J. Poland

Risk and Reward

Results

Performance

Conclusion

Data

Result

Investment

Systematic

Systematic

Subsamples

0.......

Global Result

Conclusion

# How to Look Clever and Have Envious Neighbors: Average Volatility Managed Investment

Jeramia Poland



Indian School of Business

November 2, 2018

# Background

- Risk (Portfolio Variance) = Reward : Markowitz (1952)
- Variance != Reward : Haugen and Heins (1972), Campbell (1987), French et al. (1987), Golsten et al. (1993)
- Moreira and Muir (2017) scaling month t+1 investment in the market index by month t daily return variance
- Stock market return variance : SV<sub>t</sub> =  $\sum_{m=1}^{N} \sum_{n=1}^{N} w_{m,t} w_{n,t} cov(r_{m,t}, r_{n,t})$
- Pollet and Wilson (2010) decomposition of market variance into a compensated and uncompensated component
  - average variance (AV) :  $\bar{\sigma}_t^2 = \sum_{m=1}^N w_{m,t} \sigma_t^2$  average correlation (AC) :  $\bar{\rho}_t = \sum_{m=1}^N \sum_{n=1}^N w_{m,t} w_{n,t} \rho_{m,n,t}$

  - $SV_t \approx AV * AC$  Anadu and Tierens (2004)
  - $r_{t+1} = \alpha_1 + \beta_1 AC_t + \epsilon_{1,t}$ ,  $\beta_1$  positive and significant
  - $r_{t+1} = \alpha_2 + \beta_2 AV_t + \epsilon_{2,t}$ ,  $\beta_2$  insignificant

Result

Performance Systematic R

Conclusio

Data

Resul

Investment

Suggestivel

Systematic

Regression Subsamples

Out of Sampl

Conclusion

### Central Idea I

- If  $SV_t \approx AV^*AC$ , there maybe something to looking at AV and/or AC separately
- Moreira and Muir (2017) : weight  $=\frac{c_{SV}}{SV_t}$ , c is scaling factor to match buy and hold volatility
- Me : weight  $= \frac{c_{AV}}{AV_t}$ ,  $c_{AV}$  to match buy and hold volatility
- $SV_{t+1} = \alpha_3 + \beta_3 AV_t + \epsilon_{3,t}$ ,  $\beta_3$  positive and significant
- ullet AV $_t$  management decreases investment when AV $_t$  is high
- AV<sub>t</sub> management avoids decreasing investment when SV<sub>t</sub> is high because AC is high
- Should find AV management outperforms SV management

J. Poland

#### Risk and Reward

Results

Performance Systematic Ri

Conclusio

Data

Result

Investment Performance

Suggestively Systematic

Regression Subsamples In Sample

Out of Sample Global Results Asset Results

Conclusion

# More Pollet and Wilson (2010)

- Roll (1972) : relevant for time-series, variance-in-mean relation of stock market return
- Variance of observed returns ≠ variance of "market" returns ≠ variance of aggregate wealth
- Shocks to true market returns are positively related to the common observed component, AC
- AC is positively related to the covariance of stock market returns and aggregate wealth,  $cov(r_{s,t+1}, r_{u,t+1})$
- AV is not
- The relationships depend on the proportion of the true market observed,  $w_{s,t}$ , and the aggregate wealth  $\beta_t$  for the index
- Details
- PW Return

Results

Systematic

Conclusio

Results

Investment Performance

Suggestively Systematic

Regression Subsamples

Out of Sample Global Results

Conclusion

### Central Idea II

- If AC = systematic, when AC is high  $\Rightarrow$  higher  $r_{u,t+1}$  is expected
- $r_{u,t}$  is not observable through index returns
- Suggestive evidence is support of Pollet and Wilson (2010) relation
  - In a subset where daily returns are unrepresentative, AC won't predict r<sub>s,t+1</sub>, AV management wont' perform
  - AV management should work globally
  - Equity AV management has higher investment in times of higher  $cov(r_{s,t+1}, r_{u,t+1})$ , so it should work across asset classes

J. Poland

#### Risk and Reward

Result

Performance

Conclusio

Data

Result

Investment Performanc

Suggestivel Systematic

Systematic Regression

In Sample
Out of Samp

Canalusian

### Preview Results

- AV management outperforms SV management returns, ratios, turnover, drawdowns, and utility
- AV management works better under practical investment constraints
- AV management works globally
- AV management works because changes in AV and AC signal changes in the systematic and unsystematic risk in the economy
  - In and Out-of-sample tests show changes in AV have more information about future risk and return than changes in SV
  - AV managed returns depend on the relationship of the proxy daily returns and aggregate wealth in time-series and cross-sectionally
  - The AV of equity returns can be used to manage investment in other assets across the economy

J. Poland

Risk and Reward

#### Results

Performance

Systematic F

onclusion

Data

.

Investment

Performano

Suggestive

Systematic

Regression Subsamples

Out of Samp Global Result

Conclusion

# **US Equity Performance**



AV: 9.68% SV: 8.60% BH: 5.93%

J. Poland

Results

Performance

### Performance Measures

- RET = annualized average log excess return
- Sharpe =  $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$ , dollar of returns for dollar of variance
- Sortino =  $\frac{\mathbb{E}[R_x 0]}{\sqrt{\int_{-\infty}^{0} (0 R_x)^2 f(R_x) dR}}$ , return for downside
- Kappa $_n = \frac{\mathbb{E}[R_x 0]}{\sqrt[n]{LPM_n}}$ , where LPM is lower partial moment  $Kappa_2 = Sortino$
- Drawdown peak to valley loss in portfolio value
- Break Even trading costs, basis points, which erase gains
- Certainty Equivalent Return gain (CER) = Average utility from AV - Average utility from SV for mean-variance investor with risk aversion  $\gamma$

J. Poland

Risk and Reward

Results

Performance

Systematic

Conclusion

Concidato

Data

Results

Investment

Performance

Systematic

Regression Subsamples

Out of Sample Global Results

Conclusion

### Performance

1926:07-2016:12

c<sub>BH</sub>: Unconstrained

|    | Return   | Sharpe | Sortino | Kappa <sub>3</sub> | Kappa <sub>4</sub> | $\alpha_{FF3}$ | $\alpha_{FF3+Mom}$ |
|----|----------|--------|---------|--------------------|--------------------|----------------|--------------------|
| ВН | 5.934    | 0.319  | 0.129   | 0.082              | 0.061              |                |                    |
| SV | 8.589    | 0.462  | 0.208   | 0.132              | 0.097              | 5.477          | 3.201              |
| AV | 9.676*** | 0.520* | 0.225   | 0.150*             | 0.112*             | 5.594***       | 3.164              |

#### Constraint - 3

|                 | Portfolio | Return   | Sharpe  | Sortino | $Kappa_3$ | Kappa <sub>4</sub> |
|-----------------|-----------|----------|---------|---------|-----------|--------------------|
| C <sub>10</sub> | SV        | 4.396    | 0.454   | 0.200   | 0.127     | 0.094              |
| C <sub>10</sub> | AV        | 5.225*** | 0.520*  | 0.225*  | 0.150**   | 0.112**            |
| c <sub>12</sub> | SV        | 5.219    | 0.452   | 0.198   | 0.127     | 0.094              |
| c <sub>12</sub> | AV        | 6.306*** | 0.520** | 0.225** | 0.150**   | 0.112**            |
| $c_{BH}$        | SV        | 7.606    | 0.456   | 0.199   | 0.129     | 0.096              |
| c <sub>BH</sub> | AV        | 9.677*** | 0.522** | 0.226** | 0.150**   | 0.112**            |

Notes:

\*\*\*,\*\*, and \* Significant at the 1, 5, and 10 percent levels.

J. Poland

Risk and Reward

Results

Performance

Conclusio

Data

Pocul

Investment

Performano

Suggestive Systematic

Systematic Regression

In Sample Out of Samp Global Result

Conclusion

# Performance Summary

#### Unconstrained

- Outperforms with higher returns for the same variance
- Outperforms with other risk specifications downside, skewness, kurtosis,  $\boldsymbol{\alpha}$

### Leverage

- As leverage constraints tighten AV outperforms SV
- ullet AV and SV management outperforms the buy and hold gains hedging (months < 1)
- SV needs more than 1500% leverage, AV  $\approx 300\%$
- AV management is cheaper and more practical

J. Poland

Risk and

#### Results

Performance

Systematic Ki

Conclusion

Date

D. C

Suggestivel

#### Suggestive

#### Systematic

Regression

. .

0 . . . .

Global Resul

Asset Results

Conclusion

# Investor Utility



#### Results

Systematic Risk

Conclusio

Data

Resul

Investment

Suggestively

Systematic

In Sample
Out of Sample
Global Results

Conclusion

# Suggestively Systematic

- CRSP dialy returns contain only NYSE firms, are shallower, more illiquid, and investment was not a meaningful part of aggregate wealth 1926 - 1962 - NYSE (2016) and Taylor (2014)
- AC should not predict returns 1926 1962
- AV management should work globally
- AV management using the AV of equity returns should generate better performance across asset classes
- AV managed returns should depend systematically on the representativeness of daily returns

Conclusio

Data

Results

Performance

Suggestively Systematic

Regression Subsamples In Sample

Out of Sample Global Results Asset Results

Conclus

# Regression Sub-samples

| $RET_{t+1}$ - | 1926M7:1962M6 |
|---------------|---------------|
|---------------|---------------|

| AV                      | 0.061 |        |        | 0.121  | 0.315  |
|-------------------------|-------|--------|--------|--------|--------|
| AC                      |       | -0.032 |        | -0.099 |        |
| SV                      |       |        | -0.028 |        | -0.264 |
| $R^2$                   | 0.004 | 0.001  | 0.001  | 0.010  | 0.026  |
| Adjusted R <sup>2</sup> | 0.002 | -0.002 | -0.002 | 0.005  | 0.021  |

### $\mathsf{RET}_{t+1}$ - 1962M6:2016M12

| AV                      | -0.131 |          |        | -0.168** | 0.016 |
|-------------------------|--------|----------|--------|----------|-------|
| AC                      |        | 0.047*** |        | 0.106*** |       |
| SV                      |        |          | -0.109 |          | 0.254 |
| $R^2$                   | 0.017  | 0.002    | 0.012  | 0.027    | 0.017 |
| Adjusted R <sup>2</sup> | 0.015  | 0.001    | 0.010  | 0.024    | 0.014 |

Results

Systematic Risk

Conclusion

Data

Results

Investment Performance

Suggestively

Regression Subsamples

Out of Sampl Global Result Asset Results

Conclus

## Global Performance

|         | AV        |        | S      | V      | ВН     |        |
|---------|-----------|--------|--------|--------|--------|--------|
| Country | RET       | Sharpe | RET    | Sharpe | RET    | Sharpe |
| AUS     | 12.477*** | 0.981  | 11.993 | 0.943  | 7.805  | 0.614  |
| BRA     | 11.000*** | 0.291  | 9.037  | 0.240  | 6.163  | 0.164  |
| CHN     | 27.381    | 0.868  | 24.926 | 0.790  | 12.286 | 0.390  |
| DEU     | 11.064*** | 0.537* | 7.633  | 0.371  | 5.399  | 0.262  |
| FRA     | 7.243***  | 0.404  | 6.128  | 0.341  | 4.904  | 0.273  |
| IND     | 14.893*** | 0.633  | 12.256 | 0.521  | 11.460 | 0.487  |
| ITA     | 3.838     | 0.194  | 3.912  | 0.198  | 1.451  | 0.073  |
| JPN     | 1.375***  | 0.068  | 0.129  | 0.006  | -0.775 | -0.038 |
| UK      | 6.591***  | 0.485  | 5.984  | 0.441  | 5.111  | 0.376  |
| World   | 8.603***  | 0.551  | 8.306  | 0.536  | 4.484  | 0.290  |

J. Poland

Risk and Reward

Results

Systematic Risk

Conclu

Data

Docule

Investment

Suggestive

Systematic Regression Subsamples

Out of Samp Global Result

Conclusion

# Systematic Performance

Global Long - Short Ratio of Market RET to Wealth† RET  $(w_{s,t})$ 

|              | RET    | Sharpe | $lpha_{\it FF3}$ | $lpha_{\it FF5}$ | $lpha_{\it FF5+Mom}$ |
|--------------|--------|--------|------------------|------------------|----------------------|
| Long         | 12.601 | 0.747  | 9.484**          | 7.909*           | 7.725*               |
| Short        | 7.537  | 0.562  | 5.038*           | 5.422*           | 5.318*               |
| Long - Short | 5.065  | 0.405  | 4.446***         | 2.488***         | 2.407**              |

† Credit Suisse annual reports on global wealth (2000-2017)

J. Poland

Results

Systematic Risk

# **Economy-Wide Performance**

Investment weight in other asset classes managed by equity AV

|                        | AV        |          | S      | V      | ВН     |        |
|------------------------|-----------|----------|--------|--------|--------|--------|
| Index                  | RET       | Sharpe   | RET    | Sharpe | RET    | Sharpe |
| Dollar <sub>BB</sub>   | 1.324***  | 0.170    | 0.606  | 0.078  | -0.296 | -0.038 |
| Curr <sub>DB</sub>     | 1.195***  | 0.272*   | -0.668 | -0.152 | -0.244 | -0.056 |
| Carry <sub>DB</sub>    | 1.440***  | 0.134    | -0.361 | -0.033 | -2.071 | -0.192 |
| $Mom_{\mathit{DB}}$    | 1.942***  | 0.214    | 0.413  | 0.045  | 1.095  | 0.120  |
| $REIT_{S\&P}$          | 26.706*** | 0.995    | 14.980 | 0.558  | 5.302  | 0.198  |
| $Comm_{BB}$            | -5.579*** | -0.303   | -6.431 | -0.349 | -5.279 | -0.286 |
| $Bond_{\mathit{Univ}}$ | 3.951***  | 1.168*** | 1.436  | 0.425  | 3.276  | 0.969  |

Resul

Performance Systematic Ri

Conclusion

\_ .

Investment

Suggestive

Systematic

In Sample
Out of Sampl

Out of Sample Global Results Asset Results

Conclusion

### Conclusion

### Variance Management

- Moreira and Muir (2017) and Hocquard, Ng, and Papageorgiou (2013)
- AV is a better dynamic volatility management signal returns, ratios, drawdowns, costs
- AV management works globally and across asset classes (SV does not)

## Risk Dynamics

- Gonzlez-Urteaga and Rubio (2016) and Bollerslev, Hood, Huss, and Pedersen (2017)
- AV comes from the foundations of investment risk
- AV management informs about the risk mix across the economy

Result

Performance Systematic Ri

Conclusio

Data

Result

Investment Performance

Suggestively Systematic

Regression Subsamples

Out of Samp Global Resul

Canalusia

# **Equity Data**

### **Equity Data**

| Country | Start     | Obs  | Index                   | Assets |
|---------|-----------|------|-------------------------|--------|
| USA     | 1926 - 8  | 1085 | CRSP                    | 500    |
| AUS     | 2000 - 5  | 212  | ASX                     | 200    |
| BRA     | 1995 - 2  | 275  | iShares MSCI Brazil ETF | 60     |
| CHN     | 2005 - 5  | 152  | CSI 300                 | 300    |
| DEU     | 1993 - 11 | 290  | HDAX                    | 110    |
| FRA     | 1993 - 9  | 292  | SBF 120                 | 120    |
| IND     | 2000 - 5  | 212  | Nifty 50                | 50     |
| ITA     | 2003 - 8  | 173  | FTSE MIB                | 40     |
| JPN     | 1993 - 6  | 295  | Nikkei                  | 255    |
| UK      | 1993 - 6  | 295  | FTSE                    | 100    |
| World   | 1995 - 3  | 274  | MSCI ACWI               | 1735   |

J. Poland

Risk and Reward

Resul

Performance Systematic R

Conclusio

Data

Result

Performanc

Suggestive

Systematic Regression

Subsamples In Sample

Out of Samp Global Result

Conclusio

# Non-Equity Data

### Other Asset Data

| Index                  | Start    | Obs | Asset Class |
|------------------------|----------|-----|-------------|
|                        |          |     |             |
| Bloomberg US Spot      | 2005 - 6 | 158 | Currency    |
| Deutsche Bank Currency | 2005 - 6 | 158 | Currency    |
| Deutsche Bank Carry    | 2005 - 6 | 158 | Currency    |
| Deutsche Bank Momentum | 2005 - 6 | 158 | Currency    |
| S&P REIT Index         | 2005 - 6 | 158 | Real Estate |
| Bloomberg Commodity    | 2005 - 6 | 158 | Commodities |
|                        |          |     |             |

Conclusion

### **AV** Construction

- $SV_t = \sigma_{S,t}^2$
- With m assets in the market, AV  $_t = \sum_{m=1}^{M} w_{m,t} \sigma_{m,t}^2$
- $W_t = \frac{c}{X}$  is the investment weight in the portfolio, where X  $\in \{AV_{t-1}, SV_{t-1}\}$
- The constant c<sub>target</sub> is used to control the volatility of the strategy
- c<sub>BH</sub> matching the buy and hold
- For robustness,  $c_{10}$  and  $c_{12}$  targeting 10% or 12% annual return volatility

J. Poland

Risk and Reward

Reculte

rformance

-,-----

Date

Results

Investment

Performan

Suggestive

Systemati

Regression Subsamples

Out of Samp

Global Results
Asset Results

Conclusion

# Investment Weights

#### Strategy Investment Weight



J. Poland

Risk and

Reculte

Performance

Conclusion

Data

Results

Investment

Dorforman

Suggestive

Systematic

Regression

In Sample

Out of Samp

Global Results

Conclusion

# Investment Weights Again



J. Poland

Risk and Reward

Reculte

Performance

Conclusion

D. . .

Results

Investment Performance

Suggestiv

Systematic Regression Subsamples

Out of Samp

# Investment Weight Again Again

| Portfolio | Target          | Mean  | St. Dev. | Min   | Pctl(25) | Median | Pctl(75) | Max    |
|-----------|-----------------|-------|----------|-------|----------|--------|----------|--------|
| SV        | c <sub>10</sub> | 0.697 | 0.762    | 0.009 | 0.246    | 0.512  | 0.874    | 8.743  |
| AV        | c <sub>10</sub> | 0.702 | 0.383    | 0.018 | 0.425    | 0.667  | 0.915    | 2.296  |
| SV        | c <sub>12</sub> | 0.841 | 0.920    | 0.011 | 0.297    | 0.618  | 1.055    | 10.552 |
| AV        | C <sub>12</sub> | 0.848 | 0.463    | 0.022 | 0.513    | 0.805  | 1.104    | 2.772  |
| SV        | $c_{BH}$        | 1.290 | 1.412    | 0.017 | 0.455    | 0.948  | 1.619    | 16.193 |
| AV        | CBH             | 1.301 | 0.710    | 0.033 | 0.787    | 1.235  | 1.694    | 4.253  |

Result

Performance Systematic R

Conclusio

Data

Results

Investment Performance

Suggestive

Systematic

Regression Subsamples

In Sample Out of Samp

Global Results
Asset Results

Conclusion

### Performance Measures

- RET = annualized average log excess return
- Sharpe =  $\frac{\mathbb{E}[R_x]}{\sigma(R_x)}$ , dollar of returns for dollar of variance
- Sortino =  $\frac{\mathbb{E}[R_x-0]}{\sqrt{\int_{-\infty}^0 (0-R_x)^2 f(R_x) dR}}$ , return for downside
- Kappa $_n = \frac{\mathbb{E}[R_{\times} 0]}{\sqrt[n]{LPM_n}}$ , where LPM is lower partial moment Kappa $_2 = \mathsf{Sortino}$
- Drawdown peak to valley loss in portfolio value
- Break Even trading costs, basis points, which erase gains
- Certainty Equivalent Return gain (CER) = Average utility from AV Average utility from SV for mean-variance investor with risk aversion  $\gamma$

J. Poland

Risk and Reward

Results

resures

Systematic I

Conclusion

Data

Results

Performance

Suggestive

Systematic

Regression

Regression Subsamples

In Sample

Global Results
Asset Results

Conclusion

### Returns



J. Poland

Risk and Reward

Reculte

Performance

Conclusion

Data

Results

Investment Performance

Suggestive

Systematic Regression

Out of Samp Global Result

Conclusion

### Performance

 $c_{BH}$ : 1926:07-2016:12

|    | Return   | Sharpe | Sortino | Kappa <sub>3</sub> | Kappa <sub>4</sub> | $\alpha_{FF5}$ | $lpha_{\it FF5+Mom}$ |
|----|----------|--------|---------|--------------------|--------------------|----------------|----------------------|
| ВН | 5.932    | 0.319  | 0.129   | 0.082              | 0.061              |                |                      |
| SV | 8.598    | 0.462  | 0.208   | 0.132              | 0.097              | 5.477          | 3.201                |
| AV | 9.677*** | 0.520* | 0.225   | 0.150*             | 0.112*             | 5.594***       | 3.164***             |

J. Poland

Risk and Reward

Results

Performance

Conclusio

Conclusio

Data

Results

Investmen

Performance

Suggestive

Systematic

Regression

Subsamples

In Sample Out of Sami

Global Results
Asset Results

Conclusio

# Drawdowns: c<sub>BH</sub>



| Strategy | N  | Max DD  | Avg DD  | Max Length | Avg Length | Max Recovery | Avg Recovery |
|----------|----|---------|---------|------------|------------|--------------|--------------|
| ВН       | 82 | -84.803 | -8.069  | 188        | 11.549     | 154          | 7.207        |
| SV       | 65 | -63.637 | -11.196 | 246        | 14.954     | 135          | 7.446        |
| AV       | 87 | -60.264 | -9.026  | 205        | 10.851     | 135          | 5.034        |

J. Poland

Risk and Reward

Result

Performance Systematic I

Conclusio

Data

Results

Performance

r criorinane

Suggestively Systematic

Regression Subsamples

Out of Sample Global Result

Conclusion

## Drawdown Insurance: c<sub>BH</sub>

#### Knockout

- Drawndown large enough to shutter fund (investor pull-out), cost manager job
- Assuming 45% loss in a 12-month period as knockout
- SV 1.06% and AV .55% using Pav (2016)
- AV  $\approx$  half the cost to insure, Carr, Zhang, and Hadjiliadis (2011)

Results

Performance

# Leverage

|           |          | c <sub>BH</sub> : Constraint - 1.5 |         |                    |                    |  |  |
|-----------|----------|------------------------------------|---------|--------------------|--------------------|--|--|
| Portfolio | Return   | Sharpe                             | Sortino | Kappa <sub>3</sub> | Kappa <sub>4</sub> |  |  |
| ВН        | 5.932    | 0.319                              | 0.129   | 0.082              | 0.061              |  |  |
| SV        | 6.171    | 0.467                              | 0.200   | 0.128              | 0.091              |  |  |
| AV        | 7.885*** | 0.486                              | 0.204   | 0.133              | 0.097              |  |  |

|           | c <sub>BH</sub> : Constraint - 3 |         |         |                    |                    |  |
|-----------|----------------------------------|---------|---------|--------------------|--------------------|--|
| Portfolio | Return                           | Sharpe  | Sortino | Kappa <sub>3</sub> | Kappa <sub>4</sub> |  |
| BH        | 5.932                            | 0.319   | 0.129   | 0.082              | 0.061              |  |
| SV        | 7.606                            | 0.456   | 0.199   | 0.129              | 0.096              |  |
| AV        | 9.677***                         | 0.522** | 0.226** | 0.150**            | 0.112**            |  |

Notes: \*\*\*, \*\*, and \* Significant at the 1, 5, and 10 percent levels.

J. Poland

Risk and Reward

Reculte

Performance Systematic Ris

Conclu

Data

#### Results

Investmen

Performance

Suggestivel

Systematic

Regression

In Sample

Out of Sam

Global Result

Conclusion

# Leverage



J. Poland

Risk and Reward

Result

Performance

Conclusio

Data

Results

Investmen

Performance

Suggestivel Systematic

Systematic Regression

In Sample Out of Samp

Asset Results

Conclusion

# Leverage



Risk averse, mean-variance investors see substantial utility gains switching from the SV to AV managed portfolio and these gains increase with leverage usage and risk aversion

Results

Performance Systematic Ri

Conclusio

Data

Results

Investment

Suggestively

Systematic Regression

Subsamples

Out of Sample Global Results

Conclusion

# AC/AV and Systematic Risk

- Pollet and Wilson (2010) AC is positively related to the correlation of market returns and aggregate wealth, including the unobserved component of the "true market"
- AC signal changes in systematic risk when the daily returns used are a good proxy for the "true market" and the market is a significant part of aggregate wealth.
- This is similar to the difference in results between Goyal and Santa Clara (2003) and Bali et all (2005) when the latter removes a significant number of daily returns and the forecasting ability of idiosyncratic volatility disappears
- Thus we can run a placebo-like test on a sub-sample where the daily returns are not representative

Performance

Systematic R

Conclusio

Dat

Investment

Performance
Suggestively

#### Systematic Regression

#### Subsamples In Sample

Out of Sample Global Results Asset Results

Conclusion

# Subsample Tests

- The CRSP daily return data contains only returns for assets traded on the New York Stock Exchange (NYSE) prior to 1962.
- The prior data is much shallower with fewer than 400 assets
- As much as 13% of market capitalization is not captured by CRSP data as of the 1950s.
- Twice as many firms covering twice as many industries are available at the end of 1962 as compared to the end of 1961.
- As shown in Taylor (2014) the NYSE market was not a significant part of marginal wealth in the US following the Great Depression before the late 1950s.

Result

Performance Systematic R

Conclusio

Data

Result

Investment

Suggestively Systematic

#### Regression Subsamples

Out of Sample Global Results

Conclusion

# Regressions

- Expect AC not to predict returns in the pre-1962 data but it should post-1962
- In-sample regression coefficients can be corrected for possible "volatility feedback" - Campbell and Hentschel (1992)
- Amihud and Hurvich (2004) bias correction
- Omit variance  $(SV_{t+1})$  prediction by AV as it works in both sub-samples
- Goyal and Welch (2008) forecasting relationships maybe unstable and quite sensitive to sample period choice; they may not respond dynamically with the limited information available to investors in real-time and may not explain or support a trading strategy

Conclus

## Return Prediction

#### 1962:07 - 2016:12

|                          |                       |                           | $RET_{t+1}$           |                            |                       |
|--------------------------|-----------------------|---------------------------|-----------------------|----------------------------|-----------------------|
| AV                       | -0.131 p = 0.166      |                           |                       | -0.168** $p = 0.020$       | 0.016 $p = 0.739$     |
| AC                       |                       | $0.047^{***}$ $p = 0.001$ |                       | $0.106^{***}$ $p = 0.0001$ |                       |
| SV                       |                       |                           | -0.109 p = 0.746      |                            | 0.254 $p = 0.893$     |
| Constant                 | -0.000 $p = 1.000$    | -0.000 $p = 1.000$        | -0.000 $p = 1.000$    | -0.000 p = 1.000           | -0.000 $p = 1.000$    |
| $N$ $R^2$ Adjusted $R^2$ | 655<br>0.017<br>0.015 | 655<br>0.002<br>0.001     | 655<br>0.012<br>0.010 | 655<br>0.027<br>0.024      | 655<br>0.017<br>0.014 |

Notes:

<sup>\*\*\*</sup>Significant at the 1 percent level.

 $<sup>\</sup>ensuremath{^{**}\mathsf{Significant}}$  at the 5 percent level.

<sup>\*</sup>Significant at the 10 percent level.

J. Poland

Suggestively

Systematic

In Sample

### Return Prediction

1926:08 - 1962:07

RET<sub>t+1</sub> - 1926M7:1962M6

| AV             | 0.061 |        |        | 0.121  | 0.315  |
|----------------|-------|--------|--------|--------|--------|
| AC             |       | -0.032 |        | -0.099 |        |
| SV             |       |        | -0.028 |        | -0.264 |
| $R^2$          | 0.004 | 0.001  | 0.001  | 0.010  | 0.026  |
| Adjusted $R^2$ | 0.002 | -0.002 | -0.002 | 0.005  | 0.021  |

Conclusion

# Out of Sample Stats

### Diebold-Marino Statistic (1995)

• DM = 
$$\frac{\bar{d}}{\sqrt{\frac{2\pi f_d(0)}{T}}}$$

 Asymptotically normally statistic comparing significance of accuracy ratio

#### MSE-F Mcracken (2004)

• MSE-F = 
$$T \times \frac{\frac{1}{T} \sum_{1}^{T} (e_{b,t}^2 - e_{x,t}^2)}{MSFE_x}$$

• MSE-F = F-type test for significance in squared residual

#### ENC-HLN Harvey, Lebourne and Newbold (1998)

- Optimal forecast =  $\hat{y}_t^* = (1 \lambda)\hat{y}_{b,t} + \lambda\hat{y}_{x,t}$
- $\lambda =$  measure of the optimal combination of forecasts

J. Poland

Risk and Reward

Reculte

Performance

Conclusio

Data

Results

Investment

Suggestively Systematic

Regression

Subsamples

Out of Sample

Global Results
Asset Results

Conclusion

## Out of Sample Results

Table: Sample 1939:12 to 2016:12

|             | DM       | MSE-F      | ENC-HLN |
|-------------|----------|------------|---------|
| $AC_{t+1}$  | 1.604*   | 46.251***  | 1**     |
| $SV_{t+1}$  | 1.041    | 21.57***   | 0.956** |
| $AV_{t+1}$  | 3.104*** | 198.267*** | 1***    |
| $RET_{t+1}$ | -2.027   | -8.702     | 0       |

J. Poland

Risk and Reward

Result

Performance

Conclusio

.

Daniel

Investment

Suggestively Systematic

Systematic

Regression

Out of Sample

Global Results

Conclusion

## Robust Out of Sample Results

Table: Sample 1939:12 to 2016:12

| _ |       |             |           |          |
|---|-------|-------------|-----------|----------|
|   | Stat  | Variable    | DM        | ENC-HLN  |
|   | $R_T$ | $SV_{t+1}$  | 8.874***  | 1.838*** |
|   | $R_T$ | $RET_{t+1}$ | 29.124*** | 4.871*** |
|   | $A_T$ | $SV_{t+1}$  | 2.647***  | 0.949*** |
|   | $A_T$ | $RET_{t+1}$ | 13.347*** | 1.68***  |
|   |       |             |           |          |

Notes: \*\*\*,\*\*, and \* Significant at the 1, 5, and 10 percent levels.

 These results compare the use AV to SV in forecasting not case either is good (RET) but AV is better

Reward

Results

Complexion

Data

Results
Investment

Suggestively Systematic

Subsamples In Sample

Global Results

Conclusio

# Global Equity

- If AV management times investment to compensated risk because it changes in response to changes in systematic vs non-systematic risk it should work outside the US
- World AV and SV are market cap weighted averages of country values, US included

|         | A      | V      | S      | V      | B      | ВН           |  |  |
|---------|--------|--------|--------|--------|--------|--------------|--|--|
| Country | RET    | Sharpe | RET    | Sharpe | RET    | Sharpe       |  |  |
| AUS     | 12.477 | 0.981  | 11.993 | 0.943  | 7.805  | 0.614        |  |  |
| BRA     | 11.000 | 0.291  | 9.037  | 0.240  | 6.163  | 0.164        |  |  |
| CHN     | 27.381 | 0.868  | 24.926 | 0.790  | 12.286 | 0.390        |  |  |
| DEU     | 11.064 | 0.537  | 7.633  | 0.371  | 5.399  | 0.262        |  |  |
| FRA     | 7.243  | 0.404  | 6.128  | 0.341  | 4.904  | 0.273        |  |  |
| IND     | 14.893 | 0.633  | 12.256 | 0.521  | 11.460 | 0.487        |  |  |
| ITA     | 3.838  | 0.194  | 3.912  | 0.198  | 1.451  | 0.073        |  |  |
| JPN     | 1.375  | 0.068  | 0.129  | 0.006  | -0.775 | -0.038       |  |  |
| UK      | 6.591  | 0.485  | 5.984  | 0.441  | 5.111  | 0.376        |  |  |
| World   | 8.604  | 0.551  | 8.306  | 0.536  | 4.484  | $0.290_{40}$ |  |  |

J. Poland

Risk and Reward

Results

rormance tematic Risl

Conclus

Data

Result

Investment Performance

Suggestively Systematic

Regression Subsamples

In Sample
Out of Sample
Global Results

Asset Results

Conclusion

## Global Equity Again

#### Drawdown Statistics

|         | AV      |            |              |         | SV         |              | ВН      |            |              |
|---------|---------|------------|--------------|---------|------------|--------------|---------|------------|--------------|
| Country | Avg DD  | Avg Length | Avg Recovery | Avg DD  | Avg Length | Avg Recovery | Avg DD  | Avg Length | Avg Recovery |
| AUS     | -6.302  | 7.174      | 3.348        | -5.322  | 9.263      | 5.421        | -6.318  | 8.600      | 4.550        |
| BRA     | -8.059  | 9.560      | 4.208        | -17.469 | 15.235     | 5.500        | -15.064 | 17.067     | 4.286        |
| CHN     | -9.511  | 10.333     | 5.917        | -10.074 | 10.583     | 3.727        | -19.374 | 27.400     | 2.000        |
| DEU     | -11.051 | 10.625     | 5.783        | -12.587 | 16.812     | 9.933        | -10.706 | 17.125     | 12.333       |
| FRA     | -10.263 | 14.111     | 5.941        | -15.260 | 18.267     | 10.214       | -11.590 | 19.071     | 15.077       |
| IND     | -8.170  | 6.500      | 2.885        | -12.545 | 12.467     | 5.733        | -10.862 | 8.318      | 4.500        |
| ITA     | -14.625 | 19.500     | 2.143        | -18.174 | 22.571     | 2.333        | -8.919  | 15.400     | 1.667        |
| JPN     | -30.655 | 72.750     | 41.750       | -78.514 | 294.000    | 175.000      | -40.792 | 148.00     | 2.000        |
| UK      | -6.060  | 11.609     | 4.652        | -7.872  | 14.158     | 8.158        | -6.018  | 10.560     | 7.240        |
| World   | -6.982  | 9.909      | 7.333        | -9.776  | 12.500     | 7.059        | -8.209  | 10.091     | 6.429        |

Results

Performance

Conclusio

Data

Results Investment

Suggestively Systematic

Regression Subsamples In Sample

Out of Sample Global Results

Conclusi

## Global Equity Again Again

### **Trading Costs**

|          |        | AV               |            |        | SV               |            |                   |
|----------|--------|------------------|------------|--------|------------------|------------|-------------------|
| <b>.</b> |        |                  | D 1 F      |        |                  | D 15       | DET               |
| Country  | RET    | $ \Delta\omega $ | Break Even | RET    | $ \Delta\omega $ | Break Even | RET <sub>BH</sub> |
| AUS      | 12.477 | 0.486            | 80.139     | 11.993 | 0.466            | 74.914     | 7.805             |
| BRA      | 11.000 | 0.253            | 159.118    | 9.037  | 0.623            | 38.462     | 6.163             |
| CHN      | 27.381 | 0.305            | 412.715    | 24.926 | 0.538            | 195.972    | 12.286            |
| DEU      | 11.064 | 0.499            | 94.545     | 7.633  | 0.581            | 32.052     | 5.399             |
| FRA      | 7.243  | 0.468            | 41.656     | 6.128  | 0.536            | 19.041     | 4.904             |
| IND      | 14.893 | 0.710            | 40.316     | 12.256 | 0.507            | 13.097     | 11.460            |
| ITA      | 3.838  | 0.448            | 44.366     | 3.912  | 0.603            | 33.991     | 1.451             |
| JPN      | 1.375  | 0.442            | 40.518     | 0.129  | 0.551            | 13.675     | -0.775            |
| UK       | 6.591  | 0.473            | 26.113     | 5.984  | 0.509            | 14.287     | 5.111             |
| World    | 8.604  | 0.439            | 78.113     | 8.306  | 0.642            | 49.586     | 4.484             |

Risk and Reward

Result

Performance Systematic R

Conclusio

Data

Result

Performance

Suggestively Systematic

Regression Subsamples

In Sample
Out of Sampl
Global Result

Asset Results

Conclusion

#### Asset Classes

- If AV management times to changes systematic vs non-systematic risk, equity AV should provide a management signal for more than equities
- Moriera and Muir (2017) show that equity SV does not work as a signal for currency investment
- World AV and SV used with c calculated to match buy and hold for each index

|                     | AV     |        | S      | V      | ВН     |        |
|---------------------|--------|--------|--------|--------|--------|--------|
| Index               | RET    | Sharpe | RET    | Sharpe | RET    | Sharpe |
| Bloomberg Dollar    | 1.324  | 0.170  | 0.606  | 0.078  | -0.296 | -0.038 |
| DB Currency         | 1.195  | 0.272  | -0.668 | -0.152 | -0.244 | -0.056 |
| DB Carry            | 1.440  | 0.134  | -0.361 | -0.033 | -2.071 | -0.192 |
| DB Mom              | 1.942  | 0.214  | 0.413  | 0.045  | 1.095  | 0.120  |
| S&P REIT            | 26.706 | 0.995  | 14.980 | 0.558  | 5.302  | 0.198  |
| Bloomberg Commodity | -5.579 | -0.303 | -6.431 | -0.349 | -5.279 | -0.286 |

J. Poland

Risk and Reward

Reculte

tematic Risl

Conclusio

Data

Result

Investment

Performance

Suggestively Systematic

Subsamples In Sample

Out of Sampl

Asset Results

Conclusion

## Asset Classes Again

#### Drawdown Statistics

|                     | AV     |            |              | SV      |            |              | ВН      |            |              |
|---------------------|--------|------------|--------------|---------|------------|--------------|---------|------------|--------------|
| Index               | Avg DD | Avg Length | Avg Recovery | Avg DD  | Avg Length | Avg Recovery | Avg DD  | Avg Length | Avg Recovery |
| Bloomberg Dollar    | -8.393 | 29.000     | 12.750       | -10.632 | 39.333     | 21.333       | -13.565 | 60.000     | 27.000       |
| DB Currency         | -2.236 | 9.750      | 2.667        | -10.471 | 59.500     | 20.500       | -8.839  | 59.500     | 41.500       |
| DB Carry            | -7.336 | 14.250     | 7.375        | -33.972 | 121.000    | 98.000       | -30.332 | 60.000     | 21.000       |
| DB Mom              | -4.748 | 11.900     | 3.300        | -14.679 | 59.000     | 17.000       | -12.278 | 38.333     | 18.333       |
| S&P REIT            | -7.692 | 4.400      | 1.800        | -15.016 | 9.455      | 5.000        | -17.004 | 15.143     | 9.286        |
| Bloomberg Commodity | -9.784 | 12.222     | 2.111        | -31.116 | 39.000     | 12.333       | -26.638 | 39.333     | 4.333        |

J. Poland

Risk and Reward

Results

Performance

Conclusio

Data

Results

Performance

Suggestively Systematic

In Sample
Out of Sample
Global Results

Asset Results

## Asset Classes Again Again

#### Trading Costs

|                     | AV     |                  |            |        |                  |            |                   |
|---------------------|--------|------------------|------------|--------|------------------|------------|-------------------|
| Index               | RET    | $ \Delta\omega $ | Break Even | RET    | $ \Delta\omega $ | Break Even | RET <sub>BH</sub> |
| Bloomberg Dollar    | 1.324  | 0.411            | 32.846     | 0.606  | 0.620            | 12.126     | -0.296            |
| DB Currency         | 1.195  | 0.430            | 27.851     | -0.668 | 0.482            | -7.339     | -0.244            |
| DB Carry            | 1.440  | 0.427            | 68.600     | -0.361 | 0.510            | 27.947     | -2.071            |
| DB Mom              | 1.942  | 0.441            | 16.010     | 0.413  | 0.599            | -9.501     | 1.095             |
| S&P REIT            | 26.706 | 0.592            | 301.254    | 14.980 | 0.807            | 99.908     | 5.302             |
| Bloomberg Commodity | -5.579 | 0.460            | -5.430     | -6.431 | 0.555            | -17.285    | -5.279            |

Conclusion

Data

Investment

Investment Performance

Suggestively Systematic

Subsamples
In Sample
Out of Sample

Conclusion

#### Conclusion

- AV management is better than SV: higher returns, better ratios, lower costs
- AV management is better because it times moving in and out of investments to changes in systematic risk which is compensated and non-systematic risk which is not
- As such, AV management is a useful signal both globally and across assets classes where SV management does not perform
- Thank you

# More Pollet and Wilson (2010)

#### PW Details

- Start with Campbell and Viceira (2002) :  $r_{i,t+1} \approx \gamma \sigma_{i,m,t} \frac{\sigma_{i,t}^2}{2}$ , m is true market
- holds for i = s, stock market portfolio
- $r_{s,t+1} \approx \gamma cov_t(r_{s,t+1}, r_{m,t+1}) \frac{\sigma_{s,t}^2}{2}$
- $r_{s,t+1} \approx \gamma cov_t(r_{s,t+1}, w_{s,t}r_{s,t+1} + (1-w_{s,t})r_{u,t+1}) \frac{\sigma_{s,t}^2}{2}$ , u is observable component
- $r_{s,t+1} \approx \gamma cov_t(r_{s,t+1}, w_{s,t}r_{s,t+1} + (1 w_{s,t})r_{u,t+1}) \frac{\sigma_{s,t}^2}{2}$
- $r_{s,t+1} \approx \gamma w_{s,t} var_t(r_{s,t+1}) + cov(r_{s,t}, (1-w_{s,t})r_{u,t+1}) \frac{\sigma_{s,t}^2}{2}$

# More Pollet and Wilson (2010)

- assume shocks to stock returns :  $\bar{\epsilon}_{z,t+1} + \epsilon_{i,t+1}$ , z common i idiosyncratic
- $r_{s,t+1} = \beta_t r_{m,t} + \overline{\epsilon}_{z,t+1}$
- $\operatorname{var}(\overline{\epsilon}_{z,t+1} + \epsilon_{i,t+1}) = \sigma_{z,t}^2 = \theta_t \sigma_{z,t}^2 + (1 \theta_t) \sigma_{i,t}^2$ ,  $\theta$  common part
- $r_{u,t+1} = \frac{1 w_{s,t}\beta_t}{1 w_{s,t}} r_{m,t} \frac{w_{s,t}\beta_t}{1 w_{s,t}}$
- substitute and simplify (many steps)
- $cov(r_{s,t}, r_{u,t+1}) = \frac{1 w_{s,t}\beta_t}{1 w_{s,t}} \frac{\bar{\sigma}_t^2}{\beta_t} \frac{\bar{\rho}_t \theta_t}{1 \theta_t} \bar{\rho}_t \frac{w_{s,t}\theta_t}{1 w_{s,t}} \frac{\bar{\sigma}_t^2}{\beta_t} \frac{1 \bar{\rho}_t}{1 \theta_t} \bar{\sigma}_t^2$
- more simplification
- $cov(r_{s,t}, r_{u,t+1}) = \pi_0 + \zeta_1 \bar{\rho_t} + \zeta_2 \bar{\sigma}_t^2$
- $\zeta_1$  positive but small for plausible values of  $w_{s,t}$  and  $\beta_t$ ,  $\zeta_2$  negative but small for plausible values
- Return