Lógica Digital

Aula-03: Circuitos Clássicos

Eliseu César Miguel

Departamento de Ciência da Computação Universidade Federal de Alfenas

September 21, 2020

Organização da Aula

Introdução

Organização da Aula

- Introdução
- 2 Circuitos Combinacionais Dedicados

Introdução

Considerações Preliminares

Este material não pretende ser completo quanto à amplitude do assunto. Aqui pretende-se apenas organizar os pontos relevantes para as aplicações dos conceitos da Lógica de Boole na disciplina de Lógica Digital, gerando um guia de estudos. Destarte, sempre consulte livros e apostilas para alcançar bons resultados em seus estudos.

Também, este material não é, em sua totalidade, de minha autoria. Ao contrário, ele contempla conteúdos de sítios de Internet e conteúdos de livros. Para tanto, cito bibliografias de textos aqui encorporados.

Boa leitura!

Bibliografia básica

Circuitos Combinacionais

Circuito combinacional organiza interligações entre portas lógicas para executar eletronicamente uma expressão booleana.

Circuitos Combinacionais

Circuito combinacional organiza interligações entre portas lógicas para executar eletronicamente uma expressão booleana.

Circuitos Combinacionais Dedicados

São cirtutos combinacionais em que as saídas dependem apenas das entradas.

Circuitos Combinacionais

Circuito combinacional organiza interligações entre portas lógicas para executar eletronicamente uma expressão booleana.

Circuitos Combinacionais Dedicados

São cirtutos combinacionais em que as saídas dependem apenas das entradas.

Circuitos Combinacionais Sequenciais

São cirtutos combinacionais em que as entradas são realimentadas por algumas (ou todas) as saídas. Normalmente, a parte interna de um circuito sequencial é um circuito dedicado.

Circuitos Combinacionais Dedicados: Exercício

O teclado abaixo possui cada uma das 10 teclas ligadas ao barramento B. Assim, ao pressionar a tecla $\boxed{5}$ por exemplo, a linha $b_5=1$. Todas as teclas não pressionadas fornecem a linha de saída com valor zero. Sabendo disso, faça um conversor para o código binário que gere o número binário relativo à tecla pressionada pelo usuário.

Circuitos Combinacionais Dedicados: Exercício

Agora que já fizemos o conversor para o código binário, foi fornecido um novo componente R. Ele é capaz de gardar o valor de um bit. Em seu funcionamento, o bit a ser armazenado é escrito na entrada de R e a chave c deve ser alimentada com o valor 1. Assim, complete seu exercício para que, ao pressionar uma tecla do teclado, o valor gerado pelo conversor binário seja armazenado em R.

Circuitos Clássicos: Decodificadores

Decodificadores são circuitos que oferecem x chaves com n saídas sendo $n=2^x$. O número binário i fornecido a x faz com que a saída $n_i=1$. Neste caso, todas as saídas $n_j=0$ para $j\neq i$. Sabendo disso, faça um decodificador 4x2.

Circuitos Clássicos: Decodificadores

Decodificadores são circuitos que oferecem x chaves com n saídas sendo $n=2^x$. O número binário i fornecido a x faz com que a saída $n_i=1$. Neste caso, todas as saídas $n_j=0$ para $j\neq i$. Sabendo disso, faça um decodificador 4x2.

Circuitos Clássicos: Multiplexadores

Multiplexadores são circuitos que oferecem x chaves, uma saída out e n entradas sendo $n=2^x$. O número binário i fornecido a x faz com que $out=n_i$. Sabendo disso, faça um multiplexador 4x2.

Circuitos Clássicos: Multiplexadores

Multiplexadores são circuitos que oferecem x chaves, uma saída out e n entradas sendo $n=2^x$. O número binário i fornecido a x faz com que $out=n_i$. Sabendo disso, faça um multiplexador 4x2.

Circuitos Clássicos: Demultiplexadores

Demultiplexadores são circuitos que oferecem x chaves, uma entrada e e n saídas sendo $n=2^x$. O número binário i fornecido a x faz com que $n_i=e$. Neste caso, todas as saídas $n_j=0$ para $j\neq i$. Sabendo disso, faça um demultiplexador 4×2 .

Circuitos Clássicos: Demultiplexadores

Demultiplexadores são circuitos que oferecem x chaves, uma entrada e e n saídas sendo $n=2^x$. O número binário i fornecido a x faz com que $n_i=e$. Neste caso, todas as saídas $n_j=0$ para $j\neq i$. Sabendo disso, faça um demultiplexador 4×2 .

Circuitos Clássicos: Exercício

Dois computadores A e B fornecem, cada um, saídas de 8 bits paralelos para alimentar um barramento de entrada de uma impressora. Quando um computador decide imprimir, ele lança o valor 1 em uma linha de controle. Faça um circuito para ligar as saídas de A e B à impressora e habilitar um dos dois computadores para fazer a impressão, quando o computador lançar o valor lógico 1 sua linha de controle.

Multiplexadores: Exercícios

Para os multipelxadores abaixo, faça: a) as linhas lógicas para a saída Out e b) a expressão lógica X.

Multiplexadores: Exercícios

Usando multipelxadores de 4 canais (Mux 4x2), faça um multiplexador de 16 canais (Mux 16x4).

Multiplexadores: Exercícios

Usando multipelxadores de 4 canais (Mux 4x2), faça um multiplexador de 16 canais (Mux 16x4).

Faça um comparador que informe se dois números de A e B de 4 bits são iguais ou diferentes.

Faça um comparador que informe se dois números de A e B de 4 bits são iguais ou diferentes.

Usando o *Digital Works*, faça um comparador para dois números A e B de 4 *bits* que defina se A > B, A = B ou A < B.

Exemplo: Deslocador

Qual é a funcionalidade do circuito abaixo?

Exemplo: Deslocador

Qual é a funcionalidade do circuito abaixo?

Qual é a utilidade de um desloador? Como você implementaria a operação 2^x?

Exemplo: Unidade Lógica Aritmética (ULA)

Esta é uma parte de uma ULA, a ser combinada para números de n bits

Tabela ASCII

Código Padrão Americano para o Intercâmbio de Informação

						-		-		
	ASC	II control		ASCII printable						
characters				characters						
00	NULL	(Null character)		32	space	64	@	96		
01	SOH	(Start of Header)		33	1	65	Α	97	a	
02	STX	(Start of Text)		34	"	66	В	98	b	
03	ETX	(End of Text)		35	#	67	С	99	C	
04	EOT	(End of Trans.)		36	\$	68	D	100	d	
05	ENQ	(Enquiry)		37	96	69	E	101	e	
06	ACK	(Acknowledgement)		38	&	70	F	102	f	
07	BEL	(Bell)		39		71	G	103	g	
08	BS	(Backspace)		40	(72	н	104	h	
09	HT	(Horizontal Tab)		41)	73	- 1	105	i	
10	LF	(Line feed)		42	*	74	J	106	j	
11	VT	(Vertical Tab)		43	+	75	K	107	k	
12	FF	(Form feed)		44	,	76	L	108	1	
13	CR	(Carriage return)		45		77	M	109	m	
14	SO	(Shift Out)		46		78	N	110	n	
15	SI	(Shift In)		47	1	79	0	111	0	
16	DLE	(Data link escape)		48	0	80	P	112	р	
17	DC1	(Device control 1)		49	1	81	Q	113	q	
18	DC2	(Device control 2)		50	2	82	R	114	r	
19	DC3	(Device control 3)		51	3	83	S	115	s	
20	DC4	(Device control 4)		52	4	84	Т	116	t	
21	NAK	(Negative acknowl.)		53	5	85	U	117	u	
22	SYN	(Synchronous idle)		54	6	86	V	118	V	
23	ETB	(End of trans. block)		55	7	87	W	119	W	
24	CAN	(Cancel)		56	8	88	X	120	X	
25	EM	(End of medium)		57	9	89	Υ	121	У	
26	SUB	(Substitute)		58	:	90	Z	122	Z	
27	ESC	(Escape)		59	;	91	[123	{	
28	FS	(File separator)		60	<	92	- 1	124		
29	GS	(Group separator)		61	=	93]	125	}	
30	RS	(Record separator)		62	>	94	٨	126	~	
31	US	(Unit separator)		63	?	95	_			
127	DEL	(Delete)								

fonte: https://www.treinaweb.com.br/blog/uma-introducao-a-ascii-e-unicode/

Exemplo: Teclado-CPU

Exemplo de transmissão de códigos entre teclado e CPU

Faça um conversor de código digital para display de 7 segmentos.

Agradecimentos

Agradecimentos Especiais:

Agradeço a toda a comunidade LAT_EX. Em especial a *Till Tantau* pelo *Beamer*.

https://www.tcs.uni-luebeck.de/mitarbeiter/tantau/

Desta forma, tornou-se possível a escrita deste material didático.

