Tyler Naus

 $\delta = \int_{0}^{L} \frac{P(x)dx}{A(x)E}$

 $\tau = \frac{T\rho}{\tau}$, where

 $\delta_T = \alpha \Delta T L$

Torsion

Shaft:

$$P = \frac{c}{A}$$

$$\delta = \Sigma \frac{PL}{AE}$$

 $\tau_{avg} = \frac{T}{2tA}$

Bending

Normal Stress:
$$\sigma = \frac{M_y}{I}$$

$$\frac{Unsymmetric\ Bending:}{\sigma = -\frac{M_z y}{I} + \frac{M_y z}{I}}$$

Average Shear Stress in a Thin-Walled Tube:

<u>Shear Flow</u>: $q = \tau_{avg}t = \frac{T}{2A_m}$

$$\tan \alpha = \frac{I_z}{I_y} \tan \theta$$

Shear

 $\tau = \frac{VQ}{II}$

Average Direct Shear Stress:

 $\tau_{avq} = \frac{V}{\Lambda}$ Transverse Shear Stress:

 $Angle\ of\ Twist:$

$$\frac{Angle\ of\ T\ wist:}{\phi = \int_0^L \frac{T(x) dx}{J(x)G}}$$

Shear Stress in Circular

 $J = \frac{\pi}{2}c^4$ Solid cross section $J = \frac{\pi}{2}(c_0^4 - c_i^4)$ Tubular

 $Power: P = T\omega = 2\pi fT$

$$\phi = \Sigma \frac{TL}{JG}$$

Stress in Thin-Walled Pressure Vessel

Cylinder: $\sigma_1 = \frac{pr}{t}$ $\sigma_2 = \frac{pr}{2t}$ Sphere: $\sigma_1 = \sigma_2 = \frac{pr}{2t}$

Stress Transformation

Equations $\sigma_{-t} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta$ $+ \tau_{xy} \sin 2\theta$ $\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta$ $+ \tau_{xy} \cos 2\theta$

Principle Stress: $\tan 2\theta_p = \frac{\tau_{xy}}{(\sigma_{-} - \sigma_{-})/2}$

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm$$

$$\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

	I.	1
$\underline{Maximum\ In\text{-}Plane\ Shear}$	$\gamma_{xy} = \frac{1}{G} \tau_{xy}$	K = 0.5 Fixed ends
\underline{Stress} :	$\gamma_{yz} = \frac{1}{G} \tau_{yz}$	K = 0.7 Pinned and fixed ends
$\tan 2\theta_s = -\frac{(\sigma_x - \sigma_y)/2}{\tau_{xy}}$	$\gamma_{zx} = \frac{1}{C} \tau_{zx}$	
τ_{xy}	where $G = \frac{E}{2(1+\nu)}$	Critical Stress:
$\tau_{max} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$	$2(1+\nu)$	
¥ . 1		$\sigma_{cr} = \frac{\pi^2 E}{(KL/r)^2}, \ r = \sqrt{I/A}$
$\sigma_{avg} = \frac{\sigma_x + \sigma_y}{2}$	Relations Between w, V, M	KL/r = Effective slenderness
	$\frac{dV}{dx} = w(x), \frac{dM}{dx} = V$	ratio
$Absolute\ Maximum\ Shear$		
\overline{Stress} :		Soant Formula
$\tau_{abs\ max} = \frac{\sigma_{max}}{2}$	Elastic Curve	$Secant\ Formula: \sigma_{max} =$
	$\frac{1}{2} = \frac{M}{EI}$	$\frac{P}{A}\left[1 + \frac{ec}{-2}\sec\left(\frac{L}{2r}\sqrt{\frac{P}{EA}}\right)\right]$
for σ_{max} , σ_{min} same sign	P _==1	, , , , , , , , , , , , , , , , , , ,
$\sigma_{max} = \sigma_{mi}$	$EI\frac{d^4v}{dx^4} = w(x)$	Energy Methods
$ au_{abs\;max} = rac{\sigma_{max} - \sigma_{min}}{2}$	42	1
for σ_{max} , σ_{min} opposite signs	$EI\frac{\mathrm{d}^3 v}{\mathrm{d}x^3} = V(x)$	Conservation of Energy:
	$EI\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} = M(x)$	$U_e = U_i$
Motorial Property	dx^2	
Material Property		$Strain\ Energy:$
Relations		$U_i = \frac{N^2 L}{2AE}$ Constant axial load
$\underline{Poisson's\ Ratio:}\ \nu = -\frac{\epsilon_{lat}}{\epsilon_{long}}$	Buckling	
$Generalized\ Hooke's\ Law:$	Critical Axial Load:	$U_i = \int_0^L \frac{M^2 dx}{2EI}$ Bending moment
$\frac{Generalized Hooke's Edd'.}{\epsilon_x = \frac{1}{E} [\sigma_x - \nu(\sigma_y + \sigma_z)]}$	$P_{cr} = \frac{\pi^2 EI}{(KL)^2}$, where	0
E - 9	K = 1 Pinned ends	$U_i = \int_0^L \frac{f_s v^2 dx}{2GA}$ Transverse shear
$\epsilon_y = \frac{1}{E} [\sigma_y - \nu(\sigma_x + \sigma_z)]$		$U_i = \int_0^L \frac{T^2 dx}{2GJ}$ Torsional moment
$\epsilon_z = \frac{1}{E} [\sigma_z - \nu(\sigma_x + \sigma_y)]$	K = 2 Free ends	$\int_{0}^{\infty} \frac{1}{2GJ}$ Torsional moment