TI DSP, MCU, Xilinx Zynq FPGA 프로그래밍 전문가 과정

강사 - Innova Lee (이상훈) gcccompil3r@gmail.com 학생 - 김형주 mihaelkel@naver.com

CNT 분석하기

```
static const hetINSTRUCTION t het1PROGRAM[58U] =
/* CNT: Timebase
          Instruction
                                        = 0
        - Next instruction
                                        = 1
        - Conditional next instruction = na
        - Interrupt
                                        = na
        - Pin
                                        = na
        - Reg
    /* Program */
    0x00002C80U, //13, 11, 10 ,7
      * Control *
    0x01FFFFFFU,
      * Data
    0xFFFFFF80U,
    0x00000000U
```

het란, high-end timer로 TMS570 MCU 내에 있는 FPGA 내부의 레지스터를 말한다. FPGA는 128bit를 사용하기 때문에, arm 레지스터(32bit)에 비해 매우 정교한 연산이 가능하다. 따라서 정밀 제어를 하기 위해서는, hetpwm을 사용해야 한다.

58개의 배열이 선언되어 있으므로, 58개의 명령어를 저장할 수 있다.

FPGA 레지스터는 32bit x 4 = 128bit로 이루어져 있다.

크게, Program field, Control field, Data field, Reserved로 이루어져 있다.

어떻게 설정하는 지, CNT 레지스터를 하나 예시를 들어보자.

Program Field의 13,11,10,7 번 bit가 set이니, 각 비트를 확인해보자. Next Program address가 0x0 0000 0001 == 1 임을 알 수 있다. 11,10번 bit가 set이니, 12:9 == 0110이 된다.

Table 23-73. Instruction Summary

0

Abbreviation	Instruction Name	Opcode	Sub-Opcode	Cycles
ACMP	Angle Compare	Ch	18	1
ACNT	Angle Count	9h	(*)	2
ADCNST	Add Constant	5h	(4)	2
ADC	Add with Carry and Shift	4h	C[25:23] = 011, C5 = 1	1-3
ADD	Add and Shift	4h	C[25:23] = 001, C5 = 1	1-3
ADM32	Add Move 32	4h	C[25:23] = 000, C5 = 1	1-2
AND	Bitwise AND and Shift	4h	C[25:23] = 010, C5 = 1	1-3
APCNT	Angle Period Count	Eh	(+)	1-2
BR	Branch	Dh	328	1
CNT	Count	6h	121	1-2
DADM64	Data Add Move 64	2h	(8)	2
DJZ	Decrement and Jump if -zero	Ah	P[7:6] = 10	1
ECMP	Equality Compare	Oh	C[6:5] = 00	1
ECNT	Event Count	Ah	P[7:6] = 01	1
MCMP	Magnitude Compare	Oh	C[6] = 1	1
MOV32	Move 32	4h	C[5] = 0	1-2
MOV64	Move 64	1h	(*)	1
OR	Bitwise OR	4h	C[25:23] = 100, C5 = 1	1-3
PCNT	Period/Pulse Count	7h		1
PWCNT	Pulse Width Count	Ah	P[7:6] = 11	1
RADM64	Register Add Move 64	3h	18	1
RCNT	Ratio Count	Ah	P[7:6] = 00, P[0] = 1	3
SBB	Subtract with Borrow and Shift	4h	C[25:23] =110, C[5] = 1	1-3
SCMP	Sequence Compare	Oh	C[6:5] = 01	1
SCNT	Step Count	Ah	P[7:6] = 00, P[0] = 0	3
SHFT	Shift	Fh	C[3] = 0	1
SUB	Subtract and Shift	4h	C[25:23] = 101, C[5] = 1	1-3
WCAP	Software Capture Word	Bh	(4)	1
WCAPE	Software Capture Word and Event Count	8h	120	1
XOR	Bitwise Exclusive-Or and Shift	4h	C[25:23] = 111, C[5] = 1	1-3

⁽¹⁾ Cycles refers to the clock cycle of the N2HET module; which on most devices is VCLK2. (Check the device datasheet description of clock domains to confirm). If the high-resolution prescale value is set to /1, then this is also the same as the

CNT의 opcode를 보면, offset이 6임을 알 수 있다. 따라서 12:9번 비트는 opcode, 즉, 명령어를 설정하는 비트임을 알 수 있다.

7번 bit는 1이고, 7:6번 비트가 1 set이므로, register를 설정하는 비트는 0b10임을 알 수 있다.

Reg*

Register select: Selects the register for data comparison and storage

Default: No register (None)

Location: Control field [2:1] except for CNT instruction.

Extended Register Select C[7] is available for ACMP, ADC, ADD, ADM32, AND, DADM64, ECMP, ECNT, MCMP, MOV32, MOV64, OR, RADM64, SBB, SHFT, SUB, WCAP, WCAPE instructions.

Register	Ext Reg. C[7]	C[2]	C[1]
Α 0		0	0
В	0	0	1
T	0	- 1	0
None	0	1	1
R	1	0	0
s	1	0	1
Reserved	1	i	0
Reserved	1	:1	1.

register를 설정하는 코드는, CNT는 예외적으로 7:6번 비트임을 알 수 있다.

0b10일시 T로 설정하는 것 또한 알 수 있다.

CNT Control Field는 max counter bit만 01FFFFFF로 set해주는 것을 알 수 있다. 데이터 시트를 보면,

max

Specifies the 25-bit integer value that defines the maximum count value allowed in the data field. When the count in the data field is equal to max, the data field is reset to 0 and the Z system flag is set to 1.

결국 data field의 값이 01FFFFFF이 될 때, data field를 0으로 reset하고, cpsr의 Z bit를 1로 set함을 알 수 있다. data field의 값은 0xFFFFFF80으로 set해주고 있다. data bit는 31:8이므로, 결국 data는 0x1FFFFFF임을 알 수 있다. 위의 max counter값과 같으므로, 0으로 reset이 되고, Z flag를 1로 set해준다는 것을 알 수 있다.