Tuesday, November 16

1. Let's think about a slightly more elaborate model of two competing species:

$$\frac{dx_1}{dt} = x_1 \left(1 - \frac{x_1}{2} \right) (1 - x_2)$$
$$\frac{dx_2}{dt} = x_2 \left(1 - \frac{x_2}{3} \right) (1 - x_1)$$

- (a) Discuss what might motivate these equations.
- (b) Find all fixed points. (Hint: there are five of them.)
- (c) What can you say about the fixed points based on the eigenvalues of the Jacobi matrices?
- (d) Is stable coexistence possible here?
- 2. Suppose that J is an $n \times n$ matrix with n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, and associated eigenvectors v_1, v_2, \dots, v_n . Assume v_1, v_2, \dots, v_n are linearly independent. Explain: If $\lambda_1, \dots, \lambda_n$ are negative real numbers, then all solutions of

$$\frac{du}{dt} = Ju$$

converge to zero. So while a *single* eigenvalue being negative does not tell you that the fixed point u = 0 fo $\frac{du}{dt} = Ju$ is stable, if *all* eigenvalues are negative, then indeed it is stable.

3. Explain: If a,b are real numbers, and $\lambda = a + ib$ (with $i = \sqrt{-1}$), then $e^{\lambda t}$ converges to zero as $t \to \infty$ if and only if a < 0. If a > 0, then $|e^{\lambda t}|$ converges to ∞ as $t \to \infty$. (This is needed to understand how the analysis we gave in class extends to the case of complex eigenvalues.)