Total No. of printed pages = 6

CSE 181503

Roll No. of candidate		Α,	

B.Tech. 5th Semester End-Term Examination

CŚE

FORMAL LANGUAGE AND AUTOMATA THEORY

(New Regulation w.e.f 2017-18)

(New Syllabus w.e.f 2018-19)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any four from the rest.

1. Answer the following questions:

 $(10 \times 1 = 10)$

- (i) A regular language over an alphabet Σ is one that cannot be obtained from the basic languages using the operation
 - (a) Union
 - (b) Concatenation
 - (c) Kleene star
 - (d) All of the mentioned
- (ii) Given : $\Sigma = \{a, b\}$, let a language $L = \{x \in \Sigma^* \mid \text{ where } \Sigma = \{0, 1\}$ and length of 'x' is at most 2 }. Then the number of elements in the set for the Language L is
 - (a) 7
 - (b) 6
 - (c) 8
 - (d) 5

[Turn over

(iii) Consider the following Regular expression and fill up the blank:

$$(a+b)*(a+bb)$$

It describes the language over $\{a, b\}$ that accepts the set of all strings with either 'a' or 'bb'

- (iv) A language for which no DFA exist is -----
 - (a) A Regular Language
 - (b) Not a Regular Language
 - (c) Impossible to ascertain whether it is Regular or not
 - (d) None of the above
- (v) Which of the following will the given DFA won't accept?

- (a) ε
- (b) 11010
- (c) 10001010
- (d) 01
- (vi) Can a DFA recognize a palindrome number?
 - (a) Yes
 - (b) No
 - (e) Cannot be determined
- (vii) Let $\Sigma = \{a, b, z\}$ and $A = \{\text{Hello, World}\}$, $B = \{\text{Input, Output}\}$, then $(A * \cap B) \cup (B * \cap A)$ can be represented as
 - (a) (Hello, World, Input, Output, ε)
 - (b) (Hello, World, ε)
 - (c) (Input, Output, ε)
 - (d) {}

(viii) Consider the two DFAs and choose the statement that is FALSE.

- (a) The first DFA has a dead state
- (b) The second DFA can have strings beginning with 0 or 1
- The second DFA accepts strings of length 1 where as the first DFA accepts strings of length 2.
 - (d) Both DFAs are Regular
- (ix) Consider the following Context Free Grammar and fill up the blank

 $S \rightarrow AabaA$

 $A \rightarrow aA \mid bA \mid \varepsilon$

It describes a Context Free Grammar for all strings over $\{a, b\}$ which has the substring ——— in it.

(x) Consider the language L1, L2, L3 as given below

 $L1 = 0^p 1^q$

 $L2 = \{0^{p}1^{q} \mid p = q\}$

L3 = $\{0^p1^q0^r \mid p = q = r\}$

Which of the following statements is NOT TRUE?

- (a) Push Down Automata (PDA) can be used to recognize L1 and L2
- (b) L1 is a regular language
- (c) All the three languages are context free
- (d) Turing machine can be used to recognize all the three languages

- Design a DFA with $\Sigma = \{a, b\}$ that accepts those strings which do not contain the substring 'ba'. (3 + 4 + 4 + 4 = 15)
 - Design a DFA with $\Sigma = \{a, b\}$ having even numbers of a's and even numbers of b's.
 - (c) Design a DFA with $\Sigma = \{a, b\}$ that accepts those strings which either starts with 'a' and ends with 'a' or starts with 'b' and ends with 'b'.
 - (d) Design a Moore machine to determine the residue mod 3 of a binary number.
- 3. (a) Construct a DFA equivalent to the NFA (4+5+6=15)

 $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0\{q_2\}),$ where δ is given by the table below:

Minimize the number of states for the given DFA:

 $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0\{q_4\})$, where δ is given by the table below:

(c) Using Arden's Theorem construct a regular expression for the given transition diagram.

4. (a) Show that the following grammar is ambiguous.

$$(5+5+5=15)$$

$$E \rightarrow I$$

$$E \rightarrow E + E$$

$$E \rightarrow E * E$$

$$E \rightarrow (E)$$

$$1 \rightarrow \varepsilon \mid 0 \mid 1 \mid 2 \mid \dots \mid 9$$

- (b) Using Pumping Lemma show that the language $L = \{a^e b^f a^g \mid g = e + f\}$ is not regular. [Hint let $\omega = a^n b a^{n+1}$)
- (c) Validate the statement "CFLs are not closed under intersection".
- 5. (a) Let $G = (\{S, A\}, \{0, 1, 2\}, \{S \to 0SA2, S \to 012, 2A \to A2, 1A \to 11\}, S)$ Find the language L(G) generated by the grammar. (5 + 5 + 5 = 15)
 - (b) Construct a grammar for the language:

(i)
$$L = \{ a^i \ b^j c^k | i, j, k >= 1 \& i + j = k \}$$

(ii)
$$L = \{ \alpha^i \ b^j c^k \ | i, j,k >= 1 \& i = k \}$$

- 6. (a) What are Recursive and Recursively Enumerable Languages? Explain them with examples. (4+5+6=15)
 - Design a PDA by null store to accept the language L over $\Sigma = (a, b)$ where $L = \{ww^R \mid w \in \{a, b\}^* \text{ and } w^R \text{ is reverse of } w\}.$
 - (c) Construct a Turing Machine that accepts the language:

$$L = \{1^n \ 2^n \ 3^n\} | n >= 1\}.$$

Write short notes on (any three):

 $(3\times 5=15)$

- (a) Post Correspondence Problem
- (b) Turing Machine
- (c) Pumping Lemma
- (d) Chomsky Normal Form
- (e) Pushdown Automata
- (f) NP-complete and NP-hard problems

P. con)

1710 j

1723.