Deep Learning for Text

Ayoub Bagheri

Lecture plan

- 1. Deep learning
- 2. Feed-forward neural networks
- 3. Recurrent neural networks

What is Deep Learning (DL)?

A machine learning subfield of learning representations of data. Exceptional effective at learning patterns.

Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers.

Deep learning vs neural networks

Deep learning architechtures

Feed-forward neural networks

➤ A typical multi-layer network consists of an input, hidden and output layer, each fully connected to the next, with activation feeding forward.

▶ The weights determine the function computed.

Feed-forward neural networks

Feed-forward neural networks

Weights
$$h = \sigma(W_1x + b_1)$$
 $y = \sigma(W_2h + b_2)$ Activation functions

$$4 + 2 = 6$$
 neurons (not counting inputs)
 $[3 \times 4] + [4 \times 2] = 20$ weights
 $4 + 2 = 6$ biases
26 learnable parameters

One forward pass

Hidden unit representations

- Trained hidden units can be seen as newly constructed features that make the target concept linearly separable in the transformed space.
- On many real domains, hidden units can be interpreted as representing meaningful features such as vowel detectors or edge detectors, etc..
- However, the hidden layer can also become a distributed representation of the input in which each individual unit is not easily interpretable as a meaningful feature.

Overfitting

Learned hypothesis may fit the training data very well, even outliers (noise) but fail to generalize to new examples (test data)

http://wiki.bethanycrane.com/overfitting-of-data

Overfitting prevention

Running too many epochs can result in over-fitting.

- Keep a hold-out validation set and test accuracy on it after every epoch. Stop training when additional epochs actually increase validation error.
- ▶ To avoid losing training data for validation:
 - Use internal K-fold CV on the training set to compute the average number of epochs that maximizes generalization accuracy.
 - ► Train final network on complete training set for this many epochs.

Regularization

Dropout

Randomly drop units (along with their connections) during training

Each unit retained with fixed probability p, independent of other units

Hyper-parameter p to be chosen (tuned)

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of machine learning research (2014)

Loss functions and output

Classification

Training examples

Rⁿ x {class_1, ..., class_n} (one-hot encoding)

Output Layer Soft-max [map Rⁿ to a probability

$$P(y = j \mid \mathbf{x}) = rac{e^{\mathbf{x}^\mathsf{T} \mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T} \mathbf{w}_k}}$$

Cost (loss) function

Cross-entropy

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \left[y_k^{(i)} \log \hat{y}_k^{(i)} + \left(1 - y_k^{(i)}\right) \log \left(1 - \hat{y}_k^{(i)}\right) \right]$$

Regression

Rⁿ x R^m

Linear (Identity) or Sigmoid

f(x)=x

Mean Squared Error

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2}$$

Mean Absolute Error

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$$

Determining the best number of hidden units

- ► Too few hidden units prevents the network from adequately fitting the data.
- Too many hidden units can result in over-fitting.

- Use internal cross-validation to empirically determine an optimal number of hidden units.
- Hyperparameter tuning

Recurrent Neural Networks

Recurrent Neural Network (RNN)

- ► Add feedback loops where some units' current outputs determine some future network inputs.
- RNNs can model dynamic finite-state machines, beyond the static combinatorial circuits modeled by feed-forward networks.

Simple Recurrent Network (SRN)

- Initially developed by Jeff Elman ("Finding structure in time," 1990).
- Additional input to hidden layer is the state of the hidden layer in the previous time step.

Unrolled RNN

▶ Behavior of RNN is perhaps best viewed by "unrolling" the network over time.

Training RNNs

- RNNs can be trained using "backpropagation through time."
- Can viewed as applying normal backprop to the unrolled network.

Vanishing gradient problem

Suppose we had the following scenario:

Day 1: Lift Weights

Day 2: Swimming

Day 3: At this point, our model must decide whether we should take a rest day or yoga. Unfortunately, it only has access to the previous day. In other words, it knows we swam yesterday but it doesn't know whether had taken a break the day before.

Therefore, it can end up predicting yoga.

- Backpropagated errors multiply at each layer, resulting in exponential decay (if derivative is small) or growth (if derivative is large).
- Makes it very difficult train deep networks, or simple recurrent networks over many time steps.
- LSTMs were invented, to get around this problem.

https://towardsdatascience.com/

Long Short Term Memory

- ► LSTM networks, add additional gating units in each memory cell.
 - Forget gate
 - Input gate
 - Output gate
- Prevents vanishing/exploding gradient problem and allows network to retain state information over longer periods of time.

LSTM network architecture | https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Bi-directional LSTM (Bi-LSTM)

Separate LSTMs process sequence forward and backward and hidden layers at each time step are concatenated to form the cell output.

Advanced models

- ► For many applications, it helps to add "attention" to RNNs.
- Allows network to learn to attend to different parts of the input at different time steps, shifting its attention to focus on different aspects during its processing.
- Used in image captioning to focus on different parts of an image when generating different parts of the output sentence.
- ▶ In MT, allows focusing attention on different parts of the source sentence when generating different parts of the translation.

Summary

Summary

- Deep learning
- ► Feed-forward neural networks
- ► Recurrent neural networks

Practical 8