

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		A1	(11) International Publication Number:	WO 96/24470
B26D 7/10			(43) International Publication Date: 15 August 1996 (15.08.96)	
(21) International Application Number:		PCT/US96/01366		
(22) International Filing Date:		1 February 1996 (01.02.96)		
(30) Priority Data:		08/386,961	10 February 1995 (10.02.95)	US
(71) Applicant: WORLD CLASS PACKAGING SYSTEMS, INC. [US/US]; 86 Beach City Road, P.O. Box 24100, Hilton Head Island, SC 29925-4100 (US).				
(72) Inventors: GORLICH, Michael, P.; 86 Beach City Road, P.O. Box 24100, Hilton Head Island, SC 29925-4100 (US). McPHERSON, Robert, F., Jr.; 86 Beach City Road, P.O. Box 24100, Hilton Head Island, SC 29945-4100 (US).				
(74) Agent: TROP, Timothy, N.; P.O. Box 4433, Houston, TX 77210 (US).				
(81) Designated States: AL, AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AZ, BY, KG, KZ, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).				
<p>Published <i>With international search report.</i></p>				

(54) Title: METHOD AND APPARATUS FOR PACKAGING FOOD

(57) Abstract

A method and apparatus of packaging food that involves severing plastic film by contacting it with a blade (110) at a temperature sufficient to cause plastic vaporization. The film is then secured to the tray to form the package. A mounting system for the blade permits the blade to expand as it heats up and to contract as it cools down.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

METHOD AND APPARATUS FOR PACKAGING FOOD

This invention relates to machines for packaging food products and related methods. In one embodiment, the packaged product may be maintained in one condition under certain circumstances and then converted to another condition. For example, during transportation the 5 food package might maintain an inert gaseous atmosphere and then, when the package reaches a supermarket or other retail outlet, the food package will permit exposure of the food product to the ambient atmosphere. While a wide variety of food products can be packaged in accordance with the teachings of this invention, it is particularly advantageous in connection with the packaging of meat in a modified atmosphere package such that the meat may be transported in a 10 relatively inert atmosphere and then caused to bloom when it reaches a retail outlet by exposure to oxygen.

Historically, meat products have been butchered and packaged in each supermarket or other retail outlet. It has long been recognized that this arrangement is extremely inefficient and 15 expensive. Instead, it would be preferable to permit the meat to be butchered and packaged at an efficient facility which benefits from economies of scale and thereafter to be shipped to individual supermarkets or other retail outlets.

In the past, this desirable goal has not been achievable because most consumers prefer to 20 buy meat which is red in color as a result of exposure to oxygen. However, the meat maintains its red color for only one to two days. Thereafter, it turns to a purple color which is undesirable to most consumers. Therefore, if the meat was butchered and packaged in one location and then shipped to another location for eventual sale, by the time the package reached the retail outlet the meat would have undergone the transformation to the purple color and would be 25 effectively unsalable.

To overcome these problems, there have been a number of efforts to maintain the food product in a first atmosphere during shipping and a second atmosphere when the meat product is ready for retail sale. It is not believed that any of these techniques have yet achieved significant commercial acceptance. Therefore, it is highly desirable to provide a package that would

- 2 -

permit remote meat preparation and subsequent sale after the passage of more than a couple of days. It is equally desirable to have an apparatus and method for packaging such products in an efficient and cost-effective way despite the fact that most consumers would prefer not to invest a large amount of money in elaborate packages.

5

Thus, it should be apparent that there is a continuing need to solve the longstanding problem of providing a package which permits meat or other food products to be packaged at one location and then to be sold sometime later under different conditions. One approach to solving these problems which has shown considerable commercial promise is disclosed in U.S.

10 Patent No. 5,348,752 to Michael P. Gorlich. In this patent, a depression is provided in the tray which allows the cutting blade to cut plastic film from a web in place on a tray without damaging the packaging.

It is very important in packaging applications, including the modified atmosphere 15 packaging, to cut plastic film reproducibly at high speeds. This means that the film not only is cut very quickly, but that it is cut repeatedly in the exact same way, completely through the film.

Plastic film has conventionally been cut by a variety of blades which may include 20 serrated surfaces which are pressed through plastic film to sever the film in place. These systems require a suitable backing plate or anvil to receive the cutting blade. This is because plastic films tend to be extremely flexible and moreover, are often quite elastic. Thus, plastic films tend to flex and deform, and even stretch when cutting is attempted. While cutting these materials at relatively slow speeds does not tend to be a particular problem, the difficulties 25 intensify at higher speeds.

Conventionally, plastic films are cut to fit on trays and other surfaces in conventional packaging applications. Cutting the film to size within the confines of the tray has not been attempted because of the absence of a suitable support to receive the blade or because of the 30 likelihood that the blade would damage the package tray. Moreover, because it is often

- 3 -

necessary to cut a piece out of a plastic web, the web must be cut clean through all the way around the closed cut.

5 While heated cutting blades are known in connection with cutting and sealing plastic, the temperatures utilized correspond to plastic sealing temperatures. Plastic is usually sealed at its softening temperature. Thus, these heated blades are often fouled with softened plastic and must be cleaned regularly.

10 It would be highly desirable to have a severing system which cuts film either inside the confines of a package or at package edges in a rapid and reproducible fashion. Moreover, such a system which does not require excessive cleaning would be particularly desirable. While such a system would have a variety of applications, it would be highly desirable to have a high speed plastic film severing system useful for severing plastic film for trays, including trays used for modified atmosphere packaging.

15

In accordance with another aspect of the present invention, a packaging method using a plastic film cutting tool having a cutting blade includes the steps of heating a portion of the blade to a temperature sufficient to vaporize the film to be severed and contacting the film with the heated portion of the blade.

20

In accordance with yet another aspect of the present invention, a packaging machine has a cutting tool for severing plastic film. The machine includes a heated cutting blade having a blade tip heated by a heating element extending along its length. The cutting tool is adapted to enable the blade tip to reach temperatures in excess of 600° F.

25

In accordance with still another aspect of the present invention, a packaging machine includes an apparatus for cutting a film portion from a plastic film web. The apparatus has a blade arranged in a substantially closed geometrical shape, a heating element for heating the blade, a mechanism for moving the blade towards and away from the web to be cut, and a blade

- 4 -

mounting device. The device connects the mechanism to the blade, and is adapted to permit heat expansion of the blade relative to the mechanism.

In accordance with yet another aspect of the present invention, a packaging machine is
5 capable of supplying a desired packaging gaseous environment to a package including a tray and a plastic film for covering the tray. The machine includes a chamber having an upper housing portion and a lower housing portion. The chamber is adapted to sealingly sandwich the plastic film such that the periphery of the plastic film is clamped between the upper and lower housing portions. A film clamp is arranged to hold the film between successive trays inside the
10 chamber.

In accordance with still another aspect of the present invention, a packaging machine for covering a plurality of trays with plastic film includes a conveyor for loading a plurality of trays into the machine at one time. A programmable sensing device determines the presence of a
15 desired number of trays on the conveyor, in position to be loaded into the machine. The device is programmable to adapt to different tray sizes or different desired numbers of trays.

In accordance with another aspect of the present invention, a packaging machine for covering trays with a plastic film includes an apparatus for unloading the completed packages.
20 The unloader includes a pusher arranged to push a plurality of the packages from the machine at one time. The pusher is adapted to offset the packages with respect to one another in the direction the packages are displaced.

In accordance with yet another aspect of the present invention, a packaging machine for covering a plurality of trays with plastic film includes a conveyor for loading a plurality of trays into said machine. A first stop is located to control the access to the machine of the next tray on the conveyor to be loaded. A second stop is located to control the access to the machine of a tray second in line to be loaded. A pusher is provided for pushing the next tray and the second in line tray apart from one another.

- 5 -

Figure 1 is a cross-sectional view taken generally along the line 1-1 in Figure 2;

Figure 2 is a front elevational view of the embodiment shown in Figure 1;

5 **Figure 3 is an enlarged top plan view of a portion of the embodiment shown in Figure 1, showing the loading area receiving trays to be packaged;**

Figure 4 is a front elevational view of the portion shown in Figure 3;

10 **Figure 5 is a front elevational view corresponding to that shown in Figure 4 after a row of trays has been positioned atop a receiving platform;**

Figure 6 is a top plan view of the portion shown in Figure 5;

15 **Figure 7 is a vertical, cross-sectional view partially broken away so as to show two rather than four stations and with vacuum and gas supplying means removed;**

Figure 8 is a view corresponding to Figure 7 after the platform has been removed from the rotary arms;

20

Figure 9 is an enlarged, plan view of the quick disconnect tooling at the station 22a;

Figure 10 is an enlarged, cross-sectional view taken generally along the line 10-10 in Figure 9;

25

Figure 11 is a partial, side elevational view of the unloading station;

Figure 12 is a partial, side elevational view of the unloading station after a platform has been raised to an "up" position;

30

- 6 -

Figure 13 is a top plan view of the embodiment shown in Figure 12 after the trays have been pushed onto the unloading conveyor;

5 Figure 14 is an enlarged, partial, cross-sectional view of the bottom of the surge tank;

Figure 15 is a cross-sectional view of an embodiment of the present invention taken generally along the line 15-15 in Figure 20;

10 Figure 16 is a cross-sectional view taken generally along the line 16-16 in Figure 20 showing the movable blade support assembly with the seal bar removed;

Figure 17 is a cross-sectional view taken generally along the line 17-17 in Figure 20 showing the fixed blade support assembly with the seal bar removed;

15 Figure 18 is a cross-sectional view taken generally along the line 18-18 in Figure 16;

Figure 19 is an enlarged side elevational view showing the connection of a column to the blade;

20 Figure 20 is a cross-sectional view taken generally along the line 20-20 in Figure 15;

Figure 21 is a top plan view of another embodiment of tray unloader;

25 Figures 22a and 22c are enlarged top plan views of another embodiment of a tray loader while Figures 22b and 22d are side elevational views of the tray loader;

Figure 23 is a top plan view of another tray loader with two trays overlapping;

Figure 24 is a side elevational view of the tray loader of Figure 23;

- 7 -

Figure 25 is a top plan view of the tray loader of Figure 23 after the overlapped trays have been separated; and

Figure 26 is a side elevational view of the tray loader shown in Figure 25.

5

Referring to the drawing wherein like reference characters are used for like parts throughout the several views, a packaging machine 20, as shown in Figure 1, includes four stations 22. While the machine is illustrated in a four-station embodiment, it should be understood that one or more of the indicated stations may be unused and that in any particular embodiment it may be possible or desirable to have more or less than four stations. The four stations 22 operate on packages which are moved circularly from one station to the next.

The packages to be produced are held on a platform 24 which in the illustrated embodiment includes slots 26 to receive four package trays. A variety of package types may be utilized. One type of package type uses a relatively rigid molded plastic tray which is covered by either a film or an additional plastic domed closure. Examples of packages of this type are disclosed in U.S. Patent No. 5,348,752 and copending patent application and 08/098,530, filed July 28, 1993. Both the pending patent application and issued patent are hereby expressly incorporated by reference herein.

20

The platforms 24 are carried on mounting arms 28 which in turn connect to rotatable ring 30. The ring 30 is driven by the mechanism 32 which may be of any conventional type but is illustrated as being a drive chain and motor arrangement.

25

The entire machine 20 is supported atop a base 34 on feet 36, as shown in Figure 2. Base 34 also supports a surge tank 38, which in turn supports a hanger assembly 40. The surge tank 38 provides a central support for mounting the ring 30 and drive mechanism 32. The base 34 and hanger assembly 40 may be utilized to support various equipment positioned at the stations 22 for operating on the food trays contained within the platform 24. For example, as shown in Figure 2, a tray load mechanism 42 is associated with the station 22a and supported

- 8 -

on the base 34. Similarly, a tooling assembly 44 includes an upper portion 46 mounted on the hanger 40 and a lower portion 48 mounted on the base 34. The upper portion 46 includes a housing or chamber 47 and the lower portion 48 includes a housing or chamber 49.

5 The tray load mechanism 42, shown in Figure 5, includes a tray conveyor 50 and a tray loader 52. The conveyor 50 may be a conventional belt conveyor wherein the trays 55 are motioned onto the tray conveyor 50. They are aligned by a stop bar 54 powered by a cylinder 56. At the appropriate interval, the trays 55 may be advanced to a second stop bar 58 so that the position previously occupied by the trays 55 may be filled by additional trays. The stop bar 10 58 is controlled by a second cylinder 60. The trays 55 may be pre-loaded with the food product to be packaged.

Below the platform 24a, there is a cylinder 62 that powers a bed 64 upwardly and downwardly. The bed 64 includes a stop 66 on its inward end. Each bed 64 is designed to 15 receive a tray 55 from the tray conveyor 50 and to lower it into a platform slot 26. Thus, there would be a plurality of mechanisms 62 and 64, one for each of the slots 26 in a platform 24a.

In the illustrated embodiment, the station 22b is an inactive station which is not used. However, in the other applications, it may be desirable or necessary to perform all or part of the 20 operation which is done at another station at the station 22b. The station 22b could be used, for example, to load the food product into the trays 55.

The station 22c includes a tooling assembly 44 made up of an upper portion 46 and a lower portion 48. As shown in Figure 2, the upper chamber 47 is mounted on a mechanism 68 which allows it to be raised and lowered towards and away from the platform 24. Likewise, the lower chamber 49 is mounted on a mechanism 70 which raises and lowers the lower portion 48 towards the underside of the platform 24. If desired, either the upper chamber 47 or lower chamber 49 may be stationary.

- 9 -

The mounting of a platform 24 on the arms 28 is shown in Figures 7 and 8. As shown in Figure 7, the platform 24 is mounted on the arms 28 by a plurality of upstanding pins 72. Each pin 72 includes a tapered upper portion 74 which fits in a mating tapered portion 76 in the underside of the platform 24. Thus, the platform 24 is removably located on the arms 28 by way of the pins 72.

The lower chamber 49 includes a pair of upstanding pins 78 with tapered portions 80 which mate in holes 82 in the platform 24. Thus, when the lower chamber 49 moves upwardly to engage the platform 24, the tapered portions 80 of the pins 78 mate with the holes 82 in the platform 24. In this way, the platform 24 is very precisely centered and positioned within the station 22c. As shown in Figure 8, the lower chamber 49 actually lifts the platform 24 off of its pins 72 to achieve the precise alignment. The upper chamber 47 and lower chamber 49 contain seals 84 which provide an air tight seal with the upper and lower surfaces of the platform 24, again as shown in Figure 8.

15

The configuration of the upper and lower portions 46 and 48 of the tooling assembly 44, shown in Figure 10, includes a sealer 86, a cutter 88, and a web winding system 90. The web 92 may be unrolled from a roll 94, processed inside the tooling assembly 44 and transferred to a waste roll 96. The film 92 may be made of any plastic film used for food packaging including composite films of plastic, aluminum foil, paper, or cardboard.

With the film 92 positioned over the tray 55, it may be sealed by the sealer 86 which is mounted on a shaft 108. The seal bar may be telescopically reciprocated up and down at the appropriate times in order to seal the film 92 to the tray 55. A wide variety of sealers 86 may be utilized, however one conventional sealer uses electrical resistance heaters 100 in order to heat seal the film to the tray 55. The extent of upward and downward movement of the shaft 108 is controlled by the medial stops 102 under the influence of a conventional fluid energy source. The medial stops 102 are part of a tube 98 which is sealing secured to the shaft 108.

- 10 -

The sealer 86 may be removed from the mechanism for repair or cleaning when desired simply by unthreading the nut 106. When this is done, the shaft 108 and sealer 86 may be removed downwardly from the mechanism.

5 The cutter 88 includes a pair of blades 110 positioned to enter the recess 112 in the platform 24. These blades cut the film 92 completely around the upper circumference of the tray so that it conforms to the configuration of the tray 55. Of course, any conventional severing technique may be utilized including cutting or heat severing. Also, more than one web or film may be severed for attachment to the tray 55. Like the sealer 86, the cutter 88
10 reciprocates upwardly and downwardly around the sealer 86. It is controlled by stops 114 on arms 116 under the influence of a conventional fluid energy source.

15 The cutter 88 also includes an internal coolant circulation passage 118. Connected to a source of external cooling liquid, the passage 118 provides a medium for cooling the cutter 88. The cutter 88, in close proximity to the sealer 86, is subject to possible heat related malfunctions. By cooling the cutter 88, the precision of the cutting operation may be maintained even in a relatively hot environment.

20 The lower chamber 49 contains a gas exchange passage 130 in its lower surface, while the upper chamber 47 includes a gas exchange passage 132 in its side wall. The lower portion 48 may include filler 134. Each platform 24 includes a plurality of gas exchange passages 136.

25 The gas exchange passage 132 communicates with a vacuum source by way of the quick disconnect device 138, shown in Figure 9. That device is secured to the upper chamber 47 by threaded knobs 140. Similarly, device 142 is connected by threaded knobs 144 to lower chamber 49 to provide gas exchange via opening 130.

Referring to Figure 9, it is evident that the connections to the upper and lower portions 46 and 48 are all of the quick disconnect variety so that the machinery associated with any particular station 22 may be readily removed from the remainder of the machine 20. Moreover, 30 the connections for power and fluid may likewise be of the quick disconnect variety. Thus, the

- 11 -

connections such as those shown at 120 may be disconnected by simply pulling them apart or unscrewing them and then the mechanisms 146 holding the upper and lower chambers 47 and 49 may be disconnected in the same fashion so that the upper and lower chambers 47 and 49 may be quickly removed.

5

The unloading station 22d, shown in Figure 11, includes an unloading conveyor 126 and a tray pusher 128. At the appropriate time, the trays 55 in a platform 24 are pushed upwardly by the cylinder 130 of the pusher 128. Then the trays are pushed laterally by the slider 132 powered by cylinder 134. The trays are pushed onto the conveyor 126 as indicated in
10 Figure 13.

The machine is operated generally as follows. Initially, a plurality of trays 55 are organized on the conveyor 50 of the tray load assembly 42. As indicated in Figures 3 and 4, the trays are formed into two rows of four trays through the operation of the stop bars 54 and
15 58. Trays are originally allowed to ride up against stop bar 58 so that they slide relative to the rotating conveyor 50. A second row of trays then back up to the first row of trays.

As shown in Figures 5 and 6, at the appropriate time, the second stop bar 58 is lowered allowing the first row of trays to pass on to the bed 64. Each bed 64 is thereafter lowered so
20 that each tray 55 is held in a slot 26 in the platform 24.

After a passage of time, the platform 24 is rotated 90 degrees to the station 22b. Thereafter, the stop bar 58 is operated to allow the second row of trays 55 to be loaded into a subsequent platform 24 rotated into station 22a from station 22d. From station 22b, the
25 platform 24 rotates into the station 22c as shown in Figure 1.

As shown in Figures 7 and 8, at the tooling assembly 44, the platform 24 is lifted from its supports 72 and held between the upper chamber 47 and lower chamber 49 of assembly 44. Precise alignment is achieved through the operation of the pins 78 which engage mating holes
30 82 in the platform 24. The tapered portions on the pins 78 and holes 82 interact to guide the

- 12 -

platform into the desired portion within the station. In this way, the trays 55 are precisely positioned with respect to the tooling assembly.

After the platform 24 is in position, a vacuum is drawn in the upper chamber 47 through 5 the gas exchange passage 132. This is possible since the upper chamber 47 sealingly engages the film 92 through o-ring seals 84. After the drawing of a vacuum is begun in upper chamber 47, a vacuum is begun to be drawn in the lower chamber 49 via a vacuum tube 139. This is possible because the lower chamber 49 sealingly engages the platform 24, against the upper chamber 47, through an o-ring seal 84.

10

As a result, good fluid communication is achieved with the exterior of the tray 55, under the film 92. This is because the vacuum in the upper chamber 47 lifts the film 92, allowing air to be exhausted from the tray 55 through a series of holes on slots 150 in the bottom of recess 112 of the platform and out the opening 130. The provision of the filler 134 makes this process 15 proceed more quickly.

After the vacuum is drawn, a desired atmosphere is then pumped into the tray via the openings 151 and 136 from the gas tube 137. This atmosphere is preferably one which is reduced in oxygen content to extend the life of the packaged food product.

20

As shown in Figure 10, the film 92 may be heat sealed to the tray 55 using the sealer 86. This operation may be a conventional heat sealing operation. The sealer 86 reciprocates downwardly under the control of the stops 102 in response to changing fluid pressure in the chamber 103.

25

After the film 92 is sealed to the tray 55, the film is cut by cutter 88. The cutter 88 reciprocates downwardly to cut the film 92, eventually entering the recess 112. The movement of the cutter 88 is controlled by the fluid pressure in the chamber 117. In this way the desired atmosphere may be sealed into the package. Of course, other gas exchange techniques may be

- 13 -

utilized as well. Advantageously, the atmosphere inside the assembly 44 is reduced in oxygen content so that the food product will have a longer useful life.

5 The operation of the cutter 88 may be adversely affected by the ambient heat within the assembly 44 which is greatly augmented by the heat created by the heat sealing operation. This heat may distort the cutting blades and cause inaccuracies therein. For this reason, a source of cooling fluid, for example water, may be circulated through the passage 118 so as to cool the cutter 88.

10 After this operation is complete, the upper chamber 47 and lower portion 49 may be moved apart and the rolls 96 and 94 advanced so as to bring a new section of film into position between the chambers 47 and 49. Trays 55 are then advanced to the next station 26d.

15 As shown in Figure 11, in station 22d the trays 55 are positioned over the tray pushers 128 and cylinders 130. At the appropriate time, one or more trays 55 are pushed upwardly through the action of the cylinders 130 and pushers 128 as shown in Figure 12. Thereafter, the trays may be pushed laterally by the slider 132 and its cylinder 134 as shown in Figure 13. Then the trays may be taken away from the rotary conveyor by the unloading conveyor 126.

20 The entire operation is facilitated by the rotary arrangement of the stations 22. The operation of the conveyor is continuous since it is laid out in the rotary arrangement. In this way, problems arising from the need to return the platforms 24 to the initial position at the end of a linear conveyor are eliminated.

25 Moreover, with the rotary arrangement the central area may be occupied by the conveniently located surge tank 38. This tank supplies a source of fluid pressure for the various operations in the surrounding rotary conveying apparatus. The tank 38 is normally closed by caps 154 on both ends. As shown in Figure 14, a drain 152 is provided at the bottom of the surge tank 38 for releasing a sanitizing solution. The drain may be closed by a removable cover 30 156. The interior of the tank 38 may be washed with the bacteriostatic solution to minimize

- 14 -

bacteria transfer to the packaging. The tank 38 also provides the support for the drive mechanism 32 and rotatable ring 30.

In addition, because of the rotary arrangement of the conveyor, any particular station
5 may be easily accessed for removal from the rest of the machine. Any particular station may be easily replaced with a more appropriate station for any particular operation. Also, a malfunctioning apparatus may be replaced with a working apparatus. Because of the rotary arrangement, access to the individual stations for repair is facilitated.

10 Repair and replacement is also facilitated by making the various connections to the stations for electrical and fluid power of the quick disconnect variety. Moreover, by making the means of attachment of the particular apparatus to each station of a quick disconnect variety it is possible to change stations quickly to convert the machine for other uses or to replace a broken piece of equipment.

15

An alternate cutting system 288 includes a blade 290, as shown in Figure 15. Particularly, a cutting blade 290 is mounted on a support assembly 292 which in turn is supported on a reciprocating bed 294. The movement of the bed 294 is controlled by cylinders 296 and 298. Also mounted on the bed 294 are a set of opposed film holders 300 which may 20 have a vertical length somewhat longer than the vertical length provided to the blade 290.

As shown in Fig. 18, the blade 290 may have a closed configuration such that it is capable of punching out a portion of film from the web 92. The blade 290 is ideally made of low mass such that the heat dissipation of the blade is minimized. The support assembly 292 25 provides for slight relative movement between the bed 294 and the blade 290. In this way, expansion arising from heating of the blade 290 may be allowed. Also, the support assembly 292 may thermally insulate the blade 290.

A heater 302 extends along the periphery of the blade 290 as close as possible to the 30 cutting edge 304 of the blade 290. By minimizing the mass of the blade 290 and situating the

- 15 -

heater 302 close to the cutting edge 304, the heat dissipation can be reduced. This permits the use of relatively high temperatures at the cutting edge 304. In the illustrated embodiment, the heater 302 is received in a slot 303 in the blade 290, as shown in Figure 16.

5 The heater 302 may be a cable heater that includes a pair of high temperature resistance heating wires separated from an outer metal sleeve by an electrical insulator. Ideally, the heater 302 is on the order of 1/16" thick so that it can be placed very close to the cutting edge 304. Moreover, the blade 290 may be made relatively small, for example, on the order of 1/2" high and 1/4" wide.

10

It is desirable that the cutting edge 304 be of a small width. In one embodiment, the cutting edge 304 has a width of less than 20 mils and, ideally it has a width of about 15 mils.

15 The heater 302 is supplied with electrical current from a current source not shown. Preferably, the current source and the heater 302 are configured to allow heating of the cutting edge 304 to extremely high temperatures, for example, greater than 500° F. Preferably, the heater heats the film to be cut to the point where it quickly vaporizes. In a preferred form of the present invention, heater temperatures on the order of about 600° to 900° F are achieved. The precise temperature used depends on the vaporization point and thickness of the particular material being cut.

20 The cylinders 296 and 298 may be air cylinders which quickly move the bed 294 downwardly and upwardly. Ideally, the down cycle of the bed 294 may be on the order of fractions of a second. Cutting may be advantageously achieved through the application of heat rather than with pressure.

25 The film 92 to be cut may be held by holders 300 which include clamps 340 connected to the bed 294 by spring biased bolts 342, as shown in Figure 16. The bolts 342 may be mounted on an o-ring 344. The ends of the holders 300 have bumpers 346. Coil springs 343 encircle the bolt 342, and are retained at the lower end by the clamps 340.

Referring to Figure 20, the arrangement of the holders 300 is illustrated, with the web 92 direction indicated by the arrows labelled "W." The trays 55 are separated by a width slightly greater than the width of the clamps 340. Thus, the film 92 is retained intermediately 5 between the trays 55 by the clamps 340. The peripheral portions of the film 92 are held by the clamping action of the upper chamber 47 and tray plate 24. This is particularly advantageous in that the amount of film which is devoted to film holding is minimized. This means that less film is wasted.

10 Referring to Figure 16, the cutting blade 290 is connected to the movable bed 294. The assembly 292 may include a set of spring biased pins 308 that may be used to mount a carrier 310 for up and down movement. Two opposed sets of stanchions 313 and a movable strap 312 are suspended by pins 314.

15 As shown in Figure 17, the stanchions 313 also connect the fixed strap 316 to the blade 290. The strap 316 fixedly connects to the blade 290 at 318. Relative movement between the blade 290 and the strap 316 may be provided by the slot 319. In this way, the blade 290 can expand in length relative to the strap 316. The fixed strap 316 may connect to the bed 294 by spring biased pins 308, the carrier 310, and the pins 314.

20 The movable straps 312 include oversized holes 322, as shown in Figure 19. The pins 314 have reduced diameter ends 315 which are held in the holes 322 by retaining rings 323. The stanchions 313 pass through the straps 312 and connect the straps 312 to the blade 290. The stanchions 313 have a ceramic bushing 324 and washer 326 between themselves and the 25 straps 312 to provide insulation against heat transfer from the blade 290 to the rest of the machine. The same system is used to provide heat insulation on the fixed strap 316.

30 The connections to the blade 290 are shown in Figure 18. The fixed strap 316 allows the blade 290 to expand along its length only, because of the slot 319, which allows blade expansion relative to the fixed connection at 318. The pins 314 connect the strap 316 to the

- 17 -

carrier 310 between the slot 319 and point 318. The other three sides of the blade 290 are supported by moveable straps 312. Each strap 312 connects to the carrier 310 by pins 314. Each pin 314 is received in an oversized hole 322 which allows movement of the strap 312 in all directions relative to the blade 290. The moveable straps 312 then are connected to the
5 blades by outwardly located stanchions 313.

Through the operation of the system 292, the blade 290 can accommodate essentially any heat expansion related stresses. Moreover, because of the insulation capabilities of the system 292, the blade heat dissipation is reduced.

10

The present invention can be used to cut a variety of plastic films. This includes films that are elastic and inelastic. That is, the same machine may be capable of cutting both types of films. Where elastic films are utilized, it is desirable in many cases to cause the elastic film to be tensioned. In this way, when the film is cut, it tends to pull back after it is cut. This aids the
15 cutting process while producing a better looking edge. Moreover, the use of heat shrinking film may improve both the cutting action and appearance of the finished product.

The present invention advantageously involves the use of temperatures which are sufficiently high to cause plastic vaporization. This accomplishes both rapid and reproducible
20 cutting without blade fouling. For example, a coextrusion of polyethylene and ethylene vinyl acetate may be severed with the present system. At approximately 250° F this material softens sufficiently to be sealed to other layers. At about 350° F, melting begins. At about 600° F, some vaporization occurs, but cutting may not be clean all around. Plastic strings may be created. However, at about 800° F for example, there is effective vaporization of the film.
25 The film may be cut cleanly and reproducibly. The use of force is unnecessary to the cutting and no backing plate is necessary on the side of the film opposite the blade.

The system 288 may be operated in the following fashion. Upon activation of the bed 294, the blade 290 moves quickly downwardly and through the film 92. The severing action is
30 the result of film vaporization.

- 18 -

Prior to cutting, the film is held at two spaced locations. On one side, it may be held by the sealer 86. On the other side, it may be held by the holders 300 which initially extend past the blade 290, and the upper chamber 47.

5

Between the point where the film is held by holders 300, the sealer 86, and the upper chamber 47, the film may be unsupported. It is at this unsupported intermediate position that the film, most advantageously, is cut. The film 92 may be sealed to the tray 55 on contact by the sealer 86.

10

The improved film cutting system 288 may be used in place of the system 88. It is also possible to seal the film in one station and to cut the film at a subsequent station under different atmospheric conditions. For example, the film may be sealed under vacuum conditions at one station and severed at a subsequent station under atmospheric conditions.

15

A stair-stepped tray unloading slider 432, shown in Figure 21, includes a stair-stepped series of pushers 434. When the cylinder 134 reciprocates, each of the trays 55 are pushed a different distance onto the conveyor 126.

20

The trays 55 may then be off-loaded to a second conveyor (not shown) which advantageously may be a belt conveyor operated at a higher speed than the conveyor 126. In this way, the initial offsetting provided by the slider 432 can be amplified sufficiently that each of the trays are offset at least one tray length from one another. Using an appropriate guide (not shown), the suitably offset trays may be easily guided into a single file line of trays.

25

A tray loader mechanism 542, shown in Figure 22, includes a system to enable different sizes of trays to be accommodated by essentially the same packaging machine. While the platform 24 illustrated in Figure 22 may accommodate four trays 55 at one time, it may be desirable to operate the machines with a different number of trays per platform. For example, 30 with wider trays, it may be desirable to operate with three trays per platform.

The station 22a may advantageously be designed to operate only when all available platform 24 openings 26 are filled. This may be accomplished using a series of pivotal flags 544 and an infrared light detecting device 548. The flags 544 pivot about the pin 546 from the 5 "up" position shown in Figure 22a to the "down" position shown in Figure 22c. A light beam "B" produced by an infrared light source 547 is blocked when any of the series of flags 544 are in the "up" position, as illustrated in Figure 22a. So long as one flag 544 is in the "up" position, the station 22a may be disabled.

10 Advantageously, a series of flags 544 are positioned across the width of the conveyor 50. Each flag 544 protrudes upwardly in the "up" position above the upper surface of the conveyor 50. The conveyor 50 may be formed of a plurality of thin belt strips 550 which are straddled by the flags 544, for example.

15 In this way, when a tray 55 passes over a flag 544, the flag 544 is pivoted to the down position. If the flags 544 are suitably spaced across the width of the conveyor, any possible tray width will be sensed. Thus, at one time, the machine can be run with four trays per platform and at other times, it may be run, for example, with three trays per platform. Because the flag system detects the absence of a full contingent of trays, and because unnecessary flags, such as 20 the flags 544a in Figure 22c, may be set in the "down" position, the machine quickly accommodates different tray sequences. Flags may be latched down using a suitable catch (not shown).

When the programmed tray sequence is present as sensed by a full contingent of "down" 25 flags, the light beam "B" is detected by a suitable detector 548. The stop bar 58 may be lowered to allow tray loading. On the other hand, so long as even one flag 544 is "up," tray loading will be prevented. Since the lower ends of the pivoted flags are heavier than the upper ends, the flags 544 return to the "up" position after the trays move over the flags.

- 20 -

A tray loader 550 which includes the capability to separate trays that have become inadvertently connected to one another is shown in Figures 23 through 26. As shown in Figure 23, a pair of trays 55a and 55b may have their flanges overlapped so that the trays become stuck to one another and travel along the conveyor 50 together. This may be undesirable 5 because when the trailing tray is stopped, the leading tray may not proceed onto the tray platform 24 at the desired time.

As shown in Figure 24, tray loader 550 includes a modified stop bar 554 powered by a pair of cylinders 556 and 558. The cylinder 558 connects to the element 560 to allow upward and downward reciprocation of its free end 562. A stride the element 560 is an element 564 having a free end 566. The element 564 connects to the cylinder 556 in such a fashion that it may pivot towards and away from the element 560 in the direction of movement of the conveyor 50. As shown in Figure 23, a pair of elements 560 and 564 may be used with each tray, if desired.

15

Referring to Figures 25 and 26, the trays 55a and 55b may be separated from one another by operating the cylinder 556 to pull the element 564 in one direction causing pivoting movement of its free end 566 forwardly. As shown in Figure 26, the element 564 may be angled to augment the forward movement provided to the lead tray 55b. If the separator 20 mechanism is operating in every instance, any time trays which are overlapped exist, they will be automatically separated. Moreover, the acceleration provided to the lead tray helps it to stay in contact with the conveyor 50. After one cycle, the cylinder 556 may be operated to return the element 564 to the position shown in Figures 23 and 24.

25

While the present invention has been described with respect to one preferred embodiment, those skilled in the art will appreciate numerous modifications and variations therefrom. The appended claims are intended to cover all such modifications and variations which occur to one of ordinary skill in the art.

CLAIMS:

- 21 -

1. A packaging method using a plastic film cutting tool having a cutting blade, comprising the steps of heating a portion of said blade to a temperature sufficient to vaporize the film to be severed and contacting said film with said heated portion of said blade.
2. The method of claim 1 including the step of transferring heat to said blade at a location proximate to the location where said blade contacts said film.
3. The method of claim 1 including the step of insulating said blade from the remainder of the tool to prevent heat dissipation from said blade.
4. The method of claim 1 wherein said portion is heated to a temperature greater than 500° F.
5. The method of claim 1 wherein said portion is heated to a temperature of from about 600° to 900° F.
6. The method of claim 1 wherein said cutting tool is quickly retracted from the film after cutting.
7. The method of claim 1 including the step of maintaining the temperature continuously above 500° F.
8. The method of claim 1 including the step of holding said film at two closely spaced locations during cutting.
9. The method of claim 1 including the step of tensioning said film prior to cutting.
10. The method of claim 1 including the step of supporting the blade to allow for heat expansion.

- 22 -

11. The method of claim 1 including the step of cutting a shape from a web of plastic film.
12. The method of claim 11 including the step of supporting said blade for heat expansion.
13. The method of claim 12 including the step of fixing said blade at one point and allowing relative movement between said blade and the rest of said tool at other points.
14. The method of claim 13 wherein said blade has one degree of freedom at a first location and more than one degree of freedom at another location.
15. A packaging machine having a cutting tool for severing plastic film comprising a heated cutting blade, said blade having a blade tip heated by a heating element extending along its length, said cutting tool adapted to enable said blade tip to reach temperatures in excess of 600° F.
16. The packaging machine of claim 15 wherein said blade is insulated from the remainder of said tool.
17. The packaging machine of claim 16 wherein said blade is supported by a plurality of columns.
18. The packaging machine of claim 17 wherein said blade is a substantially continuous closed shape, along one side said blade being mounted to said columns for limited movement and elsewhere said blade being mounted for free movement relative to said columns.
19. The packaging machine of claim 15 wherein said blade is reciprocatable toward and away from said film.
20. The packaging machine of claim 15 including a device to hold the film during cutting.

21. The packaging machine of claim 18 wherein said device is adapted to tension the film.
22. The packaging machine of claim 15 wherein said blade is less than about 20 mils in width.
23. A packaging machine including an apparatus for cutting a film portion from a plastic film web, said apparatus comprising a blade arranged in a substantially closed geometrical shape, a heating element for heating said blade, a mechanism for moving said blade towards and away from the web to be cut, and a blade mounting device, said device connecting said mechanism to said blade, said device adapted to permit heat expansion of said blade relative to said mechanism.
24. The machine of claim 23 wherein said device includes insulation to decrease the heat transfer from said blade to the rest of said machine.
25. The machine of claim 23 wherein said device is resiliently connected to said mechanism.
26. The machine of claim 23 wherein said blade is connected to said mechanism at a series of spaced locations.
27. The machine of claim 26 wherein said blade is connected to said mechanism so as to prevent expansion of said blade relative to said device at at least one of said locations.
28. The machine of claim 26 wherein said blade is connected to said mechanism so as to provide at least one degree of freedom for expansion at a plurality of said locations.
29. The machine of claim 28 wherein said blade is connected to said mechanism so as to prevent expansion of said blade relative to said device at at least one of said locations, and said blade is mounted for unrestrained expansion of said blade at a plurality of said locations.

- 24 -

30. A packaging machine capable of supplying a desired packaging gaseous environment to a package including a tray and a plastic film for covering said tray, said machine comprising:
a chamber including an upper housing portion and a lower housing portion, said chamber adapted to sealingly sandwich said plastic film such that the periphery of said plastic film is clamped between said upper and lower housing portions;
and
a film clamp arranged to hold said film between successive trays inside said chamber.

31. The machine of claim 30 wherein said clamp is spring biased and is adapted to secure said film in a direction transverse to the machine direction.

32. The machine of claim 30 having a reciprocal sealing bar and a reciprocal film severing device in one of said housing portions, said clamp adapted to reciprocate toward and away from said film.

33. The machine of claim 32 wherein said clamp is situated to secure said film before said film is contacted by said sealing bar or said severing device.

34. A packaging machine for covering a plurality of trays with plastic film, said machine comprising:

a conveyor for loading a plurality of trays into said machine at one time; and
a programmable sensing device for determining the presence of a desired number of trays on said conveyor, in position to be loaded into said machine, said device being programmable to adapt to different tray sizes or different desired numbers of trays.

35. The machine of claim 34 wherein said programmable sensing device includes a plurality of tray detectors arranged across the width of said conveyor, said detectors spaced apart a distance less than the minimum tray width for said conveyor, said tray detectors arranged to

- 25 -

determine the presence or absence of a tray in a location on said conveyor aligned with one of said predetermined positions in said machine.

36. The machine of claim 35 wherein said tray detectors include flags moveable from one position when a tray is absent to a second position when a tray is present, said machine being operable only when all of said flags indicate the presence of trays.

37. The machine of claim 36 wherein unnecessary tray detectors may be temporarily activated to the second position so that the machine may be adapted to operate with different tray configurations.

38. The machine of claim 37 wherein said flag positions are detectable by an infrared beam such that said beam is blocked when any one of said flags is in a said first position and only when all of said flags are in said second position does said beam pass unblocked.

39. A packaging machine for covering trays with a plastic film, said machine comprising an apparatus for unloading the completed packages, including a pusher arranged to push a plurality of said packages from said machine at one time, said pusher adapted to offset said packages with respect to one another in the direction said packages are displaced.

40. The packaging machine of claim 39 wherein said package pusher includes a stair-stepped pusher bar.

41. A packaging machine for covering a plurality of trays with plastic film, said machine comprising:

a conveyor for loading a plurality of trays into said machine;

a first stop located to control the access to the machine of the next tray on the conveyor to be loaded;

a second stop located to control the access to the machine of the tray second in line to be loaded; and

- 26 -

a pusher for pushing the next tray and the tray second in line apart from one another.

42. The packaging machine of claim 41 wherein said first and second stops are members that reciprocate up and down through said conveyor.

43. The packaging machine of claim 42 wherein said second stop includes a first element which reciprocates up and down through said conveyor.

44. The packaging machine of claim 43 wherein said second stop further includes a second element reciprocatable with said first element and displacable in the direction of advance of said conveyor.

45. The packaging machine of claim 44 wherein said second element includes an angled bar adapted to contact said trays.

FIG 1**FIG 2**

FIG 3**FIG 4**

FIG 5**FIG 6**

FIG 7**FIG 8**

FIG 9

FIG 10

FIG 11**FIG 12**

FIG 13

FIG 14

FIG 15

11/19

FIG
16

FIG 17

FIG 18

FIG 19

FIG 20

FIG 21

FIGURE 22a

FIGURE 22c

FIGURE 22b

FIGURE 22d

FIG 23

FIG 24

FIG 25

FIG 26

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/01366

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :B26D 7/10

US CL :83/16, 18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 83/16, 18, 171

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US, A, 3,240,851 (SCALORA) 15 March 1966, see figure 1, blade 60	1-14
Y	US, A, 4,018,117 (PATTERSON) 19 April 1977, see claim 20	1-14
Y	US, A, 3,874,975 (LAGAIN) 01 April 1975, see element 19	3
A	US, A, 5,308,311 (EGGERS ET AL.) 03 May 1994, see lines 60-62, column 6	4,5,7
A	US, A, 5,429,022 (NAKAYAMA) 04 July 1995, see figure 1	1-14

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
 - *A* document defining the general state of the art which is not considered to be of particular relevance
 - *E* earlier document published on or after the international filing date
 - *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons (as specified)
 - *O* document referring to an oral disclosure, use, exhibition or other means
 - *P* document published prior to the international filing date but later than the priority date claimed
- T
- X
- Y
- &
- later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- document member of the same patent family

Date of the actual completion of the international search

12 APRIL 1996

Date of mailing of the international search report

24 APR 1996

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

KENNETH PETERSON

Telephone No. (703) 305-1148

 Kenneth Peterson

 Sheila Veney
 Paralegal Specialist
 Group 3200

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/01366

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

- s thermal expansion
- s temperature
- s tension(5a)plastics
- s vaporize
- s insulation

all searches done within class 83

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group 1, claims 1-14, drawn to the method of vaporizing plastic.

Group 2, claims 15-22, drawn to a heatable blade.

Group 3, claims 23-29, drawn to a blade mounting device.

Group 4, claims 30-33, drawn to a gaseous environment packager.

Group 5, claims 34-38, drawn to the programmable conveyor.

Group 6, claims 39-40, drawn to a pusher.

Group 7, claims 41-45, drawn to a stop mechanism.

The inventions listed as Groups 1-7 do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The special features of each group are set forth above and do not require each other to function. For example, the apparatus' of groups 2-7 need not vaporize nor tension the plastic.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/01366

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-14

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.