华东理工大学 2020-2021 学年第一学期 《数学分析(上)》课程期末考试试卷 <u>B</u> 2021.1

开课学院 理学院			专业			考试形式	闭卷	考试时间 120分钟		
姓名		学号			班级		_ 任课教师 张启迪			
	题序	_	=	三	四	五.	六	七	八	总分
	得分									
	评卷人									

注意: 本试卷共八大题, 满分100分。

一、(本题 18 分)

(1) 求 $\int x(2x-1)^{100}dx$; (2) 求函数 $y = (3x^2-2)\sin 2x$ 的 100 阶导数。

二、(本题 18 分) 求下列极限:

- (1) $\lim_{n\to\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)^{\frac{1}{n}};$
- (2) $\lim_{x \to +\infty} \left(\frac{2}{\pi} \arctan x \right)^x$;
- (3) $\lim_{x \to +\infty} \left[\left(x^3 x^2 + \frac{x}{2} \right) e^{\frac{1}{x}} \sqrt{x^6 1} \right]$.

三、(本题 12 分) 证明: 单调有界数列必收敛。

四、(本题 12 分) 若 $\lim_{n\to\infty} n\left(\sqrt{an^2+bn+6}-n\right)=3$, 求常数 a,b 的值。

五、(本题 10 分) 证明: 若函数 f(x) 在闭区间 [0,1] 上连续,则它在 [0,1] 上必能取到最大值。

六、(本题 10 分) 证明: 实系数方程 $x^3 + px + q = 0$ (p > 0) 有且只有一个实根。

七、(本题 10 分) 证明: 当 x > 0 时, $e^x > 1 + x^2$ 。

八、(本题 10 分) 设函数 f(x) 在 [a,b] 上连续,在 (a,b) 内二阶可导, f(a) = f(b) = 0,且存在 $c \in (a,b)$,使得 f(c) > 0。证明:存在 $\xi \in (a,b)$,使得 $f''(\xi) < 0$ 。