Understanding In-Context Learning using Simple Models

Percy Liang

A language model called GPT-3

Dataset	Quantity (tokens)
Common Crawl (filtered)	410 billion
WebText2	19 billion
Books1	12 billion
Books2	55 billion
Wikipedia	3 billion

In 1885, Stanford University was _____

3640 petaFLOPS-days

In-context learning in GPT-3 (Brown et al. 2020)

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

GPT-3 can perform "unnatural" tasks (Rong, 2021)

```
Input: 2014-06-01
Output: !06!01!2014!
Input: 2007-12-13
                        in-context
Output: !12!13!2007!
                        examples
Input: 2010-09-23
Output: !09!23!2010!
Input: 2005-07-23
                        test example
Output: !07!23!2005!
               model completion
```

Scale matters

Why in-context learning matters

Scientific: emergent phenomena

- GPT-3 was not built to explicitly do in-context learning
- Train (predict next word) ≠ test (wide range of downstream tasks)
- What else is there? Chain of thought (Wei et al. 2022), etc.

Practical: paradigm shift in how we build ML systems

- Can prototype new tasks in an afternoon rather than setup a data collection
- In real world, we don't start with a dataset, but with a vague idea of what we
 want to do

Two types of learning

Standard learning: gradient

$$W \leftarrow W - \nabla loss(x_i, y_i, W)$$

In-context learning: conditioning

$$p(y_{query} | x_1, y_1, ..., x_k, y_k, x_{query})$$

Relationship to meta-learning

Black-box meta learning is a paradigm for (meta-)training...

...a model that can perform in-context learning.

Questions

1. How can a **fixed** model (e.g., a Transformer) perform in-context learning?

2. How does such a model arise from **training** (e.g., on next word prediction)?

How can we understand in-context learning?

Components

- Data: Synthetic? CommonCrawl? The Pile?
- Model architecture: Transformer? RNNs? Mixture of experts?
- Training objective / algorithm: autoregressive? contrastive learning?

How can we study this?

- Theoretical: develop toy model, analytically understand why
- Synthetic experiments: develop simple model, draw clean conclusions
- Real-world experiments: realistic, but messy and expensive

Outline

1. What Can Transformers Learn In-Context? (NeurIPS 2022) architecture, synthetic experiments

2. In-context Learning as Implicit Bayesian Inference (ICLR 2022)

data, synthetic experiments + theory

What Can Transformers Learn In-Context?

(NeurIPS 2022)

Language models can perform in-context learning

Are models actually doing in-context **learning**?

```
night -> Nacht
book -> Buch
table -> Tisch
chair -> Stuhl
```

German translation of 'book'

book

[bok] 40 0

NOUN

1. Buch nt ♠; (= exercise book) Heft nt ♠; (= division: in Bible, poem etc) Buch nt 40

the (good) Book das Buch der Bücher

https://www.collinsdictionary.com/dictionary/english-german/book

Here's how to enhance your confidence by starting with some basic words and phrases to build your German word bank:

- . Guten Tag = Good day
- · Hallo = Hello
- · Auf Wiedersehen = Goodbye
- . Bitte = Please
- . Danke = Thanks, Thank you
- · Entschuldigung = Sorry
- · Gesundheit = Bless you (after someone sneezes)
- · Ja = Yes
- · Nein = No

https://www.rosettastone.com/languages/german-words

Definition: in-context learning a function class

Model architecture

Training for in-context learning

What can the trained Transformer in-context learn?

In-context learning linear functions (20 dimensions)

Transformer implements an algorithm like least squares!

Has the Transformer **really** learned to do least squares?

Can the Transformer extrapolate to different distributions?

Train: $x \sim N(0, 1)$

Test: x and q from different orthants

Transformer matches least squares!

Train: identity covariance

Test: skewed covariance

Skewed covariance: $x \sim N(0, \Sigma^2)$

 $(D_x^{train} != D_x^{test})$

(the i-th eigenvalue is proportional to 1/i²)

Transformer degrades a bit...

Train: no noise

Test: label noise

Transformer and least squares both exhibit double descent!

Can we train a Transformer to in-context learn function classes beyond linear functions?

In-context learning sparse linear functions

Transformer matches lasso

In-context learning 2-layer ReLU networks

Transformer matches gradient descent

In-context learning decision trees

Transformer outperforms XGBoost!

Impact of model size

dimensions

Model size is especially important for extrapolation

Summary

- Define in-context learning of function class (property of a model)
- Can train Transformer to in-context learn linear functions, sparse linear functions, neural networks, decision trees
- Evaluate Transformer on robustness to out-of-distribution prompts
- Can match qualitative behavior of lasso, double descent, etc. Transformers are representing learning algorithms?

Open questions

- What are the properties of the Transformer's in-context learned function?
- Can other architectures (e.g., RNNs, S4, etc.) perform in-context learning?
- How can we understand the Transformer's algorithm mechanistically?
 - Construction of Transformer that does linear regression (Akyürek et al. 2022)
- Can we gain new algorithmic insights?
- How do we tie this back to real tasks with prior knowledge?

Outline

1. What Can Transformers Learn In-Context? (NeurIPS 2022) architecture, synthetic experiments

2. In-context Learning as Implicit Bayesian Inference (ICLR 2022)

data, synthetic experiments + theory

In-context Learning as Implicit Bayesian Inference (ICLR 2022)

Michael Xie Aditi Raghunathan Percy Liang Tengyu Ma

Two types of learning

Standard learning: gradient

$$W \leftarrow W - \nabla loss(x_i, y_i, W)$$

In-context learning: conditioning

$$p(y_{query} | x_1, y_1, ..., x_k, y_k, x_{query})$$

Bayesian inference

Posit a latent concept θ (e.g., task)

Transformer directly fits the posterior predictive distribution!

Questions

1. How can a **fixed** model (e.g., a Transformer) perform in-context learning?

First part of talk: showed Transformer can learn linear regression

2. How does such a model arise from **training** (e.g., on next word prediction)? *This is the harder question...*

Main challenge: distribution shift

Pretraining distribution

Dataset	Quantity (tokens)
Common Crawl (filtered)	410 billion
WebText2	19 billion
Books1	12 billion
Books2	55 billion
Wikipedia	3 billion

Prompting distribution

```
Translate English to French: task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

pretraining distribution ≠ prompting distribution

Pretraining distribution: mixture of HMMs

Concept θ encodes transitions in HMM

Albert Einstein was a German theoretical physicist, widely acknowledged to be one of the greatest physicists of all time. Einstein is best known for developing the theory of relativity, but he also

Intuition

Language model **implicitly** infers latent concept θ

Albert Einstein was a German theoretical physicist, widely acknowledged to be one of the greatest physicists of all time. Einstein is best known for developing the theory of relativity, but he also

Prompting distribution: one HMM, independent pieces

Generate in-context examples independently from $HMM(\theta^*)$

Intuition

Can the language model infer concept θ^* ?

Difficulty: condition on samples from prompt distribution, not training distribution!

Prompting distribution

Low-prob transitions between examples

Albert Einstein was German \n Mahatma Gandhi was Indian \n Marie Curie was

In-distribution transitions reveal information about θ^*

Main theoretical result (sketch)

Then as $k \to \infty$, in-context learning is asymptotically consistent:

$$\operatorname{argmax}_{y} \operatorname{p}_{\operatorname{train}}(y \mid x_{1}, y_{1}, ..., x_{k}, y_{k}, x_{\operatorname{query}}) \rightarrow \operatorname{argmax}_{y} \operatorname{p}_{\operatorname{prompt}}(y \mid x_{\operatorname{query}}, \theta^{*})$$

Takeways

- Try to make prompting distribution close to training distribution
 - o e.g., Berlin is the capital of Germany
- Use neural delimiters that don't increase probability of wrong concept
 - e.g., \n, #

Next: run experiments on a synthetic dataset to test theory...

GINC: generative in-context dataset

- A small-scale dataset for studying in-context learning
- Pretraining: 1000 documents, each doc is one long sequence from some $HMM(\theta)$
- Prompting: 2500 prompts with concatenated independent examples

Pretraining document

```
f / h x ax o a k au ap /
a o u au ae f ao an / ah
u y as a k au j w ax l
aw r ae au g au ap / / u
aj ae d a h x af u aj i
r j w j as y x n i ap
```

In-context Prompt

```
nh
l aw ac / ax aj ae / ac j
u
.
```

•••

Results

k: length of an example

Trained Transformers and LSTMs can do in-context learning

Effect of model scaling

- In GINC: in-context accuracy improves with model size (no surprise)
- But it improves even if pretraining loss is the same
- Inductive bias for in-context learning improves with model size?

Transformer # layers	GINC Vocab size	Pretrain Val loss	In-context Acc
12 layer	50	1.33	81.2
16 layer	50	1.33	84.7

0-shot can be better than 1-shot

- GPT-3: 0-shot is better than 1-shot for some datasets (e.g., LAMBADA, HellaSwag, PhysicalQA, RACE-m)
- Sometimes the same thing happens in GINC:

Prompting using random labels (Min et al. 2022)

If randomize labels:

Prompting using random labels (Min et al. 2022)

Accuracy doesn't drop much (would destroy traditional supervised learning):

Explanation using Bayesian inference

In-context inputs $x_1, ..., x_k$ help us nail down the concept despite noisy labels!

Inintuitive relabelings (Rong 2021)

Training examples (truncated)

beet: sport

golf: animal

horse: plant/vegetable

corn: sport

football: animal

Test input and predictions

monkey: plant/vegetable /

panda: plant/vegetable /

cucumber: sport /

baseball: animal /

tennis: animal /

Not captured in our framework...

Summary

- Bayesian inference: useful way to think about in-context learning
 - Learning = conditioning
 - Approximate the posterior predictive p(y_{query} | x₁, y₁, ..., x_k, y_k, x_{query})
- Main challenge: pretraining distribution ≠ prompting distribution
 - Can bound the errors due to transitions
- All theoretical results are independent of architecture, all about the data distributions!
- GINC: small synthetic dataset provides testbed for learning

Outline

1. What Can Transformers Learn In-Context? (NeurIPS 2022) architecture, synthetic experiments

2. In-context Learning as Implicit Bayesian Inference (ICLR 2022)

data, synthetic experiments + theory

Final remarks

- In-context learning is one of the great mysteries in modern Al
- It is becoming the foundation for many AI applications
- **Understanding** is key to scientific progress and engineering better systems
- This talk: synthetic setups can help us more rigorously explore
 - o ...the role of the model architecture
 - o ...the role of the data distributions
- Open question: connect this with real settings
- Other emergent phenomena (chain-of-thought)
 - Scrap the idea of a task!