# Fraud Detection using Heavy Hitters: A Case Study

Bruno Veloso<sup>1</sup>, Carlos Martins<sup>2</sup>, Raul Azevedo<sup>2</sup>, João Gama<sup>1</sup>

The 35th ACM/SIGAPP Symposium
On Applied Computing
Brno, Czech Republic
March 30-April 3, 2020

jgama@fep.up.pt

## Contents

Problem definition

**Used Techniques** 

Experimental Work

Conclusions

### Problem definition

In Interconnect Bypass Fraud, one of several intermediaries responsible for delivering phone calls forwards the traffic over a low cost IP connection.



### Problem definition

- ▶ In the telecommunication world, fraud is defined as the abusive usage of network and services without the intention of paying.
- ► Following a survey by the Communications Fraud Control Association, interconnect bypass fraud is one of the largest sources of lost revenues and costs network operators.
- ▶ This type of fraud is detected by analysing the call patterns of the gateways.
- but, the behaviour of gateways evolve over time, resembling some of them, true SIM Farms, capable of manipulating identifiers, simulating standard call patterns similar to the ones of normal users

# Proposed Approach

How to detect interconnect bypass fraud on telecommunications? Current approaches are based on blacklists:

- Inefficient in detecting new frauds
- Inefficient in detecting changes in the patterns

Our approach is data driven and works online. We are looking for:

- ▶ High asymmetry of international termination rates.
- High activity with abnormal behaviours.
  - Bursts of calls a huge amount of calls;
  - Calling large set of numbers
  - Repetition same pattern of calls during a period of time;
  - Mirror the huge amount of calls are divided by multiple numbers.

# **Used Techniques**

# Detect in real time and as soon as possible: One pass streaming algorithms!

- Frequent Items
  - ▶ Heavy Hitters provide approximate counts of the frequent items ¹.
  - ► Hierarchical Heavy Hitters provide a rank of the most frequent items in a specific hierarchy <sup>2</sup>.
- ▶ We signal alarms, when calling numbers, exhibit activity profile:
  - Large number of phone calls HH
  - Bursts in activity HH
  - Calling too many numbers HHH

<sup>&</sup>lt;sup>1</sup>G. S. Manku and R. Motwani, "Approximate frequency counts over data streams," inVLDB'02

 $<sup>^2</sup>$ G. Cormode,S. Muthukrishnan, and D. Srivastava, "Finding hierarchical heavy hitters in streaming data". TKDD

# **Experimental Work**

- ► Two data sets: different periods
- Each record (one phone-call) contains information about:
  - Origin numbers (A-Numbers).
  - Destination number (B-Numbers).
  - ► Timestamp.
  - ▶ Blacklist Code: if the A-number is in the blacklist or not.

### Data set 1

- ► Collected during three months between 24/07/2018 to 21/10/2018
- ▶ 89 days which includes 83.366.367 examples.
- ▶ Unique ANumber: 9.006.011
- ▶ Unique BNumber: 2.387.932

### Data set 2

- ► Collected during one month between 01/06/2019 to 30/06/2019
- ➤ 29 days which includes 32.879.670 examples.
- ▶ Unique ANumbers: 3.217.069
- ▶ Unique BNumbers: 1.380.235

# Experimental Work – HH

- ► The sequence of A numbers are used as a stream: Frauds are originated from A numbers,
- ► Use the lossy counting algorithm to provide approximate counts of the frequent items

# Experimental Work - Contribution

### Lossy Count

```
input: S: A Sequence of Examples; \epsilon: Error margin;
begin
        n \leftarrow 0: \Delta \leftarrow 0: T \leftarrow 0:
        foreach example e \in S do
                  n \leftarrow n + 1
                  if e is monitored then
                           Increment Counte
                  else
                           T \leftarrow T \cup \{e, 1 + \Delta\}
                  end
                      \left|\frac{n}{\epsilon}\right| \neq \Delta then
                           \Delta \leftarrow \underline{n}
                           foreach all i \in T do
                                    if Count_i < \Delta then
                                              T' \leftarrow T \setminus \{j\}
                                    end
                           end
                  end
end
```

### Lossy Count with Forgetting

 $\mbox{\bf input: } {\cal S} .$  A Sequence of Examples;  $\epsilon :$  Error margin;  $\alpha :$  fast forgetting parameter

```
begin
        n \leftarrow 0: \Delta \leftarrow 0: T \leftarrow 0:
        foreach example e \in S do
                 n \leftarrow n + 1
                 if e is monitored then
                         Increment Counte
                else
                          T \leftarrow T \cup \{e, 1 + \Delta\}
                end
                           \neq \Delta then
                         \Delta \leftarrow \underline{n}
                         foreach all i \in T do
                                  Count_i \leftarrow (1 - \alpha) * Count_i
                                  if Count_i < \Delta then
                                  end
                         end
                end
        end
```

# Experimental Work: Lossy Counting: Top-k A numbers





# Experimental Work: Lossy Counting w/ Forgetting Top-k A numbers





# Sensitivity Analysis

ightharpoonup Forgetting Parameter Sensitivity; lpha is the forgetting parameter and UAN is Unique A-Numbers

| $\alpha$ | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 8.0 | 0.9 | 0.99 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| UAN      | 211 | 210 | 203 | 192 | 180 | 175 | 158 | 123 | 93  | 66  | 12   |

▶ Performance comparison of the Lossy Counting (LC) vs Lossy Counting with Fast Forgetting (LCFF)

| Algorithm | Runtime (s) | Memory (MB) | SpeedUp (Examples/s) |
|-----------|-------------|-------------|----------------------|
| LC        | 88          | 75.8        | 947 345              |
| LCFF      | 72          | 28.8        | 1 157 866            |

# **Experts Annotation**





### Discussion

### Contributions:

- ▶ **Application level:** Real-time identification of suspicious behaviours of A numbers.
- ▶ **Methodology level:** with the extension of the Lossy Counting algorithm with a fast forgetting mechanism to rapidly detect abnormal behaviours.

### Achievements:

- Inability of the Lossy Counting algorithm to detect recent items with abnormal behaviours.
- ▶ The results show that our proposal improved the detection of these recent items.
- ▶ The forgetting mechanism reduces the execution and memory used to compute the data stream, increasing the speedup of the algorithm.

# Experimental Work – HHH

- ► Each A number is described by (Example phone number "IVLRLNUIUV"):
  - ► Country code first two digits "IV"
  - ► Sub-range five digits "LRLNU"
  - ▶ Number last one, two or three digits "IUV"
- Use a hierarchical heavy hitters, to find the most frequent items in a specific hierarchy

# Experimental Work – HHH – Country Code

### Data set 1



### Data set 2



# Experimental Work – HHH: ANumber-BNumber

# A-numbers that call to too many B-numbers

# Data set 1 Data set 2 | ILFURNULUU | BNFVZNRUUFO | BNFVZNRUURDU | BNFVZNRUURUU | BNFVZNNIUFEI | BNFVZNNIUFEI

# Experimental Work: Top-k ANumber-BNumber

| Data set |              | l           |  |  |
|----------|--------------|-------------|--|--|
| Rank     | ANumber      | # BNumber   |  |  |
| 1        | IVVPUPOUUP   | 26868 (301) |  |  |
| 2        | LLNZNLIVLZNV | 26686 (299) |  |  |
| 3        | LPVVLPIOIRU  | 26478 (297) |  |  |
| 4        | IRUOVOZOFOP  | 26473 (297) |  |  |
| 5        | LVUVZFIIUOOZ | 26399 (296) |  |  |
| 6        | LLNVZRLLNOLO | 23342 (262) |  |  |
| 7        | LLVUIZOLFLUZ | 19116 (214) |  |  |
| 8        | LIRVUPPNUZF  | 13703 (153) |  |  |
| 9        | ILFFVZZUZNN  | 12000 (134) |  |  |
| 10       | IOINLIRPPRP  | 8595 (96)   |  |  |

| )-44             | 0            |            |  |  |
|------------------|--------------|------------|--|--|
| Data set<br>Rank | ANumber      | # BNumber  |  |  |
| 1                | ILFFVZZUZNN  | 6002 (207) |  |  |
| 2                | IOINLIRPPRP  | 5782 (199) |  |  |
| 3                | ILFFVZZINZI  | 5055 (174) |  |  |
| 4                | LFPNVLNUIPN  | 3654 (126) |  |  |
| 5                | LFPNVLNUOVI  | 3643 (125) |  |  |
| 6                | LFPNVLNUIRP  | 3517 (121) |  |  |
| 7                | ILFURNUIUUU  | 2855 (98)  |  |  |
| 8                | ILZOVIFOVIF  | 2782 (96)  |  |  |
| 9                | LLNRUZIORILO | 2220 (77)  |  |  |
| 10               | ILZNUPPRNNF  | 2214 (76)  |  |  |

# Experimental Work: ANumber-BNumber HHH vs HH

| Data set | 1           |           |
|----------|-------------|-----------|
| Rank     | ANumber     | # BNumber |
| 10       | IOINLIRPPRP | 8595      |

 One new ANumbers identified by the HHH when compared with HH

| Data set<br>Rank | 2<br>ANumber | # BNumber |
|------------------|--------------|-----------|
| 7                | ILFURNUIUUU  | 2855      |
| 9                | LLNRUZIORILO | 2220      |

► Two new ANumbers identified by the HHH when compared with HH

### Conclusions

### The experiments shows:

- Real-time identification of anomalous behaviors.
- ▶ Approximate counting algorithms are efficient to identify anomalous beaviours:
  - ▶ The Lossy Counting algorithm can be improved with forgetting techniques.
  - efficient to detect recent items with abnormal behaviours: burst of calls, repetition and mirror behaviours
- ► The hierarchical heavy hitters can identify the ranges and numbers with higher volumes of calls with a defined structure

# Thank you!

Questions: jgama@fep.up.pt

### References I



G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, "Finding hierarchical heavy hitters in streaming data," *ACM Transactions on Knowledge Discovery from Data (TKDD)*, vol. 1, no. 4, p. 2, 2008.