OSIM2 Training Session I Model overview

February 25, 2011 Washington, DC

Patrick Ryan, Johnson & Johnson, OMOP Steph Reisinger, United BioSource Corp. Rich Murray, United BioSource Corp.

Agenda for the Day

- Session I Overview and Conceptual Model
 - Introduction to Simulation
 - Conceptual Simulation Model
 - Review of Simulation Results and Deliverables
- Session II Technical Review
 - Architecture
 - Program Execution
 - Review of Program Modules

Outstanding questions for active surveillance

Observational Medical Outcomes Partnership

Established to inform the appropriate use of observational healthcare databases for active surveillance by:

- Conducting methodological research to empirically evaluate the performance of alternative methods on their ability to identify true drug safety issues
- Developing tools and capabilities for transforming, characterizing, and analyzing disparate data sources
- **Establishing a shared resource** so that the broader research community can collaboratively advance the science

Session I Agenda

- Introduction and Context
- OSIM2 Conceptual Design
- OSIM2 Validation
- Uses of Simulated Data
- Limitations
- OSIM2 Deliverables
- Summary and Discussion
- Transition to Session II

INTRODUCTION / CONTEXT

Context for Simulated Data

"The OMOP partnership will conduct a two-year initiative to research methods that are feasible and useful to analyze existing healthcare databases to identify and evaluate safety and benefit issues of drugs already on the market"

source: omop.fnih.org

Method Evaluation Requirements:

- Characterize Individual Method Performance
- Compare Performance Among Methods

Objective Measures for:

- Sensitivity
- Specificity
- Positive and Negative Predictive Value

'Ground truth' for Monitoring Health Outcomes of Interest (HOI)

Limitations of Observational Data for Supporting Methods Evaluation

Observational Data

Data is "noisy" (confounding)

Data capture process provides further distortion

Limited gold standards for objective measurement

Access limited & expensive

Disparate data formats / coding schemes

Simulated Data

Model both adverse drug reactions and confounding

Simulate data capture process

Known characteristics provide "truth" for measurement

Data freely & widely available

Use of Common Data Model mitigates format issues

Simulated data, with known properties and characteristics, can facilitate systematic evaluation & comparison among methods providing objective gold standard

Observational Medical Dataset Simulator

- Goal: construct large-scale, high-fidelity, simulated database to complement 'real' data experiments for methodological research
- OSIM (1 and 2)
 - Developed to address need for objective Method evaluation criteria
 - Open source software application
 - File of simulated persons with drug exposures and condition occurrences
 - Input parameters mimic characteristics of real observational data
 - Provide known "Ground Truth" for developing methods

OSIM2 CONCEPTUAL DESIGN

Conceptual OSIM2 Simulation Process

OMOP Common Data Model Domains Within OSIM2 Simulation

Real Observational Database

Step 1: Analyze input database characteristics

Transition probability matrices

Database

Overall Database Characteristics

- Person count
- Earliest date of observation
- · Latest date of observation

Person

Real Observational Database

Transition probability matrices

Person Characteristics

- Gender
- Age

Extract full empirical distributions from 'real data' to construct multinomial distribution

Observation Period

Real Observational Database

Step 1: Analyze input database characteristics

Transition probability matrices

Condition

Condition Characteristics

- Distinct Condition Count
- Number of Condition Records
- Condition to Next Condition Transition and Time between
- Time between Re-occurring Conditions

Real Observational Database

Step 1: Analyze input database characteristics

Transition probability matrices

Drug

Drug Characteristics

- Distinct Drug Count
- Number of Drug Records
- Total Length of Exposure
- Time from first exposure to last exposure
- Number of drugs following condition
- Condition to Drug Transition and Time Between

Conceptual Simulation Process

Creating Simulated Data

The 'birth' of a OSIM2 'person'

Now that we have a 'person', we need to observe them in the database

Database span of time 2010 2005 JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND TR=6mo TR=9mo G='Female' TR=18mo A=51 yo C=9 conditions TR=36mo

How long will this person exist (TR) in the observational database? p(TR=t | G='Female', A=51yo, C=9 conditions)

When will the persons record start?

Start = Unif(DBStart, (DBEnd – TR))

Creating Simulated Data

We need to give this person 9 conditions... what should she get first?

p(C1=c | G='Female', AR=21-55yo, CR=8-25, TR=24 mo)

When should the person get the first condition?

p(TR=t | G='Female', AR=21-55yo, CR=8-25, TR=24 mo, C1=c)

AR: Age range {<6, 6-14, 15-20, 21-55, 56-70, 70+}

CR: comorbidity range {<3, 3-7, 8-25, 25+}

TR: time remaining in database, 6mo intervals

'c' can be any condition

observed as a first diagnosis

within that person strata

Her first condition was 'Diabetes' ... what should she get next?

When should the person get the next condition?

p(TR=t | C1='Diabetes mellitis type 2', C2=c,
G='Female', AR=21-55yo, CR=8-25, TR=24 mo)

'c' can be any condition observed as after the prior diagnosis within that person strata 25

Her next condition was 'Essential hypertension' ... what should she get next?

NOTE: p(C3=c) does not depend on C1='Diabetes'

 $p(C_n=x \mid C_{n-1}=y, G, AR, CR, TR, C_{1..n-1}\neq x)$ $p(TR_n=t \mid C_n=x, C_{n-1}=y, G, AR, CR, TR)$

She had the condition 'Diabetes', so how should diagnosis codes be recorded in her database record?

Condition data patterns to model

- 'Conditions' are recorded observations about a disease in a given individual.
- One 'condition' can have multiple 'occurrences' if it is recorded
- Conditions can be indications, comorbidities, outcomes, and/or adverse events.
- In real data, we infer the type of condition based on its temporal relationship with other observations, such as drug exposure.
- In simulated data, we can explicitly separate background condition prevalence from drug-related effects

First-order Markov model for incident conditions

- C₁-C_n: reflect all incident conditions in the database
- $C_{i(m)}$: reflects the m number of occurrences of condition C in the database
- $p_{ij} = Pr(C_{k+1} = j \mid C_k = i, C_1...C_k \neq j) = Pr(C_{k+1} = j \mid C_1 = c_1, C_2 = c_2,..., C_k = c_k)$
- Time-homogenous : probabilities are independent of k
- Null recurrent: condition j cannot be revisited
- p_{ii} can be estimated from real data based on frequency of condition co-occurrence
- Model replicated within age * gender *condition count strata

Creating Simulated Data

'Treating' our OSIM2 population

Create a new 'person'

Give the person Conditions C

Give the person Drugs D

p(C=0|G=Female, A=51)

p(C=9 | G='Female', A=51)

ND=0 | G=: Female, AR=21.55, CR=8.25) p(D=12 | G='Female', AR=21-55, CR=8-25)

P(C:45/G: Female, A:57) G='Female' A=51 yo

P(D:35/G:/Female:, AR:21.55, CR:8-25)

mellitus type 2'

Her first condition was 'Diabetes' ... what subsequent drug(s) get recorded?

NOTE: 'd' needn't be an indicated treatment for 'c', as model is empirically driven based on d-c co-occurrence in real data

D=12 drugs p(N=n | C1='Diabetes mellitus type 2',
C1='Diabetes AR=21-55yo, CR=8-25, DR= 8-25, IR=1 wk)

p(D_i=d | C1='Diabetes mellitus type 2', G='Female', AR=21-55yo, CR=8-25, DR= 8-25, IR=1 wk, N≥i)

N: number of drugs to select for condition DR: drug count range {<3, 3-7, 8-25, 25+}

IR: interval range, time between C1 and C2

'd' can be any generic ingredient observed within that person strata 32

She gets the drug 'Metformin', so how should prescription eras be recorded in her database record?

How many distinct periods of exposure?

p(DE=de | D1='Metformin', CR=8-25, DR=8-25, AR=21-55, TR=18 mo)

What's the total length of exposure?

p(ET=et | D1='Metformin', CR=8-25, DR=8-25, AR=21-55, TR=18 mo)

What's the duration during with the exposure takes place?

p(DD=dd | D1='Metformin', TR=18 mo, DE, ET)

Modeling drug exposure given conditions

- C₁-C_n: reflect all conditions in the database
- D₁-D_m: reflect all drugs in the database
- D_{i(q)}: reflect the q number of occurrences of drug D_i in the database
- $p_{ii} = Pr(D_{k+1} = j | C_k = i, D_1..D_k \neq j)$
- p_{ij} can be estimated from real data based on frequency of condition/drug co-occurrence
- Model replicated within age * gender *condition count * drug count strata
- Model preserves conditional independence between drugs and subsequent conditions

Creating Simulated Data

Definition: Simulated Signals

- Algorithmically introduce known relationships between a drug and an outcome
- Conditions are added to or removed from baseline simulation
 - Add conditions → drug adverse event
 - Remove conditions → beneficial effect
- Relative Risk
 - Multiplier applied to background rate to simulate the drug / outcome effect

Simulated Signals

Attributes of a Simulated Signal

Attribute	Parameters
Outcome Definition	Drug and Condition Pair
Type of Outcome	Risk Benefit
Strength of Association	Relative Risk within specified timeframe
Exposure Relationship	First Exposure: Outcomes added to (or removed from) first exposure Any Exposure: Outcomes added to (or removed from) any exposure
Time to Event Relationship	Acute / Delayed: Outcomes randomly added (or removed) within a user specified risk window after exposure Insidious: Outcomes randomly added (or removed) starting at a random date after exposure Accumulative: Outcomes randomly added (or removed) starting at a random date after exposure with accumulating probability over time
Time at Risk	Risk Window Start: Minimum days after exposure start Risk Window End: Maximum days after exposure start

Simulated HOIs

Simulated HOIs

Simulated HOIs

Simulated signals to model the OMOP HOI experiment

Outcome type	Drug concept name	Health Outcome of Interest		Outcome risk type	Window	Risk Window End
risk	ACE Inhibitors	Angioedema	3	first exposure	0	30
risk	Antiepileptics	Aplastic Anemia	2.5	first exposure	15	90
risk	Antibiotics	Acute Liver Injury	1.3	any exposure	1	45
risk	Amphotericin B	Renal Failure	5	insidious	0	
risk	Warfarin	Bleeding	2	insidious	0	
risk	Benzodiazapines	Hip Fracture	1.8	accumulative	3	
risk	Tricyclic antidepressants	Myocardial Infarction	1.2	accumulative	60	
risk	Bisphosphonates	GI Ulcer Hospital- ization	1.25	insidious	1	
benefit	ACE Inhibitors	Hospitalization	0.8	accumulative	1	
benefit	Beta blocker	Mortality after MI	0.75	first exposure	1	180

OSIM2 SIMULATION VALIDATION

Simulation Summary Statistics

Observational Database

Thomson MSLR					
Person Count:	1,229,321				
Condition Records:	25,228,245				
Avg. Condition Records per					
Person	20.5				
Drug Records:	16,350,306				
Avg. Drug Records per Person	13.3				

Simulated Data

Simulated Data					
Person Count:	1,000,000				
Condition Records:	22,062,495				
Avg. Condition Records per					
Person	22				
Drug Records:	12,160,304				
Avg. Drug Records per Person	12.1				

Run Time

Step 1 Analyze: 5:13 Step 2 Simulate: 20:18

Total File Size

Transition Matrices: 3.9 GB Simulated Data: 1.25 GB

Model validation through test cases: Dashboard analyses

- Validate key characteristics of simulation modeling reality with sufficient precision
- Person
 - Age, gender distributions
 - Observation period length
- Condition
 - Number of comorbidities per person
 - Prevalence of each condition
 - Co-occurrence between conditions
 - Timing between and within conditions

Drug

- Number of exposures per person
- Prevalence and of each drug
- Total number and length of exposure
- Co-occurrence between conditions and drugs
- Co-occurrence between drugs
- Timing between and within drugs

Simulation Dashboard (OSIM2 v MSLR): Age by gender

Simulation Dashboard (OSIM2 v MSLR): Condition Eras

Simulation Dashboard (OSIM2 v MSLR): Condition Prevalence

Simulation Dashboard (OSIM2 v MSLR): Condition Prevalence Stratified

Simulation Dashboard (OSIM2 v MSLR): Condition Co-Occurrence

Simulation Dashboard (OSIM2 v MSLR): Distinct Drugs

Simulation Dashboard (OSIM2 v MSLR): Days with Drug Starts

Simulation Dashboard (OSIM2 v MSLR): Drug Prevalence

Simulation Dashboard (OSIM2 v MSLR): Drug Exposure Duration

Simulation Dashboard (OSIM2 v MSLR): Drug Co-Occurrence

USES OF SIMULATED DATA

How do we use simulated data?

- Experiments to understand characteristics of real data
- Software validation
- Methods development

• ...

Uses of Simulated Data: Experiments to Understand Characteristics of Real Data

Claims Data Simulation (MSLR)

EMR Data Simulation (GE)

Uses of Simulated Data: Experiments to Understand Characteristics of Real Data

Claims Data Simulation (MSLR)

Uses of Simulated Data: Experiments to Understand Characteristics of Real Data

Claims Data Simulation (MSLR)

Uses of Simulated Data: Experiments to Understand Characteristics of Real Data

Claims Data Simulation (MSLR)

Drug
Prevalence for
Persons > 70

EMR Data Simulation (GE)

Uses of Simulated Data: Software Validation and Training

Software development

- Identify sets of simulated patients with characteristics to test key features (analytic method, etc.)
- Develop test cases and expected results
- Regression test each software release to ensure results are consistent

Training

- Inexpensive source of Data
- Train users on functions / analytic methods where results are expected / known
- Mitigates issues of "unexpected results" during training phase

Uses of Simulated Data: Methods Development

Method Evaluation Requirements:

- Characterize Individual Method Performance
- Compare Performance Among Methods

Objective Measures for:

- Sensitivity
- Specificity
- Positive and Negative Predictive Value

Method performance pre/post signal

ANALYSI	METHOD	OUTPUT_FILE	RUN_NAME	PARAM_SETTINGS
6003001	HDPS	hdps_NAME_MH_ wo180ce9999swn 30tf100tn200tc100 pg5pd30pc30ip0.tx t		COVARIATE_ELIGIBILITY_DAYS: 9999; ~~~SURVEILLANCE_WINDOW_DAYS: -30; ~~~TOP_CONFOUNDERS: 100; ~~~NUMBER_OF_GROUPS_BY_PROPENSITY_SCORE: 5; ~~~OUTPUT_METRIC: MH; ~~~COMPARATOR_DRUG: 3; ~~~

Method performance pre/post signal

ANALYSI	METHOD	OUTPUT_FILE	RUN_NAME	PARAM_SETTINGS
6001001	HDPS	hdps_NAME_MH_ wo180ce30swn30t f100tn200tc100pg 5pd30pc30ip0.txt		COVARIATE_ELIGIBILITY_DAYS: 30; ~~~SURVEILLANCE_WINDOW_DAYS: -30; ~~~TOP_CONFOUNDERS: 100; ~~~NUMBER_OF_GROUPS_BY_PROPENSITY_SCORE: 5; ~~~OUTPUT_METRIC: MH; ~~~COMPARATOR_DRUG: 3; ~~~

Method performance pre/post signal

Drug-outcome pair estimates

ANALYSI	METHOD	OUTPUT_FILE	RUN_NAME	PARAM_SETTINGS
6004001	HDPS	hdps_NAME_MH_ wo180ce30sw30tf 100tn200tc100pg5 pd30pc30ip0.txt		COVARIATE_ELIGIBILITY_DAYS: 30; ~~~SURVEILLANCE_WINDOW_DAYS: 30; ~~~TOP_CONFOUNDERS: 100; ~~~NUMBER_OF_GROUPS_BY_PROPENSITY_SCORE: 5; ~~~OUTPUT_METRIC: MH; ~~~COMPARATOR_DRUG: 3; ~~~

Method performance pre/post signal

Drug-outcome pair estimates

Method reference

ANALYSI	METHOD	OUTPUT_FILE	RUN_NAME	PARAM_SETTINGS
503003	USCCS	SCCS30_NAMEct 1b1e0s30d30c30r x0pr0.5.txt		CONDITION_TYPE_1_PREVALENT_OR_2_INCIDENT: 1;~~~DAYS_FROM_THE_DRUG_ERA_START: 1; ~~~PRECISION_OF_THE_PRIOR: 0.5; ~~~SURVEILLANCE_WINDOW_IN_DAYS: 30; ~~~

Method performance pre/post signal

Drug-outcome pair estimates

Method reference

ANALYSI.	. METHOD	OUTPUT_FILE	RUN_NAME	PARAM_SETTINGS
50400	3 USCCS	SCCS30_NAMEct 2b1e0s30d30c30r x0pr0.5.txt	USCCS_HOI_RUN_4	CONDITION_TYPE_1_PREVALENT_OR_2_INCIDENT: 2;~~DAYS_FROM_THE_DRUG_ERA_START: 1; ~~PRECISION_OF_THE_PRIOR: 0.5; ~~SURVEILLANCE_WINDOW_IN_DAYS: 30; ~~~

Method performance pre/post signal

Drug-outcome pair estimates

Method reference

ANALYSI	METHOD	OUTPUT_FILE	RUN_NAME	PARAM_SETTINGS
504001	USCCS	SCCS30_NAMEct 2b1e0sn30d30c30 rx0pr0.5.txt		CONDITION_TYPE_1_PREVALENT_OR_2_INCIDENT: 2;~~~DAYS_FROM_THE_DRUG_ERA_START: 1; ~~~PRECISION_OF_THE_PRIOR: 0.5; ~~~SURVEILLANCE_WINDOW_IN_DAYS: -30; ~~~

LIMITATIONS

Limitations

- First-order Markov model doesn't reflect full complexities in data
- Drugs aren't tied to indications, no switching/dose tailoring behavior....
- Time-stationary, so not modeling evolving clinical practice or new medical product market introductions
- Length of exposure does not depend on co-morbidities
- 'Dose tailoring' and 'switching' between products in drug class not modeled
- Non-adherence not reflected
- No drug-drug co-pharmacy reflected
 - Combination products are under-represented

Limitations (cont.)

- Observation Periods
 - Randomly simulated between database start / end, clustered starts not represented
 - Only 1 observation period per person
- Visits not modeled, data not clustered around visit dates
- Does not simulate procedures or observations
- User can't modify database attribute parameters generated from the analysis phase (e.g. change background rates, etc.)

OBSERVATIONAL MEDICAL OUTCOMES PARTNERSHIP

OSIM2 DELIVERABLES

OSIM2 Types of Deliverables

- Source Code for Producing Simulation Results
- Pre-specified Parameter Files containing characteristics of OMOP Core databases
- Simulated Data files created by executing OSIM2

All deliverables are available for download on the OMOP Website:

omop.fnih.org/OSIM2

OSIM2 Source Code Deliverables

- OSIM2 source code
- OSIM2 documentation (and training presentation materials)
- OSIM2 execution instructions
- Source Code to create Simulation Dashboard from Simulation Results

OSIM2 Parameter File Deliverables

- Transition probability matrices for each of 5 central OMOP databases
- 'Injected signal' file for OMOP HOI experiment

OSIM2 Simulated Data Deliverables

- 1 million person simulated database created from MSLR
 - With signals for HOI experiment
 - Without signals for HOI experiment
- Dashboards describing simulation results for each of 5 central databases

Common data model variables simulated in OSIM2

OBSERVATION PERIOD

OBSERVATION_PERIOD_ID
PERSON_ID
OBSERVATION_PERIOD_START_DAT
E

OBSERVATION_PERIOD_END_DATE
PERSON_STATUS_CONCEPT_ID
RX_DATA_AVAILABILITY
DX_DATA_AVAILABILITY
HOSPITAL_DATA_AVAILABILITY
CONFIDENCE

PERSON

PERSON_ID
SOURCE_PERSON_KEY
YEAR_OF_BIRTH
GENDER_CONCEPT_ID
RACE_CONCEPT_ID
LOCATION_CONCEPT_ID
SOURCE_GENDER_CODE
SOURCE_LOCATION_CODE
SOURCE_RACE_CODE

DRUG ERA

DRUG_ERA_ID
PERSON_ID
DRUG_ERA_START_DATE
DRUG_ERA_END_DATE
DRUG_EXPOSURE_TYPE
DRUG_CONCEPT_ID
DRUG EXPOSURE COUNT

CONDITION ERA

CONDITION_ERA_ID
PERSON_ID
CONDITION_ERA_START_DATE
CONDITION_ERA_END_DATE
CONDITION_OCCURRENCE_TYPE
CONDITION_CONCEPT_ID
CONDITION_OCCURRENCE_COU
NT
CONFIDENCE

Uses of OSIM2 Deliverables

- Create a de-novo simulated replica from an observational database:
 - Point OSIM2 code at an OMOP CDM database to create transition matrices / probability tables
 - Create simulated dataset using transition matrices as input
- Create a simulated database using pre-defined transition matrices / probability tables
 - Load transition matrices (such as those you can download from OMOP website), specify the simulation you want (eg how many people, etc), then run the code.
- Download simulated databases data directly from OMOP

OBSERVATIONAL MEDICAL OUTCOMES PARTNERSHIP

SESSION I SUMMARY AND DISCUSSION

OBSERVATIONAL MEDICAL OUTCOMES PARTNERSHIP

TRANSITION TO SESSION II

Session II Introduction

- Technical session designed for people who need more in-depth understanding of OSIM2 technical operations
 - Overall Module Architecture
 - What the technical pieces are, how they fit together
 - Setup and Execution
 - Execution Modes
 - Required Inputs and parameters
 - Execution Instructions
 - Walkthrough of Program Logic
 - Procedure 1: Source database analysis
 - Procedure 2: Patient Simulation
 - Details / Inventory of Deliverable Package

Conceptual OSIM2 Simulation Process

