BodyFat Project

Zhengyong Chen, Xiangsen Dong, Xupeng Tang, Zhaoqing Wu

Overview

- Data Cleaning
- Model Selection
- Trade-off
- Final Model

Data Cleaning

Data Cleaning

- We converted the unit of Height to cm.
- We imputed individual 42's Height due to an unusually low value.

Individual	Original Value	Imputed Value	Imputation Method
42	74.93 cm	181.47 cm	Used ADIPOSITY

• We removed three individuals (**IDNO: 39, 41, 216**) due to outliers detected across multiple variables using the IQR method.

Individual	Outlier_Variables
39	WEIGHT, ADIPOSITY, NECK, CHEST, ABDOMEN, HIP, THIGH, KNEE, ANKLE, BICEPS, WRIST
41	WEIGHT, ADIPOSITY, CHEST, ABDOMEN, HIP, THIGH, WRIST
216	BODYFAT, DENSITY, ADIPOSITY, ABDOMEN

Data Cleaning

- We deleted column DENSITY and IDNO.
- We scaled the data before modeling.

Final Data: 249 rows with 14 predictors

Predictors: AGE, WEIGHT, HEIGHT, ADIPOSITY, NECK, CHEST, ABDOMEN, HIP, THIGH, KNEE, ANKLE, BICEPS, FOREARM, WRIST

Model Selection

Model Construction Principles

Select variables:

Stepwise regression

Reason:

Stepwise regression iteratively adds or removes predictors, effectively identifying the most valuable variables for predicting body fat and excluding those with lesser contributions.

Initial Comprehensive Model:
Starting with a broad model that includes:

BODYFAT ~ AGE + WEIGHT + NECK + ABDOMEN + THIGH + FOREARM + WRIST

Through stepwise regression, we filter out the most crucial variables for predicting body fat percentage.

Consideration of Candidate Models

Firstly tested a **simple** univariate model:

BODYFAT~ABDOMEN

Abdomen is an important indicator due to its high correlation with body fat content.

Subsequently, added more variables to build **multivariate models**:

BODYFAT ~AGE+WEIGHT+ ABDOMEN+NECK+THIGH

Considering the effects of age, weight, and abdominal circumference among others.

Reasons: Based on literature review and initial data analysis.

Example: Multiple studies have demonstrated a strong correlation between abdominal circumference

and body fat;

Age and weight are also important factors affecting body fat distribution.

Trade-off

Trade-Offs

Accuracy: we measured accuracy using the following criteria

RMSE

- Pros: RMSE measures the average prediction error, indicating model accuracy
- Cons: Sensitive to outliers. But we have removed them

adjust R2

- Pros: Accounts for model complexity, prevents overfitting, useful for multiple predictors.
- Cons: Does not provide a direct measure of prediction error. 🔐 But we could combine 2 metric 🤗

Simplicity: Measure by linear models with different number of predictors:

BODYFAT ~ AGE + WEIGHT + NECK + ABDOMEN + THIGH + FOREARM + WRIST

BODYFAT ~ ABDOMEN 😂

BODYFAT ~ WEIGHT + ABDOMEN

BODYFAT ~ ABDOMEN * WEIGHT

BODYFAT ~ ABDOMEN squared

BODYFAT ~ ABDOMEN squared + WEIGHT

BODYFAT ~ ABDOMEN + ABDOMEN squared + WEIGHT

Trade-Offs

Robustness-method select:

Definition: The definition of robustness is how model could hold its performance on noisy data.

Hence by definition, we evaluate robustness by add noise on training/test dataset. But the question is, where should we add noise?

- \triangleright Method 1: Train 1 model on training set, then test on both the original test set and a noisy test set with noise added to both ($X_{test} Y_{test}$).
 - Model trained only on clean data; weak against noisy test data.
 - Does not consider training noise, limiting comprehensive robustness evaluation.
- Method 2: Train 1 model on training set, then test on both the original test set and a noisy test set with noise added to only X_{test}
 - Ignores target noise, failing to assess output uncertainty.
 - Trained only on original data, lacks robustness against noisy training data.
- \triangleright Method 3: Train two models: one on the original dataset, and another with noise added to only X_{train} , then test both on the same test set.
 - limiting the model's adaptability to target noise, making output noise robustness unclear. 📀
- Method 4: Train two models: one on the original dataset, and another with noise added to only Y_{train} , then test both on the same test set.
 - leaving input noise effects untested.

Trade-Offs

Robustness – Final Proposal method:

- **Final method**: Train two models: one on the original dataset, and another with noise added to both (Y_{train}, X_{train}) , then test both on the same test set.
 - Noise added to both input features XX and targets YY in training enhances adaptability to real-world uncertainties. (> <

Process:

For each fold $k = 1, 2, \ldots, K$:

- 1. Split the dataset into training set $D_{\text{train},k}$ and testing set $D_{\text{test},k}$.
- 2. For each model $m \in \text{models}$:
 - Train the baseline model m on $D_{\text{train},k}$.
 - Add Gaussian noise $\mathcal{N}(0,\sigma^2)$ to $D_{\mathrm{train},k}$ and train the noiseperturbed model m_{noise} on this noisy dataset.
- 3. Evaluate both m and m_{noise} on $D_{\text{test},k}$ using the metric:

$$MSE(m, D_{test,k}), \quad MSE(m_{noise}, D_{test,k})$$

After completing the cross-validation, compare the robustness of the models using the **retention rate** r, defined as:

1, Accuracy Retention in Noisy Data

$$RetentionRate = 1 - \frac{|metric_{noisy} - metric_{original}|}{metric_{original}}$$

metric = MSE

Why Use Cross-Validation in Robustness Testing?

- Training and evaluating on a single train-test split can lead overfitting or overestimating the model's performance.
- If evaluated on a single data split, the model's performance may be dominated by the characteristics of the particular split, such as anomalies or certain data points.

Results

model	adjusted_R	MSE	retention_MSE_rate	num_predictors
BODYFAT ~ AGE + WEIGHT + NECK + ABDOMEN + THIGH + FOREARM + WRIST	0.727	0.272	0.978	7
BODYFAT ~ ABDOMEN	0.666	0.33	0.993	1
BODYFAT ~ WEIGHT + ABDOMEN	0.708	0.292	0.987	2
BODYFAT ~ ABDOMEN * WEIGHT	0.023	0.978	0.982	1
BODYFAT ~ ABDOMEN_squared	0.013	0.985	0.999	1
BODYFAT ~ ABDOMEN_squared + WEIGHT	0.539	0.461	0.997	2
BODYFAT ~ ABDOMEN + ABDOMEN_squared + WEIGHT	0.709	0.286	0.981	3

Combining all of above results, our final model is BODYFAT ~ WEIGHT + ABDOMEN, since it has relatively large R2 value and small MSE, few predictors and high retention rate

Final Model

Bodyfat_scaled = 1.18*Abdomen_scaled - 0.42Weight_scaled.

sample mean of Bodyfat = 18.94%, sample sd of Bodyfat = 7.75%,

sample mean of Abdomen = 92.08 cm, sample sd of Abdomen = 9.85 cm,

sample mean of Weight = 177.69 lbs, sample sd of weight = 26.48 lbs.

Bodyfat (%)= -44.71 (%)+ 0.93*Abdomen (cm) - 0.12*Weight (lbs)

Example

A man of 200 lbs weight and 100 cm abdomen circumference, his body fat is predicted to be:

$$(1.18 \times \frac{100 - 92.08}{9.85} - 0.42 \times \frac{200 - 177.69}{26.48}) \times 7.75\% + 18.94\% = 23.55\%.$$

Example

We have developed this model into a Shiny app: https://andrewchanshiny.shinyapps.io/Bodyfat-Group10-P2-628/

Body Fat Prediction Model — GROUP 10 **Input Parameters** Select Age Group Abdomen Circumference (cm): 20-29 years 100 BodyFat Percentage Table for Men (Measure around your abdomen at navel level.) Weight (lbs): Category Percentage 200 Low (Increased Health Risk) <8% (Kg to lbs: multiply kg by 2.20.) Excellent/Fit (Healthy) <=10.5% Good/Normal (Healthy) 10.6-14.8% Predict Body Fat Fair/Average (Healthy) 14.9-18.6% Predicted Body Fat Percentage Poor (Increased Health 18.7-23.1% Risk) 23.55 % High (Increased Health >=23.2% Risk) For any inquiries, contact us at: zchen2353@wisc.edu, xdong95@wisc.edu, xtang254@wisc.edu, zwu535@wisc.edu

P-value of predictors is greatly less than 0.01, which indicates statistical significance.

Analysis on residuals

Strength:

Easy to use.

A certain level of accuracy.

Weakness

Contradicts with common sense.

(cov(bodyfat,weight) < 0)