Appunti di Metodi Algebrici per l'Informatica

Federico Zotti

2° A.A. 2024-25, 1° Semestre 03 Mar 2025

Università degli Studi di Milano - Bicocca CdL Informatica

Prof. MARINA AVITABILE

Indice

Principio di buon ordinamento	. 1
Principio di induzione	. 1
·	
•	
•	
	Principio di buon ordinamento Principio di induzione 2.1. 1º forma 2.2. 2º forma Algoritmo della divisione Massimo Comun Divisore e Algoritmo di Euclide 4.1. Algoritmo di Euclide

1. Principio di buon ordinamento

Sia
$$n_0 \in \mathbb{Z}$$
 e $\mathbb{Z}_{n_0} = \{n \in \mathbb{Z} \mid n \geq n_0\}$

$$\forall \emptyset \neq X \subseteq \mathbb{Z}_{n_0}$$

Ovvero ogni sottoinsieme non vuoto di \mathbb{Z}_n ammette un minimo.

2. Principio di induzione

2.1. **1º forma**

Siano $n_0 \in \mathbb{Z}$, p(n) un enunciato che ha senso $\forall n \geq n_0$.

Se

- $p(n_0)$ è vera
- $\forall n > n_0, p(n-1) \text{ vera} \Rightarrow p(n) \text{ vera}$

Allora p(n) è vera per ogni $n \geq n_0$.

2.2. **2º forma**

Siano $n_0 \in \mathbb{Z}$, p(n) un enunciato che ha senso $\forall n \geq n_0$.

Se

- $p(n_0)$ è vera
- $\forall n > n_0, p(m) \text{ vera } \forall n_0 \leq m < n \Rightarrow p(n) \text{ vera}$

Allora p(n) è vera per ogni $n \geq n_0$.

Esempio:

$$p(n) \to \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Dimostrare per induzione che p(n) è vera $\forall n \geq 1$.

- Passo base: $n_0 = 1 p(n)$ è vera.
- Passo induttivo: $\forall n > 1, p(n-1) \text{ vera} \Rightarrow p(n) \text{ vera}$.

$$p(n-1) \to \sum_{k=1}^{n-1} k = \frac{(n-1)n}{2}$$

$$n + \sum_{k=1}^{n-1} k = \frac{(n-1)n}{2} + n$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Dimostrato $p(n) \forall n \geq 1$.

Esempio:

$$p(n) \to |X| = n \Leftrightarrow |\mathcal{P}(X)| = 2^n$$

• Passo base: $n_0 = 0$

$$|X| = 0 \Leftrightarrow X = \emptyset \Leftrightarrow \mathcal{P}(\emptyset) = \{\emptyset\} \Leftrightarrow |\ \mathcal{P}(\emptyset)\ | = 1 = 2^n$$

• Passo induttivo: $\forall n > 0$, assumo vera p(n-1) e mostro che p(n) è vera.

X insieme con |X| = n > 0 posso scegliere $x_0 \in X$.

$$\begin{split} \mathcal{P}(X) &= A \cup B \\ A &= \{Y \subseteq X \mid x_0 \in Y\} \\ B &= \{Z \subseteq X \mid x_0 \neg \in Z\} \\ A \cap B &= ? \rightarrow = \emptyset \end{split}$$

Quindi

$$\begin{aligned} |\mathcal{P}(X)| &= |A \cup B| = |A| + |B| \\ B &= \mathcal{P}(X \smallsetminus \{x_0\}) = 2^{n-1} \\ |A| &= |B| \end{aligned}$$

perchè esiste la funzione f t.c.

$$f:A\to B \text{ (biiettiva)}$$

$$Y\to Y\smallsetminus \{x_0\}$$

$$f^{-1}:Z\to Z\cup \{x_0\}$$

Dunque

$$|\mathcal{P}(X)| = |A| + |B|$$
$$|A| = |B| = 2^{n-1}$$
$$|\mathcal{P}(X)| = 2^{n-1} + 2^{n-1} = 2^n$$

3. Algoritmo della divisione

Esempio:

23 diviso $3 \rightarrow 23 = 3 \cdot 7 + 2 \rightarrow 7$ quoziente; 2 resto

Teorema:

Siano n, m interi $\in \mathbb{Z}$ con $m \neq 0$. Allora esistono e sono unici $q, r \in \mathbb{Z}$ t.c.

- 1. n = mq + r
- 2. $0 \le r < |m|$

Osservazione:

- $0 \le r < |m| \Rightarrow r \ne |m|$
- La seconda condizione garantisce l'unicità di quoziente e resto.

Dimostrazione:

Utilizziamo l'induzione nella seconda forma. Dimostriamo prima l'esistenza di quoziente e resto.

• 1° caso: $n \ge 0$

Fissiamo arbitrariamente m, procediamo per induzione su n.

▶ Base induzione: n = 0 vero con q = 0; r = 0.

Se n < |m| vero con q = 0; r = m.

Passo induttivo: Sia allora $n \geq |m|$. Per induzione suppongo l'esistenza vera per tutti gli interi $t \operatorname{con} 0 \leq t < n$. So che $n \geq |m|$ quindi $n - |m| \geq 0$ e n - |m| < n perchè $|m| \neq 0$.

$$t = n - |m|$$

 $\exists q_1, r_1 \in \mathbb{Z} \text{ con }$

1.
$$n - |m| = mq_1 + r_1$$

2.
$$0 \le r_1 < |m|$$

1. equivale ad $n = |m| + mq_1 + r_1$

- Se
$$m>0$$
 : $n=m(q_1+1)+r_1 \Rightarrow q=q_1+1; r=r_1$

- Se
$$m < 0$$
: $n = m(q_1 - 1) + r_1 \Rightarrow q = q_1 - 1; r = r_1$

• 2° caso: n < 0

Se $n < 0 \rightarrow -n > 0$, quindi posso utilizzare il primo caso con -n.

 $\exists q_1, r_1 \in \mathbb{Z} \text{ con }$

1.
$$-n = mq_1 + r_1$$

2.
$$0 \le r_1 < |m|$$

 $\operatorname{dunque} n = -mq_1 - r_1 = -mq_1 - |m| + |m| - r_1.$

• Se
$$m > 0$$
: $n = -mq_1 - m + m - r_1 \Rightarrow q = -q_1 - 1; r = |m| - r_1$.

Devo verificare che $0 \le r < m$, so che

$$0 \leq r_1 < m \rightarrow -m \leq -r_1 < 0 \Rightarrow 0 \leq \underbrace{m-r_1}_r < m$$

 $\qquad \qquad \mathbf{Se} \ m < 0 \\ \vdots \\ n = -mq_1 + m - m - r_1 \\ \Rightarrow q = -q_1 + 1 \\ ; \\ r = -m - r_1.$

Devo verificare che $0 \le r \leftarrow m$, so che

$$0 \leq r_1 \leftarrow m \rightarrow m \leq -r_1 < 0 \Rightarrow 0 \leq \underbrace{-m - r_1}_r \leftarrow m$$

Dimostrazione dell'unicità per assurdo:

Supponiamo che sia

$$n = mq + r \qquad 0 \le r < |m|$$

$$n = mq_1 + r_1$$
 $0 \le r_1 < |m|$

Supponiamo che $r \geq r_1$. Risulta $r - r_1 = m(q_1 - q)$.

Passiamo ai moduli: $|r-r_1|=r-r_1=|m|\cdot |q_1-q|$.

So che $0 \le r - r_1 < |m|$

$$|m||q_1 - q| < |m| \to 0 \le |q_1 - q| < 1 \Rightarrow |q_1 - q| = 0 \Rightarrow q_1 = q \Rightarrow r_1 = r$$

4. Massimo Comun Divisore e Algoritmo di Euclide

Divisibilità:

Siano $a, b \in \mathbb{Z}$ t.c.a = bc. Allora dico che b divide a (a è un multiplo di b) e scrivo $b \mid a$.

Dato $a \in \mathbb{Z}, a \neq 0, \pm 1 \mid a; \pm a \mid a$, ovvero $\pm 1, \pm a$ sono **divisore impropri** di a.

Se esiste $b \in \mathbb{Z}$, $b \mid a \operatorname{con} b \neq \pm 1$, $b \neq \pm a$ allora b è un **divisore proprio** di a.

• Fatto 1: $a, b \in \mathbb{Z}$.

Se $a \mid b$ e $b \mid a$ allora $a = \pm b$.

Infatti

$$\exists c \in \mathbb{Z} \text{ t.c. } b = ac$$

 $\exists d \in \mathbb{Z} \text{ t.c. } a = bd$

Sostituisco la seconda nella prima b = bcd

$$b(1-cd) = 0 b \neq 0$$
$$1-cd = 0$$
$$cd = 1 \begin{cases} \Rightarrow c = 1 = d \Rightarrow a = b \\ \Rightarrow c = -1 = d \Rightarrow a = -b \end{cases}$$

• Fatto 2: $a, b, c \in \mathbb{Z}$.

Se $c \mid a$ e $c \mid b$ allora $c \mid ax + by, \forall x, y \in \mathbb{Z}$.

Infatti

$$\begin{aligned} c|a &\Rightarrow \exists h \in \mathbb{Z} \ \text{t.c.} \ a = ch \\ c|b &\Rightarrow \exists i \in \mathbb{Z} \ \text{t.c.} \ b = ci \end{aligned}$$

$$\forall x,y \in \mathbb{Z} \quad ax + by = chx + ciy = c\underbrace{(hx + iy)}_{\in \mathbb{Z}}$$

Concludo che $c \mid ax + by$.

Dunque se $c \mid a$ e $c \mid b$ allora c divide ogni combinazione lineare a coefficienti interi di a e b.

MCD:

Siano $a, b \in \mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$.

Si dice **massimo comune divisore tra** a **e** b ogni intero che soddisfa le seguenti proprietà:

- $d \mid a \in d \mid b$
- $\forall c \in \mathbb{Z}$, con $c \mid a, c \mid b$ allora $c \mid d$

d è un MCD tra a e b. Tutti e soli i divisori di d coincidono con i divisori comuni tra a e b.

Teorema esistenza di un MCD:

 $\forall a, b \in \mathbb{Z}$, con a > 0 e b > 0, esiste un MCD d tra a e b.

Inoltre esistono $s, t \in \mathbb{Z}$ t.c. d = as + bt (Identità di Bezout).

4.1. Algoritmo di Euclide

Sia $a \ge b$. Eseguo le divisioni

$$\begin{aligned} a &= bq_1 + r_1 & 0 \leq r_1 < b \\ \text{Se } r_1 \neq 0 & b = r_1q_2 + r_2 & 0 \leq r_2 < r_1 \\ \text{Se } r_2 \neq 0 & r_1 = r_2q_3 + r_3 & 0 \leq r_3 < r_2 \\ &\vdots & \end{aligned}$$

Essendo la successione dei resti una successione strettamente decrescente di interi non negativi, dopo un numero finito di divisioni trovo resto 0.

Suppongo che sia $r_k = 0$:

- Se k = 1: $r_1 = 0$ $a = bq_1$ d = b
- Se k > 1: affermo che $d = r_{k-1}$

Dimostrazione:

1. $r_{k-1} \mid a \in r_{k-1} \mid b$

La divisione k-esima mi dice che $r_{k-1} \mid r_{k-2}$.

Sostituisco il passo (k) in (k-1) in e trovo

$$\begin{aligned} r_{k-3} &= r_{k-1}q_kq_{k-1} + r_{k-1} \\ &= r_{k-1}\underbrace{\left(q_kq_{k-1} + 1\right)}_{\overline{q}\in\mathbb{Z}} \end{aligned}$$

Quindi $r_{k-1} \mid r_{k-3}.$ Scrivo $r_{k-3} = \overline{q} r_{k-1}.$ Sostituisco in (k-2) e trovo

$$\begin{split} r_{k-4} &= \overline{q} r_{k-1} q_{k-2} + r_{k-1} q_k \\ &= r_{k-1} (\overline{q} q_{k-2} + q_k) \end{split}$$

Proseguo in questo modo e concludo che $r_{k-1}\mid b$ e $r_{k-1}\mid a$.

2. Se $c \in \mathbb{Z}$ con $c \mid a \in c \mid b$ allora $c \mid r_{k-1}$.

So che

$$a = \overline{a}, \overline{a} \in \mathbb{Z}$$
$$b = \overline{b}, \overline{b} \in \mathbb{Z}$$

Dunque

$$\textbf{1.} \ \ a=bq_1+r_1\Rightarrow r_1=a-bq_1=c\overline{a}-c\overline{b}q_1=\underbrace{c\left(\overline{a}-\overline{b}q_1\right)}\Rightarrow c\mid r_1\Rightarrow r_1=c\overline{r_1}$$

2.
$$r_2=b-r_1q_2=c\overline{b}-c\overline{r_1}q_2=c\left(\overline{b}-\overline{r_1}q_2\right)\Rightarrow c\mid r_2^{r_1}$$

3. ..

Identità di Bezout:

$$\begin{split} a &= bq_1 + r_1 \quad r_1 = a \cdot 1 + b(-q_1) \\ b &= r_1q_2 + r_2 \quad r_2 = b - r_1q_2 \\ &= b - (a - bq_1)q_2 \\ &= a(-q_2) + b(1 + q_1q_2) \end{split}$$

 r_1,r_2 combinazione lineare a coefficienti interi di a e b. Proseguendo in questo modo si trovano $s,t\in\mathbb{Z}$ t.c. $r_{k-1}=as+bt$

Teorema dell'unicità degli MCD:

Se d è un MCD tra a e b, l'unico altro MCD è -d.

Dimostrazione:

1. -d è un MCD tra a e b

Infatti

- 1. $-d\mid a$ e $-d\mid b$ perchè $d\mid a$. $a=d\overline{a}, \text{per }\overline{a}\in\mathbb{Z} \text{ quindi } a=(-d)(-\overline{a}) \text{ con } -\overline{a}\in\mathbb{Z}.$ Analogamente $-d\mid b$.
- 2. Sia $c\in\mathbb{Z}$, $c\mid a$ e $c\mid b$ devono mostrare che $c\mid -d$. Sicuramente $c\mid d$, cioè $d=c\overline{d}$,