Frequency-aware SGD for Efficient Embedding Learning with Provable Benefits

Yan Li*, Dhruv Choudhary[†], Xiaohan Wei[†], Baichuan Yuan[†], Bhargav Bhushanam[†], Tuo Zhao*, Guanghui Lan* *Georgia Tech †Meta

Embedding Learning

▶ Learning continuous representation for discrete

▶ Learning through historical item-interactions:

$$\min_{\Theta \in \mathbb{R}^{N \times d}} f(\Theta) = \mathbb{E}_{(i,j) \sim \mathcal{D}} \left[\ell(\theta_i, \theta_j; y_{ij}) \right]$$

$$= \sum_{i \in U, j \in V} D(i,j) \ell(\theta_i, \theta_j; y_{ij})$$
(Nonconvex!)

- D(i,j): occurrence probability of (i,j) item pair
- $-p_i = \sum_j D(i,j), p_j = \sum_i D(i,j)$ denote the occurrence probabilities of item i and j
- $y_{ij} \in \{-1, +1\}$: interaction label between item i, j
- θ_i, θ_j : embedding vector of item i, j, respectively
- N: number of items
- d: embedding dimension

How to learn embeddings, efficiently?

> Standard Practice

- Popular choices of methods: Adagrad/Adam.
- SGD gives significantly (incomparably) worse performance.
- Liu et al. '20, Understanding the difficulty of training transformers.
- Zhang et al. '19, Why are adaptive methods good for attention models?

SGD v.s. Adaptive Methods

> Items distribution follows power-law.

Figure 1: User and Movie occurences (descending) in Movielens.

> Adam/Adagrad uses larger learning rate for infrequent items, thus learns infrequent items faster than SGD.

- ▷ Existing convergence rate of Adaptive methods (Adagrad/Adam) compared to SGD:
 - Convex setting:
 - Duchi et al. '11: better dimensional dependency.
 - Nonconvex setting:
 - Ward et al. '18, Defossez et al. '20, Chen et al. '18, Zhou et al. '18:
 - * hardly matches SGD.
 - * improvement relies on strong assumptions.

Q1: Can we reconcile theory-practice gap?

Q2: Can we build better methods than existing ones?

Frequency-aware SGD

Frequency-aware SGD

Input: Total iterations T, token frequency $\{p_k\}_{k\in X}$, learning rate $\{\eta_k^t\}_{k\in X, t\in [T]}$, $\eta_k^t = \min\{1/(4L), \alpha/\sqrt{Tp_k}\}$. Initialize: $\Theta^0 \in \mathbb{R}^{N \times d}$, sample $\tau \sim \mathrm{Unif}([T])$.

For $t = 0 \dots \tau$:

Sample $(i_t, j_t) \sim \mathcal{D}$, calculate:

 $g_{i_t}^t = \nabla_{\theta_{i_t}} \ell(\theta_{i_t}, \theta_{j_t}; y_{i_t, j_t}), \ g_{j_t}^t = \nabla_{\theta_{j_t}} \ell(\theta_{i_t}, \theta_{j_t}; y_{i_t, j_t})$ Update parameters:

 $\theta_{i_t}^{t+1} = \theta_{i_t}^t - \eta_{i_t}^t g_{i_t}^t, \quad \theta_i^{t+1} = \theta_i^t, \quad \forall i \in U, i \neq i_t$ $\theta_{j_t}^{t+1} = \theta_{j_t}^{t} - \eta_{j_t}^{t} g_{j_t}^{t}, \quad \theta_{j}^{t+1} = \theta_{j}^{t}, \quad \forall j \in V, j \neq j_t$

Output: Θ^{τ}

> SGD - but adaptive to item frequency. Convergence rate?

Theorem 1 (FA-SGD). Take proper α in FA-SGD, we have

$$\mathbb{E} \|\nabla f_k^{\tau}\|^2 = \mathcal{O}\left(\frac{\sqrt{p_k}\sqrt{\sum_{l \in X} p_l \sigma_l^2(f(\Theta^0) - f^*)L}}{\sqrt{T}}\right).$$

Theorem 2 (Standard SGD). Take learning rate policy to be $\eta_k^t = \min\left\{\frac{1}{4L}, \frac{\alpha}{\sqrt{T}}\right\}$, where lpha is chosen properly, we have

$$\mathbb{E} \|\nabla f_k^{\tau}\|^2 = \mathcal{O}\left(\frac{\sqrt{\sum_{l \in X} p_l^2 \sigma_l^2(f(\Theta^0) - f^*)L}}{\sqrt{T}}\right).$$

Here $\nabla f_k^{\tau} = \partial f(\Theta^{\tau})/\partial \theta_k$ denotes the partial gradient w.r.t the embedding of item k.

> **♠** Convergence of each embedding is frequency-dependent •

Provable Speed-up for Imbalanced Data

Corollary 3 (Exponential Tail). Let $U = \{i_n\}_{n=1}^{|U|}$, V = $\{j_m\}_{m=1}^{|V|}$, where i_n denote the user with n-th largest frequency, j_m denote the item with the m-th largest frequency. Suppose $p_{i_n} \propto \exp(-\tau n), p_{j_m} \propto \exp(-\tau m),$ for some au > 0. Define U_T as the set of users whose frequencies are within e-factor from the highest frequency. Then given $|U|, |V| \geq \frac{1}{\tau}$, FA-SGD, compared to standard SGD:

- Obtains the same rate of convergence, for the top users U_T and top items V_T ;
- 2. $\mathbb{E} \left\| \nabla f_{i_n}^{\tau} \right\|^2$ can converge faster by a factor of $\Omega\left\{\exp\left(au(n-|U_T|)
 ight)
 ight\}$ for $i_n\in U\setminus U_T$;
- 3. $\mathbb{E} \left\| \nabla f_{j_m}^{\tau} \right\|^2$ can converge faster by a factor of $\Omega\left\{\exp\left(\tau(m-|V_T|)\right)\right\}$ for $j_m\in V\setminus V_T$.

(Q1) • First theoretical speed-up of adaptive methods without algorithmic assumptions •

Additional Benefits

- A fully online variant of FA-SGD named CF-SGD.
- No requirement for exact frequency $\{p_k\}_{k\in X}$, use online estimate $\{\widehat{p}_k\}_{k \in X}$.
- Maintains the same convergence properties as FA-SGD.
- Memory efficient (Q2)
 - SGD 1X model size
 - Adagrad 2X model size (second-order moment).
 - Adam 3X model size (first/second-order moment).
 - FA-SGD $(1 + \epsilon)$ -X model size $(\epsilon \ll 1)$.

Experiments - Recommendation Systems

> Movielens-1M dataset with FM and DeepFM model.

Figure 2: (Left). Training loss. (Right). Validation AUC.

CF-SGD significantly outperforms standard SGD, and is highly competitive against Adam, Adagrad.

Experiments - Recommendation Systems

Figure 3: (Left). Training loss. (Right). Validation AUC.

> (Ultra-large) Industrial Recommendation System.

Figure 4: (Left). Train NE curve (lower is better); (Right). Train NE diff.

- \sim 2.5 billion examples per day (25 billion total).
- $\bullet \sim 800$ features, with $\sim 10^8$ number of items per feature.
- huge memory savings compared to Adagrad/Adam.

Experiments - Word2Vec Embeddings

▶ Word2Vec: CBOW and Skip-Gram model.

Figure 5: (Left). Training loss. (Right). Testing loss.

Benefits of FA(CF)-SGD

- Provable speed-up in nonconvex settings.
- Consistent empirical strength across various embedding learning tasks.
- Huge memory savings for large-scale problems.