

SEP 28, 2023

Overlap PCR

NUS iGEM1

¹National University of Singapore

NUS iGEM 2023

NUS IGEM

National University of Singapore

ABSTRACT

2023 NUS-Singapore iGEM team followed this protocol to combine DNA fragments with overlapping regions, thereby reducing the number of fragments used in the Gibson Assembly and thus, improving the success rate of the Gibson Assembly. These overlapping regions are created during the PCR procedures by designing forward and reverse primers for each fragment to contain overlapping sequences.

GUIDELINES

This protocol outlines a general method for combining two DNA fragments with overlapping regions through overlap PCR. The number of fragments to be overlapped can be increased by adjusting the volume ratio between each DNA fragment.

MATERIALS

- KOD OneTM PCR Master Mix (Blue)
- DNA fragments
- DI Water

SAFETY WARNINGS

Proper lab PPE must be worn at all times.

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.bp2l6x8zrlqe/v1

Protocol Citation: NUS iGEM 2023. Overlap PCR. protocols.io

https://dx.doi.org/10.17504/p rotocols.io.bp2l6x8zrlqe/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use. distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Sep 28, 2023

Last Modified: Sep 28,

2023

Oct 28 2023

PROTOCOL integer ID:

88524

Keywords: PCR, Overlap PCR, Polymerase Chain Reactions, DNA, DNA Fragments

Determine the volume ratio for each DNA fragment required in the reaction to calculate the appropriate volume for each DNA fragment. The final sample volume is 47 µL, with 25 µL being the KOD OneTM PCR Master Mix (Blue). Therefore, the remaining volume (422 µL) will be allocated to the gene fragments and DI Water for topping it up.

- **1.1** Divide the bigger fragment size by the smaller fragment size to get the volume ratio of the DNA fragment with the bigger fragment size.
- 1.2 Divide the concentration of the bigger fragment by the answer obtained in the previous step.
- 1.3 Divide the number obtained by the concentration of the smaller fragment to get the volume ratio of the DNA fragment with the smaller fragment size.
- The volume ratio of each fragment may be adjusted to reach the final sample volume of \square 47 μ L (DI water will be used to top up the remaining volume).
- 2 Make the $\boxed{ \bot 47 \, \mu L}$ PCR sample by adding the following into a PCR tube:

Item	Volume
KOD OneTM PCR Master Mix (Blue)	25μL
DNA Fragment 1	From Calculation
DNA Fragment 2	From Calculation
DI Water	Top up the solution to 47μL

^{*}This calculation requires the fragment size and the concentration of the target DNA fragments.

3 Place the PCR tube into the Thermal Cycler and set the conditions to:

Purpose	Temperature	Duration	Remarks	
Denaturation	98°C	10s		
Annealing	65°C	5s		
Extension	68°C	10s	10s per every 1kb	
Go to Step 1, repeat the cycle 15 / 20 times				
Extension	68°C	5 minutes	Time to add primers	
Finish	12°C	Infinite Loop		

In Step 5 of the above condition, the "Extension" step, quickly add Δ 1.5 μL of each primer into the PCR tube before the 5-minute duration is completed.

Note

After Step 3, the 2 DNA fragments should have already been combined together. To amplify this combined gene, 2 primers are required. One of the primers should bind to the 5' end of the combined gene, while another primer should bind to the 3' end of the combined gene.

After adding the primers, cancel the previous run protocol immediately and reset the conditions of the Thermal Cycler to:

Purpose	Temperature	Duration	Remarks		
Denaturation	98°C	10s			
Annealing	65°C	5s			
Extension	68°C	10s	10s per every 1kb		
Go to Step 1, repeat the cycle 20 / 25 times					
Extension	68°C	5 minutes	Time to add primers		
Finish	12°C	Infinite Loop			

6 Proceeds to the gel electrophoresis to isolate the combined gene fragment.