CS420

Introduction to the Theory of Computation

Lecture 4: Nondeterministic Finite Automaton

Tiago Cogumbreiro

Revisiting what we learned...

- Operations on words; set theory
- How to draw a state diagram from a DFA?
- A step-by-step union example
- Reduction graphs with ϵ -transitions?
- What is the powerset function?
- How to draw a state diagram from an NFA?
- How to convert an NFA into a DFA?

HW1 heads up

HW1 heads up

- Answers should all be given as state diagrams
- Simplification of L_5 :
 - If the resulting DFA is already simplified, then just answer "the same DFA"
 - We have no way of proving that the DFA is the smallest
- After applying the union operator you should not simplify the final diagram
- \bullet When writing down a diagram from an M (directly using a transition function) you should ${\bf not}$ simplify it

What is w^n ; L^\star

What is w^n ; L^\star

Answer: (Lecture 1, slides 38 and 39) concatenate w with itself n times. $L^\star=\{w^n\mid w\in L\land n\geq 0\}$ (Lecture 2; slide 19)

See also **Definition 1.23** in the book.

What is w^n ; L^\star

Answer: (Lecture 1, slides 38 and 39) concatenate w with itself n times. $L^\star=\{w^n\mid w\in L\land n\geq 0\}$ (Lecture 2; slide 19)

See also **Definition 1.23** in the book.

What is $w_1, w, w_2 \in s$?

What is w^n ; L^\star

Answer: (Lecture 1, slides 38 and 39) concatenate w with itself n times. $L^\star=\{w^n\mid w\in L\land n\geq 0\}$ (Lecture 2; slide 19)

See also **Definition 1.23** in the book.

What is $w_1, w, w_2 \in s$?

Answer: Shorthand notation for $w_1 \in s \land w \in s \land w_2 \in s$.

What is w^n ; L^\star

Answer: (Lecture 1, slides 38 and 39) concatenate w with itself n times. $L^\star=\{w^n\mid w\in L\land n\geq 0\}$ (Lecture 2; slide 19)

See also **Definition 1.23** in the book.

What is $w_1, w, w_2 \in s$?

Answer: Shorthand notation for $w_1 \in s \land w \in s \land w_2 \in s$.

What is $\{w \mid P(w)\}$?

Answer: this is known as the **set-builder notation** (set comprehension). I assume you learned this in CS220 (or prior). It is a way of saying any w such that P(x) holds. For instance, $\{w \mid |w| \text{ is even } \land w = ab \cdot w_2 \land w, w_2 \in \Sigma^*\}$ means that w is such that: |w| is even (the length of w is even) **AND** $w = ab \cdot w_2$ (w starts with ab followed by w_2), **AND** $w_2 \in \Sigma^*$ (w_2 is a word)

Give the DFA of
$$M=(\{q_1,q_2,q_3,q_4,q_5\},\{\mathtt{a},\mathtt{b}\},\delta,q_1,\{q_4\})_{\mathrm{start}}$$
 where

$$egin{aligned} \delta(q_1, extbf{a})&=q_2\ \delta(q_1, extbf{b})&=q_3\ \delta(q_2, extbf{a})&=q_1\ \delta(q_2, extbf{b})&=q_3\ \delta(q_3, extbf{a})&=q_5\ \delta(q_4, extbf{a})&=q_1\ \delta(q_4, extbf{b})&=q_2\ \delta(q,c)&=q ext{ otherwise} \end{aligned}$$

1. pick q_1 ; draw edge for each Σ , one for a; another for b

Give the DFA of
$$M=$$

$$(\{q_1,q_2,q_3,q_4,q_5\},\{\mathbf{a},\mathbf{b}\},\delta,q_1,\{q_4\})_{\text{start}} \longrightarrow q_1$$
 where

$$egin{aligned} \delta(q_1, extbf{a})&=q_2\ \delta(q_1, extbf{b})&=q_3\ \delta(q_2, extbf{a})&=q_1\ \delta(q_2, extbf{b})&=q_3\ \delta(q_3, extbf{a})&=q_5\ \delta(q_4, extbf{a})&=q_1\ \delta(q_4, extbf{b})&=q_2\ \delta(q,c)&=q ext{ otherwise} \end{aligned}$$

- 1. pick q_1 ; draw outgoing edges
- 2. pick q_2 (or q_3); draw outgoing edges

Give the DFA of M= $(\{q_1,q_2,q_3,q_4,q_5\},\{\mathbf{a},\mathbf{b}\},\delta,q_1,\{q_4\})_{\mathrm{start}} \xrightarrow{q_1} q_2$ where

$$egin{aligned} \delta(q_1, extbf{a})&=q_2\ \delta(q_1, extbf{b})&=q_3\ \delta(q_2, extbf{a})&=q_1\ \delta(q_2, extbf{b})&=q_3\ \delta(q_3, extbf{a})&=q_5\ \delta(q_4, extbf{a})&=q_1\ \delta(q_4, extbf{b})&=q_2\ \delta(q,c)&=q ext{ otherwise} \end{aligned}$$

- 1. pick q_1 ; draw outgoing edges
- 2. pick q_2 ; draw outgoing edges
- 3. pick q_3 ; draw outgoing edges

Give the DFA of M= $(\{q_1,q_2,q_3,q_4,q_5\},\{\mathbf{a},\mathbf{b}\},\delta,q_1,\{q_4\})_{\mathrm{start}}$ q_1 where

- 1. pick q_1 ; draw outgoing edges
- 2. pick q_2 ; draw outgoing edges
- 3. pick q_3 ; draw outgoing edges
- 4. pick q_5 ; draw outgoing edges

Give the DFA of M= $(\{q_1,q_2,q_3,q_4,q_5\},\{\mathbf{a},\mathbf{b}\},\delta,q_1,\{q_4\})_{\mathrm{start}}$ q_1 where

- 1. pick q_1 ; draw outgoing edges
- 2. pick q_2 ; draw outgoing edges
- 3. pick q_3 ; draw outgoing edges
- 4. pick q_5 ; draw outgoing edges

Note 1: state q_4 is not present in our graph, because it is unreachable. We only render reachable states in our state diagrams.

Note 2: do not attempt to simplify the DFA.

We start from the pair (q_1, q_1) (the initial state of each DFA) which we denote by $q_{1,1}$. For each element of Σ draw an edge.

At $q_{1,1}$

- Read 0. (Left) From q_1 we advance to q_2 . (Right) From q_1 we advance to q_4 . Result $q_{2,4}$
- Read 1. (Left) From q_1 we advance to q_1 . (Right) From q_1 we advance to q_2 . Result $q_{1,2}$.

At $q_{2,4}$:

- $\bullet~$ Read 0. (Left) From q_2 we advance to q_2 . (Right) From q_4 we advance to q_4 . Result $q_{2,4}$
- Read 1. (Left) From q_2 we advance to q_3 . (Right) From q_4 we advance to q_4 . Result $q_{3,4}$.

At $q_{3,4}$:

- Read 0. (Left) From q_3 we advance to q_2 . (Right) From q_4 we advance to q_4 . Result $q_{2,4}$
- Read 1. (Left) From q_3 we advance to q_1 . (Right) From q_4 we advance to q_4 . Result $q_{1,4}$.

At $q_{1,4}$:

- $\bullet~$ Read 0. (Left) From q_1 we advance to q_2 . (Right) From q_4 we advance to q_4 . Result $q_{2,4}$
- Read 1. (Left) From q_1 we advance to q_1 . (Right) From q_4 we advance to q_4 . Result $q_{1,4}$.

At $q_{1,2}$:

- Read 0. (Left) From q_1 we advance to q_2 . (Right) From q_2 we advance to q_3 . Result $q_{2,3}$
- Read 1. (Left) From q_1 we advance to q_1 . (Right) From q_2 we advance to q_4 . Result $q_{1,4}$.

- ullet Read 0. (Left) From q_2 we advance to q_2 . (Right) From q_3 we advance to q_3 . Result $q_{2,3}$
- Read 1. (Left) From q_2 we advance to q_3 . (Right) From q_3 we advance to q_3 . Result $q_{3,3}$.

- Read 0. (Left) From q_3 we advance to q_2 . (Right) From q_3 we advance to q_3 . Result $q_{2,3}$
- Read 1. (Left) From q_3 we advance to q_1 . (Right) From q_3 we advance to q_3 . Result $q_{1,3}$.

- Read 0. (Left) From q_1 we advance to q_2 . (Right) From q_3 we advance to q_3 . Result $q_{2,3}$
- Read 1. (Left) From q_1 we advance to q_1 . (Right) From q_3 we advance to q_3 . Result $q_{1,3}$.

Note: in the HW/mini-tests do **not** attempt to simplify the resulting DFA unless explicitly requested to do so.

Reduction graphs with ϵ -transitions

Acceptance for ba: epsilon-step

Acceptance for ba: input-step **b**

Note: at this point that are two concurrent states: q_1 and q_2 , so we can consume b from either (although we can only do so via q_1).

Acceptance for ba: epsilon-step

Acceptance for ba: input-step

Acceptance for ba: epsilon-step

Acceptance for ba

What is the Powerset function?

What is the Powerset function?

Given a set it returns a set that consists of all possible subsets of that set and itself.

$$\mathcal{P}(s) = \{r \mid r \subseteq s\}$$

Example

$$\mathcal{P}(\{q_1,q_2,q_3\})=$$

What is the Powerset function?

Given a set it returns a set that consists of all possible subsets of that set and itself.

$$\mathcal{P}(s) = \{r \mid r \subseteq s\}$$

Example

$$\mathcal{P}(\{q_1,q_2,q_3\}) = \{\emptyset,\{q_1\},\{q_2\},\{q_3\},\{q_1,q_2\},\{q_1,q_3\},\{q_2,q_3\},\{q_1,q_2,q_3\}\}$$

$$M = (\{q_1, q_2, q_3, q_4\}, \{\mathtt{a}, \mathtt{b}\}, \delta, q_1, \{q_2, q_4\})$$
 where

$$egin{aligned} \delta(q_1, \mathtt{a}) &= \{q_1, q_2, q_3\} \ \delta(q_1, \epsilon) &= \{q_3\} \ \delta(q_2, \mathtt{a}) &= \{q_1, q_3\} \ \delta(q_2, \mathtt{b}) &= \{q_2\} \ \delta(q_3, \mathtt{b}) &= \{q_4\} \ \delta(q_3, \epsilon) &= \{q_1\} \ \delta(q, c) &= \emptyset \ ext{otherwise} \end{aligned}$$

$$M = (\{q_1, q_2, q_3, q_4\}, \{\mathtt{a}, \mathtt{b}\}, \delta, q_1, \{q_2, q_4\})$$
 where

$$egin{aligned} \delta(q_1, extbf{a}) &= \{q_1, q_2, q_3\} \ \delta(q_1, \epsilon) &= \{q_3\} \ \delta(q_2, extbf{a}) &= \{q_1, q_3\} \ \delta(q_2, extbf{b}) &= \{q_2\} \ \delta(q_3, extbf{b}) &= \{q_4\} \ \delta(q_3, \epsilon) &= \{q_1\} \ \delta(q, c) &= \emptyset \ ext{otherwise} \end{aligned}$$

$$M = (\{q_1, q_2, q_3, q_4\}, \{\mathtt{a}, \mathtt{b}\}, \delta, q_1, \{q_2, q_4\})$$
 where

$$egin{aligned} \delta(q_1, \mathtt{a}) &= \{q_1, q_2, q_3\} \ \delta(q_1, \epsilon) &= \{q_3\} \ \delta(q_2, \mathtt{a}) &= \{q_1, q_3\} \ \delta(q_2, \mathtt{b}) &= \{q_2\} \ \delta(q_3, \mathtt{b}) &= \{q_4\} \ \delta(q_3, \epsilon) &= \{q_1\} \ \delta(q, c) &= \emptyset \ ext{otherwise} \end{aligned}$$

$$M = (\{q_1, q_2, q_3, q_4\}, \{\mathtt{a}, \mathtt{b}\}, \delta, q_1, \{q_2, q_4\})$$
 where

$$egin{aligned} \delta(q_1, extbf{a}) &= \{q_1, q_2, q_3\} \ \delta(q_1, \epsilon) &= \{q_3\} \ \delta(q_2, extbf{a}) &= \{q_1, q_3\} \ \delta(q_2, extbf{b}) &= \{q_2\} \ \delta(q_3, extbf{b}) &= \{q_4\} \ \delta(q_3, \epsilon) &= \{q_1\} \ \delta(q, c) &= \emptyset \ ext{otherwise} \end{aligned}$$

The initial state is the set of all states in the NFA that are reachable from q_1 via ϵ transitions plus q_1 .

- ullet For each input in Σ range we must draw a transition to a target state.
- A target state is found by taking an input, say **a**, and doing an input+epsilon step on each sub-state.

First, input **a** we find all reachable states (via input+epsilon state) that start from either q_1 or q_3 .

- From q_1 via **a** we get $\{q_1,q_2,q_3\}$
- From q_3 via **a** we get $\{q_1,q_3\}$
- ullet The result is the union of all reachable states, thus $\{q_1,q_2,q_3\}$

Second, input b we find all reachable states (via input+epsilon state) that start from either q_1 or q_3 .

- From q_1 via b we get \emptyset
- From q_3 via b we get $\{q_4\}$
- ullet Result state is $\emptyset \cup \{q_4\} = \{q_4\}$

For inputs **a** and **b** we find all reachable states (via input+epsilon state) that start from q_4 :

- From q_4 via **a** we get \emptyset , so the result state is \emptyset
- From q_4 via b we get \emptyset , so the result state is \emptyset

Transition from $\{q_1,q_2,q_3\}$ via a?

- We know with $\{q_1,q_3\}$ with **a** we reach $\{q_1,q_2,q_3\}$
- From q_2 with **a** we reach $\{q_3\}$
- ullet Thus, result state is $\{q_1,q_2,q_3\}\cup\{q_3\}=\{q_1,q_2,q_3\}$ (self-loop)

Transition from $\{q_1, q_2, q_3\}$ via b?

- We know with $\{q_1,q_3\}$ with b we reach $\{q_4\}$
- From q_2 with **b** we reach $\{q_2\}$
- ullet Thus, result state is $\{q_4\} \cup \{q_2\} = \{q_2,q_4\}$

Transition from $\{q_2,q_4\}$ via a?

- From q_2 with **a** we reach $\{q_1,q_3\}$
- From q_4 with a we reach \emptyset
- ullet Thus, result state is $\{q_1,q_3\}\cup\emptyset=\{q_1,q_3\}$

Transition from $\{q_2, q_4\}$ via b?

- From q_2 with b we reach $\{q_2\}$
- From q_4 with **b** we reach \emptyset
- ullet Thus, result state is $\{q_2\}\cup\emptyset=\{q_2\}$

Transition from $\{q_2\}$ via a? • From q_2 with a we reach $\{q_1,q_3\}$ (result state)

Transition from $\{q_2\}$ via b? • From q_2 with b we reach $\{q_2\}$ (result state; self loop)

State $\{\}$ (also known as \emptyset) is a **sink state**, so we draw a self loop for every input in Σ .

Today we will learn...

- Nil
- Empty
- Character
- Union
- Concatenation
- Star

Section 1.2

The nil_Σ operator $L(\mathrm{nil}_\Sigma)=\emptyset$

The ${ m nil}_{\Sigma}$ operator

$$L(\mathrm{nil}_\Sigma)=\emptyset$$

Example
$$\Sigma = \{\mathtt{a},\mathtt{b}\}$$

The ${ m nil}_{\Sigma}$ operator

$$L(\mathrm{nil}_\Sigma)=\emptyset$$

Example $\Sigma = \{\mathtt{a},\mathtt{b}\}$

Implementation

```
def make_nil(alphabet):
    Q1 = 0
    return NFA(
        states=[Q1], alphabet=alphabet, transition_func=lambda q, a: {},
        start_state=Q1, accepted_states=[])
```

The $\operatorname{empty}_{\Sigma}$ operator

$$L(\mathrm{empty}_{\Sigma}) = \{\epsilon\}$$

The $\operatorname{empty}_\Sigma$ operator

$$L(\mathrm{empty}_\Sigma) = \{\epsilon\}$$

Example
$$\Sigma = \{\mathtt{a},\mathtt{b}\}$$

$$L(\mathrm{empty}_{\Sigma}) = \{\epsilon\}$$

Example $\Sigma = \{\mathtt{a},\mathtt{b}\}$

Implementation

```
def make_empty(cls, alphabet):
    Q1 = 0
    return NFA(
        states = [Q1],
        alphabet = alphabet,
        transition_func = lambda q, a: {},
        start_state = Q1, accepted_states = [Q1])
```

The $\mathrm{char}_\Sigma(c)$ operator

$$L(\mathrm{empty}_{\Sigma}(c)) = \{[c]\}$$

The $\operatorname{char}_\Sigma(c)$ operator

$$L(\mathrm{empty}_{\Sigma}(c)) = \{[c]\}$$

Example
$$\Sigma = \{\mathtt{a},\mathtt{b}\}$$

The $\operatorname{char}_\Sigma(c)$ operator

$$L(\mathrm{empty}_{\Sigma}(c)) = \{[c]\}$$

Example $\Sigma = \{\mathtt{a},\mathtt{b}\}$

Implementation

```
def make_char(cls, alphabet, char):
    states = Q1, Q2 = 0, 1
    def transition(q, a):
        return {Q2} if a == char and q == Q1 else {}
    return cls(states, alphabet, transition, Q1, [Q2])
```

The union (M,N) operator

$$L(\mathrm{union}(M,N)) = L(M) \cup L(N)$$

The $\mathrm{union}(M,N)$ operator

$$L(\mathrm{union}(M,N)) = L(M) \cup L(N)$$

 N_1

$$\mathrm{union}(N_1,N_2)=?$$

The $\mathrm{union}(M,N)$ operator

$$L(\mathrm{union}(M,N)) = L(M) \cup L(N)$$

Example union (N_1, N_2)

- Add a new initial state
- Connect new initial state to the initial states of N_1 and N_2 via ϵ -transitions.

The $\mathrm{concat}(M,N)$ operator

$$L(\operatorname{concat}(M,N)) = L(M) \cdot L(N)$$

The $\operatorname{concat}(M,N)$ operator

$$L(\operatorname{concat}(M,N)) = L(M) \cdot L(N)$$

Example 1: $L(\operatorname{concat}(\operatorname{char}(\mathtt{a}),\operatorname{char}(\mathtt{b})))=\{\mathtt{ab}\}$

The $\operatorname{concat}(M,N)$ operator

$$L(\operatorname{concat}(M,N)) = L(M) \cdot L(N)$$

Example 1: $L(\operatorname{concat}(\operatorname{char}(\mathtt{a}),\operatorname{char}(\mathtt{b})))=\{\mathtt{ab}\}$

Solution

What did we do? Connect the accepted states of N_1 to the initial state of N_2 via ϵ -transitions.

Why bot connect directly from $q_{1,1}$ into $q_{1,2}$? See next slide.

Concatennation example 2

Solution

Concatennation example 2

Solution

Concatenate two NFAs

Let $N_1=(Q_1,\Sigma_1,\delta_1,q_1,F_1)$, $N_2=(Q_2,\Sigma_2,\delta_2,q_2,F_2)$, $\mathrm{tag}(Q,n)=\{q^n\mid q\in Q\}$. We have that $N_1\cdot N_2=(Q,\Sigma,\delta,q_1^1,F_2)$ where:

- $ullet \ Q = ag(Q_1,1) \cup ag(Q_2,2)$
- $\Sigma = \Sigma_1 \cup \Sigma_2$
- $\delta(q^1,\epsilon)=\{q_2^2\}$ if $q\in F_1$ (Note: q_2^2 represents the starting state of N_2 tagged with 2.)
- $\delta(q^n,a)= ag(\delta_n(r,a),n)$ if $n\in\{1,2\}$

$$L(\operatorname{star}(N)) = L(N)^{\star}$$

$$L(\mathrm{star}(N)) = L(N)^{\star}$$

Example: $L(\text{star}(\text{concat}(\text{char}(\mathbf{a}), \text{char}(\mathbf{b})))) = \{w \mid w \text{ is a sequence of } \mathbf{ab} \text{ or empty}\}$

Solution

$$L(\mathrm{star}(N)) = L(N)^{\star}$$

Example: $L(\text{star}(\text{concat}(\text{char}(\mathbf{a}), \text{char}(\mathbf{b})))) = \{w \mid w \text{ is a sequence of } \mathbf{ab} \text{ or empty}\}$

Solution

- create a new state $q_{1,1}$
- ullet ϵ -transitions from $q_{1,1}$ to initial state
- ullet ϵ -transitions from accepted states to $q_{1,1}$
- $q_{1,1}$ is the only accepted state

$$L(\mathrm{star}(N)) = L(N)^\star$$

$$L(\mathrm{star}(N)) = L(N)^\star$$

