Decimal Number System

The number system that we use in our day-to-day life is the decimal number system. Decimal number system has base 10 as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to the left of the decimal point represent units, tens, hundreds, thousands, and so on.

Each position represents a specific power of the base (10). For example, the decimal number 1234 consists of the digit 4 in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position. Its value can be written as

```
(1 \times 1000) + (2 \times 100) + (3 \times 10) + (4 \times 1)

(1 \times 10^3) + (2 \times 10^2) + (3 \times 10^1) + (4 \times 10^0)

1000 + 200 + 30 + 4

1234
```

Binary Number System

Characteristics of the binary number system are as follows -

- Uses two digits, 0 and 1
- Also called as base 2 number system
- Each position in a binary number represents a 0 power of the base (2). Example
- Last position in a binary number represents a x power of the base (2). Example
 2^x where x represents the last position 1.

Step	Binary Number	Decimal Number
Step 1	101012	$((1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0))_{10}$
Step 2	101012	$(16+0+4+0+1)_{10}$
Step 3	101012	21 ₁₀

Note - 10101₂ is normally written as 10101.

Octal Number System

Characteristics of the octal number system are as follows -

- Uses eight digits, 0,1,2,3,4,5,6,7
- Also called as base 8 number system

- Each position in an octal number represents a **0** power of the base (8). Example 80
- Last position in an octal number represents a **x** power of the base (8). Example 8× where **x** represents the last position 1

Example

Octal Number: 12570₈

Calculating Decimal Equivalent -

Step	Octal Number	Decimal Number
Step 1	12570 ₈	$((1 \times 8^4) + (2 \times 8^3) + (5 \times 8^2) + (7 \times 8^1) + (0 \times 8^0))_{10}$
Step 2	12570 ₈	$(4096 + 1024 + 320 + 56 + 0)_{10}$
Step 3	12570 ₈	5496 ₁₀

Note - 12570₈ is normally written as 12570.

Hexadecimal Number System

Characteristics of hexadecimal number system are as follows -

- Uses 10 digits and 6 letters, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Letters represent the numbers starting from 10. A = 10. B = 11, C = 12, D = 13, E = 14, F = 15
- Also called as base 16 number system
- Each position in a hexadecimal number represents a 0 power of the base (16).
 Example, 16°
- Last position in a hexadecimal number represents a x power of the base (16).
 Example 16^x where x represents the last position 1

Example

Hexadecimal Number: 19FDE₁₆
Calculating Decimal Equivalent –

Step	Binary Number	Decimal Number

Step 1	19FDE ₁₆	$((1 \times 16^4) + (9 \times 16^3) + (F \times 16^2) + (D \times 16^1) + (E \times 16^0))_{10}$
Step 2	19FDE ₁₆	$((1 \times 16^4) + (9 \times 16^3) + (15 \times 16^2) + (13 \times 16^1) + (14 \times 16^0))_{10}$
Step 3	19FDE ₁₆	(65536+ 36864 + 3840 + 208 + 14) ₁₀
Step 4	19FDE ₁₆	106462 ₁₀

Note – 19FDE₁₆ is normally written as 19FDE.