Contributeurs

ACT-1002 Analyse probabiliste des risques actuariels

aut. Alec James van Rassel

aut., cre. Félix Cournoyer

src. Hélène Cossette

1 Chapitre 1 : Analyse combinatoire

L'analyse combinatoire

Principe de base de comptage : Pour une expérience 1 avec m résultats possibles et une expérience 2 avec n résultats possibles, il y a m x n possibilités.

Permutations : Nombre d'arrangements en tenant compte de l'ordre. La façon de dénombrer les arrangements dépend du type de question.

Exemples: Combien de façons peut-on arranger les chiffres 1, 2, 3 et 4 dans un nombre à 4 chiffres? La réponse est 4!. La réponse serait la même avec les chiffres 1, 2, 2 et 3, car les deux chiffres 2 ne sont pas considérés comme identiques.

Toutefois, si on demande combien de façons peut-on distribuer 12 cadeaux différents à 4 personnes, la réponse sera 4¹² étant donné que chaque cadeau peut aller à quatre personnes.

Combinaisons : Nombre d'arrangements en **ne** tenant **pas** compte de l'ordre.

Exemples: En reprenant l'exemple des permutations, mais avec les chiffres 1, 1, 1, 2 et 2, il y aurait 5!/(3!2!) combinaisons puisque les trois 1 et les deux 2 sont considérés identiques.

Coefficient binomial : De l'exemple précédent, on peut observer l'existence du coefficient binomial, qui est défini selon la formule :

 $\binom{n}{k} = \frac{n!}{k! (n-k)!}$

Coefficient multinomial: La généralisation

du coefficient binomial va comme suit :

$$\binom{n}{k_1, k_2, ..., k_m} = \frac{n!}{(k_1)! (k_2)! ..., (k_m)!}$$
Où $n = \sum_{i=1}^m k_i$

Théorème multinomial : Le coefficient multinomial aide à trouver les coefficients devant les variables lors du développement de multinômes.

> Afin de mieux comprendre le théorème multinomial, voici un exemple :

$$(-3x + 5y^2)^4 = \sum {4 \choose n_1, n_2} (-3x)^{n_1} (5y^2)^{n_2}$$

> Si on cherche le coefficient devant les variables x^3y^2 , on remplace n_1 par 3 et n_2 par 1 et on obtient -540.

Solutions entières non-négatives : Le nombre de façons dont on peut distribuer un nombre d'objets indissociables dans des «contenants».

- > Il peut y avoir aucun objet dans un «contenant».
- > La solution à ce type de problème est donnée par $\binom{n+r-1}{r-1}$ où n est le nombre d'objets et r le nombre de «contenants».
- > S'il est mentionné dans le problème qu'il n'est pas nécessaire d'utiliser tous les objets pour les mettre dans les contenants, on peut rajouter un contenant pour les objets «nonutilisés».

Solutions entières positives : Le nombre de façons dont on peut distribuer un nombre d'objets indissociables dans des «contenants» et ce, de façon à ce que chaque «contenant» ait au moins un objet.

> La solution à ce type de problème est donnée par $\binom{n-1}{r-1}$.

2 Chapitre 2 : Axiomes de probabilité

Domaine et définition

Random Process : Famille de variable aléatoires $\{X_t : t \in T\}$ qui associe un espace d'états Ω à un ensemble S.

- Ω : L'espace d'états Ω est composé des événements possibles de la variable aléatoire X. Par exemple, lorsqu'on lance une pièce de monnaie $\Omega = \{ \text{Face}, \text{Pile} \}$.
- S: L'ensemble S est l'ensemble des probabilités des événements dans Ω .

Par exemple, lorsqu'on lance une pièce de monnaie $S = \{\frac{1}{2}, \frac{1}{2}\}.$

iid: Les variables aléatoire X_t doivent être indépendantes et identiquement distribuées. Ceci est dénoté par *i.i.d.*.

indépendant : Si X_t est une variable aléatoire *iid* alors, pour 2 variables aléatoires X_i et X_j , où $i, j \in T$, le résultat de X_i n'a aucun impact sur le résultat de X_j pour tout $t \in T$.

identiquement distribué : L'ensemble S est l'ensemble des probabilités des événements dans Ω .

Probabilité de X_t : La probabilité d'un événement X_t est dénoté $Pr(X_t)$. Ces probabilités forment l'ensemble S.

Propriété: $\sum_{i=-\infty}^{\infty} \Pr(X_i) = 1$

Types de variables aléatoire : Il y a 2 types de variables aléatoire, les distributions *discrètes* et *continues*.

Discrète: Si l'ensemble S est dénombrable, c'est-à-dire que $S = \{s\}$, alors la variable aléatoire X est dite **discrète**.

Continue : Si l'ensemble *S* n'est pas dénombrable alors la variable aléatoire *X* est dite **continue**.

Concepts et opérations sur les ensembles

L'union (∪) : On peut le définir par un ou. Si l'événement A est d'avoir 3 sur un dé et l'événement B est d'avoir 4 sur ce même dé, les résultats possibles de A∪B est 3 et 4.

L'intersection (\cap): On peut le définir par un et. Si l'événement A est d'avoir un chiffre pair sur un dé et que l'événement B est d'avoir 5 ou 6 sur ce même lancer de dé, le résultat de $A \cap B$ est 6, car 6 est un nombre pair et fait partie de l'ensemble B.

Complémentaire : Un événement quelconque est le complémentaire d'un événement A lorsqu'il correspond à tous les résultats de Ω excluant les résultats de A. Un exemple est l'événement «Avoir un nombre pair sur un dé»; un événement complémentaire serait donc «Avoir un nombre impair sur un dé». Le complémentaire d'un événement A est désigné par \overline{A} , A^c et A^t .

- **«Somme d'unions»(** $\bigcup_{i=1}^{n} A_i$ **):** Représentation plus simple et courte de $A_1 \cup A_2 \cup ... \cup A_n$
- «Somme d'intersections»($\bigcap_{i=1}^{n} A_i$): Représentation plus simple et courte de $A_1 \cap A_2 \cap ... \cap A_n$

Opérations sur les ensembles : Les événements peuvent agir à un certain point comme des termes mathématiques, c'est-à-dire qu'on peut effectuer des opérations avec ceux-ci.

Commutativité : $A_1 \cup A_2 = A_2 \cup A_1$

 $A_1 \cap A_2 = A_2 \cap A_1$

Associativité : $(A_1 \cup A_2) \cup A_3 = A_1 \cup (A_2 \cup A_3)$

 $(A_1 \cap A_2) \cap A_3 = A_1 \cap (A_2 \cap A_3)$

Distributivité : $(A_1 \cup A_2) \cap A_3 = (A_1 \cap A_3) \cup (A_2 \cap A_3)$

 $(A_1 \cap A_2) \cup A_3 = (A_1 \cup A_3) \cap (A_2 \cup A_3)$

Loi de DeMorgan : $(\bigcup_{i=1}^n A_i)^c = (\bigcap_{i=1}^n A_i^c)$ $(\bigcap_{i=1}^n A_i)^c = (\bigcup_{i=1}^n A_i^c)$

Axiomes de probabilité

Définition : Des axiomes de probabilités sont en quelque sorte des règles, des contraintes ou des formules relatives aux probabilités.

Axiomes de probabilité

3 Chapitre 3 : Probabilité conditionnelle

Probabilité conditionnelle

Conditionnel : La probabilité que *A* arrive *sa-chant* que *B* est arrivé est :

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

où la probabilité que B arrive est non-nulle, Pr(B) > 0.

Indépendant : Les événements *A* et *B* sont indépendant si :

$$\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$$

Avec la première définition de la probabilité conditionnelle, on peut trouver ces résultats :

Relation probabilité conditionnelle : La probabilité que l'événement E_2 ai lieu sachant que l'événement E_1 à déjà eu lieu est équivalent à la probabilité que l'événement E_1 ai lieu sachant que E_2 à *déjà* eu lieu multiplié par la probabilité que l'événement E_2 ai lieu peu importe E_1 .

Le tout est encore pondéré par la probabilité que l'événement E_1 ai lieu peu importe si E_2 y a.

$$Pr(E_{2}|E_{1}) = \frac{Pr(E_{2} \cap E_{1})}{Pr(E_{1})}$$
$$= \frac{Pr(E_{1}|E_{2}) Pr(E_{2})}{Pr(E_{1})}$$

Loi des probabilités totales : Les probabilités liées à la variable aléatoire *E* lorsqu'elles sont conditionnelles à la variable aléatoire discrète *F* est dénoté comme suit :

$$Pr(E) = \sum_{i=1}^{n} Pr(E|F_i) Pr(F_i)$$

Formule de Bayes : On combine les deux résultats précédent :

$$\Pr(F_i|E) = \frac{\Pr(E|F_i)}{\sum_{i=1}^n \Pr(E|F_i) \Pr(F_i)}$$