S.N.: 10/687,209 Art Unit: 2616

AMENDMENTS TO THE CLAIMS:

This listing of the claims will replace all prior versions, and listings, of the claims in this application:

1. (Currently Amended) A method comprising:

at a <u>radio link control/medium access control</u> <u>eertain-protocol layer</u>, receiving <u>at least one logical link control packet data unit a first packet data message</u> from an upper protocol layer, <u>wherein each logical link control packet data unit which first packet data message</u> belongs to a <u>certain first packet data protocol context associated with logical link control connection information and wherein quality of service information relating to the logical link control <u>connection information is defined for the certain packet data protocol context characterised by certain first connection information associated with a first service access point indicator,</u></u>

layer, which second packet data message belongs to a second packet data protocol-context characterised by certain second-connection information associated with a second-service access point indicator,

reordering each logical link control packet data unit said first packet data message and said second packet data message at said the radio link control/medium access control eertain protocol layer according to a relative urgency of transmission of the logical link control packet data unit with respect to a buffered logical link control packet data unit based on at least the logical link control connection information and the quality of service information said first and second packet data protocol contexts and according to the first and second service access point indicators, and

delivering the received logical link control packet data unit and the buffered logical link control packet data unit said first packet data message and said second packet data message further from said the radio link control/medium access control certain protocol layer in reordered order,

wherein the method is performed by a mobile station to transfer user data in a wireless packet data network.

2-82. (Canceled).

Art Unit: 2616

83. (New) A method according to claim 1, further comprising, after receiving each logical link control packet data unit, determining whether the radio link control/medium access control

protocol layer already comprises at least one buffered logical link control packet data unit.

84. (New) A method according to claim 1, wherein the logical link control connection

information of the received logical link control packet data unit and the logical link control

connection information of the buffered logical link control packet data unit are different.

85. (New) A method according to claim 1, wherein the logical link control connection

information of the received logical link control packet data unit and the logical link control

connection information of the buffered logical link control packet data unit are similar and the

quality of service information of the received logical link control packet data unit and the quality

of service information of the buffered logical link control packet data unit are different.

86. (New) A method according to claim 1, further comprising, in response to the logical link

control connection information of the received logical link control packet data unit and the

logical link control connection information of the buffered logical link control packet data unit

being similar and the quality of service information of the received logical link control packet

data unit and the quality of service information of the buffered logical link control packet data

unit being quite similar, changing the logical link control connection information of the received

logical link control packet data unit.

87. (New) A method according to claim 86, wherein the received logical link control packet

data unit carries voice data and the buffered logical link control packet data unit carries video

data.

88. (New) A method according to claim 1, wherein at the upper protocol layer the logical link

control connection information is used as internal logical link control information in order to

handle the logical link control packet data unit with appropriate quality of service characteristics.

** 879A.0085.U1 (US)

S.N.: 10/687,209 Art Unit: 2616

89. (New) A method according to claim 1, wherein the received logical link control packet data unit at the radio link control/medium access control protocol layer comprises a logical link control header which indicates at least one service access point indicator at the upper protocol layer and the radio link control/medium access control protocol layer reads the indicated service access point indicator.

- 90. (New) A method according to claim 89, wherein the logical link control header further indicates a window number specific to the service access point indicator at the upper protocol layer and the window number is incremented by one when the upper protocol layer transmits the logical link control packet data unit to the radio link control/medium access control protocol layer.
- 91. (New) A method according to claim 90, wherein the upper protocol layer receives each logical link control packet data unit from the radio link control/medium access control protocol layer in a sequence order according to the window number.
- 92. (New) A method according to claim 1, wherein the logical link control connection information is a service access point indicator.
- 93. (New) A method according to claim 86, wherein the logical link control connection information is changed to be an unused service access point indicator point indicator.
- 94. (New) A method according to claim 1, wherein delivering further comprises buffering the received logical link control packet data unit into a packet data transfer queue for a period of time a current logical link control packet data unit delivery is on-going.
- 95. (New) A method according to claim 1, wherein delivering further comprises, after ending transmission of a current logical link control packet data unit carrying a higher relative urgency of transmission, at the radio link control/medium access control protocol layer starts a timer with a

Art Unit: 2616

predetermined timeout value and after the timer expires, the radio link control/medium access control protocol layer initiates transmission of a logical link control packet data unit carrying a lower relative urgency of transmission if the radio link control/medium access control protocol layer has not received a new logical link control packet data unit message carrying a higher relative urgency of transmission during the predetermined timeout value.

96. (New) A method according to claim 1, wherein delivering further comprises, during transmission of the current logical link control packet data unit carrying the lower relative urgency of transmission, interrupting the transmission by the radio link control/medium access control protocol layer in response to the radio link control/medium access control protocol layer receiving a new logical link control packet data unit carrying a higher relative urgency of transmission, and initiates transmission of the new logical link control packet data unit carrying the higher relative urgency of transmission.

- 97. (New) A method according to claim 96, wherein the logical link control packet data unit carrying the lower relative urgency of transmission is buffered by generating a logical link control packet data unit border into a radio link control data block.
- 98. (New) A method according to claim 1, wherein the wireless packet data network is a general packet radio service Radio Service network.
- 99. (New) A method according to claim 1, wherein the network element is one of a Serving General Packet Radio Support Node, a base station controller, mobile switching center and where a packet control unit comprises a radio link control/medium access control unit.
- 100. (New) A method according to claim 1, wherein the quality of service information relates to a logical link control mode defined in the upper protocol layer.
 - 101. (New) A mobile station comprising
 - a transceiver configured to transmit and receive packet data messages,

Art Unit: 2616

a controller configured to generate packet date protocol context activation messages informing the network about the activation of packet date protocol contexts for transmission of at least one logical link control packet data unit comprising user data, each packet date protocol context defines logical link control connection information relating to an urgency of transmission,

a layered transmission protocol arrangement comprising a radio link control/medium access control protocol layer entity as well as higher protocol layer entities, of which the radio link control/medium access control protocol layer entity is configured to receive from at least one upper protocol layer logical link control packet data units,

wherein each logical link control packet data unit belongs to a certain packet date protocol context associated with logical link control connection information and wherein quality of service information relating to the logical link control connection information is defined for the certain packet date protocol context,

the radio link control/medium access control protocol entity is configured to reorder each received logical link control packet data unit from at least one upper protocol layer according to a relative urgency of transmission of logical link control packet data unit with respect to a buffered logical link control packet data unit based on at least the logical link control connection information and the quality of service information, and

the radio link control/medium access control protocol entity is configured to deliver the received logical link control packet data unit and the buffered logical link control packet data unit further from the radio link control/medium access control protocol layer in reordered order.

102. (New) A mobile station according to claim 101, wherein the mobile station is configured, in response to receiving a logical link control packet data unit, to determine whether the radio link control/medium access control protocol layer entity already comprises at least one buffered logical link control packet data unit.

103. (New) A mobile station according to claim 101, wherein the logical link control connection information of the received logical link control packet data unit and the logical link control connection information of the buffered logical link control packet data unit is different.

879A.0085.U1 (US) S.N.: 10/687,209

and the state of the

Art Unit: 2616

104. (New) A mobile station according to claim 101, wherein the logical link control connection information of the received logical link control packet data unit and logical link control connection information of the buffered logical link control packet data unit are similar and the quality of service information of the received logical link control packet data unit and the

quality of service information of the buffered logical link control packet data unit are different.

105. (New) A mobile station according to claim 101, where the mobile station is configured,

in reponse to the logical link control connection information of the received logical link control

packet data unit and the logical link control connection information of the buffered logical link

control packet data unit being similar and the quality of service information of the received

logical link control packet data unit and the quality of service information of the buffered logical

link control packet data unit being quite similar, to change the logical link control connection

information of the received logical link control packet data unit.

106. (New) A mobile station according to claim 105, wherein the received logical link control

packet data unit carries voice data and the buffered logical link control packet data unit carries

video data.

107. (New) A mobile station according to claim 101, wherein at the upper protocol layer

entity is configured to use the logical link control connection information as an internal logical

link control information in order to handle the logical link control packet data unit with

appropriate quality of service characteristics.

108. (New) A mobile station according to claim 101, wherein the received logical link control

packet data unit at the radio link control/medium access control protocol layer entity comprises a

logical link control header which indicates at least a service access point indicator at the upper

protocol layer entity and the radio link control/medium access control protocol layer entity is

configured to read the service access point indicator.

Art Unit: 2616

109. (New) A mobile station according to claim 108, wherein the logical link control header further indicates a window number specific for the service access point indicator at the upper protocol layer entity and the window number is incremented by one when the upper protocol layer entity transmits the logical link control packet data unit to the radio link control/medium access control protocol layer entity.

- 110. (New) A mobile station according to claim 109, wherein the upper protocol layer entity receives each logical link control packet data unit from the radio link control/medium access control protocol layer entity in-sequence order according to the window number.
- 111. (New) A mobile station according to claim 101, wherein the logical link control connection information is a service access point indicator.
- 112. (New) A mobile station according to claim 105, wherein the logical link control connection information is changed to be an unused service access point indicator.
- 113. (New) A mobile station according to claim 101, wherein the mobile station further comprises a buffer configured to buffer the received logical link control packet data unit into a packet data transfer queue for a period of time while a current logical link control packet data unit delivery is on-going.
- 114. (New) A mobile station according to claim 101, wherein the mobile station further comprises a timer with a predetermined timeout value configured to start after ending transmission of the current logical link control packet data unit carrying the higher relative urgency of transmission.
- 115. (New) A mobile station according to claim 101, wherein the radio link control/medium access control protocol layer entity is configured to interrupt a transmission of a current logical link control packet data unit carrying a lower relative urgency of transmission in response to receiving a new logical link control packet data unit carrying a higher relative urgency of

879A.0085.U1 (US)

S.N.: 10/687,209 Art Unit: 2616

transmission during the transmission.

116. (New) A mobile station according to claim 115, wherein the radio link control/medium access control protocol layer entity is configured to buffer the logical link control packet data unit carrying the lower relative urgency of transmission by generating a logical link control packet data unit border into a radio link control data block.

- 117. (New) A mobile station according to claim 101, wherein the wireless packet data network is a general packet radio service network.
- 118. (New) A mobile station according to claim 101, wherein the quality of service information relates to logical link control mode defined in the upper protocol layer entity.
 - 119. (New) A network element comprising:

a controller configured to generate packet date protocol context activation messages configured to inform a network about activation of packet date protocol context for user data transmission,

a layered transmission protocol arrangement comprising a radio link control/medium access control protocol layer entity and higher protocol layer entities,

where the radio link control/medium access control protocol layer entity is configured:

to receive logical link control packet data units from at least one upper protocol layer wherein each logical link control packet data unit belongs to a certain packet date protocol context associated with logical link control connection information and wherein quality of service information relating to the logical link control connection information is defined for the certain packet date protocol context,

to reorder each received logical link control packet data unit from at least one upper protocol layer according to a relative urgency of transmission of the logical link control packet data unit with respect to a buffered logical link control packet data unit based on at least the logical link control connection information and the quality of service information, and

to deliver the received logical link control packet data unit and the buffered logical link

Art Unit: 2616

control packet data unit further from the radio link control/medium access control protocol layer in reordered order.

120. (New) A network element according to claim 119, wherein the controller is further configured to receive an uplink temporary block flow and, in response to receiving the uplink temporary block flow, to configure the packet date protocol context activation messages.

- 121. (New) A network element according to claim 119, wherein the controller is further configured to determine, during reception, whether the logical link control packet data units are received in-sequence order according the logical link control connection information of The logical link control packet data units.
- 122. (New) A network element according to claim 119, wherein after receiving each logical link control packet data unit, the network element is configured to determine whether the radio link control/medium access control protocol layer entity already comprises at least one buffered logical link control packet data unit.

and the contract of the contra

- 123. (New) A network element according to claim 119, wherein the logical link control connection information of the received logical link control packet data unit and the logical link control connection information of the buffered logical link control packet data unit are different.
- 124. (New) A network element according to claim 119, wherein the logical link control connection information of the received logical link control packet data unit and the logical link control connection information of the buffered logical link control packet data unit are similar and the quality of service information of the received logical link control packet data unit and the quality of service information of the buffered logical link control packet data unit are different.
- 125. (New) A network element according to claim 119, wherein the network element is further configured, in response to the logical link control connection information of the received logical link control packet data unit and the logical link control connection information of the

and the second of the same of the first of and the first of the first of the same of the

Art Unit: 2616

buffered logical link control packet data unit being similar and the quality of service information of the received logical link control packet data unit and the quality of service information of the buffered logical link control packet data unit being quite similar, to change the logical link control connection information of the received logical link control packet data unit.

126. (New) A network element according to claim 119, wherein at the upper protocol layer entity is configured to use the logical link control connection information as an internal logical link control information in order to handle the logical link control packet data unit with appropriate quality of service characteristics.

- 127. (New) A network element according to claim 119, wherein the received logical link control packet data unit at the radio link control/medium access control protocol layer entity comprises a logical link control header which indicates at least a service access point indicator at the upper protocol layer entity and the radio link control/medium access control protocol layer entity is configured to read the service access point indicator.
- 128. (New) A network element according to claim 127, wherein the logical link control header further indicates a window number specific for the service access point indicator at the upper protocol layer and the window number is incremented by one when the upper protocol layer entity transmits the logical link control packet data unit to the radio link control/medium access control protocol layer entity.
- 129. (New) A network element according to claim 128, wherein the upper protocol layer entity is configured to receive each logical link control packet data unit from the radio link control/medium access control layer entity in-sequence order according to the window number.
- 130. (New) A network element according to claim 119, wherein the logical link control connection information is a service access point indicator.
 - 131. (New) A network element according to claim 125, wherein the logical link control

879A.0085.U1 (US) S.N.: 10/687,209

Art Unit: 2616

connection information is changed to be an unused service access point indicator.

132. (New) A network element according to claim 119, wherein the network element further comprises a buffer configured to buffer the received logical link control packet data unit into a

packet data transfer queue for a period of time while a current logical link control packet data

unit delivery is on-going.

133. (New) A network element according to claim 119, wherein the network element further

comprises a timer with a predetermined timeout value configured to begin in response to ending

transmission of a current logical link control packet data unit carrying a higher relative urgency of

transmission.

134. (New) A network element according to claim 119, wherein the radio link

control/medium access control protocol layer entity is configured to interrupt the transmission of

a current logical link control packet data unit carrying a lower relative urgency of transmission in

response to receiving a new logical link control packet data unit carrying a higher relative

urgency of transmission during the transmission of the current logical link control packet data

unit.

135. (New) A network element according to claim 134, wherein the radio link

control/medium access control protocol layer entity is configured to buffer the logical link control

packet data unit carrying the lower relative urgency of transmission by generating a logical link

control packet data unit border into a radio link control data block.

136. (New) A network element according to claim 119, wherein the wireless packet data

network is a general packet radio service network.

137. (New) A network element according to claim 119, wherein the network element is one

of the following network elements: a serving general packet radio support node, a base station

controller, mobile switching center and a packet control unit comprising a radio link

Art Unit: 2616

control/medium access control unit.

138. (New) A network element according to claim 119, wherein the quality of service

information relates to a logical link control mode defined by the upper protocol entity.

139. (New) A method comprising:

at a radio link control/medium access control protocol layer, receiving at least one logical link control packet data unit from an upper protocol layer, wherein each logical link control packet data unit belongs to a certain packet date protocol context associated with logical link control connection information and wherein quality of service quality of service information relating to

the logical link control connection information is defined for the certain packet date protocol

context,

reordering each logical link control packet data unit at the radio link control/medium access control protocol layer according to a relative urgency of transmission of the logical link control packet data unit with respect to a buffered logical link control packet data unit based on at least the logical link control connection information and the quality of service information, and

delivering the received logical link control packet data unit and the buffered logical link control packet data unit further from the radio link control/medium access control protocol layer in reordered order,

wherein the method is performed by a network element of a wireless packet data network.

13