Konspekt pracy zaliczeniowej na studiach podyplomowych "Data Science Program"

Magdalena Benbenek

Spis treści

1.	Cel pracy	1
	Analizowane dane	
2.1.	Źródło danych	1
2.2.	Format danych	1
3.	Charakterystyka problemu	2
4.	Etapy projektu	3
5.	Środowisko pracy	3
6.	Przegląd publikacji i projektów	3
6.1.	Projekt Morfeusz	. 4
6.2.	Word embeddings	. 4
6.3.	spaCy-pl	. 4
64	Dodatkowe materiały	Δ

1. Cel pracy

Celem pracy jest przegląd dostępnych rozwiązań i metod dostępnych w zakresie NLP (*natural language processing*) dla języka polskiego wraz z ich zastosowaniem na przykładowym zbiorze danych tekstowych i analizą rezultatów.

Dodatkowym elementem będzie modelowanie statystyczne wykorzystanych danych np. w celu przewidzenia sentymentu danej wypowiedzi pod warunkiem zadanego tematu, mówcy i punktu w czasie lub wnioskowania o cechach autora wypowiedzi na podstawie jej charakterystyk.

2. Analizowane dane

2.1. Źródło danych

Zbiór na którym zostaną przeprowadzone analizy został pobrany z serwisu kaggle.com. Zawiera transkrypcje przemówień polskich polityków z lat 1989 – 2019 oraz profil każdego z mówców.

2.2. Format danych

Dane zostały udostępnione w formie bazy danych zawierającej dwie tabele.

Pierwsza z nich zawiera szczegółowy profil każdego polityka. Do najistotniejszych informacji należą:

Nazwa kolumny w zbiorze

Opis

full_name	Imię i nazwisko
elected	Data wybrania na posła
graduated_school	Ukończona szkoła/uczelnia
education_level	Wykształcenie
Occupation	Zawód
party_section	Partia
number_of_votes	Liczba otrzymanych głosów
languages	Znane języki
last_party	Ostatnia partia

W tabeli występuje 2626 posłów, 68 partii z 8 kadencji. Druga tabela zawiera transkrypcje przemówień sejmowych. Do najistotniejszych informacji należą:

Nazwa kolumny w zbiorze

Opis

session_number	Numer sesji
date_	Data przemówienia
Number_	Numer porządku obrad

speech_title	Tytuł przemówienia
speech_raw	Tekst przemówienia

Tabela zawiera 272 321 wierszy. Niektóre wiersze zawierają fragmenty tych samych wystąpień. Unikalnych wystąpień znajduje się z bazie ok. 19 tys.

3. Charakterystyka problemu

W ostatnich latach obszar NLP rozwija się bardzo intensywnie. Powstają nowe rozwiązania pozwalające na zaawansowane przetwarzanie i analizę nieustrukturyzowanych danych jakimi są dane tekstowe. Coraz bardziej zaawansowane są modele pozwalające na interpretację jak również generowanie tekstu.

Podstawowe elementy przygotowywania danych do analiz związanych z przetwarzaniem języka naturalnego to:

- tokenizacja, czyli podział tekstu na segmenty, najczęściej pojedyncze słowa,
- stemming ma na celu obcięcie wszystkich przyrostków i przedrostów aby zbliżyć słowo do podstawowej postaci,
- lematyzacja to przypisanie do każdego słowa jego formy podstawowej, która go reprezentuje,
- tworzenie wektorów własnościowych (word embeddings) w uproszczeniu będących wektorową reprezentacją znaczenia danego słowa.

Każdy z tych elementów to istotny element przetwarzania języka naturalnego i każdemu powinna zostać poświęcona odpowiednia uwaga. Po ich przejściu, przetworzone dane można wykorzystać w analizach takich jak:

- modelowanie tematyczne (topic modeling) czyli odkrywanie tematów pojawiających się w dużych zbiorach tekstów a następnie przypisywanie nowym, niezaklasyfikowanym tekstom tematu,
- analiza sentymentu pozwala na określenie jakimi emocjami nacechowany jest dany tekst,
- automatyczne odpowiadanie na pytania na podstawie tekstu,
- generowanie tekstu,
- tłumaczenia.
- budowa chatbotów

i wiele innych.

Większość publikacji w obszarze NLP bazuje na analizach języka angielskiego a ze względu na specyfikę języka polskiego tj. złożoną gramatykę i odmianę fleksyjną, nie wszystkie da się na nim prosto zastosować. Większość dostępnych do pobrania modeli była trenowana na tekstach w języku angielskim.

Dla języka polskiego trudniej jest też o dostępność słowników wspierających analizę sentymentu.

W trakcie analiz szczególny nacisk zostanie położony na zagadnienia:

- modelowanie tematyczne (topic modeling),
- analiza sentymentu (sentiment analysis) oraz
- wizualizacja powyższych zagadnień.

Przygotowanie danych pod analizy również będzie wymagało zastosowania szczególnego podejścia specyficznego dla danych nieustrukturyzowanych.

4. Etapy projektu

Projekt będzie realizowany w następujących krokach:

- przygotowanie tekstu do pracy,
 - łączenie danych dotyczących poszczególnych wypowiedzi,
 - o dodawanie informacji o autorze,
 - czyszczenie danych.
- przegląd dostępnych technik lematyzacji, wybór optymalnej,
- modelowanie tematyczne przegląd metod pozwalających na odkrycie segmentów wypowiedzi (tematów),
- analiza metod określenia sentymentu słów,
 - wypracowanie metod na rozszerzenie bazy NAWL (Nencki Affective Word List)
 zawierającej wymiarowanie ok. 2000 polskich słów w przestrzni opisującej pięć różnych
 emocji (szcęście, smutek, złość, strach, obrzydzenie)
- budowa modeli przewidujących cechy autora wypowiedzi lub jej senstyment,
 - o przygotowanie danych pod modelowanie,
 - wybór metod modelowania dostoswanych do wybranego zagadnienia (co najmniej dwie metody),
 - o budowa i analiza otrzymanych modeli.

5. Środowisko pracy

Podstawowym środowiskiem przeprowadzania analiz oraz przygotowywania wizualizacji będzie Python.

6. Przegląd publikacji i projektów

Poniżej przedstawiona jest lista niektórych źródeł, materiałów i projektów, których potencjalne zastosowanie będzie analizowane w niniejszej pracy.

6.1. Projekt Morfeusz

Jednym z szerzej znanych projektów dotyczących rozwoju polskiego NLP jest projekt Instytutu Podstaw Informatyki PAN Morfeusz (http://morfeusz.sgjp.pl/), który wykonuje analizę morfologiczną dla języka polskiego.

Poniżej wynik analiza dla przykładowe zdania "Analiza tekstu jest prosta".

Zasięg	Segment	Lemat	Znacznik	Pospolitość
0-1	Analiza	analiza	subst:sg:nom:f	nazwa_pospolita
1-2	tekstu	tekst	subst:sg:gen:m3	nazwa_pospolita
2-3	jest	być	fin:sg:ter:imperf	
3-4	prosta	prosty:a	adj:sg:nom.voc:f:pos	
		prosta	subst:sg:nom:f	nazwa_pospolita
			subst:sg:voc:f	nazwa_pospolita
		prosty:a	adjp:gen	
4-5	[.]		interp	

Wyniki można wykorzystać m.in. w procesie lematyzacji tekstu.

6.2. Word embeddings

Metoda reprezentowania słów jako wektory pojawiła się po raz pierwszy w latach sześćdziesiątych ubiegłego stulecia, ale intensywny rozwój tej techniki przypada na ostatnie lata. Niektóre z metod to:

- word2vec, Tomas Mikolov et al. (2013) "Efficient Estimation of Word Representations in Vector Space".
- **GloVe**, Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. "GloVe: Global Vectors for Word Representation"
- **fastText**, E. Grave, P. Bojanowsk*, P. Gupta, A. Joulin, T. Mikolov, "Learning Word Vectors for 157 Languages".

W szczególności ostatnie podejście pozwalające na pobranie gotowych embeddingów wytrenowanych dla języka polskiego, będzie analizowane w niniejszej pracy.

6.3. spaCy-pl

Projekt IPI PAN dedykowany budowie rozwiązań dla NLP wspierających język polski. W projekcie dostępne są elementy takie jak tokenizacja i lematyzacja (http://spacypl.sigmoidal.io/#home).

6.4. Dodatkowe materialy

Inne publikacje, które zostaną przeanalizowane pod kątem wykorzystania w projekcie:

- Adriaan M. J. Schakel, Benjamin J. Wilson "Measuring Word Significance using Distributed Representations of Words"
- Riegel, M., Wierzba, M., Wypych, M. et al. "Nencki Affective Word List (NAWL): the cultural adaptation of the Berlin Affective Word List–Reloaded (BAWL-R) for Polish" Behav Res 47, 1222–1236 (2015) doi:10.3758/s13428-014-0552-1