Теория Рассеяния Носителей На Шероховатой Поверхности В Квантовых Проволоках

¹Синявский Э.П., ²Карапетян С.А., ²Костюкевич Н.С.

- 1. Институт прикладной физики АН Молдовы
- 2. Приднестровский Государственный Университет им. Т.Г.Шевченко

Механизм рассеяния на шероховатой поверхности

$$V(x,y)=rac{\partial E_{lpha}}{\partial a}\Delta(x,y)\equiv V_{lpha}\Delta(x,y)$$
 $\Delta(x,y)-$ случайная функция

Модель взаимодействия носителей с шероховатой поверхностью строится следующим образом: из-за неровности поверхности случайным образом меняется ширина a размерно-ограниченной системы, что приводит к флуктуации энергии размерного квантования E_{α} при движении носителя параллельно поверхности исследуемой квантовой системы. Следовательно, энергия взаимодействия электрона (дырки) с шероховатой поверхностью в случае двухмерного электронного газа может быть записана в следующем виде

Флуктуация поверхности для одномерного электронного газа

Гауссова:

$$\{\Delta(x)\Delta(x')\} = \Delta_0^2 \exp\left[-rac{(x-x')^2}{\Lambda_0^2}
ight] = F_0(x-x')^2$$

δ -образная:

$$\{\Delta(x)\Delta(x')\}=\gamma_0\delta(x-x')={ ilde F}_0(x-x')$$

Если исследовать случай одномерного электронного газа (примером могут служить квантовые проволоки, квантовые нанотрубки), то для гауссовой флуктуации поверхности автокорреляционная функция для различных точек поверхности может быть записана следующим образом:

Для случая δ -образной флуктуации поверхности естественно положить:

Формула Кубо

$$egin{aligned} \sigma_{ij} &= rac{eta_0 e^2}{2V m^2} \sum_{lpha,eta,lpha_1,eta_1} \hat{p}_{lphaeta}^{(i)} \hat{p}_{lpha_1eta}^{(j)} \int\limits_{-\infty} dt \left\langle a_lpha^+(t) a_eta(t) a_{lpha_1}^+ a_{eta_1}
ight
angle \ K(\Omega) &= rac{2\pi e^2}{V c n_0 \hbar \Omega m_e^2} ig(1 - e^{-eta_0 \hbar \Omega}ig) \sum_{lphalpha_1etaeta} ig\langle lpha \left| (\hat{\mathbf{P}}oldsymbol{\xi})
ight| lpha_1 ig
angle \left\langle eta \left| (\hat{\mathbf{P}}oldsymbol{\xi})
ight| eta_1 ig
angle \times \int\limits_{-\infty}^{\infty} dt e^{i\Omega t} \left\langle a_lpha^+(t) a_{lpha_1}(t) a_eta^+_eta a_{eta_1}
ight
angle \end{aligned}$$

здесь:

$$a_lpha^+(t) = \expigg(rac{it\hat{H}}{\hbar}igg)a_lpha^+\expigg(-rac{it\hat{H}}{\hbar}igg),\; \hat{H} = \sum_lpha arepsilon_lpha a_lpha^+a_lpha + \sum_{lpha,eta}ra{lpha}\hat{V}|eta
angle a_lpha^+a_eta$$

Расчет электропроводности и коэффициента можно провесьи согласно формуле Кубо, которая в представлении вторичного квантования имеет вид:

Данные выражения справедливы для любых квантовых систем в произвольном магнитном поле. Единственное ограничение - это малость тянущего электрического поля в случае электропроводности (т.е. область применимости закона Ома.) и малость амплитуды электромагнитной волы в случае поглощения света}:

 $\hat{p}_{lphaeta}^{(i)}$ - матричный элемент оператора импульса на сглаженных волновых функциях зонного электрона,

 $eta_0 = 1/k_0 T$, lpha - квантовые числа, описывающие состояние заряженной частицы с эффективной массой \$me\$,

V - объем основной области системы,

\$а^+, а\$ - операторы рождения уничтожения

 $\langle \cdots \rangle$ - описывает усреднение по системе равновесных электронов и по реализации случайного процесса.

 \hat{H} - Гамильтониан для электрона, взаимодействующего с шероховатой поверхностью размерно-ограниченной системы в представлении вторичного квантования записывается в виде:

Приближение времени релаксации

$$egin{aligned} \sigma_{ij} &= rac{eta_0 e^2}{V m_e^2} \sum_{lpha} \left| \hat{P}_{lpha lpha}^{(i)}
ight|^2 n_lpha \left(1 - n_lpha
ight) au_{lpha lpha} \ K(\Omega) &= rac{4 \pi e^2}{\hbar c V n_0 \Omega} \left| rac{\mathbf{P}_{lpha eta} oldsymbol{\xi}}{m_e}
ight|^2 \sum_{lpha eta} rac{ au_{lpha eta} n_lpha}{1 + rac{ au_{lpha eta}^2}{\hbar^2} (\hbar \Omega + E_lpha - E_eta)^2} \ &rac{1}{ au_{lpha eta}} &= rac{\pi}{\hbar} \sum_{\gamma} \left[W_{lpha \gamma} \delta \left(arepsilon_lpha - arepsilon_\gamma
ight) + W_{eta \gamma} \delta \left(arepsilon_eta - arepsilon_\gamma
ight)
ight] \ &W_{lpha eta} &= \int d\mathbf{r} d\mathbf{r}_1 \Psi_lpha^*(\mathbf{r}) \Psi_eta^*(\mathbf{r}_1) V_lpha V_eta F \Psi_lpha(\mathbf{r}) \Psi_eta(\mathbf{r}_1) \end{array}$$

Усредняя по реализации случайного процесса (по шероховатой поверхности), получим выражения для электропроводности и коэффициента поглощения в которые входит время релаксации, которое явлеятся определяющей характеристикой процессов рассеяния. Время релаксации это фактически вероятность перехода носителя из данного состояния в любое другое состояние

Одномерные квантовые системы с гауссовой флуктуацией поверхности

$$rac{1}{ au_lpha} = rac{2m_e}{\hbar^3} \cdot rac{V_n^2}{|k_x|} \cdot rac{\Delta_0^2 \Lambda_0 \sqrt{\pi}}{2} ig(1 + \expig[-\Lambda_0^2 k_x^2ig]ig)$$

Одномерные квантовые системы с δ -образной флуктуацией поверхности

$$rac{1}{ au_lpha} = rac{2m_e}{\hbar^3} \cdot rac{V_n^2}{|k_x|} \gamma_0$$

Для одномерных квантовых систем (например, нанопроволоки, нанотрубки), когда носители свободно движутся вдоль оси OX исследуемой наноструктуры

в случае гауссовой флуктуацией поверхности

в случае δ -образной флуктуации

Время релаксации зависит от номера размерно-квантованной зоны и имеет особенности при $k_x=0$, т.е. на дне зоны проводимости. Это обстоятельство является непосредственным следствием одномерности движения носителей заряда.

Влияние поперечного электрического поля на процессы рассеяния

$$U(z)=rac{m_e\omega^2}{2}z^2+eEz$$

$$\omega_i = rac{1}{R}igg[rac{2\Delta E_c}{m_i}igg]^rac{1}{2},$$

$$E_{k_x,n,m} = rac{\hbar^2 k_x^2}{2m_x^*} + \hbar\Omega_y \left(n + rac{1}{2}
ight) + \hbar\omega_z \left(m + rac{1}{2}
ight) - \Delta \,.$$

$$\Omega_y^2 = rac{m_x}{m_y}(\omega_x^c)^2 + \omega_y^2, \; \omega_x^c = rac{eH}{m_x c},$$

$$\Delta_c = rac{(eER)^2}{4\Delta E_c}, \; m_x^* = m_x \left(rac{\Omega_y}{\omega_y}
ight)$$

Особый интерес представляют наноструктуры в поперечном электрическом поле, которое существенно влияет на явления переноса в таких структурах. Потенциальная энергия электрона вдоль параболического потенциала определяется соотношением:

Собственные значения уравнения Шредингера для электрона в параболической проволоке с потенциальной энергией U(z) известна

 k_x - волновой вектор электрона в плоскости низкоразмерной системы,

 Δ_c - сдвиг энергии электрона в поперечном электрическом поле.

Из энергетического спектра следует что с ростом напряженности электрического поля, минимум зоны проводимости опускается в область запрещенной зоны на величину Δ_c (см. рисунок).

Будем рассматривать такие значения напряженности поперечного электрического поля, при которых параболическая форма потенциальной энергии сохраняется, и в ней остается много размерно-квантованных эквидистантных уровней, т.е. решения уравнения Шредингера с потенциальной энергией U(z) остаются справедливыми. Для параметров ПКЯ приведенных выше $E \leq 3 \cdot 10^4 \ {
m V/cm}$.

Взаимодействие с шероховатой поверхностью

$$V_lpha = -rac{1}{R} \Bigg[igg(rac{\omega_y \omega_x^c}{\Omega_y^2} igg)^2 rac{m_y}{m_x} rac{\hbar^2 k_x^2}{m_x} + \hbar \omega_y \left(rac{\omega_y}{\Omega_y}
ight) \left(n + rac{1}{2}
ight) + \hbar \omega_z \left(m + rac{1}{2}
ight) + 2 \Delta_c \Bigg]$$

$$rac{1}{ au_lpha} = \Gamma_lpha rac{1}{|k_x|},$$

$$\Gamma_lpha = rac{2\gamma_0 m_x^*}{\hbar^3} V_lpha^2.$$

потенциал взаимодействия носителей с шероховатой поверхностью в поперечном электрическом поле имеет вид:

В дальнейшем исследуются кинетические явления при низких температурах, когда процессы рассеяния носителей на шероховатой поверхности являются наиболее активными. Но при низких температурах в процессах переноса принимают участие электроны с малыми значениями волнового вектора, поэтому зависимостью V_{α} от волнового вектора можно пренебречь, если $\hbar\omega_{e}\gg k_{0}T$. Последнее неравенство хорошо выполняется в области низких температур, когда размерно-квантованные уровни проявляются наиболее ярко. В рассматриваемых приближениях время релаксации с учетом (???), (???) для случая δ -образной флуктуации

Заметим, что для случая гауссовой флуктуации поверхности при $\Lambda_0 k_x < 1$ нужно γ_0 заменить на \$\Delta_0^2 \Lambda0 \sqrt{\pi}\$

Откуда непосредственно следует, что с уменьшением размеров наноструктуры время релаксации существенно уменьшается \$\left(\tau\alpha \sim R^4 \right)\$. Это обстоятельство позволяет экспериментально выделять рассматриваемый механизм рассеяния от других конкурирующих механизмов рассеяния при исследовании явлений переноса. С ростом напряженности магнитного поля время релаксации уменьшается, что связано с увеличением локализации зонных носителей. Поперечное электрическое поле прижимает электроны к поверхности исследуемой наноструктуры, поэтому вероятность рассеяния носителей на шероховатой поверхности увеличивается. Именно по этой причине время релаксации уменьшается, что, естественно, должно влиять на кинетические коэффициенты (электропроводность, термоэдс) исследуемой наноструктуры.

Изотропный случай

при $\mathbf{B} \bot \mathbf{E}$

$$rac{1}{ au_lpha} = rac{2m_e\Omega_e^2\gamma_0}{\hbar R^2 \left|k_x
ight|} \left[\left(rac{\omega_e}{\Omega_e}
ight) \left(n+rac{1}{2}
ight) + \left(m+rac{1}{2}
ight) + rac{2\Delta_c}{\hbar\Omega_e} \left(rac{\omega_e}{\Omega_e}
ight)^3
ight]^2.$$

$$rac{1}{ au_{lpha}} = rac{2m_c\omega_e^2\gamma}{\hbar R^2 \ |k_x|}(n+m+1+N_c)^2$$

при $\mathbf{B} \parallel \mathbf{E}$

$$rac{1}{ au_{00}} = rac{2m_e\Omega_e^2\gamma_0}{\hbar R^2 \left|k_x
ight|} \left[rac{1}{2}igg(1+rac{\omega_e}{\Omega_e}igg) + rac{2\Delta_c}{\hbar\Omega_e}igg(rac{\omega_e}{\Omega_e}igg)^3
ight]^2.$$

В частном случае при \$\omegac = 0\$ получается выражение для времени релаксации только в поперечном электрическом поле

В случае \perp , заметная зависимость $\lambda \cdot$

отнапряженностипоперечногоэлектрическогополяпроявляетсяприбольшихзначениях E, чемвслучае \vect{B}\parallel \vect{E}\$. Заметим, что только процессы рассеяния носителей на шероховатой поверхности (как для одномерного, так и для квазидвумерного электронного газа) зависят от напряженности постоянного поперечного электрического поля.

Исследованы модели описания взаимодействия носителей с шероховатой поверхностью для квантовых проволок. Получены выражения для времен релаксации носителей в квантовых проволоках в присутствии внешних магнитного и электрического полей.

Спасибо за внимание