Taller de Arquitectura - Ciclo de Instrucción

Sistemas Digitales

Primer Cuatrimestre 2025

Introducción

El presente taller consiste en una serie de ejercicios en los cuales se deberá realizar en papel el ensamblado de diversos códigos fuente y luego sus correspondientes seguimientos utilizando la *Planilla de Seguimiento* para describir los pasos. Link a la planilla:

Será posible comparar, analizar y validar los seguimientos realizados en papel utilizando el Simulador RIPES.

En el link https://campus.exactas.uba.ar/mod/page/view.php?id=37235 o directamente en el campus entrando a Guías de ejercicios/ Simulador RISC-V: Ripes se encuentran las indicaciones para bajar e instalar Ripes para Ubuntu, Windows y Mac. Además contiene dos videos, que recomendamos ver con mucha atención, ya que contiene lo necesario para el uso del simulador.

Planilla de seguimiento: Reglas de notación

- Cuando un registro pasa a tener un nuevo valor, la celda que muestra el valor viejo debe ser tachada.
- Todos los valores de los registros y las posiciones de memoria que no se definan explicitamente, comienzan con valor 0.
- Los desplazamientos en el programa se expresan en decimal, pero en la planilla expreselos en complemento a 2 de 8 bits. No pueden aparecer en decimal a la hora de codificar la solución.
- Toda instrucción escrita en la columna de Instrucción Decodificada debe corresponderse a la decodificación de la palabra presente en el registro IR
- En la celda de *Ejecución* debe mostrarse cómo se produce la actualización de todos los registros afectados y los pasos intermedios que considere necesarios.
- Para toda instrucción de salto debe indicarse explícitamente en la celda de Ejecución si se produce o no, en caso de que sí, su justificación.

Ejercicios

Para los próximos códigos realizar el seguimiento con la planilla

Ejercicio 1

Realizar el seguimiento de una ejecución del siguiente código binario decodificandolo para instrucciones de Risc-V. El contenido de las posiciones de memoria desde 00 hasta 14 aparecen al lado de cada una.

00: 00700293 04: 00100313 08: 0062f333 0c: 00030463 10: fff28293 14: 4012d293

Ejercicio 2

2.a Dado el siguiente código en Risc-V, y asumiendo que el PC inicia en 0x00000000, comentar cada línea y responder:

```
li a0,4228
    li a1,2114
    j resta
fin: beq zero, zero, fin

resta: sub a0,a0,a1
    beq a0,zero, fin

sigo: j resta
```

- a) Indicar en qué posiciones de memoria se encuentra cada etiqueta.
- b) Indicar el desplazamiento de las llamadas a etiquetas.
- c) Indique el rango de constantes, en decimal y binario que pueden utilizarse en la instrucción *li.* ¿Coinciden con el rango del imm de la instrucción ADDI?
- d) ¿Cómo resuelve los valores inmediatos que no son representables en 12 bits C2?
- e) ¿Cuál es el valor final de a1?
- f) ¿Cuál es el valor final de PC?
- g) Listar la secuencia descripta por el pc
- h) Reemplazar la segunda instrucción li a1,2114 de modo que a1 sea a0 dividido 2 con una única instrucción

Ejercicio 3

3.a Realizar el seguimiento del siguiente programa por al menos 12 ciclos de instrucción. ¿Qué comportamiento presenta? Asumir que el PC arranca en 0x08 y que toda dirección de memoria con un valor de memoria no explicitado vale 0.

00000008 <main>: 08: 00400593 addi x11 x0 4 0c: 0005a603 lw x12 0 x11 addi x13 x0 4 10: 00400693 14: 0006a683 lw x13 0 x13 0006a683 lw x13 0 x13 18: fed606e3 beq x12 x13 -20 < main >1c: 20: 0080006f jal x0 8 <guardar> 00000024 <fin_programa>: 0000006f 24: jal x0 0 <fin_programa> 00000028 <guardar>: 28: fffa6737 lui x14 0xfffa6 9fd70713 addi x14 x14 -1539 2c:

30:	00c70633	add x12 x14 x12
34:	02b62423	sw x11 40 x12
38:	fedff06f	jal x0 -20 <fin_programa></fin_programa>

3.b Suponga que el programa hubiese sido cargado en la posición 0x0000 y el PC comienza con ese valor. ¿Cambia la ejecución del programa? ¿De qué manera? ¿Por qué?

00000000	<main>:</main>		
00:	00400593	addi x11 x0 4	
04:	0005a603	lw x12 0 x11	
08:	00400693	addi x13 x0 4	
0c:	0006a683	lw x13 0 x13	
10:	0006a683	lw x13 0 x13	
14:	fed606e3	beq x12 x13 -20 <main></main>	
18:	0080006f	jal x0 8 <guardar></guardar>	
0000001c <fin_programa>:</fin_programa>			
1c:	0000006f	jal x0 0 <fin_programa></fin_programa>	
10.	0000001	jar no o srm_programa	
00000020	<guardar>:</guardar>		
20:	fffa6737	lui x14 Oxfffa6	
24:	9fd70713	addi x14 x14 -1539	
28:	00c70633	add x12 x14 x12	
2c:	02b62423	sw x11 40 x12	
30:	fedff06f	jal x0 -20 <fin_programa></fin_programa>	