Obliczenia Naukowe Lista 2

Bartłomiej Puchała

November 6, 2023

1 Zadanie 1

1.1 Opis problemu

Problem polega na powtórzeniu zadania 5 z listy 1, czyli obliczeniu iloczynu skalarnego dwóch wektorów, ale usunieciu ostatniej 9 z x_4 oraz ostatniej 7 z x_5 .

```
function calc_forwards(T, vecX, vecY, n)
    sum = one(T) - 1
    for i in 1:n
        sum += vecX[i] * vecY[i]
    end
    return sum
end
function calc_backwards(T, vecX, vecY, n)
    sum = one(T) - 1
    curr = n
    while curr >= 1
        sum += vecX[curr] * vecY[curr]
        if curr - 1 >= 1
            curr -= 1
        else
            break
        end
    end
    return sum
end
```

```
function calc_descending(T, vecX, vecY)
    sum_positive = one(T) - 1
    sum_negative = one(T) - 1
    sum = one(T) - 1
    tmp_positive = T[]
    tmp_negative = T[]
    if length(vecX) == length(vecY)
        for (i, j) in zip(vecX, vecY)
            if i * j > 0
                push!(tmp_positive, i * j)
            else
                push!(tmp_negative, i * j)
            end
        end
        sort!(tmp_positive, rev = true)
        sort!(tmp_negative)
        for i in tmp_positive
            sum_positive += i
        end
        for j in tmp_negative
            sum_negative += j
        end
        sum = sum_positive + sum_negative
        println("Wektory nie sa prawid<sub>□</sub>lowe")
    end
end
function calc_ascending(T, vecX, vecY)
    sum_positive = one(T) - 1
    sum_negative = one(T) - 1
    sum = one(T) - 1
    tmp_positive = T[]
    tmp_negative = T[]
    if length(vecX) == length(vecY)
        for (i, j) in zip(vecX, vecY)
            if i * j > 0
                push!(tmp_positive, i * j)
            else
                push!(tmp_negative, i * j)
            end
        end
        sort!(tmp_positive)
        sort!(tmp_negative, rev = true)
        for i in tmp_positive
            sum_positive += i
```

1.3 Wyniki oraz interpretacja

Algorytm	Float32	Roznica Float32
W Przód	-0.4999443	0
W Tył	-0.4543457	0
Od Najw.	-0.5	0
Od Najm.	-0.5	0

Algorytm	Float64	Roznica Float64
W Przód	-0.004296342739891585	0.004296342842410399
W Tył	-0.004296342998713953	0.004296342842280865
Od Najw.	-0.004296342842280865	0.004296342842280865
Od Najm.	-0.004296342842280865	0.004296342842280865

Niewielkie zmiany w danych powoduja różnice w otrzymywanych wynikach nawet o rzad wielkości 10^{-3} .

1.4 Wnioski

Widzac problem, na którego wyniki znaczaco wpływaja nawet niewielkie zmiany w danych wejściowych sugeruje o złym poziomie uwarunkowania problemu.

2 Zadanie 2

2.1 Opis problemu

Zadanie polega na narysowaniu wykresu funkcji

$$f(x) = e^x \ln\left(1 + e^{-x}\right)$$

w co najmniej dwóch programach do wizualizacji. Nastepnie należy policzyć granice funkcji $\lim_{x\to\infty} f(x)$ i porównać wykres funkcji z obliczona granica.

Figure 1: Wykres funkcji w Python(Matplotlib)

Figure 2: Wykres funkcji w WolframAlpha

$$\lim_{x \to \infty} e^x \ln \left(1 + e^{-x} \right) = \lim_{x \to \infty} \frac{\ln \left(1 + e^{-x} \right)}{e^{-x}} = \lim_{x \to \infty} \frac{-e^{-x}}{\left(1 + e^{-x} \right) * \left(-e^{-x} \right)} = \lim_{x \to \infty} \frac{1}{1 + e^{-x}} = 1$$

Obliczona granica w nieskończoności przyjmuje wartość 1, granica została policzona przy pomocy metody de l'Hospitala.

2.3 Wyniki i interpretacja

Możemy zauważyć że wykres funkcji f(x) w okolicach punktu x=30 staje sie niestabilny a wartości zaczynaja odbiegać od oczekiwanych. Nastepnie wartości zaczynaja zbiegać do 0, co jest sprzeczne z wynikiem obliczonej granicy $\lim_{x\to\infty}$.

2.4 Wnioski

Wartości zaczynaja odbiegać od oczekiwanych dla x w przedziale [30,40] z powodu faktu, że wartość e^{-x} zbliża sie do wartości epsilona maszynowego, wiec wykres oscyluje wokół 1, odbiega i zaczyna spadać do zera, co wynika z faktu, że wartość $\ln(1 + e^{-x})$ jest równa 0, bo wartość macheps została przekroczona.

3 Zadanie 3

3.1 Opis problemu

Zadanie polega na rozwiazaniu układu równań liniowych

$$Ax = b$$

dla danej macierzy współczynników $A \in \mathbb{R}^{n \times n}$ i wektora prawych stron $b \in \mathbb{R}^n$. Macierz A ma być generowana jako macierz Hilberta $(A = H_n)$, gdzie n jest stopniem tej macierzy i jako $(A = R_n)$, gdzie R_n jest losowa macierza stopnia n z zadanym wskaźnikiem uwarunkowania c. Ten układ równań należy rozwiazać za pomoca 2 algorytmów, algorytmu eliminacji Gaussa $(x = A \div b)$ oraz dla algorytmu(x = inv(A) * b).

```
function calculate_relative_error(x, reference_x)
    # Norma Euklidesowa roznicy wektorów
    error_norm = norm(x - reference_x)
    # norma Euklidesowa wektora referencyjnego
    reference_norm = norm(reference_x)
    # Blad wzgledny
    relative_error = error_norm / reference_norm
    return relative_error
end

function calcGauss(A, b)
    x = A \ b
    return x
```

```
end
function calcInverse(A, b)
    x = inv(A) * b
   return x
end
# Funkcja do generowania macierzy Hilberta
function hilb(n::Int64)
   H = zeros(Float64, n, n)
   for i in 1:n
        for j in 1:n
            H[i, j] = 1 / (i + j - 1)
        end
    end
   return H
end
# Funkcja do generowania macierzy danego rozmiaru i na podstawie podanego uwarunkowania
function matcond(n::Int, c::Float64)
    if(n < 2)
        return "Size of n should be > 1"
    end
    A = rand(n, n)
    F = svd(A) \# rozk_{\sqcup}lad svd(wedlug wartości osobliwych)
   U, S, V = F \# U to macierz lewych wektorów osobliwych
    #S to macierz diagonalna wartości osobliwych, V to macierz prawych wektorów osobliwych
   return U * diagm(0 => [LinRange(1.0, c, n);])*V # pomnozenie macierzy U i V^T,
    # gdzie V^T to macierz transponowana przez macierz diagonalna S z odpowiednimi
    # wartościami na diagonali jako zakres od 1.0 do c z równymi odstepami
end
```

3.3 Wyniki oraz interpretacja

1. Wyniki dla Macierzy Hilberta (H_n)

n	Gauss Error	Inverse Error	Condition
2	7.021666937153401e-16	0.0	19.281470067903967
3	2.7375497437671545e-15	2.329670154318109e-14	524.0567775860627
4	2.163452954752009e-13	3.4135644425146874e-13	15513.738738929662
5	2.7871931343743106e-13	7.455637944774642e-12	476607.2502419222
6	3.347582158492704e-10	1.2827865807782325e-10	1.4951058641931808e7
7	1.0714660570624442e-8	1.1527300819247877e-8	4.7536735651983196e8
8	4.415963229892491e-7	3.79672835736301e-7	1.5257576052786306e10
9	1.1753313049338465e-5	1.4840163876939037e-5	4.931539099297127e11
10	0.00022069259050910798	0.0003816537448426628	1.602489743907797e13
11	0.0061370127224061755	0.005027508456077255	5.219592223385588e14
13	1.9340328542478238	2.176661432102452	6.738714767183357e17
15	14.530780684593466	12.429282151240843	2.3228053763031325e17
17	5.702847199359304	7.400447213245778	6.968485027955343e17
19	7.977164583041656	12.28072952372789	1.777632773409892e18
21	43.504485883896244	154.96073707047393	4.834811654527856e18
23	21.634056047548167	34.13604551118164	1.1344683590683766e18
25	23.572600504144535	21.490537874421143	2.0216257487362834e19
27	30.11002787196579	72.14426727588254	2.766053659397318e18
29	18.47553583161393	19.28944178353934	2.6372941826255836e18

Jak widać macierz
 Hilberta jest przykładem macierzy źle uwarunkowanej, zatem numerycznie rozwiazywanie nawet niewielkich układów równań z ta macierza jest praktycznie niemożliwe. Można to zauważyć po szybko wzrastajacym wskaźniku uwarunkowania
(cond(x)), który dla macierzy 10 x 10 osiaga rzad wielkości 10^{13} .

2. Wyniki dla Macierzy Losowej (R_n)

n	Cond	Gaus Error	Inverse error
5	1.0	2.164223099578636e-16	2.6737711109153337e-16
5	10.0	4.2130001622920406e-16	4.2130001622920406e-16
5	1000.0	1.4325319156034877e-14	2.470998322584863e-14
5	1.0e7	1.3871114407994677e-10	2.598008332320691e-10
5	$1.0\mathrm{e}12$	5.733757560742947e-5	4.962195967762327e-5
5	$1.0\mathrm{e}16$	0.01175107665021737	0.0642202714205108
10	1.0	3.940900794429957e-16	2.0770370905276122e-16
10	10.0	3.3306690738754696e-16	2.531698018113677e-16
10	1000.0	8.056119772367459e-15	3.39093083129075e-14
10	1.0e7	2.376733646052788e-10	4.706835956915451e-10
10	$1.0\mathrm{e}12$	3.203285562720351e-5	5.190000397273812e-5
10	$1.0\mathrm{e}16$	0.110173622460718	0.11403535478679437
20	1.0	6.951095629092364e-16	5.063396036227354e-16
20	10.0	1.0987843116542347e-15	1.0755419851390038e-15
20	1000.0	6.581303858479593e-14	5.205047726233623e-14
20	1.0e7	5.5720873743889447e-11	2.321665025423311e-10
20	$1.0\mathrm{e}12$	6.6992662457360325e-6	1.7828796469037173e-5
20	1.0e16	0.2970415720198951	0.6241706046197695

3.4 Wnioski

Uwarunkowanie macierzy Hilberta ma bezpośredni wpływ na to, że wraz ze wzrostem n błedy sie zwiekszaja przy dowolnej metodzie wraz z coraz wiekszym cond(x). Dlatego wskaźnik uwarunkowania jest ważnym narzedziem w analizie numerycznej i pomaga określić, czy dana macierz jest odpowiednia do konkretnych obliczeń.

4 Zadanie 4

4.1 Opis problemu

Zadanie polega na sprawdzeniu obliczonych pierwiastków z_k $1 \le k \le 20$ wielomianu Wilkinsona, obliczeniu $|P(z_k)|$, $|p(z_k)|$, i $|z_k - k|$. Należy również powtórzyć eksperyment Wilkinsona ze zmienionym współczynnikiem.

```
function p(x)
    val = one(Float64)
    for i in 20:-1:1
        val = val * (x - i)
    end
    return val
end
coefficients = [1, -210.0-2.0^{-23}, 20615.0, -1256850.0,
      53327946.0,-1672280820.0, 40171771630.0, -756111184500.0,
      11310276995381.0, -135585182899530.0,
      1307535010540395.0,
                               -10142299865511450.0,
      63030812099294896.0,
                                -311333643161390640.0,
      1206647803780373360.0,
                                  -3599979517947607200.0,
      8037811822645051776.0,
                                   -12870931245150988800.0,
      13803759753640704000.0,
                                    -8752948036761600000.0,
      2432902008176640000.0]
P = Polynomial(reverse(coefficients))
println(P)
roots = Polynomials.roots(P)
println(roots)
for k in 1:20
    println("\$k \ \& \ \$(abs(P(roots[k]))) \ \& \ \$(abs(p(roots[k]))) \ \& \ \$(abs(roots[k] - k))")
end
```

4.3 Wyniki i interpretacja

k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	1603.9573920179469	304572.04260797694	1.6653345369377348e-14
2	7032.126244053075	$7.378697629496515\mathrm{e}{19}$	8.602007994795713e-13
3	363020.53660426877	3.320413934571126e20	3.3646685437815904e-10
4	4.1297007568024816e6	8.854436933250461e20	3.0104239989725556e-8
5	3.075695036659063e7	1.844675459361676e21	8.773618791479976e-7
6	1.4257935012621844e8	$3.3203908470754844\mathrm{e}{21}$	1.3036540314814715e-5
7	5.24632388586803e8	5.423631524959937e21	0.00011769796309923919
8	1.7358866242071867e9	8.261841653520567e21	0.0007083981118194416
9	$5.1002248626897955\mathrm{e}9$	1.1966108418294833e22	0.003039097772564503
10	1.166611991635824e10	1.655343433307367e22	0.009425364817383652
11	3.127208130563727e10	2.246553909518422e22	0.02299817354506395
12	6.1418141120587135e10	$2.89153886820604\mathrm{e}22$	0.040566592069646745
13	1.5300549815452048e11	$3.7940459609615415\mathrm{e}22$	0.05950452401079254
14	3.0985557081238544e11	4.633597782215305e22	0.06480991092200128
15	$5.010255098229966\mathrm{e}{11}$	5.875191008208141e22	0.05398301833971253
16	9.394123675655612e11	7.034662578633065e22	0.03609096183973115
17	2.3971581253245e12	8.555214312879987e22	0.0165393639009217
18	5.670957056381105e12	$1.0150796567230493\mathrm{e}23$	0.005602369314754441
19	$7.741019369389632\mathrm{e}{12}$	1.1988901833144277e23	0.0011451039164107613
20	1.2178388919649346e13	1.4019287561968973e23	0.00011119342792653697

Wyniki dla wielomianu Wilkinsona

Można zauważyć, że wyniki otrzymywane dla kolejnych k, które sa rozwiazaniami wielomianu w zbiorze liczb rzeczywistych(R) sa coraz bardziej niedokładne, różnice miedzy wartościa otrzymywana z $P(z_k)$ a $p(z_k)$ wynika z powodu różnych działań arytmetycznych.

k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	10130.71275321466	9426.712753211954	7.749356711883593e-14
2	56308.28771988236	53114.287721025175	8.29603052920902e-12
3	807092.163108728	633550.7888912051	8.906004822506475e-10
4	8.084860855411538e6	7.048149034054348e6	5.614410936161107e-8
5	$3.879198510577002\mathrm{e}7$	3.410921815648757e7	1.0868296920207854e-6
6	1.4732257627258718e8	$5.432787182756067\mathrm{e}7$	5.193150526494605e-6
7	4.1411759028405327e8	1.0237654561324999e9	0.0002283049351108346
8	5.02184047848722e8	$1.6791947081836334\mathrm{e}{10}$	0.006980931819212444
9	$1.2260299344962182\mathrm{e}9$	$1.3433655504423593\mathrm{e}{11}$	0.08227581314042176
10	1.711412152637466e9	$1.4837248370635044\mathrm{e}{12}$	0.6505270479399019
11	1.711412152637466e9	$1.4837248370635044\mathrm{e}{12}$	1.1105047852610384
12	$1.922343284948516\mathrm{e}{10}$	$3.2968824832136562\mathrm{e}{13}$	1.665389446835571
13	$1.922343284948516\mathrm{e}{10}$	$3.2968824832136562\mathrm{e}{13}$	2.0460081179778995
14	$2.78104055609644\mathrm{e}{11}$	9.547439978559046e14	2.518885830105916
15	$2.78104055609644\mathrm{e}{11}$	9.547439978559046e14	2.712916579182928
16	$1.0504983293359739\mathrm{e}{12}$	2.742163099611119e16	2.9060058491454366
17	$1.0504983293359739\mathrm{e}{12}$	2.742163099611119e16	2.8254814771679904
18	6.884949792026641e12	4.252467839147873e17	2.454019284846941
19	6.884949792026641e12	4.252467839147873e17	2.004325976483215
20	$9.72908249032009\mathrm{e}11$	$1.3743636608789734\mathrm{e}{18}$	0.8469082068719089

Wyniki dla zmodyfikowanego wielomianu Wilkinsona

Po zaburzeniu współczynnika -210 przy x^{19} o wartość -2^{-23} rozwiazaniami wielomianu staja sie pierwiastki zespolone. Przykładowo dla k=19 rozwiazaniem jest 19.50244401519765+1.9403279701116138im.

4.4 Wnioski

Wyznaczanie pierwiastków wielomianu Wilkinsona jest zadaniem źle uwarunkowanym, wynika to z faktu, że po zmianie współczynnika a_{19} z -210 na $-210-2^{-23}$ powoduje duże zmiany w otrzymywanych wynikach. Wynika to z tego faktu:

 $h \approx \epsilon * \frac{z(r)}{w'(r)}$

gdzie r jest pierwiastkiem, ϵ jest precyzja arytmetyki, funkcja z(r) jest zaburzeniem pierwiastka, a w'(r) jest pochodna wielomianu. Natomiast niedokładności w obliczaniu zer wielomianu wynikały z faktu, że brakowało cyfr znaczacych do zapisu takich dużych współczynników w danej arytmetyce.

5 Zadanie 5

5.1 Opis problemu

Zadanie polega na przeprowadzeniu eksperymentów dla podanego równania rekurencyjnego:

$$p_{n+1} = p_n + rp_n(1 - p_n)$$

- 1. Wykonanie 40 iteracji wyrażenia dla danych $p_0=0.01$ i r=3w arytmetyce Float32
- 2. Wykonanie 10 iteracji, zatrzymanie sie, zastosowanie obciecia wyniku i kontynuowanie dalej obliczenia w arytmetyce Float32
- 3. Dla danych $p_0=0.01$ i r=3 wykonanie 40 iteracji wyrażenia w arytmetyce Float32 i Float64

5.2 Rozwiazanie

```
function calc_population(p::Float32, r::Float32, i::Float32)
    next_p::Float32 = one(Float32) - 1
    if i == 41
        return
    end
    next_p = p + r * p * (1 - p)
    println("$i & $next_p")
    return calc_population(next_p, r, i + 1)
end

p0 = Float32(0.01)
r = Float32(3.0)
i = Float32(1.0)
calc_population(p0, r, i)
```

5.3 Wyniki i interpretacja

1. Dla 40 iteracji wyrażenia w arytmetyce Float32

$$x = p_{40} = 0.25860548$$

2. Dla 40 iteracji wyrażenia po zatrzymaniu i zastosowania obciecia po 10 iteracji w arytmetyce Float32

$$x = p_{40} = 1.093568$$

3. Dla 40 iteracji wyrażenia w arytmetyce Float64

$$x = p_{40} = 0.011611238029748606$$

Można zauważyć, że precyzja arymetyki jak i obcinanie cyfr znaczacych jak w przypadku 1 może mieć znaczacy wpływ na otrzymywane wyniki.

5.4 Wnioski

Aby odpowiednio rozwiazać równanie rekurencyjne w obliczeniach numerycznych, należy zwrócić uwage na precyzje arytmetyki oraz na to, aby nie obcinać cyfr znaczacych.

6 Zadanie 6

6.1 Opis problemu

Zadanie polega na przeprowadzeniu eksperymentów dla poniższego równania rekurencyjnego:

$$x_{n+1} = x_n^2 + c$$

gdzie $n=0,1,\dots$ i c jest pewna stała. Należy przeprowadzić nastepujace eksperymenty:

- 1. $c = -2 i x_0 = 1$
- 2. $c = -2 i x_0 = 2$
- 4. c = -1 i $x_0 = 1$
- 5. c = -1 i $x_0 = -1$
- 6. c = -1 i $x_0 = 0.75$
- 7. c = -1 i $x_0 = 0.25$

6.2 Rozwiazanie

```
function calc_equation(x, c, i)
    if i == 41
        return
    end
    next_x = x^2 + c
    println("$i & $next_x")
    return calc_equation(next_x, c, i + 1)
end

c = -1.0
x_0 = 0.25
i = 1.0
calc_equation(x_0, c, i)
```

6.3 Wyniki oraz interpretacja

1.
$$c = -2 i x_0 = 1 \rightarrow x = -1.0$$

2.
$$c = -2 i x_0 = 2 \rightarrow x = 2.0$$

4.
$$c = -1$$
 i $x_0 = 1 \rightarrow x = -1.0$

5.
$$c = -1$$
 i $x_0 = -1 \rightarrow x = -1.0$

6.
$$c = -1$$
 i $x_0 = 0.75 \rightarrow x = -1.0$

7.
$$c = -1$$
 i $x_0 = 0.25 \rightarrow x = 0.0$

Przeprowadziłem iteracje graficzna w WolframAlpha dla zadanych danych:

Figure 3: c = -2, $x_0 = 1$

Figure 4: $c = -2, x_0 = 2$

Figure 6: $c = -1, x_0 = 1$

Figure 7: c = -1, $x_0 = -1$

Figure 8: c = -1, $x_0 = 0.75$

Figure 9: c = -1, $x_0 = 0.25$

6.4 Interpretacja i Wnioski