Lineare Regression Wahrscheinlichkeitsverteilung

Peter Büchel

HSLU I

Stat: SW03

Empirische kumulative Verteilungsfunktion

- Empirische kumulative Verteilungsfunktion $F_n(\cdot)$ ist eine Treppenfunktion, mit:
 - Links von $x_{(1)}$ ist die Funktion gleich null
 - ▶ Bei jedem $x_{(i)}$ wird ein Sprung der Höhe $\frac{1}{n}$ gemacht
 - Wert kommt mehrmals vor \rightarrow Sprung entsprechendes Vielfache von $\frac{1}{n}$

Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 1/52 Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 2/52

• Beispiel: Kumulative Verteilungsfunktion der Methode A

- Abbildung entsteht wie folgt:
 - ▶ Jeder Beobachtung wird ein Dichtewerte von $\frac{1}{13}$ zugeordnet
 - ► Links von 79.97 ist Funktion 0 (es hat keinen kleineren Beobachtungswert)
 - ▶ Bei 79.97 macht die Funktion einen Sprung auf $n = \frac{1}{13} \approx 0.077$
 - ► Funktion bleibt dann gleich bis 80.00, da es vorher keinen zusätzlichen Beobachtungswert gibt
 - ▶ Bei 80.00 macht die Funktion wieder einen Sprung um 0.077 nach oben, weil es dort einen Messwert hat
 - ▶ Bei 80.02 macht die Funktion einen Sprung um 3 · 0.077 nach oben, da es dort 3 Beobachtungswerte gibt
 - usw.
 - ▶ Bei 80.05 letzten Sprung \rightarrow Funktionswert wird 1

Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 3/52 Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 4/52

- Was kann man aus der kumulativen Verteilungfunktion herauslesen?
 - ▶ Bei 0.5 auf vertikaler Achse werden gerade die Hälfte aller Werte aufsummiert

- ightharpoonup Zeichnen von 0.5 horizontale Linie ightharpoonup grüne Linie in Abbildung schneidet kumulative Verteilungsfunktion bei 80.03
- ▶ Das entspricht gerade dem Median
- ▶ Dort, wo die kumulative Funktion steil, viele Beobachtungswerte
- ▶ D.h.: die meisten Beobachtungswerte liegen hier zwischen 80.02 und 80.04
- ▶ Die Werte entsprechen aber gerade dem unteren und oberen Quartil

Peter Büchel (HSLU I)

Deskriptive Statistik II

Stat: SW03

5 / 52

Peter Büchel (HSLU I)

Deskriptive Statistik

Stat: SW03

6/5

Python

methodeA.plot(kind="hist", cumulative=True, histtype="step",
normed=True, bins=8, edgecolor="black")

• Kumulative Verteilungsfunktion: cumulative=True

Empirische kumulative Verteilungsfunktion

• Empirische kumulative Verteilungsfunktion ist definiert als der Anteil der Punkte kleiner als ein bestimmter Wert

$$F_n(x) = \frac{1}{n} \mathsf{Anzahl}\{i \mid x_i \le x\}$$

• Kumulative Verteilungsfkt. für Zeitspanne im Geysir-Datensatz

Sprunghöhe 1/n bei Beobachtungen x_i (bzw. ein Vielfaches davon, wenn es mehrere Beobachtungen mit dem gleichen Wert x_i gibt).

Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 7/52 Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 8/52

Deskriptive Statistik: 2 Dimensionen

• Betrachten nun paarweise beobachtete Daten: Zwei Messgrössen pro Messeinheit

- Weinkonsumation (Liter pro Person pro Jahr) und Mortalität aufgrund von Herzkreislauferkrankung (Todesfälle pro 1000) in 18 Ländern
- Eruptionsdauer (y_i) und die Zeitspanne (x_i) zum vorangehenden Ausbruch des Old Faithful Geysir

Deskriptive Statistik II

Daten: Weinkonsum - Mortalität

	14/ 1	NA . 15.05. 11 1 1					
Land	Weinkonsum	Mortalität Herzerkrankung					
Norwegen	2.8	6.2					
Schottland	3.2	9.0					
Grossbritannien	3.2	7.1					
Irland	3.4	6.8					
Finnland	4.3	10.2					
Kanada	4.9	7.8					
Vereinigte Staaten	5.1	9.3					
Niederlande	5.2	5.9					
New Zealand	5.9	8.9					
Dänemark	5.9	5.5					
Schweden	6.6	7.1					
Australien	8.3	9.1					
Belgien	12.6	5.1					
Deutschland	15.1	4.7					
Österreich	25.1	4.7					
Schweiz	33.1	3.1					
Italien	75.9	3.2					
Frankreich	75.9	2.1					

Deskriptive Statistik I

Zweidimensionales Streudiagramm

Peter Büchel (HSLU I)

- Plot deutet an, dass hoher Weinkonsum weniger Sterblichkeit wegen Herz-Kreislauferkrankungen zur Folge hat
- Kann Zufall sein (keine Kausalität)
- Heisst *nicht*, dass Weinkonsum gesund ist (Leber!)

Streudiagramm mit Python

Peter Büchel (HSLU I)

```
import pandas as pd
from pandas import DataFrame, Series
import numpy as np
mort = DataFrame({
   "wine": ([2.8, 3.2, 3.2, 3.4, 4.3, 4.9, 5.1, 5.2, 5.9,
      5.9, 6.6, 8.3, 12.6, 15.1, 25.1, 33.1, 75.9, 75.9]),
   "mor": ([6.2, 9.0, 7.1, 6.8, 10.2, 7.8, 9.3, 5.9, 8.9,
       5.5, 7.1, 9.1, 5.1, 4.7, 4.7, 3.1, 3.2, 2.1])
})
mort.plot(kind="scatter", x="wine", y="mor")
plt.xlabel("Weinkonsum (Liter pro Jahr und Person)")
plt.ylabel("Mortalitaet")
plt.show()
```

Deskriptive Statistik II Peter Büchel (HSLU I)

Stat: SW03

Stat: SW03

9/52

11 / 52

Peter Büchel (HSLU I)

Deskriptive Statistik I

Stat: SW03

Stat: SW03

Beispiel Old Faithful

(Fiktives) Beispiel für Lineare Regression

• Kunde kauft in Buchhandlung 10 Bücher

	Seitenzahl	Buchpreis (SFr)
Buch 1	50	6.4
Buch 2	100	9.5
Buch 3	150	15.6
Buch 4	200	15.1
Buch 5	250	17.8
Buch 6	300	23.4
Buch 7	350	23.4
Buch 8	400	22.5
Buch 9	450	26.1
Buch 10	500	29.1

Stat: SW03

Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 13/52

- Beobachtung:
 - ▶ Je dicker ein Roman ist, desto teurer ist er in der Regel
 - ▶ Es gibt Zusammenhang zwischen Seitenzahl x und Buchpreis y
- Ziel: Formelmässiger Zusammenhang zwischen Buchpreis und Seitenzahl
- Vorhersagen über Buchpreis für Bücher mit Seitenzahlen, die in Liste nicht auftauchen

Streudiagramm und Regressionsgerade

Peter Büchel (HSLU I

Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 15/52 Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 16/

Regressionsgerade und Residuum

- Vermutung: Gerade scheint recht gut zu den Daten zu passen
- Diese Gerade hätte die Form:

$$y = a + bx$$

mit

- ▶ y: Buchpreis; x: Seitenzahl
- ▶ a: Grundkosten des Verlags, b : Kosten pro Seite
- Problem: Gerade finden, die möglichst gut zu allen Punkten passt?

- Möglichkeit: Vertikale Abstände zwischen Beobachtung und Gerade zusammenzählen
- Dabei sollte eine kleine Summe der Abstände eine gute Anpassung bedeuten
- ullet Abstände von Messpunkten zu Geraden ullet neuer Begriff:

Residuum

Der vertikalen Abstand zwischen einem Beobachtungspunkt (x_i, y_i) und der Geraden (der Punkt auf der Geraden ist $(x_i, a+bx_i)$ heisst Residuum:

$$r_i = y_i - a - bx_i$$

Stat: SW03

Deskriptive Statistik I

- Beispiel: Residuen r₆ und r₈ für diese Gerade in Abbildung
- Residuum r₆ positiv, da Punkt überhalb der Gerade
- Entsprechend ist $r_8 < 0$
- Gerade y = a + bx so bestimmen, dass die Summe

$$r_1+r_2+\ldots+r_n=\sum_i r_i$$

minimal wird

Peter Büchel (HSLU I

- Minimierung von $\sum_i r_i$ hat aber eine **gravierende Schwäche**: Falls Hälfte der Punkte weit über der Geraden, die andere Hälfte weit unter der Geraden liegen: Summe der Abstände etwa null
- Dabei passt die Gerade gar nicht gut zu den Datenpunkten!

Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 19/52 Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 20/52

Methode der kleinsten Quadrate

• Eine andere Möglichkeit besteht darin, die Quadrate der Abweichungen aufzusummieren, also

$$r_1^2 + r_2^2 + \dots + r_n^2 = \sum_i r_i^2$$

- Parameter a und b so wählen, dass diese Summe minimal wird
- Python berechnet für Beispiel die Werte a = 6.04 und b = 0.047
 - Grundkosten des Verlags sind also rund 6 SFr. (Preis des Buches für 0 Seiten)
 - ▶ Pro Seite verlangt der Verlag rund 5 Rappen
 - Geradengleichung:

$$y = 6.04 + 0.04673x$$

Peter Büchel (HSLU I)

Deskriptive Statistik I

Stat: SW03

21 / 52

23 / 52

Stat: SW03

Stat: SW03

24 / 52

Lineare Regression mit Python

Code:

b, a = np.polyfit(book["pages"], book["price"], deg=1) print(a, b) ## 6.0399999999999 0.04672727272727273

Befehl

np.polyfit(book["pages"], book["price"], deg=1) passt ein Polynom vom Grad 1 (lineare Funktion) an Daten an

- Ausgabe von 2 Werten: der erste ist die Steigung der Geraden, der zweite der y-Achsenabschnitt
- Python findet also a = 6.04 und b = 0.0467

Bestimmung der Parameter a und b

- Frage: Wie berechnet der Computer die Parameter a und b?
- Die Parameter a, b minimieren (Methode der Kleinsten-Quadrate)

$$\sum_{i=1}^{n} (y_i - (a + bx_i))^2$$

Die Lösung dieses Optimierungsproblem ergibt:

$$b = \frac{\sum_{i=1}^{n} (y_i - \overline{y})(x_i - \overline{x})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$
$$a = \overline{y} - b\overline{x}$$

wobei \overline{x} und \overline{y} die Mittelwerte der jeweiligen Daten

• Diese Gerade y = a + bx wird auch Regressionsgerade genannt

Plotten der Regressionsgerade

• Diese Gerade wird in Python wie folgt gezeichnet:

```
book.plot(kind="scatter", x="pages", y="price")
b, a = np.polyfit(book["pages"], book["price"], deg=1)
x = np.linspace(book["pages"].min() ,book["pages"].max())
plt.plot(x, a+b*x, c="orange")
plt.xlabel("Seitenzahl")
plt.ylabel("Buchpreis")
plt.show()
```

Der Befehl

Peter Büchel (HSLU I)

```
x = np.linspace(book["pages"].min(), book["pages"].max())
```

Deskriptive Statistik II

erzeugt einen Vektor x der Länge 50, der als 1. Wert den Minimalwert von pages im Dataframe book hat und als letzten Wert dessen Maximalwert.

Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03

Beispiel: Buchpreis

- Mit diesem Modell: Preis für Bücher mit Seitenzahlen berechnen, die in der Tabelle nicht vorkommen
- Wieviel würde nach diesem Modell ein Buch von 375 Seiten kosten?
- x = 375 in die Geradengleichung oben einsetzen:

$$y = 6.04 + 0.04673 \cdot 375 \approx 23.60$$

- Das Buch dürfte also etwa CHF 23.60 kosten
- Dieses Modell ist allerdings nur begrenzt gültig
- Vor allem bei Extrapolationen muss man vorsichtig sein
- Möglich: Was kostet ein Buch mit einer Million Seiten?
- Oder ein Buch mit -100 Seiten? → Nicht realistisch!

Beispiel: Körpergrösse Vater-Sohn

- Vermutung: Zusammenhang zwischen der Körpergrösse der Väter und der Grösse der Söhne
- Der britische Statistiker Karl Pearson trug dazu um 1900 die Körpergrösse von 10 (in Wahrheit waren 1078) zufällig ausgewählten Männern gegen die Grösse ihrer Väter auf

Grösse des Vaters	152	157	163	165	168	170	173	178	183	188
Grösse des Sohnes	162	166	168	166	170	170	171	173	178	178

- Es scheint einen Zusammenhang zu geben: Je grösser der Vater, desto grösser der Sohn
- Streudiagramm: Möglicher linearer Zusammenhang besteht

• Die Punktwolke "folgt" der Geraden

Peter Büchel (HSLU I)

$$v = 0.445x + 94.7$$

Stat: SW03

25 / 52

Peter Büchel (HSLU I)

Deskriptive Statistik II

(mit der Methode der Kleinsten Quadrate aus den Daten)

• Möglich: In Tabelle nicht vorkommende Grösse von 180 cm des Vater, den zu erwartenden Wert für die Grösse seines Sohnes berechnen:

Deskriptive Statistik II

Stat: SW03

$$y = 0.445 \cdot 180 + 94.7 \approx 175 \, \text{cm}$$

- Achtung: Formel nicht dort anwenden, wo man es nicht darf
- Für x = 0 erhält man einen Wert von 94.7
- Was heisst dies aber? Wenn der Vater 0 cm gross ist, so ist der Sohn ungefähr 95 cm gross → Macht keine Sinn!

Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 27/52 Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 28/5

Beispiel: Autounfälle

• Tabelle stellt einen Zusammenhang zwischen den Zahlen der Verkehrstoten her, die es 1988 und 1989 in zwölf Bezirken in den USA geben hat

Bezirk	1	2	3	4	5	6	7	8	9	10	11	12
Verkehrstote 1988	121	96	85	113	102	118	90	84	107	112	95	101
Verkehrstote 1989	104	91	101	110	117	108	96	102	114	96	88	106

- Es besteht kein offensichtlicher Zusammenhang
- Streudiagramm: kein offensichtlicher Zusammenhang

- Zu erwarten, da es zwischen den Verkehrstoten der einzelnen Bezirke keinen Zusammenhang gibt
- In Abbildung ist noch die Regressionsgerade eingezeichnet
- Können sie zwar berechnen/einzeichnen, aber diese macht hier gar keinen Sinn
- Immer Berechnung und Plot vergleichen

Peter Büchel (HSLU I)

Deskriptive Statistik I

Stat: SW03

29 / 52

Peter Büchel (HSLU I)

Deskriptive Statistik I

Stat: SW03

30 / 52

Beispiel: Weinkonsum

• Schon gesehen: Sterblichkeit vs. Weinkonsum

Regressionsgerade

$$y = 7.68655 - 0.07608x$$

- Zusammenhang der Daten nicht linear ist (folgt eher einer Hyperbel)
- Die Regressionsgerade sagt hier wenig über den wahren Zusammenhang aus

Wie gut passt die Regressionsgerade?

- Regressionsgerade kann (fast) immer bestimmt werden
- Letzten beiden Beispiele: Regressionsgerade sagt sehr wenig über die wirkliche Verteilung der Punkte im Streudiagramm aus
- Dafür gibt es zwei Gründe
 - ▶ Punkte folgen scheinbar gar keiner Gesetzmässigkeit
 - ▶ Punkte folgen einer nichtlinearen Gesetzmässigkeit
- Wie kann man feststellen, ob ein linearer Zusammenhang der Daten besteht oder nicht?
- Möglichkeit: Situation graphisch betrachten
- Wert angeben, der den Zusammenhang numerisch beschreibt

Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 31/52 Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 32/52

Empirische Korrelation

Numerischer Wert der linearen Abhängigkeit von zwei Grössen:

Empirische Korrelation

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{(\sum_{i=1}^{n} (x_i - \overline{x})^2) \cdot (\sum_{i=1}^{n} (y_i - \overline{y})^2)}}$$

- Empirische Korrelation ist dimensionslose Zahl zwischen -1 und +1
- Misst Stärke und Richtung der linearen Abhängigkeit zwischen den Daten x und v
- r = +1: Punkte liegen auf steigender Geraden : y = a + bx mit $a \in \mathbb{R}$ und ein b > 0
- r = -1: Punkte liegen auf fallender Geraden : y = a + bx mit $a \in \mathbb{R}$ und ein b < 0
- Sind x und y unabhängig (d.h. kein Zusammenhang), so ist r = 0

Peter Büchel (HSLU I)

Deskriptive Statistik II

33 / 52

Berechnung von Korrelation mit Python

• Seitenzahl-Preis-Beispiel mit Python

book.corr().iloc[0,1] ## 0.9681121878410434

- ullet Wert sehr nahe bei 1 \to starker linearer Zusammenhang
- ullet Wert positiv ullet "je mehr, desto mehr" Zusammenhang
- Der Befehl

book.corr() → Korrelationsmatrix allgemeiner

Peter Büchel (HSLU I)

Deskriptive Statistik I

Stat: SW03

Empirische Korrelation: Beispiele

- Beispiel der Körpergrösse von Vater und Sohn: Erwarten hohen Korrelationskoeffizienten, da Daten nahe der Regressionsgerade
 - \rightarrow 0.973
- ullet Verkehrsunfällen: Kein Zusammenhang ullet Tiefer Korrelationskoeffizienten
 - 0.386
- Weinkonsum: Keinen allzu grossen Korrelationskoeffizient (keine Gerade), aber er sollte negativ sein, da mit steigendem Weinkonsum die Mortalität sinkt
 - -0.746.

Empirische Korrelation: Bemerkungen

- Korrelation misst "nur" den linearen Zusammenhang
- Man sollte daher die Daten immer auch anschauen, statt sich "blind" auf Kennzahlen zu verlassen

Peter Büchel (HSLU I)

Deskriptive Statistik II

Stat: SW03

35 / 52

Peter Büchel (HSLU I)

Stat: SW03

Empirische Korrelation: Bemerkungen

Deskriptive Statistik II

Zufallsvariable

- Begriff der Zufallsvariable: Spielt zentrale Rolle in der Statistik
- Beispiel: Jasskarten

Peter Büchel (HSLU I

- ► Ein Pack Jasskarten besteht aus 36 verschiedenen Karten
- ► Um beim Jassen Stiche zu vergleichen, werden den Jasskarten Zahlwerte zugewiesen
- ▶ So hat ein König den Wert 4
- ► Ohne diese Werte wären verschiedene Stiche beim Jass sehr schwierig miteinander zu vergleichen

Stat: SW03

▶ Betrachten Funktion, die jeder Jasskarte einen Zahlwert zuordnet

Deskriptive Statistik

► Also

Peter Büchel (HSLU I)

$$\omega = \operatorname{As} \qquad \mapsto \qquad X(\omega) = 11$$
 $\omega = \operatorname{K\"{o}nig} \qquad \mapsto \qquad X(\omega) = 4$
 $\vdots \qquad \qquad \vdots$
 $\omega = \operatorname{Sechs} \qquad \mapsto \qquad X(\omega) = 0$

Stat: SW03

37 / 52

- Dieselbe Situation kommt in der Stochastik häufig vor
- Oft wird ein Zufallsexperiment mit Zahlenwerten verknüpft
- Zu jedem Elementarereignis ω gehört ein Zahlenwert $X(\omega) = x$
- ullet Dabei ist X eine Funktion, die jedem Elementarereignis ω den Zahlwert x zuordnet

- ullet Wie in Beispiel: X ist Funktion auf dem Grundraum Ω
- Diese Funktion wird Zufallsvariable genannt
- Sie ordnet jedem Element des Grundraumes eine Zahl zu
- Vorteil: Mit den Werten der Zufallsvariable kann man rechnen
- Beispiel oben: Mit den Zahlenwerten $X(\omega)$ kann man den "Durchschnitt" der gezogenen Karten berechnen
- Für die *Elementareignisse* "As", "König" etc. macht das Wort "Durchschnitt" keinen Sinn

Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 39/52 Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 40/52

Zufallsvariable und Wahrscheinlichkeitsverteilung

Zufallsvariable

Eine Zufallsvariable X ist eine Funktion:

$$X: \Omega \to \mathbb{R}$$

$$\omega \mapsto X(\omega)$$

Notation X (oder auch Y, Z, ...) ist eher ungewohnt für die Bezeichnung einer Funktion, ist aber üblich in der W'keitsrechnung

Deskriptive Statistik I Peter Büchel (HSLU I) Deskriptive Statistik II Stat: SW03 41 / 52 Peter Büchel (HSLU I) Stat: SW03

- Je nach Ausgang des Zufallsexperiments ω erhält man einen anderen Wert $x = X(\omega)$
- x heisst dann eine eine Realisierung der Zufallsvariablen X
- Wird das Experiment zweimal durchführt erhölt zweimal das gleiche Ergebnis ω , dann sind auch die realisierten Werte von X gleich
- Jasskartenbeispiel: Realisierung X = 11 entspricht dem Ziehen eines Asses

Deskriptive Statistik II

Konventionen

Stat: SW03

Peter Büchel (HSLU I)

Stat: SW03 43 / 52

Deskriptive Statistik II

- Zufallsvariable wird mit einem Grossbuchstaben X (oder Y, Z) bezeichnet
- Der entsprechende Kleinbuchstabe x (oder y, z) stellt einen konkreten Wert dar, den die Zufallsvariable annehmen kann
- Für das Ereignis, bei dem die Zufallsvariable X den Wert x annimmt, schreiben wir X = x
- In Beispiel: Ereignis X = 2 entspricht "einen Under ziehen"
- Bei einer Zufallsvariable ist nicht die Funktion $X(\cdot)$ zufällig, sondern nur das Argument ω

Diskrete Zufallsvariablen

- Hier: Zahlen, die X annehmen kann, sind diskret
- D.h.: Anzahl dieser Werte ist endlich (wie Jasskartenbeispiel)

$$\{0, 2, 3, 4, 10, 11\}$$

• Möglich: Unendliche Liste

Peter Büchel (HSLU I)

$$\{2.5, 4.5, 6.5, 8.5, \dots, \}$$

- Man sagt: Zufallsvariable X ist diskret
- Insbesondere sind Anzahlen stets diskret.
- ullet Messungen meist kontinuierlich ullet Mit ${\mathbb R}$ modelliert

Wahrscheinlichkeit einer Realisierung

- Schon gesehen: W'keit P(E) eines Ereignisse E berechnen
- Entsprechend: W'keit einer allgemeinen Realisierung x einer Zufallsvariable X definieren
- Beispiel: Zufallsvariable X sei der Wert einer gezogenen Jasskarte
- Wie gross die W'keit ist, dass gezogene Karte den Wert 4 hat?
- Realisierung ist in diesem Fall X = 4

• Bezeichnung: W'keit zur Realisierung 4

$$P(X = 4)$$

- ullet Realisierung X=4 entspricht dem Ziehen eines Königs
- D.h.: Gesucht W'keit, dass ein König gezogen wird:

$$P(X = 4) = P(\{\omega \mid \omega = \text{ ein König}\})$$

$$= P(\text{Eicheln-König}) + P(\text{Rosen-König}) + P(\text{Schellen-König}) + P(\text{Schilten-König})$$

$$= \frac{4}{36} = \frac{1}{9}$$

ullet Vorgehen hier ausführlicher als notwendig ightarrow verallgemeinerbar

Peter Büchel (HSLU I)

Deskriptive Statistik II

Stat: SW03

45 / 52

Peter Büchel (HSLU I)

Deskriptive Statistik

Stat: SW03

46 / E

- W'keit, dass ein König gezogen wird, ist also gleich der Summe der W'keiten die verschiedenen Könige zu ziehen
- Diese Überlegung verallgemeinern:
 - ▶ Die Werte einer Zufallsvariablen X (die möglichen Realisationen von X) treten mit gewissen W'keiten auf
 - ▶ Die W'keit, dass X den Wert x annimmt, berechnet sich wie folgt:

$$P(X = x) = P(\{\omega \mid X(\omega) = x\}) = \sum_{\omega; X(\omega) = x} P(\omega)$$

 \bullet Jasskartenbeispiel: x=4 und ω alle möglichen Könige, deren entsprechende W'keiten aufaddiert werden

Wahrscheinlichkeitsverteilung

- Beispiel vorher: W'keit einer Realisierung berechnet
- Jetzt: W'keiten aller Realisierungen berechnen
- Sehr wichtiger Begriff: Wahrscheinlichkeitsverteilung

Wahrscheinlichkeitsverteilung

Für jede Realisierung einer Zufallsvariable die zu gehörige W'keit berechnen \rightarrow W'keitsverteilung dieser Zufallsvariablen

Peter Büchel (HSLU I)

Deskriptive Statistik II

Stat: SW03

47 / 52

Peter Büchel (HSLU I)

Deskriptive Statistil

Stat: SW03

48 / 52

Jasskartenbeispiel

- Zufallsvariable X ist wieder der Wert einer gezogenen Jasskarte
- W'keit P(X = 4) schon berechnet:

$$P(X=4)=\frac{1}{9}$$

- W'keit P(X = 0) mit der Laplace-W'keit berechnen
- Es hat unter den 36 Karten genau 16 "leere" Karten
- Somit gilt für die W'keit P(X = 0):

$$P(X=0)=\frac{16}{36}=\frac{4}{9}$$

Peter Büchel (HSLU I)

Deskriptive Statistik II

Stat: SW03

3 49 / 52

Peter Büchel (HSLU I)

Deskriptive Statistik

Stat: SW03

50 / 5

- Werte für P(X = 1) oder P(X = 178) sind in Tabelle *nicht* aufgeführt
- Der Grund dafür ist natürlich, dass diese Werte nicht gezogen werden können
- Ihnen wird die W'keit 0 zugeordnet

$$P(X = 1) = 0$$
 oder $P(X = 178) = 0$

• Addition aller Werte der W'keitsverteilung \rightarrow muss 1 ergeben P(X=0) + P(X=2) + P(X=3) + P(X=4) + P(X=10) + P(X=11) = 1

- Realisierung X = 2 entspricht dem Ziehen eines Unders
- Da es 4 von denen gibt, gilt für die W'keit P(X = 2):

$$P(X=2)=\frac{4}{36}=\frac{1}{9}$$

- W'keiten für die anderen Realisierungen analog
- Jeder Realisierung wird einen W'keitswert zugeordnet
- Man spricht dann von einer Wahrscheinlichkeitsverteilung
- W'keitsverteilung von X in Tabelle

Wahrscheinlichkeitsverteilung

Allgemein gilt:

Die "Liste" von P(X = x) für alle möglichen Werte x heisst diskrete (Wahrscheinlichkeits-) Verteilung der diskreten Zufallsvariablen X. Dabei gilt immer

$$\sum_{\text{alle m\"{o}glichen }x} P(X=x) = 1$$

Peter Büchel (HSLU I)

Deskriptive Statistik II

Stat: SW03

51 / 52

Peter Büchel (HSLU I)

skrintive Statisti

Stat: SW03

52 / 52