Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем управления и информатики Группа <u>Р3340</u>

Лабораторная работа №8 Экспериментальное построение областей устойчивости линейной системы на плоскости двух параметров Вариант 9

Проверил:			_(подпись)	
Выполнил:	_(подпись)			
""	20r.	Санкт-Петербург,	20г.	
Работа выполне	на с оценкой_			
Лата зашиты"	11	20 г.		

Цель работы: Ознакомление с экспериментальными методами построения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы ее параметров.

Задание: построить границу устойчивости системы изменяя значение T2 от 0.1 до 5, подбирая K таким образом, чтобы система была на границе устойчивости. Расчитать аналитически границу устойчивости.

1 Моделирование системы

Начальные данные:

T1 = 2.5

Рис. 1: Схема моделирования

Рис. 2: Неустойчивая система K=15,T2=0.1

Рис. 3: Устойчивая система K=5,T2=0.1

Рис. 4: Граница устойчивости K=10.5,T2=0.1

2 Сравнение теоретического расчета и экспериментального

Необходимые для расчета критерия Гурвица формулы:

$$W(s) = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K};$$

$$\Gamma = \begin{bmatrix} T_1 + T_2 & K & 0 \\ T_1 T_2 & 1 & 0 \\ 0 & T_1 + T_2 & K \end{bmatrix}$$

$$K = \frac{T_1 + T_2}{T_1 T_2}$$

T2, c	0,10	0,50	1,00	1,50	2,00	2,50	3,00	3,50	4,00	5,00
К, э	10,50	2,40	1,40	1,10	0,90	0,80	0,77	0,70	0,65	0,60
К, р	10,40	2,40	1,40	1,07	0,90	0,80	0,73	0,69	0,65	0,60

Рис. 5: Экспирементальная граница устойчивости

Рис. 6: Рассчитанная граница устойчивости

Вывод: Полученные при помощь теоретического расчета граница устойчивости совпадает с полученной эксериментально.