Partiel 1 Mardi 12 mars 2024 Durée : 1h50.

Toutes les réponses doivent être justifiées. Les documents, calculatrices et objets connectés ne sont pas autorisés.

Question de cours.

Soit E un espace euclidien et F un sous-espace vectoriel de E. Donner la définition de la projection orthogonale de E sur F.

Exercice 1.

Soit $E = \mathbb{R}_2[X]$ le \mathbb{R} -espace vectoriel des polynômes réels de degré au plus 2, que l'on munit de la base canonique $\mathcal{B} = (e_1, e_2, e_3) = (1, X, X^2)$, dont on note $\mathcal{B}^* = (e_1^*, e_2^*, e_3^*)$ la base duale. On considère les trois formes formes linéaires suivantes sur E:

$$\ell_1: P \mapsto P(2),$$

 $\ell_2: P \mapsto P(-2),$
 $\ell_3: P \mapsto P'(2).$

- (1) Exprimer ℓ_1, ℓ_2, ℓ_3 comme combinaisons linéaires des éléments e_1^*, e_2^*, e_3^* de la base duale \mathcal{B}^* .
- (2) Démontrer que (ℓ_1, ℓ_2, ℓ_3) est une base de E^* .
- (3) Déterminer la base antéduale de (ℓ_1, ℓ_2, ℓ_3) .

Exercice 2.

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace euclidien, et soit u, v des vecteurs unitaires de E tels que $\langle u|v\rangle = \frac{1}{2}$. On note F le sous-espace vectoriel de E défini par les équations $\langle x|u\rangle = 0$ et $\langle x|v\rangle = 0$, et p_F la projection orthogonale correspondante.

- (1) Justifier que la famille (u, v) est libre.
- (2) Soit (e_1, e_2) la base orthonormée de Vect(u, v) obtenue par application de l'algorithme de Gram-Schmidt à (u, v). Exprimer (e_1, e_2) comme combinaison linéaire de u, v.
- (3) Soit x un élément de E. Exprimer $p_F(x)$ en fonction de x, e_1, e_2 , puis en fonction de x, u, v.
- (4) Soit x un vecteur tel que $\langle x|u\rangle=\frac{1}{3}$ et $\langle x|v\rangle=\frac{2}{3}$. Calculer la distance de x à F.

Exercice 3.

Soit E un espace euclidien de dimension 3, muni d'une base orthonormée $\mathcal{B} = (e_1, e_2, e_3)$. Soit f l'endomorphisme de E dont la matrice dans la base \mathcal{B} est donnée par

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 2 & 1 \end{pmatrix}.$$

- (1) Justifier que f est diagonalisable dans une base orthonormée.
- (2) Vérifier que -2 est valeur propre de f, et déterminer l'espace propre correspondant.
- (3) Expliciter une base orthonormée \mathcal{B}' formée de vecteurs propres de f. On exprimera les éléments de \mathcal{B}' dans la base \mathcal{B} .

Exercice 4.

Soit $E = \mathbb{R}^3$, muni de sa structure euclidienne canonique, pour laquelle la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ est orthonormée.

- (1) Soit P_1 le plan d'équation x + y 2z = 0, et soit f la symétrie orthogonale par rapport à P_1 . Calculer la matrice de f dans la base \mathcal{B} .
- (2) Soit g l'endomorphisme de E dont la matrice dans la base \mathcal{B} est donnée par

$$\operatorname{Mat}_{\mathcal{B}}(g) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Démontrer que g est la symétrie orthogonale par rapport à un plan P_2 que l'on identifiera.

- (3) Justifier que la composition $f \circ g$ est une isométrie, et démontrer que pour tout élément u de $P_1 \cap P_2$, on a $f \circ g(u) = u$.
- (4) Calculer $(f \circ g)^2$, et en déduire les éléments caractéristiques de l'isométrie $f \circ g$.