

言語処理学会第28回年次大会 併設ワークショップ JED2022(日本語における評価用データセットの構築と利用性の向上)

学習データセット改善による アスペクト感情分析モデルの性能改善

2022.3.18

株式会社インテック

テクノロジー&マーケティング本部

先端技術研究所 亀谷 聡

目次

- 1. はじめに
- 2. 学習データセットの改善方法一覧
- 3. アスペクト感情分析モデル概要
- 4. 学習データセットの改善方法試行
- 5. まとめ
- 6. 今後の課題

2

1. はじめに

本発表の背景

- マーケティングオートメーション、コールセンター、CRM、医療、 企業評価などでアスペクト感情分析を活用できる可能性がある。
- それら業務での活用可能性を検証するにあたり、学習データセットを作成し、改善していく方法を整理する必要がある。
- 公開データセットを用いてアスペクト感情分析の技術評価や学習 データセットの作成及び改善方法を検討している。

• 本発表の目的

- アスペクト感情分析を業務活用する際の学習データセットの作成 及び更新方法について気付きを得たい。
 - 検討した学習データセット改善方法の紹介。
 - 改善方法の試行結果の紹介。

2. 学習データセットの改善方法一覧

- モデルを運用する上で、学習データセットを改善していくことは必要不可欠。
 - 主目的の違いにより、改善方法は2つに分けられる。

No	主目的	方法	内容
1	継続的	新旧データ の入替	✓ 期間を決めて新旧データを入れ替える。✓ 新規データについては人手で正解ラベルを付与。
2	データ更新	無作為抽出を 基に追加	✓ 新規データが多い場合、無作為抽出により学習データセット に追加するデータを選別。
3		誤判定傾向 の緩和	✓ 誤判定しやすい傾向を把握。✓ 学習データセットを追加して上記傾向を緩和する。
4	モデル	能動学習 による追加	✓ モデル判定結果が中程度スコアの文書を収集。✓ 上記文書に人手で正解ラベルを付与。
5	性能改善	不適切な正解 ラベルの修正	✓ 不適切な正解ラベルを把握し、適切なラベルに修正。
6		リバランシング	✓ アップサンプリング/ダウンサンプリングを行う。

- 誤判定傾向の緩和(No.3)によりモデル性能を改善できるか試行。

- 3. アスペクト感情分析モデル概要
 - 適用手法

モデル作成方法〉

| 評価結果`

- アスペクト感情分析とは?
 - 文書中の**人・物・事に対する感情**(肯定的 or 中立的 or 否定的に 書かれているか)を自動的に判定する技術。

ハンバーグはおいしいです。

肯定的

- 特徴
 - 何に対する感情か判定できる。
 - ひとつのテキストに複数の感情が含まれる場合、それらを適切に判定できる。

肯定的
ハンバーグはおいしいですが、 店員の対応は不親切でした。
否定的 3. アスペクト感情分析モデル概要

適用手法

モデル作成方法〉

評価結果

- アスペクト感情分析の手法
 - 出力の違いによって2つに分けることができる。

No	手法	出力	₹	研究論文
1	TSD (Target-Sentiment joint Detection)	感情 対象	entiment Analysi	shared RNN for aspect
2	TASD (Target-Aspect-Sentiment Detection)	感情 対象 観点	arget-Aspect-Ser spect-Based Sen	ntiment Joint Detection for timent Analysis

© 2022 INTEC Inc.

3. アスペクト感情分析モデル概要

適用手法

モデル作成方法

評価結果〉

• 作成条件

項目	条件	備考
アスペクト 感情分析手法	TSD	Exploiting BERT for End-to-End Aspect-based Sentiment Analysis
事前学習済み モデル	bert-base-japanese-whole- word-masking ^{*1}	東北大学 乾・鈴木研究室 日本語Wikipedia
学習データ セット	chABSA-dataset**2	TIS株式会社 有価証券報告書

 ${\it $\%$1:https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking}$

%2:https://github.com/chakki-works/chABSA-dataset

• 作成手順

No	実施項目	概要
1	データ変換	学習データセットをモデル入力形式に変換。
2	データ分割	訓練データ:検証データ:テストデータ=6:2:2に分割。
3	モデル作成	訓練、検証データを使ってモデル作成。
4	モデル評価	テストデータにモデルを適用。 汎化性能(マイクロ平均F値)を確認。

© 2022 INTEC Inc.

3. アスペクト感情分析モデル概要

適用手法

モデル作成方法〉

評価結果

• モデル選定:検証データF値最高モデル

• テストデータ評価結果

指標	値
Precision	0.804
Recall	0.769
F値	0.786

- 3. アスペクト感情分析モデル概要
 - 適用手法

モデル作成方法〉

評価結果

• 誤判定傾向

- 正解ラベル(対象:感情)の訓練データ数が少ないとF値は小さい。

- 訓練データ数19以上の正解ラベルの汎化性能は高い。
- 訓練データ数の少ない正解ラベルは訓練データ数を増やすことで 汎化性能を高められる可能性がある。

- 3. アスペクト感情分析モデル概要
 - 適用手法

モデル作成方法

評価結果

- ・ 誤判定傾向(続き)
 - 今回、各正解ラベルについて訓練データを19個以上用意すること で汎化性能の高いモデルを作れる示唆が得られた。
 - 訓練データ数の多い正解ラベルは、正解ラベルの種類が数個と少ないため、種類を増やした検証が必要。

正解ラベルの訓練データ数

4. 学習データセットの改善方法試行

~ 改善方法検討 改善方法試行 改善効果確認

- 誤判定傾向を緩和する方法の検討
 - 訓練データ数0かつ偽陰性だった正解ラベルを含む文書を収集し、 正解ラベルを付与後、訓練データへ追加。
 - モデルを再学習することで偽陰性を真陽性に変え、汎化性能の改 善を目指す。

(例)訓練データ数0かつ偽陰性だった正解ラベル

正解ラベル (対象:感情)	訓練 データ	テスト データ	真陽性	偽陰性	偽陽性
新規店舗:肯定的	0	1	0	1	0
国内人材募集領域:肯定的	0	1	0	1	1
圧縮機:肯定的	0	1	0	1	0
業務用塩ビラップ:肯定的	0	1	0	1	0
流れ:肯定的	0	1	0	1	0
不動産業:否定的	0	1	0	1	0
大型タンカー:否定的	0	1	0	1	0
新政権:否定的	0	1	0	1	0
山陰製袋工業:否定的	0	1	0	1	0
機能樹脂製品:肯定的	0	1	0	1	0

(計215種類)

4. 学習データセットの改善方法試行

改善方法検討〉 改善方法試行

改善効果確認

試行手順

No	実施項目	概要
1	データ収集	EDINET*1の全文検索機能を使い、「新規店舗」を含む文書を取得。
2	正解ラベル 付与	アノテーション仕様書 ^{※2} を参考に正解ラベルを付与。 収集した4文書に対して下記正解ラベルを付与。 新規店舗: 肯定的 … 2文書 新規店舗: 否定的 … 2文書
3	訓練/検証 データ追加	訓練/検証データ(前回と同じ)へ上記文書を追加。 新規店舗: 肯定的 → 訓練データ(1文書)、検証データ(1文書) 新規店舗: 否定的 → 訓練データ(1文書)、検証データ(1文書)
4	モデル作成	訓練、検証データを使ってモデル作成。
5	モデル評価	テストデータにモデルを適用し、以下を確認。 ・汎化性能、正解ラベル(新規店舗:肯定的)の判定結果

%1:https://disclosure.edinet-fsa.go.jp/

※2: https://github.com/chakki-works/chABSA-dataset/tree/master/annotation/doc

追加文書

-方、店舗数の純増に加え、**新規店舗**が好調に推移したことから、増収を確保しました。

2020年、当行は、郡レベルの地域の店舗31を含め63の新規店舗を開設し、新たに8つの郡に進出した。

その他、当社が想定する海外の**新規店舗**の出店時期に遅れが生じるリスクがあります。

さらに、**新規店舗**が成功しない可能性もあり、1店舗当たり売上高を従前のように維持できない可能性もあります。

© 2022 INTEC Inc. 13

- 4. 学習データセットの改善方法試行
 - ~ 改善方法検討〉 改善方法試行〉 改善効果確認

- テストデータ評価結果(1)
 - 汎化性能

指標	前回	今回
Precision	0.802	0.821
Recall	0.782	0.786
F値	0.792	0.803

- 正解ラベル (新規店舗:肯定的)の判定結果

	正解ラベル (対象:感情)	訓練 データ	テスト データ	真陽性	偽陰性	偽陽性
前回	新担 庄 维,告定的	0	1	0	1	0
今回	新規店舗:肯定的	1	1	1	0	0

- データ数の少ない正解ラベルを学習データセットに追加すること で汎化性能が改善し、当該ラベルを正しく判定できた。

- 4. 学習データセットの改善方法試行
 - ∼ 改善方法検討

改善方法試行

改善効果確認

- テストデータ評価結果(2)
 - 今回・前回のF値比較(訓練データ数別)

- 今回追加した正解ラベル以外の判定性能が変わるため、汎化性能 が必ず改善するとは言い切れない。

5. まとめ

- アスペクト感情分析の業務活用可能性を検証するために、技術 評価や学習データセットの作成及び改善方法を検討している。
- アスペクト感情分析モデルの改善を目的に、学習データセット の改善方法を試行した。
 - 学習データセット(chABSA-dataset)を使いアスペクト感情分析モデル(TSD)作成。
 - 訓練データの少ない正解ラベル(新規店舗:肯定的)の文書を収集し、正解ラベルを付与。
 - 新規店舗:肯定的(2文書)、新規店舗:否定的(2文書)
 - 上記文書を訓練、検証データに追加してモデルを再作成。
 - 前回誤判定した正解ラベルを正しく判定し、汎化性能も改善。
 - 訓練データの少ない各正解ラベルの数を増やすことで、モデル件能を改善できる可能性がある。

6. 今後の課題(1)

- 学習データセット改善方法の課題と対策の整理
 - 今回、誤判定傾向を緩和する方法(No.3)を試行し、課題と対策 を検討した。
 - それ以外の方法についても試行し、課題と対策を整理する。

No	主目的	方法	課題	対策
1		新旧データ	正解ラベル付け文書数が多い。	ユーザからフィードバックを収集。
	継続的	の入替	旧データ削除の条件、時機。	
2	データ更新	無作為抽出を 基に追加		
3		誤判定傾向	正解ラベルを含む文書の収集。	文書収集の自動化。
5		の緩和	正解ラベル付け作業負荷。	アノテーションツールの利用。
4	モデル	能動学習 による追加		
5	性能改善		学習データセットを1つ1つ確認するのは負荷が高い。	
6		リバランシン グ		

6. 今後の課題(2)

- 各正解ラベルの学習データ数目標の決定
 - 今回、各正解ラベルについて訓練データを19個以上用意すること で汎化性能の高いモデルを作れる示唆が得られた。
 - 訓練データ数の多い正解ラベルは、正解ラベルの種類が数個と少ないため、種類を増やして検証する必要がある。
- 各正解ラベルの学習データ数目標の削減
 - 訓練データ数19個は現実的な目標値ではない。
 - リバランシングや層化分割など試行し有効は方法を見つける。
- 正解ラベル付け作業負荷の削減
 - アノテーションツールを使っても作業負荷は高い。
 - ラベル付け作業負荷の軽減、自動化する方法を見つける。
- 学習データセット作成/改善に向けた関係者の動かし方
 - 作業負荷が高いため、お客様や社内メンバーに受け入れられ難い。
 - 作業負荷軽減に加え、説得しやすい根拠の示し方を検討する。

THANK YOU

ITで、社会の願い叶えよう。

