Име: фак. № стр. 1/

СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

ДЪРЖАВЕН ИЗПИТ ЗА ПОЛУЧАВАНЕ НА ОКС "БАКАЛАВЪР ПО ИНФОРМАТИКА" 7 - 8.07.2007 г.

част і (практически задачи)

Задача 1. (5 т.) За съхраняване на регионалната структура на България е създадена база от данни **Regions**. Структурата на регион е йерархична, както е показано на фиг. 1:

Релационната схема на базата от данни е:

Region(Id, fkParentRegion, fkRegionType, Name, CodePhone, CodePostal)
RegionType(Id, Name)

където:

* Таблица			
Колона	Описание	Тип на данните	Ограничения
* Region	Регион от административното деление		
Id	Генерира се автоматично	int	PK
fkParentRegion	Йерархичен родител - Region.ld	int	FK
fkRegionType	Тип на региона - RegionType.ld	int	FK
Name	Име	varchar(50)	
CodePhone	Телефонен код	varchar(10)	
CodePostal	Пощенски код	varchar(10)	
* RegionType	Тип на региона		
Id	Генерира се автоматично	int	PK
	Уникално идентифицира типа на региона		
Name	Име на региона:	varchar(20)	
	- държава - област		
	- ОКРЪГ		
	- населено място (град)		
	- населено място (село)		
	- населено място (махала)		
Погошно			
Легенда РК	Da priviou (Primary Koy)		
FK	Първичен ключ (Primary Key) Вторичен ключ (Foreign Key)		

07.07.2007г.	ДИ ОКС "Бакалавър"	по Информатика,	СУ-ФМИ	фак. №	стр. 2/28

Да се изведе информация за областта с най-много села. Справката да има вида:

Име на област	Брой села в областта

07.07.2007г.	ДИ ОКС "Бакалавър	о" по Информатика.	СУ-ФМИ	фак. №	C.	тр. 3/2
01.01.20011.	HI ONO "Dakanabbi		, UJ-TIVI	quant. 112		. p. v. =

ЧЕРНОВА ЗА ЗАДАЧА 1

Задача 2. (6 т.) Дадено е множеството от двоични функции

$$\mathbf{A} = \{\mathbf{f}(\widetilde{\mathbf{x}}^n), \mathbf{g}(\widetilde{\mathbf{x}}^3) = \widetilde{\mathbf{1}} \downarrow (\mathbf{x}_1 \lor (\mathbf{x}_1 \oplus \mathbf{x}_2) \lor \mathbf{x}_3), \mathbf{h}(\widetilde{\mathbf{x}}^n) = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus ... \oplus \mathbf{x}_n\}$$

където $\mathbf{f}(\widetilde{\mathbf{x}}^n), \mathbf{n} \geq \mathbf{2}$, е двоична функция, такава че $\mathbf{f}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{0}, ..., \mathbf{0}) = \mathbf{x}_1 \to \mathbf{x}_2$

а) Да се изследва функцията $g({\bf \tilde x}^3)$ за принадлежност към всяко от множествата T_0, T_1, S, M и L;

b) Да се определи за кои стойности на **n≥2** функцията $h(\tilde{x}^n)$ принадлежи на всяко от множествата T_0, T_1, S, M и L и за кои - не принадлежи;

с) Да се докаже, че множеството А е пълно за всяко п≥2.

Задача 3. (6 т.) Даден е крайният автомат $\mathbf{A} = <\{\mathbf{q}_0,\mathbf{q}_1,\mathbf{q}_2,\mathbf{q}_3,\mathbf{q}_4,\mathbf{q}_5,\mathbf{q}_6\},\{\mathbf{0,1}\},\mathbf{q}_0,\delta,\{\mathbf{q}_6\}>$

δ:	q	0	1
	$\mathbf{q_0}$	$\{q_1,q_3,q_6\}$	$\{\mathbf{q_4,q_6}\}$
	$\mathbf{q_1}$	Ø	$\{\mathbf{q_2}\}$
	$\mathbf{q_2}$	$\{\mathbf{q_1,q_6}\}$	$\{q_2\}$
	\mathbf{q}_3	$\{\mathbf{q}_5,\mathbf{q}_6\}$	Ø
	$\mathbf{q_4}$	{q ₃ }	$\{\mathbf{q_4,q_6}\}$
	\mathbf{q}_{5}	{q ₃ }	$\{\mathbf{q_4,q_6}\}$
	$\mathbf{q_6}$	Ø	Ø

- **а)** Да се построи детерминиран краен автомат **B**, еквивалентен на автомата **A**;
- **b)** Да се построи минимален детерминиран краен автомат **C**, еквивалентен на автомата **B**.

07 07 2007c	ли окс	Бакапавър	" по Информ	иатика, СУ-ФМИ	фак No	C	тр. 6/28
<i>01.01.</i> ∠00 <i>1</i> 1.	ди окс	"ракалавър	по информ	латика, Су-Фічій	ψak. N≌		1p. 0/20

ЧЕРНОВА ЗА ЗАДАЧИ 2 и 3

Задача 4. (5 т.) В текущия каталог се намира текстов файл fileC.txt със следното съдържание:

0123456789 abcdefg xxxxxxxxx

Напишете какво ще бъде изведено на стандартния изход (терминала) като резултат от изпълнението на файла, получен при успешна компилация на зададения по-долу програмен код на C, в който са използвани системни примитиви на ОС UNIX и LINUX:

```
#include
          <stdio.h>
#include <fcntl.h>
main()
{
     int fdi, n_byt, pid, i = 0;
     char sline [ 40 ], c;
     if ( ( pid = fork( ) ) == 0 )
          if ( (fdi = open ("fileC.txt", O_RDONLY ) ) == -1 )
          { printf ("\n Cannot open \n" ); exit (1); }
         n_byt = read ( fdi, sline, 40 );
          c = sline[i++];
          if (c <= '0' || c >= '9')
              while (sline[i]!= '\n' \&\& i < 40)
                   write ( 1, &sline [ i++ ], 1 );
              write (1, "\n", 1);
          close (fdi);
     }
     else
       wait ( );
        if ( (fdi = open ("fileC.txt", O_RDONLY) ) == -1 )
          { printf ("\n Cannot open \n" ); exit (1); }
        else execlp ("wc", "wc", "-l", "fileC.txt",0 );
     }
}
```

Решение:	

07 07 2007c	ЛИ ОКС. Бакапа	вър" по Информатика	СУ-ФМИ	mar No	C	тр. 8/28
01.01.20011.	ди One "Dakana	эр но информатика	I, C)-WIVIPI	wak. in≥		1p. 0/20

ЧЕРНОВА ЗА ЗАДАЧА 4

Задача 5. (4 т.) Разполагаме с функции PutPixel (X,Y,Value) и HLine (X1,X2,Y,Value),
изчертаващи съответно точка и хоризонтална линия с даден цвят. Да се даде псевдокод
от тип на Брезенхам за запълване на кръг с център (Хс, Ус) и радиус R. Да се
оптимизира алгоритъма, така че всеки пиксел да се изчертава по веднъж.
Задача 6. (3 т.) Напишете (на езика С или чрез псевдокод) модифициран алгоритъм на Брезенхам или на средната точка за изчертаване на отсечка с пунктирна линия (през
пиксел):
Пример:

Считайте, че процедурата PutPixel(x,y) променя пиксела с координати x и y в желания

цвят.

стр. 9/28

07.07.2007г. ДИ ОКС "Бакалавър" по Информатика, СУ-ФМИ фак. № [

07.07.2007г	ли окс	Бакапавър	" по Информа	тика, СУ-ФМИ	фак №	C.	тр. 1	10/2	28
01.01.20011.	ди око	,, bakasiab bp		i i vika, OJ-Wivivi	φar. n≥		ıp.	10/2	-0

ЧЕРНОВА ЗА ЗАДАЧИ 5 и 6

Задача 7. (**4 т.**) Нека **Р** е следната логическа програма:

Определете минималния Ербранов модел M_P на програмата P.

Задача 8. (4 т.) Дадена е следната рекурсивна програма **R** над *целите* числа:

R:
$$F(X, Y, 0)$$
 where
 $F(X, Y, S) = if Y = 0$ then S else $F(X, Y-1, G(X, S))$
 $G(X, Y) = if X = 0$ then Y else $G(X+1, Y-1)$.

Кои от изброените условия са верни за $D_V(R)$ (предполагаме, че **х** и **у** пробягват множеството на целите числа):

- a) $\forall x \forall y ((x \ge 0 \& y \ge 0) \Rightarrow D_V(R)(x, y) \cong x \cdot y);$
- **b)** $\forall x \forall y ((x \ge 0 \& y \le 0) \Rightarrow D_V(R)(x, y) \cong x . y);$
- c) $\forall x \forall y ((x \le 0 \& y \ge 0) \Rightarrow D_V(R)(x, y) \cong x . y);$
- **d)** нито едно от горните три.

07 07 2007c	ли окс	Бакапавър" п	о Информатика,	СУ-ФМИ	char No	C.	тр. 1	2128
U1.U1.ZUU11.	ДИI UNG .	"ракалавър п	о ипформатика,		wak. Nº		ID. I	<i></i>

ЧЕРНОВА ЗА ЗАДАЧИ 7 и 8

7.0	77.20	07г. ди ОкС "Бакалавър" по информатика, СУ-ФМИ фак. № стр. 13/26
ад	ача	9. (4 т.) Оценете изразите:
	a)	(map atom? '(12.34 'a "a" #f "(1 2 3)" '() a 0 '(a)))
	b)	((lambda (x) (x 5)) (lambda (y) (/ 15 y)))
	c)	(let* ((x (list (lambda (x) (* x 2))))
		(x (cons (lambda (x) (+ 5 x)) (cons ((car x) 1) x))))
		((caddr x) 3))
	d)	(cadr (list '(1 (2 (3))) (caar '(((4 5) 6) (7) ((8)))))
	•••••	

Задача 10. (3 т.) Даден е списък **Nat** от естествени числа. Като използвате процедурите **accumulate, map** и **filter** намерете произведението от нечетните утроени квадрати на елементите на **Nat**.

Задача 11. (7 т.) Даден е ориентиран граф (фиг. 2), като за всяка дъга е указано нейното тегло и за всеки възел е зададена стойността на евристичната функция h, определяща разстоянието от дадения възел до целевия възел **Goal**. Като се използва алгоритъма A^* да се намери път от върха **START** до върха **GOAL**.

а) Каква е максималната евристична оценка, която се получава в процеса на търсене на решението и за кой възел/път?

b) Кой път ще бъде намерен от алгоритъма?

07.07.2007г.	ли окс.	.Бакапавъі	о" по Информатика,	СУ-ФМИ	фак. №	C.	тр. 1	5/2	28
J1.01.20011.	HI ONO	,, Dakaj lab bj	o ilo filiwopinalina,		wan. H≥		ıp. r	. U . Z	

ЧЕРНОВА ЗА ЗАДАЧИ 9, 10 и 11

Задача 12. (2 т.) Допълнете кода на функцията differ така, че да проверява дали редицата от цели числа a_0 , a_1 , ..., a_{n-1} се състои от различни елементи.

```
bool differ(int n, int a[])
    {int i = -1;
    bool b; int j;
    do
    { i++; j = .....;
        do
        { j++;
        b = a[i] != a[j];
        } while (b && ......);
    } while (b && .....;
}
```

Задача 13. (3 т.) Дефинирайте рекурсивна функция, която да проверява дали редица от числа е симетрична относно средата си.

07.07.2007г.	ли окс	Бакапавър	" по Инфо	оматика (СУ-ФМИ	daκ No	C	стр.	17/	128	1
01.01.20011.	HII OKC	,, ракалав вр		pivia i vika, '		war. i•≥		,ιp.	11/	~(J

ЧЕРНОВА ЗА ЗАДАЧИ 12 и 13

```
Задача 14. (6 т.) Намерете резултата от
изпълнението на програмата.
#include <iostream.h>
class F
{public:
  F(double, double);
  void print() const;
   double f x() const;
  double f y() const;
  F& operator+(F&);
  F& operator-(F&);
 private:
     double x, y;
};
F::F(double a, double b)
    x = a;
    y = b;
void F::print() const
{
    cout << x << " " << y << endl;
double F::f_x() const
{
    return x;
}
double F::f_y() const
{
     return y;
F& F::operator+(F& a)
    x = x + a.y;
     y = y + a.x;
     return *this;
}
F& F::operator-(F& a)
    x = x - a.y;
     y = y - a.x;
     return *this;
}
class G
{public:
   G(F, F);
  void print() const;
  F f_x() const;
  F f y() const;
 private:
      F x, y;
```

};

```
(Продължение на програмата)
G::G(F x, F y) : x(x+y), y(y-x) {}
void G::print() const
    x.print();
    y.print();
}
F G::f_x() const
     return x;
F G::f_y() const
{
     return y;
}
void main()
    F f1(3,5), f2(1,1), f3(5,8);
    f1.print(); f2.print();
    (f1+f2+f3).print();
    (f1-f2-f3).print();
    G g(f2, f3);
    cout \ll g.f x().f x() +
            g.f x().f y() << " "
         << g.f_y().f_x() -
            g.f.y().f.y() \ll endl;
    g.print();
}
```

```
Решение:
```

```
Задача 15. (8 т.)Намерете резултата от изпълнението на програмата.
#include <iostream.h>
class A
{public:
    A(int a, double* b)
    {n = a;}
     x = new double;
     *x = 1.5;
     cout << "A: " << n << "," << *x << endl;
    }
   A(const A& p)
   {n = p.n;}
    x = new double;
    *x = *p.x;
    cout << "A(const A&): " << n << endl</pre>
         << *x << endl;
    }
   A& operator=(const A& p)
    {if(this != &p)
       {delete x;
        n = p.n + 5;
        x = new double;
        *x = *p.x + 1.5;
        cout << "A::operator=(p): " << n << endl</pre>
              << *x << endl;
     return *this;
    }
   ~A()
   {cout << "~A()\n";
     delete x;
    }
private:
     int n;
     double* x;
 };
class B
  public:
   B(int a, double b)
    {n = a;}
     x = b;
     cout << "B: " << n << "," << x << endl;
    }
   ~B()
   {cout << "~B()\n";
   }
private:
    int n;
    double x;
  };
  class C
 {public:
    C(int a, double b)
    {n = a;}
     x = b;
     cout << "C: " << n << "," << x << endl;
    }
   ~C()
   {cout << "~C() \n";
```

```
C(const C& p)
    {n = p.n + 3};
     x = p.x + 1.5;
     cout << "C(const C&): " << n << endl
          << x << endl;
    }
 private:
    int n;
    double x;
};
class D : public B, protected C, A
{public:
    D(int x=1, int y=3, double z=2.5): A(x, &z), B(y+x, z-x), C(x, z)
    {n = y;}
    m = x;
     cout << "D: " << n << "," << m << endl;
    }
    ~D()
    {cout << "~D()\n";
    D& operator=(const D& p)
    {if(this!=&p)
        {A::operator = (p);}
         cout << "D::operator=(p) \n";</pre>
         n = p.n;
         m = p.m;
        }
       return *this;
     }
private:
     int n, m;
};
void main()
\{D \times (2), y(3, 7), z(5, 3, 1);
D t = x;
 z = y;
}
```

Решение:

07.07.2007г.	ли окс	Бакапавър	" по Инф	орматика	СУ-ФМИ	фак.№	C.	тр. 2 ⁻	1/28
01.01.20011.	HI OKO	"parajiab bp	THE PIECE	opivia i vika,	, C) - 	ψan. n≥		IP. Z	1/20

ЧЕРНОВА ЗА ЗАДАЧИ 14 и 15

```
Класът stack реализира стек с елементи от тип int.
                                                                  фиг. 3
   struct elem
   {int inf;
    elem* link;
   };
   class stack
   {public:
        stack();
                                                 // конструктор по подразбиране
        ~stack();
                                                                 // деструктор
        stack(stack const&);
                                                  // конструктор за присвояване
        stack& operator=(stack const&); //операторна функция за присвояване
        void push(int const&);
                                                      // включва елемент в стек
        bool pop(int &);
                                      //изключва елемент от стек, ако е възможно
        bool empty() const;
                                                 // проверка дали стек е празен
        void print();
                                                               // извежда стек
    private:
        elem *start;
                                                 // указател към върха на стека
        void delstack();
                                                               // изтрива стек
                                   // копира указания стек в неявния
        void copy(stack const&);
   };
```

Задача 16. (3 т.) Реализирайте член-функциите от каноничното представяне за фиг.3.

Задача 17. (4 т.) Реализирайте член-функциите void copy(stack const&) и void delstack() от фиг.3.

07 07 2007-	DIA OKC	Eavanan n	" no Mud		CV DMIA	chair No		тр. 2	2/20
07.07.2007г.	ди окс ,	,ьакалавър)∵ по инq	орматика,	, СУ-ФІИІИ	фак. №	C	гр. Z	3/20

Задача 18. (3 т.) Един стек е по-къс (<) от друг, ако се съдържа в него. Например, стекът с елементи **1,3,4** се съдържа в стека 9,1,4,2,**1,3,4,**7,8 и не се съдържа в стека 1, 2, 3, 5, 6, 4. Предефинирайте оператора < чрез член-функция на класа стек от фиг.3.

Задача 19. (3 т.) Нека S е стек от цели числа, а f е едноаргументна функция от вида: **f**: int → int. Дефинирайте функция от по-висок ред **map**:

stack map(int (*f)(int), stack& S);

която прилага ${\bf f}$ над всеки от елементите на ${\bf S}$ и връща получения стек.

стр. 24/28

ЧЕРНОВА ЗА ЗАДАЧИ 16, 17, 18 и 19

```
{\tt Wadnohst} на класа {\tt BinOrdTree} реализира двоично-наредено дърво с върхове от тип {\tt T}.
template <class T>
struct node bin
{T inf;
                                                               фиг. 4
node bin<T> *Left;
node bin<T> *Right;
};
template <class T>
class BinOrdTree
{public:
   BinOrdTree();
                                             // конструктор по подразбиране
   ~BinOrdTree();
                                                              // деструктор
                                             // конструктор за присвояване
   BinOrdTree(BinOrdTree<T> const&);
   BinOrdTree<T>& operator=(BinOrdTree<T> const&);// операторна функция за =
   bool empty() const;
                                         // проверява дали дървото е празно
                           // връща корена на двоично-наредено дърво
   T RootTree() const;
   BinOrdTree LeftTree() const;
                                                   // връща лявото поддърво
   BinOrdTree RightTree() const;
                                                  // връща дясното поддърво
   void AddNode (T const & x) // включва указания елемент в дв. нар. дърво
    { Add(root, x);
    }
   void DeleteNode(T const&);
                                                // изтрива указания елемент
// Create3 създава дв. нар. дърво по указани корен, ляво и дясно поддърво
    void Create3(T const&, BinOrdTree<T> const&, BinOrdTree<T> const&);
   // .....
private:
   node bin<T> *root;
 // DeleteTree изтрива двоично-нареденото дърво, зададено чрез указателя р
   void DeleteTree(node bin<T>* &p) const;
 // СоруТгее копира указаното в неявното двоично-наредено дърво
      void CopyTree(BinOrdTree<T> const&);
 // Сору копира указаното от указателя р двоичо наредено дърво на ново място
 // в паметта, указано от указателя q
    void Copy(node bin<T>* &q, node bin<T>* const&p) const;
};
```

Задача 20. (3 т.) Реализирайте член-функциите: T RootTree() const, BinOrdTree LeftTree() const и BinOrdTree RightTree() const за фиг.4

07.07.2007г. ДИ ОКС "Бакалавър" по Информатика, СУ-ФМИ фак. №	стр. 26/28
Задача 21. (3 т.) Към шаблона на класа BinOrdtree (фиг. 4) до	
който създава идеално балансирано двоично-наредено дърво с дърво е идеално балансирано ако всеки негов връх има ляво и дяс	,
броят на възлите се различава най-много с 1).	оно поддврво, в които
Задача 22. (3 т.) Дефинирайте шаблон на външна функция, която п-то ниво на непразното двоично-наредено дърво d (коренът се о	
ниво). Де се използва дефиницията от фиг. 4.	omra da BpBn di d Bd

Задача 23. (4 т.) Предефинирайте оператора >>, така че да извежда двоично-наредено дърво, обхождайки го в реда: ляво-корен-дясно. Да се използва дефиницията от фиг. 4.
Задача 24. (4 т.) Даден е стек от цели числа. Да се напише програмен фрагмент, който сортира елементите на стека като за целта използва двоично-наредено дърво. Да се използват дефинициите от фиг. 3 и фиг. 4.

07.07.2007г. ДИ ОКС "Бакалавър" по Информатика, СУ-ФМИ фак. № [

стр. 27/28

стр. 28/28

ЧЕРНОВА ЗА ЗАДАЧИ 20, 21, 22, 23, и 24