AMENDMENTS TO THE CLAIMS

1.-25. (**Cancelled**)

26. (**Currently amended**) A method for controlling <u>termitespests</u>, said method comprising exposing said <u>termitespests</u> to a <u>pesttermite</u>-controlling effective amount of a compound of formula (I) or a tautomer thereof or a composition comprising at least one compound of formula (I) or a tautomer thereof:

$$R_1$$
 R_2
 R_3
 R_1
 R_2
 R_3
 R_4
 R_5
 R_5
 R_7
 R_7

wherein:

X is selected from =O, S or N-R₄; and Y is hydrogen or hydroxyl; or Y is =O and X is OH and ---- at positions 9 and 10 of the ring system is a double bond;

when ____ is a single bond attached to Y, Y is selected from the group consisting of H, $[C(R_7)_2]_n halo$, $[C(R_7)_2]_n OR_5$, $[C(R_7)_2]_n SR_5$, $[C(R_7)_2]_n (C=O)R_6$, $[C(R_7)_2]_n (C=S)R_6$; $[C(R_7)_2]_n N(R_4)_2$, $[C(R_7)_2]_n (C=NR_4)R_6$, $[C(R_7)_2]_n NO_2$ and $[C(R_7)_2]_n NR_4 OR_8$;

when ____ is a double bond attached to Y, Y is O;

when $\stackrel{----}{=}$ is a single bond attached to R_1 , the substituent R_1 has a stereochemistry syn to substituents R_2 and R_3 and R_1 is selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} - C_3 _alkenyl, C_2 - C_{10} -alkynyl, C_6 - C_{10} -aryl, C_7 - C_{12} -arylalkyl, C_8 - C_{13} -arylalkenyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} -cycloalkylalkyl, C_4 - C_{10} -cycloalkenylalkyl, C_3 - C_{10} -heterocyclylalkyl, C_4 - C_{12} -heterocyclylalkyl, C_5 - C_{13} -heterocyclylalkenyl, C_4 - C_{10} -alkoxy, C_2 - C_{10} -alkenyloxy, C_4 - C_{10} -alkylthio, C_2 - C_{10} -alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ -and $[C(R_7)_2]_nNR_4OR_8$, which is

when $\underline{\text{-----}}$ is a double bond attached to R_1 , R_1 is $\underline{CR_{1a}R_{1b}}$ wherein R_{1a} and R_{1b} are independently selected from $\underline{C_1}$ - $\underline{C_{3}}$ alkyl, which is

 R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_6 - C_{10} -aryl, C_7 - C_{12} -arylalkyl, C_8 - C_{13} -arylalkenyl, C_3 - C_6 -cycloalkyl, C_4 - C_{10} -cycloalkylalkyl, C_4 - C_{10} -cycloalkenylalkyl, C_3 - C_{10} -heterocyclyl, C_4 - C_{12} -heterocyclylalkyl, C_5 - C_{13} -heterocyclylalkenyl, C_1 - C_{10} -alkoxy, C_2 - C_{10} -alkenyloxy, C_1 - C_{10} -alkenyloxy, C_1 - C_{10} -alkenyloxy, C_2 - C_{10} -alkenyloxy, C_3 - C_{10} -alkenyloxy, C_4 - C_{10} -alkenyloxy, C_4 - C_{10} -alkenyloxy, C_5 - C_{10} -alkenyloxy, C_7 - C_{10} -alkenyloxy, C_9 - C_{10} - C_9 - $C_$

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} -alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} -arylalkyl, C_7 - C_{12} -arylalkyl, C_8 - C_{13} -arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} -heterocyclyl, C_4 - C_{12} -heterocyclylalkyl, C_5 - C_{13} -heterocyclylalkenyl, C_4 - C_{10} -alkoxy and C_2 - C_{10} -alkenyloxy;

 R_5 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_5 - C_{10} heterocyclylalkenyl, C_5 - C_{13} heterocyclylalkenyl, C_7 - C_{14} heterocyclylalkyl, C_7 - C_{15} heterocyclylalkenyl, C_7 - C_7 -

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_4 - C_{10} alkenylthio, C_4 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_{27}$, $(C=O)R_6$, $(C=S)R_{67}$, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{10} -aryl, C_3 - C_{10} -heterocyclyl, C_3 - C_6 -cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} -heterocyclylalkyl, C_4 - C_{10} -cycloalkylalkyl, C_8 - C_{13} -arylalkenyl, C_5 - C_{13} -heterocyclylalkenyl, and NO_2 ;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5; and

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

27. (Currently amended) A method according to claim 26 wherein the compound of formula (I) is a compound of formula (II):

$$R_1$$
 R_2
 R_3
 R_1
 R_2
 R_3
 R_1
 R_2
 R_3
 R_3

wherein:

X is selected from the group consisting of O, S or N-R₄;

Y is selected from the group consisting of H<u>or OH</u>, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

$$R_1$$
 is C_3 alkenyl, which is

 R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_6 - C_{10} -aryl, C_7 - C_{12} -arylalkyl, C_8 - C_{13} -arylalkenyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkylalkyl, C_4 - C_{10} -cycloalkenylalkyl, C_3 - C_{10} -heterocyclyl, C_4 - C_{12} -heterocyclylalkyl, C_5 - C_{13} -heterocyclylalkenyl, C_1 - C_{10} -alkoxy, C_2 - C_{10} -alkenyloxy, C_1 - C_{10} -alkenyloxy, C_1 - C_{10} -alkylthio, C_2 - C_{10} -alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ (C=O) R_6 , $[C(R_7)_2]_n$ (C=S) R_6 , $[C(R_7)_2]_n$ (C=NR₄) R_6 , $[C(R_7)_2]_n$ NO₂-and $[C(R_7)_2]_n$ NR₄OR₈; and

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} beterocyclyl, C_4 - C_{12} beterocyclylalkyl, C_5 - C_{13} beterocyclylalkenyl, C_4 - C_{10} alkoxy and C_2 - C_{10} alkenyloxy;

 R_5 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_6 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_7 - C_{12} heterocyclylalkyl, C_8 - C_{13} heterocyclylalkenyl, C_8 - C_{14} - C_{15}

and SO₂R₈;

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_3 - C_6 -cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkenylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{10} -aryl, C_3 - C_{10} -heterocyclyl, C_3 - C_6 -cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} -heterocyclylalkyl, C_4 - C_{10} -cycloalkylalkyl, C_8 - C_{13} -arylalkenyl, C_5 - C_{13} -heterocyclylalkenyl, and NO_2 ;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

----- represents a single or double bond; and

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

28. (Cancelled)

29. (Currently amended) A method according to claim 26, wherein at least one compound of formula (I) is a compound of formula (III):

wherein

 R_{12} and R_{13} are independently selected from the group consisting of H, C_1 - C_{10} alkyl, $-C_2$ - $-C_{10}$ alkyl, $-C_2$ - $-C_{10}$ alkyl, $-C_3$ - $-C_{10}$ alkyl and $-C_4$ - $-C_{10}$ alkoxy, wherein each $-C_4$ - $-C_4$ -alkyl and $-C_4$ - $-C_4$ -alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

- 30. (Cancelled)
- 31. (**Previously presented**) A method according to claim 26 wherein at least one compound of formula (I) is eremophilone.
- 32. (Cancelled)
- 33. (Withdrawn Currently amended) A method according to claim 26 wherein at least one compound of formula (I) is a compound of formula (IV):

$$R_{21}$$
 R_{22}
 R_{23}
 R_{24}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}

wherein R_{21} is C_3 alkenyl, which is \vdots and \vdots are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_4 - C_{10} alkenylalkyl, C_4 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_4 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ (C= $O)R_6$, $[C(R_7)_2]_n$ (C= $S)R_6$, $[C(R_7)_2]_n$ N(R_4)₂, $[C(R_7)_2]_n$ (C= NR_4) R_6 , $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR_{8.5}; each R_4 is independently selected from the group consisting of H, OH, C_4 - C_{10} alkyl, C_2 - C_{10}

alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl,

heterocyclylalkenyl, C₁-C₁₀ alkoxy and C₂-C₁₀ alkenyloxy;

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkenylthio, C_1 - C_{10} alkenylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{10} -aryl, C_3 - C_{10} -heterocyclyl, C_3 - C_6 -cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} -heterocyclylalkyl, C_4 - C_{10} -cycloalkylalkyl, C_8 - C_{13} -arylalkenyl, C_5 - C_{13} -heterocyclylalkenyl, and NO_2 ;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkenyl, C_5 - C_{10} beterocyclyl, C_4 - C_{12} beterocyclylalkyl and C_5 - C_{13} beterocyclylalkenyl; and

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

- 34. (Cancelled)
- 35. (Cancelled)
- 36. (Withdrawn) A method according to claim 26 wherein at least one compound of formula (I) is 8-hydroxy-1(10)dihydroeremophilone.
- 37. (Cancelled)
- 38. (Withdrawn Currently amended) A method according to claim 26 comprising at least one compound of formula (V):

 R_{32} and R_{33} are independently selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkyl, C_3 - C_{10} alkynyl, C_4 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} heteroaryl, C_6 - C_{12} heteroarylalkyl and C_4 - C_{10} alkoxy, wherein each C_4 - C_{10} alkyl and C_4 - C_{10} alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

39. (Cancelled)

- 40. (Withdrawn) A method according to claim 26 wherein at least one compound of formula (I) is 8-hydroxyeremophila-1,11-dienone.
- 41. (**Previously presented**) A method according to claim 26 wherein the composition comprises an extract containing at least one compound of formula (I) obtained from a volatile oil bearing plant from the Myoporaceae family.

42. (Cancelled)

43. (Cancelled)

- 44. (**Currently amended**) A method according to claim 26 wherein the <u>pesttermite</u>-controlling effective amount is a <u>pesticidally termite-killing</u> effective amount.
- 45. (**Currently amended**) A method according to claim 26 wherein the <u>pesttermite</u>-controlling effective amount is a <u>pesttermite</u>-repelling effective amount.

46. (**Currently amended**) A method according to claim 26 wherein the <u>pesttermite</u>-controlling effective amount is an antifeedant effective amount.

47. (Canceled)

48. (Canceled)

49. (Canceled)

50. (Canceled)

51. (Canceled)

52. (Currently amended) A method according to claim 26 wherein <u>pests-termites</u> are exposed to the <u>pesttermite</u>-controlling effective amount of a compound of formula (I) or a composition comprising at least one compound of formula (I) by applying the compound or composition to a site of infestation, a potential site of infestation, a habitat of the <u>pest-termite</u> or a potential habitat of the <u>pest-termite</u>.

53. (**Previously presented**) A method according to claim 52 wherein the compound or composition is applied to a surface or impregnated into a material or article of manufacture.

54. (**Previously presented**) A method according to claim 53 wherein the compound or composition is applied to a surface by spraying, coating or painting the surface.

55. (**Previously presented**) A method according to claim 54 wherein the surface is a soil surface, timber, buildings, wooden articles of manufacture or a physical barrier.

56. (**Previously presented**) A method according to claim 55 wherein the material or article of manufacture is soil, timber, timber or wooden products or buildings or parts of buildings.

57. (**Previously presented**) A method according to claim 52 wherein the compound or composition is applied in a band or furrow around a site of infestation or potential infestation or is mixed with a layer of soil at a site of infestation or a potential site of infestation.

58.-78. (Cancelled)

79. (Currently amended) A method of combating an already existing wood associated pest termite infestation comprising applying at least one compound of formula (I) or a tautomer thereof or a composition comprising at least one compound of formula (I) or a tautomer thereof to a wood associated pest termite affected surface, wherein the compound of formula (I) is as defined in claim 26.

80.-82. (Cancelled)

83. (**Withdrawn - New**) A method according to claim 26 wherein at least one compound of formula (I) is 9-hydroxy-7(11),9-eremophiladien-8-one.