

Reproducible Machine Learning for Humans

Nikita Kazeev on behalf on the Everware and REP teams

kazeevn@yandex-team.ru

2016-10-13, 4th National eScience Symposium, Amsterdam, the Netherlands

Yandex

- A Dutch company (according to NASDAQ)
- The leading web search engine in Russia
- Image search
- Speech recognition
- Car traffic prediction
- Mail and spam filtering
- Natural language translation
- Yandex Data Factory data science for business
- Yandex School of Data Analysis

Yandex School of Data Analysis

A noncommercial private university https://yandexdataschool.com

- **Education:**
 - > Strong courses in Data & Computer Science
 - Free tuition
 - No employment obligations on part of the students (yet many go to Yandex)
 - > 450+ students graduated since 2007
- Research
 - Organizes Machine Learning Conference
 - Interest in interdisciplinary research (eScience) from Information Retrieval to Particle Physics
 - A full member of the LHCb experiment at CERN

Me

- A data scientist
- MSc in Physics
- Work for the LHCb collaboration at CERN
 - Data storage optimization
 - A search engine for physics data
 - An automated anomaly detection system
- Taught machine learning at Machine Learning in High Energy Physics Summer Schools

Plan

- The problem of research irreproducibility
- Our tools for computational experiments
 - Everware
 - Reproducible Experiment Platform (REP)
- Demo

Irreproducibility indicators

- Which version of my code I used to generate figure 13?'
- 'The new student wants to reuse that model I published three years ago but he can't reproduce the figures'
- 'I thought I've used the same parameters but I'm getting different results...'
- 'Which dataset exactly did I use for algorithm comparison?'
- 'Why did I do that?!'
- 'It worked yesterday!!'

Cases in point: Medical science

Amgen (a commercial company) in 2012

- > 53 landmark papers in cancer drug development
- > Scientific findings confirmed only in 6 (11%) cases

Bayer (a commercial company) in 2011

- 67 projects
- Results confirmed in 20-25% cases

A new study is under way and to be completed in 2017

https://osf.io/e81xl/wiki/home/

http://www.nature.com/news/cancer-reproducibility-project-scales-back-ambitions-1.18938

http://www.nature.com/nrd/journal/v10/n9/full/nrd3439-c1.html

Nature's Reproducibility Survey

Nature: 1,500 scientists lift the lid on reproducibility by Monya Baker
 raw survey data (link)

WHAT FACTORS COULD BOOST REPRODUCIBILITY?

Respondents were positive about most proposed improvements but emphasized training in particular.

WHAT FACTORS COULD BOOST REPRODUCIBILITY?

Respondents were positive about most proposed improvements but emphasized training in particular.

Computational experiment is a significant part of an experiment, that starts after the data is collected.

Possible rffects of reproducible computation:

- Practical
 - better mentoring/supervision
 - more within-lab validation
 - > simplified external-lab validation
 - incentive for better practice
 - robust design
- Educational
 - wider access to the best practices
 - better teaching

High Energy Physics

- **data** storage
 - shared storage (XROOTD, AFS, EOS, CERNBOX)
- > standardized **environment**
 - > software: ROOT, minuit, experiments software stacks, ...
 - computational cluster (e.g. lxplus)
- code versioning repository (gitlab)
- advanced analysis approaches
 - blind analysis
 - reviews, cross-checks within group, inter-group collaboration
- > collaborative culture
 - > q&a groups, experts
 - publishing workflow

Reproducible computational study key components

- Basic assumptions (vocabulary)
- Data
- Environment + Resources (CPU/GPU)
- Code
- Workflow
- Automated intermediate results checks
- Final results (datasets, publications)

Enter Reproducible Experiment Platform (REP)

> Python-based (numpy, pandas, ...), Jupyter-friendly

- > Python-based (numpy, pandas, ...), Jupyter-friendly
- Unified scikit-learn-like API to many ML packages (Sklearn, XGBoost, uBoost, TMVA, Theanets, ...)

- > Python-based (numpy, pandas, ...), Jupyter-friendly
- Unified scikit-learn-like API to many ML packages (Sklearn, XGBoost, uBoost, TMVA, Theanets, ...)
- Meta-algorithms pipelines («REP-Lego»)

- Python-based (numpy, pandas, ...), Jupyter-friendly
- angle Unified scikit-learn-like API to many ML packages (Sklearn, XGBoost, uBoost, TMVA, Theanets, ...)
- Meta-algorithms pipelines («REP-Lego»)
- Configurable interactive reporting & visualization to ensure model quality (e.g. check for overfitting)

- > Python-based (numpy, pandas, ...), Jupyter-friendly
- angle Unified scikit-learn-like API to many ML packages (Sklearn, XGBoost, uBoost, TMVA, Theanets, ...)
- Meta-algorithms pipelines («REP-Lego»)
- \rangle Configurable interactive reporting & visualization to ensure model quality (e.g. check for overfitting)
- Pluggable quality metrics

- Python-based (numpy, pandas, ...), Jupyter-friendly
- angle Unified scikit-learn-like API to many ML packages (Sklearn, XGBoost, uBoost, TMVA, Theanets, ...)
- Meta-algorithms pipelines («REP-Lego»)
- Configurable interactive reporting & visualization to ensure model quality (e.g. check for overfitting)
- Pluggable quality metrics
- Paralleled training of classifiers & grid search (IPython parallel)

- Python-based (numpy, pandas, ...), Jupyter-friendly
- angle Unified scikit-learn-like API to many ML packages (Sklearn, XGBoost, uBoost, TMVA, Theanets, ...)
- Meta-algorithms pipelines («REP-Lego»)
- \triangleright Configurable interactive reporting & visualization to ensure model quality (e.g. check for overfitting)
- Pluggable quality metrics
- Paralleled training of classifiers & grid search (IPython parallel)
- Open-source, Apache 2.0: https://github.com/yandex/rep
- Well-documented, supported by Yandex, http://yandex.github.io/rep/

https://github.com/everware/everware-dimuon-example

data: CERNBOX

- **data:** CERNBOX
- > common environment: REP

- **data**: CERNBOX
- common environment: REP
- **environment management**: Docker

- **data:** CERNBOX
- > common environment: REP
- **environment management**: Docker
- GitHub: analysis code and environment versioning

- **data:** CERNBOX
- common environment: REP
- environment management: Docker
- GitHub: analysis code and environment versioning
- continuous integration: intermediate **results checks** & report

https://github.com/everware/everware-dimuon-example

```
    data: CERNBOX
    common environment: REP
    environment management: Docker
    GitHub: analysis code and environment versioning
    continuous integration: intermediate results checks & report
```

Steps to run:

https://github.com/everware/everware-dimuon-example

```
    data: CERNBOX
    common environment: REP
    environment management: Docker
    GitHub: analysis code and environment versioning
    continuous integration: intermediate results checks & report
```

Steps to run:

https://github.com/everware/everware-dimuon-example

- **data:** CERNBOX
- common environment: REP
- environment management: Docker
- GitHub: analysis code and environment versioning
- continuous integration: intermediate **results checks** & report

Or you can use *Everware* - just click.

Everware demo

Running https://github.com/everware/everware-dimuon-example

Sorry, printed version doesn't support animation.

Everware is ...

... about re-useable science, it allows people to jump right into your research code. Lets you launch *Jupyter* notebooks from a git repository with a click of a button.

- https://github.com/everware Code
- https://everware.rep.school.yandex.net Yandex instance

More examples:

- Comparison of ML algorithms; R, Everware, CircleCl https://github.com/openml/study_example
- Gravitational waves identification (LIGO experiment); REP, Everware https://github.com/anaderi/GW150914
- Search for particle traces (COMET experiment); Everware, TravisCl https://github.com/yandexdataschool/comet-example-ci

Under the hood of Everware

- an extension for *JupyterHub*:
 - a spawner for building and running custom *Docker* images
- integrated with:
 - Docker Hub (for getting Docker images)
 - > GitHub (for authentication and repository interaction)

Pros & cons

Pros

- easier supervision/mentoring
- easier within-lab validation
- wider access to the best practices
- simplified cross-lab validation
- good incentive for formal reproduction

Cons

- learning a bit of open-source technology
- re-organize internal research process
- inner barrier for openness
- higher incentive for mindless borrowing
- promotes users to create unique environments

Research workflow with everware

Education workflow with everware

- Python course at YSDA 2015
- Machine Learning in High Energy Physics summer school 2016
- YSDA course on Machine learning at Imperial
 College London 2016
- > Kaggle competitions 2016
- Machine learning course at University of Eindhoven
- LHCb open data masterclass

Roadmap

- Integrate with data sharing resources (zotero, figshare, etc)
- Automatic capture of environment (integrate with repro-zip)
- Integration with publishing resources (gitxiv, re-science, openml)
- Not only jupyter-based computations
- Bring your own resources computational model

Conclusion

- Reproducibility depends on humans
 - Can be helped with human-facing technology;
- > Everware works for research and education;
 - easy to try;
 - WIP, https://github.com/everware
 - > feature requests are welcome
 - pull requests are most welcome
- REP might work as a common environment for your ML study
 - it also has nice tools to ease the routine

Thank you!

Backup

References

```
http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://rescience.github.io/read/
http://push.cwcon.org/
https://openml.org
https://figshare.com/
https://gitlab.cern.ch/lhcb-bandq-exotics/Lb2LcD0K
https://osf.io/ezcuj/wiki/home/
https://osf.io/e81xl/wiki/home/
Center for open science, https://cos.io/
IPFS, https://github.com/ipfs/
Nature, keyword: reproducibility, http://www.nature.com/news/reproducibility-1.17552
```

Dealing with cognitive bias

http://go.nature.com/nqyohl 23/23