Assignment 11 Papoulis ex 8.30

Gunjit Mittal (Al21BTECH11011)

June 11, 2022

Outline

Question

Solution

Question

In a production process, the number of defective units per hour is a poisson distributed random variable \times with parameter $\lambda=5$. A new process is introduced, and it is observed that the hourly defectives in a 22-hour period are

$$x_i = 3054264153740832436569$$

Test the hypothesis $\lambda = 5$ against $\lambda < 5$ with $\alpha = 0.05$.

Solution

Hypothesis $H_0 \implies \lambda = \lambda_0 = 5$ and $H_1 \implies \lambda < 5$

Given X = Poisson (5)

Using approximation, X can be considered as a Normal $(5, \sqrt{5})$

Since we have to prove the hypothesis against the type $\theta < \theta_0$, We accept H_0 iff $q>z_\alpha$ and $z_\alpha=z_{0.05}=-1.64$

$$q = \frac{\bar{x} - \lambda_0}{s / \sqrt{n}} \tag{2.1}$$

Where $\bar{x} = \frac{90}{22} = 4.09$, s is variance and n is number of observations = 22

$$q = \frac{4.09 - 5}{\sqrt{5}/\sqrt{5}} = -0.91\tag{2.2}$$

 $\implies q > z_{\alpha}$ so the hypothesis $\lambda = 5$ is accepted.

