マトロイド分割問題に対する高速なアルゴリズム

寺尾 樹哉

京都大学数理解析研究所

最適化の理論とアルゴリズム:未来を担う若手研究者の集い 2023@筑波大学 5月20日(土)

発表概要

<u>主結果</u> マトロイド分割問題を高速に解く3つのアルゴリズムを設計

- ullet アルゴリズム① 独立性オラクル $\widetilde{O}(kn\sqrt{p})$ 回クエリ
- アルゴリズム② 独立性オラクル $\widetilde{O}(k^{1/3}np + kn)$ 回クエリ
- アルゴリズム③ **ランクオラクル** $\widetilde{O}((n+k)\sqrt{p})$ 回クエリ

<u>Tatsuya Terao</u>: **Faster Matroid Partition Algorithms,** Proceedings of the 50th EATCS International Colloquium on Automata, Languages and Programming (**ICALP 2023**), to appear (arXiv: 2303.05920)

発表概要

<u>主結果</u> マトロイド分割問題を高速に

[Cunningham,1986]から約40年ぶり

• アルゴリズム① 独立性オラクル $\widetilde{O}(kn\sqrt{p})$ 回クエリ

• アルゴリズム② 独立性オラクル $\widetilde{O}(k^{1/3}np + kn)$ 回クエリ

• アルゴリズム③

ランクオラ

辺再利用型増加路探索

<u>Tatsuya Terao</u>: **Faster Matroid Partition Algorithms,** Proceedings of the 50th EATCS International Colloquium on Automata, Languages and Programming (**ICALP 2023**), to appear (arXiv: 2303.05920)

目次

- ●発表概要
- ●準備

マトロイド マトロイド交叉問題 マトロイド分割問題

- ●主結果 マトロイド分割問題に対する高速なアルゴリズム
- アイデアブロッキングフロー辺再利用型増加路探索
- 結論

マトロイド $\mathcal{M} = (V, \mathcal{I})$:線形独立性の一般化

プの要素を**独立**集合と呼ぶ

定義

有限集合 V 上の空でない部分集合族 $J \subseteq 2^V$ で次のよい性質を持つもの

- \bullet $S' \subseteq S \in \mathcal{I} \implies S' \in \mathcal{I}$
- ullet $S,T\in\mathcal{I},|S|>|T|\Longrightarrow\exists\ e\in S-T\ \text{s.t.}\ T\cup\{e\}\in\mathcal{I}$

例)

グラフ的マトロイド

V = 辺集合 J = 森全体

● 線形マトロイド

・緑形マトロイト
$$\begin{bmatrix} 0 & 1 & 2 & 0 \\ 3 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 1 & 2 & 3 & 0 \end{bmatrix} \quad V = 行ベクトル \\ \mathcal{I} = 線形独立$$

$\neg \vdash \Box \land \vdash \mathcal{M} = (V, \mathcal{I})$

プの要素を**独立**集合と呼ぶ

有限集合V上の部分集合族Iで良い性質を持つもの

$\forall \vdash \Box \land \vdash \mathcal{M} = (V, \mathcal{I})$

7の要素を独立集合と呼ぶ

有限集合 V 上の部分集合族 J で良い性質を持つもの

Q. マトロイドをどう扱うのか?

$\neg \vdash \Box \land \vdash \mathcal{M} = (V, \mathcal{I})$

1の要素を独立集合と呼ぶ

有限集合 V 上の部分集合族 J で良い性質を持つもの

Q. マトロイドをどう扱うのか?

独立性オラクル

マトロイド交叉問題

入力:2つのマトロイド $\mathcal{M}_1=(V,\mathcal{I}_1), \mathcal{M}_2=(V,\mathcal{I}_2)$

出力:最大サイズの**共通独立集合** $S \in \mathcal{I}_1 \cap \mathcal{I}_2$

例) 二部グラフの最大マッチング

- J₁ = 左側の各頂点から辺を 高々1本
- J₂ = 右側の各頂点から辺を 高々1本

マトロイド交叉問題に対するアルゴリズム

(Edmonds 1970, Aigner-Dowling 1971, Lawler 1975)

マトロイド交叉問題に対するアルゴリズム

(Edmonds 1970, Aigner-Dowling 1971, Lawler 1975)

交換グラフ G(S)

マトロイド交叉問題の高速化

独立性オラクルのクエリ回数

1970s	Edmonds, Lawler, Aigner-Dowling	$O(nr^2)$	
1986	Cunningham	$O(nr^{3/2})$	
2015	Lee-Sidford-Wong	$\tilde{O}(n^2)$	2.5乗の壁
2019	Nguy $ ilde{\hat{e}}$ n, Chakrabarty-Lee-Sidford-Singla-Wong	$\tilde{O}(nr)$	
2021	Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai	$\tilde{O}(n^{9/5})$	2乗の壁
2021	Blikstad	$\tilde{O}(nr^{3/4})$	

n = |V|, 解のサイズ $r (\leq n)$

マトロイド交叉問題に対するアルゴリズム

(Edmonds 1970, Aigner-Dowling 1971, Lawler 1975)

マトロイド交叉の高速化の道具

(Nguy \tilde{e} n 2019, Chakrabarty et al. 2019)

入力:
$$\mathcal{M} = (V, \mathcal{I}), S \in \mathcal{I}, v \in V \setminus S, B \subseteq S$$

マトロイド交叉の高速化の道具

(Nguy \tilde{e} n 2019, Chakrabarty et al. 2019)

入力: $\mathcal{M} = (V, \mathcal{I}), S \in \mathcal{I}, v \in V \setminus S, B \subseteq S$

出力: $S-u+v\in\mathcal{I}$ なる $u\in B$ を一つ

二分探索を用いることで、 **O**(log |**B**|) 回の独立性オラクル の使用でできる

マトロイド交叉の高速化の道具

(Nguy \tilde{e} n 2019, Chakrabarty et al. 2019)

入力: $\mathcal{M} = (V, \mathcal{I}), S \in \mathcal{I}, v \in V \setminus S, B \subseteq S$

出力: $S-u+v\in\mathcal{I}$ なる $u\in B$ を一つ

二分探索を用いることで、 $O(\log |B|)$ 回の独立性オラクルの使用でできる

マトロイド分割問題

入力:k 個のマトロイド $\mathcal{M}_1=(V,\mathcal{I}_1),...,\mathcal{M}_k=(V,\mathcal{I}_k)$

出力:分割可能な最大サイズの集合 $S \subseteq V$

 $S_i \in \mathcal{I}_i$ なるSの分割 $S = S_1 \cup \cdots \cup S_k$ が存在

マトロイド分割問題

入力:k 個のマトロイド $\mathcal{M}_1=(V,\mathcal{I}_1),...,\mathcal{M}_k=(V,\mathcal{I}_k)$

出力:分割可能な最大サイズの集合 $S \subseteq V$

 $S_i \in \mathcal{I}_i$ なるSの分割 $S = S_1 \cup \cdots \cup S_k$ が存在

例) k-全域森問題

互いに辺素な森k個に**分割できる**最大サイズの辺集合

マトロイド分割とマトロイド交叉

マトロイド分割問題はマトロイド交叉問題に帰着して解ける

☞ V × {1,..., k} 上の**直和マトロイド**と**分割マトロイド**の 交叉で解ける

マトロイド分割とマトロイド交叉

マトロイド分割問題はマトロイド交叉問題に帰着して解ける

☞ V × {1, ..., k} 上の**直和マトロイド**と**分割マトロイド**の 交叉で解ける

 $k^2 \times (マトロイド交叉の計算量)と計算量が大きくなってしまう$

マトロイド分割問題に対するアルゴリズム

(Edmonds 1968)

マトロイド分割問題に対するアルゴリズム

(Edmonds 1968)

マトロイド分割問題の高速化

独立性オラクルのクエリ回数

1968	Edmonds	$O(np^2 + kn)$
1986	Cunningham	$O(np^{3/2} + kn)$

n = |V|、マトロイドの個数 k解のサイズ $p(\leq n)$

マトロイド分割問題の高速化

独立性オラクルのクエリ回数

1968	Edmonds	$O(np^2 + kn)$
1986	Cunningham	$O(np^{3/2} + kn)$
2023	本研究	$\widetilde{O}(kn\sqrt{p})$
2023	本研究	$\widetilde{O}(k^{1/3}np + kn)$

n = |V|、マトロイドの個数 k解のサイズ $p(\leq n)$

マトロイド分割問題の高速化

独立性オラクルのクエリ回数

1968	Edmonds	$O(np^2 + kn)$
1986	Cunningham	$O(np^{3/2} + kn)$
2023	本研究	$\widetilde{O}(kn\sqrt{p})$
2023	本研究	$\widetilde{O}(k^{1/3}np + kn)$

提案アルゴリズム①:ブロッキングフロー

<u>定理1</u>

マトロイド分割問題は $\widetilde{O}(kn\sqrt{p})$ 回の独立性オラクルの使用で解ける

n = |V|,マトロイドの個数 k解のサイズ $p(\leq n)$

提案アルゴリズム①:ブロッキングフロー

定理1

マトロイド分割問題は $\widetilde{O}(kn\sqrt{p})$ 回の独立性オラクルの使用で解ける

アイデア

ブロッキングフロー (Cunningham 1986)

二分探索で辺をみつける (Nguyễn 2019, Chakrabarty et al. 2019)

同じ長さの増加路をまとめてみつける

提案アルゴリズム②:辺再利用型増加路探索

定理2

マトロイド分割問題は $\tilde{O}(k^{1/3}np + kn)$ 回の独立性オラクルの使用で解ける

n = |V|,マトロイドの個数 k解のサイズ $p(\leq n)$

提案アルゴリズム②: 辺再利用型増加路探索

定理2

マトロイド分割問題は $\tilde{O}(k^{1/3}np + kn)$ 回の独立性オラクルの使用で解ける

アイデア

辺再利用型増加路探索

NEW!

提案アルゴリズム②: 辺再利用型増加路探索

定理2

マトロイド分割問題は $\tilde{O}(k^{1/3}np + kn)$ 回の独立性オラクルの使用で解ける

辺再利用型増加路探索

提案アルゴリズム②:辺再利用型増加路探索

定理2

マトロイド分割問題は $\tilde{O}(k^{1/3}np + kn)$ 回の独立性オラクルの使用で解ける

アイデア

辺再利用型増加路探索

結論

マトロイド分割問題に対して独立性オラクルの使用回数の少ない アルゴリズムを設計

- ■二分探索により辺をみつけることで、簡潔交換グラフの辺を全て見ずに済む (Nguyễn 2019, Chakrabarty et al. 2019)
- ●辺再利用型増加路探索という新しいアイデア

- Q. 本結果はさらに改善できるか?
- Q. 辺再利用型増加路探索は他の問題にも適用できるか?