Contents

USCSP301	- USCS303:0	Operating	System	(OS)	Practical-0	1
----------	-------------	------------------	---------------	------	--------------------	---

Practial-01: First come serve (FCFS) Algori	thm1
Practical Date: 17 th July.2021	2
Practical Aim: Implement FCFS scheduling	ng algorithm using Java3
Algorithm	4
Solved Example	5
Gnatt Chart	6
Implementation	7
Input	
Output	9
Sample Output -01	10
Sample Output -02	11

1) Algorithm

- * CPU scheduling algorithm are used for scheduling different process present in the ready queue with available resource in an optimal way so that each and every process get execute by CPU
- * Scheduling algorithm are broadly classified into two main type namely preemptive and non-preemptive .
- * FIRST COME FIRST OUT(FCFS) is also know as FIRST IN FIRST OUT (FIFO) SCHEDUAL algorithm is theand simplest CPU.
- * A process scheduling different process to be assigned to the CPU based on particular scheduling algorithm there are six popular process scheduling algorithm which we are going to discuss in this chapter FIRST COME FIRST OUT SHEDULING . 1) Algorithm

EXAMPLE 1: Consider the following example containing five process arrive at same time.

Process ID	Times new
P0	6
P1	3
P2	8
Р3	3
P4	4

SOLVE:

Step 1: Process get execute according to their arrival time.

Step 2: Following show the scheduling and execute of process.

Step 2.2: At start p0 arrive and get execute for 6 seconds.

System time	0
Process Schedualed	PO
Turn around time	6-0=6
Wating Time	6-6=0

Step 2.2: p1 arrive after completion of p0 , p1 is execute for 3

System time	6
Process Schedualed	P0,p1
Turn around time	9-0=9
Wating Time	9-3=6

Step2.3: p2 arrive after complete execution of process p1 for 8.

System time	9
Process Schedualed	P0,p1,p2
Turn around time	17-0=17
Wating Time	17-8=9

Step 2.4:p3 arrive and gets execute for 3.

System time	17
Process Schedualed	P0,p1,p2,p3
Turn around time	20-0=20
Wating time	20-3=17

Step 2.5: similary p4 arrives gets execute for 4.

System time	20
Process Schedualed	P0,p1,p2,p3,p4
Turn around time	24-0=24
Wating time	24-4=20

Step 3: calculate average wating time and average turn around time.

Average wating time =(0+6+9+17+20)/5

=

_

.

Average turn around time:(6+9+17+20+24)/5

$$= 15.2$$

Gnatt Chart.

Step 4: after scheduling of all provided processes.

Process id	Burst time	Arrival time	Finish time	Turn Around time	Wating time
PO	6	0	0+6=6	6-0=6	6-6=0
P1	3	0	6+3=9	9-0=9	9-3=6
P2	8	0	9+8=17	17-0=17	17-8=9
Р3	3	0	17+3=20	20-0=20	20-3=17
P4	4	0	20+4=24	24-0=24	24-4=20

AVERAGE			15.200000	10.400000
PO	P1	P2	P3	P4
EXAMPLE 2:				

Consider the following example contain five with varied arrive time.

Process Id	Burst Time	Arrival Time
PO	6	2
P1	3	5
P2	8	1
P3	3	0
P4	4	4

Step 1: Process get execute according to their arrival time.

Step 2: Following show the scheduling and execute of process.

Step 2.2: At start p3 arrive and get execute for 0-3 second.

System time	0

Process Schedualed	Р3
Turn around time	3-0=3
Wating Time	3-3=0

Step 2.3: p0 arrives at time 4 sec but gets resource of cpu at 17 second for execution its execution period is 17-21 second.

System time	11
Process Schedualed	P3.p2,p0
Turn around time	17-2=15
Wating Time	15-6=13

Step 2.4: p4 arrives at time 4 sec but gets resource of cpu at 17 second for execution period is 17-21 second.

System time	17
Process Schedualed	P0,p1,p2,p3
Turn around time	20-0=20
Turn around time	20-3=17

Step 2.5: similarly p1 arrives at time 5 sec but its execution gets started turn around time 21 second and last for a period 21-24 second.

System time	21
Process Schedualed	P3,p2,p0,p4,p1
Turn around time	24-5=19
Turn around time	19-5=19

Step 3: calculate average wating time and average turn around time.

Average wating time =(0+2+9+13+16)/5

=40/5

=8

Average turn around time:(3+10+15+17+19)/5

=64/5

=12.8

Gnatt Chart.

Step 4: after scheduling of all provided processes.

Process id	Burst time	Arrival time	Finish time	Turn Around time	Wating time
Р3	3	0	0+3=3	3-0=3	3-3=0
P2	8	1	3+8=11	11-1=10	10-8=2
PO	6	2	11+6=17	17-2=15	15-6=9
P4	4	4	17+4=21	21-4=17	17-4=13
P1	3	5	21+3=24	24-5=19	19-3=16
AVERAGE				12.8000000	8.000000

PO	P1	P2	Р3	P4	
0	3	11	17	21	24

EXAMPLE 3: Consider the following example containing five processes arrive at the Same time.

Process ID	Times new
P0	2
P1	1
P2	6

SOLVE:

Step 1: Process get execute according to their arrival time.

Step 2: Following show the scheduling and execute of process .

Step 2.1: At start p0 arrive and get execute for 2 second.

System time	0
Process Schedualed	PO
Turn around time	2-0=2
Wating Time	2-2=0

Step 2.2: p1 arrive after completion of p0, p1 is execute for 1.

System time	2
Process Schedualed	P0,p1
Turn around time	3-0=3
Wating Time	3-1=2

Step2.3: p2 arrive after complete execution of process p1 for 6.

System time	3
Process Schedualed	P0,p1,p2
Turn around time	9-0=17
Wating Time	9-6=3

Step 3: calculate average wating time and average turn around time.

Average wating time =(0+2+3)/3

=5/3

=1.6666

Average turn around time:(2+3+9)/

=14/3

=4.6666

Gnatt Chart.

Step 4: after scheduling of all provided processes.

Process id	Burst time	Arrival time	Finish time	Turn Around time	Wating time
P0	2	0	0+2=2	2- 0=2	2-2=0
P1	1	0	2+1=3	3- 0=3	3-1=2
P2	6	0	3+6=9	9- 6=3	9-6=3
AVERAGE				4.66	1.666

	P0		P1		P2	
0	4	2		3		9

EXAMPLE 4: Consider the following example containing five process with varied arrival time.

Process id	Burst time	Arrival time	
P0	4	3	
P1	3	5	
P2	2	0	
Р3	1	5	
P4	3	4	

Step 3: calculate average wating time and average turn around time.

Average wating time =(3+1+7+4+6)/5

=21/5

=4.2

Average turn around time: (1+2+9+5+9)/5

=26/5

=5.2

Gnatt Chart.

Step 4: after scheduling of all provided processes.

Process id	Burst time	Arrival time	Finish time	Turn Around time	Wating time
PO	4	3	6	3	1
P1	3	5	12	7	4
P2	2	0	2	2	0
Р3	1	5	13	8	7
P4	3	4	9	5	92
AVERAGE				5.0000	2.40000

P2	P0	P4	P3	
		4 1 1		
2	6	9	12	13 0

```
IMPLEMENATION:
import java.util.Scanner;
public class P1 FCFS SS
int burstTime[];
int arrivalTime[];
String[] processId;
int numberOfProcess;
void getProcessData(Scanner input){
System.out.println("enter the number of process for Scheduling:"
int inputNumberOfProcess=input.nextInt();
numberOfProcess=inputNumberOfProcess;
burstTime=new int[numberOfProcess];
arrivalTime=new int[numberOfProcess];
processId=new String[numberOfProcess];
String st="p";
for(int i=0;i < numberOfProcess;i++){
processId[i]=st.concat(Integer.toString(i));
System.out.print("enter the burst time for process-"+(i)+":");
burstTime[i]=input.nextInt();
System.out.println("enter the arrival time for process-"+(i)+":");
arrivalTime[i]=input.nextInt();
}
void sortAccordingArrivalTime(int[] at,int[] bt,String[] pid){
```

```
boolean swapped;
int temp;
String stemp;
for (int i=0;i<numberOfProcess;i++){
swapped=false;
for (int j = 0; j < numberOfProcess-i-1; j + + ){
if(at[j]>at[j+1]){
temp=at[j];
at[j]=at[j+1];
at[j+1]=temp;
temp=bt[j];
bt[j]=bt[j+1];
bt[j+1]=temp;
stemp=pid[j];
pid[j]=pid[j+1];
pid[j+1]=stemp;
swapped=true;
```

```
if(swapped==false){
break;
void firstComeFirstServeAlgorithm(){
int finishTime[]=new int[numberOfProcess];
int bt[]=burstTime.clone(); int
at[]=arrivalTime.clone();
String pid[]=processId.clone();
int waitingTime[]=new int[numberOfProcess];
int turnAroundTime[]=new int[numberOfProcess];
sortAccordingArrivalTime(at,bt,pid);
finishTime[0]=at[0]+bt[0];
```

```
turnAroundTime[0]=finishTime[0]-at[0];
waitingTime[0]=turnAroundTime[0]-bt[0];
for(int i=1;i<numberOfProcess;i++){</pre>
finishTime[i]=bt[i]+finishTime[i-1];
turnAroundTime[i]=finishTime[i]-at[i];
waitingTime[i]=turnAroundTime[i]-bt[i];
float sum=0;
for(int n:waitingTime){
sum+=n;
float averageWaitingTime=sum/numberOfProcess;
sum=0;
for(int n:turnAroundTime)
sum+=n;
float averageTurnAroundTime=sum/numberOfProcess;
System.out.println("FCFS Scheduling algorithm :");
System.out.format("%20s%20s%20s%20s%20s%20s\n", "ProcessId", "BurstTime"
```

```
,"ArrivalTime","FinishTime","TurnAroundTime","WatingTime"); for(int

i=0;i<numberOfProcess;i++){

System.out.format("%20s%20d%20d%20d%20d%20d\n",pid[i],bt[i],at[i]

,finishTime[i],turnAroundTime[i],waitingTime[i]);

}

System.out.format("%80s%20f%20f\n", "Average",averageTurnAroundTime,averageWaitingTime);

}

public static void main(String[] args){

Scanner input=new Scanner(System.in);

P1_FCFS_SS obj=new P1_FCFS_SS();

obj.getProcessData(input);
```


INPUT:

```
D:\os\p1>javac P1_FCFS_ST.java

D:\os\p1>java P1_FCFS_ST

Enter the number of Process for Scheduling: 5

Enter the burst time for process - 0 : 6

Enter the arrival time for process - 0 : 2

Enter the burst time for process - 1 : 3

Enter the arrival time for process - 1 : 5

Enter the burst time for process - 2 : 8

Enter the arrival time for process - 2 : 1

Enter the burst time for process - 3 : 3

Enter the burst time for process - 3 : 0

Enter the arrival time for process - 4 : 4

Enter the arrival time for process - 4 : 4

FCFS Scheduling Algorithm:
```

OUTPUT:

CFS Scheduling Algorithm: ProcessId	Hurstline	AccivalTime	FinishTime	TurnAroundTime	WaitingTime
P3	3	9	3	3	3
P2	8	1	11	10	18
PB	6	2	17	15	15
P4	4	4	21	17	17
P1	3	5	24	19	19
			Average	12,800000	8.000000
):\as\p1> <u>-</u>					

SAMPLE OUTPUT:-

