5

10

20

ABSTRACT:

To provide a circuit arrangement (100) for controlling a first terminal and a second terminal of a preferably contactless integrated circuit, particularly for testing a CMOS circuit, with which a multitude of integrated circuits can be tested simultaneously while using a low-cost structure and by which the circuit arrangement for a simple write/read unit assigned to the integrated circuit can be provided, it is proposed that the circuit arrangement (100) comprises:

- at least a control stage (10) which generates, from an external modulation signal (M₀) and an external clock signal (C₀)
 - a first modulation signal (M₁);
 - a second modulation signal (M_2) which is temporally shifted with respect to the first modulation signal (M_1) ;
 - a preferably symmetrical first clock signal (C₁); and
 - a preferably symmetrical second clock signal (C₂) which is inverted with respect to the first clock signal (C₁);
- 15 at least a first driver stage (40),
 - which is connected to a first power supply voltage $(U_{dd,1})$ amplitude-modulated by the first modulation signal (M_1) and to a first reference potential $(U_{ss,1})$ and
 - can be impressed with the first clock signal (C₁) in such a way that the output voltage (U_{0,1}) of the first driver stage (40), which can be applied to the first terminal of the integrated circuit, temporally assumes the value of the amplitude-modulated first power supply voltage (U_{dd,1}) and temporally the value of the first reference potential (U_{ss,1}) in accordance with the clock of the first clock signal (C₁); and
- 25 at least a second driver stage (50),
 - which is connected to a second power supply voltage (U_{dd,2}) amplitude-modulated by the second modulation signal (M₂) and to a second reference potential (U_{ss,2}) and

can be impressed with the second clock signal (C_2) in such a way that the output voltage $(U_{0,2})$ of the second driver stage (50), which can be applied to the second terminal of the integrated circuit, temporally assumes the value of the amplitude-modulated second power supply voltage $(U_{dd,2})$ and temporally the value of the second reference potential $(U_{ss,2})$ in accordance with the clock of the second clock signal (C_2) .

Fig. 1

5