Decimal	Binário	Hexadecimal	BCD
0	0000	0	0000
1	0001	1	0001
2	0010	2	0010
3	0011	3	0011
4	0100	4	0100
5	0101	5	0101
6	0110	6	0110
7	0111	7	0111
8	1000	8	1000
9	1001	9	1001
10	1010	А	1 0000
11	1011	В	1 0001
12	1100	С	1 0010
13	1101	D	1 0011
14	1110	E	1 0100
15	1111	F	1 0101

Código BCD/Hexa – 7 segmentos

Segue segmentos acesos nos Dígitos hexadecimais:

Código Gray - Apenas um bit é alterado quando se passa de um código para outro.

Esta característica é importante em algumas aplicações, como em codificadores de posição de eixo, onde alterações simultâneas de bits podem ocasionar erros.

Código decimal	Código Binário	Código Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Códigos de Detecção e Correção de Erro

- Paridade

Um bit que é adicionado ao dado para detectar erro. A paridade pode ser **PAR** ou **ÍMPAR** e detecta erros ímpares. Implementação simples.

Paridade Par – Número de bits 1 do dado + bit de paridade é par.

Paridade Ímpar – Número de bits 1 do dado + bit de paridade é ímpar.

Dado	P. PAR	P. ÍMPAR
0000	0	1
0001	1	0
0010	1	0
0011	0	1
0100	1	0
0101	0	1
0110	0	1
0111	1	0
1000	1	0
1001	0	1

Códigos de Detecção e Correção de Erro

- Checksum

Método simples que consiste em transmitir os dados e acrescentar a soma (bit a bit) do dado transmitido.

Código de Hamming

Método que permite não só detectar, mas também corrigir o bit errado utilizando bits de paridade nas posições que são potência de 2. O bit 1 é o menos significativo.

CRC (Cyclic Redundancy Check)

Exemplo de Código de Hamming

$$P_1$$
 – Paridade sobre os bits 1, 3, 5 e 7

$$P_2$$
 – Paridade sobre os bits 2, 3, 6 e 7

$$P_3$$
 – Paridade sobre os bits 4, 5, 6 e 7

Se P_1 , P_2 e P_3 = 0 a informação foi recebida corretamente.

$$P_1 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$P_2 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

$$P_1 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$$
 $P_2 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$ $P_3 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$

$$P_1 = 1 - P_2 = 0 - P_3 = 1$$
 Bit errado é o 5