EJEMPLO 8.1.2 Valores característicos y vectores característicos de la matriz identidad

Sea A = I, entonces para cualquier $\mathbf{v} \in \mathbb{C}^n$, $A\mathbf{v} = I\mathbf{v} = \mathbf{v}$. Así, 1 es el único valor característico de A y todo $\mathbf{v} \neq \mathbf{0} \in \mathbb{C}^n$ es un vector característico de I.

Se calcularán los valores y vectores característicos de múltiples matrices en esta sección. Pero primero es necesario probar algunas técnicas que simplificarán estos cálculos.

Suponga que λ es un valor característico de A. Entonces existe un vector diferente de cero

$$\mathbf{v} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \neq \mathbf{0} \text{ tal que } A\mathbf{v} = \lambda \mathbf{v} = \lambda I\mathbf{v}. \text{ Reescribiendo esto se tiene}$$

$$(A - \lambda I)\mathbf{v} = \mathbf{0}$$
(8.1.3)

Si A es una matriz de $n \times n$, la ecuación (8.1.3) corresponde a un sistema homogéneo de n ecuaciones con las incógnitas x_1, x_2, \ldots, x_n . Como se ha supuesto que el sistema cuenta con soluciones no triviales, se concluye que det $(A - \lambda I) = 0$. De forma inversa, si det $(A - \lambda I) = 0$, entonces la ecuación (8.1.3) tiene soluciones no triviales y λ es el valor característico de A. Por otro lado, si det $(A - \lambda I) \neq 0$, entonces la única solución a (8.1.3) es $\mathbf{v} = \mathbf{0}$, de manera que λ no es un valor característico de A. Resumiendo estos hechos se tiene el siguiente teorema.

Teorema 8.1.1

Sea A una matriz de $n \times n$. Entonces λ es un valor característico de A si y sólo si

$$p(\lambda) = \det (A - \lambda I) = 0$$
 (8.1.4)

Definición 8.1.2

Ecuación y polinomio característicos

La ecuación (8.1.4) se denomina la ecuación característica de A; $p(\lambda)$ se denomina el polinomio característico de A.

Como será evidente en los ejemplos, $p(\lambda)$ es un polinomio de grado n en λ . Por ejemplo, si

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \text{ entonces } A - \lambda I = \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} \text{ y } p(\lambda) = \det (A - \lambda I) = (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + (ad - bc).$$

De acuerdo con el **teorema fundamental del álgebra**, cualquier polinomio de grado n con coeficientes reales o complejos tiene exactamente n raíces (contando multiplicidades). Esto significa, por ejemplo, que el polinomio $(\lambda - 1)^5$ tiene cinco raíces, todas iguales al número 1. Como cualquier valor característico de A es una raíz de la ecuación característica de A, se concluye que

Teorema fundamental del álgebra

Contando multiplicidades, toda matriz de $n \times n$ tiene exactamente n valores característicos.