Assignment Project Exam Help

https://powwoeder.com
Recursion and the Lambda Calculus

Add WeChat powcoder

Contents

Assignment Project Exam Help

- Introduction
- Recursive functions in the lambda calculus
- - Binding for function name

 - Fixed point of raidd WeChat powcoder

 self-application

2 / 56

Introduction

Definition of f in terms of Y we Chat powcoder \downarrow \leftarrow How to define Y in the lambda calculus

Final Lambda-calculus definition of f

Assignment Project Exam Help

fx = 3, if (xhttps://powcoder.com

Add WeChat powcoder

$$\lambda x.(if (x = 0) 3 11)$$

Assignment Project Exam Help

 $f \times = 3$, if (xhermse/powcoder.com)

 $\overset{\bullet \text{ What's wrong with this?}}{Add} \overset{\bullet \text{ WeChat powcoder}}{WeChat powcoder}$

$$\lambda \times (if (x = 0) 3 (1 + (f(x - 1))))$$

· Cons Assignment the Phroject Exam Help

$$f \times = 3$$
, if $(x = 0)$
= 1 + https://powcoder.com

• This would translate to the following, which still has a problem :

$$\to^{\beta}$$
 λ x.(if (x = 0) 3 (1 + (f(x - 1)))) 7

- SO how can we represent a recursive function in the lambda calculus?
- First define a new NON-RECURSIVE function (e.g. cal it "h") whose body is identical to that of "f" but which takes "t" as an argument, "as fallows defined in the control of the control

Assignment Project Exam Help

Now the following lambda expression for "h" is fine, because "f" is bound :

BUT "h" is not "f", so we haven't solved the problem yet!

However, notice that the partial application (h f) gives the same result as f, so (h f) \equiv f (this is an identity, not a definition)

- A "fine siting mental projectus from the projectu
- Example 1:
 - id is called that the substitution power of the com
 - Every value in the input domain of id is a fixed point of id
- Example 2:

- ▶ The input value 3 is the only fixed point of the function *three*
- Note that (from the previous slide) the function f is a fixpoint of the function h because $(h f) \equiv f$

- There Assignmenthe Property (Enthermodella Property) Fix an incompact in the λ -calculus, which will return the fixed-point of any function.
- The fixpoint operator is often given the name Y
- - If the identified fixed-point of g is itself a function 2 then Y returns the "least" (i.e. the definition with the least amount of arbitrary additional information) version of that function. ³
- So now (Y h) give the least two needs the least two needs to have know is for the charge f(x) = f(x)f = Y h

^{2.} We alredy know that in the λ calculus we can easily pass functions as arguments, and return them as results.

^{3.} We skate over some interesting problems: what if g doesn't have a fixpoint? can g have more than one "least" fixpoint? This is outside the scope of this module, but further explantions are found in Stoy's excellent book Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory by J.E.Stoy, 1979.

ullet The reduction rule for operator Y is trivial : Y g
ightarrow g (Y g)

Now for Sample (let the est (xonto)). (a norm) order eductor of 1 gives:
$$f1 = (Y h) f$$
 because $f = Y h$ from the definition of $f = (\lambda \times .(if (X = 0) 3 (1 + (f (x - 1))))))$ after one $f = \beta$ reduction after another $f = \beta$ reduction after another $f = \beta$ reduction of $f =$

^{4.} Other reduction orders may not terminate.

Assignment Project Exam Help

Now we have a lambda expression that defines "f"

https://powcoder.com

Y (
$$\lambda$$
 f.(λ x.(if (x = 0) 3 (1 + (f (x - 1))))))

Add WeChat powcoder

But haven't we really just shifted the problem?—how do we define Y in the lambda calculus?

Assignment Project Exam Help

The real magic : self-interpolitations://powcoder.com

```
Y = \lambda q.( (\lambda x.(q (X)) d\rangle d(q W)) eChat powcoder
```

```
\begin{array}{ll} \text{Example}: & \text{https://powcoder.com} \\ & \text{Y h} &= \lambda q. (\ (\lambda x. (h \ (x \times ))) \ (\lambda x. (h \ (x \times ))) \ & \text{line}_2 \\ &= (\lambda x. (h \ (x \times ))) \ (\lambda x. (h \ (x \times ))) \ & \text{line}_3 \\ &= h \ (Y h) \ & \text{Add WeChat powcoder} \end{array}
```

```
Deriving a \lambda-calculus definition of the provincion of the using the provincion of the provincion of
```

```
 \begin{array}{ll} f &= (Y \ h) \\ &= (Y \ (\lambda \ f.(\lambda \ x.(if \ (x=0) \ 3 \ (1+(f(x-1))))))) \\ &= ((\lambda q.((\lambda x.(q \ (X))))(\lambda J.(q(X)))))(\lambda J.(q(X))))) \\ &= (\lambda q.((\lambda x.(q \ (X))))(\lambda J.(q(X)))))(\lambda J.(q(X))))) \\ \end{array}
```

Summary

- Recursive function that pasts // powcoder.com
- Recursive functions in the lambda calculus
 - Binding for function name

 - Fixed point Add WeChat powcoder
 - Self-application

Assignment Project Exam Help

https://poweoder.com

Add WeChat powcoder