Clustering Part 2

Mohammed Brahimi & Sami Belkacem

Outline

- Overview of Clustering
- Major Clustering Approaches
 - □ K-means Clustering
 - □ Hierarchical Clustering
 - DBSCAN Clustering
- Cluster Evaluation

Hierarchical Clustering

- Hierarchical Clustering produce a set of nested-clusters.
- It does not have to assume any particular number of clusters.
- It may correspond to meaningful taxonomies (e.g., biological taxonomy, animal kingdom, phylogeny reconstruction, ...).

Hierarchical Clustering

- The set of nested clusters can be organized as a hierarchical tree.
- The hierarchical <u>tree</u> of clusters is called a <u>dendrogram</u>, which records the sequences of merges or splits
- Different <u>clustering</u> of the data can be obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster

5 nested clusters of 6 data points

Types of Hierarchical Clustering

Agglomerative:

- Start with the points as individual clusters
- At each step, <u>merge the closest pair of clusters</u> until only one cluster (or *k* clusters) left
- Popular algorithm: AGNES (Agglomerative Nesting)

Divisive:

- Start with one, all-inclusive cluster
- At each step, <u>split the least cohesive clusters</u> until each cluster contains an individual point (or there are k clusters)
- Popular algorithm: DIANA (Divisive Analysis)
- Hierarchical algorithms use a proximity matrix (similarity or distance)
 - Merge or split one cluster at a time

Agglomerative vs Divisive

Agglomerative Clustering Algorithm

- Key Idea: Successively merge the closest clusters
- Basic algorithm:
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains (or **k** clusters left)
- Key operation is the computation of the proximity of two clusters:
 - Different approaches to defining the distance between clusters distinguish the different algorithms (Min, Max, etc.)

How to measure the distance between two clusters?

	p1	p2	рЗ	p4	р5	ļ
p1						
p2						
р3						
p4						
p5						
•						_
· Proximity Matrix						

- 1. MIN
- 2. MAX
- 3. Group Average
- 4. Distance Between Centroids

	p1	p2	рЗ	p4	р5		
p1							
p2							
рЗ							
p4							
р5							
-							
	Proximity Matrix						

- 1. MIN
- 2. MAX
- 3. Group Average
- 4. Distance Between Centroids

	p1	p2	рЗ	p4	р5	ļ
p1						
p2						
р3						
p4						
p5						
•						_
· Proximity Matrix						

- 1. MIN
- 2. MAX
- 3. Group Average
- 4. Distance Between Centroids

	p1	p2	рЗ	p4	р5	<u> </u>	
р1							
p2						-	
р3							
p4							
р5							
Proximity Matrix							

- 1. MIN
- 2. MAX
- 3. Group Average
- 4. Distance Between Centroids

 $proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| \times |Cluster_{j}|}$

	p1	p2	рЗ	p4	р5	<u> </u>	
р1							
p2							
р3							
p4							
р5						_	
Proximity Matrix							

- 1. MIN
- 2. MAX
- 3. Group Average
- 4. Distance Between Centroids

Inter-Cluster Distance

- 1. **Min (Single link):** smallest distance between an element in one cluster and an element in the other, $dist(K_i, K_i) = min(t_{ip}, t_{iq})$
- 2. **Max (Complete link):** largest distance between an element in one cluster and an element in the other, $dist(K_i, K_i) = max(t_{ip}, t_{iq})$
- 3. **Group Average:** avg distance between an element in one cluster and an element in the other, $dist(K_i, K_i) = avg(t_{ip}, t_{iq})$
- 4. **Centroid:** distance between the centroids of two clusters, $dist(K_i, K_j) = dist(C_i, C_j)$

Now that we've understood how to measure the distance between two clusters, let's go back to the steps of the Agglomerative Clustering algorithm.

Agglomerative clustering: Steps 1 and 2

Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

Step 4

Merge the two closest clusters (C2 and C5) and update the matrix

Step 5

Now, the question is "how do we update the proximity matrix?"

Answer: we update the proximity matrix using the different approaches to defining the distance between clusters (Min, Max, etc.)

Note: to compute the distance between an individual data point and a cluster, we consider that data point itself as a cluster

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

- o It detects clusters of any shape by focusing only on the nearest points between clusters, ignoring overall shape.
- o Captures irregularly shaped clusters effectively without assuming specific geometrical forms like **elliptical shapes**.

Limitations of MIN

Original Points

- O Chaining effect: Merges two clusters due to closely paired points, leading to a chain of combined clusters.
- O Noise sensitivity: A single point can alter the cluster's shape.

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strength of MAX

 Robustness to Noise: Less affected by noise because it looks at the farthest points between clusters, forming compact groups less likely to be influenced by outliers.

Limitations of MAX

- Tends to break large clusters into smaller, more distinct ones.
- Biased towards globular clusters

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

Compromise between Single and Complete Link

Strengths

Averaging reduces the influence of noisy data points

Limitations

 Biased towards globular clusters because the average distance favors clusters with compact, closely located points

Hierarchical Clustering: Space and Time Complexity

- N is the number of data points or objects.
- Space: O(N²)
 - O(N^2) because the proximity matrix has N^2 entries for distances between N points.
- <u>Time:</u> O(**N**³)
 - Find the min distance of the matrix $O(N^2)$ * N iterations $\Rightarrow O(N^3)$
 - Complexity can be reduced to $O(N^2 \log(N))$
 - Accelerate finding the minimum using a heap

Strength of Hierarchical Clustering

- Do not have to assume any particular number of clusters.
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level.
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Weakness of Hierarchical Clustering

- Once a decision is made to combine two clusters, it cannot be undone
- Do not scale well: time complexity of $O(n^3)$, n is the number of objects
- No global objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise
 - Difficulty handling clusters of different sizes and non-globular shapes
 - Breaking large clusters

Improvements: Integration of hierarchical and distance-based clustering

Example of Algorithms: BIRCH, CHAMELEON