AgentVSC for ANAC SCML 2023 Standard/Collusion Track

Ryoga Miyajma

Tokyo University of Agriculture and Technology, Katsuhide Fujita Lab.

Intoroduction

In the SCML World, it is hard to make a large profits. In the SCML2022 Standard Track, all agents had negative scores. Therefore, it is important to be committed to selling off inventory at a price higher than the costs of buying input products and producing output products.

The Design of AgentVSC

Production Strategy

Produce at the step of arrival of input

Easier inventory control

Negotiation Control Strategy

Negotiation Choice

Request negotiations

- Buyer

 - TIME : $\begin{bmatrix} current_step + 1, \\ min(current_step + 3, n_steps 1) \end{bmatrix}$
 - QUANTITY : [1, *n_lines*]
 - UNIT_PRICE : $[0, p_{current\ step}^{max_for_buying}]$
- Seller
 - TIME : [*t*, *t*]
 - t means the first step that $q_t > 0$
 - q_t means the expected unsold quantity
 - QUANTITY : $[q_t/n_consumers, q_t]$
 - UNIT_PRICE : $[p_{current_step}^{min_for_selling}, 4p_{current_step}^{min_for_selling}]$

Respond the negotiation requests

- TIME conditions
 - max_value>current_step and min_value<n_steps
- UNIT PRICE conditions
 - Buyer : $\min_{\text{value}} \leq p_{current_step}^{max_for_buying}$
 - Seller : $mx_value \ge p_{current_step}^{min_for_selling}$

Utility Function U(q, t, p)

If t or p are very bad, utility value is -1000, otherwise:

- Buyer
 - Linear Utility Function(0, -0.25, -1)
- Seller

 $Linear Utility Function(\frac{current_step}{n_steps-1}, 0, 1)$

Trading Strategy

Price Control

Determine the unit price at the maximum concession in negotiations

The highest unit price for buying

$$p_{t}^{max_for_buying} = \begin{cases} cp^{input_product} & \text{if } t = 0\\ \max(0.8p_{t-1}^{max_for_buying}, cp^{input_product-1}) & \text{if } I_{t} > I_{t-1}\\ p_{t-1}^{max_for_buying} & \text{if } I_{t} = I_{t-1}\\ \min(1.1p_{t-1}^{max_for_buying}, ap_{t}^{output_product} - p^{produce}) & \text{if } I_{t} < I_{t-1} \end{cases}$$

The lowest unit price for selling

$$p_t^{min_for_selling} = \begin{cases} tp_t^{output_product} & \text{if } t \leq 0.25T \\ \max(tp_t^{output_product}, ap_t^{output_product}) & \text{if } 0.25T < t \leq 0.5T \\ ap_t^{input_product} + p^{produce} & \text{if } 0.5T < t < T-1 \\ tp^{output_product}/2 & \text{if } t = T-1 \end{cases}$$

Signing Contracts

Select a combination of signing contracts

- Buyer
 - Sign unless the production limit is exceeded
 - Prioritize contracts with the lower unit price
- Seller
 - For each t, select combinations that
 - all execution dates are step t
 - sum of quantities is the best
 - Under these conditions, select a combination C that maximize eval(C)

$$eval(C) = \sum_{c \in C} w \frac{p_c}{p_c^{max}} + (1 - w)pr_{partner_c},$$

$$w = 0.5 - 0.5 \sin((\frac{current_steps}{n_steps} - 0.5)\pi)$$

$$\sum_{c \in C} w \frac{p_c}{p_c^{max}} + (1 - w)pr_{partner_c},$$

Strategies in Collusion Track

Prioritize sining of contracts with AgentVSC • Lower buying prices for factories with high production costs

 $p_0^{max_for_buying} = cp^{input_product} - (p^{produce} - p_1^{min_produce})$ $p_l^{min_produce}$: The minimum producing cost of AgentVSCs at level l