Introduction to the problem setup

# Introduction to the problem setup

# What do we mean by modeling the unknown distribution P(X)?

67313662 12607892 95183568

67315660 12607892 95183568

## October 19 & 20, 2024.

# Introduction to the problem setup

# What do we mean by modeling the unknown distribution P(X)?

- $D=\{x^i\}_{i=1}^N$ , we want  $P_X(x)$  to take higher values  $(e.g.\ P_X(x)\approx 1)$ . ullet For realizations x of X which are similar to the data samples in
- $D = \{x^i\}_{i=1}^N$ , we want  $P_X(x)$  to take smaller values (e.g.  $P_X(x) \approx 0$ ). ullet For realizations x of X which are **not** similar to the data samples in

#### Problem setup:

- Input: Data set  $D = \{x^i\}_{i=1}^N$ , where  $x^i \in \mathcal{X}$  denotes the *i*-th data sample or data point.
- ullet is an appropriate input space.
- Examples of  $\mathcal{X}$ :
- ▶ Set of images (e.g. digits, faces, animals, etc.) or videos.
- Set of vector-valued data or matrix-valued data or tensor-valued data.
- Set of natural language sentences.
- Set of documents (e.g newspaper articles, books).
  - Set of software programs.

# October 19 & 20, 2024.

## Introduction to the problem setup

#### Problem setup:

- Input: Data set  $D = \{x^i\}_{i=1}^N$ , where  $x^i \in \mathcal{X}$  denotes the *i*-th data sample or data point.
- Assumption: The data samples are generated from some unknown probability distribution denoted by P(X) (also denoted by  $P_X(x)$ ).
- ightharpoonup Note: X is a random variable and x is a realization of X.
- ullet Aim: To model the unknown distribution P(X) using the observed data samples  $D = \{x^i\}_{i=1}^N$ .

## Generative models

#### Recall:

- Input: Data set  $D = \{x^i\}_{i=1}^N$ , where  $x^i \in \mathcal{X}$  denotes the *i*-th data sample or data point.
- Assumption: The data samples are generated from some unknown probability distribution denoted by  $P_X(x)$ .

#### Generative Model:

• A machine learning model of the unknown  $P_X(x)$ , given the data  $D = \{x^i\}_{i=1}^N$ , where  $x^i \in \mathcal{X}$ .



### Generative models

Generative Models

- ullet Input: Data set  $D=\{x^i\}_{i=1}^{N}$ , where  $x^i\in\mathcal{X}$  denotes the i-th data sample or data point.
- Modeling  $P_X(x)$  is usually a complicated task.
- ▶ Suppose that  $x \in \mathbb{R}^d$  or  $x \in \mathbb{R}^{m \times n}$  (that is, x is vector-valued or matrix-valued).

## Several ways to model P(X):

Introduction to the problem setup

- Density estimation techniques
- ► Kernel density estimation
- ► Spectral density estimation
- ▼ Non-parametric density estimation
- Histogram fitting
- Generative models



# October 19 & 20, 2024.

### Generative models

#### Recall:

- ullet Input: Data set  $D=\{x^i\}_{i=1}^N$ , where  $x^i\in\mathcal{X}$  denotes the i-th data sample or data point.
- Assumption: The data samples are generated from some unknown probability distribution denoted by  $P_X(x)$ .

October 19 & 20, 2024.

Marginal distribution:

$$P_X(x) = \int P_{(X,Z)}(x,z)dz$$
$$= \int P_{X|Z}(x|z)P_Z(z)dz$$

#### Requirements:

- A suitable choice for **prior** distribution  $P_Z(z)$ .
- $\,\bullet\,$  How to model the **conditional** distribution  $P_{X|Z}(x|z)$ ?

- ► Computing the integral is generally **intractable**.
- Need to use computationally intensive Markov-Chain Monte Carlo techniques to estimate the integral.

| 20         | /61    |
|------------|--------|
|            | 32     |
| , India    | 2024   |
| IIIII      | 8, 20  |
| ilili<br>A | her 19 |
| <b>•</b>   | Octo   |
|            |        |
| •          |        |
|            |        |

### Generative models

Generative Models

### A different approach:

True posterior:

$$P_{Z|X}(z|x) = \frac{P_{X|Z}(x|z)P_{Z}(z)}{P_{X}(x)}$$
 (By Bayes' Theorem & law of total proabability)

can be used to model  $P_X(x)$ .

## Generative models

Generative Models

- Input: Data set  $D=\{x^i\}_{i=1}^{N}$ , where  $x^i\in\mathcal{X}$  denotes the i-th data sample or data point.
- Modeling  $P_X(x)$  is usually a complicated task.
- ▶ Suppose that  $x \in \mathbb{R}^d$  or  $x \in \mathbb{R}^{m \times n}$  (that is, x is vector-valued or matrix-valued).
- Correlations between various components of x might be difficult to model.
- To model  $P_X(x)$  we use a trick:
- Marginal distribution:

$$P_X(x)=\int P_{(X,Z)}(x,z)dz$$
 
$$=\int P_{X|Z}(x|z)P_Z(z)dz \ ({
m By\ definition\ of\ conditional\ probability})$$

October 19 & 20, 2024. Generative Models

### Generative models

Marginal distribution:

$$P_X(x) = \int P_{(X,Z)}(x,z)dz$$
$$= \int P_{X|Z}(x|z)P_Z(z)dz$$

# Why do we need this marginal distribution?

- We introduce a new random variable Z.
- Z is called a latent variable.
- Z is usually under our control.
- By suitable choice of Z with a known **prior** distribution  $P_Z(z)$  we can try to model  $P_X(x)$  if we can effectively model the **conditional** distribution  $P_{X|Z}(x|z)$ .

Thus we have:

$$KL(Q_{Z|X}(z|x)||P_{Z|X}(z|x))$$
  
=  $E_{Z\sim Q} \left[ \log Q_{Z|X}(z|x) - \log P_{X|Z}(x|z) - \log P_{Z}(z) \right] + \log P_{X}(x)$ 

Rearranging, we get:

$$\begin{aligned} \log P_X(x) - KL(Q_{Z|X}(z|x)||P_{Z|X}(z|x)) \\ &= E_{Z\sim Q} \left[ \log P_Z(z) - \log Q_{Z|X}(z|x) + \log P_{X|Z}(x|z) \right] \\ &= E_{Z\sim Q} \left[ -\log \frac{Q_{Z|X}(z|x)}{P_Z(z)} + \log P_{X|Z}(x|z) \right] \\ &= E_{Z\sim Q} \left[ \log P_{X|Z}(x|z) \right] - E_{Z\sim Q} \left[ \log \frac{Q_{Z|X}(z|x)}{P_Z(z)} \right] \\ &= E_{Z\sim Q} \left[ \log P_{X|Z}(x|z) \right] - KL(Q_{Z|X}(z|x)||P_Z(z)) \end{aligned}$$

October 19 & 20, 2024. Generative Models Variational Bayes Approach

## Recap of Variational Bayes

#### Recall our idea:

• Use a customized distribution  $Q_{Z|X}(z|x)$  (called recognition model) to approximate  $P_{Z|X}(z|x)$ .

#### Objective

 $\log P_X(x) - \mathit{KL}(Q_{Z|X}(z|x)||P_{Z|X}(z|x)) = E_{Z\sim\mathcal{Q}}\left[\log P_{X|Z}(x|z)\right] - \mathit{KL}(Q_{Z|X}(z|x)||P_Z(z))$ 

Aim: To maximize the objective.

- $\log P_X(x)$  denotes the log likelihood, which we wanted to model.
- $KL(Q_{Z|X}(z|x)||P_{Z|X}(z|x))$  denotes the dissimilarity between the recognition distribution Q and the true posterior  $P_{Z|X}(z|x)$
- The KL term acts like a regularizer.

## Recap of Variational Bayes

Generative Models Variational Bayes Approach

True posterior:

$$P_{Z|X}(z|x) = \frac{P_{X|Z}(x|z)P_{Z}(z)}{P_{X}(x)}$$

can be used to model  $P_X(x)$ 

- ullet Computing  $P_{Z|X}(z|x)$  is intractable in general.
- ullet Use a customized distribution  $Q_{Z|X}(z|x)$  (called recognition model) to approximate  $P_{Z|X}(z|x)$ .

## October 19 & 20, 2024.

Generative Models Variational Bayes Approach

## Recap of Variational Bayes

ullet Error of approximation between  $P_{Z|X}$  and  $Q_{Z|X}$  can be computed using the Kullback-Leibler (or KL)-Divergence:

$$KL(Q_{Z|X}(z|x)||P_{Z|X}(z|x))$$
=  $\int \log \frac{Q_{Z|X}(z|x)}{P_{Z|X}(z|x)} Q_{Z|X}(z|x) dz$   
=  $E_{Z \sim Q} \left[ \log Q_{Z|X}(z|x) - \log P_{Z|X}(z|x) \right]$   
=  $E_{Z \sim Q} \left[ \log Q_{Z|X}(z|x) - \log \frac{P_{X|Z}(x|z)P_{Z}(z)}{P_{X}(x)} \right]$   
=  $E_{Z \sim Q} \left[ \log Q_{Z|X}(z|x) - \log P_{X|Z}(x|z) - \log P_{Z}(z) \right] + \log P_{X}(x)$ 

October 19 & 20, 2024.

October 19 & 20, 2024.

## Recap of Variational Bayes

Recall: Our aim is to maximize objective:

$$\log P_X(x) - KL(Q_{Z|X}(z|x))|P_{Z|X}(z|x)) = E_{Z\sim Q}\left[\log P_{X|Z}(x|z)\right] - KL(Q_{Z|X}(z|x))|P_{Z}(z))$$
In the presence of a dataset  $D$  our objective would become

In the presence of a dataset 
$$D$$
, our objective would become:

$$\max \ E_{X \sim D} \left[ \log P_X(x) - \mathcal{K} L(Q_{Z|X}(z|x)||P_{Z|X}(z|x)) \right] \\ = E_{X \sim D} \left[ E_{Z \sim Q} \left[ \log P_{X|Z}(x|z) \right] - \mathcal{K} L(Q_{Z|X}(z|x)||P_Z(z)) \right]$$

For a sample  $x^i$  from D, the corresponding objective term is:

$$\mathcal{L}(\theta,\phi;x^i) = E_{Z\sim Q} \left[ \log P_{X|Z}(x^i|z) \right] - \mathcal{K} \mathcal{L}(Q_{Z|X}(z|x^i)||P_Z(z))$$

• For data set  $D=\{x^i\}_{i=1}^N$  and a randomly chosen minibatch  $\mathcal B$  of size M, we can find  $\mathcal L(\theta,\phi;\mathcal B)=\frac{M}{N}\sum_{x\in\mathcal B}\mathcal L(\theta,\phi;x)$ .

| urugan | Variational A     | uto-encoders             | October 19 & 20, 2024. | 45 / 61 |
|--------|-------------------|--------------------------|------------------------|---------|
|        | Generative Models | Variational Bayes Appros | ch                     |         |

- Major assumption:  $P_Z(z) \approx \mathcal{N}(0, I)$ .
- We assume  $Q_{Z|X}(z|x';\phi)=\mathcal{N}(z;\mu',(\sigma')^2I)$ , where  $\mathcal{N}(z;\mu',(\sigma')^2I)$  denotes the normal distribution with mean  $\mu'=\mu(x')$  and covariance matrix  $(\sigma^i)^2 I$  with  $(\sigma^i)^2 = \sigma^2(x^i)$ .
- ullet We can adopt reparametrization trick using  $G(x^i,\epsilon^l;\phi)=\mu^i+\sigma^i\odot\epsilon^l$ where  $\epsilon^l \sim \mathcal{N}(0,I)$  and  $\odot$  denotes the elementwise multiplication.

$$\mathcal{L}(\theta,\phi;x^i) \approx \frac{1}{2} \sum_{j=1}^d \left(1 + \log((\sigma_j^i)^2) - (\mu_j^i)^2 - (\sigma_j^i)^2\right) + E_{Z \sim \mathcal{Q}} \left[\log P_{X|Z}(x^i|z)\right]$$

## Recap of Variational Bayes

Generative Models Variational Bayes Approach

## To maximize Objective:

 $\log P_X(x) - KL(Q_{Z|X}(z|x)||P_{Z|X}(z|x)) = E_{Z\sim \mathcal{Q}}\left[\log P_{X|Z}(x|z)\right] - KL(Q_{Z|X}(z|x)||P_Z(z))$ 

- We parametrize P using  $\theta$ .
- ullet We parametrize Q using  $\phi$ .

Thus we get:

$$\log P_X(x;\theta) - KL(Q_{Z|X}(z|x;\phi)||P_{Z|X}(z|x;\theta)) = E_{Z\sim Q}\left[\log P_{X|Z}(x|z;\theta)\right] \\ - KL(Q_{Z|X}(z|x;\phi)||P_{Z}(z;\theta))$$



## Recap of Variational Bayes

## Coding theory perspective:

- $Q_{Z|X}(z|x;\phi)$  is called a probabilistic encoder since given a sample x, Q encodes it into a distribution.
- variable z, P produces a distribution over corresponding values of x. ullet  $P_{X|Z}(x|z;\theta)$  is called a probabilistic decoder since given a latent
- Hence the methodology is called auto-encoding variational Bayes

Training a VAE:

VAE

# Generative models - Variational Bayes Approach

Generative Models Variational Bayes Approach

#### Requirement:

• Given an approximate posterior  $Q_{Z|X}(z|x)$ , we need to sample  $Z\sim Q$ .

#### Caveat:

ullet The approximate posterior  $Q_{Z|X}(z|x)$  might not be differentiable.

# Reparametrization trick for sampling Z

- Assume a differentiable  $G(\epsilon,x;\phi)$  and sample  $Z\sim G$ .
- Note: We have now introduced a new variable  $\epsilon$ .
- Assumption:  $\epsilon \sim \rho(\epsilon)$ .

Sample  $\epsilon$  from  $\mathcal{N}(0, I)$ 

Encoder

0

Decoder (P)

 $\mathcal{KL}[\mathcal{N}(\mu(X), \Sigma(X)) || \mathcal{N}(0, I)]$ 

## 

## October 19 & 20, 2024 Generative Models Variational Bayes Approach

P. Balamurugan

#### WE

#### Testing VAE:



- Remove the encoder
- Sample  $z \sim \mathcal{N}(0, I)$ .
- Generate sample using decoder.

#### 57 / 61 October 19 & 20, 2024. Generative Models Variational Bayes Approach P. Balamurugar

#### VAE

Hence the overall loss becomes:

$$\mathcal{L}(\theta,\phi;\mathbf{x}^i) \approx \frac{1}{2} \sum_{i=1}^d \left( 1 + \log((\sigma_j^i)^2) - (\mu_j^i)^2 - (\sigma_j^i)^2 \right) + \frac{1}{L} \sum_{l=1}^L \left( \log P_{X|Z}(\mathbf{x}^i|\mathbf{z}^{i,l}) \right)$$

where  $z^{i,l} \sim G(\epsilon^{i,l}, x^i; \phi)$  and  $\epsilon^{i,l} \sim p(\epsilon)$ .