

A 2.17µW@120fps Ultra-Low-Power Dual-Mode CMOS Image Sensor with Senputing Architecture

Ziwei Li, Han Xu, Zheyu Liu, Li Luo, Qi Wei, Fei Qiao

Department of Electronic Engineering, Beijing Jiaotong University Department of Electronic Engineering, Tsinghua University

2022 27th Asia and South Pacific Design Automation Conference University LSI Design Contest

Outline

- Motivation & Background of Research
- Overall Architecture of Proposed Senputing CIS Sensor
- Detailed Circuit Design
- Implementation Results & Demo System
- Summary

Motivation

■ Needs for Intelligent Vision Device Increases

Robot

- > Deployed on the edge
- **→** Working for 24 hours (Always-on)
- > Battery-powered
- > Huge power consumption

Field Observation

CMOS Image Sensor

AI Glasses

Recently, Hierarchical always-on visual system is proposed to solve power problem

Background Overview

■ Typical hierarchical always-on visual system

- > Two working modes:
- Always-on
- Event-driven

What we concerned?

Coarse-grained

Background Overview

■ Typical hierarchical always-on visual system

- Two working modes:
- Always-on
- Event-driven

> What we concerned?

Power of always-on mode

Background Overview

Traditional image processing flow vs Previous PIS Architecture

Integrated

• Still $A \rightarrow D$ Convert

• Digital Feature Map Out

Low-throughput

Redundant Power

Consumption

Feature Map

Proposed Architecture

■ Proposed Sensing-with-computing (Senputing) Architecture

- Implement MAC inside per pixel
- Eliminate $A \rightarrow D$ Convert
- Output binary feature map

Ultra-Low throughput

- Two working modes: (Both 32x32)
- 1. Normal Sensor Mode
- 2. Direct Photocurrent Computation Mode

Concept of Senputing

■ MAC Operation Circuit inside Pixel (DPCE)

•
$$Q = 1, PD \rightarrow V+;$$

•
$$Q = 0$$
, $PD \rightarrow V$ -;

•
$$C_{PD} = C_1$$

 $\Delta V+<\Delta V-$, set V+ to logic '1' $\Delta V+>\Delta V-$, set V+ to logic '0'

Exposure Time

■ Configurable Kernel Size

Lenet-5

$$y = sign[1 \times \sum_{x_i \in X_1} x_i + (-1) \times \sum_{x_i \in X_2} x_i]$$

■ Configurable Kernel Size CCS[i+1] CCS[i+2] CCS[i+3] CCS[i] Reg Reg Reg Ineg RCS[i+1] RCS[i+2] **DPCG** 3×3 Kernal **N×N** Kernal

How to obtain the whole 6 × 28 × 28 feature map?

■ Kernel Shifting Flow

1 row: 28 right_shift

Reset : 5 right_shift + 1 down_shift

Total: $32 \times 28 + 27$ shifts

■ Simplified Shifting Schedule

Implementation Results

■ Performance Comparison LeNet-5 **Digit** Whole-Software Result **Accuracy 99.1% DPC** Slightly Accuracy Drop! 99.3% 1000 hand-written Accuracy Digit images 98.3% **Digit Soft-Hardare** Result **Combined** BNN 1st Layer LeNet-5 (Without 1st Layer) Feature Map (From chip)

DPC Accuracy: The accuracy of DPC circuit calculation for BNN 1st-layer feature map

Implementation Results

■ Performance Comparison

	TIE2020 ^[4]	ASSCC2019 ^[1]	ISSCC2021 ^[2]	TCASI2019 ^[3]	This Work
Process	180nm	180nm	65nm	180nm	65nm
Pixel Pitch	6.5um	7.6um	9um	40um	20um
Array Size	192×128	128×128	160×128	32×32	32×32
Framerate	312.5 fps	480 fps	24~268 fps	100 fps	120 fps
Feature	BNN 1 st -layer	CNN 1 st -layer	CNN 1 st -layer	Binary CNN	BNN 1 st -layer
Weight	Fixed	Programmable	Programmable	Programmable	Programmable
Accuracy	96.7%@MNIST	N/A	RMSE=4.1%	99%@MNIST	98.1%@MNIST
Kernel Size	2×2~8×8	3×3	2 ^N ×2 ^N (N<6)	5×5	Mixed
Power	52.5 mw	Image: 77uW Conv: 91uW	42~256uW	1.8mW	2.14uW
Efficiency (Ops/W)	555G ²	1.51T	0.15~3.64T ²	545G	11.49T ²

Implementation Results

■ Chip micrographs & Demo System

Summary

- Proposed a dual-mode CIS chip with dual-resolution
- Implement Direct Photocurrent Computation inside pixels —— Senputing
- Design several kernel shifting methods
- Compare the performance of proposed CIS chip
- Demo system base on the Senputing CIS chip

Thanks for your listening

Q&A Time