Project Design Phase-II Technology Stack (Architecture & Stack)

20011101085 200011 (11101110101111010111)				
Date	21 October 2022			
Team ID	PNT2022TMID46489			
Project Name	SMART FARMER - IoT ENABLED SMART FARMING APPLICATION			
Maximum Marks	4 Marks			

Technical Architecture:

IBM CLOUD PLATFORM

OUTPUT

COMMAND

- The different soil parameters temperature, soil moistures and then humidity are sensed using different sensors and obtained value is stored in the IBM cloud.
- Arduino UNO is used as a processing Unit that process the data obtained from the sensors and whether data from the weather API.
- NODE-RED is used as a programming tool to write the hardware, software, and APIs. The MQTT protocol is followed for the communication.
- All the collected data are provided to the user through a mobile application that was developed using the MIT app inventor. The user could decide through an app,
 - weather to water the crop or not depending upon the sensor values. By using the app, they can remotely operate the motor switch.

Table - 1: Components & Technologies:

S. No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI, Mobile App.	Node-Red
2.	Application Logic-1	Logic for a process in the application	Python
3.	Application Logic-2	Logic for a process in the application	Python
4.	Application Logic-3	Logic for a process in the application	Python
5.	Database	Data Type, Configurations etc.	IBM Cloud
6.	Cloud Database	Database Service on Cloud	IBM Cloud

7.	File Storage	File storage requirements	IBM Block Storage or
			Other
			Storage Service or
			Local Filesystem

Table-2: Application Characteristics:

S. No	Characteristics	Description	Technology
1.	Security Implementations	Sensitive and private data must be protected from their production until the decision-making and storage stages.	Node-Red, Open weather App API, MIT App Inventor.
2.	Scalable Architecture	Scalability is a major concern for IoT platforms. It has been shown that different architectural choices of IoT platforms affect system scalability and that automatic real time decisionmaking is feasible in an	Node-Red
		environment composed of dozens of thousand.	
3.	Availability	Automatic adjustment of farming equipment made possible by linking information like crops/weather and equipment to auto-adjust temperature, humidity, etc.	Open weather API, Node- Red
4.	Performance	The idea of implementing integrated sensors with sensing soil and environmental or ambient parameters in farming will be more efficient for overall monitoring.	IBM Bluemix, Node-Red