Escola Politécnica da USP

Departamento de Engenharia Mecatrônica – PMR

PMR3502 – Elementos de Robótica

Turma 01 – Prof. Flavio Buiochi

Relatório – Robô Kuka **Elementos de Robótica**

Giovanni Cesar Meira Barboza — N° USP 11260996 José Rafael Souza do Nascimento — N° USP 9833426 Lucas Real — N° USP 9833339

Programação para desenho de Urso

Data: 05/06/2023

1. Desenho Cotado

Para a realização do desenho foi utilizado o programa de CAD Fusion 360 da Autodesk. Na Figura 1 temos o Urso cotado com todas as dimensões utilizadas. Para a realização de curvas foi utilizado a ferramenta de curva utilizando três pontos, facilitando assim a cotação do desenho. Também foi retirado, no caso das semicircunferências, o ângulo realizado por cada uma delas para ser adicionado no parâmetro CA do código CIRC em Kuka.

Figura 1: Urso cotado com dimensões e as constraints do desenho.

2. Pontos de controle

Foram desenvolvidas algumas tabelas de pontos de controles, em Tabela 1 temos as coordenadas iniciais e finais de cada movimento realizado. O movimento Vazio é o movimento sem contato com o papel e a caneta. O sistema de coordenadas utilizado foi o cartesiano e por isso depois se alterou no FRAME MESA o ângulo para -90°.

Tabela 1: em x e y temos as coordenadas de movimento em mm

х	У	Moviment o	х	У	Moviment o	х	У	Moviment o
0.00	6.50	Inicial	98.50	67.9 0	Vazio	54.0 0	0.00	Linha
0.00	36.5 0	Linha	100.0	66.8 0	Linha	46.5 0	9.00	Curva
40.0 0	68.5 0	Curva	87.50	69.0 0	Curva	39.0 0	32.0 0	Linha
55.0 0	68.5 0	Linha	91.00	61.0 0	Vazio	55.0 0	68.5 0	Curva
70.0 0	78.0 0	Linha	98.00	61.0 0	Linha	42.7 5	20.5 0	Vazio
77.5 0	79.5 0	Curva	91.00	59.0 0	Vazio	35.5 0	16.5 0	Curva
86.0 0	76.0 0	Curva	85.50	57.5 0	Linha	35.5 0	0.00	Linha
77.5 0	79.5 0	Linha	80.00	50.5 0	Linha	26.5 0	0.00	Linha
86.0 0	76.0 0	Vazio	72.50	18.5 0	Curva	20.5	8.00	Curva
90.0	74.4 0	Linha	72.50	0.00	Linha	20.5	15.0 0	Linha

98.5 0		Linha	(62.50	0.00	Linha	15.0 0	11.5 0	Linha
97.0 0		Curva	(62.50	12.5 0	Linha	15.0 0	4.00	Linha
92.5 0	64.5 0	Linha	(62.50	0.00	Linha	0.00	6.50	Curva

Tabela 2:Pontos de Controle com as coordenadas em x e y

9

32

52.3

68.5

20.5

20

16.5

0

0

3

8

15

11.5

4

0

46.5

39

42.5

42.75

55

38

35.5

35.5

26.5

22

20.5

20.5

15

15

7.5

			P15	97	64.5	P31
Ponto	х	у	P16	92.5	64.5	P32
P1	0	6.5	P17	100	66.8	P33
P2	0	36.5	P18	91	59	P34
P3	14	60	P19	87.5	69	P35
P4	40	68.5	P20	91	61	P36
P5	55	68.5	P21	98	61	P37
P6	70	78	P22	85.5	57.5	P38
P7	73	82.5	P23	80	50.5	P39
P8	77.5	79.5	P24	77.5	33.5	P40
P9	84	80.5	P25	72.5	18.5	P41
P10	86	76	P26	72.5	0	P42
P11	77.5	79.5	P27	62.5	0	P43
P12	90	74.4	P28	62.5	12.5	P44
P13	98.5	67.9	P29	54	0	P45
P14	97.5	66.4	P30	48.5	3	

3. Manual do Programa

A utilização do programa se baseia em um aparelho manual de 5 inputs, onde temos um botão e quatro interruptores. O botão é utilizado para iniciar o desenho (Entrada 1), enquanto os 4 interruptores são utilizados para: terminar o desenho caso solicitado (Entrada 2), definir o lado a ser operado (esquerda ou direita na entrada 3); e dois interruptores para definir quatro tamanhos de imagens (00, 11, 10, 01 – referentes aos tamanhos 50%, 65%, 75% e 85% do desenho original acima, entradas 4 e 5). Entre cada desenho é necessário apertar o botão 1 para continuar a realização, esse tempo é utilizado para alterar os parâmetros de cada desenho utilizando os outros interruptores.

4. Listagem do Programa

Abaixo temos o programa utilizado. Foram feitos alguns comentários para melhor interpretação do usuário.

&ACCESS RVP	;FOLD PTP P1 Vel=100 % PDAT1	EXIT		
&REL 42	Tool[1]:1 Base[0];%{PE}%R	ENDIF		
&PARAM TEMPLATE =	5.6.13,%MKUKATPBASIS,%CMOVE,%	ENDIF		
C:\KRC\Roboter\Template\vorgabe	VPTP,%P 1:PTP, 2:P1, 3:, 5:100,	LINDIF		
&PARAM EDITMASK = *				
QPARAIVI EDITIVIASK = 1	7:PDAT1	LOOP : lean name desember		
	\$BWDSTART=FALSE	LOOP ; loop para desenhar		
; caebçalho gerado pelo Kuka	PDAT_ACT=PPDAT1	dois ursos em um lado do papel		
	FDAT_ACT=FP1			
DEF ursoaula()	BAS(#PTP_PARAMS,100)	WAIT FOR \$IN[1]; espera		
	PTP XP1	apertar o botão 1 para continuar		
; Declaração das variáveis antes do	;ENDFOLD			
INI				
	; Primeiro loop para realizar os	;		
SIGNAL ENTRADA \$IN[4] TO \$IN[5]	desenhos	IF \$IN[3] THEN; Bloco		
POS P2	LOOP	adicionado para não sobreescrever		
REAL S	P2=XP1	IF CONT_D > 1 THEN		
INT CONT, CONT_E, CONT_D	CONT=1; Contador para	EXIT		
FRAME MESA	saber se já desenhou dois desenhos	ELSE		
THE HALLS A	em um lado	CONT_D = CONT_D + 1		
; Código do Kuka para o INI	CONT_E = 1; Contador	ENDIF		
	-	ELSE		
;FOLD INI	para saber se já desnehou no lado	-		
;FOLD BASISTECH INI	Esquerdo	IF CONT_E > 1 THEN		
GLOBAL INTERRUPT DECL 3	CONT_D = 1; Contador	EXIT		
WHEN \$STOPMESS==TRUE DO	para saber se já desnehou no lado	ELSE		
IR_STOPM ()	Direito	$CONT_E = CONT_E + 1$		
INTERRUPT ON 3	MESA={X 0, Y 0,Z 0,A 0,B 0,	ENDIF		
BAS (#INITMOV,0)	C 0} ; Frame criado para utilizar	ENDIF		
;ENDFOLD (BASISTECH INI)	nosso sistema de variáveis			
;FOLD SPOTTECH INI	MESA.X=XP1.X -100;			
USERSPOT(#INIT)	MESA.Y=XP1.Y	;		
;ENDFOLD (SPOTTECH INI)	MESA.Z=XP1.Z			
;FOLD GRIPPERTECH INI	MESA.A=-90 ;utilizado para			
USER_GRP(0,DUMMY,DUMMY,GDEF	passar do sistema cartesiano para o	SWITCH ENTRADA		
AULT)	sistema kuka global do papel			
;ENDFOLD (GRIPPERTECH INI)	P2.X=0	CASE 'B01'		
;FOLD USER INI	P2.Y=0	LIN MESA:P2		
;Make your modifications	P2.Z=0			
here	1 2.2-0	S=0.85		
Here	IF \$IN[2] THEN ; Caso	3-0.03		
·ENDEOLD (LISED INII)	switch 2 seja acionado para o	DITUDEO(D2 C MECA)		
;ENDFOLD (USER INI)	•	PLTURSO(P2,S,MESA)		
;ENDFOLD (INI)	programa	CASE 'B10'		
0/1: 1/1 DTD 110145	EXIT	110 1 4 5 C 4 D 2		
; Código Kuka para o PTP HOME	ENDIF	LIN MESA:P2		
;FOLD PTP HOME Vel= 100 %		S=0.75		
DEFAULT;%{PE}%MKUKATPBASIS,%C	IF \$IN[3] THEN ; caso do 3			
MOVE,%VPTP,%P 1:PTP, 2:HOME, 3:,	esteja em 1 ele faz do lado direito	PLTURSO(P2,S,MESA)		
5:100, 7:DEFAULT		CASE 'B11'		
\$BWDSTART = FALSE	MESA.Y=MESA.Y			
PDAT_ACT=PDEFAULT		LIN MESA:P2		
FDAT_ACT=FHOME	ELSE; caso a entrada 3	S=0.65		
BAS (#PTP_PARAMS,100)	esteja em 0 faz o lado esquerdo			
\$H POS=XHOME		PLTURSO(P2,S,MESA)		
PTP XHOME	MESA.Y=MESA.Y + 120	DEFAULT		
;ENDFOLD	-			
,	ENDIF	LIN MESA:P2		
	211011	S=0.5		
; Touch-up realizado no meio da	; Caso já tenha desenhado	5-0.5		
folha do papel 30 mm em z acima do		DITUDEO(D2 C MECA)		
	nos dois lados termina o programa	PLTURSO(P2,S,MESA)		
plano da folha.	IF CONT_D > 1 THEN	ENDSWITCH		
	IF CONT_E > 1 THEN	ENDSWITCH		

PMR3502 – Elementos de Robótica

IF CONT == 2 THEN; caso	M.X = P.X + 6.5*S	P.X = P.X + 7*S
tenha feito dois ursos de um lado ele	M.Y = P.Y + 1*S	LIN MESA:P
sai do programa	E = P	P.Z = P.Z + 30
EXIT	E.X = P.X + 8.5*S	LIN MESA:P
ELSE MESA.X=MESA.X +100 ; Caso já	E.Y = P.Y - 3.5*S CIRC MESA:M,MESA:E,CA 149.6	WAIT SEC 1 P.X = P.X - 7.0*S
tenha feito um urso em baixo ele	P.X = P.X + 8.5*S	P.Y = P.Y - 2.0*S
parte para fazer o outro acima	P.Y = P.Y - 3.5*S	LIN MESA:P
CONT=CONT+1	P.X = P.X - 8.5*S	P.Z = P.Z - 30
ENDIF	P.Y = P.Y + 3.5*S	LIN MESA:P
	LIN MESA:P	WAIT SEC 1
ENDLOOP	P.Z = P.Z + 30	P.X = P.X - 5.5*S
ENDLOOP	LIN MESA:P	P.Y = P.Y - 1.5*S
	WAIT SEC 1	LIN MESA:P
;código para o PTP HOME e final do	P.X = P.X + 8.5 * S	P.X = P.X - 5.5*S
código.	P.Y = P.Y - 3.5*S	P.Y = P.Y - 7.0*S
;FOLD PTP HOME Vel= 100 %	LIN MESA:P	LIN MESA:P
DEFAULT;%{PE}%MKUKATPBASIS,%C	P.Z = P.Z - 30	M = P
MOVE,%VPTP,%P 1:PTP, 2:HOME, 3:,	LIN MESA:P	M.X = P.X - 2.5*S M.Y = P.Y - 17.0*S
5:100, 7:DEFAULT \$BWDSTART = FALSE	WAIT SEC 1 P.X = P.X + 4*S	E = P
PDAT ACT=PDEFAULT	P.Y = P.Y - 1.6*S	E.X = P.X - 7.5*S
FDAT_ACT=FDETAGET	LIN MESA:P	E.Y = P.Y - 32.0*S
BAS (#PTP_PARAMS,100)	P.X = P.X + 8.5*S	CIRC MESA:M,MESA:E,CA 20.1
\$H POS=XHOME	P.Y = P.Y - 6.5*S	P.X = P.X - 7.5*S
PTP XHOME	LIN MESA:P	P.Y = P.Y - 32.0*S
;ENDFOLD	M = P	P.Y = P.Y - 18.5*S
	M.X = P.X - 1.0*S	LIN MESA:P
END	M.Y = P.Y - 1.5*S	P.X = P.X - 10.0*S
	E = P	LIN MESA:P
DEF PLTURSO(P,S,MESA:IN) ;	E.X = P.X - 1.5*S	P.Y = P.Y + 12.5*S
subrotina para fazer o plot do urso	E.Y = P.Y - 3.4*S	LIN MESA:P
POS P, E, M	CIRC MESA:M,MESA:E,CA 65.0	P.Y = P.Y - 12.5*S
FRAME MESA	P.X = P.X - 1.5*S	LIN MESA:P
REAL S	P.Y = P.Y - 3.4*S	P.X = P.X - 7.5*S
P.Y = P.Y + 6.5*S	LIN MESA:P P.X = P.X - 4.5*S	LIN MESA:P M = P
LIN MESA:P	LIN MESA:P	M.X = P.X - 5.5*S
P.Z = P.Z - 30	P.Z = P.Z + 30	M.Y = P.Y + 3*S
LIN MESA:P	LIN MESA:P	E = P
P.Y = P.Y + 30*S	WAIT SEC 1	E.X = P.X - 7.5*S
LIN MESA:P	P.X = P.X + 6*S	E.Y = P.Y + 9*S
M = P	P.Y = P.Y + 3.4*S	CIRC MESA:M,MESA:E,CA 84.0
M.X = P.X + 14*S	P.Z = P.Z - 30	P.X = P.X - 7.5 * S
M.Y = P.Y + 23.5*S	LIN MESA:P	P.Y = P.Y + 9*S
E = P	WAIT SEC 1	P.X = P.X - 7.5*S
E.X = P.X + 40*S	P.X = P.X + 1.5*S	P.Y = P.Y + 23*S
E.Y = P.Y + 32*S	P.Y = P.Y - 1.1*S	LIN MESA:P
CIRC MESA:M,MESA:E,CA 82.2	LIN MESA:P	M = P
P.X = P.X + 40*S	M = P	M.X = P.X + 3.5*S
P.Y = P.Y + 32*S P.X = P.X + 15*S	M.X = P.X - 9.0*S M.Y = P.Y - 7.8*S	M.Y = P.Y + 20.3*S E = P
LIN MESA:P	E = P	E.X = P.X + 16*S
P.X = P.X + 15*S	E.X = P.X - 12.5*S	E.Y = P.Y + 36.5*S
P.Y = P.Y + 9.5*S	E.Y = P.Y + 2.2*S	CIRC MESA:M,MESA:E,CA 55.1
LIN MESA:P	CIRC MESA:M,MESA:E,CA 139.4	P.Z = P.Z + 30
M = P	P.Z = P.Z + 30	P.X = P.X + 16*S
M.X = P.X + 3*S	LIN MESA:P	P.Y = P.Y + 36.5*S
M.Y = P.Y + 4.5*S	WAIT SEC 1	LIN MESA:P
E = P	P.X = P.X - 9.0*S	WAIT SEC 1
E.X = P.X + 7.5*S	P.Y = P.Y - 5.8*S	P.X = P.X - 16*S
E.Y = P.Y + 1.5*S	LIN MESA:P	P.Y = P.Y - 36.5*S
CIRC MESA:M,MESA:E,CA 180.0	WAIT SEC 1	P.X = P.X + 3.75*S
P.X = P.X + 7.5*S	P.Z = P.Z - 30	P.Y = P.Y - 11.5*S
P.Y = P.Y + 1.5*S	LIN MESA:P	LIN MESA:P
M = P	WAIT SEC 1	P.Z = P.Z - 30

LIN MESA:P WAIT SEC 1 M = P

M.X = P.X - 4.75*SM.Y = P.Y - 0.5*S

E = P

E.X = P.X - 7.25*SF.Y = P.Y - 4.0*S

CIRC MESA:M,MESA:E,CA 96.9

P.X = P.X - 7.25*S P.Y = P.Y - 4.0*S P.Y = P.Y - 16.5*S LIN MESA:P P.X = P.X - 9.0*S

LIN MESA:P

M = P M.X = P.X - 4.5*S M.Y = P.Y + 3*S E = P E.X = P.X - 6.0*S

F.Y = P.Y + 8*S

CIRC MESA:M,MESA:E,CA 85.7 P.X = P.X - 6.0*S P.Y = P.Y + 8*S P.Y = P.Y + 7*S LIN MESA:P

P.X = P.X - 5.5*S P.Y = P.Y - 3.5*S LIN MESA:P P.Y = P.Y - 7.5*S LIN MESA:P M = P

M.X = P.X - 7.5*SM.Y = P.Y - 4.0*S

E = P

E.X = P.X - 16.0*SE.Y = P.Y + 2.5*S

CIRC MESA:M,MESA:E,CA 138.0

P.X = P.X - 16.0*S P.Y = P.Y + 2.5*S P.Z = P.Z + 30 LIN MESA:P END

5. Resultados

Com os testes no laboratório pudemos revisar o código e testá-lo até obter resultados conforme o esperado. Realizou-se dois desenhos, um de cada lado do papel e cada um com uma escala diferente, 0.5, 0.65, 0.75 e 0.85 do tamanho original. Os resultados do laboratório seguem abaixo na Figura 2 com dois desenhos do lado direito e dois desenhos do lado esquerdo. Os interruptores funcionaram de acordo com o previsto, o robô utilizou para movimentação o comando LIN e o CIRC para semicircunferências. Em nenhum momento a ferramenta se moveu na diagonal, toda saída e retorno ao papel foi feita em linha reta. Foi adicionado um código que impedisse que o programa desenhasse novamente em um mesmo lado do papel e caso ele já tenha escrito nos dois lados ele encerra o programa. Foram utilizadas 11 interpolações circulares e 45 pontos de controle.

Figura 2: Resultado do teste em laboratório.