Exercise 8. Show that $\mathscr{P}(\mathbb{Z}_+)$ and \mathbb{R} have the same cardinality. [*Hint:* you may usr the fact that every real number has a decimal expansion, which is unique if expansions that end in an infinite string of 9s are forbidden.]

Proof.

Injection of \mathbb{R} into $\mathscr{P}(\mathbb{Z}_+)$

For all $x \in [0, 1]$, we admit that x has a unique proper base 2 development noted $(0, x_1x_2...)_2$, with $x_i \in \{0, 1\}$ for all $i \in \mathbb{Z}_+$, and such that for all $i \in \mathbb{Z}_+$ there exists j > i such that $x_j = 0$. Let

$$\phi: (0,1) \to \mathscr{P}(\mathbb{Z}_+)$$
$$x = (0, x_1, x_2 \dots)_2 \mapsto \{i \in \mathbb{Z}_+ \mid x_i = 1\}$$

The unicity of the proper base 2 development of x implies that if x, y are elements of (0,1) such that $x \neq y$, then there exists $j \in \mathbb{Z}_+$ such that $x_j \neq y_j$; so that $j \notin \phi(x) \cap \phi(y)$, from which we deduce that ϕ is injective.

Note that ϕ is not surjective: suppose that there exists $x = (0, x_1, x_2 \dots)_2$ such that $\phi(x) = \mathbb{Z}_+$. If $x_i = 0$ for some $i \in \mathbb{Z}_+$, then $i \notin \phi(x) = \mathbb{Z}_+$, which is a contradiction. Therefore $x_i = 1$ for all i, so that $(0, x_1 x_2 \dots)_2$ is not a proper base 2 development.

Let

$$\theta: \mathbb{R} \to (0,1)$$

$$x \mapsto \frac{1}{2} + \frac{1}{\pi} \arctan(x)$$

 θ is a bijection, and thus $\phi \circ \theta$ is an injection of \mathbb{R} into $\mathscr{P}(\mathbb{Z}_+)$.

Injection of $\mathscr{P}(\mathbb{Z}_+)$ into \mathbb{R}

Let X be a nonempty subset of \mathbb{Z}_+ . For all $n \in \mathbb{Z}_+$, let

$$S_n(X) = \sum_{i \in X \cap \{1, \dots, n\}} 2^{-i}$$

We have

$$0 \le S_n(X) \le S_{n+1}(X) \le \sum_{i \in \{1, \dots, n+1\}} 2^{-i} \le 1$$

so that the sequence $S_n(X)$ converges to some real number S(X) in [0,1]. For all $n \in \mathbb{Z}_+$, let $Q_n = \{i \in \mathbb{Z}_+ \mid i \geq n\}$, and

$$\psi: \mathscr{P}(\mathbb{Z}_+) \to \mathbb{R}$$

$$X \mapsto \begin{cases} 0 & \text{if } X = \emptyset \\ S(X) & \text{if } Q_n \not\subset X \text{ for all } n \\ 1 + S(X) & \text{otherwise} \end{cases}$$

Let X, Y be subsets of \mathbb{Z}_+ such that $X \neq Y$. Switching the roles of X and Y if necessary, we can suppose that $X - Y \neq \emptyset$. Let $i \in X - Y$; if $Y = \emptyset$, then $\psi(Y) = 0 < 2^{-i} \leq \psi(X)$, so $\psi(X) \neq \psi(Y)$. Otherwise, if there is some n such that $Q_n \subset Y$, but for all $n, Q_n \not\subset X$, then $\psi(X) \leq 1 < 1 + \sum_{i \in Q_n} 2^{-i} \leq \psi(Y)$, so that $\psi(X) \neq \psi(Y)$. The same reasoning applies if X contains some Q_n but Y does not contain any.

Otherwise, suppose that neither X nor Y contains any Q_n , and let $m = \min(X - Y)$. Switching the roles of X and Y if necessary, we can suppose that $x_m = 1$. For all i < m, we have $x_i = y_i$, so that

$$0 \le \psi(Y) < \sum_{i \in \{1, \dots, m-1\} \cap Y} 2^{-i} + \sum_{i > m} 2^{-i} \qquad \text{since } Q_{m+1} \not\subset Y$$

$$= \sum_{i \in \{1, \dots, m-1\} \cap X} 2^{-i} + 2^{-m} \qquad \text{since } x_i = y_i \text{ for } i < m$$

$$\le \psi(X)$$

From this we deduce that $\psi(X) \neq \psi(Y)$.

The last case to check is when there is some positive n such that $Q_n \subset X$ and some p such that $Q_p \subset Y$. Again let $m = \min(X - Y)$, and suppose that $x_m = 1$, switching the roles of X and Y if necessary. Then

$$\psi(Y) \le 1 + \sum_{i \in \{1, \dots, m-1\} \cap Y} 2^{-i} + \sum_{i > m} 2^{-i}$$

$$< 1 + \sum_{i \in \{1, \dots, m-1\} \cap X} 2^{-i} + 2^{-m}$$

$$\le \psi(X)$$

and we have $\psi(X) \neq \psi(Y)$.

From the above, we deduce that ψ is injective.

Since there exists an injection of \mathbb{R} into $\mathscr{P}(\mathbb{Z}_+)$, and an injection of $\mathscr{P}(\mathbb{Z}_+)$ into \mathbb{R} , there exists a bijection from $\mathscr{P}(\mathbb{Z}_+)$ to \mathbb{R} , so that they have the same cardinality.