AMERICAN UNIVERSITY OF ARMENIA

College of Science and Engineering

ENGS 121 Mechanics

Reference: Chapter 2. Newton's Laws, pages 48-77, Problems 2.13, 2.14 (page 79);

Chapter 3. Forces and Equations of Motion, section 3.4, pages 89-95;

Quiz03_solutions.pdf

Description: Consider a system of a massless pulley $M_0 = 0$ and three masses M_1 , M_2 and M_3 , as shown. The body M_1 can slide on a table, and the friction coefficient between M_1 and the table is \square_1 . M_2 can slide on a horizontal surface of M_1 , and the friction coefficient between M_1 and M_2 is \square_2 . M_3 can slide in the vertical hole of M_1 , and the friction coefficient between M_1 and M_3 is \square_3 . The pulley is rigidly mounted on M_1 . The acceleration of gravity g is directed downwards. The length of the rope connecting M_2 and M_3 is guaranteed to be such that M_3

cannot escape from the hole, M_2 cannot fall beyond the left edge of M_1 , and M_2 stops at the pulley when M_3 hits the bottom of the hole. Generally, the system moves under the action of an external horizontal force F that may act in either in (x_1, y_1)

negative (as shown) or positive x direction. The list of y main parameters includes:

- $0 < M_1, M_2, M_3 \le 10 \text{ kg}; M_0 = 0;$
- $0 \le \square_1, \square_2, \square_3 \le 0.5$;
- Take $g = 10 \text{ m/s}^2$. **-300** N $\leq F \leq$ **300** N; -

Tasks:

- 1. Write a program that inputs several time moments $t_0 = 0, t_1, t_2, \dots t_n$ in seconds and the values of the force $F_0 = F(0)$, $F_1 = F(t_1)$, $F_2 = F(t_2)$, ... $F_n = F(t_n)$ in Newtons from the specified range; the parameters M_1 , M_2 , M_3 , \square_1 , \square_2 and \square_3 from the specified ranges; the initial positions of M_1 , M_2 and M_3 in meters at $t_0 = 0$; and computes the subsequent positions of M_1 , M_2 and M_3 for several values t > 0. Assume a linear interpolation of Ffor the points between t_0 , t_1 , t_2 , ... t_n .
- 2. Run the program for different sets of input parameter values and prepare a short report that summarizes the most interesting cases. Include in the report the computed outputs in graphical or tabular formats