

Angie K. Reyes
PyCon 2018

Identification of Colombian Bird species using Python

#### Introduction

- About me
- Why Python?
- Workshop goals

#### Content

- Dataset
- Processing data
- Extract of features
- Classification
- Results

#### **Background**

- LifeClef challenge
- Motivation
- The important things

Workshop

- Python & Notebook
- Practical exercise & showing

```
# function for process audio file
def process audio(dir audio):
           result = True
           clip features = list()
           mean features = list()
           # replace silence in noise to audio file
           new dir audio = dir audio.replace('.wav', ' sil.wav')
           if not os.path.isfile(new dir audio):
                      # create new file with silence
                      os.system( 'sox ' + dir audio + ' ' + new dir audio + ' silence 1 0.1 1% -1 0.1 1%' )
           if os.path.isfile(new dir audio):
                     (state, rate, signal) = downsampling(new dir audio, 16000)
           if state is True:
                      window = 5
                    # split the audit of Steepins (gme)t Cuchic Color Colo
                      if audio segments:
                                 # for each segment of audio
                                 for audio segment in audio segments:
                                 # extract mfcc features
                                            features = np.array(extractFeatures(rate, audio segment))
                                            features = np.asarray(features).reshape(-1)
                                            clip features.append(features)
                      else:
                                 result = False
           else:
                      print( 'Error when processing the file:', new dir audio)
                      result = False
           clip features = np.array(clip features)
           with warnings.catch warnings():
                      warnings.simplefilter("ignore", category=RuntimeWarning)
                     mean_features = np.mean(clip features, axis=0)
           return result, clip features, mean features
```

I'm a Systems and Computing Engineer

I'm 25 years old

TICS Girls 2016

PhD student in the Doctorate in Applied Science program at the Antonio Nariño University.

Back-End Development



- Support Vector Machine (SVM) for Magnetic Resonance Image classification.
- Development of a mobile app and web tool to support non-pharmacological therapies in Alzheimer's patients.
- Identification of bird species using audio feature extraction and SVM.
- Deep Learning for Plant Identification.
- Development and management of big data and machine learning projects (junior developer).
- Power grid modeling using Graph theory.
- Creation of a Smart Grid.



### Workshop goals

# "Desarrolle una pasión por el aprendizaje. Si lo hace, usted nunca dejará de crecer."

-Anthony J. D'Angelo.

### Workshop goals

## Introduction

#### MODERN DATA SCIENTIST

Data Scientist, the sexiest job of 21th century requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

#### MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modeling
- ☆ Experiment design
- ☆ Bayesian inference
- ☆ Supervised learning: decision trees,
- ☆ Unsupervised learning: clustering, dimensionality reduction
- ☆ Optimization: gradient descent and

#### DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Curious about data
- ☆ Influence without authority
- ☆ Hacker mindset
- ☆ Problem solver
- innovative and collaborative



#### **PROGRAMMING** & DATABASE

- ☆ Databases SOL and NoSOL
- ☆ Relational algebra
- Parallel databases and parallel query
- ☆ ManReduce concepts
- ☆ Hadoop and Hive/Pig
- ☆ Custom reducers

#### COMMUNICATION & VISUALIZATION

- ☆ Story telling skills
- ☆ Translate data-driven insights into
- ☆ Visual art design
- ☆ R packages like ggplot or lattice
- ☆ Knowledge of any of visualization tools e.g. Flare, D3.is, Tableau

#### MODERN DATA SCIENTIST

Data Scientist, the sexiest job of the 21th century, requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

#### MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modeling
- ☆ Experiment design
- ☆ Bayesian inference
- ☆ Supervised learning: decision trees, random forests, logistic regression
- ✿ Unsupervised learning: clustering, dimensionality reduction



#### **PROGRAMMING** & DATABASE

- ☆ Statistical computing packages, e.g., R.
- ☆ Databases: SOL and NoSOL
- Relational algebra
- ☆ ManReduce concents
- ☆ Hadoop and Hive/Pig
- ☆ Custom reducers
- ☆ Experience with xaaS like AWS

#### DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Curious about data
- ☆ Influence without authority
- ☆ Hacker mindset



#### COMMUNICATION & VISUALIZATION

- ☆ Story telling skills
- ☆ Translate data-driven insights into
- ☆ Visual art design
- A R packages like goplot or lattice
- ☆ Knowledge of any of visualization tools e.g. Flare, D3 js. Tableau

MarketingDistillery.com is a group of practitioners in the area of e-commerce marketing. Our fields of expertise include: marketing strategy and optimization: customer tracking and on-site analytics: predictive analytics and econometrics: data warehousing and big data systems: marketing channel insights in Paid Search, SEO, Social, CRM and brand.



MarketingDistillery.com is a group of practitioners in the area of e-commerce marketing. Our fields of expertise include: marketing strategy and optimization: customer tracking and on-site analytics: predictive analytics and econometrics: data warehousing and big data systems: marketing channel insights in Paid Search, SEO, Social, CRM and brand.



```
# function for process audio file
def process audio(dir audio):
           result = True
           clip features = list()
           mean features = list()
           # replace silence in noise to audio file
           new dir audio = dir audio.replace('.wav', ' sil.wav')
           if not os.path.isfile(new dir audio):
                      # create new file with silence
                      os.system( 'sox ' + dir audio + ' ' + new dir audio + ' silence 1 0.1 1% -1 0.1 1%' )
           if os.path.isfile(new dir audio):
                      (state, rate, signal) = downsampling(new dir audio, 16000)
           if state is True:
                      window = 5
                     # split the aud Bick (Care County Cou
                      min step = 1
                      if audio segments:
                                 # for each segment of audio
                                 for audio segment in audio segments:
                                 # extract mfcc features
                                            features = np.array(extractFeatures(rate, audio segment))
                                            features = np.asarray(features).reshape(-1)
                                            clip features.append(features)
                      else:
                                 result = False
           else:
                      print( 'Error when processing the file:', new dir audio)
                      result = False
           clip features = np.array(clip features)
           with warnings.catch warnings():
                      warnings.simplefilter("ignore", category=RuntimeWarning)
                      mean features = np.mean(clip features, axis=0)
           return result, clip features, mean_features
```

#### Motivation

- Ornithology experts
- Difficult task of recognition
- The birds have regional accents
- Bird migration
- Unusual and endangered birds
- Colombia, second most biodiverse country in the world
- 1,903 bird species recorded in Colombia (2013)

### LifeClef challenge







Source: http://www.pbase.com/rsscanlon/image/110872861

### LifeClef challenge

The goal of the task is to identify all audio of birds from test recordings.



### The important things



### Machine Learning









Source: https://www.simplilearn.com/data-mining-vs-statistics-article



### SVM (Support Vector Machines)



## SVM (Support Vector Machines)





### Clustering (K-means)



```
# function for process audio file
def process audio(dir audio):
    result = True
    clip features = list()
    mean features = list()
    # replace silence in noise to audio file
    new dir audio = dir audio.replace('.wav', ' sil.wav')
    if not os.path.isfile(new dir audio):
        # create new file with silence
        os.system( 'sox ' + dir audio + ' ' + new dir audio + ' silence 1 0.1 1% -1 0.1 1%' )
    if os.path.isfile(new dir audio):
        (state, rate, signal) = downsampling(new dir audio, 16000)
    if state is True:
        window = 5
       # split the audio on 5 seconds segments
audio_segments = splitAudio(x, such audio)
        if audio segments:
            # for each seament of audio
            for audio segment in audio segments:
            # extract mfcc features
                features = np.array(extractFeatures(rate, audio segment))
                features = np.asarray(features).reshape(-1)
                clip features.append(features)
        else:
            result = False
    else:
        print( 'Error when processing the file:', new dir audio)
        result = False
    clip features = np.array(clip features)
   with warnings.catch warnings():
        warnings.simplefilter("ignore", category=RuntimeWarning)
        mean features = np.mean(clip features, axis=0)
    return result, clip features, mean features
```



### xeno-canto

36,496 audio recordings

1,500 types of species

7,860 audio recordings

789 types of species

| Otros         | 3.638  |
|---------------|--------|
| Ecuador       | 3.908  |
| Peru          | 2.853  |
| Brasil        | 14.248 |
| Colombia      | 7.860  |
| Suriname      | 337    |
| Venezuela     | 2.029  |
| Bolivia       | 722    |
| Paraguay      | 32     |
| French Guiana | 712    |
| Uruguay       | 40     |
| Guyana        | 116    |
| Argentina     | 1      |
|               |        |

3,440 audio recordings

100 types of specie

### Processing data

```
def countryGoogle(latitude, longitude):
    country = None
    response = True
        url = "https://maps.googleapis.com/maps/api/geocode/json?latlng="+latitude+","+longitude+"&key=AIzaSyA-NNN"
        jsonResponse = json.load(urlopen(url))
        jsonRes = jsonResponse['results']
        if len(jsonRes) == 0 :
            response = False
            for x in jsonRes:
                res = x['address components']
            for x in res:
                country = x['long name']
                country = country.replace('\n','').lower()
    except ValueError as error message:
        print("Error: geocode failed with message %s"%(error_message))
        response = False
    return response, country
```





Global features

VS

Bag of features

```
# function for process audio file
def process audio(dir audio):
   result = True
    clip features = list()
   mean features = list()
   # replace silence in noise to audio file
   new dir audio = dir audio.replace('.wav', ' sil.wav')
   if not os.path.isfile(new dir audio):
       # create new file with silence
       os.system( 'sox ' + dir audio + ' ' + new dir audio + ' silence 1 0.1 1% -1 0.1 1%' )
   if os.path.isfile(new dir audio):
       (state, rate, signal) = downsampling(new dir audio, 16000)
   if state is True:
       window = 5
       min step = 1
       if audio segments:
           # for each segment of audio
           for audio segment in audio segments:
           # extract mfcc features
               features = np.array(extractFeatures(rate, audio segment))
               features = np.asarray(features).reshape(-1)
               clip features.append(features)
       else:
           result = False
   else:
       print( 'Error when processing the file:', new dir audio)
       result = False
   clip features = np.array(clip features)
   with warnings.catch warnings():
       warnings.simplefilter("ignore", category=RuntimeWarning)
       mean features = np.mean(clip features, axis=0)
   return result, clip features, mean features
```







#### Practical exercise...

#### Repository



https://github.com/angiereyesbet/birdPycon2018

#### **Dataset**



13.58.110.45/data/data.tar.gz

(Temporary URL)



angreyes@outlook.com angreyes@uan.edu.co angiereyes.bet@gmail.com