Calculus I Derivatives and rational exponents

Todor Miley

2019

Differentiate
$$y = \frac{1}{x}$$
.

Differentiate
$$y = \frac{1}{x}$$
. $y = x^{-1}$.

Differentiate
$$y = \frac{1}{x}$$
.
 $y = x^{-1}$.
Power Rule: $\frac{dy}{dx} =$?

Differentiate
$$y = \frac{1}{x}$$
.
 $y = x^{-1}$.
Power Rule: $\frac{dy}{dx} = (-1)x^{-2}$

Differentiate
$$y = \frac{1}{x}$$
.
 $y = x^{-1}$.
Power Rule: $\frac{dy}{dx} = (-1)x^{-2}$
 $= -\frac{1}{x^2}$.

Differentiate $y = \sqrt[6]{x^5}$.

Differentiate
$$y = \sqrt[6]{x^5}$$
. $y = x^{\frac{5}{6}}$.

Differentiate
$$y = \sqrt[6]{x^5}$$
.

$$y=x^{\frac{5}{6}}.$$

Power Rule:
$$\frac{dy}{dx} =$$
?

Differentiate
$$y = \sqrt[6]{x^5}$$
.

$$y=x^{\frac{5}{6}}.$$

Power Rule:
$$\frac{dy}{dx} = \frac{5x^{-\frac{1}{6}}}{6}$$

Differentiate
$$y = \sqrt[6]{x^5}$$
.
 $y = x^{\frac{5}{6}}$.
Power Rule: $\frac{dy}{dx} = \frac{5x^{-\frac{1}{6}}}{6}$

Differentiate
$$y = \sqrt[6]{x^5}$$
.
 $y = x^{\frac{5}{6}}$.
Power Rule: $\frac{dy}{dx} = \frac{5x^{-\frac{1}{6}}}{\frac{6}{6\sqrt[6]{x}}}$.