AMÉLIORATION DE BASE DE DONNÉES DE SANTÉ

Pour le compte de « Santé publique France »

Nettoyage des données brutes

Analyse des valeurs manquantes

Les différentes analyses (univariée, bivariée, multivariée)

ACP (cercles de corrélations, projection des individus)

Conclusion

SOMMAIRE

- Centralisation de l'analyse sur la France (métropole et DOM-TOM)
- ▶ Nettoyage des différences d'écritures selon les valeurs des variables
- ► Imputation de valeurs par médiane pour différentes variables

NETTOYAGE DES DONNÉES BRUTES

- ▶ L'analyse des valeurs manquantes a montré beaucoup de valeurs non remplies
- ► Selon les différentes variables, certaines ne seront pas choisies, car non pertinentes
- ▶ Une fois les variables choisies, un nettoyage supplémentaire sera mis en place
- ▶ Le nettoyage dans son ensemble a permis de passer de 320 772 à 41 234 individus

ANALYSE DES VALEURS MANQUANTES

ANALYSE UNIVARIÉE - BOXPLOT

ANALYSE UNIVARIÉE - BOXPLOT

ANALYSE UNIVARIÉE - BOXPLOT

- Chaque distribution est plus ou moins asymétrique
- Cela indique une majorité de valeurs basse et quelques valeurs extrêmes
- « fat » et « saturated-fat » une corrélation positive assez forte
- Résultat similaire pour « sugars » et « carbohydrates »

- On retrouve une grande diversité de teneurs en sucre selon les catégories
- ▶ De nombreuses valeurs extrêmes
- ► Les plats préparés et à base de viande ont une faible teneur

- On retrouve des différences en teneurs selon les catégories
- Présence notable dans les plats à base de viande
- C'est un nutriment important pour suivre une alimentation équilibrée

- On retrouve une haute teneur avec une grande variabilité dans les catégories « épicerie » et « produits à tartiner salés »
- Des catégories comme « soupes » et « plats préparés/ ont des teneurs plus basses ///

- La heatmap montre une corrélation importante entre « saturated fat » et « fat »
- Il y a aussi une corrélation entre « carbohydrates » et « sugars »
- On peut voir aussi une corrélation négative importante entre « proteins » et « sugars »

- « energy », « nutriscore_score », et « fat » sont fortement corrélées entre elles
- « proteins » et « carbohydrates » ont une corrélation négative

- ▶ Les projections montrent une séparation nette selon le Nutri-Score (F1 et F2)
- Les produits notés A/B ont des profils nutritionnels plus sains, avec moins de sucres/adáitifs
- ▶ Les additifs jouent un rôle crucial sur le Nutri-Score (F4)

OLS Regression Results							
Dep. Variable:		additi	ves_n	R-s	quared:	0.	.053
Model:			OLS	Adj. R-squared:		0	.052
Method:		Least Sq	uares	F-s	tatistic:	5	66.1
Date:	Thu,	16 May	2024 F	Prob (F-st	atistic):		0.00
Time:		18:	27:37	Log-Like	elihood:	-95	143.
No. Observations:		4	10811		AIC:	1.903e	+05
Df Residuals:		4	10806		BIC:	1.903e	+05
Df Model:			4				
Covariance Type:		nonre	obust				
						ra ear	0.0751
			std err		- "	[0.025	
Interc	ept	0.8539	0.029	29.157	0.000	0.797	0.911
nutrition_grade_fr[Т.Ь]	1.1006	0.044	24.971	0.000	1.014	1.187
nutrition_grade_fr[T.c]	1.2447	0.040	31.510	0.000	1.167	1.322
nutrition_grade_fr[T.d]	1.6156	0.038	43.075	0.000	1.542	1.689
nutrition_grade_fr[T.e]	1.6570	0.041	40.679	0.000	1.577	1.737
Omnibus: 1	7282	.189 [Ourbin-\	Watson:	1.2	97	
Prob(Omnibus):	0	.000 Ja	rque-Be	era (JB):	92832.5	48	
Skew:	2.000		Prob(JB):		0.	00	
Kurtosis: 9.21		.212	Cond. No.		6.	22	

► Le nombre d'additifs est significatif sur le résultat du Nutri-Score

▶ Plus un produit contient un nombre élevé d'additifs, plus ce sera proche de E

- Les résultats offrent une base pour des décisions stratégiques et opérationnelles dans le secteur agroalimentaire et médicale
- ▶ Diverses solutions peuvent être mises en place pour améliorer ce secteur dans le futur
- ▶ Il est tout de même conseillé de compléter cette base en consultant des experts dans le domaine pour plus de pertinence

CONCLUSION