8.5 CONNECTION NOMINAL STRENGTH TABLES

Table 8-1. Nominal Strengths of Round HSS-to-HSS Truss Connections		
Connection Type	Connection Nominal Axial Strength*	
General Check For T-, Y-, Cross- and K-Connections with Gap, when $D_{b ({\rm tens/comp})} < \left(D-2t\right)$	Limit State: Shear Yielding (Punching) $P_n = 0.6F_y t \pi D_b \left(\frac{1 + \sin \theta}{2 \sin^2 \theta} \right)$	(K2-4) and (K2-9)
	$\phi = 0.95 \text{ (LRFD)}$ $\Omega = 1.58 \text{ (ASD)}$	(142-3)
T- and Y-Connections	Limit State: Chord Plastification	
θ θ t θ t	$P_n \sin\theta = F_y t^2 (3.1 + 15.6 \beta^2) \gamma^{0.2} Q_t$ $\phi = 0.90 \text{ (LRFD)} \qquad \Omega = 1.67 \text{ (ASD)}$	(K2-3)
Cross-Connections	Limit State: Chord Plastification	
P_r θ θ θ	$P_n \sin \theta = F_y t^2 \left(\frac{5.7}{1 - 0.81 \beta} \right) Q_t$ $\phi = 0.90 \text{ (LRFD)}$ $\Omega = 1.67 \text{ (ASD)}$	(K2-5)
K-Connections with Gap or Overlap	Limit State: Chord Plastification	
$t_{b \text{ comp}}$ $P_{r \text{ comp}}$ $P_{r \text{ tens}}$	$(P_n \sin \theta)_{\text{compression branch}} = F_y t^2 \left(2.0 + 11.33 \frac{D_b \text{ comp}}{D} \right) Q_g Q_f$	(K2-6)
θ_{comp} θ_{tens} t	$(P_n \sin \theta)_{\text{tension branch}} = (P_n \sin \theta)_{\text{compression branch}}$ $\phi = 0.90 \text{ (LRFD)}$ $\Omega = 1.67 \text{ (ASD)}$	(K2-8)
	Functions	

 $Q_f = 1$ for chord (connecting surface) in tension

 $Q_f = 1.0 - 0.3U(1+U)$ for chord (connecting surface) in compression

$$U = \frac{P_r}{AF_c} + \frac{M_r}{SF_c}$$

where P_r and M_r are determined on the side of the joint that has the lower compression stress. P_r and M_r refer to the required axial and flexural strength in the HSS. $P_r = P_u$ for LRFD; P_a for ASD. $M_r = M_u$ for LRFD; M_a for ASD.

$$Q_g = \gamma^{0.2} \left[1 + \frac{0.024 \gamma^{1.2}}{\exp\left(\frac{0.5g}{t} - 1.33\right) + 1} \right]$$
 (K2-7)

Note that exp(x) is identical to 2.71828*, where 2.71828 is the base of the natural logarithm.

* Equation references are to the AISC Specification.