

Zi-Ming Lau

October 8, 2022

Contents

1	Rough Classification of Lie Algebras	1
2	Solvability	2
3	Nilpotency	3
4	Semisimple Lie Algebra	4
\mathbf{R}_{0}	eferences	6

1 Rough Classification of Lie Algebras

Before beginning, we give three definitions straightforward. First, we define the center $Z(\mathfrak{g})$ of a Lie algebra \mathfrak{g} to be the subspace of \mathfrak{g} of elements $X \in \mathfrak{g}$ such that [X,Y]=0 for all $Y \in \mathfrak{g}$. Second, we say \mathfrak{g} is abelian if [x,y]=0 for all $x,y \in \mathfrak{g}$. Third, the commutant of \mathfrak{g} is the ideal [g,g].

Next, we say that a Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$ of a Lie algebra \mathfrak{g} is an ideal if it satisfies the condition

$$[X,Y] \in \mathfrak{h} \text{ for all } X \in \mathfrak{h}, Y \in \mathfrak{g}.$$

To attempt to classify Lie algebras, we introduce two descending chains of subalgebras. For a Lie algebra $\mathfrak g$ define its derived series by the formulas

$$D^0(\mathfrak{g}) = \mathfrak{g}, \ D^{n+1}(\mathfrak{g}) = [D^n(\mathfrak{g}), D^n(\mathfrak{g})].$$

The lower central series of subalgebras is defined inductively by

$$D_0(\mathfrak{g}) = \mathfrak{g}, \ D_{n+1}(\mathfrak{g}) = [\mathfrak{g}, D_n(\mathfrak{g})].$$

Both of these are descending sequences of ideals in \mathfrak{g} .

Theorem 1.1. $D^k \mathfrak{g}$ is an ideal in \mathfrak{g} . More generally, if \mathfrak{h} is an ideal in a Lie algebra \mathfrak{g} , then $[\mathfrak{h},\mathfrak{h}]$ is also an ideal in \mathfrak{g} ; hence all $D^k \mathfrak{h}$ are ideals in \mathfrak{g} .

Proof. The Jacobi identity implies, for ideals I, J, K, that $[I, [J, K]] \subset [J, [K, I]] + [K, [I, J]]$. Thus,

$$[\mathfrak{g},[\mathfrak{h},\mathfrak{h}]]\subset [\mathfrak{h},[\mathfrak{g},\mathfrak{h}]]+[\mathfrak{h},[\mathfrak{h},\mathfrak{g}]]=[\mathfrak{h},[\mathfrak{g},\mathfrak{h}]]\subset [\mathfrak{h},\mathfrak{h}],$$

which means that $[\mathfrak{h},\mathfrak{h}]$ is an ideal in \mathfrak{g} . It follows by induction on k that $D^k\mathfrak{h}$ is an ideal. This applies in particular to $\mathfrak{h} = \mathfrak{g}$.

Observe that we have $D^k \mathfrak{g} \subset D_k \mathfrak{g}$ for all k, with equality when k = 1. We often write simply $D\mathfrak{g}$ for $D_1\mathfrak{g} = D^1\mathfrak{g}$ and call it the commutator subalgebra.

Definition 1.2. We say that \mathfrak{g} is solvable if $D^k \mathfrak{g} = 0$ for some k; \mathfrak{g} is nilpotent if $D_k \mathfrak{g} = 0$ for some k; \mathfrak{g} is perfect if $D\mathfrak{g} = \mathfrak{g}$; \mathfrak{g} is semisimple if \mathfrak{g} has no nonzero solvable ideals.

Example 1.3. Consider the space $\mathfrak{b}_n\mathbb{R}$ of upper-triangular $n \times n$ matrices, and the algebra $\mathfrak{n}_n\mathbb{R}$ of strictly upper-triangular $n \times n$ matrices. In this Lie algebra the commutator $D\mathfrak{b}_n\mathbb{R}$ is the algebra $\mathfrak{n}_n\mathbb{R}$ and the derived series is $D^k\mathfrak{b}_n\mathbb{R} = \mathfrak{n}_{2^{k-1},n}\mathbb{R}$. It follows that any subalgebra of the algebra $\mathfrak{b}_n\mathbb{R}$ is also solvable. Similarly, it is easy to check that any subalgebra of the Lie algebra $\mathfrak{n}_n\mathbb{R}$ is nilpotent.

2 Solvability

Lemma 2.1. The quotient $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ is abelian. Moreover, if $I \subset \mathfrak{g}$ is an ideal such that \mathfrak{g}/I is abelian, then $I \supset [\mathfrak{g},\mathfrak{g}]$.

Proposition 2.2. The following conditions on g are equivalent:

- (1) \mathfrak{g} is solvable.
- (2) There exists a sequence of ideals $\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \cdots \supset \mathfrak{g}_m = 0$ such that $\mathfrak{g}_i/\mathfrak{g}_{i+1}$ is abelian.

Proof. It is easy to check that (1) implies (2), since we can take $\mathfrak{g}_i = D^i\mathfrak{g}$. Conversely, for i = 0, it satisfies that $D^0\mathfrak{g} = \mathfrak{g} = \mathfrak{g}_0$. Assume that $D^i\mathfrak{g} \subset \mathfrak{g}_i$ for all $0 \le i \le n$. Then for i = n + 1, we desire to show that $D^{n+1}\mathfrak{g} \subset \mathfrak{g}_{n+1}$. Since $\mathfrak{g}_{n+1} \subset \mathfrak{g}_n$ and $\mathfrak{g}_n/\mathfrak{g}_{n+1}$ is abelian, $D^{n+1}\mathfrak{g} = [\mathfrak{g}_n, \mathfrak{g}_n] \subset \mathfrak{g}_{n+1}$ by Lemma 2.1.

Proposition 2.3. Let L be a Lie algebra.

(1) If L is solvable, then so are all subalgebras and homomorphic images of L.

- (2) If I is a solvable ideal of L such that L/I is solvable, then L is solvable.
- (3) If I, J are solvable ideals of L, then so is I + L.
- *Proof.* (1) Let K be a subalgebra of L, then $D^iK \subset D^iL$. Let $\varphi: L \to M$ is an epimorphism, it is easy to show that $\varphi(D^iK) = D^iM$ by induction on i.
- (2) Let $D^n(L/I) = 0$. Applying (1) to the homomorphism $\pi : L \to L/I$, we get $D^n L \subset I = \text{Ker}\pi$, or $D^n L \subset I = \text{Ker}\pi$. If $D^m I = 0$, the fact that $D^j(D^i L) = D^{i+j}L$ implies that $D^{m+n}L = 0$.
- (3) We have the fact that $(I+J)/J \cong I/(I\cap J)$ by homomorphism theorem. As a homomorphic image of I, the right side is solvable, then (I+J)/J is solvable. Then so is I+J by (2).

3 Nilpotency

Proposition 3.1. The following conditions on \mathfrak{g} are equivalent:

- (1) g is nilpotent.
- (2) There exists a sequence of ideals $\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \cdots \supset \mathfrak{g}_m = 0$ such that $[\mathfrak{g}, \mathfrak{g}_i] \subset \mathfrak{g}_{i+1}$.

Proof. Take $\mathfrak{g}_i = D_i \mathfrak{g}$, then it is easy to check that (1) implies (2). Conversely, by induction, $D_0 \mathfrak{g} = \mathfrak{g} = \mathfrak{g}_0$. Assume that $D_i \mathfrak{g} \subset \mathfrak{g}_i$ for all $0 \leq i \leq n$, then we desire to show $D_{n+1} \mathfrak{g} \subset \mathfrak{g}_{n+1}$. Notice that any nilpotent Lie algebra is solvable since $[\mathfrak{g}, \mathfrak{g}_i] \subset \mathfrak{g}_{i+1}$ implies $[\mathfrak{g}_i, \mathfrak{g}_i] \subset \mathfrak{g}_{i+1}$, hence $\mathfrak{g}_i/\mathfrak{g}_{i+1}$ is abelian. Thus, we can conclude that $D_{n+1} \mathfrak{g} \subset \mathfrak{g}_{n+1}$ by Lemma 2.1.

Proposition 3.2. Let L be a Lie algebra.

- (1) If L is nilpotent, then so are all subalgebras and homomorphic images of L.
 - (2) If L/Z(L) is nilpotent, then so is L.
 - (3) If L is nilpotent and nonzero, then $Z(L) \neq 0$.

Proof. (1) Let K be a subalgebra of L, then $D_iK \subset D_iL$. Similarly, if $\varphi: L \to M$ is an epimorphism, an easy induction on i shows that $\varphi(D_iL) = D_iM$.

- (2) Since $D_n(L) \subset Z(L)$, we have $D_{n+1}L = [L, D_nL] \subset [L, Z(L)] = 0$.
- (3) The last nonzero term of the descending central series is central. \Box

4 Semisimple Lie Algebra

Let \mathfrak{g} be a finite dimensional Lie algebra over a field \mathbb{F} .

Proposition 4.1. \mathfrak{g} contains the largest solvable ideal which contains all solvable ideals of \mathfrak{g} . This ideal is called the radical of \mathfrak{g} and denoted $rad(\mathfrak{g})$.

Proof. Let I, J be solvable ideals of \mathfrak{g} . Then $I + J \subset \mathfrak{g}$ is an ideal, and $(I + J)/I \cong J/(I \cap J)$ is solvable, so I + J is solvable. Thus, the sum of finitely many solvable. Hence the sum of all solvable ideals in \mathfrak{g} is a solvable ideal, as desire.

Definition 4.2. (1) \mathfrak{g} is called semisimple if $rad(\mathfrak{g}) = 0$, i.e., \mathfrak{g} does not contain nonzero solvable ideals.

(2) A non-abelian $\mathfrak g$ is called simple if it contains no ideals other than 0, $\mathfrak g$. In other words, a non-abelian $\mathfrak g$ is simple if its adjoint representation is irreducible (=simple).

If \mathfrak{g} is both solvable and semisimple then $\mathfrak{g} = 0$.

Proposition 4.3. (1) $rad(\mathfrak{g} \oplus \mathfrak{h}) = rad(\mathfrak{g}) \oplus rad(\mathfrak{h}).$

(2) A simple Lie algebra is semisimple.

Proof. (1) The images of rad($\mathfrak{g} \oplus \mathfrak{h}$) in \mathfrak{g} and in \mathfrak{h} are solvable, hence contained in rad(\mathfrak{g}), respectively rad(\mathfrak{h}). Thus

$$rad(\mathfrak{g} \oplus \mathfrak{h}) \subset rad(\mathfrak{g}) \oplus rad(\mathfrak{h}).$$

And $rad(\mathfrak{g}) \oplus rad(\mathfrak{h})$ is solvable ideal in $\mathfrak{g} \oplus \mathfrak{h}$, so

$$rad(\mathfrak{g} \oplus \mathfrak{h}) \supset rad(\mathfrak{g}) \oplus rad(\mathfrak{h}).$$

(2) The only nonzero ideal in \mathfrak{g} is \mathfrak{g} , and $[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$ since \mathfrak{g} is not abelian. Hence \mathfrak{g} is not solvable. Thus, \mathfrak{g} is semisimple.

Theorem 4.4 (weak Levi decomposition). The quotient $\mathfrak{g}/rad(\mathfrak{g})$ is semisimple. Any Lie algebra \mathfrak{g} fits into an exact sequence

$$0 \to rad(\mathfrak{g}) \to \mathfrak{g} \to \mathfrak{g}/rad(\mathfrak{g}) \to 0$$

where $rad(\mathfrak{g})$ is a solvable ideal and $\mathfrak{g}/rad(\mathfrak{g})$ is semisimple. Moreover, if $\mathfrak{h} \subset \mathfrak{g}$ is a solvable ideal such that $\mathfrak{g}/\mathfrak{h}$ is semisimple then $\mathfrak{h} = rad(\mathfrak{g})$.

Proof. Let $I \subset \mathfrak{g}/\mathrm{rad}(\mathfrak{g})$ be a solvable ideal, and let \widetilde{I} be its preimage in \mathfrak{g} . Then \widetilde{I} is a solvable ideal in \mathfrak{g} . Thus $\widetilde{I} = \mathrm{rad}(\mathfrak{g})$ and I = 0.

References

- [1] Etingof, P. 2022, "Lie groups and Lie algebras".
- [2] Fulton, W., Harris, J. & SpringerLink (Online service) 2004, Representation Theory: A First Course, Springer New York, New York, NY.
- [3] Humphreys, J.E. 2012, Introduction to Lie algebras and representation theory, Springer.