REDE NEURAL RECORRENTE

Prof. Valmir Macário Filho

DC - UFRPE

VISÃO GERAL

- Conceitos Básicos
- Redes de Elman
- Aplicações
- Treinamento das RNNS
- Dissipação/explosão dos gradientes

CONCEITOS BÁSICOS

REDES DE PROPAGAÇÃO FEEDFOWARD

- Redes de propagação adiante (feedforward networks) consideram que
 - os exemplos de treinamento são IID,
 - entrada e saída têm tamanho fixo.

De que forma considerar dados de tamanhos variados em que há dependências de curto/longo prazo?

MOTIVAÇÃO

- Nem todas as entradas podem ser convertidas para um vetor de tamanho fixo
- Problemas como reconhecimento de fala ou previsão de séries temporais exigem que um sistema armazene e use informações de contexto
 - Exemplo simples: A saída é SIM se número de 1s é par, senão é NÃO
 - 1000010101 YES, 100011 NO, ...
- Difícil/Impossível escolher uma janela de contexto fixa
 - Sempre pode haver uma nova amostra mais do que qualquer coisa vista

REDES RECORRENTES

- Constituem uma ampla classe de redes cuja evolução do estado depende tanto da entrada corrente quanto do estado atual.
- São sistemas Turing-completos (*Turing complete*).
 - i.e., com tempo, dados e neurônios suficientes, RNNs podem aprender qualquer coisa que um computador pode fazer.
- Aplicáveis a dados sequenciais
 - Texto, vídeo, áudio, séries temporais ...

ALGUNS MODELOS HISTÓRICOS

- Rede de Hopfield: proposta por John Hopfield em 1982
- Rede de Jordan: proposta por Michael I. Jordan em 1986
- Rede de Elman: proposta por Jeffrey L. Elman em 1990

REDE DE HOPFIELD

$$w_{ij} = w_{ji}$$
$$w_{ii} = 0$$

- Única camada de neurônios totalmente e simetricamente interconectados a partir de operadores de atraso unitário, não havendo conexões de um neurônio para ele mesmo
- Memória autoassociativa sem camada escondida
- A aprendizagem realizada em um único passo
- Na fase de uso, a propagação de uma entrada requer múltiplos passos até que um estado estável seja atingido (saída da rede)

REDES DE ELMAN E JORDAN

- As redes Jordan mantém o histórico da camada de saída na memória;
- As redes de Elman mantém o histórico da saída das camadas ocultas na memória;
- Podem ser treinadas com o algoritmo de backpropagation

REDES DE ELMAN E JORDAN

REDES DE ELMAN

- Existem duas diferenças principais entre FFNNs e RNNs. A rede neural recorrente usa:
 - sequências como entradas na fase de treinamento, e
 - elementos de **memória**
- Memória é definida como a saída de neurônios de camadas ocultas, que servirão como entradas adicionais para a rede durante os próximos passos de treinamento.

REDES NEURAIS RECORRENTES (RNNS)

 Redes Neurais Recorrentes tem a saída anterior ou estados ocultos como entradas.

 A entrada composta no momento t tem alguma informação histórica sobre os acontecimentos no momento T < t

 As RNNs são úteis porque seus valores intermediários (estado) podem armazenar informações sobre entradas passadas por um tempo que não é fixado a priori

ARQUITETURA RNN

ARQUITETURA RNN

- O estado oculto s_t representa a memória da rede.
- s_t captura informações sobre o que aconteceu em todas as etapas de tempo anteriores.
- A saída ot é calculada exclusivamente com base na memória no tempo t.
- Normalmente, não é possível capturar informações de muitas etapas de tempo atrás.
- Ao contrário de uma rede neural profunda tradicional, que usa parâmetros diferentes em cada camada, uma RNN compartilha os mesmos parâmetros (U, V, W) em todas as etapas.
- Isso reflete o fato de que estamos executando a mesma tarefa em cada etapa, apenas com entradas diferentes. Isso reduz muito o número total de parâmetros que a rede precisa aprender.

RNN FORWARD

---- Pesos compartilhados

RECURRENT NEURAL NETWORKS (RNNS)

 Observe que os pesos são compartilhados ao longo do tempo

 Essencialmente, as cópias da célula RNN são feitas ao longo do tempo (desenrolamento/desdobramento), com diferentes entradas em diferentes etapas de tempo

- Classifique uma
 - crítica de restaurantes no TripAdivisor OU
 - crítica de filmes do IMDB

• • •

como positiva ou negativa

- Entradas: Muitas palavras, uma ou várias sentenças
- Saídas: Positiva/Negativa

- "A comida estava realmente muito boa"
- "O frango atravessou a estrada porque não estava cozido"

LEGENDAGEM DE IMAGEM (IMAGE CAPTIONING)

- Dada uma imagem, produza uma frase descrevendo seu conteúdo
- Inputs: Características de uma imagem (De uma CNN)
- Outputs: Palavras (considere uma sentença)

: O cão está escondido

LEGENDAGEM DE IMAGEM

LEGENDAGEM DE IMAGEM

LEGENDAGEM DE IMAGEM

EXEMPLOS DE LEGENDAS DE IMAGEM

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A herd of elephants walking across a dry grass field.

A close up of a cat laying on a couch.

CENÁRIOS DE ENTRADA - SAÍDA

EXEMPLO DE APLICAÇÃO

Data de saída

RECURRENT NEURAL NETWORK (RNN)

EXEMPLO

lineares

Sequência de entrada: Saída:

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots \dots \begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix}$$

EXEMPLO

Sequência de entrada: Saída

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots \dots \begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix} \begin{bmatrix} 32 \\ 32 \end{bmatrix}$$

02

*0*₁

Alterar a ordem da 32 32 sequência mudará a saída. armazena 16 16 6 Todos os pesos são "1", sem limiar

Todas as funções de ativação são lineares

RNN

Probabilidade de "chegar" em cada slot

A mesma rede neural é usada repetidas vezes

Probabilidade de "Recife" em cada slot

Probabilidade de "2" em cada slot

CLARO QUE PODE SER DEEP ...

VANTAGENS E DESVANTAGENS

- Vantagens da RNN:
 - Pode processar qualquer comprimento de entrada
 - O tamanho do modelo não aumenta com uma entrada longa
 - Computação no passo t pode (em teoria) usar informações de muitos passos anteriores
 - ullet Os pesos são compartilhados entre os tempos ullet as representações são compartilhadas
- Desvantagens da RNN:
 - A computação recorrente é lenta
 - Na prática, é difícil acessar informações de muitos passos anteriores

OTREINAMENTO DA RINI

ARQUITETURA RNN

 Essa rede pode ser visualizada como uma rede neural feed forward desdobrando ao longo do tempo

TREINAMENTO DA RNN

Objetivo: obter os parâmetros de rede que otimizam a função de custo.

Funções de custo: perda logarítmica, erro médio quadrático, etc ...

Métodos:

• Convergência confiável e controlada

Backpropagation: •

Suportado pela maioria dos

frameworks ML

Métodos evolutivos, maximização de expectativas, métodos não paramétricos, otimização de enxame de partículas

Pesquisa

RNN FORWARD

Entrada da rede no tempo t:

$$h(t) = Ux(t) + Ws(t-1)$$

• Função de ativação da entrada no tempo t:

$$s(t) = \sigma(h(t))$$

 Entrada de rede para a unidade de saída no tempo t:

$$a_o(t) = Vs(t)$$

A saída da rede no tempo t :

$$o(t) = \sigma(a_o(t))$$

ARQUITETURA RNN

• Se uma sequência de treinamento começa no tempo t_0 e termina no tempo t_1 , a **função de perda** total é a soma ao longo do tempo do erro quadrático

$$[e(t)]_k = [d(t)]_k - [o(t)]_k$$

$$E(t) = \frac{1}{2}e(t)^T e(t)$$

$$E_{total} = \sum_{t} E(t)$$

BACK-PROPAGATION THROUGH TIME

$$s(t) = \sigma(Ux(t) + Ws(t - 1) + b)$$

$$o(t) = \sigma(Vs(t))$$

Perda da Entropia Cruzada:
$$E(\hat{o}, o) = -\sum_t o \log \hat{o}_t$$

- Desdobre a rede
- Repita para os dados de treinamento:
 - 1. Dada uma sequência de entrada \boldsymbol{x}
- Para t em 0, N-1:

 Passo Forward
 Inicialize o estado intermediário para o valor anterior s(t 1)
 Obtenha a sequência de saída o
 Calcule o erro E(ô, o)
 Back-propagate o erro através do modelo

 - 5. Back-propagate o erro através do modelo desdobrado
 - 6. Média dos pesos
 - Calcule o próximo estado intermediário s(t)

Aplicando a regra da cadeia: $\frac{\partial E_2}{\partial V} = \frac{\partial E_2}{\partial \hat{o}_2} \frac{\partial \hat{o}_2}{\partial V}$

Para o tempo 2:
$$\frac{\partial E_2}{\partial \theta} = \sum_{k=0}^{2} \frac{\partial E_2}{\partial \hat{o}_2} \cdot \frac{\partial \hat{o}_2}{\partial s_0} \cdot \frac{\partial s_2}{\partial s_k} \cdot \frac{\partial s_k}{\partial \theta} \quad \boldsymbol{\theta} \quad \text{- Parâmetros } (U, W)$$

Formulação geral da derivada do erro

$$\frac{\partial E(t)}{\partial \theta} = \sum_{k=0}^{N} \frac{\partial E(t)}{\partial o_k(t)} \frac{\partial o_k(t)}{\partial \theta} = \sum_{k=0}^{N} e_k(t) \frac{\partial o_k(t)}{\partial \theta}$$

Então:

$$\frac{\partial o_i(t+1)}{\partial \theta_{ij}} = f_i'(net_i(t)) \left[\sum_{k=0}^N \sum_{l=0}^L \theta_{kl} \frac{\partial z_l(t)}{\partial \theta} + \delta_k z_j(t) \right]$$

$$z_k(t) = \begin{cases} x_k(t) & \text{if } k \in U \\ w_k(t) & \text{if } k \in W \end{cases}$$

onde δ_{ij} é o delta de Kronecker

$$\delta_{ij} = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$

 Como os sinais de entrada não dependem dos pesos da rede, equação superior se torna

$$\frac{\partial o_i(t+1)}{\partial \theta_{ij}} = f_i' \Big(net_i(t) \Big) \left[\sum_{k=0}^N \sum_{l=0}^L \theta_{kl} \frac{\partial o_l(t)}{\partial \theta} + \delta_k z_j(t) \right]$$

 Porque assumimos que o nosso estado inicial (t = 0) é independente dos pesos, temos

$$\frac{\partial o_k(t_0)}{\partial \theta_{ij}} = 0$$

Portanto, precisamos definir os valores de sensibilidade

$$p_{ij}^k(t) = \frac{\partial o_k(t)}{\partial \theta_{ij}}$$

para cada passo de tempo e todos os apropriados i, j e k. Nós começamos com a condição inicial

$$p_{ij}^k(0) = 0$$

... e calcula pra cada tempo t

$$p_{ij}^{k}(t+1) = f_{k}'(net_{k}(t)) \left[\sum_{k=0}^{N} \sum_{l=0}^{L} o_{kl} p_{ij}^{l}(t) + \delta_{k} z_{j}(t) \right]$$

 O algoritmo consiste em calcular os valores sensitivos e, em seguida, usar o gradiente do peso

$$\Delta\theta_{ij}(t) = n \sum_{k=0}^{\infty} e_k(t) \, p_{ij}^k(t)$$

e a correção total de θ_{ij} é dada por

DISSIPAÇÃO/EXPLOSÃO DOS GRADIENTES

- Dois problemas que podem ocorrer durante o treinamento de RNNs:
 - Vanishing gradients
 - Exploding gradients
- Uma das causas: o fluxo de informação (propagação dos gradientes) em uma RNN ocorre por meio de sequências de multiplicações.

PROBLEMA: DISSIPAÇÃO DO GRADIENTE

Gradientes de neurônios saturados $\rightarrow 0$

- Comum se o espaço de tempo aumenta para *t* maior que 8 ou 10
- Ou se número de camadas aumenta

$$\frac{\partial h_t}{\partial h_0} = \frac{\partial h_t}{\partial h_{t-1}} \cdots \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial h_0}$$

- Decai exponencialmente
- A rede para de aprender, não consegue atualizar
- Impossível aprender correlações entre eventos temporariamente distantes

DISSIPAÇÃO/EXPLOSÃO DOS GRADIENTES

- Vanishing gradients
 - Os gradientes "desaparecem" (i.e., tendem a zero) quando são continuamente multiplicados por números inferiores a um.
- Exploding gradients
 - Os gradientes se tornam exponencialmente grandes quando são multiplicados por números maiores que 1.

EXPLOSÃO DOS GRADIENTES (GRADIENT EXPLOSION)

- Algumas técnicas alternativas para atenuar o problema da dissipação\explosão dos gradientes:
 - Truncar o BPTT (truncated BPTT)
 - Truncar os gradientes (gradient clipping)
 - Usar otimizadores que ajustem adaptativamente a taxa de aprendizado (AdaDelta, RMSProp, Adam, ...).

TRUNCAR O BPTT (TRUNCATED BACKPROPAGATION)

- Corresponde a limitar a quantidade de passos de tempo no passo backward a um valor máximo preestabelecido.
 - e.g., aplicar backprop a cada 10 passos.
- Desvantagem: perda do contexto temporal.
 - "(truncated backpropagation)"

TRUNCAR OS GRADIENTES (TRUNCATED GRADIENTS,

GRADIENT CLIPPING

- Se o comprimento do vetor gradiente ultrapassar um valor máximo preestabelecido, truncar.
- Várias possibilidades...uma delas:
 new_gradients = gradients * threshold / l2_norm(gradients)
- Técnica simples e efetiva!

Algorithm 1 Pseudo-code for norm clipping the gradients whenever they explode

$$\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}$$
 $\mathbf{if} \ \|\hat{\mathbf{g}}\| \geq threshold \ \mathbf{then}$
 $\hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}$
 $\mathbf{end} \ \mathbf{if}$

Fonte: https://arxiv.org/pdf/1211.5063.pdf

DISSIPAÇÃO DOS GRADIENTES (VANISHING GRADIENTS)

- Muito mais difícil de detectar!
- Alternativas de solução:
 - Usar boas estratégias de inicialização dos pesos
 - Usar otimizadores que adaptam a taxa de aprendizado (e.g., RMSProp).
 - Usar regularização (L1/L2) na função de perda
 - Usar LSTMs ou GRUs

