

第四章

放大电路的频率响应

前几章的讨论中,我们把放大器的增益看作是与频率无关的参量。

但实际上:待放大的信号都有一定的频率范围。如视频信号频带宽度是25Hz~6MHz。这样,由于电抗元件的影响,放大器就会对不同频率的信号放大倍数和延迟时间不同,引起幅度失真和相位失真。幅度失真和相位失真总称为 (4.60)

图 5-1 频率失真现象

(a) 待放大信号; (b) 振幅频率失真; (c) 相位频率失真

注意:

考虑频率失真的放大电路,电路参数都以复数 形式出现,因此,从本章开始,相关参数也改用 复数形式表示。

如: $A_{\mathbf{u}}$ 用 $\dot{\mathbf{A}}_{\mathbf{u}}$ 表示 $U_{\mathbf{o}}$ 用 $\dot{\mathbf{U}}_{\mathbf{o}}$ 表示

线性失真与非线性失真的比较

项	耳	线性失真	非线性失真
不同点	起因	由电路中的线性电抗元件引起(如L、C)	由电路中的非线性元件(如:三极管或场效应管的 特性的线的非线的 性等)引起
	结果	只会使各频率分量信号的 比例关系和时间关系发生 变化,或滤掉某些频率分 量的信号,但不会产生新 的频率分量信号	能产生新的频率 分量的信号
相 同 点 使输出信号产生畸变			

§4.1 放大电路的频率响应和频率失真

1. 频率响应的表示方法

$$\dot{A}_{u} = |A_{u}(f)| \angle \phi(f)$$
, 其中

|Au(f)|—幅频响应/幅频特性, $\phi(f)$ —相频响应/相频特性

理想频率响应

 $\omega=2\pi f$

$$|A_u(j\omega)| = K(常数)$$

$$|A_u(j\omega)|$$

$$|a_u(j\omega$$

低频区,耦合/旁路电容对信号构成了高通电路(即耦合/ 旁路电容对高频信号相当于短路)。

但随着频率f 的下降→耦合 电容的容抗增大→因而其分 压作用增强→由图知:输出 电压下降→放大倍数下降。

$$\text{Pl} \dot{A}_{u} = \frac{1}{1 - j \frac{f_{L}}{f}} \begin{cases} |A_{u}| = \frac{1}{\sqrt{1 + (f_{L}/f)^{2}}} \\ \varphi = \arctan(f_{L}/f) \end{cases}$$

在放大电路的低频区,影响频率响应的是耦合电容和 旁路电容。这些电容对低频响应的影响,可用RC 高通电 路来模拟。

高频区, 极间电容对信号构成了低通电路(即极间电容对 低频信号相当于开路)。

但随着频率f 的增大→极间电容的容抗减小→因而其分流作用增强→由图知:实际被放大的电流减小→放大倍数下降。

则
$$\dot{A}_u = \frac{1}{1 + j \frac{f}{f_H}}$$

$$\int_{A_{\mathcal{U}}} |A_{\mathcal{U}}| = \frac{1}{\sqrt{1 + (f/f_{H})^{2}}}$$

$$\varphi = -\arctan(f/f_{H})$$

在放大电路的高频区,影响频率响应的是管子的极间 序,这些电容对高频响应的影响可用RC低通电路来模

拟。

a) 低通电路

b)频率响应

阻容耦合放大电路的幅频响应:

直接耦合放大电 路的幅频特性

采用直接耦合的方式可降低放大电路的下限截止频率,扩大通频带。

阻容耦合放大电路的幅频响应:

$$\int_{A_{\mathcal{U}}} |A_{\mathcal{U}}| = \frac{1}{\sqrt{1 + (f_{L}/f)^{2}}}$$

$$\varphi = \arctan(f_{L}/f)$$

$$\begin{cases} |A_{u}| = \frac{1}{\sqrt{1 + (f/f_{H})^{2}}} \\ \varphi = -\arctan(f/f_{H}) \end{cases}$$

放大倍数下降为中频区的 $1/\sqrt{2}$ 时所对应的频率为下限频率 f_L 和上限频率 f_H 。对应的相位 ϕ =±45° $|A_u(jf_L)| = |A_u(jf_H)| = \frac{1}{\sqrt{2}}|A_{uI}| = 0.707|A_{uI}|$

在使用一个放大电路时应了解其信号频率的适用范围,在设计放大电路时,应满足信号频率的范围要求。

$$\left|A_{u}\left(jf_{L}\right)\right| = \left|A_{u}\left(jf_{H}\right)\right| = \frac{1}{\sqrt{2}}\left|A_{uI}\right| = 0.707\left|A_{uI}\right|$$

$$20\lg\left|A_{u}\left(jf_{L}\right)\right| = 20\lg\left|A_{u}\left(jf_{H}\right)\right| = 20\lg\left|A_{uI}\right| - 3dB$$

通频带BW(-3dB带宽): BW=f_H-f_L-表征放大器的线性失真许可范围内的信号频带宽度。

增益频带积: $G \cdot BW = |A_{uI} \cdot BW|$

思考

• 放大电路的通频带是越大越好吗?

对于通频带的选择,并不是越宽越好,对给定信号而言,通频带过宽不仅没有必要,而且还会窜入更多的干扰和噪声,需根据信号的频谱而定。

放大电路的输入信号频率升高到上限截止频率时,放大倍数幅值下降到中频放大倍数的0.707倍,或者说下降了____3dB;放大倍数的相位与中频时相比,附加相移约为_____45度。

2.波特图

波特图是一种采用对数坐标且进行折线化近似的频率特性曲线。

采用对数坐标的二个优点:

拓宽视野:

把放大倍数的乘除运算转化为加减运算。

幅频特性波特图:

横轴采用对数刻度 $\lg f$, 纵轴采用 $20 \lg \dot{A}_u$ 表示,单位是分贝(dB)。

相频特性波特图:

横轴采用对数刻度 $\lg f$, 纵轴仍用 φ 表示。

以高通电路为例,说明波特图的画法。

低频区高通电路
$$|A_u| = \frac{1}{\sqrt{1+(f_L/f)^2}}$$
 的幅频响应函数:

- ① 当 $f = f_L$ 时, $|A_u| = 1/\sqrt{2}$, $20 \lg |A_u| = -3 (dB)$
- ② 当 $f>>f_L$ 时, $|A_u|\approx 1$, $20\lg |A_u|=0$ (dB)
- ③ 当 $f << f_L$ 时, $|A_u| \approx f/f_L$, $20 \lg |A_u| = 20 \lg (f/f_L)$ (dB)

例: 当 $f=0.1f_L$ 时, $20\lg|A_u|=-20(dB)$

即此区间可等效成斜率为 20dB/十倍频的直线

低频区高通电路 $\varphi = \operatorname{arctg}(\frac{f_L}{f})$ 的相频响应函数:

- ① 当f=0.1f_L时,φ≈84.29°,近似取90°;
- ② 当f=10f_L时, φ≈5.71°, 近似取0°。
- ③ 当 $f = f_L$ 时, $\varphi = 45^\circ$,所以 $0.1f_L < f < 10f_L$ 这一区间可等 效成斜率为 -45° /十倍频的直线。

低频区的相频波特图由三段直线组成(以0.1f_L,10f_L为拐点)。最大误差为5.71°,发生在拐点处。

低频区Au的波特图

高频区的波特图

图a) 高通电路的波特图 (放大器的低频特性)

图b) 低通电路的波特图 (放大器的高频特性)

结论:

- (1)电路的截止频率决定于电容所在回路的时间常数。
- (2)当信号频率等于下限频率f₁或上限频率f₁时,放大电路的增益下降3dB,且产生+45°或-45°相移。
- (3)近似分析中,可以用折线化的近似波特图表示放大 电路的频率特性。

§4.2 晶体管的高频小信号模型和高频参数

以前讲的晶体/场效应管等效模型只适用于低频小信号的分析,现在介绍高频小信号模型。

高频区,极间电容 $C_{b'e}$, $C_{b'c}$ 的分流作用不能忽略。

含各种电容的单级共射放大器:

 $C_{b'e} \cdot C_{b'c}$

 $C_1 \cdot C_2 \cdot C_E$ μ F量级,称为大电容。 pF量级,称为小电容。

1、中频段

$$\frac{1}{\omega C_{\pm}} \to 0$$

大电容视为短路。

$$\frac{1}{\omega C_{\perp}} \rightarrow \infty$$

小电容视为开路。

放大器的交流通路是阻性网络,

所以: 增益A=常数。

2、低频段

$$\omega \downarrow \Rightarrow \frac{1}{\omega C_{\pm}} \uparrow$$

大电容不能视为短路。

$$\omega \downarrow \Rightarrow \frac{1}{\omega C_{\prime h}} \uparrow$$

小电容更能视为开路。

可见:

在低频段: C_1 、 C_2 、 C_E 不可忽略,不可视为短路; 极间电容可忽略。

3、高频段

$$\omega \uparrow \Rightarrow \frac{1}{\omega C_{\pm}} \to 0$$

大电容可视为短路

$$\omega \uparrow \Rightarrow \frac{1}{\omega C_{\perp}} \downarrow$$

小电容不能视为开路

可见:

在高频段: $C_1 \times C_2 \times C_E$ 可视为短路;

极间电容不可忽略,不能视为开路。

单管放大电路的频率响应

中频段: 耦合电容可认为交流短路,极间电容可视为交流 流断路。即各种电抗影响忽略, A_{μ} 与f无关;

低频段:极间电容可视为交流断路,但耦合电容构成高通电路。即耦合电容的影响不能忽略, A_{μ} 降低;

高频段: 耦合电容可认为交流短路,但极间电容构成低通电路。即极间电容的影响不能忽略, A_u 降低。

画出该电路低频区、中频区和高频区的小信号等效电 路。

中频区小信 号等效电路

低频区小信 号等效电路

高频区小信 号等效电路

画出该电路低频区、中频区和高频区的小信号等效电

路。

高频多数:共射电流放大系数 β 及其上限频率 f_{β}

$$\dot{\beta}(j\omega) = \frac{\dot{I}_c}{\dot{I}_b}\Big|_{c, e \boxtimes B} = \frac{g_m U_{b'e}}{\dot{I}_b}$$

 $=rac{g_m U_{b'e}}{I_b}$ g_m 不随信号频率的变化而变, A_b 为直流电流放大倍数。

其中,
$$g_m \approx \frac{\beta_0}{r_{b'e}}$$
, $U_{b'e} = I_b(r_{b'e} // \frac{1}{j\omega C_{b'e}}) = I_b \frac{r_{b'e}}{1 + j\omega r_{b'e} C_{b'e}}$

$$\dot{\beta}(j\omega) = \frac{\beta_0}{1+j\frac{\omega}{\omega_{\beta}}} = \frac{\beta_0}{1+j\frac{f}{f_{\beta}}}$$

$$\begin{vmatrix} \dot{\beta} \mid = \frac{\beta_0}{\sqrt{1+(\frac{f}{f_{\beta}})^2}} \\ \varphi = -\arctan(\frac{f}{f_{\beta}}) \end{vmatrix}$$

$$\begin{cases}
|\dot{\beta}| = \frac{\beta_0}{\sqrt{1 + (\frac{f}{f_{\beta}})^2}} \\
\varphi = -\arctan(\frac{f}{f_{\beta}})
\end{cases}$$

β的频率响应与低通电路相似。

$$f \ll f_{\beta}$$
 时, $|\dot{\beta}| \approx \beta_0$;

$$f = f_{\beta} \text{ iff}, \left| \dot{\beta} \right| = \frac{\beta_0}{\sqrt{2}} \approx 0.707 \beta_0, \quad \varphi = -45^\circ;$$

$$f \to \infty$$
时, $|\dot{\beta}| \to 0$, $\varphi \to -90^\circ$

$$\begin{cases}
|\dot{\beta}| = \frac{\beta_0}{\sqrt{1 + (\frac{f}{f_{\beta}})^2}} \\
\varphi = -\arctan(\frac{f}{f_{\beta}})
\end{cases}$$

$$f_{\beta} = \frac{1}{2\pi r_{b'e} C_{b'e}}$$

特征频率fT

定义: $|\dot{\beta}(j\omega)|$ 下降到1所对应的频率。

|
$$\dot{\beta}(jf_T)$$
 | = $\frac{\beta_o}{\sqrt{1+(\frac{f_T}{f_\beta})^2}} \approx \frac{\beta_o}{f_T} = 1$
因此:

$$f_T \approx \beta_o f_\beta = \frac{1}{2\pi r_e C_{b'e}} >> f_\beta$$

共基电流放大系数 $\dot{a}(if)$ 及 f_a

$$\dot{\alpha}(j\omega) = \frac{\dot{\beta}(jf)}{1 + \dot{\beta}(jf)} = \frac{\alpha_0}{1 + j\frac{f}{f_{\alpha}}}$$

其中
$$f_{\alpha} = (1 + \beta_0) f_{\beta} = \frac{1}{2\pi r_e C_{be}}, \quad \alpha_0 = \frac{\beta_0}{1 + \beta_0}$$

所以 $f_{\alpha} \approx f_{T} >> f_{\beta}$

三个参数之间的关系:

$$\mathbf{f}_{\beta} = \frac{1}{2\pi \, \mathbf{r}_{\mathbf{b'e}} \mathbf{C}_{\mathbf{b'e}}}$$

$$f_T \approx \beta_o f_\beta = \frac{1}{2\pi r_e C_{b'e}} >> f_\beta$$

$$f_{\alpha} \approx f_{T} >> f_{\beta}$$

§4.5 多级放大器的频率效应

多级放大器总的上限频率f_H 小于其中任何一级的上限 频率f_{Hk},而总的下限频率f_L 大于 其中任何一级的下 限频率f_{Lk};多级放大器总的通频带变窄了。

作业:

4.1

4.3

4.4

4.6(1)