

BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 December 2002 (05.12.2002)

PCT

(10) International Publication Number
WO 02/097114 A2

(51) International Patent Classification⁷:

C12Q

(74) Agent: WILLIAMS, Andrew, W.; McDonnell Boehnen Hulbert & Berghoff, Suite 3200, 300 South Wacker Drive, Chicago, IL 60606 (US).

(21) International Application Number: PCT/US02/16840

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(22) International Filing Date: 29 May 2002 (29.05.2002)

(81)

(25) Filing Language:

English

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(26) Publication Language:

English

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(30) Priority Data:

60/294,140 29 May 2001 (29.05.2001) US
60/296,249 6 June 2001 (06.06.2001) US
60/318,471 10 September 2001 (10.09.2001) US

(71) Applicant (*for all designated States except US*): RIBOZYME PHARMACEUTICALS, INCOPORATED [US/US]; 2950 Wilderness Place, Boulder, CO 80301 (US).

(72) Inventor; and

(75) Inventor/Applicant (*for US only*): McSWIGGEN, James [US/US]; 4866 Franklin Drive, Boulder, CO 80301 (US).

Published:

— without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: NUCLEIC ACID TREATMENT OF DISEASES OR CONDITIONS RELATED TO LEVELS OF RAS, HER2 AND HIV

DNAzyme Motif

Legend

Y = U or C
R = A or G

WO 02/097114 A2

(57) Abstract: The present invention relates to nucleic acid molecules, including enzymatic nucleic acid molecules, such as DNAzymes (e.g. DNA enzymes, catalytic DNA), siRNA, aptamers, and antisense that modulate the expression of Ras genes such as K-Ras, H-Ras, and/or N-Ras, HIV genes such as HIV-1, and HER2 genes.

WO 02/097114 A2

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

DESCRIPTIONNUCLEIC ACID TREATMENT OF DISEASES OR CONDITIONS RELATED TO
LEVELS OF RAS, HER2 AND HIV

This patent application claims priority from McSwiggen USSN 60/294,140, filed May 5 29, 2001, entitled 'Enzymatic Nucleic Acid Treatment of Diseases or Conditions Related To Levels of HIV,' McSwiggen USSN 60/296,249 filed June 6, 2001, entitled 'Enzymatic Nucleic Acid Treatment of Diseases or Conditions Related to Levels of HER2,' and McSwiggen USSN 60/318,471, filed September 10, 2001, entitled 'Enzymatic Nucleic Acid Treatment of diseases or Conditions Related to Levels of RAS.' Each of these applications is 10 hereby incorporated by reference herein in its entirety including the drawings and tables.

Technical Field Of The Invention

The present invention relates to novel nucleic acid compounds and methods for the treatment or diagnosis of diseases or conditions related to levels of Ras gene expression, such 15 as K-Ras, H-Ras, and/or N-Ras expression, HIV infection such as HIV-1, and HER2 gene expression.

Background Of The Invention

Transformation is a cumulative process whereby normal control of cell growth and differentiation is interrupted, usually through the accumulation of mutations affecting the 20 expression of genes that regulate cell growth and differentiation.

The platelet derived growth factor (PDGF) system has served as a prototype for identification of substrates of the receptor tyrosine kinases. Certain enzymes become activated by the PDGF receptor kinase, including phospholipase C and phosphatidylinositol 3' kinase, Ras guanosine triphosphate (GTPase) activating protein (GAP) and src-like tyrosine 25 kinases. GAP regulates the function of the Ras protein by stimulating the GTPase activity of the 21 kD Ras protein. Barbacid, 56 Ann. Rev. Biochem. 779, 1987. Microinjection of oncogenically activated Ras into NIH 3T3 cells has been shown to induce DNA synthesis. Mutations that cause oncogenic activation of Ras lead to accumulation of Ras bound to GTP, the active form of the molecule. These mutations block the ability of GAP to convert Ras to 30 the inactive form. Mutations that impair the interactions of Ras with GAP also block the biological function of Ras.

While a number of Ras alleles exist (N-Ras, K-Ras, H-Ras) which have been implicated in carcinogenesis, the type most often associated with colon and pancreatic carcinomas is K-Ras. Enzymatic nucleic acid molecules which are targeted to certain regions of the K-Ras allelic mRNAs may also prove inhibitory to the function of the other allelic mRNAs of the N-Ras and H-Ras genes.

Scanlon, International PCT Publication Nos. WO 91/18625, WO 91/18624, and WO 91/18913 describes a ribozyme effective to cleave oncogene RNA from the H-Ras gene. This ribozyme is said to inhibit H-ras expression in response to exogenous stimuli. Reddy WO92/00080 describes the use of ribozymes as therapeutic agents for leukemias, such as chronic myelogenous leukemia (CML) by targeting specific portions of the BCR-ABL gene transcript.

Thompson *et al.*, International PCT publication No. WO 99/54459, describe nucleic acid molecules that modulate gene expression, including Ras gene expression.

Zhang *et al.*, 2000, *Gene Ther.*, 7, 2041; Takunaga *et al.*, 2000, *Br. J. Cancer.*, 83, 833; Zhang *et al.*, 2000, *Mol. Biotechnol.*, 15, 39; Irie *et al.*, 2000, *Mol. Urol.* 4, 61; Kijima and Scanlon, 2000, *Mol. Biotechnol.*, 14, 59; Funato *et al.*, 2000, *Cancer Gene Ther.*, 7, 495; Tsuchida *et al.*, 2000, *Cancer Gene Ther.*, 7, 373; Zhang *et al.*, 2000, *Methods Mol. Med.*, 35, 261; Irie *et al.*, 1999, *Antisense Nucleic Acid Drug Dev.*, 9, 341; Giannini *et al.*, 1999, *Nucleic Acids Res.*, 27, 2737; Fang *et al.*, 1999, *J. Med. Coll. PLA*, 14, 25; Tong *et al.*, 1998, *Methods Mol. Med.*, 11, 209; Ohkawa and Kashani-Sabet, 1998, *Methods Mol. Med.*, 11, 153; Scherr *et al.*, 1999, *Gene Ther.*, 6, 152; Tsuchida *et al.*, 1998, *Biochem. Biophys. Res. Commun.*, 252, 368; Scherr *et al.*, 1998, *Gene Ther.*, 5, 1227; Uhlmann *et al.*, European Patent Application EP 808898; Scherr *et al.*, 1997, *J. Biol. Chem.*, 272, 14304; Chang *et al.*, 1997, *J. Cancer Res. Clin. Oncol.*, 123, 91; Ohta *et al.*, 1996, *Nucleic Acids Res.*, 24, 938; Ohta *et al.*, 1994, *Ann. N.Y. Acad. Sci.*, 716, 242; and Funato *et al.*, 1994, *Biochem. Pharmacol.*, 48, 1471 all describe specific ribozymes targeting certain K-Ras, H-Ras, or N-Ras RNA sequences.

Todd, International PCT Publication Nos. WO 01/49877, WO 99/50452, and WO 99/45146 describes specific DNAzymes targeting K-Ras for diagnostic applications.

Acquired immunodeficiency syndrome (AIDS) is thought to be caused by infection with the human immunodeficiency virus, for example HIV-1. Draper *et al.*, U.S. Patent Nos. 6,159,692, 5,972,704, 5,693,535, and International PCT Publication Nos. WO WO 93/23569,

WO 95/04818, describe enzymatic nucleic acid molecules targeting HIV. Todd *et al.*, International PCT Publication No. WO 99/50452, describe methods for using specific DNAzyme motifs for detecting the presence of certain HIV RNAs. Sriram and Banerjea, 2000, *Biochem J.*, 352, 667-673, describe specific RNA cleaving DNA enzymes targeting 5 HIV-1. Zhang *et al.*, 1999, *FEBS Lett.*, 458, 151-156, describe specific RNA cleaving DNA enzymes used in the inhibition of HIV-1 infection.

HER2 (also known as neu, erbB2 and c-erbB2) is an oncogene that encodes a 185-kDa transmembrane tyrosine kinase receptor. HER2 is a member of the epidermal growth factor receptor (EGFR) family and shares partial homology with other family members. In normal 10 adult tissues HER2 expression is low. However, HER2 is overexpressed in at least 25-30% of breast (McGuire, H.C. and Greene, M.I. (1989) The *neu* (c-erbB-2) oncogene. *Semin. Oncol.* 16: 148-155) and ovarian cancers (Berchuck, A. Kamel, A., Whitaker, R. *et al.* (1990)). Overexpression of her-2/neu is associated with poor survival in advanced epithelial ovarian cancer. *Cancer Research* 50: 4087-4091). Furthermore, overexpression of HER2 in 15 malignant breast tumors has been correlated with increased metastasis, chemoresistance and poor survival rates (Slamon *et al.*, 1987 *Science* 235: 177-182). Because HER2 expression is high in aggressive human breast and ovarian cancers, but low in normal adult tissues, it is an attractive target for enzymatic nucleic acid-mediated therapy. McSwiggen *et al.*, International PCT Publication No. WO 01/16312 and Beigelman *et al.*, International PCT Publication No. 20 WO 99/55857 describe enzymatic nucleic acid molecules targeting HER2. Thompson and Draper, US Patent No. 5,599,704, describes enzymatic nucleic acid molecules targeting HER2 (erbB2/neu) gene expression.

Summary Of The Invention

The present invention features nucleic acid molecules, including, for example, antisense 25 oligonucleotides, siRNA, aptamers, decoys and enzymatic nucleic acid molecules such as DNAzyme enzymatic nucleic acid molecules, which modulate expression of nucleic acid molecules encoding Ras oncogenes, such as K-Ras, H-Ras, and N-Ras. In one embodiment, the invention features an enzymatic nucleic acid molecule comprising a sequence selected from the group consisting of SEQ ID NOs: 2329-4655.

In another embodiment, the invention features an enzymatic nucleic acid molecule comprising at least one binding arm having a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs: 1-2328.

5 In another embodiment, the invention features a siRNA molecule having complementarity to a sequence selected from the group consisting of SEQ ID NOs: 1-2328.

In another embodiment, the invention features an antisense molecule having complementarity to a sequence selected from the group consisting of SEQ ID NOs: 1-2328.

In another aspect of the invention, the nucleic acid of the invention is adapted to treat cancer.

10 In one embodiment, the enzymatic nucleic acid molecule of the invention has an endonuclease activity to cleave RNA having a K-Ras sequence.

In another embodiment, the enzymatic nucleic acid molecule of the invention has an endonuclease activity to cleave RNA having an H-Ras sequence.

15 In another embodiment, the enzymatic nucleic acid molecule of the invention has an endonuclease activity to cleave RNA having an N-Ras sequence.

In one embodiment, the siRNA molecule of the invention has RNA interference activity to K-Ras expression.

In another embodiment, the siRNA molecule of the invention has RNA interference activity to H-Ras expression.

20 In another embodiment, the siRNA molecule of the invention has RNA interference activity to N-Ras expression.

In one embodiment, a siRNA molecule of the invention comprises a double stranded RNA wherein one strand of the RNA is complementary to the RNA of K-Ras, H-Ras, and/or N-Ras gene. In another embodiment, a siRNA molecule of the invention comprises a double stranded RNA wherein one strand of the RNA comprises a portion of a sequence of RNA of K-Ras, H-Ras, and/or N-Ras gene sequence. In yet another embodiment, a siRNA molecule of the invention comprises a double stranded RNA wherein both strands of RNA are connected by a non-nucleotide linker. Alternately, a siRNA molecule of the invention comprises a double stranded RNA wherein both strands of RNA are connected by a nucleotide linker, such as a loop or stem loop structure.

- In one embodiment, a single strand component of a siRNA molecule of the invention is from about 14 to about 50 nucleotides in length. In another embodiment, a single strand component of a siRNA molecule of the invention is about 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides in length. In yet another embodiment, a single strand 5 component of a siRNA molecule of the invention is about 23 nucleotides in length. In one embodiment, a siRNA molecule of the invention is from about 28 to about 56 nucleotides in length. In another embodiment, a siRNA molecule of the invention is about 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, or 52 nucleotides in length. In yet another embodiment, a siRNA molecule of the invention is about 46 nucleotides in length.
- 10 In one embodiment, the DNAzyme molecule of the invention is in a "10-23" configuration (see for example Santoro *et al.*, 1997, *PNAS*, 94, 4262 and Joyce *et al.*, US 5,807,718). In another embodiment, the DNAzyme comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs: 1-2328. In yet another embodiment, the DNAzyme comprises a sequence selected from the group consisting of SEQ 15 ID NOs: 2329-4655.

In another embodiment, the nucleic acid molecule of the invention comprises between 12 and 100 bases complementary to a nucleic acid molecule having a K-Ras sequence. In yet another embodiment, the enzymatic nucleic acid comprises between 14 and 24 bases complementary to a nucleic acid molecule having a K-Ras sequence.

20 In another embodiment, the nucleic acid molecule of the invention comprises between 12 and 100 bases complementary to a nucleic acid molecule having an H-Ras sequence. In yet another embodiment, the nucleic acid molecule of the invention comprises between 14 and 24 bases complementary to a nucleic acid molecule having an H-Ras sequence.

25 In another embodiment, the nucleic acid molecule of the invention comprises between 12 and 100 bases complementary to a nucleic acid molecule having an N-Ras sequence. In yet another embodiment, the nucleic acid molecule of the invention comprises between 14 and 24 bases complementary to a nucleic acid molecule having an N-Ras sequence.

30 In yet another embodiment, the nucleic acid molecule of the invention is chemically synthesized. The nucleic acid molecule can comprise at least one 2'-sugar modification, at least one nucleic acid base modification, and/or at least one phosphate backbone modification.

In one embodiment, the invention features a mammalian cell comprising the nucleic acid molecule of the invention. In another embodiment, the mammalian cell of the invention is a human cell.

5 In another embodiment, the invention features a method of modulating K-Ras activity in a cell, comprising contacting the cell with the nucleic acid molecule of the invention, under conditions suitable for the modulation of K-Ras activity.

In another embodiment, the invention features a method of modulating H-Ras activity in a cell, comprising contacting the cell with the nucleic acid molecule of the invention, under conditions suitable for the modulation of H-Ras activity.

10 In another embodiment, the invention features a method of modulating N-Ras activity in a cell, comprising contacting the cell with the nucleic acid molecule of the invention, under conditions suitable for the modulation of N-Ras activity.

15 In another embodiment, the invention features a method of treatment of a subject having a condition associated with the level of K-Ras, comprising contacting cells of the subject with the nucleic acid molecule of the invention, under conditions suitable for the treatment.

20 In another embodiment, the invention features a method of treatment of a subject having a condition associated with the level of H-Ras, comprising contacting cells of the subject with the nucleic acid molecule of the invention, under conditions suitable for the treatment.

In another embodiment, the invention features a method of treatment of a subject having a condition associated with the level of N-Ras, comprising contacting cells of the subject with the nucleic acid molecule of the invention, under conditions suitable for the treatment.

25 In one embodiment, a method of treatment of the invention further comprises the use of one or more drug therapies under conditions suitable for the treatment.

30 In another embodiment, the invention features a method of cleaving RNA having a K-Ras sequence comprising contacting the K-Ras RNA with the enzymatic nucleic acid molecule of the invention under conditions suitable for the cleavage, for example, where the cleavage is carried out in the presence of a divalent cation, such as Mg²⁺.

In another embodiment, the invention features a method of cleaving RNA having a H-Ras sequence comprising contacting the H-Ras RNA with the enzymatic nucleic acid molecule of the invention under conditions suitable for the cleavage, for example, where the cleavage is carried out in the presence of a divalent cation, such as Mg²⁺.

5 In another embodiment, the invention features a method of cleaving RNA having an N-Ras sequence comprising contacting the N-Ras RNA with the enzymatic nucleic acid molecule of the invention under conditions suitable for the cleavage, for example, where the cleavage is carried out in the presence of a divalent cation, such as Mg²⁺.

10 In one embodiment, the nucleic acid molecule of the invention comprises a cap structure, for example, a 3',3'-linked or 5',5'-linked deoxyabasic ribose derivative, wherein the cap structure is at the 5'-end, 3'-end, or both the 5'-end and the 3'-end of the nucleic acid molecule.

15 In another embodiment, the invention features an expression vector comprising a nucleic acid sequence encoding at least one nucleic acid molecule of the invention in a manner that allows expression of the nucleic acid molecule. For example, the invention features an expression vector comprising a nucleic acid encoding a DNAzyme in a manner that allows expression of the DNAzyme.

In yet another embodiment, the invention features a mammalian cell, for example a human cell, comprising an expression vector of the invention.

20 In another embodiment, the expression vector of the invention further comprises a sequence for a nucleic acid molecule complementary to an RNA having K-Ras sequence.

In another embodiment, the expression vector of the invention further comprises a sequence for a nucleic acid molecule complementary to an RNA having H-Ras sequence.

25 In another embodiment, the expression vector of the invention further comprises a sequence for a nucleic acid molecule complementary to an RNA having N-Ras sequence.

30 In one embodiment, an expression vector of the invention comprises a nucleic acid sequence encoding two or more nucleic acid molecules of the invention, which can be the same or different. In another embodiment, an expression vector of the invention further comprises a sequence encoding an antisense nucleic acid molecule complementary to an RNA having a K-Ras, H-Ras or N-Ras sequence.

In another embodiment, the invention features a method for treating cancer, for example colorectal cancer, bladder cancer, lung cancer, pancreatic cancer, breast cancer, or prostate cancer, comprising administering to a subject a nucleic acid molecule of the invention under conditions suitable for the treatment. A method of treatment of cancer of the
5 invention can further comprise administering to a patient one or more other therapies, for example, monoclonal antibody therapy, such as Herceptin (trastuzumab); chemotherapy, such as paclitaxel (Taxol), docetaxel, cisplatin, methotrexate, cyclophosphamide, doxorubicin, fluorouracil carboplatin, Leucovorin, Irinotecan (CAMPTOSAR® or CPT-11 or Camptothecin-11 or Campto), Carboplatin, edatrexate, gemcitabine, or vinorelbine; radiation
10 therapy, or analgesic therapy and/or any combination thereof.

In another embodiment, the invention features a composition comprising a nucleic acid molecule of the invention in a pharmaceutically acceptable carrier.

In one embodiment, the invention features a method of administering to a cell, for example a mammalian cell or human cell, the nucleic acid molecule of the invention
15 comprising contacting the cell with the nucleic acid molecule under conditions suitable for administration. The method of administration can be in the presence of a delivery reagent, for example a lipid, cationic lipid, phospholipid, or liposome.

The present invention features an enzymatic nucleic acid molecule which modulates expression of a nucleic acid molecule encoding a human immunodeficiency virus (HIV), for
20 example HIV-1, HIV-2, and related viruses such as FIV-1 and SIV-1, or a HIV gene, for example LTR, nef, vif, tat, or rev, wherein the enzymatic nucleic acid molecule comprises a DNAzyme configuration.

The invention also features an enzymatic nucleic acid molecule which modulates expression of a nucleic acid molecule encoding HIV or a component of HIV such as nef, vif,
25 tat, or rev, wherein the enzymatic nucleic acid molecule is in a Inozyme, G-cleaver, Zinzyme, DNAzyme or Amberzyme configuration.

The present invention also features a siRNA molecule which modulates expression of a nucleic acid molecule encoding a human immunodeficiency virus (HIV), for example HIV-1, HIV-2, and related viruses such as FIV-1 and SIV-1, or a HIV gene, for example LTR, nef,
30 vif, tat, or rev.

The present invention features an enzymatic nucleic acid molecule comprising a sequence selected from the group consisting of SEQ ID NOs. 6727-6799. The invention also features an enzymatic nucleic acid molecule comprising at least one binding arm wherein one

or more of said binding arms comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6642-6726. In addition, the present invention features a siRNA nucleic acid molecule comprising sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 1-76 and 140-148.

- 5 In another embodiment, the siRNA molecule of the invention has RNA interference activity to HIV-1 expression and/or replication.

In one embodiment, a siRNA molecule of the invention comprises a double stranded RNA wherein one strand of the RNA is complementary to the RNA of HIV-1 genome or genes. In another embodiment, a siRNA molecule of the invention comprises a double 10 stranded RNA wherein one strand of the RNA comprises a portion of a sequence of HIV-1 genome or gene sequence. In yet another embodiment, a siRNA molecule of the invention comprises a double stranded RNA wherein both strands of RNA are connected by a non-nucleotide linker. Alternately, a siRNA molecule of the invention comprises a double 15 stranded RNA wherein both strands of RNA are connected by a nucleotide linker, such as a loop or stem loop structure.

In one embodiment, a single strand component of a siRNA molecule of the invention is from about 14 to about 50 nucleotides in length. In another embodiment, a single strand component of a siRNA molecule of the invention is about 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides in length. In yet another embodiment, a single strand 20 component of a siRNA molecule of the invention is about 23 nucleotides in length. In one embodiment, a siRNA molecule of the invention is from about 28 to about 56 nucleotides in length. In another embodiment, a siRNA molecule of the invention is about 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, or 52 nucleotides in length. In yet another embodiment, a siRNA molecule of the invention is about 46 nucleotides in length.

- 25 In one embodiment, a nucleic acid molecule of the invention is adapted to treat HIV infection or acquired immunodeficiency syndrome (AIDS).

In another embodiment, the enzymatic nucleic acid molecule of the invention has an endonuclease activity to cleave RNA having HIV sequence.

- 30 In yet another embodiment, the enzymatic nucleic acid molecule of the invention is in an Inozyme, Zinzyme, G-cleaver, Amberzyme, DNAzyme or Hammerhead configuration.

In another embodiment, the Inozyme of the invention comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6648-6655, or comprises a sequence selected from the group consisting of SEQ ID NOs. 6733-6740.

5 In another embodiment, the Zinzyme of the invention comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6656-6663 and 6723-6726, or comprises a sequence selected from the group consisting of SEQ ID NOs 6741-6748 and 6795-6799.

10 In another embodiment, the Amberzyme of the invention comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6656-6688, or comprises a sequence selected from the group consisting of SEQ ID NOs. 6762-6789.

In another embodiment, the DNAzyme of the invention comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6656-6668 and 6718-6722, or comprises a sequence selected from the group consisting of SEQ ID NOs. 6749-6761 and 6790-6794.

15 In another embodiment, the Hammerhead of the invention comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6642-6647, or comprises a sequence selected from the group consisting of SEQ ID NOs 6727-6732.

In one embodiment, a nucleic acid molecule of the invention comprises between 12 and 100 bases complementary to a RNA sequence encoding HIV genome, RNA, and/or proteins.

20 In another embodiment, a nucleic acid molecule of the invention comprises between 14 and 24 bases complementary to a RNA sequence encoding HIV genome, RNA, and/or proteins.

25 In yet another embodiment, a nucleic acid molecule of the invention is chemically synthesized. A nucleic acid molecule of the invention can comprise at least one 2'-sugar modification, at least one nucleic acid base modification, and/or at least one phosphate backbone modification.

The present invention features a mammalian cell including a nucleic acid molecule of the invention. In one embodiment, the mammalian cell of the invention is a human cell.

30 The invention features a method of reducing HIV activity in a cell, comprising contacting the cell with a nucleic acid molecule of the invention, under conditions suitable for the reduction of HIV activity.

The invention also features a method of treating a subject having a condition associated with the level of HIV, comprising contacting cells of the subject with a nucleic acid molecule of the invention, under conditions suitable for the treatment.

In one embodiment, methods of treatment contemplated by the invention comprise the
5 use of one or more drug therapies under conditions suitable for the treatment.

The invention features a method of cleaving RNA comprising a HIV nucleic acid sequence comprising contacting an enzymatic nucleic acid molecule of the invention with the RNA under conditions suitable for the cleavage. In one embodiment, the cleavage contemplated by the invention is carried out in the presence of a divalent cation, for example
10 Mg^{2+} .

The present invention features a method for treatment of acquired immunodeficiency syndrome (AIDS) or an AIDS related condition, for example Kaposi's sarcoma, lymphoma, cervical cancer, squamous cell carcinoma, cardiac myopathy, rheumatic disease, or opportunistic infection, comprising administering to a subject a nucleic acid molecule of the
15 invention under conditions suitable for the treatment.

In one embodiment, nucleic acid molecule of the invention comprises at least five ribose residues, at least ten 2'-O-methyl modifications, and a 3'- end modification, for example a 3'-3' inverted abasic moiety.

In another embodiment, a nucleic acid molecule of the invention further comprises
20 phosphorothioate linkages on at least three of the 5' terminal nucleotides.

In yet another embodiment, a DNAzyme of the invention comprises at least ten 2'-O-methyl modifications and a 3'-end modification, for example a 3'-3' inverted abasic moiety. In a further embodiment, the DNAzyme of the invention further comprises phosphorothioate linkages on at least three of the 5' terminal nucleotides.
25

In another embodiment, other drug therapies of the invention comprise antiviral therapy, monoclonal antibody therapy, chemotherapy, radiation therapy, analgesic therapy, or anti-inflammatory therapy.

In yet another embodiment, antiviral therapy of the invention comprises treatment with AZT, ddC, ddI, d4T, 3TC, Ribavirin, delvaridine, nevirapine, efravirenz, ritonavir, saquinavir,
30 indinavir, amprenavir, nelfinavir, or lopinavir.

The invention features a composition comprising a nucleic acid molecule of the invention in a pharmaceutically acceptable carrier.

In one embodiment, the invention features a method of administering to a cell, for example a mammalian cell or human cell, an enzymatic nucleic acid molecule of the invention comprising contacting the cell with the enzymatic nucleic acid molecule under conditions suitable for the administration. The method of administration can be in the presence of a delivery reagent, for example a lipid, cationic lipid, phospholipid, or liposome.

5 The present invention features enzymatic nucleic acid molecules which modulate expression of nucleic acid molecules encoding HER2. The present invention also features siRNA molecules which modulate the expression of nucleic acid molecules encoding HER2.

In another embodiment, the invention features a siRNA molecule having
10 complementarity to a sequence selected from the group consisting of SEQ ID NOs: 4656-
5643 and 6632-6636.

In one embodiment, the invention features an enzymatic nucleic acid molecule comprising a sequence selected from the group consisting of SEQ ID NOs: 5644-6631 and
15 6637-6641.

15 In another embodiment, the invention features an enzymatic nucleic acid molecule comprising at least one binding arm having a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs: 4656-5643 and 6632-6636.

In yet another embodiment, a nucleic acid of the invention is adapted to treat cancer.

20 In another embodiment, an enzymatic nucleic acid molecule of the invention has an endonuclease activity to cleave RNA having HER2 sequence.

In another embodiment, the siRNA molecule of the invention has RNA interference activity to N-Ras gene expression.

25 In one embodiment, a siRNA molecule of the invention comprises a double stranded RNA wherein one strand of the RNA is complementary to the RNA of HER2 gene. In
another embodiment, a siRNA molecule of the invention comprises a double stranded RNA
wherein one strand of the RNA comprises a portion of a sequence of RNA having of HER2
gene sequence. In yet another embodiment, a siRNA molecule of the invention comprises a
double stranded RNA wherein both strands of RNA are connected by a non-nucleotide linker.
Alternately, a siRNA molecule of the invention comprises a double stranded RNA wherein
30 both strands of RNA are connected by a nucleotide linker, such as a loop or stem loop
structure.

In one embodiment, a single strand component of a siRNA molecule of the invention is from about 14 to about 50 nucleotides in length. In another embodiment, a single strand component of a siRNA molecule of the invention is about 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides in length. In yet another embodiment, a single strand 5 component of a siRNA molecule of the invention is about 23 nucleotides in length. In one embodiment, a siRNA molecule of the invention is from about 28 to about 56 nucleotides in length. In another embodiment, a siRNA molecule of the invention is about 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, or 52 nucleotides in length. In yet another embodiment, a siRNA molecule of the invention is about 46 nucleotides in length.

10 In one embodiment, a DNAzyme molecule of the invention is in a "10-23" configuration. In another embodiment, a DNAzyme of the invention comprises a sequence complementary to a sequence having SEQ ID NOS: 4656-5643 and 6632-6636. In yet another embodiment, a DNAzyme molecule of the invention comprises a sequence having SEQ ID NOs: 5644-6631 and 6637-6641.

15 In another embodiment, a nucleic acid molecule of the invention comprises between 12 and 100 bases complementary to a nucleic acid molecule having HER2 sequence. In yet another embodiment, a nucleic acid molecule of the invention comprises between 14 and 24 bases complementary to a nucleic acid molecule having HER2 sequence.

20 In yet another embodiment, a nucleic acid molecule of the invention is chemically synthesized. A nucleic acid molecule of the invention can comprise at least one 2'-sugar modification, at least one nucleic acid base modification, and/or at least one phosphate backbone modification.

25 In one embodiment, the invention features a mammalian cell comprising a nucleic acid molecule of the invention. In another embodiment, the mammalian cell of the invention is a human cell.

In another embodiment, the invention features a method of reducing HER2 activity in a cell, comprising contacting the cell with the nucleic acid molecule of the invention, under conditions suitable for the reduction of HER2 activity.

30 In another embodiment, the invention features a method of treatment of a subject having a condition associated with the level of HER2, comprising contacting cells of the subject with the nucleic acid molecule of the invention, under conditions suitable for the treatment.

In one embodiment, a method of treatment of the invention further comprises the use of one or more drug therapies under conditions suitable for the treatment.

In another embodiment, the invention features a method of cleaving RNA having HER2 sequence comprising contacting an enzymatic nucleic acid molecule of the invention with the RNA under conditions suitable for the cleavage, for example, where the cleavage is carried out in the presence of a divalent cation, such as Mg²⁺.

5 In one embodiment, a nucleic acid molecule of the invention comprises a cap structure, for example a 3',3'-linked or 5',5'-linked deoxyabasic ribose derivative, wherein the cap structure is at the 5'-end, 3'-end, or both the 5'-end and the 3'-end of the enzymatic nucleic acid molecule.

10 In another embodiment, the invention features an expression vector comprising a nucleic acid sequence encoding at least one nucleic acid molecule of the invention, for example a DNAzyme or siRNA molecule, in a manner that allows expression of the nucleic acid molecule.

15 In yet another embodiment, the invention features a mammalian cell, for example a human cell, comprising an expression vector of the invention.

In another embodiment, an expression vector of the invention further comprises a sequence for a nucleic acid molecule complementary to a nucleic acid molecule having HER2 sequence.

20 In one embodiment, an expression vector of the invention comprises a nucleic acid sequence encoding two or more nucleic acid molecules, which can be the same or different. In another embodiment, an expression vector of the invention further comprises a sequence encoding an antisense nucleic acid molecule complementary to a nucleic acid molecule having a HER2 sequence.

25 In another embodiment, the invention features a method for treating cancer, for example breast cancer or ovarian cancer, comprising administering to a subject a nucleic acid molecule of the invention under conditions suitable for the treatment. A method of treatment of cancer of the invention can further comprise administering to a patient one or more other therapies, for example, monoclonal antibody therapy, such as Herceptin (trastuzumab);
30 chemotherapy, such as paclitaxel (Taxol), docetaxel, cisplatin, methotrexate, cyclophosphamide, doxorubicin, fluorouracil carboplatin, Leucovorin, Irinotecan (CAMPTOSAR® or CPT-11 or Camptothecin-11 or Campto), Carboplatin, edatrexate,

gemcitabine, or vinorelbine; radiation therapy, or analgesic therapy and/or any combination thereof.

In another embodiment, the invention features a composition comprising a nucleic acid molecule of the invention in a pharmaceutically acceptable carrier.

- 5 In one embodiment, the invention features a method of administering to a cell, for example a mammalian cell or human cell, a nucleic acid molecule of the invention comprising contacting the cell with the nucleic acid molecule under conditions suitable for administration. The method of administration can be in the presence of a delivery reagent, for example a lipid, cationic lipid, phospholipid, or liposome.

10

Detailed Description of the Invention

First the drawings will be described briefly.

Drawings

- Figure 1 shows examples of chemically stabilized ribozyme motifs. HH Rz, represents hammerhead ribozyme motif (Usman *et al.*, 1996, *Curr. Op. Struct. Bio.*, 1, 527); NCH Rz represents the NCH ribozyme motif (Ludwig *et al.*, International PCT Publication No. WO 98/58058 and US Patent Application Serial No. 08/878,640); G-Cleaver, represents G-cleaver ribozyme motif (Kore *et al.*, 1998, *Nucleic Acids Research* 26, 4116-4120, Eckstein *et al.*, US 6,127,173). N or n, represent independently a nucleotide which can be same or different and have complementarity to each other; rI, represents ribo-Inosine nucleotide; arrow indicates the site of cleavage within the target. Position 4 of the HH Rz and the NCH Rz is shown as having 2'-C-allyl modification, but those skilled in the art will recognize that this position can be modified with other modifications well known in the art, so long as such modifications do not significantly inhibit the activity of the ribozyme.

- 25 Figure 2 shows an example of the Amberzyme ribozyme motif that is chemically stabilized (see for example Beigelman *et al.*, International PCT publication No. WO 99/55857 and US Patent Application Serial No. 09/476,387.).

- 30 Figure 3 shows an example of a Zinzyme A ribozyme motif that is chemically stabilized (see for example Beigelman *et al.*, International PCT publication No. WO 99/55857 and US Patent Application Serial No. 09/918,728).

Figure 4 shows an example of a DNAzyme motif described by Santoro *et al.*, 1997, *PNAS*, 94, 4262 and Joyce *et al.*, US 5,807,718 .

The invention features novel nucleic acid molecules, including antisense oligonucleotides, siRNA and enzymatic nucleic acid molecules, and methods to modulate gene expression, for example, genes encoding K-Ras, H-Ras and/or N-Ras. In particular, the instant invention features nucleic-acid based molecules and methods to down-regulate the expression of K-Ras, H-Ras and/or N-Ras gene sequences.

The invention features one or more nucleic acid-based molecules and methods that independently or in combination modulate the expression of a gene or genes encoding Ras proteins. In particular embodiments, the invention features nucleic acid-based molecules and methods that modulate the expression of K-Ras gene, for example, Genbank Accession No. NM_004985; H-Ras gene, for example, Genbank Accession No. NM_005343; and/or N-Ras gene, for example, Genbank Accession No. NM_002524.

The description below of the various aspects and embodiments is provided with reference to exemplary K-Ras, H-Ras, and N-Ras genes, referred to hereinafter collectively as Ras. However, the various aspects and embodiments are directed to equivalent sequences and also to other genes which encode K-Ras, H-Ras and/or N-Ras proteins and similar proteins to K-Ras, H-Ras and/or N-Ras. For example, the invention relates to genes with homology to genes that encode K-Ras, H-Ras and/or N-Ras and genes that encode proteins with similar function to K-Ras, H-Ras, and N-Ras proteins. Those additional genes can be analyzed for target sites using the methods described herein. Thus, the modulation and the effects of such modulation of the other genes can be determined as described herein.

In one embodiment, the invention features the use of an enzymatic nucleic acid molecule, preferably in the hammerhead, NCH, G-cleaver, amberzyme, zinzyne and/or DNAzyme motif, to modulate the expression of a Ras gene or inhibit Ras activity. In one embodiment, the invention features the use of these enzymatic nucleic acid molecules to down-regulate the expression of a Ras gene or inhibit Ras activity. In another embodiment, the invention features the use of an antisense oligonucleotide molecule to modulate, for example, down-regulate, the expression of a Ras gene or inhibit Ras activity.

The invention features novel enzymatic nucleic acid molecules, siRNA molecules, and methods to modulate expression and/or activity of human immunodeficiency virus (HIV), for example HIV-1, HIV-2, and related viruses such as FIV-1 and SIV-1, or a HIV gene, for

example *LTR*, *nef*, *vif*, *tat*, or *rev*. In particular, the instant invention features nucleic-acid based molecules and methods to inhibit the replication of a HIV or related virus.

The invention features one or more nucleic acid-based molecules and methods that independently or in combination modulate the expression of gene(s) encoded by HIV and/or inhibit the replication of HIV. In particular embodiments, the invention features nucleic acid-based molecules and methods that modulate the expression of HIV-1 encoded genes, for example (Genbank Accession No. AJ302647); HIV-2 gene, for example (Genbank Accession No. NC_001722), FIV-1, for example (Genbank Accession No. NC_001482), SIV-1, for example (Genbank Accession No. M66437), *LTR*, for example included in (Genbank Accession No. AJ302647), *nef*, for example included in (Genbank Accession No. AJ302647), *vif*, for example included in (Genbank Accession No. AJ302647), *tat*, for example included in (Genbank Accession No. AJ302647), and *rev*, for example included in (Genbank Accession No. AJ302647).

The description below of the various aspects and embodiments is provided with reference to the exemplary HIV-1 gene, referred to herein as HIV. However, the various aspects and embodiments are also directed to other genes which encode HIV proteins and similar viruses to HIV. Those additional genes can be analyzed for target sites using the methods described for HIV. Thus, the inhibition and the effects of such inhibition of the other genes can be performed as described herein.

Due to the high sequence variability of the HIV genome, selection of nucleic acid molecules for broad therapeutic applications would likely involve the conserved regions of the HIV genome. Specifically, the present invention describes nucleic acid molecules that cleave the conserved regions of the HIV genome. Therefore, one nucleic acid molecule can be designed to cleave all the different isolates of HIV. Nucleic acid molecules designed against conserved regions of various HIV isolates can enable efficient inhibition of HIV replication in diverse subject populations and can ensure the effectiveness of the nucleic acid molecules against HIV quasi species which evolve due to mutations in the non-conserved regions of the HIV genome.

In one embodiment, the invention features the use of an enzymatic nucleic acid molecule, preferably in the hammerhead, NCH, G-cleaver, amberzyme, zinzyme and/or DNAzyme motif, to down-regulate the expression of HIV genes or inhibit the replication of HIV.

The invention features novel nucleic acid molecules, siRNA molecules and methods to modulate gene expression, for example, genes encoding HER2. In particular, the instant invention features nucleic-acid based molecules and methods to inhibit the expression of HER2.

5 The invention features one or more nucleic acid-based molecules and methods that independently or in combination modulate the expression of a gene or genes encoding HER2. In particular embodiments, the invention features nucleic acid-based molecules and methods that modulate the expression of HER2 gene, for example, Genbank Accession No. NM_004448.

10 The description below of the various aspects and embodiments is provided with reference to an exemplary HER2 gene, referred to herein as HER2 but also known as ERB2, ERB-B2, NEU, NGL, and v-ERB-B2. However, the various aspects and embodiments are also directed to other genes which encode HER2 proteins and similar proteins to HER2. Those additional genes can be analyzed for target sites using the methods described for
15 HER2. Thus, the inhibition and the effects of such inhibition of the other genes can be performed as described herein.

In one embodiment, the invention features the use of an enzymatic nucleic acid molecule, preferably in the hammerhead, NCH, G-cleaver, amberzyme, zinzyme and/or DNAzyme motif, to down-regulate the expression of HER2 genes or inhibit HER2 activity.

20 By "modulate" is meant that the expression of the gene, or level of RNAs or equivalent RNAs encoding one or more protein subunits or components, or activity of one or more proteins is up-regulated or down-regulated, such that the expression, level, or activity is greater than or less than that observed in the absence of the nucleic acid molecules of the invention.

25 By "inhibit" or "down-regulate" it is meant that the expression of the gene, or level of RNAs or equivalent RNAs encoding one or more protein subunits or components, or activity of one or more protein subunits or components, such as Ras, HIV, and/or HER2 protein or proteins, is reduced below that observed in the absence of the nucleic acid molecules of the invention. In one embodiment, inhibition or down-regulation with the enzymatic nucleic acid
30 molecule preferably is below that level observed in the presence of an enzymatically inactive or attenuated enzymatic nucleic acid molecule that is able to bind to the same site on the target RNA, but is unable to cleave that RNA. In another embodiment, inhibition or down-

regulation with an antisense oligonucleotide is preferably below that level observed in the presence of, for example, an oligonucleotide with scrambled sequence or with mismatches. In another embodiment, inhibition or down-regulation with an siRNA molecule is preferably below that level observed in the presence of, for example, an oligonucleotide with scrambled sequence or with mismatches. In another embodiment, inhibition or down-regulation of Ras, HIV, or HER2 expression and/or activity with the nucleic acid molecule of the instant invention is greater in the presence of the nucleic acid molecule than in its absence.

By "up-regulate" is meant that the expression of the gene, or level of RNAs or equivalent RNAs encoding one or more protein subunits or components, or activity of one or more protein subunits or components, such as Ras, HIV, or HER2 protein or proteins, is greater than that observed in the absence of the nucleic acid molecules of the invention. For example, the expression of a gene, such as Ras, HIV, or HER2 gene, can be increased in order to treat, prevent, ameliorate, or modulate a pathological condition caused or exacerbated by an absence or low level of gene expression.

By "enzymatic nucleic acid molecule" as used herein, is meant a nucleic acid molecule which has complementarity in a substrate binding region to a specified gene target, and also has an enzymatic activity which is active to specifically cleave target RNA. That is, the enzymatic nucleic acid molecule is able to intermolecularly cleave RNA and thereby inactivate a target RNA molecule. These complementary regions allow sufficient hybridization of the enzymatic nucleic acid molecule to the target RNA and thus permit cleavage. One hundred percent complementarity is preferred, but complementarity as low as 50-75% can also be useful in this invention (see for example Werner and Uhlenbeck, 1995, *Nucleic Acids Research*, 23, 2092-2096; Hammann *et al.*, 1999, *Antisense and Nucleic Acid Drug Dev.*, 9, 25-31). The nucleic acids can be modified at the base, sugar, and/or phosphate groups. The term DNAzyme-based enzymatic nucleic acid is used interchangeably with phrases such as catalytic DNA, aptazyme or aptamer-binding DNAzyme, regulatable DNAzyme, catalytic oligonucleotides, nucleozyme, DNAzyme, endoribonuclease, endonuclease, minizyme, leadzyme, oligozyme or DNA enzyme. All of these terminologies describe nucleic acid molecules with enzymatic activity. The specific enzymatic nucleic acid molecules described in the instant application are not limiting in the invention and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it have a specific substrate binding site which is complementary to one or more of the target nucleic acid regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart a nucleic acid cleaving and/or ligation activity to the molecule.

By "nucleic acid molecule" as used herein is meant a molecule having nucleotides. The nucleic acid can be single, double, or multiple stranded and can comprise modified or unmodified nucleotides or non-nucleotides or various mixtures and combinations thereof.

5 By "enzymatic portion" or "catalytic domain" is meant that portion/region of the enzymatic nucleic acid molecule essential for cleavage of a nucleic acid substrate (for example see Figures 1-4).

By "substrate binding arm" or "substrate binding domain" is meant that portion/region of a enzymatic nucleic acid which is able to interact, for example via complementarity (*i.e.*, able to base-pair with), with a portion of its substrate. Preferably, such complementarity is
10 100%, but can be less if desired. For example, as few as 10 bases out of 14 can be base-paired (see for example Werner and Uhlenbeck, 1995, *Nucleic Acids Research*, 23, 2092-2096; Hammann *et al.*, 1999, *Antisense and Nucleic Acid Drug Dev.*, 9, 25-31). Examples of such arms are shown generally in Figures 1-3. That is, these arms contain sequences within a enzymatic nucleic acid which are intended to bring enzymatic nucleic acid and target RNA
15 together through complementary base-pairing interactions. The enzymatic nucleic acid of the invention can have binding arms that are contiguous or non-contiguous and can be of varying lengths. The length of the binding arm(s) are preferably greater than or equal to four nucleotides and of sufficient length to stably interact with the target RNA; preferably 12-100 nucleotides; more preferably 14-24 nucleotides long (see for example Werner and Uhlenbeck,
20 *supra*; Hamman *et al.*, *supra*; Hampel *et al.*, EP0360257; Berzal-Herranz *et al.*, 1993, *EMBO J.*, 12, 2567-73). If two binding arms are chosen, the design is such that the length of the binding arms are symmetrical (*i.e.*, each of the binding arms is of the same length; *e.g.*, five and five nucleotides, or six and six nucleotides, or seven and seven nucleotides long) or asymmetrical (*i.e.*, the binding arms are of different length; *e.g.*, six and three nucleotides;
25 three and six nucleotides long; four and five nucleotides long; four and six nucleotides long; four and seven nucleotides long; and the like).

By "Inozyme" or "NCH" motif or configuration is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described as NCH Rz in Figure 1 and in Ludwig *et al.*, International PCT Publication No. WO 98/58058 and US Patent Application Serial No.
30 08/878,640. Inozymes possess endonuclease activity to cleave nucleic acid substrates having a cleavage triplet NCH/, where N is a nucleotide, C is cytidine and H is adenosine, uridine or cytidine, and "/" represents the cleavage site. H is used interchangeably with X. Inozymes can also possess endonuclease activity to cleave nucleic acid substrates having a cleavage triplet NCN/, where N is a nucleotide, C is cytidine, and "/" represents the cleavage site. "T"

in **Figure 1** represents an Inosine nucleotide, preferably a ribo-Inosine or xylo-Inosine nucleoside.

By “G-cleaver” motif or configuration is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described as G-cleaver Rz in **Figure 1** and in Eckstein *et al.*, US 6,127,173. G-cleavers possess endonuclease activity to cleave nucleic acid substrates having a cleavage triplet NYN/, where N is a nucleotide, Y is uridine or cytidine and “/” represents the cleavage site. G-cleavers can be chemically modified as is generally shown in **Figure 1**.

By “amberzyme” motif or configuration is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described in **Figure 2** and in Beigelman *et al.*, International PCT publication No. WO 99/55857 and US Patent Application Serial No. 09/476,387. Amberzymes possess endonuclease activity to cleave nucleic acid substrates having a cleavage triplet NG/N, where N is a nucleotide, G is guanosine, and “/” represents the cleavage site. Amberzymes can be chemically modified to increase nuclease stability through substitutions as are generally shown in **Figure 2**. In addition, differing nucleoside and/or non-nucleoside linkers can be used to substitute the 5'-gaaa-3' loops shown in the figure. Amberzymes represent a non-limiting example of an enzymatic nucleic acid molecule that does not require a ribonucleotide (2'-OH) group within its own nucleic acid sequence for activity.

By “zinzyme” motif or configuration is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described in **Figure 3** and in Beigelman *et al.*, International PCT publication No. WO 99/55857 and US Patent Application Serial No. 09/918,728. Zinzymes possess endonuclease activity to cleave nucleic acid substrates having a cleavage triplet including but not limited to YG/Y, where Y is uridine or cytidine, and G is guanosine and “/” represents the cleavage site. Zinzymes can be chemically modified to increase nuclease stability through substitutions as are generally shown in **Figure 3**, including substituting 2'-O-methyl guanosine nucleotides for guanosine nucleotides. In addition, differing nucleotide and/or non-nucleotide linkers can be used to substitute the 5'-gaaa-2' loop shown in the figure. Zinzymes represent a non-limiting example of an enzymatic nucleic acid molecule that does not require a ribonucleotide (2'-OH) group within its own nucleic acid sequence for activity.

By ‘DNAzyme’ is meant, an enzymatic nucleic acid molecule that does not require the presence of a 2'-OH group within its own nucleic acid sequence for activity. In particular

embodiments the enzymatic nucleic acid molecule can have an attached linker or linkers or other attached or associated groups, moieties, or chains containing one or more nucleotides with 2'-OH groups. DNAzymes can be synthesized chemically or expressed endogenously *in vivo*, by means of a single stranded DNA vector or equivalent thereof. An example of a 5 DNAzyme is shown in **Figure 4** and is generally reviewed in Usman *et al.*, US patent No., 6,159,714; Chartrand *et al.*, 1995, *NAR* 23, 4092; Breaker *et al.*, 1995, *Chem. Bio.* 2, 655; Santoro *et al.*, 1997, *PNAS* 94, 4262; Breaker, 1999, *Nature Biotechnology*, 17, 422-423; and Santoro *et. al.*, 2000, *J. Am. Chem. Soc.*, 122, 2433-39. The "10-23" DNAzyme motif is one particular type of DNAzyme that was evolved using *in vitro* selection, see Santoro *et al.*, 10 *supra* and as generally described in Joyce *et al.*, US 5,807,718. Additional DNAzyme motifs can be selected by using techniques similar to those described in these references, and hence, are within the scope of the present invention. DNAzymes of the invention can comprise nucleotides modified at the nucleic acid base, sugar, or phosphate backbone. Non-limiting examples of sugar modifications that can be used in DNAzymes of the invention include 2'- 15 O-alkyl modifications such as 2'-O-methyl or 2'-O-allyl, 2'-C-alkyl modifications such as 2'-C-allyl, 2'-deoxy-2'-amino, 2'-halo modifications such as 2'-fluoro, 2'-chloro, or 2'-bromo, isomeric modifications such as arabinofuranose or xylofuranose based nucleic acids, and other sugar modifications such as 4'-thio or 4'-carbocyclic nucleic acids. Non-limiting examples of nucleic acid based modifications that can be used in DNAzymes of the invention 20 include modified purine heterocycles, G-clamp heterocycles, and various modified pyrimidine cycles. Non-limiting examples of backbone modifications that can be used in DNAzymes of the invention include phosphorothioate, phosphorodithioate, phosphoramidate, and methylphosphonate internucleotide linkages. DNAzymes of the invention can comprise naturally occurring nucleic acids, chimeras of chemically modified and naturally occurring 25 nucleic acids, or completely modified nucleic acids.

In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid that is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through 30 complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets. Thus, a single enzymatic nucleic acid molecule is able to cleave 35 many molecules of target RNA. In addition, the enzymatic nucleic acid molecule is a highly

specific inhibitor of gene expression, with the specificity of inhibition depending not only on the base-pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can completely eliminate catalytic activity of an enzymatic nucleic acid molecule.

5 By "sufficient length" is meant an oligonucleotide of greater than or equal to 3 nucleotides that is of a length great enough to provide the intended function under the expected condition. For example, for binding arms of enzymatic nucleic acid "sufficient length" means that the binding arm sequence is long enough to provide stable binding to a target site under the expected binding conditions. Preferably, the binding arms are not so
10 long as to prevent useful turnover of the nucleic acid molecule.

By "stably interact" is meant interaction of oligonucleotides with target nucleic acid molecules (e.g., by forming hydrogen bonds with complementary nucleotides in the target under physiological conditions) that is sufficient to the intended purpose (e.g., cleavage of target RNA by an enzyme).

15 By "equivalent" RNA to Ras is meant to include those naturally occurring RNA molecules having homology (partial or complete) to Ras nucleic acids or encoding for proteins with similar function as Ras proteins in various organisms, including humans, rodents, primates, rabbits, pigs, protozoans, fungi, plants, and other microorganisms and parasites. The equivalent RNA sequence can also include, in addition to the coding region,
20 regions such as a 5'-untranslated region, a 3'-untranslated region, introns, a intron-exon junction and the like.

By "equivalent" RNA to HIV is meant to include those naturally occurring RNA molecules having homology (partial or complete) to HIV nucleic acids or encoding for proteins with similar function as HIV proteins in various organisms, including human, rodent,
25 primate, rabbit, pig, protozoans, fungi, plants, and other microorganisms and parasites. The equivalent RNA sequence also includes in addition to the coding region, regions such as 5'-untranslated region, 3'-untranslated region, introns, intron-exon junction and the like.

By "equivalent" RNA to HER2 is meant to include those naturally occurring RNA molecules having homology (partial or complete) to HER2 nucleic acids or encoding for proteins with similar function as HER2 proteins in various organisms, including humans, rodents, primates, rabbits, pigs, protozoans, fungi, plants, and other microorganisms and parasites. The equivalent RNA sequence also includes, in addition to the coding region,

regions such as a 5'-untranslated region, a 3'-untranslated region, introns, a intron-exon junction and the like.

By "homology" is meant the nucleotide sequence of two or more nucleic acid molecules is partially or completely identical.

5 By "component" of HIV is meant a peptide or protein expressed from an HIV gene, for example *nef*, *vif*, *tat*, or *rev* viral gene products.

By "component" of HER2 is meant a peptide or protein subunit expressed from a HER2 gene.

10 By "component" of Ras is meant a peptide or protein subunit expressed from a Ras gene.

By "gene" it is meant a nucleic acid that encodes an RNA, for example, nucleic acid sequences including but not limited to structural genes encoding a polypeptide.

"Complementarity" refers to the ability of a nucleic acid to form hydrogen bond or bonds with another RNA sequence by either traditional Watson-Crick or other non-traditional types. In reference to the nucleic molecules of the present invention, the binding free energy for a nucleic acid molecule with its target or complementary sequence is sufficient to allow the relevant function of the nucleic acid to proceed, e.g., enzymatic nucleic acid cleavage, antisense or triple helix inhibition. Determination of binding free energies for nucleic acid molecules is well known in the art (see, e.g., Turner *et al.*, 1987, *CSH Symp. Quant. Biol.* LII 15 pp.123-133; Frier *et al.*, 1986, *Proc. Nat. Acad. Sci. USA* 83:9373-9377; Turner *et al.*, 1987, *J. Am. Chem. Soc.* 109:3783-3785). A percent complementarity indicates the percentage of contiguous residues in a nucleic acid molecule that can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary). "Perfectly complementary" means 20 that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same 25 number of contiguous residues in a second nucleic acid sequence.

By "RNA" is meant a molecule comprising at least one ribonucleotide residue. By "ribonucleotide" or "2'-OH" is meant a nucleotide with a hydroxyl group at the 2' position of a β-D-ribo-furanose moiety.

30 By "decoy" is meant a nucleic acid molecule, for example RNA or DNA, or aptamer that is designed to preferentially bind to a predetermined ligand. Such binding can result in

the inhibition or activation of a target molecule. A decoy or aptamer can compete with a naturally occurring binding target for the binding of a specific ligand. For example, it has been shown that over-expression of HIV trans-activation response (TAR) RNA can act as a "decoy" and efficiently binds HIV tat protein, thereby preventing it from binding to TAR

- 5 sequences encoded in the HIV RNA (Sullenger *et al.*, 1990, *Cell*, 63, 601-608). This is but a specific example and those in the art will recognize that other embodiments can be readily generated using techniques generally known in the art, see for example Gold *et al.*, 1995, *Annu. Rev. Biochem.*, 64, 763; Brody and Gold, 2000, *J. Biotechnol.*, 74, 5; Sun, 2000, *Curr. Opin. Mol. Ther.*, 2, 100; Kusser, 2000, *J. Biotechnol.*, 74, 27; Hermann and Patel, 2000,
- 10 *Science*, 287, 820; and Jayasena, 1999, *Clinical Chemistry*, 45, 1628. Similarly, a decoy can be designed to bind to Ras and block the binding of Ras or a decoy can be designed to bind to Ras and prevent interaction with the Ras protein.

By "aptamer" or "nucleic acid aptamer" as used herein is meant a nucleic acid molecule that binds specifically to a target molecule wherein the nucleic acid molecule has sequence

- 15 that is distinct from sequence recognized by the target molecule in its natural setting. Alternately, an aptamer can be a nucleic acid molecule that binds to a target molecule where the target molecule does not naturally bind to a nucleic acid. The target molecule can be any molecule of interest. For example, the aptamer can be used to bind to a ligand binding domain of a protein, thereby preventing interaction of the naturally occurring ligand with the protein.
- 20 Similarly, the nucleic acid molecules of the instant invention can bind to RAS, Her-2 or HIV encoded RNA or proteins receptors to block activity of the activity of target protein or nucleic acid. This is a non-limiting example and those in the art will recognize that other embodiments can be readily generated using techniques generally known in the art, see for example Gold *et al.*, US 5,475,096 and 5,270,163; Gold *et al.*, 1995, *Annu. Rev. Biochem.*,
- 25 64, 763; Brody and Gold, 2000, *J. Biotechnol.*, 74, 5; Sun, 2000, *Curr. Opin. Mol. Ther.*, 2, 100; Kusser, 2000, *J. Biotechnol.*, 74, 27; Hermann and Patel, 2000, *Science*, 287, 820; and Jayasena, 1999, *Clinical Chemistry*, 45, 1628.

The term "short interfering RNA" or "siRNA" as used herein refers to a double stranded nucleic acid molecule capable of RNA interference "RNAi", see for example Bass,

- 30 2001, *Nature*, 411, 428-429; Elbashir *et al.*, 2001, *Nature*, 411, 494-498; and Kreutzer *et al.*, International PCT Publication No. WO 00/44895; Zernicka-Goetz *et al.*, International PCT Publication No. WO 01/36646; Fire, International PCT Publication No. WO 99/32619; Plaetinck *et al.*, International PCT Publication No. WO 00/01846; Mello and Fire, International PCT Publication No. WO 01/29058; Deschamps-Depaillette, International PCT
- 35 Publication No. WO 99/07409; and Li *et al.*, International PCT Publication No. WO

00/44914. As used herein, siRNA molecules need not be limited to those molecules containing only RNA, but further encompasses chemically modified nucleotides and non-nucleotides.

5 Nucleic acid molecules that modulate expression of Ras-specific RNAs represent a therapeutic approach to treat cancer, including, but not limited to colorectal cancer, bladder cancer, lung cancer, pancreatic cancer, breast cancer, or prostate cancer and any other cancer, disease or condition that responds to the modulation of Ras expression.

10 Nucleic acid molecules that modulate expression of HIV-specific RNAs also represent a therapeutic approach to treat acquired immunodeficiency syndrome (AIDS) and/or any other disease, condition, or syndrome which respond to the modulation of HIV expression.

Nucleic acid molecules that modulate expression of HER2-specific RNAs represent a therapeutic approach to treat cancer, including, but not limited to breast and ovarian cancer and any other cancer, disease or condition that responds to the modulation of HER2 expression.

15 In one embodiment of the inventions described herein, the enzymatic nucleic acid molecule is formed in a hammerhead or hairpin motif, but can also be formed in the motif of a hepatitis delta virus, group I intron, group II intron or RNase P RNA (in association with an RNA guide sequence), *Neurospora* VS RNA, DNAzymes, NCH cleaving motifs, or G-cleavers. Examples of such hammerhead motifs are described by Dreyfus, *supra*, Rossi *et al.*,
20 1992, *AIDS Research and Human Retroviruses* 8, 183; of hairpin motifs by Hampel *et al.*, EP0360257, Hampel and Tritz, 1989 *Biochemistry* 28, 4929, Feldstein *et al.*, 1989, *Gene* 82, 53, Haseloff and Gerlach, 1989, *Gene*, 82, 43, and Hampel *et al.*, 1990 *Nucleic Acids Res.* 18, 299; Chowrira & McSwiggen, US. Patent No. 5,631,359; of the hepatitis delta virus motif is described by Perrotta and Been, 1992 *Biochemistry* 31, 16; of the RNase P motif by Guerrier-
25 Takada *et al.*, 1983 *Cell* 35, 849; Forster and Altman, 1990, *Science* 249, 783; Li and Altman, 1996, *Nucleic Acids Res.* 24, 835; *Neurospora* VS RNA ribozyme motif is described by Collins (Saville and Collins, 1990 *Cell* 61, 685-696; Saville and Collins, 1991 *Proc. Natl. Acad. Sci. USA* 88, 8826-8830; Collins and Olive, 1993 *Biochemistry* 32, 2795-2799; Guo and Collins, 1995, *EMBO J.* 14, 363); Group II introns are described by Griffin *et al.*, 1995,
30 *Chem. Biol.* 2, 761; Michels and Pyle, 1995, *Biochemistry* 34, 2965; Pyle *et al.*, International PCT Publication No. WO 96/22689; of the Group I intron by Cech *et al.*, U.S. Patent 4,987,071 and of DNAzymes by Usman *et al.*, International PCT Publication No. WO 95/11304; Chartrand *et al.*, 1995, *NAR* 23, 4092; Breaker *et al.*, 1995, *Chem. Bio.* 2, 655; Santoro *et al.*, 1997, *PNAS* 94, 4262, and Beigelman *et al.*, International PCT publication No.

WO 99/55857. NCH cleaving motifs are described in Ludwig & Sproat, International PCT Publication No. WO 98/58058; and G-cleavers are described in Kore *et al.*, 1998, *Nucleic Acids Research* 26, 4116-4120 and Eckstein *et al.*, International PCT Publication No. WO 99/16871. Additional motifs such as the Aptazyme (Breaker *et al.*, WO 98/43993),
5 Amberzyme (Class I motif; **Figure 2**; Beigelman *et al.*, U.S. Serial No. 09/301,511) and Zinzyme (**Figure 3**) (Beigelman *et al.*, U.S. Serial No. 09/301,511), all included by reference herein including drawings, can also be used in the present invention. These specific motifs or configurations are not limiting in the invention and those skilled in the art will recognize that
10 all that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule (Cech *et al.*, U.S. Patent No. 4,987,071).

In one embodiment of the present invention, a nucleic acid molecule of the instant
15 invention can be between about 10 and 100 nucleotides in length. Exemplary enzymatic nucleic acid molecules of the invention are shown in the Tables herein. For example, enzymatic nucleic acid molecules of the invention are preferably between about 15 and 50 nucleotides in length, more preferably between about 25 and 40 nucleotides in length, e.g., 34, 36, or 38 nucleotides in length (for example see Jarvis *et al.*, 1996, *J. Biol. Chem.*, 271,
20 29107-29112). Exemplary DNAzymes of the invention are preferably between about 15 and 40 nucleotides in length, more preferably between about 25 and 35 nucleotides in length, e.g., 29, 30, 31, or 32 nucleotides in length (see for example Santoro *et al.*, 1998, *Biochemistry*, 37, 13330-13342; Chartrand *et al.*, 1995, *Nucleic Acids Research*, 23, 4092-4096). Exemplary antisense molecules of the invention are preferably between about 15 and 75
25 nucleotides in length, more preferably between about 20 and 35 nucleotides in length, e.g., 25, 26, 27, or 28 nucleotides in length (see for example Woolf *et al.*, 1992, *PNAS*, 89, 7305-7309; Milner *et al.*, 1997, *Nature Biotechnology*, 15, 537-541). Exemplary triplex forming oligonucleotide molecules of the invention are preferably between about 10 and 40 nucleotides in length, more preferably between about 12 and 25 nucleotides in length, e.g.,
30 18, 19, 20, or 21 nucleotides in length (see for example Maher *et al.*, 1990, *Biochemistry*, 29, 8820-8826; Strobel and Dervan, 1990, *Science*, 249, 73-75). Those skilled in the art will recognize that all that is required is for a nucleic acid molecule to be of length and conformation sufficient and suitable for the nucleic acid molecule to interact with its target and/or catalyze a reaction contemplated herein. The length of nucleic acid molecules of the
35 instant invention are not limiting within the general limits stated.

Preferably, a nucleic acid molecule that modulates, for example, down-regulates Ras, HIV, and/or HER2 expression and/or activity, comprises between 12 and 100 bases complementary to a RNA molecule of Ras, HIV, and/or HER2 respectively. Even more preferably, a nucleic acid molecule that modulates Ras, HIV, and/or HER2 expression 5 comprises between 14 and 24 bases complementary to a RNA molecule of Ras, HIV, and/or HER2 respectively.

The invention provides a method for producing a class of nucleic acid-based gene modulating agents that exhibit a high degree of specificity for RNA of a desired target. For example, an enzymatic nucleic acid molecule is preferably targeted to a highly conserved 10 sequence region of target RNAs encoding Ras (and specifically a Ras gene) such that specific treatment of a disease or condition can be provided with either one or several nucleic acid molecules of the invention. Such nucleic acid molecules can be delivered exogenously to specific tissue or cellular targets as required. Alternatively, the nucleic acid molecules (e.g., enzymatic nucleic acid molecules, siRNA, antisense, and/or DNAzymes) can be expressed 15 from DNA and/or RNA vectors that are delivered to specific cells.

As used herein "cell" is used in its usual biological sense, and does not refer to an entire multicellular organism. A cell can, for example, be *in vitro*, e.g., in cell culture, or present in a multicellular organism, including, e.g., birds, plants and mammals such as humans, cows, sheep, apes, monkeys, swine, dogs, and cats. The cell can be prokaryotic (e.g., bacterial cell) 20 or eukaryotic (e.g., mammalian or plant cell).

By "Ras proteins" is meant, a peptide or protein comprising Ras tyrosine kinase-type cell surface receptor or a peptide or protein encoded by a Ras gene, such as K-Ras, H-Ras, or N-Ras.

By "HIV proteins" is meant, a peptide or protein comprising a component of HIV or a 25 peptide or protein encoded by a HIV gene.

By "HER2 proteins" is meant, a peptide or protein comprising HER2/ERB2/NEU tyrosine kinase-type cell surface receptor or a peptide or protein encoded by a HER2/ERB2/NEU gene.

By "highly conserved sequence region" is meant, a nucleotide sequence of one or more 30 regions in a target gene that does not vary significantly from one generation to the other or from one biological system to the other.

Nucleic acid-based modulators, including inhibitors, of Ras expression are useful for the prevention and/or treatment of cancer, including but not limited to breast cancer and ovarian cancer and any other disease or condition that respond to the modulation of Ras expression.

- 5 Nucleic acid-based inhibitors of HIV expression are useful for the prevention and/or treatment of acquired immunodeficiency disease (AIDS) and related diseases and conditions, including but not limited to Kaposi's sarcoma, lymphoma, cervical cancer, squamous cell carcinoma, cardiac myopathy, rheumatic diseases, and opportunistic infection, for example Pneumocystis carinii, Cytomegalovirus, Herpes simplex, Mycobacteria, Cryptococcus,
10 Toxoplasma, Progressive multifocal leucoencephalopathy (Papovavirus), Mycobacteria, Aspergillus, Cryptococcus, Candida, Cryptosporidium, Isospora belli, Microsporidia and any other disease or condition which respond to the modulation of HIV expression.

- 15 Nucleic acid-based inhibitors of HER2 expression are useful for the prevention and/or treatment of cancer, including but not limited to breast cancer and ovarian cancer and any other disease or condition that respond to the modulation of HER2 expression.

By "related" is meant that the reduction of RAS, HIV, or HER2 expression (specifically RAS, HIV, or HER2 genes respectively) RNA levels and thus reduction in the level of the respective protein relieves, to some extent, the symptoms of the disease or condition.

- 20 The nucleic acid-based molecules of the invention can be added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells or tissues. The nucleic acid or nucleic acid complexes can be locally administered to relevant tissues *ex vivo*, or *in vivo* through injection or infusion pump, with or without their incorporation in biopolymers. In certain embodiments, the enzymatic nucleic acid molecules comprise sequences that are complementary to the substrate sequences in the Tables herein.
25 Examples of such enzymatic nucleic acid molecules also are shown in the Tables herein. Examples of such enzymatic nucleic acid molecules consist essentially of sequences defined in these tables.

- 30 In another embodiment, the invention features siRNA, antisense nucleic acid molecules and 2-5A chimeras comprising sequences complementary to the substrate sequences shown in the Tables herein. Such nucleic acid molecules can comprise sequences as shown for the binding arms of the enzymatic nucleic acid molecules in the Tables. Similarly, triplex molecules can be targeted to corresponding DNA target regions; such molecules can comprise the DNA equivalent of a target sequence or a sequence complementary to the specified target

(substrate) sequence. Typically, antisense molecules are complementary to a target sequence along a single contiguous sequence of the antisense molecule. However, in certain embodiments, an antisense molecule can bind to a substrate such that the substrate molecule forms a loop, and/or an antisense molecule can bind such that the antisense molecule forms a 5 loop. Thus, the antisense molecule can be complementary to two or more non-contiguous substrate sequences. In addition, two or more non-contiguous sequence portions of an antisense molecule can be complementary to a target sequence.

By "consists essentially of" is meant that the active nucleic acid molecule of the invention, for example, an enzymatic nucleic acid molecule, contains an enzymatic center or 10 core equivalent to those in the examples, and binding arms able to bind RNA such that cleavage at the target site occurs. Other sequences can be present that do not interfere with such cleavage. Thus, a core region of an enzymatic nucleic acid molecule can, for example, include one or more loop, stem-loop structure, or linker that does not prevent enzymatic activity. Thus, various regions in the sequences in the Tables can be such a loop, stem-loop, 15 nucleotide linker, and/or non-nucleotide linker and can be represented generally as sequence "X". The nucleic acid molecules of the instant invention, such as Hammerhead, Inozyme, G-cleaver, amberzyme, zinzyme, DNAzyme, antisense, 2-5A antisense, triplex forming nucleic acid, and decoy nucleic acids, can contain other sequences or non-nucleotide linkers that do not interfere with the function of the nucleic acid molecule.

20 Sequence X can be a linker of \geq 2 nucleotides in length, preferably 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 26, 30, where the nucleotides can preferably be internally base-paired to form a stem of preferably \geq 2 base pairs. Alternatively or in addition, sequence X can be a non-nucleotide linker. In yet another embodiment, the nucleotide linker X can be a nucleic acid aptamer, such 25 as an ATP aptamer, Ras Rev aptamer (RRE), Ras Tat aptamer (TAR) and others (for a review see Gold *et al.*, 1995, *Annu. Rev. Biochem.*, 64, 763; and Szostak & Ellington, 1993, in *The RNA World*, ed. Gesteland and Atkins, pp. 511, CSH Laboratory Press). A "nucleic acid 30 aptamer" as used herein is meant to indicate a nucleic acid sequence capable of interacting with a ligand. The ligand can be any natural or a synthetic molecule, including but not limited to a resin, metabolites, nucleosides, nucleotides, drugs, toxins, transition state analogs, peptides, lipids, proteins, amino acids, nucleic acid molecules, hormones, carbohydrates, receptors, cells, viruses, bacteria and others.

In yet another embodiment, a non-nucleotide linker X is as defined herein. Non-nucleotides as can include abasic nucleotide, polyether, polyamine, polyamide, peptide, carbohydrate, lipid, or polyhydrocarbon compounds. Specific examples include those

described by Seela and Kaiser, *Nucleic Acids Res.* 1990, *18*:6353 and *Nucleic Acids Res.* 1987, *15*:3113; Cload and Schepartz, *J. Am. Chem. Soc.* 1991, *113*:6324; Richardson and Schepartz, *J. Am. Chem. Soc.* 1991, *113*:5109; Ma *et al.*, *Nucleic Acids Res.* 1993, *21*:2585 and *Biochemistry* 1993, *32*:1751; Durand *et al.*, *Nucleic Acids Res.* 1990, *18*:6353; McCurdy
5 *et al.*, *Nucleosides & Nucleotides* 1991, *10*:287; Jschke *et al.*, *Tetrahedron Lett.* 1993,
34:301; Ono *et al.*, *Biochemistry* 1991, *30*:9914; Arnold *et al.*, International Publication No.
WO 89/02439; Usman *et al.*, International Publication No. WO 95/06731; Dudycz *et al.*,
International Publication No. WO 95/11910 and Ferentz and Verdine, *J. Am. Chem. Soc.*
1991, *113*:4000, all hereby incorporated by reference herein. A "non-nucleotide" further
10 means any group or compound that can be incorporated into a nucleic acid chain in the place
of one or more nucleotide units, including either sugar and/or phosphate substitutions, and
allows the remaining bases to exhibit their enzymatic activity. The group or compound can
be abasic in that it does not contain a commonly recognized nucleotide base, such as
adenosine, guanine, cytosine, uracil or thymine. Thus, in a preferred embodiment, the
15 invention features an enzymatic nucleic acid molecule having one or more non-nucleotide
moieties, and having enzymatic activity to cleave an RNA or DNA molecule.

In another aspect of the invention, enzymatic nucleic acid molecules, siRNA molecules
or antisense molecules that interact with target RNA molecules and modulate gene expression
activity are expressed from transcription units inserted into DNA or RNA vectors. The
20 recombinant vectors are preferably DNA plasmids or viral vectors. Enzymatic nucleic acid
molecule or antisense expressing viral vectors can be constructed based on, but not limited to,
adeno-associated virus, retrovirus, adenovirus, or alphavirus as well as others known in the
art. Preferably, recombinant vectors capable of expressing enzymatic nucleic acid molecules
or antisense are delivered as described below, and persist in target cells. Alternatively, viral
25 vectors can be used that provide for transient expression of enzymatic nucleic acid molecules
or antisense. Such vectors can be repeatedly administered as necessary. Once expressed, the
enzymatic nucleic acid molecules or antisense bind to target RNA and modulate its function
or expression. Delivery of enzymatic nucleic acid molecule or antisense expressing vectors
can be systemic, such as by intravenous or intramuscular administration, by administration to
30 target cells ex-planted from the patient followed by reintroduction into the patient, or by any
other means that allows for introduction into a desired target cell. Antisense DNA and
DNAzymes can be expressed via the use of a single stranded DNA intracellular expression
vector.

By "vectors" is meant any nucleic acid- and/or viral-based technique used to deliver a
35 desired nucleic acid.

By "subject" or "patient" is meant an organism that is a donor or recipient of explanted cells or the cells of the organism. "Subject" or "patient" also refers to an organism to which the nucleic acid molecules of the invention can be administered. Preferably, a subject or patient is a mammal or mammalian cells. More preferably, a subject or patient is a human or
5 human cells.

By "enhanced enzymatic activity" is meant to include activity measured in cells and/or *in vivo* where the activity is a reflection of both the catalytic activity and the stability of the nucleic acid molecules of the invention. In this invention, the product of these properties can be increased *in vivo* compared to an all RNA enzymatic nucleic acid or all DNA enzyme, for
10 example, with a nucleic acid molecule comprising chemical modifications. In some cases, the activity or stability of the nucleic acid molecule can be decreased (i.e., less than ten-fold), but the overall activity of the nucleic acid molecule is enhanced, *in vivo*.

Nucleic acid molecules of the instant invention, individually, or in combination or in conjunction with other drugs, can be used to treat diseases or conditions discussed above. For
15 example, to treat a disease or condition associated with the levels of Ras, HIV, or HER2, a subject can be treated, or other appropriate cells can be treated, as is evident to those skilled in the art, individually or in combination with one or more drugs under conditions suitable for the treatment.

In a further embodiment, the described molecules, such as antisense, siRNA, or
20 enzymatic nucleic acid molecules, can be used in combination with other known treatments to treat conditions or diseases discussed above. For example, the described molecules can be used in combination with one or more known therapeutic agents to treat cancer, for example colorectal cancer, bladder cancer, lung cancer, pancreatic cancer, breast cancer, or prostate cancer, and any other disease or condition that respond to the modulation of Ras expression.

25 In another embodiment, the invention features nucleic acid-based inhibitors (e.g., enzymatic nucleic acid molecules, (including DNAzymes), siRNA and methods for their use to down regulate or inhibit the expression of genes (e.g., Ras genes) capable of progression and/or maintenance of cancer and/or other disease states that respond to the modulation of Ras expression.

30 In a further embodiment, the described molecules, such as antisense, siRNA, or enzymatic nucleic acids, can be used in combination with other known treatments to treat conditions or diseases discussed above. For example, the described molecules can be used in combination with one or more known therapeutic agents to treat acquired immunodeficiency

disease (AIDS) and related diseases and conditions, including but not limited to Kaposi's sarcoma, lymphoma, cervical cancer, squamous cell carcinoma, cardiac myopathy, rheumatic diseases, and opportunistic infection, for example Pneumocystis carinii, Cytomegalovirus, Herpes simplex, Mycobacteria, Cryptococcus, Toxoplasma, Progressive multifocal leucoencephalopathy (Papovavirus), Mycobacteria, Aspergillus, Cryptococcus, Candida, Cryptosporidium, Isospora belli, Microsporidia and any other disease or condition which respond to the modulation of HIV expression.

Nucleic acid molecules of the instant invention, individually, or in combination or in conjunction with other drugs, can be used to treat diseases or conditions discussed above. For example, to treat a disease or condition associated with the levels of HER2, a patient can be treated, or other appropriate cells can be treated, as is evident to those skilled in the art, individually or in combination with one or more drugs under conditions suitable for the treatment.

In a further embodiment, the described molecules, such as antisense, siRNA or enzymatic nucleic acid molecules, can be used in combination with other known treatments to treat conditions or diseases discussed above. For example, the described molecules can be used in combination with one or more known therapeutic agents to treat cancer, for example ovarian cancer and/or breast cancer, and any other disease or condition that respond to the modulation of HER2 expression.

In another embodiment, the invention features nucleic acid-based inhibitors (e.g., enzymatic nucleic acid molecules, (including ribozymes, antisense nucleic acids, 2-5A antisense chimeras, triplex DNA, antisense nucleic acids containing RNA cleaving chemical groups), siRNA and methods for their use to down regulate or inhibit the expression of genes (e.g., HER2 genes) capable of progression and/or maintenance of cancer and/or other disease states that respond to the modulation of HER2 expression.

By "comprising" is meant including, but not limited to, whatever follows the word "comprising". Thus, use of the term "comprising" indicates that the listed elements are required or mandatory, but that other elements are optional and may or may not be present. By "consisting of" is meant including, and limited to, whatever follows the phrase "consisting of".

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

Mechanism of action of Nucleic Acid Molecules of the Invention as is Known in the Art

Antisense: Antisense molecules can be modified or unmodified RNA, DNA, or mixed polymer oligonucleotides and primarily function by specifically binding to matching sequences resulting in inhibition of peptide synthesis (Wu-Pong, Nov 1994, *BioPharm*, 20-33).

5 The antisense oligonucleotide binds to target RNA by Watson Crick base-pairing and blocks gene expression by preventing ribosomal translation of the bound sequences either by steric blocking or by activating RNase H enzyme. Antisense molecules can also alter protein synthesis by interfering with RNA processing or transport from the nucleus into the cytoplasm (Mukhopadhyay & Roth, 1996, *Crit. Rev. in Oncogenesis* 7, 151-190).

10 In addition, binding of single stranded DNA to RNA can result in nuclease degradation of the heteroduplex (Wu-Pong, *supra*; Crooke, *supra*). Backbone modified DNA chemistry which have been thus far been shown to act as substrates for RNase H are phosphorothioates, phosphorodithioates, and borontrifluoridates. In addition, 2'-arabino and 2'-fluoro arabino-containing oligos can also activate RNase H activity.

15 A number of antisense molecules have been described that utilize novel configurations of chemically modified nucleotides, secondary structure, and/or RNase H substrate domains (Woolf *et al.*, International PCT Publication No. WO 98/13526; Thompson *et al.*, International PCT Publication No. WO 99/54459; Hartmann *et al.*, USSN 60/101,174, filed on September 21, 1998). All of these references are incorporated by reference herein in their 20 entirety.

In addition, antisense deoxyoligoribonucleotides can be used to target RNA by means of DNA-RNA interactions, thereby activating RNase H, which digests the target RNA in the duplex. Antisense DNA can be expressed via the use of a single stranded DNA intracellular expression vector or equivalents and variations thereof.

25 RNA interference: RNA interference refers to the process of sequence specific post transcriptional gene silencing in animals mediated by short interfering RNAs (siRNA) (Fire *et al.*, 1998, *Nature*, 391, 806). The corresponding process in plants is commonly referred to as post transcriptional gene silencing or RNA silencing and is also referred to as quelling in fungi. The process of post transcriptional gene silencing is thought to be an evolutionarily 30 conserved cellular defense mechanism used to prevent the expression of foreign genes which is commonly shared by diverse flora and phyla (Fire *et al.*, 1999, *Trends Genet.*, 15, 358). Such protection from foreign gene expression may have evolved in response to the production of double stranded RNAs (dsRNA) derived from viral infection or the random integration of

transposon elements into a host genome via a cellular response that specifically destroys homologous single stranded RNA or viral genomic RNA. The presence of dsRNA in cells triggers the RNAi response though a mechanism that has yet to be fully characterized. This mechanism appears to be different from the interferon response that results from dsRNA 5 mediated activation of protein kinase PKR and 2',5'-oligoadenylate synthetase resulting in non-specific cleavage of mRNA by ribonuclease L.

The presence of long dsRNAs in cells stimulates the activity of a ribonuclease III enzyme referred to as dicer. Dicer is involved in the processing of the dsRNA into short pieces of dsRNA known as short interfering RNAs (siRNA) (Berstein *et al.*, 2001, *Nature*, 10 409, 363). Short interfering RNAs derived from dicer activity are typically about 21-23 nucleotides in length and comprise about 19 base pair duplexes. Dicer has also been implicated in the excision of 21 and 22 nucleotide small temporal RNAs (stRNA) from precursor RNA of conserved structure that are implicated in translational control (Hutvagner *et al.*, 2001, *Science*, 293, 834). The RNAi response also features an endonuclease complex 15 containing a siRNA, commonly referred to as an RNA-induced silencing complex (RISC), which mediates cleavage of single stranded RNA having sequence homologous to the siRNA. Cleavage of the target RNA takes place in the middle of the region complementary to the guide sequence of the siRNA duplex (Elbashir *et al.*, 2001, *Genes Dev.*, 15, 188).

Short interfering RNA mediated RNAi has been studied in a variety of systems. Fire *et* 20 *al.*, 1998, *Nature*, 391, 806, were the first to observe RNAi in *C. Elegans*. Wianny and Goetz, 1999, *Nature Cell Biol.*, 2, 70, describes RNAi mediated by dsRNA in mouse embryos. Hammond *et al.*, 2000, *Nature*, 404, 293, describe RNAi in *Drosophila* cells transfected with dsRNA. Elbashir *et al.*, 2001, *Nature*, 411, 494, describe RNAi induced by introduction of duplexes of synthetic 21-nucleotide RNAs in cultured mammalian cells 25 including human embryonic kidney and HeLa cells. Recent work in *Drosophila* embryonic lysates has revealed certain requirements for siRNA length, structure, chemical composition, and sequence that are essential to mediate efficient RNAi activity. These studies have shown that 21 nucleotide siRNA duplexes are most active when containing two nucleotide 3'-overhangs. Furthermore, substitution of one or both siRNA strands with 2'-deoxy or 2'-O- 30 methyl nucleotides abolishes RNAi activity, whereas substitution of 3'-terminal siRNA nucleotides with deoxy nucleotides was shown to be tolerated. Mismatch sequences in the center of the siRNA duplex were also shown to abolish RNAi activity. In addition, these studies also indicate that the position of the cleavage site in the target RNA is defined by the 5'-end of the siRNA guide sequence rather than the 3'-end (Elbashir *et al.*, 2001, *EMBO J.*, 35 20, 6877). Other studies have indicated that a 5'-phosphate on the target-complementary strand of a siRNA duplex is required for siRNA activity and that ATP is utilized to maintain

the 5'-phosphate moiety on the siRNA (Nykanen *et al.*, 2001, *Cell*, 107, 309), however siRNA molecules lacking a 5'-phosphate are active when introduced exogenously, suggesting that 5'-phosphorylation of siRNA constructs may occur *in vivo*.

Enzymatic Nucleic Acid: Several varieties of naturally-occurring enzymatic RNAs are presently known. In addition, several *in vitro* selection (evolution) strategies (Orgel, 1979, *Proc. R. Soc. London, B* 205, 435) have been used to evolve new nucleic acid catalysts capable of catalyzing cleavage and ligation of phosphodiester linkages (Joyce, 1989, *Gene*, 82, 83-87; Beaudry *et al.*, 1992, *Science* 257, 635-641; Joyce, 1992, *Scientific American* 267, 90-97; Breaker *et al.*, 1994, *TIBTECH* 12, 268; Bartel *et al.*, 1993, *Science* 261:1411-1418; 10 Szostak, 1993, *TIBS* 17, 89-93; Kumar *et al.*, 1995, *FASEB J.*, 9, 1183; Breaker, 1996, *Curr. Op. Biotech.*, 7, 442; Santoro *et al.*, 1997, *Proc. Natl. Acad. Sci.*, 94, 4262; Tang *et al.*, 1997, *RNA* 3, 914; Nakamaye & Eckstein, 1994, *supra*; Long & Uhlenbeck, 1994, *supra*; Ishizaka *et al.*, 1995, *supra*; Vaish *et al.*, 1997, *Biochemistry* 36, 6495; all of these are incorporated by reference herein). Each can catalyze a series of reactions including the hydrolysis of phosphodiester bonds in *trans* (and thus can cleave other RNA molecules) under physiological conditions.

Nucleic acid molecules of this invention can modulate, e.g., down-regulate, Ras protein expression and can be used to treat disease or diagnose disease associated with the levels of Ras, HIV and/or HER2. Enzymatic nucleic acid sequences targeting Ras, HIV and/or HER2 20 RNA and sequences that can be targeted with nucleic acid molecules of the invention to down-regulate Ras expression are shown in the Tables herein.

The enzymatic nature of an enzymatic nucleic acid molecule allows the concentration of enzymatic nucleic acid molecule necessary to affect a therapeutic treatment to be lower than a nucleic acid molecule lacking enzymatic activity. This reflects the ability of the 25 enzymatic nucleic acid molecule to act enzymatically. Thus, a single enzymatic nucleic acid molecule is able to cleave many molecules of target RNA. In addition, the enzymatic nucleic acid molecule is a highly specific inhibitor, with the specificity of inhibition depending not only on the base-pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage 30 can be chosen to completely eliminate catalytic activity of a enzymatic nucleic acid molecule.

Nucleic acid molecules having an endonuclease enzymatic activity are able to repeatedly cleave other separate RNA molecules in a nucleotide base sequence-specific manner. With proper design and construction, such enzymatic nucleic acid molecules can be targeted to virtually any RNA transcript, and achieve efficient cleavage *in vitro* (Zaug *et al.*,

324, *Nature* 429 1986; Uhlenbeck, 1987 *Nature* 328, 596; Kim *et al.*, 84 *Proc. Natl. Acad. Sci. USA* 8788, 1987; Dreyfus, 1988, *Einstein Quart. J. Bio. Med.*, 6, 92; Haseloff and Gerlach, 334 *Nature* 585, 1988; Cech, 260 *JAMA* 3030, 1988; and Jefferies *et al.*, 17 *Nucleic Acids Research* 1371, 1989; Santoro *et al.*, 1997 *supra*).

5 Because of their sequence specificity, *trans*-cleaving enzymatic nucleic acid molecules can be used as therapeutic agents for human disease (Usman & McSwiggen, 1995 *Ann. Rep. Med. Chem.* 30, 285-294; Christoffersen and Marr, 1995 *J. Med. Chem.* 38, 2023-2037). Enzymatic nucleic acid molecules can be designed to cleave specific RNA targets within the background of cellular RNA. Such a cleavage event renders the RNA non-functional and
10 abrogates protein expression from that RNA. In this manner, synthesis of a protein associated with a disease state can be selectively inhibited (Warashina *et al.*, 1999, *Chemistry and Biology*, 6, 237-250).

15 Enzymatic nucleic acid molecules of the invention that are allosterically regulated (“allozymes”) can be used to modulate, including down-regulate, Ras, HIV and/or HER2 expression. These allosteric enzymatic nucleic acids or allozymes (see for example George *et al.*, US Patent Nos. 5,834,186 and 5,741,679, Shih *et al.*, US Patent No. 5,589,332, Nathan *et al.*, US Patent No 5,871,914, Nathan and Ellington, International PCT publication No. WO 00/24931, Breaker *et al.*, International PCT Publication Nos. WO 00/26226 and 98/27104, and Sullenger *et al.*, International PCT publication No. WO 99/29842) are designed to
20 respond to a signaling agent, for example, mutant Ras, HIV and/or HER2 protein, wild-type Ras, HIV and/or HER2 protein, mutant Ras, HIV and/or HER2 RNA, wild-type Ras, HIV and/or HER2 RNA, other proteins and/or RNAs involved in Ras, HIV and/or HER2 activity, compounds, metals, polymers, molecules and/or drugs that are targeted to Ras, HIV and/or HER2 expressing cells etc., which, in turn, modulate the activity of the enzymatic nucleic
25 acid molecule. In response to interaction with a predetermined signaling agent, the activity of the allosteric enzymatic nucleic acid molecule is activated or inhibited such that the expression of a particular target is selectively regulated, including down-regulated. The target can comprise wild-type Ras, HIV and/or HER2, mutant Ras, HIV and/or HER2, a component of Ras, HIV and/or HER2, and/or a predetermined cellular component that modulates Ras,
30 HIV and/or HER2 activity. For example, allosteric enzymatic nucleic acid molecules that are activated by interaction with a RNA encoding Ras, HIV and/or HER2 protein can be used as therapeutic agents *in vivo*. The presence of RNA encoding the Ras, HIV and/or HER2 protein activates the allosteric enzymatic nucleic acid molecule that subsequently cleaves the RNA encoding Ras, HIV and/or HER2 protein, resulting in the inhibition of Ras, HIV and/or

HER2 protein expression. In this manner, cells that express the Ras, HIV and/or HER2 protein are selectively targeted.

In another non-limiting example, an allozyme can be activated by a Ras, HIV and/or HER2 protein, peptide, or mutant polypeptide that causes the allozyme to inhibit the expression of Ras, HIV and/or HER2 gene, by, for example, cleaving RNA encoded by Ras, HIV and/or HER2 gene. In this non-limiting example, the allozyme acts as a decoy to inhibit the function of Ras, HIV and/or HER2 and also inhibit the expression of Ras, HIV and/or HER2 once activated by the Ras, HIV and/or HER2 protein.

Target sites

Targets for useful enzymatic nucleic acid molecules and antisense nucleic acids can be determined as disclosed in Draper *et al.*, WO 93/23569; Sullivan *et al.*, WO 93/23057; Thompson *et al.*, WO 94/02595; Draper *et al.*, WO 95/04818; McSwiggen *et al.*, US Patent No. 5,525,468, and hereby incorporated by reference herein in totality. Other examples include the following PCT applications, which concern inactivation of expression of disease-related genes: WO 95/23225, WO 95/13380, WO 94/02595, incorporated by reference herein. Rather than repeat the guidance provided in those documents here, below are provided specific non-limiting examples of such methods. Enzymatic nucleic acid molecules to such targets are designed as described in the above applications and synthesized to be tested *in vitro* and *in vivo*, as also described. The sequences of human K-Ras, H-Ras, HIV-1 and HER2 RNAs were screened for optimal enzymatic nucleic acid target sites using a computer-folding algorithm. Nucleic acid molecule binding/cleavage sites were identified. These sites are shown in the Tables (all sequences are 5' to 3' in the tables). The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of enzymatic nucleic acid molecule. Human sequences can be screened and enzymatic nucleic acid molecule and/or antisense thereafter designed, as discussed in Stinchcomb *et al.*, WO 95/23225. In addition, mouse targeted nucleic acid molecules can be used to test efficacy of action of the enzymatic nucleic acid molecule, siRNA and/or antisense prior to testing in humans.

In addition, enzymatic nucleic acid, siRNA, and antisense nucleic acid molecule binding/cleavage sites were identified. The nucleic acid molecules are individually analyzed by computer folding (Jaeger *et al.*, 1989 *Proc. Natl. Acad. Sci. USA*, 86, 7706) to assess whether the sequences fold into the appropriate secondary structure. Those nucleic acid molecules with unfavorable intramolecular interactions, such as between, for example the binding arms and the catalytic core of an enzymatic nucleic acid, are eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity.

Antisense, hammerhead, DNAzyme, NCH, amberzyme, zinzyme or G-Cleaver enzymatic nucleic acid molecule, siRNA, and antisense nucleic acid binding/cleavage sites were identified and were designed to anneal to various sites in the RNA target. The enzymatic nucleic acid binding arms or siRNA and antisense nucleic acid sequences are 5 complementary to the target site sequences described above. The nucleic acid molecules are chemically synthesized. The method of synthesis used follows the procedure for normal DNA/RNA synthesis as described below and in Usman *et al.*, 1987 *J. Am. Chem. Soc.*, 109, 7845; Scaringe *et al.*, 1990 *Nucleic Acids Res.*, 18, 5433; and Wincott *et al.*, 1995 *Nucleic Acids Res.* 23, 2677-2684; Caruthers *et al.*, 1992, *Methods in Enzymology* 211,3-19.

10 **Synthesis of Nucleic acid Molecules**

Synthesis of nucleic acids greater than 100 nucleotides in length can be difficult using automated methods, and the therapeutic cost of such molecules can be prohibitive. In this invention, small nucleic acid motifs ("small" refers to nucleic acid motifs less than about 100 nucleotides in length, preferably less than about 80 nucleotides in length, and more preferably 15 less than about 50 nucleotides in length; *e.g.*, DNAzymes) are preferably used for exogenous delivery. The simple structure of these molecules increases the ability of the nucleic acid to invade targeted regions of RNA structure. Exemplary molecules of the instant invention are chemically synthesized as described herein, and others can similarly be synthesized.

Oligonucleotides (*e.g.*, DNAzymes, antisense) are synthesized using protocols known 20 in the art as described in Caruthers *et al.*, 1992, *Methods in Enzymology* 211, 3-19, Thompson *et al.*, International PCT Publication No. WO 99/54459, Wincott *et al.*, 1995, *Nucleic Acids Res.* 23, 2677-2684, Wincott *et al.*, 1997, *Methods Mol. Bio.*, 74, 59, Brennan *et al.*, 1998, *Biotechnol. Bioeng.*, 61, 33-45, and Brennan, US patent No. 6,001,311. All of these references are incorporated herein by reference. The synthesis of oligonucleotides makes use 25 of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. In a non-limiting example, small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 μ mol scale protocol with a 2.5 min coupling step for 2'-O-methylated nucleotides and a 45 sec coupling step for 2'-deoxy nucleotides. **Table I** outlines the amounts and the contact times of the reagents 30 used in the synthesis cycle. Alternatively, syntheses at the 0.2 μ mol scale can be performed on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, CA) with minimal modification to the cycle. A 33-fold excess (60 μ L of 0.11 M = 6.6 μ mol) of 2'-O-methyl phosphoramidite and a 105-fold excess of S-ethyl tetrazole (60 μ L of 0.25 M = 15 μ mol) can be used in each coupling cycle of 2'-O-methyl residues relative to polymer-

bound 5'-hydroxyl. A 22-fold excess (40 μ L of 0.11 M = 4.4 μ mol) of deoxy phosphoramidite and a 70-fold excess of S-ethyl tetrazole (40 μ L of 0.25 M = 10 μ mol) can be used in each coupling cycle of deoxy residues relative to polymer-bound 5'-hydroxyl.

Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by

5 colorimetric quantitation of the trityl fractions, are typically 97.5-99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer include; detritylation solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); and oxidation solution is 16.9 mM I₂, 49 mM pyridine, 9% water in THF (PERSEPTIVE™).

10 Burdick & Jackson Synthesis Grade acetonitrile is used directly from the reagent bottle. S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1-dioxide, 0.05 M in acetonitrile) is used.

15 Deprotection of the DNAzymes is performed as follows: the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aq. methylamine (1 mL) at 65 °C for 10 min. After cooling to -20 °C, the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtOH:MeCN:H₂O/3:1:1, vortexed and the supernatant is then added to the first supernatant.

20 The combined supernatants, containing the oligoribonucleotide, are dried to a white powder.

The method of synthesis used for RNA and chemically modified RNA or DNA, including certain enzymatic nucleic acid molecules and siRNA molecules, follows the procedure as described in Usman *et al.*, 1987, *J. Am. Chem. Soc.*, 109, 7845; Scaringe *et al.*, 1990, *Nucleic Acids Res.*, 18, 5433; and Wincott *et al.*, 1995, *Nucleic Acids Res.* 23, 2677-

25 2684 Wincott *et al.*, 1997, *Methods Mol. Bio.*, 74, 59, and makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. In a non-limiting example, small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 μ mol scale protocol with a 7.5 min coupling step for alkylsilyl protected nucleotides and a 2.5 min coupling step for 2'-O-methylated

30 nucleotides. **Table I** outlines the amounts and the contact times of the reagents used in the synthesis cycle. Alternatively, syntheses at the 0.2 μ mol scale can be done on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, CA) with minimal modification to the cycle. A 33-fold excess (60 μ L of 0.11 M = 6.6 μ mol) of 2'-O-methyl phosphoramidite and a 75-fold excess of S-ethyl tetrazole (60 μ L of 0.25 M = 15 μ mol) can

35 be used in each coupling cycle of 2'-O-methyl residues relative to polymer-bound 5'-

hydroxyl. A 66-fold excess (120 μ L of 0.11 M = 13.2 μ mol) of alkylsilyl (ribo) protected phosphoramidite and a 150-fold excess of S-ethyl tetrazole (120 μ L of 0.25 M = 30 μ mol) can be used in each coupling cycle of ribo residues relative to polymer-bound 5'-hydroxyl. Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by 5 colorimetric quantitation of the trityl fractions, are typically 97.5-99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer include; detritylation solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); oxidation solution is 16.9 mM I₂, 49 mM pyridine, 9% water in THF (PERSEPTIVE™). Burdick & 10 Jackson Synthesis Grade acetonitrile is used directly from the reagent bottle. S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1-dioxide 0.05 M in acetonitrile) is used.

Deprotection of the RNA is performed using either a two-pot or one-pot protocol. For 15 the two-pot protocol, the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aq. methylamine (1 mL) at 65 °C for 10 min. After cooling to -20 °C, the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtOH:MeCN:H₂O/3:1:1, vortexed and the supernatant is then added to the first supernatant. The combined supernatants, containing the 20 oligoribonucleotide, are dried to a white powder. The base deprotected oligoribonucleotide is resuspended in anhydrous TEA/HF/NMP solution (300 μ L of a solution of 1.5 mL N-methylpyrrolidinone, 750 μ L TEA and 1 mL TEA•3HF to provide a 1.4 M HF concentration) and heated to 65 °C. After 1.5 h, the oligomer is quenched with 1.5 M NH₄HCO₃.

Alternatively, for the one-pot protocol, the polymer-bound trityl-on oligoribonucleotide 25 is transferred to a 4 mL glass screw top vial and suspended in a solution of 33% ethanolic methylamine/DMSO: 1/1 (0.8 mL) at 65 °C for 15 min. The vial is brought to r.t. TEA•3HF (0.1 mL) is added and the vial is heated at 65 °C for 15 min. The sample is cooled at -20 °C and then quenched with 1.5 M NH₄HCO₃.

For purification of the trityl-on oligomers, the quenched NH₄HCO₃ solution is loaded 30 onto a C-18 containing cartridge that had been prewashed with acetonitrile followed by 50 mM TEAA. After washing the loaded cartridge with water, the RNA is detritylated with 0.5% TFA for 13 min. The cartridge is then washed again with water, salt exchanged with 1 M NaCl and washed with water again. The oligonucleotide is then eluted with 30% acetonitrile.

Inactive nucleic acid molecules or binding attenuated control (BAC) oligonucleotides can be synthesized by substituting one or more nucleotides in the nucleic acid molecule to inactivate the molecule and such molecules can serve as a negative control.

The average stepwise coupling yields are typically >98% (Wincott *et al.*, 1995 *Nucleic Acids Res.* 23, 2677-2684). Those of ordinary skill in the art will recognize that the scale of synthesis can be adapted to be larger or smaller than the example described above including but not limited to 96 well format, all that is important is the ratio of chemicals used in the reaction.

Alternatively, the nucleic acid molecules of the present invention can be synthesized 10 separately and joined together post-synthetically, for example by ligation (Moore *et al.*, 1992, *Science* 256, 9923; Draper *et al.*, International PCT publication No. WO 93/23569; Shabarova *et al.*, 1991, *Nucleic Acids Research* 19, 4247; Bellon *et al.*, 1997, *Nucleosides & Nucleotides*, 16, 951; Bellon *et al.*, 1997, *Bioconjugate Chem.* 8, 204).

The nucleic acid molecules of the present invention can be modified extensively to 15 enhance stability by modification with nuclease resistant groups, for example, 2'-amino, 2'-C-allyl, 2'-flouro, 2'-O-methyl, 2'-H (for a review see Usman and Cedergren, 1992, *TIBS* 17, 34; Usman *et al.*, 1994, *Nucleic Acids Symp. Ser.* 31, 163). Enzymatic nucleic acid molecules are purified by gel electrophoresis using known methods or are purified by high pressure liquid chromatography (HPLC; See Wincott *et al.*, Supra, the totality of which is hereby 20 incorporated herein by reference) and are re-suspended in water.

The sequences of the nucleic acid molecules, including enzymatic nucleic acid molecules and antisense, that are chemically synthesized, are shown in the Tables herein. These sequences are representative only of many more such sequences where the enzymatic portion of the enzymatic nucleic acid molecule (all but the binding arms) is modified to affect 25 activity. For example, the enzymatic nucleic acid sequences listed in the Tables can be formed of deoxyribonucleotides or other nucleotides or non-nucleotides. Such enzymatic nucleic acid molecules with enzymatic activity are equivalent to the enzymatic nucleic acid molecules described specifically in the Tables.

Optimizing Activity of the Nucleic Acid Molecule of the Invention.

Chemically synthesizing nucleic acid molecules with modifications (base, sugar and/or phosphate) that prevent their degradation by serum ribonucleases can increase their potency 30 (see e.g., Eckstein *et al.*, International Publication No. WO 92/07065; Perrault *et al.*, 1990 *Nature* 344, 565; Pieken *et al.*, 1991, *Science* 253, 314; Usman and Cedergren, 1992, *Trends*

in *Biochem. Sci.* 17, 334; Usman *et al.*, International Publication No. WO 93/15187; and Rossi *et al.*, International Publication No. WO 91/03162; Sproat, US Patent No. 5,334,711; and Burgin *et al.*, *supra*, all of which are hereby incorporated by reference in their entirety). All of the above references describe various chemical modifications that can be made to the 5 base, phosphate and/or sugar moieties of the nucleic acid molecules described herein. Modifications which enhance their efficacy in cells, and removal of bases from nucleic acid molecules to shorten oligonucleotide synthesis times and reduce chemical requirements are desired.

There are several examples of sugar, base and phosphate modifications that can be 10 introduced into nucleic acid molecules with significant enhancement in their nuclease stability and efficacy. For example, oligonucleotides can be modified to enhance stability and/or enhance biological activity by modification with nuclease resistant groups, for example, 2'-amino, 2'-C-allyl, 2'-flouro, 2'-O-methyl, 2'-H, nucleotide base modifications (for a review see Usman and Cedergren, 1992, *TIBS*. 17, 34; Usman *et al.*, 1994, *Nucleic Acids Symp. Ser.* 31, 163; Burgin *et al.*, 1996, *Biochemistry*, 35, 14090). Sugar modification of 15 nucleic acid molecules are also known to increase efficacy (see Eckstein *et al.*, *International Publication* PCT No. WO 92/07065; Perrault *et al.* *Nature*, 1990, 344, 565-568; Pieken *et al.* *Science*, 1991, 253, 314-317; Usman and Cedergren, *Trends in Biochem. Sci.*, 1992, 17, 334-339; Usman *et al.* *International Publication* PCT No. WO 93/15187; Sproat, US Patent 20 No. 5,334,711 and Beigelman *et al.*, 1995, *J. Biol. Chem.*, 270, 25702; Beigelman *et al.*, International PCT publication No. WO 97/26270; Beigelman *et al.*, US Patent No. 5,716,824; Usman *et al.*, US patent No. 5,627,053; Woolf *et al.*, International PCT Publication No. WO 98/13526; Thompson *et al.*, USSN 60/082,404 which was filed on April 20, 1998; Karpeisky *et al.*, 1998, *Tetrahedron Lett.*, 39, 1131; Earnshaw and Gait, 1998, *Biopolymers (Nucleic 25 acid Sciences)*, 48, 39-55; Verma and Eckstein, 1998, *Annu. Rev. Biochem.*, 67, 99-134; and Burlina *et al.*, 1997, *Bioorg. Med. Chem.*, 5, 1999-2010; all of the references are hereby incorporated in their totality by reference herein). The publications describe general methods and strategies to determine the location of incorporation of sugar, base and/or phosphate 30 modifications and the like into enzymatic nucleic acid molecules without inhibiting catalysis. Similar modifications can be used as described herein to modify the nucleic acid molecules of the instant invention.

While chemical modification of oligonucleotide internucleotide linkages with phosphorothioate, phosphorothioate, and/or 5'-methylphosphonate linkages improves 35 stability, excessive modifications can cause some toxicity. Therefore, when designing nucleic acid molecules, the amount of these internucleotide linkages should be minimized. The

reduction in the concentration of these linkages can lower toxicity, resulting in increased efficacy and higher specificity of the therapeutic nucleic acid molecules.

Nucleic acid molecules having chemical modifications that maintain or enhance activity are provided. Such nucleic acid molecules are also generally more resistant to nucleases than unmodified nucleic acid molecules. Thus, the *in vitro* and/or *in vivo* activity should not be significantly lowered. Therapeutic nucleic acid molecules delivered exogenously are optimally stable within cells until translation of the target RNA has been inhibited long enough to reduce the levels of the undesirable protein. This period of time varies between hours to days, depending upon the disease state. Nucleic acid molecules are preferably resistant to nucleases in order to function as effective intracellular therapeutic agents. Improvements in the chemical synthesis of RNA and DNA (Wincott *et al.*, 1995 *Nucleic Acids Res.* 23, 2677; Caruthers *et al.*, 1992, *Methods in Enzymology* 211,3-19 (incorporated by reference herein)) have expanded the ability to modify nucleic acid molecules by introducing nucleotide modifications to enhance their nuclease stability as described above.

In one embodiment, nucleic acid molecules of the invention include one or more G-clamp nucleotides. A G-clamp nucleotide is a modified cytosine analog wherein modifications result in the ability to hydrogen bond both Watson-Crick and Hoogsteen faces of a complementary guanine within a duplex, see for example Lin and Matteucci, 1998, *J. Am. Chem. Soc.*, 120, 8531-8532. A single G-clamp analog substitution within an oligonucleotide can result in substantially enhanced helical thermal stability and mismatch discrimination when hybridized to complementary oligonucleotides. The inclusion of such nucleotides in nucleic acid molecules of the invention can enable both enhanced affinity and specificity to nucleic acid targets.

In another embodiment, the invention features conjugates and/or complexes of nucleic acid molecules targeting Ras genes such as K-Ras, H-Ras, and/or N-Ras. Compositions and conjugates are used to facilitate delivery of molecules into a biological system, such as cells. The conjugates provided by the instant invention can impart therapeutic activity by transferring therapeutic compounds across cellular membranes, altering the pharmacokinetics, and/or modulating the localization of nucleic acid molecules of the invention. The present invention encompasses the design and synthesis of novel agents for the delivery of molecules, including but not limited to, small molecules, lipids, phospholipids, nucleosides, nucleotides, nucleic acids, antibodies, toxins, negatively charged polymers and other polymers, for example proteins, peptides, hormones, carbohydrates, polyethylene glycols, or polyamines, across cellular membranes. In general, the transporters described are designed to be used

either individually or as part of a multi-component system, with or without degradable linkers. These compounds are expected to improve delivery and/or localization of nucleic acid molecules of the invention into a number of cell types originating from different tissues, in the presence or absence of serum (see Sullenger and Cech, US 5,854,038). Conjugates of
5 the molecules described herein can be attached to biologically active molecules via linkers that are biodegradable, such as biodegradable nucleic acid linker molecules.

The term “biodegradable nucleic acid linker molecule” as used herein, refers to a nucleic acid molecule that is designed as a biodegradable linker to connect one molecule to another molecule, for example, a biologically active molecule. The stability of the
10 biodegradable nucleic acid linker molecule can be modulated by using various combinations of ribonucleotides, deoxyribonucleotides, and chemically modified nucleotides, for example 2'-O-methyl, 2'-fluoro, 2'-amino, 2'-O-amino, 2'-C-allyl, 2'-O-allyl, and other 2'-modified or base modified nucleotides. The biodegradable nucleic acid linker molecule can be a dimer, trimer, tetramer or longer nucleic acid molecule, for example, an oligonucleotide of about 2,
15 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length, or can comprise a single nucleotide with a phosphorus based linkage, for example, a phosphoramidate or phosphodiester linkage. The biodegradable nucleic acid linker molecule can also comprise nucleic acid backbone, nucleic acid sugar, or nucleic acid base modifications.

20 The term “biodegradable” as used herein, refers to degradation in a biological system, for example, enzymatic degradation or chemical degradation.

The term “biologically active molecule” as used herein, refers to compounds or molecules that are capable of eliciting or modifying a biological response in a system. Non-limiting examples of biologically active molecules contemplated by the instant invention
25 include therapeutically active molecules such as antibodies, hormones, antivirals, peptides, proteins, therapeutics, small molecules, vitamins, co-factors, nucleosides, nucleotides, oligonucleotides, enzymatic nucleic acids, antisense nucleic acids, triplex forming oligonucleotides, 2,5-A chimeras, siRNA, dsRNA, allozymes, aptamers, decoys and analogs thereof. Biologically active molecules of the invention also include molecules capable of
30 modulating the pharmacokinetics and/or pharmacodynamics of other biologically active molecules, for example lipids and polymers such as polyamines, polyamides, polyethylene glycol and other polyethers.

The term “phospholipid” as used herein, refers to a hydrophobic molecule comprising at least one phosphorus group. For example, a phospholipid can comprise a phosphorus

containing group and saturated or unsaturated alkyl group, optionally substituted with OH, COOH, oxo, amine, or substituted or unsubstituted aryl groups.

Use of the nucleic acid-based molecules of the invention can lead to better treatment of the disease progression by affording the possibility of combination therapies (e.g., multiple antisense or enzymatic nucleic acid molecules targeted to different genes, nucleic acid molecules coupled with known small molecule inhibitors, or intermittent treatment with combinations of molecules (including different motifs) and/or other chemical or biological molecules). The treatment of subjects with nucleic acid molecules can also include combinations of different types of nucleic acid molecules.

In the case that down-regulation of the target is desired, therapeutic nucleic acid molecules (e.g., DNAzymes) delivered exogenously are optimally stable within cells until translation of the target RNA has been inhibited long enough to reduce the levels of the targeted protein. This period of time varies between hours to days depending upon the disease state. These nucleic acid molecules should be resistant to nucleases in order to function as effective intracellular therapeutic agents. Improvements in the chemical synthesis of nucleic acid molecules described in the instant invention and others known in the art have expanded the ability to modify nucleic acid molecules by introducing nucleotide modifications to enhance their nuclease stability as described above.

In another embodiment, nucleic acid catalysts having chemical modifications that maintain or enhance enzymatic activity are provided. Such nucleic acids are also generally more resistant to nucleases than unmodified nucleic acid. Thus, the *in vitro* and/or *in vivo* the activity of the nucleic acid should not be significantly lowered. As exemplified herein, such enzymatic nucleic acids are useful for *in vitro* and/or *in vivo* techniques even if activity over all is reduced 10 fold (Burgin *et al.*, 1996, *Biochemistry*, 35, 14090). Such enzymatic nucleic acids herein are said to "maintain" the enzymatic activity of an all RNA ribozyme or all DNA DNAzyme.

In another aspect the nucleic acid molecules comprise a 5' and/or a 3'- cap structure.

By "cap structure" is meant chemical modifications, which have been incorporated at either terminus of the oligonucleotide (see, for example, Wincott *et al.*, WO 97/26270, incorporated by reference herein). These terminal modifications protect the nucleic acid molecule from exonuclease degradation, and can help in delivery and/or localization within a cell. The cap can be present at the 5'-terminus (5'-cap) or at the 3'-terminus (3'-cap) or can be present on both termini. In non-limiting examples, the 5'-cap includes inverted abasic

residue (moiety), 4',5'-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide, 4'-thio nucleotide, carbocyclic nucleotide; 1,5-anhydrohexitol nucleotide; L-nucleotides; alpha-nucleotides; modified base nucleotide; phosphorodithioate linkage; *threo*-pentofuranosyl nucleotide; acyclic 3',4'-seco nucleotide; acyclic 3,4-dihydroxybutyl nucleotide; acyclic 3,5-dihydroxypentyl nucleotide, 3'-3'-inverted nucleotide moiety; 3'-3'-inverted abasic moiety; 3'-2'-inverted nucleotide moiety; 3'-2'-inverted abasic moiety; 1,4-butanediol phosphate; 3'-phosphoramidate; hexylphosphate; aminohexyl phosphate; 3'-phosphate; 3'-phosphorothioate; phosphorodithioate; or bridging or non-bridging methylphosphonate moiety (for more details see Wincott *et al.*, International PCT publication No. WO 97/26270, incorporated by reference herein).

In another embodiment, the 3'-cap includes, for example 4',5'-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide; 4'-thio nucleotide, carbocyclic nucleotide; 5'-amino-alkyl phosphate; 1,3-diamino-2-propyl phosphate, 3-aminopropyl phosphate; 6-aminohexyl phosphate; 1,2-aminododecyl phosphate; hydroxypropyl phosphate; 1,5-anhydrohexitol nucleotide; L-nucleotide; alpha-nucleotide; modified base nucleotide; phosphorodithioate; *threo*-pentofuranosyl nucleotide; acyclic 3',4'-seco nucleotide; 3,4-dihydroxybutyl nucleotide; 3,5-dihydroxypentyl nucleotide, 5'-5'-inverted nucleotide moiety; 5'-5'-inverted abasic moiety; 5'-phosphoramidate; 5'-phosphorothioate; 1,4-butanediol phosphate; 5'-amino; bridging and/or non-bridging 5'-phosphoramidate, phosphorothioate and/or phosphorodithioate, 20 bridging or non bridging methylphosphonate and 5'-mercapto moieties (for more details see Beaucage and Iyer, 1993, *Tetrahedron* 49, 1925; incorporated by reference herein).

By the term "non-nucleotide" is meant any group or compound which can be incorporated into a nucleic acid chain in the place of one or more nucleotide units, including either sugar and/or phosphate substitutions, and allows the remaining bases to exhibit their enzymatic activity. The group or compound is abasic in that it does not contain a commonly recognized nucleotide base, such as adenosine, guanine, cytosine, uracil or thymine.

The term "alkyl" as used herein refers to a saturated aliphatic hydrocarbon, including straight-chain, branched-chain "isoalkyl", and cyclic alkyl groups. The term "alkyl" also comprises alkoxy, alkyl-thio, alkyl-thio-alkyl, alkoxyalkyl, alkylamino, alkenyl, alkynyl, 30 alkoxy, cycloalkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heteroaryl, C1-C6 hydrocarbyl, aryl or substituted aryl groups. Preferably, the alkyl group has 1 to 12 carbons. More preferably it is a lower alkyl of from about 1 to 7 carbons, more preferably about 1 to 4 carbons. The alkyl group can be substituted or unsubstituted. When substituted the substituted group(s) preferably comprise hydroxy, oxy, thio, amino, nitro, cyano, alkoxy,

alkyl-thio, alkyl-thio-alkyl, alkoxyalkyl, alkylamino, silyl, alkenyl, alkynyl, alkoxy, cycloalkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heteroaryl, C1-C6 hydrocarbyl, aryl or substituted aryl groups. The term "alkyl" also includes alkenyl groups containing at least one carbon-carbon double bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkenyl group has about 2 to 12 carbons. More preferably it is a lower alkenyl of from about 2 to 7 carbons, more preferably about 2 to 4 carbons. The alkenyl group can be substituted or unsubstituted. When substituted the substituted group(s) preferably comprise hydroxy, oxy, thio, amino, nitro, cyano, alkoxy, alkyl-thio, alkyl-thio-alkyl, alkoxyalkyl, alkylamino, silyl, alkenyl, alkynyl, alkoxy, cycloalkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heteroaryl, C1-C6 hydrocarbyl, aryl or substituted aryl groups.

The term "alkyl" also includes alkynyl groups containing at least one carbon-carbon triple bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkynyl group has about 2 to 12 carbons. More preferably it is a lower alkynyl of from about 2 to 7 carbons, more preferably about 2 to 4 carbons. The alkynyl group can be substituted or unsubstituted. When substituted the substituted group(s) preferably comprise hydroxy, oxy, thio, amino, nitro, cyano, alkoxy, alkyl-thio, alkyl-thio-alkyl, alkoxyalkyl, alkylamino, silyl, alkenyl, alkynyl, alkoxy, cycloalkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heteroaryl, C1-C6 hydrocarbyl, aryl or substituted aryl groups. Alkyl groups or moieties of the invention can also include aryl, alkylaryl, carbocyclic aryl, heterocyclic aryl, amide and ester groups. The preferred substituent(s) of aryl groups are halogen, trihalomethyl, hydroxyl, SH, OH, cyano, alkoxy, alkyl, alkenyl, alkynyl, and amino groups. An "alkylaryl" group refers to an alkyl group (as described above) covalently joined to an aryl group (as described above). Carbocyclic aryl groups are groups wherein the ring atoms on the aromatic ring are all carbon atoms. The carbon atoms are optionally substituted. Heterocyclic aryl groups are groups having from about 1 to 3 heteroatoms as ring atoms in the aromatic ring and the remainder of the ring atoms are carbon atoms. Suitable heteroatoms include oxygen, sulfur, and nitrogen, and include furanyl, thieryl, pyridyl, pyrrolyl, N-lower alkyl pyrrolo, pyrimidyl, pyrazinyl, imidazolyl and the like, all optionally substituted. An "amide" refers to an -C(O)-NH-R, where R is either alkyl, aryl, alkylaryl or hydrogen. An "ester" refers to an -C(O)-OR', where R is either alkyl, aryl, alkylaryl or hydrogen.

The term "alkoxyalkyl" as used herein refers to an alkyl-O-alkyl ether, for example, methoxyethyl or ethoxymethyl.

The term "alkyl-thio-alkyl" as used herein refers to an alkyl-S-alkyl thioether, for example, methylthiomethyl or methylthioethyl.

5 The term "amino" as used herein refers to a nitrogen containing group as is known in the art derived from ammonia by the replacement of one or more hydrogen radicals by organic radicals. For example, the terms "aminoacyl" and "aminoalkyl" refer to specific N-substituted organic radicals with acyl and alkyl substituent groups respectively.

The term "amination" as used herein refers to a process in which an amino group or substituted amine is introduced into an organic molecule.

10 The term "exocyclic amine protecting moiety" as used herein refers to a nucleobase amino protecting group compatible with oligonucleotide synthesis, for example, an acyl or amide group.

The term "alkenyl" as used herein refers to a straight or branched hydrocarbon of a designed number of carbon atoms containing at least one carbon-carbon double bond. Examples of "alkenyl" include vinyl, allyl, and 2-methyl-3-heptene.

15 The term "alkoxy" as used herein refers to an alkyl group of indicated number of carbon atoms attached to the parent molecular moiety through an oxygen bridge. Examples of alkoxy groups include, for example, methoxy, ethoxy, propoxy and isopropoxy.

20 The term "alkynyl" as used herein refers to a straight or branched hydrocarbon of a designed number of carbon atoms containing at least one carbon-carbon triple bond. Examples of "alkynyl" include propargyl, propyne, and 3-hexyne.

25 The term "aryl" as used herein refers to an aromatic hydrocarbon ring system containing at least one aromatic ring. The aromatic ring can optionally be fused or otherwise attached to other aromatic hydrocarbon rings or non-aromatic hydrocarbon rings. Examples of aryl groups include, for example, phenyl, naphthyl, 1,2,3,4-tetrahydronaphthalene and biphenyl. Preferred examples of aryl groups include phenyl and naphthyl.

The term "cycloalkenyl" as used herein refers to a C3-C8 cyclic hydrocarbon containing at least one carbon-carbon double bond. Examples of cycloalkenyl include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadiene, cyclohexenyl, 1,3-cyclohexadiene, cycloheptenyl, cycloheptatrienyl, and cyclooctenyl.

The term "cycloalkyl" as used herein refers to a C3-C8 cyclic hydrocarbon. Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.

5 The term "cycloalkylalkyl," as used herein, refers to a C3-C7 cycloalkyl group attached to the parent molecular moiety through an alkyl group, as defined above. Examples of cycloalkylalkyl groups include cyclopropylmethyl and cyclopentylethyl.

The terms "halogen" or "halo" as used herein refers to indicate fluorine, chlorine, bromine, and iodine.

10 The term "heterocycloalkyl," as used herein refers to a non-aromatic ring system containing at least one heteroatom selected from nitrogen, oxygen, and sulfur. The heterocycloalkyl ring can be optionally fused to or otherwise attached to other heterocycloalkyl rings and/or non-aromatic hydrocarbon rings. Preferred heterocycloalkyl groups have from 3 to 7 members. Examples of heterocycloalkyl groups include, for example, piperazine, morpholine, piperidine, tetrahydrofuran, pyrrolidine, and pyrazole.
15 Preferred heterocycloalkyl groups include piperidinyl, piperazinyl, morpholinyl, and pyrrolidinyl.

20 The term "heteroaryl" as used herein refers to an aromatic ring system containing at least one heteroatom selected from nitrogen, oxygen, and sulfur. The heteroaryl ring can be fused or otherwise attached to one or more heteroaryl rings, aromatic or non-aromatic hydrocarbon rings or heterocycloalkyl rings. Examples of heteroaryl groups include, for example, pyridine, furan, thiophene, 5,6,7,8-tetrahydroisoquinoline and pyrimidine. Preferred examples of heteroaryl groups include thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidyl, imidazolyl, benzimidazolyl, furanyl, benzofuranyl, thiazolyl, benzothiazolyl, isoxazolyl, oxadiazolyl, isothiazolyl, benzisothiazolyl, triazolyl, tetrazolyl, pyrrolyl, indolyl,
25 pyrazolyl, and benzopyrazolyl.

30 The term "C1-C6 hydrocarbyl" as used herein refers to straight, branched, or cyclic alkyl groups having 1-6 carbon atoms, optionally containing one or more carbon-carbon double or triple bonds. Examples of hydrocarbyl groups include, for example, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, 3-methylpentyl, vinyl, 2-pentene, cyclopropylmethyl, cyclopropyl, cyclohexylmethyl, cyclohexyl and propargyl. When reference is made herein to C1-C6 hydrocarbyl containing one or two double or triple bonds it is understood that at least two

carbons are present in the alkyl for one double or triple bond, and at least four carbons for two double or triple bonds.

By "nucleotide" is meant a heterocyclic nitrogenous base in N-glycosidic linkage with a phosphorylated sugar. Nucleotides are recognized in the art to include natural bases (standard), and modified bases well known in the art. Such bases are generally located at the 1' position of a nucleotide sugar moiety. Nucleotides generally comprise a base, sugar and a phosphate group. The nucleotides can be unmodified or modified at the sugar, phosphate and/or base moiety, (also referred to interchangeably as nucleotide analogs, modified nucleotides, non-natural nucleotides, non-standard nucleotides and other; see for example,

5 Usman and McSwiggen, *supra*; Eckstein *et al.*, International PCT Publication No. WO 92/07065; Usman *et al.*, International PCT Publication No. WO 93/15187; Uhlman & Peyman, *supra* all are hereby incorporated by reference herein. There are several examples of modified nucleic acid bases known in the art as summarized by Limbach *et al.*, 1994, Nucleic Acids Res. 22, 2183. Some of the non-limiting examples of chemically modified and other
10 natural nucleic acid bases that can be introduced into nucleic acids include, for example, inosine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2, 4, 6-trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (e.g., 5-methylcytidine), 5-alkyluridines (e.g., ribothymidine), 5-halouridine (e.g., 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (e.g. 6-methyluridine), propyne, quenosine, 2-
15 thiouridine, 4-thiouridine, wybutosine, wybutoxosine, 4-acetylcytidine, 5-(carboxyhydroxymethyl)uridine, 5'-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluridine, beta-D-galactosylqueosine, 1-methyladenosine, 1-methylinosine, 2,2-dimethylguanosine, 3-methylcytidine, 2-methyladenosine, 2-methylguanosine, N6-methyladenosine, 7-methylguanosine, 5-methoxyaminomethyl-2-
20 thiouridine, 5-methylaminomethyluridine, 5-methylcarbonylmethyluridine, 5-methoxyuridine, 5-methyl-2-thiouridine, 2-methylthio-N6-isopentenyladenosine, beta-D-mannosylqueosine, uridine-5-oxyacetic acid, 2-thiocytidine, threonine derivatives and others (Burgin *et al.*, 1996, Biochemistry, 35, 14090; Uhlman & Peyman, *supra*). By "modified bases" in this aspect is meant nucleotide bases other than adenine, guanine, cytosine and uracil at 1' position or their equivalents; such bases can be used at any position, for example, within the catalytic core of an enzymatic nucleic acid molecule and/or in the substrate-binding regions of the nucleic acid molecule.

By "nucleoside" is meant a heterocyclic nitrogenous base in N-glycosidic linkage with a sugar. Nucleosides are recognized in the art to include natural bases (standard), and modified bases well known in the art. Such bases are generally located at the 1' position of a

nucleoside sugar moiety. Nucleosides generally comprise a base and sugar group. The nucleosides can be unmodified or modified at the sugar, and/or base moiety (also referred to interchangeably as nucleoside analogs, modified nucleosides, non-natural nucleosides, non-standard nucleosides and other; see for example, Usman and McSwiggen, *supra*; Eckstein *et al.*, International PCT Publication No. WO 92/07065; Usman *et al.*, International PCT Publication No. WO 93/15187; Uhlman & Peyman, *supra* all are hereby incorporated by reference herein). There are several examples of modified nucleic acid bases known in the art as summarized by Limbach *et al.*, 1994, *Nucleic Acids Res.* 22, 2183. Some of the non-limiting examples of chemically modified and other natural nucleic acid bases that can be introduced into nucleic acids include, inosine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2-, 4-, 6-trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (*e.g.*, 5-methylcytidine), 5-alkyluridines (*e.g.*, ribothymidine), 5-halouridine (*e.g.*, 5-bromouridine) or 6-azapurimidines or 6-alkylpyrimidines (*e.g.* 6-methyluridine), propyne, quenosine, 2-thiouridine, 4-thiouridine, wybutoxine, wybutoxosine, 4-acetylcytidine, 5-(carboxyhydroxymethyl)uridine, 5'-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluridine, beta-D-galactosylqueosine, 1-methyladenosine, 1-methylinosine, 2,2-dimethylguanosine, 3-methylcytidine, 2-methyladenosine, 2-methylguanosine, N6-methyladenosine, 7-methylguanosine, 5-methoxyaminomethyl-2-thiouridine, 5-methylaminomethyluridine, 5-methylcarbonylmethyluridine, 5-methoxyuridine, 5-methyl-2-thiouridine, 2-methylthio-N6-isopentenyladenosine, beta-D-mannosylqueosine, uridine-5-oxyacetic acid, 2-thiocytidine, threonine derivatives and others (Burgin *et al.*, 1996, *Biochemistry*, 35, 14090; Uhlman & Peyman, *supra*). By "modified bases" in this aspect is meant nucleoside bases other than adenine, guanine, cytosine and uracil at 1' position or their equivalents; such bases can be used at any position, for example, within the catalytic core of an enzymatic nucleic acid molecule and/or in the substrate-binding regions of the nucleic acid molecule.

In one embodiment, the invention features modified enzymatic nucleic acid molecules with phosphate backbone modifications comprising one or more phosphorothioate, phosphorodithioate, methylphosphonate, morpholino, amide carbamate, carboxymethyl, acetamide, polyamide, sulfonate, sulfonamide, sulfamate, formacetal, thioformacetal, and/or alkylsilyl, substitutions. For a review of oligonucleotide backbone modifications see Hunziker and Leumann, 1995, *Nucleic Acid Analogues: Synthesis and Properties*, in *Modern Synthetic Methods*, VCH, 331-417, and Mesmaeker *et al.*, 1994, *Novel Backbone Replacements for Oligonucleotides*, in *Carbohydrate Modifications in Antisense Research*, ACS, 24-39. These references are hereby incorporated by reference herein.

By "abasic" is meant sugar moieties lacking a base or having other chemical groups in place of a base at the 1' position, for example a 3',3'-linked or 5',5'-linked deoxyabasic ribose derivative (for more details see Wincott *et al.*, International PCT publication No. WO 97/26270).

5 By "unmodified nucleoside" is meant one of the bases adenine, cytosine, guanine, thymine, uracil joined to the 1' carbon of β-D-ribo-furanose.

By "modified nucleoside" is meant any nucleotide base which contains a modification in the chemical structure of an unmodified nucleotide base, sugar and/or phosphate.

In connection with 2'-modified nucleotides as described for the present invention, by
10 "amino" is meant 2'-NH₂ or 2'-O-NH₂, which can be modified or unmodified. Such modified groups are described, for example, in Eckstein *et al.*, U.S. Patent 5,672,695 and Matulic-Adamic *et al.*, WO 98/28317, respectively, which are both incorporated by reference in their entireties.

15 Various modifications to nucleic acid (e.g., DNAzyme) structure can be made to enhance the utility of these molecules. For example, such modifications can enhance shelf-life, half-life *in vitro*, stability, and ease of introduction of such oligonucleotides to the target site, including e.g., enhancing penetration of cellular membranes and conferring the ability to recognize and bind to targeted cells.

20 Use of these molecules can lead to better treatment of the disease progression by affording the possibility of combination therapies (e.g., multiple enzymatic nucleic acid molecules targeted to different genes, enzymatic nucleic acid molecules coupled with known small molecule inhibitors, or intermittent treatment with combinations of enzymatic nucleic acid molecules (including different enzymatic nucleic acid molecule motifs) and/or other chemical or biological molecules). The treatment of subjects with nucleic acid molecules can
25 also include combinations of different types of nucleic acid molecules. Therapies can be devised which include a mixture of enzymatic nucleic acid molecules (including different enzymatic nucleic acid molecule motifs), antisense and/or 2-5A chimera molecules to one or more targets to alleviate symptoms of a disease.

Administration of Nucleic Acid Molecules

30 Methods for the delivery of nucleic acid molecules are described in Akhtar *et al.*, 1992, *Trends Cell Bio.*, 2, 139; and *Delivery Strategies for Antisense Oligonucleotide Therapeutics*, ed. Akhtar, 1995, which are both incorporated herein by reference. Sullivan *et al.*, PCT WO

94/02595, further describes the general methods for delivery of enzymatic RNA molecules. These protocols can be utilized for the delivery of virtually any nucleic acid molecule. Nucleic acid molecules can be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by 5 iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. Alternatively, the nucleic acid/vehicle combination is locally delivered by direct injection or by use of an infusion pump. Other routes of delivery include, but are not limited to oral (tablet or pill form) and/or intrathecal delivery (Gold, 1997, *Neuroscience*, 76, 1153-1158). Other approaches include the 10 use of various transport and carrier systems, for example though the use of conjugates and biodegradable polymers. For a comprehensive review on drug delivery strategies including CNS delivery, see Ho *et al.*, 1999, *Curr. Opin. Mol. Ther.*, 1, 336-343 and Jain, *Drug Delivery Systems: Technologies and Commercial Opportunities*, Decision Resources, 1998 and Groothuis *et al.*, 1997, *J. NeuroVirol.*, 3, 387-400. More detailed descriptions of nucleic 15 acid delivery and administration are provided in Sullivan *et al.*, *supra*, Draper *et al.*, PCT WO93/23569, Beigelman *et al.*, PCT WO99/05094, and Klimuk *et al.*, PCT WO99/04819, all of which have been incorporated by reference herein.

The molecules of the instant invention can be used as pharmaceutical agents. Pharmaceutical agents prevent, inhibit the occurrence, or treat (alleviate a symptom to some 20 extent, preferably all of the symptoms) of a disease state in a subject.

The negatively charged polynucleotides of the invention can be administered (*e.g.*, RNA, DNA or protein) and introduced into a subject by any standard means described herein and known in the art, with or without stabilizers, buffers, and the like, to form a pharmaceutical composition. When it is desired to use a liposome delivery mechanism, 25 standard protocols for formation of liposomes can be followed. The compositions of the present invention can also be formulated and used as tablets, capsules or elixirs for oral administration; suppositories for rectal administration; sterile solutions; suspensions for injectable administration; and the other compositions known in the art.

The present invention also includes pharmaceutically acceptable formulations of the 30 compounds described. These formulations include salts of the above compounds, *e.g.*, acid addition salts, for example, salts of hydrochloric, hydrobromic, acetic acid, and benzene sulfonic acid.

A pharmacological composition or formulation refers to a composition or formulation in a form suitable for administration, *e.g.*, systemic administration, into a cell or subject,

preferably a human. Suitable forms, in part, depend upon the use or the route of entry, for example oral, transdermal, or by injection. Such forms should not prevent the composition or formulation from reaching a target cell (*i.e.*, a cell to which the negatively charged polymer is desired to be delivered to). For example, pharmacological compositions injected into the
5 blood stream should be soluble. Other factors are known in the art, and include considerations such as toxicity and forms which prevent the composition or formulation from exerting its effect.

By "systemic administration" is meant *in vivo* systemic absorption or accumulation of drugs in the blood stream followed by distribution throughout the entire body.
10 Administration routes which lead to systemic absorption include, without limitations: intravenous, subcutaneous, intraperitoneal, inhalation, oral, intrapulmonary and intramuscular. Each of these administration routes expose the desired negatively charged polymers, *e.g.*, nucleic acids, to an accessible diseased tissue. The rate of entry of a drug into the circulation has been shown to be a function of molecular weight or size. The use of a
15 liposome or other drug carrier comprising the compounds of the instant invention can potentially localize the drug, for example, in certain tissue types, such as the tissues of the reticular endothelial system (RES). A liposome formulation that can facilitate the association of drug with the surface of cells, such as, lymphocytes and macrophages is also useful. This approach can provide enhanced delivery of the drug to target cells by taking advantage of the
20 specificity of macrophage and lymphocyte immune recognition of abnormal cells, such as cancer cells.

By pharmaceutically acceptable formulation is meant, a composition or formulation that allows for the effective distribution of the nucleic acid molecules of the instant invention in the physical location most suitable for their desired activity. Non-limiting examples of agents
25 suitable for formulation with the nucleic acid molecules of the instant invention include: PEG conjugated nucleic acids, phospholipid conjugated nucleic acids, nucleic acids containing lipophilic moieties, phosphorothioates, P-glycoprotein inhibitors (such as Pluronic P85) which can enhance entry of drugs into various tissues, for example the CNS (Jollet-Riant and Tillement, 1999, *Fundam. Clin. Pharmacol.*, 13, 16-26); biodegradable polymers, such as
30 poly (DL-lactide-coglycolide) microspheres for sustained release delivery after implantation (Emerich, DF *et al*, 1999, *Cell Transplant*, 8, 47-58) Alkermes, Inc. Cambridge, MA; and loaded nanoparticles, such as those made of polybutylcyanoacrylate, which can deliver drugs across the blood brain barrier and can alter neuronal uptake mechanisms (*Prog Neuropsychopharmacol Biol Psychiatry*, 23, 941-949, 1999). Other non-limiting examples of
35 delivery strategies, including CNS delivery of the nucleic acid molecules of the instant

invention include material described in Boado *et al.*, 1998, *J. Pharm. Sci.*, 87, 1308-1315; Tyler *et al.*, 1999, *FEBS Lett.*, 421, 280-284; Pardridge *et al.*, 1995, *PNAS USA.*, 92, 5592-5596; Boado, 1995, *Adv. Drug Delivery Rev.*, 15, 73-107; Aldrian-Herrada *et al.*, 1998, *Nucleic Acids Res.*, 26, 4910-4916; and Tyler *et al.*, 1999, *PNAS USA.*, 96, 7053-7058. All

5 these references are hereby incorporated herein by reference.

The invention also features the use of the composition comprising surface-modified liposomes containing poly (ethylene glycol) lipids (PEG-modified, or long-circulating liposomes or stealth liposomes). Nucleic acid molecules of the invention can also comprise covalently attached PEG molecules of various molecular weights. These formulations offer a
10 method for increasing the accumulation of drugs in target tissues. This class of drug carriers resists opsonization and elimination by the mononuclear phagocytic system (MPS or RES), thereby enabling longer blood circulation times and enhanced tissue exposure for the encapsulated drug (Lasic *et al. Chem. Rev.* 1995, 95, 2601-2627; Ishiwata *et al., Chem. Pharm. Bull.* 1995, 43, 1005-1011). Such liposomes have been shown to accumulate
15 selectively in tumors, presumably by extravasation and capture in the neovascularized target tissues (Lasic *et al., Science* 1995, 267, 1275-1276; Oku *et al.*, 1995, *Biochim. Biophys. Acta*, 1238, 86-90). The long-circulating liposomes enhance the pharmacokinetics and pharmacodynamics of DNA and RNA, particularly compared to conventional cationic liposomes, which are known to accumulate in tissues of the MPS (Liu *et al., J. Biol. Chem.*
20 1995, 42, 24864-24870; Choi *et al.*, International PCT Publication No. WO 96/10391; Ansell *et al.*, International PCT Publication No. WO 96/10390; Holland *et al.*, International PCT Publication No. WO 96/10392; all of which are incorporated by reference herein). Long-circulating liposomes are also likely to protect drugs from nuclease degradation to a greater extent compared to cationic liposomes, based on their ability to avoid accumulation in
25 metabolically aggressive MPS tissues such as the liver and spleen. All of these references are incorporated by reference herein.

The present invention also includes compositions prepared for storage or administration that include a pharmaceutically effective amount of the desired compounds in a pharmaceutically acceptable carrier or diluent. Acceptable carriers or diluents for therapeutic
30 use are well known in the pharmaceutical art, and are described, for example, in *Remington's Pharmaceutical Sciences*, Mack Publishing Co. (A.R. Gennaro edit. 1985), hereby incorporated by reference herein. For example, preservatives, stabilizers, dyes and flavoring agents can be provided. These include sodium benzoate, sorbic acid and esters of *p*-hydroxybenzoic acid. In addition, antioxidants and suspending agents can be used.

A pharmaceutically effective dose is that dose required to prevent, inhibit the occurrence, or treat (alleviate a symptom to some extent, preferably all of the symptoms) of a disease state. The pharmaceutically effective dose depends on the type of disease, the composition used, the route of administration, the type of mammal being treated, the physical characteristics of the specific mammal under consideration, concurrent medication, and other factors which those skilled in the medical arts will recognize. Generally, an amount between 5 0.1 mg/kg and 100 mg/kg body weight/day of active ingredients is administered dependent upon potency of the negatively charged polymer.

The nucleic acid molecules of the invention and formulations thereof can be 10 administered orally, topically, parenterally, by inhalation or spray, or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and/or vehicles. The term parenteral as used herein includes percutaneous, subcutaneous, intravascular (e.g., intravenous), intramuscular, or intrathecal injection or infusion techniques and the like. In addition, there is provided a pharmaceutical formulation 15 comprising a nucleic acid molecule of the invention and a pharmaceutically acceptable carrier. One or more nucleic acid molecules of the invention can be present in association with one or more non-toxic pharmaceutically acceptable carriers and/or diluents and/or adjuvants, and if desired other active ingredients. The pharmaceutical compositions containing nucleic acid molecules of the invention can be in a form suitable for oral use, for 20 example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard or soft capsules, or syrups or elixirs.

Compositions intended for oral use can be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions can contain one or more such sweetening agents, flavoring agents, coloring agents or preservative 25 agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients that are suitable for the manufacture of tablets. These excipients can be, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn 30 starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets can be uncoated or they can be coated by known techniques. In some cases such coatings can be prepared by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material 35 such as glyceryl monostearate or glyceryl distearate can be employed.

Formulations for oral use can also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.

- 5 Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example, sodium carboxymethylcellulose, methylcellulose, hydropropyl-methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents can be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions can also contain one or more preservatives, for example, ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.

- 20 Oily suspensions can be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions can contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents and flavoring agents can be added to provide palatable oral preparations. These compositions can be preserved by the addition of an anti-oxidant such as ascorbic acid.

- 25 Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents or suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, can also be present.

- 30 Pharmaceutical compositions of the invention can also be in the form of oil-in-water emulsions. The oily phase can be a vegetable oil or a mineral oil or mixtures of these. Suitable emulsifying agents can be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or

partial esters derived from fatty acids and hexitol, anhydrides, for example, sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions can also contain sweetening and flavoring agents.

5 Syrups and elixirs can be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol, glucose or sucrose. Such formulations can also contain a demulcent, a preservative and flavoring and coloring agents. The pharmaceutical compositions can be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension can be formulated according to the known art using those suitable dispersing
10 or wetting agents and suspending agents that have been mentioned above. The sterile injectable preparation can also be a sterile injectable solution or suspension in a non-toxic parentally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that can be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed
15 as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono-or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

20 The nucleic acid molecules of the invention can also be administered in the form of suppositories, *e.g.*, for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient that is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials include cocoa butter and polyethylene glycols.

25 Nucleic acid molecules of the invention can be administered parenterally in a sterile medium. The drug, depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as local anesthetics, preservatives and buffering agents can be dissolved in the vehicle.

30 Dosage levels of the order of from about 0.1 mg to about 140 mg per kilogram of body weight per day are useful in the treatment of the above-indicated conditions (about 0.5 mg to about 7 g per patient or subject per day). The amount of active ingredient that can be combined with the carrier materials to produce a single dosage form varies depending upon the host treated and the particular mode of administration. Dosage unit forms generally contain between from about 1 mg to about 500 mg of an active ingredient.

It is understood that the specific dose level for any particular patient or subject depends upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease undergoing therapy.

5 For administration to non-human animals, the composition can also be added to the animal feed or drinking water. It can be convenient to formulate the animal feed and drinking water compositions so that the animal takes in a therapeutically appropriate quantity of the composition along with its diet. It can also be convenient to present the composition as a premix for addition to the feed or drinking water.

10 The nucleic acid molecules of the present invention can also be administered to a patient or subject in combination with other therapeutic compounds to increase the overall therapeutic effect. The use of multiple compounds to treat an indication can increase the beneficial effects while reducing the presence of side effects.

15 In another aspect of the invention, nucleic acid molecules of the present invention are preferably expressed from transcription units (see for example Couture *et al.*, 1996, *TIG.*, 12, 510, Skillern *et al.*, International PCT Publication No. WO 00/22113, Conrad, International PCT Publication No. WO 00/22114, and Conrad, US 6,054,299) inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Enzymatic nucleic acid expressing viral vectors can be constructed based on, but not limited to, adeno-
20 associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the recombinant vectors capable of expressing the nucleic acid molecules are delivered as described above, and persist in target cells. Alternatively, viral vectors can be used that provide for transient expression of nucleic acid molecules. Such vectors can be repeatedly administered as necessary. Once expressed, the nucleic acid molecule binds to the target mRNA. Delivery of nucleic acid
25 molecule expressing vectors can be systemic, such as by intravenous or intra-muscular administration, by administration to target cells ex-planted from the subject followed by reintroduction into the subject, or by any other means that would allow for introduction into the desired target cell (for a review see Couture *et al.*, 1996, *TIG.*, 12, 510).

30 One aspect of the invention features an expression vector comprising a nucleic acid sequence encoding at least one of the nucleic acid molecules of the instant invention. The nucleic acid sequence encoding the nucleic acid molecule of the instant invention is operably linked in a manner that allows expression of that nucleic acid molecule.

Another aspect the invention features an expression vector comprising nucleic acid sequence encoding at least one of the nucleic acid molecules of the invention, in a manner which allows expression of that nucleic acid molecule. The expression vector comprises in one embodiment; a) a transcription initiation region; b) a transcription termination region; c) 5 a nucleic acid sequence encoding at least one said nucleic acid molecule; and wherein said sequence is operably linked to said initiation region and said termination region, in a manner that allows expression and/or delivery of said nucleic acid molecule.

In another embodiment, the expression vector comprises: a) a transcription initiation region; b) a transcription termination region; c) an open reading frame; d) a nucleic acid 10 sequence encoding at least one said nucleic acid molecule, wherein said sequence is operably linked to the 3'-end of said open reading frame; and wherein said sequence is operably linked to said initiation region, said open reading frame and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule. In yet another embodiment the expression vector comprises: a) a transcription initiation region; b) a 15 transcription termination region; c) an intron; d) a nucleic acid sequence encoding at least one said nucleic acid molecule; and wherein said sequence is operably linked to said initiation region, said intron and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule.

In another embodiment, the expression vector comprises: a) a transcription initiation 20 region; b) a transcription termination region; c) an intron; d) an open reading frame; e) a nucleic acid sequence encoding at least one said nucleic acid molecule, wherein said sequence is operably linked to the 3'-end of said open reading frame; and wherein said sequence is operably linked to said initiation region, said intron, said open reading frame and said termination region, in a manner which allows expression and/or delivery of said nucleic acid 25 molecule.

Examples

The following are non-limiting examples showing the selection, isolation, synthesis and activity of nucleic acids of the instant invention.

Example 1: Identification of Potential Target Sites in Human Ras RNA

30 The sequence of human Ras genes were screened for accessible sites using a computer-folding algorithm. Regions of the RNA that do not form secondary folding structures and contain potential enzymatic nucleic acid molecule and/or antisense binding/cleavage sites

were identified. The sequences of K-Ras and H-Ras binding/cleavage sites are shown in **Tables II and III**.

Example 2: Selection of Enzymatic Nucleic Acid Cleavage Sites in Human Ras RNA

Enzymatic nucleic acid molecule target sites were chosen by analyzing sequences of
5 Human K-Ras and H-Ras (for example, Genbank accession Nos: NM_004985 and
NM_005343 respectively) and prioritizing the sites on the basis of folding. Enzymatic
nucleic acid molecules were designed that can bind each target and were individually
analyzed by computer folding (Christoffersen *et al.*, 1994 *J. Mol. Struc. Theochem*, 311, 273;
Jaeger *et al.*, 1989, *Proc. Natl. Acad. Sci. USA*, 86, 7706) to assess whether the enzymatic
10 nucleic acid molecule sequences fold into the appropriate secondary structure. Those
enzymatic nucleic acid molecules with unfavorable intramolecular interactions between the
binding arms and the catalytic core are eliminated from consideration. As noted below,
varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on
each arm are able to bind to, or otherwise interact with, the target RNA.

15 Example 3: Chemical Synthesis and Purification of Enzymatic Nucleic Acid Molecules for
Efficient Cleavage and/or blocking of Ras RNA

DNAzyme molecules are designed to anneal to various sites in the RNA message. The
binding arms of the DNAzyme molecules are complementary to the target site sequences
described above. The DNAzymes were chemically synthesized. The method of synthesis
20 used followed the procedure for nucleic acid synthesis as described herein and in Usman *et
al.*, (1987 *J. Am. Chem. Soc.*, 109, 7845), Scaringe *et al.*, (1990 *Nucleic Acids Res.*, 18,
5433) and Wincott *et al.*, *supra*, and made use of common nucleic acid protecting and
coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end.
The average stepwise coupling yields were typically >98%. The sequences of the chemically
25 synthesized DNAzyme molecules used in this study are shown below in **Tables II and III**.

Example 4: DNAzyme Cleavage of Ras RNA Target *in vitro*

DNAzymes targeted to the human K-Ras and H-Ras RNA are designed and synthesized
as described above. These enzymatic nucleic acid molecules can be tested for cleavage
activity *in vitro*, for example, using the following procedure. The target sequences and the
30 nucleotide location within the K-Ras and H-Ras RNA are given in **Tables II and III**
respectively.

Cleavage Reactions:

DNAzymes and substrates were synthesized in 96-well format using 0.2 μ mol scale. Substrates were 5'-³²P labeled and gel purified using 7.5% polyacrylamide gels, and eluting into water. Assays were done by combining trace substrate with 500nM DNAzyme or greater, and initiated by adding final concentrations of 40mM Mg²⁺, and 50mM Tris-Cl pH 8.0. For each DNAzyme/substrate combination a control reaction was done to ensure cleavage was not the result of non-specific substrate degradation. A single three hour time point was taken and run on a 15% polyacrylamide gel to asses cleavage activity. Gels were dried and scanned using a Molecular Dynamics Phosphorimager and quantified using Molecular Dynamics ImageQuant software. Percent cleaved was determined by dividing values for cleaved substrate bands by full-length (uncleaved) values plus cleaved values and multiplying by 100 (%cleaved=[C/(U+C)]*100).

Example 5: DNAzyme Cleavage of Ras RNA Target *in vivo**Cell Culture*

Wickstrom, 2001, *Mol. Biotechnol.*, 18, 35-35, describes a cell culture system in which antisense oligonucleotides targeting H-Ras were studied in transformed mouse cells that form solid tumors. Treatment of cells with antisense targeting H-Ras resulted in the sequence specific and dose dependent inhibition of H-Ras expression. In this study, it was determined that antisense targeting the first intron region of H-Ras were more effective than antisense targeting the initiation codon region.

Kita *et al.*, 1999, *Int. J. Cancer*, 80, 553-558, describes the growth inhibition of human pancreatic cancer cell lines by antisense oligonucleotides specific to mutated K-Ras genes. Antisense oligonucleotides were transfected to the transformed cells using liposomes. Cellular proliferation, K-Ras mRNA expression, and K-Ras protein synthesis were all evaluated as endpoints. Sato *et al.*, 2000, *Cancer Lett.*, 155, 153-161, describes another human pancreatic cancer cell line, HOR-P1, that is characterized by high angiogenic activity and metastatic potential. Genetic and molecular analysis of this cell line revealed both increased telomerase activity and a mutation in the K-Ras oncogene.

A variety of endpoints have been used in cell culture models to look at Ras-mediated effects after treatment with anti-Ras agents. Phenotypic endpoints include inhibition of cell proliferation, RNA expression, and reduction of Ras protein expression. Because Ras oncogene mutations are directly associated with increased proliferation of certain tumor cells,

a proliferation endpoint for cell culture assays is preferably used as the primary screen. There are several methods by which this endpoint can be measured. Following treatment of cells with DNAzymes, cells are allowed to grow (typically 5 days) after which either the cell viability, the incorporation of [³H] thymidine into cellular DNA and/or the cell density can be
5 measured. The assay of cell density is done in a 96-well format using commercially available fluorescent nucleic acid stains (such as Syto® 13 or CyQuant®). As a secondary, confirmatory endpoint a DNAzyme-mediated decrease in the level of Ras protein expression is evaluated using a Ras-specific ELISA.

Animal Models

10 Evaluating the efficacy of anti-Ras agents in animal models is an important prerequisite to human clinical trials. As in cell culture models, the most Ras sensitive mouse tumor xenografts are those derived from cancer cells that express mutant Ras proteins. Nude mice bearing H-Ras transformed bladder cancer cell xenografts were sensitive to an anti-Ras antisense nucleic acid, resulting in an 80% inhibition of tumor growth after a 31 day treatment
15 period (Wickstrom, 2001, *Mol. Biotechnol.*, 18, 35-35). Zhang *et al.*, 2000, *Gene Ther.*, 7, 2041, describes an anti-K-Ras ribozyme adenoviral vector (KRbz-ADV) targeting a K-Ras mutant (K-Ras codon 12 GGT to GTT; H441 and H1725 cells respectively). Non-small cell lung cancer cells (NSCLC H441 and H1725 cells) that express the mutant K-Ras protein were used in nude mouse xenografts compared to NSCLC H1650 cells that lack the relevant
20 mutation. Pre-treatment with KRbz-ADV completely abrogated engraftment of both H441 and H1725 cells and compared to 100% engraftment and tumor growth in animals that received untreated tumor cells or a control vector. The above studies provide proof that inhibition of Ras expression by anti-Ras agents causes inhibition of tumor growth in animals.
25 Anti-Ras DNAzymes chosen from *in vitro* assays are further tested in similar mouse xenograft models. Active DNAzymes are subsequently tested in combination with standard chemotherapies.

Indications

Particular degenerative and disease states that are associated with Ras expression modulation include but are not limited to cancer, for example lung cancer, colorectal cancer,
30 bladder cancer, pancreatic cancer, breast cancer, prostate cancer and/or any other diseases or conditions that are related to or will respond to the levels of Ras in a cell or tissue, alone or in combination with other therapies.

The present body of knowledge in Ras research indicates the need for methods to assay Ras activity and for compounds that can regulate Ras expression for research, diagnostic, and therapeutic use.

The use of monoclonal antibodies, chemotherapy, radiation therapy, and analgesics, are
5 all non-limiting examples of methods that can be combined with or used in conjunction with the nucleic acid molecules (e.g. DNAzymes) of the instant invention. Common chemotherapies that can be combined with nucleic acid molecules of the instant invention include various combinations of cytotoxic drugs to kill cancer cells. These drugs include but
10 are not limited to paclitaxel (Taxol), docetaxel, cisplatin, methotrexate, cyclophosphamide, doxorubicin, fluorouracil carboplatin, edatrexate, gemcitabine, vinorelbine etc. Those skilled in the art will recognize that other drug compounds and therapies can be similarly be readily combined with the nucleic acid molecules of the instant invention (e.g. DNAzyme molecules) are hence within the scope of the instant invention.

Diagnostic uses

15 The nucleic acid molecules of this invention (e.g., enzymatic nucleic acid molecules) are used as diagnostic tools to examine genetic drift and mutations within diseased cells or to detect the presence of Ras RNA in a cell. The close relationship between enzymatic nucleic acid molecule activity and the structure of the target RNA allows the detection of mutations in any region of the molecule that alters the base-pairing and three-dimensional structure of
20 the target RNA. Using multiple enzymatic nucleic acid molecules described in this invention, one maps nucleotide changes which are important to RNA structure and function *in vitro*, as well as in cells and tissues. Cleavage of target RNAs with enzymatic nucleic acid molecules are used to inhibit gene expression and define the role (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets are defined as important
25 mediators of the disease. These experiments lead to better treatment of the disease progression by affording the possibility of combinational therapies (e.g., multiple enzymatic nucleic acid molecules targeted to different genes, enzymatic nucleic acid molecules coupled with known small molecule inhibitors, or intermittent treatment with combinations of enzymatic nucleic acid molecules and/or other chemical or biological molecules). Other *in*
30 *vitro* uses of enzymatic nucleic acid molecules of this invention are known in the art, and include detection of the presence of mRNAs associated with Ras-related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with an enzymatic nucleic acid molecule using standard methodology.

In a specific example, enzymatic nucleic acid molecules that cleave only wild-type or mutant forms of the target RNA are used for the assay. The first enzymatic nucleic acid molecule is used to identify wild-type RNA present in the sample and the second enzymatic nucleic acid molecule is used to identify mutant RNA in the sample. As reaction controls, 5 synthetic substrates of both wild-type and mutant RNA are cleaved by both enzymatic nucleic acid molecules to demonstrate the relative enzymatic nucleic acid molecule efficiencies in the reactions and the absence of cleavage of the "non-targeted" RNA species. The cleavage products from the synthetic substrates also serve to generate size markers for the analysis of wild-type and mutant RNAs in the sample population. Thus each analysis requires two 10 enzymatic nucleic acid molecules, two substrates and one unknown sample which is combined into six reactions. The presence of cleavage products is determined using an RNase protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired 15 phenotypic changes in target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (*i.e.*, Ras) is adequate to establish risk. If probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels will be adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios are correlated with higher risk whether RNA levels 20 are compared qualitatively or quantitatively. The use of enzymatic nucleic acid molecules in diagnostic applications contemplated by the instant invention is described, for example, in George *et al.*, US Patent Nos. 5,834,186 and 5,741,679, Shih *et al.*, US Patent No. 5,589,332, Nathan *et al.*, US Patent No 5,871,914, Nathan and Ellington, International PCT publication No. WO 00/24931, Breaker *et al.*, International PCT Publication Nos. WO 00/26226 and 25 98/27104, and Sullenger *et al.*, International PCT publication No. WO 99/29842.

Example 6: Identification of Potential Target Sites in Human HIV RNA

The sequence of human HIV genes are screened for accessible sites using a computer-folding algorithm. Regions of the RNA that do not form secondary folding structures and contained potential enzymatic nucleic acid molecule and/or antisense binding/cleavage sites 30 are identified. The sequences of these binding/cleavage sites are shown in Tables VI to XI.

Example 6: Selection of Enzymatic Nucleic Acid Cleavage Sites in Human HIV RNA

Enzymatic nucleic acid molecule target sites were chosen by analyzing sequences of Human HIV (Genbank accession No: NM_005228) and prioritizing the sites on the basis of

folding. Enzymatic nucleic acid molecules were designed that can bind each target and are individually analyzed by computer folding (Christoffersen *et al.*, 1994 *J. Mol. Struct. Theochem*, 311, 273; Jaeger *et al.*, 1989, *Proc. Natl. Acad. Sci. USA*, 86, 7706) to assess whether the enzymatic nucleic acid molecule sequences fold into the appropriate secondary structure. Those enzymatic nucleic acid molecules with unfavorable intramolecular interactions between the binding arms and the catalytic core were eliminated from consideration. As noted below, varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.

10 Example 8: Chemical Synthesis and Purification of Ribozymes and Antisense for Efficient Cleavage and/or blocking of HIV Activity

Enzymatic nucleic acid molecules and antisense constructs are designed to anneal to various sites in the RNA message. The binding arms of the enzymatic nucleic acid molecules are complementary to the target site sequences described above, while the antisense constructs are fully complementary to the target site sequences described above. The enzymatic nucleic acid molecules and antisense constructs were chemically synthesized. The method of synthesis used followed the procedure for normal RNA synthesis as described above and in Usman *et al.*, (1987 *J. Am. Chem. Soc.*, 109, 7845), Scaringe *et al.*, (1990 *Nucleic Acids Res.*, 18, 5433) and Wincott *et al.*, *supra*, and made use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. The average stepwise coupling yields were typically >98%.

Enzymatic nucleic acid molecules and antisense constructs are also synthesized from DNA templates using bacteriophage T7 RNA polymerase (Milligan and Uhlenbeck, 1989, *Methods Enzymol.* 180, 51). Enzymatic nucleic acid molecules and antisense constructs are purified by gel electrophoresis using general methods or are purified by high pressure liquid chromatography (HPLC; See Wincott *et al.*, *supra*; the totality of which is hereby incorporated herein by reference) and are resuspended in water. The sequences of the chemically synthesized enzymatic nucleic acid molecules used in this study are shown below in **Table XI**. The sequences of the chemically synthesized antisense constructs used in this study are complementary sequences to the Substrate sequences shown below as in **Tables VI to XI**.

Example 8: Enzymatic nucleic acid molecule Cleavage of HIV RNA Target *in vitro*

Enzymatic nucleic acid molecules targeted to the human HIV RNA are designed and synthesized as described above. These enzymatic nucleic acid molecules are tested for cleavage activity *in vitro*, for example, using the following procedure. The target sequences and the nucleotide location within the HIV RNA are given in Tables VI to XI.

- 5 *Cleavage Reactions:* Full-length or partially full-length, internally-labeled target RNA for enzymatic nucleic acid molecule cleavage assay is prepared by *in vitro* transcription in the presence of [α -³²P] CTP, passed over a G 50 Sephadex column by spin chromatography and used as substrate RNA without further purification. Alternately, substrates are 5'-³²P-end labeled using T4 polynucleotide kinase enzyme. Assays are performed by pre-warming a 2X
10 concentration of purified enzymatic nucleic acid molecule in enzymatic nucleic acid molecule cleavage buffer (50 mM Tris-HCl, pH 7.5 at 37°C, 10 mM MgCl₂) and the cleavage reaction was initiated by adding the 2X enzymatic nucleic acid molecule mix to an equal volume of substrate RNA (maximum of 1-5 nM) that was also pre-warmed in cleavage buffer. As an initial screen, assays are carried out for 1 hour at 37°C using a final concentration of either 40
15 nM or 1 mM enzymatic nucleic acid molecule, *i.e.*, enzymatic nucleic acid molecule excess. The reaction is quenched by the addition of an equal volume of 95% formamide, 20 mM EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol after which the sample is heated to 95°C for 2 minutes, quick chilled and loaded onto a denaturing polyacrylamide gel.
20 Substrate RNA and the specific RNA cleavage products generated by enzymatic nucleic acid molecule cleavage are visualized on an autoradiograph of the gel. The percentage of cleavage is determined by Phosphor Imager® quantitation of bands representing the intact substrate and the cleavage products.

Indications

- Particular degenerative and disease states that can be associated with HIV expression
25 modulation include but are not limited to acquired immunodeficiency disease (AIDS) and related diseases and conditions, including but not limited to Kaposi's sarcoma, lymphoma, cervical cancer, squamous cell carcinoma, cardiac myopathy, rheumatic diseases, and opportunistic infection, for example Pneumocystis carinii, Cytomegalovirus, Herpes simplex, Mycobacteria, Cryptococcus, Toxoplasma, Progressive multifocal leucoencephalopathy
30 (Papovavirus), Mycobacteria, Aspergillus, Cryptococcus, Candida, Cryptosporidium, Isospora belli, Microsporidia and any other diseases or conditions that are related to or will respond to the levels of HIV in a cell or tissue, alone or in combination with other therapies

The present body of knowledge in HIV research indicates the need for methods to assay HIV activity and for compounds that can regulate HIV expression for research, diagnostic, and therapeutic use.

The use of antiviral compounds, monoclonal antibodies, chemotherapy, radiation therapy, analgesics, and/or anti-inflammatory compounds, are all non-limiting examples of a methods that can be combined with or used in conjunction with the nucleic acid molecules (e.g. ribozymes and antisense molecules) of the instant invention. Examples of antiviral compounds that can be used in conjunction with the nucleic acid molecules of the invention include but are not limited to AZT (also known as zidovudine or ZDV), ddC (zalcitabine), ddI (dideoxyinosine), d4T (stavudine), and 3TC (lamivudine) Ribavirin, delvaridine (Rescriptor), nevirapine (Viramune), efavirenz (Sustiva), ritonavir (Norvir), saquinavir (Invirase), indinavir (Crixivan), amprenavir (Agenerase), nelfinavir (Viracept), and/or lopinavir (Kaletra). Common chemotherapies that can be combined with nucleic acid molecules of the instant invention include various combinations of cytotoxic drugs to kill cancer cells. These drugs include but are not limited to paclitaxel (Taxol), docetaxel, cisplatin, methotrexate, cyclophosphamide, doxorubicin, fluorouracil carboplatin, edatrexate, gemcitabine, vinorelbine etc. Those skilled in the art will recognize that other drug compounds and therapies can be similarly be readily combined with the nucleic acid molecules of the instant invention (e.g. ribozymes and antisense molecules) are hence within the scope of the instant invention.

20 Diagnostic uses

The nucleic acid molecules of this invention (e.g., enzymatic nucleic acid molecules) are used as diagnostic tools to examine genetic drift and mutations within diseased cells or to detect the presence of HIV RNA in a cell. The close relationship between enzymatic nucleic acid molecule activity and the structure of the target RNA allows the detection of mutations 25 in any region of the molecule which alters the base-pairing and three-dimensional structure of the target RNA. Using multiple enzymatic nucleic acid molecules described in this invention, one maps nucleotide changes which are important to RNA structure and function *in vitro*, as well as in cells and tissues. Cleavage of target RNAs with enzymatic nucleic acid molecules are used to inhibit gene expression and define the role (essentially) of specified gene products 30 in the progression of disease. In this manner, other genetic targets are defined as important mediators of the disease. These experiments lead to better treatment of the disease progression by affording the possibility of combinational therapies (e.g., multiple enzymatic nucleic acid molecules targeted to different genes, enzymatic nucleic acid molecules coupled with known small molecule inhibitors, or intermittent treatment with combinations of

enzymatic nucleic acid molecules and/or other chemical or biological molecules). Other *in vitro* uses of enzymatic nucleic acid molecules of this invention are well known in the art, and include detection of the presence of mRNAs associated with HIV-related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with an 5 enzymatic nucleic acid molecule using standard methodology.

In a specific example, enzymatic nucleic acid molecules which cleave only wild-type or mutant forms of the target RNA are used for the assay. The first enzymatic nucleic acid molecule is used to identify wild-type RNA present in the sample and the second enzymatic nucleic acid molecule is used to identify mutant RNA in the sample. As reaction controls, 10 synthetic substrates of both wild-type and mutant RNA are cleaved by both enzymatic nucleic acid molecules to demonstrate the relative enzymatic nucleic acid molecule efficiencies in the reactions and the absence of cleavage of the "non-targeted" RNA species. The cleavage products from the synthetic substrates also serve to generate size markers for the analysis of wild-type and mutant RNAs in the sample population. Thus each analysis requires two 15 enzymatic nucleic acid molecules, two substrates and one unknown sample which is combined into six reactions. The presence of cleavage products is determined using an RNase protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired 20 phenotypic changes in target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (*i.e.*, HIV) is adequate to establish risk. If probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels will be adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios are correlated with higher risk whether RNA levels 25 are compared qualitatively or quantitatively. The use of enzymatic nucleic acid molecules in diagnostic applications contemplated by the instant invention is more fully described in George *et al.*, US Patent Nos. 5,834,186 and 5,741,679, Shih *et al.*, US Patent No. 5,589,332, Nathan *et al.*, US Patent No 5,871,914, Nathan and Ellington, International PCT publication 30 No. WO 00/24931, Breaker *et al.*, International PCT Publication Nos. WO 00/26226 and 98/27104, and Sullenger *et al.*, International PCT publication No. WO 99/29842.

Example 10: Identification of Potential Target Sites in Human HER2 RNA

The sequence of human HER2 genes were screened for accessible sites using a computer-folding algorithm. Regions of the RNA that do not form secondary folding structures and contained potential enzymatic nucleic acid molecule and/or antisense

binding/cleavage sites were identified. The sequences of these binding/cleavage sites are shown in **Tables IV and V**.

Example 10: Selection of Enzymatic Nucleic Acid Cleavage Sites in Human HER2 RNA

Enzymatic nucleic acid molecule target sites were chosen by analyzing sequences of 5 Human HER2 (Genbank accession No: X03363) and prioritizing the sites on the basis of folding. Enzymatic nucleic acid molecules were designed that can bind each target and are individually analyzed by computer folding (Christoffersen *et al.*, 1994 *J. Mol. Struc. Theochem*, 311, 273; Jaeger *et al.*, 1989, *Proc. Natl. Acad. Sci. USA*, 86, 7706) to assess whether the enzymatic nucleic acid molecule sequences fold into the appropriate secondary 10 structure. Those enzymatic nucleic acid molecules with unfavorable intramolecular interactions between the binding arms and the catalytic core were eliminated from consideration. As noted below, variable binding arm lengths are chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.

15 Example 12: Chemical Synthesis and Purification of Ribozymes and Antisense for Efficient Cleavage and/or Blocking of HER2 Expression

DNAzyme molecules are designed to anneal to various sites in the RNA message. The binding arms of the DNAzyme molecules are complementary to the target site sequences described above. The DNAzymes were chemically synthesized. The method of synthesis 20 used followed the procedure for nucleic acid synthesis as described above and in Usman *et al.*, (1987 *J. Am. Chem. Soc.*, 109, 7845), Scaringe *et al.*, (1990 *Nucleic Acids Res.*, 18, 5433) and Wincott *et al.*, *supra*, and made use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. The average stepwise coupling yields were typically >98%. The sequences of the chemically 25 synthesized DNAzyme molecules used in this study are shown below in **Table V**.

Example 13: DNAzyme Cleavage of HER2 RNA Target *in vitro*

DNAzymes targeted to the human HER2 RNA are designed and synthesized as 30 described above. These enzymatic nucleic acid molecules can be tested for cleavage activity *in vitro*, for example, using the following procedure. The target sequences and the nucleotide location within the HER2 RNA are given in **Tables IV and V**.

Cleavage Reactions:

Ribozymes and substrates were synthesized in 96-well format using 0.2 μ mol scale. Substrates were 5'-³²P labeled and gel purified using 7.5% polyacrylamide gels, and eluting into water. Assays were done by combining trace substrate with 500nM Ribozyme or greater, 5 and initiated by adding final concentrations of 40mM Mg²⁺, and 50mM Tris-Cl pH 8.0. For each ribozyme/substrate combination a control reaction was done to ensure cleavage was not the result of non-specific substrate degradation. A single three hour time point was taken and run on a 15% polyacrylamide gel to assess cleavage activity. Gels were dried and scanned using a Molecular Dynamics Phosphorimager and quantified using Molecular Dynamics 10 ImageQuant software. Percent cleaved was determined by dividing values for cleaved substrate bands by full-length (uncleaved) values plus cleaved values and multiplying by 100 (%cleaved=[C/(U+C)]*100).

Example 14: DNAzyme Cleavage of HER2 RNA Target *in vivo**Cell Culture Review*

15 The greatest HER2 specific effects have been observed in cancer cell lines that express high levels of HER2 protein (as measured by ELISA). Specifically, in one study that treated five human breast cancer cell lines with the HER2 antibody (anti-erbB2-sFv), the greatest inhibition of cell growth was seen in three cell lines (MDA-MB-361, SKBR-3 and BT-474) that express high levels of HER2 protein. No inhibition of cell growth was observed in two 20 cell lines (MDA-MB-231 and MCF-7) that express low levels of HER2 protein (Wright, M., Grim, J., Deshane, J., Kim, M., Strong, T.V., Siegel, G.P., Curiel, D.T. (1997) An intracellular anti-erbB-2 single-chain antibody is specifically cytotoxic to human breast carcinoma cells overexpressing erbB-2. *Gene Therapy* 4: 317-322). Another group successfully used SKBR-3 cells to show HER2 antisense oligonucleotide-mediated inhibition 25 of HER2 protein expression and HER2 RNA knockdown (Vaughn, J.P., Iglehart, J.D., Demirdji, S., Davis, P., Babiss, L.E., Caruthers, M.H., Marks, J.R. (1995) Antisense DNA downregulation of the ERBB2 oncogene measured by a flow cytometric assay. *Proc Natl Acad Sci USA* 92: 8338-8342). Other groups have also demonstrated a decrease in the levels of HER2 protein, HER2 mRNA and/or cell proliferation in cultured cells using anti-HER2 30 DNAzymes or antisense molecules (Suzuki T., Curcio, L.D., Tsai, J. and Kashani-Sabet M. (1997) Anti-c-erb-B-2 Ribozyme for Breast Cancer. In *Methods in Molecular Medicine*, Vol. 11, Therapeutic Applications of Ribozymes, Human Press, Inc., Totowa, NJ; Weichen, K., Zimmer, C. and Dietel, M. (1997) Selection of a high activity c-erbB-2 ribozyme using a

fusion gene of c-erbB-2 and the enhanced green fluorescent protein. *Cancer Gene Therapy* 5: 45-51; Czubayko, F., Downing, S.G., Hsieh, S.S., Goldstein, D.J., Lu P.Y., Trapnell, B.C. and Wellstein, A. (1997) Adenovirus-mediated transduction of ribozymes abrogates HER-2/neu and pleiotrophin expression and inhibits tumor cell proliferation. *Gene Ther.* 4: 943-949; Colomer, R., Lupu, R., Bacus, S.S. and Gelmann, E.P. (1994) erbB-2 antisense oligonucleotides inhibit the proliferation of breast carcinoma cells with erbB-2 oncogene amplification. *British J. Cancer* 70: 819-825; Betram *et al.*, 1994). Because cell lines that express higher levels of HER2 have been more sensitive to anti-HER2 agents, we prefer using several medium to high expressing cell lines, including SKBR-3 and T47D, for DNAzyme screens in cell culture.

A variety of endpoints have been used in cell culture models to look at HER2-mediated effects after treatment with anti-HER2 agents. Phenotypic endpoints include inhibition of cell proliferation, apoptosis assays and reduction of HER2 protein expression. Because overexpression of HER2 is directly associated with increased proliferation of breast and ovarian tumor cells, a proliferation endpoint for cell culture assays will preferably be used as the primary screen. There are several methods by which this endpoint can be measured. Following treatment of cells with DNAzymes, cells are allowed to grow (typically 5 days) after which either the cell viability, the incorporation of [³H] thymidine into cellular DNA and/or the cell density can be measured. The assay of cell density is very straightforward and can be done in a 96-well format using commercially available fluorescent nucleic acid stains (such as Syto® 13 or CyQuant®). The assay using CyQuant® is described herein and is currently being employed to screen ~100 DNAzymes targeting HER2 (details below).

As a secondary, confirmatory endpoint a DNAzyme-mediated decrease in the level of HER2 protein expression can be evaluated using a HER2-specific ELISA.

25 *Validation of Cell Lines and DNAzyme Treatment Conditions*

Two human breast cancer cell lines (T47D and SKBR-3) that are known to express medium to high levels of HER2 protein, respectively, are considered for DNAzyme screening. In order to validate these cell lines for HER2-mediated sensitivity, both cell lines are treated with the HER2 specific antibody, Herceptin® (Genentech) and its effect on cell proliferation is determined. Herceptin® is added to cells at concentrations ranging from 0–8 µM in medium containing either no serum (OptiMem), 0.1% or 0.5% FBS and efficacy is determined *via* cell proliferation. Maximal inhibition of proliferation (~50%) in both cell lines is typically observed after addition of Herceptin® at 0.5 nM in medium containing 0.1%

or no FBS. The fact that both cell lines are sensitive to an anti-HER2 agent (Herceptin®) supports their use in experiments testing anti-HER2 DNAzymes.

Prior to DNAzyme screening, the choice of the optimal lipid(s) and conditions for DNAzyme delivery is determined empirically for each cell line. Applicant has established a panel of cationic lipids (lipids as described in PCT application WO99/05094) that can be used to deliver DNAzymes to cultured cells and are very useful for cell proliferation assays that are typically 3-5 days in length. (Additional description of useful lipids is provided above, and those skilled in the art are also familiar with a variety of lipids that can be used for delivery of oligonucleotide to cells in culture.) Initially, this panel of lipid delivery vehicles is screened in SKBR-3 and T47D cells using previously established control oligonucleotides. Specific lipids and conditions for optimal delivery are selected for each cell line based on these screens. These conditions are used to deliver HER2 specific DNAzymes to cells for primary (inhibition of cell proliferation) and secondary (decrease in HER2 protein) efficacy endpoints.

Primary Screen: Inhibition of Cell Proliferation

DNAzyme screens are performed using an automated, high throughput 96-well cell proliferation assay. Cell proliferation is measured over a 5-day treatment period using the nucleic acid stain CyQuant® for determining cell density. The growth of cells treated with DNAzyme/lipid complexes is compared to both untreated cells and to cells treated with Scrambled-arm Attenuated core Controls. SACs can no longer bind to the target site due to the scrambled arm sequence and have nucleotide changes in the core that greatly diminish DNAzyme cleavage. These SACs are used to determine non-specific inhibition of cell growth caused by DNAzyme chemistry (*i.e.* multiple 2' O-Me modified nucleotides and a 3' inverted abasic). Lead DNAzymes are chosen from the primary screen based on their ability to inhibit cell proliferation in a specific manner. Dose response assays are carried out on these leads and a subset was advanced into a secondary screen using the level of HER2 protein as an endpoint.

Secondary Screen: Decrease in HER2 Protein and/or RNA

A secondary screen that measures the effect of anti-HER2 DNAzymes on HER2 protein and/or RNA levels is used to affirm preliminary findings. A robust HER2 ELISA for both T47D and SKBR-3 cells has been established and is available for use as an additional endpoint. In addition, a real time RT-PCR assay (TaqMan assay) has been developed to assess HER2 RNA reduction compared to an actin RNA control. Dose response activity of

nucleic acid molecules of the instant invention can be used to assess both HER2 protein and RNA reduction endpoints.

DNAzyme Mechanism Assays

A TaqMan® assay for measuring the DNAzyme-mediated decrease in HER2 RNA has
5 also been established. This assay is based on PCR technology and can measure in real time
the production of HER2 mRNA relative to a standard cellular mRNA such as GAPDH. This
RNA assay is used to establish proof that lead DNAzymes are working through an RNA
cleavage mechanism and result in a decrease in the level of HER2 mRNA, thus leading to a
decrease in cell surface HER2 protein receptors and a subsequent decrease in tumor cell
10 proliferation.

Animal Models

Evaluating the efficacy of anti-HER2 agents in animal models is an important
prerequisite to human clinical trials. As in cell culture models, the most HER2 sensitive
15 mouse tumor xenografts are those derived from human breast carcinoma cells that express
high levels of HER2 protein. In a recent study, nude mice bearing BT-474 xenografts were
sensitive to the anti-HER2 humanized monoclonal antibody Herceptin®, resulting in an 80%
inhibition of tumor growth at a 1 mg kg dose (ip, 2 X week for 4-5 weeks). Tumor
eradication was observed in 3 of 8 mice treated in this manner (Baselga, J., Norton, L.
15 Albanell, J., Kim, Y.M. and Mendelsohn, J. (1998) Recombinant humanized anti-HER2
antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against
HER2/neu overexpressing human breast cancer xenografts. *Cancer Res.* 15: 2825-2831).
This same study compared the efficacy of Herceptin® alone or in combination with the
commonly used chemotherapeutics, paclitaxel or doxorubicin. Although, all three anti-HER2
agents caused modest inhibition of tumor growth, the greatest antitumor activity was
20 produced by the combination of Herceptin® and paclitaxel (93% inhibition of tumor growth
vs 35% with paclitaxel alone). The above studies provide proof that inhibition of HER2
expression by anti-HER2 agents causes inhibition of tumor growth in animals. Lead anti-
HER2 DNAzymes chosen from *in vitro* assays are further tested in mouse xenograft models.
DNAzymes are first tested alone and then in combination with standard chemotherapies.

30 Animal Model Development

Three human breast tumor cell lines (T47D, SKBR-3 and BT-474) were characterized
to establish their growth curves in mice. These three cell lines have been implanted into the

mammary papillae of both nude and SCID mice and primary tumor volumes are measured 3 times per week. Growth characteristics of these tumor lines using a Matrigel implantation format can also be established. The use of two other breast cell lines that have been engineered to express high levels of HER2 can also be used in the described studies. The 5 tumor cell line(s) and implantation method that supports the most consistent and reliable tumor growth is used in animal studies testing the lead HER2 DNAzyme(s). DNAzymes are administered by daily subcutaneous injection or by continuous subcutaneous infusion from Alzet mini osmotic pumps beginning 3 days after tumor implantation and continuing for the duration of the study. Group sizes of at least 10 animals are employed. Efficacy is 10 determined by statistical comparison of tumor volume of DNAzyme-treated animals to a control group of animals treated with saline alone. Because the growth of these tumors is generally slow (45-60 days), an initial endpoint is the time in days it takes to establish an easily measurable primary tumor (i.e. 50-100 mm³) in the presence or absence of DNAzyme treatment.

15 Clinical Summary

Overview

Breast cancer is a common cancer in women and also occurs in men to a lesser degree. The incidence of breast cancer in the United States is ~180,000 cases per year and ~46,000 die each year of the disease. In addition, 21,000 new cases of ovarian cancer per year lead to 20 ~13,000 deaths (data from Hung, M.-C., Matin, A., Zhang, Y., Xing, X., Sorgi, F., Huang, L. and Yu, D. (1995) HER-2/neu-targeting gene therapy - a review. *Gene* 159: 65-71 and the Surveillance, Epidemiology and End Results Program, NCI Surveillance, Epidemiology and End Results Program (SEER) Cancer Statistics Review: http://www.seer.cancer.gov/Publications/CSR1973_1996/). Ovarian cancer is a potential 25 secondary indication for anti-HER2 DNAzyme therapy.

A full review of breast cancer is given in the NCI PDQ for Breast Cancer (NCI PDQ/Treatment/Health Professionals/Breast Cancer: http://cancernet.nci.nih.gov/clinpdq/soa/Breast_cancer_Physician.html; NCI PDQ/Treatment/Patients/Breast Cancer: http://cancernet.nci.nih.gov/clinpdq/pif/Breast_cancer_Patient.html). A brief overview is 30 given here. Breast cancer is evaluated or "staged" on the basis of tumor size, and whether it has spread to lymph nodes and/or other parts of the body. In Stage I breast cancer, the cancer

is no larger than 2 centimeters and has not spread outside of the breast. In Stage II, the patient's tumor is 2-5 centimeters but cancer may have spread to the axillary lymph nodes. By Stage III, metastasis to the lymph nodes is typical, and tumors are \geq 5 centimeters. Additional tissue involvement (skin, chest wall, ribs, muscles *etc.*) may also be noted. Once 5 cancer has spread to additional organs of the body, it is classed as Stage IV:

Almost all breast cancers (>90%) are detected at Stage I or II, but 31% of these are already lymph node positive. The 5-year survival rate for node negative patients (with standard surgery/radiation/chemotherapy /hormone regimens) is 97%; however, involvement of the lymph nodes reduces the 5-year survival to only 77%. Involvement of other organs 10 (\geq Stage III) drastically reduces the overall survival, to 22% at 5 years. Thus, chance of recovery from breast cancer is highly dependent on early detection. Because up to 10% of breast cancers are hereditary, those with a family history are considered to be at high risk for breast cancer and should be monitored very closely.

Therapy

15 Breast cancer is highly treatable and often curable when detected in the early stages. (For a complete review of breast cancer treatments, see the NCI PDQ for Breast Cancer.) Common therapies include surgery, radiation therapy, chemotherapy and hormonal therapy. Depending upon many factors, including the tumor size, lymph node involvement and location of the lesion, surgical removal varies from lumpectomy (removal of the tumor and 20 some surrounding tissue) to mastectomy (removal of the breast, lymph nodes and some or all of the underlying chest muscle). Even with successful surgical resection, as many as 21% of the patients may ultimately relapse (10-20 years). Thus, once local disease is controlled by surgery, adjuvant radiation treatments, chemotherapies and/or hormonal therapies are typically used to reduce the rate of recurrence and improve survival. The therapy regimen 25 employed depends not only on the stage of the cancer at its time of removal, but other variables such the type of cancer (ductal or lobular), whether lymph nodes were involved and removed, age and general health of the patient and if other organs are involved.

Common chemotherapies include various combinations of cytotoxic drugs to kill the 30 cancer cells. These drugs include paclitaxel (Taxol), docetaxel, cisplatin, methotrexate, cyclophosphamide, doxorubicin, fluorouracil *etc.* Significant toxicities are associated with these cytotoxic therapies. Well-characterized toxicities include nausea and vomiting,

myelosuppression, alopecia and mucosity. Serious cardiac problems are also associated with certain of the combinations, *e.g.* doxorubicin and paclitaxel, but are less common.

Testing for estrogen and progesterone receptors helps to determine whether certain anti-hormone therapies might be helpful in inhibiting tumor growth. If either or both receptors are

5 present, therapies to interfere with the action of the hormone ligands, can be given in combination with chemotherapy and are generally continued for several years. These adjuvant therapies are called SERMs, selective estrogen receptor modulators, and they can give beneficial estrogen-like effects on bone and lipid metabolism while antagonizing estrogen in reproductive tissues. Tamoxifen is one such compound. The primary toxic effect
10 associated with the use of tamoxifen is a 2 to 7-fold increase in the rate of endometrial cancer. Blood clots in the legs and lung and the possibility of stroke are additional side effects. However, tamoxifen has been determined to reduce breast cancer incidence by 49% in high-risk patients and an extensive, somewhat controversial, clinical study is underway to expand
15 the prophylactic use of tamoxifen. Another SERM, raloxifene, was also shown to reduce the incidence of breast cancer in a large clinical trial where it was being used to treat osteoporosis. In additional studies, removal of the ovaries and/or drugs to keep the ovaries from working are being tested.

Bone marrow transplantation is being studied in clinical trials for breast cancers that have become resistant to traditional chemotherapies or where >3 lymph nodes are involved.

20 Marrow is removed from the patient prior to high-dose chemotherapy to protect it from being destroyed, and then replaced after the chemotherapy. Another type of "transplant" involves the exogenous treatment of peripheral blood stem cells with drugs to kill cancer cells prior to replacing the treated cells in the bloodstream.

One biological treatment, a humanized monoclonal anti-HER2 antibody, Herceptin®
25 (Genentech) has been approved by the FDA as an additional treatment for HER2 positive tumors. Herceptin® binds with high affinity to the extracellular domain of HER2 and thus blocks its signaling action. Herceptin® can be used alone or in combination with chemotherapeutics (*i.e.* paclitaxel, docetaxel, cisplatin, *etc.*) (Pegram, M.D., Lipton, A., Hayes, D.F., Weber, B.L., Baselga, J.M., Tripathy, D., Baly, D., Baughman, S.A., Twaddell,
30 T., Glaspy, J.A. and Slamon, D.J. (1998) Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. *J. Clin. Oncol.* 16: 2659-2671). In Phase III studies, Herceptin® significantly improved the response rate to chemotherapy as well as improving the time to

- progression (Ross, J.S. and Fletcher, J.A. (1998) The HER-2/neu oncogene in breast cancer: Prognostic factor, predictive factor and target for therapy. *Oncologist* 3: 1998). The most common side effects attributed to Herceptin® are fever and chills, pain, asthenia, nausea, vomiting, increased cough, diarrhea, headache, dyspnea, infection, rhinitis, and insomnia.
- 5 Herceptin® in combination with chemotherapy (paclitaxel) can lead to cardiotoxicity (Sparano, J.A. (1999) Doxorubicin/taxane combinations: Cardiac toxicity and pharmacokinetics. *Semin. Oncol.* 26: 14-19), leukopenia, anemia, diarrhea, abdominal pain and infection.

HER2 Protein Levels for Patient Screening and as a Potential Endpoint

10 Because elevated HER2 levels can be detected in at least 30% of breast cancers, breast cancer patients can be pre-screened for elevated HER2 prior to admission to initial clinical trials testing an anti-HER2 DNAzyme. Initial HER2 levels can be determined (by ELISA) from tumor biopsies or resected tumor samples.

15 During clinical trials, it may be possible to monitor circulating HER2 protein by ELISA (Ross and Fletcher, 1998). Evaluation of serial blood/serum samples over the course of the anti-HER2 DNAzyme treatment period could be useful in determining early indications of efficacy. In fact, the clinical course of Stage IV breast cancer was correlated with shed HER2 protein fragment following a dose-intensified paclitaxel monotherapy. In all responders, the HER2 serum level decreased below the detection limit (Luftner, D., Schnabel, S. and Possinger, K. (1999) c-erbB-2 in serum of patients receiving fractionated paclitaxel chemotherapy. *Int. J. Biol. Markers* 14: 55-59).

20 Two cancer-associated antigens, CA27.29 and CA15.3, can also be measured in the serum. Both of these glycoproteins have been used as diagnostic markers for breast cancer. CA27.29 levels are higher than CA15.3 in breast cancer patients; the reverse is true in healthy individuals. Of these two markers, CA27.29 was found to better discriminate primary cancer from healthy subjects. In addition, a statistically significant and direct relationship was shown between CA27.29 and large *vs* small tumors and node positive *vs* node negative disease (Gion, M., Mione, R., Leon, A.E. and Dittadi, R. (1999) Comparison of the diagnostic accuracy of CA27.29 and CA15.3 in primary breast cancer. *Clin. Chem.* 45: 630-637). Moreover, both cancer antigens were found to be suitable for the detection of possible metastases during follow-up (Rodriguez de Paterna, L., Arnaiz, F., Estenoz, J. Ortuno, B. and Lanzos E. (1999) Study of serum tumor markers CEA, CA15.3, CA27.29 as diagnostic parameters in patients with breast carcinoma. *Int. J. Biol. Markers* 10: 24-29). Thus,

blocking breast tumor growth may be reflected in lower CA27.29 and/or CA15.3 levels compared to a control group. FDA submissions for the use of CA27.29 and CA15.3 for monitoring metastatic breast cancer patients have been filed (reviewed in Beveridge, R.A. (1999) Review of clinical studies of CA27.29 in breast cancer management. *Int. J. Biol. Markers* 14: 36-39). Fully automated methods for measurement of either of these markers are commercially available.

Indications

Particular degenerative and disease states that can be associated with HER2 expression modulation include but are not limited to cancer, for example breast cancer and ovarian cancer and/or any other diseases or conditions that are related to or will respond to the levels of HER2 in a cell or tissue, alone or in combination with other therapies

The present body of knowledge in HER2 research indicates the need for methods to assay HER2 activity and for compounds that can regulate HER2 expression for research, diagnostic, and therapeutic use.

The use of monoclonal antibodies, chemotherapy, radiation therapy, and analgesics, are all non-limiting examples of methods that can be combined with or used in conjunction with the nucleic acid molecules (e.g. DNAzymes) of the instant invention. Common chemotherapies that can be combined with nucleic acid molecules of the instant invention include various combinations of cytotoxic drugs to kill cancer cells. These drugs include but are not limited to paclitaxel (Taxol), docetaxel, cisplatin, methotrexate, cyclophosphamide, doxorubicin, fluorouracil carboplatin, edatrexate, gemcitabine, vinorelbine etc. Those skilled in the art will recognize that other drug compounds and therapies can be similarly be readily combined with the nucleic acid molecules of the instant invention (e.g. DNAzyme molecules) are hence within the scope of the instant invention.

Diagnostic uses

The nucleic acid molecules of this invention (e.g., enzymatic nucleic acid molecules) can be used as diagnostic tools to examine genetic drift and mutations within diseased cells or to detect the presence of HER2 RNA in a cell. The close relationship between enzymatic nucleic acid molecule activity and the structure of the target RNA allows the detection of mutations in any region of the molecule that alters the base-pairing and three-dimensional structure of the target RNA. By using multiple enzymatic nucleic acid molecules described in this invention, one can map nucleotide changes which are important to RNA structure and

function *in vitro*, as well as in cells and tissues. Cleavage of target RNAs with enzymatic nucleic acid molecules can be used to inhibit gene expression and define the role (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets can be defined as important mediators of the disease. These experiments can lead to better

- 5 treatment of the disease progression by affording the possibility of combinational therapies (e.g., multiple enzymatic nucleic acid molecules targeted to different genes, enzymatic nucleic acid molecules coupled with known small molecule inhibitors, or intermittent treatment with combinations of enzymatic nucleic acid molecules and/or other chemical or biological molecules). Other *in vitro* uses of enzymatic nucleic acid molecules of this
10 invention are well known in the art, and include detection of the presence of mRNAs associated with HER2-related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with an enzymatic nucleic acid molecule using standard methodology.

In a specific example, enzymatic nucleic acid molecules that cleave only wild-type or
15 mutant forms of the target RNA are used for the assay. The first enzymatic nucleic acid molecule is used to identify wild-type RNA present in the sample and the second enzymatic nucleic acid molecule is used to identify mutant RNA in the sample. As reaction controls, synthetic substrates of both wild-type and mutant RNA are cleaved by both enzymatic nucleic acid molecules to demonstrate the relative enzymatic nucleic acid molecule efficiencies in the
20 reactions and the absence of cleavage of the "non-targeted" RNA species. The cleavage products from the synthetic substrates also serve to generate size markers for the analysis of wild-type and mutant RNAs in the sample population. Thus each analysis requires two enzymatic nucleic acid molecules, two substrates and one unknown sample which is combined into six reactions. The presence of cleavage products is determined using an
25 RNase protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired phenotypic changes in target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (*i.e.*, HER2) is adequate to establish risk. If
30 probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels will be adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios are correlated with higher risk whether RNA levels are compared qualitatively or quantitatively. The use of enzymatic nucleic acid molecules in diagnostic applications contemplated by the instant invention is more fully described in
35 George *et al.*, US Patent Nos. 5,834,186 and 5,741,679, Shih *et al.*, US Patent No. 5,589,332, Nathan *et al.*, US Patent No 5,871,914, Nathan and Ellington, International PCT publication

No. WO 00/24931, Breaker *et al.*, International PCT Publication Nos. WO 00/26226 and 98/27104, and Sullenger *et al.*, International PCT publication No. WO 99/29842.

Additional Uses

- 5 Potential uses of sequence-specific enzymatic nucleic acid molecules of the instant invention can have many of the same applications for the study of RNA that DNA restriction endonucleases have for the study of DNA (Nathans *et al.*, 1975 *Ann. Rev. Biochem.* 44:273). For example, the pattern of restriction fragments can be used to establish sequence relationships between two related RNAs, and large RNAs can be specifically cleaved to
10 fragments of a size more useful for study. The ability to engineer sequence specificity of the enzymatic nucleic acid molecule is ideal for cleavage of RNAs of unknown sequence. Applicant has described the use of nucleic acid molecules to modulate gene expression of target genes in bacterial, microbial, fungal, viral, and eukaryotic systems including plant or mammalian cells.
- 15 All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.

One skilled in the art would readily appreciate that the present invention is well adapted
20 to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The methods and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.

25 It will be readily apparent to one skilled in the art that varying substitutions and modifications can be made to the invention disclosed herein without departing from the scope and spirit of the invention. Thus, such additional embodiments are within the scope of the present invention and the following claims.

The invention illustratively described herein suitably can be practiced in the absence of
30 any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms "comprising", "consisting

essentially of" and "consisting of" can be replaced with either of the other two terms. The terms and expressions that have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized
5 that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments, optional features, modification and variation of the concepts herein disclosed can be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the description
10 and the appended claims.

In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.

15 Other embodiments are within the claims that follow.

Table I:**A. 2.5 µmol Synthesis Cycle ABI 394 Instrument**

Reagent	Equivalents	Amount	Wait Time* DNA	Wait Time* 2'-O-methyl	Wait Time*RNA
Phosphoramidites	6.5	163 µL	45 sec	2.5 min	7.5 min
S-Ethyl Tetrazole	23.8	238 µL	45 sec	2.5 min	7.5 min
Acetic Anhydride	100	233 µL	5 sec	5 sec	5 sec
N-Methyl Imidazole	186	233 µL	5 sec	5 sec	5 sec
TCA	176	2.3 mL	21 sec	21 sec	21 sec
Iodine	11.2	1.7 mL	45 sec	45 sec	45 sec
Beaucage	12.9	645 µL	100 sec	300 sec	300 sec
Acetonitrile	NA	6.67 mL	NA	NA	NA

B. 0.2 µmol Synthesis Cycle ABI 394 Instrument

Reagent	Equivalents	Amount	Wait Time* DNA	Wait Time* 2'-O-methyl	Wait Time*RNA
Phosphoramidites	15	31 µL	45 sec	233 sec	465 sec
S-Ethyl Tetrazole	38.7	31 µL	45 sec	233 min	465 sec
Acetic Anhydride	655	124 µL	5 sec	5 sec	5 sec
N-Methyl Imidazole	1245	124 µL	5 sec	5 sec	5 sec
TCA	700	732 µL	10 sec	10 sec	10 sec
Iodine	20.6	244 µL	15 sec	15 sec	15 sec
Beaucage	7.7	232 µL	100 sec	300 sec	300 sec
Acetonitrile	NA	2.64 mL	NA	NA	NA

C. 0.2 µmol Synthesis Cycle 96 well Instrument

Reagent	Equivalents:DNA/ 2'-O-methyl/Ribo	Amount: DNA/2'-O- methyl/Ribo	Wait Time* DNA	Wait Time* 2'-O- methyl	Wait Time* Ribo
Phosphoramidites	22/33/66	40/60/120 µL	60 sec	180 sec	360sec
S-Ethyl Tetrazole	70/105/210	40/60/120 µL	60 sec	180 min	360 sec
Acetic Anhydride	265/265/265	50/50/50 µL	10 sec	10 sec	10 sec
N-Methyl Imidazole	502/502/502	50/50/50 µL	10 sec	10 sec	10 sec
TCA	238/475/475	250/500/500 µL	15 sec	15 sec	15 sec
Iodine	6.8/6.8/6.8	80/80/80 µL	30 sec	30 sec	30 sec
Beaucage	34/51/51	80/120/120	100 sec	200 sec	200 sec
Acetonitrile	NA	1150/1150/1150 µL	NA	NA	NA

- Wait time does not include contact time during delivery.

Table II: Human K-Ras DNazyme and Substrate Sequence

Pos	Substrate	Seq ID	DNAzyme	Seq ID
10	CCUAGGCG G CGGCCGCG	1	CGCGGCCG GGCTAGCTACAACGA CGCCTAGG	2329
13	AGGCAGGCG G CCGCGCG	2	CGCCGCGG GGCTAGCTACAACGA CGCCGCCT	2330
16	CGGCGGCC G CGGCCGCG	3	CGCCGCCG GGCTAGCTACAACGA GGCGGCCG	2331
19	CGGCCGCG G CGGCGGAG	4	CTCCGCCG GGCTAGCTACAACGA CGCGGCCG	2332
22	CCGCGGCC G CGGAGGCA	5	TGCCCTCG GGCTAGCTACAACGA CGCCGCCG	2333
28	CGGCGGGAG G CAGCAGCG	6	CGCTGCTG GGCTAGCTACAACGA CTCCGCCG	2334
31	CGGAGGCA G CAGCGCG	7	CGCCGCTG GGCTAGCTACAACGA TGCCCTCG	2335
34	AGGCAGCA G CGGCGCG	8	CGCCGCCG GGCTAGCTACAACGA TGCTGCCT	2336
37	CAGCAGCG G CGGCGCA	9	TGCCGCCG GGCTAGCTACAACGA CGCTGCTG	2337
40	CAGCGGCC G CGGCAGUG	10	CACTGCCG GGCTAGCTACAACGA CGCCGCTG	2338
43	CGGCGGCC G CAGUGGCG	11	CGCCACTG GGCTAGCTACAACGA CGCCGCCG	2339
46	CGGCGGCCA G UGGCGCG	12	CGCCGCCA GGCTAGCTACAACGA TGCCGCCG	2340
49	CGGCAGUG G CGGCGCG	13	CGCCGCCG GGCTAGCTACAACGA CACTGCCG	2341
52	CAGUGGCC G CGGCGAAC	14	CTTCGCCG GGCTAGCTACAACGA CGCCACTG	2342
55	UGGCGGCC G CGAAGGUG	15	CACCTTCG GGCTAGCTACAACGA CGCCGCCA	2343
61	CGGCGAAC G UGGCGCG	16	CGCCGCCA GGCTAGCTACAACGA TTTCGCCG	2344
64	CGAAGGUG G CGGCGCU	17	AGCCGCCG GGCTAGCTACAACGA CACCTTCG	2345
67	AGGUGGCC G CGGCUCGG	18	CCGAGGCC GGCTAGCTACAACGA CGCCACCT	2346
70	UGGCGGCC G CUCGGCCA	19	TGGCCGAG GGCTAGCTACAACGA CGCCGCCA	2347
75	GCGGCUCG G CCAGUACU	20	AGTACTGG GGCTAGCTACAACGA CGAGCCGC	2348
79	CUCGGCCA G UACUCCCG	21	CGGGAGTA GGCTAGCTACAACGA TGGCCGAG	2349
81	CGGCCAGU A CUCCCCGC	22	GCCGGGAG GGCTAGCTACAACGA ACTGGCCG	2350
88	UACUCCCG G CCCCCGCC	23	GGCGGGGG GGCTAGCTACAACGA CGGGAGTA	2351
94	CGGCCCCC G CCAUUUCG	24	CGAAATGG GGCTAGCTACAACGA GGGGGCCG	2352
97	CCCCCGCC A UUUCCGAC	25	GTCCGAAA GGCTAGCTACAACGA GGCAGGGG	2353
104	CAUUUCGG A CUGGGAGC	26	GCTCCCAG GGCTAGCTACAACGA CGCAAATG	2354
111	GACUGGGA G CGAGCGCG	27	CGCGCTCG GGCTAGCTACAACGA TCCCAGTC	2355
115	GGGAGCGA G CGCGCGC	28	GCGCCGCG GGCTAGCTACAACGA TCGCTCCC	2356
117	GAGCGAGC G CGGCCAG	29	CTGCGCCG GGCTAGCTACAACGA GCTCGCTC	2357
120	CGAGCGCG G CGCAGCA	30	TGCCCTCGG GGCTAGCTACAACGA CGCGCTCG	2358
122	AGCGCGGC G CAGGCACU	31	AGTGCCTG GGCTAGCTACAACGA CGCGCCT	2359
126	CGGCGCAG G CACUGAAG	32	CTTCAGTG GGCTAGCTACAACGA CTGCGCCG	2360
128	GCGCAGGC A CUGAAGGC	33	GCCTTCAG GGCTAGCTACAACGA GCCTGCCG	2361
135	CACUGAAG G CGGCGCG	34	CGCCGCCG GGCTAGCTACAACGA CTTCAGTG	2362
138	UGAAGGCC G CGGGGGGG	35	CCCCGCCG GGCTAGCTACAACGA CGCTTCA	2363
141	AGGCGGCC G CGGGGCCA	36	TGGCCCCG GGCTAGCTACAACGA CGCCGCCT	2364
146	GCGGCCGG G CCAGAGGC	37	GCCTCTGG GGCTAGCTACAACGA CCCGCCGC	2365
153	GGCCAGAG G CUCAGCGG	38	CCGCTGAG GGCTAGCTACAACGA CTCTGGCC	2366
158	GAGGUCA G CGGCUCCC	39	GGGAGGCC GGCTAGCTACAACGA TGAGCCTC	2367
161	GCUCAGCG G CUCCCCAG	40	CCTGGGAG GGCTAGCTACAACGA CGCTGAGC	2368
169	GCUCCCCG G UGGGGGAG	41	CTCCCGCA GGCTAGCTACAACGA CTGGGAGC	2369
171	UCCCCAGG U CGGGAGAG	42	CTCTCCCG GGCTAGCTACAACGA ACCTGGGA	2370
182	GGAGAGAG G CCUGUGA	43	TCAGCAGG GGCTAGCTACAACGA CTCTCTCC	2371
186	AGAGGCCU G CUGAAAAU	44	ATTTTCAG GGCTAGCTACAACGA AGGCCTCT	2372
193	UGCUGAAA A UGACUGAA	45	TTCAGTCA GGCTAGCTACAACGA TTTCAGCA	2373
196	UGAAAAUG A CUGAAUAU	46	ATATTCA GGCTAGCTACAACGA CATTTTCA	2374
201	AUGACUGA A UAUAAACU	47	AGTTTATA GGCTAGCTACAACGA TCAGTCAT	2375
203	GACUGAAU A UAAACUUG	48	CAAGTTTA GGCTAGCTACAACGA ATTTCAGTC	2376

207	GAAUUA A CUUGUGGU	49	ACCACAAG GGCTAGCTACAACGA TTATATTTC	2377
211	AUAAACUU G UGGUAGUU	50	AACTACCA GGCTAGCTACAACGA AAGTTTAT	2378
214	ACAUUGUG G UAGUUGGA	51	TCCAACTA GGCTAGCTACAACGA CACAAGTT	2379
217	UUGUGGUA G UUGGAGCU	52	AGCTCCAA GGCTAGCTACAACGA TACCACAA	2380
223	UAGUUGGA G CUUGUGGC	53	GCCACAAG GGCTAGCTACAACGA TCCAACTA	2381
227	UGGAGCUU G UGGCGUAG	54	CTACGCCA GGCTAGCTACAACGA AAGCTCCA	2382
230	AGCUUJUG G CGUAGGCA	55	TGCCTACG GGCTAGCTACAACGA CACAAGCT	2383
232	CUUGUGGC G UAGGCAAG	56	CTTGCTTA GGCTAGCTACAACGA GCCACAAG	2384
236	UGGCGUAG G CAAGAGUG	57	CACTCTTG GGCTAGCTACAACGA CTACGCCA	2385
242	AGGCAAGA G UGCCUUGA	58	TCAAGGCA GGCTAGCTACAACGA TCTTGCTT	2386
244	GCAAGAGU G CCUJUGACG	59	CGTCAAGG GGCTAGCTACAACGA ACTCTTGC	2387
250	GUGCCUUG A CGAUACAG	60	CTGTATCG GGCTAGCTACAACGA CAAGGCAC	2388
253	CCUUGACG A UACAGCUA	61	TAGCTGTA GGCTAGCTACAACGA CGTCAAGG	2389
255	UUGACGAU A CAGCUAAU	62	ATTAGCTG GGCTAGCTACAACGA ATCGTCAA	2390
258	ACGAUACA G CUAAUUCA	63	TGAATTAG GGCTAGCTACAACGA TGTATCGT	2391
262	UACAGCUA A UUCAGAAU	64	ATTCTGAA GGCTAGCTACAACGA TAGCTGTA	2392
269	AAUUCAGA A UCAUUUUG	65	CAAAATGA GGCTAGCTACAACGA TCTGAATT	2393
272	UCAGAAUC A UUUGUGG	66	CCACAAAA GGCTAGCTACAACGA GATTCTGA	2394
277	AUCAUUUU G UGGACGAA	67	TTCGTCCA GGCTAGCTACAACGA AAAATGAT	2395
281	UUUUGUGG A CGAAUUAUG	68	CATATTG GGCTAGCTACAACGA CCACAAAA	2396
285	GUGGACGA A UAUGAUCC	69	GGATCATA GGCTAGCTACAACGA TCGTCCAC	2397
287	GGACGAAU A UGAUCCAA	70	TTGGATCA GGCTAGCTACAACGA ATTCTGCC	2398
290	CGAAUUAUG A UCCAACAA	71	TTGTTGGA GGCTAGCTACAACGA CATATTG	2399
295	AUGAUCCA A CAAUAGAG	72	CTCTATTG GGCTAGCTACAACGA TGGATCAT	2400
298	AUCCAACA A UAGAGGAU	73	ATCCCTCA GGCTAGCTACAACGA TGTGGAT	2401
305	AAUAGAGG A UUCCUACA	74	TGTAGGAA GGCTAGCTACAACGA CCTCTATT	2402
311	GGAUUCCU A CAGGAAGC	75	GCTTCCTG GGCTAGCTACAACGA AGGAATCC	2403
318	UACAGGAA G CAAGUAGU	76	ACTACTTG GGCTAGCTACAACGA TTCCCTGTA	2404
322	GGAGGCAA G UAGUAAUU	77	AATTACTA GGCTAGCTACAACGA TTGCTTCC	2405
325	AGCAAGUA G UAAUJUGAU	78	ATCAATTAA GGCTAGCTACAACGA TACTTGCT	2406
328	AAGUAGUA A UUGAUGGA	79	TCCATCAA GGCTAGCTACAACGA TACTACTT	2407
332	AGUAAUUG A UGGAGAAA	80	TTTCTCCA GGCTAGCTACAACGA CAATTACT	2408
340	AUGGAGAA A CCUGUCUC	81	GAGACAGG GGCTAGCTACAACGA TTCTCCAT	2409
344	AGAAACCU G UCUCUUGG	82	CCAAGAGA GGCTAGCTACAACGA AGGTTTCT	2410
353	UCUCUUGG A UAUUCUCG	83	CGAGAATA GGCTAGCTACAACGA CCAAGAGA	2411
355	UCUUGGGAU A UUCUCGAC	84	GTCGAGAA GGCTAGCTACAACGA ATCCAAGA	2412
362	UAAUCUCG A CACAGCAG	85	CTGCTGTG GGCTAGCTACAACGA CGAGAATA	2413
364	UUCUCGAC A CAGCAGGU	86	ACCTGCTG GGCTAGCTACAACGA GTCGAGAA	2414
367	UCGACACACA G CAGGUCAAA	87	TTGACCTG GGCTAGCTACAACGA TGTGTCGA	2415
371	CACAGCAG G UCAAGAGG	88	CCTCTTGA GGCTAGCTACAACGA CTGCTGTG	2416
381	CAAGAGGA G UACAGUGC	89	GCACTGTA GGCTAGCTACAACGA TCCTCTTG	2417
383	AGAGGAGU A CAGUGCAA	90	TTGCACTG GGCTAGCTACAACGA ACTCCTCT	2418
386	GGAGUACA G UGCAAUGA	91	TCATTGCA GGCTAGCTACAACGA TGACTTCC	2419
388	AGUACAGU G CAAUGAGG	92	CCTCATTG GGCTAGCTACAACGA ACTGTACT	2420
391	ACAGUGCA A UGAGGGAC	93	GTCCTCTA GGCTAGCTACAACGA TGCACGT	2421
398	AAUGAGGG A CCAGUACAA	94	TGTACTGG GGCTAGCTACAACGA CCCTCATT	2422
402	AGGGACCA G UACAUGAG	95	CTCATGTA GGCTAGCTACAACGA TGGTCCCT	2423
404	GGACCAGU A CAUGAGGA	96	TCCTCATG GGCTAGCTACAACGA ACTGGTCC	2424
406	ACCAGUAC A UGAGGACU	97	AGTCCTCA GGCTAGCTACAACGA GTACTGGT	2425
412	ACAUGAGG A CUGGGGAG	98	CTCCCCAG GGCTAGCTACAACGA CCTCATGT	2426
422	UGGGGAGG G CUUUCUUU	99	AAAGAAAG GGCTAGCTACAACGA CCTCCCCA	2427
431	CUUUCUUU G UGUAUUUG	100	CAAATACA GGCTAGCTACAACGA AAAGAAAG	2428

433	UUCUUUGU G UAUUUGCC	101	GGCAAATA GGCTAGCTACAACGA ACAAAGAA	2429
435	CUUUGUGU A UUUGCCAU	102	ATGGCAAA GGCTAGCTACAACGA ACACAAAG	2430
439	GUGUAUUU G CCAUAAAUAU	103	ATTTATGG GGCTAGCTACAACGA AAATACAC	2431
442	UAUJUUGC A UAAAAUAAU	104	ATTATTTA GGCTAGCTACAACGA GGCAAATA	2432
446	UGCCAUAA A UAAUACUA	105	TAGTATTA GGCTAGCTACAACGA TTATGGCA	2433
449	CAUAAAUA A UACUAAAUAU	106	ATTTAGTA GGCTAGCTACAACGA TATTTATG	2434
451	UAAAUAUAU A CUAAAUCUA	107	TGATTTAG GGCTAGCTACAACGA ATTATTTA	2435
456	AAUACUAA A UCAUUUGA	108	TCAAATGA GGCTAGCTACAACGA TTAGTATT	2436
459	ACUAAAUC A UUJUGAAGA	109	TCTTCAAA GGCTAGCTACAACGA GATTTAGT	2437
467	AUUUGAAG A UAUUCACC	110	GGTGAATA GGCTAGCTACAACGA CTTCAAAT	2438
469	UUGAAGAU A UUCACCAU	111	ATGGTGA GGCTAGCTACAACGA ATCTTCAA	2439
473	AGAUUAUC A CCAUUAUA	112	TATAATGG GGCTAGCTACAACGA GAATATCT	2440
476	UAUUCACC A UUAUAGAG	113	CTCTATAA GGCTAGCTACAACGA GGTGAATA	2441
479	UCACCAUU A UAGAGAAC	114	GTTCTCTA GGCTAGCTACAACGA AATGGTGA	2442
486	UAUAGAGA A CAAAUUAA	115	TTAATTTG GGCTAGCTACAACGA TCTCTATA	2443
490	GAGAACAA A UAAAAAGA	116	TCTTTTAA GGCTAGCTACAACGA TTGTTCTC	2444
499	UUAAAAGA G UUAAGGAC	117	GTCCTTAA GGCTAGCTACAACGA TCTTTTAA	2445
506	AGUUUAGG A CUCUGAAG	118	CTTCAGAG GGCTAGCTACAACGA CCTTAACT	2446
515	CUCUGAAG A UGUACCUA	119	TAGGTACA GGCTAGCTACAACGA CTTCAAG	2447
517	CUGAAGAU G UACCUAUG	120	CATAGGTA GGCTAGCTACAACGA ATCTTCAG	2448
519	GAAGAUGU A CCUAUGGU	121	ACCATAGG GGCTAGCTACAACGA ACATCTTC	2449
523	AUGUACCU A UGGUCCUA	122	TAGGACCA GGCTAGCTACAACGA AGGTACAT	2450
526	UACCUAUG G UCCUAGUA	123	TAATAGGA GGCTAGCTACAACGA CATAGGTA	2451
532	UGGUCCUA G UAGGAAAU	124	ATTTCTTA GGCTAGCTACAACGA TAGGACCA	2452
539	AGUAGGAA A UAAAUGUG	125	CACATTTA GGCTAGCTACAACGA TTCCCTACT	2453
543	GGAAUAAA A UGUGAUUU	126	AAATCACA GGCTAGCTACAACGA TTATTTCC	2454
545	AAAUAUAU G UGAUUUGC	127	GCAAATCA GGCTAGCTACAACGA ATTATTTT	2455
548	UAAAUGUG A UUJGCCUU	128	AAGGCAAA GGCTAGCTACAACGA CACATTTA	2456
552	UGUGAUUU G CCUUUCUAG	129	CTAGAAGG GGCTAGCTACAACGA AAATCACA	2457
562	CUUCUJAGA A CAGUAGAC	130	GTCTACTG GGCTAGCTACAACGA TCTAGAAG	2458
565	CUAGAAC A UAGACACA	131	TGTGTCTA GGCTAGCTACAACGA TGTTCTAG	2459
569	AACAGUAG A CACAAAAC	132	GTTTTGTG GGCTAGCTACAACGA CTACTGTT	2460
571	CAGUAGAC A CAAAACAG	133	CTGTTTG GGCTAGCTACAACGA GTCTACTG	2461
576	GACACAAA A CAGGCUCA	134	TGAGCCTG GGCTAGCTACAACGA TTGTTGTC	2462
580	CAAAACAG G CUCAGGAC	135	GTCCTGAG GGCTAGCTACAACGA CTGTTTTG	2463
587	GGCUCAGG A CUUAGCAA	136	TTGCTAAG GGCTAGCTACAACGA CCTGAGCC	2464
592	AGGACUUA G CAAGAAGU	137	ACTTCTTG GGCTAGCTACAACGA TAAGTCCT	2465
599	AGCAAGAA G UUAUGGAA	138	TTCCATAA GGCTAGCTACAACGA TTCTTGCT	2466
602	AAAGAAGUU A UGGAAUUC	139	GAATTCCA GGCTAGCTACAACGA AACTTCTT	2467
607	GUUAUGGA A UUCCUUUU	140	AAAAGGAA GGCTAGCTACAACGA TCCATAAC	2468
616	UUCCUUUU A UUGAAACAA	141	TGTTTCAA GGCTAGCTACAACGA AAAAGGAA	2469
622	UUAUJUGAA A CAUCAGCA	142	TGCTGATG GGCTAGCTACAACGA TTCAATAA	2470
624	AUUGAAAC A UCAGCAAA	143	TTTGCTGA GGCTAGCTACAACGA GTTTCAAT	2471
628	AAACAUCA G CAAAGACA	144	TGTCTTIG GGCTAGCTACAACGA TGATGTTT	2472
634	CAGCAAAG A CAAGACAG	145	CTGTCITG GGCTAGCTACAACGA CTTTGCTG	2473
639	AAGACAAG A CAGGGUGU	146	ACACCCCTG GGCTAGCTACAACGA CTTGTCTT	2474
644	AAGACAGG G UGUUGAUG	147	CATCAACA GGCTAGCTACAACGA CCTGTCTT	2475
646	GACAGGGU G UUGAUGAU	148	ATCATCAA GGCTAGCTACAACGA ACCCTGTC	2476
650	GGGUGUUG A UGAUGCCU	149	AGGCATCA GGCTAGCTACAACGA CAACACCC	2477
653	UGUUGAUG A UGCCUUUC	150	AGAAGGCA GGCTAGCTACAACGA CATCAACA	2478
655	UGAUGAU G CCUUCUAU	151	ATAGAAGG GGCTAGCTACAACGA ATCATCAA	2479
662	UGCCUUCU A UACAUUAG	152	CTAATGTA GGCTAGCTACAACGA AGAAGGCA	2480

664	CCUUCUAU A CAUUAGUU	153	AACTAATG GGCTAGCTACAACGA ATAGAAGG	2481
666	UUCUUAUC A UUAGUUUCG	154	CGAACTAA GGCTAGCTACAACGA GTATAGAA	2482
670	AUACAUUA G UUCGAGAA	155	TTCTCGAA GGCTAGCTACAACGA TAATGTAT	2483
679	UUCGAGAA A UUCGAAAA	156	TTTCGAA GGCTAGCTACAACGA TTCTCGAA	2484
687	AUUCGAAA A CAUAAAAGA	157	TCTTTATG GGCTAGCTACAACGA TTTCGAAT	2485
689	UCGAAAAC A UAAAGAAA	158	TTTCTTTA GGCTAGCTACAACGA GTTTTCGA	2486
700	AAGAAAAG A UGAGCAAA	159	TTTGCTCA GGCTAGCTACAACGA CTTTTCTT	2487
704	AAAGAUCA G CAAAGAUG	160	CATCTTTG GGCTAGCTACAACGA TCATCTTT	2488
710	GAGCAAAG A UGGUAAAAA	161	TTTTACCA GGCTAGCTACAACGA CTTTGCTC	2489
713	CAAAGAUG G UAAAAAGA	162	TCTTTTTA GGCTAGCTACAACGA CATCTTTG	2490
732	AAAAAGAA G UCAAAGAC	163	GTCTTTGA GGCTAGCTACAACGA TTCTTTTT	2491
739	AGUCAAAG A CAAAGUGU	164	ACACTTTG GGCTAGCTACAACGA CTTTGACT	2492
744	AAGACAAA G UGUGUAAU	165	ATTACACA GGCTAGCTACAACGA TTTGTCTT	2493
746	GACAAAGU G UGUAAAUA	166	TAATTACA GGCTAGCTACAACGA ACTTTGTC	2494
748	CAAAGUGU G UAAUUAUG	167	CATAATTG GGCTAGCTACAACGA ACACCTTG	2495
751	AGUGUGUA A UUAUGUAA	168	TTACATAA GGCTAGCTACAACGA TACACACT	2496
754	GUGUAAU A UGUAAAUA	169	TATTTACA GGCTAGCTACAACGA ATTACAC	2497
756	GUAAUUAU G UAAAUAAC	170	TGTATTTA GGCTAGCTACAACGA ATAATTAC	2498
760	UUAUGUAA A UACAAUUV	171	AAATTGTA GGCTAGCTACAACGA TTACATAA	2499
762	AUGUAAA A CAAUUGU	172	ACAAATTG GGCTAGCTACAACGA ATTTACAT	2500
765	UAAAUAAC A UUUGUACU	173	AGTACAAA GGCTAGCTACAACGA TGTATTTA	2501
769	UACAAUUU G UACUUUUU	174	AAAAAGTA GGCTAGCTACAACGA AAATTGTA	2502
771	CAUUUGU A CUUUUUC	175	GAAAAAAAG GGCTAGCTACAACGA ACAAAATTG	2503
785	UUCUUAAG G CAUACUAG	176	CTAGTATG GGCTAGCTACAACGA CTTAAGAA	2504
787	CUUAAGGC A UACUAGUA	177	TACTAGTA GGCTAGCTACAACGA GCCTTAAG	2505
789	UAAGGCAU A CUAGUACA	178	TGTACTAG GGCTAGCTACAACGA ATGCCCTTA	2506
793	GCAUACUA G UACAAGUG	179	CACTTGTA GGCTAGCTACAACGA TAGTATGC	2507
795	AUACUAGU A CAAGUGGU	180	ACCACTTG GGCTAGCTACAACGA ACTAGTAT	2508
799	UAGUACAA G UGGUAAUU	181	AATTACCA GGCTAGCTACAACGA TTGTACTA	2509
802	UACAAUG G UAAUJUUU	182	AAAAATTAA GGCTAGCTACAACGA CACTTGTA	2510
805	AAGUGGUA A UUUUJUGUA	183	TACAAAAA GGCTAGCTACAACGA TACCACTT	2511
811	UAAUUUUU G UACAUUAC	184	GTAATGTA GGCTAGCTACAACGA AAAAATTAA	2512
813	AAUUUJUG A CAUACAC	185	GTGTAATG GGCTAGCTACAACGA ACAAAAAT	2513
815	UUUJUGAC A UUACACUA	186	TAGTGTA GGCTAGCTACAACGA GTACAAAA	2514
818	UGUACAUU A CACUAAA	187	ATTTAGTG GGCTAGCTACAACGA AATGTACA	2515
820	UACAUUAC A CUAAUUA	188	TAATTTAG GGCTAGCTACAACGA GTAATGTA	2516
825	UACACUAA A UUAAUAGC	189	GCTAATAA GGCTAGCTACAACGA TTAGTGTA	2517
828	ACUAAAUU A UUAGCAUU	190	AATGCTAA GGCTAGCTACAACGA ATTTAGT	2518
832	AAUUUAUA G CAUJUGUU	191	AACAAATG GGCTAGCTACAACGA TAATAATT	2519
834	UUAUUAGC A UUUGUUUU	192	AAAACAAA GGCTAGCTACAACGA GCTAATAA	2520
838	UAGCAUUU G UUUUAGCA	193	TGCTAAAA GGCTAGCTACAACGA AAATGCTA	2521
844	UUGUUUUA G CAUJACCU	194	AGGTAAATG GGCTAGCTACAACGA TAAAACAA	2522
846	GUUUUAGC A UUACCUM	195	TTAGGTAA GGCTAGCTACAACGA GCTAAAAC	2523
849	UJAGCAUU A CCUAAUUU	196	AAATTAGG GGCTAGCTACAACGA AATGCTAA	2524
854	AUUACCUA A UUUUUUUC	197	GAAAAAAA GGCTAGCTACAACGA TAGGTAAT	2525
865	UUUUUCCU G CUCCAUGC	198	GCATGGAG GGCTAGCTACAACGA AGGAAAAAA	2526
870	CCUGCUCC A UGCAGACU	199	AGTCTGCA GGCTAGCTACAACGA GGAGCAGG	2527
872	UGCUCCAU G CAGACUGU	200	ACAGTCG GGCTAGCTACAACGA ATGGAGCA	2528
876	CCAUGCAG A CUGUUAGC	201	GCTAACAG GGCTAGCTACAACGA CTGCATGG	2529
879	UGCAGACU G UUAGCUUU	202	AAAGCTAA GGCTAGCTACAACGA AGTCTGCA	2530
883	GACUGUUA G CUUUUACC	203	GGTAAAAG GGCTAGCTACAACGA TAACAGTC	2531
889	UAGCUUU A CCUAAAUAU	204	ATTTAAGG GGCTAGCTACAACGA AAAAGCTA	2532

896	UACCUUAA A UGCUUAUU	205	AATAAGCA GGCTAGCTACAACGA TTAAGGTA	2533
898	CCUUAUU G CUUAUUUU	206	AAAATAAG GGCTAGCTACAACGA ATTTAAGG	2534
902	AAAUGCUU A UUUUAAA	207	TTTTAAAA GGCTAGCTACAACGA AAGCATT	2535
910	AUUUUAAA A UGACAGUG	208	CACTGTCA GGCTAGCTACAACGA TTTAAAAT	2536
913	UUAAAUG A CAGUGGAA	209	TTCCACTG GGCTAGCTACAACGA CATTTTAA	2537
916	AAAUGACA G UGGAAGUU	210	AACTTCCA GGCTAGCTACAACGA TGTCATTT	2538
922	CAGUGGAA G UUUUUUUU	211	AAAAAAA GGCTAGCTACAACGA TTCCACTG	2539
939	UCCUCGAA G UGCCAGUA	212	TACTGGCA GGCTAGCTACAACGA TTGAGGA	2540
941	CUCGAAGU G CCAGUAUU	213	AATACTGG GGCTAGCTACAACGA ACTTCGAG	2541
945	AAGUGCCA G UAUUCCCA	214	TGGGAATA GGCTAGCTACAACGA TGGCACTT	2542
947	GUGCCAGU A UUCCCGA	215	TCTGGGAA GGCTAGCTACAACGA ACTGGCAC	2543
956	UCCCCAGA G UUUGGUU	216	AACCAAA GGCTAGCTACAACGA TCTGGGAA	2544
962	GAGUUUJG G UUUUGAA	217	TTCAAAA GGCTAGCTACAACGA CAAAACTC	2545
970	GUUUUJGA A CUAGCAAU	218	ATTGCTAG GGCTAGCTACAACGA TCAAAAC	2546
974	UGAACUJA G CAAUGCCU	219	AGGCATTG GGCTAGCTACAACGA TAGITCAA	2547
977	AACUAGCA A UGCCUGUG	220	CACAGGC GGCTAGCTACAACGA TGCTAGTT	2548
979	CUAGCAAU G CCUGUGAA	221	TTCACAGG GGCTAGCTACAACGA ATTGCTAG	2549
983	CAAUGCCU G UGAAAAAG	222	CTTTTCA GGCTAGCTACAACGA AGGCATTG	2550
994	AAAAAGAA A CUGAAUAC	223	GTATTCA GGCTAGCTACAACGA TTCTTTT	2551
999	GAAACUGA A UACCUAAG	224	CTTAGGTA GGCTAGCTACAACGA TCAGTTTC	2552
1001	AACUGAAU A CCUAAGAU	225	ATCTTGG GGCTAGCTACAACGA ATTCAACT	2553
1008	UACCUAAG A UUUCUGUC	226	GACAGAA GGCTAGCTACAACGA CTTAGGTA	2554
1014	AGAUUUJC G UCUJUGGG	227	CCCCAAGA GGCTAGCTACAACGA AGAAATCT	2555
1022	GUCUUGGG G UUUUJGGU	228	ACCAAAA GGCTAGCTACAACGA CCCAAGAC	2556
1029	GGUUUUG G UGCAUGCA	229	TGCATGCA GGCTAGCTACAACGA CAAAAACC	2557
1031	UUUUUGGU G CAUGCAGU	230	ACTGCATG GGCTAGCTACAACGA ACCAAAAA	2558
1033	UUUGGUGC A UGCAGUUG	231	CAACTGCA GGCTAGCTACAACGA GCACCAAA	2559
1035	UGGUGCAU G CAGUUGAU	232	ATCAACTG GGCTAGCTACAACGA ATGCACCA	2560
1038	UGCAUGCA G UUGAUUAC	233	GTAATCAA GGCTAGCTACAACGA TGCATGCA	2561
1042	UGCAGUJG A UUACUUCU	234	AGAAGTAA GGCTAGCTACAACGA CAACTGCA	2562
1045	AGUUGAUU A CUUCUUAU	235	ATAAGAAG GGCTAGCTACAACGA AATCAACT	2563
1052	UACUUCUU A UUUUJCUU	236	AAGAAAAA GGCTAGCTACAACGA AAGAAGTA	2564
1061	UUUUUCUU A CCAAGUGU	237	ACACTTGG GGCTAGCTACAACGA AAGAAAAA	2565
1066	CUUACCAA G UGUGAAUG	238	CATTCACA GGCTAGCTACAACGA TTGGTAAG	2566
1068	UACCAAGU G UGAAUGUU	239	AACATTCA GGCTAGCTACAACGA ACTTGGTA	2567
1072	AAGUGUGA A UGUUGGGUG	240	CACCAACA GGCTAGCTACAACGA TCACACTT	2568
1074	GUGUGAAU G UGGUGUG	241	CACACCAA GGCTAGCTACAACGA ATTCAACAC	2569
1078	GAAUUGUG G UGUGAAC	242	GTTCACACA GGCTAGCTACAACGA CAACATT	2570
1080	AUGUUGGU G UGAAACAA	243	TTGTTTCA GGCTAGCTACAACGA ACCAACAT	2571
1085	GGUGUGAA A CAAAUUAA	244	TTAATTG GGCTAGCTACAACGA TTCACACC	2572
1089	UGAAACAA A UUAAUGAA	245	TTCATTA GGCTAGCTACAACGA TTGTTCA	2573
1093	ACAAAUUA A UGAAGCUU	246	AAGCTTCA GGCTAGCTACAACGA TAATTGT	2574
1098	UUAAUGAA G CUUJUGAA	247	TCACAAAG GGCTAGCTACAACGA TTCATTA	2575
1106	GCUUJUGA A UCAUCCCU	248	AGGGATGA GGCTAGCTACAACGA TCAAAAGC	2576
1109	UUUGAAUC A UCCCJAUU	249	AATAGGGA GGCTAGCTACAACGA GATTCAA	2577
1115	UCAUCCCU A UUCUGUGU	250	ACACAGAA GGCTAGCTACAACGA AGGGATGA	2578
1120	CCUAAUCU G UGUUUUJAU	251	ATAAAACA GGCTAGCTACAACGA AGAATAGG	2579
1122	UAUUCUGU G UUUUJAUU	252	AGATAAAA GGCTAGCTACAACGA ACAGAATA	2580
1127	UGUGUUU A UCUAGUCA	253	TGACTAGA GGCTAGCTACAACGA AAAACACA	2581
1132	UUUAUCUA G UCACAUAA	254	TTATGTGA GGCTAGCTACAACGA TAGATAAA	2582
1135	AUCUAGUC A CAUAAAUG	255	CATTATG GGCTAGCTACAACGA GACTAGAT	2583
1137	CUAGUCAC A UAAAUGGA	256	TCCATTAA GGCTAGCTACAACGA GTGACTAG	2584

1141	UCACAUAA A UGGAUUAA	257	TTAATCCA GGCTAGCTACAACGA TTATGTGA	2585
1145	AUAAAUGG A UUAAUUAAC	258	GTAATTAA GGCTAGCTACAACGA CCATTTAT	2586
1149	AUGGAAUA A UUACUAAU	259	ATTAGTAA GGCTAGCTACAACGA TAATCCAT	2587
1152	GAUUAAUU A CUAAUUC	260	GAAATTAG GGCTAGCTACAACGA ATTAATC	2588
1156	AAUUACUA A UUUCAGUU	261	AACTGAAA GGCTAGCTACAACGA TAGTAATT	2589
1162	UAAUUUCA G UUGAGACC	262	GGTCTCAA GGCTAGCTACAACGA TGAAATTA	2590
1168	CAGUUGAG A CCUUCUAA	263	TTAGAAGG GGCTAGCTACAACGA CTCAACTG	2591
1176	ACCUUCUA A UUGGUUUU	264	AAAACCAA GGCTAGCTACAACGA TAGAAGGT	2592
1180	UCUAAUUG G UUUUUACU	265	AGTAAAAA GGCTAGCTACAACGA CAATTAGA	2593
1186	UGGUUUUU A CUGAAACAA	266	TGTTTCAG GGCTAGCTACAACGA AAAAACCA	2594
1192	UUACUGAA A CAUUGAGG	267	CCTCAATG GGCTAGCTACAACGA TTCAGTAA	2595
1194	ACUGAAC A UUGAGGG	268	TCCCTCAA GGCTAGCTACAACGA GTTTCACT	2596
1202	AUUGAGGG A CACAAAUU	269	AATTTGTG GGCTAGCTACAACGA CCCTCAAT	2597
1204	UGAGGGAC A CAAAUUUA	270	TAAATTG GGCTAGCTACAACGA GTCCCTCA	2598
1208	GGACACAA A UUUUAUGG	271	CCCATAAA GGCTAGCTACAACGA TTGTGTCC	2599
1212	ACAAAUUU A UGGGCUUC	272	GAAGCCCCA GGCTAGCTACAACGA AAATTTGT	2600
1216	AUUUAUGG G CUUCCUGA	273	TCAGGAAG GGCTAGCTACAACGA CCATAAAAT	2601
1224	GCUUCCUG A UGAUGAUU	274	AATCATCA GGCTAGCTACAACGA CAGGAAGC	2602
1227	UCCUGAUG A UGAUUCUU	275	AAGAATCA GGCTAGCTACAACGA CATCAGGA	2603
1230	UGAUGAUG A UUCUUCUA	276	TAGAAGAA GGCTAGCTACAACGA CATCATCA	2604
1240	UCUUCUAG G CAUCAUGU	277	ACATGATG GGCTAGCTACAACGA CTAGAAGA	2605
1242	UUCUAGGC A UCAUGUCC	278	GGACATGA GGCTAGCTACAACGA GCCTAGAA	2606
1245	UAGGCAUC A UGUCCUAU	279	ATAGGACA GGCTAGCTACAACGA GATGCC	2607
1247	GGCAUCAU G UCCUAUAG	280	CTATAGGA GGCTAGCTACAACGA ATGATGCC	2608
1252	CAUGUCCU A UAGUUUJGU	281	ACAAACTA GGCTAGCTACAACGA AGGACATG	2609
1255	GUCCUUA G UUUGUCAU	282	ATGACAAA GGCTAGCTACAACGA TATAGGAC	2610
1259	UAUAGUUU G UCAUCCCU	283	AGGGATGA GGCTAGCTACAACGA AAACTATA	2611
1262	AGUUUJGUC A UCCCUGAU	284	ATCAGGGA GGCTAGCTACAACGA GACAAACT	2612
1269	CAUCCUG A UGAAUGUA	285	TACATTCA GGCTAGCTACAACGA CAGGGATG	2613
1273	CCUGAUGA A UGUAAAGU	286	ACTTTACA GGCTAGCTACAACGA TCATCAGG	2614
1275	UGAUGAAU G UAAAAGUUA	287	TAACTTTA GGCTAGCTACAACGA ATTCACTCA	2615
1280	AAUGUAAA G UUACACUG	288	CAGTGTAA GGCTAGCTACAACGA TTTACATT	2616
1283	GUAAAGUU A CACUGUUC	289	GAACAGTG GGCTAGCTACAACGA AACITTTAC	2617
1285	AAAGUJAC A CUGUJCAC	290	GTGAACAG GGCTAGCTACAACGA GTAACTTT	2618
1288	GUUACACU G UUCACAAA	291	TTTGTGAA GGCTAGCTACAACGA AGTGTAAAC	2619
1292	CACUGUUC A CAAAGGUU	292	AACCTTTG GGCTAGCTACAACGA GAACAGTG	2620
1298	UCACAAAG G UUUJGUCU	293	AGACAAAA GGCTAGCTACAACGA CTTTGTGA	2621
1303	AAGGUUUU G UCUCUUU	294	AAAGGAGA GGCTAGCTACAACGA AAAACCTT	2622
1314	UCCUUUCC A CUGCUAUU	295	AATAGCAG GGCTAGCTACAACGA GGAAAGGA	2623
1317	UUUCCACU G CUAAUAGU	296	ACTAATAG GGCTAGCTACAACGA AGTGGAAA	2624
1320	CCACUGCU A UUAGUCAU	297	ATGACTAA GGCTAGCTACAACGA AGCAGTGG	2625
1324	UGCUUUA G UCAUGGUC	298	GACCATGA GGCTAGCTACAACGA TAATAGCA	2626
1327	UAUUAGUC A UGGUCACU	299	AGTGACCA GGCTAGCTACAACGA GACTAATA	2627
1330	UAGUCAUG G UCACUCUC	300	GAGAGTGA GGCTAGCTACAACGA CATGACTA	2628
1333	UCAUGGUC A CUCUCCCC	301	GGGGAGAG GGCTAGCTACAACGA GACCATGA	2629
1345	UCCCCAAA A UAUUAUAU	302	ATATAATA GGCTAGCTACAACGA TTTGGGGA	2630
1347	CCCAAAAU A UUUAUUU	303	AAATATAAA GGCTAGCTACAACGA ATTTTGGG	2631
1350	AAAAUUAU A UAUUUUUU	304	AAAAAAATA GGCTAGCTACAACGA AATAATTT	2632
1352	AAUAUUAU A UUUUUUCU	305	AGAAAAAA GGCTAGCTACAACGA ATAATATT	2633
1361	UUUUUUCU A UAAAAAGA	306	TCTTTTTA GGCTAGCTACAACGA AGAAAAAA	2634
1375	AGAAAAAA A UGGAAAAA	307	TTTTTCCA GGCTAGCTACAACGA TTTTTTCT	2635
1385	GGAAAAAA A UUACAAGG	308	CCTTGTAA GGCTAGCTACAACGA TTTTTTCC	2636

1388	AAAAAAUU A CAAGGCAA	309	TTGCCCTTG GGCTAGCTACAACGA AATTTTTT	2637
1393	AUUACAAG G CAAUGGAA	310	TTCCATTG GGCTAGCTACAACGA CTTGTAAT	2638
1396	ACAAGGCA A UGGAAACU	311	AGTTTCCA GGCTAGCTACAACGA TGCCTTGT	2639
1402	CAAUGGAA A CUAUUAUA	312	TATAATAG GGCTAGCTACAACGA TTCCATTG	2640
1405	UGGAAACU A UUUAUAGG	313	CCTTATAA GGCTAGCTACAACGA AGTTTCCA	2641
1408	AAACUAAU A UAAGGCCA	314	TGGCCTTA GGCTAGCTACAACGA AATAGTTT	2642
1413	AUUUAUAG G CCAUUCUCC	315	GGAAATGG GGCTAGCTACAACGA CTTATAAT	2643
1416	AUAAGGCC A UUUCCUUU	316	AAAGGAAA GGCTAGCTACAACGA GGCCTTAT	2644
1427	UCCUUUUC A CAUUAGAU	317	ATCTAATG GGCTAGCTACAACGA GAAAAGGA	2645
1429	CUUUUCAC A UUAGAUAA	318	TTATCTAA GGCTAGCTACAACGA GTGAAAAG	2646
1434	CACAUUAG A UAAAUAAC	319	GTAATTAA GGCTAGCTACAACGA CTAATGTG	2647
1438	UUAGAUAA A UUACUAAU	320	TATAGTAA GGCTAGCTACAACGA TTATCTAA	2648
1441	GAUAAAUU A CUUAAAAG	321	CTTTATAG GGCTAGCTACAACGA AATTATTC	2649
1444	AAAUAUACU A UAAAGACU	322	AGTCTTTA GGCTAGCTACAACGA AGTAATTT	2650
1450	CUUUAAG A CUCCUAAU	323	ATTAGGAG GGCTAGCTACAACGA CTTTATAG	2651
1457	GACUCCUA A UAGCUUUU	324	AAAAGCTA GGCTAGCTACAACGA TAGGAGTC	2652
1460	UCCUAAUA G CUUUUUC	325	GGAAAAAAG GGCTAGCTACAACGA TATTAGGA	2653
1470	UUUUUCCU G UUAAGGCA	326	TGCCTTAA GGCTAGCTACAACGA AGGAAAAA	2654
1476	CUGUUAAG G CAGACCCA	327	TGGGTCTG GGCTAGCTACAACGA CTTAACAG	2655
1480	UAAGGCAG A CCCAGUAU	328	ATACTGGG GGCTAGCTACAACGA CTGCCCTTA	2656
1485	CAGACCCA G UAUGAAUG	329	CATTCTAA GGCTAGCTACAACGA TGGGTCTG	2657
1487	GACCCAGU A UGAAUGGG	330	CCCATTCA GGCTAGCTACAACGA ACTGGGTC	2658
1491	CAGUAUGA A UGGGAUUA	331	TAATCCCA GGCTAGCTACAACGA TCATACTG	2659
1496	UGAAUGGG A UUUAUUA	332	TATAATAA GGCTAGCTACAACGA CCCATTCA	2660
1499	AUGGGAUU A UUUAUAGC	333	TGCTATAA GGCTAGCTACAACGA AATCCCAT	2661
1502	GGAUUUAU A UAGCAACC	334	GGTTGCTA GGCTAGCTACAACGA AATAATCC	2662
1505	UUAUUAUA G CAACCAUU	335	AATGGTTG GGCTAGCTACAACGA TATAATAA	2663
1508	UUAUAGCA A CCAUUUUG	336	CAAAATGG GGCTAGCTACAACGA TGCTATAA	2664
1511	UAGCAACC A UUUUGGGG	337	CCCCAAAA GGCTAGCTACAACGA GGTTGCTA	2665
1519	AUUUUGGG G CUAUUUUU	338	AAATATAG GGCTAGCTACAACGA CCCAAAT	2666
1522	UGGGGCU A UAUUUAC	339	TGTAAATA GGCTAGCTACAACGA AGCCCCAA	2667
1524	GGGGCUAU A UUUAC AUG	340	CATGTAAA GGCTAGCTACAACGA ATAGCCCC	2668
1528	CUAUUUU A CAUGCUAC	341	GTAGCATG GGCTAGCTACAACGA AAATATAG	2669
1530	AUAUJAC A UGGCUACUA	342	TAGTAGCA GGCTAGCTACAACGA GTAAATAT	2670
1532	AUUUACAU G CUACUAAA	343	TTTAGTAG GGCTAGCTACAACGA ATGTAAAT	2671
1535	UACAUUGC A CUAAAUU	344	AAATTTAG GGCTAGCTACAACGA AGCATGTA	2672
1540	GCUACUAA A UUUUUAUA	345	TATAAAAA GGCTAGCTACAACGA TTAGTAGC	2673
1546	AAAUUUUU A UAAUUAUU	346	AATTATTA GGCTAGCTACAACGA AAAAATTT	2674
1549	UUUUUAUA A UAAUUGAA	347	TTCAATTAA GGCTAGCTACAACGA TATAAAAA	2675
1552	UUAUUAUA A UUGAAAAG	348	CTTTTCAA GGCTAGCTACAACGA TATTATAA	2676
1561	UUGAAAAG A UUUUACCA	349	TGTTAAAA GGCTAGCTACAACGA CTTTTCAA	2677
1567	AGAUUUUA A CAAGUUA	350	TATACTTG GGCTAGCTACAACGA TAAAATCT	2678
1571	UUUAACAA G UAUAAAAA	351	TTTTTATA GGCTAGCTACAACGA TTGTTAAA	2679
1573	UAAACAAGU A UAAAAAAA	352	TTTTTTTA GGCTAGCTACAACGA ACTTGTAA	2680
1581	AUAAAAAA A UUCUCAUA	353	TATGAGAA GGCTAGCTACAACGA TTTTTAT	2681
1587	AAAUCUC A UAGGAAAU	354	AATTCCCTA GGCTAGCTACAACGA GAGAATTT	2682
1593	UCAUAGGA A UUAAAUGU	355	ACATTTAA GGCTAGCTACAACGA TCCTATGA	2683
1598	GGAAUAAA A UGUAGUCU	356	AGACTACA GGCTAGCTACAACGA TTAATTCC	2684
1600	AAUAAAUA G UAGUCUCC	357	GGAGACTA GGCTAGCTACAACGA ATTTAATT	2685
1603	UAAAUGUA G UCUCCCUG	358	CAGGGAGA GGCTAGCTACAACGA TACATTAA	2686
1611	GUCUCCCU G UGUCAGAC	359	GTCTGACA GGCTAGCTACAACGA AGGGAGAC	2687
1613	CUCCCCUGU G UCAGACUG	360	CAGTCTGA GGCTAGCTACAACGA ACAGGGAG	2688

1618	UGUGUCAG A CUGCUCUU	361	AAGAGCAG GGCTAGCTACAACGA CTGACACA	2689
1621	GUCAGACU G CUCUUUCA	362	TGAAAGAG GGCTAGCTACAACGA AGTCTGAC	2690
1629	GCUCUUUC A UAGUAUAA	363	TTATACTA GGCTAGCTACAACGA GAAAGAGC	2691
1632	CUUCAUA G UAUAACUU	364	AAGTTATA GGCTAGCTACAACGA TATGAAAG	2692
1634	UUCAUAGU A UAACUUUA	365	TAAAGTTA GGCTAGCTACAACGA ACTATGAA	2693
1637	AUAGUAUA A CUUAAAUA	366	ATTTAAAG GGCTAGCTACAACGA TATACTAT	2694
1644	AACUUAAA A UCUUUUCU	367	AGAAAAGA GGCTAGCTACAACGA TTAAAGTT	2695
1656	UUUCUCA A CUUGAGUC	368	GACTCAAG GGCTAGCTACAACGA TGAAGAAA	2696
1662	CAACUUGA G UCUUUGAA	369	TTCAAAGA GGCTAGCTACAACGA TCAAGTTG	2697
1672	CUUUGAAG A UAGUUUUA	370	TTAAACTA GGCTAGCTACAACGA CTTCAAAG	2698
1675	UGAAGAUA G UUUUAAAUA	371	ATTTAAAA GGCTAGCTACAACGA TATCTTCA	2699
1681	UAGUUUUA A UUCUGCUU	372	AAGCAGAA GGCTAGCTACAACGA TAAAACTA	2700
1686	UUAAUUCU G CUUGUGAC	373	GTCACAAG GGCTAGCTACAACGA AGAATTAA	2701
1690	UUCUGCUU G UGACAUUA	374	TAATGTCA GGCTAGCTACAACGA AAGCAGAA	2702
1693	UGCUJUGUG A CAUAAAAA	375	TTTTATG GGCTAGCTACAACGA CACAAGCA	2703
1695	CUUGUGAC A UUAAAAGA	376	TCTTTTAA GGCTAGCTACAACGA GTCACAAG	2704
1703	AUAAAAG A UUAUUUGG	377	CCAAATAA GGCTAGCTACAACGA CTTTTAAT	2705
1706	AAAAGAUU A UUUGGGCC	378	GGCCCCAA GGCTAGCTACAACGA AATCTTT	2706
1712	UUAUUUGG G CCCAGUUAU	379	ATAACTGG GGCTAGCTACAACGA CCAAATAA	2707
1716	UUGGGCCA G UUAUAGCU	380	AGCTATAA GGCTAGCTACAACGA TGGCCCAA	2708
1719	GGCCAGUU A UAGCUUAU	381	ATAAGCTA GGCTAGCTACAACGA AACTGGCC	2709
1722	CAGUUAUA G CUUAUUAG	382	CTAATAAG GGCTAGCTACAACGA TATAACTG	2710
1726	UUAUAGCUU A UUAGGUGU	383	ACACCTAA GGCTAGCTACAACGA AAGCTATA	2711
1731	CUUAUUAG G UGUUGAAG	384	CTTCAACA GGCTAGCTACAACGA CTAATAAG	2712
1733	UAUUAGGU G UUGAAGAG	385	CTCTTCAA GGCTAGCTACAACGA ACCTAATA	2713
1742	UUGAAGAG A CCAAGGUU	386	AACCTTGG GGCTAGCTACAACGA CTCTTCAA	2714
1748	AGACCAAG G UUGCAAGC	387	GCTTGCAA GGCTAGCTACAACGA CTTGGTCT	2715
1751	CCAAGGUU G CAAGCCAG	388	CTGGCTTG GGCTAGCTACAACGA AACCTTGG	2716
1755	GGUUGCAA G CCAGGCC	389	GGGCCTGG GGCTAGCTACAACGA TTGCAACC	2717
1760	CAAGCCAG G CCCUGUGU	390	ACACAGGG GGCTAGCTACAACGA CTGGCTTG	2718
1765	CAGGCCCU G UGUGAAC	391	GGTTCAC A GGCTAGCTACAACGA AGGGCCTG	2719
1767	GGCCCGUG G UGAACCUU	392	AAGGTC A GGCTAGCTACAACGA ACAGGGCC	2720
1771	CUGUGUGA A CCUUGAGC	393	GCTCAAGG GGCTAGCTACAACGA TCACACAG	2721
1778	AACCUUGA G CUUUCAU	394	TATGAAAG GGCTAGCTACAACGA TCAAGGTT	2722
1784	GAGCUUUC A UAGAGAGU	395	ACTCTCTA GGCTAGCTACAACGA GAAAGCTC	2723
1791	CAUAGAGA G UUUCACAG	396	CTGTGAAA GGCTAGCTACAACGA TCTCTATG	2724
1796	AGAGUUUC A CAGCAUGG	397	CCATGCTG GGCTAGCTACAACGA GAAACTCT	2725
1799	GUUUCACA G CAUGGACU	398	AGTCATG GGCTAGCTACAACGA TGTGAAAC	2726
1801	UUCACAGC A UGGACUGU	399	ACAGTCCA GGCTAGCTACAACGA GCTGTGAA	2727
1805	CAGCAUGG A CUGUGUGC	400	GCACACAG GGCTAGCTACAACGA CCATGCTG	2728
1808	CAUGGACU G UGUGCCC	401	GGGGCACA GGCTAGCTACAACGA AGTCCATG	2729
1810	UGGACUGU G UGCCAC	402	GTGGGGCA GGCTAGCTACAACGA ACAGTCCA	2730
1812	GACUGUGU G CCCACGG	403	CCGTGGGG GGCTAGCTACAACGA ACACAGTC	2731
1817	UGUGCCCC A CGGUCAUC	404	GATGACCG GGCTAGCTACAACGA GGGGCACA	2732
1820	GCCCCACG G UCAUCCGA	405	TCGGATGA GGCTAGCTACAACGA CGTGGGGC	2733
1823	CCACGGUC A UCCGAGUG	406	CACTCGGA GGCTAGCTACAACGA GACCGTGG	2734
1829	UCAUCCGA G UGGUUGUA	407	TACAACCA GGCTAGCTACAACGA TCGGATGA	2735
1832	UCCGAGUG G UUGUACGA	408	TCGTACAA GGCTAGCTACAACGA CACTCGGA	2736
1835	GAGUGGUU G UACGAUGC	409	GCATCGTA GGCTAGCTACAACGA AACCACTC	2737
1837	GUGGUUGU A CGAUGCAU	410	ATGCATCG GGCTAGCTACAACGA ACAACCAC	2738
1840	GUUGUACG A UGCAUUGG	411	CCAATGCA GGCTAGCTACAACGA CGTACAAC	2739
1842	UGUACGAU G CAUUGGUU	412	AACCAATG GGCTAGCTACAACGA ATCGTACA	2740

1844	UACGAUGC A UUGGUUAG	413	CTAACCAA GGCTAGCTACAACGA GCATCGTA	2741
1848	AUGCAUUG G UUAGUCAA	414	TTGACTAA GGCTAGCTACAACGA CAATGCAT	2742
1852	AUJGGUUA G UCACAAAAAU	415	ATTTTGAGA GGCTAGCTACAACGA TAACCAAT	2743
1859	AGUCACAA A UGGGGAGG	416	CCTCCCCA GGCTAGCTACAACGA TTTTGA	2744
1869	GGGGAGGG A CUAGGGCA	417	TGCCCTAG GGCTAGCTACAACGA CCCTCCCC	2745
1875	GGACUAGG G CAGUUUJGG	418	CCAAACTG GGCTAGCTACAACGA CCTAGTCC	2746
1878	CUAGGGCA G UUUGGAUA	419	TATCCAAA GGCTAGCTACAACGA TGCCCTAG	2747
1884	CAGUUUJGG A UAGCUCAA	420	TTGAGCTA GGCTAGCTACAACGA CCAAACGT	2748
1887	UUUGGAUA G CUCACCAA	421	TTGTTGAG GGCTAGCTACAACGA TATCCAAA	2749
1892	AUAGCUCA A CAAGAUAC	422	GTTATCTG GGCTAGCTACAACGA TGAGCTAT	2750
1897	UCAACAAAG A UACAAUCU	423	AGATTGTA GGCTAGCTACAACGA CTIGTTGA	2751
1899	AACAAGAU A CAAUCUCA	424	TGAGATTG GGCTAGCTACAACGA ATCTTGT	2752
1902	AAGAUAC A UCUCACUC	425	GAGTGAGA GGCTAGCTACAACGA TGTATCTT	2753
1907	ACAAUCUC A CUCUGUGG	426	CCACAGAG GGCTAGCTACAACGA GAGATTGT	2754
1912	CUCACUCU G UGGUGGUC	427	GACCACCA GGCTAGCTACAACGA AGAGTGAG	2755
1915	ACUCUGUG G UGGGUCCUG	428	CAGGACCA GGCTAGCTACAACGA CACAGAGT	2756
1918	CUGUGGUG G UCCUGCUG	429	CAGCAGGA GGCTAGCTACAACGA CACCACAG	2757
1923	GUGGUCCU G CUGACAAA	430	TTTGTCA GGCTAGCTACAACGA AGGACCAC	2758
1927	UCCUGCUG A CAAAUCAA	431	TTGATTTG GGCTAGCTACAACGA CAGCAGGA	2759
1931	GCUGACAA A UCAAGAGC	432	GCTCTTGA GGCTAGCTACAACGA TTGTCAGC	2760
1938	AAUCAAGA G CAUUGCUU	433	AAGCAATG GGCTAGCTACAACGA TCTTGATT	2761
1940	UCAAGAGC A UUGCUUUU	434	AAAAGCAA GGCTAGCTACAACGA GCTCTTGA	2762
1943	AGAGCAUU G CUUUUGUU	435	AAACAAAG GGCTAGCTACAACGA AATGCTCT	2763
1949	UUGCUUUU G UUUCUUAA	436	TTAAGAAA GGCTAGCTACAACGA AAAAGCAA	2764
1962	UUAAGAAA A CAAACUCU	437	AGAGTTTG GGCTAGCTACAACGA TTTCTTAA	2765
1966	GAAAACAA A CUCUUUUU	438	AAAAAGAG GGCTAGCTACAACGA TTGTTTTC	2766
1980	UUUUAAAA A UUACUUU	439	AAAAGTAA GGCTAGCTACAACGA TTTTAAAA	2767
1983	UAAAAAUU A CUUUUAAA	440	TTTAAAAG GGCTAGCTACAACGA AATTTTTA	2768
1991	ACUUUUAA A UAUUAACU	441	AGTTAATA GGCTAGCTACAACGA TTAAAAGT	2769
1993	UUUUAAA A UUAACUCA	442	TGAGTTAA GGCTAGCTACAACGA ATTTAAAA	2770
1997	AAAUAUUA A CUACAAAG	443	CTTTTGAG GGCTAGCTACAACGA TAATATTT	2771
2005	ACUAAAA G UUGAGAUU	444	AATCTCAA GGCTAGCTACAACGA TTTTGAGT	2772
2011	AAGUUGAG A UUUUGGGG	445	CCCCAAAA GGCTAGCTACAACGA CTCAACCT	2773
2019	AUUUUGGG G UGGUGGUG	446	CACCACCA GGCTAGCTACAACGA CCCAAAT	2774
2022	UUGGGGUG G UGGUGUGC	447	GCACACCA GGCTAGCTACAACGA CACCCCAA	2775
2025	GGGUGGUG G UGUGCCAA	448	TTGGCACA GGCTAGCTACAACGA CACCACCC	2776
2027	GUGGUGGU G UGCCAAGA	449	TCTTGGCA GGCTAGCTACAACGA ACCACCAC	2777
2029	GGUGGUGU G CCAAGACA	450	TGTCTTGG GGCTAGCTACAACGA ACACCACC	2778
2035	GUGCCAAG A CAUUAUU	451	AATTAATG GGCTAGCTACAACGA CTTGGCAC	2779
2037	GCCAAGAC A UUAAUUU	452	AAAATTAA GGCTAGCTACAACGA GTCTTGGC	2780
2041	AGACAUUA A UUUUUUUU	453	AAAAAAA GGCTAGCTACAACGA TAATGTCT	2781
2054	UUUUUUAA A CAAUGAAG	454	CTTCATTG GGCTAGCTACAACGA TTAAAAAA	2782
2057	UUUAAAACA A UGAAGUGA	455	TCACTTCA GGCTAGCTACAACGA TGTTTAAA	2783
2062	ACAAUGAA G UGAAAAAG	456	CTTTTTCA GGCTAGCTACAACGA TTCATTGT	2784
2070	GUGAAAAA G UUUUACAA	457	TTGTAAAA GGCTAGCTACAACGA TTTTCAC	2785
2075	AAAGUUUU A CAAUCUCU	458	AGAGATTG GGCTAGCTACAACGA AAAACTTT	2786
2078	GUUUUACA A UCUCUAGG	459	CCTAGAGA GGCTAGCTACAACGA TGTAAAAC	2787
2086	AUCUCUAG G UUUGGCUA	460	TAGCCAAA GGCTAGCTACAACGA CTAGAGAT	2788
2091	UAGGUUJUG G CUAGUUCU	461	AGAACTAG GGCTAGCTACAACGA CAAACCTA	2789
2095	UUUGGCUA G UUCUCUUA	462	TAAGAGAA GGCTAGCTACAACGA TAGCCAAA	2790
2104	UUCUCUUA A CACUGGUU	463	AACCAGTG GGCTAGCTACAACGA TAAGAGAA	2791
2106	CUCUUAAC A CUGGUUAA	464	TTAACCGAG GGCTAGCTACAACGA GTTAAGAG	2792

2110	UAACACUG G UUUAAAUA	465	TAATTTAA GGCTAGCTACAACGA CAGTGTAA	2793
2115	CUGGUUAA A UUAACAUU	466	AATGTTAA GGCTAGCTACAACGA TTAACCAG	2794
2119	UUAAAUA A CAUUGCAU	467	ATGCAATG GGCTAGCTACAACGA TAATTTAA	2795
2121	AAAUAAC A UUGCAUAA	468	TTATGCAGA GGCTAGCTACAACGA GTTAATT	2796
2124	UUAACAUU G CAUAAAACA	469	TGTTTATG GGCTAGCTACAACGA AATGTTAA	2797
2126	AACAUUGC A UAAACACU	470	AGTGTAA GGCTAGCTACAACGA GCAATGTT	2798
2130	UUGCAUAA A CACUUUUC	471	GAAAAGTG GGCTAGCTACAACGA TTATGCAGA	2799
2132	GCAUAAAAC A CUUUUCAA	472	TTGAAAAG GGCTAGCTACAACGA GTTTATGC	2800
2141	CUUUUCAA G UCUGAUCC	473	GGATCAGA GGCTAGCTACAACGA TTGAAAAG	2801
2146	CAAGUCUG A UCCAUUU	474	AATATGGA GGCTAGCTACAACGA CAGACTTG	2802
2150	UCUGAUCC A UAUUUUAAU	475	ATTAATAA GGCTAGCTACAACGA GGATCAGA	2803
2152	UGAUCCAU A UUUAAAUA	476	TTATTAAA GGCTAGCTACAACGA ATGGATCA	2804
2157	CAUAAAUA A UAAUGCUU	477	AAGCATTA GGCTAGCTACAACGA TAAATATG	2805
2160	AUAAAUA A UGCCUUAA	478	TTAAAGCA GGCTAGCTACAACGA TATTAAT	2806
2162	UAAAUAU G CUUUAAA	479	TTTTAAAG GGCTAGCTACAACGA ATTATTA	2807
2170	GUUUUAAA A UAAAAAUA	480	TATTTTTA GGCTAGCTACAACGA TTTAAAGC	2808
2176	AAAUAAAA A UAAAAACAA	481	TGTTTTTA GGCTAGCTACAACGA TTTTATTT	2809
2182	AAAUAAAA A CAAUCCUU	482	AAGGATTG GGCTAGCTACAACGA TTTTATTT	2810
2185	AAAAAACAA A UCCUUUUG	483	CAAAAGGA GGCTAGCTACAACGA TGTTTTTA	2811
2194	UCCUUUUG A UAAAUAUA	484	TAAATTAA GGCTAGCTACAACGA CAAAAGGA	2812
2198	UUUGAUAA A UUUAAAUA	485	ATTTTAAA GGCTAGCTACAACGA TTATCAA	2813
2205	AAUAAAUA A UGUUACUU	486	AAGTAACA GGCTAGCTACAACGA TTTAAATT	2814
2207	UUAAAUAU G UUACUUAU	487	ATAAGTAA GGCTAGCTACAACGA ATTTTAAA	2815
2210	AAAAUGUU A CUUAAAUA	488	AAAATAAG GGCTAGCTACAACGA AACATTT	2816
2214	UGUUACUU A UUUAAAUA	489	TTTTAAA GGCTAGCTACAACGA AAGTAACA	2817
2222	AUAAAUA A UAAAUGAA	490	TTCATTTA GGCTAGCTACAACGA TTTAAAT	2818
2226	AAAAAAAUA A UGAAGUGA	491	TCACCTCA GGCTAGCTACAACGA TTATTTTA	2819
2231	AAAAUGAA G UGAGAUGG	492	CCATCTCA GGCTAGCTACAACGA TTCATTTA	2820
2236	GAAGUGAG A UGGCAUGG	493	CCATGCCA GGCTAGCTACAACGA CTCACTTC	2821
2239	GUGAGAUG G CAUGGUGA	494	TCACCATG GGCTAGCTACAACGA CATCTCAC	2822
2241	GAGAUGGC A UGGUGAGG	495	CCTCACCA GGCTAGCTACAACGA GCCATCTC	2823
2244	AUGGCAUG G UGAGGUGA	496	TCACCTCA GGCTAGCTACAACGA CATGCCAT	2824
2249	AUGGUGAG G UGAAAGUA	497	TACTTTCA GGCTAGCTACAACGA CTCACCAT	2825
2255	AGGUGAAA G UAUCACUG	498	CAGTGATA GGCTAGCTACAACGA TTTCACCT	2826
2257	GUGAAAGU A UCACUGGA	499	TCCAGTGA GGCTAGCTACAACGA ACTTTCAC	2827
2260	AAAGUAUC A CUGGACUA	500	TAGTCCAG GGCTAGCTACAACGA GATACTIT	2828
2265	AUCACUGG A CUAGGUUG	501	CAACCTAG GGCTAGCTACAACGA CCAGTGAT	2829
2270	UGGACUAG G UUGUUGGU	502	ACCAACAA GGCTAGCTACAACGA CTAGTCCA	2830
2273	ACUAGGUU G UGGUGUAC	503	GTCACCAA GGCTAGCTACAACGA AACCTAGT	2831
2277	GGUUGUUG G UGACUUAG	504	CTAAGTCA GGCTAGCTACAACGA CAACAACC	2832
2280	UGUUGGUG A CUUAGGUU	505	AACCTAAG GGCTAGCTACAACGA CACCAACA	2833
2286	UGACUUAAG G UUCUAGAU	506	ATCTAGAA GGCTAGCTACAACGA CTAAGTCA	2834
2293	GGUUCUAG A UAGGUGUC	507	GACACCTA GGCTAGCTACAACGA CTAGAAC	2835
2297	CUAGAUAG G UGUCUUUU	508	AAAAGACA GGCTAGCTACAACGA CTATCTAG	2836
2299	AGAUAGGU G UCUUUUAG	509	CTAAAAGA GGCTAGCTACAACGA ACCTATCT	2837
2309	CUUUUAGG A CUCUGAUU	510	AATCAGAG GGCTAGCTACAACGA CCTAAAAG	2838
2315	GGACUCUG A UUUUGAGG	511	CCTCAAAA GGCTAGCTACAACGA CAGAGTCC	2839
2324	UUUUGAGG A CAUCACUU	512	AAGTGATG GGCTAGCTACAACGA CCTCAAA	2840
2326	UUGAGGAC A UCACUUAC	513	GTAAGTGA GGCTAGCTACAACGA GTCCCTAA	2841
2329	AGGACAUCAUC A CUUACAU	514	ATAGTAAG GGCTAGCTACAACGA GATGTCCT	2842
2333	CAUCACUU A CUAUCCAU	515	ATGGATAG GGCTAGCTACAACGA AAGTGATG	2843
2336	CACUUACU A UCCAUUUC	516	GAAATGGA GGCTAGCTACAACGA AGTAAGTG	2844

2340	UACUAUCC A UUUUUUCA	517	TGAAGAAA GGCTAGCTACAACGA GGATAGTA	2845
2348	AUUUCUUC A UGUUAAAA	518	TTTTAACAA GGCTAGCTACAACGA GAAGAAAT	2846
2350	UUCUUCAU G UUAAAAGA	519	TCTTTTAA GGCTAGCTACAACGA ATGAAGAA	2847
2360	UAAAAGAA G UCAUCUCA	520	TGAGATGA GGCTAGCTACAACGA TTCTTTTA	2848
2363	AAGAAGUC A UCUCAAAC	521	GTTTGAGA GGCTAGCTACAACGA GACTTCCT	2849
2370	CAUCUCAA A CUCUUGU	522	ACTAACAG GGCTAGCTACAACGA TTGAGATG	2850
2377	AACUCUUA G UUUUUUUU	523	AAAAAAA GGCTAGCTACAACGA TAAGAGTT	2851
2390	UUUUUUUU A CACUUAUGU	524	ACATAGTG GGCTAGCTACAACGA AAAAAAAA	2852
2392	UUUUUUAAC A CU AUGUGA	525	TCACATAG GGCTAGCTACAACGA GTAAAAAA	2853
2395	UUUACACU A UGUGAUUU	526	AAATCACA GGCTAGCTACAACGA AGTGTAAA	2854
2397	UACACUUA G UGAUJUUAU	527	ATAAATCA GGCTAGCTACAACGA ATAGGTGA	2855
2400	ACUAUGUG A UUUUAUUU	528	AATATAAA GGCTAGCTACAACGA CACATAGT	2856
2404	UGUGAUUU A UAUUCCAU	529	ATGGAATA GGCTAGCTACAACGA AAATCACA	2857
2406	UGAUUUUA A UUCCAUUU	530	AAATGGAA GGCTAGCTACAACGA ATAATCA	2858
2411	UAUAUJCC A UUUACAUUA	531	TATGTAAA GGCTAGCTACAACGA GGAATATA	2859
2415	UCCAUUU A CAUAAGGA	532	TCCCTTATG GGCTAGCTACAACGA AAATGGAA	2860
2417	CCAUUUAC A UAAGGAAU	533	TATCCTTA GGCTAGCTACAACGA GTAAATGG	2861
2423	ACAUAAAGG A UACACUUA	534	TAAGTGTAA GGCTAGCTACAACGA CCTTATGT	2862
2425	AUAAGGAU A CACUUAUU	535	AATAAGTG GGCTAGCTACAACGA ATCCCTAT	2863
2427	AAGGAUAC A CUUAUUUG	536	CAAATAAG GGCTAGCTACAACGA GTATCCTT	2864
2431	AUACACUU A UUUGUCAA	537	TTGACAAA GGCTAGCTACAACGA AAGTGTAT	2865
2435	ACUUUUUU G UCAAGCUC	538	GAGCTTGA GGCTAGCTACAACGA AAATAAGT	2866
2440	UUUGUCAA G CUCAGCAC	539	GTGCTGAG GGCTAGCTACAACGA TTGACAAA	2867
2445	CAAGCUCA G CACAAUCU	540	AGATTGTG GGCTAGCTACAACGA TGAGCTTG	2868
2447	AGCUCAGC A CAAUCUGU	541	ACAGATTG GGCTAGCTACAACGA GCTGAGCT	2869
2450	UCAGCACA A UCUGUAAA	542	TTTACAGA GGCTAGCTACAACGA TGTGCTGA	2870
2454	CACAAUCU G UAAAAUUUU	543	AAAATTAA GGCTAGCTACAACGA AGATTGTG	2871
2458	AUCUGUAA A UUUUUUAC	544	GTAAAAAA GGCTAGCTACAACGA TTACAGAT	2872
2465	AAUUUUUA A CCUAUGUU	545	AACATAGG GGCTAGCTACAACGA TAAAAATT	2873
2469	UUUAACCU A UGUUACAC	546	GTGTAAAC GGCTAGCTACAACGA AGGTTAAA	2874
2471	UAACCUAU G UUACACCA	547	TGGTGTAA GGCTAGCTACAACGA ATAGGTTA	2875
2474	CCUAUGUU A CACCAUCU	548	AGATGGTG GGCTAGCTACAACGA AACATAGG	2876
2476	UAUGUUAC A CCAUCUUC	549	GAAGATGG GGCTAGCTACAACGA GTAACATA	2877
2479	GUUACACC A UCUUCAGU	550	ACTGAAGA GGCTAGCTACAACGA GGTGTAAC	2878
2486	CAUCUCA G UGCCAGUC	551	GACTGGCA GGCTAGCTACAACGA TGAAGATG	2879
2488	UCUUCAGU G CCAGUCUU	552	AAGACTGG GGCTAGCTACAACGA ACTGAAGA	2880
2492	CAGUGCCA G UCUUUGGC	553	GCCCCAAGA GGCTAGCTACAACGA TGGCACTG	2881
2499	AGUCUUGG G CAAAAUUG	554	CAATTTTG GGCTAGCTACAACGA CCAAGACT	2882
2504	UGGGCAAA A UUGUGCAA	555	TTGCACAA GGCTAGCTACAACGA TTTGCCA	2883
2507	GCAAAAUU G UGCAAGAG	556	CTCTTGCA GGCTAGCTACAACGA AATTTTGC	2884
2509	AAAAUUGU G CAAGAGGU	557	ACCTCTTG GGCTAGCTACAACGA ACAATTTC	2885
2516	UGCAAGAG G UGAAGUUU	558	AAACTTCA GGCTAGCTACAACGA CTCTTGCA	2886
2521	GAGGUGAA G UUUUAUUU	559	AATATAAA GGCTAGCTACAACGA TTCACCTC	2887
2525	UGAAGUUU A UAUUUGAA	560	TTCAAAATA GGCTAGCTACAACGA AAACTTCA	2888
2527	AAGUUUUU A UUUGAAUA	561	TATTCAAA GGCTAGCTACAACGA ATAAACTT	2889
2533	AUAUUUGA A UAUCCAUU	562	AATGGATA GGCTAGCTACAACGA TCAAATAT	2890
2535	AUUUUGAAU A UCCAUUCU	563	AGAATGGA GGCTAGCTACAACGA ATTCAAAT	2891
2539	GAUUAUCC A UUCUCGUU	564	AACGAGAA GGCTAGCTACAACGA GGATATTC	2892
2545	CCAUUCUC G UUUUAGGA	565	TCCCTAAA GGCTAGCTACAACGA GAGAATGG	2893
2553	GUUUUAGG A CUCUUCUU	566	AAGAAGAG GGCTAGCTACAACGA CCTAAAAC	2894
2564	CUUCUCC A UAUUAGUG	567	CACTAATA GGCTAGCTACAACGA GGAAGAAG	2895
2566	UCUUCAU A UUAGUGUC	568	GACACTAA GGCTAGCTACAACGA ATGGAAGA	2896

2570	CCAUUUA G UGUCAUCU	569	AGATGACA GGCTAGCTACAACGA TAATATGG	2897
2572	AUAUUAGU G UCAUCUUG	570	CAAGATGA GGCTAGCTACAACGA ACTAATAT	2898
2575	UUAGUGUC A UCUUGCCU	571	AGGCAAGA GGCTAGCTACAACGA GACACTAA	2899
2580	GUCAUCUU G CCUCCCUA	572	TAGGGAGG GGCTAGCTACAACGA AAGATGAC	2900
2588	GCCUCCCU A CCUUCCAC	573	GTGGAAGG GGCTAGCTACAACGA AGGGAGGC	2901
2595	UACCUUCC A CAUGCCCC	574	GGGGCATG GGCTAGCTACAACGA GGAAGGTA	2902
2597	CCUUCCAC A UGCCCAU	575	ATGGGGCA GGCTAGCTACAACGA GTGGAAGG	2903
2599	UUCCACAU G CCCCAUGA	576	TCATGGGG GGCTAGCTACAACGA ATGTGGAA	2904
2604	CAUGCCCC A UGACUUGA	577	TCAAGTCA GGCTAGCTACAACGA GGGGCATG	2905
2607	GCCCCAUG A CUUGAUGC	578	GCATCAAG GGCTAGCTACAACGA CATGGGGC	2906
2612	AUGACIUG A UGCAGUUU	579	AAACTGCA GGCTAGCTACAACGA CAAGTCAT	2907
2614	GACUUGAU G CAGUUUUA	580	TAAAACGT GGCTAGCTACAACGA ATCAAGTC	2908
2617	UUGAUGCA G UUUUAAA	581	TATTAATAA GGCTAGCTACAACGA TGCATCAA	2909
2623	CAGUUUUA A UACUUGUA	582	TACAAGTA GGCTAGCTACAACGA TAAAACGT	2910
2625	GUUUUAAU A CUUGUAAU	583	ATTACAAAG GGCTAGCTACAACGA ATTAAAAC	2911
2629	UAAAUCUU G UAAUUCCC	584	GGGAATTAA GGCTAGCTACAACGA AAGTATTA	2912
2632	UACUUGUA A UUCCCUA	585	TAGGGGAA GGCTAGCTACAACGA TACAAGTA	2913
2641	UUCCCCUA A CCAUAAAG	586	TCTTATGG GGCTAGCTACAACGA TAGGGAA	2914
2644	CCCUAACC A UAAGAUUU	587	AAATCTTA GGCTAGCTACAACGA GTTGG	2915
2649	ACCAUAG A UUUACUGC	588	GCAGTAAA GGCTAGCTACAACGA CTTATGGT	2916
2653	UAAGAUUU A CUGCUGCU	589	AGCAGCAG GGCTAGCTACAACGA AAATCTTA	2917
2656	GAUUUACU G CUGCUGUG	590	CACAGCAG GGCTAGCTACAACGA AGTAAATC	2918
2659	UUAUCUGCU G CUGUGGAU	591	ATCCACAG GGCTAGCTACAACGA AGCAGTAA	2919
2662	CUGCUGCU G UGGAUAAUC	592	GATATCCA GGCTAGCTACAACGA AGCAGCAG	2920
2666	UGCUGUGG A UAUCUCCA	593	TGGAGATA GGCTAGCTACAACGA CCACAGCA	2921
2668	CUGUGGAU A UCUCUCAUG	594	CATGGAGA GGCTAGCTACAACGA ATCCACAG	2922
2674	AUAUCUCC A UGAAGUUU	595	AAACTTCA GGCTAGCTACAACGA GGAGATAT	2923
2679	UCCAUGAA G UUUUCCCA	596	TGGGAAAA GGCTAGCTACAACGA TTCATGGA	2924
2687	GUUUUCCC A CUGAGUCA	597	TGACTCG GGCTAGCTACAACGA GGGAAAAC	2925
2692	CCCACUGA G UCACAUCA	598	TGATGTGA GGCTAGCTACAACGA TCAGTGGG	2926
2695	ACUGAGUC A CAUCAGAA	599	TTCTGATG GGCTAGCTACAACGA GACTCAGT	2927
2697	UGAGUCAC A UCAGAAAU	600	ATTTCTGA GGCTAGCTACAACGA GTGACTCA	2928
2704	CAUCAGAA A UGCCCCUAC	601	GTAGGGCA GGCTAGCTACAACGA TTCTGATG	2929
2706	UCAGAAAAU G CCCUACAU	602	ATGTAGGG GGCTAGCTACAACGA ATTTCTGA	2930
2711	AAUGCCCU A CAUCUUAU	603	ATAAGATG GGCTAGCTACAACGA AGGGCATT	2931
2713	UGCCCUAC A UCUUUUUU	604	AAATAAGA GGCTAGCTACAACGA GTAGGGCA	2932
2718	UACAUUUU A UUUUCCUC	605	GAGGAAAA GGCTAGCTACAACGA AAGATGTA	2933
2730	UCCUCAGG G CUCAAGAG	606	CTCTTGAG GGCTAGCTACAACGA CCTGAGGA	2934
2740	UCAAGAGA A UCUGACAG	607	CTGTCAGA GGCTAGCTACAACGA TCTCTTGA	2935
2745	AGAAUCUG A CAGAUACC	608	GGTATCTG GGCTAGCTACAACGA CAGATTCT	2936
2749	UCUGACAG A UACCAUAA	609	TTATGGTA GGCTAGCTACAACGA CTGTCAGA	2937
2751	UGACAGAU A CCAUAAAG	610	CTTTATGG GGCTAGCTACAACGA ATCTGTCA	2938
2754	CAGAUACC A UAAAGGG	611	TCCCTTTA GGCTAGCTACAACGA GGTATCTG	2939
2762	AUAAAGGG A UUUGACCU	612	AGGTCAAA GGCTAGCTACAACGA CCCCCTTAT	2940
2767	GGGAAUUG A CCUAAUCA	613	TGATTAGG GGCTAGCTACAACGA CAAATCCC	2941
2772	UUGACCBA A UCACUAAU	614	ATTAGTGA GGCTAGCTACAACGA TAGGTCAA	2942
2775	ACCUAAUC A CUAUUUUU	615	AAAATTAG GGCTAGCTACAACGA GATTAGGT	2943
2779	AAUCACUA A UUUUCAGG	616	CCTGAAAA GGCTAGCTACAACGA TAGTGATT	2944
2787	AUUUUCAG G UGGUGGGCU	617	AGCCACCA GGCTAGCTACAACGA CTGAAAAT	2945
2790	UUCAGGUG G UGGCUGAU	618	ATCAGCCA GGCTAGCTACAACGA CACCTGAA	2946
2793	AGGUGGGUG G CUGAUGCU	619	AGCATCAG GGCTAGCTACAACGA CACCACCT	2947
2797	GGUGGCUG A UGCCUUGA	620	TCAAAGCA GGCTAGCTACAACGA CAGCCACC	2948

2799	UGGCUGAU G CUUUGAAC	621	GTTCAAAG GGCTAGCTACAACGA ATCAGCCA	2949
2806	UCGUUUGA A CAUCUCUU	622	AAGAGATG GGCTAGCTACAACGA TCAAAGCA	2950
2808	CUUUGAAC A UCUCUUUG	623	CAAAGAGA GGCTAGCTACAACGA GTTCAAAG	2951
2816	AUCUCUUU G CUGCCCAA	624	TTGGGCGAG GGCTAGCTACAACGA AAAGAGAT	2952
2819	UCUUUGCU G CCCAAUCC	625	GGATTGGG GGCTAGCTACAACGA AGCAAAGA	2953
2824	GCUGCCCA A UCCAUUAG	626	CTAATGGA GGCTAGCTACAACGA TGGCAGC	2954
2828	CCCCAAUCC A UUAGCGAC	627	GTCCTAA GGCTAGCTACAACGA GGATTGGG	2955
2832	AUCCAUUA G CGACAGUA	628	TACTGTG TG GGCTAGCTACAACGA TAATGGAT	2956
2835	CAUUAGCG A CAGUAGGA	629	TCCTACTG GGCTAGCTACAACGA CGCTAATG	2957
2838	UAGCGACA G UAGGAUUU	630	AAATCCTA GGCTAGCTACAACGA TGTGCTA	2958
2843	ACAGUAGG A UUUUUCAA	631	TTGAAAAA GGCTAGCTACAACGA CCTACTGT	2959
2851	AUUUUUC A CCCUGGUA	632	TACCAAGG GGCTAGCTACAACGA TGAAAAAT	2960
2857	CAACCCUG G UAUGAAUA	633	TATTCATA GGCTAGCTACAACGA CAGGGTTG	2961
2859	ACCCUGGU A UGAUAUAGA	634	TCTATTCA GGCTAGCTACAACGA ACCAGGGT	2962
2863	UGGUUAUGA A UAGACAGA	635	TCTGTCTA GGCTAGCTACAACGA TCATACCA	2963
2867	AUGAAUAG A CAGAACCC	636	GGGTTCTG GGCTAGCTACAACGA CTATTCTAT	2964
2872	UAGACAGA A CCCUAUCC	637	GGATAGGG GGCTAGCTACAACGA TCTGTCTA	2965
2877	AGAACCCU A UCCAGUGG	638	CCACTGGA GGCTAGCTACAACGA AGGGTTCT	2966
2882	CCUAUCCA G UGGAAGGA	639	TCCTTCCA GGCTAGCTACAACGA TGGATAGG	2967
2893	GAAGGAGA A UUUUAAA	640	TTATTAAA GGCTAGCTACAACGA TCTCCTTC	2968
2898	AGAAUUUA A UAAAGAUA	641	TATCTTCA GGCTAGCTACAACGA TAAATTCT	2969
2904	UAAAUAAG A UAGUGCAG	642	CTGCACTA GGCTAGCTACAACGA CTTTATTA	2970
2907	UAAAGAUA G UGCAGAAA	643	TTTCTGCA GGCTAGCTACAACGA TATCTTTA	2971
2909	AAGAUAGU G CAGAAAGA	644	TCTTTCTG GGCTAGCTACAACGA ACTATCTT	2972
2918	CAGAAAGA A UUCCUUAG	645	CTAAGGAA GGCTAGCTACAACGA TCTTTCTG	2973
2927	UCCUUUAG G UAAUCUAU	646	ATAGATTAA GGCTAGCTACAACGA CTAAGGAA	2974
2930	CUUAGGU A UCUUAUAC	647	GTTATAGA GGCTAGCTACAACGA TACCTAAG	2975
2934	GGUAAUUC A UAACUAGG	648	CCTAGTTA GGCTAGCTACAACGA AGATTACC	2976
2937	AAUCUUAU A CUAGGACU	649	AGTCCTAG GGCTAGCTACAACGA TATAGATT	2977
2943	UACUAGG A CUACUCCU	650	AGGAGTAG GGCTAGCTACAACGA CCTAGTTA	2978
2946	CUAGGACU A CUCCUGGU	651	ACCAGGAG GGCTAGCTACAACGA AGTCCTAG	2979
2953	UACUCCUG G UAACAGUA	652	TACTGTTA GGCTAGCTACAACGA CAGGAGTA	2980
2956	UCCUGGU A CAGUAAA	653	TATTACTG GGCTAGCTACAACGA TACCAAGA	2981
2959	UGGUAAAC A UAAAACAU	654	ATGTATTA GGCTAGCTACAACGA TGTATCCA	2982
2962	UAACAGUA A UACAUUCC	655	GGAATGTA GGCTAGCTACAACGA TACTGTTA	2983
2964	ACAGUAAU A CAUUCUCAU	656	ATGGAATG GGCTAGCTACAACGA ATTACTGT	2984
2966	AGUAAUAC A UUCCAUUG	657	CAATGGAA GGCTAGCTACAACGA GTATTACT	2985
2971	UACAUUCC A UUGUUUUA	658	TAACACAA GGCTAGCTACAACGA GGAATGTA	2986
2974	AUUCCAUU G UUUUAGUA	659	TACTAAAA GGCTAGCTACAACGA AATGGAAT	2987
2980	UUGUUUUA G UAACCAGA	660	TCTGGTTA GGCTAGCTACAACGA TAAACCAA	2988
2983	UUUUAGUA A CCAGAAAU	661	ATTTCTGG GGCTAGCTACAACGA TACTAAAA	2989
2990	AACCAGAA A UCUUCAUG	662	CATGAAGA GGCTAGCTACAACGA TTCTGGTT	2990
2996	AAAUCUUC A UGCAAUGA	663	TCATTGCA GGCTAGCTACAACGA GAAGATTT	2991
2998	AUCUUCAU G CAAUGAAA	664	TTTCATTG GGCTAGCTACAACGA ATGAAGAT	2992
3001	UUCAUGCA A UGAAAAAU	665	ATTTTCA GGCTAGCTACAACGA TGCATGAA	2993
3008	AAUGAAAA A UACUUUAA	666	TTAAAGTA GGCTAGCTACAACGA TTTTCATT	2994
3010	UGAAAAAAU A CUUUAAU	667	AATTAAG GGCTAGCTACAACGA ATTTTTCA	2995
3016	AUACUUUA A UUCAUGAA	668	TTCATGAA GGCTAGCTACAACGA TAAAGTAT	2996
3020	UUUAAUUC A UGAAGCUU	669	AAGCTTCA GGCTAGCTACAACGA GAATTAAA	2997
3025	UUCAUGAA G CUUACUUU	670	AAAGTAAG GGCTAGCTACAACGA TTCATGAA	2998
3029	UGAAGCUU A CUUUUUUU	671	AAAAAAAG GGCTAGCTACAACGA AAGCTTCA	2999
3044	UUUUUUG G UGUCAGAG	672	CTCTGACA GGCTAGCTACAACGA CAAAAAAA	3000

3046	UUUUUGGU G UCAGAGUC	673	GAECTCTGA GGCTAGCTACAACGA ACCAAAAA	3001
3052	GUGUCAGA G UCUCGCUC	674	GAGCGAGA GGCTAGCTACAACGA TCTGACAC	3002
3057	AGAGUCUC G CUCUUGUC	675	GACAAGAG GGCTAGCTACAACGA GAGACTCT	3003
3063	UCGCUCUU G UCACCCAG	676	CTGGGTGA GGCTAGCTACAACGA AAGAGCGA	3004
3066	CUCUUGUC A CCCAGGCC	677	AGCCTGGG GGCTAGCTACAACGA GACAAGAG	3005
3072	UCACCCAG G CUGGAAUG	678	CATTCCAG GGCTAGCTACAACGA CTGGGTGA	3006
3078	AGGCUGGA A UGCAGUGG	679	CCACTGCA GGCTAGCTACAACGA TCCAGCCT	3007
3080	GCUGGAAU G CAGUGGCG	680	CGCCACTG GGCTAGCTACAACGA ATTCCAGC	3008
3083	GGAAUGCA G UGGCGCCA	681	TGGCGCCA GGCTAGCTACAACGA TGCATTCC	3009
3086	AUGCAGUG G CGCCAUU	682	AGATGGCG GGCTAGCTACAACGA CACTGCAT	3010
3088	GCAGUGGC G CCAUCUCA	683	TGAGATGG GGCTAGCTACAACGA GCCACTGC	3011
3091	GUGGCGCC A UCUCAGCU	684	AGCTGAGA GGCTAGCTACAACGA GGCGCCAC	3012
3097	CCAUCUCA G CUCACUGC	685	GCAGTGAG GGCTAGCTACAACGA TGAGATGG	3013
3101	CUCAGCUC A CUGCAACC	686	GGTTGCAG GGCTAGCTACAACGA GAGCTGAG	3014
3104	AGCUCACU G CAACCUUC	687	GAAGGGTG GGCTAGCTACAACGA AGTGAGCT	3015
3107	UCACUGCA A CCUUCCAU	688	ATGGAAGG GGCTAGCTACAACGA TGCACTGA	3016
3114	AACCUUCC A UCUUCCCA	689	TGGGAAGA GGCTAGCTACAACGA GGAAGGTT	3017
3124	CUUCCCAG G UUCAAGCG	690	CGCTTGAA GGCTAGCTACAACGA CTGGGAAG	3018
3130	AGGUUCAA G CGAUUCUC	691	GAGAATCG GGCTAGCTACAACGA TTGAACCT	3019
3133	UUCAAGCG A UUCUCUG	692	CACGAGAA GGCTAGCTACAACGA CGCTTGAA	3020
3139	CGAUCUC G UGCCUCGG	693	CCGAGGCA GGCTAGCTACAACGA GAGAATCG	3021
3141	AUUCUCGU G CCUCGGCC	694	GGCCGAGG GGCTAGCTACAACGA ACGAGAAT	3022
3147	GUGCCUCG G CCUCUGA	695	TCAGGAGG GGCTAGCTACAACGA CGAGGCAC	3023
3156	CCUCCUGA G UAGCUGGG	696	CCCAGCTA GGCTAGCTACAACGA TCAGGAGG	3024
3159	CCUGAGUA G CUGGGAUU	697	AATCCAG GGCTAGCTACAACGA TACTCAGG	3025
3165	UAGCUGGG A UUACAGGC	698	GCCTGTAA GGCTAGCTACAACGA CCCAGCTA	3026
3168	CUGGGAUU A CAGGCGUG	699	CACGCCCTG GGCTAGCTACAACGA AATCCCAG	3027
3172	GAUUACAG G CGUGUGCA	700	TGCACACG GGCTAGCTACAACGA CTGTAATC	3028
3174	UUACAGGC G UGUGCACU	701	AGTGCACA GGCTAGCTACAACGA GCCTGTAA	3029
3176	ACAGGGCU G UGCACUAC	702	GTAGTGCA GGCTAGCTACAACGA ACGCCTGT	3030
3178	AGGCGUGU G CACUACAC	703	GTGTAGTG GGCTAGCTACAACGA ACACGCCT	3031
3180	GCGUGUGC A CUACACUC	704	GAGTGTAG GGCTAGCTACAACGA GCACACGC	3032
3183	UGUGCACU A CACUACAC	705	GTTCGAGTG GGCTAGCTACAACGA AGTGCACA	3033
3185	UGCACUAC A CUCACUA	706	TAGTTGAG GGCTAGCTACAACGA GTAGTGCA	3034
3190	UACACUCA A CUAUUUUU	707	AAAATTAG GGCTAGCTACAACGA TGAGTGTA	3035
3194	CUCAACUA A UUUUUGUA	708	TACAAAAA GGCTAGCTACAACGA TAGTTGAG	3036
3200	UAUUUUUU G UAUUUUUA	709	TAAAAATA GGCTAGCTACAACGA AAAAATTA	3037
3202	AAUUUUGU A UUUUUAGG	710	CCTAAAAA GGCTAGCTACAACGA ACAAAAAT	3038
3215	UAGGAGAG A CGGGGUUU	711	AAACCCCG GGCTAGCTACAACGA CTCTCCCA	3039
3220	GAGACGGG G UUUCACCU	712	AGGTGAAA GGCTAGCTACAACGA CCCGTCTC	3040
3225	GGGGUUUC A CCUGUUGG	713	CCAACAGG GGCTAGCTACAACGA GAAACCCC	3041
3229	UUUCACCU G UUGGCCAG	714	CTGGCCAA GGCTAGCTACAACGA AGGTGAAA	3042
3233	ACCUGUUG G CCAGGCUG	715	CAGCCTGG GGCTAGCTACAACGA CAACAGGT	3043
3238	UUGGCCAG G CUGGUCUC	716	GAGACCAG GGCTAGCTACAACGA CTGGCCAA	3044
3242	CCAGGCUG G UCUCGAAC	717	GTTCGAGA GGCTAGCTACAACGA CAGCCTGG	3045
3249	GGUCUCGA A CUCCUGAC	718	GTCAGGAG GGCTAGCTACAACGA TCGAGACC	3046
3256	AACUCCUG A CCUCAAGU	719	ACTTGAGG GGCTAGCTACAACGA CAGGAGTT	3047
3263	GACCUCAA G UGAUUCAC	720	GTGAATCA GGCTAGCTACAACGA TTGAGGTC	3048
3266	CUCAAGUG A UUCACCCA	721	TGGGTGAA GGCTAGCTACAACGA CACTTGAG	3049
3270	AGUGAUUC A CCCACCUU	722	AAGGTGGG GGCTAGCTACAACGA GAATCACT	3050
3274	AUUCACCC A CCUUGGCC	723	GGCCAAGG GGCTAGCTACAACGA GGGTGAAT	3051
3280	CCACCUUG G CCUCAUAA	724	TTATGAGG GGCTAGCTACAACGA CAAGGTGG	3052

3285	UUGGCCUC A UAAACCUG	725	CAGGTTTA GGCTAGCTACAACGA GAGGCCAA	3053
3289	CCUCAUAA A CCUGUUUU	726	AAAACAGG GGCTAGCTACAACGA TTATGAGG	3054
3293	AUAAACCU G UUUUGCAG	727	CTGCAAAA GGCTAGCTACAACGA AGGTTTAT	3055
3298	CCUGUUUU G CAGAACUC	728	GAGTTCTG GGCTAGCTACAACGA AAAACAGG	3056
3303	UUUGCAGA A CUCAUUUA	729	TAAATGAG GGCTAGCTACAACGA TCTGCAAA	3057
3307	CAGAACUC A UUUAUUCA	730	TGAATAAA GGCTAGCTACAACGA GAGTTCTG	3058
3311	ACUCAUUU A UUCAGCAA	731	TTGCTGAA GGCTAGCTACAACGA AAATGAGT	3059
3316	UUUUAUCA G CAAAUAUU	732	AATATTTG GGCTAGCTACAACGA TGAATAAA	3060
3320	UUCAGCAA A UAUUUAUU	733	AATAAATAA GGCTAGCTACAACGA TTGCTGAA	3061
3322	CAGCAAAU A UUUAUUGA	734	TCAATAAA GGCTAGCTACAACGA ATTTGCTG	3062
3326	AAAUAUUU A UUGAGUGC	735	GCACTCAA GGCTAGCTACAACGA AAATATTT	3063
3331	UUUUAUUGA G UGCCUACC	736	GGTAGGCA GGCTAGCTACAACGA TCAATAAA	3064
3333	UAUJUGAGU G CCUACCGA	737	CTGGTAGG GGCTAGCTACAACGA ACTCAATA	3065
3337	GAGUGCCU A CCAGAUGC	738	GCATCTGG GGCTAGCTACAACGA AGGCACTC	3066
3342	CCUACCGA G UGCCAGUC	739	GACTGGCA GGCTAGCTACAACGA CTGGTAGG	3067
3344	UACCAGAU G CCAGUCAC	740	GTGACTGG GGCTAGCTACAACGA ATCTGGTA	3068
3348	AGAUGCCA G UCACCGCA	741	TGCGGTGA GGCTAGCTACAACGA TGGCATCT	3069
3351	UGCCAGUC A CCGCACAA	742	TTGTGCGG GGCTAGCTACAACGA GACTGGCA	3070
3354	CAGUCACC G CACAAGGC	743	GCCTTGTT GGCTAGCTACAACGA GTTGACTG	3071
3356	GUCACCGC A CAAGGCAC	744	GTGCCCTTG GGCTAGCTACAACGA GCGGTGAC	3072
3361	CGCACAAG G CACUGGGU	745	ACCCAGTG GGCTAGCTACAACGA CTTGTGCG	3073
3363	CACAAGGC A CUGGGUAU	746	ATACCCAG GGCTAGCTACAACGA GCCTTGTG	3074
3368	GGCACUGG G UAUAUGGU	747	ACCATATA GGCTAGCTACAACGA CCAGTGCC	3075
3370	CACUGGGU A UAUGGUAU	748	ATACCATA GGCTAGCTACAACGA ACCCAGTG	3076
3372	CUGGGUAU A UGGUAUCC	749	GGATACCA GGCTAGCTACAACGA ATACCCAG	3077
3375	GGUUAUAG G UAUCCCCA	750	TGGGGATA GGCTAGCTACAACGA CATATACC	3078
3377	UAUAUGGU A UCCCCAAA	751	TTTGGGGA GGCTAGCTACAACGA ACCATATA	3079
3385	AUCCCCAA A CAAGAGAC	752	GTCTCTTG GGCTAGCTACAACGA TTGGGGAT	3080
3392	AACAAGAG A CAUAAUCC	753	GGATTATG GGCTAGCTACAACGA CTCTTGT	3081
3394	CAAGAGAC A UAAUCCCG	754	CGGGATTA GGCTAGCTACAACGA GTCTCTTG	3082
3397	GAGACAU A UCCCGGUC	755	GACCGGGGA GGCTAGCTACAACGA TATGTCTC	3083
3403	UAAUCCCC G UCCUUAGG	756	CCTAAGGA GGCTAGCTACAACGA CGGGATTA	3084
3411	GUCCUUAG G UACUGCUA	757	TAGCAGTA GGCTAGCTACAACGA CTAAGGAC	3085
3413	CCUJAGGU A CUGCUJAGU	758	ACTAGCAG GGCTAGCTACAACGA ACCTAAGG	3086
3416	UAGGUACU G CUAGUGUG	759	CACACTAG GGCTAGCTACAACGA AGTACCTA	3087
3420	UACUGCUA G UGUGGUCU	760	AGACCACA GGCTAGCTACAACGA TAGCAGTA	3088
3422	CUGCUAGU G UGGUCUGU	761	ACAGACCA GGCTAGCTACAACGA ACTAGCAG	3089
3425	CUAGUGUG G UCUGUAAU	762	ATTACAGA GGCTAGCTACAACGA CACACTAG	3090
3429	UGUGGUCU G UAAUAUCU	763	AGATATTA GGCTAGCTACAACGA AGACCACA	3091
3432	GGUCUGUA A UAUUCUAC	764	GTAAGATA GGCTAGCTACAACGA TACAGACC	3092
3434	UCUGUAAU A UCUUACUA	765	TAGTAAGA GGCTAGCTACAACGA ATTACAGA	3093
3439	AAUAUCUU A CUAAGGCC	766	GGCCTTAG GGCTAGCTACAACGA AAGATATT	3094
3445	UUACUAAG G CCUUUGGU	767	ACCAAAGG GGCTAGCTACAACGA CTTAGTAA	3095
3452	GGCCUUUG G UAUACGAC	768	GTCGTATA GGCTAGCTACAACGA CAAAGGCC	3096
3454	CCUUUGGU A UACGACCC	769	GGGTCGTA GGCTAGCTACAACGA ACCAAAGG	3097
3456	UUUGGUAU A CGACCCAG	770	CTGGGTG GGCTAGCTACAACGA ATACCAA	3098
3459	GGUUAUACG A CCCAGAGA	771	TCTCTGGG GGCTAGCTACAACGA CGTATACC	3099
3467	ACCCAGAG A UAACACGA	772	TCGTGTTA GGCTAGCTACAACGA CTCTGGGT	3100
3470	CAGAGAU A CACGAUGC	773	GCATCGTG GGCTAGCTACAACGA TATCTCTG	3101
3472	GAGAUAAAC A CGAUGCGU	774	ACGCATCG GGCTAGCTACAACGA GTTATCTC	3102
3475	AUAAACACG A UGCGUAUU	775	AATACGCA GGCTAGCTACAACGA CGTGTAT	3103
3477	AACACGAU G CGUAUUU	776	AAAATACG GGCTAGCTACAACGA ATCGTGT	3104

3479	CACGAUGC G UAUUUUAG	777	CTAAAATA GGCTAGCTACAACGA GCATCGTG	3105
3481	CGAUGCGU A UUUUAGUU	778	AACTAAAA GGCTAGCTACAACGA ACGCATCG	3106
3487	GUAUUUUA G UUUUGCAA	779	TTGCAAAA GGCTAGCTACAACGA TAAAATAC	3107
3492	UUAGUUUU G CAAAGAAC	780	CTTCTTTG GGCTAGCTACAACGA AAAACTAA	3108
3503	AAGAAGGG G UUUGGCU	781	AGACCAAA GGCTAGCTACAACGA CCCTTCIT	3109
3508	GGGGUUUG G UCUCUGUG	782	CACAGAGA GGCTAGCTACAACGA CAAACCCC	3110
3514	UGGUCUCU G UGCCAGCU	783	AGCTGGCA GGCTAGCTACAACGA AGAGACCA	3111
3516	GUCUCUGU G CCAGCUCU	784	AGAGCTGG GGCTAGCTACAACGA ACAGAGAC	3112
3520	CUGUGCCA G CUCUUA	785	TTATAGAG GGCTAGCTACAACGA TGGCACAG	3113
3525	CCAGCUCU A UAAUUGUU	786	AACAATTA GGCTAGCTACAACGA AGAGCTGG	3114
3528	GCUCUUA A UUGUUUJUG	787	CAAAACAA GGCTAGCTACAACGA TATAGAGC	3115
3531	CUAUAAU G UUUUGCUA	788	TAGCAAAA GGCTAGCTACAACGA AATTATAG	3116
3536	AUUGUUUU G CUACGAU	789	AATCGTAG GGCTAGCTACAACGA AAAACAAT	3117
3539	GUUUGCU A CGAUUCCA	790	TGGAATCG GGCTAGCTACAACGA AGCAAAAC	3118
3542	UUGCUACG A UUCCACUG	791	CAGTGGAA GGCTAGCTACAACGA CGTAGCAA	3119
3547	ACGAUUCC A CUGAACU	792	AGTTTCAG GGCTAGCTACAACGA GGAATCGT	3120
3553	CCACUGAA A CUCUUCGA	793	TCGAAGAG GGCTAGCTACAACGA TTCAGTGG	3121
3561	ACUCUUCG A UCAAGCUA	794	TAGCTTGA GGCTAGCTACAACGA CGAAGAGT	3122
3566	UCGAUCAA G CUACUUJA	795	TAAAGTAG GGCTAGCTACAACGA TTGATCGA	3123
3569	AUCAAGCU A CUUUAUGU	796	ACATAAAG GGCTAGCTACAACGA AGCTTGAT	3124
3574	GCUACUU A UGUAAAUC	797	GATTTACA GGCTAGCTACAACGA AAAGTAGC	3125
3576	UACUUUAU G UAAAUCAC	798	GTGATTTA GGCTAGCTACAACGA ATAAAGTA	3126
3580	UUAUGUAA A UCACUUC	799	TGAAGTGA GGCTAGCTACAACGA TTACATAA	3127
3583	UGUAAAUC A CUUCAUUG	800	CAATGAAG GGCTAGCTACAACGA GATTTACA	3128
3588	AUCACUUC A UUGUUUUA	801	AAAAACAA GGCTAGCTACAACGA GAAGTGAT	3129
3591	ACUUCAUU G UUUAAAAG	802	CTTTAAAA GGCTAGCTACAACGA AATGAAGT	3130
3602	UAAAAGGA A UAAACUUG	803	CAAGTTTA GGCTAGCTACAACGA TCCTTTAA	3131
3606	AGGAUAAA A CUUGAUUA	804	TAATCAAG GGCTAGCTACAACGA TTATTCCT	3132
3611	UAAACUUG A UUUAUUG	805	CAATATAA GGCTAGCTACAACGA CAAGTTTA	3133
3614	ACUUGAUU A UAUUGUJU	806	AAACAATA GGCTAGCTACAACGA AATCAAGT	3134
3616	UUGAUUUA A UUGUUUUU	807	AAAAACAA GGCTAGCTACAACGA ATAATCAA	3135
3619	AUUAUUAU G UUUUUUUA	808	TAAAAAAA GGCTAGCTACAACGA AATATAAT	3136
3627	GUUUUUUU A UUUGGCAU	809	ATGCCAAA GGCTAGCTACAACGA AAAAAAAC	3137
3632	UUUAUUJUG G CAUACUG	810	CAGTTATG GGCTAGCTACAACGA CAAATAAA	3138
3634	UAUUUGGC A UAACUGUG	811	CACAGTTA GGCTAGCTACAACGA GCCAAATA	3139
3637	UUGGCAUA A CUGUGAU	812	AATCACAG GGCTAGCTACAACGA TATGCCAA	3140
3640	GCAUACAC G UGAUUCUU	813	AAGAACATCA GGCTAGCTACAACGA AGTTATGC	3141
3643	UAACUGUG A UUCUUUUA	814	TAAAAGAA GGCTAGCTACAACGA CACAGTTA	3142
3654	CUUUUAGG A CAAUUAU	815	AGTAATTG GGCTAGCTACAACGA CCTAAAAG	3143
3657	UUAGGACA A UUACUGUA	816	TACAGTAA GGCTAGCTACAACGA TGTCCTAA	3144
3660	GGACAAUU A CUGUACAC	817	GTGTACAG GGCTAGCTACAACGA AATTGTCC	3145
3663	CAAUUACU G UACACAUU	818	AATGTGTA GGCTAGCTACAACGA AGTAATTG	3146
3665	AUUCACUG A CACAUUAA	819	TTAATGTG GGCTAGCTACAACGA ACAGTAAT	3147
3667	UACUGUAC A CAUUAAGG	820	CCTTAATG GGCTAGCTACAACGA GTACAGTA	3148
3669	CUGUACAC A UUAAGGUG	821	CACCTTAA GGCTAGCTACAACGA GTGTACAG	3149
3675	ACAUUAAG G UGU AUGUC	822	GACATACA GGCTAGCTACAACGA CTTAATGT	3150
3677	AUUAAGGU G UAUUGUCAG	823	CTGACATA GGCTAGCTACAACGA ACCTTAAT	3151
3679	UAAGGUGU A UGUCAGAU	824	ATCTGACA GGCTAGCTACAACGA ACACCTTA	3152
3681	AGGUGUUAU G UCAGAU	825	ATATCTGA GGCTAGCTACAACGA ATACACCT	3153
3686	UAUGUCAG A UAUCAUA	826	TATGAATA GGCTAGCTACAACGA CTGACATA	3154
3688	UGUCAGAU A UUCAUAAU	827	AATATGAA GGCTAGCTACAACGA ATCTGACA	3155
3692	AGAUUAUC A UAUUGACC	828	GGTCAATA GGCTAGCTACAACGA GAATATCT	3156

3694	AUAUUCAU A UUGACCCA	829	TGGGTCAA GGCTAGCTACAACGA ATGAATAT	3157
3698	UCAUAUUG A CCCAAAUG	830	CATTTGGG GGCTAGCTACAACGA CAATATGA	3158
3704	UGACCCAA A UGUGUAAU	831	ATTACACA GGCTAGCTACAACGA TTGGGTCA	3159
3706	ACCCAAAU G UGUAAUUAU	832	ATATTACA GGCTAGCTACAACGA ATTTGGGT	3160
3708	CCAAAUGU G UAAUUAUC	833	GAATATTA GGCTAGCTACAACGA ACATTTGG	3161
3711	AAUGUGUA A UAUUCCAG	834	CTGGAATA GGCTAGCTACAACGA TACACATT	3162
3713	UGUGUAAU A UUCCAGUU	835	AACTGGAA GGCTAGCTACAACGA ATTACACA	3163
3719	AUAUUCCA G UUUUCUCU	836	AGAGAAAA GGCTAGCTACAACGA TGGAATAT	3164
3728	UUUUCUCU G CAUAAGUA	837	TACTTATG GGCTAGCTACAACGA AGAGAAAA	3165
3730	UUCUCUGC A UAAGUAAU	838	ATTACTTA GGCTAGCTACAACGA GCAGAGAA	3166
3734	CUGCAUAA G UAAUAAA	839	TTTAATTA GGCTAGCTACAACGA TTATGCAG	3167
3737	CAUAAGUA A UUAAAUA	840	TATTTTAA GGCTAGCTACAACGA TACTTATG	3168
3743	UAAUAAA A UAUACUUA	841	TAAGTATA GGCTAGCTACAACGA TTTAATTA	3169
3745	AUUAUAAA A UACUAAA	842	TTTAAGTA GGCTAGCTACAACGA ATTTTAAT	3170
3747	UAAAAUUA A CUUAAAAA	843	TTTTTAAG GGCTAGCTACAACGA ATATTTTA	3171
3755	ACUAAAAA A UUAAUAGU	844	ACTATTAA GGCTAGCTACAACGA TTTTAAGT	3172
3759	AAAAAUUA A UAGUUUUA	845	TAAAACTA GGCTAGCTACAACGA TAATTTTT	3173
3762	AUUAUAAA G UUUUAUCU	846	AGATAAAA GGCTAGCTACAACGA TATTAATT	3174
3767	AUAGUUUU A UCUGGGUA	847	TACCCAGA GGCTAGCTACAACGA AAAACTAT	3175
3773	UUAUCUGG G UACAAAUA	848	TATTTGTA GGCTAGCTACAACGA CCAGATAA	3176
3775	AUCUGGGU A CAAUAAA	849	TTTATTG GGCTAGCTACAACGA ACCCAGAT	3177
3779	GGGUACAA A UAAACAGU	850	ACTGTTTA GGCTAGCTACAACGA TTGTACCC	3178
3783	ACAAUAAA A CAGUGCCU	851	AGGCACTG GGCTAGCTACAACGA TTATTGTT	3179
3786	AAUAAAACA G UGCCUGAA	852	TTCAGGCA GGCTAGCTACAACGA TGTTTATT	3180
3788	UAAACAGU G CCUGAACU	853	AGTTCAAG GGCTAGCTACAACGA ACTGTTTA	3181
3794	GUGCCUGA A CUAGUUCA	854	TGAACTAG GGCTAGCTACAACGA TCAGGCAC	3182
3798	CUGAACUA G UUCACAGA	855	TCTGTGAA GGCTAGCTACAACGA TAGTCAG	3183
3802	ACUAGUUC A CAGACAAG	856	CTTGTCTG GGCTAGCTACAACGA GAACTAGT	3184
3806	GUUCACAG A CAAGGGAA	857	TTCCCTTG GGCTAGCTACAACGA CTGTGAAC	3185
3815	CAAGGGAA A CUUCUAAU	858	CATAGAAC GGCTAGCTACAACGA TTCCCTTG	3186
3821	AAACUUCU A UGUAAAAA	859	TTTTTACA GGCTAGCTACAACGA AGAAGTTT	3187
3823	ACUUCUAAU G UAAAAAAC	860	GATTTTTA GGCTAGCTACAACGA ATAGAAGT	3188
3829	AUGUAAAA A UCACUAAU	861	CATAGTGA GGCTAGCTACAACGA TTTTACAT	3189
3832	UAAAAAAC A CUAUGAUU	862	AATCATAG GGCTAGCTACAACGA GATTTTTA	3190
3835	AAAUCACU A UGAUUUCU	863	AGAAATCA GGCTAGCTACAACGA AGTGATTT	3191
3838	UCACUAAU G UUUCUGAA	864	TTCAGAAA GGCTAGCTACAACGA CATAGTGA	3192
3846	AUUUCUGA A UUGCUAAU	865	CATAGCAA GGCTAGCTACAACGA TCAGAAAT	3193
3849	UCUGAAUU G CUAUGUGA	866	TCACATAG GGCTAGCTACAACGA AATTCAAGA	3194
3852	GAUUUGCU A UGUGAAC	867	GTTTCACA GGCTAGCTACAACGA AGCAATT	3195
3854	AUUGCUCU G UGAAACUA	868	TAGTTTCA GGCTAGCTACAACGA ATAGCAAT	3196
3859	UAUGUGAA A CUACAGAU	869	ATCTGTAG GGCTAGCTACAACGA TTCACATA	3197
3862	GUGAAACU A CAGAUCUU	870	AAGATCTG GGCTAGCTACAACGA AGTTTCAC	3198
3866	ACAUACAG A UCUUUGGA	871	TCCAAAGA GGCTAGCTACAACGA CTGTAGTT	3199
3875	UCUUUGGA A CACUGUUU	872	AAACAGTG GGCTAGCTACAACGA TCCAAAGA	3200
3877	UUUGGAAC A CUGUUUAG	873	CTAAACAG GGCTAGCTACAACGA GTTCCAAA	3201
3880	GGAACACU G UUUAGGU	874	TACCTAAA GGCTAGCTACAACGA AGTGTTC	3202
3886	CUGUUUAG G UAGGGUGU	875	ACACCCCTA GGCTAGCTACAACGA CTAAACAG	3203
3891	UAGGUAGG G UGUUAAGA	876	TCTTAACA GGCTAGCTACAACGA CCTACCTA	3204
3893	GGUAGGGU G UUAAGACU	877	AGTCTTAA GGCTAGCTACAACGA ACCCTACC	3205
3899	GUGUUAAG A CUUGACAC	878	GTGTCAAG GGCTAGCTACAACGA CTTAACAC	3206
3904	AAGACUUG A CACAGUAC	879	GTACTGTG GGCTAGCTACAACGA CAAGTCTT	3207
3906	GACUUGAC A CAGUACCU	880	AGGTACTG GGCTAGCTACAACGA GTCAAGTC	3208

3909	UUGACACA G UACCUCGU	881	ACGAGGTA GGCTAGCTACAACGA TGTGTCAA	3209
3911	GACACAGU A CCUCGUUU	882	AAACGAGG GGCTAGCTACAACGA ACTGTGTC	3210
3916	AGUACCUC G UUUUCUACA	883	TGTAGAAA GGCTAGCTACAACGA GAGGTA	3211
3922	UCGUUUCU A CACAGAGA	884	TCTCTGTG GGCTAGCTACAACGA AGAACCGA	3212
3924	GUUUCUAC A CAGAGAAA	885	TTTCTCTG GGCTAGCTACAACGA GTAGAAC	3213
3936	AGAAAAGA A UGGCCAUA	886	TATGGCCA GGCTAGCTACAACGA TTCTTTCT	3214
3939	AGAGAAUG G CCAUACUU	887	AAGTATGG GGCTAGCTACAACGA CATTCTT	3215
3942	AAAUGGCC A UACUUCAG	888	CTGAAGTA GGCTAGCTACAACGA GGCCATTT	3216
3944	AUGGCCAU A CUUCAGGA	889	TCCTGAAG GGCTAGCTACAACGA ATGGCCAT	3217
3953	CUUCAGGA A CUGCAGUG	890	CACTGCAG GGCTAGCTACAACGA TCCTGAAG	3218
3956	CAGGAACU G CAGUGCUU	891	AAGCACTG GGCTAGCTACAACGA AGTTCTTG	3219
3959	GAACUGCA G UGCUUAUG	892	CATAAGCA GGCTAGCTACAACGA TGCAAGTC	3220
3961	ACUGCAGU G CUUAUGAG	893	CTCATAAG GGCTAGCTACAACGA ACTGCAGT	3221
3965	CAGUGCUU A UGAGGGGA	894	TCCCCCTCA GGCTAGCTACAACGA AAGCACTG	3222
3973	AUGAGGGG A UAUUUAGG	895	CCTAAATA GGCTAGCTACAACGA CCCCTCAT	3223
3975	GAGGGGAU A UUUAGGCC	896	GGCCTAAA GGCTAGCTACAACGA ATCCCCCTC	3224
3981	AUAUUUAG G CCUCUUGA	897	TCAAGAGG GGCTAGCTACAACGA CTAAATAT	3225
3990	CCUCUUGA A UUUUUGAU	898	ATCAAAAA GGCTAGCTACAACGA TCAAGAGG	3226
3997	AAUUUUJG A UGUJAGAUG	899	CATCTACA GGCTAGCTACAACGA CAAAAATT	3227
3999	UUUUUGAU G UAGAUGGG	900	CCCATCTA GGCTAGCTACAACGA ATCAAAAA	3228
4003	UGAUGUAG A UGGGCAUU	901	AATGCCCA GGCTAGCTACAACGA CTACATCA	3229
4007	GUAGAUGG G CAUUUUUU	902	AAAAAATG GGCTAGCTACAACGA CCATCTAC	3230
4009	AGAUGGGC A UUUUUUUA	903	TAAAAAAA GGCTAGCTACAACGA GCCCATCT	3231
4020	UUUUUAG G UAGUGGUU	904	AACCACTA GGCTAGCTACAACGA CTTAAAAA	3232
4023	UUAAGGUA G UGGUUUAU	905	ATTAACCA GGCTAGCTACAACGA TACCTTAA	3233
4026	AGGUAGUG G UUUAUUAC	906	GTAATTAA GGCTAGCTACAACGA CACTACCT	3234
4030	AGUGGUUA A UUACCUUU	907	AAAGGTTAA GGCTAGCTACAACGA TAACCACT	3235
4033	GGUUAUU A CCUUUAUG	908	CATAAAGG GGCTAGCTACAACGA ATTAACC	3236
4039	UUACCUUU A UGUGAACU	909	AGTTCAC A GGCTAGCTACAACGA AAAGGTA	3237
4041	ACCUUUUA G UGAACUUU	910	AAAGTTCA GGCTAGCTACAACGA ATAAAGGT	3238
4045	UUAUGUGA A CUUUGAAU	911	ATTCAAAG GGCTAGCTACAACGA TCACATAA	3239
4052	ACUUUUGA A UGGUUUAA	912	TTAAACCA GGCTAGCTACAACGA TCAAAGTT	3240
4055	UUUGAAUG G UUUAACAA	913	TTGTTAAA GGCTAGCTACAACGA CATTCAAA	3241
4060	AUGGUUUA A CAAAAGAU	914	ATCTTTTG GGCTAGCTACAACGA TAAACCAT	3242
4067	ACACAAAG A UUUGUUUU	915	AAAACAAA GGCTAGCTACAACGA CTTTTGTT	3243
4071	AAAGAUUU G UUUUUGUA	916	TACAAAAA GGCTAGCTACAACGA AAATCTTT	3244
4077	UUGUUUUU G UAGAGAUU	917	AATCTCTA GGCTAGCTACAACGA AAAAACAA	3245
4083	UUGUAGAG A UUUUAAAG	918	CTTTAAAA GGCTAGCTACAACGA CTCTACAA	3246
4099	GGGGGAGA A UUCUAGAA	919	TTCTAGAA GGCTAGCTACAACGA TCTCCCCC	3247
4108	UUCUAGAA A UAAAUGUU	920	AACATTAA GGCTAGCTACAACGA TTCTAGAA	3248
4112	AGAAAUA A UGUUACCU	921	AGGTAACA GGCTAGCTACAACGA TTATTCT	3249
4114	AAAUAUAU G UUACCUAA	922	TTAGGTTAA GGCTAGCTACAACGA ATTATTTT	3250
4117	AAAAUUGU A CCUAAUUA	923	TAATTAGG GGCTAGCTACAACGA AACATTAA	3251
4122	GUUACCUA A UUAAUACA	924	TGTAATAA GGCTAGCTACAACGA TAGGTAAC	3252
4125	ACCUAAUU A UUACAGCC	925	GGCTGTAA GGCTAGCTACAACGA AATTAGGT	3253
4128	UAAUUAUU A CAGCCUUA	926	TAAGGCTG GGCTAGCTACAACGA ATAATTA	3254
4131	UUAUUAAC G CCUAAAAG	927	CTTTAAGG GGCTAGCTACAACGA TGTAATAA	3255
4140	CCUUAAG A CAAAAAUC	928	GATTTTG GGCTAGCTACAACGA CTTTAAGG	3256
4146	AGACAAAA A UCCUUGUU	929	AACAAGGA GGCTAGCTACAACGA TTTTGTCT	3257
4152	AAAUCUU G UUGAAGUU	930	AACTTCAA GGCTAGCTACAACGA AAGGATTT	3258
4158	UUGUUGAA G UUUUUUUA	931	AAAAAAAA GGCTAGCTACAACGA TTCAACAA	3259
4174	AAAAAAAG A CUAAUUA	932	TAATTTAG GGCTAGCTACAACGA CTTTTTTT	3260

4179	AAGACUAA A UUACAUAG	933	CTATGTA GGCTAGCTACAACGA TTAGTCCT	3261
4182	ACUAAAUA A CAUAGACU	934	AGTCTATG GGCTAGCTACAACGA AATTTAGT	3262
4184	UAAAUAUC A UAGACUUA	935	TAAGTCTA GGCTAGCTACAACGA GTAATTAA	3263
4188	UUACAUAG A CUUAGGCA	936	TGCCTAAG GGCTAGCTACAACGA CTATGTAA	3264
4194	AGACUUAG G CAUUAACA	937	TGTTAATG GGCTAGCTACAACGA CTAAGTCT	3265
4196	ACUUAGGC A UUAACAUG	938	CATGTTAA GGCTAGCTACAACGA GCCTAAGT	3266
4200	AGGCAUUA A CAUGUUUG	939	CAAACATG GGCTAGCTACAACGA TAATGCCT	3267
4202	GCAUUAAC A UGUUUGUG	940	CACAAACA GGCTAGCTACAACGA GTTAATGC	3268
4204	AUUAACAU G UUUGUGGA	941	TCCACAAA GGCTAGCTACAACGA ATGTTAAT	3269
4208	ACAUGUUU G UGGAAGAA	942	TTCTTCCA GGCTAGCTACAACGA AAACATGT	3270
4216	GUGGAAGA A UAUAGCAG	943	CTGCTATA GGCTAGCTACAACGA TCTTCCAC	3271
4218	GGAAGAAU A UAGCAGAC	944	GTCTGCTA GGCTAGCTACAACGA ATTCTTCC	3272
4221	AGAAUUAU G CAGACGUA	945	TACGTCTG GGCTAGCTACAACGA TATATTCT	3273
4225	UAUAGCAG A CGUAUAAU	946	AATATACG GGCTAGCTACAACGA CTGCTATA	3274
4227	UAGCAGAC G UAAUAUUG	947	ACAATATA GGCTAGCTACAACGA GTCTGCTA	3275
4229	GCAGACGU A UAUUGUAU	948	ATACAATA GGCTAGCTACAACGA ACGTCTGC	3276
4231	AGACGUUA A UUGUAUCA	949	TGATACAA GGCTAGCTACAACGA ATACGTCT	3277
4234	CGUUAUUA G UAUCAUUU	950	AAATGATA GGCTAGCTACAACGA AATATACG	3278
4236	UAUAUUGU A UCAUJUGA	951	TCAAAATGA GGCTAGCTACAACGA ACAATATA	3279
4239	AUUGUAUC A UUUGAGUG	952	CACTCAAA GGCTAGCTACAACGA GATAACAT	3280
4245	UCAUUUGA G UGAAUGUU	953	AACATTCA GGCTAGCTACAACGA TCAAATGA	3281
4249	UUGAGUGA A UGUUCCCCA	954	TGGGAACA GGCTAGCTACAACGA TCACTCAA	3282
4251	GAGUGAAU G UUCCCAAG	955	CTTGGGAA GGCTAGCTACAACGA ATTCACTC	3283
4259	GUUCCCAA G UAGGCAUU	956	AATGCCCTA GGCTAGCTACAACGA TTGGGAAC	3284
4263	CCAAGUAG G CAUUCUAG	957	CTAGAATG GGCTAGCTACAACGA CTACTTGG	3285
4265	AAGUAGGC A UUCUAGGC	958	GCCTAGAA GGCTAGCTACAACGA GCCTACTT	3286
4272	CAUUCUAG G CUCUAUUU	959	AAATAGAG GGCTAGCTACAACGA CTAGAATG	3287
4277	UAGGCUCU A UUUACUG	960	CAGTTAAA GGCTAGCTACAACGA AGAGCCTA	3288
4282	UCUAAUUA A CUGAGCUA	961	TGACTCAG GGCTAGCTACAACGA TAAATAGA	3289
4287	UUAACUGA G UCACACUG	962	CAGTGTGA GGCTAGCTACAACGA TCAGTTAA	3290
4290	ACUGAGUC A CACUGCAU	963	ATGCAGTG GGCTAGCTACAACGA GACTCACT	3291
4292	UGAGUCAC A CUGCAUAG	964	CTATGCGAG GGCTAGCTACAACGA GTGACTCA	3292
4295	GUCACACU G CAUAGGAA	965	TTCCTATG GGCTAGCTACAACGA AGTGTGAC	3293
4297	CACACUGC A UAGGAAUU	966	AATTCCCTA GGCTAGCTACAACGA GCAGTGTG	3294
4303	GCAUAGGA A UUUGAAC	967	GTTCTAAA GGCTAGCTACAACGA TCCTATGC	3295
4310	AAUUUAGA A CCUAACUU	968	AAGTTAGG GGCTAGCTACAACGA TCTAAATT	3296
4315	AGAACCUA A CUUUUAUA	969	TATAAAAG GGCTAGCTACAACGA TAGGTTCT	3297
4321	UAAUCUUU A UAGGUUAU	970	ATAACCTA GGCTAGCTACAACGA AAAAGTTA	3298
4325	UUUUUAAG G UUAUCAAA	971	TTTGATAA GGCTAGCTACAACGA CTATAAAA	3299
4328	UAUAGGUU A UCAAAACU	972	AGTTTTGA GGCTAGCTACAACGA AACCTATA	3300
4334	UUAUCAAA A CUGUUGUC	973	GACAACAG GGCTAGCTACAACGA TTTGATAA	3301
4337	UCAAAACU G UUGUCACC	974	GGTGACAA GGCTAGCTACAACGA AGTTTTGA	3302
4340	AAACUGUU G UCACCAU	975	AATGGTGA GGCTAGCTACAACGA AACAGTTT	3303
4343	CUGUUGUC A CCAUUGCA	976	TGCAATGG GGCTAGCTACAACGA GACAACAG	3304
4346	UUGUCACC A UUGCACAA	977	TTGTGCAA GGCTAGCTACAACGA GGTGACAA	3305
4349	UCACCAUU G CACAAUUU	978	AAATTGTG GGCTAGCTACAACGA AATGGTGA	3306
4351	ACCAUUGC A CAAUUUUG	979	AAAAATTG GGCTAGCTACAACGA GCAATGGT	3307
4354	AUUGCAC A UUUUGUCC	980	GGACAAAA GGCTAGCTACAACGA TGTGCAAT	3308
4359	ACAAUUUU G UCCUAAUA	981	TATTTAGGA GGCTAGCTACAACGA AAAATTGT	3309
4365	UUGUCCUA A UUAUACUA	982	TGTATATA GGCTAGCTACAACGA TAGGACAA	3310
4367	GUCCUAAU A UAUACAU	983	TATGTATA GGCTAGCTACAACGA ATTAGGAC	3311
4369	CCUAAUUA A UACAUAGA	984	TCTATGTA GGCTAGCTACAACGA ATATTAGG	3312

4371	UAAUAUAU A CAUAGAAA	985	TTTCTATG GGCTAGCTACAACGA ATATATTA	3313
4373	AUAUAUAC A UAGAAACU	986	AGTTTCTA GGCTAGCTACAACGA GTATATAT	3314
4379	ACAUAGAA A CUUUGUGG	987	CCACAAAG GGCTAGCTACAACGA TTCTATGT	3315
4384	GAAACUUU G UGGGGCAU	988	ATGCCCA GGCTAGCTACAACGA AAAGTTTC	3316
4389	UUUGUGGG G CAUGUAAA	989	TTAACATG GGCTAGCTACAACGA CCCACAAA	3317
4391	UGUGGGGC A UGUUAAGU	990	ACTTAACA GGCTAGCTACAACGA GCCCCACA	3318
4393	UGGGGCAU G UUAAGUUA	991	TAACCTAA GGCTAGCTACAACGA ATGCCCA	3319
4398	CAUGUAAA G UUACAGUU	992	AACTGTAA GGCTAGCTACAACGA TTAACATG	3320
4401	GUUAAGUU A CAGUUUGC	993	GCAAACGT GGCTAGCTACAACGA AACTTAAC	3321
4404	AAGUUACA G UUUGCACA	994	TGTGCAA GGCTAGCTACAACGA TGTAACTT	3322
4408	UACAGUUU G CACAAGUU	995	AACTTG TG GGCTAGCTACAACGA AACTGTA	3323
4410	CAGUUUGC A CAAGUCA	996	TGAACCTG GGCTAGCTACAACGA GCAAACGT	3324
4414	UGCACCAA G UUCAUCUC	997	GAGATGAA GGCTAGCTACAACGA TTGTGCAA	3325
4418	ACAAGUUC A UCUCAUUU	998	AAATGAGA GGCTAGCTACAACGA GAACITGT	3326
4423	UUCAUUC A UUUGUAAA	999	AATACAAA GGCTAGCTACAACGA GAGATGAA	3327
4427	UCUCAUUU G UAUUCCAU	1000	ATGGAATA GGCTAGCTACAACGA AAATGAGA	3328
4429	UCAUJUGU A UUCCAUUG	1001	CAATGGAA GGCTAGCTACAACGA ACAAAATGA	3329
4434	UGUAUUCC A UUGAUUUU	1002	AAAATCAA GGCTAGCTACAACGA GGAATACA	3330
4438	UUCAUUUG A UUUUUUUU	1003	AAAAAAA GGCTAGCTACAACGA CAATGGAA	3331
4457	UCUUCUAA A CAUJUUUU	1004	AAAAAATG GGCTAGCTACAACGA TTAGAAGA	3332
4459	UUCUAAAC A UUUUUUCU	1005	AGAAAAAA GGCTAGCTACAACGA GTTTAGAA	3333
4473	UCUUCAAA A CAGUUAU	1006	ATATACTG GGCTAGCTACAACGA TTTGAAGA	3334
4476	UCAAAACA G UAUUAUUA	1007	TATATATA GGCTAGCTACAACGA TGTTTGAA	3335
4478	AAAACAGU A UAUUAUAC	1008	GTTATATA GGCTAGCTACAACGA ACTGTTTT	3336
4480	AACAGUAA A UAUACUU	1009	AAGTTATA GGCTAGCTACAACGA ATACTGTT	3337
4482	CAGUUAUA A UAACUUUU	1010	AAAAGTTA GGCTAGCTACAACGA ATATACTG	3338
4485	UAAUAUUA A CUUUUUUU	1011	AAAAAAAG GGCTAGCTACAACGA TATATATA	3339
4499	UUUAGGGG A UUUUUUUU	1012	AAAAAAA GGCTAGCTACAACGA CCCCTAAA	3340
4510	UUUUUAG A CAGCAAAA	1013	TTTTGCTG GGCTAGCTACAACGA CTAAAAAA	3341
4513	UUUAGACA G CAAAAAAC	1014	TTTTTTTG GGCTAGCTACAACGA TGTCTAAA	3342
4520	AGCAAAAA A CUAUCUGA	1015	TCAGATAG GGCTAGCTACAACGA TTTTGCT	3343
4523	AAAAAACU A UCUGAAGA	1016	TCTTCAGA GGCTAGCTACAACGA AGTTTTTT	3344
4531	AUCUGAAG A UUCCAUU	1017	AATGGAAA GGCTAGCTACAACGA CTTCAGAT	3345
4537	AGAUUUCC A UUJUGCAA	1018	TTGACAAA GGCTAGCTACAACGA GGAAATCT	3346
4541	UCCAUUU G UCAAAAAG	1019	CTTTTGAA GGCTAGCTACAACGA AAATGGAA	3347
4549	GUCAAAAA G UAAUGAUU	1020	AATCATTA GGCTAGCTACAACGA TTTTTGAC	3348
4552	AAAAAGUA A UGAUUCU	1021	AGAAATCA GGCTAGCTACAACGA TACTTTTT	3349
4555	AAGUUAUG A UUUCUUGA	1022	TCAAGAAA GGCTAGCTACAACGA CATTACTT	3350
4563	AUUUCUUG A UAAUUGUG	1023	CACAATTAA GGCTAGCTACAACGA CAAGAAAT	3351
4566	UCUUGAUA A UUGUGUAG	1024	CTACACAA GGCTAGCTACAACGA TATCAAGA	3352
4569	UGAUAAUU G UGUAGUGA	1025	TCACTACA GGCTAGCTACAACGA AATTATCA	3353
4571	AUAUAUUG G UAGUGAAU	1026	ATTCACTA GGCTAGCTACAACGA ACAATTAT	3354
4574	AUUGUGUA G UGAAUGUU	1027	AACATTCA GGCTAGCTACAACGA TACACAAT	3355
4578	UGUAGUGA A UGUUUUUU	1028	AAAAAAACA GGCTAGCTACAACGA TCACTACA	3356
4580	UAGUGAAU G UUUUUUAG	1029	CTAAAAAA GGCTAGCTACAACGA ATTCACTA	3357
4590	UUUUJAGA A CCCAGCAG	1030	CTGCTGGG GGCTAGCTACAACGA TCTAAAAAA	3358
4595	AGAACCCA G CAGUUAAC	1031	GGTAACGT GGCTAGCTACAACGA TGGTTCT	3359
4598	ACCCAGCA G UUACCUUG	1032	CAAGGTAA GGCTAGCTACAACGA TGCTGGGT	3360
4601	CAGCAGUU A CCUUGAAA	1033	TTTCAAGG GGCTAGCTACAACGA AACTGCTG	3361
4610	CCUUGAAA G CUGAAUUU	1034	AAATTCAG GGCTAGCTACAACGA TTTCAAGG	3362
4615	AAAGCUGA A UUUUAUUA	1035	AATATAAA GGCTAGCTACAACGA TCAGCTTT	3363
4619	CUGAAUUU A UAUUUAGU	1036	ACTAAATA GGCTAGCTACAACGA AAATTCA	3364

4621	GAAUUUAU A UUUAGUAA	1037	TTACTAAA GGCTAGCTACAACGA ATAAATTC	3365
4626	UAUAUUJA G UAACUUCU	1038	AGAAGTTA GGCTAGCTACAACGA TAAATATA	3366
4629	AUUUJGUA A CUUCUGUG	1039	CACAGAAG GGCTAGCTACAACGA TACTAAAT	3367
4635	UAACUUCU G UGUUAAA	1040	TATTAACA GGCTAGCTACAACGA AGAAGTTA	3368
4637	ACUUCUGU G UUAAAUCU	1041	AGTATTAA GGCTAGCTACAACGA ACAGAAGT	3369
4641	CUGUGUUA A UACUGGAU	1042	ATCCAGTA GGCTAGCTACAACGA TAACACAG	3370
4643	GUGUUAAA A CUGGAUAG	1043	CTATCCAG GGCTAGCTACAACGA ATTAACAC	3371
4648	AAUACUGG A UAGCAUGA	1044	TCATGCTA GGCTAGCTACAACGA CCAGTATT	3372
4651	ACUGGUA G CAUGAAUU	1045	AATTCAATG GGCTAGCTACAACGA TATCCAGT	3373
4653	UGGAUAGC A UGAAUUCU	1046	AGAATTCA GGCTAGCTACAACGA GCTATCCA	3374
4657	UAGCAUGA A UUCUGGCU	1047	ATGCAGAA GGCTAGCTACAACGA TCATGCTA	3375
4662	UGAAUUCU G CAUUGAGA	1048	TCTCAATG GGCTAGCTACAACGA AGAATTCA	3376
4664	AAUUCUGC A UUGAGAAA	1049	TTTCTCAA GGCTAGCTACAACGA GCAGAATT	3377
4672	AAUGAGAA A CUGAAUAG	1050	CTATTCAAG GGCTAGCTACAACGA TTCTCAAT	3378
4677	GAAACUGA A UAGCUGUC	1051	GACAGCTA GGCTAGCTACAACGA TCAGTTTC	3379
4680	ACUGAAUA G CUGUCAUA	1052	TATGACAG GGCTAGCTACAACGA TATTCACT	3380
4683	GAAUAGCU G UCAUAAAA	1053	TTTTATGA GGCTAGCTACAACGA AGCTATT	3381
4686	UAGCUGUC A UAAAAUGC	1054	GCATTTTA GGCTAGCTACAACGA GACAGCTA	3382
4691	GUCAUAAA A UGCUUUCU	1055	AGAAAGCA GGCTAGCTACAACGA TTTATGAC	3383
4693	CAUAAAAG G CUUUCUUU	1056	AAAGAAAG GGCTAGCTACAACGA ATTTTATG	3384
4713	AAAGAAAG A UACUCACA	1057	TGTGAGTA GGCTAGCTACAACGA CTTTCTTT	3385
4715	AGAAAGAU A CUCACAUG	1058	CATGTGAG GGCTAGCTACAACGA ATCTTTCT	3386
4719	AGAUACUC A CAUGAGUU	1059	AACTCATG GGCTAGCTACAACGA GAGTATCT	3387
4721	AUACUCAC A UGAGUUCU	1060	AGAACTCA GGCTAGCTACAACGA GTGAGTAT	3388
4725	UCACAUAG G UUCUUGAA	1061	TTCAAGAA GGCTAGCTACAACGA TCATGTGA	3389
4736	CUUGAAGA A UAGUCAUA	1062	TATGACTA GGCTAGCTACAACGA TCTTCAAG	3390
4739	GAAGAAUA G UCAUAACU	1063	AGTTATGA GGCTAGCTACAACGA TATTCTTC	3391
4742	GAAUAGUC A UAACUAGA	1064	TCTAGTTA GGCTAGCTACAACGA GACTATT	3392
4745	UAGUCAUA A CUAGAUUA	1065	TAATCTAG GGCTAGCTACAACGA TATGACTA	3393
4750	AUAACUAG A UUAAGAUC	1066	GATCTTAA GGCTAGCTACAACGA CTAGTTAT	3394
4756	AGAUUAAG A UCUGUGUU	1067	AAACACAGA GGCTAGCTACAACGA CTTAATCT	3395
4760	UAAGAUUC G UGUUUUAG	1068	CTAAAAACA GGCTAGCTACAACGA AGATCTTA	3396
4762	AGAUCUGU G UUUUAGUU	1069	AACTAAAA GGCTAGCTACAACGA ACAGATCT	3397
4768	GUGUUUJA G UUUUAAUG	1070	CTATTAAA GGCTAGCTACAACGA TAAAACAC	3398
4773	UUAGUUUJA A UAGUUGA	1071	TCAAACTA GGCTAGCTACAACGA TAAACTAA	3399
4776	GUUUAAA G UUUGAAGU	1072	ACTTCAAA GGCTAGCTACAACGA TATTAAC	3400
4783	AGUUUGAA G UGCCUGUU	1073	AACAGGCA GGCTAGCTACAACGA TTCAAAC	3401
4785	UUUGAAGU G CCUGUUUG	1074	CAAACAGG GGCTAGCTACAACGA ACTTCAAA	3402
4789	AAUGGCCU G UUUGGGAU	1075	ATCCCCAA GGCTAGCTACAACGA AGGCACCT	3403
4796	UGUUUUGG A UAAUGAUA	1076	TATCATTA GGCTAGCTACAACGA CCCAAACA	3404
4799	UUGGGUA A UGAUAGGU	1077	ACCTATCA GGCTAGCTACAACGA TATCCCAA	3405
4802	GGAUAAAUG A UAGGUAAA	1078	ATTACCTA GGCTAGCTACAACGA CATTATCC	3406
4806	AAUGAUAG G UAAUUUAG	1079	CTAAATTAA GGCTAGCTACAACGA CTATCATT	3407
4809	GAUAGGUA A UUUGAUG	1080	CATCTAAA GGCTAGCTACAACGA TACCTATC	3408
4815	UAAUUUAG A UGAAUAAA	1081	TAAATTCA GGCTAGCTACAACGA CTAAATTA	3409
4819	UUAGAUGA A UUAGGGGG	1082	CCCCTAAA GGCTAGCTACAACGA TCATCTAA	3410
4836	AAAAAAA G UUAUCUGC	1083	GCAGATAA GGCTAGCTACAACGA TTTTTTTT	3411
4839	AAAAAGUU A UCUGCAGU	1084	ACTGCAGA GGCTAGCTACAACGA AACTTTTT	3412
4843	AGUUAUCU G CAGUUAUG	1085	CATAACTG GGCTAGCTACAACGA AGATAACT	3413
4846	UAUCUGCA G UUAUGUUG	1086	CAACATAA GGCTAGCTACAACGA TGCGAGATA	3414
4849	CUGCAGUU A UGUUGAGG	1087	CCTCAACA GGCTAGCTACAACGA AACTGCG	3415
4851	GCAGUUAU G UUGAGGGC	1088	GCCCTCAA GGCTAGCTACAACGA ATAACCTGC	3416

4858	UGUUGAGG G CCCAUCUC	1089	GAGATGGG GGCTAGCTACAACGA CCTCAACA	3417
4862	GAGGGCCC A UCUCUCCC	1090	GGGAGAGA GGCTAGCTACAACGA GGGCCCTC	3418
4874	CUCCCCCC A CACCCCCA	1091	TGGGGGTG GGCTAGCTACAACGA GGGGGGAG	3419
4876	CCCCCCCAC A CCCCCACA	1092	TGTGGGGG GGCTAGCTACAACGA GTGGGGGG	3420
4882	ACACCCCC A CAGAGCUA	1093	TAGCTCTG GGCTAGCTACAACGA GGGGGTGT	3421
4887	CCCACAGA G CUAAUCGG	1094	CCAGTTAG GGCTAGCTACAACGA TCTGTGGG	3422
4891	CAGAGCUA A CUGGGUUA	1095	TAACCCAG GGCTAGCTACAACGA TAGCTCTG	3423
4896	CUAACUGG G UUACAGUG	1096	CACTGTAA GGCTAGCTACAACGA CCAGTTAG	3424
4899	ACUGGGUU A CAGUGUUU	1097	AAACACTG GGCTAGCTACAACGA AACCCAGT	3425
4902	GGGUUACA G UGUUUUAU	1098	ATAAAAACA GGCTAGCTACAACGA TGTAACCC	3426
4904	GUUACAGU G UUUUAUCC	1099	GGATAAAA GGCTAGCTACAACGA ACTGTAAC	3427
4909	AGUGUUUU A UCCGAAAG	1100	CTTCGGA GGCTAGCTACAACGA AAAACACT	3428
4917	AUCCGAAA G UUUCCAAU	1101	ATTGGAAA GGCTAGCTACAACGA TTTCGGAT	3429
4924	AGUUUCCA A UUCCACUG	1102	CAGTGGAA GGCTAGCTACAACGA TGGAAACT	3430
4929	CCAUUUCC A CUGUCUJG	1103	CAAGACAG GGCTAGCTACAACGA GGAATTGG	3431
4932	AUUCCACU G UCUUJUGU	1104	ACACAAGA GGCTAGCTACAACGA AGTGGAAAT	3432
4937	ACUGUCUU G UGUUUUCA	1105	TGAAAAACA GGCTAGCTACAACGA AAGACAGT	3433
4939	UGUCUUGU G UUUUCAUG	1106	CATGAAAA GGCTAGCTACAACGA ACAAGACA	3434
4945	GUGUUUUC A UGUUGAAA	1107	TTTCAACA GGCTAGCTACAACGA GAAAACAC	3435
4947	GUUUUCAU G UUGAAAAU	1108	ATTTTCAA GGCTAGCTACAACGA ATGAAAAC	3436
4954	UGUUGAAA A UACUUUJG	1109	CAAAAGTA GGCTAGCTACAACGA TTTCAAACA	3437
4956	UGAAAAAU A CUUUUGCA	1110	TGCAAAAG GGCTAGCTACAACGA ATTTTCAA	3438
4962	AUACUUUU G CAUUUUUC	1111	GAAAAATG GGCTAGCTACAACGA AAAAGTAT	3439
4964	ACUUUUJC A UUUUUCU	1112	AGGAAAAA GGCTAGCTACAACGA GCAAAAGT	3440
4977	UCCUUJUG A UGCCAAUU	1113	AATTGGCA GGCTAGCTACAACGA TCAAAGGA	3441
4979	CUUUGAGU G CCAAUUUC	1114	GAAATTGG GGCTAGCTACAACGA ACTCAAAG	3442
4983	GAGUGCCA A UUUCUUAC	1115	GTAAGAAA GGCTAGCTACAACGA TGGCACTC	3443
4990	AAUJUCUU A CUAGUACU	1116	AGTACTAG GGCTAGCTACAACGA AAGAAATT	3444
4994	UCUUACUA G UACUAUUU	1117	AAATAGTA GGCTAGCTACAACGA TAGTAAGA	3445
4996	UUACUAGU A CUUUUUCU	1118	AGAAATAG GGCTAGCTACAACGA ACTAGTAA	3446
4999	CUAGUACU A UUUCUUAA	1119	TTAAGAAA GGCTAGCTACAACGA AGTACTAG	3447
5007	AUUUCUUA A UGUAAACAU	1120	ATGTTACA GGCTAGCTACAACGA TAAGAAAT	3448
5009	UUCUUUAA G UAACAUJG	1121	ACATGTTA GGCTAGCTACAACGA ATTAAGAA	3449
5012	UAAAUGUA A CAUGUJUA	1122	TAAACATG GGCTAGCTACAACGA TACATTA	3450
5014	AAUGUAAC A UGUUUUACC	1123	GGTAAACA GGCTAGCTACAACGA GTTACATT	3451
5016	UGUAACAU G UUUACCUG	1124	CAGGTAAA GGCTAGCTACAACGA ATGTTACA	3452
5020	ACAUGUUU A CCUGGCCU	1125	AGGCCAGG GGCTAGCTACAACGA AAACATGT	3453
5025	UUUACCUG G CCUGUCUU	1126	AAGACAGG GGCTAGCTACAACGA CAGGTTAA	3454
5029	CCUGGCCU G UCUUUUAA	1127	TTAAAAGA GGCTAGCTACAACGA AGGCCAGG	3455
5037	GUCUUUUA A CUUUUUUU	1128	AAAAATAG GGCTAGCTACAACGA TAAAAGAC	3456
5040	UUUUACU A UUUUUGUA	1129	TACAAAAA GGCTAGCTACAACGA AGTTAAAA	3457
5046	CUAUUUUU G UAUAGUGU	1130	ACACTATA GGCTAGCTACAACGA AAAAATAG	3458
5048	AUUUUUGU A UAGUGUAA	1131	TTACACTA GGCTAGCTACAACGA ACAAAAAT	3459
5051	UUUGUUA G UGUAAACU	1132	AGTTTACA GGCTAGCTACAACGA TATACAAA	3460
5053	UGUUAAGU G UAAACUGA	1133	TCAGTTTA GGCTAGCTACAACGA ACTATACA	3461
5057	UAGUGUAA A CUGAAACA	1134	TGTTTCAG GGCTAGCTACAACGA TTACACTA	3462
5063	AAACUGAA A CAUGCAC	1135	TGTGCATG GGCTAGCTACAACGA TTCAGTTT	3463
5065	ACUGAAAC A UGCACAUU	1136	AATGTGCA GGCTAGCTACAACGA GTTTCA	3464
5067	UGAAACAU G CACAUUUU	1137	AAAATGTG GGCTAGCTACAACGA ATGTTCA	3465
5069	AAACAUJC A CAUUUJGU	1138	ACAAAATG GGCTAGCTACAACGA GCATGTTT	3466
5071	ACAUJGCAC A UUUUGUAC	1139	GTACAAAA GGCTAGCTACAACGA GTGCATGT	3467
5076	CACAUUUU G UACAUUGU	1140	ACAATGTA GGCTAGCTACAACGA AAAATGTG	3468

5078	CAUUUUGU A CAUUGUGC	1141	GCACAATG GGCTAGCTACAACGA ACAAAATG	3469
5080	UUUUGUAC A UUGUGCUU	1142	AAGCACAA GGCTAGCTACAACGA GTACAAAA	3470
5083	UGUACAUU G UGCUUUCU	1143	AGAAAGCA GGCTAGCTACAACGA AATGTACA	3471
5085	UACAUUGU G CUUUCUUU	1144	AAAGAAAG GGCTAGCTACAACGA ACAATGTA	3472
5095	UUUCUUUU G UGGGUCAU	1145	ATGACCCA GGCTAGCTACAACGA AAAAGAAA	3473
5099	UUUUGUGG G UCAUAUGC	1146	GCATATGA GGCTAGCTACAACGA CCACAAAA	3474
5102	UGUGGGUC A UAUGCAGU	1147	ACTGCATA GGCTAGCTACAACGA GACCCACA	3475
5104	UGGGUCAU A UGCAGUGU	1148	ACACTGCA GGCTAGCTACAACGA ATGACCCA	3476
5106	GGUCAUAU G CAGUGUGA	1149	TCACACTG GGCTAGCTACAACGA ATATGACC	3477
5109	CAUAUGCA G UGUGAUCC	1150	GGATCACA GGCTAGCTACAACGA TGCATATG	3478
5111	UAUGCAGU G UGAUCCAG	1151	CTGGATCA GGCTAGCTACAACGA ACTGCATA	3479
5114	GCAGUGUG A UCCAGUUG	1152	CAACTGGA GGCTAGCTACAACGA CACACTGC	3480
5119	GUGAUCCA G UUGUUUUC	1153	GAAAACAA GGCTAGCTACAACGA TGGATCAC	3481
5122	AUCCAGUU G UUUUCCAU	1154	ATGGAAAA GGCTAGCTACAACGA AACTGGAT	3482
5129	UGUJJUCC A UCAUJUJG	1155	CCAAATGA GGCTAGCTACAACGA GGAAAACA	3483
5132	UUUCCAU A UUUGGUUG	1156	CAACAAA GGCTAGCTACAACGA GATGGAAA	3484
5137	AUCAUUG G UUGCGCUG	1157	CAGCGCAA GGCTAGCTACAACGA CAAATGAT	3485
5140	AUUUGGUU G CGCUGACC	1158	GGTCAGCG GGCTAGCTACAACGA AACCAAAT	3486
5142	UUGGUUGC G CUGACCIA	1159	TAGGTCA G GCTAGCTACAACGA GCAACCAA	3487
5146	UUGCGCUG A CCUAGGAA	1160	TTCCTAGG GGCTAGCTACAACGA CAGCGCAA	3488
5154	ACCUAGGA A UGUUGGUC	1161	GACCAACA GGCTAGCTACAACGA TCCTAGGT	3489
5156	CUAGGAAU G UUGGUCAU	1162	ATGACCAA GGCTAGCTACAACGA ATTCTCTAG	3490
5160	GAAUGUUG G UCAUUAUC	1163	TGATATGA GGCTAGCTACAACGA CAACATT	3491
5163	UGUUGGUC A UAUCAAAC	1164	GTTTGATA GGCTAGCTACAACGA GACCAACA	3492
5165	UUGGUCAU A UCAAACAU	1165	ATGTTTGA GGCTAGCTACAACGA ATGACCAA	3493
5170	CAUAUCAA A CAUAAAAA	1166	TTTTAATG GGCTAGCTACAACGA TTGATATG	3494
5172	UAUCAAAC A UUAAAAAAU	1167	ATTTTTAA GGCTAGCTACAACGA TTTTGATA	3495
5179	CAUAAAAA A UGACCACU	1168	AGTGGTCA GGCTAGCTACAACGA TTTTAATG	3496
5182	UAAAAAUG A CCACUCUU	1169	AAGAGTGG GGCTAGCTACAACGA CATTTTTA	3497
5185	AAAUGACC A CUCUUUUU	1170	TAAGAGAG GGCTAGCTACAACGA GGTCAATT	3498
5194	CUCUUUUA A UGAAAUUA	1171	TAATTTCA GGCTAGCTACAACGA TAAAAGAG	3499
5199	UAAAUGAA A UUAACUUU	1172	AAAGTTAA GGCTAGCTACAACGA TTCATTAA	3500
5203	UGAAAAUUA A CUUUUUAA	1173	TTTAAAG GGCTAGCTACAACGA TAATTTCA	3501
5211	ACUUUUAA A UGUUUUUA	1174	TATAAAC A GGCTAGCTACAACGA TTAAAAGT	3502
5213	UUUUUUAAU G UUUUAUAG	1175	CCTATAAA GGCTAGCTACAACGA ATTTAAAA	3503
5217	AAAUGUUU A UAGGAGUA	1176	TACTCCCA GGCTAGCTACAACGA AAACATT	3504
5223	UUAUAGGA G UAUGUGCU	1177	AGCACATA GGCTAGCTACAACGA TCCTATAA	3505
5225	AUAGGAGU A UGUGCGU	1178	ACAGCACA GGCTAGCTACAACGA ACTCCTAT	3506
5227	AGGAGUUA G UGCUGUGA	1179	TCACAGCA GGCTAGCTACAACGA ATACTCCT	3507
5229	GAGUAUGU G CUGUGAAG	1180	CTTCACAG GGCTAGCTACAACGA ACATACTC	3508
5232	UAUGUGCU G UGAAGUGA	1181	TCACITCA GGCTAGCTACAACGA AGCACATA	3509
5237	GCUGUGAA G UGAUCUAA	1182	TTAGATCA GGCTAGCTACAACGA TTCACAGC	3510
5240	GUGAAGUG A UCUAAAAAU	1183	ATTTTACA GGCTAGCTACAACGA CACTTCAC	3511
5247	GAUCUAAA A UUUGUAAA	1184	ATTACAAA GGCTAGCTACAACGA TTTAGATC	3512
5251	UAAAAAUU G UAAUAUUU	1185	AAATATTA GGCTAGCTACAACGA AAATTTTA	3513
5254	AAUUUGUA A UAUUUUUG	1186	CAAAAATA GGCTAGCTACAACGA TACAAATT	3514
5256	UUUGUAAA A UUUUUGUC	1187	GACAAAAA GGCTAGCTACAACGA ATTACAAA	3515
5262	AUAUUUUU G UCAUGAAC	1188	GTTCATGA GGCTAGCTACAACGA AAAAATAT	3516
5265	UUUUUGUC A UGAACUGU	1189	ACAGTTCA GGCTAGCTACAACGA GACAAAAA	3517
5269	UGUCAUGA A CUGUACUA	1190	TAGTACAG GGCTAGCTACAACGA TCATGACA	3518
5272	CAUGAACU G UACUACUC	1191	GAGTAGTA GGCTAGCTACAACGA AGTTCATG	3519
5274	UGAACUGU A CUACUCCU	1192	AGGAGTAG GGCTAGCTACAACGA ACAGTTCA	3520

5277	ACUGUACU A CUCCUAAU	1193	ATAGGAG GGCTAGCTACAACGA AGTACAGT	3521
5284	UACUCCUA A UUAUUGUA	1194	TACAATAA GGCTAGCTACAACGA TAGGAGTA	3522
5287	UCCUAAUU A UUGUAAUG	1195	CATTACAA GGCTAGCTACAACGA ATTAGGA	3523
5290	UAAUUAUU G UAAUGUAA	1196	TTACATTA GGCTAGCTACAACGA ATAATTA	3524
5293	UUAUUGUA A UGUAAUAA	1197	TTATTACA GGCTAGCTACAACGA TACAATAA	3525
5295	AUUGUAAU G UAAUAAAA	1198	TTTTTATA GGCTAGCTACAACGA ATTACAAT	3526
5298	GUAAUGUA A UAAAAAAA	1199	TATTTTTA GGCTAGCTACAACGA TACATTAC	3527
5304	UAAUAAAA A UAGUUACU	1200	TGTAACTA GGCTAGCTACAACGA TTTTATTA	3528
5307	UAAAAAAA G UUACAGUG	1201	CACTGTAA GGCTAGCTACAACGA TATTTTTA	3529
5310	AAAUGUU A CAGUGACU	1202	AGTCACTG GGCTAGCTACAACGA AACTATTT	3530
5313	UAGUUACU G UGACUAUG	1203	CATAGTCA GGCTAGCTACAACGA TGTAACTA	3531
5316	UUACAGUG A CUAUGAGU	1204	ACTCATAG GGCTAGCTACAACGA CACTGTAA	3532
5319	CAGUGACU A UGAGUGUG	1205	CACACTCA GGCTAGCTACAACGA AGTCACTG	3533
5323	GACUAUGA G UGUGUAAU	1206	AATACACA GGCTAGCTACAACGA TCATAGTC	3534
5325	CUAUGAGU G UGUAAUUA	1207	TAAATACA GGCTAGCTACAACGA ACTCATAG	3535
5327	AUGAGUGU G UAUUUAUU	1208	AATAAATAA GGCTAGCTACAACGA ACACCTAT	3536
5329	GAGUGUGU A UUUAUUCA	1209	TGAATAAA GGCTAGCTACAACGA ACACACTC	3537
5333	GUGUAAUU A UUCAUGCA	1210	TGCATGAA GGCTAGCTACAACGA AAATACAC	3538
5337	AUUUAUUC A UGCAAAUU	1211	AATTITCA GGCTAGCTACAACGA GAATAAAT	3539
5339	UUAUUCAU G CAAAUUUG	1212	CAAATTTG GGCTAGCTACAACGA ATGAATAA	3540
5343	UCAUGCAA A UUUGAACU	1213	AGTTCAAA GGCTAGCTACAACGA TTGCATGA	3541
5349	AAAUUUGA A CUGUUUGC	1214	GCAAAACAG GGCTAGCTACAACGA TCAAATTT	3542
5352	UUUGAACU G UUJGCCCC	1215	GGGGCAAA GGCTAGCTACAACGA AGTTCAAA	3543
5356	AACUGUUU G CCCCGAAA	1216	TTTCGGGG GGCTAGCTACAACGA AAACAGTT	3544
5364	GCCCCGAA A UGGUAUAG	1217	CATATCCA GGCTAGCTACAACGA TTCGGGGC	3545
5368	CGAAAUGG A UAUGGAUA	1218	TATCCATA GGCTAGCTACAACGA CCATTTCG	3546
5370	AAAUGGAU A UGGAUACU	1219	AGTATCCA GGCTAGCTACAACGA ATCCATTT	3547
5374	GGAUUAGG A UACUUUUAU	1220	ATAAAGTA GGCTAGCTACAACGA CCATATCC	3548
5376	AUAUGGAU A CUUUAUAA	1221	TTATAAAG GGCTAGCTACAACGA ATCCATAT	3549
5381	GAUACUUU A UAAGCCAU	1222	ATGGCTTA GGCTAGCTACAACGA AAAGTATC	3550
5385	CUUUAUAA G CCAUAGAC	1223	GTCTATGG GGCTAGCTACAACGA TTATAAAG	3551
5388	UAAAAGCC A UAGACACU	1224	AGTGTCTA GGCTAGCTACAACGA GGCTTATA	3552
5392	AGCCAUAG A CACUAUAG	1225	CTATAGTG GGCTAGCTACAACGA CTATGGCT	3553
5394	CCAUAGAC A CUAUAGUA	1226	TACTATAG GGCTAGCTACAACGA GTCTATGG	3554
5397	UAGACACU A UAGUAUAC	1227	GTATACTA GGCTAGCTACAACGA AGTGTCTA	3555
5400	ACACUAUA G UAUACCAG	1228	CTGGTATA GGCTAGCTACAACGA TATAGTGT	3556
5402	ACUUAUAG A UACCAUGUG	1229	CACTGGTA GGCTAGCTACAACGA ACTATAGT	3557
5404	UAAUAGUUA A CCAGUGAA	1230	TTCACTGG GGCTAGCTACAACGA ATACTATA	3558
5408	GUUAUACCA G UGAAUCUU	1231	AAGATTCA GGCTAGCTACAACGA TGGTATAC	3559
5412	ACCAUGUGA A UCUUUUUAU	1232	ATAAAAGA GGCTAGCTACAACGA TCACTGGT	3560
5419	AAUCUUUU A UGCAGCUU	1233	AAGCTGCA GGCTAGCTACAACGA AAAAGATT	3561
5421	UCUUUUAU G CAGCUUGU	1234	ACAAGCTG GGCTAGCTACAACGA ATAAAAGA	3562
5424	UUUAUGCA G CUUGUUAG	1235	CTAACAAAG GGCTAGCTACAACGA TGCATAAA	3563
5428	UGCAGCUU G UUAGAAGU	1236	ACTTCTAA GGCTAGCTACAACGA AAGCTGCA	3564
5435	UGUUAGAA G UAUCUUUU	1237	AAAGGATA GGCTAGCTACAACGA TTCTAACAA	3565
5437	UJAGAAGU A UCCUUUUUA	1238	AAAAAGGA GGCTAGCTACAACGA ACTTCTAA	3566
5445	AUCCUUUU A UUUUCUAA	1239	TTAGAAAA GGCTAGCTACAACGA AAAAGGAT	3567
5457	UCUAAAAG G UGCUGUGG	1240	CCACAGCA GGCTAGCTACAACGA CTTTTAGA	3568
5459	AAAAGGCU G CUGUGGAAU	1241	ATCCACAG GGCTAGCTACAACGA ACCTTTTA	3569
5462	AAGGUGCU G UGGUAUUU	1242	AATATCCA GGCTAGCTACAACGA AGCACCTT	3570
5466	UGCUGUGG A UAUUAUGU	1243	ACATAATAA GGCTAGCTACAACGA CCACAGCA	3571
5468	CUGUGGAAU A UUAUGUAA	1244	TTACATAAA GGCTAGCTACAACGA ATCCACAG	3572

5471	UGGAUAUU A UGUAAAGG	1245	CCTTTACA GGCTAGCTACAACGA AATATCCA	3573
5473	GAUAUUAU G UAAAGGCG	1246	CGCCTTCA GGCTAGCTACAACGA ATAATATC	3574
5479	AUGUAAAAG G CGUGUUJG	1247	CAAACACG GGCTAGCTACAACGA CTTTACAT	3575
5481	GUAAAAGC G UGUUUGCU	1248	AGCAAACA GGCTAGCTACAACGA GCCTTTAC	3576
5483	AAAGGCGU G UUUGCUUA	1249	TAAGCAAA GGCTAGCTACAACGA ACGCCTTT	3577
5487	GCGUGUUU G CUUAAAAC	1250	TGTTTAAG GGCTAGCTACAACGA AAACACGC	3578
5493	UUGCUUAA A CAAUUUUC	1251	AAAAATTG GGCTAGCTACAACGA TTAAGCAA	3579
5496	CUUAAAAC A UUUUCCAU	1252	ATGGAAAA GGCTAGCTACAACGA TGTTTAAG	3580
5503	AAUUUUCG A UAUUUAGA	1253	TCTAAATA GGCTAGCTACAACGA GGAAAATT	3581
5505	UUUUCCAU A UUUAGAAC	1254	CTTCTAAA GGCTAGCTACAACGA ATGGAAAA	3582
5513	AUUUAGAA G UAGAUGCA	1255	TGCATCTA GGCTAGCTACAACGA TTCTAAAT	3583
5517	AGAAGUAG A UGCACAAAC	1256	GTTTTGCA GGCTAGCTACAACGA CTACTTC	3584
5519	AAGUAGAU G CAAAACAA	1257	TTGTTTTG GGCTAGCTACAACGA ATCTACTT	3585
5524	GAUGCAAA A CAAACUG	1258	CAGATTTG GGCTAGCTACAACGA TTTGCATC	3586
5528	CAAAACAA A UCUGCCUU	1259	AAGGCAGA GGCTAGCTACAACGA TTGTTTG	3587
5532	ACAAAUCU G CCUUUAUG	1260	CATAAAGG GGCTAGCTACAACGA AGATTTGT	3588
5538	CUGCCUUU A UGACAAAAA	1261	TTTTGTCA GGCTAGCTACAACGA AAAGGCAG	3589
5541	CCUUUAUG A CAAAAAAA	1262	TTTTTTTG GGCTAGCTACAACGA CATAAAGG	3590
5549	ACAAAAAA A UAGGAAUAA	1263	TTATCCTA GGCTAGCTACAACGA TTTTTTGT	3591
5554	AAAAUAGG A UAACAUUA	1264	TAATGTTA GGCTAGCTACAACGA CCTATTTT	3592
5557	AUAGGAUA A CAUUAUUU	1265	AAATAATG GGCTAGCTACAACGA TATCCTAT	3593
5559	AGGAUAAC A UUAUUUAU	1266	ATAAATAAA GGCTAGCTACAACGA GTTATCCT	3594
5562	AUAACAUU A UUUAUUUA	1267	TAAATAAA GGCTAGCTACAACGA AATGTTAT	3595
5566	CAUUAUU A UUUAUUUC	1268	GAAATAAA GGCTAGCTACAACGA AAATAATG	3596
5570	AUUUUUUU A UUUCCUUU	1269	AAAGGAAA GGCTAGCTACAACGA AAATAAAT	3597
5580	UCCCCUUU A UCAAAUAG	1270	CTTATTGA GGCTAGCTACAACGA AAAAGGAA	3598
5584	UUUUAUCA A UAAGGUAA	1271	TTACCTTA GGCTAGCTACAACGA TGATAAAA	3599
5589	UCAAAUAG G UAAUUGAU	1272	ATCAATTA GGCTAGCTACAACGA CTTATTGA	3600
5592	AUAAGGU A UUGAUACA	1273	TGTATCAA GGCTAGCTACAACGA TACCTTAT	3601
5596	GGUAAUUG A UACACAAAC	1274	GTTGTGTA GGCTAGCTACAACGA CAATTACC	3602
5598	UAAAUGAU A CACAAACAG	1275	CTGTTGTG GGCTAGCTACAACGA ATCAATTAA	3603
5600	AUUGAUAC A CAACAGGU	1276	ACCTGTTG GGCTAGCTACAACGA GTATCAAT	3604
5603	GAUACACA A CAGGUGAC	1277	GTCACCTG GGCTAGCTACAACGA TGTGTATC	3605
5607	CACAAACAG G UGACIJUGG	1278	CCAAGTC GGCTAGCTACAACGA CTGTTGTG	3606
5610	AACAGGUG A CUUGGUUU	1279	AAACCAAG GGCTAGCTACAACGA CACCTGTT	3607
5615	GUGACUUG G UUUUAGGC	1280	GCCTAAAA GGCTAGCTACAACGA CAAGTCAC	3608
5622	GGUUUUAG G CCCAAAGG	1281	CCTTGGGG GGCTAGCTACAACGA CTAAAACC	3609
5630	GCCCCAAAG G UAGCAGCA	1282	TGCTGCTA GGCTAGCTACAACGA CTTTGGGC	3610
5633	CAAAGGU A CAGCAGCA	1283	TGCTGCTG GGCTAGCTACAACGA TACCTTTG	3611
5636	AGGUAGCA G CAGCAACA	1284	TGTTGCTG GGCTAGCTACAACGA TGCTACCT	3612
5639	UAGCAGCA G CAACAUUA	1285	TAATGTTG GGCTAGCTACAACGA TGCTGCTA	3613
5642	CAGCAGCA A CAUUAUUA	1286	TATTAATG GGCTAGCTACAACGA TGCTGCTG	3614
5644	GCAGCAAC A UUAAUUAU	1287	ATTATTAAG GGCTAGCTACAACGA TTGCTGC	3615
5648	CAACAUUA A UAAUGGAA	1288	TTCCATTA GGCTAGCTACAACGA TAATGTTG	3616
5651	CAUUAUUA A UGGAAAUA	1289	TATTTCCA GGCTAGCTACAACGA TATTAATG	3617
5657	UAAUGGAA A UAAUUGAA	1290	TTCAATTA GGCTAGCTACAACGA TTCCATTA	3618
5660	UGGAAUAU A UUGAAUAG	1291	CTATTCAA GGCTAGCTACAACGA TATTTCCA	3619
5665	AUAAUUGA A UAGUUAGU	1292	ACTAACTA GGCTAGCTACAACGA TCAATTAT	3620
5668	AUUGAAUA G UUAGUUAU	1293	ATAACTAA GGCTAGCTACAACGA TATTCAAT	3621
5672	AAUAGUUA G UUAUGUAU	1294	ATACATAA GGCTAGCTACAACGA TAACTATT	3622
5675	AGUUAGUU A UGUAGUUU	1295	AACATACA GGCTAGCTACAACGA AACTAACT	3623
5677	UUAGUUAU G UAUGUUAU	1296	TTAACATACA GGCTAGCTACAACGA ATAACCTAA	3624

5679	AGUUAUGU A UGUUAAUG	1297	CATTAACA GGCTAGCTACAAACGA ACATAACT	3625
5681	UUAUGUAU G UUAAUGCC	1298	GGCATTAA GGCTAGCTACAAACGA ATACATAA	3626
5685	GUAAUGUUA A UGCCAGUC	1299	GACTGGCA GGCTAGCTACAAACGA TAACATAC	3627
5687	AUGUUAUU G CCAGUCAC	1300	GTGACTGG GGCTAGCTACAAACGA ATTAACAT	3628
5691	UAAAUGCCA G UCACCAGC	1301	GCTGGTGA GGCTAGCTACAAACGA TGGCATTA	3629
5694	UGCCAGUC A CCAGCAGG	1302	CCTGCTGG GGCTAGCTACAAACGA GACTGGCA	3630
5698	AGUCACCA G CAGGCUAU	1303	ATAGCCTG GGCTAGCTACAAACGA TGGTGACT	3631
5702	ACCAGCAG G CUUUUCA	1304	TGAAATAG GGCTAGCTACAAACGA CTGCTGGT	3632
5705	AGCAGGCCU A UUUCAAGG	1305	CCTTGAAA GGCTAGCTACAAACGA AGCCTGCT	3633
5713	AUUCUCAAG G UCAGAACU	1306	ACTTCTGA GGCTAGCTACAAACGA CTGAAAT	3634
5720	GGUCAGAA G UAAUGACU	1307	AGTCATTA GGCTAGCTACAAACGA TTCTGACC	3635
5723	CAGAAGUA A UGACUCCA	1308	TGGAGTCA GGCTAGCTACAAACGA TACTTCTG	3636
5726	AAGUUAUG A CUCCAUAC	1309	GTATGGAG GGCTAGCTACAAACGA CATTACTT	3637
5731	AUGACUCC A UACAUAUU	1310	AATATGTA GGCTAGCTACAAACGA GGAGTCAT	3638
5733	GACUCCAU A CAUAUUAU	1311	ATAATATG GGCTAGCTACAAACGA ATGGAGTC	3639
5735	CUCCAUAC A UAUUAUUU	1312	AAATAATA GGCTAGCTACAAACGA GTATGGAG	3640
5737	CCAUACAU A UUUAUUAU	1313	ATAAAATAA GGCTAGCTACAAACGA ATGTATGG	3641
5740	UACAUAUU A UUUAUUUC	1314	GAAATAAA GGCTAGCTACAAACGA AATATGTA	3642
5744	UAUUAUUU A UUUCUAAU	1315	TATAGAAA GGCTAGCTACAAACGA AAATAATA	3643
5750	UUUUUUCU A UAACUACA	1316	TGTAGTTA GGCTAGCTACAAACGA AGAAATAA	3644
5753	UUUCUAAA A CUACAUUU	1317	AAATGTAG GGCTAGCTACAAACGA TATAGAAA	3645
5756	CUUAACU A CAUUAAAA	1318	TTTAAATG GGCTAGCTACAAACGA AGTTATAG	3646
5758	AUAACUAC A UUUAAAUC	1319	GATTTAAA GGCTAGCTACAAACGA GTAGTTAT	3647
5764	ACAUUUAA A UCAUUACC	1320	GGTAATGA GGCTAGCTACAAACGA TAAATGT	3648
5767	UUUAAAUC A UUACCAGG	1321	CCTGGTAA GGCTAGCTACAAACGA GATTTAAA	3649

Input Sequence = NM_004985. Cut Site = R/Y

Arm Length = 8. Core Sequence = GGCTAGCTACAAACGA

NM_004985 (Homo sapiens v-Ki-ras2 Kirsten rat sarcoma 2 viral oncogene homolog (KRas2), mRNA; 5775 nt)

Table III: Human H-Ras DNAzyme and Target molecules

Pos	Substrate	Seq ID	DNAzyme	Seq ID
9	GGAUCCA G CCUUUCCC	1322	GGGAAAGG GGCTAGCTACAACGA TGGGATCC	3650
20	UUUCCCCA G CCCGUAGC	1323	GCTACGGG GGCTAGCTACAACGA TGGGGAAA	3651
24	CCCAGCCC G UAGCCCCG	1324	CGGGGCTA GGCTAGCTACAACGA GGGCTGGG	3652
27	AGCCCGUA G CCCCGGGA	1325	TCCCGGGG GGCTAGCTACAACGA TACGGGCT	3653
35	GCCCCGGG A CCUCCGCG	1326	CGCGGAGG GGCTAGCTACAACGA CCCGGGGC	3654
41	GGACCUCC G CGGUGGGC	1327	GCCCCACCG GGCTAGCTACAACGA GGAGGTCC	3655
44	CCUCGGCG G UGGGCGGC	1328	GCGGCCCA GGCTAGCTACAACGA CGCGGAGG	3656
48	CGCGGUGG G CGGCGCCG	1329	CGGCGCCG GGCTAGCTACAACGA CCACCGCG	3657
51	GGUGGGCG G CGCCGCGC	1330	CGCGGGCG GGCTAGCTACAACGA CGCCCACC	3658
53	UGGGCGGC G CGCGCGUG	1331	CAGCGCGG GGCTAGCTACAACGA GCCGCCCA	3659
56	GCGGGGCC G CGCUGCCG	1332	CGGCAGCG GGCTAGCTACAACGA GCGGCCGC	3660
58	GGCGCCGC G CUGCCGGC	1333	GCGGCGAG GGCTAGCTACAACGA GCGGGGCC	3661
61	GCCCGCGU G CCGGCGCA	1334	TGCGCCGG GGCTAGCTACAACGA AGCGCGGC	3662
65	CGCUGCCG G CGCAGGGG	1335	TCCCTGCG GGCTAGCTACAACGA CGGCAGCG	3663
67	CUGCGGGC G CAGGGAGG	1336	CCTCCCTG GGCTAGCTACAACGA GCCGGCAG	3664
76	CAGGGAGG G CCUCUGGU	1337	ACCAAGGG GGCTAGCTACAACGA CCTCCCTG	3665
83	GGCCUCUG G UGCACCGG	1338	CCGGTGCA GGCTAGCTACAACGA CAGAGGCC	3666
85	CCUCUGGU G CACCGGCA	1339	TGCCGGTG GGCTAGCTACAACGA ACCAGAGG	3667
87	UCUGGUGC A CCGGCACC	1340	GGTGCAGG GGCTAGCTACAACGA GCACCAGA	3668
91	GUGCACCG G CACCGCUG	1341	CAGCGGTG GGCTAGCTACAACGA CGGTGCAC	3669
93	GCACCGGC A CCGCUGAG	1342	CTCAGCGG GGCTAGCTACAACGA GCGGTGC	3670
96	CGGGCACC G CUGAGUCG	1343	CGACTCAG GGCTAGCTACAACGA GGTGCCGG	3671
101	ACCGCUGA G UCGGGUUC	1344	GAACCCGA GGCTAGCTACAACGA TCAGCGGT	3672
106	UGAGUCGG G UUCUCUCG	1345	CGAGAGAA GGCTAGCTACAACGA CCGACTCA	3673
114	GUUCUCUC G CCGGCCUG	1346	CAGGCCGG GGCTAGCTACAACGA GAGAGAAC	3674
118	UCUCGCCG G CCUGUUCC	1347	GGAACAGG GGCTAGCTACAACGA CGCGAGA	3675
122	GCCGGCCU G UUCCCGGG	1348	CCCGGAA GGCTAGCTACAACGA AGGCCGGC	3676
134	CCGGGAGA G CCCGGGGC	1349	GCCCCGGG GGCTAGCTACAACGA TCTCCCGG	3677
141	AGCCCGGG G CCCUGCUC	1350	GAGCAGGG GGCTAGCTACAACGA CCCGGGCT	3678
146	GGGGCCCU G CUCGGAGA	1351	TCTCCGAG GGCTAGCTACAACGA AGGGCCCC	3679
154	GCUCGGAG A UGCCGCC	1352	GGGCGGCA GGCTAGCTACAACGA CTCCGAGC	3680
156	UCGGAGAU G CCGCCCCG	1353	CGGGCCGG GGCTAGCTACAACGA ATCTCCGA	3681
159	GAGAUGCC G CCCCGGGC	1354	GCCCCGGG GGCTAGCTACAACGA GGCATCTC	3682
166	CGCCCCGG G CCCCCAGA	1355	TCTGGGG GGCTAGCTACAACGA CGGGGGCG	3683
174	GCCCCCAG A CACCGGCU	1356	AGCCGGTG GGCTAGCTACAACGA CTGGGGGC	3684
176	CCCCCAGAC A CCGGCUCC	1357	GGAGCCGG GGCTAGCTACAACGA GTCTGGGG	3685
180	AGACACCG G CUCCCCUG	1358	CCAGGGAG GGCTAGCTACAACGA CGGTGTCT	3686
188	GCUCCCUG G CCUUCCUC	1359	GAGGAAGG GGCTAGCTACAACGA CAGGGAGC	3687
199	UUCCUCGA G CAACCCCG	1360	CGGGGTTG GGCTAGCTACAACGA TCGAGGAA	3688
202	CUCGAGCA A CCCCGAGC	1361	GCTCGGGG GGCTAGCTACAACGA TGCTCGAG	3689
209	AACCCCGA G CUCGGCUC	1362	GAGCCGAG GGCTAGCTACAACGA TCGGGGTT	3690
214	CGAGCUCG G CUCCGGUC	1363	GACCGGAG GGCTAGCTACAACGA CGAGCTCG	3691
220	CGGCUCCG G UCUCCAGC	1364	GCTGGAGA GGCTAGCTACAACGA CGGAGCCG	3692
227	GGUCUCCA G CCAAGGCC	1365	GGGTTGGG GGCTAGCTACAACGA TGGAGACC	3693
232	CCAGCCAA G CCCAACCC	1366	GGGTTGGG GGCTAGCTACAACGA TTGGCTGG	3694
237	CAAGCCCA A CCCCGAGA	1367	TCTCGGGG GGCTAGCTACAACGA TGGGCTTG	3695
247	CCCGAGAG G CGCGGGCC	1368	GGCCGGGG GGCTAGCTACAACGA CTCTCGGG	3696
250	GAGAGGCC G CGGCCCCUA	1369	TAGGGCCG GGCTAGCTACAACGA GGCCTCTC	3697

253	AGGCCGCG G CCCUACUG	1370	CAGTAGGG GGCTAGCTACAACGA CGCGGCCT	3698
258	GCGGCCCU A CUGGUCC	1371	GGAGCCAG GGCTAGCTACAACGA AGGGCCGC	3699
262	CCCUACUG G CUCCGCCU	1372	AGGCGGAG GGCTAGCTACAACGA CAGTAGGG	3700
267	CUGGUCC G CCUCGGCG	1373	GCGGGAGG GGCTAGCTACAACGA GGAGCCAG	3701
274	CGCCUCCC G CGUUGCUC	1374	GAGCAACG GGCTAGCTACAACGA GGGAGGG	3702
276	CCUCCCCG G UUGCUCCC	1375	GGGAGCAA GGCTAGCTACAACGA CGGGGAGG	3703
279	CCCGCGUU G CUCCCGGA	1376	TCCGGGAG GGCTAGCTACAACGA AACGCGGG	3704
289	UCCCCGAA G CCCCCGCC	1377	GGGCGGGG GGCTAGCTACAACGA TTCCGGGA	3705
294	GAAGCCCC G CCCGACCG	1378	CGGTCTGG GGCTAGCTACAACGA GGGGCTTC	3706
299	CCCGCCCC G CCGCGGCC	1379	AGCCGCGG GGCTAGCTACAACGA CGGGCGGG	3707
302	GCCCCGACC G CGGCUCU	1380	AGGAGCGG GGCTAGCTACAACGA CGTCGGGC	3708
305	CGACCGCG G CUCCUGAC	1381	GTCAGGAG GGCTAGCTACAACGA CGCGGTG	3709
312	GGCUCUUG A CAGACGGG	1382	CCCGTCTG GGCTAGCTACAACGA CAGGAGCC	3710
316	CCUGACAG A CGGGCGCG	1383	GCGGCCCG GGCTAGCTACAACGA CTGTCAGG	3711
320	ACAGACGG G CCGCUCAG	1384	CTGAGCGG GGCTAGCTACAACGA CGTCTGT	3712
323	GACGGGCC G CUCAGCCA	1385	TGGCTGAG GGCTAGCTACAACGA GGCCCGTC	3713
328	GCCGCUCA G CCAACCGG	1386	CCGGTTGG GGCTAGCTACAACGA TGAGCGGC	3714
332	CUCAGCCA A CCGGGGUG	1387	CACCCCGG GGCTAGCTACAACGA TGGCTGAG	3715
338	CAACCGGG G UGGGGCGG	1388	CCGCCCCA GGCTAGCTACAACGA CCCGGITG	3716
343	GGGGUGGG G CGGGGCC	1389	GGGCCCCG GGCTAGCTACAACGA CCCACCCC	3717
348	GGGGCGGG G CCCGAUGG	1390	CCATCGGG GGCTAGCTACAACGA CCCGCC	3718
353	GGGGCCCG A UGGCGCC	1391	GCGCGCCA GGCTAGCTACAACGA CGGGCCCC	3719
356	GCCCCGAUG G CGCGCAGC	1392	GCTGCGCG GGCTAGCTACAACGA CATCGGGC	3720
358	CCGAUGGC G CGCAGCCA	1393	TGGCTGCC GGCTAGCTACAACGA GCCATCGG	3721
360	GAUGGCGC G CAGCCAAU	1394	ATTGGCTG GGCTAGCTACAACGA GCGCCATC	3722
363	GGCGCGCA G CCAAUGGU	1395	ACCATTGG GGCTAGCTACAACGA TGCGCGCC	3723
367	CGCAGCCA A UGGUAGGC	1396	GCCTACCA GGCTAGCTACAACGA TGGCTGCC	3724
370	AGCCAAUG G UAGGCCGC	1397	CGGGCCTA GGCTAGCTACAACGA CATTGGCT	3725
374	AAUGGUAG G CCGCGCCU	1398	AGGCGCGG GGCTAGCTACAACGA CTACCATT	3726
377	GGUAGGCC G CGCCUGGC	1399	GCCAGGGG GGCTAGCTACAACGA GGCCTACC	3727
379	UAGGCCGC G CCUGGCAG	1400	CTGCCAGG GGCTAGCTACAACGA CGGGCCTA	3728
384	CGCGCCUG G CAGACGGA	1401	TCCGTCTG GGCTAGCTACAACGA CAGGCGCG	3729
388	CCUGGCAG A CGGACGGG	1402	CCCGTCCG GGCTAGCTACAACGA CTGCCAGG	3730
392	GCAGACGG A CGGGCGCG	1403	CGCGCCCC GGCTAGCTACAACGA CCGTCTGC	3731
396	ACGGACGG G CGCGGGGC	1404	GCCCCCGG GGCTAGCTACAACGA CCGTCCGT	3732
398	GGACGGGC G CGGGCGG	1405	CCGCCCCG GGCTAGCTACAACGA GCCCCGTCC	3733
403	GGCGCGGG G CGGGCGU	1406	ACGCCCCG GGCTAGCTACAACGA CCCGCGCC	3734
408	GGGGCGGG G CGUGCGCA	1407	TGCGCAGG GGCTAGCTACAACGA CCCGCC	3735
410	GGCGGGGC G UGCGCAGG	1408	CCTGCGCA GGCTAGCTACAACGA GCCCCGCC	3736
412	CGGGGCGU G CGCAGGCC	1409	GGCCTGCC GGCTAGCTACAACGA ACGCCCCG	3737
414	GGGCGUGC G CAGGCCCG	1410	CGGGCCTG GGCTAGCTACAACGA GCACGCC	3738
418	GUGCGCAG G CCCGCCCG	1411	CGGGCGGG GGCTAGCTACAACGA CTGCGCAC	3739
422	GCAGGCC G CCCGAGUC	1412	GACTCGGG GGCTAGCTACAACGA GGGCCTGC	3740
428	CCGCCCCG A UCUCGCC	1413	GGCGGAGA GGCTAGCTACAACGA TCGGGCGG	3741
434	GAGUCUCC G CCCGCCGU	1414	ACGGGCGG GGCTAGCTACAACGA GGAGACTC	3742
437	UCUCCGCC G CCCGUGCC	1415	GGCACGGG GGCTAGCTACAACGA GCGGGAGA	3743
441	CGCCGCC G UGCCUGC	1416	GCAGGGCA GGCTAGCTACAACGA GGGCGGG	3744
443	CGCCCCGU G CCCUGCGC	1417	GCGCAGGG GGCTAGCTACAACGA ACGGGGCG	3745
448	CGUGCCCU G CGCCCGCA	1418	TGCGGGCC GGCTAGCTACAACGA AGGGCACG	3746
450	UGCCCCUG C CCCGCAAC	1419	GTTGCGGG GGCTAGCTACAACGA GCAGGGCA	3747
454	CUGCGCCC G CAACCCGA	1420	TCGGGTTG GGCTAGCTACAACGA GGGCGCAG	3748
457	CGCCCCGA A CCCGAGCC	1421	GGCTCGGG GGCTAGCTACAACGA TGCGGGCG	3749

463	CAACCCGA G CCGCACCC	1422	GGGTGCGG GGCTAGCTACAACGA TCGGGTTG	3750
466	CCCGAGCC G CACCCGCC	1423	GGCGGGTG GGCTAGCTACAACGA GGCTCGGG	3751
468	CGAGCCGC A CCCGCCGC	1424	GCGGCGGG GGCTAGCTACAACGA CGGGCTCG	3752
472	CCGCACCC G CCCGCGGAC	1425	GTCCGCGG GGCTAGCTACAACGA GGGTGC GG	3753
475	CACCCGCC G CGGACGGA	1426	TCCGTCGG GGCTAGCTACAACGA GGC GG GTG	3754
479	CGCCGCGG A CGGAGCCC	1427	GGGCTCCG GGCTAGCTACAACGA CGC GGG CG	3755
484	CGGACGGA G CCCAUGCG	1428	CGCATGGG GGCTAGCTACAACGA TCCGTCGG	3756
488	CGGAGCCC A UGCGCGGG	1429	CCCGCGCA GGCTAGCTACAACGA GGGCTCCG	3757
490	GAGCCCAU G CGCGGGGC	1430	GCCCCCGG GGCTAGCTACAACGA ATGGGGCTC	3758
492	GCCCCAUGC G CGGGGGCGA	1431	TCGCCCCG GGCTAGCTACAACGA GCATGGGC	3759
497	UGCGCGGG G CGAACCGC	1432	GCGGTTCG GGCTAGCTACAACGA CCCGCGCA	3760
501	CGGGGCGA A CCGCGCGC	1433	GCGCGCGG GGCTAGCTACAACGA TCGCCCCG	3761
504	GGCGAACG G CGCGCCCC	1434	GGGGCGCG GGCTAGCTACAACGA GTT CGCC	3762
506	CGAACCGC G CGCCCCCG	1435	CGGGGGCG GGCTAGCTACAACGA GCGGTTCG	3763
508	AACCGCGC G CCCCCCGC	1436	GGCGGGGG GGCTAGCTACAACGA GCGGGGTT	3764
514	GCGCCCCC G CCCCCCGC	1437	GGCGGGGG GGCTAGCTACAACGA GGGGGCGC	3765
520	CGGCCCCC G CCCCCGCC	1438	GGGCGGGG GGCTAGCTACAACGA GGGGGCGG	3766
525	CCC GCCCCC G CCCCCGGC	1439	GGCCGGGG GGCTAGCTACAACGA GGGGGCGG	3767
531	CGGCCCCC G CCUCGGCC	1440	GGCCGAGG GGCTAGCTACAACGA CGGGGGCGG	3768
537	CGGCCUCG G CCCCCGGC	1441	GGCCGGGG GGCTAGCTACAACGA CGAGGGCCG	3769
543	CGGCCCCG G CCCUGGCC	1442	GGCCAGGG GGCTAGCTACAACGA CGGGGGCG	3770
549	CGGCCCCUG G CCCCCGGG	1443	CCCCGGGG GGCTAGCTACAACGA CAGGGCCG	3771
558	CCCCGGGG G CAGUCCGG	1444	CGCGACTG GGCTAGCTACAACGA CCCCCGGG	3772
561	CGGGGGCA G UCGCGCCU	1445	AGGCGCGA GGCTAGCTACAACGA TGCCCCCG	3773
564	GGGCAGUC G CGCCUGUG	1446	CACAGCGG GGCTAGCTACAACGA GACTGCC	3774
566	GCAGUCGC G CCUGUGAA	1447	TTCACAGG GGCTAGCTACAACGA GCGACTGC	3775
570	UCCGGCCU G UGAACGGU	1448	ACCGTTCA GGCTAGCTACAACGA AGGCGCGA	3776
574	GCCUGUGA A CGGUGAGU	1449	ACTCACCG GGCTAGCTACAACGA TCACAGGC	3777
577	UGUGAACG G UGAGUGCG	1450	CGCACTCA GGCTAGCTACAACGA CGTT CACA	3778
581	AACGGUGA G UGCGGGCA	1451	TGCCCCGA GGCTAGCTACAACGA TCACCGTT	3779
583	CGGUGAGU G CGGGCAGG	1452	CCTGCCCG GGCTAGCTACAACGA ACTCACCG	3780
587	GAGUGCGG G CAGGGAU	1453	GATCCCTG GGCTAGCTACAACGA CGCGACTC	3781
593	GGGCAGGG A UCGGCCGG	1454	CCGGCCGA GGCTAGCTACAACGA CCCTGCC	3782
597	AGGGAUUCG G CGGGCCG	1455	CGGGCCGG GGCTAGCTACAACGA CGATCCCT	3783
602	UCGGCCGG G CCGCGCGC	1456	GCGCGCGG GGCTAGCTACAACGA CGGGCCGA	3784
605	GGCGGGCC G CGCGCCCU	1457	AGGGCGCG GGCTAGCTACAACGA GGGCGGGC	3785
607	CGGGCCGC G CGCCCUC	1458	GGAGGGCG GGCTAGCTACAACGA CGGGCCCC	3786
609	GGCCCGCGC G CCCUCCUC	1459	GAGGAGGG GGCTAGCTACAACGA CGCGGGCC	3787
618	CCCUCUCG G CCCCCAGG	1460	CCTGGGGG GGCTAGCTACAACGA GAGGAGGG	3788
626	GCCCCCAG G CGGCAGCA	1461	TGCTGCCG GGCTAGCTACAACGA CTGGGGGC	3789
629	CCCAGGCG G CAGCAAUA	1462	TATTGCTG GGCTAGCTACAACGA CGCCTGGG	3790
632	AGGCGGCCA G CAAUACGC	1463	GGGTATTG GGCTAGCTACAACGA TGCCGCC	3791
635	CGGCAGCA A UACGCGCG	1464	CGCGCGTA GGCTAGCTACAACGA TGCTGCC	3792
637	GCAGCAAU A CGCGCGGC	1465	GCGCGCGG GGCTAGCTACAACGA ATTGCTGC	3793
639	AGCAAUAC G CGCGGCC	1466	GCGCCGCG GGCTAGCTACAACGA GTATTGCT	3794
641	CAAUACGC G CGGCGCGG	1467	CGCGCGCG GGCTAGCTACAACGA CGGTATTG	3795
644	UACGCGCG G CGCGGGCC	1468	GGCCCGCG GGCTAGCTACAACGA CGCGCGTA	3796
646	CGCGCGGC G CGGGCGGG	1469	CGGGCCCG GGCTAGCTACAACGA CGCGCG	3797
650	CGCGCGGG G CGGGGGGC	1470	GCCCCCGG GGCTAGCTACAACGA CGCGCC	3798
657	GGCCGGGG G CGCGGGGC	1471	GCCCCCGG GGCTAGCTACAACGA CCCCCGCC	3799
659	CGGGGGGC G CGGGCGG	1472	CGGCCCCG GGCTAGCTACAACGA CCCCCCGG	3800
664	GGCGCGGG G CGGGCGGG	1473	CCCCCGGG GGCTAGCTACAACGA CCCGCGCC	3801

668	CGGGGCCG G CGGGCGUA	1474	TACGCCCG GGCTAGCTACAACGA CGGCCCCG	3802
672	GCCGGCGG G CGUAAGCG	1475	CGCTTACG GGCTAGCTACAACGA CGGCCGGC	3803
674	CGGCAGGGC G UAAGCGGC	1476	GCCGCTTA GGCTAGCTACAACGA GCGCGCCG	3804
678	GGGCGUAA G CGGCAGGGC	1477	CGCCGCCG GGCTAGCTACAACGA TTACGCC	3805
681	CGUAAGCG G CGGCAGGGC	1478	CGCCGCCG GGCTAGCTACAACGA CGCTTACG	3806
684	AAGCGGGC G CGGCAGGGC	1479	CGCCGCCG GGCTAGCTACAACGA CGCCGCTT	3807
687	CGGCAGGGC G CGGCAGGGC	1480	CGCCGCCG GGCTAGCTACAACGA CGCCGCCG	3808
690	CGGCAGGGC G CGGCAGGGU	1481	ACCCGCCG GGCTAGCTACAACGA CGCCGCCG	3809
693	CGGCAGGGC G CGGGUGGG	1482	CCCACCCG GGCTAGCTACAACGA CGCCGCCG	3810
697	GGCGGGCG G UGGGUGGG	1483	CCCACCCA GGCTAGCTACAACGA CGGCCGCC	3811
701	CGGGGUUG G UGGGGCCG	1484	CGGCCCCA GGCTAGCTACAACGA CCACCCGC	3812
706	UGGGUGGG G CCGGGCGG	1485	CCGCCCCG GGCTAGCTACAACGA CCCACCCA	3813
711	GGGGCCCG G CGGGGCCC	1486	GGGCCCCG GGCTAGCTACAACGA CGGGCCCC	3814
716	CGGGCCGG G CCCCGCGG	1487	CCCGCGGG GGCTAGCTACAACGA CGCGCCCG	3815
720	CGGGGCCG G CGGGCACA	1488	TGTGCCCC GGCTAGCTACAACGA GGGCCCCG	3816
724	GCCCCCGG G CACAGGUG	1489	CACCTGTG GGCTAGCTACAACGA CGCGGGC	3817
726	CCGCGGGC A CAGGUGAG	1490	CTCACCTG GGCTAGCTACAACGA GCGCGCGG	3818
730	GGGCACAG G UGAGCGGG	1491	CCCGCTCA GGCTAGCTACAACGA CTGTGCC	3819
734	ACAGGUJA G CGGGCGUC	1492	GACGCCCC GGCTAGCTACAACGA TCACCTGT	3820
738	GUGAGCGG G CGUCGGGG	1493	CCCCGACG GGCTAGCTACAACGA CCGCTCAC	3821
740	GAGCGGGC G UCGGGGGC	1494	GCCCCCGA GGCTAGCTACAACGA GCGCGCTC	3822
747	CGUCGGGG G CUGCGCGC	1495	CGCCGCAG GGCTAGCTACAACGA CCGCGACG	3823
750	CGGGGGCU G CGGGCGGC	1496	GCCCCCGG GGCTAGCTACAACGA AGCCCCCG	3824
753	GGGCUGCG G CGGGCGGG	1497	CCCGCCCC GGCTAGCTACAACGA CGCAGCCC	3825
757	UGCGGGCG G CGGGGGCC	1498	GGCCCCCG GGCTAGCTACAACGA CGCGCGCA	3826
763	GGGGGGGG G CCCCUUCC	1499	GGAAAGGGG GGCTAGCTACAACGA CGCGCCCC	3827
780	UCCCCUGGG G CCUGCGGG	1500	CCCGCAGG GGCTAGCTACAACGA CCCAGGGA	3828
784	UGGGGGCU G CGGGAAUC	1501	GATTCCCG GGCTAGCTACAACGA AGGCCCCA	3829
790	CUGCGGGG A UCCGGGCC	1502	GGCCCGGA GGCTAGCTACAACGA TCCCGCAG	3830
796	GAUUCGGG G CCCCACCC	1503	GGGTGGGG GGCTAGCTACAACGA CGGGATT	3831
801	CGGGCCCC A CCCGUGGC	1504	GCCACGGG GGCTAGCTACAACGA GGGGCCG	3832
805	CCCCACCC G UGGCCUCG	1505	CGAGGCCA GGCTAGCTACAACGA GGGTGGGG	3833
808	CACCCGUG G CCUCGCGC	1506	GCGCGAGG GGCTAGCTACAACGA CACGGGTG	3834
813	GUGGCCUC G CGCUGGGC	1507	GCCCAGCG GGCTAGCTACAACGA GAGGCCAC	3835
815	GGCCUCGC G CUGGGCAC	1508	GTGCCCAG GGCTAGCTACAACGA GCGAGGCC	3836
820	CGCGCUGG G CACGGUCC	1509	GGACCGTG GGCTAGCTACAACGA CCAGCGCG	3837
822	CGCUGGGC A CGGUCCCC	1510	GGGGACCG GGCTAGCTACAACGA CGCCAGCG	3838
825	UGGGCACG G UCCCCACG	1511	CGTGGGGA GGCTAGCTACAACGA CGTGCCCA	3839
831	CGGUCCCC A CGCCGGCG	1512	CGCCGGCG GGCTAGCTACAACGA GGGGACCG	3840
833	GUCCCCAC G CGGGCGUA	1513	TACGCCCG GGCTAGCTACAACGA GTGGGGAC	3841
837	CCACGCGG G CGUACCG	1514	CGGGTAGC GGCTAGCTACAACGA CGCGGTGG	3842
839	ACGCCGGC G UACCCGGG	1515	CCCGGGTA GGCTAGCTACAACGA CGCGCGT	3843
841	GCCGGCGU A CCCGGGAG	1516	CTCCCCGG GGCTAGCTACAACGA ACGCCGGC	3844
849	ACCCGGGA G CCUCGGGC	1517	GCCCCGAGG GGCTAGCTACAACGA TCCCGGGT	3845
856	AGCCUCGG G CCCGGCGC	1518	GCGCCGGG GGCTAGCTACAACGA CCGAGGCT	3846
861	CGGGGCCG G CGCCCUCA	1519	TGAGGGGG GGCTAGCTACAACGA CGGGCCCC	3847
863	GGCCCGGC G CCCUACCA	1520	TGTGAGGG GGCTAGCTACAACGA GCCGGGCC	3848
869	GCGCCUC A CACCCGGG	1521	CCCGGGGTG GGCTAGCTACAACGA GAGGGCGC	3849
871	GCCCCUAC A CCCGGGGG	1522	CCCCCGGG GGCTAGCTACAACGA GTGAGGGC	3850
879	ACCCGGGG G CGUCUGGG	1523	CCAGACG GGCTAGCTACAACGA CGCCGGGT	3851
881	CGGGGGGC G UCUGGGAG	1524	CTCCCCAGA GGCTAGCTACAACGA GCGCCCCG	3852
893	GGGAGGAG G CGCCCGCG	1525	CGCGGCCG GGCTAGCTACAACGA CTCCCTCCC	3853

896	AGGAGGGC G CCGCGGCC	1526	GGCCGCGG GGCTAGCTACAACGA CGCCTCCT	3854
899	AGGCAGGC G CGGCCACG	1527	CGTGGCCG GGCTAGCTACAACGA GGCCGCGCT	3855
902	CGGCCGCG G CCACGGCA	1528	TGCCGTGG GGCTAGCTACAACGA CGCGGGCG	3856
905	CGCGGGCC A CGGCACCG	1529	GCGTAGCCG GGCTAGCTACAACGA GGCGCGGG	3857
908	CGGCCACG G CACGCCCG	1530	CGGGCGTG GGCTAGCTACAACGA CGTGGCCG	3858
910	GCCACGGC A CGCCCGGG	1531	CCCAGGGG GGCTAGCTACAACGA CCCGTGGC	3859
912	CACGGCAC G CCCGGGCA	1532	TGCCCGGG GGCTAGCTACAACGA GTGCCGTG	3860
918	ACGCCCCG G CACCCCCG	1533	CGGGGGTG GGCTAGCTACAACGA CCGGGCGT	3861
920	GCCCCGGC A CCCCCGAU	1534	ATCGGGGG GGCTAGCTACAACGA GCCCGGGC	3862
927	CACCCCCG A UUCAGCAU	1535	ATGCTGAA GGCTAGCTACAACGA CGGGGGTG	3863
932	CCGAUUCA G CAUCACAG	1536	CTGTGATG GGCTAGCTACAACGA TGAATCGG	3864
934	GAUUCAGC A UCACAGGU	1537	ACCTGTGA GGCTAGCTACAACGA GCTGAATC	3865
937	UCAGCAUC A CAGGUCGC	1538	GCGACCTG GGCTAGCTACAACGA GATGCTGA	3866
941	CAUCACAG G UCGCGGAC	1539	GTCCCGCGA GGCTAGCTACAACGA CTGTGATG	3867
944	CACAGGU G CGGACCAG	1540	CTGGTCCG GGCTAGCTACAACGA GACCTGTG	3868
948	GGUCGCGG A CCAGGCGG	1541	CGGCCCTGG GGCTAGCTACAACGA CGCGGACC	3869
953	CGGACCAG G CGGGGGGC	1542	GCCCCCGG GGCTAGCTACAACGA CTGGTCCG	3870
960	GGCCGGGG G CCUCAGCC	1543	GGCTGAGG GGCTAGCTACAACGA CCCCAGGC	3871
966	GGGCCUCA G CCCCCAGUG	1544	CACTGGGG GGCTAGCTACAACGA TGAGGGCC	3872
972	CAGCCCCA G UGCCUUUU	1545	AAAAGGCA GGCTAGCTACAACGA TGGGGCTG	3873
974	GCCCCAGU G CCUUUUUCC	1546	GGAAAAGG GGCTAGCTACAACGA ACTGGGGC	3874
991	CUCUCCGG G UCUCCCGC	1547	GGGGGAGA GGCTAGCTACAACGA CGGGAGAG	3875
998	GGUCUCCC G CGCCGUU	1548	AAGCGGGC GGCTAGCTACAACGA GGGAGACC	3876
1000	UCUCCCCG G CCGCUUUC	1549	AGAACGGG GGCTAGCTACAACGA CGGGGAGA	3877
1003	CCCGCGCC G CUUCUCGG	1550	CCGAGAAAG GGCTAGCTACAACGA GGCGCGGG	3878
1011	GUUUCUCG G CCCCCUCC	1551	GGAGGGGG GGCTAGCTACAACGA CGAGAACG	3879
1021	CCCUUCCU G UCGCUCAG	1552	CTGAGCGA GGCTAGCTACAACGA AGGAAGGG	3880
1024	UUCCUGUC G CUCAGUCC	1553	GGACTGAG GGCTAGCTACAACGA GACAGGAA	3881
1029	GUUCUCA G UCCCUGCU	1554	AGCAGGGG GGCTAGCTACAACGA TGAGCGAC	3882
1035	CAGUCCCCU G CUUCCCAG	1555	CTGGGAAG GGCTAGCTACAACGA AGGGACTG	3883
1046	UCCCCAGGA G CUCCUCUG	1556	CAGAGGAG GGCTAGCTACAACGA TCCTGGGA	3884
1054	GUUUCUUCU G UCUUUCUCC	1557	GGAGAAGA GGCTAGCTACAACGA AGAGGAGC	3885
1064	CUUUCUCA G CUUUCUGU	1558	ACAGAAAG GGCTAGCTACAACGA TGGAGAAG	3886
1071	AGCUUUCU G UGGCUGAA	1559	TTCAAGCCA GGCTAGCTACAACGA AGAAAGCT	3887
1074	UUUCUGUG G CUGAAAGA	1560	TCTTTCAAG GGCTAGCTACAACGA CACAGAAA	3888
1082	GCUGAAAG A UGCCCCCG	1561	CGGGGGCA GGCTAGCTACAACGA CTTTCAGC	3889
1084	UGAAAGAU G CCCCCGGU	1562	ACCGGGGG GGCTAGCTACAACGA ATCTTTCA	3890
1091	UGCCCCCG G UUCCCCCG	1563	CGGGGGAA GGCTAGCTACAACGA CGGGGGCA	3891
1098	GGUUCCCC G CGGGGGGU	1564	ACCCCCCGG GGCTAGCTACAACGA GGGGAACC	3892
1105	CGCCGGGG G UGCAGGGC	1565	GCCCCGCA GGCTAGCTACAACGA CCCCCGGG	3893
1107	CGGGGGGU G CGGGGGCG	1566	GCGCCCCG GGCTAGCTACAACGA ACCCCCCG	3894
1112	GGUGGGGG G CGCUUCCCC	1567	GGGCAGCG GGCTAGCTACAACGA CGCGCACC	3895
1114	UGCGGGGC G CUGCCCGG	1568	CGGGGCAG GGCTAGCTACAACGA CGCCCGCA	3896
1117	GGGGCGCU G CCCGGGUC	1569	GACCCGGG GGCTAGCTACAACGA AGCGCCCC	3897
1123	CUGCCCCG G UCUGCCU	1570	AGGGCAGA GGCTAGCTACAACGA CGGGGCAG	3898
1127	CCGGGUCU G CCCUCCCC	1571	GGGGGAGGG GGCTAGCTACAACGA AGACCCGG	3899
1139	UCCCCUCCG G CGGCGCCU	1572	AGGCGCCG GGCTAGCTACAACGA CGAGGGGA	3900
1142	CCUCGGCG G CGCCUAGU	1573	ACTAGGCG GGCTAGCTACAACGA CGCCGAGG	3901
1144	UCGGCGGC G CCUAGUAC	1574	GTACTAGG GGCTAGCTACAACGA GCCGCCGA	3902
1149	GGCGCCUA G UACGCAGU	1575	ACTGCGTA GGCTAGCTACAACGA TAGGCGCC	3903
1151	CGCCUAGU A CGCAGUAG	1576	CTACTGCG GGCTAGCTACAACGA ACTAGGCG	3904
1153	CCUAGUAC G CAGUAGGC	1577	GCCTACTG GGCTAGCTACAACGA GTACTAGG	3905

1156	AGUACGCA G UAGGCGCU	1578	AGCGCCTA GGCTAGCTACAACGA TCGTACT	3906
1160	CGCAGUAG G CGCUCAGC	1579	GCTGAGCG GGCTAGCTACAACGA CTACTGCG	3907
1162	CAGUAGGC G CUCAGCAA	1580	TTGCTGAG GGCTAGCTACAACGA GCCTACTG	3908
1167	GGCGCUCA G CAAAUACU	1581	AGTATTTG GGCTAGCTACAACGA TGAGCGCC	3909
1171	CUCAGCAA A UACUUGUC	1582	GACAAGTA GGCTAGCTACAACGA TTGCTGAG	3910
1173	CAGCAAAU A CUUGUCGG	1583	CCGACAAG GGCTAGCTACAACGA ATTTGCTG	3911
1177	AAAUCUU G UCGGAGGC	1584	GCCTCCGA GGCTAGCTACAACGA AAGTATTT	3912
1184	UGUCGGAG G CACCAGCG	1585	CGCTGGTG GGCTAGCTACAACGA CTCCGACA	3913
1186	UCGGAGGC A CCAGCGCC	1586	GGCGCTGG GGCTAGCTACAACGA GCCTCCGA	3914
1190	AGGCACCA G CGCCGCGG	1587	CCCGGGCG GGCTAGCTACAACGA TGGTGCCT	3915
1192	GCACCAGC G CCGCGGGG	1588	CCCCCGGG GGCTAGCTACAACGA GCTGGTGC	3916
1195	CCAGCGCC G CGGGGCCU	1589	AGGCCCG GGCTAGCTACAACGA GGCGCTGG	3917
1200	GCCGCGGG G CCUGCAGG	1590	CCTGCAGG GGCTAGCTACAACGA CCCGCGGC	3918
1204	CGGGGCCU G CAGGCUGG	1591	CCAGCCTG GGCTAGCTACAACGA AGGCCCCG	3919
1208	GCCUGCAG G CUGGCACU	1592	AGTGCCAG GGCTAGCTACAACGA CTGCAGGC	3920
1212	GCAGGCUG G CACUAGCC	1593	GGCTAGTG GGCTAGCTACAACGA CAGCCTGC	3921
1214	AGGCUGGC A CUAGCCUG	1594	CAGGCTAG GGCTAGCTACAACGA GCCAGCCT	3922
1218	UGGCACUA G CCUGCCCG	1595	CGGGCAGG GGCTAGCTACAACGA TAGTGCCA	3923
1222	ACUAGCCU G CCCGGGCA	1596	TGCCCCGG GGCTAGCTACAACGA AGGCTAGT	3924
1228	CUGCCCGG G CACGCCGU	1597	ACGGCGTG GGCTAGCTACAACGA CCGGGCAG	3925
1230	GCCCCGGC A CGCCGUGG	1598	CCACGGCG GGCTAGCTACAACGA CCCGGGGC	3926
1232	CCGGGCAC G CCGUGGCC	1599	CGCCACGG GGCTAGCTACAACGA GTGCCCGG	3927
1235	GGCACGCC G UGGCGCGC	1600	GGCGGCCA GGCTAGCTACAACGA GGCGTGCC	3928
1238	ACGCCGUG G CGCGCUCC	1601	GGAGCGCG GGCTAGCTACAACGA CACGGCGT	3929
1240	GCCGUGGC G CGCUCCGC	1602	GCGGAGCG GGCTAGCTACAACGA GCCACGGC	3930
1242	CGUGGCCG G CUCCGCCG	1603	CGGCGGAG GGCTAGCTACAACGA GGCCCACG	3931
1247	CGCGCUCC G CCGUGGCC	1604	GGCACCGG GGCTAGCTACAACGA GGAGCGCG	3932
1250	GCUCCGCC G UGGCCAGA	1605	TCTGGCCA GGCTAGCTACAACGA GGCGGAGC	3933
1253	CCGCGUG G CCAGACCU	1606	AGGTCTGG GGCTAGCTACAACGA CACGGCGG	3934
1258	GUGGCCAG A CCUGUUCU	1607	AGAACAGG GGCTAGCTACAACGA CTGGCCAC	3935
1262	CCAGACCU G UUCUGGAG	1608	CTCCAGAA GGCTAGCTACAACGA AGGTCTGG	3936
1272	UCUGGAGG A CGGUAAAC	1609	GGTTACCG GGCTAGCTACAACGA CCTCCAGA	3937
1275	GGAGGACG G UAACCUCA	1610	TGAGGTTA GGCTAGCTACAACGA CGTCCTCC	3938
1278	GGACGGUA A CCUCAGCC	1611	GGCTGAGG GGCTAGCTACAACGA TACCGTCC	3939
1284	UAACCUCA G CCCUCGGG	1612	CCCGAGGG GGCTAGCTACAACGA TGAGGTTA	3940
1292	GCCCUCGG G CGCCUCCC	1613	GGGAGGCG GGCTAGCTACAACGA CCGAGGGC	3941
1294	CCUCGGGC G CCUCCCUU	1614	AAGGGAGG GGCTAGCTACAACGA GCCCGAGG	3942
1305	UCCCCUUUA G CCUUUCUG	1615	CAGAAAGG GGCTAGCTACAACGA TAAAGGGA	3943
1313	GCCUUUCU G CCGACCCA	1616	TGGGTCGG GGCTAGCTACAACGA AGAAAGGC	3944
1317	UUCUGCCG A CCCAGCAG	1617	CTGCTGGG GGCTAGCTACAACGA CGGCAGAA	3945
1322	CCGACCCA G CAGCUUCU	1618	AGAACGCTG GGCTAGCTACAACGA TGGGTGG	3946
1325	ACCCAGCA G CUUCUAAU	1619	ATTAGAAG GGCTAGCTACAACGA TGCTGGGT	3947
1332	AGCUUCUA A UUUGGGUG	1620	CACCCAAA GGCTAGCTACAACGA TAGAAGCT	3948
1338	UAAUUGG G UGCGUGGU	1621	ACCACGCA GGCTAGCTACAACGA CCAAATTAA	3949
1340	AUUUGGGU G CGUGGUUG	1622	CAACACG GGCTAGCTACAACGA ACCCAAAT	3950
1342	UUGGGUGC G UGGUUGAG	1623	CTCAACCA GGCTAGCTACAACGA GCACCCAA	3951
1345	GGUGCGUG G UUGAGAGC	1624	GCTCTCAA GGCTAGCTACAACGA CACGCACC	3952
1352	GGUUGAGA G CGCUCAGC	1625	GCTGAGCG GGCTAGCTACAACGA TCTCAACC	3953
1354	UUGAGAGC G CUCAGCUG	1626	CAGCTGAG GGCTAGCTACAACGA GCTCTCAA	3954
1359	AGCGCUCA G CUGUCAGC	1627	GCTGACAG GGCTAGCTACAACGA TGAGCGCT	3955
1362	GCUCAGCU G UCAGCCU	1628	AGGGCTGA GGCTAGCTACAACGA AGCTGAGC	3956
1366	AGCUGUCA G CCCUGCCU	1629	AGGCAGGG GGCTAGCTACAACGA TGACAGCT	3957

1371	UCAGCCU G CCUUUGAG	1630	CTCAAAGG GGCTAGCTACAACGA AGGGCTGA	3958
1381	CUUUGAGG G CUGGGGUCC	1631	GGACCCAG GGCTAGCTACAACGA CCTCAAAG	3959
1386	AGGGCUGG G UCCCUUUU	1632	AAAAGGGA GGCTAGCTACAACGA CCAGCCCT	3960
1398	CUUUUCCC A UCACUGGG	1633	CCCACTGA GGCTAGCTACAACGA GGGAAAAG	3961
1401	UUCCCAUC A CUGGGUCA	1634	TGACCCAG GGCTAGCTACAACGA GATGGGAA	3962
1406	AUCACUGG G UCAUUAAG	1635	CTTAATGA GGCTAGCTACAACGA CCAGTGAT	3963
1409	ACUGGGUC A UUAAGAGC	1636	GCTCTTAA GGCTAGCTACAACGA GACCCAGT	3964
1416	CAUUAAGA G CAAGUGGG	1637	CCCACTTG GGCTAGCTACAACGA TCTTAATG	3965
1420	AAAGACAA G UGGGGGCG	1638	CGCCCCCA GGCTAGCTACAACGA TTGCTCTT	3966
1426	AAUGGGGG G CGAGGCAG	1639	TCGCCTCG GGCTAGCTACAACGA CCCCCACTT	3967
1431	GGGGCGAG G CGACAGCC	1640	GGCTGTG GGCTAGCTACAACGA CTCGCC	3968
1434	GCGAGGCG A CAGCCCUC	1641	GAGGGCTG GGCTAGCTACAACGA CGCCTCGC	3969
1437	AGGCAGCA G CCCUCCCG	1642	CGGGAGGG GGCTAGCTACAACGA TGTCGCTT	3970
1445	GCCCCUCC G CACGCUGG	1643	CCAGCGTG GGCTAGCTACAACGA GGGAGGGC	3971
1447	CCUCCCGC A CGCUGGGU	1644	ACCCAGCG GGCTAGCTACAACGA GCGGGAGG	3972
1449	UCCCCCAC G CUGGGUUG	1645	CAACCCAG GGCTAGCTACAACGA GTGCGGGA	3973
1454	CACGCUGG G UUGCAGCU	1646	AGCTGCAA GGCTAGCTACAACGA CCAGCGTG	3974
1457	GCUGGGUU G CAGCUGCA	1647	TGCAGCTG GGCTAGCTACAACGA AACCCAGC	3975
1460	GGGUUJCA G CUGCACAG	1648	CTGTGCAG GGCTAGCTACAACGA TGCAACCC	3976
1463	UUGCAGCU G CACAGGUA	1649	TACCTGTG GGCTAGCTACAACGA AGCTGCAA	3977
1465	GCAGCUGC A CAGGUAGG	1650	CCTACCTG GGCTAGCTACAACGA GCAGCTGC	3978
1469	CUGCACAG G UAGGCACG	1651	CGTGCCTA GGCTAGCTACAACGA CTGTGCAG	3979
1473	ACAGGUAG G CACGCUGC	1652	GCAGCGTG GGCTAGCTACAACGA CTACCTGT	3980
1475	AGGUAGGC A CGCUGCGAG	1653	CTGCAGCG GGCTAGCTACAACGA GCCTACCT	3981
1477	GUAGGCAC G CUGCAGUC	1654	GACTGCAG GGCTAGCTACAACGA GTGCCTAC	3982
1480	GGCACGCU G CAGUCCUU	1655	AAGGACTG GGCTAGCTACAACGA AGCGTGCC	3983
1483	ACCCUGCA G UCCUUGCU	1656	AGCAAGGA GGCTAGCTACAACGA TGCAGCGT	3984
1489	CAGUCCUU G CUGCCUGG	1657	CCAGGCAG GGCTAGCTACAACGA AAGGACTG	3985
1492	UCCUUGCU G CCUGGGCG	1658	ACGCCAGG GGCTAGCTACAACGA AGCAAGGA	3986
1497	GCUGCCUG G CGUUGGGG	1659	CCCCAACG GGCTAGCTACAACGA CAGGCAGC	3987
1499	UGCCUGGC G UGGGGGCC	1660	GGCCCCAA GGCTAGCTACAACGA GCCAGGCA	3988
1505	GCGUUGGG G CCCAGGGG	1661	TCCCTGGG GGCTAGCTACAACGA CCCAACGC	3989
1513	GCCCAGGG A CCGCUGUG	1662	CACAGCGG GGCTAGCTACAACGA CCCTGGGC	3990
1516	CAGGGACC G CUGUGGGU	1663	ACCCACAG GGCTAGCTACAACGA GGTCCCTG	3991
1519	GGACCGCU G UGGGUUUG	1664	CAAACCCA GGCTAGCTACAACGA AGCGGTCC	3992
1523	CCGUGGG G UUUGCCU	1665	AGGGCAAA GGCTAGCTACAACGA CCACAGCG	3993
1527	GUGGGUUU G CCCUUCAG	1666	CTGAAGGG GGCTAGCTACAACGA AAACCCAC	3994
1536	CCCUUCAG A UGGCCCUG	1667	CAGGGCCA GGCTAGCTACAACGA CTGAAGGG	3995
1539	UUCAGAUG G CCCUGCCA	1668	TGGCAGGG GGCTAGCTACAACGA CATCTGAA	3996
1544	AUGGCCCU G CCAGCAGC	1669	GCTGCTGG GGCTAGCTACAACGA AGGGCCAT	3997
1548	CCCUUGCA G CAGCUGCC	1670	GGCAGCTG GGCTAGCTACAACGA TGGCAGGG	3998
1551	UGCCAGCA G CUGCCCCU	1671	CAGGGCAG GGCTAGCTACAACGA TGCTGGCA	3999
1554	CAGCAGCU G CCCUGUGG	1672	CCACAGGG GGCTAGCTACAACGA AGCTGCTG	4000
1559	GCUGCCCU G UGGGGGCC	1673	AGGGCCCA GGCTAGCTACAACGA AGGGCAGC	4001
1564	CCUGUGGG G CCUGGGGC	1674	GCCCCAGG GGCTAGCTACAACGA CCCACAGG	4002
1571	GGCCUGGG G CUGGGCCU	1675	AGGCCAG GGCTAGCTACAACGA CCCAGGCC	4003
1576	GGGGCUGG G CCUGGGCC	1676	GGCCCGAG GGCTAGCTACAACGA CCAGCCCC	4004
1582	GGGCCUGG G CCUGGGCUG	1677	CAGCCAGG GGCTAGCTACAACGA CCAGGCC	4005
1587	UGGGCCUG G CUGAGCAG	1678	CTGCTCAG GGCTAGCTACAACGA CAGGCCCA	4006
1592	CUGGCUGA G CAGGGCCC	1679	GGGCCCTG GGCTAGCTACAACGA TCAGCCAG	4007
1597	UGAGCAGG G CCCUCCUU	1680	AAGGAGGG GGCTAGCTACAACGA CCTGCTCA	4008
1607	CCUCCUUG G CAGGUGGG	1681	CCCACCTG GGCTAGCTACAACGA CAAGGAGG	4009

1611	CUUGGCAG G UGGGGCAG	1682	CTGCCCCA GGCTAGCTACAACGA CTGCCAAG	4010
1616	CAGGUGGG G CAGGAGAC	1683	GTCTCTG GGCTAGCTACAACGA CCCACCTG	4011
1623	GGCAGGAG A CCCUGUAG	1684	CTACAGGG GGCTAGCTACAACGA CTCCCTGCC	4012
1628	GAGACCCU G UAGGAGGA	1685	TCCCTCTA GGCTAGCTACAACGA AGGGTCTC	4013
1636	GUAGGGAGG A CCCCGGGC	1686	GCCCCGGG GGCTAGCTACAACGA CCTCCTAC	4014
1643	GACCCCGG G CCCCAGGC	1687	GCCTGCGG GGCTAGCTACAACGA CGGGGGTC	4015
1646	CCCGGGCC G CAGGCCCC	1688	GGGGCCTG GGCTAGCTACAACGA GGCCCGGG	4016
1650	GGCCGCAG G CCCUGAG	1689	CTCAGGGG GGCTAGCTACAACGA CTGCGGCC	4017
1661	CCUGAGGA G CGAUGACG	1690	CGTCATCG GGCTAGCTACAACGA TCCTCAGG	4018
1664	GAGGAGCG A UGACGGAA	1691	TTCCGTCA GGCTAGCTACAACGA CGCTCCTC	4019
1667	GAGCGAUG A CGGAAUAU	1692	ATATTCCG GGCTAGCTACAACGA CATCGCTC	4020
1672	AUGACGGA A UUAAGCU	1693	AGCTTATA GGCTAGCTACAACGA TCCGTCAT	4021
1674	GACGGAAU A UAAGCUGG	1694	CCAGCTTA GGCTAGCTACAACGA ATTCCGTC	4022
1678	GAUUAUAA G CUGGUGGU	1695	ACCACCAAG GGCTAGCTACAACGA TTATATTC	4023
1682	AUAAGCUG G UGGUGGGUG	1696	CACCAACCA GGCTAGCTACAACGA CAGCTTAT	4024
1685	AGCUGGUG G UGGUGGGC	1697	GCCCCACCA GGCTAGCTACAACGA CACCAAGT	4025
1688	UGGUGGUG G UGGGCGCC	1698	GGCGCCCA GGCTAGCTACAACGA CACCAACCA	4026
1692	GGUGGUGG G CGCCGGCG	1699	CGCCGGCG GGCTAGCTACAACGA CCACCAACCC	4027
1694	UGGUGGGC G CCCGCGGU	1700	ACCGCCCG GGCTAGCTACAACGA GCCCACCA	4028
1698	GGGCGCCG G CGGUGUGG	1701	CCACACCG GGCTAGCTACAACGA CGGCGCCC	4029
1701	CGCCGGCG G UGUGGGCA	1702	TGCCCCACA GGCTAGCTACAACGA CGCCGGCG	4030
1703	CGGGCGGU G UGGGCAAG	1703	CTTGCCCCA GGCTAGCTACAACGA ACCGCCGG	4031
1707	CGGUGUGG G CAAGAGUG	1704	CACTCTTG GGCTAGCTACAACGA CCACACCG	4032
1713	GGGCAAGA G UGGCGUGA	1705	TCAGCGCA GGCTAGCTACAACGA TCTTGCCC	4033
1715	GCAAGAGU G CGCUGACC	1706	GGTCAGCG GGCTAGCTACAACGA ACTCTTGC	4034
1717	AAGAGUGC G CUGACCAU	1707	ATGGTCAG GGCTAGCTACAACGA GCACTCTT	4035
1721	GUGCCUG A CCAUCCAG	1708	CTGGATGG GGCTAGCTACAACGA CAGCGCAC	4036
1724	CGCUGACC A UCCAGCUG	1709	CAGCTGGA GGCTAGCTACAACGA GGTCAGCG	4037
1729	ACCAUCCA G CUGAUCCA	1710	TGGATCAG GGCTAGCTACAACGA TGGATGGT	4038
1733	UCCAGCUG A UCCAGAAC	1711	GTTCTGGA GGCTAGCTACAACGA CAGCTGGA	4039
1740	GAUCCAGA A CCAUUUUG	1712	CAAATGG GGCTAGCTACAACGA TCTGGATC	4040
1743	CCAGAAC A UUUUGUGG	1713	CCACAAAA GGCTAGCTACAACGA GTTCTGG	4041
1748	ACCAUUUU G UGGACGAA	1714	TTCGTCCA GGCTAGCTACAACGA AAAATGGT	4042
1752	UUUJUGGG A CGAAUACG	1715	CGTATTCTG GGCTAGCTACAACGA CCACAAAA	4043
1756	GUGGACGA A UACGACCC	1716	GGGTCGTA GGCTAGCTACAACGA TCGTCCAC	4044
1758	GGACGAAU A CGACCCCC	1717	TGGGGTCG GGCTAGCTACAACGA ATTCTGCC	4045
1761	CGAAUACG A CCCCACUA	1718	TAGTGGGG GGCTAGCTACAACGA CGTATTCTG	4046
1766	ACGACCCC A CUUAGAG	1719	CTCTATAG GGCTAGCTACAACGA GGGTCGT	4047
1769	ACCCACU A UAGAGGAU	1720	ATCCTCTA GGCTAGCTACAACGA AGTGGGGT	4048
1776	UAUAGAGG A UUCCUACC	1721	GGTAGGAA GGCTAGCTACAACGA CCTCTATA	4049
1782	GGAUUCCU A CGGAAAGC	1722	GCTTCCGG GGCTAGCTACAACGA AGGAATCC	4050
1789	UACCGGAA G CAGGUGGU	1723	ACCACCTG GGCTAGCTACAACGA TTCCGGTA	4051
1793	GGAAAGCAG G UGGUCAUU	1724	AATGACCA GGCTAGCTACAACGA CTGCTTCC	4052
1796	AGCAGGUG G UCAUUGAU	1725	ATCAATGA GGCTAGCTACAACGA CACCTGCT	4053
1799	AGGUGGUC A UUGAUGGG	1726	CCCATCAA GGCTAGCTACAACGA GACCACCT	4054
1803	GGUCAUUG A UGGGGAGA	1727	TCTCCCCA GGCTAGCTACAACGA CAATGACC	4055
1811	AUGGGGAG A CGUGCCUG	1728	CAGGCACG GGCTAGCTACAACGA CTCCCCAT	4056
1813	GGGGAGAC G UGCCUGUU	1729	AACAGGCA GGCTAGCTACAACGA GTCTCCCC	4057
1815	GGAGACGU G CCUGUUGG	1730	CCAACAGG GGCTAGCTACAACGA ACGTCTCC	4058
1819	ACGUGCCU G UUCCACAU	1731	ATGTCCAA GGCTAGCTACAACGA AGGCACGT	4059
1824	CCUGUUGG A CAUCCUGG	1732	CCAGGATG GGCTAGCTACAACGA CCAACAGG	4060
1826	UGUJUGGAC A UCCUGGAAU	1733	ATCCAGGA GGCTAGCTACAACGA GTCCAACA	4061

1833	CAUCCUGG A UACCGCCG	1734	CGGGGGTA GGCTAGCTACAACGA CCAGGATG	4062
1835	UCCUGGAU A CCGCCGGC	1735	GCCGGCGG GGCTAGCTACAACGA ATCCAGGA	4063
1838	UGGAUACC G CCGGCCAG	1736	CTGGCCGG GGCTAGCTACAACGA GGTATCCA	4064
1842	UACCGCCG G CCAGGAGG	1737	CCTCCTGG GGCTAGCTACAACGA CGGCGGTA	4065
1852	CAGGAGGA G UACAGCGC	1738	GCGCTGTA GGCTAGCTACAACGA TCCTCCTG	4066
1854	GGAGGAGU A CAGCGCCA	1739	TGGCGCTG GGCTAGCTACAACGA ACTCCTCC	4067
1857	GGAGUACA G CGCCAUGC	1740	GCATGGCG GGCTAGCTACAACGA TGACTTCC	4068
1859	AGUACAGC G CCAUGCGG	1741	CCGCATGG GGCTAGCTACAACGA GCTGTACT	4069
1862	ACAGCGCC A UGCGGGAC	1742	GTCCCGCA GGCTAGCTACAACGA GCGCTGT	4070
1864	AGCGCCAU G CGGGACCA	1743	TGGTCCCG GGCTAGCTACAACGA ATGGCGCT	4071
1869	CAUGCGGG A CCAGUACA	1744	TGTACTGG GGCTAGCTACAACGA CCCGCATG	4072
1873	CGGGACCA G UACAUGCG	1745	CGGCATGTA GGCTAGCTACAACGA TGGTCCCG	4073
1875	GGACCAGU A CAUGCGCA	1746	TGCGCATG GGCTAGCTACAACGA ACTGGTCC	4074
1877	ACCAGUAC A UGCGCACC	1747	GGTGCAGA GGCTAGCTACAACGA GTACTGGT	4075
1879	CAGUACAU G CGCACCGG	1748	CCGGTGCG GGCTAGCTACAACGA ATGTACTG	4076
1881	GUACAUGC G CACCGGGG	1749	CCCCGGTG GGCTAGCTACAACGA GCATGTAC	4077
1883	ACAUGCGC A CCGGGGAG	1750	CTCCCCGG GGCTAGCTACAACGA GCGCATGT	4078
1893	CGGGGAGG G CUUCCUGU	1751	ACAGGAAG GGCTAGCTACAACGA CCTCCCCG	4079
1900	GGCUJUCCU G UGUGUGUU	1752	AACACACA GGCTAGCTACAACGA AGGAAGCC	4080
1902	CUUCCUGU G UGUGUUUG	1753	CAAACACA GGCTAGCTACAACGA ACAGGAAG	4081
1904	UCCUGUGU G UGUUUGCC	1754	GGAAACAA GGCTAGCTACAACGA ACACAGGA	4082
1906	CUGUGUGU G UUUGCCAU	1755	ATGGCAAA GGCTAGCTACAACGA ACACACAG	4083
1910	GUGUGUUU G CCAUCAAC	1756	GTTGATGG GGCTAGCTACAACGA AACACAC	4084
1913	UGUUUJGCC A UCAACAAAC	1757	GTTGTTGA GGCTAGCTACAACGA GGCAAAACA	4085
1917	UGCCAUCA A CAACACCA	1758	TGGTGTG GGCTAGCTACAACGA TGATGGCA	4086
1920	CAUCAACA A CACCAAGU	1759	ACTTGGTG GGCTAGCTACAACGA TGTGATG	4087
1922	UCAACAAAC A CCAAGUCU	1760	AGACTTGG GGCTAGCTACAACGA TTGTTGA	4088
1927	AACACCAA G UCUUUUGA	1761	TCAAAAGA GGCTAGCTACAACGA TTGGTGT	4089
1938	UUUJUGAGG A CAUCCACC	1762	GGTGGATG GGCTAGCTACAACGA CCTCAAAA	4090
1940	UUGAGGAC A UCCACCAG	1763	CTGGTGGA GGCTAGCTACAACGA GTCTCAA	4091
1944	GGACAUCC A CCAGUACA	1764	TGTACTGG GGCTAGCTACAACGA GGATGTCC	4092
1948	AUCCACCA G UACAGGGG	1765	TCCCTGTA GGCTAGCTACAACGA TGGTGGAT	4093
1950	CCACCAAGU A CAGGGAGC	1766	GCTCCCTG GGCTAGCTACAACGA ACTGGTGG	4094
1957	UACAGGGG A CAGAUCAA	1767	TTGATCTG GGCTAGCTACAACGA TCCCTGTA	4095
1961	GGGAGCAG A UCAAACGG	1768	CCGTTTGA GGCTAGCTACAACGA CTGCTCCC	4096
1966	CAGAUCAA A CGGGUGAA	1769	TTCACCCG GGCTAGCTACAACGA TTGATCTG	4097
1970	UCAAACGG G UGAAGGAC	1770	GTCCTTCA GGCTAGCTACAACGA CCGTTTGA	4098
1977	GGUGAAGG A CUCGGAUG	1771	CATCCGAG GGCTAGCTACAACGA CCTTCACC	4099
1983	GGACUCGG A UGACGUGC	1772	GCACGTCA GGCTAGCTACAACGA CCGAGTCC	4100
1986	CUCGGAUG A CGUGCCCA	1773	TGGGCACG GGCTAGCTACAACGA CATCCGAG	4101
1988	CGGAUGAC G UGCCCAUG	1774	CATGGGCA GGCTAGCTACAACGA GTCATCCG	4102
1990	GAUGACGU G CCCAUGGU	1775	ACCATGGG GGCTAGCTACAACGA ACGTICATC	4103
1994	ACGUGCCC A UGGUGUG	1776	CAGCACCA GGCTAGCTACAACGA GGGCACGT	4104
1997	UGGCCAUG G UGCUGUG	1777	CACCAGCA GGCTAGCTACAACGA CATGGGCA	4105
1999	CCCAUGGU G CUGGUGGG	1778	CCCACCAAG GGCTAGCTACAACGA ACCATGGG	4106
2003	UGGUGCUG G UGGGGAAC	1779	TTTCCCCA GGCTAGCTACAACGA CAGCACCA	4107
2010	GGUGGGGA A CAAGUGUG	1780	CACACTTG GGCTAGCTACAACGA TCCCCACC	4108
2014	GGGAACAA G UGUGACCU	1781	AGGTCACA GGCTAGCTACAACGA TTGTTCCC	4109
2016	GAACAAGU G UGACCUGG	1782	CCAGGTCA GGCTAGCTACAACGA ACTTGTTC	4110
2019	CAAGUGUG A CCUGGCUG	1783	CAGCCAGG GGCTAGCTACAACGA CACACTTG	4111
2024	GUGACCUG G CUGCACGC	1784	GCGTGCAG GGCTAGCTACAACGA CAGGTCAC	4112
2027	ACCUGGCU G CACGCACU	1785	AGTGCCTG GGCTAGCTACAACGA AGCCAGGT	4113

2029	CUGGCUGC A CGCACUGU	1786	ACAGTGC G GGCTAGCTACAACGA GCAGCCAG	4114
2031	GGCUGCAC G CACUGUGG	1787	CCACAGTG GGCTAGCTACAACGA GTGCAGCC	4115
2033	CUGCACGC A CUGUGGAA	1788	TTCCACAG GGCTAGCTACAACGA GCGTCAG	4116
2036	CACGCACU G UGGAAUCU	1789	AGATTCGA GGCTAGCTACAACGA AGTGCCTG	4117
2041	ACUGUGGA A UCUCGGCA	1790	TGCCGAGA GGCTAGCTACAACGA TCCACAGT	4118
2047	GAAUCUCG G CAGGCUCA	1791	TGAGCTGT GGCTAGCTACAACGA CGAGATTC	4119
2051	CUCGGCAG G CUCAGGAC	1792	GTCCTGAG GGCTAGCTACAACGA CTGCCGAG	4120
2058	GGCUCAGG A CCUCGCC	1793	GGGCGAGG GGCTAGCTACAACGA CCTGAGCC	4121
2063	AGGACCUC G CCCGAAGC	1794	GCTTCGGG GGCTAGCTACAACGA GAGGTCCT	4122
2070	CGCCCGAA G CUACGGCA	1795	TGCCGTAG GGCTAGCTACAACGA TTCGGCG	4123
2073	CCGAAGCU A CGGCAUCC	1796	GGATGCCG GGCTAGCTACAACGA AGCTTCGG	4124
2076	AAGCUACG G CAUCCCCU	1797	AGGGGATG GGCTAGCTACAACGA CGTAGCTT	4125
2078	GCUACGGC A UCCCCUAC	1798	GTAGGGGA GGCTAGCTACAACGA GCCGTAGC	4126
2085	CAUCCCCU A CAUCGAGA	1799	TCTCGATG GGCTAGCTACAACGA AGGGGATG	4127
2087	UCCCCUAC A UCGAGACC	1800	GGTCTCGA GGCTAGCTACAACGA GTAGGGGA	4128
2093	ACAUCGAG A CCUCGGCC	1801	GGCCGAGG GGCTAGCTACAACGA CTCGATGT	4129
2099	AGACCUUCG G CCAAGACC	1802	GGTCTTGG GGCTAGCTACAACGA CGAGGTCT	4130
2105	CGGCAAG A CCCGGCAG	1803	CTGCCGGG GGCTAGCTACAACGA CTTGGCCG	4131
2110	AAGACCCG G CAGGGAGU	1804	ACTCCCTG GGCTAGCTACAACGA CGGGCTTT	4132
2117	GGCAGGG A UGGAGGAU	1805	ATCCCTCA GGCTAGCTACAACGA TCCCCTGCC	4133
2124	AGUGGAGG A UGCCUUUC	1806	AGAAGGCA GGCTAGCTACAACGA CCTCCACT	4134
2126	UGGAGGAU G CCUUCUAC	1807	GTAGAAGG GGCTAGCTACAACGA ATCCCTCA	4135
2133	UGCCUUCU A CACGUUGG	1808	CCAACGTG GGCTAGCTACAACGA AGAAGGCA	4136
2135	CCUUUCUAC A CGUUGGUG	1809	CACCAACG GGCTAGCTACAACGA GTAGAAGG	4137
2137	UUCUACAC G UUGGUGCG	1810	CGCACCAA GGCTAGCTACAACGA GTGTAGAA	4138
2141	ACACGUUG G UGCGUGAG	1811	CTCACGCA GGCTAGCTACAACGA CAACGTGT	4139
2143	ACGUUGGU G CGUGAGAU	1812	ATCTCACG GGCTAGCTACAACGA ACCAACGT	4140
2145	GUUGGUGC G UGAGAUCC	1813	GGATCTCA GGCTAGCTACAACGA GCACCAAC	4141
2150	UGCGUGAG A UCCGGCAG	1814	CTGCCGG GGCTAGCTACAACGA CTCACGCA	4142
2155	GAGAUCCG G CAGCACAA	1815	TTGTGCTG GGCTAGCTACAACGA CGGATCTC	4143
2158	AUCCGGCA G CACAAGCU	1816	AGCTTGTG GGCTAGCTACAACGA TGCCGGAT	4144
2160	CCGGCAGC A CAAGCUGC	1817	GCAGCTTG GGCTAGCTACAACGA GCTGCCGG	4145
2164	CAGCACAA G CUGCGGAA	1818	TTCCGCAG GGCTAGCTACAACGA TTGTGCTG	4146
2167	CACAAGCU G CGGAAGCU	1819	AGCTTCCG GGCTAGCTACAACGA AGCTTGTG	4147
2173	CUGCGGAA G CUGAACCC	1820	GGGTTCA GGCTAGCTACAACGA TTCCCGAG	4148
2178	GAAGCUGA A CCCUCCUG	1821	CAGGAGGG GGCTAGCTACAACGA TCAGCTTC	4149
2187	CCCUCCUG A UGAGAGUG	1822	CACTCTCA GGCTAGCTACAACGA CAGGAGGG	4150
2193	UGAUGAGA G UGGCCCCG	1823	CGGGGCCA GGCTAGCTACAACGA TCTCATCA	4151
2196	UGAGAGUG G CCCCGGCU	1824	AGCCGGGG GGCTAGCTACAACGA CACTCTCA	4152
2202	UGGCCCCG G CUGCAUGA	1825	TCATGCAG GGCTAGCTACAACGA CGGGGCCA	4153
2205	CCCCGGCU G CAUGAGCU	1826	AGCTCATG GGCTAGCTACAACGA AGCCGGGG	4154
2207	CCGGCUGC A UGAGCUGC	1827	GCAGCTCA GGCTAGCTACAACGA GCAGCCGG	4155
2211	CUGCAUGA G CUGCAAGU	1828	ACTTGCAG GGCTAGCTACAACGA TCATGCAG	4156
2214	CAUGAGCU G CAAGUGUG	1829	CACACTTG GGCTAGCTACAACGA AGCTCATG	4157
2218	AGCUGCAA G UGUGUGCU	1830	AGCACACAA GGCTAGCTACAACGA TTGCAGCT	4158
2220	CUGCAAGU G UGUGCUCU	1831	AGACCCACA GGCTAGCTACAACGA ACTTGCAG	4159
2222	GCAAGUGU G UGCUCUCC	1832	GGAGAGCA GGCTAGCTACAACGA ACACITGC	4160
2224	AAGUGUGU G CUCUCCUG	1833	CAGGAGAG GGCTAGCTACAACGA ACACACTT	4161
2233	CUCUCCUG A CGCAGGUG	1834	CACCTGCG GGCTAGCTACAACGA CAGGAGAG	4162
2235	CUCCUGAC G CAGGUGAG	1835	CTCACCTG GGCTAGCTACAACGA GTCAGGAG	4163
2239	UGACGCAG G UGAGGGGG	1836	CCCCCTCA GGCTAGCTACAACGA CTGCGTCA	4164
2248	UGAGGGGG A CUCCCAGG	1837	CCTGGGAG GGCTAGCTACAACGA CCCCCCTCA	4165

2257	CUCCCAGG G CGGCCGCC	1838	GGCGGCCG GGCTAGCTACAACGA CCTGGGAG	4166
2260	CCAGGGCG G CCCGCCACG	1839	CGTGGCGG GGCTAGCTACAACGA CGCCCTGG	4167
2263	GGGCGGCC G CCACGCC	1840	GGGCGTGG GGCTAGCTACAACGA GGCGGCC	4168
2266	CGGCCGCC A CGCCCAACC	1841	GGTGGGCG GGCTAGCTACAACGA GGCGGCC	4169
2268	GCCGCCAC G CCCACCGG	1842	CCGGTGGG GGCTAGCTACAACGA GTGGCGGC	4170
2272	CCACGCC A CCGGAUGA	1843	TCATCCGG GGCTAGCTACAACGA GGGCGTGG	4171
2277	CCCACCGG A UGACCCCG	1844	CGGGGTCA GGCTAGCTACAACGA CCGGTGGG	4172
2280	ACCGGAUG A CCCCGCU	1845	AGCCGGGG GGCTAGCTACAACGA CATCCGGT	4173
2286	UGACCCCG G CUCCCCGC	1846	GCGGGGAG GGCTAGCTACAACGA CGGGGTCA	4174
2293	GGCUCCCC G CCCCGUCC	1847	GGCAGGGG GGCTAGCTACAACGA GGGGAGCC	4175
2299	CCGCCCCU G CCGGUUCU	1848	GAGACCGG GGCTAGCTACAACGA AGGGGCGG	4176
2303	CCCUGCCG G UCUCUUGG	1849	CCAGGAGA GGCTAGCTACAACGA CGGCAGGG	4177
2311	GUCUCCUG G CCUGCGGU	1850	ACCGCAGG GGCTAGCTACAACGA CAGGAGAC	4178
2315	CCUGGCCU G CGGUCAGC	1851	GCTGACCG GGCTAGCTACAACGA AGGCCAGG	4179
2318	GGCCUGCG G UCAGCAGC	1852	GCTGCTGA GGCTAGCTACAACGA CGCAGGCC	4180
2322	UGCGGUCA G CAGCCUCC	1853	GGAGGCTG GGCTAGCTACAACGA TGACCGCA	4181
2325	GGUCAGCA G CCUCCCCU	1854	AAGGGAGG GGCTAGCTACAACGA TGCTGACC	4182
2334	CCUCCCCU G UGCCCCGC	1855	GGGGGGCA GGCTAGCTACAACGA AAGGGAGG	4183
2336	UCCUUJGU G CCCCGCCC	1856	GGGCGGGG GGCTAGCTACAACGA ACAAGGGA	4184
2341	UGUGCCCC G CCCAGCAC	1857	GTGCTGGG GGCTAGCTACAACGA GGGGCACA	4185
2346	CCCGCCCA G CACAAGCU	1858	AGCTTGTG GGCTAGCTACAACGA TGGGCGGG	4186
2348	CGCCCCAGC A CAAGCUCA	1859	TGAGCTTG GGCTAGCTACAACGA GCTGGGCG	4187
2352	CAGCACAA G CUCAGGAC	1860	GTCCTGAG GGCTAGCTACAACGA TTGTGCTG	4188
2359	AGCUCAGG A CAUGGAGG	1861	CCTCCATG GGCTAGCTACAACGA CCTGAGCT	4189
2361	CUCAGGAC A UGGAGGGU	1862	CACCTCCA GGCTAGCTACAACGA TCCCTGAG	4190
2367	ACAUGGAG G UGCCGGAU	1863	ATCCGGCA GGCTAGCTACAACGA CTCCATGT	4191
2369	AUGGAGGU G CGGGAUGC	1864	GCATCCGG GGCTAGCTACAACGA ACCTCCAT	4192
2374	GGUGCCGG A UGCAGGAA	1865	TTCCCTGCA GGCTAGCTACAACGA CCGGCACC	4193
2376	UGCCGGAU G CAGGAAGG	1866	CCTTCCTG GGCTAGCTACAACGA ATCCGGCA	4194
2387	GGAAGGAG G UGCAGACG	1867	CGTCTGCA GGCTAGCTACAACGA CTCCCTCC	4195
2389	AAGGAGGU G CAGACGGA	1868	TCCGTCTG GGCTAGCTACAACGA ACCTCCCT	4196
2393	AGGUGCAG A CGGAAGGA	1869	TCCTTCGG GGCTAGCTACAACGA CTGCACCT	4197
2415	AAGGAAGG A CGGAAGCA	1870	TGCTTCCG GGCTAGCTACAACGA CCTTCCTT	4198
2421	GGACGGAA G CAAGGAAG	1871	CTTCCCTG GGCTAGCTACAACGA TTCCGTCC	4199
2439	AAGGAAGG G CUGCGUGA	1872	TCCAGCAG GGCTAGCTACAACGA CCTTCCTT	4200
2442	GAAGGGCU G CUGGAGCC	1873	GGCTCCAG GGCTAGCTACAACGA AGCCCTTC	4201
2448	CUGCUGGA G CCCAGCUA	1874	TGACTGGG GGCTAGCTACAACGA TCCAGCAG	4202
2453	GGAGCCCA G UCACCCCG	1875	GGGGGTGA GGCTAGCTACAACGA TGGGCTCC	4203
2456	GCCCAGUC A CCCGGGA	1876	TCCCAGGG GGCTAGCTACAACGA GACTGGGC	4204
2464	ACCCCGGG A CGCUGGGC	1877	GCCCACGG GGCTAGCTACAACGA CCCGGGGT	4205
2467	CGGGGACC G UGGGCCGA	1878	TCGGGCCA GGCTAGCTACAACGA GGTCCCGG	4206
2471	GACGGUJGG G CGGAGGUG	1879	CACCTCGG GGCTAGCTACAACGA CCACGGTC	4207
2477	GGGCGGAG G UGACUGCA	1880	TGCAGTCA GGCTAGCTACAACGA CTCGGCCC	4208
2480	CCGAGGUG A CUGCGAC	1881	GTCTGCA GGCTAGCTACAACGA CACCTCGG	4209
2483	AGGUGACU G CAGACCCU	1882	AGGGTCTG GGCTAGCTACAACGA AGTCACCT	4210
2487	GACUGCGAG A CCCUCCCCA	1883	TGGGAGGG GGCTAGCTACAACGA CTGCAGTC	4211
2501	CCAGGGAG G CUGUGCAC	1884	GTGCACAG GGCTAGCTACAACGA CTCCCTGG	4212
2504	GGGAGGCU G UGCACAGA	1885	TCTGTGCA GGCTAGCTACAACGA AGCCTCCC	4213
2506	GAGGCUGU G CACAGACU	1886	AGTCTGTG GGCTAGCTACAACGA ACAGCCTC	4214
2508	GGCUGUGC A CAGACUGU	1887	ACAGTCTG GGCTAGCTACAACGA GCACAGCC	4215
2512	GUGCACAG A CUGCUUG	1888	CAAGACAG GGCTAGCTACAACGA CTGTGCAC	4216
2515	CACAGACU G UCUUGAAC	1889	GTTCAAGA GGCTAGCTACAACGA AGTCTGTG	4217

2522	UGCUUUGA A CAUCCCAA	1890	TTGGGATG GGCTAGCTACAACGA TCAAGACA	4218
2524	UCUUGAAC A UCCCAAAU	1891	ATTTGGGA GGCTAGCTACAACGA GTTCAAGA	4219
2531	CAUCCCAA A UGCCACCG	1892	CGGTGGCA GGCTAGCTACAACGA TTGGGATG	4220
2533	UCCCCAAU G CCACCGGA	1893	TCCGGTGG GGCTAGCTACAACGA ATTTGGGA	4221
2536	CAAUAUGC A CCGGAACC	1894	GGTTCCGG GGCTAGCTACAACGA GGCATTTG	4222
2542	CCACCGGA A CCCCAGCC	1895	GGCTGGGG GGCTAGCTACAACGA TCCGGTGG	4223
2548	GAACCCCA G CCCUUAGC	1896	GCTAAGGG GGCTAGCTACAACGA TGGGGTTC	4224
2555	AGCCCUUA G CUCCCCUC	1897	GAGGGGAG GGCTAGCTACAACGA TAAGGGCT	4225
2568	CCUCCCAG G CCUCUGUG	1898	CACAGAGG GGCTAGCTACAACGA CTGGGAGG	4226
2574	AGGCCUCU G UGGGCCCU	1899	AGGGCCCA GGCTAGCTACAACGA AGAGGCCT	4227
2578	CUCUGUGG G CCCUUGUC	1900	GACAAGGG GGCTAGCTACAACGA CCACAGAG	4228
2584	GGGCCUU G UCGGGCAC	1901	GTGCCCCA GGCTAGCTACAACGA AAGGGCCC	4229
2589	CUUGUCGG G CACAGAUG	1902	CATCTGTG GGCTAGCTACAACGA CGACAAG	4230
2591	UGUCGGGC A CAGAUGGG	1903	CCCATCTG GGCTAGCTACAACGA GCCCGACA	4231
2595	GGGCACAG A UGGGAUCA	1904	TGATCCCA GGCTAGCTACAACGA CTGTGCCC	4232
2600	CAGAUGGG A UCACAGUA	1905	TACTGTGA GGCTAGCTACAACGA CCCATCTG	4233
2603	AUGGGAUC A CAGUAAAU	1906	ATTTACTG GGCTAGCTACAACGA GATCCCAT	4234
2606	GGAUACACA G UAAAUAU	1907	ATAATTAA GGCTAGCTACAACGA TGTGATCC	4235
2610	CACAGUAA A UUAUUGGA	1908	TCCAATAA GGCTAGCTACAACGA TTACTGTG	4236
2613	AGUAAAUU A UUGGAUGG	1909	CCATCCAA GGCTAGCTACAACGA AATTTACT	4237
2618	AAUAUUUGG A UGGUCUUG	1910	CAAGACCA GGCTAGCTACAACGA CCAATAAT	4238
2621	AAUUGGAUG G UCUUGUAUC	1911	GATCAAGA GGCTAGCTACAACGA CATCCAAT	4239
2627	UGGUUCUUG A UCUUJGUU	1912	AACCAAGA GGCTAGCTACAACGA CAAGACCA	4240
2633	UGAUUCUUG G UUUUCGGC	1913	GCCGAAAA GGCTAGCTACAACGA CAAGATCA	4241
2640	GGUUUUUCG G CUGAGGGU	1914	ACCCTCAG GGCTAGCTACAACGA CGAAAACC	4242
2647	GGCUGAGG G UGGGACAC	1915	GTGTCCCA GGCTAGCTACAACGA CCTCAGCC	4243
2652	AGGGUGGG A CACGGUGC	1916	GCACCGTG GGCTAGCTACAACGA CCCACCC	4244
2654	GGUGGGAC A CGGUGCGC	1917	GCGCACCG GGCTAGCTACAACGA GTCCCACC	4245
2657	GGGACACG G UCGCGUG	1918	CACCGCGA GGCTAGCTACAACGA CGTGTCCC	4246
2659	GACACGGU G CGCGUGUG	1919	CACACGCG GGCTAGCTACAACGA ACCGTGTC	4247
2661	CACGGUGC G CGUGUGGC	1920	GCCACACG GGCTAGCTACAACGA GCACCGTG	4248
2663	CGGUGCGC G UGUGGCCU	1921	AGGCCACA GGCTAGCTACAACGA GCGCACCG	4249
2665	GUGCGCGU G UGGCCUGG	1922	CCAGGCCA GGCTAGCTACAACGA ACGCGCAC	4250
2668	CGCGUGUG G CCUGGCAU	1923	ATGCCAGG GGCTAGCTACAACGA CACACGCG	4251
2673	GUGGCCUG G CAUGAGGU	1924	ACCTCATG GGCTAGCTACAACGA CAGGCCAC	4252
2675	GGCCUGGC A UGAGGUAU	1925	ATACCTCA GGCTAGCTACAACGA GCCAGGCC	4253
2680	GGCAUGAG G UAUGUCGG	1926	CCGACATA GGCTAGCTACAACGA CTCATGCC	4254
2682	CAUGAGGU A UGUCGGAA	1927	TTCCGACA GGCTAGCTACAACGA ACCTCATG	4255
2684	UGAGGUAU G UCGGAACC	1928	GGTTCCGA GGCTAGCTACAACGA ATACCTCA	4256
2690	AUGUCGGA A CCUCAGGC	1929	GCCTGAGG GGCTAGCTACAACGA TCCGACAT	4257
2697	AACCUCAG G CCUGUCCA	1930	TGGACAGG GGCTAGCTACAACGA CTGAGGTT	4258
2701	UCAGGCCU G UCCAGCCC	1931	GGGCTGGA GGCTAGCTACAACGA AGGCCTGA	4259
2706	CCUGUCCA G CCCUGGGC	1932	GCCCAGGG GGCTAGCTACAACGA TGGACAGG	4260
2713	AGCCCUGG G CUCUCCAU	1933	ATGGAGAG GGCTAGCTACAACGA CCAGGGCT	4261
2720	GGCUCUCC A UAGCCUU	1934	AAAGGCTA GGCTAGCTACAACGA GGAGAGCC	4262
2723	UCUCCAU A CCUUUUGGG	1935	CCCAAAGG GGCTAGCTACAACGA TATGGAGA	4263
2740	AGGGGGAG G UUGGGAGA	1936	TCTCCCAA GGCTAGCTACAACGA CTCCCCCT	4264
2750	UGGGAGAG G CCGGUCAG	1937	CTGACCGG GGCTAGCTACAACGA CTCCTCCC	4265
2754	AGAGGCCG G UCAGGGGU	1938	ACCCCTGA GGCTAGCTACAACGA CGGCCTCT	4266
2761	GGUCAGGG G UCUGGGCU	1939	AGCCAGA GGCTAGCTACAACGA CCCTGACC	4267
2767	GGGUCUGG G CUGUGGGUG	1940	CACCACAG GGCTAGCTACAACGA CCAGACCC	4268
2770	UCUGGGCU G UGGUGCUC	1941	GAGCACCA GGCTAGCTACAACGA AGCCCAGA	4269

2773	GGGCUGUG G UGCUCUCU	1942	AGAGAGCA GGCTAGCTACAACGA CACAGCCC	4270
2775	GCUGUGGU G CUCUCUCC	1943	GGAGAGAG GGCTAGCTACAACGA ACCACAGC	4271
2788	CUCUCUCC G CCUGCCCC	1944	GGGGCAGG GGCTAGCTACAACGA GGGAGGAG	4272
2792	UCCCGCCU G CCCCAGUG	1945	CACTGGGG GGCTAGCTACAACGA AGGCCGGGA	4273
2798	CUGCCCCA G UGUCCACG	1946	CGTGGACA GGCTAGCTACAACGA TGGGGCAG	4274
2800	GCCCCAGU G UCCACGGC	1947	GCCGTGGA GGCTAGCTACAACGA ACTGGGGC	4275
2804	CAGUGUCC A CGGCUUCU	1948	AGAACCGG GGCTAGCTACAACGA GGACACTG	4276
2807	UGUCCACG G CUUCUGGC	1949	GCCAGAAG GGCTAGCTACAACGA CGTGGACA	4277
2814	GGCUUCUG G CAGAGAGC	1950	GCTCTCTG GGCTAGCTACAACGA CAGAAGCC	4278
2821	GGCAGAGA G CUCUGGAC	1951	GTCCAGAG GGCTAGCTACAACGA TCTCTGCC	4279
2828	AGCUCUGG A CAAGCAGG	1952	CCTGCTTG GGCTAGCTACAACGA CCAGAGCT	4280
2832	CUGGACAA G CAGGCAGA	1953	TCTGCCTG GGCTAGCTACAACGA TTGTCCAG	4281
2836	ACAAGCAG G CAGAUCAU	1954	ATGATCTG GGCTAGCTACAACGA CTGCTTGT	4282
2840	GCAGGCAG A UCAUAAGG	1955	CCTTATGA GGCTAGCTACAACGA CTGCCTGC	4283
2843	GGCAGAUC A UAAGGACA	1956	TGTCCTTA GGCTAGCTACAACGA GATCTGCC	4284
2849	UCAUAAGG A CAGAGAGC	1957	GCTCTCTG GGCTAGCTACAACGA CCTTATGA	4285
2856	GACAGAGA G CUUACUGU	1958	ACAGTAAG GGCTAGCTACAACGA TCTCTGTC	4286
2860	GAGAGCUU A CUGUGCUU	1959	AAGCACAG GGCTAGCTACAACGA AAGCTCTC	4287
2863	AGCUUACU G UGCUUJCJA	1960	TAGAAGCA GGCTAGCTACAACGA AGTAAGCT	4288
2865	CUUACUGU G CUUUCUACC	1961	GGTAGAAG GGCTAGCTACAACGA ACAGTAAG	4289
2871	GUGCUUCU A CCAACUAG	1962	CTAGTTGG GGCTAGCTACAACGA AGAACGAC	4290
2875	UUCUACCA A CUAGGAGG	1963	CCTCCTAG GGCTAGCTACAACGA TGGTAGAA	4291
2884	CUAGGAGG G CGUCCUJGG	1964	CCAGGACG GGCTAGCTACAACGA CCTCCTAG	4292
2886	AGGAGGGC G UCCUGGUC	1965	GACCAGGA GGCTAGCTACAACGA GCCCTCCT	4293
2892	GCGUCCUG G UCCUCCAG	1966	CTGGAGGA GGCTAGCTACAACGA CAGGACGC	4294
2907	AGAGGGAG G UGGUUUCA	1967	TGAAACCA GGCTAGCTACAACGA CTCCCTCT	4295
2910	GGGAGGUG G UUUCAGGG	1968	CCCTGAAA GGCTAGCTACAACGA CACCTCCC	4296
2919	UUUCAGGG G UUGGGGGAU	1969	ATCCCCAA GGCTAGCTACAACGA CCCTGAAA	4297
2926	GGUUGGGG A UCUGUGCC	1970	GGCACAGA GGCTAGCTACAACGA CCCAACCC	4298
2930	GGGGAUCU G UGCCGGUG	1971	CACCGGCA GGCTAGCTACAACGA AGATCCCC	4299
2932	GGAUCUGU G CCGGUGGC	1972	GCCACCGG GGCTAGCTACAACGA ACAGATCC	4300
2936	CUGUGCCG G UGGCUCUG	1973	CAGAGCCA GGCTAGCTACAACGA CGGCACAG	4301
2939	UGCCGGUG G CUCUGGUC	1974	GACCAGAG GGCTAGCTACAACGA CACCGGCA	4302
2945	UGGCUCUG G UCUCUGCU	1975	AGCAGAGA GGCTAGCTACAACGA CAGAGCCA	4303
2951	UGGUCUCU G CUGGGAGC	1976	GCTCCCAG GGCTAGCTACAACGA AGAGACCA	4304
2958	UGCUGGGG A CCUUCUJU	1977	CAAGAAGG GGCTAGCTACAACGA TCCCAGCA	4305
2967	CCUUCUJG G CGGUGAGA	1978	TCTCACCG GGCTAGCTACAACGA CAAGAAGG	4306
2970	UCUUGGGCG G UGAGAGGC	1979	GCCTCTCA GGCTAGCTACAACGA CGCCAAGA	4307
2977	GGUGAGAG G CAUCACCU	1980	AGGTGATG GGCTAGCTACAACGA CTCTCACC	4308
2979	UGAGAGGC A UCACCUUU	1981	AAAGGTGA GGCTAGCTACAACGA GCCTCTCA	4309
2982	GAGGCAUC A CCUUUCCU	1982	AGGAAAGG GGCTAGCTACAACGA GATGCCTC	4310
2992	CUUUCUJG A CUUGCUCU	1983	GGAGCAAG GGCTAGCTACAACGA CAGGAAAG	4311
2996	CCUGACUU G CUCCCAGC	1984	GCTGGGAG GGCTAGCTACAACGA AAGTCAGG	4312
3003	UGCUCCCCA G CGUGAAAU	1985	ATTTCACG GGCTAGCTACAACGA TGGGAGCA	4313
3005	CUCCCAGC G UGAAAUGC	1986	GCATTTCA GGCTAGCTACAACGA GCTGGGAG	4314
3010	AGCGUGAA A UGCACCUJ	1987	CAGGTGCA GGCTAGCTACAACGA TTCACGCT	4315
3012	CGUGAAAU G CACCUJCC	1988	GGCAGGTG GGCTAGCTACAACGA ATTTCACG	4316
3014	UGAAAUGC A CCUGCCAA	1989	TTGGCAGG GGCTAGCTACAACGA GCATTTCA	4317
3018	AUGCACCU G CCAAGAAU	1990	ATTCTTGG GGCTAGCTACAACGA AGGTGCAT	4318
3025	UGCCAAGA A UGGCAGAC	1991	GTCTGCCA GGCTAGCTACAACGA TCTTGGCA	4319
3028	CAAGAAUG G CAGACAU	1992	TATGTCTG GGCTAGCTACAACGA CATTCTTG	4320
3032	AAUGGCAG A CAUAGGG	1993	TCCCTATG GGCTAGCTACAACGA CTGCCATT	4321

3034	UGGCAGAC A UAGGGACC	1994	GGTCCCTTA GGCTAGCTACAACGA GTCTGCCA	4322
3040	ACAUAGGG A CCCCCGCCU	1995	AGGCGGGGG GGCTAGCTACAACGA CCCTATGT	4323
3045	GGGACCCC G CCUCUCCUGG	1996	CCAGGAGG GGCTAGCTACAACGA GGGGTCCC	4324
3054	CCUCUCCUGG G CCUUACACA	1997	TCTGAAGG GGCTAGCTACAACGA CCAGGAGG	4325
3060	GGGCCUUC A CAUGCCCA	1998	TGGGCATG GGCTAGCTACAACGA GAAGGCC	4326
3062	GCCUUCAC A UGCCAGU	1999	ACTGGGCA GGCTAGCTACAACGA GTGAAGGC	4327
3064	CUUCACAU G CCCAGUUU	2000	AAACTGGG GGCTAGCTACAACGA ATGTGAAG	4328
3069	CAUGCCCA G UUUUCUUC	2001	GAAGAAAA GGCTAGCTACAACGA TGGGCATG	4329
3079	UUUCUUCG G CUCUGUGG	2002	CCACAGAG GGCTAGCTACAACGA CGAAGAAA	4330
3084	UCGGCUCU G UGGCCUGA	2003	TCAGGCCA GGCTAGCTACAACGA AGAGCCGA	4331
3087	GCUCUGUG G CCUGAACG	2004	GCTTCAGG GGCTAGCTACAACGA CACAGAGC	4332
3094	GGCCUGAA G CGGUCUGU	2005	ACAGACCG GGCTAGCTACAACGA TTCAGGCC	4333
3097	CUGAAGCC G UCUGUGGA	2006	TCCACAGA GGCTAGCTACAACGA CGCTTCAG	4334
3101	AGCGGUCU G UGGACCUC	2007	AAGGTCCA GGCTAGCTACAACGA AGACCGCT	4335
3105	GUCUGUGG A CCUUGGAA	2008	TTCCAAGG GGCTAGCTACAACGA CCACAGAC	4336
3114	CCUUGGAA G UAGGGCUC	2009	GAGCCCTA GGCTAGCTACAACGA TTCCAAGG	4337
3119	GAAGUAGG G CUCCAGCA	2010	TGCTGGAG GGCTAGCTACAACGA CCTACTTC	4338
3125	GGGCUCCA G CACCGACU	2011	AGTCGGTG GGCTAGCTACAACGA TGGAGCCC	4339
3127	CCUCCAGC A CCGACUGG	2012	CCAGTCGG GGCTAGCTACAACGA GCTGGAGC	4340
3131	CAGCACCG A CUGGCCUC	2013	GAGGCCAG GGCTAGCTACAACGA CGGTGCTG	4341
3135	ACCGACUG G CCUCAGGC	2014	GCCTGAGG GGCTAGCTACAACGA CAGTCGGT	4342
3142	GGCCUCAG G CCUCUGCC	2015	GGCAGAGG GGCTAGCTACAACGA CTGAGGCC	4343
3148	AGGCCUCU G CCCUCAUUG	2016	CAATGAGG GGCTAGCTACAACGA AGAGGCCT	4344
3153	UCUGCCUC A UGGGUGGU	2017	ACCACCAA GGCTAGCTACAACGA GAGGCAGA	4345
3157	CCUCAUUG G UGGUCGGG	2018	CCCGACCA GGCTAGCTACAACGA CAATGAGG	4346
3160	CAUUGGUG G UCGGGUAG	2019	CTACCCGA GGCTAGCTACAACGA CACCAATG	4347
3165	GUGGUCGG G UAGGGGCC	2020	GGCCGCTA GGCTAGCTACAACGA CCGACCAC	4348
3168	GUCGGGUA G CGGCCAGU	2021	ACTGGCCG GGCTAGCTACAACGA TACCCGAC	4349
3171	GGGUAGCG G CCAGUAGG	2022	CCTACTGG GGCTAGCTACAACGA CGCTACCC	4350
3175	AGCGGCCA G UAGGGCGU	2023	ACGCCCTA GGCTAGCTACAACGA TGGCCGCT	4351
3180	CCAGUAGG G CGUGGGAG	2024	CTCCCACG GGCTAGCTACAACGA CCTACTGG	4352
3182	AGUAGGGC G UGGGAGCC	2025	GGCTCCCA GGCTAGCTACAACGA GCCCTACT	4353
3188	GCGUGGGG G CCUGGCCA	2026	TGGCCAGG GGCTAGCTACAACGA TCCCACGC	4354
3193	GGAGCCUG G CCAUCCCU	2027	AGGGATGG GGCTAGCTACAACGA CAGGCTCC	4355
3196	GCCUGGCC A UCCCCUGC	2028	GGCAGGGG GGCTAGCTACAACGA GGCCAGGC	4356
3202	CCAUCCCU G CCUCUCCUGG	2029	CCAGGAGG GGCTAGCTACAACGA AGGGATGG	4357
3212	CUCCUGGA G UGGACGAG	2030	CTCGTCCA GGCTAGCTACAACGA TCCAGGAG	4358
3216	UGGAGUGG A CGAGGUUG	2031	CAACCTCG GGCTAGCTACAACGA CCACTCCA	4359
3221	UGGACGAG G UGGCGAGC	2032	GCTGCCAA GGCTAGCTACAACGA CTCGTCCA	4360
3225	CGAGGUUG G CAGCUGGU	2033	ACCAGCTG GGCTAGCTACAACGA CAACCTCG	4361
3228	GGUUGGCA G CUGGUCCG	2034	CGGACCAG GGCTAGCTACAACGA TGCCAACC	4362
3232	GGCACCUUG G UCCGUCUG	2035	CAGACCGA GGCTAGCTACAACGA CAGCTGCC	4363
3236	GCUGGUCC G UCUGCUCC	2036	GGAGCAGA GGCTAGCTACAACGA GGACCAGC	4364
3240	GUCCGUCU G CCUCUGCC	2037	GGCAGGAG GGCTAGCTACAACGA AGACGGAC	4365
3246	CUGCCUCCU G CCCCACUC	2038	GAGTGGGG GGCTAGCTACAACGA AGGAGCAG	4366
3251	CCUGCCCC A CUCUCCCC	2039	GGGGAGAG GGCTAGCTACAACGA GGGGCAGG	4367
3261	UCUCCCCC G CCCUGCC	2040	GGCAGGGG GGCTAGCTACAACGA GGGGGAGA	4368
3267	CCGCCCCU G CCCUACCC	2041	GGTGAGGG GGCTAGCTACAACGA AGGGGCGG	4369
3273	CUGCCUCU A CCCUACCC	2042	GGGTAGGG GGCTAGCTACAACGA GAGGGCAG	4370
3278	CUCACCUU A CCCUUGCC	2043	GGCAAGGG GGCTAGCTACAACGA AGGGTGAG	4371
3284	CUACCCUU G CCCCACGC	2044	GCGTGGGG GGCTAGCTACAACGA AAGGGTAG	4372
3289	CUUGCCCC A CGCCUGCC	2045	GGCAGCG GGCTAGCTACAACGA GGGGCAAG	4373

3291	UGCCCCAC G CCUGCCUC	2046	GAGGCAGG GGCTAGCTACAACGA GTGGGGCA	4374
3295	CCACGCCU G CCUCAUGG	2047	CCATGAGG GGCTAGCTACAACGA AGGCGTGG	4375
3300	CCUGCCUC A UGGCUGGU	2048	ACCAGCCA GGCTAGCTACAACGA GAGGCAGG	4376
3303	GCCUCAUG G CUGGUUGC	2049	GCAACCA GGCTAGCTACAACGA CATGAGGC	4377
3307	CAUGGCUG G UUGCUCUU	2050	AAGAGCAA GGCTAGCTACAACGA CAGCCATG	4378
3310	GGCUGGUU G CUCUUGGA	2051	TCCAAGAG GGCTAGCTACAACGA AACCAAGCC	4379
3319	CUCUJUGGA G CCUGGUAG	2052	CTACCAGG GGCTAGCTACAACGA TCCAAGAG	4380
3324	GGAGCCUG G UAGUGUCA	2053	TGACACTA GGCTAGCTACAACGA CAGGCTCC	4381
3327	GCCUGGUU G UGUCACUG	2054	CAGTGACA GGCTAGCTACAACGA TACCAAGGC	4382
3329	CUGGUAGU G UCACUGGC	2055	GCCAGTGA GGCTAGCTACAACGA ACTACCAG	4383
3332	GUAGUGUC A CUGGUCA	2056	TGAGCCAG GGCTAGCTACAACGA GACACTAC	4384
3336	UGUCACUG G CUCAGCCU	2057	AGGCTGAG GGCTAGCTACAACGA CAGTGACA	4385
3341	CUGGUCA G CCUUGCUG	2058	CAGCAAGG GGCTAGCTACAACGA TGAGCCAG	4386
3346	UCAGCCUU G CUGGGUAU	2059	ATACCCAG GGCTAGCTACAACGA AAGGCTGA	4387
3351	CUUUCUGG G UAUACACA	2060	TGTGTATA GGCTAGCTACAACGA CCAGCAAG	4388
3353	UGCUGGGU A UACACAGG	2061	CCTGTGTA GGCTAGCTACAACGA ACCCAGCA	4389
3355	CUGGGUAU A CACAGGU	2062	AGCCTGTG GGCTAGCTACAACGA ATACCCAG	4390
3357	GGGUUAUC A CAGGCUCU	2063	AGAGCCTG GGCTAGCTACAACGA GTATACCC	4391
3361	AUACACAG G CUCUGCCA	2064	TGGCAGAG GGCTAGCTACAACGA CTGTGTAT	4392
3366	CAGGCUCU G CCACCCAC	2065	GTGGGTGG GGCTAGCTACAACGA AGAGCCTG	4393
3369	GCUCUGCC A CCCACUCU	2066	AGAGTGGG GGCTAGCTACAACGA GGCAGAGC	4394
3373	UGCCACCC A CUCUGCUC	2067	GAGCAGAG GGCTAGCTACAACGA GGGTGGCA	4395
3378	CCCCACUCU G CUCCAAGG	2068	CCTTGGAG GGCTAGCTACAACGA AGAGTGGG	4396
3388	UCCAAGGG G CUUGCCCU	2069	AGGGCAAG GGCTAGCTACAACGA CCCTTGGA	4397
3392	AGGGGCCU G CCCUGCCU	2070	AGGCAGGG GGCTAGCTACAACGA AAGCCCCT	4398
3397	CUUUCGGCU G CCUUGGGC	2071	GCCAAGG GGCTAGCTACAACGA AGGGCAAG	4399
3404	UGCCUUGG G CCAAGUUC	2072	GAACTTGG GGCTAGCTACAACGA CCAAGGCA	4400
3409	UGGGCCAA G UUCUAGGU	2073	ACCTAGAA GGCTAGCTACAACGA TTGGCCCA	4401
3416	AGUUCUAG G UCUGGCCA	2074	TGGCCAGA GGCTAGCTACAACGA CTAGAACT	4402
3421	UAGGUCUG G CCACAGCC	2075	GGCTGTGG GGCTAGCTACAACGA CAGACCTA	4403
3424	GUCUGGCC A CAGCCACA	2076	TGTGGCTG GGCTAGCTACAACGA GGCCAGAC	4404
3427	UGGCCACA G CCACAGAC	2077	GTCTGTGG GGCTAGCTACAACGA TGTGGCCA	4405
3430	CCACAGCC A CAGACAGC	2078	GCTGTCTG GGCTAGCTACAACGA GGCTGTGG	4406
3434	AGCCACAG A CAGCUCAG	2079	CTGAGCTG GGCTAGCTACAACGA CTGTGGCT	4407
3437	CACAGACA G CUCAGUCC	2080	GGACTGAG GGCTAGCTACAACGA TGTCTGTG	4408
3442	ACAGCUCA G UCCCCUGU	2081	ACAGGGGA GGCTAGCTACAACGA TGAGCTGT	4409
3449	AGUCCCCU G UGUGGUCA	2082	TGACCACA GGCTAGCTACAACGA AGGGGACT	4410
3451	UCCCCUGU G UGGUCAUC	2083	GATGACCA GGCTAGCTACAACGA ACAGGGGA	4411
3454	CCUGUGUG G UCAUCCUG	2084	CAGGATGA GGCTAGCTACAACGA CACACAGG	4412
3457	GUGUGGUC A UCCUGGU	2085	AGCCAGGA GGCTAGCTACAACGA GACCACAC	4413
3463	UCAUCCUG G CUUCUGCU	2086	AGCAGAAC GGCTAGCTACAACGA CAGGATGA	4414
3469	UGGCUUCU G CUGGGGGC	2087	GCCCCCAG GGCTAGCTACAACGA AGAAGGCCA	4415
3476	UGCUGGGG G CCCACAGC	2088	GCTGTGGG GGCTAGCTACAACGA CCCCAGCA	4416
3480	GGGGGCCA C CAGCGCCC	2089	GGGCGCTG GGCTAGCTACAACGA GGGCCCCC	4417
3483	GGCCCACA G CGCCCCUG	2090	CAGGGGGC GGCTAGCTACAACGA TGTGGGCC	4418
3485	CCCCACAGC G CCCCCUGU	2091	ACCAAGGGG GGCTAGCTACAACGA GCTGTGGG	4419
3492	CGCCCCUG G UGCCCCUC	2092	GAGGGGGCA GGCTAGCTACAACGA CAGGGGGC	4420
3494	CCCCUGGU G CCCCCUCC	2093	GGGAGGGG GGCTAGCTACAACGA ACCAGGGG	4421
3511	CUCCCAGG G CCCGGGUU	2094	AACCCGGG GGCTAGCTACAACGA CCTGGGAG	4422
3517	GGGCCCGG G UUGAGGU	2095	AGCCTCAA GGCTAGCTACAACGA CGGGGCC	4423
3523	GGGUUGAG G CUGGGCCA	2096	TGGCCAG GGCTAGCTACAACGA CTCAACCC	4424
3528	GAGGCUGG G CCAGGCC	2097	GGGCCTGG GGCTAGCTACAACGA CCAGCCTC	4425

3533	UGGGCCAG G CCCUCUGG	2098	CCAGAGGG GGCTAGCTACAACGA CTGGCCCA	4426
3543	CCUCUGGG A CGGGGACU	2099	AGTCCCCG GGCTAGCTACAACGA CCCAGAGG	4427
3549	GGACGGGG A CUUGUGCC	2100	GGCACAAAG GGCTAGCTACAACGA CCCC GTCC	4428
3553	GGGGACUU G UGCCUGU	2101	ACAGGGCA GGCTAGCTACAACGA AAGTCCCC	4429
3555	GGACUUGU G CCCUGUCA	2102	TGACAGGG GGCTAGCTACAACGA ACAAGTCC	4430
3560	UGUGCCCU G UCAGGGUU	2103	AACCCCTGA GGCTAGCTACAACGA AGGGCACA	4431
3566	CUGUCAGG G UUCCCUAU	2104	ATAGGGAA GGCTAGCTACAACGA CCTGACAG	4432
3573	GGUUCCCU A UCCCUGAG	2105	CTCAGGGA GGCTAGCTACAACGA AGGGAAACC	4433
3582	UCCCCUGAG G UUGGGGGA	2106	TCCCCCAA GGCTAGCTACAACGA CTCAGGGA	4434
3593	GGGGGAGA G CUAGCAGG	2107	CCTGCTAG GGCTAGCTACAACGA TCTCCCCC	4435
3597	GAGAGCUA G CAGGGCAU	2108	ATGCCCTG GGCTAGCTACAACGA TAGCTCTC	4436
3602	CUAGCAGG G CAUGCCGC	2109	CGGGCATG GGCTAGCTACAACGA CCTGCTAG	4437
3604	AGCAGGGC A UGCCGCG	2110	CAGCGGC A GGCTAGCTACAACGA GCCCTGCT	4438
3606	CAGGGCAU G CCCGUGGC	2111	GCCAGCGG GGCTAGCTACAACGA ATGCCCTG	4439
3609	GGCAUGCC G CUGGCUGG	2112	CCAGCCAG GGCTAGCTACAACGA GGCATGCC	4440
3613	UGCCGCUG G CUGGCCAG	2113	CTGGCCAG GGCTAGCTACAACGA CAGCGGCA	4441
3617	GCUGGCUG G CCAGGGCU	2114	AGCCCTGG GGCTAGCTACAACGA CAGCCAGC	4442
3623	UGGCCAGG G CUGCAGGG	2115	CCCTGCAG GGCTAGCTACAACGA CCTGGCCA	4443
3626	CCAGGGCU G CAGGGACA	2116	TGTCCCTG GGCTAGCTACAACGA AGCCCTGG	4444
3632	CUGCAGGG A CACUCCCC	2117	GGGGAGTG GGCTAGCTACAACGA CCCTGCAG	4445
3634	GCAGGGAC A CUCCCCCU	2118	AGGGGGAG GGCTAGCTACAACGA GTCCCTGC	4446
3646	CCCCUUUU G UCCAGGG	2119	TCCCTGGA GGCTAGCTACAACGA AAAAGGGG	4447
3655	UCCAGGG A UACCACAC	2120	GTGTGGTA GGCTAGCTACAACGA TCCCTGGA	4448
3657	CAGGGAAU A CCACACUC	2121	GAGTGTGG GGCTAGCTACAACGA ATTCCCTG	4449
3660	GGAAUACC A CACUCGCC	2122	GGCGAGTG GGCTAGCTACAACGA GGTATTCC	4450
3662	AAUACCAC A CUCGCCCU	2123	AGGGCGAG GGCTAGCTACAACGA GTGGTATT	4451
3666	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452
3679	UCUCUCCA G CGAACACC	2125	GGTGTTCG GGCTAGCTACAACGA TGGAGAGA	4453
3683	UCCAGCGA A CACCACAC	2126	GTGTGGTG GGCTAGCTACAACGA TCGCTGGA	4454
3685	CAGCGAAC A CCACACUC	2127	GAGTGTGG GGCTAGCTACAACGA GTTCGCTG	4455
3688	CGAACACC A CACUCGCC	2128	GGCGAGTG GGCTAGCTACAACGA GGTGTTCG	4456
3690	AACACCAC A CUCGCCCU	2129	AGGGCGAG GGCTAGCTACAACGA GTGGTGTT	4457
3694	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452
3711	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
3713	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
3716	GGGACGCC A CACUCCCC	2132	GGGGAGTG GGCTAGCTACAACGA GGCCTCCC	4460
3718	GACGCCAC A CUCCCCCU	2133	AGGGGGAG GGCTAGCTACAACGA GTGGCGTC	4461
3730	CCCCUUUCU G UCCAGGGG	2134	CCCCCTGGA GGCTAGCTACAACGA AGAAGGGG	4462
3739	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
3741	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
3744	GGGACGCC A CACUCCCC	2132	GGGGAGTG GGCTAGCTACAACGA GGCCTCCC	4460
3746	GACGCCAC A CUCCCCCU	2133	AGGGGGAG GGCTAGCTACAACGA GTGGCGTC	4461
3767	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
3769	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
3772	GGGACGCC A CACUCGCC	2135	GGCGAGTG GGCTAGCTACAACGA GGCCTCCC	4463
3774	GACGCCAC A CUCGCCCU	2136	AGGGCGAG GGCTAGCTACAACGA GTGGCGTC	4464
3778	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452
3795	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
3797	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
3800	GGGACGCC A CACUCGCC	2135	GGCGAGTG GGCTAGCTACAACGA GGCCTCCC	4463
3802	GACGCCAC A CUCGCCCU	2136	AGGGCGAG GGCTAGCTACAACGA GTGGCGTC	4464
3806	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452

3823	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
3825	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
3828	GGGACGCC A CACUCGCC	2135	GGCGAGTG GGCTAGCTACAACGA GGCGTCCC	4463
3830	GACGCCAC A CUCGCCCU	2136	AGGGCAGG GGCTAGCTACAACGA GTGGCGTC	4464
3834	CCACACUC G CCCUUCUG	2137	CAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4465
3842	GCCCUUCU G UCCAGGGG	2138	CCCCCTGGA GGCTAGCTACAACGA AGAAGGGC	4466
3851	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
3853	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
3856	GGGACGCC A CACUCGCC	2135	GGCGAGTG GGCTAGCTACAACGA GGCGTCCC	4463
3858	GACGCCAC A CUCGCCCU	2136	AGGGCAGG GGCTAGCTACAACGA GTGGCGTC	4464
3862	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452
3879	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
3881	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
3884	GGGACGCC A CACUCGCC	2135	GGCGAGTG GGCTAGCTACAACGA GGCGTCCC	4463
3886	GACGCCAC A CUCGCCCU	2136	AGGGCAGG GGCTAGCTACAACGA GTGGCGTC	4464
3890	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452
3907	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
3909	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
3912	GGGACGCC A CACUCCCC	2132	GGGGAGTG GGCTAGCTACAACGA GGCGTCCC	4460
3914	GACGCCAC A CUCCCCCU	2133	AGGGGGAG GGCTAGCTACAACGA GTGGCGTC	4461
3926	CCCCUUCU G UCCAGGGG	2134	CCCCCTGGA GGCTAGCTACAACGA AGAAGGGG	4462
3935	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
3937	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
3940	GGGACGCC A CACUCCCC	2132	GGGGAGTG GGCTAGCTACAACGA GGCGTCCC	4460
3942	GACGCCAC A CUCCCCCU	2133	AGGGGGAG GGCTAGCTACAACGA GTGGCGTC	4461
3963	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
3965	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
3968	GGGACGCC A CACUCCCC	2132	GGGGAGTG GGCTAGCTACAACGA GGCGTCCC	4460
3970	GACGCCAC A CUCCCCCU	2133	AGGGGGAG GGCTAGCTACAACGA GTGGCGTC	4461
3991	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
3993	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
3996	GGGACGCC A CACUCGCC	2135	GGCGAGTG GGCTAGCTACAACGA GGCGTCCC	4463
3998	GACGCCAC A CUCGCCCU	2136	AGGGCAGG GGCTAGCTACAACGA GTGGCGTC	4464
4002	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452
4019	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4021	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4024	GGGACGCC A CACUCCCC	2132	GGGGAGTG GGCTAGCTACAACGA GGCGTCCC	4460
4026	GACGCCAC A CUCCCCCU	2133	AGGGGGAG GGCTAGCTACAACGA GTGGCGTC	4461
4038	CCCCUUCU G UCCAGGGG	2134	CCCCCTGGA GGCTAGCTACAACGA AGAAGGGG	4462
4047	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4049	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4052	GGGACGCC A CACUCGCC	2135	GGGGAGTG GGCTAGCTACAACGA GGCGTCCC	4463
4054	GACGCCAC A CUCGCCCU	2136	AGGGCAGG GGCTAGCTACAACGA GTGGCGTC	4464
4058	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452
4075	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4077	CAGGGGAC G CCACACUC	2131	GACTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4080	GGGACGCC A CACUCGCC	2135	GGCGAGTG GGCTAGCTACAACGA GGCGTCCC	4463
4082	GACGCCAC A CUCGCCCU	2136	AGGGCAGG GGCTAGCTACAACGA GTGGCGTC	4464
4086	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452
4103	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4105	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4108	GGGACGCC A CACUCCCC	2132	GGGGAGTG GGCTAGCTACAACGA GGCGTCCC	4460

4110	GACGCCAC A CUCCCCU	2133	AGGGGGAG GGCTAGCTACAACGA GTGGCGTC	4461
4131	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4133	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4136	GGGACGCC A CACUCCCC	2132	GGGGAGTG GGCTAGCTACAACGA GGCCTCCC	4460
4138	GACGCCAC A CUCCCCU	2133	AGGGGGAG GGCTAGCTACAACGA GTGGCGTC	4461
4159	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4161	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4164	GGGACGCC A CACUCCCC	2132	GGGGAGTG GGCTAGCTACAACGA GGCCTCCC	4460
4166	GACGCCAC A CUCCCCU	2133	AGGGGGAG GGCTAGCTACAACGA GTGGCGTC	4461
4178	CCCCUUCU G UCCAGGGG	2134	CCCTGGA GGCTAGCTACAACGA AGAAGGGG	4462
4187	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4189	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4192	GGGACGCC A CACUCGCC	2135	GGCGAGTG GGCTAGCTACAACGA GGCCTCCC	4463
4194	GACGCCAC A CUCGCCU	2136	AGGGCAG GGCTAGCTACAACGA GTGGCGTC	4464
4198	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452
4215	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4217	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4220	GGGACGCC A CACUCCCC	2132	GGGGAGTG GGCTAGCTACAACGA GGCCTCCC	4460
4222	GACGCCAC A CUCCCCU	2133	AGGGGGAG GGCTAGCTACAACGA GTGGCGTC	4461
4243	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4245	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4248	GGGACGCC A CACUCCCC	2132	GGGGAGTG GGCTAGCTACAACGA GGCCTCCC	4460
4250	GACGCCAC A CUCCCCU	2133	AGGGGGAG GGCTAGCTACAACGA GTGGCGTC	4461
4271	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4273	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4276	GGGACGCC A CACUCCCC	2132	GGGGAGTG GGCTAGCTACAACGA GGCCTCCC	4460
4278	GACGCCAC A CUCCCCU	2133	AGGGGGAG GGCTAGCTACAACGA GTGGCGTC	4461
4290	CCCCUUCU G UCCAGGGG	2134	CCCTGGA GGCTAGCTACAACGA AGAAGGGG	4462
4299	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4301	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4304	GGGACGCC A CACUCGCC	2135	GGCGAGTG GGCTAGCTACAACGA GGCCTCCC	4463
4306	GACGCCAC A CUCGCCU	2136	AGGGCAG GGCTAGCTACAACGA GTGGCGTC	4464
4310	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452
4327	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4329	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4332	GGGACGCC A CACUCGCC	2135	GGCGAGTG GGCTAGCTACAACGA GGCCTCCC	4463
4334	GACGCCAC A CUCGCCU	2136	AGGGCAG GGCTAGCTACAACGA GTGGCGTC	4464
4338	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452
4355	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4357	CAGGGGAC G CCACACUC	2131	GAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4459
4360	GGGACGCC A CACUCGCC	2135	GGCGAGTG GGCTAGCTACAACGA GGCCTCCC	4463
4362	GACGCCAC A CUCGCCU	2136	AGGGCAG GGCTAGCTACAACGA GTGGCGTC	4464
4366	CCACACUC G CCCUUCUC	2124	GAGAAGGG GGCTAGCTACAACGA GAGTGTGG	4452
4383	UCCAGGGG A CGCCACAC	2130	GTGTGGCG GGCTAGCTACAACGA CCCCTGGA	4458
4385	CAGGGGAC G CCACACUU	2139	AAGTGTGG GGCTAGCTACAACGA GTCCCCCTG	4467
4388	GGGACGCC A CACUUGC	2140	GGCAAGTG GGCTAGCTACAACGA GGCCTCCC	4468
4390	GACGCCAC A CUUGCCU	2141	AGGGCAAG GGCTAGCTACAACGA GTGGCGTC	4469
4394	CCACACUU G CCCUUCUG	2142	CAGAAGGG GGCTAGCTACAACGA AAGTGTGG	4470
4402	CCCCUUCU G UCCAGGGG	2143	TCCCTGGA GGCTAGCTACAACGA AGAAGGGC	4471
4411	UCCAGGGG A UGCCACAC	2144	GTGTGGCA GGCTAGCTACAACGA TCCCTGGA	4472
4413	CAGGGAAU G CCACACUC	2145	GAGTGTGG GGCTAGCTACAACGA ATTCCCCCTG	4449
4416	GGAAUGCC A CACUCCCC	2146	GGGGAGTG GGCTAGCTACAACGA GGCATTCC	4473

4418	AAUGCCAC A CUCCCCU	2147	AGGGGGAG GGCTAGCTACAACGA GTGGCATT	4474
4435	UCUCCCCA G CAGCCUCC	2148	GGAGGCTG GGCTAGCTACAACGA TGGGGAGA	4475
4438	CCCCAGCA G CCUCCGAG	2149	CTCGGAGG GGCTAGCTACAACGA TGCTGGGG	4476
4446	GCCUCCGA G UGACCAGC	2150	GCTGGTCA GGCTAGCTACAACGA TCGGAGGC	4477
4449	UCCGAGUG A CCAGCUUC	2151	GAAGCTGG GGCTAGCTACAACGA CACTCGGA	4478
4453	AGUGACCA G CUUCCCCA	2152	TGGGGAG GGCTAGCTACAACGA TGGTCACT	4479
4461	GCUUCCCC A UCGAUAGA	2153	TCTATCGA GGCTAGCTACAACGA GGGGAAGC	4480
4465	CCCCAUCG A UAGACUUC	2154	GAAGTCTA GGCTAGCTACAACGA CGATGGGG	4481
4469	AUCGAUAG A CUUCCCGA	2155	TCGGGAAG GGCTAGCTACAACGA CTATCGAT	4482
4479	UUCCGAG G CCAGGAGC	2156	GCTCCCTGG GGCTAGCTACAACGA CTCCGGAA	4483
4486	GGCCAGGA G CCCUCUAG	2157	CTAGAGGG GGCTAGCTACAACGA TCCTGGCC	4484
4496	CCUCUAGG G CUGCCGGG	2158	CCCGGCAG GGCTAGCTACAACGA CCTAGAGG	4485
4499	CUAGGGCU G CCGGGUGC	2159	GCACCCGG GGCTAGCTACAACGA AGCCCTAG	4486
4504	GCUGCCGG G UGCCACCC	2160	GGGTGGCA GGCTAGCTACAACGA CCGGCAGC	4487
4506	UGCCGGGU G CCACCCUG	2161	CAGGGTGG GGCTAGCTACAACGA ACCCGGCA	4488
4509	CGGGUGCC A CCCUGGU	2162	AGCCAGGG GGCTAGCTACAACGA GGCACCCG	4489
4515	CCACCCUG G CUCCUUCC	2163	GGAAGGAG GGCTAGCTACAACGA CAGGGTGG	4490
4524	CUCCUUCC A CACCGUGC	2164	GCACGGTG GGCTAGCTACAACGA GGAAGGAG	4491
4526	CCUUCCAC A CCGUGCU	2165	CAGCAGGG GGCTAGCTACAACGA GTGGAAAGG	4492
4529	UCCACACC G UGCUGGUC	2166	GACCAGCA GGCTAGCTACAACGA GGTGTGGA	4493
4531	CACACCGU G CUGGUAC	2167	GTGACCGAG GGCTAGCTACAACGA ACGGTGTG	4494
4535	CCGUGCUG G UCACUGCC	2168	GGCAGTGA GGCTAGCTACAACGA CAGCACGG	4495
4538	UGCUGGU A CUGCCUGC	2169	GCAGGGCAG GGCTAGCTACAACGA GACCAGCA	4496
4541	UGGUACAU G CCUGCUGG	2170	CCAGCAGG GGCTAGCTACAACGA AGTGCACCA	4497
4545	CACUGCCU G CUGGGGGC	2171	GCCCCCAG GGCTAGCTACAACGA AGGCAGTG	4498
4552	UGCUGGGG G CGUCAGAU	2172	ATCTGACG GGCTAGCTACAACGA CCCCCAGCA	4499
4554	CUGGGGGC G UCAGAUGC	2173	GCATCTGA GGCTAGCTACAACGA GCCCCCAG	4500
4559	GGCGUCAG A UGCAGGUG	2174	CACCTGCA GGCTAGCTACAACGA CTGACGCC	4501
4561	CGUCAGAU G CAGGUGAC	2175	GTCACCTG GGCTAGCTACAACGA ATCTGACG	4502
4565	AGAUGCAG G UGACCCUG	2176	CAGGGTCA GGCTAGCTACAACGA CTGCATCT	4503
4568	UGCAGGUG A CCCUGUGC	2177	GCACAGGG GGCTAGCTACAACGA CACCTGCA	4504
4573	GUGACCCU G UGCAGGAG	2178	CTCCTGCA GGCTAGCTACAACGA AGGGTCAC	4505
4575	GACCCUGU G CAGGAGGU	2179	ACCTCCTG GGCTAGCTACAACGA ACAGGGTC	4506
4582	UGCAGGAG G UAUCUCUG	2180	CAGAGATA GGCTAGCTACAACGA CTCCTGCA	4507
4584	CAGGAGGU A UCUCUGGA	2181	TCCAGAGA GGCTAGCTACAACGA ACCTCCTG	4508
4592	AUCUCUGG A CCUGCCUC	2182	GAGGCAGG GGCTAGCTACAACGA CCAGAGAT	4509
4596	CUGGACCU G CCUCUUGG	2183	CCAAGAGG GGCTAGCTACAACGA AGGTCCAG	4510
4604	GCCUCUUG G UCAUUACG	2184	CGTAATGA GGCTAGCTACAACGA CAAAGAGGC	4511
4607	UCUUGGUC A UUACGGGG	2185	CCCCGTA GGCTAGCTACAACGA GACCAAGA	4512
4610	UGGUCAUU A CGGGGCU	2186	CAGCCCCG GGCTAGCTACAACGA AATGACCA	4513
4615	AUUAACGGG G CUGGGCAG	2187	CTGCCAG GGCTAGCTACAACGA CCCGTAAT	4514
4620	GGGGCUGG G CAGGGCCU	2188	AGGCCCTG GGCTAGCTACAACGA CCAGCCCC	4515
4625	UGGGCAGG G CCUGGUAU	2189	ATACCAGG GGCTAGCTACAACGA CCTGCCCA	4516
4630	AGGGCCUG G UAUCAGGG	2190	CCCTGATA GGCTAGCTACAACGA CAGGCCCT	4517
4632	GGCCUGGU A UCAGGGCC	2191	GGCCCTGA GGCTAGCTACAACGA ACCAGGCC	4518
4638	GUUAUCAGG G CCCCCGCU	2192	CAGGGGG GGCTAGCTACAACGA CCTGATAC	4519
4643	AGGGCCCC G CUGGGGUU	2193	AACCCCAAG GGCTAGCTACAACGA GGGGCCCT	4520
4649	CCGCUGGG G UUGCAGGG	2194	CCCTGCAA GGCTAGCTACAACGA CCCAGCGG	4521
4652	CUGGGGUU G CAGGGCUG	2195	CAGCCCTG GGCTAGCTACAACGA AACCCCAG	4522
4657	GUUGCAGG G CUGGGCCU	2196	AGGCCAGG GGCTAGCTACAACGA CCTGCAAC	4523
4662	AGGGCUGG G CCUGUGCU	2197	AGCACAGG GGCTAGCTACAACGA CCAGGCCCT	4524
4666	CUGGGCCU G UGCUGUGG	2198	CCACAGCA GGCTAGCTACAACGA AGGCCCAG	4525

4668	GGGCCUGU G CUGUGGUC	2199	GACCACAG GGCTAGCTACAACGA ACAGGCC	4526
4671	CCUGUGCU G UGGUCCUG	2200	CAGGACCA GGCTAGCTACAACGA AGCACAGG	4527
4674	GUGCUGUG G UCCUGGGG	2201	CCCCAGGA GGCTAGCTACAACGA CACAGCAC	4528
4682	GUCCUGGG G UGUCCAGG	2202	CCTGGACA GGCTAGCTACAACGA CCCAGGAC	4529
4684	CCUGGGGU G UCCAGGAC	2203	GTCCTGGA GGCTAGCTACAACGA ACCCCAGG	4530
4691	UGUCCAGG A CAGACGUG	2204	CACGTCTG GGCTAGCTACAACGA CCTGGACA	4531
4695	CAGGACAG A CGUGGAGG	2205	CCTCCACG GGCTAGCTACAACGA CTGTCCTG	4532
4697	GGACAGAC G UGGAGGGG	2206	CCCCCTCA GGCTAGCTACAACGA GTCTGTCC	4533
4705	GUGGAGGG G UCAGGGCC	2207	GGCCCTGA GGCTAGCTACAACGA CCCTCCAC	4534
4711	GGGUCAGG G CCCAGCAC	2208	GTGCTGGG GGCTAGCTACAACGA CCTGACCC	4535
4716	AGGGCCCA G CACCCUG	2209	CAGGGGTG GGCTAGCTACAACGA TGGGCCCT	4536
4718	GGCCCAGC A CCCCCUGU	2210	AGCAGGGG GGCTAGCTACAACGA GCTGGGCC	4537
4724	GCACCCCU G CUCCAUGC	2211	GCATGGAG GGCTAGCTACAACGA AGGGGTGC	4538
4729	CCUGCUCC A UGCUGAAC	2212	GTTCAGCA GGCTAGCTACAACGA GGAGCAGG	4539
4731	UGCUCCAU G CUGAACUG	2213	CAGTTCA G GGCTAGCTACAACGA ATGGAGCA	4540
4736	CAUGCUGA A CUGUGGGA	2214	TCCCCACG GGCTAGCTACAACGA TCAGCATG	4541
4739	GCUGAACU G UGGGAAGC	2215	GCTTCCCA GGCTAGCTACAACGA AGITCAGC	4542
4746	UGUGGGAA G CAUCCAGG	2216	CCTGGATG GGCTAGCTACAACGA TTCCCACA	4543
4748	UGGGAAAGC A UCCAGGUC	2217	GACCTGGA GGCTAGCTACAACGA GTTCCCCA	4544
4754	GCAUCCAG G UCCCUGGG	2218	CCCAGGGG GGCTAGCTACAACGA CTGGATGC	4545
4762	GUCCCUGG G UGGCUUCA	2219	TGAAGCCA GGCTAGCTACAACGA CCAGGGAC	4546
4765	CCUGGGUG G CUUCAACA	2220	TGTTGAAG GGCTAGCTACAACGA CACCCAGG	4547
4771	UGGUUICA A CAGGAGUU	2221	AACTCTG GGCTAGCTACAACGA TGAAAGCCA	4548
4777	CAACAGGA G UUCCAGCA	2222	TGCTGGAA GGCTAGCTACAACGA TCCCTGTTG	4549
4783	GAGUUCCA G CACGGGAA	2223	TTCCCGTG GGCTAGCTACAACGA TGAAACTC	4550
4785	GUUCCAGC A CGGGAAC	2224	GGTTCCCG GGCTAGCTACAACGA GCTGGAAC	4551
4791	GCACGGGA A CCACUGGA	2225	TCCAGTGG GGCTAGCTACAACGA TCCCGTGC	4552
4794	CGGGAAC C A CUGGACAA	2226	TTGTCCAG GGCTAGCTACAACGA GGTTCCCG	4553
4799	ACCACUGG A CAACCUGG	2227	CCAGGTTG GGCTAGCTACAACGA CCAGTGGT	4554
4802	ACUGGACA A CCUGGGGU	2228	ACCCCAGG GGCTAGCTACAACGA TGTCAGT	4555
4809	AACCUGGG G UGUGUCCU	2229	AGGACACA GGCTAGCTACAACGA CCCAGGTT	4556
4811	CCUGGGGU G UGUCCUGA	2230	TCAGGACA GGCTAGCTACAACGA ACCCCAGG	4557
4813	UGGGGUGU G UCCUGAUC	2231	GATCAGGA GGCTAGCTACAACGA ACACCCCA	4558
4819	GUGUCCUG A UCUGGGGA	2232	TCCCCAGA GGCTAGCTACAACGA CAGGACAC	4559
4827	AUCUGGGG A CAGGCCAG	2233	CTGGCCTG GGCTAGCTACAACGA CCCCAGAT	4560
4831	GGGGACAG G CCAGCCAC	2234	GTGGCTGG GGCTAGCTACAACGA CTGTCCCC	4561
4835	ACAGGCCA G CCACACCC	2235	GGGTGTGG GGCTAGCTACAACGA TGGCTGT	4562
4838	GGCCAGCC A CACCCCGA	2236	TCGGGGTG GGCTAGCTACAACGA GGCTGGCC	4563
4840	CCAGCCAC A CCCCCGAGU	2237	ACTCGGGG GGCTAGCTACAACGA GTGGCTGG	4564
4847	CACCCCGA G UCCUAGGG	2238	CCCTAGGA GGCTAGCTACAACGA TCGGGGTG	4565
4856	UCCUAGGG A CUCCAGAG	2239	CTCTGGAG GGCTAGCTACAACGA CCCTAGGA	4566
4866	UCCAGAGA G CAGCCCCAC	2240	GTGGGCTG GGCTAGCTACAACGA TCTCTGGA	4567
4869	AGAGAGCA G CCCACUGC	2241	GCAGTGGG GGCTAGCTACAACGA TGCTCTCT	4568
4873	AGCAGCCC A CUGCCCCUG	2242	CAGGGCAG GGCTAGCTACAACGA GGGCTGCT	4569
4876	AGCCCACU G CCCUGGGC	2243	GCCCAGGG GGCTAGCTACAACGA AGTGGGCT	4570
4883	UGCCCUGG G CUCCACGG	2244	CCGTGGAG GGCTAGCTACAACGA CCAGGGCA	4571
4888	UGGGCUCC A CGGAAGCC	2245	GGCTTCCG GGCTAGCTACAACGA GGAGCCCA	4572
4894	CCACGGAA G CCCCCCUA	2246	TGAGGGGG GGCTAGCTACAACGA TTCCGTGG	4573
4902	CCCCCCUC A UGCCGCUA	2247	TAGCGGCA GGCTAGCTACAACGA GAGGGGGC	4574
4904	CCCCCUAU G CCGCUAGG	2248	CCTAGCGG GGCTAGCTACAACGA ATGAGGGG	4575
4907	CUCAUGCC G CUAGGCCU	2249	AGGCCTAG GGCTAGCTACAACGA GGCATGAG	4576
4912	GCCGCUAG G CCUUGGCC	2250	GGCCAAGG GGCTAGCTACAACGA CTAGCGGC	4577

4918	AGGCCUUG G CCUCGGGG	2251	CCCCGAGG GGCTAGCTACAACGA CAAGGCCT	4578
4927	CCUCGGGG A CAGCCCAG	2252	CTGGGCTG GGCTAGCTACAACGA CCCCAGGG	4579
4930	CGGGGACA G CCCAGCUA	2253	TAGCTGGG GGCTAGCTACAACGA TGTCCCCG	4580
4935	ACAGCCCA G CUAGGCCA	2254	TGGCTTAG GGCTAGCTACAACGA TGCGCTGT	4581
4940	CCAGCUAG G CCAGUGUG	2255	CACACTGG GGCTAGCTACAACGA CTAGCTGG	4582
4944	CUAGGCCA G UGUGUGGC	2256	GCCACACA GGCTAGCTACAACGA TGCGCTAG	4583
4946	AGGCCAGU G UGUGGCCAG	2257	CTGCCACA GGCTAGCTACAACGA ACTGGCCT	4584
4948	GCCAGUGU G UGGCAGGA	2258	TCCGCCA GGCTAGCTACAACGA ACAGTGGC	4585
4951	AGUGUGUG G CAGGACCA	2259	TGGCCTG GGCTAGCTACAACGA CACACACT	4586
4956	GUUGCAGG A CCAGGCC	2260	GGGCCTGG GGCTAGCTACAACGA CCTGCCAC	4587
4961	AGGACCAG G CCCCCAUG	2261	CATGGGGG GGCTAGCTACAACGA CTGGCCT	4588
4967	AGGCCCCC A UGUGGGAG	2262	CTCCCACA GGCTAGCTACAACGA GGGGGCCT	4589
4969	GCCCCCAU G UGGGAGCU	2263	AGCTCCCA GGCTAGCTACAACGA ATGGGGC	4590
4975	AUGUGGGG A CUGACCCC	2264	GGGGTCAG GGCTAGCTACAACGA TCCCCCAT	4591
4979	GGGAGCUG A CCCCCUUGG	2265	CCAAGGGG GGCTAGCTACAACGA CAGCTCCC	4592
4989	CCCUUGGG A UUCUGGAG	2266	CTCCAGAA GGCTAGCTACAACGA CCCAAGGG	4593
4997	AUUCUGGA G CUGUGCUG	2267	CAGCACAG GGCTAGCTACAACGA TCCAGAAT	4594
5000	CUGGAGCU G UGCUGAUG	2268	CATCAGCA GGCTAGCTACAACGA AGCTCCAG	4595
5002	GGAGCUGU G CUGAUGGG	2269	CCCATCAG GGCTAGCTACAACGA ACAGCTCC	4596
5006	CUGUGCUG A UGGGCAGG	2270	CCTGCCA GGCTAGCTACAACGA CAGCACAG	4597
5010	GCUGAUGG G CAGGGGAG	2271	CTCCCCTG GGCTAGCTACAACGA CCATCAGC	4598
5020	AGGGGAGA G CCAGCUCC	2272	GGAGCTGG GGCTAGCTACAACGA TCTCCCT	4599
5024	GAGAGCCA G CUCCUCCC	2273	GGGAGGAG GGCTAGCTACAACGA TGGCTCTC	4600
5044	GAGGGAGG G UCUUUGAUG	2274	CATCAAGA GGCTAGCTACAACGA CCTCCCTC	4601
5050	GGGUUACCC G CAGAGGCC	2275	CCCAGGC GGCTAGCTACAACGA CAAGACCC	4602
5052	GUCUUGAU G CCUGGGGU	2276	ACCCCAGG GGCTAGCTACAACGA ATCAAGAC	4603
5059	UGCCUGGG G UUACCCGC	2277	GCGGGTAA GGCTAGCTACAACGA CCCAGGCA	4604
5062	CUGGGGUU A CCCGCAGA	2278	TCTGCGGG GGCTAGCTACAACGA AACCCAG	4605
5066	GGUUUACCC G CAGAGGCC	2279	GGCCTCTG GGCTAGCTACAACGA GGGTAACC	4606
5072	CCGCAGAG G CCUGGGUG	2280	CACCCAGG GGCTAGCTACAACGA CTCTGCGG	4607
5078	AGGCCUGG G UGCCGGGA	2281	TCCCGCA GGCTAGCTACAACGA CCAGGCCT	4608
5080	GCCUGGGU G CCGGGACG	2282	CGTCCCGG GGCTAGCTACAACGA ACCCAGGC	4609
5086	GUGCCGGG A CGCUCCCC	2283	GGGGAGCG GGCTAGCTACAACGA CCCGGCAC	4610
5088	GCCGGGAC G CUCCCCGG	2284	CCGGGGAG GGCTAGCTACAACGA GTCCCGGC	4611
5096	GCUCCCCG G UUUGGCU	2285	CAGCCAAA GGCTAGCTACAACGA CGGGGAGC	4612
5101	CCGGUUUUG G CUGAAAGG	2286	CCTTTCAAG GGCTAGCTACAACGA CAAACCGG	4613
5113	AAAGGAAA G CAGAUGUG	2287	CACATCTG GGCTAGCTACAACGA TTTCCTTT	4614
5117	CAAAGCAG A UGUGGUCA	2288	TGACCACA GGCTAGCTACAACGA CTGCTTTC	4615
5119	AAGCAGAU G UGGUCAGC	2289	GCTGACCA GGCTAGCTACAACGA ATCTGCTT	4616
5122	CAGAUGUG G UCAGCUUC	2290	GAAGCTGA GGCTAGCTACAACGA CACATCTG	4617
5126	UGUGGUCA G CUUCUCCA	2291	TGGAGAAG GGCTAGCTACAACGA TGACCACA	4618
5134	GCUCUCCU A CUGAGCCC	2292	GGGCTCAG GGCTAGCTACAACGA GGAGAAC	4619
5139	UCCACUGA G CCCAUUC	2293	CAGATGGG GGCTAGCTACAACGA TCAGTGG	4620
5143	CUGAGCCC A UCUGGGCU	2294	AGACCAGA GGCTAGCTACAACGA GGGCTCAG	4621
5148	CCCAUCUG G UCUUCCCG	2295	CGGGAAAGA GGCTAGCTACAACGA CAGATGGG	4622
5159	UCCCCGGG G CUGGGCCC	2296	GGGCCAG GGCTAGCTACAACGA CCCGGGAA	4623
5164	GGGGCUGG G CCCAUAG	2297	CTATGGGG GGCTAGCTACAACGA CCAGCCCC	4624
5169	UGGGCCCC A UAGAUCUG	2298	CAGATCTA GGCTAGCTACAACGA GGGGCCCA	4625
5173	CCCCAUAG A UCUGGGUC	2299	GACCCAGA GGCTAGCTACAACGA CTATGGGG	4626
5179	AGAUCUGG G UCCCUGUG	2300	CACAGGGA GGCTAGCTACAACGA CCAGATCT	4627
5185	GGGUUCCU G UGUGGCC	2301	GGGCCACA GGCTAGCTACAACGA AGGGACCC	4628
5187	GUCCCCUGU G UGGCCCCC	2302	GGGGGCCA GGCTAGCTACAACGA ACAGGGAC	4629

5190	CCUGUGUG G CCCCCCUG	2303	CAGGGGGG GGCTAGCTACAACGA CACACAGG	4630
5199	CCCCCCCUG G UCUGAUGC	2304	GCATCAGA GGCTAGCTACAACGA CAGGGGGG	4631
5204	CUGGUUCUG A UGCCGAGG	2305	CCTCGGCA GGCTAGCTACAACGA CAGACCAG	4632
5206	GGUCUGAU G CCGAGGAU	2306	ATCCTCGG GGCTAGCTACAACGA ATCAGACC	4633
5213	UGCCGAGG A UACCCCUG	2307	CAGGGGTA GGCTAGCTACAACGA CCTCGGCA	4634
5215	CCGAGGAU A CCCUGCA	2308	TGCAGGGG GGCTAGCTACAACGA ATCCTCGG	4635
5221	AUACCCCCU G CAAACUGC	2309	GCAGTTTG GGCTAGCTACAACGA AGGGGTAT	4636
5225	CCCUGCAA A CUGCCAAU	2310	ATTGGCAG GGCTAGCTACAACGA TTGCAGGG	4637
5228	UGCAAACU G CCAAUCCC	2311	GGGATTGG GGCTAGCTACAACGA AGTTTGCA	4638
5232	AACUGCCA A UCCCCAGAG	2312	CTCTGGGA GGCTAGCTACAACGA TGGCAGTT	4639
5242	CCCAGAGG A CAAGACUG	2313	CAGTCTTG GGCTAGCTACAACGA CCTCTGGG	4640
5247	AGGACAAG A CUGGGAAAG	2314	CTTCCCAG GGCTAGCTACAACGA CTTGTCTT	4641
5255	ACUGGGAA G UCCCCUGCA	2315	TGCAGGGG GGCTAGCTACAACGA TTCCCCAGT	4642
5261	AAGUCCCU G CAGGGAGA	2316	TCTCCCTG GGCTAGCTACAACGA AGGGACTT	4643
5270	CAGGGAGA G CCCAUCCC	2317	GGGATGGG GGCTAGCTACAACGA TCTCCCTG	4644
5274	GAGAGCCC A UCCCCGCA	2318	TGCGGGGA GGCTAGCTACAACGA GGGCTCTC	4645
5280	CCAUCCCC G CACCCUGA	2319	TCAGGGTG GGCTAGCTACAACGA GGGGATGG	4646
5282	AUCCCCGC A CCCUGACC	2320	GGTCAGGG GGCTAGCTACAACGA GCGGGGAT	4647
5288	GCACCCUG A CCCACAAG	2321	CTTGTGGG GGCTAGCTACAACGA CAGGGTGC	4648
5292	CCUGACCC A CAAGAGGG	2322	CCCTCTTG GGCTAGCTACAACGA GGGTCAGG	4649
5301	CAAGAGGG A CUCCUGCU	2323	AGCAGGAG GGCTAGCTACAACGA CCCTCTTG	4650
5307	GGACUCCU G CUGCCCAC	2324	GTGGGCAG GGCTAGCTACAACGA AGGAGTCC	4651
5310	CUCCUGCU G CCCACCAG	2325	CTGGTGGA GGCTAGCTACAACGA AGCAGGAG	4652
5314	UGCUGCCC A CCAGGCAU	2326	ATGCCTGG GGCTAGCTACAACGA GGGCAGCA	4653
5319	CCCACCAG G CAUCCUC	2327	GAGGGATG GGCTAGCTACAACGA CTGGTGGA	4654
5321	CACCAAGC A UCCCUCCA	2328	TGGAGGGG GGCTAGCTACAACGA GCCTGGTG	4655

Input Sequence = HUMRash_mRNA. Cut Site = R/Y

Arm Length = 8. Core Sequence = GGCTAGCTACAACGA

HUMRash_mRNA (Human c-Ha-ras1 proto-oncogene, spliced mRNA sequence; 5336 nt)

Table IV: Human HER2 DNAzyme and Substrate Sequence

Pos	Substrate	Seq ID	DNAzyme	Seq ID
9	AAGGGGAG G UAACCCUG	4656	CAGGGTTA GGCTAGCTACAACGA CTCCCCTT	5644
12	GGGAGGU A CCCUGGCC	4657	GGCCAGGG GGCTAGCTACAACGA TACCTCCC	5645
18	UAACCCUG G CCCCUUJUG	4658	CAAAGGGG GGCTAGCTACAACGA CAGGGTTA	5646
27	CCCCUUUG G UCGGGGCC	4659	GGCCCCGA GGCTAGCTACAACGA CAAAGGGG	5647
33	UGGUUCGGG G CCCCGGGC	4660	GCCCGGGG GGCTAGCTACAACGA CCCGACCA	5648
40	GGCCCCGG G CAGCCGCG	4661	CGCGGCTG GGCTAGCTACAACGA CGGGGGCC	5649
43	CCCGGGCA G CGCGCGC	4662	GGCGCGGG GGCTAGCTACAACGA TGCCCGGG	5650
46	GGGCAGCC G CGCGCCCC	4663	GGGGCGCG GGCTAGCTACAACGA GGCTGCC	5651
48	GCAGCCGC G CGCCCCUU	4664	AAGGGGCG GGCTAGCTACAACGA GCGGCTGC	5652
50	AGCCGCGC G CCCCUUJCC	4665	GGAAGGGG GGCTAGCTACAACGA GCGCGGCT	5653
60	CCCUUCCC A CGGGGCC	4666	GGGCCCCG GGCTAGCTACAACGA GGGAAAGG	5654
65	CCCACGGG G CCCUUUJAC	4667	GTAAAGGG GGCTAGCTACAACGA CCCGTGGG	5655
72	GGCCCUUU A CUGCGCCG	4668	CGGCGCAC GGCTAGCTACAACGA AAAGGGCC	5656
75	CCUUUACU G CGCCGCGC	4669	GCGCGGCC GGCTAGCTACAACGA AGTAAAGG	5657
77	UUUACUGC G CGCGCGC	4670	GCGCGCGG GGCTAGCTACAACGA GCAGTAAA	5658
80	ACUGCGCC G CGCGCCCC	4671	CGGGCGCG GGCTAGCTACAACGA GGCGCAGT	5659
82	UGCGCCGC G CGCCCGGC	4672	GCCGGGGG GGCTAGCTACAACGA GCGGCGCA	5660
84	CGCCGCGC G CCCGGCCC	4673	GGGCCGGG GGCTAGCTACAACGA GCGCGGCG	5661
89	CGCGCCCG G CCCCCACC	4674	GGTGGGGG GGCTAGCTACAACGA CGGGCGCG	5662
95	CGGCCCC A CCCCUJGC	4675	GCGAGGGG GGCTAGCTACAACGA GGGGGCCG	5663
102	CACCCCCU C GAGCACCC	4676	GGGTGCTG GGCTAGCTACAACGA GAGGGGTG	5664
105	CCCUCCGA G CACCCCGC	4677	GCGGGGTG GGCTAGCTACAACGA TGCGAGGG	5665
107	CUCGCAGC A CCCCGCGC	4678	GCGGGGGG GGCTAGCTACAACGA GCTGGCAG	5666
112	AGCACCCCC G CGCCCCGC	4679	GCGGGGGG GGCTAGCTACAACGA GGGGTGCT	5667
114	CACCCCGC G CCCCGCGC	4680	GCGCGGGG GGCTAGCTACAACGA GCGGGGTG	5668
119	CGCGCCCC G CGCCCUCC	4681	GGAGGGCG GGCTAGCTACAACGA GGGGCGCG	5669
121	CGCCCCGC G CCCUCCCA	4682	TGGGAGGG GGCTAGCTACAACGA GCGGGGGC	5670
130	CCCUCCCA G CCCGGUCC	4683	GGACCCGG GGCTAGCTACAACGA TGGGAGGG	5671
135	CCAGCCGG G UCCAGCCG	4684	CGGCTGGA GGCTAGCTACAACGA CCGGCTGG	5672
140	CGGGUCCA G CGGGAGCC	4685	GGCTCCGG GGCTAGCTACAACGA TGGACCCG	5673
146	CAGCCGGA G CCAUGGGG	4686	CCCCATGG GGCTAGCTACAACGA TCCGGCTG	5674
149	CCGGAGCC A UGGGGCCG	4687	CGGCCCCA GGCTAGCTACAACGA GGCTCCGG	5675
154	GCCAUGGG G CGGGAGCC	4688	GGCTCCGG GGCTAGCTACAACGA CCCATGGC	5676
160	GGGCGGGA G CGCGAGUG	4689	CACTGCGG GGCTAGCTACAACGA TCCGGCCC	5677
163	CCGGAGCC G CAGUGAGC	4690	GCTCACTG GGCTAGCTACAACGA GGCTCCGG	5678
166	GAGCCGCA G UGAGCACCC	4691	GGTGCTCA GGCTAGCTACAACGA TGCGGCTC	5679
170	CGCAGUGA G CACCAUGG	4692	CCATGGTG GGCTAGCTACAACGA TCACTGCG	5680
172	CAGUGAGC A CCAUGGGAG	4693	CTCCATGG GGCTAGCTACAACGA GCTCACTG	5681
175	UGAGCACC A UGGAGCUG	4694	CAGCTCCA GGCTAGCTACAACGA GGTGCTCA	5682
180	ACCAUGGA G CUGCGCGC	4695	GCCGCCAG GGCTAGCTACAACGA TCCATGGT	5683
184	UGGAGCUG G CGCCCUUJ	4696	CAAGGGCG GGCTAGCTACAACGA CAGCTCCA	5684
187	AGCUGGGC G CCUUGUGC	4697	GCACAAGG GGCTAGCTACAACGA CGCCAGCT	5685
192	GCGGCCUU G UGCCGCUG	4698	CAGCGGCA GGCTAGCTACAACGA AAGGGCCG	5686
194	GGCCUUGU G CGCGUGGG	4699	CCCAGCGG GGCTAGCTACAACGA ACAAGGCC	5687
197	CUUGUGCC G CUUGGGGC	4700	GCCCCCAG GGCTAGCTACAACGA GGCACAAAG	5688
204	CGCUGGGG G CUCCUCU	4701	AGGAGGGG GGCTAGCTACAACGA CCCCAGCG	5689
214	UCCUCCUC G CCCUCUJUG	4702	CAAGAGGG GGCTAGCTACAACGA GAGGAGGA	5690

222	GCCCCUUU G CCCCCCGG	4703	CCGGGGGG GGCTAGCTACAACGA AAGAGGGC	5691
232	CCCCCGGA G CCGCGAGC	4704	GCTCGCGG GGCTAGCTACAACGA TCCGGGGG	5692
235	CCGGAGCC G CGAGCACCC	4705	GGTGCTCG GGCTAGCTACAACGA GGCTCCGG	5693
239	AGCCGCAGA G CACCAAG	4706	CTTGGGTG GGCTAGCTACAACGA TCGCGGCT	5694
241	CCCGGAGC A CCCAAGUG	4707	CACTTGGG GGCTAGCTACAACGA GCTCGCGG	5695
247	GCACCCAA G UGUGCACCC	4708	GGTGCACA GGCTAGCTACAACGA TTGGGTGC	5696
249	ACCCAAGU G UGCACCCGG	4709	CCGGTGCA GGCTAGCTACAACGA ACTTGGGT	5697
251	CCAAGUGU G CACCGGCA	4710	TGCCGGTG GGCTAGCTACAACGA ACACTTGG	5698
253	AAGUGUGC A CCCGCACA	4711	TGTGCCGG GGCTAGCTACAACGA GCACACTT	5699
257	GUGCACCG G CACAGACA	4712	TGTCTGTG GGCTAGCTACAACGA CGGTGCAC	5700
259	GCACCGGC A CAGACAUG	4713	CATGTCTG GGCTAGCTACAACGA GCCGGTGC	5701
263	CGGCACAG A CAUGAACG	4714	GCTTCATG GGCTAGCTACAACGA CTGTGCCG	5702
265	GCACAGAC A UGAAGCUG	4715	CAGCTTCA GGCTAGCTACAACGA GTCTGTGC	5703
270	GACAUGAA G CUGCGGGCU	4716	AGCCGCAG GGCTAGCTACAACGA TTCATGTC	5704
273	AUGAAGCU G CGGCUCCCC	4717	GGGAGCCG GGCTAGCTACAACGA AGCTTCAT	5705
276	AAGCUGCG G CUCCCCUGC	4718	GCAGGGAG GGCTAGCTACAACGA CGCAGCTT	5706
283	GGCUCCCCU G CCAGUCCC	4719	GGGACTGG GGCTAGCTACAACGA AGGGAGCC	5707
287	CCUGCCCA G UCCCGAGA	4720	TCTCGGGG GGCTAGCTACAACGA TGGCAGGG	5708
295	GUCCCGAG A CCCACCUU	4721	CAGGTGGG GGCTAGCTACAACGA CTCGGGAC	5709
299	CGAGACCC A CCUGGACA	4722	TGTCCAGG GGCTAGCTACAACGA GGGTCTCG	5710
305	CCACCUGG A CAUGCUC	4723	GGAGCATG GGCTAGCTACAACGA CCAGGTGG	5711
307	ACCUGGAC A UGCUCCGC	4724	GCGGAGCA GGCTAGCTACAACGA GTCCAGGT	5712
309	CUGGACAU G CUCCGCCA	4725	TGGCGGAG GGCTAGCTACAACGA ATGTCAG	5713
314	CAUGCUCC G CCACCUCU	4726	AGAGGTGG GGCTAGCTACAACGA GGAGCATG	5714
317	GUCCGCCA A CCUCUACC	4727	GGTAGAGG GGCTAGCTACAACGA GGCGGAGC	5715
323	CCACCUCU A CCAGGGCU	4728	AGCCCTGG GGCTAGCTACAACGA AGAGGTGG	5716
329	CUACCAGG G CUGCCAGG	4729	CCTGGCAG GGCTAGCTACAACGA CCTGGTAG	5717
332	CCAGGGCU G CCAGGUGG	4730	CCACCTGG GGCTAGCTACAACGA AGCCCTGG	5718
337	GCUGCCAG G UGGUGGAG	4731	CTGCACCA GGCTAGCTACAACGA CTGGCAGC	5719
340	GCCAGGUG G UGCAGGGG	4732	TCCCTGCA GGCTAGCTACAACGA CACCTGGC	5720
342	CAGGUGGU G CAGGGAAA	4733	TTTCCCTG GGCTAGCTACAACGA ACCACCTG	5721
350	GCAGGGAA A CCUGGAAC	4734	GTTCAGG GGCTAGCTACAACGA TTCCCTGC	5722
357	AACCUGGA A CUCACCUA	4735	TAGGTGAG GGCTAGCTACAACGA TCCAGGTT	5723
361	UGGAACUC A CCUACCUG	4736	CAGGTAGG GGCTAGCTACAACGA GAGTTCCA	5724
365	ACUCACCU A CCUGCCCA	4737	TGGGCAGG GGCTAGCTACAACGA AGGTGAGT	5725
369	ACCUACCU G CCCACCAA	4738	TTGGTGGG GGCTAGCTACAACGA AGGTAGGT	5726
373	ACCUGCCC A CCAAUGCC	4739	GGCATTTGG GGCTAGCTACAACGA GGGCAGGT	5727
377	GCCCCACCA A UGCCAGGC	4740	GGCTGGCA GGCTAGCTACAACGA TGGTGGC	5728
379	CCACCAAU G CCAGCCUG	4741	CAGGCTGG GGCTAGCTACAACGA ATTGGTGG	5729
383	CAAUGCCA G CCUGUCCU	4742	AGGACAGG GGCTAGCTACAACGA TGGCATTG	5730
387	GCCAGCCU G UCCUCCU	4743	AGGAAGGA GGCTAGCTACAACGA AGGCTGGC	5731
396	UCCUJCCU G CAGGAUAU	4744	ATATCTTG GGCTAGCTACAACGA AGGAAGGA	5732
401	CCUGCAGG A UAUCCAGG	4745	CCTGGATA GGCTAGCTACAACGA CCTGCAGG	5733
403	UGCAGGAU A UCCAGGAG	4746	CTCCCTGGA GGCTAGCTACAACGA ATCCCTGCA	5734
412	UCCAGGAG G UGCAGGGC	4747	GCCCTGCA GGCTAGCTACAACGA CTCCTGG	5735
414	CAGGAGGU G CAGGGCUA	4748	TAGGCCCTG GGCTAGCTACAACGA ACCTCCCTG	5736
419	GGUGCAGG G CUACGUGC	4749	GCACGTAG GGCTAGCTACAACGA CCTGCACC	5737
422	GCAGGGCU A CGUGCUCA	4750	TGAGCACG GGCTAGCTACAACGA AGCCCTGC	5738
424	AGGGCUAC G UGCUCAUC	4751	GATGAGCA GGCTAGCTACAACGA GTAGCCCT	5739
426	GGCUACGU G CUCAUCGC	4752	GCGATGAG GGCTAGCTACAACGA ACGTAGCC	5740
430	ACGUGCUC A UCGCUCAC	4753	GTGAGCGA GGCTAGCTACAACGA GAGCACGT	5741
433	UGCUCAUC G CUCACAAAC	4754	GTTGTGAG GGCTAGCTACAACGA GATGAGCA	5742

437	CAUCGCUC A CAACCAAG	4755	CTTGGTTG GGCTAGCTACAACGA GAGGGATG	5743
440	CGCUCACA A CCAAGUGA	4756	TCACTTGG GGCTAGCTACAACGA TGTGAGCG	5744
445	ACAACCAA G UGAGGCAG	4757	CTGCCTCA GGCTAGCTACAACGA TTGGTTGT	5745
450	CAAGUGAG G CAGGUCCC	4758	GGGACCTG GGCTAGCTACAACGA CTCACTTG	5746
454	UGAGGCAG G UCCCCACUG	4759	CAGTGGGA GGCTAGCTACAACGA CTGCCCTCA	5747
459	CAGGUCCC A CUGCAGAG	4760	CTCTGCAG GGCTAGCTACAACGA GGGACCTG	5748
462	GUCCCACU G CAGAGGCU	4761	AGCCCTCTG GGCTAGCTACAACGA AGTGGGAC	5749
468	CUGCAGAG G CUGCGGAU	4762	ATCCCGAG GGCTAGCTACAACGA CTCTGCAG	5750
471	CAGAGGCU G CGGAUJUGU	4763	ACAATCCG GGCTAGCTACAACGA AGCCCTCG	5751
475	GGCUGCGG A UUGUGCGA	4764	TCGCACAA GGCTAGCTACAACGA CCGCAGCC	5752
478	UGCGGAUU G UGGCAGGC	4765	GCCTCGCA GGCTAGCTACAACGA AATCCGCA	5753
480	CGGAUUGU G CGAGGCAC	4766	GTGCCTCG GGCTAGCTACAACGA ACAATCCG	5754
485	UGUGCGAG G CACCCAGC	4767	GCTGGGTG GGCTAGCTACAACGA CTCGCACA	5755
487	UGCGAGGC A CCCAGCUC	4768	GAGCTGGG GGCTAGCTACAACGA GCCTCGCA	5756
492	GGCACCCA G CUCUUJUGA	4769	TCAAAGAG GGCTAGCTACAACGA TGGGTGCC	5757
503	CUUUGAGG A CAACUAUG	4770	CATAGTTG GGCTAGCTACAACGA CCTCAAAG	5758
506	UGAGGACA A CUAUGCCC	4771	GGGCATAG GGCTAGCTACAACGA TGTCCTCA	5759
509	GGACAACU A UGCCUUGG	4772	CCAGGGCA GGCTAGCTACAACGA AGTTGTCC	5760
511	ACAACAUU G CCCUGGCC	4773	GGCCAGGG GGCTAGCTACAACGA ATAGTTGT	5761
517	AUGCCCU G CCGUGCUA	4774	TAGCACGG GGCTAGCTACAACGA CAGGGCAT	5762
520	CCCUGGCC G UGGCUAGAC	4775	GTCTAGCA GGCTAGCTACAACGA GCCCAGGG	5763
522	CUGGCCGU G CUAGACAA	4776	TTGTCTAG GGCTAGCTACAACGA ACGGCCAG	5764
527	CGUGCUAG A CAAUGGAG	4777	CTCCATTG GGCTAGCTACAACGA CTAGCACG	5765
530	GCUAGACA A UGGAGACC	4778	GGTCTCCA GGCTAGCTACAACGA TGTCTAGC	5766
536	CAAUUGGAG A CCCGCUA	4779	TCAGCGGG GGCTAGCTACAACGA CTCCATTG	5767
540	GGAGACCC G CUGAACAA	4780	TTGTTCAAG GGCTAGCTACAACGA GGGTCTCC	5768
545	CCCGCUGA A CAAUACCA	4781	TGGTATTG GGCTAGCTACAACGA TCAGCGGG	5769
548	GCUGAAC A UACCAACCC	4782	GGGTGGTA GGCTAGCTACAACGA TGTTCAAGC	5770
550	UGAACAAU A CCACCCCU	4783	AGGGGTGG GGCTAGCTACAACGA ATTGTTCA	5771
553	ACAAUACC A CCCUGUC	4784	GACAGGGG GGCTAGCTACAACGA GGTATTGT	5772
559	CCACCCCU G UCACAGGG	4785	CCCTGTGA GGCTAGCTACAACGA AGGGTGG	5773
562	CCCCUGUC A CAGGGGCC	4786	GGCCCCCTG GGCTAGCTACAACGA GACAGGGG	5774
568	UCACAGGG G CCUCCCCCA	4787	TGGGGAGG GGCTAGCTACAACGA CCCITGTGA	5775
581	CCCAGGAG G CCUGCGGG	4788	CCCGCAGG GGCTAGCTACAACGA CTCTGGG	5776
585	GGAGGCCU G CGGGAGCU	4789	AGCTCCCG GGCTAGCTACAACGA AGGCCTCC	5777
591	CUGCGGGG G CUGCAGCU	4790	AGCTGCAG GGCTAGCTACAACGA TCCCGCAG	5778
594	CGGGAGCU G CAGCUCUG	4791	CGAAGCTG GGCTAGCTACAACGA AGCTCCCG	5779
597	GAGCUGCA G CUUCGAAG	4792	CTTCGAAG GGCTAGCTACAACGA TGCACTC	5780
605	GCUUUCGAA G CCUCACAG	4793	CTGTGAGG GGCTAGCTACAACGA TTCAAGAC	5781
610	GAAGCCUC A CAGAGAUC	4794	GATCTCTG GGCTAGCTACAACGA GAGGCTTC	5782
616	UCACAGAG A UCUUUGAA	4795	TTTCAAGA GGCTAGCTACAACGA CTCTGTGA	5783
631	AAGGAGGG G UCUUUGAU	4796	GATCAAGA GGCTAGCTACAACGA CCCCTCTT	5784
637	GGGUCUUG A UCCAGCGG	4797	CCGCTGGA GGCTAGCTACAACGA CAAGACCC	5785
642	UUGAUCCA G CGGAACCC	4798	GGGTTCCG GGCTAGCTACAACGA TGGATCAA	5786
647	CCAGCGGA A CCCCCAGC	4799	GCTGGGGG GGCTAGCTACAACGA TCCGCTGG	5787
654	AACCCCA G CUCUGCUA	4800	TAGCAGAG GGCTAGCTACAACGA TGGGGTT	5788
659	CCAGCUCU G CUACCAGG	4801	CCTGGTAG GGCTAGCTACAACGA AGAGCTGG	5789
662	GCUCUGCU A CCAGGACA	4802	TGTCCCTGG GGCTAGCTACAACGA AGCAGAGC	5790
668	CUACCAAGG A CACGAUUU	4803	AAATCGTG GGCTAGCTACAACGA CCTGGTAG	5791
670	ACCAGGAC A CGAUUJUG	4804	CAAATCG GGCTAGCTACAACGA GTCTGGT	5792
673	AGGACACG A UUUUGUGG	4805	CCACAAAA GGCTAGCTACAACGA CGTGTCCCT	5793
678	ACGAUUUU G UGGAAGGA	4806	TCCTTCCA GGCTAGCTACAACGA AAAATCGT	5794

686	GUGGAAGG A CAUCUUCC	4807	GGAAGATG GGCTAGCTACAACGA CCTTCCAC	5795
688	GGAAGGAC A UCUUCCAC	4808	GTGGAAGA GGCTAGCTACAACGA GTCCCTCC	5796
695	CAUCUUCC A CAAGAACAA	4809	TGTTCTTG GGCTAGCTACAACGA GGAAGATG	5797
701	CCACAAGA A CAACCAGC	4810	GCTGGTTG GGCTAGCTACAACGA TCTTGTGG	5798
704	CAAGAACAA A CCAGCUGG	4811	CCAGCTGG GGCTAGCTACAACGA TGTTCTTG	5799
708	AACAACCA G CUGGCUCU	4812	AGAGCCAG GGCTAGCTACAACGA TGGTTGTT	5800
712	ACCGAGCUG G CUCUCACA	4813	TGTGAGAG GGCTAGCTACAACGA CAGCTGGT	5801
718	UGGCUCUC A CACUGAU	4814	TATCAGTC GGCTAGCTACAACGA GAGAGCCA	5802
720	GCUCUCAC A CUGAUAGA	4815	TCTATCAG GGCTAGCTACAACGA GTGAGAGC	5803
724	UCACACUG A UAGACACC	4816	GGTGTCTA GGCTAGCTACAACGA CAGTGTGA	5804
728	ACUGAUAG A CACCAACC	4817	GGTTGGTC GGCTAGCTACAACGA CTATCAGT	5805
730	UGAUAGAC A CCAACCGC	4818	GCGGTTGG GGCTAGCTACAACGA GTCTATCA	5806
734	AGACACCA A CCCGUCUC	4819	GAGAGCGG GGCTAGCTACAACGA TGGTTGTT	5807
737	CACCAACC G CUCUCGGG	4820	CCCGAGAG GGCTAGCTACAACGA GGTTGGTG	5808
745	GCUCUCGG G CCUGGCCAC	4821	GTGGCAGG GGCTAGCTACAACGA CCGAGAGC	5809
749	UCGGGCCU G CCACCCCU	4822	AGGGGTGG GGCTAGCTACAACGA AGGCCCCA	5810
752	GGCCUGCC A CCCCUGUU	4823	AACAGGGG GGCTAGCTACAACGA GGCAGGCC	5811
758	CCACCCCU G UUCUCCGA	4824	TCGGAGAA GGCTAGCTACAACGA AGGGGTGG	5812
766	GUUCUCCG A UGUUAAG	4825	CTTACACAA GGCTAGCTACAACGA CGGAGAAC	5813
768	UCUCCGAU G UGUAGGG	4826	CCCTTACA GGCTAGCTACAACGA ATCGGAGA	5814
770	UCCGAUGU G UAAGGGCU	4827	AGCCCTTA GGCTAGCTACAACGA ACATCGGA	5815
776	GUGUAAGG G CUCCCACU	4828	AGCGGGAG GGCTAGCTACAACGA CCTTACAC	5816
782	GGGCUCCC G CUGCUGGG	4829	CCCAGCAG GGCTAGCTACAACGA GGGAGGCC	5817
785	CUCCCGCU G CUGGGGAG	4830	CTCCCCAG GGCTAGCTACAACGA AGCGGGAG	5818
797	GGGAGAGA G UUCUGAGG	4831	CCTCAGAA GGCTAGCTACAACGA TCTCTCCC	5819
806	UUCUGAGG A UUGUCAGA	4832	TCTGACAA GGCTAGCTACAACGA CCTCAGAA	5820
809	UGAGGAUU G UCAGAGCC	4833	GGCTCTGA GGCTAGCTACAACGA AATCCTCA	5821
815	UUGUCAGA G CCUGACGC	4834	GGTCAGG GGCTAGCTACAACGA TCTGACAA	5822
820	AGAGCCUG A CGCGCACU	4835	AGTGCACG GGCTAGCTACAACGA CAGGCTCT	5823
822	AGCCUGAC G CGCACUGU	4836	ACAGTGCC GGCTAGCTACAACGA GTCAGGCT	5824
824	CCUGACGC G CACUGUCU	4837	AGACAGTC GGCTAGCTACAACGA GCGTCAGG	5825
826	UGACGCGC A CUGUCUGU	4838	ACAGACAG GGCTAGCTACAACGA GCGCGTCA	5826
829	CGCGCACU G UCUGUGCC	4839	GGCACAGA GGCTAGCTACAACGA AGTGGCG	5827
833	CACUGUCU G UGCCGGUG	4840	CACCGGCA GGCTAGCTACAACGA AGACAGTG	5828
835	CUGUCUGU G CCGGUGGC	4841	GCCACCGG GGCTAGCTACAACGA ACAGACAG	5829
839	CUGUGCCG G UGGCUGUG	4842	CACAGCCA GGCTAGCTACAACGA CGGCACAG	5830
842	UGCCGGUG G CUGUGCCC	4843	GGGCACAG GGCTAGCTACAACGA CACCGGCA	5831
845	CGGUGGCCU G UGCCGGCU	4844	AGCGGGCA GGCTAGCTACAACGA AGCCACCG	5832
847	GUGGCUGU G CCCGUGC	4845	GCAGCGGG GGCTAGCTACAACGA ACAGCCAC	5833
851	CUGUGCCC G CUGCAAGG	4846	CCTTGCAG GGCTAGCTACAACGA GGGCACAG	5834
854	UGCCCGCU G CAAGGGGC	4847	GCCCCCTTG GGCTAGCTACAACGA AGCGGGCA	5835
861	UGCACAGGG G CCACUGCC	4848	GGCAGTGG GGCTAGCTACAACGA CCCTTGCA	5836
864	AAGGGGCC A CUGCCCCAC	4849	GTGGGCAG GGCTAGCTACAACGA GGCCCCCTT	5837
867	GGGCACACU G CCCACUGA	4850	TCAGTGGG GGCTAGCTACAACGA AGTGGCCC	5838
871	CACUGCCC A CUGACUGC	4851	GCAGTCAG GGCTAGCTACAACGA GGGCAGTG	5839
875	GCCCCACUG A CUGCUGCC	4852	GGCAGCAG GGCTAGCTACAACGA CAGTGGGC	5840
878	CACUGACU G CUGCCCAUG	4853	CATGGCAG GGCTAGCTACAACGA AGTCAGTG	5841
881	UGACUGCU G CCAUGAGC	4854	GCTCATGG GGCTAGCTACAACGA AGCAGTC	5842
884	CUGCUGCC A UGAGCAGU	4855	ACTGCTCA GGCTAGCTACAACGA GGCAGCAG	5843
888	UGCCAUCA G CAGUGUGC	4856	GCACACTG GGCTAGCTACAACGA TCATGGCA	5844
891	CAUGAGCA G UGUGCUGC	4857	GCAGCACA GGCTAGCTACAACGA TGCTCATG	5845
893	UGAGCAGU G UGCUGCCG	4858	CGGCAGCA GGCTAGCTACAACGA ACTGCTCA	5846

895	AGCAGUGU G CUGCCGGC	4859	GCCGGCAG GGCTAGCTACAACGA AACTGCT	5847
898	AGUGUGCU G CCGGCUGC	4860	GCAGCCGG GGCTAGCTACAACGA AGCACACT	5848
902	UGCUGCCG G CUGCACGG	4861	CCGTGCAAG GGCTAGCTACAACGA CGGCAGCA	5849
905	UGCCGGCU G CACGGGCC	4862	GGCCCCGTG GGCTAGCTACAACGA AGCCGGCA	5850
907	CCGGCUGC A CGGGCCCC	4863	GGGGCCCC GGCTAGCTACAACGA GCAGCCGG	5851
911	CUGCACGG G CCCAAGC	4864	GCTTGGGG GGCTAGCTACAACGA CCGTGCAG	5852
918	GGCCCCAA G CACUCUGA	4865	TCAGAGTG GGCTAGCTACAACGA TTGGGGCC	5853
920	CCCCAAGC A CUCUGACU	4866	AGTCAGAG GGCTAGCTACAACGA GCTTGGGG	5854
926	GCACUCUG A CUGCCUGG	4867	CCAGGCAG GGCTAGCTACAACGA CAGAGTGC	5855
929	CUCUGACU G CCUGGCCU	4868	AGGCCAGG GGCTAGCTACAACGA AGTCAGAG	5856
934	ACUGCCUG G CCUGCCUC	4869	GAGGCAGG GGCTAGCTACAACGA CAGGCAGT	5857
938	CCUGGCCU G CCUCCACU	4870	AGTGGGAGG GGCTAGCTACAACGA AGGCCAGG	5858
944	CUGCCUCC A CUUCAACC	4871	GGTTGAAG GGCTAGCTACAACGA GGAGGCAG	5859
950	CCACUUCUA A CCACAGUG	4872	CACTGTGG GGCTAGCTACAACGA TGAAGTGG	5860
953	CUUCAACC A CAGUGGCA	4873	TGCCACTG GGCTAGCTACAACGA GGTTGAAG	5861
956	CAACCACA G UGGCAUCU	4874	AGATGCCA GGCTAGCTACAACGA TGTGGTTG	5862
959	CCACAGUG G CAUCUGUG	4875	CACAGATG GGCTAGCTACAACGA CACTGTGG	5863
961	ACAGUGGC A UCUGUGAG	4876	CTCACAGA GGCTAGCTACAACGA GCCACTGT	5864
965	UGGCAUCU G UGAGCUGC	4877	GCAGCTCA GGCTAGCTACAACGA AGATGCCA	5865
969	AUCUGUGA G CUGCACUG	4878	CAGTGCAG GGCTAGCTACAACGA TCACAGAT	5866
972	UGUGAGCU G CACUGCCC	4879	GGGCAGTG GGCTAGCTACAACGA AGCTCACA	5867
974	UGAGCUGC A CUGCCCAT	4880	CTGGGCAG GGCTAGCTACAACGA GCAGCTCA	5868
977	GCUGCACU G CCCAGCCC	4881	GGGCTGGG GGCTAGCTACAACGA AGTGCAGC	5869
982	ACUGCCCA G CCCUGGUC	4882	GACCAGGG GGCTAGCTACAACGA TGGGCAGT	5870
988	CAGCCUG G UCACCUAC	4883	GTAGGTGA GGCTAGCTACAACGA CAGGGCTG	5871
991	CCCUGGUAC A CCUACAAC	4884	GTGTGTTAG GGCTAGCTACAACGA GACCAGGG	5872
995	GGUCACCU A CAACACAG	4885	CTGTGTTG GGCTAGCTACAACGA AGGTGACC	5873
998	CAACUACA A CACAGACA	4886	TGTCTGTG GGCTAGCTACAACGA TGTAGGTG	5874
1000	CCUACAAAC A CAGACACG	4887	CGTGTCTG GGCTAGCTACAACGA GTTGTAGG	5875
1004	CAACACAG A CACGUUUG	4888	CAAACGTC GGCTAGCTACAACGA CTGTGTTG	5876
1006	ACACAGAC A CGUUUGAG	4889	CTCAACG GGCTAGCTACAACGA GTCTGTGT	5877
1008	ACAGACAC G UUUGAGUC	4890	GAATCAAA GGCTAGCTACAACGA GTGTCCTGT	5878
1014	ACGUUUGA G UCCAUGCC	4891	GGCATGGA GGCTAGCTACAACGA TCAAACGT	5879
1018	UUGAGUCC A UGCCAAU	4892	ATTGGGCA GGCTAGCTACAACGA GGACTCAA	5880
1020	GAGUCCAU G CCCAAUCC	4893	GGATTGGG GGCTAGCTACAACGA ATGGACTC	5881
1025	CAUGCCCA A UCCCGAGG	4894	CCTCGGGGA GGCTAGCTACAACGA TGGGCATG	5882
1034	UCCCGAGG G CCGGUAAA	4895	TATACCGG GGCTAGCTACAACGA CCTCGGGGA	5883
1038	GAGGGCCG G UAUACAUU	4896	AATGTATA GGCTAGCTACAACGA CGGCCCTC	5884
1040	GGGCCGGU A UACAUUCG	4897	CGAATGTA GGCTAGCTACAACGA ACCGGCCC	5885
1042	GCCGGUAA A CAUUCGGC	4898	GCCGAATG GGCTAGCTACAACGA ATACCGGC	5886
1044	CGGUUAAC A UUCGGCGC	4899	GGGCCGAA GGCTAGCTACAACGA GTATACCG	5887
1049	UACAUUCG G CGCCAGCU	4900	AGCTGGCG GGCTAGCTACAACGA CGAATGTA	5888
1051	CAUUCGGC G CCAGCUGU	4901	ACAGCTGG GGCTAGCTACAACGA CGCGAATG	5889
1055	CGGCGCCA G CUGUGUGA	4902	TCACACAG GGCTAGCTACAACGA TGGGCCCG	5890
1058	CGCCAGCU G UGUGACUG	4903	CAGTCACA GGCTAGCTACAACGA AGCTGGCG	5891
1060	CCAGCUGU G UGACUGCC	4904	GGCAGTCA GGCTAGCTACAACGA ACAGCTGG	5892
1063	GCUGUGUG A CUGCCUGU	4905	ACAGGCAG GGCTAGCTACAACGA CACACAGC	5893
1066	GUGUGACU G CCUGUCCC	4906	GGGACAGG GGCTAGCTACAACGA AGTCACAC	5894
1070	GACUGCCU G UCCUACAA	4907	TGTAGGGA GGCTAGCTACAACGA AGGCAGTC	5895
1076	CUGUCCCU A CAACUACC	4908	GGTAGTTG GGCTAGCTACAACGA AGGGACAG	5896
1079	UCCCUACA A CUACCUUU	4909	AAAGGTAG GGCTAGCTACAACGA TGTAGGGA	5897
1082	CUACAAACU A CCUUUCUA	4910	TAGAAAGG GGCTAGCTACAACGA AGTTGTAG	5898

1090	ACCUUUCU A CGGACGUG	4911	CACGTCCG GGCTAGCTACAACGA AGAAAGGT	5899
1094	UUUCUACGG A CGUGGGAU	4912	ATCCCACG GGCTAGCTACAACGA CCGTAGAA	5900
1096	CUACGGAC G UGGGAUCC	4913	GGATCCCA GGCTAGCTACAACGA GTCCGTAG	5901
1101	GACGUGGG A UCCUGCAC	4914	GTGCAGGA GGCTAGCTACAACGA CCCACGTC	5902
1106	GGGAUCCU G CACCCUCG	4915	CGAGGGTG GGCTAGCTACAACGA AGGATCCC	5903
1108	GAUCCUGC A CCCUCGUC	4916	GACGAGGG GGCTAGCTACAACGA GCAGGATC	5904
1114	GCACCCUC G UCUGCCCC	4917	GGGGCAGA GGCTAGCTACAACGA GAGGGTGC	5905
1118	CCUCGUCU G CCCCCUGC	4918	GCAGGGGG GGCTAGCTACAACGA AGACGAGG	5906
1125	UGCCCCCU G CACAACCA	4919	TGGTTGTT GGCTAGCTACAACGA AGGGGGCA	5907
1127	CCCCCUGC A CAACCAAG	4920	CTTGGTTG GGCTAGCTACAACGA GCAGGGGG	5908
1130	CCUGCAC A CCAAGAGG	4921	CCTCTTGG GGCTAGCTACAACGA TGTGCAGG	5909
1138	ACCAAGAG G UGACAGCA	4922	TGCTGTCA GGCTAGCTACAACGA CTCTTGGT	5910
1141	AAGAGGUG A CAGCAGAG	4923	CTCTGCTG GGCTAGCTACAACGA CACCTCTT	5911
1144	AGGUGACA G CAGAGGAU	4924	ATCCTCTG GGCTAGCTACAACGA TGTACCT	5912
1151	AGCAGAGG A UGGAACAC	4925	GTGTTCCA GGCTAGCTACAACGA CCTCTGCT	5913
1156	AGGAUGGA A CACAGCGG	4926	CCGCTGTG GGCTAGCTACAACGA TCCATCCT	5914
1158	GAUGGAAC A CAGCGGUG	4927	CACCGCTG GGCTAGCTACAACGA GTTCCATC	5915
1161	GGAACACA G CGGUGUGA	4928	TCACACCG GGCTAGCTACAACGA TGTGTTCC	5916
1164	ACACAGCG G UGUGAGAA	4929	TTCTCACA GGCTAGCTACAACGA CGCTGTGT	5917
1166	ACAGCGGU G UGAGAAGU	4930	ACTTCTCA GGCTAGCTACAACGA ACCGCTGT	5918
1173	UGUGAGAA G UGCAGCAA	4931	TTGCTGCA GGCTAGCTACAACGA TTCTCACA	5919
1175	UGAGAAGU G CAGCAAGC	4932	GCTTGCTG GGCTAGCTACAACGA ACTTCTCA	5920
1178	GAAGUGCA G CAAGCCU	4933	AGGGCTTG GGCTAGCTACAACGA TGCACCTC	5921
1182	UGCAGCAA G CCCUGUGC	4934	GCACAGGG GGCTAGCTACAACGA TTGCTGCA	5922
1187	CAAGCCCU G UGCCCGAG	4935	CTCGGGCA GGCTAGCTACAACGA AGGGCTTG	5923
1189	AGCCCUGU G CCCGAGUG	4936	CACTCGGG GGCTAGCTACAACGA ACAGGGCT	5924
1195	GUGCCCGA G UGUGCUAU	4937	ATAGCACA GGCTAGCTACAACGA TCGGGCAC	5925
1197	GCCCCGAGU G UGCUAUGG	4938	CCATAGCA GGCTAGCTACAACGA ACTCGGGC	5926
1199	CCGAGUGU G CUAUUGUC	4939	GACCATAG GGCTAGCTACAACGA ACACTCGG	5927
1202	AGUGUGCU A UGGUCUGG	4940	CCAGACCA GGCTAGCTACAACGA AGCACACT	5928
1205	GUGCUAUG G UCUGGGCA	4941	TGCCCAGA GGCTAGCTACAACGA CATAGCAC	5929
1211	UGGUCUGG G CAUGGAGC	4942	GCTCCATG GGCTAGCTACAACGA CCAGACCA	5930
1213	GUCUGGGC A UGGAGCAC	4943	GTGCTCCA GGCTAGCTACAACGA GCCCAGAC	5931
1218	GGCAUGGA G CACUUGCG	4944	CGCAAGTG GGCTAGCTACAACGA TCCATGCC	5932
1220	CAUGGAGC A CUUGCGAG	4945	CTCGCAAG GGCTAGCTACAACGA GCTCCATG	5933
1224	GAGCACUU G CGAGAGGU	4946	ACCTCTCG GGCTAGCTACAACGA AAGTGCTC	5934
1231	UGCGAGAG G UGAGGGCA	4947	TGCCCTCA GGCTAGCTACAACGA CTCTCGCA	5935
1237	AGGUGAGG G CAGUUUACC	4948	GGTAACTG GGCTAGCTACAACGA CCTCACCT	5936
1240	UGAGGGCA G UUACCAGU	4949	ACTGGTAA GGCTAGCTACAACGA TGCCCTCA	5937
1243	GGGCAGUU A CCAGUGCC	4950	GGCACTGG GGCTAGCTACAACGA AACTGCC	5938
1247	AGUUACCA G UGCCAAUA	4951	TATTGGCA GGCTAGCTACAACGA TGGTAACT	5939
1249	UUACCAGU G CCAAAUJC	4952	GATATTGG GGCTAGCTACAACGA ACTGGTAA	5940
1253	CAGUGCCA A UAUCCAGG	4953	CCTGGATA GGCTAGCTACAACGA TGGCACTG	5941
1255	GUGCCAAU A UCCAGGAG	4954	CTCCCTGGA GGCTAGCTACAACGA ATTGGCAC	5942
1263	AUCCAGGA G UUUGCUGG	4955	CCAGCAAA GGCTAGCTACAACGA TCCTGGAT	5943
1267	AGGAGUUU G CUUGCUGC	4956	GCAGCCAG GGCTAGCTACAACGA AAACTCCT	5944
1271	GUUUGCUG G CUGCAAGA	4957	TCTTGCAG GGCTAGCTACAACGA CAGCAAAC	5945
1274	UGCUGGCU G CAAGAAGA	4958	TCTTCTTG GGCTAGCTACAACGA AGCCAGCA	5946
1282	GCAAGAAG A UCUUUGGG	4959	CCCAAAGA GGCTAGCTACAACGA CTTCTTGC	5947
1292	CUUUGGG A CCUGGCCAU	4960	ATGCCAGG GGCTAGCTACAACGA TCCCCAAAG	5948
1297	GGAGCCUG G CAUUCUG	4961	CAGAAATG GGCTAGCTACAACGA CAGGCTCC	5949
1299	AGCCUGGC A UUUCUGCC	4962	GGCAGAAA GGCTAGCTACAACGA GCCAGGCT	5950

1305	GCAUUUCU G CCCGGAGAG	4963	CTCTCCGG GGCTAGCTACAAACGA AGAAATGC	5951
1313	GCCGGAGA G CUUUGAUG	4964	CATCAAAG GGCTAGCTACAAACGA TCTCCGGC	5952
1319	GAGCUUUG A UGGGGACC	4965	GGTCCCCA GGCTAGCTACAAACGA CAAAGCTC	5953
1325	UGAUGGGG A CCCAGCCU	4966	AGGCTGGG GGCTAGCTACAAACGA CCCCATCA	5954
1330	GGGACCCA G CCUCCAAC	4967	GTTGGAGG GGCTAGCTACAAACGA TGGGTCCC	5955
1337	AGCCUCCA A CACUGCCC	4968	GGGCAGTG GGCTAGCTACAAACGA TGGAGGCT	5956
1339	CCUCCAAC A CUGCCCCG	4969	CGGGGCAG GGCTAGCTACAAACGA GTTGGAGG	5957
1342	CCAACACU G CCCCCGUC	4970	GAGCGGGG GGCTAGCTACAAACGA AGTGGTGG	5958
1347	ACUGCCCC G CUCCAGCC	4971	GGCTGGAG GGCTAGCTACAAACGA GGGGCAGT	5959
1353	CCGCUCCA G CCAGAGCA	4972	TGCTCTGG GGCTAGCTACAAACGA TGGAGCGG	5960
1359	CAGCCAGA G CAGCUCCA	4973	TGGAGCTG GGCTAGCTACAAACGA TCTGGCTG	5961
1362	CCAGAGCA G CUCCAAGU	4974	ACTTGGAG GGCTAGCTACAAACGA TGCTCTGG	5962
1369	AGCUCCAA G UGUUUGAG	4975	CTCAAACA GGCTAGCTACAAACGA TTGGAGCT	5963
1371	CUCCAAGU G UUUGAGAC	4976	GTCTCAAA GGCTAGCTACAAACGA ACTTGGAG	5964
1378	UGUUUUGAG A CUCUGGAA	4977	TTCCAGAG GGCTAGCTACAAACGA CTAAACAA	5965
1390	UGGAAGAG A UCACAGGU	4978	ACCTGTGA GGCTAGCTACAAACGA CTCTTCCA	5966
1393	AAGAGAU C CAGGUUAC	4979	GTAACCTG GGCTAGCTACAAACGA GATCTCTT	5967
1397	GAUCACAG G UUACCUAU	4980	ATAGGTAA GGCTAGCTACAAACGA CTGTGATC	5968
1400	CACAGGUU A CCUAUACA	4981	TGTATAGG GGCTAGCTACAAACGA AACCTGTG	5969
1404	GGUUACCU A UACAUCUC	4982	GAGATGTA GGCTAGCTACAAACGA AGGTAACC	5970
1406	UUACCUAU A CAUCUCAG	4983	CTGAGATG GGCTAGCTACAAACGA ATAGGTAA	5971
1408	ACCUAUAC A UCUCAGCA	4984	TGCTGAGA GGCTAGCTACAAACGA GTATAGGT	5972
1414	ACAUCUCA G CAUGGGCG	4985	CGGCCATG GGCTAGCTACAAACGA TGAGATGT	5973
1416	AUCUCAGC A UGGCCCGA	4986	TCCGGCCA GGCTAGCTACAAACGA GCTGAGAT	5974
1419	UCAGCAUG G CCGGACAG	4987	CTGTCCGG GGCTAGCTACAAACGA CATGCTGA	5975
1424	AUGGCCGG A CAGCCUGC	4988	GCAGGCTG GGCTAGCTACAAACGA CCGGCCAT	5976
1427	GCCGGACA G CCUGCCUG	4989	CAGGCAGG GGCTAGCTACAAACGA TGTCCGGC	5977
1431	GACAGCCU G CCUGACCU	4990	AGGTCAAG GGCTAGCTACAAACGA AGGCTGTC	5978
1436	CCUGCCUG A CCUCAGCG	4991	CGCTGAGG GGCTAGCTACAAACGA CAGGCAGG	5979
1442	UGACCUCA G CGUCUUCC	4992	GGAAGACG GGCTAGCTACAAACGA TGAGGTCA	5980
1444	ACCUCAAG G UCUUCCAG	4993	CTGGAAGA GGCTAGCTACAAACGA GCTGAGGT	5981
1454	CUUCCAGA A CCUGCAAG	4994	CTTGCAGG GGCTAGCTACAAACGA TCTGGAAG	5982
1458	CAGAACCU G CAAGUAUU	4995	ATTACTTG GGCTAGCTACAAACGA AGGTTCTG	5983
1462	ACCUUGCA G UAAUCCCG	4996	CCGGATTA GGCTAGCTACAAACGA TTGCAAGGT	5984
1465	UGCAAGUA A UCCGGGGA	4997	TCCCCCGA GGCTAGCTACAAACGA TACTTGCA	5985
1473	AUCCGGGG A CGAAUUCU	4998	AGAATTG GGCTAGCTACAAACGA CCCCCGAT	5986
1477	GGGGACGA A UUCUGCAC	4999	GTGCAGAA GGCTAGCTACAAACGA TCGTCCCC	5987
1482	CGAAUUCU G CACAAUJGG	5000	CCATTGTG GGCTAGCTACAAACGA AGAATTG	5988
1484	AAUUCUGC A CAAUGGCG	5001	CGCCATTG GGCTAGCTACAAACGA GCAGAATT	5989
1487	UCUGCACA A UGGCGCCU	5002	AGGCGCCA GGCTAGCTACAAACGA TGTGCAGA	5990
1490	GCACAAUG G CGCCUACU	5003	AGTAGGCG GGCTAGCTACAAACGA CATTGTGC	5991
1492	ACAAUUGC G CCUACUJGG	5004	CGAGTAGG GGCTAGCTACAAACGA GCCATTGT	5992
1496	UGGCGCCU A CUCGCGUA	5005	TCAGCGAG GGCTAGCTACAAACGA AGGGGCCA	5993
1500	GCCUACUC G CUGACCU	5006	AGGGTCAG GGCTAGCTACAAACGA GAGTAGGC	5994
1504	ACUCGCGUG A CCCUGCAA	5007	TTGCAGGG GGCTAGCTACAAACGA CAGGGAGT	5995
1509	CUGACCCU G CAAGGGCU	5008	AGGCCCTG GGCTAGCTACAAACGA AGGTCAG	5996
1515	CUGCAAGG G CUGGGCAU	5009	ATGCCCAAG GGCTAGCTACAAACGA CCTTGCAG	5997
1520	AGGGCUGG G CAUCAGCU	5010	AGCTGATG GGCTAGCTACAAACGA CCAGCCCT	5998
1522	GGCUGGGC A UCAGCUGG	5011	CCAGCTGA GGCTAGCTACAAACGA GCCCAGCC	5999
1526	GGGCAUCA G CUGGGCUGG	5012	CCAGCCAG GGCTAGCTACAAACGA TGATGCC	6000
1530	AUCAGCUG G CUGGGGCU	5013	AGCCCCAG GGCTAGCTACAAACGA CAGCTGAT	6001
1536	UGGCUGGG G CUGGCCUC	5014	GAGCGCAG GGCTAGCTACAAACGA CCCAGCCA	6002

1539	CUGGGGCU G CGCUCACU	5015	AGTGAGCG GGCTAGCTACAACGA AGCCCCAG	6003
1541	GGGGCUGC G CUCACUGA	5016	TCA GTGAG GGCTAGCTACAACGA GCAGCCCC	6004
1545	CUGCGCUC A CUGAGGGA	5017	TCCCTCAG GGCTAGCTACAACGA GAGCGCAG	6005
1554	CUGAGGG A CUGGGCAG	5018	CTGCCAG GGCTAGCTACAACGA TCCCTCAG	6006
1559	GGAACUGG G CAGUGGAC	5019	GTCCACTG GGCTAGCTACAACGA CCAGTTCC	6007
1562	ACUGGGCA G UGGACUGG	5020	CCAGTCCA GGCTAGCTACAACGA TGCCCAGT	6008
1566	GGCAGUGG A CUGGCCU	5021	AGGGCCAG GGCTAGCTACAACGA CCACTGCC	6009
1570	GUGGACUG G CCCUCAUC	5022	GATGAGGG GGCTAGCTACAACGA CAGTCCAC	6010
1576	UGGCCCCUC A UCCACCAU	5023	ATGGTGG A GGCTAGCTACAACGA GAGGGCCA	6011
1580	CCUCAUCC A CCAUAACA	5024	TGTTATGG GGCTAGCTACAACGA GGATGAGG	6012
1583	CAUCCACC A UAACACCC	5025	GGGTGTTA GGCTAGCTACAACGA GGTGGATG	6013
1586	CCACCAUA A CACCCACC	5026	GGTGGGTG GGCTAGCTACAACGA TATGGTGG	6014
1588	ACCAUAAC A CCCACCUC	5027	GAGGTGGG GGCTAGCTACAACGA TTATGGT	6015
1592	UAACACCC A CCUCUGCU	5028	AGCAGAGG GGCTAGCTACAACGA GGGTGGTA	6016
1598	CCACCUUC G CUUCGUGC	5029	GCACGAAG GGCTAGCTACAACGA AGAGGTGG	6017
1603	UCUGCUUC G UGCACACG	5030	CGTGTGCA GGCTAGCTACAACGA GAAGCAGA	6018
1605	UGCUUCGU G CACACGGU	5031	ACCGTGTG GGCTAGCTACAACGA ACGAAGCA	6019
1607	CUUCGUGC A CACGGUGC	5032	GCACCGTG GGCTAGCTACAACGA GCACGAAG	6020
1609	UCGUGCAC A CGGUGCCC	5033	GGGCACCG GGCTAGCTACAACGA GTGCACGA	6021
1612	UGCACACG G UGCCUUGG	5034	CCAGGGCA GGCTAGCTACAACGA CGTGTGCA	6022
1614	CACACGGU G CCCUGGGA	5035	TCCCAGGG GGCTAGCTACAACGA ACCGTGTG	6023
1622	GCCCUGGG A CCAGCUCU	5036	AGAGCTGG GGCTAGCTACAACGA CCCAGGGC	6024
1626	UGGGACCA G CUCUUUCG	5037	CGAAAGAG GGCTAGCTACAACGA TGGTCCC	6025
1637	CUUUCGGA A CCCGCACC	5038	GGTGCAGGG GGCTAGCTACAACGA TCCGAAAG	6026
1641	CGGAACCC G CACCAAGC	5039	GCTTGGTG GGCTAGCTACAACGA GGGTCCG	6027
1643	GAACCCGC A CCAAGCUC	5040	GAGCTTGG GGCTAGCTACAACGA GCGGGTTC	6028
1648	CGCACCAA G CUCUGCUC	5041	GAGCAGAG GGCTAGCTACAACGA TTGGTGC	6029
1653	CAAGCUCU G CUCCACAC	5042	GTGTGGAG GGCTAGCTACAACGA AGAGCTTG	6030
1658	UCUGCUCC A CACUGCCA	5043	TGGCAGTG GGCTAGCTACAACGA GGAGCAGA	6031
1660	UGCUCAC A CUGCCAAC	5044	GTGGCAG GGCTAGCTACAACGA GTGGAGCA	6032
1663	UCCACACU G CCAACCCG	5045	CCGGTTGG GGCTAGCTACAACGA AGTGTGGA	6033
1667	CACUGCCA A CCCGCCAG	5046	CTGGCCGG GGCTAGCTACAACGA TGGCAGTG	6034
1671	GCCAACCG G CCAGAGGA	5047	TCCTCTGG GGCTAGCTACAACGA CGGTTGGC	6035
1679	GCCAGAGG A CGAGUGUG	5048	CACACTCG GGCTAGCTACAACGA CCTCTGGC	6036
1683	GAGGACGA G UGUGUGGG	5049	CCACACAA GGCTAGCTACAACGA TCGTCTC	6037
1685	GGACGAGU G UGUGGGCG	5050	CGCCACAA GGCTAGCTACAACGA ACTCGTCC	6038
1687	ACGAGAGU G UGGGGCAG	5051	CTCGCCCA GGCTAGCTACAACGA ACACTCGT	6039
1691	GUGUGUGG G CGAGGGCC	5052	GGCCCTCG GGCTAGCTACAACGA CCACACAC	6040
1697	GGGCGAGG G CCUGGCCU	5053	AGGCCAGG GGCTAGCTACAACGA CCTCGCCC	6041
1702	AGGGCCUG G CCUGCCAC	5054	GTGGCAGG GGCTAGCTACAACGA CAGGGCCCT	6042
1706	CCUGGCCU G CCACCGAC	5055	GCTGGTGG GGCTAGCTACAACGA AGGCCAGG	6043
1709	GGCCUGCC A CCAGCUGU	5056	ACAGCTGG GGCTAGCTACAACGA GGCAGGCC	6044
1713	UGCCACCA G CUGUGC	5057	GCGCACAG GGCTAGCTACAACGA TGGTGGCA	6045
1716	CACCAAGU G UGGCCCG	5058	CGGGCGCA GGCTAGCTACAACGA AGCTGGTG	6046
1718	CCAGCUGU G CGCCCGAG	5059	CTCGGGCG GGCTAGCTACAACGA ACAGCTGG	6047
1720	AGCUGUGC G CCCGAGGG	5060	CCCTCGGG GGCTAGCTACAACGA GCACAGCT	6048
1728	GCCCGAGG G CACUGCUG	5061	CAGCAGTG GGCTAGCTACAACGA CCTCGGGC	6049
1730	CCGAGGGC A CUGCUGGG	5062	CCCAGCAG GGCTAGCTACAACGA GCCCTCGG	6050
1733	AGGGCACU G CUGGGGUC	5063	GACCCCAAG GGCTAGCTACAACGA AGTGCCT	6051
1739	CUGCUGGG G UCCAGGGC	5064	GCCCTGGA GGCTAGCTACAACGA CCCAGCAG	6052
1746	GGUCCAGG G CCCACCCA	5065	TGGGTGGG GGCTAGCTACAACGA CCTGGACC	6053
1750	CAGGGCCC A CCCAGUGU	5066	ACACTGGG GGCTAGCTACAACGA GGGCCCTG	6054

1755	CCCACCCA G UGUGUCAA	5067	TTGACACA GGCTAGCTACAACGA TGGGTGGG	6055
1757	CACCCAGU G UGUCAACU	5068	AGTTGACA GGCTAGCTACAACGA ACTGGGTG	6056
1759	CCCAGUGU G UCAACUGC	5069	GCAGTTGA GGCTAGCTACAACGA ACACTGGG	6057
1763	GUGUGUCA A CUGCAGCC	5070	GGCTGCAG GGCTAGCTACAACGA TGACACAC	6058
1766	UGUCAACU G CAGCCAGU	5071	ACTGGCTG GGCTAGCTACAACGA AGTTGACA	6059
1769	CAACUGCA G CCAGUUCC	5072	GGAACCTGG GGCTAGCTACAACGA TGCAGTTG	6060
1773	UGCAGCCA G UUCCUUCG	5073	CGAAGGAA GGCTAGCTACAACGA TGGCTGCA	6061
1784	CCUUCGGG G CCAGGAGU	5074	ACTCCTGG GGCTAGCTACAACGA CCCGAAGG	6062
1791	GGCCAGGA G UGCGUGGA	5075	TCCACGCA GGCTAGCTACAACGA TCCTGGCC	6063
1793	CCAGGAGU G CGUGGAGG	5076	CCTCCACG GGCTAGCTACAACGA ACTCCTGG	6064
1795	AGGAGUGC G UGGAGGAA	5077	TTCCCTCCA GGCTAGCTACAACGA GCACCTCT	6065
1803	GUGGAGGA A UGCCGAGU	5078	ACTCGGCA GGCTAGCTACAACGA TCCTCCAC	6066
1805	GGAGGAAU G CCGAGUAC	5079	GTACTCGG GGCTAGCTACAACGA ATTCCCTCC	6067
1810	AAUGCCGA G UACUGCAG	5080	CTGCGAGT GGCTAGCTACAACGA TCGGCATT	6068
1812	UGCCGAGU A CUGCAGGG	5081	CCCTGCAG GGCTAGCTACAACGA ACTCGGCA	6069
1815	CGAGUACU G CAGGGGCU	5082	AGCCCCTG GGCTAGCTACAACGA AGTACTCG	6070
1821	CUGCAGGG G CUCCCCAG	5083	CTGGGGAG GGCTAGCTACAACGA CCCTGCAG	6071
1833	CCCAGGGA G UAUGUGAA	5084	TTCACATA GGCTAGCTACAACGA TCCCTGGG	6072
1835	CAGGGAGU A UGUGAAUG	5085	CATTCACA GGCTAGCTACAACGA ACTCCTG	6073
1837	GGGAGUAU G UGAAUGCC	5086	GGCATTC A GGCTAGCTACAACGA ATACTCCC	6074
1841	GUAUGUGA A UGCCAGGC	5087	GCCTGGCA GGCTAGCTACAACGA TCACATAC	6075
1843	AUGUGAAU G CCAGGCAC	5088	GTGCCCTGG GGCTAGCTACAACGA ATTACAT	6076
1848	AAUGCCAG G CACUGUUU	5089	AAACAGTG GGCTAGCTACAACGA CTGGCATT	6077
1850	UGCCAGGC A CUGUUUGC	5090	GCAACACAG GGCTAGCTACAACGA GCCTGGCA	6078
1853	CAGGCACU G UUUGCCGU	5091	ACGGCAAA GGCTAGCTACAACGA AGTGCCTG	6079
1857	CACUGUUU G CCGUGCCA	5092	TGGCACGG GGCTAGCTACAACGA AAACAGTG	6080
1860	UGUUUUGCC G UGCCACCC	5093	GGGTGGCA GGCTAGCTACAACGA GGCAAACA	6081
1862	UUUGCCGU G CCACCCUG	5094	CAGGGTGG GGCTAGCTACAACGA ACGGCAAA	6082
1865	GCCGUGCC A CCCUGAGU	5095	ACTCAGGG GGCTAGCTACAACGA GGCACGGC	6083
1872	CACCCUGA G UGUCAGCC	5096	GGCTGACA GGCTAGCTACAACGA TCAGGGTG	6084
1874	CCCUGAGU G UCAGCCCC	5097	GGGGCTGA GGCTAGCTACAACGA ACTCAGGG	6085
1878	GAGUGUCA G CCCCAGAA	5098	TTCTGGGG GGCTAGCTACAACGA TGACACTC	6086
1886	GCCCCAGA A UGGCUCAG	5099	CTGAGCCA GGCTAGCTACAACGA TCTGGGGC	6087
1889	CCAGAAUG G CUCAGUGA	5100	TCACTGAG GGCTAGCTACAACGA CATTCTGG	6088
1894	AUGGCUCA G UGACCUGU	5101	ACAGGTCA GGCTAGCTACAACGA TGAGCCAT	6089
1897	GCUCAGUG A CCUGUUUU	5102	AAAACAGG GGCTAGCTACAACGA CACTGAGC	6090
1901	AGUGACCU G UUUUGGAC	5103	GTCCAAAA GGCTAGCTACAACGA AGGTCACT	6091
1908	UGUUUUGG A CCGGAGGC	5104	GCCTCCGG GGCTAGCTACAACGA CCARAAACA	6092
1915	GACGGGAG G CUGACCAG	5105	CTGGTCAG GGCTAGCTACAACGA CTCCGGTC	6093
1919	GGAGGCUG A CCAGUGUG	5106	CACACTGG GGCTAGCTACAACGA CAGCCCTCC	6094
1923	GCUGACCA G UGUGUGGC	5107	GCCACACA GGCTAGCTACAACGA TGGTCAGC	6095
1925	UGACCAGU G UGUGGCCU	5108	AGGCCACA GGCTAGCTACAACGA ACTGGTCA	6096
1927	ACCAGUGU G UGGCCUGU	5109	ACAGGCCA GGCTAGCTACAACGA ACACTGGT	6097
1930	AGUGUGUG G CCUGUGCC	5110	GGCACAGG GGCTAGCTACAACGA CACACACT	6098
1934	UGUGGCCU G UGCCCCACU	5111	AGTGGGCA GGCTAGCTACAACGA AGGCCACA	6099
1936	UGGCCUGU G CCCACAU	5112	ATAGTGGG GGCTAGCTACAACGA ACAGGCCA	6100
1940	CUGUGCCC A CUUAAGG	5113	CCTTATAG GGCTAGCTACAACGA GGGCACAG	6101
1943	UGCCCCACU A UAAGGACC	5114	GGTCCTTA GGCTAGCTACAACGA AGTGGGCA	6102
1949	CUUAAGG A CCCUCCU	5115	AGGGAGGG GGCTAGCTACAACGA CCTTATAG	6103
1961	UCCCUUCU G CGUGGCC	5116	GGGCCACG GGCTAGCTACAACGA AGAAGGGA	6104
1963	CCUUCUGC G UGGCCCGC	5117	GGGGGCCA GGCTAGCTACAACGA GCAGAAGG	6105
1966	UCUGCGUG G CCCGCUGC	5118	GCAGCGGG GGCTAGCTACAACGA CACGCAGA	6106

1970	CGUGGCCG C UCGCCCCA	5119	TGGGGCAG GGCTAGCTACAACGA GGGCCACG	6107
1973	GGCCCGCU G CCCCAGCG	5120	CGCTGGGG GGCTAGCTACAACGA AGCGGGCC	6108
1979	CUGCCCCA G CGGUGUGA	5121	TCACACCG GGCTAGCTACAACGA TGGGGCAG	6109
1982	CCCCAGCG G UGUGAAC	5122	GTITCACA GGCTAGCTACAACGA CGCTGGGG	6110
1984	CCAGCGGU G UGAAACCU	5123	AGGTTTCA GGCTAGCTACAACGA ACCGCTGG	6111
1989	GGUGUGAA A CCUGACCU	5124	AGGTCAGG GGCTAGCTACAACGA TTCACACC	6112
1994	GAAACCUG A CCUCUCCU	5125	AGGAGAGG GGCTAGCTACAACGA CAGGTTTC	6113
2003	CCUCUCCU A CAUGCCC	5126	TGGGCATG GGCTAGCTACAACGA AGGAGAGG	6114
2005	UCUCCUAC A UGCCCAUC	5127	GATGGGCA GGCTAGCTACAACGA GTAGGAGA	6115
2007	UCCUACAU G CCCAUCUG	5128	CAGATGGG GGCTAGCTACAACGA ATGTAGGA	6116
2011	ACAUGCCC A UCUGGAAG	5129	CTTCCAGA GGCTAGCTACAACGA GGGCATGT	6117
2019	AUCUGGAA G UUUCAGA	5130	TCTGGAAA GGCTAGCTACAACGA TTCCAGAT	6118
2027	GUUCCAG A UGAGGAGG	5131	CCTCCTCA GGCTAGCTACAACGA CTGGAAAC	6119
2036	UGAGGAGG G CGCAUGCC	5132	GGCATGCG GGCTAGCTACAACGA CCTCCTCA	6120
2038	AGGAGGGC G CAUGCCAG	5133	CTGGCATG GGCTAGCTACAACGA GCCCTCCT	6121
2040	GAGGGCGC A UGCCAGCC	5134	GGCTGGCA GGCTAGCTACAACGA GCGCCCTC	6122
2042	GGGCGCAU G CCAGCCUU	5135	AAGGCTGG GGCTAGCTACAACGA ATGCCCCC	6123
2046	GCAUGCCA G CCUUGCCC	5136	GGGCAAGG GGCTAGCTACAACGA TGGCATGC	6124
2051	CCAGCCUU G CCCCAUCA	5137	TGATGGGG GGCTAGCTACAACGA AAGGCTGG	6125
2056	CUUGCCCC A UCAACUGC	5138	GCAGTTGA GGCTAGCTACAACGA GGGGCAAG	6126
2060	CCCCAUCA A CUGCACCC	5139	GGGTGCGAG GGCTAGCTACAACGA TGATGGGG	6127
2063	CAUCAACU G CACCCACU	5140	AGTGGGTG GGCTAGCTACAACGA AGTTGATG	6128
2065	UCAACUGC A CCCACUCC	5141	GGAGTGGG GGCTAGCTACAACGA GCAGTTGA	6129
2069	CUGCACCC A CUCCUGUG	5142	CACAGGAG GGCTAGCTACAACGA GGGTGCAG	6130
2075	CCACUCCU G UGGGGACC	5143	GGTCCACA GGCTAGCTACAACGA AGGAGTGG	6131
2077	ACUCCUGU G UGGACCUG	5144	CAGGTCCA GGCTAGCTACAACGA ACAGGAGT	6132
2081	CUGUGUGG A CCUGGAUG	5145	CATCCAGG GGCTAGCTACAACGA CCACACAG	6133
2087	GGACCUGG A UGACAAGG	5146	CCTTGTCA GGCTAGCTACAACGA CCAGGTCC	6134
2090	CCUGGAUG A CAAGGGCU	5147	AGCCCTTG GGCTAGCTACAACGA CATCCAGG	6135
2096	UGACAAGG G CUGCCCCG	5148	CGGGGCAG GGCTAGCTACAACGA CCTTGTCA	6136
2099	CAAGGGCU G CCCCGCCG	5149	CGGGGGGG GGCTAGCTACAACGA AGCCCTTG	6137
2104	GCUGCCCC G CCGAGCAG	5150	CTGCTCGG GGCTAGCTACAACGA GGGGCAGC	6138
2109	CCCGCCGA G CAGAGAGC	5151	GCTCTCTG GGCTAGCTACAACGA TCGGGGGG	6139
2116	AGCAGAGA G CCAGCCU	5152	AGGGCTGG GGCTAGCTACAACGA TCTCTGCT	6140
2120	GAGAGCCA G CCCUCUGA	5153	TCAGAGGG GGCTAGCTACAACGA TGGCTCTC	6141
2128	GCCCCUCUG A CGUCCAUC	5154	GATGGACG GGCTAGCTACAACGA CAGAGGGC	6142
2130	CCUCUGAC G UCCAUCAU	5155	ATGATGGA GGCTAGCTACAACGA GTCAGAGG	6143
2134	UGACGUCC A UCAUCUCU	5156	AGAGATGA GGCTAGCTACAACGA GGACGTCA	6144
2137	CGUCCAUC A UCUCUGCG	5157	CGCAGAGA GGCTAGCTACAACGA GATGGACG	6145
2143	UCAUCUCU G CGGUGGUU	5158	AACCACCG GGCTAGCTACAACGA AGAGATGA	6146
2146	UCUCUGCG G UGGUUGGC	5159	GCCAACCA GGCTAGCTACAACGA CGCAGAGA	6147
2149	CUGCGGUG G UGGCAUU	5160	AATGCCAA GGCTAGCTACAACGA CACCGCAG	6148
2153	GGGGGUUG G CAUUCUGC	5161	GCAGAATG GGCTAGCTACAACGA CAACCCACC	6149
2155	UGGUUGGC A UUCUGCUG	5162	CAGCAGAA GGCTAGCTACAACGA GCCAACCA	6150
2160	GGCAUUCU G CUGGUCGU	5163	ACGACCAAG GGCTAGCTACAACGA AGAATGCC	6151
2164	UUCUGCUG G UCGUGGUUC	5164	GACCACGA GGCTAGCTACAACGA CAGCAGAA	6152
2167	UGCUUGGUC G UGGUCUUG	5165	CAAGACCA GGCTAGCTACAACGA GACCAGCA	6153
2170	UGGUUCGUG G UCUUUGGG	5166	CCCCAAGA GGCTAGCTACAACGA CACGACCA	6154
2179	UCUUUGGG G UGGUCUUU	5167	AAAGACCA GGCTAGCTACAACGA CCCCCAAGA	6155
2182	UGGGGGUG G UCUUUGGG	5168	CCCAAAGA GGCTAGCTACAACGA CACCCCCA	6156
2191	UCUUJUGGG A UCCUCAUC	5169	GATGAGGA GGCTAGCTACAACGA CCCAAAGA	6157
2197	GGAUCCUC A UCAAGCGA	5170	TCGCTTGA GGCTAGCTACAACGA GAGGATCC	6158

2202	CUCAUCAA G CGACGGCA	5171	TGCCGTCG GGCTAGCTACAACGA TTGATGAG	6159
2205	AUCAAGCG A CGGCAGCA	5172	TGCTGCCG GGCTAGCTACAACGA CGCTTGAT	6160
2208	AAGCGACG G CAGCGAGA	5173	TTCTGCTG GGCTAGCTACAACGA CGTCGCTT	6161
2211	CGACGGCA G CAGAAAGAU	5174	ATCTTCTG GGCTAGCTACAACGA TGCCGTCG	6162
2218	AGCAGAAG A UCCGGAAG	5175	CTTCCGGA GGCTAGCTACAACGA CTTCTGCT	6163
2226	AUCCGGAA G UACACGAU	5176	ATCGTGT A GGCTAGCTACAACGA TTCCGGAT	6164
2228	CCGGAAGU A CACGAUGC	5177	GCATCGTG GGCTAGCTACAACGA ACTTCCGG	6165
2230	GGAAGUAC A CGAUGCGG	5178	CCGCATCG GGCTAGCTACAACGA GTACTTCC	6166
2233	AGUACACG A UGGCGGAGA	5179	TCTCCGCA GGCTAGCTACAACGA CGTGTACT	6167
2235	UACACGAU G CGGAGACU	5180	AGTCTCCG GGCTAGCTACAACGA ATCGTGT	6168
2241	AUGCGGAG A CUGCGUGCA	5181	TGCAGCAG GGCTAGCTACAACGA CTCCGCAT	6169
2244	CGGAGACU G CUGCGAGGA	5182	TCCTGCG AG GGCTAGCTACAACGA AGTCTCCG	6170
2247	AGACUGCU G CAGGAAAC	5183	GTTCCTG GGCTAGCTACAACGA AGCAGTCT	6171
2254	UGCAGGAA A CGGAGCUG	5184	CAGCTCCG GGCTAGCTACAACGA TTCCGTCA	6172
2259	GAAACGGA G CUGGUGGA	5185	TCCACCAG GGCTAGCTACAACGA TCCGTTTC	6173
2263	CGGAGCUG G UGGAGCGG	5186	CGGCTCCA GGCTAGCTACAACGA CAGCTCCG	6174
2268	CUGGUGGA G CCGCUGAC	5187	GTCAGCGG GGCTAGCTACAACGA TCCACCAG	6175
2271	GUGGAGCC G CUGACACC	5188	GGITGTCAG GGCTAGCTACAACGA GGCTCCAC	6176
2275	AGCCGCU A CACCUAGC	5189	GCTAGGTG GGCTAGCTACAACGA CAGCGGCT	6177
2277	CCGCUGAC A CCUAGCGG	5190	CCGCTAGG GGCTAGCTACAACGA GTCAGCGG	6178
2282	GACACCUA G CGGAGCGA	5191	TCGCTCCG GGCTAGCTACAACGA TAGGTGTC	6179
2287	CUAGCGGA G CGAUGCCC	5192	GGGCATCG GGCTAGCTACAACGA TCCGCTAG	6180
2290	GCGGAGCG A UGCCAAC	5193	GTGGGCA GGCTAGCTACAACGA CGCTCCGC	6181
2292	GGAGCGAU G CCCAACCA	5194	TGGTTGGG GGCTAGCTACAACGA ATCGCTCC	6182
2297	GAUGCCCA A CCAGGCGC	5195	GCGCCTGG GGCTAGCTACAACGA TGGCCTAC	6183
2302	CCAACCAG G CGCAGAUG	5196	CATCTGCG GGCTAGCTACAACGA CTGGTTGG	6184
2304	AACCAGGC G CAGAUGCG	5197	CGCATCTG GGCTAGCTACAACGA GCCTGGTT	6185
2308	AGGCGCAG A UGCGGAUC	5198	GATCCGCA GGCTAGCTACAACGA CTGCGCCT	6186
2310	GCGCAGAU G CGGAUCCU	5199	AGGATCCG GGCTAGCTACAACGA ATCTGCGC	6187
2314	AGAUGCGG A UCCUGAAA	5200	TTTCAGGA GGCTAGCTACAACGA CCGCATCT	6188
2326	UGAAAGAG A CGGAGCUG	5201	CAGCTCCG GGCTAGCTACAACGA CTCTTTCA	6189
2331	GAGACCGA G CUGAGGAA	5202	TTCCCTCG AG GGCTAGCTACAACGA TCCGTCTC	6190
2341	UGAGGAAG G UGAAGGUG	5203	CACCTTCA GGCTAGCTACAACGA CTTCCTCA	6191
2347	AGGUGAAC G UGUUUGGA	5204	TCCAAGCA GGCTAGCTACAACGA CTTCACCT	6192
2349	GUGAAGGU G CUUUGAAC	5205	GATCCAAG GGCTAGCTACAACGA ACCTTCAC	6193
2355	GUGCUUUG A UCUGGCGC	5206	GCGCCAGA GGCTAGCTACAACGA CCAAGCAC	6194
2360	UGGAUCUG G CGCUUUUG	5207	CAAAAGCG GGCTAGCTACAACGA CAGATCCA	6195
2362	GAUCUGGC G CUUUUUGC	5208	GCCAAAAG GGCTAGCTACAACGA GCCAGATC	6196
2369	CGCUUUUG G CACAGUCU	5209	AGACTGTG GGCTAGCTACAACGA CAAAAGCG	6197
2371	CUUUUUGGC A CAGUCUAC	5210	GTAGACTG GGCTAGCTACAACGA GCCAAAAG	6198
2374	UUGGCACA G UCUACAAAG	5211	CTTGTAGA GGCTAGCTACAACGA TGTGCCAA	6199
2378	CACAGUCU A CAAGGGCA	5212	TGCCCTTG GGCTAGCTACAACGA AGACTGTG	6200
2384	CUACAAGG G CAUCUGGA	5213	TCCAGATG GGCTAGCTACAACGA CCTTGTAG	6201
2386	ACAAGGGC A UCUGGAUC	5214	GATCCAGA GGCTAGCTACAACGA GCCCTTGT	6202
2392	GCAUCUGG A UCCUGAU	5215	ATCAGGGA GGCTAGCTACAACGA CCAGATGC	6203
2399	GAUCCCCUG A UGGGGAGA	5216	TCTCCCCA GGCTAGCTACAACGA CAGGGATC	6204
2408	UGGGGAGA A UGUGAAAA	5217	TTTCACCA GGCTAGCTACAACGA TCTCCCCA	6205
2410	GGGAGAAU G UGAAAUU	5218	AATTTCACCA GGCTAGCTACAACGA ATTCTCCC	6206
2416	AUGUGAAA A UUCCAGUG	5219	CACTGGAA GGCTAGCTACAACGA TTTCACAT	6207
2422	AAAUUCCA G UGGCCAU	5220	GATGGCCA GGCTAGCTACAACGA TGGAATTT	6208
2425	UUCCAGUG G CCAUCAA	5221	TTTGATGG GGCTAGCTACAACGA CACTGGAA	6209
2428	CAGUGGCC A UCAAAGUG	5222	CACTTTGA GGCTAGCTACAACGA GCCCACTG	6210

2434	CCAUCAAA G UGUUGAGG	5223	CCTCAACA GGCTAGCTACAAACGA TTTGATGG	6211
2436	AUCAAAGU G UUGAGGGA	5224	TCCCTCAA GGCTAGCTACAAACGA ACTTGAT	6212
2447	GAGGGAAA A CACAUCCC	5225	GGGATGTG GGCTAGCTACAAACGA TTCCCTC	6213
2449	GGGAAAAC A CAUCCCC	5226	GGGGATG GGCTAGCTACAAACGA GTTTCCC	6214
2451	AAAAACAC A UCCCCCAA	5227	TTGGGGGA GGCTAGCTACAAACGA GTGTTTTC	6215
2461	CCCCCAA G CCAACAAA	5228	TTTGTGGA GGCTAGCTACAAACGA TTGGGGG	6216
2465	CAAAGCCA A CAAAGAAA	5229	TTCTTTG GGCTAGCTACAAACGA TGGCTTTG	6217
2473	ACAAAGAA A UCUUAGAC	5230	GTCTAAGA GGCTAGCTACAAACGA TTCTTGT	6218
2480	AAUCUUAG A CGAACAU	5231	ATGCTTCG GGCTAGCTACAAACGA CTAAGATT	6219
2485	UAGACGAA G CAUACGUG	5232	CACGTATG GGCTAGCTACAAACGA TTCGTCTA	6220
2487	GACGAAGC A UACGUGAU	5233	ATCACGTA GGCTAGCTACAAACGA GCTCGTC	6221
2489	CGAACAU A CGUGAUGG	5234	CCATCACG GGCTAGCTACAAACGA ATGCTTCG	6222
2491	AAGCAUAC G UGAUGGCU	5235	AGCCATCA GGCTAGCTACAAACGA GTATGCTT	6223
2494	CAUACGUG A UGGCUGGU	5236	ACCAGCCA GGCTAGCTACAAACGA CACGTATG	6224
2497	ACGUGAUG G CUGGUGUG	5237	CACACCAG GGCTAGCTACAAACGA CATCACGT	6225
2501	GAUGGCUG G UGUGGGCU	5238	AGCCCCACA GGCTAGCTACAAACGA CAGCCATC	6226
2503	UGGCUGGU G UGGGCUCC	5239	GGAGCCCCA GGCTAGCTACAAACGA ACCAGCCA	6227
2507	UGGUGUGG G CUCCCCAU	5240	ATGGGGAG GGCTAGCTACAAACGA CCACACCA	6228
2514	GGCUCCCC A UAUGUCUC	5241	GAGACATA GGCTAGCTACAAACGA GGGGAGCC	6229
2516	CUCCCCAU A UGUCUCCC	5242	GGGGAGACA GGCTAGCTACAAACGA ATGGGGAG	6230
2518	CCCCAUAU G UCUCCCGC	5243	GGGGGAGA GGCTAGCTACAAACGA ATATGGGG	6231
2525	UGUCUCCC G CCUUUCUGG	5244	CCAGAAGG GGCTAGCTACAAACGA GGGAGACA	6232
2534	CCUUCUGG G CAUCUGCC	5245	GGCAGATG GGCTAGCTACAAACGA CCAGAAGG	6233
2536	UUCUGGGC A UCUGCCUG	5246	CAGGCAGA GGCTAGCTACAAACGA GCCCAGAA	6234
2540	GGGCAUCU G CCUGACAU	5247	ATGTCAGG GGCTAGCTACAAACGA AGATGCC	6235
2545	UCUGCCUG A CAUCCACG	5248	CGTGGATG GGCTAGCTACAAACGA CAGGCAGA	6236
2547	UGCCUGAC A UCCACGGU	5249	ACCGTGGA GGCTAGCTACAAACGA GTCAGGCA	6237
2551	UGACAUCC A CGGUGCAG	5250	CTGTCACCG GGCTAGCTACAAACGA GGATGTCA	6238
2554	CAUCCACG G UGCAGCUG	5251	CAGCTGCA GGCTAGCTACAAACGA CGTGGATG	6239
2556	UCCACGGU G CAGCUGGU	5252	ACCAGCTG GGCTAGCTACAAACGA ACCGTGGA	6240
2559	ACGGUGCA G CUGGUGAC	5253	GTCACCAG GGCTAGCTACAAACGA TGCACCGT	6241
2563	UGCAGCUG G UGACACAG	5254	CTGTGTCA GGCTAGCTACAAACGA CAGCTGCA	6242
2566	AGCUGGUG A CACAGCUU	5255	AAGCTGTG GGCTAGCTACAAACGA CACCAGCT	6243
2568	CUGGUGAC A CAGCUUAU	5256	ATAAGCTG GGCTAGCTACAAACGA GTCACCAAG	6244
2571	GUGACACA G CUUAUGCC	5257	GGCATAAAG GGCTAGCTACAAACGA TGTGTCAC	6245
2575	CACAGCUU A UGCCCUAU	5258	ATAGGGCA GGCTAGCTACAAACGA AAGCTGTG	6246
2577	CAGCUUAU G CCCUUAUGG	5259	CCATAGGG GGCTAGCTACAAACGA ATAAGCTG	6247
2582	UAUGCCU A UGGCUGCC	5260	GGCAGCCA GGCTAGCTACAAACGA AGGGCATA	6248
2585	GCCCCUAUG G CUGCCUCU	5261	AGAGGCAG GGCTAGCTACAAACGA CATAGGGC	6249
2588	CUAUGGCU G CCUCUJAG	5262	CTAAGAGG GGCTAGCTACAAACGA AGCCATAG	6250
2597	CCUCUUAG A CCAUGUCC	5263	GGACATGG GGCTAGCTACAAACGA CTAAGAGG	6251
2600	CUUAGACC A UGUCCGGG	5264	CCCGGACA GGCTAGCTACAAACGA GGTCTAAG	6252
2602	UAGACCAU G UCCGGGAA	5265	TTCCCGGA GGCTAGCTACAAACGA ATGGTCTA	6253
2612	CCGGGAAA A CGCGGGAC	5266	GTCCGGCG GGCTAGCTACAAACGA TTCCCGG	6254
2615	GGAAAACC G CGGACGCC	5267	GGCGTCCG GGCTAGCTACAAACGA GTTTTCC	6255
2619	AACCGCGG A CGCCUGGG	5268	CCCAGGCG GGCTAGCTACAAACGA CGCGGGTT	6256
2621	CGCGGGAC G CCUGGGCU	5269	AGCCCAAGG GGCTAGCTACAAACGA GTCCGGCG	6257
2627	ACGCCUGG G CUCCCCAGG	5270	CCTGGGAG GGCTAGCTACAAACGA CCAGGGGT	6258
2636	CUCCCAGG A CCUGCUGA	5271	TCAGCAGG GGCTAGCTACAAACGA CCTGGGAG	6259
2640	CAGGACCU G CUGAACUG	5272	CAGTTCAAG GGCTAGCTACAAACGA AGGTCCCTG	6260
2645	CCUGCUGA A CUGGUGUA	5273	TACACCAG GGCTAGCTACAAACGA TCAGCAGG	6261
2649	CUGAACUG G UGUUAUGCA	5274	TGCATACA GGCTAGCTACAAACGA CAGTTCAAG	6262

2651	GAACUGGU G UAUGCAGA	5275	TCTGCATA GGCTAGCTACAACGA ACCAGTTC	6263
2653	ACUGGUGU A UGCAGAUU	5276	AATCTGCA GGCTAGCTACAACGA ACACCAGT	6264
2655	UGGUGUAU G CAGAUUGC	5277	GCAATCTG GGCTAGCTACAACGA ATACACCA	6265
2659	GUAUGCAG A UUGCCAAG	5278	CTTGGCAA GGCTAGCTACAACGA CTGCATAC	6266
2662	UGCAGAUU G CCAAGGGG	5279	CCCCTTGG GGCTAGCTACAACGA AATCTGCA	6267
2671	CCAAGGGG A UGAGCUAC	5280	GTAGCTCA GGCTAGCTACAACGA CCCCTTGG	6268
2675	GGGGAUGA G CUACCUUG	5281	CCAGGTAC GGCTAGCTACAACGA TCATCCCC	6269
2678	GAUGAGCU A CCUGGAGG	5282	CCTCCAGG GGCTAGCTACAACGA AGCTCATC	6270
2687	CCUGGAGG A UGUGCGGC	5283	GCCGCACA GGCTAGCTACAACGA CCTCCAGG	6271
2689	UGGAGGAU G UGGGGCUC	5284	GAGCCGCA GGCTAGCTACAACGA ATCCCTCA	6272
2691	GAGGAUGU G CGGCUCGU	5285	ACGAGCCG GGCTAGCTACAACGA ACATCCTC	6273
2694	GAUGUGCG G CUCGUACAC	5286	TGTACGAG GGCTAGCTACAACGA CGCACATC	6274
2698	UGCGGCUC G UACACAGG	5287	CCTGTGTA GGCTAGCTACAACGA GAGCCGCA	6275
2700	CGGCUCGU A CACAGGGA	5288	TCCCTGTG GGCTAGCTACAACGA ACGAGCCG	6276
2702	GCUCGUAC A CAGGGACU	5289	AGTCCCTG GGCTAGCTACAACGA GTACGAGC	6277
2708	ACACAGGG A CUUGGCCG	5290	CGGCCAAG GGCTAGCTACAACGA CCCTGTGT	6278
2713	GGGACUUG G CCCUCUGG	5291	CCGAGCGG GGCTAGCTACAACGA CAAGTCCC	6279
2716	ACUUGGCC G CUCGGAAC	5292	GTTCGGAC GGCTAGCTACAACGA GGCCAAGT	6280
2723	CGCUCGGG A CGUGCUUG	5293	CCAGCACG GGCTAGCTACAACGA TCCGAGCG	6281
2725	CUCGGAAC G UCCUGGUC	5294	GACCAGCA GGCTAGCTACAACGA GTTCCGAG	6282
2727	CGGAACGU G CUGGUCAA	5295	TTGACCAG GGCTAGCTACAACGA ACGTTCCG	6283
2731	ACGUGCUG G UCAAGAGU	5296	ACTCTTGA GGCTAGCTACAACGA CAGCACGT	6284
2738	GGUCAAGA G UCCCAACC	5297	GGTTGGGA GGCTAGCTACAACGA TCTTGACC	6285
2744	GAGUCCCA A CCAUGUCA	5298	TGACATGG GGCTAGCTACAACGA TGGGACTC	6286
2747	UCCCAACC A UGUCAAAA	5299	TTTGTACA GGCTAGCTACAACGA GGTTGGGA	6287
2749	CCAACCAU G UCAAAAUU	5300	AATTTTGA GGCTAGCTACAACGA ATGGTTGG	6288
2755	AUGUCAAA A UUACAGAC	5301	GTCTGTAA GGCTAGCTACAACGA TTTGACAT	6289
2758	UCAAAAUU A CAGACUUC	5302	GAAGTCTG GGCTAGCTACAACGA AATTGTGA	6290
2762	AAUUACAG A CUUCGGGC	5303	GCCCCAAG GGCTAGCTACAACGA CTGTAATT	6291
2769	GACUUCGG G CUGGCUCG	5304	CGAGCCAG GGCTAGCTACAACGA CCGAAGTC	6292
2773	UCGGGCUG G CUCGGCUG	5305	CAGCCGAG GGCTAGCTACAACGA CAGCCCGA	6293
2778	CUGGCUCG G CUGCUGGA	5306	TCCAGCAG GGCTAGCTACAACGA CGAGCCAG	6294
2781	GCUCGGCU G CUGGACAU	5307	ATGTCCAG GGCTAGCTACAACGA AGCCGAGC	6295
2786	GCUGCUUG A CAJUGACG	5308	CGTCAATG GGCTAGCTACAACGA CCAGCAGC	6296
2788	UGCUGGAC A UUGACGAG	5309	CTCGTCAA GGCTAGCTACAACGA GTCCAGCA	6297
2792	GGACAUUG A CGAGACAG	5310	CTGTCTCG GGCTAGCTACAACGA CAATGTCC	6298
2797	UUGACGAG A CAGAGUAC	5311	GTACTCTG GGCTAGCTACAACGA CTCGTCAA	6299
2802	GAGACAGA G UACCAUGC	5312	GCATGGTA GGCTAGCTACAACGA TCTGTCTC	6300
2804	GACAGAGU A CCAUGCAG	5313	CTGCAATGG GGCTAGCTACAACGA ACTCTGTC	6301
2807	AGAGUACC A UGCAGAUG	5314	CATCTGCA GGCTAGCTACAACGA GGTACTCT	6302
2809	AGUACCAU G CAGAUGGG	5315	CCCATCTG GGCTAGCTACAACGA ATGGTACT	6303
2813	CCAUGCAG A UGGGGGCA	5316	TGCCCCCA GGCTAGCTACAACGA CTGCATGG	6304
2819	AGAUGGGG G CAAGGUGC	5317	GCACCTTG GGCTAGCTACAACGA CCCCATCT	6305
2824	GGGGCAAG G UGCCCAUC	5318	GATGGGCA GGCTAGCTACAACGA TTGATGGG	6306
2826	GGCAAGGU G CCCAUCAA	5319	TTGATGGG GGCTAGCTACAACGA ACCTTGCC	6307
2830	AGGUGCCC A UCAAGUGG	5320	CCACTTGA GGCTAGCTACAACGA GGGCACCT	6308
2835	CCCAUCAA G UGGAUUGC	5321	GCCATCCA GGCTAGCTACAACGA TTGATGGG	6309
2839	UCAAGUGG A UGGCGCUG	5322	CAGCGCCA GGCTAGCTACAACGA CCACTTGA	6310
2842	AGUGGAUG G CGCUGGAG	5323	CTCCAGCG GGCTAGCTACAACGA CATCCACT	6311
2844	UGGAUGGC G CUGGAGUC	5324	GACTCCAG GGCTAGCTACAACGA GCCATCCA	6312
2850	GCGCUGGA G UCCAUUCU	5325	AGAATGGA GGCTAGCTACAACGA TCCAGCGC	6313
2854	UGGAGUCC A UUCUCCGC	5326	GCGGAGAA GGCTAGCTACAACGA GGACTCCA	6314

2861	CAUUCUCC G CCGGCGGU	5327	ACCGCCGG GGCTAGCTACAACGA GGAGAATG	6315
2865	CUCCGCCG G CGGUUCAC	5328	GTGAACCG GGCTAGCTACAACGA CGCCGGAG	6316
2868	CGCCGGCG G UUCACCCA	5329	TGGGTGAA GGCTAGCTACAACGA CGCCGGCG	6317
2872	GGCGGUUC A CCCACCAG	5330	CTGGTGGG GGCTAGCTACAACGA GAACCGCC	6318
2876	GUUCACCC A CCAGAGUG	5331	CACTCTGG GGCTAGCTACAACGA GGGTGAAC	6319
2882	CCACCAGA G UGAUGUGU	5332	ACACATCA GGCTAGCTACAACGA TCTGGTGG	6320
2885	CCAGAGUG A UGUGUGGA	5333	TCCACACA GGCTAGCTACAACGA CACTCTGG	6321
2887	AGAGUGAU G UGUGGAGU	5334	ACTCCACA GGCTAGCTACAACGA ATCACTCT	6322
2889	AGUGAUGU G UGGAGUUA	5335	TAACTCCA GGCTAGCTACAACGA ACATCACT	6323
2894	UGUGUGGA G UUAUGGUG	5336	CACCATAA GGCTAGCTACAACGA TCCACACA	6324
2897	GUGGAGUU A UGGUGUGA	5337	TCACACCA GGCTAGCTACAACGA AACTCCAC	6325
2900	GAGUUAUG G UGUGACUG	5338	CAGTCACA GGCTAGCTACAACGA CATAACTC	6326
2902	GUUAUGGU G UGACUGUG	5339	CACAGTCA GGCTAGCTACAACGA ACCATAAC	6327
2905	AUGGUGUG A CUGUGUGG	5340	CCACACAG GGCTAGCTACAACGA CACACCAT	6328
2908	GUGUGACU G UGUGGGAG	5341	CTCCCCACA GGCTAGCTACAACGA AGTCACAC	6329
2910	GUGACUGU G UGGGAGCU	5342	AGCTCCCA GGCTAGCTACAACGA ACAGTCAC	6330
2916	GUGUGGGG G CUGAUGAC	5343	GTCATCAG GGCTAGCTACAACGA TCCCACAC	6331
2920	GGGAGCUG A UGACUUUU	5344	AAAAGTCA GGCTAGCTACAACGA CAGCTCCC	6332
2923	AGCUGAUG A CUUUJUGG	5345	CCCAAAAG GGCTAGCTACAACGA CATCAGCT	6333
2932	CUUUUGGG G CCAAACCU	5346	AGGTTTGG GGCTAGCTACAACGA CCCAAAAG	6334
2937	GGGGCCAA A CCUUACGA	5347	TCGTAAGG GGCTAGCTACAACGA TTGGCCCC	6335
2942	CAAACCUU A CGAUGGGA	5348	TCCCATCG GGCTAGCTACAACGA AAGGTTTG	6336
2945	ACCUUACG A UGGGAUCC	5349	GGATCCCA GGCTAGCTACAACGA CGTAAGGT	6337
2950	ACGAUGGG A UCCCAGCC	5350	GGCTGGGA GGCTAGCTACAACGA CCCATCGT	6338
2956	GGAUCCCA G CCCGGAG	5351	CTCCCGGG GGCTAGCTACAACGA TGGGATCC	6339
2965	CCCGGGAG A UCCCUGAC	5352	GTCAGGGGA GGCTAGCTACAACGA CTCCCGGG	6340
2972	GAUCCUG A CCUGCUGG	5353	CCAGCAGG GGCTAGCTACAACGA CAGGGATC	6341
2976	CCUGACCU G CUGGAAAA	5354	TTTTCAG GGCTAGCTACAACGA AGGTCAAG	6342
2991	AAGGGGGA G CGGCUGCC	5355	GGCAGCCG GGCTAGCTACAACGA TCCCCCTT	6343
2994	GGGGAGCG G CUGCCCCA	5356	TGGGGCAG GGCTAGCTACAACGA CGCTCCCC	6344
2997	GAGCGGCU G CCCCAGCC	5357	GGCTGGGG GGCTAGCTACAACGA AGCCGCTC	6345
3003	CUGCCCCA G CCCCCCAU	5358	ATGGGGGG GGCTAGCTACAACGA TGGGGCAG	6346
3010	AGCCCCCC A UCUGCAC	5359	GGTGCAGA GGCTAGCTACAACGA GGGGGGCT	6347
3014	CCCCCAUCU G CACCAUUG	5360	CAATGGTG GGCTAGCTACAACGA AGATGGGG	6348
3016	CCAUCUGC A CCAUUGAU	5361	ATCAATGG GGCTAGCTACAACGA GCAGATGG	6349
3019	UCUGCAC A UUGAUGUC	5362	GACATCAA GGCTAGCTACAACGA GGTGCAGA	6350
3023	CACCAUUG A UGUCUAC	5363	TGTAGACA GGCTAGCTACAACGA CAATGGTG	6351
3025	CCAUJUGAU G UCUACAUG	5364	CATGTAGA GGCTAGCTACAACGA ATCAATGG	6352
3029	UGAUGUCU A CAUGAUCA	5365	TGATCATG GGCTAGCTACAACGA AGACATCA	6353
3031	AUGUCUAC A UGAUCAUG	5366	CATGATCA GGCTAGCTACAACGA GTAGACAT	6354
3034	UCUACAUG A UCAUGGUC	5367	GACCATGA GGCTAGCTACAACGA CATGTAGA	6355
3037	ACAUGAUC A UGGUCAA	5368	TTTGACCA GGCTAGCTACAACGA GATCATGT	6356
3040	UGAUCAUG G UCAAAUGU	5369	ACATTTGA GGCTAGCTACAACGA CATGATCA	6357
3045	AUGGUCAA A UGUUGGGAU	5370	ATCCAACA GGCTAGCTACAACGA TTGACCAT	6358
3047	GGUAAA G UUGGAUGA	5371	TCATCCAA GGCTAGCTACAACGA ATTTGACC	6359
3052	AAUGUUGG A UGAUUGAC	5372	GTCAATCA GGCTAGCTACAACGA CCAACATT	6360
3055	GUUGGAUG A UUGACUCU	5373	AGAGTCAA GGCTAGCTACAACGA CATCCAAC	6361
3059	GAUGAUUG A CUCUGAAU	5374	ATTCAAGAG GGCTAGCTACAACGA CAATCATC	6362
3066	GACUCUGA A UGUCGGCC	5375	GGCCGACA GGCTAGCTACAACGA TCAGAGTC	6363
3068	CUCUGAAU G UCGGCCAA	5376	TTGGCCGA GGCTAGCTACAACGA ATTCAAGAG	6364
3072	GAAUGUCG G CCAAGAUU	5377	AATCTTGG GGCTAGCTACAACGA CGACATTC	6365
3078	CGGCCAAG A UUCCGGGA	5378	TCCCGGAA GGCTAGCTACAACGA CTTGGCCG	6366

3087	UUCCGGGA G UUGGUGUC	5379	GACACCAA GGCTAGCTACAACGA TCCCGGAA	6367
3091	GGGAGUUG G UGUCUGAA	5380	TTCAGACCA GGCTAGCTACAACGA CAACTCCC	6368
3093	GAGUUGGU G UCUGAUU	5381	AATTCAAGA GGCTAGCTACAACGA ACCAACTC	6369
3099	GUGUCUGA A UUCUCCCG	5382	CGGGAGAA GGCTAGCTACAACGA TCAGACAC	6370
3107	AUUCUCCC G CAUGGCCA	5383	TGGCCATG GGCTAGCTACAACGA GGGAGAAT	6371
3109	UCUCCCCG A UGGCCAGG	5384	CCTGGCCA GGCTAGCTACAACGA GCGGGAGA	6372
3112	CCCGCAUG G CCAGGGAC	5385	GTCCCTGG GGCTAGCTACAACGA CATGCGGG	6373
3119	GGCCAGGG A CCCCCAGC	5386	GCTGGGGG GGCTAGCTACAACGA CCCTGGCC	6374
3126	GACCCCCA G CGCUUJGU	5387	ACAAAGCG GGCTAGCTACAACGA TGGGGGTC	6375
3128	CCCCCAGC G CUUUGUGG	5388	CCACAAAG GGCTAGCTACAACGA GCTGGGGG	6376
3133	AGCGCUUU G UGGUCAUC	5389	GATGACCA GGCTAGCTACAACGA AAAGCGCT	6377
3136	GCUUUGUG G UCAUCCAG	5390	CTGGATGA GGCTAGCTACAACGA CACAAAGC	6378
3139	UUGUGGUC A UCCAGAAU	5391	ATTCTGGG GGCTAGCTACAACGA GACCACAA	6379
3146	CAUCCAGA A UGAGGACU	5392	AGTCCTCA GGCTAGCTACAACGA TCTGGATG	6380
3152	GAAUGAGG A CUUGGGCC	5393	GGCCCAAG GGCTAGCTACAACGA CCTCATTC	6381
3158	GGACUUGG G CCCAGCCA	5394	TGGCTGGG GGCTAGCTACAACGA CCAAGTCC	6382
3163	UGGGCCCA G CCAGUCCC	5395	GGGACTGG GGCTAGCTACAACGA TGGGCCCA	6383
3167	CCCAGCCA G UCCCCUJGG	5396	CCAAGGGA GGCTAGCTACAACGA TGGCTGGG	6384
3176	UCCCCUJGG A CAGCACCU	5397	ACGTGCTG GGCTAGCTACAACGA CCAAGGGA	6385
3179	CUUGGACA G CACCUUCU	5398	AGAAGGTG GGCTAGCTACAACGA TGTCAG	6386
3181	UGGACAGC A CCUUUCUAC	5399	GTAGAAGG GGCTAGCTACAACGA GCTGTCCA	6387
3188	CACCUUCU A CCGCUCAC	5400	GTGAGCGG GGCTAGCTACAACGA AGAAGGTG	6388
3191	CUUCUACC G CUCACUGC	5401	GCACTGAG GGCTAGCTACAACGA GTAGAAG	6389
3195	UACCGCUC A CUGCUUGG	5402	TCCAGCAG GGCTAGCTACAACGA GAGCGTA	6390
3198	CGCUCACU G CUGGAGGA	5403	TCCCTCAG GGCTAGCTACAACGA AGTGAGCG	6391
3206	GCUGGGAGG A CGAUGACA	5404	TGTCATCG GGCTAGCTACAACGA CCTCCAGC	6392
3209	GGAGGAGC A UGACAUJG	5405	CCATGTCA GGCTAGCTACAACGA CGTCCCTCC	6393
3212	GGACGAUG A CAUGGGGG	5406	CCCCCATG GGCTAGCTACAACGA CATCGTCC	6394
3214	ACGAUGAC A UGGGGGAC	5407	GTCCCCCA GGCTAGCTACAACGA GTCATCGT	6395
3221	CAUGGGGG A CCUGGUJGG	5408	CCACCAAG GGCTAGCTACAACGA CCCCCATG	6396
3226	GGGACCUJG G UGGAUGCU	5409	AGCATCCA GGCTAGCTACAACGA CAGGTCCC	6397
3230	CCUGGUJGG A UGCUGAGG	5410	CCTCAGCA GGCTAGCTACAACGA CCACCAAGG	6398
3232	UGGUGGAU G CUGAGGAG	5411	CTCCTCAG GGCTAGCTACAACGA ATCCACCA	6399
3240	GCUGAGGA G UAUCUGGU	5412	ACCAAGATA GGCTAGCTACAACGA TCCTCAGC	6400
3242	UGAGGAGU A UCUGGUAC	5413	GTACCAAGA GGCTAGCTACAACGA ACTCCTCA	6401
3247	AGUAUCUG G UACCCAG	5414	CTGGGGTA GGCTAGCTACAACGA CAGATACT	6402
3249	UAUCUGGU A CCCCCAGCA	5415	TGCTGGGG GGCTAGCTACAACGA ACCAGATA	6403
3255	GUACCCCCA G CAGGGCUU	5416	ACGCCCTG GGCTAGCTACAACGA TGGGGTAC	6404
3260	CCAGCAGG G CUUCUUCU	5417	AGAAGAAC GGCTAGCTACAACGA CCTGCTGG	6405
3269	CUUCUUCU G UCCAGACC	5418	GGTCTGGG GGCTAGCTACAACGA AGAAGAAC	6406
3275	CUGUCCAG A CCCUGCCC	5419	GGGCAGGG GGCTAGCTACAACGA CTGGACAG	6407
3280	CAGACCCU G CCCCCGGC	5420	GCCCCGGG GGCTAGCTACAACGA AGGGCTTG	6408
3287	UGCCCCCG G CGCUGGGG	5421	CCCCAGCG GGCTAGCTACAACGA CCGGGGCA	6409
3289	CCCCGGGC G CUGGGGGC	5422	GCCCCCAG GGCTAGCTACAACGA GCCCCGGG	6410
3296	CGCUGGGG G CAUGGUCC	5423	GGACCATG GGCTAGCTACAACGA CCCCAGCG	6411
3298	CUGGGGGC A UGGUCCAC	5424	GTGGACCA GGCTAGCTACAACGA GCCCCCAG	6412
3301	GGGGCAUG G UCCACCAC	5425	GTGGTGGG GGCTAGCTACAACGA CATGCCCC	6413
3305	CAUGGUCC A CCACAGGC	5426	GCCTGTGG GGCTAGCTACAACGA GGACCATG	6414
3308	GGUCCACC A CAGGCACC	5427	GGTGCTTG GGCTAGCTACAACGA GGTGGACC	6415
3312	CACCAACAG G CACCGCAG	5428	CTGCGGTG GGCTAGCTACAACGA CTGTGGTG	6416
3314	CCACAGGC A CCGCAGCU	5429	AGCTGCAG GGCTAGCTACAACGA GCCTGTGG	6417
3317	CAGGCACC G CAGCUAU	5430	ATGAGCTG GGCTAGCTACAACGA GGTGCCTG	6418

3320	GCACCGCA G CUCAUCUA	5431	TAGATGAG GGCTAGCTACAACGA TCGGGTGC	6419
3324	CGCAGCUC A UCUACCAG	5432	CTGGTAGA GGCTAGCTACAACGA GAGCTGCG	6420
3328	GCUCAUCU A CCAGGAGU	5433	ACTCCTGG GGCTAGCTACAACGA AGATGAGC	6421
3335	UACCAAGGA G UGGCCGUG	5434	CACCGCCA GGCTAGCTACAACGA TCCTGGTA	6422
3338	CAGGAGUG G CGGUGGGG	5435	CCCCACCG GGCTAGCTACAACGA CACTCCTG	6423
3341	GAGUGGGG G UGGGGACC	5436	GGTCCCCA GGCTAGCTACAACGA CGCCACTC	6424
3347	CGGUGGGG A CCUGACAC	5437	GTGTCAGG GGCTAGCTACAACGA CCCCACCG	6425
3352	GGGACCUUG A CACUAGGG	5438	CCCTAGTG GGCTAGCTACAACGA CAGGTCCC	6426
3354	GACCUGAC A CUAGGGCU	5439	AGCCCTAG GGCTAGCTACAACGA GTCAGGTC	6427
3360	ACACUAGG G CUGGAGCC	5440	GGCTCCAG GGCTAGCTACAACGA CCTAGTGT	6428
3366	GGGCUGGA G CCCUCUGA	5441	TCAGAGGG GGCTAGCTACAACGA TCCAGCCC	6429
3382	AAGAGGAG G CCCCCCAGG	5442	CCTGGGGG GGCTAGCTACAACGA CTCCCTTT	6430
3390	GCCCCCAG G UCUCCACU	5443	AGTGGAGA GGCTAGCTACAACGA CTGGGGGC	6431
3396	AGGUUCUU C UGGGCCACC	5444	GGTGGCCAG GGCTAGCTACAACGA GGAGACCT	6432
3400	CUCCACUG G CACCCUCC	5445	GGAGGGTG GGCTAGCTACAACGA CAGTGGAG	6433
3402	CCACUGGC A CCCUCUGG	5446	TCGGAGGG GGCTAGCTACAACGA GCCAGTGG	6434
3415	CCGAAGGG G CUGGUCC	5447	GGAGCCAG GGCTAGCTACAACGA CCCTTCGG	6435
3419	AGGGGCUG G CUCCGAUG	5448	CATCGGAG GGCTAGCTACAACGA CAGCCCC	6436
3425	UGGCUCCG A UGUAUJUG	5449	CAAATACA GGCTAGCTACAACGA CGGAGCCA	6437
3427	GCUCCGAU G UAUUUGAU	5450	ATCAAATA GGCTAGCTACAACGA ATCGGAGC	6438
3429	UCCGAUGU A UUUGAUGG	5451	CCATCAAA GGCTAGCTACAACGA ACATCGGA	6439
3434	UGUAUUUG A UGGUGACC	5452	GGTCACCA GGCTAGCTACAACGA CAAATACA	6440
3437	AUUUUAUG G UGACCUUG	5453	CCAGGTCA GGCTAGCTACAACGA CATCAAAT	6441
3440	UGAUGGUG A CCUGGGAA	5454	TTCCCAAGG GGCTAGCTACAACGA CACCATCA	6442
3448	ACCUGGGG A UGGGGGCA	5455	TGCCCCCA GGCTAGCTACAACGA TCCCAGGT	6443
3454	GAAUGGGG G CAGCCAAG	5456	CTTGGCTG GGCTAGCTACAACGA CCCCATTC	6444
3457	UGGGGGCA G CCAAGGG	5457	CCCTTGG GGCTAGCTACAACGA TGCCCCA	6445
3465	GCCAAGGG G CUGCAGG	5458	CTTGCAG GGCTAGCTACAACGA CCCTTGGC	6446
3468	AAGGGGCU G CAAAGCCU	5459	AGGCTTTG GGCTAGCTACAACGA AGCCCC	6447
3473	GCUGCAAA G CCUCCCCA	5460	TGGGGAGG GGCTAGCTACAACGA TTGAGC	6448
3481	GCCUCCCC A CACAUGAC	5461	GTCATGTG GGCTAGCTACAACGA GGGGAGGC	6449
3483	CUCCCCAC A CAUGACCC	5462	GGGTCTAT GGCTAGCTACAACGA GTGGGGAG	6450
3485	CCCCACAC A UGACCCCA	5463	TGGGGTCA GGCTAGCTACAACGA GTGTGGGG	6451
3488	CACACAU G CCCCCAGCC	5464	GGCTGGGG GGCTAGCTACAACGA CATGTGTG	6452
3494	UGACCCCA G CCCUCUAC	5465	GTAGAGGG GGCTAGCTACAACGA TGGGGTCA	6453
3501	AGCCCCUCU A CAGCGGUA	5466	TACCGCTG GGCTAGCTACAACGA AGAGGGCT	6454
3504	CCUCUACA G CGGUACAG	5467	CTGTACCG GGCTAGCTACAACGA TGTAGAGG	6455
3507	CUACAGCG G UACAGUGA	5468	TCACTGTA GGCTAGCTACAACGA CGCTGTAG	6456
3509	ACAGCGGU A CAGUGAGG	5469	CCTCACTG GGCTAGCTACAACGA ACCGCTGT	6457
3512	GCGGUACA G UGAGGACC	5470	GGTCCTCA GGCTAGCTACAACGA TGTACCGC	6458
3518	CAGUGAGG A CCCCCACAG	5471	CTGTGGGG GGCTAGCTACAACGA CCTCACTG	6459
3523	AGGACCCC A CAGUACCC	5472	GGGTACTG GGCTAGCTACAACGA GGGGTCC	6460
3526	ACCCCCACA G UACCCUCG	5473	CAGGGGTA GGCTAGCTACAACGA TGTGGGGT	6461
3528	CCCACAGU A CCCUGCC	5474	GGCAGGGGG GGCTAGCTACAACGA ACTGTGGG	6462
3534	GUACCCCU G CCCUCUGA	5475	TCAGAGGG GGCTAGCTACAACGA AGGGGTAC	6463
3544	CCUCUGAG A CUGAUGGC	5476	GCCATCAG GGCTAGCTACAACGA CTCAGAGG	6464
3548	UGAGACUG A UGGCUACG	5477	CGTAGCCA GGCTAGCTACAACGA CAGTCTCA	6465
3551	GACUGAUG G CUACGUUG	5478	CAACGTAG GGCTAGCTACAACGA CATCAGTC	6466
3554	UGAUGGCU A CGUUGCCC	5479	GGGCAACG GGCTAGCTACAACGA AGCCATCA	6467
3556	AUGGCUAC G UUGCCCCC	5480	GGGGGCAA GGCTAGCTACAACGA GTAGCCAT	6468
3559	GCUACGUU G CCCCCCUG	5481	CAGGGGGGG GGCTAGCTACAACGA AACGTAGC	6469
3568	CCCCCCUG A CCUGCAGC	5482	GCTGCAGG GGCTAGCTACAACGA CAGGGGGG	6470

3572	CCUGACCU G CAGCCCC	5483	GGGGGCTG GGCTAGCTACAACGA AGGTCAGG	6471
3575	GACCUGCA G CCCCCAGC	5484	GCTGGGGG GGCTAGCTACAACGA TGCAGGTC	6472
3582	AGCCCCCA G CCUGAAUA	5485	TATTCAGG GGCTAGCTACAACGA TGGGGCT	6473
3588	CAGCCUGA A UAUGUGAA	5486	TTCACATA GGCTAGCTACAACGA TCAGGCTG	6474
3590	GCCUGAAU A UGUGAAC	5487	GGTTCACA GGCTAGCTACAACGA ATTCAAGC	6475
3592	CUGAAUAU G UGAACCAG	5488	CTGGTTCA GGCTAGCTACAACGA ATATTCA	6476
3596	AUAUGUGA A CCAGCCAG	5489	CTGGCTGG GGCTAGCTACAACGA TCACATAT	6477
3600	GUGAACCA G CCAGAUGU	5490	ACATCTGG GGCTAGCTACAACGA TGGTTCAC	6478
3605	CCAGCCAG A UGUUCGGC	5491	GCCGAACA GGCTAGCTACAACGA CTGGCTGG	6479
3607	AGCCAGAU G UUCGGGCC	5492	GGGCCGAA GGCTAGCTACAACGA ATCTGGCT	6480
3612	GAUGUUCG G CCCCCAGC	5493	GGCTGGGG GGCTAGCTACAACGA CGAACATC	6481
3618	CGGCCCCA G CCCCCUUC	5494	GAAGGGGG GGCTAGCTACAACGA TGGGGCCG	6482
3627	CCCCCUUC G CCCCAGAG	5495	TCTCGGGG GGCTAGCTACAACGA GAAGGGGG	6483
3638	CCGAGAGG G CCCUCUGC	5496	GCAGAGGG GGCTAGCTACAACGA CCTCTCGG	6484
3645	GGCCCCUU G CCUGCUJC	5497	GCAGCAGG GGCTAGCTACAACGA AGAGGGCC	6485
3649	CUCUGCCU G CUGCCCGA	5498	TCGGGCAG GGCTAGCTACAACGA AGGCAGAG	6486
3652	UGCCUGCU G CCCGACCU	5499	AGGTCTGG GGCTAGCTACAACGA ACCAGGCA	6487
3657	GCUGCCCG A CCUGCUGG	5500	CCAGCAGG GGCTAGCTACAACGA CGGGCAGC	6488
3661	CCCGACCU G CUGGUGCC	5501	GGCACCCAG GGCTAGCTACAACGA AGGTCGGG	6489
3665	ACCUGCUG G UGCCACUC	5502	GAGTGGCA GGCTAGCTACAACGA CAGCAGGT	6490
3667	CUGCUGGU G CCACUCUG	5503	CAGAGTGG GGCTAGCTACAACGA ACCAGCAG	6491
3670	CUGGUGCC A CUCUGGAA	5504	TTCCAGAG GGCTAGCTACAACGA GGCACCAG	6492
3681	CUGGAAAG G CCCAAGAC	5505	GTCTTGGG GGCTAGCTACAACGA CTTCCAG	6493
3688	GGCCAAG A CUCUCUCC	5506	GGAGAGAG GGCTAGCTACAACGA CTTGGGCC	6494
3707	AGGGAAAG A UGGGGUCG	5507	CGACCCCA GGCTAGCTACAACGA TCTTCCCT	6495
3712	AGAAUGGG G UCGUCAAA	5508	TTTGACGA GGCTAGCTACAACGA CCCATTCT	6496
3715	AUGGGGUC G UCAAAGAC	5509	GTCTTGA GGCTAGCTACAACGA GACCCCAT	6497
3722	CGUAAAAG A CGUUUUUG	5510	CAAAACAG GGCTAGCTACAACGA CTTTGACG	6498
3724	UCAAAGAC G UUUUJUGCC	5511	GGCAAAAA GGCTAGCTACAACGA GTCTTGA	6499
3730	ACGUUUUU G CCUUUJUGG	5512	CCCAAAGG GGCTAGCTACAACGA AAAAACGT	6500
3740	CUUUGGGG G UGCCUGGG	5513	CCACGGCA GGCTAGCTACAACGA CCCCCAAG	6501
3742	UUGGGGGU G CCGUGGAG	5514	CTCCACGG GGCTAGCTACAACGA ACCCCCCA	6502
3745	GGGGUGCC G UGGAGAAC	5515	GTCTCTCA GGCTAGCTACAACGA GGCACCCCC	6503
3752	CGUGGAGA A CCCCCAGU	5516	ACTCGGGG GGCTAGCTACAACGA TCTCCACG	6504
3759	AACCCCGA G UACUJUGAC	5517	GTCAAGTA GGCTAGCTACAACGA TCGGGGTT	6505
3761	CCCCGAGU A CUUGACAC	5518	GTGTCAAG GGCTAGCTACAACGA ACTCGGGG	6506
3766	AGUACUUG A CACCCCAG	5519	CTGGGGTC GGCTAGCTACAACGA CAAGTACT	6507
3768	UACUJUGAC A CCCCCAGG	5520	CCCTGGGG GGCTAGCTACAACGA GTCAAGTA	6508
3781	AGGGAGGA G CUGCCCCU	5521	AGGGGCAG GGCTAGCTACAACGA TCCTCCCT	6509
3784	GAGGAGCU G CCCCUCAG	5522	CTGAGGGGG GGCTAGCTACAACGA AGCTCCTC	6510
3792	GCCCCCUA G CCCCCACCC	5523	GGGTGGGG GGCTAGCTACAACGA TGAGGGC	6511
3797	UCAGCCCC A CCCUCCUC	5524	GAGGAGGG GGCTAGCTACAACGA GGGCTGA	6512
3808	CUCCUCU G CCUUCAGC	5525	GCTGAAGG GGCTAGCTACAACGA AGGAGGGAG	6513
3815	UGCCUJCA G CCCAGCCU	5526	AGGCTGGG GGCTAGCTACAACGA TGAAGGCA	6514
3820	UCAGCCCC A CCUUCGAC	5527	GTCGAAGG GGCTAGCTACAACGA TGGGCTGA	6515
3827	AGCCUUCG A CAACCUCU	5528	AGAGGTTG GGCTAGCTACAACGA CGAAGGCT	6516
3830	CUUCGACA A CCUCUAAU	5529	AATAGAGG GGCTAGCTACAACGA TGTCGAAG	6517
3836	CAACCUCU A UUACUGGG	5530	CCCACTAA GGCTAGCTACAACGA AGAGGTTG	6518
3839	CCUCUAAU A CUGGGACC	5531	GGTCCCAG GGCTAGCTACAACGA AATAGAGG	6519
3845	UUACUGGG A CCAGGACC	5532	GGTCCTGG GGCTAGCTACAACGA CCCAGTAA	6520
3851	GGACCAGG A CCCACCCAG	5533	CTGGTGGGG GGCTAGCTACAACGA CCTGGTCC	6521
3855	CAGGACCC A CCAGAGCG	5534	CGCTCTGG GGCTAGCTACAACGA GGGTCTG	6522

3861	CCACCAGA G CGGGGGGC	5535	GCCCCCGG GGCTAGCTACAACGA TCTGGTGG	6523
3868	AGCGGGGG G CUCCACCC	5536	GGGTGGAG GGCTAGCTACAACGA CCCCCGCT	6524
3873	GGGGCUCC A CCCAGCAC	5537	GTGCTGGG GGCTAGCTACAACGA GGAGCCCC	6525
3878	UCCACCCA G CACCUUCA	5538	TGAAGGTG GGCTAGCTACAACGA TGGGTGGA	6526
3880	CACCCAGC A CCUUCAA	5539	TTTGAAGG GGCTAGCTACAACGA GCTGGGTG	6527
3892	UCAAAGGG A CACCUACG	5540	CGTAGGTG GGCTAGCTACAACGA CCCTTTGA	6528
3894	AAAGGGAC A CCUACGGC	5541	GCCGTAGG GGCTAGCTACAACGA GTCCCTTT	6529
3898	GGACACCU A CGGCAGAG	5542	CTCTGCCG GGCTAGCTACAACGA AGGTGTCC	6530
3901	CACCUACG G CAGAGAAC	5543	GTTCTCTG GGCTAGCTACAACGA CGTAGGTG	6531
3908	GGCAGAGA A CCCAGAGU	5544	ACTCTGGG GGCTAGCTACAACGA TCTCTGCC	6532
3915	AACCCAGA G UACCUGGG	5545	CCCAGGTA GGCTAGCTACAACGA TCTGGGTT	6533
3917	CCCGAGAGU A CCUGGGUC	5546	GACCCAGG GGCTAGCTACAACGA ACTCTGGG	6534
3923	GUACCUGG G UCUGGACG	5547	CGTCCAGA GGCTAGCTACAACGA CCAGGTAC	6535
3929	GGGUCUGG A CGUGCCAG	5548	CTGGCACG GGCTAGCTACAACGA CCAGACCC	6536
3931	GUCUGGAC G UGCCAGUG	5549	CACTGGCA GGCTAGCTACAACGA GTCCAGAC	6537
3933	CUGGACGU G CCAGUGUG	5550	CACACTGG GGCTAGCTACAACGA ACGTCCAG	6538
3937	ACGUGCCA G UGUGAAC	5551	GGTTCACA GGCTAGCTACAACGA TGGCACGT	6539
3939	GUGCCAGU G UGAACCCAG	5552	CTGGTTCA GGCTAGCTACAACGA ACTGGCAC	6540
3943	CAGUGUGA A CCAGAAGG	5553	CCCTCTGG GGCTAGCTACAACGA TCACACTG	6541
3951	ACCGAAG G CCAAGUCC	5554	GGACTTGG GGCTAGCTACAACGA CTTCTGGT	6542
3956	AAGGCCAA G UCCGCAGA	5555	TCTGCGGA GGCTAGCTACAACGA TTGGCCTT	6543
3960	CCAAGUCC G CAGAAGCC	5556	GGCTTCTG GGCTAGCTACAACGA GGACTTGG	6544
3966	CCGAGAAG G CCCUGAUG	5557	CATCAGGG GGCTAGCTACAACGA TTCTGCGG	6545
3972	AAGCCCUG A UGUGUCCU	5558	AGGACACA GGCTAGCTACAACGA CAGGGCTT	6546
3974	GCCCCUGAU G UGUCCUCA	5559	TGAGGACA GGCTAGCTACAACGA ATCAGGGC	6547
3976	CCUGAUGU G UCCUCAGG	5560	CCTGAGGA GGCTAGCTACAACGA ACATCAGG	6548
3987	CUCAGGGG A CAGGGAG	5561	CTTCCCTG GGCTAGCTACAACGA TCCCTGAG	6549
3996	CAGGGAG G CCUGACUU	5562	AAGTCAGG GGCTAGCTACAACGA CTTCCCTG	6550
4001	AAGGCCUG A CUUCUGCU	5563	AGCAGAAG GGCTAGCTACAACGA CAGGGCTT	6551
4007	UGACUUUCU G CUGGCAUC	5564	GATGCCAG GGCTAGCTACAACGA AGAAGTCA	6552
4011	UUCUGCUG G CAUCAAGA	5565	TCTTGATG GGCTAGCTACAACGA CAGCAGAA	6553
4013	CUGCUGGC A UCAAGAGG	5566	CCTCTTGA GGCTAGCTACAACGA GCCAGCAG	6554
4021	AUCAAGAG G UGGGAGGG	5567	CCCTCCCA GGCTAGCTACAACGA CTCTTGAT	6555
4029	GUGGGAGG G CCCUCCGA	5568	TCGGAGGG GGCTAGCTACAACGA CCTCCCAC	6556
4037	GCCCCUCG A CCACUUC	5569	GGAAGTGG GGCTAGCTACAACGA CGGAGGGC	6557
4040	CUCCGACC A CUUCCAGG	5570	CCTGGAAG GGCTAGCTACAACGA GGTCCGGAG	6558
4052	CCAGGGGA A CCUGCCAU	5571	ATGGCAGG GGCTAGCTACAACGA TCCCCCTGG	6559
4056	GGGAACCU G CCAUGCCA	5572	TGGCATGG GGCTAGCTACAACGA AGGTCCC	6560
4059	AACCUGCC A UGCCAGGA	5573	TCCTGGCA GGCTAGCTACAACGA GGCAGGTT	6561
4061	CCUGCCAU G CCAGGAAC	5574	GTTCCCTGG GGCTAGCTACAACGA ATGGCAGG	6562
4068	UGCCAGGA A CCUGUCCU	5575	AGGACAGG GGCTAGCTACAACGA TCCTGGCA	6563
4072	AGGAACCU G UCCUAGG	5576	CCTTAGGA GGCTAGCTACAACGA AGGTTCC	6564
4082	CCUAAGGA A CCUUCUU	5577	AAGGAAGG GGCTAGCTACAACGA TCCTTAGG	6565
4094	UCCUUCCU G CUUGAGUU	5578	AACTCAAG GGCTAGCTACAACGA AGGAAGGA	6566
4100	CUGCUUGA G UUCCCAGA	5579	TCTGGGAA GGCTAGCTACAACGA TCAAGCAG	6567
4108	GUUCCCAG A UGGCUGGA	5580	TCCAGCCA GGCTAGCTACAACGA CTGGGAAC	6568
4111	CCCAGAUG G CUGGAAGG	5581	CCTTCCAG GGCTAGCTACAACGA CATCTGGG	6569
4121	UGGAAGGG G UCCAGCCU	5582	AGGCTGGA GGCTAGCTACAACGA CCCTTCCA	6570
4126	GGGGUCCA G CCUCGUUG	5583	CAACGAGG GGCTAGCTACAACGA TGGACCCC	6571
4131	CCAGCCUC G UUGGAAGA	5584	TCTTCCAA GGCTAGCTACAACGA GAGGCTGG	6572
4143	GAAGAGGA A CAGCACUG	5585	CAGTGCTG GGCTAGCTACAACGA TCCTCTTC	6573
4146	GAGGAACA G CACUGGGG	5586	CCCCAGTG GGCTAGCTACAACGA TGTTCC	6574

4148	GGAACAGC A CUGGGGAG	5587	CTCCCCAG GGCTAGCTACAACGA GCTGTTCC	6575
4156	ACUGGGGA G UCUUUGUG	5588	CAAAAGA GGCTAGCTACAACGA TCCCAGT	6576
4162	GAGUCUUU G UGGAUUCU	5589	AGAATCCA GGCTAGCTACAACGA AAAGACTC	6577
4166	CUUUGUGG A UUCUGAGG	5590	CCTCAGAA GGCTAGCTACAACGA CCACAAAG	6578
4174	AUUCUGAG G CCCUGCCC	5591	GGGCAGGG GGCTAGCTACAACGA CTCAGAAT	6579
4179	GAGGCCU G CCCAAUGA	5592	TCATTGGG GGCTAGCTACAACGA AGGGCCTC	6580
4184	CCUGCCCA A UGAGACUC	5593	GAGTCTCA GGCTAGCTACAACGA TGGGCAGG	6581
4189	CCAAUGAG A CUCUAGGG	5594	CCCTAGAG GGCTAGCTACAACGA CTCATTGG	6582
4197	ACUCUAGG G UCCAGUGG	5595	CCACTGGA GGCTAGCTACAACGA CCTAGAGT	6583
4202	AGGGUCCA G UGGAUGCC	5596	GGCATCCA GGCTAGCTACAACGA TGGACCCT	6584
4206	UCCAGUGG A UGCCACAG	5597	CTGTGGCA GGCTAGCTACAACGA CCACTGGA	6585
4208	CAGUGGAU G CCACAGCC	5598	GGCTGTGG GGCTAGCTACAACGA ATCCACTG	6586
4211	UGGAUGCC A CAGCCCAG	5599	CTGGGCTG GGCTAGCTACAACGA GGCATCCA	6587
4214	AUGCCACA G CCCAGCUU	5600	AAGCTGGG GGCTAGCTACAACGA TGTGGCAT	6588
4219	ACAGCCCC A CUUGGCC	5601	GGGCCAAG GGCTAGCTACAACGA TGGCTGT	6589
4224	CCAGCUUG G CCCUJJCC	5602	GGAAAGGG GGCTAGCTACAACGA CAAGCTGG	6590
4239	CCUUCCAG A UCCUGGGU	5603	ACCCAGGA GGCTAGCTACAACGA CTGGAAGG	6591
4246	GAUCCUGG G UACUGAAA	5604	TTTCAGTA GGCTAGCTACAACGA CCAGGATC	6592
4248	UCCUGGGU A CUGAAGC	5605	GCCTTCAG GGCTAGCTACAACGA ACCCAGGA	6593
4255	UACUGAAA G CCUUAGGG	5606	CCCTAAGG GGCTAGCTACAACGA TTTCAGTA	6594
4266	UUAGGGAA G CUGGCCUG	5607	CAGGCCAG GGCTAGCTACAACGA TTCCCTAA	6595
4270	GGAAAGCUG G CCUGAGAG	5608	CTCTCAGG GGCTAGCTACAACGA CAGCTTCC	6596
4284	GAGGGGAA G CGGCCUUA	5609	TAGGGCCG GGCTAGCTACAACGA TTCCCTC	6597
4287	GGGAAGCG G CCCUAGG	5610	CCTTAGGG GGCTAGCTACAACGA CGCTTCCC	6598
4298	CUAAGGGA G UGUCAAAG	5611	CTTAGACA GGCTAGCTACAACGA TCCCTTAG	6599
4300	AAGGGAGU G UCUAAGAA	5612	TTCTTACA GGCTAGCTACAACGA ACTCCCTT	6600
4308	GUCUAAGA A CAAAAGCG	5613	CGCTTTTG GGCTAGCTACAACGA TCTTAGAC	6601
4314	GAACAAAA G CGACCCAU	5614	ATGGGTCG GGCTAGCTACAACGA TTTGGTTC	6602
4317	CAAAAGCG A CCCAUJCA	5615	TGAATGGG GGCTAGCTACAACGA CGCTTTG	6603
4321	AGCGACCC A UUCAGAGA	5616	TCTCTGAA GGCTAGCTACAACGA GGGTCGCT	6604
4329	AUUCAGAG A CUGUCCU	5617	AGGGACAG GGCTAGCTACAACGA CTCTGAAT	6605
4332	CAGAGACU G UCCCUGAA	5618	TTCAAGGG GGCTAGCTACAACGA AGTCTCTG	6606
4341	UCCCCUGAA A CCUAGUAC	5619	GTACTAGG GGCTAGCTACAACGA TTCAGGGA	6607
4346	GAAACCUA G UACUGCCC	5620	GGGCAGTA GGCTAGCTACAACGA TAGGTTTC	6608
4348	AACCUAGU A CUGCCCC	5621	GGGGGCAG GGCTAGCTACAACGA ACTAGGTT	6609
4351	CUAGUACU G CCCCCCAU	5622	ATGGGGGG GGCTAGCTACAACGA AGTACTAG	6610
4358	UGCCCCCC A UGAGGAAG	5623	CTTCCTCA GGCTAGCTACAACGA GGGGGGCA	6611
4369	AGGAAGGA A CAGCRAUG	5624	CATTGCTG GGCTAGCTACAACGA TCCTTCCT	6612
4372	AAGGAACA G CAAUGGUG	5625	CACCATTG GGCTAGCTACAACGA TGTTCCCT	6613
4375	GAACAGCA A UGGUGUCA	5626	TGACACCA GGCTAGCTACAACGA TGCTGTTC	6614
4378	CAGCAAU G UGUCAUGA	5627	TACTGACA GGCTAGCTACAACGA CATTGCTG	6615
4380	GCAAUGGU G UCAGUAUC	5628	GATACTGA GGCTAGCTACAACGA ACCATTGC	6616
4384	UGGUGUCA G UAUCCAGG	5629	CCTGGATA GGCTAGCTACAACGA TGACACCA	6617
4386	GUGUCAGU A UCCAGGCC	5630	AGCCTGGA GGCTAGCTACAACGA ACTGACAC	6618
4392	GUAUCCAG G CUUJGUAC	5631	GTACAAAG GGCTAGCTACAACGA CTGGATAC	6619
4397	CAGGCUUU G UACAGAGU	5632	ACTCTGTA GGCTAGCTACAACGA AAAGCCTG	6620
4399	GGCUUUGU A CAGAGUGC	5633	GCACCTCTG GGCTAGCTACAACGA ACAAGCC	6621
4404	UGUACAGA G UGCUJJUC	5634	GAAAAGCA GGCTAGCTACAACGA TCTGTACA	6622
4406	UACAGAGU G CUUJUCUG	5635	CAGAAAAG GGCTAGCTACAACGA ACTCTGTA	6623
4414	GCUUUUUCU G UUUAGUUU	5636	AAACTAAA GGCTAGCTACAACGA AGAAAAGC	6624
4419	UCUGUUUA G UUUUUACU	5637	AGTAAAAAA GGCTAGCTACAACGA TAAACAGA	6625
4425	UAGUUUUU A CUUUUUUU	5638	AAAAAAAG GGCTAGCTACAACGA AAAACTA	6626

4434	CUUUUUU G UUUUGUUU	5639	AAACAAAA GGCTAGCTACAACGA AAAAAAAG	6627
4439	UUUGUUU G UUUUUUA	5640	TAAAAAAA GGCTAGCTACAACGA AAAACAAA	6628
4451	UUUUAAAG A UGAAAUAA	5641	TTATTTCA GGCTAGCTACAACGA CTTTAAAA	6629
4456	AAGAUGAA A UAAAGACC	5642	GGTCCTTA GGCTAGCTACAACGA TTCATCTT	6630
4462	AAAUAAG A CCCAGGG	5643	CCCCTGGG GGCTAGCTACAACGA CTTTATTT	6631

Input Sequence = HSERB2R. Cut Site = R/Y
Arm Length = 8. Core Sequence = GGCTAGCTACAACGA
HSERB2R (Human c-erb-B-2 mRNA; 4473 bp)

Table V: Human HER2 Synthetic DNAzyme and Target molecules

Gene	Pos	Target	Seq ID	RPI#	DNAzyme	Seq ID
erbB2	377	CCACCA A UGCCAG	6632	24998	cuggca GGCTAGCTACAACGA uggugg B	6637
erbB2	766	UUCUCCG A UGUGUAA	6633	24999	uuacaca GGCTAGCTACAACGA cggagaa B	6638
erbB2	1202	UGUGCU A UGGUCU	6634	25000	agacca GGCTAGCTACAACGA agcaca B	6639
erbB2	1444	CCUCAGC G UCUUCCA	6635	25001	uggaaga GGCTAGCTACAACGA gcugagg B	6640
erbB2	1583	AUCCACC A UAACACC	6636	25002	gguguua GGCTAGCTACAACGA gguggau B	6641

A, G, C, T (*italic*) = deoxy

lower case = 2'-O-methyl

B = inverted deoxyabasic derivative

Table VI: Human HIV Hammerhead Ribozyme and Substrate Sequence

Substrate	Seq ID	Hammerhead	Seq ID
AUAAAGCU U GCCUUGAG	6642	CUCAGGGC CUGAUGAG <u>GGCCGUUAGGCCGAA</u> AGCUUUAU	6727
AGGCUAUU U UUUUAGGG	6643	CCCUAAAA CUGAUGAG <u>GGCCGUUAGGCCGAA</u> AUUAGCCU	6728
GCCUAAUU U UUUAGGG	6644	UCCCUAAA CUGAUGAG <u>GGCCGUUAGGCCGAA</u> AAUUAGCC	6729
GCCUCAAU A AACCUUGC	6645	GCAAGCUU CUGAUGAG <u>GGCCGUUAGGCCGAA</u> AUUGAGGC	6730
UUUCGGGU U UAUUACAG	6646	CUGUAAUA CUGAUGAG <u>GGCCGUUAGGCCGAA</u> ACCCGAAA	6731
GCAGGACU C GGCUGCU	6647	AGCAAGCC CUGAUGAG <u>GGCCGUUAGGCCGAA</u> AGUCCUGC	6732

Input Sequence = HIV1. Cut Site = UH/.

Arm Length = 8. Core Sequence = CUGAUGAG GGCCGUUAGGC CGAA

HIV1 Consensus

Underlined region can be any X sequence or linker, as described herein.

Table VII: Human HIV Inozyme and Substrate Sequence

Substrate	Seq ID	Inozyme	Seq ID
UGGAAAAC A GAUGGCAG	6648	CUGCCAUC CUGAUGAG <u>GCCGUUAGGCCGAA</u> IUUUUCCA	6733
AAUAAAGC U UGCCUUGA	6649	UCAAGGCA CUGAUGAG <u>GCCGUUAGGCCGAA</u> ICUUUAUU	6734
UCUCUAGC A GUGGCC	6650	GGCGCCAC CUGAUGAG <u>GCCGUUAGGCCGAA</u> ICUAGAGA	6735
GGAGCCAC C CCACAAGA	6651	UCUUGUGG CUGAUGAG <u>GCCGUUAGGCCGAA</u> IUGGCUCC	6736
AGUGGCGC C CGAACAGG	6652	CCUGUUCG CUGAUGAG <u>GCCGUUAGGCCGAA</u> ICGCCACU	6737
GUGGCCGC C GAACAGGG	6653	CCCUGUUC CUGAUGAG <u>GCCGUUAGGCCGAA</u> ICGGCCAC	6738
CUCGACGC A GGACUCGG	6654	CCGAGUCC CUGAUGAG <u>GCCGUUAGGCCGAA</u> ICGUCGAG	6739
CGCAGGAC U CGGCUUGC	6655	GCAAGCCG CUGAUGAG <u>GCCGUUAGGCCGAA</u> IUCCUGCG	6740

Input Sequence = HIV1. Cut Site = CH/.

Arm Length = 8. Core Sequence = CUGAUGAG GCCGUUAGGC CGAA
HIV1 Consensus

Underlined region can be any X sequence or linker, as described herein.
“I” stands for Inosine.

Table VIII: Human HIV Zinzyme and Substrate Sequence

Substrate	Seq ID	Zinzyme	Seq ID
UCAAUAAA G CUUGCCUU	6656	AAGGCAAG GCCGAAAGGCGAGUGAGGGUCU UUUAUUGA	6741
AGGACUCG G CUUGCUGA	6657	UCAGCAAG GCCGAAAGGCGAGUGAGGGUCU CGAGUCCU	6742
GCAGUGGC G CCCGAACA	6658	UGUUCGGG GCCGAAAGGCGAGUGAGGGUCU GCCACUGC	6743
CUCUAGCA G UGGCGCCC	6659	GGGCGCCA GCCGAAAGGCGAGUGAGGGUCU UGCUAGAG	6744
UAGCAGUG G CGCCCCGAA	6660	UUCGGGCG GCCGAAAGGCGAGUGAGGGUCU CACUGCUA	6745
AGAGAUGG G UGCGAGAG	6661	CUCUCGCA GCCGAAAGGCGAGUGAGGGUCU CCAUCUCU	6746
AGAUGGGU G CGAGAGCG	6662	CGCUCUCG GCCGAAAGGCGAGUGAGGGUCU ACCCAUCU	6747
CUCUCGAC G CAGGACUC	6663	GAGUCCUG GCCGAAAGGCGAGUGAGGGUCU GUCCAGAG	6748

Input Sequence = HIV1. Cut Site = G/Y

Arm Length = 8. Core Sequence = GCcgaaagGCGaGuCaaGGuCu

HIV1 Consensus

Table IX: Human HIV DNAzyme and Substrate Sequence

Substrate	Seq ID	DNAzyme	Seq ID
UCAAUAAA G CUUGCCUU	6656	AAGGCAAG GGCTAGCTACAAACGA TTTATTGA	6749
AGGACUCG G CUUGCUGA	6657	TCAGCAAG GGCTAGCTACAAACGA CGAGTCCT	6750
GCAUGGGC G CCCGAACA	6658	TGTCGGG GGCTAGCTACAAACGA GCCACTGC	6751
CUCUAGCA G UGGCGCCC	6659	GGGCGCCA GGCTAGCTACAAACGA TGCTAGAG	6752
UAGCAGUG G CGCCCGAA	6660	TTCGGGCG GGCTAGCTACAAACGA CACTGCTA	6753
AGAGAUGG G UGCGAGAG	6661	CTCTCGCA GGCTAGCTACAAACGA CCATCTCT	6754
AGAUGGGU G CGAGAGCG	6662	CGCTCTCG GGCTAGCTACAAACGA ACCCATCT	6755
CUCUCGAC G CAGGACUC	6663	GAGTCCTG GGCTAGCTACAAACGA GTCGAGAG	6756
UAUGGAAA A CAGAUGGC	6664	GCCATCTG GGCTAGCTACAAACGA TTTCCATA	6757
GAAAACAG A UGGCAGGU	6665	ACCTGCCA GGCTAGCTACAAACGA CTGTTTTC	6758
AAGCCUCA A UAAAGCUU	6666	AAGCTTTA GGCTAGCTACAAACGA TGAGGCTT	6759
GGAGAGAG A UGGGUGCG	6667	CGCACCCA GGCTAGCTACAAACGA CTCTCTCC	6760
GACGCAGG A CUCGGCUU	6668	AAGCGAG GGCTAGCTACAAACGA CCTGCGTC	6761

Input Sequence = HIV1. Cut Site = R/Y

Arm Length = 8. Core Sequence = GGCTAGCTACAAACGA

HIV1 Consensus

Table X: Human HIV Amberzyme and Substrate Sequence

Substrate	Seq ID	Seq	Amberzyme	Seq ID
UCUAAUAA G	6656	AAGGAAGG GGAGGAACUCC CU UCAAGGAACUCCGGG UUUAUUGA		6762
AGGRCTCG G	6657	UCAGGAAGG GGAGGAACUCC CU UCAAGGAACUCCGGG CGAGUCU		6763
GCAUGGGC G	6658	UGUUCGGG GGAGGAACUCC CU UCAAGGAACUCCGGG GCCACUGC		6764
CUCUAGGA G	6659	GGGGGCCA GGAGGAACUCC CU UCAAGGAACUCCGGG UGCCAGAG		6765
UAGCAGUG G	6660	UUCGGGGG GGAGGAACUCC CU UCAAGGAACUCCGGG CACUGCUA		6766
AGAGAUGG G	6661	CUCUCGCA GGAGGAACUCC CU UCAAGGAACUCCGGG CCAUCU		6767
AGAUAGGU G	6662	CGCUCUCG GGAGGAACUCC CU UCAAGGAACUCCGGG ACCCAUCU		6768
CUCUCGAC G	6663	GAGUCUCG GGAGGAACUCC CU UCAAGGAACUCCGGG GUCAAGAG		6769
GEAAACAA G	6664	CCUGCCAU GGAGGAACUCC CU UCAAGGAACUCCGGG UGUUUC		6770
AUGGGTTC G	6665	GACGCUU GGAGGAACUCC CU UCAAGGAACUCCGGG GCACCCAU		6771
AAAAGGGG G	6666	CCCCAUAC GGAGGAACUCC CU UCAAGGAACUCCGGG CCCTUUU		6772
AGAAAGGG G	6667	CCAUAUCC GGAGGAACUCC CU UCAAGGAACUCCGGG CCUUTU		6773
GAAGAGGG G	6668	CCCAAUCC GGAGGAACUCC CU UCAAGGAACUCCGGG CCCTUUC		6774
GCGUAGAA G	6669	UCUCUCUC GGAGGAACUCC CU UCAAGGAACUCCGGG UCUAGCC		6775
UUTUAAA G	6670	CCCCUUUU GGAGGAACUCC CU UCAAGGAACUCCGGG UUUAAA		6776
UAUAGGGAG G	6671	CCUCUUCU GGAGGAACUCC CU UCAAGGAACUCCGGG CUCCCAU		6777
UUCGCCGTC G	6672	UCCUCUU GGAGGAACUCC CU UCAAGGAACUCCGGG CCGCCCA		6778
GAGAGAGA G	6673	UCUCGAC GGAGGAACUCC CU UCAAGGAACUCCGGG CAUCUC		6779
AGCCGAGU G	6674	AGCCGAGU GGAGGAACUCC CU UCAAGGAACUCCGGG CUCUCCC		6780
UAGCTAGG G	6675	CUAGCUC GGAGGAACUCC CU UCAAGGAACUCCGGG GCAUGCA		6781
UAGAAGCA G	6676	UCAUCU GGAGGAACUCC CU UCAAGGAACUCCGGG UCUUUC		6782
AGGAGAGA G	6677	GCACCCAU GGAGGAACUCC CU UCAAGGAACUCCGGG UCUUCCC		6783
GAAGGAGA G	6678	ACCCAUU GGAGGAACUCC CU UCAAGGAACUCCGGG UCUUCCC		6784
UAGCTAGG G	6679	GGGGGGCA GGAGGAACUCC CU UCAAGGAACUCCGGG UGUCCUC		6785
UAGAAGCA G	6680	UCGGGGCG GGAGGAACUCC CU UCAAGGAACUCCGGG ACUGCUAG		6786
AGGAGAGA G	6681	UCUAGCCU GGAGGAACUCC CU UCAAGGAACUCCGGG CGCUAGUC		6787
GCUGAGAG G	6682	AUCUCU GGAGGAACUCC CU UCAAGGAACUCCGGG CTUCUAGC		6788
AAAGGGGG G	6683	CCCCCAAU GGAGGAACUCC CU UCAAGGAACUCCGGG CCCCCU		6789

Input Sequence = HIV1. Cut Site = G/.
 Arm Length = 8. Core Sequence = GGAGGAACUCC CU UCAAGGAACUCCGGG
 HIV1 Consensus

Table XI: Human HIV Enzymatic Nucleic Acid and Target molecules

Target	Seq ID	RPI#	Enzymatic Nucleic Acid	Seq ID
GAGAUGG G UGGCAGA	6718	25003	ucucgca <i>GGCTAGCTACAAACGA</i> ccaucuc B	6790
AUGGAAA A CAGAUGG	6719	25004	ccaucug <i>GGCTAGCTACAAACGA</i> uuuuccau B	6791
AAAACAG A UGGCAGG	6720	25005	ccugcca <i>GGCTAGCTACAAACGA</i> cuguuuu B	6792
AGCCUCA A UAAAGCU	6721	25006	agcuuua <i>GGCTAGCTACAAACGA</i> ugaggcu B	6793
GAGAGAG A UGGGUGC	6722	25007	gcaccca <i>GGCTAGCTACAAACGA</i> cucucuc B	6794
CAAUAAA G CUUGCCU	6723	25008	aggcaag gccaaagg <u>C</u> gagugaGGu <u>C</u> u uuuauug B	6795
GGACUCG G CUUGCUG	6724	25009	cagcaag gccaaagg <u>C</u> gagugaGGu <u>C</u> u cgagucc B	6796
GAGAUGG G UGGCAGA	6718	25010	ucucgca gccaaagg <u>C</u> gagugaGGu <u>C</u> u ccaucuc B	6797
GAUGGGU G CGAGAGC	6725	25011	gcucucg gccaaagg <u>C</u> gagugaGGu <u>C</u> u acccauc B	6798
UCUCGAC G CAGGACU	6726	25012	aguuccug gccaaagg <u>C</u> gagugaGGu <u>C</u> u gucgaga B	6799

G = Guanosine

A, G, C, T (*italic*) = deoxy

lower case = 2'-O-methyl

s = phosphorothioate 3'-internucleotide linkage

C = 2'-deoxy-2'-Amino cytidine

B = inverted deoxyabasic derivative

Table XII: Human HIV-1 Sequences

Genbank Acc#	Seq Name(s)	Subtype	Organism
A04321	IIIB LAI	B	HIV-1
AF110962	96BW0402	C	HIV-1
AF110963	96BW0407	C	HIV-1
AF110968	96BW0504	C	HIV-1
AF110965	96BW0409	C	HIV-1
AF110966	96BW0410	C	HIV-1
AF110964	96BW0408	C	HIV-1
AF110975	96BW15C05	C	HIV-1
AF110974	96BW15C02	C	HIV-1
AF110973	96BW15B03	C	HIV-1
AF107771	UGSE8131	A	HIV-1
U69585	WCIPR854	B	HIV-1
U69588	WCIPR855	B	HIV-1
U69589	WCIPR9011	B	HIV-1
U69591	WCIPR9018	B	HIV-1
U69592	WCIPR9031	B	HIV-1
U69593	WCIPR9032	B	HIV-1
U69586	WCIPR8546	B	HIV-1
AF003888	NL43WC001	B	HIV-1
X01762	REHTLV3 LAI IIIB	B	HIV-1
AF075719	MNTQ MNcloneTQ	B	HIV-1
AJ239083	97CAMP645MO	MO	HIV-1
D86069	PM213	B	HIV-1
K02083	PV22	B	HIV-1
M93259	YU10	B	HIV-1
Z11530	F12CG	B	HIV-1
AB032740	TH022 95TNIH022	CRF01_AE	HIV-1
AF107770	SE7812	CRF02_AG	HIV-1
AF070521	NL43E9	B	HIV-1
AF033819	HXB2-copy LAI	B	HIV-1
AF003887	WC001	B	HIV-1
AF069140	DH123	B	HIV-1
AF110967	96BW0502	C	HIV-1
K03455	HXB2 HXB2CG	B	HIV-1
M96155	P896 89.6	B	HIV-1
X04415	MAL MALCG	ADK	HIV-1
AF133821	MB2059	D	HIV-1
D86068	MCK1	B	HIV-1
U69587	WCIPR8552	B	HIV-1
U69590	WCIPR9012	B	HIV-1
AB032741	95TNIH047 TH047	CRF01_AE	HIV-1
AB023804	93IN101	C	HIV-1
AF193275	97BL006	A	HIV-1
AF197340	90CF11697	CRF01_AE	HIV-1
AF224507	WK	B	HIV-1
AJ271445	GB8 GB8-46R	B	HIV-1
AF197338	93TH057	CRF01_AE	HIV-1
AF197339	93TH065	CRF01_AE	HIV-1
AF197341	90CF4071	CRF01_AE	HIV-1

U69584	85WCIPR54	B	HIV-1
L31963	TH475A LAI	B	HIV-1
U46016	ETH2220 C2220	C	HIV-1
U21135	WEAU160 GHOSH	B	HIV-1
AF042106	MBCC18R01	B	HIV-1
K03454	ELI	D	HIV-1
U51188	90CF402 90CR402	CRF01_AE	HIV-1
U51189	93TH253	CRF01_AE	HIV-1
U34603	H0320-2A12	B	HIV-1
M38429	JRCSF JR-CSF	B	HIV-1
M17451	RF HAT3	B	HIV-1
L02317	BC BCSG3	B	HIV-1
M93258	YU2 YU2X	B	HIV-1
M22639	Z2Z6 Z2 CDC-Z34	D	HIV-1
AF004394	AD8, AD87 ADA	B	HIV-1
AF049337	94CY032-3	CRF04_cpx	HIV-1
U34604	3202A21	B	HIV-1
L20587	ANT70	O	HIV-1
D10112	CAM1	B	HIV-1
U54771	CM240	CRF01_AE	HIV-1
U43096	D31	B	HIV-1
U37270	C18MBC	B	HIV-1
U43141	HAN	B	HIV-1
U23487	MANC	B	HIV-1
M17449	MNCG MN	B	HIV-1
L20571	MVP5180	O	HIV-1
M27323	NDK	D	HIV-1
M38431	NY5CG	B	HIV-1
M26727	OY1, 397	B	HIV-1
K02007	SF2 LAV2 ARV2	B	HIV-1
M62320	U455 U455A	A	HIV-1
U26546	WR27	B	HIV-1
AF004885	Q23	A	HIV-1
AF042100	MBC200	B	HIV-1
AF042101	MBC925	B	HIV-1
AJ006287	89SP061 89ES061	B	HIV-1
AF067154	93IN999 301999	C	HIV-1
AF067155	95IN21068 21068	C	HIV-1
AJ006022	YBF30	N	HIV-1
AF061642	SE6165 G6165	G	HIV-1
AF119820	97PVCH GR11	CRF04_cpx	HIV-1
AF119819	97PVMY GR84	CRF04_cpx	HIV-1
K02013	LAI BRU	B	HIV-1
L39106	IBNG	CRF02_AG	HIV-1
U12055	LW123	B	HIV-1
M19921	NL43 pNL43	B	HIV-1
AF061640	HH8793-1.1	G	HIV-1
AF061641	HH8793-12.1	G	HIV-1
AF063223	DJ263	CRF02_AG	HIV-1
AF049495	NC7	B	HIV-1
AF049494	499JC16	B	HIV-1
AF086817	TWCYS LM49	B	HIV-1
AF064699	BFP90	CRF06_cpx	HIV-1

AF084936	DRCBL	G	HIV-1
AF193253	VI1310 AF193253	CRF05_DF	HIV-1
AF190127	VI991	H	HIV-1
AF193276	KAL153-2	CRF03_AB	HIV-1
AF192135	BW2117	AJ	HIV-1
AJ288982	95ML127	CRF06_cpx	HIV-1
AJ288981	97SE1078	CRF06_cpx	HIV-1
AJ271370	YBF106	N	HIV-1
AJ237565	97NOGIL3	ADHK	HIV-1

CLAIMS

What we claim is:

1. A siRNA nucleic acid molecule that modulates expression of a nucleic acid molecule encoding HER2.
2. A enzymatic nucleic acid molecule that modulates expression of a nucleic acid molecule encoding HER2.
3. An enzymatic nucleic acid molecule comprising a sequence selected from the group consisting of SEQ ID NOs: 5644-6631 and 6637-6641.
4. An enzymatic nucleic acid molecule comprising at least one binding arm wherein one or more of said binding arms comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs: 4656-5643 and 6632-6636.
5. A siRNA nucleic acid molecule comprising a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs: 4656-5643 and 6632-6636.
6. The nucleic acid molecule of any of claims 1-5, wherein said nucleic acid molecule is adapted to treat cancer.
7. The enzymatic nucleic acid molecule of any of claims 2-4, wherein said enzymatic nucleic acid molecule has an endonuclease activity to cleave RNA having HER2 sequence.
8. The enzymatic nucleic acid molecule of claim 2, wherein said enzymatic nucleic acid molecule is a DNAzyme in a 10-23 configuration.
9. The enzymatic nucleic acid molecule of claim 8, wherein said enzymatic nucleic acid molecule comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs: 4656-5643 and 6632-6636.

10. The enzymatic nucleic acid molecule of claim 8, wherein said enzymatic nucleic acid molecule comprises a sequence selected from the group consisting of SEQ ID NOs: 5644-6631 and 6637-6641.
11. The nucleic acid molecule of any of claims 1, 2, 4 or 5, wherein said nucleic acid molecule comprises between 12 and 100 bases complementary to a RNA having HER2 sequence.
12. The nucleic acid molecule of claim of any of claims 1, 2, 4 or 5, wherein said nucleic acid molecule comprises between 14 and 24 bases complementary to a RNA having HER2 sequence.
13. The nucleic acid molecule of any of claims 1-5, wherein said nucleic acid molecule is chemically synthesized.
14. The nucleic acid molecule of any of claims 1-5, wherein said nucleic acid molecule comprises at least one 2'-sugar modification.
15. The nucleic acid molecule of any of claims 1-5, wherein said nucleic acid molecule comprises at least one nucleic acid base modification.
16. The nucleic acid molecule of any of claims 1-5, wherein said nucleic acid molecule comprises at least one phosphate backbone modification.
17. A mammalian cell comprising the nucleic acid molecule of any of claims 1-5.
18. The mammalian cell of claim 17, wherein said mammalian cell is a human cell.
19. A method of reducing HER2 activity in a cell, comprising contacting said cell with the nucleic acid molecule of any of claims 1-5, under conditions suitable for said reduction of HER2 activity.
20. A method of treatment of a subject having a condition associated with the level of HER2, comprising contacting cells of said subject with the nucleic acid molecule of any of claims 1-5, under conditions suitable for said treatment.
21. The method of claim 20 further comprising the use of one or more drug therapies under conditions suitable for said treatment.

22. A method of cleaving RNA having HER2 sequence comprising contacting an enzymatic nucleic acid molecule of any of claims 2-4 with said RNA under conditions suitable for the cleavage.
23. The method of claim 22, wherein said cleavage is carried out in the presence of a divalent cation.
24. The method of claim 23, wherein said divalent cation is Mg²⁺.
25. The nucleic acid molecule of any of claims 1-5, wherein said nucleic acid molecule comprises a cap structure, wherein the cap structure is at the 5'-end, 3'-end, or both the 5'-end and the 3'-end of said nucleic acid molecule.
26. The nucleic acid molecule of claim 25, wherein the cap structure at the 5'-end, 3'-end, or both the 5'-end and the 3'-end comprises a 3',3'-linked or 5',5'-linked deoxyabasic ribose derivative.
27. An expression vector comprising a nucleic acid sequence encoding at least one nucleic acid molecule of any of claims 1-5 in a manner that allows expression of the nucleic acid molecule.
28. A mammalian cell comprising an expression vector of claim 27.
29. The mammalian cell of claim 28, wherein said mammalian cell is a human cell.
30. The expression vector of claim 27, wherein said nucleic acid molecule is in a DNAzyme configuration.
31. The expression vector of claim 27, wherein said expression vector further comprises a sequence for a nucleic acid molecule complementary to a nucleic acid molecule having HER2 sequence.
32. The expression vector of claim 27, wherein said expression vector comprises a nucleic acid sequence encoding two or more of said nucleic acid molecules, which may be the same or different.
33. The expression vector of claim 32, wherein said expression vector further comprises a sequence encoding an antisense nucleic acid molecule or siRNA molecule complementary to a nucleic acid molecule having HER2 sequence.

34. A method for treatment of cancer comprising administering to a subject the nucleic acid molecule of any of claims 1-5 under conditions suitable for said treatment.
35. The method of claim 34, wherein said cancer is breast cancer.
36. The method of claim 34, wherein said cancer is ovarian cancer.
37. The method of claim 34, wherein said method further comprises administering to said subject one or more other therapies under conditions suitable for said treatment.
38. The method of claim 21 wherein said other drug therapies are chosen from monoclonal antibody therapy, chemotherapy, radiation therapy, and analgesic therapy.
39. The method of claim 37 wherein said other drug therapies are chosen from monoclonal antibody therapy, chemotherapy, radiation therapy, and analgesic therapy.
40. The method of claim 38, wherein said chemotherapy is selected from the group consisting of paclitaxel (Taxol), docetaxel, cisplatin, methotrexate, cyclophosphamide, doxorubicin, fluorouracil carboplatin, edatrexate, gemcitabine, and vinorelbine.
41. The method of claim 38, wherein said monoclonal antibody is Herceptin (trastuzumab).
42. The method of claim 39, wherein said chemotherapy is selected from the group consisting of paclitaxel (Taxol), docetaxel, cisplatin, methotrexate, cyclophosphamide, doxorubicin, fluorouracil carboplatin, edatrexate, gemcitabine, and vinorelbine.
43. The method of claim 39, wherein said monoclonal antibody is Herceptin (trastuzumab).
44. A composition comprising a nucleic acid molecule of any of claims 1-5 in a pharmaceutically acceptable carrier.

45. A method of administering to a cell a nucleic acid molecule of any of claims 1-5 comprising contacting said cell with the nucleic acid molecule under conditions suitable for said administration.
46. The method of claim 45, wherein said cell is a mammalian cell.
47. The method of claim 45, wherein said cell is a human cell.
48. The method of claim 45, wherein said administration is in the presence of a delivery reagent.
49. The method of claim 48, wherein said delivery reagent is a lipid.
50. The method of claim 49, wherein said lipid is a cationic lipid.
51. The method of claim 49, wherein said lipid is a phospholipid.
52. The method of claim 48, wherein said delivery reagent is a liposome.
53. A siRNA nucleic acid molecule that modulates expression of a nucleic acid molecule encoding K-Ras.
54. A siRNA nucleic acid molecule that modulates expression of a nucleic acid molecule encoding H-Ras or N-Ras.
55. An enzymatic nucleic acid molecule that modulates expression of a nucleic acid molecule encoding K-Ras.
56. An enzymatic nucleic acid molecule that modulates expression of a nucleic acid molecule encoding H-Ras or N-Ras.
57. An enzymatic nucleic acid molecule comprising a sequence of SEQ ID NOs: 2329-4655.
58. An enzymatic nucleic acid molecule comprising at least one binding arm wherein one or more of said binding arms comprises a sequence complementary to a sequence of SEQ ID NOs: 1-2328.
59. A siRNA nucleic acid molecule comprising a sequence complementary to a sequence of SEQ ID NOs: 1-2328.

60. The nucleic acid molecule of any of claims 53-59, wherein said nucleic acid molecule is adapted to treat cancer.
61. The enzymatic nucleic acid molecule of any of claims 55, 57 or 58, wherein said enzymatic nucleic acid molecule has an endonuclease activity to cleave RNA having a K-Ras sequence.
62. The enzymatic nucleic acid molecule of any of claims 56-58, wherein said enzymatic nucleic acid molecule has an endonuclease activity to cleave RNA having an H-Ras sequence.
63. The enzymatic nucleic acid molecule of claim 55 or claim 56, wherein said enzymatic nucleic acid molecule is a DNAzyme in a 10-23 configuration.
64. The enzymatic nucleic acid molecule of claim 63, wherein said enzymatic nucleic acid molecule comprises a sequence complementary to a sequence of SEQ ID NOs: 1-2328.
65. The enzymatic nucleic acid molecule of claim 63, wherein said enzymatic nucleic acid molecule comprises a sequence of SEQ ID NOs: 2329-4655.
66. The nucleic acid molecule of any of claims 53-59, wherein said nucleic acid molecule comprises between 12 and 100 bases complementary to an RNA having K-Ras, H-Ras and/or N-Ras sequence.
67. The nucleic acid molecule of any of claims 53-59, wherein said nucleic acid molecule comprises between 14 and 24 bases complementary to an RNA having K-Ras, H-Ras and/or N-Ras sequence.
68. The nucleic acid molecule of any of claims 53-59, wherein said nucleic acid molecule is chemically synthesized.
69. The nucleic acid molecule of any of claims 53-59, wherein said nucleic acid molecule comprises at least one 2'-sugar modification.
70. The nucleic acid molecule of any of claims 53-59, wherein said nucleic acid molecule comprises at least one nucleic acid base modification.
71. The nucleic acid molecule of any of claims 53-59, wherein said enzymatic nucleic acid molecule comprises at least one phosphate backbone modification.

72. A mammalian cell comprising the nucleic acid molecule of any of claims 53-59.
73. The mammalian cell of claim 72, wherein said mammalian cell is a human cell.
74. A method of reducing K-Ras activity in a cell, comprising contacting said cell with the nucleic acid molecule of any of claims 53, 55, 57, 58 or 59, under conditions suitable for said reduction of K-Ras activity.
75. A method of reducing H-Ras activity in a cell, comprising contacting said cell with the nucleic acid molecule of any of claims 54, 56, 57, 58 or 59, under conditions suitable for said reduction of H-Ras activity.
76. A method of treatment of a subject having a condition associated with the level of K-Ras, comprising contacting cells of said subject with the nucleic acid molecule of any of claims 53, 55, 57, 58 or 59, under conditions suitable for said treatment.
77. A method of treatment of a subject having a condition associated with the level of H-Ras, comprising contacting cells of said subject with the nucleic acid molecule of any of claims 54, 56, 57, 58 or 59, under conditions suitable for said treatment
78. The method of claim 76 further comprising the use of one or more drug therapies under conditions suitable for said treatment.
79. The method of claim 77 further comprising the use of one or more drug therapies under conditions suitable for said treatment
80. A method of cleaving RNA having a K-Ras sequence comprising contacting an nucleic acid molecule of any of claims 53, 55, 57, 58 or 59, with said RNA under conditions suitable for the cleavage.
81. A method of cleaving RNA having a H-Ras sequence comprising contacting an nucleic acid molecule of any of claims 54, 56, 57, 58 or 59, with said RNA under conditions suitable for the cleavage.
82. The method of claim 80, wherein said cleavage is carried out in the presence of a divalent cation.

83. The method of claim 81, wherein said cleavage is carried out in the presence of a divalent cation.
84. The method of claim 82, wherein said divalent cation is Mg²⁺.
85. The method of claim 83, wherein said divalent cation is Mg²⁺.
86. The nucleic acid molecule of any of claims 53-59, wherein said nucleic acid molecule comprises a cap structure, wherein the cap structure is at the 5'-end, 3'-end, or both the 5'-end and the 3'-end of said nucleic acid molecule.
87. The nucleic acid molecule of claim 86, wherein the cap structure comprises a 3',3'-linked or 5',5'-linked deoxyabasic ribose derivative.
88. An expression vector comprising a nucleic acid sequence encoding at least one nucleic acid molecule of any of claims 53-59 in a manner that allows expression of the nucleic acid molecule.
89. A mammalian cell comprising an expression vector of claim 88.
90. The mammalian cell of claim 89, wherein said mammalian cell is a human cell.
91. The expression vector of claim 88, wherein said nucleic acid molecule is in a DNAzyme configuration.
92. The expression vector of claim 88, wherein said expression vector further comprises a sequence for a nucleic acid molecule complementary to a nucleic acid molecule having a K-Ras sequence.
93. The expression vector of claim 88, wherein said expression vector further comprises a sequence for a nucleic acid molecule complementary to a nucleic acid molecule having a H-Ras sequence.
94. The expression vector of claim 88, wherein said expression vector comprises a nucleic acid sequence encoding two or more of said nucleic acid molecules, which may be the same or different.
95. The expression vector of claim 88, wherein said expression vector further comprises a sequence encoding an antisense nucleic acid molecule or siRNA

nucleic acid molecule complementary to a nucleic acid molecule having a K-Ras sequence.

96. The expression vector of claim 88, wherein said expression vector further comprises a sequence encoding an antisense nucleic acid molecule or siRNA nucleic acid molecule complementary to a nucleic acid molecule having a H-Ras sequence.
97. A method for the treatment of cancer comprising administering to a subject the nucleic acid molecule of any of claims 53-59 under conditions suitable for said treatment.
98. The method of claim 97, wherein said cancer is colorectal cancer.
99. The method of claim 97, wherein said cancer is lung cancer.
100. The method of claim 97, wherein said cancer is prostate cancer.
101. The method of claim 97, wherein said cancer is bladder cancer.
102. The method of claim 97, wherein said cancer is breast cancer.
103. The method of claim 97, wherein said cancer is pancreatic cancer.
104. The method of claim 97, wherein said method further comprises administering to said patient one or more other therapies under conditions suitable for said treatment.
105. The method of claim 78 wherein said other drug therapies are chosen from monoclonal antibody therapy, chemotherapy, radiation therapy, and analgesic therapy.
106. The method of claim 79 wherein said other drug therapies are chosen from monoclonal antibody therapy, chemotherapy, radiation therapy, and analgesic therapy.
107. The method of claim 104 wherein said other drug therapies are chosen from monoclonal antibody therapy, chemotherapy, radiation therapy, and analgesic therapy.

108. The method of claim 105, wherein said chemotherapy is selected from the group consisting of paclitaxel (Taxol), docetaxel, cisplatin, methotrexate, cyclophosphamide, doxorubicin, fluorouracil carboplatin, edatrexate, gemcitabine, and vinorelbine.
109. The method of claim 106, wherein said chemotherapy is selected from the group consisting of paclitaxel (Taxol), docetaxel, cisplatin, methotrexate, cyclophosphamide, doxorubicin, fluorouracil carboplatin, edatrexate, gemcitabine, and vinorelbine.
110. The method of claim 107, wherein said chemotherapy is selected from the group consisting of paclitaxel (Taxol), docetaxel, cisplatin, methotrexate, cyclophosphamide, doxorubicin, fluorouracil carboplatin, edatrexate, gemcitabine, and vinorelbine.
111. A composition comprising a nucleic acid molecule of any of claims 53-59 and a pharmaceutically acceptable carrier.
112. A method of administering to a cell a nucleic acid molecule of any of claims 53-59 comprising contacting said cell with the enzymatic nucleic acid molecule under conditions suitable for said administration.
113. The method of claim 112, wherein said cell is a mammalian cell.
114. The method of claim 113, wherein said cell is a human cell.
115. The method of claim 112, wherein said administration is in the presence of a delivery reagent.
116. The method of claim 115, wherein said delivery reagent is a lipid.
117. The method of claim 116, wherein said lipid is a cationic lipid.
118. The method of claim 116, wherein said lipid is a phospholipid.
119. The method of claim 115, wherein said delivery reagent is a liposome.
120. A siRNA nucleic acid molecule which modulates expression of a nucleic acid molecule encoding HIV or a component of HIV.

121. An enzymatic nucleic acid molecule which modulates expression of a nucleic acid molecule encoding HIV or a component of HIV, wherein said enzymatic nucleic acid molecule is in an Inozyme, G-cleaver, Zinzyme or Amberzyme configuration.
122. An enzymatic nucleic acid molecule comprising a sequence selected from the group consisting of SEQ ID NOs. 6727-6799.
123. An enzymatic nucleic acid molecule comprising at least one binding arm wherein one or more of said binding arms comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6642-6726.
124. A siRNA nucleic acid molecule comprising a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6642-6726.
125. The nucleic acid of any of claims 120-124, wherein said nucleic acid molecule is adapted to HIV infection or acquired immunodeficiency syndrome (AIDS).
126. The enzymatic nucleic acid molecule of any of claims 121-123, wherein said enzymatic nucleic acid molecule has an endonuclease activity to cleave RNA having a HIV sequence.
127. The enzymatic nucleic acid molecule of claim 121, wherein said enzymatic nucleic acid molecule is in an Inozyme configuration.
128. The enzymatic nucleic acid molecule of claim 121, wherein said enzymatic nucleic acid molecule is in a Zinzyme configuration.
129. The enzymatic nucleic acid molecule of claim 121, wherein said enzymatic nucleic acid molecule is in a G-cleaver configuration.
130. The enzymatic nucleic acid molecule of claim 121, wherein said enzymatic nucleic acid molecule is in an Amberzyme configuration.
131. The enzymatic nucleic acid molecule of claim 123, wherein said enzymatic nucleic acid molecule is in a DNAzyme configuration.
132. The enzymatic nucleic acid molecule of claim 123, wherein said enzymatic nucleic acid molecule is in a Hammerhead configuration.

133. The enzymatic nucleic acid molecule of claim 127, wherein said Inozyme comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6648-6655.
134. The enzymatic nucleic acid molecule of claim 127, wherein said Inozyme comprises a sequence selected from the group consisting of SEQ ID NOs. 6733-6740.
135. The enzymatic nucleic acid molecule of claim 128, wherein said Zinzyme comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6656-6663 and 6723-6726.
136. The enzymatic nucleic acid molecule of claim 128, wherein said Zinzyme comprises a sequence selected from the group consisting of SEQ ID NOs. 6741-6748 and 6795-6799.
137. The enzymatic nucleic acid molecule of claim 130, wherein said Amberzyme comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6656-6688.
138. The enzymatic nucleic acid molecule of claim 130, wherein said Amberzyme comprises a sequence selected from the group consisting of SEQ ID NOs. 6762-6789.
139. The enzymatic nucleic acid molecule of claim 131, wherein said DNAzyme comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6656-6668 and 6718-6722.
140. The enzymatic nucleic acid molecule of claim 131, wherein said DNAzyme comprises a sequence selected from the group consisting of SEQ ID NOs. 6749-6761 and 6790-6794.
141. The enzymatic nucleic acid molecule of claim 132, wherein said Hammerhead comprises a sequence complementary to a sequence selected from the group consisting of SEQ ID NOs. 6642-6647.
142. The enzymatic nucleic acid molecule of claim 132, wherein said Hammerhead comprises a sequence selected from the group consisting of SEQ ID NOs 6727-6732.

143. The nucleic acid molecule of any of claims 120-124, wherein said nucleic acid molecule comprises between 12 and 100 bases complementary to a nucleic acid molecule encoding HIV.
144. The nucleic acid molecule of any of claims 120-124, wherein said nucleic acid molecule comprises between 14 and 24 bases complementary to a nucleic acid molecule encoding HIV.
145. The nucleic acid molecule of any of claims 120-124, wherein said nucleic acid molecule is chemically synthesized.
146. The nucleic acid molecule of any of claims 120-124, wherein said nucleic acid molecule comprises at least one 2'-sugar modification.
147. The nucleic acid molecule of any of claims 120-124, wherein said nucleic acid molecule comprises at least one nucleic acid base modification.
148. The nucleic acid molecule of any of claims 120-124, wherein said nucleic acid molecule comprises at least one phosphate backbone modification.
149. A mammalian cell comprising the nucleic acid molecule of any of claims 120-124
150. The mammalian cell of claim 149, wherein said mammalian cell is a human cell.
151. A method of reducing HIV activity in a cell, comprising contacting said cell with the nucleic acid molecule of any of claims 120-124, under conditions suitable for said reduction of HIV activity.
152. A method of treatment of a subject having a condition associated with the level of HIV, comprising contacting cells of said subject with the nucleic acid molecule of any of claims 120-124, under conditions suitable for said treatment.
153. The method of claim 151 further comprising the use of one or more drug therapies under conditions suitable for said treatment.
154. The method of claim 152 further comprising the use of one or more drug therapies under conditions suitable for said treatment.

155. A method of cleaving RNA of an HIV gene comprising contacting an enzymatic nucleic acid molecule of any of claims 121-123 with said RNA of a HIV gene under conditions suitable for the cleavage.
156. The method of claim 155, wherein said cleavage is carried out in the presence of a divalent cation.
157. The method of claim 156, wherein said divalent cation is Mg²⁺.
158. The nucleic acid molecule of any of claims 120-124, wherein said nucleic acid molecule comprises a cap structure, wherein the cap structure is at the 5'-end, 3'-end, or both the 5'-end and the 3'-end of said nucleic acid molecule.
159. The nucleic acid molecule of claim 158, wherein the cap structure at the 5'-end, 3'-end, or both the 5'-end and the 3'-end comprises a 3',3'-linked or 5',5'-linked deoxyabasic ribose derivative.
160. An expression vector comprising a nucleic acid sequence encoding at least one nucleic acid molecule of any of claims 120-124 in a manner which allows expression of the nucleic acid molecule.
161. A mammalian cell comprising an expression vector of claim 160.
162. The mammalian cell of claim 161, wherein said mammalian cell is a human cell.
163. An expression vector comprising a nucleic acid sequence encoding at least one nucleic acid molecule of any of claims 122 or 123 in a manner which allows expression of the nucleic acid molecule, wherein said nucleic acid molecule is in a hammerhead configuration.
164. The expression vector of claim 160, wherein said expression vector further comprises a sequence for a nucleic acid molecule complementary to the RNA of HIV.
165. The expression vector of claim 160, wherein said expression vector comprises a nucleic acid sequence encoding two or more of said nucleic acid molecules, which may be the same or different.

166. The expression vector of claim 165, wherein said expression vector further comprises a sequence encoding a siRNA nucleic acid molecule complementary to the RNA of HIV gene.
167. A method for treatment of acquired immunodeficiency syndrome (AIDS) or an AIDS related condition comprising administering to a subject the nucleic acid molecule of any of claims 120-124 under conditions suitable for said treatment.
168. The method of claim 167, wherein said AIDS related condition is Kaposi's sarcoma, lymphoma, cervical cancer, squamous cell carcinoma, cardiac myopathy, rheumatic disease, or opportunistic infection.
169. The method of claim 167, wherein said method further comprises administering to said subject one or more other therapies.
170. The nucleic acid molecule of claim 121 or claim 123, wherein said nucleic acid molecule comprises at least five ribose residues, at least ten 2'-*O*-methyl modifications, and a 3'- end modification.
171. The nucleic acid molecule of claim 170, wherein said nucleic acid molecule further comprises phosphorothioate linkages on at least three of the 5' terminal nucleotides.
172. The nucleic acid molecule of claim 170, wherein said 3'- end modification is a 3'-3' inverted abasic moiety.
173. The method of claim 153 wherein said other drug therapies chosen from antiviral therapy, monoclonal antibody therapy, chemotherapy, radiation therapy, analgesic therapy, and anti-inflammatory therapy.
174. The method of claim 173, wherein said antiviral therapy is chosen from treatment with AZT, ddC, ddI, d4T, 3TC, Ribavirin, delvaridine, nevirapine, efavirenz, ritonavir, saquinavir, indinavir, amprenavir, nelfinavir, and lopinavir.
175. The method of claim 154 wherein said other drug therapies are chosen from antiviral therapy, monoclonal antibody therapy, chemotherapy, radiation therapy, analgesic therapy, and anti-inflammatory therapy.

176. The method of claim 175, wherein said antiviral therapy is chosen from treatment with AZT, ddC, ddI, d4T, 3TC, Ribavirin, delvaridine, nevirapine, efavirenz, ritonavir, saquinivir, indinavir, amprenivir, nelfinavir, and lopinavir.
177. The method of claim 169 wherein said other drug therapies are chosen from antiviral therapy, monoclonal antibody therapy, chemotherapy, radiation therapy, analgesic therapy, and anti-inflammatory therapy.
178. The method of claim 177, wherein said antiviral therapy is chosen from treatment with AZT, ddC, ddI, d4T, 3TC, Ribavirin, delvaridine, nevirapine, efavirenz, ritonavir, saquinivir, indinavir, amprenivir, nelfinavir, and lopinavir.
179. A pharmaceutical composition comprising a nucleic acid molecule of any of claims 120-124 in a pharmaceutically acceptable carrier.
180. The nucleic acid molecule of claim 120 or 121, wherein said component of HIV is nef.
181. The nucleic acid molecule of claim 120 or 121, wherein said component of HIV is vif.
182. The nucleic acid molecule of claim 120 or 121, wherein said component of HIV is tat.
183. The nucleic acid molecule of claim 120 or 121, wherein said component of HIV is rev.
184. The nucleic acid molecule of claim 120 or 121, wherein said component of HIV is LTR.
185. The nucleic acid molecule of claim 184, wherein said LTR is the 3'-LTR.
186. The nucleic acid molecule of claim 184, wherein said LTR is the 5'-LTR.
187. A method of administering to a cell a nucleic acid molecule of any of claims 120-124 comprising contacting said cell with the nucleic acid molecule under conditions suitable for said administration.
188. The method of claim 187, wherein said cell is a mammalian cell.

189. The method of claim 187, wherein said cell is a human cell.
190. The method of claim 187, wherein said administration is in the presence of a delivery reagent.
191. The method of claim 190, wherein said delivery reagent is a lipid.
192. The method of claim 191, wherein said lipid is a cationic lipid.
193. The method of claim 191, wherein said lipid is a phospholipid.
194. The method of claim 190, wherein said delivery reagent is a liposome.

Figure 1: Examples of Nuclease Stable Ribozyme Motifs

Figure 2: 2'-O-Me substituted Amberzyme Enzymatic Nucleic Acid Motif

Figure 3: Stabilized Zinzyme Ribozyme Motif

Figure 4: DNAzyme Motif

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.