

Group 1



# Deriodic Table of the Elements





 $\underset{\text{helium}}{He}$ 

8

 $\mathop{\stackrel{\text{10}}{N}}_{\text{20.18}}$ 

 $\mathop{\mathrm{Ar}}_{^{18}}$ 

| 71                     | 9<br>Huorine<br>18.998                                                                                    | 17<br>C1<br>chlorine<br>35.4515          | 35 Br                                    | 79.904<br>53               | <b>L</b><br>iodine<br>126.9         | 85<br>At                                             | astatine<br>(210)  |
|------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------|-------------------------------------|------------------------------------------------------|--------------------|
| 91                     | 8<br>O<br>oxygen<br>15.9995                                                                               | 16<br><b>S</b><br>sulfur<br>32.0675      | Se selenium                              | 78.971<br>52               | LC<br>tellurium<br>127.6            | Po                                                   | polonium<br>(209)  |
| 15                     | N nitrogen 14.007                                                                                         | 15 P                                     | AS                                       | 74.922<br>51               | antimony<br>121.76                  | Bi                                                   | bismuth            |
| <u>4</u> -             | 6<br>Carbon<br>12.0105                                                                                    | Silicon                                  | Germanium                                | 50                         | tin<br>118.71                       | 82<br>Pb                                             | lead               |
| 13                     | 5<br><b>B</b><br>boron<br>10.8135                                                                         | Al aluminium 26.982                      | Ga                                       | 69.723<br>49               | <b>LLL</b><br>indium<br>114.82      | - E                                                  | thallium           |
|                        |                                                                                                           | 12                                       | $\sum_{ m zinc}^{30}$                    | 65.38                      | Cadmium<br>112.41                   | gH<br>B                                              | mercury<br>200 59  |
|                        |                                                                                                           | F                                        | $\operatorname{C}^{^{2}}_{\mathfrak{g}}$ | 63.546                     | silver<br>107.87                    | Au                                                   | gold<br>196 97     |
|                        |                                                                                                           | 01                                       | $N_1^{28}$                               | 58.693<br>46               | <b>L'Q</b><br>palladium<br>106.42   | Pt                                                   | platinum<br>195 08 |
|                        |                                                                                                           | б                                        | Go Go                                    | 58.933<br>45<br><b>D.1</b> | rhodium<br>102.91                   | Ir                                                   | iridium<br>192 22  |
|                        |                                                                                                           | ∞                                        | Fe liga                                  | 55.845<br>44<br><b>D11</b> | ruthenium<br>101.07                 | os<br>Os                                             | osmium<br>190 23   |
|                        | Z: atomic number X: Pauling electronegativity ss: last occupied subshell Sy: symbol element: element name | i atomic weight†                         | Mn manganese                             | 54.938<br>T                | technetium (97)                     | Re                                                   | rhenium<br>186 21  |
|                        | Z: atomic number X: Pauling electrol S: last occupied s Sy: symbol element: element                       | saw: standard                            | $G_{\mathbf{r}}^{24}$                    | 51.996<br>42               | I <b>VIO</b><br>molybdenum<br>95.95 | N                                                    | tungsten<br>183 84 |
|                        | Sy<br>element<br>saw                                                                                      | اد                                       | 23 V                                     | 50.942<br>41               | IND<br>niobium<br>92.906            | $\overset{\scriptscriptstyle{n}}{\operatorname{Ia}}$ | tantalum<br>180 95 |
|                        |                                                                                                           | 4                                        | $\prod_{titanium}^{22}$                  | 47.867                     | Zirconium<br>91.224                 | H                                                    | hafnium<br>178 40  |
|                        |                                                                                                           | m                                        | SC Scandium                              | 39                         | yttrium<br>88.906                   | *                                                    | lanthanides        |
| 7                      | Be beryllium 9.0122                                                                                       | $\stackrel{12}{\mathrm{Mg}}_{magnesium}$ | Ca Calcium                               | 38<br>7                    | Strontium<br>87.62                  | Ba                                                   | barium<br>137 33   |
| H<br>hydrogen<br>1.008 | 3<br><b>L</b> 1<br>lithium<br>6.9675                                                                      | Na<br>sodium<br>22.99                    | 19<br>K                                  | 39.098<br>37<br><b>D1</b>  | rubidium<br>85.468                  | Cs                                                   | caesium            |

 $\mathop{Kr}\limits_{83.798}$ 

 $\mathop{\overset{54}{Xe}}_{\underset{131.29}{\text{kernon}}}$ 

| $\mathop{Lu}_{\text{lutetium}}^{7}$                 | $\frac{103}{\mathbf{L}\mathbf{r}}$ lawrencium (266)                              |
|-----------------------------------------------------|----------------------------------------------------------------------------------|
| ^                                                   | NO<br>nobelium<br>(259)                                                          |
| 69<br>Tm<br>thulium<br>168.93                       | Md<br>mendelevium<br>(258)                                                       |
| 68<br>Err<br>erbium<br>167.26                       | $\mathop{Fm}_{\scriptscriptstyle{\text{fermium}}\atop\scriptscriptstyle{(257)}}$ |
| HO<br>holmium<br>164.93                             | $\underset{\text{einsteinium}}{E_{\mathbf{S}}}$                                  |
| 66 Dy dysprosium 162.5                              | $\mathop{Cf}_{\text{californium}}$                                               |
| 65<br>Tb<br>terbium<br>158.93                       | $\frac{97}{\mathbf{B}\mathbf{k}}$ berkelium (247)                                |
| Gd gadolinium                                       | $\overset{96}{Cm}_{\overset{curium}{(247)}}$                                     |
| 63<br>Eu<br>europium<br>151.96                      | $\mathop{Am}\limits_{\text{americium}\atop(243)}$                                |
| Sm<br>samarium<br>150.36                            | $\Pr_{\text{plutonium}}^{94}$                                                    |
| $\underset{promethium}{Pm}$                         | $\mathop{Np}_{\text{neptunium}\atop (237)}^{93}$                                 |
| 60<br>Nd<br>neodymium<br>144.24                     | 92<br>U<br>uranium<br>238.03                                                     |
| $\Pr_{140.91}^{59}$                                 | $\Pr_{\text{protactinium}}^{91}$                                                 |
| 58<br><b>Ce</b><br>cerium<br>140.12                 | $\prod_{\substack{\text{thorium}\\232.04}}$                                      |
| $\mathop{La}\limits_{\text{lanthanum}\atop 138.91}$ | $\mathop{\mathrm{Ac}}_{{}^{(227)}}^{89}$                                         |
| *                                                   | *<br>*                                                                           |

 $\mathop{\text{Oganesson}}_{(294)}$ 

tennessine (294)  $\frac{H}{S}$ 117

livermorium (293)  $\Gamma_{\Delta}$ 911

> moscovium (290) Mc

 $\prod_{\text{flerovium}\atop{(289)}}$ 

 $\mathop{Nh}_{\text{nihonium}}$ 

copernicium (285) Cn

Rg

91

darmstadtium Ds (281)

meitnerium (278) Mt

hassium (269)  $\mathbf{H}\mathbf{s}$ 

 $\underset{\text{(270)}}{Bh}$ 

Sg seaborgium (269)

 $\mathop{Db}_{\text{dubnium}}_{\text{(268)}}$ 

rutherfordium  $\stackrel{\text{\tiny 104}}{Rf}$ 

> actinides 水水

 $\underset{\text{(226)}}{\text{Ra}}$ 

 $\underset{(223)}{Fr}$ 

(267)

118

 $\mathop{Rh}\limits_{\text{radon}\atop(222)}^{86}$ 

†Standard atomic weights (average terrestrial atomic weight) taken from the Commission on Isotopic Abundances and Atomic Weights (http://www.ciaaw.org/abridged-atomic-weights.htm). If CIAAW indicates a range for the standard atomic weight of an element, I used the arithmetic mean of the boundaries of the range. Elements with atomic weight in parentheses (e.g., Francium (223)) have no known stable isotopes and it is therefore impossible to provide a standard atomic weight. For these elements, the mass of a representative isotope is provided. 'Indicates an anomalous (Àufbau rule-breaking) ground state electron configuration. Inspired by Ivan Griffin's Eff& Periodic Table. BfExcode is released under the MIT open source license. Final product (this Table) is released under creative commons attribution/share-alike copyright terms. ©©© 2019. Paul N. Danese





### **Abbreviations:**

• atm: atmosphere

• g, mg: gram, milligram

• K: Kelvin

- L, mL: liter, milliliter

• M: Molar / molarity

• mmHg: millimeters of mercury

• mol: mole

# Moles, conversion, pH, and other stuff:

• 1 mole = 
$$6.0221 \times 10^{23}$$
 things

• Kelvin = 
$$^{\circ}$$
C + 273.15

• 
$${}^{\circ}F = 1.8 \times {}^{\circ}C + 32$$

• 
$${}^{\circ}C = \frac{({}^{\circ}F - 32)}{1.8}$$

• 
$$pH = -1 \times log[H_3O^+]$$

• 
$$1000 \, mL = 1 \, L$$

• 
$$1000 g = 1 kg$$

• 
$$1 \, \text{mL} = 1 \, \text{cm}^3$$

• density = 
$$\frac{\text{mass}}{\text{volume}}$$

# **Concentration equations:**

• 
$$\%(m/m) = \frac{mass \text{ of solute}}{mass \text{ of solution}} \times 100$$

• 
$$\%(v/v) = \frac{\text{volume of solute}}{\text{volume of solution}} \times 100$$

• 
$$\%(m/v) = \frac{mass \text{ of solute in grams}}{volume \text{ of solution in } mL} \times 100$$

• Molarity = 
$$\frac{\text{number of moles of solute}}{\text{number of Liters of solution}}$$

## Gas equations:

• Boyle's Law:  $P_1V_1 = P_2V_2$ 

- Charles's Law: 
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

• Gay-Lussac's Law: 
$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

• Combined gas Law: 
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

• Avogadro's Law: 
$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$

• Universal gas constant: 
$$R = \frac{0.0821 Latm}{mol K}$$

• Ideal gas Law: PV = nRT