Student Information

Full Name : Anıl Eren Göçer

Id Number: 2448397

Question 1

I am asked to prove the following set equivalence using membership notation and logical equivalences.

$$(A \cup B) \setminus (A \cap B) \equiv (A \setminus B) \cup (B \setminus A)$$

Steps and Justifications

- 1. $(A \cup B) \setminus (A \cap B)$ LHS of the equivalence
- 2. $\equiv \{x | x \in (A \cup B) \land x \notin (A \cap B)\}$ Defn. of set difference
- 3. $\equiv \{x | x \in (A \cup B) \land \neg (x \in (A \cap B))\}$ Defn. of \notin
- 4. $\equiv \{x | (x \in A \lor x \in B) \land \neg (x \in (A \cap B))\}$ Defn. of union
- 5. $\equiv \{x | (x \in A \lor x \in B) \land \neg (x \in A \land x \in B)\}$ Defn. of intersection
- 6. $\equiv \{x | (x \in A \lor x \in B) \land (\neg(x \in A) \lor \neg(x \in B))\}$ De Morgan's Law for Propositional Logic
- 7. $\equiv \{x | (x \in A \lor x \in B) \land (x \notin A \lor x \notin B)\}$ Defn. of \notin
- 8. $\equiv \{x | ((x \in A \lor x \in B) \land x \notin A) \lor ((x \in A \lor x \in B) \land x \notin B)\}$ Distributive laws
- 9. $\equiv \{x | (x \notin A \land (x \in A \lor x \in B)) \lor (x \notin B \land (x \in A \lor x \in B))\}$ Commutative laws
- 10. $\equiv \{x | ((x \notin A \land x \in A) \lor (x \notin A \land x \in B)) \lor ((x \notin B \land x \in A) \lor (x \notin B \land x \in B))\}$ Distributive laws
- 11. $\equiv \{x | ((\neg(x \in A) \land x \in A) \lor (x \notin A \land x \in B)) \lor ((x \notin B \land x \in A) \lor (\neg(x \in B) \land x \in B))\}$ Defn. of \notin
- 12. $\equiv \{x | (F \lor (x \notin A \land x \in B)) \lor ((x \notin B \land x \in A) \lor F)\}$ Negation laws
- 13. $\equiv \{x | (x \notin A \land x \in B) \lor (x \notin B \land x \in A)\}$ Identity laws
- 14. $\equiv \{x | (x \in B \land x \notin A) \lor (x \in A \land x \notin B)\}$ Commutative laws
- 15. $\equiv \{x | (x \in A \land x \notin B) \lor (x \in B \land x \notin A)\}$ Commutative laws
- 16. $\equiv \{x | (x \in (A \setminus B)) \lor (x \in (B \setminus A))\}$ Defn. of set difference
- 17. $\equiv \{x | x \in ((A \setminus B) \cup (B \setminus A))\}$ Defn. of union
- 18. $\equiv (A \setminus B) \cup (B \setminus A)$

By starting with LHS, I have obtained RHS, so the set equivalence has been proved.

A Lemma

In this section I am going to prove a lemma in order to use it in the 2nd question.

<u>Claim:</u> If A is an uncountably infinite set and B is a countably infinite set. Then $A \setminus B$ is an uncountably infinite set.

Let A be an uncountably set and B be a countably set.

Assume that $A \setminus B$ is a countably infinite set. (We will contradict.) (1)

B is a countably infinite set, so it would mean that $(A \setminus B) \cup B$ is countably infinite set (finite union of countable sets is clearly countable). But then $A \subseteq (A \setminus B) \cup B$, so A is contained in a countable set, then A must be countable (2)

We have obtained a contradiction by (1),(2)

Therefore, our assumption has been contradicted. Hence, A \ B is an uncountably infinite set.

<u>Lemma:</u> If A is an uncountably infinite set and B is a countably infinite set, then $A \setminus B$ is an uncountably infinite set.

Question 2

Solution

```
Let A = \{ f \mid f \subseteq \mathbb{N} \times \{0, 1\} \}
```

I will represent the mappings from \mathbb{N} to $\{0,1\}$

```
f(1)=a_1 f(2)=a_2 f(3)=a_3 as n-tuples of (a_1,a_2,a_3,.....) where a_i=0 or a_i=1 for i=1,2,3,...... .
```

Assume that A, the set of all mappings defined from \mathbb{N} to $\{0,1\}$ (plus empty set) is countable. Then there exists a 1-to-1 correspondence between \mathbb{N} and the set A.

Suppose we have it.

```
1 \to (a_1, a_2, a_3, ....) = f_1
2 \to (b_1, b_2, b_3, ....) = f_2
3 \to (c_1, c_2, c_3, ....) = f_3
.
```

Now construct a mapping from \mathbb{N} to $\{0,1\}$ that is missed by the enumeration.

By design $f_x \in A$ and it is missed by the enumeration. So, there does not exist an enumeration listing each mapping in A. Hence A is an uncountably infinite set.

Let B =
$$\{f \mid f : \{0,1\} \rightarrow \mathbb{N}, f \text{ is a function } \}$$

I will represent the functions defined from $\{0,1\}$ to \mathbb{N} as such 2-tuples.

$$f_a(0) = a_0$$

 $f_a(1) = a_1 \rightarrow (a_0, a_1), a_0 \in \mathbb{N}, a_1 \in \mathbb{N}$

By the following enumeration.

There is an one-to-one correspondence between B and \mathbb{N} , we have an enumeration method listing all elements of B. Hence B is a countably infinite set.

By the <u>Lemma</u>, since A is an uncountably infinite set and B is countably infinite set. The given set $\{f \mid f \subseteq \mathbb{N} \times \{0,1\}\} \setminus \{f \mid f : \{0,1\} \to \mathbb{N}, f \text{ is a function }\}$, which is equal to $A \setminus B$, would be uncountably infinite set.

Question 3

Prove that the function $f(n) = 4^n + 5n^2 \log n$ is not $O(2^n)$.

Solution

Assume that $f(n) = 4^n + 5n^2 \log n$ is $O(2^n)$. (We will contradict.)

Then, there exists c and k constants such that

$$4^n+5n^2logn< c.2^n\ ,\ \text{ for all }n\geq k$$

$$4^n/2^n+(5n^2logn)/2^n< c\ ,\ \text{ for all }n\geq k$$

$$2^n+(5n^2logn)/2^n< c\ ,\ \text{ for all }n\geq k$$

$$2^n< c, \text{ for all }n\geq k$$

This cannot hold for all $n \ge k$, because as n goes to infinity LHS of the inequality goes to infinity while RHS of the inequality remains constant, we get a contradiction.

The assumption has been contradicted.

Hence,
$$f(n) = 4^n + 5n^2 \log n$$
 is not $O(2^n)$.

Question 4

Given two positive integers x and n such that x > 2 and n > 2, and the congruence relation $(2x-1)^n - x^2 \equiv -x - 1 \pmod{(x-1)}$. I am required to determine the value of x.

Solution

$$(2x-1)^n - x^2 \equiv -x - 1 \pmod{(x-1)}$$

$$(2x-1)^n - x^2 + x + 1 \equiv 0 \pmod{(x-1)}$$

$$(2x-1)^n \pmod{(x-1)} + (-x^2 + x + 1) \pmod{(x-1)} \equiv 0 \pmod{(x-1)}$$

$$[(2x-1)(mod(x-1))]^n \pmod{(x-1)} + (-x^2 + x + 1) \pmod{(x-1)} \equiv 0 \pmod{(x-1)}$$

$$2x - 1 = 2(x-1) + 1 \rightarrow remainder = 1 \rightarrow 2x - 1 \equiv 1 \pmod{(x-1)}$$

$$-x^2 + x + 1 = -x \cdot (x+1) + 1 \rightarrow remainder = 1 \rightarrow -x^2 + x + 1 \equiv 1 \pmod{(x-1)}$$

$$1^n \pmod{(x-1)} + 1 \pmod{(x-1)} \equiv 0 \pmod{(x-1)}$$

$$1 \pmod{(x-1)} + 1 \pmod{(x-1)} \equiv 0 \pmod{(x-1)}$$

$$2 \pmod{(x-1)} + 1 \pmod{(x-1)} \equiv 0 \pmod{(x-1)}$$

$$2 \pmod{(x-1)} \equiv 0 \pmod{(x-1)}$$

$$x - 1 \mid 2, x > 2$$

$$x - 1 = 2$$

$$x = 3$$

The value of x is 3.