Enhancing Renewable Energy Management in India's Smart Grids Using Multi-Agent Reinforcement Learning

A Thesis Submitted in Fulfillment of the Requirements for the Degree of
Master of Technology

Author Ishita

Reg No.: 2318381801

Under the Supervision Of

Dr. Yogesh Kumar

Department Of Computer Science and Engineering
Artificial Intelligence and Machine Learning
University Institute of Engineering and Technology
Maharshi Dayanand University, Rohtak, Haryana, India

Date of Submission: June 2025

DECLARATION

I, Ms. Ishita Bahamnia, hereby declare that the thesis entitled "AI-Powered Energy Efficiency

in Smart Grids Using Multi-Agent Systems (MAS), with a Focus on India's Solar Energy

Land scape" submitted to Maharshi Dayanand University in partial fulfillment of the

requirements for the award of the degree of Master of Technology, is a record of original work

carried out by me under the supervision of Dr. Yogesh Kumar. This thesis has not been submitted

elsewhere for the award of any other degree or diploma. All sources of information and data

have been duly acknowledged.

Date: June 10, 2025

Place: Rohtak, Haryana

Signature: Ms. Ishita

Reg No.: 2318381801

CERTIFICATE

This is to certify that the project report titled "AI-Powered Energy Efficiency in Smart Grids

Using Multi-Agent Systems (MAS), with a Focus on India's Solar Energy

Landscape"submitted by Ishita (Reg No.: 2318381801), to the Maharshi Dayanand

University, Rohtak for the award of the degree Master of Technology in Artificial

Intelligence and Machine Learning Computer Science and Engineering is a bonafide record

of the research work done by her under our supervision. The contents of this thesis, in full or in

parts, have not been submitted to any other Institute or University for the award of Masters

Degree..

Supervisor:

Dr. Yogesh Kumar

Associate Professor

Department of Computer Science and Engineering

Maharshi Dayanand University, Rohtak

Date: June 10, 2025

Place: Rohtak, Haryana

Acknowledgement

I express my deepest gratitude to my supervisor, Dr. Yogesh Kumar, Department of Computer

Science and Engineering, Maharshi Dayanand University, for their unwavering guidance,

insightful feedback, and continuous support throughout the course of this research. Their

expertise and patience were instrumental in shaping this work from inception to completion.

I would also like to thank the members of my Research Committee for their valuable suggestions

and encouragement. I gratefully acknowledge the faculty and staff of the University Institute of

Engineering and Technology, whose academic and infrastructural support enabled the smooth

progress of this thesis.

I extend my sincere thanks to the Funding agency or lab, for providing the computational

resources and datasets used in this study. Special appreciation goes to my peers and colleagues

for the many constructive discussions and their camaraderie during this journey.

Finally, I am indebted to my family for their endless love, support, and motivation throughout

my academic endeavors.

Name :Ishita

Reg No:2318381801

Date:10 June 2025

CONTENTS

CERTIFICATE	I
DECLARATION	II
ACKNOWLEDGEMENTS	III
ABSTRACT	IV
TABLE OF CONTENTS	V
LIST OF TABLES	VI
LIST OF FIGURES	VII
ABBREVIATIONS	VIII
REFERENCES	IX
BIBLOGRAPHY	X
APPENDIX	XI
GLOSSARY	XIII

Abstract

The transition to smart grids is essential for achieving sustainable energy solutions in modern urban settings. This thesis proposes the development of a Multi-Agent System (MAS) to optimize energy distribution and consumption within smart grids, focusing on energy efficiency and the integration of renewable energy sources.

By employing reinforcement learning and optimization techniques, the proposed system autonomously manages and balances energy generation, storage, and consumption. The simulation results demonstrate that this approach enhances grid stability, reduces energy losses, and maximizes the utilization of renewables, thus contributing to the development of smart cities with efficient and sustainable power management.

Keywords: Energy Efficiency, Smart Grid, Multi-Agent Systems, Reinforcement Learning, Solar Energy, India

TABLE OF CONTENTS

1. INTRODUCTION9	
1.1 Context and Motivation	
FigureGlobal energy demand trends (2010-2040)	
Table: Smart grid adoption metrics by region	
1.2 Problem Statement	5
Case studies: Hurricane impact on grid resilience	
• Graph: Quantified inefficiencies in traditional grids	
1.3 Research Objectives	. 7
Hypothesis formulation	
 Key performance indicators 	
2. LITERATURE REVIEW 11	
2.1 Smart Grid Fundamentals	
Figure:Comparative architecture: Traditional vs. smart grids	
Diagram:IoT integration (DNP3/IEC 61850 protocols)	
2.2 AI/ML in Energy System	12
Table 2.1: RL vs. Supervised Learning comparison	
2.3 Multi-Agent Systems	15
Figure: FIPA-ACL communication protocols	

2.4	Research Gaps
	• Graph: Scalability challenges (agent count >10,000)
	• Bullet list:Real-time coordination limitations
3	3 Multi-Agent System Architecture and Methodology
	3.1 Agent Roles and Interactions
	Figure 3.1: UML class diagram of agents
3	3.2 Energy Optimization Workflow
	Flowchart:Step-by-step decision flowchart
	 Protocol: Auction-based negotiation protocol
	3.3 Agent Specifications
	Table: Agent types and attributes
	3.4 Climate-Aware Operations.
	Case Study: Hurricane Scenario.
	3.5 Code Snippet
#	PSO implementation
for	particle in swarm:
1	update_velocity()
1	update_position()

4.3.1 System Architecture	20
Figure 4.1: MAS layered framework diagram	
4.2 Reinforcement Learning Framework	22
• Code: Q-learning pseudocode with ε-greedy policy	
*Equation: State-action-reward formulation	
4.3 Optimization Techniques	24
*Workflow: Genetic Algorithm and PSO	
python # PSO implementation for particle in swarm: update_velocity()	
4.4 Data Sources	26
Table 4.2: Datasets (EIA, Pecan Street, NREL)	
4.5 Evaluation Metrics	28
KPIs: → Energy savings (kWh) → Cost reduction (\$/MWh)	
4.6 Case Study	· • •
Simulation: MAS Microgrid Simulation	
5. CASE STUDY AND SIMULATION	•
A. Hurricane Case Study	
B. Case Study : India's Regional Grids	16
5.1 Northern Grid	16
5.2 Western Grid	16

5.1 EXPERIMENTAL SETUP Case study :Micro Grids	36
• GridLAB-D simulation parameters	
Agent configuration (100 agents, 30-day run)	
5.2 PERFORMANCE ANALYSIS	38
Table 5.1: 15% energy waste reduction	
Figure 5.2: Renewable integration trend	
6. RESULTS AND EVALUATION METRICS	17
6.1 Simulation Setup	17
6.2 Results.	17
7. INTEGRATION TO SMART GRID WORKFLOW	18
7.1 Deployment Strategy	18
Flowchart: MAS integration pipeline	
7.2 Scalability	1
8. CONTRIBUTIONS TO SDG7 AND ISO 50001	19
8.1 .Affordable and Clean Energy,	19
Metric: CO ₂ reduction (tons/year)	
8.2 Energy Management Standards	19
Table: ISO 50001 compliance checklist	

8.3Impact on Energy Sustainability	
► CO ₂ reduction metrics (tons/year)	
math $\Delta E = 0.15 \times E_{\text{baseline}}$	
9. SCALABILITY ANALYSIS	0
Figures: Legacy system interoperability, Blockchain roadmap	
Equations: $\Delta E = 0.15 \times E_baseline$	
10 .POLICY IMPLICATIONS21	ĺ
Tables: OECD policy hurdles, Edge computing deployment matrix	
11. DISCUSSION AND IMPLICATIONS 43	1
• Legacy system interoperability (38% success rate)	
• Regulatory hurdles in 60% OECD nations	
12.FUTURE DIRECTIONS 4	5
Blockchain integration roadmap	
Edge computing deployment strategy	
13. CONCLUSION	3
12.1 Summary of Contributions	
12.2 Novel MAS framework validation.	
12.3 Policy-ready performance metrics.	
12.4 Recommendations 48	
12.5 Utility adoption guidelines.	

13. LIST OF FIGURES	7
14. LIST OF TABLES	8
15. BIBLIOGRAPHY	24
16. REFERENCES	• • • • •
17. APPENDICES	25
Appendix A :Simulation Code	•••••
Appendix B: Data Sources.	
Appendix C : Extended Results Tables	

List of Figures

3.1	MAS Framework Diagram	11
3.2	RL State-Action-Reward Loop	12
4.1	UML Diagram of Agent Classes	14
4.2	Sequence Diagram of Agent Negotiation	14
5.1	Simulation Environment (GridLAB-D)	16
5.2	Comparative Performance Graphs	16
5.3	RL Training Curve	17
5.4	Energy Savings Heatmap	18
6.1	Compute Time vs. Number of Agents in MAS Scalability Analysis	20
• F	gure 3.1: MAS Framework Diagram	Page 3.1
• F	gure 3.2: RL State-Action-Reward Loop	Page 3.2
• F	gure 4.1: UML Diagram of Agent Classes	Page 4.1
• F	gure 4.2: Sequence Diagram of Agent Negotiation	Page 4.2
• F:	gure 5.1: Simulation Environment (GridLAB-D)	Page 5.1

• Figure 5.2: Comparative Performance Graphs	Page 5.2
• Figure 5.3: RL Training Curve	Page 5.3
• Figure 5.4: Energy Savings Heatmap	Page 5.4
• Figure 6.1: Compute Time vs. Number of Agents	Page 6.1

List of Tables

2.1 Technological Milestones	14
2.2 RL vs. Supervised Learning	. 17
2.3 Adoption Barriers	. 23
3.1 Datasets	.49
5.1 Results Summary	74
6.1 Forecasting Accuracy	. 96
8.1 Scalability Metrics	. 122
9.1 Rohtak Results	. 138
9.2 Cross-Domain Applications	. 147
10.1 Policy Effectiveness	157