Assignment #3

Introduction to GR, 2020 Fall
International Centre for Theoretical Sciences
Instructor: Prof. Bala Iyer, Tutor: Md Arif Shaikh
Due on October 18, 2020 11:59 PM.

- 1. Problem 7.1, 7.3, 7.6, 7.7, 7.10, 7.11, 7.14 from Exercise of Chapter 7 of D'Inverno's book.
- 2. (a) Let $x^{\alpha}(\lambda)$ describe a timelike geodesic parametrized by a nonaffine parameter λ , and let $t^{\alpha} = dx^{\alpha}/d\lambda$ be the geodesic's tangent vector. Calculate how $\varepsilon \equiv -t_{\alpha}t^{\alpha}$ changes as a function of λ .
 - (b) Let ξ^{α} be a Killing vector. Calculate how $p \equiv \xi_{\alpha} t^{\alpha}$ changes as a function of λ on the same geodesic.
 - (c) Let b^{α} be such that in a spacetime with metric $g_{\alpha\beta}$, $\pounds_b g_{\alpha\beta} = 2cg_{\alpha\beta}$, where c is a constant. Let $x^{\alpha}(\tau)$ describe a timelike geodesic parametrized by proper time τ , and let $u^{\alpha} = dx^{\alpha}/d\tau$ be the four-velocity. Calculate how $q \equiv b_{\alpha}u^{\alpha}$ changes with τ .
- 3. Prove that

$$\xi_1^{\alpha} = \sin \phi \partial_{\theta} + \cot \theta \cos \phi \partial_{\phi} \qquad \xi_2^{\alpha} = -\cos \phi \partial_{\theta} + \cot \theta \sin \phi \partial_{\phi} \tag{1}$$

are the Killing vectors of the spherically symmetric spacetime

$$ds^{2} = -A(r)dt^{2} + B(r)dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$
(2)

4. A particle with electric charge e moves in a spacetime with metric $g_{\alpha\beta}$ in the presence of a vector potential A_{α} . The equations of motion are $u^{\beta}\nabla_{\beta}u_{\alpha}=eF_{\alpha\beta}u^{\beta}$, where u^{α} is the four-velocity and $F_{\alpha\beta}=\nabla_{\alpha}A_{\beta}-\nabla_{\beta}A_{\alpha}$. It is assumed that the spacetime possesses a Killing vector ξ^{α} , so that $\pounds_{\xi}g_{\alpha\beta}=\pounds_{\xi}A_{\alpha}=0$. Prove that

$$(u_{\alpha} + eA_{\alpha})\xi^{\alpha} \tag{3}$$

is constant on the world line of the of the charged particle.

5. A particle moving on a circular orbit in a stationary, axially symmetric spacetime is subjected to a dissipative force which drives it to another, slightly smaller, circular orbit. During the transition, the particle loses an amount $\delta \tilde{E}$ of orbital energy (per unit rest mass) and an amount $\delta \tilde{L}$ of orbital angular momentum (per unit rest mass). Show that these quantities are related by $\delta \tilde{E} = \Omega \delta \tilde{L}$, where Ω is the particle's original angular velocity.

Hints: Express the four-velocity u^{α} of the particle in terms of the Killing vectors, energy angular momentum and orbital velocity. Find the variation δu^{α} . Use the normalization condition $u_{\alpha}u^{\alpha}=-1$.

¹arif.shaikh@icts.res.in