ARTIFICIAL INTELIGENCE SUPERVISED LEARNING

In this project we will study and create a program to address detection of autism in toddler

Autism Dataset for Toddlers

https://www.kaggle.com/datasets/vaishnavisirigiri/autism-dataset-for-toddlers

DOCUMENTATION REFERENCES

Documentation

Scikit Documentation

SMOTE Documentation

Resources from Moodle
Pandas Cheat Sheets
Machine_learning_Python_Cheat_Sheets
Scikit learn Edureka Cheat Sheet
Scikit Learn Cheat Sheet

TOOLS USED

Python

Pandas

Matplotlib

Seaborn

Numpy

Sklearn

Imblearn

IMPLEMENTATION

Initially, we utilised Pandas to construct the dataframe.

Next, employing Matplotlib, we conducted an analysis to eliminate redundant features right from the start.

Non-numerical features deemed pertinent were encoded.

We generated a correlation matrix to identify highly correlated features.

Due to a discrepancy in result counts, we opted to employ SMOTE for oversampling.

Subsequently, we trained our model using four different classifiers.

Decision Tree Classifier

Multi-layer Perceptron Classifier

k-Nearest Neighbors Classifier

Support Vector Machine Classifier

DATA PREPOCESSING

We first created a dataframe using Pandas.

	Case_No	A1	A2	АЗ	A4	A 5	A6	A7	A8	А9	A10	Age_Mons	Qchat- 10- Score	Sex	Ethnicity	Jaundice	Family_mem_with_ASD	Who completed the test	Class/ASD Traits
0	1	0	0	0	0	0	0	1	1	0	1	28	3	f	middle eastern	yes	no	family member	No
1	2	1	1	0	0	0	1	1	0	0	0	36	4	m	White European	yes	no	family member	Yes
2	3	1	0	0	0	0	0	1	1	0	1	36	4	m	middle eastern	yes	no	family member	Yes
3	4	1	1	1	1	1	1	1	1	1	1	24	10	m	Hispanic	no	no	family member	Yes
4	5	1	1	0	1	1	1	1	1	1	1	20	9	f	White European	no	yes	family member	Yes

Since some of the features are non numerical, we must encode them and we can even remove some features we do not need.

MODELS

Decision Tree Classifier

k-Nearest Neighbours Classifier

MODELS

Support Vector Machine Classifier

Multi-layer Perceptron classifier

MODELS COMPARISON

Good Performers: Decision Tree and K-Nearest Neighbors (KNN):

Both the Decision Tree Classifier and the K-Nearest Neighbors (KNN) Classifier demonstrated solid performance in this analysis. The Decision Tree Classifier offers interpretability and ease of use, making it a suitable choice for datasets with binary features. Additionally, KNN achieved an optimal balance between bias and variance, resulting in accurate predictions. These models are effective in scenarios where the decision boundary is relatively simple and well-defined.

Poor Performer: Support Vector Machine (SVM):

The Support Vector Machine (SVM) Classifier performed relatively poorly compared to other models. This could be attributed to its sensitivity to dataset characteristics, particularly when the data is not linearly separable. SVMs struggle to handle complex datasets with nonlinear decision boundaries, resulting in suboptimal performance. Additionally, SVMs may require careful tuning of hyperparameters and kernel functions to achieve better results.

Top Performers: Random Forest and MLPClassifier:

The Random Forest Classifier and the MLPClassifier (Neural Network) emerged as the top performers in this analysis. The Random Forest Classifier demonstrated robustness and generalization capability, effectively capturing intricate patterns in the data. Its ensemble learning approach reduces overfitting and improves performance, making it suitable for complex datasets. Similarly, the MLPClassifier showcased high accuracy and the ability to capture complex relationships in the data. Neural networks excel at learning nonlinear relationships, making them well-suited for datasets with binary features.