EECS2210: Electronic Circuits & Devices Lab #4 BJT AC Characteristics

Lab 4 prelab

$$A_V = \frac{-g_m R_c}{g_m R_{E+1}} \approx \frac{R_c}{R_E} \approx 2.5$$

, When apply loom to input , Vant = 250 mV : the gain is 2.5.

= 0.00 bmA


```
V(n003):
                3.08449
                               voltage
V(n001):
                               voltage
                3.95902
V(n002):
                               voltage
V(n005):
                2.4244
                               voltage
V(n004):
                               voltage
                0.0012082
Ic (Q1):
                               device_current
                4.00434e-06
                               device_current
Ib (Q1):
Ie (Q1):
                -0.0012122
                               device_current
I(C1):
                -3.08449e-17
                               device current
                0.00102816
I(R2):
                               device_current
I (Rc):
                0.0012082
                               device current
I (Re):
                0.0012122
                               device_current
I(R1):
                0.00103217
                               device current
I(V1):
                -0.00224036
                               device current
                3.08449e-17
I(V2):
                               device current
```

GT] To increase the gain, we know the formula for gain is $Av = \frac{RE}{RE}$ in this case we can increase Rc and decrease RE, but it needs to be within the limit.

Q5] power consumption =[I, x Ve]+[Ic x Vec]

Q3

The max power consumption is 30mw, II x Vcc = 10mW

$$g_m = \frac{I_C}{V_T} = \frac{2mA}{26mV} = 76.92 \, \text{mA/mV}$$

Operating Point				(Jm KC) - AV
V(n003):	3.08477	voltage		160 = (-76.92m5 Rc)
V(n001):	10	voltage	*	Rc = 2K and I choose
V(n002):	7.58215	voltage		No star die 2 mose
V(n004):	2.42559	voltage		to Stick with RE= 2k
V(n005):	0	voltage		
Ic(Q1):	0.00120893	device current		but I end up getting 90 as the gain
Ib (Q1):	3.86745e-06	device current	*	not lbo,
Ie (Q1):	-0.00121279	device current	*	50, I incroused the RE by a bit. up to 2.3k.A.
I(C1):	-3.08477e-17	device current		
I(C2):	2.42559e-17	device current		and finally I got 160 as my gain.
I(R2):	0.00102826	device current		
I (Rc):	0.00120893	device current		
I (Re):	0.00121279	device current	*	6.5V-4.9V=1.6V
I(R1):	0.00103212	device current		0.00-1,10
I(V1):	-0.00224105	device current		1.6V
I(V2):	3.08477e-17	device_current		= 160 = gain

Lab Experiments

2-3] The transistor is in the active/linear region if Vce>Vbe. If we assume that Vbe is 0.7V. Vce=1.77V > Vbe=0.7V therefore, the transistor is operating in the active region.

$$\beta = 1.206mA$$
 $\beta = 0.005mA$
 $\beta = 1.206mA$
 $\beta = 0.005mA$
 $\beta = 0.005mA$

$$gm = \frac{1}{VT} = \frac{1}{25mV} = 48.24 \frac{1}{V}$$

$$r_{\pi} = \frac{\beta}{gm} = \frac{241.2}{48.24} = 5k \text{ ohms} = r_{in}$$

500-200 so the amplitude is 250-100

5]7] Our circuit, with the bypass capacitor and biasing resistors, It can improve the stability of higher AC gain and better signal isolation compared.