

Maria Salop 230574

Project Pitch

Business Understanding

Problem Statement

- Inefficient waste management and its impact.
- High costs and environmental damage due to poor recycling practices.

Main Stakeholder and Needs

- Stakeholder: Management.
- Needs: Efficiency, cost reduction, sustainability, and regulatory compliance.

EcoScan Application

- Real-time waste material classification
- Features: Waste image classification, educational content, recycling locator, and community challenges.

Problem Overview

Deep Learning

- The model is designed to classify waste materials into distinct categories for proper recycling.
- It has 4 classes:
 - Paper (182 images)
 - Plastic (141 images)
 - Metal (164 images)
 - Organic (132 images)

- The accuracy of the baselines:
 - Random guess (25%)
 - Human-level performance (100%)
 - Basic MLP (32%)

Model Overview

Deep Learning

Development Journey:

- Iteration 1: Normalization, CNN with three convolutional layers, CNN, Training accuracy (90%).
- Iteration 2: Data Augmentation, CNN with a dense layer with batch normalization and ReLU activation, Training accuracy (90%).
- Iteration 3: ImageDataGenerator, CNN TensorFlow's Sequential model framework, Training accuracy (99%)
- Iteration 4: VGG16 architecture, pre-trained on ImageNet, Training accuracy (59%)

Performance Breakthroughs:

- Data Augmentation: Key for reducing overfitting.
- •Batch Normalization & Dropout: Stabilized training and further combated overfitting.
- Pre-trained VGG16: Significantly enhanced learning capability and accuracy.

Final Model Architecture:

- Base: VGG16 (frozen), ensuring rich feature extraction.
- •Custom Layers: Flatten, Dense(256, ReLU), Dense(128, ReLU) + Dropout(50%), Dense(4, Softmax).
- •Optimization: Adam optimizer, with Sparse Categorical Crossentropy loss and Accuracy metric.

Model Performance

Deep Learning

Final Model Results:

• Achieved Training Accuracy: 99.75%;

• Validation Accuracy: 69.7%.

X	Accuracy (%)	Precision (%)	Recall (%)	F1 Score (%)
Iteration 1	77	77	76	76
Iteration 2	31	19	31	23
Iteration 3	68	69	69	69
Iteration 4	67	55	61	56

Model Interpretability

Responsible Al

Priority: High Accuracy

- Essential for correct waste classification.
- Direct impact on recycling efficiency and environmental sustainability.
- Influences user trust and app adoption.

Secondary: Interpretability

- Supports user education on waste segregation.
- Enhances user engagement and trust in the app.
- Facilitates feedback for continuous improvement.

Balance is Key

- Main focus on achieving high accuracy.
- Incorporate interpretability to boost user experience and education.

User Study

Human-Centered Al

Study Explanation & Hypotheses:

- Conducted a user experience study focusing on app navigation and search functionality.
- Hypothesis 1: Simplifying the navigation menu will reduce user frustration and increase task completion speed.
- Hypothesis 2: Enhancing search functionality will improve the relevance of search results and user satisfaction.

Incorporation of Results into Final Wireframe Prototype:

- Simplified navigation: Reduced the number of menu items and grouped similar functions together for intuitive access.
- Enhanced search functionality: Implemented auto-suggestions and filters to allow users to refine their searches more effectively.
- Both changes were directly informed by user feedback indicating confusion with the original navigation and dissatisfaction with search results relevance.

Demo

Human-Centered Al

Thank you!

Any questions?

