EC 3303: Econometrics I

Nonlinear Regression Functions

Kelvin Seah

Outline

- 1. Tying some loose ends from previous lecture
- 2. Interactions Between Independent Variables

Back to Polynomials

• Which degree polynomial should you use in practice?

Interactions Between Independent Variables

- Could reducing class size have a larger effect on test scores in districts with many ELL students than in districts with few?
- If so, $\frac{\Delta TestScore}{\Delta STR}$ would depend on the value of PctEL.
- More generally, $\frac{\Delta Y}{\Delta X_1}$ might depend on the value of X_2 .
- How to model such "interactions"?
- 3 cases: (1) both independent variables are binary (2) one is binary, other is continuous (3) both are continuous.

(1) Interactions between Two Binary Variables

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + u_i \quad (20)$$

- whether a district has a large class size $(D_{1i}$, where $D_{1i} = 1$ if the i^{th} district has a large class size $(STR \ge 20) \& D_{1i} = 0$ otherwise)
- whether a district has a large prevalence of ELL $(D_{2i}$, where $D_{2i} = 1$ if the percentage of ELL in the ith district is 10% or more & $D_{2i} = 0$ otherwise)

Limitation?

- assumes that the effect of changing class size is the same for districts with a large and with a small prevalence of ELL students.

 Can allow the effect of changing class size to differ for districts with a large and with a small prevalence of ELL:

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i}) + u_i \quad (21)$$

- Let d_2 be the value of D_{2i}
- Assume LSA #1 holds: $[E(u_i|D_{1i}, D_{2i}) = 0]$

$$D_{1i} = 1$$
 (large class); $D_{1i} = 0$ (small class)

$$E(Y_i|D_{1i} = 1, D_{2i} = d_2)$$

= $(\beta_0 + \beta_1) + (\beta_2 + \beta_3)d_2$

$$E(Y_i|D_{1i} = 0, D_{2i} = d_2)$$

= $\beta_0 + \beta_2 d_2$

$$D_{1i} = 1 \ (large \ class) \ ; \ D_{1i} = 0 \ (small \ class)$$

$$E(Y_i|D_{1i} = 1, D_{2i} = d_2)$$

$$= (\beta_0 + \beta_1) + (\beta_2 + \beta_3)d_2$$

$$E(Y_i|D_{1i} = 0, D_{2i} = d_2)$$
$$= \beta_0 + \beta_2 d_2$$

$$E(Y_i|D_{1i}=1,D_{2i}=d_2)-E(Y_i|D_{1i}=0,D_{2i}=d_2)=\beta_1+\beta_3d_2$$

- effect of class size now depends on the prevalence of ELL.
- How to interpret β_3 ?

More generally

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + u_i$$

where D_{1i} , D_{2i} are binary

- β_1 is the effect on Y, on average, of changing $D_{1i} = 0$ to $D_{1i} = 1$
- In this specification, the effect of D_1 does not depend on the value of D_2 .
- To allow the effect of changing D_1 to depend on D_2 , include $(D_{1i} \times D_{2i})$ as a regressor:

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i}) + u_i$$

• Difference in conditional expectations is:

$$E(Y_i|D_{1i} = 1, D_{2i} = d_2) - E(Y_i|D_{1i} = 0, D_{2i} = d_2) = \beta_1 + \beta_3 d_2$$

- effect on Y of a change in D_1 now depends on D_2 .
- β_3 = difference in the effect on Y of D_1 , when $D_2 = 1$ and when $D_2 = 0$.

Example: TestScore, HiSTR, HiEL

$$TestScore = 664.1 - 1.9HiSTR - 18.2HiEL - 3.5(HiSTR \times HiEL)$$
(1.4) (1.9) (2.3) (3.1)

when HiEL = 0,

$$TestScore = 664.1 - 1.9HiSTR$$

when HiEL = 1,

$$TestScore = 664.1 - 1.9HiSTR - 18.2(1) - 3.5(HiSTR \times 1)$$

= 645.9 - 5.4HiSTR

$$TestScore = 664.1 - 1.9HiSTR - 18.2HiEL - 3.5(HiSTR \times HiEL)$$
(1.4) (1.9) (2.3) (3.1)

- "Effect" of HiSTR when HiEL = 0 is -1.9
- "Effect" of HiSTR when HiEL = 1 is -1.9 3.5 = -5.4
- Class size change is estimated to have a bigger effect when the percent of English learners is large.
- But this interaction is not statistically significant:

$$/t$$
-statistic/ = $|-3.5-0/3.1|=1.13<1.96$.

(2) Interactions between a Continuous and a Binary Variable

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + u_i \quad (22)$$

where X_i is continuous & D_i is binary.

- Specified this way, the effect on *Y* of $X = \beta_1$.
- To allow the effect of *X* to depend on *D*,

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i) + u_i \quad (23)$$

• modified specification allows for 2 different regression lines relating Y_i & X_i , depending on the value of D_i .

Binary-Continuous Interactions: Two Regression Lines

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i) + u_i \quad (23)$$

regression function:

$$\beta_0 + \beta_1 X + \beta_2 D + \beta_3 (X \times D)$$

If
$$D_i = 1$$
,

$$\beta_0 + \beta_1 X + \beta_2(1) + \beta_3(X \times 1)$$

$$= \beta_0 + \beta_2 + (\beta_1 + \beta_3)X$$

$$\longleftrightarrow$$
Intercept Slope

(regression line for the $D_i = 1$ group)

If
$$D_i = 0$$
,

$$\beta_0 + \beta_1 X$$
 \longleftrightarrow
Intercept Slope

(regression line for the $D_i = 0$ group)

Consider the regression model without the interaction term again:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + u_i \quad (22)$$

regression function:

$$\beta_0 + \beta_1 X + \beta_2 D$$

when $D_i = 1$,

$$\beta_0 + \beta_1 X + \beta_2(1) = (\beta_0 + \beta_2) + \beta_1 X$$
Intercept Slope

when $D_i = 0$,

$$\begin{array}{c}
\beta_0 + \beta_1 X \\
\longleftrightarrow \\
\text{Intercept Slope}
\end{array}$$

Under this specification, the effect of a change in X is the same whether the value of D_i is 0 or 1

the two regression lines have the same slope though different intercepts.

- So inclusion of a continuous-binary interaction allows the effect of a change in X to be different depending on the value of the binary variable.
 - slope of the regression line is allowed to be different under $D_i = 1$ & under $D_i = 0$.

a) Different intercepts, same slope

(b) Different intercepts, different slopes

Interpreting the Coefficients: Binary-Continuous Interactions

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i) + u_i$$

regression function:

$$Y = \beta_0 + \beta_1 X + \beta_2 D + \beta_3 (X \times D)$$
 (24)

Change X by ΔX . Value of the regression function becomes:

$$Y + \Delta Y = \beta_0 + \beta_1 (X + \Delta X) + \beta_2 D + \beta_3 ((X + \Delta X) \times D)$$
 (25)
(25)-(24):
$$\Delta Y = \beta_1 \Delta X + \beta_3 (\Delta X \times D)$$

- So, $\frac{\Delta Y}{\Delta X} = \beta_1 + \beta_3 D$
- β_3 = difference in the effect of a unit change in X, for observations in which $D_i = 1$ and observations in which $D_i = 0$.

Example: TestScore, STR, HiEL (=1 if PctEL 12 10)

$$TestScore = 682.2 - 0.97STR + 5.6HiEL - 1.28(STR \times HiEL)$$
(11.9) (0.59) (19.5) (0.97)

For districts with $HiEL_i = 0$,

$$TestScore = 682.2 - 0.97STR$$

For districts with $HiEL_i = 1$,

$$TestScore = 682.2 - 0.97STR + 5.6(1) - 1.28(STR \times 1) = 687.8 - 2.25STR$$

$$TestScore = 682.2 - 0.97STR$$
 ($HiEL_i = 0$ districts)

$$TestScore = 687.8 - 2.25STR$$
 ($HiEL_i = 1$ districts)

- A 1 unit reduction in *STR* is predicted to increase test scores:
 - by 0.97 points in districts with a low prevalence of ELL.

• by 2.25 points in districts with a high prevalence of ELL.

$$TestScore = 682.2 - 0.97STR + 5.6HiEL - 1.28(STR \times HiEL)$$
(11.9) (0.59) (19.5) (0.97)

Test the hypothesis that...

- the two regression lines are the *same* <=> population coefficient on HiEL = 0 and population coefficient on $(STR \times HiEL) = 0$.
 - F = 89.94 (p-value < 0.001)
 - > reject the hypothesis that the two regression lines are the same.
- the two regression lines have the *same slope but different intercept* <=> population coefficient on $(STR \times HiEL) = 0$.
 - \triangleright t-statistic testing $\beta_{STR \times HiEL} = 0$ is -1.28-0/0.97= -1.32
 - > Since $|t^{act}| = 1.32 < 1.64$, do not reject the hypothesis that the two regression lines have the same slope at the 10% level.

(3) Interactions between Two Continuous Variables

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i \quad (26)$$

where X_{1i} , X_{2i} are continuous.

• Specified this way, the effect on Y of X_1 does not depend on the value of X_2 .

Also,

• the effect on Y of X_2 does not depend on the value of X_1 .

To allow the effect of a unit change in X_1 to depend on the value of X_2 (and vice-versa),

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i}) + u_i \quad (27)$$

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i}) + u_i$$

regression function is:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 \times X_2) \tag{28}$$

change X_1 by ΔX_1 . Value of the regression function becomes:

$$Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2 + \beta_3 [(X_1 + \Delta X_1) \times X_2]$$
 (29)

(29)-(28):
$$\Delta Y = \beta_1 \Delta X_1 + \beta_3 (\Delta X_1 \times X_2)$$

So,
$$\frac{\Delta Y}{\Delta X_1} = \beta_1 + \beta_3 X_2$$

• effect of X_1 now depends on the value of X_2 .

Example: TestScore, STR, PctEL

$$TestScore = 686.3 - 1.12STR - 0.67PctEL + 0.0012(STR \times PctEL)$$

$$(11.8) \quad (0.59) \quad (0.37) \quad (0.019)$$

estimated effect of class size reduction is nonlinear because the size of the effect depends on *PctEL*:

$$\frac{\Delta TestScore}{\Delta STR} = -1.12 + 0.0012 PctEL$$

Value of PctEL	$\frac{\Delta TestScore}{\Delta STR}$
0	$-1.12 + (0.0012 \times 0) = -1.12$
20%	$-1.12 + (0.0012 \times 20) = -1.10$

Adding Control Variables

• To keep the analysis simple, we have not included control variables into our nonlinear regression models.

• All the tools we have discussed remain unchanged when we add control variables...

Example

- Suppose we want to know how class size affects testscores, controlling for student characteristics.
- Can estimate a regression model:

$$Testscore_{i} = \beta_{0} + \beta_{1}STR_{i} + \beta_{2}STR_{i}^{2} + \beta_{3}STR_{i}^{3} + \beta_{4}HiEL_{i} + \beta_{5}LchPct_{i} + \beta_{6}ln(Income_{i}) + u_{i}$$
(30)

• If we estimate (30) using our sample of data and obtain:

$$\widehat{Testscore}$$
 = 252.0 + 64.33 STR - 3.42 STR^2 + 0.059 STR^3 - 5.47 $HiEL$ - 0.420 $LchPct$ + 11.75 $ln(Income)$

(standard errors dropped for simplicity)

• How much is test score estimated to change when *STR* is reduced by 1 from 21 to 20?

Testscore

- $= 252.0 + 64.33STR 3.42STR^2 + 0.059STR^3 5.47HiEL$
- -0.420*PctEL* +11.75*ln*(*Income*)

• How much is test score estimated to change, on average, when *STR* is reduced by 1 from 21 to 20?

$$\Delta Testscore$$

$$= [64.33(20) - 3.42(20)^{2} + 0.059(20)^{3}]$$

$$-\left[64.33(21) - 3.42(21)^2 + 0.059(21)^3\right] = 1.49$$

Testscore

- $= 252.0 + 64.33STR 3.42STR^2 + 0.059STR^3 5.47HiEL$
- -0.420*PctEL* +11.75*ln*(*Income*)

• How much is test score estimated to change, on average, when *STR* is reduced by 2 from 21 to 19?

$$\Delta Testscore$$
= $[64.33(19) - 3.42(19)^2 + 0.059(19)^3]$

$$-\left[64.33(21) - 3.42(21)^2 + 0.059(21)^3\right] = 3.22$$

An Application of the Interaction Specification

1. Does beauty have an effect on earnings?

Hamermesh, D. S. and Biddle, J. E. (1994). Beauty and the Labor Market. *American Economic Review*, 84(5):1174–94

2. Does the effect of beauty on earnings differ by gender?

• How to answer this?