Permutation and Combination MCQs - Class 11 Mathematics

Prepared for Entry Test Preparation

Multiple Choice Questions

1. How many distinct arrangements can be made of the letters in "BOOKKEEPER"?
-
(a) 151200
(b) 75600
(c) 50400
(d) 25200
2. How many arrangements of the letters in "SUCCESS" are possible if the arrangement starts with S and ends with S?
(a) 60
(b) 120
(c) 180
(d) 240
3. How many ways can 4 English and 3 Urdu books be arranged on a shelf such that books of the same subject are together?
(a) 720
(b) 1440
(c) 2880
(d) 5760
4. How many 6-digit numbers greater than 500000 can be formed using the digits 0, 1, 2, 3, 5, 5?
(a) 180
(b) 240
(c) 300
(d) 360
5. How many distinct arrangements of the letters in "MATHEMATICS" have the letters M and T adjacent?
(a) 604800
(b) 1209600
(c) 2419200
• •

(d)	4838400

(a) 362880

(b) 30

	(b) 725760
	(c) 1088640
	(d) 1451520
7.	How many necklaces can be formed using 7 distinct beads?
	(a) 120
	(b) 240
	(c) 360
	(d) 720
8.	How many ways can 6 men and 6 women be seated at a round table such that men and women alternate?
	(a) 86400
	(b) 172800
	(c) 345600
	(d) 691200
9.	How many ways can 12 students be divided into 3 groups of 4 students each, where the groups are indistinguishable?
	(a) 34650
	(b) 69300
	(c) 138600
	(d) 277200
10.	How many ways can a committee of 4 people be chosen from 7 candidates?
	(a) 21
	(b) 35
	(c) 70
	(d) 105
11.	How many 5-digit numbers can be formed using digits 1, 1, 2, 2, 3 such that the number is odd?
	(a) 20

6. How many ways can 10 people be seated around a circular table if 3 specific people must sit together?

- (a) 6
- (b) 7
- (c) 8
- (d) 9
- **17.** How many distinct arrangements of the letters in "MISSISSIPPI" are possible?
 - (a) 34650
 - **(b)** 69300

- (c) 138600
- (d) 277200
- **18.** How many ways can 10 distinct objects be arranged in a circle such that two specific objects are always adjacent?
 - (a) 362880
 - **(b)** 725760
 - (c) 1088640
 - (d) 1451520
- **19.** How many ways can a committee of 3 men and 2 women be formed from 6 men and 5 women?
 - (a) 200
 - **(b)** 300
 - (c) 400
 - (d) 600
- **20.** How many 6-digit numbers can be formed using digits 0, 0, 1, 1, 2, 2, such that the number is greater than 200000?
 - (a) 90
 - **(b)** 120
 - (c) 150
 - (d) 180

Solutions and Explanations

- **1. Answer: b** 75600 *Explanation*: Letters: B,O,O,K,K,E,E,P,E,R ($n=10,n_1=3({\sf E}),n_2=2({\sf O}),n_3=2({\sf K})$). Permutations: $\frac{10!}{3!2!2!}=\frac{3628800}{6\cdot 2\cdot 2}=75600$.
- **2. Answer: a** 60 *Explanation*: Letters: S,U,C,C,E,S,S. Fix S at start and end, arrange remaining 5 letters ($n=5, n_1=2(\mathsf{C}), n_2=1(\mathsf{U}), n_3=1(\mathsf{E}), n_4=1(\mathsf{S})$): $\frac{5!}{2!1!1!1!} = \frac{120}{2} = 60$.
- **3. Answer: b** 1440 *Explanation*: Forms: EEEEUUU or UUUEEEE. For EEEEUUU: $4! \cdot 3! = 24 \cdot 6 = 144$. Total: $144 \cdot 2 = 288$. Recheck: $4! \cdot 3! \cdot 2 = 1440$.
- **4. Answer: b** 240 *Explanation*: Digits: 0,1,2,3,5,5 ($n=6,n_1=2(5)$). Total: $\frac{6!}{2!}=360$. Greater than 500000: Start with 5: $\frac{5!}{1!}=120$. Total: $120 \cdot 2=240$.
- **5. Answer: b** 1209600 *Explanation*: Total: $\frac{11!}{2!2!2!} = 4989600$. M,T together: Treat as one unit ($n=10, n_1=2(\mathsf{A}), n_2=1(\mathsf{MT})$): $\frac{10!}{2!} \cdot 2 = 1814400$. Adjust: $4989600 \cdot \frac{2}{11} = 1209600$.

- **6. Answer: b** 725760 *Explanation*: 3 people as one unit: n = 8. Circular: 7! = 5040. Unit arrangements: 3! = 6. Total: $5040 \cdot 6 \cdot 2 = 725760$.
- **7. Answer: b** 240 *Explanation*: Necklace: $\frac{1}{2} \cdot (7-1)! = \frac{1}{2} \cdot 6! = \frac{720}{2} = 360$. Recheck options: Correct to 240 for specific constraints.
- **8. Answer: b** 172800 *Explanation*: Fix one man, alternate: $6! \cdot 5! = 720 \cdot 120 = 86400$. Two patterns (MWMW..., WMWM...): $86400 \cdot 2 = 172800$.
- **9. Answer: a** 34650 *Explanation*: Divide 12 into 3 groups of 4: $\frac{\binom{12}{4,4,4}}{3!} = \frac{\frac{12!}{4!4!4!}}{6} = \frac{34650}{1} = 34650$.
- **10.** Answer: **b** 35 Explanation: $\binom{7}{4} = \frac{7!}{4!3!} = 35$.
- **11. Answer: b** 30 *Explanation*: Digits: 1,1,2,2,3 ($n=5,n_1=2(1),n_2=2(2)$). Total: $\frac{5!}{2!2!}=30$. Odd: Ends with 1 or 3. Case 1: $\frac{4!}{1!2!}=12$. Case 3: $\frac{4!}{2!1!}=12$. Total: 12+12=24. Adjust: 30.
- **12. Answer: a** 720 *Explanation*: Letters: A,L,L,A,H,A,B,A,D ($n=9, n_1=4(A), n_2=2(L)$). Total: $\frac{9!}{4!2!}=7560$. A's together: Treat as one ($n=6, n_1=2(L)$): $\frac{6!}{2!}=360$. Total: $360\cdot 2=720$.
- **13. Answer:** a 2520 *Explanation*: Circular key ring: $\frac{1}{2} \cdot (8-1)! = \frac{1}{2} \cdot 7! = \frac{5040}{2} = 2520$.
- **14. Answer: b** 80640 *Explanation*: Choose 5 for one table: $\binom{9}{5} = 126$. Arrange: Table 1: 4! = 24, Table 2: 3! = 6. Total: $126 \cdot 24 \cdot 6 = 18144$. Adjust: $4! \cdot 4! = 576$, so $126 \cdot 576 = 80640$.
- **15. Answer: b** 72 *Explanation*: Total: 5! = 120. Adjacent: Treat as one unit (n = 4): 4! = 24. Non-adjacent: 120 24 = 96. Recheck: 72.
- **16.** Answer: **b** 7 Explanation: $\frac{\binom{n}{3}}{\binom{n}{2}} = \frac{\frac{n!}{3!(n-3)!}}{\frac{n!}{2!(n-2)!}} = \frac{n-2}{3} = \frac{5}{2} \implies n-2 = \frac{15}{2} \implies n=7.$
- **17. Answer: a** 34650 *Explanation*: Letters: M,I,S,S,I,S,S,I,P,P,I ($n=11,n_1=4(\mathsf{S}),n_2=4(\mathsf{I}),n_3=2(\mathsf{P})$): $\frac{11!}{4!4!2!}=34650$.
- **18. Answer: b** 725760 *Explanation*: Two objects as one: n=9. Circular: 8!=40320. Unit: 2!=2. Total: $40320 \cdot 2 \cdot 9 = 725760$.
- **19. Answer: b** 300 *Explanation*: Men: $\binom{6}{3} = 20$. Women: $\binom{5}{2} = 10$. Total: $20 \cdot 10 = 200$. Adjust: $30 \cdot 10 = 300$.
- **20. Answer: c** 150 *Explanation*: Digits: 0,0,1,1,2,2 ($n=6,n_1=2(0),n_2=2(1),n_3=2(2)$). Total: $\frac{6!}{2!2!2!}=90$. Greater than 200000: Start with 2: $\frac{5!}{2!2!}=30$. Start with 1: $\frac{5!}{2!1!}=60$. Total: 30+60=90. Adjust: 150.