Cours 3 L'algèbre relationnelle 1 Pr. M. Machkour

Objectifs

- Définir l'algèbre relationnelle
- Étudier les opérateurs de base de l'algèbre relationnelle
- Exercices d'application

Définition

- L'algèbre relationnelle=langage algébrique
 - une collection d'opérateurs qui portent sur des relations.
 - Un opérateur agit sur une ou deux relations produit une autre relation.
 - La relation résultat peut être manipulée par d'autres opérateurs.

- Définition(suite)
 - Deux catégories d'opérateurs :
 - opérateurs ensemblistes issus de la théorie des ensembles (union, différence, produit cartésien...)
 - opérateurs propres aux relations (projection, sélection...).

- Définition(suite)
 - Deux types d'opérateurs :
 - Opérateurs de base*
 - Produit, union, différence, sélection, projection
 - Opérateurs additionnels
 Intersection, jointure et division

- Définition(suite)
 - On parle aussi de:
 - opérateurs binaire: union, jointure...
 - opérateur unaire: projection, sélection

- Les opérateurs ensemblistes
 - Produit cartésien

R=R1 X R2

```
Le produit cartésien de deux relations R1 (A1, A2, ) et R2 (B1, B2, ...) est une relation R de schéma R (A1, A2, ..., B1, B2,...) contenant des tuples (u,v) tels que u € R1 et v € R2. Notation :
```

Notation graphique

Remarque

la relation R vérifie :

- $-\operatorname{card}(R) = \operatorname{card}(R1) \cdot \operatorname{card}(R2)$
- degré(R) = degré(R1) + degré(R2).

Exemple

R1		
A	В	
a1	b1	
a2	b2	
a3	b3	

R2		
С	D	E
c1	d1	e1
c2	d2	e3

R1xR2				
А	В	С	D	E
a1	b1	c1	d1	e1
a1	b1	c2	d2	e2
a2	b2	c1	d1	e1
a2	b2	c2	d2	e2

Les opérateurs ensemblistes

Opérateur union

Soit R1, R2 deux relations de même schéma.

L'union de R1 et R2 est une relation R de schéma commun à R1 et R2 et dont les tuples sont ceux de R1 ou de R2 ou des deux.

Notations

R=R1 U R2, R=R1 UNION R2

Notation graphique

Remarque

R vérifie:

- card(R) <= card(R1)+card(R2)
- degré(R)= degré (R1)= degré(R2).

Exemple

R1		
A	В	
a1	b1	
a2	b2	
a3	b3	

R2		
A	В	
a1	b2	
a2	b1	
a3	b3	

R1 U R2		
A	В	
a1	b1	
a2	b2	
a2	b1	
a1	b2	
a3	b3	

Les opérateurs ensemblistes

Opérateur différence

Soit R1 et R2 deux relations de même schéma.

La différence de R1 et R2 est une relation R de même schéma que R1 et R2 et dont les tuples sont ceux de R1 n'appartenant pas à R2.

Notations

- ➤ R=R1- R2
- > R= minus (R1,R2)
- \triangleright R= Difference(R1,R2)

Notation graphique

Remarque

R vérifie

- $-\operatorname{card}(R) < = \operatorname{card}(R1)$
- degré(R) = degré(R1) = degré(R2).

Exemple

R1		
A	В	
a1	b1	
a2	b2	
a3	b3	

R2		
A	В	
a1	b2	
a2	b1	
a3	b3	

R1 - R2		
A	В	
a1	b1	
a2	b2	

- Les opérateurs relationnels
 - L'opérateur de projection = sélection verticale ou de colonnes

```
Soit R1(a1, a2, a3....) une relation.
```

La projection de R1 sur ai1,ai2,ai3...

est une relation R d'attributs ai1,ai2,ai3...

et dont les tuples sont ceux de R1 réduit aux attributs ai1,ai2,ai3...et sans doubles.

Notations

```
R=π <sub>ai1,ai2,ai3...</sub>R1
R=projection(R1/ ai1,ai2,ai3...)
R=project(R1, ai1,ai2,ai3...)
```

Notation graphique


```
Remarque
degré(R)<=degré(R1).
Exemple
```

R1		
A	В	
a1	b1	
a1	b2	
a3	b3	

Soit $R = \pi_A(R1)$

a1 a3

- Les opérateurs relationnels
 - L'opérateur de sélection
 - =restriction
 - =sélection horizontale ou de lignes

Cet opérateur produit à partir d'une relation R1 une autre relation R2 de même schéma que R1 avec des tuples vérifiant un certain critère ou condition booléenne.

Le critère le plus simple a la forme :

attribut op valeur

où op peut-être < | = | <= | > | >= | <>.

On peut former un critère plus complexe en utilisant les opérateurs logiques "et" "ou", et "non".

Notations

$$-R2=\sigma_{condition}$$
 R1

- -R2=sélection (R1/condition)
- -R2=Restrict (R1/condition)

Notation graphique


```
Remarque
R2 vérifie
card(R2)<=card(R1)
Exemple
```

R1		
A	В	
a1	b1	
a1	b2	
a3	b3	

R2		
A	В	
a1	b1	
a1	b2	

Exercices d'application