

1. TP especial

1.1. Ejercicio 1

Figura 1: γ -rangos

$$R_{1} = sen(\eta_{1})r_{1}$$

$$R_{1} = sen(\eta_{1})\left(r_{0} + \frac{cT_{s}}{2}\right)$$

$$R_{0} = sen(\eta_{0})r_{0}$$

$$\Delta R_{1} = R_{1} - R_{0}$$

$$\Delta R_{1} = sen(\eta_{1})\left(r_{0} + \frac{cT_{s}}{2}\right) - sen(\eta_{0})r_{0}$$

$$\Delta R_{k} = sen(\eta_{k})\left(r_{0} + \frac{k cT_{s}}{2}\right) - sen(\eta_{0})r_{0}$$

$$\gamma - rango_{k} = r_{k} = \frac{h}{cos(\eta_{k})}$$

$$\eta_{k} = cos^{-1}\left(\frac{h}{r_{k}}\right)$$

1.1.1. TODO graficos

1.2. Ejercicio 2

La señal chirp se define como

$$chirp(t) = e^{j\theta(t)}$$

donde $\theta(t)$ es una función cuadrática del tiempo con forma

$$\theta(t) = k_1 t^2 + k_2 t$$

La frecuencia instantánea de la chirp es entonces:

$$f_inst(t) = 2k_1t + k_2$$

Como la chirp barre frecuencias que van desde -20Mhz hasta 20Mhz en $10\mu s$:

$$f_inst(0) = 2k_10 + k_2 = k2 = -20Mhz$$

Y al final

$$f_inst(10\mu s) = 2k_1 10\mu s + k_2 = 20Mhz$$

$$2k_1 10\mu s - 20Mhz = 20Mhz$$

$$k_1 = \frac{40Mhz}{210\mu s}$$

$$k_1 = 2 \cdot 10^{12}$$

Por lo tanto, la fase instantánea es

$$f_inst(t) = 4 \, 10^{12} t^2 - 20 \, 10^6 t$$

En la figura 2 se puede ver el resultado de graficar las partes real e imaginarias de la chirp junto con la fase instantánea en función del tiempo.

Figura 2: Chirp emitida por el SARAT (no modulada)

Figura 3: Chirp emitida por el SARAT (no modulada) submuestreada

Figura 4: Espectro de la Chirp emitida por el SARAT (no modulada)

La chirp tiene un ancho de banda de 20Mhz y por Nyquist la mínima frecuencia de muestreo que podemos usar es 40Mhz, si no se satisface el criterio de Nyquist se producen resultados como el de la figura 3.

1.3. Ejercicio 3

Figura 5: Espectrograma de la Chirp emitida por el SARAT (no modulada)

Figura 6: Espectrograma de la Chirp emitida por el SARAT (no modulada) submuestreada

1.3.1. TODO Tipo y ancho de ventana, explicación

1.4. Ejercicio 4

La chirp está definida como:

$$chirp(t)=e^{j\phi(t)}$$

Donde $\phi(t)$ es la fase en función del tiempo. Como ya se mostró en el punto 2, la frecuencia instantánea $\left(\frac{\partial\phi}{\partial t}\right)$ de la chirp (figura 7) es

$$f_inst(t) = 2k_1t + k_2$$

Donde k_2 es la frecuencia inicial y $2k_1$ es el incremento de frecuencia por unidad de tiempo

Figura 7: Frecuencia instantánea de la chirp

1.4.1. TODO ancho de banda(k1,k2,T)

1.5. Ejercicio 5

Figura 8: Espectro de las señales en las diferentes fases del modulador (ideal)