L19: The Bipolar Junction Transistor (BJT)

- BJT is a controlled current source...
 - current amplifier
- The three operating regimes of a BJT
- Controlling a resistive load with a BJT
- Solving for saturation condition

ECE Spotlight...

John Bardeen, the co-inventer of the transistor, was also the Ph.D. advisor at the University of Illinois for Nick Holonyak, Jr. of LED fame.

1

EXPLORE MORE - Inside the bipolar transistor

Bardeen & Brattain – Point contact

In 1947, invention of the point-contact transistor

https://www.computerhistory.org/siliconengine/invention-of-the-point-contact-transistor/

http://www.engineerguy.com/videos.htm#more-videos

Shockley – p-n junction

Photo from the Nobel Foundation archive.
William Bradford
Shockley

John Bardeen Prize share: 1/3

Photo from the Nobel Foundation archive.

Walter Houser Brattain
Prize share: 1/3

Two types of BJT

NPN

PNP

Transistor Trivia:

The symbol

- A. was a doodle made by John Bardeen's daughter
- B. represents faithfully the electrical connections of the transistor which need to be resolved exactly with circuit equations.

 C. is simply a conventional representation of a three-terminal
- C. is simply a conventional representation of a three-terminal bipolar transistor inside a "black box" without specific circuit significance
- D. was the shape of the golden clip, used to tie the red ribbon around the Nobel prize certificate, which Walter Shockley thought could make a good symbol for the device

IV Characteristic of a 3-terminal

No single way to connect three-terminal device to a linear circuit.

EXPLORE MORE

Transistor circuit configurations

Common Emitter

- Current gain
- Voltage gain

Common Base

- Voltage gain

Common Collector

- Current gain

ECE110 considers only the "common-emitter" configuration

If we fix I_B , we can measure the resulting I and V at the other side.

Diode & PN junction

 $I_E = I_B + I_C$

Three operating regimes of BJT

1. Cut-off regime

When
$$V_{BE} < V_{on}$$
, $I_B = 0$, $I_C = 0$
In reality, I_C is not exactly zero, due to leakage current. $I_B \approx 0$, $I_C \approx 0$

2. Active regime

When
$$V_{BE} \ge V_{on}$$
, $V_c > V_B$ $I_C = \beta I_B$, β is magnification factor, a constant

3. Saturation regime

$$V_{BE} \geq V_{on}$$
 I_c will not increase with I_B $V_c < V_B$ $\beta I_B > I_c$

EXPLORE

BJT Characteristics

One curve for each value of I_B

1. Cut-off regime

When
$$V_{BE} < V_{OD}$$
, thus $I_{C} \approx 0$

2. Active regime

When
$$V_{BE} \ge V_{on}$$
, thus $I_c = \beta I_B$

3. Saturation regime

When
$$V_{BE} \ge V_{on}$$
, and $V_c < V_B$

EXPLORE

BJT as an amplifier or as a switch

Q bias point – Amplifier

A and B points - Logic Inverter

The BJT's "common-emitter NPN" model

Constraints:

- Limited current range: $\beta I_B \geq 0$
- Limited voltage range: $V_{out} > 0$

L19Q1: Given these constraints, can this "dependent" current source deliver power?

- A. Yes, all current sources can supply power
- B. No, this current source cannot supply power
- C. Neither A or B is correct.

Two Loops Coupled by Current Equation

DC bias circuit determines operating point of the transistor

Constraints:

Also called $I_{c,sat}$

$$V_{min} = V_{CE,sat}$$

- Limited current range: $0 \le \beta I_B \le I_{max}$ (implied by V_{min})
- Limited voltage range: $V_{out} \ge V_{min} \approx 0$

MORE

Simplified I-V curves

$$I_c = \frac{V_{CC} - V_{CE}}{R_C}$$

MORE

SUMMARY of technical terminology

$$I_c = \frac{V_{CC} - V_{CE}}{R_C}$$

$$I_C = min\{\beta I_B, I_{C,sat}\}$$

$$I_{max} = I_{C,sat}$$

$$V_{min} = V_{CE,sat}$$

MORE

SUMMARY of technical terminology

 In saturation the collector current cannot grow any longer if the base current is increased. Therefore:

$$I_C = I_{C,sat} < \beta I_B$$

• At the same time, the voltage between collector and emitter(V_{CE}) reaches its lowest possible level ($V_{CE,sat}$)

Two Loops Coupled by Current Equation

L19Q2: Right-side KVL: Find an equation relating I_{max} to V_{min} .

L19Q3: Left-side KVL: Find the smallest V_{in} such that $I_B > 0$ (if $V_{on} = 0.7 V$)?

L19Q4: What is I_B if $V_{in}=3~V$ and $R_B=4.6~k\Omega$?

L19Q5: Let $V_{CC} = 6 V$, $R_C = 580 \Omega$, $V_{min} = 0.2 V$, $\beta = 100$. What is I_C under the same input settings as the previous question?

L19Q2: Right-side KVL: Find an equation relating I_{max} to V_{min} .

$$I_{max} = I_{C,sat}$$
$$V_{min} = V_{CE,sat}$$

$$I_{max} = I_{C,sat} = \frac{V_{CC} - V_{min}}{R_C} = \frac{V_{CC} - V_{CE,sat}}{R_C}$$

L19Q3: Left-side KVL: Find the smallest V_{in} such that $I_B > 0$ (if $V_{on} = 0.7 V$)?

$$V_{in} > V_{on} = 0.7V \Rightarrow I_B > 0$$

L19Q4 -What is I_B if $V_{in}=3~V$ and $R_B=4.6~k\Omega$?

By Ohm's Law (Nodal method)

$$I_B = \frac{3 - 0.7}{4.6k} = 0.5 \, mA$$

$$I_B = \frac{V_{in} - V_{on}}{R_B}$$

L19Q5 - Let $V_{CC} = 6 V$, $R_C = 580 \Omega$, $V_{min} = 0.2 V$, $\beta = 100$. What is I_C with the previous input settings ($V_{in} = 3 V$ and $R_R = 4.6 k\Omega$)

From Q4: $I_B = 0.5 \, mA$

$$I_C = 100I_B = 50 \, mA$$
.

We need to verify that $I_C < I_{C,sat}$ Working in active regime

Since:
$$I_{C,sat} = \frac{V_{CC} - V_{min}}{R_C} = \frac{5.8}{580} = 100 \text{ mA} > 50 \text{ mA}$$

$$\Rightarrow 50 \text{ mA looks OK}$$

BJT Datasheet Parameters 2N5192G

ELECTRICAL CHARACTERISTICS* (T_C = 25°C unless otherwise noted)

	Characteristic	Symbol	Min	Max	Unit		
ON CHARACTERISTICS (Note 1)							
$\approx \beta$	DC Current Gain (I _C = 1.5 Adc, V _{CE} = 2.0 Vdc) 2N5190G/2N5191G 2N5192G (I _C = 4.0 Adc, V _{CE} = 2.0 Vdc) 2N5190G/2N5191G 2N5192G	hFE	25 20 10 7.0	100 80 - -	1		
$V_{CE,sat}$	Collector-Emitter Saturation Voltage (I _C = 1.5 Adc, I _B = 0.15 Adc) (I _C = 4.0 Adc, I _B = 1.0 Adc)	V _{CE(sat)}	-	0.6 1.4	Vdc		
$V_{BE,on} \leq$	Base-Emitter On Voltage (I _C = 1.5 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)}	-	1.2	Vdc		

L19Q6: Approximate the values of β , V_{BEon} , and $V_{CE,sat}$ from the datasheet.

BJT Datasheet Parameters

2N5192G

 $h_{FE}=$ small signal gain $oldsymbol{eta}=$ d.c. gain (a.k.a. H_{FE}) $oldsymbol{eta}pprox oldsymbol{h}_{FE}$

	Characteristic	Symbol	win	Max	Unit			
	ON CHARACTERISTICS (Note 1)							
≈ <i>β</i>	DC Current Gain (I _C = 1.5 Adc, V _{CE} = 2.0 Vdc) 2N5190G/2N5191G 2N5192G (I _C = 4.0 Adc, V _{CE} = 2.0 Vdc) 2N5190G/2N5191G 2N5192G	h _{FE}	25 20 10 7.0	100 80 -	-			
$V_{CE,sat}$	Collector-Emitter Saturation Voltage (I _C = 1.5 Adc, I _B = 0.15 Adc) (I _C = 4.0 Adc, I _B = 1.0 Adc)	V _{CE(sat)}	-	0.6 1.4	Vdc			
$V_{BE,on} \leq$	Base-Emitter On Voltage (I _C = 1.5 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)}	-	1.2	Vdc			

L19Q6: Approximate the values of β , V_{BEon} , and $V_{CE,sat}$ from the datasheet.

ELECTRICAL CHARACTERISTICS* (T_C = 25°C unless otherwise noted)

$$\beta \approx 20 \ to \ 50$$
,

$$V_{REon} \approx 0.6 to 1 V$$

$$V_{CEsat} \approx 0.6 to 1.2V$$

BJT in Active Region

BJT datasheet parameters:

•
$$\beta = 100$$

•
$$V_{BE,on} = 1 V$$

•
$$V_{CE,sat} = 0.2 V$$

L19Q7: Find I_B . L19Q8: Find I_C .

Q7:
A.
$$I_B = 0 \mu A$$

B. $I_B = 1 \mu A$
C. $I_B = 2 \mu A$
D. $I_B = 10 \mu A$
E. $I_B = 100 \mu A$

BJT in Active Region – L19Q7: Find I_B

BJT datasheet parameters:

- $\beta = 100$
- $V_{BE,on} = 1 V$
- $V_{CE,sat} = 0.2 V$

Q7:

$$A. \quad I_B = 0 \ \mu A$$

 $B. \quad I_B = 1 \ \mu A$
 $C. \quad I_B = 2 \ \mu A$
 $D. \quad I_B = 10 \ \mu A$
 $E. \quad I_B = 100 \ \mu A$

$$I_B = \frac{V_{in} - V_{BE,on}}{10k} = \frac{2 - 1}{10k} = 0.1 mA = 100 \mu A$$

1

BJT in Active Region – L19Q8: Find I_C

BJT datasheet parameters:

- $\beta = 100$
- $V_{BE,on} = 1 V$
- $V_{CE,sat} = 0.2 V$

$$I_C = \beta I_B = 10mA$$

$$I_{C,sat} = \frac{V_{CC} - V_{CE,sat}}{300} = \frac{6 - 0.2}{300} = 19.3 mA$$

BJT in Cutoff

BJT datasheet parameters:

- $\beta = 100$
- $V_{BE,on} = 1 V$
- $V_{CE,sat} = 0.2 V$

L19Q9: Find I_B . L19Q10: Find I_C .

$$V_{in} = 0.5 \text{V} < V_{BE,on}$$

 $I_B \approx 0 \& I_C \approx 0$

BJT in Saturation

BJT datasheet parameters:

- $\beta = 100$
- $V_{BE,on} = 1 V$ $V_{CE,sat} = 0.2 V$

L19Q11: Find I_B . L19Q12: Find I_C .

BJT in Saturation

BJT datasheet parameters:

- $\beta = 100$
- $V_{BE,on} = 1 V$ $V_{CE,sat} = 0.2 V$

$$I_B = \frac{V_{in} - V_{BE,on}}{10k} = \frac{5 - 1}{10k} = 0.4mA = 400\mu A$$

$$I_C = \beta I_B = 40mA > I_{C,sat} = 19.3mA$$
 (cannot be supplied)

$$I_C = I_{C.sat} = 19.3 mA$$

1

BJT Exercise

BJT datasheet parameters:

- $\beta = 100$
- $V_{BE,on} = 1 V$
- $V_{CE,sat} = 0.2 V$

L19Q13: Find I_C and identify in which regime the transistor is operating.

1

L19Q13: Find I_C and identify in which regime the transistor is operating.

BJT datasheet parameters:

•
$$\beta = 100$$

•
$$V_{BE,on} = 1 V$$

•
$$V_{CE,sat} = 0.2 V$$

$$I_B = \frac{V_{in} - V_{BE,on}}{10k} = \frac{1 - 1}{10k} = 0 A$$

$$I_C = 0$$

Right at the boundary between "cutoff" and "active" regime (corner point)

BJT Exercise

BJT datasheet parameters:

- $\beta = 100$
- $V_{BE,on} = 1 V$
- $V_{CE,sat} = 0.2 V$

L19Q14: Find I_C and identify in which regime the transistor is operating.

L19Q15: Determine the power consumed by the transistor.

L19Q14: Find I_C and identify in which regime the transistor is operating L19Q15: Determine the power consumed by the transistor

BJT datasheet parameters:

- $\beta = 100$
- $V_{BE,on} = 1 V$
- $V_{CE,Sat} = 0.2 V$

$$I_C = \beta I_B = 10mA$$
 ($I_{C,sat} = \frac{7.2 - 0.2}{100} = 70mA$) Active regime

 $I_{C} < I_{C.sat}$

$$P = V_{BE,on}I_B + V_{CE}I_C = 1 \times 0.1m + (7.2 - 100 \times 10m) \times 10m$$

= 0.1mW + 62mW = 62.1mW

 V_{BC}

MORE

Summary n-p-n BJT regimes

CUTOFF
$$V_E > V_B$$
 $V_C > V_B$

$$V_C > V_B > V_E$$

L19 Learning Objectives

- a. Identify B, E, C terminals on an npn-BJT symbol
- b. Explain BJT's three regimes of operation
- c. Calculate active-regime I_C using V_{BEON} in the BE loop
- d. Calculate maximum I_C based on $V_{CE,sat}$ and CE loop
- e. Calculate I_C given complete biasing conditions and transistor parameters, no matter which regime
- f. Calculate the power dissipated by a transistor