(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 14.01.2004 Bulletin 2004/03
- (21) Application number: 02711280.4
- (22) Date of filing: 01.02.2002

- (51) Int Cl.7: C07D 313/00, C07D 405/14, C07D 407/06, C07D 493/10. C07D 493/04, A61K 31/335. A61K 31/336, A61K 31/4427 A61K 31/4523, A61K 31/455, A61K 31/4025, A61K 31/5377, A61K 31/496, A61K 31/74, A61P 43/00, A61P 7/00, A61P 35/00, A61P 35/04, A61P 29/00, A61P 19/02, A61P 27/02
- (86) International application number: PCT/JP2002/000848
- (87) International publication number: WO 2002/060890 (08.08.2002 Gazette 2002/32)
- (84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Designated Extension States: AL LT LV MK RO SI
- (30) Priority: 01.02.2001 JP 2001025458
- (71) Applicants:
 - MERCIAN CORPORATION
 - Chuo-ku, Tokyo 104-8305 (JP)
 - · Eisal Co., Ltd. Tokyo 112-8088 (JP)
- (72) Inventors:
 - MIZUI, Yoshiharu
 - Tsukuba-shi, ibaraki 305-0051 (JP)
 - · SAKAI, Takashi Tsukuba-shi, Ibaraki 305-0035 (JP)
 - YAMAMOTO, Satoshi
 - Moriya-shi, Ibaraki 302-0124 (JP)
 - KOMEDA, Keisuke Tsukuba-shi .ibaraki 305-0031 (JP)
 - FUJITA, Masanori

 - Ushiku-shi, ibaraki 300-1206 (JP) OKUDA, Akifumi
 - Tsukuba-shi, Ibaraki 305-0035 (JP)
 - KISHI, Kumiko
 - Tsukuba-shi, ibaraki 305-0035 (JP)
 - · NILIMA Jun
 - Tsukuba-shi, Ibaraki 305-0035 (JP) NAGAI, Mitsuo
 - Tsukuba-shi, Ibaraki 305-0035 (JP)
 - · OKAMOTO, Kiyoshi Tsukuba-shi, Ibaraki 305-0856 (JP)

- IWATA, Masao
 - Tsukuba-shi, ibaraki 305-0045 (JP)
- KOTAKE, Yoshihiko Tsuchiura-shi, ibaraki 300-0832 (JP)
- UENAKA, Toshimitsu
- Ushiku-shi, ibaraki 300-1233 (JP)
- · ASAI, Naoki Tsukuba-shi, Ibaraki 305-0047 (JP)
- MATSUFUJI, Motoko
- Komae-shi, Tokyo 201-0005 (JP)
- · SAMESHIMA, Tomohiro
- Fujisawa-shi, Kanagawa 251-0052 (JP)
- KAWAMURA, Naoto
- Yamato-shi .Kanagawa 242-0007 (JP)
- DOBASHI, Kazuvuki
- Hadano-shi, Kanagawa 257-0013 (JP)
- · NAKASHIMA, Takashi
- Fujisawa-shi, Kanagawa 251-0021 (JP)
- · YOSHIDA, Masashi
- Chigasaki-shi, Kanagawa 253-0017 (JP)
- . TSUCHIDA, Toshio
- Yamato-shi, Kanagawa 242-0007 (JP)
- TAKEDA, Susumu
- Yokohama-shi, Kanagawa 232-0071 (JP) YAMADA Tomonari
- Yaldu-shi, Shizuoka 425-0086 (JP)
- NORIHISA, Koji
- Iwata-shi, Shizuoka 438-0078 (JP) YAMORI, Takao
- Tokyo 162-0836 (JP)
- (74) Representative: HOFFMANN EITLE Patent- und Rechtsanwälte Arabellastrasse 4 81925 München (DE)

(54) NOVEL PHYSIOLOGICALLY ACTIVE SUBSTANCES

(57) The presentinvention provides a novel bioactive substance having an antitumor activity and a process for producing it, and a medical use thereof. Namely, it provides a 12-membered ring macrolide compound represented by the following formula obtained from the incubation solution of Streptomyces sp. Mer. 11107 or a variant thereof, a pharmacologically acceptable sait thereof or a hydrate of them, and a process for producing it.

Description

Technical Field

5 [0001] The present invention relates to a 12-membered ring macrolide compound and antitumor activity thereof. More specifically, it relates to an agent for treating cancer, in particular, an agent for treating a solid cancer, an agent for suppressing cancer metastasis, an agent for treating diabetic retinopathy, an agent for treating rheumatoid arthritis and an agent for treating hematoma, which suppresses an angiogenesis by varying gene expression, for example, by inhibiting VEGF production.

Prior Art

10

[0002] Compounds having cytotoxicity have been used as anticancer agents, and many screenings have been carried out using cytotoxicity as an index. As a result, almost all of anticancer agents give affection to cancer cell and simultaneously to issue in which cell proliferation is active, for example, to bone manow, intestine epithelium and the like. Thus, the improvement of QCI of a salient has not been accomplished out vet.

[0003] Further, although it can be expected that treatment by the anticancer agents is rather effective for leukemia, it cannot be always said that they are effective for solid cancer; therefore it is status quo that the anticancer agents being effective for solid cancer are very few in number.

[0004] Screening fermentation products of microorganism has been carried out using the cytotoxicity in vitro as an index, expecting that they might also be used as a entiancen egant. Many compounds having cytotoxicity have been found, however, it is confirmed that many of them arenot hypotoxic, and few compounds show anticancer effect in vivo and further five compounds within affectiveness for a old reader.

25 Disclosure of the Invention

[0005] It is the object of the present invention to find a compound which is effective in vivo and can be further expected to have an effect for solid cancer from fermentation products of microorganism.

[0006] It is considered that tumorgenessis is caused by that a gene of normal cell is varied and a gene different from the normal cell is expressed. Accordingly, the present inventors have considered that the growth of a cancer cell can be suppressed by varying the gene expression of the cancer cell. For example, they have considered that the growth of the cancer cell can be varied by varying the gene expression of oncogene or tumor suppressor gene, or by varying the gene expression involving in cell civide.

[0007] The present Inventors have considered that a compound causing the variation of the gene expression, in particular, a compound suppressing VEGF production at a low oxygen condition could suppress angligeness by a cancer and is also effective for solid cancer. Then, they carried out screening fermentation products of microorganisms using the VEGF production of low oxygen stimulating UES cell as an index, have found out novel bloactive compounds, 12-membered ring macrolide compounds (hereinafter, these are referred to as 11107A to 11107B) which suppress the growth of vascular endothelial cell by suppressing VEGF production, and further suppress the growth of solid cancer in vivio. Further, they have found that compounds which were obtained by chemically modifying these microbial products (hereinafter, these are referred to as 11107 derivative) also have an activity for suppressing the growth of solid cancer. [0008] The present Invention provides the compound defined below, a pharmacologically acceptable whether.

[0009] Hereafter, the respective title compounds are defined by the respective formulae. Any of these are reduced by the restricted clauses 1 and 2. Further, the compound described in the restricted clause 3 is not included.

[0010] The substituents such as R2 in the respective formulae are defined by each formula.

[0011] Further, the present invention also provides medical uses of the respective compounds, a pharmacologically acceptable salt thread or a 'hydrate of them. Namely, they are a pharmaceutical composition containing any one of them, medicament, the method for preventing, treating or improving diseases, the use of the compound for producing an agent for treating them, etc.

1. A compound represented by the formula (1), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (1), n represents an integer of 3 to 12; and R_1^0 , R^∞ ,

; further, R^{3a} and R^{3b} may be bound together to represent a ketone structure (=0) or an oxime structure (=NOROX (wherein R^{0x} represents $C_{1,22}$ allryl, unsaturated $C_{3,22}$ allryl, C_{3+1} aryl, 5-membered to 14-membered heteroaryl or benzyl, each of which may have substituents)]; further, either of R^{3a} or R^{3b} and either of R^{3a} or R^{3b} and either of R^{3a} or R^{3b} and be bound with oxygen to represent the partial structure

; further, R4 may form a single bond with either of R5a or R5b and may represent the partial structure

15

20

25

30

: further, R^{Sa} and R^{SD} may be bound together to represent a ketone structure (-O) or an oxime structure $(-NOR^{SQ})$, urther, R^{Sa} and R^{SD} may be bound together to represent a spirooxyrane ring or exomethylener, further, R^{Sa} or R^{SD} and either of R^{SC} or R^{SD} may be bound together to form a 1,3-dioxolane ring; further, R^{SC} and R^{SD} may be bound together to represent a ketone structure (-O) or an oxime structure $(-NOR^{SD})$; further, R^{SC} may form a single bond with either of R^{SC} or R^{SD} to present the partial structure $(-NOR^{SD})$; further, R^{SC} may form a single bond with either of R^{SC} or R^{SC} to present the partial structure.

; further, R® and R® may be bound together to represent a ketone structure (=0) or an oxime structure (=NORP^{CX}); further, two adjacent R™s may form 0 to 3 ethylene structures where one R™a and one other R™ forme a single bond; further, two R™s may form 0 to 2 epoxy structures together with oxygen; further two R™s may form one 2-oxo-1,3-dioxane structure; further, R™ and R™ on the same carbon may be bound together to represent a ketone structure (=0) or an oxime structure (=NOR^{CX}), provided that

(Restricted clause 1) when the above-mentioned compound is represented by the following formula (2):

at least one of R^7 and R^{21} is hydroxy, acetoxy or methoxy; (Restricted clause 2) when the above-mentioned compound is represented by the following formula (3):

 ${\sf R}^7$ is hydroxy or acetoxy; and ${\sf R}^3$, ${\sf R}^6$ and ${\sf R}^{21}$ are OH; and (Restricted clause 3) a compound represented by the formula (4) is excluded.

OMe OH OH

2. A compound represented by the formula (5), a pharmacologically acceptable salt thereof or a hydrate of them.

in the formula (5),

5

10

15

20

25

30

35

40

50

55

R², R¹⁰, R¹² and R¹⁴ are the same as or different from each other and each represents hydrogen or methyl; R^{3a}, R^{3a}, R^{5a}, R^{5a}, R^{5a}, R^{6a} and R^{6a} are the same as or different from each other and each represents

- (1) hydrogen.
- (2) hydroxy,
- (3)
 - <1> C₁₋₂₂ alkyl,
 - <2> C₁₋₂₂ alkoxy,
 - <3> ArCH₂O- (wherein Ar represents C₆₋₁₄ aryl or 5-membered to 14-membered heteroaryl which may have substituents).
- <4> C₂₋₂₂ acyloxy,
 - <5> unsaturated C3,22 acyloxy,
 - <5>-OCOR^{CO} (wherein R^{CO} represents (i) C₆₋₁₄ aryl, (ii) 5 -membered to 14-membered heteroaryl, (iii) C₁₋₂₂ alkoxy, (iv) unsaturated C₂₋₂₂ alkoxy, (iv) C₆₋₁₄ aryloxy or (iv) 5-membered to 14-membered heteroaryloxy, each of which may have substituently.
 - <7> C1,22 alkylsulfonyloxy,
 - <8> benzenesulfonyloxy or
 - <9> -OSIR*1R*2R*3 (wherein R*1, R*2 and R*3 are the same as or different from each other and each represents methyl, ethyl, i-propyl, t-butyl or phenyl,
 - (4) halogen or

(5) -H^{M-N,RN+RN2} (wherein R^M represents a single bond or - CO-O-; and R^{N+} and R^{N2} are 1) the same as or different from each other and each represents <1> bydrogen or <2 (i) C₁₊₂ a lighty, (ii) unsaturated C₂₊₂ a light, (iii) unsaturated C₂₊₂ a light, (iii) C₂₊₂ a light, (iii) C₁₊₂ a light, (iii) C₁₊₂ a light (iii) C₁₊₂

R7a and R7b are

(1) different from each other and each represents

1) hydrogen,

5

15

20

30

35

40

45

50

55

2) -ORH (wherein RH is hydrogen, methyl or acetyl),

3) -ORD (wherein RD represents

(i) C1-22 alkyl (provided that in case of methyl, it always has substituents),

(ii) -CH₂Ar,

(iii) C₃₋₂₂ acyl,

(iv) unsaturated C₃₋₂₂ acyl,

(v) -CORCO.

(vi) C₁₋₂₉ alkylsulfonyl,

(vii) benzenesulfonyl or

(viii) -SiRs1Rs2Rs3) or

4) -RM-NRN1RN2, or

(2) R^{2a} and R^{2b} may be bound together to represent <1.> a ketone structure (~O) or represent an oxime structure (~NORO³, wherein R^{3X} represents <1.> C_{1,22} alkyl, <2.> unsaturated C_{3,22} alkyl, <3.> C_{8,14} aryl, <4.> E-membered to 14-membered heteroaryl or <5.> benopyl, each of which may have substituents); further, R^{3a} and R^{3b} may be bound together to represent a ketone structure (~O) or an oxime structure (~NORO³); further, R^{3a} on R^{3b} may be bound together to represent a sproxyrane ring or exomethylene; further, either of R^{3a} or R^{3b} may be bound together to form a 1,3-dioxolane ring; G is represented by

[1]

{wherein R16a and R16b are the same as or different from each other and each represents hydrogen, methyl or hydroxy;

R17a, R17b, R18a, R19b, R19a, R19b, R20a, R20b, R21a and R21b are the same as or different from each other and each represents

(1) hydrogen,

(2) methyl which may optionally have substituents,

(3) -ORH.

(4) -ORD

(5) halogen or

(6) -RM-NRN1RN2; and

R^{21c} means (1) hydrogen or (2)

(wherein R^{22a}, R^{22b} and R^{22c} are the same as or different from each other and each represents <1> hydrogen, <> methyl, <3> hydroxy, <4> -ORH, <5> -ORD, <6> -R^M-NRN1R² or <7> halogen.);

further, either of R^{18a} or R^{18b} and either of R^{19a} or R^{19b} may form a single bond together to represent the partial structure

, or may be bonded with an oxygen to represent the partial structure

further, either of R^{19a} or R^{19b} and either of R^{20a} or R^{20b} may form a single bond together to represent

further, R^{21a} and R^{21b} may be bound together to represent <1> a ketone structure (=0) or represent <2> an oxime structure (=NOR^{OX});

further, either of R^{21a} or R^{21b} and either of R^{22a} or R^{22b} may be bound together to represent the partial structure

further, either of R^{19a} or R^{19b} and either of R^{21a} or R^{21b} may be bound together to represent the partial structure

[2]

5

10

20

25

30

40

50

55

(wherein R^{16a} , R^{16b} , R^{17a} , R^{17b} , R^{18a} and R^{18b} have the same meanings as the definitions in the formula (G-I); and R^{18c} represents (1) hydrogen or (2) the formula

(wherein H^{Sa} , R^{Sb} , R^{IAa} and R^{IAb} are the same as or different from each other and each represents hydrogen, methyl, hydroxy, methoxy or acetoxy; and R^{IS} represents methyl or ethyll); or [3]

(wherein R^{16a} , R^{16a} , R^{17a} and R^{17b} have the same meanings as the definitions in the formula (G-I); and R^{17a} represents (1) hydrogen or (2) the formula

(wherein R^{Ca}, R^{Cb}), R^{6a} and R^{6b} are the same as or different from each other and each represents hydrogen, methyl, hydroxy, methoxy or acetoxy; and R^{5s} represents methyl or ethyl)), provided that the restricted clauses 1, 2 and 3 are included.

3. A compound represented by the formula (6), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (6), R^2 , R^{3a} , R^{3b} , R^{5a} , R^{5b} , R^{6a} , R^{6b} , R^{7a} , R^{7b} , R^{10} , R^{12} and R^{14} have the same meanings as the definitions of the formula 5;

R12a and R13 (1) each represents hydrogen, or (2) are bound together to <1> form a single bond and represent

25 or <2> form epoxy and represent

5

10

15

20

30

35

50

55

R14a and R15 (1) each represents hydrogen, or (2) are bound together to <1> form a single bond and represent

or <2> form epoxy and represent

provided that (1) when R1^{2a} and R1³ are bound together to form a single bond in the formula (6), R1^{4a} and R1⁵ are bound together to be an epoxy; and (2) when R1^{4a} and R1⁵ are bound together for bern a single bond, R1^{2a} and R1⁵ 1-3 are each hydrogen or <2> are bound together to be an epoxy; and G^{2v} (1) has the same meaning as the definition of G in the formula 5. or (2) proresents

(wherein \equiv represents a single bond or a double bond; R^{18a} , R^{18b} , R^{19a} and R^{19b} have the same meanings as the definitions in the formula (5); R^{19c} is hydrogen or C_{1-4} alkyl).

4. A compound represented by the formula (7), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (7), R^2 , R^{3a} , R^{3b} , R^{6a} , R^{6a} , R^{7a} , R^{7a} , R^{10} , R^{12} , R^{14} and G have the same meanings as the definitions in the formula S; H^{12} and H^{13} (1) each represents hydrogen or (2) are bound together to <1> form a single bond and represent

or <2> form epoxy and represent

5

20

30

35

45

50

55

; and R^{14a} and R^{15} (1) each represents hydrogen or (2) are bound together to <1> form a single bond and represent

or <2> form epoxy and represent

5. A compound represented by the formula (8), a pharmacologically acceptable salt thereof or a hydrate of them.

5

10

15

20

25

30

35

45

55

In the formula (8), R2, R5a, R5b, R6a, R6b, R7a, R7b, R10, R12, R14 and G have the same meanings as the definitions in the formula 5; and R12a, R13, R14a and R15 have the same meanings as the definitions in the formula 7.

6. A compound represented by the formula (9), a pharmacologically acceptable salt thereof or a hydrate of them.

in the formula (9), R2, R6a, R7a, R7b, R10, R12, R14 and G have the same meanings as the definitions in the formula 5; and R12a, R13, R14a and R15 have the same meanings as the definitions in the formula 7.

7. A compound represented by the formula (10), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (10), R2, R3a, R6a, R6b, R10, R12, R14 and G have the same meanings as the definitions in the formula 5; and R12a, R13, R14a and R15 have the same meanings as the definitions in the formula 7.

8. A compound represented by the formula (11), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (11), R12, R16a, R16b, R17a, R17b, R20a, R20b, R21a, R21b and R21c have the same meanings as the definitions in the formula 5; R18 represents hydrogen or methyl; and

Gm is represented by (1)

5

10

15

20

25

30

35

45

50

55

R⁷⁶ R⁷⁸ R⁶⁰ R⁶⁰ R⁵⁰ (GM-I)

(wherein R^2 , R^{3a} , R^{3b} , R^{5a} , R^{5a} , R^{6a} , R^{6a} , R^{6b} , R^{7a} , R^{7b} and R^{10} have the same meanings as the definitions in the formula 5 of), (2)

(wherein R², R^{3a}, R^{3b}, R^{6a}, R^{6b}, R^{7a}, R^{7b} and R¹⁰ have the same meanings as the definitions in the formula 7), (3)

(wherein R², R^{5a}, R^{5b}, R^{6a}, R^{6b}, R^{7a}, R^{7b} and R¹⁰ have the same meanings as the definitions in the formula 8), (4)

(wherein H^2 , H^{8a} , H^{7a} , H^{7b} and H^{10} have the same meanings as the definitions in the formula 9) or (5)

5

10

15

20

25

35

45

55

(wherein R², R^{3a}, R^{6a}, R^{6a} and R¹⁰ have the same meanings as the definitions in the formula 10), provided that the restricted clauses 1, 2 and 3 are included.

9. A compound represented by the formula (12), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (12), R¹⁶, R¹⁶, R¹⁶, R¹⁸, R¹⁷, R¹⁷, R¹⁷, R²⁰, R²⁰, R²⁰, R²¹, R²¹, R²¹ and R²¹ have the same meanings as the definitions in the formula 5; and R¹⁸ and G⁸ have the same meanings as the definitions in the formula 11.

10. A compound represented by the formula (13), a pharmacologically acceptable as at there of or a hydrate of them.

$$R^{21c} \xrightarrow{R^{20b}} OH \xrightarrow{R^{17b}} R^{16b}$$

$$R^{21c} \xrightarrow{R^{20c}} OH \xrightarrow{R^{18}} R^{16b}$$

$$R^{21c} \xrightarrow{R^{20c}} OH \xrightarrow{R^{17c}} OH \xrightarrow{R^{17c}} OH$$

$$R^{21c} \xrightarrow{R^{20c}} OH \xrightarrow{R^{17c}} OH$$

In the formula (13), ::: represents a single bond or a double bond; R12, R16e, R17e, R17e, R17e, R20e, R20e, R21e, R21b and R21e have the same meanings as the definitions in the formula 5; and R18 and G^m have the same meanings as the definitions in the formula 11.

11. A compound represented by the formula (14), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (14), R^{12} , R^{16a} , R^{16b} , R^{17a} , R^{17b} , R^{18a} , R^{20a} , R^{20b} and R^{21c} have the same meanings as the definitions in the formula 5; and G^m has the same meaning as the definition in the formula 11.

12. A compound represented by the formula (H-I), a pharmacologically acceptable sait thereof or a hydrate of them.

$$R^{22iv} \xrightarrow{R^{21iv}} R^{10iv} \xrightarrow{R^{10iv}} R^{10iv} \xrightarrow{R^{20iv}} R^{2iv} \xrightarrow{R^{20iv}} (H - I)$$

In the formula (H-I), R^{2h}, R^{6h}, R^{6h}, R^{10h}, R^{10h}, R^{12h}, R^{16h}, R^{20h}, R^{21h} and R^{22h} are the same as or different from each other and each represent

(1) hydrogen,

10

15

20

25

30

40

50

55

- (2) methyl.
- (3) hydroxymethyl or
- (4) C2-a acyloxymethyl;

R^{3h'}, R^{5h'}, R^{6h'}, R^{7h'}, R^{16h'}, R^{17h'}, R^{20h'}, R^{2th'} and R^{22h'} are the same as or different from each other and each represents

- (1) hydrogen,
- (2) hydroxy,
 - (3) methoxy or
 - (4) C₂₋₈ acyloxy;

R^{8h} and R^{8h'} may be bound together to form a ketone structure (=0); R^{21h} and R^{21h'} may be bound together to form a ketone structure (=0); and R^{8h} and R^{8h'} may be bound together to form a spirooxyrane structure, provided that the restricted clauses 1, 2 and 3 are included.

13. A compound represented by the formula (H-1), a pharmacologically acceptable salt thereof or a hydrate of hem, which is selected from the group consisting of a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{3h} is methyl, R^{2h} is hydroxy, R^{3h} is hydroxy, all of R¹⁰, R^{12h} and R^{11h} are methyl, both of R^{18h} and R^{11h} are hydrogen, R^{2hh} is methyl, R^{20h} is hydrogen, R^{2hh} is hydroxy, both of R^{2hh} and R^{2hh} are hydrogen and R^{2hh} is methyl.

a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, both of R^{2h} and R^{2h} are hydrogen, R^{2h} is methyl, R^{2h} is acetoxy, R^{2h} is acetoxy, all of R^{2h} y, R^{2h} and R^{2h} are methyl, both of R^{2h} and R^{2h} are hydrogen, R^{2h} is hydroxy, R^{2h} is hydroxy, R^{2h} both of R^{2h} and R^{2h} are hydrogen, and R^{2h} is methyl, R^{2h} is hydroxy, R^{2h}

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{6h} is methyl, R^{6h} is hydroxy, R^{1h} is acetoxy, all of R^{10h}, R^{12h} and R^{16h} are methyl, both of R^{16h} and R¹⁷ are hydrogen, R^{20h} is methyl, R^{20h} is hydrogen, both of R^{21h} and R^{21h} are bound together to form a ketione structure, R^{22h} is hydrogen and R^{22h} is methyl:

a compound in which R^{2h} is hydrogen, R^{3h'} is hydroxy, both of R^{5h} and R^{3h'} are hydrogen, R^{6h} is methyl, R^{6h'} is hydroxy, R^{7h'} is acetoxy, all of R^{10h}, R^{10h} and R^{16h} are methyl, R^{16h'} is hydroxy, R^{7h'} is hydroxy, R^{10h'} is hydroxy, R^{10h'} is hydroxy, D^{10h} is methyl, R^{20h'} is hydroxy, both of R^{2h'} and R^{20h'} are hydrogen, and R^{2h'} is methyl;

a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, both of R^{2h} and R^{2h} are hydrogen, R^{2h} is methyl, R^{2h} is hydroxy, R^{2h} is acetoxy, all of R^{1b} n and R^{1b} are methyl, both of R^{1b} and R^{1b} are hydrogen, R^{2h} is methyl, R^{2h} is hydroxy, R^{2h}

a compound in which P^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{3h} is methyl, R^{3h} is hydroxy, B^{3h} is hydroxy, both of R^{2h} and R^{2h} are hydroxyn, and R^{2h} is methyl,

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{5h} and R^{3h} are hydrogen, R^{6h} is methyl, R^{5h} is hydroxy, R^{7h} is hydroxy, R^{1h} is hydroxy, R^{1h} is hydroxy, R^{1h} is hydroxy, R^{2h} is hydroxy, R^{2h} is hydroxy, R^{2h} is hydroxy, R^{2h} is hydroxy. R^{2h} is hydroxy R^{2h} is hydroxy. R^{2h} is hydroxy R^{2h} is hydroxy. R^{2h} is h

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{5h} and R^{8h} are hydrogen, R^{6h} is methyl, R^{6h} is hydroxy, R^{7h} is propanoyloxy, all of 19th, R^{12h} and R^{18h} are methyl, both of R^{18h} and R^{17h} are hydrogen, R^{20h} is hydroxy, R^{2h} is hydroxy, both of R^{2h} and R^{2h} are hydrogen, and R^{2h} is methyl.

a compound in which R2h is hydrogen, R3h is hydroxy, both of R5h and R5h are hydrogen, R6h is methyl, R6h

is hydroxy, R^{7h'} is acetoxy, all of R^{10h}, R^{12h} and R^{16h} are methyl, both of R^{16h'} and R^{17h'} are hydrogen, R^{20h} is methyl, R^{20h'} is hydrogen, R^{21h'} is hydroxy, and all of R^{21h}, R^{22h'} and R^{22h} are hydrogen;

a compound in which R^{ah} is hydrogen, R^{ah} is hydroxy, R^{ah} is hydrogen, R^{ah} is hydroyx, R^{ah} is methyl, R^{ah} is hydroxy, R^{ah} is acetoxy, all of R^{ah}, R^{ah} and R^{ah} are methyl, bloth of R^{ah} and R^{ah} are hydrogen, R^{ah} is hydroxy, R^{ah} is hydroxy,

5

15

40

45

50

55

a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, R^{2h} is hydrogen, R^{2h} is acetoxy, R^{2h} is methyl, R^{2h} is hydroxy, R^{2h} is hydroxy, D^{2h} is hydroxy, D^{2h} is hydroxy, D^{2h} is hydroxy, D^{2h} is hydroxy, both of R^{2h} and R^{2h} are hydroxen, and R^{2h} is methyl:

a compound in which R^{2h}is hydrogen, R^{3h} is acetoxy, both of R^{3h} and R^{3h} are hydrogen, R^{3h} is methyl, R^{6h} is hydroxy, R^{7h} is acetoxy, all of R^{10h}, R^{10h} and R^{10h} are methyl, both of R^{10h} and R^{17h} are hydrogen, R^{2oh} is methyl, R^{2oh} is hydrogen, R^{2h} is hydroxy, both of R^{2h} and R^{2h} are hydrogen, and R^{2h} is hydroxy.

by a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, both of R^{3h} and R^{2h} are hydrogen, R^{2h} is acetoxymethyl, R^{2h} is hydroxy, R^{2h} is acetoxy, all of R^{10h}, R^{2h} and R^{10h} are enthyl, both of R^{10h} and R^{2h} are hydrogen, R^{2h} is methyl, R^{20h} is hydroxy, R^{2h} is hydroxy, R^{2h} is hydroxy.

a compound in which H^{2h} is hydrogen, $H^{2h'}$ is hydroxy, both of H^{2h} and $H^{3h'}$ are hydrogen, H^{2h} is methyl, $H^{2h'}$ is a ectoxy, all of H^{2h} and H^{2h} are methyl, $H^{2h'}$ is in $H^{2h'}$ are hydroxy, $H^{2h'}$ is hydroxy, $H^{2h'}$

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{3h} is methyl, R^{6h} is hydroxy, R^{3h} is ackety, R^{3h} is Ack

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{5h} and R^{5h} are hydrogen, R^{6h} is methyl, R^{6h} is hydroxy, R^{7h} is acetoxy, both of R^{15h} and R^{12h} are methyl, all of R^{15h}, R^{6h} and R^{17h} are hydrogen, R^{20h} is methyl, R^{20h} is hydroxen, R^{21h} is hydroxen, R^{2h} is hydroxen, and R^{2b} is methyl:

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{4h} is methyl, R^{6h} is hydroxy, R^{7h} is acetoxy, both of R^{10h} and R^{16h} are methyl, all of R^{13h}, R^{16h} and R^{17h} are hydrogen, R^{3ch} is methyl, R^{3ch} is hydroxy, both of R^{3th} and R^{22h} are hydrogen, and R^{22h} is methyl:

a compound in which R^{2h} is hydrogen, R^{3h'} is hydroxy, both of R^{3h} and R^{3h'} are hydrogen, R^{3h} is methyl, R^{6h'} is hydroxy, R^{3h'} is acetoxy, both of R^{3h'} and R^{3h'} are methyl, all of R^{3h'} are hydrogen, R^{3h'} is methyl, R^{30h'} is hydroxy, R^{3h'} is hydroxy, R^{3h} is hydroxy, R^{3h}

a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, both of R^{3h} and R^{2h} are hydrogen, R^{2h} is acetoxymethyl, R^{2h} is hydroxy, R^{2h} is hydroxy, all of R^{10h}, R^{12h} and R^{10h} are methyl, both of R^{10h} and R^{17h} are hydrogen, R^{2h} is methyl, R^{2h} is hydrogen, R^{2h} is hydrogen, R^{2h} is endroys, both of R^{2h} and R^{2h} are hydrogen, and R^{2h} is methyl:

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h'} are hydrogen, R^{6h} is metrlyl, R^{6h'} is hydroxy, R^{3h'} is hydroxy, all of R^{10h}, R^{12h} and R^{10h'} are metrlyl, Both of R^{10h'} and R^{17h'} are hydrogen, R^{20h} is hydrogen, R^{20h} is hydrogen, R^{20h} is hydrogen, R^{20h} is hydrogen, R^{20h'} is hydrogen, R^{20h} is hydrogen, R^{20h'} is hydrogen, R^{20h} is

are compound in which R^{2h} is hydrogen, R^{2h'} is hydroxy, all of R^{2h}, R^{2h'} and R^{6h} are hydrogen, R^{6h'} is acetoxy, R^{2h'} is hydroxy, all of R^{10h}, R^{12h} and R^{10h} are methyl, R^{20h'} is hydroxy, R^{2h'} is hydroxy, both of R^{2h'} are hydrogen, and R^{2h'} is hydroxy, both of R^{2h'} and R^{2h'} are hydrogen, and R^{2h'} is methyl;

a compound in which R^{2h} is methyl, R^{2h'} is hydroxy, both of R^{2h} and R^{2h'} are hydrogen, R^{2h'} is methyl, R^{2h'} is hydroxy, R^{2h'} is hydroxy, all of R^{10h}, R^{2h'} and R^{10h} are methyl, both of R^{10h'} and R^{17h'} are hydrogen, R^{2h} is methyl, R^{2h'} is hydrozen, R^{2h'} is methyl, R^{2h'} is nydrozen, R^{2h'} is methyl, R^{2h'} is not hydrozen, R^{2h'} is methyl, R^{2h'} is not and R^{2h'} is methyl.

a compound in which R^{ah} is methyl, R^{ah} is hydroxy, both of R^{ah} and R^{ah} are hydrogen, R^{ah} is methyl, R^{ah} is hydroxy, R^{ah} is acetoxy, all of R^{ah} and R^{ah} are methyl, both of R^{ah} and R^{ah} are hydrogen, R^{ah} is methyl, R^{ah} is hydrogen, R^{ah} is hydroxy, R^{ah} is hydrogen, R^{ah} is hydroxy, R^{ah} is hydroxy, R^{ah} is hydroxy, Rah

a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, R^{2h} is hydrogen, R^{2h} is hydrogen, R^{2h} is hydrogen, R^{2h} is acetoxy, all of R^{10h}, R^{2h} and R^{10h} are methyl, both of R^{10h} and R^{17h} are hydrogen, R^{2h} is methyl, R^{2h} is hydroxy, R^{2h} is hydroxy, both of R^{2h} and R^{2h} are hydrogen, and R^{2h} is methyl:

a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, all of R^{3h}, R^{3h}, R^{3h} and R^{6h} are hydrogen, R^{7h} is hydroxy, all of R^{10h}, R^{2h} and R^{10h} are methyl, both of R^{10h} and R^{17h} are hydrogen, R^{20h} is methyl, R^{20h} is hydrogen, R^{2h} is hydroxy, both of R^{2h} had R^{2h} are hydrogen, and R^{2h} is methyl:

a compound in which Rth is hydrogen, Rth is hydroyn, both of Rth and Rth are hydrogen, Rth and Rth are bound together to form a spinoxynare sturdure, Rth is acetoxy, all of Rth is Rth and Rth are mithyl, both of Rth are mithyl, both of Rth are hydrogen, Rth is methyl, Rth is hydroxy, both of Rth and Rth are hydrogen, Rth is mightyl.

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{6h} and R^{6h} are bound together to form a spirooxyrane structure, R^{7h'} is hydroxy, all of R^{10h}, R^{12h} and R^{10h} are methyl, both of R^{10h} and R^{2h'} are hydrosen, R^{2h'} is hydrosen. R^{2h'} is hydrosen, both of R^{2h'} and R^{2h'} are hydrosen, and R^{2h'} are hydrosen

drogen, and R22h is methyl:

5

10

15

25

20

40

45

a compound in which R^{2h} is hydrogen, R^{2h'} is hydroxy, both of R^{3h} and R^{3h'} are hydrogen, R^{3h} is methyl, R^{6h'} is acetoxy, R^{3h'} is acetoxy, all of R^{10h}, R^{10h} and R^{10h'} are methyl, both of R^{10h'} and R^{10h'} are hydrogen, R^{20h} is methyl, R^{20h'} is hydrogen, R^{2h'} is hydroxy, D^{2h'} is hydroxy,

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{3h} is methyl, R^{3h} is hydroxy, R^{1h} is acetoxy, all of R^{10h}, R^{12h} and R^{18h} are methyl, R^{18h} is hydroxy, R^{17h} is hydrogen, R^{2h} is methyl, R^{20h} is hydrogen, R^{2h} are bound together to form a ketone structure, R^{22h} is hydrogen, and R^{2h} is methyl;

a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, both of R^{5h} and R^{2h} are hydrogen, R^{2h} is methyl, R^{6h} is hydroxy, R^{2h} is accetoxy, all of R^{1h}, R^{2h} and R^{1h} are methyl, both of R^{1h} and R^{1h} are hydrogen, R^{2h} is methyl, R^{2h} is hydrocen, R^{2h} is hydrocen, both of R^{2h} and R^{2h} are hydroxy, and R^{2h} is methyl:

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, R^{3h} is hydrogen, R^{3h} is hydroxy, R^{6h} is methyl, R^{6h} is hydroxy, R^{2h} is accepta, all of R¹⁰, R^{2h} and R^{4h} are methyl, both of R^{10h} and R^{17h} are hydrogen, R^{30h} is methyl, R^{30h} is hydrocen, R^{5h} is hydrocen, both of R^{51h} and R^{2m} are hydroxy and R^{2m} is methyl:

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{3h} is methyl, R^{3h} is hydroxy, both of R^{3h} and R^{3h} and R^{3h} is hydroqen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydroqen, and R^{3h} is methyl; and

a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, both of R^{2h} and R^{2h} are bound together to form a ketone structure, R^{2h} is methyl, R^{2h} is hydroxy, R^{2h} is acetoxy, all of I^{2h}, R^{2h} and R^{2h} are methyl, both of R^{2h} and R^{2h} are hydrogen, R^{2h} is methyl, R^{2h} is hydrogen, R^{2h} is hydroxy, both of R^{2h} and R^{2h} are hydrogen, and R^{2h} is methyl

14. A compound represented by the formula (H-II), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (H-II), R^{2h}, R^{6h}, R^{10h}, R^{12h}, R^{16h}, R^{20h}, R^{21h} and R^{22h} are the same as or different from each other and each represents

- (1) hydrogen,
- (2) methyl.
- (3) hydroxymethyl or
 - (4) C_{2.8} acyloxymethyl;

R3h', R6h', R7h', R16h', R17h', R20h', R21h' and R22h' are the same as or different from each other and each represents

- (1) hydrogen.
 - (2) hydroxy,
 - (3) methoxy or
 - (4) C2-8 acyloxy;

further, R^{21h} and R^{21h'} may be bound together to form a ketone structure (=O); and further, R^{6h} and R^{6h'} may be bound together to form a spirooxyrane structure.

15. A compound represented by the formula (H-II), a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group consisting of a compound in which R^{2b} is hydroxy, R^{3h} is hydroxy, R^{3h} is aceitoxy, all of R^{3h}, R^{2h} and R^{15h} are methyl, both of R^{15h} and R^{15h} are hydrogen, R^{2h} is hydroxy, R^{3h} is hydroxy, R^{3h} is hydroxy, R^{3h} is hydroxy, both of R^{2h} and R^{2h} are hydrogen and R^{2h} is methyl;

a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, R^{6h} is methyl, R^{6h} is hydroxy, R^{7h} is hydroxy, Doth of R^{7h} and R^{2h} are hydrogen, R^{2h} is methyl, R^{2h} is hydroxy, both of R^{2h} and R^{2h} are hydrogen, and R^{2h} is methyl;

a compound in which R²ⁿ is hydrogen, R²ⁿ is hydroxy, R²ⁿ is methyl, R²ⁿ is hydroxy, R²ⁿ is acetoxy, all of R²ⁿ, R²ⁿ and R²ⁿ are methyl, both of R²ⁿ is a R²ⁿ is methyl, R²ⁿ is methyl, R²ⁿ is hydrogen, both of R²ⁿ and R²ⁿ is reduced to form a ketone structure, R²ⁿ is hydrogen, and R²ⁿ is methyl.

a compound in which H_{c}^{2h} is hydrogen, R^{3h} is hydroxy, R^{4h} and R^{6h} are bound together to form a spiroxyyrane structure, R^{7h} is acetoxy, all of R^{4h} , H^{2h} and R^{4h} are methyl, both of R^{4h} and H^{7h} are hydrogen, R^{2h} is high droxy, both of R^{2h} is and R^{2h} and R^{2h} and R^{2h} is and R^{2h} in R^{2h} is and R^{2h} in R^{2h} in R^{2h} in R^{2h} in R^{2h} is and R^{2h} in R^{2h

a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, R^{2h} is methyl, R^{2h} is acetoxy, R^{7h} is acetoxy, all of R^{10h}, are hydrogen, R^{20h} is methyl, R^{20h} is hydrogen, R^{21h} is hydroxy both of R^{21h} and R^{22h} is hydroxy.

a compound in which R²⁰ is hydrogen, R²⁰ is hydroxy, R²⁰ is methyl, R²⁰ is hydroxy, R²⁰ is acetoxy, all of R¹⁰h, R¹⁰h and R¹⁰h are methyl, R¹⁰h is hydrogen, R²⁰h is hydroxy, R²⁰h is methyl, R²⁰h is hydrogen, R²¹h is hydroxy, both of R²¹h and R²⁰h and R²⁰

16. A compound represented by the formula (H-III), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula, R^{2h}, R^{5h}, R^{6h}, R^{10h}, R^{12h}, R^{16h}, R^{20h}, R^{20h} and R^{22h} are the same as or different from each other and each represents

(1) hydrogen.

5

10

15

20

25

30

35

40

45

50

55

- (2) methyl.
- (3) hydroxymethyl or
- (4) Co.a acyloxymethyl;

R5h', R6h', R7h', R16h', R17h', R20h', R21h' and R22h' are the same as or different from each other and each represents

- (1) hydrogen,
- (2) hydroxy,
- (3) methoxy or
- (4) C2-8 acyloxy;

further, R^{gh} and R^{gh} may be bound together to form a ketone structure (=0); further, R^{gh} and R^{gh} may be bound together to form a ketone structure (=0); further, R^{gh} and R^{gh} may be bound together to form a spirooxyrane structure.

17. A compoundrepresented by the formula (H-III), a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group consisting of a compound in which R^{2h} is hydrogen, both of R^{2h} and R^{2h} are hydrogen, R^{2h} is notaty, R^{2h} is hydroxy, R^{2h} is hydroxy, at lor R^{2h}, R^{2h} and R^{2h} are metry. both of R^{2h} and R^{2h} is metry.
R^{2h} is hydroxy, both of R^{2h} and R^{2h} are hydroxyn.

a compound in which \mathbb{R}^{2n} is hydrogen, both of \mathbb{R}^{2n} and \mathbb{R}^{2n} are hydrogen, \mathbb{R}^{2n} is methyl, \mathbb{R}^{2n} is hydroxy, \mathbb{R}^{2n} is acetoxy, all of \mathbb{R}^{12n} and \mathbb{R}^{12n} had \mathbb{R}^{12n} had \mathbb{R}^{12n} had \mathbb{R}^{12n} his methyl, \mathbb{R}^{2n} is hydrogen. \mathbb{R}^{2n} is acetoxy, both of \mathbb{R}^{2n} had \mathbb{R}^{2n} is acetoxy, both of \mathbb{R}^{2n} had \mathbb{R}^{2n} is acetoxy. both of \mathbb{R}^{2n} had \mathbb{R}^{2n} is acetoxy.

a compound in which R^{2h} is hydrogen, both of R^{3h} and R^{3h} are hydrogen, R^{8h} is methyl, R^{6h} is hydroxy, R^{7h} is acetoxy, all of R^{10h}, R^{12h} and R^{16h} are methyl, both of R^{16h} and R^{17h} are hydrogen, R^{20h} is methyl, R^{20h} is hydroxy, both of R^{21h} and R^{22h} is methyl.

18. A compound represented by the formula (H-IV), a pharmacologically acceptable salt thereof or a hydrate of them

$$\mathsf{R}^{2211} \underbrace{+}_{\mathsf{R}^{2201}} \mathsf{R}^{1701} \underbrace{+}_{\mathsf{R}^{100}} \mathsf{R}^{1701} \underbrace{+}_{\mathsf{R}^{100}} \mathsf{R}^{1001} \underbrace{+}_{\mathsf{R}^{201}} \mathsf{R$$

In the formula, R^{2h}, R^{3h}, R^{4h}, R^{5h}, R^{6h}, R^{7h}, R^{10h}, R^{12h}, R^{16h}, R^{20h}, R^{21h} and R^{22h} are the same as or different from each other and each represents

(1) hydrogen,

5

10

15

20

25

30

35

40

50

55

- (2) methyl.
- (3) hydroxymethyl or
 - (4) C2-8 acyloxymethyl;

R^{3h'}, R^{5h'}, R^{5h'}, R^{7h'}, R^{16h'}, R^{17h'}, R^{20h'}, R^{21h'} and R^{22h'} are the same as or different from each other and each represents

- (5) hydrogen,
- (6) hydroxy.
 - (7) methoxy or
 - (8) C₂₋₈ acyloxy;

further, R^{3h} and $R^{3h'}$ may be bound together to form a ketone structure (=O); further, R^{3h} and $R^{3h'}$ may be bound together to form a ketone structure (=O); further, further, R^{3h} and $R^{3h'}$ may be bound together to form a ketone structure (=O); R^{2h} and $R^{2h'}$ may be bound together to form a ketone structure (=O); further, R^{4h} and R^{5h} may form a single bond to represent

; and

further, R^{6h} and R^{6h} may be bound together to form a spirooxyrane structure, provided that the restricted clauses 1, 2 and 3 are included.

19. The compound represented by the formula (H-IV), a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group consisting of a compound in which R^{2h} is hydrogen, R^{2h} and R^{2h*} are bound together to form a ketone structure, R^{2h*} and R^{2h*} form a

single bond to represent

, R^{Sh} is hydrogen, R^{Sh} is methyl, R^{Sh} is hydroxy, RTh is hydrogen, RTh is acetoxy, all of R^{10h}, R^{12h} and R^{18h} are methyl, both of R^{18h} and R^{17h} are hydrogen, R^{Sh} is methyl, R^{Sh} is hydrogen, R^{21h} is hydroxy, both of R^{21h} and R^{Sch} are hydrogen, and R^{22h} is methyl; and

a compound in which R^{2h} is hydrogen, R^{2h} is hydrogen, $R^{2h'}$ is hydroxy, all of R^{4h} , R^{2h} and $R^{2h'}$ are hydrogen, R^{2h} is methyl, $R^{4h'}$ is hydroxy, R^{2h} and $R^{1/2}$ are bound together to form a ketone structure, all of R^{10h} , $R^{12h'}$ and $R^{1/2h'}$ are bydrogen, R^{2hh} is methyl, both of $R^{14h'}$ and $R^{12h'}$ are hydrogen, $R^{2h'}$ is methyl. $R^{2h'}$ and $R^{2h'}$ are hydrogen, $R^{2h'}$ is methyl.

20. A compound represented by the formula (H-V), a pharmacologically acceptable salt thereof or a hydrate of them.

10

15

20

25

40

45

50

In the formula (H-V), R12h, R16h, R16h', R17h', R26h, R26h' and R21h' have the same meanings as the definitions in the formula (H-I); R16h represents hydrogen or methyl; R21h' represents hydrogen, methyl or ethyl; and Gr

(wherein R^{2h} , R^{3h} , R^{5h} , R^{5h} , R^{6h} , R^{6h} , $R^{7h'}$ and R^{10h} have the same meanings as the definitions in the formula (H-I)), the formula (2):

(wherein R^{2h}, R^{3h}, R^{6h}, R^{6h}, R^{7h} and R^{10h} have the same meanings as the definitions in the formula (H-II)), the formula (3):

(wherein R^{2h} , R^{5h} , R^{5h} , R^{6h} , $R^{7h'}$ and R^{10h} have the same meanings as the definitions in the formula (H-III)), the formula (4):

10

15

20

25

30

35

40

50

55

(wherein R2h, R6h, R7h and R10h have the same meanings as the definitions in the formula (H-I)), or the formula (5):

(wherein R^{2h}, R^{3h}, R^{6h}, R^{6h} and R^{10h} have the same meanings as the definitions in the formula (H-I)), provided that the restricted clauses 1, 2 and 3 are included.

21. A compoundrepresented by the formula (H-V), a pharmacologically acceptable sait thereof or a hydrate of them, which is selected from the group consisting of a compound in which G^{mh} is represented by the formula (MH-I), R² is hydrogan, R²⁰ is hydrogy, both of R²⁰ and R²⁰ are hydrogen, R²⁰ is sectory, all of R¹⁰⁰, R¹²⁰ and R¹⁰⁰ are methyl, all of R¹⁰⁰, R¹²⁰ and R¹⁰⁰ are remothyl, all of R¹⁰⁰, R¹²⁰ and R²⁰ is and R²⁰ are hydrogen, all of R²⁰⁰, R²¹⁰ and R²⁰⁰ are hydrogen, all of R²⁰⁰, R²¹⁰ and R²⁰⁰ are hydrogen and R²⁰⁰ is hydrogen.

a compound in which G^{mh} is represented by the formula (MH-I), R^{2h} is hydrogen, $R^{2h'}$ is hydroxy, both of R^{3h} and $R^{3h'}$ are hydrogen, R^{3h} is methyl, $R^{3h'}$ is hydroxy, $R^{7h'}$ is acctoxy, all of R^{10h} , R^{12h} and R^{10h} are methyl, $R^{18h'}$ is hydroxy, $R^{3h'}$ is hydroxy, and all of R^{18h} , $R^{3h'}$,

a compound in which G^{mh} is represented by the formula (MH-I), R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{5h} and R^{3h} are hydrogen, R^{3h} is restricted and R^{3h} are hydrogen, R^{3h} is a destroy, all of R^{10h}, R^{12h} and R^{10h} are methyl, R^{10h} is hydroxy, and all of R^{17h}, R^{3h}, R^{2h}, R^{2h}, R^{3h}, R^{3h}, R^{3h} is hydroxy, and all of R^{17h}, R^{3h}, R^{2h}, R^{2h}, R^{3h}, and R^{3h} is hydroxy and all of R^{17h}, R^{3h}, R^{2h}, R^{2h}, R^{3h}, and R^{3h} is hydroxy and all of R^{17h}, R^{3h}, R^{3h}, R^{3h}, R^{3h}, and R^{3h} is hydroxy and hydroxy.

a compound in which G^{mh} is represented by the formula (MH-I), Rth is hydrogen, Rth is hydroxy, both of Rth and Rth are hydrogen, Rth is ghdroxy, Rth is acetoxy, all of Rth, Rth and Rth are methyl, Rth is hydroxy, Rth is methyl, and all of Rth, Rth is And Rth are hydrocen:

a compound in which G^{mh} is represented by the formula (MH-V), R^{2h} is hydrogen, R^{2h} is hydroxy, R^{6h} is methyl, R^{6h} is hydroxy, all of R^{6h} are methyl, all of R^{6h} if R^{1h}, R^{1h} and R^{2h} are hydrogen, R^{2h} is methyl, R^{2h} is hydroxy, and R^{2h'} is ethyl.

22. A compound represented by the formula (H-VI), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula, R12h, R16h, R16h', R17h', R20h, R20h', R21h', R21h', R22h and R22h' have the same meanings as the definitions in the formula (H-I); G^{mh} has the same meaning as the definition in the formula (H-I); G^{mh} has the same meaning as the definition in the formula (H-I).

23. A compound represented by the formula (H-VI), a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group consisting of a compound in which G^{mb} is represented by the formula (MH-I), A^{mb} is hydrogen, R^{mb} is hydroxy, A^{mb} of R^{mb} and R^{mb} are hydrogen, R^{mb} is nethul, R^{mb} is hydroxy, A^{mb} of R^{mb} and R^{mb} are hydrogen, R^{mb} is nethul, R^{mb} is hydroxy, A^{mb} is hydroxy. A^{mb} is hydroxy, A^{mb} is hydro

acetoxy, all of R^{10h}, R^{12h} and R^{16h} are methyl, both of R^{16h} and R^{17h} are hydrogen, R^{20h} is methyl, both of R^{20h} and R^{21h} are hydrogen, both of R^{21h} and R^{22h} are hydroxy, and R^{22h} is methyl; and

a compound in which G^{mh} is represented by the formula (MH-I), R²⁰ is hydrogen, R²⁰ is hydrocy, both or R²⁰ and R²⁰ is en'dydgogen, R²⁰ is nethyl, R²⁰ is hydroxy, R²⁰ is actoxx, all of R²⁰ in R²⁰ and R²⁰ is methyl, both of R²⁰ is methyl, all of R²⁰ in R²⁰ is methyl, all of R²⁰ is methyl, and R²⁰ is methyl, both of R²⁰ is methyl, all of R²⁰ is methyl, and R²⁰ is methyl,

24. A compound represented by the formula (H-VII), a pharmacologically acceptable salt thereof or a hydrate of

$$\mathsf{R}^{22l^{\prime}} \underbrace{\bigwedge_{\mathsf{R}^{2}\mathsf{R}^{\prime}}^{\mathsf{R}^{2}l^{\prime}} \underbrace{OH}_{\mathsf{R}^{\prime}} \underbrace{\mathsf{R}^{\mathsf{R}^{\prime}\mathsf{R}^{\prime}}}_{\mathsf{R}^{\mathsf{1}\mathsf{dh}}} \underbrace{\mathsf{G}^{\mathsf{mh}}}_{\mathsf{R}^{\mathsf{1}\mathsf{2h}}} \underbrace{\mathsf{G}^{\mathsf{mh}}}_{\mathsf{R}^{\mathsf{1}\mathsf{2h}}} \underbrace{\mathsf{(H-VII)}}$$

10

15

20

25

30

40

45

55

In the formula, G^{mb} has the same meaning as the definition in the formula (H-V); — represents a single bond or a double bond; and H^{12b}, R^{15b}, R^{15b}, H^{75b}, R^{25b}, R^{25b}, R^{25b}, R^{25b} and R^{22b} have the same meanings as the definitions in the formula (H-I).

25. A compound represented by the formula (H-VII), a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group consisting of a compound in which G^{mh} is represented by the formula (MH-I), __ represents a double bond, R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{3h} is methyl, R^{3h} is hydroxy, R^{3h} is acetoxy, all of R^{3h} and R^{3h} are methyl, both of R^{3h} and R^{3h} are hydrogen, R^{3h} is hydroxy, and R^{2h} is nethyl. and R^{3h} are hydrogen, R^{3h} is hydroxy, and R^{2h} is hydroxy, and R^{2h} is methyl.

compound in which G^{mb} is represented by the formula (MH-I), "represents a single bond, R³⁰ is hydrogen, R³⁰ is hydrogen, R³⁰ is hydrogen, B³⁰ is hydrogen, and R³⁰ is hydrogen, and R³⁰

a compound in which G^{ah} is represented by the formula (MH-II), =:represents a double bond, Rah is hydrogen, Rah is hydroxy, Rah is methyl, Rah is hydroxy, Rh is acetoxy, all of Irfin, R1 and R1sh are methyl, both of R1sh and R17h are hydrogen, R2sh is methyl, all of R2sh', R2th and R2sh' are hydrogen, R2th is hydroxy, and R2sh

 A compound represented by the formula (H-VIII), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula, Gmh, R12h, R16h, R16h', R7h', R20h, R22h and R22h' have the same meanings as the formula (H-I); and R18h' represents hydrogen or hydroxy.

27. A compound, a pharmacologically acceptable salt thereof or a hydrate of them in the formula (H-VIII), which is selected from the group consisting of a compound in which Gm^h is represented by the formula (MH-I), R^{2h} is hydrogen, R^{3h} is hydroxy, toth of R^{5h} and R^{5h} are hydrogen, R^{5h} is mydroxy, R^{3h} is sectory, all of R^{10h}, R^{12h} and R^{15h} are methyl, both of R^{16h} and R^{17h} are hydrogen, R^{18h} is hydroxy, R^{20h} is methyl, R^{22h} is hydroxy.

a compound in which G^{rah} is represented by the formula (MH-I), R^{2h} is hydrogen, R^{2h} is hydroxy, both of R^{5h} and A^{5h} are hydrogen, R^{6h} is methyl, R^{6h} is hydroxy, R^{7h} is acetoxy, all of R^{10h}, R^{12h} and R^{16h} are methyl, both of R^{16h} are hydroxen, and R^{16h} is methyl.

 A compound represented by the formula (H-IX), a pharmacologically acceptable salt thereof or a hydrate of them.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} R^{19h'} \\ R^{10h'} \end{array} \\ \begin{array}{c} C^{17} \\ C^{17} \end{array} \\ \begin{array}{c} C^{15} \\ C^{14} \end{array} \\ \begin{array}{c} C^{15} \\ C^{14} \end{array} \\ \begin{array}{c} C^{mh} \\ R^{12h} \end{array} \\ \begin{array}{c} C^{mh} \\ R^{12h} \end{array} \end{array} \\ \begin{array}{c} C^{mh} \\ R^{12h} \end{array} \\ \begin{array}{c} C^{mh} \\ R^{12h} \end{array} \\ \end{array} \\ \begin{array}{c} C^{mh} \\ R^{12h} \end{array} \\ \begin{array}{c} C^{mh} \\ R^{12h} \end{array} \\ \end{array} \\ \begin{array}{c} C^{mh} \\ R^{12h} \end{array} \\ \begin{array}{c} C^{mh} \\ R^{12h} \end{array} \\ \end{array} \\ \begin{array}{c} C^{mh} \\ R^{12h} \\ R^{12h} \end{array} \\ \begin{array}{c} C^{mh} \\ R^{12h} \\ R^{12h} \\ R^{12h} \end{array} \\ \begin{array}{c} C^{mh} \\ R^{12h} \\ \end{array}$$

10

15

20

25

30

35

40

45

50

55

In the formula, G^{mh} has the same meaning as the definition in the formula (H-V); C¹⁺C¹S and C¹S-C¹T are the same as or different from each other and each represents a single bond or a double bond; R^{12h}, R^{16h} and R^{16h} have the same meanings as the definition in the formula (H-V); R^{18h} represents hydrogen or metryl; R^{18h} represents hydrogen or hydroxy; R^{16h} and R^{16h} are (1) the same as or different from each other and each represents hydrogen, or the same as of different from each other and each represents hydrogen, methyl or hydroxy, or (2) R^{16h} and R^{18h} are bound to opether to represent a ketone structure (=O).

29. A compound represented by the formula (H-IX), a pharmacologically acceptable sait thereof or a hydrate of them, which is selected from the group consisting of a compound in which G^{ah} is represented by the formula (MH-I), C¹⁴...C¹⁸ is a double bond, C⁶¹...C¹⁸ is a single bond, R⁶³ is hydrogen, R⁶³ is inydroy, both of R⁶³ and R⁶³ are hydrogen, R⁶³ is methyl, R⁶⁶ is hydroy, R⁷⁶ is acetoxy, all of R¹⁶⁵, R^{12b} and R¹⁶ are methyl, all of R¹⁶⁴ and R¹⁶⁵ are hydrogen.

a compound in which G^{mh} is represented by the formula (MH-I), C^{14} ... C^{15} is a single bond, C^{16} ... C^{17} is a double bond, R^{2h} is hydrogen, R^{2h} is hydroxy, both of R^{2h} and R^{2h} are hydrogen, R^{2h} is methyl, R^{2h} is hydroxy, R^{2h} is exectoxy, both of R^{10h} and R^{14h} are nethyl, both of R^{12h} and R^{19h} are hydrogen, R^{18h} is methyl, R^{18h} is hydroxy, and R^{19h} and R^{19h} are bound together to form a ketone structure (ω (); and

a compound in which G^{mh} is represented by the formula (MH-I), C^{14} — C^{15} is a single bond, C^{18} — C^{15} is a double bond, R^{2m} is hydrogen, R^{2m} is hydroxy, both of R^{15h} and R^{2m} are hydrogen, R^{2m} is methyl, R^{2m} is hydroxy, R^{2m} is exectoxy, both of R^{10h} and R^{10h} are exectoxy, both of R^{10h} and R^{10h} are hydrogen, R^{18h} is methyl, R^{19h} is hydroxy, R^{19h} is hydroxy. R^{19h} is hydroxy.

30. A compound represented by the formula (H-X), a pharmacologically acceptable salt thereof or a hydrate of them.

in the formula, G^{ath}, Ri⁶h and R^{17h} have the same meanings as the definitions in the formula (H-V); Ri^{14h} represents the hydrogen or methyl; C^{14c}—C¹⁸ and C^{18c}—C¹⁷ are the same as or different from each other and each represents a single bond or a double bond; Ri⁶h is hydrogen or hydroxy, and Ri^{18h} represents (1) methyl or (2) the formula (H-X), Ri^{18h} is selected from the group consisting of a compound in which C^{6h} is represented by the formula (H-X), Ri^{18h} is represented by the formula (R-F), C^{14c}-C¹⁸ is a double bond, C^{18c}-C¹⁷ is a single bond, R^{6h} is hydrogen, R^{6h} is represented by the formula (R-F), C^{14c}-C¹⁸ is a double bond, C^{18c}-C¹⁷ is a single bond, R^{6h} is hydrogen, R^{6h} is methyl, R^{6h} is methyl, R^{6h} is hydroxy, R^{6h} is actory, all of R^{10h}, R^{18h} and R^{10h} are hydrogen, R^{6h} is in hydroxy, both of R^{10a} and R^{10h} are methyl, both of R^{10a} and R^{10h} are hydrogen, R^{6h} is hydroxy.

a compound in which G^{mh} is represented by the formula (MH-I), C14°C15 is a single bond, C16°C17 is a double bond, R²⁰ is hydrogen, R²⁰ is hydrogen, R²⁰ is hydrogen, R²⁰ is hydrosy, R²⁰ is acetoxy, both of R¹⁰ and R^{14h} are methyl, all of R^{12h}, R^{16h} and R^{17h} are hydrogen, R^{18h} is hydroxy, and R^{18h} is methyl; and

a compound in which G^{ab} is represented by the formula (MH-I), $C^{1L}C^{15}$ is a double bond, $C^{18}C^{15}$ is a single bond, R^{15} is hydrogo, R-10 in G^{15} and R^{15} are hydrogen, R^{15} is in hydrosy, R^{15} is acetoxy, all of R^{15} in R^{15} is an emethyl, both of R^{14b} and R^{18b} are hydrogen, R^{17b} is hydroxy, and R^{18b} is emethyl.

32. A compound represented by the formula (H-XI), a pharmacologically acceptable sait thereof or a hydrate of them.

In the formula, G^{mh} and R^{12h} have the same meanings as the definitions in the formula (H-V); R^{16h*} represents hydrogen, methyl or hydroxy; and R^{17h*} represents (1) hydrogen or (2) the formula (R-F).

33. A compound represented by the formula (H-XI), a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group consisting of a compound in which Gth is represented by the formula (MH-I), R^{17th} is represented by the formula (R-F), R²⁰ is hydrogen, R²⁰ is low through of R²⁰ are hydrogen, R²⁰ is methyl, R²⁰ is hydrogen, R²⁰ is nettyl, R²⁰ is methyl, R²⁰ is hydrogen, R²⁰ is methyl, R²⁰ is hydrogen, R²⁰ is methyl, and R²⁰ is ethyl, and R²⁰ is ethyl and R²⁰ is the type of R²⁰ is hydrogen, R²⁰ is hydrogen, R²⁰ is hydrogen, R²⁰ is hydrogen, R²⁰ is methyl, and R²⁰ is ethyl and

a compound in which G^{mh} is represented by the formula (MH-I), R^{2h} is hydrogen, R^{2h} is hydrozy, all of R^{2h} , R^{2h} and R^{2h} are hydrogen, R^{3h} is methyl, R^{2h} is acetoxy, both of R^{10h} and R^{12h} are methyl, R^{16h^*} is hydroxy, and R^{17h^*} is hydroxy.

34. A compound represented by the formula (15), a pharmacologically acceptable salt thereof or a hydrate of them.

$$R^{22r} \underbrace{+ R^{2l'}_{R^{2l}} R^{2l}_{R^{2l}}}_{R^{2l} R^{2l}} \underbrace{+ R^{1^{2l'}}_{R^{1}} R^{16r}}_{R^{16r}} \underbrace{+ R^{12r}_{R^{2l}}}_{R^{12r}} G^{mr}$$
(15)

In the formula (15), Gmr is represented by the formula (1):

(wherein R2r, R3r, R5r, R5r, R6r, R6r, R6r, R7r and R10r are the same as or different from each other and each represents

1) hydrogen,

5

15

20

25

30

35

40

45

50

55

- methyl which may have substituents,
 - 3) -ORH (wherein RH is <1> hydrogen, <2> methyl or <3> acetyl),
 - 4) -ORD (wherein RD represents
 - <1> C₁₋₂₂ alkyl (provided that in case of methyl, it has always substituents),
 - <2> -CH₂Ar,
 - <3> C₃₋₂₂ acyl,
 - <4> unsaturated C₃₋₂₂ acyl, <5> -CORCO.
 - <2> -COH---
 - <6> C₁₋₂₂ alkylsulfonyl,
 - <7> benzenesulfonyl or
- <8> -SiRs1Rs2Rs3, each of which may have

substituents)

5) halogen or

6) -R^M-NR^{N1}R^{N2} (Ar, R^{CO}, R^{≤1}, R^{≤2}, R^{≤3}, R^M, R^{N1} and R^{M2} have the same meanings as the definitions of the formula 5).

further, R5r and R5r may be bound together to represent a ketone structure;

10

15

30

35

40

45

50

55

further, R^{6r} or R^{6r} may be bound together to represent a spirooxyrane structure or an exo-methylene structure; further, either of R^{6r} or R^{6r}, and R^{7r} may be bound together to represent a 1,3-dioxolane ring), the formula (2):

(wherein R²r, R³r, R³r, R³r, R⁵r and R¹⁰r have the same meanings as the above-mentioned definition), the formula (3):

(wherein R^{2r} , R^{5r} , R^{5r} , R^{6r} , R^{6r} , R^{7r} and R^{10r} have the same meanings as the above-mentioned definition), the formula (4):

(wherein R2r, R6r, R7r' and R10r have the same meanings as the above-mentioned definition), or the formula (5):

(wherein R²′, R³′, R³′, R⁶′ and R¹⁰′ have the same meanings as the above-mentioned definition); R¹², R¹⁶′, R¹⁷′, R¹⁸′, R²⁰′, R²⁰′, R²¹′, R²²′ and R²²′ are the same as or different from each other and each represent

1) hydrogen,

5

10

20

50

55

- 2) methyl which may be optionally substituted.
- 3) -ORH (wherein RH represents <1> hydrogen, <2> methyl or <3> acetyl),
- 4) -ORD (wherein RD represents
- <1> C1.22 alkyl (provided that in case of methyl, it has always substituents),
 - <2> -CH₂Ar,
 - <3> C322 acyl,
 - <4> unsaturated C₃₋₂₂ acyl,
 - <5> -CORCO,
- <6> C₁₋₂₂ alkylsulfonyl,
- <7> benzenesulfonvl. or
 - <8> -SiR*1R*2R*3, each of which may have

substituents),

5) halogen or

6) -RM_NRM1RN2 (Ar, RCO, Re1, Re2, Re3, RM, RM1 and RN2 have the same meanings as the definitions in the formula 5):

further, R^{21r} and R^{21r} may be bound together to represent <1> a ketone structure (=0) or an oxime structure (=NOR OX ; wherein R^{OX} has the same meaning as the definition in the formula 5);

when either one of A and B is 1) halogen, or 2) <1> alkylsulfonyloxy, <2> benzenesulfonyloxy or <3> $C_{1.22}$ alkoxy, each of which may have substituents, the other is 1) hydroxy, or 2) <1> $C_{1.22}$ alkoxy or <2> $C_{2.22}$ acyloxy, each of which may have substituents.

35. A compound represented by the formula (16), a pharmacologically acceptable sait thereof or a hydrate of them.

45 In the formula (16), R³⁷, R⁵⁷, R⁵⁷, R⁵⁷, R⁶⁷, R⁶⁷, R¹⁷, R¹⁷, R²⁰⁷, R²⁰⁷, R²⁰⁷, R²⁰⁷, R²⁰⁷, R²⁰⁷ and R²⁰⁷ are the same as or different from each other and each represents hydrogen or methy, provided that the restricted clause 3 is included.

36. A compound represented by the formula (17), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (17), R³⁴, R⁵⁴, R⁵⁴, R⁵⁴, R⁹⁶, R⁹⁷, R¹⁷⁴, R¹⁷⁴, R¹⁰⁵, R²⁰⁵, R²²⁴ and R²²⁴ have the same meanings as the definitions in the formula 15; and R²⁵, R¹⁰⁵, R¹⁰⁵, R¹⁰⁵, R¹⁰⁵ have the same meanings as the definitions in the formula 16, provided that the restricted clauses 3 is included.

37. A compound represented by the formula (18), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (18), $\mathbb{R}^{1/2}$ represents hydrogen or hydroxy; \mathbb{R}^{18} represents hydrogen or methyl; \mathbb{R}^{21} represents hydrogen or hydroxy; and \mathbb{R}^{8M} represents -NRP^{em}[Ren²² (wherein Ren²¹ and \mathbb{R}^{9M} are (1) the same as or different from each other and each represents 1) hydrogen, or 2) c1> \mathbb{C}_{122} alifyl, <2> \mathbb{C}_{24} ey/colasily, <3> unsaturated \mathbb{C}_{322} alifyl, <4> \mathbb{C}_{241} ey/colasily, <3 bunsaturated \mathbb{C}_{322} acyl, <5> \mathbb{C}_{64} anyl, <7> \mathbb{C}_{34} ey/colasily, <4> be membered to 4-membered historacyl, <30 arally, <10 be horizonatelyl, <13 bund to 4-membered historacyl, <31 arallyl, <10 be horizonatelyl, <13 bund to 4-membered historacyl, <31 bund together to represents an optionally substituted 3-membered to 14-membered historacy-containing non-aromatic heterocyclic ing).

38. A compound represented by the formula (18), a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group of compounds consisting of, (1) a compound in which RAM is represented by

10

15

20

25

35

45

55

, and further which may optionally have one to four of substituents selected from hydroxy, amino, N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-diethylamino, N-ethyl-N-methylamino, azetidin-1-yl, pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl, thiomorpholin-1-yl, piperazin-1-yl, 4-methylpiperazin-1-yl, 9-ethylpiperazin-1-yl, N-(2-hydroxyethyl)amino, N-(3-hydroxypropyl) amino, N-(2-hydroxyethyl)-N-methylamino, N-(3-hydroxypropyl)-N-methylamino, N-(2-hydroxyethyl)-N-ethylamino or N-(3-hydroxypropyl)-N-ethylamino; (2) a compound in which RAM is represented by

, and further, which may optionally have one to four of substituents selected from methyl, ethyl, n-propyl, hydroxy, hydroxymethyl, 2-hydroxyethyl and 3-hydroxypropyl; and

(3) a compound in which RAM is represented by

15

20

25

30

35

4n

55

, and further, which may optionally have one or two of substituents selected from methyl, ethyl, n-propyl, hydroxy, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, amino, N-methylamino, N-ethylamino, N-Medmethylamino, N,N-didethylamino, N-ethyl-N-methylamino, azetidin-1-yl, pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl and thiomorpholin-1-yl.

39. A compound represented by the formula (19), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula, G^{mr} and R¹²r have the same meanings as the definitions in the formula (15); and Z represents oxygen or the formula:

(wherein R^Z represents (1) hydrogen or (2) a and C_{1-8} alkyl, C_{1-8} alkenyl or C_{1-8} alkynyl which may have substituents and an epoxy structure.).

40. A compound represented by the formula (20), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (20), N and B are bound together with oxygen to represent an epoxy structure, or either one of them represents hydroxy and the other represents any one of chlorine, bromine, hydroxy and methoxy, $R^{2+i\alpha}$ and $R^{2+i\alpha}$ are bound together with oxygen to represent a ketone structure, or either one of them represents hydrogen, and the other represents any one of hydroxy, methoxy and OPP^n , PP^n , PP^n and PP^n are the same as or different from each other and each represents hydrogen, hydroxy or OPP^n , PP^n and PP^n are the same as or different from each other and each represents hydrogen, hydroxy or OPP^n , PP^n and PP^n represents the same as or different from PP^n and PP^n are the same as of PP^n (where PP^n and PP^n are the same as of PP^n and PP^n are the same as of PP^n and PP^n are the same as of different from each other and each represents hydrogen, Q^n , Q^n ,

eridine, piperazine, N-substituted piperazine or morpholine;
The substituent described here indicates the following.

- a) C1-C8 alkyl, C1-C8 alkoxy, C2-C8 acyl,
- b) fluoro, chloro, bromo, iodo,

10

15

25

30

35

40

50

- c) carboxylic acid, sulfonic acid, carboxylic acid ester, carboxamide which may optionally have substituents on nitrogen.
- d) nitro, amino, N-monosubstituted amino, N.N-disubstituted amino.
- e) a hydroxy group, mercaptane, C₁.C₈ alkylthio, C₁.C₈ alkylsulfoxide, C₁.C₈ alkylsulfone, provided that the restricted clauses 1. 2 an 3 are included.
- 41. A compound represented by the formula (21), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (21), R^{α} and R^{α} represent hydrogen; R^{α} represents hydrogen or acehyt; R^{16} . R^{17} and R^{20} are the same as or different from each other and each represents hydrogen or hydroxy, R^{22} and R^{210} are bound logenther with oxygen to represent a ketone structure, or either one of them represens hydroxy or methoxy and the other represents hydrogen; and R^{12} represents methyl or $-CH_{\rho}OH$, provided that the restricted clauses 1, 2 and 3 are included.

42. The compound, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R², R² and R¹⁷ are hydrogen; R²⁷ is hydrogen or acetylt, R¹⁸ and R²⁰ are the same as or different from each other and each represents hydrogen or hydroxy, R²¹⁴ and R²¹⁶ are bound together with oxygen, or either one of them represents hydroxy and the other is hydroor; and R¹⁸ is methyl.

43. The compound, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R³°, R³° and R¹′ are hydrogen; R⁷′ is aceyl; R¹⁶ and R¹′ are the same as or different from each other and each represents hydrogen or hydroxy; R²¹⁶ and R²¹⁶ are bound together with oxygen, or either one of them represents hydroxy and the other is hydroxen; R²¹⁶ and R²¹⁷ erpresents methyl or -CH-OH.

- 44. The compound, or a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R3*, R6*, R7*, R1*, R20 and R21a are hydrogen; R16 and R21b are hydroxy; and R12 is methyl.
 - 45. The compound, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R³, R⁶, R⁷, R¹⁶, R¹⁷ and R^{21a} are hydrogen; R²⁰ and R^{21b} are hydroxy; and R¹² is methyl.
- 46. The compound, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R3°, R6°, R7°, R16, R17, R20 and R21a are hydrogen; R21b is hydroxy; and R12 is methyl.
 - 47. The compound, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R³, R⁶, R¹⁶, R¹⁷ and R^{21a} are hydrogen; R²⁰ and R^{21b} are hydroxy; R^{7*} is acetyl; and R¹² is methyl.
 - 48. The compound, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R^3 , R^6 , R^{17} , R^{20} and R^{21a} are hydrogen; R^{16} and R^{21b} are hydroxy; R^{7} is acetyl; and R^{12} is methyl.
- 49. The compound, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R³¹, R⁶¹, R⁶¹, R⁶¹, R¹⁷ and R²⁰ are hydrogen; R^{21a} and R^{20b} are bound together with oxygen; R⁷¹ is acetyl; and R¹² is methyl.
 - 50. The compound, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R3°, R6°, R16, R17, R20 and R21a are hydrogen; R21b is hydroxy; R7° is acetyl; and R12 is methyl.
- 55 51. A medicament comprising at least one selected from compounds, a pharmacologically acceptable salt thereof or a hydrate of them an active ingredient.
 - [0012] Pharmaceuticals are preferably, an agent for preventing or treating a disease against which gene expression

control is efficacious, an agent for preventing or treating a disease against which VEGF production suppressing action is efficacious, an agent for preventing or treating a disease against which an antiangiogenic effect is efficacious, an antiangiogenic agent, an antitumor agent, an agent for treating hematoma, an agent for suppressingcancer metastasis, an agent for treating retina angiogenic disease or an agent for treating diabetic retinopathy, an agent for treating inflammatory diseases, an agent for treating inflammatory diseases constituting of sold treating, and agent for treating atherosclerosis, an agent for treating action and tumor, breast cancer, prostate cancer, ovarian accner, contended to the content of the production and the production and the production appressing action or an antitumor agent based on one expression control, an antitumor agent based on one expression antian-dosenic effect.

[0013] Further, the present invention provides a method for preventing or treating a disease against which gene expression control is efficacious, by administering a pharmacologically effective dose of the above-mentioned medicament to a patient. In particular, the method is a method for preventing or treating a disease against which the VEGF production suppressing action is efficacious or against which an antiangiogenic action is efficacious.

10

40

45

[0014] Further, it provides use of the any one of compounds of the present invention, a pharmacologically acceptable salt thereof or a hydrial of them for producing the above-mentioned medicament or an agent for preventing or treating. In particular, it is occasionally used for producing an agent for preventing or treating a disease against which perceive pression control is efficacious, a disease against which the VEGF production suppressing action is efficacious, a disease against which an articular which an antianciposonic action is efficacious or solid cancer.

70 [0015] Further, the present invention provides the production process of the compound of the present invention, a pharmacologically acceptable salt thereof or a hydrate of them, which comprises culturing Streptomyces sp. Mer. 11107, PERM P-18144 or its variant in a nutrient culture medium, collecting the compounds described in any of the above are from the culture solution, and carrying out various modification synthesis by using the obtained compounds as a starting material to obtain derivatives thereof.

[0016] Further, the present invention provides an agent for preventing or treating a disease against which the gene expression control is afficacious, a disease against which he WESF production suppressing action is efficacious, a disease against which the artising dependence of the disease against which the artising dependence of the disease against which the artising dependence of the compound represented by the formula (4), a pharmacologically acceptable saft thereof or a hydrate of them. Further, it provides a method for preventing or treating by using it, and use of lift or producing an agent for preventing or treating by suring it, and use of lift or producing an agent for preventing or treating place are relating. The agent for preventing or treating is preferably an agent for treating place are resting diabetic retring tritleam grain for treating in flammatory disease, an agent for treating pathocaccions agent for treating affects care. When the solid cancer is lung cancer, brain turnor, breast cancer, prostate cancer, overlan cancer, colon cancer or melanoma, it is effective in particular.

[0017] As the 12-membered ring macrolide compound which is similar as the present invention, FD895 (JP-A 4-352783) is known. However, although cell inhibitory action in vitro is indicated, it was ineffective in an animal experiment using P388 mouse leukemia cell (Self-Asano M. et al. J. Antibiotics Vol.47, 1395-1401, 1994.)

[0018] The following deposit microorganism can be used for the microorganism for producing the compound of the present invention. The fungus strainy deposited to International Patent Organism Depositary (IPCD) National Institute of Advanced Industrial Science and Technology (Taukuba Central 6, 1-1, Higash 1-Chome Taukubashi. Ibaraki-ken 565-5865, Janan).

5 [0019] Streptomyces sp. Mer-11107 was deposited as PERM P-18144 at the National institute of Bioscience and Human-Technology Agency of Industrial Science and Technology (1-3, Higash) I chome Tsukubea-fil burak-ken 305-8569, Japan), Further, this was transferred to International Deposit FERM 8P-7812 at International Patent Organism Deposition (PDD) National institute of Advanced Industrial Science and Technology (Tsukube Central 6, 1-1.)

Higashi 1-Chome Tsukuba-shi, Ibaraki-ken 305-8566 Japan).

25

[0020] Additionally, Streptomyces sp. A-1532, Streptomyces sp. A-1533 and Streptomyces sp. A-1534 were also internationally deposited to International Patent Organism Depositary (IPOD) National Institute of Advanced Industrial Science and Technology (Tsukuba Central 6, 1-1, Higashi 1-Chome Tsukuba-shi, Ibaraki-ken 305-8566 Japan) as FERM BP-7851, respectively.

[0021] The meanings of terms, symbols and the like used in the specification of the present application will be illustrated below, and the present invention will be specifically illustrated.

[0022] In the specification of the present application, the structural formule of the compound represents occasionally a fixed iowner for convenience. In the specification of the present application, there are included all isomers and mixtures of the isomers such as a geometric isomer which are generated from the configuration of the compound, an optical isomer based on an asymmetric carbon, a retamer, a stereoisomer and a tautomer. It is not limited to the description of the formula for convenience, and may be either of Isomers or a mixture thereof. Accordingly, the compound of the present invention occasionally has an asymmetric carbon in the molecule, and its optically active substance and a reacemate nay exist, but it is not specifically limited and any one is included. Further, polymorphic crystals may exist, but it is not specifically limited and any one of the crystal forms may be single or a mixture of the crystal form. The compound (1) according to the present invention or a satt thereof may be an analysine or a hydrate, and both are included in the present invention. The extendible which is generated by decomposing the compound (1) according to the present invention in vivo and the producy of the compound (1) according to the present invention or a satt thereof are also included in the resent invention.

[0023] The "halogen" used in the specification of the present application means a fluorine atom, a chlorina atom, a bromine atom and an iodine atom.

[0024] The 'C₁₋₂₂ alkly' used in the specification of the present application indicates alkyl groups having 1 to 22 carbons, and as the preferable group, linear or branched alkyl groups such as a methyl group, an ethyl group, an anapropyl group, an entrylinear group, an entrylinear group, an entrylinear group, and property group, a 1-dimethylenopyl group, a 1-dimethylenopyl group, a 1-dimethylenopyl group, and 1,1-dimethylenopyl group, and 1,2-dimethylenopyl group, and 1,2-dimethylenopyl group, and 1,2-dimethylenopyl group, and 2,2-dimethylenopyl group, and 2,2-dimethylenopyl group, and 2,2-dimethylenopyl group, and 2,2-dimethylenopyl group, and 3,2-dimethylenopyl group, and 2,2-dimethylenopyl group, and 3,2-dimethylenopyl group, and 3,2-dimeth

[0025] The "unsaturated C_{0.22} alkyf" used in the specification of the prasant application indicates an alkanyl group having 2 to 22 carbons or an alkynyl group having 2 to 22 carbons, and as the preferable group, a vinyl group, an allyl group, a 1-propenyl group, a 2-propenyl group, a 1-propenyl group, a 3-methyl-2-propanyl group, a 2-methyl-2-propanyl group, a 2-methyl-2-propanyl group, a 1-butanyl group, a 2-butanyl group, a 3-butanyl group, a 1-propenyl group, a 2-propyl group, a 1-propynyl gr

[0025] The *C₂₂₈ acyl" used in the specification of the present application indicates an acyl group having 2 to 22 carbons, and as the preferable group, linear chain or branched acyl groups exist han acetyl group, a propionyl group, a butynyl group, an isovalenyl group, an isovalenyl group, a learnyl group, an isovalenyl group, a learnyl group, an acetyl group, a decanyl group, a learnyl group, an isovalenyl group, a starryl group or an arachidonyl group may be proposed. Further, the *C222 acyloy's used in the present specification has the partial structure corresponding to the *C222 acyloy's used in the specification of the present application indicates an acyl group consisting of 3 to 22 carbons and having a double bond or a triple bond, and as the preferable group, linear chain or branched acyl groups such as an acryl group, a propioloyl group, a crotnonyl group, an isocrotnonyl group, an olderyl group or a linolencyl group may be proposed. Further, the *Unsaturated C322 acyloys* used in the specification of the present application has the partial structure corresponding to the *Vinsaturated C322 acyloys* used in the specification of the present application has the partial structure corresponding to the *Vinsaturated C322 acyloys* acyl*.

[0028] The *C122 elktons* used in the specification of the present application indicates an alkoxy group having 1 to 22 carbons, and as the preferable group, a methody group, a 1-yonoy group, a ni-pentyloxy group, a sec-pentyloxy group, a sec-pentyloxy group, an in-butoxy group, and in-butoxy group, and in-butoxy group, a 1-guilt-propoxy group, a 1-guilt

[0029] The "unsaturated C_{2.22} alkoxy" used in the specification of the present application indicates an alkenyloxy group or an alkynyloxy group having 2 to 22 carbons, and as the preferable group, for example, a vinyloxy group, an

allylosy group, a 1-propenyloxy group, a 2-propenyloxy group, an isopropenyloxy group, a 2-methyl-1-propenyloxy group, a 3-methyl-1-propenyloxy group, a 2-methyl-2-propenyloxy group, a 1-pethyl-2-propenyloxy group, a 1-pethyl-2-propenyloxy group, a 1-pethyloxy group, a 2-butynyloxy group act, may be proposed. [10303] The 7-gx-gyclosiglivil year of in the specification of the present application indicates a cyclosity group having 3 to 8 carbons, and as the preferable group, a cyclopropi group, a cyclobulyl group, a cyclopentyl gr

[0031] The 'C₃₋₆ cycloakeny' used in the specification of the present application indicates a cycloalkenyl group baring 3 in 8 carbons, and as the preferable group, cycloprepen-1y, cyclopr

[0032] The "C₈₋₁₄ any" used in the specification of the present application means an aromatic hydrocator occur group which was constituted by 6 to 14 cathons, and condensed right south as a monocyclic group, a claying and a tricyclic group are included. As the preferable examples, a pheny group, an indeny group, a 1-naphthyl group, at 2-naphthyl group, an azulenyl group, a hepthalenyl group, a tophalenyl group, a tophalenyl group, and a subject of the group group, a phenalenyl group, a group group, a phenalenyl group, a phe

[0033] The "5- to 14-membered heteroary?" used in the specification of the present application means a monocyclic, dicyclic or tricyclic 5- to 14-membered aromatic heterocyclic group which contains one or more of hetero atoms selected from the group consisting of a nitrogen atom, a sulfur atom and an oxygen atom. As the preferable group, the nitrogencontaining aromatic heterocyclic group includes a pyrrolyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a triazolyl group, a tetrazolyl group, a benzotriazolyl group, a pyrazolyl group, an imidazolyl group, a benzimidazolyl group, an indolyl group, an isoindolyl group, an Indolizinyl group, a puńnyl group, an indazolyl group, a quinolyl group, an isoquinolyl group, a quinolizinyl group, a phthalazinyl group, a naphthylidinyl group, a quinoxalinyi group, a quinazolinyi group, a cinnolinyi group, a pteridinyi group, an imidazotriazinyi group, a pyrazinopyridazinyi group, an acridinyi group, a phenanthridinyi group, a carbazolyi group, a carbolinyi group, a perimidinyi group. a phenanthrollnyl group, a phenazinyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, a pyrazolopyridinyl group, and the like; the aromatic heterocyclic group containing sulfur includes a thienyl group, a benzothjenyl group and the like; the aromatic heterocyclic group containing oxygen includes, a furyl group, a pyranyl group, a cyclopentapyranyl group, a benzofuryl group, an isobenzofuryl group and the like; the aromatic heterocyclic group containing 2 or more of different kind of hetero atoms includes, a thiazolyl group, an isothiazolyl group, a benzothiazolyl group, a benzothiadiazolyl group, a phenothiazinyl group, an Isoxazolyl group, a furazanyl group, a phenoxazinyl group, an oxazolyl group, an isooxazoyl group, a benzoxazolyl group, an oxadiazolyl group, a pyrazolooxazolyl group, an imidazothiazolyl group, a thienofuranyl group, a furopyrrolyl group, a pyridoxazinyl group and the like.

[0034] The "3- to 14-membered nitrogen-containing non-aromatic heteror ing" used in the specification of the present application means a monocyclic, dicyclic or tricyclic 3- to 14-membered non-aromatic heterocyclic group which contains one or more of hetero atoms selected from the group consisting of a nitrogen atom, a sulfur atom and an oxygen atom, in addition to a nitrogen atom. The preferable example includes an aziridinyl group, an excitivity group, a pyrazolidinyl group, a pyrazolidinyl group, a pyrazolidinyl group, a morpholinyl group, a pinedazolinyl group, an imidazolinyl group, a morpholinyl group, a thiomorpholinyl group, a minidazolinyl group, an oxazolinyl group and the like. Further, the non-aromatic heterocyclic group includes also a group derived from a pyridione ring, a non-aromatic condensed ring (for example, a group derived from a phthalimide ring, a succinimide ring, and the like.

[0035] The substituent of "which may optionally have substituents" used in the specification of the present application includes one or more groups selected from a C₁₄ alkyl group, a C₂₄ alkinyl group (for example, a winy group), a C₂₄ alkyny group (for example, a nethypty group), a C₃₄ alkyny group (for example, an ethypty group), a C₄₄ and group (for example, a phrindy group and the like), 5-to 14-membered hetero any group (a group), a C₁₄ alkyny group, a C₁₄ alky

fony [group, a $C_{1,0}$ alicylavillony/oxy group, a hydroxysullonyi group, an nitro group, an nitro group, an N- $C_{1,0}$ alixyning orpus, an N- N_{-} Ge, alixyni

- 1. The property of isolated microorganism
- 15 [0037] As raw materials of the compound of the present invention, it is expected that any one of strains belonging to the genus Streptomyces can be used. However, as a typical strain used in the present invention, a strain which was named as "Mer-1110? strain" by the inventors is exemptified. The taxonomical properties of this strain are as follows.
 - (1) Streptomyces sp. Mer-11107, FERM BP-7812
 - (1) Morphological charcteristics

20

20

50

55

- [0038] Aerial hyphae that bore spirales is extended from vegetative hypha. Spore chain consisting of about 10 to 20 of columnar spores are formed at the edge of the ripened serial hyphae. The size of the spores are about 0.7 × 10 if µm, the surface of the spores is smooth, and specific organs such as sporangium, scleoric granule and zoospore are not observed.
 - (2) Cultural characteristics on various media
- (0039) Cultural characteristics after incubation at 28°C for two weeks on various media are shown below. The color tone is described by the color name and codes which are shown in the parenthesis of the Color Harmony Manual (Contilater Corporation of America).
 - 1) Yeast extract-malt extract agar medium
 - [0040] The strain grew well, the aerial hyphae grew up on the surface, and light gray spores (Light gray; d) were observed. The reverse side of colony was Light melon yellow (3ea). Soluble pigment was not produced.
- Oatmeal agar medium
 - [0041] The strain grew in the middle level, the aerial hyphae grew slightly on the surface, and gray spores (Gray; d) were observed. The reverse side of colony was Nude tan (4gc) or Putty (1 1/2ec). Soluble pigment was not produced.
- Inorganic salt-starch agar medium
 - [0042] The strain grew well, the aerial hyphae grew up on the surface, and gray spores (Gray; d) were observed. The reverse side of colony was Fawn (4ig) or Gray (g). Soluble pigment was not produced.
 - 4) lycerol-asparagine agar medium
 - [0043] The strain grew well, the aerial hyphae grew up on the surface, and white spores (White; a) were observed. The reverse side of colony was Pearl pink (3ca). Soluble pigment was not produced.
 - Peptone-yeast extract-iron agar medium
 - [0044] The strain growth was bad, and the aerial hyphae did not grow on the surface. The reverse side of colony was Light melon yellow (3ea). Soluble pigment was not produced.

- 6) Tyrosine agar medium
- [0045] The strain grew well, the aerial hyphae grew up on the surface, and white spores (White; a) were observed. The reverse side of colony was Pearl pink (3ca). Soluble pigment was not produced.
- (3) Utilization of various carbon sources
- [0046] Various carbon sources are added in Pridham-Gottlieb agar medium, growth after incubation at 28°C for two weeks are shown below.

15

30

5

- 1) L-arabinose 2) D-xylose
- - 3) D-glucose
 - 4) D-fructose
 - 5) sucrose
 - 6) inositol
 - 7) I -rhamnose
 - 8) D-mannitol
 - 9) D-raffinose
 - (+: positive, ±: slightly positive, -: negative)
 - (4) Physiological properties
- [0047] The physiological properties of the strain are as shown below.
 - (a) Range of growth temperature (yeast extract-mail extract agar medium, incubation for 2 weeks) 12°C to 37°C
 - (b) Range of optimum temperature (yeast extract-malt extract agar medium, incubation for 2 weeks) 21°C to 33°C
 - (c) Liquefaction of gelatin (glucose-peptone-gelatin agar medium) negative
 - (d) Coagulation of milk (skim milk agar medium) negative
 - (e) Pentonization of milk (skim milk agar medium) negative
 - (f) Hydrolysis of starch (inorganic salt-starch agar medium) negative
 - (g) Formation of melanoid pigment (peptone-yeast extract-iron agar medium) negative
 - (tyrosine medium) negative
 - (h) Production of hydrogen sulfide (peptone-yeast extract-iron agar medium) negative
 - (i) Reduction of nitrate (broth containing 0.1% potassium nitrate) negative
 - (j)Sodium chloride tolerance (yeast extract-malt extract agar medium, incubation for 2 weeks) grown at a sait content of 4% or less
- (5) Chemotaxonomy
 - [0048] LL-diaminopimelic acid and glycine were detected from the cell wall of the present strain, it is considered that the present strain is a strain of the genus Streptomyces from the above -mentioned microbial characteristics. Accord-Ingly, the present inventors have named the present microbial strain as Streptomyces sp. Mer-11107.
 - 2. Fermentation method of producing microorganism
 - [0049] The bioactive substances 11107A to BJ of the present invention are produced by inoculating the above-mentioned microbial strain or its variant on a nutrition source medium and carrying out aerobic fermentation. The producing microorganism of the biologically active substance 11107A to BJ belongs to Streptomyces sp., is not limited to the above-mentioned microbial strain so far as it has an ability of producing 11107A to BJ, and all can be utilized in the present invention. Hereinafter, both of 11107A to BJ and the analogue which the above-mentioned microbial strain produces are referred to as 11107 analogue.
- [0050] The fermentation method of the above-mentioned microorganism is subjected to the general fermentation method of microorganism, but it is preferable that it is carned out under aerobic conditions such as shaking culture or aeration-agitation fermentation using liquid medium. The medium used for culture may be a medium containing a nutrition source which can be utilized by microorganism belonging the genus Streptomyces, therefore all of various synthetic, a semi-synthetic medium, an organic medium and the like can be utilized. As the medium composition, there

can be used a single or a combination of glucose, galactose, sucrose, maltose, fructose, glycerin, dextrine, starch, molasses, solybean oil and the like. As the nitrogen source, there can be used a single or a combination of organic nitrogen sources such as pharma media, peptone, meat extract, solybean powder, fish powder, gluten meal, caselin, dry seat, amino acity seate stract and urse, and intogen introgen sources such as sodium nitrate and ammonium suifate. Additionally, for example, there can be added and used salts such as sodium chloride, potassium chloride, calcium carbonale, magnesium sulfate, sodium phosphate, potassium phosphate, copers sulfate, ion sulfate, marganese chloride and cobait chloride, heavy metal salts, vitamins such as vitamin B or botton, if necessary. Further, when foaming is remarkable during culture, various defoaming agent scan be appropriately added in the medium as necessary. When the defoaming agent is added, it is required to set at a concentration for not adversely affecting the pro-

duction of an objective substance, and for example, the use concentration is desirably 0.05% or less. [0051] The culture condition can be appropriately selected within the range at which the microbial strain is grown well and can produce the above-mentioned substance. For example, the pit of a medium is about 5 to 9, and preferably nearby neutral in general. The temperature of fermentation is usually kept at 20 to 40°C, preferably 24 to 30°C and more preferably 28 to 35°C. The temperature of fermentation period is about 2 to 8 days, and usually about 4 to 7 days or usually about 3 to 5 days. The above-mentioned fermentation conditions can be suitably changed in accordance with the kind and property of microorganism used, external conditions and the like, and it is needless to say that no optimum condition can be selected. The biologically active substance 1110° analogue of the present invention which was accumulated in the cultured broth can be collected by usual separation procedures utilizing its property such as, for example, a solvent extraction method and an absorbing resin method.

3. Purification method for the bioactive substance

[0052] General methods for separation and purification which are used for isolation of microbial metabolites from the cultured broth can be employed in order to collect the 11107 analogue from the cultured medium after the fermentation. For example, there can be corresponded all methods such as extraction by an organic solvent using methanol, ethanol, acetone, butanol, ethyl acetate, butyl acetate and chloroform, and toluene; the treatment of adsorption neal desorption resist on as DIAION HP-20; gel filtration chromatography using Sephadex LH-20; absorption chromatography by active carbon, silica gel and the like; or the treatment of adsorption and desorption by him layer chromatography; or high performance liquid chromatography using a reverse phase column and the like, to this, Errite, the purification methods for I1107 analogue are not specifically limited to the methods shown here. [0053]

The 11107 analogue can be isolated and purified by using these methods alone or in combination and repeatedly using them.

4. Purification method of biologically active substance

[0054] After termination of the incubation, methods of separation and purification which are usually used for isolating microorganism metabolism product from the incubation solution can be utilized in order to collect the 1110 ranlagoue from the incubation solution. For example, there can be corresponded all methods such as extraction by an organic solvent using methanol, ethanol, butanol, eithyl acetate and chloroform; the treatment of adsorption and desorption by various lone exchange chromatographies, ged filtration chromatography using Sephadex LH-20; absorption chromatography by active carbon, slica gel and the like; or the treatment of adsorption and desorption by thin layer chromatography or high performance liquid chromatography using a reverse phase column and the like, to this. Further, the methods shown here are not specifically limited.

[0055] The 11107 analogue can be isolated and purified by using these methods alone or in combination and repeatedly using them.

5. Modification of bioactive substance

[0056] The compound of the present invention represented by the respective formulae including the formula (i) can be synthesize off from the 11107 analogue which was isolated and purified, using general organic synthesis methods. As a typical method, it can be synthesized by, for example, a method shown below, and a combination of these methods in production, the reaction compound may have a protective group, and the objective compound is obtained by removing its protective group.

55

(1) Synthesis of compound in which the hydroxy group of 11107 enalogue is appropriately protected

5

10

- [0057] The hydroxy group of 11107 analogue can be protected by an appropriate protective group. It is possible to the selectively protect the hydroxy group of 11107 analogue by selecting a protecting group. All or a portion of the hydroxy group can be protected by the selectively protecting the protecting to the protecting to the hydroxy group can be protected by thosyethyl, tetrahydropyranyl, methoxymethyl, L-butyldimethylsilyl, triethylsilyl, triethylsilyl, triethylsilyl, and the like as the protection group.
- [0058] The compound, protected by such as ethoxyethyl or tetrahydropyranyl, can be synthesized by treating ethyl vinyl ether or dihydropyran in the presence of an acid respectively. As the acid, there are mentioned usual organic acids, inorganic acids, for example, pyridinium p-tubenesulfonate, p-toluenesulfonate, tocal and the like. The solvent used for the reaction is not specifically limited, but the solvent which cannot easily react with a raw materiel substance is desirable, and for exemple, tetrahydrofuran, dichloromethane and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of "PSC" to reflux by healtho.
- [0059] The deprotection of the protecting group can be easily carried out by treatent with an acid. As the acid, there are mentioned usuel organic acids, inorganic acids, for swarphe, pyridinium p-louenesulfoned; p-louenesulfoned and the like. The solvent used for the reaction is not specifically limited, but a solvent which cannot easily react with a raw material substance is desirable, and for example, methenol, ethenol end the like ere mentioned. The reaction time is 10 minutes to 30 hours. The reaction temoretaries a temperature of -78°C to reflux by heating.
- [0060] The compound, protected by such as methoxymethyl, t-butyldimethylsilyl, triethylsilyl, or trimethylsilyl, can be synthesized by reacting with a corresponding chicro, bomo- or riflluoromethanesulfonyl-compound respectively in the presence of e base. As the base, there ere mentioned usued organic bases, incregine bases, for example, indiazote, diiaspropylethylemine, dimethyleminopyridine, triethylemine, pyridine, 2,6-ruditine, sodium hydride, 8-bis(dimethylemino)naphthalene and the like. The solvent used for the reaction is not specifically limited, but a solvent which cannot easily react with a raw meterial substance is desirable, end for example, tetrehydrofuran, dichloromethane, N.N-dimethylformanide and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is e temperature of 478° to reflux by heating.
- [0061] The deprotection of the protecting group can be carried out by treatment with e fluorine enion or an acid. As of the fluorine regent, there are mentioned testabulyammonium fluoride, hydrogen fluoride, potabuler fluoride, and the like, and as the acid, there are mentioned usual organic acids, florganic acids, for example, acetic acid, trifluoroecetic acid, p-foliuenesuffloria acid and the like. The solvent used for the reaction is not specifically inflinted, but a solvent which cannot easily react with a raw material substance is desirable, and for example, tartarydroffuran, distribly either, water and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of 5 -78°C to reflux by healing.
 - [0062] Further, the neighboring hydroxy group can be protected by being treated with dimethoxyacetone in the presence of an ecid catalyst. As the ecid, there ere mentioned usuel orgenic acids, inorganic ecids, for example, p-tolue-nesulfonical end by pridnium p-toluenseuflonial end the like. The solvent used for the reaction is not specifically inhited, but a solvent which cannot eesily react with a raw material substance is desirable, and for example, tetrahydrofuran, dichloromethane and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of 75°C to reflux by heating.
 - [0063] The deprotection of the protecting group can be carried out by treatment with an acid to convert it into a hydroxy group. As the ecid, there ere mentioned usual organic ecids, in organic ecids, for exemple, acetic ecid, fifturorecetic acid, p-toluenesuf onic acid and the like. The solvent used for the reaction is not specifically limited, but e solvent which cannot easily react with a raw material substance is desirable, and for example, methano, ethanol and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of -78°C to reflux by heating.

(2) Acylation reaction of hydroxy group

[0064] The hydroxy group of 11107 analogue or a residual hydroxy group after suitable protection of the hydroxy group of 11107 analogue can be acyteated. The acyteated derivative of the formula (i) can be synthesized by deportacion of the protecting group of the product. As reagents for the acyteation, an acid enhydride with a base, a carboxylic acid with a base, a carboxylic acid with protecting protecting or activation of the product of the acyteation of the protecting group of the product. As reagents used for Missunobu reaction. As the exid enhydride, projection analydride, buyling achydrides and the like. As the acid chiefide, various said chiefides are used, but for example, they are acetive analydride, projection and projection and the like. As the acid chiefide, various acid chiefides are used, but for example, they are acetyl chiefide, propienty chiefide, bearzoyl chiefide and the like. As the base, there are mentioned usual organic bases, lore pare to example, discopropicitylamine, dimethylamine, pride acid, and the like. As the cathoxylic acid, various carboxylic acids are used, but for example, they are acetic acid and propionic acid. The condensing agent is discopropication dimide, critical acids and acid acids and acids acids and acids and acids and acids acids and acids acids and acids acids acids and acids acids acids acids acids acids acids and acids acid

[0065] Further, an acyloxy group having good elimination property is occasionally eliminated to form a double bond in the present reaction.

(3) Alkylation of hydroxy group

[0066] The hydroxy group of 11107 analogue or a residual hydroxy group after suitable protection of the hydroxy group of 1107 analogue can be converted into an alkoxy group. The protecting group of the product is depretacted 44 to synthesize the alkylated derivative of the formula (I). The alkylated can be carried out by treating with R^{m.X} in the presence of a base or, in case of methylation, by treating with methyl trifluoromethanesulforate. In the formula, various alkylate can be used for R^m, and for example, its methyl, ethyl and benzyl. X represents an leaving group. For example, there can be mentioned a chloro group, a bromo group, an bod group, or a trifluoromethanesulfonate and tells. As the beas, there are mentioned usual organic bases, for example, addium hydride, lithium bis(trimethylsily)amide, lithium disopropylamide, lithium dicyclohexylamide, potassium carbonate, cesium carbonate, 8-bis(dimethylamino)naphthalene and the like. The solvent used for the reaction is not specifically limited, but a solvent which cannot easily react with a raw material substance is desirable, and for example, delity either, tetrahydrofuran, diathoxyethane and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of 1-78°C to reflux by heating.

(4) Substitution of hydroxy group to halogen

35

50

[0067] The hydroxy group of 11107 analogue or a residual hydroxy group after suitable protection of the hydroxy group of the product can be depreted to obtain the halogen such as otherine, bromine, iodine or fluorine. The protecting group of the product can be depreteded to obtain the halogen derivative of the formula (i). For example, it is treated with diethylaminosulfate fullorade(DAST), or it is treated with carbon tetrabromide, bromine, phosphorous tribromide, cliden and tetrabrohide in the presence of triphentyl phosphine and a base. As the base, there are mentioned usual organic bases, inorganic bases, for example, diisopropylethylamine, dimethylaminopyridine, tribrinded usual organic bases, inorganic bases, for example, diisopropylethylamine, dimethylaminopyridine, tribrinded, but a software which cannot easily react with a raw material substance is desirable, and for example, tetrahydrouran, dichloromethane, N.N-dimethylformamide and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temporature is a temperature of *76**C to reflux by heating.

(5) Sulfonylation of hydroxy group

[0068] The Pydroy group of 1107 analogue or a residual hydroxy group after suitable protection of the hydroxy group of 1107 analogue can be reprotecting group of 1107 or hope depressed to botain the group of 1107 analogue can be sometimed to protecting group of the product can be depreteded to botain the sulforly derivative of the office of the product of the prod

temperature is a temperature of -78°C to reflux by heating.

- (6) Carbonic-esterification of hydroxy group
- 5 [0069] The hydroxy group of 11107 analogue or a residual hydroxy group after suitable protection of the hydroxy group of 11107 analogue is treated with a chloroformate derivative or carbonykilmidazele in the presence of a base. The protecting group of the product can be eliminated to obtain the carbonic ester derivative of the formula (i). As the chloroformate derivative, 4-nitrophenylchloroformate, phenyl chloroformate and the like are mentioned. As the base, there are mentioned usual organic bases, flore reason bases of the properties of the protection of t
- 15 (7) Conversion of hydroxy group to urethane derivative

[0070] The hydroxy group of 11107 analogue or a residual hydroxy group after suitable profection of the hydroxy group after suitable profection of the hydroxy group of 1107 analogue is treated with an isoxyanate in the presence of a base or a copper catalyst. The protecting group of the product can be eliminated to obtain the urethene derivative of the formula (i). As the isoxyanate, there are mentioned usual isoxyanates, for example, eithyl isoxyanate, peneryl isoxyanate and the like. As the base, there are mentioned usual organic bases, increase reamtioned usual organic bases, increase or example, disoxyopethylamine, dimethylaminopyridine, triethylamine, pyridine, 2.6-rutidine, sodium hydride and the like. The solvent used for the reaction is not specifically inflind, but a solvent which cannot be easy reacted with a raw material substance is desirable, and for example, letrahydroluran, dichloromethane, N.N-dimethyllormamide and the like are mentioned. The reaction time is 0 minutes to 30 hours. The reaction itemperature is a temperature of 7-97°C to fettus by health.

[0071] Further, a derivative which was obtained by converting the hydroxy group of 11107 analogue or a residual hydroxy group after suitable protection of the hydroxy group, to carbonic seter is treated with an amine alone. The protecting group of the product can be deprotected to obtain the urethane derivative of the formula (I). As the amine, various amines can be used and for example, methylamine, shipkmine, aniline and the like are mentioned. As the base, inter are mentioned usual organic bases, inorganic bases, for example, dilaportopylethylamine, dimethylaminopyridine, triethylamine, pyrkline, 2.8-ruildine, sodium hydride and the like. The solvent used for the reaction is not specifically limited, but a solvent which cannot easily react with a raw material substance is obseriable, and for example, tetrahydrotrura, dichloromethane, NN-dimethylformanide and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of -78°C to reflux by healtin.

- (8) Conversion of hydroxy group to amino group
- [0072] The hydroxy group of 11107 analogue or a residual hydroxy group after suitable protection of the hydroxy group of 11107 analogue is directly or indirectly converted into a good leaving group, it can be converted into an amine after introducing an azide, if necessary. The protecting group of the product can be deprotected to obtain the amine derivative of the formula (I).
- [0073] When the hydroxy group or a good leaving group is converted into an azide, there can be used DPPA, diethyl azcidicarboxyate and triphenylphosphine, DPPA and DBU, DPPA, TMAD, TBP or sodium azide, etc. Alternatively, it is treated with sodium azide in the presence of a palladium catalyst. As the palladium catalyst, PPPA_D, and the like are mentioned. The solvent which cannot easily react with a raw material substance is desirable, and for example, letrahydrofuran, cithoromethane, NN-dimethyformamide and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of 78°C to reflix by healtin.
 - (9) Oxidation

50

10074] 11107 enalogue or 11107 derivative whose hydroxy groups are appropriately protected is treated with an activation ground and a double bond can be converted into an oxylane ring, or an ally position can be oxidized. The protecting group of the product can be deprotected to obtain the oxidized product of the formula (i). As the oxidizing agent, m-chioro-perhenoxic acid, butlythydroperoxida and the like are mentioned. The solvent used for the reaction is not specifically limited, but a solvent which cannot easily react with a raw material substance is desirable, and for example, tetrahydroturan, dichloromethane. N. Hinchity formating and the like are mentioned. The reaction time is

10 minutes to 30 hours. The reaction temperature is a temperature of -78°C to reflux by heating.

- (10) Reduction
- 5 (0075) The double bond of 1100 ranisque or the 11107 derivative whose hydroxy group was appropriately protected can be reduced. The protecting group of the product can be deprotected to obtain the reduced product of the formula (I). As the reducing agent, hydrogen in the presence of a catalyst, zinc and lithium are mentioned. As the catalyst, there are mentioned palladium-carbon, palladium hydroxide, platinum oxide, rhodium-carbon, and the like. The solvent used for the reaction is not specifically limitled, but a solvent with cannot easily react with a raw material substance of its desirable, and for example, methanol, eithand/profuran, and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of -78°C to reflux by heating.
 - (11) Oxidation of hydroxy group
- 15 [0076] The hydroxy group of 11107 analogue or a residual hydroxy group after suitable protection of the hydroxy group of 11107 analogue is treated with an oxidizing agent. The protecting group of the product can be deprotected to obtain the ketone body of the formula (I). As the oxidizing agent, there can be used manganese dioxide, pyridinium chiromate, Dess-Martin reagent, a reagent of Swem oxidiation condition, and the like. The solvent used for the reaction is not specifically limited, but a solvent which cannot easily react what har arw material substance is desirable, and for example, letrahydrofuran, dichloromethane, chloroform and the like are mentioned. The reaction time is 10 milnuts to 30 hours. The reaction temperature is a temperature of-28°C to officu by heating.
 - (12) Synthesis of oxime from ketone body
- 28 [0077] Among the compound of the formula (1), an oxime derivative can be synthesized by treating a corresponding ketone compound with an amine. As the amine, for example, hydroxylamine, methoxyamine, and the like are mentioned. As the solvent used for the reaction is not specifically limited, but a solvent which cannot easily react with a raw material substance is desirable, and for example, tetrahydroturan, dichloromethane and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of -78°C to refut by heating.
 - (13) Synthesis of amine from ketone compound
 - [0078] An arnine derivative among the compound of the formula (f) can be synthesized by treating a corresponding atone compound with an arnine and further reducing it. The arnine is not limited, and for example, methylamine, ethylamine and the like are mentioned. As the reducing agent, there can be mentioned sodium cyanoboronohydride, acodium borohydride, dilsobulyaluminum hydride and the like. The solvent used for the reaction is not specifically limited, but a solvent which cannot easily react with a raw material substance is desirable, and for example, tetrahydrofuran, dichloromethane and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of -78°C to fettury by heating.
 - (14) Modification of amino group
 - [0079] Using the amino compound obtained by the above-mentioned reaction, amino group can be modified in a similar manner as described for the acylation, sulfonylation and alkylation of a hydroxy group.
 - (15) Synthesis of halohydrin
- [0080] The the oxylane ring of 11107 analogue or 11107 derivative whose hydroxy group was appropriately protected can be converted into a compound in which either of A or B is hydroxy and another is hadogen, by being treated with 4X. The protecting cropu can be deprotected to obtain the hadolydrin derivative of the formula (i).
 - [0081] HX is, for example, hydrogen chloride or hydrogen bromide. Alternatively, it can be synthesized by treating with chlorotrimethylsiane and then treating with sodium lodde. The solvent used for the reaction is not specifically limited, but a solvent which cannot easily react with a raw material substance is desirable, and for example, dethyl either, 1.2-diethoxyethane, water and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of a temperature is a temperature of a temperature of a temperature of a temperature is a temperature of a temperature o
 - [0082] Various conversions which were described in the modification of a hydroxy group can be also carried out to the hydroxy group of halohydrin.

(16) Oxidative cleavage of double bond and olefination

[0083]

5

10

[0084] The compound of the formula (1) can be synthesized by carrying out the oxidative cleavage of the double bond of 11107 analogue or 11107 derivatives whose hydroxy groupw are appropriately protected, and carrying out the olefination of the resulting aldehyde, and then removing the protecting group.

[0085] For example, as the oxidizing agent, somium tetraoxide, nuthenium oxide and potassium permanganate can be used, and sodium periodate, lead tetraacetate and the like can be used for the cleavage of the resulting diol. The solvent used for the reaction is not specifically limited, but a solvent which cannot easily react with a raw material substance is desirable, and for example, tetrahydrofuran, dichloromethane and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of -78°C to reflux by heating.

[0086] Further, an aldehyde compound can be directly obtained by carrying out the ozone oxidation or by simultaneously treating the double bond with certimal tetracxide and sodium periodate. The solvent used for the reaction is not specifically initiated, but a solvent which cannot be easily reacted with a raw material substance is desirable, and for example, tetrahydrofuran, dichloromethane and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature or 1-8°C to refutx by healthy.

[0087] A double bond formation can be carried out by the Julia olefination of the aldehyde, with a sulfonate having a suitable substituent and a base, or by Mitig reaction of the aldehyde with a phosphate having a suitable substituent and a base, and thus, the compound prepresented by the formule (I) can be synthesized. As the base, there are used usual organic bases, inorganic bases, for example, lithium discopropylamide, lithium bis(trimathylsily)jamide, lithium hydride, but it will be supported by the substitution of the prediction of the prediction of the solvent used for the reaction is not specifically limited, but a solvent which cannot be easily reacted with a raw material substance is desirable, and for example, letrahydrofuran, diethyl either and the like are mentioned. The reaction time is 10 minutes to 30 hours. The reaction temperature is a temperature of 78°C to reflux by heating.

6. Application method of the active substance

[0088] The present compound is effective as an agent for preventing or treating a disease against which control of gene expression is efficacious. In agent for preventing or treating a disease against which NEGF production suppressing action is efficacious. The preventing or treating of treating a disease against which an antianglogenic effect is efficacious. The preventing or treating in indicates either of preventing or treating in or, or both of them. More specifically, the present compound is effective as an antitumor agent and in particular, as an antitumor agent and a curriculorma motastasis suppressor for solid cancer. As the solid cancer, for example, pancreatic cancer, gestocancer, cancer, ca

[0089] When the compound is prepared as an injection, a pH regulator, a buffer, a stabilizer, a solubilizer and the like are added to the main drug, if necessary, to prepare an intramuscular, intra-articular or intravenous injection according to a conventional method.

[0090] When the compound is administrated as a preventive or therapeutic agent for various diseases, it may be orally administrated as tablets, powders, granules, capsules, syrups and the like, and may be parenterally administrated as a spray, a suppository, an injection, an external preparation and a drip. The dose is remarkably different according to the extent of symptom, age, the kind of lever diseases etc., and approximately 1 mg to 100 mg per day for an adult is administrated in ceneral at one time or several times.

[0091] Conventional preparation carriers are used at preparation, and the preparations are produced by a conven-

tional method. Namely, when a solid preparation for oral use is prepared, a filler is added to the main drug, and if necessary, a binder, a disintegrant, a lubricant, a colorant, a flavoring agent and the like are added thereto, and then tablets, coated tablets, granules, powders, capsules and the like are prepared. It is needless to say that sugar coating, qelatin coating or suitable coating may conducted on the tablet and granule. If necessary

5 [0092] In the present invention, antitumor drugs effective for solid cancer and the like have been found from the cultured broth of a strain of genus Streptomyces or its variant, and a derivative of the fermentation products.

Examples

70 [0093] Examples below illustrate the following subjects in detail.

[0094] The cultured broth of strain Mer-11107 was obtained in Example A1 or A1-1. From the broth, 11107A-G were obtained in Examples A2 to A9. Similarly, H-Z, AA-AZ and BA-BG were obtained in Examples A10 to A67.

[0095] Cultured broth of Mer-11107 mutanta EM07.015N13, EM07.015N54 and EM07.031N58 (synonymous with Steplanymess p. A.1532, Streptomyces p. A.1532, Steplanymess p. A.1532, especiately) and the isolated compounds from the broth were obtained in Example A.68 to A77. Namely, 11107BH, 11107BI and 11107BJ were obtained. (0096) Further, Example 8.10 Big 25 whose the chaincal synthesis to other compounds using any one of the abovementioned fermentation products, which were respectively specified, as a starting material. C1 to C7 are the pharmacolonical starting-internated data.

[0097] The present Invention will be more specifically illustrated according to Examples below, but the present invention is not limited to these.

Example A1 200 L tank fermentation of Mer-11107

[0038] One loopful of the the slant culture of Mer-11107 strain (ISP-2 medium) was inoculated into a 500 m Erienmeyer flask containing 50 mil of seed medium (2% of glucose, 1% of ESSAMMEAT (manufactured by Ajinomoto Co. LLd.), 0.5% of yeast artract, 0.25% of sodium chloride, 0.32% of calcium carbonate, pH 8.8 before sterifization), and it was cultured at 28°C for 2 days to give the first seed culture. 0.1 ml of the culture was inoculated into a 500 ml Erientmeyer flask containing 100 ml of the seed medium as same as the medium mentioned above, and it was cultured at 28°C for 1 day to give the second seed culture. 800mL of the second culture was inoculated into a 200 L tank containing 100 L of production medium (5% of potato starch, 0.5% of pharmameatio, 0.8% of glucian medi, 0.5% of yeast extract, 0.1% of calcium carbonate, pH 6.8 before sterifization), and it was fermented at 28°C for 5 days with an agitation at 90 mpm, an aeration of 1.0 vm and an inner pressure of 20 kP ba to give cultured broth.

Example A1-1 Fermentation of Mer-11107 and purification

[0099] One loopful of the slant culture of Mer-11107 strain (ISP-2) was inoculated into a 500 ml Erlenmeyer flask containing 50 ml of seed medium (2% of glycerin, 2% of glycose, 2% of soybean meal (ESSANWEAT manufactured by Ajlinomoto Co. Ltd.), 0.5% of suest extract, 0.25% of sodium chindrie, 0.25% of calcium cathonate, 0.005% of copper sulfate, 0.005% of manganese chioride, 0.005% of zinc sulfate, and pH 7.4), and it was cultured at 28°C for 3 days on a shaker to give the first seed culture, 0.8 ml of the seed culture was inoculated into a 500 ml Erlenmeyer flask containing 60 ml of the producing medium (5% of soluble statch, 0.5% of com steep liquor, 0.5% of dry yeast, 0.5% of glyten meal, 0.1% of calcium carbonate) and it was fermented at 28°C for 4 days on a rotary shaker to give a fementation culture broth.

5 Example A2 Purification of 11107A, B. C. D. E. F and G.

[0100] The cultured broth (10 L) obtained in Example A1 or A1-1 was extracted with 1-butanol (10 L), then thus acquired 1-butanol layer was evaporated to dryness to give 100 g of crude active fraction. The crude active fraction was applied on Sephadex LH-20 (1500 mt; manufactured by Pharmacia Co. Ltd.), and eithed with tetrahyrdorura-methanol (1:1) as a solvent. The eluted crude active fraction was concentrated to dryness, and subject to silica gel column circomatography (MAC GEL C-200). The column was estude with an tix solution (2) Lonesiting of n-baxane and ethyl acetate (1:9, v/v) to obtain a crude active fraction which contains 11107A, 11107B and 11107C, and to obtain a crude active fraction which contains 11107A, 11107B and 11107C was subjected to preparative high performance liquid chromatography (MEC) under the following preparative HPLC condition (A1), and the eluted active fractions were collected separative A1ter removing the accolnitive, the respective fractions were desafted by HPLC under the following reparative HPLC condition (A2) to give 11107A, 1107B (1107B, 11107B) (6 mg) and 11107C (3 sing). Similarly, the crude active fraction which contains 11107D, (1) 107E, 11107F, and 11107C (3 sing). Similarly, the crude active fraction which contains 11107D, (1) 107E, 11107F, and 11107G (3 sing). Similarly, the crude active fraction which contains 11107D, (1) 107E, 11107F, and 11107G (3 sing). Similarly, the crude active fraction which contains 11107D, (1) 107E, 11107F, and 11107G (3 sing). Similarly, the crude active fraction which contains 11107D, (1) 107E, 11107F, and 11107G (3 sing). Similarly, the crude active fraction which contains 11107D, (1) 107E, 11107F, and 11107G (3 sing). Similarly, the crude active fraction which contains 11107D, (1) 107E, 11107F, 1107F, 1

the eluted active fractions were collected separately. After removing acetonitrile, the respective fractions were desalted by HPLC under the following preparative condition (A2) to obtain 11107D (1.8 mg), 11107E (1 mg), 11107F (0.1 mg) and 11107G (0.2 mg).

5 Example A2-1 Purification of 11107A, B, C, D, E, F and G

[0101] The cultured broth (10 L) was extracted with 1-butanol (10 L), then thus acquired 1-butanol layer was evaporated to dryness to give 100 g of crude active fraction. The crude active fraction was applied on Sephadex LH-20 (1500 ml; manufactured by Pharmacia Co. Ltd.), and eluted with tetrahydrofuran-methanol (1:1) as a solvent. An eluted fraction from 540 ml to 660 ml was concentrated to dryness under reduced pressure to give a residue (660 mg) Further, the residue was dissolved in a mix solution consisting of ethyl acetate and methanol (9:1, v/v), and subjected to silica gel column chromatography (WAKO GEL C-200, 50 g). The column was eluted with a mix solution (2L) consisting of n-hexane and ethyl acetate (1:9, v/v), the fraction eluted from 468 ml to 1260 ml (crude active fraction A) and the fraction eluted from 1440 ml to 1566 ml (crude active fraction B) were collected separately, and crude active fraction A and B were evaporated to give 25 mg and 15 mg of residues, respectively.

[0102] The crude active fraction A was subjected to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (A), and the fractions eluted at the retention time of 28 min., 34 min. and 39 min. were collected respectively. After removing acetonitrile, the respective fractions were desalted by HPLC under the following preparative HPLC condition (B) to give 11107A (retention time: 36 min., 1.2 mg), 11107B (retention time: 37 min., 6 mg) and 11107C (retention time: 38 min., 0.3 mg). Similarly, the crude active fraction B was also fractionated by HPLC under the following preparative condition (A). The fractions eluted at the retention time of 17 min., 21 min., 22 min., and 26 min, to 27 min, were collected respectively. After removing acetonitrile, the respective fractions were desalted by HPLC under the following preparative condition (B) to give 11107D (retention time: 36 min. 1.8 mg), 11107E (retention time: 34 min., 1 mg), 11107F (retention time: 28 min., 0.1 mg) and 11107G (retention time:

Preparative HPLC conditions (A-1), (A)

[0103] Column: YMC-PACK ODS-AM SH-343-5AM, \$20 mm × 250 mm

(manufactured by YMC Co.)

Temperature: room temperature

Flow rate: 10 ml/min.

32 min., 0.2 mg),

Detection: 240 nm

Eluent: acetonitrile/0.15% aqueous potassium dihydrogenphosphate (pH 3.5) (2:8 to 8:2, v/v, 0 to 50 min., linear gra-35 dient)

Preparative HPLC conditions (A-2), (B)

[0104] Column: YMC-PACK ODS-AM SH-343-5AM, \$20 mm × 250 mm

(manufactured by YMC Co.) Temperature: room temperature

Flow rate: 10 ml/min.

Detection: 240 nm

Eluent: methanol/water (2:8 to 10:0, v/v, 0 to 40 min., linear gradient)

[0105] The retention times of the above-mentioned compounds when analysis was carried out at the under-mentioned HPLC condition, are shown as below.

Analytic HPLC condition (a)

50 [0106] Column: YMC J'sphere ODS-M80 JM-307, 64.6 mm × 75 mm (manufactured by YMC Co.)

Temperature: 30°C

Flow rate: 1 ml/min.

Detection: 240 nm

55 Eluent: acetonitrile/0.15% aqueous potassium dihydrogenphosphorate (pH 3.5) (2:8 to 8:2, y/v, 0 to 50 min., linear gradient)

Betention time:

11107A: 13.4 min. 11107B: 15.5 min. 11107C: 17.3 min. 11107D: 11.4 min. 11107E: 12.9 min. 11107G: 10.8 min.

5

15

20

30

35

50

Example A3 Physico-chemical properties of 11107A

[0107] The physico-chemical properties of 11107A are shown below. The structure of 11107A was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 494, FAB-MS m/z 493(M-H)*
 - 3 . Molecular formula: C28H46O7
 - 4. Solubility; soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction; positive for jodine and sulfuric acid
 - Ultraviolet absorption spectrum (methanol, maximum value) nm: 239 (ε 28800)
 - Infrared absorption spectrum (KBr) cm⁻¹: 3364, 2963, 1732, 1714, 1455, 1372, 1176
 - 1H-NMR spectrum (CD₃OD, 500MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)): 0.97(3H,d,J=7.0Hz), 0.98(3H,d,J=6.8Hz), 1.02(3H,t,J=8.0Hz), 1.15(3H,d,J=6.8Hz), 1.28(1H,m), 1.33(3H,s), 1.42
- (2H,m), 1.50-1.73(6H,m), 1.82(3H,s), 2.54(1H,m), 2.59(2H,m), 2.64(1H,m), 2.73(1H,dd,J=2.4,8.3Hz), 2.80(1H,dt,J=2.4,8.3Hz), 2.80(1H,dt,J=2.4,8.3Hz), 2.80(1H,dt,J=3.4.4Hz), 3.7(1H,d,J=9.8Hz), 3.84(1H,m), 5.10(1H,d,J=9.8Hz), 5.45(1H,dd,J=9.8Hz), 5.45(1H,dd,J=9.8Hz
- 25 J=9.8,15.2Hz), 5.72(1H,dd,J=8.2,15.2Hz), 5.78(1H,dd,J=9.8,15.2Hz), 6.15(1H,d,J=9.8Hz), 6.36(1H,dd, J=9.8.15.2Hz)

40 Example A4 Physico-chemical properties of 11107B

[0108] The physico-chemical properties of 11107B are shown below. The structure of 11107B was determined as shown below.

- 45 1. Appearance: colorless powder
 - 2. Molecular weight: 536, FAB-MS m/z 535(M-H):, 559(M+Na)+
 - 3. Molecular formula: C₃₀H₄₈O₈
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction; positive for iodine and sulfuric acid
 - Ultraviolet absorption spectrum (methanol, maximum value) nm; 240 (ε 31300)
 - 7. Infrared absorption spectrum (KBr) cm⁻¹: 3443, 2968, 1732, 1715, 1456, 1371, 1244, 1176
 - 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.93(3H,d,J=7.0Hz), 0.94(3H,d,J=6.8Hz), 0.98(3H,t,J=8.0Hz), 1.12(3H,d,J=6.8Hz), 1.23(3H,s), 1.25(1H,m), 1.42 (2H,m), 1.53-1.70(6H,m), 1.79(3H,d,J=1.0Hz), 2.10(3H,s), 2.52(1H,m), 2.56(2H,m), 2.60(1H,m), 2.70(1H,dd,
- 55 J=2.4,8.3Hz), 2.76(1H,dt,J=2.4,5.7Hz), 3.56(1H,dt,J=8.3,4.4Hz), 3.82(1H,m), 5.08(2H,d,J=9.8Hz), 5.60(1H,dd,J=9.815,2Hz), 5.70(1H,dd,J=8.15,2Hz), 6.13(1H,d,J=9.8Hz), 6.36(1H,dd,J=9.815,2Hz), 6.15(2Hz)
 - 13C-NMR spectrum (CD₂OD, 125 MHz): δ ppm (multiplicity):

10.82(q), 10.86(q), 11.9(q), 16.88(q), 21.09(q), 21.63(q), 24.21(q), 28.62(t), 30.47(t), 36.68(d), 37.53(t), 40.10(t), 40.70(t), 41.77(d), 42.77(d), 58.44(d), 62.98(d), 70.42(d), 74.10(s), 75.31(d), 80.31(d), 84.27(d), 125.83(d), 127.06(d), 132.18(s), 132.44(d), 141.66(d), 142.36(s), 171.78(s), 172.15(s)

11107B

Example A5 Physico-chemical properties of 11107C

[0109] The physico-chemical properties of 11107C are shown below. The structure of 11107C was determined as shown below.

Appearance: colorless powder

5

10

15

20

30

35

40

45

50

- 25 2. Molecular weight: 534,ESI-MS m/z 533(M-H)*
 - 3. Molecular formula: C20H46O8
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for lodine and sulfuric acid
 - Ultraviolet absorption spectrum (methanol, maximum value) nm: 239 (ε 33100)
 - Infrared absorption spectrum (KBr) cm⁻¹: 3363, 2970, 1732, 1715, 1373, 1243, 1177
 - 1H-NMR spectrum (CD₂OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz));
 - 0.94(3H,d,J=7.0Hz), 1.08(3H,t,J=8.0Hz), 1.13(3H,d,J=6.8Hz), 1.16(3H,d,J=6.8Hz), 1.25(3H,s), 1.35-1.76(6H,m), 1.81(3H,s), 2.12(3H,s), 2.38(1H,m), 2.50-2.67(6H,m), 2.82(2H,m), 3.82(1H,m), 5.12(2H,d,J=9.8Hz), 5.64(1H,dd,
 - J=9.8,15.2Hz), 5.72(1H,dd,J=8.3,15.2Hz), 5.76(1H,dd,J=9.8,15.2Hz), 6.18(1H,d,J=9.8Hz), 6.40(1H,dd,J=9.8,15.2Hz)

Example A6 Physico-chemical properties of 11107D

[0110] The physico-chemical properties of 11107D are shown below. The structure of 11107D was determined as shown below.

- 1. Appearance: coloriess powder
- 2. Molecular weight: 552, ESI-MS m/z 551(M-H), 575(M+Na)+
- 3. Molecular formula: C30H48O9

5

20

30

40

50

- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
 - 6. Ultraviolet absorption spectrum (methanol, maximum value) nm; 239 (£ 33100)
 - 7. Infrared absorption spectrum (KBr) cm⁻¹: 3417, 2967, 1732, 1714, 1455, 1372, 1248, 1176
 - 8. 1H-NMR spectrum (CD₂OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
- 0.93(3H.d.L=7.0Hz), 0.95(3H.d.,1=8.Hz), 0.98(3H.l.,1=8.0Hz), 1.23(3H.s), 1.30(1H.m), 1.36-1.68(9H.m), 1.70(1H.d.,1=6.4.14.2Hz), 1.23(3H.d.,1=1.0Hz), 1.90(1H.d.d.)=6.4.14.2Hz), 2.10(3H.s), 2.52(2H.m), 2.52(1Hm), 2.72(1H.d.d.)=2.4.5.3Hz), 2.94(1H.d.,1=2.4.5.7Hz), 3.55(1H.d.,1=3.4.4Hz), 3.82(1H.m), 5.10(1H.d.,1=9.8Hz), 5.11(1H.d.,1=10.8Hz), 5.90(1H.d.,1=9.8Hz), 5.74(1H.d.,1=0.8Hz), 5.92(1H.d.,1=15.2Hz), 6.18(1H.d.,1=0.8Hz), 5.77(1H.d.,1=15.2Hz), 6.18(1H.d.,1=0.8Hz), 5.77(1H.d.,1=15.2Hz), 6.18(1H.d.,1=0.8Hz), 6.77(1H.d.,1=0.8Hz), 6.15(1Hz), 6.15(1Hz)
 - 13C-NMR spectrum (CD₂OD, 125 MHz); δ ppm (multiplicity);
- 15 10, 52(0), 10, 82(0), 11, 58(0), 11, 68(0), 12, 10, 7(0), 24, 21(0), 28, 52(0), 28, 79(0), 30, 46(1), 37, 53(1), 40, 10(1), 41, 80(0), 42, 58(0), 45, 97(0), 55, 99 (d), 82, 55(0), 70, 42 (d), 73, 03(9), 74, 11(9), 75, 23(0), 80, 31 (d), 84, 19(d), 123, 64(0), 127, 17(0), 131, 76(0), 133, 81 (e), 141, 61 (d), 143, 22(0), 171, 75(s), 172, 18(s)

Example A7 Physico-chemical properties of 11107E

- [0111] The physico-chemical properties of 11107E are shown below. The structure of 11107E was determined as shown below.
 - 1. Appearance: colorless powder
 - Molecular weight: 552, FAB-MS m/z 551(M-H)
 - 3. Molecular formula: C₃₀H₄₈O₈
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
 - Ultraviolet absorption spectrum (methanol, maximum value) nm: 240 (ε 26200)
 - Infrared absorption spectrum (KBr) cm⁻¹: 3500, 2969, 1732, 1715, 1455, 1372, 1244, 1176
 - 8. ¹H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)): 0.93(3H,d,J=7.0Hz), 1.08(3H,t,J=8.0Hz), 1.12(3H,s), 1.16(3H,d,J=7.0Hz), 1.25(3H,s), 1.35-1.78(8H,m), 1.81(3H,
 - 0.93(3+1,d,J=7.042), 1.08(3+1,J=8.042), 1.12(3+1,d), 1.12(3+1,d), 1.12(3+1,d), 1.25(3+1,d), 1.35-1.78(8+1,m), 1.81(3+1,d), 1.25(3+1,d), 1.25(3+1,d),

.....

Example A8 Physico-chemical properties of 11107F

[0112] The physico-chemical properties of 11107F are shown below. The structure of 11107F was determined as shown below.

1. Appearance: colorless powder

5

10

15

25

30

45

- 2. Molecular weight: 510, FAB-MS m/z 509(M-H):
- 3. Molecular formula: C28H48O8
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for lodine and sulfuric acid
 - 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.94(3H,d,J=7.0Hz), 0.95(3H,d,J=6.8Hz), 0.98(3H,J,J=6.0Hz), 1.31-1.40(7H,m), 1.50-1.80(8H,m), 1.71(1H,dd,J=6.4.14.2Hz), 1.82(3H,s), 1.90(1H,dd,J=6.4.14.2Hz), 2.54(2H,m), 2.82(1H,m), 2.70(1H,dd,J=2.4.8.3Hz), 2.94(1H,d,J=2.4.5.7Hz), 3.54(1H,d,J=3.4.4Hz), 3.74(1H,d,J=8.9hz), 3.00(1H,m), 5.10(1H,d,J=9.8Hz), 5.42(1H,dd,J=9.8,15.2Hz), 5.78(1H,dd,J=9.8,15.2Hz), 5.59(1H,d,J=15.2Hz), 6.18(1H,d,J=10.8Hz), 6.57(1H,dd,J=10.8Hz), 6.57(1H,dd,J=10.8Hz

Example A9 Physico-chemical properties of 11107G

[0113] The physico-chemical properties of 11107G are shown below. The structure of 11107G was determined as shown below.

- Appearance: colorless powder
- 2. Molecular weight: 510, FAB-MS m/z 509(M-H):
- 3. Molecular formula: C₂₈H₄₆O₈
- Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
 - H-NMR spectrum (CD₂OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz));
 - 0.94(3H,d,J=6.4Hz), 1.06(3H,t,J=7.3Hz), 1.09(3H,s), 1.13(3H,d,J=7.0Hz), 1.31(3H,s), 1.33-1.40(3H,m), 1.55-1.78

(SH,m), 1.79(3H,s), 2.52(1H,m), 2.58(2H,m), 2.80(1H,m), 2.95(1H,d,J=2.0Hz), 3.00(1H,dt,J=2.0,5.4Hz), 3.35(1H,m), 3.74(1H,d,J=3.8Hz), 3.80(1H,m), 5.07(1H,d,J=0.2Hz), 5.41(1H,dd,J=9.8,15.2Hz), 5.70(1H,dd,J=0.8Hz), 5.76(1H,dd,J=0.8,15.2Hz), 6.2(1Hd,J=0.18Hz), 6.33(1Hd,d=10.8Hz), 6.78(1Hz)

Example A10 Purification of 11107H, I, J and K

10

15

35

50

[0114] The cultured broth (20 L) was separated into the filtrate and the mycelium cake. Then the filtrate was extracted with ethyl acetate (20 L). Thus obtained ethyl acetate layer was evaporated to dryness to give 2.33g of crude active fraction. The crude active fraction was subject to silica gel column chromatography (Wako Gel C-200), the column was eluted with a mix solution (1 L) consisting of n-hexane and ethyl acetate (9:1, v/v), and thus acquired active fractions were concentrated to give a crude active fraction which contained 11107H and 11107I and a crude active fraction which contains 11107J and 1107K. The crude active fraction which contains 11107H and 11107I was subjected to preparative high performance liquid chromatography (HPLC), under the following preparative HPLC condition (B1). Then the eluted active fractions were concentrated to give a fraction in which 11107H was a main component and a fraction in which 11107I was a main component. The respective fractions were subjected to preparative high performance liquid chromatography (HPLC), under the following preparative HPLC condition (B2) to elute active substances. They were concentrate to dryness to give 11107H (1.2 mg) and 11107I (6 mg). Similarly, the crude active fraction which contains 11107J and 11107K was also fractionated by HPLC under the following preparative HPLC condition (B3). The eluted fractions were collected separately and concentrated to give a fraction in which 11107J was a main component and a fraction in which 11107K was a main component. The respective fractions were subjected to preparative high performance liquid chromatography (HPLC), under the following preparative HPLC condition (B4) to elute corresponding active substances. They were concentrated to dryness to give 11107J (1.8 mg) and 11107K (1 mg).

Preparative HPLC condition (B1)

[0115] Column: YMC-PACK ODS-AM SH-343-5AM, 420 mm × 250 mm (manufactured by YMC Co.)

Temperature: room temperature

Flow rate: 10 ml/min.

Detection: 240 nm

Eluent: acetonitrile/water (2:8 to 10:0, v/v, 0 to 50 min., linear gradient)

Preparative HPLC condition (B2)

[0116] Column: YMC-PACK ODS-AM SH-343-5AM, ¢20 mm × 250 mm (manufactured by YMC Co.)
Temperature: room temperature

Flow rate: 10 ml/min

Detection: 240 nm

Eluent: acetonitrile/water (4:6 to 7:3, v/v, 0 to 50 min., linear gradient)

Preparative HPLC condition (B3)

[0117] Column: YMC J'sphere ODS-M80 JM-343, ¢20 mm × 250 mm (manufactured by YMC Co.)

Flow rate: 10 ml/min.

Detection: 240 nm

Eluent: acetonitrile/water (3:7 to 7:3, v/v, 0 to 50 min., linear gradient)

Preparative HPLC condition (B4)

[0118] Column: YMC J'sphere ODS-M80 JM-343, ϕ 20 mm \times 250 mm (manufactured by YMC Co.)

Flow rate: 10 ml/min.

Detection: 240 nm

Eluent: acetonitrile/water (2:8 to 10:0, v/v, 0 to 40 min., linear gradient)

[0119] The retention times of the above-mentioned compounds when analysis was carried out at the following HPLC analysis conditions are shown.

10 Analytic HPLC condition (b1):

Flow rate: 1 ml/min.

Detection: 240 nm

Eluent; acetonitrile/0.15% potassium dihydrogenphosphate (pH 3.5) (2:8 to 8:2, v/v, 0 to 50 min., linear gradient)

Retention time:

20 [0121]

30

5

11107H: 16.2 min. 11107I: 16.9 min.

25 Analytic HPLC condition (b2):

[0122] Column: CAPCELL PAK C18 SG120 \(\phi 4.6 \) mm \(\times 250 \) mm (manufactured by SHISEIDO Co.) Temperature: 40°C

Flow rate: 1 ml/min.

Detection: 240 nm

Eluent: acetonitrile/water (4:6, v/v) isocratic

Retention time: 11107J: 11.2 min.

11107K: 11.9 mln.

Example A11 Physico-chemical properties of 11107H

[0123] The physico-chemical properties of 11107H are shown below. The structure of 11107H was determined as shown below.

Appearance: colorless powder

2. Molecular weight: 534, ESI-MS m/z 533(M-H), 557(M+Na)+

3 . Molecular formula: C₃₀H₄₆O₈

4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water

5. Color reaction: positive for jodine and sulfuric acid

Infrared absorption spectrum (KBr) cm⁻¹: 3478, 2968, 1732, 1718, 1455, 1370, 1243, 1173

7. 1H-MMR spectrum (C₂D₂N, 500 MHz): 5 ppm (integral, multiplicit); coupling constant J (Hz)): 0.85(3H,d,J=6.9Hz), 1.07(3H,t,J=7.3Hz), 1.09(3H,d,J=6.4Hz), 1.15(3H,d,J=7.3Hz), 1.45(1H,m), 1.55(1H,m), 1.57(3H,d,J=2.8Hz), 1.55(1H,m), 2.72(1H,d,J=2.5;12.7Hz), 2.90(2H,m), 3.02(1H,d,J=2.1,3.2Hz), 3.98(1H,m), 4.88(1H,m), 5.34(1H,d,J=10.7Hz), 5.53(1H,d,J=9.Hz), 5.59(1H,d,J=9.81.5;2Hz), 5.72(1H,d,J=3.1,5;2Hz), 6.18(1H,d,d,J=3.5;2Hz), 6.32(1H,d,J=3.1,5;2Hz), 6.32(

J=10.8Hz), 6.42(1H,dd,J=2.4,15.2Hz), 6.46(1H,dd,J=10.8,15.2Hz)

55

1110/11

Example A12 Physico-chemical properties of 111071

[0124] The physico-chemical properties of 11107I are shown below. The structure of 11107I was determined as shown below.

1. Appearance: colorless powder

5

10

15

- 2. Molecular weight: 550, ESI-MS m/z 549(M-H)*
- 3 . Molecular formula: C31H50O8
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 25 5. Color reaction: positive for iodine and sulfuric acid
 - 6. ¹H-NMR spectrum (C₅D₅N, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):

0.87(3H.d.J=6.8Hz). 1.04-1.10(9H.m), 1.15(3H.d.J=6.8Hz), 1.45(1H.m), 1.47(3H.s), 1.56(1H.m), 1.87-1.79(4H, m), 1.80(3H.s), 1.82(1H.m), 1.95(1H.m), 2.71(1H.m), 2.30 (2H.m), 2.55(1H.m), 2.58(81H.m), 2.71(1H.d.d.J=3.414.1Hz), 2.77(1H.d.d.J=2.214.1Hz), 2.87(1H.d.d.J=2.0,8.3Hz), 3.97(1H.d.d.J=2.0,8.3Hz), 3.97(1H.m), 4.10 (1H.m), 5.33(1H.d.J=10.7Hz), 5.86(1H.d.J=5.73(1H.d.d.J=7.3,14.6Hz), 5.82(1H.d.d.J=10.3,15.2Hz), 6.28 (1H.d.d.J=10.8,15.2Hz)

OH OH OH

Physico-chemical properties of 11107J

[0125] The physico-chemical properties of 11107J are shown below. The structure of 11107J was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 522, FAB-MS m/z 523(M+H)+
- 3.1

Example A13

- Molecular formula: C₂₉H₄₈O₈
 Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction; positive for jodine and sulfuric acid
- Infrared absorption spectrum (KBr) cm⁻¹: 3386, 2969, 1731, 1714, 1455, 1371, 1249, 1174

7. 'H-NMR spectrum (CD₂OD, 500 MHz), 5 ppm (integral, mulliplicity, coupling constant J. (Hz)):
0.88(3H,d_J=6.9Hz), 0.92(3H,d_J=7.3Hz), 1.08(3H,d_J=6.4Hz), 1.15(1Hm), 1.18(3H,d_J=6.4Hz), 1.19(3H,a),
1.35-1.89(8Hm), 1.75(9H,d_J=1.0Hz), 2.06(3Hs), 2.492.20(4Hm), 2.82(1H,d_J=2.5,3Hz), 2.71(1H,dt,
J=2.5,5 PHz), 3.74-3.81(2Hm), 5.04(2H,d_J=9.8Hz), 5.56(1H,dd_J=8.15.2Hz), 5.56(1H,dd_J=8.3.15.1Hz), 5.70
(Hd,d_J=9.81.5 Hz), 3.01(Hd,d_J=1.0,10.7Hz), 3.22(1H,dd_J=0.15.1Hz)

Example A14 Physico-chemical properties of 11107K

[0126] The physico-chemical properties of 11107K are shown below. The structure of 11107K was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 552, FAB-MS m/z 553(M+H)+
- 3. Molecular formula: C20H49O0

10

15

20

30

40

50

- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
 - Infrared absorption spectrum (KBr) cm⁻¹: 3461, 2965, 1735, 1712, 1455, 1372, 1242, 1169
 - 7. 1H-NMR spectrum (CD₂OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz));
- 0.87(3H,d,J=6.8Hz), 0.91(3H,d,J=7.3Hz), 0.94(3H,J,J=7.6Hz), 1.09(3H,d,J=6.9Hz), 1.11(3Hs), 1.21(1H,m), 1.42-1.68(6H,m), 1.76(3Hd,J=1.0Hz), 2.06(3H,s), 2.44-2.68(3H,m), 2.61(1H,dd,J=3.71,2.9Hz), 2.66(1H,dd,J=2.6,81Hz), 2.73(1H,dt,J=2.6,0Hz), 3.50-3.57(2H,m), 4.15(1H,m), 5.06(1H,d,J=0.8Hz), 5.09(1H,d,J=10.3Hz), 5.51(1H,dd,J=0.8Hz), 5.09(1H,d,J=10.3Hz), 5.51(1H,dd,J=0.71,5.1Hz).

Example A15

[0127] The cultured broth (86 L) was filtrated using a small size filter press (washed with water: 10 L), and separated into the filtrate, the washed solution (94 L) and the mycelium cake (well weight 14.5kg). The filtrate and the washed solution were extracted with toluene (50 L). The mycelium cake was extracted with methanol (50 L), then the methanol extract was evaporated under reduced pressure to

remove the methanol, then extracted with bluene (10 L). After the respective foluene layers were washed with water, they were combined and concentrated to give 69.4 g of extract containing active compound. Thus acquired extract was dissolved in methanol (400 ml) combined with 10% aqueous sodium chibride (400 ml) and washed with n-hexane (400 ml *2). Then it was extracted with eithyl acetate (400 ml *2), washed with water and concentrated under reduced ressure to give 12.1 g of crude active fraction. The crude active fraction was dissolved in a mix solution consisting of ethyl acetate and n-hexane (1:1, wt), and subjected to silica gel chromatography (Kiesel gel 60, 120g). The column was washed with a mix solution (1000 ml) consisting of ethyl acetate and n-hexane (1:1, wt), developed with a mix solution (600 ml) consisting of ethyl acetate and n-hexane (1:1, wt), developed with a mix solution (800 ml) consisting of ethyl acetate and n-hexane (1:1, wt), developed with a mix solution (800 ml) consisting of ethyl acetate and n-hexane (1:1, wt), developed with a mix solution (800 ml) consisting of ethyl acetate and n-hexane (1:1, wt), developed in the consisting of ethyl acetate and n-hexane (1:1, wt), developed in the consisting of ethyl acetate and n-hexane (1:1, wt), developed in the consisting of ethyl acetate and n-hexane (1:1, wt), developed in the consisting of ethyl acetate and n-hexane (1:1, wt), developed in the consisting of ethyl acetate and n-hexane (1:1, wt), developed in the consisting of ethyl acetate and n-hexane (1:1, wt), developed in the consisting of ethyl acetate (1:1, wt), and ethyl acetate and n-hexane (1:1, wt), and ethyl acetate (1:1, wt), and ethy

Example A16

15

[0128] The cultured broth (86 L) was combined with acetone (18 L), stirred and extracted, and then the mixture was fittened by a continuous centrifugal filtering machine. The resulting acetone extract (106 L) was adsorbed on DIAION HP-20 column (11 L), and diluted with 5% aqueous acetone (10 L), 40% aqueous acetone (30 L), 80% aqueous acetone (60 L) and 80% aqueous acetone (80 L). The 60% aqueous acetone fraction (30 L) was concentrated, then extracted with toluene (1). Thus obtained toluene layer was evaporated to give 17.6 g of crude active fraction. So g of this crude active fraction was dissolved in toluene and subjected to a sitica gel column chromatography (Riesel gel 80, 80g). The column was washed with toluene (85 onl), developed with a risk pollution (4000 mi) consisting of toluene and acetone (3:1, v/v), a mix solution (1000 mi) consisting of toluene and acetone (1:1, v/v). A fraction eluted from 1100 mi to 1700mi (crude active fraction 2), a fraction eluted from 1700 mit to 4000 mi (111078 fraction) and a fraction teluted from 4000 mi (11078 fraction) and a fraction teluted from 4000 mi (1000 mi) consisting of toluene active recoluent extension is were collected separately and evaporated under reduced pressure to give 640 mg of crude active fraction A, 3.32 g of crude 111078 and 466 mg of crude active fraction B, respectively.

Example A17 Purification of 11107L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, AA, AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK, AL, AM, AN, AP, AQ and AR

[0129] The resulting crude active fraction A was subjected to preparative high performance liquid chromatography (HPLC) under the following preparative conditions (C1) and (C2) to give 11107L (6.5 mg), 11107N (6.5 mg), 10107N (6.5 mg), 11107N (

[0130] The crude 11107B fraction (5.96q) was subjected to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C3) to give the crude active fraction C (100 mg) containing 11107T, 11107U, 11107W, 11107Z, 11107AA, 11107AC, 11107AH and 11107AI, 35 mg of the resulting crude active fraction C was further subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C4), a fraction containing 11107T, a fraction containing 11107AA and 11107U, and a fraction containing 11107W, 11107Z and 11107AC were collected separately, and the solvent was removed. The fraction containing 11107T was further subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C5) to give a 11107T solution. Then, 11107T (0.8 mg) was given by removal of the solvent. The fraction containing 11107AA and 11107U was further subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C5) to give a 11107AA solution and a 11107U solution. Then, 11107AA (0.2 mg) and 11107U (1.0 mg) were given by removal of the solvent. The fraction containing 11107W, 11107Z and 11107AC was further subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C5) to give a 11107W solution, a 11107Z solution and a 11107AC solution. Then, 11107W (1,3 mg), 11107Z (1,1 mg) and 11107AC (0,4 mg) were given by removal of the solvent. Further, the total amount of the residue of the resulting crude active fraction C was subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C6), a fraction containing 11107AH and a fraction containing 11107AI were collected separately, and the solvent was removed. The fraction containing 11107AH was further subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC conditions (C7) to give a 11107AH solution, Then, 11107AH (0.3 mg) was given by removal of the solvent. The fraction containing 11107Al was further subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C8) to obtain a 11107AI

solution. Then, 11107Al (0.5 mg) was given by removal of the solvent.

[0131] The resulting crude active fraction B (1.15 g) was dissolved in 20 ml of a mix solution consisting of tetrahydrofuran-50% aqueous acetonitrile (1:2, v/v), and subjected to ODS column chromatography (ODS-AM 120-S50; manufactured by YMC Co., 750 g). The column was eluted with a mix solution (5 L) consisting of acetonitrile and water (45:55, v/v), to obtain crude active fraction B1 containing 111070, 11107P, 11107P, 11107P, 11107AF and 11107AG which was eluted from 1300 ml to 1800 ml, crude active fraction B2 containing 11107S and 11107V which was eluted from 2160 ml to 2400 ml, and crude active fraction B3 containing 11107AD, 11107AE, 11107AJ and 11107AK which was eluted from 2565 ml to 3300 ml were collected separately. The respective fractions were evaporated to dryness, to give 50 mg of crude active fraction B1, 236 mg of crude active fraction B2 and 67.5 mg of crude active fraction B3. [0132] 38.6 mg of the resulting crude active fraction B1 was subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C9), whereby a fraction containing 11107AF, a fraction containing 111070, a fraction containing 11107P, a fraction containing 11107Q, a fraction containing 11107R and a fraction containing 11107AG were collected separately, and the solvent was removed. The fraction containing 11107AF was further subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C10) to obtain a 11107AF solution, Then, 11107AF (0.3 mg) was given by removal of the solvent. The fraction containing 111070 was further subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C11) to give a 111070 solution. Then, 111070 (0.5 mg) was given by removal of the solvent. The fraction containing 11107P was subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C11) to give a 11107P solution. Then, 11107P (1.3 mg) was given by removal of the solvent. The fraction containing 11107Q was further subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C6) to give a 11107Q solution. Then, 11107Q (0.6 mg) was given by removal of the solvent. The fraction containing 11107R was further subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C6) to give a 11107R solution. Then, 11107R (0.6 mg) was given by removal of the solvent. The fraction containing 11107AG was further subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C12) to give a 11107AG solution. Then, 11107AG (1.0 mg) was given by removal of the solvent.

[0133] 200 mg of crude active fraction 82 was subjected to repeated use of preparative high performance liquid chromatography (HPLC), under the following preparative HPLC condition (C13) to give a fraction containing 11107S and a fraction containing 11107S and 11107V (0.5 mg). The fraction containing 11107S was subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C14) to give a 11107S solution. Then, 11107S (1.2 mg) was given by removal of the solvent. Similarly, the fraction containing 11107AB (20 mg) was subjected to the preparative high performance liquid chromatography (HPLC) under the following HPLC preparative condition (C15) to give a 11107AB solution. Then, 11107AB (14 mg) was given by removal of the solvent.

[0134] The resulting crude active fraction B3 (67.5 mg) was subjected to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (C16, a fraction containing 11107AE and a fraction containing 11107AE was subjected to repeated use of preparative high performance liquid chromatography (HPLC), under the following preparative conditions (C17), (C18) and (C17) in turn, to give 11107AE was subjected to twice repeated use of preparative high performance liquid chromatography (HPLC), under the following preparative high performance liquid chromatography (HPLC), under the following preparative high performance liquid chromatography (HPLC), under the following preparative high performance liquid chromatography (HPLC), under the following preparative high performance liquid chromatography (HPLC), under the following preparative high performance liquid chromatography (HPLC), under the following preparative high performance liquid chromatography (HPLC), under the following preparative high performance liquid chromatography (HPLC), under the following preparative high performance liquid chromatography (HPLC), under the following preparative high performance liquid chromatography (HPLC), under the following preparative high performance liquid chromatography (HPLC), under the following preparative conditions (C18) and (17) in turn, to give 11107AJ (0.5 mg) and 11107AK (0.9 ma).

Preparative HPLC condition (C1)

[0135] Column: CAPCELL PAK C18 UG120, ¢30 mm × 250 mm (manufactured by SHISEIDO Co.) Flow rate: 20 mi/min. Detertion: 240 mm

55 Eluent: acetonitrile/water (4:6, v/v) isocratic

Preparative HPLC conditions (C2) [0136] Column: CAPCELL PAK C18 UG120, \$30 mm × 250 mm (manufactured by SHISEIDO Co.) Flow rate: 20 ml/min. Detection: 240 nm Eluent: acetonitrile/water (5:5, v/v) isocratic Preparative HPLC conditions (C3) Column: Inertsil ODS-3, 450 mm × 250 mm (manufactured by GL Science) Temperature: room temperature Flow rate: 40 ml/min. 10 Detection: 240 nm Eluent: acetonitrile/water (45:55, v/v) isocratic Preparative HPLC condition (C4) [0137] Column: CAPCELL PAK C18 SG120, \$20 mm × 250 mm (manufactured by SHISEIDO Co.) Temperature: 40°C Flow rate: 5 ml/min. Detection: 200 nm Eluent: acetonitrile/water (4:6, v/v) isocratic 20 Preparative HPLC condition (C5) [0138] Column: CAPCELL PAK C18 SG120, \$20 mm × 250 mm (manufactured by SHISEIDO Co.) Temperature: 40°C 25 Flow rate: 10 ml/min. Detection: 240 nm Eluent: methanol/water (6:4, v/v) isocratic Preparative HPLC condition (C6) 30 [0139] Column: CAPCELL PAK C18 SG120, \$20 mm x 250 mm (manufactured by SHISEIDO Co.) Temperature: 40°C Flow rate: 5 ml/min. Detection: 240 nm 35 Eluent: acetonitrile/water (4:6, v/v) isocratic Preparative HPLC condition (C7) [0140] Column: CAPCELL PAK C18 SG120, \$20 mm × 250 mm (manufactured by SHISEIDO Co.) Temperature: 40°C Flow rate: 5 ml/min. Detection: 200 nm Eluent: methanol/water (6:4, v/v) isocratic 45 Preparative HPLC condition (C8) [0141] Column: CAPCELL PAK C18 SG120, \$20 mm × 250 mm (manufactured by SHISEIDO Co.) Temperature: 40°C Flow rate: 5 ml/min. Detection: 240 nm Eluent methanol/water (6:4, v/v) isocratic Preparative HPLC condition (C9) [0142] Column: YMC J'sphere ODS-M80 JM-343, \$20 mm × 250 mm (manufactured by YMC Co.)

55

Temperature: 40°C Flow rate: 5 ml/min. Detection: 200 nm

Eluent: acetonitrile/water (3:7, v/v) isocratic Preparative HPLC condition (C10) [0143] Column: CAPCELL PAK C18 SG120, \$20 mm × 250 mm (manufactured by SHISEIDO Co.) Temperature: 40°C Flow rate: 5 ml/min. Detection: 240 nm Eluent: methanol/water (5:5, v/v) isocratic Preparative HPLC condition (C11) [0144] Column: YMC J'sphere ODS-M80 JM-343, \$20 mm × 250 mm (manufactured by YMC Co.) Temperature: 40°C 15 Flow rate: 5 ml/min. Detection: 240 nm Eluent: acetonitrile/water (3:7, v/v) isocratic Preparative HPLC condition (C12) [0145] Column: YMC J'sphere ODS-M80 JM-343, \$20 mm × 250 mm (manufactured by YMC Co.) Temperature: 40°C Flow rate: 5 ml/min. Detection: 200 nm 25 Eluent: methanol/water (6:4, v/v) isocratic Preparative HPLC condition (C13) [0146] Column: YMC J'sphere ODS-H80 JH-343, 620 mm × 250 mm (manufactured by YMC Co.) Temperature: 40°C Flow rate: 20 ml/min. Detection: 215 nm Eluent: acetonitrile/water (32:68, v/v) isocratic Preparative HPLC condition (C14) [0147] Column: YMC J'sphere ODS-H80 JH-323, \$10 mm × 250 mm (manufactured by YMC Co.) Temperature: 40°C Flow rate: 5 ml/min. 40 Detection: 215 nm Eluent: acetonitrile/water (4:6, v/v) isocratic Preparative HPLC condition (C15) [0148] Column: YMC J'sphere ODS-H80 JH-343, ¢20 mm × 250 mm (manufactured by YMC Co.) Temperature: 40°C Flow rate: 20 ml/min. Detection: 215 nm Eluent: acetonitrile/water (4:6, v/v) isocratic Preparative HPLC condition (C16) [0149] Column: YMC J'sphere ODS-M80 JM-343, 620 mm × 250 mm (manufactured by YMC Co.) Temperature: room temperature Flow rate: 10 ml/min.

utes, isocratic)

Eluent: acetonitrile/water (35:65-4:6, v/v, 0-50 minutes, linear gradient), acetonitrile/water (4:6, v/v, 50-70 min-

5

25

30

```
Preparative HPLC condition (C17)
[0150] Column: YMC J'sphere ODS-M80 JM-343, 620 mm × 250 mm (manufactured by YMC Co.)
     Temperature: room temperature
     Flow rate: 10 ml/min.
     Detection: 240 nm
     Eluent: methanol/water (65:35-7:3, v/v. 0-40 minutes, linear gradient)
Preparative HPLC condition (C18)
[0151] Column: CAPCELL PAK C18 SG120, 620 mm × 250 mm (manufactured by SHISEIDO Co.)
     Temperature: room temperature
     Flow rate: 5 ml/min.
     Detection: 240 nm
     Eluent: acetonitirle/water (4:6, v/v) isocratic
[0152] The retention times of 11107B and the above-mentioned compounds when analysis was carried out at the
following Analytic HPLC conditions are shown below.
Analytic HPLC condition (c1)
[0153] Column: CAPCELL PAK C18 SG120, 64.6 mm × 250 mm (manufactured by SHISEIDO Co.)
     Temperature: 40°C
     Flow rate: 1 ml/min.
     Detection: 240 nm
     Eluent: acetonitirle/water (4:6, v/v) isocratic
[0154] Retention time:
   11107B: 16.4 min.
    11107L: 22.2 min.
    11107M: 36.0 min.
    11107N: 18.1 mln.
    11107R: 7.6 min.
    11107X: 23.8 min.
   11107Y: 23.6 min.
   11107AL: 32.0 mln.
    11107AM: 30.3 min.
    11107AN: 38.7 min.
    11107AP: 60.4 min.
    11107AQ: 64.7 min.
   11107AR: 15.2 min.
Analytic HPLC condition (c2)
[0155] Column: CAPCELL PAK C18 SG120, 64.6 mm × 250 mm (manufactured by SHISEIDO Co.)
     Temperature: 40°C
     Flow rate: 1 ml/min.
     Detection: 240 nm
     Eluent: methanol/water (6:4, v/v) isocratic
[0156] Retention time:
   11107T: 13.0 min.
    11107U: 14.4 min.
    11107W: 15.4 min.
   11107Z: 15.9 min.
   11107AA: 12 4 min
    11107AC: 12.7 min.
   11107AI: 18.3 min.
```

```
Analytic HPLC condition (c3)
      [0157] Column: CAPCELL PAK C18 SG120, 64.6 mm × 250 mm (manufactured by SHISEIDO Co.)
           Temperature: 40°C
           Flow rate: 1 ml/min.
           Detection: 200 nm
           Eluent: methanol/water (6:4, v/v) isocratic
      [0158] Retention time:
          11107AH: 10.3 min.
      Analytic HPLC condition (c4)
      [0159] Column: CAPCELL PAK C18 SG120, 64.6 mm × 250 mm (manufactured by SHISEIDO Co.)
15
           Temperature: 40°C
           Flow rate: 1 ml/min.
           Detection: 240 nm
           Eluent: methanol/water (5:5, v/v) isocratic
     [0160] Retention time:
          111070: 20.2 min.
          11107Q: 25 2 min
          11107AF: 17.7 min.
25 Analytic HPLC condition (c5)
      [0161] Column: YMC J'sphere ODS-M80 JM-307, $4.6 mm × 75 mm (manufactured by YMC Co.)
           Temperature: 40°C
           Flow rate: 1.5 ml/min.
30
           Detection: 240 nm
           Eluent: acetonitrile/water (3:7, v/v) isocratic
     [0162] Retention time:
          11107P: 5.8 min.
     Analytic HPLC condition (c6)
      [0163] Column: YMC Pack Ph A407, 64.6 mm × 75 mm (manufactured by YMC Co.)
           Temperature: 40°C
           Flow rate: 1 ml/min.
           Detection: 200 nm
           Eluent: methanol/water (5:5, v/v) isocratic
      [0164] Retention time:
          11107AG: 6.5 min.
      Analytic HPLC condition (c7)
      [0165] Column: CAPCELL PAK C18 SG120, $\phi4.6 \text{ mm} \times 250 \text{ mm (manufactured by SHISEIDO Co.)}
50
           Temperature: 40°C
           Flow rate: 1 ml/min.
           Detection: 254 nm
           Eluent: acetonitrile/water (4:6, v/v) isocratic
     [0166] Retention time:
          11107V: 9.6 min.
          11107AB: 10.8 min.
```

Analytic HPLC condition (c8)

[0167] Column: CAPCELL PAK C18 SG120, \(\phi 4.6 \text{ mm} \times 250 \text{ mm} \text{ (manufactured by SHISEIDO Co.)} \)

Temperature: 40°C

Flow rate: 1.5 ml/min.

Detection: 240 nm Eluent: acetonitrile/water (4:6, v/v) isocratic

11107S: 6.6 min.

10 Analytic HPLC condition (c9)

[0168] Column: CAPCELL PAK C18 SG120, 64.6 mm × 250 mm (manufactured by SHISEIDO Co.)

Temperature: room temperature

Flow rate: 1 ml/min.

Detection: 240 nm Eluent: acetonitrile/water (4:6, v/v) isocratic

[0169] Retention time:

11107AD: 15.6 min.

20

30

35

45

sa

55

11107AE: 14.7 min. (11107AEa), 15.4 min. (11107AEb)

11107AJ: 12.9 min.

11107AK: 13.4 min.

Example A18 Physico-chemical properties of 11107L

[0170] The physico-chemical properties of 11107L are shown below. The structure of 11107L was determined as shown below.

- 1. Appearance: colorless powder
- Molecular weight: 594, FAB-MS m/z 617(M+Na)+, 593(M-H)
- Molecular formula: C₃₂H₅₀O₁₀
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
 - 6. Infrared absorption spectrum: 3470, 2970, 1735, 1718, 1456, 1373, 1236, 1175
- 7. ¹H-NMR spectrum (CD₂OD, 400 MHz): δ ppm (Integral, multiplicity, coupling constant J (Hz)):

0.87(3H,d,,i=6.6Hz), 0.90(3H,d,i=7.0Hz), 0.94(3H,t,i=7.3Hz), 1.08(3H,d,i=7.0Hz), 1.18-1.22(4H,m), 1.42-1.52 (3H,m), 1.65-1.89(1H,m), 1.70-1.74(2H,m), 1.77(3H,d,i=0.7Hz), 2.06(3H;b), 2.08(3H;b), 2.46-2.50(1H,m), 2.52 (1H,dd,i=4.5,16-1)z), 2.55-2.62(1H,m), 2.65(1H,dd,i=2.2,8-14x), 2.72(1H,dt,i=2.2,5-14x), 2.77(1H,dt,i=2.2,5-14x), 2.77(1H,dt,i=2.2,5-14x), 2.77(1H,dt,i=2.2,5-14x), 2.77(1H,dt,i=2.2,5-14x), 2.77(1H,dt,i=3.1,10.7Hz), 5.08(1H,dt,i=9.9Hz), 5.11

40 (1H,d,J=11.0Hz), 5.80(1H,dd,J=9.9,15.0Hz), 5.66(1H,dd,J=8.4,15.0Hz), 5.74(1H,dd,J=9.9,15.0Hz), 6.09(1H,d,J=11.0Hz), 6.33(1H,dd,J=11.0.15.0Hz)

Example A19 Physico-chemical properties of 11107M

[0171] The physico-chemical properties of 11107M are shown below. The structure of 11107M was determined as shown below.

4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water

- 1. Appearance: colorless powder
- 2. Molecular weight: 578, FAB-MS m/z 577(M-H)
- 3 . Molecular formula: C32H50O9

15

20

25

30

40

50

55

- 5. Color reaction: positive for iodine and sulfuric acid
- - Infrared absorption spectrum: 3498, 2970, 1731, 1719, 1456, 1374, 1254, 1174
 - 7. 1H-NMR spectrum (CD₃OD, 400 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.89(3H,d,J=6.6Hz), 0.90(3H,d,J=7.0Hz), 0.93(3H,t,J=7.3Hz), 1.08(3H,d,J=7.0Hz), 1.17-1.20(4H,m), 1.42-1.55 (5H.m), 1.60-1.66(3H.m), 1.74(3H.d.J=1.1Hz), 2.04(3H.s), 2.06(3H.s), 2.44-2.52(1H.m), 2.54-2.58(1H.m), 2.60 (1H.dd,J=3.7.14.8Hz), 2.62(1H.dd,J=5.9.14.8Hz), 2.64(1H.dd,J=2.2.8.1Hz), 2.72(1H.dt,J=2.2.5.9Hz), 3.51(1H.dt,J=2.2.8.1Hz), 3.72(1H.dt,J=2.2.5.9Hz), 3.72(1H.dt,J=2.2.5.9Hz), 3.72(1H.dt,J=2.2.5.9Hz), 3.72(1H.dt,J=2.2.5.9Hz), 3.72(1H.dt,J=2.2.5.9Hz), 3.72(1H.dt,J=2.2.5.9Hz), 3.72(1H.dt,J=2.2.8.1Hz), 3.72(1H.dt,J=3.2.8.1Hz), 3.72(1H.dt,J=3.2.8.1Hz) J=8.4,4.8Hz), 4.82-4.84(1H,m), 4.98(1H,d,J=10.6Hz), 5.02(1H,d,J=9.6Hz), 5.57(1H,dd,J=9.9,15.0Hz), 5.66(1H, dd,J=9.4,15.0Hz), 5.71(1H,dd,J=9.6,15.0Hz), 6.09(1H,d,J=11.0Hz), 6.32(1H,dd,J=11.0,15.0Hz)

Physico-chemical properties of 11107N

[0172] The physico-chemical properties of 11107N are shown below. The structure of 11107N was determined as shown below.

- 1. Appearance: colorless powder
- Molecular weight: 594, FAB-MS m/z 595(M+H)+, 617(M+Na)+
 - 3. Molecular formula: C₃₂H₅₀O₁₀
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
- Infrared absorption spectrum: 3480, 2964, 1740, 1719, 1456, 1371, 1244, 1174
- 1H-NMR spectrum (CD₃OD, 400 MHz): δ ppm (Integral, multiplicity, coupling constant J (Hz)): 0.88(3H,d,J=6.2Hz), 0.90(3H,d,J=6.6Hz), 0.94(3H,t,J=7.3Hz), 1.08(3H,d,J=7.0Hz), 1.17-1.22(1H,m), 1.42-1.52 (5H,m), 1.55-1.65(3H,m), 1.75(3H,d,J=0.7Hz), 2.04 (3H, s), 2.05(3H,s), 2.45-2.50(1H,m), 2.51(1H,d,J=4.4Hz), 2.53(1H,d,J=3.3Hz), 2.54-2.62(1H,m), 2.65(1H,dd,J=2.6,8.4Hz), 2.72(1H,dt,J=2.6,6.2Hz), 3.51(1H,dt,J=2.6,6.2Hz), 3.51(1H,dt,J=2.6,6.2Hz), 3.51(1H,dt,J=2.6,8.4Hz), 2.72(1H,dt,J=2.6,6.2Hz), 3.51(1H,dt,J=2.6,8.4Hz), 2.72(1H,dt,J=2.6,8.4Hz), 3.51(1H,dt,J=2.6,8.4Hz), 3.51(1H,d J=8.8,4.8Hz), 3.75-3.81(1H,m), 4.00(1H,d,J=11.4Hz), 4,14(1H,d,J=11.4Hz), 5.05(1H,d,J=10.6Hz), 5.21(1H,d, J=9.5Hz), 5.63(1H,dd,J=9.5,15.0Hz), 5.65(1H,dd,J=9.5,15.0Hz), 5.72(1H,dd,J=9.5,15.0Hz), 6.09(1H,d, J=11.0Hz), 6.32(1H,dd,J=11.0,15.0Hz)

Physico-chemical properties of 111070

[0173] The physico-chemical properties of 111070 are shown below. The structure of 111070 was determined as shown below.

- 1. Appearance: colorless powder
- Molecular weight: 554. FAB-MS m/z 555(M+H)+. 577(M+Na)+
- 3 . Molecular formula: C₃₀H₅₀O₉

5

10

15

25

30

45

50

J=9.8,15.1Hz), 6.10(1H,d,J=10.7Hz), 6.33(1H,dd,J=10.7,15.1Hz)

- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water 5. Color reaction: positive for iodine and sulfuric acid
- Infrared absorption spectrum (KBr) cm⁻¹: 3419, 2966, 1733, 1716, 1457, 1374, 1258, 1176
- 1H-NMR spectrum (CD₂OD, 500 MHz); δ ppm (integral, multiplicity, coupling constant J (Hz)); 0.88(3H,d,J=6.8Hz), 0.90(3H,d,J=7.3Hz), 0.93(3H,t,J=7.3Hz), 1.06(3H,d,J=6.8Hz), 1.19(3H,s), 1.34-1.44(3H,m), 1.51(2H.m), 1.54-1.71(3H.m), 1.75(3H.s), 1.90(1H.m), 2.06(3H.s), 2.53(2H.m), 2.56(2H.m), 3.43-3.50(2H.m), 3.57 (1H,m), 3.78(1H,m), 5.05(2H,d,J=10.3Hz), 5.57(1H,dd,J=10.3,15.1Hz), 5.61(1H,dd,J=8,3,15.1Hz), 5.70(1H,dd,

Example A22 Physico-chemical properties of 11107P

[0174] The physico-chemical properties of 11107P are shown below. The structure of 11107P was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 552, FAB-MS m/z 553(M+H)+, 575(M+Na)+
 - 3. Molecular formula: CanHagOo
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid

Infrared absorption spectrum (KBr) cm⁻¹: 3290, 2969, 1734, 1716, 1457, 1374, 1247, 1177

7. 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):

0.88(3H,d,L=8.Hz), 0.99(3H,d,J=7.3Hz), 0.94(3H,J,J=7.3Hz), 1.13(3H,d,J=6.8Hz), 1.19(3H,s), 1.22(1H,m), 1.28-1.87(8H,m), 1.75(3H,d,J=1.0Hz), 2.06(3H,s), 2.44(1H,m), 2.53-2.57(3H,m), 2.74(1H,d,J=2.48,24,2), 2.89(1H,d,d,J=0.8.Hz), 3.82(1H,m), 3.78(1H,m), 5.04(1H,d,J=10.7Hz), 5.05(1H,d,J=8.Hz), 5.56(1H,d,J=9.8,15.1Hz), 5.701(1H,d,J=9.8,15.1Hz), 5.703(1H,d,J=7.3,15.1Hz), 6.10(1H,d,J=10.7Hz), 3.74(1H,d,J=7.3,15.1Hz), 6.10(1H,d,J=10.7Hz), 3.74(1H,d,J=10.7Hz), 3.74(1Hz), 3.74(1Hz),

Example A23 Physico-chemical properties of 11107Q

[0175] The physico-chemical properties of 11107Q are shown below. The structure of 11107Q was determined as shown below.

1. Appearance: colorless powder

5

10

15

20

25

30

50

- Molecular weight: 550, FAB-MS m/z 551(M+H)+, 573(M+Na)+
- 3. Molecular formula: C₃₀H₄₆O₉
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
 - 6. Infrared absorption spectrum (KBr) cm⁻¹: 3384, 2970, 1732, 1716, 1670, 1456, 1374, 1258, 1174
- 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (Integral, multiplicity, coupling constant J (Hz)):
 - 0.88(3H,d,J=6.4Hz), 1.07(3H,d,J=6.8Hz), 1.19(3H,s), 1.31(3H,d,J=6.8Hz), 1.34-1.46(3H,m), 1.53-1.71(3H,m), 1.75(3H,s), 1.77(3H;s), 2.06(3H;s), 2.50-2.57(4H,m), 3.79(1H,m), 4.48(1H,m), 4.84(1H,d,J=6.8Hz), 5.045(1H,d,J=11.2Hz), 5.047(1H,d,J=9.3Hz), 5.045(1H,d,J=0.3Hz), 5.045(1H,d,J=0.3Hz), 5.07(1H,d,J=0.3Hz), 5.70(1H,d,J=0.3Hz), 5.70(1H,d,J=0.3Hz)

Example A24 Physico-chemical properties of 11107R

[0176] The physico-chemical properties of 11107R are shown below. The structure of 11107R was determined as

shown below.

5

10

15

20

25

4n

50

55

- 1. Appearance: colorless powder
- 2. Molecular weight: 494, FAB-MS m/z 495(M+H)+, 517(M+Na)+
- 3. Molecular formula: C27H42Oa
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
- Infrared absorption spectrum (KBr) cm⁻¹: 3385, 2968, 1734, 1716, 1457, 1373, 1245, 1174
- 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.88(3H,d,J=6.8Hz), 1.08(3H,d,J=6.8Hz), 1.17(3H,d,J=6.8Hz), 1.19(3H,s), 1.34-1.52(3H,m), 1.52-1.68(3H,m), 1.74(3H,s), 2.06(3H,s), 2.472.83(4H,m), 2.84(1H,dd,J=2.46.8Hz), 2.83(1H,d,J=2.56.1Hz), 3.45(1H,dq,J=3.64.8Hz), 3.78(1H,m), 5.05(2H,d,J=9.8Hz), 5.57(1H,dd,J=9.8,15.1Hz), 5.86(1H,dd,J=6.8,15.1Hz), 5.70(1H,dd,J=6.8,15.1Hz), 5.70(1Hz), 5.70

Example A25 Physico-chemical properties of 11107S

[0177] The physico-chemical properties of 11107S are shown below. The structure of 11107S was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 492. ESI-MS m/z 515(M+Na)+. 493(M+H)+
 - 3. Molecular formula: C28H44O7
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for lodine and sulfuric acid
- H-NMR spectrum (CD₃OD, 600 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.88(3H,d,J=6.9Hz), 0.94(3H,d,J=7.1Hz), 0.98(3H,L,J=7.4Hz), 1.12(3H,d,J=6.7Hz), 1.25(H,m), 1.39(3H,s), 1.45-160 (3Hm), 1.87(HH,d,J=7.5), 8Hz), 1.77(SH,d), 2.65(SH,m), 2.57(H,d,d,J=2.7), 2.76(H,d,J=2.8Hz), 2.56(SH,m), 2.57(H,d,d,J=2.8Hz), 2.56(H,d,J=2.8Hz), 2.56(H,d,J=2.8Hz), 3.56(H,d,J=8.4Hz), 3.71(H,d,J=3.8Hz), 3.56(H,d,J=3.8Hz), 3.5
- J=10.7,15.0H2)

11107S

Example A26 Physico-chemical properties of 11107T

[0178] The physico-chemical properties of 11107T are shown below. The structure of 11107T was determined as shown below.

- 1. Appearance: coloriess powder
- 2. Molecular weight: 522, FAB-MS m/z 545(M+Na)+
- 3 . Molecular formula: C29H46O8

10

20

30

40

50

- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for jodine and sulfuric acid
 - Infrared absorption spectrum (KBr) cm⁻¹: 3421, 2965, 1734, 1718, 1457, 1370, 1244, 1175
 - 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.89(3H.d.J=6.8Hz), 0.93(3H.t.J=7.3Hz), 1.09(3H.d.J=6.8Hz), 1.19(3H.s), 1.28-1.42(2H.m), 1.42-1.68(8H.m),
 - 1.75(3H,s), 2.06(3H,s), 2.48-2.57(4H,m), 2.74(1H,ddd,J=2.4,4.9,5.9Hz), 2.85(1H,ddd,J=2.4,4.4,7.3Hz), 3.64(1H,
- m), 3.78(1H,m), 5.047(1H,d,J=9.8Hz), 5.052(1H,d,J=10.8Hz), 5.57(1H,dd,J=9.8,15.1Hz), 5.69(1H,dd, J=8.3,15.1Hz), 5.70(1H,dd,J=9.8,15.1Hz), 6.10(1H,d,J=10.7Hz), 6.32(1H,dd,J=10.7,15.1Hz)

Example A27 Physico-chemical properties of 11107U

- [0179] The physico-chemical properties of 11107U are shown below. The structure of 11107U was determined as shown below.
 - 1. Appearance: colorless powder
 - 2. Molecular weight: 522, FAB-MS m/z 545(M+Na)+
 - 3. Molecular formula: C29H46Os
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
 - infrared absorption spectrum (KBr) cm⁻¹: 3461, 2967, 1732, 1715, 1455, 1372, 1247, 1174
 - 1H-NMR spectrum (CD₂OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz));
- 0.88(3H,d,J=6.BHz), 0.93(3H,d,J=6.8Hz), 0.95(3H,t,J=7.8Hz), 1.19(3H,s), 1.26(1H,m), 1.34-1.42(2H,m), 1.42-1.56 (2H,m), 1.56-1.72(4H,m), 1.74(3H,s), 2.06(3H,s), 2.29(2H,m), 2.52-2.56(3H,m), 2.70(1H,dd, J=2.4,8.3Hz), 2.76(1H,dt,J=2.4,5.9Hz), 3.53(1H,m), 3.78(1H,m), 5.05(2H,d,J=10.3Hz), 5.56(1H,dd, J=9.8.15.1Hz), 5.70(1H,dd,J=9.8.15.1Hz), 5.79(1H,dt,J=15.1.7.1Hz), 6.09(1H,d,J=10.7Hz), 6.34(1H,dd, J=10.7.15.1Hz)

111070

Example A28 Physico-chemical properties of 11107V

[0180] The physico-chemical properties of 11107V are shown below. The structure of 11107V was determined as shown below.

1. Appearance: colorless powder

4

10

15

25

20

40

50

55

- 2. Molecular weight: 494, ESI-MS m/z 517(M+Na)+, 495(M+H)+
- Molecular formula: C₂₈H₄₆O₇
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for lodine and sulfuric acid
 - H-NMR spectrum (CO_SOD, 500 MHz): 8 ppm (integral, multiplicity, coupling constant J (Hz)): 0.93(3H.d,⊒-6.9Hz), 0.94(3H.d,⊒-7.1Hz), 0.98(3H,t,⊒-7.4Hz), 1.13(3H.d,⊒-6.9Hz), 1.09(1H,m), 1.23(1H,m), 1.26
 - (3H.s.), 1.30(H.m), 1.44-1.70(8H.m), 1.68(H.H.d.J.+13.7.5.7Hz), 1.79(8H.s), 2.27(H.m), 2.45(H.d.d.), 5-3.1(38H.y.), 2.692-5(8H.y.m), 2.59(H.d.d.J.+21.8Hz), 2.76(H.d.d.J.+21.8Hz), 2.76(H.d.d.J.+21.8Hz), 2.76(H.d.J.+12.51, 2.74(H.d.J.+12.51, 2.74(H.d.J.+12.51, 2.74(H.d.J.+12.51, 2.74(H.d.J.+12.51, 2.74(H.d.J.+12.51, 2.82-3.88(H.m)), 5.31(H.d.J.+10.8Hz), 5.74(H.d.J.+12.51, 4.51, 4.51), 2.81(H.d.J.+10.8Hz), 5.31(H.d.J.+10.8Hz), 5

45 Example A29 Physico-chemical properties of 11107W

[0181] The physico-chemical properties of 11107W are shown below. The structure of 11107W was determined as shown below.

- Appearance: colorless powder
 - 2. Molecular weight: 522, FAB-MS m/z 523(M+H)+, 545(M+Na)+
 - 3. Molecular formula: C29H46O8
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
 - Infrared absorption spectrum (KBr) cm⁻¹: 3463, 2967, 1734, 1715, 1456, 1373, 1245, 1174
 - 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz));
 - 0.91(3H,d,J=7.3Hz), 0.94(3H,t,J=7.3Hz), 1.00(3H,d,J=6.8Hz), 1.08(3H,d,J=6.8Hz), 1.19(3H,s), 1.20(1H,m), 1.32-1.42(2H,m), 1.42-1.54 (3H,m), 1.54-1.67 (3H,m), 2.06 (3H,s), 2.37-2.53(4H,m), 2.66(1H,dd,J=2.4.8.3Hz).

2.72(1H,dt,J=2.4,5.9Hz), 3.52(1H,m), 3.79(1H,m), 5.04(1H,d,J=9.8Hz), 5.09(1H,dd,J=8.3,10.7Hz), 5.52(1H,dd,J=0.3,15.1Hz), 5.58(1H,dd,J=0.3,15.1Hz), 5.57(1H,dd,J=9.8,15.1Hz), 5.59(1H,dd,J=8.3,15.1Hz), 6.10(1H,dd,J=0.3,15.1Hz), 6

Example A30 Physico-chemical properties of 11107X

[0182] The physico-chemical properties of 11107X are shown below. The structure of 11107X was determined as shown below.

1. Appearance: colorless powder

5

10

15

25

30

40

50

- Molecular weight: 550,FAB-MS m/z 573(M+Na)+, 549(M-H)
 - Molecular formula: C₃₁H₅₀O₈
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for jodine and sulfuric acid
 - Infrared absorption spectrum (KBr) cm⁻¹: 3479, 2967, 1733, 1716, 1457, 1374, 1243, 1178
 - Intrared absorption spectrum (κBr) cm⁻¹: 3479, 2967, 1733, 1716, 1457, 1374, 1243, 1178
 1H-NMR spectrum (CD₂OD, 400 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.87(3H,d,J=7.0Hz), 0.90(3H,d,J=7.0Hz), 0.94 (3H, I,J=7.3Hz), 1.08(3H,d,J=6.Hz), 1.18-1.22(7H,m), 1.33-1.35 (2H,m), 1.43-1.52(3H,m), 1.59-1.33(1H,m), 1.59-1.70(2H,m), 1.73(3H,d,J=0.7Hz), 2.05(8Hz), 2.45-2.50(1H,m), 2.50-2.80(1H,m), 2.80-2.80(1H,m), 2.80-2.80(1H,m), 2.80(1H,d,J=2.8.1Hz), 2.72(1H,d,J=2.8.9Hz), 3.48-3.53(2H,m), 5.00(1H,d,J=1.0Hz), 5.20(1H,d,J=9.9Hz), 5.45(1Hz), 5.20(1H,d,J=9.9Hz), 5.50(1H,d,J=9.9Hz), 5.50(1H,d,J=9.9Hz), 5.50(1H,d,J=9.9Hz), 5.20(1H,d,J=9.9Hz), 5.20(1H,

Example A31 Physico-chemical properties of 11107Y

[0183] The physico-chemical properties of 11107Y are shown below. The structure of 11107Y was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 536, FAB-MS m/z 559(M+Na)+, 535(M-H)*

3. Molecular formula: C30H48O8

5

10

15

20

25

35

45

50

55

- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
- Infrared absorption spectrum (KBr) cm⁻¹: 3442, 2965, 1733, 1716, 1457, 1373, 1241, 1167
- 1H-NMR spectrum (CD₃OD, 400 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.86(9H,d,J=7.0Hz), 0.90(3H,d,J=7.3Hz), 0.93(3H,I,J=7.3Hz), 0.95(3H,d,J=6.6Hz), 1.08(3H,d,J=7.0Hz), 1.17:1.20(1H,m), 1.43=1.52(5H,m), 1.60-1.64(1H,m), 1.75(8H,d,J=1.1Hz), 2.00(3H,s), 2.01:2.04(1H,m), 2.47=2.52 (1H,m), 2.52=2.55(1H,m), 2.66(1H,d,J=4.0Hz), 2.61(1H,d,J=3.Hz), 2.65(1H,d,J=2.2,8.Hz), 2.72(1H,d,J=2.2,8.Hz), 3.76(1H,d,J=3.6,12.5Hz), 4.09-4.12(1H,m), 4.88(1H,d,J=9.2Hz), 5.05(1H,d,J=0.6Hz), 5.47(1H,d,J=9.2,15.0Hz), 5.05(1H,d,J=9.5,15.0Hz), 5.66(1H,d,J=8.1,6.Hz), 6.08(1H,d,J=9.2Hz), 5.05(1H,d,J=3.2Hz), 5.05(1Hz), 5.05(1Hz), 5.05(1Hz), 5.05(1Hz), 5.05(1Hz), 5.05(1Hz), 5.05(1Hz), 5.05(1Hz), 5.0

30 Example A32 Physico-chemical properties of 11107Z

[0184] The physico-chemical properties of 11107Z are shown below. The structure of 11107Z was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 522, FAB-MS m/z 523(M+H)+, 545(M+Na)+
- 3. Molecular formula: ConHanOn
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
- Infrared absorption spectrum (KBr) cm⁻¹: 3423, 2965, 1733, 1716, 1457, 1373, 1242, 1174
 - Intrared absorption spectrum (RBr) cm⁻¹: 3423, 2965, 1733, 1716, 1457, 1373, 1242, 1174
 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.90(3H.d_J=6.8Hz). 0.94(3H,L_i=7.3Hz). 1.08(3H,d_j=6.8Hz). 1.20(3H,s). 1.21(1H,m). 1.36-1.42(2H,m). 1.42-1.54(3H,m). 1.54-1.66(3H,m). 1.79(3H,s). 2.07(3H,s). 2.40(2H,m). 2.46(1H,m). 2.57 (2H,m). 2.66(1H,dd, J=2.4.6.3Hz). 2.73(1H,d_J=2.4.5.9Hz). 3.52(1H,m). 3.79(1H,m). 5.05(1H,d_J=3.3Hz). 5.47(1H,d_J=3.4.11.2Hz). 5.83(1H,dd_J=6.8.15,1Hz). 5.89(1H,dd_J=9.3,15.1Hz). 5.74(1H,dd_J=3.4.9.8,15.1Hz). 6.07(1H,d_J=10.8Hz). 6.37(1H,d_J=10.8,15.1Hz). 6.17(1H,d_J=10.8Hz).

Example A33 Physico-chemical properties of 11107AA

[0185] The physico-chemical properties of 11107AA are shown below. The structure of 11107AA was determined as shown below.

Appearance: colorless powder

5

10

15

30

- 2. Molecular weight: 534. FAB-MS m/z 535(M+H)+, 557(M+Na)+
- 3. Molecular formula: ConHagOg
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 25 5. Color reaction; positive for iodine and sulfuric acid
 - Infrared absorption spectrum (KBr) cm⁻¹: 3414, 2971, 1733, 1716, 1457, 1374, 1257, 1175
 - 7. ¹H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.87(3H,d,J=6.3Hz), 1.059(3H,t,J=7.3Hz), 1.060(3H,d,J=6.3Hz), 1.19(3H,s), 1.32-1.44(3H,m), 1.52-1.68(3H,m),
 - 1.72(3H,d,J=1.5Hz), 1.75(3H,d,J=1.0Hz), 2.06(3H,s), 2.49-2.57(4H,m), 2.72 (2H, m), 3.78(1H,m), 4.47(1H,m),
 - 5.046(1H,d,J=10.7Hz), 5.047(1H,d,J=9.3Hz), 5.57(1H,dd,J=9.9,15.1Hz), 5.63(1H,dd,J=8.8,15.1Hz), 5.70(1H,dd,J=9.3,15.1Hz), 6.10(1H,d,J=11.2Hz), 6.33(1H,dd,J=11.2.15.1Hz), 6.56(1H,dd,J=1.0.8.3Hz)

Example A34 Physico-chemical properties of 11107AB

- ⁶ [0186] The physico-chemical properties of 11107AB are shown below. The structure of 11107AB was determined as shown below.
 - 1. Appearance: colorless powder
 - 2. Molecular weight: 552, FAB-MS m/z 551(M-H):
 - 3. Molecular formula: CanH48Oa
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for lodine and sulfuric acid
 - Infrared absorption spectrum (KBr) cm⁻¹: 3460, 2964, 1732, 1716, 1456, 1374, 1174

7. ¹H-NMR spectrum (CD_OD, 500 MHz); δ ppm (integral, multiplicity, coupling constant J (†z)); 0.91(3H,dJ_s 842), 0.92(3H,d_J_s 842), 0.92(3H,d_J_

11107AB

Example A35 Physico-chemical properties of 11107AC

25 [0187] The physico-chemical properties of 11107AC are shown below. The structure of 11107AC was determined as shown below.

Appearance: colorless powder

15

20

30

35

4n

50

- Molecular weight: 492, FAB-MS m/z 493(M+H)+, 515(M+Na)+
 - 3. Molecular formula: C28H44O7
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for lodine and sulfuric acid
 - H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz));
- . 0.91(3H.d.,J=8.8H.), 1.01(3H,J,J=7.1H.), 1.07(3H.d,J=8.Hz), 1.09(3H,d,J=7.3Hz), 1.27(3H.), 1.32-1.39(2H.m.), 1.44(1H.m.), 1.52-1.82(2H.m.), 1.87(1H.m.), 1.75(3H.d,J=2.0Hz), 2.32(1H.d,J=3.8.BHz), 2.48(1H.m.), 2.51(2H.m.), 2.54(2H.d.), 3.70(1H.d.,J=8.Hz), 3.70(1H.d.,J=8.Hz), 5.03(1H.d.,J=10.7Hz), 5.39(1H.d.,J=10.7Hz), 5.39(1H.d.
 - m), 254-2.61(3H,m), 2.73-2.78(2H,m), 3.70(1H,d,J=9.8Hz), 3.76(1H,m), 5.03(1H,d,J=10.7Hz), 5.38(1H,dd,J=9.8,15.1Hz), 5.66(1H,dd,J=8.8,15.1Hz), 5.72(1H,dd,J=9.8,15.1Hz), 6.09(1H,d,J=11.2Hz), 6.33(1H,dd,J=10.7,15.1Hz)

Example A36 Physico-chemical properties of 11107AD

[0188] The physico-chemical properties of 11107AD are shown below. The structure of 11107AD was determined as shown below. Further, the present compound is the stereoisomer of 3-position hydroxy group of 11107B.

- 1. Appearance: colorless powder
- 2. Molecular weight: 536, FAB-MS m/z 559(M+Na)+
- 3. Molecular formula: C₃₀H₄₈O₈
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid

5

15

25

35

55

- Infrared absorption spectrum (KBr) cm⁻¹: 3420, 2960, 1730, 1460, 1380, 1240, 1140
- 1H-NMR spectrum (CD₂OD, 500 MHz); δ ppm (integral, multiplicity, coupling constant J (Hz));
- 0.86(3H,d,J=6.8Hz), 0.90(3H,d,J=7.3Hz), 0.94(3H,t,J=7.3Hz), 1.08(3H,d,J=6.8Hz), 1.16(3H,s),1.20(1H,m), 1.36-1.72(8H,m), 1.75(3H,s), 2.06(3H,s), 2.42-2.63(4H,m), 2.66(1H,dd,J=2.4,7.8Hz), 2.73(1H,dt,J=2.4,5.9Hz),
 - 3.51(1H,dt,J=8.8,4.4Hz), 4.23(1H,m), 5.01(1H,d,J=9.8Hz), 5.04(1H,d,J=10.7Hz), 5.49(1H,dd,J=10.0,15.1Hz), 5.67(1H,dd,J=8.3,15.1Hz), 5.71(1H,dd,J=9.8,15.1Hz), 6.08(1H,d,J=10.7Hz), 6.34(1H,dd,J=10.7,15.1Hz)

11107AD

Example A37 Physico-chemical properties of 11107AE

- [0189] The physico-chemical properties of 11107AE are shown below. 11107AE was determined to be a mixture of two tautomers, 11107AEa and 11107AEb (1:1) of which structures are shown below.
 - 1. Appearance: colorless powder
 - 2. Molecular weight: 522, FAB-MS m/z 545(M+Na)+
 - 3. Molecular formula: CooH48Oo
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for lodine and sulfuric acid
 - Infrared absorption spectrum (KBr) cm⁻¹: 3420, 2960, 1735, 1720, 1460, 1375, 1245, 1170
 - 7. 1H-NMR spectrum (CD₂OD, 500 MHz): 8 ppm (integral, multiplicity, coupling constant J (Hz)): 11107AEa;
- 40 0.90(3H,d,J=6.6Hz), 0.91(3H,d,J=7.0Hz), 0.94(3H,t,J=7.3Hz), 1.09(3H,d,J=6.6Hz), 1.20(1H,m), 1.36-1.68(8H,m), 1.75(3H,s), 2.05(3H,s), 2.47(1H,m), 2.48(1H,dd,J=4.6,14.1Hz), 2.58(1H,dd,J=3.5,14.1Hz), 2.62(1H,m), 2.66(1H, dd,J=2.2,8.1Hz), 2.73(1H,dt,J=2.2,5.9Hz), 3.51(1H,dt,J=8.1,4.8Hz), 3.84(1H,m), 3.88(1H,m), 5.04(1H,d, J=10.6Hz), 5.13(1H,dd,J=2.9,9.9Hz), 5.59(1H,dd,J=9.7,15.2Hz), 5.66(1H,dd,J=8.4,15.1Hz), 5.71(1H,dd, J=9.7,15.2Hz), 6.10(1H,d,J=10.6Hz), 6.33(1H,dd,J=10.6,15.1Hz) 11107AEb;
- 45 0.91(3H.d.J=7.0Hz), 0.92(3H.d.J=7.7Hz), 0.94(3H.t.J=7.3Hz), 1.09(3H.d.J=6.6Hz), 1.20(1H.m), 1.42-1.68(8H.m), 1.76(3H,s), 2.09(3H,s), 2.40(1H,dd,J=5.5,13.9Hz), 2.47(1H,m), 2.59(1H,dd,J=3.7,13.9Hz), 2.62(1H,m), 2.66(1H, dd,J=2.2,8.1Hz), 2.73(1H,dt,J=2.2,5.9Hz), 3.51(1H,dt,J=8.1,4.8Hz), 3.87(1H,m), 4.12(1H,dd,J=3.1,9.7Hz), 5.01 (1H,d,J=10.6Hz), 5.02(1H,m), 5.47(1H,dd,J=9.7,15.2Hz), 5.66(1H,dd,J=8.4,15.1Hz), 5.72(1H,dd,J=9.7,15.2Hz), 6.10(1H.d.J=10.6Hz), 6.33(1H.dd,J=10.6.15.1Hz)

11107AEa

11107AEb

Example A38 Physico-chemical properties of 11107AF

[0190] The physico-chemical properties of 11107AF are shown below. The structure of 11107AF was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 496, FAB-MS m/z 497(M+H)+, 519(M+Na)+
- Molecular formula: C₂₇H₄₄O₈

5

10

15

20

25

30

45

50

- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
- H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
- 0.87(3H,d,J=6.8Hz), 0.96(3H,t,J=7.6Hz), 1.06(3H,d,J=6.8Hz), 1.19(3H,s), 1.28-1.44(4H,m), 1.52-1.66(4H,m), 1.74(3H,d,J=1.0Hz), 2.06(3H,s), 2.51-2.60(4H,m), 3.25(1H,m), 3.37(1H,dt,J=2.0.4.9Hz), 3.78(1H,m), 5.04(1H,d,J=2.0.4.9Hz), 3.78(1H,d,J=2.0.4.9Hz), 3.78(1Hz), 3.78
- J=11.7Hz), 5.05(1H,d,J=9.8Hz), 5.56(1H,dd,J=9.8,15.1Hz), 5.70(1H,dd,J=9.8,15.1Hz), 5.78(1H,dd,J=8.8,15.1Hz), 6.09(1H,d,J=10.7Hz), 6.32(1H,dd,J=10.7,15.1Hz)

Physico-chemical properties of 11107AG

[0191] The physico-chemical properties of 11107AG are shown below. The structure of 11107AG was determined as shown below.

1. Appearance: colorless powder

15

25

30

50

- 2. Molecular weight: 556, FAB-MS m/z 579(M+Na)+, 557(M+H)+, 555(M-H)-
- 3. Molecular formula: C₃₀H₅₂O₉
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water 5. Color reaction: positive for iodine and sulfuric acid

 - 6. Ultraviolet absorption spectrum (methanol): terminal adsorption
 - 7. Infrared absorption spectrum (KBr) cm⁻¹: 3270, 2965, 1731, 1714, 1457, 1384, 1255, 1178
 - 8. ¹H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.89(3H,d,J=6.4Hz), 0.935 (3H,d,J=6.8Hz), 0.939(3H,t,J=7.3Hz), 0.97(3H,d,J=6.8Hz), 1.18(3H,s), 1.24(1H,m), 1.30-1.70(10H,m), 1.64(3H,s), 1.76(1H,m), 1.93(1H,m), 2.06 (3H, s), 2.13(1H,m), 2.52 (2H,m), 2.54(1H,m), 3.45 (1H,dd,J=2.9,7.8Hz), 3.56(1H,m), 3.60(1H,m), 3.78(1H,m), 5.04(1H,d,J=10.7Hz), 5.05(1H,d,J=9.8Hz), 5.52-5.58 (2H,m), 5.69(1H,dd,J=9.8,15.1Hz)

Physico-chemical properties of 11107AH

[0192] The physico-chemical properties of 11107AH are shown below. The structure of 11107AH was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 494, FAB-MS m/z 495(M+H)+, 517(M+Na)+, 493(M-H)+

3. Molecular formula: C27H42O8

5

10

15

25

40

45

50

55

- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
- 6. Ultraviolet absorption spectrum (methanol): terminal adsorption
- Infrared absorption spectrum (KBr) cm⁻¹: 3367, 2973, 1733, 1716, 1456, 1374, 1257, 1175
 - 8. 1H-NMR spectrum (CD₃OD, 500 MHz) : δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.96(3H,d,J=6.8Hz), 0.99(3H,d,J=6.8Hz), 1.00(3H,I,J=7.3Hz), 1.18(3H,s), 1.28-1.42(5H,m), 1.80(2H,m), 2.06(3H,s), 2.08(2H,m), 2.25(1H,m), 2.39(1H,m), 2.53(2H,m), 3.76(1H,m), 5.36(1H,dd,J=8.9.5.1Hz), 5.55(1H,dd,J=9.8.5.1Hz), 5.56(1H,dd,J=9.8.5.1Hz), 5.66(1H,dd,J=9.8.5.1Hz), 5.66(1H,dd,J=9.8.5.1Hz)
 - J=7.3,15.1Hz), 5.76(1H,ddd,J=7.3,7.8,15.1Hz)

Example A41 Physico-chemical properties of 11107Al 30

[0193] The physico-chemical properties of 11107Al are shown below. The structure of 11107Al was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 508, FAB-MS m/z 531 (M+Na)+
 - 3 . Molecular formula: CoeH48O7
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for jodine and sulfuric acid
- H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.91(6H,a), 0.94(3H,t,J=7.3Hz), 1.09(3H,d,J=6.8Hz), 1.19(3H,d,J=6.8Hz), 1.21(1H,m), 1.26(3H,a), 1.28-1.38(2H,m), 1.42-1.58(4H,m), 1.60-1.68(2H,m), 1.74(3H,a), 2.48(1H,m), 2.54-2.63(2H,m), 2.68(1H,d,d,J=2.4,3Hz), 2.73 (1H,d,J=2.4,5Hz), 3.46-3.54(2H,m), 3.68(1H,d,J=9.8Hz), 4.99(1H,d,J=10.7Hz), 5.37(1H,d,J=9.8Hz), 5.68(1H,d,J=0.7Hz), 5.37(1H,d,J=9.8Hz), 5.68(1H,d,J=0.7Hz), 6.33(1H,d,J=10.7Hz), 6.33(1H,d,J=10

Example A42 Physico-chemical properties of 11107AJ

[0194] The physico-chemical properties of 11107AJ were shown below. The structure of 11107AJ was determined as shown below.

1. Appearance: colorless powder

5

10

15

20

25

30

34

40

45

50

- 2. Molecular weight: 536, FAB-MS m/z 559(M+Na)+
- 3. Molecular formula: C₃₀H₄₈O₈ 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
 - Infrared absorption spectrum (KBr) cm⁻¹: 3420, 2960, 1735, 1460, 1375, 1255, 1180
 - 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.88(3H,d,J=6.8Hz), 1.01(3H,d,J=6.3Hz), 1.02(3H,d,J=6.8Hz), 1.11(3H,d,J=6.3Hz), 1.19(3H,s), 1.36-1.42(2H,m), 1.54-1.68(2H,m), 1.73(3H,s), 2.00-2.08(5H,m), 2.25(2H,m), 2.53-2.60(3H,m), 3.27(1H,dd,J=4.9.7.3Hz), 3.70(1H, dg,J=4.9.6.3Hz), 3.78(1H,m), 5.04(1H,d,J=9.8Hz), 5.05(1H,d,J=9.8Hz), 5.34(1H,dd,J=8.3.15.1Hz), 5.41(1H,dt, J=15.1,7.3Hz), 5.57(1H,dd,J=9.8,15.1Hz), 5.65(1H,dd,J=7.3,15.1Hz), 5.70(1H,dd,J=9.8,15.1Hz), 6.07(1H,d J=11.2Hz), 6.33(1H.dd.J=11.2.15.1Hz)

Physico-chemical properties of 11107AK

[0195] The physico-chemical properties of 11107AK are shown below. The structure of 11107AK was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 464, FAB-MS m/z 487(M+Na)+
 - 3. Molecular formula: C27H44Og
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
- Infrared absorption spectrum (KBr) cm⁻¹: 3300, 2960, 1725, 1715, 1455, 1370, 1255, 1020
 - 7. 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)): 0.89(3H,d,J=6.8Hz), 0.90(3H,d,J=6.8Hz), 0.94(3H,t,J=7.6Hz), 1.08(3H,d,J=6.8Hz), 1.10-1.74(11H,m), 1.75(3H,s), 2.32(1H,dd,J=6.8,13.7Hz), 2.48(1H,m), 2.56(1H,m), 2.63(1H,dd,J=4.1,13.7Hz), 2.66(1H,dd,J=2.4,8,3Hz), 2.73
 - (1H,dt,J=2.4,6.3Hz), 3.51(1H,m), 3.89(1H,m), 3.98(1H,dt,J=3.9,9.8Hz), 4.95(1H,d,J=10.7Hz), 5.32(1H,dd, J=9.5,15.1Hz), 5.43(1H,dd,J=9.3,15.1Hz), 5.66(1H,dd,J=8.3,14.9Hz), 6.08(1H,d,J=11.0Hz), 6.32(1H,dd, J=11.0.14.9Hz)

11107AK

Example A44 Physico-chemical properties of 11107AL

[0196] The physico-chemical properties of 11107AL are shown below. The structure of 11107AL was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 532, FAB-MS m/z 555(M+Na)+, 531(M-H)*
- 3. Molecular formula: C30H44O8

5

10

15

20

25

30

45

- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
- Infrared absorption spectrum: 3497, 2973, 1733, 1715, 1457, 1373, 1242, 1173
- 8. ¹H-NMR spectrum (CD₃OD, 400 MHz): 8 ppm (integral, multiplicity, coupling constant J (Hz)):
 0.81(3H,d_J=7.2Hz), 1.00(3H,J=7.3Hz), 1.05(3H,d_J=7.0Hz), 1.07(3H,d_J=7.3Hz), 1.25(3H-j), 1.39-1.43(1H,m),
 1.63-1.68(1+m), 1.71(3H_J=1.1Hz), 2.07(3Hs), 2.28-2.3(1Hm), 2.42-2.2(2H,m), 2.57-2.5(4H,m), 2.72-2.76
 (2H,m),4.50-4.53(1H,m), 4.95(1H,d_J=1.05Hz), 4.99(1H,d_J=9.5Hz), 5.29(1H,d_J=9.9,15.0Hz), 5.52(1H,d_J
 J=9.5,15.0Hz), 5.58(1H,d_J=1.81,5.4Hz), 5.53(1H,d_J=8.4,15.0Hz), 5.57(1H,d_J=2.9,15.4Hz), 6.03(1H,d_J
 J=1.0Hz), 6.31(1H,d_J=1.01.5.0Hz)

Example A45 Physico-chemical properties of 11107AM

- 50 [0197] The physico-chemical properties of 11107AM are shown below. The structure of 11107AM was determined as shown below.
 - Appearamce: colorless powder
 - Molecular weight: 534. FAB-MS m/z 557(M+Na)+. 533(M-H)
 - 3.
- 3. Molecular formula: $C_{30}H_{46}O_8$ 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
 - Infrared absorption spectrum: 3461, 2965, 1733, 1716, 1457, 1374, 1242, 1174

7. 14-NMR spectrum (CD₂OD, 400 MHz); 5 ppm (integral, multiplicity, coupling constant. J (Hz)).
0.87(3H.d.J.=7.0Hz), 0.88(3H.d.J.=7.0Hz), 0.94(3H,J.J.=7.3Hz), 1.08(3H.d.J.=6.Hz), 1.17-1.21(1H.m.), 1.42-1.55
(6H.m.), 1.61-1.67(2H.m.), 1,76(3H.d.J.=1.1Hz), 2.00(3H.s), 2.19(1H.d.d.J.=2.12.8Hz), 2.46-2.50(1H.m.), 2.54(1H.d.J.=4.8Hz), 2.56-2.61(1H.m.), 2.54(1H.d.J.=2.2.5.9Hz), 2.80(1H.d.J.=4.0.12.8Hz), 2.72(1H.d.J.=2.2.5.9Hz), 2.80
(1H.d.J.=6.8Hz), 3.51(1H,d.J.=8.4.4Hz), 4.06-4.12(1H.m.), 4.99(1H.d.J.=10.8Hz), 5.38(1H.d.J.=9.5Hz), 5.62-5.59
(3H.m.), 6.10(1H.J.=11.0Hz), 6.33(1H.d.J.=10.5Hz)

Example A46 Physico-chemical properties of 11107AN

[0198] The physico-chemical properties of 11107AN are shown below. The structure of 11107AN was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 532, FAB-MS m/z 531 (M-H):
- 3. Molecular formula: C₃₀H₄₄O₈

10

15

20

30

40

50

55

- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
 - 1H-NMR spectrum (CD₃OD, 400MHz): δ ppm (Integral, multiplicity, coupling constant J (Hz)):
- 0.84(3H,d,J=7.0Hz), 0.89(3H,d,J=7.0Hz), 0.93(3H,I,J=7.3Hz), 1.08(3H,d,J=7.0Hz), 1.16-1.18(1H,m), 1.42-1.51 (3H,m), 1.80-1.65(1H,m), 1.73(3H,d,J=0.7Hz), 2.02(3Hs), 2.45-2.53(3H,m), 2.62(1H,d,J=5.5Hz), 2.65(1H,d,J=5.5Hz), 2.65(1H,d,J=5.5Hz), 2.67(1H,d,J=5.5Hz), 2.67(1H,d,J=6.5Hz), 3.51(1H,d,J=8.4,4Hz), 4.47(1H,m), 4.97(1H,d,J=10.6Hz), 5.39(1H,d,J=8.4,15.0Hz), 5.43(1H,d,J=9.9Hz), 5.47(1H,d,J=9.1,15.0Hz), 5.54(1H,d,J=8.4,17Hz), 5.78(1H,d,J=11.8,15.4Hz), 5.86(1H,d,J=3.2,15.4Hz), 6.08(1H,d,J=10.6Hz), 6.31(1H,d,J=10.4Hz), 6.18(1H,d,J=10.4Hz), 6.18(1Hz), 6.18

Example A47 Physico-chemical properties of 11107AP

[0199] The physico-chemical properties of 11107AP are shown below. The structure of 11107AP was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 576, FAB-MS m/z 575(M-H)*
- 3. Molecular formula: C32H48O9

10

15

20

25

35

50

- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
 - 6. ¹H-NMR spectrum (CD₃OD, 400MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
- 0.83(3H,d,J=7.0Hz), 0.89(3H,d,J=7.0Hz), 0.33(3H,t,J=7.3Hz), 1.08(3H,d,J=7.0Hz), 1.16-1.21(1H,m), 1.42-1.51 (3H,m), 1.60-1.63(1H,m), 1.61(3H,s), 1.74(3H,d,J=1.1Hz), 2.08(3H,s), 2.10(3H,s), 2.45-2.52(2H,m), 2.58(2H,m), 2.65(1H,d,d=2.8,1Hz), 2.72(1H,d,t,J=2.5.Hz), 3.51(1H,d,J=8.4,4Hz), 4.74-52(1H,m), 4.97(1H,d, J=10.6Hz), 4.98(1H,d,J=9.5Hz), 5.37(1H,dd,J=10.0,15.4Hz), 5.45(1H,dd,J=2.8,15.8Hz), 5.57(1H,dd,J=2.8,15.8Hz), 5.57(1H,dd,J=3.4,1Hz), 5.45(1H,dd,J=2.8,15.8Hz), 5.57(1H,dd,J=3.4,1Hz), 5.57(1Hz), 5.57(1Hz), 5.57(1Hz), 5.57(1Hz), 5.57(1Hz), 5.57
 - 1-10.8Hz) 4.98(H,d,J=95Hz) 5.37(H,d,J=0.154Hz) 5.45(H,d,d,J=2.5,158Hz), 5.57(H,d,J=0.154Hz), 5.58(H,d,J=0.25,158Hz), 5.57(H,d,J=0.154Hz), 5.58(H,d,J=0.215Hz), 5.58(H,d,J=0.215Hz), 5.58(H,d,J=0.215Hz), 5.58(H,d,J=0.215Hz), 6.58(H,d,J=0.215Hz), 6.58(H,d,J=0.215Hz

Example A48 Physico-chemical properties of 11107AQ

[0200] The physico-chemical properties of 11107AQ are shown below. The structure of 11107AQ was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 578, FAB-MS m/z 577(M-H):
 - 3 Molecular formula: C32H50O9
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
- Infrared absorption spectrum: 3461, 2968, 1733, 1716, 1457, 1373, 1230, 1175
- 7. ¹H-NMR spectrum (CD₃OD, 400MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.89 (3H, d, J=6.6Hz), 0.90 (3H, d, J=7.0Hz), 0.94 (3H, t, J=7.3Hz), 1.08(3H,d,)=7.0Hz), 1.17-1.22(1H,m), 1.42-1.52(6H,m), 1.5(5(Hs), 1.56-1.63(3H,m), 1.75(3H,d,J=1.1Hz), 2.04(3Hs), 2.05(3Hs), 2.45-2.50(1H,m), 1.42-1.24(3H,d,J=2.7Hz), 2.5(1H,d,J=2.2,50Hz), 3.51(1H,dt,J=9.4Hz), 2.75(1H,dt,J=9.4Hz), 3.78(1H,dt,J=9.5Hz), 3.51(1H,dt,J=9.5Hz), 3.51(1H,dt,J=9.5Hz), 3.51(1H,dt,J=9.5Hz), 3.51(1H,dt,J=9.5Hz), 3.61(1H,dt,J=9.5Hz), 3.61
- 45 dd,J=6.9,15.0Hz), 5.74(1H,dd,J=9.5,15.0Hz), 6.10(1H,d,J=11.0Hz), 6.32(1H,dd,J=11.0,15.0Hz)

Example A49 Physico-chemical properties of 11107AR

[0201] The physico-chemical properties of 11107AR are shown below. The structure of 11107AR was determined as shown below.

1. Appearance: colorless powder

5

10

15

25

20

45

50

- 2. Molecular weight: 394, ESI-MS m/z 811(2M+Na)+
- 3 . Molecular formula: C22H34O6
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for lodine and sulfuric acid
- 8. ¹H-NMR spectrum (CD₃OD, 400MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)): 0.87(8H,d,J=7.0Hz), 0.97(8H,d,J=7.0Hz), 1.24(3H,d,J=6.8Hz), 1.29-1.38(2H,m), 1.59-1.51(2H,m), 1.75(3H,d,J=7.1Hz), 1.89-1.39(3(H,m), 2.04(8H,d,J=5.14.2Hz), 2.81-2.812.8Hz), 3.75-3.81(H,M), 4.27-4.33 (H,M), 4.91(H,d,d,J=8.91,0.3Hz), 5.01(H,d,J=10.8Hz), 5.42(H,d,d,J=8.15.0Hz), 5.50(H,d,d,J=9.2.15.0Hz), 5.77(H,d,J=6.2.15.0Hz), 5.77(H,d,J=6.2.1

Example A50 Purification of 11107AO, AS, AT, AU and BC

[0202] The crude active fraction B (970 mg) was dissolved in 20 ml of a mix solution consisting of terrahytorfouran-50% aqueous excloritile (1:2; wt), and subjected to ODS column chromatography (ODS-AM 120-S50, manufactured by YMC Co., 750 g). The column was eluted with a mix solution (51) consisting of actentritile and water (45:55; wt), crude active fraction B4 containing 11107AS, 11107AT, 11107AU and 11107BC which was eluted from 825 ml to 15:50 ml and crude active fraction B5 containing 11107AC which was eluted from 2400 ml to 2556 ml were collected, and the respective fractions be were concentrated to dryness under reduced pressure, to give 54 mg of crude active fraction B4 and 25 mg of crude active fraction B5.

[0203] The resulting active fraction B4 (34.7 mg) was subjected to preparative high performance liquid chromatog-

raphy (HPLC) under the following preparative HPLC condition (D1). A fraction containing 11107AT, a fraction containing 11107AT and a fraction containing 11107AT and a fraction containing 11107AT and a fraction containing 11107AT was further subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC conditions (D2) to give a 11107AT adultion. Then, the solvent was removed to give 1107AT (2.8 Fig.). Similarly, the fraction containing 11107AS was subjected to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (D2) to give 11107AS (1.8 mg). The fraction containing 1107AD was subjected to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (D3) to give a 11107AU and 11107AD solution. Then, the each solvent was removed to give 11107AU (1.1 mg) and 11107BC (0.5 mg). Further, the resulting crude active fraction 55 (24 mg) was subjected to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (D3) to give 11107AU (1.1 mg) and 11107BC (0.5 mg). Further, the resulting crude active fraction 55 (24 mg) was subjected to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (D4) to give a 11107AU solution. Then, the solvent was removed to give 11107AU (3.9 mg).

Preparative HPLC condition (D1)

Flow rate: 5 ml/min.

Detection: 200 nm

20

90

50

Eluent: acetonitrile/water (3:7, v/v) isocratic

Preparative HPLC condition (D2)

[0205] Column: CAPCELL PAK C18 SG120, \$20 mm × 250 mm (manufactured by SHISEIDO Co.)

Temperature: 40°C

Flow rate: 5 ml/min. Detection: 240 nm

Eluent: methanol/water (5:5, v/v) isocratic

Preparative HPLC condition (D3)

[0206] Column: CAPCELL PAK C18 SG120, \$420 mm × 250 mm (manufactured by SHISEIDO Co.)

Temperature: 40°C

Flow rate: 5 ml/min. Detection: 200 nm

Eluent: methanol/water (5:5, v/v) isocratic

Preparative HPLC condition (D4)

[0207] Column: CAPCELL PAK C18 SG120, \$20 mm × 250 mm (manufactured by SHISEIDO Co.)

Temperature: 40°C

Flow rate: 5 ml/min.

Detection: 200 nm

Eluent: methanol/water (6:4, v/v) isocratic

[0208] The retention time of the above-mentioned compounds when analysis was carried out under the following analytic HPLC conditions are shown below.

Analytic HPLC condition (d1)

[0209] Column: YMC J'sphere ODS-M80 JM-307, \$4.6 mm × 75 mm (manufactured by YMC Co.)

Temperature: 40°C

Flow rate: 1 ml/min. Detection: 240 nm

Eluent: acetonitrile/water (3:7, v/v) isocratic

[0210] Retention time:

11107AT: 6.9 min.

Analytic HPLC condition (d2)

[0211] Column: CAPCELL PAK C18 SG120, \$4.6 mm × 250 mm (manufactured by SHISEIDO Co.)
Temperature: 40°C

Flow rate: 1 ml/min.

5

30

Detection: 240 nm

Eluent: methanol/water (5:5, v/v) isocratic

[0212] Retention time:

11107AS: 19.4 min.

11107AU: 34.3 min.

Analytic HPLC condition (d3)

Temperature: 40°C Flow rate: 1 ml/min. Detection: 200 nm

Eluent: methanol/water (5:5, v/v) isocratic

20 [0214] Retention time:

11107BC: 31.0 min.

Analytic HPLC condition (d4)

25

Flow rate: 1 ml/mln. Detection: 240 nm

Eluent: acetonitrile/water (4:6, v/v) isocratic

[0216] Retention time:

11107AO: 11.6 min.

35 Example A51 Physico-chemical properties of 11107AO

[0217] The physico-chemical properties of 11107AO are shown below. The structure of 11107AO was determined as shown below.

40 1. Appearance: colorless powder

2. Molecular weight: 492, FAB-MS m/z 515(M+Na)+

3 . Molecular formula: C28H44O7

4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water

5. Color reaction: positive for iodine and sulfuric acid

Infrared absorption spectrum (KBr) cm⁻¹: 3407, 2965, 1731, 1716, 1456, 1384, 1249, 1178

7. 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):

0.907(3H.d.J=6.8Hz), 0.912(3Hd_J=6.8Hz), 0.94(3H,J=7.6Hz), 1.09(3H,d_J=6.8Hz), 1.21(1Hm), 1.44-1.55(5H,M), 1.61-1.72(2Hm), 1.76(3H_d=1.6Hz), 1.86(1Hm), 2.31(1Hd_d=J=3.13-1Hz), 2.48(1Hm), 2.53(1Hd,d_J=3.4Hz), 2.80(1Hd,d_J=3.10-1.68Hz), 2.63(1Hd,d_J=3.4Hz), 2.63(1Hd,d_J=2.4.8.3Hz), 2.73(1Hd,d_J=5.9Hz), 3.02(1Hd,d_J=5.9Hz), 3.52(1Hd,d_J=8.4.8Hz), 3.97(1Hm), 4.20(1Hd,d_J=3.Hz), 5.00(1Hd,d_J=3.1Hz), 5.07(1Hd,d_J=3.1Hz), 1.61(1Hd,d_J=3.1Hz), 1.61(1Hd,d

J=10.7Hz), 6.33(1H,dd,J=10.7,15.1Hz)

55

50

5 Example A52 Physico-chemical properties of 11107AS

[0218] The physico-chemical properties of 11107AS are shown below. The structure of 11107AS was determined as shown below.

Appearance: colorless powder

5

10

20

30

45

55

- Molecular weight: 552, FAB-MS m/z 553(M+H)+, 575(M+Na)+
- 3. Molecular formula: C₃₀H₄₈O₉
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
- 6. Infrared absorption spectrum (KBr) cm⁻¹: 3403, 2968, 1732, 1715, 1457, 1373, 1256, 1177
 - 7. 'H-NMR spectrum (CD₂OD, 500 MHz): 8 ppm (Integral, multiplicity, coupling constant J (Hz)): 0.88(3H,d,J=6.8Hz), 1.00(3H,d,J=7.3Hz), 1.05(3H,d,J=6.8Hz), 1.10(3H,d,J=6.4Hz), 1.34-1.44(3H,m),
 - 1.54-1.68(24.m), 1.72(14.m), 1.75(34.d,J=1.042), 2.08(24.e), 2.14(14),dad,J=2.9.5.4.7.342), 2.53(24.m), 2.56 (24.m), 3.42(14.d,J=2.9.4.442), 3.53(14.m), 3.56(14.d,J=4.6.442), 3.72(14.d,J=5.4.8.42), 3.78(14.m), 5.05(14.d,J=9.8Hz), 5.06(14.d,J=10.7Hz), 5.57(14.d,J=8.15.1Hz), 5.61(14.d,J=8.3,15.1Hz), 5.70(14.d,J=9.8.15.1Hz), 5.70(14.d,J=0.715.1Hz), 5.70(14.d,J=0.715.

Example A53 Physico-chemical properties of 11107AT

- [0219] The physico-chemical properties of 11107AT are shown below. The structure of 11107AT was determined as shown below. Further, the present compound is the stereoisomer of 5-position methyl group of a furan ring of 11107AS.
 - 1. Appearance: colorless powder
 - Molecular weight: 552, FAB-MS m/z 553(M+H)+, 575(M+Na)+
- 3
- 3. Molecular formula: C₃₀H₄₈O₉
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
 - Infrared absorption spectrum (KBr) cm⁻¹: 3353, 2967, 1732, 1715, 1456, 1373, 1256, 1177

7. ¹H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)): 0.87(3H,d,J=6.4Hz), 0.96(3H,d,J=7.3Hz), 1.05(3H,d,J=6.8Hz), 1.16(3H,d,J=6.4Hz), 1.19(3H,s), 1.34-1.44(3H,m), 1.54-1.67(2H,m), 1.73(1H,m), 1.74(3H,s), 2.06(3H,s), 2.29(1H,m), 2.52(2H,m), 2.56(2H,m), 3.49(1H,m), 3.75-3.81 (2H,m), 3.86(1H,dd,J=4.9,9.3Hz), 4.15(1H,dq,J=3.9,6.3Hz), 5.047(1H,d,J=9.8Hz), 5.052(1H,d,J=10.7Hz), 5.57 (1H,dd,J=9.8,15.1Hz), 5.61(1H,dd,J=8.3,15.1Hz), 5.70(1H,dd,J=9.8,15.1Hz), 6.10(1H,d,J=10.7Hz), 6.33(1H,dd, J=10.7.15.1Hz)

Physico-chemical properties of 11107AU

[0220] The physico-chemical properties of 11107AU are shown below. The structure of 11107AU was determined as shown below

1. Appearance: colorless powder

10

15

20

35

50

- Molecular weight: 552, FAB-MS m/z 553(M+H)+, 575(M+Na)+
 - 3 . Molecular formula: CacHacOc
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for lodine and sulfuric acid
- Infrared absorption spectrum (KBr) cm⁻¹: 3402, 2968, 1733, 1717, 1457, 1373, 1256, 1178 1H-NMR spectrum (CD₂OD, 500 MHz); δ ppm (integral, multiplicity, coupling constant J (Hz));
- 0.88(3H,d,J=6.8Hz), 0.97(3H,t,J=7.3Hz), 1.06(3H,d,J=6.8Hz), 1.12(3H,s), 1.19(3H,s), 1.28-1.42(2H,m), 1.42-1.56 (2H,m), 1.56-1.65 (3H,m), 1.70(1H,m), 1.74(3H,s), 2.06(3H,s), 2.47(1H,m), 2.53(2H,m), 2.57(1H,tq.9.8,6.8Hz), 3.57(1H,dd,J=3.9,9.8Hz), 3.62(1H,ddd,J=4.4.6.8,8.6Hz), 3.70(1H,d,J=6.8Hz), 3.78(1H,m), 5.05(2H,d,J=9.8Hz), 5.57(1H,dd,J=9.8.15.1Hz), 5.70(1H,dd,J=9.8.15.1Hz), 5.73(1H,dd,J=7.8.15.1Hz), 6.08(1H,d,J=10.7Hz), 6.28(1H, dd.J=10.7.15.1Hz)

Example A55 Physico-chemical properties of 11107BC

[0221] The physico-chemical properties of 11107BC are shown below. The structure of 11107BC was determined as

shown below.

5

20

25

- 1. Appearance: colorless powder
- 2. Molecular weight: 496, FAB-MS m/z 519(M+Na)+, 495(M-H)*
- 3. Molecular formula: C27H44O8
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for jodine and sulfuric acid
- Infrared absorption spectrum (KBr) cm⁻¹: 3361, 2965, 1723, 1458, 1383, 1249, 1174
- 1H-NMR spectrum (CD₂OD, 500 MHz); δ ppm (Integral, multiplicity, coupling constant J (Hz));
- 0.97(3H.d.)=6.8Hz), 0.98(3H,i.,=7.3Hz), 1.01(3H.d.)=6.8Hz), 1.18(3H.s), 1.20(3H.s), 1.24.1.44(3H.m), 1.52-1.66 (3H.m), 2.06(3H.s), 2.08(2H.m), 2.26(1H.m), 2.34(1H.m), 2.53(2H.m), 3.18(1H.dd.)=2.10.8Hz), 3.78(1H.m), 5.04(1H.d.)=9.8Hz), 5.05(1H.m), 5.37(1H.dd.)=8.3,15.1Hz), 5.54-5.88(3H.m), 5.66(1H.dd.)=9.8,15.2Hz), 5.74 (1H.dd.)=7.3,15.1Hz)

Example A56 Purification of 11107AV, AW, AX, AY, AZ, BA, BB, BD, BE, BF and BG

[0222] The crude active fraction B (1.47 g) was dissolved in a mix solution (20 ml) consisting of tetrahydrofuran-50% aqueous acelentinite (1:2; v/h, and subjected to an ODS column chromatography (ODS-AM 120-S50, manufactured by YMC co., 750 g). The column was etuted with a mix solution (5 L) consisting of acetonitrile and water (45:55; v/h). The crude active fraction B8 containing 11072W, 11107AW, 11107AW, 11107AZ, 11107BA, 11107BA, 11107BB, 11107BB and 11107BC with was etuted from 1140 m1 to 1560 m1 was collected, and concentrated to dryness under reduced pressure to give 87 mg of the crude active fraction B8. (0223) The resulting crude active fraction B6 (61.7 mg) was subjected to the preparative high performance liquid

chromatography (HPLC) under the following preparative HPLC condition (E1), a fraction containing 11107BB, a fraction containing 11107BA, a fraction containing 11107AW, 11107AX, 11107BG and 11107BE, a fraction containing 11107AV, a fraction containing 11107BD and 11107BF, and a fraction containing 11107AZ were collected separately, and the solvent was removed. The fraction containing 11107BB was subjected to repeated use of a high performance liquid chromatography (HPLC) under the following preparative HPLC conditions (E2) and (E3) in turn, to give 11107BB (0.1 mg). The fraction containing 11107BA was subjected further to preparative high performance liquid chromatography (HPLC), under the following preparative HPLC conditions (E3) to give 11107BA (0.3 mg). The fraction containing 11107AW, 11107AX, 11107AX, 11107BG and 11107BE was subjected further to preparative high performance liquid chromatography (HPLC), under the following preparative HPLC condition (E4), and a 11107AW solution, a fraction containing 11107AX, a fraction containing 11107AY, a fraction containing 11107BG and a fraction containing 11107BE were collected separately. As for 11107AW, 11107AW (0.6 mg) was given by removal of the solvent. After removing the solvent of the fraction containing 11107AY, it was subjected further to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (E2) to give 11107AY (0.2 mg). With respect to the fraction containing 11107AX, after removing the solvent, it was subjected further to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (E2) to give 11107AX (0.5 mg). Also, with respect to the fraction containing 11107BG, after removing the solvent, it was subjected further to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (E2) to give 11107BG (0.2 mg). After removing the solvent of the fraction containing 11107BE, it was subjected further to repeated use of a preparative high performance liquid chromatography (HPLC) under the following preparative HPLC conditions (E5), (E4) and (E6) in turn, to give 11107BE (0.2 mg). The fraction containing 11107AV was subjected to preparative high per-

formance liquid chromatography (HPLC) under the following preparative HPLC condition (E7) to give 11107AV (0.5 mg). The fraction containing 11107BD and 11107BF was subjected further to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (E8) to give a fraction containing 11107BD and a fraction containing 11107BF. The fraction containing 11107BD was subjected further to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (E7) to give 11107BD (0.1 mg), and the fraction containing 11107BF was also subjected further to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (E7) to give 11107BF (0.1 mg). The fraction containing 11107AZ was subjected to preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (E8) to give a 11107AZ solution, and then the solvent was removed to give 11107AZ (0.1 mg).

Preparative HPLC condition (E1)

[0224] Column: YMC J'sphere ODS-M80 JM-343, \$20 mm × 250 mm (manufactured by YMC Co.)

Temperature: 40°C

Flow rate: 5 ml/min. Detection: 200 nm

15

Eluent: acetonitrile/water (3:7, v/v) isocratic

Preparative HPLC condition (E2)

[0225] Column: CAPCELL PAK C18 SG120, \$20 mm × 250 mm (manufactured by SHISEIDO Co.)

Temperature: 40°C

Flow rate: 5 ml/min Detection: 240 nm

25 Eluent: acetonitirle/water (4:6, v/v) isocratic

Preparative HPLC condition (E3)

[0226] Column: CAPCELL PAK C18 SG120, ¢20 mm × 250 mm (manufactured by SHISEIDO Co.)

Temperature: 40°C

Flow rate: 5 ml/mln. Detection: 240 nm

Eluent: methanol/water (5:5, v/v) isocratic

Preparative HPLC condition (E4)

[0227] Column: YMC-Pack Ph SH-443-5, ¢20 mm × 250 mm (manufactured by YMC Co.) Temperature: 40°C

Flow rate: 5 ml/min.

Detection: 200 nm Eluent: methanol/water (5:5, v/v) isocratic

Preparative HPLC condition (E5)

[0228] Column: CAPCELL PAK C18 SG120, 620 mm × 250 mm (manufactured by SHISEIDO Co.)

Temperature: 40°C

Flow rate: 5 ml/min.

Detection: 200 nm

Eluent: acetonitrile/water (4:6, v/v) isocratic

Preparative HPLC condition (E6)

[0229] Column: CAPCELL PAK C18 SG120, \$20 mm × 250 mm (manufactured by SHISEIDO Co.)

Temperature: 40°C

Flow rate: 5 ml/min.

Detection: 200 nm

Eluent: methanol/water (5:5, v/v) isocratic

5

```
Preparative HPLC condition (E7)
     [0230] Column: YMC-Pack Ph SH-443-5, $20 mm × 250 mm (manufactured by YMC Co.)
           Temperature: 40°C
           Flow rate: 5 ml/min.
           Detection: 240 nm
           Eluent: methanol/water (5:5, v/v) isocratic
     Preparative HPLC condition (E8)
     [0231] Column: CAPCELL PAK C18 SG120, $\phi20 \text{ mm} \times 250 \text{ mm (manufactured by SHISEIDO Co.)}
           Temperature: 40°C
           Flow rate: 5 ml/min.
           Detection: 240 nm
           Eluent: methanol/water (6:4, v/v) isocratic
     [0232] The retention time of the above-mentioned compounds when analysis was carried out under the following
     analytic HPLC conditions are shown below.
     Analytic HPLC condition (e1)
20
     [0233] Column: CAPCELL PAK C18 SG120, 64.6 mm × 250 mm (manufactured by SHISEIDO Co.)
           Temperature: 40°C
           Flow rate: 1 ml/min.
           Detection: 240 nm
           Eluent: acetonitirle/water (4:6, v/v) isocratic
     [0234] Retention time:
         11107AV: 7.9 min.
         11107AW: 6.8 min.
         11107AX: 7.2 min.
         11107AZ: 9.8 mln.
         11107BB: 6.1 mln.
         11107BG: 7.1 min.
35 Analytic HPLC condition (e2)
     [0235] Column: CAPCELL PAK C18 SG120, 64.6 mm × 250 mm (manufactured by SHISEIDO Co.)
           Temperature: 40°C
           Flow rate: 1 ml/min.
           Detection: 240 nm
           Eluent: methanol/water (5:5, v/v) isocratic
     [0236] Retention time:
         11107BA: 22.0 min.
     Analytic HPLC condition (e3)
     [0237] Column: CAPCELL PAK C18 SG120, 64.6 mm × 250 mm (manufactured by SHISEIDO Co.)
           Temperature: 40°C
50
           Flow rate: 1 ml/min.
           Detection: 200 nm
           Eluent: methanol/water (5:5, v/v) isocratic
     [0238] Retention time:
55
         11107BE: 23.0 min.
```

Analytic HPLC condition (e4)

[0239] Column: CAPCELL PAK C18 SG120, \$4.6 mm × 250 mm (manufactured by SHISEIDO Co.)

Temperature: 40°C Flow rate: 1 ml/min.

Detection: 240 nm

5

25

90

55

Eluent: methanol/water (6:4, v/v) isocratic

[0240] Retention time:

11107BD: 10.4 min.

11107BF: 9.1 min.

Analytic HPLC condition (e5)

5 [0241] Column: YMC Pack Ph A-402, \u03c44.6 mm \times 150 mm (manufactured by YMC Co.)

Temperature: 40°C

Detection: 240 nm

Eluent: methanol/water (5:5, v/v) isocratic

[0242] Retention time:

11107AY: 9.4 min.

Example A57 Physico-chemical properties of 11107AV

[0243] The physico-chemical properties of 11107AV are shown below. The structure of 11107AV was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 550, FAB-MS m/z 573(M+Na)+
- Molecular formula: C₃₀H₄₆O₉
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
- 6. Infrared absorption spectrum (KBr) cm⁻¹: 3421, 2972, 1733, 1716, 1457, 1373, 1254, 1175
- 7. 1H-NMR spectrum (CD₃OD, 600 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.92(3H.d.J=6.7Hz), 1.05(3H.I.J=7.2Hz), 1.17(3H.d.J=7.2Hz), 1.23(3H.s), 1.35-1.45(5H.m), 1.55-1.72(2H.m), 1.86(1H.dd.J=6.5,14.2Hz), 1.82(3H.d.J=1.Hz), 1.93(1H.dd.J=5.2,14.2Hz), 2.10(3H.s), 2.37(1H.dd.J=8.3,7.2Hz), 2.56(2H.m), 2.58-2.64(3H.m), 2.00(1H.dd.J=2.2,8.3Hz), 2.96(1H.dt.J=2.2,5.2Hz), 3.83(1H.m), 5.96(1H.d.J=1.2,5.2Hz), 3.83(1H.m), 5.96(1H.d.J=2.2,5.2Hz), 3.83(1H.m), 5.96(1H.d.J=1.2,5.2Hz), 5.96(1H.d.J=1.2,5.2Hz), 5.96(1H.d.J=1.2,5.2Hz), 3.96(1H.d.J=1.2,5.2Hz), 5.96(1H.d.J=1.2,5.2Hz), 5.96(1H.d.J=1
- 40 6.18(1H,d,J=11.0Hz), 6.57(1H,dd,J=11.0,15.3Hz)

Example A58 Physico-chemical properties of 11107AW

[0244] The physico-chemical properties of 11107AW are shown below. The structure of 11107AW was determined as shown below.

1. Appearance: colorless powder

ĸ

10

15

20

25

20

40

45

- 2. Molecular weight: 552, FAB-MS m/z 575(M+Na)+
- 3. Molecular formula: C30H48O9
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
- 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.92(3H,d,J=6.8Hz), 0.97(3H,d,J=7.1Hz), 1.13(3H,d,J=6.8Hz), 1.23(3H,s), 1.24(3H,d,J=6.1Hz), 1.38-1.46(2H,m), 1.46-1.72(5H.m), 1.79(3H.d.J=0.7Hz), 2.10(3H.s), 2.52(1H.m), 2.57 (2H.m), 2.61(1H.m), 2.71(1H.dd. J=2.2.8.5Hz), 2.78(1H.dt.J=2.2.5.9Hz), 3.46(1H.dd.J=4.2.7.1Hz), 3.72(1H.dd.J=7.1.6.1Hz), 3.82(1H.m), 5.09(2H.
- d,J=10.0Hz), 5.60(1H,dd,J=9.8,15.2Hz), 5.70(1H,dd,J=8.3,14.9Hz), 5.74(1H,dd,J=9.8,15.2Hz), 6.13(1H,d, J=10.6Hz), 6.36(1H,dd,J=10.7,14.9Hz)

Physico-chemical properties of 11107AX

[0245] The physico-chemical properties of 11107AX are shown below. The structure of 11107AX was determined as shown below.

- 1. Appearance: colorless powder
- Molecular weight: 550, FAB-MS m/z 551(M+H)+, 573(M+Na)+
- 3. Molecular formula: CanH46Oo

J=10.6,14.9Hz)

- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
- 1H-NMR spectrum (CD₃OD, 600 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
- 0.85(3H,d,J=6.8Hz), 0.93(3H,d,J=7.0Hz), 0.98(3H,t,J=7.4Hz), 1.17(3H,d,J=6.7Hz), 1.25(1H,m), 1.30(3H,s),
- 1.47-1.60(2H,m), 1.77(3H,s), 2.12(3H,s), 2.45-2.52(2H,m), 2.57(1H,dd,J=2.5.13.1Hz), 2.67(1H,dd,J=5.8.13.1Hz), 2.77(1H,dd,J=2.2,6.7Hz), 2.86(1H,dd,J=2.2,8.3Hz), 3.12(1H,t,J=7.3Hz), 3.56(1H,dt,J=8.4,4.3Hz), 4.56(1H,m), 5.00(1H,d,J=10.7Hz), 5.03(1H,d,J=9.4Hz), 5.34(1H,dd,J=9.7,15.1Hz), 5.56(1H,dd,J=9.4,15.1Hz), 5.63(1H,dd, J=2.0,15.7Hz), 5.73(1H,dd,J=8.6,14.9Hz), 5.82(1H,dd,J=3.1,15.7Hz), 6.08(1H,d,J=10.6Hz), 6.39(2H,dd,

50

55

11107AX

Example A60 Physico-chemical properties of 11107AY

[0246] The physico-chemical properties of 11107AY are shown below. The structure of 11107AY was determined as shown below.

1. Appearance: colorless powder

10

15

20

25

30

35

45

55

- 2. Molecular weight: 494, FAB-MS m/z 495(M+H)+, 517(M+Na)+
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
 - 6. Infrared absorption spectrum (KBr) cm⁻¹: 3405, 2973, 1733, 1716, 1457, 1374, 1257, 1176
 - 7. ¹H-NMR spectrum (CD₃OD, 600 MHz); δ ppm (integral, multiplicity, coupling constant J (Hz)); 0.92(3H.d.J=6.8Hz), 0.97(3H.t.J=7.6Hz), 1.16(3H.d.J=6.7Hz), 1.23(3H.s.), 1.37-1.43(2H.m), 1.50-1.59(2H.m),
- 1.59-1.70(2H,m), 1. 79 (3H, s), 2.10(3H,s), 2.46(1H,ddq,_bs.1.8,8,6.7Hz), 2.56(2H,m), 2.61(1H,ddq,_bs.1.8,8,6.7Hz), 2.56(1H,dd,_bs.2.7Hz), 2.51(1H,dd,_bs.2.5+Hz), 3.07(1H,dd,_bs.1.8), 3.83(1H,m), 5.085(1H,d,_bs.2.7Hz), 5.05(1H,dd,_bs.2.7Hz), 5.05(1H,dd,_bs.2.15), 5.70(1H,dd,_bs.8.15.1Hz), 5.74(1H,dd,_bs.2.15), 6.14(1H,dd,_bs.8.15.1Hz), 5.74(1H,dd,_bs.2.16.1Hz), 5.74(1H,ds.2.16.1Hz), 5.74(1H,ds.2

Example A61 Physico-chemical properties of 11107AZ

[0247] The physico-chemical properties of 11107AZ are shown below. The structure of 11107AZ was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 568, FAB-MS m/z 569(M+H)+, 591(M+Na)+
- Molecular formula: C₃₀H₄₈O₁₀
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
 - Infrared absorption spectrum (KBr) cm⁻¹: 2970, 1732, 1715, 1455, 1383, 1259, 1181

7. ½-1-MMR spectrum (CD₂OD, 500 MHz); 5 ppm (integral, multiplicity, coupling constant J (†2)); 0.87(3H, d₂1-6.8Hz), 0.93(3H, d₂1-6.8Hz), 1.99(3H, d₂1-6.4Hz), 1.11(3H, d₂), 1.20 (3H, d₂1-6.59Hz), 1.42-1.68(5H, m), 1.76 (3H, s), 2.09(3H, a), 2.45-2.69(4H, m), 2.67(1H, d₂1-2.4.6.3Hz), 2.75(1H, d₂1-2.4.5.9Hz), 3.42(1H, d₂1-4.4.5) (3.59Hz), 3.53(1H, d₂1-2.6.5), 3.42(1H, d₂1-3.5.9Hz), 4.15(1Hm), 5.09(1H, d₂1-9.3.5), 5.09(1H, d₂1-3.5.9Hz), 3.42(1H, d₂1-3.7.5, 1Hz), 5.07(2H, d₂1-3.5.9Hz), 3.42(1H, d₂1-3.7.5, 1Hz), 5.07(2H, d₂1-3.5.9Hz), 3.41(1H, d₂1-3.5.9Hz), 3.41(1H, d₂1-3.7.5, 1Hz), 3.41(1H, d₂

Example A62 Physico-chemical properties of 11107BA

[0248] The physico-chemical properties of 11107BA are shown below. The structure of 11107BA was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 552, FAB-MS m/z 553(M+H)+, 575(M+Na)+
- 3. Molecular formula: C₃₀H₄₈O₉

10

15

20

30

35

50

- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for lodine and sulfuric acid
 - 1H-NMR spectrum (CD₃OD, 600 MHz): δ ppm (Integral, multiplicity, coupling constant J (Hz)):
- 0.85(3H.d.J.-6.7Hz), 0.93(3H.d.J.-7.0Hz), 0.97(3H.J.J.-7.4Hz), 1.10(3H.d.J.-6.8Hz), 1.30(3H.a), 1.37(1H.m), 1.50-1.60(2H.m), 1.75(1H.m), 1.77(3H.a), 1.94(1H.m), 2.51(2(3H.a), 2.48(1H.m), 2.55(2.5.2.64(2H.m), 2.68(1H.dd, J-5.9.1), 3.50(2H.m), 3.61(1H.dd, J-6.7Hz), 3.61(1H.dd, J-6.7Hz), 5.34(1H.dd, J-9.7Hz), 5.34(1H.dd, J-9.9.15.1Hz), 5.54(1H.dd, J-9.9.15.1Hz), 5.54(1H.dd, J-10.6Hz), 6.38(1H.dd, J-10.6Hz), 6.18(1H.dd, J-10.6Hz), 6.18(

Example A63 Physico-chemical properties of 11107BB

[0249] The physico-chemical properties of 11107BB are shown below. The structure of 11107BB was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 494, FAB-MS m/z 517(M+Na)+
- 3. Molecular formula: C27H42O8

5

15

20

25

35

55

- Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
 - H-NMR spectrum (CD₂OD, 600 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):

0.92(3H,d,J=6.8Hz), 0.99(3H,t,J=7.6Hz), 1.23(3H,s), 1.32-1.50(5H,m), 1.52-1.58(2H,m), 1.58-1.72(3H,m), 1.82 (3H,d,J=0.8Hz), 1.87(1H,dd,J=5.8,14.0Hz), 2.10(3H,s), 2.57(2H,m), 2.82(H,m), 2.69(1H,d,J=2.3,58Hz), 2.80 (1H,d,J=2.3,58Hz), 3.83(1H,m), 5.09(1H,d,J=9.7Hz), 5.10(1H,d,J=9.9Hz), 5.61(H,d,J=9.71,53Hz), 5.75(1H,dd,J=1.3Hz), 5.75(1H,dd,J=1.3H

> ОН 11107BB

Example A64 Physico-chemical properties of 11107BD

[0250] The physico-chemical properties of 11107BD are shown below. The structure of 11107BD was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 480, FAB-MS m/z 503(M+Na)+
- 3. Molecular formula: C27H44O7
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
 - 1H-NMR spectrum (CD₂OD, 500 MHz); δ ppm (integral, multiplicity, coupling constant J (Hz));
 - 0.91(3H,d,J=6.8Hz), 0.94(3H,t,J=7.3Hz), 0.98(3H,d,J=6.8Hz), 1.08(3H,d,J=6.8Hz), 1.22(1H,m), 1.26(3H,s), 1.30-1.40(2H,m), 1.43-1.65(6H,m), 2.37(1H,m), 2.44(1H,m), 2.52(2H,m), 2.66(1H,dd,J=2.4,8.3Hz), 2.72(1H,dt,
- J=2.4,5.9Hz), 3.52(1H,m), 3.70(1H,d,J=9.8Hz), 3.77(1H,m), 5.08(1H,dd,J=8.8,10.3Hz), 5.38(1H,dd, J=9.8,15.1Hz), 5.53(1H,dd,J=8.3,15.1Hz), 5.69(2H,m), 6.10(1H,dd,J=10.3,15.1Hz), 6.28(1H,dd,J=10.3,15.1Hz)

11107BD

Example A65 Physico-chemical properties of 11107BE

[0251] The physico-chemical properties of 11107BE are shown below. The structure of 11107BE was determined as shown below.

1. Appearance: colorless powder

5

10

20

25

30

40

45

55

- Molecular weight: 438. FAB-MS m/z 461(M+Na)+. 439(M+H)+. 437(M-H)+
- 3. Molecular formula: C24H38O7
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
 - 6. Ultraviolet absorption spectrum (methanol); terminal adsorption
 - 7. Infrared absorption spectrum (KBr) cm⁻¹: 3447, 2970, 1734, 1717, 1457, 1374, 1259, 1174
 - H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
- 0.96(3H,d,J=6.8Hz), 1.00(3H,d,J=6.8Hz), 1.18(3H,s), 1.19(3H,d,J=7.3Hz), 1.28-1.44(2H,m), 1.53-1.66(2H,m), 15 2.03-2.07(5H.m), 2.24(1H.m), 2.33(1H.m), 2.52 (2H.d.J=3.9Hz), 3.78(1H.m), 4.17(1H.m), 5.037(1H.d.J=9.8Hz), 5.042(1H.dd,J=8.3.10.3Hz), 5.35(1H.dd,J=7.8.15.1Hz), 5.48(1H.dd,J=6.4.15.6Hz), 5.58(2H.m), 5.66(1H.dd, J=9.8.15.1Hz), 5.70(1H.dd.J=7.3.15.1Hz)

Physico-chemical properties of 11107BF

[0252] The physico-chemical properties of 11107BF were shown below. The structure of 11107BF was determined as shown below. Further, the present compound is the stereolsomer of 17-position hydroxy group of 11107P.

- 1. Apperance: colorless powder
- Molecular weight: 552, FAB-MS m/z 553(M+H)+, 575(M+Na)+
 - 3. Molecular formula: C30H48O9
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
- 1H-NMR spectrum (CD₃OD, 500 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.88(3H,d,J=6.8Hz), 0.93(3H,d,J=6.8Hz), 0.95(3H,t,J=7.3Hz), 1.14(3H,d,J=6.8Hz), 1.19(3H,s), 1.24(1H,m), 1.34-1.44(2H,m), 1.44-1.66(4H,m), 1.75(3H,s), 2.06(3H,s), 2.47-2.60(4H,m), 2.73(1H,dd,J=2.4,4.9Hz), 2.92(1H, dd, J=2.0,8.3Hz), 3.39(1H,dd, J=4.4,4.9Hz), 3.53(1H,dt, J=8.8,4.4Hz), 3.78(1H,m), 5.05(2H,d, J=10.3Hz), 5.57(1H, dd, J=9.8, 15.1Hz), 5.70(1H, dd, J=9.8, 15.1Hz), 5.81(1H, dd, J=8.1, 15.1Hz), 6.11(1H, d, J=11.2Hz), 6.36(1H, dd, J=11.2.15.1Hz)

11107BF

Example A67 Physico-chemical properties of 11107BG

[0253] The physico-chemical properties of 11107BG are shown below. The structure of 11107BG was determined as shown below.

Appearance: colorless powder

5

10

20

25

30

45

- 2. Molecular weight: 508, FAB-MS m/z 509(M+H)+, 531(M+Na)+
- 3. Molecular formula: C28H44O8
- 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
- 5. Color reaction: positive for iodine and sulfuric acid
- 8. 14-MMR spectrum (CO₂OD, 600 MHz); 5 ppm (Integral, multiplicity, coupling constant J (Hz)); 0.31(3H,d,J=6,7Hz), 0.36(3H,d,J=6,7Hz), 0.36(3H,d,J=6,7Hz), 1.5(3H,d),J=6,7Hz), 1.23(3H,d),J=7,147(3H,m), 1.53-1.70 (3H,m), 1.79(3H,d),Z_06(3H,d),Z_08(3H,d)

Example A68 Acquisition of mutant of Mer-11107

[0254] The present inventors carried out the mutation treatment (100 µg/ml, 28°C, 1 hour) of Streptomyces sp, Mer-11107 (Depost No, PERM BP-7812) by N-methyl-N'-nitro-N-nitrosoguanidine in a tris-maleate buffer (pH 6.0), then spread in on an yeast-mait agar medium to form spores. The spores obtained were collected, the porion was diluted and spread on an yeast-mait agar medium to form colonies. Mycerial cell was collected from the respective colonies, incoculated in a 15 mol refeat tube containing 2 mil of seed medium (2% of gluces, 1% of sybbean meal (ESUSAN-MEAT manufactured by Ajinomoto Co., Ltd.), 0.5% of yeast extract (manufactured by Oriental Yeast Co., Ltd.), 0.28% of sodium chloride, 0.32% of calcium carbonate, pH 6.0), and cultured by shaking at 25°C for 3 days. Further, the portion of the cultured broth was transferred to 2 mil of a producing medium (7% of soluble starch, 0.8% of gluten meal, 0.8% of PHARMAMEDIA, 0.1% of calcium carbonate, pH 6.8), and cultured at 25°C for 4 days (the residual seed culture were stored in a frezen state). The cultured broth was extracted with ethyl accateta, analyzed by TLC (Merck 5717,

acetone:toluene=1:1, coloration by phosphomolybdic acid), and 3 strains, that is A-1532, A-1533 and A-1534 strains in which spots other than 11107B substance (Rf. about 0.5) appear were selected. These strains are deposited as FERM BP-7850, FERM BP-7850 and FERM BP-7851, respectively, at the above-mentioned International Deposit Organization.

Example A69 Fermentation of A-1532

[0255] The frozen seed culture of A-1552 was melted, 0.2 ml of the seed culture was incoulated into a 250 ml Enemper fatas kontaining 20 ml of the seed medium (2% of glucces, 1% of solyacen medi (ESSAN-MEAT manufactured by Ajinomoto Co. Ltd.), 0.5% of yeast extract (manufactured by Oriental Yeast Co. Ltd.), 0.25% of sodium chlorids, 0.32% of calcium carbonate, pH is 8), and it was cultured on a shaker at 25°C for 3 days to obtain a seed culture broth se incotaled into a 500 ml Eremenyer flask containing 60 ml of a producing medium (5% of soluble starch, 1% of glucces, 1% of gluren meal, 2% of PHARIMAMEDIA, 0.1% of calcium carbonate, pH 6.8), and it was cultured at 25°C for 4 days on a shaker to obtain a cultured broth.

Example A70 Purification of 11107BH

[0256] The culturer broth (100 mi) was extracted with ethyl acetate (100 mi), and then the ethyl acetate layer was concentrated to drynes to botain 80 mg of a crude active fraction. The restulling crude active fraction has subjected to the preparative high performance liquid chromatography (HPLC) under the above-mentioned preparative HPLC condition (6) to obtain a 111078H old/or mice.

Preparative HPLC condition (G)

15

50

25 [0257] Column: CAPCELL PAK C18 UG120, \$30 mm × 250 mm (manufactured by SHISEIDO Co.) Flow rate: 20 ml/min

Detection: 240 nm

Eluent: acetonitrile/water (4:6, v/v) isocratic

[0258] The retention time of the above-mentioned compound when analysis was carried out at the following analytic HPLC conditions is shown below.

Analytic HPLC condition (a)

[0259] Column: CAPCELL PAK C18 SG120, \$4.6 mm × 250 mm (manufactured by SHISEIDO Co.)

Temperature: 40°C Flow rate: 1 ml/min.

> Detection: 240 nm Eluent: acetonitrile/water (4:6, v/v) isocratic

[0260] Retention time:

11107BH: 19.6 min.

Example A71 Physico-chemical properties of 11107BH

- 45 [0261] The physico-chemical properties of 11107BH are shown below. The structure of 11107BH was determined as shown below.
 - 1. Appearance: colorless powder
 - Molecular weight: 550. FAB-MS m/z 573(M+Na)+. 549(M-H)-
 - 3. Molecular formula: ConHasOg
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
 - 7. Infrared absorption spectrum; 3470, 2966, 1733, 1716, 1457, 1373, 1242, 1187
 - 8. ¹H-NMR spectrum (CD₃OD, 400 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
 - 0.83 (3H. d., 14-68 Hz.), 0.89 (3H. d., 14-70 Hz.), 0.83 (3H. l., 1-73 Hz.), 1.07 (3H. d., 14-68 Hz.), 1.1-6-1.27 (1H. ll.), 1.32 (2H. l.), 1.42 (14-18, 14-18), 1.42 (14-18, 14-

dd,J=9.5,15.0Hz), 5.60-5.68(2H,m), 6.06(1H,d,J=11.0Hz), 6.31(1H,dd,J=11.0,15.0Hz)

Example A72 Fermentation of A-1533 strain

[0262] 0.2 ml of the frozen seed culture of A-1533 was inoculated into a 250 ml Ertermayer flask containing 20 ml of a seed medium (2% of glucose, 1% of soyboan meal (ESUSAN-MEAT manufactured by A)monto Co. Ltd.), 0.8% of yeast extract (manufactured by Oriental Yeast Co. Ltd.), 0.25% of sodium chloride, 0.32% of calcium carbonate, pH 6.8), and it was cultured on a shaker at 25°C for 3 days to obtain a seed culture broth was inoculated into a 500 ml Felmemyer flask containing 60 ml of a producing medium (5% of soluble starch, 1% of 50 glucose, 1% of gluten meal, 2% of FHARMAMEDIA, 0.1% of calcium carbonate, pH 6.8), and it was cultured at 25°C for 4 days on a shaker to bothin a cultured broth.

Example A73 Purification of 11107Bl Purification of 11107Bl

30 [0263] The cultured broth (100 ml) was extracted with ethyl acetate (100 ml), and then the ethyl acetate layer was concentrated to dryness to obtain 60 mg of a crude active fraction. The resulting crude active fraction was subjected to the preparative high performance liquid chromatography (HPLC) under the above-mentioned preparative HPLC condition (H) to obtain at 110781 (2.1 mg).

35 Preparative HPLC condition (H)

5

15

40

50

[0264] Column: CAPCELL PAK C18 UG120, \$30 mm × 250 mm (manufactured by SHISEIDO Co.)

Temperature: room temperature

Flow rate: 20 ml/min. Detection: 240 nm

Eluent: acetonitrile/water (5:5, v/v) isocratic

[0265] The retention time of the above-mentioned compound when analysis was carried out at the following analytic HPLC condition is shown.

45 Analytic HPLC condition (h)

[0266] Column: CAPCELL PAK C18 SG120, \(\phi 4.6 \text{ mm} \times 250 \text{ mm} \text{ (manufactured by SHISEIDO Co.)}

Temperature: 40°C

Flow rate: 1 ml/min.

Detection: 240 nm

Eluent: acetonitrile/water (4:6, v/v) isocratic

[0267] Retention time:

11107BI: 56.7 min.

Example A74 Physico-chemical properties of 11107BI

[0268] The physico-chemical properties of 11107BI are shown below. The structure of 11107BI was determined as

shown below.

5

10

15

20

25

50

- 1. Appearance: colorless powder
- 2. Molecular weight: 520, FAB-MS m/z 543(M+Na)+, 519(M-H)*
- 3 . Molecular formula: CanHagOz
 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and sulfuric acid
- 6. Infrared absorption spectrum: 3470, 2962, 1733, 1716, 1457, 1373, 1244, 1176
- 7. 1H-NMR spectrum (CD₃OD, 400 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)):
- 0.87(3H,d,J=6.8Hz), 0.92(3H,J,J=7.3Hz), 0.98(3H,d,J=6.8Hz), 1.01(3H,d,J=6.8Hz), 1.18(3H,a), 1.26-1.39(3H,m), 1.50-1.62(3H,m), 1.73(3H,d,J=1.1Hz), 2.00-2.08(2H,m), 2.08(3H,a), 2.08-2.13(1H,m), 2.24-2.30(1H,m), 2.52(2H,d,J=3.2Hz), 2.54-2.57(1H,m), 3.19(1H,d,J=3.8Hz), 3.75-30(1H,d), 5.09(1H,d,J=6.9Hz), 5.32(1H,dd,J=7.71.54Hz), 5.39(1H,dd,J=6.21.54Hz), 5.56(1H,dd,J=9.9.1.5.0Hz), 5.64(1H,dd,J=0.15.0Hz), 5.69(1H,dd,J=0.21.54Hz), 5.64(1H,dd,J=0.15.0Hz), 5.64(1H,dd,

30 Example A75 Fermentaion of A-1534 strain

[0269] The frozen seed culture of A-1534 was meted, 0.2 ml of the seed culture was inoculated into a 250 ml Eremmeyer flask containing 20 ml of a seed medium (2% of glucose, 1% of soybean meal (ESUSAN-MEAT manufactured by Ajlnomoto Co. Ltd.), 0.5% of yeast extract (manufactured by Oriental Yeast Co. Ltd.), 0.25% of sodium chloride, 0.32% of calcium carbonate, pH 6.8), and it was cultured at 25°C for 3 days on a shaker to obtain a seed culture broth. 0.8 ml of the seed culture broth was inoculated into a 500 ml Eremmeyer flask containing 60 ml of a producing medium (5% of soluble starch, 1% of glucose, 1% of gluten meal, 2% of PHARMAMEDIA, 0.1% of calcium carbonate, pH 6.8), and it was cultured at 25°C for 4 days on a shaker to obtain a culture broth.

40 Example A76 Purification of 11107BJ

[0270] The cultured broth (100 ml) was extracted with ethyl acetate (100 ml), and then the ethyl acetate layer was concentrated to dyness to obtain 86 mg of a crude active fraction. The resulting crude active fraction was subjected to the preparative high performance liquid chromatography (HPLC) under the following preparative HPLC condition (I) to obtain a 11107BJ solution. Then, the solvent was removed to obtain 11107BJ (30 mg).

Preparative HPLC condition (I)

[0271] Column: CAPCELL PAK C18 UG120, \$30 mm × 250 mm (manufactured by SHISEIDO Co.) Flow rate: 20 ml/min.

Detection: 240 nm

Eluent: acetonitrile/water (5:5, v/v) isocratic

[0272] The retention time of the above-mentioned compound when analysis was carried out at the following analytic HPLC condition is shown below.

Analytic HPLC condition (i)

[0273] Column: CAPCELL PAK C18 SG120, \$\phi4.6 \text{ mm} \times 250 \text{ mm (manufactured by SHISEIDO Co.)}

Temperature: 40°C Flow rate: 1 ml/min.

Detection: 240 nm

Eluent: acetonitrile/water (4:6, v/v) isocratic

[0274] Retention time:

15

25

30

45

50

55

11107BJ: 54.9 min.

Example A77 Physico-chemical properties of 11107BJ

[0275] The physico-chemical properties of 11107BJ are shown below. The structure of 11107BJ was determined as shown below.

- 1. Appearance: colorless powder
- 2. Molecular weight: 436, FAB-MS m/z 459(M+Na)+, 435(M-H)+
- 3. Molecular formula: C25H40O6

 - 4. Solubility: soluble in dimethylsulfoxide, pyridine, methanol and acetone, and slightly soluble in water
 - 5. Color reaction: positive for iodine and suifuric acid
- 1H-NMR spectrum (CD₃OD, 400 MHz): δ ppm (integral, multiplicity, coupling constant J (Hz)); 0.87(3H,d,J=7.0Hz), 0.94(3H,t,J=7.4Hz), 0.97(3H,d,J=7.0Hz), 1.04(3H,d,J=7.0Hz), 1.26-1.38(3H,m), 1.49-1.66 (3H.m), 1.73(3H.d.J=1.1Hz), 1.89-1.92(1H.m), 2.00(3H.s), 2.23-2.28(1H.m), 2.43(1H.dd.J=5.1.13.8Hz), 2.51-2.56 (1H.m), 2.56(1H.dd, J=3.3.13.8Hz), 3.25-3.29(1H.m), 3.75-3.80(1H.m), 4.91(1H.t.J=9.2Hz), 5.02(1H.d.J=10.6Hz), 5.42(1H,dd,J=9.2,15.0Hz), 5.49(1H,dd,J=9.2,15.0Hz), 5.69(1H,dd,J=8.4,15.0Hz), 6.08(1H,d,J=11.0Hz), 6.28(1H, dd,J=11.0,15.0Hz)

11107BJ

Example B1 (8E, 12E, 14E)-7-Acetoxy-19-chloro-3, 6.18,21-tetrahydroxy-6,10,12,16,20-pentamethyllricosa-8,12,14-trien-11-olide (Compound B1-1) and (8E,12E,14E)-7-acetoxy-18-chloro-3,6,19,21-tetrahydroxy-6,10,12,16,20-pentamethyltricosa-8,12,14-trien-11-olide (Compound B1-2)

5 [0276]

Compound B1-1

Compound B1-2

[0277] (8E,12E,14E)-7-Acetony-3,821-rinhydrovy-6,10,12,16,20-pentamenthy-18, 19-epoxyrincosa-8,12,14-trien11-olide (18.0 mg, 33.5 μmol) was dissolved in DME (0.2 mL). After cooling to -20°C, 4M HCl in dioxane (17.0 μL, 68.0 μmol) was added thereto and the mixture was stirred for 4 hours. Potassium carbonate (10.5 mg, 78.0 μmol) and tolucine (1 mL) were added to the reaction solution, and the temperature was raised to room temperature. The reaction solution was concentrated, and the resulting crude product was purified by proparative HPLC (5H1EEID Capcell) gas C18, 10 mm I.D. × 250 mm, acetonitrie water-a40:60, 4.0 mL/min, 1 to obtain the title Compound B1-1 (3.0 mg, 5.2 μmol, 15.6%) and Compound B1-1 (10.8 m, 18.8 μmol, 5.62%) accolories solits, respectively.

Compound B1-1

[0278] ¹H-MMR spectrum (CD₂OD, 400MHz) ⁸(ppm): 0.88(3H.d₃J=7Hz), 0.95(3H.l₄J=7Hz), 1.02(3H.d₃J=7Hz), 1.02(3H.d₃J=7Hz), 1.02(3H.d₃J=7Hz), 1.18(3H.s), 1.30-1.46(4H.m), 1.52-1.66(3H.m), 1.74(3H.s), 1.80(H.br.l₄J=1Hz), 2.05(3H.s), 2.05-2.11 (H.m), 2.52(2H.d₃J=4Hz), 2.48-2.81(2H.m), 3.38-3.42(1H.m), 3.85(H.br.l₄J=8Hz), 3.74-3.80(H.m), 3.84(2H.d₃J=4Hz), 5.04(1H.d₄J=10Hz), 5.05(1H.d₃J=1Hz), 5.56(1H.d₃J=10Hz), 5.58(1H.d₃J=1.9Hz), 5.58

35 Compound B1-2

[0279] ¹I+NMR apsetrum (Cb₂OD, 400M±2) 8(ppm): 0.87(3H,d,J=7H₂), 0.91(3H,d,J=7H₂), 0.93(3H,I,J=7H₂), 1.05 (3H,d,J=7H₂), 1.18(3H,s), 1.32-1.47(3H,m), 1.49(-1.65(3H,m), 1.74(3H,s), 1.76-1.81(2H,m), 1.82-1.90(1H,m), 2.85(3H,d,J=7H₂), 3.74-3.80(1H,m), 3.89(1H,d,J=2H₂), 4.12(1H,d,J=0H₂), 5.037(1H,d,J=10H₂), 5.037(1H,d,J=10H₂), 5.59(1H,d,J=11H₂), 5.59(1H,d,J=10H₂), 5.59(1H,d,J=10H₂), 5.74(1H,dd,J=7,15H₂), 6.08(1H,d,J=1H₂), 8.29(1H,d,J=11H₂), 5.59(1H,d,J=11H₂), 5.89(1H,d,J=11H₂), 5.74(1H,dd,J=10H₂), 5.74(1H,dd,J

Example B2 (8E, 12E, 14E)-7-Acetoxy-18-bromo-3,6,19,21-tetrahydroxy-6,10,12,16,20-pentamethyltricosa-8,12,14-trien-11-olide (Compound B2-1) and (8E,12E,14E)-7-acetoxy-19-bromo-3,6,18,21-tetrahydroxy-6,10,12,16,20-pentamethyltricosa-8,12,14-trien-11-olide (Compound B2-2)

[0280]

Compound B2-1

Compound B2-2

[0281] (8E,12E,14E)-7-Acetoxy-3,821-thilydroxy-6,10,12,16,20-pentamethy-18,19-epoxyritocas-8,12,14-trien11-oilde (18.6 mg, 34.7 µmol) was dissolved in DME (0.2 mL). After cooling to -20°C, 47% HBr (13 µL, 75.5 µmol) was added thereto and the mixture was stirred for 20 hours. Potassium carbonate (10.5 mg, 76.0 µmol) and toluene (1 mL) were added to the reaction solution and the temperature was raised to room temperature. The reaction solution was concentrated, and the resulting crude product was purified by thin layer chromatography (MEROK Silleagel 60 F284.
0.5 mm, developing solution; chioroform-methanol-20:1) to obtain the title Compound B2-1 (8.8 mg, 14.3 µmol, 41.1%) and Compound B2-1 (8.8 ng, 18.2 µmol, 24.9 kg, 36 acoloriess oils; respectively.

Compound B2-1

[0282] ¹H-NMR spectrum (CD₂OD, 400MHz) S(ppm): 0.87(3H,d₃J=7Hz), 0.90(3H,d₃J=7Hz), 0.94(3H,L₃J=7Hz), 1.04 (3H,d₃J=7Hz), 1.18(3H,s), 1.33-1.45(3H,m), 1.48(1.84 (3H,m), 1.74(3H,s), 1.75-1.83(1H,m), 1.87-1.96(2H,m), 2.05 (3H,s), 2.50-2.83(2H,m), 2.5(2H,d₃J=8Hz), 4.27 (1H,dd₃J=5,7Hz), 3.88(1H,dd₃J=8,18Hz), 4.27 (1H,dd₃J=3,51Hz), 5.04(2H,d₃J=0,15Hz), 5.5(1H,dd₃J=0,15Hz), 5.98(1H,dd₃J=1,15Hz), 5.78(1H,dd₃J=1,15Hz), 5.78(1Hz), 5.78(1Hz),

35 Compound B2-2

50

55

[0283] ¹H-NNR spectrum (CD₂OD, 400M±2) & (ppm): 0.88(8H,d_s=Ft_2), 0.95 (8H,t_d=Ft_2), 1.05(8H,d_d=Ft_2), 1.18(3H,s), 1.30-1.47(4H,m), 1.55-1.68(3H,m), 1.74(3H,d_b=0.7Hz), 1.82-1.96(1H,m), 1.95-2.03(1H,m), 2.05 (3H,s), 2.52(2H,d_b=4Hz), 2.45-2.62 (2H,m), 3.38(1H,d_b=3.8Hz), 3.88(1H,brt_b=8Hz), 3.74-3.90(1H,m), 3.96(1H,d_b=0.7Hz), 2.54(1H,d_b=1.9Hz), 5.04(1H,d_b=1.9Hz), 5.69(1H,d_b=1.9Hz), 5.69(1H,d_b=1.1Hz), 5.58(1H,d_b=1.1Hz), 5.58(1H,d_b=1.9Hz), 5.59(1H,d_b=1.9Hz), 5.69(1H,d_b=1.1Hz), 5.59(1H,d_b=1.1Hz), 5.59(1H,d_

Example B3 (BE.12E, 14E)-7-Acetoxy-3.6,18,21-letrahydroxy-19-iodo-6,10.12,16,20-pentamethyltricosa-8,12,14-trien-11-olide (Compound B3-1) and (BE,12E,14E)-7-acetoxy-3,8,19,21-terahydroxy-18-iodo-6,10,12,16,20-pentamethyltricosa-8,12,14-trien-11-olide (Compound B3-2)

[0284]

10

Compound B3-1

Compound B3-2

OAC OH OH

0 [0285] To a suspension of Nal (15.3 mg, 102.1 µmol) in acotonitrile (0.2 mL) was added dropwise TMS-CI (7.0 µL, 55.2 µmol), lollowed by stirring a troon trespreture for 10 min. To the reaction makinut was allowly added dropwise a solution of (8E,10E,14E)-7-acotony-3,6.21-inflydrony-4,10.12,16.20-pentemethyl-16,19-eposytricosa-8,12,14-trien-11-olide (17.5 mg, 32.5 µmol) in acotonitrile (0.1 mL), followed by stringt for 40 min. To the reaction suspension was added a 10% aqueous sodium thiosulfate solution (1 mL), followed by stracting with chloroform (2 mL) for two times.
The resulting organic layers were dried over anhydrous sodium sulfate, filtered and then evaporated. The resulting crude product was purified by thin layer chromotography (MERCK) Siloage 160 P254, 0.5 mm, developing solution; chloroform:methanol-20:1) to obtain the title Compound B3-1 (1.8 mg, 2.7 µmol, 8.3%) and Compound B3-2 (4.6 mg, 6.9 µmol, 21.2%) as colorless oils, respectives.

Compound B3-1

[0286] "H-NMR spectrum (CD₂00, 400MHz) & pm; 0.88(3H,d,J=7Hz), 0.95(3H,I,J=7Hz), 1.03(3H,d,J=6Hz), 1.04 (3H,d,J=7Hz), 1.18(4H,M), 1.264+16(3H,M), 1.544+16(3H,M), 1.74(3H,d,J=0.7Hz), 1.982(3H,M), 2.502 (20(2H,M), 3.56(1H,d,J=0.7Hz), 3.73-3.80(1H,M), 4.06(1H,dd,J=4,8Hz), 5.04(1H,d,J=0.1Hz), 5.05(1H,d,J=11Hz), 5.56(1H,d,J=10.1Hz), 5.56(1H,d,J=1

Compound B3-2

45

50

55

10 [0287] "H-NMR spectrum (CD₂OD, 400M+2) & (ppm): 0.87(3H₂J₂=8H₂), 0.89(3H₂J₂=7H₂), 0.84(3H₁J₂=7H₂), 0.84(3H₂J₃=7H₂), 0.84(3H₂J₃=7H₂), 0.84(3H₂J₃=7H₂), 0.85(3H₃), 2.52 (2H₂J₃=4H₂), 2.65 2.85(2H₃), 3.74-3.80(1H₃), 3.82-3.88(2H₃), 4.40(1H₃dd₃J₃=3,5,1H₂), 5.04(1H₃J₃=1H₃H₃), 5.56(1H₃d₃J₃=1H₂), 5.84(1H₃J₃=1H₃H₃), 5

Example B4 (BE,12E)-7-Acetoxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-14,15,18,19-diepoxytricosa-8,12-dien-11-olide and (BE,14E)-7-acetoxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-12,13,18,19-diepoxytricosa-8,14-dien-11-olide (Compound 84)

[0288]

10

Compound B4

[0289] A solution of (8E,12E,14E)-7-acetoxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (21.7 mg, 40.4 µmol) in dichloromethane (0.5 mL) was cooled to 30°C. m-Chloroperbenzoo acid (28.4 mg, 7.85 µmol) was added thereto, followed by string for 17.5 hours. After the temperature was raised to room temperature, a saturated sodium bicarbonate aqueous solution (1.0 mL) was added thereto and the mixture was extracted with chloroform (12 mL). The resulting organic layer was dried over anhydrous sodium suitate, filtered and then concentrated. The resulting crude product was purified by thin layer chromatography (MERCK Silicage) 60°C254, 0.5 mm, devloping solution; bluene:acetone=1:1) to obtain the title Compound B4 (9.3 mg, 16.8 µmol, 41.6%) as a coloriess oil

¹H-NMR spectrum (CD₂OD, 400MHz) 8[ppm² 0.83-0.97(23.81+m), 0.98-1.12(13.21+), 1.15-1.19[8.71+m), 1.21-1.40
(1.34.41-m), 1.43-1.65(17.81+m), 1.70-1.84(6.91+m), 2.02-2.08(8.91+m), 2.42-2.77(15.51+m), 2.84-2.88(16.91-m), 3.40-3.47(2.51+m), 3.47-3.59(2.71+m), 3.70-3.80(3.01+m), 4.44-52(1.01+m), 5.00-5.08(4.31+m), 5.19-5.23(1.41+m), 5.90-5.70(1.91+m), 5.90(1.91+m), 5.90(1.91+m), 5.90(1.91+m), 5.90(1.91+m), 5.90(1.91+m), 5.90(1.91+m), 5.90(1.91+m), 5.90(1.91+m), 5.90(1.91+m), 5

Example B5 (8E,12E,14E)-7-Acetoxy-3,6,16,21-letrahydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B5-1) and opt-(8E,12E,14E)-7-acetoxy-3,6,16,21-letrahydroxy-8,10,12,16,20-pentamethyl-16,19 opoxytricosa-8,12,14-trien-11-olide (Compound B5-2)

[0290]

30

Compound B5-1 (11107D)

Compound B5-2 (epi-11107D)

[0291] 4A molecular sleves (28 mg) and V(aceb₂ (6.0 mg, 17.2 µmol) were added to a solution of (8E,12E,14E)⁻⁷ - acetoxy3,6.2 t-lithydroxy4.6.102,16.20-pentamethy1-6.19-epoxy10cose-8.12,14.14m-1.10-idel (61.7 mg, 3.4 8) µmol) in dichloromethane (0.4 mL), followed by cooling to 30°C. TBHP (20 µL, 100 µmol) was added thereto, the mixture was stirred for about 19 hours and the temperature was raised to -10°C. TBHP (50 µL, 250 µmol) was further added thereto, followed by stirring about 20 hours. Dimethyisulfoxide (51 µL, 25 µmol) was added to the reaction mixture and concentrated. The resulting crude product was punified by thin layer chromatography (MERCK Sitiloage) 67254, 0.5 mm, developing solution; followers centered: 1.11 and preparative HPLC (SitilSEIDO Cappel pak C18, 10 mm I.D. × 250 mm, acetonitritie water-30°D, 4.0 mL/min.) to obtain the title Compound B5-1 (1.06 mg, 1.92 µmol, 55%) and Compound B5-2 (1.26 mg, 2.28 µmol, 65%) as colorises solit; respectively.

Compound B5-1

[0282] 'H-NMR spectrum (CD₂OD, 400MHz) δ(ppm): 0.87(1H,d,J=7Hz), 0.88(3H,d,J=7Hz), 0.93(3H,I,J=7+z), 1.18 (3H,s), 1.18-1.69(8H,m), 1.33(3H,s), 1.77(3H,d,J=1.Hz), 1.82-1.90(1H,m), 2.05(3H,s), 2.49-2.60(3H,m), 2.66(1H,dd,J=2.8Hz), 2.89(1H,d,J=2.8Hz), 2.89(1H,d,J=2.8Hz), 2.89(1H,d,J=2.8Hz), 2.89(1H,d,J=2.8Hz), 3.23-3.82(1H,m), 5.04(1H,d,J=10Hz), 5.05(1H,d,J=1Hz), 5.65 (1H,d,J=10.15Hz), 5.70(1H,dd,J=10.15Hz), 5.86(1H,d,J=15Hz), 6.32(1H,d,J=11Hz), 6.52(1H,dd,J=11,15Hz); 7.8B_NS m/S c551(M+1).

Compound B5-2

Compound Do

10

25

40

[0283] 1H-NMR spectrum (CD_0O, 400MH-) & (ppm): 0.88(3H.d.J=7H-); 0.90(3H.d.J=7H2); 0.94(3H,J=7H2); 1.82(1H,dd_J=6,1H2); 0.25(3H3); 0.25(3H3); 1.27-1.43(3H,m); 1.34(3Ha); 1.45(3H,m); 1.37(3H,d_J=1.1H2); 1.88(1H,dd_J=6,1H2); 2.05(3H3); 2.50-2.82(9H,m); 2.70(1H,dd_J=7,H2); 2.82(1H,d,J=2,6H2); 3.34(1H,d,J=5,H2); 3.74-2.80(1H,m); 5.04(1H,d,J=10H2); 5.07(1H,d,J=11H2); 5.56(1H,d,J=10,H2); 5.07(1H,d,J=11H2); 5.61(1Hd,J=10,H2); 5.07(1H,d,J=11H2); 5.81(1Hd,J=10,H2); 5.07(1H,d,J=11H2); 5.81(1Hd,J=10,H2); 5.81(1Hd,J=11,H2); 5.81(1H

Example B8 7-Acetoxy-3,6,21-tr/hydroxy-6,10,12,16,20-pentamethy-18,19-epoxyfricosa-11-clide and E-7-acetoxy-3,6,21-tr/hydroxy-6,10,12,16,20-pentamethy-118,19-epoxyfricosa-14-en-11-clide (Compound B8-1), and E-7-acetoxy-3,6,21-tr/hydroxy-6,10,12,16,20-pentamethy-118,19-epoxyfricosa-12-en-11-clide (Compound B6-2)

[0294]

Compound B6-1

Compound B6-2

[0285] (8E,12E,14E)-7-acetoxy-3,8,21-trihydroxy-6,10,12,16,20-pentamethy-1,8,19-epoxytricosa-6,1,2,14-trien11-olide (12.0 mg, 22.4 µmd) was dissolved in methanol (2.0 mL), and a 10% palladium carbon catalyst (WE)52,2%) (1.2 mg) was added. The mixture was stirred for 20 minutes under hydrogen atmosphere, was filtered (ADVANTEC DISMIC-1391P, PTFE, 0.2 µm), and was concentrated. The resulting crude product was purified by thin layer
chromatography (MERICK Silicagel 60 F254, 0.5 mm, ovulution solution, hyazanettershydrofuran = 1.2) to obtain the
title Compound 86-2 (2.7 mg, 5.1 µmol, 22,7%) and Compound 86-1 (3.6 mg) as colorless olis, respectively.

5 Compound B6-1

[0296] ¹H-NMR Spectrum(CD₃OD,400MHz)δ(ppm): 0.85-1.05(18.0H,m), 1.14-1.18(3.8H,m), 1.18-2.03(16.0H,m), 2.03-2.06(3.4H,m), 2.06-2.18(0.6H,m), 2.26-2.70(4.9H,m), 2.73-2.82(0.9H,m), 3.49-3.58(1.0H,m), 3.71-3.79(1.1H,m), 3

4.77-4.95(1.1H,m), 5.00-5.06(1.1H,m), 5.30-5.653.4H,m); FAB-MS m/z 539(M+H)+, 540M+, 537(M-H)+

Compound B6-2

- [0237] H-NNR Spectrum(CD₂OD, 400MH:3/gpm; 0.87(H,d,J=7H₂), 0.942(H,d,J=7H₂), 0.944(H,H,J=7H₂), 0.98(H,d,J=7H₂), 0.79(H,m), 2.51(H,m), 2.51(H,m), 2.51(H,m), 2.51(H,m), 2.51(H,d,J=4H₂), 2.63(H,d,d,J=3,H₂), 2.76(H,d,J=2,H₂), 3.52(H,d,J=4H₂), 2.79-3.80(H,m), 5.02(H,d,J=1H₂), 5.03(H,d,J=10-10), 5.50(SS(H,m), 5.54(H,d,d)=10,H₂), 5.88(H,d,d,J=0,18h); 7.89(H,d,H=1H₂), 5.03(H,d,J=10-10), 5.50(SS(H,m), 5.54(H,d,d)=10,H₂), 5.88(H,d,d,J=0,18h); 7.89(H,d,H=1H₂), 5.03(H,d,J=1H₂), 5.0
- Example B7 (8E,12E)-7-Acetoxy-3,6-dihydroxy-14-oxo-6,10,12-trimethyl-tetradeca-11-olide (Compound B7)

[0298]

15

25

50

Compound B7

OAC OH

[0299] A 4% aqueous solution (213 µL) of osmium tetraoxide was added to a solution of (8E.12E.14E)-7-acetoxy-3,6,221-intyroxy-6,10,21.62 potentianely-16.1 Sepaportions-8, 121.4-irine-11-idie (15 mg, 28 µmol) in 2 µL of acctione, followed by stirring for 2 hours at room temperature. An aqueous solution of sodium sulfite was added to the reaction solution and vigorously stirred for a while, and then ethyl acetate was added thereto. The organic layer was washed with brine, dired over arhydrous magnesium sulfate and evaporated. The resulting residue was dissolved in 1 mi. of tetrahydroutnar and an aqueous solution of sodium periodate (7.8 mg in 0.5 ml of water) was added thereto, followed by stirring at room temperature 12 hours. After the reaction solution was additized with ethyl acctetate, the solution was washed with distilled water and brine, dried over anhydrous magnesium sulfate and evaporated. The resulting residue was purified by silling eol column chromotography (Kanto solution was direction, enursit, 40 to 100 µm, elused; ethyl acetate/ethyl acetate/ethyl acetate/ethyl acetate/ethyl acetate/ethyl acetate/ethyl acetate/ethyl acetate/ethyl acetate/ethyl. 3.05(14.1.0.4.0.4.1.2.0); 1.05(14.1.3.0.1.4.8); 1.0.1.4.1.2.(21.4.), 1.0.1.4.8(21.4.), 1.0.1.4.1.2.(21.4.), 1.0.1.4.8(21.4.), 1.0.1.4.1.2.(21.4.), 1.0.1.4.8(21.4.), 1.0.1.4.1.2.(21.4.), 1.0.1.4.8(21.4.), 1.0.1.4.1.2.(21.4.), 1.0.1.4.8(21.4.), 1.0.1.4.1.2.(21.

40 Example B8 (BE, 12E, 14E)-7-Acetoxy-3-6-dihydroxy-21-methoxy-6,10-12,16,20-pentamethy-1.6,19-epoxytricosa-8,12,14-trien-11-oilde (Compound B8-1), (BE, 12E, 14E)-7-acetoxy-3-hydroxy-6,21-dimethoxy-6,10-12,16,20-pentamethy-1-8,19-epoxytricosa-8,12,14-trien-11-oilde (Compound B8-2), (BE, 12E, 14E)-7-acetoxy-3,21-dimethoxy-6,10,12,16,20-pentamethy-1-8,19-epoxytricosa-8,12,14-trien-11-oilde (Compound B8-3), (BE, 12E, 14E)-7-acetoxy-3,21-dihydroxy-3-methoxy-6,10,12,16,20-pentamethy-1-1-oilde (Compound B8-3), (BE, 12E, 14E)-7-acetoxy-3,21-dihydroxy-3-methoxy-6,10,12,16,20-pentamethy-1-1-oilde

18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B8-5) and (8E,12E,14E)-7-acetoxy-6-hydroxy-3,21-dimethoxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B8-6)

r03001

5

10

15

30

35

40

Compound B8-1

Compound B8-2

Compound B8-3

Compound B8-4

Compound B8-5

Compound B8-6

[0301] Methyl trifluoromethanesulfonate (28 mg, 169 µmol) was added to a solution of (8E,12E,14E)-7-acetory-8, 28.2 41-injvdroy-6, 10.12,18.2 0-pentamethyl-18,19 epoxytricosa-8,12.4 41-injen-1-olide (30 mg, 59 µmol) and 1,8-bis (dimethylamino)naphthalene (43 mg, 202 µmol) in 1 mitoluene, followed by heating at 60°C for 20 hours under nitrogen atmosphere. After filtering off the resulting precipitates, the filtrate was diluted with eight acetta, an aqueous ammolium chioride was added thereio, and the solution was vigorously stirred for 5 min. The organic layer was washed with a saturated socium bicarbonate aqueous solution and brine, dried over anhydrous magnesium sulfate and evaporated. The resulting residue was purified by silica gel column chromatography (Kanlo silica gel 600 spherica), neutral, 40 to 100 µm, eluste; hexane-ethyl acetate=1;1 to 14) and a preparative HPLC (YMC Jisphere ODS M-80, 20 mm ILD. × 250 mm, elution solvent; acetoritic water-2086 to 100 00) not both the respective title compounds.

Compound B8-1

5 [0302] ¹H-NMR Spectrum(CD₃OD,500MHz) 8 (ppm) : 0.92(3H,d,J=7.0Hz), 0.92(3H,d,J=7.0Hz), 0.92(3H,d,J=7.0Hz), 1.13(3H,d,J=5.Hz), 1.23(3H,s), 1.32-1.72(9H,m), 1.79(3H,s), 2.10(3H,s), 2.462.86(4H,m), 2.86(H dd,J=2.9.80Hz), 2.77(1H,d,J=2.0.6.0Hz), 3.17-3.24(1H,m), 3.42(3H,s), 3.76-3.88(1H,m), 5.09(2H,d,J=10.0Hz), 5.61(1H,dd,J=0.1.5.0Hz), 5.70(1H,dd,J=8.5,15.0Hz), 5.74(1H,dd,J=10.1.5.0Hz), 6.13(1H,d,J=10.5Hz), 6.36(1H,dd,J=0.1.5.0Hz), 6.13(1H,d,J=10.5Hz), 6.36(1H,dd,J=0.1.5.0Hz), 6.13(1H,d,J=0.5Hz), 6.36(1H,dd,J=0.5Hz), 6.36(1H,

J=10.5,15.0Hz); ESI-MS m/z 551(M+H)+, 573(M+Na)+.

Compound B8-2

5 [0303] 1H-NNR Sportrum(CD₂OD.500MHz) & [ppm:: 0.92(BH.dJ»-7.0Hz), 0.93(3H.I,J»-7.0Hz), 1.13(3H.d,J»-6.5Hz), 1.24(3Hs), 1.324-1.72(BH-M), 1.73(BH-M), 2.14(BH-M), 2.42(BH-M), 3.44(BH-M), 3.42(BH-M), 3.44(BH-M), 3.42(BH-M), 3.44(BH-M), 3.42(BH-M), 3.44(BH-M), 3.42(BH-M), 3.42(B

10 Compound B8-3

[0304] ESI-MS m/z 601(M+Na)+.

Compound B8-4

15

90

[0395] 'H-MMR Spectrum(C0₃OD,500MHz) ô [ppm]: 0. 95 (3H,d,J=7.0Hz), 0.57(3H,d,J=7.0Hz), 1.01(3Hz), 1.15(3H,d,J=7.0Hz), 1.15(3H,d,J=7.0Hz), 1.16(3Hz), 1.15(3Hz), 1.15(3Hz), 2.13(3Hz), 2.

Compound B8-5

Goodel 14-NMR Spectrum (CD₂OD, 500MHz) & (ppm): 0.94 (3H₁₄E-6.5Hz), 0.97(3H₂J₂D-7.5Hz), 1.5(3H₂J₂E-5.5Hz), 1.5(3H₂J₂E-5.5Hz), 1.5(3H₂J₂E-5.5Hz), 1.22(1-3Hz), 2.24-2.88(4H₂H₂H₂D-2.24-2.88(4H₂H₂H₂D-2.24-2.88(4H₂H₂H₂D-2.24-2.88(4H₂H₂H₂D-2.24-2.88(4H₂H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂D-2.24-2.88(4H₂H₂D-2.24-2.88(4H₂

Compound B8-6

[0307] 1H-NMR Spectrum (CD₂OD, 500MHz) δ (ppm): 0.85-9.92(9H,m), 1.09(3H,d,J=7.0Hz), 1.20 (3H, s), 1.21-1.40(3H,m), 1.42-1.54(2H,m), 1.58-1.86(3H,m), 1.68-1.76(1H,m), 1.74(3H,s), 2.26(3H,s), 2.43(1H,dd,J=8.0,14.5Hz), 2.40-2.82(2H,m), 2.84(1H,dd,J=2.5,7.5Hz), 2.88-2.75(2H,m), 3.12-3.20(1H,m), 3.3(3H,s), 3.38-3.46(1H,m), 4.95(1H,d,J=11.0Hz), 5.03(1H,d,J=9.5Hz), 5.54(1H,dd,J=9.5,15.0Hz), 5.68(1H,dd,J=1.0Hz), 5.71(1H,dd,J=10.0,15.0Hz), 6.09(1H,d,J=11.0Hz), 6.32 (1H,dd,J=11.0,15.0Hz); ESI-MS m/z 585 (M+H)+ 587 (M+Na)*

Example B9 (8E,12E,14E)-7-Acetoxy-3,6,17-trihydroxy-21-methoxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B9)

[0308]

Compound B9

[0309] By using (8E,12E,14E)-7-acetoxy-3,6,17,21-tetrahydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (2.3 mg, 4.2 µmol) obtained in Example A22, methylation of the hydroxy group was carried out in the same manner as Example B8, to give the title compound (30 µg).

1H-NMR Spectrum (CDCl₃, 500MHz) 8 (ppm): 0.86.0 4 (0H.m), 1.16(3H.d,J=6.5Hz), 1.22(3H.a), 1.22-1.74(7H.m), 1.76(3H.a), 2.10(3H.a), 2.46.2.58(3H.m), 2.48(3H.d,J=3.5.14.5Hz), 2.28(2H.d,d,J=2.0.5.0Hz), 2.18(1H.d,J=4.0.15Hz), 2.29-3.38(1H.m), 3.47(3H.a), 3.72-3.80(1H.m), 5.09(1H.d,J=6.5Hz), 5.16(1H.d,J=1.0.15), 5.56-5.74(3H.m), 6.09(1H.d,J=10.5Hz), 6.32(1H.dd,J=11.0.15.0Hz); ESI-MS m/z 589(M-Na)*, 601(M+CD)*.

Example B10 (BE,12E,14E)-7-Acatory-2,31-bis(1-bulydimethysisory)-8-hydroxy-6,10,12,16,20-entamethyl-18,19-epoxyricosa-8,12,14-trien-11-oilde (Compound B10-1), (BE,12E,14E)-7-acetoxy-3-1-bulydimethysisioxy-6,21-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxyricosa-8,12,14-trien-11-oilde (Compound B10-2) and (BE,12E,14E)-7-acetoxy-2-1-(t-bulydimethysisioxy)-3,6-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxyricosa-8,12,14-trien-11-oilde (Compound B10-3)

[0310]

20

30

Compound B10-1

Compound B10-2

Compound B10-3

(wherein TBS is the abbreviation of t-butyldimethylsilyl, and so forth.)

[0311] To a solution of (BE,12E,14E)-7-acetosy-3,6,21-in/hydroy-5,10,121,620-pentamethyl-18,19-epoxyritocas-8,12,14-trien-11-olide (10 mg, 56 µmot) and imidazole (4.2 mg, 61 µmot) in 0.4 mL of NN-dimethyltomamide, followed by stirring at room temperature for 12 hours under nitrogen atmosphere. The reaction solution was diluted with ethyl acetate, washed with distilled water and brine, dried over anhydrous magnesium sulfate and evaporated. The resulting residue was purified by silica gel column chromatography (Kanto silica gel 60N spherical, neutral, 40 to 100 µm, eluate; hexane:ethyl acetate-3:1 to 1:1) to obtain the title Compound B10-1 (6.3 mg, 38%), Compound B10-2 (2.4 mg, 40%) and Compound B103 (1.6 mg, 12%) as coloriess oils, respectively.

Compound B10-1

[0312] 'H-MMR Spectrum (CD_OD,800MH-) 8 (ppm): 0.12(8H-s), 0.13(9H-s), 0.14(9H-s), 0.38(9H,1-3-24-b), 0.80 (SH,d.1-6,8Hz), 0.33(9H,d.1-6,8Hz), 0.95(9H,s), 0.95(9H-s), 0.92(9H-s), 1.22(9H,d.1-6,6Hz), 1.26-1.33(1H-m), 1.36-1.65(6H-m), 1.57-1.75 (2H-m), 1.77(9H-s), 2.11(9H-s), 2.48(1H-d), 2.48(1H-d), 2.48-2.64(9H-m), 2.68(1H-d), 2.30, 8.4Hz), 2.77 (1H-d), 2.48(1H-d), 2.48(1H-d),

J=10.8,15.0Hz); ESI-MS m/z 765(M+H)+.

Compound B10-2

5 [0313] ¹H-NMR Spectrum (CD₃OD,800MHz) δ (ppm): 0.13(3H,a), 0.14(3H,a), 0.93(3H,d,J=8.8Hz), 0.94(3H,d, J=8.8Hz), 0.96(9H;a), 0.96(3H,d,J=2.14z), 1.13(3H,d,J=7.2Hz), 1.13(3H,d,J=6.8Hz), 1.20-1.28(1H,m), 1.24-7.8(9H,m), m), 1.77(3H,a), 2.10(3H,a), 2.42(1H,d,J=4.13.8Hz), 2.47-2.85(3Hm), 2.70(1H,d,J=2.48.4Hz), 2.77(1H,d,J=2.48.0Hz), J=2.4.8.0Hz), 3.53-3.58(1H,m), 3.93-4.00(1H,m), 4.94(1H,d,J=10.8Hz), 5.07(1H,d,J=9.8Hz), 5.81(1H,dd,J=0.8Hz), 6.15(0Hz), 5.71(1H,d,J=0.8Hz), 6.38(1H,dd,J=0.8Hz), 6.38(1H,dd,J=0

Compound B10-3

[0314] ¹1-NNR Spectrum (CD₂OD, 600Mt2) 5 (ppm); 0.12(6H, s), 0.86(3H, d, J-F, 2Hz), 0.92(3H, d, J-F, 2Hz), 0.92 5 (9H, s), 0.95(3H, J, J-6, 6Hz), 1.12(3H, d, J-6, 6Hz), 1.23(3H, s), 1.26-1.74(9H, m), 1.78(3H, s), 2.10 (3H, s), 2.44-2.88(4H, m), 2.86(1H, d, J-2, 4Hz), 2.77(1H, d, J-2, 4Hz), 3.75-3.85(2H, m), 5.06(1H, d, J-10, 8Hz), 5.06(1H, J-2, 4Hz), 3.75-3.85(2H, m), 5.06(1H, d, J-10, 4Hz), 5.61(1H, d, J-10, 4Hz), 6.15(0Hz), 5.86(1H, d, J-8, 4Hz), 5.74(1H, d, J-9, 6, 15, 0Hz), 6.13(1H, d, J-10, 8Hz), 6.36(1H, d, J-10, 8H

Example B11 (8E,12E,14E)-7-Acetoxy-6,21-bis(1-ethoxyethoxy)-3-(t-butyldimethylsiloxy)-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B11)

[0315]

30

35

50

55

Compound B11

(wherein EE is the abbreviation of 1-ethoxyethyl, and so forth.)

[0316] Pyrtdinium P-toluenesulfonate (1.8 mg, 7 µmol) was added to a solution of (85,125,145)-7-acetoxy-3-(1.5 µmol) was added to a solution of (85,125,145)-7-acetoxy-3-(1.5 µmol) properties of the peopyrtices as 1.2 µmol / 1.4 µmol / 1.5 µmo

ESI-MS m/z 817 (M+Na)+.

Example B12 (8E,12E,14E)-3,21-bis(t-Butyldimethylsiloxy)-6,7-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-oilde (Compound B12)

[0317]

10

15

25

35

40

50

55

Compound B12

[0318] Potassium carbonate (48 mg, 0.35 mmol) was added to a solution of (8E,12E,14E)7-acetoxy-3;21-bis(-buyldimethylsiloxy)-6-hydroxy-6,10,12;16;20-pentamethyl-18,19-epoxyritosa-8,12,14-tiren-11-olide (220 mg, 0.29 mmol) obtained in Example 811 methanol (15 mL), tollowed by silming at room temperature for 15 hours. After acetic acid (40 µL, 0.69 mmol) was added, the reaction solution was evaporated. The residue was dissolved in ethyl acetate, and the solution was washed with a saturated sodium bicarbonate aqueous solution and brine, dried over anhydrous magnesium suitate and then concentrated to dryness under reduced pressure to obtain the title compound (0.2 g, 95%) as a colorless amorphosi.

Example B13 (8E,12E,14E)-3,21-bis(t-Butyldimethylsiloxy)-6,7-carbonyldioxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B13)

[0319]

Compound B13

[0320] (9E.,12E,14E)-3.21-bis(t-Butyldimethylsiloxy)-6,7-difrydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-linen-11-olide (15 mg, 20 mmol) obtained in Example B12 and NN-carbonyldimitace) (20 mg, 120 pmol) were dissolved in 0.5 mL of tetrahydroturan, followed by string at 60°C for one hour. The reaction solution was difuted with ethyl acetate, washed with brine, dried over anhydrous magnesium sulfate and then evaporated. The resulting residue was purified by silica gel column chromatography (Kanto silica gel 60N, 40 to 100 µm, eluate; hexane-ethyl acetate-6:1) to obtain the title compound (15.4 mg, 88%) as a colorless oil.

Example B14 (BE,12E,14E)-21-(I-Butyldimethylsiloxy)-6,7 carbonyldioxy-3-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxylrioxsa-9,12,14-trien-11-olide (Compound B14-1) and (BE,12E,14E)-6,7-carbonyldioxy-3,21-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxylrioxsa-8,12,14-trien-1-olide (Compound B14-2)

[0321]

10

Compound B14-1 Compound B14-2

[0322] A solution of 1.0 M of tertabulylammoniumfluoride in tetrahydrofuran (240 µL, 240 µmo)) was addod to a solution of (8E, 12E, 14E)-3,21-bis(t-butyldimethylsiloxy)-6,7-carbonyldioxy-6,10,12,16,20-pentamethyl-18,19-apoxytricose-8,12,14-trien-11-olide (9 mg, 12 µmo)) obtained in Exampie B13 in tetrahydrofuran (2.5 mb.), followed by stirring at room temperature for 20 hours. Acetic acid (14 µL, 240 µmol) was added to the reaction solution, and it was diluted with distilled water and brine, dried over anhydrous magnesium suilate and evaporated. The resulting residue was purified by thin layer chromatography (MERGK Billicage) 67254, 0.2 mm, developing solution; hexane:ethyl acetate-2:3) to obtain the title Compound B14-1 (4.3 mg, 55%) as a white owder, respectively.

Compound B14-1

[0323] ¹H-NMR spectrum (CD₂OD, 500MHz) δ(ppm): 0.08(6H,m), 0.08(6H,a), 0.83(3H,t,J=7.3Hz), 0.918(4H,d,J=7.3Hz), 0.92(9H,a), 1.08(3H,d,J=7.0Hz), 1.22-1.58(10H,m), 1.68(1H,d,J=5.5,14.0Hz), 1.75(3H,a), 1.44(1H,t,J=12.0Hz), 2.07(1H,d,J=7.6 bHz), 2.04(1H,d,J=5.10.5Hz), 2.42-2.54(1H,m), 2.62-2.76(4H,m), 3.71-3.76(1H,m), 3.88-3.96(1H,m), 4.80(1H,covered with CD₂OH), 4.95(1H,d,J=11.0Hz), 5.65(1H,dd,J=8.5,15.0Hz), 5.99(1H,dd,J=10.0Hz), 5.77(1H,dd,J=10.0Hz), 6.09(1H,d,J=10.5Hz), 6.32(1H,dd,J=11.0.15.0Hz); ESI-MS 5mt 587(M+Na)*.

Compound B14-2

45

55

[0324] ¹⁴+NMR spectrum (CD₂OD, 500MH₂) 8(ppm): 99(3H,d₄)=7.0H₂), 0.91(3H,d₄)=6.8H₂), 0.94(3H,l₄)=7.8H₂), 1.09(3H,d₄)=6.8H₂), 0.94(3H,l₄)=1.51(3H,m), 1.20(1H,m), 1.20(1H,m), 1.20(1H,m), 1.20(1H,m), 1.75(3H,a), 1.85(1H,l₄)=1.0H₂), 2.07(1H,d₄)=7.51(30H₂), 2.20(1H,d₄)=1.00,15.0H₂), 2.422-54(1H,m), 2.42-2.76(4H,m), 3.48-3.55(1H,m), 3.88-3.95(1H,m), 4.80(1H,d₄)=8.8H₂), 4.95(1H,d₄)=1.0H₂), 5.67(1H,d₄)=8.51(5.0H₂), 5.68(1H,d₄)=9.015.0H₂), 5.76(1H,d₄)=9.015.0H₂), 5.76(1H,d₄)=9.015.0H₂), 5.22(1H,d₄)=1.015.0H₂), 5.80(1H,d₄)=9.015.0H₂), 5.76(1H,d₄)=1.015.0H₂), 5.22(1H,d₄)=1.015.0H₂), 5.76(1H,d₄)=1.015.0H₂), 5.76(1H,d₄)=1.015.0H₄), 5.76(1H,d₄)=1.015.0H₄), 5.76(1H,d₄)=1.015

Example B15 (BE,12E,14E)-21-(I-butyldmethyl)siloxy-3-hydroxy-6,7-dmethoxy-6,10,12,16,20-pentamethyl-18,19-poxytricosa-8,12,14-trien-11-olide (Compound B15-1) and (BE,12E,14E)-3,21-dihydroxy-6,7-dimethoxy-6,10,12,16,20-pentamethyl-14,19-epoxytricosa-8,12,14-trien-11-olide (Compound B15-2)

5 [0325]

Compound B15-1

Compound B15-2

[0328] By using (65,126,145)-9,21-bis(t-butyldimethylsiloxy)-6,7-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-tiren-11-olide (20 mg, 28 µm/b) obtained in Example B12, the methylation of the hydroxy group was carried out in the same manner as Example B3, and then the deprotection was carried out in the same manner as in Example B14, to obtain the title Compound B15-1 (8.4 mg, 40%) and Compound B15-2 (8.6 mg, 42%) as colorless oils, respectively.

Compound B15-1

[0327] 'H-NMR spectrum (CD₂OD, 500MHz) &(ppm); 0.08(6H.s), 0.83(3H.s), J=7.5Hz), 0.87(3H.d, J=7.0Hz), 0.82(9H.s), 0.94(3H.d, J=7.0Hz), 0.82(9H.s), 1.76(3H.s), 2.74(1H.d, J=2.0.8.0Hz), 3.23 (3H.s), 3.73(3H.m), 4.794.82(1H.covered with CD₂OH), 5.07(1H.d, J=1.0.5Hz), 5.45(1H.dd, J=0.5Hz), 5.45(1H.dd, J=0.5Hz), 5.56(1H.dd, J=0.5Hz), 5.45(1H.dd, J=0.5Hz), 5.58(1H.dd, J=0.5

Compound B15-2

25

[0328] **IH-MMR apectrum (CD₃OD, 500MHz) & (ppm): 0.91 (3H.d.J.=7.0Hz), 0.34(3H.J.J.=7.5Hz), 0.95(3H.d.8.5Hz), 1.09(3H.d.J.=7.0Hz), 1.11-1.28(1H.m), 1.26-1.68(8H.m), 1.29(3H.d.), 1.78(3H.d.), 2.44-2.59(3H.m), 2.58-2.86(2H.m), 2.73(1H.d.J.J.=5.0.60Hz), 3.23(3H.d.), 3.84-3.55(1H.m), 3.76-3.84(1H covered with CD₂OH), 5.07(1H.d.J.=1.0.15, 5.45(1H.d.J.=1.0.15, 5.45

Example B16 (8E,12E,14E)-7-Acotoxy-3-6-dihydroxy-21-methanesulfonyloxy-6,10,12,1620-pentamethyl-18,19-epoxyrirosa-8,12,14-brien-11-olide (Compound B16-1) and (8E,12E,14E)-7-Acetoxy-6-hydroxy-3,21-dimethanesulfonyloxy-6,10,12,16,20-pentamethyl-18,19-epoxyrirosa-8,12,14-brien-11-olide (Compound B16-2)

[0329]

Compound B16-1

Compound B16-2

[0330] A solution of (8E,12E,14E)-7-acotory-3,6,21-th/tydrory-6,10,12,16,20-pentamethyl-18,19-epoxytriosa-8,12,14-trien-11-olde (56.3 mg, 104.9 µmol) in dichloromethane (1.0 mL) was ice-cooled, and dimethylaminopydinic (39.6 mg, 324.1 µmol) was added therato. After stirring for about 30 min, mesyl cholined (12.5 µL, 16.15 µmol) was added and the temperature was raised to room temperature. After stirring for about 3 hours, it was diluted with ethyl acetate (10 mL), and washed with distilled water (2 mL) for two times and with brine (2 mL). The organic layer obtained was dried over anhydrous sodium sulfate, filtered and then concentrated.

[0331] The resulting crude product was purified by thin layer chromatography (MERCK Silicagel 80 F254, 0.5 mm, developing solution; ethyl acetate) to obtain the title Compound B16-2 (22.1 mg, 31.9 μmol, 30.4%) and Compound B16-1 (22.5 mg, 36.6 μmol, 34.9%) as coloriess oils, respectively.

Compound B16-1

10

20

40

[0332] ¹H-NMR spectrum (CD₂OD, 400MHz) 8(ppm): 0.87(Hd,J=Frtz), 0.94(8H,J=Frtz), 0.96(8H,J=Frtz), 0.96(8H,J=Frtz), 1.07 (SH,d,J=Frtz), 1.107 (SH,d,J=Frt

Compound B16-2

[0333] 'H-MMR spectrum (CD_QD, 400MHz) & [ppm] : 0.88(H1,d_i=7Hz), 0.94(3H,L_i=8Hz), 0.96(3H,d_i=7Hz), 1.16(3H,d_i=7Hz), 1.16(3H,d_i=7Hz), 1.16(3H,d_i=7Hz), 1.16(3H,d_i=7Hz), 1.16(3H,d_i=7Hz), 1.26(3H,d_i=7Hz), 1.26(3Hz), 1.26(3Hz),

Example B17 (8E,12E,14E)-7-Acetoxy-3,6-dihydroxy-21-(toluene-4-sulfonyloxy)-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B17)

[0334]

Compound B17

[0335] A solution of (8E.12E.14E)-7-acetoxy-3.6,21-tithydroxy-6,10,12.16;20-pentamethy-18,19-epoxyricosa-8,12,14-tien-1-olide (£23 mg 9.74 μmol) in dichloromethane (1 o mL) was ico-cooled, and dimethylaminopydride (37 4 mg, 306.1 μmol) was added therato. After stirring for about 30 min., toeyl chloride (28.8 mg, 150.0 μmol) was added and the temperature was raised to room temperature. After stirring for 4 hours, the reaction mixture was diluted with ethyl acetate (10 mL), and washed with distilled water (2 mL) for two times and with bring (2 mL). The organic layer obtained was dried over anhydrous sodium sulfate, filtered and then concentrated. The crude product was purified by medium pressure column chromotography (bleene.acetone-101.), MERICK Lober, LiChropropsi (30, 4 m/min.) and a thin layer chromatography (MERICK Sillicagel 60 F254, 0.5 mm, developing solution; ethyl acetate) to obtain the title Compound (8.8 mg, 1.27 μmol, 13.0%) as a coloress oil.

1H-NMR spectrum (CD₂OD, 400Mtr); 8(ppm); 0.80(3H₁J₂-PH₂), 0.83(3H₃J₂-PH₂), 0.83(3H₃J₂-PH₂), 1.04(3H₃), 1.20-1.04(4H₃), 1.50-1.72(5H₃H₃), 1.27(5H₃J₃-2.14+1); 0.26(3H₃), 2.25(4H₃J₂-2.84+1); 3.75-2.81(1H₃H₃-2.84+1); 3.75-2.84(1H₃H₃-2.84+1); 3.75-2.84(1H₃H₃-2.84+1); 3.75-2.84(1H₃H₃-2.84+1); 3.75-2.84(1H₃H₃-2.84+1); 3.75-2.84(1H₃H₃-2.84(1H₃H₃-2.84+1); 3.75-2.84(1H₃H₃-2.84(1H₃-2.84(1H₃H₃-2.84(1H₃-2.84(1H₃-2

Example B18 (8E.12E.14E)-7-Acetoxy-21 futuor-3.8-dihydroxy-6.10.12.16.20-pentamethyl-18.19-spoxytricosa-8,12,14-trien-11-olide (Compound B18-1), (8E,12E,14E)-7-acetoxy-21-fluoro-3-hydroxy-6-methylene-10,12,16.20-tenamethyl-18.19-spoxytricosa-8,12,14-trien-11-olide (Compound B18-2), (8E,12E,14E)-7-acetoxy-6-fluoro-31,21 dihydroxy-6,10,12.16.20-pentamethyl-18,19-spoxytricosa-8,12,14-trien-11-olide and (8E,12E,14E)-7-acetoxy-20-fluoro-31,21 dihydroxy-6,10,12,16.20-pentamethyl-18,19-spoxytricosa-8,12,14-trien-11-olide (Compound B18-3), (8E,12E,14E)-7-acetoxy-9-8,21-diffuoro-3-hydroxy-6,10,12,16.20-pentamethyl-18,19-spoxytricosa-8,12,14-trien-11-olide (Compound B18-4), and (8E,12E,14E)-7-acetoxy-9-8,20-diffuoro-3-hydroxy-6,10,12,16.20-pentamethyl-18,19-spoxytricosa-8,12,14-trien-11-olide (Compound B18-5)

10 [0336]

20

45

Compound B18-1 Compound B18-2

Compound B18-3

Compound B18-4 Compound B18-5

[0337] A solution of (6E, 12E, 14E)-7-acetoxy-3-t-bulydimethyleipx-y-6, 21-dihydroxy-6, 10.12, 16, 20-pentamethyl-18, 19-epxyrifoxes-8, 12, 14-train-1-lottle (48.3 mg, 74.2 μmol) in dolhomenthan (6 mL) was cooled to -85°C, and DAST (15.0 μL, 113.5 μmol) was added thereto. After 30 min. DAST (10.0 μL, 75.7 μmol) was further added, followed by stirring for 15 min. The reaction mixture was diluted with dichloremethane (4 mL), a saturated sodium bicarbonate aqueous solution (1 mL) was added thereto and the temperature was reased to room temperature. The organic layer was washed with a saturated sodium bicarbonate aqueous solution (1 mL), and brine (1 mL). The organic layer was washed with a saturated sodium bicarbonate aqueous solution (1 mL), and brine (1 mL). The organic layer business diverse of the many-found sodium sudate, filtered and then concentrated. The resulting routed product was purified by thin layer chromatography (MERCK Sillicagel 80 P254, 0.5 mm, developing solution, hexane-ethyl acetate-4-1) to obtain 4 mg and 2 mg as a mixture. These products were provided for the following procedures, respectively. 9.4 mg of the resulting product was dissolved in tetrahydrofuran (0.1 mL), and purified water (2 mL) and acetic acid (0.3 mL). Were added thereto. After strining ownight, the mixture was diluted with ethyl acetate (20 mL), and washed with a saturated sodium bicarbonate aqueous solution (2 mL), purified water (2 mL) and brine (2 mL). The organic layer obtained was dried over anhydroxies sodium sufface, filtered and then concentrated. The resulting crude croduct was

purified by preparative HPLC (SHISEIDO Capoell pak C18, 10 mm I.D. × 250 mm, acetonitrile water-80.40, 40 mL/mln, 10 obtain Compound B18-2 (0.91 mg, 1.8 jumol, 2.4% (two steps)), Compound B18-4 (2.24 mg, 4.3 jumol, 5.8% (two steps)) and Compound B18-5 (1.33 mg, 2.5 jumol, 3.4% (two steps)), as coloridess oils, respectively. Further, 7.2 mg of the resulting product was dissolved in tetrahydrofuran (0.1 mL), and purified water (0.1 mL) and acettic acid (0.3 mL) were acided thereto. After string overnight, the mixture was edituded with entry acetate (20 mL), and washed with purified water (2 mL) for two times and with brine (2 mL). The organic layer obtained was dried over anhydrous sodium sulfate, filtered and then concentrated. The resulting crude product was purified by preparative HPLC (SHISEIDO Capoell jack (18, 10 mm ILD. × 250 mm, acetonities water-550-4, 04 mL/mln, bt obtain Compound B18-1 (1.20 mg, 2.2 jumol, 3.0% (two steps)) and Compound B18-3 (mixture) (1.37 mg, 2.5 jumol, 3.4% (two steps)) as coloriess oils, respectively.

Compound B18-1

[0338] ¹H-MMR spectrum (CD₂OD, 400MHz) 6(ppm): 0.87(1H.d₂J-7Hz), 0.94(3H.d₃J-7Hz), 0.97(3H.t₃J-7Hz), 1.07 (3H.d₃J-7Hz), 1.18(3H₃), 1.31-1.79(9H,m), 1.73(3H,d₃J=0.7Hz), 2.05(3H₃), 2.41-2.81(2H,m), 2.51(1H,d₃J=4Hz), 2.66-2.72(2H,m), 3.74-3.81(1H,m), 4.31(1H,dd₃J=4,9.48Hz), 5.03(1H,d₃J=1Hz), 5.04(1H,d₃J=10.75Hz), 5.69(1H,d₃J=11.75Hz), 5.64(1H,d₃J=0.75Hz), 5.

Compound B18-2

[0339] **IH-NIMR spectrum (CD₃OD, 400MHz) & (ppm): 0.73-0.96 (8.0H,m), 1.05-1.10(3.3H,m), 1.15-1.70(13H,m), 1.72-1.75(3.3H,m), 2.03-2.07(3.1H,m), 2.43-2.91(5.1H,m), 3.48-3.53(0.2H,m), 3.73-3.80(1.0H,m), 5.00-5.08(1.7H,m), 5.05-5.78(3.3H,m), 6.06-6.12(1.0H,m), 6.20-6.28(1.0H,m), 6.06-6.12(1.0H,m), 6.20-6.28(1.0H,m), 6.06-6.12(1.0H,m), 6.06-6.12(1.0H,m)

Compound B18-3

25

[0340] 1H-NMR spectrum (CD₂OD, 400M±2) δ(ppm): 0.86(1H.d,J=7H2), 0.94(3H,d,J=7H2), 0.97(3H,I,J=8H2), 1.07 (3H,d,J=7H2), 1.30-1.77(7H,m), 1.72(3H,d,J=1.1H2), 2.01(3Ha), 2.14(1H,dd,J=11,13H2), 231-2.38(1H,m), 2.42-2.58 (3H,m), 2.89-2.72(3H,m), 3.80-3.87(1H,m), 4.31(1H,dd,J=4,9.48H2), 4.93(1H,d,J=1H2), 5.03(1H,m), 5.72(1H,d,J=5.24(1H,d,J=9H2), 5.41-5.52(2H,m), 5.94(1H,dd,J=6,15H2), 6.07(1H,d,J=1H2), 6.31(1H,dd,J=10,15H2); FAB-MS m/z 543(M+M.3).

Compound B18-4

[0341] ¹H-NMR spectrum (CD₃00, 400MHz) δ(ppm): 0.88(1H,d,J=7Hz), 0.94(3H,d,J=7Hz), 0.97(3H,t,J=8Hz), 1.07 (3H,d,J=7Hz), 1.44(3H,d,J=22Hz), 1.27+1.85(9H,m), 1.73(3H,d,J=1.Hz), 2.03 (3H, s), 2.41-2.83(2H,m), 2.49(2H,d,J=1.Hz), 2.67-2.72(2H,m), 3.73-3.80(1H,m), 4.31(1H,dd,J=4,9.48Hz), 5.03(1H,d,J=11Hz), 5.36-5.0(2H,m), 5.65(1H,d,J=1.Hz), 5.72(1H,dd,J=1.1Hz), 5.72(1Hz), 5.72(1H

Compound B18-5

[0342] 1H-MMR apectrum (CD₂OD, 400MHz) \$(ppm): 0.87(1H,d_J=7Hz), 0.94(3H,t_J=7Hz), 1.08(3H,d_J=7Hz), 1.08(3H,d_J=7Hz), 1.08(3H,d_J=2Hz), 1.73(1H,d_J=2Hz), 1.73(1H,d_J=2Hz), 1.73(1H,d_J=2Hz), 1.74(1.85(1H,m), 2.03(4H,d_J=2Hz), 2.72(3.04(1H,m), 2.03(1H,d_J=2Hz), 2.72(3.04(1H,m), 5.05(1H,d_J=1Hz), 5.36(5.04(1H,d_J=1Hz), 5.36(5.04(1Hz), 5.36(5.

Example B19 (8E,12E,14E)-7-Acetoxy-21-fluoro-6,10,12,16,20-pentamethyl-3,6,18,19-diepoxytricosa-8,12,14-trien11-olide (Compound B19-1), (8E,12E,14E)-7-acetoxy-20-fluoro-6,10,12,16,20-pentamethyl-3,6,18,19-diepoxytricosa-

8,12,14-trien-11-olide (Compound B19-2), and (8E,12E,14E,21E)-7-acetoxy-6,10,12,16,20-pentamethyl-3,6,18,19-diepoxytricosa-8,12,14,21-tetraen-11-olide (Compound B19-3)

[0343]

5

10

15

20

25

40

Compound B19-1

Compound B19-2

Compound B19-3

[0344] (8E.12E.14E)-7-Acetoxy-3.8 21-rhilydroxy-6.10.12.16.20-pentamethyl-18.19-epoxyrhrcosa-8.12.14-trien11-olide (10.2 mg, 19.0 µmol) was dissolved in dichloromethane (0.3 mL) and cooled to -30°C. Then, DAST (15.0 µL,
113.5 µmol) was added droywise. After stirring for 30 mlm, the mixture was diluted with dichloromethane (4 mL), and
washed with a 5% aqueous sodium blicarbonate, water and brine. The organic layer obtained was dried over anhydrous
sodium sulfate and concentrated. The resulting crude product was purified by preparative HPLC (SHISEIDO Capcell
pak C18, 10 mm I.D. × 250 mm, acetonitrile:water=60.40, 4.0 mL/min.) to obtain the title Compound B19-1 (2.0 mg,
3.6 µmol, 19.1%), Compound B19-2 (1.1 mg, 1.9 µmol, 10.3%) and Compound B19-3 (0.9 mg, 1.7 µmol, 9.1%), as
colorfess oils, respectively.

Compound B19-1

[0346] 11-NMR spectrum (CD_QOD, 400MHz) R(ppm): 0.91(81)4,d_=7t-b), 0.95(314,d_=7t-b), 0.73(81,t_=7t-b), 1.3(91-a), 1.38-1.79 (71-m), 1.75(91-a), 2.06(91-a), 2.11-2.23(11-m), 2.23(11-dd,d_=3,131-b), 2.83(12-5.25(91-m), 2.56(11-dd,d_=3,131-b), 2.86(2.73(21-m), 4.3(111-dd,d_=4,849t), 4.93-4.48(111-m), 4.91(11-dd,d_=1,191-b), 2.86(11-dd,d_=8,181-b), 2.86(11-dd,d_=8,1

Compound B19-2

[0346] 1+1-MMR spectrum (CD₂OD, 400MHz) \$(ppm): 0.90(3H,d₃-Frk₂), 0.94(3H,J₃-Frk₂), 1.08(3H,J₃-Frk₂), 1.18(3H,J₃-Frk₂), 1.19(3H,J₃-Frk₂), 1.19(3H,J₃-Frk₂), 1.19(3H,J₃-Frk₂), 1.19(3H,J₃-Frk₂), 1.19(3H,J₃-Frk₂), 2.23(1H,dd,J₃-13Hz), 2.83(1H,dd,J₃-2,1Hz), 2.83(1H,dd,J₃-13Hz), 2.83(1H,dd,J₃-2,1Hz), 2.83(1H,dd,J₃-13Hz), 2.83(1H,dd,J₃-13Hz), 2.83(1H,dd,J₃-13Hz), 2.83(1H,dd,J₃-13Hz), 2.83(1H,dd,J₃-13Hz), 8.19(1H,dd,J₃-13Hz), 8.

55 Compound B19-3

[0347] ¹H-NMR spectrum (CD₃OD, 400MHz) δ(ppm): 0.91(3H,d,J=7Hz), 0.97(3H,d,J=7Hz), 1.07(3H,d,J=7Hz), 1.13 (3H,s), 1.42(1H,ddd,J=6,9,14Hz), 1.54-1.67(2H,m), 1.65(3H,d,J=6Hz), 1.68-1.78(1H,m), 1.75(3H,d,J=0.7Hz),

1.93-2.00(1H,m), 2.06(3H,s), 2.11-2.23(1H,m), 2.23(1H,dd,J=4,13Hz), 2.32-2.49(3H,m), 2.55(1H,dd,J=2,7Hz), 2.56(1H,dd,J=3,3Hz), 2.73(1H,dd,J=2,7Hz), 2.56(1H,dd,J=3,3Hz), 2.73(1H,dd,J=1Hz), 5.16(1H,dd,J=8Hz), 5.22(1H,dd,J=9,16Hz), 5.35(1H,dd,J=2,7,15Hz), 5.46(1H,dd,J=0,7,6,15Hz), 5.50(1H,dd,J=8,15Hz), 5.63(1H,dd,J=8,15Hz), 5.63(1H,dd,J=1,15Hz), 5.63(1H

Example B20 (BE.12E,14E)-3,7,21-Triacetoxy-6-hydroxy 6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B20-1), (BE,12E,14E)-72-diacetoxy-3-6-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B20-2), and (BE,12E,14E)-3,67,21-testracetoxy-6-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B20-3)

[0348]

5

10

15

25

30

94

Compound B20-1

Compound B20-2

Compound B20-3

[0349] (8E,12E,14E)-7-Acotoxy-3,6.21-shftydroxy-6,10,12,16,20-penterrethyl-16,19-epocytriosa-8-1;2,14-trien-10-lide (11.0 mg, 20.5 μmol) was dissolved in dichloromethane (0.5 mL), and cooled to 20°C. Then, triethylamine (15.0 μL, 10.7 8 μmol) and dimethylaminopyridine (1.1 mg, 3.0 μmol) were added. After stirring for 30 min., acotic anhydride (0.5 μL, 5.3 μmol) was added thereto. After stirring for 30 min., acotic anhydride (0.5 μL, 5.3 μmol) was additionally added after one hour Successively, acelic anhydride (0.5 μL, 5.3 μmol) was additionally added after 30 minutes and methanol (1 mL) was added after one and half hours, followed by concentrating. The resulting crude product was purified by thin layer chromatography (MER-CK Silicagei 60 F254, 0.5 mm, developing solution; hexane athyl accetate-1-4) to obtain the title Compound B20-2 (7.2 mg, 12.4 μmol, 60.7%) and Compound B20-3 (0.4 mg, 0.6 μmol, 2.9%) as colorises sils; respectively.

Compound B20-1

[0350] ¹H-NMR spectrum (CD₂O₂, 400M±2) 8(ppm); 0.86 (3H, I₂J-T+2), 0.86(3H, I₃J-8+2), 0.90(3H, I₃J-7+2), 1.7(3H, I₃J-7+2), 1.7(3H, I₃J-7+2), 1.7(3H, I₃J-7+2), 1.7(3H, I₃J-7+2), 1.7(3H, I₃J-7+2), 1.7(3H, I₃J-1), 1.7(3H,

Compound B20-2

[0351] ¹H-NMR spectrum (CD₂OD, 400MHz) δ(ppm): 0.86(3H,t,J=7Hz), 0.87(3H,d,J=7Hz), 0.90(3H,d,J=7Hz), 1.07

(3H.d.J.-7Hz), 1.18(3Hs), 1.30-1.48(4Hm), 1.50-1.86(5Hm), 1.74(3H,d.J.=1.1Hz), 2.04(3Hs), 2.05(3Hs), 2.41-2.62 (2Hm), 2.51(3Hd), 3-41-2), 2.54(1Hd,d.J.-2.8Hz), 2.7(1Hd,d.J.-2.8Hz), 3.72-3.81(1Hm), 4.0-4.92(1Hm), 5.03(1Hd, J.=11Hz), 5.04(1Hd,J.=10Hz), 5.56(1Hdd,J.=10.15Hz), 5.64(1H,dd,J.=8,16Hz), 5.69(1H,dd,J=10.15Hz), 6.08(1Hd, J.=10Hz), 5.31(1Hd,J.=11,15Hz), 1.54(3Hz), 3.64(3Hz), 3

Compound B20-3

[0352] 'H-NMR spectrum (CD₂OD, 400MH-2) (sppm): 0.86(3Ht,1,3-7H2), 0.89(3H,d,1,3-7H2), 0.90(3H,d,1,3-7H2), 1.07 (3H,d,1,3-7H2), 1.39-1.48(2H,m), 1.53(3H,s), 1.54-1.71(3H,m), 1.74(3H,d,1,1-1H2), 1.74-1.88(1H,m), 2.03(6H,s), 2.06(3H,s), 2.06(3H,s), 2.34(1H,d,1,3-4,13H2), 2.39-2.52(1H,m), 2.54(1H,d,1,3-1H2), 2.5H2, 2

Example B21 (8E,12E,14E)-7,19-Diacetoxy-18-chloro-3,6,21-trihydroxy-6,10,12,16,20-pentamethylricosa-8,12,14-trien-11-oilde (Compound B21-1), (8E,12E,14E)-7,21-diacetoxy-18-chloro-3,6,19-trihydroxy-8,10,12,16,20-pentamethylricosa-8,12,14-trien-11-oilde (Compound B21-3), (8E,12E,14E)-3,7,19-triacetoxy-18-chloro-3,6,10-triphylricosa-8,12,14-trien-11-oilde (Compound B21-3), (8E,12E,14E)-3,7,19,21-triacetoxy-18-chloro-3,6-dihydroxy-6,10,12,16,20-pentamethylritricosa-8,12,14-trien-11-oilde (Compound B21-4), (8E,12E,14E)-3,7,19,21-tarcacetoxy-18-chloro-6-hydroxy-6,10,12,16,20-pentamethylricosa-8,12,14-trien-11-oilde (Compound B21-4), and (8E,12E,14E)-3,7,19,21-tarcacetoxy-18-chloro-6-hydroxy-18-chloro-6-hydroxy-6,10,12,16,20-pentamethylricosa-8,12,14-trien-11-oilde (Compound B21-6), and (8E,12E,14E)-3,7,21-triacetoxy-18-chloro-6-hydroxy-6-thlor

[0353]

25

30

35

40

50

55

Compound B21-1

Compound B21-2

Compound B21-3

Compound B21-4

Compound B21-5

Compound B21-6

QAC OH OAC OH OAC OH

[0384] A solution of (8Ε,12Ε,14Ε)-7-acetoxy-18-chloro-3,6,19,21-tetralydroxy-6,10,12,18,20-pentamethyltricosa-8,12,14-trien-1-cidie (24.3 mg, 4.25 μmn) in dichloromethane (0.5 ml) was cooled to -20°C, followed by adding dimethylaminopyridine (24 mg, 19.5 μmol) and triethylamine (48 μL, 344 μmol). After stirring for about 5 min., acetic anhydride (6 μL, 8.36 μmol) was added dropwise and the mixture was stirred at the same temperature for about one hour. Methanol (1 mil) was added to the reaction mixture, and after the temperature was raised to room temperature, the mixture was concentrated. The resulting crude product was purified by preparative HPLC (SHISEIDO Capcell pak C18, 10 mm ID. × 250 mm, acetochritik-waters-50.50, 4.0 mU/min, to obtain the title Compound B21-1 (6.3 mg, 9.4 μmol, 9.8%), Compound B21-2 (2.5 mg, 3.5 μmol, 8.3%), Compound B21-4 (3.7 mg, 5.7 μmol, 18.3%), Compound

[0355] B21-6 (1.0 mg, 1.5 µmol, 3.5%) and Compound B21-5 (1.6 mg, 2.2 µmol, 5.2%), as colorless oils, respectively.

Compound B21-1

25

[0356] "H-NMR spectrum (CD₂OD 400MH2) 8(ppm): 0.88(3H,d,J=7H2), 0.89(3H,d,J=7H2), 0.82(3H,d,J=8H2), 1.05 (3H,d,J=7H2), 1.18(3H,s), 1.32-1.41(3H,m), 1.48-1.70(5H,m), 1.74(3H,d,J=0.7H2), 1.79-1.87(2H,m), 2.05(3H,s), 2.10 (3H,s), 2.52(2H,d,J=3H2), 2.52(2H,d,J=3H2), 2.52(2H,d,J=3H2), 3.14-3.81(1H,m), 4.30(1H,d,J=3,1H2), 5.037 (1H,d,J=10H2), 5.03(1H,d,J=11H2), 5.24(1H,d,J=3,3H2), 5.56(1H,d,J=10H2), 5.39(1H,d,J=11H2), 5.24(1H,d,J=3,3H2), 5.56(1H,d,J=10H2), 5.89(1H,d,J=11H2), 5.24(1H,d,J=10H2), 5.72 (1H,d,J=11H2), 6.24(1H,d,J=10H2), 6.72(1H,d,J=10H2), 6.72(1H,d,J

Compound B21-2

[0357] ¹H-MMR specirum (CD₂OD_ 400MHz) (spom): 0.87(8H,d₂J=7Hz), 0.88(8H,I,J=7Hz), 0.93(8H,d₃J=7Hz), 1.04 (3H,d₃J=7Hz), 1.18(3H,d₃J=1.140(2H,m), 1.47-1.74(5H,m), 1.74(3H,d₃J=1.1Hz), 1.79-1.89(2H,m), 2.02 (3H,s), 2.5(2H,d₃J=4Hz), 2.51-2.61(2H,m), 3.53(1H,d₃J=4.8Hz), 3.74-3.80(1H,m), 4.20(1H,ddd₃J=3,41Hz), 5.04(1H,d₃J=10Hz), 5.23(1H,ddd₃J=2,6)Hz), 5.50(1H,dd₃J=10,15Hz), 5.50(1H,d₃J=10,15Hz), 5.74(1H,dd₃J=3,5Hz), 6.07(1H,d₃J=1Hz), 6.29(1H,dd₃J=1,15Hz), 6.74(1H,dd₃J=1,15Hz), 6.74(1H,d₃J=1,15Hz), 6.7

40 Compound B21-3

[0358] "H-NMR spectrum (CD₂OD, 400MHz) 8(ppm): 0.888(3H.d,J=7Hz), 0.889(3H.d,J=7Hz), 0.82(3H.I,I=7Hz), 1.05(3H.d,J=7Hz), 1.75(3H.d,J=7Hz), 1.75(3H.d,J=7Hz), 1.75(3H.d,J=7Hz), 1.75(3H.d,J=7Hz), 1.75(3H.d,J=7Hz), 2.75(3H.d,J=7Hz), 2.75(3H.d,J=7Hz), 2.75(3H.d,J=7Hz), 2.75(3H.d,J=1Hz), 2.75(3H.d,J=1Hz

Compound B21-4

Ø [0359] ¹H-NMR spectrum (CD₂OJ. 400MHz) & fopm): 0.87(3H, J.=8Hz), 0.88(3H, d.J=7Hz), 0.98(3H, d.J=7Hz), 0.99(3H, d.J=7Hz), 1.74(3H, d.J=7Hz), 1.18(3H, d.J=7Hz), 1.74(1-182(1H, m), 2.00(3H₃), 2.04(5H₃), 2.05(2H₃), 2.05(2H₃)

Compound B21-6

55

[0360] ¹H-NMR spectrum (CD₃OD, 400MHz) δ(ppm): 0.876 (3H, t, J=8Hz), 0.881(3H,d,J=7Hz), 0.93(3H,d,J=7Hz),

1.04(3H.d.J=7Hz), 1.17(3H.s), 1.32-1.73 (7H.m), 1.73(3H.d.J=0.7Hz), 1.79-1.88(2H.m), 2.02(3H.s), 2.04(3H.s), 2.05 (3H.s), 2.52-2.88(4H.m), 3.53(1H.d.J=4Hz), 4.19(1H.d.J=3,11Hz), 4.88(1H.d.J=1Hz), 5.02(1H.d.J=10Hz), 5.23(1H,d.J=0.4Hz), 5.54(1H.d.J=10,15Hz), 5.74(1H.d.J=7,15Hz), 6.08(1H.d.J=10Hz), 6.29 (1H.d.J=11Hz), 5.24(1H.d.J=11Hz), 5.24(1Hz), 5.24(1Hz),

Compound B21-5

[0361] 'H-NMR spectrum (CD₂OD, 400MH₂) figpm): 0.86(3H,Li=7Hz), 0.89(3H,d,i=7Hz), 0.99(3H,d,i=7Hz), 1.04 (3H,d,i=7Hz), 1.17(3H,s), 1.32-1.70 (7H,m), 1.74(3H,s), 1.75-1.82(1H,m), 2.00(3H,s), 2.037(3H,s), 2.045(3H,s), 2.05(3H,s), 2.102 (2.16(1H,m), 2.502.89(4H,m), 4.32(1H,d,i=3,1Hz), 4.88(1H,d,i=1Hz), 5.02(1H,d,i=10Hz), 5.03 (1H,d,i=4Hz), 5.75(1H,d,i=10Hz), 5.03 (1H,d,i=4Hz), 5.75(1H,d,i=10Hz), 5.713(1H,d,i=8Hz), 6.09(1H,d,i=1Hz), 6.29(1H,d,i=1,1Hz); 7.84 (2.18

Example B22 (BE_12E_14E)-7.18.21-Triacetoxy-19-chloro-3.6 dihydroxy-6.10.12.16.20-pentamethyltricosa-8,12,14-trien-11-olide (Compound B22-1) and (BE_12E_14E)-3.7,18.21-terhacetoxy-19-chloro-6-hydroxy-6,10,12,16.20-pentamethyltricosa-8,12,14-trien-11-olide (Compound B22a-2c)

[0362]

20

5

Compound B22-1

Compound B22-2

[0363] A solution of (IE.12E,14E)7-acetoxy-19-chitor-0.5, 18,21-tetrahydroxy-5,10,12,16,20-pertamethytricose-8,12,14-tien1-olide (20 z mg, 65 g µmoj) in dichoromethane (0.5 mL) was cooled to 20°C, and dmethylaminopy-ridine (1.5 mg, 12.3 µmoj) and triethylamine (40 µL, 289 µmoj) were added therete. After sturing for about 5 min., acetic anhydride (5 µL, 52.9 µmoj) was added dropwise and the mixture was stirred at the same temperature for about one hour. Further, acetic anhydride (5 µL, 52.9 µmoj) was added dropwise and the mixture was stirred at the same temperature for about one hour. Methanol (1 mL) was added to the reaction solution, and after the temperature was raised to room temperature, the mixture was concentrated. The resulting crude product was purified by preparative HPLC (SHISEIDO Capcell pak C18, 10 mm I.D. × 250 mm, acetonitrie water-50.50, 4.0 mL/min.) to obtain the title Compound 822-2 (1.6 mg, 8.6 5 µmin.) 42-2% and compound 822-2 (1.6 mg, 4.8 µmoj.) 1.7% jas scoldress oils; respectively.

40 Compound B22-1

[0364] ¹⁴+NMR spectrum (CD₂OD, 400MH₂) Kippmi: 0.88(3H,1,=7H₂), 0.88(3H,d,1=7H₂), 1.03(3H,d,1=7H₂), 1.03(3H,d,1=7H₂), 1.03(3H,d,1=7H₂), 1.03(3H,d,1=7H₂), 1.03(3H,d,1=7H₂), 1.03(3H,d,1=1H₂), 1.03(3H,d,1=1H

Compound B22-2

50 [0365] ¹H-MMR spectrum (CD₂OD, 400MHz) & ppm), 0.86(H1,1...-Ptk), 0.90(H.d.,1...-Ptk), 1.08(J.H.d.,1...-Ptk), 1.08 (J.H.d.,1...-Ptk), 1.08 (J.H.d.,1...-Ptk), 1.08 (J.H.d.,1...-Ptk), 1.08 (J.H.d.,1...-Ptk), 1.09 (J.H.d.,1...-Ptk), 1.09 (J.H.d.,1...-Ptk), 1.09 (J.H.d.,1...-Ptk), 1.09 (J.H.d.,1...-Ptk), 1.09 (J.H.d.,1...-Ptk), 2.02 (J.H.d.,1...-Ptk), 2.09 (

55

Example B23 (<u>BE.12E.14E)-7.18,21-Triacetoxy-19-bromo-3.6-dihydroxy-6.10,12,16,20-pentamethyltricosa-8,12,14-tinen-11-olide (Compound B23-1) and (<u>BE.12E,14E)-3,7,18,21 letracetoxy-19-bromo-6-hydroxy-6,10,12,16,20-pentamethyltricosa-8,12,14-tinen-11-olide (Compound B23-2).</u></u>

[0366]

10

15

Compound B23-1 Compound B23-2

QAC Br QACBF

OACBT OAC

[0367] A solution of (8E,12E,14E)-7-acetoxy-19-bromo-3,6,18,21-letrahydroxy-6,10,12,16;20-pentamethytricosa-6,12,14-trian-1-olide (17.0 mg, 27.5 μmol) in dichloromethane (0,4 mg) was coeled to 20°C, and dimethylaminopyridine (1.8 mg, 14.7 μmol) and triethylamine (30 μL, 216 μmol) were added thereto. After stirring for about 5 min, acetic anhydride (5 μL, £29 μmol) was added dropwise and the mixture was stirred at the same temperature for about one hour. Further, acetic anhydride (3 μL, 31.7 μmol) was added dropwise and the mixture was stirred at the same temperature for about one hour.

[0368] Methanol (1 mL) was added to the reaction solution, and after the temperature was raised to room temperature, the mixture was concentrated. The resulting crude product was purified by preparative HPLC (SHISEIDO Capcell pak C18, 10 mm I.D. × 250 mm, acetonitrie.water-50:56-0040, 4.0 mL/min.) to obtain the title Compound 823-1 (5.90 mg, 8.41 mmo, 3.0 s%) and Compound 823-2 (3.91 mg, 5.26 µmo), 19.1%) as colorioses oils, respectively.

Compound B23-1

30 [0359] ¹I+NMR spectrum (CD₂OD, 400MHz) & [6ppm], 0.88(3H,J,L=8Hz), 0.88(3H,J,L=7Hz), 1.06(3H,J,L=7Hz), 1.06(3H,J,L=7Hz), 1.06(3H,J,L=7Hz), 1.06(3H,J,L=7Hz), 1.06(3H,J,L=7Hz), 1.08(3H,J), 2.04(3H,J), 2.05(3H,J), 2.25-2.37(1H,m), 2.20-2.82(3H,m), 3.74-3.82(1H,m), 4.18(1H,J,L=8Hz), 5.86(1H,m), 4.94(1H,J,L=1Hz), 5.86(1H,J,L=1Hz), 5.86(1H,J,L=1Hz)

Compound B23-2

[0370] ¹H-MMR spectrum (CD₂OD, 400MHz) 5(ppm): 0.86(3H,L,3-7Hz), 0.91(3H,d,3-7Hz), 1.05(3H,d,J-7Hz), 1.05 (3H,d,J-7Hz), 1.05 (3H,d,J-7Hz), 1.17(3Hz), 1.17(3Hz),

Example B24 (8E,12E,14E)-7-Acetoxy-3-ethoxyacetoxy-6,21-dihydroxy-6,10,12,16,20-pentamethyl18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B24)

[0371]

50

55

Compound B24

(8E,12E,14E)-7-Acetoxy-3-t-butyldimethylsiloxy-6,21-bis(1-ethoxyethoxy)-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide

[0372]

10

15

[0373] Ethyl vinyl ether (485 mg, 6.7 mmol) and pyridinium p-toluenesulfonate (28 mg, 0.11 mmol) were added to a solution of (8E,12E,14E)-7-acetoxy-3-t-butyldimethylslloxy-6,21-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (146 mg, 0.22 mmol) in dichloromethane (5 mL) at room temperature. The mixture was stirred at room temperature for 18 hours. The reaction mixture was diluted with ethyl acetates, washed with brine, dried over anhydrous magnesium sulfate and evaporated. The resulting crude product was purified by silica gel column chromatography (Kanto silica gel 60N, sphencal, neutral, 40 to 100 um, eluate; hexane;ethyl acetate=70:30) to obtain the title compound (112 mg, 63%) as a colorless oil. ESI-MS m/z 817(M+Na)+.

(8E,12E,14E)-7-Acetoxy-6,21-bis(1-ethoxyethoxy)-3-hydroxy 6,20,12,16,20-pentamethyl-18,19-epoxytricosa-8.12.14-trlen-11-olide

[0374]

40

35

[0375] A 1.0M solution of tetrabutylammonium fluoride (0.026 mmol) in tetrahydrofuran (0.026 mL, 0.026 mmol) was added to a solution of (8E,12E,14E)-7-acetoxy-3-t-buty/dimethylsiloxy-6,21-bis(1-ethoxyethoxy)-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (19 mg, 0.024 mmol) in tetrahydrofuran (0.5 mL) at room temperature. The mixture was stirred at room temperature for 2 hours. Further, 0.026 mL of a1.0M solution of tetrabutylammonium fluoride in tetrahydrofuran (0.026 mL, 0.026 mmol) was added thereto at room temperature. After the reaction mixture was diluted with ethyl acetate, it was washed with brine, dried over anhydrous magnesium sulfate and evaporated. The resulting crude product was purified by silica gel column chromatography (Kanto silica gel 60N, spherical, neutral, 40 to 100 µm, eluate; hexane:ethyl acetate=70:30) to obtain the title compound (112 mg, 63%) as a colorless oil. ESI-MS m/z 703(M+Na)+.

55

(8E,12E,14E)-7-Acetoxy-3-ethoxyacetoxy-6,21-bis(1-ethoxyethoxy)-6,10,12,16,20-pentamethyl-18,19-epoxytricosa 8.12.14-trien-11-olide

[0376]

4

10

- [0377] A solution of ethoxyacetic acid (8.2 mg, 0.079 mmol) in dichloromethane (1.6 mL) was added to (8E.12F. 14E)-7-acetoxy-6,21-di(1-ethoxyethoxy)-3-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (13 mg, 0.016 mmol) at room temperature, and dicyclohexylcarbodiimide (20 mg, 0.094 mmol) and dimethylaminopyridine (1.9 mg, 0.016 mmol) were further added at room temperature. The mixture was stirred at room temperature for 6 hours. The reaction solution was diluted with ethyl acetate, andfiltered through Celite. The filtrate was washed with brine, dried over anhydrous magnesium sulfate and evaporated. The resulting crude product was purified by silica gel column chromatography (Kanto silica gel 60N, spherical, neutral, 40 to 100 um, eluate; hexane;ethyl acetate=70:30) to obtain the title compound (11 mg, 91%) as a colorless oil. ESI-MS m/z 789(M+Na)+.
- (8E,12E,14E)-7-Acetoxy-3-ethoxyacetoxy-6,21-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8.12.14-trien-11-olide (Compound B24)

[0378]

30

35

40

Compound B24

[0379] Pyridinium p-toluenesulfonate (9.8 mg, 0.039 mmol) was added to a solution of (8E,12E,14E)-7-acetoxy-3-ethoxyacetoxy-6,21-bis(1-ethoxyethoxy)-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (6,0 mg, 0.0078 mmol) in methanol (1.0 mL) at room temperature, followed by stirring at the same temperature for 15 hours. The reaction mixture was diluted with 15 mL of ethyl acetate, washed with bone, dried over anhydrous magnesium sulfate and evaporated. The resulting crude product was purified by thin layer chromatography (MERCK Silicage) 60 F254, 0.2 mm, developing solution; ethyl acetate) to obtain the title compound (1.7 mg, 35%) as a coloriess oil. 1H-NMR spectrum (CD₃OD, 400MHz) δ(ppm): 0.88(3H,d,J=6.4Hz), 0.89(3H,d,J=6.8Hz), 0.93(3H,t,J=7.2Hz), 1.08(3H, d,J=6.8Hz), 1.18(3H,s), 1.21(3H,t,J=7.2Hz), 1.28-1.72(9H,m), 1.74(3H,s), 2.06(3H,s), 2.39-2.74(6H,m), 3.46-3.52(1H, m), 3.54-3.63(2H,m), 4.11(2H,s), 4.88-4.98(1H,d,J=10.8Hz), 4.98(1H,d,J=10.8Hz), 5.02(1H,d,J=9.6Hz), 5.56(1H,dd, J=9.6,15.2Hz), 5.66(1H,dd,J=8.4,14.4Hz), 5.72(1H,dd,J=9.6,15.2Hz), 6.09(1H,d,J=10.4Hz), 6.32(1H,dd, J=10.4.14.8Hz): ESI-MS m/z 645(M+Na)+.

55

Example 25 (8E,12E,14E)-7-Acetoxy-21-ethoxyacetoxy-3,6 dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B25)

[0380]

10

15

25

30

Compound B25

(8E,12E,14E)-7-Acetoxy-3-t-butyldimethylsiloxy-21-ethoxyacetoxy-6-hydroxy-6,10,12,16,20-pentamethyl-18.19-epoxytricosa-8.12,14-trlen-11-olide

[0381]

[0382] Ethoxyacetic acid (23 mg, 0.22 mmol), dicyclohexyicarbodimide (55 mg, 0.27 mmol) and dimethylaminoryridine (5.4 mg, 0.27 mmol) were added to a solution of (6£,12£,14£)-7-acetoxy-3-t-butyldimethylailoxy-6.21-dihydroxy-6,10,12.18,20-pentamethyl-18,19-epoxyricosa-8,12,14-trien-11-olide (28 mg, 0.044 mmol) in dichloromethane (3 mL) at room temperature. The mixture was stirred at room temperature for 4 hours. The reaction mixture was diluted with ethyl acetate, and filtered through Ceitle. The filtrate was washed with brine, dried over anhydrous magnesium sulfate and evaporated. The resulting crude product was purified by silica gel column chromatography (Kanto silica gel 60N, spharical, neutral, 40 to 100 µm, eluate; hexane-ethyl acetate=70:30) to obtain the title compound (28 mg, 85%) as a coloriess oil.

(8E,12E,14E)-7-Acetoxy-3-t-butyldimethylsiloxy-21-ethoxyacetoxy-6-(1-ethoxyethoxy)-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide

[0383]

50

55

ESI-MS m/z 759(M+Na)+.

[0384] Ethyl vinyl ether (82 mg, 1.1 mmol) and pyridinium p-toluenesulfonate (9.2 mg, 0.036 mmol) were added to a solution of 7-acetoxy-3-t-butyldimethylsiloxy-21-ethoxyacetoxy-6-hydroxy-6,10,12,16,20-pentamethyl-18,19-epox-

ytricosa-8,12,14-trien-11-olide (27 mg, 0.036 mmol) in dichloromethane (1.5 mL) at room temperature. The mixture was stirred at room temperature for 17 hours. The reaction solution was diluted with ethyl acetale, washed with brink, died over anhytous magnesulm sulfate and evaporated. The resulting ordule product was purified by silicage glocilumn chromatography (Kanto silica gel 60N, spherical, neutral, 40 to $100\,\mu m$, eluate; hexane:ethyl acetate=80:20) to obtain the little compound (16 mg, 54%) as a coloriess oil.

(8E,12E,14E)-7-Acetoxy-21-ethoxyacetoxy-6-(1-ethoxyethoxy) 3-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide

[0385]

15

20

[0386] A 1.0 M solution of tetrabutylammonlum fluoride in tetrahydrofuran (0.037 mL, 0.037 mmol) was added to a solution of (8E,12E,14E)-7-aceloxy-3-t-butyldimethylsioxy-21-ethoxyaceloxy-6-(1-ethoxyethoxy)-5.10,12,16,20-pentumethyl-16,19-spoxyfricosa-81,21-4trien-11-oide (15 mg, 0.018 mmol) in tetrahydroma (1 mt), at room temperature. The mixture was situred at room temperature for 2 hours. The reaction mixture was diluted with ethyl scetate, washed with brine, dried over anhydrous magnesium suitate and evaporated. The resulting crude product was purified by silica gel column chromatography (Kanto silica gel 60N, spherical, neutral, 40 to 100 µm, eluate; hexane-ethyl acetate-60:50) to obtain the title compound (8.8 mg, 68%) as a colorless oil.

(8E,12E,14E)-7-Acetoxy-21-ethoxyacetoxy-3,6-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B25)

[0387]

35

45

Compound B25

[0388] Pyridinium p-tolusnesulfonate (29 mg, 0.12 mmof) was added to a solution of (8E, 12E, 14E)-7-acotory-21-ethoxyacotoxy-6-(1-ethoxyethoxy)-3-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (8.0 mg, 0.012 mmol) in methanol (1.0 mL) at room temperature, followed by stirring at the same temperature for one hour. After the reaction mixture was diluted with ethyl acotate, it was washed with brine, dried over anhydrous magnesium suitate and evaporated. The resulting crude product was purified by thin layer chromatography (MERCK Silicagel 60 7254, 0.25 mm, developing solution; hexane:ethyl scetate=1.2) to obtain the title compound (4.0 mg, 55%) as a chorless's

¹H-NMR spectrum (CD₃OD, 400MHz) &(ppm): 0.87(3H,d,J=6.8Hz), 0.89(3H,d,J=7.2Hz), 0.90(3H,t,J=7.2Hz), 1.07(3H,d,J=6.8Hz), 1.18(3Hs), 1.27(3H,t,J=7.2Hz), 1.24-1.70 (9H,m), 1.74(3Hs), 2.05(3Hs), 2.47.2.50(1H,m), 2.51(2H,d,J=3.6Hz), 2.55(1H,dd,J=2.4,8.0Hz), 2.55(1H,dd,J=2.4,8.0Hz), 2.55(1H,dd,J=3.4,8.0Hz), 2.55(1H,dd,J=3

(1H,dd,J=9.6,14.8Hz), 6.08(1H,d,J=10.8Hz), 6.32(1H,dd,J=10.8,14.8Hz); ESI-MS m/z 645 (M+Na)+.

Example B26 (8E,12E,14E)-7-Acetoxy-3-ethoxyacetylacetoxy-6,21-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B26)

[0389]

5

15

Compound B26

[0390] Ethoxyacetylacetic acid was esterified with (8E,12E,14E)-7-acetoxy-6,21-bis(1-ethoxyethoxy)-3-hydroxy-6,10,12,162-0-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide through the similar synthetic route as Example B24, to dive the title compound as a colories oil.

1H-MMR spectrum (CD_CD, 400MHz) 8[ppm; 0.88GH,d_l=6.4Hz), 0.90GH,d_l=7.2Hz), 0.93GH,f,1.7.2Hz), 1.08[GH,d, J=6.8Hz), 1.18[GH,3], 1.2 (3H,J,1.7.2Hz), 1.26-1.72[GH,m), 1.74[GH,a), 2.06[GH,a), 2.42-2.52[H,m], 2.63[CH,d_l=4.4Hz), 2.65[H,d_d]=2.0,8.4Hz), 2.74[H,d_l=2.4,5.8Hz), 3.46-3.52[H,m], 3.82[H,d_l=7.2Hz), 4.24[CH,a), 4.72[CH,a), 4.834, 9.7(H,m), 4.99[H,d_l=6.0Hz), 5.02[H,d_l=4.8Hz), 5.56[H,d_d]=9.6.15.2Hz), 5.66 (H,d_l=6.14.8Hz), 5.7[[H,d_d]=9.6.15.2Hz), 6.93[H,d_l=6.0Hz), 6.32[H,d_d]=10.8.15.2Hz); ESI-MS m/z 703 (M+Na)*.

Example B27 (8E,12E,14E)-7-Acetoxy-3,6-dihydroxy-21-dihydxoxyacetoxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B27)

[0391]

35

An.

45

Compound B27

[0392] Ethoxyacetylacetic acid was esterified with (8E,12E,14E)-7-acetoxy-6,21-dihydroxy-3-t-butyldimethylsiloxy-6,10,12,1620-pentamethyl-18,19-epoxyfricosa-8,12,14-trien-11-olide through the similar synthetic route as Example BSE, to dive the title compound was obtained as a colories soil.

1H-MMF spectrum (CD_OD, 400MHz) 8(pm); 0.872H d_Jl=6.4Hz), 0.88(3H d_Jl=7.2Hz), 0.80(3H, LJ=7.2Hz), 1.07(3H, d_J=6.8Hz), 1.18(3H, d), 1.28-1.70(9H, m), 1.74(9H, d_J=1.2Hz), 2.06(3H, a), 2.41-2.50(1Hm), 2.50-2.80(1Hm), 2.50 (2H, d_J=4Hz), 2.56(1H, d_J=2.08.0Hz), 2.72(1H, d_J=2.48.0Hz), 3.74-3.82(1Hm), 4.13(2Hz), 4.96+5.20(2H, m), 5.04 (1H, d_J=9.6Hz), 5.60(1H, d_J=10.01.52 EHz), 5.65(1H, d_J=9.6Hz), 5.60(1H, d_J=9.6Hz), 5.60(1Hz), 5.60(1

123

Example B28 (8E,12E,14E)-7-Acetoxy-3,6-dihydroxy-6,10,12,16,20-pentamethyl-21-dimethylaminoacetoxy-18.19-epoxytricosa-8.12.14-trien-11-olide (Compound B28)

[0393]

5

10

15

Compound B28

[0394] (8E,12E,14E)-7-acetoxy-3-t-butyldlmethylslloxy-21-dimethylaminoacetoxy)-6-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide was synthesized by the similar synthetic method as Example B25. To the compound (4.0 mg, 0.0054 mmol) was added a mixed solution of trifluoroacetic acid:tetrahydrofuran:H₂O=1: 10:5, followed by stirring for 2 hours. The reaction mixture was poured into an agueous saturated sodium bicarbonate solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSOA and evaporated. The resulting crude product was purified by thin layer chromatography (MERCK Silicagel 60 F254, 0.25 mm, developing solution; hexane:ethyl acetate=1:2) to obtain the title compound (1.0 mg, 29%) as a colorless oil. ¹H-NMR spectrum (CD₂OD, 400MHz) δ(ppm): 0.86-0.91(6H.m), 0.90(3H.t.J=7.2Hz), 1.07(3H.d.J=6.8Hz), 1.18(3H.s). 1.26-1.71(9H,m), 1.74(3H,d,J=0.8Hz), 2.06(3H,s), 2.34(6H,s), 2.41-2.50(1H,m), 2.52(2H,d,J=4.0Hz), 2.55(1H,dd, J=2.0,8.4Hz), 2.50-2.58(1H,m), 2.71(1H,dt,J=2.0,5.6Hz), 3.24(2H,s), 3.74-3.82(1H,m), 4.94-5.00(1H,m), 5.04(2H,d, J=9.6Hz), 5.56(1H,dd,J=9.6,15.2Hz), 5.64(1H,dd,J=8.0,15.2Hz), 5.69(1H,dd,J=9.6,15.2Hz), 6.08(1H,d,J=11.2Hz), 6.32(1H,dd,J=10.8,14.8Hz); ESI-MS m/z 622(M+H)+.

Example B29 (8E.12E.14E)-7-Acetoxy-3-6-dihydroxy-6.10.12.16.20-pentamethyl-21-nicotlnoxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B29)

[0395]

an

45

55

Compound B29

[0396] The title compound was obtained as a colorless oil by the similar synthetic method as Example B25, using nicotinic acid as the 21-position substituent.

1H-NMR spectrum (CD₂OD, 400MHz) δ(ppm): 0.86(3H,d,J=6.8Hz), 0.94(3H,t,J=7.2Hz), 1.01(3H,d,J=6.8Hz), 1.04(3H, d.J=6.8Hz), 1.18(3H.s), 1.24-1.84(9H.m), 1.72(3H.d.J=1.2Hz), 2.06(3H.s), 2.40-2.48(1H.m), 2.51(2H.d.J=4.0Hz), 2.50-2.59(1H,m), 2.62(1H,dd,J=2.4,8.4Hz), 2.75(1H,dt,J=2.0,5.6Hz), 3.72-3.83(1H,m), 5.03(1H,d,J=10.8Hz), 5.04 (1H.d.J=10.0Hz), 5.17-5.24(1H,m), 5.55(1H,dd,J=9.6,15.2Hz), 5.60(1H,dd,J=8.8,14.8Hz), 5.69(1H,dd,J=9.6,15.2Hz), 6.06(1H.d.J=9.6Hz), 6.29(1H,dd,J=11.2,14.4Hz), 7.59(1H,ddd,J=1.2,4.8,8.0Hz), 8.41(1H,ddd,J=1.6,1.6,8.0Hz), 8.76 (1H,dd,J=1.6,4.8Hz), 9.13(1H,dd,J=0.8,2.0Hz); ESI-MS m/z 664(M+Na)+.

(8E,12E,14E)-7-Acetoxy-3-21-dibenzoloxy-6 hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytncosa-8,12,14-trien-11-olide (Compound B30-1), (8E,12E,14E)-7-acetoxy-3-benzoloxy-6,21-dihydroxy-6.10.12.16.20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B30-2), and (8E,12E,14E)-

7-acetoxy-21-benzoloxy-3,6-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B30-3)

[0397]

15

20

25

40

45

Compound B30-1

Compound B30-2

Compound B30-3

[0388] A solution of (8E.12E,14E)-7-acetoxy-3,6,21-tinhydroxy-6,10,12,16,20-pentamethyl-18,19-epoxyricosa-8,12,14-tirent-1-oldie (55.6 mg, 103.8 µmol) in dichloromethane (1.0 mL) was loe-cooled, followed by adding dimethylaminopyridine (40.0 mg, 227.4 µmol). After stiming for about 30 min, benzoyl chloride (15.0 µL, 163.5 µmol) was added thereto and the temperature was rissed to room temperature. After stiming for 2.5 hours, the reaction solution was diluted with ethyl acetate (10 mL) and washed with purified water (2 ml) for two times and with brince (2 mL). The resulting organic layer was dried over anhydrous sodium sulfate, filtered, and then concentrated. The crude product obtained was purified by thin layer chromatography (ethyl acetate, MERCK Sillage) 60 F254, 0.5 mml) to obtain the title Compound 830-1 (15.0 mg, 20.1 µmol, 13.4%), Compound 830-2 (24.8 mg, 38.7 µmol, 37.4%) and Compound 830-3 (3.8 m. 5.9 µmol, 5.7%) as colorless oils; respectively.

Compound B30-1

[0399] "H-NMR spectrum (CD₂0D, 400MHz) δ(ppm): 0.89(3H,d,J=7Hz), 0.92(3H,d,J=7Hz), 0.98(3H,d,J=7Hz), 1.01 (3H,d,J=7Hz), 1.20(3H,d,) 1.32-1.41(1Hm), 1.42-1.51(1Hm), 1.53-1.68(3Hm), 1.70-1.82(4Hm), 1.70(4Hz), 0.7Hz), 2.06(3H,d,J=7Hz), 5.06(1H,d,J=1Hz), 5.06(1H,d,J=1Hz), 5.06(1H,d,J=1Hz), 5.06(1H,d,J=1Hz), 5.06(1H,d,J=1Hz), 5.06(1H,d,J=1Hz), 5.82(1H,dd,J=0,15Hz), 7.43-7.50(4H,m), 7.58-7.62(2H,m), 7.59-8.02(2H,m), 8.03-8.08(2H,m), FAB-MS m/z 745 (M+H)*.

Compound B30-2

[0400] 11-MMR specim (CD₂OD, 400MHz) 8(ppm): 0.89(3H,d,J=7Hz), 0.90(3H,d,J=7Hz), 0.33(3H,t,J=8Hz), 1.05 (3H,d,J=7Hz), 1.14-121(1H,m), 1.20(9Hz), 1.41-124(4H,m), 1.59-1.8(2H,m), 1.59-1.8(2H,m), 1.88-1.8(2H,m), 1.75(3Hz), 2.06(3H,d,J=5Hz), 2.06(3H,d,J=5Hz), 2.06(3H,d,J=5Hz), 2.50(1H,d,J=5Hz), 2.50(1

5 Compound B30-3

[0401] ¹H-NMR spectrum (CD₃OD, 400MHz) δ(ppm): 0.86(3H,d,J=7Hz), 0.92(3H,t,J=8Hz), 0.99(3H,d,J=7Hz), 1.02 (3H,d,J=7Hz), 1.18(3H,s), 1.33-1.44(3H,m), 1.54-1.70 (4H,m), 1.72(3H,d,J=1.1Hz), 1.72-1.84(2H,m), 2.06(3H,s),

2.48-2.50(1H,m), 2.51(2H,d,J=3Hz), 2.50-2.62(1H,m), 2.60(1H,dd,J=2,7Hz), 2.74(1H,dt,J=2,6Hz), 3.72-3.80(1H,m), 5.03(1H,dd,J=11,112), 5.04(1H,dd,J=0,112), 5.57(1H,dd,J=8,15Hz), 5.58(1H,dd,J=10,15Hz), 5.67(1H,dd,J=8,15Hz), 5.68(1H,dd,J=10,15Hz), 6.05(1H,d,J=11Hz), 6.28(1H,dd,J=11,15Hz), 7.48-7.53(2H,m), 7.59-7.65(1H,m), 7.99-8.05(2H,m), 7.59-7.65(1H,m), 7.99-8.05(2H,m), 7.59-7.65(1H,dd,J=11,15Hz), 7.48-7.53(2H,m), 7.59-7.65(1H,dd,J=11,15Hz), 7.48-7.53(2H,m), 7.59-7.65(1H,dd,J=11,15Hz), 7.48-7.53(2H,m), 7.59-7.65(1H,dd,J=11,15Hz), 7.48-7.53(2H,m), 7.59-7.65(1H,dd,J=11,15Hz), 7.48-7.53(2H,dd,J=11,15Hz), 7.48-7.53(2

Example B31 (8E,12E)-7-Acetoxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-14,15,18,19-diepoxytricosa-8,12-dien-11-olide (16E,14E)-7-acetoxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-12,13,18,19-diepoxytricosa-8,14-dien-11-olide (Compound B31)

(04021

5

15

20

Compound B31

[0403] A solution of (8E,12E,14E)-7-acetoxy-3,6,221-inhydroxy-5,10,12,1820-pentamethyl-18,19-apoxytricosa-8,12,14-trien-11-oide (21.7 mg, 40.4 µmol) in methylene chloride (0.5 mL) was cooled to -30°C. MCPBA (26.4 mg, 78.5 µmol) was added thereto, followed by stirring for 17.5 hours. After the temperature was raised to room temperature, a saturated sodium bicarbonate aqueous solution (1.0 mL) was added, and the mixture was extracted with chloroform (12 mL). The organic layer obtained was dried over arrhydrous sodium sulfale, filtered and then concentrated. The resulting crude product was purified by thin layer chromatography (MERCK Silicage) 60°F25, 0.5 mm, developing solution; followers:acetone=1:1) to obtain the title compound (9.3 mg, 16.8 µmol, 41.6%) as a coloriess oil. HI-NMM SpecifymCCp.00 4.00Mb/13 foom? 0.38 -0.3723.8 Hm. 0.98-1.12(13.24). 1.15-1.19(8.7 hm. 1.21-1.40.

n-r-wn spectrum(U3200 400wn2) o (ppm): 0.83-0.97(23.8h-m), 0.98-1.12(13.2h), 1.15-1.19(8.7h-m), 1.21-1.40 (1.34h,m), 1.45-1.56(7.8h-m), 1.70-1.84(8.9h-m), 2.03-2.06(8.9h-m), 2.43-2.7(15.54hm), 2.43-2.8(8.18h-m), 3.40-3.47(2.54hm), 3.47-3.56(2.7h-m), 3.70-3.80(3.0h-m), 4.48-4.52(1.0h-m), 5.00-5.08(4.3h-m), 5.19-5.23(1.4h-m), 5.95-2.8(1.9h-m), 5.95-2.8(1

Example B32 (8E,12E,14E)-7-Acetoxy-6-hydroxy-6,10,12,16,20-pentamethyl-3,21-di(4-nitro-phenoxycarboxy)-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B32)

[0404]

45

Compound B32

[0465] A solution of (8E,12E,14E)-7-acetoxy-3,6,221-th/ydroxy-6,10,12,162-0-pentamethyt-14,19-epoxyfricosa-8,12,14-frien-11-idid (2.21. mg, 600 μmp) in dichinorenthame (2.0 ml, was iex-cooke) (followed by adding dimethytaminopyridine (4.2 mg, 3.4 μmo) and niethylamine (6.5 0 μl, 0.6 mmo). After stirring for about 20 min., 4-nitrophenyl chorloromrate (6.1 s mg, 3084 μmo) was added. The temperature was reisated to room temperature and the mixture was stirred for 2.5 hours. Further, dimethylaminopyrdine (4.2 mg, 3.4 μmo)) and 4-nitrophenyl chloroformate (2.4 mg, 118.4 μmo) were added thereto under los-cooling, and the temperature was related to room temperature. After stirring for 1.5 hours, the mixture was diluted with eithyl acetate (20 mL), and washed with a saturated sodium bicanbonate activeous solution (4 mL) and brine (2 mL). The organic laver oblished was dired over anthyrous solution (3 mL) and brine (2 mL). The organic laver oblished was dired over anthyrous solution (4 mL) and brine (2 mL). The organic laver oblished was dired over anthyrous solution (4 mL) and brine (2 mL). The organic laver oblished was dired over anthyrous solution (4 mL) and the organic laver oblished was dired over anthyrous solution (4 mL) and the organic laver oblished was dired over anthyrous solution (4 mL) and the organic laver oblished was dired over anthyrous solution.

filtered and then concentrated. The resulting crude product was purified by silica gel column chromatography (MERCK Silicagel 60, 63 to 200 µm, eluate; hexane:ethyl acetate=2:1) to obtain the title compound (23.3 mg, 26.9 µmol, 44.8%) as a colorless oil.

1H-NMR Spectrum(CD₃OD, 400MHz) 8 (ppm) : 0.88(1H, d_J=7Hz), 0.96 (3H, t_ J=8Hz), 0.98(3H, d_J=7Hz), 1.08(3H, d_J=7Hz), 1.20(3H, d_J=7Hz), 1.20(3H, d_J=2Hz), 1.08(3H, d_J=2Hz), 1.08(3H, d_J=2Hz), 1.08(3H, d_J=2Hz), 1.08(3Hz), 1.07(3Hz), 1.07

Example B33 (8E,12E,14E)-7-Acetoxy-3,21-dicarbamoyloxy-8-hydroxy-8,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B33-1) and (8E,12E,14E)-7-acetoxy-21-carbamoyloxy-3-tehyloxnosy-0-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B33-2)

[0406]

10

20

25

35

50

[0437] (85.12E,14E)-7-acetoxy-6-hydroxy-6,10,12,16,20-pentamethyl-3,21-di(4-hiltro-phenylcarboxy)-18,19-epoxytricose 8,12,14-trien-11-olide (42.2 mg, 46.7 jurnol) was dissolved in ethanol (10.0 mL), followed by adding a 28% aqueous armonal (40 juL) under lo-cooling. The temperature was raised to room temperature and the mixture was stirred overnight. The reaction solution was concentrated, and the resulting crude product was purified by thin layer chromatography (MERCK Silicage) for 526,4,0.5 mm, developing solution; eithyl acetate-hazanes-(1) to obtain the title Compound B33-2 (6.0 mg, 9.2 jurnol, 18.9%) and Compound B33-1 (9.2 mg, 14.8 jurnol, 30.4%) as coloriess oils, respectively.

Compound B33-1

[0408] 11+.NMR Spectrum (CQ_QD_ 400M+1) 8 (ppm); 0.88(3H,d_=8H-1), 0.88(3H,t_=7H-2), 0.90(3H,d_=7H-2), 1.73(3H,m), 1.74(3H,d_=0.7H-2), 2.07(3H,d_=7H-2), 2.17(3H-m), 1.351-1.35(3H,m), 1.74(3H,d_=0.7H-2), 2.05(3H,d_), 2.41-2.50(1H,m), 2.54-2.67(9H,m), 2.58(1H,dd_=2.8H-2), 2.72(1H,d_=2.6H-2), 4.67-4.74(2H,m), 4.99(1H,d_=1H-1), 5.50(1H,d_,=10.1H-2), 5.50(1H,dd_,=10.1H-2), 5.50(1H,dd_,=10.1H-2), 5.50(1H,dd_,=11.1H-2), 5.50(1H,dd_,=11.1H-

Compound B33-2

[0409] 'H-NMR Spectrum(CD_0O, 400MHz) & (ppm): 0.88(3H,d_=8Hz), 0.89(3H,d_=7Hz), 1.09 (3H,d_=7Hz), 1.19 (3Hz), 1.1

Example B34 (12E, 14E)-7-Acetoxy-3,6,18-rihydroxy 6,10,12,16_20-pentamethy-19,21-carbony/dioxytriosae-8,12,14-trine-11-olide (Compound B34-1) and (BE,12E,14E)-7-acetoxy-6-carbamyyloxy-3,18-dihydroxy-6,10,12,16_20-pentamethy-19,21-carbony/dioxytriosae-8,12,14-trien-11-olide (Compound B34-2)

[0410]

Compound B34-1

Compound B34-2

[0411] A solution of (8E,12E,14E)-7-acetoxy-3-t-butyldimethylsilyloxy-6,21-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (28.5 mg, 43.8 μmol) in dichloromethane (1.0 mL) was ice-cooled, and dimethylaminopyridine (7.4 mg, 60.6 μmol) and triethylamine (38.0 μL, 274.2 μmol) were added thereto. After stirring for about 20 min., 4-nitrophenyl chloroformate (27.2 mg, 135.0 µmol) was added, the temperature was raised to room temperature and the mixture was stirred for 16 hours. Further, dimethylaminopyridine (9.2 mg, 75.3 µmol), triethylamine (38.0 µL, 274.2 µmol) and 4-nitrophenyl chloroformate (35.9 mg, 177.9 µmol) were added thereto under ice-cooling. and the temperature was raised to room temperature. After stirring for 19 hours, the reaction solution was diluted with ethyl acetate (20 mL), and washed with a saturated sodium bicarbonate aqueous solution (1 mL), purified water (2 mL) and brine (2 mL). The resulting organic layer was dried over anhydrous sodium sulfate, filtered and then concentrated. The product was dissolved in tetrahydrofuran (0.5 mL) and 28% aqueous ammonia (60 µL) was added thereto, followed by stirring for 1.5 hours. The reaction solution was diluted with ethyl acetate (20 mL), and washed with purified water (2 mL) twice and brine (2 mL). The resulting organic layer was dried over anhydrous sodium sulfate, filtered, and then concentrated. The resulting crude product was purified by thin layer chromatography (MERCK Silicage) 60 F254. 0.5 mm, developing solution; ethyl acetate:hexane=1:1) to obtain (8E.12E.14E)-7-acetoxy-3-t-butyldimethylsilyloxy-21-carbamoyloxy-6-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (18.5 mg, 26,7 μmol, 56.9% (2 steps)) and (8E,12E,14E)-7-acetoxy-3-t-butyldimethylsilyloxy-6,21-dicarbamoyloxy-6,10,12,16, 20-pentamethyl-18.19-epoxytricosa-8.12.14-trien-11-olide (10.5 mg, 14.2 µmol, 30.3% (2 steps)). The resulting (8E. 12E.14E)-7-acetoxy-3-t-butyldimethylsilyloxy-21-carbamoyloxy-6-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide was dissolved in tetrahydrofuran (0.1 mL), and purified water (0.2 mL) and acetic acid (0.3 mL) were added thereto. After stirring overnight, the reaction solution was diluted with ethyl acetate (20 mL), and washed with a saturated sodium bicarbonate aqueous solution (2 mL), purified water (2 mL) and brine (2 mL). The resulting organic layer was dried over anhydrous sodium sulfate, filtered and then concentrated. The resulting crude product was purified by preparative HPLC (SHISEIDO Capcell pak C18, 10 mm I.D. × 250 mm, acetonitrile:water=40: 60, 4.0 mL/min.) to obtain the title Compound B34-1 (5.98 mg, 10.3 μmol, 38.6%) as a colorless oil. Further, (8Ε,12Ε, 14E)-7-acetoxy-3-t-butyldimethylsllyloxy-6,21-dicarbamoyloxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide was dissolved in tetrahydrofuran (0.1 mL), and purified water (0.2 mL) and acetic acid (0.3 mL) were added thereto. After stirring over night, it was diluted with ethyl acetate (20 mL), and washed with a saturated

6, 12, 14-train-11-old was dissolved in tetrahydroturan (u. 1 mL), and putritied water (u. 2 mL), and acebic acid (u.3 mL) were added thereto. After stirring over night, if was diluted with eithyl acetate (2 mL), and washed with a saturated sodium bicarbonate aqueous solution (2 mL), purified water (2 mL) and brine (2 mL). The resulting organic layer was dried over anhydrous sodium suifae, filtered and then concentrated. The resulting crude product was purified by pre-parative HPLC (5HISEIDO Capcell pak C18, 10 mm I.D. × 250 mm, acetontrile-water-40:50, 4.0 mL/min.) to obtain the title Compound 8342 (3.68 mg, 5.9 mm), 41:5%) as a coloriess oil.

Compound B34-1

50

[0412] 11-MNR Spectrum(CD_0O_400Mtz)\(\delta\)[6](pm]: 0.87(\delta\]_-712), 0.90(\delta\]_-77(2), 1.01(\delta\]_-812), 1.08(\delta\]_-812), 1.08(\delta\]_-812), 1.08(\delta\]_-812), 1.08(\delta\]_-812), 1.18(\delta\]_-812, 1.18(\delta\]_-812), 1.18(\delta\]_-812, 1.18(\delta\]_-812, 1.18(\delta\]_-812, 1.18(\delta\]_-812), 1.18(\delta\]_-812, 1.18(\delta\)_-812, 1

Compound B34-2

Example B35 (8E,12E,14E)-7-Acetoxy-3-carbamoyloxy-6,21-dihydroxy-6,10,12,16,20-pentamethy-18,19-epoxyrifocas-8,12,14-trien-11-oldie (Compound B35-1) and (BE,12E,14E)-7-acetoxy-21-carbamoyloxy-3,6-dihydroxy-6,10,12,16,20-pentamethyl-18,19-poxyrifocas-8,22,14-trien-11-oldie (Compound B35-2)

[0414]

15

Compound B35-1

[0415] A solution of (8E,12E,14E)-7-acetoxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (105 mg, 195.6 µmol) in dichloromethane (4.0 mL) was ice-cooled, followed by adding dimethylaminopyridine (34.1 mg, 279.1 µmol) and triethylamine (165 µL, 1.18 mmol). After stirring for about 20 min., 4-nitrophenyl chloroformate (123.0 mg, 610.2 umpl) was added thereto, and the temperature was raised to room temperature and the solution was stirred for 16 hours. The reaction mixture dijuted with ethyl acetate (40 mL), and washed with a saturated sodium bicarbonate aqueous solution (4 mL) for three times, purified water (4 mL) and brine (4 mL). The organic layer obtained was dried over anhydrous sodium sulfate, filtered and then concentrated. The resulting crude product was purified by silica gel column chromatography (MERCK Silicagel 60, 63 to 200 µm, eluate; hexane ethyl acetate=3:2 to 1:1) and thin layer chromatography (MERCK Silicagel 60 F254, 0.5 mm, developing solution; ethyl acetate:hexane=4:1) to obtain (8E,12E,14E)-7-acetoxy-6,21-dihydroxy-6,10,12,16,20-pentamethyl-3-(4-nitrophenylcarboxy)-18,19-epoxytricosa-8,12,14-trien-11-olide (8.2 mg, 11.7 μmol, 6.0%) and (8Ε,12Ε,14Ε)-7-acetoxy-3.6-dihydroxy-6,10,12,16,20-pentamethyl-21-(4-nitrophenylcarboxy)-18,19-epoxytricosa-8,12,14-trien-11-olide (10,9 mg, 15,5 μποί, 7.9%). The resulting (8E, 12E, 14E)-7-acetoxy-6,21-dihydroxy-6,10,12,16,20-pentamethyl-3-(4-nitrophenylcarboxy)-18,19-epoxytricosa-8,12,14-trien-11-olide was dissolved in tetrahydrofuran (0.5 mL) and 28% aqueous ammonia (20 µL) was added thereto, followed by stirring for 21.5 hours. The reaction solution was diluted with ethyl acetate (20 mL), and washed with purified water (4 mL) twice and brine (4 mL). The resulting organic layer was dried over an hydrous sodium sulfate, filtered and concentrated. The resulting crude product was purified by thin layer chromatography (MER-CK Silicagel 60 F254, 0.5 mm, developing solution; ethyl acetate) to obtain the title Compound B35-1 (6.8 mg, 11.7 μποΙ, 100.0%) as a colorless oil. Further, (8E,12E,14E)-7-acetoxy-3,6-dihydroxy-6,10,12,16,20-pentamethyl-21-(4-nitrophenylcarboxy)-18,19-epoxytricosa-8,12,14-trien-11-olide was dissolved in tetrahydrofuran (0.5 mL), 28% aqueous ammonia (20 µL) was added, and the mixture was stirred for 21.5 hours. The reaction solution was diluted with ethyl acetate (20 mL) and washed with purified water (4 mL) twice and brine (4 mL). The resulting organic layer was dried over anhydrous sodium sulfate, filtered and then concentrated. The resulting crude product was purified by thin lever chromatography (MERCK Silicagel 60 F254, 0.5 mm, developing solution; ethyl acetate) to obtain the title Compound B35-2 (8.0 mg, 13.8 µmol, 89.0%) as a colorless oil.

Compound B35-1

55

[0416] 1H-NMR Spectrum(CD₂OD_A00MH₂)8(ppm): 0.88(3H,d,l=7H₂), 0.89(3H,d,l=7H₂), 0.93(3H,t,l=7H₂), 1.08 (3H,d,l=7H₂), 1.17(3H,s), 1.17-1.24(1H,m), 1.37-1.55(6H,m), 1.56-1.72(3H,m), 1.7(3H,d),l=1.1H₂), 2.05(3H,s), 2.42-2.51(1H,m), 2.51-2.63(3H,m), 2.65(1H,dd,l=2,8H₂), 2.72(1H,dt,l=2,8H₂), 3.50(1H,d,l=4,8H₂), 4.66-4.73(4,d,l=2,8H₂), 3.50(1H,d,l=4,8H₂), 4.66-4.73(4,d,l=3,8H₂), 4.66-4.73(4,d,l=3,

m), 5.00(1H,d,J=11Hz), 5.01(1H,d,J=10Hz), 5.55(1H,dd,J=10,15Hz), 5.66(1H,dd,J=8,15Hz), 5.71(1H,dd,J=10,15Hz), 6.08(1H,d,J=11Hz), 6.32(1H,dd,J=10.15Hz); FAB-MS m/z 580(M+H)+.

Compound B35-2

[0417] "H-MMR Spectrum(CD₂OD 400MHz/S(ppm): 0.87(dH,d,J=7Hz), 0.89(dH,d,J=7Hz), 0.09(dH,d,J=7Hz), 1.07(dH,d,J=7Hz), 1.07(dH,d,J=7Hz), 1.07(dH,d,J=1Hz), 2.05(dH,d), 2.422_52(H,H), 2.52_62(H,d,J=4Hz), 2.52_22_60(H,H), 2.56_61Hd,d,J=6Hz), 2.57(dH,d,J=6Hz), 3.74_3_30(H,H), 4.70(H,d,J=6,Hz), 5.03(H,d,J=12Hz), 5.04(H,d,J=10Hz), 5.56(H,d,d,J=10Hz), 5.56(H,d,J=10Hz), 5.

Example B36 (8E,12E,14E)-7-Acetoxy-3-((4-methylpiperazin 1-yl)carbony)oxy-6,21-dihydroxy-6,10.12,16,20-pentamethyl-18,19-epoxyfricosa-8,12,14-trien-11-olide (Compound B36-1) and (8E,12E,14E)-7-acetoxy-21-((4-methylpiperazin-1-yl)carbony)oxy-3,6-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxyfricosa-8,12,14-trien-11-olide (Compound B36-2)

[0418]

20 Compound B36-1

Compound B36-2

[0419] The title Compound B36-1 (a colorless oil) and Compound B36-2 (a colorless oil) were synthesized by the similar method as Example B35.

Compound B36-1

[0420] ¹H-NMR Spectrum(CD₃OD,400MHz)8(ppm): 0.88(3H,d,J=5.1Hz), 0.89(3H,d,J=5.5Hz), 0.94(3H,J,J=7.3Hz), 1.07(3H,d,J=7.0Hz), 1.18(3H,d,J=1.1Hz), 2.05(3H, J), 1.57-1.72(3H,m), 1.73(3H,d,J=1.1Hz), 2.05(3H, J), 2.20(3H,d,J=2.55+51(5H,m), 2.52-6.51(5H,m), 2.55-6.51(5H,m), 2.55-6

Compound B36-2

45 [0421] **I+NMR Spectrum(CD₂OD-400M+28(ppm): 0.87(3H,d_J=6.8H₂), 0.89(3H,d_J=7.3H₂), 0.90(3H,d_J=7.0H₂), 1.70(3H,d_J=7.0H₂), 1.78(3H,d_J=7.0H₂), 1.78(3H,d_J=1.0H₂), 1.33(3H,d_J=1.0H₂), 1.28(3H,d_J=1.1H₂), 2.05(3H,d_J=3.28+20.(9H₁m), 2.81(2H,d_J=3.1H₂), 2.85(1H,d_J=2.27.7H₂), 2.71(H,d_L=2.25.8H₂), 3.44-3.83(4H₁m), 3.74-3.80(1H₁m), 4.75-4.88 (1H₁m), 4.75-4.88 (1H₁m), 5.30(1H,d_J=1.0H₂), 5.94(1H,d_J=9.8), 5.50(1H,d_J=9.5,18.0H₂), 5.89(1H₁d_J=8.15.0H₂), 5.89(1H₁d_J=9.5,18.0H₂), 5.89(1H₁d_J=9.0H₂), 5.89(1H₁d_J=9.0H₂), 5.89(1H₁d_J=9.0H₂), 5.89(1H₁d_J=9.0H₂), 5.89(1H₁d_J=9.0H₂), 5.89(1H₁d_J=9.0H₂), 5.89(1H₂d_J=9.0H₂), 5.89(1H₂d_J=9.

Example B37 (8E,12E,14E)-7-Acetoxy-3-((4-piperidin-1-yl)-piperidin-1-yl)-piperidin-1-yl)-carbonyl)oxy-6,21-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B37-1) and (8E,12E,14E)-

55

35

7-acetoxy-21-((4-piperidin-1-yl)-piperidin-1-yl)carbonyl)-3,6-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B37-2)

[0422]

10

15

20

Compound B37-1

Compound B37-2

[0423] The title Compound B37-1 (a colorless oil) and Compound B37-2 (a colorless oil) were synthesized by the similar method as Example B35.

Compound B37-1

[0424] "H-NMR Spectrum(CD₃OD,400MHz)&ppm): 0.88(3H,d,J=5.1Hz), 0.89(3H,d,J=5.5Hz), 0.94(3H,t,J=7.3Hz), 1.07(3H,d,J=5.8Hz), 1.14-1.20(1H,m), 1.18(3H,s), 1.34-1.86(9H,m), 1.56-1.76(7H,m), 1.79(3H,d,J=1.1Hz), 1.83-1.32 (2H,m), 2.05(9H,s), 2.42-2.65(9H,m), 2.65(1H,d,J=2.5,8Hz), 2.71-2.88(9H,m), 3.50(1H,d,J=3.5Hz), 3.41-2.84(9H,d,J=3.5Hz), 3.50(1H,d,J=3.5Hz), 5.56(1H,dd,J=3.5Hz), 5.56(1H

30 Compound B37-2

[0425] 14-NMR Spectrum(CD₂OD 400Mtr₂)8(ppm): 0.87(3H,d₂)=7.0Hz), 0.88(3H,t₃)=7.0Hz), 0.90(3H,d₃)=7.0Hz), 1.07 (3H,d₃)=6.8Hz), 1.18(3Hs), 1.30-1.53(9H;m), 1.53-1.89(9H;m), 7.47(3H;d₃)=1.114), 1.86-1.93(2H;m), 2.05 (3H;s), 2.47-2.65(7H;m), 2.51(2H;d₃)=3.9Hz), 2.54(1H;d₃)=2.2,7Hz), 2.77(1H;d₃)=2.2,59Hz), 2.72-2.90(2H;m), 3.75-3.80(1H;m), 4.14-4.22(2H;m), 4.73-4.80(1H;m), 5.03(1H;d₃)=1.1.4Hz), 5.04(1H;d₃)=9.5Hz), 5.55(1H;d₄)=4.9.5Hz), 5.56(1H;d₄)=4.9.5Hz), 5.56(1H;d₄)=4.9.5Hz), 5.58(1H;d₄)=4.9.5Hz), 5.98(1H;d₄)=4.9.5Hz), 5.98(1H;d₄)=4.9.5Hz), 5.98(1H;d₄)=4.9.5Hz), 5.98(1H;d₄)=4.9.5Hz), 5.98(1H;d₄)=4.9.5Hz), 5.98(1H;d₄)=4.9.5Hz), 5.98(1H;d₄)=4.9.5Hz), 5.98(1H;d₄)=4.9.5Hz), 5

Example 838 (8E,12E,14E)-7-Acetoxy-3,21-bis(diethylcarbamoyloxy)-6-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B38)

[0426]

45

50

Compound B38

[0427] (8E,12E,14B)-7-Acetoxy-6-hydroxy-6,10,12,16_20-pentamethyls_21-di(4-hitro-phenylcarboxy)-1,8,19-epox-yricosa-8,12_l-4-tien-11-died (12-8 mg) was dissolved in tetrahydroturan (0.5 mL), and diethydramic (20 μL) was added thereto, followed by stirring for 21.0 hours. The reaction solution was diluted with eithyl acetate (20 mL), and washed with nutrilled water (4m lL) three archites (3m lL). The control was diluted with eithyl acetate (20 mL), and washed with nutrilled water (4m lL) three archites (4m lL). The resulting organic lawre was dried over annydrous sodium.

sulfate, filtered and then concentrated. The resulting crude product was purified by thin layer chromatography (MERCK Silicagel 60 F254, 0.5 mm, developing solution; ethyl acetate) to obtain the title compound (10.7 mg, 14.5 µmol, 100.0%) as a colorless oil.

¹H-NMR Spectrum(CD_OD,40MH2)(gpm)* 0.88(3H.d,1=7H2), 0.89(3H.d,1=7H2), 0.91(3H.d,1=7H2), 1.07(3H.d,1=7H2), 1.07(3H.d,1=7H2), 1.08(1-18(12H,m), 1.18(3H,s), 1.35-1.55(4H,m), 1.56-1.73(3H,d,1=0.7H2), 2.06(3H), 2.40-2.51(1H,m), 2.55(1H,dd,1=2,8H2), 2.55-2.50(2Hm), 2.63(1H,dd,1=4,15H2), 2.71(1H,d,1=2,8H2), 3.25-3.32(8H,m), 4.97(1H,d,1=1H2), 5.03(1H,d,1=10H2), 5.56(1H,dd,1=1,015H2), 5.65(1H,dd,1=9,15H2), 5.72(1H,dd,1=0,15H2), 5.72(1H,dd,1=0,15H2), 5.72(1H,dd,1=0,15H2), 5.72(1H,dd,1=0,15H2), 5.72(1H,dd,1=0,15H2), 5.72(1H,dd,1=1,15H2), 5.72(1H,dd,1=

Example B39 (8E,12E,14E)-7-Chloroacetoxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B39)

[0428]

15

25

35

50

55

Compound B39

(8E,12E,14E)-7-Acetoxy-3,6,21-tri(1-ethoxyethoxy)-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide

[0429]

40 [0430] Pyridnium p-toluenesulfonate (9 mg, 35.4 µmol) was added to a solution of (8E,12E,14E)-7-acetory-3,6.21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trin-11-clide (200 mg, 0.354 mmol) in dichloromethane (10 mt), and ethyl vinyl ether (521 mg, 7.08 mmol) at room temperature, followed by stifring at the same temperature overnight. Ethyl acetate and water were added to the reaction solution, and the mixture was extracted with ethyl acetate, dried over anhydrous magnesium suiffee, filtered and then evaporated. The resulting residue was purified by silica gel column chromatography (Kanto silica gel 60N, 40 to 50 µm, ethyl acetate-hexane=1.4, 1.3 and 1: 1, successively) to obtain the title compound (250 mg, 94%) as a colorless oil.
ESH-MS m/2 776/M-Na1?

(8E,12E,14E)-3,6,21-Tri(1-ethoxyethoxy)-7-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide

[0431]

5

10

[0432] Potassium carbonate (138 mg, 0,996 mmol) was added to a solution of (8E, 12E,14E)-7-acatony-3,6.21-tif (1-ethoxyethoxy)-6,10,12,16,20-pentamethyl-18,19-epoxyfricosa-8,12,14-tine-11-olide (250 mg, 0.332 mmol) in methanol (5 mL) at room temperature, followed by stirring at the same temperature for 2 hours. Acetic acid (60 mg, 1 mmol), ethyl acetate and water were added to the reaction solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with water, dried over anhydrous magnesium sulfate, filtered and then evaporated. The resulting residue was purified by silica gel column chromatography (Kanto silica gel 60N, spherical, neutral, 40 to 50 µm, ethyl acetate-hexane-1:2 and 1:1, successively) to obtain the title compound (242 mg, 100%) as a coloriess oil. ESI-MS m/z 73/4(M-Na)³:

(8E,12E,14E)-7-Chloroacetoxy-3,6,21-tri(1-ethoxyethoxy)-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide

[0433]

25

30

35

50

55

[0434] A solution of chloroacetic anhydride (21.5 mmol, 0.122 mmol) and dimethylaminopyridine (1.2 mg, 1.0 μmol) in dichloromethane (0.5 mL) were added to a solution of (8E,12E,14E)-3,6,21-tri(1-ethoxyethoxy)-7-hydroxy-8.10.12.16,20-pentamethy-18,19-epoxyricosa-8,12,1.4-trien-11-olide (17.4 mg, 24.4 μmol) and triethylamine (25 mg, 0.244 mmol) in dichloromethane (2 mL) at room temperature, followed by stirring at the same temperature for one bunu. Ethyl acetala and water were added to the reaction solution, and the mixture was extracted with ethyl acetate, dried over anhydrous magnesium sulfate, filtered and then evaporated. The resulting residue was purified by silica gel column chromatography (Kanto silica gel 60N, 401o 50 μm, ethyl acetate-hexane=1:4) to obtain the declared compound (18.1 mg, 94%) as a colorless of the color of the col

 $(\underline{8E,12E,14E}) - 7 - Chloroacetoxy - 3,6,21 - trihydroxy - 6,10,12,16,20 - pentamethyl - 18,19 - epoxytricosa - 8,12,14 - trien - 11 - olide$

[0435]

10

15

[0438] Pyridinium p-toluenesulfonate (1 mg. 4.1 µmol) was added to a solution of (8E, 12E, 14E)-7-chloroacotoy-, 8E, 21-fri ("elunychtoxy)-6,10,12,60-pentamely-16,19-epoyritosa-8,12,14-frient-1-olide (3.2 mg.)-4.66 µmol) in methanol (1 ml.), followed by stirring at room temperature for one hour. The reaction solution was evaporated, and the resulting residue was purified by this layer chromatography (MEROK Silica gel 60 F254, 0.2 mm, developing sotution; athyl acetate-hexane-2:1) to obtain the title compound (1.8 mg, 70%) as a coloriess oil.

14-MMR Spectrum (CD₂OD, 400MHz) & [pm]: 0.79(8H₄J₄i=8.Hz), 0.80(8H₄J₄i=8.Hz), 0.84(8H₄J₄i=7.8Hz), 0.80(8H₄J₄i=8.Hz), 0.84(8H₄J₄i=7.8Hz), 0.80(8H₄J₄i=7.8Hz), 0.80(8H₄J₄i=8.1Hz), 0.80(8H₄i=8.1Hz), 0.80(8H₄i=8.1Hz), 0.80(8H₄i=8.1Hz), 0.80(8H₄i=8.1Hz), 0.80(8H₄i=8.1Hz), 0.80(8H₄i=8.1Hz), 0.80(8H₄i=8.1Hz), 0.80(8H₄i=8.1Hz),

[0437]

30

35

40

50

55

Compound B40

(8E,12E,14E)-3,6,21-Tri(1-ethoxyethoxy)-7-(morpholin-4-yl)acetoxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide

[0438]

[0439] Morphoine (9 mg, 0. 103 mmol) was added to a solution of (8E.12E, 14E)-T-chloroaceitoxy, 3.6,21-xi(1-enhoryethoxy)-8, 10,12,16,20-pentamethyl-18, 19-epoxyfricose-8,12,14-frien-11-olide (8.1 mg, 10.3 µmol) in N.N-dimethylformamide (1 mt) at room temperature, followed by stirring at 60°C for one hour. Ethyl acetate and water were added to the reaction solution, and the mixture was extracted with ethyl acetate, and the organic layer was washed with water. The resulting organic layer was dried over anhydrous magnesium suitate, filtered and then evaporated. The resulting residue was purified by silica gel column chromatography (Kanto silica gel 60N, 40 to 50 µm; ethyl acetate-hexane=1: 2 and 11. successively) to obtain the title compound (7.7 ms. 85%) as a coloriess oil.

(8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-(morpholin-4-yl)acetoxy-18,19-epoxytricosa-8,12,14-trien-11-olide

[0440]

10

15

20

[0441] Pyridinium p-toluenesulf onate (2.2 mg, 8.71 µmol) was added to a solution of (6E.12E.14E)-3.6.21-41 (1-ethoxyethoxy)-8.20.12.16.20-pentamethyl-7-(morpholin-4-yl)acetoxy-18.19-epoxytricosa-8.12.14-trien-11-oilde (7.3 mg, 8.71 µmol) in methanol (1 mL), followed by stirring at room temperature overnight. The reaction solution was evaporated, and to the resulting residue were added ethyl acetata, water and a saturated sodium bicarbonate aqueous solution. The mixture was extracted with ethyl acetale, and the resulting organic layer was dried over anhydrous magnesium sulfate, filtered and then evaporated. The resulting residue was purified by thin layer chromatography (MERCK Silica gel 60 P284, 0.2 mm, developing solution; methanol-dichloromethane=1:19) to obtain the title compound (4.4 mg, 82%) as a colories oil.

1H-NMR Spectrum(CD_OD 400Mt-2)8(pmr): 0.87(3H,d_i=6.8Hz), 0.90(3H,d_i=7.2Hz), 0.83(3H,Li=7.8Hz), 1.08(3H, d_i=6.8Hz), 1.14-1.22(4H,m), 1.34-1.67(8H,m), 1.74(3H,d_i=0.8Hz), 2.42-2.61(8H,m), 2.65(1H,dd_i=2.4,0.0Hz), 2.72 (1H,d_i=2.4.6.9Hz), 3.28(2H,s), 3.51(1H,d_i=4.8.8Hz), 3.71(4H;J_i=4.8Hz), 3.75-3.81(1Hm), 5.04(1H,d, J=10.4Hz), 5.11(1H,d_i=9.6Hz), 5.60(1H,d_i=6.15.2Hz), 5.65(1H,dd_i=4.4.4.8Hz), 5.70(1H,dd_i=9.6.15.2Hz), 6.90(1H,d_i=0.8Hz), 5.27(1H,d_i=3.8Hz), 5.70(1H,dd_i=9.6.15.2Hz), 6.90(1H,d_i=0.8Hz), 5.27(1H,d_i=3.8Hz), 5.70(1H,dd_i=9.6.15.2Hz), 6.90(1H,d_i=0.8Hz), 5.27(1H,d_i=3.8Hz), 5.70(1H,dd_i=9.6.15.2Hz), 6.90(1H,d_i=0.8Hz), 5.27(1H,d_i=0.8Hz), 6.91(1H,d_i=0.8Hz), 6.9

Example B41 (8E,12E,14E)-7-Benzoyloxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B41)

[0442]

55

Compound B41

(8E,12E,14E)-7-Benzoyloxy-3,6,21-tri(1-ethoxyethoxy)-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide

[0443]

10

15

35

45

55

[0444] LiHMDS (1.0 M latrahydrofuran solution, 81 µL, 81 µmol) was added dropwise to a solution of (8E, 12E, 14E)3.6.21-tri(1-ethoxyethoxy)-7-hydroxy-6,10,12,16,20-pentamethyl-16,19-epoxytricosa-8,12,14-trian-11-olide (10 no
1,4 µmol) in tetrahydrofuran (1 mL) at -40°C under nitrogen atmosphere. After stirring at the same temperature for 15
min., a solution of benzoyi chloride (17.8 mg, 125 µmol) in tetrahydrofuran (0.4 mL) was added dropwise thereto and
the mixture was stirred at 0°C to 7 hours. Ethyla estate and water were added to the reaction solution, and the mixture
was extracted with ethyl acetate. The resulting organic layer was dried over anhydrous magnesium sultate, filtered
and then evaporated. The resulting residue was purified by sillca gel column chromatography (Kanto sillca gel 60N,
40 to 50 µm; ethyl acetate-hexanel-41) to botain the title compound (6.1 mg, 54%) as a coloriess oil.

(8E,12E,14E)-7-Benzoyloxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide

[0445]

[0446] Pyridinium p-toluenesulfonate (2 mg. 7.5 µmol) was added to a solution of (8E,12E,14E)r-benzoylogy, 3,62.1-ri(1+chospethony)-6,10;1,62.0-pentamethy+1,81-9epoxytrosa-8-12,14-ti-inet-1-cide (6.1 mg. 7.48 µmol) in methanol (1 ml.), followed by stirring at room temperature for one hour. The reaction solution was evaporated, ethyl caetate, water and a saturated sodium bicarbonate aqueous solution were added to the resulting residue, and the mixture was extracted with ethyl acetate. The resulting organic layer was dried over anhydrous magnesium sulfact, littlered and then evaporated. The resulting residue was purified by thin layer chromatography (MEROS čilicz gel 60 F255, 0.2 mm, developing solution; ethyl scelate-hexane-2:1) to obtain the title compound (3.3 mg, 74%) as a coloriess

0.1.

"I+MiR Spectrum(CD₃OD,400MHz)&(ppm): 0.88(3H,d,J=6.8Hz), 0.89(3H,d,J=6.8Hz), 0.93(3H;,J=7.8Hz), 1.08(3H,d,J=6.8Hz), 1.19.1-1.23(1H,m), 1.25(3Hz), 1.40-1.55(5H:m), 1.56-1.74(3H:m), 1.75(3Hz), 2.43-2.24 (4H:m), 2.65(1H,d,J=0.4Hz), 2.74(1H;d,J=2.46, 2Hz), 3.79-3.84(1Hm), 5.06(1H;d,J=0.4Hz), 2.59(1H,d,J=0.4Hz), 3.79(1H;d,J=0.4Hz), 3.79(1H;d

Example B42 (8E,12E,14E)-7-Butyloxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B42)

[0447]

15

Compound 42

[0448] By using (8E,12E,14E)-3,6,21-tri(1-ethoxyethoxy)-7-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytrico-sa-8,12,14-trien-11-olide as a starting material, the title compound was synthesized by the similar method as Example R39

14-NMR Spectrum(CD₂OD.400Mt-28(ppm): 0.87(3H,d_J=6.8Hz), 0.80(3H,d_J=2.2Hz), 0.83(8H,J_H=7.2Hz), 1.08(3H,d_J=6.8Hz), 1.18(3H,a), 1.19-1.70(1H,m), 1.74(3H,d_J=0.8Hz), 2.32(2H,d_J=2.4), 9.8Hz), 2.42-2.80(2H,m), 2.52(2H,d_J=2.4), 2.85(1H,d_J=2.6), 0.8Hz), 2.72(1H,d_J=2.0,5.8Hz), 2.80(1H,d_J=4.4,4.8Hz), 3.74-3.84(1H,m), 5.80(1H,d_J=0.81,5.2Hz), 5.85(1H,d_J=8.4,4.8Hz), 5.89(1H,d_J=0.0,15.2Hz), 5.80(1H,d_J=8.4,1.8Hz), 5.89(1H,d_J=0.81,5.2Hz), 5.80(1H,d_J=8.4,1.8Hz), 5.89(1H,d_J=1.2Hz), 3.82(1H,d_J=1.8Hz), 5.80(1H,d_J=1.8Hz), 5.80(1H,d_J=1.8Hz),

Example B43 (2Z,8E,12E,14E)-7,21-Diacetoxy-6-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B43-1) and (2Z,8E,12E,14E)-7-acetoxy-6,21-dihydroxy-

6,10,12,16,20-pentamethyl-18,19-epoxytricosa-2,8,12,14-tetraen-11-olide (Compound B43-2)

[0449]

35

45

50

Compound B43-1

Compound B43-2

(2Z,8E,12E,14E)-6,21-di(1-Ethoxyethoxy)-7-hydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-2.8.12,14-tetraen-11-olide

[0450]

10

15

25

30

35

50

55

[0451] Lithium bis[trimethylsih/jlamide (1.0 M letrahydrofuran solution, 5.0 µL, 5.0 µmol) was added drowiss to a solution of (8.12E.146-3.2-14f) ethoryschony?-Thydrox-9, 10.2 [1.8.20-pentamethyl-1.8]; p-poyntricosa-8,12.14-trien-11-olide (1.0.8 mg, 1.5.2 µmol) in tetrahydrofuran (2 mL) at -40°C under nitrogen atmosphere, followed by stirring at the same temperature for 20 min. Then, a solution of nicotinoyichioride hydrochioride (5.7 mg, 30.4 µmol) in tetrahydrofuran-triethylamine (letrahydrofuran-0.5 mL, and friethylamine: 1 drop) was added dropwise thereinto, followed by stirring at 0°C for 30 min. Ethyl acetate and water were added to the reaction solution, and the mixture was extracted with ethyl acetate. The resulting regard layer was dried over anhydrous magnesium sulfate, filtered and then evaporated. The resulting residue was purified by siting agle column chromatography (Kanto silica gel 60N, 40 to 50 µm; ethyl acetate-hexare-1.3) to obtain the title compound (6.3 mg, 6.7%) as a coloriess oil.

 $\underline{(2Z,8E,12E,14E)-6,7,21-Trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-2,8,12,14-tetraen-11-olident (2Z,8E,12E,14E)-6,7,21-Trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-2,8,12,14-tetraen-11-olident (2Z,8E,12E,14E)-6,7,21-Trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-2,8,12,14-tetraen-11-olident (2Z,8E,14E)-6,7,21-Trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-2,8,12,14-tetraen-11-olident (2Z,8E,14E)-6,20-pentamethyl-18,19-epoxytricosa-2,8,12,14-tetraen-11-olident (2Z,8E,14E)-6,20-pentamethyl-18,19-epoxytricosa-2,8,12-epoxytricosa-2,8,12-epoxytricosa-2,8,12-epoxytricosa-2,8,12-epoxytricosa-2,8,12-epoxytricosa-2,8$

[0452]

[0453] Pyridinium p-toluenesulfonate (2 mg, 7.7 µmof) was added to a solution of (2Z,8E.12E.14E)-8.21-di(1-ehoryethoxy)-7-Yydroy-6.10.12.16.29-pentamethy-1*8.19-epoxyricosa-2.8.21.21-d-teraen-11-olide (8.3 mg, 10.1 µmof) in methanol (1.5 mL), followed by stirring at room temperature for one hour. The reaction solution was evaporated, and to the resulting residue were added ethyl acetate, water and a saturated solution bicarbonate aqueous solution. The mixture was extracted with ethyl acotate, and the resulting organic layer was dried over annyldrous magnetium suifate, filtered and then evaporated. The resulting residue was purified by thin layer chromatography (MERCK Silica gel 60 F254, 0.2 mm, developing solution; ethyl acetate-hexane=4.3) to obtain the title compound (3.3 mg, 68%) as a colorless oil.

[2Z,8E,12E,14E]-7,21-Diacetoxy-6-thydroxy-6.10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B43-1) and (22,8E,12E,14E)-7-acetoxy-6,21-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-2,81,21,414traen-11-olide (Compound B43-2)

[0454]

Compound B43-1

Compound B43-2

[0455] A solution of acetic arhydride (0.74 mg, 7 µmol) in dichloromethane (0.1 mL) was added dropwise to a solution (6E, 12E, 14-6)-7,21-thirdyox-1-6,10.12.82.0 perhamenthy/1-6.11-0 perboxtriosca.9.2.15,1-4.tertenen-1-1-0 (6e) (3.3 mg, 6.9 µmol), trichtylamine (3.6 mg, 3.5 µmol) and dimethylamine (0.4 mg, 3.5 µmol) in dichloromethane (1 mL), ollowed by stirring at room temperature for 30 min. under nitrogen atmosphere. A solution of acetic anhydride (0.2 mg, 1.9 µmol) in dichloromethane (20 µL) was added dropwise threating anhydride (0.2 mg, 1.9 µmol) was added dropwise threatine for 30 min. Further, a dichloromethane solution (20 µL) of acetic anhydride (0.2 mg, 1.9 µmol) was added dropwise threatine and the mixture was stirred at the same temperature for 30 min. Entrie cateta and water were added to the reaction solution, and the mixture was extracted with eithyl acetate. The resulting organic layer was dried over anhydrous magnesium sutfate, filtered and then everporated. The resulting residue was purified by thin layer chromatography (MERCK Silica gel 60 F254, 0.2 mm, developing solution; ethyl acetate-haxane, 4.5) to obtain the title Compound 84-3 (0.6 mg, 21%) and Compound 84-2 (2.6 mg, 73%) as colorless oils, respectively.

30 Compound B43-1

[0456] "H-MMR Spectrum(CD₂0D, 400M+L)8(ppm): 0.87(3H,t,J-7.2Hz), 0.90(3H,d,J-7.2Hz), 0.92(3H,d,J-6.8Hz), 1.108(3H,d,J-6.8Hz), 1.19(3H,g), 1.27-1.32(1H,m), 1.39-1.49(8H,m), 1.59-1.89(4H,m), 1.79(3H,d,J-6.8Hz), 2.06(3H,d), 2.18-2.29(1H,m), 2.41-2.5(1H,m), 2.54(1H,d,J-2.4.8,0Hz), 2.57-2.87(1H,m), 2.72(1H,d,J-1.24,0Hz), 2.57-2.87(1H,m), 3.27(1H,d,J-1.24,0Hz), 2.54(1H,d,J-1.24,0Hz), 2.54(1H

Compound B43-2

(46 [0457] ¹H-NMR Spectrum(CD₂OD,400MHz)8(ppm): 0.90(3H,d,J=6.8Hz), 0.92(3H,d,J=6.8Hz), 0.93(3H,t,J=7.6Hz), 1.08(3H,d,J=6.8Hz), 1.144 (24/4H,m), 1.404 (1.56/4H,m), 1.594 (1.56/2H,m), 1.72(3H,d,J=1.2Hz), 2.06(3H,s), 2.71-2.29 (1.14,d,J=2.52(2H,m), 2.56(2H,m), 2.76(2H,d,J=2.4,6.0Hz), 3.51(1H,d,J=4.4,8.8Hz), 4.84-4.8(71H,m), 5.02 (11H,d,J=9.2Hz), 5.82-5.77(4H,m), 6.04-6.13(2H,m), 6.33(1H,d,J=10.31,5.2Hz); ESI-MS m/z 541(M+Na)*.

Example B44 (8E,12E,14E)-7-Carbamoyloxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien 11-olide (Compound B44)

[0458]

10

15

25

Compound B44

#, \$ CH

(8E,12E,14E)-3,6,21-Tri(1-ethoxyethoxy)-6,10,12,16,20-pentamethyl-7-(4-nitrophenoxy)carboxy-18,19-epoxytricosa-8,12,14-trien-11-olide

[0459]

[0460] A solution of 4-nitrophenyl chloroformate (62 mg, 300 µmol) in dichloromethane (2.5 mL) was added dropwise into a solution of (8E, 12E, 14E)-3, 6,21-int(1-ethoxyethoxy)-7-hydroxy-6,10,12,16,20-pentamethyl-18,19-spoxyfricosa-8,12,14-trien-11-olide (35 mg, 49.2 µmol), triethylamine (61 mg, 800 µmol) and dimethylaminopyldine (4 mg, 30 µmol) in dichloromethane (2.5 mL), followed by stirring at room temperature for 2.5 hours under nitrogen atmosphere. Ethyl scattale, water and saturated sodium bicarbonate aqueous solution were added to the reaction mixture, and the mixture was extracted with ethyl acetate, then the organic layer was washed with water. The resulting organic layer was drad over anhydrous magnesium sulfate, filtered and then evaporated to give the title crude compound (92.2 mg) as a yellow oil. This was used for the following reaction without purification.

(8E,12E,14E)-7-Carbamoyloxy-3,6,21-tri(1-ethoxyethoxy)-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide

[0461]

45

55

[0462] 28% Aqueous ammonia solution (20 μL, 300 μmol) was added dropwise to a solution of the crude (8Ε.12Ε,

14E)-3.6,21-iri(1-ethoxyethoxy)-6,10,12,16,20-pentamethyl-7-(4-nitrophenoxy)carboxy-18,19-epoxytricosa-8,12,14-irien-11-olide (10 mg, about 5.3 µmol) in tetrahydrofuran (1.5 mL), followed by stirring at room temperature for 3 hours

[0463] Ethyl acetate and water were added to the reaction mixture, and the mixture was extracted with ethyl acetate. The resulting organic layer was dried over anhydrous magnesium sulfate, filtered and then evaporated. The resulting residue was purified by thin layer chromatography (MERCK Silica gale 60 F254, 0.2 mm, developing solution; ethyl acetate-hexane, 1:1) to give the title compound (3.6 mg, 90%, 2 steps) as a colorless oil.

(8E,12E,14E)-7-Carbamoyloxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B44)

[0464]

15

20

Compound B44

28 [0.465] Pyridinium p-toluenesulfonate (1.2 mg. 4.8 juriol) was edded to a solution of (6E,12E,14E)/7-cerbemoylory-30,21-tri(1-ethoxyehoxy)-6,10,12,16,20-pentamethyl-18,19-popyricosa-8,12,14-trien-1oide (3.8 mg, 4.77 juriol) in methenol (1 mil.), followed by stirring at room temperature for 3 hours. The reaction mixture was everported, ethyl acetate, water end a saturated sodium bicarbonate aqueous solution were added to the resulting residue, and the mixture was extracted with ethyl acetate. The resulting organic layer was dried over enhydrous magnesium sulfete, filtered and then eveporeted. The resulting roduce was purified by thin layer chomodycopsly (MERCK Silica qel 60).

filtered end then everyoreted. The resulting residue was purified by thin layer chrometography (MERCK Silica gel 60 F254, 0.2 mm, developing solution; methanol-dichloromethane, 1:29) to give the title compound (1.9 mg, 74%) es e coloriess oil.

H-NMR Spectrum (CD₂OD, 400MHz)8(ppm): 0.88(9H.d.₃L=8.Hz), 0.99(9H.d.₃L=8.Hz), 0.93(3H.d.₃L=7.Hz), 1.08(3H.d.₃L=8.Hz), 1.14:1.23(4H.m), 1.23:1.57(8H.m), 1.74(3H.d.₃J=0.8Hz), 2.41:2.62(4H.m), 2.65(1H.d.₃J=2.48,4Hz), 2.72 (1H.d.₃J=2.4.6.0Hz), 3.51(1H.d.₃J=4.8.8Hz), 3.74:3.80(1H.m), 4.85-4.89(1H.m), 5.04(1H.d.₃J=1.0.8Hz), 5.54(1H.d.₃J=1.0.152Hz), 5.65(1H.d.₃J=0.8.Hz), 5.63(1H.d.₃J=1.0.8.Hz), 5.63(1H.d.₃J=0.8.Hz), 5.63(1H.d.₃J=0.8.Hz

Example 845 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-methylcarbamoyloxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B45)

[0466]

45

50

55

Compound B45

[0467] The title compound (a colorless oil) was synthesized by the similar method as Example B44.

11-HMR Spectrum(CD₂0D,400MH2)(ppm); 0.88(3H,4)=6.8Hz), 0.90(3H,d,J=6.8Hz), 0.93(3H,t,J=7.6Hz), 1.08(3H,d,J=6.8Hz), 1.14-1.23(4H,m), 1.31-1.67(8H,m), 1.74(3H,d,J=6.8Hz), 1.08(2H,d,J=6.8Hz), 1.24(3H,d,J=6.8Hz), 1.24(3H,d,J=6.8H

2.88-2.75(H+m), 3.51(H+d,J=4.8,8.8Hz), 3.74-3.80(H+m), 4.87-4.91(H+m), 5.04(H+d,J=10.8Hz), 5.55(H+,dd,J=9.6.15.2Hz), 5.65(H+,dd,J=8.8,15.2Hz), 6.09(H+d,J=10.8Hz), 6.32(H+,dd,J=0.8,15.2Hz), 6.09(H+d,J=10.8Hz), 6.32(H+,dd,J=10.8,15.2Hz), 6.09(H+d,J=10.8Hz), 6.32(H+,dd,J=10.8,15.2Hz), 6.09(H+d,J=10.8Hz), 6.32(H+,dd,J=10.8,15.2Hz), 6.09(H+d,J=10.8Hz), 6.32(H+,dd,J=10.8Hz), 6.

Example B46 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N,N-dimethylcarbamoyloxy-18,19-epoxytricosa-8,12,14-trien-12-oilde (Compound B46)

[0468]

10

15

20

35

40

45

Compound B46

Example B47 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-(2-(2-pyridyl)ethyl) carbamoyloxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B47)

[0470]

Compound B47

[0471] The title compound (a coloriess ofl) was synthesized by the similar method as Example B44
**IH-MMR Specimum (CQ,OQ-A00/H26)pem): 0.83(H, JL-8-B12), 0.93(H, JL-9-B12), 0.93(H,

55

Example B48 (8E,12E,14E)-3.6,21-Trihydroxy-7-((4-hydroxypiperidin-1-yi)carbonyi)oxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B48)

[0472]

10

15

55

Compound B48

HO THE CONTRACT OF THE CONTRAC

[0473] The title compound (a coloriess oil) was synthesized by the similar method as Example B44
"IH-MMR Spectrum(CD₂DO,406WHz45)[porph): 68(944,J=6-8Hz), 09(91H_J=6-8Hz), 0.93(H_J,L-8-Hz), 106(3H,
d_J=6.8Hz), 1.14-1.23 (4H,m), 1.30-1.87(10H,m), 1.74(91s), 1.79-1.86(2H,m), 242-2.86(4Hz), 2.86(1Hz), 2.94-2.84(1Hz), 2.72(1Hd,J=6.96.0Hz), 2.99-3.29(2Hm), 3.51(1Hz),J=4.8.8Hz), 3.74-4.13(4Hm), 4.92(1Hz),
J=9.8Hz), 5.05(1Hz,J=1.08Hz), 5.57(1Hz,d]=10.152Hz), 5.65(1Hz,d]=8.41.8Hz), 5.71(1Hz,d]=9.614.8Hz),
6.09(1Hz,d]=10.44Pz), 5.22(1Hz,d]=10.814Bz), 5.57(1Hz,d]=10.814Bz),
6.09(1Hz,d]=10.44Pz), 5.22(1Hz,d]=10.814Bz), 6.71(1Hz,d]=10.814Bz),
6.09(1Hz,d]=10.44Pz), 5.22(1Hz,d]=10.814Bz), 6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz), 6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.71(1Hz,d]=10.814Bz),
6.7

Example B49 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-((morpholin-4-yl)carbonyl)oxy-18.19-epoxytricosa-8,12.14-trien-11-olide (Compound B49)

[0474]

Compound B49

[0475] The title compound (a coloriess oil) was synthesized by the similar method as Exemple B44.

1H-NMR Spectrum (CD₂0D,400MHz)8(ppm): 0. 89 (3H, d, J=6. 8Hz), 0.90(3H,d,J=7.2Hz), 0.93(3H,d,J=7.6Hz), 1.08

(3H,d,J=6.8Hz), 1.14-1.23(4Hm), 1.30-1.67(6Hm), 1.74(3H₃), 2.42-2.61(4Hm), 2.65(1H,dd,J=2.4.8.4Hz), 2.72(1H,dd,J=2.4.6.0Hz), 3.35-3.68(9Hm), 3.75-3.81(1H,m), 4.95(1H,d,J=9.8Hz), 5.04(1H,d,J=10.8Hz), 5.57(1H,dd,J=9.615.2Hz), 6.09(1H,d,J=10.8Hz), 6.32(1H,dd,J=10.8Hz), 6.32(

Example B50 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-{(4-methylpiperazin-1-yi)carbonyi) oxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B50)

[0476]

10

15

30

35

40

50

Compound B50

[0477] The title compound (a colorless oil) was synthesized by the similar method as Example B44.

1H-NMR Spectrum (CD₂O₂O, 400MHz) 6 (ppm): 0.89(8H₄J₂=6.4Hz), 0.99(8H₄J₂=6.8Hz), 0.93(8H₄J₂=7.6Hz), 1.08

(6H₄J₂=6.8Hz), 1.14-123(4H₂M), 1.31-16.76(8H₂M), 1.74(9H₂M), 2.30(3H₂M), 2.37-28.26(H₂M), 2.56(H₃H₄J₂-2.0,6.9Hz), 3.39-3.71(5H₂M), 3.75-3.81(1H₂M), 4.93(1H₂J₂=0.6Hz), 5.04(1H₂J₂-2.0,6.9Hz), 5.55(H₃H₄J₂-2.0,6.9Hz), 5.75(H₃H₄J₂-2.6,6.9Hz), 5.75(H₄J₂-2.6,6.9Hz), 5.75(H₄J₂-2.6,6.9Hz), 5.75(H₄J₂-2.6,6.9H

5 Example B51 (8E,12E,14E)-7-((4-Acetylpiperazin-1-yl)carbonyl)oxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B51)

[0478]

Compound B51

[0479] The title compound (a coloriess oil) was synthesized by the similar method as Example B44.

1H-MMR Spectrum (CO₂OD, 400MH2)8[ppm]: 0.88(3H,d,J=8.8Hz), 0.99 (3H,d,J=7.2Hz), 0.93(3H,d,J=7.8Hz), 1.08

4H,d,J=8.8Hz, 1.14-1.23(4Hm), 1.32-1.88[eHm], 1.74(3H,d,J=1.2Hz), 2.12(3Hs), 2.4-1.28(2H,m), 2.65(1H,dd,J=0.4Hz), 2.71(1H,dt,J=0.6Hz), 3.95-3.72(9H,m), 3.74-3.82(1H,m), 4.96(1H,d,J=9.8Hz), 5.04(1H,d,J=0.4Hz), 5.56(1H,dd,J=0.4Hz), 5.56(1H,dd,J=0.4Hz), 5.06(1H,d,J=0.4Hz), 5.06(1H,

Example B52 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-((piperazin-1-yl)carbonyl)oxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B52)

[0480]

10

15

90

24

55

Compound B52

[0481] The title compound (e coloriess oil) was synthesized by the similar method as Example B44.

1H-NMR Spectrum(CD_0D, 400MHz)8(ppm; 0.89(3H,d_J=6.8Hz), 0.90(3H,d_J=6.8Hz), 0.93(3H,d_J=6.8Hz), 1.11-1.23(4H,m), 1.26-1.67(8H,m), 1.74(3H,s), 2.42-2.62(4H,m), 2.65(4H,d_J=2.0,84Hz), 2.69-2.81(5H,m), 3.36-3.69(5H,m), 3.75-3.82(1H,m), 4.94(1H,d_J=0.8Hz), 5.04(1H,d_J=10.8Hz), 5.57(1H,dd_J=0.0,15.2Hz), 5.68(1H,dd_J=0.8,15.6Hz), 5.71(1H,dd_J=0.6,15.2Hz), 6.09(1H,d_J=0.8Hz), 6.32(1H,dd_J=10.8,14.8Hz); ESI-MS m/z 607(M-H)*

Example B53 (8E,12E,14E)-3,6,21-Trihydroxy-7-(N-(2-methoxyethyl))carbamoyloxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B53)

[0482]

Compound B53

[0483] The title compound was obtained as a colorless oil by the similar method as Example B44.

5 Compound B53

[0444] ¹H-NMR Spectrum (CO₂OD.S00M-t2\\00e4\00e40pm), 0.90(3H.d.\00e465 E4.), 0.91(3H.d.\00e47-0Hz), 0.94(3H.\00e48-0Hz), 1.09(3H.d.\00e47-0Hz), 0.34(3H.\00e48-0Hz), 1.29(3H.\00e48-0Hz), 1.29(3H.\00e48-0Hz), 2.42-2.82(4Hm), 2.42(2.82(4Hm), 2.42(3Hz), 2.42(3Hz), 3.44(2Hz), 3.45(3Hz), 2.42(3Hz), 3.44(2Hz), 3.45(3Hz), 3.44(2Hz), 3.45(3Hz), 3.44(2Hz), 3.45(3Hz), 3.44(2Hz), 3.45(3Hz), 3.44(2Hz), 3.45(3Hz), 3.45(3Hz)

Example B54 (8E,12E,14E)-7-(N-(2-Dimethylamino)ethyl)carbamoyloxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B54)

[0485]

10

15

Compound B54

[0486] The title compound was obtained as a colorless oil by the similar method as Example B44.

H-NIMR Spectrum (CD₂OD,500Ht/2)(ppm): 0.89(BH,d₂H=7.5Hz), 0.99(BH,d₂H=7.5Hz), 0.99(BH,d₂H=7.5Hz), 0.94(BH,d₃H=7.5Hz), 0.94(BH,d₃H=7.5

Example B55 (8E,12E,14E)-7-(N-(3-Dimethylamino)propyl)carbamoyloxy-3,6,21-trihydroxy 6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B55)

[0487]

30

ΔO

50

Compound B55

[0488] The title compound was obtained as a coloriess oil by the similar method as Exampie B44.

14-NMR Spectrum (Cb₂OD,500M+z)8ippm; 0.89(3H,d,J=7.0Hz), 0.91(3H,d,J=7.0Hz), 0.94(3H,J)=7.0Hz), 1.09(3H,d,J=7.0Hz), 1.16-1.72(11Hm), 1.21(3Hs), 1.75(3Hs), 2.24(6Hs), 2.26(2H,J)=6.0Hz), 2.42-2.62(4H;m), 2.86(1H;d,J=2.0,60Hz), 2.73(1H;d,J=2.0,90Hz), 3.14(2H;J,J=7.0Hz), 3.46-3.55(1Hm), 3.75-3.82(1Hm), 4.90(1H;d,J=10.5Hz), 5.84-3.22(1Hd,J=1.0.5Hz), 5.84-3.22(1Hd,

Example B56 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-(2-pyridylmethyl)carbamoyloxy-18.19-epoxytricosa-8.12,14-trien-11-olide (Compound B56)

[0489]

5

10

15

Compound B56

[0490] The title compound was obtained as a coloriess oil by the similar method as Example B44.
H-NMR Spectrum(Cb_0D-0A0Hz)8(pm): 0.88(Hd,LJ=72H), 0.88(Hd,LJ=72H), 0.94(SH,LJ=78Hz), 1.08(CH,LJ=78Hz), 1.08(CH,LJ=78Hz), 1.16(SH,LJ=78Hz), 1.16(SH,L

Example B57 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-(3-pyridylmethyl)carbamoyloxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B57)

[0491]

40

50

Compound B57

[0492] The title compound was obtained as a coloriess oil by the similar method as Example B44.

11-NAMR Spectrum(CO₂DO A00MH-2/8(prm): 0.87(3H, d.J=6.8Hz), 0.93(3H, d.J=6.8Hz), 0.93(3H, d.J=6.8Hz), 0.93(3H, d.J=7.8Hz), 0.93(3H, d.J=7.8Hz), 0.93(3H, d.J=7.8Hz), 0.93(3H, d.J=7.8Hz), 0.93(3H, d.J=7.8Hz), 0.93(3H, d.J=7.8Hz), 0.93(3Hz), 0.9

Example B58 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-(4-pyridylmethyl)carbamoyloxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B58)

[0493]

15

30

34

50

55

Compound B58

[0494] The title compound was obtained as a coloriess oil by the similar method as Example B44.

**MMR Spectrum(Cb_QO_A00MHz)@ppm): 0.88(34_J=7.2Hz), 0.88(3H,J_#-6.8Hz), 0.94(3H,J_#-7.6Hz), 1.08(3H,J_#-6.8Hz), 1.15-1.68(3Hz), 1.15-1.68(3H

Example B59 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-(2-(morpholin-4-yl)ethyl) carbamoyloxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B59)

[0495]

Compound B59

[0469] The title compound was obtained as a coloriess oil by the similar method as Example 544.
1H-NMR Spectrum(CD₂OD,400M+t2)8[ppm]: 0.88(3H,4J=52Hz), 0.88(3H,4J=72Hz), 0.33(3H,4J=72Hz), 0.33(3H,4J=72Hz), 1.07(3H,4J=63Hz), 1.17-1.66(9Hm), 1.26(3Hm), 1.74(3Hm), 2.48(3Hm), 2.68(1H,4J=2.48,4Hz), 2.72(1Hmd, J=2.4,6.0Hz), 3.26(2H,1,J=6.8Hz), 3.26(3-36(2Hm), 3.46-3.54(1Hm), 3.82-3.72(4Hm), 3.74-3.83(1Hm), 4.844-8.84(1Hm), 5.04(1H,d,J=10.8Hz), 5.85(1H,dd,J=10.415.2Hz), 5.65(1H,dd,J=8,15.2Hz), 5.69(1H,dd,J=10.0,15.6Hz), 6.09(1H,d,J=10.8Hz), 6.25(1H,dd,J=10.8,14.8Hz); ESI-MS mz 65(1H,M+H).

Example B60 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-(3-(morpholin-4-yl)propyl) carbamoyloxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B60)

[0497]

10

15

25

55

Compound B60

[0498] The title compound was obtained as a colorless oil by the similar method as Example B44.

14-NMR Spectrum(C3₂OD, 400M-12)8(ppm): 0.88(3H,d,J=5.24); 0.90(3H,d,J=7.24); 0.93(3H,L,J=7.24); 1.08(3H,d,J=8.04); 1.16-1.73(1H,M); 1.20(3H,B); 1.74(3H,B); 2.956.28(2(9H,M); 2.56(1H,d,J=2.0,8.44); 2.72(1H,d,J=2.6,8.04); 3.10-3.16(4H,m); 3.46-3.54(1H,m); 3.82-3.72(4H,m); 3.74-3.82(1H,m); 4.84-4.88(1H,m); 5.04(1H,d,J=10.8Hz); 5.54(1H,d,J=10.8Hz); 5.54(1H,d,J=10.8Hz); 5.54(1H,d,J=10.8Hz); 5.54(1H,d,J=10.8Hz); 6.95(1H,d,J=10.8Hz); 6.95

Example B61 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-((homopiperazin-1-yl)carbonyl) oxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B61)

[0499]

Compound B61

OH CH CH CH

[0500] The title compound (a coloriess oil) was synthesized by the similar method as Example B44.

14-NMR Spectrum (Cb_00.400MHz)8(ppm): 0.88(3H,d_J=6.8Hz), 0.90(3H,d_J=6.8Hz), 0.93(3H,l_J=7.8Hz), 1.08(3H,d_J=6.8Hz), 1.14-1.26(4Hm,J,1.34-1.68(8Hm,J,1.74(3H_d,J=0.8Hz), 1.77-1.86(2Hm,J,2.4-12.63(4Hm,J),2.65(1H,dd,J=2.4,8.4Hz), 2.72(1H,dt,J=2.4.6.0Hz), 2.73-2.94(4Hm), 3.41-3.68(6Hm), 3.75-3.82(1Hm), 4.94(1H,d,J=9.8Hz), 5.05(1H,d,J=10.4Hz), 5.77(1H,dd,J=10.4Hz), 5.77(1H,dd,J=10.4Hz),

Example B62 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-((4-methylhomopiperazin-1-yl) carbonyl)oxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B62)

[0501]

15

Compound B62

[0502] The title compound (a coloriess oil) was synthesized by the similar method as Example B44.

H-NMR Spectrum (CD₂OD,400MHz)5(ppm): 0.79(aH,J=6.4Hz), 0.80(3H,J=7.2Hz), 0.84(3H,J=7.8Hz), 0.98(3H,J=7.8Hz), 1.05-1.16(4H,J=1.2Hz), 1.05-1.16(4H,J=1.2Hz), 1.05-1.16(4H,J=1.2Hz), 1.05-1.16(4H,J=1.2Hz), 1.24-1.58(4H,J=1.2Hz), 1.26(2H,J=1.2Hz), 1.26(2H,J=1

Example B63 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-(2-(piperidin-1-yl)ethyl) carbamoyloxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B63)

[0503]

30

35

Compound B63

[0504] The title compound (a coloriess oil) was synthesized by the similar method as Example B44.

1H-NMR Spectrum (CD₂OD 400MH:2)8(ppm): 0.88(3H,d_J=6.0Hz), 0.90(3H,d_J=6.8Hz), 0.33(3H,d_J=7.6Hz), 1.08(3H,d_J=6.8Hz), 1.14-1.25(4H,m), 1.32-1.67(14H,m), 1.74(3H,d_J=0.8Hz), 2.40-2.62(10H,m), 2.65(1H,dd_J=2.4,8.4Hz), 2.72(1H,d_J=2.4,8.0Hz), 3.26(2H,J_J=6.8Hz), 3.51(1H,d_J=4.4,8.4Hz), 3.74-3.81(1H,m), 4.86-4.92(1H,m), 5.04(1H,d_J=10.8Hz), 5.54(1H,d_J=9.6.15.2Hz), 5.65(1H,d_J=6.14.8Hz), 5.69(1H,d_J=0.6.15.2Hz), 6.09(1H,d_J=10.8Hz), 6.32(1H,d_J=10.8,14.4Hz), 5.81(1H,d_J=10.8,14.4Hz), 5.8

Example B64 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-(2-(pyrrolidin-1-yl)ethyl) carbamoyloxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B64)

[0505]

5

Compound B64

[0506] The title compound (a colorless oil) was synthesized by the similar method as Example B44.

14-NMR Spectrum (CD_Q-DD_A00M+z)8(ppm): 0.88 (3H, d, J=6, 4Hz), 0.90(3H, d, J=6, 8Hz), 0.93(3H, I, J=7, 8Hz), 1.08

(3H, J, J=6, 8Hz), 1.14-1.25(4Hzm), 1.32-1.67(8Hzm), 1.74(3Hz), 1.76-1.83(4Hz), 2.42-2.62(10Hzm), 2.65(1Hz), d, J=2.4, 8.4Hz), 2.72(1Hz), 4.16, 2Hz), 3.27(2Hz), J=5.64(1Hz), J=4.4, 8.4Hz), 3.74-3.81(1Hzm), 4.86-4.92(1Hz), m), 5.04(1Hz), J=10.8Hz), 5.64(1Hz), 6.21(2Hz), 5.65(1Hz), 4.84, 14.8Hz), 5.69(1Hz), dJ=9.6,15.2Hz), 6.09(1Hz), dJ=10.8Hz), 6.32(1Hz), dJ=10.8Hz), 6.32(1Hz), dJ=10.8Hz), 6.32(1Hz), dJ=10.8Hz), 6.32(1Hz), dJ=10.8Hz), 6.32(1Hz), 6.21(1Hz), 6.21(1Hz), dJ=10.8Hz), 6.32(1Hz), dJ=10.8Hz), 6.32(1Hz), 6.32(1Hz), dJ=10.8Hz), dJ=1

Example B65 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-((4-ethylpiperazin-1-yl)carbonyl) oxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B65)

[0507]

20

35

40

50

55

Compound B65

[8988] The title compound (a coloritess oil) was synthesized by the similar method as Example B44.

11-MMR Spectrum (CQ,DQ-A00478)6pm;). 88;94(1,d_1.6=k1/2), 096(14,d_1.6=k1/2), 093(14,l_1.7=k1/2), 1,08(34,d_1.6=k1/2), 11(34,l_1.6=k1/2), 11(

Example B66 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-((4-(2-hydroxyethyl)piperazin-1-yl) carbonyl)oxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B66)

[0509]

10

15

30

35

40

50

55

Compound B66

[0510] The title compound (a colorless oil) was synthesized by the similar method as Example B44.
11-NMR Spectrum (Cb₃OD 400MHz)&[ppm; 0.89(3H,d,J=6.8Hz), 0.90(3H,d,J=6.8Hz), 0.90(3H,d,J=7.8Hz), 1.08(3H,d,J=6.8Hz), 1.14-1.23(4H,m), 1.33-1.67(8H,m), 1.74(3H,d,J=1.2Hz), 2.43-2.61(10H,m), 2.66(1H,d,d,J=2.4,8.4Hz), 2.72(1H,d,d,J=2.4,8.0Hz), 3.98-3.72(7H,m), 3.74-3.81(1H,m), 4.93(1H,d,J=9.6Hz), 5.04(1H,d,J=10.8Hz), 5.57(1H,dd,J=9.8Hz), 5.85(1H,dd,J=10.8Hz), 5.77(1H,dd,J=9.8.15.2Hz), 6.09(1H,d,J=10.8Hz), 6.32(1H,dd,J=10.8Hz), 6.32(1H,dd,J=10.8Hz),

Example B67 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-((2,5-dimethylpiperazin-1-yl) carbonyl)oxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B67)

[0511]

Compound B67

[0512] The title compound (a coloriess oil) was synthesized by the similar method as Example B44.

1H-NMR Spectrum (CD₂00,400MHz)8(ppm): 0.88(3H,d_J=6.4Hz), 0.90(3H,d_J=6.8Hz), 0.93(3H,d_J=6.Hz), 1.11-1.28(10H,m), 1.34-1.68(9H,m), 1.74(3Hd_J=0.8Hz), 2.42-2.8(9H,m), 2.5(1H,dd,J=2.4,8.Hz), 2.72(1H,dt,J=2.4,6.Hz), 3.04-3.36(2H,m), 3.24-3.30(1H,m), 3.51(1H,dt,J=4.4.8.Btz), 3.65-3.73(1H,m), 3.75-3.82

(1H,m), 4.18-4.28(1H,m), 4.88-5.00(1H,m), 5.05(1H,d,J=10.8Hz), 5.57(1H,dt,J=10.15.2Hz), 5.57(1H,dt,J=10.15.2Hz), 5.71(1H,dt,J=10.8Hz), 6.32(1H,dt,J=10.14.8Hz); ESNMS m/z 635(M+Hz).

Example B68 (8E,12E,14E)-7-N-Ethylcarbamoyloxy-3,6,21 trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B68)

[0513]

10

15

25

an

Compound B68

(8E,12E,14E)-3,6,21-Tris(1-ethoxyethoxy)-7-N-ethylcarbamoyloxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide

[0514]

OEE OEE

[0515] Cuprous chloride (I) (13 mg, 0.13 mmol) and ethyl isocyanate (16 mg, 0.23 mmol) were added to a solution (6E, 12E, 146), 3.6.2 t.1 rist(1 + 100xybethox)/1-3 v/betxys, 9.10.12.16 (25-pentamethyl-14.19-epopytriosas, 12.14-trien-11-olide (16 mg, 0.023 mmol) in dichloromethane (2.5 mL) at nom temperature. The mixture was stirred at nom temperature for 16 hours. The reaction mixture was cliused with ethyl acetate, washed with brive, ried over arhydrous magnesium sulfate and evaporated. The resulting crude product was purified by silicia gel column chromatography (Kanto silica gel 60N, spherical, neutral, 40 to 100 µm, eluate; ethyl acetate:hexane=50:50) to give the title compound (11 mg, 81%) as colorisas oil.

40 ESI-MS m/z 781 (M+Na)+.

(BE_12E_14E)-7-N-Ethylcarbamoyloxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B68)

5 [0516]

50

55

Compound B68

[0517] Pyridinium p-loluenesulfonate (17 mg, 0.089 mmol) was added to a solution of (8E, 12E, 14E)-3.6,21-16s (1-ethoxyethoxy)-7-N-ethylcarbamoyloxy-6,10,12.16,20-pentamethyl-18,19-epoxyricosa-8,22,14-trien-11-olide (11 mg, 0.014 mmol) in methanol (1.5 mL) at room temperature, followed by stirring at the same temperature for one hour. The reaction mixture was diluted with 1.5 mL of ethyl acetate, washed with brine, dried over anhydrous magnesium sulfate and evaporated. The resulting crude product was purified by silica gel column chromatography (Kanto silica gel 60N, spherical, neutral, 40 to 100 µm, eluster ethyl acetate) to give the title compound (6.0 mg, 61%) as a coloriess

1H-NMR Spectrum(CD,QD.400MHz)S[ppm]: 0.88(3H,d,J-F.2Hz), 0.90(3H,d,J=8.Hz), 0.93(3H,t,J=7.2Hz), 1.08(3H,d,J=6.8Hz), 1.10(3H,t,J=7.2Hz), 1.18-1.68(9H,m), 1.20(3H,a), 1.74(3H,a), 2.40-2.81(2H,m), 2.52(2H,d,J=4Hz), 2.85 (1H,d,J=2.48.4Hz), 2.72(1H,d,J=2.45.8Hz), 3.12(2H,d,J=7.2Hz), 3.51(1H,d,J=4.44.Hz), 3.74-3.82(1H,m), 4.84 (1H,m), 5.04(1H,d,J=10.8Hz), 5.55(1H,d,J=10.15.Hz), 5.62-5.72(2H,m), 6.09(1H,d,J=10.8Hz), 6.32(1H,d,J=10.15.Hz), 5.62-5.72(2H,m), 6.09(1H,d,J=10.8Hz), 6.32(1H,d,J=10.8Hz), 6.32(1H,d,J=10.8Hz

Example B69 (8E,12E,14E)-7-(N-Chloroacetyl)carbamoyloxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B69)

[0518]

20

25

Compound B69

[0519] Using chloroacetyl isocyanate, the title compound was obtained as a colorless oil by the similar method as Example B68.

1H-MMR Spectrum (CD_20D,500MH2)8(ppm): 0.90(PH,d,J=5.Ft2), 0.90(PH,d,J=7.0t2), 0.94(PH,LJ=7.8t2), 1.09(PH,d,J=7.0t2), 1.01(PH,m), 2.96(PH,m), 2.96(PH,

Example B70 (8E,12E,14E)-3-(t-Butyldimethylsiloxy)-7-(N ethyl)carbamoyloxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B70)

[0520]

50

Compound B70

[923] The 7-acetoxy of the compound obtained in Example B11 was solvelyzed by the similar method as the compound B12. Then, using ethylamine, it was converted into 7/4-thyligo-tabmethox, milest by the similar method as Example B44, and then the ethoxyethyl group was deprotected by the similar method as Example B44 to give the title compound as a colorless soil.

"H-NMR Specium (CQ-QO-500Mt-2)8(pm): 0.09(3H,s), 0.10(3H,s), 0.88-0.97(18H,m), 1.09(3H,d.J-7.5Hz), 1.12 (3H,d.J-7.5Hz), 1.20(3H,s), 1.20-1.26(1H,m), 1.27-1.72(8H,m), 1.73(3H,s), 2.38(1H,d.J-4.0,13.0Hz), 2.42-2.64(3H,m), 2.66(1H,d.J-8.0Hz), 2.73(1H,L.J-6.0Hz), 3.08-3.20(2H,m), 3.48-3.56(1H,m), 3.88-3.98(1H,m), 4.86(1H,d.J-11.0Hz), 4.90(1H,d.J-11.0Hz), 5.56(1H,d.J-10.0,15.0Hz), 5.64-5.84(2H,m), 6.11(1H,d.J-11.0Hz), 6.32(1H,d.J-11.0Hz), 6.32(1H,d.J-

Example B71 (8E,12E,14E)-7-Acetoxy-3,6-dihydroxy-6,10,12,16,20-pentamethyl-21-oxo-18,19-epoxytricosa-8.12,14-trien-11-olide (11107C)

[0522] A solution of Compound 810-2 (37 mg, 67 jum0) obtained in Example 810 in chloroform (6 mL) was added as suspension of Dess-Martin reagent (72 mg, 170 jum0) in chloroform (2 fm I), followed by stirring at room temperature for one hour. A 10% equeous sodium hissuifate solution was added to the reaction mixture and the mixture was vigorously stirred. Then, the organic layer was washed with brine, diried over anhydrous magnesium sulfate and evaporated. The resulting residue was purified by silica gel column chromatography (Kanto silica gel 60N, spherical, neutral, 40 to 100 jum, is usuale, hexane-stripl acetate-2:1 to 11) to give a 5-bubyldimethylsioly-2:1-keto compound (30 mg, 81%). A solution of the resulting 34-butyldimethylsioloxy-2:1-keto compound (35 mg, 93 jumo) in terharydrotruan (100 juL) was added to a mixture of trifluoroacetic acid:tetrahydrofuran:water=1:10:5 (2 mL), followed by stirring at room temperature for 5 hours. After ently acetate was added to the reaction mixture, the organic layer was washed with a saturated sodium bicarbonate aqueous solution and brine, dried over anhydrous magnesium sulfate and then evaporated. The resulting residue was purified by silica gel column chromatography (Kanto silica gel 60N, spherical, neutral, 40 to 100 jum, elutate, hexane-ethyl acetatier 1:3) to give a coloriess oil (11.1 mg, 54%), it was confirmed by TLC and HPLC that this product was identical to 111070 colorising from the cultured brind for microbial.

Example B72 (8E,12E,14E)-3,6,21-Trihydroxy-7-oxo-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B72)

[0523]

30

Compound B72

[0524] A solution of (8E.12E,14E)-3.6.21-in(1-ethoxyethoxy)-7-hydroxy-6,10.12.16,20-pentamethyl-18,19-epoxytricosa-8.12.14-it-nie-11-olde (10 mg, 14 jumo) obtained in Example (398 in chloroform (0.5 mL) was added to a suspension of Dess-Marin reagent (60 mg, 140 jumo) in chieroform (2 mL), followed by stiring at room temperature for 3
hours. The reaction mixture was poured into a sodium thiosulfate aqueous solution, and the mixture was vigorously
stirred. Then, tryl acetate was added thereto, and the organic layer was washed with brine, diried over anhydrous
sodium sulfate and evaporated. The resulting residue was dissolved in 2 mL of methanol and pyridinium p-toluenesulinnate (3 mg, 11 jumo) was added thereto, followed by stirring at room temperature for 20 hours. The solvent was
removed, and the resulting residue was dissolved in ethyl acetate. The mixture was washed with a saturated sodium
bicarbonate aqueous solution and brine, diried over enhydrous reagnessium sulfate and evaporated. The resulting residue was purified by thin layer chromatography (MERCK Silica gel 60 F254, 0.2 mm, developing solution; hexane:ethyl
acetate=1:59 and preparative HPLC (Shisakido APCELL PAK C18, 10 mmL) Dz.250mm, eluate;

acotonirie water=208-90:20) to give the title compound (0.11 mg, 2%) as a coloriess oil.

11+MMR Spectrum (Co₂O₀C,5004M2)§(ppm): 0.916 [Hd, Jar. 574;), 0.946[H, Jar. 514;), 0.96(3H, Jar. 741;), 1.10(3H, Jar. 741;),

Example B73 (2E,8E,12E,14E)-7-Acetoxy-8,21-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxy-3-oxotricosa-4,8,12,14-tetraen-11-olide (Compound B73)

[0525]

5

10

15

Compound B73

[0526] (ZE,BE,12E,14E)-Acetoxy-3,6,21-trihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-4,8,12,14-tertenen-11-olide (11.2mg, 20,9 µmol) was dissolved in dichloromethane (0.5 ml.), followed by cooling to °C. MnO₂ (64.5 mg) was added to the solution, followed by stirring at °C for 2 hours and at room temperature for one hour. The reaction mixture was filtered through Celite, and then evaporated. The resulting crude product was purified by thin layer chromatography (MERCK Silica gel 60 P254, 0.5 mm, developing solution; ethyl acetate:hexane=3:1) to dive the title Compound B73 (9.8 mg, 18.3 µmol, 8.75%).

¹H-NMR Spectrum(CQ-QD-400MHz)8(ppm): 0.84(1H,d,1=7Hz), 0.89(3H,d,1=7Hz), 0.93(3H,t,1=8Hz), 1.07(3Hd, 1=7Hz), 1.14-1.23(1Hm),1.34(3Hs),1.41-1.55(3Hm),1.56(1Hm),1.59(3Hd,1=0.7Hz), 2.09(3Hs),2.41-2.5 (1Hm), 2.51-2.6(0Hm), 2.54(1Hd,01=2.8Hz), 2.71(1Hd,01=2.8Hz), 3.05(1Hd,01=5.9Hz), 3.56(1Hd,01=5.8Hz), 3.68(1Hd,01=5.8Hz), 3.68

Example B74 (8E,12E,14E)-7-Acetoxy-3,6-dihydroxy-21-methoxyimino-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B74)

[0527]

45

Compound B74

[0828] A solution of methoxyhydroxylamine (1.2 mg, 0.014 mmol) in pyridine (0.5 mL) was added to a solution of (8E.12E.14E)-7-accitoxy-3.6.21-tihlydroxy-6.10.12.16.20-pentamethyl-21-oxo-18.19-epoxytiricosa-8.12.14-trien 1-loidle (5.0 mg, 0.0950 mmol) in pyridine (0.8 ml), all room temperature. The mixture was stirred at 60° for 16 hours. The reaction mixture was diluted with ethyl acetate, washed with brine, dried over anhydrous magnesium suitate and evaporated. The resulting routed product was purified by thin layer chromatography (MEROX Silica gel 60° F254, 0.2 mm, developing solution; ethyl acetate) to give the title compound (2.2 mg, 42%) as a colortess oil. HH-NMR Spectrum(CD_0D_0d0MHz)Sippm; 10.87(3H_0.4-4Hz), 1.03(H,d.).47-74Hz), 1.05-1.10(6H,m), 1.18(3H_3), 1.28-1.70(6H,m), 1.74(3H_3), 0.0(3H_3), 2.50-2.32(2H,m), 2.42-2.60(3H,m), 2.52(2H,d.).40-10.2), 2.70-2.88(2H,m), 3.73-3.80(1H,m), 3.76(3H_3), 5.04(2H_4,J=10.0Hz), 5.58(H,d.).41-10.10, 15.2Hz), 5.58(H,d.).48, 1.6.4Hz), 5.98(H,d.).49-2.1.58(5M(M-Na)**

Example B75 (BE,12E,14E)-7-Acetoxy-21-benzyloxyimino-3,6-dihydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa 8,12,14-trien-11-olide (Compound B75)

[0529]

10

15

20

20

35

Compound B75

[0530] The title compound (a colorless oil) was synthesized by the similar method as Example B74.

1-H-NMR Spectrum(CD₂OD 400MHz)\(\beta\)[6]07m; 0.85(3H,L,I=6] 8Hz), 1.03-1.15(10H,m), 1.18(3H,8), 1.32-1.47(3H,m), 1.52-1.88(3H,m), 1.7.1-1.74(3H,m), 2.06(3H,8), 2.10-2.37(2H,m), 2.38-2.61(4H,m), 2.662.91(2H,m), 3.74-3.81(1H,m), 4.99-5.06(4H,m), 5.51-5.73(3H,m), 6.02-6.11(1H,m), 6.24-6.35(1H,m), 7.23-7.34(5H,m); ESI-MS m/z 682(M-Na)*.

Example B76 (8E,12E)-7-Acetoxy-3,6-dihydroxy-6,10,12-trimethyltricosa-8,12,14-trien-11-olide (Compound B76)

[05311

Compound B76

(8E,12E)-7-Acetoxy-3,6-bis(1-ethoxyethoxy)-6,14,12-trimethyl-14-oxotetradeca-8,12-dien-11-olide

[0532]

[0833]. A solution of osmium tetraoxide (4,9 mg, 0.13 mmol) in pyridine (1.2 mL) was added to (8E.1/2E.1/4E)-7-acctoxy-3.6,2 i.1/4. etchosyxethosy,6,6,1 (21,62)-openatemethy-1.8,1 e-poxytricase.8,1 2.1/4-inen-11-diele (18 mg, 0.024 mmol) at -10°C. The mixture was stirred at the same temperature for one hour. An aqueous solution of NaHSO₃ was added to the reaction mixture, sollowed by attiming at the room temperature for 10 min. The mixture was distinted with eithyl acetate, washed with 1N hydrochloric acid and brine, dried over enhydrous magnesium suitate and evaporated, to give a crude diol compound (14 mg, 71%) as a coloriess oil. The resulting crude product was used for the extraction without purification. Lead tetrascated (4 mg, 0.002 mmol) and polassium actionate (18 mg, 0.13 mmol) were added to a solution of the crude diol compound (15 mg, 0.018 mmol) in toluene (1.0 mL) at room temperature (10 mL) accts. The reaction mixture was distured with 15 mL of thyl acetate,

washed with brine, dried over anhydrous magnesium sulfate and evaporated. The resulting crude product was punified by silica gel column chromatography (Kanto silica gel 60N, spherical, neutral, 40 to 100 µm, eluate; hexane:ethyl acetate=50:50) to give the title compound (5.4 mg, 57%) as a colorless oil.

¹H-NMR Spectrum(CD₅0D,400MHz)8(ppm): 0.95(3H,d,J=6.8Hz), 1.12-1.36(15H,m), 1.38-1.78(4H,m), 2.04(3H,s), 2.19(3H,s), 2.49:2.86(3H,m), 3.46:3.90(5H,m), 4.74-5.23(4H,m), 5.58(H,dd,J=10.0,15.6Hz), 5.74-5.86(1H,m), 6.02 (1H d,J=7.6Hz): E3-WM Syz 5.55(MeN-Na)*

(8E,12E)-7-Acetoxy-3,6-bis(1-ethoxyethoxy)-6,10,12-trimethyltricosa-8,12,14-trien-11-olide

0 [0534]

15

20

[0335] A solution of 1.57 M n-Bull in hexane (0.17 mL) was added dropwise to a solution of disopropylamine (31 mg, 0.38 mmol) in tetrahydrofuran (1.8 mL) at 7.9% (, followed by sliming at the same temperature for 20 mln. To the resulting solution, a solution of 1,3-berzothiazol-2-yhonylsulfone (44 mg, 0.14 mmol) in tetrahydrofuran (1 mL) at 7.8°C, followed by stirring at the same temperature for 30 mln. 0.8 mL of the resulting solution (61,52%)—7.2% (solution of 1,52%)—7.2% (solution of 1,52

5 (8E,12E)-7-Acetoxy-3.6-dlhydroxy-6.10.12-trimethyl-tricosa-8.12.14-trien-11-olide (Compound 76)

[0536]

ESI-MS m/z 645(M+Na)+.

Compound 76

[0537] Pyridnium p-toluenesulfonate (13 mg, 0.051 mmol) was added to a solution of (8E,12E)²-zectoxy-3.6-bis (1-ethoxyethoxy)-5.01,2-Etimethytriticosa-8,12-I-4trien-11-died (32 mg, 0.051 mmol) in methanol (1 mL) at room temperature, followed by stirring at the same temperature for 2.5 hours. The reaction mixture was diluted with 1 mL of eithyl acetate, washed with brine, dried over arrhydrous magnesium sudlate and everyorated. The resulting crude product was purified by thin layer chromatography (MERCK Silica gel 60 P254, 0.25 mm, developing solution; hexane-ethyl 5 acetate-12 to drive the tillo compound (1.2 mc. 48%) as a pale vellow oil.

1H-NMR Spectrum(CD_OD_400MHz)(ppm): 0.85-0.92(6H,m), 1.18(3H,s), 1.20-1.65(16H,m), 1.73(3H,d,J=4Hz), 2.06(3H,s), 2.07-2.23(2H,m), 2.50-2.62(3H,m), 3.50-3.62(1H,m), 5.02-5.82(1H,m), 5.02-5.82(1H,m), 5.02-5.80(2H,m), 5.04-6.43(2H,m); ESI-MS m/z 501(M+Na)*

Example B77 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-((4-piperidin-1-yi)-piperidin-1-yi) carbonyl)oxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B77)

[0538]

10

15

Compound B77

[0539] The title compound was obtained as a colorless oil by the similar method as Example B44. H-N-NMR Spectrum(CD₂OD, 400NHz)Sippm): 0.88(BH,d,J=5.2Hz), 0.89(3H,d,J=7.2Hz), 0.93(3H,L,J=7.2Hz), 1.08(3H,d,J=6.8Hz), 1.20(3H,s), 1.45-1.8(7(7H,m),1.245(2H,s),1.86-1.8(2H,m),2.42-6.8(1H,m),2.45(1H,m),4.19-2.4,8.4Hz), 2.72(1H,dt,J=2.4,5.6Hz), 2.73-2.83(2H,m), 3.46-3.54(1H,m),3.74-3.82(1H,m),4.13-4.22(1H,m),4.91(1H,d,J=9.6Hz), 5.04(1H,d,J=10.8Hz), 5.56(1H,dd,1-0.15.2Hz), 5.65(1H,dd,1-0.8Hz), 5.65(1H,dd,1-0.8Hz),

Example B78 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-(3-(4-methylpiperazin-1-yl) propyl)carbamoyloxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B78)

[0540]

30

35

40

50

55

Compound B78

[0541] The title compound was obtained as a colorless oil by the similar method as Example B44. H-NMR Spectrum (C2-0D-, 000MH-, 1-27 6Hz), 1.07 (3.0 Hz), 1.0 Hz, 1.1 Hz, 1.0 Hz, 1.0

Example B79 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-(1-methylpiperidin-4-yl) carbamoyloxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B79)

F05421

Compound B77

10

15

20

[0543] The title compound was obtained as a colorless oil by the similar method as Example B44. 1H-NMR Spectrum (CD₂OD,500MHz)δ(ppm): 0.89(3H,d,J=7.0Hz), 0.89(3H,d,J=8.0Hz), 0.94(3H,t,J=7.0Hz), 1.07(3H, d,J=7.0Hz), 1.14-1.24(1H,m), 1.20(3H,s), 1.26-1.68(10H,m), 1.74(3H,s), 1.84-1.94(2H,m), 2.10-2.20(2H,m), 2.28(3H, s), 2.40-2.64(4H,m), 2.66(1H,dd,J=2.0,8.0Hz), 2.73(1H,dt,J=2.5.6.0Hz), 2.78-2.88(2H,m), 3.30-3.46(1H,br), 3.48-3.55 (1H.m), 3.74-3.82(1H.m), 4.89(1H.d.J=10.0Hz), 5.05(1H.d.J=11.0Hz), 5.55(1H.dd.J=9.5.15.0Hz), 5.62-5.74(2H.m), 6.09(1H,d,J=11.0Hz), 6.31(1H,dd,J=11.0.15.0Hz); ESI-MS m/z 635(M+H)+

Example B80 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-methyl-N-(1-methylpiperidin-4-yl)carbamoyloxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B80)

[0544]

Compound B80

45

35

[0545] The title compound was obtained as a colorless oil by the similar method as Example B44. 1H-NMR Spectrum (CD₂OD,400MHz)δ(ppm): 0.88(3H,d,J=6,4Hz), 0.90(3H,d,J=6,8Hz), 0.93(3H,t,J=7,6Hz), 1.08(3H, 50 d,J=6.8Hz), 1.14-1.22(4H,m), 1.33-1.68(10H,m), 1.74(3H,s), 1.74-1.87(2H,m), 2.06-2.21(2H,m), 2.28(3H,s), 2.42-2.62 (4H,m), 2.65(1H,dd,J=2.4,8.4Hz), 2.72(1H,dt,J=2.4,6.0Hz), 2.84(3H,br-s), 2.87-2.97(2H,m), 3.51(1H,dt,J=4.4,8.4Hz), 3.75-3.81(1H,m), 3.87-4.14(1H,m), 4.95(1H,d,J=9.6Hz), 5.05(1H,d,J=10.8Hz), 5.56(1H,dd,J=10.0,15.2Hz), 5.65(1H,d,J=10.0,15.2Hz), 5.65(1H,d,J=10.0,15.

(M+H)+.

55

dd,J=8.4,14.8Hz), 5.72(1H,dd,J=9.6,14.8Hz), 6.09(1H,d,J=10.0Hz), 6.32(1H,dd,J=10.8,14.8Hz); ESI-MS m/z 649

Example B81 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-((3,5-dimethylpiperazin-1-yl) carbonyl)oxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B81)

[0546]

10

15

20

35

٨n

45

Compound B81

[0547] The title compound was obtained as a coloriess oil by the similar method as Example 044.

H-NMIR Spectrum (CD_QOLOMHE)8[pmp]: 0.88[H-d_L=8-H2], 0.90[8]H_d_]=8-Bt2], 0.83[H-d_L=7-Bt2],

1.05-1.10[91-m], 1.14-1.22[H1-m], 1.33-1.88[81-m], 1.74[81,d_L=0.81+2], 2.90-2.62[81-m], 2.86[11-d_d]=2.4, 8.41+2],

2.86-2.77[81-m], 3.51[11-d_L=4.84, 8-H2], 3.75-3.81[11-m], 3.90-4.02[11-m], 3.16-2.62[11-m], 3.89-4.89[11-m],

5.04[11-d_L=1-0.41+2], 5.57[11-d_d]=10.52[11-d], 5.85[11-d], 3.90-4.15.21+2), 5.71[11-d], 3.91-5.91[11-d],

1.91-0.14-1.8.3[11-d], 3.91-1.8.3[11-d], 3.91-1.8.3[11-d], 3.91-1.8.3[11-d],

1.91-0.14-1.8.3[11-d], 3.91-1.8.3[11-d], 3.91-1.8.3[11-d],

1.91-0.14-1.8.3[11-d], 3.91-1.8.3[11-d],

1.91-0.14-1.8.3[11-d], 3.91-1.8.3[11-d],

1.91-0.14-1.8.3[11-d], 3.91-1.8.3[11-d],

1.91-0.14-1.8.3[11-d],

1.91-0

Example B82 (8E,12E,14E)-3,6,21-Trihydroxy-6,10,12,16,20-pentamethyl-7-N-(1,2,2,6,6-pentamethylpiperidin-4-yl)carbamoyloxy-18,19-epoxytricosa-8,12,14-trien-11-olide (Compound B82)

[0548]

Compound B82

[0549] The title compound was obtained as a colorless oil by the similar method as Example B44.

"H-NMR Spectrum (CD₂O₂O₄,00H/28)(pmr): 0.88(4,1,4,6.8 H2), 0.98(4,1,4,6.8 H2), 0.98

Example C1 VEGF production suppressing action of 11107A-G in U251 human glioma cell

[0550] U251 human gliorna cell cultured in DULBECCO-modified eagle medium (DMEM; manufactured by SIGMA Co., Ltd.) containing 10% fetal cal fearum, penicifiin (100 unith)m and etraptomycin (100 µg/m) was dispensed in 98-well plates by 4×10° cells/well. After culturing at 37°C overnight in a CO₂ incubator (5% CO₂), the media were removed, and 180 µl of the above-mementoend incubation solution was charged. After adding 20, Lt of the above-mem-

tioned incubation solution containing the test compound diluted with 3-fold succession, they were incubated in a low oxygen (2% Q₂) incubator for 18 hours. The supernatants thereof were measured by an ELISA kit (Immunobiology Research institute).

[0551] Concentration at which the amount of VEGF expressed by low oxygen stimulation was suppressed to 50 % (ICSO value) was determined and results are shown in Table 8. as shown in Table 9. in 11078 suppressed most strongly VEGF production, and 11107C and 11107D were strong successive to 11107B. The activities of 11107F and 11107G were very weak.

Compound	VEGF production suppressing action : IC ₅₀ (ng/ml)
11107 B	0.8
11107 C	3.0
11107 D	3.2
11107 E	36.3
11107 A	111

Example C2 VEGF production suppressing action of 11107B in various carcinoma cells

[0552] WiDr human colon cancer cell, PC3 human prostate cancer cell, DU145 human colon cancer cell and HT1080 human colon cancer cell, which were cultured in DU18ECCO-modified eagle medium (munarlactured by DMEM SIGMA Co., Ltd.) containing 10% fetal calf serum, penicillin (100 unithm) and streptomycin (100 µg/m) were disponsed in 80 well plates by 3 × 10¢ cells/word. After culturing at 37°C overnight in a CO₂ incubator (5% CO₂), the mediu were removed, and 180 µl of the above-mentioned incubation solution was charged. After adding 50µL of the above-mentioned incubation solution was collising the test compound diluted with 3-fold succession, they were incubated in a low oxygen (2% CO₂) incubator for 18 hours. The supernalants thereof were measured by an ELISA kit (immunobiology

[0553] Concentration at which the amount of VEGF expressed by low oxygen stimulation was suppressed to 50 % (IC50 value) was determined and results are shown in Table 10. 11107B suppressed most strongly VEGF production, and 11107C and 11107D were strong successive to 11107B. 11107B showed the VEGF production suppressing effect to all cells used for the experiment.

Various cancer cells	VEGF production suppressing action : IC ₅₀ (ng/ml)
WiDr	0.65
PC 3	0.71
DU-145	1.05
HT 1080	1.89

Example C3 Solid cancer proliferation suppressing action of 11107B

[0554]. In order to study solid cancer proliferation suppressing action of 11107B in vivo, human breast cancer BSY.

1 cell was transplanted to the subcutaneous body sides of mice. The azimilas were grouped so that the average of the
volumes of the respective groups became uniform, when it reached about 100 mm³. Control group was made as 10
mice and 11107B-administering groups were made as 5 mice. 11107B was administrated for the 11107B-administering
groups once by intravenous injection so as to be 10 mg/kg, and a vehicle was administered to the control group. The
tumor volumes on the fifth day, eighth day, 12th day and 15th day were measured, and relative tumor volumes were
determined setting the tumor volume at the initiation of administration as 1. The results are shown in Table 11.

105551 As shown in Table, 111078 showed the effect of suppressing solid tumor by a single administration.

Days after the administration	1_	5	8	12	15
Control group	1	1.79	2.05	2.54	2.59
11107 B group	1	1.08	1.28	1.40	1.70

55

50

10

15

35

Example C4 Construction of reporter system of screening compound which suppresses the transcription of VEGF

(1) Construction of reporter vector reflecting transcription from VEGF promoter

[0556] In order to prepare reporter system reflecting transcription from VEGF promoter, VEGF promoter sequence was cloned, and inserted in secretory alkali phosphatase (FLAP) vector to construct reporter vector.

[0557] In order to obtain the promoter region of human VEGF, VEGF genome was cloned from phage library. PCR primers having the sequences described in Sequence Numbers 1 and 2 were designed based on VEGF cDNA (Gen-Bank accession number: X62588) and a fragment having about 340 bp was obtained by carrying out PCR. Human genome phage library (Human genomic library, Clontech Co.) was screened using this as a probe to obtain pUC18-VEGF. A containing about 54 kb of VEGF 5' flanking region. The pUC18-VEGFA was cleaved by (Kn/INNb), VEGF promoter region of about 2.3% obtained was inserted in the multi cloning site (Kn/INNb) of secretory alkali phosphatase (FLAP) vactor (Goto et al. MO, Pharmacol. 49, 880-873 1998. and thus. VEGF-PLAP vector was constructed.

[0558] The above-mentioned YEGF-PLAP vector was introduced in the U251 cell cultured in the DULBECCO-modified degle medium (DMEM; manufactured by SIGMA Co., Ltd.) containing 10% fetal call's arum, and cultured in the presence of 1 mg/ml C418 (Merck Co.) to establish G418 resistant stable clone (U251/1-8 cell).

[0559] It was confirmed that U251/1-8 cell secreted PLAP under low oxygen (2% O₂ incubator) in the same manner as In the report (Cell MOI. Biol. Res. 40, 35-39, 1994) and was a reporter system reflecting the transcription from VEGF promoter. The screening of the compound suppression VEGF production which was induced by low oxygen stimulation.

Example C5 VEGF transcription-suppressing activity of various 11107 analogues and derivatives

[0550] In order to remove the influence of alkaline phosphates in serum, U251/1-8 cell was rinsed twice with the adequate amount of PBS (Phosphate buffered saline), diluted in the DMEM medium containing 10% of serum in which alkaline phosphates was inactivated by the treatment of 50°C for 20 min., and dispensed in 96-well plates by 4 × 10⁴ celler/180 ut.

[9561] After culturing at 37°C overnight in a CO₂ incubator (5% CO₃), 20 μL of the above-mentioned incubation solution containing the test compound distude with 3-fold succession was added, and then they were incubated in a low oxygen (2% CO₂) incubator for 18 hours. With respect to the PLAP activity in the culture supermatants, 10 μ of the supermatants was added to 50 μ of 0.28 M Na₂CO₂-NahCO₂ buffer solution (pH 10. 0, 8 m M MgSO₄), and finally 50 μ of alkaline phosphatase subtrate (LUMISTEIN, Genomescience Co.) was added. After reacting for one hour, the alkaline phosphatase activity of the PLAP was measured by detecting the chemical luminescence by a micro plate reader (Parkin-Eimer Co.).

[0582] The FLAP activity under usual oxygen was set as 0%, the FLAP activity of cell which was treated under low oxygen was set as 100%, and the concentration suppressing the PLAP activity by 50% was set as the IC50 value of FLAP.

[0853] The ICS0 values of VEGF transcription-suppressing activity of 11107 analogues obtained in Examples A1 to A82 were measured, and as a result, the ICS0 values of 111078, 11107C, 11107D, 11107E, 11107H, 11107AL, 11107AB, 11107A

[0564] Further, the ICS0 values of VEGF transcription suppressing activity of the 11107 derivatives obtained in Example B1 to B58 were measured, and as a result, the ICS0 value of Compounds B1-1, B1-2, B2-1, B2-2, B3-1, B3-2, B8-1, B8-2, B8-4, B8-5, B9, B16-1, B17, B18-1, B18-3, B20-2, B20-2, B21-4, B23-1, B24-4, B23-1, B24, B25, B26, B27, B26, B29, B30-2, B30-3, B33-1, B33-2, B35-1, B35-2, B36-2, B30-2, B30-3, B31-1, B33-2, B35-1, B35-2, B36-1, B35-2, B37-1, B39, B40, B41, B42, B43-1, B43-2, B44, B45, B46, B47, B48, B49, B50, B51, B52, B53, B45, B55, B56, B57, B58, B59, B60, B51, B62, B63, B64, B63, B63, B74, B75, B77, B78, B79, B80, B81, B82 were within a range of 0.5 to 100 nM, and they showed VEGF transcription-suppression activity.

[0565] Specifically, IC50 values were shown in Table below.

was carried out below using the clone.

Analogues and derivatives	VEGF transcription suppressing activity (IC50: nM)
11107B	1.8
11107C	8.2
11107D	6.6

(continued)

Analogues and derivatives	VEGF transcription suppressing activity (IC50: nM)
11107H	3.1
11107J	5.9
111 07K	2.7
11107AM	2.6
11107BH	2.6
Coumpound B20-2	1.6

Example C6 Growth suppressing activity of 11107B to various cancer cells

(1) Growth suppressing activity of 11107B to leukemia cell

5

10

15

30

35

[D569] Dami human blood megakanyocytic cell, MOLT 4 human acute lymphoblastic cell, K562 human chronic myelogenous cell, U937 human historick lymphoma and p388 mouse hymphoma cultured in RPMI 1464 (nramufactured by SIGMA Co., Ltd.) containing 10% fetal calf serum were dispensed in 98-well plates by 2×10 cells/160 µL, and they were cultured at 37°C overnight in a Co2 junctuber (5% Co2). Then 20 µL of the above-mentioned incubation solution containing 11107B diluted with 2-fold succession was added, and they were further cultured in a CO2 incubator for 3 days.

[0557] 20 µL of Alamar Blue reagent (Biosource Co.) was added to the outured cell, and fluorescence activity (ex 550 nm/em 550 mm was measured by a micro plate readre (ARBO, Perkin-Eherr Co.) after 3 to hours. The cell growth of the control to which the compound is not added is set as 100%, the concentration at which it was suppressed by 50% was determined. As shown in Table, 11107B showed the growth suppressing activity to a wide range of leukemia cells.

Cell strain Cell strain	Multiplication suppressing activity IC50 (nM)
Dami	1.2
MOLT4	1.5
U937	1.1
K562	2.1
p388	2

(2) Growth suppressing activity of 11107B to various cancer cells

[0568] H460 human lung cancer cell, U251 human gloma cell, BSY-1 and MDA-MB435 human breast cancer cell, PC-3 and DU145 human prostate cancer cell, CVCAR-3 human ovarian cancer cell, WIDr human colon cancer cell and B16 melanoma mouse melanoma cell cultured in DMEM (manufacured by SIGMA Co., Ltd.) containing 10% fetal call serum were dispensed in 96-well plates by 2×10³ cells/180 μl, and they were cultured at 37°C overnight in a CO₂ incubator (5% CO₂). Then, 20 μL of the above-mentioned incubation solution containing test compounds diluted with 2-fold succession was added, and they were further cultured in a CO₂, hucbator for 3 days.

[0569] 20 µL of Alamar Blue reagent (Biosource Co,) was added to the cultured cells, and after 3 to 5 hours, fluorescence activity (ex 530 nriver 309 nm) was measured by a micro plate reader (ARBO, Petric-Eirner Co). The cell growth of the control to which the compound is not added is set as 100%, the concentration at which it was suppressed by 50% was determined. The IcSO values for the studied cell files were 0.9 to 2.9 nM, and 111073 showed the growth suppressing activity to a wide range of cancer species. Example CT Solid cancer growth suppressing action of various 11107 analogues and derivatives

[0570] In order to study solid cancer growth suppressing action of various 11107 analogues and derivatives in vivo. WICh human colon cancer cells were transplanted to the subcutaneous body sides of mice. The animals were grouped so that the average of the volumes of the respective groups becomes uniform, when it reached about 100 mm². Control group was made as 10 mice and various 11107 analogues and derivatives-administering groups for 5 days by in-10571] Various 11107 analogues and derivatives were administrated for the administraing groups for 5 days by in-

travenous injection so as to be any of 0.625 mg, 2.5 mg and 10 mg/kg/day, and a vehicle was administered to the control group. The tumor volumes on the filteenth day or sixteenth day were measured, and relative tumor volume ratios (170%) were determined setting the tumor volume of the control group as 1.4 mong the studied in1107 analogues and derivatives, 11107B, 11107D, 11107BH and Compounds B20-2, B50, B52, B54 and B55 showed the effect of suppressing the increase in the tumor volume, and the relative tumor volume ratios (170%) to the control group were within a range of 11 to 50%.

10	Sequence Listing	
	<110> Eisai Co., Ltd.	
15	<120> Novel bioactive substance	
	<130> 02001	
	<150> JP 2001/25458	
20	<151> 2001-2-1	
	<160> 2	
25	<170> PatentIn Ver. 2.0	
	<210> 1	
30	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
35		
	<400> 1	
40	atgaactttc tgctgtcttg ggtgcattgg	30
	atgaacttte tyetytetty yytyeattyy	30
45	(210) 2	
	<211> 29	
50	<212> DNA	
	<213> Artificial Sequence	
55	<400> 2	
	ctggccttgg tgaggtttgt accgcataa	29

Claims

5

15

30

35

55

1. A compound represented by the formula (1), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (1), in represents an integer of 3 to 12, and \mathbb{R}^2 , \mathbb{R}^{30} , \mathbb{R}^{30} , \mathbb{R}^{10}

(1)

; further, R^{3a} and R^{3b} may be bound together to represent a ketone structure (=O) or an oxime structure (=NOROX (wherein R^{QX} represents C₁₋₂₂ alixyl, unsaturated C₃₋₂₂ alixyl, C₆₋₁₄ aryl, 5-membered to 14-membered heteroaryl or benzyl, each of which may have substituents); further, either of R^{3a} or R^{3b} and either of R^{6a} or R^{3b} may be bound with oxygen to represent the partial structure

; further, R4 may form a single bond with either of R5a or R5b and may represent the partial structure

; further, \mathbb{R}^{q_0} and \mathbb{R}^{q_0} may be bound together to represent a knotne structure (-Q) or an exime structure $(-NCPR^{q_0})$ curther, \mathbb{R}^{q_0} and \mathbb{R}^{q_0} may be bound together to represent a spirooxyrane ring or exomethylene; further, \mathbb{R}^{q_0} and \mathbb{R}^{q_0} and either of \mathbb{R}^{q_0} or \mathbb{R}^{q_0} may be bound together to form a 1,3-dioxolane ring, further, \mathbb{R}^{q_0} and \mathbb{R}^{q_0} may be bound together to represent a ketone structure (-Q) or an exime structure $(-NCPR^{q_0})$; further, \mathbb{R}^{q_0} mayformasingbondwitherither of \mathbb{R}^{q_0} or \mathbb{R}^{q_0} to represent the partial structure.

further, \mathbb{R}^{2n} and \mathbb{R}^{2n} may be bound together to represent a ketone structure (-1) or an oxime structure a single bond; further, two \mathbb{R}^{2n} and one other \mathbb{R}^{2n} forme a single bond; further, two \mathbb{R}^{2n} and \mathbb{R}^{2n} or \mathbb{R}^{2n} on the same carbon may be bound together to represent a ketone structure (-1) or an oxime structure (-1)

provided that

5

10

15

20

25

30

40

55

(Restricted clause 1) when the above-mentioned compound is represented by the following formula (2):

at least one of R⁷ and R²¹ is hydroxy, acetoxy or methoxy; (Restricted clause 2) when the above-mentioned compound is represented by the following formula (3):

R⁷ is hydroxy or acetoxy; and R³, R⁶ and R²¹ are OH; and (Restricted clause 3) a compound represented by the formula (4) is excluded.

2. A compound represented by the formula (5), a pharmacologically acceptable salt thereof or a hydrate of them.

$$R^{2}$$
 R^{2}
 R^{2}

In the formula (5).

5

20

25

30

40

45

50

55

R², R¹⁰, R¹² and R¹⁴ are the same as or different from each other and each represents hydrogen or methyl; R^{3a}, R^{3b}, R^{5a}, R^{5a}, R^{5a}, R^{6a} and R^{6b} are the same as or different from each other and each represents

- (1) hydrogen,
- (1) Hydrogen
- (2) hydroxy,
 - (3)
 - <1> C₁₋₂₂ alkyl,
 - <2> C_{1,22} alkoxy,
 - <3> ArCH₂O- (wherein Ar represents C₆₋₁₄ aryl or 5-membered to 14-membered heteroaryl which may have substituents),
- <4> C₂₋₂₂ acyloxy,
 - <5> unsaturated C₃₋₂₂ acyloxy,
 - <6> OCOR^{CO} (wherein R^{CO} represents (i) C₆₋₁₄ aryl , (ii) 5-membered to 14-membered heteroaryl, (iii) C₁₋₂₂ alkoxy, (iv) unsaturated C₂₋₂₂ alkoxy, (iv) C₆₋₁₄ aryloxy or (vi) 5-membered to 14-membered heteroaryloxy, each of which may have substituted.
 - <7> C₁₋₂₂ alkylsulfonyloxy,
 - <8> benzenesulfonyloxy or
 - <9> -OSiR⁸¹R⁸²R⁸³ (wherein R⁸¹, R⁸² and R⁸³ are the same as or different from each other and each represents methyl, ethyl, i-propyl, t-butyl or phenyl,
 - (4) halogen or
 - (ii) APL/INPINPIX (wherein RM represents a single bond or -CO-O; and RPII and RPIX are 1) the same as or different I rom each other and each represents <1> hydrogen or <2 (i) C₁₋₂₂ alky, (ii) unsaturated C₃₋₂₂ alky), (ii) C₅₋₁₄ anyl, (iii) S₁₋₂₂ alky, (iii) C₅₋₁₄ anyl, (iii) C₁₋₂₂ alkysitufonyl or (ix) benzzy, (iii) C₁₋₂₂ alkysitufonyl or (ix) benzzensutionyl, eachof whichmayhave substituents, or ≥3 NRIVIII/S are yet be observed in the control of th

cyclic ring which may have substituents);

R7a and R7b are

5

10

20

(1) different from each other and each represents

- 1) hydrogen,
- 2) -ORH (wherein RH is hydrogen, methyl or acetyl),
- 3) -ORD (wherein RD represents
 - (i) C1-22 alkyl (provided that in case of methyl, it always has substituents),

 - (ii) -CH2Ar,
 - (iii) C₃₋₂₂ acyl,
 - (iv) unsaturated C3-22 acyl,
 - (v) -CORCO,
 - (vi) C₁₋₂₂ alkylsulfonyl,
 - (vii) benzenesulfonyl or
 - (viii) -SiRs1Rs2Rs3) or
- 4) -RM-NRN1RN2, or
- (2) R7a and R7b may be bound toge ther to represent <1> a ketone structure (=0) or represent an oxime structure (=NOROX; wherein ROX represents <1> C1.22 alkyl , <2> unsaturated C3.22 alkyl , <3> C6.14 aryl , <4> 5-membered to 14-membered heteroaryl or <5> benzyl, each of which may have substituents);

further, R3e and R3b may be bound together to represent a ketone structure (=0) or an oxime structure (=NOROX); further, R^{6a} or R^{6b} may be bound together to represent a spirooxyrane ring or exomethylene;

- further, either of R^{6a} or R^{6b} and either of R^{7a} or R^{7b} may be bound together to form a 1,3-dioxolane ring;
- G is represented by

30 [1]

45

50

55

$$R^{216}$$
 R^{216}
 R^{180}
 R^{180}
 R^{170}
 R^{160}
 R^{170}
 R^{160}
 R^{160}
 R^{160}

(wherein R16a and R16b are the same as or different from each other and each represents hydrogen, methyl or 40

R17a, R17b, R18a, R18b, R19a, R19b, R20a, R20b, R21a and R21b are the same as or different from each other and each represents

- (1) hydrogen,
 - (2) methyl which may optionally have substituents,
- (3) -ORH.
- (4) -ORP.
- (5) halogen or
- (6) -RM-NRN1RN2; and

R21c means (1) hydrogen or (2)

(wherein R²²², R²²² and R²²² are the same as or different from each other and each represents <1> hydrogen, <2> methyl, ⟨3> hydroxy, ⟨4> OH¹, ⟨5> OPQ, ⟨6> π.H.M.R²¹HPP, α> f Alegon, γ further, either of R^{15a} or R^{15a} and either of R^{15a} or R^{15a} may form a single bond together to represent the partial structure

(R^{18a} or R^{18b})

, or may be bonded with an oxygen to represent the partial structure

further, either of R19a or R19b and either of R20a or R20b may form a single bond together to represent

(R^{19a} or R^{19b})

further, R^{21s} and R^{21b} may be bound together to represent <1> a ketone structure (=0) or represent <2> an oxime structure (=NOR³⁰); further, either of R^{21s} or R^{22b} and either of R^{22s} or R^{22b} may be bound together to represent the partial structure

further, either of R19a or R19b and either of R21a or R21b may be bound together to represent the partial structure

[2]

5

10

15

20

25

30

35

40

50

55

(wherein R^{16a} , R^{16b} , R^{17a} , R^{17b} , R^{18a} and R^{18b} have the same meanings as the definitions in the formula (G-I); and R^{18c} represents (1) hydrogen or (2) the formula

(wherein R^{ISa}, R^{ISa}, R^{ISa}, R^{ISa} and R^{ISa} are the same as or different from each other and each represents hydrogen, methyl, hydroxy, methoxy or acetoxy; and R^{IS} represents methyl or ethyl); or [31]

5

15

20

25

30

35

40

50

(wherein R^{16a}, R^{16b}, R^{17a} and R^{17b} have the same meanings as the definitions in the formula (G-I); and R^{17c} represents (1) hydrogen or (2) the formula

(wherein R^{r3a}, R^{r3b}, R^{r4a} and R^{r4b} are the same as or different from each other and each represents hydrogen, methyl, hydroxy, methoxy or acetoxy; and R^{r5} represents methyl or ethyl)},

provided that the restricted clauses 1, 2 and 3 according to claim 1 are included.

3. A compound represented by the formula (6), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (6), R^2 , R^{30} , R^{30} , R^{30} , R^{30} , R^{30} , R^{30} , R^{10} , R^{10} , R^{12} and R^{14} have the same meanings as the definitions of the formula 5 (in the claim 2); R^{120} and R^{13} (1) each represents hydrogen, or (2) are bound together to <1> form a single bond and represent

or <2> form epoxy and represent

10

20

30

35

40

50

15 R14a and R15 (1) each represents hydrogen, or (2) are bound together to <1> form a single bond and represent

or <2> form epoxy and represent

provided that (1) when R^{12a} and R¹³ are bound together to form a single bond in the formula (6), R^{14a} and R¹⁵ <1> are each hydrogen or <2> are bound together to be an epoxy; and (2) when R^{14a} and R¹⁵ are bound together to form a single bond, R^{12a} and R¹³ <1> are each hydrogen or <2> are bound together to be an epoxy; and G³⁴ (1) has the same meaning as the definition of 6 in the formula 5, or (2) represents

(wherein ::: represents a single bond or a double bond; R^{18a}, R^{18b}, R^{19a} and R^{19b} have the same meanings as the definitions in the formula (5); R^{19c} is hydrogen or C₁₋₄ alkyl).

4. A compound represented by the formula (7), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (7), R2, R3a, R3b, R6a, R6b, R7a, R7b, R10, R12, R14 and G have the same meanings as the definitions

in the formula 5 of the claim 2; R^{12a} and R^{13} (1) each represents hydrogen or (2) are bound together to <1> form a single bond and represent

~⁷ → R¹²

or <2> form epoxy and represent

5

10

15

20

25

40

45

50

ر گر^ا"

; and R^{14a} and R¹⁵ (1) each represents hydrogen or (2) are bound together to <1> form a single bond and represent

or <2> form epoxy and represent

5. A compound represented by the formula (8), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (8), R², R^{3a}, R^{3b}, R^{5a}, R^{5a}, R^{7a}, R^{7a}, R^{7a}, R^{7a}, R^{1a} and G have the same meanings as the definitions in the formula 5 of the claim 2; and R^{12a}, R¹³, R^{14a} and R¹⁵ have the same meanings as the definitions in the formula 7 of the claim 4.

6. A compound represented by the formula (9), a pharmacologically acceptable salt thereof or a hydrate of them.

5

10

20

25

40

50

in the formula (S), R², R^{3e}, R^{7e}, R^{7e}, R^{1e}, R^{1e}, R¹⁴ and G have the same meanings as the definitions in the formula 5 of the claim 2; and R^{12e}, R¹³, R^{14e} and R¹⁵ have the same meanings as the definitions in the formula 7 of the claim 4.

7. A compound represented by the formula (10), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (10), R^2 , R^{3a} , R^{6a} , R^{6b} , R^{10} , R^{14} and G have the same meanings as the definitions in the formula 5 of the claim 2; and R^{12a} , R^{14a} and R^{15} have the same meanings as the definitions in the formula 7 of the claim 4.

8. A compound represented by the formula (11), a pharmacologically acceptable salt thereof or a hydrate of them.

$$R^{21e} \xrightarrow{R^{21b}}_{R^{20a}} \xrightarrow{R^{17a}}_{R^{16a}} R^{16a} \xrightarrow{R^{12}} G^{m}$$
(11)

In the formula (11), R¹², R^{16a}, R^{16b}, R^{17a}, R^{17b}, R^{20a}, R^{20b}, R^{21a}, R^{21b} and R^{21a} have the same meanings as the definitions in the formula 5 of the claim 2; R¹⁹ represents hydrogen or methyl; and G^m is represented by (1)

6 (wherein R², R^{3a}, R^{3b}, R^{3a}, R^{3a}, R^{3a}, R^{3a}, R^{7a}, R^{7a} and R¹⁰ have the same meanings as the definitions in the formula 5 of the claim 2),
(2)

5

10

15

20

30

35

45

50

(wherein R², R^{3a}, R^{3a}, R^{6a}, R^{6a}, R^{7a}, R^{7b} and R¹⁰ have the same meanings as the definitions in the formula 7 of the claim 4), (3)

25 (wherein R², R⁵⁰, R⁵⁰, R⁶⁰, R⁶⁰, R⁷⁰, R⁷⁰ and R¹⁰ have the same meanings as the definitions in the formula 8 of the claim 5),
(4)

(wherein R^2 , R^{6a} , R^{7a} , R^{7b} and R^{10} have the same meanings as the definitions in the formula 9 of the claim 6) or (5)

(wherein R^2 , R^{3a} , R^{6a} , R^{6b} and R^{10} have the same meanings as the definitions in the formula 10 of the claim 7), provided that the restricted clauses 1, 2 and 3 according to claim 1 are included.

9. A compound represented by the formula (12), a pharmacologically acceptable salt thereof or a hydrate of them.

$$R^{21c} \xrightarrow{R^{21b}}_{R^{20a}} R^{20b} \xrightarrow{R^{17b}}_{R^{16b}} R^{16b} \xrightarrow{G^m} (12)$$

In the formula (12), R1², R1⁶s, R1⁶s, R1⁶s, R1⁷s, R1⁷s, R2⁶s, R2⁶s, R2⁶s, R2¹s, R2¹s and R2¹s have the same meanings as the definitions in the formula 5 of claim 2; and R1⁶ and G^m have the same meanings as the definitions in the formula 11 of claim 8.

10. A compound represented by the formula (13), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (13), — represents a single bond or a double bond; R¹², R^{15a}, R^{15a}, R^{17a}, R^{17a}, R^{20a}, R^{20a}, R^{20a}, R^{21a}, R^{20b} and R^{21a} have the same meanings as the definitions in the formula 5 of claim 2; and R¹⁹ and G²ⁿ have the same meanings as the definitions in the formula 11 of claim 8.

11. A compound represented by the formula (14), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (14), R^{12} , R^{16a} , R^{16b} , R^{17a} , R^{17b} , R^{18a} , R^{20a} , R^{20a} and R^{21c} have the same meanings as the definitions in the formula 5 of claim 2; and G^m has the same meaning as the definition in the formula 11 of claim 8.

A compound represented by the formula (H-I), a pharmacologically acceptable sait thereof or a hydrate of them.

In the formula (H-I), R^{2h}, R^{5h}, R^{6h}, R^{10h}, R^{12h}, R^{16h}, R^{20h}, R^{21h} and R^{22h} are the same as or different from each other and each represent

- (1) hydrogen,
- (2) methyl,

5

10

15

20

25

30

35

50

55

- (3) hydroxymethyl or
- (4) C2-8 acyloxymethyl;

R3h', R5h', R6h', R7h', R16h', R17h', R20h', R21h' and R22h' are the same as or different from each other and each represents

- (1) hydrogen,
- (2) hydroxy.
- (3) methoxy or
- (4) C₂₋₈ acyloxy;

10

15

20

35

40

50

55

R^{Sh} and R^{Sh'} may be bound together to form a ketone structure (=0); R^{2th} and R^{2th'} may be bound together to form a ketone structure (=0); and Rth and R^{th'} may be bound together to form a spirooxyrane structure, provided that the restricted clauses 1, 2 and 3 according to claim 1 are included.

13. A compound represented by the formula (H-1) according to claim 12, a pharmacologically acceptable sailt thereof or a hydrate of them, which is selected from the group consisting of a compound in which Figh is hydrogen, RP^{ID} is hydroy, both of RP^{ID} are hydrogen, RP^{ID} is methyl, RP^{ID} is hydroy, BI of RP^{ID} in RP^{ID} and RI^{ID} are methyl, both of RP^{ID} and RP^{ID} are hydrogen, R^{ID} is in the Hydrogen, R^{ID} is hydroyen, R^{ID} is h

a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, both of R^{2h} and R^{2h} are hydrogen, R^{2h} is methyl, R^{2h} is hydroxy, R^{2h} is acetoxy, all of R^{10h}, R^{12h} and R^{16h} are methyl, both of R^{16h} and R^{17h} are hydrogen, R^{20h} is methyl, R^{20h} is hydrogen, R^{21h} is hydroxy, both of R^{21h} and R^{22h} are hydrogen, and R^{22h} is methyl;

a compound in which R²⁰ is hydrogen, R²⁰ is hydrogy, both of R²⁰ and R²⁰ are hydrogen, R²⁰ is methyl, R²⁰ is hydroy, R²⁰ is acatova, all of R²⁰, are all of R²⁰, are all of R²⁰, are all of R²⁰ are hydrogen, and R²⁰ is methyl, R²⁰⁰ is hydrogen, both of R²¹ and R²¹ are bound together to form a katone structure, R²⁰¹ is hydrogen and R²⁰ is methyl.

a compound in which \mathbb{R}^{2h} is hydrogen, $\mathbb{R}^{2h'}$ is hydroxy, both of $\mathbb{R}^{2h'}$ are hydrogen, $\mathbb{R}^{2h'}$ is methyl, $\mathbb{R}^{2h'}$ is $\mathbb{R}^{2h'}$ is $\mathbb{R}^{2h'}$ is $\mathbb{R}^{2h'}$ in $\mathbb{R}^{2h'}$ is $\mathbb{R}^{2h'}$ in $\mathbb{R}^{2h'}$ is $\mathbb{R}^{2h'}$

a compound in which \hat{H}^{2h} is hydrogen, \hat{H}^{3h} is hydroxy, both of \hat{H}^{5h} and \hat{H}^{3h} are hydrogen, \hat{H}^{3h} is methyl, \hat{H}^{3h} is hydroxy, \hat{H}^{7h} is accessor, all of \hat{H}^{5h} and \hat{H}^{7h} are hydrogen, \hat{H}^{2h} is hydroxy, \hat{H}^{7h} is hydroxy, \hat{H}^{3h} is hydroxy.

a compound in which R^{2h} is hydrogen, R^{2h*} is hydroxy, both of R^{5h} and R^{5h*} are hydrogen, R^{6h} is methyl, R^{6h*} is hydroxy, R^{7h*} is hydroxy, R^{10h*} is hydroxy, hoth R^{10h*} is hydroxy, hoth R^{10h*} is hydroxy, hoth R^{10h*} is hydroxy, both R^{10h*} is hydroxy, hoth R^{10h*} is hyd

a compound in which \hat{H}^{ab} is hydrogen, \hat{H}^{ab} is hydroxy, both of \hat{H}^{ab} and \hat{H}^{ab} are hydrogen, \hat{H}^{ab} is hydroxy, \hat{H}^{ab} is hydroxy, \hat{H}^{ab} is hydroxy, all of \hat{H}^{ab} , \hat{H}^{ab} and \hat{H}^{ab} are methyl, both of \hat{H}^{ab} and \hat{H}^{ab} are hydrogen, \hat{H}^{ab} is methyl, \hat{H}^{ab} is hydroxy, \hat{H}^{ab} is hydroxy.

a compound in which R^{2h} is hydrogen, $R^{3h'}$ is hydroxy, both of R^{3h} and $R^{3h'}$ are hydrogen, R^{3h} is methyl, $R^{6h'}$ is hydroxy, $R^{7h'}$ is propanoyloxy, all of $R^{10h'}$ in R^{10h} and R^{10h} are hydrogen, $R^{20h'}$ is methyl, $R^{20h'}$ is hydrogen, $R^{21h'}$ is hydroyen, both of R^{21h} and $R^{22h'}$ are hydrogen, and R^{22h} is methyl; a compound in which $R^{3h'}$ is hydroxye, both of $R^{3h'}$ and $R^{3h'}$ are hydrogen, $R^{3h'}$ is hydroxye, both of $R^{3h'}$ and $R^{3h'}$ are hydrogen, $R^{3h'}$ is hydroxye, both of $R^{3h'}$ and $R^{3h'}$ are hydrogen, $R^{3h'}$ is hydroxye, both of $R^{3h'}$ and $R^{3h'}$ are hydrogen, $R^{3h'}$ is hydroxye, both of $R^{3h'}$ and $R^{3h'}$ are hydrogen, $R^{3h'}$ is hydroxye, both of $R^{3h'}$ and $R^{3h'}$ are hydrogen, $R^{3h'}$ is hydroxye, both of $R^{3h'}$ and $R^{3h'}$ are hydrogen, $R^{3h'}$ is hydroxye, both of $R^{3h'}$ and $R^{3h'}$ are hydrogen, $R^{3h'}$ is hydroxye, both of $R^{3h'}$ and $R^{3h'}$ are hydrogen, $R^{3h'}$ is hydroxye, $R^{3h'}$ is hydroxye, $R^{3h'}$ in hydroxye, $R^{3h'}$ is hydroxye, $R^{3h'}$ in hydroxye, $R^{3h'}$ is hydroxye, $R^{3h'}$ in h

Is hydroxy, R^{7h'} is acetoxy, all of R^{10h}, R^{12h} and R^{16h} are methyl, both of R^{16h'} and R^{17h'} are hydrogen, R^{20h} is methyl, R^{20h'} is hydrogen, R^{21h'} is hydroxy, and all of R^{21h}, R^{22h'} and R^{22h} are hydrogen;

a compound in which R²⁶ is hydrogen, R²⁶ is hydroxy, R²⁶ is hydrogen, R²⁶ is group and R²⁶ is methyl, R²⁶ is hydrogen, R²⁶ is methyl, R²⁶ is hydrogen, R²⁶ is methyl, R²⁶ is methyl, R²⁶ is hydrogen, R²⁶ is methyl R²⁶ is hydrogen, R²⁶ is methyl R²⁶ is hydrogen, R²

a compound in which R^{2h} is hydrogen, R^{2h*} is hydroxy, R^{2h} is hydrogen, R^{2h*} is acetoxy, R^{6h*} is methyl, R^{6h*} is hydroxy, R^{7h*} is acetoxy, all of R^{10h}, R^{12h*} and R^{16h*} are methyl, Both of R^{10h*} are hydrogen, R^{20h*} is methyl, R^{20h*} is hydrocen, R^{20h*} is hydroxy. B^{20h*} is hydroxy. B^{20h*} is hydroxy. B^{20h*} is hydroxy. B^{20h*} is methyl.

a compound in which R^{2h} is hydrogen, R^{3h} is acetoxy, both of R^{3h} and R^{3h} are hydrogen, R^{6h} is methyl, R^{6h} is hydroxy, R^{7h} is acetoxy, all of R^{10h}, R^{12h} and R^{16h} are methyl, both of R^{16h} and R^{17h} are hydrogen, R^{20h} is methyl, R^{20h} is hydroxy, both of R^{2h} and R^{20h} are hydrogen, and R^{22h} is methyl;

a compound in which R²⁰ is hydrogen, R²⁰ is hydroxy, both of R²⁰ and R²⁰ are hydrogen, R²⁰ is acetoxymethy, R²⁰ is a hydroy, R²⁰ is acetoxymethy, R²⁰ is hydroy, R²⁰ is acetoxy, all or R²⁰, R²⁰ and R²⁰ are methyl, both of R²⁰ and R²⁰ are hydrogen, R²⁰ is methyl, R²⁰⁰ is hydrogen, R²⁰ is hydroy, both of R²⁰ and R²⁰ are hydrogen, and R²⁰ is methyl, a compound in which R²⁰ is hydrogen, R²⁰ is hydroxy by the degree of R²⁰ and R²⁰ are hydrogen, and remethyl. R²⁰ is methyl.

a compound in which Harils hydrogen, Harils hydroxy, both of Hariland Harilare hydrogen, Harils methyl, H

is hydroxy, R^{7h} is acetoxy, all of R^{10h}, R^{12h} and R^{16h} are methyl, R^{16h} is hydrogen, R^{17h} are hydroxy, R^{20h} is methyl, R^{20h} is hydrogen, R^{21h} is hydroxy, both of R^{21h} and R^{22h} are hydrogen, and R^{22h} is methyl:

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h'} are hydrogen, R^{3h} is methyl, R^{6h'} is hydroxy, R^{2h'} is acetoxy, all of R^{3h}, and R^{3h'} are methyl, both of R^{5h'} and R^{3h'} are hydrogen, R^{3h'} is hydroxy, both of R^{2h'} and R^{2h'} are hydrogen, R^{3h'} is hydroxy, both of R^{2h} and R^{2h'} are hydrogen, R^{3h'} and R^{3h'} are hydrogen.

5

10

15

20

25

40

45

50

55

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{6h} is methyl, R^{6h} is hydroxy, R^{7h} is accetoxy, both of R^{3h} and R^{12h} are methyl, all of R^{16h}, R^{6h} and R^{17h} are hydrogen, R^{30h} is methyl. R^{30h} is hydroxen R^{31h} is hydroxy both of R^{3h} and R^{2h} are hydrogen and R^{32h} is methyl:

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{3h} is methyl, R^{6h} is hydroxy, R^{3h} is acetoxy, both of R^{3h} and R^{13h} are methyl, all of R^{13h}, R^{16h} and R^{13h} are hydrogen, R^{20h} is methyl, R^{20h} is hydrogen, R^{21h} is hydroxy. B^{21h} is hydroxy. B^{21h} is methyl:

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{6h} is methyl, R^{6h} is hydroxy, R^{7h} is acetoxy, both of R^{12h} and R^{16h} are methyl, all of R^{10h}, R^{16h} and R^{10h} are hydrogen, R^{20h} is methyl, R^{20h} is hydroxen, R^{21h} is hydroxy, both of R^{21h} and R^{20h} are hydrogen, and R^{22h} is methyl:

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{6h} is acetoxymethyl, R^{6h} is hydroxy, R^{7h} is hydroxy, and not R^{10h} are methyl, both of R^{10h} and R^{17h} are hydrogen, R^{20h} is methyl, R^{20h} is hydrogen, R^{21h} is hydroxy, both of R^{2h} and R^{2h} and Hydrogen, and R^{2h} is methyl:

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{2h} and R^{2h'} are hydrogen, R^{4h} is methyl, R^{6h'} is hydroxy, all of R^{10h}, R^{12h} and R^{10h'} are methyl, both of R^{10h'} and R^{17h'} are hydrogen, R^{2h} is methyl, R^{20h'} is hydrogen, R^{21h} and R^{21h'} are bound together to formaketone structure, R^{22h'} is hydrogen, and R^{22h} is methyl;

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, all of R^{5h}, R^{5h} and R^{6h} are hydrogen, R^{6h} is acetoxy, R^{7h} is hydroxy, all of R^{10h}, R^{12h} and R^{10h} are hydrogen, R^{20h} is methyl, R^{20h} is hydroxy, all of R^{2h} is hydroxy. Buth of R^{2h} are hydrogen, and R^{2h} is methyl:

a compound in which R^{2h} is methyl, R^{2h'} is hydroxy, both of R^{2h} and R^{2h'} are hydrogen, R^{2h} is methyl, R^{2h'} is hydroxy, both of R^{2h'} and R^{2h'} are hydrosen, and R^{2h'} is methyl;

a compound in which R^{2h} is methyl, R^{2h'} is hydroxy, both of R^{2h} and R^{2h'} are hydrogen, R^{2h} is methyl, R^{2h'} is hydroxy, R^{2h'} is acetoxy, all of R^{10h}, R^{12h} and R^{10h} are methyl, both of R^{10h} and R^{17h} are hydrogen, R^{2h} is methyl, R^{2h'} is hydroxy, both of R^{2th} and R^{22h'} are hydrogen, and R^{22h} is methyl;

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, R^{3h} is hydrogen, R^{3h} is hydroxy, R^{3h} is methyl, R^{3h} is hydrogen, R^{3h} is ecoloxy, all of R^{1h}, R^{12h} and R^{15h} are methyl, hoth of R^{18h} and R^{17h} are hydrogen, R^{3h} is methyl, R^{30h}, is hydroxy, R^{3h} is methyl, R^{30h}, is hydroxy, R^{3h} is hydroxy, both of R^{3h} and R^{2h} are hydrogen, and R^{2h} is methyl.

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, all of R^{5h}, R^{5h}, R^{5h} and R^{6h}, are hydrogen, R^{7h} is hydroxy, all of R^{5h}, R^{12h} and R^{10h} are methyl, both of R^{16h} and R^{17h} are hydrogen, R^{25h} is methyl; R^{20h} is hydroxy. B^{10h} is h

a compound in which R^{2h} is hydrogen, R^{2h} is hydroxy, both of R^{3h} and R^{5h} are hydrogen, R^{6h} and R^{6h} are bound together to form a spiroxyrane structure, R^{7h} is acetoxy, all of R^{10h}, R^{12h} and R^{15h} are methyl, both of R^{10h} and R^{17h} are hydrogen, R^{20h} is methyl, R^{20h} is hydrogen, R^{21h} is hydroxy, both of R^{2th} and R^{22h} are hydrogen, and R²ⁿ is methyl;

a compound in which R2h is hydrogen, R3h is hydroxy, both of R5h and R5h are hydrogen, R6h and R6h are bound together to form a spiroxyrane structure, R7h is hydroxy, all of R10h, R12h and R16h are methyl, both of R16h and R17h are hydrogen, R30h is methyl, R30h is hydrogen, R3h is hydroxy, both of R3th and R32h are hydrogen, and R32h are hydroxyr, both of R3th and R32h are hydroxyr, both of R3th and R32h are hydroxyr, and R32h are

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{5h} and R^{3h} are hydrogen, R^{6h} is methyl, R^{6h} is acetoxy, R^{7h} is acetoxy, R^{7h} is acetoxy, R^{7h} is hydroxy, R^{7h} is acetoxy, R^{7h} is hydroxy, both of R^{2h} are hydrogen, R^{2h} is hydroxy. B^{2h} is hydroxy, both of R^{2h} are hydrocen, and R^{2h} is methyl:

ocmpound in which R^{av}is hydrogen, R^{av}is hydrogen, both of R^{av} and R^{av}ia en hydrogen, R^{av}is methyt, R^{av}is is hydrosy, R^{av}is acetoxy, all of R^{iso}n, R^{av}and R^{iso}n are methyt, R^{iso}is hydrosy, R^{av}is in hydrogen, R^{av}is is hydrogen, R^{av}is in hydrogen, R^{av}is in hydrogen, R^{av}is hydrogen, Ravis is hydrogen, Ravis is hydrogen, Ravis is hydrogen, Ravis is hydrogen, Ravis in hydrogen, Ravis

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{3h} and R^{3h} are hydrogen, R^{6h} is methyl, R^{6h} is hydroxy, R^{7h} is acetoxy, all of R^{10h}, R^{12h} and R^{15h} are methyl, both of R^{16h} and R^{17h} are hydrogen, R^{30h} is methyl, R^{30h} is hydrogen, R^{20h} is hydrogen, B^{20h} is methyl;

a compound in which H^{2h} is hydrogen, R^{2h} is hydroxy, R^{2h} is acetoxy, all of R^{10h}, R^{12h} and R^{10h} are methyl, both of R^{10h} and R^{21h} are hydrogen, R^{2h} is hydroxy, and R^{2h} is methyl, R^{2h} is hydroxy, and R^{2h} is hydroxy, and R^{2h} is hydroxy, and R^{2h} is hydroxy, and R^{2h} is hydroxy.

a compound in which R2h is hydrogen, R3h' is hydroxy, both of R5h and R5h' are hydrogen, R6h is methyl, R6h'

is hydroxy, R^{7h} is hydroxy, both of R^{10h} and R^{16h} are methyl, all of R^{12h} , R^{16h} and R^{17h} are hydrogen, R^{20h} is methyl, R^{20h} is hydrogen, R^{21h} is hydroxy, both of R^{21h} and R^{22h} are hydrogen, and R^{22h} is methyl; and

a compound in which R2h is hydrogen, R3h' is hydroxy, both of R5h and R5h' are bound together to form a ketone structure, R6h is methyl, R6h' is hydroxy, R7h' is ecetoxy, all of R1h, R1h' and R1h are methyl, both of R1hh and R1h' are hydrogen, R3h is methyl, R3h is hydrogen, R3hh is hydroxy, both of R3h and R2h' are hydrogen, and R2h is methyl.

14. A compound represented by the formula (H-II), a pharmacologically acceptable salt thereof or a hydrate of them.

$$\mathsf{R}^{\mathsf{ZN}} \overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\underset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}}{\overset{\mathsf{R}^{\mathsf{ZN}}}}}}}}}}}}}}}}}}}}}}}$$

In the formula (H-II), R^{2h}, R^{6h}, R^{10h}, R^{12h}, R^{16h}, R^{20h}, R^{21h} and R^{22h} are the same as or different from each other and each represents

- (1) hydrogen.
- (2) methyl.

5

10

15

20

25

30

35

50

- (3) hydroxymethyl or
- (4) C₂₋₈ acyloxymethyl;

R3h', R6h', R7h', R16h', R17h', R20h', R21h' and R22h' are the same as or different from each other and each represents

- (1) hydrogen.
- (2) hydroxy.
- (3) methoxy or
- (4) C₂₋₈ acyloxy;

further, R^{21h} and R^{21h'} may be bound together to form a ketone structure (=O); and further, R^{6h} and R^{6h'} may be bound together to form a spirooxyrane structure.

15. A compound represented by the formula (P-HI) according to claim 14, a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group consisting of a compound in which R²ⁿ is hydrogen, R²ⁿ is hydroxy, R²ⁿ is acetoxy, all of R²ⁿ, R²ⁿ and R¹ⁿ are are hydrogen, R²ⁿ is methyl, R²ⁿ is hydrogen, R²ⁿ is hydroxy, both of R²ⁿ and R²ⁿ is methyl;

a a compound in which \mathbb{R}^{2n} is hydrogen, $\mathbb{R}^{3n'}$ is hydroxy, $\mathbb{R}^{6n'}$ is methyl, $\mathbb{R}^{6n'}$ is hydroxy, $\mathbb{R}^{7n'}$ is hydroxy, all of \mathbb{R}^{10} , $\mathbb{R}^{12n'}$ and $\mathbb{R}^{16n'}$ are methyl, both of $\mathbb{R}^{16n'}$ and $\mathbb{R}^{16n'}$ are methyl, both of $\mathbb{R}^{16n'}$ is hydrogen, $\mathbb{R}^{2n'}$ is methyl, $\mathbb{R}^{2n'}$ is methyl, $\mathbb{R}^{2n'}$ is hydroxy, both of $\mathbb{R}^{16n'}$ and $\mathbb{R}^{2n''}$ are hydrogen, and $\mathbb{R}^{2n''}$ is methyl.

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, R^{6h} is methyl, R^{6h} is hydroxy, R^{7h} is acetoxy, all of R^{10h}, R^{12h} and R^{16h} are methyl, both of R^{16h} and R^{17h} are hydrogen, R^{2h} is methyl, R^{2hh} is hydrogen, both of R^{2th} and R^{2th} are bound together to form a ketone structure, R^{2hh} is hydrogen, and R^{2hh} is nethyl:

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, R^{5h} and R^{6h} are bound together to form a spiroxyrane structure, R^{7h} is acetoxy, all of R^{5h}, R^{12h} and R^{16h} are methyl, both of R^{16h} and R^{17h} are hydrogen, R^{20h} is methyl, R^{20h} is hydroson, R^{2h} is hydroxy, both of R^{2th} and R^{25h} are hydrogen, and R^{25h} is methyl.

a compound in which R^{2h} is hydrogen, R^{3h} is hydroxy, R^{6h} is methyl, R^{6h} is acctoxy, R^{7h} is acctoxy, all of R^{10h}, R^{10h} and R^{10h} are methyl, both of R^{10h} and R^{10h} are hydrogen, R^{20h} is methyl, R^{20h} is hydrogen, R^{21h} is hydroxy, both of R^{21h} and R^{20h} are hydrogen, and R^{20h} is methyl; and

a compound in which R²⁰ is hydrogen, R²⁰ is hydrooy, R⁶⁰ is methyl, R⁶⁰ is hydroxy, R⁷⁰ is acetoxy, all of R¹⁰, R¹⁰ and R¹⁶⁰ are methyl, R¹⁰ is hydrogen, R¹⁷⁰ is hydroxy, R²⁰ is methyl, R²⁰ is hydrogen, R²¹¹ is hydroxy, both of R²¹⁰ and R²²⁰ are hydrogen, and R²⁰ is methyl.

16. A compound represented by the formula (H-III), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula, R^{2h}, R^{5h}, R^{6h}, R^{10h}, R^{12h}, R^{16h}, R^{20h}, R^{21h} and R^{22h} are the same as or different from each other and each represents

- (1) hydrogen,
- (2) methyl,
- (3) hydroxymethyl or
- (4) C₂₋₈ acyloxymethyl;

R5h', R6h', R7h', R16h', R17h', R20h', R21h' and R22h' are the same as or different from each other and each represents

- (1) hydrogen.
- (2) hydroxy,

5

10

15

20

25

50

55

- (3) methoxy or
- (4) C2.8 acyloxy;

further, R^{Sh} and R^{Sh} may be bound together to form a ketone structure (=0); further, R^{Sh} and R^{Sh} may be bound together to form a ketone structure (=0); further, R^{Sh} and R^{Sh} may be bound together to form a spirooxyrane structure.

17. A compoundrepresented by the formula (H-III) according to claim 16, a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group consisting of a compound in which R^{2h} is hydrogen, both of R^{2h} and R^{2h} are hydrogen, R^{2h} is methyl, R^{2h} is hydrogy, R^{7h} is hydrogy, R^{2h} is hydroy, all of R^{1b}, R^{1b} and R^{1h} are hydrogen, R^{2b} is methyl, R^{2h} is hydrogen, R^{2h} is hydroy, both of R^{2h} and R^{2h} are hydrogen and R^{2h} is hydroy, both of R^{2h} and R^{2h} are hydrogen and R^{2h} is hydroy.

a compound in which R^{2h} is hydrogen, both of R^{5h} and R^{5h} are hydrogen, R^{6h} is methyl, R^{6h} is hydrozy, R^{7h} is a compound in which R^{2h} is hydrozy, R^{7h} is a compound in R^{5h} is methyl, R^{2h} is hydrogen, R^{2h} is acetoxy, both of R^{2h} and R^{2h} are hydrogen and R^{2h} is methyl, and

a compound in which R^{2h} is hydrogen, both of R^{5h} and R^{5h*} are hydrogen, R^{6h} is methyl, R^{6h*} is hydroxy, R^{7h*} is acetoxy, all of R^{16h}, and R^{16h*} are methyl, R^{6h*} is hydrogen, R^{6h*} is methyl, R^{6h*} is hydrogen, R^{6h*} is hydroxy, both of R^{2h*} and R^{2h*} are hydrogen and R^{6h*} is methyl.

18. A compound represented by the formula (H-IV), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula, R^{2h}, R^{3h}, R^{4h}, R^{5h}, R^{6h}, R^{7h}, R^{10h}, R^{12h}, R^{16h}, R^{20h}, R^{21h} and R^{22h} are the same as or different from each other and each represents

- (1) hydrogen,
- (2) methyl,
- (3) hydroxymethyl or
- (4) C_{2,8} acyloxymethyl;

R^{9h'}, R^{6h'}, R^{6h'}, R^{7h'}, R^{16h'}, R^{17h'}, R^{26h'}, R^{21h'} and R^{22h'} are the same as or different from each other and each represents

(5) hydrogen,

5

15

20

- (6) hydroxy.
- (7) methoxy or
- (8) C₂₋₈ acyloxy;

further, \mathbb{R}^{N} and $\mathbb{R}^{N'}$ may be bound together to form a ketone structure ($-\mathbb{Q}$); further, \mathbb{R}^{N} and $\mathbb{R}^{N'}$ may be bound together to form a ketone structure ($-\mathbb{Q}$); further, further, \mathbb{R}^{N} and $\mathbb{R}^{N'}$ may be bound together to form a ketone structure ($-\mathbb{Q}$); further, \mathbb{R}^{N} and $\mathbb{R}^{N'}$ may be bound together to form a ketone structure ($-\mathbb{Q}$); further, \mathbb{R}^{N} and $\mathbb{R}^{N'}$ may form a single bond to represent

~~\ }—{``

·and

further, R8h and R8h may be bound together to form a spirooxyrane structure, provided that the restricted clauses 1, 2 and 3 according to claim 1 are included.

19. The compound represented by the formula (H-IV) according to claim 18, a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group consisting of a compound in which R²¹ is hydrogen, R^{2h} and R^{2h} are bound together to form a kelone structure. R^{2h} and R^{2h} from a single bond to represent

N Page

40

45

55

35

, R^{Sh'} is hydrogen, R^{Sh} is mathyl, R^{Sh'} is hydroxy, R^{7h} is hydrogen, R^{7h'} is acetoxy, all of R^{10h}, R^{12h} and R^{18h} are methyl, both of R^{18h'} are hydrogen, R^{20h} is methyl, R^{20h'} is hydrogen, R^{21h'} is hydroxy, both of R^{21h} and R^{22h'} are hydrocen, and R^{22h'} is methyl, and

a compound in which R^{2h} is hydrogen, R^{2h} is hydrogen, R^{2h} is hydroxy, all of R^{4h}, R^{5h} and R^{5h} are hydrogen, R^{6h} is methyl, R^{6h} is hydroxy, R^{1h} and R^{1h} are bound together to form a ketone structure, all of R^{10h}, R^{12h} and R^{10h} are hydrogen, R^{20h} is methyl, R^{20h} is hydrogen, R^{21h} is hydroxy, both of R^{2h} and R^{2h} are hydrogen, and R^{2h} is methyl.

20. A compound represented by the formula (H-V), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (H-V), R^{12h} , R^{18h} , $R^{18h'}$, $R^{17h'}$, R^{20h} , R^{20h} and $R^{21h'}$ have the same meanings as the definitions in the formula (H-I) of claim 12, $R^{10h'}$ represents hydrogen or methyl, $R^{21h'}$ represents hydrogen, methyl or ethyl; and G^{mh} is represented by the formula (1):

R^W R^W (MH-I)

5

10

20

25

30

35

50

(wherein R^{2h}, R^{8h}', R^{8h}', R^{6h}', R^{6h}', R^{6h}', R^{7h'} and R^{10h} have the same meanings as the definitions in the formula (H-I) of claim 12), the formula (2);

(wherein R^{2h}, R^{9h}, R^{6h}, R^{6h}, R^{7h} and R^{10h} have the same meanings as the definitions in the formula (H-II) of claim 14), the formula (3):

(wherein R^{2h}, R^{5h}, R^{5h}, R^{6h}, R^{6h}, R^{7h'} and R^{10h} have the same meanings as the definitions in the formula (H-III) of claim 16), the formula (4):

(wherein R^{2h}, R^{6h}, R^{7h'} and R^{10h} have the same meanings as the definitions in the formula (H-I) of claim 12), or the formula (5):

5

10

15

20

25

30

35

40

50

55

(wherein R^{2h}, R^{3h}, R^{6h}, R^{6h} and R^{10h} have the same meanings as the definitions in the formula (H-I) of claim 12), provided that the restricted clauses 1, 2 and 3 according to claim 1 are included.

21. A compoundrepresented by the formula (H-V) according to claim 20, a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group consisting of a compound in which G^{mh} is represented by the formula (MH-I), R^{2h} is hydrogen, R^{2h'} is hydrogen, R^{2h'} is an H^{2h'} and R^{2h'} and R^{2h'}

a a compound in which G^{mh} is represented by the formula (MH-I), Rth is hydrogen, Rth is hydroxy, both of Rth and Rth are hydrogen, Rth is perform, Rth is bydroxy, Rth is acctoxy, all of Rths, Rth and Rth are methyl, Rth is hydroxen. Rth is hydroxy, and all of Rths, Rths, Rths, Rth is hydroxen. Rths is hydroxy, and all of Rths, Rths, Rths, Rths, Rth and Rths are hydrocen.

a compound in which G^{mh} is represented by the formula (MH-I), R^{2h} is hydrogen, R^{3h} is hydroxy, both of R^{5h} and R^{6h} are hydrogen, R^{6h} is methyl, R^{6h} is hydroxy, R^{7h} is acetoxy, all of R^{10h}, R^{12h} and R^{116h} are methyl, R^{16h} is hydroxy, and all of R^{17h}, R^{16h}, R^{20h}, R^{20h}, R^{2h} and R^{17h} are hydroxy.

a compound in which G^{mh} is represented by the formula (MH-I), R^{2h} is hydrogen, R^{2h} is hydroge, both of R^{2h} and R^{3h} are hydrogen, R^{3h} is methyl, R⁸ is hydroxy, R^{3h} is acetoxy, all of R^{5h} of R^{1h} and R^{1h} are methyl, R^{1e} is hydroxy, R^{1h} is hydroxy.

a compound in which G^{mb} is represented by the formula (MH-V), R^{2h} is hydrogen, R^{3h} is hydroxy, R^{6h} is methyl, R^{5h} is hydroxy, all of R^{10h}, R^{15h} and R^{16h} are methyl, all of R^{16h}, R^{17h}, R^{16h} and R^{20h} are hydrogen, R^{20h} is embtyl, R^{20h} is hydroxy, and R^{2h} is embtyl, R^{20h} is hydroxy, and R^{2h} is embtyl.

22. A compound represented by the formula (H-VI), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula, R12h, R16h, R16h, R17h, R20h, R20h, R21h, R21h, R22h, R22h have the same meanings as the definitions in the formula (H-h) of claim 12; G^{mh} has the same meaning as the definition in the formula (H-V) of claim 20.

23. A compound represented by the formula (H-VI) according to claim 22, a pharmacologically acceptable salt threach or a hydrate of them, which is selected from the group consisting of a compound in which G^{mh} is represented by the formula (MH-I), R²ⁿ is hydrogen, R²ⁿ is hydrogen, R²ⁿ is entry, R²ⁿ is hydrogen, R²ⁿ is methyl, R²ⁿ is hydrogen, R²ⁿ is methyl, R²ⁿ is hydrogen, R²ⁿ is acetoxy, all of R¹ⁿ in R²ⁿ and R²ⁿ are rhythyl, both of R¹ⁿⁿ and R²ⁿ are rhydrogen, R²ⁿ is methyl, both of R²ⁿⁿ and R²ⁿ are rhydrogen, both of R²ⁿⁿ and R²ⁿ are rhydrogen, both of R²ⁿⁿ and R²ⁿⁿ are rhydrogen, both of R²ⁿⁿ are rhydrogen

a compound in which, G^{mb} is represented by the formula (MH-I), R^{mb} is hydrogen, R^{Mil} is hydroxy, both of R^{mb} and R^{mb} is hydrogen, R^{mb} is medioxy, R^{mb} is actions, R^{mb} is a selloxy, all of R^{mb}, R^{mb} and R^{mb} are methyl., R^{mb} is legions, R^{mb} is and R^{mb} are hydrogen, R^{mb} is methyl, all of R^{mb}, R^{mb} and R^{mb} are hydrogen, R^{mb} is methyl, all of R^{mb}, R^{mb} and R^{mb} are hydrogen, R^{mb} is methyl, all of R^{mb} is methyl.

24. A compound represented by the formula (H-VII), a pharmacologically acceptable sait thereof or a hydrate of them.

5

20

25

30

35

45

55

10 In the formula, G^{mb} has the same meaning as the definition in the formula (H-V) of claim 20; — represents a single bond or a double bond; and f12^m, R16^m, R16^m, R20^m, R20^m, R20^m, R21^m, R21^m, R22^m, And R22^m have the same meanings as the definitions in the formula (H-I) of claim 12.

- 25. A compound represented by the formula (FI-VII), a pharmacologically acceptable satt thereof or a hydrate of them, which is selected from the group consisting of a compound in which G^{mb} is represented by the formula (MH-I), prepresents a double bond, R^{mb} is hydrogen, R^{mb} is hydrogen, R^{mb} is methyl, R^{mb} is hydroy, R^{mb} is accetoxy, all of R^{mb}, R^{mb} and R^{mb} are methyl, both of R^{mb} and R^{mb} are hydrogen, R^{mb} is methyl, all of R^{mb}, R^{mb} is hydrogen, R^{mb} is hydroy, R^{mb} is proposed, and R^{mb} are hydrogen, R^{mb} is hydroy, and R^{mb} is methyl.
 - a compound in which G^{mb} is represented by the formula (MH·1), <u>—</u> represents a single bond, R³⁰ is hydroxy, both of R³⁰ and R³⁰ are hydroxy, R³⁰ is hydroxy, both of R³⁰ and R³⁰ are hydroxy, R³⁰ is hydroxy, R³⁰ is sectoxy, all of R³⁰ are hydroxy and R³⁰ is returnly all of R³⁰⁰, R²¹ and R²⁰ are hydrogen, R³⁰⁰ is methyl, all of R³⁰⁰, R²¹ and R²⁰ are hydrogen, R³⁰⁰ is hydroxy, and R²⁰ is are hydroxy, and R²⁰ is returnly and R³⁰⁰ is methyl, all of R³⁰⁰, R²¹ is hydroxy, and R²⁰ is returnly and R³⁰⁰ is methyl, and R³⁰⁰ is returnly and R³⁰⁰ is methyl, and R³⁰⁰ is hydroxy and R³⁰⁰ is neithyl and R³⁰⁰ is hydroxy.

a compound inwhich G^{mh} is represented by the formula (MH-II), __represents a double bond, R^{0h} is hydrogen, R^{1h} is hydroxy, R^{1h} is methyl, R^{1h} is a cettoxy, R^{1h} is a hydroxy, R^{1h} is methyl, both of R^{1h} and R^{1h} are methyl, both of R^{1h} and R^{1h} are hydrogen, R^{2h} is instructional properties and R^{1h} are hydrogen, R^{2h} is enterly, all of R^{2h} , R^{2h} and R^{2h} are hydrogen, R^{2h} is hydroxy, and R^{2h} is methyl.

26. A compound represented by the formula (H-VIII), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula, G^{mh}, R^{16h}, R^{16h}, R^{16h}, R^{16h}, R^{17h}, R^{20h}, R^{22h} and R^{22h} have the same meanings as the formula (H-I) of claim 12; and R^{16h} represents hydrogen or hydroxy.

40 27. A compound, a pharmacologically acceptable salt thereof or a hydrate of them in the formula (H-VIII) according to claim 26, which is selected from the group consisting of a compound in which Gm^IIs represented by the formula (MH-I), RPI is hydrogen, RPI is hydroxy, both of RPI and RPI are hydrogen, RPI is methyl, RPI is acetoxy, all of RPI in RPI and RPI are methyl, both of RPI and RPI are hydrogen, RPI is hydroxy, RPI is methyl, and RPI is hydroxy, RPI is methyl, and RPI is hydroxy, and RPI is methyl, and RPI is methyl, and RPI is methyl, and RPI is methyl, and RPI is hydroxy, and RPI is methyl, and RPI is methyl, and RPI is hydroxy, and RPI is methyl, and RPI is hydroxy, and RPI is hydroxy, and RPI is methyl, and RPI is hydroxy, and RP

a compound in which G^{mb} is represented by the formula (MH-I), R^{2b} is hydrogen, R^{2b} is hydroxy, both of R^{2b} and R^{2b} are hydrogen, R^{2b} is methyl, R^{2b} is hydroxy, R^{2b} is acetoxy, all of R^{1ch}, R^{2b} and R^{1ch} are methyl, both of R^{1ch} and R^{1ch} are hydrogen, and R^{2ch} is methyl.

28. A compound represented by the formula (H-IX), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula, G^{mh} has the same meaning as the definition in the formula (H-V) of claim 20; C^{14} — C^{15} and C^{16} — C^{15} are the same as or different from each other and each represents a single bond or a double bond; R^{12h} , R^{16h} and R^{18h} have the same meanings as the definition in the formula (H-V) of claim 20, R^{14h} represents hydrogen or methyl; R^{18h} represents hydrogen or hydroxy; R^{18h} and $R^{18h'}$ are (1) the same as or different from each other and each represents hydrogen, methyl or hydroxy, or (2) R^{18h} and $R^{18h'}$ are bound together to represent a ketone structure (-0).

5

10

15

20

25

30

35

40

50

55

29. A compound represented by the formula (H-IV) according to claim 28, a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group consisting of a compound in which G^{**} in represented by the formula (MH-II), CM^{**}—CM is a double bond, CM^{**}—CM is a single bond, R^{**} is hydrogen, R^{**} is

a compound in which G^{mh} is represented by the formula (MH-I), C^{14} — C^{15} is a single bond, C^{16} — C^{17} is a double bond, R^{2h} is hydrogen, R^{2h} is hydrogen, R^{2h} is hydroxy, Both of R^{2h} and R^{2h} are hydrogen, R^{2h} is methyl, R^{2h} is hydroxy, R^{2h} is exclosy, both of R^{10h} and R^{14h} are methyl, both of R^{12h} and R^{19h} and R^{19h} and R^{19h} are bound tooleher to form a ketone structure (G^{1}) and R^{19h} and R^{19h} are bound tooleher to form a ketone structure (G^{1}) and R^{19h} and R^{19h} are bound tooleher to form a ketone structure (G^{1}) and R^{19h} and R^{19h} are

a compound in which G^{ab} is represented by the formula (MH-I), C^{14} \subseteq C¹⁵ is a single bond, C^{19} \subseteq C¹⁷ is a double bond, R^{3b} is hydrogen, R^{3b} is hydroxy, both of R^{3b} and $R^{3b'}$ are hydrogen, R^{3b} is methyl, $R^{3b'}$ is hydroxy, $R^{3b'}$ is accrosy, both of R^{10b} and $R^{10b'}$ and $R^{10b'}$ is hydroxy, $R^{13b'}$ is hydroxy.

30. A compound represented by the formula (H-X), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula, G^{mh}, R^{16h} and R^{17h} have the same meanings as the definitions in the formula (H-V) of claim 20; R^{14h} represents hydrogen or methyl; C¹⁴–C¹⁵ and C¹⁸–C¹⁷ are the same as or different from each other and each represents a single bond or a double bond; R^{18h} is hydrogen or hydroxy; and R^{18h*} represents (1) methyl or (2) the formula (H-F).

31. A compound, a pharmacologically acceptable salt thereof or a hydrate of them in the formula (H-X) according to claim 30, which is selected from the group consisting of a compound in which Gth is represented by the formula (H-F), C (***C**C**F as a fingle bond, Rth is hydrogen, Rth is hydroxy, both of Rth and Rth are hydrogen, Rth is methyl, Rth is hydroxy, Rth is actioxy, all of Rth, Rth and Rth are methyl, tho if Rth and Rth are hydrogen, Rth is hydroxy, both of Rth and Rth are hydrogen, Rth is hydroxy, both of Rth and Rth are hydrogen, Rth is hydroxy, both of Rth and Rth are hydrogen, Rth is hydroxy, both of Rth and Rth are hydrogen, Rth is hydroxy.

a compound in which G^{mh} is represented by the formula (MH-1), C^{14} \subseteq C¹⁵ is a single bond, C^{16} \subseteq C¹⁷ is a double bond, R^{30} is hydrogen, R^{30} is hydroxy, both of R^{30} are hydrogen, R^{30} is methyl, R^{30} is hydroxy, R^{70} is acetoxy, both of R^{100} and R^{140} are methyl, all of R^{120} , R^{160} and R^{170} are hydrogen, R^{180} is hydroxy, and R^{180} is methyl, and

a compound in which G^{am} is representedby the formula (MH-I), C¹=C-1¹ is a double bond, C¹=C-1¹ is a single bond, R³ is hydrogen, R³ is indroxy, both of R³ and R³ are hydrogen, R³ is nethly, R³ is hydroxy, R³ is acetoxy, all of R^{10h}, R^{12h} and R^{16h} are methyl, both of R^{16h} and R^{18h} are hydrogen, R^{17h} is hydroxy, and R^{18h} is methyl.

32. A compound represented by the formula (H-XI), a pharmacologically acceptable salt thereof or a hydrate of them.

in the formula, G^{mh} and R^{12h} have the same meanings as the definitions in the formula (H-V) of claim 20; R^{16h*} represents hydrogen, methyl or hydroxy; and R^{17h*} represents (1) hydrogen or (2) the formula (R-F).

- 33. A compound represented by the formula (H-XI) according to dain 32, a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group consisting of a compound in which G^{mb} is represented by the formula (MH-I), R¹⁷⁶ is represented by the formula (RH-7), R²⁶ is hydrogen, R²⁶ is hydroxy, both of R²⁶ and R²⁶ are hydrogen, R²⁶ is methyl, R²⁶ is hydrosy, R²⁷ is acetoxy, all of R²⁶, R²⁶ and R²⁶ is remethyl, both of R²⁶ and R²⁶ are hydroxy, R²⁶ is hydrogen, R²⁶ is methyl, and R²⁶ is entryl, and R²⁶ is entryl, and R²⁶ is remethyl.
 - a compound in which G^{mh} is represented by the formula (MH-I), R^{2h} is hydrogen, $R^{2h'}$ is hydroxy, all of R^{2h} , $R^{2h'}$ and $R^{2h'}$ are methyl, $R^{2h'}$ is acetoxy, both of R^{10h} and R^{12h} are methyl, $R^{10h'}$ is hydroxy, and $R^{12h'}$ is hydrogen.
- 34. A compound represented by the formula (15), a pharmacologically acceptable salt thereof or a hydrate of them.

$$R^{22r}$$
 R^{2r}
 R^{2r}

In the formula (15), Gmr is represented by the formula (1):

(wherein R2r, R3r, R5r, R5r, R6r, R6r, R6r, R7r and R10r are the same as or different from each other and each represents

1) hydrogen.

10

15

20

30

35

40

45

50

55

- methyl which may have substituents.
 - 3) -ORH (wherein RH is <1> hydrogen, <2> methyl or <3> acetyl).
 - 4) -ORD (wherein RD represents
 - <1> C1,22 alkyl (provided that in case of methyl, it has always substituents).
 - <2> CH₂Ar,
 - <3> C3-22 acyl,
 - <4> unsaturated C₃₋₂₂ acyl,
 - <5> CORCO,
 - <6> C1-22 alkylsulfonyl,
 - <7> benzenesulfonyl or
 - <8> -SiRs1Rs2Rs3, eachof whichmayhave substituents)
 - 5) halogen or
- RM.NRN1RN2 (Ar, RCO, Rs1, Rs2, Rs3, RM, RN1 and RN2 have the same meanings as the definitions of the formula 5 of claim 2) ,

further, R5r and R5r' may be bound together to represent a ketone structure:

further, R^{6r} or R^{6r'} may be bound together to represent a spirooxyrane structure or an exo-methylene structure;

further, either of R^{6r} or R^{6r}, and R^{7r'} may be bound together to represent a 1,3-dioxolane ring), the formula (2):

R^{1/4} (MD-II)

(wherein R^{2r}, R^{3r}, R^{6r}, R^{7r} and R^{10r} have the same meanin as the above-mentioned definition), the formula (3):

(wherein R^{2r} , R^{5r} , R^{6r} , R^{6r} , R^{6r} , R^{6r} and R^{10r} have the same meanings as the above-mentioned definition), the formula (4):

(wherein R^{2r} , R^{6r} , R^{7r} and R^{10r} have the same meanings as the above-mentioned definition), or the formula (5):

(wherein R2r, R3r, R6r, R6r and R10r have the same meanings as the above-mentioned definition);

 R^{12r} , R^{16r} , R^{16r} , R^{16r} , R^{16r} , R^{20r} , R^{20r} , R^{21r} , R^{21r} , R^{22r} and R^{22r} are the same as or different from each other and each represents

1) hydrogen,

10

15

20

30

40

45

50

55

- 2) methyl which may be optionally substituted.
- 3) -ORH (wherein RH represents <1> hydrogen, <2> methyl or <3> acetyl),
- 4) -ORD (wherein RD represents
- <1> C₁₋₂₂ alkyl (provided that in case of methyl, it has always substituents),
 - <2> -CH₂Ar,
 - <3> C₃₋₂₂ acyl,
 - <4> unsaturated C3.22 acyl,
 - <5>-CORCO,
 - <6> C1-22 alkylsulfonyl,
 - <7> benzenesulfonvi. or
 - <8> -SiRs1Rs2Rs3, each of which may have substituents),
- 5) halogen or

 -R^M-NR^{N1}R^{N2} (Ar, R^{CO}, R^{a1}, R^{a2}, R^{a3}, R^M, R^{N1} and R^{N2} have the same meanings as the definitions in the formula 5 of claim 2);

further, R^{21r} and R^{21r} may be bound together to represent <1> a ketone structure (=0) or an oxime structure (=NOR^{OX}; wherein R^{OX} has the same meaning as the definition in the formula 5 of claim 2);

when either one of A and B is 1) halogen, or 2) <1> alkylsulfonyloxy, <2> benzenesulfonyloxy or <3> C₁₋₂₂ alkoxy, each of which may have substituents, the other is 1) hydroxy, or 2) <1> C₁₋₂₂ alkoxy or <2> C₂₋₂₂ acyloxy, each of which may have substituents.

35. A compound represented by the formula (16), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (16), R³⁷, R³⁷ and R³² and R³² are the same meanings as the definitions in the formula 15 of claim 34; and R³², R³², R³², R³², R³² and R³³ are the same as or different from each other and each represents hydrogen or methyl, provided that the restricted clause 3 according to claim 1 is included.

36. A compound represented by the formula (17), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (17), R³⁷, R⁵⁷, R⁵⁷, R⁵⁸, R⁵⁸, R⁵⁷, R¹⁷⁷, R¹⁷⁷, R¹⁷⁸, R¹²⁸, R¹²⁸ and R²²⁷ have the same meanings as the definitions in the formula 15 of claim 34, and R⁵⁸, R¹⁶⁸, R¹⁷⁸, R¹⁵⁸ and R¹⁸⁸ have the same meanings as the definitions in the formula 16 of claim 35, provided that the restricted clauses 3 according to claim 1s included.

37. A compound represented by the formula (18), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (18), $\mathbb{R}^{1/6}$ represents hydrogen or hydroxy; \mathbb{R}^{16} represents hydrogen or methyl; \mathbb{R}^{214} represents hydroxy or methoxy; and \mathbb{R}^{4M} represents -NR^{em1}Re^{ang} (wherein Rem^a and Rem^a gre (1) the same as or different from each other and each represents 1) hydrogen, or 2 <15 \mathbb{C}_{120} allyl, <25 \mathbb{C}_{20} , ecydolelyl, <35 unsaturated \mathbb{C}_{320} anyl, <35 \mathbb{C}_{340} , end, \mathbb{C}_{340} exploselyl, <35 \mathbb{C}_{340} exploselyl, <35 \mathbb{C}_{340} ender \mathbb{C}_{340} end (3) \mathbb{C}_{340} exploselyl, <35 \mathbb{C}_{340} ender \mathbb{C}_{340} end (3) \mathbb{C}_{340} exploselyl, <35 \mathbb{C}_{340} end (3) \mathbb{C}_{340} exploselyl, <35 \mathbb{C}_{340} end (3) \mathbb{C}_{340} end (4) \mathbb{C}_{340}

38. A compound represented by the formula (18) of claim 37, a pharmacologically acceptable salt thereof or a hydrate of them, which is selected from the group of compounds consisting of, (1) a compound in which R^{AM} is represented by

()~yh

, and further which may optionally have one to four of substituents selected from hydroxy, amino, N-methylamino, N-ethylamino, N-N-dimethylamino, N-N-dimethylamino, N-N-dimethylamino, N-N-dimethylamino, N-N-dimethylamino, N-N-dimethylamino, N-N-dimethylamino, N-N-dimethylamino, N-(3-hydroxypropyl)amino, N-(2-hydroxyethyl)-N-methylamino, N-(3-hydroxyethyl)-N-ethylamino, N-(3-hydroxyethyl)-N-dimethylamino, N-N-dimethylamino or N-(3-hydroxypropyl)-N-dimethylamino, N-N-dimethylamino, N-N-dimethylamino or N-N-dim

$$\underset{HN}{ \begin{subarray}{c} \begin{subarray}{$$

, and

5

10

15

20

25

30

35

50

55

further, which may optionally have one to four of substituents selected from methyl, ethyl, n-propyl, hydroxy, hydroxymethyl, 2-hydroxyethyl and 3-hydroxypropyl; and

(3) a compound in which RAM is represented by

, and further.

5

10

15

25

30

35

45

50

55

which may optionally have one or two of substituents selected from methyl, ethyl, n-propyl, hydroxy, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, amino, N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-diethylamino, Nethylamino, azetdidin-1-yl, pyrodidin-1-yl, pyrodidin-1-yl, pyropholin-1-yl, morpholin-1-yl and thiomorpholin-1-yl.

39. A compound represented by the formula (19), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula, G^{mr} and R^{12r} have the same meanings as the definitions in the formula (15) of claim 34; and Z represents oxygen or the formula:

(wherein R² represents (1) hydrogen or (2) a and C_{1.8} alkyl, C_{1.8} alkenyl or C_{1.8} alkynyl which may have substituents and an epoxy structure.).

40. A compound represented by the formula (20), a pharmacologically acceptable salt thereof or a hydrate of them.

$$H_{3}C \xrightarrow{R^{210}} H_{3}^{220} \xrightarrow{R^{17}} H_{3}C \xrightarrow{R^{12}} GR^{2}$$

In the formula (20), A' and B' are bound together with oxygen to represent an epoxy structure, or either one of them represents hydroxy and the other represents any one of chlorine, bromine, hydroxy and methoxy, $R^{\rm Pli}$ and $R^{\rm Pli}$ are bound together with oxygen to represent a ketone structure, or either one of them represents hydrogen and the other represents any one of hydroxy, methoxy and $-0.0^{\rm Pl}$, $R^{\rm Pl}$, $R^{\rm Pl}$ and $R^{\rm Pl}$ are the same as or different from each other and each represents hydroxy, and $-0.0^{\rm Pl}$, $-1.0^{\rm Pl}$, $-1.0^{\rm Pl}$, and $-1.0^{\rm Pl}$ are the same as or different from

each other and each represents hydrogen, hydroxy or -OFm, $R^{1/2}$ represents methyl, $-CH_2O$ H or $-CH_2O$ Rm (wherein Rm represents C_1 - C_2 allyl, C_2 - C_3 acyl, R^{2} OCD or $R^{1/2}$ Ref²CO or $R^{1/2}$ Ref²CO or R^{2} Ref presents C_2 - C_3 and C_3 or C_3 o

The substituent described here indicates the following.

- a) C₁,C₈ alkyl, C₁,C₈ alkoxy, C₂,C₈ acyl,
- b) fluoro, chloro, bromo, iodo,

5

15

20

90

40

45

50

- c) carboxylic acid, sulfonic acid, carboxylic acid ester, carboxamide which may optionally have substituents on nitrogen.
- d) nitro, amino, N-monosubstituted amino, N,N-disubstituted amino,
- a hydroxy group, mercaptane, C₁-C₈ alkylthio, C₁-C₈ alkylsulfoxide, C₁-C₈ alkylsulfone, provided that the
 restricted clauses 1, 2 an 3 according to claim 1 are included.
- 41. A compound represented by the formula (21), a pharmacologically acceptable salt thereof or a hydrate of them.

In the formula (21), R²¹ and R²⁶ represent hydrogen; R²⁷ represents hydrogen or aceky; R¹⁸, R¹⁷ and R²⁰ are the same as or different from each other and each represents hydrogen or hydroxy; R²¹⁸ and R²¹⁸ are bound together with oxygen to represent a ketone structure, or either one of them represents hydroxy or methoxy and the other represents hydrogen; and R¹² represents methyl or -CH₂OH, provided that the restricted clauses 1, 2 and 3 according to claim 1 are included.

- 42. The compound according to claim 41, a pharmacologically acceptable sat thereof or a hydrate of them, wherein in the formula (21), 187, 187 and R17 are hydrogen, R7 is hydrogen or acety, 187 and R20 are the same as or different from each other and each represents hydrogen or hydroxy, 1874 and R214 are bound together with oxygen, or either one of them represents hydroxy and the other is hydroxies; and R214 are bound together with oxygen, or either one of them represents hydroxy and the other is hydroxies; and R215 are hydroxy.
- 43. The compound according to claim 41, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R¹⁷, Re⁸ and R¹⁷ are hydrogen; R⁷ is acetyl; R¹⁸ and R¹⁷ are the same as or different from each other and each represents hydrogen or hydroxy; R^{21a} and R^{21b} are bound together with oxygen, or either one of them represents hydroxy and the other is hydrogen; and R¹² represents methyl or C-ti-jO-H.
- 44. The compound according to claim 41, or a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R³, R⁶, R⁷, R¹⁷, R²⁰ and R^{21a} are hydrogen; R¹⁶ and R^{21b} are hydroxy; and R¹² is methyl.
- 45. The compound according to claim 41, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R3°, R6°, R7°, R16, R17 and R21a are hydrogen; R20 and R21b are hydroxy; and R12 is methyl.
- 46. The compound according to claim 41, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R3*, R6*, R7*, R16, R17, R20 and R21a are hydrogen; R21b is hydroxy; and R12 is methyl.
- 47. The compound according to claim 41, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R3*, R6*, R16, R17 and R2¹a are hydrogen; R20 and R2¹b are hydroxy; R7* is acetyl; and R1² is

methyl.

5

10

15

25

35

45

50

- The compound according to claim 41, a pharmacologically acceptable salt thereof or a hydrate of them, wherein
 in the formula (21), R², R⁶, R¹⁷, R²⁰ and R^{21a} are hydrogen; R¹⁹ and R^{21b} are hydroxy; R⁷ is acetyl; and R¹² is
 methyl.
- 49. The compound according to claim 41, a pharmacologically acceptable salt thereof or a hydrate of them, wherein in the formula (21), R³, R⁶, R¹⁶, R¹⁷ and R²⁰ are hydrogen; R^{21a} and R^{21b} are bound together with oxygen; R²¹ is acety: and R^{21b} are the control of the cont
- The compound according to claim 41, a pharmacologically acceptable salt thereof or a hydrate of them, wherein
 in the formula (21), R^{3*}, R^{6*}, R¹⁶, R¹⁶, R¹⁰, R²⁰ and R^{21a} are hydrogen; R^{21b} is hydroxy; R^{7*} is acetyl; and R¹² is methyl.
- 51. A medicament comprising at least one selected from compounds according to claims 1 to 50, a pharmacologically acceptable salt thereof or a hydrate of theman active ingredient.
- 52. The medicament according to claim 51, as an agent for preventing or treating a disease against which gene expression control is efficacious.
- 53. The medicament according to claim 51, as an agent for preventing or treating a diseases against which VEGF production suppressing action is efficacious.
 - 54. The medicament according to claim 51, as an agent for preventing or treating a disease against which an antianglogenic effect is efficacious.
 - 55. The medicament according to claim 51, as an antiangiogenic agent.
 - 56. The medicament according to claim 51, as an antitumor agent.
- 57. The medicament according to claim 51, as an agent for treating hematoma.
 - 58. The medicament according to claim 51, as an agent for supressing cancer metastasis.
 - 59. The medicament according to claim 51, as an agent for treating retina anglogenic disease or an agent for treating diabetic retinopathy.
 - 60. The medicament according to claim 51, as an agent for treating inflammatory disease.
- 61. The medicament according to claim 51, as an agent for treating inflammatory diseases consisting of osteoarthritis, rheumatoid arthritis, psoriasis or delayed hypersensitivity reaction.
 - 62. The medicament according to claim 51, as an agent for treating atherosclerosis.
 - 63. The medicament according to claim 51, as an agent for treating solid cancer.
 - 64. The medicament according to claim 63, wherein the solid cancer is lung cancer, brain tumor, breast cancer, prostate cancer, ovarian cancer, colon cancer or melanoma.
 - 65. The medicament according to claim 51, as an agent for treating leukemia.
 - 66. The medicament according to claim 51, as an antitumor agent based on gene expression control.
 - 67. The medicament according to claim 51, as an antitumor agent based on VEGF production suppressing action.
- 55 68. The medicament according to claim 51, as an antitumor agent based on an antiangingenic effect.
 - 69. A method for preventing or treating a disease against which gene expression control is efficacious, by administering a pharmacologically effective dose of the medicament according to claim 51 to a patient.

- 70. A method for preventing or treating a disease against which the VEGF production suppressing action is efficacious, by administering a pharmacologically effective dose of the medicament according to claim 51 to a patient.
- 71. A method for preventing or treating a disease against which an antiangiogenic effect is efficacious, by administering a pharmacologically effective dose of the medicament according to claim 51 to a patient.
 - 72. Use of the compound according to any one of claims 1 to 50, a pharmacologically acceptable salt thereof or a hydrate of them, for producing an agent for preventing or treating a disease against which the gene expression control is efficacious, a disease against which the entiandiosenication is efficacious, a disease against which the entiandiosenication is efficacious or solid candious or solid candious.

10

25

30

35

- 73. A production process of the compound according to any one of claims 1 to 50, a pharmacologically acceptable salt thereof or a hydrate of them, which comprises culturing Streptomyces sp. Mer. 11107, FERM P-18144 or its variant in a nutrient culture medium, collecting the compound according to any one of claims 1 to 50 from the culture solution, and carrying out various modification synthesis by using the obtained compounds as a starting material to obtain derivatives thereof.
- 74. An agent for preventing or treating a disease against which the gene expression control is efficacious, a disease against which the VEGF production suppressing action is efficacious, a disease against which the variating logenic action is efficacious or solid cancers, which comprises a compound represented by the formula (4):

75. An agent for treating hematoma, an agent for suppressing cancer metastasis, an agent for treating retina angiologenic disease, an agent for treating diabetic retinopathy, an agent for treating inflammatory diseases, an agent for treating osteoarthritis, an agent for treating osteoarthritis, an agent for treating atheroscienosis or an agent for treating solid cancer, which comprises a compound represented by the formula (4)

76. The agent for treating solid tumor according to claim 75, wherein the solid tumor is lung cancer, brain tumor, breast cancer, prostate cancer, ovarian cancer, colon cancer or melanoma.

INTERNATIONAL SEARCH REPORT International application No. PCT/JP02/00848 A. CLASSIFICATION OF SUBJECT MATTER (See extra sheet.) According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) (See extra sheet.) Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), REGISTRY (STN), MEDLINE (STN), BIOSIS (STN), EMBASE (STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. BESTMANN, Hans Jürgen et al., Kumulierte Ylide XX. Synthesen (E)- α , β -ungesättigter macrocyclischer 2-68,72-76 Lactone durch intramolekulare Wittig-Olefinierung Triphenylphosphoranylidenketen, Synthesis, 1989, Vol. 5, pages 419 to 423; particularly, compounds 11c,19 BESTMANN, Jans Jürgen et al., Neue Synthese macrocyclischer Lactone, Angew. Chem., 1983, Vol.95, No.10, pages 810 to 811; particularly, compound 20 2-68.72-76 FÜRSTNER, Alois et al., Efficient Total Syntheses of Resin Glycosides and Analogues by Ring-Closing 2-68,72-76 Olefin Metathesis, 1999, Vol. 121, pages 7814 to 7821; particularly, compound 57 Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing later document published after the international filing date or priority date and not in conflict with the application but cited to processed the principle or theory underlying the invention document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an investive considered novel or cannot be considered to implay an unrecorre step when the document is taken almone document of particular relevance, the claimed invention cannot be considered to involve an inventive tray when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the ert document member of the same patent family ·L· one document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special restor (as specified) document referring to an oral disclosure, use, exhibition or other *O* document published prior to the interactional filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 23 April, 2002 (23.04.02) 12 April, 2002 (12.04.02) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office

Form PCT/ISA/210 (second sheet) (July 1998)

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP02/00848

	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*			Relevant to claim No
A A	JF 4-352783 A (Taisho Pharmaceutical Co., Ltd.), 07 December, 1992 (07.12.92), Full text (Family: none)		74-76 1-68,72,73
Y A	SEKI-ASANO, Mitsuko et al., Isolation and Characterization of a New 12-Hembered Macrolide FD-895, J. ANTIFIOT., 1994, Vol. 47, No.12, pages 1395 to 1401, full text		74-76 1-68,72,73
Y A	WO 00/75126 Al (The Secretary, Department of Health and Ruman Services), 14 December, 2000 (14.12.00), Full text 6 AU 200051798 A		74-76 1-68,72,73
A	GUNAWARDANA, Geewananda et al., Character Novel Macrolide Toxins, Mycolactones A and Human Pathogen, Mycobacterium ulcerans, J. Soc. 1999, Vol.121, pages 6092 to 6093, 1	B, from a Am. Chem.	1-68,72-76
A	ROHR, Jürgen, A New Role for Polyketides, An Int. Ed., 2000, Vol.39, No.16, pages 2847 full text		1-68,72-76
A	KOBAYASHI, Jun'ichi et al., Amphidinolide Q, a Novel 12-Membered Macrolide from the Cultured Marine Dinoflagellate Amphidinium SP., Tetrahedron Letters, 1996, Vol.37, No.9, pages 1449 to 1450, full text		1-68,72-76
A	HAMBERG, Mats, New Cyclopentenone Fatty Ac from Linoleic and Linolenic Acids in Potat 2000, Vol.35, No.4, pages 353 to 363, ful	o, Lipids,	1-68,72-76
A	HAMBERG, Mats, Fatty acid allene oxides II. of two macrolactones from 12, 13(S)-epoxy octadecadienoic acid, Chem. Phys. Lipids, Vol.46, No.4, pages 235 to 243, full text	-9(Z), 11- 1988,	1-68,72-76
P,A	WO 02/12533 A2 (Rosan Biosciences, Inc.) 14 Pabruary, 2002 (14.02.02), Full text (Family: none)	,	1-68,72-76

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

ENTERIOR FOR THE ONE	PCT/JP02/00848			
Continuation of A. CLASSIFICATION OF SUBJECT MATT	ER			
(International Patent Classification (IPC))				
Int.Cl. 2073313/00, 405/14, 407/06, 493/10, 492/04, A61331/335, 336, 427, 4523, 455, 4025, 5377, 945, 274, 851943/00, 7/00, 35/04, 35/04, 29/00, 15/02, 27/02, C12P17/02 (According to Intermetional Parent Classification (IRC) or to both national classification and IRC)				
<u>Continuation of B. FIRLOS SEARCHED</u> Minimum Documentation Searched(International Patent Classification (IFC))				
Int.Cl ² c07D313/00, 405/14, 407/06, 493/10, 493/04, A61K31/335, 336, 4427, 4523, 455, 4025, 5377, 495, "" '74, A61F43/00, 7/00, 35/00, 35/04, 29/00, 19/02, 27/02, C12P17/02 Minimum documentation searched (classification system followed by				
classification symbols)				
·				
Į.				

Form PCT/ISA/210 (extra sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP02/00848

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)			
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1. X Claims Nos.; 69-71			
boxums they relate to adjust matter not required to be searched by this Authority, camely: Claims 69-71 pertain to methods for treatment of the human body by therapy and thus relate to a subject matter which this International Searching Authority is not required to search.			
2. Claims Nos.:			
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be calried out, specifically:			
3.			
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)			
This International Searching Authority found multiple inventions in this international application, as follows:			
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.			
 As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of my additional fee. 			
 As only some of the required additional search flees were timely paid by the applicant, this international search report covers only those claims for which flees were paid, specifically claims Nos.: 			
 No required additional search free were timely paid by the applicant. Consequently, this interestional search report is restricted to the Investion first mentioned in the chains; it is covered by chains Nos.: 			
Remark on Protest The additional search fises were accompanied by the applicant's protest.			
No protest accompanied the payment of additional search focs.			
Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)			