1 Linear Maps

Note: Notational Shortcuts

- \bullet **F** denotes **R** or **C**
- $\bullet~\mathbf{V}$ and \mathbf{W} denote vector spaces over \mathbf{F}

1.1 The Vector Space of Linear Maps

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces).

Definition: Homomorphism

Let A, B be two sets equipped with the same structure such that if \cdot binary operation on A and B. A **homomorphic map**, or homomorphism, between A and B is a mapping that is compatible with the operation \cdot , that is

$$f(x \cdot y) = f(x) \cdot f(y)$$

Formally, a map $f: A \to B$ preserves an operation μ of arity k, defined both on A and B if

$$f(\mu_A(a_1,...,a_k)) = \mu_B(f(a_1),...,f(a_k))$$

for all elements $a_1, \ldots, a_k \in A$.

Definition: Linear Map

A linear map from V to W is a function $T: V \to W$ with the following properies:

- Additivity: T(u+v) = Tu + Tv for all $u, v \in V$;
- Homogeneity: $T(\lambda v) = \lambda T v$ for all $\lambda \in \mathbf{F}$ and $v \in V$.

Some mathematicians use the term linear transformation or vector space homomorphism, which means the same thing as linear map.

Definition: $\mathcal{L}(V, W)$

The set of all linear maps from V to W is denoted $\mathcal{L}(V, W)$.

It is easy to verify that each of the functions defined below is indeed a linear map.

Example: Linear Maps

Zero

In addition to other uses, the symbol 0 can be used to denote the function that takes each element of the vector space to zero. To be specific, $0 \in \mathcal{L}(V, W)$ is defined by

$$0v = 0$$

Identity

The **identity map** denoted I can be used to denote the function that takes each element of the vector space to itself. To be specific, $I \in \mathcal{L}(V, V)$ is defined by

$$Iv = v$$

Differentiation

Let $f, g \in \mathbf{R}^{\mathbf{R}}$ be once-differentiable functions in **R**. Notice

$$\frac{d}{dx}(f+g)(x) = \frac{d}{dx}(f(x)+g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x) = (\frac{d}{dx}f + \frac{d}{dx}g)(x).$$
$$\frac{d}{dx}(\lambda f)(x) = \frac{d}{dx}(\lambda f(x)) = \lambda \frac{d}{dx}f(x)$$

Integration

Let $f, g \in \mathbf{R}^{\mathbf{R}}$ be once-integrable functions over $(a, b) \subseteq \mathbf{R}$. Notice

$$\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} (f(x)+g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
$$\int_{a}^{b} (\lambda f)(x)dx = \int_{a}^{b} (\lambda f(x))dx = \lambda \int_{a}^{b} f(x)dx$$

The previous two assertions, that differentiation and integration are linear, are other ways of stating the basic results about differentiation and integration: the derivative or integral of a sum is the sum of the derivatives or integrals; the derivative or integral of a constant times a function is the constant multiple of the derivative or integral of the function.

Example: Linear Maps

Multiplication by x^2

Define $T \in \mathcal{L}(\mathcal{P}(\mathbf{F}), \mathcal{P}(\mathbf{F}))$ by,

$$(Tp)(x) = x^2p(x)$$
 for $x \in \mathbf{F}$.

Backward shift

Recall that \mathbf{F}^{∞} denotes the vector space of all sequences of elements in \mathbf{F} . Define $T \in \mathcal{L}(\mathbf{F}^{\infty}, \mathbf{F}^{\infty})$ by

$$T(x_1, x_2, x_3, \ldots) = (x_2, x_3, \ldots)$$

From \mathbb{R}^3 to \mathbb{R}^2

Define $T \in \mathcal{L}(\mathbf{R}^3, \mathbf{R}^2)$ by

$$T(x, y, z) = (2x - y + 3z, 7x + 5y - 6z)$$

The uniqueness part of the next result means that a linear map is completely determined by its values on a basis.

Theorem: Linear maps and basis of domain

Suppose v_1, \ldots, v_n is a basis of **V** and $w_1, \ldots, w_n \in W$. Then there exists a unique linear map $T: \mathbf{V} \to \mathbf{W}$ such that

$$Tv_j = w_j$$

for each $j = 1, \ldots, n$.

Proof:

First we show existence, then uniqueness. Define $T: \mathbf{V} \to \mathbf{W}$ by

$$T(c_1v_1 + \dots + c_nv_n) = c_1w_1 + \dots + c_nw_n$$

where c_1, \ldots, c_n are arbitrary elements of **F**. Since v_1, \ldots, v_n is a basis, T is well-defined and is therefore a function from V to W. For each $j \in \{1, \ldots, n\}$, taking $c_j = 1$ and the other c's equal to 0 in the equation shows $Tv_j = w_j$. The map can be easily verified to be a vector space homomorphism. Thus, the desired map exists.

To prove uniqueness, suppose $S, T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ and that $\forall j \in \{1, \dots, n\}, Sv_j = Tv_j = w_j$. Then $\forall a_1, \dots, a_n \in \mathbf{F}$,

$$S(a_1v_1 + \dots + a_nv_n) = a_1Sv_1 + \dots + a_nSv_n$$

$$= a_1w_1 + \dots + a_nw_n$$

$$= a_1Tv_1 + \dots + a_nTv_n$$

$$= T(a_1v_1 + \dots + a_nv_n)$$

$$\implies S = T \text{ for all elements in } \mathbf{span}(v_1, \dots, v_n).$$

But $\mathbf{V} = \mathbf{span}(c_1, \dots, c_n)$, which implies $S = T5pt \forall v \in \mathbf{V} \implies S = T \implies T$ is unique.

Algebraic Operations on $\mathcal{L}(\mathbf{V}, \mathbf{W})$

Definition: Addition and Scalar Multiplication on $\mathcal{L}(\mathbf{V}, \mathbf{W})$

Suppose $S, T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ and $\lambda \in \mathbf{F}$. The **sum** S + T and the **product** λT are the maps from \mathbf{V} to \mathbf{W} defined by:

$$(S+T)(v) = Sv + Tv$$
 and $(\lambda T)(v) = \lambda (Tv)$

for all $v \in \mathbf{V}$.

Theorem: $\mathcal{L}(\mathbf{V}, \mathbf{W})$ is a vector space

With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(\mathbf{V}, \mathbf{W})$ is a vector space.

Proof:

Definition: Product of Linear Maps

If $T \in \mathcal{L}(\mathbf{U}, \mathbf{V})$ and $S \in \mathcal{L}(\mathbf{V}, \mathbf{W})$, then the **product** $ST : \mathbf{U} \to \mathbf{W}$ is defined by

$$(ST)(u) = S(Tu)$$

for $u \in \mathbf{U}$.

Theorem: The product of linear maps is a linear map

If $T \in \mathcal{L}(\mathbf{U}, \mathbf{V})$ and $S \in \mathcal{L}(\mathbf{V}, \mathbf{W})$, then $ST \in \mathcal{L}(\mathbf{U}, \mathbf{W})$.

Proof:

Suppose $u, v \in \mathbf{U}, T \in \mathcal{L}(\mathbf{U}, \mathbf{V}), \text{ and } S \in \mathcal{L}(\mathbf{V}, \mathbf{W})$

$$ST(u+v) = S(Tu+Tv)$$
 $ST(\lambda u) = S(\lambda Tu)$
= $S(Tu) + S(Tv)$ = $\lambda S(Tu)$
= $ST(u) + ST(v)$ = $\lambda ST(u)$

Property: Algebraic properties of products of linear maps

• Associativity:

$$(T_1T_2)T_3 = T_1(T_2T_3)$$

whenever T_1, T_2 , and T_3 are linear maps such that products make sense.

• Identity:

$$TI = IT = T$$

whenever $T \in \mathcal{L}(V, W)$ and the left I is the identity map on V and the right I is the identity map on W.

• Distributityity:

$$(S_1 + S_2)T = S_1T + S_2T$$
 and $S(T_1 + T_2) = ST_1 + ST_2$

whenever $S, S_1, S_2 \in \mathcal{L}(V, W)$ and $T, T_1, T_2 \in \mathcal{L}(U, V)$.

Theorem: Linear maps take 0 to 0

Suppose $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$. Then $T(\mathbf{0}) = \mathbf{0}$.

Proof:

Let $v \in \mathbf{V}$. Then

$$T(\mathbf{0}) = T(0v) = 0T(v) = \mathbf{0}$$

as desired

1.2 Null Spaces and Ranges

Null Spaces and Injectivity

In this section, we will learn about two subspaces intimitely connected with each linear map. The first subspace exists in the domain; the second exists in the codomain.

Definition: Null Space

For $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$, the **null space** of T, denoted null T, is the subset of \mathbf{V} consisting of all the vectors $v \in \mathbf{V}$ that T maps to $0 \in \mathbf{W}$:

$$\text{null } T = \{ v \in \mathbf{V} : Tv = 0 \in \mathbf{W} \}$$

Some mathematicians use the term **kernel** instead of null space.

Theorem: The null space is a subspace

Suppose $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$. Then null T is a subspace of \mathbf{V} .

Proof:

Suppose $u, v \in \text{null } T$.

- 1. The additive identity $\mathbf{0} \in \text{null } T \text{ because } T(\mathbf{0}) = \mathbf{0}.$
- 2. $T(u+v) = Tu + Tv = \mathbf{0} + \mathbf{0} = \mathbf{0} \implies u+v \in \text{null } T$
- 3. $T(\lambda v) = \lambda T v = \lambda \mathbf{0} = \mathbf{0} \implies \lambda v \in \text{null } T$

Hence, null T is a subspace of \mathbf{V} .

Definition: Injective, one-to-one

A function $T: \mathbf{V} \to \mathbf{W}$ is called injective if Tu = Tv implies u = v.

Theorem: Injectivity is equivalent to null space equals {0}

Let $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$. Then T is injective if and only if null $T = \{0\}$

Proof:

$$T$$
 is injective \Longrightarrow only one vector in \mathbf{V} is sent to $\mathbf{0}$ in \mathbf{W} \Longrightarrow null $T = \{\mathbf{0}\}$.
null $T = \{\mathbf{0}\}$ and $Tv = Tu \Longrightarrow \mathbf{0} = Tv - Tu = T(v - u) \Longrightarrow v - u \in \text{null } T \Longrightarrow v = u$.

Range and Surjectivity

Definition: Range

For a function $T: \mathbf{V} \to \mathbf{W}$, the range of T is the subset of \mathbf{W} consisting of those vectors that are of the form Tv for some $v \in \mathbf{V}$:

range
$$T = \{Tv : v \in \mathbf{V}\}$$

Theorem: The range is a subspace

Suppose $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$. Then range T is a subspace of \mathbf{W} .

Proof:

Suppose $u, w \in \text{range } T \text{ and } T(v_1) = u \text{ and } T(v_2) = w.$

- 1. The additive identity $\mathbf{0} \in \text{range } T \text{ because } T(\mathbf{0}) = \mathbf{0}.$
- 2. $u + w = Tv_1 + Tv_2 = T(v_1 + v_2) \implies u + v \in \text{range } T$
- 3. $\lambda u = \lambda T v_1 = T(\lambda v_1) \implies \lambda u \in \text{range } T$

Definition: Surgective, onto

A function $T: V \to W$ is called **surjective** or **onto** if its range is equal to W.

Fundamental Theorem of Linear Maps

The next result is so important that it gets a dramatic name.

Theorem: Fundamental Theorem of Linear Maps

Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Then range T is finite-dimensional and

$$\dim \mathbf{V} = \dim \text{ null } T + \dim \text{ range } T$$

Proof:

Because null T is a subspace of \mathbf{V} , null T has a basis v_1, \ldots, v_m . Because v_1, \ldots, v_m is linearly independent in \mathbf{V} , the list can be extended to a basis of $v_1, \ldots, v_m, w_1, \ldots, w_n$ of \mathbf{V} . Therefore dim $V = m + n = \dim \text{null } T + n$, and the above proposition holds if it can be demonstrated that dim range T = n.

Notice that when T acts on any $v \in \mathbf{V}$, we have

$$Tv = T(c_1v_1 + \dots + c_mv_m + d_1w_1 + \dots + d_nw_n)$$

$$= c_1Tv_1 + \dots + c_mTv_m + d_1Tw_1 + \dots + d_nTw_n$$

$$= \mathbf{0} + \dots + \mathbf{0} + d_1Tw_1 + \dots + d_nTw_n$$

$$= d_1Tw_1 + \dots + d_nTw_n$$

$$\implies Tw_1, \dots, Tw_n \text{ spans range } T$$

If we select a $v \in \mathbf{V}$ such that $Tv = \mathbf{0}$, then

$$Tv = d_1Tw_1 + \dots + d_nTw_n = \mathbf{0} \implies v \in \text{null } T$$

$$\implies v = c_1v_1 + \dots + c_mv_m$$

$$\implies d_1 = \dots = d_m = 0$$

$$\implies Tw_1, \dots, Tw_n \text{ is linearly independent}$$

$$\implies Tw_1, \dots, Tw_n \text{ is a basis for range } T$$

Because Tw_1, \dots, Tw_n is a basis, it follows that dim range T = n, as desired. By this logic, we conclude that if V is finite-dimensional and $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ then,

$$\dim \mathbf{V} = \dim \operatorname{null} T + \dim \operatorname{range} T$$

Now we can show that no injective linear map exists from a finite-dimensional vector space to a "smaller" (is measured in dimension).

Theorem: A map to a smaller dimensional subspace is not injective

Suppose V and W are finite-dimensional vector spaces such that dim $V > \dim W$. Then no linear map from V to W is injective.

Proof:

Take any $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ and suppose dim $\mathbf{V} > \dim \mathbf{W}$. By the Fundamental Theorem of Linear Maps,

$$\dim \text{ null } T = \dim \mathbf{V} - \dim \text{ range } T$$

$$\dim \text{ null } T \ge \dim \mathbf{V} - \dim \mathbf{W}$$

$$\dim \text{ null } T > 0$$

This means null T contains vectors other than $\mathbf{0}$. Therefore, T is not injective.

Theorem: A map to a larger dimensional subspace is not surjective

Suppose V and W are finite-dimensional vector spaces such that dim $V < \dim W$. Then no linear map from V to W is surjective.

Proof:

Take any $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ and suppose dim $\mathbf{V} < \dim \mathbf{W}$. By the Fundamental Theorem of Linear Maps,

$$\dim \operatorname{range} T = \dim \mathbf{V} - \dim \operatorname{null} T$$

$$\leq \dim \mathbf{V}$$

$$< \dim \mathbf{W}$$

Since dim range $T < \dim \mathbf{W}$, range T does not span \mathbf{W} . Therefore, T is not surjective.

Theorem: Homogenous system of linear equations

A homogenous system of linear equations with more variables than equations has non-zero solutions.

Proof:

Theorem: Inhomogeneous system of linear equations

An inhomogeneous system of linear equations with more equations than variables has no solution for some choice of the constant terms.

Proof:

1.3 Matrices

Suppose $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ and v_1, \ldots, v_n is a basis of \mathbf{V} , then the values of Tv_1, \ldots, Tv_n determine the action of T on any arbitrary vectors in V. Matrices became popular for recording the values of the Tv_j 's in terms of a basis of W.

Definition: Coefficient Vectors

If $\mathcal{B} = (v_1, \dots, v_n)$ is an ordered basis for \mathbf{V} , then for any $u \in \mathbf{V}$, where

$$u = a_1 v_1 + \dots + a_n v_n$$

the **coefficient vector** of $u \in V$ is defined to be the element of $\mathbf{F}^{\mathbf{n}}$,

$$[u]_{\mathcal{B}} := (a_1 n_1 + \dots + a_j n_j)$$

where the entries of $[u]_{\mathcal{B}}$ correspond to the coefficients in the unique linear combination of \mathcal{B} equal to u.

Definition: Matrix, $A_{j,k}$

Let m and n denote positive integers. An m-by-n matrix A is a rectangular array of elements of \mathbf{F} with m rows and n columns:

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}$$

The notation $A_{j,k}$ denotes the entry in row j, column k of A. In other words, the first index refers to the row number and the second index refers to the column number.

Now we come to the key definition in this section.

Definition: Matrix of a Linear Map, $\mathcal{M}(T)$

Suppose $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ and v_1, \ldots, v_n is a basis of Vand w_1, \ldots, w_m is a basis of W. The **matrix of** T with respect to these bases is the m-by-n matrix $\mathcal{M}(T)$ whose entries $A_{j,k}$ are defined by,

$$Tv_k = A_{1,k}w_1 + \dots + A_{m,k}w_m$$
 for $k = 1, \dots, n$.

If the bases are not clear from the context, then the notation $\mathcal{M}(T,(v_1,\ldots,v_n),(w_1,\ldots,w_m))$ is used.

To remember how $\mathcal{M}(T)$ is constructed from T, you might write across the top of the matrix the basis vectors v_1, \ldots, v_n for the domain and along the left the basis vectors w_1, \ldots, w_m for the vector space into which T maps as follows:

Example: Matrix encoding $(v_1, \ldots, v_n) \mapsto (w_1, \ldots, w_m)$

Only the $k^{\rm th}$ column is shown. Thus the second index of each displayed entry of the matrix is k.

$$\mathcal{M}(T) = \begin{array}{c} w_1 \\ \vdots \\ w_m \end{array} \left(\begin{array}{ccc} v_1 & \cdots & v_k & \cdots & v_n \\ & & A_{1,k} & & \\ & & \vdots & & \\ & & & A_{m,k} & & \end{array} \right)$$

The above picture should remind you that Tv_k can be computed from $\mathcal{M}(T)$ by multiplying each entry in the k^{th} column by the corresponding w_j then adding up the resulting vectors.

If T is a linear map from $\mathbf{F^n}$ to $\mathbf{F^m}$, then unless stated otherwise, assume the bases in question are the standard ones (where the k^{th} basis vector is 1 in the k^{th} slot and 0 in all the other slots).

Example: Matrix of $T \in \mathcal{L}(\mathbf{F^n}, \mathbf{F^m})$

If $T \in \mathcal{L}(\mathbf{F^n}, \mathbf{F^m})$ and you think of elements of $\mathbf{F^m}$ as columns of numbers, then you can think of the k^{th} column of $\mathcal{M}(T)$ as T applied to the k^{th} standard basis vector of $\mathbf{F^n}$.

Addition and Scalar Multiplication of Matrices

Suppose $S, T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$. For the rest of the section, assume **V**and **W**are finite-dimensional and have a basis chosen for them.

We are interested in whether $\mathcal{M}(S+T) = \mathcal{M}(S) + \mathcal{M}(T)$ and whether $\mathcal{M}(\lambda T) = \lambda \mathcal{M}(T)$?

Definition: Matrix Addition

The sum of two matrices of the same size is the matrix obtained by the corresponding entries of two matrices.

$$\begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} + \begin{pmatrix} B_{1,1} & \cdots & B_{1,n} \\ \vdots & & \vdots \\ B_{m,1} & \cdots & B_{m,n} \end{pmatrix} = \begin{pmatrix} A_{1,1} + B_{1,1} & \cdots & A_{1,n} + B_{1,n} \\ \vdots & & \vdots \\ A_{m,1} + B_{m,1} & \cdots & A_{m,n} + B_{m,n} \end{pmatrix}$$

In the following result, the assumption is that the same bases are used for $\mathcal{M}(S)$, $\mathcal{M}(T)$, and $\mathcal{M}(S+T)$.

Theorem: The Matrix of the Sum of Linear Maps

Suppose $S, T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$. Then $\mathcal{M}(S+T) = \mathcal{M}(S) + \mathcal{M}(T)$.

Proof:

Still assuming that the same bases are used, is the matrix of a scalar times a linear map the same as the scalar times the matrix of the linear map? Again we must provide a definition for scalar multiplication.

1.4 Isomorphisms

Taking coefficient vectors as a map.

Definition: Coefficient vectors as a map

Let **V** be a finite-dimensional vector space with dim $\mathbf{V} = n$. Sending an element of **V** to its coefficient vector gives a map

$$C_{\mathcal{B}}: \mathbf{V} \to \mathbf{F^n}$$

Property: Properties of the coefficient map

• Coefficient vectors are unique; that is

$$[u_1]_{\mathcal{B}} = [u_2]_{\mathcal{B}} \implies u_1 = u_2$$

ullet Every vector in ${\bf F^n}$ is a coefficient vector, that is

$$\forall w \in \mathbf{F^n}, \exists u \in \mathbf{V} \text{ with } [u]_m athcal B = w$$

Definition: The inverse to $C_{\mathcal{B}}$

Let $C_{\mathcal{B}}^{-1}: \mathbf{F^n} \to V$ be the linear map defined by

$$C_{\mathcal{B}}^{-1}: (c_1, \dots, c_n) \mapsto c_1 v_1 + \dots + c_n v_n$$

This definition can be generalized as follows

Definition: Inverse map

The **inverse** to a linear map $T: V \to W$ is a linear map

$$T^{-1}: W \to V$$

such that $TT^{-1} = Id_W$ and $T^{-1}T = Id_V$.

The next definition captures the idea of two vector spaces that are essentially the same, excep for the names fo the elements of the vector space.

Definition: Isomorphism

A linear map with an inverse is called an **isomorphism**, or equivalently an **invertible** linear map.

The point of isomorphism is that they allow us to translate problems from one vector space to another.

Theorem: Dimension shows whether vector spaces are isomorphic

Two finite-dimensional vector spaces over \mathbf{F} are isomorphic if and only if they have the same dimension

Proof:

Theorem: $\mathcal{L}(V,W,)$ and $\mathbf{F^{m,n}}$ are isomorphic

Suppose v_1, \ldots, v_n is a basis of \mathbf{V} and w_1, \ldots, w_m is a basis of \mathbf{W} . Then $\mathcal{M}()$ is an isomorphism between $\mathcal{L}(V, W,)$ and $\mathbf{F}^{\mathbf{m}, \mathbf{n}}$.

Proof: