

Page 1 of 28

APPLICATION CERTIFICATION On Behalf of Carewell Electric Technology (Zhongshan) Co., Ltd.

REMOTE CONTROL

Model No.: DC9

FCC ID: 2AAZPDC9

Prepared for Carewell Electric Technology (Zhongshan) Co., Ltd. Address

Torch Development Zone, No.2, Ouya Road, Zhongshan,

Guangdong, China

Prepared by Shenzhen Accurate Technology Co., Ltd.

Address 1/F., Building A, Changyuan New Material Port, Science

& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China.

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number ATE20182124

Date of Test Dec. 10, 2018-Dec. 13, 2018

Date of Report Dec. 14, 2018

TABLE OF CONTENTS

Desc	pription	Page
Test	Report Certification	
	•	
1. (GENERAL INFORMATION	
1.1.		
1.2.	1	
1.3.	j	
	MEASURING DEVICE AND TEST EQUIPMENT	
3. S	SUMMARY OF TEST RESULTS	
4. 7	THE FIELD STRENGTH OF RADIATION EMISSION	
4.1.		
4.2.		10
4.3.	Configuration of EUT on Measurement	10
4.4.	- r · · · · · · · · · · · · · · · · · ·	
4.5.		
4.6.		
4.7.		
	20DB BANDWIDTH	
5.1.		
5.2.	ϵ	
5.3. 5.4.	ϵ	
5.4. 5.5.		
5.6.		
	RELEASE TIME MEASUREMENT	
6.1.		
6.2.	•	
6.3.		
6.4.	ϵ	
6.5.	1 0	
6.6.	Measurement Result	17
7. A	AVERAGE FACTOR MEASUREMENT	18
7.1.		
7.2.	Average factor Measurement according to ANSI C63.10-2013	18
7.3.	EUT Configuration on Measurement	18
7.4.		
7.5.		
7.6.		
8. A	ANTENNA REQUIREMENT	
8.1.	1	
8.2	Antenna Construction	20

Page 3 of 28

Test Report Certification

Applicant : Carewell Electric Technology (Zhongshan) Co., Ltd.

Manufacturer Carewell Electric Technology (Zhongshan) Co., Ltd.

EUT Description REMOTE CONTROL

(A) MODEL NO.: DC9

(B) SERIAL NO.: 1801797

(C) POWER SUPPLY: DC 3V(Powered by Battery)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.231a ANSI C63.10-2013

The device described above is tested by SHENZHEN ACCURATE TECHNOLOGY CO., LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.231a. The measurement results are contained in this test report and SHENZHEN ACCURATE TECHNOLOGY CO., LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of SHENZHEN ACCURATE TECHNOLOGY CO., LTD.

Date of Test:	Dec. 10, 2018-Dec. 13, 2018
Date of Report:	Dec. 14, 2018
Prepared by :	TIMECHNOLOGIA
	(Tim. Engreer)
Approved & Authorized Signer :	- (em)
	(Sean Liu, Manager)

Page 4 of 28

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : REMOTE CONTROL

Model Number : DC9

Power Supply : DC 3V (powered by battery)

Modulation: : ASK

Operation Frequency : 433.92MHz

: PCB antenna Antenna type

Antenna gain : 0dBi

: Carewell Electric Technology (Zhongshan) Co., Ltd. Applicant Address Torch Development Zone, No.2, Ouya Road, Zhongshan,

Guangdong, China

Carewell Electric Technology (Zhongshan) Co., Ltd. Manufacturer

Address Torch Development Zone, No.2, Ouya Road, Zhongshan,

Guangdong, China

: Dec. 10, 2018

Date of sample

received

Date of Test : Dec. 10, 2018-Dec. 13, 2018

Page 5 of 28

1.2.Description of Test Facility

EMC Lab : Recognition of accreditation by Federal

Communications Commission (FCC)
The Designation Number is CN1189
The Registration Number is 708358

Listed by Innovation, Science and Economic

Development Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service

for Conformity Assessment (CNAS)
The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm : Shenzhen Accurate Technology Co., Ltd.

Site Location : 1/F., Building A, Changyuan New Material Port,

Science

& Industry Park, Nanshan District, Shenzhen,

Guangdong, P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 06, 2018	Jan. 05, 2019
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 06, 2018	Jan. 05, 2019
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 06, 2018	Jan. 05, 2019
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 06, 2018	Jan. 05, 2019
Pre-Amplifier	Rohde&Schwarz	CBLU1183540- 01	3791	Jan. 06, 2018	Jan. 05, 2019
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 06, 2018	Jan. 05, 2019
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 06, 2018	Jan. 05, 2019
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 06, 2018	Jan. 05, 2019
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 06, 2018	Jan. 05, 2019
Open Switch and Control Unit	Rohde&Schwarz	OSP120 + OSP-B157	101244 + 100866	Jan. 06, 2018	Jan. 05, 2019
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 06, 2018	Jan. 05, 2019
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 06, 2018	Jan. 05, 2019
Highpass Filter	Wainwright Instruments	WHKX3.6/18G -10SS	N/A	Jan. 06, 2018	Jan. 05, 2019
Band Reject Filter	Wainwright Instruments	WRCG2400/24 85-2375/2510-6 0/11SS	N/A	Jan. 06, 2018	Jan. 05, 2019
Test Receiver	Rohde & Schwarz	ESCS30	100307	Jan. 06, 2018	Jan. 05, 2019
L.I.S.N.	Schwarzbeck	NLSK8126	8126431	Jan. 06, 2018	Jan. 05, 2019
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100815	Jan. 06, 2018	Jan. 05, 2019
50Ω Coaxial Switch	Anritsu Corp	MP59B	6200283933	Jan. 06, 2018	Jan. 05, 2019

Page 7 of 28

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission	N/A
Section 15.231(b)	Radiated Emission	Compliant
Section 15.231(c)	20dB Bandwidth	Compliant
Section 15.231(a)(1)	Release Time Measurement	Compliant
Section 15.203	Antenna Requirement	Compliant

The product is a manually operated transmitter.

Section 15.231 (a) (2), (3), (4) and (5) are not applicable.

Note: The power supply mode of the EUT is DC 3V, According to the FCC standard requirements, conducted emission is not applicable

All normal using modes of the normal function were tested but only the worst test data of the worst mode is recorded by this report.

4. THE FIELD STRENGTH OF RADIATION EMISSION

4.1.Block Diagram of Test Setup

4.1.1.Block diagram of connection between the EUT and simulators

(EUT: REMOTE CONTROL)

4.1.2.Semi-Anechoic Chamber Test Setup Diagram

(A) Radiated Emission Test Set-Up, Frequency below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1GHz

(C) Radiated Emission Test Set-Up, Frequency Above 1GHz

Page 10 of 28

4.2. The Field Strength of Radiation Emission Measurement Limits

4.2.1. Radiation Emission Measurement Limits According to FCC Part 15 Section 15.231(b)

Frequency Range of Fundamental [MHz]	Field Strength of Fundamental Emission [Average] [µV/m]	Field Strength of Spurious Emission [Average] [µV/m]
40.66-40.70	2250	225
70-130	1250	125
130-174	1250-3750	125-375
174-260	3750	375
260-470	3750-12500	375-1250
Above 470	12500	1250

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

4.2.2. Restricted Band Radiation Emission Measurement Limits According to FCC part 15 Section 15.205 and Section15.209.

4.3. Configuration of EUT on Measurement

The following equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.3.1. REMOTE CONTROL (EUT)

Model Number : DC9 Serial Number : 1801797

Manufacturer : Carewell Electric Technology (Zhongshan) Co., Ltd.

4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.4.2. Turn on the power of all equipment.
- 4.4.3. Let the EUT work in TX mode measure it.

Page 11 of 28

4.5. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 120 kHz in 30-1000 MHz, and 1 MHz in 1000-5000 MHz.

The frequency range from 9kHz to 5000MHz is checked.

4.6.DATA SAMPLE

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBμv)	(dB/m)	(dBμv/m)	(dBμv/m)	(dB)	
X.XX	49.83	-22.03	27.80	43.50	-15.70	QP

Frequency(MHz) = Emission frequency in MHz

Reading(dBμv) = Uncorrected Analyzer/Receiver reading

Factor (dB/m)= Antenna factor + Cable Loss - Amplifier gain

Result($dB\mu v/m$) = Reading + Factor

Limit (dBuv/m)= Limit stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

Calculation Formula:

Margin(dB) = Result (dB μ v/m)–Limit(dB μ v/m) Result(dB μ v/m)= Reading(dB μ v)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

Report No.: ATE20182124 Page 12 of 28

4.7. The Field Strength of Radiation Emission Measurement Results **PASS.**

Note: The radiation emissions from 9KHz-30MHz are not reported, because the test values lower than the limits of 20dB.

EUT:	REMOTE CONTROL		
Model No.:	DC9	Power Supply:	DC 3V
Test Mode:	433.92MHz TX	Test Engineer:	Frank

Frequency	Reading	Factor	Average	Result(c	dBμV/m)	Limit(c	dBμV/m)	Margi	n(dB)	Polarization
(MHz)	(dBµV/m)	Corr.	Factor							
	PEAK	(dB)	(dB)	AV	PEAK	AV	PEAK	AV	PEAK	
433.92	103.64	-17.78	-6.10	79.76	85.86	80.83	100.83	-1.07	-14.97	
30.639	51.90	-20.36	/	31.54	4(QP)	4	40	-8.	46	
867.85	51.37	-7.98	-6.10	37.29	43.39	60.83	80.83	-23.54	-37.44	Horizontal
1301.76	62.15	-10.43	-6.10	45.62	51.72	60.83	80.83	-15.21	-29.11	
2603.52	56.20	-5.46	-6.10	44.64	50.74	60.83	80.83	-16.19	-30.09	
433.92	102.47	-17.78	-6.10	78.59	84.69	80.83	100.83	-2.24	-16.14	
30.855	51.52	-20.41	/	31.1	1(QP)	4	40	-8.	89	
867.85	51.08	-7.98	-6.10	37.00	43.10	60.83	80.83	-23.83	-37.73	Vertical
1301.76	61.65	-10.43	-6.10	45.12	51.22	60.83	80.83	-15.71	-29.61	
2603.52	55.20	-5.46	-6.10	43.64	49.74	60.83	80.83	-17.19	-31.09	

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

- 3. FCC Limit for Average Measurement = $41.6667(433.92)-7083.3333 = 10996.681164 \,\mu\text{V/m} = 80.83 \,\mu\text{V/m}$
- 4. The spectral diagrams in appendix I display the measurement of peak values.
- 5. Average value= PK value + Average Factor (duty factor)
- 6. If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.
- 7. The EUT is tested radiation emission in three axes(X,Y,Z). The worst emissions are reported in three axes.

Page 13 of 28

8. Pulse Desensitization Correction Factor

Pulse Width (PW) = 0.36ms

2/PW = 2/0.36ms = 5.56kHz

RBW (100 kHz) > 2/PW (5.56 kHz)

Therefore PDCF is not needed

Page 14 of 28

5. -20DB BANDWIDTH

5.1.Block Diagram of Test Setup

(EUT: REMOTE CONTROL)

5.2. The Bandwidth of Emission Limit According To FCC Part 15 Section

15.231(c)

The bandwidth of emission shall be no wider than 0.25% of the center frequency. Therefore, the bandwidth of the emission limit is $433.92 \text{ MHz} \times 0.25\% = 1084.8 \text{ kHz}$. Bandwidth is determined at the two points 20 dB down from the top of modulated carrier.

5.3.EUT Configuration on Measurement

The following equipment are installed on the bandwidth of emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.REMOTE CONTROL (EUT)

Model Number : DC9 Serial Number : 1801797

Manufacturer : Carewell Electric Technology (Zhongshan) Co., Ltd.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX mode measure it.

Report No.: ATE20182124 Page 15 of 28

5.5.Test Procedure

- 5.5.1. Set SPA Center Frequency = Fundamental frequency, RBW = 30 kHz, VBW = 100 kHz, Span = 500kHz.
- 5.5.2.Set SPA Max hold, Mark peak, -20 dB.

5.6.Measurement Result

The EUT does meet the FCC requirement.

-20 dB bandwidth =132 kHz <1084.8 kHz.

The test chart of -20 dB bandwidth:

Date: 13.DEC.2018 14:47:02

6. RELEASE TIME MEASUREMENT

6.1.Block Diagram of Test Setup

(EUT: REMOTE CONTROL)

6.2. Release Time Measurement According To FCC Part 15 Section 15.231(a)

Section 15.231(a) (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

6.3.EUT Configuration on Measurement

The following equipment are installed on Release Time Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.3.1. REMOTE CONTROL (EUT)

Model Number : DC9 Serial Number : 1801797

Manufacturer : Carewell Electric Technology (Zhongshan) Co., Ltd.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX mode measure it.

6.5. Test Procedure

- 6.5.1.Set SPA Center Frequency = Fundamental frequency, RBW = 100 kHz, VBW = 300 kHz, Span = 0 Hz. Sweep time = 10 s.
- 6.5.2.Set EUT as normal operation and press Transmitter button.
- 6.5.3.Set SPA View. Delta Mark time.

6.6. Measurement Result

The release time less than 5 seconds.

Release Time = 3.48s

The spectral diagrams in appendix I.

7. AVERAGE FACTOR MEASUREMENT

7.1.Block Diagram of Test Setup

(EUT: REMOTE CONTROL)

7.2. Average factor Measurement according to ANSI C63.10-2013

ANSI C63.10-2013 Section 7.5 Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 s (100 ms). In cases where the pulse train exceeds 0.1 s, the measured field strength shall be determined during a 0.1 s interval.64 The following procedure is an example of how the average value may be determined. The average field strength may be found by measuring the peak pulse amplitude (in log equivalent units) and determining the duty cycle correction factor (in dB) associated with the pulse modulation as shown in Equation (10):

Average factor in $dB = 20 \log (duty \text{ cycle})$

7.3.EUT Configuration on Measurement

The following equipment are installed on average factor Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.3.1. REMOTE CONTROL

Model Number : DC9 Serial Number : 1801797

Manufacturer : Carewell Electric Technology (Zhongshan) Co., Ltd.

Page 19 of 28

ATC

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX mode measure it.

7.5.Test Procedure

- 7.5.1. The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation.
- 7.5.2.Set SPA Center Frequency = Fundamental frequency, RBW = 1000 kHz, VBW = 3000 kHz, Span = 0 Hz.
- 7.5.3.Set EUT as normal operation.
- 7.5.4.Set SPA View. Delta Mark time.

7.6. Measurement Result

The duty cycle is simply the on time divided by the period:

The duration of one cycle = 100.0ms

Effective period of the cycle = $(0.7 \times 61) + (0.36 \times 19)$ ms = 49.54 ms

DC =49.54ms/100. 0ms=0.4954

Therefore, the average factor is found by 20log0.4954= -6.10dB

The spectral diagrams in appendix I.

Report No.: ATE20182124 Page 20 of 28

8. ANTENNA REQUIREMENT

8.1. The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

APPENDIX I (Test Curves)

Page 22 of 28

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2018A #565

Standard: FCC 15.231a 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: REMOTE CONTROL

Mode: TX 433.92MHz

Model: DC9

Manufacturer: Carewell Electric Technology (Zhongshan) Co., Ltd

Note: Report NO.:ATE20182124

Power Source: DC 3V Date: 18/12/12/ Time: 9/31/39 Engineer Signature:

Horizontal

Polarization:

Distance: 3m

				1			i						1	limit1:	_
106				ļ											
96													ļ	<u> </u>	
86				ļ	ļļ							- X		ļ	
76											-		1		¦
66				1 1 1 1 1 1									1 1 1 1 1 1 1 1	ļļ	
56											-		}	ļ	
46													\perp		Š.
36	1			ļ								-A			للمعيد الما
26	- Anthony	2	والمراب روويه	L. Contragario	3	ماليال	۸.	D Objections and the second	adding the	entry/Helphylosophur Petrony	Marine James Harrist	and Man	MANUAL MA	a produced	Mylamyl.,

1.0										
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	30.6389	51.90	-20.36	31.54	40.00	-8.46	QP	200	96	
2	37.9628	51.20	-22.73	28.47	40.00	-11.53	QP	200	221	
3	77.1962	55.06	-27.57	27.49	40.00	-12.51	QP	200	103	
4	106.2810	56.74	-27.92	28.82	43.50	-14.68	QP	200	41	
5	433.9252	103.64	-17.78	85.86	100.83	-14.97	peak	200	328	
6	867.8545	51.37	-7.98	43.39	80.83	-37.44	peak	200	32	

Note: the peak limit for fundamental frequency is 100.83 dBuV/m.

Fundamental frequency

Page 23 of 28

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization:

Date: 18/12/12/

Engineer Signature:

Time: 9/30/20

Distance: 3m

Power Source: DC 3V

Vertical

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2018A #564

Standard: FCC 15.231a 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: REMOTE CONTROL

Mode: TX 433.92MHz

Model: DC9

Manufacturer: Carewell Electric Technology (Zhongshan) Co., Ltd

Note: Report NO.:ATE20182124

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Deglee (degl)	Remark
1	30.8551	51.52	-20.41	31.11	40.00	-8.89	QP	150	109	
2	89.4715	54.93	-27.42	27.51	43.50	-15.99	QP	150	103	
3	224.6358	53.00	-23.94	29.06	46.00	-16.94	QP	150	69	
4	369.9658	51.60	-18.77	32.83	46.00	-13.17	QP	150	123	
5	433.9252	102.47	-17.78	84.69	100.83	-16.14	peak	150	189	
6	867.8545	51.08	-7.98	43.10	80.83	-37.73	peak	150	317	

Note: the peak limit for fundamental frequency is 100.83 dBuV/m.

Fundamental frequency

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2018A #566 Standard: FCC 15.231a Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % REMOTE CONTROL EUT:

TX 433.92MHz Model: DC9

Mode:

Manufacturer: Carewell Electric Technology (Zhongshan) Co., Ltd

Note: Report NO.:ATE20182124

Time: 9/36/05 Engineer Signature: Distance: 3m

	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	1	1301.762	62.15	-10.43	51.72	80.83	-29.11	peak	150	318	
ĺ	2	1735.681	54.26	-9.28	44.98	80.83	-35.85	peak	150	187	
	3	2603.523	56.20	-5.46	50.74	80.83	-30.09	peak	150	323	

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Polarization: Vertical

Power Source: DC 3V

Date: 18/12/12/

Time: 9/36/15

Distance: 3m

Engineer Signature:

Job No.: FRANK2018A #567 Standard: FCC 15.231a Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 % EUT: REMOTE CONTROL

TX 433.92MHz

Model: DC9

Mode:

Manufacturer: Carewell Electric Technology (Zhongshan) Co., Ltd

Note: Report NO.:ATE20182124

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	1301.762	61.65	-10.43	51.22	80.83	-29.61	peak	200	310	
2	1735.681	53.76	-9.28	44.48	80.83	-36.35	peak	200	182	
3	2603.523	55.20	-5.46	49.74	80.83	-31.09	peak	200	137	

Date: 13.DEC.2018 15:02:14

Release Time = 3.48s

The graph shows the pattern of coding during the signal transmission. The duration of one cycle = 34.0ms.

Date: 13.DEC.2018 14:56:44

Date: 13.DEC.2018 14:55:21

The graph shows the duration of 'on' signal. From marker 1 to delta 1, duration is 0.7ms.

Date: 13.DEC.2018 14:55:48

The graph shows the duration of 'on' signal. From marker 1 to delta 1, duration is 0.36ms.