The "Schroeder frequency" revisited

Manfred R. Schroeder

Drittes Physikalisches Institut, Universität Göttingen, Bürgerstrasse 42-44, D-37073 Göttingen, Germany

(Received 26 July 1995; accepted for publication 2 January 1996)

It is noted that the cross-over frequency that marks the transition from individual resonances of a multimode system to overlapping normal modes, when expressed as a cross-over wavelength, equals—within a numerical constant—the diffuse-field distance in both three- and two-dimensional resonators. © 1996 Acoustical Society of America.

PACS numbers: 43.55.Cs, 43.55.Br, 42.20.Ks

THE CROSS-OVER FREQUENCY

Many multimode resonance systems are characterized by a crossover frequency ("Schroeder frequency") that marks the transition from individual, well-separated resonances to many overlapping normal modes. For airborne sound in reverberant enclosures, this cross-over frequency is given by

$$f_c = 2000 \sqrt{\frac{T}{V}},\tag{1}$$

where T is the 60-dB reverberation time in seconds and V the volume of the enclosure in cubic meters.² Equation (1) results from equating the half-power bandwidth B of the resonances

$$B = \frac{\log_e 10^6}{2\,\pi T} = \frac{2.2}{T},\tag{2}$$

with three times the average asymptotic spacing Δf between resonance frequencies³

$$\Delta f = \frac{c^3}{4\pi V f^2}.\tag{3}$$

The factor 2000 (which contains the velocity of sound c) in Eq. (1) guarantees that, on average, at least three resonances fall within the half-power bandwidth of one resonance at frequencies above $\boldsymbol{f}_{\boldsymbol{c}}$. As a result, the sound transfer function above f_c between two "distant" points (i.e., points with negligible direct power transmission) can be considered an approximate complex Gaussian process with a number of wellknown consequences (e.g., average frequency spacing between relative maxima of the power transfer function equal to 4/T, ^{2,4} average range of the statistical fluctuations between maxima and minima equal to 10 dB, etc.).^{2,5}

The awkward (and unit dependent) factor 2000 can be made to disappear if one converts the cross-over frequency to a cross-over wavelength $\lambda_c = c/f_c$. Using Sabine's formula for reverberation time

$$T = 13.8 \frac{4V}{cA},\tag{4}$$

where A is the equivalent or "open window" absorption area, Eq. (1) takes on the following form⁶

$$\lambda_c = \sqrt{\frac{A}{6}},\tag{5}$$

where the factor 6 is a *pure number* and λ_c is given in the same unit as \sqrt{A} . In contrast to Eq. (1), Eq. (5) is independent of units. Threefold (or better) modal overlap obtains for wavelength smaller than λ_c .

I. THE DIFFUSE-FIELD DISTANCE

The diffuse-field distance r_c (also called reverberation distance) is defined as the distance r from an omnidirectional source in a reverberant enclosure for which the direct energy density

$$\varepsilon_d = \frac{P}{4\pi r^2 c} \tag{6}$$

equals the reverberant energy density⁷

$$\varepsilon_r = \frac{PT}{\log_e 10^6 V},\tag{7}$$

where P is the power emitted by the source. Equating Eqs. (6) and (7) yields

$$r_c = \sqrt{\frac{\log_e 10^6 V}{4\pi c T}}. ag{8a}$$

Replacing T by A via Eq. (4), one obtains

$$r_c = \sqrt{\frac{A}{16\pi}}. (8b)$$

Comparison with Eq. (5) shows that the diffuse-field distance r and the critical cross-over wavelength λ_c are closely related. In fact, they differ only by a numerical constant:

$$r_c = \sqrt{\frac{3}{8\pi}} \lambda_c \,. \tag{9}$$

Is this a coincidence? Both r_c and λ_c describe transitions from a "regular" to a "statistical" regime, i.e., from a single source to many (image) sources (in the case of r_c) and from isolated resonances to many overlapping modes (in the case of λ_c). It is therefore tempting to look for some deeper meaning behind Eq. (9), especially since a similar relation holds in two dimensions:

$$r_c^{(2)} = \frac{1}{2\pi} \lambda_c^{(2)} \,. \tag{10}$$

The close correspondence between r_c and λ_c in both three- and two-dimensional resonators is all the more noteworthy because there is no dearth of other "characteristic

lengths" that can be constructed from the relevant room-acoustical variables c, V, T, A, and the surface area S. Examples are 4V/S, the mean-free path of the sound rays, and $\Delta\lambda = \lambda^4/4\pi V$ when the mode spacing, Eq. (3), is written in terms of wavelengths.

II. DIFFUSE-FIELD DISTANCE AND ECHO DENSITY

For rectangular enclosures (and other simple shapes) reverberation is often analyzed in terms of image sources. In three dimensions, the number of image sources⁷ within a radius r of the origin is asymptotically equal to $(4\pi/3)r^3/V$. Equivalently we may say that the number of echos arriving at some selected point in the enclosure within time t after a pistol shot was fired equals approximately $(4\pi/3)c^3t^3/V$. Thus the average distance between successive echos equals

$$\Delta t = \frac{V}{4\pi c^3 t^2}.\tag{11}$$

Equation (11) is the real-space analog of Eq. (3). Whereas Eq. (11) describes a phenomenon (echo density) in *real* (image-source) space, Eq. (3) describes a phenomenon (mode density) in *reciprocal* (wave-number) space.

If the average spacing Δt between echos is smaller than the echo decay time $T/\log_e 10^6$, a selected point in the enclosure will receive many echos of comparable magnitude. Furthermore, if these echos arrive from many different directions, ''diffuse'' conditions at that point will prevail. Equating Δt and $T/\log_e 10^6$ therefore defines a ''diffuse-field time interval'' t_c :

$$t_c = \sqrt{\frac{\log_e 10^6 V}{4\pi c^3 T}}$$

or a "diffuse-field span"

$$d_c = ct_c = \sqrt{\frac{\log_e 10^6 V}{4\pi cT}}. (12)$$

This diffuse-field span d_c , however, is none other than the diffuse-field distance r_c , see Eq. (8a)!

Thus we see that, given the concept of image sources, the cross-over frequency f_c for modal overlap and the diffuse-field distance r_c actually describe the same physical reality, albeit in two different spaces: real space in the case of r_c and reciprocal (wave-number or frequency) space in the case of f_c .

ACKNOWLEDGMENT

I thank H. W. Strube for fruitful comments.

- ¹ A. D. Pierce, *Acoustics* (McGraw-Hill, New York, 1981), Chap. 6, Sec. 6-7
- ²M. Schröder, "Die statistischen Parameter der Frequenzkurve von großen Räumen," Acustica 4, 594–600 (1954). Englishh translation: M. R. Schroeder, "Statistical Parameters of the Frequency Response Curves of Large Rooms," J. Audio Eng. Soc. 35, 299–306 (1987). *Note:* In my original (1954) paper I proposed a more "conservative" factor of 4000 (instead of 2000) in Eq. (1), corresponding to a tenfold modal overlap.
- ³M. Schröder, "Eigenfrequenzstatistik und Anregungsstatistik in Räumen," Modellversuche mit elektrischen Wellen, Acustica 4, 456–468 (1954). English translation: M. R. Schroeder, "Normal Frequency and Excitation Statistics in Rooms: Model Experiments with Electric Waves," J. Audio Eng. Soc. 35, 307–316 (1987).
- ⁴M. R. Schroeder and K. H. Kuttruff, "On Frequency Response Curves in Rooms. Comparison of Experimental, Theoretical, and Monte Carlo Results for the Average Frequency Spacing between Maxima," J. Acoust. Soc. Am. **34**, 76–80 (1962).
- ⁵M. R. Schroeder, "Improvement of Acoustic-Feeback Stability by Frequency Shifting," J. Acoust. Soc. Am. 36, 1718–1724 (1964).
- ⁶Manfred Schroeder, "Reverberation: Theory and Measurement," *Proceedings Wallace Clement Sabine Centennial Symposium*, Distinguished Lecture 1 pAAa1, pp. 75–80, Cambridge, MA, 5–7 June 1994 (Acoust. Soc. Am., New York, 1994).
- ⁷H. Kuttruff, *Room Acoustics* (Applied Science, London, 1973), Chap. IV.