Khovanov homology, knot Floer homology, and spectral sequences

Zachary Winkeler

Smith College

2024 Fall Eastern Sectional Meeting

• Khovanov homology and knot Floer homology are interesting knot invariants with a lot in common.

- Khovanov homology and knot Floer homology are interesting knot invariants with a lot in common.
- Spectral sequences tell us about relationships between knot homology theories.

- Khovanov homology and knot Floer homology are interesting knot invariants with a lot in common.
- Spectral sequences tell us about relationships between knot homology theories.
- We proved that a particular spectral sequence between these two theories is itself a knot invariant.

- Khovanov homology and knot Floer homology are interesting knot invariants with a lot in common.
- Spectral sequences tell us about relationships between knot homology theories.
- We proved that a particular spectral sequence between these two theories is itself a knot invariant.

Everything in this talk is joint work with Samuel Tripp.

• **Khovanov homology** [Kho00] is a homological knot invariant that is most commonly defined using a "cube of resolutions".

- **Khovanov homology** [Kho00] is a homological knot invariant that is most commonly defined using a "cube of resolutions".
 - Given a knot diagram *D*, we build a cube where each vertex represents a different way to replace the crossings by non-crossing arcs.

- Khovanov homology [Kho00] is a homological knot invariant that is most commonly defined using a "cube of resolutions".
 - Given a knot diagram *D*, we build a cube where each vertex represents a different way to replace the crossings by non-crossing arcs.
 - We replace vertices by modules and edges by linear maps to get a chain complex CKh(D).

- Khovanov homology [Kho00] is a homological knot invariant that is most commonly defined using a "cube of resolutions".
 - Given a knot diagram *D*, we build a cube where each vertex represents a different way to replace the crossings by non-crossing arcs.
 - We replace vertices by modules and edges by linear maps to get a chain complex CKh(D).
 - The Khovanov homology Kh(D) is the homology of this chain complex.

Knot Floer homology

- **Knot Floer homology** [OS02; Ras03] is another homological knot invariant that is usually defined rather differently.
 - Originally defined using Heegaard Floer homology [OS01], an invariant of closed 3-manifolds.

Knot Floer homology

- Knot Floer homology [OS02; Ras03] is another homological knot invariant that is usually defined rather differently.
 - Originally defined using Heegaard Floer homology [OS01], an invariant of closed 3-manifolds.
 - Later defined using grid diagrams.

Knot Floer homology

- **Knot Floer homology** [OS02; Ras03] is another homological knot invariant that is usually defined rather differently.
 - Originally defined using Heegaard Floer homology [OS01], an invariant of closed 3-manifolds.
 - Later defined using grid diagrams.
 - In either case, we get knot Floer homology HFK(D) as the homology of a complex CFK(D) associated to some kind of diagram D.

 $\mathsf{Kh}(K)$ and $\mathsf{HFK}(K)$ share a surprising amount of features.

• Both are bi-graded modules.

- Both are bi-graded modules.
- $\chi(\mathsf{Kh}(K))$ is the Jones polynomial $V_K(t)$, and $\chi(\mathsf{HFK}(K))$ is the Alexander polynomial $\Delta_K(t)$.

- Both are bi-graded modules.
- $\chi(\mathsf{Kh}(K))$ is the Jones polynomial $V_K(t)$, and $\chi(\mathsf{HFK}(K))$ is the Alexander polynomial $\Delta_K(t)$.
- $\dim \overline{Kh}(K) = \dim \widehat{HFK}(K)$ for all knots with 10 or fewer crossings [Ras05; LM23].

- Both are bi-graded modules.
- $\chi(\mathsf{Kh}(K))$ is the Jones polynomial $V_K(t)$, and $\chi(\mathsf{HFK}(K))$ is the Alexander polynomial $\Delta_K(t)$.
- $\dim \overline{\mathsf{Kh}}(K) = \dim \widehat{\mathsf{HFK}}(K)$ for all knots with 10 or fewer crossings [Ras05; LM23].
- Both theories have concordance invariants; Kh(K) produces $s(K) \in \mathbb{Z}$ [Ras04], and HFK(K) produces $\tau(K) \in \mathbb{Z}$ [OS03; Ras03].

- Both are bi-graded modules.
- $\chi(\mathsf{Kh}(K))$ is the Jones polynomial $V_K(t)$, and $\chi(\mathsf{HFK}(K))$ is the Alexander polynomial $\Delta_K(t)$.
- dim $\overline{\mathsf{Kh}}(K) = \dim \widehat{\mathsf{HFK}}(K)$ for all knots with 10 or fewer crossings [Ras05; LM23].
- Both theories have concordance invariants; $\mathsf{Kh}(K)$ produces $s(K) \in \mathbb{Z}$ [Ras04], and $\mathsf{HFK}(K)$ produces $\tau(K) \in \mathbb{Z}$ [OS03; Ras03].
- Both theories also have transverse invariants: $\psi(K) \in \mathsf{Kh}(K)$ and $\theta(K) \in \mathsf{HFK}(K)$.

• In [Dow18], Dowlin defined a spectral sequence with $E_2 \cong \overline{\mathsf{Kh}}(K)$ and $E_\infty \cong \widehat{\mathsf{HFK}}(K)$.

• A **spectral sequence** is, essentially, just a sequence of chain complexes E_0, E_1, E_2, \ldots called "pages" and isomorphisms $H^*(E_i) \to E_{i+1}$.

• A **spectral sequence** is, essentially, just a sequence of chain complexes E_0, E_1, E_2, \ldots called "pages" and isomorphisms $H^*(E_i) \to E_{i+1}$.

• A **spectral sequence** is, essentially, just a sequence of chain complexes E_0, E_1, E_2, \ldots called "pages" and isomorphisms $H^*(E_i) \to E_{i+1}$.

- A **spectral sequence** is, essentially, just a sequence of chain complexes E_0, E_1, E_2, \ldots called "pages" and isomorphisms $H^*(E_i) \to E_{i+1}$.
- In many cases, the differentials on the higher pages will all be trivial; when this happens, we say that the sequence "converges".

- A **spectral sequence** is, essentially, just a sequence of chain complexes E_0, E_1, E_2, \ldots called "pages" and isomorphisms $H^*(E_i) \to E_{i+1}$.
- In many cases, the differentials on the higher pages will all be trivial; when this happens, we say that the sequence "converges".
- Many spectral sequences exist between different knot homologies, e.g. $\mathsf{Kh}(K) \to \mathsf{Kh}_{\mathsf{Lee}}(K)$ and $\mathsf{HFK}(K) \to \mathsf{HF}(S^3)$.

• In [Dow18], Dowlin defined a spectral sequence with $E_2 \cong \overline{\mathsf{Kh}}(K)$ and $E_\infty \cong \widehat{\mathsf{HFK}}(K)$.

- In [Dow18], Dowlin defined a spectral sequence with $E_2 \cong \overline{\mathsf{Kh}}(K)$ and $E_\infty \cong \widehat{\mathsf{HFK}}(K)$.
- One immediate consequence is a rank inequality

$$\dim \widehat{\mathsf{HFK}}(K) \leq \dim \overline{\mathsf{Kh}}(K)$$
.

- In [Dow18], Dowlin defined a spectral sequence with $E_2 \cong \overline{\mathsf{Kh}}(K)$ and $E_\infty \cong \widehat{\mathsf{HFK}}(K)$.
- One immediate consequence is a rank inequality

$$\dim \widehat{\mathsf{HFK}}(K) \leq \dim \overline{\mathsf{Kh}}(K)$$
.

• It has also been used to prove that Kh(K) detects several more knots, like the figure-eight knot [Bal+21], the cinquefoil [BHS21], and the (2,6)-torus knot [Mar20].

Cubes of resolutions

One important development for comparing Kh(K) and HFK(K) was a cube of resolutions description of HFK(K) that mirrors Kh(K) [OS09].

Diagrams

• The spectral sequence is defined using a *partially-singular braid diagram*.

Diagrams

- The spectral sequence is defined using a *partially-singular braid diagram*.
- The extra notation here is marking one decorated edge and a second type of singular vertex that is required to define the differential.

Diagrams

- The spectral sequence is defined using a *partially-singular braid diagram*.
- The extra notation here is marking one decorated edge and a second type of singular vertex that is required to define the differential.
- The knot represented by a partially-singular braid diagram can be drawn by taking the unoriented smoothing of all the singular vertices.

• The spectral sequence itself is defined using a filtered chain complex $C_2^-(D)$.

- The spectral sequence itself is defined using a filtered chain complex $C_2^-(D)$.
- The base ring is a polynomial ring over \mathbb{Q} with one variable for every edge in the diagram (thought of as a graph).

- The spectral sequence itself is defined using a filtered chain complex $C_2^-(D)$.
- The base ring is a polynomial ring over \mathbb{Q} with one variable for every edge in the diagram (thought of as a graph).
- The dimension of the module is $O(2^n)$ for a diagram with n crossings as was the case with CKh(D).

- The spectral sequence itself is defined using a filtered chain complex $C_2^-(D)$.
- The base ring is a polynomial ring over $\mathbb Q$ with one variable for every edge in the diagram (thought of as a graph).
- The dimension of the module is $O(2^n)$ for a diagram with n crossings as was the case with CKh(D).
- Constructing the spectral sequences requires that the diagram *D* have "enough" singular vertices to satisfy certain algebraic conditions.

Invariance

• Just because $E_2 \cong \mathsf{Kh}(K)$ and $E_\infty \cong \mathsf{HFK}(K)$ are invariants doesn't mean that E_3 , E_4 , etc. are.

Invariance

- Just because $E_2 \cong \operatorname{Kh}(K)$ and $E_\infty \cong \operatorname{HFK}(K)$ are invariants doesn't mean that E_3 , E_4 , etc. are.
- How do we prove that every page is a knot invariant?

Invariance

- Just because $E_2 \cong \operatorname{Kh}(K)$ and $E_\infty \cong \operatorname{HFK}(K)$ are invariants doesn't mean that E_3 , E_4 , etc. are.
- How do we prove that every page is a knot invariant?
 - Find (filtered) chain maps $C_2^-(D) \to C_2^-(D)$ that correspond to Reidemeister moves...

Invariance

- Just because $E_2 \cong \operatorname{Kh}(K)$ and $E_\infty \cong \operatorname{HFK}(K)$ are invariants doesn't mean that E_3 , E_4 , etc. are.
- How do we prove that every page is a knot invariant?
 - Find (filtered) chain maps $C_2^-(D) \to C_2^-(D)$ that correspond to Reidemeister moves...
 - ... or Markov moves if you want to represent your knots as braids.

Finding diagrams for knots

• First, we turn knots into braids.

Finding diagrams for knots

- First, we turn knots into braids.
- Then, we embed braids into a partially-singular diagram with "enough singularities" that the spectral sequence construction works.

MOY Moves

Stabilization and Conjugation

Example Conjugation Invariance

The steps to prove conjugation invariance for n=2 and $\alpha=\sigma_1$.

Conclusion

• We proved that the Dowlin spectral sequence from Kh(K) to HFK(K) is itself an invariant, which proves that each page E_k is its own new knot invariant.

Conclusion

- We proved that the Dowlin spectral sequence from Kh(K) to HFK(K) is itself an invariant, which proves that each page E_k is its own new knot invariant.
- Possible future directions:
 - Compare transverse invariants $\psi(K)$ and $\theta(K)$ using the spectral sequence.
 - Also look at concordance invariants s(K) and $\tau(K)$.
 - Efficiently compute pages of the spectral sequence for more knots.
 - Find an annular version of the spectral sequence?

The End

Thanks for listening!

References I

- [Bal+21] John A. Baldwin et al. "Khovanov homology detects the figure-eight knot". In:

 **Bulletin of the London Mathematical Society 53.3 (Jan. 2021), pp. 871–876.

 **ISSN: 1469-2120. DOI: 10.1112/blms.12467. URL:

 http://dx.doi.org/10.1112/blms.12467.
- [BHS21] John A. Baldwin, Ying Hu, and Steven Sivek. *Khovanov homology and the cinquefoil.* 2021. arXiv: 2105.12102 [math.GT].
- [Dow18] Nathan Dowlin. A spectral sequence from Khovanov homology to knot Floer homology. 2018. arXiv: 1811.07848 [math.GT].
- [Kho00] Mikhail Khovanov. "A categorification of the Jones polynomial". In: Duke Math. J. 101.3 (Feb. 2000), pp. 359-426. DOI: 10.1215/S0012-7094-00-10131-7. URL: https://doi.org/10.1215/S0012-7094-00-10131-7.
- [LM23] Charles Livingston and Allison H. Moore. *KnotInfo: Table of Knot Invariants*. URL: https://knotinfo.math.indiana.edu. Mar. 2023.
- [Mar20] Gage Martin. Khovanov homology detects T(2,6). 2020. arXiv: 2005.02893 [math.GT].
- [OS01] Peter Ozsvath and Zoltan Szabo. "Holomorphic disks and topological invariants for closed three-manifolds". In: arXiv Mathematics e-prints, math/0101206 (Jan. 2001), math/0101206. arXiv: math/0101206 [math.SG].

References II

[OS02]	Peter Ozsvath and Zoltan Szabo. "Holomorphic disks and knot invariants". In:
	$\label{eq:arXiv} \begin{array}{ll} \textit{arXiv Mathematics e-prints}, \; math/0209056 \; \; \text{(Sept. 2002)}, \; math/0209056. \; arXiv:math/0209056 \; \; \\ [math.GT]. \end{array}$

- [OS03] Peter Ozsvá th and Zoltán Szabó. "Knot Floer homology and the four-ball genus". In: Geometry & Topology 7.2 (Oct. 2003), pp. 615–639. DOI: 10.2140/gt.2003.7.615. URL: https://doi.org/10.2140%2Fgt.2003.7.615.
- [OS09] Peter Ozsváth and Zoltán Szabó. "A cube of resolutions for knot Floer homology". In: Journal of Topology 2.4 (2009), pp. 865–910. DOI: 10.1112/jtopol/jtp032. URL: https://doi.org/10.1112%2Fjtopol%2Fjtp032.
- [Ras03] Jacob Rasmussen. Floer homology and knot complements. 2003. DOI: 10.48550/ARXIV.MATH/0306378. URL: https://arxiv.org/abs/math/0306378.
- [Ras04] Jacob A. Rasmussen. "Khovanov homology and the slice genus". In: arXiv Mathematics e-prints, math/0402131 (Feb. 2004), math/0402131. arXiv: math/0402131 [math.GT].
- [Ras05] Jacob Rasmussen. "Knot polynomials and knot homologies". In: arXiv Mathematics e-prints, math/0504045 (Apr. 2005), math/0504045. arXiv: math/0504045 [math.GT].