CLASE 05 - PERMUTACIÓN Y CORRELACIÓN.

OCE 313 - Técnicas de análisis no paramétricos

Dr. José Gallardo Matus | https://genomics.pucv.cl/

11 April 2022

PLAN DE LA CLASE

1.- Introducción

- Permutación: ¿Qué es? ¿Por qué es importante?.
- Permutación: caso 1, 2 y 3.
- Correlación no paramétrica.
- Calculo de correlación no paramétrica.
- Distribución muestral por permutación.
- Prueba de hipótesis de correlación no paramétrica.

2). Práctica con R y Rstudio cloud.

- Realizar cálculo de permutación usando R.
- Realizar prueba de correlación.
- Realizar gráficas avanzadas con ggplot2.

PERMUTACIÓN

¿Qué es?

Una permutación es una combinación ordenada de elementos.

¿Por qué es importante?

El concepto matemático de permutación está subyacente a muchos métodos de análisis no paramétricos.

¿Qué haremos?

Calcularemos las posibles permutaciones de los elementos de un conjunto de datos de un experimento aleatorio y evaluaremos si se acepta o rechaza la hipótesis de las pruabas paramétricas más comunes.

PRÁCTICA PERMUTACIÓN

```
1.- Si para el conjunto {a,b} existen 2 permutaciones a-b y b-a
¿Cuántas permutaciones existen para conjutno {a,b,c}?
P3 = 3! = 3 \times 2 \times 1 = 6
factorial(3)
## [1] 6
permutations(3,3,letters[1:3])
         [.1] [.2] [.3]
##
   [1,] "a" "b" "c"
##
   [2,]
        "a" "c"
                   "b"
   [3,]
         "b"
             "a"
                    " c "
##
   [4,]
         "b"
              "c"
                    "ล"
##
   [5,]
         "c"
              "a"
                     "b"
         "c"
               "b"
                     "a"
## [6,]
```

CASO 2 - PERMUTACIÓN CON REPETICIÓN

L'Cuántas claves diferentes existen en el candado de 3 filas?

Para 3 filas con 10 números $\{0 \text{ al } 9\}$ existen $10 \times 10 \times 10$ permutaciones = 1000.

10^3

[1] 1000

CASO 3 - PERMUTACIÓN CON REPETICIÓN

- ¿Cuántas permutaciones/palabras se forman la palabra GATA? Ej. {TAGA, ...}
- ightharpoonup Si, G=1 vez; T=1 vez y A=2 veces , entonces

```
factorial(4) / (factorial(1)*factorial(2))
```

[1] 12

PRUEBA DE CORRELACIÓN NO PARAMÉTRICA

¿Para que sirve?

Para estudiar asociación de dos variables, cuando no se cumple uno o varios supuestos de la correlación paramétrica:

- Las variables X e Y no son continuas.
- No existe relación lineal.
- ► La distribución conjunta de (X, Y) no es una distribución Bivariable normal.

EJEMPLO FUNCIÓN MONÓTONA

¿Cuál es el supuesto que no se cumple?

No existe una relación lineal

EJEMPLO VARIABLES DISCRETAS U ORDINALES

¿Cuál es el supuesto que no se cumple?

Parásitos es variable discreta.

CORRELACIÓN NO PARAMÉTRICA

- Se basa en calcular el ranking de las variables.
- Calculamos ranking para cada variable.

Fish size (X)	Parásitos (Y)	Ranking X	Ranking Y
942	13	4	2
101	14	1	3
313	18	2	4
800	10	3	1

- ▶ Si la correlación es +, valores ordenados.
- Si la correlación en -, valores en orden inverso.
- Si la correlación es 0, valores desordenados.

COEFICIENTE DE CORRELACIÓN DE SPEARMAN

¿Cómo se calcula?

Ranking X	Ranking Y	d	d^2
4	2	2	4
1	3	-2	4
2	4	-2	4
3	1	2	4

$$\rho = 1 - \frac{6 \sum d^2}{n(n^2 - 1)} = \frac{1}{n(n^2 - 1)}$$

$$rho = -0, 6$$

OTRAS CORRELACIONES POSIBLES

Opción 1: Correlación negativa.

Ranking X	Ranking Y
4	1
1	4
2	3
3	2
ho= -1	

Opción 2: Correlación positiva.

Ranking X	Ranking \		
4	4		
1	1		
2	2		
3	3		
ho = 1			

¿CUÁNTAS CORRELACIONES SON POSIBLES?

► Calculamos número de permutaciones/correlaciones.

```
factorial(4)
```

```
## [1] 24
```

- ► Las 24 permutaciones/correlaciones corresponden a nuestro espacio muestreal para 4 pares de variables.
- Esto es independiente de las variables utilizadas.

ESPACIO MUESTRAL

► En nuestro experimento

$$\rho = -0.6$$

▶ 1 de 24 correlaciones posibles.

	-0.8		I	I	l		
-0.4	-0.2	-0.2	0.0	0.0	0.2	0.2	0.4
0.4	0.4	0.4	0.6	0.8	0.8	0.8	1.0

PRUEBA DE HIPÓTESIS DE CORRELACIÓN

Hipótesis	Verdadera cuando
H ₀ : X e Y mutuamente independientes	ho = 0
$\mathbf{H_1}$: X e Y no son mutuamente independientes	ho eq 0

► ¿Cuántas correlaciones son >= 0.6 y <= -0.6?

DISTRIBUCIÓN MUESTRAL

Solo por azar 10 correlaciones podrían tomar estos valores.

PRUEBA DE HIPÓTESIS DE CORRELACIÓN

Hipótesis	Verdadera cuando		
H ₀ : X e Y mutuamente independientes	ho = 0		
$\mathbf{H_{1}}$: X e Y no son mutuamente independientes	ho eq 0		

$$p = 10 / 24$$

 $p = 0.4167$

No se rechaza H_0 porque p = 0.416 es mayor a 0.05

PRUEBA DE CORRELACIÓN CON R

rho

Dr. José Gallardo Matus | https://genomics.pucv.cl/

-0.6

```
# Crea objetos X e Y
X \leftarrow c(942,101,313,800)
Y \leftarrow c(13,14,18,10)
# Realiza test de correlación
cor.test(X,Y, method = "spearman",
         alternative = "two.sided")
##
##
    Spearman's rank correlation rho
##
## data: X and Y
## S = 16, p-value = 0.4167
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
```

RESUMEN DE LA CLASE

- Revisión de conceptos de permutación.
- ► Recordatorio correlación Pearson.
- Funciones monótonas.
- Uso de permutación para calcular espacio y distribución muestral.
- Aplicación interpretación prueba de correlación de Spearman con R.