

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior version, and listings, of claims in the application:

Listing of Claims:

- 1. (Currently Amended) An EMI gasket mechanism for sealing a space anterior to a surface, thereby inhibiting or preventing passage of EMI radiation through the space, the EMI gasket mechanism comprising:
 - a first jaw;
- a second jaw spaced apart from the first jaw by a distance, the first and second jaws defining a region therebetween;
- a resilient EMI gasket disposed in the region-between the first and second jaws; and an actuator operably linked to the first and second jaws and configured to reduce the distance between the first and second jaws when the actuator is activated, thereby squeezing the resilient EMI gasket between the first and second jaws and causing a portion of the resilient EMI gasket to protrude, whereby beyond an edge of one of either the first and second jaws such that the protruding portion of the resilient EMI gasket is forced into contact with the surface, thereby sealing the space anterior to the surface against passage of EMI radiation.
- 2. (Original) The EMI gasket mechanism of Claim 1, wherein the first jaw has an outer edge and, when the actuator is activated and the resilient EMI gasket is squeezed between the first and second jaws, the resilient EMI gasket protrudes beyond the outer edge of the first jaw.
- 3. (Original) The EMI gasket mechanism of Claim 1, wherein the first jaw has an outer edge and the second jaw has an outer edge and, when the actuator is activated and the resilient EMI gasket is squeezed between the first and second jaws, the resilient EMI gasket protrudes beyond the outer edge of the first jaw and beyond the outer edge of the second jaw.

- 4. (Original) The EMI gasket mechanism of Claim 1, wherein the actuator comprises a cam-lever.
- 5. (Original) The EMI gasket mechanism of Claim 1, wherein the actuator comprises a threaded shaft.
- 6. (Original) The EMI gasket mechanism of Claim 1, further comprising a stop adjacent the resilient EMI gasket, wherein, when the actuator is activated and the resilient EMI gasket is squeezed between the first and second jaws, the stop limits protrusion of the resilient EMI gasket in a direction away from the surface.
- 7. (Original) The EMI gasket mechanism of Claim 1, wherein the first jaw comprises a stepped plate.
- 8. (Original) The EMI gasket mechanism of Claim 1, wherein the second jaw comprises a compression ring.
- 9. (Original) The EMI gasket mechanism of Claim 1, wherein the first jaw comprises the surface.
- 10. (Original) An EMI gasket mechanism for sealing a space anterior to a surface, thereby inhibiting or preventing passage of EMI radiation through the space, the EMI gasket mechanism comprising:

an inflatable resilient EMI gasket;

a pump in fluid communication with the inflatable resilient EMI gasket; and

an actuator operably linked to the pump and configured to operate the pump when the actuator is activated, thereby inflating the resilient EMI gasket and causing a portion of the resilient EMI gasket to protrude, whereby the protruding portion of the resilient EMI gasket is forced into contact with the surface, thereby sealing the space anterior to the surface against passage of EMI radiation.

- 11. (Original) The EMI gasket mechanism of Claim 10, wherein the actuator comprises a cam-lever.
- 12. (Original) The EMI gasket mechanism of Claim 10, wherein the actuator comprises a threaded shaft.

- 13. (Original) The EMI gasket mechanism of Claim 10, wherein the pump comprises a bladder and the actuator is configured to squeeze the bladder when the actuator is activated.
- 14. (Original) The EMI gasket mechanism of Claim 10, wherein the pump comprises a piston and the actuator is configured to move the piston when the actuator is activated.
- 15. (Original) The EMI gasket mechanism of Claim 10, further comprising a stop adjacent the resilient EMI gasket, wherein, when the actuator is activated and the resilient EMI gasket is inflated, the stop limits protrusion of the resilient EMI gasket in a direction away from the surface.
- 16. (Currently Amended) A method of sealing a space anterior to a surface, thereby inhibiting or preventing passage of EMI radiation through the space, comprising:

positioning a resilient EMI gasket around a riser of a stepped plate and in the space anterior to the surface; and

operating a cam-lever to squeeze the resilient EMI gasket <u>against a face of the step</u>, thereby causing a portion of the resilient EMI gasket to <u>expand circumferentially to protrude beyond an anterior outer edge of the stepped plate to come into contact with and be forced against the surface; and</u>

limiting protrusion of the resilient EMI gasket in a direction away from the surface by using the riser.

17. - 25. (Canceled)

26. (Currently Amended) A method of installing a device in a housing, wherein installation of the device requires sealing a space between the device and a mating surface on the housing or on an adjacent device against passage of EMI radiation through the space, comprising:

inserting the device into the housing; and positioning a resilient EMI gasket in the space;

after inserting the device into the housing, squeezing the resilient EMI gasket in a manner that does not utilize insertion forces applied to the device, thereby causing a portion of the resilient EMI gasket to protrude and contact the mating surface beyond an edge of the device such that the protruding portion of the resilient EMI gasket is forced into contact with the housing surface.

27-30. (Canceled)

31. (Currently Amended) A method of sealing a space anterior to a surface, thereby inhibiting or preventing passage of EMI radiation through the space, comprising:

positioning a resilient EMI gasket around a riser of a stepped plate in the space anterior to the surface;

rotating a threaded shaft to squeeze the resilient EMI gasket <u>against a face of the step</u>, thereby causing a portion of the resilient EMI gasket to <u>protrude beyond an anterior outer edge of the stepped plate to forcibly contact the surface; and</u>

limiting protrusion of the resilient EMI gasket in at least one direction away from the surface by using the riser.

32. – 33. (Canceled)

34. (Currently Amended) A method of installing a device in a housing, wherein installation of the device requires sealing a space between the device and a mating surface on the housing or on an adjacent device against passage of EMI radiation through the space, comprising:

inserting the device into the housing; and

positioning an inflatable resilient EMI gasket in the space;

inflating the inflatable resilient EMI gasket in a manner that does not rely on insertion force applied to the device, thereby causing a portion of the inflatable resilient EMI gasket to protrude beyond an anterior outer edge of the device to come into and contact with the mating housing surface,

wherein one of either the device or the housing comprises the EMI gasket mechanism.

35.-36. (Cancelled)

37. (Previously Presented) A method of sealing a space anterior to a surface, thereby inhibiting or preventing passage of EMI radiation through the space, comprising:

positioning an inflatable resilient EMI gasket in the space anterior to the surface; and

squeezing a bladder that is in fluid communication with the inflatable resilient EMI gasket to inflate the inflatable resilient EMI gasket, thereby causing a portion of the inflatable resilient EMI gasket to come into contact with and be forced against the surface.

38. (Previously Presented) The method of Claim 37, further comprising:

limiting protrusion of the inflatable resilient EMI gasket in a direction away from the surface.

39. (Previously Presented) A method of sealing a space anterior to a surface, thereby inhibiting or preventing passage of EMI radiation through the space, comprising:

positioning an inflatable resilient EMI gasket in the space anterior to the surface; and

rotating a threaded shaft to inflate the inflatable resilient EMI gasket, thereby causing a portion of the inflatable resilient EMI gasket to come into contact with and be forced against the surface.

- 40. (Previously Presented) The method of Claim 39, further comprising limiting protrusion of the inflatable resilient EMI gasket in a direction away from the surface.
- 41. (New) The method of claim 16, further comprising:

limiting protrusion of the resilient EMI gasket in an anterior direction away from the surface due to the riser.