

GOING IMPERATIVE

PURE VS. IMPURE FEATURES

• Pure features

- Functional abstraction/composition
- Basic types booleans, numbers
- Structured types tuples, records, sums, lists
- Forms the backbone of most languages

Impure features

- Assignment to mutable variables reference cells, arrays, etc.
- Input/output of files
- Non-local transfer of controls jumps, exception handling, etc.
- Also called "side effects," in most practical languages

A Typical Imperative Program

• Factorial of n:

```
int factorial(int n) {
  int x := 1;
  while (n>1) do
       x := x * n;
       n := n -1;
  endwhile;
  return x;
}
```

IMPERATIVE FEATURES

- Variable references and assignments
 - x := 1
 - x denotes a memory location (a reference) which stores value 1
- Sequencing

```
x := x * n;

n := n - 1
```

- A sequence of commands
- Procedure composition
- Recall in lambda-calculus: function composition
 - E.g. (\p. p tru) (\b. b v w)
- Loops
 - while (n>1) do ...

REFERENCES AND ASSIGNMENTS

- In pure lambda calculus, variable x is mapped to a value, e.g., 1 (or \w.w w) directly.
- In imperative lambda calculus (or lambda with references), we have a variable y whose value is a reference (or pointer/address) to a mutable memory cell which currently stores 1.
 - E.g. $y \rightarrow 0x0000ffff$, $0x0000ffff \rightarrow 1$
- To assign another value to y:
 - y := 5
- To dereference y:
 - !y gives the current content 5.
- To create a new reference y (allocation):
 - y = ref 1.

(at this point y is mapped to a new address which contains 1)

SIMPLY-TYPED LAMBDA CALCULUS WITH REFERENCES (SYNTAX)

```
e ::=
          X
        | \mathbf{x} : \mathbf{t} . \mathbf{e}
        (e1 e2)
        |  let x = e1 in e2
        l ref e
        | !e
        | e1 := e2
        | () |
v :=
         \mathbf{x}:t.e
        | () |
```

Expressions:

variables
abstraction
application
let expression
reference creation
dereference
assignment
store location
unit (constant)

Values:

abstraction value store location value unit value

REFERENCES (MACHINE STATE)

• Extend the Op semantics with "memory store":

$$M := . \mid M, l \mapsto v$$

M is a partial function from location to values;

l is a location that indexes into the store M.

• Evaluation rules now have this form:

$$(M, e) \rightarrow (M', e')$$

- o (M, e) is a "Machine state".
- Define $M[l \mapsto v]$ (update of store):

$$\begin{split} .[l \mapsto v] &= l \mapsto v \\ (M, \ l' \mapsto v')[l \mapsto v] &= M, \ l \mapsto v \qquad \text{if } l = l' \\ &\quad \text{or } M, \ l' \mapsto v', \ l \mapsto v \qquad \text{if } l \ ! = l' \end{split}$$

References (Operational Semantics)

$$\frac{(M, e_{1}) \to (M', e_{1}')}{(M, (e_{1} e_{2})) \to (M', (e_{1}' e_{2}))} (E-App1) \qquad \frac{(M, e_{2}) \to (M', e_{2}')}{(M, (v_{1} e_{2})) \to (M', (v_{1} e_{2}'))} (E-App2)$$

$$\frac{(M, e_{1}) \to (M, e_{1}) \to (M, e_{1}[v_{2}/x])}{(M, e_{1}) \to (M', e_{1}')} (E-AppAbs)$$

$$\frac{(M, e_{1}) \to (M', e_{1}')}{(M, let x = e_{1} in e_{2})) \to (M', let x = e_{1}' in e_{2})} (E-Let1)$$

$$\frac{(M, e_{1}) \to (M', e_{1}')}{(M, let x = v_{1} in e_{2})) \to (M', let x = e_{1}' in e_{2})} (E-Let2)$$

REFERENCES (OPERATIONAL SEMANTICS, CONT'D)

$$\frac{(M,e) \rightarrow (M',e')}{(M,ref\ e) \rightarrow (M',ref\ e')} \ (E-Ref) \qquad \frac{1 \not\in dom(M)}{(M,ref\ v) \rightarrow ((M,l\mapsto v),l)} \ (E-RefV)$$

$$\frac{(M,e) \rightarrow (M',e')}{(M,!e) \rightarrow (M',!e')} \ (E-DeRef) \qquad \frac{(M,!l) \rightarrow (M,M(l))}{(M,!l) \rightarrow (M,M(l))} \ (E-DeRefLoc)$$

$$\frac{(M,e_1) \rightarrow (M',e_1')}{(M,e_1\coloneqq e_2) \rightarrow (M',e_1'\coloneqq e_2)} \ (E-Assign1) \qquad \frac{(M,e_2) \rightarrow (M',e_2')}{(M,v_1\coloneqq e_2) \rightarrow (M',v_1\coloneqq e_2')} \ (E-Assign2)$$

$$\frac{(M,l\coloneqq v) \rightarrow (M[l\mapsto v],())}{(M,l\coloneqq v) \rightarrow (M[l\mapsto v],())} \ (E-Assign)$$

REFERENCES (TYPING)

• We define the typing relation for memory store as Σ (or Si):

 $\Sigma ::= . \mid \Sigma, l : t$ (t is the type of value stored at l)

Our new typing judgment:

$$\Sigma$$
; $\Gamma \vdash e : t$

• Types: t ::= .. | unit | t ref

$$\frac{\Sigma; \Gamma | - x : \Gamma(x)}{\Sigma; \Gamma | - x : \Gamma(x)} \quad (T - Var) \qquad \frac{\Sigma; \Gamma, x : t_1 | - e : t_2}{\Sigma; \Gamma | - \lambda x : t_1 . e : t_1 \to t_2} \quad (T - Abs)$$

$$\frac{\Sigma; \Gamma | - e_1 : t_1 \to t_2 \quad \Sigma; \Gamma | - e_2 : t_1}{\Sigma; \Gamma | - e_1 \quad e_2 : t_2} \quad (T - App) \qquad \frac{\Sigma; \Gamma | - e : t}{\Sigma; \Gamma | - e : t} \quad (T - Unit)$$

$$\frac{\Sigma(1) = t}{\Sigma; \Gamma | - 1 : t \text{ ref}} \quad (T - Loc) \qquad \frac{\Sigma; \Gamma | - e : t}{\Sigma; \Gamma | - ref} \quad (T - Ref)$$

$$\frac{\Sigma; \Gamma | - e : t \text{ ref}}{\Sigma; \Gamma | - e : t} \quad (T - Assign) \qquad 10$$

SEQUENCE

- Assignment returns unit type: doesn't seem to be useful!
- Sequence gives a string of state changes:

$$x := 3; y := 2; z := 1; ...$$

Syntax:

$$e ::= ... \mid e_1 ; e_2$$

• Evaluation:

$$\frac{(M, e_1) \to (M', e_1')}{(M, e_1; e_2) \to (M', e_1'; e_2)} (E-Seq1) \frac{(M, (); e) \to (M, e)}{(M, (); e) \to (M, e)} (E-Seq2)$$

$$\frac{\Sigma; \Gamma \mid -e_1 : \text{unit} \quad \Sigma; \Gamma \mid -e_2 : t}{\Sigma; \Gamma \mid -e_1; e_2 : t} \quad (T - Var)$$

EXAMPLE EVALUATIONS

Program:

```
let x = ref 3 in
  let y = x in
  x := (!x) +1;
  !y
```

```
(., let x = ref 3 in
   let y = x in
    x := (!x) + 1;
   y) \rightarrow
(1 \ 3, let x = 1 in)
                let y = x in
                x := (!x) + 1;
               !y) \rightarrow
(1.3, let y = 1 in)
               1 := (!1) + 1;
                !y) \rightarrow
(1 \ 3, 1 := (!1) + 1; !1) \rightarrow
(1 \ 3, 1 := 3 + 1; !1) \rightarrow
(1 \ 3, 1 := 4; !1) \rightarrow
(14, (); !1) \rightarrow (14, !1) \rightarrow (14, 4)
```

Type Safety

Definition: A store M is well typed under typing context Γ and store typing Σ , written as

$$\Sigma$$
; $\Gamma \vdash M$,

if $dom(M)=dom(\Sigma)$ and Σ ; $\Gamma \vdash M(l) : \Sigma(l)$ for all $l \in dom(M)$.

Lemma 1 (weakening). If Σ ; $\Gamma \vdash e : t$, and $l \not\in Dom(\Sigma)$, then Σ , l : t; $\Gamma \vdash e : t$.

Proof: By induction on the derivation of Σ ; $\Gamma \vdash e$: t

Following says replacing the content of a cell with a new value of appropriate type doesn't change the type of the store.

Lemma 2. If Σ ; $\Gamma \vdash M$, $\Sigma(l) = t$, Σ ; $L \vdash v$: $L \vdash v$: $L \vdash v$: $L \vdash M[l \mapsto v]$.

Proof: Immediate from the above definition of store typing.

Type Safety (Cont'd)

Preservation Theorem. If $\Sigma;\Gamma \vdash e:t, \Sigma;\Gamma \vdash M$, and $(M, e) \rightarrow (M', e')$, then for some $\Sigma' \supseteq \Sigma$, $\Sigma';\Gamma \vdash e':t, \Sigma';\Gamma \vdash M'$.

 $(\Sigma'\supseteq\Sigma \ means\ \Sigma' \ agrees\ with\ \Sigma\ on\ all\ the\ old\ locations.)$ Proof: Exercise.

Progress Theorem. If e is closed and well-typed (i.e. Σ ; $\cdot \vdash$ e : t for some Σ and t), then either e is a value or for any store M such that Σ ; $\cdot \vdash$ M, there exists an expression e' and store M', such that (M, e) \rightarrow (M', e').

Proof: Exercise.

WHILE LOOP

• Loops are essential in imperative programs:

while
$$(!n>1)$$
 do
 $x := !x * !n;$
 $n := !n -1$

Syntax:

$$e:= \dots$$
 | while e1 do e2

• Evaluation:

$$\frac{}{(M, \text{ while } e_1 \text{ do } e_2) \rightarrow (M, \text{ if } e_1 \text{ then } (e_2; \text{ while } e_1 \text{ do } e_2) \text{ else } ())}} \text{ (E - While)}$$

$$\frac{\Sigma; \Gamma \mid -e_1 : \text{bool } \Sigma; \Gamma \mid -e_2 : \text{unit}}{\Sigma; \Gamma \mid -\text{while } e_1 \text{ do } e_2 : \text{unit}}$$
 (T - While)

FACTORIAL (IMPERATIVE STYLE)

```
let factorial =
 \lambda n. let m = ref n
       in
         let x = ref 1
         in
          (while (!m > 1) do
              x := !x * !m;
              m := !m - 1);
          !x
 in factorial 10
• The above program computes 10!
```

EXCEPTION HANDLING

- Real world programs need to deal with errors and exceptions.
- When exception happens, we can
 - 1. Abort the program, or
 - 2. Transfer control to an exception handler defined in the program
- We will look at this two cases in turn and then refine both mechanisms to allow extra programmer defined data to be passed from exception sites to handlers.

RAISING EXCEPTION AND ABORT THE PROGRAM

- We add a new expression error, which aborts the evaluation of the whole program.
- Syntax:

• Evaluation:

$$\frac{}{\text{error e} \rightarrow \text{error}} \text{ (E-AppErr1)} \qquad \frac{}{\text{v error} \rightarrow \text{error}} \text{ (E-AppErr2)}$$

When exceptions happens, evaluation return error itself. **error** is only an expression and **not** a **value** so above two rules don't overlap:

 $(x: nat. 0) error \rightarrow error$

We can think of this as "unwinding" application call stack, discarding intermediate computations.

RAISING EXCEPTION (TYPING)

```
\frac{}{\Gamma \text{l- error}: t} (T-Error)
```

- t can be any type:
 - (\x:bool . x) error error: bool
 - ($\ximes x$:bool . x) (error true) error: bool \rightarrow bool
- This breaks the uniqueness lemma!
 - Solutions: subtyping, or polymorphic types (introduced later)

HANDLING EXCEPTION

• Syntax:

 $| \text{ try } e_1 \text{ with } e_2$

(trap errors)

• Evaluation:

$$\frac{}{\text{try v with e} \rightarrow \text{v}} \text{ (E-TryV)}$$

 $\frac{}{\text{try error with e } \rightarrow \text{e}} \text{ (E - TryError)}$

$$\frac{e_1 \rightarrow e_1'}{\text{try } e_1 \text{ with } e_2 \rightarrow \text{try } e_1' \text{ with } e_2} \text{ (E-Try)}$$

$$\frac{\Gamma|-e_1:t \ \Gamma|-e_2:t}{\Gamma|-\text{try } e_1 \text{ with } e_2:t} \ (T-\text{Try})$$

Raising Exceptions with Values

• It's sometimes useful to pass values from the error site to the handler: e.g.,

raise RUN_TIME_ERR

where RUN_TIME_ERR can be a complex structure.

Syntax:

e::= ...

raise e (raise exception)

Evaluation:

$$\frac{}{(\text{raise v}) \text{ e } \rightarrow \text{raise v}} \quad \text{(E-AppRaise1)} \quad \frac{}{\text{v}_1 \text{ (raise v}_2)} \rightarrow \text{raise v}_2 \quad \text{(E-AppRaise2)}$$

$$\frac{e \rightarrow e'}{\text{raise } e \rightarrow \text{raise } e'} \quad \text{(E-Raise)} \quad \frac{}{\text{raise } (\text{raise } v) \rightarrow \text{raise } v} \quad \text{(E-RaiseRaise)} \quad 21$$

RAISING EXCEPTIONS WITH VALUES (CONT'D)

$$\frac{}{\text{try v with e} \rightarrow \text{v}} \quad \text{(E-RaiseV)} \quad \frac{}{\text{try raise v with e} \rightarrow \text{e v}} \quad \text{(E-TryRaise)}$$

$$\frac{e_1 \rightarrow e_1'}{\text{try } e_1 \text{ with } e_2 \rightarrow \text{try } e_1' \text{ with } e_2} \quad \text{(E-Try)}$$

$$\frac{\Gamma \mid -e : t_{exn}}{\Gamma \mid -raise \; e : t} \quad \text{(T-Raise)} \qquad \frac{\Gamma \mid -e_1 : t \quad \Gamma \mid -e_2 : t_{exn} \to t}{\Gamma \mid -try \; e_1 \; \text{with} \; e_2 : t} \quad \text{(T-Try)}$$

SEVERAL CHOICES OF T_{EXN}

- $oten t_{exn} = nat:$
 - Numeral error code (similar to errno).
 - 0 being success.
 - Need to look up a table for the code.
- \bullet $t_{exn} = string$:
 - Avoids look-up
 - Display a message
 - Handler might have to parse the string

- $\begin{array}{cccc} \bullet & t_{\rm exn} = <& {\rm divisionByZero:} & {\rm unit,} \\ & & {\rm overflow:} & {\rm unit,} \\ & & {\rm fileNotFound:} & {\rm string,} \\ \end{array}$
 - Labeled Variant type
 - Allow handler to distinguish between different type of exceptions
 - Different except can carry different type of information
 - Inflexible: not programmer-defined
- Extensible variant type: exn (in ML)
- Java Exception Class: using subclasses
 - Exception extends Throwable
 - Any instance of Exception is a userdefined exception class