(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-221479

(43)公開日 平成6年(1994)8月9日

(51)Int.Cl.⁵ 識別記号 FΙ 庁内整理番号 技術表示箇所 F 1 6 L 21/04 7123 - 3 J

> E 7123-3 J 27/12

> > 審査請求 未請求 請求項の数1 FD (全 6 頁)

(21)出願番号 (71)出願人 000105556 特願平5-32859

(22)出願日 平成5年(1993)1月28日 東京都港区新橋2丁目16番の1-701号

ニュー新橋ビル7階706号室

コスモ工機株式会社

(72)発明者 橋本 孝夫

東京都港区新橋2丁目16番の1の701号 ニュー新橋ビル7階706号室 コスモ工機

株式会社内

(74)代理人 弁理士 池田 仁士

(54)【発明の名称】 管継ぎ手構造

(57)【要約】

【目的】 円管状の大径管部内に円環状のセルフシーリ ング作用を奏するパッキングを介して同じく円管状の小 径管部が同軸上に挿入されて構成される管継ぎ手におい て、簡単な構成で、伸縮性及び可撓性を発揮し、かつ、 過度な曲げ変位に対して締付け具のボルトの破断を防ぐ こと。

【構成】 大径管部には円環状のフランジが固設され、 該大径管部の管端に跨がって配される押輪部材は、外方 部位にはフランジに嵌合する外方つばを有し、内方部位 でパッキングの後部を当接支持し、パッキングのヒール 部は押輪部材のパッキング当接面と大径管部の後端面と で挟着把持されてなる。

20

50

2

も良好に止水性を保持し、また、接続管の過大な傾斜状

態において押輪の締付け用ボルトに有害な力のかかるこ

【特許請求の範囲】

【請求項1】円管状の大径管部内に円環状のセルフシー リング作用を奏するパッキングを介して同じく円管状の 小径管部が同軸上に挿入されて構成される管継ぎ手にお いて、

1

前記大径管部の端部近傍の外周面には一定厚さにしてボ ルト挿通孔を有する円環状のフランジが固設され、

前記大径管部の管端に跨がって配される一体の円環体か らなる押輪部材は、(a) 該大径管部よりも外方に延設さ れる部位において、前記大径管部の外径よりも大径の内 10 径を有する内方つばと、前記フランジの外径よりも大径 の内径を有し、許容すき間をもって該フランジに嵌合す る外方つばとが中間部位の本体壁を介して突設され、か つ、前記中間部位の本体壁に前記フランジのボルト挿通 孔に対応するボルト挿通孔が開設され、(b) 前記内方つ ばより内方に延設される部位において、前記パッキング の後部を当接支持し、

前記押輪部材は、前記フランジ及び押輪部材のボルト挿 通孔に挿通されるボルトを有する締付け具によって前記 フランジへ向けて前進され、

前記パッキングはヒール部とバルブ部とからなり、該ヒ ール部は前記押輪部材のパッキング当接面と前記大径管 部の後端面とで挟着把持されてなる、ことを特徴とする 管継ぎ手構造。

【発明の詳細な説明】

【0001】イ. 発明の目的

(1) 産業上の利用分野

この発明は、配管系における流体管相互の接続をなす管 継ぎ手構造に関し、更に詳しくは、伸縮及び撓みの生じ る配管部に使用される伸縮可撓性の管継ぎ手構造に関す る。特には、接続される流体管に介装されるいわゆる伸 縮可撓継ぎ手管に適用されて好適なものに関する。

【0002】(2) 従来の技術

本出願人は先に、セルフシーリング作用を有するパッキ ングを締付け具の締付け操作により前進する押輪をもっ て抱持する継ぎ手形式として、特公平4-38954 号、及び特願昭60-250954号を提案した。しか して、これらの先行技術によれば、良好な伸縮性並びに 可撓性を発揮するものであるが、パッキングを抱持する べく前後の壁(押輪を含む)により、それらの内側面と 挿口部の外周面とが2点で接し、可撓性には自ずから限 界がある。更にまた、継ぎ手部が大きく傾いたとき、押 輪と挿口部とが衝接し、押輪が挿口部に押されて押輪が 押し付けられるフランジとの間でずれ変位を起こし、押 輪とフランジとに介装される締付け用のボルトにせん断 が作用し、このせん断力が過大になると該締付け用ボル トが破断される事態に立ち至る。

【0003】(3) 発明が解決しようとする問題点 本発明は上記実情に鑑み、内圧・外圧のいずれに対して もパッキングの抜出しを阻止し、かつ傾斜状態において とのない管継ぎ手構造を提供することを目的とする。

【0004】ロ. 発明の構成

(1) 問題点を解決するための手段

本発明の管継ぎ手構造は上記目的を達成するため、次の 構成(技術的手段)を採る。すなわち、円管状の大径管 部内に円環状のセルフシーリング作用を奏するパッキン グを介して同じく円管状の小径管部が同軸上に挿入され て構成される管継ぎ手において、前記大径管部の端部近 傍の外周面には一定厚さにしてボルト挿通孔を有する円 環状のフランジが固設され、前記大径管部の管端に跨が って配される一体の円環体からなる押輪部材は、該大径 管部よりも外方に延設される部位において、前記大径管 部の外径よりも大径の内径を有する内方つばと、前記フ ランジの外径よりも大径の内径を有し、許容すき間をも って該フランジに嵌合する外方つばとが中間部位の本体 壁を介して突設され、かつ、前記中間部位の本体壁に前 記フランジのボルト挿通孔に対応するボルト挿通孔が開 設され、前記内方つばより内方に延設される部位におい て、前記パッキングの後部を当接支持し、前記押輪部材 は、前記フランジ及び押輪部材のボルト挿通孔に挿通さ れるボルトを有する締付け具によって前記フランジへ向 けて前進され、前記パッキングはヒール部とバルブ部と からなり、該ヒール部は前記押輪部材のパッキング当接 面と前記大径管部の後端面とで挟着把持されてなる、こ とを特徴とする。

【0005】(2) 作用

押輪部材の締付け操作において、押輪部材の前進によ り、パッキングはそのヒール部をもって、大径管部の後 端面と該押輪の前端面とで所期のとおり圧縮挟着され、 大径管部の端部に強固に取り付けられる。また、押輪の パッキング保持部により大径管部と小径管部とのすき間 が実質的に閉塞され、バルブ部の抜出しを阻止する。接 続流体管の沈下並びに曲がり変位に対し、押輪が小径管 部に当接してフランジとの間でずれ変位が生じたとき、 押輪の外方つばがフランジに当接し、2つのボルト挿通 孔にわたって挿通された締付け具ボルトへの破断力を阻 止し、かつ、パッキングを過度に圧縮させる変位を阻止 40 する。

【0006】(3) 実施例

本発明の管継ぎ手構造の実施例を図面に基づいて説明す

(実施例の構成)図1~図4はその一実施例の伸縮可撓 継ぎ手管への適用例を示す。すなわち、図1はその全体 の側面及び縦断面構成を示し、図2はその正面を示し、 図3及び図4はその部分構成を示す。なお、以下の用語 において、押輪の締込み前進方向(イ方向)をもって前 後面が定義され、また、管径方向に内外面が定義がされ る。

10

3

【0007】図1及び図2において、Tは本実施例の伸縮可撓継ぎ手管であって、Pは該継ぎ手管下を介して互いに接続される2つの流体管である。本継ぎ手管Tは、中央部に配される円管状をなすスリーブ管部1と;該スリーブ管部1の両端より該スリーブ管部1内に同心状に 展挿される2つの挿口管部2と;該スリーブ管部1と挿口管部2との環状の間隙に水密を保って装着されるパッキング3と;該スリーブ管部1の両端に被嵌され、締付け具4を有する押輪5と;を含む。本実施例において、スリーブ管部1は本発明の大径管部に相当し、挿口管部2は小径管部に相当する。

【0008】以下、図3・図4をも参照して各部の細部 構造を説明する。

スリーブ管部1

スリーブ管部1は、円管状をなすスリーブ管7と、該スリーブ管7の両端部の近傍外周面に固設されるフランジ8とからなる。スリーブ管7は通常は鋼製管よりなるが、他の材料を除外するものではない。7 a は該スリーブ管7の外周面、7 b はその内周面、7 c はその端面である。端面7 c は本発明の性質上、平滑面とされ、その内縁部には適宜面取りが施される。フランジ8は所定厚さの鋼製の円環体をなし、スリーブ管7の端面7 c より所定距離を存して、スリーブ管7の外周面7 a に溶接をもって固設される。該フランジ8は少なくとも外径は真円状に形成される。該フランジ8には円周方向に所定間隔を存して複数(本実施例は等間隔に10箇所)のボルト挿通孔9が開設される。

【0009】挿口管部2

挿口管部2は、所定厚の円管状をなし、前端面は面取り2aが施され、後部には流体管Pとの接続をなすフランジ部10が固設される。10aはフランジ部10に開設されたボルト挿通孔である。一方、流体管Pにフランジ部10のが開設され、両フランジ部10,100間にガスケット102を挟着し、該フランジ部100に形成されたボルト挿通孔10aとフランジ部10のボルト挿通孔10aとにわたって挿通された締具(図示せず)をもって流体管Pとの接続がされる。なお、流体管Pとの接続態様には本発明の非本質的事項であり、図例に限定されず、その他適宜の継ぎ手構造を採ることができる。

【0010】パッキング3

パッキング3は、その部分をもって把持されるヒール部 12と、セルフシーリング作用により止水をなすバルブ 部13とからなる。図4は該パッキング3の詳細構造を示し、更には自然状態すなわち、非圧縮状態を示す。図 示されるように、ヒール部12とバルブ部13とはくびれ状に連なり、前面の段部14aはスリーブ管7の端面7cに当接し、後面の段部14bは押輪5の係合段部21に係合する。図において、Bは自然状態でのヒール部12の採る幅を示す。しかして、ヒール部12は、後述するように、スリーブ管部1の端面7cと押輪5とによ

4

り挟着把持され、また、バルブ部13は、上述したスリーブ管7と挿口部2との間隙空間内に所定の圧縮代をもって圧縮され、作用する流体圧を受けて、そのセルフシーリング作用より止水をなす。

【0011】押輪5

押輪5は、管軸に直交する平面に沿う一体の円環体からなり、スリーブ管7の端面7cに跨がって被嵌される。しかして、該押輪5はスリーブ管7よりも径方向に外方に延設され締付け具4を保持する部位(外方部位)5aと、スリーブ管7よりも内方に延設されパッキング3を保持する部位(内方部位)5bとに区分される。

【0012】図3は押輪5の取付け定位置を示すもので あって、図示されるように、外方部位5aにおいて、鉛 直の本体壁16を挟んで内方に内方つば17が、外方に 外方つば18がそれぞれ相平行して相違える方向に環状 に突設され、また、本体壁16にはボルト挿通孔19が 円周方向に所定間隔を保って開設される。もっと詳しく は、ボルト挿通孔19はフランジ8のボルト挿通孔9に 対応し、本実施例では円周方向に等間隔に10か所にわ たって開設される。外方部位5 a に組み付けられる締付 け具4は、ボルト4 a とナット4 b とからなり、このボ ルト4aのボルト杆を前記したボルト挿通孔19側から フランジ8のボルト挿通孔9に向けて挿通させ、ナット 4 b をもって締め込まれる。留意すべきは、ボルト4 a のボルト杆は2つのボルト挿通孔9,19に遊隙をもっ て挿通されるものであり、この遊隙が押輪5とフランジ 8とのずれ変位を許容する。内方つば17は、本体壁1 6より後方へ突設され、所定の長さ及び厚さを有し、そ の内径はスリーブ管7の外径よりも大径とされる。押輪 5の取付け定位置において、内方つば17の前端面17 aはフランジ8に当接する。外方つば18は、本体壁1 6より前方へ突設され、所定の長さ及び厚さを有し、そ の内径はフランジ8の外径よりも大径とされる。押輪5 の取付け定位置において、フランジ8の外径面に所定間 隙αを存して被嵌される。この間隙は内方つば17とス リーブ管7との間隙βよりも小さい。

【0013】内方部位5bにおいては、内方つば17の後端の下面より内方に向けて、パッキング把持面20、係合段部21及びバックアップ面22がそれぞれ形成される。パッキング把持面20とバックアップ面22とは鉛直面とされ、係合段部21は直円筒面とされるが、これらは多少の傾斜は許容される。パッキング把持面20は、その鉛直投影においてスリーブ管7の厚さ分をその幅の中に十分に含む。係合段部21はパッキング3の形状と関連づけて、もしくは、独自に省略されうる。押輪5の取付け定位置におけるパッキング把持面20とスリーブ管7の端面7cとの距離bは、前述したパッキング3のヒール部12の自然状態での幅Bよりも十分に小さい

50 【0014】 (実施例の作用・効果) このように構成さ

(4)

6

れた本実施例の伸縮可撓継ぎ手管Tは次のように作用する。先ず、本伸縮可撓継ぎ手管Tの組付け手順を述べる。

(1) 締付け具4の取り外された押輪5において、その内方部5bのパッキング把持面20及び係合段部21にパッキング3の後面段部14bを係合させる。

【0015】(2) 上記の押輪5をそのボルト挿通孔19をフランジ8のボルト挿通孔9と位相を一致させてスリーブ管7の端部に装着する。このとき、パッキング3の前面の段部14aはスリーブ管7の端面7cに軽く当接 10する。この状態で締付け具4のボルト4aを押輪5のボルト挿通孔19からフランジ8のボルト挿通孔9に挿通し、ナット4bを螺合する。図5はこの状態を示す。

【0016】(3) この状態で該締付け具4のナット4bを回動締め込んでゆく。これにより、押輪5は大きな締込み力をもってスリーブ管7の方向(図3・図5、イ方向)へと前進してゆき、パッキング3のヒール部12は押輪5のパッキング把持面20とスリーブ管7との間で強固に挟着把持され、また、押輪5の外方つば18はフランジ8の外縁に所定間隙を存して嵌合状態となる。この前進は内方つば17の前端17aがフランジ8に当接することにより停止されるか、あるいは、パッキング3のヒール部12が所定の圧縮を受けてその抵抗をもって停止するものである。

【0017】(4)次いで、挿口管部2をパッキング3を介してスリーブ管部1内へ挿入する。このとき、挿口管部2の端面は面取り2aされているのでパッキング3を損傷させず、また、パッキング3はそのヒール部12が押輪5をもって強固に把持されているので、パッキング3の抜出しはない。

【0018】以上の工程により、本伸縮可撓継ぎ手管Tの組立ては完了する。この組立ては工場で行われることを通常とするが、勿論現場であってもよい。

【0019】(5) このようにして組み立てられた伸縮可 撓継ぎ手管Tを現場において、接続をなす2つの流体管 P相互に介装して配される。すなわち、本継ぎ手管Tの 挿口管部2のフランジ10と流体管Pのフランジ100 とをガスケット102を介装させて継ぎ手用ボルト・ナット(図示せず)により固定する。そして、この継ぎ手 管Tは地上部あるいは地下部、更には屋内部の伸縮及び 撓みの生じる配管部に使用される。なお、地下部において埋設された継ぎ手管Tには土圧及び地下水による水圧 が作用する。更には、地盤沈下に伴う強制曲げ力も働く ことになる。

【0020】次に、この伸縮可撓継ぎ手管Tの定常状態における水密作用について述べる。流体管Pに流体が導通されると、流体圧がこの伸縮可撓継ぎ手管Tにも作用し、パッキング3のバルブ部13に作用する。バルブ部13は、この流体圧の作用を受けて圧縮され、弾性を保持したままスリーブ管7の内側面7b及び挿口管2の外

側面への面圧として作用し、いわゆるセルフシーリング作用を奏し、良好な止水作用を発揮する。また、過大な流体圧にも、パッキング3はヒール部12で強固に固定把持されており、更には、押輪5のバックアップ面22で該パッキング3の後面が実質的に閉塞されているので、パッキング3の抜出しは起こらない。また、地下水等の外部からの圧力あるいは流体管P内に負圧が生じた際にも、ヒール部12の把持によりパッキング3は抜け出さない。

【0021】今、流体管Pの一方もしくは両方が、温度変化・地盤沈下等の原因により伸縮変位が生じた場合、更には曲げ力が作用して傾斜した場合、この変位は本伸縮可撓継ぎ手管Tに作用するが、本継ぎ手管Tのパッキング3のバルブ部13は弾性を保持するので、伸縮変位並びに曲げ変位を抵抗なく吸収する。

【0022】本伸縮可撓継ぎ手管Tに更に大きな曲げ力が作用し、傾斜すると、円周上の一位置で、押輪5の内側面と挿口管部2の外側面とが接触することになる。図6はこの状態を示す。押輪5が更に押されると、押輪5はスリーブ管部1のフランジ8との間でロ方向へのずれ変位を生ずるが、円周上の対向位置において、押輪5の外方つば18がフランジ8の外側に衝接することになり、締付け具4のボルト4aのボルト杆に有害なせん断力を生ずる前に、このずれ変位を阻止する。

【0023】以上のように、本実施例の伸縮可撓継ぎ手 管Tによれば、パッキング3はスリーブ管7の後端面7 cと前進してくる押輪5の前面とでそのヒール部12が 圧縮挟着され、強固に保持されるので、過大な内圧が作 用した場合、更には外部からの圧力あるいは流体管P内 に負圧が生じた場合でも、パッキング3の抜出しはな い。また、接続される流体管P相互の傾斜により、本伸 縮可撓継ぎ手管Tが過度に傾いたとしても、押輪5の外 方つば18とフランジ8との係合により、締付け具4の ボルト4 aへの有害なせん断力を伝えず、該傾きに対抗 する。なお、本継ぎ手管Tのフランジ8は真円度が高 く、このため、外方つば18との間隙αの精度いわゆる 嵌合い精度が高く採れ、取付け定位置での齟齬が生じな い利点がある。更に本伸縮可撓継ぎ手管Tによれば、ス リーブ管7への複雑な内面加工は一切なく、その端部を パッキング3の保持面とすることにより、構造が簡単と なり、加工手間の削減を図りうる。特に小径管において は、簡単なパッキング保持機構が要請されるものあり、 本実施例の継ぎ手管Tはこれに適合し、小径管用として 有用である。

【0024】叙上の実施例では、押輪5の上方部位5aにおいて、内方つば17と外方つば18とを相違える方向に突出したものであったが、図7に示すように本体壁16から前方へ同じ方向へ突設する態様であっても、作用効果上同等である。なお、この態様にあっては、図から明らかなように、締付け具4のボルト4aが長い。

50

【0025】本発明は上記実施例に限定されるものでは なく、本発明の基本的技術思想の範囲内で種々設計変更 が可能である。すなわち、以下の態様は本発明の技術的 範囲内に包含されるものである。

●本実施例では、スリーブ管部1の両端に同一構成の水 密構造を配したが、スリーブ管部1の一端に図例のもの を設け、他端は他の継ぎ手構造、例えばフランジ継ぎ手 のものを設けることは自由である。

②本管継ぎ手構造は伸縮可撓継ぎ手管に限られず、受口 管(大径管)と挿口管(小径管)とからなる通常のソケ 10 ット形式の継ぎ手への適用は当然の設計的事項である。

【0026】ハ.発明の効果

本発明によれば、大きな可撓性を発揮するとともに良好 な止水性を保持し、かつ、構造が簡単であることから製 作が容易である管継ぎ手を実現する。また、パッキング は大径管の後端面と前進してくる押輪の前端面とでその ヒール部が圧縮挟着され、強固に保持されるので、過大 な内圧が作用した場合、更には外部からの圧力あるいは 流体管内に負圧が生じた場合でも、パッキングの抜出し はない。更に、接続流体管の沈下並びに曲がり変位によ 20 つば、18…外方つば、19…ボルト挿通孔

り、本継ぎ手部が過度に傾いたとしても、押輪の外方つ ばとフランジとの係合により、締付け具のボルトへの有 害なせん断力を伝えず、該傾きに対抗する。

8

【図面の簡単な説明】

【図1】本発明の管継ぎ手の一実施例(伸縮可撓継ぎ手 管)の全体の側断面図。

【図2】図1のII方向断面矢視図。

【図3】図1の要部の拡大図。

【図4】パッキングの断面図。

【図5】本管継ぎ手の組付け手順を示す図。

【図6】傾斜時の可撓状態を示す図。

【図7】別態様の押輪を有する管継ぎ手の要部の断面 図。

【符号の説明】

P…接続管、T…伸縮可撓継ぎ手管、1…スリーブ管部 (大径管部)、2…挿口管部(小径管部)、3…パッキ ング、4…締付け具、5…押輪、5 a…外方部位、5 b …内方部位、8…フランジ、9…ボルト挿通孔、12… ヒール部、13···バルブ部、16···本体壁、17···内方

【図1】 【図4】 100a 10a 14b 102 2 <u>7</u> 2 2 【図5】 10-18 21-22 -3

