AST1004 Summer 2018 Final Exam Review Questions

Douglas H. Laurence

Department of Physical Sciences, Broward College, Davie, FL 33314

- 1. The evolution of a star is determined entirely by:
 - (a) Mass
 - (b) Mass and radius
 - (c) Temperature
 - (d) Mass and temperature
- 2. A star with a mass too low to undergo hydrogen fusion is known as:
 - (a) A red dwarf
 - (b) A red giant
 - (c) A brown dwarf
 - (d) A white dwarf
- 3. The Chandrasekhar limit is defined as:
 - (a) The maximum mass of a white dwarf
 - (b) The maximum mass of a neutron star
 - (c) The maximum mass of a black hole
 - (d) The maximum mass of a main sequence star
- 4. The Tolman-Oppenheimer-Volkoff (TOV) limit is defined as:
 - (a) The maximum mass of a white dwarf
 - (b) The maximum mass of a neutron star
 - (c) The maximum mass of a black hole
 - (d) The maximum mass of a main sequence star
- 5. Some regions along the plane of the Milky Way appear dark because
 - (a) Stars in that region are hidden by interstellar gas
 - (b) Stars in that region are hidden by dark dust particles
 - (c) Many brown dwarfs in those areas absorb light which they turn into heat
 - (d) Many black holes absorb all light from those directions

- 6. Which of the following correctly lists the stages of the birth of a star:
 - (a) Gas fragments \rightarrow Pre-main sequence star \rightarrow Red Giant \rightarrow Main sequence star
 - (b) Protostar \rightarrow Red dwarf \rightarrow Pre-main sequence star \rightarrow Main sequence star
 - (c) Gas fragments \rightarrow Protostar \rightarrow Pre-main sequence star \rightarrow Main sequence star
 - (d) Protostar \rightarrow Gas fragments \rightarrow Pre-main sequence star \rightarrow Main sequence star
- 7. The end product of the Sun will be:
 - (a) A brown dwarf
 - (b) A white dwarf
 - (c) A neutron star
 - (d) A black hole
- 8. The lifetime of a star on the main sequence:
 - (a) Increases with the mass of the star
 - (b) Is independent of the mass of the star
 - (c) Decreases with the mass of the star
 - (d) None of the above
- 9. A solar mass star will evolve off the main sequence when
 - (a) It completely runs out of hydrogen
 - (b) It expels a planetary nebula to cool off and release radiation
 - (c) It explodes as a violent nova
 - (d) It builds up a core of inert helium
- 10. Identify the regions of the HR diagram:

- (a) A: White dwarfs, B: Main sequence, C: Giants, D: Supergiants
- (b) A: Main sequence, B: Giants, C: Supergiants, D: White dwarfs
- (c) A: Main sequence, B: White dwarfs, C: Red dwarfs, D: Giants
- (d) A: Main sequence, B: Giants, C: Red dwarfs, D: White dwarfs

- 11. A red dwarf, which is fully convective, burns hydrogen:
 - (a) In its core first, before fusion moves to outer layers as the star expands
 - (b) Evenly throughout the star, since convection takes helium outward and hydrogen inward
 - (c) It doesn't burn hydrogen; it initially burns helium
 - (d) It doesn't burn hydrogen, because it's not technically a star
- 12. Which type of stellar explosion leads to the production of a neutron star?
 - (a) Nova
 - (b) Recurrent nova
 - (c) Type I supernova
 - (d) Type II supernova
- 13. Novae can occur only for stars in a binary system:
 - (a) True
 - (b) False
- 14. What is left behind after a type I supernova?
 - (a) A white dwarf
 - (b) A neutron star
 - (c) A black hole
 - (d) No remnant is left behind
- 15. The vast majority of elements in the period table were produced by:
 - (a) The big bang
 - (b) Supernovae
 - (c) Stellar fusion
 - (d) Chemical reactions
- 16. White dwarfs form when:
 - (a) The gravitational pressure is matched by thermal pressure
 - (b) The gravitational pressure is matched by electron degeneracy pressure
 - (c) The gravitational pressure is matched by neutron degeneracy pressure
 - (d) The gravitational pressure isn't matched by any outward pressure
- 17. Neutron stars form when:
 - (a) The gravitational pressure is matched by thermal pressure
 - (b) The gravitational pressure is matched by electron degeneracy pressure
 - (c) The gravitational pressure is matched by neutron degeneracy pressure
 - (d) The gravitational pressure isn't matched by any outward pressure

- 18. A black hole forms when:
 - (a) The gravitational pressure is matched by thermal pressure
 - (b) The gravitational pressure is matched by electron degeneracy pressure
 - (c) The gravitational pressure is matched by neutron degeneracy pressure
 - (d) The gravitational pressure isn't matched by any outward pressure
- 19. The event horizon of a black hole is defined as:
 - (a) The point at which the escape velocity is equal to the speed of light
 - (b) The point at which you need to move at the speed of light just to stay still
 - (c) The center of the black hole
 - (d) The point at which the density of the black hole becomes infinite
- 20. Which of the following particles can escape from within the event horizon of a black hole?
 - (a) Neutrinos
 - (b) Electrons
 - (c) Protons
 - (d) None of the above
- 21. Fill in the blanks: A neutron star must have a main sequence mass of _____ and have a left-over mass after a supernova of _____.
 - (a) Between $0.5M_{\odot} 8M_{\odot}$, less than $1.4M_{\odot}$
 - (b) Between $8M_{\odot} 10M_{\odot}$, less than $1.4M_{\odot}$
 - (c) Between $8M_{\odot} 10M_{\odot}$, between $1.4M_{\odot} 3M_{\odot}$
 - (d) Between $10M_{\odot} 25M_{\odot}$, between $1.4M_{\odot} 3M_{\odot}$
- 22. Label the major features of a rotating (Kerr) black hole:

- (a) A: Singularity, B: Event horizon, C: Ergosphere
- (b) A: Event horizon, B: Singularity, C: Ergosphere
- (c) A: Singularity, B: Ergosphere, C: Event horizon
- (d) A: Event horizon, B: Ergosphere, C: Singularity

- 23. How does the theory of general relativity explain gravity?
 - (a) A long-distance force between two objects with mass
 - (b) A long-distance force between two objects with electric charge
 - (c) A long-distance force between any two objects
 - (d) Due to the curvature of spacetime
- 24. If light from a distant star passes close to a massive body, the light beam will:
 - (a) Bend towards the star due to gravity
 - (b) Continue moving in a straight line
 - (c) Change color to a shorter wavelength
 - (d) Slow down
- 25. Why do scientists describe the theory of general relativity as "incomplete"?
 - (a) It does not explain why light bends near a dense object
 - (b) It does not incorporate a description of matter on a very small scale
 - (c) It does not agree with the expansion of the universe
 - (d) The gravity waves it predicts have not been observed
- 26. The Hubble Tuning Fork diagram is given below. Which of the following galaxies are consider "young" galaxies on the Tuning Fork diagram?

- (a) Elliptical galaxies
- (b) Spiral galaxies
- (c) Barred spiral galaxies
- (d) None of the above
- 27. The spectra of interstellar gas clouds show that they are mostly composed of:
 - (a) Hydrogen
 - (b) Helium
 - (c) Oxygen
 - (d) Nitrogen

28.	The feature that distinguishes a spiral galaxy from an elliptical galaxy is:
	(a) A central bar
	(b) A galactic core
	(c) Spiral arms
	(d) A galactic disk

- 29. Which of the following options describe the star content of the three different types of galaxies?
 - (a) Elliptical: many stars, Spiral: no stars, Barred Spiral: many stars
 - (b) Elliptical: no stars, Spiral: no stars, Barred Spiral: many stars
 - (c) Elliptical: no stars, Spiral: many stars, Barred Spiral: many stars
 - (d) Elliptical: many stars, Spiral: many stars, Barred Spiral: no stars
- 30. What provides the majority of the gravitational pressure needed to hold a galaxy together?
 - (a) Stars near the galactic center
 - (b) A supermassive black hole at the center
 - (c) A solar mass black hole at the center
 - (d) Stars on the spiral arms of the galaxy
- 31. What is dark matter?
 - (a) Neutrinos
 - (b) An unknown source of the "missing mass" in galaxies
 - (c) Brown dwarfs
 - (d) Interstellar dust
- 32. Where in a spiral galaxy does stellar evolution occur?
 - (a) Near the galactic center
 - (b) On the spiral arms
 - (c) In front of the spiral arms
 - (d) Behind the spiral arms
- 33. Hubble's law was used to demonstrate:
 - (a) The universe was static
 - (b) The universe was expanding
 - (c) The universe was contracting
 - (d) None of the above

- 34. Where is the center of the universe?
 - (a) There is no center
 - (b) Near the Earth, which is why everything is moving away from us
 - (c) Near the center of the Milky Way, which is why everything is moving away from us
 - (d) None of the above
- 35. The Copernican Principle states, essentially:
 - (a) The Earth is at the center of the universe
 - (b) The Sun is at the center of the universe
 - (c) Human beings are not special in the eyes of the universe
 - (d) Human beings are special in the eyes of the universe
- 36. In a universe where the **only** long-distance force was gravity, which of the following would be true:
 - (a) The expansion of the universe would be constant
 - (b) The expansion of the universe would slow down
 - (c) The expansion of the universe would speed up
 - (d) The universe would never expand to begin with if gravity were the only long-distance force
- 37. What is the currently-accepted state of the expansion of the universe?
 - (a) The universe's expansion is slowing down
 - (b) The universe is expanding at a constant rate
 - (c) The universe's expansion is speeding up
 - (d) The universe isn't expanding
- 38. What is dark energy?
 - (a) The unknown source of energy that counteracts gravity in the universe
 - (b) The source of dark matter in the universe
 - (c) The energy responsible for slowing down the expansion of the universe
 - (d) None of the above