Machine Learning for Stock Index Prediction

Shi Kaiwen Directed Reading Program Presentation Mentor: Hyun Jong Kim Fall 2023

Agenda

- Initiative
- Data Processing
- Training
- Result
- Next Step

Stock index prediction can be tricky...

Nasdaq index drops today; how will it go tomorrow?

Maybe we can generate some "features"...

• "Trends": 1 if $\delta > 0$; 0 else

$$\delta = Close[t] - Close[t-1]$$

• Daily Returns (DR)

$$DR = \frac{Close[t] - Close[t-1]}{Close[t-1]} \cdot 100\%$$

• Simple Moving Averages (SMA(n)):

$$SMA_n = \frac{1}{n} \sum_{i=1}^n P_i$$

• ...

Start Training!

Approach 1: Bernoulli Naive Bayes

Approach 2: Single - Featured LSTM

Approach 3: Multi - Featured LSTM

	Date	Open	High	Low	Close	Trend
0	1971-02-05	100.000000	100.000000	100.000000	100.000000	1
1	1971-02-08	100.839996	100.839996	100.839996	100.839996	0
2	1971-02-09	100.760002	100.760002	100.760002	100.760002	0
3	1971-02-10	100.690002	100.690002	100.690002	100.690002	1
4	1971-02-11	101.449997	101.449997	101.449997	101.449997	1
9293	2007-11-30	2693.610107	2696.239990	2642.250000	2660.959961	0
9294	2007-12-03	2654.909912	2667.820068	2636.959961	2637.129883	0
9295	2007-12-04	2620.340088	2636.010010	2613.830078	2619.830078	1
9296	2007-12-05	2648.959961	2671.719971	2647.409912	2666.360107	1
9297	2007-12-06	2665.870117	2709.100098	2664.709961	2709.030029	0

Bernoulli did a decent job...

Some Simple Probabilistic thing...

Accuracy: 54.62%

Long Short Term Memories (LSTM)..

- Good for time-series datasets (e.g., stock prices)
- Use 2 things to predict:
 - Long-Term Memories
 - Short-Term Memories

What happened if we just try to predict one month...

But general, LSTM seem to be good

10 year & 1 year prediction

Is the graph the truth?

```
10 years:
```

```
percentage_equal = (df['trend1'] == df['trend2']).mean() * 100
percentage_equal
```

50.25989604158336

1 year:

```
percentage_equal = (df['trend1'] == df['trend2']).mean() * 100
percentage_equal
```

62.91666666666664

What if we add more features...

Conclusion so far:

- 1. Lot of things to learn when we try to "trade rationally & wisely"
- 2. Trend Similarity ≠ Prediction Accuracy!
- 3. Long way to go to make more accurate predictions

Next step...

- 1. Figure out why multi-feature does not work
- 2. Seek ways to improve prediction accuracies
- 3. Use it for actual trading!

Questions?