Spis treści

Ι.	wpr	owadze	enie	3	
2.	Stru	Struktura, komponenty, schemat układu			
	2.1.	Spis el	ementów	4	
	2.2.	Układ	rzeczywisty	5	
	2.3.	Schema	at elektryczny	6	
3.	Ana	liza dy	namiki systemu	8	
	3.1.	Pozysk	anie danych i identyfikacja parametrów obiektu	8	
	3.2.	Wykon	anie symulacji w środowisku Simulink	10	
4.	Imp	lement	acja na rzeczywistym sprzęcie	11	
	4.1.	Realiza	acja zaprojektowanego regulatora	11	
	4.2.	Opis z	astosowanych rozwiązań	12	
		4.2.1.	Zadawanie wartości referencyjnej	12	
		4.2.2.	Regulacja temperatury	12	
		4.2.3.	Wyświetlanie aktualnej temperatury	12	
Sp	is ry	sunków	7	13	
ъ.	hl: a m	nofio		1 /	

1. Wprowadzenie

Poniższy raport dotyczy projektu zaliczeniowego na zajęcia laboratoryjne z przedmiotu Systemy mikroprocesorowe. Celem zasadniczym jest zaprojektowanie, zbudowanie i przetestowanie mikroprocesorowego systemu sterowania i pomiaru w oparciu o mikrokontroler z rodziny STM32 oraz elementy wykonawcze i pomiarowe umieszczone na płytce stykowej. Zadanie polega na stałowartościowej regulacji temperatury w oparciu o regulator PID z korekcją anty-windup. Obiektem regulacji jest rezystor ceramiczny (parametry podane w dalszej części raportu), którego temperatura zależy od przepływającego prądu. Przy użyciu czujnika temperatury realizujemy w układzie sprzężenie zwrotne, co jest niezbędne w regulacji automatycznej. Przed przystąpieniem do pracy z kompletnym układem regulacji automatycznej, analizie zostanie poddany model obiektu oraz regulatora. System umożliwia bieżący podgląd sygnału regulowanego oraz zadawanie wartości referencyjnej. W układzie zamontowano wentylator o odpowiedniej mocy, wspierający obniżanie temperatury całego obiektu.

Założenia projektowe systemu mikroprocesorowego:

- uchyb ustalony na poziomie 1% wartości zakresu regulacji,
- możliwość zadawania wartości referencyjnej za pomocą komunikacji szeregowej,
- możliwość zadawania wartości referencyjnej za pomocą potencjometru,
- możliwość podglądu aktualnej wartości mierzonej (port szeregowy),
- graficzna wizualizacja (real-time),
- model symulacyjny z uwględnionym regulatorem,
- wyświetlacz LCD ukazujący bieżące informacje o sygnale referencyjnym i regulowanym,
- chłodzenie obiektu przy pomocy wentylatora,
- wykorzystanie systemu kontroli wersji (GitHub).

2. Struktura, komponenty, schemat układu

2.1. Spis elementów

W układzie systemu mikroprocesorowego wykorzystano poniższe części:

- płytka rozwojowa NUCLEO-F746ZG,
- rezystor ceramiczny $39\Omega 5W$,
- tranzystor bipolarny NPN Darlington TIP122 (2 sztuki),
- czujnik ciśnienia i temperatury BMP280,
- wyświetlacz LCD 2x16 w połączeniu z konwerterem I^2C ,
- potencjometr obrotowy $10k\Omega$ liniowy,
- moduł zasilający do płytek stykowych MB102 $5V,\,$
- zasilacz impulsowy 12V/2, 5A,
- rezystor przewlekany $1k\Omega$ (2 sztuki),
- wentylator 5V,
- płytka stykowa (2 sztuki),
- przewody połączeniowe.

Element wykonawczy stanowi tranzystor bipolarny NPN Darlington TIP122, który pełni rolę klucza, umożliwiając przepływ prądu z zasilacza impulsowego, przez rezystor, złącze kolektor-emiter do masy. To samo dotyczy układu z wentylatorem. W tego typu zastosowaniach tranzystor w momencie przewodzenia (stan wysoki na bazie, pochodzący z sygnału PWM - wystawiany przez mikrokontroler zgodnie z algorytmem regualcji PID) powinien znajdować się w stanie nasycenia w celu ograniczenia do minimum spadku napiecia na złączu kolektor-emiter tranzystora, co prowadzi do minimalizacj strat mocy wydzielanych na tranzystorze.

2.2. Układ rzeczywisty

Rysunek 2.1. Układ rzeczywisty systemu mikroprocesorowego.

Na rysunku 2.1 przedstawiono zbudowany układ naszego systemu. Zasilanie DC 5V pochodzi z modułu zasilającego do płytek stykowych. Zewnętrzne zasilanie urządzeń takich jak, czujnik temperatury, wyświetlacz LCD czy wentylator wynika z stosunkowo sporego prądu, który te urządzenia pobierają. Zasilanie DC 3,3V pochodzi bezpośrednio z płytki Nucleo.

2.3. Schemat elektryczny

Rysunek 2.2. Schemat układu wykonany w środowisku KiCad.

Opis schematu elektrycznego:

- Mikrokontroler NUCLEO-F756ZG (U1) centralna jednostka sterująca systemem, odpowiedzialna za przetwarzanie danych oraz zarządzanie sygnałami sterującymi. Mikrokontroler jest zasilany za pomocą złącza microUSB, połączonego z dołączonym debugerem, co pozwala na wygodne programowanie oraz zasilanie układu.
- Czujnik BMP280 (U2) odpowiedzialny za pomiar temperatury. Komunikuje się z mikrokontrolerem za pomocą interfejsu SPI, przesyłając dane pomiarowe do dalszego przetwarzania.
- Wyświetlacz LCD (U3) dwuwierszowy ekran z konwerterem I2C (HD44780), który umożliwia uproszczoną komunikację z mikrokontrolerem. Wyświetlacz prezentuje wartość temperatury odczytanej z czujnika oraz wartość referencyjną w czasie rzeczywistym.
- Wentylator (M1) sterowany za pomocą tranzystora TIP122 (Q1). TIP122 to układ Darlingtona, składający się z dwóch tranzystorów w konfiguracji, która zapewnia wysokie wzmocnienie prądowe. Pozwala to na efektywne sterowanie prądem wentylatora przy niewielkim sygnale sterującym z mikrokontrolera. Wentylator zapewnia aktywne chłodzenie systemu.
- Rezystor ceramiczny (R1) obiekt regulacji temperatury. Sterowany jest za pomocą tranzystora TIP122 (Q2), działającego na podobnej zasadzie jak w przypadku wentylatora. Tranzystor, jako element wykonawczy, umożliwia podgrzewanie kontrolowanego środowiska w celu utrzymania zadanej temperatury.
- Potencjometr (R3) pozwala na nastawę temperatury zadanej poprzez regulację napięcia podawanego na wejście ADC mikrokontrolera. Użytkownik może w prosty sposób zmieniać wartości docelowe temperatury za pomocą tego elementu.
- Elementy pasywne w układzie wykorzystane są rezystory, które służą do zabezpieczania układów oraz ograniczania prądów sterujących w poszczególnych obwodach.

3. Analiza dynamiki systemu

3.1. Pozyskanie danych i identyfikacja parametrów obiektu

W środowisku STM32CubeIDE widnieje nasz pusty projekt. W pierwszej kolejności realizujemy odczyt wartości temperatury z czujnika BMP280. Ta zmienna zostaje wysyłana poprzez port szeregowy (USART), do skryptu w Pythonie, który przechwytuje próbki i zapisuje je do pliku.txt. Za pomocą sygnału PWM sterujemy przełączaniem tranzystora TIP122, który dostarcza zasilanie do obiektu regulacji (rezystora ceramicznego). W celu identyfikacji obiektu, ustawiamy stałą wartość sygnału sterującego na poziomie 90% wypełnienia PWM. Tym samym otrzymamy odpowiedź obiektu na "umowny" skok jednostkowy. Taki przebieg umożliwi zdobycie informcji na temat dynamiki systemu i pozwolić dokonać aproksymacji modelu jako obiektu pierwszego rzędu z opóźnieniem transportowym. Zebrany zestaw danych został wyeksportowany do matlaba, tam dokonaliśmy nałożenia prostej i odczytania parametrów obiektu.

Rysunek 3.1. Porównanie zebranych danych z modelem obiektu.

Na rysunku 3.1 przedstawiono odpowiedź skokową obiektu w postaci porównania zebranych danych z nałożoną aproksymacją. Wyznaczono i wykreślono na przebiegu błąd bezwzględny tego przybliżenia. Na rysunku 3.2 widnieje wykres błędu. Wyniki uznajemy za satysfakcjonujące.

Rysunek 3.2. Przebieg błędu pomiędzy obiektem rzeczywistym a modelem.

Modelu jako obiekt pierwszego rzędu z opóźnieniem transportowym, opisany jest transmitancją:

$$G_o = \frac{K}{1 + sT} e^{-sT_0}, (3.1)$$

gdzie: K - wzmocnienie obiektu, T - stała czasowa, T_0 - opóźnienie transportowe. Przyjmujemy następujące parametry:

$$K = 10, 6$$
 $T = 340$ $T_0 = 10$

3.2. Wykonanie symulacji w środowisku Simulink

Wraz z wyznaczonymi parametrami obiektu przechodzimy do Simulinka. Modelujemy układ i implementujemy regulator PI z anty wind-up w postaci funkcji. Schemat takiego układu został przedstawiony na rysunku 3.3. Dla wartości referencyjnej $y_{ref}=28^{o}C$ uzyskaliśmy przebieg pokazany na rysunku 3.4. Możemy zauważyć, że wstępne założenia projektowe są spełnione. Uchyb ustalony mieści się w tunelu 1%. Parametry zastosowanego regulatora:

$$k_p = 1, 2$$
 $k_i = 0, 02$ $k_d = 0$

Rysunek 3.3. Układ regulacji w środowisku Simulink.

Rysunek 3.4. Przebieg odpowiedzi układu regulacji na stałą wartość zadaną.

4. Implementacja na rzeczywistym sprzęcie

4.1. Realizacja zaprojektowanego regulatora

Wybraną strukturą regulatora jest regulator typu PI z korektorem anty wind-up. Zastosowano wyznaczone parametry regulatora i przy pomocy skryptu w Pythonie, rozpoczęto zbieranie danych dla wartości referencyjnej $y_{ref} = 28^{\circ}C$. Na rysunku 4.1 przedstawiono odpowiedź obiektu rzeczywistego. Widzimy, że przebieg jest zbliżony z tym, uzyskanym w symulacji (rysunek 3.4).

Rysunek 4.1. Przebieg odpowiedzi układu regulacji (obiekt rzeczywisty).

Zastosowany korektor przy składowej całkującej regulatora zatrzymuje naładowanie się całki podczas nasycenia sygnału sterującego. Zmniejsza to przeregulowanie odpowiedzi i skraca czas regulacji.

4.2. Opis zastosowanych rozwiązań

4.2.1. Zadawanie wartości referencyjnej

System mikroprocesorowy został wyposażony w dwie możliwości zadawania wartości referencyjnej. Tryb wybiera się poprzez przyciśnięcie przycisku $user_button$ na module Nucleo. Pierwszą z nich (domyślną) jest zadawanie wartości setpoint poprzez potencjometr. Odczytana wartość z przetwornika ADC zostaje odpowiednio przeliczona na zakres $23^{o}C - 30^{o}C$, a następnie przypisana do odpowiedniej zmiennej. Takie rozwiązanie umożliwia użytkownikowi wygodne zmienianie wartości zadanej.

Drugim sposobem na podanie wartości referencyjnej jest wykorzystanie portu szeregowego. Należy przycisnąć przycisk $user_button$ (dioda LED1 zaczyna się świecić) i wysłać wartość referencyjną y_{ref} jako liczbę całkowitą 3-cyfrową (10-krotnie zwięszkoną, aby operować na zmiennej typu int). W tym trybie potencjometr jest wyłączony.

4.2.2. Regulacja temperatury

W domyślnym przypadku, nasza regulacji odbywa się z temperatury niższej do wyższej (zadanej). W takiej sytuacji, działanie wentylatora nie jest konieczne. Jednak na mikrokontrolerze została zaimplementowana regulacja z wykorzystaniem właśnie tego urządzenia. W momencie, gdy wartość zadana będzie niższa niż aktualna, wentylator rozpocznie pracę, aby schłodzić obiekt i szybciej osiągnąć temperaturę zadaną. Silnik wiatraka sterowany jest za pomocą sygnału PWM.

4.2.3. Wyświetlanie aktualnej temperatury

W systemie znajduje się wyświetlacz LCD, który na bieżąco uaktualnia wartość zadaną i odczytaną. Do głębszej analizy przydaje się zbierać dane w całym okresie regulacji. W tym celu został zaimplementowany skrypt w Pythonie, którego działanie przedstawia rysunek 4.1. Przy użyciu portu szeregowego, pokazuje odpowiedź układu regulacji w czasie rzeczywistym. Dodatkową funkcjonalnością jest zapis zebranych próbek do pliku.txt.

Spis rysunków

2.1.	Układ rzeczywisty systemu mikroprocesorowego	5
2.2.	Schemat układu wykonany w środowisku KiCad	6
3.1.	Porównanie zebranych danych z modelem obiektu	8
3.2.	Przebieg błędu pomiędzy obiektem rzeczywistym a modelem	S
3.3.	Układ regulacji w środowisku Simulink	10
3.4.	Przebieg odpowiedzi układu regulacji na stałą wartość zadaną	10
4.1.	Przebieg odpowiedzi układu regulacji (obiekt rzeczywisty)	11