Training Neural Networks

CMPUT 366: Intelligent Systems

GBC §6.5

Lecture Outline

- 1. Recap & Logistics
- 2. Gradient Descent for Neural Networks
- 3. Automatic Differentiation
- 4. Back-Propagation

Assignment #2

- Assignment #2 due TODAY at 11:59pm
 - Submit via eClass
 - Deadline is firm

Recap: Nonlinear Features

$$y = f(\mathbf{x}; \mathbf{w}) = g(\mathbf{w}^T \mathbf{x}) = g\left(\sum_{i=1}^n w_i x_i\right)$$

Generalized linear model: Activation function g of linear combination of inputs

Extension: Learn a generalized linear model on richer inputs

- 1. Define a feature mapping $\phi(\mathbf{x})$ that returns functions of the original inputs
- 2. Learn a linear model of the features instead of the inputs

$$y = f(\mathbf{x}; \mathbf{w}) = g(\mathbf{w}^T \phi(\mathbf{x})) = g\left(\sum_{i=1}^n w_i [\phi(\mathbf{x})]_i\right)$$

Recap:

Feedforward Neural Network

$$h_1(\mathbf{x}; \mathbf{w}^{(1)}, b^{(1)}) = g\left(b^{(1)} + \sum_{i=1}^n w_i^{(1)} x_i\right)$$

- A neural network is many units composed together
- $y(\mathbf{x}; \mathbf{w}, \mathbf{b}) = g\left(b^{(y)} + \sum_{i=1}^{n} w_i^{(y)} h_i(\mathbf{x}_i; \mathbf{w}^{(i)}, b^{(i)})\right)$

- Feedforward neural network:
 Units arranged into layers
 - Each layer takes outputs of previous layer as its inputs

Recap: Chain Rule of Calculus

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$
i.e,

$$h(x) = f(g(x)) \implies h'(x) = f'(g(x))g'(x)$$

If we know formulas for the derivatives of components of a function, then we can build up the derivative of their composition mechanically

Recap: Training Neural Networks

• Specify a loss L and a set of training examples:

$$E = (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})$$

- Training by gradient descent:
 - 1. Compute loss on training data: $L(\mathbf{W}, \mathbf{b}) = \sum_{i} \ell\left(f(\mathbf{x}^{(i)}; \mathbf{W}, \mathbf{b}), \underline{y}^{(i)}\right)$

_oss function

- 2. Compute gradient of loss: $\nabla L(\mathbf{W}, \mathbf{b})$
- 3. Update parameters to make loss smaller:

$$\begin{bmatrix} \mathbf{W}^{new} \\ \mathbf{b}^{new} \end{bmatrix} = \begin{bmatrix} \mathbf{W}^{old} \\ \mathbf{b}^{old} \end{bmatrix} - \eta \nabla L(\mathbf{W}^{old}, \mathbf{b}^{old})$$

Three Representations

A function f(x, y) can be represented in multiple ways:

1. As a formula:

$$f(x,y) = (xy + \sin x + 4)(3y^2 + 6)$$

2. As a computational graph:

3. As a finite numerical algorithm

$$s_1 = x$$

 $s_2 = y$
 $s_3 = s_1 \times s_2$
 $s_4 = \sin(s_1)$
 $s_5 = s_3 + s_4$
 $s_6 = s_5 + 4$
 $s_7 = \text{sqr}(s_2)$
 $s_8 = 3 \times s_7$
 $s_9 = s_8 + 6$
 $s_{10} = s_6 \times s_9$

Symbolic Differentiation

$$z = f(y)$$

$$y = f(x)$$

$$z = f(f(f(w)))$$

$$z = f(f(f(w)))$$

$$z = f(f(f(w)))f'(f(w))f'(w)$$

- We can differentiate a nested formula by recursively applying the chain rule to derive a new formula for the gradient
- Problem: This can result in a lot of repeated subexpressions
- Question: What happens if the nested function is defined piecewise?

Automatic Differentiation: Forward Mode

- The forward mode converts a finite numerical algorithm for computing a function into an augmented finite numerical algorithm for computing the function's derivative
- For each step, a new step is constructed representing the derivative of the corresponding step in the original program:

$$s_{1} = x$$
 $s_{2} = y$
 $s_{3} = s_{1} + s_{2}$
 $s_{4} = s_{1} \times s_{2}$
 \vdots
 $s_{1} = 1$
 $s'_{2} = 0$
 $s'_{3} = s'_{1} + s'_{2}$
 $s'_{4} = s_{1} \times s'_{2} + s'_{1} \times s_{2}$
 \vdots

- . To compute the partial derivative $\frac{\partial s_n}{\partial s_1}$, set $s_1'=1$ and $s_2'=0$ and run augmented algorithm
- This takes roughly twice as long to run as the original algorithm (why?)

Forward Mode Example

Let's compute $\frac{\partial f}{\partial y}$ using forward mode:

$$\begin{array}{lll} s_1 = x & = 2 & s_1' = 0 \\ s_2 = y & = 8 & s_2' = 1 \\ s_3 = s_1 \times s_2 & = 16 & s_3' = s_1 \times s_2' + s_1' \times s_2 = 2 \\ s_4 = \sin(s_1) & \approx 0.034 & s_4' = \cos(s_1) \times s_1' = 0 \\ s_5 = s_3 + s_4 & = 16.034 & s_5' = s_3' + s_4' = 2 \\ s_6 = s_5 + 4 & = 20.034 & s_6' = s_5' = 2 \\ s_7 = \operatorname{sqr}(s_2) & = 64 & s_7' = s_2' \times 2 \times s_2 = 16 \\ s_8 = 3 \times s_7 & = 192 & s_8' = 3 \times s_7' = 48 \\ s_9 = s_8 + 6 & = 198 & s_9' = s_8' = 48 \\ s_{10} = s_6 \times s_9 & = 3966.732 & s_{10}' = s_6 \times s_9' + s_6' \times s_9 = 1357.632 \end{array}$$

Forward Mode Performance

- To compute the full gradient of a function of m inputs requires computing m partial derivatives
- In forward mode, this requires *m* forward passes
- For our toy examples, that means running the forward pass twice
- Neural networks can easily have thousands of parameters
- We don't want to run the network thousands of times for each gradient update!

Automatic Differentiation: Backward Mode

- Forward mode sweeps through the graph:
 - For each s_i , computes $s_i' = \frac{\partial s_i}{\partial s_1}$ for each s_i
 - The numerator varies, and the denominator is fixed
- Backward mode does the opposite:
 - For each s_i , computes the local gradient $\overline{s_i} = \frac{\partial s_n}{\partial s_i}$
 - The numerator is fixed, and the denominator varies
- . At the end, we have computed $\overline{x_i} = \frac{\partial s_n}{\partial x_i}$ for each input x_i

$$s_{1} = x$$

$$s_{2} = y$$

$$s_{3} = s_{1} \times s_{2}$$

$$s_{4} = \sin(s_{1})$$

$$s_{5} = s_{3} + s_{4}$$

$$s_{6} = s_{5} + 4$$

$$s_{7} = \operatorname{sqr}(s_{2})$$

$$s_{8} = 3 \times s_{7}$$

$$s_{9} = s_{8} + 6$$

$$s_{10} = s_{6} \times s_{9}$$

Backward Mode Example

Let's compute
$$\frac{\partial f}{\partial x} \Big|_{x=2,y=8}$$
 and $\frac{\partial f}{\partial y} \Big|_{x=2,y=8}$ using backward mode:

= 3966.732

$$s_1 = x$$
 = 2
 $s_2 = y$ = 8
 $s_3 = s_1 \times s_2$ = 16
 $s_4 = \sin(s_1)$ ≈ 0.034
 $s_5 = s_3 + s_4$ = 16.034
 $s_6 = s_5 + 4$ = 20.034
 $s_7 = \text{sqr}(s_2)$ = 64
 $s_8 = 3 \times s_7$ = 192
 $s_9 = s_8 + 6$ = 198

 $s_{10} = s_6 \times s_9$

$$\overline{s_{10}} = \frac{\partial s_{10}}{\partial s_{10}} = 1$$

$$\overline{s_9} = \frac{\partial s_{10}}{\partial s_9} = \frac{\partial s_{10}}{\partial s_{10}} \frac{\partial s_{10}}{\partial s_9} = \overline{s_{10}} s_6 = 20.034$$

$$\overline{s_8} = \frac{\partial s_{10}}{\partial s_8} = \frac{\partial s_{10}}{\partial s_9} \frac{\partial s_9}{\partial s_8} = \overline{s_9} 1 = 20.034$$

$$\overline{s_7} = \frac{\partial s_{10}}{\partial s_7} = \frac{\partial s_{10}}{\partial s_8} \frac{\partial s_8}{\partial s_7} = \overline{s_8} 3 = 60.102$$

$$\overline{s_6} = \frac{\partial s_{10}}{\partial s_6} = s_9 = 198$$

Backward Mode Example (2)

Let's compute
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ using backward mode:

 $\frac{\partial s_{10}}{\partial s_4} \frac{\partial s_4}{\partial s_1} = \overline{s_3} s_2 + \overline{s_4} \cos s_1 \simeq 1781.9$

Back-Propagation

$$L(\mathbf{W}, \mathbf{b}) = \sum_{i} \mathcal{E}\left(f(\mathbf{x}^{(i)}; \mathbf{W}, \mathbf{b}), y^{(i)}\right)$$

Back-propagation is simply automatic differentiation in **backward mode**, used to compute the gradient $\nabla_{\mathbf{W},\mathbf{b}}L$ of the **loss function** with respect to its **parameters W**, **b**:

- 1. At each layer, compute the local gradients of the layer's computations
- 2. These local gradients will be used as inputs to the **next layer's** local gradient computations
- 3. At the end, we have a partial derivative for each of the parameters, which we can use to take a gradient step

Summary

- The loss function of a deep feedforward networks is simply a very nested function of the parameters of the model
- Automatic differentiation can compute these gradients more efficiently than symbolic differentiation or finite-differences numeric computations
 - Symbolic differentiation is interleaved with numeric computation
 - In forward mode, m sweeps are required for a function of m parameters
 - In backward mode, only a single sweep is required
- Back-propagation is simply automatic differentiation applied to neural networks in backward mode