Automorphism group of Cartan modular curves

Pietro Mercuri a joint work with V. Dose and G. Lido

Sapienza Università di Roma

International Seminar on Automorphic Forms 16-01-2024

Modular curves as moduli spaces

Let n be a positive integer and let H be a subgroup of $GL_2(\mathbb{Z}/n\mathbb{Z})$ containing -I, we associate a modular curve to H.

On the set of pairs (E, ϕ) , where E is an elliptic curve and $\phi \colon (\mathbb{Z}/n\mathbb{Z})^2 \to E[n]$ is an isomorphism, we define the following equivalence relation:

$$(E,\phi) \sim_{H} (E',\phi') \iff \begin{array}{l} \text{there is an isomorphism } \iota \colon E \xrightarrow{\sim} E', \\ \text{and } (\phi')^{-1} \circ \iota|_{E[n]} \circ \phi \in H. \\ \\ (\mathbb{Z}/n\mathbb{Z})^{2} \xrightarrow{\hspace{1cm}} & E[n] \\ \\ (\phi')^{-1} \circ \iota|_{E[n]} \circ \phi & \downarrow \\ (\mathbb{Z}/n\mathbb{Z})^{2} \xrightarrow{\hspace{1cm}} & \phi' \\ \\ (\mathbb{Z}/n\mathbb{Z})^{2} \xrightarrow{\hspace{1cm}} & E'[n] \end{array}$$

The modular curve Y_H is the coarse moduli space parametrizing $\{(E,\phi)\}/\sim_H$ and X_H is the compactification of Y_H . In particular, for every algebraically closed field K, there is a bijection between $Y_H(K)$ and $\{(E,\phi)\}/\sim_H$, where E is an elliptic curve over K.

Modular curves as moduli spaces

If $\det(H) = (\mathbb{Z}/n\mathbb{Z})^{\times}$, then Y_H and X_H are geometrically connected algebraic curves defined over \mathbb{Q} . Moreover, there are isomorphisms of Riemann surfaces

$$Y_H(\mathbb{C}) \cong \Gamma_H \backslash \mathcal{H}$$
 and $X_H(\mathbb{C}) \cong \Gamma_H \backslash \mathcal{H}^*$,

where $\mathcal{H}:=\{z\in\mathbb{C}:\operatorname{Im}(z)>0\}$ is the complex upper half-plane, $\mathcal{H}^*:=\mathcal{H}\cup\mathbb{Q}\cup\{\infty\}$ is the extended complex upper half-plane,

$$\Gamma_H := \{ \gamma \in \operatorname{SL}_2(\mathbb{Z}) : \gamma \pmod{n} \in H \},$$

is a congruence subgroup of level n and the action of $\mathrm{SL}_2(\mathbb{Z})$ on \mathcal{H}^* is given, for $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \mathrm{SL}_2(\mathbb{Z})$ and $\tau \in \mathcal{H}^*$, by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau := \frac{a\tau + b}{c\tau + d}.$$

Examples

- When $H = \mathrm{GL}_2(\mathbb{Z}/n\mathbb{Z})$, we have $X_H = X(1) \cong \mathbb{P}^1$ (i.e., the *j*-line).
- When $H = B(n) := \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}, a, d \in (\mathbb{Z}/n\mathbb{Z})^{\times}, b \in \mathbb{Z}/n\mathbb{Z} \right\}$ (the standard Borel subgroup), we have $X_H = X_0(n)$.

The action of Galois

Let K be a number field. There is an action of $\operatorname{Gal}(\bar{K}/K)$ on the points of Y_H .

If P is a point of Y_H given by $P = \{(E, \phi)\}/\sim_H$, then

$$P^{\sigma} := \{(E^{\sigma}, \phi^{\sigma})\}/\sim_{H}, \qquad \text{for } \sigma \in \operatorname{Gal}(\bar{K}/K),$$

where:

- E^{σ} can be seen as the elliptic curve described by the same Weiestrass equation of E whose coefficients are the images under σ ;
- $\phi^{\sigma} := \sigma \circ \phi$.

Rational points

Let K be a number field. A point on Y_H is K-rational if it is invariant with respect to $\operatorname{Gal}(\overline{K}/K)$, i.e., if

$$(E,\phi) \sim_H (E,\phi)^{\sigma} = (E^{\sigma},\phi^{\sigma}), \qquad \text{for all } \sigma \in \operatorname{Gal}(\bar{K}/K),$$

that, using the description above, means

$$(E,\phi) \sim_H (E^\sigma,\phi^\sigma) \iff \begin{array}{l} \text{there is an isomorphism } \iota \colon E \xrightarrow{\sim} E^\sigma, \\ \text{and } (\phi^\sigma)^{-1} \circ \iota|_{E[n]} \circ \phi \in H. \\ \\ (\mathbb{Z}/n\mathbb{Z})^2 \xrightarrow{\hspace{1cm}} E[n] \\ (\phi^\sigma)^{-1} \circ \iota|_{E[n]} \circ \phi & & \downarrow \iota|_{E[n]} \\ (\mathbb{Z}/n\mathbb{Z})^2 \xrightarrow{\hspace{1cm}} \phi^\sigma & & E^\sigma[n] \end{array}$$

Rational points

Since E and E^{σ} are isomorphic for all $\sigma \in \operatorname{Gal}(\bar{K}/K)$ if and only if E is defined over K, then if a point $P = (E, \phi)$ of Y_H is K-rational, we have $E = E^{\sigma}$ and $\iota = \operatorname{id}_E$.

Hence we can state that $P = (E, \phi)$ is K-rational if and only if

- *E* is defined over *K*;
- $(\phi^{\sigma})^{-1} \circ \iota|_{E[n]} \circ \phi = \phi^{-1} \circ \sigma^{-1} \circ \phi \in H.$

This can be rephrased as: $P=(E,\phi)$ is K-rational if and only if the image of the Galois representation (induced by the action of $\operatorname{Gal}(\bar{K}/K)$ on E[n] via ϕ) associated to E is contained in H.

Rational points

One interesting problem is to determine the set of K-rational points of X_H for a number field K.

If the genus is at least 2, we know by Faltings Theorem that the number of K-rational points is finite. But we want to know precisely what they are.

This is hard even when $K = \mathbb{Q}$ and it is still an open problem although many improvements have been done.

Serre made a conjecture that describes the set of \mathbb{Q} -rational points $X_H(\mathbb{Q})$ when the level n=p is prime.

Natural maps among modular curves

Since the natural maps $X_{H_1} \to X_{H_2}$, induced by the inclusions $H_1 \subset H_2$, are rationals, it is enough to study X_H when H is a proper maximal subgroup of $\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})$.

Example: Every modular curve X_H has a rational map toward the j-line $X(1) = X_{\mathrm{GL}_2(\mathbb{Z}/n\mathbb{Z})}$, this map is called j-map.

Toward maximal subgroups of $GL_2(\mathbb{Z}/p\mathbb{Z})$

Let p be an odd prime and let ξ be a nonsquare modulo p, we define the following subgroups of $GL_2(\mathbb{Z}/p\mathbb{Z})$:

• the (standard) split Cartan subgroup

$$C_{\mathsf{s}}(p) := \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}, a, d \in (\mathbb{Z}/p\mathbb{Z})^{\times} \right\};$$

the normalizer of the (standard) split Cartan subroup

$$C_{\mathsf{s}}^+(p) := C_{\mathsf{s}}(p) \cup \left\{ \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix}, b, c \in (\mathbb{Z}/p\mathbb{Z})^{\times} \right\};$$

• the (standard) nonsplit Cartan subgroup

$$C_{\mathsf{ns}}(p) := \left\{ \begin{pmatrix} a & b\xi \\ b & a \end{pmatrix}, a, b \in \mathbb{Z}/p\mathbb{Z}, (a, b) \not\equiv (0, 0) \bmod p \right\};$$

• the normalizer of the (standard) nonsplit Cartan subroup

$$C_{\mathsf{ns}}^+(p) := C_{\mathsf{ns}}(p) \cup \left\{ \begin{pmatrix} a & b\xi \\ -b & -a \end{pmatrix}, a,b \in \mathbb{Z}/p\mathbb{Z}, (a,b) \not\equiv (0,0) \bmod p \right\}.$$

Cartan modular curves for prime levels

Correspondently we define the following modular curves:

$$egin{aligned} X_{\mathsf{s}}(p) &:= X_{\mathcal{C}_{\mathsf{s}}(p)}; & X_{\mathsf{ns}}(p) &:= X_{\mathcal{C}_{\mathsf{ns}}(p)}; \\ X_{\mathsf{s}}^+(p) &:= X_{\mathcal{C}_{\mathsf{ns}}^+(p)}; & X_{\mathsf{ns}}^+(p) &:= X_{\mathcal{C}_{\mathsf{ns}}^+(p)}. \end{aligned}$$

All of these are geometrically connected algebraic curves defined over \mathbb{Q} . Moreover, if we define the following congruence subgroups of $\mathrm{SL}_2(\mathbb{Z})$:

$$\begin{split} &\Gamma_{\mathsf{s}}(p) := \{ \gamma \in \operatorname{SL}_2(\mathbb{Z}) : \gamma \; (\mathsf{mod} \; p) \in \mathit{C}_{\mathsf{s}}(p) \}; \\ &\Gamma_{\mathsf{s}}^+(p) := \{ \gamma \in \operatorname{SL}_2(\mathbb{Z}) : \gamma \; (\mathsf{mod} \; p) \in \mathit{C}_{\mathsf{s}}^+(p) \}; \\ &\Gamma_{\mathsf{ns}}(p) := \{ \gamma \in \operatorname{SL}_2(\mathbb{Z}) : \gamma \; (\mathsf{mod} \; p) \in \mathit{C}_{\mathsf{ns}}(p) \}; \\ &\Gamma_{\mathsf{ns}}^+(p) := \{ \gamma \in \operatorname{SL}_2(\mathbb{Z}) : \gamma \; (\mathsf{mod} \; p) \in \mathit{C}_{\mathsf{ns}}^+(p) \}. \end{split}$$

We have the following isomorphisms of Riemann surfaces:

$$\begin{array}{ll} X_{s}(p)(\mathbb{C}) \cong \Gamma_{s}(p) \backslash \mathcal{H}^{*}; & X_{ns}(p)(\mathbb{C}) \cong \Gamma_{ns}(p) \backslash \mathcal{H}^{*}; \\ X_{s}^{+}(p)(\mathbb{C}) \cong \Gamma_{s}^{+}(p) \backslash \mathcal{H}^{*}; & X_{ns}^{+}(p)(\mathbb{C}) \cong \Gamma_{ns}^{+}(p) \backslash \mathcal{H}^{*}. \end{array}$$

Conjugate subgroups

If H_1 and H_2 are conjugate subgroups of $\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})$, then $X_{H_1}\cong X_{H_2}$.

This isomorphism is not modular! It is just an isomorphism of algebraic curves, but it is not compatible with the j-map.

Hence, every conjugate subgroup of B(p), $C_s(p)$, $C_s^+(p)$, $C_{ns}(p)$, $C_{ns}^+(p)$ corresponds to a modular curve isomorphic to $X_0(p)$, $X_s(p)$, $X_s^+(p)$, $X_{ns}(p)$, $X_{ns}^+(p)$ respectively.

Maximal subgroups of $\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})$

Theorem

Let p be an odd prime and let H be a proper maximal subgroup of $\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})$ such that $\det(H)=(\mathbb{Z}/p\mathbb{Z})^{\times}$. Then, we can only have one of the following cases:

- H is a Borel subgroup, i.e., it is a conjugate of B(p);
- H is the normalizer of a split Cartan subgroup, i.e., it is a conjugate of $C_s^+(p)$;
- H is the normalizer of a nonsplit Cartan subgroup, i.e., it is a conjugate of $C_{ns}^+(p)$;
- H is an exceptional subgroup, i.e., its image in $\operatorname{PGL}_2(\mathbb{Z}/p\mathbb{Z})$ is isomorphic either to the symmetric group S_4 or to the alternating group A_4 or A_5 .

Expected rational points

Some rational points arise naturally, we call these points *expected* rational points.

The expected rational points can come only from cusps and from elliptic curves E with CM such that the class number of \mathcal{O}_E is one. (An elliptic curve over $\mathbb C$ has Complex Multiplication if its endomorphism ring is isomorphic to an order \mathcal{O}_E of an imaginary quadratic field.)

Expected rational points

The only 13 orders of an imaginary quadratic field with class number one are the orders with discriminant

$$\Delta \in \{-3, -4, -7, -8, -11, -12, -16, -19, -27, -28, -43, -67, -163\}.$$

The expected rational points are:

- If H is a Borel subgroup, the elliptic curves E as above such that p ramifies in \mathcal{O}_E and the 2 cusps.
- If H is the normalizer of a split Cartan subgroup, the elliptic curves E as above such that p splits in \mathcal{O}_E and 1 cusp (among the $\frac{1}{2}(p+1)$ cusps of the curve).
- If H is the normalizer of a nonsplit Cartan subgroup, the elliptic curves E as above such that p is inert in \mathcal{O}_E (none of the $\frac{1}{2}(p-1)$ cusps of the curve is rational).
- If H is an exceptional subgroup, no rational point is expected.

Uniformity conjecture

Conjecture (Uniformity conjecture, Serre, 1972)

Let H_p be a maximal subgroup as above of the same type for every prime p. Then, there is a positive constant C such that the rational points of X_{H_p} are only the expected rational points for every p > C.

What is known?

- ullet For the exceptional subgroups, this is true for $C=13.^a$
- For the Borel case, this is true for C = 37.
- ullet For the normalizer of a split Cartan subgroup, this is true for $C=13.^c$
- For the normalizer of a nonsplit Cartan subgroup, is this true?

^aSerre, 1977

^bMazur, 1977

^cBilu, Parent, Rebolledo, 2013

Automorphisms

In some cases the knowledge of automorphism group helped to study the rational points. $\!\!^d$

Let
$$\operatorname{GL}_2^+(\mathbb{Q}) := \{g \in \operatorname{GL}_2(\mathbb{Q}) : \det g > 0\}$$
 and let
$$\pi \colon \operatorname{GL}_2^+(\mathbb{Q}) \to \operatorname{PGL}_2^+(\mathbb{Q}) := \operatorname{GL}_2^+(\mathbb{Q})/\{\text{scalar matrices}\}$$

be the natural quotient map.

Each matrix $m \in \operatorname{PGL}_2^+(\mathbb{Q})$ defines a fractional linear transformation $m \colon \mathcal{H}^* \to \mathcal{H}^*$ and such an automorphism of the Riemann surface \mathcal{H}^* pushes down to an automorphism of $\Gamma_H \backslash \mathcal{H}^*$ if and only if m normalizes $\pi(\Gamma_H)$.

Definition (Modular automorphisms)

If $\det(H) = (\mathbb{Z}/n\mathbb{Z})^{\times}$, an automorphism of X_H , defined over \mathbb{C} , is called *modular* if its action on $X_H(\mathbb{C}) = \Gamma_H \setminus \mathcal{H}^*$ is described by a fractional linear transformation of \mathcal{H}^* associated to an element $m \in \operatorname{PGL}_2^+(\mathbb{Q})$ that normalizes $\pi(\Gamma_H)$ in $\operatorname{PGL}_2^+(\mathbb{Q})$.

dKenku, 1981, and Momose, 1984

Automorphisms

Is every automorphism of X_H modular?

The answer is no when the genus is 0 or 1. It is not hard to see that in these cases there are non-modular automorphisms.

It is true for $X_0(n)$ when the genus is at least 2 and $n \neq 37,63,108$. $e^{f,g,h}$

^eOgg, 1977

^fKenku, Momose, 1988

g Elkies, 1990

^hHarrison, 2011

Cartan groups for prime power levels

We can extend the previous Cartan groups to prime powers:

$$\begin{split} &C_{\mathsf{s}}(p^r) := \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}, a, d \in (\mathbb{Z}/p^r\mathbb{Z})^{\times} \right\}; \\ &C_{\mathsf{s}}^+(p^r) := C_{\mathsf{s}}(p^r) \cup \left\{ \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix}, b, c \in (\mathbb{Z}/p^r\mathbb{Z})^{\times} \right\}; \\ &C_{\mathsf{ns}}(2^r) := \left\{ \begin{pmatrix} a & b \\ b & a+b \end{pmatrix}, a, b \in \mathbb{Z}/2^r\mathbb{Z}, (a,b) \not\equiv (0,0) \bmod 2 \right\}; \\ &C_{\mathsf{ns}}^+(2^r) := C_{\mathsf{ns}}(2^r) \cup \left\{ \begin{pmatrix} a & a-b \\ b & -a \end{pmatrix}, a, b \in \mathbb{Z}/2^r\mathbb{Z}, (a,b) \not\equiv (0,0) \bmod 2 \right\}; \end{split}$$

and for p odd and a nonsquare element $\xi \in (\mathbb{Z}/p^r\mathbb{Z})^{\times}$:

$$\begin{split} &C_{\mathsf{ns}}(p^r) := \left\{ \begin{pmatrix} a & b\xi \\ b & a \end{pmatrix}, a,b \in \mathbb{Z}/p^r\mathbb{Z}, (a,b) \not\equiv (0,0) \bmod p \right\}; \\ &C_{\mathsf{ns}}^+(p^r) := C_{\mathsf{ns}}(p^r) \cup \left\{ \begin{pmatrix} a & b\xi \\ -b & -a \end{pmatrix}, a,b \in \mathbb{Z}/p^r\mathbb{Z}, (a,b) \not\equiv (0,0) \bmod p \right\}. \end{split}$$

Cartan modular curves for prime power levels

Correspondently we define the following modular curves:

$$X_{s}(p^{r}) := X_{C_{s}(p^{r})};$$
 $X_{ns}(p^{r}) := X_{C_{ns}(p^{r})};$ $X_{s}^{+}(p^{r}) := X_{C_{s}^{+}(p^{r})};$ $X_{ns}^{+}(p^{r}) := X_{C_{ns}^{+}(p^{r})}.$

All of these are geometrically connected algebraic curves defined over \mathbb{Q} . If we define the following congruence subgroups of $\mathrm{SL}_2(\mathbb{Z})$:

$$\begin{split} &\Gamma_{\mathbf{s}}(p^r) := \{ \gamma \in \operatorname{SL}_2(\mathbb{Z}) : \gamma \text{ (mod } p^r) \in \mathcal{C}_{\mathbf{s}}(p^r) \}; \\ &\Gamma_{\mathbf{s}}^+(p^r) := \{ \gamma \in \operatorname{SL}_2(\mathbb{Z}) : \gamma \text{ (mod } p^r) \in \mathcal{C}_{\mathbf{s}}^+(p^r) \}; \\ &\Gamma_{\mathsf{ns}}(p^r) := \{ \gamma \in \operatorname{SL}_2(\mathbb{Z}) : \gamma \text{ (mod } p^r) \in \mathcal{C}_{\mathsf{ns}}(p^r) \}; \\ &\Gamma_{\mathsf{ns}}^+(p^r) := \{ \gamma \in \operatorname{SL}_2(\mathbb{Z}) : \gamma \text{ (mod } p^r) \in \mathcal{C}_{\mathsf{ns}}^+(p^r) \}. \end{split}$$

We have the following isomorphisms of Riemann surfaces:

$$\begin{array}{ll} X_{\mathsf{s}}(p^r)(\mathbb{C}) \cong \Gamma_{\mathsf{s}}(p^r) \backslash \mathcal{H}^*; & X_{\mathsf{ns}}(p^r)(\mathbb{C}) \cong \Gamma_{\mathsf{ns}}(p^r) \backslash \mathcal{H}^*; \\ X_{\mathsf{s}}^+(p^r)(\mathbb{C}) \cong \Gamma_{\mathsf{s}}^+(p^r) \backslash \mathcal{H}^*; & X_{\mathsf{ns}}^+(p^r)(\mathbb{C}) \cong \Gamma_{\mathsf{ns}}^+(p^r) \backslash \mathcal{H}^*. \end{array}$$

Automorphisms of Cartan modular curves

Theorem (Dose, Lido, M., 2022)

If $p^r \notin \{2^3, 2^4, 2^5, 2^6, 3^2, 3^3, 11\}$, then all the automorphisms of the curves $X_s(p^r), X_s^+(p^r), X_{ns}(p^r), X_{ns}^+(p^r)$ with genus at least 2 are modular and

$$\operatorname{Aut}(X_{s}(p^{r})) \cong \begin{cases} (\mathbb{Z}/8\mathbb{Z})^{2} \rtimes_{\varphi} (\mathbb{Z}/2\mathbb{Z}), & \text{if } p = 2, \\ \mathbb{Z}/3\mathbb{Z} \times S_{3}, & \text{if } p = 3, \\ \mathbb{Z}/2\mathbb{Z}, & \text{if } p > 3, \end{cases}$$

$$\operatorname{Aut}(X_{s}^{+}(p^{r})) \cong \begin{cases} \mathbb{Z}/8\mathbb{Z}, & \text{if } p = 2, \\ \mathbb{Z}/3\mathbb{Z}, & \text{if } p = 3, \\ \{1\}, & \text{if } p > 3, \end{cases}$$

$$\operatorname{Aut}(X_{ns}(p^{r})) \cong \mathbb{Z}/2\mathbb{Z},$$

$$\operatorname{Aut}(X_{ns}^{+}(p^{r})) \cong \{1\},$$

with $(\varphi(1))(x,y)=(y,x)$ and S_3 is the symmetric group acting on three elements.

Automorphisms of Cartan modular curves: exceptions

If $p^r \in \{2^3, 2^4, 2^5, 2^6, 3^2, 3^3, 11\}$, then is it true that all the automorphisms of the curves $X_s(p^r), X_s^+(p^r), X_{ns}(p^r), X_{ns}^+(p^r)$ are modular?

p^r	$X_{s}(p^{r})$	$X_{ns}(p^r)$	$X_{s}^{+}(p^{r})$	$X_{ns}^+(p^r)$
8	true $(g=3)^i$	false $(g=1)^j$	false $(g=1)^j$	false $(g=0)^j$
9	true $(g=4)^i$	true $(g=2)^k$	false $(g=1)^j$	false $(g=0)^j$
11	true $(g=6)^i$	false $(g=4)^{I}$	false $(g=2)^m$	false $(g=1)^j$
16	true $(g=21)^i$?(g = 7)	?(g = 9)	false $(g=2)^k$
27	true $(g = 64)^i$?(g = 32)	?(g = 28)	?(g = 12)
32	true $(g = 105)^{i,n}$?(g = 35)	?(g = 49)	?(g = 14)
64	true $(g = 465)^{i,n}$	true $(g=155)^n$	true $(g=225)^n$? (g = 70)

ⁱKenku, Momose, 1988

 $^{^{}j}$ Genus < 2

^kExplicit computation using MAGMA

¹Dose, Fernández, González, Schoof, 2014

mGonzález, 2015

ⁿDose, Lido, M., 2022

Automorphisms of modular curves of Cartan type

Let $n \in \mathbb{Z}_{\geq 3}$ with prime factorization $n = \prod_{i=1}^{\omega(n)} p_i^{e_i}$ and let $H \cong \prod_{i=1}^{\omega(n)} H_{p_i}$ be a subgroup of $\mathrm{GL}_2(\mathbb{Z}/n\mathbb{Z})$, where H_{p_i} is a subgroup of $\mathrm{GL}_2(\mathbb{Z}/p_i^{e_i}\mathbb{Z})$.

Theorem (Dose, Lido, M., 2022)

If $n \geq 10^{400}$ and H such that, for each $i = 1, \ldots, \omega(n)$, either $H_{p_i} \in \{C_s(p_i^{e_i}), C_{ns}(p_i^{e_i})\}$ or $H_{p_i} \in \{C_s^+(p_i^{e_i}), C_{ns}^+(p_i^{e_i})\}$, then every automorphism of X_H is modular and we have

$$\operatorname{Aut}(X_H) \cong \begin{cases} N'/H' \times \mathbb{Z}/2\mathbb{Z}, & \textit{if } n \equiv 2 \bmod 4 \textit{ and } H_2 = C_{\mathsf{s}}^+(2), \\ N'/H', & \textit{otherwise,} \end{cases}$$

where $N' < \mathrm{SL}_2(\mathbb{Z}/n\mathbb{Z})$ is the normalizer of $H' := H \cap \mathrm{SL}_2(\mathbb{Z}/n\mathbb{Z})$.

Outline of the proof

Step 1. Prove, for the group $ModAut(X_H)$ of modular automorphisms of X_H , that

$$\operatorname{ModAut}(X_H) \cong egin{cases} N'/H' imes \mathbb{Z}/2\mathbb{Z}, & \text{if } n \equiv 2 \bmod 4 \\ & \text{and } H_2 = C_{\operatorname{s}}^+(2), \\ N'/H', & \text{otherwise,} \end{cases}$$

where $N' < \operatorname{SL}_2(\mathbb{Z}/n\mathbb{Z})$ is the normalizer of $H' := H \cap \operatorname{SL}_2(\mathbb{Z}/n\mathbb{Z})$.

- Step 2. Prove that if there is a prime $\ell \nmid n$ such that $5 \leq \ell < \frac{1}{2} \mathrm{gon}(X_H) 1$, where gon denotes the gonality, then each automorphism of X_H defined over a compositum of quadratic fields is modular.
- Step 3. Apply the previous step, i.e., prove that such a prime ℓ exists.
- Step 4. Prove that for $n \ge 10^{400}$, each automorphism is defined over a compositum of quadratic fields.

Step 1 (sketch)

Remind that $\pi \colon \mathrm{GL}_2^+(\mathbb{Q}) \to \mathrm{PGL}_2^+(\mathbb{Q})$ is the natural quotient map and $N' < \mathrm{SL}_2(\mathbb{Z}/n\mathbb{Z})$ is the normalizer of $H' := H \cap \mathrm{SL}_2(\mathbb{Z}/n\mathbb{Z})$.

Remark that if $\det(H) = (\mathbb{Z}/n\mathbb{Z})^{\times}$, the group of modular automorphisms is a subgroup of $\operatorname{Aut}(X_H)$ isomorphic to $N/\pi(\Gamma_H)$, where N is the normalizer of $\pi(\Gamma_H)$ in $\operatorname{PGL}_2^+(\mathbb{Q})$.

Some computations with groups of matrices show that $N = \pi(\Gamma_{N'})$ except in the special cases $n \equiv 2 \mod 4$ and $H_2 = C_s^+(2)$.

Hence
$$N/\pi(\Gamma_H) = \pi(\Gamma_{N'})/\pi(\Gamma_H) = \pi(\Gamma_{N'})/\pi(\Gamma_{H'}) \cong N'/H'$$
.

In the remaining cases, we have that N is generated by $\pi(\Gamma_{N'})$ and one element that has order 2 in $N/\pi(\Gamma_H)$ and commutes with all the elements of N'/H'.

Hence $N/\pi(\Gamma_H) \cong N'/H' \times \mathbb{Z}/2\mathbb{Z}$.

Step 2 (sketch part a)

Prove that if there is a prime $\ell \nmid n$ such that $5 \leq \ell < \frac{1}{2} gon(X_H) - 1$, then each automorphism of X_H defined over a compositum of quadratic fields is modular.

In order to show it we proved the following result describing the multiplicities of the points in the image of the Hecke operators T_ℓ .

Theorem

Let $\ell \geq 5$ be a prime not dividing n. We denote by $\rho = e^{\frac{2\pi i}{3}}$ and, for every $\tau \in \mathcal{H}$, we denote by E_{τ} the elliptic curve $\mathbb{C}/(\mathbb{Z}+\mathbb{Z}\tau)$. Then, for all points $P \in X_H(\mathbb{C})$, we have that:

- in T_ℓ(P) there is a point with multiplicity at least 4 if and only if P
 is a cusp;
- ② in $T_{\ell}(P)$ there is a point with multiplicity 3 if and only if $P = (E_{\rho}, \phi)$ for some ϕ such that the matrix $\phi^{-1} \circ \rho|_{E_{\rho}[n]} \circ \phi$ lies in H (i.e., P is a branch point of X_H over $j(\rho) = 0$);
- in $T_{\ell}(P)$ there are two distinct points with multiplicity 2 if and only if $P = (E_i, \phi)$ for some ϕ such that the matrix $\phi^{-1} \circ i|_{E_i[n]} \circ \phi$ lies in H (i.e., P is a branch point of X_H over j(i) = 1728).

Step 2 (sketch part b)

Then we need the following commutation rule.

Theorem

Let $\ell \nmid n$ be a prime and let $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ be a Frobenius element at ℓ . Then, for any automorphism u of X_H defined over a compositum of quadratic fields, in $\operatorname{End}(\operatorname{Jac}(X_H))$

$$T_{\ell} \circ u = u^{\sigma} \circ T_{\ell}. \tag{1}$$

Moreover, if $gon(X_H) > 2(\ell + 1)$, then (1) holds at level of divisors.

The proof uses Eichler-Shimura relation modulo ℓ . The hypothesis on the definition field of u is used to get $\sigma^{-1}=\sigma$ and consequently remove the Frobenius morphism coming from Eichler-Shimura.

The condition $\operatorname{gon}(X_H)>2(\ell+1)$ is used here to move from the Jacobian to actual divisors showing that the principal divisor $(T_\ell u - u^\sigma T_\ell)(P-Q)$, for $P,Q \in X_H(\mathbb C)$, is in fact the zero divisor (there are no nonconstant rational functions with degree less than $2\ell+3$).

Step 2 (sketch part c)

Now, if we take an automorphism u of X_H , we can compare the multiplicities in the images of $T_\ell(P)$ and $T_\ell(u(P))$ for every point P of $X_H(\mathbb{C})$.

If u is defined over a compositum of quadratic fields, by the theorem of part b, we have that $T_{\ell}(u(P)) = u^{\sigma}(T_{\ell}(P))$.

Hence compare the multiplicities in the images of $T_{\ell}(P)$ and $T_{\ell}(u(P))$ is equivalent to compare the multiplicities in the images of $T_{\ell}(P)$ and $u^{\sigma}(T_{\ell}(P))$.

Since u^{σ} is an automorphism, it does not affect the multiplicities of $T_{\ell}(P)$. Hence the multiplicities of the two images of P under T_{ℓ} and $T_{\ell}u$ are the same. So the multiplicities in the images of P and u(P) under T_{ℓ} are the same. Therefore, by the theorem of part a, we can conclude that u preserves the set of cusps and the set of branch points.

Hence we can conclude using the following result.

Theorem (Dose, 2016)

An automorphism of X_H is modular if and only if it preserves the set of cusps and the set of branch points

Step 3

We can apply the previous step because by Abramovich's bound we have

$$\mathrm{gon}(X_H) \geq \frac{7}{800}[\mathrm{SL}_2(\mathbb{Z}):\Gamma_H] > 10 \text{n}.$$

Hence, for every n > 1 there is a prime $\ell \nmid n$ such that $5 \le \ell < 5n - 1$.

Step 4 (sketch part a)

Prove that for $n \ge 10^{400}$, each automorphism is defined over a compositum of quadratic fields.

As first step we extended a result of Kenku and Momose, 1988.

Theorem

Let K be a perfect field, let X be a smooth projective and geometrically connected curve over K of genus g and Jacobian variety J_X . If

- there are two abelian varieties A_1 and A_2 over K such that $\operatorname{Hom}_{\overline{K}}(A_1,A_2)=0$ and $J_X\sim_K A:=A_1\times_K A_2;$
- $g > 2 \dim(A_2) + 1$;
- $F \subset \overline{K}$ is an extension of K such that $\operatorname{End}_{\overline{K}}(A_1) = \operatorname{End}_F(A_1)$.

Then every automorphism of X over \overline{K} can be defined over F.

Step 4 (sketch part a)

Theorem

Let K be a perfect field, let X be a smooth projective and geometrically connected curve over K of genus g and Jacobian variety J_X . If

- there are two abelian varieties A_1 and A_2 over K such that $\operatorname{Hom}_{\overline{K}}(A_1,A_2)=0$ and $J_X\sim_K A:=A_1\times_K A_2;$
- $g > 2\dim(A_2) + 1$;
- $F \subset \overline{K}$ is an extension of K such that $\operatorname{End}_{\overline{K}}(A_1) = \operatorname{End}_F(A_1)$.

Then every automorphism of X over \overline{K} can be defined over F.

In our case:

- $K = \mathbb{Q}$; $X = X_H$; F is a compositum of quadratic fields;
- A_2 is the CM part of J_X , i.e., the maximal abelian subvariety of J_X isogenous to a product of simple CM abelian varieties (a simple abelian variety A has CM if $\operatorname{End}_{\mathbb{Q}}(A)$ has degree $2\dim(A)$ over \mathbb{Q} and is a totally imaginary quadratic extension of a totally real number field);
- A_1 is the non-CM part of J_X , i.e., the maximal abelian subvariety of J_X isogenous to a product of simple non-CM abelian varieties.

Step 4 (sketch part b)

Theorem

Let H be such that $H_{p_i} \in \{C_s(p_i^{e_i}), C_{ns}(p_i^{e_i})\}$ or $H_{p_i} \in \{C_s^+(p_i^{e_i}), C_{ns}^+(p_i^{e_i})\}$. Then J_H , the Jacobian of X_H , is a quotient of $J_0(n^2)$, the Jacobian of $X_0(n^2)$.

The split cases are well known and $C_{\rm ns}^+(p^r)$, with p odd, was already treated by Chen. Using Chen's ideas (i.e., essentially compute and compare characters of corresponding representations), we extended it to the remaining cases.

Corollary

 J_H^{CM} is a quotient of $J_0(n^2)^{CM}$ and the non-CM part of J_H is a quotient of the non-CM part of $J_0(n^2)$.

Hence

$$2\dim(J_H^{\sf CM})+1\leq 2\dim(J_0(n^2)^{\sf CM})+1.$$

Step 4 (sketch part c)

We bound the CM part of $J_0(n)$.

Theorem

For n > 1,

$$\dim J_0(n)^{CM} \leq 9\log(n)^2 n^{\frac{1}{2} + \frac{2.816}{\log\log n}}.$$

The proof relies on the following steps:

- Observe that $J_0(n)$ is isogenous to a product of abelian varieties A_f simple over \mathbb{Q} associated to suitable newforms f.
- Observe (by Shimura) that the f contributing for the CM part are in bijection with triples $(K, \mathfrak{m}, \lambda)$, where K is an imaginary quadratic field with discriminant Δ_K , \mathfrak{m} is an ideal of the ring of integers of K and λ is a primitive Grössencharacter of K defined modulo \mathfrak{m} and such that $|\Delta_K||\mathfrak{m}|$ equal to the level of f.
- Give a bound on the number of these triples.

Step 4 (sketch part d)

Let g be the genus of X_H . For $n \ge 10^{400}$, we have

$$\begin{split} 2\dim(J_H^{\mathsf{CM}}) + 1 &\leq 2\dim(J_0(n^2)^{\mathsf{CM}}) + 1 \leq \\ &\leq 73\log(n)^2 n^{1 + \frac{5.632}{\log\log n}} < \frac{n^{2 - \frac{0.96}{\log\log n}}}{100\log\log n} < g, \end{split}$$

where:

- The first inequality comes from part b.
- The second inequality comes from part c.
- The last inequality follows giving bounds on the index $[SL_2(\mathbb{Z}) : \Gamma_H]$, the number of elliptic points and cusps of X_H in the genus formula.

Finally we can conclude by part a, part b and the following result.

Theorem (Kenku, Momose, 1988)

Every endomorphism of the non-CM part of $J_0(n)$ is defined over the compositum of all the quadratic fields whose discriminant divides n.

THANK YOU!