Modèle de médiation à réponse binaire Approche non paramétrique pour tester l'effet direct

Jean-Michel Galharret Anne Philippe Paul Rochet

Laboratoire Jean Leray, Nantes

11 décembre 2019

La médiation dans le modèle linéaire

$$\mathbb{E}(Y|X,M) = \beta + \gamma X + bM \qquad (1)$$

FIGURE – Baron & Kenny (1986)

L'effet direct de X entre deux valeurs x, x^* sur Y.

$$d = \mathbb{E}(Y|X=x, M=m) - \mathbb{E}(Y|X=x^*, M=m)$$
$$= \gamma(x-x^*)$$

Test effet direct

Tester l'effet direct dans le contexte linéaire revient à tester

$$\mathcal{H}_0: \gamma = 0 \text{ vs } \mathcal{H}_1: \gamma \neq 0$$

L'effet direct dans le modèle logistique

$$E(Y|X,M) = \beta_1 + \gamma X + bM$$
 (1) s'écrit dans le modèle logistique

$$\mathsf{logit}ig(\mathbb{P}(\mathit{Y}=1|\mathit{X},\mathit{M})ig) = eta_1 + \gamma \mathit{X} + \mathit{bM}$$

On définit dans ce cadre :

$$d = \mathbb{P}(Y = 1|X = x, M = m) - \mathbb{P}(Y = 1|X = x^*, M = m)$$

Test effet direct

Tester l'effet direct dans le modèle logistique revient à tester

$$\mathcal{H}_0: \gamma = 0 \text{ vs } \mathcal{H}_1: \gamma \neq 0$$

En effet, en considérant l'odds ratio OR^d de l'effet direct de X entre x, x^* : On a l'équivalence immédiate :

$$d = 0 \iff OR^d = 1 \iff \gamma = 0$$

Test de l'effet direct dans le modèle logistique

Pour tester \mathcal{H}_0 : $\gamma=0$ on peut utiliser deux tests :

- Soit $\widehat{\gamma}$ l'estimateur du maximum de vraisemblance de γ et $\widehat{\sigma}_{\widehat{\gamma}}$ l'écart-type estimé de cet estimateur.La statistique de test $z=\frac{\widehat{\gamma}}{\widehat{\sigma}_{\widehat{\gamma}}}$ qui sous \mathcal{H}_0 est asymptotiquement gaussien (test de Wald).
- Soient \widehat{L}_0 et \widehat{L}_1 les vraisemblances estimées respectivement des modèles $\operatorname{logit}(p) = \beta_1 + bM$ et $\operatorname{logit}(p) = \beta_1 + \gamma X + bM$. La statistique de test $D = 2[\log(\widehat{L}_1) \log(\widehat{L}_0)]$, qui sous H_O suit approximativement une loi du $\chi^2(1)$ (LR test : Likelihood Ratio test).

L'approche non paramétrique de l'effet direct

• L'absence d'effet direct peut simplement se traduire en terme de lois de probabilité, soit A une partie Y-mesurable :

$$\mathcal{H}_0: P(Y \in A \mid X, M) \stackrel{ps}{=} P(Y \in A \mid M)$$

- ullet Cette condition est difficile à tester sans hypothèse sur le lien entre Y,X,M.
- ullet On suppose que Y,X,M vérifient un modèle de régression non paramétrique :

$$Y = \rho(X, M) + \varepsilon \tag{2}$$

où ε est l'erreur résiduelle indépendante de X,M et ρ est une fonction mesurable inconnue.

L'hypothèse du test non paramétrique

Hypothèse : $Y \in L^1$

Dans ce cas on a :

$$\rho(X,M) = \mathbb{E}(Y|X,M)$$

Pour un modèle de régression non paramétrique l'hypothèse \mathcal{H}_0 est équivalente à :

$$\mathbb{E}(Y|X,M) \stackrel{ps}{=} \mathbb{E}(Y|M)$$

que l'on peut écrire, avec $\phi(M) := \mathbb{E}(Y|M)$:

$$\theta := \mathbb{E}\Big|\rho(X, M) - \phi(M)\Big| = 0$$

Test non paramétrique

L'absence d'effet direct pour le modèle non paramétrique revient à tester

$$\mathcal{H}_0: \theta = 0 \text{ vs } \mathcal{H}_1: \theta \neq 0$$

Statistique de test :

 On peut estimer ces leux espérances conditionnelles par la méthode de Nadaraya et Watson

$$\widehat{\rho}(x, m) := \frac{\sum_{i=1}^{n} Y_{i} K_{h}(X_{i} - x) K_{h}(M_{i} - m)}{\sum_{i=1}^{n} K_{h}(X_{i} - x) K_{h}(M_{i} - m)}$$

$$\widehat{\phi}(m) := \frac{\sum_{i=1}^{n} Y_{i} K_{h}(M_{i} - m)}{\sum_{i=1}^{n} K_{h}(M_{i} - m)}.$$

• Et par suite la statistique de test s'écrit :

$$\widehat{\theta} := \frac{1}{n} \sum_{j=1}^{n} \left| \widehat{\rho}(X_j, M_j) - \widehat{\phi}(M_j) \right|.$$

Distribution de $\widehat{\theta}$ sous \mathcal{H}_0 dans le cadre binaire

Estimation de la distribution de $\widehat{ heta}$ sous \mathcal{H}_0 par une procédure bootstrap :

• On simule B échantillons de taille $n : \forall (i, b)$

$$(X_i^{(b)},M_i^{(b)}) \overset{i.i.d}{\sim} \mathcal{U}\left((X_j,M_j)_{j=1,\dots,n}\right)$$

• Sous \mathcal{H}_0 : $P(Y = 1|M,X) = P(Y = 1|M) = \phi(M)$. Ainsi, $\forall (i,b)$, on sait approximativement simuler $Y_i^{(b)}$:

$$Y_i^{(b)} \overset{i.i.d}{\sim} \mathcal{B}\left(\hat{\phi}(M_i^{(b)})\right).$$

• On calcule la statistique $\widehat{\theta}_b^*$ sur chaque $(Y_i^{(b)}, X_i^{(b)}, M_i^{(b)})_{\substack{i=1,\ldots,n\\b=1,\ldots,B}}$.

p-value

$$p$$
-value = $\frac{1}{B} \sum_{b=1}^{B} \mathbb{1}_{\widehat{\theta}_{b}^{*} > \widehat{\theta}}$.

où $\widehat{\theta}$ est l'estimation de θ calculée sur l'échantillon $(X_i, M_i)_{i=1,\ldots,n}$.

Comparaison de la puissance par simulations

- Les simulations sont basées sur un couple $(X_i, M_i)_{i=1,...,244}$ de valeurs issues d'une étude du CREN dans le cadre de l'étude sur le bien-être des élèves à l'école et au collège.
- Pour n=20,30,50,100, $\gamma \in [0,1]$ on va simuler k=10000 échantillons

$$Y_i \sim \mathcal{B}(\rho_{\gamma}(X_i, M_i))$$

• Cas 1 : modèle logistique

$$\rho_{\gamma}(X, M) = \frac{1}{1 + \exp\left(\beta + 2\gamma X + (1 - \gamma)M\right)}$$

• Cas 2 : modèle monotone

$$\rho_{\gamma}(X, M) = 0.5\gamma \times \mathbb{1}_{X>3} + 0.25(1-\gamma) \times \mathbb{1}_{M>4}$$

• Cas 3 : modèle non monotone

$$\rho_{\gamma}(X,M) = \gamma(aX^2 + bX + c) + 0.1(1 - \gamma)M$$

Remarque

 $\gamma=0$ est équivalent à \mathcal{H}_0 , et l'effet de X sur Y augmente avec γ (effet maximal pour $\gamma=1$).

Niveau empirique des tests

Soit $\pi_{\bullet}(\gamma)$ la probabilité de rejeter \mathcal{H}_0 pour les tests.

		20	30	50	100
logistique	π_W	0.014	0.034	0.038	0.048
	π_{LR}	0.085	0.068	0.061	0.055
	π_{NP}	0.046	0.045	0.048	0.042
indicatrice	π_W	0.012	0.030	0.036	0.037
	π_{LR}	0.083	0.071	0.058	0.047
	π_{NP}	0.043	0.048	0.034	0.040
quadratique	π_W	0.027	0.037	0.041	0.048
	π_{LR}	0.078	0.064	0.058	0.055
	π_{NP}	0.054	0.049	0.042	0.050

Modèle logistique

Modèle monotone

Modèle non monotone

Conclusion

- Pour un niveau $\alpha=5\%$, le test non paramétrique a systématiquement un meilleur niveau empirique que les tests paramétriques pour les petits échantillons (n=20,30).
- Dans un cadre logistique, le test non paramétrique donne des résultats satisfaisants relativement au deux autres tests et s'avère meilleur que le test de Wald lorsque n=20,30
- Dans le cadre monotone, les trois tests ont des performances comparables.
- Dans le cadre non monotone, la plus value apportée par le test non paramétrique est incontestable : les tests paramétriques sont alors totalement inadaptés.