

<u>Inbox</u>

Home

Grades

Quizzes

Assignments

Modules

Discussions Ø

Homework 1

Due Oct 21 at 2:59am Points 100 Questions 10 Available until Oct 21 at 2:59am Time Limit 60 Minutes Allowed Attempts 3

Instructions

We use the conventions in the QBook101.

The default programming language for coding is Python. You may write pieces of code during this exercise.

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	60 minutes	0 out of 100

(!) Correct answers are hidden.

Score for this attempt: 0 out of 100 Submitted Sep 14 at 5:25pm This attempt took 60 minutes.

Unanswered Question 1 0 / 10 pts Find the values of the sides a and c of the following right triangle: \circ a = 13.5; c = 13.00 $\bigcirc \ a=10.05 \ ; c=9.00$ a = 12.12; c = 14.00a = 4.04; c = 8.08

Unanswered Question 2 0 / 10 pts

Last Attempt Details:

Time:	minutes	
Current	0 out of	
Score:	100	
Vant Caara	0 out of	
Kept Score:	100	

2 More Attempts available

Take the Quiz Again

(Will keep the highest of all your scores)

Given the complex numbers $z_1=\mathfrak{d}-\mathfrak{d}$ and $z_2=-4.2-\mathfrak{g}.$ what is the result of the operation $z_2 \, \bar{z}_1$

0.2.8 - 14.3i

-23.6 + 53.7i

-11.1 - 21.9 i

-33.6-56.7i

Unanswered Question 3

0 / 10 pts

Given the matrix ${f A}$ and the vector ${ec v}$, what is the result of the operation $\vec{v}^T \mathbf{A}$?

$$\mathbf{A} = \begin{pmatrix} -1 & 3 & 1 \\ 5 & 2 & ext{land} \ \vec{v} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$

where \vec{v}^T is the transpose of the vector \vec{v} .

(2 -16 -6)

 $(-1 \ 8 \ 3)$

Unanswered Question 4

0 / 10 pts

Find the result of the operation ${\bf B} - \lambda {\bf I}$

where $\lambda=2~{f I}$ is the identity matrix of the appropriate size, and,

$$\mathbf{B} = \begin{pmatrix} 2 & 1 & 0 & 3 \\ 4 & 0 & 2 & 5 \\ 6 & 3 & 7 & 1 \\ 1 & 5 & 4 & 3 \end{pmatrix} \quad , \quad \mathbf{I} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\bigcirc
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 0 & 3 \\
4 & 0 & 2 & 5 \\
6 & 3 & 7 & 1 \\
1 & 5 & 4 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 3 \\
4 & -2 & 2 & 5 \\
6 & 3 & 5 & 1 \\
1 & 5 & 4 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
5 & 1 & 0 & 3 \\
4 & 3 & 2 & 5 \\
6 & 3 & 10 & 1 \\
1 & 5 & 4 & 6
\end{pmatrix}$$

Unanswered Question 5

0 / 10 pts

Is the matrix U unitary?

$$U = \begin{pmatrix} -\frac{1}{\sqrt{3}} & \sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

True

False

Unanswered Question 6

0 / 10 pts

Find the tensor product (Kronecker product) ${f A} \otimes {f B}$ where,

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{and } B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 1 & 2 \\
0 & 0 & 3 & 4 \\
1 & 2 & 0 & 0 \\
3 & 4 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 2 \\
3 & 4 & 3 & 4 \\
1 & 2 & 1 & 2 \\
3 & 4 & 3 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & -1 & -2 \\
0 & 0 & -3 & -4 \\
1 & 2 & 0 & 0 \\
3 & 4 & 0 & 0
\end{pmatrix}$$

Unanswered Question 7

0 / 10 pts

What is the **bra** of the **ket** $|\psi \rangle$?

/ -i \setminus

$$|\psi
angle = \left(egin{array}{c} 3-i \ 2+2i \end{array}
ight)$$

$$igcirc |\psi| = egin{pmatrix} i \ 3+i \ 2-2i \end{pmatrix}$$

$$igcirc |\psi| = egin{pmatrix} -i \ 3-1 \ 2+2i \end{pmatrix}$$

$$egin{array}{ll} egin{array}{ll} \langle \psi | = egin{array}{ccc} (-i & 3-i & 2+2i \end{array}) \end{array}$$

$$igcirc$$
 $\langle \psi | = egin{pmatrix} i & 3+i & 2-2i \end{pmatrix}$

Unanswered Question 8

0 / 10 pts

Find the $\mathit{bra-ket}$ (or inner product) $\langle w|u \rangle$ where

$$|w
angle = egin{pmatrix} 3+2i \ -2i \ 1 \end{pmatrix}$$
 and $u = egin{pmatrix} -2 \ 1-i \ i \end{pmatrix}$

0.7i

04 + 7i

-4 + 7i

-4-7i

Unanswered Question 9

0 / 10 pts

What should the commented line be replaced with so that the following code calculates $\mathbf{B} \, \vec{b}$?

```
import numpy as np
b = np.array([1, 3])
B = np.array([ [ 2 , 2], [-6 , 5] ])
# missing line
print(c)
```

c = b.mul(B)

c = b.dot(B)

 \bigcirc c = B.dot(b)

h = B.dot(c)

Unanswered	Question 10	0 / 10 pts	
	What postulate of quantum mechanics tells us how to extract information from quantum systems?		
	O Postulate 3		
	O Postulate 2		
	O Postulate 1		
	O Postulate 4		

Quiz Score: 0 out of 100

Next ▶