CS 4400 Computer Systems

LECTURE 4

Representing floats

Floating-point arithmetic

Floating Point

• Floating-point representation encodes rational numbers of the form $V = x \times 2^y$.

 Useful for numbers very large and very close to 0, why?

Floating Point

 Until the 1980s, there were many different conventions for how to represent floats and the operations on them.

Accuracy was not the biggest concern, what was?

Floating Point

- Around 1985, IEEE Standard 754 surfaced as a carefully crafted standard for floating point.
 - by Kahan et al., now supported by virtually all computers

Fixed-Point Fractional Numbers

• Decimal:
$$d_m d_{m-1} \cdots d_1 d_0 \cdot d_{-1} d_{-2} \cdots d_{-n}$$
 $d = \sum_{i=1}^{m} 10^i \times d_i$

$$d = \sum_{i=-n}^{m} 10^i \times d_i$$

• Binary:
$$b_m b_{m-1} \cdots b_1 b_0 \cdot b_{-1} b_{-2} \cdots b_{-n}$$

$$b = \sum_{i=-n}^{m} 2^i \times b_i$$

• Example:
$$101.11_2 = 2^2 + 2^0 + 2^{-1} + 2^{-2} = 5 \frac{3}{4}$$

- What is the effect of shifting the binary point right/ left?
- Are all fractions representable?

Fixed-Point Fractional Numbers

 With finite-length encodings, there are decimal (and binary) fractions that cannot be represented exactly.

•
$$1/3 = 0.33333..._{10}$$

• $1/5 = 0.001100110011..._2$

Question

Represent the value 51/32 as a fixed-point binary number.

- A. 0.010011
- B. 0.100101
- C. 1.100011
- D. 1.100110
- E. It cannot be represented exactly

IEEE Floating-Point Representation

- Represents a number of the form $V = (-1)^s \times M \times 2^E$
- *s*: sign bit
- E: exponent (exp) field, weights by a power of 2
 - k bits (k=8 for single precision, k=11 for double)
- M: significand (frac) field, a fractional binary number
 - n bits (n=23 for single precision, n=52 for double)

 The value encoded by a given bit representation is divided into three cases, depending on the value of exp.

IEEE Floating-Point Representation

- Represents a number of the form $V = (-1)^s \times M \times 2^E$
- *s*: sign bit
 - interpretation for numeric value 0 is special
- E: exponent (exp) field, weights by a power of 2
 - k bits (k=8 for single precision, k=11 for double)
- M: significand, a fractional binary number
 - ranges [1, 2) or [0, 1), depending on whether the exp field is 0
 - n bits (n=23 for single precision, n=52 for double), frac field
- The value encoded by a given bit representation is divided into three cases, depending on the value of exp.

Case 1: Normalized Values

- Occurs when bit pattern of exp is neither all 0s nor all 1s.
- exp field interpreted as a signed integer in biased form
 - Let e = unsigned number represented by exp
 - Bias = $2^{k-1} 1$
 - The actual exponent value is $E = e (2^{k-1} 1)$.
 - For double (k=11), -1022 ≤ E ≤ 1023. For single (k=8)?

Case 1: Normalized Values

- frac field interpreted as fixed point fractional value $0 \le f < 1$
 - The significand value: M = 1 + f
 - "Implied leading 1" representation gets additional bit for free
 - Thus, the range of M is [1,2).

Question

Recall: single precision uses 8 exp bits and 23 frac bits

$$E = e - (2^{k-1} - 1), M = 1 + f, V = (-1)^s \times M \times 2^E$$

- A. 0
- B. 0.5
- C. 1
- D. 2
- E. It is not a normalized value.

Case 2: Denormalized Values

- Occurs when bit pattern of exp = 0
- The exponent value: $E = 1 (2^{k-1} 1)$
- The significand value M = f
 - Without "implied leading 1".
 - Thus, the range of M is [0,1).

Case 2: Denormalized Values

- Why have denormalized numbers?
 - Can represent numeric value 0. Why cannot with normalized?
 - Can represent numbers very close to 0.
 - Gradual underflow—possible values are spaced evenly near 0.0
- Is there only 1 zero value?

Case 3: Special Values

• Occurs when bit pattern of \exp is all 1s (numeric value 255 for single or 2047 for double)

- When the frac = 0
 - Value is ∞ (s: positive or negative).
- When the frac field is nonzero:
 - Value is "NaN" (Not a Number)
 - Is there only 1 NaN value?

Example: 6-bit Format

Assume a hypothetical 6-bit format with k=3 exponent bits and n=2 significand bits. What is the exponent bias?

What are the normalized numbers with maximum magnitude?

$$e = ?$$

$$E = ?$$

$$f = ?$$

$$e = ?$$
 $E = ?$ $f = ?$ $M = ?$

$$\Lambda = 5$$

Are the representable numbers uniformly distributed?

$s e_1 e_0 f$	f_1f_0 e	Е	f	M	V
0 00	00				
0 00	10				
0 01	01				
0 10	11				
0 11	00				
0 11	10				

	s e	e_1e_0	f_1f_0	е	E	f	M	V
	0	00	00					
	0	00	10				Case	1 – Normalized Values
Г	0	01	01	1	1-1 = 0	1/4	$1 + \frac{1}{4} = 1.25$	1.25*20 = 1.25
	0	10	11	2	2-1 = 1	½ + ¼	$1 + \frac{1}{2} + \frac{1}{4} = 1.75$	$1.75*2^1 = 3.50$
	0	11	00					
	0	11	10					

s e	e_1e_0	f_1f_0	e	Е	f	M Case 2	– Denormalized Values
0	00	00		1-1 = 0	0	0	0
0	00	10		1-1 = 0	1/2	1/2	0.5
0	01	01	1	1-1 = 0	1/4	$1 + \frac{1}{4} = 1.25$	$1.25*2^0 = 1.25$
0	10	11	2	2-1 = 1	1/2 + 1/4	$1 + \frac{1}{2} + \frac{1}{4} = 1.75$	$1.75*2^1 = 3.50$
0	11	00					
0	11	10					

S	S 6	e_1e_0	f_1f_0	е	Е	f	M	V
(0	00	00		1-1 = 0	0	0	0
(0	00	10		1-1 = 0	1/2	$\frac{1}{2}$	0.5
(0	01	01	1	1-1 = 0	14	$1 + \frac{1}{4} = 1.25$	$1.25*2^0 = 1.25$
(0	10	11	2	2-1 = 1	1/2 + 1/4	$1 + \frac{1}{2} + \frac{1}{4} = 1.75$	$1.75*2^1 = 3.50$
(0	11	00					∞
(0	11	10					NaN

Properties of IEEE Floating Point

• The value +0.0 always has a bit pattern of all 0s

 The smallest denormalized value > 0 has a bit pattern consisting of 1 in LSB and all 0s elsewhere.

$$-M = f = 2^{-n}, E = 1 - (2^{k-1} - 1) = -2^{k-1} + 2$$

$$- V = M \times 2^{E} = 2^{(-n-2^{k-1}+2)}$$

Properties of IEEE Floating Point

 The largest denormalized value has a bit pattern consisting of an all-0 exp field and an all-1 frac field.

$$-M = f = 1 - epsilon, E = 1 - (2^{k-1} - 1) = -2^{k-1} + 2$$

 $-V = M \times 2^{E} = (1 - epsilon) \times 2^{A}(-2^{k-1}+2)$

The smallest normalized value > 0 has a bit pattern consisting of 1 in LSB of exp field and all 0s elsewhere.

$$-M = 1 + f = 1, E = e - (2^{k-1} - 1) = -2^{k-1} + 2$$
$$-V = M \times 2^{E} = 2^{(-2^{k-1} + 2)}$$

Properties of IEEE Floating Point

 The value 1.0 has a bit pattern with all but the MSB of the exp field set to 1 and all other bits set to 0

$$-M = 1 + f = 1, E = e - (2^{k-1} - 1) = 0$$

 The largest normalized value has a bit pattern consisting of 0 in LSB of exp field and all 1s elsewhere

$$-M = 1 - f = 2 - \text{epsilon}, E = e - (2^{k-1} - 1) = 2^{k-1} - 1$$

 $-V = M \times 2^{E} = (2 - \text{epsilon}) \times 2^{A}(2^{k-1} - 1)$

Rounding

- The key problem is to define the direction to round a value that is between two possibilities.
- For a real value x, find the "closest" matching x' representable in floating-point format.
- Another approach is to determine representable values x^- and x^+ such that $x^- \le x \le x^+$ is guaranteed.
- IEEE floating-point format defines four rounding modes.
 - The default mode finds x'.
 - The other three can be used to compute x^- and x^+ .

Rounding Modes

- Round-to-even (aka round-to-nearest) mode default
 - rounds either upward or downward such that least-significant digit of the result is even, e.g., both \$1.50 and \$2.50 \rightarrow \$2
- Round-to-zero mode
 - rounds positive numbers downward and negative numbers upward, giving value x'' such that $|x''| \le |x|$
- Round-up mode
 - rounds all numbers upward, giving value x^- such that $x^- \le x$
- Round-down mode
 - rounds all numbers downward, giving value x^+ such that $x \le x^+$

Floating-Point Operations

- The result of floating-point addition or multiplication is simply the exact result of the operation defined over real numbers, and then rounded (to be representable).
- Floating-point addition is not associative (single precision example)

```
(3.14 + 1e10) - 1e10 = 0.0
3.14 + (1e10 - 1e10) = 3.14
```

 Floating-point multiplication is not associative or distributive over addition.

```
1e20 * (1e20 - 1e20) = 0.0

1e20 * 1e20 - 1e20 * 1e20 = NaN
```

Question

In C, all int values can be represented as float values.

- A. True
- B. False

Floating Point in C

- Single precision: float, double precision: double
- Round-to-even mode
 - C standard does not require IEEE format—no (standard) way to change rounding modes or get special values.
 - Most systems provide access to such features, but details vary
- Casting among types changes numeric values as follows:
 - int to float: may be rounded
 - int/float to double: exact numeric value is preserved
 - double to float: may overflow or be rounded
 - float/double to int: truncated toward zero, may overflow

Questions

Always true?

```
Assume: int x, float f, double d
  A.x == (int)(float)x
  B.x == (int)(double)x
  C.f == (float)(double)f
  D.d == (double)(float)d
  E.f == -(-f)
  F.2/3 == 2/3.0
  G. (d \ge 0.0) \mid | ((d*2) < 0.0)
  H. (d+f) - d == f
```

Extended Precision

- Floating-point registers of the IA32 processors use 80-bit extended-precision format (with x87, not SSE, know your architecture!).
 - -k=15 exponent bits, n=63 fraction bits
- When normal single- and double-precision numbers are loaded from memory, they are converted to this format.
- Arithmetic is always performed in the extended format.
- Numbers are converted back to single- or double precision as they are stored to memory
- Can lead to undesirable consequences (see text).

Summary: Representing Information

- Groups of bits are interpreted differently for integers, real numbers, and character strings.
 - encoding and byte-ordering conventions differ across machines
- C is designed to accommodate a wide range of word sizes and encodings.
 - most (but not all) machines use two's complement and IEEE format
- In casting between signed and unsigned integers, the underlying bit patterns do not change.
- Due to finite encoding length, properties of computer arithmetic differ from those of integer/ real arithmetic.

Summary: Representing Information

- Overflow—a result exceeds representable range
- Underflow—a floating-point value is so close to 0.0, it is represented as such
- Properties of computer arithmetic allow compilers to do many optimizations.
 - such as replacing $7 \times x$ with (x << 3) x
- Floating-point arithmetic must be used carefully because of its limited range and precision, as well as, because it does not obey some common math properties