!pip install numpy
!pip install pandas

Importing all the necessary library required for implementing the project.

```
!pip install matplotlib
!pip install sklearn
    Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
    Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (1.21.6)
    Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
    Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (1.3.5)
    Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from pandas) (1.21.6)
    Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas) (2022.1)
    Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas) (2.8.2)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas) (1.15.0
    Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
    Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (3.2.2)
    Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib) (0.11.0)
    Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplot
    Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib) (1.4.2)
    Requirement already satisfied: numpy>=1.11 in /usr/local/lib/python3.7/dist-packages (from matplotlib) (1.21.6)
    Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib) (2.8.2)
    Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from kiwisolver>=1.0.1->matplotlib)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.1->matplotlib) (1.15
    Looking in indexes: https://pvpi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
    Requirement already satisfied: sklearn in /usr/local/lib/python3.7/dist-packages (0.0)
    Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (from sklearn) (1.0.2)
    Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->sklearn) (3.1
    Requirement already satisfied: scipy>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->sklearn) (1.4.1)
    Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->sklearn) (1.1.0)
    Requirement already satisfied: numpy>=1.14.6 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->sklearn) (1.21.6)
```

import sys

```
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split # to split the data into two parts i.e t
from sklearn.preprocessing import StandardScaler # for normalization of the features
from sklearn.preprocessing import MinMaxScaler # for scaling the features
```

from sklearn import metrics # for the check the error and accuracy of the model from sklearn.metrics import mean_squared_error,r2_score,confusion_matrix

Connecting the jupyter notebook to google drive

```
from google.colab import drive
drive.mount('/content/gdrive')
```

Mounted at /content/gdrive

Dataset on which machine learning will be applied.

!ls /content/gdrive/MyDrive/8th_semester_project

bead_size_prediction_dataset.xlsx household_power_consumption.txt
household_dataset_description.pdf

Loading the dataset into the pandas dataframe.

my_dataset = pd.read_csv('/content/gdrive/MyDrive/8th_semester_project/household_power_consum
my_dataset

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Glot
0	16/12/2006	17:24:00	4.216	0.418	234.84	
1	16/12/2006	17:25:00	5.360	0.436	233.63	
2	16/12/2006	17:26:00	5.374	0.498	233.29	
3	16/12/2006	17:27:00	5.388	0.502	233.74	
4	16/12/2006	17:28:00	3.666	0.528	235.68	
2075254	26/11/2010	20:58:00	0.946	0.000	240.43	
2075255	26/11/2010	20:59:00	0.944	0.000	240.00	
2075256	26/11/2010	21:00:00	0.938	0.000	239.82	
2075257	26/11/2010	21:01:00	0.934	0.000	239.70	
2075258	26/11/2010	21:02:00	0.932	0.000	239.55	
2075259 ro	ws × 9 colum	ns				>

my_dataset.shape

(2075259, 9)

		Date	Time	Global_active_power	Global_reactive_power	Voltage	Glob
	1528022	11/11/2009	20:26:00	2.528	0.068	240.83	
	793011	19/6/2008	10:15:00	0.234	0.114	237.85	
Explo	oratory Da	ta Analysis					
		, _, _, _,		V. 144	0.012	- 1 10	

dataset = dataset.drop(["Date","Time"], inplace = False,axis=1)
dataset

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_me
1528022	2.528	0.068	240.83	10.4	
793011	0.234	0.114	237.85	1.0	
1079781	0.706	0.130	245.73	3.0	
1150151	0.422	0.072	242.13	1.8	
1321406	0.532	0.000	239.73	2.6	
42366	0.214	0.000	244.86	0.8	
190706	NaN	NaN	NaN	NaN	
1781604	0.882	0.152	238.97	3.8	
1893606	1.060	0.432	238.69	4.8	
32540	1.154	0.132	239.10	4.8	
103763 rov	vs × 7 columns				>

dataset.head()

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_me
1528022	2.528	0.068	240.83	10.4	
793011	0.234	0.114	237.85	1.0	
1079781	0.706	0.130	245.73	3.0	
1150151	0.422	0.072	242.13	1.8	
1321406	0.532	0.000	239.73	2.6	
4					•

dataset.tail()

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_me
42366	0.214	0.000	244.86	0.8	
190706	NaN	NaN	NaN	NaN	
1781604	0.882	0.152	238.97	3.8	
1893606	1.060	0.432	238.69	4.8	
32540	1.154	0.132	239.10	4.8	
4					•

dataset.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 103763 entries, 1528022 to 32540

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Global_active_power	102434 non-null	float64
1	Global_reactive_power	102434 non-null	float64
2	Voltage	102434 non-null	float64
3	Global_intensity	102434 non-null	float64
4	Sub_metering_1	102434 non-null	float64

```
5 Sub_metering_2 102434 non-null float64
6 Sub_metering_3 102434 non-null float64
dtypes: float64(7)
memory usage: 6.3 MB
```

dataset.dtypes

```
Global_active_power float64
Global_reactive_power float64
Voltage float64
Global_intensity float64
Sub_metering_1 float64
Sub_metering_2 float64
Sub_metering_3 float64
dtype: object
```

dataset.columns

dataset.describe()

```
Global active power Global reactive power
                                                         Voltage Global intensity Su
                 102434.000000
                                                   102434.000000
                                                                    102434.000000
                                      102434.000000
     count
                      1.085795
                                           0.123507
                                                                         4.603536
     mean
                                                       240.858032
dataset.shape
    (103763, 7)
      25%
                      0.308000
                                           0.048000
                                                      239.020000
                                                                         1.400000
dataset.isnull().sum()
    Global active power
                           1329
    Global reactive power
                           1329
    Voltage
                           1329
    Global intensity
                           1329
    Sub metering 1
                           1329
    Sub metering 2
                           1329
    Sub metering 3
                           1329
    dtype: int64
for j in range(0,7):
          dataset.iloc[:,j]=dataset.iloc[:,j].fillna(dataset.iloc[:,j].mean())
dataset.shape
    (103763, 7)
dataset.isnull().sum()
```

```
Global_active_power
Global_reactive_power
Voltage
Global_intensity
Sub_metering_1
Sub_metering_2
Sub_metering_3
dtype: int64
```

Data visulization

```
from scipy.stats import norm
import statistics
import matplotlib as mpl
mpl.rcParams['agg.path.chunksize'] = 10000
plt.figure(figsize=(20,10),dpi=80)
x axis = dataset['Global active power'].to numpy()#[:1037630]
mean = statistics.mean(x axis)
sd = statistics.stdev(x axis)
plt.subplot(2,4,1)
plt.plot(x axis, norm.pdf(x axis, mean, sd))
plt.title("Gaussian Distribution of Global active power")
x axis = dataset['Global_reactive_power'].to_numpy()#[:1037630]
mean = statistics.mean(x axis)
sd = statistics.stdev(x axis)
plt.subplot(2,4,2)
```

```
plt.plot(x axis, norm.pdf(x axis, mean, sd))
plt.title("Gaussian Distribution of Global reactive power")
x axis = dataset['Voltage'].to numpy()#[:1037630]
mean = statistics.mean(x axis)
sd = statistics.stdev(x axis)
plt.subplot(2,4,3)
plt.plot(x axis, norm.pdf(x axis, mean, sd))
plt.title("Gaussian Distribution of Voltage")
x axis = dataset['Global intensity'].to numpy()#[:1037630]
mean = statistics.mean(x axis)
sd = statistics.stdev(x axis)
plt.subplot(2,4,4)
plt.plot(x axis, norm.pdf(x axis, mean, sd))
plt.title("Gaussian Distribution of Global intensity")
x axis = dataset['Sub metering 1'].to numpy()#[:1037630]
mean = statistics.mean(x axis)
sd = statistics.stdev(x axis)
plt.subplot(2,4,5)
plt.plot(x axis, norm.pdf(x axis, mean, sd))
plt.title("Gaussian Distribution of Sub metering 1")
x axis = dataset['Sub metering 2'].to numpy()#[:1037630]
mean = statistics.mean(x axis)
sd = statistics.stdev(x axis)
plt.subplot(2,4,6)
```

```
plt.plot(x_axis, norm.pdf(x_axis, mean, sd))
plt.title("Gaussian Distribution of Sub_metering_2")

x_axis = dataset['Sub_metering_3'].to_numpy()#[:1037630]
mean = statistics.mean(x_axis)
sd = statistics.stdev(x_axis)
plt.subplot(2,4,7)
plt.plot(x_axis, norm.pdf(x_axis, mean, sd))
plt.title("Gaussian Distribution of Sub_metering_3")

plt.show()
```


x = dataset['Voltage'].to numpy()

plt.title("Histogram of Voltage")

plt.hist(x,edgecolor='black')

20

30

```
plt.subplot(2,4,4)
x = dataset['Global intensity'].to numpy()
plt.hist(x,edgecolor='black')
plt.title("Histogram of Global intensity")
plt.subplot(2,4,5)
x = dataset['Sub metering 1'].to numpy()
plt.hist(x,edgecolor='black')
plt.title("Histogram of Sub metering 1")
plt.subplot(2,4,6)
x = dataset['Sub metering 2'].to numpy()
plt.hist(x,edgecolor='black')
plt.title("Histogram of Sub metering 2")
plt.subplot(2,4,7)
x = dataset['Sub metering 3'].to numpy()
plt.hist(x,edgecolor='black')
plt.title("Histogram of Sub metering 3")
plt.show()
```


plt.figure(figsize=(40,20), dpi=80)

```
x = np.arange(1,103764)
y = dataset['Global_active_power'].to_numpy()
plt.subplot(2,4,1)
plt.scatter(x, y)
```

```
x = np.arange(1,103764)
y = dataset['Global reactive power'].to numpy()
plt.subplot(2,4,2)
plt.scatter(x, y)
x = np.arange(1,103764)
y = dataset['Voltage'].to_numpy()
plt.subplot(2,4,3)
plt.scatter(x, y)
x = np.arange(1,103764)
y = dataset['Global intensity'].to numpy()
plt.subplot(2,4,4)
plt.scatter(x, y)
x = np.arange(1,103764)
y = dataset['Sub metering 1'].to numpy()
plt.subplot(2,4,5)
plt.scatter(x, y)
x = np.arange(1,103764)
y = dataset['Sub metering 2'].to numpy()
plt.subplot(2,4,6)
plt.scatter(x, y)
x = np.arange(1,103764)
y = dataset['Sub_metering_3'].to_numpy()
plt.subplot(2,4,7)
```

```
plt.scatter(x, y)
plt.show()
```



```
ypoints = dataset['Global intensity'].to numpy()
plt.subplot(8,1,4)
plt.plot(vpoints, marker = '.')
plt.title('Global intensity',fontsize=20)
ypoints = dataset['Sub metering 1'].to numpy()
plt.subplot(8,1,5)
plt.plot(ypoints, marker = '.')
plt.title('Sub metering 1',fontsize=20)
ypoints = dataset['Sub metering 2'].to numpy()
plt.subplot(8,1,6)
plt.plot(ypoints, marker = '.')
plt.title('Sub metering 2',fontsize=20)
ypoints = dataset['Sub metering 3'].to numpy()
plt.subplot(8,1,7)
plt.plot(ypoints, marker = '.')
plt.title('Sub metering 3',fontsize=20)
plt.show()
```



```
import seaborn as sns
import pandas as pd
plt.figure(figsize=(40,10), dpi=80)
plt.subplot(1,7,1)
sns.violinplot(dataset["Global active power"])
plt.title("Global active power")
plt.subplot(1,7,2)
sns.violinplot(dataset["Global reactive power"])
plt.title("Global reactive power")
plt.subplot(1,7,3)
sns.violinplot(dataset["Voltage"])
plt.title("Voltage")
plt.subplot(1,7,4)
sns.violinplot(dataset["Global intensity"])
plt.title("Global intensity")
plt.subplot(1,7,5)
sns.violinplot(dataset["Sub metering 1"])
plt.title("Sub metering 1")
plt.subplot(1,7,6)
```

```
sns.violinplot(dataset["Sub_metering_2"])
plt.title("Sub_metering_2")

plt.subplot(1,7,7)
sns.violinplot(dataset["Sub_metering_3"])
plt.title("Sub_metering_3")

plt.show()
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning
```

```
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize =(40,20))
np.random.seed(10)
data = dataset['Global active power'].to numpy()
plt.subplot(1,7,1)
plt.boxplot(data)
plt.title('Global active power')
data = dataset['Global reactive power'].to numpy()
plt.subplot(1,7,2)
plt.boxplot(data)
plt.title('Global reactive power')
data = dataset['Voltage'].to numpy()
```

```
plt.subplot(1,7,3)
plt.boxplot(data)
plt.title('Voltage')
data = dataset['Global intensity'].to numpy()
plt.subplot(1,7,4)
plt.boxplot(data)
plt.title('Global intensity')
data = dataset['Sub_metering_1'].to_numpy()
plt.subplot(1,7,5)
plt.boxplot(data)
plt.title('Sub metering 1')
data = dataset['Sub metering 2'].to numpy()
plt.subplot(1,7,6)
plt.boxplot(data)
plt.title('Sub metering 2')
data = dataset['Sub metering 3'].to numpy()
plt.subplot(1,7,7)
plt.boxplot(data)
plt.title('Sub metering 3')
plt.show()
```


Splitting dataset into training dataset and test dataset respectively.

```
from sklearn.model selection import train test split
training dataset, testing dataset = train test split(dataset, test size=0.1, random state=25)
dataset.shape
   (103763, 7)
training dataset.shape
   (93386, 7)
testing dataset.shape
   (10377, 7)
dataset.shape[0] == training dataset.shape[0]+testing dataset.shape[0]
```

True

Creation of the target variable in the training dataset with the help of available features in the dataframe

training_dataset

ering_3	Sub_meter:	Sub_metering_2	Sub_metering_1	Global_intensity	Voltage	Global_reactive_power	Global_active_power	
18.0		0.0	1.0	5.6	241.19	0.084	1.348	1440973
0.0		1.0	0.0	1.4	237.63	0.212	0.286	401411
1.0		0.0	0.0	1.0	243.93	0.000	0.268	696281
0.0		0.0	0.0	1.6	249.62	0.116	0.378	1085652
17.0		0.0	0.0	15.2	236.83	0.496	3.536	474897
17.0		73.0	0.0	27.8	234.48	0.092	6.546	1677877
0.0		0.0	0.0	1.6	248.47	0.156	0.374	1114970
0.0		0.0	0.0	0.8	237.91	0.146	0.174	873524
1.0		0.0	0.0	4.2	238.19	0.404	0.924	1805780
0.0		0.0	0.0	2.0	236.24	0.214	0.420	773390
		73.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	27.8 1.6 0.8 4.2	234.48 248.47 237.91 238.19	0.092 0.156 0.146 0.404	6.546 0.374 0.174 0.924	1677877 1114970 873524 1805780

93386 rows × 7 columns

training_dataset["active_energy_per_minute_in_Wh"] = (training_dataset['Global_active_power']

training_dataset

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
1440973	1.348	0.084	241.19	5.6	1.0	0.0	18.0
401411	0.286	0.212	237.63	1.4	0.0	1.0	0.0
696281	0.268	0.000	243.93	1.0	0.0	0.0	1.0
1085652	0.378	0.116	249.62	1.6	0.0	0.0	0.0
474897	3.536	0.496	236.83	15.2	0.0	0.0	17.0
1677877	6.546	0.092	234.48	27.8	0.0	73.0	17.0
1114970	0.374	0.156	248.47	1.6	0.0	0.0	0.0
873524	0.174	0.146	237.91	0.8	0.0	0.0	0.0
1805780	0.924	0.404	238.19	4.2	0.0	0.0	1.0
773390	0.420	0.214	236.24	2.0	0.0	0.0	0.0
93386 rows	s × 8 columns						

Creation of the target variable in the testing dataset with the help of available features in the dataframe.

testing_dataset

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
696294	0.266	0.000	243.85	1.0	0.0	0.0	1.0
1953000	0.630	0.000	246.69	2.6	0.0	0.0	1.0
1787586	1.554	0.204	245.88	6.2	0.0	0.0	19.0
1546288	1.980	0.000	240.85	8.2	0.0	0.0	18.0
1722499	2.704	0.000	238.62	11.2	0.0	0.0	18.0

testing_dataset["active_energy_per_minute_in_Wh"] = (testing_dataset['Global_active_power']*1

testing_dataset

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
696294	0.266	0.000	243.85	1.0	0.0	0.0	1.0

Performing segmentation using K-means clustering algorithm.

```
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

clustering_dataset = training_dataset.copy()
clustering dataset.head()

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
1440973	1.348	0.084	241.19	5.6	1.0	0.0	18.0
401411	0.286	0.212	237.63	1.4	0.0	1.0	0.0
696281	0.268	0.000	243.93	1.0	0.0	0.0	1.0
1085652	0.378	0.116	249.62	1.6	0.0	0.0	0.0
474897	3.536	0.496	236.83	15.2	0.0	0.0	17.0
4							•

clustering_dataset

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
1440973	1.348	0.084	241.19	5.6	1.0	0.0	18.0
401411	0.286	0.212	237.63	1.4	0.0	1.0	0.0
696281	0.268	0.000	243.93	1.0	0.0	0.0	1.0
1085652	0.378	0.116	249.62	1.6	0.0	0.0	0.0
474897	3.536	0.496	236.83	15.2	0.0	0.0	17.0
1677877	6.546	0.092	234.48	27.8	0.0	73.0	17.0
1114970	0.374	0.156	248.47	1.6	0.0	0.0	0.0
873524	0.174	0.146	237.91	0.8	0.0	0.0	0.0
1805780	0.924	0.404	238.19	4.2	0.0	0.0	1.0
773390	0.420	0.214	236.24	2.0	0.0	0.0	0.0
93386 rows	s × 8 columns						
4							•

sc = MinMaxScaler()

clustering_dataset['Global_active_power'] = sc.fit_transform(clustering_dataset['Global_active_power'] = sc.fit_transform(clustering_dataset['Global_reactive_power'] = sc.fit_transform(clustering_dataset['Voltage'].to_numpy().resclustering_dataset['Voltage'] = sc.fit_transform(clustering_dataset['Voltage'].to_numpy().resclustering_dataset['Global_intensity'] = sc.fit_transform(clustering_dataset['Global_intensity'].

clustering_dataset['Sub_metering_2'] = sc.fit_transform(clustering_dataset['Sub_metering_2'].
clustering_dataset['Sub_metering_3'] = sc.fit_transform(clustering_dataset['Sub_metering_3'].
clustering_dataset

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
1440973	0.132252	0.080306	0.582459	0.126761	0.012346	0.000000	0.580645
401411	0.021834	0.202677	0.461903	0.028169	0.000000	0.013333	0.000000
696281	0.019963	0.000000	0.675246	0.018779	0.000000	0.000000	0.032258
1085652	0.031399	0.110899	0.867931	0.032864	0.000000	0.000000	0.000000
474897	0.359742	0.474187	0.434812	0.352113	0.000000	0.000000	0.548387
1677877	0.672697	0.087954	0.355232	0.647887	0.000000	0.973333	0.548387
1114970	0.030984	0.149140	0.828987	0.032864	0.000000	0.000000	0.000000
873524	0.010189	0.139579	0.471385	0.014085	0.000000	0.000000	0.000000
1805780	0.088168	0.386233	0.480867	0.093897	0.000000	0.000000	0.032258
773390	0.035766	0.204589	0.414832	0.042254	0.000000	0.000000	0.000000
93386 rows × 8 columns							
4							•

k_rng = range(1,10) sse = []

```
for k in k rng:
  KM = KMeans(n clusters=k)
  KM.fit(clustering_dataset[['Global_active_power', 'Global_reactive_power', 'Voltage',
                                  'Global intensity'])
  sse.append(KM.inertia )
sse
    [4282.613148306373,
     2705.5459098482434,
     2184.587990962694,
    1777.7238689964763,
    1529.0325298003072,
     1353.90815717943,
    1206.1778920002967,
    1084.466999094875,
    1003.7456194574811]
plt.figure(figsize=(10,10))
plt.xlabel('K')
plt.ylabel('Sum of squared error')
plt.plot(k rng,sse)
```

```
[<matplotlib.lines.Line2D at 0x7f5e2bb14490>]
```

```
4000
      3500
Sum of squared error 2500
      2000
```

km = KMeans(n_clusters=3)
km

```
KMeans(n_clusters=3)
```

y_predicted

```
array([0, 1, 1, ..., 1, 1, 1], dtype=int32)
```

clustering_dataset['cluster'] = y_predicted clustering_dataset

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
1440973	0.132252	0.080306	0.582459	0.126761	0.012346	0.000000	0.580645
401411	0.021834	0.202677	0.461903	0.028169	0.000000	0.013333	0.000000
696281	0.019963	0.000000	0.675246	0.018779	0.000000	0.000000	0.032258
1085652	0.031399	0.110899	0.867931	0.032864	0.000000	0.000000	0.000000
474897	0.359742	0.474187	0.434812	0.352113	0.000000	0.000000	0.548387
1677877	0.672697	0.087954	0.355232	0.647887	0.000000	0.973333	0.548387
1114970	0.030984	0.149140	0.828987	0.032864	0.000000	0.000000	0.000000
873524	0.010189	0.139579	0.471385	0.014085	0.000000	0.000000	0.000000
1805780	0.088168	0.386233	0.480867	0.093897	0.000000	0.000000	0.032258
773390	0.035766	0.204589	0.414832	0.042254	0.000000	0.000000	0.000000
93386 rows	s × 9 columns						
4							•

km.cluster_centers_

```
array([[0.17662204, 0.12524244, 0.53842678, 0.16912945, 0.00237614, 0.00745483, 0.57747216],
[0.04897228, 0.10901652, 0.59579662, 0.05104554, 0.00221747, 0.00905642, 0.01719687],
[0.42633057, 0.19967411, 0.43704665, 0.41129531, 0.2663664, 0.20273521, 0.40370177]])
```

```
df1 = clustering_dataset[clustering_dataset.cluster == 0]
df2 = clustering_dataset[clustering_dataset.cluster == 1]
df3 = clustering_dataset[clustering_dataset.cluster == 2]

plt.figure(figsize=(20,20))
plt.scatter(df1.Global_active_power,df1.active_energy_per_minute_in_Wh,color='green')
plt.scatter(df2.Global_active_power,df2.active_energy_per_minute_in_Wh,color='red')
plt.scatter(df3.Global_active_power,df3.active_energy_per_minute_in_Wh,color='blue')
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,6],color='black',marker='*',label=
plt.show()
```


Scaling/ Normalizing the features in the training dataset

X_train = training_dataset[training_dataset.columns.tolist()[:-1]].copy()
X train

THE PROPERTY OF THE PROPERTY O

Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
1.348	0.084	241.19	5.6	1.0	0.0	18.0
0.286	0.212	237.63	1.4	0.0	1.0	0.0
0.268	0.000	243.93	1.0	0.0	0.0	1.0
0.378	0.116	249.62	1.6	0.0	0.0	0.0
3.536	0.496	236.83	15.2	0.0	0.0	17.0
6.546	0.092	234.48	27.8	0.0	73.0	17.0
0.374	0.156	248.47	1.6	0.0	0.0	0.0
0.174	0.146	237.91	0.8	0.0	0.0	0.0
0.924	0.404	238.19	4.2	0.0	0.0	1.0
0.420	0.214	236.24	2.0	0.0	0.0	0.0
	1.348 0.286 0.268 0.378 3.536 6.546 0.374 0.174 0.924	1.348 0.084 0.286 0.212 0.268 0.000 0.378 0.116 3.536 0.496 6.546 0.092 0.374 0.156 0.174 0.146 0.924 0.404	1.348 0.084 241.19 0.286 0.212 237.63 0.268 0.000 243.93 0.378 0.116 249.62 3.536 0.496 236.83 6.546 0.092 234.48 0.374 0.156 248.47 0.174 0.146 237.91 0.924 0.404 238.19	1.348 0.084 241.19 5.6 0.286 0.212 237.63 1.4 0.268 0.000 243.93 1.0 0.378 0.116 249.62 1.6 3.536 0.496 236.83 15.2 6.546 0.092 234.48 27.8 0.374 0.156 248.47 1.6 0.174 0.146 237.91 0.8 0.924 0.404 238.19 4.2	1.348 0.084 241.19 5.6 1.0 0.286 0.212 237.63 1.4 0.0 0.268 0.000 243.93 1.0 0.0 0.378 0.116 249.62 1.6 0.0 3.536 0.496 236.83 15.2 0.0 6.546 0.092 234.48 27.8 0.0 0.374 0.156 248.47 1.6 0.0 0.174 0.146 237.91 0.8 0.0 0.924 0.404 238.19 4.2 0.0	0.286 0.212 237.63 1.4 0.0 1.0 0.268 0.000 243.93 1.0 0.0 0.0 0.378 0.116 249.62 1.6 0.0 0.0 3.536 0.496 236.83 15.2 0.0 0.0 6.546 0.092 234.48 27.8 0.0 73.0 0.374 0.156 248.47 1.6 0.0 0.0 0.174 0.146 237.91 0.8 0.0 0.0 0.924 0.404 238.19 4.2 0.0 0.0

93386 rows × 7 columns

sctr = MinMaxScaler()

X_train['Global_active_power'] = sctr.fit_transform(X_train['Global_active_power'].to_numpy()

```
X_train['Global_reactive_power'] = sctr.fit_transform(X_train['Global_reactive_power'].to_num
X_train['Voltage'] = sctr.fit_transform(X_train['Voltage'].to_numpy().reshape(-1,1))

X_train['Global_intensity'] = sctr.fit_transform(X_train['Global_intensity'].to_numpy().resha

X_train['Sub_metering_1'] = sctr.fit_transform(X_train['Sub_metering_1'].to_numpy().reshape(-

X_train['Sub_metering_2'] = sctr.fit_transform(X_train['Sub_metering_2'].to_numpy().reshape(-

X_train['Sub_metering_3'] = sctr.fit_transform(X_train['Sub_metering_3'].to_numpy().reshape(-

X_train['Sub_metering_3'] = sctr.fit_transform(X_train['
```

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
1440973	0.132252	0.080306	0.582459	0.126761	0.012346	0.000000	0.580645

Y_train = training_dataset[training_dataset.columns.tolist()[-1:]].copy()
Y_train

	<pre>active_energy_per_minute_in_Wh</pre>
1440973	3.466667
401411	3.766667
696281	3.466667
1085652	6.300000
474897	41.933333
677877	19.100000
1114970	6.233333
873524	2.900000
1805780	14.400000
773390	7.000000
0000	4

93386 rows × 1 columns

Scaling/ Normalizing the features in the testing dataset

X_test = testing_dataset[testing_dataset.columns.tolist()[:-1]].copy()
X_test

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
696294	0.266	0.000	243.85	1.0	0.0	0.0	1.0
1953000	0.630	0.000	246.69	2.6	0.0	0.0	1.0
1787586	1.554	0.204	245.88	6.2	0.0	0.0	19.0
1546288	1.980	0.000	240.85	8.2	0.0	0.0	18.0
1722499	2.704	0.000	238.62	11.2	0.0	0.0	18.0
1671759	0.344	0.070	247.68	1.4	0.0	0.0	1.0
1401804	0.156	0.000	243.91	0.6	0.0	0.0	1.0
1977546	0.236	0.088	244.35	1.0	0.0	2.0	0.0
1284552	0.394	0.156	228.47	1.8	0.0	2.0	1.0
1303477	0.910	0.212	239.69	3.8	1.0	1.0	0.0

10377 rows × 7 columns

```
sctt = MinMaxScaler()
```

```
X_test['Global_active_power'] = sctt.fit_transform(X_test['Global_active_power'].to_numpy().r

X_test['Global_reactive_power'] = sctt.fit_transform(X_test['Global_reactive_power'].to_numpy

X_test['Voltage'] = sctt.fit_transform(X_test['Voltage'].to_numpy().reshape(-1,1))

X_test['Global_intensity'] = sctt.fit_transform(X_test['Global_intensity'].to_numpy().reshape

X_test['Sub_metering_1'] = sctt.fit_transform(X_test['Sub_metering_1'].to_numpy().reshape(-1,1))
```

X_test['Sub_metering_2'] = sctt.fit_transform(X_test['Sub_metering_2'].to_numpy().reshape(-1,
X_test['Sub_metering_3'] = sctt.fit_transform(X_test['Sub_metering_3'].to_numpy().reshape(-1,
X_test['Sub_metering_3'].to_numpy().reshape(-1,
X_test['Sub_metering_3'].to_n

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
696294	0.023701	0.000000	0.683864	0.023669	0.000000	0.000000	0.033333
1953000	0.069592	0.000000	0.787779	0.071006	0.000000	0.000000	0.033333
1787586	0.186082	0.149560	0.758141	0.177515	0.000000	0.000000	0.633333
1546288	0.239788	0.000000	0.574094	0.236686	0.000000	0.000000	0.600000
1722499	0.331064	0.000000	0.492499	0.325444	0.000000	0.000000	0.600000
1671759	0.033535	0.051320	0.824003	0.035503	0.000000	0.000000	0.033333
1401804	0.009834	0.000000	0.686059	0.011834	0.000000	0.000000	0.033333
1977546	0.019919	0.064516	0.702159	0.023669	0.000000	0.027027	0.000000
1284552	0.039839	0.114370	0.121112	0.047337	0.000000	0.027027	0.033333
1303477	0.104892	0.155425	0.531650	0.106509	0.012987	0.013514	0.000000
10377 rows	s × 7 columns						
4							•

Y_test = testing_dataset[testing_dataset.columns.tolist()[-1:]].copy()
Y_test

	active_energy_per_minute_in_Wh
696294	3.433333
1953000	9.500000
1787586	6.900000
1546288	15.000000
1722499	27.066667
1671759	4.733333
1401804	1.600000
1977546	1.933333
1284552	3.566667
1303477	13.166667

10377 rows x 1 columns

Linear Regression Model

```
#Fitting the model on training set
from sklearn.linear_model import LinearRegression

reg = LinearRegression()
model1 = reg.fit(X_train,Y_train)

print(f'Regression score : {model1.score(X_train,Y_train)}')
print(f'Regression coefficient : {model1.coef_}')
```

```
Regression score: 1.0
    Regression coefficient: [[ 1.60300000e+02 -2.84217094e-14 2.48689958e-14 4.65405492e-13
      -8.10000000e+01 -7.50000000e+01 -3.10000000e+01]]
target1 = Y test.to numpy().flatten()
target1
    array([ 3.43333333, 9.5 , 6.9 , ..., 1.933333333,
           3.56666667, 13.16666667])
predicted1 = model1.predict(X test).flatten()
predicted1
    array([ 4.03267776, 11.38885527, 11.46222895, ..., 2.4327057 ,
           4.59243843, 16.01532512])
predicted1 - target1
    array([0.59934443, 1.88885527, 4.56222895, ..., 0.49937237, 1.02577176,
          2.84865845])
from sklearn.metrics import mean squared error, r2 score
mse1 = mean squared error(target1,predicted1)
r2 scr1 = r2 score(target1,predicted1)
print(f"value of mse : {mse1}")
print(f"value of r2 score : {r2 scr1}")
    value of mse : 21.219513887994836
```

```
Forecasting of future electrical load using machine learning ipynb - Colaboratory
    value of r2 score: 0.7612794175528509
import pickle
#saving the model into the disk
filename = f'linear model {r2 scr1} {mse1}.sav'
pickle.dump(model1, open(filename, 'wb'))
#load the model from disk
#loaded model = pickle.load(open(filename, 'rb'))
```

Support Vector Machine Model

#print(result)

```
from sklearn import svm
svr1 = svm.SVR(kernel='linear')
svr1.fit(X train,Y train.to numpy().flatten())
predicted2 = svr1.predict(X test)
target2 = Y test.to numpy().flatten()
mse2 = mean squared error(target2,predicted2)
r2 scr2 = r2 score(target2,predicted2)
```

#result = loaded model.score(X test, Y test)

```
print(f"value of mse : {mse2}")
print(f"value of r2 score : {r2 scr2}")
filename = f'svm svr1 linear model {r2 scr2} {mse2}.sav'
pickle.dump(svr1, open(filename, 'wb'))
    value of mse : 23.089427705219222
   value of r2 score: 0.7402427944742079
from sklearn import svm
svr2 = svm.SVR(kernel='poly')
svr2.fit(X train,Y train.to numpy().flatten())
predicted3 = svr2.predict(X test)
target3 = Y test.to numpy().flatten()
mse3 = mean squared error(target3,predicted3)
r2 scr3 = r2 score(target3,predicted3)
print(f"value of mse : {mse3}")
print(f"value of r2 score : {r2 scr3}")
filename = f'svm svr2 poly model {r2 scr3} {mse3}.sav'
pickle.dump(svr2, open(filename, 'wb'))
```

value of mse : 58.68205425161569 value of r2_score : 0.3398239825811269

Decision Tree Regression Model

```
from sklearn.tree import DecisionTreeRegressor
regressor1 = DecisionTreeRegressor(random state = 0)
regressor1.fit(X train,Y train.to numpy().flatten())
predicted4 = regressor1.predict(X test)
target4 = Y test.to numpy().flatten()
mse4 = mean squared error(target4,predicted4)
r2 scr4 = r2 score(target4,predicted4)
print(f"value of mse : {mse4}")
print(f"value of r2 score : {r2 scr4}")
filename = f'decision tree model {r2 scr4} {mse4}.sav'
pickle.dump(regressor1, open(filename, 'wb'))
    value of mse : 25.3096945136599
   value of r2 score: 0.7152646828880185
```

Random Forest Model

```
from sklearn.ensemble import RandomForestRegressor
regressor2 = RandomForestRegressor(n estimators = 100, random state = 0)
regressor2.fit(X train,Y train.to numpy().flatten())
predicted5 = regressor2.predict(X test)
target5 = Y test.to numpy().flatten()
mse5 = mean squared error(target5,predicted5)
r2 scr5 = r2 score(target5,predicted5)
print(f"value of mse : {mse5}")
print(f"value of r2 score : {r2 scr5}")
filename = f'random forest model {r2 scr5} {mse5}.sav'
pickle.dump(regressor2, open(filename, 'wb'))
    value of mse : 23.70021669477456
   value of r2 score: 0.73337138808344
```

Xgboost Regression Model

import xgboost as xg
from xgboost import XGBRegressor

```
regressor3 = XGBRegressor()
regressor3.fit(X train, Y train)
predicted6 = regressor3.predict(X test)
target6 = Y test.to numpy().flatten()
mse6 = mean squared error(target6,predicted6)
r2 scr6 = r2 score(target6, predicted6)
print(f"value of mse : {mse6}")
print(f"value of r2 score : {r2 scr6}")
filename = f'xgboost model {r2 scr6} {mse6}.sav'
pickle.dump(regressor3, open(filename, 'wb'))
    [03:20:27] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
    value of mse : 20.31091849734466
    value of r2 score: 0.7715011607091595
```

Double-click (or enter) to edit

Evaluation of machine learning models on scikit-learn mean-sqaured-error & r2_score performance metrics:

```
rz_scr = [u,rz_scri,rz_scrz,rz_scrz,rz_scr4,rz_scr5,rz_scr6]

print(model)

print(mse)

print(r2_scr)
```

['zero_point', 'linear_regression_model', 'linear_kernel_svm_model', 'poly_kernel_svm_model', 'decision_tree_model', 'random_fo [0, 15.142193612381762, 15.360562178574126, 32.22943014152453, 16.743579167842157, 15.662564533880547, 12.686506695482702] [0, 0.8156753007770728, 0.8130171178668877, 0.6076737513047541, 0.7961817638162978, 0.8093408676001526, 0.8455681791756802]

Plot of r2_score of the models:

```
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

plt.figure(figsize=(10,10))

sns.set_style("darkgrid")
plt.plot(r2_scr,marker = 'o',markersize=10,linewidth=1.5)

plt.title("r2_score vs models",fontweight="bold")
plt.xlabel("models",fontweight="bold")
plt.ylabel("r2_score",fontweight="bold")

plt.show()
```


Plot of mse of the models:

import matplotlib.pyplot as plt

```
import numpy as np
import seaborn as sns

plt.figure(figsize=(10,10))

sns.set_style("darkgrid")
plt.plot(mse,marker = 'o',markersize=10,linewidth=1.5)

plt.title("mean-sqaured_error vs models",fontweight="bold")
plt.xlabel("models",fontweight="bold")
plt.ylabel("mean-sqaured_error",fontweight="bold")
plt.show()
```


