オペレーションズ・リサーチ || (5)

田中 俊二

shunji.tanaka@okayama-u.ac.jp

2024年10月31日

スケジュール

曜時限: 第3学期木3,4限10:35-12:35

場所: 1号館第1講義室

担当: 田中 俊二

No.		日付	内容 (予定.変更の可能性あり)
1	10 月	3 日	導入 (非線形最適化問題,ゲーム理論,多目的最適化問題)
2	10 月	10 日	非線形計画 1 (勾配, ヘッセ行列, 凸性, 最適性条件,
			ニュートン法)
3	10 月	17 日	非線形計画 2 (制約なし問題の最適化,最急降下法,
			準ニュートン法, 共役勾配法, 信頼領域法)
4	10 月	24 日	非線形計画 3 (制約付き問題の最適化, KKT 条件,
			ペナルティ関数法,2次計画法,逐次2次計画法)
5	10 月	31 ⊟	ゲーム理論 1 (ゲームの分類,標準形ゲーム,純粋戦略,
			混合戦略,ナッシュ均衡)
6	11 月	7 日	ゲーム理論 2 (展開形ゲーム,繰り返しゲーム)
7	11 月	14 日	多目的最適化 (パレート最適性, 重み付け法, <i>ϵ</i> 制約法,
			重み付きメトリック法)
	11月	28 日	期末試験

ゲーム理論の基礎

ゲーム理論とは(復習)

- 意思決定を行う複数の人(意思決定主体・プレイヤー)が相互 にかかわり合う状況を数理モデルを用いて解析する学問
- ジョン・フォン・ノイマン (John von Neumann) の論文「On the theory of games of strategy」(1928) が始まり
- フォン・ノイマンと経済学者オスカー・モルゲンシュテルン (Oskar Morgenstern) の著書「ゲームの理論と経済行動」 (1944) により学問分野として確立
- オペレーションズ・リサーチだけでなく経済学や心理学でも 用いられる

第 1 巻, 筑摩書房 (2009)

用語の説明

プレイヤー (player) ゲームに参加して意思決定を行う人

手番 (move) 各プレイヤーが行動するタイミング

<mark>戦略</mark> (strategy) 各プレイヤーの行動 (action) 計画

結果 (outcome/consequence) 行動によって決まるゲームの結果

選好順序 (preference order) 結果に対する各プレイヤーの評価

利得 (payoff)・効用 (utility) 選好順序を数値化したもの

ゲームの種類:ゼロ和ゲーム・非ゼロ和ゲーム

ゼロ和ゲーム・非ゼロ和ゲーム

ゼロ和ゲーム (zero-sum game) 各プレイヤーの利害が完全に相反する ゲーム. プレイヤーの総利得が一定 (0)

非ゼロ和ゲーム (non-zero-sum game) 各プレイヤーの行動の組み合わせにより 総利得が変化するゲーム

ゼロ和ゲームの例:じゃんけんゲーム

プレイヤー 1,2 がじゃんけんをし、負けた方が勝った方に 10 円を支払う.引き分けなら何もしない.

儲け (プレイヤー 1, プレイヤー 2) の表. (利得)=(儲け)

1\2	グー	チョキ	パー
グー	(0円,0円)	(10 円, -10 円)	(-10 円, 10 円)
チョキ	(-10 円, 10 円)	(0円,0円)	(10 円, -10 円)
パー	(10 円, -10 円)	(-10 円, 10 円)	(0 円, 0 円)

非ゼロ和ゲームの例: 囚人のジレンマ (prisoner's dilemma)

刑期 (プレイヤー 1, プレイヤー 2) の表. (利得)= -(刑期)

1\2	黙秘	自白
黙秘	(1年,1年)	(10年,3ヶ月)
自白	(3ヶ月,10年)	(8年,8年)

ゲームの種類:ワンショットゲーム・繰り返しゲーム

ワンショットゲーム・繰り返しゲーム

ワンショットゲーム (one-shot game) ゲームは 1 回で終了

繰り返しゲーム (repeated game) 同じゲームを複数回繰り返す

繰り返しゲームの分類

有限回繰り返し (finitely repeated) ゲーム 有限回で終了

無限回繰り返し (infinitely repeated) ゲーム 無限回繰り返す

有限回で終了することがわかっていれば、プレイヤーの戦略が変化する可能性がある

繰り返しゲームの例

- 繰り返しじゃんけんゲーム
- 繰り返し囚人のジレンマ ⇒ 「しっぺ返し戦略」が有名

ゲームの種類:同時手番ゲーム・逐次手番ゲーム

同時手番ゲーム・逐次手番ゲーム

同時手番ゲーム (simultanous game)

すべてのプレイヤーが同時に行動. その際, 他のプレイヤーの行動を知ることができない

逐次手番ゲーム (sequential game)

プレイヤーは一人ずつ順番に行動. 行動し終わった他のプレイヤーの行動を知ることができる (ただし,後で説明する完全情報ゲームの場合)

同時手番ゲームの例

- じゃんけんゲーム、繰り返しじゃんけんゲーム
- 囚人のジレンマ、繰り返し囚人のジレンマ

逐次手番ゲームの例

- 将棋、囲碁、チェスなどのボードゲーム、麻雀
- 神経衰弱、大富豪などのカードゲーム

ゲームの種類:完全情報ゲーム・不完全情報ゲーム

完全情報ゲーム・不完全情報ゲーム

完全情報ゲーム (game with perfect information)*

すべてのプレイヤーが、各プレイヤーのこれまでの行動とその結果を知って いる

不完全情報ゲーム (game with imperfect information)

プレイヤーのこれまでの行動とその結果を,一部またはすべて知ることができない

*正確な定義は、「展開型ゲームとして記述したとき、すべての情報集合がただ 1 つの手番からなるゲーム」

完全情報ゲームの例

● 将棋、囲碁、チェスなどのボードゲーム

不完全情報ゲームの例

- ポーカーやブリッジなどのカードゲーム、麻雀 他のプレイヤーの手札や手牌を見ることができない
- ●繰り返しじゃんけん・囚人のジレンマなど同時手番ゲーム 「これまでの行動」には同じ回の他のプレイヤーの手番も含まれるため

ゲームの種類:情報完備ゲーム・情報不完備ゲーム

情報完備ゲーム・情報不完備ゲーム

情報完備ゲーム (game with complete information)*

すべてのプレイヤーが、ゲームのルールや各プレイヤーの取りうる戦略・利得などの情報を共有知識 (common knowledge) として持つ

情報不完備ゲーム (game with incomplete information)

ゲームのルールやプレイヤーの取りうる戦略や利得などの情報を一部利用できない

情報不完備ゲームの例

◆ 人狼ゲーム 他のプレイヤーの役割・目的がわからない

ゲームの種類:協力ゲーム・非協力ゲーム

協力ゲーム・非協力ゲーム

協力ゲーム (cooperative game)

プレイヤーが互いに交渉して提携 (coaliation) することが可能. ただし,

- 合意に拘束力がある (裏切りは不可)
- ゲームの戦略に関する事前 (ゲーム開始前) の交渉

非協力ゲーム (noncooperative game)

事前に拘束力のある合意を取ることができない

• ゲーム内での合意や提携は許される

非協力ゲームの例

- (繰り返し) じゃんけんゲーム、(繰り返し) 囚人のジレンマ
- 交互提案ゲーム ⇒ ゲーム内で交渉・合意を行うため、非協力ゲーム

交互提案 (alternating offers, sequential bargening) ゲーム

- 1 万円をプレイヤー 1,2 で分配する
- まずプレイヤー 1 が自分の取り分を提案する. プレイヤー 2 が受け入れれば終了
- 次にプレイヤー 2 が自分の取り分を提案する. プレイヤー 1 が受け入れれば終了.
- 以下、これを合意が得られるまで繰り返す

ゲームの種類:有限ゲーム・無限ゲーム

有限ゲーム・無限ゲーム

有限ゲーム (finite game) 有限の手番でゲームが終了する

無限ゲーム (infinite game) 有限の手番でゲームが終了するとは限らない

有限ゲームの例

- オセロ, 将棋*, チェス*, 囲碁*
- * 千日手などは別の方法で解決するとした場合

無限ゲームの例

● 交互提案ゲーム、将棋、チェス、囲碁

ゲームの種類:確定ゲーム・不確定ゲーム

確定ゲーム・不確定ゲーム

確定ゲーム (deterministic game) 偶然に左右されないゲーム

不確定ゲーム (non-deterministic game) 偶然の要素 (偶然手番) があるゲーム

確定ゲームの例

● 将棋、囲碁、チェスなどのボードゲーム

不確定ゲームの例

● ポーカーやブリッジなどのカードゲーム,麻雀

男女の争い (battle of sexes)

- 男女がある夜のデートの後でボクシング観戦かバレエ鑑賞に出かける
- 男はボクシングを、女はバレエをより好むが、二人とも別々の選択をするよりも一緒に出かける方を好む
- お互いに相談はしないものとして、それぞれどちらを選ぶべきか

男女の利得 (男, 女) の表

男 \ 女	ボクシング	バレエ
ボクシング	(4, 1)	(0, 0)
バレエ	(0, 0)	(1, 4)

ポリコレ的に色々まずいので、今は別の形で表すことも多いが、このまま使うことに

男女の争いの分類

ゼロ和・非ゼロ和

ワンショット・繰り返し

同時手番・逐次手番

完全情報 · 不完全情報

情報完備 · 情報不完備

協力・非協力

有限・無限

男女の争い (battle of sexes)

- 男女がある夜のデートの後でボクシング観戦かバレエ鑑賞に出かける
- 男はボクシングを、女はバレエをより好むが、二人とも別々の選択をするよりも一緒に出かける方を好む
- お互いに相談はしないものとして、それぞれどちらを選ぶべきか

男女の利得 (男, 女) の表

男 \ 女	ボクシング	バレエ
ボクシング	(4, 1)	(0, 0)
バレエ	(0, 0)	(1, 4)

ポリコレ的に色々まずいので、今は別の形で表すことも多いが、このまま使うことに

男女の争いの分類

ゼロ和・非ゼロ和

ワンショット・繰り返し

同時手番・逐次手番

完全情報·不完全情報

情報完備 · 情報不完備

協力・非協力

有限・無限

男女の争い (battle of sexes)

- 男女がある夜のデートの後でボクシング観戦かバレエ鑑賞に出かける
- 男はボクシングを、女はバレエをより好むが、二人とも別々の選択をするよりも一緒に出かける方を好む
- お互いに相談はしないものとして、それぞれどちらを選ぶべきか

男女の利得 (男, 女) の表

男 \ 女	ボクシング	バレエ
ボクシング	(4, 1)	(0, 0)
バレエ	(0, 0)	(1, 4)

ポリコレ的に色々まずいので、今は別の形で表すことも多いが、このまま使うことに

男女の争いの分類

ゼロ和・非ゼロ和

ワンショット・繰り返し

同時手番・逐次手番

完全情報 · 不完全情報

情報完備 · 情報不完備

協力・非協力

有限・無限

男女の争い (battle of sexes)

- 男女がある夜のデートの後でボクシング観戦かバレエ鑑賞に出かける
- 男はボクシングを、女はバレエをより好むが、二人とも別々の選択をするよりも一緒に出かける方を好む
- お互いに相談はしないものとして、それぞれどちらを選ぶべきか

男女の利得 (男, 女) の表

男 \ 女	ボクシング	バレエ
ボクシング	(4, 1)	(0, 0)
バレエ	(0, 0)	(1, 4)

ポリコレ的に色々まずいので、今は別の形で表すことも多いが、このまま使うことに

男女の争いの分類

ゼロ和・非ゼロ和

ワンショット・繰り返し

同時手番・逐次手番*

完全情報 · 不完全情報

情報完備 · 情報不完備

協力・非協力

有限・無限

^{*} 逐次手番ゲームとして扱うこともできる

男女の争い (battle of sexes)

- 男女がある夜のデートの後でボクシング観戦かバレエ鑑賞に出かける
- 男はボクシングを、女はバレエをより好むが、二人とも別々の選択をするよりも一緒に出かける方を好む
- お互いに相談はしないものとして、それぞれどちらを選ぶべきか

男女の利得 (男, 女) の表

男 \ 女	ボクシング	バレエ
ボクシング	(4, 1)	(0, 0)
バレエ	(0, 0)	(1, 4)

ポリコレ的に色々まずいので、今は別の形で表すことも多いが、このまま使うことに

男女の争いの分類

ゼロ和・非ゼロ和

ワンショット・繰り返し

同時手番・逐次手番*

完全情報・不完全情報

情報完備 · 情報不完備

協力・非協力

有限・無限

^{*} 逐次手番ゲームとして扱うこともできる

男女の争い (battle of sexes)

- 男女がある夜のデートの後でボクシング観戦かバレエ鑑賞に出かける
- 男はボクシングを、女はバレエをより好むが、二人とも別々の選択をするよりも一緒に出かける方を好む
- お互いに相談はしないものとして、それぞれどちらを選ぶべきか

男女の利得 (男, 女) の表

男 \ 女	ボクシング	バレエ
ボクシング	(4, 1)	(0, 0)
バレエ	(0, 0)	(1, 4)

ポリコレ的に色々まずいので、今は別の形で表すことも多いが、このまま使うことに

男女の争いの分類

ゼロ和・非ゼロ和

ワンショット・繰り返し

同時手番・逐次手番*

完全情報・不完全情報

情報完備・情報不完備

協力・非協力

有限・無限

^{*} 逐次手番ゲームとして扱うこともできる

男女の争い (battle of sexes)

- 男女がある夜のデートの後でボクシング観戦かバレエ鑑賞に出かける
- 男はボクシングを、女はバレエをより好むが、二人とも別々の選択をするよりも一緒に出かける方を好む
- お互いに相談はしないものとして、それぞれどちらを選ぶべきか

男女の利得 (男, 女) の表

男 \ 女	ボクシング	バレエ
ボクシング	(4, 1)	(0, 0)
バレエ	(0, 0)	(1, 4)

ポリコレ的に色々まずいので、今は別の形で表すことも多いが、このまま使うことに

男女の争いの分類

ゼロ和・非ゼロ和

ワンショット・繰り返し

同時手番・逐次手番*

完全情報・不完全情報

情報完備・情報不完備

協力・**非協力**

有限・無限

^{*} 逐次手番ゲームとして扱うこともできる

男女の争い (battle of sexes)

- 男女がある夜のデートの後でボクシング観戦かバレエ鑑賞に出かける
- 男はボクシングを、女はバレエをより好むが、二人とも別々の選択をするよりも一緒に出かける方を好む
- お互いに相談はしないものとして、それぞれどちらを選ぶべきか

男女の利得 (男, 女) の表

男 \ 女	ボクシング	バレエ
ボクシング	(4, 1)	(0, 0)
バレエ	(0, 0)	(1, 4)

ポリコレ的に色々まずいので、今は別の形で表すことも多いが、このまま使うことに

男女の争いの分類

ゼロ和・非ゼロ和

ワンショット・繰り返し

同時手番・逐次手番*

完全情報・不完全情報

情報完備・情報不完備

協力・**非協力**

有限・無限

^{*} 逐次手番ゲームとして扱うこともできる

男女の争い (battle of sexes)

- 男女がある夜のデートの後でボクシング観戦かバレエ鑑賞に出かける
- 男はボクシングを、女はバレエをより好むが、二人とも別々の選択をするよりも一緒に出かける方を好む
- お互いに相談はしないものとして、それぞれどちらを選ぶべきか

男女の利得 (男, 女) の表

男 \ 女	ボクシング	バレエ
ボクシング	(4, 1)	(0, 0)
バレエ	(0, 0)	(1, 4)

ポリコレ的に色々まずいので、今は別の形で表すことも多いが、このまま使うことに

男女の争いの分類

ゼロ和・非ゼロ和

ワンショット・繰り返し

同時手番・逐次手番*

完全情報・不完全情報

情報完備・情報不完備

協力・非協力

有限・無限

^{*} 逐次手番ゲームとして扱うこともできる

標準形ゲーム

標準形ゲーム (normal form game) とは?

ゲームの表現方法の一つ. 戦略形ゲーム (strategic form game) ともいう

標準形ゲームの要素

- プレイヤー数:n
- プレイヤー i が選択可能な行動 (戦略) の集合 (戦略集合): S_i
- プレイヤー i の利得関数 (payoff function) : $f_i(s_1, ..., s_n)$ $(s_j \in S_j)$
 - $f_i(s_1,...,s_n)$: プレイヤー j ($1 \le j \le n$) の行動が s_i のときのプレイヤー i の利得
 - 利得行列 (payoff matrix): 利得関数を表 (行列) で表したもの

戦略は行動計画 (行動の集まり) だが、標準形ゲームでは行動と (純粋) 戦略は同じ意味

例:じゃんけんゲーム

- プレイヤー数 n = 2
- 戦略集合 S₁ = S₂ = { グー, チョキ, パー }
- 利得関数 $f_1(s_1, s_2) = f_2(s_2, s_1)$ (対称ゲーム)

$$f_1(s_1,s_2) = \begin{cases} 0 & ((s_1,s_2) = (\not J -, \not J -), (\mathcal F \exists +, \mathcal F \exists +), (\mathcal N -, \mathcal N -)) \\ 10 & ((s_1,s_2) = (\not J -, \mathcal F \exists +), (\mathcal F \exists +, \mathcal N -), (\mathcal N -, \mathcal J -)) \\ -10 & ((s_1,s_2) = (\not J -, \mathcal N -), (\mathcal F \exists +, \mathcal J -), (\mathcal N -, \mathcal F \exists +)) \end{cases}$$

ゼロ和ゲーム・非ゼロ和ゲーム

ゼロ和ゲーム

任意の s_1, \ldots, s_n の組に対し、

$$\sum_{i=1}^{n} f_i(s_1, \dots, s_n) = 0 \tag{*}$$

が成り立つ

非ゼロ和ゲーム ゼロ和ゲームではないゲーム

定和ゲーム (*) 式の右辺が定数 <math>K のゲーム. ゼロ和ゲームと等価

じゃんけんゲームは明らかにゼロ和ゲーム. たとえば, $(s_1,s_2)=($ グー,チョキ) に対して $\sum_{i=1}^{2}f_i($ グー,チョキ $)=f_1($ グー,チョキ $)+f_2($ グー,チョキ)=10+(-10)=0

囚人のジレンマ (利得は -(刑期)) は,

$$f_1$$
(自白,自白) + f_2 (自白,自白) = -8 + (-8) = -16
 f_1 (黙秘,黙秘) + f_2 (黙秘,黙秘) = -1 + (-1) = -2

より非ゼロ和で、定和でもない.

最適応答

最適応答 (best response)

プレイヤー i の行動 $s_i \in S_i$ が他の n-1 のプレイヤーの行動の組 $s_{-i} = (s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n) \in S_{-i}$ に対して最適応答 (best response) であるとは、

$$f_i(s_i, s_{-i}) = \max_{t_i \in S_i} f_i(t_i, s_{-i})$$

が成り立つことをいう $(f_i(s_i, s_{-i}) = f_i(s_1, \ldots, s_{i-1}, s_i, s_{i+1}, \ldots, s_n)).$

他のプレイヤーの行動が与えられているとして、自身の利得が最適(最大)になる行動

最適応答の例:じゃんけんゲーム

プレイヤー2の「パー」に対するプレイヤー1の最適応答は「チョキ」

最適応答の例:囚人のジレンマ

プレイヤー2の「黙秘」に対するプレイヤー1の最適応答は「自白」

1\2	黙秘	自白
黙秘	(1年,1年)	(10年,3ヶ月)
自白	(3 ヶ月,10年)	(8年,8年)

支配戦略

弱支配 (weak dominance)

プレイヤー i について,行動 s_i が行動 t_i を<mark>弱支配</mark>するとは,以下の 2 条件が成り立つことである.

- 1. すべての $s_{-i} \in S_{-i}$ に対して $f_i(s_i, s_{-i}) \geq f_i(t_i, s_{-i})$
- 2. 少なくとも 1 つの $s_{-i} \in S_{-i}$ に対して $f_i(s_i, s_{-i}) > f_i(t_i, s_{-i})$

(強) 支配 ((strong) dominance)

プレイヤー i について,行動 s_i が行動 t_i を (強) <mark>支配</mark>するとは,以下の条件が成り立つことである.

1. すべての $s_{-i} \in S_{-i}$ に対して $f_i(s_i, s_{-i}) > f_i(t_i, s_{-i})$

最適応答との関係

プレイヤーiの行動 s_i が s_{-i} に対する最適応答なら、 s_i を強支配する行動は存在しない

支配戦略の例:囚人のジレンマ

プレイヤー 1 の「**自白**」は「<mark>黙秘</mark>」を支配する. プレイヤー 2 も同様

1\2	黙秘	自白
黙秘	(1 年 , 1 年)	(10 年 ,3 ヶ月)
自白	(3ヶ月,10年)	(<mark>8 年</mark> ,8 年)

ナッシュ均衡

ナッシュ均衡 (Nash equilibrium)

プレイヤーの行動の組 (s_1^*,\ldots,s_n^*) が**ナッシュ均衡** (Nash equilibrium) であるとは、すべてのプレイヤー i ($1 \le i \le n$) について、 s_i^* が s_{-i}^* に対する最適応答であること、すなわち、任意の i ($1 \le i \le n$) と任意の $s_i \in S_i$ に対して $f_i(s_i,s_{-i}^*) \le f_i(s_i^*,s_{-i}^*)$ が成り立つことをいう.

「ナッシュ」はアメリカ人数学者ジョン・ナッシュ (John Nash) から. 1994 年にノーベル経済学賞を受賞している. 映画「ビューティフル・マインド」(2001) のモデル.

ナッシュ均衡の例: 囚人のジレンマ

ナッシュ均衡は (自白, 自白) のみ.

- (自白, 自白) プレイヤー 1,2 とも、自白から黙秘に変更すると、刑期が 8 年から 10 年に 延びる
- (自白, 黙秘) プレイヤー 2 は、自白すれば刑期が 10 年から 8 年に減る. (黙秘, 自白) も 同様
- (黙秘, 黙秘) プレイヤー 1,2 とも, 黙秘から自白に変更すると, 刑期が 1 年から 3 ヶ月に 減る

1\2	黙秘	自白
黙秘	(1年,1年)	(10年,3ヶ月)
自白	(3ヶ月,10年)	(8 年,8 年)

ナッシュ均衡の例

ナッシュ均衡の例:じゃんけんゲーム

ナッシュ均衡は存在しない.

 $(\acute{\mathcal{J}}-, \acute{\mathcal{J}}-)$ プレイヤー 1, 2 とも、 $\acute{\mathcal{J}}$ ーからパーに変更すると、利得が 0 円から 10 円に増加. $(\mathcal{F}$ ョキ, \mathcal{F} ョキ)、 $(\mathcal{I}$ - $,\mathcal{I}$ -)も同様

(グー, チョキ) プレイヤー 2 は, チョキからパーに変更すると, 利得が -10 円から 10 円 に増加. 他の組合せも同様.

1\2	グー	チョキ	パー
グー	(0円,0円)	(10 円, -10 円)	(-10 円, 10 円)
チョキ	(-10 円, 10 円)	(0円,0円)	(10 円, -10 円)
パー	(10 円, -10 円)	(-10 円, 10 円)	(0 円, 0 円)

練習問題:男女の争いのナッシュ均衡

ナッシュ均衡は?

男 \ 女	ボクシング	バレエ
ボクシング	(4, 1)	(0, 0)
バレエ	(0, 0)	(1, 4)

ナッシュ均衡の例

ナッシュ均衡の例:じゃんけんゲーム

ナッシュ均衡は存在しない.

(グー, グー) プレイヤー 1,2 とも, グーからパーに変更すると, 利得が 0 円から 10 円に増加. (チョキ, チョキ), (パー, パー) も同様

(グー, チョキ) プレイヤー 2 は, チョキからパーに変更すると, 利得が -10 円から 10 円 に増加. 他の組合せも同様.

1\2	グー	チョキ	パー
グー	(0円,0円)	(10 円, -10 円)	(-10 円, 10 円)
チョキ	(-10 円, 10 円)	(0円,0円)	(10 円, -10 円)
パー	(10 円, -10 円)	(-10 円, 10 円)	(0円,0円)

練習問題:男女の争いのナッシュ均衡

ナッシュ均衡は (ボクシング, ボクシング), (バレエ, バレエ) の2つ.

男 \ 女	ボクシング	バレエ
ボクシング	(4 , 1)	(0, 0)
バレエ	(0, 0)	(1 , 4)

ナッシュ均衡の意味 (その 2)

他のプレイヤーの行動を予想して自分の行動を最適化していくと、ナッシュ均衡に収束

囚人のジレンマ

1\2	黙秘	自白
黙秘	(1年, 1年)	(10年,3ヶ月)
自白	(3ヶ月,10年)	(8年,8年)

相手が黙秘すると予想した場合

- プレイヤー 1 「プレイヤー 2 が黙秘する」と予想
 - ⇒ 最適応答は「自白」
- プレイヤー 2 「プレイヤー 1 は,「プレイヤー 2 が黙秘する」と予想して自白する」と予想

 ⇒ 最適応答は「自白」
- プレイヤー 1 「プレイヤー 2 は, 「プレイヤー 1 は, 「プレイヤー 2 が黙秘する」と予想して自白する」と予想し、結局自白する」と予想
 - ⇒ 最適応答は「自白」. (<mark>自白</mark>, **自白**) がナッシュ均衡

相手が自白すると予想した場合

- プレイヤー1 「プレイヤー2が自白する」と予想
 - ⇒最適応答は「自白」
- プレイヤー 2 「プレイヤー 1 は、「プレイヤー 2 が自白する」と予想して自白する」と予想
 - ⇒ 最適応答は「自白」. (<mark>自白</mark>, **自白**) がナッシュ均衡

ナッシュ均衡の意味 (その 2)

- ⊞ .	1.0	、左	٠.
屴	女の	ノギ	Ųγ

男 \ 女	ボクシング	バレエ
ボクシング	(4 , 1)	(0, 0)
バレエ	(0, 0)	(1 , 4)

女が「男はボクシングを選ぶ」と予想した場合

- 女 「男はボクシングを選ぶ」と予想
 - ⇒ 最適応答は「ボクシング」
- 男 「女は, 「男はボクシングを選ぶ」と予想してボクシングを選ぶ」と予想
 - ⇒ 最適応答は「ボクシング」. (ボクシング, ボクシング) がナッシュ均衡

女が「男はバレエを選ぶ」と予想した場合

- 女 「男はバレエを選ぶ」と予想
 - ⇒ 最適応答は「バレエ」
- 男 「女は、「男はバレエを選ぶ」と予想してバレエを選ぶ」と予想
 - ⇒ 最適応答は「バレエ」. (バレエ, バレエ) がナッシュ均衡

ナッシュ均衡の意味 (その3)

		, ,	
1 \ 2	/ グー	チョキ	パー
グー	(0円,0円)	(10 円, -10 円)	(-10 円, 10 円)
チョキ	(-10 円, 10 円)	(0円,0円)	(10 円, -10 円)
パー	(10 円, -10 円)	(-10 円, 10 円)	(0 円, 0 円)

10 & 2 14 2 ゲール

「相手がグー」と予想した場合

- プレイヤー 1 「プレイヤー 2 はグー」と予想
 - ⇒ 最適応答は「パー」
- プレイヤー 2 「プレイヤー 1 は,「プレイヤー 2 はグー」と予想してパー」と予想
 - ⇒ 最適応答は「チョキ」
- プレイヤー 1 「プレイヤー 2 は,「プレイヤー 1 は,「プレイヤー 2 はグー」と予想して パー」と予想」してチョキ」と予想
 - ⇒最適応答は「グー」
- プレイヤー 2 「プレイヤー 1 は,「プレイヤー 2 は,「プレイヤー 1 は,「プレイヤー 2 は グー」と予想してパー」と予想」してチョキ」と予想してグー」と予想 ⇒ 最適応答は「パー」

......

収束しない.ナッシュ均衡は存在しない

ゼロ和2人ゲームのナッシュ均衡

任意の
$$s_1 \in S_1$$
, $s_2 \in S_2$ の組に対して $f_1(s_1, s_2) + f_1(s_1, s_2) = 0$ が成り立つので,
$$f_1(s_1, s_2) = f(s_1, s_2), \quad f_2(s_1, s_2) = -f(s_1, s_2)$$

と表す.

プレイヤー 1 は $f(s_1, s_2)$ の最大化, プレイヤー 2 は $f(s_1, s_2)$ の最小化が目的

ゼロ和 2 人ゲームのナッシュ均衡

 (s_1^*, s_2^*) がナッシュ均衡となるための必要十分条件は、 (s_1^*, s_2^*) が $f(s_1, s_2)$ の<mark>鞍</mark> 点であること.

証明

- プレイヤー 1 の行動 s_1^* はプレイヤー 2 の行動 s_2^* に対する最適応答 $\Leftrightarrow f(s_1, s_1^*) \leq f(s_1^*, s_2^*)$ ($\forall s_1 \in S_1$)
 - $\Leftrightarrow f(s_1^*, s_2^*)$ はプレイヤー 1 の行動に関して極大
- プレイヤー 2 の行動 s_2^* はプレイヤー 1 の行動 s_1^* に対する最適応答 $\Leftrightarrow -f(s_1^*, s_2) \le -f(s_1^*, s_2^*)$ $(\forall s_2 \in S_2)$
 - $\Leftrightarrow f(s_1^*, s_2^*)$ はプレイヤー 2 の行動に関して極小

パレート支配・パレート最適

(弱) パレート支配 (weak Pareto dominance)

行動の組 $(s_1, ..., s_n)$ が行動の組 $(t_1, ..., t_n)$ を (弱) パレート支配するとは,以下の 2 条件が成り立つことである.

- すべての i に対して $f_i(s_1,\ldots,s_n) \geq f_i(t_1,\ldots,t_n)$
- 少なくとも 1 つの i に対して $f_i(s_1,...,s_n) > f_i(t_1,...,t_n)$

強パレート支配 (strong Pareto dominance)

行動の組 (s_1,\ldots,s_n) が行動の組 (t_1,\ldots,t_n) を<mark>強パレート支配</mark>するとは,以下の条件が成り立つことである.

• すべての i に対して $f_i(s_1,\ldots,s_n) > f_i(t_1,\ldots,t_n)$

弱パレート最適 (weakly Pareto optimal)

行動の組 $(s_1^*, ..., s_n^*)$ が<mark>弱パレート最適</mark>であるとは, $(s_1^*, ..., s_n^*)$ を強パレート支配する行動の組が存在しないことをいう.

(強) パレート最適 (strongly Pareto optimal)

行動の組 (s_1^*, \ldots, s_n^*) が (強) <mark>パレート最適</mark>であるとは, (s_1^*, \ldots, s_n^*) を (弱) パレート支配する行動の組が存在しないことをいう.

ナッシュ均衡のパレート最適性

ナッシュ均衡がパレート最適とは限らない

囚人のジレンマ

- パレート最適な行動の組:(黙秘, 黙秘), (黙秘, 自白), (自白, 黙秘)
- ナッシュ均衡 (自白, 自白) はパレート最適ではない

1\2	黙秘	自白
黙秘	(1年,1年)	(10年,3ヶ月)
自白	(3ヶ月,10年)	(8 年,8 年)

男女の争い

- パレート最適な行動の組:(ボクシング, ボクシング), (バレエ, バレエ)
- ナッシュ均衡 (ボクシング, ボクシング), (バレエ, バレエ) はいずれもパレート最適

男 \ 女	ボクシング	バレエ
ボクシング	(4 , 1)	(0, 0)
バレエ	(0, 0)	(1 , 4)

純粋戦略・混合戦略

純粋戦略 (pure strategy) · 混合戦略 (mixed strategy)

純 (粋) 戦略 (pure strategy) 確定的に行動を選択

混合戦略 (mixed strategy) 確率的に行動を選択

標準形ゲームの場合,プレイヤーの行動 = 純粋戦略

混合戦略

- $q_i(s_i)$: プレイヤー i が純粋戦略 (行動) $s_i \in S_i$ を選択する確率
- プレイヤー i の混合戦略を q_i で表す (可能な q_i の集合: Q_i)

期待利得関数 (expected payoff function)

混合戦略の組 (q_1, \ldots, q_n) におけるプレイヤー i の利得を表す関数

$$F_i(q_1, \dots, q_n) = \sum_{s_1 \in S_1} \dots \sum_{s_n \in S_n} \prod_{j=1}^n q_j(s_j) f_i(s_1, \dots, s_n)$$

混合戦略の例:じゃんけんゲーム

グー・チョキ・パーを等確率 (1/3) で選択するプレイヤー 1 の混合戦略 q_1 (グー) = q_1 (チョキ) = q_1 (パー) = 1/3

実行可能利得

実行可能利得 (feasible payoff)

混合戦略を変化させることで実現可能な期待利得関数 (F_1, \ldots, F_n) の値

実行可能利得の例:囚人のジレンマ改

刊期と利得	の対応表
刑期	利得
3ヶ月	5
1年	4
8年	1
10 年	0

行動と利得の表		
1\2	黙秘	自白
黙秘	(4, 4)	(0, 5)
自白	(5, 0)	(1, 1)

プレイヤー 1, 2 が黙秘する確率をそれぞれ
$$p_1$$
, p_2 とする.
$$F_1(q_1,q_2) = 4p_1p_2 + 0p_1(1-p_2) + 5p_1(1-p_2) + 1(1-p_1)(1-p_2)$$
$$= 4p_1p_2 + 0p_1(1-p_2) + 5p_1(1-p_2) + 1(1-p_1)(1-p_2)$$
$$= 4p_1 - p_2 + 1$$
$$F_2(q_1,q_2) = F_1(q_2,q_1) = 4p_2 - p_1 + 1$$
したがって,
$$\binom{F_1(q_1,q_2)}{F_2(q_1,q_2)} = \binom{1}{1} + p_1 \binom{4}{-1} + p_2 \binom{-1}{4}$$

実行可能利得の例:男女の争い

実行可能利得の例:男女の争い

1\2	ボクシング	バレエ
ボクシング	(4, 1)	(0, 0)
バレエ	(0, 0)	(1, 4)

プレイヤー 1,2 がボクシングを選択する確率をそれぞれ p_1 , p_2 とする.

$$\begin{split} F_1(q_1,q_2) &= 4p_1p_2 + 0p_1(1-p_2) + 0p_1(1-p_2) + 1(1-p_1)(1-p_2) \\ &= 5p_1p_2 - (p_1+p_2) + 1 \\ F_2(q_1,q_2) &= 1p_1p_2 + 0p_1(1-p_2) + 0p_1(1-p_2) + 4(1-p_1)(1-p_2) \end{split}$$

$$= 5p_1p_2 - 4(p_1 + p_2) + 4$$

$$x = F_1(q_1, q_2), y = F_2(q_1, q_2)$$
 とおくと,

$$p_1 + p_2 = \frac{1}{3}(x - y) + 1, \quad p_1 p_2 = \frac{1}{15}(4x - y)$$

 $0 \le p_1 \le 1$, $0 \le p_2 \le 1$ より,2 次方程式 $g(t) = t^2 - (p_1 + p_2)t + p_1p_2 = 0$ は $0 \le t \le 1$ の範囲で2つの実数解を持つ.したがって,

$$p_1 p_2 \ge 0 \qquad (g(0) \ge 0)$$

$$1 - (p_1 + p_2) + p_1 p_2 \ge 0 (g(1) \ge 0)$$

$$0 \le \frac{p_1 + p_2}{2} \le 1$$
 $(0 \le (放物線の軸) \le 1)$

$$(p_1 + p_2)^2 - 4p_1p_2 \ge 0$$
 (x 軸と交点を持つ)

実行可能利得の例:男女の争い(続き)

$$\frac{1}{15}(4x - y) \ge 0 \qquad (g(0) \ge 0)$$

$$1 - \left\{\frac{1}{3}(x - y) + 1\right\} + \frac{1}{15}(4x - y) \ge 0 \qquad (g(1) \ge 0)$$

$$0 \le \frac{1}{2}\left\{\frac{1}{3}(x - y) + 1\right\} \le 1 \qquad (0 \le (放物線の軸) \le 1)$$

$$\left(\frac{1}{3}(x - y) + 1\right)^2 - \frac{4}{15}(4x - y) \ge 0 \qquad (x 軸と交点を持つ)$$

混合戦略のナッシュ均衡

混合戦略の最適応答

プレイヤー i の戦略 $q_i \in Q_i$ が他の n-1 のプレイヤーの戦略の組 $q_{-i} = (q_1, \ldots, q_{i-1}, q_{i+1}, \ldots, q_n) \in Q_{-i}$ に対して最適応答であるとは、

$$F_i(q_i, q_{-i}) = \max_{r_i \in Q_i} F_i(r_i, q_{-i})$$

が成り立つことをいう.

混合戦略のナッシュ均衡

プレイヤーの戦略の組 (q_1^*,\ldots,q_n^*) がナッシュ均衡であるとは、すべてのプレイヤー i $(1 \le i \le n)$ について、 q_i^* が q_{-i}^* に対する最適応答であること、すなわち、任意の i $(1 \le i \le n)$ と任意の $q_i \in Q_i$ に対して $F_i(q_i,q_{-i}^*) \le F_i(q_i^*,q_{-i}^*)$ が成り立つことをいう。

混合戦略まで含めて考えると、(プレイヤー・戦略の数が有限なら) ナッシュ均衡 は必ず存在!

混合戦略のナッシュ均衡:囚人のジレンマの例

混合戦略のナッシュ均衡:囚人のジレンマ改の例

1\2	黙秘	自白
黙秘	(4, 4)	(0, 5)
自白	(5, 0)	(1, 1)

プレイヤー 1,2 が黙秘する確率をそれぞれ p_1 , p_2 とする.

- プレイヤー 2 の混合戦略 q_2 (確率 p_2) に対するプレイヤー 1 の最適応答 q_1^* (確率 p_1^*)
 - プレイヤー 1 の黙秘の期待利得: $4p_2 + 0(1 p_2) = 4p_2$
 - プレイヤー 1 の自白の期待利得: $5p_2 + 1(1 p_2) = 4p_2 + 1$

したがって, $p_1^* = 0$.

- プレイヤー 1 の混合戦略 q_1 (確率 p_1) に対するプレイヤー 2 の最適応答 q_2^* (確率 p_2^*)
 - プレイヤー 2 の黙秘の期待利得:4p₁+0(1-p₁) = 4p₁
 - プレイヤー 2 の自白の期待利得: $5p_1 + 1(1 p_1) = 4p_1 + 1$

したがって, $p_2^* = 0$.

● ナッシュ均衡は純粋戦略の組 (自白, 自白) のみ

混合戦略のナッシュ均衡:男女の争いの例

混合戦略のナッシュ均衡:男女の争いの例

1\2	ボクシング	バレエ
ボクシング	(4, 1)	(0, 0)
バレエ	(0, 0)	(1, 4)

プレイヤー 1,2 がボクシングを選択する確率をそれぞれ p_1 , p_2 とする.

- プレイヤー 2 の混合戦略 q_2 (確率 p_2) に対するプレイヤー 1 の最適応答 q_1^* (確率 p_1^*)
 - プレイヤー 1 のボクシングの期待利得: $4p_2 + 0(1 p_2) = 4p_2$
 - プレイヤー 1 のバレエの期待利得: $0p_2 + 1(1 p_2) = 1 p_2$

したがって、
$$p_1^* = \begin{cases} 0 & (0 \le p_2 < 0.2) \\ 任意 & (p_2 = 0.2) \\ 1 & (0.2 < p_2 \le 1) \end{cases}$$

• プレイヤー 1 の混合戦略 q_1 (確率 p_1) に対するプレイヤー 2 の最適応答 q_2^* (確率 p_2^*)

同様に、
$$p_2^* = \begin{cases} 0 & (0 \le p_1 < 0.8) \\ 任意 & (p_1 = 0.8) \\ 1 & (0.8 < p_1 \le 1) \end{cases}$$

- ナッシュ均衡は $(p_1^*, p_2^*) = (0,0)$, (1,1), (0.8,0.2).
- 純粋戦略の組 (ボクシング, ボクシング), (バレエ, バレエ) と, 混合戦略の組 (ボクシング 0.8・バレエ 0.2, ボクシング 0.2・バレエ 0.8)

最適応答・実行可能利得のグラフ

ゼロ和2人ゲームに対する混合戦略のナッシュ均衡

ゼロ和2人ゲーム

期待利得関数 $F_1(q_1,q_2) = -F_2(q_1,q_2) = F(q_1,q_2)$

マクシミン戦略 (maximin strategy)・ミニマックス戦略 (minimax strategy)

• プレイヤー 1 の**マクシミン戦略** (maximin strategy) q_1^* :以下を実現する q_1

$$\max_{q_1 \in Q_1} \min_{q_2 \in Q_2} F(q_1, q_2)$$

• プレイヤー 2 の**ミニマックス戦略** (minimax strategy) q_2^* :以下を実現する q_2

$$\min_{q_2 \in Q_2} \max_{q_1 \in Q_1} F(q_1, q_2)$$

 q_1^* : $(q_2$ に関する期待利得の最小値) を最大化

g*: (q1 に関する期待利得の最大値)を最小化

他のプレイヤーは<mark>自分にとってもっとも不利な戦略</mark> (他プレイヤーにとっては最適応答) を 選択すると予想して,期待利得を最適化 (最大化または最小化)

ゼロ和2人ゲームに対する混合戦略のナッシュ均衡(続き)

マクシミン戦略・ミニマックス戦略の関係

$$\max_{q_1 \in Q_1} \min_{q_2 \in Q_2} F(q_1, q_2) \le \min_{q_2 \in Q_2} \max_{q_1 \in Q_1} F(q_1, q_2)$$

証明

$$\min_{q_2 \in \mathcal{Q}_2} F(q_1, q_2) \le F(q_1, q_2) \le \max_{q_1 \in \mathcal{Q}_1} F(q_1, q_2)$$

したがって,

$$\max_{q_1 \in Q_1} \min_{q_2 \in Q_2} F(q_1, q_2) \le \max_{q_1 \in Q_1} F(q_1, q_2)$$

さらに,

$$\max_{q_1 \in Q_1} \min_{q_2 \in Q_2} F(q_1, q_2) \leq \min_{q_2 \in Q_2} \max_{q_1 \in Q_1} F(q_1, q_2)$$

ミニマックス定理

ゼロ和2人ゲームにおいて

$$\max_{q_1 \in Q_1} \min_{q_2 \in Q_2} F(q_1, q_2) = \min_{q_2 \in Q_2} \max_{q_1 \in Q_1} F(q_1, q_2)$$

が成り立つ.

プレイヤー 1 のマクシミン戦略とプレイヤー 2 のミニマックス戦略の組は、 ナッシュ均衡!

非線形計画問題の双対性との関係

ラグランジュ関数

$$L(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^{r} \mu_j g_j(\mathbf{x})$$

ラグランジュ双対問題 (LD)

sup
$$L_{\mathrm{D}}(\lambda, \mu) = \inf_{x} L(x, \lambda, \mu)$$

s.t. $\lambda \in \mathbb{R}^{m}$, $\mu \in \mathbb{R}^{r}_{>0}$

等価な主問題 (P2)

$$\inf L_{P}(x) = \sup_{\lambda,\mu} L(x,\lambda,\mu)$$
 s.t. $x \in \mathbb{R}^{n}$

弱双対定理

任意の $x \in \mathbb{R}^n$ ((P2) の実行可能解),および任意の $\lambda \in \mathbb{R}^m$, $\mu \in \mathbb{R}^r_{\geq 0}$ ((LD) の実行可能解) について, $L_D(\lambda, \mu) \leq L_P(x)$ が成り立つ. すなわち,

$$\sup_{\lambda,\mu}\inf_{x}L(x,\lambda,\mu)\leq \inf_{x}\sup_{\lambda,\mu}L(x,\lambda,\mu)$$

ゼロ和2人ゲームに対する混合戦略のナッシュ均衡の例

コイン合わせゲーム (matching pennies)

2人のプレイヤーがコインの表裏を同時に選択する. 両者同じ面ならプレイヤー 1 の勝ち,違う面ならプレイヤー 2 の勝ちとし,勝者は敗者に 10 円支払う.

利侍仃列 (10 円 = 利侍 1)		
1\2	裏	表
裏	(1, -1)	(-1, 1)
表	(-1, 1)	(1, -1)

混合戦略のナッシュ均衡:コイン合わせゲーム

プレイヤー 1、プレイヤー 2 が表の確率をそれぞれ p_1, p_2 とすると、利得関数は、

$$F(q_1, q_2) = p_1(p_2 - (1 - p_2)) + (1 - p_1)(-p_2 + (1 - p_2))$$

= $(1 - 2p_1)(1 - 2p_2)$

 $F(q_1,q_2)$ を最小化する q_2 (プレイヤー 2 の最適応答) は、

- 2p₁ < 1 のとき:p₂ = 1. F(q₁,q₂) = 2p₁ 1
- $2p_1 = 1 \mathcal{O} \succeq \mathfrak{F} : 0 \leq p_2 \leq 1$. $F(q_1, q_2) = 0$
- $2p_1 > 1$ のとき: $p_2 = 0$. $F(q_1, q_2) = 1 2p_1$

 $\min_{q_2 \in Q_2} F(q_1,q_2) = \min\{2p_1-1,0,1-2p_1\}$ より,プレイヤー 1 のマクシミン戦略は $p_1^* = 0.5$,そのときの利得関数の値は 0.同様に,プレイヤー 2 のミニマックス戦略は $p_2^* = 0.5$ で,そのときの利得関数の値は 0.各プレイヤーが表裏を等確率で選択するのがナッシュ均衡.