Analysis of Annual Income

Tiancheng Liu, Yuhan Zhu, Yan Lyu May 02, 2023

Content

01. Introduction

Introduce the purpose of the project and the original intention of the project 02. Description of Data

What data is and Where it comes from.

03. EDA

Looking at data

O4. Modeling Process

Description of Modeling to be done

05. Conclusion

project summary

Introduction

Our project aims to analyze the Census Income dataset, which contains demographic and employment-related information about individuals, with a target variable representing whether an individual's annual income exceeds \$50,000. We'll explore the dataset, clean and transform the data, and fit various models to predict whether an individual's annual income exceeds \$50,000.

Description of Data

• **What**: The Adult dataset is a collection of demographic and employment related information about individuals from the 1994 Census database, with a target variable indicating whether the individual's income exceeds \$50,000 per year.

Data Set Characteristics:	Multivariate	Number of Instances:	48842	Area:	Social
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	14	Date Donated	1996-05-01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	2772466

- Where: https://archive.ics.uci.edu/ml/datasets/Adult
- **Attribute Information:** The dataset contains 48842 instances and 14 variables. Columns will be used include the person's job, region, age, gender, work class, education, etc.

Exploratory Data Analysis

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32560 entries, 0 to 32559
Data columns (total 15 columns):
```

Data	cotumns (totat	15 Co cuillis / .		
#	Column	Non-Null Count	Dtype	
0	age	32560 non-null	int64	
1	workclass	32560 non-null	object	
2	fnlwgt	32560 non-null	int64	
3	education	32560 non-null	object	
4	education_num	32560 non-null	int64	
5	marital_status	32560 non-null	object	
6	occupation	32560 non-null	object	
7	relationship	32560 non-null	object	
8	race	32560 non-null	object	
9	sex	32560 non-null	object	
10	capital_gain	32560 non-null	int64	
11	capital_loss	32560 non-null	int64	
12	hours_per_week	32560 non-null	int64	
13	<pre>native_country</pre>	32560 non-null	object	
14	income	32560 non-null	object	
11 (1/6)				

dtypes: int64(6), object(9)

memory usage: 3.7+ MB

Missing values

	?_Count	Percentage
occupation	184300	5.660
workclass	183600	5.639
native_country	58300	1.791
age	0	0.000
fnlwgt	0	0.000
education	0	0.000
education_num	0	0.000
marital_status	0	0.000
relationship	0	0.000
race	0	0.000
sex	0	0.000
capital_gain	0	0.000
capital_loss	0	0.000
hours_per_week	0	0.000
income	0	0.000

1600

Income by Education Level

Correlation

 The correlation heatmap suggests that the numerical variables are little correlated to each other, means we can use them all in model fitting without worrying about multicollinearity.

Pairplot on the variables

No clear pattern seen.

10

Some findings

Capital gain/Hours per week

- Normal distribution
- Slightly right skewed

Hong long should you work per week?

Modeling

Model selection:

- Logistic regression(Baseline model)
- Random forest
- XGBoost
- KNN
- K-Means
- Decision Tree
- ...

Baseline model(Logistic regression)

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 7000 1722 1 414 633

Accuracy : 0.7813

95% CI: (0.773, 0.7895)

No Information Rate: 0.7589

P-Value [Acc > NIR] : 8.776e-08

Logistic Regression with aggregation

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 4415 993

1 213 339

Accuracy : 0.7977

95% CI: (0.7872, 0.8078)

No Information Rate: 0.7765

P-Value [Acc > NIR] : 3.988e-05

Random Forest

Confusion Matrix and Statistics

Reference Prediction 0 1 0 7399 2370 1 0 0

Accuracy : 0.7574

95% CI: (0.7488, 0.7659)

No Information Rate: 0.7574

P-Value [Acc > NIR] : 0.5055

16 April 24, 2023

KNN

Confusion Matrix and Statistics

Reference

Prediction 0 1

0 6578 1891

1 821 479

Accuracy : 0.7224

95% CI: (0.7134, 0.7313)

No Information Rate: 0.7574

P-Value [Acc > NIR] : 1

K-means

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 22815 7015 1 1905 826

Accuracy : 0.7261

95% CI : (0.7212, 0.7309)

No Information Rate: 0.7592

P-Value [Acc > NIR] : 1

Decision Tree

age < 27.5 education_num < 12.5 0 capital_loss < 1820.5 0 1

Confusion Matrix and Statistics

Reference Prediction 0 1 0 7333 1858

1 66 512

Accuracy : 0.8031

95% CI: (0.795, 0.8109)

No Information Rate: 0.7574

P-Value [Acc > NIR] : < 2.2e-16

- I wanted to fit a linear regression model to find the relationship between Annual income and Capital gain, but we do not have information of annual income.
- If I could, then we would know how much you should put into the stock market based on your annual income.
- Last node: high risk high reward.

XGboost

Confusion Matrix and Statistics

```
Reference
```

Prediction 0 1

0 7021 902

1 378 1468

Accuracy: 0.869

95% CI: (0.8621, 0.8756)

No Information Rate: 0.7574

P-Value [Acc > NIR] : < 2.2e-16

Summary

model	accuracy		
Baseline	0.7813		
Logistic regression with mask	0.7977		
K-means	0.7261		
KNN	0.7226		
Random forest	0.7574		
Decision tree	0.8031		
xgBoost	0.8690		

Thank you

Questions?