ECE 6143 Homework 3

Qianyong Tang

October 15, 2019

1 Problem 1

1.1

$$k(u,v) = \alpha k_1(u,v) + \beta k_2(u,v)$$

$$= \sqrt{\alpha} \phi_1^T(u) \sqrt{\alpha} \phi_1(v) + \sqrt{\beta} \phi_2^T(u) \sqrt{\beta} \phi_2(v)$$

$$= \left[\sqrt{\alpha} \phi_1^T(u), \sqrt{\beta} \phi_2^T(u) \right] \begin{bmatrix} \sqrt{\alpha} \phi_1(v) \\ \sqrt{\beta} \phi_2(v) \end{bmatrix}$$

1.2

$$k(u, v) = k_1(u, v)k_2(u, v)$$

$$= \phi_1^T(u)\phi_1(v)\phi_2^T(u)\phi_2(v)$$

$$= \sum_i f_i(u)f_i(v) \sum_j g_j(u)g_j(v)$$

$$= \sum_{ij} f_i(u)g_j(u)f_i(v)g_j(v)$$

$$= \phi_3^T(u)\phi_3(v)$$

Where $\phi_3^T(x) = [f_1(x)g_1(x), ..., f_i(x)g_j(x), ...]$

1.3

Since $f: X \to X$, let f(u) = a, f(v) = b

$$k(u, v) = k_1(f(u), f(v))$$
$$= k_1(a, b)$$

1.4

Since $g: X \to R$, let g(u) = a, g(v) = b

$$k(u, v) = g(u)g(v)$$

$$= ab$$

$$= [a]^{T}[b]$$

1.5

$$k(u,v) = f(k_1(u,v))$$

$$= \alpha_0 k_1^0(u,v) + \alpha_1 k_1^1(u,v) + \alpha_2 k_1^2(u,v) + \dots + \alpha_n k_1^n(u,v)$$

$$= \left[\sqrt{\alpha_0} k_1^{0/2}(u,v), \sqrt{\alpha_1} k_1^{1/2}(u,v), \dots, \sqrt{\alpha_n} k_1^{n/2}(u,v) \right] \begin{bmatrix} \sqrt{\alpha_0} k_1^{0/2}(u,v) \\ \sqrt{\alpha_1} k_1^{1/2}(u,v) \\ \dots \\ \sqrt{\alpha_n} k_1^{n/2}(u,v) \end{bmatrix}$$

1.6

$$k(u, v) = \exp(k_1(u, v))$$

$$= \sum_{i=1}^{\infty} \frac{k_1^i(u, v)}{i!} \text{ (Applying Taylor Expansion)}$$

Then the reason will be the same as section 1.5

1.7

Define $\phi(x) = (\frac{\pi\sigma^2}{4})^{-d/4} \exp(-2||x-z||^2/\sigma^2)$, which is an infinite dimensional function over $z \in \mathbb{R}^d$

$$k(u,v) = \int_{z} \phi(u)\phi(v)dz$$

$$= \int_{z} (\frac{\pi\sigma^{2}}{4})^{-d/4} \exp(-\frac{2||u-z||^{2}}{\sigma^{2}})(\frac{\pi\sigma^{2}}{4})^{-d/4} \exp(-\frac{2||v-z||^{2}}{\sigma^{2}})dz$$

$$= (\frac{\pi\sigma^{2}}{4})^{-d/2} \exp\left(\frac{2}{\sigma^{2}}(-u^{T}u - v^{T}v)\right) \int_{z} \exp\frac{2}{\sigma^{2}} \left(2(u+v)^{T}z - 2z^{T}z\right)dz$$

Denote w = (u+v)/2, we have $w^T w = \frac{1}{4}(u^T u + 2u^T v + v^T v)$

$$k(u,v) = \left(\frac{\pi\sigma^{2}}{4}\right)^{-d/2} \exp\left(\frac{2}{\sigma^{2}}(-u^{T}u - v^{T}v)\right) \int_{z} \exp\frac{2}{\sigma^{2}} \left(4w^{T}z - 2z^{T}z\right) dz$$

$$= \left(\frac{\pi\sigma^{2}}{4}\right)^{-d/2} \exp\left(\frac{2}{\sigma^{2}}(-u^{T}u - v^{T}v)\right) \exp\frac{2}{\sigma^{2}} (2w^{T}w) \int_{z} \exp\frac{2}{\sigma^{2}} \left(4w^{T}z - 2z^{T}z - 2w^{T}w\right) dz$$

$$= \left(\frac{\pi\sigma^{2}}{4}\right)^{-d/2} \exp\left(\frac{2}{\sigma^{2}}(-u^{T}u - v^{T}v + 2w^{T}w)\right) \int_{z} \exp\left(-\frac{4}{\sigma^{2}}||z - w||^{2}\right) dz$$

$$= \left(\frac{\pi\sigma^{2}}{4}\right)^{-d/2} \exp\left(\frac{2}{\sigma^{2}}(-\frac{1}{2})(u^{T}u + v^{T}v - 2u^{T}v)\right) \left(\frac{\pi\sigma^{2}}{4}\right)^{d/2}$$

$$= \exp\left(-\frac{||u - v||^{2}}{\sigma^{2}}\right)$$

So proved

2 Problem 2

For alpha values, please refer to alpha_linear.mat, alpha_poly.mat, and alpha_rbf.mat

2.1 Linear Kernel

2.2 Polynomial Kernel

2.3 RBF Kernel

3 p3

Applying PCA, the top three eigenvectors with corresponding eigen values are being used. We can see that the edges are being saved while patterns on the teapot is begin abandoned.

Figure 2: mean figure

Figure 3: eigenvector 1

Figure 4: eigenvector 2

Figure 5: eigenvector 3

Figure 6: original figure

Figure 7: after pca

Figure 8: original figure

Figure 9: after pca

Figure 10: original figure

Figure 11: after pca

Figure 12: original figure

Figure 13: after pca

Figure 14: original figure

Figure 15: after pca

Figure 16: original figure

Figure 17: after pca

Figure 18: original figure

Figure 19: after pca

Figure 20: original figure

Figure 21: after pca

Figure 22: original figure

Figure 23: after pca

Figure 24: original figure

Figure 25: after pca