Theory of Computation

Lesson 16a - Turing Machines Intro continued

Summer- I 2024 - W. Schny

Review

Last Time:

- 1. Proof of Pumping Lemma for CFLs.
 - If in the parse tree of w some path from root to leaves includes a repeated variable, there corresponds a partition w = uvxyz with pumpable v, y. Some arrangement then guarantees v ≠ ε or y ≠ ε.
 - If |w| ≥ p then every parse tree of w is "tall" and includes a root-to-leaf path with repeated variables.
- 2. Turing Machines Intro
 - Definition
 - Transitions are quintuples (q, a) (p, b, M)
 - Left moves ignored at left end of tape
 - Configurations

Summer-I 2024 - W. Schnyder

Configurations

Poll 16.1 Applied to configuration

 \Box a \Box a q b a b

transition (q, b) (p, a, R) yields

- (a) $\sqcup a \sqcup a p b a b$
- (b) $\Box a \Box p a b a b$
- (c) $\Box a \Box p a a a b$
- (d) $\sqcup a \sqcup a a p a b \leftarrow correct$

Turing Machines

Formal Definition. A (deterministic) Turing Machine is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, s, q_{accept}, q_{reject})$

where

- 1. Q is a finite set whose elements are called states.
- 2. Σ is the input alphabet not containing the blank symbol \sqcup .
- 3. Γ is the tape alphabet, with $\Sigma \subseteq \Gamma$ and $\sqcup \in \Gamma$
- 4. $\delta: (Q \{q_{accept}, q_{reject}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition function.
- 5. $s \in Q$ is the start state.
- 6. $q_{accept} \in Q$ is the accepting state.
- 7. $q_{reject} \in Q$ is the rejecting state with $q_{accept} \neq q_{reject}$.

Summer-I 2024 - W. Schnyder

Turing Machines

Exercise. Design a Turing Machine that shifts its input one cell to the right (and finishes in state q_{accept} under the second cell).

Turing Machines

Exercise. Design a Turing Machine that shifts its input one cell to the right (and finishes in state q_{accept} under the second cell).

 $Q = \{s, q_{accept}, q_{reject}\} \cup \{q_{left}\} \cup \{q_x \mid x \in \Sigma\}$

For every $x \in \Sigma$ there is a state q_x whose function is to insert x at the current position, shifting the input to the right

13

```
 \begin{array}{lll} (s \ \sqcup) \ (q_{accept} \ \sqcup \ R) & \text{ // handle empty input} \\ (s \ x) \ (q_x \ \sqcup \ R) & \text{ // for every } x \in \Sigma \\ (q_x \ y) \ (q_y \ x \ R) & \text{ // for all } x, y \in \Sigma \\ (q_x \ \sqcup) \ (q_{left} \ x \ L) & \text{ // for every } x \in \Sigma \\ (q_{left} \ x) \ (q_{left} \ x \ L) & \text{ // for every } x \in \Sigma \\ (q_{left} \ \sqcup) \ (q_{accept} \ \sqcup \ R) & \end{array}
```

Summer- I 2024 - W. Schnyder

Turing Machines

Exercise. Design a Turing Machine that, started with the head anywhere on a blank tape, will finish with a blank tape and the head on the first cell in state q_{accept} .

Theory of Computation

Lesson 16b - Decidable vs. Recognizable Languages

Deciders vs Recognizers

Given $L \subseteq \Sigma^*$, deterministic Turing machine M with input alphabet Σ .

Definition. $M \stackrel{\text{decides } L}{\text{decides } L}$ if for every $w \in \Sigma^*$ $w \in L \implies M$ accepts wM halts on every input w $w \notin L \Rightarrow M \text{ rejects } w$

Definition. M recognizes (accepts) L if for every $w \in \Sigma^*$

 $w \in L \implies M \text{ accepts } w$ $w \notin L \Rightarrow M$ does not accept $w \leftarrow M$ rejects or loops

In both cases $L = L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$

Summer- I 2024 - W. Schnyde

Deciders vs Recognizers

M decides *L* if for every $w \in \Sigma^*$ M recognizes L if for every $w \in \Sigma^*$ $w \in L \Rightarrow M \text{ accepts } w$ $w \in L \implies M$ accepts w $w \notin L \implies M \text{ rejects } w$ $w \notin L \Rightarrow M$ does not accept w

Note: M decides $L \Rightarrow M$ recognizes L

languages that can be recognized but that can't be decided.

Run M on input w	if $w \in L$ will we find out?	if $w \notin L$ will we find out?	
M decides L	yes	yes	
M recognizes L	yes	maybe not	

Deciders vs Recognizers

18

L is decidable: there is a Turing machine that decides L.

L is recognizable: there is a Turing machine that computably enumerable, recursively enumerable recognizes L.

Still to show: recognizable ≠ all decidable ≠ recognizable context-free ⊊ decidable

all languages $L \subseteq \Sigma^*$

Summer-I 2024 - W. Schnyde

 $M = (Q, \Sigma, \Gamma, \delta, s, q_{accept}, q_{reject})$ $\Sigma = \{a, b\}$ $\Gamma = \Sigma \cup \{\sqcup\}$ $Q = \{q_{even}, q_{odd}, q_{accept}, q_{reject}\}$

 $s = q_{even}$

Example: Design a Turing machine that decides the language $L = \{ w \in \{a, b\}^* \mid |w| \text{ is even} \}$

19

Decider example: even length words

Solution. L is regular. Simulate a DFA for L.

Transitions δ : qeven a q_{odd} b Rqeven b q_{even} a R q_{odd} a q_{even} b R q_{odd} b $q_{accept} \sqcup R$

 q_{odd} $q_{reject} \sqcup R$

Summer-I 2024 - W. Schnyde

Decider example: even length words

Tabular representation.

	δ	a	b	Ш
→	q _{even}	q _{odd} a R	q _{odd} b R	$q_{accept} \sqcup R$
•	q _{odd}	q _{even} a R	q _{even} b R	q _{reject} ⊔ R

Diagram representation.

For each (q, a) (p, b, move)

$$(q) \xrightarrow{a \to b, \text{ move}} (p)$$

If b = a, just write

$$q \rightarrow \text{move}$$

Decider example: more a's than b's

Exercise. Design a Turing machine that decides the language $\{w \in \{a, b\}^* \mid w \text{ has more } a\text{'s than } b\text{'s}\}$

Generalize. Given piece of text consisting of a's, b's and \times 's, decide whether there are more a's than b's.

Solution. Proceed in passes. Each pass removes one a and one b until only a's, or only b's, or none remain.

Decider example: more a's than b's

20

Exercise. Design a Turing machine that decides the language $\{w \in \{a, b\}^* \mid w \text{ has more } a\text{'s than } b\text{'s}\}$

Solution. Proceed in passes. Each pass removes one a and one b until only a's, or only b's, or none remain.

Decider example: more a's than b's

21

Exercise. Design a Turing machine that decides the language $\{w \in \{a, b\}^* \mid w \text{ has more } a\text{'s than } b\text{'s}\}$

Solution. Proceed in passes. Each pass removes one a and one b until only a's, or only b's, or none remain.

Pass begins at left end of text in state s looking for symbol of $\{a, b\}$

- If a found, erase, switch to state q_b looking for b.
- If b found, erase, switch to state q_a looking for a.
- Once q_a , q_b find target a or b, replace with \times and return left.

Invariants: (1) text to process never includes a blank.

(2) when in state s, tape to the left is blank, text to process begins at head position.

Decider example: more a's than b's

Exercise. Decider for $\{w \in \{a, b\}^* \mid w \text{ has more a's than b's}\}$

Decider example: more a's than b's

$$M = (Q, \Sigma, \Gamma, \delta, s, q_{accept}, q_{reject})$$
 $\Sigma = \{a, b\}$ $Q = \{s, q_{accept}, q_{reject}\} \cup \{q_a, q_b, q_{return}\}$ $\Gamma = \Sigma \cup \{\sqcup\} \cup \{\times\}$

Transitions δ :

Decider example: more a's than b's

```
# decides whether strings over
# {a,b} have more a's than b's

start: start
accept: good
reject: bad

transitions:
- [start, _, bad, _, R]
- [start, a, findb, _, R]
- [start, b, finda, _, R]
- [start, x, start, _, R]
- [finda, _, bad, _, R]
- [finda, _, bad, _, R]
- [finda, _, finda, _, R]
- [finda, x, finda, x, R]
- [findb, _, good, _, R]
- [findb, _, gindb, a, R]
- [findb, b, return, x, L]
- [findb, x, findb, x, R]
- [return, _, start, _, R]
- [return, _, return, a, L]
- [return, b, return, b, L]
- [return, x, return, x, L]
```

tint note:

- template slightly different from dfa's: need to specify the names of start, accept, and reject (can be any names),
- transitions are quintuples,
- tint uses the underscore _ as blank symbol.

to run (with test + verbose):

```
./tint -m one-way-tm -t -v more_as.txt "a a b a b"
```

can also use

https://tintgenerator.vercel.app

(has fixed names for accept and reject)

Summer- I 2024 - W. Schnyde

Decider example: more a's than b's

```
./tint -m one-way-tm -t -v more_as.txt "a a b a b"
start: a a b a b _
                                  return: _ _ x a x _
findb: __a b a b _
                                  return: _ _ x a x _
findb: _ a b a b _
                                  return: __ x a x _
return: _ a x a b _
                                  start: _ _ x a x _
return: _ a x a b _
                                  start: _ _ _ a x _
start: _ a x a b _
                                  findb: _ _ _ _ x _
findb: _ _ x a b _
                                   findb: _ _ _ x _
findb: _ _ x a b _
                                  accept: _ _ _ x ___
findb: _ _ x a b _
                                  Accepted.
                            27
                                                         Summer- I 2024 - W. Schnyde
```

Theory of Computation

Lesson 16d - More Examples

28

Summer- I 2024 - W. Schnyd

Example: deciding w # w

Exercise. Design a Turing machine with $\Sigma = \{a, b, \#\}$ that decides

 $\{w \# w \mid w \in \{a, b\}^*\}$ onto context-free, only $w \# w^R$ context-free

Idea. Given input with exactly one # (reject otherwise)

input = $w_1 \# w_2$ with $w_1 \in \{a, b\}^*, w_2 \in \{a, b\}^*$

repeat

1. mark first unmarked symbol of w_1 , remember symbol in state q_a or q_b .

2. go right of #, transition to q_a' or q_b', find first unmarked symbol, compare with symbol remembered in state. If different reject. If equal, mark.

if in (1) no unmarked symbol of w_1 found, check that all symbols of w_2 are marked; accept if yes, reject if no.

if in (2) no unmarked symbol of w_2 found, reject.

