l'air très efficace mais il y a un problème majeur : il n'y a aucune garantie qu'on aboutisse ainsi à une solution, encore moins à une solution optimale. En effet, on aurait très bien pu faire les choix suivants :

et ne pas aboutir à une solution.

Considérons par exemple le problème du **rendu de monnaie** : étant donné, une liste de valeurs faciales de pièces $P=(v_1,\ldots,v_p)\in(\mathbb{N}^*)^p$ avec $1=v_1<\cdots< v_p$ et une somme $n\in\mathbb{N}^*$, on cherche la manière d'exprimer cette somme avec le plus petit nombre de pièces possible.

Plus précisément, l'ensemble des solutions $S = \{(k_1, \dots, k_p) \in N^p \mid k_1v_1 + \dots + k_pv_p = n\}$ et la fonction d'objectif est $f: (k_1, \dots, k_p) \mapsto k_1 + \dots + k_p$. Les solutions partielles ici sont les réalisations de valeur < n. On cherche alors $x = argmin_{u \in S} f(y)$.

Comme
$$1 = v_1, S \neq \emptyset$$
 car $(n, 0, \dots, 0) \in S$ et ainsi $f(x) \leq n$.

L'algorithme glouton va utiliser la plus grande pièce possible à chaque étape puis on applique l'algorithme glouton sur la somme restante sauf si elle est nulle, ce qui constitue la condition d'arrêt.

Exemple 1

- P = (1, 2, 5, 10)
- n = 14
- On utilise la plus grande pièce possible $10 \le 14$ puis on exprime 4 = 14 10
- Ici, la plus grande pièce est 2 et on continue avec 2 = 4 2
- La plus grande pièce est encore 2 et on s'arrête car 0 = 2 2.
- En conclusion, on a obtenu x = (0, 2, 0, 1).
- Une exploration exhuastive permet de s'assurer qu'on a effectivement obtenu une décomposition minimale. En effet, ici l'ensemble des décompositions est : { (14,0,0,0), (12,1,0,0), (8,3,0,0), (6,4,0,0), (4,5,0,0), (2,6,0,0), (0,7,0,0), (9,0,1,0), (7,1,1,0), (5,2,1,0), (3,3,1,0), (1,4,1,0), (4,0,2,0), (2,1,2,0), (0,2,2,0), (4,0,0,1), (2,1,0,1), (0,2,0,1) }.

Exemple 2

- P = (1, 2, 7, 10)
- n = 14
- L'algorithme glouton va ici procéder comme dans l'exemple 1 et on va obtenir x = (0, 2, 0, 1).
- Mais on remarque que ce n'est pas un minimum car x'=(0,0,2,0) convient avec f(x')=2<3=f(x).

Conclusion l'algorithme glouton n'a effectivement pas de raisons d'être optimal.

On peut se poser la question des algorithmes pour lesquels l'algorithme glouton aboutit nécessairement à une solution optimale.

■ Note 15.1 TODO - Ajouter un paragraphe simple sur les matroïdes qui puisse se décliner sous la forme d'un problème.

II Construction de l'arbre de Huffman

■ Remarque 15.2 Ce paragraphe décrit l'étape cruciale du principe de compression de Huffman. Celui-ci sera présenté complètement dans le chapitre Algorithmique des textes.

On va étudier ici un principe de compression parfaite (sans perte d'information à la décompression) de données appelé l'algorithme de Huffman et qui repose sur ce principe simple : coder sur moins de bits les caractères les plus fréquents.

Par exemple si on considère le mot abaabc, en le codant avec un nombre de bits fixes, par exemple 2 avec le code a=00,b=01,c=10, on aurait besoin de 12 bits pour représenter le mot. Mais si on choisit le code suivant : a=0,b=10,c=11, il suffit de 9 bits. On a donc gagné 3 bits soit un facteur de compression de 75%.

On remarque que pour pouvoir décompreser, il n'aurait pas été possible de faire commencer le code de b ou c par un 0, sinon on aurait eu une ambiguité avec la lecture d'un a. On parle alors

de code préfixe:

Définition II.1 Soit $X \subset \{0,1\}^*$, on dit que X est un code préfixe lorsque pour tous $x,y \in X$, x n'est pas un préfixe de y et y n'est pas un préfixe de x.

On se pose alors la question du code préfixe optimal pour un texte donné.

Plus précisément, étant donné un alphabet fini Σ et une application $f:\Sigma\to [0,1]$ associant à chaque lettre son nombre d'occurences dans le texte considéré. Ainsi $\sum_{x\in\Sigma}f(x)$ est la longueur du texte. On cherche un code préfixe X et une application $c:\Sigma\to X$ telle que $\sum_{x\in\Sigma}f(x)|c(x)|$ soit minimale car cela correspond au nombre de bits après codage.

■ Remarque 15.3 On utilise aussi la notion de fréquence du lettre qui est son nombre d'occurence rapporté à la longueur du texte. Un des avantages de la notion de fréquence est qu'il est possible de considèrer une table de fréquence déjà construite comme celle de la langue française.

L'application de codage c peut être représenté par un arbre binaire où les arêtes gauches correspondent à 0, les arêtes droites à 1 et les feuilles aux éléments de Σ dont les étiquettes des chemins y menant depuis la racine de l'arbre correspondent à leur image par c.

Par exemple, pour le code a=0,b=10,c=11 on aurait l'arbre :

Avec un tel arbre, il est très simple de décoder le texte codé car il suffit de suivre un chemin dans l'arbre jusqu'à tomber sur une feuille, produire la lettre correspondante, puis repartir de la racine de l'arbre. La longueur du code associé à une lettre est alors égale à la profondeur de la feuille correspondante. L'optimalité du codage préfixe est ainsi équivalente à la minimalité de l'arbre vis-à-vis de la fonction d'objectif $\varphi(t) = \sum_{x \in \Sigma} f(x) p(t,x)$ où p(t,x) est la profondeur de la feuille d'étiquette x dans l'arbre t ou 0 si x n'est pas une des étiquettes, cet extension permettant d'étendre la fonction d'objectif aux solutions partielles.

L'algorithme d'Huffman va construire un arbre correspondant à un codage optimal à l'aide d'une file de priorité d'arbres. On étend pour cela l'application f à de tels arbres en définissant que si t est un arbre de feuilles x_1, \ldots, x_n alors $f(t) = f(x_1) + \cdots + f(x_n)$.

- Au départ, on place dans la file des arbres réduits à une feuille pour chaque élément $x \in \Sigma$ et dont la priorité est f(x).
- Tant que la file contient au moins deux éléments
 - \star on retire les deux plus petits éléments x et y de la file de priorité f(x) et f(y)
 - \star on ajoute un arbre z = Noeud(x, y) de priorité f(z) = f(x) + f(y).
- On renvoie l'unique élément restant dans la file.

L'implémentation de cet algorithme est alors assez directe avec une file de priorité. On réutilise ici la structure de tas implementée en FIXME. Comme il s'agit d'un tas max, on insère avec -f(x) comme valeur.

ython

 ${\tt ERROR: src/algorithmique/.../snippets/algorithmique/huffman.py\ does\ \textbf{not}\ exist}$

L'algorithme de Huffman est un algorithme glouton car si on considère pour solution partielle la fôret présente dans la file et pour objectif la fonction φ étendue aux fôrets en sommant la valeur de φ sur chaque arbre, alors fusionner dans la fôret F deux arbres x et y en la transformant en une fôret F' va avoir l'impact suivant sur la fonction d'objectif :

$$\varphi(F') = \varphi(F) + f(x) + f(y)$$

car, en effet, on va rajouter 1 à la profondeur de chaque feuille et donc on passe pour la contribution de x de $\varphi(x) = \sum_{c \in \Sigma} f(c) p(x,c)$ à $\sum_{c \in \Sigma} f(c) (p(x,c)+1) = \varphi(x) + \sum_{c \in \Sigma} f(c) = \varphi(x) + f(x)$.

On remarque ainsi que la fusion qui minimise localement φ est celle qui fusionne les deux arbres de plus petite valeur pour f.

Pour montrer que l'algorithme glouton produit ici un codage minimal, on va utiliser une technique classique qui consiste à montrer qu'étant donné une solution optimale, on peut toujours la transformer sans augmenter sa valeur pour obtenir, de proche en proche, la solution renvoyée par le glouton.

Théorème II.1 Supposons que les lettres les moins fréquentes soient a et b, il existe un arbre optimal dont les deux feuilles étiquettées par a et b descendent du même noeud et sont de profondeur maximale.

Démonstration.

Considérons un arbre optimal t et soient c l'étiquette d'une feuille de profondeur maximale. On remarque qu'elle a forcément une feuille sœur car sinon, on pourrait omettre le noeud et l'arbre obtenu serait de plus petite valeur par φ .

FIXME: dessin

Soit d l'étiquette de cette feuille sœur. Sans perte de généralités, on suppose que $f(c) \leq f(d)$ et $f(a) \leq f(b)$. Comme a a le plus petit nombre d'occurences, a $f(a) \leq f(c)$ et comme b est la deuxième, on a $f(b) \leq f(d)$. De plus, $p(t,a) \geq p(t,c)$ et $p(t,b) \geq p(t,d)$.

Si on échange les étiquettes a et c, seule les termes associées à ces lettres changent dans l'évaluation de φ . Si on note t' le nouvel arbre obtenu après cet échange, on a

$$\varphi(t') = \varphi(t) - f(a)p(t,a) - f(c)p(t,c) + f(a)p(t,c) + f(c)p(t,a)$$

Or,
$$f(c) \ge f(a)$$
 et $p(t, a) \ge p(t, c)$ donc

$$\varphi(t') = \varphi(t) + (f(c) - f(a))(p(t, a) - p(t, c)) \le \varphi(t)$$

L'échange préserve le caractère optimal. En fait, ici, on a nécessairement une égalité pour ne pas aboutir à une contradiction, donc soit les feuilles étaient à même profondeur, soit les lettres avaient le même nombre d'occurrences.

Comme on a les mêmes relations entre b et d, on peut effectuer le même argument et échanger les étiquettes en préservant le caractère optimal.

Le théorème suivant permet de raisonner par récurrence en diminuant le nombre de lettres.

Théorème II.2 Soit t un arbre ayant x et y comme feuilles soeurs et t' l'arbre obtenu en remplaçant le noeud liant x et y par une feuille étiquettée par z où z est une nouvelle lettre telle que f(z) = f(x) + f(y).

On a alors $\varphi(t) = \varphi(t') + f(z)$.

Démonstration.

Seule les termes portant sur x, y et z sont influencés par le changement et on a :

$$\varphi(t) = \varphi(t') + f(x)p(t,x) + f(y)p(t,y) - f(z)p(t',z)
= \varphi(t') + f(z)(p(t',z) + 1) - f(z)p(t',z)
= \varphi(t') + f(z)$$

Théorème II.3 L'algorithme de Huffman renvoie un arbre optimal.

Démonstration.

Par récurrence sur $|\Sigma|$.

Initialisation : si Σ ne contient qu'une lettre, il n'y a qu'un arbre qui est nécessairement optimal.

Hérédité : si la propriété est vraie pour un alphabet de $n-1 \ge 1$ lettres, alors soit Σ contenant n lettres et x et y les deux lettres les moins fréquentes.

On pose Σ' obtenue en remplaçant x et y par une nouvelle lettre z et on suppose que f(z)=f(x)+f(y). L'hypothèse de récurrence assure qu'on obtient un arbre optimal t' en appliquant l'algorithme d'Huffman sur Σ' . Comme la première étape d'Huffman va fusionner les feuilles x et y, on sait que l'arbre t obtenu en partant de Σ se déduit de t' en remplaçant z par Noeud(x,y). Le théorème précédent assure alors que $\varphi(t)=\varphi(t')+f(z)$.

Soit t_o un arbre optimal pour Σ dans lequel x et y sont soeurs, possible en vertu du premier théorème, et soit t_o' l'arbre obtenue en remplaçant dans t_o le noeud liant x et y par une feuille étiquettée par z. On a ici encore $\varphi(t_o) = \varphi(t_o') + f(z) \ge \varphi(t') + f(z) \ge \varphi(t)$ car t' est optimal.

Ainsi, on a bien l'égalité $\varphi(t_o) = \varphi(t)$ et t est optimal.

III Preuve d'optimalité

Dans le paragraphe précédent, on retrouve un schéma de preuve classique pour les preuves d'optimalité des algorithmes gloutons :

- Montrer qu'à partir d'une solution optimale, il est possible de déterminer une solution optimale ayant fait le même choix que l'algorithme glouton. Pour Huffman c'était le fait d'avoir un arbre optimal ayant les deux lettres les moins fréquentes comme sœurs à profondeur maximale.
- Montrer qu'une solution optimale se comportant comme le résultat de l'algorithme glouton à une étape ne peut être meilleure que le résultat de l'algorithme glouton.

IV Sélection d'activités 163

IV Sélection d'activités

IV.1 Description

Étant donné un ensemble d'activités données par leur temps de début et leur temps de fin (on considère les temps comme des entiers pour simplifier), on se pose la question du nombre maximal d'activité que l'on puisse sélectionner sans que deux activités soient en conflits. Cela correspond par exemple à l'organisation du planning d'un employé.

On dit que deux activités (d_1, f_1) et (d_2, f_2) sont en conflits quand $[d_1, f_1] \cap [d_2, f_2] \neq \emptyset$.

Ici, t_1 et t_2 sont en conflits avec t_3 . Mais t_1 et t_2 ne sont pas en conflit. On considère que deux activités peuvent se succéder directement : $f_1 = d_2$.

On considère donc en entrée de ce problème une suite finie $((d_1,f_1),\ldots,(d_n,f_n))$ et on cherche un sous-ensemble $I\subset [\![1,n]\!]$ de plus grand cardinal tel que pour tous $i,j\in I$, si $i\neq j$ alors (d_i,f_i) et (d_j,f_j) ne sont pas en conflits. On dit que I est un **ensemble indépendant**.

IV.2 Algorithme glouton et implémentation

Pour résoudre ce problème, on considère l'algorithme glouton associé à la fonction d'objectif cardinal et **en triant les activités** ordre croissant de temps de fin.

Cet algorithme est implémenté dans le programme suivant :

```
#include <stdio.h>
#include <stdlib.h>
typedef struct {
    unsigned int id;
    unsigned int debut;
    unsigned int fin;
    unsigned char selectionnee;
} activite;
int compare_activites(const void *t1, const void *t2)
    return ((activite *)t1)->fin - ((activite *)t2)->fin;
void selectionne(activite *activites, size_t nb_activites)
    size_t derniere_activite = 0;
    /* on commmence par trier en O(n log2 n) les activites
     * selon le temps de fin */
    qsort(activites, nb_activites,
        sizeof(activite), compare_activites);
    activites[0].selectionnee = 1;
    for (size_t i = 1; i < nb_activites; i++)</pre>
```

```
{
        if (activites[i].debut >= activites[derniere_activite].fin)
        {
            activites[i].selectionnee = 1;
            derniere_activite = i;
        }
   }
}
int main()
   activite activites[] = {
        { 0, 1, 3, 0 }, { 1, 3, 4, 0 }, { 2, 2, 5, 0 },
        {3, 5, 9, 0}, {4, 11, 12, 0}, {5, 8, 10, 0},
        { 6, 0, 7, 0 }
   };
   size_t nb_activites = sizeof(activites) / sizeof(activite);
    selectionne(activites, nb_activites);
    for (size_t i = 0; i < nb_activites; i++)</pre>
        printf("Activité %d (%d,%d) : %d\n",
                activites[i].id, activites[i].debut,
                activites[i].fin, activites[i].selectionnee);
   }
    return 0;
```

Ce programme produit alors la sortie :

```
Activité 0 (1,3) : 1
Activité 1 (3,4) : 1
Activité 2 (2,5) : 0
Activité 6 (0,7) : 0
Activité 3 (5,9) : 1
Activité 5 (8,10) : 0
Activité 4 (11,12) : 1
```

■ Remarque 15.4 Comme l'algorithme commence par effectuer un tri, on a rajouté dans la structure activite un champ permettant d'identifier une activité autrement que par son indice.

IV.3 Preuve d'optimalité

On va prouver que l'algorithme glouton renvoie un ensemble indépendant optimal. Le fait que l'ensemble soit indépendant étant direct, on se concentre sur la preuve d'optimalité en présentant un schéma de preuve qui correspond à celui identifié dans le paragraphe précédent.

Théorème IV.1 Si a_1, \ldots, a_n sont des activités énumérées dans l'ordre croissant de leur temps

de fin, alors il existe un ensemble indépendant optimal contenant a_1 .

■ Remarque 15.5 Cela signifie qu'il fait le même choix que l'algorithme glouton à la première

Démonstration.

Soit I un ensemble indépendant optimal ne contenant pas $a_1 = (d_1, f_1)$ (sinon c'est direct). Si $a_k = (d_k, f_k)$ est l'activité de plus petit indice dans I, alors $f_k \geq f_1$ donc pour tout $a_i = f_1$ (d_i,f_i) dans $I'=Iackslash \{a_k\}$ on a $d_i\geq f_k\geq f_1$ et ainsi a_1 et a_i ne sont pas en conflit. Ainsi $I' \cup \{a_1\}$ est un ensemble indépendant contenant a_1 de même cardinal que I donc optimal.

Théorème IV.2 Soit $A = \{a_1, \dots, a_n\}$ des activités ordonnées par ordre croissant de temps de fin et I un ensemble indépendant optimal contenant $a_1 = (d_1, f_1)$ (ce qui est possible selon le théorème précédent).

 $I' = I \setminus \{a_1\}$ est optimal pour $A' = \{(d, f) \in A \mid d \geq f_1\}$.

Démonstration.

Si, par l'absurde, I' est pas optimal pour A' alors $J \subset A'$ est un ensemble indépendant de cardinal strictement plus grand que celui de I'. Or, $A' \cup \{a_1\}$ est indépendant pour l'ensemble des activités et est de cardinal strictement plus grand que I. Contradiction.

Théorème IV.3 L'algorithme glouton renvoie un ensemble indépendant optimal.

Démonstration.

Par récurrence forte sur le nombre d'activités.

- Initialisation : Pour une activité a_1 , le glouton renvoie $\{a_1\}$ qui est directement optimal.
- Hérédité : Si la propriété est vérifiée pour $k \leq n$ activités, soit $A = \{a_1, \ldots, a_n\}$ des activités ordonnées par temps de fin. Soit I un ensemble indépendant optimal contenant a_1 et $I' = I \cap \{a_1\}$. Le théorème précédent assure que I' est optimal sur A' = $\{ (d, f) \in | d \geq f_1 \}.$

Par hypothèse de récurrence, l'algorithme glouton sur A' produit un ensemble indépendant optimal G', donc tel que |G'| = |I'|. Par construction l'algorithme glouton sur Arenvoie $G = G' \cup \{a_1\}$ de même cardinal que I, donc optimal.

Ordonnancement de tâches

V.1 Description

On considère ici un problème voisin du problème précédent. On considère n tâches T= $\{t_1,\ldots,t_n\}$ prenant une unité de temps pour être traitées sur une unité de calcul.

Chaque tâche t dispose d'une date limite $f(t) \in [1, n]$ (deadline) à laquelle elle doit être traitée sans quoi on écope d'une pénalité $p(t) \in \mathbb{N}$.

On appelle stratégie d'ordonnancement une application $d:T\to [0,n-1]$ qui associe à chaque tache un unique temps de début d(t). Selon cette stratégie, on déduit une séparation de T en deux ensembles disjoints :

- $T^+(d)$ l'ensemble des tâches traitées dans les délais : $t \in T^+(d) \iff d(t) < f(t)$.
- $T^-(d)$ l'ensemble des tâches traitées en retard : $t \in T^-(d) \iff d(t) \ge f(t)$. On note alors $P(d) = \sum_{t \in T^-(d)} p(t)$ la somme des pénalités des tâches en retard.
- Exemple 15.1 On considère l'ensemble de tâches :

$\overline{t_i}$	1	2	3	4	5	6	7
$f(t_i)$	1	2	3	4	4	4	6
$p(t_i)$	3	6	4	2	5	7	1

Une stratégie d'ordonnancement (les tâches en retard sont en gras) est donnée dans le tableau suivant :

$\overline{t_i}$	1	2	3	4	5	6	7
$d(t_i)$	6	0	1	4	3	2	5

On a alors P(d) = 5.

On cherche à obtenir une stratégie d'ordonnancement de valeur P(d) minimale.

On remarque que l'ordonnancement des tâches en retard n'a aucune importance, et on peut donc se contenter de déterminer une stratégie d'ordonnancement pour les tâches traitées dans les délais et la compléter par n'importe quel ordonnancement des autres tâches. On peut ainsi reformuler le problème : déterminer un sous-ensemble $T^+ \subset T$ de tâches **pouvant** être traitées dans les délais tel que $\sum_{t \in T^+} p(t)$ soit **maximale**.

V.2 Algorithme glouton et implémentation

On résout maintenant ce problème de maximisation des pénalités T^+ par un algorithme glouton :

- On commence avec $T^+=\emptyset$ et tous les temps de $[\![0,n-1]\!]$ sont marqués comme étant disponibles.
- On parcourt les tâches dans l'ordre décroissant des pénalités.
 - * Quand on considère la tâche t s'il existe un temps i disponible tel que i < d(t) alors on marque comme indisponible le temps $i_0 = \max \{ i \in [0, n-1] \mid i < d(t) \text{ et } i \text{ disponible } \}$ et on rajoute alors t à T^+ en commençant t au temps i_0 .
- On place les tâches restantes aux temps disponibles.

Pour les structures de données, on utilise une représentation en tableaux de booléens (des unsigned char à 0 ou 1 en C) pour la disponibilités des temps. L'ensemble T^+ est alors implicite car il correspond aux tâches ordonnancé dans la première étape. Utiliser un tableau implique qu'une recherche linéaire soit faite pour chercher un plus grand temps disponible, et donc, la complexité temporelle globale sera en $O(n^2)$.

■ Remarque 15.6 Il est possible d'améliorer cela pour passer en $O(n\log_2 n)$ (exercice).

Le programme C suivant implémente cet algorithme.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct {
    unsigned int id;
    unsigned int date_limite;
    unsigned int penalite;
    int debut; /* -1 tant que la tâche n'est pas ordonnancée */
} tache;
int compare_taches(const void *t1, const void *t2)
    return ((tache *)t2)->penalite - ((tache *)t1)->penalite;
}
void *ordonnancement(tache *taches, size_t nb_taches)
    unsigned char *temps_occupe = malloc(sizeof(unsigned char) * nb_taches);
    memset(temps_occupe, 0, nb_taches);
    /* tri des activités par ordre décroissant des pénalités */
    qsort(taches, nb_taches, sizeof(tache), compare_taches);
    /* T+ par algorithme glouton */
    for (size_t k = 0; k < nb_taches; k++)</pre>
        int i0 = -1;
        for (size_t i = 0; i < nb_taches; i++)</pre>
            if (temps_occupe[i] == 0 && i < taches[k].date_limite)</pre>
                i0 = i;
        }
        if (i0 >= 0)
            taches[k].debut = i0;
            temps_occupe[i0] = 1;
        }
    }
    /* Complétion par les tâches en retard */
    int i = 0; // indice du dernier temps disponible utilisé
    for (size_t k = 0; k < nb_taches; k++)</pre>
    {
        if (taches[k].debut == -1)
            while(temps_occupe[i] == 1)
                i++;
            taches[k].debut = i;
            temps_occupe[i] = 1;
        }
    }
```

Il produit la sortie:

```
T6 (f:4,p:7) @ 3
T2 (f:2,p:6) @ 1
T5 (f:4,p:5) @ 2
T3 (f:3,p:4) @ 0
T1 (f:1,p:3) @ 4
T4 (f:4,p:2) @ 6
T7 (f:6,p:1) @ 5
```

Ce qui correspond à l'ordonnancement $t_3, t_2, t_5, t_6, t_1, t_7, t_4$. Les tâches t_1 et t_4 sont en retard, donc la pénalité totale est de 5.

V.3 Preuve d'optimalité

On va montrer que cet algorithme glouton renvoie un ensemble T^+ optimal. Pour cela, on procède comme précédemment. Tout d'abord, on montre qu'il existe une solution optimale qui effectue le premier choix de l'algorithme glouton.

Théorème V.1 Soit T un ensemble de tâches et $t \in T$ une tâche de pénalité maximale. Il existe un ensemble T^+ de tâches pouvant être traitées dans les délais, maximal pour les pénalités et tel que $t \in T^+$.

Démonstration.

Soit $T^+ \subset T$ un ensemble maximal. S'il contient t, il convient directement. Sinon, il existe une tâche t' de T^+ qui est traitée à un moment où on pourrait traiter t à temps (sinon $T^+ \cup \{t\}$ conviendrait et T^+ ne pourrait être maximal). On a $p(t') \leq p(t)$ par maximalité de t. L'ensemble T' déduit de T^+ en remplaçant t' par t convient car on a forcément $P(T') = P(T^+)$ (en fait $t' \in T'$ mais $t' \in T'$) et par construction toutes ses tâches peuvent être traitées à temps.

On montre maintenant qu'en enlevant le choix glouton, on obtient une solution optimale du sous-problème.

Théorème V.2 Soit $T^+ \subset T$ ensemble de tâches pouvant être traitées, maximal pour les pénalités et contenant une tâche t de plus grande pénalité. Soit i l'instant auquel la tâche t commence dans un ordonnancement de T^+ .

On pose $T' = T \setminus \{t\}$ avec des dates limites modifiées :

$$\forall t' \in T', d_{T'}(t') = \begin{cases} d_T(t') & \text{si } d_T(t') \le i \\ d_T(t') - 1 & \text{sinon} \end{cases}$$

 $T^+ \setminus \{t\}$ est alors maximal pour T'.

Démonstration.

Dans T', on a à la fois enlevé t et supprimé l'instant i. Tout ordonnancement de T' peut alors être $\mathit{relev\'e}$ en un ordonnancement de T en décalant d'un instant les tâches commençant à partir de l'instant i et en ordonnançant là la tâche t. Réciproquement d'un ordonnancement dans T, on déduit directement un ordonnancement de T'

Ainsi, s'il existait T'^+ maximal pour T' tel que $P(T'^+) > P(T^+ \setminus \{t\}) = P(T^+) - p(t)$ alors $T'^+ \cup \{t\}$ serait de somme de pénalités strictement plus grande que celle de T^+ supposé maximal.

Donc, $T^+ \setminus \{t\}$ est maximal.

On conclut alors directement par récurrence sur le nombre de tâches comme on l'a fait précédemment pour la sélection d'activités :

Théorème V.3 L'algorithme glouton renvoie un ordonnancement optimal.

Diviser pour régner

I.1 Principe

Le principe des algorithmes dits *Diviser pour régner* est de décomposer un problème en plusieurs sous-problèmes disjoints et de déduire des solutions de ces sous-problème une solution au problème de départ.

Le point clé pour ce principe est de pouvoir **fusionner** les solutions de sous-problèmes pour en faire une solution, et de pouvoir le faire dans un temps/espace raisonnable. On procède alors par récursivité en appliquant ce principe pour résoudre les sous-problèmes eux-mêmes jusqu'à tomber sur des sous-problèmes très simples.

I.2 Tri fusion

L'algorithme du tri fusion est un des exemples les plus important d'algorithmes *Diviser pour régner* :

- Étant donnée une liste l de taille $n \geq 2$, on va considérer les sous-listes l_p des valeurs d'indice pair et l_i des valeurs d'indice impair.
- On trie ensuite l_1 et l_2 pour obtenir l'_1 et l'_2 .
- On fusionne ces deux listes pour obtenir $l' = \text{fusion}(l'_1, l'_2)$ liste triée déduite de l.

Comme expliqué dans le paragraphe précédent, les tris de l_1 et l_2 s'effectuent eux-aussi à l'aide d'un tri fusion.

■ Note 16.1 TODO: dessin

Voici une implémentation en OCaml de cet algorithme :

```
let rec separe_en_deux l =
    match l with
    | [] -> ([], [])
    | [x] -> ([x], [])
```

```
| x::y::q -> let l1, l2 = separe_en_deux q in
        (x::l1, y::l2)
let rec fusionne l1 l2 =
    match l1, l2 with
      [], _ -> l2
      _, [] -> l1
      x::q1, y::q2 ->
        then x :: (fusionne q1 l2)
        else y :: (fusionne l1 q2)
let rec tri_fusion l =
    match l with
      [] -> []
      [x] \rightarrow [x]
        let l1, l2 = separe_en_deux l in
        let l1p = tri_fusion l1 in
        let l2p = tri_fusion l2 in
        fusionne l1p l2p
```

La correction et la terminaison de cet algorithme ne posant aucune difficulté, on va se concentrer sur le calcul de la complexité temporelle :

- separe_en_deux consiste en un parcours linéaire de la liste 1 donc O(|l|).
- fusionne supprime un élément d'une des deux listes à chaque appel récursif, donc une complexité en $O(|l_1| + |l_2|)$.
- Pour tri_fusion la situation est plus complexe en raison du double appel récursif. On va d'abord traiter le cas des listes contenant 2^k éléments.

Notons t_n la complexité temporelle pour |l| = n.

```
Lemme I.1 t_{2^n} = O(2^n \log_2 2^n)
```

Démonstration.

Par l'analyse de complexité des deux fonctions auxiliaires, on a pour $n \in \mathbb{N}$

$$t_{2^{n+1}} = 2t_{2^n} + O(2^n) \le 2t_{2^n} + M2^n$$

où on peut supposer que $M \geq 1$.

On va montrer par récurence sur $n \in \mathbb{N}^*$ que $t_{2^n} \leq 2Mn2^n$.

- Initialisation: $t_{2^1} = 2t_1 + M2 = 2M + 2 \le 4M = 2 \times 1 \times 2^1 M$.
- Hérédité : si $n \in \mathbb{N}^*$ et l'hypothèse est vérifiée pour t_{2^n} , alors $t_{2^{n+1}} \leq 4n2^nM + M2^n = (4n+1)M2^n \leq 4(n+1)M2^n \leq 2M(n+1)2^{n+1}$.

Ainsi $t_{2^n} = O(n2^n)$.

Théorème I.2 $t_n = O(n \log_2 n)$

Démonstration.

Le lemme assure qu'il existe M' tel que $\forall p \in \mathbb{N}^*, t_{2^p} \leq M'p2^p$.

Soit $n \in \mathbb{N}^*$ et p minimum tel que $n \leq 2^p$. On a $\log_2 n \leq p$ par croissance de \log_2 et ainsi $t_n \leq t_{2^p} \leq M'p2^p = M'n\log_2 n$.

```
Ainsi, t_n = O(n \log_2 n).
```

lacktriangle Remarque 16.1 On a utilisé implicitement la croissance de t_n ici : plus la liste est longue, plus on effectue d'opérations.

Le programme suivant présente une implémentation du tri fusion reposant sur des tableaux. Les sous-tableaux sont manipulés à l'aide de leurs indices de début et de fin comme pour la recherche dichotomique.

```
let rec separe_en_deux l =
    match l with
    | [] -> ([], [])
    | [x] \rightarrow ([x], [])
    | x::y::q -> let l1, l2 = separe_en_deux q in
        (x::l1, y::l2)
let rec fusionne l1 l2 =
    match l1, l2 with
    | [], _ -> l2
      _, [] -> l1
    | x::q1, y::q2 ->
        if x < y
        then x :: (fusionne q1 l2)
        else y :: (fusionne l1 q2)
let rec tri_fusion l =
    match l with
    | [] -> []
      [x] \rightarrow [x]
        let l1, l2 = separe_en_deux l in
        let l1p = tri_fusion l1 in
        let l2p = tri_fusion l2 in
        fusionne l1p l2p
```

■ Note 16.2 TODO: exercice tri avec un tableau et tri en place

1.3 Nombre d'inversions

Définition I.1 Soit t une structure séquentielle (tableau, liste,) contenant des valeurs comparables $a_0, ..., a_{n-1}$ et énumérées dans cet ordre au sein de t.

Une paire $(i, j) \in [0, n-1]^2$ où i < j est appelée une inversion de t lorsque $a_i > a_j$. On note I(t) le nombre d'inversion de t.

- Remarque 16.2 Le nombre d'inversions permet de mesurer à quel point t est non triée dans l'ordre croissante.
 - Ce concept d'inversion est exactement celui utilisé pour les permutations en mathématiques : si $\sigma \in \mathfrak{S}_n$, il suffit de considérer $(\sigma(1), \ldots, \sigma(n))$.

On cherche dans ce paragraphe à calculer I(t) efficacement. Remarquons tout d'abord qu'un algorithme na \ddot{i} f est en $O(n^2)$ où |t|=n en explorant toutes les paires :

```
size_t inversions(int *t, size_t taille)
{
    size_t inv = 0;
    for (size_t i = 0; i < taille; i++)
    {
        for (size_t j = i+1; j < taille; j++)
        {
            if (t[i] > t[j]) inv++;
            }
        }
    return inv;
}
```

On va maintenant donner un algorithme type Diviser pour régner :

- On sépare t en deux moitiés t_1 et t_2 .
- On calcule $I(t_1)$ et $I(t_2)$ par des appels récursifs.
- ullet On compte les inversions entre des éléments de t_1 et des éléments de t_2
 - \star Cela ne dépend pas de leur position dans t_1 ou dans t_2 .
 - * On peut donc trier t_1 en t'_1 et t_2 en t'_2 .
 - * On compte $N(t_1, t_2) = N(t'_1, t'_2)$ le nombre d'inversions entre t'_1 et t'_2 .
- On en déduit que $I(t) = I(t_1) + I(t_2) + N(t_1, t_2)$.

Pour calculer le nombre d'inversions entre deux tableaux triés t'_1 et t'_2 on peut utiliser l'algorithme en $O(|t'_1| + |t'_2|)$ suivant : pour j parcourant les indices de t'_2 , on cherche le plus petit i tel que $t'_1[i]$.

- I.4 Points les plus proches
- 1.5 Sous-ensemble de somme donnée
- 1.6 Recherche dichotomique
- 1.7 Couverture par des segments égaux

On considère ici n points sur la droite réelle. Le i-ème point est identifié par sa coordonnée x_i . On se pose alors, dans un premier temps, la question de savoir si on peut trouver k segments de longueur l tels que chaque point appartienne à au moins un de ces segments. Dans un second temps, on se posera la question de la longueur l minimale de ces segments.

I.7.i Couverture par des segments de longueur donnée

On va ici résoudre le premier problème :

```
Problème - EXISTENCECOUVERTURESEGMENT

• Entrées :

** n points sur la droite réelle x_1, ..., x_n

** un entier k \geq 1

** un réel l

• Sortie : existe-t-il k segments S_1, ..., S_k de longueur l tels que \forall i \in [\![1,n]\!], \exists j \in [\![1,k]\!], x_i \in S_j?
```

On remarque qu'un segment de longueur l est uniquement caractérisé par son extrémité gauche. Pour chaque x_i , il doit ainsi exister une extrémité gauche dans le segment $S_i = [x_i - l, x_i]$. On peut ainsi renverser le problème et en faire un problème de couverture de segments par des points : on cherche k points tel que chaque segment S_i contienne au moins un de ces points.

Problème - ENSEMBLEINTERSECTANTLIGNE

- Entrées :
 - \star *n* segments $S_i = [l_i, r_i]$
 - \star un entier $k \geq 1$.
- Sortie : Un ensemble P de k points tels que $\forall p \in P, \exists i \in [\![1,n]\!], p \in S_i$ en cas de succès

Ce problème peut se résoudre par un algorithme glouton :

- on commence avec $P = \emptyset$
- on trie les segments par r_i croissant
- pour chaque segment $S_i = [l_i, r_i]$, s'il ne contient aucun élément de P, on rajoute r_i à P.
- on répond avec un succès si $|P| \le k$ (on peut alors compléter avec des points quelconques pour avoir exactement k points).

Cet algorithme est en $O(n \log n)$ en raison du tri initial.

I.7.ii Longueur minimale

On considère maintenant le problème suivant :

Problème - CouvertureSegmentsMinimale

- Entrées:
 - $\star n$ points à coordonnées entières sur la droite réelle $x_1,...,x_n$
 - \star un entier $k \geq 1$
- Sortie : la longueur l minimale pour laquelle il existe une couverture des points par k segments de longueur l.

On peut résoudre ce problème par dichotomie à l'aide de l'algorithme précédent

- on considère $L=\frac{\max_{1\leq i< j\leq n}|x_j-x_i|}{k}=\frac{D}{k}$ où le diamètre D se calcule en O(n) et correspond à répartir de manière uniforme les segments pour couvrir les points. Une telle couverture existe toujours.
- on peut considérer, sans avoir besoin de le calculer au préalable, le tableau V de booléen de longueur L+1 tel que V[l] indique s'il est possible de couvrir les points par k segments de longueur l. Pour obtenir la valeur V[l] il suffit d'appliquer l'algorithme précédent.
- on effectue alors une recherche dichotomique du plus petit indice l tel que V[l] soit vrai. On obtient ainsi un algorithme en $O\left(n\log n\log\frac{D}{k}\right)$ qu'on peut considérer comme étant en $O(n\log n)$ en supposant que D est une constante.

Cette dichotomie est en fait une instance d'un principe fondamental permettant de transformer un problème de décision (existe-t-il?) en un problème d'optimisation (quelle est ... minimal/maximal?).

I.7.iii Implémentation

17. Algorithmique des textes

Source image: justgrims, https://www.flickr.com/photos/notbrucelee/8016192302

■ Note 17.1 Roadmap:

- Des exercices.
- Les extensions à la fin.

Sources

- Algorithms Robert Sedgewick, Kevin Wayne
- Éléments d'algorithmique D. Beauquier, J. Berstel, Ph. Chrétienne
- 125 Problems in Text Algorithms with Solutions Maxime Crochemore, Thierry Lecroq, Wojciech Rytter

I Recherche dans un texte

I.1 Principe de la recherche

On s'intéresse ici au problème suivant:

Problème - RECHERCHETEXTE

- Entrées:
 - \star une chaîne de caractère s sur l'alphabet Σ
 - $\star\,$ un autre chaîne de caractère m sur ce même alphabet appelé motif et de longueur plus petite que s
- Sortie : un résultat partiel correspondant à l'indice de la première occurrence du motif dans la chaîne s'il est présent.

La différence fondamentale entre ce problème et celui de la recherche d'un sous-tableau dans un tableau est le fait qu'on considère un alphabet fini et dont le nombre d'éléments est le plus souvent négligeable par rapport à la taille des chaînes de caractères. Cela permet d'effectuer des optimisations qui ne sont pas sans rappeler les tris linéaires comme le tri par comptage.

On parle alors d'algorithmique du texte pour désigner des algorithmes tirant partie de cette contrainte sur les données. La plupart des algorithmes que l'on présente peuvent ainsi s'adapter aisément au cas de tableaux dont les éléments sont pris dans un ensemble fini de petit cardinal.

Avant d'entamer ce chapitre, remarquons qu'il existe, outre l'alphabet usuel, trois alphabets très importants :

- celui des caractères ASCII usuels
- celui contenant les deux éléments 0 et 1, ce qui permet de travailler sur des recherche en binaire.
- et enfin, très important pour la biologie, l'alphabet à quatre lettres A, T, G et C correspondant aux bases d'un brin d'ADN et qui ouvre la porte à beaucoup d'applications en bio-informatique.
- **Note 17.2** Il y aura sûrement des applications bio-info dans la partie programmation dynamique, faire le lien ici.

I.2 Algorithme naïf en force brute

Une solution na \ddot{i} ve consiste à parcourir chaque position de s afin de tester si le motif est présent à partir de cette position.

```
indices
                                        2
                                               3
                                                      4
                                                      t
                                                             0
recherche à l'indice 0
           à l'indice 1
                                        0
                                               t
                                                      0
           à l'indice 2
                                               0
                                                      t
                                                             0
           à l'indice 3
           à l'indice 4
                                                    motif trouvé à l'indice 4
```

Cela donne l'implémentation assez directe suivante :

La complexité temporelle en pire cas de cet algorithme correspond au maximum de comparaisons. On peut naturellement en déduire par majoration une borne en O(np) mais on peut remarquer qu'il est assez difficile d'obtenir un exemple concret, ce qui fait penser que ce pire cas est rare.

_

I Recherche dans un texte

■ Remarque 17.1 Considérons la chaîne $s=aa...a=a^n$ qui contient n fois la lettre a et le motif $m=a^{p-1}b$ qui contient p-1 a et finit par un b. Dans l'algorithme, on va donc à chaque étape de la première boucle effectuer p itérations dans la seconde avant de se rendre compte que le motif n'est pas présent en comparant b et a. On a donc exactement $(n-p+1)p=\Theta(np)$ comparaisons et on retombe ainsi sur la complexité O(np) pour ces exemples.

Ce qui va se passer dans une application usuelle de cet algorithme, c'est qu'au bout d'une ou deux comparaisons, on pourra invalider la position et passer à la suivante. On va alors avoir une complexité en O(n+p) en considérant en plus la validation du motif dans le cas où il est présent. Ici $p \leq n$ donc O(n+p) = O(n) mais c'est important de garder en tête cette complexité en O(n+p) qu'on retrouvera car elle s'appliquera à des algorithmes où on effectue un prétraitement sur le motif pour l'appliquer ensuite sur plusieurs chaînes.

I.3 Algorithme de Boyer-Moore

Dans un premier temps, on va présenter la variante usuelle de cet algorithme appelée algorithme de Boyer-Moore-Horspool. On présentera ensuite l'algorithme de Boyer-Moore en tant que tel.

I.3.i Principe de Boyer-Moore-Horspool

Le principe de l'algorithme de Boyer-Moore-Horspool est d'effectuer une recherche du motif comme précédemment mais en partant de la fin. On va alors tenter de trouver des suffixes de plus en plus grand du motif. Si on trouve ainsi le motif, on renvoie la position. Sinon, c'est qu'on a lu dans s un mot de la forme xm' où m' est un suffixe strict de m mais xm' n'en est pas un. Si x n'est pas présent dans m, alors on peut relancer la recherche juste après x dans s. Si x est présent dans m, on peut relancer la recherche en alignant ce caractère avec sa position la plus à droite dans m.

■ Remarque 17.2 Il faut tenir compte différemment du dernier caractère du motif, car il n'est pas utile de le réaligner. On considère alors, quand elle existe, l'occurrence précédente de ce caractère.

On obtient ainsi une stratégie de saut qui en cas d'échec relance la recherche plus loin. Voici un premier exemple où on effectue une recherche de abaa dans le mot aabababbaa. Cette stratégie a permis d'éviter une recherche inutile à partir de l'indice 1.

1.3.ii Implémentation par table de saut

Pour réaliser ces sauts, on construit une table droite indexée par Σ et telle que droite [c] indique l'indice de l'occurrence la plus à droite dans le motif m du caractère c, en ignorant le dernier caractère du motif.

Ainsi, dans l'exemple précédent du motif abaa, on obtient la table suivante :

С	ʻa'	'b'	'c'	···
droite[c]	2	1	Ø	

On a indiqué ici \emptyset quand un caractère de Σ n'est pas présent dans le motif, car il peut être présent dans s.

Cette table contient donc de l'ordre de Σ éléments. On peut la réaliser par un tableau direct de taille $|\Sigma|$ étant donné un ordre d'énumération. On peut aussi la réaliser par un dictionnaire, ce qui est plus économe en espace si le motif contient peu de lettres différentes. On a choisit ici, pour des raisons pédagogiques, de considérer la numérotation ASCII naturelle associées au caractère de cette table.

Afin d'implémenter l'algorithme lui-même, il est nécessaire de faire des calculs élémentaires mais précis pour déterminer le saut à effectuer. Si à la position i+j on a un échec après avoir lu le caractère c où droite[c] contient la valeur k.

• Si $k=\emptyset$, c'est que le motif ne pourra jamais être trouvé tant que ce caractère c sera présent. On relance donc la recherche juste après à l'indice i+j+1.

0	1	2	3	4	5	6	7	8
a	b	b	a	a	d	a	С	a
d	a	С						
			d	a	С			

• Si $k \geq j$, cela signifie que c est présent plus à droite dans le motif, donc aligner cette occurrence ne permettrait pas d'avancer la recherche. Rien ne nous permet de savoir si c est présent ou non ailleurs dans le motif, on relance alors prudemment la recherche en i+1.

• Sinon, on veut aligner ce c avec le caractère correspondant du motif, si on relance à l'indice i', on souhaite ainsi avoir i' + k = i + j donc i' = i + j - k.

```
def recherche_BMH(motif, droite, chaine):
    '''Cherche motif dans chaine en utilisant la table de saut
    précalculée droite'''
    n, p = len(chaine), len(motif)
    i = 0
    while i <= n-p:</pre>
        present = True
        for j in reversed(range(p)):
            if chaine[i+j] != motif[j]:
                present = False
                k = droite[ord(chaine[i+j])]
                 if k is None:
                     i = i + j + 1
                 elif k < j:
                     i = i + j - k
                     i = i + 1
        if present:
            return i
    return None
```

I.3.ii.a Correction

Tout d'abord, remarquons que la terminaison ne pose pas de questions dans la mesure où on le nouvel indice auquel on relance la recherche est toujours strictement plus grand que le précédent.

Au sujet de la correction, il suffit de s'assurer que les indices écartés correspondent nécessairement à des recherches infructueuses. Sans perte de généralité, on peut supposer que la recherche s'effectue depuis le premier indice de s. Comme seul les sauts d'au moins deux indices sont ceux pour lesquels il est nécessaire de faire une preuve, cela correspond au cas où $m=m_1cm_2dm_3x$ et $s=s_1cm_3s'$ avec c,d et x des caractères, $d\neq c$ et c non présent dans m_2dm_3 .

Ainsi, toute recherche démarrant à des indices inférieurs échouera systématiquement, au plus tard, en comparant le caractère c de cm_3 avec un caractère du motif dans m_2dm_3 donc différent de c.

I.3.ii.b Complexité

Tout d'abord, on remarque que la table de saut se construit en $O(\max(|m|, |\Sigma|))$ pour un motif m sur un alphabet Σ .

Sans chercher à rentrer dans les détails, on peut raisonnablement penser si l'alphabet contient assez de caractères que les motifs auront peu de répétitions et qu'ainsi, les sauts seront presque toujours maximaux, ce qui permet d'obtenir de l'ordre de $\frac{n}{p}$ comparaisons où n est la longueur de la chaîne et p la longueur du motif.

Cependant, en pire cas, cet algorithme n'est pas meilleur que le précédent. Pour s'en convaincre, on va considérer un exemple proche de celui introduit poru l'algorithme naı̈f. Si on cherche ba^{p-1} dans a^n à l'indice i, il est nécessaire d'attendre de comparer au caractère b pour constater un échec et devoir relancer l'algorithme à l'indice i+1. On va donc faire ici aussi $(n-p+1)p=\Theta(np)$ comparaisons.

La complexite temporelle en pire cas de Boyer-Moore-Horspool est donc de O(np), même si, en pratique, elle est sous-linéaire.

■ Remarque 17.3 Si l'alphabet contient peu de caractères, ce qui est le cas en particulier du binaire, il y a de grandes chances qu'on soit dans ce cas pire cas. Ainsi, Boyer-Moore-Horspool n'est pas adapté pour ce type de texte.

I.3.iii Principe de Boyer-Moore

Considérons le cas suivant de l'algorithme précédent : on cherche abbcabc dans cbacbbcabc.

On remarque qu'en raison du fonctionnement de cet algorithme, on est forcé de faire de tous petits sauts et on est ramené à l'algorithme naïf. Cependant, après la première étape, on sait qu'on a lu un suffixe du motif bc qui est précédé d'un caractère a en sorte que bbc ne soit pas un suffixe du motif.

Il y a un autre endroit dans le motif où on peut trouver *bc avec * un autre caractère que a. On pourrait donc relancer la recherche en alignant cette occurrence de bc avec celle qu'on vient de lire. Cela revient à sauter directement à la dernière étape dans cet exemple :

0	1	2	3	4	5	6	7	8	9
С	b	a	С	b	b	С	a	b	С
a	b	b	c	a	b	С			
			a	b	b	С	a	b	С

Pour pouvoir réaliser ce décalage, il est nécessaire de calculer une nouvelle table en parcourant le motif pour identifier de telles apparitions de suffixes.

On peut aller plus loin en considérant également le plus long préfixe du motif qui soit un suffixe du suffixe considéré. Par exemple, pour le motif bcabc on remarque que bc étant un préfixe, on peut effectuer un saut comme dans l'exemple suivant :

0	1	2	3	4	5	6	7	8
С	a	a	b	С	С	b	b	С
b	С	a	b	С				
			b	С	a	b	С	

I.3.iii.a Table des bons suffixes

■ **Note 17.3** Tout cela sera redéfini proprement plus tard dans le chapitre sur les langages. Je laisse cette partie en attendant pour que la présentation soit complète.

Il est nécessaire d'introduire des définitions précises pour formaliser la stratégie qu'on vient de présenter. Dans le contexte des langages, on parle plus souvent de mot que de chaîne de caractères, qui sont un type de données permettant de les représenter. Un mot sur l'alphabet Σ est donc une suite finie $a_1 \ldots a_n$ de lettres dans l'alphabet. On note μ l'unique mot vide, c'est-à-dire ne contenant aucune lettre. L'ensemble des mots sur Σ est noté Σ^* . Si u et v sont des mots, uv est le mot obtenu par concaténation.

•

- Remarque 17.4 Σ^* muni de cette loi de composition a une structure proche de l'ensemble des entiers naturels N muni de l'addition :
 - on a: $\forall u, v, w \in \Sigma^*, u(vw) = (uv)w = uvw$, on dit que la loi est associative;
 - elle possède un élément neutre $\mu : \forall u \in \Sigma^*, \mu u = u\mu = u$.

On dit alors que Σ^* est un **monoïde**. Cette structure très simple est cruciale en informatique.

Définition I.1 Soit $u, v \in \Sigma^*$, on dit que v est :

- un **suffixe** de u s'il existe $w \in \Sigma^*$ tel que u = wv
- un **préfixe** de u s'il existe $w \in \Sigma^*$ tel que u = vw

Lorsque $w \neq \mu$, on parle de suffixe ou de préfixe **propre**.

On dit que v est un **bord** de u lorsque v est suffixe et préfixe propre de u.

Exemple 17.1 Soit u = abacaba. abac est un préfixe de u, caba un suffixe et aba un bord.

Définition I.2 Soit $x = x_1 \dots x_n$ et u, v deux suffixes **distincts** de x. On dit que u et v sont des suffixes disjoints quand on est dans l'un des cas suivants :

- $\begin{array}{ll} \bullet & v = x \\ \bullet & u \neq x, v \neq x \text{ et } x_{|x|-|u|} \neq x_{|x|-|v|}. \end{array}$

Des suffixes disjoints sont donc des suffixes précédés par des lettres différentes dans x. On définit de même la notion de préfixes disjoints.

On considère un motif $x = x_0 \dots x_{n-1}$ et on va reprendre, en la précisant, la description précédente. Se faisant, on va construire une table bonsuffixe appelée la table des bons suffixes du motif x et telle que, pour $i \in [0, n-1]$, bonsuffixe[i] donne le nombre de positions dont on doit décaler le motif vers la droite pour relancer la recherche après la lecture du suffixe $x_{i+1}\ldots x_{n-1}$.

Supposons qu'on vient de lire avec succès un suffixe propre u. Ainsi $x = x_0 \dots x_i u$ et on vient de lire dans la chaîne où on effectue la recherche au avec $a \neq x_i$.

- Soit il existe un autre suffixe buv de x où $b \neq x_i$ et alors on appelle bon suffixe pour u un tel suffixe de longueur minimale et on pose alors bonsuffixe [i] = |v|
- Sinon, on cherche v de longueur minimale tel que x soit un suffixe de uv et on pose également bonsuffixe[i]=|v|.

On remarque que si x est suffixe de uv et qu'on a également buv' suffixe de x, alors |uv| = $|u|+|v|\geq |x|\geq |buv'|\geq |u|+|v'|$ donc $|v|\geq |v'|$ ce qui permet de considérer le plus petit vsur l'ensemble des cas.

Table des suffixes I.3.iii.b

Afin de calculer efficacement bonsuffixe on va commencer par calculer la table des suffixes du motif, il s'agit de la table suffixe où suffixe[i] contient la longueur du plus long suffixe de x de la forme $x_i \dots x_i$. Ainsi, si on note S_i les suffixes de cette forme, on a :

$$\mathrm{suffixe}[i] = \begin{cases} 0 & \mathrm{si}\,S_i = \emptyset \\ \max\left\{\; |s| \mid s \in S_i \;\right\} & \mathrm{sinon} \end{cases}$$

Nécessairement, suffixe[n-1]=n car x convient.

Exemple 17.2 Pour x = bcabc on a:

i	0	1	2	3	4
suffixe[i]	0	2	0	0	5

et pour x = abbabba:

i	0	1	2	3	4	5	6
suffixe[i]	1	0	0	4	0	0	7

Il est possible de construire suffixe avec un simple parcours linéaire en tirant partie de l'information déjà calculée. Pour cela, on va remplir suffixe de droite à gauche.

A tout moment, on va conserver le meilleur suffixe rencontré, c'est-à-dire celui pour lequel on est allé le plus loin à gauche avant d'avoir un échec de comparaison. On note s la position la plus à droite de ce suffixe et k sa longueur, il s'agit donc de $u=x_{s-k+1}...x_s$ et il y a eu un échec de comparaison en x_{s-k} . Par définition de suffixe on a suffixe [s]=k. Le mot x s'écrit alors :

$$x = x_0 \qquad \dots \qquad \underbrace{x_{s-k}}_{x_{s-k+1}} \underbrace{x_{s}}_{x_s} \qquad \dots \qquad \underbrace{x_{n-1-k}}_{x_{n-k}} \underbrace{x_{n-k}}_{x_{n-k}} \qquad \dots \qquad \underbrace{x_{n-1}}_{x_{n-k}}$$

Ce qu'on peut représenter schématiquement ainsi :

S	-k	S	n –	- k -	- 1		n-1
	a	и		b		и	

Maintenant, on considère la position s-i où s>s-i>s-k, cela signifie qu'on cherche un suffixe depuis une position interne au mot u de gauche. Le point clé permettant d'obtenir un algorithme linéaire est de remarquer que la situation est la même que dans le mot u de droite. Or, comme on procède de gauche à droite, on a déjà calculé la valeur correspondante suffixe[n-i]. Là, on a deux cas :

• soit quand on a cherché le plus grand suffixe à partir de n-i, on s'est heurté à une erreur de comparaison à la position n-k. Dans ce cas, on a suffixe [n-1-i]=k-i et on peut regarder, en partant de la position s-k, si on peut prolonger le suffixe finissant à la position s-i.

s-1	k s-	i s	n - 1 -	- <i>k</i>	n - 1	- <i>i</i>	n –	- 1
а			b					

Pour effectuer ce prolongement, il suffit de comparer, caractère par caractère, vers la gauche en partant de la position s-k. On aboutira alors à une nouvelle position du suffixe finissant le plus à gauche qui finira en s-i.

s-i-l	S	-i n	-1-l		n —	1
d	a		c	a		

Remarquons qu'il n'est pas nécessaire que $s-i-l \neq s-k$. C'est-à-dire que même si a ne permet pas de prolonger le suffixe déduit de la position n-i, on considère tout de même que la nouvelle position de référence est s-i. On en déduit également la valeur suffixe[s-i] = l.

- soit suffixe $[n-1-i] = p \neq k-i$ et alors
 - \star soit p < k-i, on a alors poru ce suffixe un échec dans u, ce qui limite de la même manière la valeur en s-i: suffixe[s-i]= p.
 - * soit p > k i, donc on doit avoir un b après avoir le suffixe dans u depuis s i pour le prolonger, or, c'est impossible car il y a un $a \neq b$. Ainsi, le suffixe est limité par u: suffixe s i = k i.

Il reste à traiter le cas où $s-i \leq s-k$, ce qui revient à considérer qu'on a dépassé le précédent suffixe pouvant apporter une information. On procède donc naïvement pour trouver le plus grand suffixe depuis cette position.

On en déduit l'implémentation suivante :

```
def calcule_suffixe(x):
    '''Prend en entrée un mot non vide x et renvoie son tableau de suffixe'''
    n = len(x)
    suffixe = [ None ] * n
    suffixe[n-1] = n
    plus_a_gauche = n-1
    depart = None
    for j in reversed(range(0,n-1)):
        if plus_a_gauche < j and suffixe[n-1-depart+j] != j-plus_a_gauche:</pre>
            suffixe[j] = min(suffixe[n-1-depart+j],j-plus_a_gauche)
            plus_a_gauche = min(plus_a_gauche, j)
            depart = i
            while plus_a_gauche >= 0 \
                    and x[plus_a_gauche] == x[n-1-j+plus_a_gauche]:
                plus_a_gauche = plus_a_gauche - 1
            suffixe[j] = depart - plus_a_gauche
    return suffixe
```

■ Remarque 17.5 Cette implémentation est optimisée par rapport à la description précédente en calculant directement sans introduire i ou k, et en fusionnant deux cas qui reviennent à dupliquer du code.

On donne ici le code maladroit qui correspond à la traduction exacte de la description précédente :

```
def calcule_suffixe_rep(x):
    '''Prend en entrée un mot non vide x et renvoie son tableau de suffixe'''
    n = len(x)
    suffixe = [ None ] * n
    suffixe[n-1] = n
    plus_a_gauche = n-1
    depart = None
    for j in reversed(range(0,n-1)):
        if plus_a_gauche < j:</pre>
            \# on a j = depart - i avec
            i = depart - j
            # et plus_a_gauche = depart - k avec
            k = depart - plus_a_gauche
            if suffixe[n-1-i] != k-i:
                suffixe[j] = min(suffixe[n-1-i],k-i)
            else:
                depart = j
                while plus_a_gauche >= 0 \
                        and x[plus_a_gauche] == x[n-1-j+plus_a_gauche]:
                    plus_a_gauche = plus_a_gauche - 1
                suffixe[j] = depart - plus_a_gauche
        else:
            plus_a_gauche = depart = j
            while plus_a_gauche >= 0 \
                    and x[plus_a_gauche] == x[n-1-j+plus_a_gauche]:
                plus_a_gauche = plus_a_gauche - 1
            suffixe[j] = depart - plus_a_gauche
    return suffixe
```

On remarque que dans ce code, $plus_a_gauche$ ne peut que diminuer, on effectue donc au plus n itérations dans la boucle while pour tout l'algorithme. Donc, en considérant la boucle for, on effectue au plus 2n comparaisons de caractères : au plus une pour chaque itération de la boucle for pour voir si on entre dans le while, puis en tout au plus n avant de sortir du while.

L'algorithme qu'on a obtenue est bien linéaire en |x|.

1.3.iii.c Obtention de bonsuffixe à partir de suffixe

On reprend maintenant le calcul de bonsuffixe[i] dans le mot $x = x_0 \dots x_{n-1}$.

On cherche à obtenir des suffixe de la forme buv de x où $b \neq x_i$ et $u = x_{i+1} \dots x_{n-1}$ est un suffixe de x. Mais si suffixe [k] = n-1-i cela signifie que ce suffixe est exactement u et qu'il est soit préfixe, soit précédé d'une lettre différente de x_i , sinon n-1-i ne serait pas maximal. On a donc

```
\begin{array}{lll} \mathsf{bonsuffixe}[n-1-i] &=& \min \left\{ \right. n-1-k \left. \right| \right. \mathsf{suffixe}[k] = n-1-i \left. \right\} \\ &=& n-1-\max \left\{ \right. k \left. \right| \right. \mathsf{suffixe}[k] = n-1-i \left. \right\} \end{array}
```

On remarque qu'on peut ainsi faire croitre k et poser :

```
bonsuffixe[n-1-suffixe[k]]=n-1-k
```

On a aura alors naturellement, à la fin de la boucle, la valeur minimale placée en dernier.

Reste à considérer les valeurs non remplies ainsi dans le tableau bonsuffixe. Elles correspondent aux positions i telles qu'il n'existe pas de suffixe de la forme buv. On doit donc chercher

un mot uv de longueur minimale dont x est suffixe. Mais u étant un suffixe de x, cela revient à considérer les bords de x. La table suffixe permet également de détecter les bords : si $x_0...x_k$ est un bord c'est que suffixe [k] = k + 1.

Soit k < n-1 maximal vérifiant cette condition. Pour tout $u = x_{i+1} \dots x_n$ suffixe de x, pour qu'il ait $x_0 \dots x_k$ comme suffixe, il faut qu'il soit strictement plus long (sinon on est dans le cas précédent), donc que $n-i>k+1\iff i< n-1-k$. Dans ce cas, x est alors suffixe de uv où $v=x_{k+1}\dots x_{n-1}$ donc |v|=n-1-k. Les k plus petits ne pourront alors que faire augmenter |v|, on peut ainsi poser bonsuffixe [i]=n-1-k.

On en déduit un remplissage en parcourant les k dans l'ordre décroissant de n-2 à 0, tout en maintenant l'indice i de la prochaine valeur à remplir dans bonsuffixe. Dès qu'on détecte un bord, on place n-1-k jusqu'à ce que $i\geq n-1-k$.

En sortie de boucle, il est possible que i < n donc qu'il reste des valeurs à remplir. On remarque dans ce cas là que pour que x soit un suffixe de uv il faut que v = x. On a donc pour ces valeurs restantes bonsuffixe [i] = n.

Comme ce second cas est toujours plus long que le premier quand les deux se produisent en i, on implémente successivement les remplissages de sorte à obtenir la valeur minimum. On en déduit le programme suivant :

```
def calcule_bonsuffixe(x):
    '''Prend en entrée un mot non vide x et renvoie son tableau de suffixe'''
    n = len(x)
    suffixe = calcule_suffixe(x)
    bonsuffixe = [ n ] * n

    suivant = 0
    for k in reversed(range(0,n-1)):
        if suffixe[k] == k+1: # c'est un bord
            for i in range(suivant,n-1-k):
                bonsuffixe[i] = n-1-k
                suivant = n-1-k

    for k in range(0,n-1):
                bonsuffixe[n-1-suffixe[k]] = n-1-k

    return bonsuffixe
```

Il est facile de constater que cet algorithme est de complexité temporelle linéaire en |x|.

.3.iii.d Algorithme de Boyer-Moore

On incorpore naturellement la table precédente à l'algorithme de Boyer-Moore en choisissant le meilleur décalage entre cette table et la stratégie précédente.

Supposons que le motif est de longueur p, que la chaîne dans laquelle on recherche est de longueur n et que la taille de l'alphabet est une constante indépendante des entrées. La première partie de l'algorithme consiste à construire les tables de sauts, comme on l'a vu, elle est en complexité en temps et en espace en pire cas en O(p).

On admet que l'algorithme Boyer-Moore complet, étant donné les deux tables de saut et d'autres modifications mineures non présentées ici, est en complexité temporelle en pire cas en O(n).

Il est assez raisonnable de penser que soit $p \leq n$ quand on effectue une recherche, soit on compte chercher un même motif dans plusieurs textes et on réutilise ainsi les tables de sauts. Il n'est donc pas forcément très pertinent de parler de la complexité globale de l'algorithme, mais lorsqu'on le fait, on dit qu'elle est en O(p+n). On rappelle ici le rôle de l'addition dans les complexités qui fait référence à la succession de deux traitements, un en O(p) suivi d'un en O(n).

I.4 Algorithme de Rabin-Karp

I.4.i Principe

L'algorithme de Rabin-Karp est un algorithme de recherche d'un motif dans un texte qui utilise une notion d'empreinte pour déterminer, en temps constant, si il est probable que la position actuelle corresponde à une occurrence du motif.

Pour cela, si on cherche un motif de longueur p sur l'alphabet Σ , on considère une **fonction** de hachage $h:\Sigma^p\to X$. Les éléments de l'ensemble X sont appelés des empreintes et on suppose que l'égalité entre deux empreintes se vérifie en temps constant contrairement à l'égalité dans Σ^p qui se vérifie en O(p) dans le pire des cas. Le plus souvent, on choisit pour X un type entier machine.

■ Note 17.4 Sûrement mettre ici des renvois vers la partie portant le plus sur la notion de fonction de hachage pour la définition la plus complète.

Bien qu'il soit normalement aussi coûteux de calculer l'image par h d'une sous-chaîne de longueur p que de tester l'égalité entre cette sous-chaîne et le motif, le point essentiel de l'algorithme de Rabin-Karp est d'utiliser une fonction de hachage permettant un calcul incrémental en temps constant :

Ici, on considère donc, pour $a,b \in \Sigma$, une fonction de mise à jour $\delta_{a,b}: X \to X$ telle que pour tout $c_2, \ldots, c_p \in \Sigma$ on ait $\delta_{a,b}(h(ac_2 \ldots c_p)) = h(c_2 \ldots c_p b)$.

L'algorithme de Rabin-Karp procède alors ainsi pour chercher m de longueur p dans la chaîne $s=c_0\dots c_{n-1}$ où $n\geq p$:

- calcul de $e_m = h(m)$ et $e = h(c_0..c_{p-1})$.
- Pour i allant de 0 à n-p:
 - $\star~$ Si $e_m=e$, on renvoie un succès pour la recherche à la position i si $m=c_i\ldots c_{i+p-1}$
 - \star si i < n-p on met à jour l'empreinte $e \leftarrow \delta_{c_i,c_{i+n}}(e)$.

La complexité temporelle liée à la gestion des empreintes est donc en O(n+p)=O(n) car $n\geq p$. Par contre, pour calculer la complexité liée à la recherche $m=c_i\dots c_{i+p-1}$, il est nécessaire d'estimer la proportion de faux positifs, c'est-à-dire de positions i telles que $e_m=e$ mais $m\neq c_i\dots c_{i+p-1}$. On va voir dans la partie suivante qu'on peut supposer qu'elle est négligeable, ce qui permet de considérer que l'algorithme de Rabin-Karp est linéaire.

I.4.ii Choix d'une fonction de hachage

Réaliser une bonne fonction de hachage est une question très complexe qui dépasse le cadre du cours d'informatique de MPI. Cependant, il est possible de réaliser ici une fonction de hachage répondant aux contraintes de Rabin-Karp assez facilement.

Pour cela, on considère que les caractères sont des entiers compris entre 0 et 255, ce qui correspond au type des caractères non signés sur un octet. On peut alors identifier une chaîne de longueur p avec un nombre entre 0 et r^p-1 où $r=2^8$, on note ainsi

$$P(c_0 \dots c_{p-1}) = \sum_{i=0}^{p-1} c_i r^{p-1-i} = c_0 r^{p-1} + c_1 r^{p-2} + \dots + c_{p-1}$$

On considère de plus un entier premier q et on pose $h(s)=P(s)\mod q$ c'est-à-dire le reste de P(s) dans la division euclidienne par q. On peut ainsi définir $\delta_{a,b}(e)=(r(e-ar^{p-1})+b)\mod q$.

Si on précalcule $r^{p-1} \mod q$ il suffit d'un nombre d'opération constant, et indépendant de p, pour calculer la nouvelle empreinte à l'aide de $\delta_{a,b}$.

Le point essentiel est alors de déterminer un nombre premier q tel qu'il soit peu probable d'obtenir des faux positifs. Une analyse mathématique permet d'affirmer que chaque élément de [|0;q-1|] a de l'ordre de $\frac{r^p}{q}$ antécédents par h. Ainsi, si on choisit deux chaînes aléatoirement dans Σ^p , il y aura collision avec probabilité proche de $\frac{1}{q}$. En considérant q proche de la taille maximale pour le type entier considéré, on minimise donc cette probabilité.

■ Remarque 17.6 On peut également s'intéresser à des nombres q pour lesquels le modulo soit rapide à calculer. Un exemple classique est $q=2^{31}-1$ car on peut déduire la division euclidienne de a par q de l'écriture de a en base 2^{31} . En effet, si $a=\sum_{k=0}^n a_k 2^{31k}$ comme $2^{31}-1|2^{31k}-1$ pour $k\geq 1$, on a $2^{31k}\equiv 1$ [q] et ainsi $a\equiv\sum_{k=0}^n a_k[q]$. On remarque que $a_k=(a>>31k)\&2^{31}$, on a alors soit $a_k< q$ et alors $a_k\mod q=a_k$, soit $a_k=q$ et

Le programme suivant implémente na \ddot{i} vement les calculs de h et de $\delta_{a,b}$:

```
def hash(r,q,s):
    e = 0
    p = 1
    for c in reversed(s):
        e = (ord(c) * p + e) % q
        p = (r * p) % q
    return e

def delta(r,q,rp,a,b,e):
    return (r * (e - rp * ord(a)) + ord(b)) % q
```

I.4.iii Implémentation

Une implémentation directe de l'algorithme de Rabin-Karp est donnée dans le programme qui suit. On se sert ici du caractère paresseux du && pour n'effecuter le test coûteux d'égalité des chaînes qu'en cas d'égalité des empreintes.

```
def rabin_karp(m, s):
    p, n = len(m), len(s)
    r, q = 256, 0x7fffffff
    rp = (r ** (p-1)) % q
    me, e = hash(r,q,m), hash(r,q,s[:p])
    for i in range(0,n-p+2):
        if me == e and m == s[i:i+p]:
            return i
        if i+p < n:
            e = delta(r,q,rp,s[i],s[i+p],e)
    return None</pre>
```

Si on suppose qu'il est improbable d'obtenir un faux positif, il est possible de renvoyer un succès dès que les empreintes sont égales. L'avantage d'une telle version est alors d'être un algorithme sans retour sur les données. C'est-à-dire qu'il n'est pas nécessaire de garder en mémoire ou de réaccéder à un caractère.

II Compression 191

I.4.iv L'algorithme originel de Rabin et Karp

Si on regarde l'article originel de Rabin et Karp décrivant cette méthode, on peut être étonné du fait que la méthode précédemment décrite était considérée comme déjà connue dans la littérature par les auteurs. En fait, ce qu'ils décrivent et annoncent comme étant novateur est l'utilisation d'un algorithme probabiliste en choisissant aléatoirement une fonction de hachage à chaque lancement de l'algorithme. En pratique, il s'agit de choisir aléatoirement un nombre premier q parmi un ensemble précalculé de nombres premiers.

L'algorithme que l'on vient de décrire a un pire cas qui est très improbable car on considère que la probabilité d'un faux positif est à peu près de 1/q, donc moins de 5.10^{-10} pour $q=2^{31}-1$. Le problème ici est la notion de probabilité sur les entrées : est-on certain que l'algorithme recevra une entrée choisie uniformément? Rabin et Karp parlent d'un adversaire intelligent qui aurait connaissance de la fonction de hachage choisie pour produire des entrées en pire cas. On pourrait ainsi imaginer une attaque sur serveur effectuant une recherche avec Rabin-Karp suite à l'entrée d'un utilisateur. Un adversaire pourrait construire une entrée en pire cas et tenter de surcharger le serveur en l'effectuant de manière répétée.

Pour bien mettre en lumière ce phénomène, nous allons ici construire, dans un cas très simple de fonction de hachage, une telle chaîne problématique. Pour cela, considérons la fonction de hachage précédemment décrite dans le cas de motif de taille 2, avec Σ contenant les lettres de a à z, r=26 et q=17. On considère une recherche du motif aa dont l'empreinte est 0, la même que celle des chaînes ar et ra. On peut donc considérer la chaîne arar...ar qui produira un faux positif à chaque étape.

■ Remarque 17.7 Détail des calculs. Ici on associe à a la valeur 0, ..., à z la valeur 25. On a donc

$$h(aa) = (0 \times 26 + 0) \mod 17 = 0$$

 $h(ar) = (0 \times 26 + 17) \mod 17 = 0$
 $h(ra) = (17 \times 26 + 0) \mod 17 = 0$

L'empreinte reste ainsi nulle tout au long de l'algorithme de Rabin-Karp et on a un faux positif à chaque itération.

II Compression

II.1 Principe

On s'intéresse ici à la compression parfaite d'un texte, c'est-à-dire, étant donné un alphabet fixé Σ , qu'on cherche à réaliser un couple de fonctions comp, $dec: \Sigma^* \to \Sigma^*$ telles que :

- pour tout mot $m \in \Sigma^*$, dec(comp(m)) = m
- pour la plupart des mots m qui correspondent aux données qu'on cherche à compresser, |comp(m)| < |m|.
- Remarque 17.8 Le fait que $dec \circ comp = id_{\Sigma^*}$ implique, comme on a pu le voir dans le cours de mathématique, que comp est injective : deux mots différents ont nécessairement des images distinctes.

Si A et B sont deux ensembles finis tels que |A| < |B|, il n'existe pas de fonction injective de A dans B. Ainsi, si on note L_n les mots de Σ^* de longueur au plus n, il ne peut exister de

fonction injective de L_n dans L_m où n < m.

Autrement dit : il est impossible d'espérer pouvoir compresser toutes les données de L_n . Si certains mots vont diminuer de longueur après compression, d'autres vont nécessairement augmenter.

Tout l'enjeu des algorithmes de compression parfaites est alors de diminuer les longueurs des mots qui nous intéressent. Par exemple, si on s'intéresse à des mots issus de textes en français, il est plus important d'arriver à compresser une phrase comme "ceci est un texte" plutôt qu'une suite de caractères non signifiante comme "c2#\$%1ajdn //@#3d!fn".

II.2 Algorithme d'Huffman

La définition et la construction de l'arbre de Huffman ont été présentées au paragraphe Algorithme d'Huffman - Compression. On va s'intéresser ici au processus complet permettant de compresser et décompresser des fichiers avec cet algorithme.

II.2.i Calcul de la table d'occurences

Par souci d'efficacité, on calcule une table d'occurences pour l'ensemble des valeurs d'octets entre 0 et 255. Il suffit alors de parcourir le fichier pour incrémenter les valeurs correspondant aux octets lus.

ERROR: src/algorithmique/../../snippets/algorithmique/huffman.py does not exist

II.2.ii Sérialisation de l'arbre de Huffman

Afin de décompresser, il est nécessaire de connaître l'arbre de Huffman donnant le code préfixe. Pour cela, il faut stocker cet arbre dans le fichier comme une série d'octet, on parle de sérialisation. Cette notion sera prolongée dans le chapitre FIXME.

On choisit ici la représentation récursive repr(a) de l'arbre a définie ainsi :

- Si a = Noeud(g,d), repr(a) = 0 repr(g) repr(d)
- Sia = Feuille(c), repr(a) = 1 c.
- Exemple 17.3 Sia = Noeud(Feuille 42, Noeud(Feuille 16, Feuille 64)), on obtient la suite d'octets: 0 1 42 0 1 16 1 64.

La lecture et l'écriture de la séralisation s'effectue alors simplement par récurrence :

ERROR: src/algorithmique/../../snippets/algorithmique/huffman.py does not exist

II.2.iii Écriture dans un fichier un bit à la fois

■ **Note 17.5** À déplacer éventuellement dans une partie spécifique sur la gestion de fichiers.

Le propre de l'algorithme de Huffman est d'associer à chaque caractère un codage binaire de longueur variable. Afin de pouvoir écrire ce codage dans un fichier, il est nécessaire de grouper les bits par paquet de huit (octet en français, byte en anglais).

Ainsi, par exemple, si on a le codage suivant:

II Compression 193

С	'a'	'b'	'c'
code(c)	0	100	101

et qu'on doit encoder "abbaca", on obtient le mot binaire 010010001010 qu'on complète avec des 0 à la fin et qu'on sépare en octets : 01001000 10100000. On obtient donc les deux octets, convertis en décimal, 72 et 160. Ce sont eux qu'on va écrire dans un fichier.

Une technique usuelle pour cela est de garder un accumulateur qui correspond à l'octet en train d'être construit ainsi que le nombre de bits qui ont été accumulé. Dès qu'on accumulé 8 bits, on peut construire l'octet, l'écrire dans le fichier, puis reinitialiser ces variables.

Quand on rajoute un bit b à l'accumulateur, on veut passer de $acc = b_1 \dots b_k$ à $b_1 \dots b_k b = 2acc + b$.

On en déduit l'implémentation assez directe suivante :

```
class Bitpacking:
    '''La classe Bitpacking se comporte comme un fichier Python
    tout en fournissant des méthodes spécifiques à la lecture
    et à l'ecriture de bit.'''
    def __init__(self, filename, mode):
        self.file = open(filename, mode)
        self.accumulateur = 0
        self.bits_accumules = 0
        self.input = mode[0] == 'r'
        if self.input:
            self.init_input()
    def write_bit(self, b):
        if self.bits_accumules == 8:
            self.write(bytes([self.accumulateur]))
            self.accumulateur = 0
            self.bits_accumules = 0
        self.accumulateur = 2 * self.accumulateur \
                + (1 if b else 0)
        self.bits_accumules += 1
```

Il reste à traiter la question des zéros finaux, si l'accumulateur contient k bits au moment de la fermeture du fichier, où 0 < k < 8, il faut ajouter 8 - k zéros. On appelle cela du padding de l'anglais pour rembourrage. Ici, cela correspond à faire un décalage binaire vers la gauche d'autant (shift left en anglais). Comme il sera nécessaire de se souvenir que ces zéros ne sont pas signifiants à la lecture, on rajoute un octet final contenant cette valeur k.

On obtient alors la fonction de fermeture de fichier suivante :

```
def close(self):
    if not self.input:
        self.close_output()
    self.file.close()

def close_output(self):
    if self.bits_accumules == 0:
        self.file.write(b'\x00')
    else:
```

```
padding = 8 - self.bits_accumules
self.file.write(bytes([
          self.accumulateur << padding,
          padding ]))</pre>
```

■ Remarque 17.9 Une autre possibilité consiste à ajouter un entier décrivant la taille des données non compressées. C'est d'ailleurs parfois un problème avec les formats car si la taille est stockée sur 4 octets cela limite la taille d'un fichier pouvant être compressé.

Pour la lecture, on procède de même en faisant attention à deux points :

- on va lire les bits dans l'octet de la gauche vers la droite, c'est-à-dire du bit de poids le plus fort au bit de poids le plus faible. Ainsi, si l'accumulateur contient $acc = b_1 \dots b_8$, il suffit de faire un et bit à bit avec b10000000=0x80=128 pour obtenir $acc \& 0x80 = b_1 0 \dots 0$ donc un nombre qui vaut 0 si et seulement si $b_1 = 0$. Après avoir effectué cette lecture, il suffit de décaler vers la gauche en multipliant l'accumulateur par $2: 2acc = b_2 \dots b_8 0$.
- on doit tenir compte des zéros finaux, pour ça, on a besoin de savoir qu'on est en train de lire le dernier caractère du fichier. On calcule donc la taille du fichier à son ouverture et on test si l'octet lu est l'avant-dernier, auquel cas on lit le dernier octet et on diminue d'autant le nombre de bits signifiants dans l'accumulateur.

On obtient alors le programme suivant pour la lecture :

```
def init_input(self):
    self.file.seek(0, os.SEEK_END)
    self.taille = self.file.tell()
    self.file.seek(0, os.SEEK_SET)
def read_bit(self):
    if self.bits_accumules == 0:
        c = self.file.read(1)
        if len(c) == 0: # fin de fichier
            return b''
        self.accumulateur = ord(c)
        self.bits_accumules = 8
        if self.file.tell() == self.taille - 1:
            pad = ord(self.file.read(1))
            self.bits_accumules -= pad
    bit = (self.accumulateur & 0x80) != 0
    self.accumulateur *= 2
    self.bits_accumules -= 1
    return bit
```

II.2.iv Compression d'un octet

Pour pouvoir compresser un octet, il est nécessaire d'obtenir le chemin qui mène jusqu'à la feuille dont il est l'étiquette dans l'arbre de Huffman. Pour cela, on commence par calculer l'ensemble des chemins de l'arbre de Huffman sous forme d'une table à 256 entrées qui contient le chemin associé à un octet s'il est présent dans l'arbre ou un chemin vide sinon. On parlera de représentation plate de l'arbre de Huffman.

Il suffit de faire un parcours exhaustif de l'arbre (FIXME référence aux parcours d'arbres) pour réaliser cette table :

_

II Compression 195

```
ERROR: src/algorithmique/../../snippets/algorithmique/huffman.py does not exist
```

Afin de compresser un octet, on va donc aller lire le chemin dans cette table puis écrire le mot binaire correspond grâce aux fonctions d'écriture bit à bit :

```
ERROR: src/algorithmique/../../snippets/algorithmique/huffman.py does not exist
```

■ Remarque 17.10 A chaque fois qu'on va compresser un octet, on va parcourir la liste correspondant à son chemin. Comme les chemins les plus longs sont les moins fréquents, cela ne pose pas vraiment de problèmes.

Cependant, il est possible d'optimiser cela en ne stockant pas le chemin mais la fonction d'écriture elle-même. Ainsi, on ne va plus stocker des listes de booléens mais des fonctions du type Bitpacking.out_channel_bit -> unit qui vont réaliser l'écriture compressé de l'octet correspondant.

Au cours du parcours de l'arbre, on maintient une fonction correspondant à l'écriture du préfixe du chemin chemin. Si on l'appel est effectué sur un noeud, on remplace chemin par la fonction qui appelle chemin puis écrit le bit correspondant au côté gauche ou droit.

Cela correspond au programme suivant :

```
ERROR: src/algorithmique/../../snippets/algorithmique/huffman.py does not exist
```

Cette représentation des chemins partiels par des fonctions est très classique dans le style de programmation fonctionnelle par passage de continuations.

II.2.v Décompression d'un octet

Pour décompresser un octet, il suffit de parcourir l'arbre de Hufmann en lisant bit à bit le fichier compressé en descendant à gauche ou à droite selon que le bit lu soit 0 ou non. Dès qu'on arrive sur une feuille, on écrit dans le nouveau fichier le caractère correspondant.

```
ERROR: src/algorithmique/../../snippets/algorithmique/huffman.py does not exist
```

II.2.vi Compression et décompression de fichiers

En mettant bout à bout l'ensemble des fonctions, on obtient la fonction suivante qui réalise la compression complète d'un fichier :

```
ERROR: src/algorithmique/../../snippets/algorithmique/huffman.py does not exist
```

On obtient de même la fonction de décompression suivante :

```
ERROR: src/algorithmique/../../snippets/algorithmique/huffman.py does not exist
```

■ Exemple 17.4 En compressant ainsi l'intégrale de Proust, on passe de 7543767 octets à 4249758 octets. A titre de comparaison, l'outil unix zip permet d'obtenir un fichier de 2724213 octets.

■ Remarque 17.11 Le format de fichier présenté ici est rudimentaire. Les formats usuels sont en général plus complexes pour gérer

- l'identification : c'est-à-dire pouvoir déterminer qu'un fichier est un fichier compressé par un certain programme. Les fichiers zip commencent ainsi par les deux lettres PK.
- l'extensibilité: il est possible qu'on souhaite changer le format de sérialisation de l'arbre, ou même l'algorithme. En rajoutant un système de version sur les différentes parties, on peut permettre de faire évoluer un type de fichier en préservant la compatibilité avec les versions précédentes.

II.3 Algorithme de Lempel-Ziv-Welch

L'algorithme d'Huffman est efficace, mais il présente un désavantage majeur : il nécessite de lire le contenu d'un fichier dans son intégralité pour pouvoir déterminer un code préfixe optimal. Il est toutefois possible de modifier l'algorithme pour lever cette limitation. Dans ce paragraphe, nous allons plutôt étudier une autre technique de compression qui, bien que moins efficace en pratique que Huffman, se programme assez facilement et permet de compresser des flux plutôt que des fichiers. C'est-à-dire qu'on peut compresser et décompresser des données au fur et à mesure qu'elles sont transmises.

Il s'agit de l'algorithme de Lempel-Ziv-Welch, appelé communément compression LZW, et qui est une modification faite en 1984 par Welch de l'algorithme de LZ78 de Lempel et Ziv.

II.3.i Principe de la compression

L'idée de l'algorithme LZW est de faire avancer une fenetre sur le texte en maintenant une table des motifs déjà rencontrés. Quand on rencontre un motif déjà vu, on le code avec une référence vers la table et quand on rencontre un nouveau motif, on le code tel quel en rajoutant une entrée dans la table.

Pour la table, on peut utiliser un tableau dynamique de motifs (ref FIXME) dont la taille ne pourra pas dépasser 2^d éléments ou directement un tableau de 2^d valeurs optionnelles, dans la mesure où d est en général petit. Ainsi, on pourra référencer chaque motif avec un mot de d bits. Afin de pouvoir retrouver efficacement l'indice associé à un motif, on utilise une table de hachage (ref FIXME) réalisant l'inverse de la table.

L'algorithme procède alors ainsi pour compresser :

- on initialise la table avec une entrée pour chaque caractère, donc chaque octet, en considérant des caractères 8bit.
- on maintient une variable contenant le plus long suffixe m du texte lu qui soit présent dans la table, il est initialisé avec la première lettre du texte.
- on lit alors chaque caractère x:
 - \star Soit mx est dans la table, et alors on remplace le motif courant par $m \leftarrow mx$
 - \star Soit mx n'est pas dans la table, par construction m y est nécessairement on produit alors le code correspondant à m, on rajoute une entrée dans la table pour mx si elle contient moins de 2^d éléments et on repart de $m \leftarrow x$.
- quand tous les caractères ont été lus, on produit le code correspondant à m.

Voici les diffèrentes étapes pour la compression de la chaîne AABABAAAB qui produit la suite d'entiers 65,256,66,65,258,257 qui seront alors codés dans un fichier sur d bits. Les 256 premières entrées de la table ont été volontairement ignorées. On remarque juste que A correspond

II Compression 197

à l'index 65 et B à l'index 66.

II.3.ii Principe de la décompression

Pour décompresser, on effectue la procédure précédente en sens inverse. Cependant, il faut reconstruire la table en même temps qu'on lit le fichier compressé. Dans la majorité des cas, c'est assez immédiat. Pour le premier code lu, il s'agit forcément d'un réfèrence à un des 256 caractères, donc on le reprouduit. A partir du second code lu:

- on lit un code n où $n < |\mathsf{table}|$ et $\mathsf{table}[n] = xm'$, x est un caractère et m' un mot.
- on écrit xm' dans le fichier de sortie.
- on rajoute ensuite mx dans la table où c et le précédent code lu et table [c]=m

En faisant ainsi, on reproduit le processus de compression mais en remplissant la table avec un temps de retard. En effet, si on reprend le principe exposé plus haut, une entrée pour mx est ajoutée dans la table quand on lit le caractère x et que le motif lu précèdemment est m, on repart alors avec x pour motif lu. C'est exactement ce qu'on fait ici en tenant compte du premier caractère de table [n]. Contrairement à la compression, il est inutile ici de retrouver l'indice associé à un motif. On peut donc ignorer la table de hachage utilisée par la compression.

Voici les étapes de décompression de l'exemple précédent :

II Compression 199

Il reste toutefois un cas à traiter, celui où $n=|{\sf table}|$, c'est-à-dire quand on lit un code qui n'est pas encore présent dans la table. Pour comprendre ce cas, il est important d'identifier précisèment quand il se produit dans le processus de compression. Comme on vient de le voir, on rajoute une entrée pour mx après avoir produit le code c correspondant à m. Pour que le code n ne soit pas présent dans la table, il faut donc que n corresponde à cette entrée mx. Or, quand on a compressé, on est reparti du motif x à ce moment là, donc nécessairement m commence par x. Cela signifie qu'on peut reconstruire table [n] en décompressant avec mx où x est la première lettre de table [c]=m.

On en déduit alors la procédure complète suivante :

- on initialise la table avec une entrée pour chaque caractère, donc chaque octet, en considérant des caractères 8bit.
- ullet on maintient une variable c contenant le dernier code lu qu'on intialise avec le premier code en produisant le caractère correspondant.

- pour chaque code n:
 - \star Soit n < |table| et table[n] = xm' où x est un caractère, alors on écrit xm' en sortie
 - \star Soit $n=|{\sf table}|$ et alors on écrit en sortie ${\sf table}[c]x$ où x est le premier caractère de ${\sf table}[c]$
 - \star Dans tous les cas, on remplace $c \leftarrow n$ et on ajoute table [c]x à la table.

Il y a un exemple classique où on a besoin de traiter ce cas : celui où le même caractère est présent plusieurs fois en début de fichier. Comme LZW est utilisé pour compresser des formats d'images où les pixels sont des indices dans une palette de 256 couleurs avec une couleur pour la transparence, le cas où la même couleur est présente au début du fichier est fréquent. Voici ici un exemple de compression et de décompression pour AAA:

■ Remarque 17.12 On peut pousser un peu plus l'analyse précédente afin d'identifier précisément les situations menant à ces cas problèmatiques. Comme on vient de le voir, il est nécessaire que le texte à compresser contienne un motif de la forme xwxwx où w est un mot et x une lettre. Mais pour que le motif lu contienne xw au moment où on ajoute l'entrée xwx il faut que xw lui même soit dans la table, ce qui signifie que chaque préfixe de xw est également dans la table au moment où on commence à le lire, mais que si le motif précédent est w' alors w'x n'était pas dans la table.

On considère un mot $w=a_1\ldots a_n a$ où toutes les lettres sont distinctes, et on va essayer de construire un mot p tel que la compression de p permettra avoir $a_1,a_1a_2,a_1a_2a_3,...,a_1\ldots a_n$ dans la table.

Si on lit a_1a_2 , on va ajouter a_1 puis a_1a_2 dans la table. On continue alors en partant de a_2 comme motif, pour pouvoir ajouter $a_1a_2a_3$ à la table, il faut lire $a_1a_2a_3$ ensuite car à la lecture de a_1 , comme a_2a_1 n'est pas dans la table on l'ajoute et m devient a_1 , puis a_1a_2 . Ainsi $a_1a_2a_1a_2a_3$ va ajouter a_1 , a_1a_2 , $a_1a_2a_3$ dans la table. En continuant ainsi avec $a_1a_2a_3a_4$, comme a_3a_1 n'est pas dans la table, on va procèder de même.

Le mot $p = a_1 a_2 a_1 a_2 a_3 a_1 a_2 a_3 a_4 \dots a_1 a_2 \dots a_n$ va donc permettre d'ajouter tous les préfixes de m dans la table.

II Compression 201

Maintenant, pour obtenir le cas précèdent, il suffit de lire le texte $pwwa_1x = pa_1w_0a_1w_0a_1x$ où $w_0 = a_2 \dots a_n$ et x n'est pas l'un des a_i . En effet, on lit d'abord p ce qui permet d'ajouter tous les préfixes. Comme a_na_1 n'est pas dans la table, on continue avec a_1 comme motif, on l'augmente jusqu'à lire a_1w_0 puis on ajoute une entrée pour $a_1m_0a_1$ en ayant a_1 comme motif, et là on va lire $a_1w_0a_1x$ et à la lecture de x, produire le code de $a_1w_0a_1$ qui est le dernier saisi dans la table.

Remarquons qu'on peut aussi ne considèrer que $pwwa_1$ dans la mesure où la fin du fichier provoquera aussi l'écriture du code.

Si on considère $w={\sf ABCD}$, on a $p={\sf ABABCABCD}$ et on pourra ainsi compresser le texte

 $pwwA = pAw_0Aw_0A = \mathsf{ABABCABCDABCDABCDA}$

Après lecture de p on est dans la configuration suivante :

Puis après lecture de $wA = Aw_0A$:

Enfin, la lecture du reste du texte va déclencher l'ajout de ABCDA dans la table et l'écriture de son code.

A la décompression, on produira bien le texte correspondant avec le principe présenté plus haut:

II.3.iii Implémentation

Avant de commencer à implémenter l'algorithme, il est nécessaire de définir des fonctions de manipulation des entiers sur d bits et de lecture/écriture dans un fichier.

Tout d'abord, on définit des fonctions d'écriture d'entiers sous forme codée sur d bits à l'aide des fonctions vues précédemment :

```
def read_code(self, longueur_code):
    acc = ⊙
    for i in range(longueur_code):
        b = self.read_bit()
        if b == b'':
            assert(i == 0) # pas au milieu d'un code
            return None
            acc += 1 << i
    return acc
def write_code(self, code, longueur_code):
    assert(code < 1 << longueur_code)</pre>
    for i in range(longueur_code):
        self.write_bit( code % 2 == 1 )
        code //= 2
```

On implèmente alors assez directement la compression :

```
def compresse_(nom_in, nom_out, longueur_code=12):
    table = [ bytes([c]) for c in range(256) ]
    indices = { bytes([c]) : c for c in range(256) }
    with open(nom_in, 'rb') as fin, \
            Bitpacking(nom_out, 'wb') as fout:
        m = fin.read(1)
        while True:
            c = fin.read(1)
            if c == b'': break
            if m+c in indices:
                m = m+c
            else:
```

II Compression 203

```
fout.write_code(indices[m], longueur_code)
   if len(table) < 1 << longueur_code:
        indices[m+c] = len(table)
        table.append(m+c)
   m = c

# code final
fout.write_code(indices[m], longueur_code)</pre>
```

Et on procède de même pour la décompression :

```
def decompresse_(nom_in, nom_out, longueur_code=12):
    table = [ bytes([c]) for c in range(256) ]
    with Bitpacking(nom_in, 'rb') as fin, \
            open(nom_out, 'wb') as fout:
        code = fin.read_code(longueur_code)
        fout.write(table[code])
        while True:
            nouveau = fin.read_code(longueur_code)
            if nouveau is None:
                break
            if len(table) == nouveau:
                x = table[code][0:1] # car bytes
                s = table[code]+x
                s = table[nouveau]
                x = s[0:1] # car bytes
            fout.write(s)
            if len(table) < 1 << longueur_code:</pre>
               table.append(table[code]+x)
            code = nouveau
```

II.3.iv Impact de la longueur du code

Afin d'étudier l'impact de la longueur du code sur la taille des fichiers compressés, on considère deux fichiers :

- proust.txt contenant, en 7543768 octets, l'intégrale de à la recherche du temps perdu de Marcel Proust
- code.py contenant 8566 octets de code source Python

On note np la taille en nombre d'octets après compression du fichier proust.txt et tp le nombre d'entrées dans la table à la fin du processus. De même, on note nc et tc les valeurs respectives pour le fichier code.py.

On obtient alors les valeurs suivantes en fonction du nombre d de bits du code :

d	np	nc	tp	tc
8	7543768	8566	256	256
9	5056398	5709	512	512
10	4195124	4431	1024	1024
11	3864174	3948	2048	2048
12	3612505	4039	4096	2947

d	np	nc	tp	tc
13	3434424	4376	8192	2947
14	3262145	4712	16384	2947
15	3131790	5049	32768	2947
16	2998639	5385	65536	2947
17	2682264	5722	131072	2947
18	2554323	6058	262144	2947
19	2500314	6395	524288	2947
20	2557656	6731	1023317	2947

On constate qu'il est nécessaire d'avoir un texte riche pour bénéficier d'une grande longueur de code. Le fichier code.py ne contenant pas plus que 2947 motifs. Même si le fichier proust.txt en contient plus que les tailles considérées ici, il y a un compromis qui s'établit entre la richesse de la table et la taille du code. Ainsi, il semble que le fichier proust.txt soit compressé de manière optimale avec un code de longueur 19.

- III Problèmes supplémentaires
- III.1 Transformation de Burrows-Wheeler
- III.2 Move to front
- III.3 La structure de données corde
- III.4 L'algorithme de Knuth-Morris-Pratt
- III.5 Extensions à l'analyse d'images

Systèmes

18	Gestion de la mémoire dans un programme compilé
1	Organisation de la mémoire
II	Pointeurs
Ш	Portée d'un identificateur

Piles d'exécution, variables locales et paramètres Allocation dynamique

IV

18. Gestion de la mémoire dans un programme compilé

■ Note 18.1 Roadmap:

- reprendre les exemples en C en utilisant des int suite au changement dans le programme.
- rajouter la présentation des pointeurs ici

■ Remarque 18.1 Ce chapitre se concentre sur la manière dont un programme compilé gère la mémoire. Il est question, en particulier, de la notion de variable. Le modèle dans lequel on se place est celui du langage C où une variable est un emplacement mémoire.

Organisation de la mémoire

■ **Note 18.2** Ici, je fais le choix d'une présentation assez informelle pour ne pas qu'elle soit trop liée à la réalité d'un compilateur en particulier.

Un programme compilé gère la mémoire d'un ordinateur de deux manières très différentes

- statiquement : c'est le cas des variables locales ou globales définies dans le programme. Au moment de la compilation, le compilateur dispose de l'information suffisante pour prévoir de la place en mémoire pour stocker ces données.
- dynamiquement : c'est le cas des objets dont la taille n'est connue qu'à l'exécution et peut varier selon l'état du programme. C'est alors au moment de l'exécution que le programme va faire une demande d'allocation pour obtenir une place mémoire.

En terme d'allocation statique, on peut distinguer plusieurs types de mémoire :

- les variables globales initialisées qui seront stockées dans le binaire et placées en mémoire dans une zone spécifique chargée avec le binaire
- les variables globales non initialisées dont seule la déclaration sera dans le binaire et qui seront allouées, placées en mémoire et initialisées à 0 au moment du chargement du binaire
- les variables locales et les paramètres qui sont placés dans une pile afin de les allouer uniquement au moment de l'exécution du bloc ou de la fonction

L'allocation dynamique utilise une zone mémoire appelée tas dont une possible organisation est développée dans la partie sec. V.4.

Structure de la mémoire associée à un programme

Considérons le programme c suivant.

```
const int a = 42;
int b[] = { 1, 2, 3 };
int c;

int f(int x, int y) {
    int z = x;
    z = z * y;
    return z;
}

int main(int argc, char **argv) {
    const int d = 1664;
    c = f(a, d);
    return 0;
}
```

Il est possible d'observer la manière dont sa mémoire sera répartie en utilisant la commande objdump :

```
$ gcc -c memoire.c
$ objdump -x memoire.o
memoire.o:
            file format elf64-x86-64
memoire.o
architecture: i386:x86-64, flags 0x00000011:
HAS_RELOC, HAS_SYMS
start address 0x00000000000000000
Sections:
Idx Name
                                                     File off Algn
               Size
                       VMA
                                      LMA
 0 .text
```

```
CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
 1 .data
                 00000000 0000000000000000
                                           00000000000000000
                                                            0000093
                 CONTENTS, ALLOC, LOAD, DATA
                 00000004 0000000000000000
 2 .bss
                                           00000000000000000
                                                            00000094
                                                                      2**2
                 ALLOC
 3 .rodata
                 00000014 0000000000000000
                                           00000000000000000
                                                            00000098
                 CONTENTS, ALLOC, LOAD, READONLY, DATA
                 000000ac
 4 .comment
                 CONTENTS, READONLY
 5 .note.GNU-stack 00000000 0000000000000000
                                             00000000000000000
                                                              000000bf
                 CONTENTS, READONLY
                 000000c0
 6 .eh_frame
                 CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
SYMBOL TABLE:
0000000000000000000001
                    df *ABS*
                              0000000000000000 orga.c
                    d .text 000000000000000 .text
000000000000000000001
000000000000000000001
                    d .data 000000000000000 .data
0000000000000000 l
                    d .bss
                              000000000000000 .bss
000000000000000000001
                    d .rodata
                                  0000000000000000 .rodata
                    d .note.GNU-stack
                                         0000000000000000 .note.GNU-stack
0000000000000000000 l
                    d .eh_frame 00000000000000 .eh_frame
000000000000000000001
                    d .comment
                                  0000000000000000 .comment
0000000000000000 g
                     0 .rodata
                                  00000000000000004 a
0000000000000000 g
                     O .data 000000000000000 b
0000000000000000 g
                     0 .bss
                              00000000000000004 c
00000000000000000 g
                     F .text
                              0000000000000001f f
000000000000001f g
                     F .text
                              00000000000000034 main
RELOCATION RECORDS FOR [.text]:
                                 VALUE
OFFSET
                TYPE
0000000000000042 R_X86_64_PLT32
                                 f-0x00000000000000004
0000000000000048 R_X86_64_PC32
                                 c-0x00000000000000004
RELOCATION RECORDS FOR [.eh_frame]:
OFFSET
                TYPE
                                 VALUE
00000000000000020 R_X86_64_PC32
                                 .text
00000000000000040 R_X86_64_PC32
                                 .text+0x000000000000001f
```

On retrouve dans les sections mémoire :

- .text contenant le programme binaire
- .data contenant les variables globales initialisées et non constantes
- .bss contenant les variables non initialisées
- .rodata contenant les variables globales initialisées mais constantes.

Ici, le schéma mémoire est un peu plus compliqué car une zone mémoire distincte est prévue pour les variables constantes initialisées pour des raisons de sécurité.

La pile et le tas sont automatiques et n'ont pas besoin de figurer dans le binaire, c'est pour cela qu'on ne les trouve pas dans la liste.

Dans cette description mémoire, on trouve la table des symboles qui décrit où vont se trouver

en mémoire certaines variables.

Nom de variable	Sorte de déclaration	Section mémoire
a	constante globale initialisée	rodata
b	globale initialisée	data
С	globale non init.	bss

La section suivante permettra de compléter le tableau en étudiant comment les paramètres et variables locales sont gérés. On remarque cependant qu'il n y a pas de symboles pour ceux-ci. En effet, le nom des variables locales est a priori perdu après la compilation contrairement aux variables globales.

II Pointeurs

III Portée d'un identificateur

En ce qui concerne une variable dans un programme, on peut définir deux notions d'apparence assez similaire.

D'une part la portée d'un identificateur qui correspond au texte du programme :

Définition III.1 La **portée** d'un identificateur est définie par la zone du texte d'un programme dans laquelle il est possible d'y faire référence sans erreurs.

■ Remarque 18.2 Dans le langage C, un identificateur peut être utilisé dès sa déclaration mais tant que la variable n'est pas initialisée, le comportement n'est pas spécifié et il faut considérer cela comme une erreur. Le compilateur produit ainsi un avertissement quand on utilise le paramètre -Wall.

Dans le cas d'une définition, il est ainsi possible de faire référence à l'identificateur dans l'expression de son initialisation: int x = x. Ce cas est pathologique et le fait qu'on compte la ligne de déclaration dans la portée ne devrait pas inciter à écrire ce genre de code qui produira, de toutes façons, une erreur avec les options -Wall -Werror.

Dans le programme :

```
int a = 1;
2
    int f (int x)
3
         int y = x + a;
5
         return y;
6
    }
\bigcirc
    int g()
    {
10
         int z = 3;
11
         return z + f(z);
12
13
```

La portée des identificateurs est :

Identificateur	Portée
а	1-13
X	3-7
y	5-7
f	4-13
g	10-13
Z	11-13

Pour une fonction, afin de pouvoir écrire des fonctions récursives, l'identificateur est utilisable dans le corps de la fonction.

Comme la portée est une notion associée aux identificateurs, elle est indépendante de la notion de variables. Si on considère le programme suivant :

```
int f()
{
    int i = 3;

    return i;
}

int g()
{
    int i = 5;

    return i+1;
}
```

L'identificateur i a pour portée les lignes 3-6 et 10-13.

Un autre phénomène plus complexe peut se produire quand on redéfinit un identificateur dans sa portée.

Considérons le programme suivant

```
int f()
{
    int i = 3;

    for (int j = 0; j < 3; j++)
    {
        int i = 4;

        i += j;
    }

    return i;
}</pre>
```

Ici, l'identificateur i a pour portée les lignes 3-13 mais dans les lignes 7-10 il y a un phénomène dit de masquage où la première définition est cachée par la seconde.

L'identificateur associé à une variable globale a pour portée l'ensemble des lignes suivant sa déclaration.

■ Remarque 18.3 En C, la portée d'un identificateur est statique : elle dépend uniquement du texte du programme au moment de la compilation.

En Python, la portée d'un identificateur est **dynamique** : elle peut dépendre de l'exécution d'un programme. Par exemple si on considère le programme Python

i

```
if condition:
```

La portée de l'identificateur x dépend ici du fait que la condition soit réalisée ou non.

IV Piles d'exécution, variables locales et paramètres

On a vu qu'en raison de leur durée de vie, les variables globales étaient allouées dès le chargement du programme. Pour les variables locales ainsi que la mécanique des appels, on utilise une **pile**.

Cette pile d'exécution est représentée en mémoire par un tableau et un indicateur de fond de pile.

Le remplissage de ce tableau s'effectue souvent des adresses hautes vers les adresses faibles : on empile en faisant diminuer les adresses.

■ Remarque 18.4 En fait, il existe des architectures où les adresses sont croissantes. Ce qui importe est que le tas et la pile aient des comportements opposées pour qu'ils puissent grandir dans la même zone mémoire.

Un compilateur peut faire le choix d'utiliser directement des registres processeurs pour les variables locales ou pour passer des paramètres à une fonction. Ici, pour simplifier, on va supposer que ce n'est pas le cas et que tout passe par la pile d'exécution.

■ Remarque 18.5 Afin de pouvoir appeler une fonction dans une bibliothèque potentiellement compilée avec un autre compilateur, il est nécessaire d'avoir une convention d'appels de fonctions. Une telle convention est appelée une *interface applicative binaire* (Application Binary Interface).

La convention System V AMD64 ABI qui est celle de Linux et macOS sur des architectures 64bits consiste à utiliser des registres entiers pour les six premiers arguments entiers ou pointeurs et des registres flottants pour les huit premiers arguments flottants. Les arguments suivants sont alors passés sur la pile (donc dès le septième entier/pointeur ou neuvième flottant).

La convention cdecl qui est assez répandue sur les architectures 32bits consiste à utiliser la pile. Par contre la valeur de retour est présente dans des registres comme pour la convention System V AMD64 ABI.

Lors d'un appel d'une fonction passant par la pile, on commence par empiler les paramètres (souvent de la droite vers la gauche) puis on empile l'adresse à laquelle doit revenir l'exécution une fois que la fonction aura terminé son exécution.

Au début de l'exécution de cette fonction, on place sur la pile l'adresse du fond de pile et on déplace celui-ci pour réserver de la place pour les variables locales.

L'empreinte sur la pile d'un appel de fonction est appelée une structure pile (**stack frame** en anglais). La pile est alors organisée, depuis l'appel au point d'entrée du programme, par empilement et dépilement de structures piles.

Structure pile associée à un appel de fonction

Voici un exemple possible de l'état de la pile d'exécution lors de l'exécution d'un programme compilé avec la norme cdecl (Il suffit d'ajouter l'argument -m32 pour compiler en 32bits).

```
int f(int a, int b)
2
                                                                      3 (x)
         int c = 3;
                                                                 sauvegarde registre
         /* pile ici après l'appel en l‡3 */
                                                                 adresse de retour
         c = c + b;
                                                                     10 (a)
         c = c * a;
         return c;
                                                                     12 (b)
    int main()
11
12
         int x = f(10,12);
13
```

A chaque appel de fonction, on va donc empiler une structure de pile complète, puis la dépiler à la sortie. Ce mécanisme est essentiel pour permettre la récurrence car il permet d'effectuer plusieurs appels d'une même fonction sans risquer que la mémoire utilisée lors d'un des appels interfère avec un autre. On comprend également les limites de la récursivité ici car cet empilement successif de structures de piles peut dépasser la taille maximale de la pile d'exécution : on parle alors de *dépassement de pile* ou **stack overflow** en anglais.

■ Remarque 18.6 Il est possible de définir des variables locales qui soient situées au même emplacement mémoire pour tous les appels d'une fonction, c'est ce qu'on appelé des variables *statiques* dans le paragraphe précédent.

Ce mécanisme est essentiellement géré comme les variables globales et il ne sera pas développé dans la suite.

■ **Note 18.3** Je me demande s'il faudrait parler plus précisement de la manière dont la pile est gérée avec les registres ebp/esp. Mais ça ne me semble pas apporter grand chose ici.

V Allocation dynamique

Comme cela a été vu dans la section sec. I, il est possible d'allouer dynamiquement de la mémoire. Pour gérer cette allocation dynamique, on passe par une zone mémoire appelé le *tas* ainsi que par un mécanisme d'allocation et de libération de mémoire au niveau du système.

Pour l'utilisateur, cette gestion interne est transparente et on peut se contenter de considérer qu'il y a deux mécanismes :

- l'allocation mémoire où on demande à ce qu'une zone mémoire d'une certaine taille soit allouée
- la **libération** mémoire où on signale que la zone mémoire peut être récupérée par le système.

Naturellement, la mémoire d'un ordinateur étant finie, il est très important de libérer au plus tôt la mémoire non utilisée pour éviter d'épuiser la mémoire. Quand un programme ne libère pas toute la mémoire qu'il alloue, on parle de **fuite mémoire**. L'empreinte mémoire d'un tel programme peut alors croître jusqu'à rendre le programme ou le système inutilisable.

V.1 Allocation

Pour allouer une zone mémoire, on utilise la fonction malloc dans stdlib.h de signature:

```
void *malloc(size_t size)
```

Ici size indique le nombre d'**octets** à allouer et la fonction renvoie un pointeur vers le premier octet alloué. Comme la fonction ne connait pas le type d'objets alloués, on utilise ainsi le type void *.

Ce type joue un rôle spécial et on peut changer directement le type de la valeur de retour sans rien avoir à écrire d'autre l'appel à malloc :

```
char *t = malloc(n);
```

■ Remarque 18.7 Dans le langage C++ qui peut être vu comme un successeur de C, il est obligatoire de préciser ici le nouveau type à l'aide d'un un transtypage. Pour convertir la valeur x vers le type char * on écrit alors (char *) x. Ainsi, pour allouer un tableau de n caractères, on utilisera:

```
char *t = (char *) malloc(n);
```

Bien que ce ne soit pas nécessaire en C, il est fréquent de rencontrer des programmes présentant de tels transtypages qui sont superflus mais corrects syntaxiquement en C.

Pour obtenir la taille à allouer, il peut être utile d'utiliser l'opérateur sizeof qui prend en entrée un type ou une valeur et renvoie sa taille. Ainsi si on peut allouer un tableau de n entiers non signés ainsi :

```
unsigned int *t = malloc( sizeof(unsigned int) * n );
```

et cet appel ne dépend de la taille prise par un unsigned int sur l'architecture.

Une autre raison de l'utilisation de sizeof est l'extensibilité. Par exemple, si on a un struct point représentant des points en 2D :

```
struct point {
    float x;
    float y;
};
```

on peut allouer un tableau de n points ainsi :

```
struct point *t = malloc( sizeof(struct point) * n );
```

Si jamais on change la structure pour représenter des points en 3D ainsi :

```
struct point {
    float x;
    float y;
    float z;
};
```

il sera inutile de changer le code d'allocation du tableau car sizeof(point) tiendra compte automatiquement du changement.

Si jamais une erreur empêche d'allouer la mémoire - ce qui peut être le cas s'il n'y a plus de mémoire disponible - le pointeur renvoyé par malloc a la valeur spéciale NULL.

■ Remarque 18.8 La zone mémoire renvoyée par malloc n'est pas initialisée. On ne peut pas supposer qu'elle soit remplie de la valeur 0. Il faut donc manuellement initialiser la mémoire après le retour de malloc.

V.2 Libération

Pour libérer la mémoire, on utilise la fonction free également présente dans stdlib.h et dont la signature est :

```
void free(void *ptr);
```

■ Remarque 18.9 Il est très important d'utiliser uniquement un pointeur obtenu précédemment par un appel à malloc et de ne pas l'utiliser plus d'une fois.

Le programme suivant provoque une erreur free(): invalid pointer à l'exécution mais est détécté par un avertissement du compilateur : warning: attempt to free a non-heap object 'a'.

```
#include <stdlib.h>

int main()
{
    int a;
    free(&a);
    return 0;
}
```

Le programme suivant alloue un tableau de deux char et appelle free sur l'adresse de la seconde case. En faisant cela, il n'y a pas d'avertissement car on appelle free sur un objet qui est effectivement sur le tas. On obtient alors à nouveau une erreur à l'exécution free (): invalid pointer.

```
#include <stdlib.h>
    char *a = malloc(2);
    free(&(a[1]));
    return 0;
```

Le programme suivant libère deux fois la mémoire et provoque l'erreur free (): double free detected in tcache 2 à l'exécution.

```
#include <stdlib.h>
int main()
   char *a = malloc(2);
    free(a);
   free(a);
    return 0;
```

V.3 Protection mémoire

Comme on l'a vu dans la première partie, quand un programme s'exécute il a un environnement mémoire constitué de plusieurs zones, parfois appelées segments, avec le droit d'écriture dans certaines d'entre elles.

Le système d'exploitation protège ainsi la mémoire et, au niveau matériel, l'unité de gestion de la mémoire connait les adresses accessibles à un programme. En cas d'accès anormal, le matériel provoque une erreur qui remonte au système d'exploitation qui termine l'exécution du programme avec une erreur souvent intitulée Segmentation fault.

Voici quelques exemples commentés produisant des erreurs de type segmentation fault à l'exécution.

```
Lecture à l'adresse 0, ce qui provoque toujours une erreur.

Même problème avec une adresse inaccessible ou invalide.

int main()
{
   int main()
{
   int *a = 0;
   return a[0];
}
```

Écriture dans une zone en lecture seule comme le segment du code.

```
int main()
{
    int *a = (int*) (&main);
    // a pointe sur le corps de la fonction main
    *a = 0;
    return 0;
}
```

V.4 Réalisation d'un système d'allocation de mémoire

■ Note 18.4 Prérequis : listes chaînées

Afin de comprendre comment fonctionne le tas, et en particulier malloc et free, on va simuler ici ce comportement en allouant une grande plage de mémoire avec malloc et en gérant le découpage et l'allocation de celle-ci.

Pour gérer les blocs mémoires libres, on utilise une liste circulaire. Une liste circulaire est une liste chaînée avec un lien supplémentaire entre le premier et le dernier maillon, ce qui fait qu'on peut considérer n'importe quel maillon comme étant la *tête* de la liste.

Une liste chaînée:

Ici le dernier maillon comprend un pointeur qui ne pointe sur rien indiqué par \times , en pratique il a la valeur NULL

Une liste circulaire:

Le seul changement est donc de faire pointer le dernier maillon sur le premier. Le fait d'avoir preserver les valeurs dans les maillons permet ici de voir ce qu'est devenu le premier maillon, mais on peut accéder à cette liste par n'importe lequel de ces maillons.

Les noeuds de la liste circulaire de blocs libres auront pour valeur un triplet (adresse, taille, libre) qui indique qu'à l'adresse adresse il y a un bloc de taille octets et le booléen libre indique si ce bloc a été alloué ou non.

Pour cela on commence par définir une structure bloc et une fonctiond de création d'un bloc :

```
struct bloc {
    void *adresse;
    uint32_t taille;
    bool libre;
    struct bloc *suivant;
};
```

```
struct bloc *cree_bloc(void *adresse, uint32_t taille, bool libre)
{
    struct bloc *b = malloc(sizeof(struct bloc));
    b->adresse = adresse;
    b->taille = taille;
    b->libre = libre;
    return b;
}
```

On définit ensuite deux variables globales :

- bloc_libres qui va pointer sur un maillon de la liste circulaire des blocs
- plage_memoire qui pointe sur l'adresse de la plage mémoire que l'on va gérer et servira à la libérer en sortie de programme.

```
struct bloc *blocs_libres;
void *plage_memoire;
```

La fonction creation_blocs_libres permet de créer la liste circulaire avec un premier bloc qui pointe sur lui-même et qui correspond à l'adresse que l'on va placer dans plage_memoire.

```
void creation_blocs_libres(uint32_t taille_bloc_initial)
{
    plage_memoire = malloc(taille_bloc_initial);
    blocs_libres = cree_bloc(plage_memoire, taille_bloc_initial, true);
    blocs_libres->suivant = blocs_libres; // boucle initiale
}
```

Pour libérer la liste à la sortie du programme, on définit la fonction destruction_blocs_libres qui présente ainsi le parcours usuel d'une liste circulaire: on procède comme pour une liste chaînée classique mais, au lieu d'utiliser un test bloc_courant->suivant == NULL pour l'arrêt, il faut se souvenir du premier bloc et tester pour voir si on est revenu au point de départ. On n'oublie pas de libérer l'espace plage_memoire à la fin.

```
void destruction_blocs_libres()
{
    struct bloc *premier_bloc = blocs_libres;
    struct bloc *bloc_courant = premier_bloc;

    // on boucle pour libérer chaque maillon
    while (true) {
        struct bloc *bloc_suivant = bloc_courant->suivant;
        free(bloc_courant);
        if (bloc_suivant == premier_bloc) return;
        bloc_courant = bloc_suivant;
    }

    // on libère la plage mémoire initiale
    free(plage_memoire);
}
```

Pour allouer t octets, on parcourt la liste des blocs jusqu'à trouver un bloc b libre de taille b.t telle que $b.t \geq t$. Si un tel bloc n'existe pas, on renvoie le pointeur NULL signe d'un échec d'allocation. Sinon, on indique que le bloc est occupé, on va renvoyer l'adresse du bloc obtenu

mais, si b.t > t on insère après b un nouveau bloc libre de taille b.t - t. Dans tous les cas, on fait pointer la liste des blocs libres vers le bloc qui suit b, qui est peut-être le bloc nouvellement créé et a de grandes chances d'être libre.

Ce mécanisme est implementé dans la fonction allocation:

```
void *allocation(uint32_t taille)
    struct bloc *premier_bloc = blocs_libres;
    struct bloc *bloc_courant = premier_bloc;
    while (!bloc_courant->libre || bloc_courant->taille < taille)</pre>
    {
        bloc_courant = bloc_courant->suivant;
        if (bloc_courant == premier_bloc)
            // Retour au point de départ : échec d'allocation
            return NULL;
        }
    }
    // bloc_courant pointe sur un bloc libre de bonne taille
    void *adresse = bloc_courant->adresse;
    bloc_courant->libre = false;
    if (bloc_courant->taille > taille) {
        // on le sépare en deux pour récupérer la place
        struct bloc *bloc_libre = cree_bloc(adresse+taille,
                bloc_courant->taille-taille, true);
        bloc_courant->taille = taille;
        bloc_libre->suivant = bloc_courant->suivant;
        bloc_courant->suivant = bloc_libre;
    }
    // On pointe sur le bloc suivant qui est sûrement libre
    blocs_libres = bloc_courant->suivant;
    return adresse;
```

Pour libérer un bloc, on parcourt la liste jusqu'à trouver le bloc correspondant à l'adresse à libérer et on indique que le bloc est libre. Ici, il y a deux assert permettant de s'assurer que l'adresse est bien celle d'un bloc et que le bloc n'a pas déjà été libéré.

```
void liberation(void *adresse)
{
    struct bloc *premier_bloc = blocs_libres;
    struct bloc *bloc_courant = premier_bloc;

while (bloc_courant->adresse != adresse)
    {
        bloc_courant = bloc_courant->suivant;
        // adresse invalide
        assert(bloc_courant != premier_bloc);
    }
}
```

```
// pas de double libération
assert(!bloc_courant->libre);

// on libère l'adresse
bloc_courant->libre = true;
}
```

Voici un premier programme de test de ces fonctions qui alloue 10 octets puis effectue plusieurs allocations. L'allocation de c échoue car il n'y a plus de place libre.

```
int main(void)
   {
2
        creation_blocs_libres(10);
3
4
        uint8_t *a = allocation(5);
5
        uint8_t *b = allocation(3);
6
        uint8_t *c = allocation(3);
7
        liberation(b);
        uint8_t *d = allocation(2);
<u>ن</u>
10
        printf("Allocation a:%p b:%p c:%p d:%p\n",
11
                 (void *)a, (void *)b, (void *)c, (void *)d);
12
13
        destruction_blocs_libres();
14
15
        return 0;
16
17
```

Ce programme affiche alors

```
Allocation a:0x55c6c0c922a0 b:0x55c6c0c922a5 c:(nil) d:0x55c6c0c922a5
```

Voici l'évolution de la liste circulaire en présentant les maillons sous la forme :

L'évolution de la liste des blocs entre les lignes 3 et 9 est alors :

• Ligne 3

• Ligne 5

• Ligne 6

• Ligne 8

• Ligne 9

Cette méthode d'allocation a un défaut majeur : elle fragmente l'espace libre. Dans le programme suivant, il sera impossible d'allouer b car la liste circulaire contient deux blocs libres de 5 octets et non une bloc libre de 10 octets.

```
creation_blocs_libres(10);

uint8_t *a = allocation(5)
liberation(a);
uint8_t *b = allocation(10);
```

■ Remarque 18.10 On peut observer ce phénomène sur le diagramme précédent à la ligne 8 où deux blocs contigus sont libres et pourraient être fusionnés en un unique bloc de 5 octets.

On peut éviter cela en effectuant une phase de coalescence des blocs libres à la libération. En vertu de la nature de la liste circulaire, il est nécessaire de fusionner un bloc libre avec les blocs suivants. En utilisant une liste circulaire doublement chaînée, on pourrait également fusionner avec les blocs précédents.

Pour cela on change la fonction liberation ainsi:

```
void liberation(void *adresse)
{
    struct bloc *premier_bloc = blocs_libres;
    struct bloc *bloc_courant = premier_bloc;
```

```
while (bloc_courant->adresse != adresse)
    bloc_courant = bloc_courant->suivant;
    // adresse invalide
    assert(bloc_courant != premier_bloc);
}
// pas de double libération
assert(!bloc_courant->libre);
// on libère l'adresse
bloc_courant->libre = true;
premier_bloc = bloc_courant;
bloc_courant = bloc_courant->suivant;
while (bloc_courant != premier_bloc && bloc_courant->libre)
    struct bloc* actuel = bloc_courant;
    premier_bloc->taille += bloc_courant->taille;
    bloc_courant = bloc_courant->suivant;
    free(actuel); // on libere le bloc inutile
}
premier_bloc->suivant = bloc_courant;
```