Data and Astronomy

Session - 1

- 1. Pulsars A brief history and a beautiful phenomenon
 - a. A strange event.
 - b. Supernovae!
 - c. A theoretical explanation
 - d. Quiz-1
- 2. Super Massive Black Holes
 - a. Why, astronomers, why?
 - b. What do we observe?
 - c. Why do we observe what we do?
 - d. Accretion Disk of a Black Hole
 - e. Active Galactic Nuclei (AGN)
 - f. Cross-Matching Algorithm
 - g. Quiz-2
- 3. The Cosmological distance scale
 - a. Stage 1: The Parallax Method
 - b. Stage 2: The Cepheid Variable
 - c. Stage 3: An Explosion
- 4. Redshifts
 - a. What is a Redshift?
 - b. Fundamental Property of Elements
 - c. Hubble's Law

- d. Mapping out the cosmos using Redshifts.
- e. Quiz-3
- 5. Python Basics
 - a. Variables and Strings
 - b. Operators and Comparisons
 - c. Input Handling
 - d. Conditional Statements and Loops
 - e. Lists in Python
- 6. Scientific Python
 - a. Numpy (import numpy as np)
 - b. Numpy arrays and their operations
 - c. Astropy
 - d. Loading data with numpy and astropy
 - e. Scikit-Learn (sklearn)
 - f. Machine Learning with sklearn

Session 2

- 7. Data Science
 - a. Mean Stacking
 - b. Median Stacking
- 8. Machine Learning
 - a. What is ML?
 - b. Supervised Techniques
 - c. Regression
 - d. Classification
 - e. Decision Tree Regressor (DTR)

- f. Estimating Redshifts using DTR
- g. Quiz-4