SAVEETHA University

CSA13 Theory of Computation

Time: 2 Hours Total marks: 70

Answer all the questions. Make your answers short and precise.

- 1. (2.5+2.5 marks) Let the alphabet be $\{a, b\}$. Write regular expressions for the following languages.
 - (a) Set of words of length at most 2.
 - (b) Set of all words beginning and ending with the same letter.
- 2. (1+2+2 marks) Consider the following grammar.

$$\begin{array}{ccc} S & \rightarrow T \mid U \\ T & \rightarrow aT \mid X \\ U & \rightarrow Uc \mid Y \\ X & \rightarrow \epsilon \mid bXc \\ Y & \rightarrow \epsilon \mid aYb \end{array}$$

- (a) What is the language defined by the grammar?
- (b) Give the derivation tree for the word *aaabbbc*.
- (c) A grammar is ambigous if there exists two distinct derivations for a word. Is the above grammar ambigous? Justify.
- 3. (12 marks) Let $L \subseteq \{a, b\}^*$ be the language of words w such that the last letter of w also appears somewhere else in w. For example abaab is in L but not bba. Construct an NFA for L. Then determinize it and draw the equivalent DFA.
- 4. (6+6 marks)
 - (a) Write a context-free grammar for the language $\{a^pb^qc^qd^p\mid p\geq 0, q\geq 0\}$.
 - (b) Show that if *L* is a context-free language then $L^r = \{w^r \mid w \in L\}$ is context-free, where w^r denotes the reverse of the word *w*. For example if w = abaab then $w^r = baaba$.
- 5. (6+6 marks)
 - (a) The symmetric difference of two languages L_1 and L_2 is the set of all words that is in exactly one of them. Show that if L_1 and L_2 are regular, their symmetric difference is also regular.
 - (b) Is the language $\{w \in \{a, b\}^* \mid w \text{ contains the same number of } a \text{'s and } b \text{'s} \}$ regular? Justify.

6. (12 marks) Is the language $\{ww \mid w \in \Sigma^*\}$ accepted by a deterministic Turing machine? If not, prove it. Otherwise give an informal definition of such a machine..

7. (6+6 marks)

- (a) Is the set of all recursively-enumerable languages countable? Justify.
- (b) Without using Rice's theorem, show that it is undecidable to check if the language of a given Turing machine is regular.

