Homework 09: Due 11/15

Stat061-F23

Prof Amanda Luby

- 1. Suppose we observe $X_1,...,X_n \sim \text{Bernoulli}(p)$ and we wish to test the hypothesis $H_0: p=p_0$ against $H_1: p \neq p_0$.
 - (a) What is the sampling distribution of \hat{p} ?
 - (b) What is the sampling distribution of \hat{p} under H_0 ?
 - (c) Show that the acceptance region (the set of test statistics where we fail to reject H_0) corresponds to a $(1-\alpha)$ confidence interval for \hat{p} .
- 2. Let $Y_1,...,Y_n \sim N(\mu,1)$. (Note: since σ is known, you should not need the t-distribution)
 - (a) Derive the form of the GLRT for testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$.
 - (b) Now, find the GLRT if $H_1: \mu=\mu_1$. How does the rejection region depend on μ_1 ?
- 3. Let $X_1,...,X_n \sim \operatorname{Exp}(\theta)$. Suppose that we wish to test $H_0: \theta \geq \theta_0$ against $H_1: \theta < \theta_0$. Let $X = \sum X_i$ and let δ_c be the test that rejects H_0 if $X \geq c$.
 - (a) Find $\pi(\theta|\delta_c)$ and argue that it is a decreasing function of θ .
 - (b) Find c such that δ_c has size α_0
 - (c) Let $\theta_0 = 2, n = 1$, and $\alpha_0 = 0.1$. Find the precise form of δ_c and sketch its power function.
- 4. TBA (will likely include R)
- 5. TBA (will include R)