Localizing Memorization in SSL Vision Encoders

Wenhao Wang, Adam Dziedzic, Michael Backes, Franziska Boenisch

CISPA Helmholtz Center for Information Security

TL;DR

We present the first work that allows to localize memorization in individual layers and units, i.e., neurons or convolutional filters, of self-supervised (SSL) vision encoders.

Contributions

- A per-layer metric of memorization for SSL encoders (LayerMem), based on the SSLMem of our previous work.
- A per-unit metric of memorization for SSL encoders (UnitMem).
- Demonstration of the practical benefits of localization of memorization for encoder finetuning and pruning.
- Extensive empirical evaluation of LayerMem and UnitMem on various SSL frameworks and datasets.

Summary of Findings

- Individual units in SSL encoders memorize individual training data points.
- SSL memorization increases with layer depth, highly memorizing units are distributed across the entire encoder.
- Units in SSL encoders experience significantly higher memorization of individual data points than units of models trained with supervised learning.
- In vision transformers, most memorization **SL** happens in the fully-connected layers.
- Atypical data points cause higher memorization in layers and units.

Formalizing LayerMem

Recall our Definition of SSLMem:

$$\mathcal{H}_{\text{align}}(f, x, S) = \underset{f \sim \mathcal{A}(S)}{\mathbb{E}} \underset{x', x'' \sim \text{Aug}(x)}{\mathbb{E}} [d(f(x'), f(x''))]$$

 $SSLMem (g,f,x,S',S) = H_{align}(g,x,S') - \mathcal{H}_{align}(f,x,S)$

The LayerMem for specific layer l is defined as:

$$\label{eq:layerMem} \begin{split} \operatorname{LayerMem}(g,f,x,S',S,l) &= \operatorname{SSLMem}(g,f,x,S',S,l) \\ &- \operatorname{SSLMem}(g,f,x,S',S,l-1) \end{split}$$

Formalizing UnitMem

We first define the mean activation μ of unit u on a training point x as:

$$\mu_u(x) = \underset{x' \sim \text{Aug}(x)}{\mathbb{E}} \text{activation}_u(x')$$

Further, for the unit u, we compute the maximum mean activation $\mu_{max,u}$ across all instances from \mathcal{D}' , where $N = |\mathcal{D}'|$, as

$$\mu_{max,u} = \max(\{\mu_u(x_i)\}_{i=1}^N)$$

Let k be the index of the maximum mean activation $\mu_u(x_k)$, i.e., the argmax. Then, we calculate the corresponding mean activity μ_{-max} across all the remaining N-1 instances from \mathcal{D}' as

$$\mu_{-max,u} = \text{mean}(\{\mu_u(x_i)\}_{i=1,i\neq k}^N).$$

Finally, we define the UnitMem of unit u as

$$\mathtt{UnitMem}_{\mathcal{D}'}(u) = rac{\mu_{max,u} - \mu_{-max,u}}{\mu_{max,u} + \mu_{-max,u}}.$$

Insights into LayerMem & UnitMem

The memorization in ViT occurs mainly in the deeper blocks and more in the fully-connected than attention layers.

Layer	LayerMem	$\Delta {\tt LM}$	$\texttt{LayerMem}\ \mathrm{Top}50$	Δ LM $Top50$	LayerMem Least50
1	0.091	-	0.144	-	0.003
2	0.123	0.032	0.225	0.081	0.012
3	0.154	0.031	0.308	0.083	0.022
4	0.183	0.029	0.402	0.094	0.031
Res2	0.185	0.002	0.403	0.001	0.041
5	0.212	0.027	0.479	0.076	0.051
6	0.246	0.034	0.599	0.120	0.061
7	0.276	0.030	0.697	0.098	0.071
8	0.308	0.032	0.817	0.120	0.073
Res6	0.311	0.003	0.817	0	0.086

Memorization Increases with layer depth but not Mono-tonically.

SL UnitMem SSL UnitMem SSL ClassMem

Layer SL have higher ClassMem while SSL have higher LayerMem.

ArXiv Paper

Application of LayerMem & UnitMem

Fine-tuned Layers	Accuracy (%) ↑
None (HEAD)	$48.6\% \pm 1.12\%$
6 (highest) + HEAD	$\overline{53.0\%\pm0.86\%}$
8 (last layer, highest) + HEAD	$52.7\% \pm 0.97\%$
6.8 + HEAD	$\overline{56.7\%\pm0.84\%}$
7.8 + HEAD	$55.3\% \pm 0.77\%$
4,6,8 (highest) + HEAD	$57.9\% \pm 0.79\%$
6.7.8 + HEAD	$56.5\% \pm 0.95\%$

Fine-tuning most memorizing layers according to LayerMem. ResNet9 encoder trained with SimCLR on CIFAR10 and fine-tune different (combinations of) layers on the STL10 dataset

Pruning	% of Selected	$Downstream\ Accuracy\ (\%)$			
Strategy	Units	CIFAR10	SVHN	STL10	
No Pruning	-	70.44	78.22	69.12	
Top per layer	10	53.04	63.84	50.94	
Random per layer	10	58.09 ± 1.76	67.04 ± 2.44	55.71 ± 2.18	
Low per layer	10	62.58	72.26	59.26	
Top per layer	20	48.30	55.88	43.18	
Random per layer	20	51.34 ± 1.21	58.01 ± 1.34	46.74 ± 0.97	
Low per layer	20	54.84	62.60	50.02	
Top total	10	49.16	61.28	47.30	
Random total	10	56.77 ± 2.09	67.09 ± 1.56	53.89 ± 2.33	
Low total	10	62.62	72.28	59.30	

Removing the least/most memorized units according to UnitMem preserves most/least linear probing performance.

Conclusions

- We propose the first practical metrics for localizing memorization within SSL encoders on a per-layer (LayerMem) and per-unit (UnitMem) level.
- While memorization in SSL increases in deeper layers, a significant fraction of highly memorizing units can be encountered over the entire encoder.
- SSL encoders significantly differ from models trained with supervised learning in their memorization patterns, with the former constantly memorizing data points and the latter increasingly memorizing classes.