

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 19 martie 2016

SOLUŢII ŞI BAREME ORIENTATIVE - CLASA a VII-a

Problema 1. Determinați numerele naturale nenule x și y care verifică relația

$$x + y = \sqrt{x} + \sqrt{y} + \sqrt{xy}.$$

Gazeta Matematică

Soluția 1.

Scriind egalitatea sub forma $(x+y)-\sqrt{x}=\sqrt{xy}+\sqrt{y}$ şi ridicând la pătrat, obţinem $x^2+xy+y^2+x-y=2\,(2y+x)\,\sqrt{x}$. Cum $2y+x\neq 0$, rezultă că $\sqrt{x}\in\mathbb{Q}$, deci x este pătrat perfect. Similar, y este pătrat perfect $2\mathbf{p}$ Notând $\sqrt{x}=a$ şi $\sqrt{y}=b$, egalitatea $a^2+b^2=ab+a+b$ conduce la $(a-b)^2+(a-1)^2+(b-1)^2=2$ $3\mathbf{p}$ Obţinem $(a,b)\in\{(1,2),(2,1),(2,2)\}$, pentru care $(x,y)\in\{(1,4);(4,1);(4,4)\}$ $2\mathbf{p}$

Soluţia 2.

Problema 2. Se consideră mulțimea

$$M = \left\{ \; x_1 + 2x_2 + 3x_3 + \ldots + 2015 x_{2015} \; | \; x_1, x_2, \ldots, x_{2015} \in \left\{ -2, 3 \right\} \; \right\}.$$

Arătați că 2015 $\in M$ și 2016 $\notin M$.

Solutie.

Problema 3. Se consideră triunghiul dreptunghic isoscel ABC cu $m(\widehat{BAC}) = 90^{\circ}$. Pe dreapta perpendiculară în B pe BC se consideră punctul D astfel încât AD = BC. Determinați măsura unghiului \widehat{BAD} .

Soluţia 1.

Cazul 1. D și A sunt în semiplane diferite determinate de dreapta BC.

Notând $\{E\}=AC\cap DB$, rezultă că $\widehat{m(ABE)}=45^\circ$, deci $[BA]$ este bisectoare și înălțime în triunghiul BEC . Ca urmare, $[AE]\equiv [AC]$
urmare, $[AE] \equiv [AC]$
În triunghiul dreptunghic MAD , cateta $[AM]$ este jumătate din ipotenuza $[AD]$, deci $\widehat{m(ADB)} = 30^{\circ}$ 1p
Rezultă $m(\widehat{BAD}) = 180^{\circ} - m(\widehat{ADB}) - m(\widehat{ABD}) = 180^{\circ} - 30^{\circ} - 135^{\circ} = 15^{\circ}$ 1p
Cazul 2. D și A sunt în același semiplan determinat de dreapta BC .
Notând $\{E\}=AC\cap DB$, rezultă că $m(\widehat{ABE})=45^\circ$, deci $[BA]$ este bisectoare și înălțime în triunghiul BEC . Ca urmare, $[AE]\equiv [AC]$
urmare, $[AE] \equiv [AC]$
triunghiul dreptunghic MAD , cateta $[AM]$ este jumătate din ipotenuza $[AD]$, deci $\widehat{m(ADB)} = 30^{\circ}$ 1p
Rezultă $m(\widehat{BAD}) = 180^{\circ} - m(\widehat{ADB}) - m(\widehat{ABD}) = 180^{\circ} - 30^{\circ} - 45^{\circ} = 105^{\circ}$ 1p
Soluţia 2.
Soluția 2. Cazul 1. D și A sunt în semiplane diferite determinate de dreapta BC .
Cazul 1. D şi A sunt în semiplane diferite determinate de dreapta BC . Construind dreptunghiul $BCFD$, rezultă că $[AD] \equiv [BC] \equiv [DF]$
Cazul 1. D și A sunt în semiplane diferite determinate de dreapta BC .
Cazul 1. D şi A sunt în semiplane diferite determinate de dreapta BC . Construind dreptunghiul $BCFD$, rezultă că $[AD] \equiv [BC] \equiv [DF]$
Cazul 1. D şi A sunt în semiplane diferite determinate de dreapta BC . Construind dreptunghiul $BCFD$, rezultă că $[AD] \equiv [BC] \equiv [DF]$
Cazul 1. D şi A sunt în semiplane diferite determinate de dreapta BC . Construind dreptunghiul $BCFD$, rezultă că $[AD] \equiv [BC] \equiv [DF]$
Cazul 1. D şi A sunt în semiplane diferite determinate de dreapta BC . Construind dreptunghiul $BCFD$, rezultă că $[AD] \equiv [BC] \equiv [DF]$
Cazul 1. D şi A sunt în semiplane diferite determinate de dreapta BC . Construind dreptunghiul $BCFD$, rezultă că $[AD] \equiv [BC] \equiv [DF]$
Cazul 1. D şi A sunt în semiplane diferite determinate de dreapta BC . Construind dreptunghiul $BCFD$, rezultă că $[AD] \equiv [BC] \equiv [DF]$

Problema 4. Se consideră triunghiul ABC, cu $m(\widehat{A}) > 60^{\circ}$ și $m(\widehat{C}) > 30^{\circ}$. În semiplanul determinat de dreapta BC care nu conține punctul A, se consideră punctele D și E astfel încât $m(\widehat{ABE}) = m(\widehat{CBD}) = 90^{\circ}$ și $m(\widehat{BAE}) = m(\widehat{BCD}) = 60^{\circ}$. Se notează cu E și E mijloacele segmentelor E, respectiv E, iar cu E intersecția dreptelor E si E. Arătați că:

- a) $\Delta EBD \sim \Delta ABC$;
- b) $\Delta FGH \equiv \Delta ABC$.

Soluţie.

