Thomas Waas

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP - DNS
- DHCP
- www

Kapitel 5

Internet Protokoll Adressen

5. 1 Einleitung

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS
- DHCP
- WWW

Dieses Kapitel

- führt das Adressschema des Internet Protokolls (IPv4 und IPv6) ein.
- beschreibt Subnetz- und Klassenlose- Adressierung
- zeigt, wie das ursprüngliche IPv4 Adressschema in Klassen aufgeteilt war
- diskutiert besondere IP-Adressen
- Routing Teil II: Aggregation

5. 1 Einleitung

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

Aus den letzten Kapiteln:

- Unterschiedliche Netze verwenden unterschiedliche (Layer 2) Adressierungsschemata (Ein ATM-Netz "versteht" keine Ethernet-MAC-Adresse, ein Telefonnetz auch nicht)
- Zur Verbindung dieser Netze aber eindeutige, einheitliche Adressen notwendig:

Einführung zusätzlicher, weltweit einheitlicher Adressen für alle Rechner (= Hosts), die über das internet kommunizieren! → Netzwerkübergreifende Internetadresse (= Layer 3 Adressen)

5.2 Adressen für das virtuelle Internet

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

- Hauptunterschied zwischen Internet und physikalischem NW
 - Internet ist eine reine Abstraktion, von Designern erdacht und gänzlich in SW realisiert
- Designer können frei wählen
 - Adressen, Paket Format und die Zustellungstechnik
- Alle Rechner (=Hosts) müssen eine eindeutige aber gleichförmige Adresse haben
 - Die für die Wegfindung/Routingtabellen optimal sind
 - Hinweise auf den Ort geben
 - "Aggregierbar" sind (vgl. Postleitzahlen)
- RFC 791, Der Internet-Protokoll-Standard:

"A name indicates what we seek. An address indicates where it is. A route indicates how to get there."

Aggregierbarkeit (Zusammenfassbar) am Beispiel der Postleitzahlen (Bild aus Wikipedia)

5.3 IP Adressen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

- Der IP Standard verlangt, dass jedem Host (genauer: Netzwerkkarte) eine eindeutige Zahl zugewiesen wird
 - die Internet Protokoll Adresse bzw. Internet Adresse
 - **Kurz IP-Adresse**
 - IPv4 (RFC 791): 32-Bit Zahl
 - Ca. 4 Milliarden Adressen (=2³²)
 - ≈ 9 IP Adressen pro km² Erdoberfläche
 - IPv6 (RFC 4291): 128-Bit Zahl
 - Das sind nicht viermal so viele Adressen
 - Das sind viermal so viele Bits
 - ≈667 Billiarden Adressen pro mm² Erdoberfläche
 - Wie bei jedem Nummerierungsschema wird nur ein Bruchteil davon verwendet
 - Üblich: Jeder Host besitzt mehrere IPv6 Adressen
- Jedes Paket, das über das Internet versendet wird, beinhaltet die IP-Adresse des
 - Senders (Source) und Empfängers (Destination)
 - IPv4: Beide Adressen sind 32-Bit Zahlen
 - IPv6: Beide Adressen sind 128-Bit Zahlen

5.4 Darstellung IP Adressen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS DHCP
- WWW

IPv4

Darstellung der 32 bit IPv4-Adresse erfolgt in der Dotted Decimal Notation

- Jedes Oktett (Byte) wird als vorzeichenlose Ganzzahl in Dezimalschreibweise dargestellt
- Die Oktette werden durch einen Punkt getrennt
- Adressbereich 0.0.0.0 bis 255.255.255.255

Thomas Waas

5.4 Darstellung IP Adressen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- IP
- UDP
- TCP
- DNS
- DHCP
- WWW

32-bit Binary Number **Equivalent Dotted Decimal**

10000001	00110100	00000110	00000000	129 . 52 . 6 . 0
11000000	00000101	00110000	00000011	192 . 5 . 48 . 3
00001010	00000010	00000000	00100101	10.2.0.37
10000000	00001010	00000010	00000011	128.10.2.3
10000000	10000000	11111111	00000000	128 . 128 . 255 . 0

Figure 18.3 Examples of 32-bit binary numbers and their equivalent in dotted decimal notation. Each octet is written in decimal with periods (dots) used to separate octets.

(aus Comer)

5.4 Darstellung IP Adressen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS DHCP
- WWW

IPv6

Darstellung der 128 bit IPv6-Adresse erfolgt in der Colon Hexadecimal Notation

2001:0000:02c4:0000:0000:a12b:0001:abc0

- Je zwei Bytes der Adresse werden als Hexadezimalwert ausgedrückt (0000 bis ffff) und durch einen Doppelpunkt getrennt
- Führende Nullen können weggelassen werden
 - 2001:0:2c4:0:0:A12B:1:ABC0
- Case insensitiv

5.4 Darstellung IP Adressen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

- Beispiel (Fortsetzung):
 - Aufeinanderfolgende Null-Felder können durch :: abgekürzt werden; aber nur einmal pro Adresse
 - 2001:0000:0234:0000:0000:A12B:0001:ABC0
 - 2001:0:234::A12B:1:ABC0
 - Nicht gültig: 2001::234::A12B:1:ABC0
 - Weitere Beispiele
 - FF02:0:0:0:0:0:0:1 → FF02::1
 - 0:0:0:0:0:0:0:1 **→** ::1
 - 0:0:0:0:0:0:0 \rightarrow ::
- Randbemerkung: In einem Webbrowser (URL) ist die IPv6 Adresse in eckigen Klammern anzugeben
 - http://[2001:0:234::A12B:1:ABC0]:8080/index.html

5.5 Die Hierarchie von IP Adressen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS DHCP
- WWW

> Die IP-Adresse setzt sich aus **Netzwerk-ID** (Präfix) und **Interface-ID** (Suffix) zusammen

- Präfix ist die Adresse des Physikalischen Netzwerks
- Suffix ist die Adresse des Rechner **innerhalb** dieses Netzwerkes
 - Genauer: der Netzwerkkarte (=Interface zwischen Netzwerk und Rechner) des Rechners
- Diese Hierarchie vereinfacht das Routing erheblich, da Router und deren Tabellen
 - sich nur um die Zustellung an das richtige Netzwerk kümmern.
 - Daher nur den Präfix auswerten müssen und
 - nicht die Adressen der einzelnen Stationen innerhalb des Netzes kennen müssen.

5.5 Die Hierarchie von IP Adressen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

- Beispiel: Drei physikalische Netze, IPv4
 - n sei überall 24, d.h. 3 Byte Präfix
 - → Die ersten drei Zahlen der IP Adresse sind die Netz-ID,
 - gleich für alle Rechner im selben Netzwerk.
 - → Die letzte Zahl ist die Interface ID,
 - unterschiedlich für Rechner im gleichen Netz
 - Router hat 3 Interfaces also auch 3 IP-Adressen (eine pro Netzwerk)

(Grafik aus Kurose)

5.5 Die Hierarchie von IP Adressen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS DHCP
- WWW

Die IP Adressen Hierarchie bedingt im Internet:

- Jeder Rechner (genauer: Interface) bekommt weltweit eindeutige Adresse
- Die Zuweisung der Netz-ID muss global koordiniert sein
 - Keine zwei Netzwerke dürfen gleiche Netz-ID haben
- Suffixe können lokal vergeben werden (keine globale Koordination notwendig)
- Router müssen nur Netzwerkpräfixe, aber keine Einzeladressen in ihren Routingtabellen pflegen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

Terminologiewechsel

- Aus Sicht von IP ist das Gesamtnetz das "Netzwerk"
- ... die einzelnen physikalischen Netzwerke heißen jetzt Subnetze (Teilnetze)
- Was ist ein Subnetz?
 - Alle Rechner (Interfaces) mit derselben Netz-Id (Präfix) formen ein Subnetz
 - Alle Rechner (Interfaces) eines Subnetzes können sich direkt, also ohne einen Router zu durchqueren, erreichen

Drei Subnetze, die mit einem Router verbunden sind. Die Netz-Id steht hier in den ersten 24 Bit.

Subnetzmaske: /24

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- _ <u>IF -</u>
- IP
- UDPTCP
- TCP – DNS
- DHCP
- www

Aufgabe

– Wie viele Subnetze erkennen Sie?

Aus Computernetzwerke, Kurose und Ross

– Welche Netzlds erkennen Sie?

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

- Was ist eine Subnetzmaske?
 - Gibt die Anzahl n der Bits der Netz-ID an. Eine (IPv6) bzw. zwei (IPv4) Darstellungsmöglichkeiten:
 - CIDR-Darstellung (Classless Interdomain Routing):
 - Wird der IP-Adresse mittels /n angehängt
 - Beispiele: IPv4 und IPv6

```
223.1.1.4 /24 <del>></del>
                       Die linken 24 Bit von 223.1.1.4 sind die Netz-Id,
                       die rechten 8 Bit die Interface-ID
F001::1 /64 →
                       Die linken 64 Bit von F001::1 sind die Netz-Id,
                       die rechten 64 Bit die Interface-ID
```

- Klassische IPv4 Darstellung von /n durch 32-Bit Zahl,
 - deren linken *n* Bits "Eins" sind und
 - die restlichen Bits "Null" sind.
 - 32-Bit Zahl wird in der Dotted-Dezimal-Darstellung angeben.
- Beispiele für IPv4 Subnetzmasken

CIDR-Darstellung	Klassische IPv4 Darstellung		
/3	224.0.0.0	(=11100000.00000000.00000000.00000000b)	
/24	255.255.255.0	(=11111111.11111111.11111111.00000000b)	
/27	255.255.255.224	(=11111111.11111111.1111111.11100000b)	

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS DHCP
- WWW

Wie viele Hosts (genauer: Interface) passen in ein Subnetz mit Subnetzmaske /n?

- IPv4: Anzahl Bits für Interface-ID =(32-n)
 - → es können 2⁽³²⁻ⁿ⁾ Interface-IDs gebildet werden

Beispiele:

- $/24 \rightarrow 2^{32-24}=2^8=256$ Interface Ids $\rightarrow 256$ Hosts
- $/25 \rightarrow 2^{32-25}=2^7=128$ Interface Ids \rightarrow 128 Hosts
- $/30 \rightarrow 2^{32-30}=2^2=4$ Interface Ids $\rightarrow 4$ Hosts
- IPv6: Anzahl Bits für Interface-ID = (128-n)
 - $/64 \rightarrow 2^{128-64} = 2^{64} = \text{Interface Ids} \rightarrow 1.8*10^{19} \text{ Hosts}$

Merke: Je größer die Subnetzmaske umso weniger IP Adressen stehen für das Subnetz zur Verfügung

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- ...
- UDP
- ---
- TCPDNS
- DHCP
- WWW

- ➤ IPv4: Zwei Suffixe sind reserviert und dürfen keinem Host zugewiesen werden:
 - Der kleinste Interface-Suffix (bei /24 z.B. .0, bei /8 z.B. .0.0.0) steht für das gesamte
 Subnetz und stellt die Netzwerkadresse dar.
 - Der größte Interface-Suffix stellt die Broadcast-Adresse im Subnetz dar
- > IPv6: Ein Suffix ist reserviert und darf keinem Host zugewiesen werden:
 - Der kleinste Interface-Suffix stellt die Netzwerkadresse dar.

Beispiele:

192.168.1.0/24	→ Netzwerkadresse des /24-Netzes 192.168.1.0/24
10.0.0.0/8	→ Netzwerkadresse dieses /8-Netzes
192.168.1. <mark>255/2</mark> 4	→ Broadcast-Adresse des Netzes 192.168.1.0/24
10.255.255.255/8	→ Broadcast-Adresse des Netzes 10.0.0.0/8
10.2.255.255 /8	→ Mögliche Host-Adresse des Netzes 10.0.0.0/8
2001:1::/64	→ Netzwerkadresse dieses /64 Netzwerkes
2001:1:: <mark>1</mark> /64	→ Host Adresse 1 des Netzes 2001:1::/64

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

Wie viele Subnetze mit Subnetzmaske /n kann es maximal geben?

- Anzahl Bits für Netz-ID = n
 - → es können 2ⁿ Netz-IDs gebildet werden
 - Beispiel:
 - $/8 \rightarrow 2^8 = 256$ Netz-Ids \rightarrow max. 256 Subnetze mit /8
 - $/9 \rightarrow 2^9 = 512$ Netz-Ids \rightarrow max. 512 Subnetze mit /9

Merke: Je größer die Subnetzmaske umso mehr entsprechende Subnetze gibt es

> Allerdings wird man nie 256 Subnetze mit /8 bilden, da dann alle Adressen vergeben wären

5.7 Ursprüngliche Aufteilung der IPv4 Adressen in Klassen

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- -
- IP
- UDPTCP
- TCP
- DHCP
- WWW

- ➤ Der **Präfix benötigt genügend viele Bits**, damit jedem physikalischen Netz eine eindeutige NW-Nummern zugewiesen werden kann
- ➤ Der **Suffix benötigt genügend Bits** damit jeden Computer ein eindeutiger Suffix zugewiesen werden kann
- Designer wählten einen Kompromiss:
 - der mit kleinen und großen Netzwerken zurecht kommt
- Im ursprüngliche Schema, das heute "classful addressing" genannt wird
 - Die ersten vier Bits einer Adresse bestimmen die Klasse
- Figure 18.1 zeigt die fünf Adress-Klassen

5.7 Ursprüngliche Aufteilung der IPv4 Adressen in Klassen

Figure 18.1 The five classes of IP addresses in the original classful scheme.

The address assigned to a host is either class A, B, or C; the prefix identifies a network, and the suffix is unique to a host on that
network.

Aus Comer

Thomas Waas

5.7 Ursprüngliche Aufteilung der IPv4 Adressen in Klassen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS
- DHCP
- WWW

- > 1993: Einführung von CIDR
 - Reduzierung der Größe der weltweiten Routingtabelle
 - Keine "Verschwendung" von IP-Adressen durch zu große oder zu kleine Klassen
- Im Gegensatz zur klassenbasierten Adressierung (Classfull Addressing): Subnetzmaske kann jetzt jede beliebige Länge besitzen.

- → Feingranularere Aufteilung des Adressraums möglich (siehe nächste Folie)
- Die Byteweisen Klassen des Classfull Addressing sind jetzt nur noch "Spezialfälle" von CIDR
- Ehemalige Klassen:
 - $-A \rightarrow /8$
 - $-B \rightarrow /16$
 - $C \rightarrow /24$
- In IPv6 gibt es keine Klassen

5.7 Klassenbestimmung einer IPv4 Adresse

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- 11
- IP – UDP
- TCD
- TCP
- DNSDHCP
- WWW

Beispiel:

Ein Unternehmen hat 300 Rechner in einem Subnetz:

Ein Class C /24 Netz bietet 2^{32-24} -2 = 254 Adressen \rightarrow zu wenig.

Ein Class B /16 Netz bietet $2^{32-16}-2 = 65534$ Adressen \rightarrow viel zu viel.

Mit CIDR: /23 Netz mit $2^{32-23}-2 = 510$ Adressen \rightarrow passt (besser)

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS - DHCP
- WWW

- > Unternehmen bzw. Netzkunde erhält ein Präfix, also eine Netzwerknummer vom Internet Service Provider (ISP)
- > Der ISP erhält seinerseits Netzwerknummern von der zuständigen Regional Internet Registry (RIR); (Europa: RIPE NCC)
- ➤ Weltweit gibt es 5 RIRs

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS - DHCP
- WWW

> Die einzelnen RIRs stehen unter der Verwaltung und Koordination durch die Internet Assigned Numbers Authority (IANA)

Internet Assigned Numbers Authority

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS DHCP
- WWW

Einschub: Angabe von IP-Adressblöcken

- **Bisher:** Darstellung "IP-Adresse /n" gibt an, dass der Präfix der IP-Adresse aus n Bits besteht.
- **Weitere Verwendung** der Darstellung "IP-Adresse/n" als CIDR-Adressblock:
 - IP-Adresse/n steht für alle IP-Adressen, die in den ersten n Bits mit der IP-Adresse übereinstimmen
 - Diese Menge der IP-Adressen bezeichnet man als Adressblock IP-Adresse/n, wobei IP-Adresse üblicherweise die kleinste dieser IP-Adressen ist.
 - Beispiele
 - 10.0.0.0/16 steht für alle IP-Adressen von 10.0.0.0 bis 10.0.255.255

 - Der Adressblock 12.0.0.0 12.255.255.255 heißt 12.0.0.0/8.
 - 12.1.2.3/8 steht für die gleichen IP-Adressen, ist aber keine übliche Darstellung dafür

Inhalt

Grundlagen

- Pakete, Rahmen,
- Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

➤ IPv6 Präfix als aggregierte Route:

- 2001:600::/23 zum RIP NCC

2001:638::/32 zum DFN

2001:638:a01::/48 zur OTH Regensburg

2001:638:a01:109::/64 **NW1 KS-Labor**

2001:638:a01:110::/64 NW2 KS-Labor Thomas Waas

5.8 Vergabe von IP-AdressenAggregierbare Adressen

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- "
- UDP
- TCD
- TCP
- DNSDHCP
- WWW

Durch die hierarchische Vergabe von Adressen erreicht man eine deutliche Reduzierung der Routing Tabellen im Internet

Beispiel: Internetrechner A sendet Paket an Rechner B 2001:638:a01:109::2 im NW1 des KS-Labors der OTH Regensburg

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS - DHCP
- WWW

Unternehmen möchte ein IP-Netz einrichten. Vier physikalische Netze sollen verbunden werden.

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS - DHCP
- WWW

➤ Abschätzung der Anzahl an Rechnern ergibt 350 Hosts

Unternehmen kauft ein /23-Netzwerk (510 Adressen) beim ISP

84.122.212.0/23

Adresse 01010100.01111010.11010100.000000000

Präfix (für Unternehmen vorgeschrieben)

Ein Nachteil von CIDR: Man sieht Interface- und Netznummer in der Dotted Decimal Notation nicht mehr auf einem Blick, da die Grenze nicht mehr (wie bei den Klassen) an einer Byte-Grenze liegt

Thomas Waas

5.9 Beispiel für Zuweisung von Adressen: IPv4

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- <u>IP-/</u>
- IP
- UDP
- TCP
- DNSDHCP
- www

Aus dem Adressraum muss der NW-Administrator 4 kleinere Netze (Netzadressräume) machen.

Zweite Iteration (Aufteilung der zwei Netze in vier Netze) analog

Die vier /25-Netze sind für den ISP immer noch ein großes /23-Netz (→ vgl. Aggregation)

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS - DHCP
- WWW

Ergebnis (mögliche Router-Adressen nur für oberen Router gezeigt):

Inhalt

- Grundlagen
- Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS DHCP
- WWW

IPv6 Pakete, Rahmen,

- Analog funktioniert es bei IPv6, nur das man 128Bit Zahlen betrachten muss
- Ein Subnetz bekommt (üblicherweise) die Subnetzmaske /64
- Ein ISP bekommt von der RIR üblicherweise ein /32 Adressbereich, dass er an Endkunden verteilen kann
 - Endkunde erhält davon einen /48 Adressbereich (oder nur /56)
 - Endkunde kann damit bis zu $2^{(64-48)} = 2^{16} = 65536$ Subnetze betreiben
- Anteil von IPv6 im Internet: http://www.google.de/ipv6/statistics.html

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**
- IP UDP
- TCP
- DNS
- DHCP
- WWW

Unternehmen bekommt vom ISP ein /48 Netz:

- 2001:A:B::/48
- Weist daraus /64 Netze zu

5.10 Private IP-Adressen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS
- DHCP
- WWW

- > Bei IPv4 gibt es Netzwerknummern, die für private Subnetze ohne Beantragung verwendet werden dürfen.
- Diese Adressen dürfen nicht direkt im globalen Internet sichtbar sein (Eindeutigkeit)
 - Netze ohne Anschluss ans Internet
 - Netze, die mittels Network Address Translation (NAT) ans Internet angeschlossen sind
 - Internet Router verwerfen Pakete, die private Adressen enthalten
- RFC 1918: Address Allocation for Private Internets

– 1x Class A: 10.0.0.0/8 (10.0.0.0 - 10.255.255.255)

 16x Class B: 172.16.0.0/12 (172.16.0.0 - 172.31.255.255)

 256x Class C: 192.168.0.0/16 (192.168.0.0 - 192.168.255.255)

- Bei IPv6 gibt es keine privaten Adressen
 - Globale Erreichbarkeit jedes IPv6-Hosts
 - Kein NAT mehr

5.10 Private IP-Adressen - NAT

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- _ IP
- UDP
- TCP
- DNS
- DHCP
- WWW

- Knapper IP Adressraum
 - Unternehmen/Haushalte verwenden private
 IP Adressen für ihre Subnetze
 - NAT, genauer NAPT (Network Address Port Translation), ermöglicht Verbindungsaufbau mit Internet Hosts
- NAT-Idee: Router, der das Intranet (Firmen- bzw. Heimnetz) mit dem Internet verbindet, ersetzt private IP-Adressen durch seine offizielle IP-Adresse
 - Aus Sicht des Internet erscheint es so, als ob nicht die Hosts des Intranets Nachrichten senden, sondern der Router
 - Hosts im Internet antworten dem Router,
 nicht dem Hosts des Intranets

- Router muss NAPT-Übersetzungstabelle pflegen, um Antworten an den richtigen Intranet-Host zu senden
- In der Regel werden auch die Ports (= Layer
 4 Adresse, 0-65535, siehe später) ersetzt

Grafik aus Computernetze, Kurose und Ross

5.11 Spezielle IPv4-Adressen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS DHCP
- WWW

- > Abgesehen von der Zuweisung von Adressen für einzelne Computer
 - ist es bequem Adressen zu haben, die ein ganzes NW oder eine Gruppe von Computern kennzeichnen
- > IPv4 definiert dafür einen Satz spezieller IP-Adressen -> Reserviert
- > Spezielle IPv4-Adressen dürfen nie einem Host zugewiesen werden
 - 5.17.1 Netzwerk Adresse
 - 5.17.2 Gerichtete Broadcast-Adresse
 - 5.17.3 Begrenzte Broadcast-Adresse
 - 5.17.4 "This Computer" Adresse
 - 5.17.5 Loopback Adresse

5.11.1 Netzwerk-Adresse

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS DHCP
- WWW

- Bezieht sich auf das Netzwerk selbst, nicht auf die Hosts dieses Netzwerks
- > IP reserviert dafür die Hostadresse Null
 - 128.211.0.0/16 kennzeichnet das Subnetz mit dem Präfix 128.211
 - 10.0.0.0/8 kennzeichnet das Subnetz mit dem Präfix 10
- > Derartige Adressen werden beispielsweise in Routingtabellen verwendet, da Router nicht jeden Host kennen müssen, sondern nur einzelne Netzwerke.
- Die NW-Adresse sollte nie als Zieladresse in einem IP-Paket erscheinen

Thomas Waas

5.11.2 Gerichtete Broadcast-Adressen

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- <u>IP-/</u>
- IP
- UDP
- TCPDNS
- DHCP
- WWW

- Um eine Kopie eines Paketes an alle Host zu senden
 - verwendet ein NW "Broadcasting"
- Wenn ein Paket an eine gerichtete Broadcast-Adresse gesendet wird
 - wandert ein einzelnes Paket durch das Internet bis es das angegebene NW erreicht
 - danach wird es an alle Host des NW gesendet
- ➤ Gerichtete Broadcast-Adresse
 - Suffix besteht aus lauter 1 Bits
 - IP reserviert dafür die Host-Adresse die aus lauter 1 Bits besteht
- > Falls ein NW Broadcast unterstützt
 - wird dieser zur Zustellung eines gerichteten Broadcasts verwendet
- > Falls kein HW Support
 - SW sendet jedem Host des NW eine getrennte Kopie oder
 - Broadcast wird nicht unterstützt

Obere Host sendet "Gerichteten BC" an das untere Subnetz 40

5.11.3 Begrenzte Broadcast-Adressen

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- ID
- IP – UDP
- ТСР
- DNS
- DHCP
- WWW

- Adressiert alle Hosts des **lokalen** physikalischen Subnetzes.
- Wird während des Starts von einem Computer verwendet, der seine NW-Adresse noch nicht kennt
- ➤ IP reserviert hierzu die Adresse, die aus lauter 1 Bits besteht (255.255.255.255)

Roter Host sendet "Begrenzten Broadcast"

Thomas Waas

5.11.4 Die Adresse "This Computer"

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS DHCP
- WWW

- Ein Computer muss seine IP-Adresse kennen, um Pakete senden oder empfangen zu können
 - jedes Paket beinhaltet die Adresse der Quelle und des Ziels
- ➤ Die TCP/IP-Familie umfasst Protokolle, die ein Computer verwenden kann, um beim Starten seine IP Adresse automatisch einzuholen (DHCP).
- Das Startprotokoll kommuniziert selbst mittels IP
- Während des Startprotokols
 - kann der Computer keine korrekte IP-Quellenadresse verwenden
- Für diese Fälle reserviert IP die Adresse **0.0.0.0**, die sinngemäß "**dieser Computer**" heißt

5.11.5 Loopback-Adresse

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

- Jeder Host besitzt eine virtuelle Netzwerkkarte, das so genannte Loopback IF
- Pakete, die an Loopback-Adresse geschickt werden, werden an eigenen Computer zugestellt
 - daher der Name loopback
- Bei IPv4 ist hierfür das Präfix 127.0.0.0/8 reserviert
- Die populärste Loopback-Adresse 127.0.0.1 wird auch als localhost bezeichnet

- Einsatzzweck:
 - Fehlerdiagnose
 - Kommunikation zweier Netzwerkapplikationen auf dem selben Computer
 - Z.B.: Medienserver, der sowohl vom Netzwerk aus zu erreichen ist, als auch vom lokalen PC aus über eine Client-Software
 - Weitere Beispiele sind Printserver, HTTP-Server, etc. ... alle können über 127.0.0.1 auf dem lokalen Rechner kontaktiert werden
- Wird ein Paket an die eigene IP-Adresse gesendet, löst die Routingtabelle diese automatisch in 127.0.0.1 auf

5.12 Spezielle IPv6 Adressen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

IPv6 kennt folgende Adresstypen

- Unicast
 - Unspecified
 - Loopback
 - Scoped address
 - Link-local
 - Site-local (veraltet)
 - Unique Local Unicast
 - Aggregatable Global (global zusammenfassbare)
- Multicast
 - Broadcast: nicht vorhanden bei IPv6
- Anycast (nicht Inhalt der Vorlesung)

5.13.1 Unspecified

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS DHCP
- WWW

- > Wird als Platzhalter verwendet, falls keine andere Adresse verfügbar ist
 - DHCP request (Adresszuordnungsprotokoll)
 - Duplicate Address Detection (DAD)
- ➤ Wie 0.0.0.0 in IPv4
- > 0:0:0:0:0:0:0:0 oder ::

5.13.2 Loopback

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS DHCP
- WWW

- > Identifiziert sich selbst
- "localhost"
- Wie 127.0.0.1 in IPv4
- > 0:0:0:0:0:0:0:1 oder ::1
- > Um zu testen, ob ihr IPv6 Stack funktioniert:
 - ping ::1

Inhalt

Grundlagen

Thomas Waas

- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS
- DHCP
- WWW

Scoped Adresse (neu in IPv6): Nur in einem Bereich des Intranets gültig

- Scope link-local = lokales Subnetz ("link")
 - Kann nur zwischen Rechner des selben Subnetzes verwendet werden
 - Werden nicht geroutet
- Automatisch auf jedem Interface vorhanden
- > Format:
 - FE80:0:0:0:<interface identifier>
 - <interface identifier> basiert auf MAC Adresse des Interfaces
- Gibt jeder Netzwerkarte eine gültige IPv6 Adresse zum Start der Kommunikation
- > Anwendungen sollen diese Adresse **nicht** verwenden

5.13.4 Unique Local Unicast

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS
- DHCP
- WWW

- Scope = Site (ein Netzwerk von Subnetzen, z.B. Firmennetz eines Standortes)
 - Funktioniert nur zwischen Rechner der gleichen Site
 - Werden nicht außerhalb der Site geroutet
 - Ähnlich zu privaten Adressen in IPv4
 - Pakete mit diesem Scope werden von Internet Routern verworfen
- Nicht defaultmäßig konfiguriert
- Zwei Formen:
 - fd00/8: nächste 40 Bit zufällig, dann 16 Bit für Netz-ID, z.B. fd7a:a34f:7d5e:0:1::/64
 - fc00/8 : global zugewiesene eindeutige Werte für die nächsten 40 Bit

5.13.5 Aggregatable Global

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,Fehlererkennung
- LAN-Technologien
- Douting
- Routing
- IP-Adressen
- <u>...</u>
- IP
- UDP
- TCP
- DNSDHCP
- WWW

- Eigentliche IPv6 Adressen des Internet
- > Scope = Welt
- Vergeben durch IANA
 - An Regional Registries (RIR)
 - Dann an die ISPs
 - Dann an die Sites (Endkundennetz)
 - Dann an die Subnetze der Endkunden

5.13.6 Aggregatable Global

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- ---
- UDP
- ТСР
- TCP
- DNSDHCP
- WWW

> Struktur

- 128 bit Total
- >= 48 bit Präfix für Site (Firmennetz oder Heimnetz)
- <= 16 bit für Subnetze in der Site</p>
- 64 bit für Interface ID (aus MAC-Adresse oder zufällig oder zugewiesen über DHCP)
- > Adressen beginnen mit
 - 2001:
 - Genauer: Das erste Byte hat die Bits 001x xxxx

5.13.7 Multicast

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- <u>...</u>
- IP
- UDP
- TCP
- DNSDHCP
- WWW

- Multicast = one-to-many
- ➤ Kein Broadcast in IPv6. Dafür wird Multicast verwendet, meist für das lokale Subnetz
- Scoped Adressen
 - Node, link, site, organisation, global
- > Format:
 - FF<flags><scope>::<multicast group>

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- ID
- UDP
- TCP
- DNS
- DHCP
- WWW

➤ Einige reservierte Multicast Adressen

Adress	Scope	Use
FF01::1	Interface-local	All Nodes = lokaler Broadcast
FF02::1	Link-local	All Nodes
FF01::2	Interface-local	All Routers
FF02::2	Link-local	All Routers
FF05::2	Site-local	All Routers

> RFC2373, Kapitel 2.7

5.14 Multi-Homed Hosts

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

- Kann ein Host an mehrere Netzwerke angeschlossen sein?
 - Ja!
- Ein solcher Host
 - wird "multi-homed" genannt
 - hat mehrere IP-Adressen
 - IPv4: Pro Interface eine
 - IPv6: pro Interface mehrere
- Multi-homing wird manchmal zur Erhöhung der Ausfallsicherung verwendet
 - falls ein Anschluss ausfällt, kann das Internet noch immer über den anderen Anschluss erreicht werden
- aber auch zur Performance-Verbesserung
 - durch Anschlüsse an mehrere Netzwerke lassen sich Daten direkt senden und Router umgehen, die manchmal überlastet sind
- Unterschied zu Router: Leitet keine Pakete weiter (kein "Forwarding")

5.15 Subnetzmaske in IPv4

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen

- UDP
- TCP
- DNS
- DHCP
- WWW

- Adressierung benötigt folgende Information
 - die eigentliche 32-Bit Adresse und
 - die Anzahl der Bits des NW-Präfix
- Die Anzahl der NW-Präfix-Bits wurde bisher durch /n (Subnetzmaske) dargestellt.
- In IPv4 wird diese Information (Subnetzmaske) üblicherweise durch eine 32-Bit Zahl dargestellt
 - Ursprung des Begriffes "Subnetzmaske"
 - linker Teil besteht aus 1er Bits
 - rechter Teil aus Oer Bits
 - Beispiel: 1111 1111 .1111 1111.1111 1111.1111 0000 weist eine 28Bit NW-Präfix aus (und 4 Bit Interface-Suffix)
 - dottet-decimal Darstellung der Subnetzmaske 255.255.255.240 (240=11110000b)
 - Entspricht /28 in der bisherigen (CIDR) Notation
 - Beide Notationen sind gültig und gebräuchlich

5.15 Subnetzmasken in IPv4

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**
- UDP
- TCP
- DNS
- DHCP
- WWW

Die Maskendarstellung erlaubt eine schnelle Berechnung der Netzwerkadresse N aus der IP-Adresse A

Beispiel:

– Betrachte die Subnetzmaske M = 255.255.254.0 = /23, binär:

1111 1111 1111 1110 0000 0000

Betrachte die IP-Adresse

A = 128.10.3.3, binär:

0000 1010 0000 0011 0000 0011 1000 0000

1000 0000

0000 1010 0000 0010 0000 0000 = 128.10.2.0

- Ergebnis: Ein bitweises logisches "Und &" von (A & M) ergibt N zu 128.10.2.0
- Wird intensiv bei Router eingesetzt

5.16 Routing, Teil 2

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**
- IP
- UDP
- TCP
- DNS - DHCP
- www

> Aus Kapitel 4:

Vereinfachte Routing Tabelle des zentralen Routers. Der kürzeste Weg z.B. zur Ammerstraße führt über die Hauptstraße und ist 25m (=Länge Hauptstr. + Länge Nederstr.) lang.

H: Hauptstraße, L: Lessingstraße, G: Götering sind die direkt angeschlossenen Straßen.

5.16 Routing, Teil 2

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS
- DHCP
- WWW

Jetzt mit IP Adressschema (IPv4), Metrik ist die Anzahl der Hops

Netzwerkziel	Netzwerkmaske	Gateway	Schnittstelle	Hops
10.3.0.0	255.155.0.0	192.168.34.2	192.168.34.1	2
192.168.17.0	255.255.255.0	192.168.168.2	192.168.168.1	1
10.2.0.0	255.255.0.0	Auf Verbindung	10.2.0.0.1	0
192.168.34.0	255.255.255.0	Auf Verbindung	192.168.34.1	0
192.168.18.0	255.255.255.0	Auf Verbindung	192.168.18.1	0
192.168.7.0	255.255.255.0	192.168.34.2	192.168.34.1	1
10.8.0.0	255.255.0.0	192.168.34.2	192.168.34.1	2
10.12.0.0	255.255.0.0	Auf Verbindung	10.12.0.1	0
10.1.0.0	255.255.0.0	10.2.0.2	10.2.0.1	1
192.168.1.0	255.255.255.0	10.2.0.2	10.2.0.1	2

- Routingtabelle des zentralen Routers
- **Zugriffslogik:** Erhält der Router (= "Gateway") Paket mit Zieladresse A,
 - geht er Zeile für Zeile durch die Routingtabelle,

- Die Interface ID des zentralen Routers ist hier immer .1 bzw. .0.1 - Die Interface ID des benachbarten Routers ist hier immer .2 bzw. .0.2

verknüpft er A "bitweise &" mit der zweiten Spalte (Netzwerkmaske) und vergleicht das Ergebnis mit der ersten Spalte (Netzwerkziel). Bei Übereinstimmung → Treffer → mögliche Route über dritte und vierte Spalte gefunden

5.17 Routing Tabelle - Optimierungen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- LAN-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS DHCP
- WWW

Default-Route	
0.1	Ne
0.1	192
10.2.00/10 A02.168.18.0124 .2 192.168.17.0124	10.
	_
10.3.0.0/16 10.3.0.0/16 10.3.0.0/16 10.3.0.0/16	
0.00/16	

Netzwerkziel	Netzwerkmaske	Gateway	Schnittstelle	Hops
0.0.0.0	0.0.0.0	10.13.0.1	10.13.0.2	-
192.168.23.0	255.255.255.0	Auf Verbindung	192.168.23.1	0
10.13.0.0	255.255.0.0	Auf Verbindung	10.13.0.2	0

Optimierte Routingtabelle des oberen Routers. 0.0.0.0/0 ist die "Default"-Route und 10.13.0.1 (der zweitoberste Router) das "Default-Gateway" aus Sicht des oberen Routers. Alle Pakete für die "Wolke" müssen über 10.13.0.1 gesendet werden, d.h. die Routing-Tabelle muss keine Unterscheidung treffen. Dies entspricht der Situation eines "Heimrouters"

- Zugriffslogik: Treffen mehrere Zeilen für Zieladresse A zu,
 - wird die mit der größeren Subnetzmaske gewählt ("longest prefix rulez", da die Route spezifischer ist, d.h. für weniger IP-Adressen zutrifft),
 - dann erst die mit der niedrigeren Metrik (hier letzte Spalte "Hops").
- → Default Route trifft immer zu, da A&0.0.0.0 immer 0.0.0.0 ergibt. Die Default Route wird aber nur verwendet, falls nicht eine andere Zeile auch zutrifft (0.0.0.0 ist die kleinste Subnetzmaske)

5.17 Routing Tabelle - Optimierungen

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,Fehlererkennung
- LAN-Technologien
- Routing
- IP-Adressen
- ...
- UDP
- TCP
- DNS
- DHCP
- WWW

Zusammenfassung (Aggregation) mehrerer Netz zu einer Route

Netzwerkziel	Netzwerkmaske	Gateway	Schnittstelle	Hops
192.1.5.0	255.255.255.0	Auf Verbindung	192.1.5.1	0
2.1.0.0	255.255.0.0	Auf Verbindung	2.1.0.1	0
192.1.0.0	255.255. 252 .0	2.1.0.2	2.1.0.1	1

Optimierte Routingtabelle des oberen Routers.

 Die dritte Zeile fasst ("aggregiert") die vier unteren Netze zusammen.

Bem: 255.255.252.0 = /22

 Obwohl es 6 mögliche Netzwerkziele gibt, reichen 3 Routingzeilen

