Analysis 3

Week 1: Differential operators

Gradient: For Ω open, $f: \Omega \to \mathbb{R}$ is defined as:

$$\nabla f(x) = (\frac{\partial f}{\partial x_1}, \dots)$$

Divergence: For Ω open, $f:\Omega\to\mathbb{R}^n$ is defined as:

$$div F(x) = (\nabla \cdot F)(x) = \frac{\partial F_1}{\partial x_1} + \dots + \frac{\partial F_n}{\partial x_n}$$

Rotational: Let $F: \Omega \to \mathbb{R}^n$

if n=2 then:

$$rot F(x,y) = \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}$$

if n=3 then:

$$rotF(x,y) = (\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y})$$

The best way to remember the formula for the case n=3 is by using the determinant formula for the following matrix:

$$\begin{bmatrix} e_1 & e_2 & e_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{bmatrix}$$

Laplacian: Let $F: \Omega \to \mathbb{R}$, then:

$$lap(f) = \Delta f = div(grad(f)) = \frac{\partial F_1^2}{\partial x_1^2} + \dots + \frac{\partial F_n^2}{\partial x_n^2}$$

If $\Delta f = 0$ then f is harmonic.

Important result: Let $\Omega \subset \mathbb{R}^n$ and f a scalar map with $f \in C^2$ and $F : \Omega \to \mathbb{R}^n$ with $F \in C^2$ then:

- 1. $div \ grad f = \Delta f$
- 2. for n = 2, rot gradf = 0
- 3. for n = 3, rot $gradf = \vec{0}$

Week 2: Line integrals, Greens theorem

 $R \subset \mathbb{R}^n$ is a simple regular curve if there exists an interval $[a,b] \subset \mathbb{R}$ and a function $f:[a,b]\to\mathbb{R}^n$ such that:

- 1. R = f([a, b])
- 2. r is injective on [a, b[3. $r \in C^1$
- 4. $||r'(t)|| \neq 0$

If the first two properties hold, the curve is said to be *simple*. If the two start and endpoints meet, the curve is said to be *closed*.

Some visuals below: