Oct 19, 2020 (Due: 08:00 Oct 26, 2020)

- **1.** Prove the real Schur decomposition: Let $A \in \mathbb{R}^{n \times n}$. Then there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that $Q^{\top}AQ$ is quasi-upper triangular (i.e., block triangular with block size 1×1 and 2×2).
- 2. Investigate the behavior of the power method applied to the following matrices:

$$A = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}, \qquad B = \begin{bmatrix} \lambda & 1 \\ 0 & -\lambda \end{bmatrix},$$

where $\lambda \in \mathbb{C}$ is a given constant.

- **3.** Let $A \in \mathbb{C}^{n \times n}$, $x \in \mathbb{C}^n$. Suppose that $X = [x, Ax, \dots, A^{n-1}x]$ is nonsingular. Show that $X^{-1}AX$ is upper Hessenberg.
- **4.** Let $A_0 \in \mathbb{C}^{n \times n}$, $\mu_0, \mu_1, ..., \mu_m \in \mathbb{C}$. Define $A_1, A_2, ..., A_{m+1}$ by

$$A_k - \mu_k I = Q_k R_k, \qquad A_{k+1} = R_k Q_k + \mu_k I,$$

for $k \in \{0, 1, ..., m\}$, where Q_k 's are unitary matrices. Show that

$$(A_0 - \mu_0 I)(A_0 - \mu_1 I) \cdots (A_0 - \mu_m I) = (Q_0 Q_1 \cdots Q_m)(R_m \cdots R_1 R_0).$$

- **5.** Read the paper "From Random Polygon to Ellipse: An Eigenanalysis" by A. N. Elmachtoub and C. F. Van Loan (available on eLearning). Reproduce the experiments in this paper.
- **6.** (optional) Implement inverse iteration and Rayleigh quotient iteration. Apply them to some examples and observe the performance and convergence rate.