Learning Journal Template

Student Name: Ujas Bhuva

Course: Software Project Management (SOEN 6841)

Journal URL: https://github.com/ujasbhuva/SOEN6841_SPM

Dates Rage of activities: 23rd September 2024 to 4th October 2024

Date of the journal: 5th October 2024

Key	Application	Peer	Challenges	Personal	Goals for the
Concepts	in Real	Interactions	Faced	development	Next Week
Learned	Projects			activities	
Effort & Cost	I can see the	I discussed	Effort	This week I	I plan to focus
Estimation:	application	the risk	Estimation	watched	on practicing
Techniques	of COCOMO	management	was	several	qualitative
such as	and Expert	strategies	particularly	videos on	and
Estimation by	Judgment in	with peers in	challenging.	Agile Risk	quantitative
Analogy,	real projects	a group	The	Management	risk analysis,
Expert	where	study	variability in	, which	applying it to
Judgment,	precise	session,	staff skill	helped me	mock project
and	estimation of	where we	levels and	link what I	scenarios.
COCOMO	timelines	debated the	project	learned in the	
models help in	and	pros and	complexity	chapter to	I aim to create
predicting the	resources is	cons of ri sk	makes it	real-world	a mini-project
resources,	critical. For	transference	difficult to	agile project	where I can
effort, and	example, a	versus	apply these	management	apply the
cost needed	past project I	mitigation.	models	practices.	COCOMO II
for a software	worked on	This helped	universally.		model to
project.	could have	me	Also,	I also started	estimate
Risk	benefited	understand	estimating	practicing	resources and
Management:	from risk	how different	effort for	estimation	cost, using
Understanding	prioritization	teams may	machine	techniques	actual project
how to	to ensure	prefer one	learning	with small	data.
identify,	focus on	strategy over	projects, as	personal	
analyze, and	high-impact	another	mentioned in	project	I will organize
prioritize risks	risks. In	depending	the material,	examples,	a group study
is essential for	future	on project	can be tough	using	session to
avoiding	projects, I'll	size and	due to the	Estimation	practice the
project	apply	constraints.	fast-evolving	by Analogy	Wideband
failures. The	Configuratio		nature of this	to better	Delphi
four main risk	n		field.	understand	method,
response	Management]	how previous	ensuring we
strategies-acc	techniques		I also	projects	can reach a
eptance,	to prevent		struggled	inform future	consensus on
avoidance,	issues like		with	estimates.	project
mitigation, and	scope creep		grasping		

transference-o ffer practical ways to handle different types	and uncontrolled changes in code versions.	how to perform risk analysis quantitativel y.	estimation as a team.
of risks Configuratio n Management: CM ensures that changes in software projects are tracked and controlled. It involves key functions like configuration identification, control, status accounting, and auditing, which help maintain the integrity of the system.		Understandi ng the exact probability and impact of risks requires a lot of experience, which I still need to develop.	