

Design of an USB HID device with data-logger and pulse-oximeter.

Author: Juan Domingo Jímenez Jerez Director: Miguel Ángel Mateo Plá

INDEX

- 1. Introduction
- Objetives
- 3. Desing: background and USB HID
- 4. Flow Chart
- 5. HID Device Test
- 6. Pulsometer: Theory, Development y Test
- 7. Conclusions

Introduction

Device for psychological tests with computers.

△As a method of analysis and diagnosis.

Record the time when various events happen (Accuracy)

******Correct the delay produced by the hardware I/O (Precision)

Objetives

- # Implement USB HID keyboard.

 - Able to record events
- # Store, read and delete information events in the Flash memory (datalogger).
- **#** Synchronize watches.
- # Desig a control console serial port.
- **#** Implement a pulsioximeter.

Background

USB background

- **#**Architecture master / slave.
 - △ PC: as HOST
 - △ All communications are initiated by the HOST.
- ## Multiple speeds: Low=1.5Mbps, Full=12 Mbps, High=480Mbps, Super=5Gbps
- **#**Unique identifier: *Vendor Id, Product Id, serial number*

Enumeration

- 1. The user plugs the device into a USB port.
- The hub detects the device.
- The host learns of the devices presence from the hub (Get Port Status Request)
- 4. The hub detects whether a device is Low speed or Full Speed.
- 5. The hub resets the device.
- The host learns if a full speed device supports high speed.
- 7. The hub establishes a signal path between the device and the bus.
- 8. The host sends a Get Descriptor Request to learn the maximum packet size of the default pipe.
- The host assigns an address (Set Address Request).
- 10. The host learn about a devices abilities (Get Descriptor Request).
- 11. The host assigns and loads a device driver.
- 12. The host's device driver selects a configuration (Set Configuration Request).

USB Background

Endpoints

- The host uses this to retrieve info about the device through descriptors...
- De control y de datos
- Endpoint 0: bidireccional. Los de datos: Unidireccionales

B Descriptores

- □ The host use this to take info from the device and to communicate.
- It represents a logical USB device.

USB: Clase HID

- ## Device Classes: Each device class defines the common behavior and protocols for devices that serve similar functions.
- # HID Class: "Human Interface Device"
 - Devices that are used by humans to control the operation of computer systems..
- **Requisitos** de los dispositivos de clase HID:
 - △ All data transferred must be formatted as reports
 - HID devices must respond to standard HID requests in addition to all standard USB requests

STM USB Device Libray

Archivo	Descripción
usbd_core (.c, .h)	Contains the functions for handling all USB communication and state machine.
usbd_req(.c, .h)	Includes the requests implementation.
usbd_ioreq (.c, .h)	This file handles the results of the USB transactions.
usbd_conf.h	This file contains the configuration of the device: vendor ID, Product Id, Stringsetc
usbd_hid (.c, .h)	This file contains the HID class callbacks (driver) and the configuration descriptors related to this class.

Discovery STM32F407D

- Core cm4 simd.h

User

- Stm32f4 usb hid device
- Defines.h
- Main.c
- Usb bsp.c
- Usb conf.h
- Usbd conf.h
- □ Usbd_desc.c
 □ U
- Usbd_desc.h
- □ Usbd_usr.c
 □ Usbd usr.c

Usb_Hid_Device

- Usb bsp.h
- Usb_core.c
- ☑ Usb_dcd.c
- Usb_dcd_int.c
- Usb_defines.h
- Usbd_core.c
- ☑ Usbd_ioreq.c
- Usbd_req.c
- Usbd usr.h
- ☑ Usbd_hid_core.c
- Usbd_hid_core.h

Flow Chart: Record of events

Flow Chart: Control Console in UART

USB HID Device Test

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Byte 0	Report ID = 0x01								
Byte 1	Right GUI	Right ALT	Right SHIFT	Right CTRL	Left GUI	Left ALT			
Byte 2	Padding = always 0x00								
Byte 3	Key 1								
Byte 4	Key 2								
Byte 5	Key 3								
Byte 6	Key 4								
BYTE 7	Key 5								
BYTE 8	Key 6								

USB HID Device Test: command *time*

USB HID Device Test: command *hora (clock)*

h 3102545 ACK

Pletismography

✓ Volume changes produced by variations in blood flow

****** Fotopletismography

- Light is emitted through the skin
- Light is absorbed in greater or lesser amount depending blood flow amount.

Obtaining Heart Rate by FFT

FFT: "Fast Fourier Transform"

- **Frecuencia de Nyquist**: It is the highest frequency that can be captured by the analyzer.
- **Sampling Frequency**
- **# FFT size**
- **# Frequency resolution**

250 BPM
$$\rightarrow$$
4,16Hz = $Fmax$

$$Fs > 2Fmax \rightarrow Fs > 8,33Hz$$

$$Fs = 100 Hz$$

$$\Delta f = \frac{\text{fs}}{\text{N}} = \frac{100}{2048} = 0.04883 \ Hz$$

Sensor, filter and amplifier

Pulsometer Implementation

 $BPM = \Delta f \cdot testIndex \cdot 60$

Pulsometer Test

To frequency \rightarrow f=N* Δ f=N*0.04883Hz

With comercial pulsometer *Sigma 20303*: 80 BPM

Pulsometer Test

Design of an USB HID device with data-logger and pulse-oximeter.

Author: Juan Domingo Jímenez Jerez Director: Miguel Ángel Mateo Plá