The group G is isomorphic to the group labelled by [20, 3] in the Small Groups library. Ordinary character table of $G\cong C5$: C4:

	1a	5a	4a	2a	4b
χ_1	1	1	1	1	1
χ_2	1	1	E(4)	-1	-E(4)
χ_3	1	1	-1	1	-1
χ_4	1	1	-E(4)	-1	E(4)
χ_5	4	-1	0	0	0

Trivial source character table of $G \cong C5$: C4 at p = 5:

Normalisers N_i		N_1				N_2			
p-subgroups of G up to conjugacy in G		P_1				P_2			
Representatives $n_j \in N_i$		4a	2a	4b	1a	4a	2a	4b	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5$	5	1	1	1	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5$	5	E(4)	-1	-E(4)	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5$	5	-1	1	-1	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5$	5	-E(4)	-1	E(4)	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	1	-1	1	-1	1	-1	1	-1	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5$	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)	

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 4, 8, 12, 16)(2, 6, 10, 14, 18)(3, 7, 11, 15, 19)(5, 9, 13, 17, 20)]) \cong C5$

 $N_1 = Group([(1,2,3,5)(4,10,19,17)(6,11,20,12)(7,13,16,14)(8,18,15,9),(1,3)(2,5)(4,19)(6,20)(7,16)(8,15)(9,18)(10,17)(11,12)(13,14),(1,4,8,12,16)(2,6,10,14,18)(3,7,11,15,19)(5,9,13,17,20)]) \cong C5:C4$ $N_2 = Group([(1,4,8,12,16)(2,6,10,14,18)(3,7,11,15,19)(5,9,13,17,20),(1,2,3,5)(4,10,19,17)(6,11,20,12)(7,13,16,14)(8,18,15,9)]) \cong C5:C4$