Attempting to Predict Kaggle Dataset Usability

Marc Marquez

University of Florida

Background

- What is Kaggle?
 - Website that features:
 - Data science courses, competitions, datasets
 - 317,983 datasets as of 4/20/2024
- Kaggle datasets have a Usability Rating
 - Unknown formula
 - Maybe there's a way to predict it?

Usability

8.13

This score is calculated by Kaggle.

Completeness · 75%

- ✓ Subtitle
- ✓ Tag
- ✓ Description
- X Cover Image

Credibility · 100%

- ✓ Source/Provenance
- ✓ Public Notebook
- Update Frequency

Compatibility · 67%

- / License
- ★ File Format
- File Description

The Data

- https://www.kaggle.com/datasets/rajugc/kaggle-dataset
- 9159 entries of dataset information:
 - Number of files
 - File size
 - Filetypes
 - Number of upvotes
 - Medal type (none, bronze, silver, gold)
 - Date (Months since 2015)
 - Day of upload
 - Usability (response)

Methods

- Distributions of quantitative predictors:
 - Some have too many outliers
 - Log transformation can salvage file size
 - Drop number of files and number of upvotes
- All are skewed, as well as Usability
- Categorical predictors have enough entries per level
 - JSON and SQLITE incorporated into Other

- Usability plotted against each factor individually
 - log(File size) and Months since 2015 had no clear pattern
 - CSV, Other, and Medal appeared to have 1 significant difference in level
- 1 Factor Linear Models then fitted
 - Clear linear trend on all residual plots except Day
 - Extremely significant p-values on Levene and Breusch-Pagan tests
 - Likely due to Usability limits
 - Box-Cox and IWLS did not help

1 Factor Models

- Parametric methods were insufficient
- Use nonparametric methods instead
 - Tree-based models
 - Why trees?
 - Interpretable
 - Can capture complicated relationships
 - However:
 - Weak to outliers (transformation may fix)
 - Poor predictive performance

- Multiple tree models were trained and tested
 - Basic Decision tree
 - Bagging tree
 - Random forest
 - Several boosted trees
 - Bayesian Additive Regression Trees
- Model with smallest test error was selected

The Model

- Boosted regression tree
 - **■** 2000 trees
 - Shrinking parameter of 0.01
 - ► Interaction depth of 4
 - Predictors:
 - log(File size), Months since 2015
 - Contains CSV file, Contains Other file, Medal, Day of upload

Results

Relative influence plot shows influence of each predictor:

Medal: 25.2352%

Months since 2015: 23.9388%

► Log(File size): 23.3470%

CSV filetype: 13.7616%

Day of upload: 11.7600%

■ Other: 1.9575%

- Partial dependence plots:
 - Datasets with no medals appeared to have less Usability than those that did
 - Datasets that included a CSV file appeared to have more Usability than those that did not
- Mean test error of 5.1983
 - Rather poor for a scale of 0 to 10

Conclusion

- The variables are not as good of predictors of Usability as expected
- What could help?
 - More/better data
 - Different predictors
- "Usability" is subjective
 - Numerical scaling may be inadequate
 - The exact formula is unknown