Example 2.2.5

Figure 1 shows the cross-section of an extrusion profile which consists of a square outline and one circular 'cavity' as shown. Note that the cavity is not completely centred with respect to the cross-section. About which of the axes, x or y, does this cross-section offer the lowest second moment of area? (NB. the origins of x and y should denote the unknown centroid of the cross-section.)

Figure 1: Cross-section of an extruded profile (dimensions in millimetres).

ĩ	Ĺ	2	Compound
At	40	- ii (10)2	ΣAi
[mm]	1600	-314.16	1285.8
Ii	<u>bh</u> 3 12	11 R 4	Igy = II - Iz
[mm4]	713 333	7854	205 479.4
ÿ:	70	25	JUA = E (Ai gi)
Ai gi	32.090	- 78 54	- \(\frac{\gamma}{50A} : 18.78 mm
di [mm]	1.72	6.27	di= yi-yna
	•		Izz = Z(I; + 4; d; 2)
			Izz = 195 706 mm4