

Introduction au Big Data

Master 2 FD, IEF - Rennes

Sylvain BARTHELEMY

Qui suis-je?

gwenlake.

Build next-gen apps using AI

We help organizations by operationalizing AI, machine learning and data analytics

Objectif du cours

Vous avez terminé vos études, et on vous confie un projet de big data / IA / data science que vous devez mener à bien rapidement et faire une présentation à votre équipe à l'issue du projet.

Travaux menés pendant les cours

7 séances + présentation

Evaluation sur la base de la qualité du travail mené, comportement pendant les séances et présentation finale

Le Big Data?

Une brève histoire du machine learning et de l'IA

Big data and Al

Xeon Phi/Intel RESTful docker **Torch MapReduce Recursive Partitioning Neural Networks** AWS **Theano Data Mining MySQL** API **MongoDB Artificial Intelligence TensorFlow** R **Machine Learning SVM Deep Learning NoSQL** Cloud JSON / XML **Python Hadoop** GPU/NVidia Cassandra **Econométrie Random Forest** Hive **Genetic Algorithms Spark Torch Statistiques** Scala **Open Source** kubernetes Convolution TPU/Google **LSTM** 6

Le syndrome de l'iceberg

These new techniques deeply transform economic analysis

Définition « historique » du big data

Ce n'est pas simplement le concept de données massives, mais :

Volumes

Capacité à stocker des volumes de données gigantesques.

Vitesse

Capacité à traiter des volumes de données importants rapidement.

Variées

Capacité à traiter des données de différents types: textes, vidéos, images, données numériques, séries temporelles, etc.

Bases des données

- Les bases de données traditionnelles SGDB (MySQL, Postgresql) et la notion ACID (Atomicité, Cohérence, Isolation, Durabilité)
- Les bases de données objets ou orientées colonnes NoSQL
- Les bases en RAM type Redis
- Stockage objet (AWS S3)
- Les bases textuelles (type ElasticSearch/OpenSearch)
- Les bases de séries temporelles (InfluxDB, M3)
- Les clusters Hadoop, Hive et Kafka

GIT

Les bases de git

- Installer une version de git:
 https://git-scm.com/ ou Github Desktop
- Créer un compte sur GitHub: https://github.com/
- Créer un token (classic):
 https://github.com/settings/tokens
 Generate new token (classic), on donne un nom, puis on coche « repo » et expiration (on évite les tokens éternels !)

Les bases de git

- Je récupère un repo existant sur ma machine: git clone https://github.com/langchain-ai/langchain
- J'initialise un répertoire existant: git init git add.
- Je valide mes modifications: git commit -m 'initial commit'
- J'envoie mes premières modifications sur github: git remote add origin https://github.com/sylbarth/test.git git branch -M main git push -u origin main
- Autres modifications:
 git commit –m 'new modification'
 git push

Docker

Installation de Docker sous Windows

Docker?

source: https://www2.itroom.fr/docker-en-un-coup-d-oeil/

Base de données MySQL

```
File Edit Selection View Go Run Terminal Help
      docker-compose.yml X
      C: > Users > SylvainBARTHELEMY > OneDrive - TAC ECONOMICS > Cours > Rennes
              version: '3'
             services:
مړ
               mysql:
                  image: mysql
                  environment:
                    MYSQL_ROOT_PASSWORD: master2
                  - ./data:/var/lib/mysql
        10
```


Scrapping, ML, IA

Introduction au Web Scraping RSS en Python

Introduction au Web Scraping Lecture d'articles sur le New York Times

Python, les essentiels

Pandas

Manipulation en dataframes, comme sous R

Sklearn

Algorithmes de machine learning

NItk

Travaux de traitement du langage naturel (NLP)

PyTorch & Tensorflow

Deep learning

Lanchain

Utilisation des grands modèles de langage

Déroulement du cours

Règles

- Groupes de 2 personnes max
- Préparation du travail pendant les cours, avec l'aide de l'enseignant
- Présentation des résultats devant toute la classe

Déroulement du travail

- 1. Revue de la littérature, recherches sur Internet
- 2. Cadrage du sujet
- 3. Définir un plan d'action et un partage des taches
- 4. Création d'un premier dataset « test »
- 5. Mise en place d'un ou plusieurs outils pour récupérer les données et les traiter
- 6. Analyses quantitatives
- 7. Identification et présentation des résultats clés
- 8. Préparation d'une présentation PPT
- 9. Présentation des résultats devant la classe (30m avec questions)

Planning

Jour	Etudiants	Activité	Enseignants	Salles	Début	Fin	Durée (h)
Lundi 02/09/2024	M2 FD, M2 IEF FA, M2 IEF FI	Big Data	IBAR I HEL EIVIV SVIVAIN	B01 - Salle info 01-07 (001)	13h30	17h00	03h30
Mercredi 04/09/2024	M2 FD, M2 IEF FA, M2 IEF FI	Big Data	BARTHELEMY Sylvain	B01 - Salle info 01-07 (001)	13h30	17h00	03h30
Mardi 24/09/2024	M2 FD, M2 IEF FA, M2 IEF FI	Big Data	BARTHELEMY Sylvain	B01 - Salle info 01-07 (001)	09h00	12h30	03h30
Mardi 24/09/2024	M2 FD, M2 IEF FA, M2 IEF FI	Big Data	BARTHELEMY Sylvain	B01 - Salle info 017 (017)	13h30	17h00	03h30
Mercredi 25/09/2024	M2 FD, M2 IEF FA, M2 IEF FI	Big Data	BARTHELEMY Sylvain	B01 - Salle info 01-07 (001)	09h00	12h30	03h30
Mardi 08/10/2024	M2 FD, M2 IEF FA, M2 IEF FI	Big Data	BARTHELEMY Sylvain	B01 - Salle info 01-07 (001)	09h00	12h30	03h30
Mercredi 09/10/2024	M2 FD, M2 IEF FA, M2 IEF FI	Big Data	IBARTHELEIVIY SVIVain	B01 - Salle info 01-07 (001)	09h00	12h30	03h30
Jeudi 10/10/2024	M2 FD, M2 IEF FA, M2 IEF FI	Big Data	BARTHELEMY Sylvain	B01 - Salle info 01-07 (001)	13h30	17h00	03h30

Sujets

- Usage de la presse et de la conjoncture pour analyser, comprendre et prévoir les évolutions des marchés financiers
- Twitter et les marchés financiers
- 3. Mieux comprendre le rôle des influenceurs twitter sur les cours boursiers
- Analyse des données INSEE des communes et visualisation des disparités et spécificités géographiques
- 5. Machine learning, IA et stratégies de trading automatisée
- 6. Google trends et indicateurs économiques et financiers (conjoncture, emploi, immobilier, ...)
- 7. Analyse long terme et intra-day du marché des cryptos
- 8. Stratégie de référencement (SEO) et text mining/big data
- 9. Lecture de la presse et analyse des entités nommées en temps réel
- 10. Autres sujets au choix, à la discrétion des élèves

Me contacter

Sylvain BARTHELEMY

sylvain.barthelemy@gwenlake.com www.gwenlake.com