

Introduction to Learning, Linear regression

Iran University of Science and Technology

By: M. S. Tahaei, PhD.

Fall 2024

Courtesy: slides are adopted partly from Dr. Soleymani, Sharif University

Outline

- Introduction to Learning
- Linear Regression
- Gradient Descent
- Generalized Linear Regression

A Definition of ML

- ▶ Tom Mitchell (1998):Well-posed learning problem
 - "A computer program is said to learn from <u>experience E</u> with respect to some <u>task T</u> and some <u>performance measure P</u>, if its performance on T, as measured by P,improves with experience E".
- Using the observed data to make better decisions
 - Generalizing from the observed data

ML Definition: Example

- Consider an email program that learns how to filter spam according to emails you do or do not mark as spam.
 - T: Classifying emails as spam or not spam.
 - ▶ E: Watching you label emails as spam or not spam.
 - P: The number (or fraction) of emails correctly classified as spam/not spam.

The essence of machine learning

- A pattern exist
- We do not know it mathematically
- We have data on it

Example: Home Price

Housing price prediction

Figure adopted from slides of Andrew Ng, Machine Learning course, Stanford.

Example: Bank loan

Applicant form as the input:

age	23 years	
gender	male	
annual salary	\$30,000	
years in residence	1 year	
years in job	1 year	
current debt	\$15,000	
• • •	• • •	

Output: approving or denying the request

Components of (Supervised) Learning

- Unknown target function: $f: \mathcal{X} \to \mathcal{Y}$
 - Input space: X
 - Output space: y
- Training data: $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
- Picka formula $g: \mathcal{X} \to \mathcal{Y}$ that approximates the target function f
 - selected from a set of hypotheses ${\cal H}$

Training data: Example

Training data

x_1	x_2	у	
0.9	2.3	I	=
3.5	2.6	I	=
2.6	3.3	I	
2.7	4.1	I	
1.8	3.9	I	
6.5	6.8	-1	3
7.2	7.5	-1	3
7.9	8.3	-1	>
6.9	8.3	-1	3
8.8	7.9	-1	3
9.1	6.2	-1	

Components of (Supervised) Learning

Solution Components

- Learning model composed of:
 - Learning algorithm
 - Hypothesis set
- Perceptron example

Perceptron classifier

- ▶ Input $x = [x_1, ..., x_d]$
- Classifier:
 - If $d_{i=1} w_i x_i > \text{threshold then output } 1$
 - \rightarrow else output -1
- ▶ The linear formula $g \in \mathcal{H}$ can be written:

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{d} \frac{d}{\mathbf{x}_i} + \mathbf{w}_0\right)$$

If we add a coordinate $x_0 = 1$ to the input:

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{v}_{i} \mathbf{x}_{i}\right)$$
 Vector form

$$g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

Perceptron learning algorithm: linearly separable data

- Give the training data $(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})$
- Misclassified data $(x^{(n)}, y^{(n)})$: $sign(w^T x^{(n)}) \neq y^{(n)}$

Repeat

Pick a misclassified data $(x^{(n)}, y^{(n)})$ from training data and update w:

$$\boldsymbol{w} = \boldsymbol{w} + y^{(n)} \boldsymbol{x}^{(n)}$$

Until all training data points are correctly classified by g

Perceptron learning algorithm: Example of weight update

Experience (E) in ML

- Basic premise of learning:
 - "Using a set of observations to uncover an underlying process"

We have different types of (getting) observations in different types or paradigms of ML methods

Paradigms of ML

- Supervised learning (regression, classification)
 - predicting a target variable for which we get to see examples.
- Unsupervised learning
 - revealing structure in the observed data
- Reinforcement learning
 - partial (indirect) feedback, no explicit guidance
 - Given rewards for a sequence of moves to learn a policy and utility functions
- Other paradigms: semi-supervised learning, active learning, online learning, etc.

Supervised Learning: Regression vs. Classification

- Supervised Learning
 - Regression: predict a <u>continuous</u> target variable
 - E.g., $y \in [0,1]$
 - Classification: predict a <u>discrete</u> target variable
 - E.g., $y \in \{1, 2, ..., C\}$

Data in Supervised Learning

- \blacktriangleright Data are usually considered as vectors in a d dimensional space
 - Now, we make this assumption for illustrative purpose
 - We will see it is not necessary

		x_1	x_2	 x_d	y (Target)
Columns:	Sample I				
Features/attributes/dimensions	Sample 2				
Rows: Data/points/instances/examples/samples					
Y column: Target/outcome/response/label	Sample n-I				
	Sample n				

Regression: Example

Housing price prediction

Figure adopted from slides of Andrew Ng

Classification: Example

Weight (Cat, Dog)

Supervised Learning vs. Unsupervised Learning

- Supervised learning
 - ▶ Given:Training set
 - labeled set of N input-output pairs $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$
 - ightharpoonup Goal: learning a mapping from x to y
- Unsupervised learning
 - Given:Training set
 - ▶ Goal: find groups or structures in the data
 - Discover the intrinsic structure in the data

Supervised Learning: Samples

Unsupervised Learning: Samples

Sample Data in Unsupervised Learning

Unsupervised Learning:

Columns:

Features/attributes/dimensions

Rows:

Data/points/instances/examples/s amples

	x_1	x_2	 x_d
Sample I			
Sample 2			
Sample n-I			
Sample n			

Unsupervised Learning: Example Applications

- Clustering docs based on their similarities
 - Grouping new stories in the Google news site
- Market segmentation: group customers into different market segments given a database of customer data.
- Social network analysis

Reinforcement Learning

Provides only an indication as to whether an action is correct or not

Data in supervised learning:

(input, correct output)

Data in Reinforcement Learning:

(input, some output, a grade of reward for this output)

Reinforcement Learning

- Typically, we need to get a sequence of decisions
 - it is usually assumed that reward signals refer to the entire sequence

Example

$$f = ?$$

Components of (Supervised) Learning

Main Steps of Learning Tasks

- Selection of hypothesis set (or model specification)
 - Which class of models (mappings) should we use for our data?
- \blacktriangleright Learning: find mapping f (from hypothesis set) based on the training data
 - Which notion of error should we use? (loss functions)
 - ightharpoonup Optimization of loss function to find mapping f
- ▶ Evaluation: how well f generalizes to yet unseen examples
 - How do we ensure that the error on future data is minimized? (generalization)

Handwritten Digit Recognition Example

Data: labeled samples

Example: Input representation

'raw' input
$$\mathbf{x}=(x_0,\!x_1,x_2,\cdots,x_{256})$$

linear model: $(w_0,w_1,w_2,\cdots,w_{256})$

Features: Extract useful information, e.g.,

intensity and symmetry $\mathbf{x} = (x_0, x_1, x_2)$

linear model: (w_0, w_1, w_2)

Example: Illustration of features

 $\mathbf{x} = (x_0, x_1, x_2)$ x_1 : intensity x_2 : symmetry

Linear regression, Cost Function and Generalization

Regression problem

The goal is to make (real valued) predictions given features

Example: predicting house price from 3 attributes

Size (m ²)	Age (year)	Region	Price (10 ⁶ T)
100	2	5	500
80	25	3	250
•••	•••	•••	•••

Learning problem

- Selecting a hypothesis space
 - Hypothesis space: a set of mappings from feature vector to target
- Learning (estimation): optimization of a cost function
 - Based on the training set $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$ and a cost function we find (an estimate) $f \in F$ of the target function
- \blacktriangleright **Evaluation**: we measure how well f generalizes to unseen examples

Linear regression: hypothesis space

Univariate

$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x; \mathbf{w}) = w_0 + w_1 x$

Multivariate

$$f: \mathbb{R}^d \to \mathbb{R} \ f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \dots w_d x_d$$

 $\mathbf{w} = [w_0, w_1, \dots, w_d]^T$ are parameters we need to set.

Learning algorithm

- Select how to measure the error (i.e. prediction loss)
- Find the minimum of the resulting error or cost function

Learning algorithm

How to measure the error

Squared error:
$$(y^{(i)} - f(x^{(i)}; w))^2$$

Linear regression: univariate example

Cost function:

$$J(\mathbf{w}) = \sum_{i=1}^{n} (y^{(i)} - f(x; \mathbf{w}))^{2}$$
$$= \sum_{i=1}^{n} (y^{(i)} - w_{0} - w_{1}x^{(i)})^{2}$$

Regression: squared loss

In the SSE cost function, we used squared error as the prediction loss:

$$Loss(y, \hat{y}) = (y - \hat{y})^2 \qquad \hat{y} = f(x; w)$$

▶ Cost function (based on the training set):

$$J(\mathbf{w}) = \sum_{i=1}^{n} Loss\left(y^{(i)}, f\left(\mathbf{x}^{(i)}, \mathbf{w}\right)\right)$$
$$= \sum_{i=1}^{n} \left(y^{(i)} - f\left(\mathbf{x}^{(i)}, \mathbf{w}\right)\right)^{2}$$

Minimizing sum (or mean) of squared errors is a common approach in curve fitting, neural network, etc.

Sum of Squares Error (SSE) cost function

$$J(w) = \sum_{1=i}^{n} (y^{(i)} - f(x^{(i)}; w))^{2}$$

- igrtarrow J(w): sum of the squares of the prediction errors on the training set
- We want to find the best regression function $f(x^{(i)}; w)$
 - equivalently, the best w
- ightharpoonup Minimize J(w)
 - Find optimal f(x) = f(x; w) where $w = \underset{w}{\operatorname{argmin}} J(w)$

Cost function optimization: univariate

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - w_0 - w_1 x^{(i)})^2$$

▶ Necessary conditions for the "optimal" parameter values:

$$\frac{\partial J(\mathbf{w})}{\partial w_0} = 0$$

$$\frac{\partial J(\mathbf{w})}{\partial w_1} = 0$$

Optimality conditions: univariate

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - w_0 - w_1 x^{(i)})^2$$

$$\frac{\partial J(\mathbf{w})}{\partial w_1} = \sum_{i=1}^{n} (y^{(i)} - w_0 - w_1 x^{(i)}) (-x^{(i)}) = 0$$

$$\frac{\partial J(\mathbf{w})}{\partial w_0} = \sum_{i=1}^{n} (y^{(i)} - w_0 - w_1 x^{(i)})(-1) = 0$$

▶ A systems of 2 linear equations

Cost function: multivariate

We have to minimize the empirical squared loss:

$$J(\mathbf{w}) = \sum_{1=i}^{n} (y^{(i)} - f(\mathbf{x}^{(i)}; \mathbf{w}))^{2}$$

$$f(\mathbf{x}; \mathbf{w}) = w_{0} + w_{1}x_{1} + \dots + w_{d}x_{d}$$

$$\mathbf{w} = [w_{0}, w_{1}, \dots, w_{d}]^{T}$$

$$\mathbf{w} = \underset{\mathbf{w} \in \mathbb{R}^{d+1}}{\operatorname{argmin}} J(\mathbf{w})$$

Cost function and optimal linear model

▶ Necessary conditions for the "optimal" parameter values:

$$\nabla_{w}J(w)=\mathbf{0}$$

 \blacktriangleright A system of d+1 linear equations

Cost function: matrix notation

$$J(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{y}^{(i)} - f(\mathbf{x}^{(i)}; \mathbf{w}))^{2} =$$

$$= \sum_{i=1}^{n} (\mathbf{y}^{(i)} - \mathbf{w}^{T} \mathbf{x}^{(i)})^{2}$$

$$\mathbf{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix} \ \mathbf{X} = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_d^{(1)} \\ 1 & x_1^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix} \ \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$$

$$J(\mathbf{w}) = \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2$$

Minimizing cost function

Optimal linear weight vector (for SSE cost function):

$$J(\mathbf{w}) = \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2$$

$$\nabla_{\mathbf{w}}J(\mathbf{w}) = 2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \mathbf{0} \Rightarrow \mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Minimizing cost function

$$\boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \, \boldsymbol{X}^T \boldsymbol{y}$$

$$w = X^{\dagger}y$$

$$X^{\dagger} = (X^T X)^{-1} X^T$$

 X^{\dagger} is pseudo inverse of X

Another approach for optimizing the sum squared error

Iterative approach for solving the following optimization problem:

$$J(\mathbf{w}) = \sum_{i=1}^{n} (y^{(i)} - f(\mathbf{x}^{(i)}; \mathbf{w}))^{2}$$

- ightharpoonup Cost function: J(w)
- Optimization problem: $w = \underset{w}{\operatorname{argm}} in J(w)$
- Steps:
 - ightharpoonup Start from w^0
 - Repeat
 - ▶ Update w^t to w^{t+1} in order to reduce J
 - $t \leftarrow t + 1$
 - until we hopefully end up at a minimum

- First-order optimization algorithm to find $w^* = \underset{w}{\operatorname{argmin}} J(w)$
 - Also known as "steepest descent"
- In each step, takes steps proportional to the negative of the gradient vector of the function at the current point w^t :

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \gamma_t \, \nabla J(\mathbf{w}^t)$$

- I(w) decreases fastest if one goes from w^t in the direction of $-\nabla J(w^t)$
- Assumption: J(w) is defined and differentiable in a neighborhood of a point w^t

Gradient ascent takes steps proportional to (the positive of) the gradient to find a local maximum of the function

Minimize J(w)Step size

(Learning rate parameter)

 $\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_{\mathbf{w}} I(\mathbf{w}^t)$

$$\nabla_{\mathbf{w}}J(\mathbf{w}) = \left[\frac{\partial J(\mathbf{w})}{\partial w_1}, \frac{\partial J(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial J(\mathbf{w})}{\partial w_d}\right]$$

- If η is small enough, then $J(\mathbf{w}^{t+1}) \leq J(\mathbf{w}^t)$.
- $\triangleright \eta$ can be allowed to change at every iteration as η_t .

- Local minima problem
- However, when J is convex, all local minima are also global minima \Rightarrow gradient descent can converge to the global solution.

Problem of gradient descent with non-convex cost functions

Problem of gradient descent with non-convex cost functions

Gradient descent for SSE cost function

Minimize J(w) $w^{t+1} = w^t - \eta \nabla_w J(w^t)$

I(w):Sum of squares error

$$J(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{n} \left(y^{(i)} - f(\boldsymbol{x}^{(i)}; \boldsymbol{w}) \right)^{2}$$

• Weight update rule for $f(x; w) = w^T x$:

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \eta \sum_{i=1}^n \left(\mathbf{y}^{(i)} - \mathbf{w}^{tT} \mathbf{x}^{(i)} \right) \mathbf{x}^{(i)}$$

Gradient descent for SSE cost function

• Weight update rule: $f(x; w) = w^T x$

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \eta \sum_{1=i}^{n} (y^{(i)} - \mathbf{w}^T \mathbf{x}^{(i)}) \mathbf{x}^{(i)}$$

Batch mode: each step considers all training data

- ▶ η :too small \rightarrow gradient descent can be slow.
- η : too large \rightarrow gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

 $f(x; w_0, w_1) = w_0 + w_1 x$ $J(w_0, w_1)$ (function of the parameters w_0, w_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 0.2 0.1 W_1 -0.1 200 -0.2 -0.3 100 × Training data -0.4 -Current hypothesis -0.5 -1000 2000 1000 3000 4000 -500 0 500 1000 1500 2000 Size (feet²) w_0

 $f(x; w_0, w_1) = w_0 + w_1 x$ $J(w_0, w_1)$ (function of the parameters w_0, w_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 0.2 0.1 W_1 -0.1 200 -0.2 -0.3 100 × Training data -0.4 -Current hypothesis -0.5 -1000 2000 1000 3000 4000 -500 0 1000 500 1500 2000 Size (feet²) w^{θ}

Stochastic gradient descent

► Example: Linear regression with SSE cost function

$$J^{(i)}(\boldsymbol{w}) = \left(y^{(i)} - \boldsymbol{w}^T \boldsymbol{x}^{(i)}\right)^2$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_{\mathbf{w}} J^{(i)}(\mathbf{w})$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \eta (\mathbf{y}^{(i)} - \mathbf{w}^T \mathbf{x}^{(i)}) \mathbf{x}^{(i)}$$

Least Mean Squares (LMS)

It is proper for sequential or online learning

Stochastic gradient descent: online learning

- Sequential learning is also appropriate for real-time applications
 - data observations are arriving in a continuous stream
 - > and predictions must be made before seeing all of the data

The value of η needs to be chosen with care to ensure that the algorithm converges

Evaluation and generalization

Why minimizing the cost function (based on only training data) while we are interested in the performance on new examples?

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} Loss\left(y^{(i)}, f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta})\right) \longrightarrow Empirical loss$$

Evaluation: After training, we need to measure how well the learned prediction function can predicts the target for unseen examples

Training and test performance

- Assumption: training and test examples are drawn independently at random from the same but unknown distribution.
 - Each training/test example (x, y) is a sample from joint probability distribution P(x, y), i.e., $(x, y) \sim P$

Empirical (training) loss =
$$\frac{1}{n} \sum_{i=1}^{n} Loss(y^{(i)}, f(x^{(i)}; \theta))$$

Expected (test) loss = $E_{x,y} \{Loss(y, f(x; \theta))\}$

- We minimize empirical loss (on the training data) and expect to also find an acceptable expected loss
 - ▶ Empirical loss as a proxy for the performance over the whole distribution.

Linear regression: number of training data

Linear regression: generalization

- ▶ By increasing the number of training examples, will solution be better?
- Why the mean squared error does not decrease more after reaching a level?

Linear regression: types of errors

Structural error: the error introduced by the limited function class (infinite training data):

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} E_{\mathbf{x}, y} [(y - \mathbf{w}^T \mathbf{x})^2]$$
Structural error:
$$E_{\mathbf{x}, y} [(y - \mathbf{w}^T \mathbf{x})^2]$$

where $\mathbf{w}^* = (w_0^*, \cdots, w_d^*)$ are the optimal linear regression parameters (infinite training data)

Linear regression: types of errors

Approximation error measures how close we can get to the optimal linear predictions with limited training data:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} E_{\mathbf{x}, y}[(y - \mathbf{w}^T \mathbf{x})^2]$$

$$\mathbf{w} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n} (y^{(i)} - \mathbf{w}^{T} \mathbf{x}^{(i)})^{2}$$

Approximation error:
$$E_x \left[\left(w^{*T} x - w^T x \right)^2 \right]$$

Where w are the parameter estimates based on a small training set (so themselves are random variables).

Linear regression: error decomposition

The expected error can decompose into the sum of structural and approximation errors

$$E_{x,y}[(y - \mathbf{w}^T \mathbf{x})^2]$$

$$= E_{x,y}[(y - \mathbf{w}^{*T} \mathbf{x})^2] + E_x[(\mathbf{w}^{*T} \mathbf{x} - \mathbf{w}^T \mathbf{x})^2]$$

Derivation

$$E_{x,y}[(y - w^{T}x)^{2}] = E_{x,y}[(y - w^{*T}x + w^{*T}x - w^{T}x)^{2}]$$

$$= E_{x,y}[(y - w^{*T}x)^{2}] + E_{x}[(w^{*T}x - w^{T}x)^{2}]$$

$$+ 2E_{x,y}[(y - w^{*T}x)(w^{*T}x - w^{T}x)]$$

Linear regression: error decomposition

The expected error can decompose into the sum of structural and approximation errors

$$E_{x,y}[(y - \mathbf{w}^T \mathbf{x})^2]$$

$$= E_{x,y}[(y - \mathbf{w}^{*T} \mathbf{x})^2] + E_x[(\mathbf{w}^{*T} \mathbf{x} - \mathbf{w}^T \mathbf{x})^2]$$

Derivation

$$E_{x,y}[(y - w^{T}x)^{2}] = E_{x,y}[(y - w^{*T}x + w^{*T}x - w^{T}x)^{2}]$$

$$= E_{x,y}[(y - w^{*T}x)^{2}] + E_{x}[(w^{*T}x - w^{T}x)^{2}]$$
+ 0

Note: Optimality condition for \mathbf{w}^* give us $E_{x,y}\left[\left(y - \mathbf{w}^{*T}x\right)x\right] = 0$ since $\nabla_{\mathbf{w}}E_{x,y}\left[\left(y - \mathbf{w}^{T}x\right)^2\right]_{\mathbf{w}^*} = 0$

Recall: Linear regression (squared loss)

Linear regression functions

$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x; \mathbf{w}) = w_0 + w_1 x$
 $f: \mathbb{R}^d \to \mathbb{R}$ $f(x; \mathbf{w}) = w_0 + w_1 x_1 + \dots w_d x_d$
 $\mathbf{w} = [w_0, w_1, \dots, w_d]^T$ are the parameters we need to set.

Minimizing the squared loss for linear regression

$$J(\boldsymbol{w}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|_2^2$$

• We obtain $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

Beyond linear regression

- ▶ How to extend the linear regression to non-linear functions?
 - Transform the data using basis functions
 - Learn a linear regression on the new feature vectors (obtained
 - by basis functions)

Beyond linear regression

 $lacktriangleright m^{th}$ order polynomial regression (univariate $f:\mathbb{R} \to \mathbb{R}$)

$$f(x; \mathbf{w}) = w_0 + w_1 x + \ldots + w_{m-1} x^{m-1} + w_m x^m$$

Solution: $\boldsymbol{w} = (\boldsymbol{X}'^T \boldsymbol{X}')^{-1} \boldsymbol{X}'^T \boldsymbol{y}$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \ \mathbf{X}' = \begin{bmatrix} 1 & x^{(1)^1} & x^{(1)^2} & \dots & x^{(1)^m} \\ 1 & x^{(2)^1} & x^{(2)^2} & \dots & x^{(2)^m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x^{(n)^1} & x^{(n)^2} & \dots & x^{(n)^1} \end{bmatrix} \mathbf{w} = \begin{bmatrix} \mathbf{w}_0 \\ \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_m \end{bmatrix}$$

Polynomial regression: example

Generalized linear

Linear combination of fixed non-linear function of the input vector

$$f(x; w) = w_0 + w_1 \phi_1(x) + \dots + w_m \phi_m(x)$$

 $\{\phi_1(x),\ldots,\phi_m(x)\}$: set of basis functions (or features)

$$\phi_i(\mathbf{x}): \mathbb{R}^d \to \mathbb{R}$$

Basis functions: examples

Linear

If
$$m=d$$
, $\phi_i(\mathbf{x})=x_i$, $i=1,\ldots,d$, then
$$f(\mathbf{x};\mathbf{w})=w_0+w_1x_1+\ldots+w_dx_d$$

Polynomial (univariate)

If
$$\phi_i(x) = x^i$$
, $i = 1, ..., m$, then
$$f(x; \mathbf{w}) = w_0 + w_1 x + ... + w_{m-1} x^{m-1} + w_m x^m$$

Generalized linear: optimization

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}; \mathbf{w}) \right)^{2}$$
$$= \sum_{i=1}^{n} \left(y^{(i)} - \mathbf{w}^{T} \boldsymbol{\phi} \left(\mathbf{x}^{(i)} \right) \right)^{2}$$

$$\mathbf{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix} \mathbf{\Phi} = \begin{bmatrix} 1 & \phi_1(\mathbf{x}^{(1)}) & \cdots & \phi_m(\mathbf{x}^{(1)}) \\ 1 & \phi_1(\mathbf{x}^{(2)}) & \cdots & \phi_m(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \phi_1(\mathbf{x}^{(n)}) & \cdots & \phi_m(\mathbf{x}^{(n)}) \end{bmatrix} \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_m \end{bmatrix}$$

$$\boldsymbol{w} = \left(\boldsymbol{\Phi}^T \boldsymbol{\Phi}\right)^{-1} \, \boldsymbol{\Phi}^T \boldsymbol{y}$$

Resource

- 1 C. M. Bishop, *Pattern Recognition and Machine Learning*.
- 2 Y. S. Abu-Mostafa, "Machine learning." California Institute of Technology, 2012.