Clase 6

Santiago Cifuentes

May 15, 2025

- 1. Decidir cuáles de los siguientes problemas se pueden resolver en ${\sf L}$ o en ${\sf NL}.$
 - PALINDROME = $\{x : x \text{ es una cadena palíndroma}\}$
 - DIRECTED_CYCLE = $\{\langle G \rangle : G \text{ es un grafo dirigido y contiene un ciclo}\}$
 - BALANCED = $\{x : x \text{ tiene tantos 1s como 0s}\}$
 - UNDIRECTED_CYCLE = $\{\langle G \rangle : G \text{ es un grafo no dirigido y contiene un ciclo } C\}$
- 2. Probar que DIRECTED_CYCLE es NL-completo.
- 3. Sea $L^2 = \mathsf{SPACE}[\log^2 n]$. Probar que $\mathsf{NL} \subseteq \mathsf{L}^2$.
- 4. Probar que $PH \subseteq PSPACE$.
- 5. ¿A qué pisos pertencen los siguiente problemas?
 - $\exists \exists ! sat = \{ \langle \varphi(x,y) \rangle : \varphi \text{ es una fórmula 3-CNF y existe una asignación de las variables } x \text{ tal que hay una única asignación de la variable } y \text{ que satisface } \varphi \}$
 - 3-COLORING-EXTENSION = $\{\langle G,W\rangle:G\text{ es un grafo }y\text{ }W\text{ es un subconjunto de sus nodos tal que todo 2-coloreo de los nodos de }W\text{ puede extenderse a un coloreo de }G\}$
- 6. Probar que $\exists \exists! sat$ es hard para su clase.