tone counting vs baseline

Statistics: p-values adjusted for search volume

set-level	cluster-level		peak-level			mm mm mm	
р с	$\rho_{\text{FWE-corr} \text{FDR-corr}} k$	p _{uncorr}	p_{FWE-cc}	g F orr FDR-corr	$(Z_{\equiv}) p_{\text{uncorr}}$		
рс	P _{FWE-corr} FDR-corr K _E 1.000 0.655 2 1.000 0.655 2 1.000 0.655 2 1.000 0.690 1 1.000 0.655 2 1.000 0.655 2 1.000 0.655 2 1.000 0.655 2 1.000 0.655 2 1.000 0.655 2 1.000 0.655 2 1.000 0.655 2 1.000 0.655 2 1.000 0.655 3 1.000 0.655 3 1.000 0.655 3 1.000 0.655 3 1.000 0.655 3 1.000 0.655 3 1.000 0.655 2	0.555 0.6955 0.6955 0.6955 0.6955 0.55590 0.5555 0.6955 0.465990 0.4559 0.4659 0.4555	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.763 12.44 0.776 12.38 0.778 12.37 0.780 12.36 0.781 12.35 0.790 12.30 0.790 12.30 0.801 12.26 0.861 12.02 0.861 12.02 0.862 12.01 0.862 12.01 0.862 12.01 0.865 11.99 0.865 11.99 0.879 11.80 0.917 11.80 0.917 11.80 0.921 11.78	(Z_{\equiv}) p_{uncorr} 3.22 0.001 3.21 0.001 3.21 0.001 3.21 0.001 3.21 0.001 3.20 0.001 3.10 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.16 0.001 3.17 0.001 3.18 0.001 3.18 0.001 3.19 0.001	-56 -18 30 -50 48 60 -62 -20 -12 8 -80 -68 -68 -38 -36 42	-6 42 -74 -2 48 -14 -28 50 -12 -50 -10 32 -50 -10 58 56 -78 72 -54 -34 -40 78 -60 26 -80 10 -80 10 -80 -14 -16 -80 -12 -14 -16 -80 -12 -14 -16 -14 -14 -16 -14 -16 -16 -14 -16 -16 -14 -16 -16 -14 -16 -16 -14 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16
	1.000 0.655 2 1.000 0.690 1 1.000 0.690 1	0.555 0.690 0.690	1.000 1.000 1.000	0.932 11.74 0.953 11.67 0.959 11.65		42 32 42	46 -12 28 -24 20 -14
table shows 3 local maxima more than 8.0mm apart							

Height threshold: F = 11.51, p = 0.001 (1.000) grees of freedom = [1.0, 98.0] Extent threshold: k = 0 voxels FWHM = 8.2 8.1 7.9 mm mm mm; 4.1 4.0 4.0 {voxels} Expected voxels per cluster, $\langle k \rangle = 5.889$ Volume: 1784456 = 223057 voxels = 3155.8 resels Expected number of clusters, $\langle c \rangle = 40.66$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 65.58 voxels) FWEp: 30.187, FDRp: 22.545, FWEc: 86, FPERGE 50