Chapter 5

Wires (Interconnect)

闕志達 台灣大學電機系

Interconnect

- Pitch = w + s
- Aspect ratio = t/w, about 2 in modern processes.

Metal Layers

- More than 6 layers in modern processes (e.g. 0.13um)
- M1 is thin, narrow, used for high-density cell routing
- M2-M4, thicker, longer range routing.
- M5-M6, thickest, for GND, VDD, CLK.

Layer	t (nm)	w (nm)	s(nm)	AR	
6	1720	860	860	2.0	
	1000				
5	1600	800	800	2.0	
	1000				
4	1080	540	540	2.0	N N
•	700			-0.7	
3	700 700	320	320	2.2	
2	700	320	320	2.2	ПП
	700				
1	480	250	250	1.9	
	800				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
					Substrate

3

Photo of Metal Stack

Intel 14nm FinFET process has 13 layers of metal.

The resistance of a uniform slab of conducting material is given by ρ

 $R = \frac{\rho}{t} \cdot \frac{l}{w} = R_S \cdot \frac{l}{w}$

where ρ is the resistivity, t, l, and w are the thickness, length, and width of the conductor respectively. R_s is the sheet resistance having units of ohm/square.

More Resistance

- Until 0.18um, mos
- Modern processes
 - Copper diffuses int
- Diffusion and polygresistivity.
- All resistances incr

British Dictionary definitions for silicide

silicide

/ˈsɪlɪˌsaɪd/

noun

 any one of a class of binary compounds formed between silicon and certain metals

Table 4.6 Bulk resistiv	vity of pure metals at 22° C
Metal	Resistivity (μΩ • cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Molybdenum (Mo)	5.3
Titanium (Ti)	43.0

Table 4.7 Sheet resistances				
Layer	Sheet Resistance (Ω /□)			
Diffusion (silicided)	3-10			
Diffusion (unsilicided)	50-200			
Polysilicon (silicided)	3-10			
Polysilicon (unsilicided)	50-400			
Metal1	0.08			
Metal2	0.05			
Metal3	0.05			
Metal4	0.03			
Metal5	0.02			
Metal6	0.02			

Interconnect Capacitance

- Wire has capacitance per unit length
 - To neighbors
 - To layers above and below
- $C_{total} = C_{top} + C_{bot} + 2C_{adj}$

Typical Metal Wire Capacitance

- Typical wires have $\sim 0.2 \text{ fF/}\mu\text{m}$
 - Isolated wire capacitance is lower and more sensitive to spacing,
 while sandwiched wire capacitance is more sensitive to width.
 - Compare to 2 fF/µm for gate capacitance

Diffusion & Polysilicon

- Diffusion capacitance is very high (1-2 fF/μm)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion runners for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 1 mm wire. Assume wire capacitance is 0.2 fF/μm and that a unit-sized nMOS has R = 10 K Ω and C = 0.1 fF. The wire resistance is 800 ohm.
 - Use π model for long wire
 - $t_{pd} = (1000 \Omega)(100 \text{ fF}) + (1000 + 800 \Omega)(100 + 0.6 \text{ fF}) = 281 \text{ ps}$

Crosstalk

- A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1 -> 0 or 0 ->1, the wire tends to switch too.
 - Called capacitive coupling or crosstalk.
- Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires
- Large load and short wire will not have significant crosstalk while long wires in parallel (e.g. bus lines) tend to have serious crosstalk.

© Tzi-Dar Chiueh

Effective Capacitance

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as Cgnd = Ctop + Cbot
- Effective Cadj depends on behavior of neighbors
 - Miller effect Miller Coupling Factor (MCF)

Table 4.10 Dependence of effective capacitance switching direction					
В	ΔV	C _{eff(A)}	MCF		
constant	V_{DD}	$C_{\rm gnd}$ + $C_{\rm adj}$	1		
switching same direction as A	0	$C_{ m gnd}$	0		
switching opposite to A	$2V_{DD}$	$C_{\rm gnd}$ + $2C_{\rm adj}$	2		

© Tzi-Dar Chiueh

Crosstalk Noise

- Crosstalk causes noise on nonswitching wires
- If victim is floating:
 - model as capacitive voltage divider

$$\Delta V_{\textit{victim}} = \frac{C_{\textit{adj}}}{C_{\textit{gnd-v}} + C_{\textit{adj}}} \Delta V_{\textit{aggressor}}$$

Capacitive dividers do not pass DC input. For an AC input a simple capacitive equation is:

$$V_{out} = V_{in} \cdot \frac{C_1}{C_1 + C_2}$$

http://en.wikipedia.org/wiki/Voltage_divider

Driven Victims

- Usually victim is driven by a gate that fights noise
 - Noise depends on relative driving strengths
 - k > 0, k gets larger as the victim is driven more.

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \underbrace{\frac{1}{1+k}} \Delta V_{aggressor}$$

$$k = \frac{\tau_{aggressor}}{\tau_{constrainty}} = \frac{R_{aggressor} \left(C_{gnd-a} + C_{adj}\right)}{R_{constrainty}}$$

$$k = \frac{\tau_{aggressor}}{\tau_{constrainty}} = \frac{R_{aggressor} \left(C_{gnd-a} + C_{adj}\right)}{R_{constrainty}}$$

$$\frac{\Delta V_{aggressor}}{\tau_{constrainty}} = \frac{R_{aggressor} \left(C_{gnd-a} + C_{adj}\right)}{R_{constrainty}}$$

Coupling Waveforms

Simulated coupling for C_{adj} = C_{gnd}

Wire Inductance

 Fast-switching wires can have significant inductor-induced delay.

Repeaters

- R and C are proportional to l
- RC delay is proportional to l²
 - Unacceptably great for long wires
- Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

© Tzi-Dar Chiueh

Wire Engineering

- Width/Spacing wider wires not only decrease R but also increase C. But they can be necessary to decrease IR drop.
- Layer selection
- Shielding topology

Table 4.11	Sample metal layer usage in 6-level process		
Layer	Purpose		
Metal 1	Interconnect within cells		
Metal 2/3	Interconnect between cells within units		
Metal 4/5	Interconnect between units, critical signals		
Metal 6	I/O pads, clock, power, ground		

