1 Time Complexity + O(nt) O(ntog n)

2 Shace Complexity + Inplace Sorting algorithm > 9,9K

Inplace sorting algorithm → same memory usage without regarding to size of input data

1) Time Complexity + O(nt) O(nlog n)	183
2) Space Complexity - Implace Sorting algorithm -> 9,9K	
3) Stability - 6)126 1266	

If the first 6 is placed firstly and the second 6 at later, then it is stable. Otherwise, in vice versa case it is not stable

Analy	rsis Criteria For Sorting Algorithm	
1	Time Complexity - O(nt) O(nlog n)	
(2)	Space Complexity - Implace Sorting algorithm -> 9,9K	
	Stability -> 6 1 2 6 1 266 input Array States orting output Array Ago	
	imput Array States 300 17	
4	Internal SA -> All the data is loaded into the memory. Enternal SA -> All the 11 1 not loaded 1. 11	
ഭ	Adaptive -> Already Sorted data takes less time	
<u>(6)</u>	Recursive/Hon Recushe SA -> Recursive if it uses recursion	•