GATE 2022 IN.53

EE23BTECH11010 - VENKATESH BANDAWAR*

Question: In a unity-gain feedback control system, the plant $P(s) = \frac{0.001}{s(2s+1)(0.01s+1)}$ is controlled by a lag compensator $C(s) = \frac{s+10}{s+0.1}$ The slope (in dB/decade) of the asymptotic Bode magnitude plot of the loop gain at $\omega = 3$ rad/s is integer) (GATE 2022 IN)

Solution:

Parameter	Description	Value
P(s)	Plant Transfer Function	$\frac{0.001}{s(\frac{s}{0.5}+1)(\frac{s}{100}+1)}$
C(s)	Lag Compensator	$\frac{100(\frac{s}{10}+1)}{\frac{s}{0.1}+1}$
T(s)	Loop gain	P(s)C(s)
ω	Angular Frequency	3rad/s

TABLE I: Given Parameters list

$$|T(s)| = \frac{0.1\left(\frac{s}{10} + 1\right)}{s\left(\frac{s}{0.5} + 1\right)\left(\frac{s}{100} + 1\right)\left(\frac{s}{0.1} + 1\right)} \tag{1}$$

Here, 10, 0.5, 100, 0.1 are corner frequencies of loop gain L(s)

Corner Frequency	Description	Change in slope
10	Zero	20dB/dec
0.1	Pole	-20dB/dec
0.5	Pole	-20dB/dec
100	Pole	-20dB/dec

TABLE II: Caption

Fig. 1: Pink Line = Bode magnitude plot of loop gain

$$Gain(K) = \lim_{s \to 0} sT(s)$$
 (2)

$$K = 0.1 \tag{3}$$

$$|T(s)| = 20\log_{10}K\tag{4}$$

$$= -20dB \tag{5}$$

$$T\left(\omega\right) = \begin{cases} -20log_{10}(w) & \omega < 0.1 \\ -20.0\left(2log_{10}(w) - 0.1\right) & 0.1 \leq \omega < 0.5 \\ -20.0\left(3log_{10}\omega - 0.1 + log_{10}0.5\right) & 0.5 \leq \omega < 10 \\ -20.0\left(2log_{10}\omega + 0.9 + log_{10}0.5\right) & 10 \leq \omega < 100 \\ -20.0\left(3log_{10}\omega - 1.9 + log_{10}0.5\right) & \omega \geq 100 \end{cases}$$

Slope of Bode magnitude plot (at $\omega = 3$) = -60 dB/decade