幾性代數与空间解析几何

4.2 线性相关与线性无关

- 一 线性相关与线性无关的定义
- 二 线性相关的一种刻画
- 三 线性相关的判定

一 线性相关与线性无关的定义

1. 线性组合 对于n 维向量 $\beta,\alpha_1,\alpha_2,\dots,\alpha_m$,

若存在一组实数 k_1,k_2,\cdots,k_m 使得

$$\beta = k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_m \alpha_m$$

则称 $\beta \in \alpha_1, \alpha_2, \dots, \alpha_m$ 的线性组合.

或说称 β 可由 $\alpha_1,\alpha_2,\dots,\alpha_m$ 线性表示,

 k_1, k_2, \dots, k_m 是表示系数.

例1. 设
$$\alpha_1$$
=(1,2,-1), α_2 =(2,-3,1), α_3 =(4,1,-1) 证明 α_3 是 α_1 , α_2 的线性组合 设 α_3 = $k_1\alpha_1+k_2\alpha_2$ (4,1,-1)= k_1 (1,2,-1)+ k_2 (2,-3,1)
$$\begin{cases} 4=k_1+2k_2\\1=2k_1-3k_2 \end{cases} \Rightarrow k_1=2,k_2=1$$
 -1=- k_1 + k_2

即
$$\alpha_3 = 2\alpha_1 + \alpha_2$$

例2.设
$$\varepsilon_1 = (1,0,\cdots,0)^{\mathrm{T}}, \varepsilon_2 = (0,1,0,\cdots,0)^{\mathrm{T}},\cdots,\varepsilon_n = (0,0,\cdots,0,1)^{\mathrm{T}}$$

$$\alpha = (a_1, a_2, \dots, a_n)^T$$
,问 α 是否可由 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 线性表示?

设
$$k_1\varepsilon_1 + k_2\varepsilon_2 + \cdots + k_n\varepsilon_n = \alpha$$

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = k_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + k_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

$$\Rightarrow k_1 = a_1, k_2 = a_2, k_n = a_n$$

即
$$\alpha = a_1 \varepsilon_1 + a_2 \varepsilon_2 + \cdots + a_n \varepsilon_n$$

当做结论记住

2. 线性相关

给定n 维向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$,如果存在不全为零的数 k_1,k_2,\cdots,k_m 使

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = 0$$

则称n 维向量组 $\alpha_1,\alpha_2,\dots,\alpha_m$ 线性相关

否则就是 线性无关

线性无关
$$\Leftrightarrow$$
 若 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = 0$,则必有
$$k_1 = k_2 = \dots = k_m = 0$$

例3. 设
$$\alpha_1$$
=(1,2,-1), α_2 =(2,-3,1), α_3 =(4,1,-1) α_1 , α_2 , α_3 的线性相关性? α_3 =2 α_1 + α_2

例4. 设 α_1 =(1,1,-1), α_2 =(2,-3,2), α_3 =(3,-2,1) α_1 , α_2 , α_3 的线性相关性?

设
$$k_1\alpha_1+k_2\alpha_2+k_3\alpha_3=0$$

$$\begin{cases} k_1 + 2k_2 + 3k_3 = 0 & | 1 & 2 & 3 \\ k_1 - 3k_2 - 2k_3 = 0 & | 1 & -3 & -2 \\ -k_1 + 2k_2 + k_3 = 0 & | -1 & 2 & 1 \end{cases} = 0$$

由Cramer法则,上述方程存在非零解,

$$\alpha_1,\alpha_2,\alpha_3$$
 线性相关.

注:

(1) 当向量组中只含有一个向量时

(2) 当向量组中包含两个向量

两个向量线性相关 ⇔对应分量成比例;

对于含有两个向量的向量组,它线性相关的 充要条件是两向量的对应分量成比例,几何意义 是两向量共线;

三个向量相关的几何意义是三向量共面.

(3) 部分组线性相关,则向量组线性相关.

判断:向量组线性相关,则部分组线性相关

(4)若向量组线性无关,则任意一个非零的部分组线性无关.

逆命题不成立

(5)含有零向量的向量组必定线性相关.

$$\varepsilon_n = (0,0,\dots,0,1)$$
线性无关

例6. 设
$$\alpha_1, \alpha_2, \alpha_3$$
 线性无关, $\beta_1 = \alpha_1 + \alpha_2 + \alpha_3$ $\beta_2 = \alpha_2 + \alpha_3, \beta_3 = \alpha_3$, 证明 $\beta_1, \beta_2, \beta_3$ 线性无关 设 $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = 0$ 即 $k_1(\alpha_1 + \alpha_2 + \alpha_3) + k_2(\alpha_2 + \alpha_3) + k_3\alpha_3 = 0$ $k_1\alpha_1 + (k_1 + k_2)\alpha_2 + (k_1 + k_2 + k_3)\alpha_3 = 0$ 因为 $\alpha_1, \alpha_2, \alpha_3$ 线性无关 $k_1 = 0$ $k_1 + k_2 = 0$ ⇒ $k_1 = k_2 = k_n = 0$ $k_1 + k_2 = 0$ 故 $\beta_1, \beta_2, \beta_3$ 线性无关

例7. 设
$$\alpha_1, \alpha_2, \dots, \alpha_m$$
 线性无关, $\beta = \alpha_1 + \alpha_2 + \dots + \alpha_m$ 证明 $\beta - \alpha_1, \beta - \alpha_2, \dots \beta - \alpha_m$ 线性无关 设 $k_1(\beta - \alpha_1) + k_2(\beta - \alpha_2) + \dots + k_m(\beta - \alpha_m) = 0$
$$(k_2 + \dots + k_m)\alpha_1 + (k_1 + k_3 + \dots + k_m)\alpha_2 + \dots + (k_1 + k_2 + \dots + k_{m-1})\alpha_m = 0$$

$$\begin{cases} k_{2} + k_{3} + \dots + k_{m-1} + k_{m} = 0 \\ k_{1} + k_{3} + \dots + k_{m-1} + k_{m} = 0 \\ \dots \\ k_{1} + k_{2} + k_{3} + \dots + k_{m-1} = 0 \end{cases}$$

$$\begin{vmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 1 \\ \dots & & = (-1)^{n-1}(n-1) \neq 0 \\ 1 & 1 & \cdots & 0 \end{vmatrix}$$

由Cramer法则,上述方程存在非零解,

$$\beta - \alpha_1, \beta - \alpha_2, \cdots \beta - \alpha_m$$
 线性无关关.

二 线性相关性的一种刻画

定理一 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m (m \ge 2)$ 线性相关 \Leftrightarrow $\alpha_1,\alpha_2,\cdots,\alpha_m$ 中至少有一个向量可用其余m-1 个 向量线性表示

逆否命题

向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m (m \ge 2)$ 线性无关 \Leftrightarrow 其中任一向量均不能由其余向量线性表示.

判断下列命题是否正确 P136 5

- (1) 若有常数 k_1,k_2,k_3 ,使得 $k_1\alpha_1+k_2\alpha_2+k_3\alpha_3=0$,则向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关. ×
- (2)若 β 不能表示为 α_1,α_2 的线性组合,则向量组 α_1,α_2,β 线性无关. \times
- (3) α_1 , α_2 线性无关,且 β 不能由 α_1 , α_2 的线性表示,则向量组 α_1 , α_2 , β 线性无关. √
- (4) 若向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,则 $\alpha_1,\alpha_2,\alpha_3$ 中任意向量都可由其余两个向量线性表示. ×

- (5) 若向量组 $\alpha_1,\alpha_2,\alpha_3$ 中任意向量都可由其余两个向量线性表示,则 $\alpha_1,\alpha_2,\alpha_3$ 线性相关. $\sqrt{}$
 - (6) 若向量组 $\alpha_1,\alpha_2,\alpha_3$ 中任意两个向量都线性无关,则 $\alpha_1,\alpha_2,\alpha_3$ 线性无关; ×
 - (7) 设有一组常数 k_1, k_2, k_3 , 使得 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$, 且 α_3 可由 α_1, α_2 线性表示,则 $k_3 \neq 0$; ×
 - (8) 若 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关,且 $\sum_{i=1}^n k_i \alpha_i = 0$,则 k_1, k_2, \dots, k_n 不全为零 ×

定理二 $\alpha_1, \alpha_2, \dots, \alpha_r$ 均为n 维列向量, $\Diamond A = (\alpha_1, \alpha_2, \dots, \alpha_r)$,

则向量组 $\alpha_1,\alpha_2,\dots,\alpha_r$ 线性相关 \Leftrightarrow 齐次线性方程组 Ax=0 存在非零解.

定理三 矩阵判别法

设有
$$n \times m$$
矩阵 $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}$.

则A 的列向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$

- (1) 线性相关 $\Leftrightarrow R(A) < m(A)$ 的列数)
- (2) 线性无关 $\Leftrightarrow R(A)=m(A)$ 的列数)

A 的行向量组线性无关 \Leftrightarrow R(A)=A 的行向量的个数 A 为n 阶方阵时,A 的列向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关 \Leftrightarrow $|A|\neq 0$

推论1

$$egin{aligned} egin{aligned} & egin{aligned} & a_{1i} \\ & a_{2i} \\ & dots \\ & a_{ri} \end{aligned}, \quad eta_i = egin{pmatrix} a_{1i} \\ & dots \\ & a_{ri} \\ & a_{r+1,i} \\ & dots \\ & a_{r+s,i} \end{aligned}, \quad (i=1,2,\cdots,m), \end{aligned}$$
 若向量组 $eta_1, lpha_2, \cdots, lpha_m$ 线性无关,则

向量组 $\beta_1, \beta_2, \dots, \beta_m$ 也线性无关.

若向量组 $\beta_1,\beta_2,\cdots,\beta_m$ 线性相关,则 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 也线性相关.

推论2 若向量组 $\alpha_1,\alpha_2,\dots,\alpha_m$ 是n 维向量组,若 $m > n, \text{则} \alpha_1,\alpha_2,\dots,\alpha_m$ 必定线性相关. 任意n+1个n维向量必定线性相关

例8. P135 3

A 是n 阶可逆矩阵, $\alpha_1,\alpha_2,\cdots,\alpha_k$ 是k 个n 维列向量, 试证 $\alpha_1,\alpha_2,\cdots,\alpha_k$ 线性无关 \Leftrightarrow $A\alpha_1,A\alpha_2,\cdots,A\alpha_k$ 线性无关

作业 P135 3, 4(3,5)

P136 8, 9