FIG. 1

FIG. 5

Avg				Αvg	1			Avg	:			Avg				BVA				Avg							
100				120								7															
X. T. S.	-	-	-	3 11 33	=	=	=			-	_		-	-	-	Sit	=	=	=] 3	=	=	=			SAP Type	
e localii	II	Ξ	Ξ	II	Ξ	Ξ	Ξ		_	_	_	25.40	=	=	=		_	_	_		=	=	=			e Fiber Type	
XS.	sx	sx	sx	γg	P	P	P	XS	sx	sx	sx	ŝ	sx	sx	SX	PV	9	P	٩	·γPV	٩	٩	₽				
M9543	SXM9543	SXM9543	SXM9543	VA9543	PVA9543	PVA9543	PVA9543	SXM9543	SXM9543	SXM9543	M9543	SXM9543	SXM9543	SXM9543	SXM9543	VA9543	PVA9543	VA9543	VA9543	VA9543	VA9543	VA9543	VA9543			SAP Type	
CHITO	CHITO	CHITO	엄민	CHITO	CHITO	CHITO	OTIF2	IPSSN	IPSSN	IPSSN	IPSSN	EXCEL	EXCEL	EXCEL	EXCELL	IPSSN	IPSSN	IPSSN	IPSSN	EXCELL	EXCELL	EXCEL	EXCEL			Fiber Type	
				S. F. F. S.									_	_	_						_	_	_			_	
23	23	23	23	22.1	22.1	22.1	22.1	523 S	23	23	23	23/	23	23	23	221	22.1	22.1	22.1	22.1	22.1	22.1	22.1		(9/9)	₽ CRC	
0:8	0.8	0.8	0.8	0.8	0.8	8,0	0.87		1.1	1.1	<u>:</u>	07	0.7	0.7	0.7		<u>:</u>	<u></u>	<u></u>	0.7	0.7	0.7	0.7		(9/9)	Fiber CRC	
77																Y		ω	ω	8	œ	œ	œ		_	_	
17.1		17.3	16.9	15.9		16.8	15.1	16.5			16.5	15.9			15.9	17.2			17.2	17.0			17:0).5psi Sat Pe	유
103.5	109.4	89.3	111.9	140.5	131.3	134.3	155.8	. √87-3	87.6	84.1	90.2	. 61.5	62.0	64.6	57.8	1177	125.7	114.5	113.0	111.6	112.8	113.6	108.5			Perm (µm2) CP Dry Den	CP = Composite Permeabili
							0.125																		<u>6</u>	CP Dry	osite Pen
17	25	22	2	16	5	14	25	24	6	22	35	26	26	25	27	14	32	30	81	20	5	25	19		(g/cc)	Den	neability)
493.8	503.1	492.7	485.7	469.6	468.4	458.0	482.3	448.7	430.2	461.5	454.5	483.4	482.3	475.3	492.7	453.3	440.6	475.3	444.1	474.2	464.9	478.8	478.8		(gsm)	CP BW	
9.	9.	œ	.	11.	1 0.	10.	11.9	7.	7.	. 7.	7.	7.7	7	.00	7.	9	9	.9	9	. 9	.9	1 0.	9	(C)	Volun	CP Vo	
																									4	711	
1.66	1.71	55	1.71	1:09	1.1	1.19	0.96	1.93	1.91	1.89	1.98	2.69	2.61	2.56	2.90	1.50	1.54	1.38	1.59	210	2.18	2.39	1.72		(ml/s)	_	
4.61	4.01	5.33	4.50	13.63	12.95	14.49	13.46	9.30	5.39	8.58	13.93	5.21	6.12	5.26	4.26	15.56	14.14	15.63	16.92	247	2.21	2.55	2.65		(ml/s)	IE Insult2	
2	<u>-</u> -	ω	2	- 12	12	12	12.	. 8	5	œ	=	3	ن	4.	2	3	2	ω	4.	1	<u>.</u> .		ب		(ml/s)	FIE Ins	
74	98	91	32	50	95	14	12.42	32	39	5	46	98′>⊀	2	24	6	56 - +	55	18 8	94	20	2	23	32		l/s) Thic	ᇤ	
3.35	3.47	3.22	3.36	3.21	3.39	3.26	2.99	3 16	3.11	3.16	3.20	3.41	3.42	3.36	3.45	3.09	3.13	3.06	3.09	3.20	3.26	3.31	3.04		Thick (mm)	FIE Dry	
37.5	7.5	7.4	7.6	£ 7.7.3	7.4	7.4	7.30	7.5	7.2	7.7	7.7	6.8	6.9	6.8	6.7	7.2	7.1	7.1	7.3	6.4	6.3	6.3	6.5		(mm)	FIE Thic	
100 S																											
8.75	8.68	8.82	8.75	8.99	9.01	9.06	8.91	9.25	8.85	9.38	9.51	8 33	8.47	8.35	8.17	8 60	8.44	8.60	8.76	7 61	7.56	7.46	7.80		(mm)		
9.29	9.22	9.36	9.27	9.66	9.61	9.76	9.61	9.84	9.42	10.03	10.08	8.93	9.08	8.94	8.77	9.15	8.98	9.25	9.22	8 19	8.18	8.02	8.36		(mm)	Thick:	
				路線									, 1) Wt (g)		
2.653	367	365	328	545	570	564	700	863	840	879	871	812	810	822	805	982	880	909	856	847	838	831	871		(9)	FIE	

FIG. 6

