Knowledge Discovery and Data Mining

Unit #6

Sajjad Haider Spring 2010

Acknowledgement

- Most of the slides in this presentation are taken from course slides provided by
 - Han and Kimber (Data Mining Concepts and Techniques) and
 - Tan, Steinbach and Kumar (Introduction to Data Mining)

Bayes Theorem

- $P(A \mid B) = P(B \mid A) P(A)$ P(B)= $P(B \mid A) P(A)$ $P(B \mid A) P(A) + P(B \mid \neg A) P(\neg A)$
- P(A) is the prior probability and P(A | B) is the posterior probability.
- Suppose events A₁, A₂,, A_k are mutually exclusive and exhaustive; i.e., exactly one of the events must occur. Then for any event B:

$$P(A_i \mid B) = P(B \mid A_i) P(A_i)$$

$$\sum P(B \mid A_i) P(A_i)$$

Sajjad Haider

Spring 2010

Example I

- According to American Lung Association, 7%
 of the population has lung cancer. Of these
 people having lung disease, 90% are smokers;
 and of those not having lung disease, 25.3%
 are smokers.
- Determine the probability that a randomly selected smoker has lung cancer.

Bayesian Classifiers

- Consider each attribute and class label as random variables
- Given a record with attributes (A₁, A₂,...,A_n)
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes $P(C \mid A_1, A_2,...,A_n)$
- Can we estimate P(C | A₁, A₂,...,A_n) directly from data?

Sajjad Haider Spring 2010

Bayesian Classifiers

- Approach:
 - compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes $P(C \mid A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$
- How to estimate P(A₁, A₂, ..., A_n | C)?

Naive Bayes

- Naïve Bayes classifiers assume that the effect of an attribute value on a given class is independent of the values of the other attributes.
- This assumption is called class conditional independence.
- It is made to simplify the computations involved and, in this sense, is considered "naïve".

Sajjad Haider Spring 2010

Bayesian Networks

- Bayesian belief networks are graphical models, which unlike naïve Bayesian classifiers, allow the representation of dependencies among subsets of attributes.
- Bayesian belief networks can also be used for classification.

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_i) P(A_2 | C_i)... P(A_n | C_i)$
 - Can estimate $P(A_i | C_i)$ for all A_i and C_i .
 - New point is classified to C_j if $P(C_j) \prod P(A_i | C_j)$ is maximal.

Sajjad Haider Spring 2010

How to Estimate Probabilities from Data?

	-	-	-	
Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- Class: $P(C) = N_c/N$
 - e.g., P(No) = 7/10, P(Yes) = 3/10
- For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_c$$

- where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k
- Examples:

P(Status=Married | No) = 4/7 P(Refund=Yes | Yes)=0

Naïve Bayes Classification: Mammals vs. Non-mammals

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
ython	no	no	no	no	non-mammals
almon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
rog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
at	yes	yes	no	yes	mammals
igeon	no	yes	no	yes	non-mammals
at	yes	no	no	yes	mammals
eopard shark	yes	no	yes	no	non-mammals
urtle	no	no	sometimes	yes	non-mammals
enguin	no	no	sometimes	yes	non-mammals
orcupine	yes	no	no	yes	mammals
el	no	no	yes	no	non-mammals
alamander	no	no	sometimes	yes	non-mammals
jila monster	no	no	no	yes	non-mammals
latypus	no	no	no	yes	mammals
wl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

 Train the model (learn the parameters) using the given data set.

Apply the learned model on new cases.

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Sajjad Haider

11

Naïve Bayes Classification: Mammals vs. Non-mammals

Spring 2010

N	Olive Dieth	O Fb-	Live in Water	Harra Laura	01
Name	Give Birth	Can Fly			Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
vhale	yes	no	yes	no	mammals
rog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
pat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
eopard shark	yes	no	yes	no	non-mammals
urtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes
M: mammals

N: non-mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth Can Fly Live in Water Have Legs Class
ves no yes no ?

Sajjad Haider

P(A|M)P(M) > P(A|N)P(N) => Mammals

Spring 2010

12

		Exan	nple	: Pla	ay Tennis	
Outlook	Tempe	ature Humidi	ty Windy	Class	outlook	
sunny	hot	high	false	N		
sunny	hot	high	true	N	P(sunny p) = 2/9	P(sunny n) = 3/5
overcast		high	false	Р	P(overcast p) = 4/9	P(overcast n) = 0
rain	mild	high	false	P		
rain	cool	normal		P	P(rain p) = 3/9	P(rain n) = 2/5
rain	cool	normal	true	N P	temperature	
overcast	mild	normal high	true false	N		
sunny sunny	cool	normal		P	P(hot p) = 2/9	P(hot n) = 2/5
rain	mild	normal		P	P(mild p) = 4/9	P(mild n) = 2/5
sunny	mild	normal	true	P	` ",	` ' '
overcast	mild	high	true	Р	P(cool p) = 3/9	P(cool n) = 1/5
overcast	hot	normal	false	Р	humidity	
rain	mild	high	true	N	P(high p) = 3/9	P(high n) = 4/5
	Ī	P(P) = 9/14			P(normal p) = 6/9	P(normal n) = 2/5
P(N) = 5/14					windy	
	Ĺ	1 (14) = 3/14			P(true p) = 3/9	P(true n) = 3/5
	Temperatu	-	Windy	Class	P(false p) = 6/9	P(false n) = 2/5
rain Saijad Haide	hot	high fa	se ?	Spring 2010	<u> </u>	13

Characteristics of Naïve Bayes Classifiers

- They are robust to isolated noise points because such points are averaged out when estimating conditional probabilities from data.
- Naïve Bayes classifiers can also handle missing values by ignoring the example during model building and classification.
- They are robust to irrelevant attributes. If Xi is an irrelevant attribute, then P(Xi | Y) becomes almost uniformly distributed.
- Correlated attributes can degrade the performance of naïve Bayes classifiers because the conditional independence assumption no longer holds for such attributes.

How Effective are Bayesian Classifiers?

- Various empirical studies of this classifier in comparison to decision tree and neural network classifiers have found it to be compariable in some domain.
- In theory, Bayesian classifiers have the minimum error rate in comparison to all other classifiers.
- However, in practice this is not always the case, owning to inaccuracies in the assumptions made of its use, such as class conditional independence, and the lack of available probability data.