Proof HW

Parker Whaley

March 30, 2016

1

1.1

Theorem.

If * is closed on sets A and B and $A \cap B \neq \emptyset$ then * is closed on $A \cap B$.

Proof.

Suppose * is closed on sets A and B and $A \cap B \neq \emptyset$. Chose two arbitrary elements of $A \cap B$ lets call these c and d. By definition c and d are elements of A and elements of B. By simplification c and d are elements of A. Since A is closed under * note that $c*d \in A$. By simplification c and d are elements of B. Since B is closed under * note that $c*d \in B$. Note that $c*d \in A \wedge c*d \in B \rightarrow c*d \in A \cap B$. Since c and d were chosen arbitrarily from $A \cap B$ and c*d was shown to be in $A \cap B$ we can say that $A \cap B$ is closed under *.

1.2

This is false, counterexample.

Suppose * is a operator on the \mathbb{R} that returns the left side if both numbers are the same otherwise it returns the multiple.

Consider sets A=2 B=3. Note that since 2*2=2 and 3*3=3 that * is closed on both A and B. We also note that 2*3=6 witch is not a element of $A \cap B$ thus * is not closed in the set $A \cap B$.

2

Show that \oplus is communicative.

Consider two arbitrary / ratios n/m and j/k. Note that:

$$n/m \oplus j/k = (nk + mj)/(mk) = (jm + kn)/(km) = n/m \oplus j/k$$

So we can say that for arbitrary ratios \oplus commutes.

3

Show that $a/b = a/b \otimes c/c$ given that $c \neq 0 \neq b$. Note that $a/b \otimes c/c = (ac)/(bc)$. Also note that since abc = bac we can say a/b = (ac)/(bc). Note $a/b = (ac)/(bc) = a/b \otimes c/c$ thus $a/b = a/b \otimes c/c$.