Algebra 1

Contents

I Aritmetica	2
II Gruppi, Sottogruppi, Omomorfismi	4
III Permutazioni	7
IV Generatori, Ordine, Indice, Coniugato e Centralizzante	9
V Sottogruppi normali e Gruppi quoziente	11
VI Teoremi di Isomorfismo	13
VII Anelli	14
VIII Omomorfismi di anelli e Ideali	16
IX Zeri di Polinomi	19
X Ideali primi e massimali	21
XI Fattorizzazione	22
XII Fattorizzazione di Polinomi	24
XIII Riassunto gruppi	27
1 Commutatività e normalità	27
2 Gruppo simmetrico S_n 2.1 Generalità	27 27
XIV Riassunto anelli	28
3 Implicazioni tra strutture	28
4 Esempi	28
5 Omomorfismi	28

6	Ideali ed elementi	29
7	Polinomi	30
8	Concetti e generalizzazioni	30
X	V Esame	31
9	Scritto 9.1 Gruppi 9.2 Anelli	31 31 32
10	Orale10.1 Esempi e controesempi10.2 Dimostrazioni	

Part I

Aritmetica

Definizioni

Insiemi dei numeri $\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$

Operazioni di somma $+: (a,b) \mapsto a+b$ e prodotto $\times: (a,b) \mapsto a \times b = a \cdot b = ab$ e proprietà

Somma: associatività, commutatività, elemento neutro, inverso additivo (opposto), Prodotto: associatività, commutatività, elemento neutro, inverso (moltiplicativo), distributività.

Principio di buon ordinamento

Divisibilità $a \mid b$ e Insieme dei multipli $a\mathbb{Z} := \{an : n \in \mathbb{Z}\}$

$$\textbf{Massimo comun divisore} \quad \operatorname{mcd}\left(a,b\right) \coloneqq \begin{cases} \max D\left(a,b\right) & \text{se } (a,b) \neq (0,0) \\ 0 & \text{se } (a,b) = (0,0) \end{cases}, \quad D\left(a,b\right) \coloneqq \left\{n \in \mathbb{Z} \colon n \mid a,n \mid b\right\}$$

Numeri coprimi mcd(a, b) = 1

Minimo comune multiplo
$$mcm(a,b) \coloneqq \begin{cases} min\{n > 0 \colon a \mid n,b \mid n\} & \text{se } a \neq 0 \text{ e } b \neq 0 \\ 0 & \text{se } a = 0 \text{ o } b = 0 \end{cases}$$

Numero primo

Algoritmo di Euclide

Equazioni diofantee lineari ax + by = c

Soluzione particolare:
$$(x_0,y_0)$$
 (per es. $(m\frac{c}{d},n\frac{c}{d})$) con $d=\mathrm{mcd}\,(a,b)=am+bn$ Soluzione generica: $(x,y)=\left(x_0+\frac{bk}{d},y_0-\frac{ak}{d}\right)$

Congruenze modulari $a \equiv b \mod n \iff n \mid (a-b)$, Classi di congruenza \overline{a} , [a], $[a]_n = a + n\mathbb{Z}$ e Insieme quoziente $\mathbb{Z}/n\mathbb{Z}$

Soluzioni di congruenze polinomiali e Sistemi di congruenze

Teoremi

Divisione con resto

Dati $a,b\in\mathbb{Z}$ con $b\neq 0\Longrightarrow \exists!\,q,r\in\mathbb{Z}$ tali che $a=b\cdot q+r$ e $0\leq r<|b|$

Dimostrazione Se vale per (a,b) vale anche per (a,-b) dato che $a=b\cdot q+r\Rightarrow a=(-b)\cdot (-q)+r,$ quindi WLOG b>0.

- Esistenza: Sia $A = \{n \in \mathbb{N} \mid \exists c \in \mathbb{Z} \text{ tale che } n = a bc\} \subseteq \mathbb{N}, \text{ ho } A \neq \emptyset \text{ (prendo } c = -|a|), A \text{ ha un minimo } r \text{ (principio di buon ordinamento) e tale che } r = a qb \ge 0, \text{ se per assurdo } r \ge b \text{ ho } r b \in A,$ quindi $0 \le r < b$
- Unicità: Se per assurdo esistessero (q,r) e (q',r') avrei $r-r'=(q-q')\,b$ e $b\mid (r-r')\Rightarrow |b|\leq |r-r'|,$ ma $-b<-r'\leq r-r'\leq r< b,$ 4. Quindi $0=r-r'=(q-q')\,b\Longrightarrow q=q'$

Formula di Bezout

 $\forall a, b \in \mathbb{Z} \Longrightarrow a\mathbb{Z} + b\mathbb{Z} = \gcd(a, b)\mathbb{Z}$, in particolare se $(a, b) \neq (0, 0)$, d è il minimo intero positivo che si può scrivere come an + bm per $m, n \in \mathbb{Z}$.

Dimostrazione Sia $(a,b) \neq (0,0)$ (per = banale), sia $d' = \min\{c \in a\mathbb{Z} + b\mathbb{Z} \mid c > 0\}$ che esiste perchè |a| > 0 oppure |b| > 0. Dimostro ora che $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$

- \subseteq : ho che $an + bm = (kd) n + (ld) m = d(kn + lm) \in d\mathbb{Z}$
- \supseteq : basta dimostrare che $d \in a\mathbb{Z} + b\mathbb{Z}$, ma dimostro direttamente che d' = d:
 - Ho che $d \leq d'$, siccome $d \mid d'$ in quanto $d' \in a\mathbb{Z} + b\mathbb{Z} \subseteq d\mathbb{Z}$
 - Ho che $d' \mid c \quad \forall c \in a\mathbb{Z} + b\mathbb{Z}$, siccome preso c = qd' + r con $0 \le r < d'$ ho che

$$r = c - qd' = am + bn - q(am' + bn') = a(m - qm') + b(n - qn') \in a\mathbb{Z} + b\mathbb{Z}$$

ed essendo d' minimo positivo di $a\mathbb{Z}+b\mathbb{Z}$, ho che r=0, da cui $d'\mid c$, dunque $d'\mid a$ e $d'\mid b$ e quindi d>d'

Corollario

$$\forall\,a,b\in\mathbb{Z},\quad d=\mathrm{mcd}\,(a,b)\quad\Longleftrightarrow\quad \begin{array}{c} (1)\quad d\mid a\in d\mid b\\ (2)\quad \mathrm{se}\ c\mid a\in c\mid b\ \mathrm{allora}\ c\mid d \end{array}$$

Minimo comune multiplo

$$\forall a, b \in \mathbb{Z} \Longrightarrow a\mathbb{Z} \cap b\mathbb{Z} = \overbrace{\operatorname{mcm}(a, b)}^{m} \mathbb{Z}$$

Dimostrazione Per $a = 0 \lor b = 0$ banale. Altrimenti

- \supseteq : se $c \in m\mathbb{Z}$, allora $a \mid c$ (siccome $a \mid m \in m \mid c$), qundi $c \in a\mathbb{Z}$, analogamente per $b\mathbb{Z}$ e dunque $c \in a\mathbb{Z} \cap b\mathbb{Z}$.
- \subseteq : se $c \in a\mathbb{Z} \cap b\mathbb{Z}$ ho che $\exists q, r \in \mathbb{Z}$ tali che $c = m \cdot q + r$ con $0 \le r < m$, da cui $a | r = c m \cdot q$ (siccome $a | c \in a | m$), analogamente per b, quindi per forza r = 0 siccome m minimo comune multiplo e r < 0

Corollario

$$\forall\,a,b\in\mathbb{Z},\quad m=\mathrm{mcm}\,(a,b)\quad\Longleftrightarrow\quad \begin{array}{cc} (1) & a\mid m\in b\mid m\\ (2) & \mathrm{se}\,\,a\mid c\in b\mid c\text{ allora }m\mid c \end{array}$$

Teorema fondamentale dell'aritmetica

 $\forall n \in \mathbb{Z}, n > 1 \quad \exists p_1, ..., p_k \text{ primi: } n = \prod_i p_i \text{ e inoltre se } q_1, ..., q_l \text{ primi: } n = \prod_i q_i \Longrightarrow \exists \sigma \text{ permutazione: } q_i \stackrel{\sigma}{\rightarrow} p_{\sigma(i)}$

3

Dimostrazione

- Esistenza: $X = \{n > 1 \mid n \text{ non è prodotto di primi}\}$, per assurdo $X \neq \emptyset$ e quindi ammette un minimo n. n non è primo, ma esistono 1 < a, b < n tali che $a \cdot b = n$, ma n è minimo, quindi $a, b \notin X$, e $a \cdot b$ si può scrivere come prodotto di primi, 4.
- Unicità: Analogamente a prima, prendo per assurdo il più piccolo $n = \prod_i p_i = \prod_i q_i$ con fattorizzazioni diverse, ho che $q_l \mid n = p_1 \cdot \ldots \cdot p_k \Rightarrow \exists i$ tale che $q_l \mid p_i$, ma p_i primo quindi $q_l = p_i$. Prendo $n' = \frac{n'}{p_k} = \frac{n'}{q_l}$, ma n' < n non avrà fattorizzazioni distinte, 4.

Soluzioni di sistema di congruenze

```
\begin{cases} x \equiv a \mod m \\ x \equiv b \mod n \end{cases} ha soluzione se e solo se \operatorname{mcd}(m,n) \mid (b-a) e la soluzione è unica modulo \operatorname{mcm}(m,n)
```

Lemma $s \equiv t \mod m, s \equiv t \mod n \iff s \equiv t \mod m \pmod (m,n)$, in quanto $(s-t) \in m\mathbb{Z} \land (s-t) \in n\mathbb{Z} \iff (s-t) \in m \pmod (m,n)\mathbb{Z}$

Dimostrazione x soluzione se e solo se $\exists y, z \colon x = a + my = b - nz \implies a - b = my + nz \implies \operatorname{mcd}(m, n) \mid (b - a)$, unicità dal lemma precedente in quanto presa una soluzione particolare x_0 il sistema equivale a $x \equiv x_0 \mod m$, $x \equiv x_0 \mod n$.

Corollario (Teorema Cinese del Resto)

Se $\operatorname{mcd}(m,n)=1$, il sistema ha soluzione per ogni $a,b\in\mathbb{Z}$, e la soluzione è unica modulo mn. Equivalentemente $[x]_{mn}\mapsto ([x]_m,[x]_n)$ è biunivoca se $\operatorname{mcd}(m,n)=1$.

Part II

Gruppi, Sottogruppi, Omomorfismi

Definizioni

Gruppo (G, \circ, e) , con composizione $\circ : G \times G \longrightarrow G$ ed elemento neutro $e \in G$

(G1)
$$(Associativit\grave{a})$$
 $x \circ (y \circ z) = (x \circ y) \circ z$ (G3) $(Inverso)$ $x \circ x^* = x^* \circ x = e$ (G2) $(Elemento\ Neutro)$ $x \circ e = e \circ x = x$ *(G4) $(Commutativit\grave{a})$ $x \circ y = y \circ x$

Gruppo abeliano o commutativo (con G4)

Gruppi additivi $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, Gruppi moltiplicativi $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$

Quaternioni di Hamilton $(\mathbb{H},+), (\mathbb{H}^*,\cdot)$ e sottogruppo $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$

Gruppi delle classi di resto $(\mathbb{Z}/n\mathbb{Z},+), ((\mathbb{Z}/n\mathbb{Z})^* = \{a \in \mathbb{Z}/n\mathbb{Z} : \operatorname{mcd}(a,n) = 1\},\cdot) (\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^*)$

Gruppo delle biiezioni $(S(X), \circ)$, Gruppo Simmetrico S_n per $X = \{1, 2, \dots, n\}$

Gruppo ortogonale $(O_2(\mathbb{R}))$ Isometrie di \mathbb{R}^2 che fissano $\mathbf{0}$, tra cui rotazioni R_{α} e riflessioni S_l

Gruppo diedrale $D_n = \{A \in O_2(\mathbb{R}) : A \text{ manda l'}n\text{-agono } \Delta_n \text{ in s\'e}\} = \begin{cases} R^k & \text{rotazioni di } \alpha = \frac{2\pi k}{n} \\ S_k & \text{riflessioni} \end{cases}, \#D_n = \{A \in O_2(\mathbb{R}) : A \text{ manda l'}n\text{-agono } \Delta_n \text{ in s\'e}\} = \begin{cases} R^k & \text{rotazioni di } \alpha = \frac{2\pi k}{n} \\ S_k & \text{riflessioni} \end{cases}$ 2n

Sottogruppo H < G

Omomorfismo, Isomorfismo, Endomorfismo, Automorfismo f(ab) = f(a) f(b)

Kernel $\ker(f) := \{ a \in G : f(a) = e' \}$ **e Immagine** $f(G) := \{ f(a) : a \in G \}$

Prodotto interno di gruppi $G_1 \times G_2$ con composizione $(g_1, g_2) (g'_1, g'_2) = (g_1 g'_1, g_2 g'_2)$

Teoremi

Unicità dell'elemento neutro

Unicità dell'inverso

Dimostrazione Siano x^*, x^{**} inversi di x, ho che

$$x^* = e \circ x^* = (x^{**} \circ x) \circ x^* = x^{**} \circ (x \circ x^*) = x^{**} \circ e = x^{**}$$

Inverso dell'inverso

Inverso del prodotto

Struttura del gruppo diedrale

Sia R la rotazione di centro $\mathbf{0}$ e angolo $\alpha = 2\pi/n$ e sia S la riflessione rispetto alla retta y = 0. Allora

(i)
$$\#D_n = 2n$$

(iii)
$$SR = R^{-1}S \rightarrow \begin{pmatrix} R^iS \end{pmatrix} R^j = R^{i-j}S \\ \begin{pmatrix} R^iS \end{pmatrix} \begin{pmatrix} R^jS \end{pmatrix} = R^{i-j}$$

(ii) $A \in D_n \Rightarrow \exists ! i < n : A = R^i \lor A = R^i S$ (iv) $R^i S = S_i$ riflessione rispetto a retta di angolo $\pi i / n$

Dimostrazione

(i), (ii) [...]

Caratterizzazione del sottogruppo

G gruppo, $H \subseteq G$, sono equivalenti

(i)
$$H$$
 sottogruppo (ii) $H \neq \emptyset$ e $\left\{ \begin{array}{ll} \forall \, a,b \in H & ab \in H \\ \forall \, a \in H & a^{-1} \in H \end{array} \right.$ (iii) $H \neq \emptyset$ e $\forall \, a,b \in H \quad ab^{-1} \in H$

Dimostrazione

$$(iii) \Rightarrow (i) [...]$$

Altre (i)
$$\Longrightarrow$$
 (ii) \Longrightarrow (iii)

Sottogruppi di \mathbb{Z} e $\mathbb{Z}/n\mathbb{Z}$

- (1) I sottogruppi di \mathbb{Z} sono $d\mathbb{Z}$ e sono diversi tra loro.
- (2) I sottogruppi di $\mathbb{Z}/n\mathbb{Z}$ sono $H_d = \{\overline{d}, \overline{2d}, \dots, \overline{n-d}, \overline{0}\}$ con d divisore positivo di n.

Dimostrazione .

- 1. Sia $H < G \implies 0 \in H$. Se non ci sono altri elementi $H = \{0\}$ ok, altrimenti esiste $a \in H \implies -a \in H$ (essendo H chiuso per l'operazione) quindi ci sono per forza elementi positivi. Sia $d := \min\{h \in H : h > 0\}$.
- $d\mathbb{Z} \subseteq H$: poiché H sottogruppo \implies ogni multiplo di d è in H (chiusura per addizione)
- $d\mathbb{Z} \supseteq H$: ovvero ogni elemento $a \in H$ è divisibile (multiplo) di d. Facciamo **divisione con resto** e vediamo che r=0: $a=qd+r\in H$ con $0 \le r < d \implies r=a-qd\in H$ ma d è definito come il minimo positivo in H e r è definito come $0 \le r < d \implies r=0$

I sottogruppi $d\mathbb{Z}$ sono diversi perché caratterizzati da d, che è il loro minimo intero positivo (ciò li distingue).

2. Sia $H < \mathbb{Z}/n\mathbb{Z}$. Definiamo $H' = \{a \in \mathbb{Z} : \overline{a} \in H\}$

Quindi per (1) $H' = d\mathbb{Z}$. Inoltre $n \in H' \implies d|n$. Verificare che i gruppi H_d sono distinti.

Immagine dell'elemento neutro e dell'inverso attraverso un omomorfismo

(i)
$$f(e) = e'$$
 (ii) $f(a^{-1}) = f(a)^{-1}$

Dimostrazione

(i) Abbiamo che $f(e) = f(e \cdot e) = f(e) \cdot f(e)$

$$e' = f(e)^{-1} f(e) = f(e)^{-1} (f(e) f(e)) = (f(e)^{-1} f(e)) f(e) = e' f(e) = f(e)$$

(ii) Dalla parte (i) e dall'unicità dell'inverso

$$f(a^{-1}) f(a) = f(a^{-1}a) = f(e) = e'$$

Sottogruppi Kernel e Immagine

(i) $\ker(f)$ sottogruppo di G (ii) f(G) sottogruppo di G (iii) f iniettiva $\iff \ker(G) = \{e\}$

Dimostrazione [...]

Composizione e Inverso di Isomorfismi

(i) f,g isomorfismi $\Longrightarrow f\circ g$ isomorfismo (ii) f isomorfismo $\Longrightarrow f^{-1}$ isomorfismo

Dimostrazione

(ii) Devo dimostrare che è omomorfismo

$$f\left(f^{-1}\left(ab\right)\right)=ab=f\left(f^{-1}\left(a\right)\right)f\left(f^{-1}\left(b\right)\right)=f\left(f^{-1}\left(a\right)f^{-1}\left(b\right)\right) \overset{\text{per iniettività di }f}{\longrightarrow} f^{-1}\left(ab\right)=f^{-1}\left(a\right)f^{-1}\left(b\right)$$

Teorema Cinese del Resto

 $f(a \mod nm) = (a \mod n, a \mod m)$ con $\operatorname{mcd}(n, m) = 1$ è un isomorfismo, ovvero

$$\mathbb{Z}/nm\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/m\mathbb{Z}$$
 se n, m coprimi

dove \oplus è il prodotto cartesiano tra gruppi in cui l'operazione è il + (indica che è abeliano))

Dimostrazione f è ben definita in quanto lo sono le due proiezioni (siccome $n \mid nm$ e $m \mid nm$), ed è un omomorfismo.

• Iniettività: Prendo $a \in \ker(f)$, ho che $a \equiv 0 \mod n$ e quindi a = un (analogamente a = vm). In quanto m e n coprimi posso scrivere 1 = nx + my e quindi

$$a = a (nx + my) = anx + amy = (vm) nx + (un) my = (vx + uy) mn$$

Da cui $mn \mid a \implies a \equiv 0 \mod mn$, e dunque f iniettivo.

• Suriettività: da $\#\mathbb{Z}/nm\mathbb{Z} = \#\left(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}\right)$

Part III

Permutazioni

Definizioni

Cicli $\sigma = (a_1 a_2 \dots a_k)$ $\sigma(a_i) = a_{i+1}, \ \sigma(a_k) = a_1, \ \sigma(x) = x$ altrimenti

Cicli disgiunti $(a_1 a_2 \dots a_s), (b_1 b_2 \dots b_t) \text{ con } a_i \neq b_j$

Segno $\varepsilon(\sigma)$ Sia:

$$\Omega := \{h : \mathbb{Z}^n \to \mathbb{Z}\} = \{\text{funzioni } h(X_1, \dots, X_n) \text{ di } n \text{ variabili intere}\}$$

Per $h \in \Omega$ e $\sigma \in S_n$ definiamo $\sigma(h) \in \Omega$:

$$(\sigma(h))(X_1,\ldots,X_n) := h(X_{\sigma(1)},\ldots,X_{\sigma(n)})$$

Usiamo la funzione $D \in \Omega$:

$$D(X_1, \dots, X_n) := \prod_{1 \le i < j \le n} (X_i - X_j)$$
$$\sigma(D) = \pm D := \varepsilon(\sigma) D \implies \varepsilon(\sigma) = \pm 1$$

In sostanza definiamo il segno di una permutazione (ovvero se il numero di trasposizioni, congiunte e disgiunte ma diverse, di cui è composta è in numero pari o dispari) attraverso sta funzione $D: \mathbb{Z}^n \to \mathbb{Z}$ che piglia gli n elementi X_1, \ldots, X_n e ci fa il prodotto delle differenze di tutte le coppie possibili a meno del segno come definito sopra. Quindi σ che agisce su tale D effettivamente per ogni trasposizione che fa ne cambia il segno, quindi per un numero pari avremo segno positivo perché si annullano, per un numero dispari rimarrà il meno.

Gruppo alterno $A_n := \{ \sigma \in S_n : \varepsilon(\sigma) = 1 \}$

Teoremi

Scomponibilità di una permutazione in cicli disgiunti

Dimostrazione Per induzione, se $\sigma=(1)$ la tesi è dimostrata. Altrimenti, preso $x\in\{1,\ldots,n\}$ consideriamo $Y:=\{x,\sigma(x),\sigma^2(x),\ldots\}$ (che sarà finito), con k intero minimo per cui $x=\sigma^k(x)$, da cui $Y=\{x,\sigma(x),\ldots,\sigma^{k-1}(x)\}$. Osserviamo che $\sigma(Y^C)=Y^C$, e dunque presa la restrizione $\sigma|_{Y^C}$ questa è prodotto di cicli disgiunti per ipotesi induttiva.

Segno del prodotto di permutazioni

 $\varepsilon(\sigma\tau) = \varepsilon(\sigma)\varepsilon(\tau)$, ovvero la funzione ε è un omomorfismo

Dimostrazione

$$\varepsilon(\sigma\tau)D = (\sigma\tau)(D) = \sigma(\tau(D)) = \sigma(\varepsilon(\tau)D) = \varepsilon(\tau)\sigma(D) = \varepsilon(\tau)\varepsilon(\sigma)D$$

Segno di trasposizioni, k-cicli e permutazioni

- (i) Dato un k-ciclo ho che $(a_1 a_2 \dots a_k) = (a_1 a_2) (a_2 a_3) \dots (a_{k-1} a_k)$
- (ii) $\forall \tau$ trasposizione $\rightarrow \varepsilon(\tau) = -1$, e dunque dato un k-ciclo τ ho che $\varepsilon(\tau) = (-1)^{k-1}$
- (iii) Per una permutazione σ prodotto di k trasposizioni ho che $\varepsilon(\sigma) = (-1)^k$

Dimostrazione

- (i) Verifica di $\sigma(a_i) = a_{i+1}$, $\sigma(a_k) = a_1 \in \sigma(x) = x \text{ per } x \notin \{a_1, a_2, \dots, a_k\}$
- (ii) Per le trasposizioni $\tau = (a\,a+1)$ ovviamente $\varepsilon(\tau) = -1$, le per quelle generiche posso scrivere $(a\,b) = (b\,a+1)\,(a\,a+1)\,(b\,a+1)$, e avrà dunque segno $\varepsilon((a\,b)) = \varepsilon\,((b\,a+1))^2\,\varepsilon\,((a\,a+1)) = -1$.

Scomponibilità di una permutazione pari in 3-cicli

Dimostrazione Ogni permutazione pari è prodotto di un numero pari di trasposizioni. Basta dimostrare che il prodotto di due trasposizioni diverse è scomponibile in 3-cicli

$$(ab)(bc) = (abc)$$
 (trasposizioni non disgiunte) $(ab)(cd) = (cad)(abc)$ (trasposizioni disgiunte)

Teorema di Cayley

Ogni gruppo finito G è isomorfo a un sottogruppo di S_n per un certo intero positivo n.

Dimostrazione Devo costruire un isomorfismo tra G e un sotto gruppo di S_n

• Definisco

$$T_q: G \to G \quad h \mapsto gh$$

Verifico che essa è una **biezione**, ovvero una permutazione degli elementi di G, ovvero $T_g \in S(G)$.

Iniettiva:

$$h, h' \in G$$
. $T_a(h) = T_a(h') \implies gh = gh' \implies h = h'$

in quanto in un gruppo vale la legge di cancellazione.

Suriettiva:

$$\forall y \in G: \quad y = y(g^{-1}g) = (yg^{-1})g = T_g(yg^{-1})$$

Quidni T_g copre tutto G.

• Definisco

$$I: G \to S(G) \cong S_n$$
 $I(g) = T_q$ $n = \#G$

(ovvero assegno ad ogni elemento la permutazione che esso fa su tutto G se moltiplicato per i suoi elementi). Verifico che è un **omomorfismo iniettivo**.

Omomorfismo:

$$I(gg')(h) = T_{gg'}(h) = gg'h = T_g(g'h) = T_g(T_{g'}(h)) = I(g)(I(g')(h)) = (I(g) \circ I(g'))(h)$$

Iniettivo: $g \in \ker(I) \Rightarrow I(g) = \operatorname{Id}_G \Rightarrow g = e$.

Quindi (essendo omomorfismo) l'immagine $I(G) < S(G) \cong S_n$ e, essendo I iniettiva, la restrizione I': $G \to I(G)$ è isomorfismo tra G e un sottogruppo di S_n .

Sostanzialmente vedo gli elementi di un gruppo come le permutazioni che ognuno fa sugli elementi del gruppo stesso tramite $g \mapsto xg$. Quindi effettivamente un gruppo finito è l'insieme di **alcune** permutazioni sui suoi oggetti definite proprio dai suoi stessi elementi. Peccato che è altamente inefficiente vedere un gruppo in tal modo poiché #G = n è molto minore di $\#S_n = n!$, ovvero le permutazioni degli n elementi rappresentate dagli elementi di G sono **molto meno** rispetto a tutte le possibili.

Teorema di Cayley generalizzato a p. 77 dell'Hernstein

Part IV

Generatori, Ordine, Indice, Coniugato e Centralizzante

Definizioni

Sottogruppo $\langle X \rangle$ generato da $X \subseteq G$, e Generatore X di un gruppo $G = \langle X \rangle$

Gruppo ciclico $G = \langle x \rangle$

Ordine di un gruppo #G, ordine di un elemento ord $(x) := \min \{m > 0 : x^m = e\}$

Classi lateriali sinistre gH e destre Hg e Insieme delle classi laterali sinistre G/H e destre H/G Dato $H \subseteq G$ sottogruppo, $gH \coloneqq \{gh \colon h \in H\}$ e $Hg \coloneqq \{hg \colon h \in H\}$

Indice [G:H], Sistema di rappresentanti S $G = \bigcup_{s \in S} sH$, [G:H] = #S

Coniugato $b = c^{-1}ac$, Coniugio $a \sim b$, Classe di coniugio $Cl(a) := \{b \in G : b \sim a\}$

Sottogruppo del Centro $Z(G) = \{g \in G : gh = hg \mid \forall h \in G\}$ sottoinsieme di G che commuta con tutto G

Sottogruppo del Centralizzante $C\left(a\right)=\left\{g\in G\colon ga=ag\right\}$ sottoinsieme di G che commuta con $a\in G$ Vale che $Z\left(G\right)=\bigcap_{g\in G}C\left(g\right)$

Teoremi

Isomorfismo dei gruppi ciclici

$$\text{Se ord } (x) = \left\{ \begin{array}{ll} \infty & \text{allora } \langle x \rangle \cong \mathbb{Z} & \text{(i)} \\ m & \text{allora } \langle x \rangle \cong \mathbb{Z}/m\mathbb{Z} & \text{(ii)} \end{array} \right. \text{. Quindi se } G \text{ ciclico allora } G \cong \mathbb{Z} \text{ oppure } G \cong \mathbb{Z}/m\mathbb{Z}$$

Dimostrazione

- (i) Considero $f: \mathbb{Z} \longrightarrow G$ tale che $f(n) = x^n$, è ovviamente un omomorfismo ed è iniettiva in quanto $x^m = 1$ vale solo per m = 0, quindi è un isomorfismo
- (ii) Considero $f: \mathbb{Z}/m\mathbb{Z} \to G$ tale che $f(\overline{a}) = x^a$, è ben definita, è un omomorfismo suriettivo, ed è iniettiva in quanto $x^m = 1$ vale solo per $\overline{m} = \overline{0}$, quindi è un isomorfismo

Corollario

$$\operatorname{ord}(x) = \#\langle x \rangle$$

Proprietà delle classi laterali sinistre

Dati a, b valgono

(i)
$$aH = bH \iff a^{-1}b \in H$$

(ii)
$$aH = bH \lor aH \cap bH = \emptyset$$
 (iii) $\forall x \in G \exists a \in G : x \in aH$

(iii)
$$\forall x \in G \ \exists a \in G \colon x \in aH$$

Dimostrazione

- (i) \Rightarrow : ho che ah = be per un certo $h \in H$, da cui $a^{-1}b = h \in H$. \Leftarrow : ho che $a^{-1}b=h\in H$, ovvero $b=ah,a=bh^{-1}$, quindi $x\in aH \ \Rightarrow \ x=ah_1=bh^{-1}h_1\in bH$ e
- (ii) Se $z \in aH \cap bH \neq \emptyset$ ho che $z = ah_1 = bh_2$ da cui $a^{-1}b = h_1h_2^{-1} \in H$ in quanto H gruppo, la tesi segue da (i)
- (iii) $x = xe \in xH$

Cardinalità delle classi laterali sinistre

Dato $H \subseteq G$ sottogruppo, $f: H \to aH$ tale che f(h) = ah è una bijezione (ma non un omomorfismo), e quindi #H = #aH

Teorema di Lagrange

Dato G gruppo e $H \subseteq G$ sottogruppo, $\#G = \#H \cdot [G:H]$

Dimostrazione Data S sistema di rappresentanti, siccome #H = #sH ho che $\#G = \sum_{s \in S} \#(sH) =$ $\#S \cdot \#H = \#H \cdot [G:H]$

Corollario

Dato G gruppo finito

- (i) Se H sottogruppo di G, allora $\#H \mid \#G$
- (ii) Se $x \in G$, allora ord $(x) \mid \#G$
- (iii) Sia G' gruppo e sia $f: G \longrightarrow G'$ omomorfismo, allora $\# \ker(f) \mid \# G$ e, se il gruppo G' è finito, $\# f(G) \mid$ #G'.

Corollario

Dato p primo e G gruppo di ordine p ho che $G \cong \mathbb{Z}/p\mathbb{Z}$

Dimostrazione Prendo $x \neq e$ in G, ho che ord $(x) \mid \#G$ e dunque ord (x) = p, ma quindi G gruppo ciclico di ordine p, quindi la tesi

Teorema di Fermat

p primo e $x \in \mathbb{Z}$ tale che $p \nmid x$, allora $x^{p-1} \equiv 1 \mod p$

Dimostrazione Siccome $p \nmid x$, la classe \overline{x} è in $(\mathbb{Z}/p\mathbb{Z})^*$, ma dunque ord $(x) \mid \# (\mathbb{Z}/p\mathbb{Z})^* = p-1$

Teorema di Eulero

nintero positivo e $x\in\mathbb{Z}$ tale che mcd(x,n)=1,allora $x^{\varphi(n)}\equiv 1\mod n$

Dimostrazione Analogamente a prima, ma con $\# (\mathbb{Z}/n\mathbb{Z})^* = \varphi(n)$

Numero di elementi coniugati ad a

$$c_a = \#\text{Cl}(a) = \#G/\#C(a) = [G:C(a)]$$

Dimostrazione Ho una corrispondenza biunivoca tra gli elementi di Cl(a) e le classi laterali destre di C(a) siccome x, y nella stessa classe implica y = cx con $c \in C(a)$, da cui

$$y^{-1}ay = (x^{-1}c^{-1}) a (cx) = x^{-1} (c^{-1}ac) x = x^{-1} (c^{-1}ca) x = x^{-1}ax$$

L'implicazione inversa procedendo in senso opposto

Corollario (Equazione delle classi)

 $\#G = \sum \frac{\#G}{\#C(a)},$ sommatoria su un a per ogni classe di coniugio

Centro di un gruppo di ordine p^n

Se $\#G = p^n$ con p primo, allora $Z(G) \neq \{e\}$

Dimostrazione [...]

Corollario

Se $\#G = p^2$ con p primo, allora G è abeliano

Part V

Sottogruppi normali e Gruppi quoziente

Definizioni

Elemento coniugato Il coniugato di $h \in G$ da $g \in G$ è $gh := ghg^{-1}$

Sottogruppo coniugato Il coniugato di H < G è l'inisieme degli elementi coniugati degli elementi di H, ovvero ${}^gH = \{ghg^{-1}: h \in H\} = gHg^{-1}$. È sempre un sottogruppo.

Sottogruppo normale $H \triangleleft G$ sottogruppo tale che $ghg^{-1} \in H \quad \forall h \in H, g \in G$. Tre definizioni equivalenti (dim. sotto):

- $gH = Hg \ \forall g \in G$ (classi destre sono uguali alle sinistre)
- $gHg^{-1} = H \ \forall g \in G \ (H \ \text{coincide cin il suo coniugato})$
- $ghg^{-1} \in H \ \forall h \in H, g \in G \ (H \ \text{chiuso rispetto alla coniugazione})$

Gruppo quoziente $G/N := \{gN : g \in G\}$ Elementi $\overline{g} = gN = Ng$, $\overline{a} = \overline{b} \Leftrightarrow a^{-1}b \in N$, composizione $\overline{a} \cdot \overline{b} = \overline{ab}$

Applicazione canonica $\pi: G \longrightarrow G/N$, $\pi(g) = \overline{g}$

Commutatori The commutator gives an indication of the extent to which a certain binary operation fails to be commutative.

In gruppi: $[a,b] := aba^{-1}b^{-1}$, ovvero ab = [a,b]ba. Quindi $[a,b] = 1 \iff ab = ba$, ovvero se commutano. In anelli: [a,b] = ab - ba, discorso analogo a sopra.

Sottogruppo generato dai commutatori $[G,G] := \langle C \rangle \text{con } C = \{[g,h] : g,h \in G\} = \{ghg^{-1}h^{-1} : ghg^{-1}h^{-1} : ghg^$ $g, h \in G$. È sottogruppo normale

Teoremi

Caratterizzazione dei sottogruppi normali

Dato $H \subseteq G$ sottogruppo, sono equivalenti

(i) H sottogruppo normale di G

(ii)
$$gH = Hg \quad \forall g \in G$$

(ii)
$$gH = Hg \quad \forall g \in G$$
 (iii) $gHg^{-1} = H \quad \forall g \in G$

Dimostrazione

- (i) \Rightarrow (ii) Prendo $x = gh \in gH$, quindi $x = gh = (ghg^{-1})g = h'g \in Hg$, da cui $gH \subseteq Hg$, analogo l'inverso
- (ii) \Rightarrow (i) Presi $h \in H$ e $g \in G$ ho che $gh \in gH = Hg$, quindi $gh = h'g \Rightarrow h' = ghg^{-1} \in H$
- (ii) \Leftrightarrow (iii) Preso $g \in G$ vale che

$$\underbrace{\{gh\colon h\in H\}}_{gH} = \underbrace{\{hg\colon h\in H\}}_{Hg} \iff \underbrace{\{ghg^{-1}\colon h\in H\}}_{gHg^{-1}} = \underbrace{\{h\colon h\in H\}}_{H}$$

Insieme delle classi è gruppo solo se H è normale

 $H \lhd G \implies G/H = \{$ insieme delle classi laterali sinistre di $H\}$ è un gruppo con l'operazione definita da

$$\overline{a} \cdot \overline{b} = \overline{ab}$$
 ovvero $aH \cdot bH = abH$

Dimostrazione Due passi:

• L'operazione è ben definita: se $a_1H=a_2H$ e $b_1H=b_2H$ allora

$$a_1H \cdot b_1H = a_1b_1H = a_1(b_2H) \stackrel{\star}{=} (a_1H)b_2 = (a_2H)b_2 \stackrel{\star}{=} a_2b_2H = a_1H \cdot a_2H$$

in \star abbiamo usato l'ipotesi che H è normale, ovvero le classi laterali commutano.

• G/H verifica le proprietà di gruppo (identità con e = eH = H, chiusura e inverso)

Normalità dei sottogruppi di indice 2

 $H \subseteq G$ sottogruppo di indice $[G:H]=2 \Longrightarrow H$ sottogruppo normale

Dimostrazione Una delle due classi laterali sinistre sarà H, e l'altra di conseguenza G-H. Analogamente per le classi destre, da cui le uguaglianze

$$gH = Hg = H$$
 per $g \in H$ $gH = Hg = G - H$ per $g \notin H$

Normalità del ker di una funzione

 $f: G \longrightarrow G'$ omomorfismo, allora $\ker(f)$ sottogruppo normale di G

Dimostrazione Dato $h \in \ker(f)$ ho che $f(ghg^{-1}) = f(g)f(h)f(g^{-1}) = f(g)f(g^{-1}) = e'$, da cui $ghg^{-1} \in \ker(f)$

Buona definizione della composizione nel gruppo quoziente

Dimostrazione Dati $\overline{a} = \overline{a'}$ e $\overline{b} = \overline{b'}$ ho che $a' = an_1$ e $b' = bn_2$, da cui $a'b' = an_1bn_2 = ab$ $(b^{-1}n_1b)$ n_2 e quindi $\overline{a'b'} = \overline{ab}$

Commutatività del gruppo quoziente

N sottogruppo normale di G. Allora G/N commutativo $\iff [G,G] \subseteq N$

Dimostrazione

 $G/N \text{ commutativo } \Leftrightarrow \forall \, \overline{g}, \overline{h} \in G/N \quad \overline{g} \cdot \overline{h} = \overline{h} \cdot \overline{g} \ \Leftrightarrow \ \overline{ghg^{-1}h^{-1}} = \overline{e} \ \Leftrightarrow \ ghg^{-1}h^{-1} \in N \ \Leftrightarrow \ [G,G] \subseteq N$

Part VI

Teoremi di Isomorfismo

Teoremi

Teorema di omomorfismo

 $f: G \longrightarrow G'$ omomorfismo, $N \subseteq G$ sottogruppo normale con $N \subseteq \ker(f)$, allora, $\exists ! h: G/N \longrightarrow G'$ tale che $h \circ \pi = f$, ovvero $h(\underbrace{xN}_{Glasse\ di\ x}) = f(x)$. Alternativamente, il diagramma è commutativo (π applicazione canonica).

$$\begin{array}{ccc}
G & \xrightarrow{f} & G' \\
\pi \searrow & \nearrow h \\
G/N & & & \\
\end{array}$$

Dimostrazione Definisco $h(\overline{x}) = f(x)$, ben definita in quanto

$$\overline{x} = \overline{y} \longrightarrow x^{-1}y \in N, \quad \text{dunque } f\left(x^{-1}y\right) = e' = f(x)^{-1}f(y) \iff f(x) = f(y) \longrightarrow h\left(\overline{x}\right) = f\left(x\right) = f\left(y\right) = h\left(\overline{y}\right)$$
 Ed omomorfismo in quanto $h\left(\overline{xy}\right) = f\left(xy\right) = f\left(x\right)f\left(y\right) = h\left(\overline{x}\right)h\left(\overline{y}\right)$

Primo teorema di isomorfismo

 $f: G \longrightarrow G'$ omomorfismo, allora $G/\ker(f) \cong \operatorname{Im} f$

Dimostrazione Devo trovare un omomorfismo iniettivo

$$G/\ker f \to G$$

in modo che poi la restrizione all'immagine sia anche suriettiva e quindi isomorfismo. Vediamo che

$$\begin{cases} h: G/N \to G, & h(\overline{x}) = f(x) & \text{dal teo omo.} \\ N = \ker f & \end{cases}$$

soddisfa la richiesta.

- f e h hanno stessa immagine: Vediamo dalla def. di h che $h(x \ker(f)) = f(x)$, quindi l'immagine di h è uguale all'immagine di f (poiché anche $f(x \cdot k) = f(x)f(k) = f(x)$ con $k \in \ker f$)
- h iniettiva:

$$\overline{x} \in \ker(h) \implies h(\overline{x}) = f(x) = e' \implies x \in \ker(f) \implies \overline{x} = \overline{1}$$

dove $\overline{1}$ è l'elemento neutro di $G/\ker(f)$. Allora è iniettiva

Quindi h isomorfismo sull'immagine.

Corollario

Se f omomorfismo suriettivo, allora $G/\ker(f) \cong G'$

Corollario

Se G' = A abeliano, allora, $\exists ! f : G/[G,G] \longrightarrow A$ tale che h(x[G,G]) = f(x).

Dimostrazione Siccome $G/\ker(f) \cong f(G)$ è un sottogruppo di A, è abeliano, e quindi $[G,G] \subseteq \ker(f)$

Secondo teorema di isomorfismo

 $H \subseteq G$ sottogruppo, $N \subseteq G$ sottogruppo normale, $HN := \{hn \colon h \in H, n \in N\}$, allora:

(i) $H \cap N$ sottogruppo normale di H (ii) HN sottogruppo di G (iii) $H/(H \cap N) \cong HN/N$

Dimostrazione

- (i) $n \in H \cap N, g \in H$, ho che $gng^{-1} \in H$ in quanto H gruppo, e $gng^{-1} \in N$ in quanto N normale.
- (ii) Di certo $e = e \cdot e \in HN$. Prendo $a = h_1 n_1$ e $b = h_2 n_2$, ho che

$$ab^{-1} = h_1 n_1 n_2^{-1} h_2^{-1} = \underbrace{h' \quad n', N \text{ normale}}_{h_1 h_2^{-1} h_2 n_1 n_2^{-1} h_2^{-1}} = h' n' \in HN$$

quindi HN sottogruppo di G. N sottogruppo normale di HN in quanto N sottogruppo normale di $G \supset HN$

(iii) Prendo $f: H \longrightarrow HN/N$ tale che f(h) = hN, omomorf. suriett. di ker $(f) = \{h \in H: hN = N\} = H \cap N$

Terzo teorema di isomorfismo

N,N' sottogruppi normali di G tali che $N\subseteq N'\subseteq G$, allora N'/N sottogruppo normale di G/N, ogni sottogruppo normale di G/N ha la forma M/N con $N\subseteq M\subseteq G$, e inoltre $\left(G/N\right)/\left(N'/N\right)\cong G/N'$

Dimostrazione [...]

Data l'applicazione canonica $\pi\colon G\longrightarrow G/N'$, trovo per il teorema di omomorfismo $h\colon G/N\longrightarrow G/N'$ tale che $h(gN)=\pi(g)=gN'$, suriettiva dato che lo è π . Adesso, so che $gN\in\ker(h)\Leftrightarrow gN'=N'$, ovvero $g\in N'$, da cui

$$\ker\left(h\right) = \left\{gN \colon g \in N'\right\} = N'/N \qquad \longrightarrow \qquad G/N' \cong \left(G/N\right)/\ker\left(h\right) = \left(G/N\right)/\left(N'/N\right)$$

Part VII

Anelli

Definizioni

Anello $(R, +, \cdot, 0, 1)$, con addizione +, moltiplicazione \cdot , ed elementi 0, 1

- (R1) (Gruppo additivo) (R, +, 0) gruppo abeliano (R4) (Distributività) $x \cdot (y + z) = x \cdot y + x \cdot z$ $(y + z) \cdot x = y \cdot x + z \cdot x$
- (R2) (Associatività) $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ *(R5) (Commutatività) $x \cdot y = y \cdot x$
- (R3) $(Identit\grave{a})$ $1 \cdot x = x \cdot 1 = x$ *(R6) $(Inverso\ moltipl.)$ $x \cdot x^* = x^* \cdot x = 1$ $(x \neq 0)$

Anello commutativo (R5), Anello con divisione (R6), Campo o Corpo (R5 e R6)

Anelli $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{H}$ commutativi $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, con divisione $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{H}$, campi $\mathbb{Q}, \mathbb{R}, \mathbb{C}$

Anello banale È l'insieme {0} in cui 0=1: i due elementi neutri coincidono. Si può anche dare come caratteristica unica il fatto che gli elementi neutri coincidono e ricavare che è solo l'insieme {0}, infatti:

$$0 = 1 \implies x = 1 \cdot x = 0 \cdot x = 0 \quad \forall x$$

la prima uguaglianza per def. di elem. neutro prodotto, nella seconda perché 1=0, nella terza perché in un anello valgono

$$\begin{cases} x+0=x & \text{(def. elem. neutro somma)} \\ x(y+z)=xy+zy & \text{(proprietà distributiva)} \end{cases}$$

(usiamo la proprietà distributiva proprio come ponte tra le due operazioni, infatti vogliamo capire cosa fa il **prodotto** per l'elemento neutro della **somma**) quindi

$$x + 0 = x$$
$$(x + 0)y = xy$$
$$xy + 0y = xy \iff 0y = 0$$

NB: {0} NON È UN CAMPO

Anello delle classi di resto $\mathbb{Z}/n\mathbb{Z}$ commutativo

Anello degli interi di Gauss $\mathbb{Z}[i]$ $\mathbb{C} \supset \mathbb{Z}[i] := \{a + bi \in \mathbb{C} : a, b \in \mathbb{Z}\}$, commutativo

Unità di R e insieme delle unità R^* $x \mid \exists x^{-1} : x \cdot x^{-1} = x^{-1} \cdot x = 1$

Divisori di zero $a \neq 0 \mid \exists b \neq 0$ tale che ab = 0 (divisore sinistro) / ba = 0 (divisore destro)

Dominio di integrità Anello non banale, commutativo e senza divisori di zero

Sottoanelli $S \subseteq R$ tale che $(S, +, \cdot, 0, 1)$ anello [(S, +, 0) sottogruppo di (R, +, 0), e $a, b \in S \Longrightarrow ab \in S$

Prodotto di anelli $R_1 \times R_2$ con addizione (r, s) + (r', s') = (r + r', s + s') e moltiplicazione $(r, s) \cdot (r', s') = (r \cdot r', s \cdot s')$

Se $R_1, R_2 \neq \{0\}$, ha divisori di zero in quanto $(r, 0) \cdot (0, r) = (0, 0)$

Anello dei polinomi R[X] $R[X] = \left\{ \sum_{i=0}^{\infty} a_i X^i : a_i \in R \right\}$, con

$$[+] \quad (\sum_{i=0}^{\infty} a_i X^i) + (\sum_{i=0}^{\infty} b_i X^i) = \sum_{i=0}^{\infty} (a_i + b_i) X^i \qquad [\cdot] \quad (\sum_{i=0}^{\infty} a_i X^i) \cdot (\sum_{i=0}^{\infty} b_i X^i) = \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} a_i b_{k-i}\right) X^i$$

R[X] commutativo $\Leftrightarrow R$ commutativo, R dominio $\Rightarrow R[X]$ dominio e $\deg(fg) = \deg(f) + \deg(g)$

Anello dei polinomi in n variabili $R[X_1, X_2, \dots, X_n] = (R[X_1, X_2, \dots, X_{n-1}])[X_n]$

Campo quoziente Q(R) R dominio, $\Omega \coloneqq \{(a,r) \in R \times (R-\{0\})\}$, $(a,r) \sim (b,s) \Leftrightarrow as = br$ relazione d'equivalenza, $Q(R) = \Omega/\sim = \left\{\frac{a}{r} \text{ classe di } (a,r)\right\}$, addizione $\frac{a}{r} + \frac{b}{s} = \frac{as+br}{rs}$ e moltiplicazione $\frac{a}{r} \cdot \frac{b}{s} = \frac{ab}{rs}$

Campo delle funzioni razionali K(X) = Q(K[X])

Anello degli endomorfismi End (A) A gruppo additivo, addizione (f + g)(a) = f(a) + g(a), prodotto (fg)(a) = f(g(a))

Anello delle funzioni $R^X := \{f : X \longrightarrow R\}$ X insieme, R anello, addizione (f+g)(x) = f(x) + g(x), prodotto $(f \cdot g)(x) = f(x) \cdot g(x)$ Anelli $C^0([0,1]), C^1([0,1]), C^{\infty}([0,1])$

Teoremi

Gruppo moltiplicativo dell'insieme delle unità

Dimostrazione Vale associatività, 1 è elemento neutro, inverso $a \in R^* \Rightarrow a^{-1} \in R^*$, e chiusura $a, b \in R^* \Rightarrow ab \in R^*$ siccome

$$(ab) (b^{-1}a^{-1}) = (b^{-1}a^{-1}) (ab) = 1$$

Campo $\mathbb{Z}/p\mathbb{Z}$

 $\mathbb{Z}/n\mathbb{Z}$ campo $\iff n$ primo

Dimostrazione $\forall a \in (\mathbb{Z}/n\mathbb{Z} - \{0\})$ ha inverso moltipl. $\Leftrightarrow \forall a \in \mathbb{Z} \colon 0 < a < n \text{ si ha mcd } (a, n) = 1 \Leftrightarrow n$ primo

Indivisibilità dello zero per le unità

Un'unità di R non può essere divisore di zero

Dimostrazione Per assurdo, a, b, c tali che ab = 1, ca = 0, $c \neq 0$, allora

$$0 = 0 \cdot b = (ca) \cdot b = c \cdot (ab) = c \cdot 1 = c \quad$$

Campo quoziente è campo

Il campo quoziente come definito sopra è un campo.

Dimostrazione Prima buone def. delle operazioni:

• Buona def. del +: abbiamo

$$\frac{a}{r} = \frac{a'}{r'} \iff ar' = a'r, \qquad \frac{b}{s} = \frac{b'}{s'} \iff bs' = b's$$

allora

$$(a's' + b'r')rs = a's'rs + b'r'rs = (a'r)s's + (b's)r'r = ar's's + bs'r'r = (as + br)r's'$$

che per def.

$$\frac{a's'+b'r'}{r's'} = \frac{as+br}{rs} \longrightarrow \frac{a'}{r'} + \frac{b'}{s'} = \frac{a}{r} + \frac{b}{s}$$

Part VIII

Omomorfismi di anelli e Ideali

Definizioni

Omomorfismo di anelli f(a+b) = f(a) + f(b) $f(a \cdot b) = f(a) \cdot f(b)$ f(1) = 1

Ideale sinistro, destro, bilaterale $I \subseteq R$ sottogruppo additivo, $ra \in I \quad \forall r \in R, \ \forall a \in I \ (destro se \ ar \in I)$ \longrightarrow sottogruppo additivo (normale) + assorbe R in I

Ideale principale sinistro $Rx := \{rx : r \in R\}$ e destro $xR := \{xr : r \in R\}$, ideali (x) generati da x

Ideale generato da $a_1, a_2, \ldots, a_n \quad (a_1, \ldots, a_n) = a_1R + \cdots + a_nR := \{a_1x_1 + \cdots + a_nx_n : x_1, \ldots, x_n \in R\}$

Intersezioni, Prodotti, Somme di ideali Dati I, J ideali bilaterali, sono ideali $I \cap J, I + J \coloneqq \{x + y \colon x \in I, y \in J\}$ e $IJ \coloneqq \{\sum_{k=1}^m x_k y_k \colon x_k \in I, y_k \in J\}$

Ideali coprimi I + J = R

Anelli quoziente $R/I := \{x + I : x \in R\}$ NB è con il +

Elementi $\overline{x} = x + I = I + x$, $\overline{x} = \overline{y} \Leftrightarrow x - y \in I$, addizione $\overline{x} + \overline{y} = \overline{x + y}$, moltiplicazione $\overline{x} \cdot \overline{y} = \overline{x \cdot y}$

Omomorfismo canonico $\pi\colon R\longrightarrow R/I, \quad \pi\left(x\right)=\overline{x}\quad \text{suriettivo, di nucleo } \ker\left(\pi\right)=I$

Teoremi

Ideale del Nucleo di omomorfismi

f omomorfismo, allora $\ker(f)$ ideale

Dimostrazione Presi $r \in R$ e $x \in \ker(f)$ ho che $f(rx) = f(r) f(x) = f(r) \cdot 0 = 0$, e quindi $rx \in \ker(f)$. Analogamente $xr \in \ker(f)$

Ideali contenenti un'unità

 $I \subseteq R$ ideale che contiene un'unità $a \in R^*$, allora I = R

Dimostrazione Vale che $a \in I \implies a \cdot a^{-1} \in I \implies \forall x \in R \quad x = x \cdot 1 \in I$

Corollario

Dato R anello con divisione

- (i) R ha solo ideali banali
- (ii) Dato R' anello non banale, $f: R \to R'$ omomorfismo è sempre iniettivo

Dimostrazione

(ii) Vale che f(1) = 1, quindi $1 \notin \ker(f)$, ma quindi $\ker(f) \neq R \implies \ker(f) = \{0\}$

Teorema di omomorfismo

 $f: R \longrightarrow R'$ omomorfismo di anelli, $I \subseteq R$ ideale con $I \subseteq \ker(f)$, allora, $\exists ! h: R/I \longrightarrow R'$ tale che $h \circ \pi = f$, ovvero h(x+N) = f(x). Alternativamente, il diagramma è commutativo.

$$\begin{array}{ccc}
R & \xrightarrow{f} & R' \\
\pi \searrow & \nearrow h \\
R/I & \end{array}$$

Dimostrazione Definisco $h(\overline{x}) = f(x)$, ben definita in quanto

$$\overline{x} = \overline{y} \longrightarrow x - y = a \quad \text{con } a \in I \subseteq \text{ker}(f), \quad \text{dunque } f(x) = f(y + a) = f(y) + f(a) = f(y)$$

Per costruzione vale $h(\pi(x)) = f(x)$, ed omomorfismo in quanto $h(\overline{1_R}) = f(1_R) = 1_{R'}$

$$h\left(\overline{x+y}\right) = f\left(x+y\right) = f\left(x\right) + f\left(y\right) = h\left(\overline{x}\right) + h\left(\overline{y}\right) \qquad \quad h\left(\overline{xy}\right) = f\left(x\right) = f\left(x\right) + h\left(\overline{y}\right) = h\left(\overline{x}\right) + h\left(\overline{y}\right) = h\left(\overline{y}\right) + h\left(\overline{y}\right) = h\left(\overline{y}\right) + h\left(\overline{y}\right) + h\left(\overline{y}\right) = h\left(\overline{y}\right) + h\left(\overline{y}\right) + h\left(\overline{y}\right) + h\left(\overline{y}\right) = h\left(\overline{y}\right) + h\left(\overline{y}\right) +$$

Primo teorema di isomorfismo

 $f: R \longrightarrow R'$ omomorfismo di anelli, allora $R/\ker(f) \cong f(R)$

Dimostrazione Dal Teorema di omomorfismo, con $I = \ker(f)$, ottengo $h(\overline{x}) = f(x)$. Preso ora $\overline{x} \in f(x)$ $\ker(h)$, ho che $h(\overline{x}) = f(x) = e'$, dunque $x \in \ker(f)$, ovvero $\overline{x} = \overline{0}$ e perciò h è inettiva, quindi isomorfismo.

Secondo teorema di isomorfismo

 $R' \subseteq R$ sottoanello, $I \subseteq R$ ideale, allora:

- (i) $R' \cap I$ ideale di R'
- (ii) R' + I sottoanello di R (iii) $R'/(R' \cap I) \cong (R' + I)/I$

Terzo teorema di isomorfismo

I ideale di R, ogni ideale di R/I ha la forma J/I con J ideale di R tale che $I \subseteq J \subseteq R$, e inoltre $(R/I)/(J/I) \cong I$ R/J

Teorema Cinese del Resto

I, J ideali coprimi di R anello commutativo (I + J = R). Allora vale che

(i)
$$IJ = I \cap J$$

(ii)
$$R/(IJ) \cong (R/I) \times (R/J)$$

Dimostrazione

- (i) \subseteq Vale sempre che $IJ \subseteq I \cap J$ (in quanto sia I che J sono chiusi rispetto al prodotto esterno).
 - \supseteq) Siccome I+J=R, ho che $\exists x\in I,y\in J$ tali che x+y=1, prendo allora $z\in I\cap J$ e osservo $z = z \cdot 1 = zx + zy$, dove

$$\begin{cases} zx \in (I \cap J)I \subseteq JI \\ zy \in (I \cap J)J \subseteq \overline{IJ} = JI \text{ essendo commutativo} \end{cases} \implies z = zx + zy \in IJ + IJ = IJ$$

che dimostra $z \in IJ$, ovvero $IJ \supseteq I \cap J$

(ii) Prendo $\Psi: R \to (R/I) \times (R/J)$ tale che $\Psi(x) = (x \mod I, x \mod J)$, ovvero la proiezione standard ai due quozienti, che è dunque **omomorfismo** con ker $(\Psi) = I \cap J = IJ$ (per punto (i)). Ψ è **suriettivo** in quanto ogni (a,b) nel codominio ha preimmagine definita da z=ay+bx con $x\in I,y\in J$ tali che x + y = 1. Infatti:

18

$$\begin{cases} z = ay + bx \equiv ay = a(1-x) = a - ax \equiv a \mod I \\ z = ay + bx \equiv bx = b(1-y) = b - by \equiv b \mod J \end{cases} \implies \Psi(z) = (a,b)$$

Quindi, per il primo teo. di isomorfismo $R/\ker\Psi\cong\Psi(R)\implies$ tesi

Corollario

Dati m, n interi coprimi vale

- (i) Isomorfismo tra anelli $\mathbb{Z}/nm\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$
- (ii) Isomorfismo tra gruppi $(\mathbb{Z}/nm\mathbb{Z})^* \cong (\mathbb{Z}/n\mathbb{Z})^* \times (\mathbb{Z}/m\mathbb{Z})^*$
- (iii) Se m, n coprimi e positivi, allora $\varphi(nm) = \varphi(n) \varphi(m)$

Corollario

nintero positivo, allora $\varphi\left(n\right)=\prod_{p\in P}\left(1-\frac{1}{p}\right)$ con $P\coloneqq\{p\text{ primo}\colon p\mid n\}$

Part IX

Zeri di Polinomi

Definizioni

Zero di un polinomio $f(\alpha) = 0$ e zeri doppi $f_1(\alpha) = 0$ per $f = f_1 \cdot (X - \alpha)$

Polinomio derivato f' Dato $f \in R[X]$ con R anello commutativo, $f' = na_nX^{n-1} + (n-1)a_{n-1}X^{n-2} + \cdots + a_1$

Teoremi

Divisione con resto

Sia R anello, dati $f, g \in R[X]$ con $g = b_m X^m + \cdots + b_1 X + b_0$ e $b_m \in R^*$, allora $\exists ! q, r \in R[X]$ tali che

$$f = qg + r$$
, $r = 0$ oppure $deg(r) < deg(g)$

Dimostrazione

• Esistenza: Di $f_1(\alpha) = 0$ mostro per $\deg(f) \ge \deg(g)$, altrimenti banale. Dimostro per induzione sul grado di f: sia $f = a_n X^n + \cdots + a_1 X + a_0$ con $n \ge m$, e considero

$$f_1 = f - a_n b_m^{-1} X^{n-m} g = (a_{n-1} - a_n b_m^{-1} b_{m-1}) X^n + \dots$$

Siccome $\deg(f_1) < \deg(f)$ per induzione ho $f_1 = q_1g + r_1$ con $r_1 = 0$ oppure $\deg(r_1) < \deg(g)$, da cui

$$f = f_1 + a_n b_m^{-1} X^{n-m} g = (q_1 + a_n b_m^{-1} X^{n-m}) g + r_1$$

• Unicità: Considero f = qg + r = q'g + r', avrei (q - q')g = r' - r. Se per assurdo $q \neq q'$, siccome $b_m \in R^*$ ho che deg $(q - q')g \ge \deg(g)$, ma vale che deg $(r - r') < \deg(g)$ oppure r - r' = 0, 4.

Principalità degli ideali dei polinomi a coefficienti in un campo

Dato K campo, gli ideali di K[X] sono principali

Dimostrazione Sia I un ideale di K[X]. Se $I=\{0\}$, è principale, altrimenti prendo $g\in I$ non nullo di grado minimale, e dimostro che I=(g). Prendo $f\in I$, posso scrivere f=qg+r e noto che $r=f-qg\in I$, ma non può essere deg $(r)<\deg(g)$ quindi r=0, quindi f=qg da cui la tesi.

Struttura di $R[X]/(X-\alpha)$

Dato R anello commutativo e $\alpha \in R$ vale che:

- (i) Per ogni polinomio $f \in R[X]$ esiste $q \in R[X]$ tale che $f = q \cdot (X \alpha) + f(\alpha)$
- (ii) $\Psi: R[X] \longrightarrow R$, $f \mapsto f(\alpha)$ è un omomorfismo suriettivo di nucleo $(X \alpha)$
- (iii) C'è un isomorfismo indotto da Ψ tra $R[X]/(X-\alpha) \cong R$, $\overline{f} \mapsto f(\alpha)$

Dimostrazione

- (i) Ho che $f = q \cdot (X \alpha) + r$, e ottengo r da $f(\alpha) = q(\alpha)(\alpha \alpha) + r$
- (ii) Ψ omomorfismo suriettivo (grazie alla commutatività), per (i) $f \in \ker(\Psi)$ se e solo se f è divisibile per $X \alpha$
- (iii) Primo Teorema di Isomorfismo applicato a Ψ

Isomorfismo tra $\mathbb{R}[X]/(X^2+1)\cong\mathbb{C}$

Dimostrazione Considero $\Phi(f) = f(i)$, ovviamente omomorfismo suriettivo, per il nucleo osservo che $(X^2+1) \subseteq \ker(\Phi)$. Viceversa, per $f \in \ker(\Phi)$ ho $f = q \cdot (X^2+1) + r$, da cui r(i) = 0, ma vale $\deg(r) \le 1$, quindi r(i) = ai + b = 0, quindi $r \equiv 0$, da cui $X^2 + 1 \mid f$, $(X^2 + 1) \supseteq \ker(\Phi)$. La tesi dal Primo Teorema di Isomorfismo.

Struttura di $\mathbb{R}[X]/(g)$

 $R \text{ anello commutativo e } g = b_n X^n + \dots + b_1 X + b_0 \in R\left[X\right] \text{ e } b_n \in R^* \text{ , allora } \forall \, \overline{f} \in R\left[X\right] / \left(g\right) \text{ esiste unico } r \in R\left[X\right] \text{ con deg } \left(r\right) < n \text{ oppure } r = 0 \text{ tale che } \overline{f} = \overline{r}, \text{ ovvero } R\left[X\right] / \left(g\right) = \left\{r \colon r = a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in R\left[X\right]\right\}$

Dimostrazione Preso $\overline{f} \in R[X]/(g)$ ho $\overline{f} = \overline{qg+r} = \overline{r}$ siccome $(qg+r) - r = qg \in (g)$. L'unicità dalla divisione col resto.

Scomponibilità di un polinomio in un dominio di integrità

R dominio di integrità e $f \in R[X]$ polinomio di zeri distinti $\alpha_1, \alpha_2, \dots, \alpha_n$, allora $\exists q \in R[X]$ tale che

$$f = q \cdot (X - \alpha_1) (X - \alpha_2) \cdot \cdots \cdot (X - \alpha_n)$$

Dimostrazione Per induzione su n, n = 0 banale, dato n per n + 1 posso scrivere $f = f_1 \cdot (X - \alpha_{n+1}) + f(\alpha_{n+1}) = f_1 \cdot (X - \alpha_{n+1})$, ma $\alpha_1, \alpha_2, \ldots, \alpha_n$ sono anche zeri di f_1 in quanto $\forall 1 \le i \le n$ ho $0 = f_1(\alpha_i)(\alpha_i - \alpha_{n+1})$ con $\alpha_i - \alpha_{n+1} \ne 0$ per ipotesi e R dominio di integrità, quindi $f_1(\alpha_i) = 0$

Corollario

Un polinomio di grado d in un dominio di integrità ha al più d zeri distinti.

Proprietà del polinomio derivato

$$\alpha' = 0$$
 per α costante $(f+g)' = f'+g'$ $(f \cdot g)' = f'g+fg'$

Caratterizzazione degli zeri doppi

 α zero doppio per $f \iff f'(\alpha) = 0$

Dimostrazione

$$f = f_1 \cdot (X - \alpha) \longrightarrow f' = f'_1 \cdot (X - \alpha) + f_1 \longrightarrow f'(\alpha) = f'_1(\alpha) \cdot (\alpha - \alpha) + f_1(\alpha) = 0$$

Prodotto di tutti i polinomi di grado 1 di $\mathbb{Z}/p\mathbb{Z}[X]$

Dato p primo, in $\mathbb{Z}/p\mathbb{Z}[X]$ vale

$$\prod_{\overline{a} \in \mathbb{Z}/p\mathbb{Z}} (X - \overline{a}) = X^p - X$$

Dimostrazione Per il Teorema di Fermat vale $\overline{a}^{p-1} = \overline{1}$ per $\overline{a} \in (\mathbb{Z}/p\mathbb{Z})^*$, ovvero $\forall \overline{a} \in \mathbb{Z}/p\mathbb{Z} - \{\overline{0}\}$ è uno zero di $X^{p-1} - 1$, moltiplicando il polinomio per $X = X - \overline{0}$ ho la tesi.

Teorema di Wilson

 $p \text{ primo} \iff (p-1)! \equiv -1 \mod p$

Dimostrazione

 \Rightarrow Per p=2 verifica diretta. Per p dispari, ho che $\prod_{i=1}^{p-1} (X-\overline{i}) = X^{p-1} - \overline{1}$, che valutato in $X=\overline{0}$ dà

$$(\overline{-1}) \cdot (\overline{-2}) \cdot \cdots \cdot (\overline{-(p-1)}) = -\overline{1} \longrightarrow \overline{(p-1)!} = -\overline{1}$$

Proprietà dei numeri primi

p > 2 primo, sono equivalenti

- (i) $\exists x \in \mathbb{Z} \mid x^2 \equiv -1 \mod p$ (ii) $X^2 1$ ha uno zero in $\mathbb{Z}/p\mathbb{Z}$ (iii) $p \equiv 1 \mod 4$

Dimostrazione

- (i) \Rightarrow (iii) $x^2 \equiv -1 \mod p \Rightarrow \operatorname{ord}(\overline{x}) = 4$, quindi $4 \mid \# (\mathbb{Z}/p\mathbb{Z})^* = p-1 \Rightarrow p \equiv 1 \mod 4$
- (iii) \Rightarrow (i) Posso prendere $x=\left(\frac{p-1}{2}\right)!$ che soddisfa $x^2\equiv -1 \mod p$

Part X

Ideali primi e massimali

Definizioni

SIAMO IN ANELLI COMMUTATIVI

Ideale primo $I \subsetneq R$ ideale primo di un anello commutativo R se $\forall x, y \in R$ $xy \in I \implies x \in I \lor y \in I$

Ideale massimale $I \subsetneq R$ ideale massimale di un anello commutativo R se $\forall J$ ideale tale che $I \subseteq J \subseteq R$ vale J = I oppure J = R

SIAMO IN DOMINI DI INT:

Irriducibile $\alpha \in R$ irriducibile in R dominio di integrità se $\alpha \neq 0$, $\alpha \notin R^*$ e $\alpha = \beta \gamma \implies \beta \in R^* \lor \gamma \in R^*$

Implicazioni tra ideali primi, ideali massimali e irriducibili Dato R dominio di integrità ho che

 (α) massimale \implies (α) primo \implies α irriducibile

Teoremi

Caratterizzazione degli ideali primi

 $I \subsetneq R$ ideale è primo in un anello commutativo $R \Longleftrightarrow R/I$ è un dominio di integrità

Dimostrazione Per definizione $R/I \neq \{0\}$. Siano $x, y \in R$ tali che $\overline{x} \cdot \overline{y} = \overline{0}$ in R/I, significa che $xy \in I$, ovvero $x \in I \ \lor y \in I$, cioè $x = \overline{0} \ \lor y = \overline{0}$, quindi R/I è un dominio di integrità. L'implicazione inversa è la dimostrazione nel senso opposto.

Corollario (riformulazione def. dominio

 $\{0\}$ ideale banale è primo $\iff R$ dominio di integrità

Caratterizzazione degli ideali massimali

 $I \subsetneq R$ ideale è massimale in un anello commutativo $R \iff R/I$ è un campo

Dimostrazione

- ⇒ Per definizione $R/I \neq \{0\}$. Prendo $\overline{x} \in R/I$ non nullo (ovvero $x \in R$ ma $x \notin I$) e cerco l'inverso. L'ideale I+(x) è tale che $I\subsetneq I+(x)\subseteq R$ e quindi I+(x)=R (in quanto per ipotesi I è massimale), e in paricolare 1=y+rx per certi $y\in I$ e $r\in R$. Modulo I ottengo $\overline{1}=\sqrt[p]{r}+\overline{r}x=\overline{r}\cdot\overline{x}$ da cui $\overline{x}^{-1}=\overline{r}$, R/I campo.
- \Leftarrow Prendo J ideale di R tale che $I \subseteq J \subseteq R$, ho che J/I è ideale di R/I, ma siccome R/I campo (e quindi anello con divisione) possiede solo ideali banali, da cui

$$\begin{cases} J/I = \{0\} \iff J = I \\ \text{oppure} \\ J/I = R/I \iff J = R \end{cases}$$

Corollario

Ogni ideale massimale di un anello commutativo R è anche un ideale primo

Dimostrazione Ogni campo è dominio di integrità

Irriducibilità dei generatori di ideali primi principali

R dominio di integrità, $\alpha \in R$ non zero, allora (α) primo $\Longrightarrow \alpha$ irriducibile

Dimostrazione Siccome $(\alpha) \neq R$ per definizione, ho $\alpha \notin R^*$. Prendo $\beta \gamma = \alpha$, ho che $\beta \gamma \in (\alpha)$, da cui $\beta \in (\alpha) \vee \gamma \in (\alpha)$. Prendo WLOG $\beta \in (\alpha)$ ovvero $\beta = r\alpha = r\beta\gamma$, da cui $\beta (1 - r\gamma) = 0$, e siccome R dominio di integrità e $\beta \neq 0$ ho che $1 = r\gamma$.

Esistenza di ideali massimali

R anello commutativo, allora

- (i) Se $R \neq \{0\}$, allora R contiene un ideale massimale
- (ii) Sia $I \neq R$ un ideale di R, allora $\exists J$ ideale massimale di R tale che $J \supseteq I$

Dimostrazione

- (i) Dal Lemma di Zorn.
- (ii) Applicando la parte (i) a R/I ottengo un ideale massimale per R/I della forma J/I con $J \supseteq I$ ideale di R. Ho quindi che $R/J \cong (R/I) / (J/I)$ è un campo, dunque J massimale.

Part XI

Fattorizzazione

Definizioni

Anello a ideali principali R dominio di integrità, è anello a ideali principali se ogni ideale di R è principale

Anello Euclideo R dominio di integrità, è anello euclideo se $\exists N : R - \{0\} \to \mathbb{Z}_{\geq 0}$ tale che $\forall x, y \in R$ posso scrivere x = qy + r con r = 0 oppure N(r) < N(y)

K campo $\Longrightarrow K$ anello Euclideo rispetto alla funzione $N \equiv 0$

Elementi associati α, β associati $\iff \exists \varepsilon \in R^*$ tale che $\alpha = \varepsilon \beta$. Si ha che $\forall \gamma \in R$ vale che $\alpha \mid \gamma \iff \beta \mid \gamma$

Anello a Fattorizzazione unica R dominio di integrità, è anello a fattorizzazione unica se $\forall x \in R, x \neq 0$ posso scrivere $x = u \cdot \pi_1 \cdot \dots \cdot \pi_t$ con $u \in R^*$ e π_i irriducibili, unica a meno di ordine e fattori associati

Teoremi

Proprietà degli anelli a ideali principali

Sia R anello a ideali principali e $\alpha \in R$, $\alpha \neq 0$, allora sono equivalenti

- (i) (α) massimale
- (ii) (α) primo
- (iii) α irriducibile

Dimostrazione Basta dimostrare (iii) \Rightarrow (i). Per definizione, ho $\alpha \notin R^*$, prendo J ideale tale che $(\alpha) \subseteq J \subseteq R$, ma siccome R a ideali principali ho $J = (\beta)$, e vale che $\alpha = r\beta$. Ma siccome α irriducibile $\beta \in R^*$ oppure $r \in R^*$, nel primo caso J = R e nel secondo $J = (\alpha)$

Corollario

In un anello a ideali principali ogni ideale primo è massimale.

Anello Euclideo \Longrightarrow Anello a ideali principali

Dimostrazione Per definizione R dominio di integrità, preso $I \neq \{0\}$ ideale di R (per $\{0\}$ banale) osservo che questo è principale in quanto se prendo $y \in I$ tale che N(y) minimale, ho che $\forall x \in I$ posso scrivere x = qy + r, ma $r = x - qy \in I$ quindi r = 0 (impossibile N(r) < N(y)), da cui I = (y)

Anello Euclideo degli interi di Gauss

 $\mathbb{Z}[i]$ è un anello Euclideo rispetto alla funzione $N\left(a+bi\right)=a^2+b^2$

Dimostrazione [...]

Corollario

Sia $p \neq 2$ primo, allora $p = a^2 + b^2$ per certi interi a, b se e soltanto se $p \equiv 1 \mod 4$.

Dimostrazione [...]

Proprietà degli anelli a fattorizzazione unica

Sia R anello a fattorizzazione unica, allora π irriducibile \iff (π) primo

Dimostrazione Basta dimostrare \Rightarrow . Prendo $\beta, \gamma \in R$ con $\beta \gamma \in (\pi)$, fattorizzo β e γ come prodotto di irriducibili, π dovrà comparire nella fattorizzazione di β o in quella di γ , ovvero $\beta \in (\pi)$ o $\gamma \in (\pi)$.

Anello a ideali principali \Longrightarrow Anello a fattorizzazione unica

Dimostrazione [...]

Part XII

Fattorizzazione di Polinomi

Definizioni

Numero di fattori π ord $_{\pi}(x)$ per $x \neq 0$ e π irriducibile

Massimo comun divisore

$$\operatorname{mcd}\left(x,y\right)\coloneqq\prod_{\pi\text{ irriducibile}}\pi^{\min\left(\operatorname{ord}_{\pi}\left(x\right),\operatorname{ord}_{\pi}\left(y\right)\right)},\quad x,y\neq\left(0,0\right),\text{ altrimenti }\operatorname{mcd}\left(x,0\right)=\operatorname{mcd}\left(0,x\right)\coloneqq x$$

Contenuto e Polinomio primitivo R dominio a fattorizzazione unica, $f = a_n X^n + \cdots + a_0 \in R[X]$ non nullo, allora contenuto cont $(f) = \text{mcd}(a_n, \dots, a_0)$, e f primitivo \Leftrightarrow cont(f) = 1

Teoremi

Proprietà del massimo comun divisore

Sia R dominio a fattorizzazione unica e $x,y\in R$ non nulli, allora:

- (i) $x \mid y \iff \operatorname{ord}_{\pi}(x) < \operatorname{ord}_{\pi}(y) \quad \forall \pi \text{ irriducibile}$
- (ii) $\forall z \in R, z \neq 0$ vale che $\operatorname{mcd}(zx, zy) = z \cdot \operatorname{mcd}(x, y)$
- (iii) mcd(x, y) divide $x \in y$, e ogni divisore comune di $x \in y$ divide mcd(x, y)

Dimostrazione [...]

Unicità di fattorizzazione dei polinomi a coefficienti in un anello a fattorizzazione unica

R dominio a fattorizzazione unica $\Longrightarrow R[X]$ a fattorizzazione unica

Lemma Sia K il campo quoziente di R, allora ogni $g \in K[X]$, $g \neq 0$ si può scrivere $g = c \cdot g_0$ con $c \in K^*$ e $g_0 \in R[X]$ primitivo, unici a meno di moltiplicazione per unità di R. Posso trovare infatti $\gamma \in R$, $\gamma \neq 0$ per cui $h = \gamma \cdot g \in R[X]$ e preso $\delta = \text{cont}(h)$ ho che $h = \delta \cdot g_0$ con g_0 primitivo

Lemma Dati due polinomi $f, g \in R[X]$ primitivi, $f \cdot g$ è primitivo.

Se $f \cdot g$ non fosse primitivo, $\exists \pi$ che divide tutti i sui coiefficienti, ovvero $f \cdot g \equiv 0$ in $R/(\pi)[X]$, ma siccome l'ideale (π) è primo, ho che l'anello $R/(\pi)[X]$ è un dominio di integrità, da cui $f \equiv 0 \lor g \equiv 0$, ovvero $\pi \mid \text{cont}(f)$ oppure $\pi \mid \text{cont}(g)$, 4

Dimostrazione Considero $f \in R[X]$, dimostro dapprima che si può scrivere come $f = u \cdot \pi_1 \cdot \ldots \cdot \pi_s \cdot g_1 \cdot \ldots \cdot g_t$ con $u \in R^*$, π_i irriducibili di R e g_i polinomi primitivi in R[X] irriducibili in K[X]. [...]

Concludo dimostrando che gli irriducibili di R[X] sono gli irriducibili di R e i polinomi primitivi di R[X] che sono irriducibili in K[X].

Corollario

- (i) L'anello $\mathbb{Z}[X_1, X_2, \dots, X_n]$ è un anello a fattorizzazione unica
- (ii) K campo $\Rightarrow K[X_1, X_2, \dots, X_n]$ anello a fattorizzazione unica.

Proprietà degli zeri di un polinomio

R dominio a fattorizzazione unica, K campo quoziente associato, e $f = a_n X^n + \cdots + a_0 \in R[X]$ con $a_n, a_0 \neq 0$, allora ogni $\alpha \in K$ zero di f ha la forma $\alpha = u/v$ con $u \mid a_0 \in V \mid a_n$. Se f monico, ogni zero sta in R e divide a_0

Dimostrazione [...]

Irriducibilità di un polinomio di grado 2 o 3 in un campo

K campo, $f \in K[X]$ di grado 2 o 3 è irriducibile \iff non ha zeri in K

Dimostrazione Per assurdo $f = g \cdot h$ con $g, h \in K[X]$ non costanti, allora almeno uno fra g e h avrebbe grado 1, 4.

Lemma di Gauss

R dominio a fattorizzazione unica, K campo quoziente associato, $f \in R[X]$ primitivo è irriducibile in R[X] \iff è irriducibile in K[X]

Dimostrazione Posso scomporre $f = u \cdot g_1 \cdot \dots \cdot g_t$ con $u \in R^*$, $g_i \in R[X]$ primitivi e irriducibili in K[X] con $t \ge 1$ (f primitivo $\Rightarrow \deg(f) > 0$), allora f è irriducibile in $R[X] \iff t = 1 \iff$ è irriducibile in K[X]

Corollario

 $f \in \mathbb{Z}[X]$ monico, se $\exists p$ primo tale che $f \mod p \in \mathbb{Z}/p\mathbb{Z}[X]$ è irriducibile allora f è irriducibile in $\mathbb{Z}[X]$ e in $\mathbb{Q}[X]$

Criterio di Eisenstein

R dominio a fattorizzazione unica, $f = a_n X^n + \dots + a_0 \in R[X]$ primitivo, π elemento irriducibile di R, allora f è irriducibile in R[X] se

$$\pi$$
 non divide a_n π divide a_k con $k = 0, \dots, n-1$ π^2 non divide a_0

Dimostrazione Per assurdo $f = g \cdot h$ fattorizzazione non banale in R[X], allora $\deg(g)$, $\deg(h) > 0$ e vale che

$$\overline{a_n}X^n = \overline{g} \cdot \overline{h} \quad \text{in } R/(\pi)[X] \longrightarrow g \equiv bX^k, \quad h \equiv aX^{n-k} \mod \pi$$

Ma ciò vuol dire che i termini noti di g e h sono divisibili per π , da cui $\pi^2 \mid a_0, 4$.

		Commutativi		Non co	mmutativi
1	$\{e\} = C_1 = S_1 = A_1$				
2	$C_2 = S_2$				
3	$C_3 = A_3$				
4	C_4	$C_2 \times C_2 = D_2 = V_4$			
5	C_5				
6	C_6			$D_3 = S_3$	
7	C_7				
8	C_8	$C_4 \times C_2$	$C_2 \times C_2 \times C_2$	D_4	Q_8
9	C_9	$C_3 \times C_3$			
10	C_{10}			D_5	
11	C_{11}				
12	C_{12}	$C_6 \times C_2$		D_6	$A_4 B$
13	C_{13}				
14	C_{14}			D_7	
15	C_{15}				

Part XIII

Riassunto gruppi

1 Commutatività e normalità

• G non ha sottogruppi (non banali) $\iff G \cong C_p$ con p primo, ovvero G è ciclico di ordine un numero primo.

Dim: \Longrightarrow) < g > è sottogruppo, ed è il più piccolo sottogruppo che contiene g (quindi non è neanche banale), ma G non ha sottogruppi propri non banali quindi < g >= G. \iff) ovvio, in quanto i sottogruppi di un gruppo ciclico sono solo ciclici, quindi generati da un solo elemento e dato che p non ha divisori, ogni elemento genera tutto il gruppo.

- Ogni gruppo G ha almeno due sottogruppi normali: $G \in \{0\}$.
- Gruppo semplice: se ha solo G e $\{0\}$ come sottogruppi normali. Esempi: gruppi semplici abeliani sono solo i C_p con p primo; gruppi semplici non abeliani: il più piccolo è A_5 che ha 60 elementi.
- Qualunque sottogruppo che contiene [G,G] è normale in G

2 Gruppo simmetrico S_n

2.1 Generalità

• Sottogruppi **normali** di S_n : per n = 3 o $n \ge 5$ S_n ha solo A_n come sottogruppo normale, il quale per tali n è semplice, ovvero a sua volta non ha sottogruppi normali.

Gruppo	Cosa rappresenta	Sottogr.	Sottogr. normali	Cosa rappresentano
S_1	Identità		/	
S_2	$\cong C_2$		/	
S_3	$\cong D_3$ (rotaz.+rifl. triangolo)	Sono 6	$A_3 \cong < r >$	Rotaz. triangolo
S_4	Rotaz. cubo/ottaedro	Sono 30	A_4, V_4	Rotaz tetraedro, rotaz.+rifl. rettangolo
S_5			A_5	Rotaz icosaedro/dodecaedro

Diagramma sottogruppi di S_4 : https://people.maths.bris.ac.uk/~matyd/GroupNames/1/S4.html Diagramma ciclico di S_4 : https://en.wikiversity.org/wiki/Symmetric_group_S4#/media/File:Symmetric_group_4;_cycle_graph.svg

Part XIV

Riassunto anelli

3 Implicazioni tra strutture

Anelli \supset Anelli commutativi \supset Domini di integrità \supset A fattorizzazione unica \supset A ideali principali \supset Euclideo \supset Campi

Campo \implies euclideo

Euclideo \implies a ideali principali

(p. 106) Per definizione R dominio di integrità, preso $I \neq \{0\}$ ideale di R (per $\{0\}$ banale) osservo che questo è principale in quanto se prendo $y \in I$ tale che N(y) minimale, ho che $\forall x \in I$ posso scrivere x = qy + r, ma $r = x - qy \in I$ quindi r = 0 (impossibile N(r) < N(y)), da cui I = (y)

A ideali principali \implies a fattorizzazione unica

p. 109

A fattorizzazione unica \implies Dominio di int.

Dominio di int. \implies anello commutativo

Anello commutativo \implies anello

4 Esempi

Anelli: H (ma non contiene divisori di zero)

Anelli commutativi: $R_1 \times R_2$ (se entrambi anelli commutativi) contiene divisori di zero

Domini di integrità: $\mathbb{Z}[\sqrt{-5}]$

A fattorizzazione unica: $K[X_1, X_2]$ con K campo

A ideali principali: roba strana, tipo $R[X,Y]/(X^2+Y^2+1)$

Euclideo: \mathbb{Z} , K[X] con K campo (rispetto alla funzione grado), $\mathbb{Z}[i]$ rispetto alla funzione $N(a+bi)=a^2+b^2$

Campi: $\mathbb{Z}/p\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, Q(R)$ (campo dei quozienti se R dominio)

5 Omomorfismi

Proprietà omomorfismi:

- $f(0_A) = 0_B$
- f(-a) = -f(a) (f è omom. di gruppi additivi)
- a unità, allora $f(a^{-1}) = f(a)^{-1}$ (f induce un omom. di gruppi moltiplicativi se ristretto alle unità)
- im(f) sottoanello di B
- $\ker(f)$ ideale di A
- f iniettivo $\iff \ker(f) = \{0\}$
- A campo, B non banale $\implies f$ iniettivo
- $\#A = \#(\ker(f))\#(\operatorname{im}(f))$
- I ideale di $B \implies f^{-1}(I)$ ideale di A
- per ogni anello R, esiste un **unico** omomorfismo $\mathbb{Z} \to R$ (per dim. basta vedere che $f(1) = 1_R$, quindi $f(n) = f(\underbrace{1+1+\cdots+1}_{n \text{ volte}}) = f(1)+\cdots+f(1) = 1_R+\cdots+1_R = n \cdot 1_R = n$, per numeri negativi fare

ragionamento analogo ricordando $f(-1) = -f(1) = -1_R$. Quindi $f(n) = n \ \forall n \in \mathbb{Z}$ per forza.)

6 Ideali ed elementi

Esempi:

Ideali primi: $\mathbb{Z}/p\mathbb{Z} \subset \mathbb{Z}/n\mathbb{Z}$ con p primo Ideali massimali: $\mathbb{Z}/p\mathbb{Z} \subset \mathbb{Z}/n\mathbb{Z}$ con p primo

Struttura	Elem.	Teo/prop.
		Unità ⇒ non divisore di zero
		Le unità formano un gruppo moltiplicativo
		$f: R_1 \to R_2$ omom. $\Longrightarrow ker(f)$ è ideale di R_1
		I ideale continiene un'unità $\implies I = R$
Anelli		I, J ideali $\implies I \cap J, I + J$ ideali di R
		Teo. cinese resto: $I + J = R$ (ideali coprimi) $\Longrightarrow IJ = I \cap J$
		$\implies R/IJ \cong (R/I) \times (R/J)$
		$I \subset R$ ideale primo $\iff R/I$ dominio di integrità
		$I \subset R$ ideale massimale $\iff R/I$ campo
		quindi massimale \implies primo
		Ogni anello $\neq \{0\}$ contiene un ideale massimale
Anelli commutativi	Associati	Ogni ideale $\neq R$ è contenuto in un ideale massimale
		Ideali sono solo quelli banali
(Anelli con divisione)		R' non banale $\implies f: R \to R'$ omom. è iniettivo
		$\alpha \neq 0$ allora (α) primo $\implies \alpha$ irriducibile
Domini di integrità	Irriducibili	$(f) = (g) \iff f \in g \text{ sono associati}$
Anelli a fattorizzazione unica		α irriducibile \iff (α) primo
Anelli a ideali principali		(α) massimale \iff (α) primo \iff α irriducibile
Anelli euclidei		
Campi		$\{0\}$ ideale massimale $\iff R$ campo

Attenzione alle definizioni:

- Campo: si richiede che $\forall x \neq 0$ esiste x^* , e 0 non deve avere inversi, ovvero divisori di zero. Quindi un campo è un dominio di integrità.
- se $g, f \neq 0$, allora $\deg(fg) = \deg(f) + \deg(g)$
- α in un dominio di integrità si dice **irriducibile** se $\alpha \neq 0, \alpha \notin R^*$...

7 Polinomi

Polinomi a coefficienti in:

Anelli			
	$f \in R[X]$ ha zeri $\implies f$ riducibile (p. 89)		
	Le calssi di $R[X]/(g)$ hanno grado minore di g (p. 90)		
Anelli commuta-	J/I primo in $A/I \iff J$ primo in A (per terzo teo.iso.)		
tivi			
(Anelli con divi-			
sione)			
	R dominio $\implies R[X]$ dominio (non ha divisori di zero)		
	$(f) = (g) \iff f \in g \text{ sono associati}$		
	se $g, f \neq 0$, allora $\deg(fg) = \deg(f) + \deg(g)$		
	$f \in R[X]$ con R dominio $\implies f = q \cdot \prod (X - \alpha_i)$ con α_i gli zeri del pol.		
	R dominio $\implies f \in R[X]$ di grado d ha al più d zeri distinti in R		
Domini di in-	R dominio, allora $\alpha \in R$ è zero doppio di $f \in R[X] \iff f'(\alpha) = 0$		
tegrità			
	Lemmi p. 117		
	R a fattorizzazione unica $\implies R[X]$ a fattorizzazione unica		
	$\mathbb{Z}[X_1,\ldots,X_n]$ è a fattorizzazione unica.		
	$f \in R[X] \implies \text{zeri: } \alpha = u/v \text{ con } u, v \in R \text{ e } u a_0, v a_n$		
	(Lemma Gauss) $f \in R[X]$ primitivo. Allora:		
	f irriducibile in $R[X] \iff f$ irriducibile in $K[X]$ campo quoziente		
	$f \in \mathbb{Z}[X]$ monico. $f \mod p \in \mathbb{Z}/p\mathbb{Z}$ irriducibile $\Longrightarrow f$ irriduc. in $\mathbb{Z}[X]$ e $\mathbb{Q}[X]$		
Anelli a fattoriz-	Criterio Eisenstein $\implies f$ irriducibile in $R[X]$		
zazione unica			
	(f) + (g) = (f, g) = (mcd(f, g)). Quindi:		
Anelli a ideali	$(f) + (g) = \mathbb{Q}[X] \iff mcd(f,g) = 1 \text{ (non hanno divisori comuni)}$		
principali			
Anelli euclidei	V . V[V] 1:1		
	$K \text{ campo } \Rightarrow K[X] \text{ euclideo}$		
	$K \text{ campo } \Longrightarrow K[X_1, \dots, X_n] \text{ anello a fattorizzazione unica}$		
Campi	$f \in K[X]$ di grado 2 o 3. f irriducibile in $K[X] \iff f$ non ha zeri in K		

8 Concetti e generalizzazioni

Concetto	Generalizzazione
\mathbb{Z}	Anello euclideo
Fattorizzazione di interi	Fattorizzazione di polinomi
Numero primo	Ideale primo
Interi coprimi: $a\mathbb{Z} + b\mathbb{Z} = \mathbb{Z}$	Ideali coprimi: $I + J = R$

Part XV

Esame

9 Scritto

9.1 Gruppi

Miscellaneo

- Classe del prodotto è prodotto delle classi
- Per dimostrare uguaglianze tra insiemi/sottoinsiemi (come ideali, intersezioni, ecc) si può dim. ⊆ e poi ⊇
- ullet Per dimostrare che una cosa divide un'altra posso far divisione con resto e dimostrare che r=0
- Dimostrare che due gruppi non sono isomorfi: per esempio vedere che hanno cardinalità diversa, o (forse più utile) vedere che in un gruppo c'è un elemento con ordine "grande" t.c. non ci possono essere elementi con tale ordine nel secondo gruppo

Permutazioni:

- \bullet Ordine di un k-ciclo è k
- Prodotto di 3-cicli (non disgiunti) può avere ordine 2. Prodotto di due trasposizioni (non disgiunte) può generare 3-ciclo.
- Il numero di k-cicli in S_n è

$$\frac{n!}{(n-k)!} \cdot \frac{1}{k}$$

(il primo fattore sono le permutazione di k oggetti in n, mentre il secondo fattore c'è perché un ciclo non dipende dall'elemento da cui parto, quindi devo dividere per il numero di elementi del ciclo)

• Gruppo alternante: ogni elemento si può scrivere come prodotto di 3-cicli o come prodotto di un numero pari di trasposizioni (a due a due se sono congiunte danno luogo a un 3-ciclo, se sono disgiunte danno luogo a un 2-ciclo)

Sottogruppi, sottogruppi normali

- Verifica di sottogruppo: $e \in G$, $ab \in G \implies ab^{-1} \in G$. Delle volte è più comodo verificare $ab \in G$, $a^{-1} \in G$
- In $S_3 \cong D_3$ l'unico sottogruppo normale è $A_3 \cong < r >$ sottogruppo delle rotazioni. In generale in D_n i sottogruppi normali sono $< r^d > \forall d | n$ (per tutti), $< r^2, rf >$ (se n pari)
- Il massimo ordine di un elemento in A_4 è 3 (poiché A_4 è fatto solo dai cyle-type $[3^1]$ e $[2^2]$)
- $gH \in H \iff g \in H$, ovvero le classi ripartiscono il gruppo, quindi per forza g deve stare in H
- Se nelle ip. c'è che un sottogruppo è normale probabilmente nella dimo si deve usare un quoziente
- A sempre sottogruppo normale di $A \times B$ e $(A \times B)/A = B$
- Per dimostrare che un sottogruppo è normale si può trovare un omom. t.c. il sottogruppo = ker
- Sottogruppi e quozienti di un gruppo ciclico sono ciclici

Ordine

- Per dim. che un elemento ha ordine infinito devo dim che $a^k = e \iff k = 0$. Se devo dim. che l'ordine è k, devo verificare sia che $a^k = 0$, ma anche che k sia il minimo intero t.c. avvenga ciò.
- $\operatorname{ord}(\overline{a}) \mid \operatorname{ord}(a)$ (ordine della classe divide l'ordine del rappresentante)

• Formula che si usa:

$$\operatorname{ord}(a^k) = \frac{\operatorname{ord}(a)}{\operatorname{mcd}(\operatorname{ord}(a), k)}$$

Dimo: sia $n = \operatorname{ord}(a)$. Voglio trovare il minimo c t.c. $(a^k)^c = a^{kc} = 1 \iff kc$ multiplo di n. Voglio che kc sia il più piccolo multiplo sia di k (così lo posso scrivere come kc per un qualche c) che di n (così fa l'elemento neutro). Allora:

$$\begin{aligned} kc &= \operatorname{mcm}(k,n) \implies c = \frac{\operatorname{mcm}(k,n)}{k} \\ &= \frac{\operatorname{mcm}(k,n) \cdot n}{k \cdot n} \\ &= \frac{\operatorname{mcm}(k,n) \cdot n}{\operatorname{mcm}(k,n) \operatorname{mcd}(k,n)} \quad \text{NB: } ab = \operatorname{mcm}(a,b) \operatorname{mcd}(a,b) \\ &= \frac{n}{\operatorname{mcd}(k,n)} \end{aligned}$$

Omomorfismi

- f omomorfismo di gruppi $\implies f(\langle A \rangle) = \langle f(A) \rangle$ con A sottogruppo
- Per dim. che omomorf. è iniettivo: $ker(f) = \{0\}$
- Isomorfismo di gruppi comodo: automorfismo interno $\gamma_a(g) = gag^{-1}$
- Omomorfismo iniettivo: inclusione
- Omomorfismo suriettivo: proiezione al quoziente
- $\#A = \#(\ker(f))\#(\operatorname{im}(f))$

9.2 Anelli

- Verifica di sottonaello: deve essere sottogruppo additivo, avere l'1 ed essere chiuso nel prodotto
- Verifica di ideale: o si usano le proprietà (sottogruppo additivo+assorbe nel prodotto esterno) o si trova omomorf. di anelli di cui è il ker
- Ricorda: un ideale non banale non è un sottoanello (infatti non contiene l'1, se lo congenesse sarebbe tutto l'anello)
- Schemone anelli e anelli di polinomi
- \bullet per studiare l'irriducibilità di un polinomio monico con il lemma usare numeri primi p piccoli (tipo 2), che è più facile
- \bullet se devo dim. $A\cong B\times C$ con tutti anelli probabilmente c'è di mezzo teo. cinese resto
- Polinomi irriducibili si comportano come numeri primi: c'è nozione di mcm, essere coprimi (il loro prodotto genera tutto l'anello)
- \bullet G dominio \iff $\{0\}$ primo
- Anello commutativo $\neq \{0\}$ è semplice (solo ideali banali) \iff campo
- $A \neq \{0\} \implies \exists$ un ideale massimale. Infatti se $A = \{0\}$ l'unico suo ideale è $\{0\}$, che non è massimale in quanto uguale ad A. Se $A \neq \{0\}$ allora, se ha ideali $\neq \{0\}$ basta pigliare un massimale, se non ne ha allora $\{0\}$, che è sempre ideale, è un suo ideale massimale.
- Omomorfismo (suriettivo) di anelli comodo: valutazione dei polinomi in un α fissato. Per esempio ψ_{α} : $\mathbb{Q}[X] \to \mathbb{Q}$: $\psi_{\alpha}(f) = f(\alpha)$. È suriettivo poiché basta prendere come input i polinomi costanti e si ha l'identità.
- Omomorfismo iniettivo: **inclusione**. Ad esempio la mappa inclusione nel proprio campo quoziente $a \mapsto (a,1) = \frac{a}{1}$
- Omomorfismo suriettivo: proiezione al quoziente

- verificare che un **polinomio di grado alto** non è riducibile: per esempio verifichiamo che $X^4 + X^3 + X^2 + X + 1$ non è riducibile in $\mathbb{Z}/2\mathbb{Z}[X]$
 - Radici: vediamo che non ha radici in $\mathbb{Z}/2\mathbb{Z}$ (neanche a meno del segno, infatti le radici vanno cercate tra ±0, ±1, anche se −1 $\notin \mathbb{Z}/2\mathbb{Z}$, poiché se ci fosse −1 potrei dividere per $(X (-1)) = (X + 1) \in \mathbb{Z}/2\mathbb{Z}[X]$) \Longrightarrow non lo posso dividere in un polinomio di primo grado \Longrightarrow quindi neanche di terzo grado (altrimenti avrei f =(terzo grado)·(primo grado) per averlo di quarto)
 - allora ciò che rimane è provare a dividerlo per un polinomio di secondo grado, che sono: X^2 , $X^2 + 1$, $X^2 + X$, $X^2 + X + 1$. Sicuramente non è divisibile per i primi tre perché essi sono riducibili, quindi divisibili per un polin. di primo grado e se f fosse divisibile per uno di quei tre sarebbe anche divisibile per un polin. di primo grado, cosa che abbiamo appena detto essere impossibile. L'unico che rimane è $X^2 + X + 1$: facciamo divisione con resto e vediamo che non è divisibile \Longrightarrow irriducibile
- Ricorda che in un dominio di integrità gli ideali $(f) = (g) \iff f \in g$ sono associati
- Se vogliamo dimostrare $(f) + (g) = \mathbb{Z}[X]$, dato che quest'ultimo non è a id. princ. non possiamo usare $(f) + (g) = K[X] \iff mcd(f,g) = 1$. Allora un modo è dimostrare che $1 \in (f) + (g)$: infatti somma di id. è id. e se un $1 \in I \implies I = A$.

Un modo è fare divisione con resto di g per f: così $g = qf + r \implies r = g - qf \implies r \in (g) + (f)$. Se siamo fortunati e r = 1 siamo apposto.

• È utile la seguente applicazione del **terzo teo. di isomorfismo**: in generale

$$R/(a,b) \cong [R/(a)]/[(a,b)/(a)] = [R/(a)]/(\overline{b})$$

In particolare (molto utile):

$$\mathbb{Z}[X]/(n,f) \cong (\mathbb{Z}[X]/(n))/(\overline{f}) \cong \mathbb{Z}/n\mathbb{Z}[X]/(\overline{f})$$

dove $\overline{f} \in \mathbb{Z}/n\mathbb{Z}[X]$

10 Orale

10.1 Esempi e controesempi

- Classi laterali diverse tra loro: in D_3 $r < f > \neq < f > r$
- Automorfismo $G \to G$ con G abeliano: lo è sempre la negazione A(g) = -g (se + è l'operazione). Non lo è per anelli o campi.

In particolare \mathbb{Z} ha solo questo come **unico automorfismo non banale** (deve mantenere la struttura additiva e ricoprire tutto \mathbb{Z}). Invece, considerando l'automorfismo di anelli, \mathbb{Q} ed \mathbb{R} hanno solo l'identità (banale) in quanto si deve mantenere sia la struttura additiva che moltiplicatima. \mathbb{C} invece ha un solo automorfismo non banale, che è la coniugazione complessa (infatti lascia i numeri reali fermi).

• Omomorfismo $G \to \operatorname{Aut}(G)$ con nucleo il centro Z(G). Come prima cosa devo trovare un automorfismo $G \to G$ (ovvero un **isomorfismo** che ha G stesso come immagine, in quanto omom. mantiene la sua struttura) che dipenda da un elemento, così assegno ad ogni elemento tale automorfismo e sono a posto. Ad esempio

$$\gamma_q: G \to G$$
 $\gamma_q(x) := {}^g x = g^{-1} x g$

è un automorfismo (in quanto ha come nucleo $\ker \gamma_g = \{0\}$, infatti $g^{-1}hg = 1 \iff hg = 1 \iff h = 1$) chiamato **automorfismo interno**; assegna ad ogni elemento il proprio coniugato per g. Allora

$$f: G \to \operatorname{Aut}(G)$$
 $f(g) := \gamma_g$

è omomorfismo (verificare) con nucleo ker f=Z(G) il centro di G. Infatti il nucleo è l'insieme degli elementi di G che vengono mappati nell'elemento neutro di $\operatorname{Aut}(G)$, ovvero l'**identità**: per ogni γ_g si ha l'identità per gli elementi che commutano con g, in modo che scambio h,g nella def. e ottengo l'identità, ovvero gli elementi del centralizzante C(g) di g. Quindi l'insieme dei centralizzanti di tutti i $g \in G$ è il centro C(Z) di G.

• Gruppo di Klein V_4 : 4 elementi (neutro + 3), ogni elemento è l'inverso di se stesso e il prodotto di due elementi dà il terzo (non neutro). Può essere visto come gruppo delle simmetrie di un rettangolo non quadrato (le due riflessioni e rotazione di 180^o) oppure come $\mathbb{Z}_2 \times \mathbb{Z}_2$. É sottogruppo normale di S_4

- Anello in cui ci sono ideali tali che il prodotto non è un ideale:
- Omomorfismo di anelli $R \to \operatorname{End}(R)$:
- Sottoanello di $\mathbb{Q} \neq \mathbb{Z}$: $R = \{ \frac{m}{2n} : m \in \mathbb{Z}, n \in \mathbb{N}_0 \}$. Si dimostra che ogni sottoanello di \mathbb{Q} contiene \mathbb{Z}
- Ideali primi di $\mathbb{Z}/n\mathbb{Z}$: ogni ideale ha la forma $m\mathbb{Z}/n\mathbb{Z}$ con m|n (per il terzo teo. iso). Per essere ideale primo m deve essere un numero primo, quindi sono $p\mathbb{Z}/n\mathbb{Z}$ con p|n, p primo.
- Ideale primo ma non massimale di $\mathbb{Z}[X]$: (in realtà vale per qualsiasi R[X], R dominio di integrità) (X), in quanto $R[X]/(X) \cong R$ non è un campo (non essendolo R) \iff (X) non è massimale. È primo in quanto R è un dominio di integrità, quindi non ha divisori di 0, quindi se il prodotto di due elementi sta in (X) (ovvero $a_0b_0=0$) allora almeno uno dei due deve stare in (X) ($a_0=0$ oppure $b_0=0$)

10.2 Dimostrazioni

• Ideale massimale \implies non principale in $\mathbb{Z}[X]$: dimostriamo il contrario, ovvero principale \implies non massimale.

Se $f \in \mathbb{Z}[X] = n \neq \pm 1$ (ovvero $f \in \mathbb{Z} \setminus \mathbb{Z}^*$) allora (X, n) contiene (f), in quanto contiene tutti i polinomi con coefficienti multipli di n, ma diverso da (f) poiché abbiamo anche tutti i polinomi di primo grado, con qualsiasi coeff., ed è diverso da tutto l'anello, in quanto per esempio non ha l'1.

Se $f \in \mathbb{Z}[X]$ ha grado > 0, allora se p è un primo che non divide il coefficiente di grado massimo, (f, p) contiene (f) ed è diverso da tutto l'anello, dal momento che (terzo teo. iso.)

$$\mathbb{Z}[X]/(f,p) \cong (\mathbb{Z}[X]/(p))/(\overline{f}) \cong \mathbb{Z}/p\mathbb{Z}[X]/(\overline{f})$$

non può essere banale (= $\{0\}$, ovvero (f,p) deve essere diverso da tutto $\mathbb{Z}[X]$) poiché altrimenti

$$(\overline{f}) = \mathbb{Z}/p\mathbb{Z}[X]$$
, ovvero $\overline{f} \in \mathbb{Z}/p\mathbb{Z}[X]^* = \mathbb{Z}/p\mathbb{Z}^*$

il che è impossibile dato che f ha grado > 0 e p non divide il coeff. di grado max.