Probabilità e Statistica 27 maggio 2013

AVVERTENZE:

- 1. La prova dura 2 ore.
- 2. E' ammesso il solo utilizzo delle tavole presenti nel sito del corso.
- 3. Alla fine della prova si dovranno consegnare SOLO i fogli con il testo del compito e le soluzioni riportate in modo sintetico negli appositi spazi. NON si accetteranno fogli di brutta copia.
- 4. Il compito è considerato insufficiente se vi sono meno di 6 risposte esatte ai quesiti a risposta multipla.

COGNOME	NOME	MATDICOLA
	NOME	MAINICOLA

Quesiti a risposta multipla

- 1. Se in una tabella di frequenza per una variabile numerica con più di una modalità le frequenze assolute sono tutte uguali, allora
 - A la varianza può essere zero
 - B la media può essere zero
 - C lo scarto interquartile non è calcolabile
- 2. La funzione di ripartizione è sempre
 - A non negativa
 - B pari a uno
 - C strettamente crescente
- 3. Se A e B sono incompatibili allora necessariamente
 - A sono indipendenti
 - B $Pr(A \cap B) = 0$
 - $C \operatorname{Pr}(A \cup B) = 1$
- 4. Se due v.c., $X \sim \text{Bernoulli}(0.1)$ e $Y \sim \text{Bernoulli}(0.6)$, sono stocasticamente indipendenti, allora:

A
$$P(X = 1|Y = 0) = 0.6$$

B
$$P(X = 1|Y = 0) = 0.06$$

$$P(X = 1|Y = 0) = 0.1$$

5. Per una variabile aleatoria discreta Y a valori in $\{1,2,3\}$ quale delle seguenti espressioni è falsa?

A
$$Pr(Y < 2) = Pr(Y = 1)$$

B
$$Pr(Y \le 3.1) = 1$$

C
$$Pr(Y < 1) > 0$$

- 6. Se Y_1, \ldots, Y_n sono variabili casuali indipendenti, tutte di media μ e varianza σ^2 e n è sufficientemente grande, allora
 - A $\sum_{i} Y_{i}$ ha distribuzione $\mathcal{N}(n\mu, \sigma^{2})$
 - B \overline{Y} ha distribuzione $\mathcal{N}(\mu, \sigma^2/n)$
 - C \overline{Y} ha distribuzione approssimata $\mathcal{N}(\mu, \sigma^2/n)$
- 7. Un possibile risultato del comando rbinom(4, 4, 0.2) è
 - A 1300
 - B 3-120
 - $C\ 0.4096\ 0.1536\ 0.0256\ 0.0016$
- 8. Si associ al commando ppois(3, 2) il corrispondente risultato
 - A 3
 - B 0.1804
 - C 0.8571
- 9. La moda di una variabile statistica si può calcolare
 - A sempre
 - B solo per variabili quantitative
 - C per variabili quantitative e per variabili qualitative ordinali
- 10. Se la covarianza tra due v.c. X e Y è zero, allora necessariamente
 - A le due v.c. sono indipendenti
 - B $\mathbb{E}(X|Y=y) = \mathbb{E}(X), \forall y$
 - C le due v.c. sono incorrelate

1. È stato rilevato il numero settimanale di automobili assemblate in due filiali (A e B) di un'azienda nell'arco di un anno (44 settimane lavorative). Per ogni filiale vengono rappresentate le rispettive funzioni di ripartizione empiriche.

Si chiede di:

- (a) chiarire quali sono le unità statistiche, la numerosità della popolazione e le variabili rilevate;
- (b) associare ai seguenti diagrammi a scatola e baffi (I e II) le rispettive funzioni di ripartizione empiriche;

(c) completare la seguente tabella:

	A	В
Minimo		
Mediana		
Massimo		
Scarto interquartile		

(d) Sulla base di quanto osservato, quale delle due filiali risulta più efficiente?

- 2. La lunghezza in millimetri delle barre di metallo prodotte da una ditta ha distribuzione normale con media $\mu=495$ e varianza $\sigma^2=9$. Per contratto la lunghezza deve essere pari a 500mm, a meno di un margine di errore $\epsilon=6mm$.
 - (a) Si calcoli la probabilità che una barra sia conforme alle specifiche richieste.
 - (b) Qual è la probabilità che su 10 barre scelte a caso dalla produzione meno di 2 siano non conformi?

- 3. Siano X e Y due variabili casuali con densità congiunta $f(x,y)=k1_{(0,y)}(x)1_{(0,1)}(y)$.
 - (a) Si determini la costante di normalizzazione k.
 - (b) Si calcolino le densità marginali di X e Y.
 - (c) È vero che E(XY) = E(X)E(Y)?
 - (d) Si calcolino densità e valore atteso di X condizionato a Y=0.5.
 - (e) Si calcoli Pr(X + Y < 0.5).

4. Si scriva una funzione di R che approssimi usando un metodo Monte Carlo il seguente integrale:

$$\int_0^1 e^{-x} dx.$$

Si scriva l'enunciato e si dimostri l'importante teorema del calcolo delle probabilità su cui si basano i metodi Monte Carlo.