Math 547: Introduction to Mathematical Statistics 2 Midterm Exam

1. Let X_1, \ldots, X_n be independent, identically distributed random variables, with the exponential density $f(x;\theta) = \theta e^{-\theta x}$, x > 0.

Obtain the maximum likelihood estimator $\hat{\theta}$ of θ . What is the asymptotic distribution of $\sqrt{n}(\hat{\theta} - \theta)$?

Show that $\hat{\theta}$ is biased as an estimator of θ .

What is the minimum variance unbiased estimator of θ ? Justify your answer carefully, stating clearly any results you use.

What is the MLE of $e^{-\theta}$? What is the limiting distribution of the MLE of $e^{-\theta}$ (after standardizing)?

2. Let X_1, \ldots, X_n be independent random variables with densities

$$f_{X_i}(x;\theta) = \begin{cases} e^{i\theta - x} & x \ge i\theta \\ 0 & x < i\theta. \end{cases}$$
 (1)

Prove that $T = \min_i(X_i/i)$ is a sufficient statistic for θ .

3. Let X_1, \ldots, X_n be independent, identically distributed random variables, with the exponential density $f(x; \theta) = e^{-(\theta - x)}, x > 0, -\infty < \theta < \infty$.

Let $X_{(1)} < \ldots < X_{(n)}$ be ordered sample, and define $Y_i = X_{(n)} - X_{(i)}$, $i = 1, \ldots, n-1$ and verify that the set (Y_1, \ldots, Y_{n-1}) is ancillary for θ .

Find the best unbiased estimator of θ^r .

4. Let X_1, \ldots, X_n be a random sample from a population with pmf

$$P_{\theta}(X=x) = \theta^x (1-\theta)^{1-x}, \quad x = 0 \text{ or } 1, \quad 0 \le \theta \le \frac{1}{2}$$
 (2)

Find the method of moments and the MLE of θ . Find the mean squared error for each of the estimators. Which is preferred? Justify your choice.

5. Let X_1, \ldots, X_n be independent and identically distributed with pdf $f(x; \theta) = \theta e^{-\theta x}$ for x > 0 and zero otherwise. Find an unbiased estimator of $e^{-\theta} = P(X \ge 1)$. Find a sufficient statistic for θ . Find the minimum variance unbiased estimator of $e^{-\theta}$. (Hint: Use the Rao-Blackwell technique.)