Image Pyramids

Number of pixels in this pyramid

$$N^2 + \frac{1}{4}N^2 + \frac{1}{16}N^2 + \dots = 1\frac{1}{3}N^2$$

Image Resizing

- While we will only talk about resizing by ½, all scales are possible.
- Resizing by ½: Blur & Subsample every 2nd pixel in every 2nd row. E.g. From 1024 x 1024 to 512 x 512
 - Convolution in image domain
- Arbitrary resizing: Use Fourier Transform
 - E.g. From 1024 x 1024 to 712 x 712

Arbitrary Resizing with Fourier (N→K) (Reminder)

Use 1: Efficient Visual Search

- Pyramids: Start the search in a small image
- Given an estimate from a lower resolution level, search area is small in higher resolution levels (e.g. ±1)
- Complexity at higher resolution: 9*pattern size

Search Example: Find this building in Google Earth (30M * 30M pixels)

More Applications for Pyramids

- Browsing in Image Databases: Multiple images or Videos
- Motion Computation; Stitching; More... (Later in Course)

Image Resizing

Reduce:

- 1. Blur (sometimes can be **decomposed**: Horizontal & Vertical)
 - Blur (sometimes can be accessed)

 E.g. Convolve with a 3×3 filter $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}) * (\frac{1}{4}, \frac{1}{2}, \frac{1}{4})^{T}$ $\frac{1}{16}\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ or a 5×5 filter $\frac{1}{256}$ (1, 4, 6, 4, 1) * (1, 4, 6, 4, 1) ^T ... or larger
- 2. Sub-sample
 - Select only every 2nd pixel in every 2nd row

Expand:

- 1. Zero Padding (a₁, 0, a₂, 0, a₃, 0, . . .)
- Blur
 - Note: Expand blur needs different normalizations due to zero padding!
 - Is zero padding followed by blur with $(\frac{1}{2}, 1, \frac{1}{2})$ OK?

Blur Kernels

Commonly Used – **Decomposable** Binomial Coefficients, odd length:

- Odd number of coefficients (have a center pixel)
- Sum of coefficients is normalized to 1
- Fast to compute:
 - Binomial using shift and integer add; Decomposable: 2N instead of N²
- Asymptotically similar to a Gaussian

```
1 2 1 /4
1 4 6 4 1 /16
1 6 15 20 15 6 1 /64
(1 1) *...^{2k}...*(1 1) / 2^{2k}
```

Decomposition of Kernels

$$P * \frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} = P * \frac{1}{16} \begin{bmatrix} 1 \\ 4 \\ 6 \\ 4 \\ 1 \end{bmatrix} * \frac{1}{16} [14641]$$

- Saving Computations (E.g. 5 x 5 kernel)
 - Naïve Computation: blur by 5x5 (25 multiplications)
 - If kernel can be decomposed to horizontal and vertical components
 - Blur columns first (5 multiplications), then blur rows
 - 10 multiplications instead of 25

Reduce: Blur & Sub-sample

1 2 3 4 5 6 5 4 3 2 1

Reduce: Blur & Sub-sample

Expand: Zero-Pad & Blur

0 2 0 4 0 5.5 0 4 0 2 0

1 2 3 4 5 6 5 4 3 2 1

Expand: Zero-Pad & Blur

Handling Image Boundaries Never Cyclic...

?=2

?=0

Reflect on last pixel Zero padding Duplicate last pixel. ?=0

Gaussian Pyramid Iterated Reduction of the Image

```
\bigcap_{G_n} G_n - G_0 Reduce\{G_{n-1}\} Reduce\{G_2\} Reduce\{G_1\} Reduce\{G_1\} Reduce\{G_0\} Reduce\{G_0\} Original Image
```

5-Level Gaussian Pyramid (Wikipedia)

Gaussian Pyramid

Resize All Images to G₀ by repeated Expand

Laplacian Pyramid

Represents The Information Lost in Each Gaussian Level

<u>G</u>	<u>aussian</u>	<u>Laplacian</u>		
Тор	G_n	L_n –	$L_4 = G_n$	
	G_3	L ₃ —	$L_3 = G_3 - Expand\{G_4\}$	$G_4 = Reduce\{G_3\}$
	G_2	L ₂	$L_2 = G_2 - Expand\{G_3\}$	
	G_1	L ₁ ———	$L_1 = G_1 - Expand\{G_2\}$	
Original	G_0	L_{O}		
$L_n + L_{n-1} = Expand\{L_n\} + L_{n-1} =$ = Expand $\{G_n\} + (G_{n-1} - Expand\{G_n\}) = G_{n-1}$				

 G_o

 G_1

 $Expand\{G_1\}$

 $L_0=G_0-Expand\{G_1\}$

Gaussian - Laplacian Gaussian Laplacian **Pyramids Pyramid Pyramid** G_3 expand G_2 expand G_1 Reduce expand L_0 G_0

Pyramid Compression (Burt, Adelson)

- Build a Laplacian Pyramid
- Quantize pyramid values to 3-5 values
 - Optimal Quantization (Future Lecture...)
- Compress using Entropy Compression
 - (Huffman, Lempel-Ziv) (Future Lecture...)
- Reconstruct normally

Pyramid Compression (Burt, Adelson)

Fig. 5. Pyramid data compression. The original image represented at 8 bits perpixel is shown in (a). The node values of the Laplacian pyramid representation of this image were quantitized to obtain effective data rates of 1 b/p and 1/2 b/p. Reconstructed images (b) and (c) show relatively little degradation.

Picture Merging with Spline

A

В

For every row y:

$$C(x,y) = h(x) A(x,y) + (1-h(x)) B(x,y)$$

Multiresolution Pyramid Spline

- Given two images A and B to be splined in middle
- Construct Laplacian Pyramid L_a and L_b
- Create a third Laplacian Pyramid L_c where for each

Sum all levels in L_c to get the blended image

Image Merging with Laplacian Pyramids

Pyramid Blending Arbitrary Shape

- Given two images A and B, and a binary mask M
- Construct Laplacian Pyramids L_a and L_b
- Construct a Gaussian Pyramid from mask M G_m
- Create a third Laplacian Pyramid L_c where for each level k

$$L_c(i,j) = G_m(i,j)L_a(i,j) + (1 - G_m(i,j))L_b(i,j)$$

• Sum all levels L_c in to get the blended image

Pyramid Blending – Arbitrary Shape

Each pixel (i,j) in each level in the Laplacian Pyramid L_c is created By averaging the corresponding pixels (same level and location) in L_a and L_b using the corresponding weights in G_m .

After L_c is completed, the combined image is created by summing all its levels.

$$L_c(i,j) = G_m(i,j)L_a(i,j) + (1 - G_m(i,j))L_b(i,j)$$

© prof. dmartin

