Topics

- Ada support for Concurrency
- Java Threads
- C# Threads

Ada Support for Concurrency

- The Ada 83 Message-Passing Model
 - Ada tasks have specification and body parts, like packages; the spec has the interface, which is the collection of entry points:

```
task Task_Example is
  entry ENTRY_1 (Item : in Integer);
end Task_Example;
```

Task Body

- The body task describes the action that takes place when a rendezvous occurs
- A task that sends a message is suspended while waiting for the message to be accepted and during the rendezvous
- Entry points in the spec are described with accept clauses in the body

```
accept entry_name (formal parameters) do
    ...
end entry_name;
```

Example of a Task Body

```
task body Task_Example is
begin
  loop
    accept Entry_1 (Item: in Float) do
    ...
    end Entry_1;
  end loop;
end Task_Example;
```

Ada Message Passing Semantics

- The task executes to the top of the accept clause and waits for a message
- During execution of the accept clause, the sender is suspended
- accept parameters can transmit information in either or both directions
- Every accept clause has an associated queue to store waiting messages

Rendezvous Time Lines

⁽b) SENDER waits for TASK_EXAMPLE

Message Passing: Server/Actor Tasks

- A task that has accept clauses, but no other code is called a server task (the example above is a server task)
- A task without accept clauses is called an actor task
 - An actor task can send messages to other tasks
 - Note: A sender must know the entry name of the receiver, but not vice versa (asymmetric)

Graphical Representation of a Rendezvous

Multiple Entry Points

- Tasks can have more than one entry point
 - The task specification has an entry clause for each
 - The task body has an accept clause for each entry clause, placed in a select clause, which is in a loop

A Task with Multiple Entries

```
task body Teller is
  loop
     select
       accept Drive Up(formal params) do
       . . .
       end Drive Up;
    or
       accept Walk Up(formal params) do
       end Walk Up;
    end select;
  end loop;
end Teller;
```

Semantics of Tasks with Multiple accept Clauses

- If exactly one entry queue is nonempty, choose a message from it
- If more than one entry queue is nonempty, choose one, nondeterministically, from which to accept a message
- If all are empty, wait
- The construct is often called a selective wait
- Extended accept clause code following the clause, but before the next clause
 - Executed concurrently with the caller

Cooperation Synchronization with Message Passing

Provided by Guarded accept clauses

```
when not Full(Buffer) =>
  accept Deposit (New_Value) do
    ...
end
```

- An accept clause with a with a when clause is either open or closed
 - A clause whose guard is true is called open
 - A clause whose guard is false is called *closed*
 - A clause without a guard is always open

Semantics of select with Guarded accept Clauses:

- select first checks the guards on all clauses
- If exactly one is open, its queue is checked for messages
- If more than one are open, non-deterministically choose a queue among them to check for messages
- If all are closed, it is a runtime error
- A select clause can include an else clause to avoid the error
 - When the else clause completes, the loop repeats

Competition Synchronization with Message Passing

- Modeling mutually exclusive access to shared data
- Example—a shared buffer
- Encapsulate the buffer and its operations in a task
- Competition synchronization is implicit in the semantics of accept clauses
 - Only one accept clause in a task can be active at any given time

Partial Shared Buffer Code

```
task body Buf Task is
 Bufsize : constant Integer := 100;
 Buf : array (1...Bufsize) of Integer;
 Filled: Integer range 0..Bufsize := 0;
 Next In, Next Out : Integer range 1.. Bufsize := 1;
 begin
    loop
      select
        when Filled < Bufsize =>
          accept Deposit(Item : in Integer) do
            Buf(Next In) := Item;
          end Deposit;
          Next In := (Next In mod Bufsize) + 1;
          Filled := Filled + 1;
         or
         . . .
     end loop;
 end Buf Task;
```

A Consumer Task

```
task Consumer;
task body Consumer is
   Stored_Value : Integer;
begin
   loop
      Buf_Task.Fetch(Stored_Value);
      -- consume Stored_Value -
   end loop;
end Consumer;
```

Protected Objects in Ada 95

- Ada 95 includes Ada 83 features for concurrency
- Protected objects: A more efficient way of implementing shared data to allow access to a shared data structure to be done without rendezvous

Ada 95: Protected Objects

- A protected object is like a monitor
- Access to a protected object is either through messages passed to entries, as with a task, or through protected subprograms
- A protected procedure provides mutually exclusive read-write access to protected objects
- A protected function provides concurrent read-only access to protected objects

Evaluation of the Ada

- Message passing model of concurrency is powerful and general
- Protected objects are a better way to provide synchronized shared data
- In the absence of distributed processors, the choice between monitors (i.e. protected objects) and tasks with message passing is somewhat a matter of taste
- For distributed systems, message passing is a better model for concurrency

Java Threads

- The concurrent units in Java are methods named run
 - A run method code can be in concurrent execution with other such methods
 - The process in which the run methods execute is called a thread

```
class myThread extends Thread
  public void run () {...}
}
...
Thread myTh = new MyThread ();
myTh.start();
```

Controlling Thread Execution

- The Thread class has several methods to control the execution of threads
 - The yield is a request from the running thread to voluntarily surrender the processor
 - The sleep method can be used by the caller of the method to block the thread
 - The join method is used to force a method to delay its execution until the run method of another thread has completed its execution

Thread Priorities

- A thread's default priority is the same as the thread that create it
 - If main creates a thread, its default priority is NORM_PRIORITY
- Threads defined two other priority constants, MAX_PRIORITY and MIN_PRIORITY
- The priority of a thread can be changed with the methods setPriority

Competition Synchronization with Java Threads

 A method that includes the synchronized modifier disallows any other method from running on the object while it is in execution

```
public synchronized void deposit( int i) {...}
public synchronized int fetch() {...}
...
```

- The above two methods are synchronized which prevents them from interfering with each other
- If only a part of a method must be run without interference, it can be synchronized thru synchronized statement

```
synchronized (expression)
statement
```

Cooperation Synchronization with Java Threads

- Cooperation synchronization in Java is achieved via wait, notify, and notifyAll methods
 - All methods are defined in Object, which is the root class in Java, so all objects inherit them
- The wait method must be called in a loop
- The notify method is called to tell one waiting thread that the event it was waiting has happened
- The notifyAll method awakens all of the threads on the object's wait list

Java's Thread Evaluation

- Java's support for concurrency is relatively simple but effective
- Not as powerful as Ada's tasks

C# Threads

- Loosely based on Java but there are significant differences
- Basic thread operations
 - Any method can run in its own thread
 - A thread is created by creating a Thread object
 - Creating a thread does not start its concurrent execution;
 it must be requested through the Start method
 - A thread can be made to wait for another thread to finish with Join
 - A thread can be suspended with Sleep
 - A thread can be terminated with Abort

Synchronizing Threads

- Three ways to synchronize C# threads
 - The Interlocked class
 - Used when the only operations that need to be synchronized are incrementing or decrementing of an integer
 - The lock statement
 - Used to mark a critical section of code in a thread lock (object) { /* the critical section */ }
 - The Monitor class
 - Provides five methods (Enter, Wait, Pause, Pause All, Eixt) that can be used to provide more sophisticated synchronization

C#'s Concurrency Evaluation

- An advance over Java threads, e.g., any method can run its own thread
- Thread termination is cleaner than in Java
- Synchronization is more sophisticated