取代唑类化合物及其制备与应用

技术领域

本发明属农用杀菌剂和杀虫剂,具体地说是一种取代唑类化合物及其制备与应用。

5

背景技术

天然产物甲氧基丙烯酸酯化合物是已知的具有生物活性的化合物。专利 US5869517、US6054592、CN1154692A、CN1308065A 等中公开了广谱杀菌剂唑菌胺酯(pyraclostrobin), 其化学结构如下:

10

专利 DE19548786 中公开了如下具有杀菌活性的化合物:

专利WO9933812中公开了如下通式所示的具有杀菌活性的化合物:

15

以上专利中所有公开的化合物虽与本发明化合物结构相似,但存在显著的不同。

发明内容

本发明的目的在于提供一种在很小的剂量下就可以控制各种病虫害的取代唑类化合物,它可应用于农业上以防治作物的病害和虫害。

20 本发明的技术方案如下:

本发明提供一种取代唑类化合物,如通式(I)所示:

$$R_5$$
 A_1
 R_6
 $N \sim X_3$
 R_4
 R_5
 R_3
 R_4
 R_5
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1

式中:

10

15

X₁选自CH或N, X₂选自O、S或NR₇, X₃选自O、S或NR₈;

 A_1 选自 N 或 CR_9 , A_2 选自 N 或 CR_{10} , A_3 选自 N 或 CR_{11} ,其中 A_1 、 A_2 、 A_3 同时选自 N 的个数小于、等于 1;

 R_1 、 R_2 可相同或不同,分别选自氢、 C_1 - C_{12} 烷基或卤代 C_1 - C_{12} 烷基;

 R_1 选自氢、卤原子、 C_1 - C_{12} 烷基、卤代 C_1 - C_{12} 烷基或 C_1 - C_{12} 烷氧基;

R7选自氢或 C1-C12 烷基;

R₈选自氢、C₁-C₁₂烷基、卤代C₁-C₁₂烷基、C₁-C₁₂烷氧基羰基或C₁-C₁₂烷氧基羰基 C₁-C₁₂烷基;

 R_4 、 R_5 、 R_6 、 R_9 、 R_{10} 、 R_{11} 可相同或不同,分别选自氢、卤原子、硝基、氰基、CONH₂、CH₂CONH₂、CH₂CN、 C_1 - C_{12} 烷基、卤代 C_1 - C_{12} 烷基、 C_1 - C_{12} 烷氧基、卤代 C_1 - C_{12} 烷氧基、 C_1 - C_{12} 烷氧基、 C_1 - C_{12} 烷氧基羰基、 C_1 - C_{12} 烷氧基羰基、 C_1 - C_{12} 烷氧基羰基、 C_1 - C_{12} 烷氧基羰基、 C_1 - C_{12} 烷基、可任意取代的下列基团:胺基 C_1 - C_{12} 烷基、芳基、杂芳基、芳氧基、芳基 C_1 - C_{12} 烷基、芳 C_1 - C_{12} 烷基氧基、杂芳基、分别基本,

及其立体异构体。

本发明中较为优选的化合物为: 通式(I)中:

X₁选自CH或N, X₂选自O、S或NR₇, X₃选自O、S或NR₈;

 A_1 选自 N 或 CR_9 , A_2 选自 N 或 CR_{10} , A_3 选自 N 或 CR_{11} , 其中 A_1 、 A_2 、 A_3 同时选自 N 20 的个数小于、等于 1:

 R_1 、 R_2 可相同或不同,分别选自氢、 C_1 - C_6 烷基或卤代 C_1 - C_6 烷基;

 R_3 选自氢、卤原子、 C_1 - C_6 烷基、卤代 C_1 - C_6 烷基或 C_1 - C_6 烷氧基;

R7选自氢或 C1-C6烷基;

 R_8 选自氢、 C_1 - C_6 烷基、卤代 C_1 - C_6 烷基、 C_1 - C_6 烷氧基羰基或 C_1 - C_6 烷氧基羰基 C_1 - C_6 烷基;

25 R₄、R₅、R₆、R₉、R₁₀、R₁₁ 可相同或不同,分别选自氢、卤原子、硝基、氰基、CONH₂、CH₂CONH₂、CH₂CN、C₁-C₆烷基、卤代 C₁-C₆烷基、卤代 C₁-C₆烷氧基、卤代 C₁-C₆烷氧基、C₁-C₆烷氧基、C₁-C₆烷氧基羰基、C₁-C₆烷氧基羰基、C₁-C₆烷氧基羰基、C₁-C₆烷氧基羰基、C₁-C₆烷氧基羰基、C₁-C₆烷氧基羰基、C₁-C₆烷氧基羰基、C₁-C₆烷氧基羰基、C₁-C₆烷基氯、 可任意取代的下列基团: 胺基 C₁-C₆烷基氯、 芳基、杂芳基、芳氧基、芳基 C₁-C₆烷基、 芳 C₁-C₆烷基氧基、杂芳基 C₁-C₆烷基或杂芳 基 C₁-C₆烷氧基。

进一步优选的化合物为:通式(I)中

X₁选自CH或N, X₂选自O或NH, X₃选自O、S或NR₈;

 A_1 选自 N 或 CR_9 , A_2 选自 N 或 CR_{10} , A_3 选自 N 或 CR_{11} ,其中 A_1 、 A_2 、 A_3 同时选自 N 的个数小于、等于 1;

R₁、R₂选自甲基;

5

10

20

25

35

R3选自氢或甲基;

 R_8 选自氢、 C_1 - C_6 烷基、卤代 C_1 - C_6 烷基、 C_1 - C_3 烷氧基羰基或 C_1 - C_6 烷氧基羰基 C_1 - C_3 烷基; R_4 、 R_5 、 R_6 、 R_9 、 R_{10} 、 R_{11} 可相同或不同,分别选自氢、卤原子、硝基、氰基、CONH₂、 CH_2CONH_2 、 CH_2CN 、 C_1 - C_6 烷基、卤代 C_1 - C_6 烷基、卤代 C_1 - C_6 烷基、卤代 C_1 - C_6 烷氧基、 C_1 - C_6 烷氧基、 C_1 - C_6 烷氧基羰基、 C_1 - C_6 烷氧基羰基。 C_1 - C_6 烷氧基羰基 C_1 - C_6 烷基、可任意取代的下列基团:胺基 C_1 - C_3 烷基、苯基、苯氧基、苄基或苄氧基。

更进一步优选的化合物为: 通式(I)中

X₁选自CH或N, X₂选自O或NH, X₃选自O或NR₈;

15 A₁选自 N 或 CR₉, A₂选自 N 或 CR₁₀, A₃选自 N 或 CR₁₁, 其中 A₁、A₂、A₃同时选自 N 的个数小于、等于 1;

R₁、R₂选自甲基;

R3选自氢;

R₈选自氢、C₁-C₃烷基、卤代 C₁-C₃烷基、C₁-C₃烷氧基羰基或 C₁-C₃烷氧基羰基 C₁-C₃烷基; R₄、R₅、R₆、R₉、R₁₀、R₁₁可相同或不同,分别选自氢、氯、溴、氟、硝基、氰基、CH₂CN、C₁-C₆烷基、卤代 C₁-C₆烷基、 C₁-C₆烷氧基、 C₁-C₆烷氧基、 C₁-C₆烷氧基 C₁-C₆烷氧基羰基、C₁-C₆烷氧基羰基 C₁-C₆烷氧基 C₁-C₃烷基 C

最优选的化合物为: 通式(I)中

X₁选自CH或N,X₂选自O或NH,X₃选自O或NR₈;

 A_1 选自 N 或 CR_9 , A_2 选自 N 或 CR_{10} , A_3 选自 N 或 CR_{11} , 其中 A_1 、 A_2 、 A_3 同时选自 N 的个数小于、等于 1:

R₁、R₂选自甲基;

R3选自氢;

30 R₈选自氢、C₁-C₃烷基、卤代 C₁-C₃烷基、C₁-C₃烷氧基羰基或 C₁-C₃烷氧基羰基 C₁-C₃烷基; R₄、R₅、R₆、R₉、R₁₀、R₁₁ 可相同或不同,分别选自氢、氯、溴、氟、硝基、氰基、C₁-C₆烷基、卤代 C₁-C₆烷基、卤代 C₁-C₆烷氧基、卤代 C₁-C₆烷氧基、C₁-C₆烷氧基、C₁-C₆烷硫基、C₁-C₆烷硫基、C₁-C₆烷硫基、C₁-C₆烷氧基羰基、C₁-C₆烷氧基羰基、C₁-C₆烷氧基羰基、C₁-C₆烷氧基羰基、C₁-C₆烷氧基 C₁-C₃烷基、苯基或卤代苯氧基。

上面给出的化合物(I)的定义中,汇集所用术语一般代表如下取代基:

5

10

15

20

可任意取代的苯氧基、苄氧基、苯基、苄基中取代基为氢、烷基、烷氧基、卤代烷基、卤代烷氧基、卤素、硝基或 CN 等,取代基的数目可为 0~5。

卤: 指氟、氯、溴和碘。

烷基: 直链或支链烷基,例如甲基、乙基、丙基、异丙基和叔丁基。

卤代烷基: 直链或支链烷基, 在这些烷基上的氢原子可部分或全部被卤原子所取代, 例如, 卤代烷基诸如氯甲基、二氯甲基、三氯甲基、氟甲基、二氟甲基、三氟甲基。

烷氧基:直链或支链烷基,经氧原子键连接到结构上。

卤代烷氧基:直链或支链烷氧基,在这些烷氧基上的氢原子可部分或全部被卤原子所取代。 例如,卤代烷氧基诸如氯甲氧基、二氯甲氧基、三氯甲氧基、氟甲氧基、二氟甲氧基、三氟甲 氧基、氯氟甲氧基或三氟乙氧基。

链烯基:直链或支链并可在任何位置上存在有双键,例如乙烯基或烯丙基。取代链烯基包括任意取代的芳基链烯基。

炔基: 直链或支链并可在任何位置上存在有三键,例如乙炔基、炔丙基。取代炔基包括任 意取代的芳炔基。

芳基以及芳烷基、芳基链烯基、芳炔基、芳氧基和芳氧基烷基中的芳基部分包括苯基和奈基。 本发明中所指杂芳基是含 1 个或多个 N、O、S 杂原子的 5 元环或 6 元环。例如吡啶、呋喃、嘧啶、吡嗪、哒嗪、三嗪、喹啉或苯并呋喃。

在本发明的化合物中,由于碳-碳双键和碳-氮双键连接不同的取代基而可以形成立体异构体(分别以Z和E来表示不同的构型)。本发明包括Z型异构体和E型异构体及其任何比例的混合物。

可以用下面表 1-3 中列出的化合物来说明本发明,但并不限定本发明。

$$R_5$$
 A_1
 A_1
 A_3
 A_4
 A_1
 A_1
 A_3
 A_4
 A_1
 A_1
 A_2
 A_3
 A_4
 A_1
 A_2
 A_1
 A_2
 A_3
 A_4
 A_1
 A_2
 A_2
 A_2
 A_1
 A_2
 A_2
 A_2
 A_1
 A_2
 A_2
 A_2
 A_1
 A_2
 A_2
 A_2
 A_3
 A_1
 A_2
 A_2
 A_2
 A_3
 A_1
 A_2
 A_2
 A_2
 A_3
 A_2
 A_3
 A_3
 A_4
 A_3
 A_4
 A_3
 A_4
 A_3
 A_4
 A_4
 A_3
 A_4
 A_4

表 1 其中: R₁、R₂=CH₃, R₃=H, X₁=CH, X₂=O

编号	X_3	R ₄	R ₅	R ₆	A_1	A ₂	A ₃
1	NCH ₃	H	Н	H	CH	CH	CH
2	NCH ₃	H	H	Н	CH	C-Cl	CH
3	NCH ₃	Н	H	H	CH	C-F	CH
4	NCH ₃	H	H	H	CH	C-NO ₂	CH
5	NCH ₃	H	Н	H	CH	C-CF ₃	CH
6	NCH₃	H	H	H	CH	C-CN	CH
7	NCH ₃	H	H	H	CH	C-CH ₃	CH
8	NCH ₃	H	H	H	CH	C-OCH ₃	CH
9	NCH ₃	H	H	H	CH	C-OCF ₃	CH
10	NCH₃	H	H	H	CH	C-Cl	C-Cl
11	NCH ₃	<u>H</u>	H	H	C-F	C-Cl	C-Cl

12	NCH ₃	Н	Н	Н	C-OCH ₃	C-OCH ₃	CH
13	NCH ₃	Н	Н	H	CH	C-F	C-Cl
14	NCH₃	Н	Cl	Н	C-Cl	CH	CH
15	NCH₃	Н	H	Н	CH	C-CH ₃	CH
16	NCH ₃	Cl	Н	H	CH	CH	CH
17	NCH₃	Cl	Н	H	CH	C-Cl	CH
18	NCH₃	Cl	Н	Н	CH	C-F	CH
19	NCH ₃	Cl	Н	H	CH /	C-NO ₂	CH
20	NCH ₃	Cl	H	H	CH /	C-CF ₃	CH
21	NCH ₃	Cl	Н	H	CH /	C-CN	CH
22	NCH ₃	Cl	Н	Н	CH \	C-CO₂Me	CH
23	NCH ₃	Cl	Н	Н	CH	C-OCH₃	CH
24	NCH ₃	Cl	Н	Н	CH	C-OCF ₃	CH
25	NCH ₃	Cl	Н	Н	CH	C-Cl	C-Cl
26	NCH ₃	Cl	Н	Н	C-F	C-Cl	C-Cl
27	NCH ₃	Cl	Н	H	CH	C-F	C-Cl
28	NCH ₃	Cl	Cl	Н	C-Cl	CH	CH
29	NCH ₃	CN	Н	Н	CH	C-Cl	CH
30	NCH ₃	CH ₃	Н	Н	CH	C-Cl	CH
31	NCH ₃	CN	Н	Н	CH	· C-F	CH
32	NCH ₃	CN	H	H	CH	C-NO ₂	CH
33	NCH₃	CN	Н	Н	CH	C-CF ₃	CH
34	NCH ₃	CN	Н	H	CH	C-CN	CH
35	NCH ₃	OCH ₃	Н	Н	CH	C-CO ₂ Me	СН
36	NCH₃	CN	H	Н	CH	C-OCH₃	· CH
37	NCH ₃	CN	H	Н	CH	C-OCF ₃	CH
38	NCH₃	CN	Н	H	CH	C-C1	C-CI
39	NCH₃	CN	Н	H	C-F	C-Cl	C-Cl
40	NCH ₃	CN	H	Н	C-OCH₃	C-OCH₃	CH
41	NCH ₃	OCH₃	Н	H	CH	C-F	C-Cl
42	NCH ₃	Br	Н	Н	CH	C-Cl	CH
. 43	NCH ₃	CO ₂ Me	Н	H	CH	CH	CH
44	NCH₃	CO ₂ Me	Н	Н	CH	C-Cl	CH
45	NCH₃	CO ₂ Me	Н	H	CH	C-F	CH
46	NCH₃	CO₂Me	H	H	CH	C-NO ₂	CH
47	NCH₃	CO₂Me	H	H	CH	C-CF ₃	CH
48	NCH₃	CO₂Me	H	H	CH	C-CN	CH
49	NCH ₃	CO₂Me	H	H	CH	C-CO₂Me	CH
50	NCH₃	CO₂Me	Н	H	CH	C-OCH₃	CH
51	NCH₃	CO₂Me	H	Н	CH	C-OCF ₃	CH
52	NCH ₃	CO₂Me	H	H	CH	. C-Cl	C-Cl
53	NCH₃	CO₂Me	H	H	C-F	C-CI	C-Cl
54	NCH ₃	CO₂Me	H	H	C-OCH ₃	C-OCH ₃	CH
55	NCH ₃	CO ₂ Me	H	H	CH	C-F	C-Cl
56	NCH ₃	CO ₂ Me	Cl	H	C-Cl	CH	, CH
57	NCH ₃	Н	H	H	CH	CH	, N
58	NCH ₃	H	H	H	CH	C-Cl	N
59	NCH ₃	H	H	H	CH	C-OCH₃	N
60	NCH ₃	H	H	H	C-Cl	СН	N
61	NCH ₃	H	H	H	CH	C-CF ₃	N
62	NCH ₃	H	H	Cl	CH	C-CF ₃	N
63	NCH ₃	CI	H	H	CH	CH	N
64	NCH ₃	Cl	H	Н	CH	C-Cl	N
65	NCH ₃	Cl	H	H	CH	C-OCH ₃	N
66	NCH ₃	Cl	H	H	C-Cl	CH	N

67	NCH ₃	Cl	H	<u>H</u>	CH	C-CF ₃	N
68	NCH ₃	Cl	H	Cl	CH	C-CF ₃	N
69	NCH ₃	Н	H	H	N	C-Cl	CH
70	NCH ₃	Н	H	H	N	C-F	CH
71	NCH ₃	H	Н	H	N	C-OCF ₃	CH
72	NCH ₃	Н	H	Н	N	C-CF ₃	CH
73	NCH ₃	H	H	Н	N	C-OCH ₃	CH
74	NCH ₃	H	H	H	CH	C-OCH ₂ CF ₃	CH
75	NCH ₃	H	Н	H	N	C-CF ₃	C-Cl
76	NCH ₃	Cl	H	Н	N	C-F	CH
77	NCH₃	Cl	H	H	N	C-OCF ₃	CH
78	NCH₃	Cl	Н	H	N	C-CF ₃	CH
79	NCH ₃	Cl	H	H	N	C-OCH₃	CH
80	NCH ₃	CI	H	H	N	C-OCH ₂ CF ₃	CH
81	NCH ₃	H	H	H	CH	N	CH
82	NCH ₃	CI	H	H	CH	N	· CH
83	0	H	H	H	CH	CH	CH
84	0	H	H	H	CH	C-Cl	CH
85	0	H	H	H	CH	C-F	CH
86	0	H	H	H	CH	C-NO ₂	CH
87	0	H	H	H	CH	C-CF ₃	CH
88	0	H	H	H	СН	C-CN	CH
89	0	H	H	H	CH	C-CO₂Me	CH
90	О	H	H	H	CH	C-OCH₃	CH
91	0	Н	Н	Н	CH	C-OCF ₃	CH
92	0	H	H	H	CH	C-Cl	C-Cl
93	0	H	Н	Н	C-F	C-Cl	C-Cl
94	0	Н	Н	Н	C-OCH₃	C-OCH₃	CH
95	0	H	H	H	CH	C-F	C-Cl
96	0	H	Cl	H	C-Cl	CH	CH
97	0	H	Н	Н	CH	C-CH₃	CH
98	0	Cl	H	Н	CH	· C-Cl	CH
99	0	Cl	Н	Н	CH	C-F	CH
100	0	Cl	H	H	CH	C-NO ₂	CH
101	0	Cl	Н	Н	CH	C-CF ₃	CH
102	0	Cl	H	Н	CH	C-CN	CH
103	0	Cl	Н	H	. CH	C-CO ₂ Me	· CH
104	0	Cl	H	H	CH	C-OCH₃	CH
105	0	Cl	Н	H	CH	C-OCF ₃	CH
106	0	Cl	H	H	CH	C-CI	C-Cl
107	0	Cl	Н	Н	C-F	C-Cl	C-Cl
108	0	Cl	Н	H	C-OCH ₃	C-OCH₃	CH
109	0	Cl	H	Н	CH	C-F	C-Cl
110	0	Cl	Cl	I-I	C-CI	CH	CH
111	0	CH ₃	Н	Н	CH	C-Cl	CH
112	0	CH ₃	Н	Н	CH	C-OCH ₂ CF ₃	CH
113	0	CN	Н	Н	CH	C-F	СН
114	0	CN	Н	Н	CH	C-NO ₂	CH
115	0	CN	Н	Н	CH	C-CF ₃	CH
116	0	CN	Н	Н	CH	C-CN	CH
117	0	CN	Н	Н	CH	C-CO₂Me	CH
118	0	CN	Н	Н	CH	C-OCH ₃	CH
119	0	CN	Н	Н	CH	.C-OCF ₃	CH
120	0	CN	H	Н	CH.	C-Cl	C-Cl
121	0	CN	Н	Н	C-F	C-Cl	C-Cl
				·	L		

122	O	OCH₃	Н	Н	CH	. C-Cl	CH
123	Ō	OCH ₃	H	H	CH	C-F	CH
124	0	OCH₃	H	H	CH	C-CF ₃	CH
125	Ō	CO₂Me	H	H	CH	CH	CH
126	0	CO₂Me	H	H	CH	C-Cl	CH
127	0	CO₂Me	H	H	CH	C-F	CH
128	O	CO ₂ Me	H	H	CH	C-NO ₂	CH
129	0	CO₂Me	H	H	CH	C-CF ₃	CH
130	0	CO₂Me	H	H	CH	C-CN	CH
131	O	CO ₂ Me	H	H	CH	C-CO ₂ Me	CH
132	O	CO ₂ Me	H	H	CH	C-OCH₃	CH
133	O	CO ₂ Me	H	H	CH	C-OCF ₃	CH
134	O	CO ₂ Me	I-I	Н	CH	C-Cl	C-Cl
135	О	CO ₂ Me	Н	H	C-F	C-Cl	C-Cl
136	0	CO ₂ Me	Н	Н	C-OCH ₃	C-OCH ₃	CH
137	0	CO ₂ Me	Н	H	CH	C-F	C-Cl
138	0	CO ₂ Me	CI	H	C-Cl	CH	CH
139	0	H	H	H	CH	CH	N
140	0	Н	H	Н	CH	C-Cl	N
141	0	Н	H	H	CH	C-OCH₃	N
142	0	H	H	H	C-Cl	CH	N
143	0	Н	Н	Н	CH	C-CF ₃	N
144	0	Н	Н	Cl	CH	·C-CF ₃	N
145	0	Cl	Н	Н	CH	CH	N
146	O	Cl	Н	Н	CH	C-Cl	N
147	0	Cl	Н	Н	CH	C-OCH ₃	N
148	0	Cl	H	H	C-Cl	CH	N
149	0	Cl	Н	Н	CH	C-CF ₃	• N
150	0	Cl	H	C1	CH	C-CF ₃	N
151	0	H	H	H	N	C-Cl	CH
152	0	H	Н	Н	N	C-F	CH
153	0	Н	Н	H	N	C-OCF ₃	CH
154	0	H	Н	Н	N	C-CF ₃	CH
155	0	Н	H	Н	N	C-OCH ₃	CH
156	0	Н	H	Н	N	C-OCH ₂ CF ₃	CH
157	0	C1	H	H	N	C-Cl	CH
158	0	Cl	Н	H	N	C-F	CH
159	0	Cl	H	H	N	C-OCF ₃	CH
160	0	CI	H	Н	N	C-CF ₃	CH
161	0	Cl	H	H	N	C-OCH ₃	CH
162	0	CI	H	Н	N	C-OCH ₂ CF ₃	CH
163	0	H	H	Н	CH	N	CH
164	0	Cl	Н	H	CH	N	CH
165	NCH₃	Н	Н	H	CH	C-SCH₃	CH
166	NCH₃	H	H	Н	CH	C-SO₂CH₃	CH
167	NH	H	H	Н	CH	C-F	CH
168	NH	H	H	H	CH	C-NO ₂	CH
169	NH	H	H	H	CH	C-CF ₃	CH
170	NH	H	H	H	CH	C-CN	. CH
171	NH	H	H	H	CH	C-C1	CH
172	NCH₃	H	H	H	СН	C-Br	CH
173	NCH₃	CH ₃	H	H	CH	CH	CH
174	NCH₃	H	H	H	CH	C-OPh	CH
175	NCH₃	H	<u>H</u>	H	C-Cl	C-OPh-4-Cl	CH
176	NCH ₃	H	H	H	CH	C-OPh-4-Br	CH

177	NH	Н	Н	H	CH	C-OCF ₃	CH
178	NH	Н	Н	H	CH	C-Cl	C-Cl
179	NCH₃	Cl	H	H	CH	C-Ph-4-Cl	CH
180	NCH ₃	CH ₃	H	H	CH	C-C ₂ H ₅	CH
181	NH	Cl	Н	Н	CH	C-F	CH
182	NH	Cl	Н	Н	· CH	C-NO ₂	CH
183	NH	Cl	Н	Н	CH	C-CF ₃	CH
184	NH	Cl	Н	Н	CH	C-CN	CH
185	NH	Cl	Н	Н	CH	C-CO ₂ Me	CH
186	NCH ₃	CH ₃	H	Н	CH	C-OCH₃	CH
187	NH	Cl	H	Н	CH	C-OCF ₃	CH
188	NCH₃	CH ₃	Н	Н	CH	C-CH₃	CH
189	NCH ₃	Н	Н	Cl	C-H	C-H	C-H
190	NPr i	H	Н	Н	CH	C-Cl	CH
191	NH	Cl	Н	Н	CH	C-F	C-Cl
192	NH	Cl	C1	H	C-CI	CH	CH
193	NCH3	CN	H	H	CH	CH	CH
194	NH	CN	H	Н	CH	C-Cl	CH
195	NH	CN	Н	H	CH	C-F	· CH
196	NH	CN	H	H	CH	C-NO ₂	CH
197	NH	CN ·	H	H	CH	C-CF ₃	CH
198	NH	CN	H	H	CH	C-CN	CH
199	NCH₃	Ph-4-Cl	H	Н	CH	C-Cl	CH
200	NCH ₃	OPh	H	H	CH	C-Cl	CH
201	NH	CN	H	H	CH	C-OCF₃	CH
202	NH	CN	H	H	CH	C-Cl	C-Cl
203	NH	CN	H	H	C-F	C-Cl	C-CI
204	NCH₃	C ₂ H ₅	H	H	CH	C-Cl	CH
205	NCH ₃	C ₃ H ₇ -n	H	H	CH	C-Cl	CH
206	NCH ₃	C₃H₁-i Ph	H	H	CH	C-Cl	CH
207	NCH ₃ NH		H H	H	CH CH	C-Cl C-Cl	CH CH
209	NH	CO ₂ Me CO ₂ Me	H	H	CH	C-F	CH
210	NH	CO ₂ Me	H	H	CH	C-NO ₂	CH
211	NH	CO ₂ Me	H	H	CH	· C-CF ₃	CH
212	NH	CO ₂ Me	H	H	CH	C-CN	CH
213	NH	CO ₂ Me	H	H	CH	C-CO ₂ Me	CH
214	NCH ₃	H	H	H	CH	CH	C-OCH ₃
215	NH	CO ₂ Me	H	H	CH	C-OCF ₃	C+OCH ₃
216	NH	CO ₂ Me	H	H	CH	C-CI	· C-Cl
217	NH	CO ₂ Me	H	H	C-F	C-C1	C-CI
218	NH	CO ₂ Me	H	H	C-OCH ₃	C-OCH ₃	CH
219	NH	CO ₂ Me	H	H	CH	C-F	C-CI
220	NH	CO ₂ Me	Cl	H	C-Cl	CH	CH
221	NH	H	H	Н	CH	CH	N
222	NH	Н	Н	Н	CH	C-Cl	N
223	NH	Н	Н	Н	CH	C-OCH ₃	N
224	NH	Н	Н	Н	C-Cl	CH	N
225	NH	Н	Н	Н	CH	C-CF ₃	N
226	NH	Н	Н	Cl	CH	C-CF ₃	N
227	NH	Cl	H	Н	CH	CH	N
228	NH	C1	H	Н	CH	C-CI	N
229	NH	Cl	Н	Н	CI-I	C-OCH₃	N
230	NH	Cl	Н	Н	C-Cl	CH	N
231	NH	Cl	H	H	CH	C-CF ₃	N

232	NH	Cl	Н	CI	СН	C-CF ₃	N
233	NH	H	H	H	N	C-Cl	CH
234	NH	H	H	H	N	C-F	CH
235	NH	H	H	H	N	C-OCF ₃	CH
236	NH	H	H	H	N	C-CF ₃	CH
237	NH	H	Н	H	N	C-OCH₃	CH
238	NH	H	H	H	N	C-OCH ₂ CF ₃	CH
239	NH	Cl	H	Н	N	C-Cl	CH
240	NH	Cl	Н	H	N	C-F	CH
241	NH	Cl	Н	H	N	C-OCF₃	CH
242	NH	Cl	H	Н	N	C-CF ₃	CH
243	NH	Cl	H	H	N	C-OCH ₃	CH
244	NH	. Cl	H	H	N	C-OCH ₂ CF ₃	CH
245	NH	H	H	Н	CH	N	CH
246	NH	Cl	H	Н	CH	N	CH

部分化合物的理化性质和核磁数据(1HNMR, 300MHz, 内标 TMS, 溶剂 CDCl3)如下:

化合物 1: 熔点为 123-127°C。 δ ppm 7.73-7.21(m, 10H, Ar-H) 5.78(s, 1H, Het-H), 5.04(s, 2H, CH₂), 3.84(s, 3H, NCH₃), 3.71(s, 6H, 2OCH₃)。

化合物 2: 熔点为 129-131°C。δ ppm 7.61-7.16(m, 9H, Ar-H), 5.67(s, 1H, Het-H), 5.09(s, 2H, CH₂), 3.82(s, 3H, NCH₃), 3.71(s, 3H, OCH₃), 3.69(s, 3H, OCH₃)。

化合物 3: 熔点为 107-109°C。δ ppm 7.71-7.02(m, 9H, Ar-H) 5.73(s, 1H, Het-H), 5.04(s, 2H, CH₂), 3.84(s, 3H, NCH₃), 3.71(s, 6H, 2OCH₃)。

化合物 4: 熔点为 162-164°C。δ ppm 8.66-7.27(m, 8H, Ar-H), 5.85(s, 1H, Het-H), 5.06(s, 2H, CH₂), 3.85(s, 3H, NCH₃), 3.73(s, 3H, OCH₃), 3.72(s, 3H, OCH₃)。

化合物 5: 粘稠状物。 δ ppm 7.75-7.16(m, 9H, Ar-H), 5.73(s, 1H, Het-H), 5.11(s, 2H, CH₂), 3.82(s, 3H, NCH₃), 3.74(s, 3H, OCH₃) 3.69(s, 3H, OCH₃)。

化合物 10: 熔点为 154-157°C。δppm 3.70-3.72(6H,d), 3.83(3H,d), 5.05(2H,s), 6.00(1H,s), 7.19-7.22(1H,m), 7.25-7.28(1H,m), 7.36-7.39(2H,m), 7.42-7.43(1H,m), 7.51-7.54(1H,m), 7.61(1H,s), 7.71-7.74(1H,m)。

化合物 11: 3.67(3H,s), 3.83(3H,s), 4.06(3H,s), 5.00(2H,s), 5.27(1H,m), 7.15-7.18(1H,m), 7.23-7.27(2H,m), 7.33-7.43(1H,m), 7.58(1H,s), 7.76(1H,s), 7.90-7.93(1H,m)。

化合物 12: 粘稠状物。

5

10

15

20

化合物 15: 熔点为 137-139°C。 2.35(3H,s), 3.70(3H,s), 3.71(3H,s), 3.84(3H,s), 5.03(2H,s), 5.75(1H,s), 7.16-7.18(1H,m), 7.36-7.39(2H,m), 7.51-7.55(1H,m), 7.59-7.62(3H,m)。

化合物 29: 熔点为 56-60°C。δppm (DMSO) 2.79(3H,s), 3.58(3H,s), 3.78(3H,s), 4.09(2H,s), 7.05(1H,m), 7.26-7.29(2H,m), 7.47-7.50(2H,m), 7.64-7.67(2H,m), 7.74-7.77(2H,m)。

化合物 30: 熔点为 69-71°C。δppm 1.85(3H,s), 3.61(3H,s), 3.69(3H,s), 3.82(3H,s), 5.16(2H,s), 7.15-7.19(1H,m), 7.23-7.26(2H,m), 7.31-7.40(2H,m), 7.43-7.46(2H,m), 7.58(1H,s), 7.61-7.65(1H,m)。

25 化合物 69: 熔点为 137-140°C。 δ ppm 8.30-7.27(m, 8H, Ar-H), 5.79(s, 1H, Het-H), 5.06(s,

2H, CH₂), 3.85(s, 3H, NCH₃), 3.73(s, 3H, OCH₃), 3.72(s, 3H, OCH₃).

化合物 74: 熔点为 92-94°C。δ ppm 3.68(3H,s), 3.71(3H,s), 3.83(3H,s), 4.32-4.40(2H,q), 5.03(2H,s), 5.71(1H,s), 6.91-6.96(2H,m), 7.19-7.22(1H,m), 7.34-7.41(2H,m), 7.52-7.55(1H,m), 7.61(1H,s), 7.64-7.69(2H,m)。

化合物 80: 熔点为 122-125°C。 δppm 3.71-3.72(6H,d), 3.85(3H,s), 4.72-4.81(2H,m), 5.06(2H,s), 5.74(1H,s), 6.86-6.89(1H,d), 7.20-7.26(1H,m), 7.36-7.40(2H,m), 7.51-7.54(1H,m), 7.62(1H,s), 8.03-8.07(1H,dd), 8.42-8.43(1H,m)。

化合物 83: 粘稠状物。 δ ppm 7.78-7.15(m, 10H, Ar-H), 5.46(s, 1H, Het-H), 5.18(s, 2H, CH₂), 3.85(s, 3H, OCH₃), 3.72(s, 3H, OCH₃)。

10 化合物 84: 粘稠状物。

5

20

化合物 86: 熔点为 137-140°C。 δ ppm 8.22-7.20(m, 9H, Ar-H), 5.54(s, 1H, Het-H), 5.21(s, 2H, CH₂), 3.86(s, 3H, OCH₃), 3.74(s, 3H, OCH₃)。

化合物 97: 粘稠状物。 δppm 2.38(3H,s), 3.72(3H,s), 3.85(3H,s), 5.17(2H,s), 5.43(1H,s), 7.21-7.26(3H,m), 7.37-7.40(2H,m), 7.59-7.64(4H,m)。

15 化合物 111: 粘稠状物。 δppm 1.91(3H,s), 3.70(3H,s), 3.83(3H,s), 5.31(2H,s), 7.31-7.35(1H,m), 7.37-7.44(4H,m), 7.55-7.61(4H,m)。

化合物 151: 粘稠状物。 δppm 3.73(3H,s), 3.86(3H,s), 5.20(2H,s), 5.48(1H,s), 7.26(1H,m), 7.37-7.42(3H,m), 7.55-7.58(1H,m), 7.64(1H,s), 8.02-8.06(1H,dd), 8.66-8.67(1H,d)。

化合物 165: 熔点为 127-129°C。δppm 2.50(3H,s), 3.69-3.71(6H,d), 3.83(3H,s), 5.03(2H,s), 5.74(1H,s) , 7.19-7.23(2H,m) , 7.26-7.27(1H,m) , 7.36-7.39(2H,m) , 7.52-7.56(1H,m) , 7.61-7.62(2H,m), 7.65(1H,s)。

化合物 172: 熔点为 104-106°C。δppm 3.68-3.75(6H,m), 3.83(3H,s), 5.03(2H,s), 5.74(1H,s), 7.19-7.23(1H,m), 7.36-7.39(2H,m), 7.46(1H,m), 7.48-7.49(1H,m), 7.52-7.55(1H,m), 7.56-7.57(1H,m), 7.59-7.60(1H,m), 7.61(1H,s)。

25 化合物 173: 粘稠状物。δppm 1.87(3H,s), 3.63(3H,s), 3.69(3H,s), 3.82(3H,s), 5.16(2H,s), 7.16-7.19(1H,m), 7.30-7.49(7H,m), 7.59(1H,s), 7.64-7.67(1H,m)。

化合物 174: 粘稠状物。δppm 3.69(3H,s), 3.71(3H,s), 3.84(3H,s), 5.03(2H,s), 5.73(1H,s), 6.99-7.03(2H,m), 7.10(2H,m), 7.19-7.22(1H,m), 7.31-7.34(2H,m), 7.36-7.39(2H,m), 7.52-7.55(1H,m), 7.61(1H,s), 7.66-7.69(2H,m)。

30 化合物 179: 熔点为 161-163°C。δppm 3.71(3H,s), 3.72(3H,s), 3.85(3H,s), 5.05(2H,s), 5.81(1H,s), 6.82-6.85(1H,m), 7.20-7.24(1H,m), 7.35-7.42(4H,m), 7.52-7.57(4H,m), 7.62(1H,s), 7.76-7.81(2H,m)。

化合物 180: 粘稠状物。δppm 1.26-1.31(3H,m), 1.87(3H,s), 2.70(2H,q), 3.63-3.69(6H,d), 3.82(3H,s), 5.15(2H,s), 7.24-7.28(7H,m), 7.59(1H,s), 7.62-7.65(1H,d)。

35 化合物 186: 粘稠状物。δppm 2.48(3H, s), 3.68-3.70(6H, d), 3.82(3H, s), 5.02(2H, s), 5.740(1H, s),

7.22-7.25(2H, m), 7.35-7.37(2H, m), 7.38-7.52(1H, m), 7.61-7.65(2H, m).

5

化合物 188: 粘稠状物。δppm 1.86(3H,s), 2.41(3H,s), 3.62(3H,s), 3.68(3H,s), 3.82(3H,s), 5.15(2H,s), 7.19-7.22(3H,m), 7.29-7.32(4H,m), 7.59(1H,s), 7.62-7.64(1H,s)。

化合物 189: 粘稠状物。δppm 3.59(3H,s), 3.71(3H,s), 3.82(3H,s), 5.11(2H,s), 5.67(1H,s), 7.26-7.30(2H,d), 7.35(4H,s), 7.37-7.39(1H,m), 7.40-7.60(2H,m)。

化合物 190: 粘稠状物。 δppm 1.46-1.48(6H,d), 3.71(3H,s), 3.83(3H,s), 4.57(1H,m), 5.03(2H,s), 5.73(1H,s), 7.18-7.22(2H,m), 7.30-7.32(2H,d), 7.36-7.39(2H,m), 7.51(1H,m), 7.61(1H,s), 7.66-7.69(2H,m)。

$$R_5$$
 A_2
 A_3
 A_4
 A_1
 R_6
 $N \times X_3$
 R_4
 R_5
 R_3
 R_4
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1

表 2 其中: R₁、R₂=CH₃, R₃=H, X₁=N, X₂=O

	10	<u> </u>	.1.: 101/ 105	C113, 103	11, 21, 14,	<i>X</i> 2 O	
编号	X ₃	R ₄	R ₅	R ₆	A_1	A ₂	A ₃
247	NCH ₃	H	H	Н	CH	CH	CH
248	NCH ₃	Н	Н	H	CH	C-Cl	CH
249	NCH ₃	Н	Н	Н	CH	C-F	CH
250	NCH ₃	H	Н	Н	CH	C-NO ₂	CH
251	NCH₃	Н	Н	H	CH	C-CF ₃	CH
252	NCH₃	Н	H	Н	CH	C-CN	· CH
253	NCH₃	Н	H	H	CH	C-CO ₂ Me	CH
254	NCH₃	Н	H	H	CH	C-SCH ₃	CH
255	NCH₃	H	H	H	CH	C-OCF ₃	CH
256	NCH₃	H	H	H	CH	C-Cl	C-Cl
257	NPr i	Н	Н	H	C-H	C-Cl	C-H
258	NCH ₃	Н	H	H	C-OCH₃	C-OCH ₃	CH
259	NCH₃	H	Н	Н	CH	C-F	C-Cl
260	NCH₃	H	Cl	H	C-Cl	CH	CH
261	NCH₃	Н	H	H	CH	C-Br	CH
262	NCH₃	Cl	Н	Н	CH	C-Cl	CH
263	NCH₃	Cl	Н	H	CH	C-F	CH
264	NCH₃	Cl	H	H	CH	C-NO ₂	CH
265	NCH₃	Cl	H	H	CH	C-CF ₃	CH
266	NCH₃	Cl	H	H	CH	C-CN	CH
267	NCH ₃	Cl	Н	H	CH	C-CO ₂ Me	CH
268	NCH ₃	H	Н	I-I	CH	· C-CH ₃	CH
269	NCH ₃	Cl	Н	Н	CH	C-OCF ₃	CH
270	NCH₃	Cl	Н	H	CH	C-Cl	C-Cl
271	NCH ₃	Cl	Н	H	C-F	C-Cl	C-Cl
272	NCH₃	Cl	H	H	C-OCH₃	C-OCH₃	CH
273	NCH ₃	C1	H	H	CH	C-F	. C-Cl

274	NCH ₃		Cl	TT	C-C1	CH	Cil
274 275	NCH ₃	Cl H	Cl H	H H	CH	CH	CH N
276	NCH ₃	H	H	H	CH	C-Cl	3.7
277	NCH ₃	H	H	H	CH	C-OCH ₃	· N
278	NCH ₃	H	H	<u> Н</u>	C-Cl	CH CH	N
279	NCH ₃	H	H	<u> </u>	CH	C-CF ₃	N
280	NCH ₃	H	H	Cl	CH	C-CF ₃	N
281	NCH ₃	CI	H	H	CH	CH CH	N
282	NCH ₃	Cl	——————————————————————————————————————	<u> </u>	CH	C-Cl	N
283	NCH ₃	Cl	——————————————————————————————————————	H	CH	C-OCH ₃	N
284	NCH ₃	H	H	H	CH	C-Br	N
285	NCH ₃	Cl	H	H	CH	C-CF ₃	N
286	NCH ₃	Cl	H	Cl	CH	C-CF ₃	N
287	NCH ₃	H	H	H	N	C-Cl	CH
288	NCH ₃	<u>н</u>	H	H	N	C-F	CH
289	NCH ₃	H ·	—— <u>; ;</u> H	H	N	C-OCF ₃	CH
290	NCH ₃	H	H	H	N	C-CF ₃	CH
291	NCH ₃	H	H	H	N	C-OCH₃	CH
292	NCH ₃	H	H	H	N	C-OCH ₂ CF ₃	CH
293	NCH ₃	Cl	H	H	N	C-Cl	CH
294	NCH ₃	Cl	H	H	N	C-F	CH
295	NCH ₃	CI	H	H	N	C-OCF ₃	CH
296	NCH ₃	Cl	H	H	N	C-CF ₃	CH
297	NCH ₃	Cl	H	H	N	C-OCH ₃	CH
298	NCH ₃	Cl	H	H	N	C-OCH ₂ CF ₃	· CH
299	NCH ₃	. H	H	Н	CH	N	CH
300	NCH ₃	Cl	H	H	CH	N	CH
301	O	Н	H	Н	CH	C-CI	CH
302	0	CH ₃	Н	Н	CH	C-Cl	CH
303	O	Н	Н	Н	CH	C-F	CH
304	O	H	Н	H	CH	C-NO ₂	CH
305	0	Н	Н	Н	CH	C-CF ₃	CH
306	0	Н	H	Н	CH	C-CN	CH
307	0	Н	Н	Н	CH	C-CO ₂ Me	CH
308	0	Н	Н	Н	CH	C-OCH ₃	CH
309	0	H	Н	Н	CH	C-OCF ₃	CH
310	O	Н	Н	Н	CH	C-Cl	C-Cl
311	0	H	H	Н	C-F	C-Cl	C-Cl
312	O	Н	Н	H	C-OCH ₃	C-OCH₃	CH
313	0	Н	H	H	CH	C-F	C-Cl
314	0	Н	Cl	H	C-Cl	· CH	CH
315	0	H	Н	Н	CH	C-CH ₃	CH
316	O	Cl	H	Н	CH	C-Cl	CH
317	O	Cl	H	Н	CH	C-F	CH
318	0	Cl	H	Н	CH	C-NO ₂	CH
319	O	Cl	H	Н	CH	C-CF ₃	· CH
320	. 0	Cl	Н	Н	CH	C-CN	CH
321	0	Cl	Н	Н	CH	C-CO ₂ Me	CH
322	0	Cl	H	Н	CH	C-OCH ₃	CH
323	O	Cl	H	Н	CH	C-OCF ₃	CH
324	0	Cl	Н	Н	CH	C-Cl	C-CI
325	0	Cl	Н	Н	C-F	C-Cl	C-CI
326	0	Cl	H	Н	C-OCH₃	C-OCH ₃	CH
327	О	Cl	H	Н	CH	C-F	C-Cl
328	0	C1	Cl	Н	C-Cl	CH	CH

329	0	Н	Н	Н	CH	CH	N
330	О	Н	Н	Н	CH	C-Cl	N
331	O	Н	Н	Н	CH	C-OCH₃	N
332	О	Н	Н	Н	C-Cl	CH	N
333	О	H	H	H	CH	C-CF ₃	N
334	O	Н	H	Cl	CH	C-CF ₃	N
335	О	Cl	Н	H	CH	CH	N
336	О	Cl	H	H	CH	C-Cl	N
337	0	Cl	H	H	CH	C-OCH₃	N
338	0	Cl	H	H	C-Cl	CH	N
339	0	Cl	H	H	CH	C-CF₃	N
340	0	Cl	H	Cl	CH	C-CF ₃	N
341	0	Н	H	H	N	C-Cl	CH
342	0	H	H	H	N	C-F	CH
343	0	Н	H	H	N	C-OCF ₃	CH
344	0	Н	H	H	N	C-CF ₃	· CH
345	0	H	H	H	N	C-OCH₃	CH
346	0	Н	H	H	N	C-OCH ₂ CF ₃	CH
347	O	Cl	H	H	N	C-CI	CH
348	0	Cl	Н	Н	N	C-F	CH
349	0	Cl	H	H	N	C-OCF ₃	CH
350	0	Cl	Н	Н	N	C-CF₃	CH
351	0	Cl	Н	Н	N	C-OCH₃	Cl·I
352	0	Cl	H	Н	N	C-OCH ₂ CF ₃	CH
353	0	Н	Н	Н	CH	N	CH
354	0	Cl	Н	H	CH	N	CH

部分化合物的理化性质和核磁数据(1HNMR,300MHz,内标 TMS,溶剂 CDCl3)如下:

化合物 247: 粘稠状物。δ ppm 3.69(3H,s), 3.85(3H,s), 4.06(3H,s), 5.02(2H,s), 5.79(1H,s), 7.23-7.26(1H,m), 7.27-7.30(1H,m), 7.34-7.39(2H,m), 7.44-7.53(3H,m), 7.70-7.73(2H,m)。

化合物 248: 熔点为 102-105°C。 δppm 3.68(3H,s), 3.85(3H,s), 4.05(3H,s), 5.02(2H,s), 5.75(1H,s), 7.22-7.26(1H,m), 7.31-7.34(2H,m), 7.42-7.56(3H,m), 7.63-7.66(2H,m)。

化合物 250: 熔点为 138-140°C。 δppm 3.72(3H,s), 3.86(3H,s), 4.06(3H,s), 5.04(2H,s), 5.81(1H,s), 7.26(1H,m), 7.48-7.53(3H,m), 7.85-7.88(2H,d), 8.21-8.24(2H,d)。

化合物 254: 熔点为 126-128°C。δppm 2.48-2.51(3H,m), 3.23(3H,s), 3.76(3H,s), 3.97(3H,s), 4.99(2H,s), 6.00(1H,s), 7.19-7.22(3H,m), 7.42-7.46(2H,m), 7.59-7.62(3H,m)。

化合物 256: 熔点为 177-179°C。 δppm 3.77(3H,s), 3.87(3H,s), 4.05(3H,s), 5.07(2H,s), 6.07(1H,s), 7.26(1H,m), 7.27-7.29(1H,m), 7.44-7.48(4H,m), 7.77-7.82(1H,m)。

10

15

化合物 257: 粘稠状物。 δppm 1.45-1.48(6H,d), 3.85(3H,s), 4.06(3H,s), 4.53(1H,m), 5.00(2H,s), 5.75(1H,s), 7.22-7.26(1H,m), 7.30-7.33(2H,m), 7.43-7.49(3H,m), 7.53(1H,m), 7.65-7.69(2H,m)。

化合物 261: 粘稠状物。 δppm 3.64(3H,s), 3.88(3H,s), 4.06(3H,s), 5.01(2H,s), 5.75(1H,s), 7.25-7.26(2H,m), 7.45-7.60(6H,m)。

化合物 268: 熔点为 98-100°C。 δppm 2.35(3H,s), 3.67(3H,s), 3.84(3H,s), 4.05(3H,s), 5.01(2H,s), 5.75(1H,s), 7.16-7.18(2H,m), 7.22-7.26(1H,m), 7.43-7.48(2H,m), 7.52-7.56(1H,m),

7.59-7.62(2H,m)。

5

化合物 287: 熔点为 142-143°C。 δppm 3.68(3H,s), 3.86(3H,s), 4.05(3H,s), 5.02(2H,s), 5.78(1H,s), 7.26-7.33(1H,m), 7.46-7.49(4H,m), 7.99(1H,m), 8.66(1H,m)。

化合物 292: 熔点为 124-126°C。δppm 3.70(3H,s), 3.86(3H,s), 4.06(3H,s), 4.73-4.82(2H,m), 5.03(2H,s), 5.74(1H,s), 6.86-6.89(1H,d), 7.22-7.26(1H,m), 7.44-7.52(3H,m), 8.02-8.06(1H,m), 8.42-8.43(1H,m)。

化合物 302: 熔点为 99-101°C。 δppm 1.89(3H,s), 3.88(3H,s), 4.06(3H,s), 5.27(2H,s), 7.26(1H,m), 7.41-7.48(4H,m), 7.56-7.59(3H,m)。

化合物 315: 熔点为 94-96°C。 δppm 2.38(3H,s), 3.89(3H,s), 4.06(3H,s), 5.14(2H,s), 5.46(1H,s), 7.21-7.26(2H,m), 7.44-7.49(3H,m), 7.57-7.62(3H,m)。

$$R_5$$
 A_2
 A_3
 A_4
 A_1
 A_3
 A_4
 A_5
 A_5

表 3 其中: R_1 、 R_2 = CH_3 , R_3 =H, X_1 =N, X_2 =NH

	10	2	841: 101 102 v	O1137 113 12	., XXI 11,	21/11	
编号	X ₃	R_4	R ₅	R_6	A_1	A_2	A ₃
355	NCH ₃	Н	Н	H	CH	CH	CH
356	NCH₃	H	H	H	CH	C-Cl	CH
357	NCH ₃	H	Н	H	СН	C-F	CH
358	NCH ₃	H	Н	Н	CH	C-NO ₂	CH
359	NCH ₃	Н	Н	Н	CH	C-CF ₃	CH
360	NCH ₃	Н	H	H	CH	C-CN	CH
361	NCH₃	Н	H	Н	CH	C-OCF₃	CH
362	NCH ₃	Н	H	Н	CH	C-Cl	C-Cl
363	NCH₃	Н	H	H	C-F	C-Cl	C-Cl
364	NCH₃	Н	Cl	H	C-Cl	CH	CH
365	NCH₃	H	H	H	CH	C-CH₃	CH
366	NCH₃	Cl	H	H	CH	C-Cl	CH
367	NCH₃	Cl	Н	H	CH	C-F	CH
368	NCH ₃	Cl	H	I-I	CH	C-NO ₂	CH
369	NCH₃	Cl	H	H	CH	C-CF ₃	CH
370	NCH ₃	Cl	H	H	. CH	· C-CN	CH
371	NCH₃	Cl	H	Н	CH	C-OCF₃	CH
372	NCH₃	Cl	H	H	CH	C-Cl	C-Cl
373	NCH ₃	Cl	Н	H	C-F	C-CI	C-Cl
374	NCH₃	Cl	Cl	H	C-Cl	CH	CH
375	0	H	H	H	CH	CH ·	CH
376	0	Н	Н	H	CH	C-C1	CH
377	0	Н	Н	H	CH	C-F	CH
378	0	Н	H	H	CH	C-NO ₂	CH
379	0	Н	H	Н	CH	C-CF ₃	CH
380	0	Н	Н	H	CH	· C-CN	CH
381	0	H	H	H	CH	C-OCF ₃	CH

382	0	H	Н	Н	CH .	C-Cl	C-CI
383	0	H	H	Н	C-F	C-Cl	C-Cl
384	Ō	H	Cl	Н	C-CI	CH	CH
385	O	CH ₃	H	Н	CH	C-Cl	CH
386	0	Н	H	Н	CH	C-CH ₃	CH
387	O	Cl	H	Н	CH	C-F	CH
388	Ō	Cl	H	Н	CH	C-NO ₂	CH
389	Ō	Cl	H	Н	CH	C-CF ₃	CH
390	O	Cl	H	H	CH	C-CN	CH
391	Ō	Cl	H	H	CH	C-OCF ₃	· CH
392	Ō	Cl	H	H	CH	C-Cl	C-Cl
393	Ö	Cl	H	Н	C-F	C-Cl	C-Cl
394	0	Cl	Cl	H	C-Cl	CH	CH
395	NCH₃	Н	H	H	CH	СН	N
396	NCH₃	H	H	Н	CH	C-Cl	N
397	NCH ₃	Н	H	H	CH	C-CF ₃	N
398	NCH ₃	H	H	Cl	CH	C-CF ₃	N
399	NCH ₃	Cl	H	H	CH	CH	N
400	NCH ₃	Cl	H	H	CH	C-Cl	N
401	NCH ₃	Cl	Н	H	CH	C-CF ₃	N
402	NCH ₃	Cl	H	CI	CH	C-CF ₃	N
403	NCH ₃	H	H	H	N	C-Cl	CH
404	NCH ₃	H	H	H	N	C-F	CH
405	NCH ₃	H	H	H	N	C-OCF ₃	CH
406	NCH ₃	H	H	H	N	C-CF ₃	CH
407	NCH ₃	H	H	H	N	· C-OCH ₂ CF ₃	CH
408	NCH ₃	Cl	H	H	N	C-Cl	CH
409	NCH ₃	Cl	H	H	N	C-F	CH
410	NCH ₃	Cl	Ĥ	H	N	C-OCF ₃	CH
411	NCH ₃	Cl	H	H	N	C-CF ₃	CH
412	NCH ₃	Cl	H	H	N	C-OCH ₂ CF ₃	CH
413	NCH ₃	H	H	H	CH	N	CH
414	NCH ₃	Cl	H	H	CH	N	CH
415	0	H	H	H	CH	CH	N
416	0	H	H	Ĥ	CH	C-Cl	N
417	0	H	H	H	CH	C-CF ₃	N
418	0	H	H	CI	CH	C-CF ₃	N
419	0	Cl	H	H	CH	CH	N
420	0	Cl	H	I-I	CH	C-Cl	N
421	0	Cl	H	H	CH	C-CF ₃	N
422	Ö	Cl	H	Cl	CH	C-CF ₃	N
423	ō	Н	Ĥ	H	N	C-Cl	CH
424	ō	H	H	H	N	C-F	CH
425	0	H	H	H	N	C-OCF ₃	CH
426	0	H	H	H	N	C-CF ₃	CH
427	0	H	H	H	N	C-OCH ₂ CF ₃	CH
428	0	Cl	H	H	N	C-Cl	CH
429	0	Cl	H	H	N	C-F	CH
430	0	Cl	H	H	N	C-OCF ₃	CH
431	0	Cl	H	H	N	C-CF ₃	CH
432	0	Cl	H	H	N	C-OCH ₂ CF ₃	CH
433	0	H	H	H	CH	N	CH
434	0	Cl	H	H	CH	N ·	CH
435	NPr i	H	H	H	CH	C-Cl	CH
	·		トナス分表を表する IT DATA	·	L	<u> </u>	

部分化合物的理化性质和核磁数据(¹HNMR, 300MHz, 内标 TMS, 溶剂 CDCl₃)如下:

化合物 355: 粘稠状物。 δppm 2.90-2.92(3H,d), 3.67(3H,s), 3.96(3H,s), 5.02(2H,s), 5.82(1H,s), 6.80(1H,bs), 7.22-7.26(1H,m), 7.27-7.31(1H,m), 7.34-7.37(2H,m), 7.43-7.46(2H,m), 7.50-7.54(1H,m), 7.71-7.75(2H,m)。

化合物 356: 熔点为 133-135°C。δppm 2.92-2.93(3H,d), 3.74(3H,s), 3.96(3H,s), 5.05(2H,s), 5.86(1H,s), 6.81(1H,bs), 7.21-7.26(1H,m), 7.33-7.37(2H,m), 7.44-7.50(3H,m), 7.71-7.74(2H,m)。 化合物 362: 熔点为 106-108°C。δppm 2.91-2.93(3H,d), 3.49(3H,s), 3.97(3H,s), 5.21(2H,s), 6.07(1H,s), 6.83(1H,m), 7.26-7.34(2H,m), 7.44-7.50(5H,m)。

化合物 365: 熔点为 132-134°C。 δppm 2.36(3H,s), 2.90-2.92(3H,d), 3.66(3H,s), 3.96(3H,s), 5.01(2H,s), 5.79(1H,s), 6.78(1H,bs), 7.16-7.26(3H,m), 7.43-7.50(3H,m), 7.61-7.64(2H,m)。

化合物 385: 熔点为 109-111°C。δppm 1.89(3H,s), 2.91-2.93(3H,d), 3.97(3H,s), 5.27(2H,s), 6.81(1H,bs), 7.26(1H,m), 7.41-7.46(4H,m), 7.57-7.60(3H,m)。

化合物 386: 熔点为 128-130°C。δppm 2.38(3H,s), 2.93-2.95(3H,d), 3.97(3H,s), 5.16(2H,s), 5.49(1H,s), 6.83(1H,bs), 7.21-7.26(3H,m), 7.43-7.46(2H,m), 7.54-7.57(1H,m), 7.61-7.63(2H,d)。 化合物 407: 熔点为 148-150°C。 δppm 2.92-2.93(3H,d), 3.68(3H,s), 3.97(3H,s), 4.73-4.82(2H,m), 5.03(2H,s), 5.79(1H,s), 6.82(1H,bs), 6.85-6.89(1H,d), 7.22-7.26(1H,m),

化合物 408: 熔点为 140-142°C。 δppm 2.92-2.93(3H,d), 3.67(3H,s), 3.97(3H,s), 5.02(2H,s), 5.82(1H,s), 6.82(1H,bs), 7.26-7.30(1H,m), 7.32-7.33(1H,m), 7.44-7.50(3H,m), 7.99(1H,m), 8.69(1H,m)。

化合物 435: 粘稠状物。 δppm 1.48-1.51(6H,d), 2.92-2.94(3H,d), 3.97(3H,s), 4.56(1H,m), 5.04(2H,s), 5.83(1H,s), 6.82(1H,bs), 7.21-7.26(1H,m), 7.29-7.35(2H,m), 7.43-7.52(3H,m), 7.74-7.76(2H,d)。

本发明还提供了通式(I)所示的化合物的制备方法。

7.43-7.50(3H,m), 7.52-8.06(1H,m), 8.44-8.45(1H,m).

5

10

15

20

通式(I)化合物由通式(III) 所示的含羟基的唑类化合物与通式(IV)所示的苄卤在碱性条 4下反应制得:

通式(IV)中,R是离去基团,选自氯或溴;其他各基团的定义同上。 反应通常在溶剂中进行,适宜的溶剂可选自如四氢呋喃、乙腈、甲苯、二甲苯、苯、N.N- 二甲基甲酰胺、二甲亚砜、丙酮或丁酮等。

适宜的碱可选自如氢氧化钾、氢氧化钠、碳酸钠、碳酸钾、碳酸氢钠、三乙胺、吡啶、甲醇钠、乙醇钠、氢化钠、叔丁醇钾或叔丁醇钠等。

适当的温度指室温至溶剂沸点温度,通常为20~100℃。

反应时间为30分钟至20小时,通常1~10小时。

通式(I)中当 X_1 =N, X_2 =NH 时所代表的化合物可由通式(I)中对应的 X_1 =N, X_2 =O 所代表的化合物与甲胺水溶液反应而很容易地获得。

作为中间体的通式(**III**)可由中间体(**II**)与(取代的)肼、羟胺按照已知方法缩合得到,中间体(**II**)可以购得或通过已知方法制得,参见US3781438、CN1257490A 和WO9615115 等;

$$R_5$$
 A_2
 A_3
 A_4
 A_1
 A_2
 A_3
 A_4
 A_1
 A_2
 A_3
 A_4
 A_1
 A_1
 A_1
 A_2
 A_2
 A_3
 A_4
 A_1
 A_2
 A_3
 A_4
 A_4

10

5

部分中间体通式(III)的结构与物性数据见表 4。通式(IV) 所示的化合物可以由已知方法制得,参见 US4723034 和 US5554578 等。

表4

序号	X ₃	R_4	R_5	R_6	A_l	A_2	A ₃	熔点(℃)
M1	NCH ₃	H	Н	H	C-H	C-Cl	C-H	192-193
M2	NCH₃	Н	Н	Н	C-H	C-Cl	C-Cl	214-217
M3	NCH ₃	H	H	Н	C-H	C-Br	C-H	195-198
M4	NCH₃	Н	Н	Н	C-H	C-F	C-H	182-185
M5	NCH₃	H	Н	Н	C-H	C-OCH ₂ CF ₃	C-H	174-176
M6	NCH₃	H	Н	Н	C-H	C-OPh	C : H	176-178
M7	NCH₃	H	H	H	C-H	C-Ph-4-Cl	C-H	
M8	NCH₃	H	Н	Н	C-H	C-OCF ₃	C-H	
M9	NCH₃	H	H	Н	C-H	C-CH₃	C-H	183-185
M10	NCH₃	CH₃	H	H	C-H	C-C ₂ H ₅	C-H	198-202
M11	NCH₃	H	Н	Н	C-H	C-NO ₂	C-H '	254-256
M12	NCH₃	H	H	H	C-H	C-CF₃	C-H	
M13	NCH₃	H	H	H	C-F	C-Cl	C-Cl	
M14	NCH₃	H	H	H	C-H	C-OCH₃	C-H	
M15	NCH₃	H	Н	H	N	C-H	C-H	
M16	NCH₃	H	Н	H	C-IH .	N	C-H	
M17	NCH₃	H	Н	Н	C-H	С-Н	N	
M18	NCH₃	Н	H	Н	C-H	C-CN	C-H	
M19	NCH₃	H	Н	H	C-H	C-CO ₂ CH ₃	C-I-I	
M20	NCH₃	H	H_	H	C-H	C-SCH₃	C-H	178-180
M21	NCH₃	Н	H	Н	C-H	C-SO ₂ CH ₃	C-H	
M22	NCH₃	H	H	H	C-OCH₃	C-OCH₃	C-H	
M23	NCH₃	H	Н	H	C-F	C-CI	C-H	
M24	NCH₃	H	H	H	C-Cl	C-F	C-H	
M25	NCH ₃	Н	Cl	H	C-Cl	C-H	C-H	
M26	NCH ₃	H	CF ₃	H	C-CF₃	C-H	C-H	
M27	NCH₃	H	Cl	H	C-Cl	C-CH ₃	C-H	

M28	NCH ₃	Н	Cl	Н	C-Cl	C-Cl	C-H	
M29	NCH ₃	H	H	CH ₃	C-H	C-CH ₃	C-CH ₃	
M30	NCH ₃	H	H	Cl	C-H	C-Cl	C-Cl	
M31	NCH ₃	Н	H	Cl	C-H	C-H	C-Cl	
M32	NCH ₃	H	Cl	H	C-H	C-Cl	C-Cl	
M33	NCH ₃	H	Cl	H	C-H	C-Cl	C-H	
M34	NCH ₃	CH ₃	H	H	C-H	C-Cl	C-H	234-236
M35	NCH ₃	C ₂ H ₅	H	H	C-H	C-Cl	C-H	254-250
M36	NCH ₃	C ₃ H ₇ -i	H	H	C-H	C-Cl	C-H	
M37	NCH ₃	CH ₃	H	H	C-H	C-OCH ₃	C-H	198-200
M38	NCH ₃	Cl	H	H	C-H	C-Cl	C-H	218-220
M39	NCH ₃	Br	H	Н	C-H	C-Cl	C-H	210-220
M40	NCH ₃	CN	H	H	C-H	C-Cl	C-H	124-128
M41	NCH ₃	OCH ₃	— <u>H</u>	H	C-H	C-Cl	C-H	124-120
M42	NCH ₃	CO ₂ CH ₃	H	H	C-H	C-Cl	C-H	
M43	NCH ₃	$CO_2C_1I_3$ $CO_2C_2H_5$	H	H	C-H	C-CI	C-H	
M44 M44	NCH ₃	CH ₂ CO ₂ C ₂ H ₅	H	H	C-H	C-Cl	C-H	
M45	NCH ₃	CH ₂ CO ₂ C ₂ I ₁₅	H	H	C-H	C-Cl	C-H	
		H	H	H	C-H	C-Cl	C-H	
M46	NC ₂ H ₅	H	Н	H	C-H	C-F	C-H	
M47	NC ₂ H ₅		<u>н</u>	H	C-H	C-F C-Cl	C-H	
M48	NC ₂ H ₅	CH ₃	H	H	C-H	C-Cl	C-H	149-150
M49	NC₃H₁-i	H H		H	C-H C-H	C-CI	C-H C-H	149-150
M50	NC₃H ₇ -i		H			C-F C-Cl		
M51	NC ₃ H ₇ -i	CH ₃	H	H	C-H		. C-H	
M52	NCH ₃	H	H	H	C-H	C-OPh-4-Cl C-OPh-4-Br	C*H	
M53	NCH ₃	H	H	H	C-H		C-H	102 105
M54	NCH ₃	H	H	H	· N	C-Cl	C-H	183-185
M55	NCH ₃	H	H	H	N	C-OCH ₂ CF ₃	C-H	196-199
M56	NCH ₃	H	H	H	N N	C-OCH₃ C-CF₃	C-H C-H	
M57	NCH₃	H	H	H H	N	C-Cr ₃		
M58	NC ₃ H ₇ -i	H	H			C-CF ₃	C-H	
M59	NCH ₃	H	H	Cl	CH		N	
M60	NCH ₃	H	H	Cl	CH	C-CF ₃	C-H	028.040
M61	0	H ·	H	H	C-H	C-Cl	C-H	238-240
M62	0	H	H	H	C-H	C-Cl	C-Cl	
M63	0	H	H	H	C-H	C-Br	C-H	
M64	0	H	H	H	C-H	C-F	C-H	
M65	0	H	H	H	C-H	C-OCH ₂ CF ₃	C-H	
M66	0	H	H	H	C-H	C-OPh	C-H	
M67	0	H	H	H	C-H	C-Ph-4-Cl	C-H	
M68	0	H	H	H	C-H	C-OCF ₃	C-H	100 1==
M69	0	H	H	H	C-H	C-CH ₃	C-H	120-122
M70	0	H	H	H	C-H	C-C ₂ H ₅	C-H	
M71	0	H	H	H	C-H	C-NO ₂	C-H	178-180
M72	0	H	H	H	C-H	C-CF ₃	C-H	
M73	0	CH ₃	H	H	C-H	C-C1	C-H	188-191
M74	0	C ₂ H ₅	H	H	C-H	C-Cl	С-Н	
M75	0	C ₃ H ₇ -i	H	H	C-H	C-CI	C-H	
M76	0	C1	H	H	C-H	C-Cl	C-J·I	
M77	0	Br	H	H	C-H	C-Cl	C-H	
M78	0	CN	H	H	C-H	C-Cl	C-H	
M79	0	CO ₂ CH ₃	H	H	C-H	C-Cl	C-H	
M80	О	CO ₂ C ₂ H ₅	H	H	C-H	C-Cl	C-H	
M81	0	CH ₂ CO ₂ C ₂ H ₅	H	H	C-H	C-C1	C-H	
M82	0	CH₂CN	H	Н	C-H	C-Cl	C-H	

10

15

M83	0	H	Н	Н	N	C-Cl	C-H	>300
M84	NCH₃	CH ₃	H	Н	CH	СН	CH	194-197
M85	NCH₃	Н	Cl	Н	CH	CH	CH	
M86	NCH₃	CH ₃	Н	Н	CH	C-CH ₃	CH	232-235
M87	0	H	Н	Н	CH	CH	CH	124-126
M88	NCH₃	H	H.	Cl	CH	CH	CH	261-263
M89	NCH₃	H	Н	Н	CH	CH	C-OCH ₃	148-150
M90	NCH ₃	Н	OMe	H	C-OCH₃	C-OCH₃	CH	
M91	NCH ₃	C ₃ H ₇ -n	H	H	С-Н	C-CI	C-H	
M92	NCH₃	C ₄ H ₉ -n	Н	Н	C-H	C-Cl	C-H	
M93	NCH₃	OPh	Н	H	C-H	C-C1	C-H	
M94	NCH ₃	OPh-4-Cl	H	H	C-H	C-Cl	C-H	
M95	NCH₃	Ph	Н	H	C-H	C-Cl	C-H	
M96	NCH ₃	Ph-4-Cl	Н	Н	C-H	C-CI	C-H	

部分化合物的核磁数据(1HNMR, 300MHz, 内标 TMS, 溶剂 DMSO)如下:

M1: δppm 3.57(3H,s), 5.69(1H,s), 7.29-7.32(2H,d), 7.64-7.67(2H,d)。

M3: δppm 3.54(3H,s), 5.62(1H,s), 7.44-7.47(2H,d), 7.57-7.60(2H,d).

M4: δppm 3.55(3H,s), 5.62(1H,s), 7.10-7.16(2H,d), 7.67-7.72(2H,d).

5 M5: δppm 3.55(3H,s), 4.58-4.67(2H,q), 5.64(1H,s), 6.97-7.00(2H,d), 7.60-7.63(2H,d).

M6: $\delta ppm = 3.58(3H,s)$, 5.62(1H,s), 6.93-6.99(3H,m), 7.05-7.10(2H,m), 7.31-7.36(2H,m), 7.62-7.65(2H,m).

M9: δppm 2.33(3H,s), 3.56(3H,s), 5.61(1H,s), 7.07-7.11(2H,d), 7.50-7.53(2H,d).

M10: δppm 1.24-1.29(3H,t), 1.78(3H,s), 2.66-2.69(2H,m), 3.50(3H,s), 7.21-7.23(2H,d), 7.27-7.30(2H,d)。

M11: δppm 3.60(3H,s), 5.89(1H,s), 7.90-7.92(2H,d), 8.16-8.19(2H,d)。

M12: δppm 3.52(3H,s), 5.85(1H,s), 7.39(4H,s).

M20: δppm 2.49(3H,s), 3.57(3H,s), 5.66(1H,s), 7.44-7.47(2H,d), 7.57-7.60(2H,d).

M34: δppm 1.78(3H,s), 3.50(3H,s), 7.33-7.36(2H,d), 7.47-7.50(2H,d), 9.42(1H,bs).

M37: δppm 1.91(3H,s), 3.60(3H,s), 3.87(3H,s), 6.99-7.01(2H,d), 7.24-7.27(2H,d).

M49: $\delta ppm = 1.38-1.40(6H,d), 4.44-4.48(1H,m), 5.66(1H,s), 7.28-7.31(2H,d), 7.66-7.68(2H,d), 10.66(1H,bs).$

M55: δppm 3.56(3H,s), 4.84-4.93(2H,m), 5.71(1H,s), 6.88-6.91(1H,d), 8.01-8.05(1H,dd), 8.41-8.42(1H,m).

20 M69: δppm 2.39(3H,s), 5.53(1H,s), 7.27-7.30(2H,d), 7.56-7.60(2H,d).

M71: δppm 4.38(1H,s), 7.79-7.82(2H,d), 8.16-8.19(2H,d).

M83: oppm 4.62(1H,s), 7.47-7.50(1H,d), 7.99-8.02(1H,d), 8.59(1H,d).

M84: δppm 1.79(3H,s), 3.51(3H,s), 7.31-7.33(2H,d), 7.45-7.47(2H,d).

M86: δppm 1.77(3H,s), 2.38(3H,s), 3.49(3H,s), 7.19-7.22(2H,d), 7.26-7.29(2H,d).

25 M88: δppm 3.49(3H,s), 5.71(1H,s), 6.98-7.05(2H,m), 7.26-7.31(2H,m)。 本发明还提供了一种杀菌杀虫组合物,该组合物中含有通式(I)的化合物,活性组分的重量

百分含量为 0.1-99%。

5

10

15

20

25

30

35

本发明还提供了如上所定义的组合物的制备方法:将通式(II)的化合物与载体混合。这种组合物可以含本发明的单一化合物或几种化合物的混合物。

本发明组合物中的载体系满足下述条件的物质: 它与活性成分配制后便于施用于待处理的位点,例如可以是植物、种子或土壤; 或者有利于贮存、运输或操作。载体可以是固体或液体,包括通常为气体但已压缩成液体的物质,通常在配制杀虫、杀菌组合物中所用的载体均可使用。

合适的固体载体包括天然和合成的粘土和硅酸盐,例如硅藻土、滑石、硅镁土、硅酸铝(高岭土)、蒙脱石和云母;碳酸钙;硫酸钙;硫酸铵;合成的氧化硅和合成硅酸钙或硅酸铝;元素如碳和硫;天然的和合成的树脂如苯并呋喃树脂,聚氯乙烯和苯乙烯聚合物和共聚物;固体多氯苯酚;沥青;蜡如蜂蜡,石蜡。

合适的液体载体包括水; 醇如异丙醇和乙醇; 酮如丙酮、甲基乙基酮、甲基异丙基酮、环 已基酮; 醚; 芳烃如苯、甲苯、二甲苯; 石油馏分如煤油和矿物油; 氯代烃如四氯化碳、全氯 乙烯和三氯乙烯。通常, 这些液体的混合物也是合适的。

杀虫、杀菌组合物通常加工成浓缩物的形式并以此用于运输,在施用之前由使用者将其稀释。少量的表面活性剂载体的存在有助于稀释过程。这样,按照本发明的组合物中至少有一种载体优选是表面活性剂。例如组合物可含有至少两种载体,其中至少一种是表面活性剂。

表面活性剂可以是乳化剂、分散剂或润湿剂;它可以是非离子的或离子的表面活性剂。合适的表面活性剂的例子包括聚丙烯酸和木质素磺酸的钠盐或钙盐;分子中含至少12个碳原子的脂肪酸或脂肪胺或酰胺与环氧乙烷和/或环氧丙烷的缩合物。甘醇、山梨醇、蔗糖或季戊四醇脂肪酸酯及这些酯与环氧乙烷和/或环氧丙烷的缩合物;脂肪醇或烷基苯酚如对辛基苯酚或对辛基甲苯酚与环氧乙烷和/或环氧丙烷的缩合物;这些缩合产物的硫酸盐和磺酸盐;在分子中至少含有10个碳原子的硫酸或磺酸酯的碱金属或碱土金属盐,优选钠盐,例如硫酸月桂酸酯钠,硫酸仲烷基酯钠,磺化蓖麻油钠盐,磺酸烷基芳基酯钠,如十二烷基苯磺酸钠盐。

本发明的组合物的实例是可湿性粉剂、粉剂、颗粒剂、水剂,可乳化的浓缩剂、乳剂、悬浮浓缩剂、气雾剂和烟雾剂。可湿性粉剂通常含 25,50 或 75%重量活性成分,且通常除固体惰性载体之外,还含有 3-10%重量的分散剂,且若需要可加入 0-10%重量的稳定剂和/或其它添加剂如渗透剂或粘着剂。粉剂通常可成型为具有与可湿性粉剂相似的组成但没有分散剂的粉剂浓缩剂,再进一步用固体载体稀释,得到通常含 0.5-10%重量活性组分的组合物。粒剂通常制备成具有 10 至 100 目(1.676-0.152mm)大小,且可用成团或注入技术制备。通常粒剂含 0.5-75%重量的活性成分和 0-10%重量添加剂如稳定剂、表面活性剂、缓释改良剂。可乳化浓缩剂除溶剂外,当需要时通常含有共溶剂,1-50%W/V 活性成分,2-20%W/V 乳化剂和 0-20%W/V 其他添加剂如稳定剂、渗透剂和腐蚀抑制剂。悬浮浓缩剂通常含有 10-75%重量的活性成分、0.5-15%重量的分散剂、0.1-10%重量的其它添加剂如消泡剂、腐蚀抑制剂、稳定剂、渗透剂和粘着剂。

水分散剂和乳剂,例如通过用水稀释按照本发明的可湿性粉剂或浓缩物得到的组合物,也 列入本发明范围。所说的乳剂可具有油包水或水包油两个类型。

通过在组合物中加入其他的一种或多种杀菌剂,使其能比单独的通式(I) 化合物具有更广谱的活性。此外,其他杀菌剂可对通式(I) 化合物的杀菌活性具有增效作用。也可将通式(I) 化合物与其他杀虫剂混用,或同时与另一种杀菌剂以及其他杀虫剂混用。

本发明的化合物具有如下优点:

本发明的化合物具有广谱杀菌活性,可用于防治在各种作物上由卵菌纲、担子菌纲、子囊菌和半知菌类等多种病菌引起的病害。而且由于这些化合物具有很高的生物活性使得在很低的剂量下就可以获得很好的效果。它们具有内吸活性并可用作叶面和土壤杀菌剂。该类化合物可用于防治各种作物上的病害,例如对黄瓜霜霉病、黄瓜灰霉病、黄瓜白粉病、番茄早疫病、番茄晚疫病、辣椒疫病、葡萄霜霉病、葡萄白腐病、苹果轮纹病、苹果斑点落叶病、水稻纹枯病、水稻稻瘟病、小麦锈病、小麦叶斑病、小麦白粉病、油菜菌核病、玉米小斑病等病害都有很好的防效。

本发明的部分化合物还具有很好的杀虫和杀螨活性,可用于防治各种作物上害虫和螨。例如可用于防治粘虫、小菜蛾、蚜虫以及淡色库蚊。特别适合于对害虫的综合防治。

因此本发明还包括通式(I) 所示的取代唑类化合物及其组合物防治作物病菌和害虫的应 15 用。其施药方式系本领域的技术人员所公知的。

具体实施方式

下面结合实施例来进一步说明本发明。

合成实施例

5

10

20

25

30

35

实例 1: 化合物 2 的制备

将 2.12 克对氯苯甲酰乙酸乙酯溶于甲醇中,加热回流。滴加稍过量的甲基肼,回流 3 小时。TLC 监测反应完毕后,浓缩,冷却,析出晶体。过滤,用少量甲醇冲洗晶体。干燥,得晶体 3-(4-氯苯基)-1-甲基-5-吡唑醇 1.5 克。

将上述晶体 1.04 克溶于 5 毫升 N,N-二甲基甲酰胺中,加入氢化钠 0.36 克,搅拌 0.5 小时。加入(E) -2-[2-(溴甲基) 苯基] -3-甲氧基丙烯酸甲酯 1.42 克,反应温度 40°C,搅拌 3 小时。TLC 监测反应完毕后,将反应液倒入 50 毫升饱和食盐水中,用 100 毫升乙酸乙酯分三次进行萃取,干燥。脱溶后,柱层析(洗脱剂为乙酸乙酯与石油醚(沸程 60-90°C),体积比为 1:4,下同)纯化得粘稠状产品 1.3 克(放置后固化)。

实例 2: 化合物 69 的制备

将 0.15 克氢化钠加入到反应瓶中,用石油醚洗后,加入 5 毫升 N,N-二甲基甲酰胺,然后加入按照专利 CN1257490A 方法制得的 3-(6-氯吡啶-3-基)-1-甲基-5-吡唑醇(0.5 克),室温搅拌 2 分钟后加入(E)-2-[2-(溴甲基)苯基]-3-甲氧基丙烯酸甲酯 0.7 克,60℃ 下搅拌反应 2 小时。 TLC 监测反应完毕后,将反应液倒入 50 毫升饱和食盐水中,用 100 毫升乙酸乙酯分三次进行萃取,干燥。脱溶后,柱层析纯化得淡黄色固体 0.2 克。

实例 3: 化合物 86 的制备

参照专利 US3781438 报道的方法,将 2 克对硝基苯甲酰乙酸乙酯溶于甲醇中,并加入稍过量的盐酸羟胺,等摩尔量的氢氧化钠,然后加热回流 3 小时。TLC 监测反应完毕后加水,乙酸乙酯萃取,干燥、浓缩得固体 3-硝基苯基异恶唑-5-醇。

将上述晶体 1 克溶于 DMF 中,加入氢化钠 0.4 克,搅拌 0.5 小时。加入(E)-2-[2-(氯甲基)苯基]-3-甲氧基丙烯酸甲酯 1.4 克,反应温度 50℃,搅拌 6 小时。TLC 监测反应完毕后,将反应液倒入 50 毫升饱和食盐水中,用 100 毫升乙酸乙酯分三次进行萃取,干燥。脱溶后,柱层析纯化得固体产品 1.5 克。

实例 4: 化合物 179 的制备

将 0.2 克化合物 172(参照实例 1 方法制备)、 4-氯苯硼酸 0.08 克、无水碳酸钾 0.2 克、四 (三苯基磷)醋酸钯 0.01 克于 10 毫升甲苯中的混合溶液加热回流反应 18 小时,冷却、过滤,脱溶,柱层析纯化得固体产品 0.2 克。

实例 5: 化合物 248 的制备

将 3-(4-氯苯基)-1-甲基-5-吡唑醇 1.0 克、(*E*)-2-[2-(溴甲基) 苯基]-2-(甲氧亚氨基) 乙酸甲酯 1.5 克及 2.1 克无水碳酸钾于 15 毫升 *N,N*-二甲基甲酰胺中的混合溶液加热到 70-80℃,搅拌反应 7 小时。TLC 监测反应完毕后,将反应液倒入 100 毫升饱和食盐水中,用 100 毫升乙酸乙酯分三次进行萃取,干燥。脱溶后,柱层析纯化得固体产品 1.1 克。

实例 6: 化合物 356 的制备

将 0.2 克化合物 **248** 溶于 5 毫升 四氢呋喃中,滴加稍过量的 25-30%甲胺水溶液,然后加热回流 1 小时,TLC 监测反应完毕后,脱溶,加水,用 30 毫升乙酸乙酯分三次进行萃取,干燥。脱溶后,柱层析纯化得固体产品 0.16 克。

其他化合物参照上述方法合成。

制剂实施例 活性组分折百后计量加入。

实例7 60%可湿性粉剂

化合物 69

15

20

25

60% (重量);

十二烷基萘磺酸钠

2% (重量);

木质素磺酸钠

9% (重量):

高岭土

补足至 100% (重量);

各组分(均为固体)混合在一起,在粉碎机中粉碎,直到颗粒达到标准(≤44 μ m),得到有效成分含量为 60%可湿性粉剂。

30 实例8 35%乳油

化合物2

35% (重量);

亚磷酸

10% (重量);

乙氧基化甘油三酸酯

15% (重量);

环已酮

补足至100% (重量);

35 亚磷酸溶解在环已酮中,然后加入化合物 2 和乙氧基化甘油三酸酯,得到透明的溶液,

为有效成分含量35%的乳油。

实例9 30%水悬浮液

化合物 287

30% (重量);

十二烷基萘磺酸钠

4% (重量):

半纤维素

2% (重量):

环氧丙烷 .

8% (重量):

水

5

15

25

补足至100% (重量):

将化合物 287 与 80%的水和十二烷基萘磺酸钠在球磨机中(1mm 珠)中一起粉碎。其它 组分溶解在其余的水中,搅拌加入其它组分。得到有效成分含量为30%的水悬浮液。

实例 10 25% 悬浮一乳剂浓缩物 10

化合物 12

25% (重量):

十二烷基醇聚乙二醇磷酸酯(乳化剂1) 4%(重量);

乙氧基甘油三酸酯(乳化剂2)

2% (重量);

十二烷基苯磺酸钙(乳化剂3)

1.5% (重量):

环氧甲乙烷环氧丙烷共聚物(分散剂)

2.5% (重量):

环己酮 (溶剂1)

30% (重量):

烷基芳基馏分(沸点>200℃)(溶剂2) 补足至100(重量);

化合物 12 溶解在 80%的溶剂中,然后加入乳化剂和分散剂,将混合物彻底搅拌。混合 物在球磨机(1mm 珠)中粉碎,然后加入其余的溶剂。

20 生物活性测定

实例 11 杀菌活性测定

用本发明化合物对多种植物病害进行了试验。试验的方法和结果如下:

待测化合物原药用少量 N,N- 二甲基甲酰胺溶解,用含有 0.1%吐温 80 的水稀释至所需的 浓度。用喷雾机喷雾处理盆栽植物试材,喷雾处理后24 小时后进行病害接种。接种后将植物 置于恒温恒湿培养箱中,使侵染继续,待对照充分发病后(通常为一周时间)进行评估调查。 部分测试结果如下:

500 ppm 时,化合物 1、2、4、5、11、12、30、69、74、83、84、86、165、174、179, 190、248、287、356、435 等对小麦白粉病的防效为 100% 。

500 ppm 时,化合物 1、2、4、5、11、12、30、69、74、83、84、86、190、248、287 等对黄瓜霜霉病的防效为 100%。 30

500 ppm 时, 化合物 151、247 等对黄瓜灰霉病和小麦白粉病的防效为 100%。

50 ppm 时, 化合物 1、2、4、5、30、69、84、86、287 等对黄瓜霜霉病和小麦白粉病的 防效为 100%。

100 ppm 时, 化合物 2 对苹果轮纹病、小麦赤霉病、油菜菌核病、葡萄白腐病、苹果斑点 落叶病、番茄早疫病、番茄晚疫病、玉米小斑病、葡萄霜霉病等的防效超过80%。 35

实例 12 杀虫杀螨活性测定

对本发明化合物进行了杀虫杀螨活性测定试验。试验的方法和结果如下:

待测化合物原药用少量丙酮溶解,并用含有 0.1%吐温 80 的水稀释至所需的浓度。采用波特喷雾塔喷雾法处理粘虫、小菜蛾和桃蚜,采用浸液法处理淡色库蚊。处理后 2-3 天调查试虫的死亡率。部分测试结果如下:

药液浓度为 150ppm 时, 化合物 30 等对粘虫、小菜蛾、桃蚜、淡色库蚊死亡率达 100%。