

结题汇报

Team 7 董前程 庞博 吴欣怡 赵四维

日录 CONTENTS

- 1 实验目的与实验装置
- 2 实验内容与实验原理
- 3 实验数据与结果讨论
- 4 误差分析与实验总结

实验目的与实验装置

实验内容与实验原理

实验数据与分析讨论

- > 了解切削测力仪的工作原理和测力方法和实验系统;
- \triangleright 掌握背吃刀量 a_p 、进给量 f和切削速度 v_c 对切削力的影响规律。

实验装置:

➤ Kistler 9257B多分量测力仪

➤ 德玛吉DMU50联动数控加工中心

实验目的与实验装置

实验内容与实验原理

实验数据与分析讨论

目录 CONTENTS

- 1 实验目的与实验装置
- 2 实验内容与实验原理
 - 3 实验数据与分析讨论
 - 4 实验总结

实验内容与实验原理

实验目的与实验装置

实验内容与实验原理

实验数据与分析讨论

实验总结

实验内容:

利用实验装置完成对直角坐标系下三个方向切削力的测量,依据正交试验的一般方法完成实验 结果的分析,探究**背吃刀量、进给量、切削速度** 对于切削力的影响。

实验内容与实验原理

实验目的与实验装置

实验内容与实验原理

实验数据与分析讨论

实验总结

切削力 三个主要来源

克服被加工材料弹性变形的抗力

克服被加工材料塑性变形的抗力

切屑与前刀面的摩擦力、后刀面与过渡表面和已加工表面之间的摩擦力

通常我们分为x,y,z三个方向进行研究。

实验内容与实验原理

实验数据与分析讨论

实验总结

实验内容与实验原理

主切削力 F_z : 过渡表面相切并与基面垂直。用于计算刀具强度、设计机床零件、确定机床功率等。

进给力(轴向力) F_x : 处于基面内并与工件轴线平行,方向与进给方向相反。用于设计进给机构、计算进给运动功率等。

背向力(径向力) *F_y*: 处于基面内并与工件轴线垂直。用于计算工件挠度、刀具强度、机床零件强度等。使工件在切削过程中产生振动的主要因素之一。

在铣削过程中,工件所 受切削力可分解为右图 所示的三个方向的力, 即 F_f 、 F_{fN} 、 F_p

实验内容与实验原理

SHAME TONG UNITED STATES OF THE STATES OF TH

实验目的与实验装置

实验内容与实验原理

实验数据与分析讨论

实验总结

压电传感器及其工作原理

实验内容与实验原理

实验数据与分析讨论

实验总结

实验内容与实验原理

一些测量装置的参数和我们实验时的参数设定 KISTLER

measure. analy	yze. innovate.
----------------	----------------

名义输出范围	V	±10
	Ω	10
输入和输出地之间的 最高共模电压	V	50
输出噪音 (所有范围)	1	
1 Hz 100 kHz, typ.	mV _{rms}	0.030
1 Hz 10 kHz, typ.	mV _{rms}	0.012
频率范围 (-3 dB)	Hz	0 100,000
群延迟(输入至输出,滤波器关闭)	μs	≤14
零点误差	mV	<±2
DAC分辨率(模拟输出)	Bit	16

数据采集

电压输出

ADC分辨率	Bit	24
内部ADC采样率	kSps	625
每通道的数据采集		
速度(可调)	kSps	100

说明:对于≥25 kSps的数据采集,抗混叠滤波器自动设置截止频率 为0.3~0.45 x所选的输出更新速率。

Parameters Physical Chann	els Calculated Channels	Data Manipulation
Measuring Parameters Measuring Time: 75 Sample Rate: 1000 Cycles: 1 Trigger Delay Time: 0 Save DynoWare dwd fil Display data Export after each cycle		Information Number of Channels: 7 Samples / Channel: 75000 RAM Space / Cycle: 2.0 MB Save File: messdat.dwd Append index to file name Directory: C:\Kistler\Dynoware\Data\
Show realtime updates	during acquisition	✓ Save configuration

左图数据来源于Kistler官方技术参考文档

https://www.kistler.com/INT/en/

目录 CONTENTS

- 1 实验目的与实验装置
- 2 实验内容与实验原理
- 3 实验数据与分析讨论
 - 4 实验总结

实验数据预处理 | 正交实验分析 | 结果讨论

Excel-csv2Python data pre-processing:

- ✓ 截取数据(舍去主轴未处于工作状态时测得的数据点)
- ✔ 低通滤波(截止频率取切削力频率的1.2倍)
- ✓ 窗口滤波(使得数据曲线分布更加平滑)
- ✓ 绘制散点图
- 求取信号平均值
- ✓ 消除零飘(主轴运动与振动导致产生零飘信号)

实验目的与实验装置

实验内容与实验原理

实验数据与分析讨论

实验内容与实验原理

实验数据与分析讨论

实验总结

实验数据与分析讨论

实验数据预处理 | 正交实验分析 | 结果讨论

原始数据,采集自Kistler 9257B实验设备

实验内容与实验原理

实验数据与分析讨论

实验总结

实验数据与分析讨论

实验数据预处理 | 正交实验分析 | 结果讨论

使用Python绘图,选择X分量,描点连线

实验内容与实验原理

实验数据与分析讨论

实验总结

实验数据与分析讨论

实验数据预处理 | 正交实验分析 | 结果讨论

采用不同的滤波器进行滤波+平滑 (图为巴特沃斯滤波+滑动窗口平滑)

实验内容与实验原理

实验数据与分析讨论

实验总结

实验数据与分析讨论

实验数据预处理 | 正交实验分析 | 结果讨论

采用不同的滤波器进行滤波+平滑(图为高斯滤波器+滑动窗口平滑)

实验内容与实验原理

实验数据与分析讨论

实验总结

实验数据与分析讨论

实验数据预处理 | 正交实验分析 | 结果讨论

采用不同的滤波器进行滤波+平滑 (图为小波变换滤波+滑动窗口平滑)

实验内容与实验原理

实验数据与分析讨论

实验总结

实验数据与分析讨论

实验数据预处理 | 正交实验分析 | 结果讨论

数据预处理效果展示

实验数据预处理 | 正交实验分析 | 结果讨论

表1切削力正交实验结果

序号 进给量 主轴转速 切深 $F_{\mathbf{x}}$ $F_{\mathbf{y}}$ $F_{\mathbf{z}}$ mm/min N N N rpm mm 1 100 1000 -7.662 -6.118 -4.525100 2000 -10.985 -7.339 -4.2813 100 3000 -8.846 -5.378-12.256-9.696 4 200 1000 -27.923-14.613 5 200 2000 -28.026 -19.219-12.1946 200 3000 -8.410 -6.277 -1.148 -56.575 -26.135 300 1000 -22.4168 -1.692 300 2000 -14.288 -9.406 9 300 3000 -20.849 -12.649-7.121

实验目的与实验装置

实验内容与实验原理

实验数据与分析讨论

实验目的与实验装置

实验内容与实验原理

实验数据与分析讨论

实验总结

上表中对应的正交实验设计表为

表2正交设计表

F 다	进给量 mm/min	主轴转速 rpm	切深mm
序号 	(因子1)	(因子2)	(因子3)
1	100 (1)	1000 (1)	1 (1)
2	100 (1)	2000 (2)	2 (2)
3	100 (1)	3000 (3)	3 (3)
4	200 (2)	1000 (1)	2 (2)
5	200 (2)	2000 (2)	3 (3)
6	200 (2)	3000 (3)	1 (1)
7	300 (3)	1000 (1)	3 (3)
8	300 (3)	2000 (2)	1 (1)
9	300 (3)	3000 (3)	2 (2)

以X方向为例, 做出极差分析表

表3 Fx极差分析表

项	水平	进给量 mm/min	主轴转速 rpm	切深mm
K值	1	-30.903	-92.160	-30.360
	2	-64.359	-53.299	-59.757
	3	-91.712	-41.515	-96.857
K _{avg} 值	1	-10.301	-30.720	-10.120
	2	-21.453	-17.766	-19.919
	3	-30.571	-13.838	-32.286
最佳水平		3	1	3
R		20.270	16.882	22.166
水平数量		3	3	3
每水平重复数r		3	3	3

实验目的与实验装置

实验内容与实验原理

实验数据与分析讨论

实验内容与实验原理

实验数据与分析讨论

实验总结

实验数据与分析讨论

实验数据预处理 | 正交实验分析 | 结果讨论

对上表参数的说明

指标	说明
K值	某因素某水平时试验数据求和
K _{avg} 值	对应的K值平均值
最佳水平	某因子时最大Kavg绝对值对应的水平编号
_	因素的极差值。该值等于某因素时,K _{avg} 绝对最大值减去
R	K _{avg} 绝对最小值,可结合因素极差值对比各因素的优劣
水平数量	某因素的水平数
每水平重复数r	水平的平均试验重复次数

实验内容与实验原理

实验数据与分析讨论

实验总结

实验数据与分析讨论

实验数据预处理 | 正交实验分析 | 结果讨论

对x,y,z三个方向上的力做同样的操作, 汇总得到以下总表

表4极差分析汇总表

因变量	项	进给量 mm/min	主轴转速 rpm	切深mm
	最佳水平	3	1	3
Fx	R	20.270	16.882	22.166
	相对R	0.914	0.762	1
	最佳水平	3	1	3
Fy	R	7.390	5.125	9.560
•	相对R	0.773	0.536	1
	最佳水平	3	1	3
Fz	R	6.921	8.903	12.114
	相对R	0.571	0.735	1

实验内容与实验原理

实验数据与结果讨论

实验总结

实验数据与分析讨论

实验数据预处理 | 正交实验分析 | 结果讨论

- a)对于Fx:因子3(切深)是影响最大的因素,其次是因子1(进给量),最后是因子2(主轴转速);其中因子1、因子3与Fx成正相关,而因子2与Fx成负相关。
- b)对于Fy:因子3(切深)是影响最大的因素,其次是因子1(进给量),最后是因子2(主轴转速);其中因子1、因子3与Fy成正相关,而因子2与Fy成负相关。
- c)对于Fz:因子3(切深)是影响最大的因素,其次是因子2(主轴转速),最后是因子1(进给量);其中因子1、因子3与Fx成正相关,而因子2与Fx成负相关。综合上述分析可知:使得Fx、Fy、Fz均达到最大的组合为

"进给量为300 mm/min,主轴转速为1000 rpm,切深为3mm"

实验数据预处理 | 正交实验分析 | 结果讨论

为了更直观地表示极差分析结果, 我们还绘制了因子各水平均值(取绝对值)图

实验目的与实验装置

实验内容与实验原理

实验数据与分析讨论

图1 Fx因子各水平均值

图2 Fy因子各水平均值

图3 Fz因子各水平均值

日录 CONTENTS

- 1 实验目的与实验装置
- 2 实验内容与实验原理
- 3 实验数据与结果讨论

误差分析与实验总结

误差分析与实验总结

误差分析 | 实验总结

1)清洁: 若测压孔端面未清理干净安装, 安装传感器时可能会导致传感器敏感面受伤。输出端应保持清洁干燥, 这样可提高传感器的绝缘阻抗;

2) **密封度**: 若传感器密封不好,测量时容易将传感器安装螺纹损坏,甚至会将传感器吹出测压孔造成意外事故;

3) 安装力矩:安装力矩会使传感器本体部件产生预应力,影响传感器的刚度,导致传感器的灵敏度发生变化;

实验目的与实验装置

实验内容与实验原理

实验数据与分析讨论

实验内容与实验原理

实验数据与分析讨论

实验总结

误差分析与实验总结

误差分析 | 实验总结

- 4)时间常数设置: 压电式传感器的测量误差随频率升高而加大
- 5) 绝缘性能: 若绝缘性能差将导致输出信号漂移, 甚至电荷放大器会 出现饱和现象。电缆接头的不清洁或电缆损坏都会导致绝缘性能的降低。另一方面, 由于电缆在测量中振动会引起干扰信号
- 6) 电磁场干扰及地回路干扰,温度、湿度变化的影响。

实验内容与实验原理

实验数据与分析讨论

实验总结

正交实验数据:

误差分析与实验总结

https://spssau.com/shareresults.html?shareResult=8C4C9CFB E72B05543C1CD97DCEB86D4D

滤波器尝试:

https://nbviewer.org/github/Racheus/ME3221--/blob/main/DataProcessing.ipynb

实验内容与实验原理

实验数据与分析讨论

实验总结

误差分析与实验总结

学习内容:

- ✓ 传感器的基本原理
- ✔ 信号处理、滤波器相关算法及实现
- ✓ 正交实验方法
- ✓ 数据处理-极差分析方法
- ✓ 数控车床的操作(当心G00)
- ✓ 绘图美观性考量

新知:

- > 切削力基础参数知识
- > 切削力的测量流程
- > 滤波原理

未至之境:

- ▶ 机械颤振 (chatter)的研究
- > 更优化的数据处理模型搭建
- > 切削的深度机械原理
- ➤ AI for detecting?

ME3221《测试原理与技术》结题汇报