Matemática Discreta

Relações (Ordenação)

Felipe Augusto Lima Reis

felipe.reis@ifmg.edu.br

- Ordenação Parcial
- Diagrama de Hasse
- 3 Ordenação Topológica
- 4 PERT/CPM

•000000000000

- Definição: Uma relação binária R em um conjunto S é denominada ordenação parcial se for reflexiva, antissimétrica e transitiva
 - Um conjunto S com uma ordenação parcial R é chamado de conjunto parcialmente ordenado ou poset;
 - Esse conjunto é denotado por (S, R);
 - Elementos do conjunto s\(\tilde{a}\) o chamados de elementos do poset
 [Rosen, 2019] [Gersting, 2014].

- Ordenações parciais em conjuntos (posets) representam diferentes operações:
 - • ≤, para relação de menor ou igual;
 - ⊆, para relação de subconjunto;
 - |, para relação de divisor (divide)¹.
- De forma genérica, podemos utilizar a representação (S, \preceq) para denotar ordenações parciais [Rosen, 2019] [Gersting, 2014] [da Silva, 2012]
 - O símbolo ≤ é utilizado para denotar qualquer relação;
 - A notação $a \leq b$ denota que $(a, b) \in R$ em um poset (S, R) arbitrário.

¹Se a|b, a é divisor de b.

O símbolo \preceq é chamado, matematicamente, de "precede ou igual", enquanto \prec é chamado de "precede".

- Mostre que a relação "maior ou igual a" (≥) é uma ordenação parcial sobre o conjunto dos inteiros.
 - Reflexiva?
 - $a \ge a, \forall a \in \mathbb{Z}$. Logo, R é reflexiva.
 - Antissimétrica?
 - $a \ge b \land b \ge a$ se, e somente se, a = b, $\forall a \forall b \in \mathbb{Z}$. Logo, R é antissimétrica.
 - Transitiva?
 - Temos a ≥ b ∧ b ≥ c ∴ a ≥ c, ∀a∀b∀c ∈ Z. Logo, R é transitiva.
 - Como a relação R é reflexiva, antissimétrica e transitiva, logo é uma ordenação parcial.

- Mostre que a relação "maior ou igual a" (≥) é uma ordenação parcial sobre o conjunto dos inteiros.
 - Reflexiva?
 - $a \ge a, \forall a \in \mathbb{Z}$. Logo, R é reflexiva.
 - Antissimétrica?
 - $a \ge b \land b \ge a$ se, e somente se, a = b, $\forall a \forall b \in \mathbb{Z}$. Logo, $R \notin antissimétrica$.
 - Transitiva?
 - Temos $a \geq b \land b \geq c :: a \geq c, \forall a \forall b \forall c \in \mathbb{Z}$. Logo, R é transitiva.
 - Como a relação R é reflexiva, antissimétrica e transitiva, logo é uma ordenação parcial.

- Mostre que a relação "maior ou igual a" (≥) é uma ordenação parcial sobre o conjunto dos inteiros.
 - Reflexiva?
 - $a \ge a, \forall a \in \mathbb{Z}$. Logo, R é reflexiva.
 - Antissimétrica?
 - $a \ge b \land b \ge a$ se, e somente se, $a = b, \ \forall a \forall b \in \mathbb{Z}$. Logo, R é antissimétrica.
 - Transitiva?
 - Temos $a \geq b \land b \geq c :: a \geq c, \forall a \forall b \forall c \in \mathbb{Z}$. Logo, R é transitiva.
 - Como a relação R é reflexiva, antissimétrica e transitiva, logo é uma ordenação parcial.

- Mostre que a relação "maior ou igual a" (≥) é uma ordenação parcial sobre o conjunto dos inteiros.
 - Reflexiva?
 - $a \ge a, \forall a \in \mathbb{Z}$. Logo, R é reflexiva.
 - Antissimétrica?
 - $a \ge b \land b \ge a$ se, e somente se, $a = b, \ \forall a \forall b \in \mathbb{Z}$. Logo, R é antissimétrica.
 - Transitiva?
 - Temos $a \geq b \land b \geq c$ \therefore $a \geq c$, $\forall a \forall b \forall c \in \mathbb{Z}$. Logo, R é transitiva.
 - Como a relação R é reflexiva, antissimétrica e transitiva, logo é uma ordenação parcial.

- Mostre que a relação "maior ou igual a" (≥) é uma ordenação parcial sobre o conjunto dos inteiros.
 - Reflexiva?
 - $a \ge a, \forall a \in \mathbb{Z}$. Logo, R é reflexiva.
 - Antissimétrica?
 - $a \ge b \land b \ge a$ se, e somente se, $a = b, \ \forall a \forall b \in \mathbb{Z}$. Logo, R é antissimétrica.
 - Transitiva?
 - Temos $a \geq b \land b \geq c$ \therefore $a \geq c$, $\forall a \forall b \forall c \in \mathbb{Z}$. Logo, R é transitiva.
 - Como a relação R é reflexiva, antissimétrica e transitiva, logo é uma ordenação parcial.

- Mostre que a relação "x divide y" (|) é uma ordenação parcial sobre o conjunto dos inteiros positivos.
 - Reflexiva?
 - $a|a, \forall a \in \mathbb{Z}^+$. Logo, R é reflexiva
 - Antissimétrica?
 - $a|b \wedge b|a$ se, e somente se, a = b, $\forall a \forall b \in \mathbb{Z}^+$. Logo, $R \in antissimétrica$.
 - Transitiva?
 - Temos $a|b \wedge b|c$:. a|c, $\forall a \forall b \forall c \in \mathbb{Z}^+$. Logo, R é transitiva
 - Como a relação R é reflexiva, antissimétrica e transitiva, logo é uma ordenação parcial.

- Mostre que a relação "x divide y" (|) é uma ordenação parcial sobre o conjunto dos inteiros positivos.
 - Reflexiva?
 - $a|a, \forall a \in \mathbb{Z}^+$. Logo, R é reflexiva.
 - Antissimétrica?
 - $a|b \wedge b|a$ se, e somente se, a = b, $\forall a \forall b \in \mathbb{Z}^+$. Logo, $R \in antissimétrica$.
 - Transitiva?
 - Temos $a|b \wedge b|c$: a|c, $\forall a \forall b \forall c \in \mathbb{Z}^+$. Logo, R é transitiva.
 - Como a relação *R* é reflexiva, antissimétrica e transitiva, logo é uma ordenação parcial.

7 / 41

- Mostre que a relação "x divide y" (|) é uma ordenação parcial sobre o conjunto dos inteiros positivos.
 - Reflexiva?
 - $a|a, \forall a \in \mathbb{Z}^+$. Logo, R é reflexiva.
 - Antissimétrica?
 - $a|b \wedge b|a$ se, e somente se, $a=b, \ \forall a \forall b \in \mathbb{Z}^+$. Logo, R é antissimétrica.
 - Transitiva?
 - Temos $a|b \wedge b|c$:. a|c, $\forall a \forall b \forall c \in \mathbb{Z}^+$. Logo, R é transitiva.
 - Como a relação R é reflexiva, antissimétrica e transitiva, logo é uma ordenação parcial.

- Mostre que a relação "x divide y" (|) é uma ordenação parcial sobre o conjunto dos inteiros positivos.
 - Reflexiva?
 - $a|a, \forall a \in \mathbb{Z}^+$. Logo, R é reflexiva.
 - Antissimétrica?
 - $a|b \wedge b|a$ se, e somente se, $a=b, \ \forall a \forall b \in \mathbb{Z}^+$. Logo, R é antissimétrica.
 - Transitiva?
 - Temos $a|b \wedge b|c$: a|c, $\forall a \forall b \forall c \in \mathbb{Z}^+$. Logo, R é transitiva.
 - Como a relação *R* é reflexiva, antissimétrica e transitiva, logo é uma ordenação parcial.

- Mostre que a relação "x divide y" (|) é uma ordenação parcial sobre o conjunto dos inteiros positivos.
 - Reflexiva?
 - $a|a, \forall a \in \mathbb{Z}^+$. Logo, R é reflexiva.
 - Antissimétrica?
 - $a|b \wedge b|a$ se, e somente se, $a=b, \ \forall a \forall b \in \mathbb{Z}^+$. Logo, R é antissimétrica.
 - Transitiva?
 - Temos $a|b \wedge b|c$: a|c, $\forall a \forall b \forall c \in \mathbb{Z}^+$. Logo, R é transitiva.
 - Como a relação R é reflexiva, antissimétrica e transitiva, logo é uma ordenação parcial.

- Definição: Se (S, \leq) é um *poset* parcialmente ordenado e $x \prec y$, então temos que x = y ou $x \neq y$.
 - Se $x \neq y$, então $x \prec y$:
 - O elemento x é denominado predecessor e y, sucessor;
 - Se $x \prec y$ e não existe nenhum valor z onde $x \prec z \prec y$, então x é predecessor imediato de y [Gersting, 2014].

Ordenação Parcial

- Definição: Se (S, \preceq) é um *poset* parcialmente ordenado e $x \preceq y$, então temos que x = y ou $x \neq y$.
 - Se $x \neq y$, então $x \prec y$;
 - O elemento *x* é denominado predecessor e *y*, sucessor;
 - Se $x \prec y$ e não existe nenhum valor z onde $x \prec z \prec y$, então x é predecessor imediato de y [Gersting, 2014].
- Exemplo (Adaptado de [Gersting, 2014])
 - Seja $S = \{1, 2, 3, 6, 12, 18\}$ e R a relação "x divide y". Indique os predecessores e o predecessor imediato de 6.
 - Predecessores: 1. 2. 3.
 - Predecessor imediato: 3.

- Definição: Se (S, \preceq) é um *poset* parcialmente ordenado e $x \preceq y$, então temos que x = y ou $x \neq y$.
 - Se $x \neq y$, então $x \prec y$;
 - O elemento *x* é denominado predecessor e *y*, sucessor;
 - Se $x \prec y$ e não existe nenhum valor z onde $x \prec z \prec y$, então x é predecessor imediato de y [Gersting, 2014].
- Exemplo (Adaptado de [Gersting, 2014])
 - Seja $S = \{1, 2, 3, 6, 12, 18\}$ e R a relação "x divide y". Indique os predecessores e o predecessor imediato de 6.
 - Predecessores: 1, 2, 3.
 - Predecessor imediato: 3

- Definição: Se (S, \preceq) é um *poset* parcialmente ordenado e $x \preceq y$, então temos que x = y ou $x \neq y$.
 - Se $x \neq y$, então $x \prec y$;
 - O elemento *x* é denominado predecessor e *y*, sucessor;
 - Se $x \prec y$ e não existe nenhum valor z onde $x \prec z \prec y$, então x é predecessor imediato de y [Gersting, 2014].
- Exemplo (Adaptado de [Gersting, 2014])
 - Seja $S = \{1, 2, 3, 6, 12, 18\}$ e R a relação "x divide y". Indique os predecessores e o predecessor imediato de 6.
 - Predecessores: 1, 2, 3.
 - Predecessor imediato: 3.

Elementos Comparáveis e Incomparáveis

- Definição (Elementos Comparáveis): Os elementos a e b de um poset (S, \preceq) são chamados de comparáveis se $a \preceq b$ ou $b \preceq a$.
- Definição (Elementos Incomparáveis): Os elementos a e b de um conjunto S são chamados de <u>in</u>comparáveis se a ≠ b e b ≠ a.

- Exemplo 1 (Adaptado de [Rosen, 2019]):
 - Considere um *poset* $(\mathbb{Z}^+, |)$ com os elementos 3 e 9. Esses elementos são comparáveis?
 - Como 3 é divisor de 9, então 3 e 9 são elementos comparáveis;
 - Considere um poset $(\mathbb{Z}^+, ||)$ com os elementos 5 e 7. Esses elementos são comparáveis?
 - Como 5 não é divisor de 7, nem 7 é divisor de 5, então 5 e 7 não são comparáveis.
 - Exemplo 2
 - Considere um poset ({1,3,5,7,9},|). Quais elementos são comparáveis?
 - 1 e 3. 1 e 5. 1 e 7. 1 e 9. e 3 e 9

- Exemplo 1 (Adaptado de [Rosen, 2019]):
 - Considere um *poset* $(\mathbb{Z}^+, |)$ com os elementos 3 e 9. Esses elementos são comparáveis?
 - Como 3 é divisor de 9, então 3 e 9 são elementos comparáveis;
 - Considere um poset (Z⁺, |) com os elementos 5 e 7. Esses elementos são comparáveis?
 - Como 5 não é divisor de 7, nem 7 é divisor de 5, então 5 e 7 não são comparáveis.
 - Exemplo 2
 - Considere um *poset* ({1,3,5,7,9},|). Quais elementos são comparáveis?
 - 1 e 3. 1 e 5. 1 e 7. 1 e 9. e 3 e 9

- Exemplo 1 (Adaptado de [Rosen, 2019]):
 - Considere um poset $(\mathbb{Z}^+, |)$ com os elementos 3 e 9. Esses elementos são comparáveis?
 - Como 3 é divisor de 9, então 3 e 9 são elementos comparáveis;
 - Considere um poset $(\mathbb{Z}^+, |)$ com os elementos 5 e 7. Esses elementos são comparáveis?
 - Como 5 não é divisor de 7, nem 7 é divisor de 5, então 5 e 7 não são comparáveis.
 - Exemplo 2
 - Considere um poset ({1,3,5,7,9},|). Quais elementos são comparáveis?
 - 1 e 3 1 e 5 1 e 7 1 e 9 e 3 e 9

- Exemplo 1 (Adaptado de [Rosen, 2019]):
 - Considere um poset $(\mathbb{Z}^+, |)$ com os elementos 3 e 9. Esses elementos são comparáveis?
 - Como 3 é divisor de 9, então 3 e 9 são elementos comparáveis;
 - Considere um *poset* $(\mathbb{Z}^+, |)$ com os elementos 5 e 7. Esses elementos são comparáveis?
 - Como 5 não é divisor de 7, nem 7 é divisor de 5, então 5 e 7 não são comparáveis.
- Exemplo 2:
 - Considere um poset ({1,3,5,7,9},|). Quais elementos são comparáveis?

- Exemplo 1 (Adaptado de [Rosen, 2019]):
 - Considere um poset $(\mathbb{Z}^+, |)$ com os elementos 3 e 9. Esses elementos são comparáveis?
 - Como 3 é divisor de 9, então 3 e 9 são elementos comparáveis;
 - Considere um poset $(\mathbb{Z}^+, |)$ com os elementos 5 e 7. Esses elementos são comparáveis?
 - Como 5 não é divisor de 7, nem 7 é divisor de 5, então 5 e 7 não são comparáveis.
- Exemplo 2:
 - Considere um poset ({1,3,5,7,9},|). Quais elementos são comparáveis?
 - 1 e 3, 1 e 5, 1 e 7, 1 e 9, e 3 e 9.

Ordenação Topológica

Ordenação Total²

- Definição: Se (S, \preceq) é um *poset* e cada dois elementos de S são comparáveis, então S é chamado de conjunto totalmente ordenado e \preceq é chamado de ordenação total [Rosen, 2019]
 - Um conjunto totalmente ordenado é também denominado cadeia.
- Exemplo [Rosen, 2019]
 - Considere um poset (\mathbb{Z}^+, \leq). Esse poset é totalmente ordenado?
 - ullet Sim, pois temos $a \leq b$ ou $b \leq a$ para quaisquer $a,b \in \mathbb{Z}^+$

² Também denominado Ordenação Linear.

Ordenação Total²

- Definição: Se (S, \preceq) é um *poset* e cada dois elementos de Ssão comparáveis, então S é chamado de conjunto totalmente ordenado e ≤ é chamado de ordenação total [Rosen, 2019]
 - Um conjunto totalmente ordenado é também denominado cadeia.
- Exemplo [Rosen, 2019]
 - Considere um poset (\mathbb{Z}^+, \leq). Esse poset é totalmente ordenado?

² Também denominado Ordenação Linear.

Ordenação Total²

Ordenação Parcial

- Definição: Se (S, \leq) é um *poset* e cada dois elementos de S são comparáveis, então S é chamado de conjunto totalmente ordenado e \leq é chamado de ordenação total [Rosen, 2019]
 - Um conjunto totalmente ordenado é também denominado cadeia.
- Exemplo [Rosen, 2019]
 - Considere um poset (Z⁺, ≤). Esse poset é totalmente ordenado?
 - Sim, pois temos $a \leq b$ ou $b \leq a$ para quaisquer $a, b \in \mathbb{Z}^+$.

² Também denominado Ordenação Linear.

Ordenação Parcial e Ordenação Total

- Ordenação Parcial e Ordenação Total estão ligadas ao conceito de comparabilidade
 - Se cada dois pares de elementos puderem ser comparados, a relação é chamada de ordenação total;
 - Se somente alguns pares de elementos puderem ser comparados, então a relação é chamada de ordenação parcial [Rosen, 2019].

- Definição: Se (S, \preceq) é um conjunto bem ordenado se for um poset tal que \preceq seja totalmente ordenado e todo subconjunto não vazio de S tenha um elemento mínimo [Rosen, 2019].
- Exemplo 1 (Adaptado de [Rosen, 2019])
 - Considere o produto cartesiano de dois posets (Z⁺, ≤). O poset resultante é bem ordenado?
 - Se $(a_1, a_2, ..., a_n) \preceq (b_1, b_2, ..., b_n)$, onde $a_1 \leq b_1, ..., a_n \leq b_n$ então (\mathbb{Z}^+, \leq) é bem ordenado.
- Exemplo 2 (Adaptado de [Rosen, 2019])
 - Considere o produto cartesiano de dois posets (Z, ≤). O poset resultante é bem ordenado?
 - Não, pois Z não possui um elemento mínimo.

- Definição: Se (S, \preceq) é um conjunto bem ordenado se for um poset tal que \preceq seja totalmente ordenado e todo subconjunto não vazio de S tenha um elemento mínimo [Rosen, 2019].
- Exemplo 1 (Adaptado de [Rosen, 2019])
 - Considere o produto cartesiano de dois posets (Z⁺, ≤). O poset resultante é bem ordenado?
 - Se $(a_1, a_2, ..., a_n) \leq (b_1, b_2, ..., b_n)$, onde $a_1 \leq b_1, ..., a_n \leq b_n$ então (\mathbb{Z}^+, \leq) é bem ordenado.
- Exemplo 2 (Adaptado de [Rosen, 2019])
 - Considere o produto cartesiano de dois posets (Z, ≤). O poset resultante é bem ordenado?
 - Não, pois Z não possui um elemento mínimo.

- Definição: Se (S, \preceq) é um conjunto bem ordenado se for um poset tal que \preceq seja totalmente ordenado e todo subconjunto não vazio de S tenha um elemento mínimo [Rosen, 2019].
- Exemplo 1 (Adaptado de [Rosen, 2019])
 - Considere o produto cartesiano de dois posets (Z⁺, ≤). O poset resultante é bem ordenado?
 - Se $(a_1, a_2, ..., a_n) \leq (b_1, b_2, ..., b_n)$, onde $a_1 \leq b_1, ..., a_n \leq b_n$ então (\mathbb{Z}^+, \leq) é bem ordenado.
- Exemplo 2 (Adaptado de [Rosen, 2019])
 - Considere o produto cartesiano de dois *posets* (\mathbb{Z} , \leq). O *poset* resultante é bem ordenado?
 - Não, pois Z não possui um elemento mínimo.

- Definição: Se (S, \leq) é um conjunto bem ordenado se for um poset tal que ≤ seja totalmente ordenado e todo subconjunto não vazio de S tenha um elemento mínimo [Rosen, 2019].
- Exemplo 1 (Adaptado de [Rosen, 2019])
 - Considere o produto cartesiano de dois *posets* (\mathbb{Z}^+, \leq). O poset resultante é bem ordenado?
 - Se $(a_1, a_2, ..., a_n) \prec (b_1, b_2, ..., b_n)$, onde $a_1 < b_1, ..., a_n < b_n$ então (\mathbb{Z}^+ , <) é bem ordenado.
- Exemplo 2 (Adaptado de [Rosen, 2019])
 - Considere o produto cartesiano de dois posets (\mathbb{Z}, \leq) . O poset resultante é bem ordenado?

- Definição: Se (S, \preceq) é um conjunto bem ordenado se for um poset tal que \preceq seja totalmente ordenado e todo subconjunto não vazio de S tenha um elemento mínimo [Rosen, 2019].
- Exemplo 1 (Adaptado de [Rosen, 2019])
 - Considere o produto cartesiano de dois posets (Z⁺, ≤). O poset resultante é bem ordenado?
 - Se $(a_1, a_2, ..., a_n) \leq (b_1, b_2, ..., b_n)$, onde $a_1 \leq b_1, ..., a_n \leq b_n$ então (\mathbb{Z}^+, \leq) é bem ordenado.
- Exemplo 2 (Adaptado de [Rosen, 2019])
 - Considere o produto cartesiano de dois *posets* (\mathbb{Z} , \leq). O *poset* resultante é bem ordenado?
 - ullet Não, pois $\mathbb Z$ não possui um elemento mínimo.

Ordenação Lexicográfica

- Definição: A ordenação lexicográfica é definida como o produto cartesiano de *n posets* (A_1, \leq_1) , ..., (A_n, \leq_n) . A ordenação parcial \leq de $A_1 \times A_2 \times ... \times A_n$ é dada por $(a_1, a_2, ..., a_n) \prec (b_1, b_2, ..., b_n)$ [Rosen, 2019]
 - Na ordenação, temos que $a_1 \prec b_1$ ou $a_1 = b_1 \land a_2 \prec b_2$ ou $a_1 = b_1 \land a_2 = b_2 \land a_3 \prec b_3 \land ...;$
 - Ordenação lexicográfica é a mesma presente no dicionário e pode ser utilizada para ordenar *strings*.

Ordenação Lexicográfica

• Exemplo 1:

- Considere um conjunto formado por letras do alfabeto. Defina a ordenação lexicográfica das seguintes palavras: alfa, beta, gama, delta.
 - alfa ≺ beta ≺ delta ≺ gama.

Exemplo 2:

- Considere um conjunto formado por letras do alfabeto. Defina a ordenação lexicográfica das seguintes palavras: *matemática*, *discreta*, *matemáticamente*, *matemático*.
 - discreta ≺ matemática ≺ matematicamente ≺ matemático.

Ordenação Lexicográfica

- Exemplo 3 ([Rosen, 2019]):
 - Considere os pares ordenados em $\mathbb{Z}^+ \times \mathbb{Z}^+$ menores que (3,4) em ordem lexicográfica.

Ordenação Parcial

DIAGRAMA DE HASSE

Diagrama de Hasse

- O Diagrama de Hasse permite a representação visual de um conjunto (S, ≤) finito e parcialmente ordenado [Gersting, 2014]
 - Utiliza-se um grafo para representação do Diagrama de Hasse;
 - ullet Cada elemento de S é representado por um nó no diagrama;
 - As arestas correspondem às relações entre elementos³.
 - Se x é predecessor imediato de y, então y é desenhado acima de x;
 - Se x é predecessor imediato de y, então x e y são ligados por um arco [Gersting, 2014];

³Conforme detalhado na sequência, arestas no Diagrama de Hasse possuem requisitos extras em relação a arestas comuns em grafos.

Diagrama de Hasse

- Um Diagrama de Hasse pode ser criado a partir da criação de um dígrafo (grafo direcionado);
- Após a criação do dígrafo, reordena-se os vértices, elimina-se laços (loops) e a direção dos arcos (arestas);

Algoritmo ConstroiDiagramaHasse(R)

- 1: Desenhe o dígrafo G da relação R
- 2: *G*′ ← *G*
- 3: Elimine de G' todos os laços
- 4: Elimine de G' todos os arcos que existem devido à transitividade
- 5: Rearranje cada arco (i,j) de G' tal que o nó i esteja abaixo do nó j
- 6: Elimine a direção dos arcos de G'
- 7: return G'

Fonte: [da Silva, 2012]

Diagrama de Hasse - Exemplo [Rosen, 2019]

- Suponha um grafo direcionado para a ordenação parcial $\{(a,b)|a\leq b\}$ no conjunto $\{1,2,3,4\}$.
 - Para a ordenação parcial, teremos os seguintes valores:
 (1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4);
 - O processo abaixo detalha a transformação do dígrafo em um Diagrama de Hasse.

Fonte: [Rosen, 2019]

Diagrama de Hasse - Exemplo [da Silva, 2012]

- Seja o conjunto parcialmente ordenado ($P(\{1,2\}),\subseteq$). Defina o Diagrama de Hasse.
 - $P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$
 - Pares ordenados da relação: (\emptyset,\emptyset) , $(\{1\},\{1\})$, $(\{2\},\{2\})$, $(\{1,2\},\{1,2\})$, $(\emptyset,\{1\})$, $(\emptyset,\{2\})$, $(\emptyset,\{1,2\})$, $(\{1\},\{1,2\})$, $(\{2\},\{1,2\})$.

Fonte: [da Silva, 2012]

Elementos Maximal e Minimal

- Definição: Um elemento em um *poset* é denominado maximal se não existe nenhum outro elemento maior no *poset*
 - Em um poset (S, \preceq) , um elemento a é maximal se não existe nenhum elemento $b \in S$ tal que $a \prec b$ [Rosen, 2019];
 - Esse elemento não possui sucessores no poset [da Silva, 2012];
- Definição: Um elemento em um poset é denominado minimal se não existe nenhum outro elemento menor no poset
 - Em um poset (S, \leq) , um elemento a é minimal se não existe nenhum elemento $b \in S$ tal que $b \prec a$ [Rosen, 2019].
 - Esse elemento n\u00e3o possui predecessores no poset [da Silva, 2012];

Elementos Maximal e Minimal

- Elementos maximais e minimais podem ser identificados no Diagrama de Hasse
 - Elementos minimais estão na "parte de baixo" e elementos maximais, na "parte de cima" do diagrama [da Silva, 2012].
- Exemplo 1 ([da Silva, 2012])
 - Considere um *poset* ({2, 4, 5, 10, 12, 20, 25}, |). Quais os elementos maximais e minimais?.

• Maximais: 12, 20 e 25

• Minimais: 2 e 5.

Fonte: [da Silva, 2012]

Elementos Máximos e Mínimos

- Definição: Um elemento em um poset é denominado máximo⁴ se é maior que todos os demais (e único)
 - Em um poset (S, \leq) , um elemento a é máximo se não existe nenhum elemento $a \leq b$, $\forall b \in S$ [Rosen, 2019];
- Definição: Um elemento em um poset é denominado mínimo⁵ se é menor que todos os demais (e único)
 - Em um poset (S, \preceq) , um elemento a é mínimo se não existe nenhum elemento $b \preceq a$, $\forall b \in S$ [Rosen, 2019];

⁴Um elemento máximo também podem ser denominado "maior elemento".

 $^{^5 \}mathrm{Um}$ elemento mínimo também podem ser denominado "menor elemento".

Elementos Máximos e Mínimos

- Elementos máximos e mínimos são únicos, e podem ser identificados no Diagrama de Hasse
 - Nem todos os posets contém máximos e mínimos.

Ordenação Topológica⁶

⁶Também pode ser definida como "Linearização de Ordenação Parcial" ou "Linearização de Ordem Parcial".

- Ordenação Topológica é utilizada para ordenar atividades que possuem como pré-requisitos outras atividades⁷
 - Está relacionada ao conceito de dependência entre atividades (ou recursos, processos, etc.);
- Exemplo: (Adaptado de [Rosen, 2019])
 - Suponha um projeto composto de n tarefas;
 - Algumas tarefas possuem como pré-requisito a finalização de outras tarefas;
 - Como calcular o tempo necessário para que uma tarefa b, dependente de uma tarefa a, seja finalizada?
 - Podemos estabelecer uma ordem parcial de modo que a
 sse a e b sejam tarefas em que b não pode ser iniciada até que a tenha sido concluída.

⁷Ordenação Topológica pode ser aplicada a outras tarefas que possam ser mapeadas nessas atividades.

- Ordenação Topológica é utilizada para ordenar atividades que possuem como pré-requisitos outras atividades⁷
 - Está relacionada ao conceito de dependência entre atividades (ou recursos, processos, etc.);
- Exemplo: (Adaptado de [Rosen, 2019])
 - Suponha um projeto composto de *n* tarefas;
 - Algumas tarefas possuem como pré-requisito a finalização de outras tarefas;
 - Como calcular o tempo necessário para que uma tarefa b, dependente de uma tarefa a, seja finalizada?
 - Podemos estabelecer uma ordem parcial de modo que a
 sse a e b sejam tarefas em que b não pode ser iniciada até que a tenha sido concluída.

⁷Ordenação Topológica pode ser aplicada a outras tarefas que possam ser mapeadas nessas atividades.

- Ordenação Topológica é utilizada para ordenar atividades que possuem como pré-requisitos outras atividades⁷
 - Está relacionada ao conceito de dependência entre atividades (ou recursos, processos, etc.);
- Exemplo: (Adaptado de [Rosen, 2019])
 - Suponha um projeto composto de *n* tarefas;
 - Algumas tarefas possuem como pré-requisito a finalização de outras tarefas;
 - Como calcular o tempo necessário para que uma tarefa b, dependente de uma tarefa a, seja finalizada?
 - Podemos estabelecer uma ordem parcial de modo que a ≺ b sse a e b sejam tarefas em que b não pode ser iniciada até que a tenha sido concluída.

⁷Ordenação Topológica pode ser aplicada a outras tarefas que possam ser mapeadas nessas atividades.

- Definição: Uma ordenação total \leq é considerada compatível com uma ordenação parcial R se $a \leq b$ sempre que aRb.
 - A construção de uma ordenação total compatível a partir de uma ordenação parcial é chamada de ordenação topológica [Rosen, 2019].
- Definição Informal: O processo de ordenação topológica corresponde à obtenção de uma ordenação total que é a extensão de uma ordenação parcial, onde: [da Silva, 2012]

$$x_1 \prec x_2 \prec x_3 \prec \ldots \prec x_{n-1} \prec x_n$$

- Lema: Cada *poset* (S, \leq) finito não vazio tem pelo menos um elemento minimal [Rosen, 2019].
 - Prova:
 - **1** Escolha um elemento a_0 de S;
 - ② Se a_0 , não é mínimo, escolher a_1 , onde $a_1 \prec a_0$;
 - Se a₁ não for mínimo, seguir sucessivamente, escolhendo elementos a_k menores que o elemento atual;
 - Ocomo o conjunto é finito, o processo irá terminar com algum elemento mínimo an.

- Lema: Cada *poset* (S, \leq) finito não vazio tem pelo menos um elemento minimal [Rosen, 2019].
 - Prova:
 - Escolha um elemento a_0 de S;
 - **2** Se a_0 , não é mínimo, escolher a_1 , onde $a_1 \prec a_0$;
 - Se a₁ não for mínimo, seguir sucessivamente, escolhendo elementos a_k menores que o elemento atual;
 - Como o conjunto é finito, o processo irá terminar com algum elemento mínimo an.

30 / 41

- A partir do lema anterior, é possível realizar a ordenação topológica para qualquer conjunto finito
 - Podemos obter o menor elemento de conjunto S e, em seguida, retirá-lo do conjunto;
 - O elemento pode ser adicionado sequencialmente a uma lista ordenada T;
 - Para o subconjunto restante, realizamos o mesmo procedimento (obter elemento mínimo e retirá-lo do conjunto);
 - O procedimento deve ser repetido até que o conjunto S esteja vazio.

Obs.2: Métodos de ordenação de elementos serão estudados nas disciplinas de Estrutura de Dados.

Obs.1: Existem algoritmos mais eficientes que o método descrito acima.

- Exemplo 1: [Rosen, 2019]
 - Considere o projeto abaixo, detalhado em um Diagrama de Hasse e que requer execução de 7 tarefas;
 - Algumas etapas somente podem ser executadas após a finalização de outras;
 - Encontre uma ordem em que essas tarefas possam ser realizadas para conclusão do projeto.

31 / 41

- Exemplo 1: [Rosen, 2019]
 - Para solução do problema, podemos considerar que as tarefas serão executadas por uma única pessoa;
 - Uma das múltiplas soluções possíveis para o problema é:

$$A \prec C \prec B \prec E \prec F \prec D \prec G$$

Fonte: [Rosen, 2019]

MÉTODO PERT/CPM SIMPLIFICADO

- Exemplo 1: Adaptado de [Gersting, 2014]
 - Considere um problema de agendamento de tarefas, para construção de uma cadeira de balanço;
 - A lista de atividades está detalhada abaixo.

ID	Atividade	Dep.	Hrs.
A	Seleção da madeira	-	3
В	Entalhamento dos arcos	Α	4
C	Entalhamento do assento	Α	6
D	Entalhamento do encosto	Α	7
E	Entalhamento dos braços	Α	3
F	Escolha do tecido	-	1
G	Costura da almofada	F	2
Н	Montagem: assento e encosto	C;D	2
1	Fixação dos braços	E;H	2
J	Fixação dos arcos	В;Н	3
K	Verniz	I;J	5
L	Instalação almofada	G;K	0.5

• A partir da tabela, podemos gerar o seguinte diagrama:

Fonte: Próprio autor

- Podemos calcular o tempo mínimo para execução da atividade;
 - Para isso, caminha-se da esquerda para direita no diagrama;
 - Supõe-se que todas as tarefas predecessoras de uma tarefa i devam ser previamente concluídas;
 - Para definir o tempo mínimo até uma tarefa i, adiciona-se o tempo máximo das atividades predecessoras;

- Podemos definir a seguinte notação: [Nogueira, 2010]
 - EF: Tempo Final Mais Cedo (Earliest Finish);
 - *i*: atividade atual (que está sendo analisada);
 - *j*: atividade precedente que está sendo analisada;
 - ρ_i : conjunto de atividades precedentes à atividade i;
 - D: duração da atividade.

- Fórmula de cálculo para caminho mínimo:
 - Tempo final mais cedo (EF): corresponde ao maior valor EF_j das atividades precedentes j

$$EF_i = \max_{j \in \rho_i} (EF_j) + D_i$$

 A partir do cálculo dos tempos mínimos de cada atividade, temos:

Fonte: Próprio autor

0000000

 Para definição do caminho crítico, voltamos da direita para esquerda, recuperando o valor <u>máximo</u> das atividades precedentes.

Fonte: Próprio autor

Referências I

da Silva, D. M. (2012).

Gersting, J. L. (2014).

Slides de aula

Mathematical Structures for Computer Science.

W. H. Freeman and Company, 7 edition.

Levin, O. (2019).

Discrete Mathematics - An Open Introduction.

University of Northern Colorado, 7 edition.
[Online] Disponível em http://discrete.openmathbooks.org/dmoi3.html.

Nogueira, F. (2010).

Pert/cpm - notas de aulas.

[Online]; acessado em 11 de Fevereiro de 2021. Disponível em: https://www.ufjf.br/epd015/files/2010/06/PERT_CPM1.pdf.

Rosen, K. H. (2019).

Discrete Mathematics and Its Applications.

McGraw-Hill, 8 edition.