

Teoria dell'Impresa

Emanuele Bacchiega

Giochi statici e concorrenza alla Cournot (PRNC, cap. 8)

Introduzione

- Coca-Cola e Pepsi: né monopolio né concorrenza perfetta.
- Ognuna tiene conto delle azioni dell'altra.
- Oligopolio.
- Strumento di analisi: Teoria dei Giochi.

Introduzione

Teoria dei giochi

- Non-cooperativi.
- Cooperativi.
- Agenti razionali.
- No modello standard di oligopolio.

TdG: Ripasso/Introduzione

- Piano d'azione: Strategia.
- Profili di strategie → esito del gioco (payoff).
- Molti esiti ma non tutti Equilibrio.
- Equilibrio di Nash: nessuna impresa ha incentivi a "deviare".
- Imprese "prevedono" comportamento avversari tramite informazioni su mercato e scelte strategiche.
- Dimensione *temporale* fondamentale.

Strategie dominanti/dominate

A volte facile trovare equilibri.

- Presenza strategie dominate (mai soddisfacenti qualunque cosa faccia avversario).
 - → eliminate da insieme azioni "razionali".

Strategie dominanti/dominate

A volte facile trovare equilibri.

- Presenza strategie dominate (mai soddisfacenti qualunque cosa faccia avversario).
 - → eliminate da insieme azioni "razionali".
- Presenza di strategie dominanti (scelta migliore qualunque cosa faccia avversario).
 - → Scelte sempre da giocatore razionale.

Esempio 1

Due compagnie aeree: American e Delta competono per quote mercato.

- Prezzi biglietti fissi.
- Scelgono orario di partenza.
- 70% passeggeri preferisce partire sera, 30% mattina.

Esempio 1: Bimatrice

	American		
		Mattina	Sera
Delta	Mattina	15,15	30,70
	Sera	70,30	35,35

Esempio 1: Bimatrice

	American		
		Mattina	Sera
Delta	Mattina	15,15	30,70
	Sera	70,30	35,35

Esempio 1: variazione

Delta ha un programma frequent flyer:

 Se i voli partono allo stesso orario Delta ottiene il 60% dei viaggiatori.

	American		
		Mattina	Sera
Delta	Mattina	18,12	30,70
	Sera	70,30	42,28

Esempio 1: variazione

Delta ha un programma frequent flyer:

 Se i voli partono allo stesso orario Delta ottiene il 60% dei viaggiatori.

	American		
		Mattina	Sera
Delta	Mattina	18,12	30,70
	Sera	70,30	42,28

Esempio 2

Non tutti i giochi hanno strategie dominanti/dominate \rightarrow Equilibrio di Nash

- 60 pax disposti a pagare 500€, 120 "solo" 220€.
- Costo per passeggero: 200€.
- Passeggeri acquistano biglietto con prezzo più basso.
- Se $P_{Delta} = P_{American}$ compagnie si spartiscono il mercato.

Esempio 2: Bimatrice

	American		
		<i>P</i> _H =500€	<i>P</i> _L =220€
Delta	<i>P</i> _H =500€	9000,9000	0,3600
	<i>P</i> _L =220€	3600,0	1800,1800

Esempio 2: Bimatrice

	American		
		<i>P</i> _H =500€	<i>P</i> _L =220€
Delta	<i>P</i> _H =500€	9000,9000	0,3600
_	<i>P</i> _L =220€	3600,0	1800,1800

Esempio 2: Bimatrice

	American		
		<i>P</i> _H =500€	<i>P</i> _L =220€
Delta	<i>P</i> _H =500€	9000,9000	0,3600
_	<i>P</i> _L =220€	3600,0	1800,1800

Esempio 2: commento

Molteplicità equilibri di Nash: problema selezione

- Possibile soluzione: coordinamento.
- Richiede "qualcosa in più".

Esempio 2: commento

Molteplicità equilibri di Nash: problema selezione

- Possibile soluzione: coordinamento.
- Richiede "qualcosa in più".

Inoltre: equilibri in strategie miste.

Il modello di Cournot (1834)

- Idea: impresa vuole entrare in mercato monopolizzato, scelta quantità.
- → Deve tenere conto di produzione monopolista.
- → Monopolista deve tenere conto produzione entrante.

- 2 imprese, con lo stesso costo marginale C' = c.
 - Domanda inversa

$$P = A - BQ$$
, con $Q = q_1 + q_2$.

Ovvero

$$P = \underbrace{A - Bq_1}_{\text{Dato per imp. 2}} - Bq_2$$

• Ricavo marginale per impresa 2:

$$R_2' = A - Bq_1 - 2Bq_2.$$

Impresa 2: monpolista sulla domanda residuale

• $R' = C' \Leftrightarrow$

$$\Leftrightarrow A - Bq_1 - 2Bq_2 = c \Leftrightarrow q_2^* = \left(\frac{A - c}{2B}\right) - \frac{q_1}{2}.$$

• Per simmetria:

$$q_1^* = \left(\frac{A-c}{2B}\right) - \frac{q_2}{2}.$$

Impresa 2: monpolista sulla domanda residuale

• $R' = C' \Leftrightarrow$

$$\Leftrightarrow A - Bq_1 - 2Bq_2 = c \Leftrightarrow q_2^* = \left(\frac{A - c}{2B}\right) - \frac{q_1}{2}.$$

• Per simmetria:

$$q_1^* = \left(\frac{A-c}{2B}\right) - \frac{q_2}{2}.$$

→ Funzioni di miglior risposta (di risposta ottimale)

Risolvendo il sistema:

$$q_1^* = q_2^* = \frac{A-c}{3B}.$$

Output dell'industria:

$$q_1^* + q_2^* = Q^* = \frac{2(A-c)}{3B}.$$

Prezzo di equilibrio

$$P^* = A - BQ^* = \frac{A+2c}{3}.$$

Cournot: interpretazione

Cournot: gioco statico: No "aggiustamento"

- Imprese non procedono "per tentativi ed errori".
- Unica aspettativa razionale: avversario produrrà q_1^* .

Cournot: estensioni

Estensioni "facili":

- N imprese simmetriche.
- 2 imprese asimmetriche.

Cournot a N imprese

Domanda inversa

$$P = A - BQ$$
, con $Q = \sum_{i=1}^{N} q_i$

- Imprese con stesso costo marginale C'(q) = c.
- Quantità di equilibrio:

$$q^* = \frac{A - c}{(N+1)B}$$

Quantità totale e prezzo:

$$Q^* = \frac{N(A-c)}{(N+1)B}, \quad P^* = \frac{A+Nc}{N+1}.$$

Cournot asimmetrico

2 imprese

- Costi marginali c₁ e c₂.
- Funzioni di reazione:

$$q_1^* = rac{(A-c_1)}{2B} - rac{q_2}{2}, \quad q_1^* = rac{(A-c_2)}{2B} - rac{q_1}{2}.$$

• Quantità di equilibrio:

$$q_1^* = \frac{A - 2c_1 + c_2}{3B}, \quad q_2^* = \frac{A - 2c_2 + c_1}{3B}.$$

Cournot: Concentrazione e redditività

Si consideri Cournot asimmetrico e a n imprese.

CPO:
$$A - BQ_{-i} - 2Bq_i - c_i = 0$$
, con $Q_{-i} = \sum_{\substack{j=1 \ j \neq i}}^n q_j$.

Da cui

$$\frac{P^* - c_i}{P^*} = \frac{s_i}{\eta}, \text{ con } s_i = \frac{q^*}{Q^*} \text{ e } \eta = -\frac{dQ}{dP} \frac{P}{Q}.$$

• Alta quota di mercato + domanda rigida \rightarrow alto indice di Lerner.

Cournot: concentrazione e redditività

Dalla condizione:

$$\frac{P^*-c_i}{P^*}=\frac{s_i}{\eta}$$

Si ricava:

$$\frac{P^* - \bar{c}}{P^*} = \frac{H}{\eta}$$

dove
$$\bar{c} \equiv \sum_{i=1}^{N} s_i^* c_i$$
 e $H \equiv \sum_{i=1}^{N} (s_i^*)^2$.

