COMP 330

Name: Yuhao Wu ID Number: 260711365

2018-9-24

DATE:9-24 LECTURE 9

Consider $L = \{a^n b^n | n \ge 0\}$, the language is not regular, as finite automata can't do unbounded counting.

Suppose that M recognizes L (M is a DFA)

We assume that M has k states, we take the word $a^m b^m \quad (m > k)$, according to the pigeon hole theorem, such a string must hit the same state twice as it has more "a" than the number of states.

Suppose that there is such a loop with length k, then we can say that the word $a^{m+k}b^m - a^{m+2k}b^m - a^{m+3k}b^m$ should also be accepted, while there are not in the language.

Pumping Lemma:

THEOREM: For any regular language L, $\exists p > 0$, such that $\forall w \in L, |w| \geq p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and $|xy| \leq P, |y| \geq 1$,

then we can say that $\forall i \in \mathbb{N}, xy^iz \in L$

NOTE: x, y could be ε

REMARK:

- L is regular $\implies L$ can be pumped
- L can't be pumped $\implies L$ is not regular

Contrapositive Version:

Suppose that $L \in \Sigma^*$, such that, $\forall p > 0, \exists w \in L$ with $|w| \geq P$ such that $\forall x, y, z \in \Sigma^*$ such that w = xyz and $|xy| \leq P, |y| \geq 1, \exists i \in \mathbb{N}, xy^iz \notin L$, then, we can say L is not regular.

We can consider it as a game: Demon: \forall Me: \exists

- (1): Demon chooses a random number p, I won't know what he will choose
- (2): I choose a string w with |w| > p, this |w| tends to be represented in terms of p, which means I do operation according to Demon's choice
- (3): Demon choose x, y, z randomly, with $|xy| \le P, |y| \ge 1$
- (4): I choose i, so that $xy^iz \notin L$

Yuhao Wu 260711365 COMP 330

EXAMPLE: $L = \{a^n b^n | n \ge 0\}$

- Demon choose number p
- I will choose word $a^p b^p$, which is obviously in the language
- as Demon has to choose x, y, z randomly, with $|xy| \le P, |y| \ge 1$, so his xy must contains "a" only, suppose |y| = k
- I choose i=2, then the $xy^2z=a^{p+k}b^p$, obviously, $a^{p+k}b^p\notin L$

Some tricks:

L may be hard to pump.

- If R is a regular language, then \overline{R} is a regular language (as R can be recognized by a DFA, then we just need to change the accept state into decline state and change the decline state into the accept state)
- If R is a regular language and L is a regular language then $R \cap L$ is a regular language. (as union is regular, thus we can use union and complement as well as de morgen's law to prove intersection is regular as well)

EXAMPLE: $L = \{a^m b^n | m \neq n\}$

Suppose that L is regular, then \bar{L} is regular. Then $\bar{L} \cap a^*b^* = \{a^nb^n|n \geq 0\}$ is regular, and this is not regular.

DATE:9-26 LECTURE 10

EXAMPLE 1

$$L = \{a^{2^n} | a, aa, aaaa, \ldots\}$$

- Demon choose number p
- I choose $|w| = 2^m > p$, obviously a^{2^m} is in the language L
- as Demon has to choose x, y, z randomly, with $|xy| \le p, |y| \ge 1$, so his $|y| \le P$
- I choose i=2, then the $xy^2z=a^{2^m}\cdot a^{|y|}=a^{2^m+|y|}$. So, $|xy^2z|=2^m+|y|\leq 2^m+p<2^m+2^m=2^{m+1}$ And we know that $|xy^2z|>2^m$, so xy^2z is not in L

EXAMPLE 2

$$L = \{a^q | q \text{ is a prime number}\}$$

- Demon choose number p
- I choose |w| = n > p, where n is prime number as well. obviously a^n is in the language L
- as Demon has to choose x, y, z randomly, with $|xy| \le p, |y| \ge 1$, so his $y = a^k$ where $0 < k \le p$
- Now, $xy^iz = a^{n+(i-1)k}$, so I choose i = n+1, then we have $xy^iz = a^{n+(i-1)k} = a^{n+nk}$ which is not a prime.

Yuhao Wu 260711365 COMP 330

EXAMPLE 3

 $\Sigma = \{a, b\}$ $L = \{w | \text{the number of a is different from the number of b} \}$

- Demon choose number p
- I choose $w = a^p b^{p!+p}$. Obviously w is in the language L
- as Demon has to choose x, y, z randomly, with $|xy| \le p, |y| \ge 1$, so his $y = a^k$ where $0 < k \le p$
- Now, $xy^iz = a^{p+(i-1)k}b^{p!+p}$, so I choose $i = \frac{p!}{k} + 1$, then we have $xy^iz = a^{p!+p}b^{p!+p}$ which is not a prime.

OR:

 $\bar{L} = \{w | \text{the number of a is the same as the number of b} \}$

So, we can use $\bar{L} \cap a^*b^* = \{a^nb^n | n \ge 0\}$, which is not a regular language. So, L is not regular as well.

EXAMPLE 4

$$\Sigma = \{a, b\} \qquad L = \{a^i b^j | gcd(i, j) = 1\}$$

We will show \bar{L} is not regular.

- Demon choose number p
- I choose q > p+1 and q is a prime. Obviously $a^q b^q$ is in the language \bar{L}
- as Demon has to choose x, y, z randomly, with $|xy| \le p, |y| \ge 1$, so his $y = a^k$ where $0 < k \le p$
- Now, $xy^iz = a^{q+(i-1)k}b^q$, so I choose i=0, then we have $xy^iz = a^{q-k}b^q$ As $q-k>p+1-k\geq 1$ and q is a prime, so we have gcd(q-k,q)=1, so $xy^iz\notin \bar{L}$ Thus \bar{L} is not regular so is L