Monte Carlo Methods

Machine Learning

Daniele Loiacono

Outline and References

- Outline
 - Policy Evaluation
 - ► Policy Iteration
 - ightharpoonup ϵ -Soft Policy Iteration
 - ► Off-Policy Learning

- References
 - ► Reinforcement Learning: An Introduction [RL Chapter 5]
 - ► <u>Sample-based Learning Methods</u> (Coursera)

Why do we need sample-based methods?

- With Dynamic Programming we are able to find the optimal value function and the corresponding optimal policy
- ☐ For example, we can use Value Iteration:

$$V_{k+1}(s) \leftarrow \max_{a} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_k(s') \right], \forall s \in \mathcal{S}$$

- Which is the major limitation of this approach?
- We generally do not know the problem dyanmics!
- We want methods to learn the optimal policy directly from data!

Overview of Monte Carlo Methods

- Monte Carlo methods relies only on the experience (data) to learn value functions and policy
- Monte Carlo methods can be used in two ways:
 - model-free: no model necessary and still attains optimality
 - simulated: needs only a simulation, not a full model
- Monte Carlo methods learn from complete sample returns
- Only defined for episodic tasks

Monte Carlo Policy Evaluation

- \Box Goal: learn $V_{\pi}(s)$
- \Box Given: some number of episodes under π which contain s
- ☐ Idea: Average returns observed after visits to s

- Every-Visit MC: average returns for every time s is visited in an episode
- ▶ First-visit MC: average returns only for first time s is visited in an episode
- Both converge asymptotically

First-visit Monte Carlo policy evaluation

First-visit MC prediction, for estimating $V \approx v_{\pi}$ Input: a policy π to be evaluated Initialize: $V(s) \in \mathbb{R}$, arbitrarily, for all $s \in S$ $Returns(s) \leftarrow \text{an empty list, for all } s \in S$ Loop forever (for each episode): Generate an episode following π : $S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ Loop for each step of episode, $t = T-1, T-2, \ldots, 0$: $G \leftarrow \gamma G + R_{t+1}$ Unless S_t appears in $S_0, S_1, \ldots, S_{t-1}$: Append G to $Returns(S_t)$ $V(S_t) \leftarrow \operatorname{average}(Returns(S_t))$

First-visit Monte Carlo policy evaluation

First-visit MC prediction, for estimating $V \approx v_{\pi}$

Input: a policy π to be evaluated

Initialize:

$$V(s) \in \mathbb{R}$$
, arbitrarily, for all $s \in \mathbb{S}$
 $Returns(s) \leftarrow \text{ an empty list, for all } s \in$

Loop forever (for each episode):

 $G \leftarrow 0$

Loop for each step of episode, t = T - 1,

$$G \leftarrow \gamma G + R_{t+1}$$

Append G to $Returns(S_t)$

 $V(S_t) \leftarrow \text{average}(Returns(S_t))$

Incremental Updates

$$N(s_t) \leftarrow N(s_t) + 1$$

$$V(s) \in \mathbb{R}$$
, arbitrarily, for all $s \in \mathbb{S}$
 $Returns(s) \leftarrow$ an empty list, for all $s \in$
op forever (for each episode):
Generate an episode following π : S_0, A_0

$$V(s_t) \leftarrow V(s_t) + \frac{1}{N(s_t)}(G - V(s_t))$$

Blackjack example

- ☐ Goal: Have your card sum be greater than the dealer's without exceeding 21
- ☐ State space (200 states):
 - current sum (12-21)
 - dealer's showing card (ace-10)
 - do I have a useable ace? (yes/no)
- □ Reward: +1 for winning, 0 for a draw, -1 for losing
- ☐ Actions: stick (stop receiving cards), hit (receive another card)
- □ Policy: Stick if my sum is 20 or 21, else hit
- \Box No discounting ($\gamma = 1$)

Blackjack example (2)

After 10,000 episodes Usable ace 21 No usable ace Dealer showing

10 %

After 500,000 episodes

Let's go back to Generalized Policy Iteration

- Evaluation
 - ► Monte Carlo Policy Evaluation
- ☐ Improvement

$$\pi'(s) = \arg\max_{a} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_{\pi}(s') \right\}$$

Let's go back to Generalized Policy Iteration

- Evaluation
 - ► Monte Carlo Action Values Evaluation
- ☐ Improvement

$$\pi'(s) = \arg\max_{a} Q_{\pi}(s, a)$$

Monte Carlo Action Values Evaluation

 \square We average return starting from state s and action a following π :

$$Q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a] \longrightarrow Q_{\pi}(s,a) \approx average[G_t|S_t = s, A_t = a]$$

☐ Converges asymptotically **if every** state-action pair is visited:

Exploration

■ Exploring Starts

Monte Carlo Action Values Evaluation

 \square We average return starting from state s and action a following π :

$$Q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a] \longrightarrow Q_{\pi}(s,a) \approx average[G_t|S_t = s, A_t = a]$$

☐ Converges asymptotically **if every** state-action pair is visited:

Exploration

■ Exploring Starts

Monte Carlo Policy Iteration with Exploring Starts

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*
Initialize:
     \pi(s) \in \mathcal{A}(s) (arbitrarily), for all s \in \mathcal{S}
     Q(s,a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in \mathcal{A}(s)
     Returns(s, a) \leftarrow \text{empty list, for all } s \in S, \ a \in \mathcal{A}(s)
Loop forever (for each episode):
     Choose S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) randomly such that all pairs have probability > 0
     Generate an episode from S_0, A_0, following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
          Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, ..., S_{t-1}, A_{t-1}:
               Append G to Returns(S_t, A_t)
               Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
               \pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
```

Blackjack example

- We start from the same policy previously described
- ☐ Here is the policy we found with MC and exploring starts

ε-Soft Monte Carlo Policy Iteration

Why ε -Soft Policies?

■ Exploring starts is a simple idea but it is not always possible:

$$s_0, a_0, s_1, a_1, s_2, a_2, \dots$$
 Random From π and p

- ☐ But, we need to keep exploring during the learning process!
- ☐ This leads to a key problem in RL: the Exploration-Exploitation Dilemma

ε -Greedy Exploration

- ☐ It is the simplest solution to the exploration-exploitation dilemma
- Instead of searching the optimal deterministic policy we search the optimal ε -soft policy, i.e., a policy that selects each action with a proability that is at least $\varepsilon/|\mathcal{A}|$
- \square In particular we use ε -greedy policy:

$$\pi(a|s) = \begin{cases} \frac{\epsilon}{|\mathcal{A}(s)|} + 1 - \epsilon & \text{if } a^* = arg \max_{a \in \mathcal{A}} Q(s, a) \\ \frac{\epsilon}{|\mathcal{A}(s)|} & \text{otherwise} \end{cases}$$

ε-Soft Monte Carlo Policy Iteration

```
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
     Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in \mathcal{S}, a \in \mathcal{A}(s)
     Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)
Repeat forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
          Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, ..., S_{t-1}, A_{t-1}:
               Append G to Returns(S_t, A_t)
               Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
               A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
                                                                                           (with ties broken arbitrarily)
               For all a \in \mathcal{A}(S_t):
                        \pi(a|S_t) \leftarrow \left\{ \begin{array}{ll} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{array} \right.
```

ε-Greedy Policy Improvement

- Thorem
 - Any ε -greedy policy π' with respect to Q_{π} is an improvement over any ε -soft policy π
- Proof

$$V_{\pi}(s) = Q_{\pi}(s, \pi'(s))$$

$$= \sum_{a \in \mathcal{A}} \pi'(a|s)Q_{\pi}(s, a)$$

$$= \frac{\epsilon}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} Q_{\pi}(s, a) + (1 - \epsilon) \max_{a \in \mathcal{A}} Q^{\pi}(s, a)$$

$$\geq \frac{\epsilon}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} Q_{\pi}(s, a) + (1 - \epsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \frac{\epsilon}{|\mathcal{A}|}}{1 - \epsilon} Q_{\pi}(s, a)$$

$$= \sum_{a \in \mathcal{A}} \pi(a|s)Q_{\pi}(s, a) = V_{\pi}(s)$$

On-Policy vs Off-Policy Learning

- On-Policy Learning
 - ▶ The agent learns the value functions of the **same** policy used to select actions
 - Exploration/Exploitation Dilemma: we cannot easily learn an optimal deterministic policy
- Off-Policy Learning
 - ▶ The agent select action using a **behavior policy** b(a|s)
 - ▶ These data is used to learn the value functions of a **different target policy** $\pi(a|s)$
 - ▶ While b(a|s) can be an explorative policy, the agent can learn an optimal deterministic policy $\pi^*(a|s)$

Target and Behavior Policy

Target Policy: $\pi(a|s)$

Behavior Policy: b(a|s)

Target and Behavior Policy (2)

☐ We can only learn a target policy that is covered by behavior policy:

$$\pi(a|s) > 0$$
 where $b(a|s) > 0$

■ How is this possible? Importance Sampling

Importance Sampling

☐ Importante sampling allow to estimate expectation of a distribution **different** w.r.t. the distribution used to draw the samples

$$\mathbb{E}_p[x] = \sum_{x \in X} x p(x) = \sum_{x \in X} x \frac{p(x)}{q(x)} q(x) = \sum_{x \in X} x \rho(x) q(x) = \mathbb{E}_q[x \rho(x)]$$

☐ Accordingly, we can use this for sample-based estimate:

$$\mathbb{E}_p[x] \approx \frac{1}{N} \sum_{i=1}^N x_i \text{ if } x_i \sim p(x)$$

$$\mathbb{E}_p[x] \approx \frac{1}{N} \sum_{i=1}^N x_i \rho(x_i) \text{ if } x_i \sim q(x)$$

Importance Sampling for Policy Evaluation

 \Box When following policy π we computed the state value function as:

$$V_{\pi}(s) \approx average(Returns[0], Returns[1], Returns[2], \dots)$$

 \square But when following policy b, the value function becomes:

$$V_{\pi}(s) \approx average(\rho_0 Returns[0], \rho_1 Returns[1], \rho_2 Returns[2], \dots)$$

lacktriangle Where ho_i is the probability of performing the trajectory observed in episode i while following policy π over the probability of observing the same trajectory while following policy b

$$\rho = \frac{Prob[\text{trajectory under } \pi]}{Prob[\text{trajectory under } b]}$$

Importance Sampling for Policy Evaluation (2)

$$\Pr\{A_{t}, S_{t+1}, A_{t+1}, \dots, S_{T} \mid S_{t}, A_{t:T-1} \sim \pi\}$$

$$= \pi(A_{t}|S_{t})p(S_{t+1}|S_{t}, A_{t})\pi(A_{t+1}|S_{t+1}) \cdots p(S_{T}|S_{T-1}, A_{T-1})$$

$$= \prod_{k=t}^{T-1} \pi(A_{k}|S_{k})p(S_{k+1}|S_{k}, A_{k}),$$

$$\rho_{t:T-1} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k|S_k) p(S_{k+1}|S_k, A_k)}{\prod_{k=t}^{T-1} b(A_k|S_k) p(S_{k+1}|S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{b(A_k|S_k)}$$

Ordinary Sampling vs Weighted Sampling

Ordinary sampling

$$V_{\pi}(s) \approx \frac{\sum_{i} \rho[i] \cdot Return[i]}{N(s)}$$

- ▶ Unbiased
- ▶ Higher Variance
- Weighted sampling

$$V_{\pi}(s) \approx \frac{\sum_{i} \rho[i] \cdot Return[i]}{\sum_{i} \rho[i]}$$

- Biased (bias converges to zero)
- ▶ Lower Variance

Off-Policy every visit MC prediction (ordinary sampling)

```
Input: a policy \pi to be evaluated
Initialize:
    V(s) \in \mathbb{R}, arbitrarily, for all s \in S
    Returns(s) \leftarrow an empty list, for all s \in S
Loop forever (for each episode):
    Generate an episode following b: S_0, A_0, R_1, S_1, \dots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0 \ W \leftarrow 1
    Loop for each step of episode, t = T - 1, T - 2, ..., 0
         G \leftarrow \gamma WG + R_{t+1}
         Append G to Returns(S_t)
         V(S_t) \leftarrow average(Returns(S_t))
         W \leftarrow W \frac{\pi(A_t \mid S_t)}{b(A_t \mid S_t)}
```