Antennas and Free Space Propagation

WIRELESS SHORT COURSE

PROF. SUNDEEP RANGAN

Learning Objectives

■ Mathematically describe an EM wave: Direction of motion, wavenumber, frequency, polarization, ... □ Identify radio spectrum and power levels used in common commercial wireless products ☐ Perform basic mathematical operations in polar coordinates Conversions to cartesian coordinates, rotations, integrals, averages, ... ☐ Use tools from MATLAB to compute and plot key antenna parameters Directivity, gain, efficiency, ... □Compute received power in an angular region using the radiation density and intensity. □ Compute the free-space path loss using Friis Law ☐ Derive Friis Law

Outline

Basics of Electromagnetic Waves

☐ Basics of Antennas

☐ Free Space Propagation

Electric and Magnetic Forces

- ☐ Two closely related forces:
 - Electric: Forces between charged particles
 - Magnetic: Forces between moving charged particles
- ☐ Forces operate at a distance:
 - Enables communication.
 - ... and many other phenomena in the universe
- ☐ Represented by a vector field
 - Force strength has a direction and magnitude
 - \circ Changes with position r = (x, y, z) and time t
 - E-field: E(r,t) in N/C (force / unit charge)
 - \circ B-field: B(r,t) in N/(Am) (force / unit charge / velocity)

FIGURE 2.4 Electric field lines begin and end on charges

Plane Waves

- ■EM field governed by Maxwell's equations
- □All solutions can be decomposed into plane waves
- \square EM plane wave at position $\mathbf{r} = (x, y, z)$

$$\bullet \mathbf{E}(\mathbf{r},t) = E_0 \mathbf{e}_x \cos(2\pi (ft + \lambda^{-1}z) + \phi)$$

$$\bullet \mathbf{B}(\mathbf{r},t) = B_0 \mathbf{e}_{v} \cos(2\pi (ft + \lambda^{-1}z) + \phi)$$

•
$$B_0 = (1/c)E_0$$
, $c = \lambda f = \text{speed of light}$

■Sometimes write:

$$\bullet \ \mathbf{E}(\mathbf{r},t) = E_0 \mathbf{e}_x \cos(\omega t + kz + \phi)$$

$$B(\mathbf{r},t) = B_0 \mathbf{e}_y \cos(\omega t + kz + \phi)$$

•
$$k = \frac{2\pi}{\lambda}$$
 = wave number

Electromagnetic Wave

Plane Waves Illustrated

■EM plane wave

- $\bullet \mathbf{E}(\mathbf{r},t) = E_0 \mathbf{e}_x \cos(2\pi (ft \lambda^{-1}z) + \phi)$
- $B(r,t) = B_0 e_y \cos(2\pi (ft \lambda^{-1}z) + \phi), B_0 = c^{-1}E_0$
- ☐ Five key parameters:
 - Amplitude, frequency, direction of motion, phase
 - Polarization (see below)
- ☐ Diagrams on board
 - Fixed position, variation in time
 - Fixed time, variation in position.
- \square Phasor notation: $\mathbf{E}(\mathbf{r},t) = Real[\mathbf{E}(\mathbf{r})e^{i\omega t}]$

Plane Wave Direction of Motion

- \square EM field constant in x y plane
- ☐ Moves along z-direction:

$$E(x, y, z, t + \delta t) = E(x, y, z - c\delta t, t)$$

☐ "Poynting" vector:

$$S = \frac{1}{\mu_0} E \times B = \frac{|E_0|^2}{c\mu_0} \cos^2(2\pi (ft - \lambda^{-1}z)) e_z$$

- Represents "energy flux"
- Energy consumed = $\nabla \cdot S$
- Units = W/m^2

Polarization

- □ Polarization: Orientation of E-field relative to direction of motion
- ☐ Linearly polarized: Constant orientation
 - Vertical: $\boldsymbol{E}(\boldsymbol{r},t) = E_0 \boldsymbol{e}_x \cos(\omega t + kz)$
 - Horizontal: $\boldsymbol{E}(\boldsymbol{r},t) = E_0 \boldsymbol{e}_{v} \cos(\omega t + kz)$
- □Also, circularly polarized
 - Sum of V and H that are out of phase
 - $\cdot E_0[\boldsymbol{e}_x\cos(\omega t + kz) \pm \boldsymbol{e}_y\sin(\omega t + kz)]$
 - Called left hand and right hand
- ☐ Two degrees of freedom:
 - Consider any plane wave in some direction
 - ∘ Can be decomposed as V + H or LH + RH

Plane Wave Decomposition

- ☐ Every electric field is a linear combination of plane waves
- ☐ Each plane wave in the decomposition has:
 - Frequency
 - Direction of motion
 - Gain, Phase
 - One of two polarization
- ☐ Decomposition can be found from a 4D Fourier transform
 - \bullet $E(x, y, z, t) \Rightarrow \hat{E}_V(k_x, k_y, k_z, f)$ and $\hat{E}_H(k_x, k_y, k_z, f)$
 - Converts time + space ⇒ wavenumber and frequency
 - Note that there are two polarization components
- ☐ This decomposition is used in many EM solvers
 - And your EM class if you take it

EM Spectrum

- ☐ Frequency of EM radiation has wide range
- ☐ Encompasses many forms of radiation
- ☐ Radio waves are uniquely valuable since they can propagate far

Radio Spectrum

Outline

☐ Basics of Electromagnetic Waves

Basics of Antennas

☐ Free Space Propagation

Excellent Text for Antennas

- ☐ This section based on classic text
 - Figures are from this text
- ☐ Balanis, "Antenna Theory"
- ☐ Full EM theory
- ☐ Many excellent problems and examples
- ☐ Designed for RF engineers
- ☐ We will use only a small portion here
- ☐ Take an EM class for more!

Waveguides and Transmission Lines

- ☐ Transmission lines and waveguides: Any structure to guide waves with minimal loss
- ☐Some texts:
 - Transmission lines refer to conductors and waveguides to hollow structures
- ☐ Many examples

Coaxial cable

Waveguide

PCB traces

Microstrip: External layer Stripline: Internal layer

Antenna

Figure 1.1 Antenna as a transition device.

- ☐ Transmit antenna: Radiates electromagnetic waves
- ☐ Converts signals:
 - From guided signals in transmission lines to
 - To radiation in free space
- Receive antenna: Collects EM wave

USRP with four vertical antenas

Radiation Patterns

- ☐ Aantenna radiation typically shown via a pattern
 - Value of scalar as a function of position
 - Antenna usually at origin
 - Orientation of the antenna is important
- ☐ Many possible quantities:
 - Power, electric field, ...
 - Normalized or un-normalized
- ☐Can be 2D or 3D

2D

Major lobe

Back lobe

Spherical Coordinates

- □ Radiation patterns are often given in spherical coordinates
- \square Spherical coordinates: (φ, θ, r)
 - $\circ \varphi \in [-\pi, \pi]$: Azimuth, counter-clockwise angle in xy plane
 - $\theta = \theta_{el} \in \left[\frac{\pi}{2}, \frac{\pi}{2}\right]$: Elevation, angle from xy plane
 - $r \ge 0$: Radius from origin
- ☐ Many texts use polar or inclination angle:

• Use
$$\theta_{inc} = \frac{\pi}{2} - \theta_{el} \in [0, \pi]$$

- Measures angle from z axis
- Most antenna and math texts use polar form
- But, MATLAB antenna toolbox uses elevation form
- ☐ Remember right hand rule!

Polar coordinates

Spherical (polar form) ⇔ Cartesian

$$egin{array}{ll} r = \sqrt{x^2 + y^2 + z^2}, & x = r \sin heta \cos arphi, \ arphi = rctan rac{y}{x}, & y = r \sin heta \sin arphi, \ heta = rccos rac{z}{\sqrt{x^2 + y^2 + z^2}}, & z = r \cos heta. \end{array}$$

Spherical Coordinates in MATLAB

☐ Conversion between spherical and cartesian

```
% Generate four random points in 3D
X = randn(3,4);
% Compute spherical coordinates of a matrix of points
% Note these are in radians!
[az, el, rad] = cart2sph(X(1,:), X(2,:), X(3,:));
% Convert back
[x,y,z] = sph2cart(az,el,rad);
Xhat = [x; y; z];
```

□ Conversion to a coordinate system

```
%% Conversion to a new frame of reference
% Angles of new frame of reference
% Note these are in degrees!
azl = 0;
ell = 45;
% Rotate to the new frame of reference
% This takes row vectors!
X1 = cart2sphvec(X,azl,ell);
```

```
x = r .* cos(elevation) .* cos(azimuth)
y = r .* cos(elevation) .* sin(azimuth)
z = r .* sin(elevation)
```


Radians and Steradians

☐ Radian:

- Circle of radius one
- Angle for unit length on circumference
- \circ 2π radians in the circle

□Steradian

- Defined on sphere of radius one
- Angles corresponding to unit area on surface
- \circ 4 π sr in the sphere
- ☐ Infinitesimal area and solid angle:

$$dA = r^2 \sin\theta \, d\theta \, d\phi \quad (m^2) \qquad d\Omega = \frac{dA}{r^2} = \sin\theta \, d\theta \, d\phi \quad (sr)$$

 \circ Note: θ is the inclination angle not elevation

Field Regions

- ☐ Antenna patterns depend on the region
- Reactive near field:
 - Reactive pattern dominates
- ☐ Radiating near field or Fresnel region:
 - Angular pattern depends on distance
- ☐ Far field or Fraunhofer region:
 - Angular pattern independent of distance
 - Radiation is approximately plane waves
- ☐ Can be approximately calculated using:
 - D: Maximum antenna dimension
 - ∘ *λ*: Wavelength

Rayleigh Distance

- \square Distance R_2 to far-field = Rayleigh distance
- ☐ Most cellular / WLAN systems operate in far field
- □Ex 1: Half wavelength dipole antenna
 - $f_c = 2.3 \text{ GHz}$:

$$D = \frac{\lambda}{2}$$
, $R_2 = \frac{2D^2}{\lambda} = \frac{\lambda}{2} = 6.5$ cm

- ☐ Ex 2: Large cellular base station
 - $\circ~D \approx 7 \text{m}, f_c = 2.3 \text{ GHz}$
 - $R_2 = 751 \text{ m}$
- ☐ Ex 3: MmWave wide aperture antenna
 - $\circ~D pprox 40$ cm, f_c = 140 GHz
 - $R_2 = 149 \text{ m}$

Radiation Density

- Recall instantaneous energy flux for a plane wave: $S(t) = \frac{1}{\mu} E(t) \times B(t) = \frac{1}{\mu} ||E(t)||^2 n$
 - \circ n = normal vector in direction of the plane wave
- Typically consider fields at some frequency $\omega = 2\pi f$: $\boldsymbol{E}(t) = Re[\boldsymbol{E}e^{i\omega t}]$
- Time average power $\langle S(t) \rangle = \frac{1}{2\mu} ||E||^2 n$
 - Note factor of 2
- \square Can write $\langle S(t) \rangle = W \, n$, $W = \frac{1}{2\mu} ||E||^2$
 - Radiation density: $W = W(r, \theta, \phi) = \frac{1}{2\mu} |E(r, \theta, \phi)|^2 = \text{radiation density}$
 - \circ Maximum power available if aligned in the direction $m{n}$
 - Units W/m^2
 - This is a function of position $W(r, \theta, \phi)$

Radiation Intensity

- □ From previous slide: Radiation density: $W = W(r, \theta, \phi) = \frac{1}{2\mu} |E(r, \theta, \phi)|^2$
 - Units $\frac{W}{m^2}$
- □Also define radiation intensity: $U = r^2 W = \frac{r^2}{2\mu} |E(r, \theta, \phi)|^2$
 - Watts per solid angle: $\frac{W}{sr}$
- ☐ In far field, radiation pattern typically decays as:
 - $\bullet \; \mathbf{E}(r,\theta,\phi) \approx \frac{1}{r} \mathbf{E}_0(\theta,\phi)$
 - In this case, $U(r,\theta,\phi)=r^2W(r,\theta,\phi)=\frac{r^2}{2\mu}|\boldsymbol{E}(r,\theta,\phi)|^2\approx\frac{1}{2\mu}|\boldsymbol{E}_0(\theta,\phi)|^2$
 - \circ Only depends on angular position $U(r, \theta, \phi) = U(\theta, \phi)$
 - $^{\circ}\,$ Does not depend on distance r

Total Radiated Power

☐ Total radiated power:

$$P_{rad} = \iint U d\Omega = \int_{-\pi/2}^{\pi/2} \int_{-\pi}^{\pi} U(\theta, \phi) \cos \theta \, d\phi d\theta$$

- Units is Watts
- \circ Note $\cos \theta$ term! Angle here is elevation angle not polar angle
- ☐ Typically measured in dBm or dBW:

$$P_{rad}[dBm] = 10 \log_{10} \left[\frac{P_{rad}}{1 \text{ mW}} \right], P_{rad}[dBW] = 10 \log_{10} \left[\frac{P_{rad}}{1 \text{ W}} \right]$$

- Power relative to mW or W
- ☐ Review dB calculations if you forgot!
 - Ex: A mobile transmitter transmits 250 mW. What is the power in dBm?
 - Ans: $250 = 1000/4 = \frac{10^3}{2^2}$. In dBm: 3(10) 2(3) = 24 dBm

Typical Wireless Power Transmit Levels

- □ 100 kW = 80 dBm: Typical FM radio transmission with 50 km radius
- \square 1 kW = 60 dBm: Microwave oven element (most of this doesn't escape)
- \square ~300 W = 55 dBm: Geostationary satellite
- \square 250 mW = 24 dBm: Cellular phone maximum power (class 2)
- □200 mW = 23 dBm: WiFi access point
- □32 mW = 15 dBm: WiFi transmitter in a laptop
- □4 mW = 6 dBm: Bluetooth 10 m range
- \square 1 mW = 0 dBm: Bluetooth, 1 m range

Antenna Directivity

- ☐ Isotropic antenna: Radiates uniformly in all directions
 - Theoretically construct
- ☐ Most antennas concentrate power in certain angles
- ☐Antenna directivity:
 - $D(\theta, \phi) = \frac{4\pi U(\theta, \phi)}{P_{rad}}$ [dimensionless]
 - Measures power at an angle relative to average
 - Average in linear domain is one
- \square Max directivity: $D_{max} = \max D(\theta, \phi)$
 - Directivity in direction with maximum power
- ☐ Typically measured in dBi
 - dB relative to isotropic
 - $D(\theta, \phi) [dBi] = 10 \log \left[\frac{4\pi U(\theta, \phi)}{P_{rad}} \right]$

Theoretical isotropic antenna

Horn antenna with directivity

Antenna Gain and Efficiency

- Most antennas have losses
- □ Define efficiency:

$$\epsilon = \frac{P_{rad}}{P_{in}} \in [0,1]$$

- Radiated to input power in TX mode
- Remaining power is lost in heat in the antenna
- Note: Some text include losses in the generator
- \square Lossless antenna: $\epsilon = 1$
- ☐Antenna gain:

$$\circ G(\theta, \phi) = \epsilon D(\theta, \phi) = \frac{4\pi U(\theta, \phi)}{P_{in}}$$

- Radiation intensity per unit input power
- For losses antennas, gain = directivity

Antenna Toolbox in MATLAB

- ☐ Powerful routines for:
 - Design and analysis of antennas
 - Radiation patterns
- ■Supports many antennas
- ☐ Accurate EM modeling
- ☐ Free to NYU students
 - Just download it with your MATLAB

Antenna Toolbox

Design, analyze, and visualize antenna elements and antenna arrays

Antenna Toolbox[™] provides functions and apps for the design, analysis, and vis antennas using either predefined elements with parameterized geometry or arbi

Antenna Toolbox uses the method of moments (MoM) to compute port properties such as the near-field and far-field radiation pattern. You can visualize antenna ς

You can integrate antennas and arrays into wireless systems and use impedanc beam forming and beam steering algorithms. Gerber files can be generated fron large platforms such as cars or airplanes and analyze the effects of the structure using a variety of propagation models.

Get Started

Learn the basics of Antenna Toolbox

Patterns in MATLAB: Dipole Example

■MATLAB has powerful tools for calculating antenna patterns

```
%% Simulation constants
fc = 28e9;
vp = physconst('lightspeed');
lambda = vp/fc;

%% Dipole antenna
% Construct the antenna object
ant = dipole(...
    'Length', lambda/2,...
    'Width', 0.01*lambda );
```


ant.pattern(fc)

Microstrip Patch Example

- ■A more complex antenna
- ☐ Many other parameters
 - Substrate selection (e.g. FR4, Rogers)
 - Shapes, notches, ...

```
%% Create a patch element
len = 0.49*lambda;
groundPlaneLen = lambda;
ant2 = patchMicrostrip(...
    'Length', len, 'Width', 1.5*len, ...
    'GroundPlaneLength', groundPlaneLen, ...
    'GroundPlaneWidth', groundPlaneLen, ...
    'Height', 0.01*lambda, ...
    'FeedOffset', [0.25*len 0]);

%%
% Tilt the element so that the maximum energy is in the x-axis ant2.Tilt = 90;
ant2.TiltAxis = [0 1 0];
% Display the antenna pattern after rotation
ant2.pattern(fc);
```


Outline

- ☐ Basics of Electromagnetic Waves
- ☐ Basics of Antennas

Antenna Effective Aperture

- □Suppose RX antenna sees incident plane wave
 - Assume polarization aligned to the antenna
- ☐ The effective antenna aperture (or area):

$$A_e(\theta,\phi) = \frac{W(\theta,\phi)}{P_L} \quad [m^2]$$

- $W = \text{Power density of incident wave } [W / m^2]$
- $P_L = Power delivered to load at the receiver [W]$
- ☐ The effective area that the antenna collects
 - We will see this is different than the physical aperture
- $\square A_e$ will depend on the direction of arrival

Aperture and Directivity

- \square From previous slide, effective aperture is: $A_e(\theta,\phi) = \frac{W(\theta,\phi)}{P_L}$ $[m^2]$
 - Ratio of received power to incident radiation density
- □ Aperture-directivity relation:

$$A_e(\theta,\phi) = D(\theta,\phi) \frac{\lambda^2}{4\pi}$$

- True for all lossless antennas
- Proof: next slide
- $\Box \text{Consequence: Average aperture is always } \frac{\lambda^2}{4\pi}$

Independent of the physical size of the antenna

Proof of the Aperture-Directivity Relation

- \square Suppose Ant 1 transmits power P_t
- \square Radiation density is: $W = \frac{D_1 P_t}{4\pi R^2}$
- \square Received power at Ant 2: $P_r = A_2W = \frac{A_2D_1P_t}{4\pi R^2} \Rightarrow \frac{P_r}{P_t} = \frac{A_2D_1}{4\pi R^2}$
- \Box TX from Ant 2, the gain must be the same: $\frac{P_r}{P_t} = \frac{A_1 D_2}{4\pi R^2}$
 - This is a consequence of reciprocity
- ☐ Hence, for any two antennas: $\frac{D_1}{A_1} = \frac{D_2}{A_2}$
- ☐ From simple antenna calculations for a short dipole:

$$D_2 = \frac{3}{2}$$
, $A_2 = \frac{3\lambda^2}{8\pi} \Rightarrow \frac{D_2}{A_2} = \frac{4\pi}{\lambda^2}$ (Needs basic EM theory)

Friis' Law

- □Consider two lossless antennas in free space
- $\Box \text{From previous slide: } \frac{P_r}{P_t} = \frac{A_1 D_2}{4\pi R^2}$
- \square From aperture-directivity relation: $A_1 = D_1 \frac{\lambda^2}{4\pi}$
- ☐ This leads to Friis' Law (for lossless antennas):

$$\frac{P_r}{P_t} = D_1 D_2 \left(\frac{\lambda}{4\pi R}\right)^2$$

- Path loss is proportional to R²
- Path loss Inversely proportional to $\lambda^2 \Rightarrow$ proportional to f_c^2

Polarization Loss

- ☐ Friis' Law assumes incident wave is aligned in polarization
- ☐ In general, need to consider polarization loss
- ☐ Recall: polarization vector for a plane wave:
 - Direction of the E-field in phasor notation
 - A complex vector in 3-dim
- □ Polarization loss factor:

$$PLF = |\boldsymbol{\rho}_a \cdot \boldsymbol{\rho}_w|^2 = \cos^2 \psi_p$$

- \circ ρ_a : Polarization vector of the TX wave from antenna
- \circ ρ_w : Polarization vector of the RX incident wave
- \cdot ψ_p : Angle between them

Antenna Impedance and Matching

- Not all power from radio may be delivered to antenna
- Some is reflected back
- \square Described by reflection coefficient Γ
 - Also referred to as S_{11}
 - Complex ratio of forward to reverse wave
- □ Also described by impedance mismatch:

$$\circ \Gamma = \frac{Z_{in} - Z_0}{Z_{in} + Z_0}$$

- \square Fraction of power transferred: $1 |\Gamma|^2$
- \square Also given as voltage standing wave ratio (VSWR) = $\frac{1+|\Gamma|}{1-|\Gamma|}$

Ali et al, Small Form Factor PIFA Antenna Design at 28 GHz for 5G Applications, 2019

Friis' Law with Losses

- ☐ Three losses in practice:
 - Polarization loss
 - conductive / dielectric loss
 - Impedance mismatch

$$\frac{P_r}{P_t} = \epsilon_1 \epsilon_2 (1 - |\Gamma_1|^2) (1 - |\Gamma_2|^2) D_1 D_2 \left(\frac{\lambda}{4\pi R}\right)^2 \cos^2 \theta_{POL}$$

- \circ ϵ_i : Efficiency of antenna
- \circ θ_{POL} : Angle between the polarization vectors
- \circ Note that gain is: $G_i = \epsilon_i D_i$

