

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Untersuchung von Image Colorization Methoden anhand Convolutional Neuronal Networks

Abschlussarbeit

zur Erlangung des akademischen Grades

Bachelor of Science (B.Sc.)

an der

Hochschule für Technik und Wirtschaft Berlin Fachbereich IV Studiengang Angewandte Informatik

Prüfer: Prof. Dr. Christin Schmidt
 Prüfer: M.Sc. Patrick Baumann

Eingereicht von: Adrian Saiz Ferri

Immatrikulationsnummer: s0554249

Eingereicht am: XX.XX.2018

Vorwort

Hallo

Kurzbeschreibung

TODO

Schlagworte: TODO

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung	1
	1.1	Motivation	1
	1.2	Zielsetzung	1
	1.3	Vorgehensweise und Aufbau der Arbeit	1
2	Gru	undlagen	2
	2.1	Beispiel Unterkapitel	2
	2.2	Verwandte Arbeiten	2
3	Ana	alyse	3
	3.1	Beispiel Unterkapitel	3
	3.2	Beispiel Unterkapitel	3
4	Kor	nzeption	4
	4.1	Prior Work TODO	4
	4.2	Beispiel Unterkapitel	4
		4.2.1 Beispiel Unterkapitel zweiter Ebene	4
5	Imp	plementierung	5
	5.1	Beispiel Unterkapitel	5
	5.2	Beispiel Unterkapitel	5
6	Tes	\mathbf{t}	6
	6.1	Beispiel Unterkapitel	6
	6.2	Beispiel Unterkapitel	6
7	Eva	luation	7
	7.1	Beispiel Unterkapitel	7
	7.2	Beispiel Unterkapitel	7

Inhaltsverzeichnis	iv

8	Fazit	8
	8.1 Zusammenfassung	8
	8.2 Kritischer Rückblick	8
	8.3 Ausblick	8
\mathbf{A}	bildungsverzeichnis	I
Ta	pellenverzeichnis	II
Sc	arce Code Content	III
\mathbf{G}	ossar	IV
Li	eraturverzeichnis	\mathbf{V}
O	linereferenzen	VI
$\mathbf{B}_{\mathbf{i}}$	dreferenzen	VII
\mathbf{A}	hang A	VII
	A.1 Beispiel	VIII
Ei	enständigkeitserklärung	IX

Einleitung

Beispiel Quellen: wissenschaftlich [LeC89] Onlinequelle [LSV10] git [Cho15] Beispiel für Glossar API

1.1 Motivation

TODO

1.2 Zielsetzung

TODO

1.3 Vorgehensweise und Aufbau der Arbeit

Grundlagen

TODO

2.1 Beispiel Unterkapitel

Beispiel Abbildung 2.1 mit Zitat.

Abbildung 2.1: Beispiel CNN Arheitektur [Com15]

2.2 Verwandte Arbeiten

Analyse

Robot Operating System [Qui09] Tensorflow [Aba16]

3.1 Beispiel Unterkapitel

TODO

3.2 Beispiel Unterkapitel

Konzeption

TODO

4.1 Prior Work TODO

nur benötigt, wenn die Arbeit auf einer vorherigen aufbaut.

4.2 Beispiel Unterkapitel

TODO

4.2.1 Beispiel Unterkapitel zweiter Ebene

Formelbeispiel

$$\pi_{\theta}(s, a) = P[a|s, \theta] \tag{4.1}$$

wobei, sden Zustand repräsentiert, adie Aktion und θ ...

Implementierung

Code Biespiel and Referenze: Code 5.1. Nicht geeignet für große Code Biespiele. Verwenden Sie hierfür dne Anhang. Lediglich sehr relevante Kurzzeiler können auf diese Weise dargestellt werden.

```
from keras import backend as k
def __init__(...):
self.graph = k.get_session().graph
...
```

Code snippet 5.1: Klasse Agent - Tensorflow Graph

5.1 Beispiel Unterkapitel

TODO

5.2 Beispiel Unterkapitel

Test

TODO

6.1 Beispiel Unterkapitel

TODO

6.2 Beispiel Unterkapitel

Evaluation

TODO

7.1 Beispiel Unterkapitel

Beispiel einer Tabelle:

Spalte 1	Spalte 2	Spalte 3
TODO	TODO	TODO
TODO	TODO	TODO

Tabelle 7.1: Beschreibung

7.2 Beispiel Unterkapitel

Fazit

TODO

8.1 Zusammenfassung

TODO

8.2 Kritischer Rückblick

TODO (Reflexion und Bewertung der Zielsetzung gegenüber erreichtem Ergebnis)

8.3 Ausblick

Abbildungsverzeichnis

2.1	Beispiel CNN	Arheitektur	[Com 15]																				2	j
-----	--------------	-------------	----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

Tabellenverzeichnis

71 D l.	: 1																_
7.1 Besch	reibung	 															- 1

Source Code Content

5.1	Klasse Agent - Tensorflow	Graph	 Ę
	0	- 1	

Glossar

 $\ensuremath{\mathsf{API}}$ Kurzbeschreibung was eine API darstellt..1

Literaturverzeichnis

- [Aba16] Martin Abadi u. a. "TensorFlow: A System for Large-scale Machine Learning". In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. OSDI'16. Savannah, GA, USA: USENIX Association, 2016, S. 265–283. ISBN: 978-1-931971-33-1. URL: http://dl.acm.org/citation.cfm?id=3026877.3026899.
- [LeC89] Y. LeCun u. a. "Backpropagation Applied to Handwritten Zip Code Recognition". In: Neural Computation 1.4 (1989), S. 541-551. DOI: 10.1162/neco.1989. 1.4.541. eprint: https://doi.org/10.1162/neco.1989.1.4.541. URL: https://doi.org/10.1162/neco.1989.1.4.541.
- [Qui09] Morgan Quigley u. a. "ROS: an open-source Robot Operating System". In: ICRA Workshop on Open Source Software. 2009.

Onlinereferenzen

- [Cho15] François Chollet u.a. Keras. https://github.com/fchollet/keras. 2015. (Besucht am 03.04.2018).
- [LSV10] LSVRC. Large scale visual recognition challenge. 2010. URL: http://www.image-net.org/challenges/LSVRC (besucht am 03.04.2018).

Bildreferenzen

[Com15] Wikimedia Commons. *Typical CNN architecture*. 2015. URL: https://upload.wikimedia.org/wikipedia/commons/6/63/Typical_cnn.png (besucht am 03.04.2018).

Anhang A

A.1 Beispiel

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbstständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel verfasst habe. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegt.

Berlin, den XX.XX.2018

Vorname Nachname