Лекция 27 от 13.04.2016

Привидение к каноническому и нормальному виду

Пусть V — векторное пространство, $\dim V = n$, $e = (e_1, \dots, e_n)$ — базис V, $Q: V \to F$ — квадратичная функция на V.

Теорема. Для любой квадратичной функции Q существует такой базис, в котором Q имеет канонический вид.

Доказательство. Метод Лагранжа.

Докажем индукцией по n.

При n=1 имеем, что $Q(x)=ax^2$, то есть уже имеем канонический вид.

Предположим, что для всех значений меньших n доказано. Докажем тогда для n.

Пусть $A = (a_{ij})$ — матрица квадратичной функции Q в исходном базисе. Тогда:

$$Q(x) = Q(x_1, \dots, x_n) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

Случай 0: пусть $a_{ij} = 0$ для всех пар (i,j). Тогда $Q(x) = 0x_1^2 + \ldots + 0x_n^2$ — уже канонический вил.

Случай 1: пусть существует такое i, что $a_{ii} \neq 0$. Перенумеровав переменные, считаем, что $a_{11} \neq 0$. Тогда:

$$Q(x_1, \dots, x_n) = (a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n) + Q_1(x_2, \dots, x_n) =$$

$$= \frac{1}{a_{11}} \left((a_{11}x_1 + \dots + a_{1n}x_n)^2 - (a_{12}x_2 + \dots + a_{1n}x_n)^2 \right) + Q_1(x_2, \dots, x_n) =$$

$$= \frac{1}{a_{11}} (a_{11}x_1 + \dots + a_{1n}x_n)^2 + Q_2(x_2, \dots, x_n)$$

Теперь сделаем следующую замену переменных:

$$x'_1 = a_{11}x_1 + \ldots + a_{1n}x_n$$

 $x'_2 = x_2, \ldots, x'_n = x_n$

Получаем:

$$Q(x'_1, \dots, x'_n) = \frac{1}{a_{11}} x'_1 + Q_2(x'_2, \dots, x'_n)$$

Дальше пользуемся предположением индукции для Q_2 , окончательно получая канонический вид для исходной Q.

Случай 2: пусть $a_{ii} = 0$ для всех i, но существует такая пара (i,j), где i < j, что $a_{ij} \neq 0$. Переименовываем переменные так, чтобы $a_{12} \neq 0$ и делаем замену:

$$x_1 = x'_1 - x'_2$$

$$x_2 = x'_1 + x'_2$$

$$x_3 = x'_3, \dots, x_n = x'_n$$

Тогда $2a_{12}x_1x_2 = 2a_{12}x_1'^2 - 2a_{12}x_2'^2$. Следовательно:

$$Q(x'_1, \dots, x'_n) = 2a_{12}x_1'^2 - 2a_{12}x_2'^2 + 2\sum_{1 \le i < j \le n} a_{ij}x'_ix'_j$$

Таким образом, мы пришли к случаю 1, который уже умеем решать.

Следствие. Всякую квадратичную функцию над полем \mathbb{R} можно заменой базиса привести κ нормальному виду.

Доказательство. Существует такой базис, в котором $Q(x_1, \ldots, x_n) = a_1 x_1^2 + \ldots + a_n x_n^2$. Сделаем замену:

$$x_i' = \begin{cases} \sqrt{|a_i|} x_i, & \text{если } a_i \neq 0 \\ x_i, & \text{если } a_i = 0 \end{cases}$$

Второе условие нужно для того, чтобы можно было выразить старые переменные через новые, не деля при этом на ноль.

Получаем, что $Q(x_1', \ldots, x_n') = \varepsilon_1 x_1'^2 + \ldots + \varepsilon_n x_n'^2$, где $\varepsilon_i = \operatorname{sgn} a_i \in \{-1, 0, 1\}$. Что нам и было надо.

Замечание. Если $F = \mathbb{C}$, то любую квадратичную функцию Q можно привести κ виду $Q(x_1, \ldots, x_n) = x_1^2 + \ldots + x_k^2$, где $k \leqslant n$ $(k = \operatorname{rk} Q)$, то есть $B(Q, e) = \operatorname{diag}(1, \ldots, 1, 0, \ldots, 0)$.

Закон инерции, индексы инерции

Пусть Q — квадратичная функция над \mathbb{R} , которая в базисе \mathbb{R} имеет нормальный вид:

$$Q(x_1, \dots, x_n) = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - \dots - x_{s+t}^2,$$

где s — это количество положительных слагаемых, а t — отрицательных.

Теорема (Закон инерции). Числа s, t не зависят от выбора базиса, в котором Q имеет нормальный вид.

Доказательство. Пусть $\mathbf{e}=(e_1,\ldots,e_n)$ — базис такой, что $v=x_1e_1+\ldots+x_ne_n$ и Q имеет в нем нормальный вид: $Q(v)=x_1^2+\ldots+x_s^2-x_{s+1}^2-\ldots-x_{s+t}^2$.

Пусть также $\mathbb{f}=(f_1,\ldots,f_n)$ — другой базис такой, что $v=y_1e_1+\ldots+y_ne_n$ и Q также имеет в нем нормальный вид: $Q(v)=y_1^2+\ldots+y_p^2-y_{p+1}^2-\ldots-y_{p+q}^2$.

Заметим, что s+t=p+q, так как обе эти суммы равны rk Q. В допущении, что $s\neq p$, не умоляя общности будем считать, что s>p.

Положим $L_1 = \langle e_1, \dots, e_s \rangle$, $\dim L_1 = s$ и $L_2 = \langle f_{p+1}, \dots, f_n \rangle$, $\dim L_2 = n - p$. Видно, что $L_1 + L_2 \subset V$, а значит, $\dim(L_1 + L_2) \leqslant n$. Тогда:

$$\dim(L_1 \cap L_2) = \dim L_1 + \dim L_2 - \dim(L_1 + L_2) \geqslant s + n - p - n = s - p > 0.$$

Следовательно, существует ненулевой вектор $v \in L_1 \cap L_2$. Разложим тогда этот вектор в базисах данных линейных оболочек:

$$v = x_1 e_1 + \dots + x_s e_s, \exists x_i \neq 0 \Rightarrow Q(v) = x_1^2 + \dots + x_s^2 > 0$$

 $v = y_{p+1} f_{p+1} + \dots + y_n f_n \Rightarrow Q(v) = -y_{p+1}^2 - \dots - y_{p+q}^2 \leq 0$

Получили противоречие. Значит, исходное предположение неверно и s=p. Откуда в свою очередь следует, что t=q.

Определение. Эти числа имеют свои названия:

- 1. $i_{+} := s n$ оложительный индекс инерции;
- $2. \ i_{-} := t ompuцательный индекс инерции;$

3. $i_0 := n - s - t -$ нулевой индекс инерции.

Определение. $\mathit{Keadpamu}$ чная функция Q над полем $\mathbb R$ называется

Термин	Обозначение	Условие
положительно определенной	Q > 0	$Q(x) > 0 \ \forall x \neq 0$
отрицательно определенной	Q < 0	$Q(x) < 0 \ \forall x \neq 0$
неотрицательно определенной	$Q \geqslant 0$	$Q(x) \geqslant 0 \ \forall x$
неположительно определенной	$Q \leqslant 0$	$Q(x) \leqslant 0 \ \forall x$
неопределенной	_	$\exists x, y \colon Q(x) > 0, \ Q(y) < 0$

Термин	Нормальный вид	Индексы инерции
положительно определенной	$x_1^2 + \ldots + x_n^2$	$i_{+} = n, i_{-} = 0$
отрицательно определенной	$-x_1^2-\ldots-x_n^2$	$i_{+} = 0, i_{-} = n$
неотрицательно определенной	$x_1^2 + \ldots + x_k^2, \ k \leqslant n$	$i_+ = k, i = 0$
неположительно определенной	$-x_1^2 - \ldots - x_k^2, \ k \leqslant n$	$i_{+}=0, i_{-}=k$
неопределенной	$x_1^2 + \ldots + x_s^2 - x_{s+1}^2 - \ldots - x_{s+t}^2, \ s, t \ge 1$	$i_+ = s, i = t$

Пример. $V=\mathbb{R}^2$.

1.
$$Q(x,y) = x^2 + y^2$$
, $Q > 0$;

2.
$$Q(x,y) = -x^2 - y^2$$
, $Q < 0$;

3.
$$Q(x,y) = x^2 - y^2$$
;

4.
$$Q(x,y) = x^2, Q \ge 0;$$

5.
$$Q(x,y) = -x^2, Q \leq 0.$$