Probability and stochasticity

Today's agenda:

- Check-in
- Variability
- Probability theory
- Analyzing probability theory

Check-in

- Reminder: Assignment 1 was due last Friday
- Typo in lecture notes (notes said read chapter 4, syllabus said chapter 3)
 - If you've worked through chapter 3, great!
 - If you worked through chapter 4, work through chapter 3 when you get a chance (esp 3.4-3.6)

Variability

- Increasing recognition of importance biologically (e.g., intraspecific variation)
- Important component of statistical models ("signal" vs "noise")

Variability

- Different sources of variability
 - Unmeasured variables (e.g., environmental stochasticity)
 - Measurement error
 - Inherent uncertainty
 - Demographic stochasticity (50% survival in a population of 3)
 - Nonlinear dynamics can increase/decrease variation

Variability

Different ways of handling variability

- Try to explain it vs. treat as error

Probabilities sum to 1

For mutually exclusive events: Probability A or B = P(A) + P(B)

$$P(Dead or alive) = P(Dead) + P(Alive) = 1$$

- If P(Dead) = 0.4, P(Alive) = 0.6

$$P(SIR) = P(S) + P(I) + P(R) = 1$$

- If P(S) = 0.1, and P(R) = 0.2, P(S or R) = 0.3
- Then P(I) = 0.7

For non-mutually exclusive events,

Have to account for double counting:

P(Blue) + P(Male) - P(Blue AND Male) = 0.65

Corrects for double-counts

	Male	Female
Blue	20	30
Green	15	35

Conditional probability: Probability of something, given something else

$$P(A|B) = P(A \text{ and } B) / P(B)$$

$$0.40 = 0.20/.50$$

	Male	Female
Blue	20	30
Green	15	35

Independent variables: P(A and B) = P(A)*P(B)

If Sex and Color were independent, we'd expect:

$$P(Blue Male) = P(Blue) * P(Male)$$

$$0.175 = 0.5 * 0.35$$

0.20 != 0.175, measurement error? dependence?

	Male	Female
Blue	20	30
Green	15	35

Questions so far?

2 classes: Discrete vs continuous

Discrete:

- Integers
- E.g., individuals, # events

Continuous:

- **Any real number** (or a subset, e.g. positives)
- E.g., body sizes, speeds, etc.
- P(any exact number) = 0
- Focus on P(some number or more extreme)
 - E.g. P(x >= 4)

Discrete:Poisson

Continuous:Normal

Continuous or discrete?

Organisms

- Body Mass
- Age
- Leaf Area
- Population size
- Population density
- Species richness
- Functional diversity
- Individuals per transects
- Mean body mass

Environment

- Temperature
- Elevation
- Depth
- Hurricane severity

Evolution

- Base pair substitution
- Evolutionary rate
- Species per taxon

Central tendencies:

Mean

- "Average"
- Expected value (denoted *E*[*x*])
- Also denoted \overline{x}

Use function mean ()

Central tendencies:

Median

- More robust than mean
- Less sensitive to outliers and skew
- Use function median ()

Blue = mean Orange = median Pink = mode

Central tendencies:

Mode

- Most likely or most common value
- No built-in function
- DescTools package has Mode ()

Spread:

Variance and standard deviation

- Variance:
 - SD^2
 - Additive
 - Units of mean squared
 - Function var()
- SD
 - √variance
 - Not additive
 - Same units as mean
 - Function sd()

Blue lines: Mean +/- SD

Activities

- Load data and calculate mean, variance, std dev, median, mode, etc.
 - Use data on github

To get link: Right click on "Raw", copy the URL

Load the avonet data

Load the avonet data

```
avonet <-
read.csv("https://github.com/bmaitner/Statistical_ecology_co
urse/raw/refs/heads/main/data/Avonet/AVONET1 BirdLife.csv")</pre>
```

Using the avonet data:

- 1) Generate a histogram of Hand-Wing Index (high HWI = long-distance flyer)
 - a) Use hist() function
- 2) Calculate mean and median Hand-Wing Index
 - a) mean() and median()
- 3) Generate a histogram of Body Mass
 - a) Also try generating a histogram of the log of body mass (use log10() or log())
- 4) Calculate mean and median body mass
 - a) How similar are they?
- 5) (optional) Try calculating the mode of body mass
 - a) Mode () in the DescTools package

Using the avonet data:

- 1) Calculate the variance and standard deviation of Mass
 - a) var() and sd()
- 2) Check that variance equals SD²
 - a) Use "==" to test whether things are equal
 - b) R uses " $^{"}$ " to denote raising something to a power, e.g., x^{2} mean x^{2}
 - c) For square roots, use either sqrt() or $x^0.5$
- 3) Calculate the mean and variance of Range. Size

Remainder of class:

- Load in your focal data
- Use today's functions to better understand your key variables

Before next class:

Look over 4.5 and 4.6