Práctica 2 Programación de Microcontroladores PIC II

- Características del PIC 16F877A
 - Organización de la memoria
 - Puertos de E/S
- Transferencia del programa al PIC
- Ejemplos
- 🔲 Tareas a realizar

Introducción

Objetivos

- Conocer las principales características del PIC 16F877A.
- Ser capaz de programar código para el PIC16F877A haciendo uso de sus recursos: registros, puertos, etc.
- Simular los programas desarrollados en el entorno MPLAB
- Transferir los programas una vez simulados para su ejecución directa en el PIC 16F877A.

Entorno de trabajo

☐ La metodología que propusimos en la práctica anterior incluía:

□ Ahora nos falta transferir el programa desarrollado en MPLAB para que se ejecute en nuestro PIC 16F877A.

- MEMORIA DE DATOS dividida en dos áreas:
 - Registros de funciones especiales (SFR, Special Function Registers)
 - Controlan la operación de la CPU y los periféricos.
 - Se implementan como RAM estática
 - Se inicializan a un valor por defecto después de la alimentación del microcontrolador.

- Almacenamiento de datos.
- No se inicializan a un valor por defecto después de la alimentación.
- La transferencia entre registros ha de hacerse a través del registro W.
- Estructura en bancos de 128 bits accesibles mediante STATUS<7:5>
- Acceso directo (bits RP1:RP0) o indirecto (bit IRP y registro FSR) a la información.

 □ Distribución de las áreas de registros SFR Y GPR en cada banco de memoria del PIC16F876A/877A

- Posiciones de memoria sin implementar. Se leerá
- (*) No es un registro real.
- 1. Estos registros no están implementados en el PIC16F876A.
- 2. Estos registros están reservados. Deben mantenerse sin usar.

☐ Detalle de los registros SPR del PIC16F87XA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR, E		Details on page:
Bank 0												
00h ⁽³⁾	INDF	Addressing	g this locatio	n uses cont	ents of FSR t	o address da	ata memory (not a physic	cal register)	0000	0000	31, 150
01h	TMR0	Timer0 Mo	dule Registe	er						xxxx x	xxxx	55, 150
02h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signi	ficant Byte					0000	0000	30, 150
03h ⁽³⁾	STATUS	IRP	RP1	RP0	TO PD		Z	DC	С	0001	1xxx	22, 150
04h ⁽³⁾	FSR	Indirect Da	lirect Data Memory Address Pointer xx					xxxx x	xxxx	31, 150		
05h	PORTA	_	_	PORTA Da	ta Latch whe	n written: PO	ORTA pins wl	hen read		0x	0000	43, 150
06h	PORTB	PORTB Da	B Data Latch when written: PORTB pins when read							xxxx x	xxxx	45, 150
07h	PORTC	PORTC Da	TC Data Latch when written: PORTC pins when read								xxxx	47, 150
08h ⁽⁴⁾	PORTD	PORTD D	ata Latch wh	nen written:	PORTD pins	when read				xxxx x	xxxx	48, 150
09h ⁽⁴⁾	PORTE	_	_	_	_		RE2	RE1	RE0		-xxx	49, 150
0Ah ^(1,3)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	Program C	counter	0	0000	30, 150
0Bh ⁽³⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	24, 150
0Ch	PIR1	PSPIF(3)	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	26, 150
0Dh	PIR2	_	CMIF	_	EEIF	BCLIF	_	_	CCP2IF	-0-0	00	28, 150
0Eh	TMR1L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	TMR1 Regist	ter		xxxx :	xxxx	60, 150
0Fh	TMR1H	Holding Re	egister for th	e Most Sign	ificant Byte o	f the 16-bit 7	TMR1 Regist	er		xxxx z	xxxx	60, 150
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00	0000	57, 150
11h	TMR2	Timer2 Mo	mer2 Module Register						0000	0000	62, 150	
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	61, 150

☐ Detalle de los registros SPR del PIC16F87XA (continuación)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value o		Details on page:
Bank 0												
13h	SSPBUF	Synchrono	Synchronous Serial Port Receive Buffer/Transmit Register								xxx	79, 150
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0	000	82, 82, 150
15h	CCPR1L	Capture/Co	ompare/PW	M Register	1 (LSB)					xxxx x	xxx	63, 150
16h	CCPR1H	Capture/Co	ompare/PWI	M Register '	1 (MSB)					xxxx x	xxx	63, 150
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0	000	64, 150
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0	00x	112, 150
19h	TXREG	USART Tra	ansmit Data	Register						0000 0	000	118, 150
1Ah	RCREG	USART Re	ceive Data	Register						0000 0	000	118, 150
1Bh	CCPR2L	Capture/Co	ompare/PWI	M Register 2	2 (LSB)					xxxx x	xxx	63, 150
1Ch	CCPR2H	Capture/Co	ompare/PWI	M Register 2	2 (MSB)					xxxx x	xxx	63, 150
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0	000	64, 150
1Eh	ADRESH	A/D Result Register High Byte							xxxx x	xxx	133, 150	
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 0	0-0	127, 150

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

- **Note** 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.
 - 2: Bits PSPIE and PSPIF are reserved on PIC16F873A/876A devices; always maintain these bits clear.
 - These registers can be addressed from any bank.
 - : PORTD, PORTE, TRISD and TRISE are not implemented on PIC16F873A/876A devices, read as '0'.
 - Bit 4 of EEADRH implemented only on the PIC16F876A/877A devices.

☐ Detalle de los registros SPR del PIC16F87XA (continuación)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 1											
80h ⁽³⁾	INDF	Addressing	this locatio	n uses cont	ents of FSR t	o address d	ata memory (not a physic	al register)	0000 0000	31, 150
81h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	23, 150
82h ⁽³⁾	PCL	Program C	rogram Counter (PC) Least Significant Byte								30, 150
83h ⁽³⁾	STATUS	IRP	RP1	RP1 RP0 TO PD Z DC C 0						0001 1xxx	22, 150
84h ⁽³⁾	FSR	Indirect Da	ta Memory	Address Po	inter					xxxx xxxx	31, 150
85h	TRISA	_	PORTA Data Direction Register							11 1111	43, 150
86h	TRISB	PORTB Da	ata Direction		1111 1111	45, 150					
87h	TRISC	PORTC Da	ata Direction	Register						1111 1111	47, 150
88h ⁽⁴⁾	TRISD	PORTD Da	ata Direction	Register						1111 1111	48, 151
89h ⁽⁴⁾	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Data	a Direction I	oits	0000 -111	50, 151
8Ah ^(1,3)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	Program C	ounter	0 0000	30, 150
8Bh ⁽³⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	24, 150
8Ch	PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	25, 151
8Dh	PIE2	_	CMIE	_	EEIE	BCLIE	_	_	CCP2IE	-0-0 00	27, 151
8Eh	PCON	_	_	_	_	_	_	POR	BOR	qq	29, 151
8Fh	_	Unimpleme	Unimplemented								_
90h	_	Unimpleme	ented		_	_					

☐ Detalle de los registros SPR del PIC16F87XA (continuación)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:	
Bank 1												
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	83, 151	
92h	PR2	Timer2 Pe	riod Registe		1111 1111	62, 151						
93h	SSPADD	Synchrono	nchronous Serial Port (I ² C mode) Address Register								79, 151	
94h	SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	79, 151	
95h		Unimplem	nimplemented									
96h	_	Unimpleme	ented		_	_						
97h	_	Unimpleme	ented							_	_	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	111, 151	
99h	SPBRG	Baud Rate	e Generator I	Register	,					0000 0000	113, 151	
9Ah	_	Unimpleme	ented							_	_	
9Bh	_	Unimpleme	ented							_	_	
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	135, 151	
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	141, 151	
9Eh	ADRESL	A/D Resulf	A/D Result Register Low Byte								133, 151	
9Fh	ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	128, 151	
	-									-		

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1:

- 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.
- 2: Bits PSPIE and PSPIF are reserved on PIC16F873A/876A devices; always maintain these bits clear.
- These registers can be addressed from any bank.
- 4: PORTD, PORTE, TRISD and TRISE are not implemented on PIC16F873A/876A devices, read as '0'.
- 5: Bit 4 of EEADRH implemented only on the PIC16F876A/877A devices.

- ☐ Se pueden considerar los periféricos más sencillos
- Implementan las entrada-salida de la MCU.
- Se utilizan mediante dos registros: PORTx (datos) y TRISx (control)
 - Pueden implementarse hasta siete puertos de características distintas (x puede sustituirse con identificadores de puerto desde la A hasta la G)
 - Cada uno de los bits de TRISx establece la dirección de la información de su correspondiente bit (pin) en PORTx.
 - Un 1 configura el pin como entrada.
 - Una operación de lectura obtiene el nivel presente en el terminal implicado.
 - Un 0 configura ese pin como salida
 - Manteniendo el bit de salida mediante un latch.
 - Después de un reset todos los bits de TRISx son 1.
- Los pines de entrada/salida pueden estar multiplexados con varios periféricos.
- Para conocer con exactitud las características de cada puerto en concreto es imprescindible consultar las hojas de características de cada dispositivo

P2: 11

Puertos de E/S

Puerto A

- Puerto bidireccional de 6 bits.
- RA4 Tiene entrada Trigger Schmitt y salida drenador abierto, el resto admiten niveles de entrada TTL y salida CMOS.
- Debe configurarse si se quiere que funcione de forma analógica o digital.
- Su correspondiente registro de dirección es TRISA
 - Poniendo a uno un bit del registro TRISA se establece como entrada el correspondiente pin de PORTA..
 - Poniendo a cero un bit de TRISA se establece como salida el correspondiente pin de PORTA.

Ejemplo de inicialización del puerto A:

```
BCF
       STATUS, RPO ;
       STATUS, RP1 ; Bank0
BCF
                     ; Initialize PORTA by clearing output data latches
       PORTA
CLRF
       STATUS, RPO ; Select Bank 1
BSF
                     ; Configure all pins
MOVLW
        0x06
                     ; as digital inputs
       ADCON1
MOVWF
                     ; Value used to initialize data direction
MOVLW
       0xCF
                     ; Set RA<3:0> as inputs RA<5:4> as outputs
       TRISA
MOVWF
                     ; TRISA<7:6>are always read as '0'.
```

Puerto A: analógico o digital

ADCON1 REGISTER (ADDRESS 9Fh)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	_	-	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

- 1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0'.
- 0 = Left justified. Six (6) Least Significant bits of ADRESL are read as '0'.
- bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in shaded area and in **bold**)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	0.0	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	0.0	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as '0'

Configuración del puerto A

como líneas digitales

0x06

ADCON1

MOVLW

MOVWF

Puerto A: analógico o digital

ADCON1 REGISTER (ADDRESS 9Fh)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							hit 0

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R	
0000	Α	Α	Α	Α	Α	Α	Α	Α	VDD	Vss	8/0	1
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	AN3	Vss	7/1	1
0010	D	D	D	Α	Α	Α	Α	Α	VDD	Vss	5/0	1
0011	D	D	D	Α	VREF+	Α	Α	Α	AN3	Vss	4/1	
0100	D	D	D	D	Α	D	Α	Α	VDD	Vss	3/0	1
0101	D	D	D	D	VREF+	D	Α	Α	AN3	Vss	2/1	
011x	D	D	D	D	D	D	D	D	g—	ş—	0/0	
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	6/2	Γ
1001	D	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0	
1010	D	D	Α	Α	VREF+	Α	Α	Α	AN3	Vss	5/1	1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	4/2	1
1100	D	D	D	Α	VREF+	VREF-	Α	Α	AN3	AN2	3/2	1
1101	D	D	D	D	VREF+	VREF-	Α	Α	AN3	AN2	2/2	
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0	
1111	D	D	D	D	VREF+	VREF-	D	Α	AN3	AN2	1/2	1

A = Analog input D = Digital I/O

C/R = # of analog input channels/# of A/D voltage references

l	Legend:	
ı		۰

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
- n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

Note: On any device Reset, the port pins that are multiplexed with analog functions (ANx) are forced to be an analog input.

Puerto A

o Funciones

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2/VREF-/CVREF	bit 2	TTL	Input/output or analog input or VREF- or CVREF.
RA3/AN3/VREF+	bit 3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI/C1OUT	bit 4	ST	Input/output or external clock input for Timer0 or comparator output. Output is open-drain type.
RA5/AN4/SS/C2OUT	bit 5	TTL	Input/output or analog input or slave select input for synchronous serial port or comparator output.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Resumen de los registros asociados con el puerto A

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA D	ata Direct	ion Regist	er			11 1111	11 1111
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	0000 0111
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000
9Fh	ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Puerto B

- Puerto de 8 bits bidireccionales
- Su correspondiente registro de dirección es TRISB
 - Poniendo a uno un bit del registro TRISB se establece como entrada el correspondiente pin de PORTB..
 - Poniendo a cero un bit de TRISB se establece como salida el correspondiente pin de PORTB
- ☐ Tres pines del PORTB están multiplexados con *In-Circuit Debugger* y la función Low-Voltage Programming: RB3/PGM, RB6/PGC y RB7/PGD
- Cuatro de los pines de PORTB, RB7:RB4, tienen la capacidad de provocar una interrupción cuando están configurados como entradas.

- La escritura en un puerto implica una lectura-modificación-escritura.
- Puede acarrear problemas en operaciones de escritura sobre puertos en los que unos pines están configurados como entradas y otros como salidas:

Puerto B

Funciones

Name	Bit#	Buffer	Function
RB0/INT	bit 0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit 1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit 2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3/PGM ⁽³⁾	bit 3	TTL	Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up.
RB4	bit 4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit 5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6/PGC	bit 6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or in-circuit debugger pin. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit 7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or in-circuit debugger pin. Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode or in-circuit debugger.

3: Low-Voltage ICSP Programming (LVP) is enabled by default which disables the RB3 I/O function. LVP must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 28-pin and 40-pin mid-range devices.

Puerto B

Resumen de los registros asociados con el puerto B

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu	uuuu
86h, 186h	TRISB	PORTB Data Direction Register								1111 1111	1111	1111
81h, 181h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111	1111

 $\textbf{Legend:} \quad x = \text{unknown}, \, u = \text{unchanged}. \, \text{Shaded cells are not used by PORTB}.$

Ejemplo

- Nos planteamos el siguiente problema:
 - Crearemos un programa para un PIC16F77A funcionando a 8MHZ encargado de contar hasta 0x5f. Cuando lo alcance se detendrá en un bucle no operativo. El valor del contador se visualizará en 8 diodos LED conectados al puerto B.

Ejemplo

```
P=16F877A
                     ; Seleccionamos el micro
LIST
; Asignación de etiquetas a registros.
       EQU
            0 \times 01
                      ; registro f
portb EQU 0x06
                      ; Dirección del registro del puerto B
estado EQU 0x03
                      ; Dirección del registro de estado
conta EQU 0x0C
                      ; Lo usamos como variable contadora
                     ; El programa comienza en la dirección 0
       ORG
       GOTO Inicio
                      ; salta a la dirección 5 para sobrepasar el vector INT.
       ORG
            5
Inicio BSF estado, 5; Selecciona banco 1 para llegar a TRISB
       MOVLW 0x00
       MOVWF portb ; Y se especifica que es de salida
       BCF estado, 5; Selección del banco 0 para trabajar con el puerto
       CLRF conta
                      ; Ponemos nuestro contador a 0
bucle1 INCF conta, f; conta + 1 --> conta (incrementa el contador)
       MOVF
           conta,W
                      ; conta se carga en W
                      ; W se carga en el registro de datos del puerto B
       MOVWF portb
       MOVLW 0x5f; W <-- 0x5f (Final de cuenta deseado)
       SUBWF conta, W ; conta - W --> W. Si es cero, la cuenta está acabada
       BTFSS estado, 2
                      ; Explora Z y si vale 1 es que W vale 0
                      ; se produce salto en ese caso por fin de cuenta
                      ; Si Z = 0 se vuelve a bucle1
       GOTO bucle1
bucle2 GOTO bucle2
                      ; Si Z = 1 se produce un bucle infinito
END
```

conectado al conector USB del PC

Transferencia del programa al PIC

- □ El programa mikroProg Suite nos permite programar el microcontrolador.
- La ventana principal incluye las opciones básicas para programar los microcontroladores, junto con dos opciones de programación avanzadas que permiten ajustar los bits de configuración.

- Lo primero que hay que hacer es seleccionar la familia y el tipo del programador que será programado.
 - Para ello se elige la opción MCU Family

- A continuación ya podemos cargar el archivo .hex generado previamente.
- El proceso de la programación empieza cuando se pulsa el botón Write.
- La barra Progress permite conocer el progreso de su programación.

■ La opción CONFIG

☐ La opción *MCU INFO*

Ejemplo

Vamos a probar el programa realizado anteriormente en la placa UNI DS3

Crearemos un programa para un PIC16F877A funcionando a 8MHZ encargado de contar hasta 0x5f. Cuando lo alcance se detendrá en un bucle no operativo. El valor del contador se visualizará en 8 diodos LED conectados al puerto B.

```
#include <p16f877a.inc>
                                    ; Seleccionamos el micro
           LIST P=16f877a
                                     ; Deshabilitamos el watch dog y fijamos el oscilador
config WDT OFF & HS OSC
; Asignación de etiquetas a registros.
           EQU
                     0x01
                                    ; registro f
                                    ; Dirección del registro del puerto B
portb
           EOU
                     0x06
                     0x03
                                     ; Dirección del registro de estado
estado
           EOU
                                     ; Lo usamos como variable contadora
conta
           EQU
                     0x20
            ORG
                                     ; El programa comienza en la dirección 0
            GOTO
                                     ; salta a la dirección 5 para sobrepasar el vector INT.
                     Inicio
            ORG
Inicio
            BSF
                     estado,5
                                     ; Selecciona banco 1 para llegar a TRISB
            MOVLW
                     0x00
           MOVWF
                     portb
                                     ; Y se especifica que es de salida
                                     ; Selección del banco O para trabajar con el puerto
            BCF
                     estado,5
            CLRF
                     conta
                                     ; Ponemos nuestro contador a 0
bucle1
            INCF
                     conta,f
                                     ; conta + 1 --> conta (incrementa el contador)
           MOVF
                     conta,W
                                    ; conta se carga en W
                                     ; W se carga en el registro de datos del puerto B
            MOVWF
                     portb
                                     ; W <-- 0x5f
                                                     (Final de cuenta deseado)
            MOVLW
                     0x5f
            SUBWF
                     conta,W
                                     ; conta - W --> W. Si es cero, la cuenta estÃ; acabada
                                     ; Explora Z y si vale 1 es que W vale 0
            BTFSS
                     estado,2
                                     ; se produce salto en ese caso por fin de cuenta
            GOTO bucle1
                                        ; Si Z = 0 se vuelve a bucle1
                                        ; Si Z = 1 se produce un bucle infinito
bucle2
           GOTO bucle2
            END
```

Tareas a realizar

Desarrollar las siguientes tareas primero con simulación en MPLAB y luego transfiriéndolo a la placa UNI DS3:

- 1. Realizar un programa para el PIC16F77A que lea el estado de los 6 interruptores E0-E5 conectados al puerto A y refleje el nivel lógico de los mismos sobre los leds S0-S5 conectados al puerto B. ¿Qué consideraciones de configuración han de tenerse en cuenta en el puerto A? ¿Se encienden todos los leds? En caso negativo indicar la razón de este comportamiento.
- Se pide realizar un programa para el PIC16F77A que active secuencialmente, de una en una, las ocho salidas de la puerta B (RB0-RB7), provocando un efecto de desplazamiento de derecha a izquierda.
- 3. Desarrollar una aplicación que encienda cada 0,5 segundos un led del puerto B (de menor a mayor peso), durante 0,5 segundos y posteriormente los leds correspondientes al puerto D (de mayor a menor peso). El proceso debe repetirse hasta que se active el pulsador correspondiente a RB0, quedando a partir de ese momento encendidos los leds del puerto B y D.
- 4. Desarrollar una aplicación que cuente el número de veces que se cierra el pulsador RB0 y las muestre en binario natural por el puerto D. Aunque se cierre el pulsador una vez, es posible que sobre el puerto D se produzca más de un incremento de cuenta. ¿Cuál puede ser la causa? ¿Cómo puedes solucionarlo?

Nota: para realizar estas tareas deberá realizarse una rutina de retardo que permita apreciar visualmente el resultado.