Bloom Filter 实验报告

学生姓名: ______杨景凯_____

学 号: _____520021910550____

2022年3月7日

目录

1	实验	思路	3		
	1.1	对数据的分析	3		
	1.2	哈希函数的选取	3		
		1.2.1 使用 C++ 库中的 std::hash	3		
		1.2.2 使用自己写的哈希函数	3		
		1.2.3 采用随机性更强的哈希函数	3		
2	实验 2.1	过程 实验说明	4		
3	实验结果				
	3.1	实验表格	4		
	3.2	实验结果分析	5		
	3.3	实验结论	5		

1 实验思路

1.1 对数据的分析

对于本次实验,输入数据具有的特点是:数量少、随机性差。

1.2 哈希函数的选取

根据输入数据的随机性差的特点,我先后选取了以下三种哈希函数,并 最终选取了最后一种哈希函数。

1.2.1 使用 C++ 库中的 std::hash

std::hash 具有较大的避免哈希冲突的可能性, 但是其对于 int 类型的数据仅为映射到其本身, 而对于此次实验的数据来说, 不具有较大的随机性。只能将数据映射到本身使得哈希表没有意义。

1.2.2 使用自己写的哈希函数

在放弃使用 C++ 库中的 std::hash 后, 我尝试自己写哈希函数。根据质数不容易冲突的性质, 我在 100 的附近取得一些质数, 将其相乘后对总空间取余, 如下图所示。

```
int myhash1(int num){
    return ((num%101)*(num%97)*(num%103)*(num%91)*(num%107)*(num%89))%m;
}
```

在使用此哈希函数测试时,发现最终结果依旧不满意,由于原来的数据取模 后大多不发生变化,故随机性依旧不好。导致结果不佳。

1.2.3 采用随机性更强的哈希函数

如果是为了更好的随机性,那么为什么不去使用随机数呢?因此我采用了下面图片所示的哈希函数,进行了最终的实验。

```
int myhash2(int num){
    srand(num);
    return rand()%m;
}
```

2 实验过程

2.1 实验说明

实验中,待插入的数据为 0 到 99,检验的数据为 100 到 199,对于不同 k,不同哈希函数为产生微小变化。如果 $H_2(x) = H_1(x+1)$,那么因为数据的连续性(较差的随机性),那么只有最后的多次哈希起作用。因此我采用 $H_j(x) = H_1(x \cdot j)$,其中 j 是哈希函数的序数。

3 实验结果

3.1 实验表格

实验结果如下表所示:

实验结果表格

m/n	2	3	4	5
k	1.386294	2.079442	2.772589	3.465736
k=1	0.15	0.53	0.4	0.31
k=2	0.39	0.24	0.24	0.18
k=3	0.43	0.03	0.18	0.18
k=4	0.53	0.09	0.26	0.08
k=5	0.59	0.11	0.35	0.03

3.2 实验结果分析

观察表格,我们可以发现,在m/n=2,3,4 时结果与理论相接近,符合。但是在m/n=5 时存在问题。理论上,最小值应该在3与4之间,但是实验结果显示在5处最小。我向后测试了m/n=6的结果,发现是增加的。因此是稍微有所偏差。考虑到输入数据的连续性(较差随机性)以及多哈希函数的重叠,结果存在偏差。

3.3 实验结论

根据上述实验,我们可以验证 BloomFilter 在 $k = \ln 2 \cdot (m/n)$ 时误报率最低,理论成立。