FYZIKÁLNÍ PRAKTIKUM

Zpracoval: Jakub Jedlička Naměřeno: 9.12. 2022

Obor: učitelství Bi, F Ročník: 3. Semestr: 3. Testováno:

Úloha č. 3: Elektrické pole, můstkové metody měření odporu

T = 20,8 °C

p = 972 hPa

 $\phi = 37 \%$

1. Úvod

V první části budu měřit odpor dvou rezistorů můstkovou metodou pomocí Wheatstonova můstku v sériovém a paralelním zapojení.

V druhé části budu měřit rozložení potenciálu v okolí dvouvodičového vedení, díky určování ekvipotenciálních čar v okolí dvouvodičového vedení, které je tvořené rovnoběžnými válci. Dále v druhé části budu ověřovat výpočtem experimentálně získané rozložení ekvipotenciálních čar.

2. Teorie

Měření odporu rezistorů můstkovou metodou

Pro měření odporu rezistorů budu používat můstkovou metodu. Schéma můstku je znázorněno na Obrázku 1

Obr. č. 1 – Schéma můstku pro měření odporu

Obrázek 1: schéma můstku pro měření odporu

V tomto měření se snažím o vyvážení můstku, to znamená, že galvanometrem *G* nebude procházet proud. Toto nastane, pokud bude platit následující vztah:

$$\frac{R_1}{R_2} = \frac{R_3}{R_4} \to R_1 = \frac{R_3}{R_4} R_2$$

[1]

Pro své měření využiji Wheatstonův můstek, kde jsou odpory R_3 a R_4 jsou nahrazeny reostatem, což je homogenní drát, který má délku l s posuvným kontaktem.

Tento obvod je znázorněn na Obrázku 2. Z tohoto zapojení lze odvodit ze vztahu [1] vztah pro měrný odpor.

 $R_X = \frac{a}{l-a} R_N \tag{2}$

Obr. č. 2 – Schéma Wheatstonova můstku pro měření odporu

Obrázek 2: Wheatstonův můstek pro měření odporu

Tímto můstkem budu měřit dva odpory, poté sériové, a nakonec paralelní zapojení dvou rezistorů. Pro teoretický výpočet odporů při sériovém zapojení budu uplatňovat následující vztah.

$$R_S = R_1 + R_2 \tag{3}$$

Nejistotu vypočítám z následujícího vztahu.

$$u(R_S) = \sqrt{u^2(R_1) + u^2(R_2)}$$
[4]

Pro paralelní zapojení požiji tento vztah.

$$R_p = \frac{R_1 R_2}{R_1 + R_2} \tag{5}$$

A nejistotu určím z následujícího vztahu.

$$u(R_p) = \frac{1}{(R_1 + R_2)^2} \sqrt{R_2^4 u^2(R_1) + R_1^4 u^2(R_2)}$$

Při statistickém zpracování dat budu za nejpravděpodobnější hodnotu aritmetický průměr a za nejistotu absolutní nejistotu aritmetického průměru.

Rozložení potenciálu v okolí dvouvodičového vedení

Měření rozložení elektrického pole v okolí dvouvodičového vedení v elektrolytické vaně pomocí střídavého mostu budu měřit pomocí zapojení znázorněného na Obrázku 3.

Obr. č. 3 – Střídavý můstek pro měření v elektrolytické vaně

Obrázek 3: střídavý můstek pro měření v elektrické vaně

Díky posuvnému kontaktu, který se nachází v elektrolytické vaně, mohu hledat body se stejným potenciálem. Každý takový bod budu mohu popsat hodnotami r_1 a r_2 , což je znázorněno na Obrázku 4.

Obrázek 4: výpočet potenciálu v bodě M od dvou válcových nekonečných vodičů s poloměrem R

Poloměr r_2 ku r_1 je parametr λ . Pro $\lambda \neq 1$ se jedná o Apollonovu kružnici a pro $\lambda=1$ se jedná o přímku. Parametr λ lze vyjádřit i jako. $\lambda=e^{\left(\frac{2U}{\Delta U}-1\right)\ln\left(\frac{h+a}{R}\right)}$

$$\lambda = e^{\left(\frac{2U}{\Delta U} - 1\right)\ln\left(\frac{h+a}{R}\right)}$$

Kde U je potenciál hladiny, ΔU je napěťový rozdíl mezi vodiči (význam veličin a, h a R je znázorněn na Obrázku 4)

Pro Apollonovy kružnice dále určím jejich y-novou souřadnici středu.

$$y_s = a \frac{(\lambda^2 + 1)}{\lambda^2 - 1}$$

A jejich poloměr

$$r = \sqrt{y_s^2 - a^2} \tag{9}$$

3. Zpracování měření

Měření odporu rezistoru můstkovou metodou

Pokud zapojím obvod podle Obrázku 2 jsem změřil hodnotu a pro různé R_N hodnoty R_1 a R_2 jsem určil ze vztahu [2]. Pro délku drátu platí l = 100 cm.

Tabulka 1: Měření odporů R₁ a R₂

i	R1		R2		D1 [O]	D2 [O]
	a [cm]	Rn [Ω]	a [cm]	Rn [Ω]	R1 [Ω]	R2 [Ω]
1	39,2	16,3	41	146,1	10,5	101,5
2	46	12,2	50	101,6	10,4	101,6
3	55	8,5	47	114,3	10,4	101,4
4	30	24,6	60	67,3	10,5	101,0
5	33	21,3	55	82,5	10,5	100,8
6	41	15,2	38	164,3	10,6	100,7

Data dále statisticky zpracuji. Za nejpravděpodobnější hodnotu budu považovat aritmetický průměr a za nejistotu odchylku aritmetického průměru.

$$R_1 = (10.5 \pm 0.03) \Omega$$

 $R_2 = (101.2 \pm 0.15) \Omega$

Dále ze vztahů [3], [4], [5] a [6] mohu určit teoretické hodnoty.

$$R_{sT} = (111,7 \pm 0,2) \Omega$$

$$R_{pT} = (9.5 \pm 0.025) \Omega$$

Dále budu měřit sériové a paralelní zapojení rezistorů. Data budu zpracovávat stejně jako v předešlé části.

Tabulka 2: měření sériového a paralelního zapojení R₁ a R₂

i	sériové zapojení		paralelní zapojení		Da [O]	D., [O]
	a [cm]	R [Ω]	a [cm]	R [Ω]	Rs [Ω]	Rp [Ω]
1	35	207,1	45	11,8	111,5	9,7
2	50	111,9	50	9,6	111,9	9,6
3	55	91,6	55	7,8	112,0	9,5
4	40	168,6	60	6,3	112,4	9,5
5	30	260,1	40	14,5	111,5	9,7
6	45	137,5	35	18	112,5	9,7

$$R_S = (112,0 \pm 0,2) \Omega$$

 $R_P = (9,6 \pm 0,04) \Omega$

Rozpoznávání potenciálu v okolí dvouvodičového vedení

Pro různé hodnoty napětí U zaznamenám body, které tvoří stejnou potenciální plochu. Body proložím teoreticky vypočítanými ekvipotenciálními čarami, abych porovnal správnost mého měření. Pro výpočet parametrů Apollonových kružnic použiji vztahy [7], [8] a [9] společně se známými veličinami, a to je R=1,5 cm a h=15 cm.

Tabulka 3: teoreticky vypočítané hodnoty ekvipotenciálních čar

U [V]	λ	ys [cm]	r [cm]
0,5	0,09	-15,18	2,75
1	0,17	-15,77	5,09
1,5	0,30	-17,92	9,92
2	0,55	-27,84	23,50

2,5	1	-	-
3	1,82	27,84	23,50
3,5	3,31	17,92	9,92
4	6,03	15,77	5,09
4,5	10,96	15,18	2,75

Obrázek 5: ekvipotenciální čáry v okolí dvouvodičového veden, které je tvořeno rovnoběžnými válcovými

4. Závěr

vodiči

V první části jsem změřil odpory dvou rezistorů pomocí můstkové metody. Hodnoty odporů mi vyšly $R_1=(10,5\pm0,03)~\Omega$ a $R_2=(101,2\pm0,15)~\Omega$. Dále jsem změřil jejich sériové a paralelní zapojení a tento odpor jsem dále spočítal podle vzorců. Pro sériové zapojení jsem změřil hodnoty $R_S=(112,0\pm0,2)~\Omega$ a pro paralelní zapojení jsem změřil $R_P=(9,6\pm0,04)~\Omega$. Nakonec jsem spočítal teoretické hodnoty, které mi vyšly $R_{sT}=(111,7\pm0,2)~\Omega$ a $R_{pT}=(9,5\pm2,8)~\Omega$. Z těchto hodnot usuzuji, že mé měření bylo velice přesné a nebylo ovlivněno žádnou podstatnou chybou.

V druhé části jsem zkoumal potenciální elektrické pole v okolí dvouvodičového vedení v elektrické vaně pomocí střídavého mostu. Pokud porovnám výsledky měření a teoreticky vypočítanými ekvipotenciálními čarami, mohu usoudit, že v tomto případě mé měření zas tak přesné nebylo. V tom pravděpodobně hraje roli to že během měření jsem omylem pohnul s jednou elektrodou, kterou jsem se poté pokusil vrátit na původní místo. Také v tom může hrát roli ne příliš přesné zaznamenávání mechanickou paží, která převáděla polohu ve vaně, pomocí grafického tabletu, do počítače.