AUTOMATIC MOTION CONTROL

- . in future animation systems based on synthetic actors, motion control will be performed automatically using artificial intelligence and robotics techniques
 - motion will be planned at a task level and computed using physical laws
- . five steps to automatic motion control
 - positional constraints and inverse kinematics
 - motion control using dynamics
 - impact of the environment
 - task planning
 - behavioral animation

Positional Constraints and Inverse Kinematics

- . an inverse kinematics problem
 - What are the angle values for the shoulder, elbow and wrist if the hand needs to reach a certain position and orientation in space?
- . in an animation system based on inverse kinematics
 - the animator specifies discrete positions and motions for end parts
 - the system computes joint angles and orientations for other parts of the body to produce the desired positions and motions
 - . constraints can be imposed on various parts of the body
 - . precedence is specified for constraints which cannot be satisfied simultaneously
 - typically, a human model is kinematically redundant, leading to infinitely many solutions
 - some solutions minimize variations in angles
 - collision avoidance reduces the number of solutions
 - complexity increases as the number of linkeages increases
 - no closed form solution in general

Motion Control Using Dynamics

- . more complex, but more realistic than positional constraints and inverse kinematics
- . motion of a synthetic actor is governed by forces and torques applied to limbs
- . two problems
 - direct dynamics
 - . finding the trajectories of some point as the end effector with regard to the forces and torques that cause the motion
 - inverse dynamics
 - determining the forces and torques required to produce a prescribed motion
- the time sequence of joint torques required to achieve the desired time sequence of positions, velocities and accelerations can be computed
 - equations of motion for articulated bodies are derived using Lagrange's equation for motion for nonconservative systems

Motion Control Using Dynamics, cont.

- . factors which motivate dynamics for motion control
 - dynamics free the animator from having to describe motion using the physical properties of solid objects
 - natural phenomena can be rendered more realistically
 - bodies can react automatically to external and internal constraints
 - . fields
 - . collisions
 - . forces
 - . torques
- . factors which discourage dynamics for articulated bodies
 - animators do not think in terms of forces and torques
 - the solution of motion equations is computationally intense
 - even though dynamics-based motions are realistic, they are too regular

Adaptive Motion Control

- . the actor has an impact on the environment and vice versa
 - precludes rotoscopy and key framing
- . reduces the amount of information which the animator must enter
- . requires trajectory planning and obstacle avoidance
- . trajectory planning
 - studied extensively in artifical intelligence and robotics
 - animation also considers aesthetic criteria
- obstacle avoidance
 - avoidance of static objects (decor) or objects grasped by actors
 - avoidance of dynamic objects
 - visibility graphs show vertices which can "see" each other
 - a collision-free path is the shortest path from the start to the goal in the visibility graph
 - unfortunately, a moving object is represented as a point

collisions

- several methods exist for calculating forces between colliding rigid bodies
 - simultaneous collisions can be modeled as a slightly staggered series of single collisions
 - bodies in resting contact are prevented from interpenetrating by modeling their contacts as a series of frequently occurring collisions

finite elements and local deformations

- physical objects should react to forces such as gravity, pressure and contact
 - collisions between elastic objects are simulated by creating potential energy around each object (i.e. a repulsive collision force)
- intrinsic properties can be exploited using the finite element method
 - . (the decomposition approach) an object can be decomposed into several deformable subobjects which can interact with each other for modeling penetrating shocks between two or more deformable objects
 - (the composition approach) objects can be considered as independently evolving subobjects until a contact is detected for modeling contacts without penetration between two or more objects
 - a global object is composed after contact

Task Planning

- . a major problem in robotics and artificial intelligence
- . given a task description, the task must be decomposed into a sequence of elementary movements
- needed information
 - a description of the scene (topology, positions, and orientations of the objects)
 - rules (e.g. stand up before walking)
 - actor behavior (which modifies the ways of doing movements)
 - actor skills (a library of elementary movements)
- . example: "answer the phone"
 - stand up
 - find a trajectory which avoids obstacles
 - walk along the trajectory
 - determine a trajectory for grasping the phone
 - grasp the phone
 - answer

Task Planning, cont.

- . task specification
 - by example
 - by a sequence of model states
 - by a sequence of commands
 - . most suitable and popular

Behavioral Animation

- . behaviors of characters must be designed
- . distributed behaviors model flocks, herds and schools
- . a flock
 - an elaboration of a particle system
 - the result of interactions between individual birds
 - birds must stick together, but must also avoid collisions with other birds and with obstacles in the environment