1. Problem

Given two points p = (3,4) and q = (5,2) in a Cartesian coordinate system:

- (a) What is the Manhattan distance $d_1(p,q)$?
- (b) What is the Euclidean distance $d_2(p,q)$?
- (c) What is the maximum distance $d_{\infty}(p,q)$?

Solution

The distances are visualized below in green (d_1) , red (d_2) , and blue (d_{∞}) .

Figure 1:

(a)
$$d_1(p,q) = \sum_i |p_i - q_i| = |3 - 5| + |4 - 2| = 4$$
.

(b)
$$d_2(p,q) = \sqrt{\sum_i (p_i - q_i)^2} = \sqrt{(3-5)^2 + (4-2)^2} = 2.828.$$

(c)
$$d_{\infty}(p,q) = \max_{i} |p_{i} - q_{i}| = \max(|3 - 5|, |4 - 2|) = 2.$$