

Recap: Sum of Squares in Matrix Form

$$SSE = \sum_{i=1}^{n} e_i^2.$$

Matrix form:

$$SSE = \mathbf{e}'\mathbf{e} = \mathbf{Y}'(\mathbf{I}_n - \mathbf{H})'(\mathbf{I}_n - \mathbf{H})\mathbf{Y} = \mathbf{Y}'(\mathbf{I}_n - \mathbf{H})\mathbf{Y}.$$

- Recall that $I_n H$ is a projection matrix. Which space it projects to?
- $df(SSE) = rank(I_n H) = n 2.$

Total sum of squares:

$$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} Y_i^2 - n(\overline{Y})^2.$$
• Matrix form:

• Note $\mathbf{I}_n - \frac{1}{n} \mathbf{J}_n$ is a projection matrix:

$$\mathbf{J}_n = \mathbf{1}_n \mathbf{1}_n' = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$
• $df(SSTO) = \mathbf{J}_n \mathbf{1}_n' = \mathbf{J}_n \mathbf{1}_n' \mathbf{J}_n' \mathbf{$

Total sum of squares:

$$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} Y_i^2 - n(\overline{Y})^2.$$
• Matrix form:
$$SSTO = \mathbf{Y}'\mathbf{Y} - \frac{1}{n}\mathbf{Y}'\mathbf{J}_n\mathbf{Y} = \mathbf{Y}'\left(\mathbf{I}_n - \frac{1}{n}\mathbf{J}_n\right)\mathbf{Y}.$$
• $\mathbf{I}_n - \frac{1}{n}\mathbf{J}_n$ is a projection matrix. Which space it projects to?
$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$
• $df(SSTO) = rank(\mathbf{I}_n - \frac{1}{n}\mathbf{J}_n) = n - 1.$

Regression sum of squares :
$$SSR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$$
.

• Matrix form: $\overline{Y} =$

• Note $\mathbf{H} - \frac{1}{n} \mathbf{J}_n$ is a projection matrix:

• $df(SSR) =$

Regression sum of squares :
$$SSR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$$
.

• Matrix form:
$$\overline{\mathbf{Y}} = \frac{1}{n} \mathbf{J}_n \mathbf{Y}$$

$$SSR = (\widehat{\mathbf{Y}} - \overline{\mathbf{Y}})'(\widehat{\mathbf{Y}} - \overline{\mathbf{Y}})$$

$$= \mathbf{Y}' \left(\mathbf{H} - \frac{1}{n} \mathbf{J}_n \right)' \left(\mathbf{H} - \frac{1}{n} \mathbf{J}_n \right) \mathbf{Y}$$

$$= \mathbf{Y}'(\mathbf{H} - \frac{1}{n}\mathbf{J}_n)\mathbf{Y}.$$

•
$$\mathbf{H} - \frac{1}{n} \mathbf{J}_n$$
 is a projection matrix. Which space it projects to?
• $df(SSR) = rank(\mathbf{H} - \frac{1}{n} \mathbf{J}_n) = 1$.

Summary: Sum of Squares in Matrix Form

$$SSTO = Y' \left(I_n - \frac{1}{n}J_n\right)Y.$$

$$SSE = Y'(I_n - H)Y.$$

$$SSR = Y'(H - \frac{1}{n}J_n)Y.$$

E(SSE)

4 □ > 4 ∰ > 4 ½ > 4 ½ >

$$E(SSE) = E(\mathbf{Y}'(\mathbf{I}_{n} - \mathbf{H})\mathbf{Y}) = E(Tr((\mathbf{I}_{n} - \mathbf{H})\mathbf{Y}\mathbf{Y}'))$$

$$= Tr((\mathbf{I}_{n} - \mathbf{H})E(\mathbf{Y}\mathbf{Y}'))$$

$$= Tr((\mathbf{I}_{n} - \mathbf{H})(\sigma^{2}\mathbf{I}_{n} + \mathbf{X}\boldsymbol{\beta}\boldsymbol{\beta}'\mathbf{X}'))$$

$$= \sigma^{2}Tr(\mathbf{I}_{n} - \mathbf{H}) + Tr((\mathbf{I}_{n} - \mathbf{H})\mathbf{X}\boldsymbol{\beta}\boldsymbol{\beta}'\mathbf{X}')$$

$$= (n-2)\sigma^{2}.$$
The last equality is because $Tr(\mathbf{I}_{n} - \mathbf{H}) = n - 2$ and $(\mathbf{I}_{n} - \mathbf{H})\mathbf{X} = \mathbf{0}$.

Properties of Projection Matrices

Optional Reading material.

They have eigen-decomposition of the form:

$$Q\Lambda Q^T$$
,

where Q is an orthogonal matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues.

- Their eigenvalues are either 1 or 0.
- The number of nonzero eigenvalues equals to trace of the matrix equals to the rank.
- For simple linear regression:

$$rank(\mathbf{H}) = 2$$
, $rank(\mathbf{I}_n - \mathbf{H}) = n - 2$.

Sampling Distribution of SSE

$$\mathbf{I}_n - \mathbf{H} = \mathbf{Q}^T \mathbf{\Lambda} \mathbf{Q},$$

where $\Lambda = \text{diag}\{1, \dots, 1, 0, 0\}$ and \mathbf{Q} is an orthogonal matrix.

•
$$(I_n - H)X = 0 \Longrightarrow$$

$$\mathbf{e} = (\mathbf{I}_n - \mathbf{H})\mathbf{Y} = (\mathbf{I}_n - \mathbf{H})(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}) = (\mathbf{I}_n - \mathbf{H})\boldsymbol{\epsilon}$$

Optional Reading material (cont'd).

•
$$SSE = \mathbf{e}^T \mathbf{e} = \boldsymbol{\epsilon}^T (\mathbf{I}_n - \mathbf{H}) \boldsymbol{\epsilon} = (\mathbf{Q} \boldsymbol{\epsilon})^T \mathbf{\Lambda} (\mathbf{Q} \boldsymbol{\epsilon}).$$

• Let
$$z = Q\epsilon$$
, then

$$SSE = \sum_{i=1}^{n-2} z_i^2.$$

Moreover

$$\mathsf{E}(\mathsf{z}) = \mathsf{Q}\mathsf{E}\{\epsilon\} = \mathsf{0}, \quad \sigma^2\{\mathsf{z}\} = \mathsf{Q}\sigma^2\{\epsilon\}\mathsf{Q}^\mathsf{T} = \sigma^2\mathsf{Q}\mathsf{Q}^\mathsf{T} = \sigma^2\mathsf{I}_n.$$

So under Normal error model, z_i s are i.i.d. $N(0, \sigma^2)$.

• So
$$SSE \sim \sigma^2 \chi^2_{(n-2)}$$
.

General Linear Regression Models

- Often a number of variables affect the response variable in important and distinctive ways such that any single variable wouldn't have provided an adequate description.
- Examples.
 - The weight of a person may be affected by height, gender, age, diet, etc.
 - The income of a person may be affected by age, gender, years of education, etc.
 - The body fat of a person may be associated with age, gender, weight, height, etc.

General linear regression model:

- Y_i : value of the response variable Y in the *ith* case.
 - $X_{i1}, \dots, X_{i,p-1}$: values of the variables X_1, \dots, X_{p-1} in the ith case.
- $\beta_0, \beta_1, \dots, \beta_{p-1}$: regression coefficients.
 - p: the number of regression coefficients.
 - In simple regression p =
- ϵ_i : error terms where

Response function (surface)/ mean response:

General linear regression model: for $i = 1, \dots n$

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{p-1}X_{i,p-1} + \epsilon_{i}.$$
 (1)

- Y_i : value of the response variable Y in the *ith* case.
 - $X_{i1}, \dots, X_{i,p-1}$: values of the variables X_1, \dots, X_{p-1} in the *ith* case.
 - $\beta_0, \beta_1, \cdots, \beta_{p-1}$: regression coefficients.
 - p: the number of regression coefficients.
 - In simple regression p = 2.
- ϵ_i : error terms where $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2$, $Cov(\epsilon_i, \epsilon_j) = 0$ for $i \neq j$.
 - Response function (surface)/ mean response:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_{p-1} X_{p-1}.$$

(2)

First-Order (Additive) Models

- predictors are held constant.

 This change is irrespec
- This change is irrespective of the levels at which other predictors are held.

4 D > 4 B > 4 E > 4 E > E 900

The effects of the predictor variables are

First-Order (Additive) Models

$$X_1, \dots, X_{p-1}$$
 represent $p-1$ **distinct** predictor variables.

- β_k indicates the change in mean response E(Y) with a unit increase in the predictor X_k , when all other predictors are held constant.
- This change is the same irrespective of the levels at which other predictors are held.
- The effects of the predictor variables are additive (without interactions).

Figure: Response plane for a first-order model with two predictors.

From Applied Linear Statistical Models by Kutner, Nachtsheim, Neter and Li

Models with Interactions

Sometimes the effect of one predictor depends on of the other predictor(s), i.e., the effects are

- How education level affects income may depend on gender.
- These models include the terms.
- Example. Non-additive model with two predictors:

- This model is in the form of the general linear model with p - 1 = by defining $X_{i3} :=$ • The mean response $E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$ is
- in the parameters $\beta_0, \beta_1, \beta_2$, but is in the original predictors X_1, X_2 .

Models with Interactions

Sometimes the effect of one predictor depends on the value(s) of the other predictor(s), i.e., the effects are non-additive or interacting.

- How education level affects income may depend on gender.
- These models include the cross product terms.
- Example. Non-additive model with two predictors:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \epsilon_i, \quad i = 1, \dots, n.$$

- This model is in the form of the general linear model with p - 1 = 3 by defining $X_{i3} := X_{i1}X_{i2}$.
- The mean response $E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$ is linear in the parameters $\beta_0, \beta_1, \beta_2$, but is not linear in the original predictors X_1, X_2 .

Example

Example

		liki	ng	(Y)			tur	e (:	X 1)			tne	SS	(X2)									
64.	0				4.0						2.0												
73.	0				4.0						4.0												
61.	0				4.0						2.0												
76.	0				4.0					<u> </u>	4.0												
De	sig	n m	natr	ix c	f a	firs	t-o	rde	r m	ode	el:												
												0.0-											
										1 4	.0	4.0											
									X =	1 4	.0	2.0 4.0											
												:]											
יט	esiç	n r	nat	rıx	ot a	a no	n-a	ido	iitiv	e m	lod	el:											
									[1	4.0	2.0		0]										
								X =	1	4.0 4.0	4.0 2.0	8.	0										
								Λ –]	4.0	4.0	16	.0										
									t:	:	:	:	J										
														4	□ }	4 ₽	▶ ∢	를 ▶	4 ∄	Þ	=	991	~

Polynomial Regression Models

These models contain terms of the predictor variable(s), making the response function .

Example. 2nd-order polynomial regression model with one predictor:

By defining, , this model is in the form of the general linear model with $\rho-1=$.

Polynomial Regression Models

These models contain squared and/or higher-order terms of the predictor variable(s), making the response function curvilinear.

2nd-order polynomial regression model with one predictor:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i, \quad i = 1, \dots, n.$$

• By defining, $X_{i1} := X_i, X_{i2} := X_i^2$, this model is in the form of the general linear model with p-1=2.

Example

Case Salary Experience Design matrix of a 2nd-order polynomial regression model: 26² 19² 22² 17² 13² 25²

Models with Transformed Variables

These models often have complex curvilinear response functions/surfaces.

Example. Model with logarithm-transformed response variable:

$$\log Y_{i} = \beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_{i}, \quad i = 1, \dots n.$$

This model is in the form of the general linear model by defining

Models with Transformed Variables

These models often have complex curvilinear response functions/surfaces.

Example. Model with logarithm-transformed response variable:

$$\log Y_{i} = \beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_{i}, \quad i = 1, \dots n.$$

This model is in the form of the general linear model by $defining \tilde{Y}_i := log Y_i$

Defining Feature of General Linear Regression Model

The response function is in the regression coefficients: $\beta_0, \beta_1, \dots, \beta_{p-1}$. However, the response function does not need to be linear in the original predictors.

 In contrasts, nonlinear regression models are in the parameters. For example:

$$Y_i = \beta_0 \exp(\beta_1 X_i) + \epsilon_i, \quad i = 1, \dots n.$$

 The above model can not be expressed in the form of general linear regression model by taking transformations and/or introducing new X variables.

Defining Feature of General Linear Regression Model

The response function is linear in the regression coefficients: $\beta_0, \beta_1, \dots, \beta_{p-1}$. However, the response function does not need to be linear in the original predictors.

 In contrasts, nonlinear regression models are nonlinear in the parameters. For example:

$$Y_i = \beta_0 \exp(\beta_1 X_i) + \epsilon_i, \quad i = 1, \dots n.$$

 The above model can not be expressed in the form of general linear regression model by taking transformations and/or introducing new X variables.

General Linear Regression Model in Matrix Form

$$\mathbf{Y} = \mathbf{X} \quad \boldsymbol{\beta} + \boldsymbol{\epsilon},$$

$$n \times 1 \quad n \times p \quad p \times 1 \quad n \times 1,$$

where the design matrix **X** and the coefficients vector β :

$$\begin{bmatrix}
1 & X_{11} & X_{12} & \cdots & X_{1,p-1} \\
1 & X_{21} & X_{22} & \cdots & X_{2,p-1} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
\mathbf{x}_{n \times p} &= 1 & X_{i1} & X_{i2} & \cdots & X_{i,p-1} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & X_{n1} & X_{n2} & \cdots & X_{n,p-1}
\end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$

Each row of X corresponds to a case and each column of Xcorresponds to the *n* observations of an *X* variable.

Model assumptions: The response vector has: Under the Normal error model, Y is a vector of 4 D > 4 B > 4 E > 4 E > E 990

Model assumptions:

$$\mathbf{E}\{\epsilon\} = \mathbf{0}_{0}, \quad \sigma^{2}\{\epsilon\} = \sigma^{2}\mathbf{I}_{0}.$$

- The response vector has:
- normal random variables.

Least Squares Estimators

$$Q(\mathbf{b}) = \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_{i1} - \dots - b_{p-1} X_{i,p-1})^2$$

$$= (\mathbf{Y} - \mathbf{X}b)'(\mathbf{Y} - \mathbf{X}b), \quad \mathbf{b}_{p \times 1} = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{p-1} \end{bmatrix}.$$

Differentiate Q(·) and set the gradient to zero ⇒ normal equation:
 X'Xb = X'Y.

LS estimators are solutions of the normal equation:

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_{p-1} \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{Y}. \tag{3}$$

• $\hat{\beta}$ is an unbiased estimator for β :

$$\mathbf{E}(\hat{\boldsymbol{\beta}}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{E}\{\mathbf{Y}\} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\beta}.$$

• Variance-covariance matrix of $\hat{\beta}$:

$$\sigma^{2}\{\beta\} = \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}.$$

Notes: hereafter, assume $\mathbf{X}'\mathbf{X}$ is of full rank p (therefore, we must have $p \leq n$).

Fitted Values and Residuals

- Both are of the observations vector **Y**.
- Under the Normal error model, both are
- Expectations and variance-covariance matrices of the fitted values vector and residuals vector:

Fitted Values and Residuals

$$\frac{\widehat{\mathbf{Y}}}{n \times 1} := \begin{bmatrix} \widehat{\mathbf{Y}}_1 \\ \widehat{\mathbf{Y}}_2 \\ \vdots \\ \widehat{\mathbf{Y}}_n \end{bmatrix} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{H}\mathbf{Y}, \quad \mathbf{e} := \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \vdots \\ \mathbf{e}_n \end{bmatrix} = \mathbf{Y} - \widehat{\mathbf{Y}} = (\mathbf{I}_n - \mathbf{H})\mathbf{Y}.$$

- Both are linear transformations of the observations vector Y.
- Under the Normal error model, both are normally distributed.
- Expectations and variance-covariance matrices of the fitted values vector and residuals vector:

$$\mathbf{E}\{\widehat{\mathbf{Y}}\} = \mathbf{X}\boldsymbol{\beta} = \mathbf{E}\{\mathbf{Y}\}, \ \sigma^{2}\{\widehat{\mathbf{Y}}\} = \sigma^{2}\mathbf{H}$$

$$\begin{aligned} \mathbf{E}\{\widehat{\mathbf{Y}}\} &= \mathbf{X}\boldsymbol{\beta} = \mathbf{E}\{\mathbf{Y}\}, \quad \sigma^2\{\widehat{\mathbf{Y}}\} = \sigma^2\mathbf{H}. \\ \\ \mathbf{E}\{\mathbf{e}\} &= \mathbf{E}\{\mathbf{Y}\} - \mathbf{E}\{\widehat{\mathbf{Y}}\} = \mathbf{0}_n, \quad \sigma^2\{\mathbf{e}\} = \sigma^2(\mathbf{I}_n - \mathbf{H}). \end{aligned}$$

Hat Matrix

$$rank(I_n - H) =$$

- H is the projection matrix to
 - Fitted values vector $\widehat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$ is the projection of the observations vector \mathbf{Y} to
 - Residuals vector $\mathbf{e} = (\mathbf{I}_n \mathbf{H})\mathbf{Y}$ is

What are the covariances between \mathbf{e} and $\hat{\mathbf{Y}}$, \overline{Y} and $\boldsymbol{\beta}$? What are the implications under the Normal error model?

to $\langle X \rangle$.

matrices: symmetric and

Hat Matrix

$$\mathbf{H}_{n\times n} := \mathbf{X}_{n\times p} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'_{p\times p}$$

- H and I_n H are projection matrices: symmetric and idempotent.
- rank(H) = p, $rank(I_n H) = n p$.
- H is the projection matrix to the column space (X) of the design matrix X. What is the dimension of (X)?
 - Fitted value vector $\widehat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$ is the projection of the response vector \mathbf{Y} to $\langle X \rangle$.
 - Residual vector $\mathbf{e} = (\mathbf{I}_n \mathbf{H})\mathbf{Y}$ is orthogonal to $\langle X \rangle$.

What are the covariances between \mathbf{e} and $\hat{\mathbf{Y}}$, \overline{Y} and $\boldsymbol{\beta}$? What are the implications under the Normal error model?

Multiple Regression: Example

- values? outliers? etc.

 Then explore their relationships through pairwise scatter plots.
- The experience of the experien

4□ b 4 ē b 4 ē b ē 9 q ▷

Scatter Plot Matrix

Example: Scatter Plot Matrix

Example: Model 1

First-order model (only additive effects, a.k.a. main effects):

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, \quad i = 1, \dots, 30.$$

R summary output:

```
Call:
```

lm(formula = Y ~ X1 + X2 + X3. data = data)

Residuals: Min

10 Median 30 Max -3.1834 -0.5663 0.1673 0.4658 2.7901

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 1.2010 0.2541 4.727 6.91e-05 ***

X 1 1.1107 0.2672 4.156 0.000311 *** 0.3287 X2 1.7978 5.469 9.78e-06 ***

Х3 1.9596 0.3362 5.829 3.83e-06 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.299 on 26 degrees of freedom Multiple R-squared: 0.8883, Adjusted R-squared: 0.8754

F-statistic: 68.93 on 3 and 26 DF. p-value: 1.667e-12

Example: Model 2

Nonadditive model with interaction between X_1 and X_2 :

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \epsilon_i, \quad i = 1, \cdots, 30.$$

$$(p = 5)$$

Ca11 ·

lm(formula = Y ~ X1 + X2 + X3 + X1:X2. data = data)

Residuals:

Min

10 Median -2.6715 -0.4267 0.2715 0.6138 1.9901

Coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8832 0.2153 4.103 0.00038 ***

Х1 X2

 $x_1 \cdot x_2$

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 0.1 1

1.0076

Multiple R-squared: 0.933,

30

Max

1.5946 0.2421 6.587 6.69e-07 ***

1.7091 0.2605 6.560 7.16e-07 *** 2.1266 0.2687 7.916 2.85e-08 ***

0.2467 4.084 0.00040 ***

Residual standard error: 1,026 on 25 degrees of freedom

Adjusted R-squared: 0.9223

F-statistic: 87.04 on 4 and 25 DF, p-value: 2.681e-14

4 D > 4 B > 4 E > 4 E >

2, -2.

Example: Model 3

										- 10												
	NΙΛ	nac	4dit	ivo	mc	dal	\A/i	th s	ılı +	hra	o tv	MO-1	way	, in	tor	oti	on	tarı	me.			
	INO	Hac	Juil	IVC	HIC	ue	VVI	נווכ	ווו נ	III C	כ ני	VO-	way	, 111	LCI	acti	UII	ıcı ı	113.			
			}	$i = \beta$	$\beta_0 + \beta$	X _{i1} -	- β ₂ X	$i_2 + f_2$	$_3X_{i3}$	$+\beta_4\lambda$	(_{i1} X _{i2}	$+\beta_5$	$X_{i1}X_{i3}$	$+\beta\epsilon$	$X_{i2}X$	$i3 + \epsilon$, i =	1,	, 30.			
	/	7\																				
	(p =	/)																				
	Call																					
	lm(f	rmul	a = '	Y ~ X	(1 + 1)	X 2 +	X3 +	X1:X	2 + 2	X1:X3	+ X2	2:X3,	data	= d	ata)							
	Resi	duals	:																			
	Min		1Q I	Media	ın	3Q		Max														
	-2.7	354 -	0.65	88 0	. 186	80.	6246	1.7	705													
			nts:																			
	Esti	nate	Std.	Erro	r t י	value	Pr(t)														
	(Int	ercep	t)							000.0												
	X1					0.																
	X2					0.																
	X3					0.																
	X1:X	2		1.19						0.001		**										
	X1:X				27					0.583												
	X2:X	3		0.44	103	0.	3675	-1.	198 (0.243	074											
	Sign:	if. c	odes	: 0	*** (0.001	** (0.01	* 0.0	95.	0.1	1										
						r: 1.																
						937,																
	F-st	atist	ic:	56.99	on (6 and	23 I	F,	p-va:	lue:	1.172	2e-12										
																				. =		

4 D > 4 B > 4 E > 4 E >

2, -2.

Analysis of Variance

$$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 =$$
Error sum of squares:

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 =$$

$$SSR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2 =$$

, d.f.(SSTO) =

, d.f.(SSE) =

, d.f.(SSR) =

Analysis of Variance

$$\mathsf{SSTO} = \mathsf{SSE} + \mathsf{SSR}, \quad \mathsf{d.f.}(\mathsf{SSTO}) = \mathsf{d.f.}(\mathsf{SSE}) + \mathsf{d.f.}(\mathsf{SSR}).$$

$$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \mathbf{Y}' \left(\mathbf{I}_n - \frac{1}{n} \mathbf{J}_n \right) \mathbf{Y}, \quad d.f.(SSTO) = rank(\mathbf{I}_n - \frac{1}{n} \mathbf{J}_n) = n - 1.$$

Error sum of squares:

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 = \mathbf{Y}'(\mathbf{I}_n - \mathbf{H})\mathbf{Y}, \quad d.f.(SSE) = rank(\mathbf{I}_n - \mathbf{H}) = n - p.$$

Regression sum of squares:

$$SSR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2 = \mathbf{Y}'(\mathbf{H} - \frac{1}{n}\mathbf{J}_n)\mathbf{Y}, \quad d.f.(SSR) = rank(\mathbf{H} - \frac{1}{n}\mathbf{J}_n) = p - 1.$$

Sampling distributions of sums of squares (SS) under the Normal error model:

- SSE and SSR are
 Notes: use the facts that \mathbf{e} are independent with $\hat{\mathbf{Y}}$ and $\overline{\mathbf{Y}}$
- SSE $\sim \sigma^2 \chi^2_{(n-p)}$.
- If $\beta_1 = \cdots = \beta_{p-1} = 0$, then SSR ~

Sampling distributions of sums of squares (SS) under the Normal error model:

- SSE and SSR are independent.
- Notes: use the facts that **e** are independent with $\hat{\mathbf{Y}}$ and $\overline{\mathbf{Y}}$

(Why?).

- $SSE \sim \sigma^2 \chi^2_{(n+p)}$. What is E(SSE)?
- If $\beta_1 = \cdots = \beta_{p-1} = 0$, then $SSR \sim \sigma^2 \chi^2_{(p-1)}$.

 What is E(SSR) in such a case? And what would be the
 - sampling distribution of SSTO?