Abduction

Abduction is an assumption-based reasoning strategy where

- ➤ H is a set of assumptions about what could be happening in a system
- F axiomatizes how a system works
- \triangleright g to be explained is an observation or a design goal

Example: in diagnosis of a physical system:

H contain possible faults and assumptions of normality,

F contains a model of how faults manifest themselves g is conjunction of symptoms.

Abduction versus Default Reasoning

Abduction differs from default reasoning in that:

- The explanations are of interest, not just the conclusion.
- H contains assumptions of abnormality as well as assumptions of normality.
- We don't only explain normal outcomes. Often we want to explain why some abnormal observation occurred.
- \triangleright We don't care if $\neg g$ can also been explained.

Abductive Diagnosis

- You need to axiomatize the effects of normal conditions and faults.
- We need to be able to explain all of the observations.
- Assumables are all of those hypotheses that require no further explanation.

Electrical Environment


```
lit(L) \Leftarrow light(L) \& ok(L) \& live(L).
dark(L) \Leftarrow light(L) \& broken(L).
dark(L) \Leftarrow light(L) \& dead(L).
live(W) \Leftarrow connected\_to(W, W_1) \& live(W_1).
dead(W) \Leftarrow connected\_to(W, W_1) \& dead(W_1).
dead(W) \Leftarrow unconnected(W).
connected\_to(l_1, w_0) \Leftarrow true.
connected\_to(w_0, w_1) \Leftarrow up(s_2) \& ok(s_2).
unconnected(w_0) \Leftarrow broken(s_2).
unconnected(w_1) \Leftarrow broken(s_1).
unconnected(w_1) \Leftarrow down(s_1).
false \leftarrow ok(X) \wedge broken(X).
assumable ok(X), broken(X), up(X), down(X).
```

Explaining Observations

To explain lit(l1) there are two explanations: $\{ok(l1), ok(s2), up(s2), ok(s1), up(s1), ok(cb1)\}$ $\{ok(l1), ok(s2), down(s2), ok(s1), down(s1), ok(cb1)\}$

To explain lit(l2) there is one explanation: $\{ok(cb1), ok(s3), up(s3), ok(l2)\}$

Explaining Observations (cont)

 \blacktriangleright To explain dark(l1) there are 8 explanations:

```
\{broken(l1)\}
\{broken(cb1), ok(s1), up(s1), ok(s2), up(s2)\}\
\{broken(s1), ok(s2), up(s2)\}
\{down(s1), ok(s2), up(s2)\}\
\{broken(cb1), ok(s1), down(s1), ok(s2), down(s2)\}
\{up(s1), ok(s2), down(s2)\}\
\{broken(s1), ok(s2), down(s2)\}
\{broken(s2)\}
```


Explaining Observations (cont)

 \blacktriangleright To explain $dark(l1) \land lit(l2)$ there are explanations:

```
{ok(cb1), ok(s3), up(s3), ok(l2), broken(l1)}

{ok(cb1), ok(s3), up(s3), ok(l2), broken(s1), ok(s2), up(s2)}

{ok(cb1), ok(s3), up(s3), ok(l2), down(s1), ok(s2), up(s2)}

{ok(cb1), ok(s3), up(s3), ok(l2), up(s1), ok(s2), down(s2)}

{ok(cb1), ok(s3), up(s3), ok(l2), broken(s1), ok(s2), down(s2)}

{ok(cb1), ok(s3), up(s3), ok(l2), broken(s2)}
```


Abduction for User Modeling

Suppose the infobot wants to determine what a user is interested in. We can hypothesize the interests of users:

$$H = \{interested_in(Ag, Topic)\}.$$

Suppose the corresponding facts are:

$$selects(Ag, Art) \leftarrow$$
 $about(Art, Topic) \land$

interested_in(Ag, Topic).

about(art_94, info_highway).

Explaining User's Actions

There are two minimal explanations of *selects*(*fred*, *art*_94):

```
{interested_in(fred, ai)}.
{interested_in(fred, information_highway)}.
```

If we observe $selects(fred, art_94) \land selects(fred, art_34)$, there are two minimal explanations:

```
{interested_in(fred, ai)}.
{interested_in(fred, information_highway),
    interested_in(fred, skiing)}.
```


Image interpretation

- A scene is the world that the agent is in.
- An image is what the agent sees.
- **Vision:** given an image try to determine the scene.
- Typically we know more about the $scene \rightarrow image$ mapping than the $image \rightarrow scene$ mapping.

Example Scene and Image

Scene and image i immuves	
Scene Primitives	Image Primitives
land, water	region

joins
$$(X, Y, E)$$

joins(
$$X, Y, E$$
) X
($E \in \{0, 1\}$ specifies which end of X)

$$(E \in \{0, 1\} \text{ specifies})$$

Scene and image primitives (cont.)

Scene Primitives	Image Primitives
beside (C, R)	bounds(C,R)
source (C, E)	open(C,E)
$loop(C)$ O^{C}	closed(C)
inside (C, R)	interior(C,R)
outside (C, R) $\bigcirc C$ R	exterior(C,R)

Axiomatizing the Scene → Image map

 $chain(X) \leftarrow river(X) \vee road(X) \vee shore(X)$. $region(X) \leftarrow land(X) \vee water(X)$. $tee(X, Y, E) \leftarrow joins(X, Y, E) \vee mouth(X, Y, E).$ $chi(X, Y) \leftarrow cross(X, Y)$. $open(X, N) \leftarrow source(X, N)$. $closed(X) \leftarrow loop(X)$. $interior(X, Y) \leftarrow inside(X, Y).$ $exterior(X, Y) \leftarrow outside(X, Y)$. assumable road(X), river(X), shore(X), land(X), ... assumable joins(X, Y, E), cross(X, Y), mouth(L, R, E)...

Scene Constraints

 $false \leftarrow cross(X, Y) \land river(X) \land river(Y).$ $false \leftarrow cross(X, Y) \land (shore(X) \lor shore(Y)).$ $false \leftarrow mouth(R, L1, 1) \land river(R) \land mouth(R, L2, 0).$ $start(R, N) \leftarrow river(R) \wedge road(Y) \wedge joins(R, Y, N).$ $start(X, Y) \leftarrow source(X, Y)$. $false \leftarrow start(R, 1) \wedge river(R) \wedge start(R, 0).$ $false \leftarrow joins(R, L, N) \land river(R) \land (river(L) \lor shore(L)).$ $false \leftarrow mouth(X, Y, N) \land (road(X) \lor road(Y)).$ $false \leftarrow source(X, N) \land shore(X).$ $false \leftarrow joins(X, A, N) \wedge shore(X).$

 $false \leftarrow loop(X) \wedge river(X)$.

Scene constraints (continued)

- $false \leftarrow shore(X) \land inside(X, Y) \land outside(X, Z) \land land(Y) \land land(Z).$
- $false \leftarrow shore(X) \land inside(X, Y) \land outside(X, Z) \land water(Z) \land water(Y).$
- $false \leftarrow water(Y) \land beside(X, Y) \land (road(X) \lor river(X)).$

Describing an image

A more complicated image

Parameterizing Assumables

Suppose we had a battery b connected to voltage meter:

To be able to explain a measurement of the battery voltage, we need to parameterize the assumables enough:

assumable flat(B, V).

assumable *tester_ok*.

 $measured_voltage(B, V) \leftarrow flat(B, V) \land tester_ok.$

 $false \leftarrow flat(B, V) \land V > 1.2.$

