Midterm Result

Yiying Wu (yw3996)

Input dataset

Exploratory analysis and data visualization

In this section, use appropriate visualization techniques to explore the dataset and identify any patterns or relationships in the data.

Summary statistics

Table 1: Summary of Dataset

Characteristic	$\mathrm{N}=3{,}000^{1}$
age	60.0 (57.0, 63.0)
gender	
male	1,544 (51%)
female	$1,456 \ (49\%)$
race	
White	1,967~(66%)
Asian	158 (5.3%)
Black	604 (20%)
Hispanic	271 (9.0%)
$\mathbf{smoking}$	
Never smoked	1,822 (61%)
Former smoker	859 (29%)
Current smoker	319 (11%)
height	169.9 (166.0, 173.9)
\mathbf{weight}	$80\ (75,\ 85)$
bmi	$27.65\ (25.80,\ 29.50)$
hypertension	1,492 (50%)
diabetes	463 (15%)
SBP	$130\ (125,\ 136)$
LDL	110 (97, 124)
vaccine	
Not vaccinated	1,212 (40%)
Vaccinated	$1,788 \ (60\%)$
severity	
Not severe	2,679~(89%)
Severe	321 (11%)
study	
A	2,000 (67%)
В	1,000 (33%)
${\tt recovery_time}$	39 (31, 49)

¹Median (IQR); n (%)

Visualizations for the numerical variables

Histogram of age

Histogram of recovery_time

correlation plot

Model training

In this section, describe the models you used to predict the time to recovery from COVID-19. Briefly state the assumptions made by using the models. Provide a detailed description of the model training procedure and how you obtained the final model.

MARS

GAM

lasso

Elastic net

ctrl1 <- trainControl(method = "cv", number = 10) tuneGrid = expand.grid(alpha = seq(0, 1, length = 21), lambda = exp(seq(-25, 5, length = 100)))