MATH1400 Calcul à plusieurs variables

Travail Pratique 1

Franz Girardin

13 septembre 2024

Table des matières

0.1	Définition de convergence	2
0.2	Identification des termes	2
0.3	Trouver la règle	3
0.4	Estimer un somme	3
0.5	Déterminer la convergence	4
0.6	Convergence de a_{n+1}	6
0.7	Théorie sur les suites monotones	7
0.8	Déterminer la convergence de suites monotones	7

Exercices sur les suite numériques

Définition de convergence

Exercice 1 (Stewart 1.1.2)

Qu'est-ce qu'une *suite convergente*? Donnez **deux exemples**. Qu'est-ce qu'une *suite divergente*? Donnez **deux** exemples

Est **convergente** toute **suite** $\{a_n\}$ dont les termes a_n s'approchent autant que l'on veut d'une valeur L lorsque l'entier n devient arbitrairement grand :

$$\left(\lim_{n\to\infty} a_n = L\right) \implies a_n$$
 conv.

Plus formellement, soit une valeur positive arbitrairement petite ε , il existe toujours un entier $N(\varepsilon)$ qui représente un rang à partir duquel s'il y a un entier naturel $n > N(\varepsilon)$, **alors** l'image de cet entier naturel, α_n sera aussi proche que l'on veut d'une **valeur** L représentant *le point de convergence de la suite* :

$$\forall \varepsilon > 0 : \exists N(\varepsilon) > 0 : n > N \implies |\alpha_n - L| < \varepsilon$$

Exemple de suites convergentes :
$$\{\alpha_n\} = \frac{1}{n}, \quad \{b_n\} = \frac{1}{n^2}$$

Est divergente toute suite dont les termes a_n ne convergent vers acune valeur particulière; ils s'approchent plutôt de $\pm \infty$:

$$\left(\lim_{n\to\infty}a_n=\pm\infty\right)\implies a_n$$
 div.

Plus formellement, soit un nombre positif arbitrairement grand M>0, on pourra toujours trouver une valeur $N(M)\in\mathbb{N}$ à partir duquel tous les entiers n>M auront une image \mathfrak{a}_n plus grande que nombre arbitrairement grand. Cela signifie que les termes de la suites ne s'approchent d'aucune valeur.

$$\forall M > 0 : \exists N(M) \in \mathbb{N} > 0 : n > N \implies a_n > M(\text{div.} + \infty)$$

Identification des termes

Exercice 2 (Stewart 1.1.8)

Donnez les cinq premiers termes de la suite $\alpha_n = \frac{(-1)^n n}{n! + 1}$

$$a_1 = -\frac{1}{2}, \ a_2 = \frac{2}{3}, \ a_3 = -\frac{3}{7}, \ a_4 = \frac{4}{25}a_5 = -\frac{5}{121}$$

Exercice 3 (Stewart 1.1.11)

Donnez les **cinq premiers termes** de la suite $a_n = 2$, $a_{n+1} = \frac{a_n}{1 + a_n}$

$$a_1 = 2$$
, $a_2 = \frac{2}{3}$, $a_3 = \frac{2}{3} \times \frac{3}{5} = \frac{2}{5}$, $a_4 = \frac{2}{5} \times \frac{5}{7} = \frac{2}{7}$, $a_5 = \frac{2}{7} \times \frac{7}{9} = \frac{2}{9}$

Trouver la règle

Exercice 4 (Stewart 1.1.15)

Trouver la formule du **terme général** a_n de la suite $\{-3, 2, -\frac{4}{3}, \frac{8}{9}, -\frac{16}{27}, \ldots\}$

$$a_n = \frac{(-1)^n 2^{n-1}}{3^{n-2}}$$

Exercice 5 (Stewart 1.1.18)

Trouver la formule du **terme général** a_n de la suite $\{1,0,-1,0,1,0,-1,0,\cdots\}$

$$a_n = \sin\left(\frac{n\pi}{2}\right)$$

Estimer un somme

Exercice 6 (Stewart 1.1.19 - 1.1.22)

Calculez, à la quatrième décimale, les dix premiers termes de la suite et utilisez-les pour tracer le graphique de la suite à la main. La suite semble-t-elle avoir une limite? Si oui, calculez cette limite. Si non, expliquez pourquoi.

1.1.19
$$a_n = \frac{3n}{1+6n}$$

$$a_1 = 0.4286$$
, $a_2 = 0.4615$, $a_3 = 0.4736$, $a_4 = 0.4800$, $a_5 = 0.4838$, $a_6 = 0.4864$, $a_7 = 0.4883$, $a_8 = 0.4998$, $a_9 = 0.4909$, $a_{10} = 0.4918$

Graphe de la suite $\alpha_n = \frac{3n}{1+6n}$ et de la fonction $f(x) = \frac{3x}{1+6x}$

Déterminer la convergence

Exercice 7 (Stewart 1.1.23 - 1.1.56)

Déterminez si la suite converge ou diverge. Si elle converge, **trouvez sa limite**.

1.1.23
$$a_n = \frac{3+5n^2}{n+n^2} \lim_{n \to +\infty} a_n \implies \frac{\infty}{\infty}$$
.

$$\frac{3+5n^2}{n+n^2} = \frac{n^2(\frac{1}{3n^2}+5)}{n^2(1+\frac{1}{n})} = a_n \quad \text{(Simplifié)}$$

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{5 + \frac{1}{n} \frac{1}{n}}{1 + \frac{1}{n}} = \lim_{n \to +\infty} \frac{5}{1} = \frac{5}{1}$$

$$\textbf{1.1.42} \ \alpha_n = \frac{\cos^2 n}{n}$$

Nous savons que la fonction a_n est bornée entre les valeurs $\cos^2 n \in [0,1]$. Ainsi, pour tout $n \in \mathbb{N}$ nous avons les équivalences suivantes :

$$G0 \le \cos^{2} n \le 1$$

$$\frac{0}{n} \le \frac{\cos^{2} n}{n} \le \frac{1}{n}$$

$$\lim_{n \to +\infty} \frac{0}{n} \le \lim_{n \to +\infty} \frac{\cos^{2} n}{n} \le \lim_{n \to +\infty} \frac{1}{n}$$

Ainsi nous savons que la limite est bornée **inférieurement et supérieurement** par zéro, lorsque $n \longrightarrow \infty$. Ainsi, nous pouvons conclure que la limite est égale à zéro et que la suite a_n converge vers L=0.

1.1.44
$$a_n = \sqrt[n]{2^{1+3n}}$$

$$a_n = \sqrt[n]{2^{1+3n}} = \left(2 \cdot 2^{3n}\right)^{\frac{1}{n}} = 2^{\frac{1}{n}} \cdot 2^{\frac{3n}{n}} \quad \text{(Développé)}$$

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} = 2^{\frac{1}{n}} \cdot 2^3 = 8$$

1.1.46 $a_n = 2^{-n} \cos n\pi$

Nous savons que la suite $\{\alpha_n\}$ est bornée par les valeurs -1 et $1: \forall n \in \mathbb{N}, -1 \leqslant \alpha_n \leqslant 1$. En utilisant l'identité $\cos \pi n = (-1)^n$, nous avons :

$$a_n = 2^{-1} \cos \pi n = b_n = 2^{-1} (-1)^n$$

Nous pouvons ainsi évaluer la limite lorsque $n \longrightarrow 0$:

$$\lim_{n\to +\infty} a_n = \lim_{n\to +\infty} b_n = \lim_{n\to +\infty} \frac{1}{2^n} \cdot (-1)^n = \lim_{n\to +\infty} 0 \cdot (-1)^n = 0$$

1.1.52
$$a_n = \arctan(\ln n)$$

Nous savons que la fonction $\ln x$ tend vers $+\infty$ lorsque $x \longrightarrow +\infty$. Et par le théorème d'association d'une fonction à une suite, nous savons que la suite analogue $b_n = \ln n$ tend également vers $+\infty$. Nous avons alors :

1.1.54 $a_n = \left\{\frac{1}{1}, \frac{1}{3}, \frac{1}{2}, \frac{1}{4}, \frac{1}{3}, \frac{1}{5}, \frac{1}{4}, \frac{1}{6}, ...\right\}$

En observant la suite, on constate que le dénominateur pour les termes n **impairs** est équivalent à $\frac{n+1}{2}$:

$$\frac{1}{\left(\frac{1+1}{2}\right)} = \frac{1}{1}, \quad \frac{1}{\left(\frac{3+1}{2}\right)} = \frac{1}{2}, \quad \frac{1}{\left(\frac{5+1}{2}\right)} = \frac{1}{3}, \quad \frac{1}{\left(\frac{7+1}{2}\right)} = \frac{1}{4}, \dots$$

Et en observant la suite, on constate que le dénominateur pour les termes n pairs est équivalent à $\frac{n}{2} + 2$:

$$\frac{1}{\left(\frac{2}{2}+2\right)} = \frac{1}{3}, \quad \frac{1}{\left(\frac{4}{2}+2\right)} = \frac{1}{4}, \quad \frac{1}{\left(\frac{6}{2}+2\right)} = \frac{1}{5}, \quad \frac{1}{\left(\frac{8}{2}+2\right)} = \frac{1}{6},$$

On peut donc conclure que la suite obéit à la règle $a_n=\frac{1}{\frac{n+1}{2}}$ pour les termes **impairs** et $a_n=\frac{1}{\frac{n+4}{2}}$ pour les termes **pairs**. En simplifiant les fractions, on obtient :

$$a_n = \begin{cases} \frac{2}{n+1} & \text{n impairs} \\ \\ \frac{2}{n+4} & \text{n pairs} \end{cases}$$

1.1.56
$$a_n = \frac{(-3)^n}{n!}$$

$$\begin{split} \lim_{n \to \infty} a_n &= \lim_{n \to +\infty} \frac{(-3)^n}{n!} = \lim_{n \to +\infty} (-1)^n \frac{3^n}{n!} \\ &= \lim_{n \to +\infty} -\cos(n\pi) \frac{3^n}{n!} \\ &= -\lim_{n \to +\infty} \cos(n\pi) \frac{3^n}{n!} \\ &= -\lim_{n \to +\infty} \cos(n\pi) \frac{3^n}{n!} \end{split}$$

La partie importante ici est le rapport entre $(-3)^n$ et n!. Bien que 3^n croisse exponentiellement, n! croît beaucoup plus rapidement que 3^n , car n! est un produit d'entiers successifs qui croît super-exponentiellement. Cela signifie que pour des n suffisamment grands, le dénominateur n! va dominer le numérateur 3^n , ce qui entraînera la limite de a_n vers 0.

Exercice 8 (Stewart 1.1.64)

Déterminez si la suite définie par récurrence est convergente ou divergente :

$$a_1 = 1, \ a_{n+1} = 4 - a_n \ \forall n \ge 1$$

1.1.64a Les premiers termes de la suite sont les suivantes :

$$a_1 = 1$$
, $a_2 = 3$, $a_3 = 1$, $a_4 = 3$, $a_5 = 1$, ...

On voit que la suite oscille entre les valeurs 1 et 3, en fonction du fait que n est pair ou impair :

$$a_1 = 1$$
, $a_2 = 3$, $a_3 = 1$, $a_4 = 3$, $a_5 = 1$, ...

$$a_n = \begin{cases} 1 & \text{n impair} \\ \\ 3 & \text{n pair} \end{cases}$$

Puisque la suite oscille entre deux valeurs, la limite $\lim_{n \to +\infty} a_n$ est **indéfinie** et on peut conclure que la suite diverge.

1.1.64b

Si la valeur de a_1 était $a_1 = 2$, on aurait les premiers termes suivants :

$$a_1 = 2$$
, $a_2 = 2$, $a_3 = 2$, $a_4 = 2$, ...

Ainsi, on constate qu'après le premier termes, la suite a une valeur constante $a_n = 2 \forall n > 1$. On peut donc conclure que la suite converge vers l'entier naturel 2.

Convergence de a_{n+1}

Exercice 9 (Stewart 1.1.70a) $Si \{a_n\}$ converge, montrez que

$$\lim_{n\to+\infty} a_{n+1} = \lim_{n\to+\infty} a_n$$

Preuve directe. La définition de convergence d'une suite suggère que an est convergente si pour toute valeur arbitrairement petite et positive, $\varepsilon > 0$, il existe un entier $N(\varepsilon)$ qui représente un seuil à partir duquel pour toute valeur $n > N(\epsilon)$, la distance entre a_n et L est suffisamment petite ($|a_n - L| < \epsilon$). Après ce seuil N les images a_n de chaque n > N sont suffisamment proche d'une valeur limite L. Autrement dit :

$$a_n$$
 conv. $\implies \forall \ \epsilon > 0 : \exists N(\epsilon) > 0 : n > N(\epsilon) \implies |a_n - L| < \epsilon$

Supposons que la suite $\{a_n\}$ converge vers L. Cela signifie que pour tout $\varepsilon > 0$, il existe un entier $N(\varepsilon)$ tel que pour tout $n > N(\varepsilon)$, on a $|a_n - L| < \varepsilon$.

Maintenant, considérons la suite $\{a_{n+1}\}$. Lorsque $n > N(\epsilon)$, il est évident que $n+1 > N(\epsilon)$ également. Ainsi, pour $n > N(\varepsilon)$, on a aussi:

$$|a_{n+1}-L|<\varepsilon$$
.

Cela montre que $\lim_{n \to +\infty} a_{n+1} = L$, puisque la distance entre a_{n+1} et L devient arbitrairement petite pour des n suffisamment grands.

Ainsi, nous avons montré que si $\lim_{n\to +\infty} \alpha_n = L$, alors $\lim_{n\to +\infty} \alpha_{n+1} = L$.

Conclusion: Puisque les deux suites $\{a_n\}$ et $\{a_{n+1}\}$ convergent vers la même limite L, nous avons :

$$\left|\lim_{n\to+\infty}a_{n+1}=\lim_{n\to+\infty}a_n.\right|$$

Exercice 10 (Stewart 1.1.70b)

Une suite $\{a_n\}$ est définie par $a_1=1$ et $a_{n+1}=\frac{1}{1+a_n},\ \forall n\geqslant 1$. En supposant que $\{a_n\}$ converge, trouvez sa limite.

Les premiers termes de la suite sont :

$$a_1 = 1$$
, $a_2 = \frac{1}{2}$, $a_3 = \frac{2}{3}$, $a_4 = \frac{3}{5}$, $a_5 = \frac{5}{8}$, $a_6 = \frac{8}{13}$, $a_7 = \frac{13}{21}$, $a_8 = \frac{21}{34}$, $a_9 = \frac{34}{55}$, $a_{10} = \frac{55}{89}$

Supponsons, comme suggère l'énoncé, que la suite $\{a_n\}$ converge vers L :

$$\lim_{n\to +\infty}\alpha_n=L$$

Or, la relation de récurrence, $a_{n+1}=\frac{1}{1+a_n}$. Et puisque $a_n\to L$ lorsque $n\to\infty$, la récurrence engendre l'équivalence :

$$\alpha_{n+1} = \frac{1}{1+L}$$

Nous avons montré que si a_n converge vers L, alors a_{n+1} converge également vers L. Ona donc :

$$L = \frac{1}{1+L}$$

$$L(1+L) = 1$$

$$L+L^2 = 1$$

$$L^2 + L - 1 = 0$$

En appliquant la formule quadratique, on obtient :

$$L = \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2} = \frac{-1 \pm \sqrt{5}}{2}$$

Cela engendre les solutions $L_1 \approx 0.618$ et $L_2 \approx -1.628$. Puisque les valeurs des termes de la suite sont positives (voir a_1 à a_{10}), on peut **rejeter la solution négative**. La limite de la suite $\{a_n\}$ est :

$$\boxed{L = \frac{-1 + \sqrt{5}}{2}}$$

Théorie sur les suites monotones

Exercice 11 (Stewart 1.1.71)

Supposez que vous savez que est une suite décroissante et que tous ses termes sont compris entre les nombres 5 et 8. Expliquez pourquoi cette suite possède une limite. Que pouvez-vous dire à propos de la valeur de cette limite?

Par la propriété des suites monotones, toute suite décroissante et bornée est également convergente. Plus formellement, supposons que $\{a_n\}$ est décroissante et que toutes les valeurs de $\{a_n\}$ sont comprises entre 5 et 8. Sachant que $\{a_n\}$ est décroissante, nous savons également que \forall $n \ge 1$, $a_{n+1} \le a_n$. Ainsi, chaque valeur a_{n+1} est au moins égale ou plus petite que son prédécesseur a_n . Ainsi, lorsque $n \to infty$, valeurs de la suite s'approchent de la borne inférieure et la limite de $\{a_n\}$ est une certaine valeur $L \ge 5$.

Déterminer la convergence de suites monotones

Exercice 12 (Stewart 1.1.72-1.1.78)

Déterminez si la suite est croissante, décroissante ou non monotone. Est-elle bornée?

- $\begin{array}{ll} \textbf{1.1.72} & \alpha_n = \frac{1}{2n+3}. \text{ La suite } \{\alpha_n\} \text{ est strictement décroissante ; il s'agit donc d'une suite monotome. On constate que } \\ \alpha_n \xrightarrow[n \to \infty]{} L = 0 \text{ Ainsi, on peut conclure que } \{\alpha_n\} \text{ est bornée inférieurement.} \\ \end{array}$
- **1.1.75** $a_n = n(-1)^n$. La suite $\{a_n\}$ oscille entre des valeurs positives et négatives à cause de l'exposant $(-1)^n$. Ainsi, lorsque $n \to \infty$, a_n ne s'approche d'aucune valeur particulière. Ainsi, on peut conclure que $\{a_n\}$ est non bornée, divergente et non monotone.