Model Checking

Discrete-Time Markov Chains

Prof. Dr. Nils Jansen Radboud University, Nijmegen, 2024/2025

Based on Slides by Dave Parker and Ralf Wimmer

Introduction

What are the coming weeks about? Probabilities!

$$(x_{R}, y_{R}, x_{0}, y_{0})$$

$$(0,0,1,1)$$

$$| u_{R}$$

$$0.5 > (1,0,0,1)$$

$$| u_{R}$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0,1)$$

$$(0,1,0$$

Why Probabilities in Model Checking?

- Analyzing system performance and dependability
 - to quantify arrivals, waiting times, time between failures, QoS, ...
- Modeling unreliable and unpredictable system behavior
 - to capture machine learning models
 - to quantify message loss, processor failure
 - to quantify unpredictable delays, express soft deadlines, ...
- Building protocols for networked embedded systems
 - randomized algorithms often much simpler than deterministic ones

Observation

Answer "correct" / "erroneous" often not sufficient! We need quantitative information about the system.

Example: Leader election

Distributed system: Leader election

- System:
 - Synchronous ring of N > 2 identical nodes
 - Task: select a leader node

Protocol:

- Each round starts by each node randomly choosing a number from $\{1, \ldots, K\}$ (uniformly distributed).
- Nodes pass their selected number around the ring.
- If there is a unique number, the node with the maximal unique number is leader.
- Otherwise start a new round.

Desirable properties:

- Almost surely eventually a leader will be elected:
 P=1(F leader elected)
- With probability at least 0.8, a leader is elected within k steps: $P_{>0.8}(F^{\leq k} \text{ leader elected})$.
- The probability that node *i* becomes leader is $\frac{1}{N}$ for all $1 \le i \le N$.

Example: Leader election

Example: Crowds protocol

Security: Crowds protocol

- A protocol for anonymous web browsing [Reiter & Rubin, 1998]
- Hide user's communication by random routing within a crowd
 - sender selects a crowd member randomly using a uniform distribution
 - selected router flips a biased coin:
 - with probability 1 p: direct delivery to final destination
 - with probability p: select next router randomly (uniformly)
 - Once a routing path has been established, use it until crowd changes
- Rebuild routing paths on crowd changes
- c of N crowd members are corrupt and try to identify sender
- Property: Crowds protocol ensures "probable innocence":
 - probability that real sender is discovered is $<\frac{1}{2}$ if $N \ge \frac{p}{p-0.5} \cdot (c+1)$.

Further examples

Examples: Real-world protocols featuring randomization

- Randomized back-off schemes:
 - IEEE 802.3 CSMA/CD, IEEE 802.11 Wireless LAN
- Random choice of waiting time
 - IEEE 1394 Firewire (root contention), Bluetooth (device discovery)
- Random choice over a set of possible addresses
 - IPv4 Zeroconf dynamic configuration (link-local addressing)

https://qcomp.org/benchmarks/

https://www.prismmodelchecker.org/benchmarks/

Probabilistic Model Checking:

An Overview

The Model Checking Flow

Probabilistic model checking inputs

- Models: Variants of Markov chains
 - discrete-time Markov chains (DTMCs)
 - continuous-time Markov chains (CTMCs)
 - Markov decision processes (MDPs)
 - = DTMCs + non-determinism
 - Markov reward models (MRMs)
 - = DTMCs + rewards/costs
 - Partially observable MDPs
 - = MDPs where a state is not fully observable
- Specifications
 - Informally:
 - "probability of delivery within time deadline is ..."
 - "expected time until delivery is . . . "
 - "expected power consumption is . . . "
 - Formally:
 - probabilistic temporal logics (PCTL, CSL, LTL, PCTL*)
 - e.g. $P_{<0.05}(F \text{ critical})$, $P_{=?}(\neg warning U \text{ msg_received})$

The probabilistic model space

DTMC = Discrete-time Markov chain

 $\begin{array}{lll} \mathsf{DTMRM} & = & \mathsf{Discrete\text{-}time} \; \mathsf{Markov} \; \mathsf{reward} \; \mathsf{model} \\ \mathsf{DTMDP} & = & \mathsf{Discrete\text{-}time} \; \mathsf{Markov} \; \mathsf{decision} \; \mathsf{process} \end{array}$

DTMRDP = Discrete-time Markow reward decision process

CTMC = Continuous-time Markov chain

CTMRM = Continuous-time Markov reward model
CTMDP = Continuous-time Markov decision process

CTMRDP = Continuous-time Markow reward decision process

Property space

Probabilistic model checking involves ...

- Construction of models from a description in a high-level language
- Probabilistic model checking algorithms
 - graph-theoretical algorithms
 - for reachability, identifying strongly connected components, ...
 - numerical computation
 - linear equation systems, linear optimization problems
 - iterative methods, direct methods
 - uniformization, shortest path problems
 - automata for regular languages
 - sampling-based methods for approximate analysis
- Efficient implementation techniques
 - essential for scalability to real-life applications
 - symbolic data structures based on BDDs
 - algorithms for model minimization, abstraction, ...

Goals

Lecture:

- Introduce main types of probabilistic models and specification notations
- Algorithms for probabilistic model checking

Exercises:

- Deepening the understanding of the theoretical part
- Working with software tools (PRISM, Storm)
- Prototypic implementation
- Theoretical problems

Measurable space

Dice:
$$\Omega = \{1,2,...,6\}$$
or Alghon: $\{0, \Omega, \{1,5,6\}, \{2,5,...,6\}, \{1,5,...,6\}, \{1,25, \{1,25\}\}$

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 correspondence to the possible outcomes of that experiment.

 σ -Algebra

A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of the sample space Ω such that

- $\Omega \in \mathcal{F}$

countable union

The elements in \mathcal{F} of a σ -algebra (Ω, \mathcal{F}) are called *events*.

The pair (Ω, \mathcal{F}) is called a *measurable space*.

If Ω is a set, $\mathcal{F} = {\emptyset, \Omega}$ yields the smallest, $\mathcal{F} = 2^{\Omega}$ the largest σ -algebra.

complement

Probability space

Probability space

A probability space $\mathcal P$ is a structure $(\Omega,\mathcal F,\mathsf{Pr})$ with:

- (Ω, \mathcal{F}) is a σ -algebra, and
- Pr : $\mathcal{F} \rightarrow [0,1]$ is a *probability measure*, i. e.,
 - **1** $Pr(\Omega) = 1$, i. e., Ω is the certain event
 - **②** $\Pr\left(\bigcup_{i \in I} A_i\right) = \sum_{i \in I} \Pr(A_i)$ for any $A_i \in \mathcal{F}$ with $A_i \cap A_j = \emptyset$ for $i \neq j$, where $\{A_i\}_{i \in I}$ is finite or countably infinite.

The elements in \mathcal{F} of a probability space $(\Omega, \mathcal{F}, \mathsf{Pr})$ are called *measurable* events.

Some lemmas

Properties of probabilities

For measurable events A, B and A_i and probability measure Pr:

- $Pr(A) = 1 Pr(\Omega \setminus A)$
- $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$
- $A \subseteq B$ implies $Pr(A) \le Pr(B)$
- $\Pr(\bigcup_{n\geq 1} A_n) = \sum_{n\geq 1} \Pr(A_n)$ provided that A_n are pairwise disjoint.

Discrete probability space

Discrete probability space

Pr is a *discrete* probability measure on (Ω, \mathcal{F}) if

• there is a countable set $A \subseteq \Omega$ such that for all $a \in A$:

$$\{a\} \in \mathcal{F} \quad \text{and} \quad \sum_{a \in A} \Pr(\{a\}) = 1$$

• e. g., a probability measure on $(\Omega, 2^{\Omega})$ for countable Ω .

 $(\Omega, \mathcal{F}, \mathsf{Pr})$ is then called a *discrete* probability space; otherwise it is a *continuous* probability space.

Examples

Discrete

- throwing a dice
- number of customers in a shop
- drawn numbers in the Lotto game

Continuous

- Weight of a baby at birth
- Time until a system fails
- Throwing a dart on a circular board

Probability spaces: Example 1

- Sample space:
 - $\Omega = \{1, 2, 3\}$
- Event set Σ:
 - ullet e.g., power set of Ω
 - $\bullet \ \Sigma = \big\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\big\}$
 - closed under complement/(countable) union, contains \emptyset
- Probability measure Pr:
 - e.g., $Pr(1) = Pr(2) = Pr(3) = \frac{1}{3}$
 - $Pr(\{1,2\}) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$, etc.

Probability spaces: Example 2

- Sample space:
 - $\Omega = \{0, 1, 2, 3, \ldots\} = \mathbb{N}$
- Event set Σ :
 - e. g., $\Sigma = \{\emptyset, \text{"odd"}, \text{"even"}, \mathbb{N}\}$
 - ullet closed under complement/(countable) union, contains \emptyset
- Probability measure Pr:
 - e. g., $Pr("odd") = Pr("even") = \frac{1}{2}$

Random variables

Measurable function

Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be measurable spaces. A function $f: \Omega \to \Omega'$ is a *measurable function* if

$$\forall A \in \mathcal{F}' : f^{-1}(A) = \{a \in \Omega \mid f(a) \in A\} \in \mathcal{F}$$

Random variable

A measurable function $X : \Omega \to \mathbb{R}$ is a random variable.

The probability distribution of X is $\Pr_X = \Pr \circ X^{-1}$ where \Pr is a probability measure on (Ω, \mathcal{F}) .

We omit the subscript X in Pr_X when clear from context. We consider only discrete random variables.

Stochastic process

Stochastic process

7, -> x2 -> ×4

A stochastic process is a collection of random variables $\{X_t | t \in T\}$.

- casual notation X(t) instead of X_t
- ullet with all X_t defined on probability space ${\mathcal P}$
- parameter t (mostly interpreted as "time") takes values in the set T

 X_t is a random variable whose values are called *states*. The set of all possible values of X_t is the *state space* of the stochastic process.

	parameter space <i>T</i>	
state space	discrete	continuous
discrete	#jobs at k -th job departure	#jobs at time <i>t</i>
continuous	waiting time of <i>k</i> -th job	total service time at time t

Bod Religion

Examples of stochastic processes

- Waiting times of customers in a shop
- Interarrival times of jobs at a production line
- Service times of a sequence of jobs
- File sizes that are downloaded via the internet
- Number of occupied channels in a wireless network
- ...

Probability example (1)

Modelling a 6-sided dice using a fair coin

- Algorithm due to Knuth/Yao:
- Start at 0, toss a coin
- upper branch when "H"
- lower branch when "T"
- repeat until value chosen

• Is this algorithm correct?

- e.g. probability of obtaining "4"
- Obtained as disjoint union of events
- THH, TTTHH, TTTTTHH, ...
- Pr("eventually 4") = $(1/2)^3 + (1/2)^5 + (1/2)^7 + \cdots = 1/6$

Probability example (2)

- Other properties?
 - "what is the probability of termination?"
 - efficiency:
 - What is the probability that more than four tosses are needed?
 - On average, how many tosses are needed?
- Probabilistic model checking provides a framework for these kinds of properties . . .
 - modeling languages
 - property specification languages
 - model checking algorithms, techniques, and tools

The probabilistic model space

DTMC Discrete-time Markov chain Discrete-time Markov reward model DTMRM DTMDP Discrete-time Markov decision process DTMRDP Discrete-time Markow reward decision process CTMC Continuous-time Markov chain CTMRM Continuous-time Markov reward model **CTMDP** Continuous-time Markov decision process **CTMRDP** Continuous-time Markov reward decision process

Discrete-time Markov chains

States

 set of states representing possible configurations of the system being modelled

Transitions

 transitions between states model evolution of the system's state; occur in discrete time steps.

Probabilities

 probabilities of making transitions between states are given by discrete probability distributions.

Markov property

If the current state is known, the future states are independent of the past states.

- The current state contains all information that can influence the future evolution of the system.
- We do not need to store the history, i. e. the way how the current state was reached.
- This property is also known as "memorylessness".

$$\Pr(X_{n+1} = s_{n+1}) | X_n = s_n, X_{n-1} = s_{n-1}, \dots, X_0 = s_0)$$

$$= \Pr(X_{n+1} = s_{n+1} | X_n = s_n)$$

Simple DTMC example

Modelling a very simple communication protocol

- After one step, process starts trying to send a message
- With probability 0.01, the channel is not ready. So wait a step.
- With probability 0.01, message sending fails. Restart.
- With probability 0.98, message is sent successfully. Stop.

Formal definition of DTMCs

A discrete-time Markov chain (DTMC) is a tuple $M = (S, s_{init}, P, L)$ where

- *S* is a finite or countably infinite set of states ("state space").
- $s_{\text{init}} \in S$ is the initial state.
- $P: S \times S \rightarrow [0,1]$ is the transition probability matrix such that $\sum_{s' \in S} P(s,s') = 1$ for all $s \in S$.
- $L: S \to 2^{AP}$ is a function labeling states with atomic propositions (taken from a set AP).

Some more terminology

- Matrix $A: S \times S \rightarrow \mathbb{R}$ is stochastic if
 - ullet $A(s,s')\in [0,1]$ for all $s,s'\in S$ and
 - $\sum_{s' \in S} A(s, s') = 1$ for all $s \in S$.

- Matrix $A: S \times S \rightarrow \mathbb{R}$ is sub-stochastic if
 - $A(s,s') \in [0,1]$ for all $s,s' \in S$ and
 - $\sum_{s' \in S} A(s, s') \leq 1$ for all $s \in S$.
- State $s \in S$ is absorbing if
 - P(s,s)=1 and P(s,s')=0 for all $s'\in S\setminus\{s\}$.

The transition for s to itself is called a self-loop.

Some more terminology

- Matrix $A: S \times S \rightarrow \mathbb{R}$ is stochastic if
 - $A(s,s') \in [0,1]$ for all $s,s' \in S$ and
 - $\sum_{s' \in S} A(s, s') = 1$ for all $s \in S$.
- Matrix $A: S \times S \rightarrow \mathbb{R}$ is sub-stochastic if
 - $A(s,s') \in [0,1]$ for all $s,s' \in S$ and
 - $\sum_{s' \in S} A(s, s') \leq 1$ for all $s \in S$.
- State $s \in S$ is absorbing if
 - P(s,s) = 1 and P(s,s') = 0 for all $s' \in S \setminus \{s\}$.

The transition for *s* to itself is called a self-loop.

We assume that P is stochastic, i. e.

- every state has at least one outgoing transition
- there are no deadlocks.

Other assumptions made here

- Finite state space
 In general: arbitrary countable set
- Single initial state
 In general: initial probability distribution:

$$s_{\mathsf{init}}: S \to [0,1]$$

 Rational transition probabilities for algorithmic purposes (finite representation . . .).
 In general: real numbers.

Example: Coins and dice

• Recall Knuth/Yao's dice algorithm from earlier:

- $S = \{s_0, s_1, \dots, s_6, 1, 2, \dots, 6\}$
- $s_{init} = s_0$
- $P(s_0, s_1) = 0.5$ $P(s_0, s_2) = 0.5$ etc.
- $L(s_0) = \{\text{init}\}$ $L(s_1) = \emptyset$ etc.

Example: Zeroconf protocol

- Zeroconf = "Zero configuration networking"
 - self-configuration for local ad-hoc networks
 - automatic configuration of unique IP address for new devices
 - simple, no DHCP, DNS, ...

• Basic idea:

- 65 024 available IP addresses (IANA-specified range)
- new node picks address U at random
- broadcasts "probe" messages: "Who is using *U*?"
- a node already using U replies to the probe
- in this case, protocol is restarted
- messages may not get sent (transmission fails, host busy, ...)
- so: node sends multiple (n) probes, waiting after each one.

DTMC for Zeroconf

- n = 4 probes, m existing nodes in the network
- probability of message loss: p
- probability that new address is in use: q = m/65024

Properties of DTMCs

Path-based properties

- What is the probability of observing a particular behavior (or class of behaviors)?
- e.g.: What is the probability of running into a safety-critical state without issuing a warning before?

Transient properties

What is the probability of being in state s after k steps?

Steady-state properties

• What is the probability to be in an failure state on the long run?

Expectations

• What is the average number of coin tosses required?

DTMCs and paths

A path in a DTMC represents an execution (i. e., one possible behavior) of the system being modelled.

• Formally:

- finite sequence of states $s_0 s_1 s_2 \dots s_n$ such that $P(s_i, s_{i+1}) > 0$ for all $0 \le i < n$, or
- infinite sequence of states $s_0s_1s_2...$ such that $P(s_i, s_{i+1}) > 0$ for all $i \ge 0$.

• Examples:

- never succeeds: $(s_0 s_1 s_2)^{\omega}$
- tries, waits, fails, retries, succeeds: $s_0 s_1 s_1 s_2 s_0 s_1 (s_3)^{\omega}$

Notation:

- finite paths starting in state s: Path $s_{fin}(s)$
- infinite paths starting in state s: Paths_{inf}(s)

Paths and probabilities

- To reason (quantitatively) about this system, we need to define a probability space over paths.
- Intuitively:
 - sample space: Paths_{inf}(s) = set of all infinite paths starting in s.
 - events: sets of infinite paths from s
 - basic events: cylinder sets (or "cones")
 - cylinder set Cyl(ω) for a finite path $\omega \in \mathsf{Paths}_\mathsf{fin}(s) = \mathsf{set}$ of the infinite paths with common prefix ω
- Example: Cylinder set $Cyl(s_0s_1s_2)$:

Probability spaces (refresher 1)

- Ω: arbitrary non-empty set
- A σ -algebra on Ω is a family Σ of subsets of Ω which is closed under complementation and countable union, i. e.,
 - if $A \in \Sigma$, then $\Omega \setminus A \in \Sigma$,
 - if $A_i \in \Sigma$ for $i \in \mathbb{N}$, then $\bigcup_{i \in \mathbb{N}} A_i \in \Sigma$, and
 - $\emptyset \in \Sigma$.
- Elements of Σ : measurable sets or events.
- Theorem:

For any family F of subsets of Ω there exists a unique smallest σ -algebra on Ω containg F.

Probability spaces (refresher 2)

Probability space (Ω, Σ, Pr) such that

- Ω is the sample space
- Σ is a σ -algebra, the set of events
- \bullet $\text{Pr}: \Sigma \to [0,1]$ is the probability measure:
 - $Pr(\emptyset) = 0$
 - $\Pr(\bigcup_{i\in\mathbb{N}} A_i) = \sum_{i\in\mathbb{N}} \Pr(A_i)$ for pairwise disjoint A_i .

Probability space over paths

- Sample space Ω_s :
 - $\Omega_s = \mathsf{Paths}_{\mathsf{inf}}(s) = \mathsf{set}$ of infinite paths starting in s
- Event set: Σ_s
 - Cylinder set Cyl(ω) = { $\omega' \in \mathsf{Paths}_{\mathsf{inf}}(s) \mid \omega$ is prefix of ω' } for $\omega \in \mathsf{Paths}_{\mathsf{fin}}(s)$
 - Σ_s is the least σ -algebra on Paths_{inf}(s) containing Cyl(ω) for $\omega \in \mathsf{Paths}_{\mathsf{fin}}(s)$.
- Probability measure Pr_s:
 - define $P_s(\omega)$ for finite path $\omega = s_0 s_1 \dots s_n$ with $s_0 = s$ by

$$P_s(\omega) = \prod_{i=0}^{n-1} P(s_i, s_{i+1}).$$

- define $Pr_s(Cyl(\omega)) = P_s(\omega)$.
- ullet Pr $_s$ extends uniquely to a probability measure Pr $_s:\Sigma_s
 ightarrow [0,1]$

Paths and probabilities: Example

- Paths where sending fails the first time:
 - $\omega = s_0 s_1 s_2$
 - Cyl(ω) = all paths starting with $s_0 s_1 s_2 \dots$
 - $P_{s_0}(\omega) = P(s_0, s_1) \cdot P(s_1, s_2)$ = 1 \cdot 0.01 = 0.01
 - $\Pr_{s_0}(\mathsf{Cyl}(\omega)) = 0.01$
- Paths which are eventually successful and with no failure
 - $Cyl(s_0s_1s_3) \cup Cyl(s_0s_1s_1s_3) \cup Cyl(s_0s_1s_1s_1s_3) \cup \dots$

Reachability

 $S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow S_2$

- Key property: reachability
 - ullet probability of a path reaching a state in some target set $T\subseteq S$
 - e.g., "probability of the algorithm terminating successfully?"
 - e.g., "probability that an error occurs during execution?"
- Dual of reachability: invariance
 - probability of remaining within some class of states
 - $Pr("remain in set of states T") = 1 Pr("reach set S \setminus T")$
 - e.g., "probability that an error never occurs"
- Variants of reachability
 - time-bounded, constrained ("until"), ...

Rechability probabilities

- Formally:

 - $\begin{array}{l} \bullet \quad \mathsf{PrReach}(s, T) = \mathsf{Pr}_{\mathsf{s}}(\mathsf{Reach}(s, T)) \\ \bullet \quad \mathsf{Reach}(s, T) = \{s_0 s_1 s_2 \ldots \in \mathsf{Paths}_{\mathsf{inf}}(s) \, | \, s_i \in T \, \, \mathsf{for some} \, \, i \in \mathbb{N} \} \end{array}$
- Is Reach(s, T) measurable for arbitrary $T \subseteq S$? Yes . . .
 - Reach(s, T) is the union of all basic cylinders Cyl $(s_0 s_1 \dots s_n)$ where $s_0 s_1 \dots s_n \in \mathsf{Reach}_{\mathsf{fin}}(s, T)$
 - Reach_{fin}(s, T) contains all finite paths $s_0 s_1 \dots s_n$ such that $s_0 = s$, $s_0,\ldots,s_{n-1}\not\in T,\ s_n\in T.$
 - The set of such paths $s_0 s_1 \dots s_n$ is countable.
- Probability
 - The above is a disjoint union
 - so probability is obtained by simply summing . . .

• Compute as infinite sum . . .

$$\begin{aligned} \bullet & \sum_{\omega \in \mathsf{Reach}_\mathsf{fin}(s,T)} \mathsf{Pr}_s(\mathsf{Cyl}(\omega)) = \\ & \sum_{\omega \in \mathsf{Reach}_\mathsf{fin}(s,T)} P_s(\omega) \end{aligned}$$

- Example:
 - PrReach(s_0 , {4}) = $\sum_{i=0}^{\infty} 0.5 \cdot (0.5 \cdot 0.5)^i \cdot 0.5 \cdot 0.5 =$

- Compute as infinite sum . . .
- $\begin{aligned} \bullet & & \sum_{\omega \in \mathsf{Reach}_{\mathsf{fin}}(s,T)} \mathsf{Pr}_s(\mathsf{Cyl}(\omega)) = \\ & & \sum_{\omega \in \mathsf{Reach}_{\mathsf{fin}}(s,T)} P_s(\omega) \end{aligned}$
- Example:
 - PrReach(s_0 , {4}) = $\sum_{i=0}^{\infty} 0.5 \cdot (0.5 \cdot 0.5)^i \cdot 0.5 \cdot 0.5 = \frac{1}{8} \cdot \frac{1}{1 \frac{1}{4}} = \frac{1}{6}$

- PrReach(s_0 , { s_6 }): compute as infinite sum?
 - Doesn't scale!!

- Alternative: derive a linear equation system
 - solve for all states simultaneously
 - i. e., compute vector PrReach(T)
- Let x_s denote PrReach(s, T)
- Solve:

$$x_{s} = \begin{cases} 1 & \text{if } s \in T, & x_{s''} \\ 0 & \text{if } T \text{ is not reachable from } s, \\ \sum_{s' \in S} P(s, s') \cdot x_{s'} & \text{otherwise.} \end{cases}$$

Example

• Compute PrReach(s₀, {4})

$$x_{1} = x_{2} = x_{3} = x_{5} = x_{6} = 0$$

$$x_{s_{3}} = x_{s_{4}} = x_{s_{1}} = 0$$

$$x_{4} = 1$$

$$x_{s_{0}} = 0.5x_{s_{1}} + 0.5x_{s_{2}}$$

$$x_{s_{2}} = 0.5x_{s_{5}} + 0.5x_{s_{6}}$$

$$x_{s_{5}} = 0.5x_{4} + 0.5x_{5}$$

$$x_{s_{6}} = 0.5x_{6} + 0.5x_{s_{5}}$$

• Simplification:

$$x_4 = 1$$

$$x_{s_5} = 0.5$$

$$x_{s_2} = 0.25 + 0.5x_{s_6}$$

$$x_{s_6} = 0.5x_{s_2}$$

$$x_{s_0} = 0.5x_{s_0}$$

Unique solutions

- Why do we need to identify states that can reach *T*?
- Consider this simple DTMC:

- Compute probability of reaching s_0 from s_1 .
 - Linear equation system:

$$x_{s_0} = 1$$

 $x_s = x_s$

$$x_{s_1}=x_{s_1}$$

• Solutions: $(x_{s_0}, x_{s_1}) = (1, p)$ for any $p \in [0, 1]$.

Bounded reachability

- So-> S,->... S; i { &
- ullet Probability of reaching T from s within k steps
- Formally:
 - $\operatorname{PrReach}^{\leq k}(s,T) = \operatorname{Pr}_s(\operatorname{Reach}^{\leq k}(s,T))$ where
 - Reach^{$\leq k$} = { $s_0 s_1 s_2 ... \in Paths_{inf}(s) | s_i \in T \text{ for some } i \leq k$ }.

$$\mathsf{PrReach}^{\leq k}(s,T) = \begin{cases} 1 & \text{if } s \in \mathcal{T}, \\ 0 & \text{if } k = 0 \text{ and } s \not\in \mathcal{T}, \\ \sum\limits_{s' \in S} P(s,s') \cdot \mathsf{PrReach}^{\leq k-1}(s',T) & \text{if } k > 0 \text{ and } s \not\in \mathcal{T}. \end{cases}$$

(Bounded) reachability: Example

- $\bullet \ \mathsf{PrReach}\big(\mathit{s}_{0}, \{1, 2, 3, 4, 5, 6\}\big) = 1$
- $PrReach^{\leq k}(s_0, \{1, 2, 3, 4, 5, 6\}) = \cdots$

Summing up so far ...

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- Formalizing path-based properties of DTMCs
 - probability space over infinite paths
- Probabilistic reachability
 - infinite sum
 - linear equation system
 - least fixed point characterization
 - bounded reachability

If Time Permits:

- Transient properties
 - What is the probability of being in state *s* after *k* steps?
- Steady-state properties
 - What is the probability to be in a failure state on the long run?
- Expectations
 - What is the average number of coin tosses required?

- What is the probability, having started in state s, of being in state s' at time k?
 - i. e., after exactly k steps/transition have occured
 - transient state probability: $\pi_{s,k}(s')$
- This is a discrete probability distribution
 - we have $\pi_{s,k}:\mathcal{S}\to [0,1]$
 - rather than $\Pr_s : \Sigma_s \to [0,1]$ where $\Sigma_s \subseteq 2^{\mathsf{Paths}_{\mathsf{inf}}(s)}$

k = 0:

- What is the probability, having started in state s, of being in state s' at time k?
 - i. e., after exactly k steps/transition have occured
 - transient state probability: $\pi_{s,k}(s')$
- This is a discrete probability distribution
 - we have $\pi_{s,k}: \mathcal{S} \to [0,1]$
 - rather than $\Pr_s: \Sigma_s \to [0,1]$ where $\Sigma_s \subseteq 2^{\mathsf{Paths}_{\mathsf{inf}}(s)}$

k = 1:

- What is the probability, having started in state s, of being in state s' at time k?
 - i. e., after exactly k steps/transition have occured
 - transient state probability: $\pi_{s,k}(s')$
- This is a discrete probability distribution
 - we have $\pi_{s,k}:\mathcal{S}\to [0,1]$
 - rather than $\Pr_s : \Sigma_s \to [0,1]$ where $\Sigma_s \subseteq 2^{\mathsf{Paths}_{\mathsf{inf}}(s)}$

$$k = 2$$
:

- What is the probability, having started in state s, of being in state s' at time k?
 - i. e., after exactly k steps/transition have occured
 - transient state probability: $\pi_{s,k}(s')$
- This is a discrete probability distribution
 - we have $\pi_{s,k}:\mathcal{S}\to [0,1]$
 - rather than $\Pr_s : \Sigma_s \to [0,1]$ where $\Sigma_s \subseteq 2^{\mathsf{Paths}_{\mathsf{inf}}(s)}$

k = 3:

Computing transient probabilities

Transient state probabilities:

$$\pi_{s,k}(s') = \sum_{s'' \in S} P(s'', s') \cdot \pi_{s,k-1}(s'')$$

- Computation of transient state distribution:
 - $\pi_{s,0}$ is the initial probability distribution
 - e.g., in our case $\pi_{s,0}(s')=1$ if s'=s and $\pi_{s,0}(s')=0$ otherwise.
 - $\pi_{s,k} = \pi_{s,k-1} \cdot P$
- ⇒ successive vector-matrix multiplications

Computing transient probabilities

$$\pi_{s,k} = \pi_{s,k-1} \cdot P = \pi_{s,0} \cdot P^k$$

- k-th matrix power P^k
 - P gives one-step transition probabilities
 - P^k gives k-step transition probabilities
 - i. e., $P^{k}(s, s') = \pi_{s,k}(s')$
- A possible optimization: iterative squaring
 - e.g., $P^8 = ((P^2)^2)^2$
 - only requires log k multiplications
 - but potentially inefficient, e.g., if P is large and sparse
 - $\bullet\,$ in practice, successive vector-matrix multiplications preferred.

Example

$$P = \begin{pmatrix} 0 & 0.5 & 0 & 0.5 & 0 & 0 \\ 0.5 & 0 & 0.25 & 0 & 0.25 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$\pi_{s_0,0} = \left(1,0,0,0,0,0\right)$$

$$\pi_{s_0,1} = \left(0,\frac{1}{2},0,\frac{1}{2},0,0\right)$$

$$\pi_{s_0,2} = \left(\frac{1}{4},0,\frac{1}{8},\frac{1}{2},\frac{1}{8},0\right)$$

$$\pi_{s_0,3} = \left(0,\frac{1}{8},0,\frac{5}{8},\frac{1}{8},\frac{1}{8}\right)$$
...

Notion of time in DTMCs

Two possible views on the timing aspects of a system modelled as a DTMC:

- Discrete time-steps model time accurately
 - e.g., clock ticks in a model of an embedded device
 - or like dice example: interested in the number of steps (tosses)
- 2 Time-abstract
 - no information assumed about the time transitions take
 - e.g., Zeroconf protocol model

In the latter case, transient probabilities are not very useful!

⇒ Study long-run behavior

Long-run behavior

- ullet Consider the limit $\pi_s \coloneqq \lim_{k o \infty} \pi_{s,k}$
 - $\pi_{s,k}$ is the transient state distribution at time k having started in state s
 - this limit, where it exists, is called the limiting distribution.
- Intuitive idea:
 - The percentage of time, in the long run, spent in each state.
 - e. g., availability: "In the long run, what percentage of time is the system in an operational state?"

Limiting distribution: Example

$$\pi_{s_0,0} = \left(1,0,0,0,0,0\right)$$

$$\pi_{s_0,1} = \left(0,\frac{1}{2},0,\frac{1}{2},0,0\right)$$

$$\pi_{s_0,2} = \left(\frac{1}{4},0,\frac{1}{8},\frac{1}{2},\frac{1}{8},0\right)$$

$$\pi_{s_0,3} = \left(0,\frac{1}{8},0,\frac{5}{8},\frac{1}{8},\frac{1}{8}\right)$$
...
$$\pi_{s_0} = \left(0,0,\frac{1}{12},\frac{2}{3},\frac{1}{6},\frac{1}{12}\right)$$

Long-run behavior

- Questions:
 - When does the limiting distribution exist?
 - Does it depend on the initial state?
 - How to efficiently compute it?

- We need to consider the underlying graph
 - (V, E) where V are vertices and $E \subseteq V \times V$ are edges
 - V = S and $E = \{(s, s') \in S \times S \mid P(s, s') > 0\}$

Graph terminology

- A state s' is reachable from s if there is a finite path starting in s
 and ending in s'.
- A subset T of S is strongly connected if, for each pair of states s
 and s' in T, s' is reachable from s passing only through states in T.
- A strongly connected component (SCC) is a maximal strongly connected set of states (i. e., no proper superset of it is also strongly connected)
- A bottom strongly connected component (BSCC) is an SCC T from which no state outside T is reachable from T.

BSCCs: Example

Graph terminology

 A DTMC is irreducible if all its states belong to a single BSCC; otherwise reducible.

- A state s is periodic with period d, if
 - the greatest common divisor of the set $\{n \mid f_s^{(n)} > 0\}$ equals d,
 - where $f_s^{(n)}$ is the probability of, when starting in state s, returning to state s in exactly n steps.
 - A DTMC is aperiodic if its period is 1.

Steady-state probabilities

- For a finite, irreducible, aperiodic DTMC . . .
 - the limiting distribution always exists
 - and is independent of the initial state/distribution.
- These are known as steady-state probabilities
- They can be computed as the unique solution of the linear equation system

$$\pi \cdot P = \pi$$

$$\sum_{s \in S} \pi(s) = 1.$$

Qualitative properties

- Quantitative properties:
 - "What is the probability of event A?"
- Qualitative properties:
 - "Is the probability of event A=1?" ("almost surely A")
 - "Is the probability of event A > 0?" ("possibly A")

For finite DTMCs, qualitative properties do not depend on the transition probabilities – only need the underlying graph.

Fundamental property of BSCCs

With probability 1, a BSCC will be reached and all of its states visited infinitely often.

Formally:

$$\Pr_{s_0}(s_0s_1s_2\dots\mid \exists i\geq 0, \exists \ \mathsf{BSCC}\ T \ \mathsf{such\ that}$$
 $\forall j\geq i: s_j\in T \ \mathsf{and}$ $\forall s\in T: s_k=s \ \mathsf{for\ infinitely\ many}\ k)=1.$

Zeroconf example

- 2 BSCCs: $\{s_6\}$ and $\{s_8\}$
- Probability of trying to acquire a new address infinitely often is 0

Remark: Infinite Markov chains

• Infinite-state random walk:

- Value of probability *p* does affect qualitative proerties:
 - RepeatedReachability $(s, \{s_0\}) = 1$ if $p \le 0.5$
 - RepeatedReachability $(s, \{s_0\}) = 0$ if p > 0.5

Repeated reachability

- Repeated reachability:
 - "always eventually", "infinitely often"
- $\Pr_{s_0}(s_0s_1s_2... | \forall i \geq 0 \exists j \geq i : s_j \in B)$
 - where $B \subseteq S$ is a set of states.
- e. g., "What is the probability that the protocol successfully sends a message infinitely often?"
- Is this measurable? Yes ...
 - set of satisfying paths is $\bigcap_{n\geq 0}\bigcup_{n\geq m}C_m$
 - where C_m is the union of all cylinder sets $\text{Cyl}(s_0s_1\dots s_m)$ for finite paths $s_1s_1\dots s_m$ such that $s_m\in B$.

Qualitative repeated reachability

$$\Pr_{s_0}(s_0s_1s_2\dots|\forall i\geq 0\exists j\geq i:s_j\in B)=1$$
 if and only if $\Pr_{s_0}(\text{``always eventually }B")=1$ if and only if

 $T \cap B \neq \emptyset$ for each BSCC T that is reachable from s_0 .

Example: 0.5

$$B = \{s_3, s_4, s_5\}$$

Persistence

- Persistence properties:
 - "eventually forever"
- $\Pr_{s_0}(s_0s_1s_2... \mid \exists i \geq 0 \ \forall j \geq i : s_j \in B)$
 - where $B \subseteq S$ is a set of states.
- Examples
 - "What is the probability of the leader election algorithm reaching, and staying in, a stable state?"
 - "What is the probability that an irrecoverable error occurs?"
- Is this measurable? Yes ...

Qualitative persistence

$$\Pr_{s_0}(s_0s_1s_2\dots\mid\exists i\geq 0\ \forall j\geq i:s_j\in B)=1$$
 if and only if $\Pr_{s_0}(\text{"eventually forever }B")=1$ if and only if

 $T \subseteq B$ for each BSCC T that is reachable from s_0 .

Example:

$$B = \{s_2, s_3, s_4, s_5\}$$

Summary DTMCs

- Basic Probability Theory
- Discrete-Time Markov Chains
- First Model Checking Approaches
- Now: Markov Decision Processes