Information and Uncertainty

Final Examination

Spring 2021

Follow the convention of the lectures if the description of the problem is incomplete, or the notation is not clear.

- 1. (Second price auction: 20 points) Consider IPV framework and the second price auction. Construct a Nash equilibrium which does not use the truthful bidding strategy, and show that the constructed Nash equilibrium outcome is not efficient.
- 2. (Rubinstein: 30 points) Consider the alternating offer bargaining model of Rubinstein [1982] between a buyer and a seller, who are negotiating how to split 1 unit of surplus. Let δ_b and δ_s be the discount factors for the buyer and the seller. It is possible that $\delta_b \neq \delta_s$. Construct a subgame perfect equilibrium. (You do not need to prove that it is a subgame perfect equilibrium.)
- 3. (Grove's scheme: 30 points) There are N agents in this economy whose preference is

$$\theta_i x + t_i$$

where θ_i is the marginal utility of public project x, which is 1, if initiated, and 0, otherwise; and t_i is the transfer payment from the government to agent i. If $t_i > 0$, then one can interpret t_i as a subsidy to agent i, and if $t_i < 0$, then t_i can be interpreted as tax changed to agent i. θ_i (i = 1, ..., N) is observed only by agent i, but everyone including the government knows that θ_i is selected from the standard normal distribution over \Re . The government asks each agent about θ_i . Let $\hat{\theta}_i$ be the "reported" type of agent i. The government will initiate the public project if and only if

$$\sum_{i=1}^{N} \hat{\theta}_i \ge c$$

where c is the cost of the public project, and choose transfer payment to agent i as

$$t_i = \left[\sum_{j \neq i} \hat{\theta}_j\right] - c.$$

Prove that $\hat{\theta}_i = \theta_i$ (i.e., truthful revelation) is a weakly dominant strategy of agent *i*. You can show that the truthful revelation is a best response against any profile of strategies of the other players.

4. (Dividing a dollar with changes) Consider an elaboration of the dividing the dollar game. There are two players. Player i submit his demand $d_i \in [0,1]$. If $d_1 + d_2 \leq 1$, then player i receives d_i . In the first version, if $d_1 + d_2 > 1$, then both players receive 0. Each player is trying to maximize his income.

If $d_1+d_2>1$, and $d_1\neq d_2$, then the party who submits the smaller portion receives $\min(d_1,d_2)$ and the other party receives $1-\min(d_1,d_2)$. If $d_1+d_2>1$ and $d_1=d_2$, then each party receives one half of the dollar.

Calculate the Nash equilibrium of the second version of the game as follows:

- (a) (10 points) Prove that if $d_1 + d_2 > 1$ and $d_1 \neq d_2$, then (d_1, d_2) cannot be a Nash equilibrium. (Note that either d_1 or d_2 must be larger than 0.5.)
- (b) (10 points) Prove that if $d_1 + d_2 > 1$ and $d_1 = d_2$, then (d_1, d_2) cannot be a Nash equilibrium. (Note that in this case, $d_1 = d_2 > 0.5$.) Combining the first two steps, you can conclude that if (d_1, d_2) is a Nash equilibrium, then $d_1 + d_2 \leq 1$.
- (c) (10 points) Prove that if $d_1 + d_2 < 1$, then (d_1, d_2) cannot be a Nash equilibrium. (Note that d_1 or d_2 is less than 0.5)
- (d) (10 points) We now know that in a Nash equilibrium, $d_1 + d_2 = 1$. Prove that $d_1 = d_2$.