5.
$$\int x^{2} \ln(x) dx$$

$$\int u dv = uv - \int v du$$
Let $u = \ln(x) \Rightarrow du = \frac{1}{2} dx$

$$dv = x^{2} dx \Rightarrow v = x^{2}$$

$$\int x^{2} \ln(x) dx = \frac{x^{3}}{3} \ln(x) - \int \frac{x^{3}}{3} \cdot \frac{1}{x} dx$$

$$= \frac{x^{3}}{3} \ln(x) - \frac{1}{3} \int x^{2} dx$$

$$\int x^{2} dx = \frac{x^{3}}{3}$$

$$\int x^{2} \ln(x) dx = \frac{x^{3}}{3} \ln(x) - \frac{1}{3} \cdot \frac{x^{3}}{3} + C$$

$$\int x^{2} \ln(x) dx = \frac{x^{3}}{3} \ln(x) - \frac{1}{3} \cdot \frac{x^{3}}{3} + C$$

$$Ans = \int x^{2} \ln(x) dx - \frac{x^{3}}{3} + C$$

8.
$$e^{-x} = 1 - x$$
 $x = 0$, $e^{-x} = 1$, $1 = 0.21$ \Rightarrow equal

 $x = 1$, $e^{-x} = \frac{1}{2} = 0.368$, $|-| = 0.27$ not equal

 $x = -1$, $|e^{-x}| = \frac{9}{2}$, 718 , $|-(-1)| = 2 \Rightarrow elox$
 $x = -0.6$ and $x = 0$

At $x = -0.5$
 $e^{-(-0.5)} = e^{-0.5} = 1.65$ $1 - (-0.5) = 1.5$

So $e^{-x} > 1 - x$

Top curve $\Rightarrow y = e^{-x}$
 $A = \int_{-0.6}^{\infty} [e^{-x} - (1 - x)] dx$
 $A = \left[-e^{-x} - (x - \frac{x^2}{2}) \right]_{-0.6}^{\infty}$

At $x = 0$; $-e^{-x} - (0 - 0) = -1$

At $x = -0.6$; $-e^{-x} - (-0.6 - 0.18) = -1.822 + 0.78 = -1.042$

Ans $= 0.042$ sq.units.