#### Enrollment No.....



### Faculty of Management End Sem (Even) Examination May-2018

MS5CO11 Operations Research

Programme: MBA Branch/Specialisation: Management

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Use of non programmable calculator is allowed.

- Q.1 i. ----- are the representation of reality

  (a) Models (b) Phases (c) Both (a) and (b) (d) None of these

  ii. The best use of Linear Programming techniques is to find an optimal use of

  (a) Money (b) Manpower (c) Machine (d) All of these
  - iii. To test optimality by MODI method, the Initial Basic Feasible Solution of transportation problem should be

    (a) Degenerate (b) Feasible (c) Non-degenerate (d) Both (a) and (b)
  - iv. Minimum number of lines to cover all the zero in assignment problem is 1 equal to number of
    - (a) Assignment (b) Row (c) Column (d) All of these
  - v. In a matrix of transition probability in the Markov chain , the probability values should add up to one in each
    - (a) Row (b) Column (c) Diagonal (d) All of these
  - vi. Customer behaviour in which he moves from one queue to another in multiple situation channel is
    - (a) Balking (b) Reneging (c) Jockeying (d) Alternating
  - ii. In a mixed strategy game
    - (a) Saddle point exist(b) No saddle point exist
    - (c) Each player have same strategy
    - (d) All of these
  - viii. The size of the payoff matrix of a game can be reduced by using the principle of
    - (a) Game inversion (b) Dominance

(c) Rotation reduction (d) None of these

materials and other working conditions:

Production 146 147 148 149 150 151 152 153 154 (per day)

Probability 0.04 0.09 0.12 0.14 0.11 0.10 0.20 0.12 0.08 The finished mopeds are transported in a specially arranged lorry accommodating 150 mopeds. Using following 15 random numbers: 80, 81, 76, 75, 64, 43, 18, 26, 10, 12, 65, 68, 69, 61, 57 Simulate the process to find out:

- (a) What will be the average number of mopeds waiting in the factory?
- (b) What will be the average number of empty space on the lorry?
- Q.6 i. A machine costs Rs. 10,000. Its operating cost and resale value are given **3** below. At what year replacement due?

| Year            | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|-----------------|------|------|------|------|------|------|------|------|
| Operating costs | 1000 | 1200 | 1400 | 1700 | 2000 | 2500 | 3000 | 3500 |
| Resale value    | 6000 | 4000 | 3200 | 2600 | 2500 | 2400 | 2000 | 1600 |

- ii. The cost of a new machine is Rs. 4000. The maintenance cost during the 7 nth year is given by  $R_n = Rs$ . 500 (n -1), where n = 1, 2, 3... If the discount rate per year is 0.05, after how many years will it be economical to replace the machine by a new one?
- OR iii. The following mortality rates have been observed for a certain type of 7 light bulbs in an installation with 1000 bulbs:

| End of week                    | 1    | 2    | 3    | 4    | 5    | 6 |
|--------------------------------|------|------|------|------|------|---|
| Probability of failure to date | 0.09 | 0.25 | 0.49 | 0.85 | 0.97 | 1 |

There are a large number of such bulbs which are to be kept in working order. If a bulb fails in service, it costs Rs. 3 to replace but if all the bulbs are replaced in the same operation, it can be done for only Rs. 0.70 a bulb. It is proposed to replace all bulbs at fixed intervals, whether they have burnt out or not, and to continue replacing burnt out bulbs as they fail.

- (a) What is the best interval between group replacements?
- (b) Which policy you adopt individual replacement or group replacement? Assume that the bulbs failing during a week might fail at any time of the week and that the group replacements are made at the end of the week.

\*\*\*\*

1

| ix. | If r is the rate   | of interest, th | en the present val | ue of one rupee spent in n | 1 |
|-----|--------------------|-----------------|--------------------|----------------------------|---|
|     | year is            |                 |                    |                            |   |
|     | (a) $(1 + r)^{-n}$ | (b) $(1 - r)^n$ | (c) $(1 - r)^{-n}$ | (d) None of these          |   |

(a) 1 10g1ess1

(b) Retrogressive

1

3

7

7

7

7

(d) All of these

ii. Obtain the dual of the following Linear Programming Problem

Minimize : 
$$Z = x_1 + 2x_2$$

Subject to: 
$$2x_1 + 4x_2 \le 160$$

$$x_1 - x_2 = 30$$

$$x_1 \ge 10$$

$$x_1, x_2 \ge 0$$

Maximize 
$$Z = 2x_1 + 5x_2$$

Subject to

$$x_1 + 4x_2 \le 24$$

$$3x_1 + x_2 \le 21$$

$$x_1 + x_2 \le 9$$

and 
$$x_1, x_2 \ge 0$$

- Q.3 i. Explain Unbalanced Transportation Problem. How do you start in this case?
  - ii. Solve the following transportation problem for profit maximization first. Find initial basic feasible solution by Vogel's Approximation Method.

| Warehouse | $\mathbf{W}_1$ | $W_2$ | $W_3$ | Supply |
|-----------|----------------|-------|-------|--------|
| $F_1$     | 8              | 7     | 5     | 20     |
| $F_2$     | 3              | 4     | 6     | 20     |
| $F_3$     | 7              | 9     | 6     | 30     |
| Demand    | 30             | 15    | 15    |        |

OR iii. A department has five employees with five jobs to be performed. The time (In hours) each men will take to perform each job is given in the effectiveness matrix.

| Employees |   |    |    |     |    |    |  |  |  |
|-----------|---|----|----|-----|----|----|--|--|--|
|           |   | I  | II | III | IV | V  |  |  |  |
|           | A | 10 | 5  | 13  | 15 | 16 |  |  |  |
|           | В | 3  | 9  | 18  | 13 | 6  |  |  |  |
| Jobs      | С | 10 | 7  | 2   | 2  | 2  |  |  |  |
|           | D | 7  | 11 | 9   | 7  | 12 |  |  |  |
|           | Е | 7  | 9  | 10  | 4  | 12 |  |  |  |

How should the jobs be allocated, one per employee, so as to minimize the total man – hours?

- Q.4 i. Discuss Kendall's Notation for the Identification or classification of Queuing Models.
  - ii. In a Bank, every 15 minutes one customer arrives for cashing the cheque. The staff in the only payment counter takes 10 minutes for serving a customer on an average. Find
    - (a) The average queue length.
    - (b) The waiting time of customers in the system.
- OR iii. The School of international studies for population found out by its survey that the mobality of the population ( in percent ) of a state to a village, town and city is in the following percentage:

|      |                         | o'      |      |                                            |
|------|-------------------------|---------|------|--------------------------------------------|
|      |                         | Village | Town | City                                       |
|      | Village                 | [0.6    | 0.3  | 0.1]                                       |
| From | Village<br>Town<br>City | 0.4     | 0.5  | $\begin{bmatrix} 0.1 \\ 0.1 \end{bmatrix}$ |
|      | City                    | 0.2     | 0.1  | 0.7                                        |

What will be the proportion in village, town and city after two years, given that the present population has proportion of 0.7, 0.2 and 0.1 in the village, town and city respectively?

- Q.5 i. Define Pure and Mixed Strategy in a game.
  - ii. Solve the following  $2 \times 4$  game by graphical method

| Δ'ς      |       | $\mathbf{B}_1$ | $B_2$ | $\mathbf{B}_3$ | $B_4$ |
|----------|-------|----------------|-------|----------------|-------|
| Strategy | $A_1$ | 3              | 3     | 4              | 0     |
| Strategy | $A_2$ | 5              | 4     | 3              | 7     |

OR iii. The automobile company manufactures around 150 mopeds. The daily production varies from 146 to 154 depending upon the availability of raw

P.T.O.

7

| Enrollment No |
|---------------|
|---------------|



# Faculty of Management End Sem (Even) Examination May-2018

## MS5CO11 Operations Research

Programme: MBA

Branch/Specialisation: Management

|       | MCQ                                                                                                            |
|-------|----------------------------------------------------------------------------------------------------------------|
| i.    | a)Models                                                                                                       |
| ii.   | The best use of Linear Programming techniques is to find an optimal use of d)all of these                      |
| iii.  | To test optimality by MODI method, the Initial Basic Feasible Solution of transportation problem should be     |
| - 51  | c) non-degenerate                                                                                              |
| iv.   | Minimum number of lines to cover all the zero in assignment problem is equal to number of a)assignment         |
|       |                                                                                                                |
| v.    | In a matrix of transition probability in the Markov chain, the probability values should add up to one in each |
| . 4   | a) row                                                                                                         |
| V1.   | Customer behaviour in which he moves from one queue to another in multiple situation channel is c) jockeying   |
|       | In a mixed strategy game                                                                                       |
| V11.  |                                                                                                                |
|       | b) no saddle point exist                                                                                       |
| V111. | The size of the payoff matrix of a game can be reduced by using the principle of                               |
|       | b) dominance                                                                                                   |
| ix.   | If r is the rate of interest, then the present value of one rupee spent in n                                   |
|       | year is                                                                                                        |
|       | a) $(1+r)^{-n}$                                                                                                |
| X.    | The sudden failures among items is seen as                                                                     |
|       | d) all of these                                                                                                |
|       | ii. iii. v. vi. vii. viii.                                                                                     |

Faculty of Management End Sem (Even) Examination May - 2018 MS5CO11 Operations Research

MBA

MAX, Marks.

Q.2 (i) Each scope is of 1 mark each. +3

Q.2 (ii) Canonical form

Min  $Z = \chi_1 + 2\chi_2$ Subject to  $-2\chi_1 + 4\chi_2 \ge -160$   $\chi_1 - \chi_2 \ge 30$   $-\chi_1 + \chi_2 \ge -30$   $\chi_1 \ge 10$ And,  $\chi_1, \chi_2 \ge 0$ 

Dual is

Max.  $Z = -160y_1 + 30y_2 + 10y_3$ Subject to  $-2y_1 + y_2 + y_3 \le 1$   $-4y_1 - y_2 \le 2$   $y_1, y_3 \ge 0$ ,  $y_2$  is unrestricted.  $[y_2 = y_2' - y_3'']$ 

50

(iii) Standard form of LPP

Maximize  $Z = 2x_1 + 5x_2 + 0s_1 + 0s_2 + 0s_3$ Subject to  $x_1 + 4x_2 + s_4 = 24$   $3x_1 + x_2 + s_2 = 21$ 

 $x_1 + x_2 + s_3 = 9$  $x_1, x_2, s_1, s_2, s_3 \ge 0$ 

+1

ΚZ

| Ini | Ł | ial | Simplex Table |  |
|-----|---|-----|---------------|--|
|     |   |     |               |  |

| Coeff. of Basic, | Cj    | 2  | 5     | 0  | 0 | 0  |           | Min. tive |
|------------------|-------|----|-------|----|---|----|-----------|-----------|
| obj. f?(B)       | Basis | XT | Xe    | SI | S | 53 | Basic     |           |
| 0                | SI    | 1  | 4     | 1  | O | 0) | (b)<br>24 | 24/4=6->  |
|                  | Są    | 3  | 1     | 0  | 1 | 0  | 21        | 21/1=11   |
| 0                | 53    | 1  | 1     | 0  | 0 | 1  | 9         | 9/1=9     |
|                  | Zj    | 0  | 0     | 0  | 0 | 0  |           |           |
|                  | Cj-Zj | 2  | 5 1 k | 0  | 0 | 0  |           |           |

All value of G-Zj is not less than zero. so Solution is not optimal.

# Improve solution

(a) Incoming Variable > 1/2

(b) Outgoing variable > SI key element = 4

|                                   | IInd           | Sin  | plex | Tabl        | 2  |    |                   |                 |  |
|-----------------------------------|----------------|------|------|-------------|----|----|-------------------|-----------------|--|
| Coeff. of                         | Cj'            | 2    | 5    | 0           | 0  | 0  |                   | Min. tive       |  |
| Basic var.<br>in. obj.<br>fn ((B) |                | XT   | X    | $S_{\perp}$ | Są | 53 | Basic<br>Variable | Vatio 0 = b  kc |  |
| 5                                 | X <sub>2</sub> | 1/4  | 1    | 1/4         | Ö  | 0  | 6                 | 24              |  |
| 0                                 | Są             | 11/4 | 0    | -1/4        | 1  | 0  | 15                | 60/11           |  |
| 0                                 | S3 (           | 3/4  | 0    | -1/4        | 0  | 1  | 3                 | 4 >             |  |
|                                   | Zj             | 5/4  |      |             | 0  | 0  |                   |                 |  |
| 21                                | Cj-Zj          | 3/4  | 0    | -5/4        | 0  | 0  |                   |                 |  |
|                                   |                | 1    |      |             |    |    |                   |                 |  |

All value of Cj-Zj is not less than zero. so solution is not optimal.

Improve solution

(a) Incoming variable > 1/4 key element = 3/4

|       |                                                                                                        | $\overline{u}$ .    | rd Si | mplex | Table          | د           |       |                          | (3)     |    |
|-------|--------------------------------------------------------------------------------------------------------|---------------------|-------|-------|----------------|-------------|-------|--------------------------|---------|----|
| A 50  | coeff. of ]<br>Basic                                                                                   | cj 1                | 2     | 5     | 0              | 0           | Ó     | Value of                 |         |    |
|       | var, in obj. for                                                                                       | Basis               | XI    | Xz    | SI             | SZ          | 53    | Basic<br>Variable<br>(b) |         |    |
|       | 5                                                                                                      | X2                  |       |       | 1/3            |             |       |                          |         |    |
|       | 0                                                                                                      | Są                  |       |       | 2/3            |             |       |                          |         |    |
|       | 2                                                                                                      | XT                  | 1     |       | -1/3           | 0           | 4/3   | 4                        |         |    |
|       |                                                                                                        | zj'                 | 2     | 5     | 1              | 0           | 1     |                          |         |    |
|       |                                                                                                        | Cj-Zj               | 0     | 0     | -1             | 0           | -1    | -                        |         |    |
|       | Au                                                                                                     | value of $X_1 = 4$  | f Cj  | -zj   | <0,            | So,         | Solut | ion is o                 | ptimal. |    |
|       |                                                                                                        | $x_0 = 5$           |       |       |                |             |       |                          |         |    |
|       |                                                                                                        | Maximiz             | e Z=  | 33    |                |             | Ans   |                          |         | +2 |
| ins.3 | (i) Un<br>Fox Bo                                                                                       | balanced<br>th Case | Tra:  | +1].  | tation for e   | Prob<br>ach | couse | → +1                     | e e     | +3 |
|       | (ii) To                                                                                                | tal Sup             |       |       |                |             | ind   |                          |         |    |
|       |                                                                                                        | 40+40+              |       | > 6   |                | +15         |       |                          |         |    |
| :     | So, Problem is unbalanced. So we add  one dummy column with Profit O and  demand = 70-60 = 10  (Dummy) |                     |       |       |                |             |       |                          |         | +1 |
|       | Am                                                                                                     | d borner            | ot WI | wa    | w <sub>s</sub> | 3 r         | ummy) | upply                    |         |    |
|       |                                                                                                        | FI                  | 8     | 7     | 5              |             | 0     | 20                       |         |    |
|       |                                                                                                        | Fa                  | 3     | 4     | 6              |             | 0     | 40                       |         | +1 |
|       |                                                                                                        | £3                  | 7     | 9     | 6              |             | 0     | 30                       |         |    |
| :     |                                                                                                        | Demand              | 30    | 15    | 5 1 1          | 5           | 10    |                          |         |    |

Now convert profit matrix into loss matrix (4) by substracting all element of profit matrix by highest profit = 9.

| ,      | WI  | wa  | $\omega_3$ | Wy  | Supply |
|--------|-----|-----|------------|-----|--------|
|        | 9-8 | 9-7 | 9-5        | 9-0 |        |
| FL     | =1  | = 4 | =4         | = 9 | 20     |
|        | 9-3 | 9-4 | 9-6        | 9-0 | 9      |
| F      | =6  | =5  | = 3        | = 9 | 50     |
|        | 9-7 | 9-9 | 9-6        | 9-0 | 0      |
| F3     | = 2 | = 0 | = 3        | =9  | 30     |
| Demand | 30  | 15  | 15         | 10  | 70     |

IBFS by VAM

| Г              | WI    | Wą     | $\omega_3$ | Wy | supply |
|----------------|-------|--------|------------|----|--------|
| F              | 1(20) | 5      | 4          | 9  | 20     |
| Family         | 6     | 5      | 3 (10)     | 9  | 50     |
| F <sub>3</sub> | 210)  | 0 (15) | 3 (\$)     | 9  | 30     |
| Demand         | 30    | 15     | 15         | 10 | 70     |

Total Profit:

 $= 20 \times 8 + 10 \times 6 + 10 \times 0 + 10 \times 7 + 15 \times 9 + 5 \times 6$  = 455

Optimality test by MODI method

no. of tive Indendependent allocation  $x_{ij} = m + n - 1$ 6 = 3 + 4 - 1 = 6So, Solution is non-degenerate, Apply MoDI method. +1

Step. 1, 2,3 and 4 of mode method.

5. Compute di= (i- (uity) for unoccupied cell,

| _   | 2-(-1)<br>= 3 | 4-(42) | 9-8<br>=1 |
|-----|---------------|--------|-----------|
| 6-2 | 5-0<br>= 5    |        |           |
|     |               |        | 9-0       |

Since all value of dij >0 so solution is optimal.

 $X_{11} = 50$ ,  $X_{23} = 10$ ,  $X_{34} = 10$ ,  $X_{31} = 10$ 

X35=12,  $X^{33}=2$ 

and Maximum Profit = 455

08

(iii) (I) matrix is square. (II) Reduce matrix and make assignment.

|            | T  | II | 111 | IV    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|------------|----|----|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| A          | 15 | 0  | 8   | 16    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| ß          |    | 6  | 15  | 10    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V3   |
| C          | 18 | 5  | 0   |       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| D          | ×  | 4  | Z   | X     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VO   |
| $\epsilon$ | 3  | 5  | 6   | 0     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V(3) |
|            | VE | )  |     | V (2) | The state of the s |      |

No. of assignment = 4 < 5 = order of matrix. So, Solution is not optimal.

Revise and Develop new motrix

|          | -  |   | P VQ | w ma | TAIX. |   |
|----------|----|---|------|------|-------|---|
|          | I  | I | TU   | TV   | 77    |   |
| A        | 7  |   | 8    | 12   | 11    | 1 |
| B        | 0  | 4 | 13   | 10   | 1     |   |
| <b>C</b> | 10 | 5 | ×    | 2    | 0     |   |
| D        | ×  | Ş | 0    |      | 3     |   |
| E        | 3  | 3 | 4    | 0    | 6     |   |
|          |    | • | 4    | 3.5  |       | 1 |

no, of assignment = 5 = order of matrix. So, solution is optimal.

| Job        | Employees | Pine (inhrs) |
|------------|-----------|--------------|
| A          | T         | 5            |
| B          | I         | 3            |
| <          | abla      | Ş            |
| 2          | 111       | 9            |
| $\epsilon$ | īv        | 4            |

Minimum Pine = 23 hr.

(11) A rival rate,  $\lambda = \frac{1}{15}$  customer/min = 4 customer/hrs ? Service rate,  $\mu = \frac{1}{10}$  customer/min = 6 customer/hrs }

$$Lq = \left(\frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu - \lambda}\right) = \left(\frac{4}{6}\right) \times \left(\frac{4}{6 - 4}\right)$$

$$Lq = 16$$

$$4 \cdot 33 \text{ Cuntages}$$

 $L_q = \frac{16}{12} = 1.33 \text{ customers} \qquad \underline{AM}$ 

(b) waiting time of customers in the system
$$W_S = \frac{1}{u-\lambda} = \frac{1}{6-4} = \frac{1}{2} = 0.5 \text{ hr}.$$

Or 30 min,

(6)

+3

(iii) Give, & Transition Probability matrix  $TPM \text{ or } P = \begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.4 & 0.5 & 0.1 \\ 0.2 & 0.1 & 0.7 \end{bmatrix}$ 

Initial Probability vector

Ro= [0,7 0.2 0.1]

Proportion of population After Ist year.

 $R_1 = R_0 \times P$ 

 $R_1 = \begin{bmatrix} 0.7 & 0.2 & 0.1 \end{bmatrix}_{1\times 3} \begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.4 & 0.5 & 0.1 \\ 0.2 & 0.1 & 0.7 \end{bmatrix}$ 

 $R_1 = [0.52 \quad 0.32 \quad 0.16]$ 

Village = 52%, Town = 32%, City = 16%.

Proportion of Population After Ind year.

Ro = RLXP

 $R_2 = \begin{bmatrix} 0.52 & 0.32 & 0.16 \end{bmatrix}_{1\times 3} \begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.4 & 0.5 & 0.1 \\ 0.2 & 0.1 & 0.7 \end{bmatrix}$ 

Re=[0,47+ 0,33+ 0,196]

After 2nd year, Proportion will be

Village = 47.2%

Town = 33.2%

City = 19.6%

+1



| (ii) | BT | B <sub>2</sub> | 133 | By |
|------|----|----------------|-----|----|
| AL   | 3  | 3              | 4   | 0  |
| A2   | 5  | 4              | 3   | 7  |

with Probabilities P. and P.2.

Plot Various Strategies on graph.



Two Strategies parsing through maximum point on Lower boundary are Bz and Bz retained. So game reduces to 2x2 game.

$$\begin{array}{c|cccc}
R_1 & R_3 \\
A_1 & 3 & 4 \\
A_2 & 4 & 3
\end{array}$$

Value of game, 
$$V=\frac{7}{2}$$

AN

+2

+2

+1

+1

0:5 or (iii) Sum of Probability = 1, so we take 100 random no. of two digit i.e. oo to 99.

## Calculation of cumulative Probability and Random number interval.

| Production<br>(Perday) | Probabilities | Comulative<br>Probabilities | Random number<br>interval |
|------------------------|---------------|-----------------------------|---------------------------|
| 146                    | 0,04          | 0,04                        | 00-03                     |
| 147                    | 0.09          | 0.13                        | 04-12                     |
| 148                    | 0.12          | 0.52                        | 13-54                     |
| 149                    | 0.14          | 0.39                        | 55 - 38                   |
| 150                    | 0.11          | 0,50                        | 39 - 49                   |
| 151                    | 0.10          | 0,60                        | 50 - 59                   |
| 125                    | 0,20          | 0.80                        | 60- 79                    |
| 153                    | 0.12          | 0.92                        | 80 - 91                   |
| 154                    | 0.08          | 1                           | 92-99                     |
|                        |               |                             |                           |

Simulated Production for next 15 days

| Days Random   Simulated   No. of Scooter   No. of en                                                                                                                                | pty  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Number Production waiting space in  1 80 153 2 81 153 3 76 157 4 157 5 64 152 6 43 150 7 18 148 8 26 149 9 10 147 10 12 147 11 65 152 12 68 152 13 69 152 14 61 152 15 57 151 21 09 | long |

(a) Average no. of scooter waiting = 
$$\frac{21}{15}$$
 = 1.4 scooter.  $+1$ 

(b) Average no. of empty space on the lowy =  $\frac{9}{15}$  = 0.6 \( \sigma \) 1 Space.

?.6 (i) capital cost of machine, C= 10,000

|          |                         | (0300)           | The state of the s | ·, ·                    | 70,000                      |                   |                       |    |
|----------|-------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|-------------------|-----------------------|----|
| Year (n) | funning<br>cost<br>f(t) | Running cost Eft | Capital 1<br>cost<br>(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Resale<br>value<br>(S') | Capital<br>-Resale<br>(C-S) | TC=C-S<br>+ &f(+) | Averge<br>= TC<br>(n) |    |
| 1        | 1000                    | 1000             | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6000                    | 4000                        | 13000             | 5000                  |    |
| 2        | 1200                    | 5500             | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4000                    | 6000                        | 8500              | 4100                  |    |
| 3        | 1400                    | 3600             | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3500                    | 6800                        | 10,400            | 3466.6                |    |
| 4        | 1700                    | 5300             | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2600                    | 7400                        | 12,700            | 3175                  | +. |
| 1        | 2000                    | 7300             | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2500                    | 7500                        | 14,800            | 2960                  |    |
| 5        | 2500                    | 9800             | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2400                    | 7600                        | 17,400            | 5900                  |    |
| 7        | 3000                    | 15.800           | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000                    | 8000                        | 50,800            | 2971.4                |    |
| 8        | 3200                    | 16,300           | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1600                    | 8400                        | 24,700            | 3087,5                |    |
|          |                         | ,                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                             |                   |                       |    |
|          |                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                             |                   |                       |    |
|          |                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                             |                   |                       |    |
|          |                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                             |                   |                       |    |
| 1        |                         | 17.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                             |                   |                       | 1  |

Replacement Policy: Replace the machine at the end of 6th year because average annual cost is minimum in 6th year (2900).

cost of machine, C = 4000 rate of interest, r= 0.05 Discount factor,  $V = \frac{1}{1+8} = \frac{1}{1+0.05} = \frac{0.9523}{1.05}$ Maintenance cost, Rn = 500(n-1) where

|   | Year<br>(n) |      | m of we<br>Discount<br>factor<br>VN-1 | glited<br>Discounted!<br>Running<br>Cost<br>Rn Vn-1 | Discounted | Cumulative<br>Discount<br>factor | TC=<br>C+5R,V+1<br>Y000+5R,V+ | weighted<br>Average Cost<br>= TC/EVN-1 |    |
|---|-------------|------|---------------------------------------|-----------------------------------------------------|------------|----------------------------------|-------------------------------|----------------------------------------|----|
|   | 1           | 0    | V0=1                                  | 0                                                   | 0          | 1                                | 4000                          | 4000                                   |    |
|   | 2           | 500  | V = 0.9543                            | 476                                                 | 476        | 1.9513                           | 4476                          | 2292.6                                 |    |
|   | 3           | 1000 | 0.9670                                | 907                                                 | 1383       | 2.8593                           | 5 383                         | 1885'6                                 |    |
|   | 4           | 1200 | 0.8638                                | 1296                                                | 26 79      | 3.7231                           | 6679 (                        | 1793.9                                 | += |
|   | 5           | 2000 | 0.8227                                | 1645                                                | 4324       | 4.5458                           | 8324                          | 1831.1                                 |    |
| + |             |      |                                       |                                                     |            | ,                                | 11+                           | 17.                                    |    |

Replacement Policy: - Replacement the machine at the end of 4th year because weighted average cost is minimum in 4th year (1793.9).

(iii)(i) Let Pi be the probability of failure of bulbs in ith warments (i=1,2,3,4,7)

 $P_1 = 0.09$ ,  $P_2 = 0.25 - 0.09 = 0.16$  $P_3 = 0.24$ ,  $P_4 = 0.36$ ,  $P_5 = 0.12$ ,  $P_6 = 0.03$ 

(2) Expected No. of failure per week

| 1 8             | ·                       |
|-----------------|-------------------------|
| <br>week<br>(i) | Expected No. of failure |
| 0               | No=N= 1000              |
| 1               | $N_{\perp} = 90$        |
| 5               | N2 = 168                |
| 3               | $N_3 = 269$             |
| 4               | N4 = 435                |
| 5               | NS = 274                |
| 6               | N6 = 260                |
|                 |                         |

| )                                                                                          | Average<br>Life (i)<br>in week<br>1<br>2<br>3<br>4<br>5 | life of Bulb.    Prob. of failure (Pi)   0.09   0.16   0.24   0.36   0.12   0.03 | Expected life  of bulb  (ixPi)  0.09  0.32  0.72  1.44  0.6  0.18 |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
| Average life of bulb = 3.35 week  Average No. of failure = 1000 = 299 bulbs  per week 3.35 |                                                         |                                                                                  |                                                                   |  |  |  |  |  |

+1

+1

| Group Replacement Policy |                           |                |               |                     |                                                 |     |  |  |
|--------------------------|---------------------------|----------------|---------------|---------------------|-------------------------------------------------|-----|--|--|
| week                     | Individual<br>Replacement | cost of        | Replacement 1 | Total cost of Group | Arerage<br>Cost of<br>Group Chorof<br>= TC/week |     |  |  |
| 1                        | 90                        | 90x3=270       | 1000×0,7=700  | 970                 | 970                                             |     |  |  |
| 2                        | 168                       | 168X3=504      |               | 1474                | 734                                             |     |  |  |
| 3                        | 569                       | 269x3=807      | 1984+600      | 2881                | 760.3                                           | 1 1 |  |  |
| 4                        |                           | 43 ex 3 = 1296 | 2877+700      | 3577                | 894,25                                          | +1  |  |  |
| 5                        |                           |                | 3699+700      | 4399                | 879.8                                           |     |  |  |
| 6                        |                           |                | 4479+700      | 5179                | 863.1                                           |     |  |  |

Replacement Policy

(3)

- Replace all bulbs in Group after 2nd weeks because severage cost is min. in 2nd week,
- follow Group replacement because. Cost of Group is min. (737) Compare to Individual (897).