5.Hafta

Lineer Regresyon (Eğri Uydurma)

Lineer Regresyon (Eğri Uydurma)

- Bütün makine öğrenmesi uygulamaları aynı genel yöntemi takip eder:
 - Bir olayın modeli için ve bir başarı ölçümü için, önceden var olan verilerden olayın uygun modeli bulmak, ve gelecekteki kararlar için bu modeli kullanmak
- Farklı makine öğrenmesi yöntemleri, farklı olay modelleri kullanabilmektedir
- Bunlardan, lineer regresyon modeli en basit makine öğrenmesi modelidir

• Lineer regresyon modelinde, neden ve sonuç arasında lineer ilişki varsayılmaktadır

Reklam harcamalarına bağlı gelecek öğrenci sayısı

Reklam harcamalarına bağlı gelecek öğrenci sayısı

Lineer ilişki

Bu model için mümkün makine öğrenme amaçları:

- Gelecek öğrenci sayısını tahmin etmek
- Gereken reklam harcamasını belirtmek

- Geçen senelerden yada benzer kurumlardan veriler var, yani hem de reklam harcamaları hem de sonuç olarak geldiği öğrenci sayısı var;
- Bu karar modeli, denetimli öğrenme kullanarak öğrenebilir

- Notasyon (burada ve daha sonra sürekli kullanılır olacak)
 - "m", önceden var olan örneklerin sayısı
 - Önceden bütün var olan örneklere "eğitim kümesi" diyoruz
 - "x", girdi değişkeni, bağımsız değişken, açıklayıcı değişken, yada neden faktörü, örneğin – reklam harcamaları
 - "y", çıktı değişkeni, bağımlı değişken, yada sonuç, örneğin geldiği öğrenci sayısı
 - (x,y) bir örnek, yani "x" ve "y" çifti
 - (xⁱ,yⁱ) eğitim kümesindeki "i" numaralı bir tane örnek

Makine öğrenme sorunu

- "h(x)" fonksiyonuna hipotez denir
- Demek ki, olayın modeli yada x ve y arasında olabilir ilişki fonksiyonu için beli bir şekili hipotez olarak varsayıyoruz

• Örneğin, en basit model/hipotezi,

$$y = h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

(bu model/hipoteze lineer model/hipotezi denir)

 Hipotez fonksiyonu birkaç ya da birçok parametreye bağlı olmalıdır

$$y = h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$
parametreler

 Öğrenme sürecinin uygun modeli oluşturması, eğitim kümesini kullanarak hipotez fonksiyonunun uygun parametrelerini seçmek demektir

$$y = h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$
parametreler

 Önceden var olan verilere göre hipotezdeki uygun parametreleri seçince, olayın modeli belirli olup gelecekte farklı kararlar için sonuçlarının tahmin edileceği için kullanılabilir

$$y = h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

Kararın sonucu Mümkün karar

- Hipotez parametreleri iyi şekilde nasıl seçilebilir?
- Öncelikle, "iyi parametre seçilmesi" ne demektir???
- Bunun için bir maliyet fonksiyonu kullanılır
- Bizim sorunumuza tekrar bakalım

- Farklı modellerin uygunluğu kesinleştirmek için, maliyet fonksiyonu kullanılmaktadır
- Maliyet fonksiyonu, bir modelin var olan verilere uygunluğu ya da iyiliği belirtir

Aynı eğitim kümesi için birkaç hipotez denilebilir:

- İyi hipotez için, model olan y'ler eğitim kümedeki y'lere yakın olacağını istemekteyiz
- Bu ölçüde, (θ_0, θ_1) model parametreleri, model y'lerinin gerçek var olan verilere en yakın olacağını sağlamak zorundadır

 Model y'lerinin gerçek verilerden uzaklığı ölçmek için, şu fonksiyon kullanılabilir

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2}$$

Bir örnek için aralığı:

$$h_{\theta}(x^i) - y^i$$

Aralıklar büyük ise, model kötü demektir, ve J maliyeti de çok büyük olacaktır

- Bu durumda, J fonksiyonuna "maliyet fonksiyonu" diyoruz
- Maliyet fonksiyonu, farklı modellerin gerçek verilere ne kadar yakın olduğunu tanımlıyor
- Büyük J'nin değerleri, $h_{\theta}(x)$ değerlerinin gerçek verilerden çok uzak olduğunu demektetir

En iyi model, gerçek verilere en yakın model, böylece en küçük J değeri demektir

• Modelin gerçek verilere en yakın olacağını sağlamak, (θ_0, θ_1) için bu optimizasyon problemi demektedir

$$\min_{\theta} J(\theta) = \min_{\theta_0, \theta_1} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$$

Modeldeki sonuçların gerçek verilerden ortalama mesafesi

Gerçek lineer regresyon maliyeti iki parametreye bağlı, yani 2 boyutlu fonksiyondur

