

TIMBER ENGINEERING - VSM196

LECTURE 8 –

TIMBER-FRAMED WALLS, BEARING STRESSES, SLS, SETTLEMENT

SPRING 2020

Topic

- Timber-framed walls, Bearing stresses, SLS, Settlement
- [DoTS: Chapter 3 (3.1.4) and Chapter 7 (7.2.1)]

Content

- Wall and construction types of timber buildings
- Assembly of light frame timber walls
- Design of timber-framed wall in ULS and SLS
- Exercises S1

Intended Learning Outcomes of this lecture

- You know different construction systems for timber buildings
- You can choose adequate wall systems for timber buildings
- You can determine the capacity of timber in compression perp. to grain
- You can calculate the vertical deformation of walls and timber members

Overview

Wall and construction types

Construction types in timber

Common load bearing systems

Load-bearing walls

- · Post and beam system
- typically used for multi-storey buildings

Load-bearing walls

- No columns are in the system, only the walls
- The walls carry both vertical and horizontal load
- Diaphragm action typically used for stabilization (bracing). (Sheathing, such as OSB, plywood or gypsum necessary in the case of timber frames)
- The sheathing material is also needed for fire resistance and sound insulation. Gypsum (inside) is the dominant material as both the fire, noise and resistance to be met.

Log Houses

Corner profile

• Examples of traditional log houses

Examples of modern log house

• Examples of modern log house

Typical dimensions

Construction phases

CHALMERS UNIVERSITY OF TECHNOLOGY

CLT Systems

• wall "anatomy"

wall "anatomy"

	Thickn.	Building material
A	20.0	external wall cladding, e.g. pine, larch, thermowood, acetylated wood, etc
В	30.0	spruce wood battens offset (30/60) - ventilation
С	15.0	fibreboard (MDF)
D	160.0	finger-jointed solid construction timber cross; (60/160; c/c=600mm, typ.)
Ε	160.0	finger-jointed solid construction timber (60/160; c/c=600mm, typ.)
F	*	Insulation material
G	*	<u>cross laminated timber</u> ≥ 94,0; at least 3-layers, top layer at least 30mm)
Н	80.0	spruce wood Battens on resilient clips (50/80; c/c=600mm, typ.)
I	*	Insulation material
J	12.5	gypsum plasterboards with improved properties at high temperatures (fire)
		or gypsum fibre board

- · some typical joint details:
 - Wall-Concrete Connection

- (1) KLH wall panel according to static requirements
- E.g. BMF perforated plate for shear connection between KLH wall and slll
- Concrete component (wall, celling, concrete slab)
- Concrete screws for shear force transmission between sill and concrete
- Oak or larch sill laid in mortar bed with the entire surface resting on the base
- Install joint tape, if necessary

- some typical joint details:
 - Wall-Wall Connection
 - Ceiling-Wall Connection

- Cross wall connection screw connection from the outside
- Cross wall connection screw connection from the inside
- 3 Shear force transmission along the joint and tension anchorage of walls – e.g. BMF angle bracket – type, distance according to static requirements
- Screw connection of ceiling with walls according to static requirements

• TRÄ-8

Timber wall bracing

· Concrete wall bracing

• wall "anatomy"

• wall "anatomy"

Thickn. Building material					
Α	24.0	•	external wall cladding, e.g. pine, larch, thermowood, acetylated wood,		
			etc		
В	30.0	•	spruce wood battens offset (30/50; 30/80) - ventilation		
С		•	wind barrier		
D	20.0	•	gypsum fibre board (2x10 mm)		
Ε	*	•	finger-jointed solid construction timber (c/c=600mm, typ.)		
F	*	•	Insulation material		
G	12.5	•	gypsum fibre board		
Н		•	<u>vapour barrier sd≥ 2m</u>		
-	*	•	spruce wood cross battens (a=400) or battens offset)		
J	*	•	Exchangeable layer		
K	12.5	•	gypsum fibre board or gypsum plasterboards with improved properties		
			at high temperatures (fire)		

· on site construction of walls

prefabricated walls

prefabricated volume modules

Timber framed walls

Horizontal bottom & top plates and vertical studs are nailed together

• Structural sheet, nailed at close distances

Nogging

Inside

Inside

CHALMERS INIVERSITY OF TECHNOLOGY

- 1 Top plate
- 2 Diagonal brace
- 3 Jack stud (over)
- 4 Lintel
- 5 Head trimmer
- 6 Bottom plate
- 7 Common stud
- 8 Jamb stud
- 9 Secondary jamb stud
- 10 Sill trimmer
- 11 Jack stud (under)
- 12 Nogging

CHALMERS UNIVERSITY OF TECHNOLOGY

 Timber framed wall with masonry Plasterboard V.C.L Vapour Control Layer Thermal Insulation **OSB 3 Sheathing Breather Membrane Drained and Vented Cavity** Outer Leaf of Masonry -

Design of timber-framed walls with timber studs

 Concentrated loads should be located directly over the studs. If located in the span area of the header plate, all studs should include a load-bearing beam

Design of wall studs - ULS

- EC5 6.3
- Relative slenderness

$$\lambda_{rel,y} = \frac{\lambda_y}{\pi} \sqrt{\frac{f_{c,0,k}}{E_{0.05}}}$$

and

$$\lambda_{rel,z} = \frac{\lambda_z}{\pi} \sqrt{\frac{f_{c,0,k}}{E_{0.05}}}$$

Design of wall studs - ULS

• If $\lambda_{rel,z} \leq 0.3$ and $\lambda_{rel,y} \leq 0.3$ then

$$\left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

$$\left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

In all other cases

$$\frac{\sigma_{c,0,d}}{k_{c,y}f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$\frac{\sigma_{c,0,d}}{k_{c,z}f_{c,0,d}} + k_m \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

Design of wall studs - ULS

with

$$k_{c,y} = \frac{1}{k_y + \sqrt{k_y^2 - \lambda_{rel,y}^2}}$$

$$k_{c,z} = \frac{1}{k_z + \sqrt{k_z^2 - \lambda_{rel,z}^2}}$$

$$k_y = 0.5(1 + \beta_c(\lambda_{rel,y} - 0.3) + \lambda_{rel,y}^2)$$

$$k_z = 0.5(1 + \beta_c(\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2)$$

$$\beta_c = \begin{cases} 0.2 & \text{for solid timber} \\ 0.1 & \text{for glued laminated timber and LVL} \end{cases}$$

Top and sole rail in a wall

Design of sole rail in a wall - ULS

 The top and sole rail provide lateral restraint to the ends of the studs and function as a bearing members

$$\sigma_{c,90,d} \le k_{c,90} f_{c,90,d}$$
 EC 5, Eq. 6.3

 Sheathing is assumed not to contribute to distribution of the load from the studs to the sole plate

Compression ⊥ to grain

· Deformation and size effect

DoTS 7.2.1

Compression ⊥ to grain

 Strength increases for longer non-loaded timber parts due to the fact that adjacent parts prevent deformation

Compression \(\pm \) to grain

 $f_{c90,tan}: f_{c90,rad}: f_{c90,45} \approx 1:0,8:0,6$

Compression perpendicular to grain

6.1.5 Compression perpendicular to the grain

(1)P The following expression shall be satisfied:

$$\sigma_{c,90,d} \le k_{c,90} f_{c,90,d}$$
 (6.3)

with:

$$\sigma_{c,90,d} = \frac{F_{c,90,d}}{A_{af}} \tag{6.4}$$

where:

 $\sigma_{
m c.90.d}$ is the design compressive stress in the effective contact area perpendicular to the grain;

 $F_{c.90.4}$ is the design compressive load perpendicular to the grain;

 $A_{
m ef}$ is the effective contact area in compression perpendicular to the grain;

 $f_{
m c,90,d}$ is the design compressive strength perpendicular to the grain;

 $k_{\rm c,90}$ is a factor taking into account the load configuration, the possibility of splitting and the degree of compressive deformation.

The effective contact area perpendicular to the grain, A_{ef} , should be determined taking into account an effective contact length parallel to the grain, where the actual contact length, ℓ , at each side is increased by 30 mm, but not more than a, ℓ or $\ell \sqrt{2}$, see Figure 6.2.

Compression perpendicular to grain

6.1.5 Compression perpendicular to the grain

 $A_{
m ef}$ is the effective contact area in compression perpendicular to the grain;

The effective contact area perpendicular to the grain, A_{ef} , should be determined taking into account an effective contact length parallel to the grain, where the actual contact length, ℓ , at each side is increased by 30 mm, but not more than a, ℓ or $\ell \sqrt{2}$, see Figure 6.2.

Figure 6.2 – Member on (a) continuous and (b) discrete supports

Compression perpendicular to grain

6.1.5 Compression perpendicular to the grain

- $k_{c,90}$ is a factor taking into account the load configuration, the possibility of splitting and the degree of compressive deformation.
- (2) The value of $k_{c,90}$ should be taken as 1,0 unless the conditions in the following paragraphs apply. In these cases the higher value of $k_{c,90}$ specified may be taken, with a limiting value of $k_{c,90} = 1,75$.
- (3) For members on continuous supports, provided that $\ell_1 \ge 2h$, see Figure 6.2a, the value of $k_{c,90}$ should be taken as:
- $-k_{e,90}$ = 1,25 for solid softwood timber
- $-k_{c.90}$ = 1,5 for glued laminated softwood timber

where h is the depth of the member and ℓ is the contact length.

- (4) For members on discrete supports, provided that $\ell_1 \ge 2h$, see Figure 6.2b, the value of $k_{c,90}$ should be taken as:
- $-k_{c,90}$ = 1,5 for solid softwood timber
- $k_{c,90}$ = 1,75 for glued laminated softwood timber provided that ℓ ≤ 400 mm

where h is the depth of the member and ℓ is the contact length.

Construction Types

Construction types

Source: Philipp Zumbrunnen

Platform and Balloon construction for timber frame

• Platform frame on the top of concrete ground floor/basement

connection between wall and floor in platform frame construction

Timber-frame systems

 Transfer high and concentrated loads by compression parallel to grain directly!

Vertical load transfer

• Special construction possibilities for CLT

Source: Pirmin Jung

SLS (deformations)

Not considered in the code!

Some design methodologies are proposed in this lecture

DoTS 7.2.1

Out of plane deflection of load-bearing studs

• $\delta_0 \le L/500$ for all timber and wood products

Out of plane deflection of load-bearing

Studs

• Stud subjected to axial design load N_d

$$\alpha = \left(\frac{1}{1 - N_d/P_E}\right) \qquad P_E = \frac{\pi^2 E_{0.05}(bh^3/12)}{L^2}$$

• Stud subjected to out of plane loading q_d

$$\delta_q = \frac{5q_d L^4}{384E_{0m}I} + 1.2 \frac{q_d L^2}{8G_{0m}A}$$

 Increase in instantaneous deformation of the lateral deflection of the wall under the critical characteristic combination of loading

$$\delta_{char,inst} = \alpha \cdot \left(\frac{N_{char}}{P_E} \delta_0 + \delta_{q,inst} \right)$$

STDtoEC5- Ex 5.7.8

Vertical settlement of the sole plate in a wall

$$\delta_1 = \frac{qd}{AE_{90}}$$

- where:
 - δ_1 is the deformation perpendicular to the grain
 - q is the magnitude of the applied load perpendicular to the grain
 - *d* is the depth of the horizontal plate
 - *A* is the loaded area of the horizontal plate
 - E_{90} is the modulus of elasticity perpendicular to the grain of the horizontal plate

Deformation due to pressure (settlement)

$$\delta_1 = \frac{F \cdot d}{A \cdot E_{d,90}} = \frac{F \cdot d(1 + k_{def})}{b \cdot h \cdot E_{mean,90}}$$

Deformation due to pressure

Laboratory tests at Chalmers – February 2009

Mean values from 10 specimens

Deflection from testing [mm] Mean from both supports	Deflection from eq. δ_1 [mm]	% of testing result/ δ_1
$P_1/2 = 0.947$ kN and 1,814 kN		
0,199	0,048	414%
0,337	0,092	366%

Example S1 Vertical settlements

• Outside wall structure was made of double top plate 45 x 95 mm, C14, double vertical stude 45 x 95, C24 and ground plate, 45 x 95 mm C14 on top of the concrete slab. Wall is a support of a large truss. The design load in SLS from the truss is $P_d = 10kN$.

Medium-term duration. Service class 1.

The structure was assembled at 17% MC.

- What was the vertical settlement of the structure as a result of drying to 10% MC?
- Assume that the top plates were sawn in radial direction and loaded in tangential direction.
 The bottom plate was loaded in radial direction.
- $\alpha_t = 0.002$
- $\alpha_r = 0.001$
- $\alpha_t = 0.0001$

CHALMERS UNIVERSITY OF TECHNOLOGY