Matemática Financiera

Autor: José M. Martín Senmache Sarmiento

Capítulo 7: Anualidades

Solución de Ejercicio Nº1

e-financebook

- 1. Por la compra de un **automóvil** cuyo precio de venta es de US\$ 42,199.00, la casa comercial le exige una cuota inicial de 20%.
 - a) Construir un gráfico con el flujo de pagos mencionado.
 - b) ¿Cuánto deberá pagar mensualmente al banco para devolver el préstamo, si le cobran una tasa efectiva anual (TEA) de 7.5% y pacta pagos mensuales vencidos durante 3 años?
 - c) ¿Y si fueran adelantados?

Respuestas: b) US\$ 1,046.31, c) US\$ 1,040.02

DATOS		
Nombre	Descripcion	Valor
PV	Precio de venta del automóvil	42,199.00
CI	Porcentaje de cuota inicial	20%
TE	Tasa de Interés Efectiva Anual (TEA)	7.5%
Tiempo	Tiempo que dura el crédito	3 años
f	Frecuencia de pago	mensual

FÓRMULAS		
Número	Fórmula	
19	$TEP_2 = (1 + TEP_1)^{\left(\frac{N^0 diasTEP2}{N^0 diasTEP1}\right)} - 1$	
47	C = PV * (1 - %CI) = PV - %CI * PV	
49	$R = C * \left(\frac{TEP * (1+TEP)^{n}}{(1+TEP)^{n}-1}\right)$	
54	Ra = C* $\left(\frac{\text{TEP}*(1+\text{TEP})^{(n-1)}}{(1+\text{TEP})^n-1}\right)$	
55	$Ra = \frac{R}{1 + TEP}$	

SOLUCIÓN

a) Calculando cuota vencida

Calendario ordinario:

$$C = PV - CI * PV$$

$$C = 42,199.00 - 20\% * 42,199.00$$

$$C = 33,759.20$$

$$TEM = \left(1 + TEA\right)^{\left(\frac{N^{o}diasTEM}{N^{o}diasTEA}\right)} - 1$$

TEM =
$$(1 + 7.5\%)^{\left(\frac{30}{360}\right)} - 1$$

TEM = 0.00604491902

TEM = 0.604491902%

$$n = 12 * 3$$

n = 36 cuotas mensuales

$$R = C * \left(\frac{TEM * (1 + TEM)^{n}}{(1 + TEM)^{n} - 1} \right)$$

$$R = 33,759.20 * \left(\frac{0.604491902\% * (1 + 0.604491902\%)^{36}}{(1 + 0.604491902\%)^{36} - 1} \right)$$

$$R = 1,046.31$$

- b) Calculando cuota adelantada:
- * Método 1: Si no se conoce el valor de R.

$$C = PV - CI * PV$$

$$C = 42,199.00 - 20\% * 42,199.00$$

$$C = 33,759.20$$

Ra = C *
$$\left(\frac{\text{TEM * (1 + TEM)}^{(n-1)}}{(1 + \text{TEM})^n - 1}\right)$$

$$Ra = 33,759.20 * \left(\frac{0.604491902 \% * (1 + 0.604491902 \%)^{\left(36 - 1\right)}}{(1 + 0.604491902 \%)^{36} - 1} \right)$$

$$Ra = 1,040.02$$

* Método 2 : Si se conoce el valor de R.

$$Ra = \frac{R}{1 + TEP}$$

$$Ra = \frac{1,046.31}{1+0.604491902\%}$$

$$Ra = 1,040.02$$