Compiler Construction

Lexical Analysis

Chapter -3

Convert Finite Automata To Regular Expression

- Arden's Theorem
- State Elimination Method

Arden's Theorem

It states that-

Let P and Q be two regular expressions over \sum .

If **P does not contain a null string** then

R = Q + RP has a unique solution i.e. $R = QP^*$

Theorem is applicable to only Deterministic Finite Automata

Arden's Theorem (Proof)

Theorem:

Let P and Q be two regular expressions over Σ .

If P does not contain a null string

then

. R = Q + RP has a unique solution i.e. $R = QP^*$

Proof -

```
R = Q + (Q + RP)P [After putting the value R = Q + RP]
= Q + QP + RPP
```

When we put the value of R recursively again and again, we get the following equation -

$$R = Q + QP + QP^{2} + QP^{3} \dots$$

$$R = Q (\varepsilon + P + P^{2} + P^{3} + \dots)$$

R = QP* [As P* represents $(\varepsilon + P + P2 + P3 +)$]

Hence, proved.

Arden's Theorem

For State A:

 $A = \varepsilon + B1$

For State B:

B = A0

Bring accepting state in the form R=Q+RP,

B= $(\epsilon + B1)0$ B= $\epsilon 0 + B10$ B= 0+B10

Here, B=R, Q=0 and P=10

As per R=QP*, solution will be : 0(10)*

Arden's Theorem

For State A:

 $A = \varepsilon + Ab + Ba$

For State B:

B = Aa + Bb

Applying Arden's Theorem to State B,

Here, R=B, Q=Aa and P=b

B= Aab*

Bring accepting state in the form R=Q+RP,

 $A = \varepsilon + Ab + Aab*a$

 $A = \varepsilon + A(b + ab*a)$

Here, A=R, Q= ϵ and P=b + ab*a

As per R=QP*, solution will be : (b + ab*a)*

Arden's Theorem For State A: $A = \epsilon + A1 + B1$ For State B: $B = A0 \quad B = (1+01)*0$ Bring accepting state in the form R=Q+RP, $A = \epsilon + A1 + A01$ $A = \epsilon + A (1+01)$ Here, A = R, $Q = \epsilon$ and P = (1+01) As per P = (1+01) As per P = (1+01) Be P =

