

FACULTAD DE CIENCIAS DE LA ELECTRÓNICA

TÍTULO DE TESIS:

Análisis de aproximaciones de integradores fraccionarios para la creación de osciladores caóticos

T E S I S

QUE PARA OBTENER EL TÍTULO DE:

LIC. EN ING. EN MECATRÓNICA

PRESENTA:

Ciro Fabiań Bermúdez Márquez

TUTORES:

Dr. Jesús Manuel Muñoz Pacheco

Puebla, Puebla, 2020

Agradecimientos

I Agradecimientos

Índice general

A٤	Agradecimientos									
Ín	dice	genera	al	III						
1.	Fun	damer	ntos teóricos	1						
	1.1.	Defini	ción de Grünwald-Letnikov	1						
		1.1.1.	Definición de derivada de Grünwald-Letnikov	2						
		1.1.2.	Definición de integral de Grünwald-Letnikov	2						
		1.1.3.	Método numérico para la definición de GL	2						
	1.2.	Defini	ción de Riemann-Liouville	3						
		1.2.1.	Definición de integral de Riemann-Liouville	3						
		1.2.2.	Definición de derivada de Riemann-Liouville	4						
	1.3.	Transf	formada de Laplace de integrales y derivadas fraccionarias	4						
	1.4.	Expan	sión de fracciones continuas (CFE)	4						
2.	Ana	disis d	e no se que ahorita	9						
3.	Ana	disis d	e no se que ahorita	11						
Α.	A. Códigos									
В.	3. Diagramas de flujo									

IV Índice general

Índice de figuras

VI Índice de figuras

Índice de tablas

1.1.	Aproximación	racional d	$\frac{1}{0}$	5 •												7

VIII Índice de tablas

Lista de códigos

A.1.	Función syn	ns2tf															13
A.2.	Función cfe	tf .															13

Lista de códigos

Capítulo 1

Fundamentos teóricos

Al igual que cuando se comienza a estudiar cálculo de orden entero, es necesario familiarizarse con la notación de los operadores matemáticos de la derivada y la integral. En la actualidad la notación más utilizada para el cálculo entero es la dada por Leibniz en (1686), donde el operador diferencial de n-ésimo orden esta definido como: $\frac{d^n}{dt^n}$, D^n_t o simplemente D^n con $n \in \mathbb{N}$. Utilizando el mismo razonamiento, puede definirse su operador inverso (antiderivada) de manera que el operador inverso de la derivada de n-ésimo orden está dado por: ${}_aD^{-n}_t$, donde $n \in \mathbb{N}$ y $a \in \mathbb{R}$ representa el límite inferior del dominio de la región donde se aplica dicho operador.

Para generalizar el operador diferencial e integral para orden fraccionario se considera que este puede definirse para parámetros de orden real o incluso complejo. Esto implica que los operadores pueden definirse respectivamente como: D^{α} y $_{a}D_{t}^{\alpha}$ con $\alpha \in \mathbb{R}$.

Es importante resaltar que no una hay una única definición de operadores diferencial fraccional ni integral sino varias expresiones definidas por diferentes autores, entre las mas usadas se encuentran la definición de Grünwald-Letnikov (GL), la de Riemann-Liouville (RL) y la de Caputo (Ca), cada una de estas con sus ventajas y desventajas desde el punto de vista del análisis matemático, complejidad computacional e implementación [1].

1.1. Definición de Grünwald-Letnikov

Comenzamos considerando que para el caso de orden entero la n-ésima derivada para una función f con $n \in \mathbb{N}$ y j > n esta dada por:

$$f^{(n)}(t) = \frac{d^n f}{dt^n} = \lim_{h \to 0} \frac{1}{h^n} \sum_{j=0}^n (-1)^j \binom{n}{j} f(t-jh)$$
 (1.1)

donde $\binom{n}{j}$ representa el coeficiente binomial dado por la expresión:

$$\binom{n}{j} = \frac{n!}{j!(n-j)!} \tag{1.2}$$

Considerando valores negativos de n tenemos:

$$\binom{-n}{j} = \frac{-n(-n-1)(-n-2)\cdots(-n-j+1)}{j!} = (-1)^j \begin{bmatrix} n \\ j \end{bmatrix}$$
 (1.3)

donde $\binom{n}{i}$ esta definido como:

1.1.1. Definición de derivada de Grünwald-Letnikov

Generalizando la ecuación (1.1) podemos escribir la definición de derivada de orden fraccionario de orden α , ($\alpha \in \mathbb{R}$) como:

$$D_t^{\alpha} f(t) = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\infty} (-1)^j {\alpha \choose j} f(t-jh)$$

$$\tag{1.5}$$

Para calcular el coeficiente binomial podemos utilizar la relación entre la función Gamma de Euler y el factorial definido como:

$$\binom{\alpha}{j} = \frac{\alpha!}{j!(\alpha - j)!} = \frac{\Gamma(\alpha + 1)}{\Gamma(j + 1)\Gamma(\alpha - j + 1)}$$
 (1.6)

donde la función Gamma de Euler con r > 0 esta definida como:

$$\Gamma(r) = \int_0^\infty t^{r-1} e^{-t} dt \tag{1.7}$$

1.1.2. Definición de integral de Grünwald-Letnikov

Utilizando la ecuación (1.5) se puede definir un operador de tipo integral para la función f sobre el dominio temporal (a, t) considerando $n = \frac{t-a}{h}$ donde $a \in \mathbb{R}$ como:

$${}_{a}D_{f}^{\alpha} = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{\left[\frac{t-a}{h}\right]} (-1)^{j} \binom{n}{j} f(t-jh)$$
 (1.8)

1.1.3. Método numérico para la definición de GL

Utilizando como base la ecuación (1.5) esta se puede discretizar para los puntos kh, (k = 1, 2, ...) de la siguiente manera:

$$\left(\frac{L_m}{h}\right) D_{t_k}^{\alpha} f(t) \approx \frac{1}{h^{\alpha}} \sum_{j=0}^{k} (-1)^j {\alpha \choose j} f(t_{k-j}) \tag{1.9}$$

donde L_m es el tamaño de memoria (memory length), $t_k = kh$, h es el paso de tiempo del cálculo y $(-1)^j \binom{\alpha}{j}$ son coeficientes binomiales $C_j^{(\alpha)}$ (j = 0, 1, ...). Para su calculo utilizamos la siguiente expresión:

$$C_0^{(\alpha)} = 1, \qquad C_j^{(\alpha)} = \left(1 - \frac{1+\alpha}{j}\right) C_{j-1}^{(\alpha)}$$
 (1.10)

Entonces, la solución numérica general de la ecuación diferencial fraccional:

$$_{a}D_{t}^{\alpha}y(t) = f(y(t), t) \tag{1.11}$$

puede expresarse como:

$$y(t_k) = f(y(t_{k-1}), t_{k-1})h^{\alpha} - \sum_{j=1}^{k} C_j^{(\alpha)} y(t_{k-j})$$
(1.12)

Para el termino de la memoria expresada por la sumatoria, el principio de memoria corta puede utilizarse. Entonces el indice superior de la sumatoria en la ecuación (1.12) se cambiará por ν con las siguientes consideraciones: se usa $\nu=k$ para $k<\left(\frac{L_m}{h}\right)$ y $\nu=\left(\frac{L_m}{h}\right)$ para $k\geq\left(\frac{L_m}{h}\right)$, o sin usar el principio de memoria corta se utiliza $\nu=k$ para toda k.

1.2. Definición de Riemann-Liouville

Para esta definición consideramos la fórmula de Cauchy para la integral repetida que esta dada por:

$$f^{(-n)}(t) = \int_{a}^{t} \int_{a}^{\sigma_{1}} \cdots \int_{a}^{\sigma_{n-1}} f(\sigma_{n}) d\sigma_{n} \cdots d\sigma_{2} d\sigma_{1} = \frac{1}{(n-1)!} \int_{a}^{t} \frac{f(\tau)}{(t-\tau)^{1-n}} d\tau \quad (1.13)$$

1.2.1. Definición de integral de Riemann-Liouville

Utilizando las propiedades de la función Gamma de Euler con el factorial y la ecuación (1.13) se puede escribir la definición de integral fraccionaria como:

$${}_{a}D_{t}^{-\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{f(\tau)}{(t-\tau)^{1-\alpha}} d\tau$$
 (1.14)

para $\alpha < 0$ y $a \in \mathbb{R}$. No obstante para el caso de $0 < \alpha < 1$ y f(t) siendo una función casual, esto es, f(t) = 0 para t < 0, la integral fraccionaria esta definida como:

$$_{0}D_{t}^{-\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{f(\tau)}{(t-\tau)^{1-\alpha}} d\tau, \quad \text{para} \quad 0 < \alpha < 1, \quad t > 0$$
 (1.15)

1.2.2. Definición de derivada de Riemann-Liouville

De la ecuación (1.14) se puede escribir la definición de derivada fraccionaria de orden α de la siguiente manera:

$${}_{a}D_{t}^{\alpha}f(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{dt^{n}} \int_{a}^{t} \frac{f(\tau)}{(t-\tau)^{\alpha-n+1}} d\tau$$
(1.16)

donde $(n-1 < \alpha < n)$. Pero igual que con la integral si consideramos $0 < \alpha < 1$ y f(t) una función casual, la derivada de orden fraccionaria se puede reescribir como:

$${}_{0}D_{t}^{\alpha}f(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{dt^{n}} \int_{0}^{t} \frac{f(\tau)}{(t-\tau)^{\alpha-n+1}} d\tau$$
(1.17)

1.3. Transformada de Laplace de integrales y derivadas fraccionarias

La transformada de Laplace de la integral fraccionaria ya sea para Riemman-Liouville o para Grünwald-Letnikov esta definida como:

$$\mathcal{L}\{_{0}D_{t}^{-p}f(t)\} = s^{-p}F(s) \tag{1.18}$$

y dadas condiciones iniciales cero la transformada de Laplace de la derivada fraccionaria de orden r para Grünwald-Letnikov, Riemann-Liouville y Caputo se reduce a:

$$\mathcal{L}\lbrace_0 D_t^r f(t)\rbrace = s^r F(s) \tag{1.19}$$

1.4. Expansión de fracciones continuas (CFE)

A una expresión de la forma:

$$a_{1} + \frac{b_{1}}{a_{2} + \frac{b_{2}}{a_{3} + \frac{b_{3}}{a_{4} + \dots}}}$$

$$(1.20)$$

se le conoce como una fracción continua. En general $a_1, a_2, a_3, \dots, b_1, b_2, b_3$ pueden ser cualquier número real o complejo, y el número de términos pueden ser finito o infinito.

Una manera más conveniente de escribir la ecuación (1.20) es:

$$a_1 + \frac{b_1}{a_2} + \frac{b_2}{a_3} + \frac{b_3}{a_4} + \cdots ag{1.21}$$

y es la que se encontrará normalmente en libros y artículos. Ambas notaciones son muy similar y se puede pasar de una a otra sin mayor complicación.

De la ecuación (1.21) se pueden formar las siguientes fracciones:

$$c_1 = \frac{a_1}{1}, \quad c_2 = a_1 + \frac{b_1}{a_2}, \quad c_3 = a_1 + \frac{b_1}{a_2} + \frac{b_2}{a_3}, \quad \cdots$$
 (1.22)

las cuales se obtienen, en sucesión, de cortar el proceso de expansión después del primer, segundo, tercer, \cdots término. Estas fracciones son llamadas primer, segundo, tercer, \cdots convergente, respectivamente, de la fracción continua. El n-ésimo convergente es:

$$c_n = a_1 + \frac{b_1}{a_2} + \frac{b_2}{a_3} + \dots + \frac{b_{n-1}}{a_n}$$
(1.23)

En 1776 Lagrange obtuvo la expansión de fracciones continuas (CFE) para la ecuación $(1+x)^{\alpha}$ como se muestra a continuación [2]:

$$(1+x)^{\alpha} = \frac{1}{1 - \frac{\alpha x}{1 \cdot 2} x}$$

$$1 + \frac{\frac{1(1+\alpha)}{1 \cdot 2} x}{1 + \frac{\frac{1(1-\alpha)}{2 \cdot 3} x}{2 \cdot 3} x}$$

$$1 + \frac{\frac{2(2+\alpha)}{3 \cdot 4} x}{1 + \frac{\frac{2(2-k)}{4 \cdot 5} x}{1 + \frac{\frac{3(3+\alpha)}{5 \cdot 6} x}{1 + \dots}}}$$

y escrita de una manera más compacta:

$$(1+x)^{\alpha} = \frac{1}{1-\frac{\alpha x}{1+\frac{1(1+\alpha)}{1+2}}} \frac{1}{1+\frac{1(1-\alpha)}{2\cdot 3}} \frac{1}{1+\frac{2(2+\alpha)}{3\cdot 4}} \frac{1}{1+\frac{2(2-\alpha)}{4\cdot 5}} \frac{1}{1+\cdots}$$
(1.25)

la ecuación (1.25) puede reescribirse convenientemente multiplicando un m en el numerador y en el denominador como se muestra a continuación:

$$(1+x)^{\alpha} = \frac{1}{1-\frac{\alpha x}{1+\frac{2\cdot\frac{1(1+\alpha)}{1\cdot2}x}{2\cdot1} + \frac{3\cdot2\cdot\frac{1(1-\alpha)}{2\cdot3}x}{3\cdot1} + \frac{3\cdot\frac{2(2+\alpha)}{3\cdot4}x}{1+\cdots}}{(1.26)}$$

hay que notar que cada denominador esta compuesto por 2 términos, esto se puede ver claramente en la ecuación (1.24), y que contando el término del numerador, m se tiene que agregar en 3 lugares distintos. Si se eligen $m_1 = 2$, $m_2 = 3$, $m_3 = 2$, ... de manera que se simplifique la ecuación obtenemos:

$$(1+x)^{\alpha} = \frac{1}{1} - \frac{\alpha x}{1} + \frac{(1+\alpha)x}{2} + \frac{(1-\alpha)x}{3} + \frac{(2+\alpha)x}{2} + \frac{(2-\alpha)x}{5} + \cdots$$
 (1.27)

La ecuación (1.27) se puede encontrar en distintos artículos [3, 4], no obstante para programar un algoritmo que obtenga la aproximación de $(1 + x)^{\alpha}$ hasta el *n*-ésimo convergente resulta poco intuitiva. Para este fin la ecuación (1.25) resulta más sencilla y contiene un patrón que puede explotarse.

El n-ésimo término de la expansión de fracciones continuas para la ecuación (1.25) se puede calcular utilizando la siguiente ecuación:

$$\frac{\psi(n) \left[\psi(n) + (-1)^n \alpha \right]}{(n-1)n} \tag{1.28}$$

donde la función $\psi(x)$ para $x \geq 2, x \in \mathbb{Z}^+$ esta definida como¹:

$$\psi(x) = \left| \frac{x}{2} \right| \tag{1.29}$$

La ecuación (1.28) se puede utilizar de manera recursiva desde el n-ésimo término hasta el segundo sin olvidar que cada uno de estos siempre debe ir acompañado de la suma de un uno. También vale la pena resaltar que el primer término de la expansión 1 αx

es
$$\frac{1}{1-\frac{\alpha x}{1}}$$
 en conjunto.

Sustituyendo x=s-1 y limitando el número de términos de la ecuación (1.25) obtenemos la aproximación racional para s^{α} y para obtener la aproximación racional de $\frac{1}{s^{\alpha}}$ la expresión tiene que ser simplemente invertida. En el apéndice A.2 se muestra un programa en MATLAB que calcula la aproximación para un integrador fraccionario de orden α eligiendo el número de términos n, utilizando el método de CFE descrito previamente.

En general la aproximación utilizando la CFE para un integrador fraccionario $\frac{1}{s^{\alpha}}$ utilizando los primeros dos términos resulta en una función de transferencia de primer orden como se muestra a continuación:

[|]x| es la función redondeo hacia el entero inferior anterior.

$$\frac{1}{s^{\alpha}} \approx \frac{(1-\alpha)s + (1+\alpha)}{(1+\alpha)s + (1-\alpha)}$$
 (1.30)

Al utilizar un número impar de términos el grado del numerador de la función de transferencia siempre será mayor en uno al del denominador, además de que el coeficiente de mayor grado del numerador siempre tendrá signo negativo, esto resulta problemático en la implementación y debido a estas observaciones es recomendable solo trabajar con un número par de términos.

La aproximación de segundo orden tiene la forma:

$$\frac{1}{s^{\alpha}} \approx \frac{(\alpha^2 - 3\alpha + 2)s^2 + (8 - 2\alpha^2)s + (\alpha^2 + 3\alpha + 2)}{(\alpha^2 + 3\alpha + 2)s^2 + (8 - 2\alpha^2)s + (\alpha^2 - 3\alpha + 2)}$$
(1.31)

La ventaja de utilizar la aproximación de CFE es que convertimos el problema de orden fraccionario a uno de orden entero de manera sistemática. Por ejemplo para un integrador de orden fraccionario $\alpha=0.5$ sus aproximaciones son las mostradas en la Tabla 1.1 y su diagrama de bode es el mostrado en la Figura .

Tabla 1.1: Aproximación racional de $\frac{1}{s^{0.5}}$

Orden	No. de términos	Aproximación racional
1	2	$\frac{s+3}{3s+1}$
2	4	$\frac{s^2 + 10s + 5}{5s^2 + 10s + 1}$
3	6	$\frac{s^3 + 21s^2 + 35s + 7}{7s^3 + 35s^2 + 21s + 1}$
4	8	$\frac{s^4 + 36s^3 + 126s^2 + 84s + 9}{9s^4 + 84s^3 + 126s^2 + 36s + 1}$
5	10	$\frac{s^5 + 55s^4 + 330s^3 + 462s^2 + 165s + 11}{11s^5 + 165s^4 + 462s^3 + 330s^2 + 55s + 1}$

Esto es una prueba para ver si funciona bien o no

Capítulo 2

Analisis de no se que ahorita

Capítulo 3

Analisis de no se que ahorita

Apéndice A

Códigos

```
1 % Converir funcion simbolica a TF
2 function R = syms2tf(G)
3    [symNum,symDen] = numden(G); % Obtener numerados y denominador
4    TFnum = sym2poly(symNum); % Convertir Symbolic num to polynomial
5    TFden = sym2poly(symDen); % Convertit Symbolic den to polynomial
6    R = tf(TFnum,TFden); % Generar funcion de transferencia
7 end
```

Código A.1: Función syms2tf

```
1 function R = cfetf(alfa,n)
2 % Calcula la aproximacion utilizando CFE de un integrador fraccional
3 % 1/s^(alfa)
          alfa: es el orden del integrador
          n : es el numero de terminos de la aproximacion
      syms s x;
      eqns = sym(zeros(n,1));
      for i=n:-1:2
          if i == n
              eqns(i) = 1 + n_term_cfe(i, alfa) *x;
10
11
              eqns(i) = 1 + (n_term_cfe(i, alfa)*x)/eqns(i+1);
12
14
      eqns(1) = 1/(1 - (alfa*x/eqns(2)));
      derivate = simplify(subs(eqns(1),x,s-1));
      integrator = collect(1/derivate);
      sys = syms2tf(integrator);
      R = sys;
20 end
21 %% Funciones
22 function R = psi_cfe(x)
23
     R = floor(x/2);
24 end
26 function R = n_term_cfe(n,k)
      R = (psi\_cfe(n) * (psi\_cfe(n) + k*(-1)^n))/((n-1)*(n));
28 end
```

Código A.2: Función cfetf

Apéndice B

Diagramas de flujo

Cita 1 [1] Cita 2 [5] Cita 3 [2] Cita 4 [6] Cita 5 [3] Cita 6 [4]

Bibliografía

- [1] I. Petráš, Fractional-Order Nonlinear Systems. Springer Berlin Heidelberg, 2011.
- [2] C. D. Olds, Continued Fractions. The Mathematical Association of America, 2009.
- [3] B. T. Krishna and K. V. V. S. Reddy, "Active and passive realization of fractance device of order 1/2," Active and Passive Electronic Components, vol. 2008, pp. 1–5, 2008.
- [4] B. Krishna, "Studies on fractional order differentiators and integrators: A survey," Signal Processing, vol. 91, pp. 386–426, Mar. 2011.
- [5] I. Petráš and J. Terpak, "Fractional calculus as a simple tool for modeling and analysis of long memory process in industry," *Mathematics*, vol. 7, p. 511, jun 2019.
- [6] C. Li, W. J.-C. Thio, J. C. Sprott, H. H.-C. Iu, and Y. Xu, "Constructing infinitely many attractors in a programmable chaotic circuit," *IEEE Access*, vol. 6, pp. 29003– 29012, 2018.