

A Data Analysis to Predict Customer Loyalty

By Ameen Abdelghani
December 2018

Problem Statement

Company:

Elo is one of Brazil's top credit and debit card companies

• Goal:

- They're offering a new perk to offer discounts on certain merchants
- Wish to tailor the discounts to merchants users have actual demand for

Obstacle:

How to understand the differences in a customers purchasing pattern

Solution:

Elo's desired first step is to accurately predict a customer's loyalty based off their features

Why?

- Will boost customer engagement with Elo
- Give them incentives they care for
- Can create more accurate ad campaigns

"Get discounts to the shops YOU love! " - Elo

Data

- The data for this analysis is part of a current Kaggle competition
- The data of use is the training, test, historical transaction, and new merchants data
- CSV format
- 200,000 observations approximately
- Majority of features are <u>anonymous</u>

elo

Data

- Columns on training data
 - Feature 1, 2,3
 - Card ID
 - First active month
 - Customer Loyalty
- Historical / New Merchants data
 - Authorized Flag (Yes or No)
 - Month Lag (how long before they visited the shop)
 - Purchase Amount
 - City ID / Merchant ID
 - Other anonymous features

EDA / Data Wrangling

- Converted first active month to datetime
 - Created elapsed feature time from latest date in data
- Observed Loyalty Score range

First Active Year vs Loyalty Score

First active month difference between training and test data

Feature Engineering

 Performed a large groupby on Hist. Transactions to create new features based off each each customer

```
def aggregate historical transactions(history):
    history.loc[:, 'purchase date'] = pd.DatetimeIndex(history['purchase date']).\
                                      astype(np.int64) * 1e-9
    agg func = {
        'authorized flag': ['sum', 'mean'],
        'merchant id': ['nunique'],
        'city_id': ['nunique'],
        'purchase amount': ['sum', 'median', 'max', 'min', 'std'],
        'installments': ['sum', 'median', 'max', 'min', 'std'],
        'purchase date': [np.ptp],
        'month lag': ['min', 'max'],
        'category 1': ['sum', 'mean'],
        'category 2': ['sum', 'mean'],
        'category 3': ['sum', 'mean']
    agg history = history.groupby(['card id']).agg(agg func)
    agg history.columns = ['hist_' + '_'.join(col).strip()
                           for col in agg history.columns.values]
    agg history.reset index(inplace=True)
    df = (history.groupby('card id')
          .size()
          .reset index(name='hist transactions count'))
    agg history = pd.merge(df, agg history, on='card id', how='left')
    return agg history
```


EDA

- Utilized library called featexp
- Bins all the feature and shows distribution
- Trend correlation against the target variable
- Compares trend on training vs validation set

Hist Authorized flag Mean

EDA / Feature Selection

 Featexp module "stats" returns a pandas dataframe summarizing this info

```
stats = stats.sort_values(by='Trend_correlation', ascending=False)
stats
```

	Feature	Trend_changes	Trend_changes_test	Trend_correlation
2	feature_3	0	0	1.000000
3	year	0	0	1.000000
1	feature_2	1	1	0.996557
23	hist_month_lag_max	1	1	0.974305
8	hist_authorized_flag_mean	4	4	0.914882
22	hist_month_lag_min	1	3	0.882759
27	hist_category_2_mean	4	3	0.862556
28	hist_category_3_sum	3	4	0.860611

EDA / Feature Selection

- Variance Inflation Factor
 - Statistical method to identify features causing multicollinearity
- Reduced features with VIF of 5 or below

VIF	Factor	features
0	2.2	feature_3
1	4.3	feature_2
2	2.6	hist_month_lag_max
3	3.1	hist_category_2_mean
4	3.2	hist_merchant_id_nunique
5	2.3	hist_installments_sum
6	2.1	hist_installments_min
7	1.0	hist_purchase_amount_std

Model Prediction

- Extreme Gradient Boosting chosen to predict customer loyalty
- Metric for scoring: Root Mean Squared Error
- Iterated over many varying attempts to achieve best score
 - Created function to easily run model with different training features as input

Results

Attempt 1

- Limit the features to those with the top 15 trend correlation
- Limit those remaining to those with low VIF scores
- CV RMSE: 3.81
- o RMSE test: 3.91

Attempt 2

- Use all applicable features available
- o CV RMSE: 3.75
- RSME test: N/A (Model overfit due to too many features)

Attempt 3

- Solely using features with VIF score of around 5 or below
- CV RMSE: 3.80
- RMSE Test: 3.91

Model Prediction

Attempt 4

- Scale the data
- Apply PCA
- o Determine Intrinsic Value . Result: 4
- o CV RMSE: 3.81
- o RSME Test: 4.22

Attempt 5

- Simply tuning the model from attempt 2 by experimenting with the hyperparameters.
- First attempt was using Gridsearchcv, but took too long.
- Used trial and error instead
- o CV RMSE: 3.74
- RMSE Test: N/A (Model overfit)

Conclusion

- RMSE acheived inapplicable to business case
 - Majority of scores between -1 and 1
- With such low accuracy, we cannot make reliable assumptions about customers to make improvements

```
train.target.round().value_counts().sort_values().nlargest(6)

0.0 68531
-1.0 38864
1.0 37614
-2.0 15652
2.0 14648
-3.0 6685
```


Future Endeavors

- More relevant data needed to predict customer loyalty
 - Customer surveys might give new data that is more telling
- Wrong question / metric being sought by Elo
 - Their customer loyalty scoring currently not useful for customer segmentation
- Goal not achieved, but got to learn a lot :)