Thermodynamics of a flare related on-disk active region sigmoid

Sargam Mulay^{1,2}, Durgesh Tripathi², Helen Mason³

¹School of Physics & Astronomy, University of Glasgow, UK ²Inter-University Centre for Astronomy and Astrophysics, Pune, India ³DAMTP, Centre for Mathematical Sciences, University of Cambridge, UK

Overview

- Introduction to sigmoids
- Study of on-disk sigmoid observed on Dec. 26 and 28, 2015
- Temperature investigation of a flaring sigmoid
- Summary

Thermodynamics of a flare related on-disk active region sigmoid

Mulay, S. et al. in preparation for MNRAS

Sigmoids

- Show S-shaped (reverse S or two J-shaped) structures
- Highly sheared and twisted loops that are formed along the polarity inversion line
- Considered to be one of the best pre-eruption signatures

26-Dec-2015 AIA 94, 131, 304 Å composite image 02:25:07 UT -100 Active Region NOAA 12473 -200 -300 -300 -400 -500 -600 -500 -400 -300

Objective of my research

- Investigation of temperature of a sigmoid during their lifetime on solar disk
- Relationship between sigmoids and solar flares
- How temperature of a sigmoid varies during the impulsive, peak and decay phase of flares

AIA 1600 Å 02:25:03 UT

Data collection

- Using X-ray (Hinode/XRT) and EUV (SDO/AIA) imaging observations
- Full disk XRT images from the Solar Monitor website, XRT event archive
- On-disk sigmoids between +/- 50° longitude 2010 2018 > 50 events

Methodology

- Temperature analysis using different methods such as
- Filter ratio two XRT channels, AIA 94 and 131 Å channels,
 GOES X-ray fluxes from two filters
- Emission measure analysis using AIA observations Cheung et al. 2015
- Study of Fe XVIII emission in sigmoids from AIA 94 Å channel (Del Zanna 2013)
- Dec. 24 28, 2015 Sigmoid NOAA AR 12473 4 B, 11 C and 2 M X-ray class
 - 1) Dec. 26, 2015 C1.6 GOES flare only brightening along sigmoid
 - 2) Dec. 28, 2015 M1.8 GOES flare sigmoid eruption

Sigmoid location in AIA, SOT and HMI images

Temporal and spatial correlation between GOES flares and sigmoid EUV emission

Temperature estimate using GOES filter ratio

Thomas et al. (1985), Garcia (1994), Hara et al. (1992)

Fe XVIII emission derived using the method by Del Zanna 2013

$$I(Fe \text{ XVIII } (93.93 \text{ Å})) = I(94 \text{ Å}) - \frac{I(211 \text{ Å})}{120} - \frac{I(171 \text{ Å})}{450}$$

Using CHIANTI atomic database (Dere et al. 1997, Del Zanna 2015)

Fe XVIII emission derived using the method by Del Zanna 2013

$$I(Fe \text{ XVIII } (93.93 \text{ Å})) = I(94 \text{ Å}) - \frac{I(211 \text{ Å})}{120} - \frac{I(171 \text{ Å})}{450}$$

Using CHIANTI atomic database (Dere et al. 1997, Del Zanna 2015)

Temperature estimate using XRT filter ratio

(Hara et al. 1992, Narukage et al. 2011)

Using CHIANTI atomic database (Dere et al. 1997, Del Zanna 2015)

Temperature estimate using AIA filter ratio

Temperature estimate using Emission Measure

The amount of plasma along the line-of-sight that emits observed radiation and has temperature between T and T+dT.

EM method by Cheung et al. 2015

Temperature estimate using Emission Measure

The amount of plasma along the line-of-sight that emits observed radiation and has temperature between T and T+dT.

EM method by Cheung et al. 2015

Table 1. Sigmoid and X-ray flare observation details

(Col. 1)	(Col. 2)	(Col. 3)	(Col. 4)	(Col. 5)	(Col. 6)	(Col. 7)	(Col. 8)	(Col. 9)	(Col. 10)	(Col. 11)	(Col. 12)
Date	Flare	X-ray	Phase of	Time	GOES temp.	Time	Temp.	Time	AIA filter-ratio	Time	XRT filter-ratio
	no.	Class	the flare	(UT)	(MK)	(UT)	from EM (MK)	(UT)	temp (MK)	(UT)	temp (MK)
26-Dec-2015	8	C1.6	pre-flare	01:39:00	2.3	01:39:00	2-5	_	-	01:38:35	3.0
AR 12473			start	01:44:00	3	01:44:00	2-5	-	-	01:44:00	2-3.5
S22 E09 $(\beta\gamma)$			peak	01:54:00	10	01:54:00	3-12	01:54:00	8-10	01:57:00	9-10
Jets - 10			end	02:32:00	5.5	02:32:00	3-12	-	_	No XRT data	
28-Dec-2015	12	M1.8	pre-flare	11:15:00	4	11:15:00	3-6	_	-	No	
AR 12473			start	11:20:00	4	11:20:00	3-6		-	XRT	
S22 W18 $(\beta\delta)$			peak	12:45:00	14.5	12:45:00	3-14	12:45:00	8-12	data	
			end	14:09:00	8.8	14:09:00	5-9	-	-	available	

Multithermal plasma along the sigmoid!

Spectroscopic observations -

- Gibson et al. (1999) and Tripathi et al. (2006) \sim 2 MK (Fe XVI and Si XII lines) close to the pre-flare sigmoid temperatures
- Del Zanna et al. (2002) Fe XIX 8 MK good agreement with GOES peak flare T_{peak}

EUV imaging observations -

Cheng et al. (2014) - 10 MK - show good agreement with our results

Study provides important parameters for the thermodynamic modeling!

Mulay, S. et al. in preparation for MNRAS