

[编号 ODCC-2022-06001]

数据中心弱电系统验收技术规范

开放数据中心标准推进委员会

2022-09 发布

版权声明

ODCC(开放数据中心委员会)发布的各项成果,受《著作权法》保护,编制单位共同享有著作权。

转载、摘编或利用其它方式使用 ODCC 成果中的文字或者观点的,应注明来源:"开放数据中心委员会 ODCC"。

对于未经著作权人书面同意而实施的剽窃、复制、修改、销售、改编、汇编和翻译出版等侵权行为,ODCC及有关单位将追究其法律责任,感谢各单位的配合与支持。

编制说明

本报告由 OPPO 广东移动通信有限公司牵头撰写,在撰写过程中得到了多家单位的大力支持,在此特别感谢以下参编单位和参编人员:

参编单位(排名不分先后):

OPPO 广东移动通信有限公司、中国信通院(云大所数据中心团队)、深圳市中电电力技术股份有限公司、万国数据服务有限公司、阿里巴巴集团控股有限公司

参编人员(排名不分先后):

李忠科、王月、许可欣、王少玉、刘昱彤、宋维维、居鹏、孔庆一、卢胜 军、李洋、晁怀颇,李玉莲,郭阿梅

项目经理:

李忠科 lizhongke@oppo.com

前言

数据中心是信息时代的基石,目前数据中心发展如火如荼,弱电系统体现了数据中心智能化水平,而运维占据数据中心全生命周期最长的时间段,弱电系统是运维的有力工具,一定程度上,弱电系统的质量一定程度上决定了运维的质量。

与电力、暖通系统相比,弱电系统更加碎片化,专业跨度大,因此也造成了验收难度大。验收作为工程建设的最后一个环节,是把控建设质量至关重要的一环。在此前提下,2022 年在 ODCC 智能监控与管理工作组成立了弱电系统验收技术规范项目,力求通过此项目总结一些验收方法,给从业人员进行参考。本规范由 OPPO、中国信通院云大所、中电技术、万国、阿里巴巴等企业单位通力合作完成,但由于时间仓促,水平所限,错误和不足之处在所难免,欢迎各位读者批评指正。如有意见或建议请联系 dceco@caict.ac.cn。

目录

版权	法声明		I
编制	说明		I
前言			I
-,	概述.		1
二、	术语	和定义	1
	(—)	现场监控单元 Field Supervision Unit	1
	(二)	监控对象 Supervision Object	1
	(三)	配置信息 Configuration	1
	(四)	智能化设备	2
	(五)	智能数据采集 data acquisition	2
	(六)	数据传输 data transmission	2
	(七)	接口 interface	2
	(<i>)</i> ()	冗余 redundancy	2
	(九)	容错 fault tolerant	2
三、	验收的	, 前提和准备	3
	(—)	验收依据	3
	(二)	验收条件	4
	(三)	验收工具准备	4
四、	通用	俭收	5
	(—)	设备及系统架构	5
	(<u>_</u>)	机柜	7
	(三)	传感器	7

	(四)	管线	7
	(五)	标签与标识	8
五、	机电	监控系统验收	8
	(—)	系统支撑功能与性能验收	8
	(<u>_</u>)	系统业务功能与性能验收	. 11
六、	视频』	监控系统验收	. 17
	(—)	系统支撑功能与性能验收	. 17
	(二)	系统业务功能与性能验收	. 19
七、	门禁	系统验收	. 21
	(-)	系统支撑功能与性能验收	. 22
	(二)	系统业务功能与性能验收	. 22
八、	大屏幕	验收	. 24
	(—)	大屏显示	. 24
	(二)	大屏管理	. 24
	(三)	用户管理	. 25
九、	网络	验收	. 25
	(—)	系统性能测试	. 25
	(二)	系统管理功能验收	. 25
+,	系统	对外接口验收	. 26
+-	、文标	当资料验收 当资料验收	. 27
	(—)	硬件和软件资料	. 27
	(二)	工程资料	. 28
	(=)	玄 统咨料	28

	(四)	自检、	第三方测试资料		 	 	 	 	 	29
+	验 场:	结果与排	3. 4.							20

一、概述

当今社会是数字化的社会,近年来国际、国内数据中心数量都迅猛增长。 2020 年国家更是把数据中心作为新基建七大领域之一。弱电和智能化系统(后 续简称弱电系统)作为数据中心重要的系统,其的质量的高低决定了后续数据 中心的运营管理的先进性。验收是工程建设的最后一个环节(如图),也是对 建设质量把控的最后的手段,验收能否通过对业主和施工方均具有一锤定音的 效果。为帮助从业者能更好的把控验收过程,获得更好的验收效果编制本规范。

图1 验收环节

本规范适用于指导陆地建筑内的新建、改建和扩建的数据中心弱电系统的 验收。主要涵盖了数据中心机电监控及自控系统、视频及安防系统、门禁系统、 大屏显示系统、系统对外接口、网络和文档验收等内容。

二、术语和定义

(一) 现场监控单元 Field Supervision Unit

指以微计算机为基础的,具有数据采集和控制功能的嵌入式服务器、PLC、DDC等设备。

(二) 监控对象 Supervision Object

被监控的各种供配电设备、制冷设备、空调末端及机房环境。

(三)配置信息 Configuration

描述数据中心的空间结构、设备对象及属性,点位对象及属性和它们之间关系的信息。

(四)智能化设备

自身具备控制器,可独立自动运行的设备。

(五)智能数据采集 data acquisition

通过数据采集主机从数据中心内的各传感器、计量装置、集成子系统中收集、识别和选取数据的过程。

(六)数据传输 data transmission

数据中心内的被监控对象与数据采集主机之间、数据采集主机与系统平台之间依照标准的通信协议,经过一条或多条链路传送数据的过程。

(七)接口 interface

不同设备或系统之间传输信息的物理连接和数据交换。

(八) 冗余 redundancy

重复配置系统的一些或全部部件, 当系统发生故障时, 冗余配置的部件介 人并承担故障部件的工作, 由此延长系统的平均故障间隔时间。

(九)容错 fault tolerant

具有两套或两套以上的系统,在同一时刻,至少有一套系统在正常工作。 按容错系统配的设备,在经受住一次严重的突发故障或人为操作失误后,仍能 满足系统正常运行的基本需求。

三、验收前提和准备

(一)验收依据

验收过程中,首先需要明确验收标准,验收依据是提炼验收标准的来源。 常见的验收依据有如下几类:

- (1) 技术规格书、采购清单和合同。这 2 个依据是提炼验收标准信息量最大的文件,验收标准主要就是由此提炼和编写。因为这 2 个文件发生在工程招标阶段,在建设过程中难免会对更改或优化最初的想法,发生工程变更,因此除了此 2 项文件外,还应考虑其他文件,如工程实施过程中共识的变更项。
- (2) 设计图纸和深化图纸。技术规格书是弱电系统的文字描述,图纸则是图形化的表现。因此图纸和技术规格书两者相呼应,因此也是提炼验收标准至关重要的材料。
- (3) 甲乙双方澄清文件、变更指令文件、重新核量清单和会议纪要。弱电建设过程是从纸上逐步走向物理实体的过程,在这个过程中会发生大量的补充、澄清细节和变更,对于甲乙双方历次会议达成的一致意见,也同样可作为验收标准。
- (4) 相关标准。工程建设除了甲乙双方达成一致的文件外,还应符合国家现行的有关标准,特别是强制执行的国标和行标。弱电工程常用的标准有:

YD/T 585-2010 《通信用配电设备》

YD/T 1363-2014 《通信局(站)电源、空调及环境集中监控管理系统》

GB 50174-2017 《数据中心设计规范》

GB/T 30372-2013 《火力发电厂分散控制系统验收导则》

GB/T 50462-2015 《数据中心基础设施施工及验收规范》

GB/T 51409-2020 《数据中心综合监控系统工程技术标准》

GB 50311-2016 《综合布线系统工程设计规范》验收条件

(二) 验收条件

完成了验收标准,当现场具备验收条件就可以开启验收了。是否具备验收条件,在不同的项目中有不同的要求。一般情况下可按以下方式判断:

- (1) 乙方按工程要求,已完成弱电系统所有设备的安装和调试工作。
- (2) 系统处于在线运行状态,且已连续稳定运行一段时间。此处的一段时间需求根据实际情况进行设定。一般情况下不要小于 72 小时,最长不超过半年。

(三)验收工具准备

弱电工程验收测试中,常用到下列工具,见表。验收测试前,需对计量仪器进行校准,如有条件建议进行计量检定,并获取证书,这样验收结果更具有公信力。计量仪器的"误差限"应不大于被校对象"误差限"的三分之一。

表1 验收常用工具

序号	工具	要求
1	无线对讲机	
2	示波器	仪器须能够同时监控测量直流电压、电流、纹波
3	数字万用表	测量交流和直流电压和电流,以及交流频率
4	负载箱	满足负载容量
5	温湿度测试仪	
6	秒表	
7	网络测试仪	
8	热成像仪	捕捉相关的红外线图像,记录测问题或实现周期性测试比对
9	插头测试仪	测量插头接线情况
10	跳线	
11	红外线温度计	
12	接线器	

13	超声波流量计	
14	电流钳形表	
15	软水管	

四、通用验收

本章节描述各弱电系统通用的验收内容,各系统或子系统专属验收内容见各后续章节。通用验收内容,包括设备型号、外观、安装、线材规格、施工质量、弱电网络测试及系统通用性能等内容。

(一)设备及系统架构

设备是一般性称呼,此处除机柜和传感器之外,其他都称为设备。设备验收的目的是验证单个设备和组成系统后是否满足要求。系统架构由设备组成,设备验收可与系统架构验收一起进行以缩短验收周期。

1. 设备外观和安装工艺

常用验收项如下:

- (1) 设备外观完好、表面无污渍、不缺少相关模件。
- (2) 设备安装位置与图纸一致,符合技术文件及相关标准要求,且便于维护。设备固定牢靠,无松动。
 - (3) 设备的管线及设备标高、水平和垂直度符合项目及相关规范的要求。
- (4) 对于高可靠性设备(要求双电源供电的设备),双电源供电正常, 双电源来自不同的供电回路。
- (5) 主备冗余服务器、交换机应尽量安装至不同的机柜或者不同的弱电间。相关设备安装满足设备散热需求。
- (6) 交换机、采集和控制设备应有一定的端口冗余。冗余范围可取 10% 至 50%。

2. 设备网络配置

对于联网设备,需验收其网络配置。查看计算机、交换机、现场监控单元和其他网络设备的 IP 地址、子网掩码和网关设置,设置应与和分配的地址表一致。

3. 系统架构和冗余性

验收单个设备时,可同时对设备组成的架构进行验收。架构可由硬件的连接结构和数据流结构综合判断。对于具有冗余性的架构,还应验证其冗余性。 常见的冗余有服务器冗余、工作站冗余等。

(1) 服务器冗余

配备了双机热备服务器的系统可做下列测试:

- ① 模拟主用服务器网卡故障和恢复: 拔下主机的网线, 5 分钟后再插入。
- a. 主用服务器网络故障时,备用服务器自动投入工作,切换过程无卡顿、出错现象,监控工作站正常工作,监控管理员无感知。
- b. 故障恢复后,系统切换到主用服务器工作,或原备用服务器变为主用。切换过程无卡顿、出错现象,监控工作站正常工作,监控管理员无感知。
 - ② 模拟主用服务器故障和恢复:关闭主用服务器,然后再重新启动。
- a. 主用服务器故障时,备用服务器自动投入工作,切换过程无卡顿、出错现象,监控工作站正常工作,监控管理员无感知。
- b. 故障恢复后,系统切换到主用服务器工作,或原备用服务器变为主用。
- ③ 模拟备用服务器故障和恢复:拔下备机的网线,5 分钟后再插入。系统应给出备机故障告警提示,故障恢复后,告警结束。

(2) 工作站冗余

配备了工作站冗余的系统可做下列测试:

- (1) 使用同一账户同时登录两个工作站,系统能够给予异常提示,已登录成功的工作站依然保持在线工作。
- (2) 关闭其中任一工作站,其他工作站正常工作,其功能可在其他工作站上实现。

(二) 机柜

机柜常用验收项如下:

- (1) 柜内元器件布局合理。
- (2) 柜门铰链和门锁完好,柜门开关顺畅。
- (3) 柜体表面无划痕、无污渍。
- (4) 柜内整洁, 无杂物。
- (5) 摆放固定,不摇晃。
- (6) 柜子的摆放位置安全可靠,远离水患和强干扰环境。

(三) 传感器

对于传感器的验收,除了要进行设备验收内容外,还需要对传感器的灵敏 度、量程进行测试。具体手段可分以下两个场景进行。

- (1) 手持测试仪器对比测试值与传感器显示值,误差、灵敏度、分辨率等,验证其满足技术规格书要求。
- (2) 改变测试环境,使测试环境达到传感器量程的上下限,再次测量误差、灵敏度、分辨率等技术指标,验证是否满足技术规格书要求。

(四)管线

设备接线布线应满足施工规范。重点关注:

- (1) 设备接线紧固,并有余量,线芯不外露。
- (2) 接线盒软管接头大小适中,不因接头过小而掉入接线盒内。

- (3) 所有信号线缆、供电线缆的中间没有接头。
- (4) 信号线缆、控制线缆和电力电缆分开敷设,不占用公用线管、线槽, 无法避免处,对信号线缆、控制线缆有屏蔽措施。
 - (5) 所有预留线管、线槽需处理、线管吊筋不应过长。
- (6) 网线布线系统信道应由长度不大于 90m 的水平缆线、10m 的跳线和设备缆线及最多 4 个连接器件组成,两芯、多芯线缆应根据信号衰减情况选用线径。
- (7) 单根通信总线接入的设备数量需要在要求范围之内,以满足数据刷新频率要求为准。
 - (8) 线缆型号规格符合设计要求。

(五) 标签与标识

- (1) 设备标签、标识应满足现场要求,注明设备用途、网络地址。
- (2) 线缆标签按照厂家的规范执行。
- (3) 标签应能反映线缆起点、终点、线缆用途。
- (4) 标签的颜色、字体、格式根据项目标识规范进行制作。

五、机电监控系统验收

本章节适用于电力监控系统、暖通监控系统、动力与环境监控系统、楼宇自控系统、蓄电池监控系统、电力自控系统、柴发自控系统的验收。本文把直接提供业务价值的功能称为业务功能,把辅助、支撑业务功能的功能称为系统支撑功能(后续系统也按此分类)。

(一) 系统支撑功能与性能验收

1. 外围设备影响

- (1) 在服务器上插入并打开 U 盘、安装打印机等外设。
- (2) 安装并运行 office 软件或其他软件。

上述测试过程中, 监控系统不出现异常工况。

2. 低耦合性

- (1) 关闭监控中心所有服务器。
- (2) 断开现场监控单元与服务器的网线。

上述测试过程中,现场监控单元能不依赖服务器独立工作。当通信恢复后,监控中心应立即恢复对全站监控管理功能,并对监控单元数据进行数据追捕。

3. 断电保持功能

- (1) 断开现场监控单元的电源,现场设备应保持断电前的运行状态,且 监控中心给出现场监控单元离线告警;
 - (2) 恢复现场监控单元供电,现场监控单元应能恢复相应的运行状态。

4. 系统时钟同步

监控系统应具备统一时钟服务器, 具有稳定的时钟源。

更改其中一台现场监控单元和一台工作站、服务器的时钟,被更改的时钟应能在要求的时间内完成同步。

5. 系统安全性

- (1) 使用错误密码登录系统,系统应拒绝登录。
- (2) 使用一个不具备某权限的帐号,进行越权操作,系统不响应操作或者给出越权警告。
- (3) 账号密码错误次数达到一定次数限制后,应锁定此账号一段时间,避免恶意登录账号。
- (4) 系统内的操作应记录详细的操作日志,具体到操作页面与功能,配置修改、数据查看、远程操作设备据需要记录操作日志。

6. 操作容错

- (1) 随机选取某个可远程调节的模拟量,输入超限的值,系统应给予警告提示,同时拒绝执行调节命令。
- (2) 随机选取某台可远控的设备,改变其工作状态,系统应给予确认提示,提示信息应明确、清晰。
- (3) 远程操作应可具备确认页面,操作前做操作项的确认,操作成功或者失败应予以提示并生成对应的告警事件。

7. 系统响应时间

- (1) 任意切换软件界面, 界面切换时间应满足技术规格书要求。
- (2) 任意界面的实时数据刷新频率,应满足技术规格书要求。

8. 系统日志

检查所有操作的日志。日志记录应该完整、清晰,应包括但不限于下列信息:时间、操作人、操作对象、操作内容。

9. 配置备份

- (1) 对系统的全部配置进行备份。备份的配置(包括组态、历史数据) 不应有缺失、错误出现。备份过程中,系统监控功能应不受影响。
- (2) 删除系统中某些设备或某些监控点,使用刚才备份的配置进行恢复, 系统应能恢复无误,且立即投入工作。
 - (3) 系统应能够设置定期备份,备份数据到指定文件夹。
- (4) 备份应可选择备份项:配置备份、数据备份,数据备份应可选择备份时间段。

10. 更改配置和组态

- (1) 选取一台设备,更改设备名称,更改信息应立即生效。
- (2) 选取一个组态元件,更改对应的监测点,组态元件应支持。

11. 系统人员管理

- (1) 添加一个新用户,验证该用户能否使用,分配到的权限是否正常使用,未分配权限的页面与功能则无法使用。
 - (2) 删除该用户,系统应立即生效。
- (3) 权限分配应按照角色、用户组进行划分,统一类型角色可按照统一权限进行分配。
 - (4) 用户划分等级应包含但不限于超级管理员、管理员、值班员。

(二)系统业务功能与性能验收

1. 选取监控对象要求

在验收测试过程中,按下面的比例选取监控对象(有特色说明的除外):

- (1) 智能设备: 每种类型的选取 20%抽测。
- (2) 1/0型传感器: 按数量的 40%进行抽测。
- (3) 其他通过 I/0 通道监控的设备全测。

2. 配置信息验收

(1) 监控对象验收

核对监控系统中的设备数量及其属性,系统应与现场实际情况相符。属性包括:空间位置、设备名称等。设备名称应满足命名规则。

- (2) 监控点检查
- a. 智能设备,每种类型的智能设备随机选取一台,对监控点进行一一核对。 监控点应和智能设备提供的协议点表一致。监控设备读取的测点应满足项目使用要求。
- b. I/O 量, 核查接入系统中的 I/O 量。对 AI、AO、DI、DO 分类统计, 数量应与监控对象一致。
 - (3) 冗余检查

- a. 每种类型的 I/O 通道冗余量应满足技术规格书要求。
- b. 机柜的冗余模件安装空间应满足技术规格书要求。
- c. 电源与网络冗余满足系统架构设计要求。

3. 组态检查与验收

(1) 通用原则

空间位置图、电气拓扑图、电气单线图、设备监控图、暖通系统图的结构、 名称及表征应与现场一致。根据技术规格书要求可具备视频集成、门禁集成、 消防系统集成。

(2) 空间位置图

- a. 根据项目楼栋或者园区实际位置比例绘制 UI 平面图, 平面图应能够反应实际的楼栋、楼层、房间、设备布局位置。
- b. 以平面图为导向可按照顺序访问设备数据,告警信息发生时,应能够在空间位置图上进行标注告警位置,按照层级可查找到告警设备。
- c. 平面图上应能够反映重要设备的部分数据,点击空间位置图上设备,可弹出当前设备告警信息、实时数据、相关画面。

(3) 电气拓扑图

- a. 对监控范围内柴发、中压、变压器、低压进行开关状态展示,并展示每个 回路功率数据,中低压母线段需要展示母线电压,母线、线路可根据带电 状态进行颜色变化。
- b. 柴发、断路器等可根据运行状态与合分闸状态进行颜色或者状态变化。

(4) 电气单线图

- a. 根据设计图纸和现场实际情况,全量核对供电回路,供电回路应与现场实际情况完全相同。
 - ① 10kV 母线、发电机、380V 母线和电源母线分段进行核对。

- ② MCC、直流屏进行全部核对。
- ③ 末端配电随机选取3条供电路由核对。
- b. 电气系统测试时,同步测试电气单线图,断路器动作、电源投切应与实际 一致。
 - (5) 设备监控图
- a. 设备具备单独监控页面,页面包含但不限于:图形画面展示运行状态、当前历史事件查询、全量数据点位查询。
- b. 设备监控图可在空间位置图里链接点击查看,也可在独立设备监控页面进 行查看。
 - (6) 暖通系统图
- a. 管道与管道,管道与设备的连接处全部核对。
- b. 阀门的位置全部核对。
- c. 管道上的传感器位置全部核对。
- d. 设备开关状态,运行状态的组态呈现应于实际一致。

4. 实时监测功能验收

- (1) 按测试比例选取设备,设备实时运行数据与监控系统显示的数据应相同。
- (2) 调整设备工作状态,设备参数发生变化时,观察监控系统是否随之改变,并记录时延,实时数据由设备变化开始计时至监控平台数据变化之间的时延,应满足技术规格书要求。
 - (3) 改变传感器的测量物理量,测量时延。
 - (4) 监控系统全量点位数据刷新周期应在技术规格书要求之内。
 - (5) 每个设备均可在系统内查询到实时数据。

5. 历史数据查询功能验收

- (1) 按照测试比例选择每个类型设备查询历史数据,历史数据存储周期 应可调,最小间隔不大于 1 分钟。
- (2) 重要数据可进行秒级间隔存储,综保等重要中压设备数据可读取毫秒级波形数据。
 - (3) 不同设备的不同测点应在查询历史数据时,可进行同时查询对比。
- (4) 历史数据应具备曲线、表格等不同形式查询,并可计算最大值、最小值、平均值。
 - (5) 历史数据可自定义查询时段并进行导出。

6. 告警管理功能验收

7. 测试时间

- (1) 该部分测试和电气系统测试同步进行。时间计量应精确到秒。
- (2) 告警应 100%推送,不应存在漏告警或者超出要求时间之外的告警延迟。

8. 告警功能

- (1) 和电气系统同步进行验收测试
- a. 系统给出所有告警时间应满足技术规格书要求。
- b. 从系统按每个电气测试项目的时间段,导出告警记录。对告警记录进行线下分析。
- c. 告警完整性,告警记录应该覆盖所有触发告警的场景,有任何遗漏即为不合格。
- d. 告警准确性,同型号设备所触发告警数量及内容应一致。告警触发时间, 应该与相应的电气设备动作时间一致。
- e. 告警描述应能够准确的反应当前告警内容,描述合理,告警信息具备区域信息、设备类型信息、设备编号名称信息、具体的测点告警描述、告警时间(精确到毫秒)。
 - (2) 智能设备告警测试

- a. 计量从物理量达到告警阈值到系统中产生告警所需时间。时延需满足要求。
- b. 设备端制造全部可触发告警点。
- c. 核查监控系统告警内容及数量是否与设备一致,检查告警闪烁状态、告警级别、显示颜色是否满足要求。
- d. 告警应能够以弹窗的形式第一时间展示在页面最前段,并进行语音播报或 者声音提示。

(3) 监控系统配置告警测试

- a. 计量从物理量达到告警阈值到系统中产生告警所需时间。时延需满足要求。
- b. 根据设备采集数据调节告警阈值触发监控系统告警。
- c. 核查监控系统告警内容是否正确,告警是否及时。检查告警闪烁状态、告警级别、显示颜色是否满足要求。

(4) 告警通知

- a. 检查告警语音功能是否完善,触发短信和邮件通知的告警是否可实现短信、邮件通知,判断通知是否及时。
- b. 检查监控系统是否有告警产生,告警信息,告警声光提示,告警级别,显示颜色否满足要求。

9. 告警管理

(1) 告警操作

- a. 检测单个告警确认、所有告警一键确认、告警清除、告警信息快速链接至 告警设备功能是否满足既定要求。
- b. 告警确认需包含但不限于以下确认状态:未处理、处理中、已处理等。
- c. 告警确认应能够写入确认意见,事件分类,并自动根据登录账号记录确认 人、确认时间。
- d. 告警信息应不能被任何账号删除。

(2) 告警屏蔽

检测告警屏蔽功能是否满足既定要求。

- a. 进行设备级屏蔽、单个告警测点级屏蔽及自定义时段屏蔽操作。
- b. 进行不同区域、不同告警等级的屏蔽功能验证,判断其是否有效。
- c. 针对不同屏蔽方式进行告警触发, 判断屏蔽功能是否有效。
- d. 解除屏蔽,进行告警触发,观察监控界面告警是否可以重新显示。

(3) 告警配置

检测是否可实现告警触发条件更改、告警等级划分等监控系统配置功能。

- a. 更改告警触发条件,人为触发原告警判断条件观察告警是否触发;人为触发更改后告警判断条件,观察观察告警是否触发;
- b. 更改告警等级前后分别触发告警,观察告警等级是否变化。

10. 控制功能验收

(1) 单点测试

全量测试系统内的所有远程控制点,现场执行机构的动作应与预期一致。 从指令发出到设备响应的全过程的时间,应满足技术规格书要求。

(2) 联动逻辑测试

- a. 一次系统的相关的联动逻辑测试和验收在一次系统测试时进行。
- b. 人为触发联动条件,系统联动动作应与预期一致。
- c. 模拟各种故障场景,系统的故障处理机制与预期一致。

11. 二次计算功能验收

- (1) 检查计算量展示界面各计算数值准确,布局合理且更新及时。
- a. 各等级的 PUE 计算。

- b. 包括模组总功率 / 电量、IT 设备总功率 / 电量、配电损耗功率 / 电量、制 冷系统功率 / 电量、辅助系统功率 / 电量等。
 - (1) 核对各计算量公式是否正确。
 - (2) 系统内不同类别的设备电力容量统计以及剩余容量展示。

12. 报表管理

每种类型的报表分别导出一次,时间跨度为1个月。

- (1) 报表格式正确。
- (2) 数据完整、无错误。
- (3) 系统响应时间满足技术规格书要求。
- (4) 报表跨度支持时、天、周、月、年可调;并支持时间间隔分、时、 天、周、月可调。
 - (5) 报表应能够自定义数据格式以及单元格计算公式。

六、视频监控系统验收

本章节对数据中心 CCTV 系统的技术验收进行描述,确保 CCTV 系统在验收后达到高可用的状态,最大程度贴合用户需求。

(一) 系统支撑功能与性能验收

1. 安全性

CCTV 系统作为数据中心物理安防的重要手段之一,其系统本身保证安全、合规的运行至关重要。针对系统安全性方面,在验收环节应针对以下几个方面进行验证:

- (1) 敏感数据(设备密码)是否采用加密方案
- (2) 服务接口调用是否采用加密传输
- (3) 外部网络或者公网 web 请求是否采用 https 传输
- (4) WEB 页面到服务端敏感数据是否采用加密方案

- (5) 登录访问进行用户身份认证, 多次输入错误限制登陆功能是否具备
- (6) 用户密码过期提醒,密码复杂度提醒,历史密码记忆功能是否具备

2. 基础功能

(1) 设备管理

- a. 对 NVR/CVR/摄像头等设备进行添加、修改、删除, 批量导入导出设备信息, 验证其功能有效性, 是否可实现设备快速添加至平台
- b. 在监控摄像头管理界面上修改监控点名称,观察是否自动同步至平台,反 之亦然,验证设备信息一致性,便于设备名称的管理
- c. 支持对 NVR 进行 IP 通道配置,包括增加、删除前端编码器,方便中心人员 对设备进行统一管理
- d. 修改监控摄像头相关参数配置,包括:码流类型、分辨率、码率类型图像 质量、视频帧率,验证功能有效性
- e. 观察存储设备状态展示数据,是否包含在线状态,磁盘信息,存储容量、剩余容量、通道接入路数、CPU 使用率、内存使用率等
- f. 通过配置录像计划并查阅对应计划的录像,验证此功能是否生效
 - (2) 实时或历史录像浏览
- a. 通过 WEB 浏览器和 CS 客户端两种方式查看监控点实时和历史画面预览,验证功能是否有效
- b. 验证监控点在线/离线状态监控,人工将不同存储下挂的多个监控点断网离线,观察视频监控点资源树上展示是否变化,验证功能是否有效
- c. 调整视频播放窗口布局,验证不同布局的展示效果,设定预设布局并调取 画面,验证功能是否有效
- d. 设定视频轮询计划,观察是否按计划轮询播放视频
- e. 选取一个或多个摄像头,验证其在历史录像调取时的倍速播放功能是否生效,包括正放、倒放、倍速播放、倍速倒放、慢放、慢速倒放、单帧步进、单帧步退等。倍速播放速率 1、2、4、8、16 倍速可选,慢速播放速率 1/2、1/4、1/8 可选

- f. 自定义录像片段范围执行录像下载操作,自定义下载地址。观察录像下载时下载任务的查找、删除、暂停(含批量暂停)、继续(含批量继续)操作是否生效。
 - (3) 其他功能
- a. 主要界面运行和切换是否满足需求
- b. 轨迹跟踪功能是否满足需求(根据项目选测)
- c. 系统时钟同步功能是否满足需求
- d. 红外夜视功能是否满足需求
- e. 人脸识别功能是否满足需求(根据项目选测)
- f. 拼接屏性能及功能是否满足需求
- g. 人流量分析功能是否满足需求(根据项目选测)
- h. 支持日志分析,系统日志、操作日志
- i. 支持图形化状态监控
- j. 支持服务器状态监测
- k. 支持系统服务状态监测
- I. 支持双机热备、集群、高可用功能(根据项目要求)
- m. 支持人员、组织管理,支持批量导入、导出功能
- n. 支持数据备份、还原,可备份全部数据或指定的数据,并支持手动删除备份文件,支持自动备份,可设置自动备份策略

(二) 系统业务功能与性能验收

1. 实时视频和历史视频

观看实时视频和历史视频是视频监控系统最重要的功能,因此是最重点的验收项。实时视频宜采用全量核对的方式。把实时视频窗口调成 9 宫格或 16 宫格,分区域检查每个摄像头的视频质量和照射角度。可以一遍验收,一遍派人调整照射角度,这样可以在调整照射角度的同时完成验收工作。

2. 事件联动

- (1) 根据模板或自定义添加事件规则,验证事件类型、事件等级、计划时间、区域、位置、事件源等的配置功能是否生效。
- (2) 模拟事件告警产生,观察客户端是否支持告警事件监控,验证可按照事件类型、事件规则名称、事件等级、未读事件、告警中事件对告警事件进行过滤展示。对告警事件进行单独、批量处理,对告警事件做已处理标记,对声音提醒、事件弹窗进行设置,验证功能有效性。
- (3) 验证多种事件联动规则的配置,模拟触发一条事件,验证联动客户端弹出指定监控点实时视频、事件录像回放、事件图片、控制指定对讲通道语音对讲、声音提醒、语音提醒、联动录像、联动抓图、联动告警输出、联动云台等功能是否生效。

3. 电子地图

- (1) 上传 JPG 或 PNG 两种图片格式的静态电子地图,验证功能是否有效
- (2) 在电子地图上标记摄像机点位,点击地图上的摄像机图标验证是否可调取实时视频和历史录像
- (3) 对已上图的摄像机点位进行位置移动、删除、批量框选对齐、对齐 撤销等操作、验证基础配置功能是否生效
- (4) 验证修改地图配置,增删改静态底图、修改地图视野,切换当前区域显示的地图,地图放大、缩小、上下左右平移、全屏操作等功能是否满足

4. 性能验收

业务应用		指标项	根据项目要求,以下数据仅供参考	
		系统最大安保区域数量	2万	
		系统最大组织数量	2万	
基础数据		系统最大用户数量	20 万	
- F-14/3/3/14		系统最大同时在线用户数量	5000	
		系统最大角色数量	1万	
		系统最大人员数量	30 万	
综合管控	事件联动	事件最大接收能力	300 条/秒	

		事件最大保存量	7200万
		事件最大保存时间	3年
	图上监控	支持上图资源总量	2万
		单区域支持最大底图数量	4
		系统最大脸谱管理套数	5
		系统最大抓拍点位管理数量	500
	人脸监控	系统最大超脑管理数量	100
	八加州工	系统最大人脸数量	30万
		系统最大人脸分组数量	16
		事件最大接收能力	200 条/秒
\sim		单个平台支持最大监控点数量	10 万
Y.		平台级联数量	3
	()()	视频播放路数(软解)	25 路(i5、720P)
	视频监控	1九岁以1曲71人10日 女人(十八十八)	9路(i5、1080P)
		视频播放路数(硬解)	36 路(i5、720P)
视频应用		1九分次1曲70人时 50、10人10人10人10人10人10人10人10人10人10人10人10人10人1	16 路(i5、1080P)
		最大回放倍速	16
	梯控	单个平台梯控设备管理数量	500
	紧急告警	告警设备管理数量	500
		告警记录最大保存量	100 万
		告警记录保存时长	3年
			被动设备 1200 路/分钟
		在线状态巡检	主动设备 5000 路/分钟
			平均监控点 3000 路/分钟
1/		录像完整性巡检	4000 路/小时
视频网管		录像保存天数巡检	3000 路/小时
		图像质量巡检	4000 路/小时
		点播状态巡检	4000 路/小时
		资源同步巡检	5W 资源/10 分钟
		vqd、录像、在线状态自级联巡检	4000 路/分钟

七、门禁系统验收

(一) 系统支撑功能与性能验收

- (1) 门禁系统常规操作测试,如开卡、配置权限、注销用户等功能测试
- (2) 门禁控制器功能测试,含断电自重启功能测试、重启后门禁权限保持测试,断网本地门禁记录存储测试、网络恢复后门禁记录断点续传测试,新增、删除、修改人员及权限测试,对门禁控制器的安装,接线,标识标签进行验收。
- (3) 电磁锁/电插锁开关功能测试,延时吸合功能测试,开关指示灯测试,电磁锁吸力测试,别门告警测试。对门锁安装位置、安装可靠性进行验收。
- (4) 电子地图功能测试,通过上传电子地图验证功能有效性,对电子地图上摆放的门的位置与门的实际位置进行核对。
- (5) 读卡器、生物识别器功能测试,是否正常控制门锁开启,模拟故障后是否能够通过蜂鸣器或指示灯进行异常告警,对安装高度、安装可靠性、标识标签张贴进行验收。
- (6) 系统监控功能测试,现场模拟暴力破门、别门告警、开关门事件,观察系统平台是否有对应告警或事件产生,并可对告警或事件进行确认、关闭、记录、调取操作。
- (7) 远程开门功能测试,在电子地图或门禁树结构上进行远程开门操作, 现场验证对应门是否开启。
 - (8) 消防联动功能测试、模拟消防强切信号、验证门禁是否释放。
 - (9) 门磁状态、破玻按钮、出门按钮等反馈功能测试。

(二) 系统业务功能与性能验收

1. 系统业务功能

- (1) 验证日志产生、记录、分析等功能是否满足需求,含系统日志、操 作日志等
 - (2) 支持图形化状态监控
 - (3) 支持服务器状态监测
 - (4) 支持系统服务状态监测

- (5) 支持双机热备、集群、高可用功能(根据项目要求),针对不同架构与项目实际配置进行切换测试,记录切换或中断时间,时间小于 1 分钟可满足需求
- (6) 人员基础信息可配置,验证删除/恢复人员功能是否正常。验证人员、组织、权限组管理,支持批量导入、导出功能
- (7) 支持数据备份、还原,可备份全部数据或指定的数据,并支持手动删除备份文件,支持自动备份,可设置自动备份策略

2. 性能验收

业务应用		指标项	根据项目要求以下数据仅供参考
	IUIV	系统最大安保区域数量	2万
1	$\Delta 11$	系统最大组织数量	2万
		系统最大用户数量	20万
安保基础数据	$\times 10^{\circ}$	系统最大同时在线用户数量	5000
		系统最大角色数量	1万
		系统最大人员数量	30万
		系统最大卡片数量	30万
电子地图		支持上图资源总量	2万
七 1 76国		单区域支持最大底图数量	4
	门禁管理	门禁点最大数量	2万
		刷卡数据最大存储量	5 千万
		刷卡数据最大存储时长	3年
\/\\	访客	访客机并发登记数	10
	巡更	巡更线路并发数量	50
一卡通		考勤人数	3000
		刷卡记录最大保存量	4千万
	考勤管理	考勤记录最大保存量	1 千万
		刷卡记录最大保存时长	3年
		考勤明细最大保存时长	3年
	梯控	单个平台梯控设备管理数量	500

		消费设备管理数量	200
	食堂消费	消费最大支持人员数量	3000
		消费单账户金额上限	10 万
门禁网管	•	门禁设备在线状态巡检	300 台/分钟
1,3%1.1		梯控设备在线状态巡检	300 台/分钟

八、大屏验收

(一) 大屏显示

检测屏幕显示功能是否满足既定要求。

- (1) 大屏屏幕亮度、色彩等显示均匀、同批次产品无明显色差。
- (2) 屏幕拼接缝不会造成信息丢失,与技术规格书中要求一致。
- (3) 系统能够划分多种显示单元,各显示单元均能显示任意接入信号。
- (4) 屏幕分辨率与技术规格书要求一致。
- (5) 观察屏幕是否具有干扰杂波或者线条、花屏、黑屏或烧屏现象。
- (6) 对于多块单体屏幕拼接的画面,画面显示界面更新时所有单体显示器应能够同步更新画面。

(二) 大屏管理

检测大屏管理功能是否满足既定要求。

- (1) 检查系统是否能够按需划分显示单元,并对所有单元进行管理。
- (2) 检查系统各否能对输入信号进行轮训显示。
- (3) 检查系统单屏、整屏、叠加、自由拼接等多种显示方式是否正常。
- (4) 检查是否支持将显示方式存储,能否按需调用、切换。
- (5) 检查拼接屏视频输入口数量以及类型与技术规格书要求一致。

检查屏幕的电源是否双路 U 电输入,在市电中断的情况下能够正常工作不断电。

(三) 用户管理

检测系统用户管理功能,能否添加/删除用户,且用户能否具备大屏管理功能。

九、网络验收

(一) 系统性能测试

监测点位布置是否满足技术规格要求。

- (1) 办公网络与生产网完全物理隔离,设备的覆盖范围满足需求文档及设计规范。
- (2) 有线验收: 网络带宽测速, 网络应可满足数据中心区域运维工作用网需求。
- (3) 无线验收:无线网络连接测试、信号强度测试、带宽测试、网络延迟测试、网络浏览测试、视频播放测试,各覆盖区域网络性能可达到设计要求。

(二) 系统管理功能验收

- (1) 系统需具备防火墙,对数据中心办公网进行隔离和保护。
- (2) 系统可进行带宽控制,可合理分配终端带宽大小。
- (3) 系统具备上网行为管理功能,可管理用户上网应用。
- (4) 具备安全管理功能,具备攻击防护功能,防范各种常见网络攻击。
- (5) 系统支持无线漫游功能。
- (6) 无线终端统一管理功能。
- (7) 监控大厅工位网络接口分布应依据数据中心运维使用需求。
- a. 通信网络冗余

- ① 配置了冗余交换机的通信网络测试:关闭其中一台交换机,5 分钟后再重新启动。通信网络应能够无间断切换,监控系统应正常运行,监控功能不受影响。
- ② 交换机配置了冗余链路的网络测试: 拔掉其中一条光纤或者网线链路, 5分钟后再接入,交换机网络正常,网络无中断现象。

十、系统对外接口验收

监控主机的北向通信接口功能是否满足需求。具体测试项目、测试步骤和目标结果参见下表。

表 系统对外接口验收项

L		
	测试项目	子项目
		1)建立连接
	接口可用性	2) 数据、告警上传
		3) 写控制命令
		1) 周期上传
		2) 变化上传
		3) 周期+变化上传
		4)请求上传
	数据可用性	5) 混合上传
	双加·引加 II	6)告警立刻上传
		7)上传方式配置
		8)告警上传配置
7		9)上传高级功能
		10) 虚拟点位上传
		1) 心跳检测
		2)断点续传
	功能	3) 历史数据、告警查询
	力用に	4)未确认数据、告警重发
		5) 指令下发反馈
		6) 权限认证

	7)时钟同步
	8) 厂家系统主备切换
	9) 厂家系统异常中断
	10)网络中断恢复
	11)多客户端支持
	1) 大规模掉电空载测试
	2) 大规模掉电带载测试
压力测试	3)最小周期数据全量上传
	4)最小变化率数据全量上传
	5) 高频率指令下发
	1)测试时间内接口无原因掉线
稳定性测试	2)接口程序对厂家系统内存的使用
INVE ITWING	3)内存稳定性
~ 117	4)CPU 利用率及波动情况
)11(1)数据、告警数量准确性
数据准确性	2) 数据、告警内容准确性
>> 1/L/ F WI IT	3)命令数量及内容准确性
	4)CPU 利用率及波动情况

十一、文档资料验收

文档是后续运维管理的重要资料,验收资料应尽可能齐全,建议同时提供 纸质版和电子版。

(一) 硬件和软件资料

(1) 硬件设备资料

重要设备、材料和构配件常用资料如下,建议进行全量核对,数量特别多时,可每个型号验证一种。

- ① 设备清单
- ② 厂家资料

- ③ 合格证、质量证书、出场检测报告
- ④ 使用说明书
- ⑤ 报关单(进口设备)是否齐全。
- (2) 软件资料

重要系统软件资料有:

- ① 授权或证书
- ② 操作说明书
- ③ 辅助资料

(二) 工程资料

- (1) 系统竣工图,包括设备平面布置图、系统设计说明、系统原理图、 采集器或控制器等设备柜内接线图、电源接线图、隐蔽工程图纸等。
 - (2) 设备 IP 清单。
 - (3) 设备通信协议文件。
 - (4) 接地系统图。
 - (5) 阀门控制柜接线图。
 - (6) 设备和点位代号说明书。
 - (7) 群控逻辑说明书。
 - (8) 测点阈值设置表。
 - (9) 采集器或控制器柜内接线图。
 - (10) 系统架构图(包含网络)。
 - (11) 图纸变更记录或洽商记录。
 - (12) 监控点位信息表。

(三) 系统资料

- (1) 用户操作手册。
- (2) 系统维护手册。

- (3) 系统原理图。
- (4) 系统功能说明。
- (5) 系统性能说明。
- (6) 系统说明书。

(四) 自检、第三方测试资料

- (1) 常规监控项的自检核对记录
- (2) 第三方测试报告等相关资料

十二、验收结果与报告

验收结论包括合格和不合格两种。验收合格,施工单位应对竣工验收资料进行整理、移交。验收不合格,应根据验收结论给出处理意见,限期整改,组织重新验。乙方提供销项清单,完成销项后,甲方乙方代表共同在表格上签字。

各项测试验收结束后,可按照附录 A 的要求填写验收结果。

附录 A: 通用验收报告模板

通用验收	(报告模板			
序号	验收项目	验收子项	验收结果	备注
1	系统平台	设备清单和组成结构	合格 不合格 免 检	
2	· 宏			
3	1型1人			
4				
5		服务器冗余	合格 不合格 免 检	
6	100	工作站冗余	合格 不合格 免 检	10 <u>/</u>
7	系统支撑	1101		
8	功能和性			
9	能	101111	$)1U_{1100}$	7
10		JU 16 10	10111	4
11) 1		
12				
13				
14				
15		实时检测功能	合格 不合格 免 检	
16				
17	//////	\wedge /()))((ora	cn
18	系统监控		9	
19	功能和性			
20	能			
21				
22				
23				
24				

请严格按照本报告操作指引中的相应内容进行验收,经确认无误后在以下位置签字认可

结论: (含不合格项处理方案、负责人、截止日期):

本次验收工作共验收 项,通过 项,未通过 项,免测试

备注: (后续处理意见)

项

乙方代表: 甲方代表:

日期:

ODCC服务号

ODCC订阅号

