DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

A Brief Introduction to Bayes

Lesson 3

FREQUENTIST STATISTICIAN:

Bayesian Statistician:

The unifying principal is statistical estimation based on **probability**

A bit on motivation....

Data are usually complex & violate the assumptions of classical tests

Forecasts need to be updated (iteratively)

May have multiple sources of data, variability

This complexity can be addressed with modern techniques

LIKELIHOOD

$$L=P(X=x|\theta)=P(data|model)$$

- Probability of observing a given data point x conditional on parameter value θ
- Likelihood principle: a parameter value is more likely than another if it is the one for which the data are more probable

$$y_i = a_0 + a_1 x_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma^2)$$

$$y_i = a_0 + a_1 x_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma^2)$$

Process Model

$$y_i = a_0 + a_1 x_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma^2)$$

Process Model

Data Model

$$y_i = a_0 + a_1 x_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma^2)$$

Process Model

Data Model

Likelihood

$$L = \prod_{i=1}^{n} N(y_i | a_0 + a_1 x_i, \sigma^2)$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left[\frac{-1}{2\sigma^2} \sum_{t=1}^{T} (y_i - a_0 - a_1 x_i)^2\right]$$

- What type of data is it?
 - Continuous
 - Integer / Count
 - Boolean (0/1)
 - Factor / categorical

- What type of data is it?
 - Continuous
 - Integer / Count
 - Boolean (0/1)
 - Factor / categorical
- Are there range restrictions on the data?
 - Are negative values allowed?
 - Is there an upper bound?
 - Are the observed data near the bounds?

- What type of data is it?
 - Continuous
 - Integer / Count
 - Boolean (0/1)
 - Factor / categorical
- Are there range restrictions on the data?
 - Are negative values allowed?
 - Is there an upper bound?
 - Are the observed data near the bounds?
- What process generated this data?

- What type of data is it?
 - Continuous
 - Integer / Count
 - Boolean (0/1)
 - Factor / categorical
- Are there range restrictions on the data?
 - Are negative values allowed?
 - Is there an upper bound?
 - Are the observed data near the bounds?
- What process generated this data?
- What distributions are an appropriate description of the data?

Choosing a Distribution

Constant mean

- Constant mean
- Multiple means by factor (ANOVA)

- Constant mean
- Multiple means by factor (ANOVA)
- As a function of covariates
 - Linear models
 - Generalized linear models
 - Generalize additive models
 - Nonlinear models

- Constant mean
- Multiple means by factor (ANOVA)
- As a function of covariates
 - Linear models
 - Generalized linear models
 - Generalize additive models
 - Nonlinear models
- Hierarchical models (space/time variability)

- Constant mean
- Multiple means by factor (ANOVA)
- As a function of covariates
 - Linear models
 - Generalized linear models
 - Generalize additive models
 - Nonlinear models
- Hierarchical models (space/time variability)
- Dynamic models $N_{t+1} = f(N_t)$

- Constant mean
- Multiple means by factor (ANOVA)
- As a function of covariates
 - Linear models
 - Generalized linear models
 - Generalize additive models
 - Nonlinear models
- Hierarchical models (space/time variability)
- Dynamic models $N_{t+1} = f(N_t)$
- Mechanistic models

P(data | model)? Why not P(model | data)?

- P(data | model)? Why not P(model | data)?
- Uncertainties: Returns a point estimate (single optimum) not a distribution

- P(data | model)? Why not P(model | data)?
- Uncertainties: Returns a point estimate (single optimum) not a distribution
 - requires additional (strained?) assumptions to calculate uncertainties

- P(data | model)? Why not P(model | data)?
- Uncertainties: Returns a point estimate (single optimum) not a distribution
 - requires additional (strained?) assumptions to calculate uncertainties
- Pragmatic: numeric optimization often unreliable for complex models, many parameters

- P(data | model)? Why not P(model | data)?
- Uncertainties: Returns a point estimate (single optimum) not a distribution
 - requires additional (strained?) assumptions to calculate uncertainties
- Pragmatic: numeric optimization often unreliable for complex models, many parameters
- Inference in a vacuum: no prior knowledge, no updating, harder to combine sources of info.

CONDITIONAL = P(X|Y)

MARGINAL = P(X)

CONDITIONAL = P(X|Y)

 $MARGINAL = P(X) = \int P(x,y) dy$

CONDITIONAL = P(X|Y)

 $MARGINAL = P(X) = \int P(x,y) dy$

	Y	!Y	
X	0.3	0.4	0.7
!X	0.3	0	0.3
	0.6	0.4	1

CONDITIONAL = P(X|Y)

 $MARGINAL = P(X) = \int P(x,y) dy$

	Y	!Y	
X	0.3	0.4	0.7
!X	0.3	0	0.3
	0.6	0.4	1

JOINT = P(X,Y)
CONDITIONAL = P(X|Y)
MARGINAL = P(X) =
$$\int P(x,y) dy$$

	Y	!Y	
X	0.3	0.4	0.7
!X	0.3	0	0.3
	0.6	0.4	1

$$CONDITIONAL = P(X | Y) = \frac{P(X, Y)}{P(Y)} = \frac{JOINT}{MARGINAL}$$

JOINT = P(X,Y)
CONDITIONAL = P(X|Y)
MARGINAL = P(X) =
$$\int P(x,y) dy$$

	Y	!Y	
X	0.3	0.4	0.7
!X	0.3	0	0.3
	0.6	0.4	1

$$CONDITIONAL = P(X | Y) = \frac{P(X, Y)}{P(Y)} = \frac{JOINT}{MARGINAL}$$

$$P(X, Y) = P(X | Y)P(Y)$$

JOINT = P(X,Y) CONDITIONAL = P(X|Y) MARGINAL = P(X) = $\int P(x,y) dy$

	Y	!Y	
X	0.3	0.4	0.7
!X	0.3	0	0.3
	0.6	0.4	1

$$CONDITIONAL = P(X | Y) = \frac{P(X, Y)}{P(Y)} = \frac{JOINT}{MARGINAL}$$

$$P(X, Y) = P(X | Y)P(Y)$$

$$P(X) = \int P(X, Y) = \int P(X|Y)P(Y)$$

JOINT = CONDITIONAL * MARGINAL $P(X, \Theta) = P(X | \Theta) * P(\Theta)$

JOINT = CONDITIONAL * MARGINAL $P(X, \Theta) = P(X | \Theta) * P(\Theta)$ $P(\Theta, X) = P(\Theta | X) * P(X)$

JOINT = CONDITIONAL * MARGINAL

$$P(X, \Theta) = P(X \mid \Theta) * P(\Theta)$$

$$P(\Theta, X) = P(\Theta | X) * P(X)$$

$$P(\Theta \mid X) * P(X) = P(X \mid \Theta) * P(\Theta)$$

$$P(X, \Theta) = P(X \mid \Theta) * P(\Theta)$$

$$P(\Theta, X) = P(\Theta | X) * P(X)$$

$$P(\Theta \mid X) * P(X) = P(X \mid \Theta) * P(\Theta)$$

$$\frac{Posterior}{P(\theta|X)} = \frac{P(X|\theta) P(\theta)}{P(X)}$$

$$\frac{P(X|\theta) P(\theta)}{P(X)}$$

JOINT = CONDITIONAL * MARGINAL

$$P(X, \Theta) = P(X \mid \Theta) * P(\Theta)$$

$$P(\Theta, X) = P(\Theta | X) * P(X)$$

$$P(\Theta \mid X) * P(X) = P(X \mid \Theta) * P(\Theta)$$

$$P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)}$$

JOINT = CONDITIONAL * MARGINAL

$$P(X, \Theta) = P(X \mid \Theta) * P(\Theta)$$

$$P(\Theta, X) = P(\Theta | X) * P(X)$$

$$P(\Theta \mid X) * P(X) = P(X \mid \Theta) * P(\Theta)$$

$$posterior$$
 $P(\theta|X)$

$$\frac{likelihood}{P(X|\theta)} \frac{prior}{P(\theta)}$$

$$P(X) = \int P(X,\theta) = \int P(X|\theta)P(\theta)$$

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{\int P(X|\theta)P(\theta)}$$

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{\int P(X|\theta)P(\theta)}$$

P(MODEL DATA)

FALSE POSITIVES

- If a patient has a disease the test returns a positive 99% of the time P(+|D)
- If a patient does not have the disease, the test returns positive 5% of the time P(+ | !D)
- 0.1% of the population has the disease P(D)
- What is the probability that someone who tested positive has the disease? $P(D \mid +)$

$$P(D \mid +) = \frac{P(+ \mid D)P(D)}{P(+ \mid D)P(D) + P(+ \mid !D)P(!D)}$$

$$P(D \mid +) = \frac{P(+ \mid D)P(D)}{P(+ \mid D)P(D) + P(+ \mid !D)P(!D)}$$

$$P(D \mid +) = \frac{0.99 \cdot 0.001}{0.99 \cdot 0.001 + 0.05 \cdot 0.999}$$

$$P(D \mid +) = \frac{P(+ \mid D)P(D)}{P(+ \mid D)P(D) + P(+ \mid !D)P(!D)}$$

$$P(D \mid +) = \frac{0.99 \cdot 0.001}{0.99 \cdot 0.001 + 0.05 \cdot 0.999}$$

$$P(D \mid +) = \frac{0.00099}{0.00099 \cdot 0.04995} \approx 0.019$$

STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

ALSO WORKS WITH DISTRIBUTIONS AND MODELS

ALSO WORKS WITH DISTRIBUTIONS AND MODELS

ALSO WORKS WITH DISTRIBUTIONS AND MODELS

$$P(\vec{\beta}, \sigma^2 | X, Y) = \frac{N(Y | X\vec{\beta}, \sigma^2)P(\sigma^2)P(\beta)}{\int N(Y | X\vec{\beta}, \sigma^2)P(\sigma^2)P(\beta)}$$

ALSO WORKS WITH DISTRIBUTIONS AND MODELS

$$P(\vec{\beta}, \sigma^2 | X, Y) = \frac{N(Y | X\vec{\beta}, \sigma^2)P(\sigma^2)P(\beta)}{\int N(Y | X\vec{\beta}, \sigma^2)P(\sigma^2)P(\beta)}$$

$P(\theta \mid Y) \propto P(Y \mid \theta)P(\theta)$

$$P(\theta \mid Y) \propto P(Y \mid \theta)P(\theta)$$
 Unif(0,1)

$$P(\theta \mid Y) \propto P(Y \mid \theta)P(\theta)$$
 Unif(0,1)

What is $P(y \mid \theta)$?

$$P(\theta \mid Y) \propto P(Y \mid \theta)P(\theta)$$
 Unif(0,1)

What is $P(y \mid \theta)$?

$$L = P(Y | \theta) = Binom(Y | N, \theta)$$

$$P(\theta \mid Y) = \frac{Binom(Y \mid N, \theta)Unif(\theta \mid 0, 1)}{\int_{0}^{1} Binom(Y \mid N, \theta)Unif(\theta \mid 0, 1)}$$

$$P(\theta \mid Y) = \frac{Binom(Y \mid N, \theta)Unif(\theta \mid 0, 1)}{\int_{0}^{1} Binom(Y \mid N, \theta)Unif(\theta \mid 0, 1)}$$

$$P(\theta \mid Y) = \frac{\binom{N}{Y} \theta^{Y} (1 - \theta)^{N - Y} \cdot 1}{\int_{0}^{1} \binom{N}{Y} \theta^{Y} (1 - \theta)^{N - Y} \cdot 1}$$

$$P(\theta \mid Y) = \frac{\theta^{Y} (1 - \theta)^{N - Y}}{\int_{0}^{1} \theta^{Y} (1 - \theta)^{N - Y}}$$

What do I do with this?

$$P(\theta \mid Y) = \frac{\theta^{Y} (1 - \theta)^{N - Y}}{\int_{0}^{1} \theta^{Y} (1 - \theta)^{N - Y}}$$

$$P(\theta | Y) = \frac{\theta^{Y} (1 - \theta)^{N - Y}}{\int_{0}^{1} \theta^{Y} (1 - \theta)^{N - Y}}$$

What do I do with this?

mean? Var? CI?

$$P(\theta \mid Y) = \frac{\theta^{Y} (1 - \theta)^{N - Y}}{\int_{0}^{1} \theta^{Y} (1 - \theta)^{N - Y}}$$

What do I do with this?

mean? Var? CI?

$$Beta(x \mid \alpha, \beta) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{\int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1}}$$

$$P(\theta \mid Y) = \frac{\theta^{Y} (1 - \theta)^{N - Y}}{\int_{0}^{1} \theta^{Y} (1 - \theta)^{N - Y}}$$

What do I do with this?

mean? Var? CI?

$$Beta(x \mid \alpha, \beta) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{\int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1}}$$

$$P(\theta | Y) = Beta(\theta | Y + 1, N - Y + 1)$$

- Posterior <u>is</u> a
 PDF
- → is a random variable
- Interested in § full distribution

Data updates the prior

Data updates the prior

$$L = P(Y|\mu) = N(Y|\mu, \sigma^2) \propto exp \left| \frac{-(Y-\mu)^2}{2\sigma^2} \right|$$

$$L = P(Y|\mu) = N(Y|\mu, \sigma^2) \propto exp \left| \frac{-(Y-\mu)^2}{2\sigma^2} \right|$$

$$prior = P(\mu) = N(\mu \mid \mu_0, \tau^2) \propto exp$$
 $\left| \frac{-(\mu - \mu_0)^2}{2\tau^2} \right|$

$$L = P(Y|\mu) = N(Y|\mu, \sigma^2) \propto exp \left[\frac{-(Y-\mu)^2}{2\sigma^2} \right]$$

$$prior = P(\mu) = N(\mu|\mu_0, \tau^2) \propto exp \left[\frac{-(\mu-\mu_0)^2}{2\tau^2} \right]$$

$$L = P(Y|\mu) = N(Y|\mu, \sigma^2) \propto exp \left[\frac{-(Y - \mu)^2}{2\sigma^2} \right]$$

$$prior = P(\mu) = N(\mu|\mu_0, \tau^2) \propto exp \left[\frac{-(\mu - \mu_0)^2}{2\tau^2} \right]$$
Prior Mean

$$L = P(Y|\mu) = N(Y|\mu, \sigma^2) \propto exp \left[\frac{-(Y-\mu)^2}{2\sigma^2} \right]$$

$$prior = P(\mu) = N(\mu|\mu_0, \tau^2) \propto exp \left[\frac{-(\mu-\mu_0)^2}{2\tau^2} \right]$$
Prior Variance

$$P(\mu \mid Y) = N(Y \mid \mu, \sigma^2) \cdot N(\mu \mid \mu_0, \tau^2)$$

$$P(\mu \mid Y) = N(Y \mid \mu, \sigma^2) \cdot N(\mu \mid \mu_0, \tau^2)$$

$$\propto exp \left[\frac{-(Y-\mu)^2}{2\sigma^2} \right] \cdot exp \left[\frac{-(\mu-\mu_0)^2}{2\tau^2} \right]$$

$$P(\mu \mid Y) = N(Y \mid \mu, \sigma^2) \cdot N(\mu \mid \mu_0, \tau^2)$$

$$\propto exp \left[\frac{-(Y-\mu)^2}{2\sigma^2} \right] \cdot exp \left[\frac{-(\mu-\mu_0)^2}{2\tau^2} \right]$$

$$\propto exp \left[\frac{-(Y-\mu)^2}{2\sigma^2} + \frac{-(\mu-\mu_0)^2}{2\tau^2} \right]$$

$$P(\mu \mid Y) = N \left(\mu \mid \frac{\left(\frac{Y}{\sigma^2} + \frac{\mu_0}{\tau^2}\right)}{\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)}, \frac{1}{\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)} \right)$$

$$P(\mu \mid Y) = N \left(\mu \mid \frac{\left(\frac{Y}{\sigma^2} + \frac{\mu_0}{\tau^2}\right)}{\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)}, \frac{1}{\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)} \right)$$

Precision = 1/variance

$$P(\mu \mid Y) = N \left(\mu \mid \frac{\left(\frac{Y}{\sigma^2} + \frac{\mu_0}{\tau^2}\right)}{\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)}, \frac{1}{\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)} \right)$$

Precision = 1/variance $S = 1/\sigma^2$

$$P(\mu \mid Y) = N \left(\mu \mid \frac{\left(\frac{Y}{\sigma^2} + \frac{\mu_0}{\tau^2}\right)}{\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)}, \frac{1}{\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)} \right)$$

Precision = 1/variance S =

$$S = 1/\sigma^2$$
 $T = 1/\tau^2$

$$P(\mu \mid Y) = N \left(\mu \mid \frac{\left(\frac{Y}{\sigma^2} + \frac{\mu_0}{\tau^2}\right)}{\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)}, \frac{1}{\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)} \right)$$

Precision = 1/variance $S = 1/\sigma^2$ $T = 1/\tau^2$

$$P(\mu \mid Y) = N\left(\mu \mid Y \cdot \frac{S}{S+T} + \mu_0 \cdot \frac{T}{S+T}, \frac{1}{S+T}\right)$$

$$P(\mu \mid Y) = N \left(\mu \mid \frac{\left(\frac{Y}{\sigma^2} + \frac{\mu_0}{\tau^2}\right)}{\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)}, \frac{1}{\left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)} \right)$$

Precision = 1/variance $S = 1/\sigma^2$ $T = 1/\tau^2$

$$P(\mu \mid Y) = N\left(\mu \mid Y \cdot \frac{S}{S+T} + \mu_0 \cdot \frac{T}{S+T}, \frac{1}{S+T}\right)$$

Precision weighted average of data and prior

What if we can't solve the model analytically??

Numerical Methods for Bayes

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{\int P(X|\theta)P(\theta)}$$

- Not just optimization
- Need to integrate denominator
 - Numerical Integration
- Would also like to know the mean, median, mode, variance, quantiles, confidence intervals, etc.

Idea:

Random samples from the posterior

- Approximate PDF with the histogram
- Performs Monte Carlo Integration
- Allows all quantities of interest to be calculated from the sample (mean, quantiles, var, etc)

	TRUE	Sample
mean	5.000	5.000
median	5.000	5.004
var	9.000	9.006
Lower CI	-0.880	-0.881
Upper CI	10.880	10.872

1) Start from some initial parameter value

1) Start from some initial parameter value θ

- 1) Start from some initial parameter value θ
- 2) Calculate the unnormalized posterior

- 1) Start from some initial parameter value θ
- 2) Calculate the unnormalized posterior $P(Y|\theta)P(\theta)$

- 1) Start from some initial parameter value θ
- 2) Calculate the unnormalized posterior $P(Y|\theta)P(\theta)$
- 3) Propose a new parameter value

- 1) Start from some initial parameter value θ
- 2) Calculate the unnormalized posterior $P(Y|\theta)P(\theta)$
- 3) Propose a new parameter value θ^*

- 1) Start from some initial parameter value θ
- 2) Calculate the unnormalized posterior $P(Y|\theta)P(\theta)$
- 3) Propose a new parameter value θ^*
- 4) Calculate the new unnormalized posterior

- 1) Start from some initial parameter value θ
- 2) Calculate the unnormalized posterior $P(Y|\theta)P(\theta)$
- 3) Propose a new parameter value θ^*
- 4) Calculate the new unnormalized posterior $P(Y|\theta^*)P(\theta^*)$

- 1) Start from some initial parameter value θ
- 2) Calculate the unnormalized posterior $P(Y|\theta)P(\theta)$
- 3) Propose a new parameter value θ^*
- 4) Calculate the new unnormalized posterior $P(Y|\theta^*)P(\theta^*)$
- 5) Decide whether or not to accept the new value

- 1) Start from some initial parameter value θ
- 2) Calculate the unnormalized posterior $P(Y|\theta)P(\theta)$
- 3) Propose a new parameter value θ^*
- 4) Calculate the new unnormalized posterior $P(Y|\theta^*)P(\theta^*)$
- 5) Decide whether or not to accept the new value

$$P(accept) = \frac{P(Y|\theta^*)P(\theta^*)}{P(Y|\theta)P(\theta)}$$

- 1) Start from some initial parameter value θ
- 2) Calculate the unnormalized posterior $P(Y|\theta)P(\theta)$
- 3) Propose a new parameter value θ^*
- 4) Calculate the new unnormalized posterior $P(Y|\theta^*)P(\theta^*)$
- 5) Decide whether or not to accept the new value
- 6) Repeat 3-5 $P(accept) = \frac{P(Y|\theta^*)P(\theta^*)}{P(Y|\theta)P(\theta)}$

Example

Normal with known variance, unknown mean

- Prior: N(53,10000)

- Data: y = 43

- Known variance: 100

- Initial conditions, 3 chains starting at -100, 0, 100

MCMC Posterior Density

Advantages

- Multi-dimensional, joint
- Simple
- Robust

Disadvantages

- Sequential samples not independent
- Computationally intensive
- Discard "Burn in" period before convergence
- Assessing convergence

Priors

- Makes it possible to calculate a posterior density of the model parameter rather than the likelihood of the data
- Provides a way of incorporating information that is external to the data set(s) at hand
- Inherently sequential

Previous Posterior = New Prior

Where do Priors come from?

- Uninformative / vague
 - Chosen to have minimal information content, allows the likelihood to dominate the analysis
- Previous analyses
 - Must be equivalent
 - Variance inflation
- "The literature"
 - Meta-analysis
- Expert knowledge

Where do Priors come from?

- Uninformative / vague
 - Ch Prior specification must nt, allows be "blind" to the data in the analysis!!
- Prev
 - Mu
 - Va
- "The
 - Me
- No "double dipping" -leads to falsely overconfident results
- Expert knowledge

How do I choose a prior PDF?

- Analogous to how we choose the data model
 - Range restrictions, shape, etc.
- Conjugacy
 - A prior is conjugate to the likelihood if the posterior
 PDF is in the same family as the prior
 - Allow for closed-form analytical solutions to either full posterior or (in multiparameter models) for the conditional distribution of that parameter.
 - Modern computational methods no longer require conjugacy

Resources

Second Edition

A Tutorial with R, JAGS, and Stan

John K. Kruschke

Bayesian

Mevin B. Hooten

A Statistical Primer for Ecologists

N. Thompson Hobbs and

Models

Texts in Statistical Science **Bayesian Data Analysis** Third Edition Balatwo Number of Births Stroy trends Fast non-conodic compone Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin