FYS3120 Oblig 4

Daniel Heinesen, daniehei

16. februar 2017

1)

a)

We are going to start by finding the coordinates, we only need to find y, since we need it to find the potential energy

$$y = -\frac{b}{2}\cos\theta$$

The potential energy is then given by

$$V = mgy = -mg\frac{b}{2}\cos\theta$$

There is only rotational energy for the rod, it has a inertia of $I = \frac{1}{3}mb^2$. So its kinetic energy is given as

$$T = \frac{1}{2}I\omega^2 = \frac{1}{6}mb^2\dot{\theta}^2$$

Giving us the Lagrangian

$$L = T - V = \frac{1}{6}mb^2\dot{\theta}^2 + mg\frac{b}{2}\cos\theta$$

We can now find the e.o.m

$$\frac{\partial L}{\partial \theta} = -\frac{mgb}{2}\sin\theta$$

$$\frac{\partial L}{\partial \dot{\theta}} = \frac{1}{3} m b^2 \dot{\theta}, \qquad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) = \frac{1}{3} m b^2 \ddot{\theta}$$

Giving us that

$$\frac{1}{3}mb^2\ddot{\theta} + \frac{mgb}{2}\sin\theta = 0$$

or

$$\ddot{\theta} + \frac{3g}{2b}\sin\theta = 0$$

b)

We can see that for $\theta = 0$

$$\ddot{\theta} = 0$$

So this is a equilibrium. This is a minimum or maximum of the potential. We need to differentiate the potential twice to see if this is a minimum

$$\frac{d^2}{d\theta^2} - \frac{mgb}{2}\cos\theta = \frac{mgb}{2}\cos\theta$$
$$\Rightarrow \frac{mgb}{2}\cos(0) = \frac{mgb}{2} > 0$$

at $\theta = 0$

This shows that we have a minimum, and the equilibrium is thus stable.

We can now look at the e.o.m for small angles. Then $\sin \theta \approx \theta$, so

$$\ddot{\theta} = -\frac{3g}{2h}\theta$$

This is harmonic oscillator with

$$\omega^2 = \frac{3g}{2h}$$

Using that $T = \frac{2\pi}{\omega}$ we find that

$$T_0 = 2\pi \sqrt{\frac{2b}{3g}}$$

c)

Since

$$\frac{\partial L}{\partial t} = 0$$

and

$$\frac{dH}{dt} = -\frac{\partial L}{\partial t} = 0$$

We can see that the Hamiltonian is a constant of motion. Since the constraints are holonomic and time-independent, we know that the Hamiltonian is the same as the total energy of the system. Thus the total energy is conserved.

The Hamiltonian is related to the e.o.m by Hamilton's equations

$$\dot{p} = -\frac{\partial H}{\partial \theta}, \qquad \dot{\theta} = \frac{\partial H}{\partial p}$$

 \mathbf{d}

This derivation is heavily inspired by a similar derivation for a normal pendulum, found on wikipedia.

We are going to start by looking at the energy of the pendulum. The pendulum has no kinetic energy at θ_0 and potential $mg\cos\theta_0$. At some θ the kinetic energy has to be the difference in potential energy between these angles. So

$$\frac{1}{6}mb^2\dot{\theta}^2 = \frac{mgb}{2}(\cos\theta - \cos\theta_0)$$

giving us that

$$\dot{\theta} = \frac{d\theta}{dt} = \sqrt{\frac{3g}{b}} \sqrt{(\cos\theta - \cos\theta_0)}$$

Doing some physicist math we get that

$$dt = \sqrt{\frac{b}{3g}} \frac{d\theta}{\sqrt{\cos\theta - \cos\theta_0}}$$

The pendulum needs to fall from 0 to θ_0 , then to $-\theta_0$, and then all the way back to θ_0 , meaning that the period is 4 times the time it take to fall from 0 to θ_0 . Meaning that

$$T = 4 \int dt = 4 \sqrt{\frac{b}{3g}} \int_0^{\theta_0} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}$$

And we know that $T_0 = 2\pi \sqrt{\frac{2b}{3g}}$, giving us that

$$T = T_0 \frac{\sqrt{2}}{\pi} \int_0^{\theta_0} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}$$

We can now solve this for $\theta_0 = \pi/2$

$$T = T_0 \frac{\sqrt{2}}{\pi} \int_0^{\pi/2} \frac{d\theta}{\sqrt{\cos \theta}}$$

From good old Rottmann page 161 eq. 116, we get that this is

$$T = T_0 \frac{\sqrt{2}}{\pi} \frac{\pi \Gamma(\frac{1}{2})}{\sqrt{2}\Gamma(\frac{3}{4})^2} = T_0 \frac{\sqrt{\pi}}{\Gamma(\frac{3}{4})^2} \approx 1.18 \cdot T_0$$

2)

a)

First we write the coordinates of the ball

$$x = r \sin \theta \cos(\omega t),$$
 $y = r \sin \theta \sin(\omega t),$ $z = -r \cos \theta$

$$\dot{x} = r\dot{\theta}\cos\theta\cos(\omega t) - r\omega\sin\theta\sin(\omega t)$$

$$\dot{y} = r\dot{\theta}\cos\theta\sin(\omega t) - r\omega\sin\theta\cos(\omega t)$$

$$\dot{z} = r\dot{\theta}\sin\theta$$

with out writing down the quite long expressions for \dot{x} , \dot{y} and \dot{z} , we get that

$$\dot{x}^2 + \dot{y}^2 + \dot{z}^2 = r^2 \dot{\theta}^2 + r^2 \omega^2 \sin^2 \theta$$

We have the energies

$$V = mqy = -mqr\cos\theta$$

$$T = \frac{1}{2}m(r^2\dot{\theta}^2 + r^2\omega^2\sin^2\theta)$$

Giving us the Lagrangian

$$L = \frac{1}{2}m(r^2\dot{\theta}^2 + r^2\omega^2\sin^2\theta) + mgr\cos\theta$$

We can rewrite this as

$$L = \frac{1}{2}mr^2\dot{\theta}^2 + (\frac{1}{2}mr^2\omega^2\sin^2\theta + mgr\cos\theta)$$

We can therefor say that we have a potential

$$W(\theta) = -(\frac{1}{2}mr^2\omega^2\sin^2\theta + mgr\cos\theta)$$

The term

$$-\frac{1}{2}mr^2\omega^2\sin^2\theta$$

Can be said to be the potential energy due to the centripetal force.

b)

We can find the e.o.m

$$\frac{\partial L}{\partial \theta} = mr^2 \omega^2 \sin \theta \cos \theta - mgr \sin \theta = \frac{1}{2} mr^2 \omega^2 \sin 2\theta - mgr \sin \theta$$

$$\frac{\partial L}{\partial \dot{\theta}} = mr^2 \dot{\theta}, \qquad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) = mr^2 \ddot{\theta}$$

Giving us that

$$mr^2\ddot{\theta} - \frac{1}{2}mr^2\omega^2\sin 2\theta + mgr\sin \theta = 0$$

We can look at this for small angles. For small angles $\sin \theta \approx \theta$, so

$$mr^2\ddot{\theta} - mr^2\omega^2\theta + mg\theta = 0$$

$$\Rightarrow \ddot{\theta} = -\left(\frac{g}{r} - \omega^2\right)\theta$$

This is a harmonic oscillation, giving us

$$\Omega = \sqrt{\frac{g - r\omega^2}{r}}$$

c)

We have the potential

$$W(\theta) = -(\frac{1}{2}mr^2\omega^2\sin^2\theta + mgr\cos\theta)$$

To find the equilibrium positions we have to differentiate

$$W'(\theta) = -mr^2\omega^2 \sin\theta \cos\theta + mgr\sin\theta = -\frac{1}{2}mr^2\omega^2 \sin 2\theta + mgr\sin\theta \tag{1}$$

We can see that this is 0 for $\theta=0$, which indeed is an equilibrium. To find if it is a stable equilibrium, we have to check for which ω $W''(\theta=0)>0$

$$W''(\theta) = -mr^2\omega^2\cos 2\theta + mgr\cos\theta \tag{2}$$

$$W''(0) = -mr^2\omega^2 + mgr > 0$$

This gives us the condition that

$$\omega < \sqrt{\frac{g}{r}} = \omega_{cr}$$

We are now going to look at $\omega > \omega_{cr}$. We are going to presuppose that $\sin \theta \neq 0$, and can therefor rewrite $W'(\theta)$ 1 as

$$-mr^2\omega_{cr}\cos\theta = mqr$$

$$\Rightarrow \cos \theta = \frac{g}{r\omega^2}$$

Giving us the new equilibrium points

$$\theta_{\pm} = \arccos(\frac{g}{r\omega^2}) + n\pi, \qquad n = 0, 1$$

 \mathbf{d}

When we now are going to check if these points are stable I am going to use a trick which makes it alot easier. I am going to say that

$$\omega = a\omega_{cr}$$

Where a > 1. This gives us that the equilibrium points can be written as

$$\theta_{\pm} = \arccos(\frac{1}{a^2}) + n\pi, \qquad n = 0, 1$$

We can now use this to find if $W''(\theta_{\pm}) > 0$. Using 2

$$W''(\arccos(\frac{1}{a^2})) = -mr^2\omega^2\cos 2(\arccos(\frac{1}{a^2})) + mgr\cos(\arccos(\frac{1}{a^2}))$$

We can obviously see that $\cos(2(\arccos(x))) = 2x^2 - 1$, so

$$-mr^{2}\omega^{2}\left(\frac{2}{a^{2}}-1\right) + \frac{mgr}{a^{2}} > 0$$

$$\Rightarrow \frac{g}{a^{2}} > ra^{2}\omega_{cr}\left(\frac{2}{a^{2}}-1\right)$$

$$\Rightarrow \frac{1}{a^{2}} > 2 - a^{2}$$

$$\Rightarrow 1 > 2a^2 - a^4 = a^2(2 - a^2)$$

Since $\cos(2(\arccos(x)) + n\pi) = 2x^2 - 1$ we get the same inequality for $W''(\arccos(\frac{1}{a^2}) + n\pi)$.

Looking at the inequality $1 > a^2(2-a^2)$ for $a=1 \Rightarrow a^2(2-a^2)=1$, we defined a>1 and for a>1 the function $a^2(2-a^2)$ is monotonically decreasing function, thus the inequality holds, and θ_{\pm} are stable equilibriums.

 $\mathbf{e})$

The Hamiltonian is defined here as

$$H = p\dot{\theta} - L \tag{3}$$

where

$$p = \frac{\partial L}{\partial \dot{\theta}} = mr^2 \dot{\theta}$$

We then get a Hamiltonian

$$H = mr^2\dot{\theta}^2 - L = \frac{p}{mr^2} - L$$

$$= \frac{p}{mr^2} - \frac{p}{2mr^2} - \frac{1}{2}mr^2\omega^2\sin^2\theta - mgr\cos\theta$$

$$= \frac{p}{2mr^2} - \frac{1}{2}mr^2\omega^2\sin^2\theta - mgr\cos\theta$$