Proposition 1. Find an infinite collection of open intervals in \mathbb{R} whose intersection is not an open interval.

Proof. $\bigcap \{ (\frac{-1}{n}, \frac{1}{n}) : n \in \mathbb{Z}^+ \} = \{0\}$ which is not an open interval or even open.

Proposition 2. Any finite union of closed sets is closed, and any arbitrary intersection of closed sets is closed.

Proof. We proceed by showing that any finite union of closed sets is closed:

Let C, D be closed sets.

Let A, B be compliments of C, D so A, B are open.

Then, $A \cap B$ is also open.

Thus, $X\setminus (A\cap B)$ is closed.

By Demorgan's Law, $X\setminus (A\cap B)=X\setminus A\cup X\setminus B=C\cup D$ which is closed.

Now that we've shown that $C \cup D$ is closed for all C, D; Assume $C_1 \cup C_2 \cup ... \cup C_n$ is closed for closed sets C_i . Then for $C_1 \cup ... \cup C_n \cup C_{n+1}$, let $K = C_1 \cup ... \cup C_n$.

Thus $K \cup C_{n+1} = C_1 \cup ... \cup C_n \cup C_{n+1}$ is closed.

Now we show that any arbitrary intersection of closed sets is closed.

Let \mathcal{C} be a collection of closed sets.

Let $\mathcal{U} = \{X \setminus C : C \in \mathcal{C}\}$, so \mathcal{U} is a collection of open sets.

Then, $\bigcup \mathcal{U}$ is also open.

Thus, $X \setminus \bigcup \mathcal{U}$ is closed.

By Demorgan's Law, $X \setminus \bigcup \mathcal{U} = \bigcap \mathcal{C}$

Therefore, $\bigcap \mathcal{C}$ is closed.

Lemma 3. A set U is open if and only if for every point $x \in U$, there exists an open set U_x where $x \in U_x \subseteq U$

Proof. Suppose U is open, then for all $x \in U$ there exists an open $U_x = U$, such that $x \in U_x \subseteq U$. To show the converse, suppose that for each $x \in U$ there is an open set U_x where $x \in U_x \subseteq U$. For $x \in U, x \in U_x$ so $x \in \bigcup \{U_x : x \in U\}$. Thus $U \subseteq \bigcup \{U_x : x \in U_x\}$. Now let $y \in U_x$ for some $x \in U$, then $U_x \subseteq U$. Thus $U \supseteq \bigcup \{U_x : x \in U\}$. \square

Proposition 4. A set K in a topological space X is closed if and only if K contains all its limit points.

Proof. Suppose K contains all its limit points. If K = X, then K is closed because \emptyset is open. Otherwise let $x \in X \setminus K$, so x is not a limit point of K. Then, $\exists x \in U_x \in \tau$ such that $U_x \cap K = \emptyset$ since $x \notin K$. So, $x \in U_x \subseteq X \setminus K$. By the lemma, $X \setminus K$ is open so K is closed.

To show the converse is true as well, let $x \in X \setminus K$, which is an open set by the lemma. Since $(X \setminus K) \cap K$ is the empty set, x is not a limit point of K. So, if ℓ is any limit point of K, then $\ell \notin X \setminus K$, so $\ell \in K$ and K contains all of its limit points.

Proposition 5. Verify the discrete and indiscrete topologies are topologies

Proof. To prove the discrete topology is an actual topology, first we define that the discrete topology on a set X is $\tau = \mathcal{P}(X)$. \emptyset , $X \in \mathcal{P}(X)$, So \emptyset , $X \in \tau$. Now, let $\mathcal{U} \subseteq \tau = \mathcal{P}(X)$, then the $\bigcup U \in \mathcal{P}(X)$. Let U, $V \in \tau = \mathcal{P}(X)$ then the intersection $U \cap V \in \mathcal{P}(X) = \tau$. Now to show that the indiscrete topology is an actual topology, we define that the indiscrete topology on a set X is given as $\tau = \{\emptyset, X\}$. Clearly, \emptyset , $X \in \tau$. Let \mathcal{U} be a collection of open sets in X, then $\bigcup \mathcal{U} = X$, thus $\bigcup \mathcal{U} \in \tau$.

Definition 6. A collection of sets $\mathcal{B} \subseteq \mathcal{P}(X)$ is called a basis if:

- 1. For all $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$.
- 2. For all $B_1, B_2 \in \mathcal{B}$ with $x \in B_1 \cap B_2$, there exists $B_3 \in \mathcal{B}$ with $x \in B_3 \subseteq B_1 \cap B_2$.

The set $\{[J\mathcal{B}':\mathcal{B}'\subseteq\mathcal{B}\}\$ is called the topology generated by \mathcal{B} .

Theorem 7. The "topology generated by \mathcal{B} " is actually a topology.

Proof. NEEDS WORK

 $x \in W \subseteq U \cap V \in \tau$.

 τ is $\{\bigcup \mathcal{B}' : \mathcal{B}' \subseteq \mathcal{B}\}$. So $\{\bigcup \mathcal{B}' : \mathcal{B}' \subseteq \mathcal{B}\} \subseteq \mathcal{P}(X)$. $\emptyset, X \in \tau$ because for $\mathcal{B}' = \emptyset, \bigcup \mathcal{B}' = \emptyset$ and for $\mathcal{B}' = X, \bigcup \mathcal{B}' = X$. Let $\mathcal{U} \subseteq \tau$ and $\bigcup \mathcal{U} \in \tau$ because for each $\mathcal{U} \in \mathcal{U}, \mathcal{U} = \bigcup \mathcal{B}'_{\mathcal{U}}$ for some $\mathcal{B}'_{\mathcal{U}} \subseteq \mathcal{B}$ So, $\bigcup \mathcal{U} = \bigcup \{\bigcup \mathcal{B}'_{\mathcal{U}} : \mathcal{U} \in \mathcal{U}\}$. Let $\mathcal{B}' = \bigcup \{\mathcal{B}'_{\mathcal{U}} : \mathcal{U} \in \mathcal{U}\}$. So, $\bigcup \mathcal{U} = \bigcup \mathcal{B}'$. For $\mathcal{U}, \mathcal{V} \in \{\bigcup \mathcal{B}' : \mathcal{B}' \subseteq \mathcal{B}\}, \mathcal{U} = \mathcal{B}_1$ and $\mathcal{V} = \mathcal{B}_2, \mathcal{B}_1, \mathcal{B}_2 \in \mathcal{B}$ such that $\mathcal{B}_1 = \mathcal{B}$ and $\mathcal{B}_2 = \mathcal{B}$. Then $\mathcal{U} \cap \mathcal{V} \in \{\bigcup \mathcal{B}' : \mathcal{B}' \subseteq \mathcal{B}\} \supseteq \mathcal{W}$ so there exists $x \in \mathcal{V}, \mathcal{U} : x \in \mathcal{U} \cap \mathcal{V} \supseteq \mathcal{W}$. Therefore

Theorem 8. Let τ be a topology on X. Then $\mathcal{B} \subseteq \tau$ generates τ if:

- 1. For all $x \in U \in \tau$, there exists $B \in \mathcal{B}$ where $x \in B \subseteq U \in \tau$
- 2. For all B_1 , $B_2 \in \mathcal{B}$ with $x \in (B_1 \cap B_2)$, there exists $B_3 \in \mathcal{B}$ with $x \in B_3 \subseteq B_1 \cap B_2$.

Proof.:

- 1. For $x \in \mathbb{X} \in \tau$, select $x \in B \in \mathcal{B}$, so $x \in \mathbb{X}$ and $x \in B$, then $x \in B \subseteq \mathbb{X} \in \tau$.
- 2. See definition 6-2.
- 3. Let $\mathcal{B}' \subseteq \mathcal{B}$ and $\mathcal{B}' = \mathcal{B}$, so $||\mathcal{B}'| = ||\mathcal{B}| = \tau$.

Theorem 9. $\{X\}$ is a basis for $\tau = \{\emptyset, X\}$. (indiscrete)

Proof.:

- 1. Let $\mathcal{B} = \{X\}$ and let $x \in X = B \in \mathcal{B}$.
- 2. Now consider $B_1, B_2 \in \mathcal{B}$. $B_1 = \mathbb{X}$ and $B_2 = \mathbb{X}$ Let $x \in B_1 \cap B_2$, then $x \in B_3 = \mathbb{X}$: $B_1 \cap B_2 = \mathbb{X}$.

Theorem 10. $\{\{x\}: x \in \mathbb{X}\}\ is\ a\ basis\ for\ \tau = \mathcal{P}(\mathbb{X}) = \{\ U: U \subseteq \mathbb{X}\}.\ (discrete)$

Proof.:

- 1. Let $x \in U \in \tau = \mathcal{P}(\mathbb{X})$. Then for $B = \{x\} \in \mathcal{B}, x \in B \subseteq U$.
- 2. Let $B_1, B_2 \in \mathcal{B}$. Let $y \in B_1 \cap B_2$. Let $B_3 = \{y\}$ $y \in B_3 = \{y\} \subseteq B_1 \cap B_2$.

Definition 11. The Euclidean topology on \mathbb{R} is the topology generated by the basis $\{(a,b): a < b \in \mathbb{R}\}.$

Theorem 12. $\{(a, b) : a < b \in \mathbb{R}\}$ is a basis.

Proof.:

- 1. Let $\mathcal{B} = \{(a,b) : a < b \in \mathbb{R}\}$. Let $x \in \mathbb{R}$ and let B = (x-1,x+1), then $x \in B \subseteq \mathbb{R}$ and $B \in \mathcal{B}$.
- 2. For $B_1 = (a_1, b_1)$, $B_2 = (a_2, b_2)$, $a_1 < b_1$, $a_2 < b_2 \in \mathbb{R}$ with $x \in B_1 \cap B_2$, then there is $B_3 = (max(a_1, a_2), min(b_1, b_2)) \subseteq B_1 \cap B_2$ such that $a_1, a_2 < x < b_1, b_2$ so $x \in B_3$.

Theorem 13. $\{(a, b) : a < b \in \mathbb{Q}\}$ is a basis for the Euclidean topology.

Proof.:

- 1. Let $\mathcal{B} = \{(a,b) : a < b \in \mathbb{Q}\}$ Let $x \in \mathbb{R}$ then, $\lfloor x \rfloor 1 < x < \lceil x \rceil + 1$. Let $\mathcal{B} = (\lfloor x \rfloor 1, \lceil x \rceil + 1)$, so $x \in B \in \mathcal{B}$ and $B \subseteq \mathbb{Q}$.
- 2. Now, for $B_1, B_2 \in \mathcal{B}$, $\exists x \in B_1 \cap B_2 : x \in B_1$ and $x \in B_2$. $a_1, a_2 < b_1, b_2 \in \mathbb{Q}$. Let $B_1 = (a_1, b_1)$ and $B_2 = (a_2, b_2)$. Now let $B_3 = (max(a_1, a_2), min(b_1, b_2))$ with $a_1, a_2 < x < b_1, b_2$ so $x \in B_3$. So, $x \in B_3 \subseteq B_1 \cap B_2$.

Definition 14. A subset K of a topological space X is said to be **compact** if for every open cover \mathcal{U} of K (every collection \mathcal{U} of open sets such that $\bigcup \mathcal{U} \supseteq K$) there exists a finite subcollection $\mathcal{F} \subseteq \mathcal{U}$ that also covers K (that is, $\bigcup \mathcal{F} \supseteq K$).

Theorem 15. Any finite union of compact subsets is compact.

Proof. K_1 and K_2 are compact, so let \mathcal{U}_1 and \mathcal{U}_2 be open covers of K_1 and K_2 respectively. So $\bigcup \mathcal{U}_1 \supseteq K_1$, and $\bigcup \mathcal{U}_2 \supseteq K_2$ and $\bigcup (\mathcal{U}_1 \cup \mathcal{U}_2) \supseteq K_1 \cup K_2$. $K_3 = K_1 \cup K_2$. There is a $\mathcal{U}_3 \supseteq K_3$. So let $\mathcal{U}_1 = \mathcal{U}_3$ and $\mathcal{U}_2 = \mathcal{U}_3$. For finite $\mathcal{F}_3 \subseteq \mathcal{U}_3$, $\mathcal{F}_3 \supseteq K_3$, so $\mathcal{F}_3 \supseteq K_1 \cup K_2$. Let $\mathcal{F}_1 = \mathcal{F}_3$ and $\mathcal{F}_2 = \mathcal{F}_3$, so $K_1 \cup K_2$ is compact.

project.tex - Updated on March 27, 2018

Proposition 16. Any finite subset of a topological space is compact. *Proof.* For $F = \{x_i : 0 \le x_i < n\} \subseteq \mathbb{X}$, let \mathcal{U} be an open covering on F so $\bigcup \mathcal{U} \supseteq F$. Then we can find a finite $\mathcal{F} \subseteq \mathcal{U}$ such that $\bigcup \mathcal{F} \supseteq F$. Suppose $\mathcal{U}_0 = \{x_0 : -1 \le x_0 < n+1\} \subseteq \mathcal{U}$ then let $\mathcal{F} = \mathcal{U}_0$, so $\bigcup \mathcal{F} \supseteq F$. **Proposition 17.** The subset $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{Z}^+\}$ of \mathbb{R} is compact. *Proof.* Let $K = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{Z}^+\} \subseteq \mathbb{R}$ and let \mathcal{U} be an open covering on K such that $\bigcup \mathcal{U} \supseteq K$. So for $\mathcal{U}_0 \subseteq \mathcal{U}, \mathcal{U}_0 = \{n_0 : -1 \leq n_0 \leq 2, n_0 \in \mathbb{Z}\}$. $\bigcup \mathcal{U}_0 \supseteq K$. So, let finite $\mathcal{F} = \mathcal{U}_0$, so $\mathcal{F} \subseteq \mathcal{U}$ and $\mathcal{F}\supseteq K$. **Proposition 18.** Any unbounded subset of \mathbb{R} is not compact. *Proof.* For unbounded $K \subseteq \mathbb{R}$ suppose there is an open covering \mathcal{U} on K. Then there exists a finite $\mathcal{F} \subseteq \mathcal{U}$ such that $\bigcup \mathcal{F} \supset K$. For \mathcal{F} to be finite it must be bounded. So, there is no $\bigcup \mathcal{F} \supset K$. Essentially we would need $\mathcal{F} = \{(-\infty, n) : n \in \mathbb{Z}^-\} \cup \{(n-3, \infty) : n \in \mathbb{Z}^+\}$ which is not finite. \square **Proposition 19.** Any open interval $(a,b) \subseteq \mathbb{R}$ is not compact. Proof. **Definition 20.** A subset K of a topological space X is said to be **Lindelöf** if for every open cover \mathcal{U} of K (every collection \mathcal{U} of open sets such that $\bigcup \mathcal{U} \supseteq K$) there exists a countable subcollection $\mathcal{F} \subset \mathcal{U}$ that also covers K (that is, $| \mathcal{F} \supset K \rangle$). **Definition 21.** A subset K of a topological space X is said to be σ -compact if there exist compact subspaces K_n of X for $n \in \mathbb{N}$ such that $K = \bigcup_{n \in \mathbb{N}} K_n$. **Theorem 22.** Every σ -compact subset of a topological space is Lindelöf. Proof. **Definition 23.** A subset K of a topological space X is said to be **hemicompact** if there exist compact subspaces K_n of X for $n \in \mathbb{N}$ such that $K = \bigcup_{n \in \mathbb{N}} K_n$, and for every compact subset $H \subseteq K$, $H \subseteq K_n$ for some $n \in \mathbb{N}$. **Theorem 24.** Every hemicompact subset of a topological space is σ -compact.

Proof. This proof is trivial as it is defined as stated here in definition 21.