Lab6 - Sprawozdanie Andrzej Żaba nr Indeksu: 401490

Zad1.

```
clc
clear all
close all
%% Time and frequency vectors declaration
Fs = 300;
dt = 1/Fs;
Tk = 2;
t = 0:dt:(Tk-dt);
L = length(t);
df = Fs / L;
fvec = (0:L-1)*df;
%% Signal creation
f1 = 10;
f2 = 80;
f3 = 120;
x1 = \sin(2*pi*f1*t);
x2 = 3*sin(2*pi*f2*t + pi/4);
x3 = 2*sin(2*pi*f3*t + pi/2);
S = x1+x2+x3;
%% FFT of signal
one = fft(S);
plot(fvec, 2*abs(one)/L)
%% Filter parameters
                                 % for all
fNyq = Fs / 2;
% 1st
fRow1 = 8;
fOdc1 = f1 / fNyq;
%2nd
fRow2 = 15;
fOdc2 = f2 / fNyq;
%3rd
fRow3 = 20;
fOdc3 = (f3-10) / fNyq;
```

```
% Seeking of A and B matrixes
B1 = fir1(fRow1, fOdc1, "low");
B2 = fir1(fRow2, [70 90]/fNyq, "bandpass");
B3 = fir1(fRow3, fOdc3, "high");
%% Filters
% 1st signal
F1 = filter(B1, 1, S);
%plot(t,F1,'b'); hold on
plot(t,x1,'--r'); hold off
% if wanted in the frequancy domain.
FF1 = fft(F1);
X1 = fft(x1);
figure (2)
plot(fvec, 2*abs(FF1)/L, 'b'); hold on
plot(fvec, 2*abs(X1)/L, '--r')
% 2nd signal
F2 = filter(B2, 1, S);
%figure(3)
%plot(t,F2,'b'); hold on;
%plot(t,x2,'--r');
FF2 = fft(F2)
X2 = fft(x2)
figure (3)
plot(fvec, 2*abs(FF2)/L, 'b'); hold on
plot(fvec, 2*abs(X2)/L, '--r'); hold off
F3 = filter(B3, 1, S);
FF3 = fft(F3);
X3 = fft(x3)
figure (4)
plot(fvec, 2*abs(FF3)/L, 'b'); hold on
plot(fvec, 2*abs(X3)/L, '--r'); hold off
%% IIR filters
fIRow1 = 8;
[BI1 AI1] = butter(fIRow1,15 / fNyq,"low");
% signal 1
FI1 = filter(BI1,AI1,S);
```

```
FFI1 = fft(FI1);
X1 = fft(x1);
figure (5)
plot(fvec, 2*abs(FFI1)/L, 'b'); hold on
plot(fvec, 2*abs(X1)/L, '--r'); hold off
% Signal 2
fIRow2 = 8;
[BI2 AI2] = butter(fIRow2, [70 90]/fNyq, "bandpass");
FI2 = filter(BI2,AI2,S);
FFI2 = fft(FI2);
X2 = fft(x2);
figure (6)
plot(fvec, 2*abs(FFI2)/L, 'b'); hold on
plot(fvec, 2*abs(X2)/L, '--r'); hold off
% Signal 3
fIRow3 = 8;
[BI3 AI3] = butter(fIRow3, fOdc3, "high");
FI3 = filter(BI3,AI3,S);
FFI3 = fft(FI3);
X3 = fft(x3);
figure(7)
plot(fvec, 2*abs(FFI3)/L, 'b'); hold on
plot(fvec, 2*abs(X3)/L, '--r'); hold off
```

Wykres amplitudowo częstotliwościowy stworzonego sygnału oraz postać sygnału:

Wyniki filtracji z użyciem filtra FIR:

Wyniki filtracji z użyciem filtra IIR:

Zad2.

```
clc
close all
clear all
%% Time and frequency vectors declaration
Fs = 300;
dt = 1/Fs;
Tk = 0.5;
t = 0:dt:(Tk-dt);
L = length(t);
df = Fs / L;
fvec = (0:L-1)*df;
%% Signal creation
f1 = 10;
f2 = 80;
f3 = 120;
x1 = \sin(2*pi*f1*t);
x2 = 3*sin(2*pi*f2*t + pi/4);
x3 = 2*sin(2*pi*f3*t + pi/2);
S = x1+x2+x3;
%% FFT of signal
one = fft(S);
plot(fvec, 2*abs(one)/L)
%% Filter parameters
                                 % for all
fNyq = Fs / 2;
%2nd
fRow2 = 15;
fOdc2 = f2 / fNyq;
```

```
% Seeking of A and B matrixes
B1 = fir1(fRow2, [70 90]/fNyq, 'bandpass');

%% Filters
F2 = filter(B1,1,S);
FF2 = fft(F2);
X2 = fft(x2);

figure(1)
plot(fvec,2*abs(FF2) / L ,'m'); hold on
%plot(fvec,2*abs(X2) / L ,'--r');

Filt2 = filtfilt(B1,1,S);
FFilt2 = fft(F2);
plot(fvec,2*abs(FFilt2) / L, '--g');

figure(2)
plot(t,F2,'b'); hold on
plot(t,Filt2,'--r')
```

Charakterystyki amplitudowo częstotliwościowe sygnału po filtracji komendą filter (koilor magenta) oraz po filtracji komendą filtfilt (kolor zielony).

Jak widać, charakterystyki amplitudowo częstotliwościowe sygnałów po filtracjach są niemal identyczne.

Różnice widać natomiast w wykresie samych sygnałów:

Czerw – filtfilt Niebieski - filter

Jak widać sygnał niebieski jest lekko przesunięty w fazie w stosunku do sygnału czerwonego. Jest to naturalny skutek użycia komendy filter. Natomiast używając polecenia filtfilt możemy to przesunięcie wyeliminować.

Zad3

```
clc
clear all
close all
%% Time and frequency vectors declaration
Fs = 300;
dt = 1/Fs;
Tk = 2;
t = 0:dt:(Tk-dt);
L = length(t);
df = Fs / L;
fvec = (0:L-1)*df;
%% Signal creation
f1 = 10;
f2 = 80;
f3 = 120;
x1 = \sin(2*pi*f1*t);
x2 = 3*sin(2*pi*f2*t + pi/4);
x3 = 2*sin(2*pi*f3*t + pi/2);
SClear = x1+x2+x3;
figure (11)
plot(t,SClear); hold on
%% Noise creation
Mx = max(SClear);
Mn = min(SClear);
Max = max(abs(Mx), abs(Mn));
Asignal = abs(Max - abs(mean(SClear)))
Aszum = 1/10
                                      % 10% szum
SNR = 20 * log10(Asignal / Aszum);
SNRrounded = round(SNR)
S = awgn(SClear, SNRrounded)
plot(t,S,'r'); hold off
%% FFT of signal
one = fft(S);
figure(1)
plot(fvec, 2*abs(one)/L)
```

```
%% Filter parameters
fNyq = Fs / 2;
                                  % for all
% 1st
fRow1 = 8;
fOdc1 = f1 / fNyq;
%2nd
fRow2 = 15;
fOdc2 = f2 / fNyq;
%3rd
fRow3 = 20;
fOdc3 = (f3-10) / fNyq;
% Seeking of A and B matrixes
B1 = fir1(fRow1, fOdc1, "low");
B2 = fir1(fRow2, [70 90]/fNyq, "bandpass");
B3 = fir1(fRow3, fOdc3, "high");
%% Filters
% 1st signal
F1 = filter(B1, 1, S);
%plot(t,F1,'b'); hold on
%plot(t,x1,'--r'); hold off
% if wanted in the frequancy domain.
FF1 = fft(F1);
X1 = fft(x1);
figure (2)
plot(fvec, 2*abs(FF1)/L, 'b'); hold on
plot(fvec, 2*abs(X1)/L, '--r')
% 2nd signal
F2 = filter(B2,1,S);
%figure(3)
%plot(t,F2,'b'); hold on;
%plot(t,x2,'--r');
FF2 = fft(F2);
X2 = fft(x2);
figure (3)
plot(fvec, 2*abs(FF2)/L, 'b'); hold on
plot(fvec, 2*abs(X2)/L, '--r'); hold off
F3 = filter(B3, 1, S);
FF3 = fft(F3);
X3 = fft(x3);
```

```
figure (4)
plot(fvec, 2*abs(FF3)/L, 'b'); hold on
plot(fvec, 2*abs(X3)/L, '--r'); hold off
%% IIR filters
fIRow1 = 8;
[BI1 AI1] = butter(fIRow1, 15 / fNyq, "low");
% signal 1
FI1 = filter(BI1,AI1,S);
FFI1 = fft(FI1);
X1 = fft(x1);
figure (5)
plot(fvec, 2*abs(FFI1)/L, 'b'); hold on
plot(fvec, 2*abs(X1)/L, '--r'); hold off
% Signal 2
fIRow2 = 8;
[BI2 AI2] = butter(fIRow2, [70 90]/fNyq, "bandpass");
FI2 = filter(BI2,AI2,S);
FFI2 = fft(FI2);
X2 = fft(x2);
figure (6)
plot(fvec, 2*abs(FFI2)/L, 'b'); hold on
plot(fvec, 2*abs(X2)/L, '--r'); hold off
% Signal 3
fIRow3 = 8;
[BI3 AI3] = butter(fIRow3, fOdc3, "high");
FI3 = filter(BI3,AI3,S);
FFI3 = fft(FI3);
X3 = fft(x3);
figure (7)
plot(fvec, 2*abs(FFI3)/L, 'b'); hold on
plot(fvec, 2*abs(X3)/L, '--r'); hold off
```


Nałożenie 10% szumu na pierwotny sygnał spowodowało ledwie zauważalne zmiany:

W niektórych miejscach widać fragmenty niebieskiego wykresu – jest to wykres pierwotny.

Filtry FIR

Filtry IIR

Charakterystyki amplitudowo częstotliwościowe mają niemal identyczny przebieg jak dla sygnału bez nałożonego szumu.