PERANCANGAN PENEMPATAN RECLOSER YANG OPTIMUM MENGGUNAKAN METODE QUANTUM GENETIC ALGORITHM DI PENYULANG PALAPA

I Gede Wiyoga Putra¹, I Gede Dyana Arjana², Widyadi Setiawan²

¹Mahasiswa Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana

²Dosen Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana

Kampus Bukit Jimbaran, Badung-Bali

wiyogaputra@student.unud.ac.id¹, dyanaarjana@ee.unud.ac.id², widyadi@unud.ac.id³

ABSTRAK

Kebutuhan tenaga listrik di Bali semakin meningkat seiring dengan berkembangnya teknologi dan pembangunan di wilayah Bali, maka kualitas layanan distribusi listrik terhadap pelanggan juga harus ditingkatkan. Penelitian ini mengambil contoh kasus tahun 2018, Penyulang Palapa menggunakan 2 buah recloser jaringan yang memiliki nilai indeks keandalan yang belum memenuhi standar dengan nilai indeks keandalan. Penyulang Palapa saat kondisi hanya menggunakan LBS didapatkan nilai SAIFI 2,1055 dan SAIDI 7,2960, kemudian pada kondisi ketika LBS diganti menjadi recloser didapatkan nilai SAIFI 1,203 dan SAIDI 4,091 dan pada kondisi ketika ditambahnya 1 buah recloser nilai SAIFI menjadi 1,016 dan SAIDI menjadi 3,4088. Penggunaan 2 buah recloser jaringan pada suatu penyulang dapat dikatakan kurang efektif, karena jika ditempatkan dalam jarak yang cukup berdekatan dapat mengakibatkan kedua alat akan bekerja bersamaan saat terjadi gangguan sehingga daerah yang tidak terdampak gangguan juga akan ikut padam. Maka dari itu perlu dilakukan perancangan satu titik penempatan recloser agar didapatkan nilai indeks keandalan yang lebih kecil sehingga dapat memenuhi standar PLN (SPLN) No. 68-2:1986, standar World Class Company, World Class Service, dan juga diperoleh lokasi recloser optimum serta lebih efisien.

Perancangan penempatan *recloser* dilakukan menggunakan metode *Quantum Genetic Algorithm* yang merupakan algoritma evolusioner berdasarkan konsep quantum bit (*qubit*). Tujuan dari metode ini adalah meminimumkan nilai SAIDI dan SAIFI sehingga didapatkan indeks keandalan yang lebih kecil dan memenuhi standar sehingga diperoleh lokasi *recloser* optimum. Hasil perancangan penempatan *recloser* menggunakan metode QGA menunjukkan letak *recloser* jaringan yang optimum lokal berada pada *section* 2 pada titik 56 dengan nilai *fitness* tertinggi 4,9715, dan mendapatkan nilai SAIDI 1,8951, berhasil menurun 44,4% dan nilai SAIFI 0,9978 berhasil menurun 1,78%, serta dengan ini terbukti perancangan penempatan *recloser* menggunakan metode QGA berhasil mendapatkan optimum lokal dengan hasil indeks SAIDI SAIFI yang lebih baik dan sudah memenuhi standar PLN (SPLN) No. 68-2:1986 dengan SAIDI 3,33 dan SAIFI 1,2 dan juga sudah memenuhi standar *World Class Company* dan *World Class Service* dengan SAIFI 3 (kali/Pelanggan/tahun) dan SAIDI 1,66 (jam/Pelanggan/tahun).

Kata kunci : SAIDI, SAIFI, Recloser, Quantum Genetic Algorithm

ABSTRACT

The need for electricity in Bali is increasing along with the growth of technology and development in Bali, so the quality of electricity distribution to customers must also be improved. This study took an example from the 2018 case, Palapa Feeder used 2 reclosers which had an index value that did not meet the standard of the reliability index value. When the Palapa Feeder only used LBS, SAIFI value was 2.1055 and SAIDI was 7.2960, when the LBS was changed to recloser the SAIFI value was 1.203 and SAIDI was 4.091. When a recloser was added again the SAIFI value became 1.016 and SAIDI became 3.4088. The use of 2 reclosers on a feeder is less effective, because if they are placed at a close distance, then there will be two devices work simultaneously when there is a disturbance so that the area which is not affected by the disturbance will also experience a power outage. Therefore it is necessary to design a recloser placement point in order to obtain lower reliability index value in order to meet the PLN standard (SPLN) No. 68-2: 1986, World Class Company standards, World Class Service standards, and also obtained the optimum recloser location and more efficient.

The design of recloser placement is carried out using the Quantum Genetic Algorithm method, which is an evolutionary algorithm based on the concept of quantum bits (qubits). The purpose of this method is to minimize the SAIDI and SAIFI value in order to obtain lower reliability index and meet the standards in order to obtain an optimum recloser location. The results of the recloser placement design using the QGA method show that the local optimum recloser location is in section 2 at point 56 with the highest fitness value is 4.9715 and a SAIDI value is 1.8951 decreased by 44.4% and SAIFI value is 0.9978 decreased by 1, 78%, and it is proven that the recloser placement design using the QGA method has succeeded in obtaining local optimum with better SAIDI SAIFI index results and has met the PLN (SPLN) standard No. 68-2: 1986 with SAIDI 3,33 and SAIFI 1,2 and also meets World Class Company and World Class Service standards with SAIFI 3 (times/customer/year) and SAIDI 1,66 (hours/customer/year).

Key Words: SAIDI, SAIFI, Recloser, Quantum Genetic Algorithm

1. PENDAHULUAN

Perkembangan teknologi yang semakin pesat di Indonesia di bidang industri. rumah tangga, transportasi, telekomunikasi, pendidikan, dan lain-lain, akan sangat mempengaruhi bertambahnya kebutuhan energi listrik. Menurut Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT. PLN (Persero) Tahun 2018 s.d. 2027 proyeksi kebutuhan energi listrik terus mengalami peningkatan hingga 3,08%. [1] maka dari itu kualitas layanan listrik terhadap pelanggan juga harus ditingkatkan dengan meningkatkan tingkat keandalan sistem tenaga listrik pada suatu penyulang.

Salah satu cara untuk meningkatkan keandalan listrik pada suatu penyulang adalah dengan meminimalisir gangguan yang dapat menyebabkan pemadaman listrik pada suatu penyulang. Tingkat keandalan suatu sistem tenaga listrik juga dapat ditingkatkan dengan melengkapi saluran dengan pengaman saluran atau pemasangan *recloser* Jaringan. [2]

Dengan pemasangan recloser pada suatu jaringan sistem tenaga listrik maka, jika terjadi suatu gangguan akan dapat ditanggulangi dalam waktu yang singkat dan dapat memisahkan daerah atau jaringan yang sedang mengalami gangguan secara cepat, sehingga dapat memperkecil daerah terjadinya gangguan.

Penyulang Palapa merupakan salah satu penyulang yang mendapatkan suplai dari GIS Pesanggaran. Penyulang Palapa sebelumnya hanya menggunakan LBS kemudian pada tahun 2018, LBS Bedugul, diganti dengan recloser Jaringan. Kemudian pada pertengahan tahun 2018, Penyulang Palapa ditambahkan satu buah recloser jaringan. Penempatan posisi recloser jaringan pada suatu sistem jaringan listrik tidak dapat ditempatkan di sembarang titik, ada beberapa hal yang harus diperhitungkan dalam menempatkannya, agar recloser dapat bekerja secara optimal dalam

meningkatkan keandalan sistem jaringan listrik.

Penelitian ini menggunakan metode pengembangan dari *Genetic Algorithm* yang disebut dengan *Quantum Genetic Algorithm* (QGA). QGA merupakan evolusi dari Algoritma Genetika yang dapat diterapkan pada berbagai masalah optimasi dan dapat memecahkan masalah optimasi kombinatorial. [3]

Metode ini dipilih karena QGA merupakan sebuah algoritma evolusioner yang diterapkan pada berbagai metode optimasi. Hasil penelitian menggunakan metode QGA berhasil mendapatkan hasil yang lebih optimal seperti pada penelitian oleh Satria tahun 2018 dengan metode optimasi penempatan tersebut untuk Distributed Generator (DG) dengan tujuan memperbaiki profil tegangan penyulang Abang. Hasil penelitian menunjukkan metode QGA berhasil mendapatkan penempatan DG yang optimal dan berhasil memperbaiki profil tegangan yang sebelumnya belum memenuhi standar. [4]

Penggunaan 2 buah recloser jaringan pada suatu penyulang dapat dikatakan kurang efektif, karena ditempatkan dalam jarak yang cukup berdekatan dapat mengakibatkan kedua alat akan bekerja bersamaan saat terjadi gangguan sehingga daerah yang tidak gangguan juga akan terdampak padam. Maka dari itu perlu dilakukan perancangan satu titik penempatan recloser agar dapat mengetahui titik optimal dari penempatan alat proteksi recloser dan dapat memberikan nilai SAIDI dan SAIFI yang lebih kecil dan lebih optimal, sehingga dapat meningkatkan keandalan pada suatu sistem tenaga listrik dan meningkatkan kualitas pelayanan listrik terhadap pelanggan.

2. KAJIAN PUSTAKA

2.1 Indeks Keandalan Sistem Jaringan Distribusi Listrik

Indeks keandalan sistem jaringan distribusi listrik adalah sebuah indikator keandalan yang dinyatakan dalam suatu besaran probabilitas. Besaran probabilitas ini terdiri dari indeks titik beban dan indeks sistem yang digunakan untuk memperoleh pengertian yang mendalam ke dalam keseluruhan kinerja. [5] Indeks keandalan tersebut antara lain: SAIDI dan SAIFI. [6]

1. System Average Interruption Duration Index (SAIDI)

Merupakan indeks keandalan sistem tenaga listrik sebagai nilai rata-rata dari total jumlah waktu terjadinya kegagalan untuk setiap pelanggan yang mengalami gangguan selama kurun waktu satu tahun. [7] Adapun persamaan SAIDI adalah sebagai berikut:

$$SAIDI = \frac{\sum U_i N_i}{\sum N_i}$$
 (1)

2. System Average Interruption Frequency Index (SAIFI)

Merupakan indeks keandalan sistem tenaga listrik yang didefinisikan sebagai jumlah rata-rata kegagalan yang terjadi per pelanggan yang dilayani oleh suatu sistem tenaga listrik selama periode waktu yang telah ditentukan. (umumnya per tahun) [7] Adapun persamaan SAIFI adalah sebagai berikut:

$$SAIFI = \frac{\sum \lambda_i N_i}{\sum N_i}$$
 (2)

di mana:

 $\sum \lambda_i \; N_i \; = \; \text{jumlah} \; \; \text{perkalian} \; \; \text{antara} \; \; \text{U} \; \; \text{dengan} \; \text{jumlah}$

pelanggan pada setiap komponen i $\sum U_i \ N_i = \ \text{jumlah} \ \text{perkalian} \ \text{antara} \ \lambda \ \text{dengan}$ jumlah

 $\begin{array}{ll} & & \text{pelanggan pada setiap komponen } i \\ \sum N_i & = \text{jumlah total seluruh pelanggan yang} \\ & \text{berada pada suatu sistem} \end{array}$

Laju kegagalan (λ) merupakan nilai rata-rata dari jumlah kegagalan dalam satuan interval waktu. [8] Ketidaktersediaan (U) merupakan durasi gangguan suatu sistem tenaga listrik ketika kondisi sistem tidak dapat menyuplai daya ke konsumen [7]

Dalam menghitung indeks keandalan pada suatu sistem tenaga listrik diperlukan data indeks kegagalan dari suatu peralatan yang sesuai dengan standar PLN (SPLN) No.59: 1985, "Keandalan Pada Sistem Distribusi 20 kV dan 6 kV".

Tabel 1. Data indeks kegagalan Saluran Udara jaringan distribusi [9]

Saluran Udara		
Sustained failure rate (λ/km/yr)	0,2	
Momentary failure rate (λ/km/yr)	0,003	
r (repair time) (jam)	3	
rs (switching time) (jam)	0,15	

Tabel 2. Data indeks kegagalan peralatan jaringan distribusi [9]

Komponen	λ (failure rate)	r (repair time) (jam)	rs (switching time) (jam)
Trafo Distribusi	0,005/unit/thn	10	0,15
Circuit Breaker	0,004/unit/thn	10	0,15
Sectionalizer	0,003/unit/thn	10	0,15

Parameter λ dan U akan dipergunakan dalam menghitung nilai keandalan pada setiap peralatan yang terdapat pada jaringan distribusi. [8] Adapun perhitungan λ dan U pada setiap titik load point adalah sebagai berikut:

Failure rate load point $(\lambda_{I,P})$ adalah nilai dari penjumlahan λ setiap peralatan sistem tenaga listrik yang ada pada jaringan distribusi seperti recloser, circuit breaker, distribusi yang merupakan alat-alat yang mempengaruhi titik beban yang akan dihitung. Sehingga [10] didapatkan persamaanya adalah sebagai berikut:

$$\lambda_{sys} = \sum_{i} \lambda i \tag{3}$$

 Ketidaktersediaan (U) load point (U_{LP}) adalah suatu nilai dari perkalian antara λ dengan r masing-masing peralatan yang nantinya akan mempengaruhi titik beban yang dihitung. [10] Sehingga didapatkan persamaanya adalah sebagai berikut:

$$U_{sys} = \sum_{i} \lambda i ri$$
 (4)

di mana:

 $\lambda i = \lambda$ untuk peralatan i ri = r untuk peralatan i

2.2 Recloser

Recloser atau penutup balik otomatis merupakan suatu peralatan pengaman dalam sistem distribusi tenaga listrik yang memiliki fungsi untuk memutuskan saluran secara otomatis ketika terjadi gangguan segera menutup dan akan kembali beberapa waktu kemudian sesuai dengan setting waktunya. [11] Pada gangguan permanen, recloser berfungsi memisahkan daerah atau jaringan yang terganggu sistemnya secara cepat

sehingga dapat memperkecil daerah yang terganggu pada gangguan sesaat. [12] Recloser akan memisahkan daerah sesaat sampai gangguan gangguan tersebut akan dianggap hilang, dengan demikian recloser akan masuk kembali sesuai settingan-nya sehingga jaringan akan aktif kembali secara otomatis. [13] Bentuk fisik recloser ditunjukkan pada gambar 1 di bawah.

Secara garis besar cara kerja recloser adalah sebagai berikut: [11]

- 1. Saat kondisi tidak terjadi gangguan arus mengalir secara normal.
- Ketika terjadi gangguan, maka recloser akan beroperasi secara cepat memutus arus gangguan.
- Recloser akan menutup kembali setelah beberapa detik, sesuai dengan setting yang telah ditentukan. Dengan memberikan selang waktu beberapa detik merupakan untuk memberikan kesempatan kepada sistem agar gangguan hilang dari sistem, terutama untuk gangguan temporer.
- 4. Jika terjadi gangguan permanen, maka recloser akan membuka dan menutup balik sesuai dengan setting yang telah ditentukan dan recloser akan lock out. (permanently open).
- Setelah gangguan permanen berhasil dibebaskan oleh petugas lapangan, baru recloser dapat dikembalikan ke

kondisi normal.

Gambar 1. Recloser [14]

2.3 Quantum Genetic Algorithm

Genetic Algorithm (GA) adalah suatu metode metaheuristic yang terinspirasi dari adanya proses seleksi natural. [15] Quantum Genetic Algorithm (QGA) merupakan suatu metode optimasi

probabilistic dengan menggunakan teori dikombinasikan komputasi kuantum, dengan teori perhitungan kuantum dan teori algoritma genetika. Quantum Genetic Algorithm atau algoritma genetika kuantum (QGA) merupakan suatu algoritma evolusioner (EA) yang memiliki prinsip secara metode pencarian dan optimasi berdasarkan prinsip stokastik biologis alami, [16]

Konsep qubit dan superposisi keadaan mekanika kuantum merupakan dasar dari QGA. Unit dasar dari informasi kuantum adalah pada komputasi kuantum, qubit atau quantum bit. Sebuah qubit mungkin dapat berada dalam status '1' dan status '0', atau dalam keadaan koheren superposisi manapun dari keduannya disaat waktu bersamaan.[16] Kuantum bit memiliki dua karakteristik dalam menyeleksi untuk mendapatkan konvergensi yaitu eksplorasi dan eksplorasi bersamaan.

Status dari *qubit* dapat ditunjukkan seperti pada persamaan berikut:

$$|\psi\rangle = |\alpha|^2 + |\beta|^2 \tag{5}$$

di mana α dan β adalah sebuah amplitudo probabilitas atau dapat dikatakan sebagai bilangan kompleks yang dipergunakan dalam menggambarkan perilaku dari status tersebut. Amplikasi amplitudo (amplitude amplification). Kondisi normalisasi dari status tersebut adalah sebagai berikut:

$$|\alpha|^2 + |\beta|^2 = 1 \tag{6}$$

di mana:

 $|\alpha|^2$ = probabilitas *qubit* dalam status (0) $|\beta|^2$ = probabilitas *qubit* berada pada status (1)

QGA didasarkan dari konsep qubit, di mana satu qubit didefinisikan terdiri dari pasangan bilangan, (α, β) adalah sebagai berikut:

Gambar 2. Status Quantum Bit (qubit)

Persamaan (7) adalah karakteristik dari persamaan (5) dan (6). Satu buah quantum bit dari satu individu dengan panjang m dapat didefinisikan sebagai string qubit. Untuk mempresentasikan mqubit- dapat di definisikan sebagai berikut:

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_m \\ \beta_1 & \beta_2 & \dots & \beta_m \end{bmatrix} \tag{8}$$

di mana $|\alpha_i|^2 + |\beta_i|^2 = 1$, i = 1,2,3..m

3. METODOLOGI PENELITIAN

Penelitian ini dilakukan pada bulan Agustus – November 2019 bertempat di Laboratorium Analisa Sistem Tenaga Program Studi Teknik Elektro, Fakultas Teknik Universitas Udayana, Kampus Bukit Jimbaran.

Penelitian ini menggunakan data dari PT. PLN (Persero) Unit Pelaksana Pengatur Distribusi (UP2D) Bali dan PT. PLN (Persero) Unit Pelaksana Pelayanan Pelanggan (UP3) Bali Selatan. Jenis data vang diperoleh adalah data single line diagram Penyulang Palapa, data panjang saluran, jumlah pelanggan di Penyulang Palapa, dan data kapasitas trafo pada Penyulang Palapa. Alur proses penelitian menggunakan metode algoritma genetika adalah sebagai berikut:

- Mengumpulkan data single line diagram Penyulang Palapa, data jumlah pelanggan di Penyulang Palapa. Data Panjang Saluran di Penyulang Palapa. Data kapasitas dan beban trafo di Penyulang Palapa.
- 2. Membagi Penyulang Palapa menjadi beberapa grup.
- Mencari nilai laju kegagalan dan waktu keluaran sistem pada masing-masing section.
- 4. Menghitung nilai SAIDI dan SAIFI dengan menggunakan LBS.
- Menghitung nilai SAIDI dan SAIFI Setelah LBS diganti menjadi recloser

- Menghitung nilai SAIDI dan SAIFI Setelah adanya penambahan recloser pada Penyulang Palapa
- 7. Membangkitkan populasi dengan *input*-an *load point* Penyulang Palapa.
- 8. Memasukan nilai populasi awal ke fungsi *fitness*.
- Memasukan parameter-parameter yang dibutuhkan ke dalam program perancangan untuk menentukan titik optimal pemasangan recloser menggunakan metode QGA.
- Menentukan nilai fitness yang terbaik sebagai letak titik posisi recloser yang optimum.
- Menghitung nilai SAIDI dan SAIFI dengan titik optimum recloser dari hasil pengujian menggunakan metode QGA.

dimaksudkan Perancangan menentukan posisi optimal penempatan recloser pada Penyulang Palapa yang sebelumnya menggunakan 2 buah recloser. Adapun fungsi tujuan dari perancangan ini adalah meminimalkan nilai SAIDI dan SAIFI Penyulang Palapa. Batasan-batasan penelitian ini adalah data pelanggan pada Penyulang Palapa sebelum dan sesudah reposisi adalah sama, simulasi program menggunakan program MATLAB, Hanya menentukan posisi penempatan recloser yang paling optimal, dan kondisi keandalan penyulang setelah reposisi dan Tidak melihat berapa jumlah recloser pada Penyulang Palapa

Perancangan ini hanya menentukan 1 letak *recloser* yang optimum dengan kandidat hasil yang menunjukkan nilai SAIDI dan SAIFI terkecil pada program QGA yang merupakan penempatan *recloser* yang optimal.

Alur penelitian dapat digambarkan dengan diagram alir pada gambar 3 di bawah:

Gambar 3. Diagram alir optimasi penempatan recloser menggunakan metode QGA

4. HASIL DAN PEMBAHASAN

Penyulang Palapa merupakan penyulang yang berada di Kota Denpasar, Bali. Penyulang ini melayani suplai energi listrik untuk wilayah Denpasar Selatan, tepatnya pada Jalan Sidakarya hingga ke Jalan Bedugul. Penyulang Palapa menggunakan sistem jaringan radial dengan sumber listrik dari penyulang ini berasal dari trafo IV GIS Pesanggaran dengan kapasitas 60 MVA. Penyulang ini memiliki 51 buah trafo distribusi, dengan

total daya yang terpasang adalah sebesar 2.303,74 kVA. Panjang saluran pada Penyulang Palapa adalah sepanjang 10.44 kms, dengan total jumlah pelanggan pada Penyulang Palapa adalah sebanyak 8096 pelanggan.

4.1 Perhitungan Keandalan Sistem Distribusi Penyulang Palapa

Perhitungan keandalan sistem pada Penyulang Palapa akan dilakukan pada 3 kondisi yaitu, kondisi pertama ketika hanya ada LBS (tidak ada recloser), kondisi kedua ketika hanya ada 1 recloser dan kemudian kondisi ketiga vaitu ketika ditambah 1 recloser. Dalam perhitungan keandalan sistem, masing-masing peralatan dapat dianalisis secara terpisah karena kegagalan peralatan diasumsikan tidak berhubungan. Langkah pertama yang dilakukan dalam menghitung keandalan adalah menyiapkan data panjang saluran, data jumlah pelanggan per-load point dan data indeks kegagalan peralatan. Kemudian mulai menghitung nilai laju kegagalan atau failure rate (**\(\)**) persamaan 3 menggunakan dan ketidaktersediaan (U) peralatan per-section menggunakan persamaan 4. Setelah mendapatkan nilai hasil total dari nilai failure rate (λ_{Total}) dan ketidaktersediaan (U_{Total}) setiap peralatan pada masingmasing section, selanjutnya mengalikan hasil dari nilai failure rate (λ) dan ketidaktersediaan (U) setiap peralatan dengan jumlah pelanggan dari masingmasing load point. Untuk perhitungan keandalan sistem pada Penyulang Palapa masing-masing kondisi adalah sebagai berikut:

1. Perhitungan Keandalan Sistem Distribusi Penyulang Palapa Kondisi 1 Setelah mendapatkan hasil dari $\lambda_{Total} \times$ Pelanggan dan hasil $U_{Total} \times$ Pelanggan dari masing-masing load point (LP1-LP51) kondisi 1, setelah itu dijumlahkan, sehingga didapatkan jumlah total dari $\lambda_{Total} \times$ Pelanggan, $U_{Total} \times$ Pelanggan dan jumlah seluruh pelanggan. Untuk lebih jelas dapat dilihat pada tabel 3 sebagai berikut:

Tabel 3. Jumlah Total $\lambda_{Total} \times$ Pelanggan dan $U_{Total} \times$ Pelanggan Pada semua section dan jumlah pelanggan pada setiap section

	Indeks keand	Jumlah		
Section	λ _{Total} ×	U _{Total} x	pelanggan	
	Pelanggan	Pelanggan	pelanggan	
1	17046,8524	59068,955	8096	
Jumlah total	17046,8524	59068,955	8096	

Setelah mendapatkan jumlah total $\lambda_{Total} \times Pelanggan$ dan $U_{Total} \times Pelanggan$ Pada semua *section*, Langkah selanjutnya adalah menghitung SAIDI dan SAIFI sesuai dengan persamaan 1 dan 2, sehingga perhitungan didapatkan seperti di bawah ini:

$$SAIFI = \frac{\sum \lambda_i N_i}{\sum N} = \frac{17046,8524}{8096}$$

= 2,1055 Kali/Pelanggan/Tahun

$$SAIDI = \frac{\sum U_i N_i}{\sum N} = \frac{59068,955}{8096}$$

= 7,2960 Jam/Pelanggan/Tahun

2. Perhitungan Keandalan Sistem Distribusi Penyulang Palapa Kondisi 2 Setelah mendapatkan hasil dari λ_{Total} × Pelanggan dan hasil $U_{Total} \times Pelanggan$ dari masing-masing load point pada section 1 dan section 2 pada kondisi 2, setelah itu dijumlahkan, sehingga didapatkan jumlah total dari λ_{Total} \times Pelanggan, U_{Total} × Pelanggan dan jumlah seluruh pelanggan pada semua section. Untuk dapat lebih jelas, dapat dilihat selengkapnya pada tabel 4 sebagai berikut:

Tabel 4. Jumlah Total $\lambda_{Total} \times$ Pelanggan dan $U_{Total} \times$ Pelanggan Pada semua section dan jumlah pelanggan pada setiap section

	Indeks kea	Jumlah	
Section	$\lambda_{Total} \times U_{Total} \times$		pelangg
	Pelanggan	Pelanggan	an
1	4552,6054	15185,9302	4930
2	5194,5746	17940,7516	3166
Jumlah total	9747,18	33126,6818	8096

Setelah mendapatkan jumlah total $\lambda_{Total} \times Pelanggan$ dan $U_{Total} \times Pelanggan$ Pada semua *section*, Langkah selanjutnya adalah menghitung SAIDI dan SAIFI sesuai dengan persamaan 1 dan 2, sehingga perhitungan didapatkan seperti di bawah ini:

$$SAIFI = \frac{\sum \lambda_i N_i}{\sum N}$$

$$= \frac{(\lambda \times N) section 1 + (\lambda \times N) section 2}{N section 1 + N section 2}$$

$$= \frac{4552,6054 + 5194,5746}{4930 + 3166} = \frac{9747,18}{8096}$$

$$= 1,203 \ Kali/Pelanggan/Tahun$$

$$SADI = \frac{\sum U_i N_i}{\sum N}$$

$$= \frac{(U \times N) section 1 + (U \times N) section 2}{N section 1 + N section 2}$$

$$= \frac{5185,9302 + 17940,7516}{4930 + 3166} = \frac{33126,6818}{8096}$$

$$= 4,091 \ Jam/Pelanggan/Tahun$$

3. Perhitungan Keandalan Sistem Distribusi Penyulang Palapa Kondisi 3 Setelah mendapatkan hasil dari λ_{Total} × Pelanggan dan hasil $U_{Total} \times Pelanggan$ dari masing-masing load point pada section 1 dan section 2 pada kondisi 3, setelah itu dijumlahkan, sehingga didapatkan jumlah total dari λ_{Total} \times Pelanggan, $U_{Total} \times Pelanggan dan jumlah$ seluruh pelanggan pada semua section. Untuk dapat lebih jelas, dapat dilihat selengkapnya pada tabel 5 sebagai berikut:

Tabel 5. Jumlah Total λ_{Total} \times Pelanggan dan U_{Total} \times Pelanggan Pada semua section dan jumlah pelanggan pada setiap section

	Indeks keandalan sistem		
Section	$\lambda_{Total} \times U_{Total} \times$		pelangg
	Pelanggan	Pelanggan	an
1	4552,6054	15042,1546	4930
2	3285,0744	11455,698	2730
3	454,3344	1556,5112	436
Jumlah total	8230,8506	27598,1518	8096

Setelah mendapatkan jumlah total $\lambda_{Total} \times Pelanggan$ dan $U_{Total} \times Pelanggan$ Pada semua *section*, Langkah selanjutnya adalah menghitung SAIDI dan SAIFI sesuai dengan persamaan 1 dan 2, sehingga perhitungan didapatkan seperti di bawah ini:

$$SAIFI = \frac{\sum \lambda_i N_i}{\sum N}$$

$$= \frac{(\lambda \times N) section \ 1 + (\lambda \times N) section \ 2 + (\lambda \times N) section \ 3}{N section \ 1 + N section \ 2 + N section \ 3}$$

$$= \frac{4552,6054 + 3285,0744 + 454,3344}{4930 + 2730 + 436}$$

$$= \frac{8230,8506}{N section \ 3}$$

= 1,016 Kali/Pelanggan/Tahun

$$SADI = \frac{\sum U_i N_i}{\sum N}$$

$$= \frac{(U \times N) section 1 + (U \times N) section 2 + (U \times N) section 3}{N section 1 + N section 2 + N section 3}$$

$$= \frac{15042,1546 + 11455,698 + 1556,5112}{4930 + 3166}$$

$$= \frac{27598,1518}{2006}$$

= 3,4088 Jam/Pelanggan/Tahun

4.2 Proses Algoritma Genetika pada MATLAB

Proses algoritma genetika metode QGA dilakukan menggunakan software MATLAB. Ada beberapa tahapan yang perlu dilakukan dalam proses perancangan penempatan recloser saluran menggunakan algoritma genetika vaitu, inisialisasi pertama tahap auantum. kemudian dilanjutkan dengan inisialisasi populasi, dekode kromosom, evaluasi individu, linier fitness rangking, roulette wheel, pindah silang (crossover), mutasi, quantum algorithm, extending incorporation, generating incorporation, dan replacement. [15]

No	Fitness	Posisi Letak Rec	Grup	SAIDI	SAIFI	Running Program ke-
1.	4,7886	56	2	0,9914	0,9978	1
2.	4,6391	56	2	1,0578	0,9978	2
3.	2,1149	47	1	2,4429	0,9978	3
4.	4,7181	56	2	1,8951	0,9978	4
5.	4,9715	56	2	0,9087	1,0028	5
6.	4,1286	56	2	1,3243	0,9978	6
7.	2,0389	47	1	2,2040	2,6006	7
8.	1,9951	47	1	2,3118	2,6006	8
9.	4,0162	56	2	1,5212	1,0028	9
10.	3,9638	56	2	1,4200	1,0028	10

perancangan perancangan Dalam recloser saluran, penulis penempatan mengasumsikan recloser dapat direposisi berdasarkan letak titik bus point antar load point vang ada dalam setiap Penyulang Palapa. Maka input yang digunakan dalam proses algoritma genetika yaitu jumlah bus dan nilai load point penyulang Palapa.

Dari beberapa tahapan algoritma genetika pada MATLAB, kemudian digabungkan menjadi satu kode program utama sehingga didapatkan hasil reposisi recloser seperti pada tabel 6 di bawah.

Tabel 6. Hasil Running Program Metode QGA pada MATLAB

Berdasarkan tabel 6, dari 10 kali running program, didapatkan hasil reposisi recloser jaringan yang paling optimal yaitu berada pada bus 56, Section 2 dengan kemunculan sebanyak 7 kali dan memiliki nilai fitness tertinggi yaitu 4,9715 serta nilai SAIDI 1,8951 (Jam/Pelanggan/Tahun) dan SAIFI untuk nilai 0.9978 (Kali/Pelanggan/Tahun). fitness Hasil tertinggi didapatkan dari running program ke 5 dari total 10 kali running program dapat dilihat pada gambar 4 di bawah.

Gambar 4. Hasil Program QGA

4.3 Analisa Hasil Perancangan Metode QGA

Berdasarkan hasil dari perancangan penempatan *recloser* menggunakan metode QGA pada MATLAB didapatkan penempatan titik *recloser* yang optimal berada di *section* 2 pada titik bus 56 telah menunjukkan lokasi yang tepat, jika dilihat dari jumlah pelanggan yang terlindungi ketika terjadi suatu gangguan, dapat melindungi sebanyak 5.665 pelanggan dari total 8096 pelanggan. Perbandingan nilai keandalan sebelum dan sesudah reposisi dapat dilihat pada tabel 7 di bawah:

Tabel 7. Hasil Running Program Metode QGA pada MATLAB

Indeks	Kondisi	Kondisi	Kondisi	Sesudah
Keandalan	1	2	3	reposisi
SAIFI	2,1055	1,203	1,016	0,9978
SAIDI	7,2960	4,091	3,4088	1,8951

Dapat dilihat pada tabel 7 didapatkan hasil dari Perhitungan keandalan sebelum

reposisi yaitu pada kondisi 1 ketika hanya ada LBS di Penyulang Palapa didapatkan nilai SAIFI sebesar 2,1055, dan SAIDI sebesar 7,2960. Kemudian ketika LBS diganti menjadi recloser pada kondisi 2 didapatkan nilai SAIFI sebesar 1,203, dan SAIDI sebesar 4,091, dan ketika ditambah 1 buah recloser jaringan pada kondisi 3 ini nilai SAIFI menjadi 1,016, dan SAIDI menjadi 3,4088. Setelah dilakukannya perancangan penempatan titik recloser menggunakan metode iaringan didapatkan nilai indeks keandalan yang lebih optimum menjadi 1,8951 (Jam/Pelanggan/Tahun) untuk SAIDI dan untuk nilai SAIFI 0,9978 (Kali/Pelanggan/Tahun).

Dengan menurunnya nilai SAIDI dan SAIFI setelah dilakukannya perancangan penempatan titik *recloser* jaringan membuktikan bahwa tingkat keandalan di Penyulang Palapa semakin baik dan semakin optimum.

Dapat dilihat pada tabel 8 Terdapat peningkatan nilai SAIDI sebesar 44,4% dan nilai SAIFI sebesar 1,79 %, dari kondisi ketiga ketika terdapat 2 buah recloser jaringan, dengan hasil perancangan letak recloser menggunakan metode QGA. Jadi dengan ini, perancangan letak recloser menggunakan metode QGA ini telah berhasil mendapatkan optimum dengan nilai indeks keandalan SAIDI dan SAIFI yang lebih baik dan sudah memenuhi standar PLN (SPLN) No. 68-2:1986 dengan SAIDI 3,33 Jam/Pelanggan/Tahun dan SAIFI 1,2 kali/pelanggan /tahun dan juga sudah memenuhi standar WCC (World Class Company) & WCS (World Class Service) dengan SAIFI 3 kali/Pelanggan/tahun dan SAIDI 1,66 jam/Pelanggan/tahun

5. KESIMPULAN

Berdasarkan hasil dari pembahasan mengenai perancangan penempatan recloser menggunakan metode QGA pada Penyulang Palapa dapat disimpulkan sebagai berikut:

 Nilai indeks keandalan pada kondisi 1 yaitu ketika hanya ada LBS di Penyulang Palapa didapatkan nilai SAIFI sebesar 2,1055 kali/pelanggan Berikut merupakan perhitungan persentase perbandingan dari setiap kondisi dengan hasil setelah perancangan sebagai berikut:

Persentase SAIFI Kondisi 1

Fersentase SAIFI =
$$\frac{2,1055 - 0,9978}{2,1055} \times 100\%$$

= 52,60 %

Persentase SAIDI Kondisi 1

Persentase SAIDI =
$$\frac{7,2960 - 1,8951}{7,2960} \times 100\%$$

= 74,02 %

Dengan cara yang sama dilakukan perhitungan persentase perbandingan dari setiap kondisi sehingga didapatkan hasil seperti pada tabel 8 dibawah:

Tabel 8. Persentase perbandingan dari setiap kondisi dengan hasil setelah perancangan

Indeks Keandalan	Kondisi 1	Kondisi 2	Kondisi 3
SAIFI	52,60%	17,05%	1,79%
SAIDI	74,02%	53,67%	44,4%

/tahun, dan SAIDI sebesar 7,2960 Jam/Pelanggan/Tahun, nilai ini masih belum memenuhi standar PLN (SPLN) No. 68-2:1986 dengan SAIDI 3,33 dan SAIFI 1,2. Kemudian ketika LBS diganti menjadi Recloser pada kondisi 2 didapatkan nilai SAIFI sebesar 1,203, dan SAIDI sebesar 4,09, nilai kondisi SAIFI untuk ini memenuhi standar PLN namun untuk nilai SAIDI masih belum memenuhi standar PLN dan ketika ditambah 1 buah recloser jaringan pada kondisi 3 ini nilai SAIFI menjadi 1,016, dan SAIDI menjadi 3,4088, nilai ini sama seperti kondisi kedua yang mana nilai SAIDI masih belum memenuhi standar PLN, setelah dilakukannya penempatan titik perancangan menggunakan recloser jaringan metode QGA didapatkan nilai indeks keandalan yang lebih optimum dan memenuhi standar menjadi 1,8951 untuk SAIDI dan untuk nilai SAIFI 0,9978 dengan peningkatan nilai SAIDI sebesar 44,4% dan nilai SAIFI sebesar 1,79 % dan pelanggan

- yang terlindungi ketika terjadi suatu gangguan, dapat melindungi sebanyak 5.665 pelanggan dari total 8096 pelanggan.
- 2. Berdasarkan hasil running program QGA. telah berhasil dirancang penempatan recloser optimum berada pada Section/grup 2 pada titik 56, dengan nilai fitness tertinggi yaitu 4,9715, dan telah berhasil mendapatkan optimum lokal dengan nilai indeks keandalan SAIDI dan SAIFI yang lebih baik dan sudah memenuhi standar PLN (SPLN) No. 68-2:1986 dengan SAIDI 3,33 (Jam/Pelanggan/Tahun) SAIFI 1,2 (Kali/Pelanggan/Tahun) dan juga sudah memenuhi standar WCC (World Class Company) & WCS (World Class Service) dengan SAIFI kali/Pelanggan/tahun dan SAIDI 1,66 jam/Pelanggan/tahun.

6. DAFTAR PUSTAKA

- [1] Rencana Usaha Penyediaan Tenaga Listrik PT. PLN (Persero) 2018-2027. Perusahaan Listrik Negara. Jakarta
- [2] Sari Hartati, Rukmi. Sukerayasa, I Wayan. "Penerapan Metode Pendekatan Teknik Untuk Meningkatkan Keandalan Sistem Distribusi". Majalah Ilmiah Teknologi Elektro, [S.I.], aug. 2012. ISSN 2503-2372
- [3] Agung Ayu Permata, Maria Gusti; Ibi Weking, Antonius; Setiawan, Widyadi. OPTIMASI PEMASANGAN KAPASITOR PADA SISTEM JARINGAN LISTRIK DISTRIBUSI DI BALI MENGGUNAKAN METODE QUANTUM GENETIC ALGORITHM. Jurnal SPEKTRUM, [S.I.], v. 6, n. 1, p. 96-104, may 2019. ISSN 2684-9186
- [4] Satria Bayu Putra, Dewa Gede. Ibi Weking, Antonius. Setiawan, Widyadi. 2018. "Optimasi Penempatan Distributed Generator Terhadap Perbaikan Profile Tegangan Pada Penyulang Abang Menggunakan Metode Quantum Genetic Algorithm (QGA)." Jurnal Spektrum, [S.L.], V. 5, N. 2, P. 305-309, Dec. 2018. Issn 2684-9186.
- [5] Marsudi, D. 2006. Operasi Sistem Tenaga Listrik. Yogyakarta: Graha Ilmu
- [6] Ariek Astana Adi, I Ketut. Dyana Arjana, I Gede. Setiawan, Widyadi. 2018. "Studi

- Optimasi Reposisi Recloser Untuk Meningkatkan Keandalan Pada Penyulang Blahkiuh Menggunakan Metode Algoritma Genetika". Jurnal SPEKTRUM, [S.L.], V. 5, N. 2, P. 272-277, Dec. 2018. ISSN 2684-9186.
- [7] Dugan, Roger, C. 1996, Electrical Power Systems Quality. United States of America: McGraw-Hill Companies
- [8] Adi Wicaksana, I Ketut. RINAS, I Wayan. ARTA WIJAYA, I Wayan. 2018. "Analisis Keandalan Pada Penyulang Arjuna Dengan Terpasangnya Recloser Double Six Menggunakan Metode Section Technique". Jurnal SPEKTRUM, [S.L.], V. 5, N. 1, P. 55-61, June 2018. ISSN 2684-9186.
- [9] SPLN No.59 1985. Keandalan Pada Sistem Distribusi 20kV dan 6kV. Perusahaan Listrik Negara. Jakarta
- [10] Irawan, Novadianto Yudha; Amrita, Anak Agung Ngurah; Setiawan, Widyadi. 2018. "Optimasi Penempatan Recloser untuk Meningkatkan Keandalan Menggunakan Metode Virus Evolutionary Genetic Algorithm (VEGA)". Majalah Ilmiah Teknologi Elektro, [S.I.], v. 17, n. 2, p. 177-184, may 2018. ISSN 2503-2372.
- [11] Abdul Kadir. 2016. "Recloser, Cooper Power System, Distribusi dan Utilisasi Tenaga Listrik". Jakarta: UIP.
- [12] Suhadi, Tri Wrahatnolo. 2008. "Teknik Distribusi Tenaga Listrik Jilid 1". Jakarta: Direktorat Pembinaan Sekolah Menengah Kejuruan.
- [13] Wahyudi Sarimun. 2012. "Proteksi Sistem Distribusi Tenaga listrik". Bekasi: Garamond.
- [14] Jongwoon Corporation. 2015. Polymery Insulated Outdoor Vacuum Recloser for Distribution Automation. Korea: JOONGWON CO. Ltd. Korea
- [15] Muhammad, Gia. (2018). ALGORITMA GENETIKA.
- [16] Adhi Waskita, I Gusti Agung; Ibi Weking, Antonius; Setiawan, Widyadi. "Optimasi Penempatan Dan Kapasitas Distributed Generation (DG) Untuk Meminimalkan Rugi-Rugi Daya Pada Penyulang Abang Menggunakan Metode Quantum Genetic Algorithm (QGA)". Jurnal SPEKTRUM, [S.I.], v. 6, n. 3, p. 135-140, sep. 2019. ISSN 2684-9186.