TMVA и классификация данных

(На примере написанной программы)

Задача классификации

Задача классификации в общем виде: Разделить данные по категориям. Например, некоторый алгоритм (примененный в данной задаче), определяет, какие пилоты погибнут при следующем вылете, а какие нет, исходя из их характеристик, таких, как рост, вес, цвет глаз, пол, итд. (Выделена характеристика, которая влияет на результат жизни пилотов).

Не погибнет	Погибнет
Красные глаза	Синие глаза
Рост 180 см	Рост 185 см
Мужчина	Мужчина
Двое детей	Двое детей

Используемые инструменты

Задача классификации пилотов по признаку их выживаемости решалась в среде ROOT при помощи TMVA. Итак:

ROOT

ROOT - программная среда, используемая для анализа данных, разработанная CERN(Conseil européen pour la recherche nucléaire). Включает в себя, такие объекты, как, например:

- Графики
- Математический анализ
- Математические функции
- Методы работы с изображениями

TMVA - The toolkit for multivariate analysis. Root - интегрированная среда для классификации и анализа данных.

Сигнал/Бэкграунд

Понятия сигнальных и бэкграундных событий:

- Сигнал события, которые нужно выделить среди остальных событий, те которые имеют ценность для поставленной задачи.
- Бэкрграунд фоновые события, которые не имеют ценности для поставленной задачи.

Постановка задачи:

Проанализировать данные, содержащие характеристики пилотов, такие, как рост, цвет глаз, вес. На основе этих данных сделать вывод о том, какие пилоты погибнут, а какие остануться в живых. Между данными и вероятностью смерти пилотов есть явное соответствие.

Программа:

Написанная программа состоит из 3-х файлов:

- Neuro.hpp файл-заголовок.
- Neuro.cpp файл-описание.
- Neuro-pilots.cpp Главная программа.

Программа состоит из структуры, в которую занесены переменные - характеристики "пилотов", такие как рост, вес итд, функций, создающих рандомную генерацию этих характеристик и функции, записывающей сгенерированные характеристики в структуру данных "дерево".

Работа TMVAClassification.C

Данный скрипт считывает из "дерева" переменные - данные, записанные в дерево, работает с этими переменными различными классификаторами, предоставляет информацию, такую, как: Матрицы корреляций переменных, зависимости между выходными переменными, график эффективности работы каждого классификатора итд. Так же, формирует директорию, в которую записываются "веса" для каждой переменной - значения определенной функции.

Работа TMVAClassification Application.С

Скрипт получает набор данных в виде дерева из файла .root и применяет к каждому событию веса, посчитанные скриптом TMVAClassification.C, после чего гистограмму (график записывает количеством событий по оси Y) для каждого примененного метода, в которой указывается распределение весов каждого события для этих данных. Этот скрипт является проверочным, а тренировочным.

Схема работы обоих скриптов:

Важно, что оба скрипта используются для решения одной и той же задачи, но представляют разные этапы решения.

Результат работы:

Сравнивая графики, полученные скриптом TMVAClassificationApplication.С и графики для тренировочного набора данных, показывающие разделения сигнальных и бэкграундных событий, можно сказать, какой диапазон значений классификатора соответствует сигнальным событиям в тестовом наборе данных.