Question 5. MVDR, MSINR, and MMSE beamformers

(a) Plot the power of the beampattern of the beamformers.

(b) Plot the phase of the beampattern of the beamformers.

(c) Observe the results you get in (a) and (b), where are the interferers?

Ans: $\theta_1 = -35, \theta_2 = +35$

Beamformer 目的是放大 desired signal,並壓低 interference+noise。 但有時候會因為 interference 和 desired signal 有相關性而一起放大,所以看這三個 beamformers 的極值,都出現在 0, 35, -35 這三個地方,而 0 是三個 beamformers 都放大 的,所以辨認為 desired signal,另外兩個為 interference。

(d) Based on the results you get in (a) and (b), are the interferences coherent with the desired signal? Why?

從(c)圖中可知,MVDR 和 MMSE beamformer 都一起把 $\,\theta_2=+35\,$ 的干擾放大了,可知它 和 $\,\theta_0=0\,$ 的 desired signal 為 coherent。 $\,\theta_1=-35\,$ 的干擾和 desired signal 則沒有。

(e) Compare the results of MVDR and MMSE beamformers in (a) and (b), which beamformer gives better SNR? Why?

MMSE beamformers 可獲得較佳的 SNR。

因為 MVDR 只收取單一方向的訊號,而 MMSE 不只在單一方向保留訊號,它會收集所有的 coherent multipaths,整合成一個更好的接收訊號。

Question 6. MMSE, MMSE-OSIC, Maximum-likelihood (ML) detector,

and K-best sphere decoder

- (a) Uncorrelated channel with $\rho = 0$.
- (b) Medium-correlation channel with $\rho = 0.5$.
- (c) Fully correlated channel with $\rho = 1$.

((a)圖中線斷掉了代表 SER = 0, 因為 semilogy 會對 y 軸取 log, 所以 0 畫不出來)

< COMMENT >

i. MMSE-OSIC 因為從強的訊號開始解,large SNR 時能有效消除干擾,效能比 MMSE 好很多,但 low SNR 時就無法發揮效用。

若 MMSE-SIC 從弱的訊號開始解,error propagation 增加,效能會變成和 MMSE 差不多,如下圖所示。

- ii. 通道間完全獨立,SIC 能更好的消除干擾。當通道間具有相關性,SIC 則很難發揮作用。 從圖中可知,當通道相關性增加,MMSE-OSIC 效能越接近於 MMSE 效能。
- iii. ML 嘗試了所有可能的組合,所以效能最佳。而 K-best 是近似於 ML 的,在通道完全獨立時,K-best 和 ML 效能幾乎一樣。
- iv. 但當通道相關性增加,K-best 的 SER 開始些微增加,推測是因為錯誤解與正確解的差距縮短,所以 K-best 過早剪掉正確路徑的可能性增加。
- v. 在通道完全相關的情況下($\rho=1$),所有 detectors 都無法分辨出不同 data streams,平均 SER 約等於 0.5,不論 SNR 多大。

(d) Repeat the simulation of (a) with SVD precoding. Is there any difference between the performance of the four detectors? Why?

因為 SVD 作為 precoder 時,已經將通道對角化轉為 4 個獨立通道,所以每個 data stream已互相獨立,detector 的選擇不再造成影響。

但當通道相關性增加時,SVD 分解後,中間 diagonal 矩陣的對角線元素會變弱,導致 SER 上升,由下圖可知, ρ 增加,平均 SER 也不斷往上升, $\rho=1$ 時,平均 SER 約等於 0.5,不論 SNR 多大。

