Single Source Shortest Path (Dijkstra's Algorithm)

Shortest Path Problems

What is shortest path?

shortest length between two vertices for an unweighted graph:

smallest cost between two vertices for a weighted graph:

Shortest Path Problems

- How can we find the shortest route between two points on a map?
- Model the problem as a graph problem:
 - Road map is a weighted graph:

```
vertices = cities
edges = road segments between cities
edge weights = road distances
```

Goal: find a shortest path between two vertices (cities)

Shortest Path Problems

Input:

- Directed graph G = (V, E)
- Weight function w : $E \rightarrow R$
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Shortest-path weight from u to v:

 $\delta(u, v) = \min \{ w(p) : u \stackrel{p}{\leadsto} v \text{ if there exists a path from } u \text{ to } v \}$ otherwise

• Shortest path u to v is any path p such that $w(p) = \delta(u, v)$

Variants of Shortest Paths

Single-source shortest path

G = (V, E) ⇒ find a shortest path from a given source vertex s to each vertex v ∈ V

Single-destination shortest path

- Find a shortest path to a given destination vertex t from each vertex v
- Reverse the direction of each edge ⇒ single-source

Single-pair shortest path

- Find a shortest path from u to v for given vertices u and v
- Solve the single-source problem

All-pairs shortest-paths

Find a shortest path from u to v for every pair of vertices u and v

Optimal Substructure of Shortest Paths

Given:

- A weighted, directed graph G = (V, E)
- A weight function w: $E \rightarrow \mathbf{R}$,

- A shortest path $p = \langle v_1, v_2, \dots, v_k \rangle$ from v_1 to v_k v_i
- A subpath of p: $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$, with $1 \le i \le j \le k$

Then: p_{ij} is a shortest path from v_i to v_j

Proof:
$$p = v_1 \stackrel{p_{1i}}{\leadsto} v_i \stackrel{p_{ij}}{\leadsto} v_j \stackrel{p_{jk}}{\leadsto} v_k$$

$$w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$$

Assume $\exists p_{ij}'$ from v_i to v_j with $w(p_{ij}') < w(p_{ij})$

$$\Rightarrow$$
 w(p') = w(p_{1i}) + w(p_{ij}') + w(p_{jk}) < w(p) contradiction!

Shortest-Path Representation

For each vertex $v \in V$:

- $d[v] = \delta(s, v)$: a **shortest-path estimate**
 - Initially, d[v]=∞
 - Reduces as algorithms progress
- π[v] = predecessor of v on a shortest
 path from s
 - If no predecessor, $\pi[v] = NIL$
 - $-\pi$ induces a tree—shortest-path tree
- Shortest paths & shortest path trees are not unique

Initialization

Alg.: INITIALIZE-SINGLE-SOURCE(V, s)

- 1. for each $v \in V$
- 2. do d[v] $\leftarrow \infty$
- 3. $\pi[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$

 All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE

Relaxation

 Relaxing an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

If d[v] > d[u] + w(u, v)we can improve the shortest path to v \Rightarrow update d[v] and $\pi[v]$

RELAX(u, v, w)

```
    if d[v] > d[u] + w(u, v)
    then d[v] ← d[u] + w(u, v)
    π[v] ← u
```

- All the single-source shortest-paths algorithms
 - start by calling INIT-SINGLE-SOURCE
 - then relax edges
- The algorithms differ in the order and how many times they relax each edge

Dijkstra's Algorithm

- Single-source shortest path problem:
 - No negative-weight edges: $w(u, v) > 0 \forall (u, v) \in E$
- Maintains two sets of vertices:
 - S = vertices whose final shortest-path weights have already been determined
 - -Q = vertices in V S: min-priority queue
 - Keys in Q are estimates of shortest-path weights (d[v])
- Repeatedly select a vertex u ∈ V S, with the minimum shortest-path estimate d[v]

Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s)
- 2. S ← Ø
- 3. Q ← V[G]
- 4. while $Q \neq \emptyset$
- 5. **do** $u \leftarrow EXTRACT-MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
- 7. for each vertex $v \in Adj[u]$
- 8. **do** RELAX(u, v, w)

Example

Dijkstra's Pseudo Code

Graph G, weight function w, root s

```
DIJKSTRA(G, w, s)
   1 for each v \in V
  2 \operatorname{do} d[v] \leftarrow \infty
  3 \ d[s] \leftarrow 0
  4 S \leftarrow \emptyset > \text{Set of discovered nodes}
  5 \ Q \leftarrow V
  6 while Q \neq \emptyset
             \mathbf{do} \ u \leftarrow \text{Extract-Min}(Q)
                  S \leftarrow S \cup \{u\}
                 for each v \in Adj[u]
                                                                                relaxing
                         do if d[v] > d[u] + w(u, v)
                                                                                edges
                                  then d[v] \leftarrow d[u] + w(u, v)
```

Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s) $\leftarrow \Theta(V)$
- 2. S ← Ø
- 3. $Q \leftarrow V[G] \leftarrow O(V)$ build min-heap
- 4. while $Q \neq \emptyset \leftarrow$ Executed O(V) times
- 5. do $u \leftarrow EXTRACT-MIN(Q) \leftarrow O(IgV)$
- 6. $S \leftarrow S \cup \{u\}$
- 7. for each vertex $v \in Adj[u]$
- 8. do RELAX(u, v, w) \leftarrow O(E) times; O(IgV)

Running time: O(VlgV + ElgV) = O(ElgV)