IT 5845 Mathematics for Artificial Intelligence

Lecture 4

Dr. Thilini Piyatilake

Department of Computational Mathematics University of Moratuwa

thilinisp@uom.lk

MSc in Artificial Intelligence

Learning Outcomes

By the end of the lecture, students will be able to;

- identify the basic definitions of matrices.
- perform the matrix arithmetic operations.
- ▶ apply arithmetic operations on matrices to solve real world problems.
- perform the matrix operations.
- obtain the determinant of a square matrices.
- describe some basic properties of determinants.
- ▶ find the inverse of a matrix.

Chapter 2: Matrix Algebra

Matrix Operations

Dr. Thilini Pivatilake - IT 5845

Order of a Matrix

The **number of rows and columns** that a matrix has is called its order or its dimension.

Eg:

$$\begin{pmatrix} 9 & -1 & 4 & 19 \\ 8 & 15 & 20 & 5 \\ 19 & 4 & 4 & 10 \end{pmatrix}_{3\times4} \Rightarrow order \ 3\times4$$

Dr. Thilini Pivatilake - IT 584

Equality of Matrices

For two matrices to be equal, they must have

- 1. the same order.
- 2. identical elements in the corresponding positions.

General Representation of a Matrix

A rectangular array of numbers of the form

$$oldsymbol{A} = \left(egin{array}{cccc} a_{11} & \cdots & \overline{a_{1j}} & \cdots & a_{1n} \ dots & dots & dots & dots & dots \ \overline{a_{i1}} & \cdots & \overline{a_{ij}} & \cdots & a_{in} \ dots & dots & dots & dots & dots \ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{array}
ight)_{m imes n}$$

is called a matrix, with m rows and n columns.

Dr. Thilini Pivatilake - IT 584

Column Matrix

A matrix which has just only one column is a column matrix.

Eg:-
$$\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}_{3\times}$$

Row Matrix

Square Matrix

A matrix which has just only one row is a row matrix.

$$\begin{pmatrix} 6 & 0 & 8 \end{pmatrix}_{1 \times 3}$$

Order of a Square Matrix

In square matrix if

$$Number\ of\ Rows = Number\ of\ Columns = n,$$

it is termed as $n^{\rm th}$ order matrix.

Any matrix in which the

 $Number\ of\ Rows = Number\ of\ Columns,$

is called a square matrix.

$$\begin{pmatrix} 2 & 0 & 4 \\ 4 & 7 & 2 \\ 1 & 9 & 3 \end{pmatrix}_{3 \times 3}$$

Zero Matrix

Any matrix in which every element is zero is a **zero matrix**.

Notation: 0

Eg:-
$$\mathbf{0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{2 \times 3}$$

Diagonal Matrix

A square matrix whose elements are zero, except the principal (main) diagonal elements, is a diagonal matrix.

Notation:
$${m A}=diag\left[1,-4,rac{1}{2}
ight]_3$$

Eg:-
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}_{3 \times 3}$$

Matrix Operations

Identity Matrix

The diagonal matrix with all diagonal elements are 1 (or unity) is called the identity or unit matrix of order n.

Notation:
$$I_n = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & \cdots \\ 0 & 0 & 1 & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & 1 \end{pmatrix}_{n \times n} = diag [1, 1, \cdots, 1]_n$$

Addition of Matrices

Let A and B be two matrices of the same order $m \times n$, then their sum (A + B) is defined to be the matrix of the order $m \times n$ obtained by adding the corresponding elements of A and B.

$$\begin{bmatrix} 3 & 8 \\ 4 & 6 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 1 & -9 \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 5 & -3 \end{bmatrix}$$

Properties of Matrix Addition

1. Matrix addition is commutative.

$$A + B = B + A$$

2. Matrix addition is associative.

$$A + (B + C) = (A + B) + C$$

- 3. For any A, A + 0 = A.
- 4. For any A, there exist -A such that A + (-A) = 0.

Dr. Thilini Pivatilake - IT 584

Scalar Multiplication

Let k be a scalar and \boldsymbol{A} be the matrix of order $m \times n$. Then the order $m \times n$ matrix obtained by multiplying every element of matrix \boldsymbol{A} by k is called the scalar multiple of \boldsymbol{A} by k.

Eg:- Let
$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix}$$
, find $4\mathbf{A}$.
$$4\mathbf{A} = 4 \begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 4 \cdot 2 & 4 \cdot 1 \\ 4 \cdot 3 & 4(-2) \end{pmatrix} = \begin{pmatrix} 8 & 4 \\ 12 & -8 \end{pmatrix}$$

Subtraction of Matrices

Let A and B be two matrices of the same order $m \times n$, then their subtraction (A - B) is defined to be the matrix of the order $m \times n$ obtained by subtracting the corresponding elements of A and B.

$$\begin{bmatrix} 3 & 8 \\ 4 & 6 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 1 & -9 \end{bmatrix} = \begin{bmatrix} -1 & 8 \\ 3 & 15 \end{bmatrix}$$

Dr. Thilini Piyatilake — IT 584

Matrix Multiplication

➤ You can multiply two matrices if, and only if, the number of columns in the first matrix **equals** the number of rows in the second matrix.

Product of Two Matrices (Continue...)

► What is the order of the resultant matrix? The resultant matrix order is

(rows of first matrix) × (columns of the second matrix).

Matrix	4	Matrix B	Product
3 2 1 9 1 3	5].	2 9 0 1 3 5] = [
C mathwarehouse.com		8 1 5	2 rows
4 cols		3 cols	3 cols
2 rows		4 rows	

- ► How do we multiply two matrices?
 - Make sure that the number of columns in the first matrix equals the number of rows in the second matrix.
 - ► Multiply the elements of each row of the first matrix by the elements of each column in the second matrix.
 - Add the products.

Dr. Thilini Pivatilako — IT 5845

Properties of a Matrix Multiplication

Theorem

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

- 1. Associative law of multiplication: A(BC)=(AB)C
- 2. Left distributive law: A(B+C) = AB + AC
- 3. Right distributive law: (B+C)A = BA + CA
- 4. r(AB) = (rA)B = A(rB) for any scalar r.
- 5. Identity for matrix multiplication: $I_m A = A = A I_n$

Exercise 3

a. If
$$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 0 & 2 \\ -6 & 1 \end{pmatrix}_{3 \times 2}$$
 and $\mathbf{B} = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 1 \end{pmatrix}_{2 \times 3}$.

b. If
$$\mathbf{A}=\begin{pmatrix}1&3&2\end{pmatrix}_{1\times 3}$$
 and $\mathbf{B}=\begin{pmatrix}1&-1&0\\0&2&4\\2&-2&0\end{pmatrix}_{3\times 3}$.

Dr. Thilini Piyatilake - IT 5845

Remark

- ▶ In general, $AB \neq BA$.
- The cancellation laws do not hold for matrix multiplication. That is, if AB = AC, then it is **not** true in general that B = C.
- If a product AB is the zero matrix, you cannot conclude in general that either A=0 or B=0.

Dr. Thilini Pivatilake — IT 5845

Transpose of a Matrix

The transpose of a matrix is one in which the rows and columns are interchanged. Transpose of A is denoted by A^T or A'.

or Thillini Pivatilake — IT 5845

Determinants

Properties of Transposition

Theorem

Let ${\cal A}$ and ${\cal B}$ denote matrices whose sizes are appropriate for the following sums and products.

1.
$$(A^T)^T = A$$

2.
$$(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$

3. For any scalar
$$r$$
, $(r\boldsymbol{A})^T = r\boldsymbol{A}^T$

4.
$$(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$$

Dr. Thilini Piyatilake — IT 584

Determinant of a Matrix

Let
$$m{A} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}_{n \times n}$$
 be a $n \times n$ square matrix.

The determinant of A is denoted by $\det A$ or |A| and write,

$$|m{A}| = egin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \ \end{array}.$$

Determinant of Order 2

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
$$= a_{11}a_{22} - a_{12}a_{21}$$

In other words,

Dr. Thilini Piyatilake — IT 5845

Determinant of Order *n* **Matrix**

Definition

For $n \geq 2$, the **determinant** of an $n \times n$ matrix $\mathbf{A} = [a_{ij}]$ is the sum of n terms of the form a_{1j} det \mathbf{A}_{1j} , with plus and minus signs alternating, where the entries $a_{11}, a_{12} \dots a_{1n}$ are from the first row of \mathbf{A} . In symbols,

$$\det \mathbf{A} = a_{11} \det \mathbf{A}_{11} - a_{12} \det \mathbf{A}_{12} + \dots + (-1)^{1+n} a_{1n} \det \mathbf{A}_{1n}$$

$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det \mathbf{A}_{1j}$$

Dr. Thilini Piyatilake — IT 5845

Determinant of Order 3

To generalize the definition of the determinant to larger matrices, we'll use 2×2 determinants to rewrite the 3×3 determinant described above.

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11} (a_{22}a_{33} - a_{23}a_{32}) - a_{12} (a_{21}a_{33} - a_{23}a_{31})$$

$$+ a_{13} (a_{21}a_{32} - a_{22}a_{31})$$

For brevity, write

$$|A| = a_{11} \cdot \det A_{11} - a_{12} \cdot \det A_{12} + a_{13} \cdot \det A_{13}$$

where A_{11} , A_{12} , and A_{13} are obtained from A by deleting the first row and one of the three columns.

Dr. Thilini Piyatilake — IT 5845

Properties of Determinants

Row Operations

The secret of determinants lies in how they change when row operations are performed.

Theorem - Row Operations

Let A be a square matrix.

- 1. If a multiple of one row of A is added to another row to produce a matrix B, then det $B = \det A$.
- 2. If two rows of A are interchanged to produce B, then $\det B = -\det A$.
- 3. If one row of \boldsymbol{A} is multiplied by k to produce \boldsymbol{B} , then det $\boldsymbol{B}=k$ det \boldsymbol{A} .

Dr. Thilini Pivatilake - IT 584

Multiplicative Property

If \boldsymbol{A} and \boldsymbol{B} are $n \times n$ matrices, then

 $\det AB = (\det A)(\det B).$

Column Operations

We can perform operations on the columns of a matrix in a way that is analogous to the row operations we have considered. We can identify the column operations have the same effects on determinants as row operations. Therefore, if \boldsymbol{A} is an $n\times n$ matrix, then

$$\det \mathbf{A}^T = \det \mathbf{A}$$
.

Dr. Thilini Piyatilake — IT 584