Padded Convolution

1	7	-1	2	3
---	---	----	---	---

Define: $h_i = h_0$ for $i \le 0$

 $h_i = h_{r+1}$ for i > r

Zero padding: $h_{r+1} = h_0 = 0$

Extension padding: $h_0 = h_1$ and $h_{r+1} = h_r$

Output defined for $1 \le i \le r$

-5 | 18 | 17

-5 18	17 -2	
-------	-------	--

Padded Convolution

Define:

$$h_i = h_0$$
 for $i \le 0$

$$h_i = h_{r+1}$$
 for $i > r$

Output defined for $1 \le i \le r$

Striding

Reduce size of next layer through sub-sampling

$$h_i^{r+1} = \sigma \left(\sum_{j=-s}^{s} c_j h_{\mu(i)-j}^r \right) \text{ where } \mu(i) = b(i-1)+1$$