Untitled: A DirectX Game

Sam Drysdale

May 16, 2023

Contents

1	Summary	1
2	User Controls	1
3	Features	1
	3.1 Noise	1
	3.2 Procedural Terrain	1
	3.2.1 Case Study: Hexes	2
	3.2.2 Case Study: Landmarks	2
	3.3 Procedural Screen Textures	2
	3.3.1 Case Study: Runes	2
	3.3.2 Case Study: Blood Vessels	2
	3.4 Procedural Narrative	3
4	Code Organisation	3
	4.1 Post-Processing	3
	4.2 GUI	3
5	Evaluation	3
	5.1 Features	3
	5.2 Code Organisation	3
6	Conclusions	3
\mathbf{Re}	eferences	3
1	Summary	
2	User Controls	
3	Features	
3.1	1 Noise	
3.2	2 Procedural Terrain	

[Starting point: the problem of concavity!]

Introduce marching cubes as the central tenet of the modelling process...

Definitive... Paul Bourke's Polygonising a scalar field (1994)...

3.2.1 Case Study: Hexes

3.2.2 Case Study: Landmarks

3.3 Procedural Screen Textures

[Untitled uses screen textures, based on l-systems...].

In formal languages, a grammar is a tuple $G = (N, \Sigma, P, \omega_0)$. This contains two disjoint sets of symbols: nonterminals $A, B, \dots \in N$, and terminals $a, b, \dots \in \Sigma$. The production rules in P map nonterminals to strings $\alpha, \beta, \dots \in (N \cup \Sigma)^*$; applied recursively to the axiom $\omega_0 \in (N \cup \Sigma)^*$, these rules can produce increasingly complex strings of terminals and/or nonterminals.¹

The Chomsky hierarchy (Chomsky 1956) classifies grammars by their production rules:

Type-3. Regular grammars map $A \mapsto a$ or $A \mapsto aB$.

Type-2. Context-free grammars map $A \mapsto \alpha$.

Type-1. Context-sensitive grammars $\alpha A\beta \mapsto \alpha \gamma \beta$.

Type-0. Unrestricted grammars map $\alpha \mapsto \beta$, where α is non-empty.

Note that all Type-3 grammars are also Type-2, all Type-2 grammars also Type-1, and so on.

Suppose, for example, that $N = \{F, G\}$, $\Sigma = \{+, -\}$, $P = \{F \mapsto F + G, G \mapsto F - G\}$, $\omega_0 = F$. Letting ω_n denote the string generated by applying the production rules n times, it follows that

$$\begin{array}{lll} \omega_1 & = & F+G, \\ \omega_2 & = & F+G+F-G, \\ \omega_3 & = & F+G+F-G+F+G-F-G, \\ \omega_4 & = & F+G+F-G+F+G-F-G+F+G-F-G, \end{array}$$

While the above defintions are rather abstract, they come with a surprising practical application. Lindenmayer (1968) introduces the L-system, ... [Introduce basics of L-systems, include the angles used for dragon curves...] produces the dragon curves in Figure 1.

3.3.1 Case Study: Runes

Parametric L-systems (?) exist as a generalisation of the above... [theory].

[Move into code... what parameters will we consider?]

[Example: various geometric runes!].

3.3.2 Case Study: Blood Vessels

Zamir (2001) uses parametric L-systems... equations for bifurcation...

Liu et al. (2010) further introduce a stochastic component...

¹In mathematical literature, $\omega_0 \in N$ (Hopcroft, Motwani & Ullman 2000), but this paper takes an informal approach.

Figure 1: Dragon curves, generated by strings $\omega_2, \omega_4, \cdots, \omega_{12}$.

3.4 Procedural Narrative

- 4 Code Organisation
- 4.1 Post-Processing
- 4.2 GUI

[Include HDRR/bloom here...]

- 5 Evaluation
- 5.1 Features
- 5.2 Code Organisation
- 6 Conclusions

References

Bourke, P. (1994), 'Polygonising a Scalar Field', Available at: http://paulbourke.net/geometry/polygonise/. (Accessed: 9 February 2023).

Chomsky, N. (1956), 'Three Models for the Description of Language', *IRE Transactions on Information Theory* **2**(3), 113–124.

Hopcroft, J., Motwani, R. & Ullman, J. D. (2000), *Introduction to Automata Theory, Languages, and Computation*, 2nd edn, Boston, MA, USA: Addison-Wesley.

Lindenmayer, A. (1968), 'Mathematical Models for Cellular Interactions in Development II. Simple and Branching Filaments With Two-Sided Inputs', *Journal of Theoretical Biology* **18**(3), 300–315.

Liu, X., Liu, H., Hao, A. & Zhao, Q. (2010), Simulation of Blood Vessels for Surgery Simulators, in '2010 International Conference on Machine Vision and Human-machine Interface', pp. 377–380.

Zamir, M. (2001), 'Arterial Branching Within the Confines of Fractal L-System Formalism', *The Journal of General Physiology* **118**, 267–276.