Билет 1: Множества и мощность

Определение 1 (Отображение множеств). Пусть X, Y — множества. Отображением f из X в Y (обозначается $f: X \to Y$) называется правило, которое каждому элементу $x \in X$ ставит в соответствие единственный элемент $y = f(x) \in Y$. Множество X называется областью определения, Y — областью значений.

Определение 2 (Эквивалентные множества). Два множества A и B называются эквивалентными (или равномощными), если существует биекция (взаимно однозначное соответствие) $f: A \to B$. Обозначение: $A \sim B$.

Определение 3 (Счетное множество). Множество A называется **счетным**, если оно **конечно** или **эквивалентно** множеству натуральных чисел \mathbb{N} $(A \sim \mathbb{N})$.

Свойство 1 (Свойства счетных множеств).

- (1) Любое **подмножество** счетного множества **не более чем счетно** (т.е. конечно или счетно).
- (2) Объединение конечного или счетного числа конечных или счетных множеств не более чем счетно.
- (3) Декартово произведение двух (а значит и любого конечного числа) счетных множеств счетно.
- (4) Множество всех конечных подмножеств счетного множества счетно.
- (5) Множество всех **рациональных чисел** $\mathbb Q$ **счетно**.
- (6) Множество всех **алгебраических чисел** (корней многочленов с целыми коэффициентами) **счетно**.

Пример 1 (Примеры эквивалентных множеств).

- $\mathbb{N} \sim \mathbb{Z}$ (целые числа). Биекция: $f(n) = (-1)^n \lfloor \frac{n}{2} \rfloor$.
- $\mathbb{N} \sim \mathbb{Q}$ (рациональные числа). Упорядочивание по диагоналям.
- $[0,1] \sim (0,1) \sim (0,1] \sim [0,1) \sim \mathbb{R}$ (все интервалы эквивалентны всей прямой). Биекции строятся с помощью линейных дробных преобразований или "сдвига" счетного множества точек.

• $[0,1] \times [0,1] \sim [0,1]$ (квадрат эквивалентен отрезку). Используется чередование цифр десятичных дробей.

Теорема 1 (Кантора). *Множество всех действительных чисел на отрезке* [0,1] *несчетно*.

Доказательство (диагональный метод Кантора). Предположим противное: пусть [0,1] счетно. Тогда все его элементы можно занумеровать: x_1, x_2, x_3, \ldots Запишем каждое число в виде **бесконечной** десятичной дроби (для чисел вида $0.a_1a_2\ldots a_n$ 999... используем форму с девятками на конце). Получим таблицу:

$$x_1 = 0. \ a_{11} \ a_{12} \ a_{13} \ \dots$$

 $x_2 = 0. \ a_{21} \ a_{22} \ a_{23} \ \dots$
 $x_3 = 0. \ a_{31} \ a_{32} \ a_{33} \ \dots$
:

Построим число $y = 0.b_1b_2b_3...$, где цифра b_k выбирается так, чтобы $b_k \neq a_{kk}$ и $b_k \neq 0, 9$ (чтобы избежать двойного представления). Например:

$$b_k = \begin{cases} 5, & \text{если } a_{kk} \neq 5 \\ 6, & \text{если } a_{kk} = 5 \end{cases}$$

Тогда $y \in [0,1]$, но $y \neq x_k$ для **любого** k, так как k-я цифра y (b_k) отличается от k-й цифры x_k (a_{kk}). Это противоречит предположению, что все числа из [0,1] были перечислены. Значит, [0,1] несчетно.

Билет 2: Системы множеств

Определение 4 (Полукольцо множеств). Семейство $\mathcal{S} \subset 2^X$ называется **полукольцом**, если:

- (1) $\emptyset \in \mathcal{S}$.
- (2) $\forall A, B \in \mathcal{S}$ $A \cap B \in \mathcal{S}$ (замкнутость относительно конечных пересечений).
- (3) Если $A, B \in \mathcal{S}$ и $A \supset B$, то существует такой конечный набор попарно непересекающихся множеств $C_1, C_2, \ldots, C_n \in \mathcal{S}$, что $A \setminus B = \bigcup_{k=1}^n C_k$.

Определение 5 (Кольцо множеств). Семейство $\mathcal{R} \subset 2^X$ называется **кольцом**, если:

- (1) $\emptyset \in \mathcal{R}$.
- (2) $A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{R}$ (замкнутость относительно конечных объединений).
- (3) $A, B \in \mathcal{R} \Rightarrow A \setminus B \in \mathcal{R}$ (замкнутость относительно разности).

Замечание: Из (2) и (3) следует замкнутость относительно конечных пересечений: $A \cap B = A \setminus (A \setminus B)$.

Определение 6 (Алгебра множеств). Семейство $\mathcal{A} \subset 2^X$ называется алгеброй (или булевой алгеброй), если:

- (1) $X \in \mathcal{A}$.
- (2) $A \in \mathcal{A} \Rightarrow A^c = X \setminus A \in \mathcal{A}$ (замкнутость относительно дополнений).
- (3) $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$ (замкнутость относительно конечных объединений).

Замечание: Алгебра автоматически является кольцом, содержащим X. Кольцо является алгеброй \Leftrightarrow содержит X.

Определение 7 (σ -кольцо). Кольцо \mathcal{R} называется σ -кольцом, если оно замкнуто относительно счетных объединений: если $\{A_n\}_{n=1}^{\infty} \subset \mathcal{R}$, то $\bigcup_{n=1}^{\infty} A_n \in \mathcal{R}$.

Определение 8 (σ -алгебра). Алгебра \mathcal{A} называется σ -алгеброй, если она замкнута относительно счетных объединений: если $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A}$, то $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$. Замечание: σ -алгебра автоматически замкнута относительно счетных пересечений (по законам де Моргана).

Определение 9 (δ -кольцо (кольцо Дедекинда)). Семейство $\mathcal{D} \subset 2^X$ называется δ -кольцом, если:

- (1) $\emptyset \in \mathcal{D}$.
- (2) $A, B \in \mathcal{D} \Rightarrow A \setminus B \in \mathcal{D}$.
- (3) Если $\{A_n\}_{n=1}^{\infty} \subset \mathcal{D}$ и $A_1 \supset A_2 \supset \dots$ (убывающая цепочка), то $\bigcap_{n=1}^{\infty} A_n \in \mathcal{D}$ (замкнутость относительно счетных пересечений убывающих цепочек).

Пример 2 (Примеры).

- Полукольцо: Множество всех интервалов на прямой: (a,b], [a,b), [a,b], (a,b); Множество всех прямоугольников вида $[a,b) \times [c,d)$ на плоскости.
- **Кольцо:** Конечные объединения **непересекающихся** интервалов на прямой; Множество всех **конечных подмножеств** натурального ряда \mathbb{N} .
- **Алгебра:** Множество всех конечных объединений интервалов на прямой и их дополнений (но не σ -алгебра!); Алгебра подмножеств конечного множества.
- σ -кольцо: Множество всех ограниченных подмножеств прямой \mathbb{R} ; Множество всех подмножеств \mathbb{N} с конечной мерой (если мера число элементов).
- σ -алгебра: Борелевская σ -алгебра $\mathcal{B}(\mathbb{R})$ (наименьшая σ -алгебра, содержащая все открытые множества в \mathbb{R}); σ -алгебра Лебега $\mathcal{L}(\mathbb{R})$ (пополнение борелевской по мере Лебега); σ -алгебра всех измеримых по Лебегу подмножеств \mathbb{R} .
- δ -кольцо: Множество всех ограниченных измеримых по Лебегу подмножеств \mathbb{R} ; Множество всех подмножеств \mathbb{R} с конечной мерой Лебега.

Билет 3: Мера плоских множеств

Определение 10 (Мера (интуитивно)). *Мера* — это функция $\mu : \mathcal{M} \to [0, +\infty]$, заданная на некотором классе подмножеств \mathcal{M} пространства X, которая обобщает понятия:

- Длины интервала на прямой $(\mu([a,b]) = b a)$.
- **Площади** прямоугольника на плоскости $(\mu([a,b] \times [c,d]) = (b-a)(d-c)).$
- Объема параллелепипеда в пространстве.
- **Приращения** неубывающей функции $F: \mu_F([a,b]) = F(b) F(a)$.
- Количества точек (счетная мера) или вероятности (вероятностная мера).

Ключевые свойства: **неотрицательность**, **аддитивность** (для непересекающихся множеств).

Определение 11 (Элементарные множества на плоскости). На плоскости \mathbb{R}^2 элементарным множеством называется любое множество, которое можно представить как конечное объединение непересекающихся прямоугольников вида $P = [a,b) \times [c,d)$. Обозначим класс таких множеств через \mathcal{E} .

Свойство 2 (Свойства элементарных множеств).

- (1) **Объединение** конечного числа элементарных множеств **элементарно** (но может потребовать разбиения на непересекающиеся прямоугольники).
- (2) Пересечение конечного числа элементарных множеств элементарно.
- (3) Разность двух элементарных множеств элементарна.
- (4) Симметрическая разность двух элементарных множеств элементарна.

Теорема 2 (Замкнутость \mathcal{E} относительно операций). *Класс элементарных множеств* \mathcal{E} на плоскости является кольцом (и даже алгеброй, так как \mathbb{R}^2 элементарно).

Доказательство.

• Объединение: Пусть $A, B \in \mathcal{E}$. A и B — конечные объединения непересекающихся прямоугольников. Их объединение $A \cup B$ — тоже конечное объединение прямоугольников, но они могут пересекаться. Чтобы получить представление в виде непересекающихся, нужно разбить все прямоугольники из A и B с помощью сетки, образованной всеми границами прямоугольников из A и B. Получится конечное число непересекающихся прямоугольников, объединение которых равно $A \cup B$. Значит, $A \cup B \in \mathcal{E}$.

- Пересечение: $A \cap B$ пересечение двух конечных объединений прямоугольников. Пересечение двух прямоугольников прямоугольник (возможно, пустой). Значит, $A \cap B$ можно записать как конечное объединение прямоугольников (результатов попарных пересечений прямоугольников из A и B). Они могут пересекаться только по границам (мере нуль), но для представления в виде непересекающихся достаточно применить процедуру разбиения сеткой, как в пункте (1). Значит, $A \cap B \in \mathcal{E}$.
- Разность: $A \setminus B = A \cap B^c$. Так как \mathcal{E} алгебра (содержит \mathbb{R}^2), то $B^c \in \mathcal{E}$. По предыдущим пунктам $A \cap B^c \in \mathcal{E}$.
- Симметрическая разность: $A\triangle B=(A\setminus B)\cup (B\setminus A)$. По предыдущим пунктам $A\setminus B\in \mathcal{E},\ B\setminus A\in \mathcal{E},\$ и они дизъюнктны. Значит, их объединение элементарно.

Кроме того, \emptyset (пустой прямоугольник) и \mathbb{R}^2 (можно покрыть одним прямоугольником) $\in \mathcal{E}$. Значит, \mathcal{E} — алгебра.

Определение 12 (Мера элементарного множества). *Мерой* (площадью) элементарного множества A, представленного как объединение **непересекающихся** прямоугольников $A = \bigsqcup_{k=1}^{n} P_k$, называется число $\mu(A) = \sum_{k=1}^{n} (b_k - a_k)(d_k - c_k)$, где $P_k = [a_k, b_k) \times [c_k, d_k)$.

Замечание: Значение $\mu(A)$ не зависит от способа представления A в виде конечного объединения непересекающихся прямоугольников (мера аддитивна и согласована на прямоугольниках).

Определение 13 (Сигма-аддитивность). Мера μ называется σ -аддитивной, если для любой последовательности попарно непересекающихся множеств $\{A_n\}_{n=1}^{\infty}$ из \mathcal{E} с $\bigcup_{n=1}^{\infty} A_n \in \mathcal{E}$ выполняется:

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

Теорема 3 (Сигма-аддитивность меры для прямоугольников). *Мера \mu на классе элементарных множеств* \mathcal{E} в \mathbb{R}^2 является σ -аддитивной.

Доказательство. Пусть $A = \bigsqcup_{k=1}^{\infty} A_k$, где $A, A_k \in \mathcal{E}$. Так как A — ограниченное множество, а A_k дизъюнктны, то $\sum_{k=1}^n \mu(A_k) \leq \mu(A)$ для любого n. Переходя к пределу, $\sum_{k=1}^{\infty} \mu(A_k) \leq \mu(A)$. Обратно: A можно покрыть конечным числом прямоугольников. Для любого $\varepsilon > 0$ каждое A_k

Обратно: А можно покрыть конечным числом прямоугольников. Для любого $\varepsilon > 0$ каждое A_k можно покрыть открытым множеством $G_k \supset A_k$ так, что $\mu(G_k) < \mu(A_k) + \varepsilon/2^k$. Тогда $\bigcup_k G_k$ — открытое покрытие компакта A. Выделим конечное подпокрытие G_{k_1}, \ldots, G_{k_m} . Тогда:

$$\mu(A) \le \sum_{j=1}^{m} \mu(G_{k_j}) \le \sum_{j=1}^{m} \left(\mu(A_{k_j}) + \frac{\varepsilon}{2^{k_j}} \right) \le \sum_{k=1}^{\infty} \mu(A_k) + \varepsilon.$$

Так как $\varepsilon > 0$ произвольно, $\mu(A) \leq \sum_{k=1}^{\infty} \mu(A_k)$. Следовательно, $\mu(A) = \sum_{k=1}^{\infty} \mu(A_k)$.

Определение 14 (Внешняя мера Лебега (для плоских множеств)). *Внешней мерой Лебега* произвольного множества $A \subset \mathbb{R}^2$ называется:

$$\mu^*(A) = \inf \left\{ \sum_{k=1}^{\infty} \mu(E_k) \mid \{E_k\}_{k=1}^{\infty} \subset \mathcal{E}, A \subset \bigcup_{k=1}^{\infty} E_k \right\}.$$

Т.е. это **точная нижняя грань** "площадей" всевозможных **счетных покрытий** А элементарными множествами.

Свойство 3 (Свойства внешней меры).

- (1) $\mu^*(\emptyset) = 0$.
- (2) Монотонность: $A \subset B \Rightarrow \mu^*(A) \leq \mu^*(B)$.
- (3) Полуаддитивность (см. теорему ниже).

Теорема 4 (Полуаддитивность внешней меры). Внешняя мера Лебега **счетно-** полуаддитивна: для любой последовательности множеств $\{A_n\}_{n=1}^{\infty} \subset \mathbb{R}^2$ выполняется:

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{n=1}^{\infty} \mu^*(A_n).$$

 \mathcal{A} оказательство. Если $\sum_{n=1}^{\infty} \mu^*(A_n) = +\infty$, неравенство очевидно. Пусть сумма конечна. По определению точной нижней грани, для каждого A_n и для любого $\varepsilon > 0$ существует такое счетное покрытие элементарными множествами $\{E_k^{(n)}\}_{k=1}^{\infty}$, что $A_n \subset \bigcup_{k=1}^{\infty} E_k^{(n)}$ и

$$\sum_{k=1}^{\infty} \mu(E_k^{(n)}) < \mu^*(A_n) + \frac{\varepsilon}{2^n}.$$

Рассмотрим объединение всех этих покрытий: $\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} E_k^{(n)}$. Это счетное покрытие множества $\bigcup_{n=1}^{\infty} A_n$ элементарными множествами. Тогда:

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \mu(E_k^{(n)}) < \sum_{n=1}^{\infty} \left(\mu^*(A_n) + \frac{\varepsilon}{2^n} \right) = \sum_{n=1}^{\infty} \mu^*(A_n) + \varepsilon.$$

Так как $\varepsilon>0$ произвольно, получаем требуемое неравенство: $\mu^*\left(\bigcup_{n=1}^\infty A_n\right)\leq \sum_{n=1}^\infty \mu^*(A_n).$

Определение 15 (Измеримое по Лебегу множество (на плоскости)). *Множество* $A \subset \mathbb{R}^2$ называется **измеримым по Лебегу**, если для любого $\varepsilon > 0$ существуют такие **элементарные** множества E и F, что:

$$E \subset A \subset F$$
 u $\mu(F \setminus E) < \varepsilon$.

Эквивалентное определение (Каратеодори): А измеримо, если для **любого** множества $T \subset \mathbb{R}^2$ выполняется:

$$\mu^*(T) = \mu^*(T \cap A) + \mu^*(T \cap A^c).$$

Билет 4: Полунепрерывные функции

Определение 16 (Полунепрерывность снизу (п.н.сн.)). Функция $f: X \to \mathbb{R} \cup \{+\infty\}$ называется полунепрерывной снизу (п.н.сн.) в точке $x_0 \in X$, если для любого числа $c < f(x_0)$ существует такая окрестность $U(x_0)$, что для всех $x \in U(x_0)$ выполняется f(x) > c. Функция n.н.сh. на X, если она n.h.ch. в кажсдой точке $x \in X$.

Определение 17 (Полунепрерывность сверху (п.н.св.)). Функция $f: X \to \mathbb{R} \cup \{-\infty\}$ называется полунепрерывной сверху (п.н.св.) в точке $x_0 \in X$, если для любого числа $c > f(x_0)$ существует такая окрестность $U(x_0)$, что для всех $x \in U(x_0)$ выполняется f(x) < c. Функция n.h.cs. на X, если она n.h.cs. в каждой точке $x \in X$.

Пример 3 (Примеры).

- П.н.сн.: Индикатор открытого множества: $f(x) = \mathbf{1}_U(x)$; Функция $f(x) = \frac{1}{x}$ при $x \neq 0$ и $f(0) = +\infty$; Непрерывные функции снизу.
- П.н.св.: Индикатор замкнутого множества: $f(x) = \mathbf{1}_F(x)$; Функция $f(x) = -\frac{1}{x}$ при $x \neq 0$ и $f(0) = -\infty$; Целая часть [x]; Непрерывные функции сверху.

Теорема 5 (Характеризация п.н.сн. через надграфик). Функция $f: X \to \mathbb{R} \cup \{+\infty\}$ является n.н.сн. на X тогда и только тогда, когда ее **надграфик** $\operatorname{epi}(f) = \{(x,y) \in X \times \mathbb{R} \mid y \geq f(x)\}$ является **замкнутым** подмножеством в $X \times \mathbb{R}$.

Теорема 6 (Характеризация п.н.св. через подграфик). Функция $f: X \to \mathbb{R} \cup \{-\infty\}$ является **п.н.св.** на X тогда и только тогда, когда ее **подграфик** $\mathrm{hyp}(f) = \{(x,y) \in X \times \mathbb{R} \mid y \leq f(x)\}$ является **замкнутым** подмножеством в $X \times \mathbb{R}$.

Теорема 7 (Прообраз п.н.сн. функции). Пусть $f: X \to \mathbb{R} \cup \{+\infty\}$ п.н.сн. Тогда для любого $c \in \mathbb{R}$ множество $\{x \in X \mid f(x) \leq c\}$ замкнуто.

Доказательство. Рассмотрим множество $A_c = \{x \in X \mid f(x) \leq c\}$. Докажем, что его дополнение $A_c^c = \{x \in X \mid f(x) > c\}$ открыто.

Возьмем $x_0 \in A_c^c$, т.е. $f(x_0) > c$. Так как f п.н.сн. в x_0 , то для числа c (которое $< f(x_0)$) существует окрестность $U(x_0)$ такая, что для всех $x \in U(x_0)$ выполняется f(x) > c. Значит, $U(x_0) \subset A_c^c$. Следовательно, A_c^c открыто, а A_c замкнуто.

Замечание 1. Аналогично, если f п.н.св., то множество $\{x \in X \mid f(x) \geq c\}$ замкнуто для любого $c \in \mathbb{R}$.

Билет 5: Элементарный интеграл

Определение 18 (Элементарный интеграл). Пусть (X, A, μ) — пространство с мерой, где A — алгебра (или кольцо) подмножеств X, μ — конечная аддитивная мера на A.

Элементарной функцией называется конечная линейная комбинация индикаторов множеств из A: $f = \sum_{i=1}^{n} c_i \mathbf{1}_{A_i}$, где $A_i \in \mathcal{A}$, A_i попарно не пересекаются, $c_i \in \mathbb{R}$.

Элементарным интегралом от такой функции называется:

$$\int f d\mu = \sum_{i=1}^{n} c_i \mu(A_i).$$

Значение не зависит от способа представления f в указанном виде.

Свойство 4 (Свойства элементарного интеграла). Пусть f, g — элементарные функции, $\alpha, \beta \in \mathbb{R}$. Тогда:

- (1) Линейность: $\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu$.
- (2) Монотонность: Если $f \leq g$ n.в., то $\int f d\mu \leq \int g d\mu$.
- (3) $\left| \int f d\mu \right| \le \int \left| f \right| d\mu$.
- (4) **Аддитивность по множествам**: Если $A \in \mathcal{A}$ и $f = \sum_{i=1}^{n} c_{i} \mathbf{1}_{A_{i}}, \ mo \ \int_{A} f d\mu = \sum_{i=1}^{n} c_{i} \mu(A \cap A_{i}).$

Теорема 8 (Леви (о монотонной сходимости) для элементарного интеграла). Пусть $\{f_n\}$ – последовательность элементарных функций на X такая, что:

- (i) $f_n(x) \le f_{n+1}(x)$ для всех n и для всех $x \in X$ (монотонное неубывание).
- (ii) $\sup_n \int f_n d\mu < +\infty$ (ограниченность интегралов).

Тогда существует конечная предельная функция $f(x) = \lim_{n \to \infty} f_n(x)$ почти всюду (n.в.) и

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

Замечание: В общем случае f может не быть элементарной, но интеграл от нее определен как предел.

Определение 19 (Пренебрежимое множество). Множество $A \subset X$ называется пренебрежимым (или множеством меры нуль), если $\mu^*(A) = 0$ (внешняя мера A равна нулю).

Определение 20 (Пренебрежимая функция). Функция f называется пренебрежимой, если f = 0 почти всюду (n.в.), m.e. множество $\{x \mid f(x) \neq 0\}$ пренебрежимо.

Пример 4 (Примеры).

- Пренебрежимое множество: Любое конечное или счетное множество на прямой с мерой Лебега (если мера точки 0); Канторово множество (несчетное, но мера Лебега 0); График непрерывной функции на прямой.
- Пренебрежимая функция: Функция Дирихле $\mathbf{1}_{\mathbb{Q}}(x)$ на [0,1] (т.к. \mathbb{Q} счетно); Любая функция, отличная от нуля только в конечном числе точек.

Билет 6: Измеримые множества

Определение 21 (Измеримое множество). Множество $A \subset X$ называется μ -измеримым (по Лебегу относительно меры μ), если для любого множества $T \subset X$ выполняется равенство **Каратеодори**:

$$\mu^*(T) = \mu^*(T \cap A) + \mu^*(T \cap A^c).$$

Обозначим класс всех μ -измеримых множеств через \mathcal{M}_{μ} .

Свойство 5 (Свойства измеримых множеств). Пусть μ^* — внешняя мера на X. Тогда:

- (1) $\mathcal{M}_{\mu}-\sigma$ -алгебра.
- (2) μ^* на \mathcal{M}_{μ} является **мерой** (т.е. σ -аддитивна). Обозначается μ .
- (3) Если $\mu^*(A) = 0$, то $A \in \mathcal{M}_{\mu}$ (все множества меры нуль измеримы).
- (4) **Пополнение**: Если \mathcal{A} алгебра, на которой μ σ -аддитивна, то \mathcal{M}_{μ} это пополнение σ -алгебры, порожденной \mathcal{A} , по мере μ .

Доказательства (основные идеи).

- Замкнутость относительно дополнения: Следует из симметрии определения (A и A^c входят симметрично).
- Замкнутость относительно конечных объединений: Пусть $A, B \in \mathcal{M}_{\mu}$. Нужно показать $A \cup B \in \mathcal{M}_{\mu}$. Для любого T:

$$\mu^*(T) = \mu^*(T \cap A) + \mu^*(T \cap A^c) \quad \text{(из-измеримости } A)$$

$$= \mu^*(T \cap A) + \mu^*((T \cap A^c) \cap B) + \mu^*((T \cap A^c) \cap B^c) \quad \text{(из-измеримости } B)$$

$$\geq \mu^*(T \cap (A \cup B)) + \mu^*(T \cap (A \cup B)^c) \quad \text{(по полуаддитивности } \mathbf{u} \ (A \cup B)^c = A^c \cap B^c)$$

Обратное неравенство

всегда верно по полуаддитивности. Значит, равенство.

• Замкнутость относительно счетных объединений: Пусть $\{A_n\} \subset \mathcal{M}_{\mu}$, $A = \bigcup_{n=1}^{\infty} A_n$. Положим $B_1 = A_1$, $B_n = A_n \setminus \bigcup_{k=1}^{n-1} A_k$. Тогда $B_n \in \mathcal{M}_{\mu}$ (по доказанному), B_n дизъюнктны, $A = \bigcup_{n=1}^{\infty} B_n$. Для T:

$$\mu^*(T) = \mu^*(T \cap B_1) + \mu^*(T \cap B_1^c) \quad \text{(измеримость } B_1)$$

$$= \mu^*(T \cap B_1) + \mu^*(T \cap B_1^c \cap B_2) + \mu^*(T \cap B_1^c \cap B_2^c) \quad \text{(измеримость } B_2)$$

$$= \mu^*(T \cap B_1) + \mu^*(T \cap B_2) + \mu^*(T \cap (B_1 \cup B_2)^c)$$

$$\vdots$$

$$= \sum_{k=1}^n \mu^*(T \cap B_k) + \mu^*(T \cap (\bigcup_{k=1}^n B_k)^c)$$

$$\geq \sum_{k=1}^n \mu^*(T \cap B_k) + \mu^*(T \cap A^c) \quad (A^c \subset (\bigcup_{k=1}^n B_k)^c)$$

Устремляя $n \to \infty$ и учитывая $\sum_{k=1}^{\infty} \mu^*(T \cap B_k) \ge \mu^*(T \cap A)$ (полуаддитивность), получаем $\mu^*(T) \ge \mu^*(T \cap A) + \mu^*(T \cap A^c)$. Обратное \le верно всегда. Значит, A измеримо.

• σ -аддитивность μ на \mathcal{M}_{μ} : Пусть $\{A_n\} \subset \mathcal{M}_{\mu}$ дизъюнктны, $A = \bigsqcup_{n=1}^{\infty} A_n$. Тогда для любого n:

$$\mu(\bigsqcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} \mu(A_k)$$
 (конечная аддитивность).

Так как $A\supset \bigsqcup_{k=1}^n A_k$, то $\mu(A)\geq \sum_{k=1}^n \mu(A_k)$. Устремляя $n\to\infty$, $\mu(A)\geq \sum_{k=1}^\infty \mu(A_k)$. Обратное неравенство $\mu(A)\leq \sum_{k=1}^\infty \mu(A_k)$ следует из полуаддитивности внешней меры. Значит, $\mu(A)=\sum_{k=1}^\infty \mu(A_k)$.

Определение 22 (Класс множеств, измеримых по Лебегу (\mathbb{R}^n)). Множеством, измеримым по Лебегу в \mathbb{R}^n , называется любое множество $A \subset \mathbb{R}^n$, измеримое относительно меры Лебега m, построенной по внешней мере Лебега. Класс всех таких множеств обозначается $\mathcal{L}(\mathbb{R}^n)$.

- $\mathcal{L}(\mathbb{R}^n) \sigma$ -алгебра.
- Все борелевские множества (элементы $\mathcal{B}(\mathbb{R}^n)$ σ -алгебры, порожденной открытыми множествами) измеримы по Лебегу.
- $\mathcal{L}(\mathbb{R}^n)$ это **пополнение** $\mathcal{B}(\mathbb{R}^n)$ по мере Лебега: $A \in \mathcal{L}(\mathbb{R}^n)$ тогда и только тогда, когда существуют борелевские множества B_1, B_2 такие, что $B_1 \subset A \subset B_2$ и $m(B_2 \setminus B_1) = 0$.
- Существуют **неборелевские** множества, измеримые по Лебегу (например, любое неборелевское подмножество канторова множества меры нуль).
- Существуют **неизмеримые** по Лебегу множества (например, **множество Вита**ли).

Билет 7: Измеримые функции

Определение 23 (Измеримая функция). Пусть (X, \mathcal{M}, μ) — пространство c мерой. Функция $f: X \to \mathbb{R} \cup \{-\infty, +\infty\}$ называется μ -измеримой, если для любого $c \in \mathbb{R}$ множество $\{x \in X \mid f(x) < c\}$ принадлежит \mathcal{M} (т.е. измеримо). Эквивалентные условия: $\{x \mid f(x) \le c\} \in \mathcal{M}, \{x \mid f(x) > c\} \in \mathcal{M}, \{x \mid f(x) \ge c\} \in \mathcal{M}$ для всех $c \in \mathbb{R}$.

Определение 24 (Борелевское множество). Подмножество \mathbb{R}^n называется **борелевским**, если оно принадлежит **борелевской** σ -алгебре $\mathcal{B}(\mathbb{R}^n)$ — наименьшей σ -алгебре, содержащей все открытые (или все замкнутые) подмножества \mathbb{R}^n .

Свойство 6 (Свойства измеримых функций). Пусть $f, g: X \to \mathbb{R} - \mu$ -измеримы, $\alpha \in \mathbb{R}$. Тогда следующие функции также μ -измеримы:

- (1) αf
- (2) f+g (если нет неопределенностей вида $(+\infty)+(-\infty)$)
- (3) $f \cdot g$
- (4) |f|, $\max(f, g)$, $\min(f, g)$
- (5) $f^+ = \max(f, 0), f^- = -\min(f, 0)$

(6) Echu $g(x) \neq 0$ n.s., mo f/g

Доказательство для f + g (без пределов). Нужно показать: $\{x \mid f(x) + g(x) < c\} \in \mathcal{M}$ для любого $c \in \mathbb{R}$.

Заметим, что f(x) + g(x) < c тогда и только тогда, когда существует **рациональное** число r такое, что f(x) < r и g(x) < c - r. Формально:

$$\{x \mid f(x) + g(x) < c\} = \bigcup_{r \in \mathbb{Q}} \Big(\{x \mid f(x) < r\} \cap \{x \mid g(x) < c - r\} \Big).$$

Так как \mathbb{Q} счетно, это **счетное объединение**. Множества $\{x \mid f(x) < r\}$ и $\{x \mid g(x) < c - r\}$ измеримы по определению. Пересечение измеримых множеств измеримо. Счетное объединение измеримых множеств измеримо. Значит, $\{x \mid f(x) + g(x) < c\} \in \mathcal{M}$.

Доказательство для $f \cdot g$ (без пределов).

$$ullet$$
 Случай $f=g$: $\{x\mid f^2(x)< c\}=egin{cases} \{x\mid |f(x)|<\sqrt{c}\}, & c>0 \ \emptyset, & c\leq 0 \end{cases}$ — измеримо.

• Общий случай: Используем тождество: $f \cdot g = \frac{1}{4} [(f+g)^2 - (f-g)^2]$. Так как f+g и f-g измеримы (по предыдущему), их квадраты измеримы (по пункту 1), разность измеримых измерима, умножение на константу сохраняет измеримость.

Билет 8: Критерий измеримости функции

Теорема 9 (Критерий измеримости функции). Пусть $(X, \mathcal{M}, \mu) - npocmpaнство с мерой. Для функции <math>f: X \to \mathbb{R} \cup \{-\infty, +\infty\}$ эквивалентны:

- (1) f μ -измерима.
- (2) Для любого открытого множества $U \subset \mathbb{R}$ прообраз $f^{-1}(U) \in \mathcal{M}$.
- (3) Для любого замкнутого множества $F \subset \mathbb{R}$ прообраз $f^{-1}(F) \in \mathcal{M}$.
- (4) Для любого борелевского множества $B \in \mathcal{B}(\mathbb{R})$ прообраз $f^{-1}(B) \in \mathcal{M}$.
- (5) Существуют последовательности $\{u_n\}$ п.н.сн. функций и $\{v_n\}$ п.н.св. функций такие, что $u_n(x) \ge f(x) \ge v_n(x)$ для всех x и $u_n(x) \downarrow f(x)$, $v_n(x) \uparrow f(x)$ для всех x (поточечно).

Доказательство.

• (1) \Rightarrow (2): Любое открытое $U \subset \mathbb{R}$ представимо как счетное объединение открытых интервалов: $U = \bigcup_{k=1}^{\infty} (a_k, b_k)$. Тогда $f^{-1}(U) = \bigcup_{k=1}^{\infty} f^{-1}((a_k, b_k))$. Но $f^{-1}((a_k, b_k)) = \{x \mid a_k < f(x) < b_k\} = \{x \mid f(x) > a_k\} \cap \{x \mid f(x) < b_k\} \in \mathcal{M}$. Счетное объединение измеримых множеств измеримо.

- (2) \Leftrightarrow (3) \Leftrightarrow (4): Следует из того, что σ -алгебра борелевских множеств порождается открытыми (или замкнутыми) множествами, и прообраз сохраняет операции.
- (1) \Rightarrow (5): Построим аппроксимации. Для каждого n и каждого целого k определим множества:

$$E_{n,k} = \{x \mid \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n}\}.$$

Эти множества измеримы (разность $\{x\mid f(x)<\frac{k}{2^n}\}\setminus\{x\mid f(x)<\frac{k-1}{2^n}\}$). Определим ступенчатые функции:

$$u_n(x) = \sum_{k=-\infty}^{\infty} \frac{k}{2^n} \mathbf{1}_{E_{n,k}}(x), \quad v_n(x) = \sum_{k=-\infty}^{\infty} \frac{k-1}{2^n} \mathbf{1}_{E_{n,k}}(x).$$

Тогда $v_n(x) \leq f(x) \leq u_n(x)$ для всех x. При $n \to \infty$, шаг $\frac{1}{2^n} \to 0$, поэтому $u_n(x) \downarrow f(x)$, $v_n(x) \uparrow f(x)$ для всех x. Функции u_n п.н.св. (как ступенчатые, постоянные на множествах), v_n п.н.сн.

• (5) \Rightarrow (1): Докажем измеримость f. Зафиксируем $c \in \mathbb{R}$. Покажем, что $\{x \mid f(x) < c\} \in \mathcal{M}$.

Заметим: f(x) < c тогда и только тогда, когда **существует** n такое, что $v_n(x) < c$ (так как $v_n(x) \uparrow f(x)$). Формально:

$$\{x \mid f(x) < c\} = \bigcup_{n=1}^{\infty} \{x \mid v_n(x) < c\}.$$

Так как v_n п.н.сн., множество $\{x \mid v_n(x) \geq c\}$ замкнуто, но нам нужно $\{x \mid v_n(x) < c\} = \{x \mid v_n(x) \geq c\}^c$. Это **открытое** множество (дополнение замкнутого). В общем случае, если X — топологическое пространство, а \mathcal{M} содержит борелевские множества, то открытые множества измеримы, значит $\{x \mid v_n(x) < c\} \in \mathcal{M}$. Счетное объединение измеримых множеств измеримо. Значит, $\{x \mid f(x) < c\} \in \mathcal{M}$.

Билет 9: Полная мера

Определение 25 (Полная мера). Пространство с мерой (X, \mathcal{M}, μ) называется полным, если из того, что $A \in \mathcal{M}$, $\mu(A) = 0$ и $B \subset A$, следует, что $B \in \mathcal{M}$ (и, конечно, $\mu(B) = 0$). Сама мера μ также называется полной.

Теорема 10 (Об измеримости эквивалентных функций). Пусть (X, \mathcal{M}, μ) — **полное** пространство с мерой. Пусть f и g — функции на X такие, что f(x) = g(x) **почти всюду** (n.s.) относительно μ . Тогда если f μ -измерима, то и g μ -измерима.

Доказательство. Пусть $A=\{x\in X\mid f(x)\neq g(x)\}$. По условию $\mu(A)=0$. Так как мера полная, любое подмножество A измеримо и имеет меру нуль.

Зафиксируем $c \in \mathbb{R}$. Рассмотрим множество $\{x \mid g(x) < c\}$. Его можно представить в виде:

$$\{x \mid g(x) < c\} = \left[\{x \mid g(x) < c\} \cap A^c \right] \cup \left[\{x \mid g(x) < c\} \cap A \right].$$

- На A^c : g(x) = f(x), поэтому $\{x \mid g(x) < c\} \cap A^c = \{x \mid f(x) < c\} \cap A^c$. Так как f измерима, $\{x \mid f(x) < c\} \in \mathcal{M}$, значит и его пересечение с $A^c \in \mathcal{M}$ (так как $A^c \in \mathcal{M}$).
- $\{x \mid g(x) < c\} \cap A \subset A$. Так как мера полная и $\mu(A) = 0$, любое подмножество A измеримо. Значит, $\{x \mid g(x) < c\} \cap A \in \mathcal{M}$.

Объединение двух измеримых множеств измеримо. Следовательно, $\{x \mid g(x) < c\} \in \mathcal{M}$ для любого c, что означает измеримость g.

Билет 10: Виды сходимости

Определение 26 (Сходимость почти всюду (п.в.)). Последовательность функций $\{f_n\}$ сходится почти всюду к функции f на X относительно меря μ , если существует множество $E \subset X$ с $\mu(E) = 0$ такое, что для всех $x \in X \setminus E$ выполняется $f_n(x) \to f(x)$ при $n \to \infty$. Обозначение: $f_n \xrightarrow{n.s.} f$.

Определение 27 (Сходимость по мере). Последовательность функций $\{f_n\}$ сходится по мере κ функции f на X относительно меры μ , если для любого $\varepsilon > 0$:

$$\lim_{n \to \infty} \mu(\{x \in X \mid |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$$

Обозначение: $f_n \stackrel{\mu}{\to} f$.

Пример 5 (Примеры).

- Сх. п.в., но не по мере: Редко. Обычно на пространствах бесконечной меры. Пример: $X = \mathbb{R}, \ \mu$ мера Лебега. $f_n(x) = \mathbf{1}_{[n,n+1]}(x)$. Тогда $f_n(x) \to 0$ для каждого x (так как для фикс. x при n > x $f_n(x) = 0$), т.е. $f_n \xrightarrow{n.s.} 0$. Но $\mu(\{x \mid |f_n(x) 0| \ge 1\}) = \mu([n, n+1]) = 1 \not\to 0$, значит, не сходится по мере.
- Cx. по мере, но не n.s.: Классический пример на [0,1] с мерой Лебега. Построим "бегущий отрезок":

$$f_1 = \mathbf{1}_{[0,1]}, \quad f_2 = \mathbf{1}_{[0,1/2]}, \quad f_3 = \mathbf{1}_{[1/2,1]}, \quad f_4 = \mathbf{1}_{[0,1/4]}, \quad f_5 = \mathbf{1}_{[1/4,1/2]}, \quad f_6 = \mathbf{1}_{[1/2,3/4]}, \quad f_7 = \mathbf{1}_{[3/4,1]}$$

Длина носителя f_n стремится κ 0. Для любого $\varepsilon > 0$ ($\varepsilon < 1$), $\mu(\{x \mid |f_n(x) - 0| \ge \varepsilon\}) = \mu(\text{supp } f_n) \to 0$, значит $f_n \stackrel{\mu}{\to} 0$. Но для любого $x \in [0,1]$, последовательность $f_n(x)$ содержит бесконечно много единиц (так как отрезки покрывают [0,1] бесконечно много раз), значит $f_n(x)$ не сходится ни в одной точке! (Хотя есть подпоследовательность, сходящаяся n.6.).

Теорема 11 (Из сходимости п.в. следует сходимость по мере (при $\mu(X) < \infty$)). Пусть (X, \mathcal{M}, μ) — пространство с мерой, $\mu(X) < \infty$. Пусть $\{f_n\}$ — последовательность измеримых функций, $f_n \xrightarrow{n.s.} f$ на X. Тогда $f_n \xrightarrow{\mu} f$.

Доказательство. Фиксируем $\varepsilon > 0$, $\delta > 0$. Нужно найти N такое, что для всех $n \geq N$: $\mu(\{x \mid |f_n(x) - f(x)| \geq \varepsilon\}) < \delta$.

По сходимости п.в.: множество $E = \{x \in X \mid f_n(x) \not\to f(x)\}$ имеет $\mu(E) = 0$.

Определим множества:

$$A_m = \{x \in X \mid |f_m(x) - f(x)| \ge \varepsilon\}, \quad B_n = \bigcup_{m=n}^{\infty} A_m.$$

Заметим, что $\{B_n\}$ убывает: $B_1 \supset B_2 \supset \dots$

Если $x \in X \setminus E$, то $f_n(x) \to f(x)$, значит для этого x существует N_x такое, что для всех $m \ge N_x$: $|f_m(x) - f(x)| < \varepsilon$. Следовательно, $x \notin A_m$ для всех $m \ge N_x$, а значит $x \notin B_{N_x}$. Это верно для всех $x \in X \setminus E$. Поэтому:

$$\bigcap_{n=1}^{\infty} B_n \subset E.$$

Так как $\mu(E) = 0$ и $\mu(X) < \infty$, можно применить свойство непрерывности меры сверху: $\mu(B_n) \downarrow \mu(\bigcap_{n=1}^{\infty} B_n) \leq \mu(E) = 0$. Значит, $\lim_{n \to \infty} \mu(B_n) = 0$. Выберем N такое, что $\mu(B_N) < \delta$. Тогда для всех $n \geq N$:

$$\{x \mid |f_n(x) - f(x)| \ge \varepsilon\} = A_n \subset B_N \pmod{n \ge N}.$$

Следовательно, $\mu(A_n) \leq \mu(B_N) < \delta$ для всех $n \geq N$, что и означает $f_n \xrightarrow{\mu} f$.

Замечание 2. Условие $\mu(X) < \infty$ существенно (см. пример выше).

Билет 11: Теоремы Егорова и Лузина

Определение 28 (Почти равномерная сходимость). Последовательность функций $\{f_n\}$ сходится почти равномерно к функции f на X относительно меры μ , если для любого $\delta > 0$ существует такое множество $E_\delta \subset X$ с $\mu(E_\delta) < \delta$, что $f_n \to f$ равномерно на $X \setminus E_\delta$. Обозначение: $f_n \xrightarrow{n.p.} f$.

Теорема 12 (Егорова). Пусть (X, \mathcal{M}, μ) — пространство с мерой, $\mu(X) < \infty$. Пусть $\{f_n\}$ — последовательность **измеримых** функций, сходящаяся **п.в.** к измеримой функции f на X. Тогда $f_n \xrightarrow{n.p.} f$.

Доказательство. Зафиксируем $\delta>0$. Нужно найти E_δ с $\mu(E_\delta)<\delta$ такое, что $f_n\rightrightarrows f$ на $X\setminus E_\delta$.

По предыдущей теореме $f_n \xrightarrow{\mu} f$ (так как $\mu(X) < \infty$). Для каждого $k \in \mathbb{N}$ определим:

$$A_n^{(k)} = \{ x \in X \mid |f_n(x) - f(x)| \ge \frac{1}{k} \}.$$

Так как $f_n \stackrel{\mu}{\to} f$, то для каждого k: $\lim_{n\to\infty} \mu(A_n^{(k)}) = 0$. Значит, для каждого k найдется n_k такое, что $\mu(A_{n_k}^{(k)}) < \frac{\delta}{2^k}$.

Положим $E_{\delta} = \bigcup_{k=1}^{\infty} A_{n_k}^{(k)}$. Тогда:

$$\mu(E_{\delta}) \le \sum_{k=1}^{\infty} \mu(A_{n_k}^{(k)}) < \sum_{k=1}^{\infty} \frac{\delta}{2^k} = \delta.$$

Теперь докажем, что $f_n \to f$ равномерно на $X \setminus E_\delta$.

Фиксируем $\varepsilon > 0$. Выберем K такое, что $\frac{1}{K} < \varepsilon$. Рассмотрим $n \ge n_K$. Для $x \in X \setminus E_\delta$ имеем $x \notin A_{n_k}^{(k)}$ для всех k, в частности, $x \notin A_{n_K}^{(K)}$. Но $A_{n_K}^{(K)} = \{x \mid |f_{n_K}(x) - f(x)| \ge \frac{1}{K}\}$. Значит, для всех $x \in X \setminus E_\delta$:

$$|f_{n_K}(x) - f(x)| < \frac{1}{K} < \varepsilon.$$

Однако, это верно только для $n=n_K$. Нам нужно для всех $n\geq n_K$.

Так как $x \notin E_{\delta}$, то $x \notin A_n^{(k)}$ для **всех** $n \geq n_k$? Нет! Мы выбрали только конкретные n_k для каждого k, а не для всех n.

Исправим: Определим множества:

$$B_m^{(k)} = \bigcup_{n=m}^{\infty} \{x \mid |f_n(x) - f(x)| \ge \frac{1}{k}\} = \bigcup_{n=m}^{\infty} A_n^{(k)}.$$

Так как $f_n \to f$ п.в., то $\mu(\bigcap_{m=1}^\infty B_m^{(k)}) = 0$ (множество точек, где сходимость не "портируются" начиная с некоторого места). Так как $\mu(X) < \infty$, $\mu(B_m^{(k)}) \downarrow \mu(\bigcap_{m=1}^\infty B_m^{(k)}) = 0$. Значит, для каждого k найдется m_k такое, что $\mu(B_{m_k}^{(k)}) < \frac{\delta}{2^k}$.

Положим $E_{\delta} = \bigcup_{k=1}^{\infty} B_{m_k}^{(k)}$. Тогда $\mu(E_{\delta}) < \delta$.

Теперь покажем равномерную сходимость на $X \setminus E_{\delta}$. Фиксируем $\varepsilon > 0$. Выберем K с $\frac{1}{K} < \varepsilon$. Пусть $N = m_K$. Для $n \ge N$ и для любого $x \in X \setminus E_{\delta}$ имеем $x \notin B_{m_K}^{(K)}$. Но $B_{m_K}^{(K)} = \bigcup_{n=m_K}^{\infty} A_n^{(K)}$. Значит, $x \notin A_n^{(K)}$ для всех $n \ge m_K$, т.е. $|f_n(x) - f(x)| < \frac{1}{K} < \varepsilon$ для всех $n \ge N$ и всех $x \in X \setminus E_{\delta}$. Это и означает равномерную сходимость.

Определение 29 (С-свойство). Функция $f: \mathbb{R} \to \mathbb{R}$ обладает **С-свойством** (свойством Лузина) на [a,b], если она **непрерывна** на [a,b] за исключением, возможно, множества меры нуль.

Замечание: Это означает, что сужение f на некоторое замкнутое подмножество $F \subset [a,b]$ с $m([a,b] \setminus F) < \varepsilon$ непрерывно (но f сама может иметь разрывы вне F).

Теорема 13 (Лузина). Пусть $f:[a,b] \to \mathbb{R}$ — **измеримая** по Лебегу (конечная п.в.) функция. Тогда для любого $\varepsilon > 0$ существует такое **замкнутое** множество $F \subset [a,b]$, что:

- (i) $m([a,b] \setminus F) < \varepsilon$ (мера дополнения мала).
- (ii) Сужение $f|_F$ **непрерывно** на F.

Иными словами, любая измеримая функция обладает С-свойством.

Формулировка без доказательства.

Билет 12: Интеграл по мере

Определение 30 (Интегрируемая по мере функция). Пусть (X, \mathcal{M}, μ) — пространство с мерой. Функция $f: X \to \mathbb{R} \cup \{\pm \infty\}$ называется **интегрируемой по мере** μ , если:

- 1. f µ-измерима
- 2. $\int_{Y} |f| d\mu < +\infty$

Множество таких функций обозначается $\mathcal{L}^1(X,\mu)$.

Определение 31 (Интеграл по мере). *Интегралом* от f по мере μ называется:

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu,$$

 $e \partial e f^+ = \max(f, 0), f^- = -\min(f, 0).$

Свойство 7 (Свойства интеграла).

- (1) Линейность: $\int (af + bg)d\mu = a \int f d\mu + b \int g d\mu$ для $a,b \in \mathbb{R}$.
- (2) Монотонность: Если $f \leq g$ п.в., то $\int f d\mu \leq \int g d\mu$.
- (3) **Аддитивность**: Если $A \cap B = \emptyset$, то $\int_{A \cup B} f d\mu = \int_A f d\mu + \int_B f d\mu$.
- $(4) | \int f d\mu | \le \int |f| d\mu.$
- (5) Echu f = g n.e., mo $\int f d\mu = \int g d\mu$.

Теорема 14 (Критерий интегрируемости (лемма о сходимости ряда)). Функция $f \in \mathcal{L}^1(X, \mu)$ тогда и только тогда, когда существует последовательность **простых** функций $\{s_n\}$ такая, что:

- (i) $s_n \to f$ **n.s.**
- (ii) $|s_n| \leq |f| \ n.e.$
- (iii) Ряд $\sum_{n=1}^{\infty} \int_X |s_n s_{n-1}| d\mu$ сходится (полагаем $s_0 = 0$).

При этом $\int f d\mu = \lim \int s_n d\mu$.

Билет 13: Интеграл Лебега

Определение 32 (Интеграл Лебега). Интегралом Лебега от измеримой функции $f: X \to \mathbb{R} \cup \{\pm \infty\}$ называется:

$$\int_X f d\mu = \sup_{\substack{s - npoc mas \\ 0 \le s \le f}} \int s d\mu - \sup_{\substack{s - npoc mas \\ 0 < s < f^-}} \int s d\mu$$

при условии, что хотя бы один из супремумов конечен.

Свойство 8 (Свойства интеграла Лебега).

- (1) Линейность: $\int (af + bg)d\mu = a \int f d\mu + b \int g d\mu$.
- (2) Монотонность: Если $f \leq g$ п.в., то $\int f d\mu \leq \int g d\mu$.
- (3) Теорема Леви (монотонная сходимость): Если $0 \le f_n \uparrow f$ п.в., то $\int f_n d\mu \uparrow \int f d\mu$.
- (4) Теорема Лебега (мажорированная сходимость): Если $f_n \to f$ п.в., $|f_n| \le g$ п.в., $g \in \mathcal{L}^1$, то $\int f_n d\mu \to \int f d\mu$.
- (5) Лемма Фату: Если $f_n \ge 0$ п.в., то $\int \underline{\lim} f_n d\mu \le \underline{\lim} \int f_n d\mu$.

Теорема 15 (Связь интегралов Лебега и Римана).

(i) Если функция f **интегрируема по Риману** на отрезке [a,b], то она **интегрируема по Лебегу** на [a,b] (относительно меры Лебега), и значения интегралов совпадают:

$$\int_{a}^{b} f(x)dx = \int_{[a,b]} fdm.$$

- (ii) Обратное неверно: существуют функции, интегрируемые по Лебегу, но не интегрируемые по Риману. Пример: **функция Дирихле** $\mathbf{1}_{\mathbb{Q}\cap[0,1]}$. Она не интегрируема по Риману (разрывна всюду), но интегрируема по Лебегу: $\int_{[0,1]} \mathbf{1}_{\mathbb{Q}} dm = m(\mathbb{Q}\cap[0,1]) = 0$, так как \mathbb{Q} счетно.
- (iii) Критерий интегрируемости по Риману: f интегрируема по Риману на $[a,b] \Leftrightarrow f$ ограничена и множество ее точек разрыва имеет меру Лебега нуль.

Билет 14: Канторово множество

Определение 33 (Канторово множество (стандартное)). Построение на [0,1]:

- 1. IIIar 0: $C_0 = [0,1]$.
- 2. Шаг 1: Удаляем среднюю треть (1/3,2/3). Остается $C_1 = [0,1/3] \cup [2/3,1]$.
- 3. Шаг 2: Удаляем средние трети оставшихся интервалов: (1/9,2/9) и (7/9,8/9). Остается $C_2 = [0,1/9] \cup [2/9,1/3] \cup [2/3,7/9] \cup [8/9,1]$.
- 4. Продолжаем процесс: На шаге n имеем 2^n замкнутых интервалов длины 3^{-n} , удаляем среднюю треть каждого. Получаем C_n .

Канторово множество $C = \bigcap_{n=0}^{\infty} C_n$.

Свойство 9 (Свойства канторова множества).

- (1) C **непусто**: Cодержит все концы удаляемых интервалов (0,1,1/3,2/3,1/9,2/9,7/9,8/9,...).
- (2) C замкнуто: Как пересечение замкнутых множеств C_n .
- (3) С **совершенно**: Замкнуто и не имеет изолированных точек (любая точка предельная).
- (4) C нигде не плотно: Eго замыкание $\overline{C} = C$ не содержит интервалов (внутренность nycma).
- (5) **Мера Лебега**: $m(C_n) = (2/3)^n$, так как на каждом шаге удаляется треть длины. Тогда $m(C) = \lim_{n \to \infty} m(C_n) = \lim_{n \to \infty} (2/3)^n = 0$.
- (6) **Мощность**: $|C| = \mathfrak{c}$ (континуум). Доказательство: Каждой точке $x \in C$ соответствует последовательность выборов (левая или правая треть на каждом шаге), т.е. элемент $\{0,1\}^{\mathbb{N}}$, мощность которого \mathfrak{c} . Биекция: $x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$, где $a_k \in \{0,2\}$.
- (7) **Несчетность** (следует из мощности \mathfrak{c}).
- (8) Все точки C являются точками конденсации (каждая окрестность содержит несчетно много точек C).

Билет 15: Пространство L^1

Определение 34 (Банахово пространство $L^1(X,\mu)$). Пусть (X,\mathcal{M},μ) — пространство с мерой. Рассмотрим множество всех **интегрируемых** функций $f: X \to \mathbb{R}$ (т.е. $\int |f| d\mu < \infty$).

Факторизуем его по отношению эквивалентности: $f \sim g$ если f = g n.в.

Пространство $L^1(X,\mu)$ — это множество **классов эквивалентности** интегрируемых функций.

Норма в L^1 : $||f||_1 = \int_X |f| d\mu$.

Основные свойства:

- (1) L^1 **полное нормированное пространство** (Банахово).
- (2) **Линейность**: $\|\alpha f\|_1 = |\alpha| \|f\|_1$, $\|f + g\|_1 \le \|f\|_1 + \|g\|_1$.
- (3) $||f||_1 = 0 \Leftrightarrow f = 0 \text{ n.e.}$
- (4) **Теорема Рисса-Фишера**: L^1 **полно** (любая фундаментальная последовательность сходится κ элементу L^1).
- (5) **Плотные множества**: Непрерывные финитные функции; Простые интегрируемые функции; Ступенчатые функции (если $X \subset \mathbb{R}^n$).

Билет 16: Пространство L^2

Определение 35 (Гильбертово пространство $L^2(X,\mu)$). Факторизуем по отношению f=g n.s.

Пространство $L^2(X,\mu)$ — множество классов эквивалентности таких функций.

Скалярное произведение: $\langle f,g\rangle = \int_X f\overline{g}d\mu \ (\partial \Lambda R: \int fgd\mu).$

Норма: $||f||_2 = \sqrt{\langle f, f \rangle} = (\int |f|^2 d\mu)^{1/2}$.

Основные свойства:

- (1) L^2- полное пространство со скалярным произведением (Гильбертово).
- (2) Неравенство Коши-Буняковского: $|\langle f,g \rangle| \leq \|f\|_2 \|g\|_2$.
- (3) Теорема Pucca- Φ ишера: L^2 полно.
- (4) **Плотные множества**: Те же, что и в L^1 (непрерывные финитные, простые, ступенчатые).
- (5) Сходимость в среднем квадратичном: $f_n \to f$ в L^2 означает $||f_n f||_2 \to 0$.

Определение 36 (Всюду плотное множество). Подмножество D топологического пространства Y называется всюду плотным, если его замыкание $\overline{D} = Y$, т.е. любая точка $y \in Y$ является пределом некоторой последовательности точек из D.

Билет 17: Ортогональные системы в L^2

Определение 37 (Ортогональная система). Система функций $\{\phi_n\}_{n=1}^{\infty} \subset L^2(X,\mu)$ называется ортогональной, если $\langle \phi_n, \phi_m \rangle = 0$ для всех $n \neq m$.

Определение 38 (Ортонормированная система (ОНС)). Ортогональная система называется ортонормированной, если $\|\phi_n\|_2 = 1$ для всех n, m.e. $\langle \phi_n, \phi_m \rangle = \delta_{nm}$.

Определение 39 (Ряд Фурье). Пусть $\{\phi_n\}$ — ОНС в $L^2(X,\mu)$, $f \in L^2(X,\mu)$. Рядом Фурье функции f по системе $\{\phi_n\}$ называется ряд:

$$f \sim \sum_{n=1}^{\infty} c_n \phi_n$$
, $r \partial e \ c_n = \langle f, \phi_n \rangle = \int_X f \overline{\phi_n} d\mu$.

Коэффициенты c_n называются **коэффициентами Фурье**.

Пример 6 (Тригонометрическая система). *На* $X = [-\pi, \pi]$ *с мерой Лебега, нормированной:* $d\mu = \frac{dx}{2\pi}$.

Система функций:

$$\phi_0(x) = 1$$
, $\phi_n(x) = \cos(nx)$, $\psi_n(x) = \sin(nx)$ $(n = 1, 2, 3, ...)$

Не ортонормирована.

Стандартная ортонормированная тригонометрическая система:

$$\frac{1}{\sqrt{2\pi}}$$
, $\frac{\cos(nx)}{\sqrt{\pi}}$, $\frac{\sin(nx)}{\sqrt{\pi}}$ $(n = 1, 2, 3, \dots)$

Или в комплексном виде на $[-\pi,\pi]$ с $d\mu = \frac{dx}{2\pi}$:

$$\phi_n(x) = e^{inx} = \cos(nx) + i\sin(nx) \quad (n \in \mathbb{Z}).$$

Тогда $\langle \phi_n, \phi_m \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)x} dx = \delta_{nm}.$

Билет 18: Ряды Фурье

Теорема 16 (Равенство Парсеваля). Пусть $\{\phi_n\}$ — ортонормированная система в $L^2(X,\mu)$. Следующие условия эквивалентны:

- (i) Система $\{\phi_n\}$ полна (замыкание ее линейной оболочки совпадает с L^2).
- (ii) Для любой $f \in L^2$: $||f||_2^2 = \sum_{n=1}^{\infty} |c_n|^2$ (равенство Парсеваля), где $c_n = \langle f, \phi_n \rangle$.
- (iii) Ряд Фурье f сходится κ f в L^2 : $\|f \sum_{k=1}^n c_k \phi_k\|_2 \to 0$.

Определение 40 (Разложение по базису Фурье). Если ОНС $\{\phi_n\}$ полна, то она образует ортонормированный базис в L^2 . Любая функция $f \in L^2$ разлагается в ряд Фурье, сходящийся к ней в L^2 :

$$f = \sum_{n=1}^{\infty} c_n \phi_n, \quad c_n = \langle f, \phi_n \rangle,$$

zде равенство понимается в смысле cxodumocmu в L^2 .

Билет 19: Вейвлеты

Определение 41 (Вейвлет (всплеск)). **Вейвлетом** (всплеском) называется функция $\psi \in L^2(\mathbb{R})$, удовлетворяющая следующим условиям (часто):

- (i) **Нулевое среднее**: $\int_{-\infty}^{\infty} \psi(x) dx = 0$.
- (*ii*) **Нормированность**: $\|\psi\|_2 = 1$.
- (iii) Допускает порождающую ортонормированную систему: Система функций

$$\psi_{j,k}(x) = 2^{j/2}\psi(2^jx - k), \quad j,k \in \mathbb{Z}$$

образует ортонормированный базис в $L^2(\mathbb{R})$.

Свойство 10 (Основные свойства вейвлетов).

- Локализация: Вейвлеты хорошо локализованы и в времени (пространстве), и в частоте (в отличие от синусоид Фурье, локализованных только в частоте).
- **Мультимасштабный анализ**: Позволяют анализировать сигналы на разных масштабах (частотах) и в разных положениях.
- Ортогональность: $\langle \psi_{j,k}, \psi_{m,n} \rangle = \delta_{jm} \delta_{kn}$.
- Эффективность: Быстрые алгоритмы разложения (быстрое вейвлетпреобразование).

Пример 7 (Виды вейвлетов).

• Вейвлет Хаара: Простейший вейвлет с компактным носителем.

$$\psi(x) = \begin{cases} 1, & 0 \le x < 1/2 \\ -1, & 1/2 \le x < 1 \\ 0, & unaue \end{cases}$$

- **Вейвлет Добеши (Daubechies)**: Семейство гладких вейвлетов с компактным носителем.
- **Вейвлет Мейера (Meyer)**: Гладкий вейвлет с бесконечным носителем, хорошей локализацией в частоте.
- Мексиканская шляпа (Ricker wavelet): $\psi(x) = \frac{2}{\sqrt{3}\pi^{1/4}}(1-x^2)e^{-x^2/2}$.

Замечание 3 (Сравнение с преобразованием Фурье).

- Фурье: Идеально для периодических/стационарных сигналов. Плохо локализован во времени (не показывает когда произошло событие).
- Вейвлеты: Идеально для нестационарных сигналов, локальных особенностей (разрывы, всплески). Показывают и частоту, и время события. Эффективны для сжатия данных.

Пример 8 (Применение вейвлетов).

- Сжатие изображений (JPEG 2000).
- Очистка сигналов от шумов (вейвлет-пороги).
- Анализ временных рядов (финансы, геофизика).
- Распознавание образов.
- Решение дифференциальных уравнений.