Backpropagation & Neural Network

2023-2 KUBIG 방학세션 DL

Category

- 1. Backpropagation
- 2. Neural Network
- 3. Normalization
- 4. Q&A

O. Revised Syllabus

	Assignment	Paper Reading	Toy project
Linear Algebra	Numpy Problems	-	-
Loss & Optimization	Design Loss & Optimizer	Adam/ RMSprop	Pytorch loss&Optimizer module with basic tensor
Backpropagation	Implementation naïve affine layer & Backprop	Batchnorm, Layernorm	Pytorch Dataset
CNN	Naïve convolution layer & backprop	ResNet/GoogLeNet	Pytorch NN design
RNN/LSTM	Naïve Recurrent layer & backprop + LSTM	LSTM / GRU	Pytorch Trainer
Training Techniques	Batchnorm, Layernorm, Dropout, Activation Function	BERT / Attention is all you need	KUBIG CONTEST
Yolo & Transformer	Transfer Learning of Package		KUBIG CONTEST

Kubig Contest: Dacon Contest + Paper Implementation(Transformer)

*Most of Assignment, paper and even lecture slides might be written in English

*Familiarity with English is somewhat important in this field (as I have heard it from many professors)

*This syllabus could be revised, considering the level of club attendees (Harder or Easier ?)

Q&A

*Paper Review 발표는 자유 진행 (1명 또는 여러명 발표 가능) 부담없이 진행해주세요 ©

*티스토리는 팀 당 1편만 업로드 가능(하지만 웬만하면 모두 다 해보시는 것을 추천드립니다 ㅠ)

*Pytorch Toy Project도 github에 제출 바랍니다

0. Paper Review

0. Paper Review

1) RMSprop

$$h_{i} = ph_{i-1} + (1-p)\frac{\partial L_{i}}{\partial W} \odot \frac{\partial L_{i}}{\partial W}$$

$$W = W - \eta \, \frac{1}{\sqrt{h}} \, \frac{\partial L}{\partial W}$$

2) Adam

Where we are,,

want $\nabla_W L$

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

Where we are,,

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Use Chain Rule & Analytic Gradient to update Backpropagation

Where we are,,

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Use Chain Rule & Analytic Gradient to update Backpropagation

Computational Graph

Simple Example

$$f(x, y, z) = (x + y)z$$

x=-2
y=5
z=-4
x+y=3
(x+y)*z=-12

Simple Example

$$f(x,y,z) = (x+y)z$$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Simple Example

$$f(x,y,z) = (x+y)z$$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Simple Example

$$f(x,y,z) = (x+y)z$$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Simple Example

$$f(x,y,z) = (x+y)z$$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Simple Example

$$f(x,y,z) = (x+y)z$$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Simple Example

$$f(x,y,z) = (x+y)z$$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Simple Example

$$f(x,y,z) = (x+y)z$$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Simple Example

$$f(x,y,z) = (x+y)z$$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Second Example $f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$

Second Example $egin{array}{lll} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ & f_a(x) = ax &
ightarrow & rac{df}{dx} = a & & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{array}$ w0 2.00 4.00 w1 -3.00 6.00 w2 -3.00

Second Example $egin{array}{lll} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ & f_a(x) = ax &
ightarrow & rac{df}{dx} = a & & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{array}$ w0 2.00 4.00 w1 -3.00 6.00 w2 -3.00

Second Example $egin{array}{lll} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ & f_a(x) = ax &
ightarrow & rac{df}{dx} = a & & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{array}$ w0 2.00 4.00 w1 -3.00 6.00 w2 -3.00

Second Example $egin{array}{lll} f(x)=e^x &
ightarrow & rac{df}{dx}=e^x & f(x)=rac{1}{x} &
ightarrow & rac{df}{dx}=-1/x^2 \ f_a(x)=ax &
ightarrow & rac{df}{dx}=a & f_c(x)=c+x &
ightarrow & rac{df}{dx}=1 \end{array}$ w0 2.00 4.00 w1 -3.00 6.00 $(e^{-1})(-0.53) = -0.20 \ (1)(-0.53) = -0.53 \ \ (\frac{-1}{137^2})(1.00) = -0.53$ w2 -3.00

Second Example $egin{array}{lll} f(x)=e^x &
ightarrow & rac{df}{dx}=e^x & f(x)=rac{1}{x} &
ightarrow & rac{df}{dx}=-1/x^2 \ f_a(x)=ax &
ightarrow & rac{df}{dx}=a & f_c(x)=c+x &
ightarrow & rac{df}{dx}=1 \end{array}$ w0 2.00 4.00 w1 -3.00 6.00 (-1) * (-0.20) = 0.20 $(e^{-1})(-0.53) = -0.20 (1)(-0.53) = -0.53 (\frac{-1}{1.37^2})(1.00) = -0.53$ w2 -3.00

0.20

Second Example
$$x0: [2] \times [0.2] = 0.4$$
 $f(w,x) = \frac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$ $f(x) = e^x$ $f(x) = e^x$

Second Example
$$x0: [2] \times [0.2] = 0.4$$
 $f(w,x) = \frac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$ $f(x) = e^x$ $f(x) = e^x$

Second Example

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \implies \sigma(x) = rac{1}{1 + e^{-x}}$$

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = \left(1-\sigma(x)\right)\sigma(x)$$
 Sigmoid

We can compute the gradient at once if we know how to obtain the derivative!

$$egin{array}{lll} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{array}$$

Rule of Backward()

add gate: gradient distributor

Rule of Backward()

add gate: gradient distributor

Q: What is a max gate?

Rule of Backward()

add gate: gradient distributor

max gate: gradient router

Q: What is a mul gate?

Vectorized Operation

Jacobian matrix

4096-d input vector

4096-d output vector

Vectorized Operation

$$\frac{\partial L}{\partial x} = \left| \frac{\partial f}{\partial x} \right| \frac{\partial L}{\partial f}$$

Jacobian matrix

$$\mathbf{J} = \frac{d\mathbf{f}(\mathbf{x})}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_u} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial f_1(\mathbf{x})}{\partial x_u} \\ \vdots & & \vdots \\ \frac{\partial f_{\nu}(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial f_{\nu}(\mathbf{x})}{\partial x_u} \end{bmatrix}$$

Vectorized Operation

Jacobian matrix

4096-d input vector

Q: what is the size of the Jacobian matrix?

f(x) = max(0,x) (elementwise) 4096-d output vector

A vectorized example: $f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_{\mathbf{W}}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_{\mathbf{X}}$$

backward() is all you need

```
for batch, (X, y) in enumerate(dataloader):
   X, y = X.to(device), y.to(device)
   # 예측 오류 계산
   pred = model(X)
    loss = loss_fn(pred, y)
    # 역전파
   optimizer.zero_grad()
   loss.backward() This one line makes whole operations at once, <u>automatically</u>
    optimizer.step()
```


Nerual Network: without brain stuff

(Before) Linear Function
$$f=Wx$$
 (Now) 2-layer Neural Network $f=W_2\max(0,W_1x)$

Or 3-layer Neural Network $f = W_3 \max(0, W_2 \max(0, W_1 x))$

Nerual Network: without brain stuff

Fully Connected Layer! a.k.a. FC Layer

Nerual Network: without brain stuff


```
1 f=lambda x:1.0/(1.0+np.exp(-x))
2 x=np.random.randn(3,1)
3 h1=f(np.dot(W1,x)+b1)
4 h2=f(np.dot(W2,h1)+b2)
5 output=np.dot(W3, h2)+b3
```

Nerual Network Full implementation with numpy

```
1 import numpy as np
3 N, D in, H, D out=64, 1000,100,10
4 x,y=np.random.randn(N,D in),np.random.randn(N,D out)
5 w1, w2=np.random.randn(D in, H), np.random.randn(H, D out)
6 learning rate=1e-4
8 for t in range(2000):
    h=1/(1+np(exp(-x.dot(w1))))
    y pred=h.dot(w2)
    loss=np.square(y pred-y).sum()
    print(t, loss)
13
    grad y pred=2.0*(y pred-y)
    grad w2=h.T.dot(grad y pred)
16
    grad h=grad y pred.dot(w2.T)
    grad w1=x.T.dot(grad h*h*(1-h))
18
    w1-=learning rate*grad w1
    w2-=learning rate*grad w2
```


Activation Function: That's why deep learning is called a nonlinear model

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

How about Pytorch?

Fully Connected Layer

nn.Linear(input_dim, output_dim, bias=True(default))

nn.functional.linear(input, weight, bias)

What is the difference between torch.nn and torch.nn.functional?

Activation Functions

nn.ReLU()

nn.Sigmoid()

nn.Tanh()

nn.LeakyReLU()

nn.ELU()

torch.max()

- *Think about Gradient
- -> There are many gradients which are directly affected by the input & We get data as 'Mini-batch'

How if input's scales are so different?

-> Normalization: makes each dimension unit gaussian, apply

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Batch Normalization

N

- 1. Compute the mean and variance independently
- 2. Normalize

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Batch Normalization: Frequently used in Computer Vision

Usually used after Fully connected layer before nonlinearity

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Batch Normalization

Usually used after Fully connected layer before nonlinearity

$$\gamma^{(k)} = \sqrt{\text{Var}[x^{(k)}]} \qquad \hat{x}^{(k)} = \frac{x^{(k)} - \text{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

learning Mean & Variance

Layer Normalization

*What is the difference of LayerNorm & BatchNorm?

$$ilde{z}^{(l)} = rac{z^{(l)} - E(z^{(l)})}{\sqrt{var(z^{(l)} + \epsilon)}}$$

Layer Normalization

1) Batch Normalization

- Normalize each "feature"
- Obtain mean & variance of each "feature"

2) Layer Normalization

- Normalize each "feature of input"
- Obtain mean & variance of feature of input
- *More details would be explained on Next Paper Review ©

Q&A

Have a nice week

