MA 353: Elliptic Curves Assignment-1

Irish Debbarma, 16696

due: 19th February, 2023

1.
$$V/\mathbb{Q}$$
 is the variety $V: 5X^2+6XY+2Y^2=2YZ+Z^2$

Claim:
$$V(\mathbb{Q}) = \emptyset$$
.

Proof. Since the equation is homogenous, and we are working over rationals \mathbb{Q} , can assume that the solutions [x:y:z] have $\gcd(a,b,c)=1$ and $a,b,c\in\mathbb{Z}$.

- Observe $\pmod{2}$. We have $5X^2 \equiv Z^2 \pmod{2} \Rightarrow X \equiv Z \pmod{2}$. If X, Z are both even, then
 - Observe $\pmod{4}$. We get $X^2 + 2XY + 2Y^2 = 2YZ + Z^2$. If X, Z are both even, then Y is even as well which contradicts our assumption on the gcd. Thus, we can assume X, Z to be odd.
- If we consider $\pmod{3}$, we have $2X^2+2Y^2=2YZ+Z^2\Rightarrow 2X^2+3Y^2=(Y+Z)^2\Rightarrow X^2=(Y+Z)^2.$ Therefore, $3\mid X$ and $3\mid Y+Z$.
 - Now, consider $\pmod{9}$. $2Y^2 = 2YZ + Z^2 \Rightarrow 3Y^2 = (Y+Z)^2 \Rightarrow Y^2 = 0$. Thus, $3 \mid Y \Rightarrow 3 \mid Z$. This contradicts our assumption $\gcd(X,Y,Z) = 1$.

2. For each prime $p \geq 3$, let $V_p \subseteq \mathbb{P}^2$ be the variety corresponding to the curve

$$V_p: X^2 + Y^2 = pZ^2$$

(a) Claim: $V_p \cong \mathbb{P}^1$ over \mathbb{Q} iff $p \equiv 1 \pmod{4}$

Proof. (\Rightarrow)

Suppose $V_p(\mathbb{Q}) \simeq \mathbb{P}^1(\mathbb{Q})$ but $p \equiv 3 \pmod 4$. Consider the equation mod p to get $X^2 + Y^2 \equiv 0 \pmod p \Rightarrow X^2 \equiv -Y^2 \pmod p$. Solving this is equivalent to checking if -1 is a quadratic residue of p but from Euler's criterion -1 is a quadratic residue iff $(-1)^{(p-1)/2} = 1$. Since p = 4k + 3, the condition is not satisfied and hence -1 is not a quadratic residue. Thus, $V_p(\mathbb{Q}) = \emptyset$ but clearly $\mathbb{P}^1(\mathbb{Q})$ is non-empty, a contradiction. Hence, our

assumption is wrong. p must be congruent $1 \pmod{4}$.

 (\Leftarrow)

Suppose $p \equiv 1 \pmod{4}$. Then there exists integers a, b such that $p = a^2 + b^2$. Consider the map

$$\phi: V_p(\mathbb{Q}) \longrightarrow \mathbb{P}^1(\mathbb{Q})$$
$$[X, Y, Z] \mapsto [aX + bY + pZ, (aY - bX)]$$

This map is regular except maybe at the point aY-bX=0, aX+bY+Z=0, i.e., the point [a:b:-1].

Note that

(b) Claim: For $p \equiv 3 \pmod{4}$, no two V_p s are isomorphic.

 \square

3. Let $F(x, y, x) \in k[x, y, z]$ be a homogeneous polynomial polynomial of degree $d \ge 1$ and the curve corresponding to F is non-singular.

Claim:

$$\mathfrak{g}(C) = \frac{(d-1)(d-2)}{2}$$

Proof.

4. (a) L: 2x + 5y - 1 = 0

Homogenisation gives us 2x + 5y - Z = 0. The point at infinity is the point where z = 0. Then, $2x + 5y = 0 \Rightarrow [-5:2:0]$ is the point at infinity.

(b) $C: x^2 - 4xy + 3y^2 - 3x + 5y - 10 = 0$

Homogenisation gives us $x^2 - 4xy + 3y^2 - 3xz + 5yz - 10z^2$. The point at infinity is the point where z = 0. Thus,

$$x^{2} - 4xy + 3y^{2} = 0$$
$$(x - 2y)^{2} - y^{2} = 0$$
$$(x - 2y + y)(x - 2y - y) = 0$$
$$(x - y)(x - 3y) = 0$$

Thus, x = y or x = 3y. The points at infinity are thus [1:1:0] and [3:1:0].

5. Given $f(x,y) = y^2 - x^3 - ax^2 - bx$

- 6. Suppose E is an elliptic curve given by the Weierstrass equation $y^2 = x^3 + ax^2 + bx + c$ and P = (x, y) a point on E.
 - (a) The slope at P is $\lambda=(3x^2+2ax+b)/2y$ and the intercept is $\nu=(-x^3+bx+2c)/2y$. The line is given by $Y=\lambda X+\nu$. From the formula given in Silverman, the coordinate of 2P is given by

$$x_2 = \lambda^2 - a - 2x$$
$$y_2 = -\lambda x_2 - \nu$$

Since we want to solve for 3P=0, we can just solve for 2P=-P. Again, using the formula given in Silverman, we want $x_2=x,y_2=-y$.

$$-\lambda x_2 - \nu = -y$$
$$\lambda x + \nu = y$$
$$\lambda = \frac{y - \nu}{x}$$

Using this we can do the following:

$$\lambda^{2} - a - 2x = x$$

$$\lambda^{2} = a + 3x$$

$$(y - \nu)^{2} = ax^{2} + 3x^{3}$$

$$y^{2} + \nu^{2} - 2y\nu = ax^{2} + 3x^{2}$$

$$x^{3} + ax^{2} + bx + c + \nu^{2} + x^{3} - bx - 2c = ax^{2} + 3x^{3}$$

$$\nu^{2} - c = x^{3}$$

$$(-x^{3} + bx + 2c)^{2} = 4(x^{3} + c)(x^{3} + ax^{2} + bx + c)$$

$$x^{6} + b^{2}x^{2} + 4c^{2} - 2bx^{4} - 4cx^{3} + 4bcx = 4x^{6} + 4ax^{5} + 4bx^{4} + 4cx^{3} + 4cx^{3} + 4acx^{2} + 4bcx + 4c^{2}$$

$$3x^{6} + 4ax^{5} + 6bx^{4} + 12x^{3}c + (4ac - b^{2})x^{2} = 0$$

Thus, either x = 0 or $3x^4 + 4ax^3 + 6bx^2 + 12xc + (4ac - b^2) = 0$.

- (b) Now, in the particular case of $Y^2=X^3+1$, we have a=0=b, c=1. Thus, we have two cases:
 - x=0, then $y^2=1$. Hence, the points are [0:1],[0:-1].

$$3x^4 + 12x = 0$$
$$r^3 = -4$$

Thus, $x=\sqrt{-4},\sqrt{-4}\omega$ or $\sqrt{-4}\omega^3$ where ω is primitive 3rd root of unity.

Now, solve for $y^2 = x^3 + 1 = -2$. Therefore, $y = \sqrt{-2}i, -\sqrt{-2}i$

7. Given $E: y^2 = x^3 + 17$ is an elliptic curve over $\mathbb Q$

- (a) P=(-1,4), Q=(2,5). We wish to find P+Q
- (b) P=(-2,3), Q=(2,5). We wish to find -P+2Q