função seno quanto para a função cosseno o domínio é $(-\infty, \infty)$, e a imagem é o intervalo fechado [-1, 1]. Dessa forma, para todos os valores de x, temos

 $-1 \le \operatorname{sen} x \le 1$ $-1 \le \operatorname{cos} x \le 1$

Os gráficos das quatro funções trigonométricas restantes estão mostrados na Figura 15, e seus domínios estão ali indicados. Observe que a tangente e a cotangente têm a mesma imagem $(-\infty,\infty)$, enquanto a cossecante e a secante têm a imagem $(-\infty,-1] \cup [1,\infty)$. Todas as funções são periódicas: tangente e cotangente têm período π , ao passo que cossecante e secante possuem período 2π .

FIGURA 15

Exercícios

1-6 Converta de graus para radianos.

- **1.** 210°
- **2.** 300°
- **3**. 9°

- **4.** −315°
- **5**. 900°
- **6.** 36°

7–12 Converta de radianos para graus.

- **7**. 4π
- 8. $-\frac{7\pi}{2}$
- 9. $\frac{5\pi}{12}$

- **10.** $\frac{8\pi}{3}$
- 11. $-\frac{3\pi}{8}$
- **12**. 5

- 13. Determine o comprimento de um arco circular subtendido pelo ângulo de $\pi/12$ rad se o raio do círculo for de 36 cm.
- **14.** Se um círculo tem raio de 10 cm, qual é o comprimento de arco subtendido pelo ângulo central de 72°?
- Um círculo tem raio de 1,5m. Qual o ângulo subtendido no centro do círculo por um arco de 1 m de comprimento?
- **16.** Determine o raio de um setor circular com ângulo $3\pi/4$ e comprimento de arco 6 cm.

17–22 Desenhe, na posição padrão, o ângulo cuja medida é dada.

- **17.** 315°
- **18.** -150°
- **19.** $-\frac{3\pi}{4}$ rad

20.
$$\frac{7\pi}{3}$$
 rad

23–28 Determine as razões trigonométricas exatas para o ângulo cuja medida em radianos é dada.

23.
$$\frac{3\pi}{4}$$

24.
$$\frac{4\pi}{3}$$

25.
$$\frac{9\pi}{2}$$

27.
$$\frac{5\pi}{6}$$

28.
$$\frac{11\pi}{4}$$

29–34 Determine as demais razões trigonométricas.

29. sen
$$\theta = \frac{3}{5}$$
, $0 < \theta < \frac{\pi}{2}$

30. tg
$$\alpha = 2$$
, $0 < \alpha < \frac{\pi}{2}$

(31.)
$$\sec \phi = -1.5, \quad \frac{\pi}{2} < \phi < \pi$$

32.
$$\cos x = -\frac{1}{3}, \quad \pi < x < \frac{3\pi}{2}$$

33.
$$\cot \beta = 3$$
, $\pi < \beta < 2\pi$

34. cossec
$$\theta = -\frac{4}{3}$$
, $\frac{3\pi}{2} < \theta < 2\pi$

35–38 Determine, com precisão de cinco casas decimais, o comprimento do lado chamado de *x*.

35.

36

37.

36.

39-41 Demonstre cada equação.

- **39.** (a) Equação 10a
- (b) Equação 10b
- **40.** (a) Equação 14a
- (b) Equação 14b
- 41. (a) Equação 18a
- (b) Equação 18b

(c) Equação 18c

42-58 Demonstre a identidade.

$$42. \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$43. \ \operatorname{sen}\left(\frac{\pi}{2} + x\right) = \cos x$$

$$44. \ \operatorname{sen}(\pi - x) = \operatorname{sen} x$$

45. sen
$$\theta$$
 cotg $\theta = \cos \theta$

46.
$$(\operatorname{sen} x + \cos x)^2 = 1 + \operatorname{sen} 2x$$

47.
$$\sec y - \cos y = \operatorname{tg} y \operatorname{sen} y$$

48.
$$tg^2\alpha - sen^2\alpha = tg^2\alpha sen^2\alpha$$

49.
$$\cot g^2 \theta + \sec^2 \theta = tg^2 \theta + \csc^2 \theta$$

50.
$$2 \operatorname{cossec} 2t = \operatorname{sec} t \operatorname{cossec} t$$

51.
$$\operatorname{tg} 2\theta = \frac{2 \operatorname{tg} \theta}{1 - \operatorname{tg}^2 \theta}$$

52.
$$\frac{1}{1-\sin\theta} + \frac{1}{1+\sin\theta} = 2\sec^2\theta$$

53. sen
$$x$$
 sen $2x + \cos x \cos 2x = \cos x$

54.
$$\sin^2 x - \sin^2 y = \sin(x + y) \sin(x - y)$$

55.
$$\frac{\sin \phi}{1 - \cos \phi} = \operatorname{cossec} \phi + \operatorname{cotg} \phi$$

56.
$$\operatorname{tg} x + \operatorname{tg} y = \frac{\operatorname{sen}(x + y)}{\cos x \cos y}$$

57.
$$sen 3\theta + sen \theta = 2 sen 2\theta cos \theta$$

58.
$$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$$

59–64 Se sen $x = \frac{1}{3}$ e sec $y = \frac{5}{4}$, onde x e y estão entre 0 e $\pi/2$, calcule a expressão.

59.
$$sen(x + y)$$

60.
$$\cos(x + y)$$

61.
$$\cos(x - y)$$

62.
$$sen(x - y)$$

65–72 Encontre todos os valores de x no intervalo $[0, 2\pi]$ que satisfaçam a equação.

65.
$$2 \cos x - 1 = 0$$

66.
$$3 \cot^2 x = 1$$

67.
$$2 \operatorname{sen}^2 x = 1$$

68.
$$| \operatorname{tg} x | = 1$$

69. Sen
$$2x = \cos x$$

70.
$$2\cos x + \sin 2x = 0$$

71. sen
$$x = tg$$

72.
$$2 + \cos 2x = 3 \cos x$$

73–76 Determine todos os valores de x no intervalo $[0, 2\pi]$ que satisfaçam a desigualdade.

73. sen
$$x \le \frac{1}{2}$$

74.
$$2\cos x + 1 > 0$$

75.
$$-1 < \text{tg } x < 1$$

76. sen
$$x > \cos x$$

77–82 Faça o gráfico da função começando com o gráfico das Figuras 14 e 15 e aplicando as transformações da Seção 1.3 quando apropriado.

$$77. \ y = \cos\left(x - \frac{\pi}{3}\right)$$

78.
$$y = tg \ 2x$$

79.
$$y = \frac{1}{3} \operatorname{tg} \left(x - \frac{\pi}{2} \right)$$

80.
$$y = 1 + \sec x$$

81.
$$y = |\sin x|$$

82.
$$y = 2 + \sin\left(x + \frac{\pi}{4}\right)$$

83. Demonstre a **Lei dos Cossenos**: se um triângulo tiver lados com comprimentos a, b, c e θ for um ângulo entre os lados com comprimentos a e b, então

$$c^2 = a^2 + b^2 - 2ab \cos \theta.$$

[*Dica:* Introduza um sistema de coordenadas de modo que θ esteja na posição padrão como na figura. Expresse x e y em termos de θ e use a fórmula de distância para calcular c.]

84. Para determinar a distância |AB| sobre uma pequena enseada, um ponto C é colocado como na figura, e as seguintes medidas são registradas:

$$\angle C = 103^{\circ}$$
 $|AC| = 820 \text{ m}$ $|BC| = 910 \text{ m}$

Use a Lei dos Cossenos do Exercício 83 para determinar a distância pedida.

85. Use a figura para demonstrar a fórmula da subtração

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

[Dica: Calcule c^2 de duas maneiras (usando a Lei dos Cossenos do Exercício 83 e também a fórmula da distância) e compare as duas expressões.]

- **86.** Use a fórmula do Exercício 85 para demonstrar a fórmula da subtração para cosseno (12b).
- 87. Use a fórmula da adição para cosseno e as identidades

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta \qquad \sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

para demonstrar a fórmula da subtração (13a) para a função seno.

88. Mostre que a área de um triângulo com lados de comprimentos a e b e com o ângulo entre eles sendo θ é

$$A = \frac{1}{2}ab \operatorname{sen} \theta$$

89. Determine a área do triângulo *ABC*, correta até cinco casas decimais, se

$$|AB| = 10 \text{ cm}$$
 $|BC| = 3 \text{ cm}$ $\angle ABC = 107^{\circ}$

Notação de Somatória (ou Notação Sigma)

Uma maneira conveniente de escrever as somas usa a letra grega Σ (sigma maiúsculo, correspondente à nossa letra S) e é chamada **notação de somatória (ou notação sigma)**.

Isso nos diz para terminar com i = n.

Isso nos diz para somar.

Isso nos diz para começar com i = m.

1 Definição Se $a_m, a_{m+1}, \ldots, a_n$ forem números reais e m e n inteiros tais que $m \le n$, então

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + a_{m+2} + \cdots + a_{n-1} + a_n$$

Com a notação de função, a Definição 1 pode ser escrita como

$$\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + f(m+2) + \cdots + f(n-1) + f(n)$$

Assim, o símbolo $\sum_{i=m}^{n}$ indica uma soma na qual a letra i (denominada **índice da somatória**) assume valores inteiros consecutivos começando em m e terminando em n, isto é, $m, m+1, \ldots, n$. Outras letras também podem ser usadas como índice da somatória.

EXEMPLO 1

(a)
$$\sum_{i=1}^{4} i^2 = 1^2 + 2^2 + 3^2 + 4^2 = 30$$

(b)
$$\sum_{i=3}^{n} i = 3 + 4 + 5 + \cdots + (n-1) + n$$