

Outline

- > Introduction
 - > Internet Telephony
 - > Spam over Internet Telephony (SPIT)
 - > SPIT Phenomenon
- Methodology
- > Research approach
 - Security Policies
 - > CAPTCHA
 - > Formal Verification
- ➤ Contribution Future research

Voice-over-IP (VoIP)

- Data networks and voice networks convergence
- Voice-over-IP (VoIP) technologies stand as Internet telephony infrastructure.
- Based on protocols, such as the **Session Initiation Protocol** (SIP) for signaling phase and the RTP for transmiting voice or multimedia content.

SPam over Internet Telephony (SPIT)

- Bulk unsolicited set of sessions
 - Call initiations
 - > Instant messages
 - Presence requests

SPIT phenomenon

- Implementation of mechanisms for tackling SPIT attacks by well-known companies as NEC and Microsoft.
- Recorded SPIT attacks
 - > 4 million spam texts sent every day telegraph.co.uk
 - Stop Spam And Unwanted Calls cbsnews.com
- Environmental burden due to SPAM/SPIT
 - ➤ Carbon Footprint of Spam ≈ 3 million cars thegreenitreview.com McAfee
- Economic benefits in response rates to SPAM \approx 0,00001% ACM CCS 2008

Email vs. Voice Spam

Similarities

- Common incentives, e.g. seeking financial gain or influence.
- Common implementation techniques, e.g. automatic production of mass low cost messages/calls, use of real end-users' addresses, address collection etc.

Differences

- Communication by email is essentially asynchronous, while VoIP communication is mainly synchronous.
- In the VoIP environment unreasonable delays are not technically acceptable.
- Spam email is mainly composed of **text** (perhaps images as well) while SPIT is primarily composed by **sound** and **image** (far less by text).
- A SPIT call usually creates more intensive disturbance to the user.

Methodology

Security Policy

Security Policy Implementation

Scenario

The device (UAC) receives an answer with a code 300 (Multiple Choice), while in the Contact field of the answer indicates a SIP address.

Property

Message 300

Sub-condition

Code=300

Condition

Code=300 ⊕ Contact ≈ One

Property

Field Contact
SIP address

Contact ≈ One

Condition = $f(c_1, c_2, ..., c_k) = c_1 \diamond c_2 \diamond \cdots \diamond c_k$, where c_i sub-condition and \diamond logical operator

CAPTCHA

Completely Automated Public Tests to tell Computers and Humans Apart

CAPTCHA characteristics

Soupionis Y., Tountas G., Gritzalis D., "Audio CAPTCHA for SIP-based VoIP", Proc. of the 24th International Information Security Conference, pp. 25-38, Springer (IFIP AICT 297), Cyprus, 2009.

Current Audio CAPTCHA

- 2. http://gmail.com (Google, 2008) (Vorm bot access rate: 33%)
- 3. https://accountservices.passport.net/reg.srf (Microsoft, 2008) (Vorm bot access rate: 75%)

Comparison of existing solutions of audio CAPTCHA

Audio CAPTCHA Characteristics	Google	MSN	Recapicha	eBay	Secure image captcha	МрЗСарісна	Captchas. net	bokelman	slashdot	Authorize	AOL	Digg
User's Success rate	60%	80%	50%	95%	98%	98%	98%	98%	95%	95%	95%	95%
Background noise	Voice, sound	Voice, sound	Sound	Voice, sound	Sound	No	No	No	No	No	Voice	Sound
Intermediate noise	Sound	Sound	No	No	No	No	No	No	No	No	Sound	No
Data field	0-9	0-9	Words	0-9	A-Z, a-z, 0-9	A-Z, a-z, 0-9	a-z, 0-9	A-Z, a-z, 0-9	Words	A-Z, a-z, 0-9	A-Z, a-z, 0-9	A-Z, a-z, 0-9
Number of characters in a snapshot	5-10	10	10-20	6	4	4	6	4	<9	5	8	5
Rare reappearance	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
Production process	Unknown	Unknown	Unknown	Unknown	Automated	Automated	Automated	Automated	Unknown	Unknown	Unknown	Unknown
Speaker voice	Multiple languages	Multiple languages	en	Multiple languages	en	en, fr, it, de	en, de, it, nl, fr	en	en	en	en	en
Different speakers	Yes	No	Yes	No	Yes	No	No	No	No	No	Yes	No
Duration(sec)	0:10-0:15	0:05-0:09	~0:04	~0:04	~0:04	~0:04	~0:08	0:04-0:05	0:03-0:04	0:05	0:10	0:08

Soupionis Y., "SPAM prevention in VoIP networks via security policies and audio CAPTCHA"., PhD Thesis, Dept. Of Informatics, Athens University of economics and Business, Greece, 2011.

Audio CAPTCHA implementation

1	Number of speakers	Time delay	Intermediate noise	Background noise	Number of training snapshots
Phase 1	1	X	X	X	20
Phase 2	3	X	X/J	X	50
Phase 3	5	X	X	V Ci	100
Phase 4	7	☑	X		100
Phase 5	7	▼	 ✓	☑	100

Soupionis Y., Gritzalis D., "Audio CAPTCHA: Existing solutions assessment and a new implementation for VoIP telephony", Computers & Security, Vol. 29, No. 5, pp. 603-618, 2010.

Formal verification

- Software system analysis via mathematical techniques, where the examined system is represented in an abstract level, can verify diverse groups of properties.
 - > Intel Pentium (1994) -> an error (bug) at the floating point hardware of the microprocessor-> Cost 400 million \$
- Formal verification of communication protocols
 - Testing and analysis of the entire state graph which is produced by a model/system.
- Correctness properties
 - Assertions or temporal logic formulae that are algorithmically validated by state exploration across all possible execution paths
- Modeling tool
 - > SPIN popular and open source

SPIN model

- Message codes
 - INVITE
 - 2xx successful answer
 - > 3xx redirecting response
 - > 4xx request failure
 - 6xx system failure
 - > ACK
- Message codes
 - > 1xx optionally

SPIN model

Property

Correlation operator

Q1: [](q \rightarrow p)

Time
operator

time<4000

Q1: $[](q \rightarrow p)$

sessions==0

Verification results

Absence of deadlock

- Executions either terminate with successfully completed initiated sessions or with failed sessions, due to dispatched messages that declare an error.
- Call establishment timeliness for all error-absent execution paths

Property description	States	Transision	Memory (MB)
Session establishment < 4000 ms	3.8e+06	7.181e+06	585.309
Parallel session establishment < 6500 ms	3.8e+06	7.246e+06	616.11
Full state graph (Absence of deadlock)	3.8e+06	7.181e+06	585.309

Soupionis Y., Basagiannis S., Katsaros P., Gritzalis D., "A formally verified mechanism for countering SPIT", in Proc. of the 5th International Conference on Critical Information Infrastructure Security (CRITIS-2010), Springer, Greece, September 2010.

Gritzalis D., Katsaros P., Basagiannis S., Soupionis Y., "Formal analysis for robust anti-SPIT protection using model-checking", International Journal of Information Security, Vol. 11, No. 2, pp. 121-135, 2012.

Conclusions

- The VoIP widespread use introduces not only many benefits, but also new threats.
- The adequate mitigation of SPIT requires multi-factorial approach (Policies & CAPTCHA) The existing anti-spam techniques are not sufficient.
- The anti-SPIT techniques should aim to discover, identify and tackle more and new kinds of attacks.
- The audio CAPTCHA that capitalizes the voice tone, intermediate noise and the digits and noise randomly distribution within the message is encouraging resistance against bots.

References

- 1. Dritsas S., Tsoumas B., Dritsou V., Konstantopoulos, P., Gritzalis D., "OntoSPIT SPIT Management through Ontologies", Computer Communications, Vol. 32, No. 2, pp. 203-212, 2009.
- 2. Gritzalis D., Katsaros P., Basagiannis S., Soupionis Y., "Formal analysis for robust anti-SPIT protection using model-checking", International Journal of Information Security, Vol. 11, No. 2, pp. 121-135, 2012.
- 3. Soupionis Y., Basagiannis S., Katsaros P., Gritzalis D., "A formally verified mechanism for countering SPIT", in Proc. of the 5th International Conference on Critical Information Infrastructure Security (CRITTS-2010), Wolthusen S., et al. (Eds.), pp. 128-139, LNCS-6712, Springer, Greece, September 2010.
- 4. Gritzalis D., Mallios J., "A SIP-based SPIT management framework", Computers & Security, Vol. 27, No. 5-6, pp. 136-153, 2008.
- 5. Gritzalis D., Marias G., Rebahi Y., Soupionis Y., Ehlert, S., "SPIDER: A platform for managing SIP-based spam over Interent Telephony", *Journal of Computer Security*, Vol. 19, No. 5, pp. 835-867, 2011.
- 6. Kandias M., Virvilis N., Gritzalis D., "The insider threat in Cloud Computing", Proc. of the 6th International Workshop on Critical Infrastructure Security, pp. 93-103, Springer (LNCS 6983), Switzerland, 2011.
- 7. Kandias M., Mylonas A., Virvilis N., Theoharidou M., Gritzalis D., "An Insider Threat Prediction Model", *Proc. of the 7th International Conference on Trust, Privacy and Security in Digital Business*, pp. 26-37, Springer (LNCS 6264), Spain, 2010.
- 8. Soupionis Y., Gritzalis D., "ASPF: An adaptive anti-SPIT policy-based framework", Proc. of the 6th International Conference on Availability, Reliability and Security, pp. 153-160, Austria, 2011.
- 9. Soupionis Y., Tountas G., Gritzalis D., "Audio CAPTCHA for SIP-based VoIP", Proc. of the 24th International Information Security Conference, pp. 25-38, Springer (IFIP AICT 297), Cyprus, 2009.
- 10. Soupionis Y., Dritsas S., Gritzalis D., "An adaptive policy-based approach to SPIT management", *Proc. of the 13th European Symposium on Research in Computer Security*, pp. 446-460, Springer, Spain, 2008.
- 11. Soupionis Y., Gritzalis D., "Audio CAPTCHA: Existing solutions assessment and a new implementation for VoIP telephony", Computers & Security, Vol. 29, No. 5, pp. 603-618, 2010.
- 12. Stachtiari E., Soupionis Y., Katsaros P., Mentis A., Gritzalis, D., "Probabilistic model checking of CAPTCHA admission control for DoS resistant anti-SPIT protection", *Proc. of the 7th International Conference on Critical Information Infrastructures Security*, Springer (LNCS 7722), Norway, 2012.
- 13. Tassidou A., Efraimidis P., Soupionis Y., Mitrou L., Katos V., "User-centric privacy-preserving adaptation for VoIP CAPTCHA challenges", *Proc. of the 6th International Symposium on Human Aspects of Information Security and Assurance*, Greece, 2012.