Nd:YAG 激光放大器特性研究实验报告

王路 BC21004008

一. 实验内容

步骤一: 调整激光光路

- 1. 调整 He-Ne 激光器使其对准 YAG 激光振荡棒和 YAG 激光放大棒中心, 并固定不动:
- 2. 在振荡棒和放大棒之间放入输出镜 M2, 调整输出镜使反射光沿光路返回至小 孔, 并固定输出镜;
- 3. 放入反射镜 M1, 调整 M1, 使反射光沿原路回到小孔, 并固定反射镜;
- 4. 开启激光光源开关, 打开冷却水, 按顺序打开"预燃", "工作"按钮, 调节泵浦电压, 使激光振荡器输出稳定, 均匀的激光;

步骤二:测量 YAG 晶体的材料吸收系数

- 1. 将取样玻璃放在输出镜之后,把氦氖激光器的红光光斑反射到旁边,用能量探测器测量反射光的能量 E;
- 2. 将示波器探头放在光路上,观察自由振荡的脉冲波形;
- 3. 准直光路,将取样玻璃移至放大器后面,调节反射光角度,并将能量及探头放在反射光路上,记录此时的能量;

步骤三: 调整出放大器激光

- 1. 按照顺序按下放大器电源"预燃""工作"按钮,调节泵浦电压,在调整出振荡器激光后,仔细调整放大器,使其振荡激光能全部通过激光放大器,得到一个均匀的圆形光斑。调节完成后依次关闭"工作""预燃"。
- 2. 将取样玻璃移至放大器后面,调节反射光角度,并将能量计探头放在反射光路,然后调节放大器的电压为 550/600/650/700/750/800/850V,记录此时的能量。

二. 数据处理

1. 测量材料吸收系数

如表 1 所示,为测量自由振荡光能量和经过放大器后的光能的实验数据记录,对五个探测值取平均值,并且由于取样毛玻璃有 8%的折射率,真实自由振荡光能 E 振=E 反/8%。

Table1:测量未进过探测器和经过探测器的光能量

	E1	E2	E 3	E4	E 5	平均	E=E 反/8%
E 反振	0.188	0.193	0.182	0.176	0.179	0.1836	2.295
(J)							
E 反后	0.162	0.157	0.169	0.16	0.159	0.1614	2.0175
(J)							

由材料吸收系数公式 $E f = E * e^{-\alpha l}$,YAG 晶体长度 L=120nm,由此可以算出吸收系数 α =1.074

2. 自由振荡器输出波形

3. 探究 Nd: YAG 激光放大器能量放大倍数 G 和泵浦氙灯总能量 cv^2 的关系 如表 2 所示,记录通过激光放大器的光能量,对不同的泵浦电压记录五个数 值,取平均值后计算能量放大倍数 $G_E = E\dot{D}/E_{i}$ 。由于放大的激光能量主要由 泵浦氙灯提供,计算不同电压时泵浦氙灯的总能量并与不同电压所对应的能量 放大倍数进行比较。

表格 2: 计算激光放大倍数和充电总能量

	电压	E1 (J)	E2 (J)	E3 (J)	E4 (J)	E5 (J)	\overline{E} (J)	E 实(J)	G_E	$C * V_{\overrightarrow{M}}^2(F*V^2)$
E振	/	0.188	0.193	0.182	0.176	0.179	0.184	2.2950	/	/
E放 (550V)	550	0.384	0.403	0.396	0.400	0.403	0.397	4.9650	2.1634	30.2500
E放 (600V)	600	0.455	0.461	0.462	0.473	0.475	0.465	5.8150	2.5338	36.0000
E放 (650V)	650	0.561	0.566	0.459	0.533	0.550	0.534	6.6725	2.9074	42.2500
E放 (700V)	700	0.602	0.611	0.580	0.592	0.617	0.600	7.5050	3.2702	49.0000
E放 (750V)	750	0.612	0.644	0.615	0.619	0.639	0.626	7.8225	3.4085	56.2500
E放 (800V)	800	0.644	0.641	0.622	0.630	0.640	0.635	7.9425	3.4608	64.0000
E放 (850V)	850	0.669	0.643	0.628	0.619	0.623	0.636	7.9550	3.4662	72.2500

图例 1: 能量放大倍数和泵浦氙灯充电总能量的关系

由图 1 可以看出,当泵浦氙灯所加电压在 700V 以下时,能量放大倍数基本上与充电总能量成线性正相关关系,但是当电压超过 700V 以上时,更大的电压并没有带来非常大的放大系数的提高。

这是因为放大光主要来自于 Nd:YAG 晶体中掺杂的 Nd+3 粒子, 当电压在 700V 以下时, 总能量并没有把所有的 Nd+3 粒子都激发, 但是随着电压的提高, 被激发的 Nd+3 逐渐饱和, 一个 YAG 晶体中掺杂的 Nd+3 粒子是有限的, 所以一个激光放大器的能量放大倍数也是有限的。

三. 实验理解以及总结

- 1. 经过本实验, 我通过实际操作了解到了电光调 Q Nd:YAG 脉冲激光激光器的工作原理和器件的结构, 学习到了脉冲激光器的主要参数和工作特性的测量方法
- 2. 在本实验中, 我第一次接触到了高功率激光, 实验时应当格外注意实验安全;

四. 思考题

1. 由于光学介质有色散, 当氦氖光(632.8nm)入射时, 透镜的焦距 f=16cm,当激光(1064nm)入射时, f=?

由于不同的光学介质对光有不同的折射率,对于不同的透镜类型和材料,焦长随波长的变化是不一样。在这里,假定透镜的材料为二氧化硅,对632.8nm的折射率为1.4570,对1064nm的光为1.4496,可以由磨镜公式算出f=15.91cm

2. 根据激光自由振荡的波形, 分析其尖峰脉冲的形成过程:

在这个实验中使用的是电光调 Q 晶体, 采用脉冲工作的泵浦氙灯。 K 为电光晶体, 这种晶体存在三个结构上的对称轴, 由于电光效应的存在, 晶体对于垂直偏振光在 x,y 两个方向上的两个投影方向的折射率也不一样。因此两个方向的光在沿 z 轴进行时的速度也不相同, 在 z 方向就会形成相位差。设想在电光晶体上已经有 \(\lambda/4\) 的电压, 而 M2是一个全反射镜, 经过 M2 反射后再次穿过晶体的光已经有 pi 的相位差, 合成之后会形成一个线偏振光, 因而不能通过起偏器 P, 相当于 Q 开关被关闭。于此同时 YAG 晶体中的能级粒子数反转在不断增大。如果突然将 lamda/4 的电压撤去, 光束来回穿过电光晶体都不会有偏振方向的变化, 也就是 Q 开关短暂处于开放状态, 谐振腔处于高 Q 值状态, 处于激发态的 Nd+3 粒子就会很快的跃迁回基态, 同时发射出相应频率的光子。