Obliczenie opadu średniego w zlewni

1. Metoda średniej arytmetycznej

$$P_{\dot{s}r} = \frac{\sum_{i=1}^{n} P_i}{n}$$

gdzie:

- liczba posterunków opadowych na terenie zlewni,

P_i - wysokość opadu zmierzona w stacji "i" [mm].

gdzie:

A_i - powierzchnia, na której wysokość opadu jest równa P_i [km²],

A - całkowita powierzchnia zlewni [km²],

P_i - wysokość opadu zmierzona w stacji "i" [mm],

n -liczba wieloboków równego opadu.

3. Metoda izohiet

$$P_{\dot{s}r} = \frac{\sum_{i=1}^{n} P_{sri} A_i}{A}$$

gdzie:

powierzchnia zawarta pomiędzy izohietami [km²],
całkowita powierzchnia zlewni [km²],
średnia wysokość opadu pomiędzy izohietami [mm]. A_i

 $P_{\text{\'sri}}$

4. Metoda krzywej hipsometrycznej

$$V_{P} = \int_{A} P \, dA$$

$$P_{sr} = \frac{V_{P}}{A}$$

$$P_{sr} = \frac{V_P}{A}$$

gdzie:

- objętość opadu (pole powierzchni pod krzywą pluwiometryczną) [mm km²], \dot{V}_{P}

- całkowita powierzchnia zlewni [km²].

5. Metoda odwrotnych odległości - MOO

gdzie:

 P_k - wysokość opadu w rozpatrywanym punkcie k [mm],

P_i – wysokość opadu zmierzona w posterunku opadowym "i" [mm],

 l_{kp} - odległość punktu k od posterunku opadowego p[m],

m - stała, której wartość przyjmowana jest zależnie od topografii terenu (wartość m waha się od 1 dla

obszarów płaskich do 3 dla obszarów górzystych),

n - liczba posterunków opadowych.

6. Gradientowa metoda odwrotnych odległości - GMOO

$$R_k^s = R_k + A_g \left(\overline{H_k} - H_k \right) R_k$$

gdzie:

 R_k^s - skorygowana wysokość opadu atmosferycznego w punkcie zlewni k [mm],

 A_g - współczynnik nachylenia tzw. krzywej gradientowej,

 $H_{\scriptscriptstyle k}$ - rzędna rozpatrywanego punktu terenu (wysokościowy atrybut danego rastra) [m n.p.m.],

 \overline{H}_{k} - tzw. wysokość przeniesienia [m n.p.m.] (wys. pkt. obliczona MOO).

$$A_{g} = \frac{R_{max} - R_{min}}{\left(H_{max} - H_{min}\right)R_{max}}$$

 R_{max} , R_{min} - wysokość opadu atmosferycznego zmierzona odpowiednio w najwyżej i najniżej położonym posterunku opadowym [mm],

 H_{max} , H_{min} - rzędna położenia odpowiednio najwyżej i najniżej leżącego posterunku opadowego m n.p.m.].

Pole opadu nad zlewnia rzeki Soły obliczone metodą GMOO (autor: Robert Szczepanek)