1. Derivación Numérica

1.1. Aproximación $f'(x_0)$ hacia adelante con error proporcional a h, (O(h)). Demuestre que

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

con un error de truncamiento $|E_{trunc}(h)| = \frac{f''(\xi)h}{2}$ Demostración. Usamos la fórmula de Taylor de orden uno de f, centrada en x_0

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\xi)}{2!}(x - x_0)^2.$$

Evaluamos dicha fórmula en $x_0 + h$

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(\xi)}{2}h^2$$

si despejamos $f'(x_0)$ de la ecuación anterior nos queda:

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

con un error de truncamiento $|E_{trunc}(h)| = \frac{f''(\xi)h}{2}$.

Ejercicio. Demuestre que

$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h}$$

con un error de truncamiento $|E_{trunc}(h)| = \frac{f''(\xi)h}{2}$.

1.2. Aproximación $f''(x_0)$ hacia adelante con error proporcional a h, (O(h)). Demuestre que

$$f''(x_0) \approx \frac{f(x_0) - f(x_0 + h) + f(x_0 + 2h)}{h^2}$$

con un error de truncamiento $|E_{trunc}(h)| = f'''(\xi)h$.

Demostración. Usamos la fórmula de Taylor de orden dos de f, centrada en \boldsymbol{x}_0

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(\xi)}{3!}(x - x_0)^3$$

si evaluamos f(x) en $x_0 + h$ y posteriormente en $x_0 + 2h$ obtenemos las siguientes fórmulas:

(1.1)
$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2!}h^2 + \frac{f'''(\xi)}{3!}h^3$$

(1.2)
$$f(x_0 + 2h) = f(x_0) + 2f'(x_0)h + 2f''(x_0)h^2 + \frac{8f'''(\xi)}{3!}h^3$$

multiplicando (1.1) por (-2) nos queda:

(1.3)
$$-2f(x_0+h) = -2f(x_0) - 2f'(x_0)h - f''(x_0)h^2 - \frac{2f'''(\xi)}{3!}h^3$$

finalmente al sumar (1.2) y (1.3) resulta la siguiente ecuación:

(1.4)
$$f(x_0 + 2h) - 2f(x_0 + h) = -f(x_0) + f''(x_0)h^2 + f'''(\xi)h^3$$

que al despejar $f''(x_0)$ queda la fórmula buscada,

$$f''(x_0) \approx \frac{f(x_0) - f(x_0 + h) + f(x_0 + 2h)}{h^2}$$

con error de truncamiento $|E_{trunc}(h)| = f'''(\xi)h$.

Ejercicios.

- 1. Estime una aproximación $f''(x_0)$ hacia atrás con error proporcional a h, (O(h)).
- 2. Estime una aproximación $f'(x_0)$ hacia adelante con error proporcional a h^2 , $(O(h^2))$.
- 3. Estime una aproximación $f'(x_0)$ hacia atrás con error proporcional a h^2 , $(O(h^2))$

1.3. Aproximación a $f'(x_0)$ centrada, con error proporcional a h^2 , $(O(h^2))$. Si usamos la fórmula de Taylor de orden dos de f centrada en x_0 y evaluamos f en $x_0 + h$ y $x_0 - h$ obtenemos las siguientes dos fórmulas:

(1.5)
$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)h^2}{2!} + \frac{f'''(\xi)h^3}{3!}$$

(1.6)
$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{f''(x_0)h^2}{2!} - \frac{f'''(\xi)h^3}{3!}$$

restando las ecuaciones (1.6) de (1.5) obtenemos

(1.7)
$$f(x+h) - f(x-h) = 2f'(x)h + \frac{2f'''(\xi)h^3}{3!}$$

que al despejar $f'(x_0)$ obtenemos

(1.8)
$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

con error de truncamiento

$$E_{trunc} = \frac{f'''(\xi)h^2}{3!}$$

Ejercicios

- 1. Estime la aproximación central de $f''(x_0)$ con error proporcional a h, (O(h))
- 2. Supongamos que tenemos $f(x_0-2h)$, $f(x_0-h)$, $f(x_0)$, $f(x_0+h)$, $f(x_0+2h)$, Demuestre que:

$$(1.9) f'(x_0) = \frac{-f(x_0 + 2h) + 8f(x_0 + h) - 8f(x_0 - h) + f(x_0 - 2h)}{12h}$$

con un error de truncamiento de

$$E_{trunc} = \frac{h^4 f^{(5)}(\xi)}{30}.$$

Ayuda: Siga los siguientes pasos.

- a) Haga el desarrollo de taylor de f de orden 5 centrada en x_0 .
- b) Evalúe el desarrollo de taylor en: $f(x_0 2h)$, $f(x_0 h)$, $f(x_0)$, $f(x_0 + h)$, $f(x_0 + 2h)$.
- c) Haga la diferencia $f(x_0 + h) f(x_0 h)$ y $f(x_0 + 2h) f(x_0 2h)$, manipule algebraicamente las ecuaciones anteriores las diferencias anteriores para que al sumarlas se simplifiquen los términos que contienen $f^{(3)}(x_0)$.

2. Análisis del error e incremento óptimo

Ejercicios

1. Consideremos la siguiente tabulación de la función logaritmo neperiano en la que el error de redondeo está acotado por $\varepsilon \leq 5 \times 10^{-6}$;

x	$f(x) = \ln(x)$
2.900	1.06471
2.990	1.09527
2.999	1.09828
3.000	1.09861
3.001	1.09895
3.010	1.10194
3.100	1.13140

Haciendo los cálculos con los valores de la tabla:

- a) Determine aproximaciones de f'(3,0) usando la fórmula central con los incrementos $h=0,1,\ h=0,01$ y h=0,001.
- b) Compare los resultados con $f'(3,0) = \frac{1}{3} \approx 0.33333$.
- c) Determine el error total para los tres casos del apartado (a).
- d) ¿Cuál es el h óptimo para calcular f'(2,9) con error proporcional a h?
- e) Estime el mejor f'(2,9).
- 2. Supongamos que se construye una tabla de valores de una función $f(x_k)$ que se redondean con tres cifras decimales de manera que su error de redondeo está acotado por 5×10^{-4} . Supongamos también que $|f^{(3)}(\xi)| \leq 1,5$ y que $|f^{(5)}(\xi)| \leq 1,5$.
 - a) Determine el incremento óptimo para h para la fórmula (1.8).
 - b) Determine el incremento óptimo para h para la fórmula (1.9).
- 3. Consideremos la siguiente tabulación de la función logaritmo neperiano en la que el error de redondeo está acotado por $\varepsilon \leq 5 \times 10^{-5}$;

\overline{x}	$f(x) = \ln(x)$	x	$f(x) = \ln(x)$	x	$f(x) = \ln(x)$
2.1000	0.7419	2.4400	0.8920	2.7800	1.0225
2.1100	0.7467	2.4500	0.8961	2.7900	1.0260
2.1200	0.7514	2.4600	0.9002	2.8000	1.0296
2.1300	0.7561	2.4700	0.9042	2.8100	1.0332
2.1400	0.7608	2.4800	0.9083	2.8200	1.0367
2.1500	0.7655	2.4900	0.9123	2.8300	1.0403
2.1600	0.7701	2.5000	0.9163	2.8400	1.0438
2.1700	0.7747	2.5100	0.9203	2.8500	1.0473
2.1800	0.7793	2.5200	0.9243	2.8600	1.0508
2.1900	0.7839	2.5300	0.9282	2.8700	1.0543
2.2000	0.7885	2.5400	0.9322	2.8800	1.0578
2.2100	0.7930	2.5500	0.9361	2.8900	1.0613
2.2200	0.7975	2.5600	0.9400	2.9000	1.0647
2.2300	0.8020	2.5700	0.9439	2.9100	1.0682
2.2400	0.8065	2.5800	0.9478	2.9200	1.0716
2.2500	0.8109	2.5900	0.9517	2.9300	1.0750
2.2600	0.8154	2.6000	0.9555	2.9400	1.0784
2.2700	0.8198	2.6100	0.9594	2.9500	1.0818
2.2800	0.8242	2.6200	0.9632	2.9600	1.0852
2.2900	0.8286	2.6300	0.9670	2.9700	1.0886
2.3000	0.8329	2.6400	0.9708	2.9800	1.0919
2.3100	0.8372	2.6500	0.9746	2.9900	1.0953
2.3200	0.8416	2.6600	0.9783	3.0000	1.0986
2.3300	0.8459	2.6700	0.9821	3.0100	1.1019
2.3400	0.8502	2.6800	0.9858	3.0200	1.1053
2.3500	0.8544	2.6900	0.9895	3.0300	1.1086
2.3600	0.8587	2.7000	0.9933	3.0400	1.1119
2.3700	0.8629	2.7100	0.9969	3.0500	1.1151
2.3800	0.8671	2.7200	1.0006	3.0600	1.1184
2.3900	0.8713	2.7300	1.0043	3.0700	1.1217
2.4000	0.8755	2.7400	1.0080	3.0800	1.1249
2.4100	0.8796	2.7500	1.0116	3.0900	1.1282
2.4200	0.8838	2.7600	1.0152	3.1000	1.1314
2.4300	0.8879	2.7700	1.0188	3.1100	1.1346

Haciendo los cálculos con los valores de la tabla: exhiba la mejor estimación de f'(2,6) usando todas las fórmulas vista en esta guía.