Nome e Cognome:		Matricola:	
	Calcolo delle probabilit	à - Quarto Appello	

Esercizio 1 [punti: 6]. Mescolato un mazzo di 52 carte, che contiene 13 carte (ognuna di un valore differente) per ciascuno dei quattro semi (♥, ♦, ♠, ♠), ne vengono estratte a caso due (senza reinserimento). Calcolare la probabilità dei seguenti eventi: "le due carte estratte sono dello stesso seme", "le due carte estratte hanno lo stesso valore", "almeno una delle due carte estratte è un 9".

SOLUZIONE. Estrarre simultaneamente due carte dal mazzo nel caso descritto equivale a estrarne una e poi estrarne una seconda senza reinserire la prima. Sotto questa prospettiva, la probabilità del primo evento è $\frac{52}{52} \cdot \frac{12}{51} = 0.235\ldots$ e quella del secondo è $\frac{52}{52} \cdot \frac{3}{51} = 0.0588\ldots$ Per quanto riguarda l'ultimo evento, è più facile calcolare la probabilità dell'evento complementare, che nessuna delle due carte sia nove, cioè $\frac{48}{52} \cdot \frac{47}{51}$. Perciò la probabilità del terzo evento è $1 - \frac{48}{52} \cdot \frac{47}{51} = 0.14932\ldots$

Nome e	Cognome:		
1 Office	Cognome.		

Matricola:

Calcolo delle probabilità - Quarto Appello

Esercizio 2 [punti: 6]. Dati due eventi A, B in uno spazio di probabilità (S, \mathbb{P}) , supponiamo

- che la probabilità che si verifichi A ma non B sia 5/12;
- che la probabilità che si verifichi B ma non A sia 1/12;
- ullet che la probabilità che si verifichi A è il triplo di quella che si verifichi B.

Calcolare le probabilità $\mathbb{P}(A)$, $\mathbb{P}(B)$. Usare il risultato per dire se gli eventi A, B sono indipendenti.

SOLUZIONE. Dato che

$$\mathbb{P}(A) - \mathbb{P}(A \cap B) = \frac{5}{12}$$
$$\mathbb{P}(B) - \mathbb{P}(A \cap B) = \frac{1}{12}$$

per sottrazione abbiamo $\mathbb{P}(A) - \mathbb{P}(B) = \frac{1}{3}$. Per ipotesi abbiamo pure $\mathbb{P}(A) - 3\mathbb{P}(B) = 0$. Sottraendo quest'ultima dalla precedente, ricaviamo $2\mathbb{P}(B) = \frac{1}{3}$. Pertanto

$$\mathbb{P}(B) = \frac{1}{6}, \qquad \mathbb{P}(A) = 3\mathbb{P}(B) = \frac{3}{6} = \frac{1}{2}.$$

Tornando alla prima equazione, ora possiamo dedurne

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) - \frac{5}{12} = \frac{1}{12}$$
.

Dato che pure $\mathbb{P}(A) \cdot \mathbb{P}(B) = \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{12}$, i due eventi sono indipendenti.

Nome e Cognome:	Matricola:	
rome e cognome.	 Manicola.	

Esercizio 3 [punti: 8]. In una baia del Tirreno sono presenti pesci di tre specie: salpe, occhiate e palamite. Supponiamo che un pescatore riesca, ad ogni tentativo, a pescare un pesce e che tale pesce appartenga con uguale probabilità a una delle tre specie. Calcolare, in termini di n, la probabilità

- che dopo n tentativi non sia mai stata pescata una palamita;
- che dopo n tentativi siano state pescate solo salpe;
- che sia > n il numero X di tentativi necessario a pescar pesci di tutte e tre le specie.

Soluzione. Siano A, B, C gli eventi che si verificano, rispettivamente, se in n tentativi non si pescano mai palamite, occhiate, salpe.

 \bullet La probabilità che in n tentativi non si peschino mai palamite è pari a

$$\mathbb{P}(A) = \mathbb{P}(B) = \mathbb{P}(C) = (2/3)^n$$

perché i tentativi sono indipendenti e ad ognuno la prob. di non pescare una data specie è $\frac{2}{3}$.

• Analogamente, la probabilità che in n tentativi siano state pescate solo salpe è quella che non siano mai state pescate né palamite né occhiate, cioè

$$\mathbb{P}(A \cap B) = \mathbb{P}(B \cap C) = \mathbb{P}(C \cap A) = (1/3)^n.$$

• Per ipotesi abbiamo anche $\mathbb{P}(A \cap B \cap C) = 0$. Quindi, per il principio di inclusione-esclusione,

$$\mathbb{P}(X > n) = \mathbb{P}(A \cup B \cup C) = 3(2/3)^{n} - 3(1/3)^{n} + 0 = 3^{1-n}(2^{n} - 1).$$

Esercizio 4 [punti: 6]. Si estraggono due palline (senza reinserimento) da un'urna contenente:

- tre palline (1, 1, 1) con il numero 1,
- due palline (2,2) con il numero 2,
- cinque palline (3,3,3,3,3) col numero 3.

Determinare la funzione di ripartizione F_X della variabile aleatoria X che rappresenta la somma dei numeri scritti sulle due palline estratte e calcolare $\mathbb{P}(2 < X \leq 5)$.

SOLUZIONE. Esistono $\frac{10.9}{2}$ = 45 modi di estrarre le due palline. Ciascuno corrisponde a un evento elementare cui X attribuisce un valore (la somma dei numeri scritti sulle due palline estratte) nell'insieme $\{2, 3, 4, 5, 6\}$. Per ispezione diretta, ricostruiamo la distribuzione di X come segue:

tipo di evento	X	#{eventi elementari}	p_X
(1,1)	2	3	3/45
(1,2),(2,1)	3	$3 \cdot 2$	6/45
(2,2),(1,3),(3,1)	4	$1 + 3 \cdot 5$	16/45
(2, 3), (3, 2)	5	$2 \cdot 5$	10/45
(3,3)	6	$\binom{5}{3}$	10/45

Pertanto,

per ogni
$$x < 2$$
, abbiamo $F_X(x) = \mathbb{P}(X \le x) = 0$,
per ogni $2 \le x < 3$, abbiamo $F_X(x) = \mathbb{P}(X \le x) = \mathbb{P}(X = 2) = \frac{3}{45}$,
per ogni $3 \le x < 4$, abbiamo $F_X(x) = \mathbb{P}(X \le x) = \mathbb{P}(X = 2) + \mathbb{P}(X = 3) = \frac{9}{45}$,
per ogni $4 \le x < 5$, abbiamo $F_X(x) = \mathbb{P}(X \le x) = \mathbb{P}(X = 2) + \mathbb{P}(X = 3) + \mathbb{P}(X = 4) = \frac{25}{45}$,
per ogni $5 \le x < 6$, abbiamo $F_X(x) = \mathbb{P}(X = 2) + \mathbb{P}(X = 3) + \mathbb{P}(X = 4) + \mathbb{P}(X = 5) = \frac{35}{45}$,
e per ogni $x \ge 6$, abbiamo che $F_X(x) = \mathbb{P}(X \le x) = 1$.

Di conseguenza,

$$\mathbb{P}(2 < X \le 5) = \mathbb{P}(\{X \le 5\} \setminus \{X \le 2\}) = F_X(5) - F_X(2) = \frac{35}{45} - \frac{3}{45} = \frac{33}{45}.$$

Nome e Cognome:	Matricola:	
0		

Esercizio 5 [punti: 6]. Viene mescolato un mazzo di tre carte con le seguenti caratteristiche: una ha due facce nere, una ha due facce rosse, una ha due facce diverse (un lato colorato di rosso e l'altro di nero). Successivamente viene estratta a caso una carta e posata sul tavolo: se la faccia rivolta verso l'alto della carta scelta è rosso, qual è la probabilità che l'altro lato sia nero?

SOLUZIONE. La risposta è 1/3. Infatti, l'osservazione che la faccia superiore della carta è rossa riduce lo spazio campionario a un insieme formato da tre elementi in tutto: ci sono tre facce rosse in tutto ("casi possibili") e, di queste tre, solo una è abbinata a una faccia nera ("caso favorevole").

Soluzione (alternativa). Indichiamo con A,B,C gli eventi corrispondenti all'estrazione, rispettivamente, delle carte nera-nera, rossa-rossa, e nera-rossa. Indichiamo con E l'evento che si verifica quando la faccia visibile della carta è rossa. La distribuzione della probabilità a priori è uniforme, cioè

$$\mathbb{P}(A) = \mathbb{P}(B) = \mathbb{P}(C) = \frac{1}{3}.$$

Ci interessa la probabilità a posteriori

$$\mathbb{P}(C|E) = \frac{\mathbb{P}(E|C)\mathbb{P}(C)}{\mathbb{P}(E)} = \frac{\frac{1}{2} \cdot \frac{1}{3}}{\mathbb{P}(E)}$$

dove abbiamo usato il Teorema di Bayes, l'informazione a priori e il fatto che $\mathbb{P}(E|C) = \frac{1}{2}$. Resta da calcolare l'evento E col teorema delle probabilità totali e si ha

$$\mathbb{P}(E) = \mathbb{P}(E|A)\mathbb{P}(A) + \mathbb{P}(E|B)\mathbb{P}(B) + \mathbb{P}(E|C)\mathbb{P}(C) = 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{2}.$$

In conclusione, la probabilità richiesta è pari a

$$\frac{\frac{1}{2} \cdot \frac{1}{3}}{\frac{1}{2}} = \frac{1}{3} \,.$$

Nome e Cognome:	Matricola:	
_		

Esercizio 6 [8 punti]. Su una piattaforma di apprendimento online, ogni nuovo corso viene sottoposto a un controllo qualità che prevede la verifica automatica di certi requisiti (completezza delle informazioni, qualità audio-video, presenza di quiz, ecc...). Ogni corso è sottoposto a n controlli indipendenti, ciascuno dei quali ha una probabilità p di individuare un errore. Sapendo che, per ogni corso, il numero totale X di errori rilevati è mediamente pari a 1, si scelga un modello probabilistico per X e si calcoli la probabilità $\mathbb{P}(X > 2)$ in ciascuno di questi due seguenti casi:

- [4 punti] sapendo che ogni corso è sottoposto a n = 20 controlli;
- [4 punti] sapendo solo che il numero di controlli n è elevato (ma ignoto).

Soluzione. Nel primo caso è naturale ricorrere al modello binomiale $X \sim \text{Bin}(n, p)$ trattandosi di n ripetizioni indipendenti di una prova bernoulliana con probabilità p di successo. Pertanto

$$\mathbb{P}(X > 2) = 1 - \sum_{k=0}^{2} {n \choose k} p^k (1-p)^{n-k}.$$

Tenuto conto che per scelta modellistica $\mathbb{E}[X] = np = 20p$ e che per ipotesi tale valore è pari a 1, si ha p = 0.05. Inserendo tale valore nella formula a centro riga otteniamo che $\mathbb{P}(X > 2) = 0.0754...$

Nel secondo caso, in assenza di ulteriori informazioni, come modello usiamo quello che emerge asintoticamente per $n \to \infty$ supponendo che $np \sim \lambda$ per un opportuno parametro λ , da determinare. Sappiamo che in questo modo una Binomiale di parametri n,p converge a una v.a. di Poisson X di parametro λ . Pertanto

$$\mathbb{P}(X > 2) = 1 - \sum_{k=0}^{2} e^{-\lambda} \frac{\lambda^{k}}{k!}.$$

Dato che X è di Poisson con parametro λ , si ha $\mathbb{E}[X] = \lambda$ e per ipotesi, quindi, $\lambda = 1$. Inserendo tale valore nella formula si ottiene che $\mathbb{P}(X > 2) = 1 - \frac{5}{2e} = 0.0803...$