FIN3080 HW2 Report

Things to know:

Table 2 and Table 3 in this report refers to the Table 2 and Table 3 from Section 4 in Chen et al.

(2019)

Problem 1:

(a)

See the details in the code HW3_P1

monthly_returns								
	Percentiles	Smallest						
1%	2269278	2585052						
5%	1179456	2421533						
10%	0762293	2269278	0bs	215				
25%	04172	2103763	Sum of wgt.	215				
50%	.0059823		Mean	.0090424				
		Largest	Std. dev.	.081745				
75%	.0505247	.1874761						
90%	.1182579	.1905605	Variance	.0066822				
95%	.1686821	.258075	Skewness	.0183077				
99%	.1905605	.2792902	Kurtosis	4.393663				

Mean: 0.0090424 Standard deviation: 0.081745

Skewness: 0.0183077 Kurtosis: 4.393663

(b)

(c)

Skewness and kurtosis tests for normality

monthly_returns	215	0.9099	0.0029	8.16	0.0169
Variable	0bs	Pr(skewness)	Pr(kurtosis)	Adj chi2(2)	Prob>chi2
				Joint	test ——

By skewness and kurtosis tests for normality, the returns for $CSI\ 300$ index do not follow the normal distribution. Though Probability (skewness) = 0.9099 shows that the distribution is symmetric, Probability (kurtosis) = 0.0029 shows that there are fat tails compared with normal distribution. In addition, the joint test tells us that we should reject the null hypothesis at the 5% level (the null hypothesis: the distribution is normal).

Problem 2:

(a) - (c)

See the details in the code HW3 P2

(d)

Repeat the steps to derive a table similar to *Table 2*.

After data processing, we get a dataset containing weekly individual stock returns, risk-free rate, and market returns. First, we split the data into 3 periods, that is, T1, T2, T3, respectively. Then, in T1, we conduct the stock-level time-series regressions for each stock to derive β_i . Based on the β_i s, in T2, we construct ten portfolios and calculate their returns respectively. Finally, we conduct portfolio-level time-series regressions to derive β_p s, and have the following table which shows similar results to those in *Table* 2.

Portfolio index	α	β_{p}	\mathbb{R}^2	Number of
				observations
1	-0.0013981	0.771439	0.916254	24800
	(0.0000466)	(0.0014815)		
2	-0.0000246	0.8700057	0.953302	24800
	(0.0000385)	(0.0012221)		
3	-0.0001226	0.9031776	0.975287	24700
	(0.0000288)	(0.000915)		
4	0.0007093	0.9331025	0.977565	24800
	(0.0000283)	(0.0008985)		
5	-0.0002562	1.001072	0.983148	24800
	(0.0000262)	(0.0008323)		
6	0.0000203	1.036387	0.986350	24700
	(0.0000244)	(0.0007754)		
7	-0.0004045	1.040984	0.980342	24800
	(0.0000294)	(0.0009357)		
8	-0.000263	1.091806	0.979912	24700
	(0.0000313)	(0.0009945)		
9	0.0000116	1.13304	0.973982	24700
	(0.0000371)	(0.0011778)		
10	-0.0009068	1.147213	0.970169	24700
	(0.0000403)	(0.001279)		

Based on the β_i s, in T3, we construct ten portfolios and calculate their returns respectively. Then, we regress the portfolio returns on β_p s from T2 to get the table 3, which shows similar results to those in Table 3.

	γο	γ1	R ²	F-statistics	P-value
coefficient	-0.0015157	0.0030818	0.5537	9.93	0.0136
t-value	-1.55	3.15			

beta_p _cons	.0030818 0015157	.0009781 .0009777	3.15 -1.55	0.014 0.160	.0008 0037		.0053374 .0007388
portfolio_~s	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
Total	2.2859e-06	9	2.5399e-0	•	MSE	=	
Residual	1.0201e-06	8	1.2751e-0		R-squared Adj R-squared		0.5537 0.4980
Model	1.2658e-06	1	1.2658e-0	5 Prob	> F	=	0.0136
Source	SS	df	MS	Number of obs — F(1, 8)		s = =	10 9.93