Charging Stations

Sia data una rete ad albero su cui si muovono k flussi, ciascuno dalla propria origine o_k verso la propria destinazione d_k . Supponendo di conoscere le lunghezze $l_{i,j}$ degli archi (i,j), che i veicoli partano tutti con carica completa e abbiano autonomia L, si posizionino il numero minimo di colonnine sui nodi della rete per permettere a tutti di raggiungere la propria destinazione, anche con più rifornimenti. Si supponga anche che ad ogni ricarica la batteria venga completamente ricaricata, qualunque sia il livello precedente.

Modello matematico

N: insieme dei nodi della rete ad albero

A: insieme degli archi

K: numero di flussi totali

L: autonomia massima di ogni veicolo

 $l_{i,j}$ dove $(i,j) \in A$: lunghezza dell'arco (i,j)

 d_k : destinazione del flusso k

 o_k : origine del flusso k

 $x_{i,j}^k$: vale 1 se il flusso k attraversa l'arco (i,j), altrimenti 0

 y_i : vale 1 se è installato una colonnina sul nodo i

 f_k : numero di ricariche effettuate

Obiettivo:

Minimizzare il numero di colonnine installate

$$\min \sum_{i \in N} y_i$$

Vincoli:

- 1) $\sum_{(i,j)\in A} l_{i,j} * x_{i,j}^k \leq L(1+f_k)$, $\forall (i,j) \in A$, $\forall k \in K$ La somma delle distanze percorse dal flusso k deve minore o uguale alla massima autonomia del veicolo tenendo conto delle ricariche
- 2) $\sum_{j:(o_k,j)\in A} x_{o_k,j}^k = 1$, $\forall k \in K$ Ogni flusso deve partire dalla propria origine e percorrere al massimo un arco partendo dalla propria origine (può uscire al massimo su un arco dalla propria origine)

3)
$$\sum_{i:(i,d_k)\in A} x_{i,d_k}^k = 1$$
, $\forall k \in K$

Ogni flusso deve arrivare alla propria destinazione e percorrere al massimo un arco entrando nella propria destinazione (può entrare nella propria destinazione al massimo da un arco)

- 4) $\sum_{i:(i,j)\in A} x_{i,j}^k \sum_{z:(j,z)\in A} x_{j,z}^k = 0$, $\forall k\in K$, $fissato\ il\ nodo\ j,\ j\setminus\{d_k,o_k\}$ Ogni flusso che entra deve anche uscire (tranne per l'origine e la destinazione, da chiedere alla prof conferma per come farlo)
- 5) $\sum_{j:(i,j)\in A} x_{i,j}^k \geq y_i$, $\forall k \in K$ Se è presente una colonnina allora almeno un arco deve essere percorso in uscita da un nodo. Questo vincolo assicura che le colonnine vengano usate almeno una volta.

Vincoli di integrità:

$$x_{i,j}^k, y_i \in \{0,1\} \qquad \forall (i,j) \in A, \forall k \in K$$

$$f_k \in 0$$
 ... inf