LEXI_MCP_Notes_Unit1 5/9/2022 D. Chornay/Norm Dobson/Ken Simms

- Following plots are for LEXI Unit1
- Note these MCP's were not matched, so a series resistor was added to be able to use the HVPS that requires matched MCPs.
- This unit currently has an old version of the ultem spacer with Copper tape.

Test Mask Orientation

Electronics Box "Top" has no connectors, aligned with a mark on Optics housing.
Plotted images match the mask pattern as shown here.

To generate plots...

```
Read channel voltages from CSV data files generated by Norm's Labview program,
```

Actual Channel Voltage = (Raw ADC count * 6.8817x10e-5) (ADC is 16 bit with our voltage range 4.51volts)

format below

```
Timestamp, Channel 1, Channel 2, Channel 3, Channel 4
```

11999,1.0771E+0,1.1128E+0,1.1508E+0,1.1419E+0,

12999,1.0771E+0,1.1128E+0,1.1508E+0,1.1417E+0,

13999,1.0772E+0,1.1127E+0,1.1507E+0,1.1416E+0,

14999,1.0771E+0,1.1127E+0,1.1505E+0,1.1414E+0, etc...

Determine # lines in file, then create arrays Tm(#lines) and D(0:3, #lines)

read the data into arrays, Tm(*) and D(0:3,*)

Tm is in msec so convert to seconds Tm(*)/1000.0

- Generate Histogram plots for each of the Raw channels.
- Bin size here = 0.01
- Determine the location/value where the Low Noise peak occurs.
- Will assume this corresponds to the "Zero" point for the A111 charge sensitive amplifiers.
- Note: these values may vary from device to device so may be different for Unit#2

• Equation to determine position of event.

```
XP = X1/(X0+X1); eqn for X Pos, Strips = J3/(J1+J3)

YP = Y1/(Y0+Y1); eqn for Y Pos, Wedges = J2/(J4+J2)
```


Location of Low and High noise Peaks

•	@1800V					
•	Max_Subscript L/	Н 0:-	107	1.07000	349	3.49000
•	Max_Subscript L/	́Н 1:-	110	1.10000	349	3.49000
•	Max_Subscript L/	H 2:-	114	1.14000	341	3.41000
•	Max_Subscript L/	́Н 3:-	113	1.13000	338	3.38000
•	@1900V					
•	Max_Subscript L/	́Н О:-	106	1.06000	351	3.51000
•	Max_Subscript L/	H 1:-	109	1.09000	351	3.51000
•	Max_Subscript L/	H 2:-	113	1.13000	343	3.43000
•	Max_Subscript L/	Н 3:-	112	1.12000	340	3.40000
•	@2000V					
•	Max_Subscript L/	H 0:-	106	1.06000	350	3.50000
•	Max_Subscript L/	H 1:-	109	1.09000	350	3.50000
•	Max_Subscript L/	H 2:-	113	1.13000	342	3.42000
•	Max_Subscript L/	′H 3:-	112	1.12000	339	3.39000

•	@2100V					
•	Max_Subscript	L/H 0:-	105	1.05000	352	3.52000
•	Max_Subscript	L/H 1:-	109	1.09000	351	3.51000
•	Max_Subscript	L/H 2:-	112	1.12000	343	3.43000
•	Max_Subscript	L/H 3:-	112	1.12000	340	3.40000
•	@2200V					
•	Max_Subscript	L/H 0:-	106	1.06000	349	3.49000
•	Max_Subscript	L/H 1:-	110	1.10000	349	3.49000
•	Max_Subscript	L/H 2:-	114	1.14000	341	3.41000
•	Max_Subscript	L/H 3:-	113	1.13000	338	3.38000
•	@2300V					
•	Max_Subscript	L/H 0:-	106	1.06000	350	3.50000
•	Max_Subscript	L/H 1:-	109	1.09000	350	3.50000
•	Max_Subscript	L/H 2:-	113	1.13000	342	3.42000
•	Max_Subscript	L/H 3:-	112	1.12000	339	3.39000
•	@2325V					
•	Max_Subscript	L/H 0:-	106	1.06000	350	3.50000
•	Max_Subscript	L/H 1:-	110	1.10000	349	3.49000
•	Max_Subscript	L/H 2:-	113	1.13000	342	3.42000
•	Max_Subscript	L/H 3:-	113	1.13000	338	3.38000

- @1800V
- (W6) "Reduced Data" 2D histogram plots, only including events where the PHD is between 5.0 and 6.0

- @1800V
- Plotting events as fn time

• @1800V

• @1800V

• @1800V, Plots as a fn of Pulse Height Range, Range 5-8 gives best results

- @1900V
- (W6) "Reduced Data" 2D histogram plots, only including events where the PHD is between 5.0 and 6.0

• @1900V

CPS 14.82, 0.00, 3.00, 46.11%

CPS 4.90, 4.00, 5.00, 15.23%

0.60

CPS 3.65, 5.00, 6.00, 11.36%

0.60

0.55

CPS 3.82, 3.00, 4.00, 11.90%

0.60

0.55

- @2000V
- (W6) "Reduced Data" 2D histogram plots, only including events where the PHD is between 5.0 and 6.0

• @2000V

- @2100V
- (W6) "Reduced Data" 2D histogram plots, only including events where the PHD is between 5.0 and 6.0

- @2100V
- Plotting events as fn time

• @2100V

m = 1.003 c = -0.126 CHISQ = 5276.5 PROB = 1.0002022_04_29_1343_LEXI_Sci_unit_1_mcp_unit_1_eBox_2100V.csv, # Events 471878, Log Intensity

X(0,*)+X(1,*)

• @2100V

• @2100V

CPS 11.38, 0.00, 3.00, 28.50%

CPS 4.52, 4.00, 5.00, 11.31%

0.60

CPS 4.44, 5.00, 6.00, 11.12%

0.60

CPS 2.94, 3.00, 4.00, 7.37%

0.60

- @2200V
- (W6) "Reduced Data" 2D histogram plots, only including events where the PHD is between 5.0 and 6.0

• @2200V

CPS 10.70, 0.00, 3.00, 25.04%

CPS 3.81, 4.00, 5.00, 8.91%

0.60

CPS 2.60, 3.00, 4.00, 6.10%

CPS 3.91, 5.00, 6.00, 9.16%

0.60

- @2300V
- (W6) "Reduced Data" 2D histogram plots, only including events where the PHD is between 5.0 and 6.0

- @2300V
- Plotting events as fn time

• @2300V

2022_05_02_1104_LEXI_Sci_unit_1_mcp_unit_1_eBox_2300V.csv, # Events 170127, Log Intensity

• @2300V

• @2300V

CPS 10.39, 0.00, 3.00, 23.06%

CPS 3.35, 4.00, 5.00, 7.44%

0.60

CPS 3.37, 5.00, 6.00, 7.47%

0.60

CPS 2.33, 3.00, 4.00, 5.18%

- Summary
- From the previous plots
- The A111 Charge Sensitive PreAmps have a limited usable dynamic range.
- Charge Cloud output from MCP ideally form a gaussian distribution.
- The amplitude is a function of the MCP, applied HV and countrate.
- This is shared among the 4 anodes.
- Often there is a large exponential decaying contribution.
- Increasing the MCP voltage moves the distribution upwards.
- Choosing the appropriate voltage is a balance between the voltage being too small so that there are a large number of events in the "noise" or the voltage being too high such that the A111's o/p saturate, and pulse heights are meaningless.
- To get usable data the sum on the pulse heights must lie between 5 and 8 Volts.
- The max # usable Counts/sec occurs when we have Unit 1 MCP set to 2100V

Thr_Low	Thr_Hi	MCP Voltag	ge					
		1800	1900	2000	2100	2200	2300	
0	3	17.3	14.8	12.9	11.4	10.7	10.4	
3	4	3.6	3.8	3.5	2.9	2.6	2.3	
4	5	3.7	4.9	5.1	4.5	3.8	3.4	
5	6	2.1	3.6	4.5	4.4	3.9	3.4	Usable data
6	7	0.9	2.3	3.4	3.8	3.6	3.2	Usable data
7	8	0.4	1.35	2.4	3.2	3.3	3.1	Usable data
8	9	0.2	0.6	1.7	2.4	2.8	2.9	
9	12	0.3	0.7	3.3	7.2	11.6	16.4	
		3.4	7.25	10.3	11.4	10.8	9.7	

Usable Data as fn Total Pulse height and MCP Voltage

Test Mask Orientation

Attempt to overlay the plot on to the MASK..

This id for MCP = 2100V case Sum Pulse Heights of Events from 5-6

There is a coupling between the X and Y axis (Image is rotated CW a little)

Also the pixel to mm is not linear along either axis.

It should be possible to come up with a pixel to mm method to

Mask #2, Simulates Magnetopause?

- Linear Intensity
- 2048 Channels

@2225V

Using Manetopause Mask

