

10/10 points (100%)

|             | <b>✓</b>          | Congratulations! You passed!                                                                                                                 | Next Item                            |
|-------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|             |                   |                                                                                                                                              |                                      |
| <b>~</b>    | 1 / 1<br>point    |                                                                                                                                              |                                      |
| 1.<br>Which | notation w        | rould you use to denote the 3rd layer's activations when the input is the 7th exa                                                            | imple from the 8th minibatch?        |
|             | $a^{[8]\{3\}(7)}$ |                                                                                                                                              | •                                    |
| 0           | $a^{[3]\{8\}(7)}$ |                                                                                                                                              |                                      |
| Corr        | rect              |                                                                                                                                              |                                      |
|             | $a^{[3]\{7\}(8)}$ |                                                                                                                                              |                                      |
|             | $a^{[8]\{7\}(3)}$ |                                                                                                                                              |                                      |
|             |                   |                                                                                                                                              |                                      |
| <b>~</b>    | 1 / 1<br>point    |                                                                                                                                              |                                      |
| 2.<br>Which | of these st       | atements about mini-batch gradient descent do you agree with?                                                                                |                                      |
| 0           | One itera         | tion of mini-batch gradient descent (computing on a single mini-batch) is faster                                                             | than one iteration of batch gradient |
|             | descent.          |                                                                                                                                              |                                      |
| Corr        | rect              |                                                                                                                                              |                                      |
|             |                   | one epoch (one pass through the training set) using mini-batch gradient descen<br>ch gradient descent.                                       | t is faster than training one epoch  |
|             |                   | ld implement mini-batch gradient descent without an explicit for-loop over differencesses all mini-batches at the same time (vectorization). | erent mini-batches, so that the      |
| •           | 1/1               |                                                                                                                                              |                                      |
| 3.          | point             |                                                                                                                                              |                                      |

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before

making progress.

Why is the best mini-batch size usually not 1 and not m, but instead something in-between?

# ← correCaptimization algorithms Quiz, 10 questions

10/10 points (100%)

|  | If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient |
|--|----------------------------------------------------------------------------------------------------------------------------|
|  | descent.                                                                                                                   |

### Un-selected is correct

|  | If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch |
|--|-------------------------------------------------------------------------------------------------------|
|--|-------------------------------------------------------------------------------------------------------|

#### Correct

| rogress. |
|----------|
| ,        |

#### **Un-selected is correct**



1/1 point

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:



Which of the following do you agree with?

| If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks |
|-------------------------------------------------------------------------------------------------------------------------|
| acceptable.                                                                                                             |

| Whether you're using batch | gradient descent | or mini-hatch | gradient descent | something is wrong   |
|----------------------------|------------------|---------------|------------------|----------------------|
| whether you're using batch | gradient descent | or mini-batti | gradient descent | , something is wrong |





If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is **Optimization algorithms** 

10/10 points (100%)

Correct

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.



1/1 point

Quiz, 10 questions

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st: 
$$heta_1=10^oC$$

Jan 2nd:  $heta_2 10^o C$ 

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with  $\beta=0.5$  to track the temperature:  $v_0=0$ ,  $v_t=\beta v_{t-1}+(1-\beta)\theta_t$ . If  $v_2$  is the value computed after day 2 without bias correction, and  $v_2^{corrected}$  is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)



$$v_2=7.5$$
,  $v_2^{corrected}=10\,$ 

Correct

$$igcup v_2=10$$
,  $v_2^{corrected}=7.5$ 

$$igcup v_2=10$$
,  $v_2^{corrected}=10$ 

$$v_2=7.5$$
,  $v_2^{corrected}=7.5$ 



1/1 point

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = 0.95^t \alpha_0$$

$$igcap lpha = rac{1}{1+2*t}lpha_0$$

$$lpha = rac{1}{\sqrt{t}} lpha_0$$



Correct



10/10 points (100%)

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature:  $v_t = \beta v_{t-1} + (1-\beta)\theta_t$ . The red line below was computed using  $\beta = 0.9$ . What would happen to your red curve as you vary  $\beta$ ? (Check the two that apply)

| Decreasing $eta$ will shift the red line slightly to the right.                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Un-selected is correct                                                                                                                                                                                                                |
| Increasing $\beta$ will shift the red line slightly to the right.   Correct True, remember that the red line corresponds to $\beta=0.9$ . In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.     |
| Decreasing $\beta$ will create more oscillation within the red line.<br><b>Correct</b> True, remember that the red line corresponds to $\beta=0.9$ . In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations. |
| Increasing $eta$ will create more oscillations within the red line.                                                                                                                                                                   |

## ← <sup>Un-s</sup> ्किस्पांश्यंद्रक्यां algorithms Quiz, 10 questions

10/10 points (100%)



1/1 point

8.

Consider this figure:



These plots were generated with gradient descent; with gradient descent with momentum ( $\beta$  = 0.5) and gradient descent with momentum ( $\beta$  = 0.9). Which curve corresponds to which algorithm?

0

(1) is gradient descent. (2) is gradient descent with momentum (small  $\beta$ ). (3) is gradient descent with momentum (large  $\beta$ )

#### Correct

- (1) is gradient descent with momentum (small  $\beta$ ). (2) is gradient descent. (3) is gradient descent with momentum (large  $\beta$ )
- (1) is gradient descent with momentum (small  $\beta$ ), (2) is gradient descent with momentum (small  $\beta$ ), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (large  $\beta$ ). (3) is gradient descent with momentum (small  $\beta$ )



1/1 point

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function  $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$ . Which of the following techniques could help find parameter values that attain a small value for  $\mathcal{J}$ ? (Check all that apply)

Try mini-batch gradient descent

Correct





