CS Study 18주차

Database Questions 김신아

Database에 관한 질문 모음집

1. 오라클 시퀀스(Oracle Sequence)

cf.

시퀀스(Sequence)란?

유일한(UNIQUE)한 값을 생성해주는 오라클 객체이다.

보통 PK값에 중복값을 방지하기 위해 사용한다.

예를 들어, 게시판에 글이 하나 추가될때마다 글번호(PK)가 생겨야 한다고 하자.

기존 글번호중 가장 큰 값에 +1을 하는 로직을 어딘가에 넣어야 하는데 시퀀스를 사용하면 이러한 로직이 필요없이 데이터베이스에 ROW가 추가될때마다 자동으로 +1을 시켜주어 매우 편리하다.

```
CREATE SEQUENCE 시퀀스이름
START WITH n [시작숫자]
INVREMENT BY [증감숫자]
NOMINVALUE OR MINVALUE [최소값]
NOMAXVALUE OR MAXVALUE [최대값]
CYCLE OR NOCYCLE -- CYCLE 설정 시 최대값에 도달하면 최소값부터 다시 시작
-- NOCYLE 설정 시 최대값 생성 시 시퀀스 생성중지
CACHE OR NOCACHE -- CACHE 설정 시 메모리에 시퀀스 값을 미리 할당하고
-- NOCACHE 설정 시 시퀀스값을 메모리에 할당하지 않음
```

1. 오라클 시퀀스(Oracle Sequence)

A

UNIQUE한 값을 생성해주는 오라클 객체로 시퀀스를 생성하면 PK와 같이 순차적으로 증가하는 컬럼을 자동 생성할 수 있습니다.

2. DBMS란?

A

데이터베이스 관리 시스템 다수의 사용자가 데이터베이스 내의 데이터를 접근할 수 있도록 설계된 시스템입니다.

3. DBMS의 기능은?

A

- 정의 기능(DDL: Data Definition Language)
 - 데이터베이스가 어떤 용도이며 어떤 식으로 이용될 것이라는 것에 대한 정의가 필요함
 - CREATE, ALTER, DROP, RENAME
- 조작 기능(DML: Data Manipulation Language)
 - 데이터베이스를 만들었을 때 그 정보를 수정하거나 삭제 추가 검색할 수 있어야함
 - SELECT, INSERT, UPDATE, DELETE
- 제어 기능(DCL : Data Control Language)
 - 데이터베이스에 접근하고 객체들을 사용하도록 권한을 주고 회수하는 명령
 - GRANT, REVOKE

4. UML이란?

cf.

UML다이어그램?

통합 모델링 언어를 사용하여 시스템 상호작용, 업무흐름, 시스템 구조, 컴포넌스 관계 등을 그린 도면이다. UML다이어그램을 사용하는 이유는 프로그래밍을 단순화 시켜 표현하여 의사소통하기 좋고 또 대규모 프로젝트 구조의 로드맵을 만들거나 개발을 위한 시스템 구축에 기본을 마련한다.

종류	설명
Use Case 다이어그램	요구 분석 과정에서 시스템과 외부와의 상호 작용을 묘사함
Activity 다이어그램	업무의 흐름을 모델링하거나 객체의 생명주기를 표현함
Sequence 다이어그램	객체 간의 메시지 전달을 시간적 흐름에서 분석함
Collaboration 다이어그램	객체와 객체가 주고받는 메세지 중심의 작성함
Class 다이어그램	시스템의 구조적인 모습을 그림
Component 다이어그램	소프트웨어 구조를 그림
Deployment 다이어그램	기업 환경의 구성과 컴포넌트들 간의 관계를 그림

4. UML이란?

A

프로그램 설계를 표현하기 위해 사용하는 그림으로 된 표기법 이해하기 힘든 복잡한 시스템을 의사소통하기 위해 만듭니다.

5. DB에서 View란 무엇인가? 가상 테이블이란?

A

허용된 데이터를 제한적으로 보여주기 위한 것입니다. 하나 이상의 테이블에서 유도된 가상 테이블입니다. 사용자가 view에 접근했을 때 해당하는 데이터를 원본에서 가져옵니다. view에 나타나지 않은 데이터를 간편히 보호할 수 있는 장점이 있습니다.

6. 정규화란?

cf.

6. 정규화란?

Δ

중복을 최대한 줄여 데이터를 구조화하고, 불필요한 데이터를 제거해 데이터를 논리적으로 저장하는 것입니다. 이상현상이 일어나지 않도록 정규화 시킵니다.

7. 이상현상이란?

cf.

- 삽입 이상 (Insert Anomaly)
- : 특정 데이터가 존재하지 않아 중요한 데이터를 데이터베이스에 삽입할 수 없을 때 발생
- 삭제 이상 (Delete Anomaly)
- : 특정 정보를 삭제하면, 원치 않는 정보도 삭제되는 현상
- 갱신 이상 (Update Anomaly)
- : 테이블의 특정 데이터를 업데이트했는데, 정상적으로 변경되지 않은 경우
- 너무 많은 행을 업데이트하는 것

7. 이상현상이란?

A

릴레이션에서 일부 속성들의 종속으로 인해 데이터 중복이 발생하여 전체적인 무결성이 저하되는 것입니다.

(insert, update, delete)

8. 데이터베이스를 설계할 때 가장 중요한 것이 무엇이라고 생각하나요?

A

무결성을 보장해야 합니다.

무결성 보장 방법은?

데이터를 조작하는 프로그램 내에서 데이터 생성, 수정, 삭제 시 무결성 조건을 검증합니다. 트리거 이벤트 시 저장 SQL을 실행하고 무결성 조건을 실행합니다. DB제약조건 기능을 선언합니다.

9. 데이터베이스의 무결성이란?

cf.

무결성이란?

데이터의 정확성, 일관성, 유효성이 유지되는 것을 말한다. 데이터의 무결성을 유지하는 것은 데이터베이스 관리시스템(DBMS)의 중요한 기능이며, 주로 데이터에 적용되는 연산에 제한을 두어데이터의 무결성을 유지한다.

- 개체 무결성 (Entity Integrity)
- : 모든 테이블이 기본 키(PK)로 선택된 필드(column)를 가져야 한다. 기본 키로 선택된 필드는 고유한 값을 가져야 하며, 빈 값은 허용하지 않는다.
- 참조 무결성 (Referential Integrity)
- : 참조 관계에 있는 두 테이블의 데이터가 항상 일관된 값을 갖도록 유지되는 것을 말한다.
- 도메인 무결성 (Domain Integrity)
- : 테이블에 존재하는 필드의 무결성을 보장하기 위한 것으로 필드의 타입, NULL 값의 허용 등에 대한 사항을 정의하고, 올바른 데이터가 입력 되었는지 확인하는 것이다.
- 무결성 규칙 (Integrity Rule)
- : 데이터의 무결성을 지키기 위한 모든 제약 사항들을 말한다.

9. 데이터베이스의 무결성이란?

A

테이블에 있는 모든 행들이 유일한 식별자를 가질 것을 요구합니다. 외래키 값은 NULL이거나 참조 테이블의 PK값이어야 합니다. 한 컬럼에 대해 NULL 허용 여부와 자료형, 규칙으로 타당한 데이터 값을 지정합니다.

10. 트리거란?

A

자동으로 실행되도록 정의된 저장 프로시저입니다. (insert, update, delete 문에 대한 응답을 자동으로 호출합니다.)

사용하는 이유는? 업무 규칙 보장, 업무 처리 자동화, 데이터 무결성 강화입니다.

Thank You

별첨

https://gyoogle.dev/blog/interview/%EB%8D%B0%EC%9D%B4%ED%84%B0%EB%B2%A0%EC%9D%B4%EC%8A%A4.html

https://coding-factory.tistory.com/420

https://velog.io/@bsjp400/Database-DB-%EC%A0%95%EA%B7%9C%ED%99%94-%EB%B9%84%EC%A0%95%EA%B7%9C%ED%99%94%EB%9E%80

https://developer-talk.tistory.com/256

https://untitledtblog.tistory.com/123