Research Project: A Graph Representation for Databases

Arne Meier (meier@thi.uni-hannover.de)

13.6.2022

But, first: Ласкаво просимо!

Regarding the Project

Abilities / Knowledge (you should have)

- ▶ Programming knowledge (Java, JDK ≥1.8)
- ► A bit of databases knowledge
- Propositional logic
- Graphs

Also: a laptop/computer is needed

Write in the team a program that does the following:

1. Take a propositional logic formula φ

- 1. Take a propositional logic formula φ
- 2. Compute its incidence graph $IG(\varphi)$

- 1. Take a propositional logic formula φ
- 2. Compute its incidence graph $IG(\varphi)$
- 3. Determine the tree-width $k_{\varphi} \in \mathbb{N}$ of $\mathrm{IG}(\varphi)$

- 1. Take a propositional logic formula φ
- 2. Compute its incidence graph $IG(\varphi)$
- 3. Determine the tree-width $k_{\varphi} \in \mathbb{N}$ of $\mathrm{IG}(\varphi)$
- 4. Translate arphi into a database table D_{arphi}

- 1. Take a propositional logic formula φ
- 2. Compute its incidence graph $IG(\varphi)$
- 3. Determine the tree-width $k_{\varphi} \in \mathbb{N}$ of $\mathrm{IG}(\varphi)$
- 4. Translate arphi into a database table D_{arphi}
- 5. Compute its database graph representation $\mathrm{DBG}(D_{\varphi})$

- 1. Take a propositional logic formula φ
- 2. Compute its incidence graph $IG(\varphi)$
- 3. Determine the tree-width $k_{\varphi} \in \mathbb{N}$ of $\mathrm{IG}(\varphi)$
- 4. Translate φ into a database table D_{φ}
- 5. Compute its database graph representation $\mathrm{DBG}(D_{\varphi})$
- 6. Determine the tree-width $\ell_{\varphi} \in \mathbb{N}$ of $\mathrm{DBG}(\mathcal{D}_{\varphi})$

Write in the team a program that does the following:

- 1. Take a propositional logic formula φ
- 2. Compute its incidence graph $IG(\varphi)$
- 3. Determine the tree-width $k_{\varphi} \in \mathbb{N}$ of $\mathrm{IG}(\varphi)$
- 4. Translate arphi into a database table D_{arphi}
- 5. Compute its database graph representation $\mathrm{DBG}(D_{arphi})$
- 6. Determine the tree-width $\ell_{\varphi} \in \mathbb{N}$ of $\mathrm{DBG}(D_{\varphi})$

My motivating question:

How does ℓ_{φ} relate to k_{φ} in general?

Step 1: Which propositional formulas shall we use?

- max. 500 Variables (at first: start with fewer and try how it scales)
- ▶ get them from https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
- ▶ standard format: $(x_1 \lor x_3 \lor \neg x_4) \land (x_4) \land (x_2 \lor \neg x_3)$ goes to c Example comment p cnf 4 3
 - 1 3 -4 0
 - 4 0 2
 - -3
 - So... Start with writing a parser first.

Step 2: Incidence Graph of Formulas

- each variable becomes a vertex
- each clause number becomes a vertex
- draw edges between clauses and their vertices

Step 2.5: How to Represent Graphs?

```
short answer: https://pacechallenge.org/2017/treewidth/
c path with five vertices and four edges.
p tw 5 4
1 2
2 3
3 4
4 5
```

Step 3: Treewidth, Definition

Definition

The tree-decomposition of a given graph G = (V, E) is a tree $T = (B, E_T)$ such that:

- $\triangleright \bigcup_{b \in B} = V$,
- ▶ for every $\{u, v\} \in E$ there is a bag $b \in B$ with $u, v \in b$ and
- ▶ for all $v \in V$ the restriction of T to v is connected.

Width of a given tree-decomposition $T = (B, E_T)$ is $\max_{b \in B} |b| - 1$.

The treewidth of a given graph G is the minimum over all widths of tree-decompositions of G.

${\sf Step \ 3: \ Treewidth, \ Example}$

Step 3: Treewidth, Bad News

Definition

Problem TW (Treewidth Problem)

Instances Graph G = (V, E), natural number $k \in \mathbb{N}$

Question Does G have a treewidth of k?

This problem is NP-complete.

Step 3: Treewidth, Silver Lining

- ► Use a blackbox for it
- ▶ https://github.com/twalgor/tw

Step 4: Translate a Formula into a Database

$$(x_1 \lor x_3 \lor \neg x_4) \land (x_4) \land (x_2 \lor \neg x_3)$$
 becomes two tables

					v	s
	С	V	S		1	+
	C_1	1	+		1	_
	C_1	3	+		2	+
	C_1	4	_		2	_
	C_2	4	+		3	+
	C_3	2	+		3	_
	C_3	3	_		4	+
•				•	4	_

Step 5: Graph Representation DBG

Vertices

▶ one per row in the table

Edges

- between rows of same c-value
- **b** between rows of same (v, s)-value (also in-between the tables)

Step 6: Like Step 3

Last Step

- compare the two treewidth values
- how do they relate to each other?
- ▶ if they are different: how much do they differ?

Formalities

```
Where Do You Store the Code?
https://github.com/ArneMeier/db-repr-students
```

Which e-mail addresses shall I use for invitation?

Send me an e-mail (meier@thi.uni-hannover.de) then I grant you access.

How often do we meet?

Bi-weekly at 14:00–15:30 (27.6., 11.7., ...) in this room 1611.

Stud.IP

Graph Representations for Databases

Further Contact

Yasir Mahmood, mahmood@thi.uni-hannover.de