Logica e Modelli Computazionali

Limiti dei Linguaggi Regolari

Marco Console

Ingegneria Informatica e Automatica (Sapienza, Università di Roma)

Esercizio?

- Abbiamo definito un modello computazionale molto potente
 - Cosa possiamo farci in pratica?
- Idea 1: Usiamoli per riconoscere formule della logica proposizionale ben formate: D
 - Non è un problema banale, ci sono vari simboli da riconoscere ☺
- Idea 2: Iniziamo da un sottoproblema. Riconosciamo stringhe di parentesi ben formate
 - È necessario per riconoscere le formule della logica proposizionale
- Definizione. Una stringa s sull'alfabeto $\Sigma = \{(,)\}$ è una stringa di parentesi ben formata se
 - -s=() oppure
 - s = (p) e p è una stringa ben formata
- Definizione. Il linguaggio \mathcal{P} è l'insieme di tutte le stringhe di parentesi ben formate
- Esercizio (?). Definire un ϵ -ASFND A tale che $\mathcal{P} = L(A)$
 - Utilizzando la chiusura sotto concatenazione e star dei linguaggi regolari, A ci fornisce una buona parte dell'Idea 1!

Linguaggi Regolari

- Definizione. Un linguaggio \mathcal{L} è detto regolare se esiste un ASFD A tale che $L(A) = \mathcal{L}$
 - Un linguaggio è regolare se e solo se esiste un ASFD che lo riconosce
 - Equivalentemente, possiamo richiedere l'esistenza di un ASFND o di un ϵ -ASFND
- Domanda 1. Sia \mathcal{L} un qualunque linguaggio su un alfabeto Σ . È vero che esiste un ϵ -ASFND che riconosce \mathcal{L} ovvero $\mathcal{L} = L(A)$?
 - Equivalentemente, è vero che per ogni linguaggio esiste un automa che lo riconosce?
- Domanda 2. Come possiamo fornire una prova formale che dimostri la nostra risposta?
 - Se la risposta è sì, dobbiamo costruire un automa che riconosce il linguaggio
 - Se la risposta è no, dobbiamo mostrare che nessun automa riconosce il linguaggo
 - Tutti gli automi non lo riconoscono!!

Linguaggi NON Regolari

- Definizione. Un linguaggio \mathcal{L} è detto regolare se esiste un ASFD A tale che $L(A) = \mathcal{L}$
 - Un linguaggio è regolare se e solo se esiste un ASFD che lo riconosce
 - Equivalentemente, possiamo richiedere l'esistenza di un ASFND o di un ϵ -ASFND
- Domanda 1. Sia \mathcal{L} un linguaggio su un alfabeto Σ . È vero che esiste un ϵ -ASFND che riconosce \mathcal{L} ovvero $\mathcal{L} = \mathcal{L}(A)$?
- Domanda 2. Come possiamo fornire una prova formale che dimostri la nostra risposta?
- Lemma 1. Esiste un linguaggio \mathcal{L} per cui per ogni ASFD A abbiamo $L(A) \neq \mathcal{L}$
 - Per dimostrare Lemma 1 dobbiamo entrare ancora più in profondità nelle proprietà degli ASFD

Linguaggi Finiti

- Definizione. Un linguaggio \mathcal{L} è detto regolare se esiste un ASFD A tale che $L(A) = \mathcal{L}$
 - Un linguaggio è regolare se e solo se esiste un ASFD che lo riconosce
 - Equivalentemente, possiamo richiedere l'esistenza di un ASFND o di un ϵ -ASFND
- Nella nostra ricerca di un linguaggio non regolare, possiamo scartare linguaggi finiti infatti
- Lemma 2. Sia \mathcal{L} un linguaggio tale che $|\mathcal{L}| = n$ con $n \in \mathbb{N}$. Il linguaggio \mathcal{L} è regolare
- Prova. Data una stringa $s = c_1 c_2 \dots c_k$, costruiamo un ASFD $A = \langle \Sigma, Q, I, F, \delta \rangle$ tale che $L(A) = \{s\}$
 - $\ \Sigma = \{c_1, c_2, \dots, c_k\}; \ Q \ = \ \big\{q_1, q_2, \dots, q_k, q_{fin}, q_{fail}\big\}; \ I = q_1;$
 - $\delta(q_i, c_i) = q_{i+1}$ per ogni i = 1, ..., k-1
 - $\delta(q_i, c_j) = q_{fail}$ per ogni j = 1, ..., k 1 e $j \neq i$
 - $\delta(q_k, c_k) = q_{fin}$
 - $\delta(q_{fin}, c) = q_{fail}$ per ogni $c \in \Sigma$
- Il lemma è ora è una semplice conseguenza del fatto che se \mathcal{L}_1 e \mathcal{L}_2 sono linguaggi regolari allora anche $\mathcal{L}_1 \cup \mathcal{L}_2$ è un linguaggio regolare

Linguaggi Finiti – Esempio

• L'automa definito dal seguente linguaggio riconosce la stringa abbc sull'alfabeto $\{a, b, c\}$

II Pumping Lemma

- Intuizione: ogni stringa sufficientemente lunga di un linguaggio regolare di cardinalità infinita esibisce una struttura ricorrente, ovvero contiene una sottostringa che può essere ripetuta a volontà (pumped) ottenendo altre stringhe dello stesso linguaggio
- Lemma [Pumping Lemma]: Per ogni linguaggio regolare \mathcal{L} di cardinalità infinita, esiste una numero intero n tale che, per ogni $z \in L$ con $|z| \geq n$, esistono tre stringhe $u, v \in w$ (non necessariamente in \mathcal{L}) tali che le seguenti sono verificate:
 - -z = uvw
 - $-|u| \ge 0, |v| \ge 1, |w| \ge 0, e |uv| \le n,$
 - $-uv^iw \in L$ per ogni $i \geq 0$

II Pumping Lemma – Intuizione

- Intuizione 1: Se \mathcal{L} è regolare e di cardinalità infinita, esiste una costante $n \in \mathbb{N}$ tale che, per ogni $z \in L$ con $|z| \ge n$, esiste un prefisso uv di z con $|v| \ge 1$ e $|uv| \le n$ tale che una sottostringa v del prefisso può essere ripetuta all'infinito
- Intuizione 2: Se £ è regolare e di cardinalità infinita, esiste un ciclo nel grafo indotto dall'automa che riconosce £. Se tale ciclo non esiste, il linguaggio definito è finito

Pumping Lemma – Esempio

$$L(A) = \{cb(ab)^n b \mid per n \ge 0\}$$

- In questo caso, n = 2, ovvero il prefisso ricorrente inizia dal secondo simbolo
- Stringa: s = cbabab,
- u = c, v = baba, w = b,
- Ogni stringa $c(baba)^i b$ è in \mathcal{L}

Pumping Lemma – Esempio

- In questo caso, n = 1 ovvero il prefisso ricorrente inizia dal primo simbolo
- Stringa: s = aaab,
- $u = \epsilon, v = a, w = aab,$
- Ogni stringa $a^i aaab$ è in \mathcal{L}

Dimostrazione del Pumping Lemma (1/5)

- Lemma [Pumping Lemma]: Per ogni linguaggio regolare \mathcal{L} di cardinalità infinita, esiste una numero intero n tale che, per ogni se $z \in L$ con $|z| \ge n$, esistono tre stringhe $u, v \in w$ (non necessariamente in \mathcal{L}) tali che le seguenti sono verificate:
 - -z = uvw
 - $|u| \ge 0, |v| \ge 1, |w| \ge 0, e |uv| \le n,$
 - $uv^iw \in L$ per ogni $i \ge 0$
- Dimostrazione. Sia $A = < \Sigma, Q, \delta, q_0, F >$ l'ASFD che riconosce \mathcal{L} , ovvero $\mathcal{L} = L(A)$. Procediamo a dimostrare che il valore n desiderato è uguale a |Q| + 1 (cardinalità del numero di stati di A).
 - Sia n = |Q| + 1
 - Sia $z \in \mathcal{L}$ una stringa di cardinalità maggiore di $|z| \ge n$.
 - Tale $z \in \mathcal{L}$ esiste inquanto $|\mathcal{L}| = \infty$ e $|\Sigma| < \infty$. Quindi, per ogni $k \in \mathbb{N}$ esiste $s \in \mathcal{L}$ tale che |s| > k
 - Per definizione, la computazione $A(z)=q_z^0,q_z^1,\ldots,q_z^{|z|}$ è accettante e quindi dove $q_z^{|z|}\in F$.
 - **–** ...

Dimostrazione del Pumping Lemma (2/5)

- Per definizione, la computazione $A(z) = q_z^0, q_z^1, ..., q_z^{|z|}$ è accettante e quindi dove $q_z^{|z|} \in F$.
- Assumiamo che la stringa z sia composta dai caratteri $z=c_1c_2\dots c_{|z|}$.
- Dato che |z| ≥ n = |Q| + 1, esiste almeno uno stato q nella sequenza A(z) che viene ripetuto due o
 più volte
 - Principio della piccionaia. Per ogni funzione $f: A \to B$ con |A| > |B| esistono $a_1, a_2 \in A$ tali che $f(a_1) = f(a_2)$
- Sia j il valore minimo per cui lo stato q_z^j viene ripetuto due o più volte nella sequenza A(z)
 - q_z^j è il primo stato di A(z) ad essere ad essere ripetuto
 - q_z^j compare per la prima volta in posizione j in A(z)

Dimostrazione del Pumping Lemma (2/5) – Esempio

- Supponiamo che z = aaaab e quindi |z| = 5 > 3 = |Q|
- La computazione associata è $e = (q_0, q_0, q_0, q_0, q_0, q_1)$
- Il valore j più piccolo per cui q_z^j in e si ripete è 1 e $q_z^j = q_0$

Dimostrazione del Pumping Lemma (3/5)

- Sia u la sottostringa $c_1c_2 \dots c_{j-1}$ di z (se j-1=0 allora $u=\epsilon$)
 - I primi j-1 simboli di z, cioè il prefisso che precede l'inizio della ripetizione in q_z^j
 - Ovviamente |u| < n essendo q_z^j il primo stato di A(z) che viene ripetuto
 - La sequenze $(q_z^1 \dots q_z^j)$ non contiene ripetizioni
 - Possono esserci al più |Q| stati nella sequenza e n = |Q| + 1 > |Q|
- Sia l > j il valore minimo tale che $q_z^l = q_z^j$ in A(z)
 - q_z^j appare in A(x) per la prima volta in posizione j e per la seconda volta in posizione l
 - Nessun altro stato è ripetuto fra q_z^1 a q_z^1 essendo q_z^j il primo stato ad essere ripetuto

Dimostrazione del Pumping Lemma (3/5) – Esempio

- Supponiamo che z = aaaab e quindi |z| = 5 > 3 = |Q|
- La computazione associata è $e = (q_0, q_0, q_0, q_0, q_0, q_1)$
- Il valore j più piccolo per cui q_z^j in e si ripete è 1 e $q_z^j = q_0$
- $u = \epsilon$ (stringa vuota) e il più piccolo valore l > j per $q_z^j = q_0$ si ripete è l = 2

Dimostrazione del Pumping Lemma (4/5)

- Sia v la sottostringa $c_i c_{i+1} \dots c_{l-1}$ di z e z = uvw
 - v è la sottostringa di z dal carattere j-esimo a quello (l-1)-esimo
 - Tale sottostringa è quella riconosciuta utilizzando la sequenza di stati che parte da q_z^j e arriva a $q_z^l=q_z^j$
- Osserviamo che $|uv| \le n$
 - Nella sequenza $(q_z^1 \dots q_z^l)$ c'è esattamente una ripetizione e n = |Q| + 1
- Definiamo A(q,s) con $q \in Q$ e $s \in \Sigma^*$ la computazione dell'automa $A' = \langle \Sigma, Q, q, F, \delta \rangle$ su s
 - La computazione dell'automa A ma con stato iniziale q invece di q_0
 - Chiaramente possiamo comporre le esecuzioni spostando lo stato iniziale
 - $A(q_0, ss') = A(ss')$ e $A(q_0, s)$ A(q', s') = A(ss') se q' è lo stato finale di $A(s) = A(q_0, s)$

Dimostrazione del Pumping Lemma (5/5)

- Osserviamo ora quanto segue
 - $A(q_0, u) = (q_z^1, ..., q_z^j)$
 - $A(q_z^j, v) = (q_z^j, \dots, q_z^l)$
 - $A(q_z^l, w) = (q_z^l, ..., q_z^{|z|}) \operatorname{con} q_z^{|z|}$ accettante
- Essendo $q_z^j = q_z^l = q_{loop}$ per costruzione, per ogni m > 0, la seguente identità è verificata

$$A(q_z^j, v^m) = \underbrace{(q_{loop}, \dots, q_{loop}, \dots, q_{loop}, \dots, q_{loop})}$$

m volte

- Possiamo concludere che ripetendo la sottostringa $oldsymbol{v}$ otteniamo ancora stringhe nel linguaggio
 - 1. $A(uv^m w) = A(q_0, u) \circ A(q_z^j, v^m) \circ A(q_z^l, w)$
 - 2. $A(uv^mw)$ è una esecuzione accettante essendo il suo stato finale $q_z^{|z|}$

Il Lemma desiderato è dunque dimostrato

Dimostrazione del Pumping Lemma (3/5) – Esempio

- Supponiamo che z = aaaab e quindi |z| = 5 > 3 = |Q|
- La computazione associata è $e = (q_0, q_0, q_0, q_0, q_1)$
- Il valore j più piccolo per cui q_i^j in e si ripete è 1 e $q_i^j = q_0$
- $u = \epsilon$ (stringa vuota) e il più piccolo valore l > j per $q_i^j = q_0$ si ripete nella sequenze è l = 2
- $\bullet \quad A(q_0,\epsilon) = (q_0),$
- $A(q_0, a^m) = (q_0, q_0, ..., q_0)$
- $A(q_0, aaab) = (q_0, q_0, q_0, q_0, q_1)$

Pumping Lemma – Esempio 1a, b q_0 b q_1 a, b q_2

- Sia \mathcal{L} il linguaggio definito dal seguente ASFD A in figura
- Sia n = 4 e s una qualunque stringa in L(A) con $|s| \ge 4$
- Pumping Lemma. s = uvw tale che $uv^m w \in L(A)$, per ogni m > 0
- In particolare possiamo assumere (differentemente dal caso precedente)
 - w = b; $u = \epsilon$; v =sottostringa di s composta da sole a
- **Esempio**. s = aaaaab
 - w = b; $u = \epsilon$; v = aaaaa
 - $uv^m w = (aaaaa)^m w \in L(A)$ per ogni m > 0
- Nota. u, v, w potrebbero essere diverse per stringhe diverse
 - Nessuno ci garantisce che il prefisso sia sempre lo stesso (vedo il prossimo esempio)

Pumping Lemma – Esempio 2

 q_4

- Sia £ il linguaggio definito dall'ASFD A in figura
- Sia n = |Q| + 1 = 5 e s una qualunque stringa in L(A) con $|s| \ge 5$
- Pumping Lemma. s = uvw tale che $uv^m w \in L(A)$, per ogni m > 0
- In particolare possiamo assumere
 - $w = \epsilon$; u = a; v =sottostringa a partire dal secondo simbolo
 - $w = \epsilon$; u = b; v =sottostringa a partire dal secondo simbolo
- **Esempio 1**. s = abbbb
 - $w = \epsilon$; u = a; v = bbbb
 - $uv^m w = a(bbbb)^m \in L(A)$ per ogni m > 0
- **Esempio 2**. s = baa
 - $w = \epsilon$; u = b; v = aa
 - $uv^m w = b(aa)^m \in L(A)$ per ogni m > 0

Pumping Lemma – Esempio

$$L(A) = \{cb(ab)^n b \mid per n \ge 0\}$$

- Sia £ il linguaggio definito dall'ASFD A in figura
- Sia n = |Q| + 1 = 6 e s una qualunque stringa in L(A) con $|s| \ge 6$
- Pumping Lemma. s = uvw tale che $uv^m w \in L(A)$, per ogni m > 0
- **Esempio 1**. s = cababb
 - w = b ; u = c; v = abab
 - $uv^m w = c(abab)^m c \in L(A)$ per ogni m > 0

Applicazioni del Pumping Lemma

Linguaggi Non regolari

- La nostra investigazione era partita dalla ricerca di un linguaggio non regolare
 - Sospettiamo che il linguaggio delle parentesi ben formate non lo sia...
- Il Pumping Lemma non ci serve per generare stringhe di un linguaggio
 - Potrebbe essere utilizzato anche per questo scopo ma ..
 - È uno strumento macchinoso e abbiamo altri strumenti per generare stringhe
 - Per generare una stringa ci basta esplorare l'automa che riconosce il linguaggio
- Il Pumping Lemma ci serve per dimostrare che un linguaggio non è regolare!!
 - Utilizzandolo con la dovuta accortezza ©
- Corollario. Sia \mathcal{L} r un linguaggio. Se non esiste $n \in \mathbb{N}$ con le proprietà del Pumping Lemma allora \mathcal{L} non è un linguaggio regolare
 - Non esiste un ϵ -ASFND A tale che $\mathcal{L} = L(A)$

Linguaggi non Regolari – Esempio 1

- Teorema. Il linguaggio $\mathcal{L} = \{a^k b^k | k \ge 0\}$ non è un linguaggio regolare
- Dimostrazione: Dimostrazione per assurdo. Assumiamo che l'enunciato sia falso e ricaviamo una contraddizione delle ipotesi
- 1. Si assuma, per assurdo, che £ sia regolare.
- 2. Supponiamo che $n \in \mathbb{N}$ sia il valore tale che per tutte le $s \in \mathcal{L}$ con $|s| \ge n$ esistano u, v, w tale che s = uvw, $|v| \ge 1$, $|uv| \le n$ e $uv^iw \in \mathcal{L}$, per ogni i > 0. (Pumping Lemma)
- 3. Sia $z=a^mb^m\in L$, con m>n (chiaramente |z|=2m>2n>n) allora esistono u,v e w tale che z=uvw, $|v|\geq 1$, $|uv|\leq n$ e $uv^iw\in L$ per ogni $i\geq 0$
- 4. Poiché m > n e poiché $|uv| \le n$, $u = a^l$ e $v = a^h$ per due interi positivi l e h con $l + h \le n$
- 5. Possiamo concludere che L contiene tutte le stringhe $a^l(a^h)^i a^{m-l-h} b^m$, per ogni i > 0,
- 6. Per i = 2, Punto 5 contraddice l'ipotesi che il linguaggio L sia $\{a^nb^n|n \ge 0\}$

Linguaggi non Regolari – Esempio 2

- Definizione. Una stringa s sull'alfabeto $\Sigma = \{(,)\}$ è una stringa di parentesi ben formata se
 - -s=() oppure
 - -s = (p) e p è una stringa ben formata
- Teorema. Il linguaggio delle parentesi ben formate non è un linguaggio regolare
- Dimostrazione: Dimostrazione per assurdo.
- 1. Si assuma, per assurdo, che £ sia regolare.
- 2. Supponiamo che $n \in \mathbb{N}$ sia il valore tale che per tutte le $s \in \mathcal{L}$ con $|s| \ge n$ esistano u, v, w tale che $s = uvw, |v| \ge 1, |uv| \le n$ e $uv^iw \in \mathcal{L}$, per ogni i > 0. (Pumping Lemma)
- 3. Sia $z = {m \choose i}^m \in L$, con m > n (chiaramente |z| = 2m > 2n > n) allora esistono $u, v \in w$ tale che $z = uvw, |v| \ge 1, |uv| \le n$ e $uv^iw \in L$ per ogni $i \ge 0$
- 4. Poiché m > n e poiché $|uv| \le n$, u = (l e v = (h per due interi positivi <math>l e h con $l + h \le n$
- 5. Possiamo concludere che *L* contiene tutte le stringhe $\binom{l}{h \cdot i} \binom{m-l-h}{m}$, per ogni i > 0,
- 6. Per i = 2, Punto 5 contraddice l'ipotesi che il linguaggio L il linguaggio delle parentesi ben formate

Linguaggi non Regolari – Strategia di Prova

- È possibile dimostrare che un linguaggio non è regolare usando la seguente strategia di prova
 - Ovviamente ce e sono altre
- Sia \mathcal{L} un linguaggio per cui vogliamo dimostrare che \mathcal{L} non è regolare
- 1. Si assuma, per assurdo, che £ sia regolare.
- 2. Supponiamo che $n \in \mathbb{N}$ sia il valore tale che per tutte le $s \in \mathcal{L}$ con $|s| \ge n$ esistano u, v, w tale che $s = uvw, |v| \ge 1, |uv| \le n$ e $uv^iw \in \mathcal{L}$, per ogni i > 0. (Pumping Lemma)
- 3. Sia z una specifica stringa in \mathcal{L} con |z| > n, allora esistono u, v e w tale che $z = uvw, |v| \ge 1$, $|uv| \le n$ e $uv^i w \in L$ per ogni $i \ge 0$
- 4. Dimostriamo che, comunque prese $u \in v$, per un qualche k > 0 $uv^k w$ non è in \mathcal{L}
- 5. Possiamo concludere che \mathcal{L} non possiede la proprietà definita dal Pumping Lemma e quindi non \mathcal{L} non è regolare.