Page: 1 of 37

FCC TEST REPORT

· ZR9-02243 **FCC ID**

: Product Innovator Limited **Applicant**

: Room 1918, 19/F, Delta House, 3 On Yiu Street, Shatin, HONG KONG **Address**

Equipment Under Test (EUT):

Product Name : 2.4GHz Dongle

Model No. : 02243

Standards : FCC Part 15.247:2009

Date of Test : July 18, 2011 ~ July 20, 2011

Date of Issue : July 26, 2011

: Hunk yan **Test Engineer**

Table 24 ans **Reviewed By** : Philo zhong

Test Result : PASS

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

Tel:+86-755-27553488

Fax:+86-755-27553868

The sample detailed above has been tested to the requirements of Council Directives ANSI C63.4:2003. The test results have been reviewed against the Directives above and found to meet their essential requirements.

WALTEK SERVICES

2 Test Summary

FCC Part 15 Requirements			
Test Items	Test Requirement	Result	
Dedicted Counicus Emissions	15.205(a)		
Radiated Spurious Emissions	15.209	PASS	
(30MHz to 25GHz)	15.247(d)		
20dB Bandwidth	15.247(a)(1)	PASS	
Maximum Peak Output Power	15.247(b)(1)	PASS	
Frequency Separation	15.247(a)(1)	PASS	
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS	
Dwell time	15.247(a)(1)(iii)	PASS	
Maximum Permissible Exposure	1 1207/b)/1)	DACC	
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS	

WALTEK SERVICES

3 Contents

1	CO	OVER PAGE	1
2	TE	EST SUMMARY	2
3	CO	ONTENTS	3
4	GI	ENERAL INFORMATION	4
		CLIENT INFORMATION	
		GENERAL DESCRIPTION OF E.U.T.	
		DETAILS OF E.U.T.	
		DESCRIPTION OF SUPPORT UNITS	
	4.5	STANDARDS APPLICABLE FOR TESTING	4
		TEST FACILITY	
		TEST LOCATION	
5	EC	QUIPMENT USED DURING TEST	6
6	CO	ONDUCTED EMISSION	8
7	RA	ADIATED SPURIOUS EMISSIONS	9
8	RA	ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	20
9	20	DB BANDWIDTH MEASUREMENT	21
10	M	AXIMUM PEAK OUTPUT POWER	23
11	Н	OPPING CHANNEL SEPARATION	24
12	NU	JMBER OF HOPPING FREQUENCY	27
13	DV	VELL TIME	28
14	AN	NTENNA REQUIREMENT	31
15	RF	EXPOSURE	31
16	PF	IOTOGRAPHS - CONSTRUCTIONAL DETAILS	33
		EUT – COMPONENT VIEW	
	16.1 16.2	EUT – COMPONENT VIEW	
	16.2	EUT – APPEARANCE VIEW1	
	16.4	EUT – OPEN VIEW1	
	16.5	EUT – Open View2	
	16.6	PCB – Front View	
	16.7	PCB – BACK VIEW	36
17	FC	CC LABEL	37

Product Innovator Limited FCC ID: ZR9-02243

4 General Information

4.1 Client Information

Applicant : Product Innovator Limited

Address of Applicant : Room 1918, 19/F, Delta House, 3 On Yiu Street, Shatin, HONG KONG

Manufacturer : Dongguan Seagull Printing Co., Ltd.

Address of Manufacturer : Dongshan industrial District, Aobeiwei, Zhangmutou Town, Dongguan City,

Guangdong Province, China

4.2 General Description of E.U.T.

Product Name : 2.4GHz Dongle

Model No. : 02243

4.3 Details of E.U.T.

Technical Data : DC 5.0V, Internal Li-battery 3.7V

Operation Frequency : $2404MHz \sim 2476MHz$

Antenna Gain : 1.3dBi

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a 2.4GHz Dongle. The standards used were FCC Part 15.247:2009, Part 15.209:2009.

WALTEK SERVICES

FCC ID: ZR9-02243

4.6 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: IC7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, Aug.03, 2010.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.7 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

5 Equipment Used during Test

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY451149 43	W2008001	9k-26.5GHz	Aug.03, 2010	Aug.03, 2011	Wws20 081596	±1dB
Trilog Broadband Antenne	SCHWARZB ECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug.03, 2010	Aug.03, 2011	-	±1dB
Broad- band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug.03, 2010	Aug.03, 2011	-	f<10 GHz: ±1dB 10GHz <f< 18 GHz: ±1.5dB</f<
Broadband Preamplifie r	SCHWARZB ECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug.03, 2010	Aug.03, 2011	-	±1.2dB
10m Coaxial Cable with N-male Connectors	SCHWARZB ECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug.03, 2010	Aug.03, 2011	-	-
10m 50 Ohm Coaxial Cable	SCHWARZB ECK MESS- ELEKTROM / AK 9513	-	-	-	Aug.03, 2010	Aug.03, 2011	-	-
Positioning Controller	C&C LAB/ CC-C-IF	-	-	-	Aug.03, 2010	Aug.03, 2011	-	-
Color Monitor	SUNSPO/ SP-14C	-	-	-	Aug.03, 2010	Aug.03, 2011	-	-
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug.03, 2010	Aug.03, 2011	Wws20 080942	±1dB
EMI Receiver	Beijingkehua n	KH3931	-	9k-1GHz	Aug.03, 2010	Aug.03, 2011	-	-
Two-Line V-Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μΗ	Aug.03, 2010	Aug.03, 2011	Wws20 080941	±10%
Digital Power Analyzer	Em Test AG/Switzerla nd/ DPA 500	V07451 03095	W2008012	Power: 2000VA Vol-range: 0-300V Freq_range : 10-80Hz	Aug.03, 2010	Aug.03, 2011	Wwd2 008118	Voltage distinguish:0 .025% Power_freq
Power Source	Em Test AG/Switzerla nd/ ACS 500	V07451 03096	W2008013	Vol-range: 0-300V Power_freq : 10-80Hz			5	distinguish:0 .02Hz

WALTEK SERVICES

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq-range: 9K-1GHz RF voltage: -60 dBm- +10dBm	Aug.03, 2010	Aug.03, 2011	Wws20 081890	Power_freq distinguish0. 1Hz RFeletricity distinguish 0.1 B
CDN M- Type	TESEQ GmbH/ CDN M016	25112	W2008009	Voltage correct factor 9.5 dB	Aug.03, 2010	Aug.03, 2011	Wwc20 082396	150K- 80MHz: ±1dB 80- 230MHz:-2- +3dB
EM-Clamp	TESEQ GmbH/ KEMZ 801	25453	W2008010	Freq_range : 0.15-1000 MHz	Aug.03, 2010	Aug.03, 2011	Wwc20 082397	0.3-400 MHz: ±4dB Other freq: ±5dB
Attenuator 6dB	TESEQ GmbH/ ATN6050	25365	-	-	Aug.03, 2010	Aug.03, 2011	Wws20 081597	-
All Modules Generator	SCHAFFNE R/6150	34579	W2008006	voltage:200V -4.4KV Pulse current: 100A-2.2KA	Aug.03, 2010	Aug.03, 2011	Wwc20 082401	voltage: ±10% Pulse current: ±10%
Capacitive Coupling Clamp	SCHAFFNE R/ CDN 8014	25311	-	-	Aug.03, 2010	Aug.03, 2011	Wwc20 082398	-
Signal and Data Line Coupling Network	SCHAFFNE R/CDN 117	25627	W2008011	1.2/50μS	Aug.03, 2010	Aug.03, 2011	Wwc20 082399	-
AC Power Supply	TONGYUN/ DTDGC-4	-	-	-	Aug.03, 2010	Aug.03, 2011	Wws20 080944	-

Product Innovator Limited FCC ID: ZR9-02243

6 Conducted Emission

Test Requirement: FCC Part15.207

Test Method: Base on ANSI C63.4:2003

Test Result: N/A

Remark: In the condition of continuously transmit mode, the power of EUT was supported by

Internal Li-battery, so this test is not applicable.

WALTEK SERVICES

Product Innovator Limited FCC ID: ZR9-02243

7 Radiated Spurious Emissions

Test Requirement: FCC Part15.209 & 15.247
Test Method: Base on ANSI C63.4:2003

Test Result: PASS

Frequency Range: 30MHz to 25GHz

Measurement Distance: 3m

15.209 Limit: 40.0 dBuV/m between 30MHz & 88MHz

43.5 dBuV/m between 88MHz & 216MHz 46.0 dBuV/m between 216MHz & 960MHz

54.0 dBuV/m above 960MHz

15.247 (d) Limit: (d) In any 100 kHz bandwidth outside the frequency band in

which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that Contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak

conducted power limits.

Test mode: The EUT was tested in continuously Transmit mode.

EUT Operation:

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH

Atmospheric Pressure: 1012 mbar

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Waltek EMC Lab is ±5.03dB.

WALTEK SERVICES

FCC ID: ZR9-02243

Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 25 GHz Emissions.

WALTEK SERVICES

FCC ID: ZR9-02243

Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested 30 to 25000MHz.

Below 1GHz

Start Frequency	.30 MHz
Stop Frequency	.1000MHz
Sweep Speed	. Auto
IF Bandwidth	.120 KHz
Video Bandwidth	.100KHz
Quasi-Peak Adapter Bandwidth	.120 KHz
Quasi-Peak Adapter Mode	. Normal
Resolution Bandwidth	.100KHz

Above 1GHz

Start Frequency	.1000 MHz
Stop Frequency	.25000MHz
Sweep Speed	. Auto
IF Bandwidth	.120 KHz
Video Bandwidth	.1MHz
Quasi-Peak Adapter Bandwidth	.120 KHz
Quasi-Peak Adapter Mode	.Normal
Resolution Bandwidth	.1MHz

WALTEK SERVICES

Page:12 of 37

FCC ID: ZR9-02243

Product Innovator Limited

Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X(normal uses) axis positioning. And all the modes was tested in the report. Only the worst case is shown in the report.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

WALTEK SERVICES

Summary of Test Results

According to the data in this section, the EUT complied with the FCC Part15.247 standards.

Low Channel

Test Frequency : $30MHz \sim 1000MHz$

Antenna polarization: Vertical

Antenna polarization: Horizontal

WALTEK SERVICES

FCC ID: ZR9-02243

Test Frequency: Above 1GHz radiation test data:

Remark: above 18GHz,the test signal below the noise level,so the data was not perfromed.

Antenna polarization: Vertical

Antenna polarization: Horizontal

WALTEK SERVICES

Middle Channel

 $Test\ Frequency: 30MHz \sim 1000MHz$

Antenna polarization: Vertical

Antenna polarization: Horizontal

WALTEK SERVICES

Test Frequency: Above 1GHz radiation test data:

Remark: above 18GHz, the test signal below the noise level, so the data was not perfromed.

Antenna polarization: Vertical

Antenna polarization: Horizontal

High Channel

 $Test\ Frequency: 30MHz \sim 1000MHz$

Antenna polarization: Vertical

Antenna polarization: Horizontal

WALTEK SERVICES

Test Frequency: Above 1GHz radiation test data:

Remark: above 18GHz, the test signal below the noise level, so the data was not perfromed.

Antenna polarization: Vertical

Antenna polarization: Horizontal

${\bf Photograph-Radiation\ Spurious\ Emission\ Test\ Setup}$

Below 1GHz

Above 1GHz

WALTEK SERVICES

Product Innovator Limited FCC ID: ZR9-02243

8 Radiated Emissions which fall in the restricted bands

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: Base on ANSI C63.4:2003

Measurement Distance: 3m

Limit: 40.0 dBuV/m between 30MHz & 88MHz;

43.5 dBuV/m between 88MHz & 216MHz; 46.0 dBuV/m between 216MHz & 960MHz;

54.0 dBuV/m above 960MHz.

74.0 dBuV/m for peak above 1GHz 54.0 dBuV/m for AVG above 1GHz

Detector: For Peak value:

RBW = 1 MHz for $f \ge 1$ GHz VBW \ge RBW; Sweep = auto Detector function = peak

Trace = max hold For AVG value:

RBW = 1 MHz for $f \ge 1$ GHz VBW = 10Hz; Sweep = auto Detector function = AVG

Trace = \max hold

Test Result:

1. Low Channel

Г.,, .,, .,, (МП-)	Peak Emission Level	AVG Emission Level	
Frequency (MHz)	(dBuV/m)	(dBuV/m)	
2390	59.91	47.42	
2483.5	51.47	44.06	

2. High Channel

Г., (MII-)	Peak Emission Level	AVG Emission Level	
Frequency (MHz)	(dBuV/m)	(dBuV/m)	
2390	52.27	44.26	
2483.5	60.72	45.74	

WALTEK SERVICES

9 20 dB Bandwidth Measurement

Test Requirement: FCC Part 15 C

Test Method: Based on FCC Part 15.247

Test Mode: Test in fixing operating frequency at low, Middle, high

channel.

Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: Span = 5MHz, RBW = 100kHz, VBW = 100kHz

Test Result:

Test Channel	Bandwidth
Low	1.74MHz
Middle	1.74MHz
High	1.74MHz

Test result plot as follows:

Low Channel

WALTEK SERVICES

Middle Channel

High Channel

WALTEK SERVICES

Product Innovator Limited FCC ID: ZR9-02243

10 Maximum Peak Output Power

Test Requirement: FCC Part 15.247

Test Method: Based on ANSI C63.4:2003

Test Limit: Regulation 15.247 (b)(1)For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:

0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 0.125watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 1 MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

Test Result:

Test Channel	Output Power (dBm)	Limit (dBm)
Low	9.42	20.97
Middle	10.54	20.97
High	11.99	20.97

WALTEK SERVICES

Product Innovator Limited FCC ID: ZR9-02243

11 Hopping Channel Separation

Test Requirement: FCC Part 15.247

Test Method: Based on FCC Part 15.247

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall

have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate

with an output power no greater than 125 mW.

Test Mode: Test in hopping transmitting operating mode.

Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz, Span = 5MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Test Result:

Test Channel	Separation (MHz)	Result
Low	3.00	PASS
Middle	3.01	PASS
High	2.99	PASS

WALTEK SERVICES

Test result plot as follows:

Low Channel:

Middle Channel

WALTEK SERVICES

High Channel

12 Number of Hopping Frequency

Test Requirement: FCC Part 15.247

Test Method: Based on FCC Part 15.247

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 100 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: start frequency = 2402MHz. stop frequency = 2486MHz. Submit the test result graph.

Test Result: Total Channels are 25 Channels.

WALTEK SERVICES

Product Innovator Limited FCC ID: ZR9-02243

13 Dwell Time

Test Requirement: FCC Part 15.247

Test Method: Based on FCC Part 15.247

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15

channels are used.

Test Mode: Test in hopping transmitting operating mode.

Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. centered on a hopping channel;

3.Set RBW = 1MHz and VBW = 1MHz.Sweep = as necessary to capture the entire dwell time per hopping channel.

4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

Test Result:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4 Second/Channel x 25 Channel = 10 s

Low Channel: 2404MHz

Dwell time = 3.82(ms) * (2500 / (10 * 25)) * 10 = 0.382s

Middle Channel: 2440MHz

Dwell time = 3.82(ms) * (2500 / (10 * 25)) * 10 = 0.382s

High Channel: 2476MHz

Dwell time = 3.82(ms) * (2500 / (10 * 25)) * 10 = 0.382s

The results are less than 0.4s.

WALTEK SERVICES

Please refer the graphs as below:

Low Channel:

Middle Channel:

WALTEK SERVICES

High Channel:

14 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. This product has a permanent antenna, fulfill the requirement of this section.

15 RF Exposure

Test Requirement: FCC Part 1.1307

Test Method: Based on FCC Part 15.247

Test Mode: The EUT work in test mode(Tx).

Requiments:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500			F/1500	30	
1500-100,000			1.0	30	

Note: f = frequency in MHz; *Plane-wave equivalent power density

WALTEK SERVICES

FCC ID: ZR9-02243

Product Innovator Limited

MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

 $\mathbf{E} = \text{Electric field (V/m)}$

 $\mathbf{P} = \text{Peak RF output power (W)}$

G = EUT Antenna numeric gain (numeric)

 $\mathbf{d} =$ Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm2)	Limit of Power Density (S) (mW/cm2)	Test Result
1.3	1.35	9.42	8.75	0.002350	1	Complies
1.3	1.35	10.54	11.32	0.003040	1	Complies
1.3	1.35	11.99	15.81	0.0042460	1	Complies

WALTEK SERVICES

16 Photographs - Constructional Details

16.1 EUT – Component View

16.2 EUT – Appearance View1

WALTEK SERVICES

16.3 EUT – Appearance View2

16.4 EUT – Open View1

WALTEK SERVICES

16.5 EUT – Open View2

16.6 PCB – Front View

WALTEK SERVICES

16.7 PCB – Back View

WALTEK SERVICES

17 FCC Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation. The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

