UNCLASSIFIED

AD NUMBER
ADB118541
NEW LIMITATION CHANGE
TO Approved for public release, distribution unlimited
FROM Distribution authorized to DoD only; Specific Authority; APR 1987. Other requests shall be referred to Commandant Marine Corps, Washington, DC 20380.
AUTHORITY
ONR/CNA ltr 15 Dec 1988

THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DOD DIRECTIVE 5200.20 AND

NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 54

AD-B118

RESEARCH MEMORANDUM

SCALING THE PROPOSED NEW ARMED FORCES QUALIFICATION TEST COMPOSED OF VERBAL, ARITHMETIC REASONING, AND MATH KNOWLEDGE

> Milton H. Maier Catherine M. Hiatt

referred to the Commandant of the Marine Corps (Code RDS). LOC 20380

4401 Ford Avenue • Post Office Box 16268 • Alexandria, Virginia 22302-0268 • (703) 824-2000

010

REPORT DOCUMENTATION PAGE AD-B1/85412				
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MA	ARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY			AVAILABILITY OF REPORT I to DOD agencies only.	97Mar 88
2b. DECLASSIFICATION / DOWNGRADING SCHEDULI		Specific Authority: must be referred to	Ness14-67-C-6661. Oth	er requests for this document
4. PERFORMING ORGANIZATION REPORT NUMBER(S) -		RGANIZATION REPORT NU	
CRM 87-55	-	* -		
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MON	ITORING ORGANIZATION	
Center for Naval Analyses	CNA CNA	Commandant of	f the Marine Corps (Code RDS)
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City,	State, and ZIP Code)	
4401 Ford Avenue Alexandria, Virginia 22302-0268	-	Headquarters, Washington, D.	Marine Corps C. 20380	
8a. NAME OF FUNDING / ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9.: PROCUREMENT	INSTRUMENT IDENTIFICA	TION NUMBER
Office of Naval Research	ONR	N00014-87-C	C-0001	
8c. ADDRESS (City, State, and ZIP Code)	-	10: SOURCE OF FUI		- TWORK LINET
800 North Quincy Street Arlington, Virginia 22217	= - - - - -	PROGRAM ELEMENT NO: 65153M	PROJECT TASK NO. C0031	WORK UNIT
11. TITLE (include Security Classification) Scaling the Proposed New Armed Forces (Math Knowledge	Qualification Test	Composed of Ver	bal, Arithmetic Rea	soning, and
12. PERSONAL AUTHOR(S) Milton H. Maier, Catherine M. Hiatt				
13a. TYPE OF REPORT 13b. TIME COVER FROM	RED TO	14. DATE OF RE April 198'	PORT (Year, Month, Day) 7	15. PAGE COUNT 56
16. SUPPLEMENTARY NOTATION:				
17. COSATI CODES	18. SUBJECT TERMS	(Continue on reverse	e if necessary and identify	y by block number)
FIELD GROUP SUB-GROUP	AFQT (Armed)	Forces Qualificat	tion Test), Aptitude (tests, ASVAB (Armed
12 03		•	attery), Data process ables (data), Test sco	ing, Mental ability, pres
	<u></u>			
The Numerical Operations (NO) subtest has caused problems for the joint-service testing program since it was made part of the Armed Forces Qualification Test (AFQT) in 1980. A new AFQT, in which the Math Knowledge (MK) subtest replaces NO, was recommended by the Joint Service Selection and Classification Working Group in 1986. The purpose of this research memorandum is to present percentile score norms for the proposed new AFQT in the 1980 Youth Population and the scaling of the current forms of the AFQT to the 1980 score scale. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT				
UNCLASSIFIED/UNLIMITED SAME AS R	PT. DTIC USERS		SSIFIED	DO OFFICE SYMBOL
22a: NAME OF RESPONSIBLE INDIVIDUAL Major Robinson-		(703) 824-26		22c OFFICE SYMBOL RDS-40

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.

All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

CENTER FOR NAVAL ANALYSES

A Drussion of Hudson Institute 4401 Ford Avenue • Post Office Box 16268 • Alexandria, Virginia 22302-0268 • (703) 824-2000

16 Jun 1987

MEMORANDUM FOR DISTRIBUTION LIST

Subj: Center for Naval Analyses Research Memorandum 87-55

Encl: (1) CNA Research Memorandum 87-55, "Scaling the Proposed New Armed Forces Qualification Test Composed of Verbal, Arithmetic Reasoning, and Math Knowledge, " by Milton H. Maier and Catherine M. Hiatt, Apr 1987

- 1. Enclosure (1) is forwarded as a matter of possible interest.
- An important part of the Armed Services Vocational Aptitude Battery (ASVAB) is the Armed Forces Qualification Test (AFQT). A new AFQT has been proposed in which the Math Knowledge subtest replaces the Numerical Operations subtest. The purpose of this Research Memorandum is to present percentile score norms for the proposed new AFQT in the 1980 Youth Population and the scaling of the new AFQT in ASVAB forms 11, 12, and 13 to the 1980 score scale.

William H. Sims

Celebra W.

Director, Manpower and Training Program Marine Corps Operations Analysis Group

Distribution List: Reverse Page

Subj: Center for Naval Analyses Research Memorandum 87-55

```
Distribution List
SNDL
\overline{A1}
         ASSTSECNAV MRA
A1
         DASN - MANPOWER (2 copies)
A6
         HQMC MPR
          Attn: Deputy Chief of Staff for Manpower (2 copies)
          Attn: Director, Personnel Procurement Division (2 copies)
                 Director, Manpower Plans and Policy Division (2 copies)
                 Director, Personnel Management Division (2 copies)
          Attn:
         HQMC TRNG (2 copies)
A6
A6
         HQMC RD&S (2 copies)
         HQMC RA (2 copies)
A6
A6
         HQMC AVN (2 copies)
E3D1
         CNR
FF38
         USNA
          Attn: Nimitz Library
FF42
         NAVPGSCOL
FF44
         NAVWARCOL
FJA1
         COMNAVMILPERSCOM
FJB1
         COMNAVCRUITCOM
FKQ6A
         NAVPERSRANDCEN
          Attn: Director, Testing Systems (Code 63)
          Attn: Technical Library
          Attn: Technical Director (Code 01)
FT1
         CNET
V12
         CG MCDEC
OPNAV
OP-01
OP-11
OP-12
0P-13
```

Other

Joint Service Selection and Classification Working Group (11 copies)
Defense Advisory Committee on Military Personnel Testing (8 copies)

SCALING THE PROPOSED NEW ARMED FORCES QUALIFICATION TEST COMPOSED OF VERBAL, ARITHMETIC REASONING, AND MATH KNOWLEDGE

Milton H. Maier Catherine M. Hiatt

Marine Corps Operations Analysis Group

4401 Ford Avenue • Post Office Box 16268 • Alexandria, Virginia 22302-0268

ABSTRACT

The Numerical Operations (NO) subtest has caused problems for the joint-service testing programsince it was made part of the Armed Forces Qualification Test (AFQT) in 1980. A new AFQT, in which the Math Knowledge (MK) subtest replaces NO, was recommended by the Joint Service Selection and Classification Working Group in 1986. The purpose of this research memorandum is to present percentile score norms for the proposed new AFQT in the 1980 Youth Population and the scaling of the current forms of the AFQT to the 1980 score scale.

<u>27777721。我们认为10位是各种的分子分子之间,这个分子之间,这个人的变</u>多。"我会认为这一种有文文分子,我会认实的,是是是这一种是

Acces	ssion For	
NTIS	GRA&I	
DTIC	TAB	7
	nounced	ä
Justi	fication	
By		
Distr	ibution/	
Avai	lability	Codes
1	Avail and	/or
ប្រវន្ត	Special	
, W	i 1	ĺ
4.		1
U ·	-	ł

EXECUTIVE SUMMARY

BACKGROUND

The Numerical Operations (NO) subtest was made part of the Armed Forces Qualification Test (AFQT) in October 1980 when forms 8, 9, and 10 of the Armed Services Vocational Aptitude Battery (ASVAB 8/9/10) were introduced. The AFQT contained the Word Knowledge (WK), Paragraph Comprehension (PC), and Arithmetic Reasoning (AR) subtests, in addition to NO (AFQT = WK + PC + AR + NO/21). Since 1980, the NO scores, and resultant AFQT scores, have been found to be affected by the design of test booklets and answer sheets. A more serious problem is that examinees can prepare for the NO test and thereby increase their NO scores. Most of the increase occurs at the lower range of ability.

The Joint Service Selection and Classification Working Group, which is responsible for the development and maintenance of the ASVAB, recommended in 1986 that the NO subtest be dropped from the AFQT and replaced by the Math Knowledge (MK) subtest. The new AFQT would then be defined as: AFQT = WK + PC + AR + MK.

The purpose of this report is to present percentile-score norms for the proposed new AFQT in the 1980 Youth Population and the scaling of the new AFQT in current forms of the ASVAB (forms 11, 12, and 13) to the 1980 score scale. Keywords: aptitude a control of the scaling of the new AFQT in current forms of the ASVAB (forms 11, 12, and 13) to the 1980 score scale. Keywords: aptitude a control of the scaling of the new AFQT in current forms of the ASVAB (forms 11, 12, and 13) to the 1980 score scale. Keywords: aptitude a control of the scaling of the new AFQT in current forms of the ASVAB (forms 12, and 13) to the 1980 score scale. Keywords: aptitude a control of the scaling of the new AFQT in current forms of the ASVAB (forms 12, and 13) to the 1980 score scale. Keywords: aptitude a control of the scaling of the new AFQT in current forms of the ASVAB (forms 12, and 13) to the 1980 score scale. Keywords: aptitude a control of the scaling of the new AFQT in current forms of the ASVAB (forms 11, 12, and 13) to the 1980 score scale. Keywords: aptitude a control of the scale of the sca

<u>and and second and states and and and seconds by the second of the seco</u>

PROCEDURE

The data set used for constructing the percentile norms in the 1980 Youth Population consisted of scores from an administration of ASVAB 8A to a nationally representative sample of males and females aged 18 through 23 at the time of testing (called the 1980 Youth Population). The scaling of the new AFQT in ASVAB 11/12/13 to the 1980 Youth Population was accomplished using a set of ASVAB scores from applicants tested in October and November of 1984 during the Initial Operational Test and Evaluation (IOT&E) of ASVAB 11/12/13. Both equipercentile and linear equating gave very similar results; consequently the linear equating results were selected.

^{1.} The NO score is divided by two and summed with the other subtest raw scores (number of items correct). The sums of raw scores are converted to percentile scores, and the percentile scores are used in making personnel decisions.

For maximum precision a large number of significant digits were retained at all intermediate stages of the equating. Only at the final step were results rounded to produce integer percentiles.

RESULTS

With the second of the second beather and the second of th

- Percentile Score Norms for the New AFQT in the 1980 Youth Population. The conversion of raw scores¹ of the new AFQT to percentile scores in the 1980 Youth Population is shown in table I. The relationship is smooth and orderly, as is desirable for a set of norms. These norms are appropriate for use with ASVAB 8, 9, and 10, which are parallel to ASVAB 8A, and ASVAB 14, which is used in the Institutional Testing Program.
- Scaling of the New AFQT for ASVAB 11/12/13 to the 1980 Youth Population. Two-new AFQT conversion tables were constructed: One is for forms 11A, 11B, 12B, 13A, 13B, which are sufficiently similar to each other that a common table can be used for all of them. The second conversion table is for form 12A, which has slightly more difficult items and therefore warranted a separate table. The conversion of new AFQT raw scores to percentile scores for forms 11A, 11B, 12B, 13A, and 13B is shown in table II, and that for form 12A in table III.

THE STATE OF THE PROPERTY WINDOWS TO STATE OF THE PROPERTY PROPERTY WINDOWS TO STATE OF THE PROPERTY WINDOWS TO STATE OF THE PROPERTY WINDOWS TO STATE OF THE PROPERTY OF THE

RECOMMENDATIONS

- The norms contained in this report should be be used when the new AFQT is implemented.
- For maximum precision subsequent forms of ASVAB should be scaled to the 1980 Youth Population using the six-digit cumulative frequency tables presented in this report.

^{1.} The AFQT is currently defined as a sum of subtest raw scores. There has been time discussion of the desirability of defining it as a sum of subtest standard scores.

TABLE I

CONVERSION OF NEW AFOT RAW SCORES TO PERCENTILE SCORES
IN THE 1980 YOUTH POPULATION FOR ASVAB FORM 8A

Raw score	Percentile score	Raw score	Percentile score
1	0	41	14
2	0	42	15
3	0	43	16
4	0	44	17
5	0	45	18
6	0	46	19
7	0	47	20
8	0	48	21
9	0	49	22
10	Ō	50	23
11	0	51	24
12	0	52	25
13	0	53	26
14	0	54	27
15	0	55	28
16	0	56	30
17	Ů,	57	31
18	Ţ	58	32
19	0 1 1	59	34
20	1	60	35
21	1	61	36 28
22	2	62 67	37
23	2 2	63	39
24	% 7	6 4	40
.25	3 3	6 5	42
26	4	66 67	·43 45
27 -28	4 .	68	46
29	5	69	48
30	6	70	49
31	6	71	50
32	ž	72	52
.33	8	73	53
34		74	:55
35	8 9	75	56
36	10	76	58
37	ii	77	-60
38	12	78	:61.
39	12	79	63
40	13	80	:65

TABLE I (Cont.)

Percentile score
66
68
69
71
72
74
75
77
78
80
81
82
8 4 86
87
-89
-90
92
93
95
96
98
99
99
99

POOCO LEGISTORIA EXILIATERA PERSONOLE ENGINEEM ACCIONISTA DOODERA ELECTRONISTA

Posta de la constanta de la co

TABLE II

CONVERSION OF NEW AFQT RAW SCORES TO PERCENTILE SCORES
FOR FORMS 11/12B/13

Raw score	Percentile score	Raw score	Percentile score
1	0	41	17
2	Ö	42	17
3	Ō	43	18
4	Ö	44	19
5	0	45	20
6	Ö	46	21
7	÷Ō	47	22
8	٠ ٥ -	48	23
9	· O	49	24
10	-0	50	25
11	:0	51	26
12	1	52	27
13	1 1	53	28 :
14	1	54	30
15	1	55	31
16	1	-56	32
17	-2	57	33
18	_ ; 2 -	58	34
19	2 3	-59	35
20	3	60	36
21	3	61	38
22	4	62	39
23	4	63	4 0 ⁻
24	5.	64	42
25	· 5	65	43
26	- 6	66	44
27	: 6	67	45
28	7	68	47
29	≅8	69	48
30	.8	70	50:
31	9 .	71	51
32	10-	72	52 -
33	10	73	53
34	11	74	55 -
35	12	75	56
36	13	76	57
37	13	77	59
38	14	78	61
39	15	79	62
40	16	80	64

POSSE TO CONTRACT THE STATE OF THE TOO CONTRACT TO CONTRACT THE PROPERTY TO CONTRACT TO CONTRACT THE TOO CON

Raw	Percentile score
81	65
82	-
83	67 68
	68 60
84 85	69 71
	71 70
86 88	72 73
87	73 ~=
88	75 ~0
89	76 ~0
90	78 70
91	79
92	-80
93	81
94	83
95	-84
96	-86
97	87
98	89
99	90
100	91
101	93
102	94
103	96
104	97
105	98

Proposition in the second of t

CONVERSION OF NEW AFQT RAW SCORES TO PERCENTILE SCORES FOR FORM 12A

TABLE III

Raw score	Percentile score	Raw score	Percentile score
1	0	41	18
2	0	42	19
	0	43	20
3 4 5 6 7	0	44	21
5	0	45	22
6	0	46	23
	0	47	23
8	0	48	24
9	0	49	26
10	0	50	27
11	1	51	27
12	1	52	29
13	1	53	30
14	1	-5 4	31
15	1	55	32
16	-2	56 .	33
17	2 2 3	57	34
18	. 3	58	36
19	3	59	37
20	4	60	38
21	4	61	39
22	5	62	41
23	5	-63	42
24	6	64	43
25 26	·6	65	44
26	7	66	46
27	-8	67	47
28 29	8 9	68 60	49
30 30	9	69	50
31 31	10	70 71	51 50
32	10	72	52°
33	12	73	54 55
3 <u>4</u>	12	74 74	56
3 <u>5</u>	13	75	58
3 <u>6</u>	14	76	59
37	15	70 77	61
38.	15	78	62
39	16	79	6 4
4 0	17	-80	65
	• •		00

TABLE III (Cont.)

Raw score	Percentile score
81	67
82	68
83	69
84	7.1
85	72
86	73
87	75
88	76
89	78
90	79
91	80
92	81
93	82
94	84
95	.85
96	87
97	:88
98	-90
99	91
100	92
101	93
102	95 00
103	96
104	-98
105	99

TABLE OF CONTENTS

	Page
ist of Tables	xiii
ntroduction	1
Procedures Norming the New AFQT in the 1980 Youth Population Equating the New AFQT on ASVAB 11/12/13 to 8A	2 2 3 11
Recommendations	22
References	27
Appendix A: Equating Each Form of ASVAB 11/12/13 to Form 8A A-1	l − A-4
Appendix B: Equipercentile Equating of ASVAB 11/12/13 to Form 8A	<u>i</u> −B-7

STATES AND THE WAY TO THE WAY DESCRIBED BY AND AND AND ADDRESS OF THE PARTY OF THE

LIST OF TABLES

-		Page
1	Cumulative Proportions of the New AFQT in the 1980 Youth Population	4
2	Cumulative Frequency Distribution of New AFQT for Males and Females in the 1980 Youth Population	8
3	Computations Used in the Linear Equating of the New AFQT for the 1984 IOT&E Group	12
4	Linear Equating of the New AFQT for Forms 11/12B/13 and 12A	13
5	Conversion of New AFQT RAW Scores to Percentile Scores for Forms 11/12B/13 and 12A	19

INTRODUCTION

The Armed Forces Qualification Test (AFQT) is the primary score obtained from the Armed Services Vocational Aptitude Battery (ASVAB). The AFQT is used by all services as the first screen to determine qualification for enlistment and for historical tracking of the aptitudes of recruits. Because of its importance in evaluating applicants for enlistment, both recruiters and applicants have a strong interest in the level of AFQT scores. Coaching on the ASVAB tends to be focused on the subtests that comprise the AFQT.

In October 1980, the Numerical Operations (NO) subtest was added to the AFQT for the purpose of reducing cheating. NO is a speeded test, consisting of 50 items that involve addition, subtraction, multiplication, and division of one- or two-digit numbers; the test has a 3-minute-time limit. In 1980, no one suspected the pitfalls of using a speeded test in an operational testing program in which the same types of items are administered daily to people applying for employment.

Since 1980, the ASVAB testing program has been plagued with problems stemming from the NO subtest. As a result, the Joint Service Selection and Classification Working Group, which has responsibility for the development and maintenance of the ASVAB and other testing procedures, recommended in 1986 that the NO subtest be replaced in the AFQT by the Math Knowledge subtest [1].

Problems with the NO subtest have been found to arise from subtle changes in the format of the items and the type font [1] and from the size and shape of response spaces on answer sheets [2]. More recently [3], inherent defects in NO arising from its use in an operational testing program were documented; examinees can learn test-taking strategies that inflate their test scores but not their underlying ability to work fast and accurately in the work environment.

In addition to problems with maintaining the accuracy of the test scores, NO is a poor measure of general trainability [4], which the AFQT is intended to measure. NO has little unique predictive validity for occupational specialty training courses, and its usefulness tends to be restricted to specialties in the clerical field. The limited usefulness of NO as a predictor of performance, coupled with its inherent defects in an operational testing program, render it inappropriate for the AFQT. The AFQT proposed by the Working Group, in which the Math Knowledge (MK) subtest replaces NO, is superior as a measure of general trainability and in the accuracy of its scores.

The primary purpose of this report is to present the results of norming the new AFQT, defined as Verbal (VE), which is the sum of Word Knowledge (WK) and Paragraph Comprehension (PC), Arithmetic Reasoning (AR), and MK, in the 1980 Youth Population. The equating of the new AFQT on forms 11, 12, and 13 of the ASVAB (ASVAB 11/12/13), introduced on 1 October 1984, to form 8A of the ASVAB (ASVAB 8A) administered to the 1980 Youth Population is also presented. The 1980 Youth Population serves as the reference for the ASVAB score scale.

CONSTRUCTING THE AFQT SCORE SCALE

Procedures

AFQT scores are reported on a percentile score scale. In the Department of Defense testing program, percentile scores are defined as the proportions of the population that score at or below each raw score. Accordingly, the cumulative proportion of the 1980 Youth Population was computed for each new AFQT raw score (reported to six decimals) and then rounded to an integer, which is the percentile score corresponding to each raw score. No smoothing of the frequencies for the raw scores or cumulative proportions was performed. However, percentile scores corresponding to the bottom of the AFQT score categories (10, 16, 21, 31, 50, 65, and 93) was in one instance forced by moving down the next higher percentile score. The reason is that these percentile scores are widely used in classifying recruits, and personnel managers prefer to have percentile scores at these values.

The new AFQT on forms 11, 12, and 13 of the ASVAB (ASVAB 11/12/13) was equated to form 8A using applicants from the Initial Operational Test and Evaluation (IOT&E) for ASVAB 11/12/13 conducted in October and November 1984. These applicants are called the 1984 IOT&E group. In the 1984 IOT&E, form 8A was labeled 13C; form 8A is used as the reference for equating because it was administered to the 1980 Youth Population. Form 12A was equated separately from the other five forms (11A, 11B, 12B, 13A, and 13B). As is the practice for the current AFQT, which contains NO, the latter five forms were combined and a common conversion table used for the five forms. The norming of the new AFQT for each form (11A, 11B, 12A, 12B, 13A, 13B) is presented in appendix A.

The general procedure in equating the AFQT was first to compute the 8A raw score that is equivalent to each 11/12B/13 and 12A raw score. The range of raw scores is from 0 through 105. The cumulative proportion of the 1980 Youth Population that would have obtained each 8A raw score was computed using linear interpolation.

Equatings were accomplished using both the linear and equipercentile techniques. Details of the equating procedures are presented subsequently for each technique.

Norming the New AFQT in the 1980 Youth Population

The cumulative proportions of the new AFQT raw scores for the 1980 Youth Population are shown in table 1. The proportions are shown to six decimal places and as integers. No smoothing of the frequencies that attained each raw score or of the cumulative proportions was performed. The conversion of form 8A raw scores to percentile scores is plotted in figure 1. Several adjustments, however, were made in the final set of percentile scores:

- Following conventional practice for the ASVAB score scale, the percentile scores were truncated at 99.
- The raw score of 71 was converted to a percentile score of 50, vice 51. The percentile score of 50 is widely used in making classification decisions, and personnel managers prefer to have a percentile score of that value. The shift-in converting a raw score of 71 to a percentile score of 50 does not change the percentage of examinees who score at or above the median.

SAME MANAGEMENT TO SECOND SECO

The raw score of 46 was converted to a percentile score of 19, vice 18. This change was made because two adjacent raw scores (45 and 46) would be converted to the percentile score of 18 if conventional rounding practice were followed.

The percentile scores in table 1 are to be used for forms 8, 9, 10 and 14 of the ASVAB. Form 14 is used in the Institutional Testing Program. Form 8A is the reference test used for scaling new forms of the ASVAB to the 1980 Youth Population. Form 9 is used for retesting inservice personnel and is called the Armed Forces Classification Test. The six-decimal cumulative proportions can be used for equating future forms of the new AFOT to 8A.

The cumulative proportions for males and females in the 1980 Youth Population are shown in table 2. These data can be used for comparing male and female applicants and accessions to the potential supply in the current population.

TABLE 1
CUMULATIVE PROPORTIONS OF THE NEW AFQT IN THE 1980 YOUTH POPULATION

Form 8A raw score	Cumulative proportion	Percentile score
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 4 35 36	Proportion001052 .001094 .001130 .001169 .001169 .001232 .001413 .001605 .001649 .001687 .002105 .002105 .002733 .003012 .003447 .004469 .006112 .007858 .009953 .011860 .015521 .019517 .023467 .028836 .033691 .039062 .044980 .050616 .056731 .063638 .071615 .077546 .084758 .092910 .098927	score
37 38 39 40	.107460 .115154 .123816 .131901	11 12 12 12

See Motored Micheles II Personal Meccessian Meccessian Research Motored Motored Motored Management

TABLE 1 (Cont.)

Form 8A Cumulative raw score proportion		Percentile score
41	.139978	14
42	.149002	15
43	. 158462	16
44	. 167213	17
45	.175550	18
46	. 184738	19
47	.195733	20
4 8	. 208275	21
49	.218689	22
50	. 229271	23
51	. 237897	24
52	. 251203	25
53	. 262209	26
·5 4	. 272117	.27
55	. 284599	28
56	. 299895	30
57	.310825	31
58	. 322577	32
·59	. 336511	34
60	. 348383	35
61	.361121	36
62	. 373615	37
.63	. 390123	39
64	.404774	40
65	.420093	42
66	.433347	43
.67	.445852	4 5
68	.461027	4 6
-69 - 7 0	.477508	4 8
70	.492189	49
71 72	.506667	.50 50
72 73	.580164	52 57
*75 *7 4	.533398 \$45543	53 66
7.5 7.5	.547743 584480	55 56
75 76	. 564460 . 577183	56 58
77	.595509	-60
78	.613826	61
79	.631347	-63
80	.646158	65
80	• 0-40T50	00

TABLE 1 (Cont.)

Form 8A raw score	Cumulative proportion	Percentile score
81	. 662882	66
82	.679012	68
83	.693621	69
84	.708045	71
85	.723670	72
86	.737715	74
87	. 753028	75
88	.768328	77
89	.784039	78
90	.797256	80
91	.810570	81
92	. 823073	82
93	.840731	84
94	.855878	86
95	. 87-1364	87
96	. 889685	89
97	. 903954	.90
98	.917760	92
99	. 933403	93
100	. 950002	95
101	. 964157	96
102	. 977846	98
103	. 989889	99
104	.997310	-99
105	1.000000	99

SCOLLEGISCO DE LA COLLEGISTA DE LA COLLE

FIG. 1: CONVERSION OF NEW AFQT RAW SCORES TO PERCENTILE SCORES IN THE 1980 YOUTH POPULATION

TABLE 2

CUMULATIVE FREQUENCY DISTRIBUTION OF NEW AFQT FOR MALES AND FEMALES IN THE 1980 YOUTH POPULATION

Form 8A raw score	Male cumulative proportion	Female cumulative proportion
1 2 3 4 5 6 7 8 9 10 11 21 13 14 15 16 17 18 19 20 21 22 22 22 23 24 25 26 27 28 29 30 30 30 30 30 30 30 30 30 30 30 30 30	.000912 .000994 .001066 .001066 .001066 .001324 .001324 .001324 .001324 .001324 .001324 .001329 .002021 .002021 .002021 .002527 .002660 .003397 .004679 .004679 .004679 .004679 .004679 .004679 .004679 .004610 .007989 .010464 .013179 .017657 .021830 .027382 .032610 .037830 .043063 .043063 .049261 .055985 .062811 .070215 .070821 .070821 .070821 .099405 .105881 .112398	.001197 .001197 .001197 .001275 .001275 .001330 .001505 .001895 .001984 .002191 .002191 .002191 .002191 .002191 .003168 .003499 .004253 .006218 .007724 .009426 .010502 .013321 .017134 .019434 .024950 .024950 .029428 .034942 .040572 .045087 .056865 .065223 .070845 .065223 .070845 .065223 .070845 .065223 .070845 .065223 .070845 .065223 .070845 .065223 .070845 .065223 .070845 .065223
38 39: 40:	.119724 .129444 .136916	.110448 .118019 .126737

TABLE 2 (Cont.)

Form 8A raw score	Male cumulative proportion	Female cumulative proportion
41	. 144365	.135461
42	. 151402	. 146530
43	. 161666	.155163
44	.171509	.162788
4 5	. 178653	. 172353 . 183509
46 47	. 185931 . 197248	.194174
48	. 209925	.206575
49	.209925	.217802
50	.230185	.228330
51	. 237384	.238426
52	. 251365	.251036
53	.261878	. 262549
54	.270710	. 273567
55	. 283215	. 286025
56	. 293871	. 306098
57	. 302959	.318925
58	.312154	333310
59 .	. 323624	.349783
60	. 333912	363285
-61	. 344002	.378751
62	. 353806	.394015
63	. 369038	.411836
64	.381308	.428941
65	. 398436	.442396
66 67	.411310	.456042
67 68	.422217	470192
68 60	.437947 .450869	.484795 .504941
69 70	.466114	.519041
70 71	.477053	.537164
72	. 489592	.551647
73	. 503546	.564141
74	.513243	.583272
75	531311	.598598
76	. 545463	.609850
77	. 564362	.627586
78	.580852	.647783
79	. 597259	.666452
80	.610839	.682530

TABLE 2 (Cont.)

	Male	Female
Form 8A	cumulative	cumulative
raw score	proportion	proportion
81	. 628044	.698759
82	.643072	.716025
83	.660141	.728099
84	.675198	.741873
85	.690427	.757905
_		-
86	.706530	.769831
87	. 722925	.784029
88	.735754	.801873
89	.750161	.818928
90	.764861	.830618
91	. 776356	.845805
92	. 790436	. 856685
93	. 809579	.872813
94	. 825293	.887376
95	. 839800	. 903869
96	. 860762	. 919470
97	. 877579	. 931117
98	.894797	.941409
99	. 917095	.950199
100	.934172	. 966303
101	. 952447	.976218
102	.970529	. 985382
103	. 987790	. 992052
104	. 996889 . 996889	.997744
105	1.000000	1.000000

Equating the New AFQT on ASVAB 11/12/13 to 8A

On 1 October 1984, forms 11, 12, and 13 of the ASVAB were introduced. An IOT&E was conducted in October and November 1984 to evaluate the accuracy of the score scale for ASVAB 11/12/13. Form 8A, labeled 13C in the IOT&E, was also administered, and it serves as the reference for evaluating the scaling of forms 11, 12, and 13 were equated to form 8A using the linear and equipercentile techniques.

In linear equating, standard scores, or Z scores, on the forms to be equated are set equal to each other. Z scores were computed on forms 11/12B/13, 12A, and 8A for the 1984 IOT&E group and were used in the linear equating. The means, standard deviations, and formulas used to compute the 8A raw scores equivalent to the 11/12B/13 and 12A raw scores are shown in table 3.

The 8A raw scores equivalent to the 11/12B/13 and 12A scores were computed to two decimal places. The two-decimal 8A raw scores were converted to percentile scores in the 1980 Youth Population. Einear interpolation was used to find the cumulative proportion of the 1980 Youth Population that would have obtained each two-decimal 8A raw score. The two-decimal 8A raw scores that correspond to the 11/12B/13 and 12A raw scores and the cumulative proportions in the 1980 Youth Population are shown in table 4. No smoothing of the integers was performed. The integers are percentile scores in the 1980 Youth Population that correspond to the 11/12B/13 and 12A new AFQT raw scores.

In addition to linear equating, forms 11/12B/13 and 12A were also equated to 8A in the 1984 IOT&E group using the equipercentile equating technique. Whereas linear equating sets standard scores equal to each other, equipercentile equating sets raw scores that correspond to the same cumulative proportion equal to each other. Einear interpolation was used to find the two-decimal 8A raw score that is equivalent to each raw score on forms 11/12B/13 and 12A.

The cumulative proportions for forms 11/12B/13, 12A, and 8A are shown in appendix B. The two-decimal 8A raw scores that had the same cumulative proportion as the 11/12B/13 and 12A raw scores were computed. The 11/12B/13 and 12A raw scores and the corresponding 8A two-decimal raw scores are also shown in appendix B.

Conversion of the new AFQT raw scores on forms 11/12B/13 and 12A to percentile scores in the 1980 Youth Population is shown in table 5; the linear and equipercentile equating are both shown. The two sets of conversions are virtually

TABLE 3

COMPUTATIONS USED IN THE LINEAR EQUATING OF THE NEW AFQT FOR THE 1984 IOT&E GROUP

Panel A: Statistics used in linear equating

ASVAB form	Standard		
number	$\operatorname{Mean}(\overline{X})$	deviation(SD)	
13C	68.893	17.655	
11/12B/13	68.447	19.377	
12A	67.296	19.601	

Panel B: Equations used in linear equating

$$Raw \ score_{8A(13C)} = \frac{SD13C}{SD11} (Raw \ score_{11} - \overline{X}_{11}) + \overline{X}_{13C}$$

$$Raw \ score_{8A(13C)} = \frac{SD13C}{SD12A} (Raw \ score_{12A} - \overline{X}_{12A}) + \overline{X}_{13C}$$

TABLE 4
LINEAR EQUATING OF THE NEW AFQT FOR FORMS 11/12B/13 AND 12A
Form 8A equivalent

Form 11/12B/13	a	b Cumulative	Percentile
raw score	Raw score	proportion	score
1	7.44	.001497	0
2	8.35	.001620	0
3	9.26	.001649	0
4	10.17	.001689	0
5	11.08	.001904	0
6	12.00	.002105	0
7	12.91	.002105	0
8	13.82	.002620	0
9	14.73	.002937	0
10	15.64	.003290	0
11	16.55	.004009	0
12	17.46	.005225	1
13	18.37	. 006758	1
14	19.28	.008445	1
15	20.20	.010334	1
16	21.11	.012263	1
17	22.02	.015601	2 2 2
18	22.93	.019237	2
19	23.84	.022835	2
20	24.75	.027494	3
21	25.66	.032040	3
22	26.57	.036752	4
23	27.48	.041903	4
24	28.40	.047234	5
25	29.31	.052512	5
26	30.22	.058251	6
27	31.13	.064675	6
28	32.04	.071852	7
29	32.95	.077249	8
30	33.86	.083748	8
31	34.77	.091035	9
32	35.68	.097002	10
33	36.60	.104047	10
34 75	37.51	.111384	11
35 36	38.42	. 118792	12
36 38	39.33	.126484	13
37	40.24	.133839	13
38 30	41.15	. 141332	14 15
39	42.06	.149570	15 16
4 0	42.97 43.80	. 158178 . 166250	17
41 42	43.89 44.80		17
42 43	44.80 45.71	. 173883 . 182073	18
40 44	46.62	. 191555	19
45	47.53	. 202380	20
70	Z1.00	. 202000	Ø0

SOUR PROCESSANT PROCES

Form 8A equivalent

Form 11/12B/13		Cumulative	Percentile
raw score	Raw score	proportion	score
		Proportion	50010
46	40 44	010050	01
46 :	48.44	.212857	21
47	49.35	. 222393	22
48	50.26	.231514	23
- 4 9.	51.17	.240159	24
50	52.09	.252194	25 -
51	53.00	. 262209	:26
52	53.91	.271225	27
53	54.82	. 282352	28
54	55.73	. 295765	30
55	56.64	.306890	31
56	57.55	.317289	32
5 7			
	58.46	. 328987	33
58	59.37	. 340904	34
:59	60.29	. 352077	35
-60	61.20	. 363620	36
61	62.11	. 375431	38
62	63.02	. 390416	39
:63	63.93	.403748	4 0
64	64.84	.417642	42
-65	65.75	430034	43
-66	66.66	.441600	44
67	67.57	. 454502	45
-68	68.49	.469103	47
-69	69.40:	.483380	48
70	70.31	.496677	50
୍ଟ୍ 71	71.22	.509636	50: 51.
72·	72.13	.521884	52
73	73.04	. 533972	53
• 74	73.95	.547026	55
75	74.86	.562120	56
. 76	75.77	.574257	57
77	76.69	. 589828	59
78	77.60	.606499	61
79	78.51	. 622762	62 .
: 8 0:	79.42	.637568	-64
81	80.33	.651677	65
82	81.24	666753	67
83	82.15	.681203	68
84	83.06	.694486	69 69
85	83.97	.707612	
			7 <u>1</u>
:86 :88:	84.89	.721951	72: 22
:87:	85.80°	.734906	7:3: ~~
88	86.71	.748587	75
89	87.62	.762514	76
-90	88.53	.776655	78

TABLE 4 (Cont.)

Form 8A equivalent

Form 11/12B/13 raw score	Raw score	Cumulative proportion	Percentile score
91	89.44	.789854	79
-92	90.35	.801916	80
-93	91.26	.813821	81
94	92.18	.826251	83
95	93.09	.842094	84
96	94.00	.855878	86
97	94.91	. 869970	87
98	95.82	.886387	89
99	96.73	.900101	90
100	97.64	.912790	91
1.01	98.55	.926364	93
102	99.46	.941039	94
103	100.38	.955381	96
104	101.29	.968127	97
105	102.20	. 980255	98

Form 8A equivalent

Form 12A		Cumulative	Percentile	
raw score	Raw score	proportion	score	
1	9.18	.001649	0	
1	10.08		0	
2		.001668	0	
3	10.98	.001882	0	
4	11.88	.002079	0	
5	12.78	.002105	0	
6	13.68	.002532	0	
7	14.58	.002895	0	
8	15.48	.003221	Ō	
9:	16.38	.003835	Ō	
10	17.29	.004945	0	
11.	18.19	.006444	1	
12	19.09	.008047	1	
13	19.99	.009932	1	
14	20.89	.011650	. 1	
- 19	·2179	.014752	1	
16 :	22.69	.018278	2	
17	23.59	.021848	2	
18	24.49	.026098	. 1 1 2 2 3	
19-	25.39	.030729	3	
20:	26.29	.035249	4	
21	27.19	.040186	4	
22 -	28.09	.045487	5	
23	28.99	.050560	5	
24	29.90	.056120	6	
25 -	30.80	.062257	6	
26	31.70	.069222	7	
27	32.60	.075174	* 8	
28	33.50	.081152	8	
. 29:	34.40	.088019	9	
30	35.30	.094715	9	
31	36.20	.100634	10	
32	37.10	.108229	11	
33	38.00	. 115154	12	
34	38.90	.122950	12	
35	39.80	. 130284	13	
36	40.70	.137555	14	
37	41.60	. 145392	15	
38:	42.51	.153827	15	
39·	43.41	. 162050	16	
4 0-	44.31	. 169797	17	
41	45.21	.177479	18	
42.	46.11	.185947	19	
43	47.01	.195858	20	
44	47.91	.207146	20 21	
45	48.81	.216710		
- 30	40 · 01	F & TO.L TO-	22	

Form 8A equivalent

70mm 10A		المراجعة المساحدة	3
Form 12A raw score	Raw score	Cumulative proportion	Percentile
TAW SCOTE	vam poote	broborgrou	score
46 :	49.71	. 226202	23
47	50.61	. 234533	23
4 .8	51.51	. 244683	24
49 .	52.41	. 255715	26
50	53.31	. 265280	27
51	54.21	. 274738	27
52	55.12	. 286435	29
-53	56.02	.300114	30
54 .	56.92	.309951	31
55 -	57.82	. 320462	32
56	58.72	. 332609	33
57	59.62	. 343872	34
58 .	60.52	. 355007	36
5.9	61.42	. 366368	37 "
6 0:	62.32	.378898	38
61	63.22	. 393346	39
62	64.12	.406612	41
-6 3 -	65.02	.420358	42
64	65.92	. 432287	43
65	66.82	. 443 601	44
66	67.73	.456930	4 6
-6 7	68.63	.471410	47
68	69.53	.485289	49
69	70.43	.498415	50
70	71.33	.511121	51
71	72.23	. 523208	52
72	73.13	. 535263	54
73	74.03	. 548245	55
74	74.93	. 563290	56
7:5- 7:5	75.83	.575020	58
76	76.73	.590561	59
77	77.63	.607049	61
78	78.53	.623112	62
79	79.44	.637864	64
80	80.34	.651844	65 88
81	81.24	.666753	67
82	82.14	.681057	68
83	83.04 87.04	.694198	69
84: 9 É	83.9 4	.707180	71
-85. 96-	8 <u>4</u> .84	.721170	72
.86: 	85.74	.734063	73 ~=
*8 7 *	86.64	.747515	75 ~~
88	87.5 4	.761290	76 ~~
-89: -00:	88.44	.775241	78 ~^
90 :	89.34	.788533	79

Form 8A equivalent

_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
Form 12A raw score	Raw score	Cumulative proportion	
91	90.24	.800451	80
92	91.14	.812320	81
93	92.05	. 823956	82
94	92.95	.839848	84
95	93.85	. 853606	85
96	94.75	.867493	87
97	95.65	.883273	88
98	96.55	.897533	90
99	97.45	. 910167	91
100	98.35	. 923235	92
101	99.25	. 937553	94
102	100.15	. 952125	95
103	101.05	. 964841	96
104	101.95	.977162	98-
105	102.85	.988083	99-
= = =			7.7

a. Equivalent 8A raw score computed through linear equating in the

¹⁹⁸⁴ IOTEE group.

b. Cumulative proportion of the 1980 Youth Population that would have obtained the 2-decimal form 8A raw score; computed through linear interpolation.

TABLE 5

CONVERSION OF NEW AFQT RAW SCORES TO PERCENTILE SCORES FOR FORMS 11/12B/13 AND 12A

Form 11/12B/13		Form 12A			
Raw	Pe	ercentile	Ráw	F	ercentile
score	Linear	Equipercentile	score	Linear	Equipercentile
1	0	0	1	0	0
2	0	0	2	0	0
3	0	0	3	0	0
4	0	0	4	0	0
5 6	0	0	5	0	0 0
7	0	0	6 7	0 0.	0:
8	Ö	0	-8	0. 0.	Ö
9	ŏ	Ŏ	9	0.	0 .
10	ŏ	ŏ	10	-0	Ö.
11	Ŏ	Ö	1-1	ĩ	.0
12	1	0	12	1	· O :
13	. 1	0	13	1	O :
14	1	0	14	1	1.
15	1	1	15	1	1
16	1	1	16	2	1
17	2	1 ,	17	2	1
18 19	2 2	2	18- 19	3 ` 3-	2
20	3	2	20	4	2
21	3	2	21	4	3 .
22	4	3	22	5	
23.	4	3	23	5-	3 4
24	5	4	24	6	4
25	5	5	25	6	5₋
26	6	5	26	7	5
27	6	6 .	27	8	6
28	7	6	28	8	- '7 -
29	8	7	29 ⁻	9	7
30 31	8 9	8 9	30 31	9: 10:	8 9:
32		Q .	32	1-1	10
33	10 10	10	33	12	11.
34	11	11	34	12	12
35	12	12	35	13	13
36	13	12	36	14	13
37	-13	13	37	15	14
38	14	14 -	38	15	15
39	15	15	39 :	16	16-
4 0	16	16	40	17	17

TABLE 5 (Cont.)

F	orm 11/12	B713		Form	12A
D		ercentile	 Barr	F	Percentile
Raw score	Linear	Equipercentile	score	Linear	Equipercentile
41	17	17	41.	18	18
42	17	18	42	19	19
43	18	19	43	20	20
44	19	20	44	21	21
45	20	21	45	22	22
46	21	22	46	23	23
47	22	23	47	23	24
48	23	24	48	24	25
49	24	25	49	26	26
50	25	26	-50	27	27
51 [.]	26	27	51	27	-28
52	27	28 -	52	29	29
53	28	29 ⁻	·53	30	31
54	30	30 .	54	31	3-1
55 :	31	31	55	32	33
56	32	32	56	33	34
57	33	33 -	.57	34	.35
58	34	34 .	-58	:36	36
59	35	36	59	:37	37
60-	36	37	-60	38-	39
61	38	38·	61	·39	40
62	39	39 -	-62	41	41
63	40	41	63	42	43
64 .	42	42	⊧64	43	44
65 ⁻	43	43	65	44	45
66	44	44	·66	46	46
67	45	4 6	67	47	47
68	47	47	-68	49	49
69	48	4 8-	69	:50°	50
70	50	50 -	70	51	51
71	51	51	71	52	-52
72	52	52 .	72	54	⁼5 ˙ 3
73	53	53	73	·55	-55
74	55	54	74	56	56
75	56	56 -	75	58	-57
76	57	57:	, 76	59	59
77	59	58	77	61	60
78	61	60	78	:62	:62 ⁻
79	62	62	79	64	:63
80	64	63	:80	65	-65
81	65	6 4	81	:67	66
82	67	66 :	82	68⊧	67
83	68	67	- 83	69	⊧68
84	69	69 :	84	71	70
85	71	70 :	85	72	71
85	71	70 :	85	72	<u> 7.1</u>

TABLE 5 (Cont.)

Form 11/12B/13		Form 12A			
Percentile			Percentile		
Raw- score	Linear	Equipercentile	Raw	Linear	Equipercentile
86	72	71	86	73	72
87	73	73	87	75	73
88	75	74	88	76	75
89	76	75	89	78	7.6
90	78	77	90	79	78 ⁻
91	79	79	91	80	79-
92	80	80	92	81	80°
93	-81	81	-93	82	82.
94	83	82	94	84	-83
95	84	84	95	85	85
96	-86	86	96	87	86
97	87	87	97	88	88
98	89	89	98	90	90:
99	90	91	-99	91	92
100	91	92	100	92	93
101	93	94	101	93	95
102	94	96	102	95	97
103	96:	98	103	96	98
104	97	99 `	104	98	99
105	-98	99	105	99	99

identical, which is expected because the content of the forms is parallel. The conversions based on the linear equating are plotted in figure 2 for forms 11/12B/13 and figure 3 for form 12A. These values are identical to the linear equating shown in table 4 except for one change to form 12A. For administrative reasons, the raw score of 101 on form 12A is converted to a percentile score of 93, vice 94, because the percentile score of 93 is the bottom of AFQT Category I. By reducing the percentile score from 94 to 93, the number of examinees classified into category I would not be changed.

Because the results of linear equating tend to be more stable, they are generally preferred over those from the equipercentile method. The current practice for the ASVAB is to use linear equating, and these results do not show any reason to change.

The percentile scores for the new AFQT in the 1980 Youth Population (table 1, reported earlier) have been based on the sum of subtest raw scores. Instead of summing and converting raw scores, an alternative is to convert the subtest raw scores to standard scores, and then convert the sums of subtest standard scores to percentile scores. Advantages of summing subtest standard scores are that the subtests in the AFQT are equally weighted and that more values of the sum of standard scores than of the sum of raw scores occur, which means in turn that there are fewer gaps in the percentile score scale. The conversion of sums of subtest standard scores to percentile scores is being evaluated by the Joint Services Selection and Classification Working Group, which is responsible for the technical adequacy of the ASVAB, including the AFQT.

The new AFQT in which MK replaces NO is an improvement over the one it replaces. MK does not suffer from the inherent defects that render NO inappropriate for use in a test as visible as the AFQT [3]. MK is a stable measure of ability that cannot be changed easily through practice. In addition, it is a good measure of general trainability [4]. The new AFQT corrects the problems arising from the NO subtest.

RECOMMENDATIONS

- The conversion of raw scores to percentile scores shown in table 1 should be adopted for operational use.
- The conversion tables for ASVAB 11/12/13 based on linear equating (table 5) should be adopted for operational use.
- Subsequent forms of ASVAB should be scaled to the reference population using the six-digit cumulative frequency shown in table 1.

FIG. 2: CONVERSION OF NEW AFQT RAW SCORES TO PERCENTILE SCORES FOR ASVAB FORMS 11/12B/13

FIG. 3: CONVERSION OF NEW AFQT RAW SCORES TO PERCENTILE SCORES FOR ASVAB FORM 12A

REFERENCES

- [1] Assistant Secretary of Defense (Force Management and Personnel, Accession Policy), A Review of the Development and Implementation of the Armed Services Vocational Aptitude Battery, Forms 11, 12, and 13, prepared by a Subcommittee of the Joint Service Selection and Classification Working Group, Unclassified, May 1986
- [2] Air Force Human Resources Laboratory, The 1980 Youth Population: An Investigation of Speeded Subtests, by James A. Earles, Toni Giulliano Wegner, Malcolm J. Ree, and Lonnie D. Valentine, Jr., Unclassified, Aug 1983
- [3] CNA Research Memorandum 86-228, Evaluating the Appropriateness of the Numerical Operations and Math Knowledge Subtests in the AFQT, by Milton H. Maier and Catherine M. Hiatt, Unclassified, Nov 1986
- [4] CNA Report 102, Validity of the Armed Services Vocational Aptitude Battery Forms 8, 9, and 10 With Applications to Forms 11, 11, 13, and 14, by Milton H. Maier and Ann R. Truss, Unclassified, Feb-1985

APPENDIX A EQUATING EACH FORM OF ASVAB 11/12/13 TO FORM 8A

APPENDIX A

EQUATING EACH FORM OF ASVAB 11/12/13 TO FORM 8A

With the introduction of automated scoring equipment at Military Enlistment Processing Stations (MEPS), the use of a separate conversion table for each form of the ASVAB is feasible. When scoring the ASVAB was accomplished by hand, including computation of the AFQT and aptitude composite scores, clerical errors would have been introduced from the use of six conversion tables, one for each form of the AFQT. Because extensive lead time is required to reprogram the scoring machines to accommodate six conversion tables instead of the existing two tables, the new AFQT initially will conform to the current structure and have two tables—one for forms 11A/11B/12B/13A/13B and one for form 12A. In subsequent years, separate conversion tables may be used for each form.

The conversion of new AFQT raw scores to percentile scores for each form of ASVAB 11/12/13 is shown in table A-1. Each form was equated to 8A using data from the 1984 IOT&E. The linear equating technique was used to prepare the conversion tables. The means, standard deviations, and computing formula are shown in table A-2. The procedures are the same as used in the main text: the two-decimal 8A raw score equivalent to each new AFQT raw score was computed; the exact proportion of the 1980 Youth Population that attained each two-decimal 8A raw score was computed using linear interpolation; the proportions were rounded to integers, which are reported in table A-1.

The percentile scores in table A-1 show little variation from form to form. The main reason is that the subtests were designed to be parallel by having the same means and standard deviations. The differences in percentile scores corresponding to the same raw score will be evaluated by the Joint Service Selection and Classification Working Group where preparing a recommendation about using separate conversion tables.

TABLE A-1

CONVERSION OF NEW AFQT RAW SCORES TO PERCENTILE SCORES
FOR EACH ASVAB FORM

Dave		Pe	rcentil	e score		
Raw score	11A	11B	12A	128	13A 	13B
123456789012345678901234567890 1112345678901234567890 1234567890	0000000011111222233445556678890011213456616	000000000011111222233445667789901122345566778990112131556	000000000111112233445566788990122345567		0000000000001111122333455667889001123345	0000000000000111112233445566788900123345

TABLE A-1 (Cont.)

Percer	tile	score
--------	------	-------

Raw					, 	
SCOTE	11A	118	12A	12B	13A	13B
						,
41	17	17	18	17	16	16
42	18	18	19	18	17	17
43	19	19	20	18	17	17
44	20	20	21	19	18	18
4 5	21	21	22	21	19	19
46	22	22	23	21	20	20
47	23	23	23	22	21	21
48		24	24	23	22	22
49	25		26	24	23	23
50	26	26	27	25	24	24
51	27	27	27	2 6	25	25
52	28	28	29	27	26	26
53	29	29	30	28	27	27
54	30	:3O-	31	3 0:	29	29
55	31	31	32	3.1-	30	30
56 [:]	32	33	33	32	31	31
57	33	34	34	33	32	32
58	34	35	36	34	33	33
59	36	36	37	35	35	34
60	37	37	38	36	36	36
61	38	39	39	37	37	37
62	39	40	41	3 9	38	38
63	41	41	42	40	40	40
64	42	43	43	42	41	41
65	43	44	44	43	42	42
66	44	4 5	46	44	44	44
67	46	47	47	45	4 5	45
68	47	48	49	47	46	46
69 20	48	49	50	48	48	48
70 ~1	50	51	51	49	49	49
7 <u>1</u>	51 50	52	52	51	51	50
72	52	53	5 4	52	52	52 57
73 74	53 56	55	55 5 <i>6</i>	53	53 54	53
74 75	55 56	56 57	56	5 <u>4</u>	54	54
7.5 76	56 57	5 <i>7</i> 59	58 59	5 <u>6</u> 57	·56	56-
7.7:	5 <i>7</i> 59	60	61	58	57 59	57
<i>1≈1:</i> -78-	61	62	62	60-	-60	58 60
79	62	6 4	64	62.	62	60 62
-80 1:3:	6 4	-65	65	63	64	63
81	65	67	67	64	65	65
82	66-	68	68	66	67	66
83	68	69	69	67	68	68
84	69	71	71	69	69	69
85	70	72	72	70	71	71
 -	. •		. ~		4 - 🍅	

TABLE A-1 (Cont.)

٢

·D	*	Pe	rcentil	e score	ŀ	
Raw		~~~~~				
score	11A	11B	12A	12B	13A	13B
86	72	73	73	71	72	72
87	73	75	75	73	74	73
-88	74	76	76	74	75	75
89	76	78	78	75	76	76
90	77	79	79	77	78	78
91	79	80	80	78-	79	79
92	80	81	81	79	80	80
93	81	-83	82	81	82	81
94	82	84	84	82	83	83
95	84	86	85	83	85	84
96	85	87	87	84	86	86
97	86	-89	88	86	88	87
98	88	90	90	87	89	89
99	89	91	91	·89	90	90
100	91	-93	92	90	92	91
101	92	94	94	91	93	93
102	93	96	95	93₌	95	94
103	95	97	96	94	96	96
104	96	:98	98	96:	97	97
105	97	99	99	97	99	98

TABLE A-2

COMPUTATIONS USED IN THE LINEAR EQUATING OF THE NEW AFQT FOR THE 1984 IOT&E GROUP BY FORM NUMBER

Panel A: Statistics used in linear equating

ASVAB form number	$\operatorname{Mean}(\overline{X})$	Standard deviation(SD)	
number	iviean(A)	deviation(5D)	
11A	68.341	19.752	
11B	67.618	19.226	
12A	67.296	19.601	
12B	68.688	19.771	
13A	68.793	18.933	
13B	68.925	19.048	
13C	- 68.893	17.655	

Panel B: Equation used in linear equating

$$[Raw\ score_{8A(13C)^{-}}] \equiv \frac{SD13C}{SD11}(Raw\ score_{11^{-}} = \overline{X}_{11}) + \overline{X}_{13C}$$

APPENDIX B

EQUIPERCENTILE EQUATING OF ASVAB 11/12/13 TO FORM 8A

<u>Annalise pharacteristics of the personal respectation in the personal respectation between the personal property and the </u>

APPENDIX B

EQUIPERCENTILE EQUATING OF ASVAB 11/12/13 TO FORM 8A

The equipercentile equating of forms 11/12B/13 and 12A to form 8A is described in this appendix. The procedures were described in the main text. Table B-1 shows the cumulative proportions in the 1984 IOT&E for forms 8A (13C), 11/12B/13, and 12A. These values are the input to equipercentile equating. Table B-2 shows the results of the equipercentile equating of forms 11/12B/13 and 12A to form 8A. As presented in the main text (table 5), the results of the equipercentile and linear equating are virtually identical throughout the useful score range (percentile scores 5 through 95).

Also shown in table B-2 are the cumulative proportions in the 1980 Youth Population that would have obtained each raw score on forms 11/12B/13 and 12A. The cumulative proportions were computed using linear interpolation. In the last column of table B-2, the cumulative proportions were rounded to integers, which are percentile scores.

TABLE B-1

CUMULATIVE PROPORTIONS OF THE NEW AFQT SCORES FOR THE 1984 IOTUE GROUP

TABLE B-1 (Cont.)

")

Ē

Form

D	_		
Raw score	13C(8A)	11/12B/13	12A
		~~~~~	
56	0.257949	0.292841	0.317299
57	0.277796	0.309236	0.334059
58	0.296183	0.326717	0.351690
59	0.315831	0.344009	0.370082
60	0.332692	0.361925	0386788
61	0.351610	0.378840	0.403439
62	0.370926	0.396426	0.421342
63	0.389910	0.413506	0.438973
64	0.411948	0.431611	0.457420
65	0.430999	0.448537	0.474180
66	0.452373	0.466607	0.489253
67	0.471955	0.484394	0.505686
68	0.490939	0.500719	0.522501
69	0.510787	0.518306	0.540785
<b>70</b> :	0.530833	0.535362	0.557817
71	0.550548	0.552512	0.574033
72	0.569532	0.569061	0.590466
73	0.588516	0.585504	0.608750
74	0.608895	0.602442	0.626598
75 75	0.628543	0.619310	0.641726
76 ~~	0.647-196	0.635305	0.655874
77	0.664720	0.650369	0.670131
78- ~~	0.680584	0.666954	0.686293
79	0.698108	0.681758	0.700713
80	0.716296	0.696987	0.715024
81	0.733687	0.712405	0.728084
82 87	0.750548	0.727681	0.741797
83 ⁻	0.766280	0.742839	0.753714 0.768025
84 85	0.781746	0.757019 0.770740	0.779453
86.	0.797810 0.813608	0.785745	0.793764
87	0.828344	0.799830	0.808728
88	0.840624	0.799630	0.821951
89	0.853900	0.827990	0.836208

0.867508

0.881912

0.895387

0.907069

0.919283

0.931630

0.942781

0.952207

0.962562

0.970661

0.978493

0.986791

0.992101

0.996880

0.999403

1.000000

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

0.841486

0.855478

0.868573

0.881586

0.894399

0.907565

0.919930

0.931411

0.943351

0.954018

0.964745

0.975341

0.984111

0.991785

0.997112

1.000000

0.849812

0.863362

0.875497

0.888611

0.901725

0.915438

0.925940

0.938945

0.949883

0.961800

0.970235

0.979866

0.987865

0.994014

0.998422

1.000000

TABLE B-2

EQUIPERCENTILE EQUATING OF NEW AFQT FOR FORMS 11/12B/13 AND 12A

#### Form 8A equivalent

	LOTIN ON	edutagreno	
Form 11/12B/13 raw score	Raw score	Cumulative proportion	Percentile score
•			
1-12	16.12	.003570	0
13	16.21	.003662	-0
14	16.39	.003846	0
15	18.20	.006461	1
16	20.12	.010182	1
17	20:. 57	.011040	1
18	21.10	.012226	1
19	22.21	.016360	2
20	23.15	.020110	2 -2 3
21	24.10	.024004	-2
22	24.91	.028353	3
23	26.00	.033691	3
24	26.85	.038256	4
25	28.02	.045093	5
26	2883	.049658	<b>-5</b>
27	29.94	.056364	6
28	30.96	.063362	<b>∍</b> 6
29	32.02	.071734	7
30	33.20	.078988	8
31	34.13	.085818	-9
32	34.96	.092584	9
33	35.94	.098566	10
34	36.91	.106692	11
35	37.98	.115000	12
36	38.98	.123643	12
37	39.87	.130850	13
38	40.78	.138201	14
39	41.74	.146656	15
40	42.84	.156948	16
41	43.90	. 166338	17
42	4506	.176101	18
43	46.15	.186387	19
44	47.08	. 196736	20
45	47.90	.207021	21
<b>4</b> 6	48.80	.216606	22
47	49.79	.227049	23
<b>4</b> 8	50.75	.235741	24
49	51.61	.246014	-25
50	52.47	. 256376	26
51	53.34	. 265578	27
52	54.24	.275113	28
53	55.17	.287199	.29
54	56.03	.300223	30
55	56.87	.309404	31

# TABLE B-2 (Cont.)

1

0

## Form 8A equivalent

	TOTH ON Edgragation				
Form 11/12B/13		Cumulative	Percentile		
raw score	Raw score	proportion	score		
56	57.82	. 320462	32.		
50 57	57.62 58.66	.331773	33		
	59.65		34		
58 50		.344228	3 <del>4</del> 36		
59 60	60.60	.356026	37		
60 61	61.53	.367743			
	62.42	.380548	38 39		
62 63	63.30 64.08	.394518 .406000			
			41 40		
64 68	65.03	.420491	42		
<b>65</b>	65.82	.430961	43		
66 67	66.73	.442476	44		
67	67.66	.455868	46		
68	68.49	.469103	47		
69	69.38	.483087	48 50		
70.	70.23	.495519	50		
71	71.10	.508017	51		
72	71.98	.519894	52		
73	72.84	.531281	53		
74	73.68	.543153	54		
75	74.53	. 556603	56		
76	75.36	. 569040	57		
77	76.18	.580482	58		
78	77.14	. 598073	60		
79	78.07	.615052	62		
80	78.94	. 630296	63		
81	79.79	.643048	64		
82	80.65	657029	66		
83	81.54	.671592	67		
84	82.41	.685002	69 ⁻		
85	83.29	.697804	70		
86	84.25	.711951	71		
87	-85.13	.725496	73		
88	86.03	.738174	74		
89	86.98	.752722	75		
90	88.06	.769271	77		
91	89.12	.785625	79		
92	90.07	.798188	80		
93	90.98	.810304	81		
94	9193	.822198	82		
-95	93.04	.841337	84		
96	94.05	. 856652	86		
97	94.98	.871054	87		
98	96.06	.890541	89		
99	97.17	.906301	91		
100	98.27	. 921984	92		
101	99.60	. 943362	<b>94</b> .		
102	100.68	. 959627	96		
103	101.94	. 977025	9,8		
104 105	103.09 103.09	. 990557 . 990557	99 99		

# TABLE B-2 (Cont.)

Form 8A equivalent

Form 12A		Cumulative	Percentile
 raw score	Raw score	proportion	score
			_
1-12	16.32	.003774	:0
13	16.32	.003774	0
14	18.28	.006601	3
15	18.28	.006601	1
16	20.22	.010373	1
17	20.52	.010945	1
18	21.46	.013544	1
19	22.41	.017159	-2
20	23.47	.021374	2 3 3
21	24.60	.026688	3
22	25.26	.030098	·3
23	26.37	.035678	4
24	2738	.041311	4
25	28.35	.046953	:5 :5
26	29.27	.052267	·5
27	30.37	.059287	-6 7
28	31.53	.067866	7
29	32.51	074640	7
30	33 <u>.</u> -78	.083171	. <b>8</b>
31	34.64	.089975	.9
32	3582	097844	10
33	3713	.108460	11
34	38.19	.116800	12
35	39.15	. 125029	13
36	40.07	. 132466	13
37	40.89	. 139090	14
38	41.91	.148190	15
39	43.10	. 159337	16
40	44.24	.169214	1.7
41	45.39	. 179133	18
42	46.47	. 189906	19
43	<b>47</b> ₌: <b>4</b> 5	. 201377	20
44	48.34	.21-1816	21
45	49.42	. 223133	22
46	50•. <b>4</b> 6	. 233239	23
47	51.26	. 241357	-24
48	52 ₃ .00	. 251203	25
49	52.97	.261879	26
50	53.76	. 269739	27
51	54.75	.281479	28
52	<b>55</b> ≗.64	. 294388	29
53	56.52	.305579	31
54	57.34	.314821	31
<b>55</b> .	58.20	. 325364	33

# TABLE B-2 (Cont.)

Form 8A equivalent

Form 12A		Cumulative	Percentile	
raw score	Raw score	proportion	score	
56-	59.09	. 337579	34	
57 ⁻	60:07	.349275	35	
<b>58</b> .	61.00	.361121	36	
59.	6196	.373115	37°	
60-	62.8 <u>4</u>	.387482	39	
61	63.61	. 399060	40- 43	
62	64.49	.412280	41	
<b>63</b> ÷	65 37	. 42499'/	42	
64	66.26	.436598	44	
<b>65</b>	.67:.12	.447673	45	
<b>66</b> -	67.91	.459661	<del>4</del> 6	
67	68.74	.473223	47	
- <b>68</b> -	69.58	. 486023	49	
69ُ∌	70.50	. 499428	50	
70≗	71.38	.511796	51	
71	72.24	.523340	52	
72:	73.10	. 534833	53	
73₌	73.99	.547600	55 ⁻	
74	74.90	.562788	56	
75-	75.71	.573493	57	
.7 <b>6</b>	76.50	. 586346	59	
77	77.34	.601737	60-	
78	7833	.619608	62	
79₌	79.14	.633421	63 63	
.≀ 9 80⁼	79.93	.645121	65 -	
81		.657530	66	
	80.68			
82: 0.5	81: 48	.670624	67·	
83	82.20	.681934	-68	
84-	83.11	.695208	7:O=	
85 <del>-</del>	83.85	.705881	71	
-86	84.75	.719764	72	
-8 <b>7</b> -	8569	.733361	73	
88	86.57	. 746443	<b>75</b> -	
<b>8</b> 9ੁੰ÷	87.64	.762820	76	
ðÔį	88.69	.779169	78⊧	
91-	89.70	.793291	79	
.92 ⁻	90.55	.804579	80-	
93	91:.50	.816822	8 <b>2</b> :	
:9 <b>4</b> :	92.54	.832608	83-	
95∍	93.69	.851182	85⊧	
96	94.54	.864240	86	
-97	95:.66	.883456	88:	
98⊧	96.75	.900387	90-	
.99:	97.93	.916794	92	
100	98.95	.932621	93	
101	100.17	.952408	95	
102	101.20	.966895	97:	
103	102.40	.982663	98	
104 104	102.40	994416	99	
105	103.61	.994416	99.	
TÓÖ:	100.01	, 337710	3 <b>3</b> -	