Chapter 1

Elemente de Teoria Probabilităților

1.1 Spaţiu de probabilitate

Pentru a defini conceptul de *spațiu de probabilitate*, vom considera un experiment, al carui rezultat nu se poate preciza cu siguranță inaintea efectuării lui, dar pentru care mulțtimea tuturor rezultatelor posibile este cunoscută.

Numim *eveniment elementar* oricare din rezultatele efectuării experimentului considerat. Spre exemplu, in cazul aruncării unui zar, apariția feței cu numărul 5 este un eveniment elementar.

Vom nota prin Ω mulţimea tuturor evenimentelor elementare (mulţimea tuturor rezultatelor posibile ale experimentului considerat).

Numim *eveniment* o submulţime de a lui Ω (un eveniment este deci o mulţime de evenimente elementare).

In general, vom nota evenimentele cu majuscule (spre exemplu A, B, C, ...) iar evenimentele elementare cu minuscule (spre exemplu $\omega, \omega_1, \omega_2, ...$) sau prin alte simboluri (spre exemplu prin 1, 2, ..., 6 în cazul aruncării unui zar).

Distingem două evenimente importante:

- evenimentul sigur (notat Ω): este evenimentul ce apare la fiecare efectuare a experimentului;
- evenimentul imposibil (notat \emptyset): este evenimentul ce nu apare la nici o efectuare a experimentului.

Exemplul 1.1.1 La aruncarea unui zar (considerând $\Omega = \{1, 2, ..., 6\}$) putem considera ca evenimente:

- -A: apariția feței 3 (adică $A = \{3\}$)
- B: apariția unui număr par (adică $A = \{2, 4, 6\}$)
- C: apariția unui număr mai mare sau egal cu 3 (adică $C = \{3, 4, 5, 6\}$)

Exemplul 1.1.2 La aruncarea unui ban (considerând $\Omega = \{B, S\}$) putem considera ca evenimente:

- A_1 : apariția banului (adică $A_1 = \{B\}$)
- A_2 : apariția stemei (adică $A_1 = \{S\}$)

Dat fiind un spațiu Ω de evenimente elementare, pentru două evenimente $A,B\subset\Omega$ introducem următoarele definiții:

Spunem că evenimentele A și B sunt incompatibile dacă ele nu pot apare simultan la nici o efectuare a experimentului;

Spunem că evenimentul A este conținut in evenimentul B şi notăm $A \subset B$, dacă realizarea evenimentului A atrage după sine realizarea evenimentului B;

Definim reuniunea evenimentelor A și B, notată prin $A \cup B$, ca fiind evenimentul ce constă in realizarea lui A sau realizarea lui B;

Definim *intersecția* evenimentelor A și B, notată prin $A \cap B$, ca fiind evenimentul ce constă in realizarea simultană a evenimentelor A și B;

Definim evenimentul contrar evenimentului A, notat prin A^c , ca fiind evenimentul ce constă în nerealizarea evenimentului A;

Definim diferența evenimentelor A și B (in această ordine), notată prin A - B, ca fiin evenimentul ce constă in realizarea lui A și nerealizarea lui B.

Spunem ca evenimentele $A_1, A_2, \ldots, A_n \subset \Omega$ formează un sistem complet de evenimente dacă sunt două câte două incompatibile și reuniunea lor este întreg spațiul de evenimente Ω , adică dacă au loc:

$$i)$$
 $A_1 \cup A_2 \cup \ldots \cup A_n = \Omega$

$$(ii)$$
 $A_i \cap A_j = \emptyset$, oricare ar fi $1 \le i, j \le n$

Observația 1.1.3 Pentru a defini probabilitatea asociată unui eveniment A, o posibilitate ar fi sa repetăm experimentul de un numar $n \geq 1$ de ori, și să determinăm numărul (frecvența) $f_n(A)$ de apariții a evenimentului A in cele n repetări ale experimentului.

Raportul

$$fr_n(A) = \frac{f_n(A)}{n}$$

dă frecvența relativă a realizării lui A în cele n repetări ale experimentului, şi am putea defini probabilitatea evenimentului A ca fiind

$$P(A) = \lim_{n \to \infty} fr_n(A) = \lim_{n \to \infty} \frac{f_n(A)}{n}.$$

Această definiție ar prezenta însă lacune din punct de vedere matematic (spre exemplu garantarea existenței limitei de mai sus, a independenței valorii limitei de o eventuală repetare a experimentelor de către "o altă persoană", şamd).

Pentru a defini conceptul de probabilitate asociată unui eveniment, vom folosi o abordare moderna, axiomatică. Începem prin a defini noțiunea de algebră / σ -algebră, după cum urmează:

Definiția 1.1.4 Dată fiind o mulțime nevidă $\Omega \neq \emptyset$, numim algebră / corp de părți a lui Ω o familie nevidă $\mathcal{F} \subset \mathcal{P}(\Omega) = \{A : A \subset \Omega\}$ de părți a lui Ω , cu proprietățile:

i) F este închisă la complementară, adică

$$A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$$

ii) \mathcal{F} este închisă la reuniune, adică

$$A, B \in \mathcal{F} \Longrightarrow A \cup B \in \mathcal{F}.$$

Exemplul 1.1.5 Pentru $\Omega = \{B, S\}, \mathcal{F}_1 = \{\emptyset, \Omega\}$ (algebra "minimală"), $\mathcal{F}_2 = \{\emptyset, \Omega\}$ $\mathcal{P}(\Omega) = \{\emptyset, \{B\}, \{S\}, \Omega\} \ (algebra "maximală") sunt algebre ale lui \Omega.$

In general, pentru o algebră \mathcal{F} arbitrară a unei mulțimi de evenimente elementare Ω are loc

$$\mathcal{F}_1 \subset \mathcal{F} \subset \mathcal{F}_2$$
,

unde $\mathcal{F}_1 = \{\emptyset, \Omega\} \text{ si } \mathcal{F}_2 = \mathcal{P}(\Omega)$

Propoziția 1.1.6 Dacă \mathcal{F} este o algebră a lui Ω , atunci au loc următoarele:

- $a) \emptyset, \Omega \in \mathcal{F}$
- $b) A, B \in \mathcal{F} \Longrightarrow A \cap B \in \mathcal{F}$
- c) Pentru orice $n \ge 1$ şi $A_1, \ldots, A_n \in \mathcal{F}$, avem $A_1 \cup \ldots \cup A_n, A_1 \cap \ldots \cap A_n \in \mathcal{F}$
- d) $A, B \in \mathcal{F} \Longrightarrow A B, B A, A\Delta B \stackrel{def}{=} (A B) \cup (B A) \in \mathcal{F}$

Definiția 1.1.7 Dată fiind o mulțime nevidă $\Omega \neq \emptyset$, numim σ -algebră / σ corp de părți a lui Ω o familie nevidă $\mathcal{F} \subset \mathcal{P}(\Omega) = \{A : A \subset \Omega\}$ de părți a lui Ω , cu proprietătile:

i) F este închisă la complementară, adică

$$A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$$

ii) F este închisă la reuniuni numărabile, adică

$$A_1, A_2, \ldots \in \mathcal{F} \Longrightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}.$$

Are loc următoarea:

Propoziția 1.1.8 Dacă \mathcal{F} este o σ -algebră a lui Ω , atunci au loc următoarele:

- $a) \emptyset, \Omega \in \mathcal{F}$
- b) Pentru orice $n \ge 1$ şi $A_1, \ldots, A_n \in \mathcal{F}$, avem $A_1 \cup \ldots \cup A_n$, $A_1 \cap \ldots \cap A_n \in \mathcal{F}$ c) Pentru orice şir de evenimente $A_1, A_2, \ldots \in \mathcal{F}$, avem $\bigcap_{n=1}^{\infty} \in \mathcal{F}$
- $(A, B \in \mathcal{F}) \Longrightarrow A\Delta B \stackrel{def}{=} (A B) \cup (B A) \in \mathcal{F}$

O mulţime nevidă Ω pentru care s-a definit o σ -algebră \mathcal{F} se numeşte *spaţiu măsurabil*, şi se notează (Ω, \mathcal{F}) .

Definiția 1.1.9 Numim (măsură de) probabilitate pe spațiul măsurabil (Ω, \mathcal{F}) o funcție $P: \mathcal{F} \to [0, \infty)$ cu proprietățile:

- i) $P(\Omega) = 1$
- ii) Oricare ar fi evenimentele $A_1, A_2, \ldots \in \mathcal{F}$ incompatibile (disjuncte) două câte două, avem

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n'1}^{\infty} P\left(A_n\right).$$

Definiția 1.1.10 Numim spațiu (câmp) de probabilitate complet aditiv un triplet (Ω, \mathcal{F}, P) unde

- $\Omega \neq \emptyset$ este mulțimea evenimentelor elementareș
- \mathcal{F} este o σ -algebră a lui Ω ;
- P este o măsură de probabilitate pe spațiul masurabil (Ω, \mathcal{F}) .

Are loc următoarea:

Propoziția 1.1.11 $Dacă (\Omega, \mathcal{F}, P)$ este un spațiu de probabilitate complet aditiv, atunci au loc următoarele:

- 1. $P(\emptyset) = 0$
- 2. $P(A_1 \cup ... \cup A_n) = P(A_1) + ... + P(A_n)$, oricare ar fi $A_1, ..., A_n \in \mathcal{F}$ disjuncte două câte două
- 3. $P(A) \leq P(B)$, oricare ar fi $A, B \in \mathcal{F}$ cu $A \subset B$
- 4. $0 \le P(A) \le 1$, oricare ar fi $A \in \mathcal{F}$
- 5. $P(A^c) = 1 P(A)$, oricare ar fi $A \in \mathcal{F}$
- 6. P(B-A) = P(B) P(A), oricare ar fi $A, B \in \mathcal{F}$ cu $A \subset B$
- 7. $P(A \cup B) = P(A) + P(B) P(A \cap B)$, oricare ar fi $A, B \in \mathcal{F}$.

Demonstrație. Exercițiu.

Exemplul 1.1.12 În cazul aruncării unui zar, putem considera ca spațiu de probabilitate (Ω, \mathcal{F}, P) , unde

- $\Omega = \{1, 2, \dots, 6\}$
- $\mathcal{F} = \mathcal{P}(\Omega) = \{\emptyset, \{1\}, \{2\}, \dots \{6\}, \{1, 2\}, \{1, 3\}, \dots, \{5, 6\}, \dots, \{1, 2, \dots, 6\}\}$
- $P: \mathcal{F} \to [0, \infty), P(\{1\}) = P(\{2\}) = \ldots = P(\{6\}) = \frac{1}{6}$

Exemplul 1.1.13 În cazul aruncării unui ban, putem considera ca spaţiu de probabilitate (Ω, \mathcal{F}, P) , unde

- $\Omega = \{B, S\}$
- $\mathcal{F} = \mathcal{P}(\Omega) = \{\emptyset, \{B\}, \{S\}, \{B, S\}\}$
- $P: \mathcal{F} \to [0, \infty), \ P(\{B\}) = P(\{S\}) = \frac{1}{2} \ (sau \ P(\{B\}) = p, \ P(\{S\}) = 1 p, \ 0$

Exemplul 1.1.14 În cazul aruncării a două monede, putem considera ca spațiu de probabilitate (Ω, \mathcal{F}, P) , unde

- $\Omega = \{(B, B), (B, S), (S, B), (S, S)\}$
- $\mathcal{F} = \mathcal{P}(\Omega)$
- $P: \mathcal{F} \to [0, \infty), \ P((B, B)) = P((B, S)) = P((S, B)) = P((S, S)) = \frac{1}{4}$

1.1.1 Exerciții

- 1. În câte moduri se pot forma cuvinte cu 3 litere a, b, c?
- 2. La un examen se prezintă 2 băieți si 3 fete. Câte liste de rezultate)presupunând notele obținute distincte) se pot obține? Dar dacă rezultatele obținute sunt afișate pe liste diferite pentru băieți și fete?
- 3. 4 cărți de matematică, 3 cărți de chimie și două de geografie trebuiesc aranjate pe un raft, grupate pe subiecte. În câte moduri diferite se poate face aceasta?
- 4. În câte moduri diferite se pot acorda premiile I, II și III la 5 elevi?
- 5. În câte moduri se pot acorda 3 mențiuni la 5 elevi?
- 6. În câte moduri se poate forma un comitet de 3 persoane din 20 de oameni?
- 7. Câte grupuri de 5 persoane, formate din 2 bărbaţi şi 3 femei se pot forma cu 5 bărbaţi şi 7 femei?
- 8. Fie E, F și G trei evenimente. Să se descrie evenimentele:
 - (a) Numai E
 - (b) $E \sin G \operatorname{dar} \operatorname{nu} F$
 - (c) Cel puţin unul din evenimentele E, F, G
 - (d) Cel puţin două din evenimentele E, F, G
 - (e) Toate trei evenimentele E, F, G
 - (f) Nici unul din evenimentele E, F, G
 - (g) Cel mult unul din evenimentele E, F, G

- (h) Cel mult două din evenimentele E, F, G
- (i) Exact două din evenimentele E, F, G
- (j) Cel mult trei din evenimentele E, F, G
- 9. Să se simplifice expresiile:
 - (a) $(E \cup F) \cap (E \cup F^c)$
 - (b) $(E \cup F) \cap (E^c \cup F) \cap (E \cup F^c)$
 - (c) $(E \cup F) \cap (F \cup G)$
- 10. Să se demonstreze inegalitatea lui Boole:

$$P\left(\bigcap_{i=1}^{n} E_{i}\right) \leq \sum_{i=1}^{n} P\left(E_{i}\right)$$

11. Dacă P(E)=0.9 și P(F)=0.8, să se demonstreze că $P(E\cap F)\geq 0.7$. Mai general, să se demonstreze inegalitatea lui Bonferroni:

$$P(E \cap F) \ge P(E) + P(F) - 1.$$

12. Să se arate că ăprobabilitatea ca exact unul din evenimentele E și ${\cal F}$ are loc este

$$P(E) + P(F) - P(E \cap F)$$

13. Să se demonstreze relația

$$P(E \cap F^c) = P(E) - P(E \cap F)$$

14. Să se demonstreze relația

$$P(E^{c} \cap F^{c}) = 1 - P(E) - P(F) + P(E \cap F)$$

15. O urnă conține M bile negre și N bile albe. Dacă din urnă se extrag r bile, care este probabilitatea ca exact k să fie bile albe? Dar dacă N=k=1?