(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-138421

(43)公開日 平成9年(1997)5月27日

大阪府大阪市阿倍野区長池町22番22号 シ

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

ャープ株式会社内

(74)代理人 弁理士 岡田 和秀

(72) 発明者 米田 裕

(51) Int.Cl. ⁶		識別配号	庁内整理番号	FΙ			技術表示箇所
G02F	1/136	500		G02F	1/136	500	•
	1/133	550			1/133	. 550	
G 0 9 G	3/36			G 0 9 G	3/36		
				審査請求	永龍未	簡求項の数11	OL (全 13 頁)
(21)出願番号	+	特願平7-293966	·	(71) 出願人	•	49 グ株式会社	
(22)出顧日		平成7年(1995)11.	月12日			大阪市阿倍野区:	其 洲町99乗9 94
(DE) HIBS H		M - (1000) 11	,,,,,,,,	(72) 発明者			KIRAI DOMESTA
-		-		(10))[9]	. ,	=	曼池町22番22号 シ
						朱式会社内	YIGH DE BOOK
				(72) 発明者		彦	

(54) 【発明の名称】 アクティブマトリクス型液晶画像表示装置

(57)【要約】

【課題】データドライバの面積の減少とコストの低下、コントラスト画質品位の向上、開口率の向上、液晶がベンド配向から初期のスプレー配向に戻らないようにする。

【解決手段】データ信号配線 y 1~y mと走査信号配線 x 1~x n とがマトリクス状に配置される。これら配線 の交点においてデータ信号配線に画素トランジスタ10 のソース電極、走査信号配線にトランジスタ10のゲート電極がそれぞれ接続される。トランジスタ10のドレイン電極に画素12の画素電極が接続され、該画素12 が画素電極と対向電極との間に液晶部を含む。対向電極には対向電極駆動回路1からコモン信号が共通に供給され、その駆動回路1は、画像に影響が無い期間で対向電極に与えるコモン信号をその電圧を少なくとも2値以上可変させて供給し、その期間中に各走査信号を一斉にアクティブにする。

【特許請求の範囲】

【請求項1】 表示用のデータ信号をそれぞれ供給する 複数のデータ信号配線と走査信号をそれぞれ供給する複 数の走査信号配線とがマトリクス状に配置され、これら 配線の交点においてデータ信号配線には3端子型アクティブ素子の一端子側電極が、また走査信号配線には前記 アクティブ素子の駆動端子側電極が接続され、このアクティブ素子の他端子側電極に画素を構成する画素電極が 接続され、該画素は前記画素電極と対向電極との間に液 晶部を含むものであり、かつ前記対向電極には対向電極 駆動回路からコモン信号が共通に供給されるアクティブ マトリクス型液晶画像表示装置において、

前記対向電極駆動回路は、画像に影響が無い期間で前記 対向電極に与えるコモン信号を電圧を少なくとも2値以 上可変させて供給し、前記期間中に前記各走査信号を一 斉にアクティブにすることを特徴とするアクティブマト リクス型液晶画像表示装置。

【請求項2】 前記対向電極駆動回路が、前記画像に影響が無い期間で、表示の為の照射光に対する液晶の所定の透過率または反射率を得る印加電圧としての信号電圧 20を印加する前に、少なくとも該信号電圧より絶対値が大きい第1予備電圧を該画素に印加する構成である請求項1記載のアクティブマトリクス型液晶画像表示装置。

【請求項3】 前記第1予備電圧の値が、前記データ信号配線を駆動するデータドライバのトランジスタ耐圧よりも高い値であることを特徴とする請求項2記載のアクティブマトリクス型液晶画像表示装置。

【請求項4】 前記対向電極駆動手段が、前記画像に影響が無い期間で、表示の為の照射光に対する液晶の所定の透過率または反射率を得る印加電圧としての信号電圧 30を印加する前で、かつ前記第1予備電圧の印加後に、該信号電圧よりもその絶対値が小さい第2予備電圧を印加する構成である請求項1ないし3いずれか記載のアクティブマトリクス型液晶画像表示装置。

【請求項5】 前記液晶部における液晶が、ベンド配向とスプレー配向とをもつ液晶であって、表示を行うべく所定の初期の一定期間中に前記画素電極と対向電極との間の液晶部に初期電圧を印加して前記液晶部内の液晶の分子をスプレー配向からベンド配向にし、その後、所定の時間幅をもつ休止期間の間、前記印加電圧を前記初期電圧より低い電圧にする動作を少なくとも1回以上繰り返すことを特徴とする請求項1ないし4いずれか記載のアクティブマトリクス型液晶画像表示装置。

【請求項6】 前記休止期間が1m秒以上3秒以内であることを特徴とする請求項5記載のアクティブマトリクス型液晶画像表示装置。

【請求項7】 前記初期電圧の印加を前記対向電極駆動 回路によって行うことを特徴とする請求5または6項記 載のアクティブマトリクス型液晶画像表示装置。

【請求項8】 前記休止期間の動作を、前記対向電極に 50 にトランジスタ10という)が配備されている。各トラ

印加する電圧を変えることによって行うことを特徴とする請求項5ないし7いずれか記載のアクティブマトリクス型液晶画像表示装置。

【請求項9】 前記休止期間の動作を、前記画素電極に 印加する電圧を変えることによって行うことを特徴とす る請求項5ないし7いずれか記載のアクティブマトリク ス型液晶画像表示装置。

【請求項10】 表示用のデータ信号をそれぞれ供給する複数のデータ信号配線と走査信号をそれぞれ供給する複数の走査信号配線とがマトリクス状に配置され、これら配線の交点においてデータ信号配線には3端子型アクティブ素子の一端子側電極を走査信号配線には前記アクティブ素子の駆動端子側電極が接続され、このアクティブ素子の他端子側電極に画素を構成する画素電極が接続され、該画素は前記画素電極と対向電極との間に液晶部を含み、かつ前記対向電極には対向電極駆動回路からコモン信号が共通に供給されるアクティブマトリクス型液晶画像表示装置において、

前記データ信号配線への表示用データ信号の供給の初期、最大でも1/2水平期間以内の期間、前記対向電極の電位を正規とし、その後、対向電極の電位をデータ信号配線のデータ信号の極性における液晶に電圧を印加しない方向の電位レベルに近付けることを特徴とするアクティブマトリクス型液晶画像表示装置。

【請求項11】 前記対向電極駆動回路が、前記コモン信号の振幅を少なくとも2つ以上の振幅に調整可能な振幅調整回路を含むことを特徴とする請求項1ないし10いずれか記載のアクティブマトリクス型液晶画像表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶画像表示装置 に関する。

[0002]

40

【従来の技術】従来の技術をアクティブマトリクス型液晶画像表示装置について図11を参照して説明する。この装置は、複数のデータ信号配線 y1~ymと複数の走査信号配線 x1~xnとがマトリクス状に配置されている。走査ドライバ8は各走査信号配線 x1~xnのそれぞれに走査信号を供給してこれらを駆動する。データドライバ9は各データ信号配線 y1~ymのそれぞれに表示用データ信号としてビデオ信号を供給してこれらを駆動する。複数の画素がマトリクス状に配置された液晶画像表示部であるパネルA上には、前記複数のデータ信号配線 y1~ymと、複数の走査信号配線 x1~xnとが配置されている。

【0003】これら信号配線が交差する部分のそれぞれにはゲート電極へのアクティブとされた走査信号の印加入力に応答してONする画素トランジスタ10(以下単にトランジスタ10という)が配備されている。各トラ

10

ンジスタ10のゲート電極のそれぞれは対応する走査信 号配線x1~xnに個別に接続されている。各トランジ スタ10のソース電極のそれぞれは対応するデータ信号 配線y1~ymに個別に接続されている。

【0004】各トランジスタ10のドレイン電極のそれ ぞれは対応する画素12内の画素電極に個別に接続され ている。それぞれの画素12は画素電極と透明電極であ る対向電極とこれら両電極間に挟持された液晶部とで構 成されている。各画素12それぞれの対向電極は対向電 極駆動回路13 (単に駆動回路という) から対向バスラ イン11を介して共通に供給されるコモン信号COMに よって駆動される。各画素12内それぞれの画素電極と 対向電極とで挟持されている液晶部には表示用としての 液晶材料がそれぞれ封入されている。これら各画素12 のうち、P1、P2は後の説明のために別の符号が代表 的に付されており、これら画素 P1, P2 はデータ信号 配線マ1が走査信号配線x1、x2とそれぞれ交差する 位置に配置されている。

【0005】駆動回路13には、図12で示すように、 制御回路7から1水平周期(1H)ごとに反転する反転 20 信号FRPが与えられる。反転信号FRPは駆動回路1 3内でAC調整とDC調整を受けたうえでコモン信号C OMとして出力される。このコモン信号COMは、直流 DCを中心に1水平期間毎に直流DCレベルよりAC分 低い電位と、AC分高い電位とに反転するパルス交流で ある。

【0006】図13は画素12に表示用ビデオ信号が書 き込まれるタイミングを走査信号とともに示した図であ る。図13aはデータドライバ9からデータ信号配線ッ 1上に供給されるビデオ信号の波形を示し、図13bは 30 駆動回路13からバスライン11を介して画素12内の 対向電極に供給されるコモン信号COMの波形を示して いる。このビデオ信号とコモン信号COMとは互いに1 Hごとに逆極性の関係に反転する。図13c~fはそれ ぞれ走査ドライバ8から走査信号配線 x 1, x 2, x 3. …, x n 上にそれぞれ供給される走査信号 x 1, x 2, x3, …, xnの反転を示している。図13gは図 11中の画素12のうちのP1内のトランジスタ10の ソースドレイン電極間の電圧差を斜線により示してい る。

【0007】図13gを簡単に説明する。最初の1H中 においては、画素P1対応のトランジスタ10のソース 電極にはデータ信号配線v1から表示用データ信号とし てビデオ信号が供給されている。この1H中における前 半期間TH1に走査信号配線x1を介してトランジスタ 10のゲート電極に図13cのハイレベルつまりアクテ ィブな走査信号x1が供給される。これによって、画素 P1対応のトランジスタ10がONするから、前半期間 TH1ではこのトランジスタ10のドレイン電極に画素 電極が接続されている画素P1内の液晶部内には液晶容 50

量として前記データ信号配線 y 1 からのビデオ信号が書 き込まれる。

【0008】この1Hの後半期間TH2は、走査信号配 線x1に供給される走査信号x1のレベルがローレベル つまりノンアクティブになるので、画素P1対応のトラ ンジスタ10はOFFになり、トランジスタ10は高イ ンピーダンスとなり画素電極の電位は前半期間Tlのレ ベルが保持される。次の1Hにおける期間TH3以降も トランジスタ10はOFFである。この場合、画素P1 の対向電極に印加されるコモン信号COMの電位は1H ごとに変動するので、それに合わせて画素P1の画素電 極の電位はコモン信号COMの電位と同じ振幅電位で変 動する。これを示した図が図13gの点線で示される下 半分の波形である。この下半分の点線の波形はトランジ スタ10においてはドレイン電位の波形にも相当する。 【0009】図13gの実線で示される上半分の波形は データ信号配線 y 1上のビデオ信号つまりトランジスタ 10のソース電極の電位であるから、トランジスタ10 のソースドレイン電極間の電位差は、点線の波形と実線 の波形の重位差つまりビデオ信号とコモン信号COMと の合計振幅になり、これは図13gで斜線で図示されて いる。

【0010】このように、走査信号x1は1H期間中の ある期間この例では前半期間TH1でハイレベルでアク ティブの状態になりトランジスタ10が0Nするが、そ れ以降の1垂直期間中はローレベルでノンアクティブ状 能となっているから、トランジスタ10のOFF期間に おけるソース電極とドレイン電極との間の前述の最大印 加電圧時間は、ON期間と比べて相当長い間の期間にわ たって印加されていることになる。

【0011】以上は、一般的なアクティブマトリクス型 液晶画像表示装置の動作の概略であるが、同タイプの画 像表示装置としてはこの他に、フィールド順次カラー方 式液晶画像表示装置が存する。次にこのフィールド順次 カラー方式を使用した液晶画像表示装置について説明す

【0012】液晶画像表示装置における大型画面には投 射型があり、この投射型は、液晶表示体に光をあててス クリーンに投影することで比較的容易に大型の画面を得 ることが可能である。カラー化の方法として、同時加法 混色と称されて投射光を赤、緑、青に分け、それぞれ1 枚ずつの液晶表示装置を用いる方法と、併置加法混色と 称されて液晶表示装置を1枚用いて直視型と同様にその 1枚中に赤、緑、青の画素を設ける方法とがある。

【0013】しかし前者は、高解像度が得られる反面高 価であり、後者は安価であるものの解像度が得られない 欠点がある。この問題点の解決法として、1画素で赤、 緑、青を時分割で表示させるフィールド順次カラー方式 が挙げられる。このフィールド順次カラー方式では、1 枚の液晶表示装置で同時加法混色と同様な髙精細が得ら

40

れしかも小型化が可能であるが、1垂直期間、NTSC 方式を例にとると16msec内で赤、緑、青の各色に 対応する画像を表示させるため、ゆるされる時間が5~ 6msecとなる。これより、フィールド順次カラー方 式は通常方式である同時加法混色方式と比較して少なく とも3倍のトランジスタの高速化と高速応答の液晶材料 が必要になる。

【0014】従来の、アクティブマトリクス液晶画像表示装置に用いられているツイストネマチック(TN: Twisted Nematic)モードの応答は、おおよそ10msecであるので実現は難しく、そこで、高速応答の液晶材料として、そのようなツイストネマチックモードに比較して、1けたから2けた程度速く、視角特性の面でも非常に有利なπセルの光学変換モードがある。

【0015】πセルモードは、プレチルト角が基板間の中心面に対して面対称の関係で配向された構造であり、配向状態は基板間に電位が印加されていない時は、スプレー配向であり、それから、電位を印加するとベンド配向に移行する。さらに、電位を印加するとベンド配向の液晶分子が基板と垂直に配向し光が透過する状態になる。

【0016】液晶画像表示装置としては、ベンド配向における上記2つの状態で、偏光子を両側に設けその偏光子の方向を操作することでベンド配向の電圧が印加しているとき、光が透過するか、もしくは、透過させないようにすることによって表示を行うようにしている。このπセルモードの駆動法として次の2つの技術が開示されている。

【0017】つまり、特開昭61-116329号公報では、 π セルの駆動をマトリクス状に能動スイッチング素子を形成し、液晶を制御する方法の記述がなされている。また、特開昭61-128227号公報では、液晶パネル(π セル)において、表示情報に対応しない0.1msec以上50msec以下のON電圧を印加することによって高速応答を行う記述がなされている。

【0018】また、高速用の液晶の駆動方法として、本出願人は特願平5-320335で、液晶表示装置における駆動電圧供給部を設け、該駆動電圧供給部は、照射光に対する液晶の所定透過率または反射率を得る印加電圧としての信号電圧を印加する前に、少なくとも信号電圧よりその絶対値が大きい第1予備電圧を画素に印加し、さらに、その第1予備電圧を印加後に、信号電圧よりもその絶対値が小さい第2予備電圧を印加することによって、液晶の応答速度を改善する方法を提案している。

[0019]

【発明が解決しようとする課題】上述したようにツイストネマチック以外の液晶を用いた場合では、液晶に表示用の信号を印加する前に特殊な駆動、一般には、表示のための信号電圧レベルよりも高いレベルの電圧をデータ 50

ドライバから供給する必要があった。このため、データドライバを構成するトランジスタの耐圧をあげる必要を生じ、このトランジスタのサイズ拡大によるデータドライバの面積増大、さらには液晶画像表示画面の周辺部いわゆる額縁の増大またコストの上昇を招来していた。

【0020】このため、例えば特願平5-320335においては、電圧印加の手段としてストライプ状に配線した対向電極を使用した例が示されているが、対向電極を走査信号配線と平行になるようにストライプに配線しているために、配線インピーダンスの劣化によりコントラスト画質など表示品位の低下を招来していた。また、ストライプ状に配置するため開口率の低下つまり液晶への光透過に利用できない面積の増大を招き、高開口率設計が困難であるという課題があった。

【0021】その他、特開平61-128227号公報に記述されているπセルモード駆動方法では、表示情報の中で電圧が低い期間が長く存在する場合には液晶にベンド配向を維持するために必要な電圧が印加されない期間が長くなるので配向が初期のスプレー配向に戻るという課題があった。

[0022]

20

【課題を解決するための手段】本発明のアクティブマト リクス型液晶画像表示装置においては、表示用のデータ 信号をそれぞれ供給する複数のデータ信号配線と走査信 号をそれぞれ供給する複数の走査信号配線とがマトリク ス状に配置され、これら配線の交点においてデータ信号 配線には3端子型アクティブ素子の一端子側電極を走査 信号配線には前記アクティブ素子の駆動端子側電極が接 続され、このアクティブ素子の他端子側電極に画素を構 成する画素電極が接続され、該画素は前記画素電極と対 向電極との間に液晶部を含むものであり、かつ前記対向 電極には対向電極駆動回路からコモン信号が共通に供給 されるものにおいて、前記対向電極駆動回路は、画像に 影響が無い期間で前記対向電極に与えるコモン信号をそ の電圧を少なくとも2値以上可変させて供給し、前記期 間中に前記各走査信号を一斉にアクティブにすることを 特徴とすることによって前述した課題を解決している。

【0023】前記対向電極駆動回路が、好ましくは、前 記画像に影響が無い期間で、表示の為の照射光に対する 液晶の所定の透過率または反射率を得る印加電圧として の信号電圧を印加する前に、少なくとも該信号電圧より 絶対値が大きい第1予備電圧を該画素に印加する構成で ある。

【0024】前記第1予備電圧の値が、好ましくは、前 記データ信号配線を駆動するデータドライバのトランジ スタ耐圧よりも高い値である。

【0025】前記対向電極駆動手段が、好ましくは、前 記画像に影響が無い期間で、表示の為の照射光に対する 液晶の所定の透過率または反射率を得る印加電圧として の信号電圧を印加する前で、かつ前記第1予備電圧の印 10

30

加後に、該信号電圧よりもその絶対値が小さい第2予備 電圧を印加する構成である。

【0026】好ましくは、前記液晶部における液晶が、ベンド配向とスプレー配向とをもつ液晶であって、表示を行うべく所定の初期の一定期間中に前記画素電極と対向電極との間の液晶部に初期電圧を印加して前記液晶部内の液晶の分子をスプレー配向からベンド配向にし、その後、所定の時間幅をもつ休止期間の間、前記印加電圧を前記初期電圧より低い電圧にする動作を少なくとも1回以上繰り返す。

【0027】さらに好ましくは前記休止期間が1m秒以上3秒以内である。

【0028】好ましくは前記初期電圧の印加を前記対向 電極駆動回路によって行う。

【0029】さらに好ましくは前記休止期間の動作を、 前記対向電極に印加する電圧を変えることによって行う。

【0030】さらに好ましくは前記休止期間の動作を、前記画素電極に印加する電圧を変えることによって行っ

【0031】本発明のアクティブマトリクス型液晶画像表示装置は、前記データ信号配線への表示用データ信号の供給の初期、最大でも1/2水平期間以内の期間、前記対向電極の電位を正規とし、その後、対向電極の電位をデータ信号配線のデータ信号の極性における液晶に電圧を印加しない方向の電位レベルに近付ける構成によって前述した課題を解決している。

【0032】好ましくは前記対向電極駆動回路が、前記 コモン信号の振幅を少なくとも2つ以上の振幅に調整可 能な振幅調整回路を含む。

[0033]

【発明の実施の形態】以下、本発明の実施の形態に係る 液晶画像表示装置について図1を参照して詳細に説明す る。まず、液晶の駆動法には、表示すべき信号電圧より 高い電圧を第1の予備電圧として印加した後に該信号電 圧より低い電圧を第2の予備電圧として印加することに よりその後の表示時の液晶の応答速度を向上させる駆動 法があるが、本発明の実施の形態1においては、この駆 動法に基づいて説明することにする。

【0034】図1において、従来の液晶画像表示装置と 40 同一に係る部分については同一の符号を付し、その同一の符号に係る部分については従来と同様であるからその詳しい説明は省略する。1は対向電極駆動回路であり、この対向電極駆動回路1は、入力回路2、自動振幅調整回路3、および直流調整回路4で基本的に構成されている。入力回路2には制御回路7から反転信号FRPがバスライン6を介して供給される。自動振幅調整回路3は入力回路2に接続されているとともに、制御回路7から制御信号A、Bが制御信号バスライン5を介して供給される。制御回路7からの制御信号A、Bの後述する入力 50

タイミングと自動振幅調整回路3とで自動的に設定される振幅レベルとにより、対向電極バスライン11に出力されるコモン信号COMの電位つまり画素12を構成する対向電極の電位を任意に設定できるようにしている。 直流調整回路4は自動振幅調整回路3に接続され対向電極バスライン11にコモン信号COMを供給する。

【0035】図1に示されている対向電極駆動回路1の詳細を図2および図3を参照して説明する。図3aは制御回路7から自動振幅調整回路3内の入力回路2へ与えられる反転信号FRPは1垂直周期(1フィールド)ごとに振幅が「1」「0」に反転する信号である。入力回路2に入力された反転信号FRPは該入力回路2内で入力抵抗Rsと帰還抵抗Rfとできまる定数で増幅されてから、自動振幅調整回路3に与えられる。

【0036】ここで、自動振幅調整回路3は3つの振幅 調整回路31、32、33で構成されている。制御回路 7からの制御信号バスライン5は制御信号Aのバスライン5Aと制御信号Bのバスライン5Bとの2つのバスラインからなっている。それぞれのバスライン5A、5B はそれぞれアナログスイッチ20内の端子SW1、SW2に接続されている一方、振幅調整回路31、32および33はそれぞれアナログスイッチ20の入力端子INI、IN2およびIN3に個別に対応して接続されている。

【0037】各振幅調整回路31,32,33はそれぞれ入力回路2の出力部とグランドとの間に互いに直列に接続された2つの抵抗R1,R2;R3,R4;R5,R6を有し、各抵抗の共通接続部がそれぞれアナログスイッチ20の入力端子IN1,IN2,IN3に接続されている。この接続構成によりこれら直列に接続された2つの抵抗の抵抗値の定数を適宜に選定することにより入力回路2から出力される反転信号FRPの振幅レベルを個別に決めることができる。ここでは振幅調整回路31の振幅レベルをVHに、振幅調整回路32の振幅レベルを0、振幅調整回路33の振幅レベルを1/2・VHとする。アナログスイッチ20の真理値表は次に掲げる表1のとおりである。

[0038]

【表1】

A	В	out
0	0	IN1
0	1	I N 2
1	0	×
1	1	1 N 3

【0039】この表1についで説明すると、A, Bは制 御信号であり、A=0, B=0のときは振幅調整回路3

1の出力が選択されてアナログスイッチ20の端子IN 1に与えられ端子OUTから出力され、A=0, B=1 のときは振幅調整回路32の出力が選択されてアナログ スイッチ20の端子IN2に与えられ端子OUTから出 力され、A=1, B=0のときはいずれの振幅調整回路 の出力も選択されず端子OUTから出力されない。A= 1, B=1のときは振幅調整回路33の出力が選択され てアナログスイッチ20の端子IN3に与えられ端子O UTから出力される。これら端子OUTから出力される 反転信号FRPは、直流調整回路 4 で直流調整されてコ モン信号COMとして対向電極バスライン11に供給さ れる。したがって、図3b,cでそれぞれ示す波形の制 入力IN1、つまり振幅調整回路31の振幅レベルVH が選択され、同様に期間②は振幅調整回路32の振幅レ ベル0が選択され、期間3は振幅調整回路33の振幅レ ベル1/2·VHが選択される。これより対向電極駆動 回路1からのコモン信号COMは図3dで示す波形にな る。

【0040】入力回路2を介して自動振幅調整回路3に供給される反転信号FRPは図3aで示すように1フィールド毎に振幅レベルが「1」「0」に反転する信号を形であるからコモン信号COMの波形は、反転信号FRPの波形に従って1フィールド毎に振幅が反転する波形になる。1フィールド期間中の③の期間は表示される期間を示し走査バスライン×1~×nは最上段の走査バスライン×1から順に画素トランジスタ10をONさあタイミングになる。期間①、②は表示に関係がない期間であり、それはビデオ信号のブランキング期間を使用してもよいし、また、任意に作製しても構わない。また表示用のデータ信号としてはビデオ信号でなくても他のデータ信号でも構わない。

【0041】次に液晶のもう一方の電極つまり画素電極 に印加されるビデオ信号の状態について図4を参照して 説明する。図4aに図3dのコモン信号COMの波形を 示している。図4bにデータドライバ9からデータ信号 配線 y 1上に印加されるビデオ信号の波形を示し、図4 cに走査ドライバ8から走査信号配線x1~xn上に印 加される走査信号 x 1 ~ x n (説明の理解のため走査信 号配線の符号と同一としている。) の波形を示してい る。ここで、ビデオ信号はデータドライバ9から共給さ れる信号を示すが、データドライバ9のサンプルホール ドの方法をこのデータドライバ9内で行うか、液晶表示 パネルA内で行うかでコモン信号COMとビデオ信号と の極性は逆になるが、ここでは分かりやすく、液晶表示 パネルA内でホールドする信号の例を示す。図4中の期 間 $\mathbf{0}\mathbf{2}\mathbf{3}$ は図3中の $\mathbf{0}\mathbf{2}\mathbf{3}$ と同様な期間を示している。 期間 $oldsymbol{0}$ は表示電圧 $oldsymbol{V}$ on (= $1 \diagup 2 \cdot oldsymbol{V}$) レベルより 髙い電圧である第1予備電圧Vp1(=VH)の期間で あり、期間♥は液晶に印加される電圧が表示電圧Von 50 よりは低い電圧である第 2 予備電圧 V_{p} 2 (= 0) の期間である。ここでは、第 2 予備電圧 V_{p} 2 を 0 レベルにしている。

10

【0042】液晶表示体を構成する液晶セルは表示電圧 Vonのみ印加すると光学的に十分に応答しないから、 その液晶セルに、所定の透過率または反射率を得る信号 電圧を印加する前に、少なくとも信号電圧Vonよりも その絶対値が大きい第1予備電圧Vp1を印加し、さら に、第1予備電圧Vp1と表示電圧Vonを印加する期間の間に、少なくとも表示電圧Vonよりもその絶対値 が小さい第2予備電圧Vp2を印加する期間を設けてい るのである。

【0043】さらに、第1予備電圧Vp1の印加期間 $\mathbb O$ と第2予備電圧Vp2の印加期間 $\mathbb O$ は表示電圧Vonの印加期間 $\mathbb O$ よりも短いことが必要である。また、ここで用いられる液晶は $d \times \Delta n > \lambda / 2$ または $2 d \times \Delta n > \lambda / 2$ (ただし、 $d \times \Delta n$ は、液晶分子の変位に伴うリターデイションつまり表示のための照射光が液晶層を一度通過する場合に液晶分子の有する光の複屈折率効果による常光成分と異常光成分との間での液晶セルの光の道のりの差を示している。

【0045】ここで、モード0とは横軸に液晶セルへの印加電圧、縦軸に光透過率をとった場合に光透過率が極大となるときの印加電圧から印加電圧を増加すると光透過率が低下してくるが、このとき最も高電圧の印加電圧側での透過率最小となる点のことであり、一次ピークとはこの光学特性がモード0となる電圧より徐々に電圧を低下させたときに一番初めに明状態つまり前記光透過率が極大となる点のことである。

【0046】ここで上記した液晶セルへの印加電圧は、画素電極の電位とそれと対向する対向電極の電位(コモン電位)との電位差になるので、期間①の画素電極側のビデオ信号は、所望の第1予備電圧V p 1 のときのコモン信号電位V H を引いた値になる。これを説明の都合でビデオH とする。また、期間②は、第2予備電圧V p 2を0レベルとしているのでビデオ信号は0レベルにする。そこで、第1予備電圧期間①は、対向電極に印加されるコモン信号側の電位を充分に高い電圧V H に設定しておけば、反対側の画素電極に印加するビデオH はその分低い電圧でよいことになる。

【0047】これより、その電位をデータドライバ9の 耐圧以下にすることにより、データドライバ9及び走査

ドライバ8の駆動を第1予備電圧Vp1の印加とは関係 なく耐圧電圧以下で行うことができる。期間 02 は表示 に影響がない期間であり、図4 c に示す走査信号 x 1~ xnのようにその期間の間は一斉に画素トランジスタ1 0をONさせることにより全ての走査パスラインx1~ x n それぞれの画素 1 2 を構成する液晶の対向電極側に 第1予備電圧Vp1と第2予備電圧Vp2とを印加する ことができる。

11

【0048】以上により、データドライバ9と走査ドラ イバ8それぞれの耐圧を越えることなく、画素12内の 10 液晶に高電圧を印加させることができるので、液晶を高 速応答させての駆動ができるとともにデータドライバ9 および走査ドライバ8を低電圧で駆動できる。また、こ れより画素トランジスタ10のサイズの縮小化と高速動 作化も可能になり、回路の簡潔化を図ることができる。 このトランジスタサイズの縮小化は開口率の向上のみな らず大型高精細液晶パネルとか超高精細液晶パの設計を 容易化するという意味でその波及効果は高い。 3 端子型 アクティブ素子としてのこの画素トランジスタは薄膜ト ランジスタ (TFT) でもバルクトランジスタ (MOS 20 FET) でも構わない。

【0049】また図4は、期間①②③における走査信号 x1~xnそれぞれのタイミングを限定しているもので はなく、当然、図で示している期間より短い時間で走査 信号x1~xnまでの期間を終了させても構わないし、 次に示すフィールド順次カラー方式においても適用でき ることは言うまでもない。

【0050】図5を使ってフィールド順次カラー方式で 上記の駆動を行う方法を説明する。1フィールドを1/ 3フィールドずつの3つに分割しそれぞれ赤(R)、緑 30 (G) および青(B) の色に割り当てる。それぞれの第 1予備電圧期間型と第2予傭電圧期間型とは図5 a に示 すコモン信号COMの波形のように表示に影響を与えな い期間を選び、その期間 ②②の間、走査信号全ラインは 図5 c に示す走査信号 x 1~x n によって一斉にONさ せるようにする。また、表示期間③における走査信号x 1からxnまでの走査は期間**②②**の残り全期間を使用し てもよいし、短い期間でも構わない。ここでは、図5b で示すビデオ信号と図5 c で示す走査信号 x 1~x nの ように表示に影響がない程度の短い期間に終了させるよ 40 うにしている。このようにすれば表示は画面ごとの切り 替わり(面走査とも言う)が可能になりフリッカーなど を抑えられ最適な表示が実現できる。以上のようにフィ ールド順次カラー方式および面走査のように高速駆動が 必要な駆動では、液晶の応答速度とドライバの高速化と が求められるのでデータドライバ9と走査ドライバ8の 低電圧駆動を可能にする本駆動は特に有効である。

【0051】次にコモン信号COM電圧の生成方法につ いて、その他の例を説明する。その構成は図2の自動振 幅調整回路3に限定されるものではなく、他の構成とし 50

て図6に示されるものでもよい。図6中の14はPch のMOS電界効果型のトランジスタとNchのMOS電 界効果型のトランジスタとで構成されるCMOS回路で あり、それらトランジスタの共通ゲート電極には反転信 号FRPが制御回路から共通に供給される。15は制御 回路からの制御信号Aの入力に応答して、電源生成装置 17から供給される、CMOS回路14に対してのハイ レベル電源のレベルとして2つのレベルつまりVHと 1 **/2・VHとのいずれか一方を選択するためのスイッ** チ、15°は制御回路からの制御信号Aの入力に応答し て、電源生成装置17から供給される、CMOS回路1 4に対してのローレベル電源のレベルとして2つのレベ ルつまり-VHと-1/2・VHとのいずれかを選択す るためのスイッチであり、16は制御信号Bの入力に応 答して、電源生成装置17からCMOS回路14に供給 される前記ハイレベル電源とローレベル電源との中間電 位か、またはCMOS回路14の出力のいずれかを選択 するためのスイッチである。

【0052】ここでは、電源電位の生成を電源生成装置 17の1つにより構成される例を示すが、電位を別々に 生成する装置が別個に横成されていても構わない。制御 信号A、Bは前述したように「O」と「1」との2値レ ベルであり、その制御信号A、Bにより、スイッチ1 **5、15** が開閉し、CMOS回路14からは図3に示 すタイミングと同様なコモン信号COM波形の出力が得

【0053】対向電極を駆動させることにより行う駆動 方法には特開平1-21479号公報に記述されてい る。すなわち、この公報には、水平期間を複数期間に分 割し、最後の分割期間において対向電極を正規の電圧と し、この期間において画素に印加される電圧が他の分圧 期間における電圧よりも大きくする技術が開示されてい る。この技術は、画素トランジスタのソース電極とドレ イン電極との間の最大印加時間を減少させリーク電流を 低減させようとする技術であって、本発明の実施の形態 のものとは目的が異なるものである。また、水平期間の 最後の期間を使って印加電圧が最大となるものであるか ら、本発明とはその点でも趣旨が異なっている。また、 本発明の実施の形態においては画素トランジスタを3端 子型アクティブ素子として用いており、このアクティブ 素子の一端子側電極をこのトランジスタのソース電極と し、他端子側電極をこのトランジスタのドレイン電極と し、その駆動側電極をゲート電極としている。

【0054】次に、本発明の実施の形態2について図 7、図8および図9を参照して説明する。この実施の形 態2においては、画素の液晶にスプレー(広がり)配 向、ベンド(湾曲)配向をもつ液晶を使用した液晶画像 表示装置であって、その配向状態を転移させる場合の例 である。液晶分子は長軸に平行な方向と垂直な方向とで は光学的、誘電的、磁気的に異方性を有しており、電気 的、磁気的な外場の印加で変形を生じ、その外場の除去で元の配向状態に復元する性質がある。図7は2つの電極30、30の間に挟まれた液晶分子31の状態を示している。図7aはスプレー配向において電極30、30間に電圧が印加されてない最初の初期の状態である。

【0055】この初期状態は高分子膜のラビングなどに よりスプレー配向をとることができる。図7bは図7a のスプレー配向からベンド配向に転移するために必要な 電圧32を電極30,30間に印加した時の状態を示し ている。図7cは図7aのベンド配向の状態からさらに 10 電圧32を印加したときの配向であるベンド配向を示し ている。本発明の画像表示装置は図7bと図7cの状態 の配向をそれぞれONとOFFとに使用して表示を行 う。このONとOFFとの表示を行うために、図7aの スプレー配向の初期状態から図7bの状態のベンド配向 にする必要があるが、その方法に図8に示すように表示 の初期期間に5~6秒間高電圧を印加し配向をスプレー 配向からベンド配向にする方法が知られている。しか し、これだけでは転移が不十分であるから、これを改善 するためには、その後で印加電圧を所定の時間幅内、初 期電圧より低い電圧にする動作(その時間を休止期間と 呼ぶ)を1回以上繰り返すことで改善することができ る。その休止期間は、好ましくは1msec以上3秒以 内が必要である。その休止期間の動作は、向かい合う電 極30,30間の電位状態を初期電圧より低い電位にす ることにより行うことができるが、この電位の状態はデ ータ信号配線により低い電位を印加する方法でもよい し、対向電極から印加する方法によっても行うことがで きる。

【0056】次に上記の休止期間の動作を対向電極を駆 動して行う方法を図9を参照して説明する。液晶表示装 置の構成及び対向電極駆動回路は前記実施の形態1に係 る図1、図2と同様である。図2において、自動振幅調 整回路3内の振幅調整回路31および32の振幅調整レ ベルは実施の形態1と同様にVHと0とに設定し、振幅 調整回路33と接続されていたアナログスイッチ6の入 カIN3はオープンにする。図9c, dで示す制御信号 A、Bのタイミングと、表1の真理値表とにより、休止 期間で電位レベル0、休止期間以外は電位レベルVHが 選択されるので、図9bの波形のコモン信号を得ること ができる。ここで、液晶に印加するのは、対向電極に印 加される電圧と、画素電極に印加される図9aの波形の ビデオ信号の電圧との電圧差なので、高電圧を印加しな ければならない期間、つまりは休止期間以外の期間のコ モン信号の電位VHを充分に高い電位に設定しておけ ば、対向する画素電極のビデオ信号はその分低い電位に することができる。これより、データドライバ9および 走査ドライバ8の駆動は低い電圧で行えることができる ので、ドライバ8、9のトランジスタサイズの縮小化お よび高速応答化がはかれ、ドライバ8,9の構成上の簡 潔化が図ることができる。

【0057】なお、上記説明された駆動は π セルモードのみならず、他のモード例えばOCB (Optically Compensated Bend) モードの駆動にも適用することができる。

【0058】次に本発明の実施の形態3について図10を参照して説明する。上記はツイストネマチック液晶以外においてデータドライバの耐圧をあげないようにするために対向電極側から特別に電位を印加したものであるが、この方法はツイストネマチック液晶を用いたディスプレイにも応用可能である。画素トランジスタに例えばpーSiTFT(多結晶シリコンを用いた薄膜トランジスタ)用いた液晶表示装置においては一般にTFTのオフ電流がaーSiTFT(アモルファスシリコンを用いた薄膜トランジスタ)に比べて大きいことから、OFF時に画素トランジスタに印加される電位を低いレベルに抑制する必要がある。

【0059】この操作を対向電極側から行う場合につい て以下に説明する。ここで述べる液晶画像表示装置の構 成は図1と同様である。図10 a はデータ信号配線 y 1 のビデオ信号の波形を示している。図10 bはコモン信 号COMの波形を示し、図10cは最上段の走査信号配 線×1から順に最下位の走査信号配線×nまでの走査信 号x1~xnの波形を示している。図10a中のVBは ビデオ信号の中間電位を示す。ここで、走査信号x1~ x n はそれぞれ画素トランジスタのゲートに印加されて 該トランジスタをONにしてアクティブにするが、1水 平周期(1 H)中全ての期間にわたってアクティブにす る必要はなく、そのトランジスタが充分にONし液晶及 び補助容量に表示用の電位が書き込める時間であればよ い。それは走査信号x1~xnが立ち下がるまでの時間 になり、ここでは1H中の前半分に走査信号が立ち下が るようにしている。さらにコモン信号COMを図10b のようにデータ信号配線への表示用信号転送期間の初 期、最大でも1/2水平周期(図10において期間T 1, T2に相当)の期間、コモン信号COMの電位を正 規の電位にし、残りの時間(T3)はデータ信号配線の データ信号の極性における液晶に電圧を印加しない方向 の電位レベルに近付ける。こではその電位を図10aの データ信号配線 y 1のビデオ信号と等しくしている。こ れより画素P1のトランジスタのドレイン・ソース電極 間電位は図10dの波形で示すようになる。その波形に ついて次に詳しく説明する。

【0060】画素P1の画素電極電位(画素トランジスタのドレイン電極側の電位に相当)をみれば、走査信号配線×1のハイレベルの期間はデータ信号配線y1のビデオ信号レベルになる。それ以降はOFF期間であり、画素トランジスタはOFFになるので、画素電極電位は対向電極電位(コモン信号COM)に合わせて変動する。これより、画素P1の画素電極電位は図10dの点

線のようになる。また、画素トランジスタのソース電極側電位は、データ信号配線 y 1 のビデオ信号電位であり、これは図10 a と同様であるので図10 d の実線で示される。これより画素 P 1 のトランジスタのソース・ドレインの両電極間のOF F 期間における電位差は点線の波形と実線の波形との電位差になる。そこで、トランジスタのOF F 期間で最大電圧が印加する期間は T 1、T 2 期間の斜線で示す期間だけになり、従来例の図12で示した斜線期間と比べて減少させることができる。画素 P 1 のトランジスタのON期間は 1 画面の走査(1 垂 10直期間)中、図で示すON期間のみであり、残りはすべ

【0061】また、従来例の図12と比べると、低電位が印加している期間は増加するがその低電位がトランジスタのOFF耐圧の劣化がないレベルに選ぶことによって劣化への影響を生じさせないことができる。

てOFF期間であるので、トランジスタのOFF時の最

大電位印加期間を減少させることはオフ電流の軽減のみ

ならず、トランジスタの劣化防止の軽減に非常に有効で

【0062】なお、上記の各実施の形態は基本的な構成 20 を示しており、この構成が必要に応じて適宜変更されることはいうまでもない。

[0063]

ある。

【発明の効果】本発明によれば、液晶の駆動、特に高速 応答の液晶駆動に関して、デークドライバの低電圧駆動 が実現でき、トランジスタサイズの縮小化とトランジスタの高速応答化、さらにはドライバ回路の簡潔化を図る ことができる。また、画素トランジスタのOFF期間に おけるソース・ドレイン電極間の最大印加電圧期間が短くなることから、リーク電流が減少するので表示品位の 向上と画素トランジスタの劣化の軽減を図れる。

【図面の簡単な説明】

【図1】本発明の実施の形態に係るアクティブマトリクス型液晶画像表示装置の構成を示す図である。

*【図2】対向電極駆動回路の詳細な回路図である。

【図3】図2の対向電極駆動回路の動作の説明に供する 波形図である。

【図4】図1の装置の動作の説明に供する波形図である

【図5】第1予備電圧と第2予備電圧との生成の説明に 供する波形図である。

【図6】対向電極駆動回路の変形例を示す図である。

【図7】画素の液晶をスプレー配向からベンド配向にする際の電極への印加電圧の説明に供する画素の構成を示す図である。

【図8】図7の液晶への印加電圧の波形図である。

【図9】対向電極駆動回路を用いて液晶に電圧を印加する場合の波形図である。

【図10】本発明の他の実施の形態に係る液晶画像表示 装置における動作説明に供する波形図である。

【図11】従来の液晶画像表示装置の構成を示す図であ ろ

【図12】従来の装置における反転信号とコモン信号との波形図である。

【図13】従来の装置の動作説明に供する波形図である。

【符号の説明】

- 1 対向電極駆動回路
- 2 入力回路
- 3 自動振幅調整回路
- 7 制御回路
- 8 走査ドライバ
- 9 データドライバ
- 10 画素トランジスタ
- 12 画素
- y 1 ~ y n データ信号配線
- x 1~xn 走査信号配線

【図2】

【図1】

【図11】

