1.6.4. Gauss's law in differential form and Poisson's equation

Integral form: $\int \overline{D} \cdot d\overline{a} = O(V(\overline{r})) = \int_{V} P(\overline{r}) dV = 7$ in integral form

(i) mathematical recall: divergence of a vector field

thought experiment: divide a control volume in many small subvolumes

The small volume
$$V_i$$
 the flux cancels out

The total flux $\int \overrightarrow{D} \ d\overrightarrow{a}$ is not change by division in V_i

Small volumes V_i
 V_i

(ii) Gauss's law in differential form

(derived applying Gauss's integral theorem)

$$\int_{\overline{D}} \cdot d\vec{a} = \int_{V} P(\vec{r}) dV$$

Gauss's Law in integral form

(flux theorem for D-field)

$$\int_{\overline{D}} \cdot da = \int_{V} div \, \overline{D} \cdot dV = \int_{V} P(\overline{r}) \, dV$$

Very small volumes dv

div D = p(r)

Gauss's law in differential

form; First Maxwell's equation

in words: The sources of $\bar{\mathcal{D}}(\bar{E})$ -fields are electric space Charge densities / electric Charges

[St Maxwell's equation tells how electrostatic fields are generated $div \ \vec{D} = \begin{pmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{pmatrix} \cdot \begin{pmatrix} Dx \\ Dy \\ \partial Z \end{pmatrix} = \partial/\partial x Dx + \partial/\partial y Dy + \partial/\partial Z DZ = Di \text{ flerential}$ quantized Air J

(iii) Poisson's equation

E = - grad
$$\phi$$
 \vec{D} = \vec{E} =7 insert this into differential Gauss's Law

General form of Possion's equation:

$$\operatorname{div}(\overline{D}) = -\operatorname{div}(\operatorname{Egrad} \Phi) = P$$

$$\operatorname{div}(\operatorname{Egrad} \Phi = -P)$$

Poisson's equation in simplified formulation:

if
$$\mathcal{E}$$
 is not depending on position: \mathcal{E} div (grad ϕ) = $-\mathcal{P}$ div (grad ϕ) = $-\mathcal{P}$ div (grad ϕ) = $-\mathcal{P}$ = $-\mathcal{E}$ div (grad ϕ) = $-\mathcal{P}$ = $-\mathcal{E}$ = $-\mathcal{E}$ = laplace operator

Annotations to zur Poisson's equation:

- is a partial differential equation
- allows for calculation of position-dependent electrostatic potential and, hence, elektric fields for given charge distributions
- for solution: boundary conditions needed (to determine the integration constants)
- there are systematic mathematical methods for solution (electrmagnetic field theory)
- allows for solution of general problems (numerical solution of equation by, e.g. Finite Element Methods - FEM)
- universally applicabel (in contrast to integral formulation of Gauss's law)

			_											_		_		_		_										
-1		_				_		L .					_			_		_	_	_				_	_					_
			_	 	\sim		-	TO	οт	-	1 20/	N /	\sim		\sim	\sim	TIC	\ I /	7	T (2	\neg	~~	\sim	\sim	CT	rıı	\sim 11		~
_	_	1 I		 				_		-												-	_	_						 4 7
-				\mathbf{u}	<i>_</i>	\sim				···	land			u	\mathbf{v}	-		- 1 \	<i>•</i>		41.1	uı			ч	J			4 U	4 7
_																														

() See printed lecture notes

(ii) Coulomb potential of a charge distribution

