ЗАДАНИЕ на лабораторную работу №3

Тема: Программно- алгоритмическая реализация моделей на основе квазилинейного ОДУ второго порядка с краевыми условиями II и III рода.

Цель работы. Получение навыков разработки алгоритмов решения краевой задачи при реализации моделей, построенных на квазилинейных ОДУ второго порядка.

Исходные данные.

1. Задана математическая модель.

Квазилинейное уравнение для функции T(r)

$$\frac{1}{r}\frac{d}{dr}\left(r\lambda(T)\frac{dT}{dr}\right) - 4\cdot k(T)\cdot n_p^2\cdot \sigma\cdot (T^4 - T_0^4) = 0 \tag{1}$$

Квазилинейные краевые условия

$$\begin{cases} r = r_0, -\lambda(T(r_0)) \frac{dT}{dr} = F_0, \\ r = R, -\lambda(T(R)) \frac{dT}{dr} = \alpha(T(R) - T_0) \end{cases}$$

2. Функции $\lambda(T)$, k(T) заданы таблицей

T,K	λ , Вт/(см К)	T,K	k, см ⁻¹
300	1.36 10 ⁻²	293	2.0 10 ⁻²
500	1.63 10 ⁻²	1278	5.0 10 ⁻²
800	1.81 10 ⁻²	1528	7.8 10 ⁻²
1100	1.98 10 ⁻²	1677	1.0 10 ⁻¹
2000	2.50 10 ⁻²	2000	1.3 10 ⁻¹
2400	2.74 10 ⁻²	2400	2.0 10 ⁻¹

3. Разностная аппроксимация уравнения и левого краевого условия (при $r=r_0$) со 2-м порядком точности выполнена на лекции, и может быть использована в данной работе. Самостоятельно надо интегро -интерполяционным методом получить разностный аналог краевого условия при r=R, точно так же, как это было сделано применительно к

краевому условию при $r=r_0$, в указанной лекции. Для этого надо проинтегрировать на отрезке $[\mathbf{r}_{N-1/2},\mathbf{r}_N]$ записанное выше уравнение (1) и учесть, что поток $F_N=\alpha_N\,(y_N-T_0)$,

a
$$F_{N-1/2} = \chi_{N-1/2} \frac{y_{N-1} - y_N}{Rh}$$
.

4. Значения параметров для отладки (все размерности согласованы)

 $n_{_{p}}=1.4$ — коэффициент преломления,

$$r_0 = 0.35$$
 cm,

$$R = 0.5 \text{ cm},$$

 $T_0 = 300 \text{K} - \text{температура окружающей среды,}$

 σ =5.668 10^{-12} Bт/(см 2 K 4)- постоянная Стефана- Больцмана,

$$F_0 = 100 \; \mathrm{Bt/cm}^2 \;$$
 - поток тепла,

 $\alpha = 0.05 \; \text{Вт/(см}^2 \; \text{K}) - коэффициент теплоотдачи.}$

5. Выход из итераций организовать по температуре и по балансу энергии, т.е.

$$\max \left| rac{y_n^{(s)} - y_n^{(s-1)}}{y_n^s} \right| \le \mathcal{E}_1$$
 , для всех $n = 0,1,\dots N$.

И

$$\max \left| \frac{f_1^{(s)} - f_2^{(s)}}{f_1^s} \right| \le \varepsilon_2,$$

где

$$f_1 = r_0 F_0 - R\alpha (T(R) - T_0) \text{ if } f_2 = 4n_p^2 \sigma \int_0^l k(T(r)) (T^4(r) - T_0^4) r \, dr.$$

Физическое содержание задачи (для понимания получаемых результатов при отладке программы).

Сформулированная математическая модель описывает температурное поле T(r) в цилиндрическом слое с внутренними стоками тепловой энергии. Можно представить, что это стенка из полупрозрачного материала, например, кварца или сапфира, нагружаемая тепловым потоком на одной из поверхностей (у нас - слева). Другая поверхность (справа) охлаждается потоком воздуха, температура которого равна T_0 . Например, данной схеме удовлетворяет цилиндрическая оболочка, стабилизирующая разряд в газе. При высоких температурах нагретый слой начинает объемно излучать, что описывает второе сла-

гаемое в (1) (закон Кирхгофа). Зависимость от температуры излучательной способности материала очень резкая. При низких температурах стенка излучает очень слабо, второе слагаемое в уравнении (1) практически отсутствует. Функции $\lambda(T), k(T)$ являются, соответственно, коэффициентами теплопроводности и оптического поглощения материала стенки.

Результаты работы.

- 1. Представить разностный аналог краевого условия при $r=r_0$ и его краткий вывод интегро -интерполяционным методом.
- 2. График зависимости температуры T(z) от безразмерной координаты z = r/R при заданных выше параметрах.

Выяснить, как сильно зависят результаты расчета T(z) и необходимое для этого количество итераций от начального распределения температуры и шага сетки.

3. График зависимости T(z) при $F_0 = -10 \text{ Bt/cm}^2$.

Cnpaвка. При отрицательном тепловом потоке слева идет съем тепла, поэтому производная $T^{'}(z)$ должна быть положительной.

4. График зависимости T(z) при увеличенных значениях α (например, в 3 раза). Сравнить с п.2.

Cправка. При увеличении теплосъема и неизменном потоке F_0 уровень температур T(z) должен снижаться, а градиент увеличиваться.

5. График зависимости T(z) при $F_0 = 0$.

. 6. Для указанного в задании исходного набора параметров привести данные по балансу энергии, т.е. значения величин

$$f_1 = r_0 F_0 - R\alpha(T(R) - T_0)$$
 и $f_2 = 4n_p^2 \sigma \int_0^l k(T(r))(T^4(r) - T_0^4)r dr$.

Каковы использованные в работе значения точности выхода из итераций \mathcal{E}_1 (по температуре) и \mathcal{E}_2 (по балансу энергии)?

Вопросы при защите лабораторной работы.

- 1. Какие способы тестирования программы вы можете предложить?
- 2. Получите простейший разностный аналог нелинейного краевого условия при r = R

$$r = R$$
, $-\lambda(R) \frac{dT}{dr} = \alpha_N (T(R) - T_0) + \beta T^4(R)$,

где β - заданная константа.

Производную аппроксимируйте односторонней разностью.

Опишите алгоритм применения метода прогонки в данном случае, если при $r=r_0$ краевое условие по-прежнему квазилинейное (как в настоящей работе).

3. Опишите алгоритм определения **единственного** значения сеточной функции y_p в **одной** заданной точке p. Использовать встречную прогонку, т.е. комбинацию правой и левой прогонок. Для простоты принять, что оба краевых условия линейные.

Методика оценки работы.

Модуль 2, срок - 12-я неделя.

- 1. Задание полностью выполнено 6 баллов (минимум).
- 2. В дополнение к п.1 даны исчерпывающие ответы на все вопросы 10 баллов (максимум).