

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по второму заданию в рамках курса "Суперкомпьютерное моделирование и технологии"

Выполнил:

студент 622 группы

Дремин М. В.

Вариант 8

Содержание

1	Математическая постановка задачи	3
2	Численный метод решения	3
3	Аналитический метод решения	4
4	Программная реализация	5
5	Результаты расчетов	6
6	Визуализации	6

1. Математическая постановка задачи

Необходимо решить однородное волновое уравнение

$$\frac{\partial^2 u}{\partial t^2} = a^2 \Delta u$$
, где $a^2 = 1$

С начальным условием

$$u|_{t=0} = \phi(x, y, z),$$
$$\frac{\partial u}{\partial t}\Big|_{t=0} = 0$$

И граничными условиями

$$u(0, y, z, t) = u(L_x, y, z, t),$$

$$u(x, 0, z, t) = u(x, L_y, z, t),$$

$$u(x, y, 0, t) = u(x, y, L_z, t),$$

$$u_x(0, y, z, t) = u_x(L_x, y, z, t),$$

$$u_y(x, 0, z, t) = u_y(x, L_y, z, t),$$

$$u_z(x, y, 0, t) = u_z(x, y, L_z, t).$$

2. Численный метод решения

Для решения данной задачи предлагается дискретизировать задачу на фиксированной решетке, а затем использовать метод конечных разностей. Пусть решетка имеет размерность (N_x, N_y, N_z, K) . Тогда,

$$\omega_{ht} = \omega_h \times \omega_{\tau}$$

где

$$\omega_h = \{(x_i = ih_x, y_j = jh_y, z_k = kh_z), i, j, k = 0, 1, ..., N, h_{x,y,z} = \frac{L_{x,y,z}}{N}\}$$

$$\omega_{\tau} = \{(t_n = n\tau, n = 0, 1, ..., K, \tau = \frac{T}{K})\}$$

Далее будем считать, что

$$N_x = N_y = N_z = N, \quad K = 20$$

$$L_x = L_y = L_z = L, \quad T = 0.4$$

Применив на данной решетке метод конечных разностей получим

$$u_{ijk}^{n+1} = \tau^2 \cdot a^2 \Delta_h u_{ijk}^n + 2u_{ijk}^n - u_{ijk}^{n-1}$$

где Δ_h - семиточечный разностный аналог оператора Лапласа:

$$\Delta_h u_{ijk}^n = \frac{u_{i-1,jk}^n - 2u_{ijk}^n + u_{i+1,jk}^n}{h^2} + \frac{u_{ij-1,k}^n - 2u_{ijk}^n + u_{ij+1,k}^n}{h^2} + \frac{u_{ijk-1}^n - 2u_{ijk}^n + u_{ijk+1}^n}{h^2}$$

Граничные условия переходят в уравнения

$$\begin{split} u^{n+1}_{0jk} &= u^{n+1}_{Njk}, \qquad u^{n+1}_{i0k} &= u^{n+1}_{iNk}, \qquad u^{n+1}_{ij0} &= u^{n+1}_{ijN}, \\ u^{n+1}_{N+1,jk} &= u^{n+1}_{1jk}, \quad u^{n+1}_{i,N+1,k} &= u^{n+1}_{i,1k}, \quad u^{n+1}_{ij,N+1} &= u^{n+1}_{ij,1}, \end{split}$$

$$i, j, k = 0, 1, ..., N.$$

Начальные условия переходят в уравнение

$$u_{ijk}^1 = u_{ijk}^0 + \frac{\tau}{2} \cdot a^2 \Delta_h \cdot u_{ijk}^0$$

Значения u^0_{ijk} инициализируются исходя из значения аналитического решения в точке t=0.

3. Аналитический метод решения

$$u_{analytical} = \sin\left(\frac{2\pi x}{L_x}\right) \cdot \sin\left(\frac{4\pi y}{L_y}\right) \cdot \sin\left(\frac{6\pi z}{L_z}\right) \cdot \cos(a_t \cdot t), \quad a_t = \pi \sqrt{\frac{4}{L_x^2} + \frac{16}{L_y^2} + \frac{36}{L_z^2}}$$

4. Программная реализация

Код парллельной реализации лежит на github

Основные файлы:

- main.cpp основная программа, реализует численный метод
- grid.hpp заголовочный файл с реализацией класса Grid (сетка) и операций с ним
- function.hpp заголовочный файл с реализацией класса Function (аналитической функции решения) и операций с ней

Вспомогательные файлы:

- run.py запуск задач по сетке
- build.sh билд программ для получения аналитического и численного решения
- analysis.ipynb ноутбук для построения визуализаций и таблиц

Запуск решения:

Листинг 1: Пример запуска решения

bash build.sh
./main L grid_size

Параллелизация основого цикла расчета реализована с помощью

#pragma omp for reduction(max:max_err),

которая позволяет параллельно выполнить внешний цикл и взять операцию максимума глобально (по локальным переменным max_err в нитях).

5. Результаты расчетов

L	Число OpenMP нитей	Число точек сетки	Погрешность	Время решения	Ускорение
1.0	1	128	0.000324	25.60350	1.000000
1.0	2	128	0.000324	13.18750	1.940668
1.0	4	128	0.000324	8.71851	2.936683
1.0	8	128	0.000324	6.71273	3.814171
1.0	16	128	0.000324	6.84504	3.740446
1.0	32	128	0.000324	5.02725	5.092943
1.0	1	256	0.000021	201.32200	1.000000
1.0	2	256	0.000021	103.22300	1.950360
1.0	4	256	0.000021	58.16300	3.461341
1.0	8	256	0.000021	56.08470	3.589606
1.0	16	256	0.000021	54.99850	3.660500
1.0	32	256	0.000021	47.76840	4.214544
3.0	1	128	0.000042	25.09600	1.000000
3.0	2	128	0.000042	12.78340	1.963171
3.0	4	128	0.000042	10.54620	2.379625
3.0	8	128	0.000042	6.73726	3.726956
3.0	16	128	0.000042	5.91059	4.245938
3.0	32	128	0.000042	4.57800	5.481870
3.0	1	256	0.000003	201.27100	1.000000
3.0	2	256	0.000003	102.87000	1.956552
3.0	4	256	0.000003	58.32650	3.450764
3.0	8	256	0.000003	56.40510	3.568312
3.0	16	256	0.000003	57.69250	3.488686
3.0	32	256	0.000003	47.93380	4.198937

Таблица 1: Результаты расчетов на ПВС IBM Polus (OpenMP)

6. Визуализации

Анимированные визуализации можно найти на github

Рис. 1: Визуализация аналитического решения

Рис. 2: Визуализация численного решения

Рис. 3: Визуализация ошибки

Рис. 4: Визуализация абсолютной ошибки