L. Mereu – A. Nanni Funzioni in due variabili

8. Massimi e minimi vincolati – Metodo dei moltiplicatori di Lagrange

Per determinare il minimo o il massimo di una funzione

$$z = f(x; y)$$

nell'insieme dei punti (x; y) sottoposti a un **vincolo**, consistente nel verificare la condizione

$$g(x; y) = 0$$

si applica il seguente metodo dei moltiplicatori di Lagrange:

- si considera la funzione

$$F(x; y) = f(x; y) + \lambda g(x; y)$$

- si risolve il sistema

$$\begin{cases} F_x = 0 \\ F_y = 0 \\ g(x; y) = 0 \end{cases} \text{ cioè } \begin{cases} f_x + \lambda g_x = 0 \\ f_y + \lambda g_y = 0 \\ g(x; y) = 0 \end{cases}$$

i punti (x; y) di minimo o massimo della funzione z = f(x; y), vincolati dalla condizione g(x; y) = 0 sono tra le soluzioni del sistema.

Se la condizione g(x;y)=0 è esplicitabile rispetto a una delle due variabili , ad esempio la y, si può sostituire la funzione di x ottenuta nella funzione f(x;y), ottenendo così una funzione della sola variabile x e si procede come già studiato per trovare i massimi e minimi per le funzioni in una variabile.

Esempi

1. Per determinare il minimo o il massimo della funzione z=f(x;y)=2x+2y-1 sulla circonferenza

 $x^2 + y^2 = 1$ consideriamo la funzione

$$F(x; y) = 2x + 2y - 1 + \lambda(x^2 + y^2 - 1)$$

E risolviamo il sistema

$$\begin{cases} F_{x} = 0 \\ F_{y} = 0 \\ g(x; y) = 0 \end{cases} \Rightarrow \begin{cases} 2 + 2\lambda x = 0 \\ 2 + 2\lambda y = 0 \\ x^{2} + y^{2} - 1 = 0 \end{cases} \Rightarrow \begin{cases} \lambda = \pm \sqrt{2} \\ x = \mp \frac{1}{\sqrt{2}} \\ y = \mp \frac{1}{\sqrt{2}} \end{cases}$$

Poiché $f\left(-\frac{1}{\sqrt{2}};-\frac{1}{\sqrt{2}}\right)=-2\sqrt{2}-1$ e $f\left(\frac{1}{\sqrt{2}};\frac{1}{\sqrt{2}}\right)=2\sqrt{2}-1$, la funzione f(x;y) assume valore minimo $-2\sqrt{2}-1$ in $\left(-\frac{1}{\sqrt{2}};-\frac{1}{\sqrt{2}}\right)$ e valore massimo $2\sqrt{2}-1$ in $\left(\frac{1}{\sqrt{2}};\frac{1}{\sqrt{2}}\right)$.

2. Per determinare il minimo o il massimo della funzione

$$z = f(x; y) = x^3 - y^2$$
 con il vincolo $2x + y - 1 = 0$

ricaviamo y = 1 - 2x e sostituiamo nella f(x; y). Si ottiene:

$$z(x) = x^3 - (1 - 2x)^2$$

funzione della sola x. Si ha:

$$z'(x) = 3x^2 + 4(1 - 2x) = 3x^2 - 8x + 4$$

Da cui

$$z'(x) = \begin{cases} <0 \ per \frac{2}{3} < x < 2\\ = 0 \ per x = \frac{2}{3} \ oppure \ x = 2\\ > 0 \ per x < \frac{2}{3} \ oppure \ x > 2 \end{cases}$$

Se ne deduce che

- $x = \frac{2}{3}$ è un punto di massimo relativo per z(x) e $x = \frac{2}{3}$, $y = -\frac{1}{3}$ è il punto di massimo relativo per z = f(x; y) e il massimo vale $M = f\left(\frac{2}{3}; -\frac{1}{3}\right) = \frac{5}{27}$;
- x = 2 è un punto di minimo relativo per z(x) e x = 2, y = -3 è il punto di minimo relativo per z = f(x; y) e il minimo vale m = f(2; -3) = -1.

Esercizi

Gli esercizi con asterisco sono avviati

Determinare gli eventuali massimi e minimi delle seguenti funzioni sul vincolo a fianco indicato:

1.
$$f(x; y) = x^2 + 2y^2 - 4$$
 con la condizione $x + y - 2 = 0$

2.
$$f(x;y) = x^3y$$
 con la condizione $y = x^2 - 2x + 1$

3.
$$f(x; y) = x^2 + xy + x - 2y$$
 con la condizione $\begin{cases} x = t \\ y = t^2 - 1 \end{cases}$

4.
$$f(x; y) = \frac{x-y}{x+y}$$
 con la condizione $xy + x - 4 = 0$

5.
$$f(x; y) = log(2x - 3y^2)$$
 con la condizione $x - 2y - 4 = 0$

6.
$$f(x; y) = e^{4x^2 - y}$$
 con la condizione $x + xy - 1 = 0$

7.
$$f(x; y) = 4x + 8y - 1$$
 con la condizione $x^2 + 2y^2 - 1 = 0$

8.
$$f(x; y) = x - y + 5$$
 con la condizione $x^2 + y^2 = 2$

*9.
$$f(x; y) = x^2 + y^2 - 1$$
 con la condizione $x^2 + 4y^2 - 1 = 0$

Soluzioni

- **1. S.** minimo = $-\frac{4}{3}$ per $x = \frac{4}{3}$, $y = \frac{2}{3}$;
- **2.S.** massimo = $\frac{108}{3125}$ in $\left(\frac{3}{5}; \frac{4}{25}\right)$; minimo = 0 in (0; 1) e (1; 0);
- **3. S.** massimo = 2 in (0; -1); minimo = $\frac{50}{27}$ in $(\frac{2}{3}; -\frac{5}{9})$;
- **4. S.** massimo = $\frac{17}{15}$ per x = 8, $y = -\frac{1}{2}$;
- **5. S.** massimo = $\log \frac{28}{3} \operatorname{per} x = \frac{16}{3}$, $y = \frac{2}{3}$;
- **6. S.** minimo = e^4 per $x = -\frac{1}{2}$, y = -3;
- **7.** S. minimo = $-4\sqrt{3} 1$ per $x = -\frac{1}{\sqrt{3}}$, $y = -\frac{1}{\sqrt{3}}$; massimo = $4\sqrt{3} 1$ per $x = \frac{1}{\sqrt{3}}$, $y = \frac{1}{\sqrt{3}}$;
- **8. S.** massimo = 7 in (1; -1), minimo = 3 in (-1; 1)
- *9.**S.** massimo = 0 in (1; 0) \vee (-1; 0); minimo = $-\frac{3}{4}$ in $\left(0; \frac{1}{2}\right) \vee \left(0; -\frac{1}{2}\right)$;

(si ha $x^2=-4y^2+1 \rightarrow y \in \left[-\frac{1}{2};\frac{1}{2}\right]$, sostituendo nella f si ottiene : $h(y)=-3y^2$

 $\operatorname{con} y \in \left[-\frac{1}{2}; \frac{1}{2}\right]$. Si ricava che il massimo si ottiene per y=0, da cui $x=\pm 1$, il minimo agli estremi dell'intervallo $\left[-\frac{1}{2}; \frac{1}{2}\right]$, cioè nei punti $\left(0; \frac{1}{2}\right) \vee \left(0; -\frac{1}{2}\right)$)