Machine Learning, Spring 2019

Decision Trees

Reading Assignment: Chapter 6 & 7

Python tutorial: http://learnpython.org/

TensorFlow tutorial: https://www.tensorflow.org/tutorials/

PyTorch tutorial: https://pytorch.org/tutorials/

Acknowledge: The slides are partially referred to coursera online machine learning course by Prof. Andrew Ng, and NYU machine learning course. All copyrights owned by original authors. (i.e. http://u.cs.biu.ac.il/~89-570/)

Decision Trees Model

Decision tree: A decision tree decision is an inductive learning task that uses particular facts to make more generalized conclusions. Decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility.

Who will play the game?

Decision for Computer Game

- Age > 15?
- Is male?

Decision Tree

- Root node
- Internal node
- Leaf node

Tree Training

- Training data
- Construct the tree
- Testing with a trained tree

Tree Training Procedure

- Choose one attribute for the root node
- Decision made based on the node
- Choose second attribute for the internal node
- Decision made based on the second node
- Iterate the steps above

Which attribute is best?

- Which criteria should be used to evaluate the quality of a attribute?
- Answer: Entropy

Entropy

 Entropy(S)= Expected umber of bits needed to encode class (+ or -) of randomly drawn members of S (under the optimal, shortest length-code)

- Example: [1,1,1,1,1,1,2,2] and [1,2,3,4,5,6,7,8], which entropy is smaller?
- Binary case: encode (+ or -) of random member of S:
 -p₊ log₂ p₊ p₋ log₂ p₋

Entropy

Entropy

- A statistical property called information gain, measures how well a given attribute separates the training examples
- Information gain uses the notion of entropy, commonly used in information theory
- Information gain = expected reduction of entropy

Example of Entropy Calculation

- S is a sample of training examples
- p+ is the proportion of positive examples
- p- is the proportion of negative examples

Before Classification

Entropy(
$$[29+,35-]$$
) = -29/64 log2 29/64 - 35/64 log2 35/64
= 0.99

Information Gain

```
Entropy([18+,33-]) = 0.94
Entropy([11+,2-]) = 0.62
Gain(S,A2)=Entropy(S)
-51/64*Entropy([18+,33-])
-13/64*Entropy([11+,2-])
=0.12
```


Training A Tree

Day	Outlook	Temp.	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cold	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Selecting the Next Attribute

Prof. Yi Fang (yfang@hyu.zdprovides greater info. gain than Wind, w.r.t target classification.

Selecting the Next Attribute

Selecting the Next Attribute

The information gain values for the 4 attributes are:

- Gain(S,Outlook) =0.247
- Gain(S,Humidity) =0.151
- Gain(S,Wind) = 0.048
- Gain(S,Temperature) = 0.029

ID3 Algorithm for Decision Tree

• ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan used to generate a decision tree from a dataset.

ID3 Algorithm

ID3 Algorithm

ID3 Algorithm

- What is the challenging issue for ID3 algorithm?
- Sparse distributed data (each class only contains few points)

C4.5 Algorithm

 C4.5 is an extension of Quinlan's earlier ID3 algorithm.

• The splitting criterion is the <u>normalized</u> information gain (difference in entropy).

GINI Coefficient

 The Gini index or Gini coefficient is a statistical measure of distribution

$$Gini(p) = \sum_{k=1}^{K} p_k (1 - p_k) = 1 - \sum_{k=1}^{K} p_k^2$$

Overfitting of Decision Tree

Avoid Overfitting

Pre-prune: stop growing when split not statistically significant

Post-prune: stop growing when split not statistically significant

Pre-prune

- Limits the depth of the tree
- Limits the number of samples of a internal node
- Limits the information gain

