OLABISI ONABANJO UNIVERSITY, AGO-IWOYE

DEPARTMENT OF MATHEMATICAL SCIENCES

2005/2006 HARMATTAN SEMESTER EXAMINATION

COURSE CODE:

MAT 101

COURSE TITLE:

Time: 2hrs

INSTRUCTION:

· ANSWER FOUR QUESTIONS

- 1(a) The first two term of an A.P are -2 and 3. How many terms are needed for the sum to be equal to 306?
- 1(b) The first and the last term of G.P are 2 and 2048 respectively and the sum of the series is 2730. Find the number of term and the common ratio.
- 1(c) Expand $(x+3y)^6$ using binomial theorem and evaluate $(x+3y)^6$ at x=1, y=0.01
- 2(a) Given that A, B and C are non-empty sets, prove that
 - AU(BUC) = (AUB)UC
 - An(BUC) = (AnB)U(AnC)
- 2(b) In a class of twenty boys, sixteen plays hockey, ten plays soccer and two are not allow to play games. Find how many student that play
 - Soccer and hockey
 - Hockey only (11)
- 2(c) Expand $(1+x+x^2)^3$ in power of x
- 3(a) show that if n is a positive integer

$$1+2+3+4+...+n = n(n-1)$$

- 3(b) Show that for all positive integer value of 530 + 3n -1 is an integer multiple of 9.
- 3(c) Express in the form a + ib
 - (2+3i)2
 - (2+i)(3+2i)(3-2i)
- 4(a) State and prove De Moivre's theorem

(b) Given that Z, = u+ib; Z2 = c+id

4(0) Evaluate in the form a + ib

- . 2- i •
- (ii) 3-41 51-21

5(a) show that if a > 0, $y = ax^2 + bx + c$ has a minimum when x = -b/2a and determine the minimum value

The state of the s

The man destroy of the state of

5(b) if α and β are the roots of equation $ax^2 + bx + c = 0$, given that

Sink.

和本 KA

4 1817

and the

1150 261

· 13 to

Haraid.

2a

Show that

(i)
$$\alpha + \beta = -b/a$$

(ii)
$$\alpha\beta = c/a$$