PCA AND CLUSTERING ASSIGNMENT

ANALYSIS AND VISUALIZATION

By :- Siddharth

PROCEDURE IN THE ASSIGNMENT

- I. Data Understanding.
 - a. Hint: Don't forget to read the data description properly.
- 2. Perform PCA.
 - a. Data Standardization
 - b. Perform PCA and choose the PCs that defines more than 85% variance.
 - c. Run the PCA with the chosen number.
- 3. Perform Clustering.
 - a. Data preparation for clustering.
 - i. Outlier treatment
 - ii. Hopkins check
 - b. Clustering
 - i. K-MEANS
 - 1. Run K-Means and choose K using both Elbow and Silhouette score
 - 2. Run K-Means with the chosen K
 - 3. Visualize the clusters
 - 4. Clustering profiling.

DATA UNDERSTANDING

- The data for this assignment was based on a comparison between countries on various parameters like child mortality rate, export, import, income, gdpp, health, inflation and life expectancy.
- Structure of dataframe after importing this csv was as follows:

```
country 167 non-null object ,child_mort 167 non-null float64 exports 167 non-null float64 ,health 167 non-null float64 imports 167 non-null float64 ,income 167 non-null int64 inflation 167 non-null float64 ,life_expec 167 non-null float64 total fer 167 non-null float64 ,gdpp 167 non-null int64
```

DATA UNDERSTANDING

- Null value check
- Set 'country' as index.
- Percentile check
- Multiple Bivariate analysis using pairplot.
- Correlation heatmap
- Check for Outliers.

DATA UNDERSTANDING

Correlation heatmap

- 0.4

- -0.4

PRINCIPAL CLUSTERING ANALYSIS (DIMENSIONALITY REDUCTION)

We take 5 cluster at pca(0.94), there is no point of taking 6 clusters at pca(0.96).

And have named these clusters as:

PC1, PC2, PC3, PC4 AND PC5.

We performed outlier analysis after performing pca and now have 164 countries out of 166(initially).

PRINCIPAL CLUSTERING ANALYSIS (DIMENSIONALITY REDUCTION)

Visualization of principal components

CHECK HOPKINS STATISTICS

Hopkins Statistics: ¶

- The Hopkins statistic, is a statistic which gives a value which indicates the cluster tendency, in other words: how well the data can be clustered.
- If the value is between {0.01, ..., 0.3}, the data is regularly spaced.
- If the value is around 0.5, it is random.
- If the value is between {0.7, ..., 0.99}, it has a high tendency to cluster.

```
print("DF_PCA: ", hopkins(df_pca))
print("DF_scaled: ", hopkins(df_scaled))
```

DF PCA: 0.7147223777638881

DF_scaled: 0.7421177522783486

CLUSTERING

Select optimum number of clusters using silhouette score, no of squared errors.

Text(0, 0.5, 'Silhouette score')

Text(0, 0.5, 'Sum of squared errors')

OPTIMUM NUMBER OF CLUSTERS THROUGH HEIRARCHICAL CLUSTERING


```
from scipy.cluster.hierarchy import linkage
from scipy.cluster.hierarchy import dendrogram
from scipy.cluster.hierarchy import cut_tree
```

```
plt.figure(figsize=(20,15))
mergings_s = linkage(df_pca, method = "single", metric='euclidean')
dendrogram(mergings_s, labels=df_pca.index, leaf_rotation=90, leaf_font_size=6)
plt.show()
```

OPTIMUM NUMBER OF CLUSTERS THROUGH HEIRARCHICAL CLUSTERING


```
plt.figure(figsize=(20,15))
mergings_c = linkage(df_pca, method = "complete", metric='euclidean')
dendrogram(mergings_c, labels=df_pca.index, leaf_rotation=90, leaf_font_size=6)
plt.show()
```

We can take the number of clusters to be either 3 or 4

K-MEANS

Combining original data, principal components, K-means cluster IDs & Hierarchical clustering cluster IDs

Effectively, K-means clustering has broken down the cluster '1' of Hierarchical clustering - into 2 sub-clusters

We will use the clusters formed by K-means for further analysis

K-MEANS

Scatter Plot of 4 clusters,

We can clearly see that all 4 clusters a distinctly scattered across the space.

K-MEANS

	child_mort	exports	health	imports	income	life_expec	total_fer	gdpp	inflation	K_clust_4
country										
Afghanistan	1.257285	-1.588878	0.450917	0.146381	-1.413059	-1.580003	1.667924	-1.460560	0.157336	1
Albania	-0.206196	-0.224045	0.105222	0.262136	0.071749	0.630275	-0.962078	-0.122592	-0.312347	0
Algeria	0.223939	0.187829	-0.963592	-0.376408	0.285304	0.649198	0.207329	-0.064683	0.789274	3
Angola	1.496866	0.818843	-1.864462	0.079772	-0.353135	-1.094994	1.786385	-0.221051	1.387054	1
Antigua and Barbuda	-0.618844	0.409060	-0.090571	0.543123	0.605603	0.677491	-0.429314	0.608191	-0.601749	2

Result we get after clustering.

	country	K_clust_4	Feature	Value
0	Afghanistan	1	child_mort	1.257285
1	Albania	0	child_mort	-0.206196
2	Algeria	3	child_mort	0.223939
3	Angola	1	child_mort	1.496866
4	Antigua and Barbuda	2	child_mort	-0.618844

We have taken a smaller dataframe with K_clust_4 and Feature with the value

LINEPLOT ANALYSIS

Observation: Cluster #1(in the above plot represented by the red line) contains countries that are in direct need of financial aid, since:

It has disproportionately high child mortality rate, total_fer & inflation.

It has lowest gdpp, income & life_expectancy.

BARPLOT FOR FEATURES VS CLUSTERS

We can infer from these barplot that cluster #I is really suffering.

BARPLOT FOR FEATURES VS CLUSTERS

We can infer from these barplot that cluster #1 is really suffering.

CLUSTER ANALYSIS FOR # OF CLUSTERS = 3

All 3 clusters are scattered distinctly in their own territory

Observation: Cluster #1 of 4-cluster K-means is the same as cluster #1 for 3-cluster K-means; This is the cluster with countries in dire need of financial aid.

CLUSTER ANALYSIS FOR # OF CLUSTERS = 3

Observation: Cluster #1(in the above plot represented by the red line) contains countries that are in direct need of financial aid, since:

It has disproportionately high child mortality rate, total_fer & inflation.

It has lowest gdpp, income & life_expectancy.

CONCLUSION

Child Mortality		Income						Gdpp						
	country	K_clust_4	Feature	Value		country	K_clust_4	Feature	Value		country	K_clust_4	F	eature
6	Haiti	1	child_mort	1.979683	697	Congo, Dem. Rep.	1	income	-2.206478	118	Burundi	1		gdpp
130	Sierra Leone	1	child_mort	1.752837	748	Liberia	1	income	-2.092822	124	Liberia	1		gdpp
32	Chad	1	child_mort	1.697036	686	Burundi	1	income	-2.021421	1192	Congo, Dem. Rep.	1		gdpp
31	Central African Republic	1	child_mort	1.691253	771	Niger	1	income	-1.969684	1260	Niger Niger	1		gdpp
97	Mali	1	child_mort	1.618654	691	Central African Republic	1	income	-1.898672	128	Sierra Leone	1	9	gdpp
111	Niger	1	child_mort	1.525451	766	Mozambique	1	income	-1.871555	124	Madagascar Madagascar	1	9	gdpp
3	Angola	1	child_mort	1.496866	754	Malawi	1	income	-1.777605	126	Mozambique	1	8	dpp
25	Burkina Faso	1	child_mort	1.474789	723	Guinea	1	income	-1.659760	1186	Central African Republic	1	8	gdpp
37	Congo, Dem. Rep.	1	child_mort	1.474789	808	Togo	1	income	-1.646157	1249) Malawi	1	9	gdpg
64	Guinea-Bissau	1	child_mort	1.459752	790	Sierra Leone	1	income	-1.639440	120	i Eritrea	1	8	dpp
17	Benin	1	child_mort	1.436694	784	Rwanda	1	income	-1.556804	1303	Togo	1	8	dpp
40	Cote d'Ivoire	1	child_mort	1.436694	724	Guinea-Bissau	1	income	-1.532974	121	Guinea-Bissau	1	9	dpp
63	Guinea	1	child_mort	1.420973	753	Madagascar	1	income	-1.532974	115	i Afghanistan	1	9	gdpg
28	Cameroon	1	child_mort	1.413004	696	Comoros	1	income	-1.521314	121	Gambia	1	9	gdpp
106	Mozambique	1	child_mort	1.355066	710	Eritrea	1	income	-1.515547	1279	Rwanda	1	9	dpp

We can clearly see that countries are common in each of these dataframe with respect to (child_mort, income and gdpp). Some of those countries are:

Congo, Dem. Rep.

Sierra Leone

Niger

Mozambique

Guinea-Bissau

Central African Republic

Liberia

CONCLUSION

Congo, Dem. Rep., Sierra Leone, Niger, Mozambique, Guinea-Bissau, Central African Republic and Liberia are the
countries in dire need of financial aid as these countries are common among all three features.