

Multidisciplinary System Design Optimization (MSDO)

Multiobjective Optimization (I)

Lecture 14

by Dr. Anas Alfaris

Where in Framework?

Lecture Content

- Why multiobjective optimization?
- Example twin peaks optimization
- History of multiobjective optimization
- Weighted Sum Approach
- Pareto-Optimality
- Dominance and Pareto Filtering

Multiobjective Optimization Problem Formal Definition

Design problem may be formulated as a problem of Nonlinear Programming (NLP). When Multiple objectives (criteria) are present we have a MONLP

min $\mathbf{J} \mathbf{x}, \mathbf{p}$ s.t. $\mathbf{g}(\mathbf{x}, \mathbf{p}) \le 0$ $\mathbf{h}(\mathbf{x}, \mathbf{p}) = 0$ $x_{i,LB} \le x_i \le x_{i,UB}$ (i = 1, ..., n)where $\mathbf{J} = \begin{bmatrix} J_1 \mathbf{x} & \cdots & J_z \mathbf{x} \end{bmatrix}^T$ $\mathbf{x} = x_1 & \cdots & x_i & \cdots & x_n \end{bmatrix}^T$ $\mathbf{g} = \begin{bmatrix} g_1(\mathbf{x}) & \cdots & g_{m_1}(\mathbf{x}) \end{bmatrix}^T$ $\mathbf{h} = \begin{bmatrix} h_1(\mathbf{x}) & \cdots & h_{m_2}(\mathbf{x}) \end{bmatrix}^T$

Multiple Objectives

The objective can be a vector **J** of *z* system responses or characteristics we are trying to maximize or minimize

$$\mathbf{J} = \begin{bmatrix} J_1 \\ J_2 \\ J_3 \\ J_i \\ \vdots \\ J_z \end{bmatrix} = \begin{bmatrix} \text{cost [\$]} \\ -\text{range [km]} \\ \text{weight [kg]} \\ -\text{data rate [bps]} \\ \vdots \\ -\text{ROI [\%]} \end{bmatrix}$$

Often the objective is a scalar function, but for real systems often we attempt multi-objective optimization:

$$x \mapsto J(x)$$

Objectives are usually conflicting.

Why multiobjective optimization?

While multidisciplinary design can be associated with the traditional disciplines such as aerodynamics, propulsion, structures, and controls there are also the <u>lifecycle areas</u> of manufacturability, supportability, and cost which require consideration.

After all, it is the balanced design with equal or weighted treatment of performance, cost, manufacturability and supportability which has to be the ultimate goal of multidisciplinary system design optimization.

Design attempts to satisfy multiple, possibly conflicting objectives at once.

Aspect Ratio
Dihedral Angle
Vertical Tail Area
Engine Thrust
Skin Thickness

of Engines
Fuselage Splices
Suspension Points
Location of Mission
Computer
Access Door
Locations

Example: F/A-18 Aircraft

Objectives

Speed
Range
Payload Capability
Radar Cross Section
Stall Speed
Stowed Volume

Acquisition cost
Cost/Flight hour
MTBF
Engine swap time
Assembly hours

Avionics growth Potential

Multiobjective Examples

Aircraft Design

max {range}
max {passenger volume}
max {payload mass}

min {specific fuel consumption} max {cruise speed}

min {lifecycle cost}

Operations Research

Production Planning

max {total net revenue}
max {min net revenue in any time period}
min {backorders}
min {overtime}
min {finished goods inventory}

est Multiobjective vs. Multidisciplinary

- Multiobjective Optimization
 - Optimizing conflicting objectives
 - e.g., Cost, Mass, Deformation
 - Issues: Form Objective Function that represents designer preference! Methods used to date are largely primitive.
- Multidisciplinary Design Optimization
 - Optimization involves several disciplines
 - e.g. Structures, Control, Aero, Manufacturing
 - Issues: Human and computational infrastructure, cultural, administrative, communication, software, computing time, methods
- All optimization is (or should be) multiobjective
 - Minimizing mass alone, as is often done, is problematic

Multidisciplinary vs. Multiobjective

O O	single discipline	multiple disciplines		
single objective	cantilever beam_	support bracket		
	Minimize displacement s.t. mass and loading constraint	Minimize stamping costs (mfg) subject to loading and geometry constraint		
multiple obj.	single discipline	multiple disciplines		
	$\alpha \xrightarrow{\text{airfoil}} V_{\text{fuel}}$ (x,y)	commercial aircraft		
	Maximize C_L/C_D and maximize wing fuel volume for specified α , v_o	Minimize SFC <u>and</u> maximize cruise speed s.t. fixed range and payload		

Vest Example: Double Peaks Optimization

Objective: max $\mathbf{J} = \begin{bmatrix} J_1 & J_2 \end{bmatrix}^T$

(demo)

$$-10\left(\frac{x_1}{5} - x_1^3 - x_2^5\right)e^{-x_1^2 - x_2^2}$$
$$-3e^{-(x_1 + 2)^2 - x_2^2} + 0.5 \quad 2x_1 + x_2$$

$$-10\left(-\frac{x_2}{5} + x_2^3 - x_1^5\right)e^{x_2^2 - x_1^2} - 3e^{-(2-x_2)^2 - x_1^2}$$

of Techno rision and Dept. of Aeronautics and Astronautics

Double peaks optimization

Optimum for J_1 alone:

$$\mathbf{x}^{1*} = \begin{cases} 0.0532 \\ 1.5973 \end{cases}$$

$$J_1^* = 8.9280$$

$$J_2(\mathbf{x}^{1*}) = -4.8202$$

Optimum for J_2 alone:

$$\mathbf{x}^{2*} = \begin{cases} -1.5808 \\ 0.0095 \end{cases}$$

$$J_1(\mathbf{x}^{2*}) = -6.4858$$

$$J_2^*$$
 = 8.1118

Each point **x1*** and **x2*** optimizes objectives J_1 and J_2 individually. Unfortunately, at these points the other objective exhibits a low objective function value. There is <u>no single point</u> that simultaneously optimizes both objectives J_1 and J_2 !

Tradeoff between J_1 and J_2

Want to do well with respect to both J₁ and J₂

Define new objective function: $J_{tot} = J_1 + J_2$ $max(J_1)$ Optimize J_{tot} Objective J_{tot}(x₁,x₂) Result: $X^{tot*} =$ 0.8731 tradeoff o مړ solution $J_{tot}^* = 6.1439$ $max(J_1+J_2)$ $max(J_2)$ $J(x^{tot*}) =$ $\begin{bmatrix} 3.0173 \\ 3.1267 \end{bmatrix} = \begin{bmatrix} J1 \\ J2 \end{bmatrix}$

History (1) – Multicriteria Decision Making

- Life is about making decisions. Most people attempt to make the "best" decision within a specified set of possible decisions.
- In 1881, King's College (London) and later Oxford Economics
 Professor F.Y. Edgeworth is the first to define an optimum for
 multicriteria economic decision making. He does so for the multiutility
 problem within the context of two consumers, P and π:
 - "It is required to find a point (x,y,) such that in whatever direction we take an infinitely small step, P and π do not increase together but that, while one increases, the other decreases."
 - Reference: Edgeworth, F.Y., Mathematical Psychics,
 P. Keagan, London, England, 1881.

History (2) – Vilfredo Pareto

- Born in Paris in 1848 to a French Mother and Genovese Father
- Graduates from the University of Turin in 1870 with a degree in Civil Engineering
 - Thesis Title: "The Fundamental Principles of Equilibrium in Solid Bodies"
- While working in Florence as a Civil Engineer from 1870-1893, Pareto takes up the study of philosophy and politics and is one of the first to analyze economic problems with mathematical tools.
- In 1893, Pareto becomes the Chair of Political Economy at the University of Lausanne in Switzerland, where he creates his two most famous theories:
 - Circulation of the Elites
 - The Pareto Optimum
 - "The optimum allocation of the resources of a society is not attained so long as it is possible to make at least one individual better off in his own estimation while keeping others as well off as before in their own estimation."
 - Reference: Pareto, V., Manuale di Economia Politica, Societa Editrice Libraria, Milano, Italy, 1906. Translated into English by A.S. Schwier as Manual of Political Economy, Macmillan, New York, 1971.

History (3) – Extension to Engineering

- After the translation of Pareto's Manual of Political Economy into English, Prof. Wolfram Stadler of San Francisco State University begins to apply the notion of Pareto Optimality to the fields of engineering and science in the middle 1970's.
- The applications of multi-objective optimization in engineering design grew over the following decades.

References:

- Stadler, W., "A Survey of Multicriteria Optimization, or the Vector Maximum Problem," Journal of Optimization Theory and Applications, Vol. 29, pp. 1-52, 1979.
- Stadler, W. "Applications of Multicriteria Optimization in Engineering and the Sciences (A Survey)," *Multiple Criteria* Decision Making – Past Decade and Future Trends, ed. M. Zeleny, JAI Press, Greenwich, Connecticut, 1984.
- Ralph E. Steuer, "Multicriteria Optimization Theory, Computation and Application", 1985

Notation and Classification

Traditionally - single objective constrained optimization:

$$\max \mathbf{J} = f \quad \mathbf{x}$$

$$s.t. \quad \mathbf{x} \in S$$

$$f \mathbf{x} \mapsto J$$
 objective function

$$S \mapsto$$
 feasible region

If $f(\mathbf{x})$ linear & constraints linear & single objective = LP If $f(\mathbf{x})$ linear & constraints linear & multiple obj. = MOLP If $f(\mathbf{x})$ and/or constraints nonlinear & single obj.= NLP If $f(\mathbf{x})$ and/or constraints nonlinear & multiple obj.= MONLP

Ref: Ralph E. Steuer, "Multicriteria Optimization - Theory, Computation and Application", 1985

Design Space vs Objective Space

many-to-one

A function *f* which may (but does not necessarily) associate a given member of the range of *f* with more than one member of the domain of *f*.

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

Mest Formal Solution of a MOO Problem ESD.77

Trivial Case:

There is a point $x^* \in S$ that simultaneously optimizes all objectives J_i , where $1 \le i \le z$

Such a point almost never exists - i.e. there is no point that will simultaneously optimizes all objectives at once

Two fundamental approaches:

Scalarization Approaches

$$\max \ U \ J_1, J_2, \dots, J_z$$

$$s.t. \ J_i = f_i \ \mathbf{x} \qquad 1 \le i \le z$$

$$\mathbf{x} \in S$$

Preferences included upfront tts Institute of Technology - P

Pareto Approaches

$$J_i^1 \ge J_i^2 \quad \forall i$$

and $J_i^1 > J_i^2$ for
at least one i

Preferences included a posteriori

SOLP versus MOLP

Weighted-Sum Approach

Each objective *i* is multiplied by a strictly positive scalar λ_i

Mesd Group Exercise: Weights (5 min)

We are trying to build the "optimal" automobile

There are six consumer groups:

-G1: "25 year old single" (Cannes, France)

-G2: "family w/3 kids" (St. Louis, MO)

-G3: "electrician/entrepreneur" (Boston, MA)

-G4: "traveling salesman" (Montana, MT)

-G5: "old lady" (Rome, Italy)

-G6: "taxi driver" (Hong Kong, China)

Objective Vector:

J1: Turning Radius [m]

J2: Acceleration [0-60mph]

J3: Cargo Space [m³]

J4: Fuel Efficiency [mpg]

J5: Styling [Rating 0-10]

J6: Range [km]

J7: Crash Rating [poor-excellent]

J8: Passenger Space [m³]

J9: Mean Time to Failure [km]

Assignment: Determine λ_i , i = 1...9

$$\sum_{i=1}^{9} \lambda_i = 1000$$

What are the scale factors sf_i ?

- Scaling is critical in multiobjective optimization
- Scale each objective by sf_i : $\overline{J}_i = J_i/sf_i$
- Common practice is to scale by $sf_i = J_i^*$
- Alternatively, scale to initial guess $\bar{\mathbf{J}}(\mathbf{x}_o) = [1..1]^T$
- Multiobjective optimization then takes place in a non-dimensional, unit-less space
- Recover original objective function values by reverse scaling

Example: J_1 =range [sm] J_2 =fuel efficiency [mpg]

sf₁=573.5 [sm] sf₂=36 [mpg] Suzuki "Swift

Weighted Sum: Double Peaks

$$J_{tot} = \lambda J_1 + 1 - \lambda J_2$$
 where $\lambda \in [0,1]$

 $\Delta \lambda = 0.05$

Demo:

At each setting of λ we solve a new single objective optimization problem — the underlying function changes at each increment of λ

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

Weighted Sum Approach (II)

Weighted Sum (WS) Approach

esd Properties of optimal solution

$$\mathbf{x}^*$$
 optimal if $\mathbf{J} \ \mathbf{x}^* \ge \mathbf{J} \ \mathbf{x}$ (maximization)

for $\mathbf{x}^* \in S$ and for $\mathbf{x} \neq \mathbf{x}^*$

This is why multiobjective optimization is also sometimes referred to as <u>vector optimization</u>

x* must be an efficient solution

 $\mathbf{x} \in S$ is efficient if and only if (iff) its objective vector (criteria) $J(\mathbf{x})$ is non-dominated

A point $x \in S$ is <u>efficient</u> if it is not possible to move feasibly from it to increase an objective without decreasing at least one of the others

Mesd Dominance (assuming maximization)

Let $J^1, J^2 \in \mathbb{R}^z$ be two objective (criterion) vectors.

Then J^1 dominates J^2 (weakly) iff

$$J^1 \ge J^2$$
 and $J^1 \ne J^2$

$$J^i = egin{bmatrix} J_1 \ J_2 \ dots \ J_z \end{bmatrix}$$

More

precisely: $J_i^1 \ge J_i^2 \quad \forall i$ and $J_i^1 > J_i^2$ for at least one i

Also **J**¹ strongly dominates **J**² iff

More precisely:

$$J^1 > J^2$$

$$J_i^1 > J_i^2 \quad \forall i$$

Set Theory

Set Theory:

 $\mathbf{x} \in S$

A solution must be feasible

$$J,J^* \in Z$$

$$D \cap ND = \emptyset$$
 A solution is either dominated or non-dominated but cannot be both at the same time

$$D \subset Z, ND \subset Z$$
 All dominated and non-dominated solutions must be feasible

$$D \cup ND = Z$$
 All feasible solutions are either non-dominated or dominated

$$\mathbf{J}^* \ \mathbf{x}^* \in ND$$
 Pareto-optimal solutions are non-dominated

Dominance versus Efficiency

- Whereas the idea of <u>dominance</u> refers to vectors in criterion space *J*, the idea of <u>efficiency</u> refers to points in decision space *x*.
- Can use this criterion as a <u>Pareto Filter</u> if the design space has been explored (e.g. DoE).

Dominance - Exercise


```
max{range}
                    [km]
                                              Multiobjective
min{cost}
                    [$/km]
                                              Aircraft Design
max{passengers}
max{speed}
                    [km/h]
          #2
   #1
                  #3
                         #4
                                #5
                                       #6
                                              #7
                                                     #8
                 3788
                              5652
                        8108
                                             5812
                                                     7432
  321
                        278
                                       355
                 308
                               223
                                             401
                                                     208
          345
                 450
                        88
                               212
                                       90
                                             185
                                                     208
                        999
```


Which designs are non-dominated? (5 min)

Dominance - Exercise

Algorithm for extracting non-dominated solutions:

Pairwise comparison

#1		#2	Score #1	9 5	Score #2	,
7587 321 112 950	> > < >	6695 211 345 820	1 0 0 1		0 1 1 0	
	•		2	VS	2	

Neither #1 nor #2 dominate each other

#1		#6	#1	9 3	#6
7587	>	6777	1		0
321	<	6777 355	1		0
112	>	90	1		0
950	>	901	1		0
	,		4	VS	0

Solution #1 dominates solution #6

In order to be dominated a solution must have a "score" of 0 in pairwise comparison

Domination Matrix

16.888 ESO 77

Shows which solution dominates which other solution (horizontal rows) and (vertical columns)

Non-dominated solutions have a zero in the column Σ !

Mest Double Peaks: Non-dominated Set

Simulation Results - Satellites

Global Capacity Cs [# of duplex channels]
© Massachusetts Institute of Technology

© Massachusetts Institute of Technolog: Conference, Paper No. AIAA-2002-2017 Conference, Paper No. AIAA-2017 Conference, Paper No. AIAA-2017 Conference, Paper No. AIAA-2017 Conference, Paper No. AIAA-2017 Conference, Paper No. AIAA-2

de Weck, O. L. and Chang D., "Architecture Trade Methodology for LEO Personal Communication Systems ", 20th International Communications Satellite Systems Conference, Paper No. AIAA-2002-1866, Montréal, Québec, Canada, May 12-15, 2002.

Pareto-Optimal vs ND

It's easier to show dominatedness than non-dominatedness !!!

Lecture Summary

- A multiobjective problem has more than one optimal solution
- All points on Pareto Front are non-dominated
- Methods:
 - Weighted Sum Approach (Caution: Scaling!)
 - Pareto-Filter Approach
 - Methods for direct Pareto Frontier calculation next time:
 - AWS (Adaptive Weighted Sum)
 - NBI (Normal Boundary Intersection)

The key difference between multiobjective optimization methods can be found in how and when <u>designer</u> <u>preferences</u> are brought into the process.

.... More in next lecture

Remember

Pareto Optimal means

"Take from Peter to pay Paul"

MIT OpenCourseWare http://ocw.mit.edu

ESD.77 / 16.888 Multidisciplinary System Design Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.