Problem Set 1

Student: Brando Miranda

Problem 1 To check that the square loss function can be written as $\mathcal{L}(-yf(x))$ lets expand $||f(x) - y||^2$:

$$(y - f(x))^2 = (1 - 2yf(x) + f(x)^2)$$

but $y^2 = 1$ thus:

$$\mathcal{L}(-yf(x)) = (1 - 2yf(x) + (yf(x))^{2})$$

To find the minimizer c(x) we need to minimize:

$$\mathbb{E}_{x,y}[(y-f(x))^2]$$

and specify the function that achieves this minimum. Lets find it by taking the derivative of the above wrt to f(x) and setting it to zero:

$$\frac{d}{df(x)}\mathbb{E}_x\mathbb{E}_{y|x}[(y-f(x))^2] = \mathbb{E}_x\frac{d}{df(x)}\mathbb{E}_{y|x}[(y-f(x))^2]$$

which can be minimized by finding the minimum of $\frac{d}{df(x)}\mathbb{E}_{y|x}[(y-f(x))^2]$:

$$\frac{d}{df(x)}\mathbb{E}_{y|x}[(y-f(x))^2] = \mathbb{E}_{y|x}\left[\frac{d}{df(x)}(y-f(x))^2\right] = 0$$

$$\mathbb{E}_{y|x}[2(y - f(x))] = 0$$

$$\mathbb{E}_{y|x}[y] = \mathbb{E}_{y|x}[f(x)]$$

$$\mathbb{E}_{y|x}[y] = f(x)\mathbb{E}_{y|x}[1]$$

$$\mathbb{E}_{y|x}[y] = f(x)$$

$$p_{y|x}(1|x) - p_{y|x}(-1|x) = f(x)\mathbb{E}_{y|x}[1]$$

Since $p_{y|x}(1|x) + p_{y|x}(-1|x) = 1$ then:

$$2p_{y|x}(1|x) - 1 = f(x)\mathbb{E}_{y|x}[1]$$

Problem 2 Please write your analysis on Problem 2 here

Problem 3 Please write your analysis on Problem 3 here

Problem 4 a)

Problem 5 (MATLAB) Please write your analysis on Problem 5 here