YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

EKSKAVATÖR KOLLARININ TASARIMI

Makina Mühendisi Övün Vedat OYMAN

FBE Makina Mühendisliği Anabilim Dalı Konstrüksiyon Programında Hazırlanan

YÜKSEK LİSANS TEZİ

İÇİNDEKİLER

		Sayfa
SİMGE I	İSTESİ	iv-v
ŞEKİL L	İSTESİ	vi-vii
ÇİZELG	E LİSTESİ	viiiii
ÖNSÖZ.		ix
ÖZET		X
	ACT	
1	GİRİŞ	
	,	
2	ÇALIŞMA DONANIMI	
2.1 2.1.1	Çalışma donanımını oluşturan parçalar	
2.1.1	BoomKol	
2.1.3	Kepçe	
2.1.4	Hidrolik silindirler	
2.2	Çalışma donanımının kuvvet analizi	7
3	UYGULAMA	12
3.1	Denge denklemlerinin kazma kuvvetleri, λ, φ, μ değerlerine göre tanımlar	ıması.12
3.1.1	Kepçe kazma kuvvetine göre denge denklemleri	12
3.1.1.1	Kepçe bölümü	
3.1.1.2	Kol bölümü	
3.1.1.3 3.1.2	Boom bölümüKol kazma kuvvetine göre denge denklemleri	
3.1.2.1	Kol bölümü	
3.1.2.2	Kepçe bölümü	
3.1.2.3	Boom bölümü	
3.2	Kuvvet analizleri	19
3.2.1	Kepçe kazma kuvvetine göre kuvvet analizi	19
3.2.2	Kol kazma kuvvetine göre kuvvet analizi	
3.3	Çalışma donanımına etki eden maksimum kuvvetlerin sınıflandırılması	
3.3.1	Silindirlerin basınç sınırlamaları	
3.3.2	Sistemin tüm dengesinden ortaya çıkan sınırlamalar	25
4.	MUKAVEMET HESAPLARI	30
4.1	Hidrolik silindirlerin hesabı	
4.1.1	Kepçe hidrolik silindiri	
4.1.2	Kol Hidrolik silindiri	
4.1.3 4.2	Boom hidrolik silindiri	
4.2 4.3	12 ve 13 numaralı parça	
4.3.1	1 numaralı perno	
4 3 2	2 numaralı nerno	38

4.3.3	3 numaralı perno	39
4.3.4	4 numaralı perno	
4.3.5	5 numaralı perno	43
4.3.6	6 numaralı perno	44
4.3.7	7 numaralı perno	45
4.3.8	8 numaralı perno	46
4.3.9	9 numaralı perno	47
4.4	Boom ve kol hesabı	50
4.4.1	Boom hesabı	50
4.4.2	Kol hesabı	53
5.	SONUÇ	54
KAYNA	AKLAR	57
EKLER.		58
Ek 1	Ekskavatör parçalarının serbest cisim diyagramları	59
Ek 2	Kazma kuvvetleri	
Ek 3	Kepçenin φ değerlerine bağlı olarak konumları	61
Ek 4	Kepçe kazma kuvveti etkisi altında sisteme etkiyen kuvvetlerin ϕ , λ , μ	değerlerine
	göre değişimi	
Ek 5	Kol kazma kuvveti etkisi altında sisteme etkiyen kuvvetlerin φ , λ , μ de	ğerlerine
	göre değişimi	63
Ek 6	F _a , F _b , F _c kuvvetlerinin grafiksel gösterimleri	64
Ek 7	Hesaplamalarda kullanılan değişkenler	65
Ek 8	Boom	66
Ek 9	Kol	67
Ek 10	Kol hidrolik silindiri	68
Ek 11	Boom hidrolik silindiri	69
Ek 12	Kepçe hidrolik silindiri	70
ÖZGEC	MİS	71

SIMGE LISTESI

SINIGE E	
\boldsymbol{A}	F ₁₂ kuvvetinin düşey eksenle yaptığı açı
A_o	A açısı başlangıç değeri
B	Kazma kuvvetlerinin düşey eksenle yaptığı açı
B_o	B açısı başlangıç değeri
C	F _b kuvvetinin düşey eksenle yaptığı açı
C_o	C açısı başlangıç değeri
d	Çap
F_a	Boom silindiri kuvveti
F_b	Kol silindiri kuvveti
F_c	Kepçe silindiri kuvveti
F_B	Kol kazma kuvveti
F_C	Kepçe kazma kuvveti
F_{pim1}	1 numaralı pernoya etkiyen kuvvet
F_{pim2}	2 numaralı pernoya etkiyen kuvvet
F_{pim3}	3 numaralı pernoya etkiyen kuvvet
F_{pim4}	4 numaralı pernoya etkiyen kuvvet
F_{pim5}	5 numaralı pernoya etkiyen kuvvet
F_{pim6}	6 numaralı pernoya etkiyen kuvvet
F_{pim7}	7 numaralı pernoya etkiyen kuvvet
F_{pim8}	8 numaralı pernoya etkiyen kuvvet
F_{pim9}	9 numaralı pernoya etkiyen kuvvet
F_{12}	12 numaralı parçaya etkiyen kuvvet
F_{13}	13 numaralı parçaya etkiyen kuvvet
I	Atalet momenti
K_b	Boyut faktörü
K_{ς}	Çentik faktörü
$K_{\rm y}$	Yüzey faktörü
M	Moment
M_e	Eğilme momenti
P	Basınç
p	Yüzey basıncı
p_{em}	Yüzey emniyet basıncı
R S	Kuvvet kolu uzunluğu
W	Emniyet katsayısı Ağırlık
	F _c kuvvetinin 13 numaralı parçayla yaptığı açı
α	
β	F ₁₂ kuvvetinin 13 numaralı parçayla yaptığı açı
φ	Kepçe dönme açısı
μ	Kol dönme açısı
λ	Boom dönme açısı
\mathcal{O}_{AK}	Akma gerilmesi
\mathcal{O}_{K}	Kopma gerilmesi
σ_{c}	Çekme gerilmesi
$\mathcal{O}_{\c CD}$	Çekme gerilmesi sürekli mukavemet değeri
\mathcal{O}_D	Sürekli mukavemet değeri
σ_e	Eğilme gerilmesi
σ_{eD}	Eğilme gerilmesi sürekli mukavemet değeri

σ_{g}	Gerilme genliği
σ_{max}	Maksimum gerilme
σ_{min}	Minimum gerilme
σ_o	Ortalama gerilme

ŞEKİL LİSTESİ

Şekil 1.1	Ekskavatörü oluşturan bölümler	1
Şekil 1.2	Ekskavatörün enerji akış şeması	2
Şekil 1.3	Ekskavatörlerin hidrolik donanımı	2
Şekil 2.1	Çalışma donanımı	4
Şekil 2.2	Çalışma donanımında önemli büyüklükler	5
Şekil 2.3	Tek ve iki parçalı boom	6
Şekil 2.4	Kol	
Şekil 2.5	Çift etkili hidrolik silindir	6
Şekil 2.6	Kepçe için serbest cisim diyagramı	7
Şekil 2.7	F ₁₂ , F ₁₃ , F _c kuvvetlerinin hesaplanması	
Şekil 2.8	7 numaralı perno çevresindeki kuvvetler için serbest cisim diyagramı	9
Şekil 2.9	Boom serbest cisim diyagramı	
Şekil 2.10	Çalışma donanımı konumlarının belirlenmesi	
Şekil 2.11	Denge denklemleri için gerekli terimlerin bulunması	
Şekil 3.1	Kepçe kazma kuvveti için kepçe bölümü serbest cisim diyagramı	
Şekil 3.2	$R_1^{F_{12}}$ uzunluğunun φ değerine göre değişimi	13
Şekil 3.3	α ve β değerlerinin ϕ değerine göre değişimi	
Şekil 3.4	A ₀ değerinin φ değerine göre değişimi	
Şekil 3.5	Kepçe kazma kuvveti için kol bölümü serbest cisim diyagramı	
Şekil 3.6	$R_7^{F_C}$ değerinin φ değerine göre değişimi	
Şekil 3.7	C_0 açısının μ değerine göre değişimi	16
Şekil 3.8	$R_{1a}^{F_a}$ değerinin λ değerine göre değişimi	
Şekil 3.9	$R_7^{F_B}$ değerinin φ değerine göre değişimi	18
Şekil 3.10	Kol kazma kuvveti için B ₀ değerinin φ değerine göre değişimi	18
Şekil 3.11	$R_1^{F_B}$ değerinin φ değerine göre değişimi	
Şekil 3.12	φ=0° değeri için F ₁₂ , F ₁₃ ve F _c kuvvetlerinin konumları	20
Şekil 3.13	F ₁₂ ve F ₁₃ kuvvetlerinin φ değerine göre değişimi	
Şekil 3.14	Kepçe silindiri hidrolik şeması	
Şekil 3.15	Kol silindiri hidrolik şeması	25
Şekil 3.16	Boom silindiri hidrolik şeması	
Şekil 3.17	Tüm sistemin serbest cisim diyagramı	
Şekil 4.1	Soderberg diyagramı	
Şekil 4.2	F _c kuvvetinin zamanla değişimi	31
Şekil 4.3	F _b kuvvetinin zamana göre değişimi	31
Şekil 4.4	F _a kuvvetinin zamanla değişimi	32
Şekil 4.5	12 ve 13 numaralı parça	34
Şekil 4.6	F ₁₂ kuvvetinin zamanla değişimi	34
Şekil 4.7	Pernolarda oluşan zorlanma çeşitleri	36
Şekil 4.8	1 numaralı perno bağlantısı	37
Şekil 4.9	2 numaralı perno bağlantısı	38
Şekil 4.10	3 numaralı perno bağlantısı	
Şekil 4.11	3 numaralı perno φ=0° konumu için moment diyagramları	40
Şekil 4.12	3 numaralı perno eğilme momentinin zamanla değişimi	
Şekil 4.13	4 numaralı perno bağlantısı	
Şekil 4.14	5 numaralı perno bağlantısı	
Şekil 4.15	6 numaralı perno bağlantısı	
Sekil 4.16	7 numaralı perno bağlantısı	45

Şekil 4.17	8 numaralı perno bağlantısı	46
Şekil 4.18	9 numaralı perno bağlantısı	48
Şekil 4.19	Kol kazma kuvveti etkisi ile $\lambda=60^{\circ}$, $\mu=30^{\circ}$, $\phi=60^{\circ}$ konumu boom gerilme	
	durumu	51
Şekil 4.20	B kesiti	51
Şekil 4.21	Boom için kesit boyunca I/c değişimi	52
Şekil 4.22	Boom için kesit boyunca gerilme değişimi	52
Şekil 4.23	Kol kazma kuvveti etkisi ile $\lambda=60^{\circ}$, $\mu=30^{\circ}$, $\phi=60^{\circ}$ konumu kol gerilme	
	durumu	53
Şekil 4.24	Kol için kesit boyunca I/c değişimi	53
Şekil 4.25	Kol için kesit boyunca gerilme değişimi	53
Şekil 5.1	9 numaralı perno λ=0° konumu için Wöhler diyagramı	
Şekil 5.2	9 numaralı perno λ=130° konumu için Wöhler diyagramı	
,	, , , , , , , , , , , , , , , , , , , ,	

ÇİZELGE LİSTESİ

Çizelge 3.1	Ekskavatörü oluşturan parça ağırlıkları	12
Çizelge 3.2	Kepçe kazma kuvveti için kepçe bölümü denklemlerinde kullanılan terimle	
Çizelge 3.3	Kepçe kazma kuvveti için kol bölümü denklemlerinde kullanılan terimler.	15
Çizelge 3.4	Boom bölümü denge denklemlerinde kullanılan terimler	16
Çizelge 3.5	Kol kazma kuvveti için kol bölümü denklemlerinde kullanılan terimler	17
Çizelge 3.6	Kol kazma kuvveti için kepçe bölümü denklemlerinde kullanılan terimler.	19
Çizelge 3.7	F _c =56,4 kN için φ değerlerine göre ölçülen ve hesaplanan değerler	20
Çizelge 3.8	Tüm sistem denge denklemleri terimleri	27
Çizelge 3.9	Tüm sistemin dengesi için maksimum kepçe kazma kuvvetlerinin konumla	
, ,	göre değişimi	28
Çizelge 3.10	Tüm sistemin dengesi için maksimum kol kazma kuvvetlerinin konumlara	göre
	değişimi	28
Çizelge 3.11	Çalışma donanımına etki eden kuvvetlerin değişimi	29
Çizelge 4.1	SAE 8620 sementasyon çeliği için gerilmeler	
Çizelge 4.2	φ değerleri için kritik kesitte oluşan moment değerleri	
Çizelge 5.1	Çekmeye ve basmaya çalışan elemanlar için S değerleri	
Çizelge 5.2	Pernolar için S ve yüzey basıncı değerleri	

ÖNSÖZ

Mühendislik açısından bakıldığında üretilecek olan ürünün ana hatları ve ayrıntılarının şekillendiği en önemli aşamalardan biride tasarım sürecidir. Bu süreç içersinde amaca uygun olarak düzenlenen sistemin boyutlandırılması, malzeme seçimi gibi aşamalar sonuçlandırılarak ürüne son şekli verilir.

Bu tez çalışması içersinde ekskavatörlerin çalışma donanımı bölümünün tasarımı hakkında yol göstermeye ve bilgi vermeye çalıştım. Makina mühendisliğinin temel prensiplerini kullanmaya özen göstererek ve çeşitli basitleştirici kabuller yaparak, donanımı oluşturan her parçanın mukavamet kontrolleri, kuvvet analizleri, boyutlandırılması ve montajları çalışmanın ana çerçevesini oluşturmaktadır.

Yaptığım bu çalışmanın araştırmacılara ve öğrencilere faydalı olmasını diler, çalışma boyunca bana yardım eden ve danışmanlık yapan değerli hocam Doç. Dr. FERHAT DİKMEN' e teşekkür eder, saygılarımı sunarım.

Aralık 2005

Övün Vedat OYMAN

ÖZET

Ekskavatörler, çalışma sistemleri hidrolik ve mekaniğe dayanan inşaat makinalarıdır. Temel olarak alt yapı, üst yapı ve çalışma donanımı olmak üzere üç ana bölümden oluşurlar. Çalışma donanımı, ekskavatörün kazma, yükleme gibi ana fonksiyonlarını yerini getirmek için kullanılan bölümüdür. Boom, kol ve kepçe olmak üzere üç ana parça ve bu parçalara hareket veren ve operatör tarafından kontrol edilen üç hidrolik silindirden meydana gelir. Bu parçaları birbirine bağlamak ve hareket akışını sağlamak için bağlama elemanı olarak pernolar kullanır.

Çalışma donanımı iş parçası ile direkt olarak etkileşim içinde olduğundan çalışma sırasında tepki kuvvetlerine maruz kalır. Dolayısıyla tasarımı sırasında parçaların kuvvet analizi önemli yer tutar. Sistemin kuvvet analizine öncelikle kepçeye etki eden tepki kuvveti tanımlanarak başlanır. Daha sonra her parçanın serbest cisim diyagramları çizilerek gerilme durumları ortaya konur. Son olarak da her parçanın gerilme durumuna göre mukavamet kontrolleri yapılarak parçalara son şekilleri verilir.

Çalışmaya ekskavatörlerin yapısı ve hidrolik sistemleri hakkında temel bilgiler verilerek başlanmıştır. Daha sonra çalışma donanımını oluşturan parçalar incelenmiş ve kuvvet analizi sırasında izlenecek yol gösterilmiştir. Çalışma örnek bir sistem üzerinde uygulama ile son bulmuştur. Çalışma donanımını oluşturan tüm parçaların teknik resimleri ek olarak verilmiştir.

Anahtar kelimeler: Ekskavatör, inşaat makinaları, hidrolik, kuvvet analizi, boom

ABSTRACT

Excavator is a construction machine that its working system is based on hydraulic and mechanic foundation. Basicly, an excavator comprises three parts called lower structure, upper structure and work equipment. The work equipment is used for performing main functions of an excavator such as digging and loading etc. It consists of a boom, an arm, a bucket and three hydraulic cylinders controlled by the operator to put the boom, the arm and the bucket in a proper position. In addition to, pins are used to make a connection between those main parts and to operate them properly.

The working equipment is the most affected part of an excavator by reactive forces because of the operation conditions. As a result, force analysis is a vital part of design of the work equipment. The force analysis starts with calculation of a reactive force that affects a bucket. Then force diagrams of every component are drawn to see stress conditions. Strength of every component is controlled regarding to their stress conditions. Finally, every component is shaped into their ultimate forms.

The thesis begins with the explanation of structure and hydraulic system of an excavator. Then it is focused on components and the force analysis. It ends with a study of an example system. Mechanical drawings of every component are attached to the end of the thesis.

Keywords: Excavator, construction machine, hydraulic, force analysis, boom

1. GİRİŞ

İnsanlar varoluşlarından günümüze kadar güç ve sezgilerini arttırarak zaman ve enerjiyi verimli şekilde kullanabilmek için bilim ve teknolojinin yardımı ile çeşitli makinalar geliştirmişlerdir. Makinalar enerji oluşturan, değiştiren veya ileten yapıtlardır ve en genel tarzda, motorlar ve iş makinaları olmak üzere ikiye ayrılırlar. Motorlar ısı, hidrolik, elektrik gibi enerjileri mekanik enerjiye; iş makinaları ise mekanik enerjiyi, mekanik işe dönüştürürler. Motorlar dönüştürülen enerjiye göre isimlendirilirken; iş makinaları ise takım tezgahları, tekstil makinaları, yol ve inşaat makinaları gibi çeşitli gruplara ayrılırlar.

Ekskavatörler yol ve inşaat makinalarından biri olup iş makinaları grubuna girerler. Kazma, delme, yükleme, boşaltma gibi işlemler için yol, yapı inşaatlarında ve madencilik gibi pek çok alanda kullanılmaktadırlar. Günümüzde çalışma ağırlığı muhtelif tonlarda olmak üzere çeşitli üreticiler tarafından imal edilmektedirler. En genel biçimde Şekil 1.1'de görüldüğü gibi üst yapı, alt yapı ve çalışma donanımı olmak üzere üç ana bölümden meydana gelirler.

Şekil 1.1 Ekskavatörü oluşturan bölümler

Üst yapı tahriki sağlayan içten yanmalı motor, hidrolik çalışma aksamı, kontrol kabini gibi ekskavatörün ana elemanlarını taşıyan ve çevreleyen kısımdır. Alt yapı ise yürüyüş takımlarını ve üst yapının kendi etrafında 360 derece dönmesini sağlayan düzenekten oluşur. Alt yapı yani yürüyüş takımı paletli veya tekerlekli olarak üretilir. Paletli takımın dezavantajı karayollarında kendi başına hareket edemediğinden başka bir araç tarafından taşınması gerekliliğidir. Tekerlekli yürüyüş takımına sahip ekskavatörler ise her türlü karayolunda ulaşım sağlayabilirler. Paletli yürüyüş takımları genellikle çamurlu veya yumuşak zemin çalışmalarında hareket kolaylığı sağladığından tercih edilirler. Çalışma donanımı ise iş parçası ile çalışmayı sağlayan, operatör tarafından kontrol edilen kol parçaları ve hidrolik silindirleri kapsayan bölümdür.

Ekskavatörler temelde hidrolik enerjinin mekanik enerjiye, mekanik enerjinin de mekanik işe dönüştürülmesi prensibi ile çalışırlar. Ekskavatörün enerji akış şeması Şekil 1.2'de görülmektedir.

Şekil 1.2 Ekskavatörlerin enerji akış şeması

Ekskavatörde depoda bulunan akışkan, pompa tarafından dinamik hale dönüştürülünce ortaya belirli bir basıncı, debisi ve iş yapabilme özelliği olan hidrolik enerji çıkar. Bu enerjinin sistemin ihtiyaçlarına cevap verebilmesi için uygun basınç, yön ve akış kontrol valfleri kullanılır. Böylece sistemin istenen basınçta çalışması sağlanır; hız ve yön kontrolleri yapılır. Hidrolik enerji ile doğrusal hareket elde edebilmek için çift etkili silindirler; dairesel hareket elde etmek için ise hidrolik motorlar kullanılır. Günümüzde hidrolik enerjinin kullanılmaya başlanılması ile ekskavatörler gibi çok parçalı ve hareketli iş makinalarında eskiden uygulanan mekaniğin yarattığı problemler çözüme ulaşmıştır. En basit şekli ile ekskavatörün hidrolik donanımı Şekil 1.3'de görülmektedir.

Şekil 1.3 Ekskavatörlerin hidrolik donanımı

Şekilde görülen ana motor sisteme basınçlı akışkan sağlayan pompaların tahrikinde kullanılan dizel motordur. Pompalardan çıkan basınçlı akışkanın dağıtımı birden fazla yön kontrol, akış ve basınç düzenleyici valflerden meydana gelen kontrol valf bloğu tarafından sağlanır. Kontrol valf bloğundan çıkan akışkan hidrolik borular ve hortumlar ile kontrollü bir şekilde

hareketin istendiği silindire veya motora iletilir. Hidrolik sistem içersinde çoğunlukla değişken debili pompalar ve motorlar kullanılır. Bunun sebebi çıkış devir sayılarının, momentlerin ve kuvvetlerin kademesiz olarak ve istenen aralıkta kolaylıkla ayarlanabilmesidir.

Bu bölüme kadar ekskavatörler hakkında basit ve açıklayıcı bilgiler verilmiş ve hidrolik çalışma mekanizması kısaca açıklanmıştır. İlerleyen bölümlerde çalışmanın ana konusu olan çalışma donanımı incelenecektir. Öncelikle çalışma donanımını oluşturan parçaların yapısı ve özellikleri hakkında bilgi verilecektir. Daha sonra sistemin kuvvet analizi yapılacak ve çalışma, örnek bir sistem üzerinde uygulama ile son bulacaktır.

2. ÇALIŞMA DONANIMI

Çalışma donanımı yani kollar ekskavatörün iş parçası ile çalışılmasını sağlayan bölümüdür. Donanımı oluşturan parçalar Şekil 2.1'de görülmektedir.

Şekil 2.1 Çalışma donanımı

Şekilde görüldüğü gibi çalışma donanımı boom, kepçe, kol olmak üzere üç ana parça ve bunlara hareket veren hidrolik silindirlerden meydana gelir. Her silindir hareket verdiği parçanın ismini alır. Ayrıca bu ana parçaları bağlamak, kuvvet iletimini sağlamak için çeşitli bağlantı elemanları pernolar ve yardımcı elemanlar kullanılmaktadır.*

Ekskavatör seçimi yapılırken çalışma donanımına ait çeşitli büyüklüklere dikkat edilir. Bu büyüklükler, çalışma donanımının yaptığı hareketler ve çizdiği eksenler Şekil 2.2'deki gibi grafikler yardımı ile kataloglarda gösterilir. Bu büyüklükler ve tanımları şöyledir:

- Maksimum kazma erişimi(A): Kepçe tırnaklarının yatayda erişebildiği maksimum uzaklıktır.
- Zeminde maksimum kazma erişimi(B): Kepçe tırnaklarının zemin üzerinde erişebildiği maksimum uzaklıktır.
- Maksimum kazma derinliği(C): Kepçenin erişip kazabildiği toprağın zeminden derinliğidir.
- Maksimum dikey duvar kazma derinliği(E): Kepçenin zemin altında kazabildiği yüksekliktir.

^{*}Şekil 2.1'de kullanılan parça numaraları tez boyunca kolaylık sağlaması için kullanılacaktır.

- Maksimum kesme yüksekliği(F): Kepçenin zeminin üstünde kazabildiği yüksekliktir
- Maksimum boşaltma yüksekliği(G): Kepçenin taşıdığı toprağı kaldırıp boşaltabileceği yüksekliktir.

Sekil 2.2 Calışma donanımında önemli büyüklükler

2.1 Çalışma Donanımını Oluşturan Parçalar

2.1.1 **Boom**

Şekil 2.1'de görüldüğü gibi çalışma donanımının en büyük parçasıdır. Büyüklüğüne göre bir veya iki adet silindirle hareketi sağlanır. Genellikle tek parça halinde imal edilmesine rağmen iki parçalı olanları da vardır. Şekil 2.3'de üst tarafta tek parçalı alt tarafta ise iki parçalı boom görülmektedir. Aynı büyüklükteki iki parça boom, tek parça booma göre hareket çeşitliliğini arttırırken aynı zamanda daha önce bahsettiğimiz belirleyici büyüklüklerde de artış sağlar, fakat montajı için ek parçalar ve hareketi içinde ek bir silindir ihtiyacı vardır.

2.1.2 Kol

Boom üzerine yerleştirilen tek bir silindir ile hareketi sağlanır. Şekil 2.4'de örnek bir kol dizaynı görülmektedir. Kol üzerine kepçenin hareketini sağlayan silindir ve biri kol üzerine diğeri ise kepçeye bağlanan iki küçük parça bulunmaktadır. Bu küçük parçalar kepçenin kol üzerindeki perno etrafında dairesel hareketini sağlamak amacı ile kullanılır.

Şekil 2.3 Tek ve iki parçalı boom

Şekil 2.4 Kol

2.1.3 Kepçe

Çalışma donanımının iş parçasıyla temasta bulanan bölümüdür. Ekskavatörler için iş parçası genellikle toprak, kum, çakıl, taş ve çeşitli madenlerdir. Bu tip malzemeler aşındırıcı olduklarından kepçeler imalatları sırasında çalışma ortamları göz önünde bulundurularak malzeme seçimi yapılır, aşınmaya karşı yüzey sertleştirme işlemine tabi tutulur ve aşınma plakaları ile kaplanırlar.

2.1.4 Hidrolik Silindirler

Ekskavatörlerde çift etkili silindirler kullanılır. Silindir tabanı ve piston kolu kafası eklem bağlantılı olarak imal edilirler.

Şekil 2.5 Çift etkili hidrolik silindir

2.2 Çalışma Donanımının Kuvvet Analizi

Ek 1'de görüldüğü gibi statik F kuvvetinin kepçeyi zorlayıcı yönde etki ettiği ve sistemin bu kuvvetin etkisi ile durduğunu veya sabit hızla hareket ettiği kabul edilmiştir. Bu kuvvet kepçenin kazma işlemini yaparken karşısına çıkan tepki kuvveti olarak da tanımlanabilir. Buradan yola çıkarak çalışma donanımına etki eden tüm kuvvetler Ek 1'de gösterilmiştir.

Şekil 2.6 Kepçe için serbest cisim diyagramı

Kepçe için çizilen serbest cisim diyagramına göre:

$$\sum M_{1} = 0 \Rightarrow F. |R_{1}^{F}| = F_{12}. |R_{1}^{F_{12}}| + W_{kepçe}. |R_{1}^{W_{kepçe}}|$$
(2.1)

$$\sum F_x = 0 \Rightarrow F_{12} \cdot \sin A - F \cdot \sin B = F_{pim1x}$$
(2.2)

$$\sum F_{y} = 0 \Rightarrow F_{12} \cos A + F \cdot \cos B - W_{kepçe} = F_{pim1y}$$
(2.3)

F kuvveti bilindiği takdirde F_{12} kuvveti, 2.1 numaralı denklem yardımı ile hesap edilmektedir. F_{13} ve F_c kuvvetleri ise aşağıdaki yol izlenerek hesaplanabilir.

Her üç kuvvetinde (F₁₂, F₁₃,F_c) doğrultusu ve yönü bilinmektedir. Şekil 2.1'deki 13 numaralı parça Şekil 2.7'deki gibi bir mesnet olarak düşünülür ve F₁₂, F_c kuvvetleri bu mesnet üzerine yerleştirilir. Mesnetin statik analizi yapılırsa aşağıdaki sonuçlar elde edilir.

Şekil 2.7 F₁₂, F_c, F₁₃ kuvvetlerinin hesaplanması

$$\sum M_o = 0 \Rightarrow F_{cy} = F_{12y} \Rightarrow F_c = \frac{F_{12} \cdot \cos \beta}{\cos \alpha}$$
 (2.4)

$$\sum F_x = 0 \Rightarrow R_x = F_{13} \text{ olmak üzere } F_{13} = F_{cx} + F_{12x} = F_c.\sin\alpha + F_{12}.\sin\beta$$
 (2.5)

F kuvvetinin değerinin bilinmesi gerçekte mümkün değildir. F kuvvetinin yönü, şiddeti, doğrultusu tamamen kazma işlemi sırasında iş parçasının gösterdiği tepki kuvvetine bağlıdır. Çalışma donanımına etki eden, tasarım için gerekli maksimum kuvvetleri hesap edebilmek için hidrolik silindirler tarafından oluşturulan kuvvetlere bağlı bir F kuvveti tanımlamak gereklidir. Ekskavatörün yapısına bakıldığında boom silindirinin 10, kol silindirinin 7, kepçe silindirinin 12 ve 13 numaralı parça yardımı ile 1 numaralı perno etrafında moment oluşturarak dönme hareketi meydana getirdiği görülür. Bu momentler Ek 2'de gösterilen kepçe tırnak ucunda oluşan ve kepçe tırnak ucunun ilgili perno etrafında izlediği dairesel yörüngeye teğet kuvvetlere indirgenirse ortaya her silindire ait kazma kuvvetleri çıkar. Bu yolla ihtiyaç duyulan yönü, şiddeti, doğrultusu belli bir F kuvveti elde edilmiş olur.

Kazma kuvvetleri ekskavatör seçimi yapılırken dikkat edilen büyüklüklerdir. Kataloglarda genellikle kol silindiri tarafından oluşturulan kol kazma kuvveti (F_B), kepçe silindiri tarafından oluşturulan kepçe kazma kuvvetinin (F_C) maksimum değerlerine yer verilirken boom silindirine ait kazma kuvvetinden bahsedilmez. Bunun nedeni boom silindirinin asıl görevinin kazma yapmak değil, kol ve kepçe silindirinin kazma sırasında uygun konumu almasını sağlamasıdır.

Diğer kuvvetlerin hesapları da statik denge denklemleri kullanılarak serbest cisim diyagramlarına göre yapılır. Şekil 2.8'de 7 numaralı perno etrafında ortaya çıkan kuvvetlerin durumunu gösteren serbest cisim diyagramı görülmektedir.

Diyagrama göre;

$$\sum M_{7} = 0 \Rightarrow F_{b} \cdot \sin C \cdot \left| R_{7}^{F_{bx}} \right| + F_{b} \cdot \cos C \cdot \left| R_{7}^{F_{by}} \right| + W_{kol} \cdot \left| R_{7}^{W_{kol}} \right| + W_{kepce} \cdot \left| R_{7}^{W_{kepce}} \right| = F \cdot \left| R_{7}^{F} \right|$$
(2.6)

$$\sum F_x = 0 \Rightarrow F_b.\sin C = F_{pim7x} + F.\sin B \tag{2.7}$$

$$\sum F_{v} = 0 \Rightarrow F_{b} \cdot \cos C + F \cos B = F_{pim7v} + W_{kol} + W_{kence}$$
(2.8)

şeklinde yazılır.

Şekil 2.8 7 numaralı perno çevresindeki kuvvetler için serbest cisim diyagramı

Sistem içersinde ihtiyaç duyulan boom silindiri kuvvetinin bulunması için ise boomun dengesinden yararlanılır. Şekil 2.9'da boomun serbest cisim diyagramı görülmektedir.

Şekil 2.9 Boom serbest cisim diyagramı

Serbest cisim diyagramı için $\sum M_{10} = 0 \Longrightarrow$

$$F_{a} \left| R_{10}^{F_{a}} \right| + W_{boom} \left| R_{10}^{W_{boom}} \right| + F_{pim7x} \left| R_{10}^{F_{pim7x}} \right| - F_{pim7y} \left| R_{10}^{F_{pim7y}} \right| - F_{b} \sin C \left| R_{10}^{F_{bx}} \right| - F_{b} \cdot \cos C \left| R_{10}^{F_{by}} \right| = 0 (2.9)$$

olarak yazılır.

Ekskavatörler çok yönlü makinalar olmasından ötürü her konumda oluşan kuvvet değerleri ve parçaların aldıkları konumlar farklılık gösterir. Bundan dolayı öncelikle kolların konumlarını λ , μ , ϕ gibi değişkenler aracılığıyla belirlemek işlemler açısından kolaylık sağlayacaktır. Bu tanımlamadan sonra kolların çizdiği dairesel yörüngeler ve açılar yardımı ile kuvvetlerin hesaplanmasını sağlayan bağıntılar yazılabilmektedir.

Şekil 2.10 Çalışma donanımı konumlarının belirlenmesi

Denge denklemleri çözülürken moment değerleri için kuvvet kolu uzunlukları hesap edilmek zorundadır. Bu değerlerden bazıları düzgün değişimler göstermezken bazıları donanım parçalarının konumlarına göre eşitlikler yazılarak hesap edilebilirler. Şekil 2.11'de bu değerlerin nasıl hesaplandığına dair bazı değerler verilmiştir. Örnek olarak A noktasında bulunan düşey kuvvetin 2 numaralı noktaya olan kuvvet kolu uzunluğu $X_2 = R_2.\cos 26$ λ döndüğünde şeklinde yazılır. Kol kadar boom bu değer μ, $[X_2]_n = R_2 \cdot \cos(26 - \mu_n - \lambda_n)$ değerini alacaktır. Aynı şekilde 2 numaralı noktanın 1 numaralı noktaya olan yatay uzaklığı $\left[X_1\right]_n=R_1.\cos(66-\lambda_n)$ olarak yazılır. A noktasında bulunan kuvvetin 1 numaralı noktaya olan kuvvet kolu uzunluğu $X_1 + X_2$ olacağından $[R_1^A]_n = R_1 \cdot \cos(66 - \lambda_n) + R_2 \cdot \cos(26 - \mu_n - \lambda_n)$ değerini alır.

Noktaların birbirlerine göre başlangıç değerleri alındıktan sonra bu şekilde hesaplamalar yapılarak donanım dahilindeki her noktanın birbirine olan yatay ve düşey uzaklıkları bulunabilir. Böylelikle her konum için ayrı ayrı değer ölçümü yapma zorunluluğu ortadan kalkmış olur.

Şekil 2.11 Denge denklemleri için gerekli terimlerin bulunması

3. UYGULAMA

Örnek ekskavatörün incelenmesine başlamadan önce ekskavatör parça ağırlıklarının bilinmesi gereklidir. Bu ağırlıklar Çizelge 3.1'de verilmiştir.

Çizelge 3.1 Ekskavatörü oluşturan parça ağırlıkları

Boom Ağırlığı	210 kg
Kol ağırlığı	150 kg
Kepçe ağırlığı	82 kg
Ekskavatör gövde ağırlığı	3500 kg

Çalışma donanımı konumlarının ve denge denklemleri değişkenlerinin λ , μ ve ϕ değerlerine bağlı olarak tanımlanması gerektiği bir önceki bölümde verilmiştir. Yapılan ölçümler örnek ekskavatör için λ =0°÷130°, μ =0°÷102°, ϕ =0°÷189° değerleri arasında değiştiğini gösterir.

3.1 Denge Denklemlerinin Kazma Kuvvetleri, λ, μ Ve φ Değerlerine Göre Tanımlanması

3.1.1 Kepçe Kazma Kuvvetine Göre Denge Denklemleri

3.1.1.1 Kepçe Bölümü

Kepçe kazma kuvvetine göre kepçe bölümünde ortaya çıkan kuvvetlerin hesaplanmasında 2.1, 2.2, 2.3, 2.4, 2.5 numaralı denklemler kullanılır. Denge denklemlerinin kepçe kazma kuvvetine göre yazılışı aşağıdaki gibidir.

Şekil 3.1 Kepçe kazma kuvveti için kepçe bölümü serbest cisim diyagramı

$$\sum M_{1} = 0 \Rightarrow F_{C} \cdot \left| R_{1}^{F_{C}} \right| = F_{12} \cdot \left| R_{1}^{F_{12}} \right| + W_{kepçe} \cdot \left| R_{1}^{W_{kepçe}} \right|$$
(3.1)

$$\sum F_x = 0 \Rightarrow F_{12} \cdot \sin A - F_C \cdot \sin B = F_{pim1x}$$
(3.2)

$$\sum F_{y} = 0 \Rightarrow F_{12} \cos A + F_{C} \cdot \cos B - W_{kepçe} = F_{pim1y}$$
(3.3)

$$F_c = \frac{F_{12} \cdot \cos \beta}{\cos \alpha} \tag{3.4}$$

$$F_{13} = F_{cx} + F_{12x} = F_{c} \cdot \sin \alpha + F_{12} \cdot \sin \beta \tag{3.5}$$

Denge denklemlerinde kullanılacak olan terimlerin nasıl elde edileceği Çizelge 3.2'de gösterilmiştir. Grafik olarak verilen değerler sistem içersinde düzgün değişim göstermediğinden Ek 3'de değişik φ değerlerine göre ölçümler yapılarak çizilmiştir. İşlemlere kepçe silindiri kuvveti hesaplanarak başlanmalıdır. Kepçe silindiri kuvvetinden sonra F_{12} ve F_{13} kuvveti bulunmalı daha sonra 3.1, 3.2, 3.3 numaralı denklemler çözülmelidir.

Çizelge 3.2 Kepçe kazma kuvveti için kepçe bölümü denklemlerinde kullanılan terimler

$R_1^{F_C}$ (mm)	Sbt=729,46
$F_{12}(kN)$	2.4 numaralı denklem ile hesaplanır.
$R_1^{F_{12}}(mm)$	Şekil 3.2'den seçilir.
W _{kepçe} (kN)	Sbt=0,82
$R_1^{W_{kepçe}}$ (mm)	$\left R_1^{W_{kepçe}} \right = 439.\cos(97.64 - \varphi_n - \mu_n - \lambda_n)$
A (°)	$(A)_n = A_0 + \lambda_n + \mu_n$, A ₀ Şekil 3.4'den seçilir.
B (°)	$(B)_n = B_0 - \lambda_n - \mu_n - \varphi_n$, B ₀ =sbt=58,32°
α(°)	Şekil 3.3'den seçilir.
β(°)	Şekil 3.3'den seçilir.

Şekil 3.2 $R_1^{F_{12}}$ uzunluğunun φ değerine göre değişimi

Şekil 3.3 α ve β değerlerinin ϕ değerine göre değişimi

Şekil 3.4 A₀ değerinin φ değerine göre değişimi

3.1.1.2 Kol Bölümü

Kol bölümünde ortaya çıkan kuvvetlerin hesaplanmasında 2.6, 2.7, 2.8 numaralı denklemler kullanılır. Kol bölümü denge denklemlerinin, kepçe kazma kuvvetine göre yazılışı aşağıdaki gibidir.

Şekil 3.5 Kepçe kazma kuvveti için kol bölümü serbest cisim diyagramı

$$\sum M_{7} = 0 \Rightarrow F_{b}.\sin C.\left|R_{7}^{F_{bx}}\right| + F_{b}.\cos C.\left|R_{7}^{F_{by}}\right| + W_{kol}.\left|R_{7}^{W_{kol}}\right| + W_{kepçe}.\left|R_{7}^{W_{kepçe}}\right| = F_{C}.\left|R_{7}^{F_{C}}\right|$$
(3.6)

$$\sum F_x = 0 \Rightarrow F_b \cdot \sin C = F_{pim7x} + F_C \cdot \sin B$$
 (3.7)

$$\sum F_{y} = 0 \Rightarrow F_{b} \cdot \cos C + F_{C} \cos B = F_{pim7y} + W_{kol} + W_{kepçe}$$
(3.8)

Çizelge 3.3 Kepçe kazma kuvveti için kol bölümü denklemlerinde kullanılan terimler

$R_7^{F_{bx}}$ (mm)	$\left R_7^{F_{bx}} \right _n = 361, 7.\sin(11, 3 + \mu_n + \lambda_n)$
$R_7^{F_{by}}$ (mm)	$\left R_7^{F_{by}} \right _n = 361,7.\cos(11,3 + \mu_n + \lambda_n)$
$W_{kol}(kN)$	Sbt=1,5kN
$R_7^{W_{kol}}$ (mm)	$\left R_7^{W_{kol}} \right _n = 550.\cos(27,73 - \mu_n - \lambda_n)$
$R_7^{W_{kepçe}}$ (mm)	$\left R_7^{W_{kepçe}} \right _n = 1400.\cos(18.4 - \lambda_n - \mu_n) + 439.\cos(97.64 - \lambda_n - \mu_n - \phi_n)$
$R_7^{F_C}$ (mm)	Şekil 3.6'dan seçilir.
B (°)	$(B)_n = B_0 - \lambda_n - \mu_n - \phi_n$, $B_0 = \text{sbt} = 58,32^\circ$
C(°)	$(C)_n = C_0 + \lambda_n C_0$ değeri Şekil 3.7'den seçilir.

Şekil 3.6 $R_7^{F_c}$ değerinin φ değerine göre değişimi

Şekil 3.7 C₀ açısının µ değerine göre değişimi

3.1.1.3 Boom Bölümü

Kol bölümünde ortaya çıkan kuvvetler hesaplandıktan sonra boom silindiri kuvvetinin hesaplanmasında 2.9 numaralı denklem kullanılır. 2.9 numaralı denge denkleminde tanımlanması gereken terimler Çizelge 3.4'de verilmiştir.

Bu kısıma kadar verilen tüm denklemler ile kepçe silindiri basıncı ve kuvveti tanımlanarak çalışma donanımının herhangi bir konumu için sisteme etki eden tüm kuvvetler, bölüm sırası izlenerek hesaplanabilmektedir.

Çizelge 3.4 Boom bölümü denge denklemlerinde kullanılan terimler

$R_{10}^{F_a}$ (mm)	Şekil 3.8'den seçilir.
W _{boom} (kN)	Sbt=2,1kN
R_{10}^{Wboom} (mm)	$\left R_{10}^{W_{boom}} \right _{n} = 1174, 5.\cos(83,37 - \lambda_{n})$
$R_{10}^{F_{pim7x}}(mm)$	$\left R_{10}^{F_{pim7x}} \right _{n} = 2461,75.\sin(65,75 - \lambda_{n})$
$R_{10}^{F_{pim7y}} \text{ (mm)}$	$\left R_{10}^{F_{pim7y}} \right _{n} = 2461,75.\cos(65,75 - \lambda_{n})$
R_{10}^{bx} (mm)	$\left R_{10}^{F_{bx}} \right _{n} = 1592, 5.\cos(2,7 - \lambda_{n})$
R_{10}^{by} (mm)	$\left R_{10}^{F_{by}} \right _{n} = 1592, 5.\sin(2,7 - \lambda_{n})$
C(°)	$(C)_n = C_0 + \lambda_n$, C_0 değeri Şekil 3.7'den seçilir.

Şekil 3.8 $R_{10}^{F_a}$ değerinin λ değerine göre değişimi

3.1.2 Kol Kazma Kuvvetine Göre Denge Denklemleri

3.1.2.1 Kol Bölümü

Kol bölümü denge denklemlerinin, kol kazma kuvvetine göre yazılışı aşağıdaki gibidir.

$$\sum M_{7} = 0 \Rightarrow F_{b}.\sin C. |R_{7}^{F_{bx}}| + F_{b}.\cos C. |R_{7}^{F_{by}}| + W_{kol}. |R_{7}^{W_{kol}}| + W_{kepçe}. |R_{7}^{W_{kepçe}}| = F_{B}. |R_{7}^{F_{B}}|$$
(3.9)

$$\sum F_x = 0 \Rightarrow F_b \cdot \sin C = F_{pim7x} + F_B \cdot \sin B \tag{3.10}$$

$$\sum F_{y} = 0 \Rightarrow F_{b} \cdot \cos C + F_{B} \cos B = F_{pim7y} + W_{kol} + W_{kepce}$$
(3.11)

Kol kazma kuvveti için kullanılacak olan kol bölümü denge denklemleri terimleri Çizelge 3.5'de verilmiştir. Denklemlere başlamadan kol silindiri için basınç değeri belirlenerek silindir kuvveti hesaplanır. Kol silindiri kuvveti 3.9 numaralı denklemde yerine konulur, kol kazma kuvveti bulunur ve işlem sırası takip edilerek diğer bilinmeyenler hesaplanır.

Çizelge 3.5 Kol kazma kuvveti için kol bölümü denklemlerinde kullanılan terimler

$R_7^{F_{bx}}$ (mm)	$\left R_7^{F_{bx}} \right _n = 361,7.\sin(11,3 + \mu_n + \lambda_n)$
$R_7^{F_{by}}$ (mm)	$\left R_7^{F_{by}} \right _n = 361,7.\cos(11,3 + \mu_n + \lambda_n)$
$W_{kol}(kN)$	Sbt=1,5kN
$R_7^{W_{kol}}$ (mm)	$\left R_7^{W_{kol}} \right _n = 550.\cos(27.73 - \mu_n - \lambda_n)$
$R_7^{W_{kepçe}}$ (mm)	$\left R_7^{W_{kepce}} \right _n = 1400.\cos(18.4 - \lambda_n - \mu_n) + 439.\cos(97.64 - \lambda_n - \mu_n - \phi_n)$
$R_7^{F_B}$ (mm)	Şekil 3.9'dan seçilir.
B (°)	$(B)_n = B_0 - \lambda_n - \mu_n$, B ₀ değeri Şekil 3.10'dan seçilir.
C(°)	$(C)_n = C_0 + \lambda_n C_0$ değeri Şekil 3.7'den seçilir.

Şekil 3.9 $R_7^{F_B}$ değerinin φ değerine göre değişimi

Şekil 3.10 Kol kazma kuvveti için B₀ değerinin φ değerine göre değişimi

3.1.2.2 Kepçe Bölümü

Denge denklemlerinin kol kazma kuvvetine göre yazılışı aşağıdaki gibidir.

$$\sum M_{1} = 0 \Longrightarrow F_{B} . \left| R_{1}^{F_{B}} \right| = F_{12} . \left| R_{1}^{F_{12}} \right| + W_{kepçe} . \left| R_{1}^{W_{kepçe}} \right|$$
(3.12)

$$\sum F_x = 0 \Rightarrow F_{12}.\sin A - F_B.\sin B = F_{pim1x}$$
(3.13)

$$\sum F_{y} = 0 \Rightarrow F_{12} \cos A + F_{B} \cdot \cos B - W_{kepçe} = F_{pim1y}$$
(3.14)

$$F_c = \frac{F_{12} \cdot \cos \beta}{\cos \alpha} \tag{3.15}$$

$$F_{13} = F_{cx} + F_{12x} = F_c \cdot \sin \alpha + F_{12} \cdot \sin \beta$$
 (3.16)

Kol kazma kuvveti için kullanılacak olan kepçe bölümü denge denklemleri terimleri Çizelge 3.6'da verilmiştir.

 $R_1^{F_B}$ (mm)Şekil 3.11'den seçilir. $R_1^{F_{12}}$ (mm)Şekil 3.2'den seçilir. $W_{\text{kepçe}}$ (kN)Sbt=0,82 $R_1^{W_{\text{kepçe}}}$ (mm) $\left|R_1^{W_{\text{kepçe}}}\right|_n = 439.\cos(97,64-\phi_n-\mu_n-\lambda_n)$ A (°) $(A)_n = A_0 + \lambda_n + \mu_n$, A_0 Şekil 3.4'den seçilir.B (°) $(B)_n = B_0 - \lambda_n - \mu_n$, B_0 Şekil 3.10'dan seçilir α (°)Şekil 3.3'den seçilir. β (°)Şekil 3.3'den seçilir.

Çizelge 3.6 Kol kazma kuvveti için kepçe bölümü denklemlerinde kullanılan terimler

Şekil 3.11 $R_1^{F_B}$ değerinin φ değerine göre değişimi

3.1.2.3 Boom Bölümü

Kol kazma kuvveti için boom bölümünde kullanılan denge denklemi, kepçe kazma kuvveti için kullanılan denklemle aynıdır ve aynı terimler kullanılır.

3.2 Kuvvet Analizleri

3.2.1 Kepçe Kazma Kuvvetine Göre Kuvvet Analizi

Sistem içersinde maksimum kuvvetlerin ortaya çıkabilmesi için öncelikle kepçeye etki eden dış kuvvetin dolayısı ile kazma kuvvetinin maksimum değerini alması gereklidir. Maksimum kepçe kazma kuvvetinin oluşabilmesi için kepçe silindiri kuvveti maksimum değerini almalıdır. Bu durum silindirin kontrol basıncı altında çalışması ile mümkün olur. Kepçe silindiri hidrolik şeması incelendiğinde kepçe için kontrol basıncının 170 bar olduğu görülür. Buradan yola çıkarak kepçe silindiri kuvveti P: çalışma basıncı(Pa), A:Silindir piston

alanı(m²) olmak üzere;

$$F_c = P.A \Rightarrow F_c = 170.10^5. \frac{\pi (65)^2}{4}.10^{-6} \Rightarrow \text{Kepçe silindiri kuvveti (F_c)=56,4 kN}$$
 bulunur.

Sistemin yapısından dolayı kepçe ile kazma yapılırken F_{12} ve F_{13} kuvvetleri yalnızca ϕ değerine göre değişkenlik gösterir. ϕ =0° değeri için kepçe silindiri bölümünde oluşan kuvvetlerin durumu Şekil 3.12'deki gibidir. 3.4 ve 3.5 nolu denklemler yardımı ile değişik ϕ değerleri için F_{12} ve F_{13} değerleri bulunur. Kuvvetlerin ϕ göre değişimi Şekil 3.13'de grafiksel, Çizelge 3.7'de ise sayısal olarak görülmektedir.

 ϕ =0° için F_{12} ve F_{13} kuvvetlerinin bulunması:

$$F_c = \frac{F_{12} \cdot \cos \beta}{\cos \alpha} \Rightarrow F_{12} = \frac{F_c \cdot \cos \alpha}{\cos \beta} = \frac{56, 4 \cdot \cos(-56)}{\cos 62} \Rightarrow F_{12} = 67, 5kN$$
(3.4)

$$F_{13} = F_{cx} + F_{12x} = F_c.\sin\alpha + F_{12}.\sin\beta = 56,4.\sin(-56) + 67,5.\sin(62) \Rightarrow F_{13} = 12,9N$$
 (3.5)

Şekil 3.12 ϕ =0° değeri için F_{12} , F_{13} ve F_c kuvvetlerinin konumları

Çizelge 3.7 F_c=56,4 kN için φ değerlerine göre ölçülen ve hesaplanan değerler

φ (°)	α (°)	β (°)	F _c (kN)	F ₁₂ (kN)	F ₁₃ (kN)
0	-56,5	62,5	56,4	67,5	12,9
10	-45,4	56,8	56,4	72,3	20,4
15	-40,3	54,1	56,4	73,4	23,0
20	-35,1	51,4	56,4	73,9	25,3
30	-25,7	46,2	56,4	73,4	28,4
35	-21,2	43,5	56,4	72,6	29,6
40	-16,9	41,0	56,4	71,5	30,6
50	-8,7	36,4	56,4	69,2	32,5
80	12,4	24,5	56,4	60,5	37,2
110	29,5	17,1	56,4	51,4	42,9
140	43,2	15,3	56,4	42,6	49,9
189	59,6	24,8	56,4	31,5	61,8

Şekil 3.13 F_{12} ve F_{13} kuvvetlerinin φ değerine göre değişimi

Bu işlemden sonra sisteme etkiyen diğer kuvvetler bulunabilir. λ =60°, ϕ =40°, μ =30° değerleri için yapılan hesaplamalar aşağıda örnek olarak verilmiştir. Hesaplanan diğer tüm değerler tablo şeklinde Ek 4'de görülmektedir.

 λ =60°, ϕ =40°, μ =30° için hesaplamalar:

$$\sum M_{1} = 0 \Longrightarrow F_{C} . |R_{1}^{F_{C}}| = F_{12} . |R_{1}^{F_{12}}| + W_{kepçe} . |R_{1}^{W_{kepçe}}|$$
(3.1)

 F_C .729,46 = 71,5.185,26 + 0,82.370,82 F_C = 18,6kN

$$\sum F_x = 0 \Rightarrow F_{12}.\sin A - F_C.\sin B = F_{pim1x}$$
(3.2)

71,5. $\sin 184,81-18,6.\sin(-71,68) = F_{pim1x}$ $F_{pim1x} = 11,6kN$

$$\sum F_{y} = 0 \Rightarrow F_{12} \cos A + F_{C} \cdot \cos B - W_{kepçe} = F_{pim1y}$$
(3.3)

 $71,5.\cos 184,81 + 18,6.\cos(-71,68) - 2,1 = F_{pim1y}$ $F_{pim1y} = -66,3kN$

$$F_{pim1} = \sqrt{(F_{pim1x})^2 + (F_{pim1y})^2} = \sqrt{(11,6)^2 + (-66,3)^2} = 67,3kN$$

$$\sum M_{7} = 0 \Rightarrow F_{b}.\sin C. \left| R_{7}^{F_{bx}} \right| + F_{b}.\cos C. \left| R_{7}^{F_{by}} \right| + W_{kol}. \left| R_{7}^{W_{kol}} \right| + W_{kepce}. \left| R_{7}^{W_{kepce}} \right| = F_{C}. \left| R_{7}^{F_{C}} \right|$$
(3.6)

 $F_b.\sin 102{,}39.354{,}7 + F_b.\cos 102{,}39.(-70{,}87) + 1{,}5.255{,}92 + 0{,}82.812{,}7 = 18{,}6.2149{,}4$ $F_b = 107{,}6kN$

$$\sum F_x = 0 \Rightarrow F_b \cdot \sin C = F_{pim7x} + F_C \cdot \sin B \tag{3.7}$$

 $107,6.\sin 102,39 - 18,6.\sin(-71,68) = F_{pim^7x}$ $F_{pim^7x} = 122,7kN$

$$\sum F_{y} = 0 \Rightarrow F_{b} \cdot \cos C + F_{C} \cos B = F_{pim^{7}y} + W_{kol} + W_{kepçe}$$
(3.8)

$$107,6.\cos 102,39 + 18,6.\cos(-71,68) - 1,5 - 0,82 = F_{pim7y}$$

$$F_{pim7y} = -19,6kN$$

$$F_{pim7} = \sqrt{(F_{pim7x})^2 + (F_{pim7y})^2} = \sqrt{(122.7)^2 + (-19.6)^2} = 124.3kN$$

$$F_{a} \left| R_{10}^{F_{a}} \right| + W_{boom} \left| R_{10}^{W_{boom}} \right| + F_{pim7x} \left| R_{10}^{F_{pim7x}} \right| - F_{pim7y} \left| R_{10}^{F_{pim7y}} \right| - F_{b} \sin C \left| R_{10}^{F_{bx}} \right| - F_{b} \cdot \cos C \left| R_{10}^{F_{by}} \right| = 0 (2.9)$$

$$F_a.303,49 + 2,1.1078,14 + 122,7.246,63 - (-19,6).2449,36 - 107,6\sin 102,39.860,33 - 107,6\cos 102,39.(-1340,11) = 0$$

$$F_a = 134,7kN$$

3.2.2 Kol Kazma Kuvvetine Göre Kuvvet Analizi

Kol kazma kuvvetine göre sisteme etkiyen kuvvetlerin hesaplanmasına kol bölümünden başlanır. Farklı konumlar için kol kazma kuvvetinin değeri hesaplanır ve bu kuvvete göre işlem sırası takip edilerek diğer kuvvetler bulunur. Maksimum kol kazma kuvvetinin oluşabilmesi için kol silindiri kuvveti maksimum değerini alması gereklidir. Bu durum silindirin kontrol basıncı altında çalışması ile mümkün olur. Sistemin hidrolik şeması incelendiğinde kol silindirinin pompa etkisi ile çalıştığındaki kontrol basıncı 170 bardır.

Kol silindiri kuvveti P: çalışma basıncı(Pa), A:Silindir piston alanı(m²) olmak üzere;

$$F_c = P.A \Rightarrow F_b = 170.10^5. \frac{\pi (75)^2}{4}.10^{-6} \Rightarrow \text{Kol silindiri kuvveti (Fb)=75,1 kN bulunur.}$$

 λ =60°, ϕ =40°, μ =30° için hesaplamalar:

$$\sum M_{7} = 0 \Rightarrow F_{b}.\sin C. |R_{7}^{F_{bx}}| + F_{b}.\cos C. |R_{7}^{F_{by}}| + W_{kol}. |R_{7}^{W_{kol}}| + W_{kepçe}. |R_{7}^{W_{kepçe}}| = F_{B}. |R_{7}^{F_{B}}|$$
(3.9)

$$75,1.\sin 102,39.354,7+75,1.\cos 102,39.(-70,87)+1,5.255,9+0,82.812,7=F_{B}.2130\\ F_{B}=13,2kN$$

$$\sum F_x = 0 \Rightarrow F_b \cdot \sin C = F_{pim7x} + F_B \cdot \sin B \tag{3.10}$$

75,1. $\sin 102,39 - 13,2.\sin(-71,66) = F_{pim^7x}$ $F_{pim^7x} = 85,8kN$

$$\sum F_{y} = 0 \Rightarrow F_{b} \cdot \cos C + F_{B} \cos B = F_{pim^{7}y} + W_{kol} + W_{kepce}$$
(3.11)

75,1.cos 102,39 + 13,2.cos(-71,66) - 1,5 - 0,82 = F_{pim^7y} $F_{pim^7y} = -14,28kN$

$$F_{pim7} = \sqrt{(F_{pim7x})^2 + (F_{pim7y})^2} = \sqrt{(85.8)^2 + (-14.28)^2} = 87.1kN$$

$$\sum M_{1} = 0 \Rightarrow F_{B} \cdot \left| R_{1}^{F_{B}} \right| = F_{12} \cdot \left| R_{1}^{F_{12}} \right| + W_{kepçe} \cdot \left| R_{1}^{W_{kepçe}} \right|$$
(3.12)

 $13,2.729,5 = F_{12}.185,26 + 0,82.370,8$ $F_{12} = 50,5kN$

$$\sum F_x = 0 \Rightarrow F_{12} \cdot \sin A - F_B \cdot \sin B = F_{pim1x}$$
(3.13)

 $50.5.\sin 184.81 - 13.2.\sin(-71.66) = F_{pim1x}$ $F_{pim1x} = 8.3kN$

$$\sum F_{y} = 0 \Rightarrow F_{12} \cos A + F_{B} \cdot \cos B - W_{kepçe} = F_{pim1y}$$
(3.14)

 $50,5.\cos 184,81 + 13,2.\cos(-71,66) - 0,82 = F_{pim1y}$ $F_{pim1y} = -47kN$

$$F_{pim1} = \sqrt{(F_{pim1x})^2 + (F_{pim1y})^2} = \sqrt{(8,3)^2 + (-47)^2} = 47,7kN$$

$$F_c = \frac{F_{12} \cdot \cos \beta}{\cos \alpha} \tag{3.15}$$

$$F_c = \frac{50,5.\cos 41}{\cos(-16,9)} = 39,8kN$$

$$F_{13} = F_{cx} + F_{12x} = F_c \cdot \sin \alpha + F_{12} \cdot \sin \beta$$
 (3.16)

$$F_{13} = F_{cx} + F_{12x} = 39.8.\sin(-16.9) + 50.5.\sin 41 = 21.6kN$$

$$F_{a} \left| R_{10}^{F_{a}} \right| + W_{boom} \left| R_{10}^{W_{boom}} \right| + F_{pim7x} \left| R_{10}^{F_{pim7x}} \right| - F_{pim7y} \left| R_{10}^{F_{pim7y}} \right| - F_{b} \sin C \left| R_{10}^{F_{bx}} \right| - F_{b} \cdot \cos C \left| R_{10}^{F_{by}} \right| = 0 (2.9)$$

$$F_a.303,49 + 2,1.1078,15 + 85,8.246,63 - (-14,28).2449,36 - 75,1.\sin 102,39.860,33 - 75,1.\cos 102,39.(-1340,11) = 0$$

$$F_a = 86,7kN$$

Kol kazma kuvvetinin etkisiyle ortaya çıkan, konumlara bağlı olarak değişen kuvvetler Ek 5'de tablo olarak verilmiştir.

3.3 Çalışma Donanımına Etki Eden Maksimum Kuvvetlerin Sınıflandırılması

Donanım parçalarının mukavemet kontrollerinin yapılabilmesi için öncelikle parçalara etki edem maksimum kuvvetlerin bulunması gereklidir. Ek 4 ve 5'de sistem içersinde hiçbir sınırlama olmadan sadece hidrolik sistemin pompa kontrol basıncı sınırlaması altında ortaya çıkan kuvvetler görülmektedir. İşletim sırasında ortaya çıkan maksimum kuvvetler bulunurken silindirlerin basınç sınırlamaları, tüm sistemin dengesinden ortaya çıkan sınırlamalar göz önünde bulundurulmalıdır.

3.3.1 Silindirlerin Basınç Sınırlamaları

Şekil 3.12, 3.13, 3.14'de sırasıyla kepçe, kol, boom silindirlerinin hidrolik şemaları görülmektedir.

Kepçe silindiri:

Kepçe silindiri ile kazma yapılırken $0^{\circ} \le \phi \le 189^{\circ}$ için $0 \le F_c \le 56,4kN$

Kol silindiri ile kazma yapılırken $0^{\circ} \le \varphi \le 189^{\circ}$ için $+\infty \ge F_c \ge -\infty$ değerlerini alabilmektedir.

Kol silindiri:

Kepçe ile kazma yapılırken $0^\circ < \mu \le 102^\circ$ için $F_b \le 110,4kN$, $\mu = 0^\circ$ için $F_b \le +\infty$

Kol ile kazma yapılırken $0^{\circ} \le \mu \le 102^{\circ}$ için $0 \le F_h \le 75,1kN$ değerlerini alabilmektedir.

Boom silindiri:

Her iki kazma durumu için $0^{\circ} < \lambda < 130^{\circ}$ için $76,5kN \geq F_a \geq -125,6kN$, $\lambda = 0^{\circ}$ için $+\infty \geq F_a \geq -125,6kN$, $\lambda = 130^{\circ}$ için $75,1kN \geq F_a \geq -\infty$ değerlerini alabilmektedir.

Şekil 3.14 Kepçe silindiri hidrolik şeması

Şekil 3.15 Kol silindiri hidrolik şeması

Şekil 3.16 Boom silindiri hidrolik şeması

3.3.2 Sistemin Tüm Dengesinden Ortaya Çıkan Sınırlamalar

Ekskavatörler, daha önceki bölümlerde bahsedildiği gibi alt yapı adı verilen paletli veya tekerlekli bir aksam aracılığı ile zemin üzerinde durur ve hareket ederler. Kazma işlemi sırasında ekskavatörlerin sabit olması tercih edilir. Bazı durumlarda kepçe ucunda oluşan kazma kuvveti yönü ve doğrultusuna bağlı olarak O₁ veya O₂ noktası etrafında moment oluşturarak gövdeyi hareket ettirir. Kuvvet, sistemin doğası gereği öncelikle gövdeyi yukarı doğru, sonrasında sürtünme kuvvetinin azalması ile gövdenin ileri doğru ilerlemesine sebep olur.

Bu durum esnasında kazma işlemi gerçekleşmez. Operatörler bu özelliği zor çalışma şartlarında ekskavatörün hareketi için zaman zaman kullanırlar.

Gövdeyi harekete zorlayan bu kazma kuvveti değerleri, sistemin tüm dengesi göz önüne alınarak hesaplanır. Şekil 3.17'de sistemin serbest cisim diyagramı çizilmiştir. Diyagram için verilen denge denklemleri terimleri Çizelge 3.8'den alınacaktır.

$$F.\sin B. \left| R_{0_1}^{F_x} \right| + F.\cos B \left| R_{0_1}^{F_y} \right| = W_{eks}. \left| R_{0_1}^{W_{eks}} \right| + W_{boom}. \left| R_{O_1}^{W_{boom}} \right| + W_{kol}. \left| R_{0_1}^{W_{kol}} \right| + W_{kepçe}. \left| R_{0_1}^{W_{kepçe}} \right|$$
(3.17)

$$F.\sin B.\left|R_{0_{2}}^{F_{x}}\right| + F.\cos B\left|R_{0_{2}}^{F_{y}}\right| + W_{eks}.\left|R_{O_{2}}^{W_{eks}}\right| = W_{boom}.\left|R_{O_{2}}^{W_{boom}}\right| + W_{kol}.\left|R_{0_{2}}^{W_{kol}}\right| + W_{kepçe}.\left|R_{0_{2}}^{W_{kepce}}\right|$$
(3.18)

Şekil 3.17 Tüm sistemin serbest cisim diyagramı

Belli bir konumda sistemin tüm dengesi için değerler, 3.17 ve 3.18 numaralı denklemlerde yerlerine konulur ve iki denklem birbirinden bağımsız olarak çözülür. Kazma kuvveti pozitif çıkması gerektiğinden pozitif olan değer o konum için mümkün olan maksimum kazma kuvvetini verir. Bazı durumlarda iki değerinde pozitif veya negatif çıkma olasılığı bulunmaktadır. İki değerinde pozitif çıkması kazma kuvvetinin her iki noktaya göre momentinin de ekskavatörün dengesini bozacağı anlamına gelir ve küçük olan değer esas alınmalıdır. Negatif olma durumunda ise kazma kuvveti momenti ekskavatörün dengesini bozacak konumu almadığını gösterir ve kazma kuvveti için bir sınırlama olmadığı anlaşılır.

Çizelge 3.8 Tüm sistem denge denklemleri terimleri

W _{eks} (kN)	sbt= 35
W _{boom} (kN)	sbt=2,1
W _{kol} (kN)	sbt= 1,5
W _{kepçe} (kN)	sbt=0,82
$R_{O_1}^{Weks}$ (mm)	sbt = 756,7
$R_{O_2}^{Weks}$ (mm)	sbt = 744
$R_{O_1}^{W_{boom}}$ (mm)	$= 1538,2 + 2461,75.\cos(65,75 - \lambda_n)$
$R_{O_2}^{W_{boom}}$ (mm)	$= 37,5 + 2461,75.\cos(65,75 - \lambda_n)$
$R_{O_1}^{Wkol}$ (mm)	$= 1538,2 + 2461,75.\cos(65,75 - \lambda_n) + 550.\cos(27,73 - \mu_n - \lambda_n)$
$R_{O_2}^{Wkol}$ (mm)	$= 37,5 + 2461,75.\cos(65,75 - \lambda_n) + 550.\cos(27,73 - \mu_n - \lambda_n)$
$R_{O_1}^{W_{kepçe}}$ (mm)	$= 1538,2 + 2461,75.\cos(65,75 - \lambda_n) + 1400.\cos(18,4 - \lambda_n - \mu_n)$
	$+439.\cos(97,64-\lambda_n-\mu_n-\phi_n)$
$R_{O_2}^{W_{kepçe}}$ (mm)	$= 37.5 + 2461.75.\cos(65.75 - \lambda_n) + 1400.\cos(18.4 - \lambda_n - \mu_n)$
	$+439.\cos(97,64-\lambda_n-\mu_n-\phi_n)$
$R_{O_1}^{F_y}$ (mm)	$= 1538,2 + 2461,75.\cos(65,75 - \lambda_n) + 1400.\cos(18,4 - \lambda_n - \mu_n)$
	$+729,5.\cos(57,6-\lambda_n-\mu_n-\phi_n)$
$R_{O_2}^{F_y}$ (mm)	$= 37.5 + 2461.75.\cos(65.75 - \lambda_n) + 1400.\cos(18.4 - \lambda_n - \mu_n)$
O_2 \checkmark	$+729,5.\cos(57,6-\lambda_n-\mu_n-\phi_n)$
$R_{O_1}^{Fx} = R_{O_2}^{F_x} (\text{mm})$	
O_1 O_2 V	$+729.5.\sin(57.6-\lambda_n-\mu_n-\phi_n)$
B(°)	Kepçe kazma kuvveti için $B = B_0 - \lambda_n - \mu_n - \varphi_n$, $B_0 = sbt = 58,32^\circ$
	Kol kazma kuvveti için $B = B_0 - \lambda_n - \mu_n$, B_0 Şekil 3.10'dan seçilir.

Konumlara bağlı olarak yapılan hesaplamalar sonucunda tüm sistemin dengesi göz önünde bulundurularak ortaya çıkabilecek kazma kuvveti değerleri Çizelge 3.9 ve 3.10'da verilmiştir. Çizelgelerde boş bırakılan bölümler kazma kuvveti için sınırlamanın olmadığı bölümlerdir.

Çizelge 3.9 Tüm sistemin dengesi için maksimum kepçe kazma kuvvetlerinin konumlara göre değişimi

		λ=0°			λ=60°		λ=130°			
	μ=0°	μ=30°	μ=102°	μ=0°	μ=30°	μ=102°	μ=0°	μ=30°	μ=102°	
φ(°)	F _C (kN)	F _C (kN)	F _C (kN)	F _C (kN)	F _C (kN)	F _C (kN)	F _C (kN)	F _C (kN)	F _C (kN)	
0	6,5	7,0	29,7	8,0	10,1	108,0	10,4	15,9		
20	6,4	7,9	38,3	8,8	13,2	32,8	12,4	23,2		
30	6,7	8,8	24,0	9,7	16,4	26,5	14,4	31,4		
40	7,1	10,2	18,3	11,0	22,1	23,5	17,5	49,4		
50	7,8	12,4	15,4	13,2	34,9	22,4	22,9	116,0		
80	13,7	56,4	13,0	46,6	33,4	28,5	5616,1		676,9	
110	23,6	9,5	17,1	13,1	8,9	203,8		78,9	45,4	
140	7,1	6,3	62,1	5,8	6,7		21,8	23,6	23,9	
189	5,2	7,6	54,7	5,2	10,2	18,0	13,0	21,2	16,8	

Çizelge 3.10 Tüm sistemin dengesi için maksimum kol kazma kuvvetlerinin konumlara göre değişimi

		λ=0°			λ=60°		λ=130°			
	μ=0°	μ=30°	μ=102°	μ=0°	μ=30°	μ=102°	μ=0°	μ=30°	μ=102°	
φ(°)	F _B (kN)	F _B (kN)	F _B (kN)	F _B (kN)	F _B (kN)	F _B (kN)	F _B (kN)	F _B (kN)	F _B (kN)	
0	6,6	8,5	25,0	9,4	15,5	24,8	14,0	29,7		
20	6,7	8,8	22,9	9,7	16,6	24,7	14,6	32,6		
30	6,8	9,2	21,3	10,1	17,9	24,5	15,3	36,1		
40	6,9	9,6	19,7	10,5	19,7	24,1	16,3	41,4		
50	7,1	10,2	18,3	11,0	22,0	23,5	17,5	49,3		
80	7,3	10,8	17,0	11,7	25,2	22,8	19,0	61,9		
110	7,5	11,6	15,9	12,4	29,3	22,1	20,8	82,9		
140	7,8	12,5	15,0	13,3	35,5	21,2	23,2	130,5		
189	8,2	13,9	14,0	14,6	47,5	20,3	27,1	408,9		

Yapılan tüm işlemlerden sonra mukavemet hesaplamaları için gerekli olan, çalışma donanımı parçalarına etki eden maksimum ve minimum kuvvetlerin bulunması gereklidir. Kuvvetler hesaplanırken sistemin bir bütün olduğu unutulmamalıdır. Ek 4 ve 5'de verilen kuvvet değerleri hiçbir sınırlama olmadan sistem içersinde ortaya çıkabilecek kuvvetlerdir. Sistemin sorunsuz çalışabilmesi için her silindirde oluşan kuvvet hidrolik sistemden ileri gelen sınırlamalar içersinde olmalıdır. Ayrıca bu durum gerçekleşse bile tüm sistemin dengesi de kontrol edilmelidir.

Kazma işlemi sürekli bir süreçtir. Operatör öncelikle kazma işlemi için boomu uygun konuma getirir ve sabitler. Kol ve kepçe silindirlerini kullanarak kazma yapar. Daha sonra boşaltma

işlemine geçer. Boşaltma sırasında sadece ağırlıklar etkin olduğu için boşaltma sırasında silindirlere etkiyen ters yönlü kuvvetler çok küçük olacaktır, dolayısıyla 0 olarak kabul edileceklerdir. Çizelge 3.11'de bu bölüme kadar elde edilen değerler ve öngörülen koşulların izinde çalışma donanımı içersinde ortaya çıkan kuvvetlerin değişimi verilmiştir. Sistemin yapısından dolayı sonsuz sayıda değer ortaya çıkmaktadır. Verilen değerler doğal olarak hesaplanan değerler içersinde değerlendirmeler ve tahminler yapılarak bulunmuştur.

Çizelge 3.11 Çalışma donanımına etki eden kuvvetlerin değişimi

F _a (kN)	λ=0° için 165~-96
	0° <λ<130° için 76,5~-125,6
	λ=130° için 76,5~-235
F _b (kN)	110,4~-12,8
F _c (kN)	56,4~0
F ₁₂ (kN)	74~0
F ₁₃ (kN)	61,8~0
F _{pim1} (kN)	67~0
F _{pim7} (kN)	120~0

4. MUKAVEMET HESAPLARI

Parçalara etkiyen kuvvetler değişken olduğundan mukavemet kontrolleri parça malzemelerinin Soderberg diyagramlarına dayanılarak yapılır.

Şekil 4.1 Soderberg diyagramı

Diyagramda $\sigma_D^* = \frac{K_y.K_b}{K_g}.\sigma_D$ şeklinde hesaplanır. Burada K_y yüzey faktörü, K_b boyut

faktörü, K_{ς} çentik faktörüdür. Parçanın gerilme durumuna ait σ_{o} ve σ_{g} değerleri taralı alan içersinde ise parça sonlu ömür bölgesinde çalışır, dışında ise parça için Wöhler diyagramı çizilerek ömür hesabı yapılır. Bu durumun hesabı için Denklem 4.1' e göre bir emniyet katsayısı hesap edilir. $S \ge 1$ ise parçanın gerilme durumu taralı alan içersindedir. S < 1 ise Wöhler diyagramı çizilerek ömür hesabı yapılır.

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} \tag{4.1}$$

İşlemler için gerekli değişkenler Ek 7'de verilmiştir.

4.1 Hidrolik Silindirlerin Hesabı

Hidrolik silindirler basma ve çekme kuvvetlerine maruz kaldıklarından kontrolleri basma ve çekme gerilmesine göre yapılır. Ekskavatör dahilinde kullanılan tüm silindirler St60 malzeme ile imal edilmiş, $\sigma_K = 600N/mm^2$, $\sigma_{Ak} = 330N/mm^2$ dir. İmalat çelikleri için $\sigma_{CD} = 0.45\sigma_K$ olarak verildiğinden $\sigma_D = 0.45.600 = 270N/mm^2$ olarak alınmalıdır.

4.1.1 Kepçe Hidrolik Silindiri

F_c kepçe silindiri kuvveti, Çizelge 3.11'deki değerlere göre Şekil 4.2'de görülen taralı alan içersinde çizilen eğrilere benzer şekilde ortam şartlarına bağlı olarak değişim gösterecektir.

Şekil 4.2 F_c kuvvetinin zamanla değişimi

$$\sigma_{\text{max}} = \frac{F_{c \text{ max}}}{A} = \frac{56400}{\pi d^2 / 4} = \frac{56400}{\pi . 40^2 / 4} = 44.9 \text{ N/mm}^2$$

$$\sigma_{min} = 0$$

$$\sigma_0 = \left| \frac{\left(\sigma_{\text{max}} + \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(44.9 + 0 \right)}{2} \right| = 22.45 N / mm^2$$

$$\sigma_g = \left| \frac{(\sigma_{\text{max}} - \sigma_{\text{min}})}{2} \right| = \left| \frac{(44.9 - 0)}{2} \right| = 22.45 N / mm^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{0.9.0,75}{1}.270 = 182,85N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{330}{22,45 + \left(\frac{330}{182,85}\right)22,45} = 5,2$$

4.1.2 Kol Hidrolik Silindiri

F_b kol silindiri kuvveti, Çizelge 3.11'deki değerlere göre Şekil 4.3'de görülen taralı alan içersinde çizilen eğrilere benzer şekilde ortam şartlarına bağlı olarak değişim gösterecektir.

Şekil 4.3 F_b kuvvetinin zamana göre değişimi

$$\sigma_{\text{max}} = \frac{F_{b \text{ max}}}{A} = \frac{110400}{\pi d^2 / 4} = \frac{110400}{\pi . 45^2 / 4} = 69.4 \text{ N/mm}^2$$

$$\sigma_{\min} = \frac{F_{b \min}}{A} = \frac{-12800}{\pi d^2 / 4} = \frac{-12800}{\pi . 45^2 / 4} = -8N / mm^2$$

$$\sigma_0 = \left| \frac{\left(\sigma_{\text{max}} + \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(69, 4 + (-8) \right)}{2} \right| = 30,7 \, \text{N/mm}^2$$

$$\sigma_g = \left| \frac{\left(\sigma_{\text{max}} - \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(69, 4 - (-8) \right)}{2} \right| = 38,7 \, \text{N/mm}^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{0.9.0.725}{1}.270 = 176N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{330}{30.7 + \left(\frac{330}{176}\right)38.7} = 3.2$$

4.1.3 Boom Hidrolik Silindiri

F_a boom silindiri kuvveti, Çizelge 3.11'de verilen değerlere göre Şekil 4.4'de görülen taralı alan içersinde çizilen eğrilere benzer şekilde ortam şartlarına bağlı olarak değişim gösterecektir.

Şekil 4.4 F_a kuvvetinin zamanla değişimi

 $\lambda=0^{\circ}$ değeri için :

$$\sigma_{\text{max}} = \frac{F_{a \text{ max}}}{A} = \frac{165000}{\pi d^2 / 4} = \frac{165000}{\pi . 50^2 / 4} = 84N / mm^2$$

$$\sigma_{\min} = \frac{F_{a \min}}{A} = \frac{-125000}{\pi d^2 / 4} = \frac{-125000}{\pi . 50^2 / 4} = -63.6 N / mm^2$$

$$\sigma_0 = \left| \frac{\left(\sigma_{\text{max}} + \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(84 + (-63,6) \right)}{2} \right| = 10,2N / mm^2$$

$$\sigma_g = \left| \frac{\left(\sigma_{\text{max}} - \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(84 - (-63, 6) \right)}{2} \right| = 73,8 \text{ N / mm}^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{0.9.0.7}{1}.270 = 170N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{330}{10.2 + \left(\frac{330}{170}\right)73.8} = 2,15$$

 $0^{\circ} < \lambda < 130^{\circ}$ değerleri için:

$$\sigma_{\text{max}} = \frac{F_{a \text{ max}}}{A} = \frac{76600}{\pi d^2 / 4} = \frac{76600}{\pi . 50^2 / 4} = 39N / mm^2$$

$$\sigma_{\min} = \frac{F_{a \min}}{A} = \frac{-125000}{\pi d^2 / 4} = \frac{-125000}{\pi . 50^2 / 4} = -63.6 N / mm^2$$

$$\sigma_0 = \left| \frac{\left(\sigma_{\text{max}} + \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(39 + (-63,6) \right)}{2} \right| = 24,6N / mm^2$$

$$\sigma_g = \left| \frac{\left(\sigma_{\text{max}} - \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(39 - (-63,6) \right)}{2} \right| = 51,45 \text{N/mm}^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_g}.\sigma_D = \frac{0.9.0.7}{1}.270 = 170N/mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{330}{24.6 + \left(\frac{330}{170}\right)51,45} = 2,65$$

λ=130° değeri için:

$$\sigma_{\text{max}} = \frac{F_{a \text{ max}}}{A} = \frac{76600}{\pi d^2 / 4} = \frac{76600}{\pi . 50^2 / 4} = 39 N / mm^2$$

$$\sigma_{\min} = \frac{F_{a \min}}{A} = \frac{-235000}{\pi d^2 / 4} = \frac{-235000}{\pi . 50^2 / 4} = -119.6 N / mm^2$$

$$\sigma_0 = \left| \frac{\left(\sigma_{\text{max}} + \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(39 + (-119, 6) \right)}{2} \right| = 40,3 N / mm^2$$

$$\sigma_g = \left| \frac{\left(\sigma_{\text{max}} - \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(39 - (-119, 6) \right)}{2} \right| = 79,3 N / mm^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{0.9.0.7}{1}.270 = 170N/mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{330}{40.3 + \left(\frac{330}{170}\right)79.3} = 1,69$$

4.2 12 ve 13 Numaralı Parça

12 ve 13 numaralı parçalar çekmeye veya basmaya çalışan elemanlardır. Şekil 4.5'de yapıları ve kuvvet etkisi görülmektedir. St37 imalat çeliğinden imal edilmiş ve $\sigma_K = 370 N / mm^2$ $\sigma_{AK} = 230 N / mm^2$ dir. $\sigma_D = 0.45.370 = 166 N / mm^2$ alınmalıdır.

Şekil 4.5 12 ve 13 numaralı parça

Yapıları aynı olduğundan Çizelge 3.11'de verilen değerlere göre yalnızca F_{12} kuvveti için kontrol yapmak yeterli olacaktır.

Şekil 4.6 F₁₂ kuvvetinin zamanla değişimi

$$\sigma_{\text{max}} = \frac{F_{12 \text{ max}}}{A} = \frac{74000}{16.80} = 57.8 \text{N/mm}^2$$

$$\sigma_{\min} = 0$$

$$\sigma_0 = \left| \frac{(\sigma_{\text{max}} + \sigma_{\text{min}})}{2} \right| = \left| \frac{(57, 8+0)}{2} \right| = 28,9 \, \text{N/mm}^2$$

$$\sigma_g = \left| \frac{(\sigma_{\text{max}} - \sigma_{\text{min}})}{2} \right| = \left| \frac{(57.8 - 0)}{2} \right| = 28.9 N / mm^2$$

$$K_c = 1 + q.(K_T - 1) = 1 + 0.78(2.1 - 1) = 1.8$$

$$\sigma_D^* = \frac{K_y.K_b}{K_g}.\sigma_D = \frac{0.9.1}{1.8}.165 = 82.5N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{230}{28.9 + \left(\frac{230}{82.5}\right)28.9} = 2.1$$

4.3 Pernoların Hesabı

Pernolar çalışma koşullarından dolayı eğilmeye ve yüzey basıncına maruz kalırlar. Bu yüzden mukavemet kontrol hesapları bu zorlanma koşullarına göre yapılır. Sistem dahilinde kullanılan tüm pernolar SAE 8620 sementasyon çeliğinden imal edilmiştir. Çizelge 4.1'de bu malzeme için verilen gerilmeler görülmektedir.

Cizelge 4.1 SAE 8620 sementasyon çeliği için gerilmeler

	σ_{K}	σ_{AK}	σ_{eD}
Gerilme değeri(N/mm²)	1080	630	445

Perno bağlantıları yapısal özelliklerine bağlı olarak Şekil 4.7'de görüldüğü gibi iki çeşit zorlanmaya maruz kalırlar. Bu zorlanma şekillerine göre de mukavemet hesapları farklılık gösterir. Hesaplamalar yapılırken pernolara etki eden kuvvetlerin yayılı yükler oldukları unutulmamalıdır.

Şekil 4.7 Pernolarda oluşan zorlanma çeşitleri

Yüzey basıncı:

A ve B için
$$p = \frac{F_{\text{max}}}{2b_1 d} \le p_{em}$$
 (4.2)

A için
$$p = \frac{F_{\text{max}}}{ad} \le p_{em}$$
 (4.3)

$$B i con p = \frac{F_{max}}{2ad} \le p_{em}$$
 (4.4)

Yüzey basıncı emniyet değeri $p_{em} = \frac{\sigma_{AK}}{S} \cdot \frac{K_y}{K_{\varsigma}}$ şeklinde hesap edilir ve S emniyet katsayısı

değeri değişken zorlanmalarda 2.....3 değerleri arasında seçilir. Tüm pernoların yüzeyleri parlatılmış ve düz pernolardır ve emniyet katsayısı 2,5 seçilirse ;

$$p_{em} = \frac{\sigma_{AK}}{S} \cdot \frac{K_y}{K_c} = \frac{630}{2.5} \cdot \frac{1}{1} = 252N / mm^2$$
 olarak alınır.

Eğilme:

A için
$$M_e = \frac{F}{2} \left(\frac{b + b_1}{2} \right) - \frac{F.a}{8}$$
 (4.5)

$$B i con M_e = \frac{F}{2} \left(\frac{a + b_1}{2} \right) \tag{4.6}$$

$$\sigma_e = \frac{M_e}{W} = \frac{M_e}{\pi . d^3} = \frac{32M_e}{\pi . d^3}$$
 (4.7)

4.3.1 1 Numaralı Perno

B tipi bir perno olup Şekil 4.8'de boyutları ve kuvvet etkisi görülmektedir. Çizelge 3.11'de verilen değerlere göre pernoya etki eden kuvvet F_{pim1}=67~0kN arasında değişmektedir

Şekil 4.8 1 numaralı perno bağlantısı

$$p_1 = \frac{F}{2b_1 d} = \frac{67000}{2.24.40} = 34.9 N / mm^2 \le 250 N / mm^2 = p_{em}$$

$$p_2 = \frac{F}{2ad} = \frac{67000}{144.40} = 11.6N / mm^2 \le 250N / mm^2 = p_{em}$$

$$M_{\text{max}} = \frac{F_{\text{max}}}{2} \cdot \left(\frac{a+b_1}{2}\right) = \frac{67000}{2} \left(\frac{72+24}{2}\right) = 1608000 Nmm$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{M_{\text{max}}}{\frac{\pi . d^3}{32}} = \frac{32M_{\text{max}}}{\pi . d^3} = \frac{32.1608000}{\pi . 40^3} = 256N / mm^2$$

$$\sigma_{min} = 0$$

$$\sigma_0 = \left| \frac{(\sigma_{\text{max}} + \sigma_{\text{min}})}{2} \right| = \left| \frac{(256 + 0)}{2} \right| = 128N / mm^2$$

$$\sigma_g = \left| \frac{(\sigma_{\text{max}} - \sigma_{\text{min}})}{2} \right| = \left| \frac{(256 - 0)}{2} \right| = 128N / mm^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{1.0,75}{1}.445 = 334N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{630}{128 + \left(\frac{630}{334}\right)128} = 1,7$$

4.3.2 2 Numaralı Perno

B tipi bir perno olup Şekil 4.9'da boyutları ve kuvvet etkisi görülmektedir. 2 numaralı pernoya etkiyen maksimum kuvvet F_{12} kuvvetine eşit $(F_{pim2})_{max}$ = 74kN $(F_{pim2})_{min}$ =0 N dur.

Şekil 4.9 2 numaralı perno bağlantısı

$$p_1 = \frac{F}{2b_1 d} = \frac{74000}{2.24.40} = 38.5 N / mm^2 \le 250 N / mm^2 = p_{em}$$

$$p_2 = \frac{F}{2ad} = \frac{74000}{144.40} = 12.8N / mm^2 \le 250N / mm^2 = p_{em}$$

$$M_{\text{max}} = \frac{F_{\text{max}}}{2} \cdot \left(\frac{a+b_1}{2}\right) = \frac{74000}{2} \left(\frac{72+24}{2}\right) = 1776000 Nmm$$

$$M_{min}=0$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{M_{\text{max}}}{\frac{\pi . d^3}{32}} = \frac{32M_{\text{max}}}{\pi . d^3} = \frac{32.1776000}{\pi . 40^3} = 282N / mm^2$$

$$\sigma_{\min} = 0$$

$$\sigma_0 = \left| \frac{(\sigma_{\text{max}} + \sigma_{\text{min}})}{2} \right| = \left| \frac{(282 + 0)}{2} \right| = 141 N / mm^2$$

$$\sigma_g = \left| \frac{(\sigma_{\text{max}} - \sigma_{\text{min}})}{2} \right| = \left| \frac{(282 - 0)}{2} \right| = 141 N / mm^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{1.0,75}{1}.445 = 334N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{630}{141 + \left(\frac{630}{334}\right)141} = 1,54$$

4.3.3 3 Numaralı Perno

3 numaralı pernonun donanım içersindeki diğer pernolara göre farklı bir yapısı vardır. Boyutları ve kuvvet dağılımı Şekil 4.10'da verilmiştir. Daha önceki bölümlerde incelendiği gibi 3 numaralı perno üzerine etki eden F_{12} , F_{13} , F_c değerleri ϕ değerine göre aldıkları konumlar ve değerler değişim gösterir. Çizelge 3.7'de konuma bağlı olarak değerlerin değişimleri verilmiştir. Yüzey basıncı kontrolü kuvvetlerin aldıkları maksimum değerlere göre yapılır.

Şekil 4.10 3 numaralı perno bağlantısı

$$p_1 = \frac{F}{2b_1 d} = \frac{62000}{2.36.40} = 21,5N / mm^2 \le 250N / mm^2 = p_{em}$$

$$p_2 = \frac{F}{2b_1 d} = \frac{74000}{2.48.40} = 19,2N / mm^2 \le 250N / mm^2 = p_{em}$$

$$p_3 = \frac{F}{ad} = \frac{56400}{28.40} = 50,35N / mm^2 \le 250N / mm^2 = p_{em}$$

Eğilme için yapılacak kontrol aşamasında her konum için pernonun kritik kesitinin bulunması ve bu kesitte ortaya çıkan maksimum eğilme momentinin hesaplanması gereklidir. Çizelge 3.7'de verilen değerlere göre moment diyagramları her konum için farklı olacaktır. Şekil 4.11'de ϕ =0° konumunda her iki düzlem için moment diyagramları verilmiştir.

Şekil 4.11 3 numaralı perno φ=0° konumu için moment diyagramları

Şekilde de görüldüğü gibi kritik kesit pernonun orta noktasıdır. Diğer konumlar için işlemler tekrar edildiğinde her konum için kritik kesit bu nokta olacaktır. Çizelge 4.2'de bu noktada oluşan moment değerleri görülmektedir.

Çizelge 4.2 φ değerleri için kritik kesitte oluşan moment değerleri

				M _e (kNmm		
φ(°)	F _c (kN)	F ₁₂ (kN)	F ₁₃ (kN)	A	В	
0	56,4	67,5	12,9	-776	693	
10	56,4	72,3	20,4	-466	881	
15	56,4	73,4	23,0	-327	958	
20	56,4	73,9	25,3	-191	1027	
30	56,4	73,4	28,4	53	1131	
35	56,4	72,6	29,6	169	1170	
40	56,4	71,5	30,6	278	1201	
50	56,4	69,2	32,5	494	1241	
80	56,4	60,5	37,2	1052	1226	
110	56,4	51,4	42,9	1520	1092	
140	56,4	42,6	49,9	1907	914	
189	56,4	31,5	61,8	2380	635	

Her iki düzlem göz önünde bulundurularak perno kritik kesitinde oluşacak maksimum toplam moment φ=189° için;

 $M_{\rm max} = \sqrt{(A_{189})^2 + (B_{189})^2} = \sqrt{(2380)^2 + (635)^2} = 2463kNmm = 2463000Nmm$ olacaktır ve 3 numaralı perno için eğilme momenti Şekil 4.12'de görülen taralı alan içersinde değişim gösterecektir.

Şekil 4.12 3 numaralı perno eğilme momentinin zamanla değişimi

 $M_{max} = 2463000 Nmm$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{M_{\text{max}}}{\frac{\pi . d^3}{32}} = \frac{32M_{\text{max}}}{\pi . d^3} = \frac{32.2463000}{\pi . 40^3} = 392N / mm^2$$

$$\sigma_{min} = 0$$

$$\sigma_0 = \left| \frac{(\sigma_{\text{max}} + \sigma_{\text{min}})}{2} \right| = \left| \frac{(392 + 0)}{2} \right| = 196 N / mm^2$$

$$\sigma_g = \left| \frac{(\sigma_{\text{max}} - \sigma_{\text{min}})}{2} \right| = \left| \frac{(392 - 0)}{2} \right| = 196 N / mm^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{1.0,75}{1}.445 = 334N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{630}{196 + \left(\frac{630}{334}\right)196} = 1,11$$

4.3.4 4 Numaralı Perno

B tipi bir perno olup Şekil 4.13'de boyutları ve kuvvet etkisi görülmektedir. 4 numaralı pernoya etkiyen maksimum kuvvet F_{13} kuvvetinin değerine eşit $(F_{pim4})_{max}$ = 62kN $(F_{pim4})_{min}$ =0kN dur.

Şekil 4.13 4 numaralı perno bağlantısı

$$p_1 = \frac{F}{2b_1 d} = \frac{62000}{2.40.40} = 19,375 N / mm^2 \le 250 N / mm^2 = p_{em}$$

$$p_2 = \frac{F}{2ad} = \frac{62000}{144.40} = 10,76N / mm^2 \le 250N / mm^2 = p_{em}$$

$$M_{\text{max}} = \frac{F_{\text{max}}}{2} \cdot \left(\frac{a+b_1}{2}\right) = \frac{62000}{2} \left(\frac{72+40}{2}\right) = 1736000 Nmm$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{M_{\text{max}}}{\frac{\pi . d^3}{32}} = \frac{32M_{\text{max}}}{\pi . d^3} = \frac{32.1736000}{\pi . 40^3} = 276N / mm^2$$

$$\sigma_{min} = 0$$

$$\sigma_0 = \left| \frac{(\sigma_{\text{max}} + \sigma_{\text{min}})}{2} \right| = \left| \frac{(276 + 0)}{2} \right| = 138N / mm^2$$

$$\sigma_g = \left| \frac{(\sigma_{\text{max}} - \sigma_{\text{min}})}{2} \right| = \left| \frac{(276 - 0)}{2} \right| = 138N / mm^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{1.0,75}{1}.445 = 334N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{630}{138 + \left(\frac{630}{334}\right)138} = 1,58$$

4.3.5 5 Numaralı Perno

A tipi bir perno olup Şekil 4.14'de boyutları ve kuvvet etkisi görülmektedir. 5 numaralı pernoya etki eden maksimum kuvvet F_c kuvvetinin değerine eşit $(F_{pim5})_{max}$ = 56,4kN $(F_{pim5})_{min}$ =0kNdur.

Şekil 4.14 5 numaralı perno bağlantısı

$$p_1 = \frac{F}{2b_1 d} = \frac{56400}{2.40.40} = 17,6N / mm^2 \le 250N / mm^2 = p_{em}$$

$$p_2 = \frac{F}{ad} = \frac{56400}{28.40} = 50.3N / mm^2 \le 250N / mm^2 = p_{em}$$

$$M_{\text{max}} = \frac{F_{\text{max}}}{2} \left(\frac{b + b_1}{2} \right) - \frac{F_{\text{max}} \cdot a}{8} = \frac{56400}{2} \left(\frac{55 + 40}{2} \right) - \frac{56400.28}{2} = 1142100 Nmm$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{M_{\text{max}}}{\frac{\pi . d^3}{32}} = \frac{32M_{\text{max}}}{\pi . d^3} = \frac{32.1142100}{\pi . 40^3} = 181,7 \text{ N/mm}^2$$

$$\sigma_{min} = 0$$

$$\sigma_0 = \left| \frac{\left(\sigma_{\text{max}} + \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(181, 7 + 0 \right)}{2} \right| = 90,8 \, \text{N / mm}^2$$

$$\sigma_g = \left| \frac{(\sigma_{\text{max}} - \sigma_{\text{min}})}{2} \right| = \left| \frac{(181, 7 - 0)}{2} \right| = 90,8N / mm^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{1.0,75}{1}.445 = 334N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{630}{90.8 + \left(\frac{630}{334}\right)90.8} = 2,4$$

4.3.6 6 Numaralı Perno

A tipi bir perno olup boyutları ve kuvvet etkisi Şekil 4.15'de görülmektedir. 6 numaralı pernoya etki eden maksimum kuvvet F_b kuvvetinin değerine eşit $(F_{pim6})_{max}$ =110,4kN $(F_{pim6})_{min}$ = -12,8kN dur.

Şekil 4.15 6 numaralı perno bağlantısı

$$p_1 = \frac{F}{2b_1 d} = \frac{110400}{2.40.40} = 34,5 N / mm^2 \le 250 N / mm^2 = p_{em}$$

$$p_2 = \frac{F}{ad} = \frac{114000}{28.40} = 98,5 N / mm^2 \le 250 N / mm^2 = p_{em}$$

$$M_{\text{max}} = \frac{F_{\text{max}}}{2} \left(\frac{b + b_1}{2} \right) - \frac{F_{\text{max}} \cdot a}{8} = \frac{110400}{2} \left(\frac{55 + 40}{2} \right) - \frac{110400.28}{8} = 2235600 Nmm$$

$$M_{\min} = \frac{F_{\min}}{2} \left(\frac{b + b_1}{2} \right) - \frac{F_{\min} \cdot a}{2} = \frac{-12800}{2} \left(\frac{55 + 40}{2} \right) - \frac{(-12800) \cdot 28}{8} = -259200 Nmm$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{M_{\text{max}}}{\frac{\pi . d^3}{32}} = \frac{32M_{\text{max}}}{\pi . d^3} = \frac{32.2235600}{\pi . 40^3} = 355N / mm^2$$

$$\sigma_{\min} = \frac{M_{\min}}{W} = \frac{M_{\min}}{\frac{\pi . d^3}{32}} = \frac{32M_{\min}}{\pi . d^3} = \frac{32.(-259200)}{\pi . 40^3} = -41N / mm^2$$

$$\sigma_0 = \left| \frac{\left(\sigma_{\text{max}} + \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(355 + (-41) \right)}{2} \right| = 157 N / mm^2$$

$$\sigma_g = \left| \frac{(\sigma_{\text{max}} - \sigma_{\text{min}})}{2} \right| = \left| \frac{(355 - (-41))}{2} \right| = 198N / mm^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{1.0,75}{1}.445 = 334N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{630}{157 + \left(\frac{630}{334}\right)198} = 1,18$$

4.3.7 7 Numaralı Perno

B tipi bir perno olup Şekil 4.16'da boyutları ve kuvvet etkisi görülmektedir. Çizelge 3.11'de verilen değerlere göre pernoya etki eden kuvvet F_{pim7}=120~0kN arasında değişmektedir

Şekil 4.16 7 numaralı perno bağlantısı

$$p_1 = \frac{F}{2b_1 d} = \frac{120000}{2.42.45} = 31,74N / mm^2 \le 250N / mm^2 = p_{em}$$

$$p_2 = \frac{F}{2ad} = \frac{120000}{144.45} = 18,5 N / mm^2 \le 250 N / mm^2 = p_{em}$$

$$M_{\text{max}} = \frac{F_{\text{max}}}{2} \left(\frac{a+b_1}{2} \right) = \frac{125000}{2} \left(\frac{72+42}{2} \right) = 3562500 Nmm$$

 $M_{min}=0$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{M_{\text{max}}}{\frac{\pi . d^3}{32}} = \frac{32M_{\text{max}}}{\pi . d^3} = \frac{32.3562500}{\pi . 45^3} = 398N / mm^2$$

$$\sigma_{min} = 0$$

$$\sigma_0 = \left| \frac{(\sigma_{\text{max}} + \sigma_{\text{min}})}{2} \right| = \left| \frac{(398 + 0)}{2} \right| = 199 N / mm^2$$

$$\sigma_g = \left| \frac{(\sigma_{\text{max}} - \sigma_{\text{min}})}{2} \right| = \left| \frac{(398 - 0)}{2} \right| = 199 N / mm^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{1.0,725}{1}.445 = 322N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{630}{199 + \left(\frac{630}{322}\right)199} = 1,07$$

4.3.8 8 Numaralı Perno

A tipi bir perno olup boyutları ve kuvvet etkisi Şekil 4.17'de görülmektedir. 8 numaralı pernoya etki eden maksimum kuvvet F_b kuvvetinin değerine eşit $(F_{pim8})_{max}=110,4kN$ $(F_{pim8})_{min}=-12,8kN$ dur.

Şekil 4.17 8 numaralı perno bağlantısı

$$p_1 = \frac{F}{2b_1 d} = \frac{110400}{2.54.40} = 25,55N / mm^2 \le 250N / mm^2 = p_{em}$$

$$p_2 = \frac{F}{ad} = \frac{110400}{28.40} = 101,7N / mm^2 \le 250N / mm^2 = p_{em}$$

$$M_{\text{max}} = \frac{F_{\text{max}}}{2} \left(\frac{b + b_1}{2} \right) - \frac{F_{\text{max}} \cdot a}{8} = \frac{110400}{2} \left(\frac{55 + 54}{2} \right) - \frac{110400.28}{8} = 2622000 Nmm$$

$$M_{\min} = \frac{F_{\min}}{2} \left(\frac{b + b_1}{2} \right) - \frac{F_{\min} \cdot a}{8} = \frac{-12800}{2} \left(\frac{55 + 54}{2} \right) - \frac{(-12800) \cdot 28}{8} = -304000 Nmm$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{M_{\text{max}}}{\frac{\pi . d^3}{32}} = \frac{32M_{\text{max}}}{\pi . d^3} = \frac{32.2622000}{\pi . 40^3} = 417N / mm^2$$

$$\sigma_{\min} = \frac{M_{\min}}{W} = \frac{M_{\min}}{\frac{\pi . d^3}{32}} = \frac{32M_{\min}}{\pi . d^3} = \frac{32.(-304000)}{\pi . 40^3} = -48,3N / mm^2$$

$$\sigma_0 = \left| \frac{\left(\sigma_{\text{max}} + \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(417 + (-48,3) \right)}{2} \right| = 184,3N / mm^2$$

$$\sigma_g = \left| \frac{\left(\sigma_{\text{max}} - \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(417 - (-48,3) \right)}{2} \right| = 232,65 \text{N/mm}^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{1.0,75}{1}.445 = 334N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{630}{184,3 + \left(\frac{630}{334}\right)232,65} = 1,01$$

4.3.9 9 Numaralı Perno

A tipi bir perno olup boyutları ve kuvvet etkisi Şekil 4.18'de görülmektedir. 9 numaralı pernoya etki eden maksimum kuvvet F_a kuvvetinin değerine eşittir. Bundan dolayı farklı λ değerleri için hesaplar yapılmıştır.

Şekil 4.18 9 numaralı perno bağlantısı

λ=0° için

$$p_1 = \frac{F}{2b_1 d} = \frac{165000}{2.54.45} = 33.9 N / mm^2 \le 250 N / mm^2 = p_{em}$$

$$p_2 = \frac{F}{ad} = \frac{165000}{32.45} = 114,5 N / mm^2 \le 250 N / mm^2 = p_{em}$$

$$M_{\text{max}} = \frac{F_{\text{max}}}{2} \left(\frac{b + b_1}{2} \right) - \frac{F_{\text{max}} \cdot a}{2} = \frac{165000}{2} \left(\frac{55 + 54}{2} \right) - \frac{165000.32}{8} = 3836250 Nmm$$

$$M_{\min} = \frac{F_{\min}}{2} \left(\frac{b+b_1}{2}\right) - \frac{F_{\min}.a}{8} = \frac{-108000}{2} \left(\frac{55+54}{2}\right) - \frac{(-108000)32}{8} = -2511000Nmm$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{M_{\text{max}}}{\frac{\pi . d^3}{32}} = \frac{32M_{\text{max}}}{\pi . d^3} = \frac{32.3836250}{\pi . 45^3} = 428N / mm^2$$

$$\sigma_{\min} = \frac{M_{\min}}{W} = \frac{M_{\min}}{\frac{\pi . d^3}{32}} = \frac{32M_{\min}}{\pi . d^3} = \frac{32.(-2511000)}{\pi . 45^3} = -280N / mm^2$$

$$\sigma_0 = \left| \frac{\left(\sigma_{\text{max}} + \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(428 + (-280) \right)}{2} \right| = 74N / mm^2$$

$$\sigma_g = \left| \frac{\left(\sigma_{\text{max}} - \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(428 - (-280) \right)}{2} \right| = 354 N / mm^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{1.0,725}{1}.445 = 322N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{630}{74 + \left(\frac{630}{322}\right)354} = 0,82$$

0°<λ<130° için

$$p_1 = \frac{F}{2b_1 d} = \frac{125000}{2.54.45} = 25,7 N / mm^2 \le 250 N / mm^2 = p_{em}$$

$$p_2 = \frac{F}{ad} = \frac{125000}{32.45} = 86.8N / mm^2 \le 250N / mm^2 = p_{em}$$

$$M_{\text{max}} = \frac{F_{\text{max}}}{2} \left(\frac{b + b_1}{2} \right) - \frac{F_{\text{max}} \cdot a}{8} = \frac{76500}{2} \left(\frac{55 + 54}{2} \right) - \frac{76500.32}{8} = 1778625 Nmm$$

$$M_{\min} = \frac{F_{\min}}{2} \left(\frac{b + b_1}{2} \right) - \frac{F_{\min}.a}{8} = \frac{-125000}{2} \left(\frac{55 + 54}{2} \right) - \frac{(-125000).32}{8} = -2906250 Nmm$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{M_{\text{max}}}{\frac{\pi . d^3}{32}} = \frac{32M_{\text{max}}}{\pi . d^3} = \frac{32.1778625}{\pi . 45^3} = 198,8N / mm^2$$

$$\sigma_{\min} = \frac{M_{\min}}{W} = \frac{M_{\min}}{\frac{\pi . d^3}{32}} = \frac{32M_{\min}}{\pi . d^3} = \frac{32.(-2906250)}{\pi . 45^3} = -324,5N/mm^2$$

$$\sigma_0 = \left| \frac{\left(\sigma_{\text{max}} + \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(198, 8 + (-324, 5) \right)}{2} \right| = 62,9 \, \text{N/mm}^2$$

$$\sigma_g = \left| \frac{\left(\sigma_{\text{max}} - \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(198.8 - (-324.5) \right)}{2} \right| = 261.6 N / mm^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{1.0,725}{1}.445 = 322N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{630}{62,9 + \left(\frac{630}{322}\right)261,6} = 1,09$$

λ=130° için

$$p_1 = \frac{F}{2b_1 d} = \frac{235000}{2.54.45} = 48,3N / mm^2 \le 250N / mm^2 = p_{em}$$

$$p_2 = \frac{F}{ad} = \frac{235000}{32.45} = 163N / mm^2 \le 250N / mm^2 = p_{em}$$

$$M_{\text{max}} = \frac{F_{\text{max}}}{2} \left(\frac{b + b_1}{2} \right) - \frac{F_{\text{max}} \cdot a}{8} = \frac{76500}{2} \left(\frac{55 + 54}{2} \right) - \frac{76500.32}{8} = 1778625 Nmm$$

$$M_{\min} = \frac{F_{\min}}{2} \left(\frac{b + b_1}{2}\right) - \frac{F_{\min}.a}{2} = \frac{-235000}{2} \left(\frac{55 + 54}{2}\right) - \frac{(-235000).32}{8} = -5463750 Nmm$$

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W} = \frac{M_{\text{max}}}{\frac{\pi . d^3}{32}} = \frac{32M_{\text{max}}}{\pi . d^3} = \frac{32.1778625}{\pi . 45^3} = 198.8N / mm^2$$

$$\sigma_{\min} = \frac{M_{\min}}{W} = \frac{M_{\min}}{\frac{\pi . d^3}{32}} = \frac{32M_{\min}}{\pi . d^3} = \frac{32.(-5463750)}{\pi . 45^3} = -610N / mm^2$$

$$\sigma_0 = \left| \frac{\left(\sigma_{\text{max}} + \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(198, 8 + (-610) \right)}{2} \right| = 206 N / mm^2$$

$$\sigma_g = \left| \frac{\left(\sigma_{\text{max}} - \sigma_{\text{min}} \right)}{2} \right| = \left| \frac{\left(198, 8 - (-610) \right)}{2} \right| = 404 N / mm^2$$

$$\sigma_D^* = \frac{K_y.K_b}{K_c}.\sigma_D = \frac{1.0,725}{1}.445 = 322N / mm^2$$

$$S = \frac{\sigma_{AK}}{\sigma_0 + \left(\frac{\sigma_{AK}}{\sigma_D^*}\right)\sigma_g} = \frac{630}{206 + \left(\frac{630}{322}\right)404} = 0,63$$

4.4 Boom ve Kol hesabı

4.4.1 Boom Hesabi

Boomun mukavemet kontrolü yapılırken öncelikle gerilme durumunun göz önünde bulundurulması gerekir. Kol kazma kuvveti etkisi altında $\lambda=60^{\circ}$, $\mu=30^{\circ}$, $\phi=60^{\circ}$ konumu için

Şekil 4.19'da boom gerilme durumu verilmiştir.

Şekil 4.19 Kol kazma kuvveti etkisi ile λ =60°, μ =30°, ϕ =60° konumu boom gerilme durumu Boom için herhangi bir kesitteki gerilme

$$\sigma = \frac{M_e}{I/c} (\text{N/mm}^2) \tag{4.8}$$

şeklinde olacaktır. Şekil 4.20'de B kesiti görülmektedir. Kesitte oluşacak gerilme durumu aşağıdaki gibi hesabedilir.

Şekil 4.20 B kesiti

B kesiti için atalet momenti aşağıdaki gibi hesaplanır.

$$I_{B} = \left[\frac{180^{4}}{12} + \left(180^{2}.50^{2}\right)\right] - \left[\frac{145^{4}}{12} + 145^{2}.50^{2}\right] - \left[2.\left(\frac{9.145^{3}}{12} + 9.145.50^{2}\right)\right] = 67982010mm^{4}$$

B kesiti için I/c oranı 67982010/203 = 334887mm³ olacaktır. Dolayısıyla B kesitindeki gerilme;

$$\sigma = \frac{M_e}{I/c} = \frac{16500000}{334887} = 49.2 N/mm^2$$
 bulunur.

Boomun yapısından dolayı her kesitteki I/c oranı farklıdır. Gerilme durumunu için bu oranın boom boyunca değişimini ortaya koymak gereklidir. Şekil 4.21'de I/c, 4.22'de gerilme değerlerinin eksen boyunca değişimleri görülmektedir.

Şekil 4.21 Boom için kesit boyunca I/c değişimi

Şekil 4.22 Boom için kesit boyunca gerilme değişimi

4.4.2 Kol Hesabı

Kolun mukavemet kontrolü boom ile aynıdır. Kol kazma kuvveti etkisi altında λ =60°, μ =30°, ϕ =60° konumu için Şekil 4.23'de kol gerilme durumu verilmiştir.

Şekil 4.23 Kol kazma kuvveti etkisi ile λ =60°, μ =30°, ϕ =60° konumu kol gerilme durumu

Şekil 4.24 Kol için kesit boyunca I/c değişimi

Şekil 4.25 Kol için kesit boyunca gerilme değişimi

5. SONUÇ

Çalışma boyunca yapılan aşamalar tekrar edilecek olursa; ekskavatörler hakkında açıklayıcı temel bilgiler verildikten sonra çalışma donanımını oluşturan parçalar ve donanıma ait büyüklükler tanıtılarak giriş yapılmıştır.

Çalışma donanımın kuvvet analizi için kazma işlemi sırasında kepçeye etkiyen dış kuvvet tanımlanarak, bu kuvvete göre donanımı oluşturan ana parçalar kol, boom ve kepçe için statik denge denklemleri yazılmış ve kazma kuvvetleri açıklanmıştır. Denge denklemleri örnek bir sistem üzerinde kol ve kepçe kazma kuvveti için ayrı ayrı tanımlanmışlardır. Bu tanımlama yapılırken donanımın birbirlerine göre hareketleri belirlemek amacı ile verilen λ , μ , ϕ değerleri ve parçaların birbirlerine göre çizdikleri dairesel yörüngeler yardımı ile sistemin her konumu için denklemlerde kullanılan terimleri veren eşitlikler yazılmıştır. Bu eşitlikler ve denklemler yardımı ile sistemin değişik konumları için kol ve kepçe silindiri kuvveti etkisi altında parçalara etkiyen kuvvetler ve kazma kuvvetleri hesaplanmıştır. Hesaplanan bu kuvvetler sistem içersinde hiçbir sınırlama olmadan hesaplanan değerlerdir. Bundan dolayı öncelikle hidrolik sistemden gelen daha sonra ise sistemin tüm dengesinden ileri gelen sınırlamalar göz önünde bulundurularak donanım parçalarına etkiyen kuvvetlerin işletim sırasında alabilecekleri maksimum ve minumum değerler bulunmuştur. Donanımı oluşturan parçalar tek bir kazma işlemi sırasında bu maksimum ve minimum değerler arasında değişen kuvvetlerin etkisi altında kaldıklarından; parçaların, Soderberg diyagramları aracılığı ile uygun gerilme koşulları altında mukavemet kontrolleri yapılarak çalışmaya son verilmiştir.

Çizelge 5.1 ve 5.2'de Soderberg diyagramı kullanılarak hesaplanan S değerleri ve yüzey basınçları verilmiştir.

Çizelge 5.1 Çekmeye ve basmaya çalışan elemanlar için S değerleri

Parça adı	S
Kepçe hidrolik silindiri	5,2
Kol hidrolik silindiri	3,2
12 ve 13 numaralı parçalar	2,1
Boom hidrolik silindiri	$\lambda = 0^{\circ}, S = 2,15$ $0^{\circ} < \lambda < 130^{\circ}, S = 2,65$
	$\lambda = 130^{\circ}, S = 1,69$

Cizelge 5	2 Pern	olar icin	S VA	viizev	hagingi	değerleri
Cizeige 3	.2 rem	oiai içili	I S VE	yuzey	Dasilici	degenten

	p _{em} =250 N/mm ²	
Perno No	$p_{max}(N/mm^2)$	S
1	34,9	1,7
2	38,5	1,54
3	50,35	1,11
4	19,38	1,58
5	50,3	2,4
6	98,5	1,18
7	31,75	1,07
8	101,7	1,01
9	$\lambda = 0^{\circ}, P_{\text{max}} = 14,5$	$\lambda = 0^{\circ}, S = 0.82$
	$0^{\circ} < \lambda < 130^{\circ}, P_{\text{max}} = 86.8$	$0^{\circ} < \lambda < 130^{\circ}, S = 1,09$
	$\lambda = 130^{\circ}, P_{\text{max}} = 163$	$\lambda = 130^{\circ}, S = 0.63$

Çizelge 5.1 ve 5.2 incelendiğinde 9 numaralı perno hariç tüm değerlerin sonsuz ömür bölgesinde çalıştıkları görülür. 9 numaralı perno yüzey basıncı bakımından emniyetlidir. Fakat λ =0° ve λ =130° değerleri için eğilme gerilmesi altında sonlu ömür bölgesinde çalışmaktadır. Bu konumlar için ömür hesabı yapmak üzere Wöhler diyagramı çizilmelidir.

Şekil 5.1 9 numaralı perno λ=0° konumu için Wöhler diyagramı

Şekil 5.2 9 numaralı perno λ=130° konumu için Wöhler diyagramı

Şekil 5.1 ve 5.2'de bu konumlara ait wöhler diyagramları görülmektedir. 9 numaralı perno için yük tekrar sayısı kazma işlemi sayısısına eşittir. Örnek olarak 9 numaralı perno λ =0 konumu için maksimum kuvvetler altında $10^{5,85}$ kez kazma yapabilecektir. Sonlu ömür bölgesinde bulunan bu konumlar yapı olarakta kazma işlemi için uygun konumlar değillerdir. Bu konumda kazmaya başlanıldığında doğal olarak aynı bölgede ikinci kazma işlemini gerçekleştirebilmek için boom λ_n kadar dönmek zorunda kalacaktır.

Bu konumda günde 100 defa kazma yapıldığı düşünüldüğünde parça ömrü $\frac{10^{5.85}}{100.365}$ = 19,3 yıl olarak hesaplanır ve bu süre ekskavatör için uygun bir ömür süresi olacaktır. Ayrıca her kazma işleminde kuvvetlerin maksimum değerleri almayacağıda hesaba katılırsa hesaplanan N değerleri uygundur.

Boom ve kol için uygun bir çalışma konumunda statik olarak gerilme analizi yapılmıştır. Sistemin doğası gereği boom ve kola her konum için etki eden kuvvetleri hesaplamak neredeyse imkansızdır. İstenildiği takdirde değişik konumlar içinde gerilme analizleri yapılarak daha kesin sonuçlar elde etmek mümkün olacaktır.

KAYNAKLAR

Akkurt M., (2000), "Makina Elemanları Cilt I-II", Birsen Yayın Evi, İstanbul

Rende H., (2000), "Makina Elemanları Cilt 1", Seç Yayın Dağıtım, İstanbul

Alpaslan N.Ç, (1998), "İnşaat Makinaları", Yıldız Teknik Üniversitesi Yayınları, İstanbul

Tahralı N. ve Dikmen F., (2004), "Konstrüksiyon Elemanlarında Güvenirlik ve Ömür Hesapları", Yıldız Teknik Üniversitesi Yayınları, İstanbul

Özcan F., (1982), "Hidrolik Akışkan Gücü", Mert Eğitim Yayınları, İstanbul

Yeşilada E., (1975), "Makine Bilgisi ve Yapı Makinaları", Anadolu Üniversitesi Yayınları, Eskişehir

EKLER

Ek 1	Ekskavatör parçalarının serbest cisim diyagramları
Ek 2	Kazma kuvvetleri
Ek 3	Kepçenin φ değerlerine bağlı olarak konumları
Ek 4	Kepçe kazma kuvveti etkisi altında sisteme etkiyen kuvvetlerin ϕ , μ , λ değerlerine göre değişimi
Ek 5	Kol kazma kuvveti etkisi altında sisteme etkiyen kuvvetlerin λ , μ , ϕ değerlerine göre değişimi
Ek 6	F _a , F _b , F _c kuvvetlerinin grafiksel gösterimleri
Ek 7	Hesaplamalarda kullanılan değişkenler
Ek 8	Boom
Ek 9	Kol
Ek 10	Kol hidrolik silindiri
Ek 11	Boom hidrolik silindiri
Ek 12	Kepçe hidrolik silindiri

Çizen:	Vedat Oyman	
Tarih:	2005	
Ölçek:		

	λ=0°														
	μ=0°					μ=30°				μ=102°					
φ(°)	$F_{C}(kN)$	$F_{pim1}(kN)$	$F_b(kN)$	F _{pim7} (kN)	F _a (kN)	$F_{C}(kN)$	$F_{pim1}(kN)$	$F_b(kN)$	$F_{pim7}(kN)$	F _a (kN)	$F_{C}(kN)$	$F_{pim1}(kN)$	$F_b(kN)$	$F_{pim7}(kN)$	F _a (kN)
0	11,7	58,5	64,3	60,7	290	11,9	58,8	53,8	56,8	257,6	12,2	59,2	125,6	136,3	54,2
20	16,4	65,0	105,6	106,8	416,4	16,6	65,3	88,0	97,5	328,8	16,8	65,8	197,5	212,5	27,9
30	17,7	66,0	118,1	122,5	433	17,9	66,4	98,4	110,7	320,1	18,0	66,9	218,8	234,1	3,5
40	18,4	66,4	125,4	132,8	421,5	18,6	66,8	104,3	118,9	289,1	18,5	67,3	230,6	245,1	-20,3
50	18,6	66,4	123,9	133,9	379,7	18,7	66,8	102,9	118,8	235,1	18,6	67,4	226,8	239,5	-46,9
80	16,8	64,1	93,9	107,9	175,9	16,9	64,5	77,6	92,6	40,4	16,4	64,7	171,7	176,1	-87,8
110	13,2	58,0	45,8	57,4	-24,6	13,1	58,3	37,5	46,9	-103,9	12,5	58,1	87,5	84,6	-75
140	9,2	49,4	8,0	15,6	-124,6	9,0	49,5	6,4	12,8	-144,5	8,5	48,9	23,9	18,6	-38,2
189	4,4	36,0	-12,8	15,3	-107,6	4,1	35,8	-10,2	14,8	-85,3	3,9	34,9	-10,7	16,1	0,8
								λ=60°							
			μ=0°					μ=30°					μ=102°		
φ(°)	$F_{C}(kN)$	$F_{pim1}(kN)$	F _b (kN)	$F_{pim7}(kN)$	F _a (kN)	F _C (kN)	$F_{pim1}(kN)$	F _b (kN)	F _{pim7} (kN)	F _a (kN)	$F_{C}(kN)$	$F_{pim1}(kN)$	F _b (kN)	$F_{pim7}(kN)$	F _a (kN)
0	12,1	59,0	66,8	65,3	137,5	12,2	59,1	58,0	63,2	121,7	12,0	59,0	134,8	147,5	16,1
20	16,8	65,6	108,1	111,5	201,4	16,8	65,8	91,9	103,6	156,6	16,4	65,6	205,3	222,2	3,2
30	18,0	66,7	120,4	127,0	208,9	18,0	66,9	102,0	116,5	151,3	17,5	66,7	226,1	243,3	-8,9
40	18,7	67,1	127,3	137,0	202,1	18,6	67,3	107,6	124,3	134,7	18,0	66,9	237,5	253,9	-20,8
50	18,8	67,2	125,4	137,8	179,6	18,6	67,3	105,8	123,8	106,6	18,1	66,9	233,7	248,3	-34,1
80	16,7	64,8	94,4	110,5	73,2	16,5	64,8	79,9	96,9	7,3	16,0	64,0	179,8	186,3	-54,5
110	12,8	58,4	46,2	59,7	-28,6	12,6	58,2	40,2	51,5	-64,4	12,2	57,2	97,6	96,9	-48,6
140	8,8	49,4	9,3	18,5	-77	8,5	49,1	10,1	17,0	-83,4	8,4	48,1	34,8	31,1	-30,9
189	3,9	35,5	-10,3	11,2	-66,9	3,9	35,1	-6,1	9,3	-55,1	4,2	34,5	-2,2	6,0	-11,1
								λ=130°							
			μ=0°					μ=30°					μ=102°		
φ(°)	$F_{C}(kN)$	$F_{pim1}(kN)$	$F_b(kN)$	$F_{pim7}(kN)$	$F_a(kN)$	$F_{C}(kN)$	$F_{pim1}(kN)$	$F_b(kN)$	$F_{pim7}(kN)$	$F_a(kN)$	$F_{C}(kN)$	$F_{pim1}(kN)$	$F_b(kN)$	$F_{pim7}(kN)$	$F_a(kN)$
0	12,2	59,1	74,1	74,5	592,4	12,0	59,0	63,3	70,4	522,5	11,4	58,4	132,5	146,1	108,3
20	16,6	65,8	114,5	119,8	824,2	16,4	65,6	96,5	109,8	649,9	15,9	64,9	202,7	220,6	63
30	17,8	66,9	126,4	134,8	849,4	17,5	66,7	106,2	122,3	629,9	17,1	65,8	223,8	242,0	18,4
40	18,3	67,2	132,9	144,3	821,1	18,1	67,0	111,6	129,7	568,6	17,7	66,1	235,7	253,1	-25,7
50	18,3	67,2	130,7	144,6	735,9	18,1	66,9	109,8	129,2	465,3	17,8	66,0	232,6	248,3	-75,5
80	16,2	64,5	99,7	117,0	341,1	16,0	64,1	84,4	102,5	101,9	16,0	63,1	181,0	188,7	-155,8
110	12,3	57,7	52,5	67,0	-29,7	12,2	57,2	45,8	58,1	-160,8	12,5	56,6	99,6	100,0	-138,7
140	8,4	48,5	16,8	26,3	-205,4	8,4	48,1	16,3	23,0	-235,9	8,9	47,8	35,3	32,3	-73,8
189	4,0	34,6	-3,3	4,2	-181,3	4,2	34,5	-1,1	4,1	-145,4	4,8	34,9	-4,8	7,2	7,5

EK 4 Kepçe kazma kuvveti etkisi altında sisteme etkiyen kuvvetlerin ϕ, μ, λ değerlerine göre değişimi

	λ =0 $^{\circ}$																				
	μ=0°				μ=30°					μ=102°											
φ(°)	F _B (kN)	F _{pim7} (kN)	F ₁₂ (kN)	F _c (kN)	F ₁₃ (kN)	F _{pim1} (kN)	F _a (kN)	F _B (kN)	F _{pim7} (kN)	F ₁₂ (kN)	F _c (kN)	F ₁₃ (kN)	F _{pim1} (kN)	F _a (kN)	F _B (kN)	F _{pim7} (kN)	F ₁₂ (kN)	F _c (kN)	F ₁₃ (kN)	F _{pim1} (kN)	F _a (kN)
0	12,1	76,8	62,4	52,1	11,9	58,0	285,8	14,5	84,2	73,6	61,5	14,0	68,7	258,0	6,7	80,1	31,6	26,4	6,0	30,1	-11,9
10	11,8	77,4	55,6	43,4	15,7	51,6	275,7	14,2	84,5	65,7	51,2	18,5	61,3	243,4	6,5	79,8	28,4	22,2	8,0	27,2	-14,2
20	11,6	77,9	50,8	38,8	17,4	47,0	267,2	14,0	84,8	60,2	45,9	20,6	56,1	230,7	6,4	79,6	26,2	20,0	9,0	25,1	-16,3
30	11,5	78,5	47,2	36,3	18,3	43,7	258,9	13,9	85,1	56,0	43,0	21,7	52,2	217,7	6,3	79,3	24,6	18,9	9,5	23,6	-18,8
40	11,5	79,1	44,3	35,0	19,0	41,1	250,9	13,8	85,4	52,7	41,5	22,5	49,2	204,9	6,3	79,1	23,3	18,4	10,0	22,5	-21,4
50	11,6	79,7	42,4	34,5	19,9	39,3	243,3	13,9	85,9	50,5	41,1	23,7	47,2	192,3	6,3	78,9	22,6	18,4	10,6	21,8	-24,2
60	11,7	80,2	42,0	36,1	20,4	38,8	238,5	14,0	86,2	50,2	43,1	24,4	46,8	183,4	6,3	78,8	22,7	19,4	11,0	21,8	-26,6
70	12,0	81,0	39,7	35,4	22,0	36,9	228,6	14,3	86,9	47,5	42,4	26,4	44,6	166,2	6,4	78,6	21,6	19,3	12,0	20,9	-31,0
80	12,3	81,7	38,8	36,2	23,9	36,0	222,0	14,6	87,4	46,6	43,4	28,7	43,7	153,8	6,5	78,5	21,4	20,0	13,2	20,7	-34,6
	λ =60°																				
	μ=0°					μ=30°						μ=102°									
φ(°)	$F_B(kN)$	F _{pim7} (kN)	F ₁₂ (kN)	F _c (kN)	F ₁₃ (kN)	F _{pim1} (kN)	F _a (kN)	F _B (kN)	F _{pim7} (kN)	F ₁₂ (kN)	F _c (kN)	F ₁₃ (kN)	F _{pim1} (kN)	F _a (kN)	F _B (kN)	F _{pim7} (kN)	F ₁₂ (kN)	F _c (kN)	F ₁₃ (kN)	F _{pim1} (kN)	F _a (kN)
0	12,1	79,0	60,0	50,1	11,4	56,3	129,4	14,0	86,0	69,3	57,9	13,2	65,3	113,2	5,7	81,4	27,9	23,3	5,3	26,5	-17,7
10	11,8	79,6	53,6	41,8	15,1	50,4	124,2	13,7	86,2	62,2	48,5	17,5	58,5	105,9	5,5	81,1	25,3	19,8	7,1	24,0	-18,5
20	11,6	80,1	49,2	37,6	16,8	46,2	119,7	13,5	86,5	57,2	43,7	19,6	53,8	99,5	5,4	80,9	23,5	18,0	8,1	22,3	-19,3
30	11,5	80,6	45,8	35,2	17,8	43,1	115,3	13,3	86,8	53,4	41,1	20,7	50,4	93,0	5,3	80,7	22,2	17,1	8,6	21,0	-20,3
40	11,5	81,2	43,3	34,1	18,5	40,8	111,0	13,2	87,1	50,5	39,8	21,6	47,7	86,7	5,3	80,5	21,2	16,7	9,0	20,1	-21,3
50	11,5	81,8	41,5	33,8	19,5	39,2	107,0	13,3	87,5	48,6	39,6	22,8	46,0	80,4	5,2	80,4	20,5	16,7	9,6	19,5	-22,4
60	11,6	82,3	41,4	35,5	20,1	39,0	104,5	13,4	87,8	48,6	41,7	23,6	45,8	76,0	5,3	80,3	20,6	17,7	10,0	19,5	-23,4
70	11,8	83,1	39,3	35,0	21,8	37,2	99,3	13,6	88,4	46,1	41,1	25,6	43,8	67,6	5,3	80,1	19,7	17,6	10,9	18,7	-25,3
80	12,1	83,8	38,6	36,0	23,8	36,6	95,8	13,9	88,9	45,4	42,3	28,0	43,1	61,5	5,5	80,0	19,5	18,2	12,0	18,4	-26,9
										λ	=130°										
	μ=0°					μ=30°					μ=102°										
φ(°)	$F_B(kN)$	$F_{pim7}(kN)$	$F_{12}(kN)$	F _c (kN)	F ₁₃ (kN)	$F_{pim1}(kN)$	F _a (kN)	$F_B(kN)$	F _{pim7} (kN)	$F_{12}(kN)$	F _c (kN)	F ₁₃ (kN)	$F_{pim1}(kN)$	F _a (kN)	$F_B(kN)$	F _{pim7} (kN)	$F_{12}(kN)$	F _c (kN)	F ₁₃ (kN)	$F_{pim1}(kN)$	F _a (kN)
0	11,0	80,6	54,4	45,4	10,4	51,3	507,2	12,8	87,0	64,7	54,1	12,3	60,8	457,1	5,4	82,5	29,6	24,7	5,6	27,2	-13,1
10	10,8	81,1	48,9	38,2	13,8	46,2	488,3	12,5	87,2	58,3	45,5	16,4	54,7	431,5	5,2	82,3	26,6	20,8	7,5	24,4	-16,3
20	10,5	81,5	45,2	34,5	15,5	42,6	472,1	12,3	87,4	53,8	41,1	18,4	50,4	409,3	5,1	82,1	24,6	18,8	8,4	22,4	-19,3
30	10,4	82,0	42,3	32,6	16,4	40,0	456,6	12,1	87,7	50,4	38,8	19,5	47,3	387,0	5,1	81,9	23,0	17,7	8,9	20,9	-23,2
40	10,3	82,5	40,2	31,7	17,2	38,0	441,5	12,0	87,9	47,8	37,7	20,4	44,9	365,0	5,0	81,7	21,7	17,1	9,3	19,7	-27,4
50	10,4	83,0	38,7	31,6	18,2	36,7	427,4	12,0	88,3	46,1	37,5	21,6	43,3	343,5	5,0	81,6	20,8	17,0	9,8	18,9	-32,3
60	10,4	83,4	38,8	33,3	18,8	36,6	418,3	12,1	88,6	46,1	39,5	22,4	43,1	328,5	5,1	81,5	20,8	17,8	10,1	18,7	-36,8
70	10,6	84,2	37,0	33,0	20,5	35,1	400,5	12,4	89,1	43,8	39,1	24,3	41,2	299,7	5,2	81,3	19,6	17,5	10,9	17,7	-44,6
80	10,8	84,7	36,5	34,0	22,4	34,6	388,5	12,6	89,5	43,2	40,2	26,6	40,5	279,0	5,3	81,2	19,2	17,9	11,8	17,2	-51,3

EK 5 Kol kazma kuvveti etkisi altında sisteme etkiyen kuvvetlerin $\lambda,\,\mu,\,\phi$ değerlerine göre değişimi

Grafik 1 Maksimum kepçe kazma kuvveti etkisi ile λ =60° konumu için F_a kuvvetinin ϕ , μ değerlerine göre değişimi

Grafik 2 Maksimum kepçe kazma kuvveti etkisi ile λ =60° konumu için F_b kuvvetinin ϕ , μ değerlerine göre değişimi

EK 6 F_a, F_b, F_c kuvvetlerinin grafiksel gösterimleri

Grafik 3 Maksimum kol kazma kuvveti etkisi ile λ =60° konumu için F_c kuvvetinin ϕ , μ değerlerine göre değişimi

Grafik 4 Maksimum kol kazma kuvveti etkisi ile λ =60° konumu için F_a kuvvetinin ϕ , μ değerlerine göre değişimi

Yüzey düzgünlüğü faktörü (K_Y)

d,mm	10	20	30	50	100	200	250
K _b	1	0,9	0,8	0,8	0,6	0,57	0,56

Boyut faktörü (K_b)

	Çel	kme .	Eğilme			
	$\sigma_{ m D}$	$\sigma_{ m DT}$	$\sigma_{ m D}$	$\sigma_{ m DT}$		
İmalat çelikleri	$0,45\sigma_{\mathrm{K}}$	$1,3\sigma_{\mathrm{D}}$	$0,49\sigma_{K}$	$1,5\sigma_{\mathrm{D}}$		
Sementasyon çel.	$0.4\sigma_{\mathrm{K}}$	$1,6\sigma_{\mathrm{D}}$	$0,41\sigma_{K}$	$1,7\sigma_{\mathrm{D}}$		

ÖZGEÇMİŞ

Doğum tarihi 28.10.1980

Doğum yeri Trabzon

Lise 1994-1998 Trabzon Fatih Süper Lisesi

Lisans 1998-2002 Karadeniz Teknik Üniversitesi Mühendislik

Mimarlık Fak. Makina Mühendisliği Bölümü

Yüksek Lisans 2003-2005 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü

Makine Müh. Anabilim Dalı, Konstrüksiyon Programı