UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGIA

EXAMEN DE INGRESO 1 2014 ARITMETICA -ALGEBRA FINAL - F1

SOLUCIONARIO

			20()								
1.	Calcular el val	or numérico de	$\frac{38xyz(x+y-z)}{x^2+y^2-z^2}$, pa	$x = \frac{1}{2}, y = \frac{1}{2}$	$\frac{1}{4}$, $z = -\frac{1}{8}$						
	A) $\frac{1}{4}$ B) -	$-\frac{1}{4}$ C) $\frac{7}{4}$	D) $-\frac{7}{4}$	E)	ninguno						
	$Soluci\'on$										
	(1) $38xyz(x+y-z) = 38(\frac{1}{2})(\frac{1}{4})(-\frac{1}{8})(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}) = -\frac{133}{256}$										
	(2) $x^2 + y^2 - z^2 = (\frac{1}{2})^2 + (\frac{1}{4})^2 - (-\frac{1}{8})^2 = \frac{19}{64}$										
	$(3)^{\frac{-\frac{133}{256}}{\frac{19}{64}}} = -\frac{7}{4}$										
	La solución es $-\frac{7}{4}$										
	La respuesta es \mathbf{D}										
2.	2. 1000 adoquines cuestan 5000 bolivianos. Cada adoquín cubre una superficie de 160 cm^2 . El costo del total de adoquines necesarios para cubrir un piso rectangular de 8 metros \times 6,5 metros, es (en bolivianos)										
	A) 14000	B) 13000	C) 14625	D) 16250	E)	ninguno					
	$Soluci\'on$										
	(1) 1 adoquin cuesta 5 bolivianos										
	(2) la superficie a cubrir es $8 \times 6.5 = 52.0$ metros cuadrados										
	(3) $52 \text{ m}^2 = 520000 \text{ cm}^2$. Por tanto, se requieren $\frac{520000}{160} = 3250$ adoquines										
	(4) Y el costo total es $3250 \times 5 = 16250$										
	La respuesta es D										
3.	La suma de las	s soluciones de	la ecuación $\frac{x}{2x+1}$	$\frac{x+1}{x+3} = 1$; vo	ale						
	A) 1	B) 2	C) 3	D) 4		E) ninguno					
	$Soluci\'on$										
	(1) $\frac{x}{2x+7} + \frac{x+1}{x+3} = \frac{x^2+3x+2x^2+2x+7x+1}{(2x+7)(x+3)} = \frac{3x^2+12x+1}{(2x+7)(x+3)} = 1$ (2) De donde $3x^2 + 12x + 1 = 2x^2 + 13x + 21$. Entonces $x^2 - x - 20 = 0$ (3) La suma de las soluciones es el inverso aditivo del coeficiente de $x:1$										
	La respuesta es ${f A}$										

- 4. La solución x de la ecuación $\log_5(x+1) \log_5(x-1) = 2$ es un número que verifica
 - A) 1 < x < 2 B) -1 < x < 0 C) 0 < x < 1 D) $x \ge 2$ E) ningun Solucion
 - (1) De la iguadad se obtienė: $\log_{5}\left[\frac{x+1}{x-1}\right]=2$
 - (2) Lo que significa $5^2 = \frac{x+1}{x-1}$. De donde: 25x 25 = x + 1. $x = \frac{26}{24} = \frac{13}{12} = 1.083333333$ La respuesta es **A**

EXAMEN DE INGRESO 12014 OPCION 1 GEOMETRIA TRIGONOMETRIA F1 **SOLUCIONARIO**

- 1. Los triángulos T_1 y T_2 son semejantes y la razón de proporcionalidad de los lados de T_1 a los de T_2 es 3. Si el área de T_1 vale 576 cm² , entonces el área de T_2 vale (en cm²)
 - A) 128
- B) 144
- C) 64
- E) ninguno

Solución

(1)

Se puede mostrar (Teorema de Tales, por ejemplo) que se da la misma proporcionalidad entre las

(2) Luego
$$A_1 = \frac{b_1 h_1}{2} = \frac{(3b_2)(3h_2)}{2} = 9\frac{b_2 h_2}{2} = 9A$$

(donde A , b , h representan las áreas, bases, alturas correspondientes en T_1 y T_2)

(3) Luego
$$A_2 = \frac{A_1}{9} = \frac{576}{9} = 64$$

La respuesta es ${\bf C}$

- 2. Para que la expresión $\frac{2}{1-\sin t} \frac{2}{1+\sin t} = k \tan t \sec t$ sea una identidad se requiere que k tome el
 - A) -4
- B) -2
- C) 2
- D) 4
- E) ninguno

Solución

(1) Operando en el primer miembro se tiene:
$$\frac{2}{1-\sin t} - \frac{2}{1+\sin t} = \frac{2+2\sin t - 2+2\sin t}{1-\sin^2 t} = \frac{4\sin t}{\cos^2 t} = 4\sin t \frac{1}{\cos t} = 4\tan t \sec t$$

(2) Comparando con la expresión del segundo miembro, se tiene que k debe tomar el valor 4

La respuesta es **D**

	un triángulo m de dicho trián	•	ate 6,8 y 12 met	ros;entonces el coseno del mayo	r
A) $-\frac{4}{15}$ Solución	B) $-\frac{5}{12}$	C) $-\frac{11}{24}$	D) $-\frac{1}{15}$	E) ninguno	

(1) Aplicamos el Teorema de los Cosenos de manera que el ángulo θ en dicha fórmula sea el ángulo opuesto al lado mayor

(2)
$$12^2 = 8^2 + 6^2 - 2(8)(6)\cos\theta$$
; es decir:
(3) $44 = -96\cos\theta$. De donde: $\cos\theta = -\frac{44}{96} = -\frac{11}{24}$

La respuesta es $\, {f C} \,$

4. La suma de las soluciones de la ecuación trigonométrica $\sin x + \cos x = 1$ en el intervalo $[0, \pi]$ vale:

a)
$$\frac{\pi}{2}$$
 B) $\frac{3\pi}{2}$

C)
$$\frac{5\pi}{2}$$

D) $\frac{7\pi}{2}$

E) ninguno

Soluci'on

(1) Despejando $\cos x = 1 - \sin x$. Elevando al cuadrado: $\cos^2 x = (1 - \sin x)^2 = 1 - 2\sin x + \sin^2 x$

(2) Entonces $1 - \sin^2 x = 1 - 2\sin x + \sin^2 x$

(3) Simplificando: $2\sin^2 x - 2\sin x = 0$. Entonces $2\sin x(\sin x - 1) = 0$. De donde $\sin x = 0$, o $\sin x = 1$

(3) Las soluciones en el intervalo pedido son x=0 , $x=\frac{\pi}{2}$, $(x=\pi)$ es solución extraña) .

La suma de dichas soluciones es $\frac{\pi}{2}$

La respuesta es A

Fila 1 $V_{01} = 60 \frac{\pi}{3}$ $V_{02} = 90 \frac{\pi}{3}$ $V_{02} = 90 \frac{\pi}{3}$ $V_{03} = 5t^{2}$ $V_{03} = 5t^{2}$ $V_{04} = 5t^{2}$ $V_{05} = 5$

Rta.(b)

Fila1

$$mg sen30^{\circ} - F = ma$$

$$Q = g sen30^{\circ} - \frac{f}{m}$$

$$Q = \frac{10 m^{2}}{m}$$

$$Q = \frac{5}{m} - \frac{f}{m}$$

$$x = x_0 + x_0 + \frac{1}{2}at^2$$

 $d = \frac{1}{2}(\frac{5}{2} - \frac{f}{2})t^2 = (\frac{5}{2} - \frac{f}{2}m)t^2$

$$m = 300 [kg]$$

 $t = 4[s]$

$$d = \left(\frac{5}{2} - \frac{p}{2m}\right)^{\frac{2}{2}}$$

$$d = \left[\frac{5}{2} - \frac{600}{2(3005)}\right] = \frac{3}{2}(16) = 24m$$

$$d = 24[m]$$

Rta (b)

$$R_1 = 10 \text{ cm} = \frac{1}{10} \text{ m}$$

$$W_1 = \frac{1}{2} 2\pi = \pi \text{ rad}$$

$$V_1 = V_2$$

$$R_1 W_1 = R_2 W_2$$

$$R_2 = \frac{R_1(\frac{W_1}{W_2})}{10W_2} = \frac{\pi}{10W_2}$$

$$V = RW_2$$

$$W_2 = \frac{V}{R} = 7$$

$$R_2 = \frac{\pi}{10 \frac{V}{R}} = \frac{R\pi}{10 V}$$

$$R_2 = \frac{R\pi}{10 V}$$

$$C = 30 \text{ cm} = \frac{3}{3} \text{ m}$$

$$R_{2} = \frac{3}{10} \frac{\pi}{100(6)} = \frac{3\pi}{100(6)} = \frac{\pi}{200} \int_{-100}^{100} \frac{10000}{100}$$

$$R_{2} = \frac{\pi}{2} [cm] = 0.5 \pi [cm]$$

Rta. (d)

$$MgL = \frac{1}{2}MJ^2 \rightarrow J = \sqrt{29L} = \sqrt{20}$$

L = 1 m

$$T = m(\frac{L}{L^2} + 9) = m(v^2 + 9)$$

$$T = m(\frac{L}{L^2} + 9) = m(v^2 + 9)$$

$$T = 30[N]$$

Rta. (d)

Q13.- Escriba estructuras de Lewis para las siguientes especies, e indique la molécula que tiene dos dobles enlaces.

A) $S_2O_3^{2-}$

B) [HPO₄]²⁻

C) NH₃

 $\mathbf{D}) \mathbf{H}_2 \mathbf{C}_2 \mathbf{O}_4$

E) Ninguna

Solución:

A)
$$\begin{bmatrix} /\overline{\underline{O}} : \overset{\cdots}{\underline{S}} :: \underline{O}/\\ |\underline{O}| \end{bmatrix}^{2-} \qquad \begin{bmatrix} H - \overline{\underline{O}} - \overset{\uparrow}{P} - \overline{\underline{O}}/\\ /\\ /\underline{\underline{O}}^{-} \end{bmatrix}^{2} \\ |\underline{O}| \end{bmatrix}^{2-}$$

C)
$$\begin{bmatrix} H \\ H - \stackrel{/}{N} - H \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{B}) & /\overline{O} & \overline{O} / \\ // & // \\ H - \overline{\underline{O}} - C - C - \overline{\underline{O}} - H \end{bmatrix}$$

Q14.- A partir de la reacción:

$$FeCl_2 + KMnO_4 + HCl \rightarrow FeCl_3 + MnCl_2 + KCl + H_2O$$

Hallar el valor de "x" con respecto a los coeficientes (reactivos) de la reacción igualada.

$$x = \frac{sustancia \, oxidada \, - \, sustancia \, reducida}{agente \, reductor}$$

A) 5

B) 4

C) 4/5

D) 5/4

E) Ninguno

Solución:

Sustancia que se oxida: $Fe +2 \rightarrow +3$ Agente reductor: $FeCl_2$ Sustancia que se reduce; $Mn +7 \rightarrow +2$ Agente oxidante: $KMnO_4$

$$Fe^{2+} \rightarrow Fe^{3+} + 1e^{-} \qquad *5 \quad semireacción \ de \ oxidación \\ \frac{5e^{-} + 8H^{+} + MnO_{4}^{-1} \rightarrow Mn^{2+} + 4H_{2}O}{5Fe^{2+} + 5e^{-} + 8H^{+} + MnO_{4}^{-1}} \rightarrow 5Fe^{3+} + 5e^{-} + Mn^{2+} + 4H_{2}O$$

$$5FeCl_2 + KMnO_4 + 8HCl \rightarrow 5FeCl_3 + MnCl_2 + KCl + 4H_2O$$

 $x = \frac{sustancia oxidada - sustancia reducida}{agente reductor}$

$$x = \frac{5-1}{5} = 4/5$$

Q15.- A partir de la reacción:

$$2Al + 3 H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3 H_2$$

Calcular los gramos de hidrógeno que se producen cuando reaccionan 54 g de Aluminio.

A) 3

D) ′

C) 4

D) 6

E) Ninguno

Solución:

$$54 \ g \ Al \left(\frac{1 \ mol \ Al}{27 \ g \ Al}\right) \left(\frac{3 \ mol \ H_2}{2 \ mol \ Al}\right) \left(\frac{2 \ g \ H_2}{1 \ mol \ H_2}\right) = 6g \ H_2$$

Q16.- Se diseñó una nueva escala de temperatura basada en el punto de congelamiento del agua tomada como -10 y 40 grados de esta escala equivalen a 50 $^{\circ}$ C . ¿Cuál es la temperatura del agua hirviente en la nueva escala?

A) 100

B) 50

<u>C) 90</u>

D) 40

E) Ninguno

Solución:

$$\frac{{}^{\circ}N - (-10)}{40 - (-10)} = \frac{{}^{\circ}C - 0}{50 - 0}$$

$$\frac{°N+10}{50} = \frac{°C}{50}$$

$$^{\circ}N = ^{\circ}C - 10 = 100 - 10 = 90^{\circ}$$