#### **Semantic Networks**

- Graphs, with nodes representing objects and arcs representing relationships between objects
- Various types of relationships may be defined.
  - -IS-A (Inheritance relationship)
  - -HAS (Ownership)

## Semantic Network example



Network Operation: How to infer new information from semantic networks. We can ask nodes questions

- Ask node vehicle: 'How do you travel'
  - Looks at arc and replies: road
- Ask node Car X: 'How do you travel'
  - Asks node Car (because of IS-A relationship)
  - Asks node Vehicle (IS-A relationship)
  - Node Vehicle Replies: road

## Problems with Semantic Networks

- Computationally expensive at run-time. In the worst case, we may need to traverse entire network and then discover that the requested info does not exist.
- They try to model human associative memory (store info using associations), but in the human brain the number of neurons and links are in the order of 10<sup>15</sup>. Such numbers are computationally prohibitive in semantic networks.
- Are logically inadequate. Have no analogues to quantifiers (for all, for some, none).

#### **Frames**

- "Frames are data structures for representing stereotypical knowledge of some concept or object" Durkin
- · Like a schema
- Extended to Classes and Objects
- e.g. for the object Student, the frame will look like this:

Frame Name: Student

Properties:

Age: 19

GPA: 4.0

Ranking: 1

#### **Facets**

- A feature of frames that allows us to put in constraints
- IF-NEEDED Facets
- IF-CHANGED Facets

### Logic

- Logic representation techniques:
  - Propositional Logic
  - Predicate Calculus
- Algebra is a type of formal logic that deals with numbers, e.g. 2+4 = 6
- Similarly, propositional logic and predicate calculus are forms of formal logic for dealing with propositions.

## **Propositional Logic**

- Proposition: Statement of a fact
- Assign a Symbolic Variable to represent a proposition. e.g.
  - p = It is raining
  - q = I carry an umbrella
- A declarative sentence may be classified as either True of False.
  - the proposition 'A rectangle has four sides' is true
  - the proposition 'The world is a cube' is false.
- A proposition is a sentence whose truth values may be determined. So, each variable has a truth value.

### **Compound Statements**

- Different propositions may be logically related.
- We can form compound statements using logical connectives:
  - ∧ AND (Conjunction)
  - ∨ OR (Disjunction)
  - ~ NOT (Negation)
  - ⇒ If ... then (Conditional)
  - ⇔ If and only if (bi-conditional)

### **Compound statements**

```
p = It is rainingq = I carry an umbrellar = It is cloudy
```

- s = IF it is raining THEN carry an umbrella
  p ⇒ q
- t = IF it is raining OR it is cloudy, THEN carry an umbrella

$$(p \lor r) \Rightarrow q$$

# Truth Table of Binary Logical Connectives

| p | q | p ^q | p ∨ q | $p \Rightarrow q$ | $p \Leftrightarrow q$ |
|---|---|------|-------|-------------------|-----------------------|
| Т | T | Т    | Т     | T                 | Т                     |
| T | F | F    | Т     | F                 | F                     |
| F | T | F    | T     | T                 | F                     |
| F | F | F    | F     | Т                 | Т                     |

# Limitations of Propositional Logic

- Can only represent knowledge as complete sentences, e.g. a = the ball's color is blue.
- Cannot analyze the internal structure of the sentence.
- No quantifiers e.g. For all, There exists
- Propositional logic provides no framework for proving statements such as:
  - All humans are mortal
  - All women are humans
  - Therefore, all women are mortals
- This is a limitation in its representational power.

#### **Predicate Calculus**

- Extension of Propositional logic
- Allows structure of facts/sentences to be defined With predicate logic, we can say color(ball, blue)
- Provides a mechanism for proving statements
- Has greater representation power as we will see shortly

#### **The Universal Quantifier**

- Symbol ∀
- "for every" or "for all"
- Used in formulae to assign the same truth value to all variables in the domain
- e.g. Domain: numbers
  - $(\forall x) (x + x = 2x)$
  - In words: for every x (where x is a number), x + x = 2x is true
- e.g. Shapes
  - ( $\forall x$ ) ( x = square  $\Rightarrow$  x = polygon)
  - In words: every square is a polygon.
  - For every x (where x is a shape), if x is a square, then x is a polygon (it implies that x is a p polygon).

#### **Existential Quantifier**

- Symbol: ∃
- Used in formulae to say that something is true for at least one value in the domain
- "there exists", " for some" "for at least one" "there is one"
- e.g.
  - $-(\exists x) (person(x) \land father(x,ahmed))$
  - In words: there exists some person, x who is Ahmed's father.

## First Order Predicate Logic

- First Order Predicate logic is the simplest form.
- Uses symbols. These may be
  - Constants: Used to name specific objects or properties. e.g. Ali, Ayesha, blue, ball.
  - Predicates: A fact or proposition is divided into two parts
    - Predicate: the assertion of the proposition
    - Argument: the object of the proposition
    - e.g. Ali likes bananas becomes Likes (ali, bananas)
  - Variables: Used to represent general class of objects/properties.
    e.g. likes (X, Y). X and Y are variables that assume the values
    X=Ali and Y=bananas
  - Formulae: Use predicates and quantifiers

## Predicate Logic Example

man(ahmed) father(ahmed, belal) brother(ahmed, chand) **Predicates** owns(belal, car) tall(belal) hates(ahmed, chand) family() **∀ Y (¬sister(Y,ahmed)) Formulae**  $\forall X,Y,Z(man(X) \land man(Y) man(Z) \land father(Z,Y) \land$  $father(Z,X) \Rightarrow brother(X,Y)$ X, Y and Z **Variables** ahmed, belal, chand and car **Constants**