Perceptron simple y multicapa

Redes neuronales artificiales

Introducción

01

IMPLEMENTADO En Python

03

GRÁFICOS

utilizando matplotlib

02

CONFIGURACIÓN

en config.yaml

Perceptron simple

Ejercicio 1

- Modelo McCulloch y Pitts primer acercamiento a nuestro modelo de perceptrón.
- Función de activación: signo.
- Modelo Rosenblatt asumiendo la conjetura de Hebb.
- Valores de entrada: puntos en r2.
- Valores de salida: 1 y -1

Problema a analizar

AND

XOR

Conclusiones

• Gráficos realizados con n=0.1

AND

• Linealmente separable.

XOR

• No es linealmente separable.

Perceptron lineal lineal y no lineal

Ejercicio 2

Perceptron lineal

Función de activación: identidad.

Perceptron no lineal

Función de activación: tangente hiperbólica.

Ejercicio 2

- Conjunto de entrenamiento 200 valores de entrada
- Valor de entrada: tuplas de tres valores reales
- Valor de salida: un número real

Perceptron lineal

Perceptrón Lineal

- No se ajusta a los valores del problema
- Probamos con entradas y salidas que se ajusten a:

$$Y(x) = 2 * x$$

- Esta función corresponde a una transformación lineal
 - Sean $u,v \in \mathbb{R}$, $F(u+v) = 2^*(u+v) = 2^*u + 2^*v = F(u) + F(v)$
 - Sean $u,v \in \mathbb{R}$, $F(u^*v) = 2^*k^*u = k^*2^*u = k^*F(u)$
 - \circ F(0) = 2*0 = 0
- Ahora el perceptrón devuelve lo siguiente:

Perceptron lineal

n: 0.01

Conclusiones

- El perceptrón lineal logra aproximar los valores para una transformación lineal
- Los valores dados para el ejercicio no son linealmente separables

Perceptrón No Lineal

- Se normalizaron los valores de salida entre [-1, 1] porque los valores del conjunto de entrenamiento están fuera de ese intervalo.
- Para normalizar se utilizó la función:

$$2*(Y - min(Y)) / (max(Y) - min(Y)) - 1$$

Perceptron no lineal error

n: 0.1 β: 0.05

Perceptron no lineal transformación lineal error

n: 0.1 β: 0.4

Conclusiones

- El perceptrón no lineal también logra aproximar correctamente los valores para una transformación lineal.
- Los valores dados para el ejercicio no son linealmente separables

Capacidad de generalización

- K = 10
- 90 10
- El grupo 9 fue el mejor para los testeos
- El perceptrón no lineal tiene una buena capacidad de generalización

Group	Training error	Testing error
1	0.48950	0.41296
2	0.50130	0.35865
3	0.51153	0.29826
4	0.48810	0.44662
5	0.49027	0.44147
6	0.51203	0.28725
7	0.48115	0.49968
8	0.50395	0.33064
9	0.51268	0.28114
10	0.50675	0.33015

Perceptron multicapa

Ejercicio 3

- Perceptrones como los que venimos utilizando.
 Se dividen en distintas capas.
- Existen capas ocultas.
- Los pesos se actualizan de forma incremental.

Ejercicio 3.1

Función lógica 'O exclusivo' con entradas:

$$x = \{\{-1, 1\}, \{1, -1\}, \{-1, -1\}, \{1, 1\}\},\$$

y salida esperada:

$$y = \{1, 1, -1, -1\}.$$

Ejercicio 3.1 error

Ejercicio 3.1

Conclusiones

- Perceptrón multicapa resuelve el problema del XOR.
- Es mejor aumentar la cantidad de nodos en cada capa que aumentar la cantidad de capas.

Ejercicio 3.2

Discriminar si un número es par, con entradas dadas por el conjunto de números decimales del 0 al 9 representados por imágenes de 5 x 7 pixeles.

Capacidad de generalización

- K = 5
- 5 grupos de dos quedan dos números para testear
- El perceptrón no lineal tiene una buena capacidad de generalización

Dataset	Valor esperado	Predicción		
2	1	0.96248		
8	1	0.94881		
5	-1	-0.98365		
3	-1	-0.93966		
1	-1	-0.97592		
7	-1	-0.97385		
4	1	0.97773		
6	1	0.98265		
Testing				
0	1	0.45382		
9	-1	0.75934		

Predicciones

Entrenando solo pares

Testing set	Valor esperado	Predicción
1	-1	0.80916
3	-1	0.99612
5	-1	0.99442
7	-1	0.98294
9	-1	0.98753

Entrenando solo impares

Testing set	Valor esperado	Predicción
0	1	-0.98150
2	1	-0.87985
4	1	-0.91791
6	1	-0.97525
8	1	-0.96021

Conclusiones

- Clasifica correctamente los elementos del conjunto de entrenamiento en par e impar.
- Los valores de beta grandes siempre llegan a la solución.
 En cambio, los valores de beta pequeños solo llegan con una tasa de aprendizaje grande/pequeña.

Ejercicio 3.3

Construir un perceptrón multicapa con 10 unidades de salidas de modo que cada salida represente a un dígito. Las entradas dadas son números del 0 al 9 representados por imágenes de 5x7 pixeles.

Ejercicio 3.3 Se agrega ruido una vez con p = 0.02

Ejercicio 3.3Se agrega ruido 35 veces con p = 0.02

Ejercicio 3.3 Se agrega ruido 35 veces con p = 0.02

Conclusiones

- Con muy poco ruido en la primer iteración no altera mucho el resultado.
- A mayor ruido, mayor error.