Control of Electric Motors and Drives via Convex Optimization

Nicholas Moehle

Advisor: Stephen Boyd

February 5, 2018

Outline

- 1. waveform design for electric motors
 - permanent magnet
 - induction
- 2. control of switched-mode converters

Waveform design for electric motors

- ▶ traditionally:
 - AC motors driven by sinusoidal inputs (and designed for this)¹
 - based on reference frame theory, c. 1930
- now:
 - more computational power
 - power electronics can generate near-arbitrary drive waveforms²
- our questions:
 - given a motor, how to design waveforms to drive it?
 - which waveform design problems are tractable? convex?

¹Hendershot, Miller. Design of Brushless Permanent-Magnet Machines. 1994.

²Wildi. Electrical Machines, Drives and Power Systems. 2006.

Motor model

- ightharpoonup n windings, each with an RL circuit.
- electrical variables:
 - voltage $v(t) \in \mathbf{R}^n$
 - current $i(t) \in \mathbf{R}^n$
 - flux $\lambda(t) \in \mathbf{R}^n$

Motor model

- ▶ the rotor has
 - torque $\tau(t)$
 - speed $\omega = \text{const.}$ (high inertia mech. load)
 - position $\theta(t) = \omega t$
- \blacktriangleright goal is to manipulate v to control τ

Stored energy

- ▶ stored magnetic energy is $E(\lambda, \theta)$ magnetic coupling depends on mechanical position
- E is 2π -periodic in θ
- inductance equation relates current and flux:

$$i = \nabla_{\lambda} E(\lambda, \theta)$$

torque given by

$$au = -rac{\partial}{\partial heta} E(\lambda, heta)$$

 \blacktriangleright in general, both are nonlinear in λ

Torque

▶ the average torque is:

$$ar{ au} = \lim_{T o \infty} rac{1}{T} \int_0^T au(t) \; dt$$

▶ torque ripple is

$$r=\lim_{T o\infty}rac{1}{T}\int_0^Tig(au(t)-ar auig)^2\,dt$$

Power loss

- $ightharpoonup R \in \mathbf{S}^n_{++}$ is the (diagonal) resistance matrix
- lacktriangleright resistive power loss is i^TRi
- average power loss is

$$p_{ ext{loss}} = \lim_{T o \infty} rac{1}{T} \int_0^T i^T Ri \; dt$$

Circuit dynamics

dynamics from Kirchoff's voltage law, Faraday's law:

$$v(t) = Ri(t) + \dot{\lambda}(t)$$

• dynamics coupled across windings by inductance equation $i = \nabla_{\lambda} E(\lambda, \theta)$.

Winding connection

- ightharpoonup often, winding voltages v not controlled directly
- ▶ (e.g., wye/delta windings, windings contained in rotor)
- lacktriangleright indirect control through terminal voltages $u(t) \in \mathbf{R}^m$

$$Ci(t) = 0,$$
 $v(t) = C^T e(t) + Bu(t),$

- $ightharpoonup C \in \mathbf{R}^{p imes n}$ is the connection topology matrix
- ▶ $B \in \mathbf{R}^{n \times m}$ is the voltage input matrix
- $ightharpoonup e(t) \in \mathbf{R}^p$ are floating node voltages

Winding connection examples

$$Ci(t) = 0,$$
 $v(t) = C^T e(t) + Bu(t),$

- ▶ simple delta, wye, and independent winding connections
- some windings may be controlled only through induction
 - e.g., windings on the rotor

Optimal waveform design

waveform design problem:

```
\begin{array}{ll} \text{minimize} & p_{\text{loss}} + \gamma r \\ \text{subject to} & \bar{\tau} = \tau_{\text{des}}, \\ & \text{torque equation} \\ & \text{inductance equation} \\ & \text{circuit dynamics} \\ & \text{winding pattern} \end{array}
```

- \blacktriangleright variables are $i, v, u, e, \lambda, \tau$ (all functions on \mathbf{R}_+)
- problem data:
 - tradeoff parameter $\gamma \geq 0$
 - resistance matrix $R \in \mathbf{S}^n_{++}$
 - energy function $E: \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}_+$
 - shaft speed $\omega \in \mathbf{R}$
 - desired torque $au_{ t des} \in \mathbf{R}$
 - winding connection parameters $B \in \mathbf{R}^{n \times m}$ and $C \in \mathbf{R}^{p \times n}$

- nonconvex in general, due to nonlinear torque and inductance equations
- \blacktriangleright problem data 2π -periodic, but periodicity of solution not known
 - in practice, solutions often not 2π -periodic in θ

Permanent magnet motor

- magnets in rotor change magnetic flux through windings as they pass, producing voltage across the windings
- ▶ by simultaneously pushing current through the windings, electrical energy is extracted (or injected)

Permanent magnet motor

energy function is quadratic:

$$E(\lambda, \theta) = \lambda^T A \lambda + b(\theta)^T \lambda$$

(quadratic part independent of rotor angle)

▶ inductance equation is linear:

$$\lambda = Li + \lambda_{\rm mag}(\theta)$$

L is the *inductance matrix*, λ_{mag} is the flux due to rotor magnets

torque equation is affine:

$$\tau = k(\theta)^T i + \tau_{\mathsf{cog}}(\theta)$$

 $k(\theta)$ is the motor constant, τ_{cog} is the cogging torque

Permanent magnet motor

ightharpoonup dynamics, with λ , are

$$v(t) = Ri(t) + \dot{\lambda}(t)$$

 \blacktriangleright eliminating λ :

$$v(t) = Ri(t) + Lrac{di}{dt}(t) + \omega \, k(heta)$$

Permanent magnet motor, waveform design

- optimal waveform design problem is convex
- ▶ 2π -periodicity of problem data with convexity implies 2π -periodicity of a solution, if one exists³

³Boyd, Vandenberghe. Convex Optimization, page 189. 2004

Permanent magnet motor, waveform design

waveform design problem:

minimize
$$\begin{array}{l} & \begin{array}{l} \text{power loss} & \text{torque ripple} \\ \hline \frac{1}{2\pi} \int_0^{2\pi} i(\theta)^T Ri(\theta) \ d\theta + \gamma \ \frac{1}{2\pi} \int_0^{2\pi} (\tau(\theta) - \tau_{\text{des}})^2 \big) \ d\theta \\ \\ \text{subject to} & \begin{array}{l} \frac{1}{2\pi} \int_0^T \tau(\theta) \ d\theta = \tau_{\text{des}} & \text{(av. torque)} \\ \hline \tau = k(\theta)^T i + \tau_{\text{cog}}(\theta) & \text{(torque)} \\ v(\theta) = Ri(\theta) + \omega Li'(\theta) + \omega k(\theta) & \text{(dynamics)} \\ \hline Ci(\theta) = 0 & \\ v(\theta) = C^T e(\theta) + Bu(\theta) & \end{array}$$

 \blacktriangleright variables are i, v, u, e, τ (all functions on $[0, 2\pi]$)

Permanent magnet motor, waveform design

- a periodic linear-quadratic control problem
 - can discretize, solve by least squares
- ▶ in fact, many extensions retain convexity:
 - voltage limits $|u(heta)| \leq u_{ exttt{max}}$
 - current limits $|i(\theta)| \leq i_{\text{max}}$
 - nonquadratic definitions of torque ripple
- extensions typically involve solving a quadratic program
- more discussion in paper⁴:
 - extensions/variations
 - custom fast solver \rightarrow online waveform generation

⁴Moehle, Boyd. *Optimal Current Waveforms for Brushless Permanent Magnet Motors*. 2015.

Example

- $ightharpoonup \gamma = 2 \text{ W/Nm}^2$
- left: $\omega = 300 \text{ rad/s}$, right: $\omega = 400 \text{ rad/s}$

Induction motor

- ► rotor magnets replaced by more windings, which act as electromagnets (with current)
- ▶ rotor current produced my magnetic induction (using stator currents)

Induction motor

► Energy function is again quadratic:

$$E(\lambda, \theta) = \lambda^T A(\theta) \lambda$$

quadratic part dependent on θ (affine part omitted for simplicity)

▶ inductance equation is linear:

$$\lambda = L(\theta)i$$

torque is (indefinite) quadratic:

$$au = -i^T L'(heta)i$$

Induction motor, maximum torque problem

- general waveform design problem intractable
- we focus on the maximum torque problem $(\gamma = 0)$:
 - torque ripple penalty disappears
 - maximize average torque (a nonconvex quadratic function)
 - power loss constraint (a convex quadratic function)

Induction motor, maximum torque problem

waveform design problem:

maximize
$$\overbrace{\lim_{T \to \infty} \frac{1}{T} \int_0^T -i(t)^T L'(\omega t) i(t) \ dt}^{\text{Imm}}$$
 subject to
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T i(t)^T R i(t) \ dt \leq p_{\text{loss}} \quad \text{(power loss)}$$

$$v(t) = R i(t) + \dot{\lambda}(t) \qquad \text{(dynamics)}$$

$$C i(t) = 0 \qquad \qquad \text{(winding conn.)}$$

$$v(t) = C^T e(t) + B u(t) \qquad \qquad \text{(induction)}$$

- \blacktriangleright variables are i, v, u, e, λ (all functions on \mathbf{R}_+)
- \blacktriangleright equivalent to minimizing p_{loss} with average torque constraint

Induction motor, maximum torque problem

- can be converted to a nonconvex linear-quadratic control problem with a quadratic constraint
 - strong duality holds
 - original proof due to Yakubovich⁵
- ► further details in our paper⁶
 - equivalent semidefinite program (SDP)
 - method for constructing optimal waveforms from SDP solution
 - proof of tightness

⁵Yakubovich. Nonconvex optimization problem: The infinite-horizon linearquadratic control problem with quadratic constraints. 1992.

⁶Moehle, Boyd. Maximum Torque-per-Current Control of Induction Motors via Semidefinite Programming. 2016.

Example

traditional, sinusoidally wound, 5-phase motor with wye winding:

desired torque $\tau_{\rm des}=5$ Nm, speed $\omega=50$ rad/s

Example

power loss is 11 W per Nm torque produced

Stator fault

Same motor, with open-phase fault:

Stator fault

power loss is 14 W per Nm torque produced

Outline

- 1. waveform design for electric motors
 - permanent magnet
 - induction
- 2. control of switched-mode converters

Controlling switched-mode converters

- input are switch configurations
- ▶ traditionally:⁷
 - make discrete input continuous, by considering averaged switch on-time ('duty cycle')
 - 2. choose a duty cycle corresponding to desired equilibrium
 - 3. linearize the resulting system around equilibrium, use linear control
- now:
 - direct (switch-level) control

⁷Kassakian. Principles of power electronics. 1991.

Switched-linear circuit

- ▶ state $x_t \in \mathbf{R}^n$ contains inductor currents, capacitor voltages can be augmented to contain, e.g., reference signal
- for each switch configuration, we have a linear circuit
- switched-affine dynamics:

$$x_{t+1} = A^{u_t} x_t + b^{u_t}, \quad t = 0, 1, \ldots,$$

- lacktriangle dynamics specified by A^i , b^i in mode i
- ▶ control input is the mode $u_t \in \{1, ..., K\}$
- may include mode restrictions (e.g., for a diode)

Switched-affine control

switched-affine control problem is

minimize
$$\sum_{t=1}^{T} g(x_t)$$
 subject to $x_{t+1} = A^{u_t} x_t + b^{u_t}$ $x_0 = x_{\text{init}}$ $u_t \in \{1, \dots, K\}$

- constraints hold for all t
- ightharpoonup variables are u_t and $x_t \in \mathbf{R}^n$
- lacktriangledown problem data are dynamics A^i , b^i , function g, and initial condition $x_{
 m init}$
- ightharpoonup can be solved by trying out K^T trajectories

'Solution' via dynamic programming

 \blacktriangleright Bellman recursion: find functions V_t such that

$$V_t(x) = \min_{u \in \{1,...,K\}} g(x) + V_{t+1}(A^u x + b^u)$$

for all x, for $t = T - 1, \ldots, 0$

- final value function $V_T = g$
- lacktriangle optimal problem value is $V_0(x_{
 m init})$ at initial state $x_{
 m init}$
- ightharpoonup in general, intractable to compute (or store) V_t

Model predictive control

- \blacktriangleright idea: solve switched-affine control problem, implement first control action u_0 , measure new system state, and repeat
- ▶ called model predictive control (MPC) or receding horizon control
- given $V = V_1$, MPC policy satisfies

$$\phi_{ ext{mpc}}(x) \in \operatorname*{argmin}_{u \in \{1, \dots, K\}} V(A^u x + b^u)$$

(ties broken arbitrarily)

Approximate dynamic programming policy

- ▶ in practice, MPC policy only works for T small
- (system response time measured in μ s)
- lacktriangle instead, approximate V as a quadratic function \hat{V}
- ightharpoonup given \hat{V} , ADP policy satisfies

$$\phi_{\mathrm{adp}}(x) \in \operatorname*{argmin}_{u \in \{1, \dots, K\}} \hat{V}(A^u x + b^u)$$

lacktriangle evaluating $\phi_{
m adp}$ requires evaluating a few quadratic functions

How to obtain \hat{V} ?

- quadratic lower bounds on V can be found via semidefinite programming⁸
- lacktriangle compute $V(x^{(i)})$ for many states $x^{(i)}$, fit best quadratic function \hat{V}
 - we used this method
 - subproblems solved using methods described in paper⁹
- use exact value function for approximate linear control problem (e.g., linear-quadratic control)
 - provides a link to traditional methods

⁸Wang, O'Donoghue, Boyd. *Approximate Dynamic Programming via Iterated Bellman Inequalities.* 2014.

⁹Moehle, Boyd. A Perspective-Based Convex Relaxation for Switched-Affine Optimal Control. 2015.

Inverter example

- ightharpoonup state x_t are inductor currents and capacitor voltages, and desired output current phasors
- cost function is deviation of output currents from desired (sinusoidally-varying) values
- model parameters $V_{\rm dc}=700$ V, $L_1=6.5~\mu{\rm H},~L_2=1.5~\mu{\rm H},~C=15~\mu{\rm F},~V_{\rm load}=300$ V, and desired output current amplitude $I_{\rm des}=10$ A.
- \blacktriangleright sampling time 30 μ s

Result

Policy	State cost
ADP policy,	0.70
MPC policy, $T=1$	∞
MPC policy, $T=2$	∞
MPC policy, $T=3$	∞
MPC policy, $T=4$	∞
MPC policy, $T=5$	0.45

- for T < 5 MPC policy is unstable
- ightharpoonup running MPC with T=5 takes several seconds on PC
- ▶ ADP takes few hundred flops (can be carried out in μ s)

Result

In steady state:

Conclusions

- unconventional motors (asymmetrical, nonsinusoidally-wound, non-rotary) can be controlled using optimization, by designing the waveform to the motor
- modern techniques can be used to generate optimal controllers for power electronic converters, which
 - have fast response
 - can easily incorporate constraints
 - are intuitive to understand and tune
 - make good use of modern microprocessor capabilities

Sources for thesis

motors

- N. Moehle, S. Boyd. Optimal Current Waveforms for Brushless Permanent Magnet Motors. International Journal of Control, 2015.
- N. Moehle, S. Boyd. Maximum Torque-per-Current Control of Induction Motors via Semidefinite Programming. Conf. on Decision and Control, 2016.
- N. Moehle, S. Boyd. Optimal Current Waveforms for Switched-Reluctance Motors. Multi-Conf. on Systems and Control, 2016.

converters

- N. Moehle, S. Boyd. A Perspective-Based Convex Relaxation for Switched-Affine Optimal Control. Systems and Control Letters, 2015.
- N. Moehle, S. Boyd. Value Function Approximation for Direct Control of Switched Power Converters. Conf. on Industrial Electronics and Applications, 2017.

Other work

published:

- R. Takapoui, N. Moehle, S. Boyd. A Simple Effective Heuristic for Embedded Mixed-Integer Quadratic Programming. International Journal of Control, 2017.
- G. Banjac, B. Stellato, N. Moehle, P. Goulard, A. Bemporad, S. Boyd. *Embedded Code Generation Using the OSQP Solver.* Conf. on Decision and Control, 2017.
- M. Wytock, N. Moehle, S. Boyd. Dynamic Energy Management with Scenario-Based Robust MPC. American Control Conf., 2017.
- N. Moehle, D. Gorinevsky. Covariance Estimation in Two-Level Regression.
 Conf. on Control and Fault-Tolerant Systems, 2013.

unpublished:

- N. Moehle, X. Shen, Z.Q. Luo, S. Boyd. A Distributed Method for Optimal Capacity Reservation. Working draft, 2017.
- N. Moehle, E. Busseti, M. Wytock, S. Boyd. *Dynamic energy management*. Working draft, 2017.

Acknowledgements

- ▶ My advisor, Stephen Boyd
- ▶ My reading committee
- ► Labmates: Madeleine, Thomas, Ernest, Reza, Jaehyun, Baris, Corinne, Xinyue, Enzo, Steven, Anqi, Qingyun, Youngsuk, Jongho, Jonathan, David
- ► Stanford friends: Maria, Lydia, Diana, Charbel, Henryk, Giana, Beata
- ▶ Other friends: Sean, Josh, Ben
- My sister, Erica
- My parents, Jack and Melissa

Control of Electric Motors and Drives via Convex Optimization