论文题目

You Only Watch Once: A Unified CNN Architecture for Real-Time Spatiotemporal Action Localization

论文作者

Okan Köpüklü*, Xiangyu Wei*, Gerhard Rigoll

Technical University of Munich, Germany

论文代码地址

https://arxiv.org/pdf/1911.06644.pdf https://github.com/wei-tim/YOWO

论文做法

1.整体网络图

2.提取特征部分

使用 3DCNN 获得前面帧的时间信息(3D 对时间信息 get 更有效)

使用 2DCNN 对关键帧提取空间信息(2D 对空间信息 get 更有效)

images → 3DCNN(3DResNet-101):提取时空信息

输入(3*D*H*W)→C_1*D*(H/32)*(W/32)→C_2(C_1*D)*(H/32)*(W/32)

images → 2DCNN(darknet-19):对关键帧提取空间信息

输入(3*H*W)**→**C_3*(H/32)*(W/32)

3.融合部分(对两部分特征=>通道融合(concat) + 注意力机制→特征聚合)

输入特征 concat

输入(C_2)*(H/32)*(W/32)+(C_3)*(H/32)*(W/32)→ C_4(C_2+C_3)*(H/32)*(W/32)

经过两次卷积对不同 C 和不同 D(最后的 C_4 肯定不同)做处理

输入 C_4*(H/32)*(W/32)→C_5*(H/32)*(W/32)[B]

对 B reshape 成 F(C_5*N((H/32)*(W/32))),F*F_T=M(C_5*N ** N*C_5)→M(C_5*C_5),其中 M_ij 是第 j 通道对第 i 通道的影响

 $M_T * F = (C_5 * N) \rightarrow reshape \rightarrow alpha * (C_5 * (H/32) * (W/32)) + [B] \rightarrow C_5 * (H/32) * (W/32)[C]$

对[C]做两次卷积→C_6*(H/32)*(W/32)[D]

4.卷积分类+框回归

- 一共有(H/32)*(W/32)个 cell,每个 cell 有 C_6 维度的信息,通过每个 cell 的 C_6 维度信息我们为这个 cell 预测 5 个 anchor
- 一个 anchor 是有框(4 个点)+这个框的 conf 以及这个框的类别的 softmax 组成(假设类别是 80 类,则是一个 80 维度的加和为 1 的向量) 最终要预测的是:(H/32)*(W/32)*5*[80+4+1]

最终效果

Method	Frame-mAP	Video-mAP		
		0.2	0.5	0.75
Peng w/o MR [24]	56.9	71.1	70.6	48.2
Peng w/ MR [24]	58.5	74.3	73.1	-
ROAD [32]	-	73.8	72.0	44.5
T-CNN [13]	61.3	78.4	76.9	_
ACT [17]	65.7	74.2	73.7	52.1
P3D-CTN [38]	71.1	84.0	80.5	_
TPnet [31]	-	74.8	74.1	61.3
YOWO (16-frame)	74.4	87.8	85.7	58.1

Table 5: Performance on dataset J-HMDB-21 and comparison with SOTA results by frame-mAP (%) under IOU threshold 0.5 and video-mAP (%) under different IOU thresholds.

Method	Frame-mAP	Video-mAP		
		0.1	0.2	0.5
Peng w/o MR [24]	64.8	49.5	41.2	-
Peng w/ MR [24]	65.7	50.4	42.3	-
ROAD [32]	-	_	73.5	46.3
T-CNN [13]	41.4	51.3	47.1	-
ACT [17]	69.5	-	77.2	51.4
MPS [1]	-	82.4	72.9	41.1
STEP [41]	75.0	83.1	76.6	-
YOWO (16-frame)	87.2	82.5	75.8	48.8