Detection of Fake News Online

TEAM-HAHA

Hui Ka Ming (20506919)

Lam Wing Yi (20510178)

Law Po Yi (20510673)

Lo Wing Ching (20521892)

- 01 Introduction
- **02** Traditional Methods
- 03 Computational Methods
 - Content Analysis
 - Account Analysis
 - Crowd-sourcing
 - Mixed Method

04 Conclusion

Introduction

Importance

Lower the credibility of real information

- > Spread of fake news is even faster than real news
- > Competing with real news

Alter individuals' belief and behaviors

> E.g. affect the decisions of electorates in the elections

Disruption on the public fairness and rationality

> E.g. 2016 US presidential election

Traditional Method

- Manual
 - Time consuming
 - Substantial Human effort
- New methods
 - Substitute human(Linguistic approach)
 - Predictive, probabilistic, black-box models
- Many approaches
- Most common and intuitive ones

Content Analysis

Knowledge-Based Method

Checks whether the content of the news is consistent with fact

Style-Based Method

Based on whether there are extreme tone or emotions behind the content

Propagation-Based Method

Depends on the way that the news spread online

Source-Based Method

Examines the trustworthiness of the sources where the news get information from

Fact-Checking System

Evaluation

Advantage

Limitations

Knowledge-based

Direct

Over-rely on external resources

Style-based

High Accuracy

Rely on the how the style can be captured

Source-based

Easy

Obvious

Credible news media may contain false information

Account Analysis

Detection of spammer/bot accounts

Data extraction

- (1) API based approach
- (2) Artificial data generation
- (3) Bot-crawled
- (4) Existing dataset study

Build predictions models to distinguish spam and non-spam accounts e.g.

crowded-sourced/decision tree

Crowd-Sourced

Users act as a fact-checker rather
than professional fact-checkers to assess
the reliability of the news through
a flagging system

Study: Pennycook & Rand

Political Ideology Matters!!!!!

Methodologies

Coscia & Rossi (2020)

Bipolar Models

- **♦** How polarization affects the flagging system
- User-source network
- Polarity and Popularity
- 2. Social network
- ✓ Share nodes (common friends) via LFR benchmark

Monopolar Models

- without considering the user's polarisation

Sebastian et.al (2018)

Bayesian Inference

- **♦** User Flaging Activity
- 1. News Spreading
- 2. Social network Graph and New Generation
- 3. Users' Parameter
- 4. Algorithms

Evaluation

Mixed-Method

- Each has own weakness
- Major computational methods
 - Linguistic analysis Traits of news content
 - Account analysis Trustworthy account
 - Crowd-sourced Scale, costs
- Combine ALL
 - content, account, automation
 - MORE: network, behavioral

- Mixed approach
 - Input important features
 - Output: Real vs. Fake
- One of the latest published work in the area
- Factual News Graph (FANG)
 - Features of nodes
 - Capture relationships Heterogeneous ties
- Implemented with Graph Neural Network

News source?

Suspicious **title**?

Behavioral **pattern**?

What groups of **users**?

News source?

Suspicious title?

Behavioral pattern?

What groups of users?

- Complex graph structure
 - e.g. learn with respect to users of neighbourhood
- Accurate, explainable model

- Outperform
 - Text only model
 - Network model no social context
 - o etc.
- Efficient
 - limited data
 - temporal feature
 - fake vs real news

Model	Contextual	Temporal	Graphical	AUC
Feature SVM				0.5525
CSI(-t) (without $time(e)$)	1			0.6678
CSI	1	✓		0.6911
GCN	✓		✓	0.7064
FANG(-t) (without time(e)) ✓		✓	0.7179
FANG	√	✓	/	0.7518

Conclusion

- Each has limitations
 - Textual/linguistic
 - cannot: video, pictures
 - Crowd-sourced
 - biased, inaccurate
 - Account
 - larger datasets
- Future: Two main areas
 - machine learning & deep learning
 - e.g.: NLP, audio analysis, image processing; GNN
 - solutions
 - new, better
 - methods, system
 - FANG, Human-in-the-loop
 - Platform, format of information

