Hierarchical-block conditioning approximations for high-dimensional multivariate normal probabilities

Hyunseok Yang, Kyeongwon Lee, and Songhyun Kim December 9, 2019

Department of Statistics, SNU

Table of contents

- 1. Introduction
- Multidimensional Conditioning Approximations
 Quasi Monte Carlo Method
- 3. Hierarchical-Block Approximation
- 4. Block Reordering
- 5. Numerical Examples

Cholesky Factorization

Multidimensional Conditioning Approximations

Hierarchical-Block Approximations

Introduction

Introduction

The computation of the multivariate normal (MVN) probability

$$\Phi_n(\mathbf{a}, \mathbf{b}; 0, \mathbf{\Sigma}) = \int_a^b \frac{1}{\sqrt{(2\pi)^n |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2} \mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x}\right) d\mathbf{x}, \quad (1)$$

where $\bf a$ and $\bf b$ are integration limits, the mean vector μ is assumed to be 0, $\bf \Sigma$ is a positive-definite covariance matrix, is required for a variety of applications.

- Various methods to compute MVN probability are suggested such as Richtmyer Quasi-Monte Carlo(QMC) (Genz and Bretz, 2009)
- However, In high-dimensional settings (large n), it is hard to compute (1) directly.
- We review new approaches proposed by Cao et al. (2019) to approximate high-dimensional multivariate normal probability (1) using the hierarchical matrix \mathcal{H} (Hackbusch, 2015) for the covariance matrix Σ .

2

Motivation

The methods are based on

- 1. the bivariate conditioning method (Trinh and Genz, 2015) and
- 2. the hierarchical QMC method (Genton et al., 2018).

Multidimensional Conditioning

Approximations

- MonteCarlo Error bound : $O(N^{-1/2})$ for monte carlo(MC) method
- Genz and Bretz (2009) claimed independent sample points is the reason of slow convergence.
- Via employing low discrepancy sets for sequence, QMC is asymptotically efficient than MC.
- With $\Delta \sim U[0,1]^n$,

$$L_N = \{ \mathbf{z} + \mathbf{\Delta} \mod 1 : \mathbf{z} \in K_N \}$$

 $K_N = \{ i\mathbf{q} \mod 1, i = 1, \cdots, N \}$

where $\mathbf{q} = \sqrt{\mathbf{p}}$ and \mathbf{p} is set of prime numbers.

 Since square root of prime numbers is irrational and linear independent over the rational numbers,

Figure 1: Comparison of MC and QMC sample points(Genz and Bretz, 2009)

$$\begin{split} \Phi_n(\mathbf{a} \leq \mathbf{x} \leq \mathbf{b}; \pmb{\Sigma}) &= \Phi_n(\mathbf{a} \leq \mathbf{L} \mathbf{y} \leq \mathbf{b}; I_n) \\ &= \int_{a_1 \leq I_{11} y_1 \leq b_1}^{b_1} \phi(y_1) \cdots \int_{a_n \leq I_n^t y \leq b_n}^{b_1} \phi(y_n) d\mathbf{y} \\ &= \int_{\tilde{a}_1}^{\tilde{b}_1} \phi(y_1) \int_{\tilde{a}_2(y_1)}^{\tilde{b}_2(y_1)} \phi(y_2) \cdots \int_{\tilde{a}_n(y_1, \cdots, y_{n-1})}^{\tilde{b}_n(y_1, \cdots, y_{n-1})} \phi(y_n) d\mathbf{y} \\ &\text{with } \tilde{a}_i(y_1, \cdots, y_{i-1}) = \frac{a_i - \sum_{j=1}^{i-1} I_{ij} y_j}{I_{ii}} \\ &\text{and } (\tilde{b}_i(y_1, \cdots, y_{i-1})) = \frac{b_i - \sum_{j=1}^{i-1} I_{ij} y_j}{I_{ii}} \\ &= \int_{\Phi(\tilde{a}_1)}^{\Phi(\tilde{b}_1)} \int_{\Phi(\tilde{a}_2(\Phi^{-1}(z_1)))}^{\Phi(\tilde{b}_2(\Phi^{-1}(z_1)))} \cdots \int_{\Phi(\tilde{a}_n(\Phi^{-1}(z_1), \cdots, \Phi^{-1}(z_{n-1})))}^{\Phi(\tilde{b}_n(\Phi^{-1}(z_1), \cdots, \Phi^{-1}(z_{n-1})))} d\mathbf{z}(y_i = \Phi^{-1}(z_i)) \\ &= (e_1 - d_1) \int_0^1 (e_2(w_1) - d_2(w_1)) \cdots \\ &\int_0^1 (e_n(w_1, \cdots, w_{n-1}) - d_n(w_1, \cdots, w_{n-1})) \int_0^1 d\mathbf{w} \\ &\text{with } z_i = d_i + (e_i - d_i) w_i \end{split}$$

```
procedure MVN(\mu, \Sigma, a, b, ns, N)
            L = \text{cholesky}(\Sigma)
            a = a - \mu; b = b - \mu
          T = 0, N = 0, V = 0
           \mathbf{p} = \text{vector of primes less than } \frac{5n \log n + 1}{4}; \mathbf{q} = \sqrt{\mathbf{p}}
 6:
7:
8:
9:
            P = 1_{ns}
            ans = 0
            for i = 1, \dots, ns do
               I_{i} = 0, \Delta \sim U(0, 1)^{n}
10:
            for j = 1, \dots, N do
11:
                 X[1:n, i] = (i+1)q + \Delta
12:
                 X[1:n,j] = 2|X[1:n,j] - floor(X[1:n,j])| - 1
13:
               end for
14:
               sample = O_{n,N}
15:
               s, c, d, dc, P = 0_M
16:
               for j = 1, \dots, n do
17:
                   if i > 1 then
18:
                       c = \min(1, c + X[j - 1, :] \odot dc)

sample[i - 1, 1 : N] = \Phi^{-1}(c)
19:
20:
                       s = \text{sample}[1: i-1, 1: M^T L[1: i-1, i]]
21:
                   end if
22:
                   \mathbf{P} * = \Phi(\frac{b-s}{L[i,i]}) - \Phi(\frac{a-s}{L[i,i]})
23:
               end for
24:
25:
               ans+ = mean(P)
            end for
26:
            return ans / ns
27:
        end procedure
```

Algorithm 1: Multivariate Normal Probability with Quasi Monte Carlo Method

Mendell and Elston (1974), Kamakura (1989), and Trinh and Genz (2015) exploit Cholesky factors from LDL decomposition rather than dealing with original covariance matrix. Biviarate example is follow.

$$\boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{1,1} & \boldsymbol{R}^{\mathcal{T}} \\ \boldsymbol{R} & \boldsymbol{\hat{\Sigma}} \end{pmatrix} \text{, with } \boldsymbol{L} = \begin{pmatrix} \boldsymbol{I}_2 & \boldsymbol{O} \\ 1:\boldsymbol{M} & \boldsymbol{L} \end{pmatrix} \text{ and } \boldsymbol{D} = \begin{pmatrix} \boldsymbol{D}_1 & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{\widehat{D}} \end{pmatrix}$$

,where $\Sigma_{1,1},D_1$ is a 2×2 matrix. From $D_1=\Sigma_{1,1},$ $M=RD_1^{-1},$ $\widehat{D}=\widehat{\Sigma}-MD_1M^T$

$$\Phi_{n}(\mathbf{a}, \mathbf{b}; \mathbf{0}, \mathbf{\Sigma}) = \frac{1}{\sqrt{|\mathbf{D}|(2\pi)^{n}}} \int_{\alpha_{1}}^{\beta_{1}} \int_{\alpha_{2}}^{\beta_{2}} e^{-\frac{1}{2}\mathbf{x}_{2}^{T}\mathbf{D}_{1}^{-1}\mathbf{x}_{2}} \\
\cdots \int_{\alpha_{2k-1}}^{\beta_{2k-1}} \int_{\alpha_{2k}}^{\beta_{2k}} e^{-\frac{1}{2}\mathbf{x}_{2k}^{T}\mathbf{D}_{1}^{-1}\mathbf{x}_{2k}}$$
(3)

Cao et al. (2019) generalizes bivariate method of Trinh and Genz (2015) to *d*-dimensional. Algorithms and details are following.

```
procedure LDL(Σ)
         L \leftarrow I_m, D \leftarrow O_m
        for i = 1 : d : m - d + 1 do
            D[i:i+d-1,i:i+d-1] \leftarrow \Sigma[i:i+d-1,i:i+d-1]
          L[i+d:m,i:i+d-1] \leftarrow \Sigma[i+d:m,i:i+d-1]D^{-1}[i:i+d-1,i:i+d-1]
            \mathbf{\Sigma}[i+d:m,i+d:m] \leftarrow \mathbf{\Sigma}[i+d:m,i+d:m] - \mathbf{L}[i+d:m,i:i+d-1]\mathbf{D}^{-1}[i:i+d-1,i:i+d-1]\mathbf{L}[i:i+d-1]
      i + d - 1, i + d; m
            if i + d < m then
 8:
9:
                D[i+d:m,i+d:m] \leftarrow \Sigma[i+d:m,i+d:m]
            end if
10:
         end for
11:
         return L and D
12:
      end procedure
```

Algorithm 2: LDL decomposition

When $s = \frac{m}{d}$ is integer, results of Algorithm 2, **L**, **D** can be written as

$$\mathbf{L} = \begin{pmatrix} \mathbf{I}_d & \mathbf{O}_d & \cdots & \mathbf{O}_d \\ \mathbf{L}_{2,1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \mathbf{I}_d & \mathbf{O}_d \\ \mathbf{L}_{s,1} & \cdots & \mathbf{L}_{s,s-1} & \mathbf{I}_d \end{pmatrix}, \mathbf{D} = \begin{pmatrix} \mathbf{D}_1 & \mathbf{O}_d & \cdots & \mathbf{O}_d \\ \mathbf{O}_d & \ddots & \ddots & \vdots \\ \vdots & \ddots & \mathbf{D}_{s-1} & \mathbf{O}_d \\ \mathbf{O}_d & \cdots & \mathbf{O}_d & \mathbf{D}_s \end{pmatrix}$$

with *d*-dimensional identity matrix \mathbf{I}_d and *d*-dimensional zero matrix \mathbf{O}_d and *d*-dimensional positive-definite matrix $\mathbf{D}_1, \cdots, \mathbf{D}_s$. As in (3), tranformation, Y = LX provides *m*-dimensional multivariate normal prabability as the product of s *d*-dimensional multivariate normal probabilities as below.

$$\begin{split} & \Phi_{\textit{m}}(\mathbf{a},\mathbf{b};\mathbf{0},\mathbf{\Sigma}) = \int_{\alpha_1}^{\beta_1} \phi_{\textit{d}}(\mathbf{y}_1;\mathbf{D}_1) \int_{\alpha_2}^{\beta_2} \phi_{\textit{d}}(\mathbf{y}_2;\mathbf{D}_2) \cdots \int_{\alpha_s}^{\beta_s} \phi_{\textit{d}}(\mathbf{y}_s;\mathbf{D}_s) \textit{d}\mathbf{y}_s \cdots \textit{d}\mathbf{y}_2 \textit{d}\mathbf{y}_1 \quad (4) \\ & \text{,where } \alpha_i = \mathbf{a}_i - \sum_{j=1}^{i-1} \mathbf{L}_{ij} \mathbf{y}_j, \beta_i = \mathbf{b}_i - \sum_{j=1}^{i-1} \mathbf{L}_{ij} \mathbf{y}_j \end{split}$$

```
1: procedure CMVN(\Sigma, a, b, d)
 2: \mathbf{v} \leftarrow \mathbf{0}, P \leftarrow 1
 3: for i = 1 : s do
 4: i \leftarrow (i-1)d
 5: \mathbf{g} \leftarrow \mathbf{L}[j+1:j+d,1:j]\mathbf{y}[1:j]
 6: \alpha \leftarrow \mathbf{a}[i+1:i+d] - \mathbf{g}
 7: \beta \leftarrow \mathbf{b}[j+1:j+d] - \mathbf{g}
 8: \mathbf{D}' \leftarrow \mathbf{D}[i+1:i+d,i+1:i+d]
 9: P \leftarrow P \cdot \Phi_d(\alpha, \beta; \mathbf{0}, \mathbf{D}')
               \mathbf{v}[i+1:i+d] \leftarrow E[\mathbf{Y}']
10:
       end for
11.
12:
           return P and y
13: end procedure
```

Algorithm 3: d-dimensional conditioning algorithm

Multidimensional Truncated Expectations

The truncated expectation is expressed as

$$E(X^{e_j}) = \frac{1}{\Phi(\mathbf{a}, \mathbf{b}; \boldsymbol{\mu}, \boldsymbol{\Sigma})} \int_{\mathbf{a}}^{\mathbf{b}} x_j \phi_d(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = \frac{1}{\Phi(\mathbf{a}, \mathbf{b}; \boldsymbol{\mu}, \boldsymbol{\Sigma})} F_j^d(\mathbf{a}, \mathbf{b}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

Theorem

(Kan and Robotti, 2017)

$$F_j^d(\mathbf{a}, \mathbf{b}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mu_j \boldsymbol{\Phi}_d(\mathbf{a}, \mathbf{b}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) + \mathbf{e}_j^T \boldsymbol{\Sigma} \mathbf{c}$$

,where c is a vector with lth component defined as

$$\begin{split} c_{l} &= \phi_{1}(\mathbf{a}_{l}; \mu_{l}, \sigma_{l}^{2}) \Phi_{d-1}(\mathbf{a}_{-l}, \mathbf{b}_{-l}; \hat{\boldsymbol{\mu}}^{1}, \hat{\boldsymbol{\Sigma}}_{l}) - \phi_{1}(b_{l}; \mu_{l}, \sigma_{l}^{2}) \Phi_{d-1}(\mathbf{a}_{-l}, \mathbf{b}_{-l}; \hat{\boldsymbol{\mu}}^{2}, \hat{\boldsymbol{\Sigma}}_{l}) \\ \hat{\boldsymbol{\mu}}_{l}^{1} &= \mu_{-l} + \boldsymbol{\Sigma}_{-l,l} \frac{\mathbf{a}_{l} - \mu_{l}}{\sigma_{l}^{2}}, \hat{\boldsymbol{\mu}}_{l}^{2} = \mu_{-l} + \boldsymbol{\Sigma}_{-l,l} \frac{\mathbf{b}_{l} - \mu_{l}}{\sigma_{l}^{2}}, \\ \hat{\boldsymbol{\Sigma}}_{l} &= \boldsymbol{\Sigma}_{-l,-l} - \frac{1}{\sigma_{l}^{2}} \boldsymbol{\Sigma}_{-l,l} \boldsymbol{\Sigma}_{l,-l} \end{split}$$

Theorem 1 has same form with bivariate version of Trinh and Genz (2015) with d=2 and it allows us to calculate E[Y] in Algorithm 3 with Φ which can be obtained with quasi monte calro method proposed by Genz (1992)

Multidimensional Conditioning Approximation with Univariate Reordering

Appropriate integration order on conditioning algorithm possibly improves estiation accuracy

- Schervish (1984): integral with shortest integration interval widths be the outermost integration variables
- Gibson et al. (1994): variables which have smallest expected values be the
 outermost integration variables.
 Since innermost integrals which have smaller variation have the most influence
 with this order, overall variance reduces.
- Trinh and Genz (2015) also employs this ordering, and Cao et al. (2019) generalized it to d-dimensional problem.

Multidimensional Conditioning Approximation with Univariate Reordering

```
1:
2:
3:
4:
         procedure RCMVN(Σ, a, b, d)
                v \leftarrow 0, C \leftarrow \Sigma
            for i = 1 : m do
                     if i > 1 then
                       y[i-1] \leftarrow \frac{\phi(a') - \phi(b')}{\phi(b') + \phi(a')}
  6:
7:
                     end if
                     j \leftarrow \operatorname{argmin}_{i \leq j \leq m} \{ \Phi(\frac{\mathbf{b}[j] - \mathbf{C}[j,1:i-1]\mathbf{y}[1:i-1]}{\sqrt{\sum[j,i] - \mathbf{C}[j,1:i-1]\mathbf{C}^T[j,1:i-1]}}) - \Phi(\frac{\mathbf{a}[j] - \mathbf{C}[j,1:i-1]\mathbf{y}[1:i-1]}{\sqrt{\sum[j,j] - \mathbf{C}[j,1:i-1]\mathbf{C}^T[j,1:i-1]}}) \} 
  8:
9:
                     \Sigma[:, (i, j)] \leftarrow \Sigma[:, (j, i)]; \Sigma[(i, j), :] \leftarrow \Sigma[(j, i), :]
                    C[:, (i, i)] \leftarrow C[:, (j, i)]; C[(i, j), :] \leftarrow C[(j, i), :]
10:
                    a[(i, j)] = a[(j, i)]
11:
            b[(i, j)] = b[(j, i)]
12: C[i, i] \leftarrow \sqrt{\Sigma[i, i] - C[i, 1: i-1]}C^T[i, 1: i-1]
            C[j, l] \leftarrow \frac{\sum [j, l] - C[i, 1:i-1]C^T[j, 1:i-1]}{C[i, l]}, for j = i+1, \cdots, m
13
14: a' = \frac{a[i] - C[i,1:i-1]y[1:i-1]}{C[i,i]}
              b' = \frac{\mathbf{b}[i] - \mathbf{C}[i,1:i-1]y[1:i-1]}{\mathbf{C}[i,i]}
15:
16.
                end for
17:
                return CMVN(Σ, a, b, d) as in Algorithm 3
18: end procedure
```

Algorithm 4: d-dimensional conditioning algorithm with univariate reordering

Hierarchical-Block

Approximation

Hierarchical Cholesky Decomposition

Hackbusch (2015) proposed hiarchical matrix and its cholesky decomposition method. A = LU have the structure

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{11} & O \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} L_{11}^T & L_{12}^T \\ O & L_{22}^T \end{pmatrix}$$

with lower triangular matrix L_{11} , L_{22} . It leads to four tasks:

- (a) compute L_{11} via Cholesky decomposition of A_{11}
- (b) compute L_{12} from $L_{21}L_{11}^T = A_{21}$
- (c) low rank approximation of $L_{12} = UV^T$
- (d) compute L_{22} via Cholesky decomposition of $A_{22}-L_{21}L_{21}^T$

We have applied low rank approximation with svd to (c) each block of its decomposition to make implementation efficiently and save storage while accuracy is preserved. : i.e. $A = UDV^T = \sum_{i=1}^n d_i u_i v_i^T \approx \sum_{i=1}^k d_i u_i v_i^T$.

Hierarchical Cholesky Decomposition

Hierachical cholesky decomposition of $n \times n$ matrix into $m \times m$ blocks is implemented like below.

```
procedure HCHOL(A, n,m,rank)
         for i = 1 : log_2(\frac{n}{m}) do
 3:
4:
5:
6:
7:
8:
9:
             nb = n/2^i
            x = 0, y = nb
            for i = 1 : 2^{i-1} do
               U, D, V = lowrankSVD(A[xbegin + 1 : xbegin + nb, ybegin + 1 : ybegin + nb], rank)
               A[x + 1 : x + nb, v + 1 : v + rank] = UD
               A[x + 1 : x + nb, y + rank + 1 : y + nb] = 0
               A[y + 1 : y + nb, x + 1 : x + rank] = VD
10:
               A[y+1: y+nb, x+rank+1: x+nb] = 0
11:
               x+ = 2nb, y+ = 2nb
12:
             end for
13.
         end for
14: end procedure
```

Algorithm 5: Hierachical cholesky decomposition

The Hierarchical-Block Conditioning Method

Let $\phi_m(\mathbf{x}; \mathbf{\Sigma})$ be a pdf of the m-dimensional normal distribution $N(\mathbf{0}, \mathbf{\Sigma})$ and $(\mathbf{B}, \mathbf{U}\mathbf{V}^T)$ be the hierarchical Cholesky decompostion of the covariance matrix $\mathbf{\Sigma}$. Then,

$$\Phi_{n}(\mathbf{a}, \mathbf{b}; \mathbf{0}, \mathbf{\Sigma}) = \int_{\mathbf{a}'_{1}}^{\mathbf{b}'_{1}} \phi_{m}(\mathbf{x}_{1}; \mathbf{B}_{1} \mathbf{B}_{1}^{T}) \cdots \int_{\mathbf{a}'_{r}}^{\mathbf{b}'_{r}} \phi_{r}(\mathbf{x}_{r}; \mathbf{B}_{r} \mathbf{B}_{r}^{T}) d\mathbf{x}_{r} \cdots d\mathbf{x}_{1}.$$
 (5)

,where $\mathbf{a}', \mathbf{b}', i = 1, \dots, r$, are the corresponding segments of the updated \mathbf{a} and \mathbf{b} .

Note the probabilities $\Phi_m(\mathbf{a}_i, \mathbf{b}_i; \mathbf{0}, \mathbf{B}_i \mathbf{B}_i^T)$ can be computed using

- 1. Quasi-Monte Carlo method (HMVN, Method 1 in Cao et al. (2019))
- 2. d-dimensional conditioning algorithm (HCMVN, Method 2 in Cao et al. (2019))
- d-dimensional conditioning algorithm with univariate reordering (HRCMVN, Method 3 in Cao et al. (2019)).

These methods are more effective and easily parallelizable than the classical methods.

The Hierarchical-Block Conditioning Method

```
x \leftarrow 0 and P \leftarrow 1
           [B, UV] \leftarrow choldecomp_hmatrix(\Sigma)
           for i = 1 : r do
               i \leftarrow (i-1)m
              if i > 1 then
               o_r \leftarrow \text{row offset of } \mathbf{U}_{i-1} \mathbf{V}_{i-1}^T
                o_c \leftarrow \text{column offset of } \mathbf{U}_{i-1} \mathbf{V}_{i-1}^T
                     l \leftarrow \dim(\mathbf{U}_{i-1}\mathbf{V}_{i-1}^T)
10:
                      \mathbf{g} \leftarrow \mathbf{U}_{i-1} \mathbf{V}_{i-1}^T \mathbf{x} [o_c + 1 : o_c + I]
11:
                      a[o_r + 1 : o_r + 1] = a[o_r + 1 : o_r + 1] - g
12:
13:
                      \mathbf{b}[o_r + 1 : o_r + 1] = \mathbf{a}[o_r + 1 : o_r + 1] - \mathbf{g}
             end if
14:
            a_j \leftarrow a[j+1:j+m]
15: \mathbf{b}_{j} \leftarrow \mathbf{b}[j+1:j+m]
16:
          P = P * \Phi_m(\mathbf{a}_i, \mathbf{b}_i; \mathbf{0}, \mathbf{B}_i \mathbf{B}_i^T)
17:
                 x[j+1:j+m] \leftarrow B_i^{-1}E(X_i)
18.
              end for
19: end procedure
```

Algorithm 6: Hierarchical-block conditioning algorithm

Computational Complexity

 $M(\cdot)$ denotes the complexity of the QMC simulation in the given dimension. Table 1 shows that the time efficiency of the d-dimensional conditioning algorithm mainly comes from lowering the dimension in which the QMC simulation is performed.

	MVN prob	Trunc exp	Upd limits
HMVN	$\frac{n}{m}M(m)$	$2nM(m) + O(nm^2)$	O(mn + knlog(n/m))
HCMVN	$\frac{n}{d}M(d)+O(m^2n)$	$2nM(d) + O(nd^2)$	O(mn + knlog(n/m))
HRCMVN	$\frac{n}{d}M(d)+O(m^2n)$	$2nM(d)+O(nd^2)$	O(mn + knlog(n/m))

Table 1: Complexity decomposition of the HMVN, HCMVN, and HRCMVN

- The updating cost is independent of the method.
- The complexity of the univariate reordering is O(m²n), the same as the complexity of computing the MVN probabilities in HCMVN
- Since HCMVN and HRCMVN perform the QMC simulation in d-dimensions, these
 two methods are not greatly affected by the choice of m.

- The cdf value for n-dimensioned multivariate normal variable comprises of m multiplications of d-dimensional integrals.
- Recall the RCMVN algorithm(3): as computing each d-dimensional integral values, integration variables were arranged in order of increasing order of CMVN probability values, from outer to inner
- Permutes the block of LDL-decomposed covariance matrix, in order of RCMVN probability values of each blocks
- Result accuracy and time cost is compared among HMVN, HCMVN, HRCMVN with/without block reordering.

```
procedure Blockrederder(G, \ \rho, \ a, \ b, \ m, \ ind)
G, \rho, a, b, m, \ ind \ given, \ P \leftarrow 0
for i=1: m: n-m+1 do s \leftarrow \inf[i:i+m-1]
A \leftarrow \rho(G,s)
a' \leftarrow a[s]
b' \leftarrow b[s]
P \leftarrow [P, \ RCMVIN(A, \ a', \ b', \ 1).P]
end for sort(ind, \ P, \ m)
return ind end procedure
```

Algorithm 7: Blockwise reordering

```
procedure HCMVN_BRO(a, b, \Sigma, d)
     x \leftarrow 0, P \leftarrow 1, \text{ ind } \leftarrow [1, \dots, n]
     [B, UV] \leftarrow choldecomp\_hmatrix(\Sigma)
     B ← Blockreorder(G, p, a, b, m, ind)
     for i = 1 : r do
         i \leftarrow (i-1)m
         if i > 1 then
               o_r \leftarrow \text{row offset of } \mathbf{U}_{i-1} \mathbf{V}_{i-1}^T
               o_C \leftarrow \text{column offset of } \mathbf{U}_{i-1} \mathbf{V}_{i-1}^T
               l \leftarrow \dim(\mathbf{U}_{i-1}\mathbf{V}_{i-1}^T)
               \mathbf{g} \leftarrow \mathbf{U}_{i-1} \mathbf{V}_{i-1}^T \mathbf{x} [o_C + 1 : o_C + I]
               a[o_r + 1 : o_r + 1] = a[o_r + 1 : o_r + 1] - g
               \mathbf{b}[o_r + 1 : o_r + 1] = \mathbf{a}[o_r + 1 : o_r + 1] - \mathbf{g}
          end if
          a: \leftarrow a[i+1:i+m]
         \mathbf{b} : \leftarrow \mathbf{b}[i+1:i+m]
          P = P * \Phi_m(\mathbf{a}_i, \mathbf{b}_i; \mathbf{0}, \mathbf{B}_i \mathbf{B}_i^T)
         x[j+1:j+m] \leftarrow B_i^{-1}E[X_j]
     end for
end procedure
```

Algorithm 8: Hierarchical-block conditioning algorithm with Block Reordering

Numerical Examples

Cholesky Factorization

- The chol function from LinearAlgebra package
- The dpotrf from LAPACK package
- Hierarchical cholesky decomposition which suggested by Hackbusch (2015) are implemented.

Exponential covariance matrix, $\Sigma_{ij} = exp(-||\mathbf{s}_i - \mathbf{s}_j||/\beta)$ is set with $\beta = 0.3$. n points, $\mathbf{s}_1, \dots, \mathbf{s}_n$ is evenly distributed over unique square with Morton's order which defined recursively as described in figure 2.

Figure 2: Morton's order(Salem and Arab, 2016)

Cholesky Factorization

With various n, three Cholesky methods are applied and results are below table 2. In low rank approximation at algorithm 5, rank is about $n^{1/4}$.

n	256	1024	4096	16384
chol	0.001s	0.0097s	0.414s	156.3s
dpotrf	0.0007s	0.0132s	0.431s	154.1s
hierarchical cholesky	0.153s	0.076s	0.916s	37.3s
Error of hierarchical cholesky	1.06e-7	9.97e-7	1.11e-3	1.87e-3

Table 2: Excution times for Cholesky factorization

- Hierarchical cholesky decomposition is more efficient than other classical cholesky method with large dimension.
- Hierarchical cholesky decomposition provides $\Sigma \approx L_H L_H^T$. Its relative error is defined as $\frac{\|\Sigma L_H L_H^T\|_2}{\|\Sigma\|_2}$
- Table 2 ensures accuracy of hierarchical cholesky decomposition proposed by Hackbusch (2015).

Multivariate Normal Probabilities

- We implement mvn, the function that calculate multivariate normal probabilities using Richtmyer QMC method introduced in subsection 1.
- Varying sample size N and dimension d, two Monte Carlo methods are compared and results are below table 3 and 4.
- We generate N samples from $N(0, I_d)$ and set $\mathbf{a}_i = -\infty$ and $\mathbf{b}_i = 0$, i.e. true probabilities are $1/2^d$ s, and repeat 20 times.
- To summarize the results, QMC is superior to MC in every criterion.

Multivariate Normal Probabilities

(n, d)	4	8	12	16	20
500	12.2%	56.8%	161.9%	100.0%	100.0%
300	0.294ms	0.016ms	0.018ms	0.019ms	0.019ms
1000	9.5%	50.6%	193.8%	100.0%	100.0%
1000	0.046ms	0.041ms	0.028ms	0.028ms	0.034ms
1500	8.9%	38.7%	150.2%	100.0%	100.0%
	0.055ms	0.046ms	0.042ms	0.048ms	0.045ms
2000	5.4%	26.5%	102.4%	100.0%	100.0%
	0.070ms	0.065ms	0.072ms	0.058ms	0.055ms
2500	5.1%	32.0%	100.1%	100.0%	100.0%
	0.073ms	0.092ms	0.081ms	0.083ms	0.076ms

Table 3: Results for the classical Monte Carlo

Multivariate Normal Probabilities

(n, d)	4	8	12	16	20
500	0.0%	0.0%	0.0%	0.0%	0.0%
300	0.058ms	0.003ms	0.006ms	0.006ms	0.011ms
1000	0.0%	0.0%	0.0%	0.0%	0.0%
1000	0.003ms	0.009ms	0.013ms	0.017ms	0.020ms
1500	0.0%	0.0%	0.0%	0.0%	0.0%
1300	0.006ms	0.011ms	0.016ms	0.019ms	0.030ms
2000	0.0%	0.0%	0.0%	0.0%	0.0%
2000	0.011ms	0.012ms	0.012ms 0.013ms 0.025ms	0.025ms	0.036ms
2500	0.0%	0.0%	0.0%	0.0%	0.0%
	0.009ms	0.022ms	0.033ms	0.038ms	0.056ms

Table 4: Results for the Richtmyer Quasi-Monte Carlo

d-dimensional Conditioning Algorithm without/with Reordering

Theorem

Stewart (1980) Let the independent vectors x_1, \dots, x_n be distributed $N(0, \sigma^2 \mathbf{I})$. For $j=1,2,\dots,n-1$, let \mathbf{H}_{x_j} be the Householder transformation that reduces x_j to $r_{jj}\mathbf{e}_1$, where r_{ij} is obtained in QR decomposition of $[x_1,\dots,x_n]$ Let $\mathbf{H}_j=\operatorname{diag}(\mathbf{I}_{j-1},\bar{\mathbf{H}}_j)$. Let $\mathbf{D}=\operatorname{diag}(\operatorname{sign}(r_{11}),\dots,\operatorname{sign}(r_{nn}))$. Then the product $\mathbf{Q}=\mathbf{DH}_1\dots\mathbf{H}_{n-1}$ follows Haar Distribution.

- 250 MVN problems with various values of m and d
- $\Sigma = \mathbf{Q}\mathbf{J}\mathbf{Q}^T$ is simulated with $\mathbf{Q} \sim Haardistribution$ and $J = diag(j_i)$ where $j_1, \cdots, j_m \sim U(0,1)$
- Integration limits $a_i = -\infty$ and $b_i \sim (U, m)$ for $i = 1 \cdots, m$
- Estimated value is compared with approximated value obtained via quasi monte carlo method with a sample size of 10⁴, which ensures error below 10⁻⁴

d-dimensional Conditioning Algorithm without/with Reordering

(m, d)	1	2	4	8	16				
Without univariate reordering									
16	3.7%	3.5%	3.6%	3.8%	2.9%				
	0.029ms	0.201ms	0.431ms		1.372ms				
32	2.4%	2.9%	2.9%		2.7%				
	0.001ms	0.390ms	0.833ms		2.545ms				
64	1.9%	2.1%	2.1%		1.9%				
	0.004ms	0.762ms	1.686ms		5.004ms				
128	1.3%	1.5%	1.3%		1.4%				
120	0.024ms	1.505ms	3.333ms	5.146ms	10.548ms				
With t	ınivariate reor	dering							
16	3.3%	3.1%	3.3%	3.6%	2.7%				
10	0.007ms	0.203ms	0.439ms	0.676ms 1.3 3.3% 2.5 1.283ms 2.5 1.8% 1 2.545ms 5.0 1.2% 1 5.146ms 10.3 3.6% 2 0.680ms 1.3 3.2% 2 1.289ms 2.5 1.9% 1 2.552ms 5.0 1.2% 1	1.363ms				
	2.3%	2.6%	2.6%	3.2%	2.6%				
32	0.004ms	0.393ms	0.841ms	1.289ms	2.544ms				
	2.0%	2.1%	2.1%	1.9%	1.9%				
64	0.014ms	0.773ms	1.695ms	s 2.552ms 5	5.022ms				
	1.2%	1.5%	1.4%	1.2%	1.4%				
128	0.097ms	1.593ms	3.462ms	5.268ms	10.7861ms				

Table 5: Errors and execution times of the d-dimensional conditioning method

Estimation error tended to decrease as d increases with each m since lager d implers less discarded correlation information. Spent time grows to a linear fashion with m while it grows exponentially with d.

Hierarchical-Block Approximations

Methods

- M1, HMVN(): Calculate multivariate normal probabilities using hierarchical-block approximation
- M2, HCMVN(): Calculate multivariate normal probabilities using hierarchical-block conditioning approximation
- M3, HRCMVN(): Calculate multivariate normal probabilities using hierarchical-block conditioning approximation with univarite reordering

Data

- 1. Constant covariance matrix: $k(x_i, x_j) = \theta + (1 \theta)\delta_{ij}$ for some $|\theta| < 1$.
- 2. 1D exponential covariance matrix: $k(x_i, x_j) = \exp(-d_{ij}/\beta)$ for some $\beta > 0$, where d_{ij} is the distance between x_i and x_j .

Hierarchical-Block Approximations

Settings

- Simulation size = 20
- Integration limits $a_i = -\infty$ and $b_i \sim (U, n)$ for $i = 1 \cdots, n$
- $\theta = 0.7$, $d_{ij} = 1$, and $\beta = 10$ as in Cao et al. (2019)
- Fix d = 4 for HCMVN and HRCMVN.

Table 6, Figure 3 and 4 are errors and execution times under the constant covariance structure and 1D exponential covariance structure respectively.

Hierarchical-Block Approximations

m	16			32			64		
n	256	512	1024	256	512	1024	256	512	1024
Coi	Constant covariance structure								
M1	8.22%	7.11%	8.66%	8.94%	7.88%	6.68%	10.58%	8.05%	9.78%
M2	8.37%	7.08%	8.60%	8.91%	7.77%	6.61%	10.58%	8.26%	9.91%
МЗ	8.51%	7.10%	8.70%	9.51%	7.92%	7.00%	10.68%	7.94%	9.63%
1D	1D exponential covariance matrix								
M1	2.87%	0.00%	0.01%	0.07%	1.31%	0.00%	2.65%	0.27%	0.57%
M2	3.28%	0.01%	0.90%	0.07%	1.31%	0.01%	2.65%	0.28%	0.57%
МЗ	4.73%	0.09%	2.11%	2.17%	1.90%	0.16%	3.72%	1.25%	0.66%

Table 6: Relative errors under the constant covariance structure and 1D exponential covariance structure

Hierarchical-Block Approximations- Execution Time i

Figure 3: Execution time (seconds) for the hierarchical-block approximation

Hierarchical-Block Approximations- Execution Time ii

Figure 4: Execution time (seconds) for the hierarchical-block conditioning approximation

The excution times of HCMVN and HRCMVN are significantly smaller than of HMVN even their performances are similar

References

- Cao, J., Genton, M. G., Keyes, D. E., and Turkiyyah, G. M. (2019). Hierarchical-block conditioning approximations for high-dimensional multivariate normal probabilities. *Statistics and Computing*, 29(3):585–598.
- Genton, M. G., Keyes, D. E., and Turkiyyah, G. (2018). Hierarchical decompositions for the computation of high-dimensional multivariate normal probabilities. *Journal of Computational and Graphical Statistics*, 27(2):268–277.
- Genz, A. (1992). Numerical computation of multivariate normal probabilities. *Journal of computational and graphical statistics*, 1(2):141–149.

References ii

- Genz, A. and Bretz, F. (2009). *Computation of multivariate normal and t probabilities*, volume 195. Springer Science & Business Media.
- Gibson, G., Glasbey, C., and Elston, D. (1994). Monte carlo evaluation of multivariate normal integrals and sensitivity to variate ordering.

 Advances in Numerical Methods and Applications, pages 120–126.
- Hackbusch, W. (2015). *Hierarchical matrices: algorithms and analysis*, volume 49. Springer.
- Kamakura, W. A. (1989). The estimation of multinomial probit models: A new calibration algorithm. *Transportation Science*, 23(4):253–265.
- Kan, R. and Robotti, C. (2017). On moments of folded and truncated multivariate normal distributions. *Journal of Computational and Graphical Statistics*, 26(4):930–934.

References iii

- Mendell, N. R. and Elston, R. (1974). Multifactorial qualitative traits: genetic analysis and prediction of recurrence risks. *Biometrics*, pages 41–57.
- Salem, F. K. A. and Arab, M. A. (2016). Comparative study of space filling curves for cache oblivious tu decomposition. *arXiv preprint arXiv:1612.06069*.
- Schervish, M. J. (1984). Algorithm as 195: Multivariate normal probabilities with error bound. *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, 33(1):81–94.
- Stewart, G. W. (1980). The efficient generation of random orthogonal matrices with an application to condition estimators. *SIAM Journal on Numerical Analysis*, 17(3):403–409.
- Trinh, G. and Genz, A. (2015). Bivariate conditioning approximations for multivariate normal probabilities. *Statistics and Computing*, 25(5):989–996.