Least Squares and Maximum Likelihood

Istvan Csabai

Modern data science

Initial values

$$\wedge$$
=0.7 $\Omega_{\rm m}$ =0.3

"laws", equations

$$F=Grac{m_1m_2}{r^2} \ R_{\mu
u}-rac{1}{2}R\,g_{\mu
u}+\Lambda g_{\mu
u}=rac{8\pi G}{c^4}T_{\mu
u}$$

Introduction

- Find a MODEL for measurement/simulation data, that:
 - Fits some theory
 - Reproduce measurement data
 - Can be parametrized
- Parameters may have "physical" meaning
 - Displacement/time diagram linear fit slope: speed

Example: speed

Errors

- Measurements contain errors (in each variables!)
 - noise, inaccuracy
 - Systematic errors
 - outliers
- Hence: the calculated parameters will have errors, too

Least square fit

Given: (x_i, y_i) ; i=1..N measurement points. Fit some function :

$$y(x) = y(x; a_1, a_2, ..., a_M)$$

 a_j parameters, $j=1..M$

Least square fit:

$$\min_{a_1...a_M} \left(\sum_{i=1}^N \left[y_i - y(x_i; a_1...a_M) \right]^2 \right)$$

Take derivatives by $a_1, a_2, ..., a_M$ -> set of linear equations (!! Also for some nonlin func.)

Least squares

Why not least absolute values, fourth powers, etc?

$$\min_{a_{1}...a_{M}} \left(\sum_{i=1}^{N} \left[y_{i} - y(x_{i}; a_{1}...a_{M}) \right]^{2} \right) \\
\min_{a_{1}...a_{M}} \left(\sum_{i=1}^{N} \left| y_{i} - y(x_{i}; a_{1}...a_{M}) \right| \right) \\
\min_{a_{1}...a_{M}} \left(\sum_{i=1}^{N} \left[y_{i} - y(x_{i}; a_{1}...a_{M}) \right]^{4} \right) \\
\min_{a_{1}...a_{M}} \left(\sum_{i=1}^{N} \left| y_{i} - y(x_{i}; a_{1}...a_{M}) \right| \right) \\
a_{1}...a_{M} \right) = 0$$

Least distances?

Why least squares?

- Maximum likelihood estimation
- Least quare gives best parameters, if:
 - Errors only in y_i
 - Errors are normal (Gauss) distributed
 - Errors are independent

Cost function

Find optimal parameters, with largest goodness / smallest "cost/energy"

Cost function

Finding minimum: in general leads to a nonlinear optimization problem

In special case: linear set of equations

Maximum likelihood

$$P \propto \prod_{i=1}^{N} \left\{ \exp \left[-\frac{1}{2} \left(\frac{y_i - y(x_i)}{\sigma} \right)^2 \right] \Delta y \right\}$$

Find parameters where P is maximal.

The log() func. is monotonuous, so find maximum of log(P), or minimum of –log(P)

$$-\log(P) = \left[\sum_{i=1}^{N} \frac{[y_i - y(x_i)]^2}{2\sigma^2}\right] - N\log\Delta y$$

This is Least Squares!

Complex example: cosmology

