21CS2213RA AI for Data Science

Session -8

Contents: Adversarial Search

Adversarial Search

• Examine the problems that arise when we try to plan ahead in a world where other agents are planning against us.

- A good example is in board games.
- Adversarial games, while much studied in AI, are a small part of game theory in economics.

Typical Al assumptions

- Two agents whose actions alternate
- Utility values for each agent are the opposite of the other
 - creates the adversarial situation
- Fully observable environments
- In game theory terms: Zero-sum games of perfect information.
- We'll relax these assumptions later.

Search versus Games

- Search no adversary
 - Solution is (heuristic) method for finding goal
 - Heuristic techniques can find *optimal* solution
 - Evaluation function: estimate of cost from start to goal through given node
 - Examples: path planning, scheduling activities
- Games adversary
 - Solution is strategy (strategy specifies move for every possible opponent reply).
 - Optimality depends on opponent.
 - Time limits force an *approximate* solution
 - Evaluation function: evaluate "goodness" of game position
 - Examples: chess, checkers, Othello, backgammon

Types of Games

	deterministic	Chance moves
Perfect information	Chess, checkers, go, othello	Backgammon, monopoly
Imperfect information (Initial Chance Moves)	Bridge, Skat	Poker, scrabble, blackjack

Game Setup

- Two players: MAX and MIN
- MAX moves first and they take turns until the game is over
 - Winner gets award, loser gets penalty.
- Games as search:
 - Initial state: e.g. board configuration of chess
 - Successor function: list of (move, state) pairs specifying legal moves.
 - Terminal test: Is the game finished?
 - Utility function: Gives numerical value of terminal states. E.g. win (+1), lose (-1) and draw (0) in tic-tactoe or chess

Size of search trees

- b = branching factor
- m = number of moves by both players
- Search tree is O(b^m)
- Chess
 - b~35
 - m ~100
 - search tree is $\sim 10^{154}$ (!!)
 - completely impractical to search this
- Game-playing emphasizes being able to make optimal decisions in a finite amount of time
 - Somewhat realistic as a model of a real-world agent
 - Even if games themselves are artificial

Partial Game Tree for Tic-Tac-Toe

Game tree (2-player, deterministic, turns)

How do we search this tree to find the optimal move?

Minimax strategy:

- Find the optimal strategy for MAX assuming an infallible MIN opponent
 - Need to compute this all the down the tree
 - Game Tree Search Demo
- Assumption: Both players play optimally!
- Given a game tree, the optimal strategy can be determined by using the minimax value of each node.
- Zermelo 1912.

Minimax maximizes the utility for the worst-case outcome for max

Pseudocode for Minimax Algorithm

function MINIMAX-DECISION(state) **returns** an action

inputs: state, current state in game

v←MAX-VALUE(*state*)

return the *action* in SUCCESSORS(*state*) with value *v*

function MAX-VALUE(state) **returns** a utility value **if** TERMINAL-TEST(state) **then return** UTILITY(state) $v \leftarrow -\infty$ **for** a.s in SUCCESSORS(state) **do** $v \leftarrow \mathsf{MAX}(v, \mathsf{MIN-VALUE}(s))$

function MIN-VALUE(*state*) **returns** *a utility value* **if** TERMINAL-TEST(*state*) **then return** UTILITY(*state*)

 $v \leftarrow \infty$

return v

for a,s in SUCCESSORS(state) do

 $v \leftarrow MIN(v,MAX-VALUE(s))$

return v

Example-1

Example-2

Example-3

Properties of Minimax

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an optimal opponent)
- Time complexity? O(bm)
- Space complexity? O(bm) (depth-first exploration

Thank you