Uncertainty

Contents

- Basic Probability Notation
 - Language of Propositions in Probability Assertions
- Inference Using Full Joint Distributions
- Independence
- Bayes' Rule and Its Use
- Wumpus World

Basic Probability Notation

- \diamond Begin with a set Ω the sample space
 - e.g., 6 possible rolls of a die
 - $\omega \in \Omega$ is a sample point / possible world / atomic event
- \diamond A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

$$0 \le P(\omega) \le 1$$

$$\sum_{\omega} P(\omega) = 1$$

e.g.,
$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$$

 An event A is any subset of Ω (i.e., a set of sample points or atomic events)

$$P(A) = \sum_{\{\omega \in A\}} P(\omega)$$

e.g.,
$$P(\text{die roll} < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2$$

- A random variable is a function from sample points to some range e.g., the real numbers or Booleans
 - e.g., Odd(1) = true

P induces a probability distribution for any r.v. X:

$$P(X=x) = \sum_{\{\omega: X(\omega)=x\}} P(\omega)$$

e.g.,
$$P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2$$

- Boolean random variables
 - e.g., Cavity (do I have a cavity?)
 - Cavity = true (false) is a proposition, also written $cavity (\neg cavity)$
- Discrete random variables (finite or infinite)
 - e.g., Weather is one of $\langle sunny, rain, cloudy, snow \rangle$
 - Weather = rain is a proposition
 - Values must be exhaustive and mutually exclusive
- Continuous random variables (bounded or unbounded)
 - e.g., Temp = 21.6, also allow, e.g., Temp < 22.0
- A proposition is an arbitrary Boolean combination of basic propositions
 - e.g., $Weather = rain \land Temp < 22.0$

Prior or unconditional probabilities of propositions

e.g.,
$$P(Cavity = true) = 0.2$$
 and $P(Weather = sunny) = 0.72$ correspond to belief prior to arrival of any (new) evidence

- Probability distribution gives values for all possible assignments:
 - P(Weather) = (0.72, 0.1, 0.08, 0.1) (normalized, i.e., sums to 1)
- Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point)
 - P(Weather, Cavity) is a 4×2 matrix of values:

Weather =	sunny	rain	cloudy	snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

 Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

- Probability for continuous variables
 - Express distribution as a parameterized function of value: $P(X=x) = U[18, 26](x) \cdots$ uniform density between 18 and 26

- Here P is a density; integrates to 1
 - P(X = 20.5) = 0.125 really means

$$\lim_{dx\to 0} \frac{P(20.5 \le X \le 20.5 + dx)}{dx} = 0.125$$

Gaussian density

$$P(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- ♦ Conditional or posterior probabilities, e.g., P(cavity | toothache) = 0.8, i.e., given that toothache is all I know
 - NOT "if toothache then 80% chance of cavity"
- Notation for conditional distributions:
 - **P**(*Cavity* | *Toothache*) is a 2-element vector of 2-element vectors
- If we know more, e.g., cavity is also given, then we have

$$P(cavity | toothache, cavity) = 1$$

Note: the less specific belief remains valid after more evidence arrives, but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,

$$P(cavity | toothache, 49ersWin) = P(cavity | toothache) = 0.8$$

This kind of inference, sanctioned by domain knowledge, is crucial

Definition of conditional probability:

$$P(a \mid b) = \frac{P(a \land b)}{P(b)} \text{ if } P(b) \neq 0$$

Product rule gives an alternative formulation:

$$P(a \wedge b) = P(a \mid b) P(b) = P(b \mid a) P(a)$$

A general version holds for whole distributions, e.g.,

$$\mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather | Cavity) \mathbf{P}(Cavity)$$

- View as a 4×2 set of equations, not matrix multiplication
- Chain rule is derived by successive application of product rule:

$$\mathbf{P}(X_{1}, \dots, X_{n}) = \mathbf{P}(X_{1}, \dots, X_{n-1}) \mathbf{P}(X_{n} | X_{1}, \dots, X_{n-1})
= \mathbf{P}(X_{1}, \dots, X_{n-2}) \mathbf{P}(X_{n-1} | X_{1}, \dots, X_{n-2}) \mathbf{P}(X_{n} | X_{1}, \dots, X_{n-1})
= \dots = \prod_{i=1}^{n} \mathbf{P}(X_{i} | X_{1}, \dots, X_{i-1})
= \mathbf{P}(X_{1}, X_{2}, X_{3}, X_{4})
= \mathbf{P}(X_{1}) \mathbf{P}(X_{2} | X_{1}) \mathbf{P}(X_{3} | X_{1}, X_{2}) \mathbf{P}(X_{4} | X_{1}, X_{2}, X_{3})$$

Start with the joint distribution

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Cavity	Toothache	Catch	
T	Т	Т	.108
T	Т	F	.102
T	F	Т	.072
T	F	F	.008
F	Т	Т	.016
F	Т	F	.064
F	F	Т	.144
F	F	F	.576

- Joint probability distribution specifies probability of every atomic event
- \diamond For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega: \ \omega \models \phi} P(\omega)$$

Start with the joint distribution

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- Joint probability distribution species probability of every atomic event
- \diamond For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega: \ \omega \models \phi} P(\omega)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

$$\updownarrow$$

$$Toothache = true$$

Start with the joint distribution

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- Joint probability distribution species probability of every atomic event
- \diamond For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega: \ \omega \models \phi} P(\omega)$$

$$P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064$$

$$= 0.28$$

Start with the joint distribution

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity \mid toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

P(toothache) is not necessary if we consider the ratio $P(cavity, toothache) : P(\neg cavity, toothache)$

Normalization

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

$$\mathbf{P}(Cavity \mid toothache) \\
= \frac{\mathbf{P}(Cavity, toothache)}{P(toothache)}$$

 \diamond Denominator can be viewed as a normalization constant α

$$\mathbf{P}(Cavity \mid toothache) = \alpha \mathbf{P}(Cavity, toothache)$$

$$= \alpha [\mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch)]$$

$$= \alpha [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle]$$

$$= \alpha \langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle$$

 General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

General marginalization (summing out) rule for any sets of variables Y and Z:

$$P(Y) = \sum_{z \in Z} P(Y, z)$$

 A distribution over Y can be obtained by summing out the probabilities for each possible value of the other variables

```
P(toothache) = P(toothache, cavity) + P(toothache, \neg cavity) \\ = P(toothache, cavity, catch) + P(toothache, cavity, \neg catch) \\ + P(toothache, \neg cavity, catch) + P(toothache, \neg cavity, \neg catch)
```

Conditioning rule:

$$\mathbf{P}(\mathbf{Y}) = \sum_{\mathbf{z} \in \mathbf{Z}} \mathbf{P}(\mathbf{Y} \mid \mathbf{z}) P(\mathbf{z})$$

Let X be all the variables. Typically, we want
 the posterior joint distribution of the query variables Y
 given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y | E = e) = \alpha P(Y, E = e) = \alpha \sum_{h} P(Y, E = e, H = h)$$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

- Obvious problems:
 - 1) Worst-case time complexity $O(d^n)$ where d is the largest arity
 - 2) Space complexity $O(d^n)$ to store the joint distribution
 - 3) How to find the numbers for $O(d^n)$ entries???

Independence

 \diamond A and B are independent if and only if

$$P(A | B) = P(A)$$
 or $P(B | A) = P(B)$ or $P(A, B) = P(A) P(B)$

P(Toothache, Cavity, Catch, Weather)

= **P**(*Toothache*, *Cavity*, *Catch*) **P**(*Weather*)

- \diamond 32 entries reduced to 12; for *n* independent biased coins, $2^n \rightarrow n$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Independence

- \bullet **P**(*Toothache*, *Cavity*, *Catch*) has $2^3 1 = 7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - (1) P(catch | toothache, cavity) = P(catch | cavity)
- The same independence holds if I haven't got a cavity:
 - (2) $P(catch \mid toothache, \neg cavity) = P(catch \mid \neg cavity)$
- Catch is conditionally independent of Toothache given Cavity:

```
\mathbf{P}(Catch \mid Toothache, Cavity) = \mathbf{P}(Catch \mid Cavity)
```

Equivalent statements:

```
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

P(Toothache, Catch | Cavity)

= P(Toothache | Cavity) P(Catch | Cavity)
```

Independence

Write out full joint distribution using chain rule:

```
P(Toothache, Catch, Cavity)
```

- $= \mathbf{P}(Toothache \mid Catch, Cavity) \, \mathbf{P}(Catch, Cavity)$
- $= \mathbf{P}(Toothache \mid Catch, Cavity) \, \mathbf{P}(Catch \mid Cavity) \, \mathbf{P}(Cavity)$
- $= \mathbf{P}(Toothache \mid Cavity) \, \mathbf{P}(Catch \mid Cavity) \, \mathbf{P}(Cavity)$
- I.e., 2+2+1=5 independent numbers (equations (1) and (2) remove 2)
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n
- Conditional independence is our most basic and robust form of knowledge about uncertain environments

Bayes' Rule and Its Use

ightharpoonup Product rule $P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)$

⇒ Bayes' rule:
$$P(a \mid b) = \frac{P(b \mid a)P(a)}{P(b)}$$

or in distribution form

$$\mathbf{P}(Y \mid X) = \frac{\mathbf{P}(X \mid Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X \mid Y)\mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause \mid Effect) = \frac{P(Effect \mid Cause)P(Cause)}{P(Effect)}$$

♦ E.g., let M be meningitis, S be stiff neck:

$$P(m \mid s) = \frac{P(s \mid m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

Bayes' Rule and Its Use

Bayes' rule and conditional independence

 $\mathbf{P}(Cavity | toothache, catch) (= \alpha \mathbf{P}(Cavity, toothache, catch))$

- = $\alpha P(toothache, catch | Cavity) P(Cavity)$
- = $\alpha P(toothache | Cavity) P(catch | Cavity) P(Cavity)$

This is an example of a Naïve Bayes model:

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \prod_i \mathbf{P}(Effect_i \mid Cause)$$

♦ Total number of parameters is linear in n

- $P_{i,j} = true \text{ iff } [i,j] \text{ contains a pit (probability of a pit is } 0.2)$
- \bullet $B_{i,j} = true$ iff [i, j] is breezy (breezy if an adjacent square has a pit)

Will the yellow squares be O.K.?

- We know the following facts:
 - $b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$
 - $\bullet \quad known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$
- \diamond Query: $\mathbf{P}(P_{1,3} | b, known)$

- ♦ Define $Unknown = P_{i,j}$ s other than $P_{1,3}$ and known
- For inference by enumeration, we have

$$\mathbf{P}(P_{1,3} | b, known) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, b, known, unknown)$$

$$= \alpha \sum_{unknown} \mathbf{P}(b \mid P_{1,3}, known, unknown) \mathbf{P}(P_{1,3}, known, unknown)$$

$$0 \text{ or } 1$$

(Do it this way to get **P**(*Effect* | *Cause*))

But, grows exponentially with number of squares!

 Basic insight: observations are conditionally independent of other hidden squares given neighboring hidden squares

 \diamond Define $Unknown = Fringe \cup Other$

$$\mathbf{P}(b \mid P_{1,3}, Known, Unknown) = \mathbf{P}(b \mid P_{1,3}, Known, Fringe)$$

Manipulate query into a form where we can use this!

$$\mathbf{P}(P_{1,3} \mid b, known) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, b, known, unknown)$$

$$= \alpha \sum_{unknown} \mathbf{P}(b \mid P_{1,3}, known, unknown) \mathbf{P}(P_{1,3}, known, unknown)$$

=
$$\alpha \sum_{\text{fringe other}} \mathbf{P}(b \mid P_{1,3}, known, fringe, other) \mathbf{P}(P_{1,3}, known, fringe, other)$$

$$= \alpha \sum_{fringe} \mathbf{P}(b \mid P_{1,3}, known, fringe) \sum_{other} \mathbf{P}(P_{1,3}, known, fringe, other)$$

=
$$\alpha \sum_{fringe} \mathbf{P}(b \mid P_{1,3}, known, fringe) \mathbf{P}(P_{1,3}, known, fringe)$$

$$= \alpha \sum_{fringe} \mathbf{P}(b \mid P_{1,3}, known, fringe) \mathbf{P}(P_{1,3}) P(known) P(fringe)$$

=
$$\alpha P(known)\mathbf{P}(P_{1,3})\sum_{fringe}\mathbf{P}(b \mid P_{1,3}, known, fringe)P(fringe)$$

$$= \alpha' \mathbf{P}(P_{1,3}) \sum_{\textit{fringe}} \mathbf{P}(b \mid P_{1,3}, known, \textit{fringe}) P(\textit{fringe})$$

$$\mathbf{P}(P_{1,3} \mid b, known) = \alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b \mid P_{1,3}, known, fringe) P(fringe)$$

$$= \alpha' \langle 0.2, 0.8 \rangle \langle 0.04 + 0.16 + 0.16 + 0, 0.04 + 0.16 + 0 + 0 \rangle$$

$$= \alpha' \langle 0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16) \rangle$$

$$\approx \langle 0.31, 0.69 \rangle$$

$$\mathbf{P}(P_{2,2} \mid b, known) \approx \langle 0.86, 0.14 \rangle$$