Goal: Maximise objective function
$$U(\theta) = E_{\pi_n}(X(\tau))$$

$$= \sum_{r} P(r;\theta)X(r)$$

Use gratient ascert to optimise garmetos. $\theta = \theta + \times . \nabla_{\theta}[U(\theta)]$

$$\nabla_{\theta} \left[\mathcal{A}(\theta) \right] = \nabla_{\theta} \left[\mathcal{E}_{\pi_{\theta}}(\mathcal{R}(\tau)) \right] \\
= \nabla_{\theta} \left[\sum_{\tau} P(\tau; \theta) \mathcal{R}(\tau) \right] \\
= \sum_{\tau} \nabla_{\theta} \left[P(\tau; \theta) \right] \mathcal{R}(\tau) \\
= \sum_{\tau} P(\tau; \theta) \cdot \nabla_{\theta} \left[P(\tau; \theta) \right] \mathcal{R}(\tau) \\
= \sum_{\tau} P(\tau; \theta) \cdot \nabla_{\theta} \left[P(\tau; \theta) \right] \mathcal{R}(\tau) \\
= \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \left[P(\tau; \theta) \right] \mathcal{R}(\tau)$$

This is an expectation! i.e.

$$= \mathbb{E}_{\tau_{\theta}} \Big(\nabla_{\theta} \big[\log(P(\sigma; \theta)) \big] \mathcal{L}(\tau) \Big)$$

De con use Monte Carlo souphing to goroximete this:

$$\simeq \frac{1}{m} \sum_{i=1}^{m} \left(\nabla_{\theta} \left[\log(\rho(r_i^{ij};\theta)) \right] \mathcal{R}(r_i^{ij}) \right)$$

But for each Inigetony "De sample, how do we adducte $V_{e} \left[\log(P(y^{(i)}; \theta)) \right] R(y^{(i)}) \right]^{2}$ $P_{e} \left[\log(P(y^{(i)}; \theta)) \right] R(y^{(i)}) \right]^{2}$ $P_{e} \left[\log(P(y^{(i)}; \theta)) \right] = V_{e} \left[\log(P(y^{(i)}; \theta)) \right]^{2} + \sum_{t=0}^{t-1} \left(\log(P(y^{(i)}; \theta)) \right)^{2} + \sum_{t=0}^{t-1} \left(P(y^{(i)}; \theta)) \right]^{2} = \sum_{t=0}^{t-1} \left(\log(P(y^{(i)}; \theta)) \right)^{2} + \sum_{t=0}^{t-1} \left(P(y^{(i)}; \theta)) \right]^{2} = \sum_{t=0}^{t-1} \left(V_{e} \left[\log(P(y^{(i)}; \theta)) \right] + \sum_{t=0}^{t-1} \left(P(y^{(i)}; \theta)) \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[\log(P(y^{(i)}; \theta)) \right] + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(V_{e} \left[P(y^{(i)}; \theta) \right] \right)^{2} + \sum_{t=0}^{t-1} \left(P(y^{(i)}; \theta) \right)^{2} + \sum_{t$

$$\nabla_{a} \left[\mathcal{U}(\theta) \right] \simeq \frac{1}{m} \sum_{i=1}^{m} \left(\sum_{e=0}^{m} \left(\nabla_{a} \mathcal{L} \log \left(\pi_{a} \left(a_{e}^{\omega} | s_{e}^{\omega} \right) \right) \right) \mathcal{R} \left(r^{\omega} \right) \right)$$