Question	Scheme	Marks
2	$\frac{dy}{dx} = \sin 2x \times \frac{1}{2} \times 2 \times (3 + 2x)^{-\frac{1}{2}} + (3 + 2x)^{\frac{1}{2}} \times 2 \times \cos 2x$	M1A1A1
	$\frac{dy}{dx} = \frac{\sin 2x}{\sqrt{3+2x}} + 2 \times \sqrt{(3+2x)}\cos 2x = \frac{\sin 2x + 2(3+2x)\cos 2x}{\sqrt{3+2x}} = \dots$	dM1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin 2x + (6+4x)\cos 2x}{\sqrt{3+2x}} *$	A1 cso
	Where $A = 6$ and $B = 4$	[5]
Total 5 marks		

Mark	Notes
M1	For an attempt to apply product rule:
	An attempt is as follows.
	• The formula used must be correct. $\frac{dy}{dx} = uv' + vu'$
	Minimally acceptable differentiation used within a correct formula.
	$\sin 2x \rightarrow k \cos 2x$ and $\sqrt{3+2x} \rightarrow l(3+2x)^{-\frac{1}{2}}$
	where k and l are a positive integers and $k, l \neq 0$
	(You will see $l = 1$ without other working which is correct)
A1	One term correct – (simplification not required) and the other minimally acceptable.
	Either $\sin 2x \times \frac{1}{2} \times 2 \times (3+2x)^{-\frac{1}{2}}$
	$Or (3+2x)^{\frac{1}{2}} \times 2 \times \cos 2x$
A1	Fully correct – simplification not required
	$\frac{dy}{dx} = \sin 2x \times \frac{1}{2} \times 2 \times (3 + 2x)^{-\frac{1}{2}} + (3 + 2x)^{\frac{1}{2}} \times 2 \times \cos 2x$
dM1	For correct use of $\sqrt{3+2x}$ or $(3+2x)^{\frac{1}{2}}$ as a common denominator.
	NB: This mark is dependent on the first M mark scored.
A1 cso	For the correct $\frac{dy}{dx}$ as shown with no erroneous or missing working.
	Allow embedded values. E.g., $\frac{dy}{dx} = \frac{\sin 2x + (6+4x)\cos 2x}{\sqrt{3+2x}}$ is dM1A1