

Digital Design 3e, Morris Mano
Chapter 2 – Boolean Algebra and Logic Gates
Dr. Eng. Kamalanath Samarakoon

<u>Expression</u>	Rule(s) Used
A(A + B) + (B + AA)(A + B)	Original Expression
AA + AB + (B + A)A + (B + A)B	Idempotent (AA to A), then Distributive, used twice. Complement, then Identity. (Strictly speaking, we also used the Commutative
AB + (B + A)A + (B + A)B	Law for each of these applications.)
AB + BA + AA + BB + AB	Distributive, two places.
AB + BA + A + AB	Idempotent (for the A's), then Complement and Identity to remove BB. Commutative, Identity; setting up for the next
AB + AB + AT + AB	step.
AB + A(B + T + B)	Distributive.
AB + A	Identity, twice (depending how you count it).
A + AB	Commutative.
(A + A)(A + B)	Distributive.
Δ + R	Complement Identity

Boolean Expression	Description	Equivalent Switching Circuit	Boolean Algebra Law or Rule
A + 1 = 1	A in parallel with closed = "CLOSED"	A	Annulment
A + 0 = A	A in parallel with open = "A"	A	Identity
A . 1 = A	A in series with closed = "A"	A	Identity
A . 0 = 0	A in series with open = "OPEN"		Annulment
A + A = A	A in parallel with A = "A"	A A	Idempotent
A . A = A	A in series with A = "A"	A	Idempotent
NOT A = A	NOT NOT A (double negative) = "A"	A	Double Negation
A + A = 1	A in parallel with NOT A = "CLOSED"	Ā	Complement
A . A = 0	A in series with NOT A = "OPEN"	A Ā	Complement
A+B = B+A	A in parallel with B = B in parallel with A	B	Commutative
A.B = B.A	A in series with B = B in series with A	A B	Commutative
A+B = A.B	invert and replace OR with AND		de Morgan's Theorem
A.B = A+B	invert and replace AND with OR		de Morgan's Theorem

Overview

- $^{\circ}$ Logic functions with 1's and 0's
 - Building digital circuitry
- ° Truth tables
- ° Logic symbols and waveforms
- ° Boolean algebra
- ° Properties of Boolean Algebra
 - Reducing functions
 - Transforming functions

Part 2 - Overview

- ° Expressing Boolean functions
- ° Relationships between algebraic equations, symbols, and truth tables
- ° Simplification of Boolean expressions
- ° Minterms and Maxterms
- ° AND-OR representations
 - Product of sums
 - Sum of products

Boolean Functions

- Boolean algebra deals with binary variables and logic operations.
- ° Function results in binary 0 or 1

X	y z	: ₁ F	
0	0 0	0	
0	0 1	0	
0	1 0	0	X
0	1 1	0	y
1	0 0	1	$z \longrightarrow y+z'$ $F = x(y+z')$
1	0 1	0	
1	1 0) 1	
1	1 1	1	F = x(y+z')
_		1	

Boolean Functions

- Boolean algebra deals with binary variables and logic operations.
- ° Function results in binary 0 or 1

X	Ху	Z	_L xy	yz	G
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	1
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	1	0	1
1	1	1	1	1	1

We will learn how to transition between equation, symbols, and truth table.

Representation Conversion

- Need to transition between boolean expression, truth table, and circuit (symbols).
- ° Converting between truth table and expression is easy.
- Converting between expression and circuit is easy.
- More difficult to convert to truth table.

Truth Table to Expression

- ° Converting a truth table to an expression
 - Each row with output of 1 becomes a product term
 - Sum product terms together.

Equivalent Representations of Circuits

- ° All three formats are equivalent
- Number of 1's in truth table output column equals AND terms for Sum-of-Products (SOP)

X	У	Z	G
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$G = xyz + xyz' + x'yz$$

Reducing Boolean Expressions

- ° Is this the smallest possible implementation of this expression? No! G = xyz + xyz' + x'yz
- Use Boolean Algebra rules to reduce complexity while preserving functionality.
- Step 1: Use Theorem 1 (a + a = a)

- Step 2: Use distributive rule a(b + c) = ab + ac
 - So xyz + xyz + xyz' + x'yz = xy(z + z') + yz(x + x')
- Step 3: Use Postulate 3 (a + a' = 1)

• So
$$xy(z + z') + yz(x + x') = xy.1 + yz.1$$

- ° Step 4: Use Postulate 2 (a . 1 = a)
 - So xy.1 + yz.1 = xy + yz = xyz + xyz' + x'yz

Reduced Hardware Implementation

- Reduced equation requires less hardware!
- Same function implemented!

X	У	Z	G
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0 1
1	1	1	1

$$G = xyz + xyz' + x'yz = xy + yz$$

Minterms and Maxterms

- Each variable in a Boolean expression is a literal
- Boolean variables can appear in normal (x) or complement form (x')
- ° Each AND combination of terms is a minterm
- ° Each OR combination of terms is a maxterm

For example: Minterms			F		xample: tterms			
x 0 0	y 0 0	z 0 1	Minte x'y'z' x'y'z	rm m ₀ m ₁	x 0 0	y 0 0	z 0 1	Maxterm x+y+z M ₀ x+y+z' M ₁
1	0	0	xy'z'	m ₄	 1	0	0	x'+y+z M ₄
1	1	1	xyz	m ₇	1	1	1	x'+y'+z' M ₇

Representing Functions with Minterms

- Minterm number same as row position in truth table (starting from top from 0)
- ° Shorthand way to represent functions

Conversion Between Canonical Forms

- ° Easy to convert between minterm and maxterm representations
- ° For maxterm representation, select rows with 0's

Representation of Circuits

- All logic expressions can be represented in 2level format
- Circuits can be reduced to minimal 2-level representation
- Sum of products representation most common in industry.

Fig. 2-3 Two-level implementation

Part 2 – Summary

- ° Truth table, circuit, and boolean expression formats are equivalent
- ° Easy to translate truth table to SOP and POS representation
- Boolean algebra rules can be used to reduce circuit size while maintaining function
- ° All logic functions can be made from AND, OR, and NOT
- ° Easiest way to understand: Do examples!
- ° Next time: More logic gates!

Part 3 - Overview

- ° More 2-input logic gates (NAND, NOR, XOR)
- ° Extensions to 3-input gates
- ° Converting between sum-of-products and NANDs
 - SOP to NANDs
 - · NANDs to SOP
- ° Converting between sum-of-products and NORs
 - SOP to NORs
 - NORs to SOP
- ° Positive and negative logic
 - · We use primarily positive logic in this course.

Logic functions of N variables

- Each truth table represents one possible function (e.g. AND, OR)
- ° If there are N inputs, there are 22
- ° For example, is N is 2 then there are 16 possible truth tables.
- ° So far, we have defined 2 of these functions
 - 14 more are possible.
- ° Why consider new functions?
 - Cheaper hardware, more flexibility.

X	у	G
0	0	0
0	1	0
1	0	0
1	1	1

The NAND Gate

- This is a NAND gate. It is a combination of an AND gate followed by an inverter. Its truth table shows this...
- NAND gates have several interesting properties...
 - NAND(a,a)=(aa)' = a' = NOT(a)
 - NAND'(a,b)=(ab)" = ab = AND(a,b)
 - NAND(a',b')=(a'b')' = a+b = OR(a,b)

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

The NAND Gate

- These three properties show that a NAND gate with both of its inputs driven by the same signal is equivalent to a NOT gate
- A NAND gate whose output is complemented is equivalent to an AND gate, and a NAND gate with complemented inputs acts as an OR gate.
- Therefore, we can use a NAND gate to implement all three of the elementary operators (AND,OR,NOT).
- Therefore, ANY switching function can be constructed using only NAND gates. Such a gate is said to be primitive or functionally complete.

The NOR Gate

- This is a NOR gate. It is a combination of an OR gate followed by an inverter. It's truth table shows this...
- NOR gates also have several interesting properties...
 - NOR(a,a)=(a+a)' = a' = NOT(a)
 - NOR'(a,b)=(a+b)" = a+b = OR(a,b)
 - NOR(a',b')=(a'+b')' = ab = AND(a,b)

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

Functionally Complete Gates

- Oust like the NAND gate, the NOR gate is functionally complete...any logic function can be implemented using just NOR gates.
- Both NAND and NOR gates are very valuable as any design can be realized using either one.
- It is easier to build an IC chip using all NAND or NOR gates than to combine AND,OR, and NOT gates.
- NAND/NOR gates are typically faster at switching and cheaper to produce.

The XOR Gate (Exclusive-OR)

- ° This is a XOR gate.
- XOR gates assert their output when exactly one of the inputs is asserted, hence the name.
- $^{\circ}$ The switching algebra symbol for this operation is \oplus , i.e.

$$1 \oplus 1 = 0$$
 and $1 \oplus 0 = 1$.

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

The XNOR Gate

- ° This is a XNOR gate.
- This functions as an exclusive-NOR gate, or simply the complement of the XOR gate.

0	The switching algebra symbol
	for this operation is ⊙, i.e.
	1 ⊙ 1 = 1 and 1 ⊙ 0 = 0.

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

NOR Gate Equivalence

° NOR Symbol, Equivalent Circuit, Truth Table

DeMorgan's Theorem

° A key theorem in simplifying Boolean algebra expression is DeMorgan's Theorem. It states:

$$(a + b)' = a'b'$$
 $(ab)' = a' + b'$

° Complement the expression a(b + z(x + a')) and simplify.

$$(a(b+z(x+a')))' = a' + (b + z(x + a'))'$$

$$= a' + b'(z(x + a'))'$$

$$= a' + b'(z' + (x + a')')$$

$$= a' + b'(z' + x'a'')$$

$$= a' + b'(z' + x'a)$$

Example

Oetermine the output expression for the below circuit and simplify it using DeMorgan's Theorem

Universality of NAND and NOR gates

Universality of NOR gate

 Equivalent representations of the AND, OR, and NOT gates

Combinational logic circuits

- ° The output is depend on the present inputs
- ° Design steps
 - Express the problem in English
 - · Identify the inputs and outputs
 - Draw the truth table to satisfy the conditions of the problem
 - · Build the circuit using basic logic gates
 - · Convert to NAND only or NOR only if required

Problem 1

- Oesign a combinational circuit to give output 1 when the main electricity supply is not available in the night.
- ° Inputs
 - Main Supply Available Y=1, N=0
 - Night Y=1, N=0
- ° Output
 - 1 when the above requirements are satisfied

NAND-NAND & NOR-NOR Networks

push bubbles or introduce in pairs or remove pairs.

Conversion Between Forms

- ° Convert from networks of ANDs and ORs to networks of NANDs and NORs
 - Introduce appropriate inversions ("bubbles")
- ° Each introduced "bubble" must be matched by a corresponding "bubble"
 - Conservation of inversions
 - Do not alter logic function

NAND-NAND Networks

° Mapping from AND/OR to NAND/NAND

Conversion Between Forms (cont'd)

Conversion to NAND Gates *Find network of OR and AND gates (a) AND_OR network Bubbles cancel A B C D D F (b) First step in NAND conversion Added inverter A C D D F (c) Completed conversion

Part 3 - Summary

- Basic logic functions can be made from NAND, and NOR functions
- The behavior of digital circuits can be represented with waveforms, truth tables, or symbols
- Primitive gates can be combined to form larger circuits
- Boolean algebra defines how binary variables with NAND, NOR can be combined
- ° DeMorgan's rules are important.
 - Allow conversion to NAND/NOR representations