Лабораторная работа № 5

Модель эпидемии (SIR)

Мугари Абдеррахим

Содержание

1	Целі	ь работы	5	
2	Теоретическая часть		6	
	2.1	Система дифференциальных уравнений модели SIR:	7	
3	Практическая часть			
	3.1	Открытие Scilab и Xcos	8	
	3.2	Задание параметров модели	8	
	3.3	Построение модели в Xcos	9	
	3.4	Реализация модели в Modelica	11	
	3.5	Решение упражнения с добавлением рождаемости	15	
	3.6	Построение модифицированной модели в Xcos	16	
	3.7	Анализ графиков для модифицированной модели	17	
	3.8	Построение модифицированной модели с помощью Modelica	19	
		3.8.1 Код: (рис. 3.14)	22	
	3.9	Визуализация графиков для модифицированной модели	22	
	3.10	Моделирование в OpenModelica (OMEdit)	23	
	3.11	Исследование различных случаев (β=10,μ=0.7)	24	
		Исследование случая с v=0.9	25	
4	Выв	оды	27	
Cı	Список литературы			

Список иллюстраций

3.1	Открытие Scilab и Xcos	8
3.2	Задание параметров модели	9
3.3	Построение модели в Xcos	10
3.4	Запуск графика модели SIR	11
3.5	Реализация модели в Modelica	12
3.6	Реализация модели в Modelica	13
3.7	Реализация модели в Modelica	14
3.8	Сравнение графиков	15
3.9	Построение модифицированной модели в Xcos	17
3.10	Анализ графиков для модифицированной модели	18
3.11	Анализ графиков для модифицированной модели	19
3.12	Построение модифицированной модели с помощью Modelica	20
3.13	Построение модифицированной модели с помощью Modelica	21
3.14	Код модифицированной модели	22
3.15	Визуализация графиков для модифицированной модели	23
3.16	Моделирование в OpenModelica (OMEdit)	23
3.17	Визуализация графиков для модифицированной модели	24
3.18	Исследование различных случаев (β =10, μ =0.7)	25
3.19	Исследование случая с v=0.9	26

Список таблиц

1 Цель работы

- Целью данной лабораторной работы является изучение и моделирование распространения инфекционных заболеваний с использованием математической модели **SIR**. В рамках работы необходимо:
 - Построить базовую модель SIR в программных средах **Xcos** и **OpenModelica**.
 - Исследовать динамику эпидемии при заданных параметрах.
 - Модифицировать модель, добавив процессы рождаемости и смертности.
 - Провести анализ влияния параметров на поведение модели.

2 Теоретическая часть

Модель SIR была предложена в 1927 году учёными W. О. Kermack и **A. G. McKendrick**. Она описывает динамику численности населения в условиях распространения инфекционного заболевания.

В данной модели рассматриваются три группы населения:

- **S** (susceptible, восприимчивые) здоровые, но уязвимые особи, которые могут заразиться.
- I (infected, инфицированные) заражённые и распространяющие заболевание.
- **R** (**recovered**, **выздоровевшие**) особи, переставшие быть источником инфекции (выздоровевшие или умершие).

Общее число особей остаётся постоянным:

$$N = S + I + R$$
.

2.1 Система дифференциальных уравнений модели SIR:

$$\begin{cases} \frac{dS}{dt} = -\beta SI, \\ \frac{dI}{dt} = \beta SI - \nu I, \\ \frac{dR}{dt} = \nu I. \end{cases}$$

где:

- коэффициент заражения,
- коэффициент выздоровления.

Данная система описывает динамику заражения и выздоровления в популяции

3 Практическая часть

3.1 Открытие Scilab и Xcos

Была запущена среда Scilab, затем открыт Xcos для создания модели.(рис. 3.1).

Рис. 3.1: Открытие Scilab и Xcos

3.2 Задание параметров модели

Заданы значения:

 \Box = 1, \Box = 0.3. (рис. 3.2).

Рис. 3.2: Задание параметров модели

3.3 Построение модели в Хсоѕ

Модель была собрана с использованием следующих блоков: (рис. 3.3).

- CLOCK с для управления временем моделирования.
- INTEGRAL m для интегрирования уравнений.
- GAINBLK f для задания коэффициентов и .
- **SUMMATION** для суммирования потоков.
- PROD_f для вычисления произведений.
- MUX для объединения данных на один график.
- **CSCOPE** для визуализации графиков.

Рис. 3.3: Построение модели в Хсоѕ

Начальные условия были установлены:

$$S(0) = 0.999I(0) = 0.001R(0) = 0$$

Запуск графика модели SIR

Рис. 3.4: Запуск графика модели SIR

При запуске модели были получены три графика: (рис. 3.4).

- График S(t) (синим) показывает уменьшение восприимчивых особей.
- График I(t) (зелёным) показывает рост заражённых, достигая максимума.
- График R(t) (красным) показывает увеличение выздоровевших.

Пик числа заражённых i(t) показывает максимальное количество больных в популяции одновременно. Это важный показатель, который может быть использован для оценки нагрузки на систему здравоохранения во время эпидемии.

3.4 Реализация модели в Modelica

• Далее я использовал блок "Modelica generic" в Xcos для реализации модели SIR. Это оказалось проще, так как код на языке Modelica более компактный и читаемый (рис. 3.5).

Рис. 3.5: Реализация модели в Modelica

• здесь я ввел значения констант и выходных переменных, которые мы имеем в модели (рис. 3.6).

Рис. 3.6: Реализация модели в Modelica

• Для реализации модели использовался Modelica Generic Block. Код:(рис. 3.7).

Рис. 3.7: Реализация модели в Modelica

Я запустил симуляцию с использованием блока Modelica и получил те же графики, что и в шаге 4. Это ожидаемо, так как параметры и уравнения остались неизменными, что подтверждает корректность реализации модели. (рис. 3.8).

Рис. 3.8: Сравнение графиков

3.5 Решение упражнения с добавлением рождаемости

Для модификации модели было необходимо добавить процессы рождаемости и смертности. Новая система дифференциальных уравнений выглядит следующим образом:

$$\begin{cases} \frac{dS}{dt} = -\beta SI + \mu(N - S), \\ \frac{dI}{dt} = \beta SI - \nu I - \mu I, \\ \frac{dR}{dt} = \nu I - \mu R. \end{cases}$$

 μ — коэффициент рождаемости и смертности, который учитывает приток новых уязвимых и естественную убыль населения во всех группах. N — общая популяция, принятая равной 1 (нормированная).

• Эта модификация делает модель более реалистичной, так как в реальной

жизни популяция не остаётся полностью замкнутой, а обновляется за счёт рождений и смертей.

3.6 Построение модифицированной модели в Хсоѕ

Я построил новую модель в Xcos, добавив блоки для учёта μ . Уравнения теперь включают дополнительные члены:

• Для (s(t)):

$$\frac{ds}{dt} = \dots + \mu(N - s(t))$$

• Для (i(t)):

$$\frac{di}{dt} = \dots - \mu i(t)$$

• Для (r(t)):

$$\frac{dr}{dt} = \dots - \mu r(t)$$

как показано в (рис. 3.9).

Рис. 3.9: Построение модифицированной модели в Хсоѕ

3.7 Анализ графиков для модифицированной модели

• Сначала я установил μ=0, чтобы проверить, совпадает ли модифицированная модель с базовой SIR. Графики были идентичны тем, что получены в шагах 4 и 6, что подтвердило правильность построения модели, так как при μ=0 рождаемость и смертность отсутствуют (рис. 3.10).

Рис. 3.10: Анализ графиков для модифицированной модели

затем я изменил µ=0.2 и запустил симуляцию. На графиках видно (рис. 3.11)

- Число уязвимых s(t) стабилизируется на определённом уровне, а не падает до нуля, из-за притока новых уязвимых за счёт рождаемости.
- Число заражённых i(t) также не исчезает, а остаётся на постоянном уровне, что указывает на эндемическое состояние.

Рис. 3.11: Анализ графиков для модифицированной модели

3.8 Построение модифицированной модели с помощью Modelica

• использовали блок "Modelica generic" для реализации модифицированной модели. Код был обновлён следующим образом (рис. 3.12)

Рис. 3.12: Построение модифицированной модели с помощью Modelica

• здесь я ввел значения констант и выходных переменных, которые мы имеем в модели (рис. 3.13).

Рис. 3.13: Построение модифицированной модели с помощью Modelica

3.8.1 Код: (рис. 3.14).

Рис. 3.14: Код модифицированной модели

3.9 Визуализация графиков для модифицированной модели

• Я запустил симуляцию и получил графики, аналогичные тем, что были ранее. Это подтвердило, что модель работает корректно в обоих подходах (блоки и Modelica) (рис. 3.15).

Рис. 3.15: Визуализация графиков для модифицированной модели

3.10 Моделирование в OpenModelica (OMEdit)

• Я перенёс модифицированную модель в среду OpenModelica (OMEdit) (рис. 3.16).

Рис. 3.16: Моделирование в OpenModelica (OMEdit)

• провёл симуляцию с μ=0.2. Графики были визуализированы и показали ту же динамику, что и в Xcos, что подтверждает согласованность результатов (рис. 3.17).

Рис. 3.17: Визуализация графиков для модифицированной модели

3.11 Исследование различных случаев (β=10,μ=0.7)

- Я провёл эксперимент, установив β=10 и μ=0.7. На графиках видно:
- Число уязвимых s(t) падает практически мгновенно из-за высокого коэффициента заражения.
- Число заражённых i(t) резко возрастает, но благодаря высокому μ=0.7 (быстрая убыль населения) и выздоровлению эпидемия затухает примерно через 5 дней (рис. 3.18).

Рис. 3.18: Исследование различных случаев (β =10, μ =0.7)

3.12 Исследование случая с v=0.9

- Я установил nu=0.9, что соответствует очень быстрому выздоровлению. В этом случае эпидемия не развивается:
- Число уязвимых s(t) остаётся близким к начальному значению (0.999) и постепенно приближается к 1.
- Число заражённых i(t)i(t) быстро падает до нуля, так как люди моментально выздоравливают.(рис. 3.19)

Рис. 3.19: Исследование случая с ν =0.9

4 Выводы

В ходе лабораторной работы была успешно реализована и исследована модель SIR для описания динамики распространения эпидемии. Были выполнены следующие задачи:

- Построена базовая модель SIR в Xcos с использованием блоков и через язык Modelica, а также проведена её симуляция.
- Модифицирована модель с учётом рождаемости и смертности, что позволило наблюдать переход к эндемическому состоянию.
- Исследованы различные случаи с изменением параметров ββ, vv и μμ, что продемонстрировало их влияние на динамику эпидемии.

Полученные результаты показывают, как математические модели могут быть применены для анализа эпидемиологических процессов и подчёркивают важность учёта демографических факторов для долгосрочных прогнозов.

Подробнее см. в [1–3].

Список литературы

- Steer S., Collette Y., Delebecque F. Scilab/Xcos: A Practical Introduction. Springer, 2018.
- 2. Association M. Modelica A Unified Object-Oriented Language for Systems Modeling: Language Specification. 3.6 изд. 2022.
- 3. Consortium O.S.M. OpenModelica User's Guide. 2023.