Алгебра

Сидоров Дмитрий

Группа БПМИ 219

June 2, 2022

$N_{2}1$

Определите все значения параметра $b \in \mathbb{R}$, при которых многочлен $f = x^3y + bxy^3z^2$ принадлежит идеалу $I = (x^2 + 2y^2, xz - y)$ кольца $\mathbb{R}[x, y, z]$.

Решение:

Чтобы определить, принадлежит ли идеалу многочлен, необходимо найти в идеале базис Грёбнера (используя алгоритм Бухбергера), и, если остаток многочлена относительно найденного базиса равен 0, то многочлен принадлежит идеалу. Найдём в I базис Грёбнера. Обозначим $f_1 = x^2 + 2y^2, f_2 = xz - y$, тогда $L(f_1) = x^2, L(f_2) = xz \Rightarrow$ $HOK(L(f_1),L(f_2))=x^2z\Rightarrow S(f_1,f_2)=zx^2+2zy^2-x^2z+yx=2zy^2+yx=f_3$. Заметим, что f_3 нередуцируем относительно f_1 и f_2 , поэтому его нужно добавить в систему (по алгоритму Бухбергера). $L(f_3)=xy\Rightarrow$ $\text{HOK}(L(f_1), L(f_3)) = x^2 y \Rightarrow S(f_1, f_3) = 2y^3 - 2xy^2 z \overset{f_2 - 2y^2}{\rightarrow} 0. \quad \text{HOK}(L(f_2), L(f_3)) = xyz \Rightarrow S(f_2, f_3) = -y^2 - 2xy^2 z \overset{f_3 - 2y^2}{\rightarrow} 0.$ $2y^2z^2=f_4$. Заметим, что f_4 нередуцируем относительно f_1,f_2,f_3 , поэтому его нужно добавить в систему (по алгоритму Бухбергера). $L(f_4) = -2y^2z^2$. Известно, что если страшие члены многочленов x, y взаимно просты, то S(x,y) редуцируется к 0 относительно x,y. Заметим, что $L(f_4)$ попарно прост с $L(f_1), L(f_2), L(f_3)$, а значит $S(f_1, f_4), S(f_2, f_4), S(f_3, f_4)$ редуцируются к 0 относительно $f_1, f_4; f_2, f_4; f_3, f_4$ соотв. Таким образом, $\{f_1, f_2, f_3, f_4\}$ $\{x^2+2y^2, xz-y, 2zy^2+yx, -y^2-2y^2z^2\}$ — система Грёбнера идела I. Теперь найдём все значения параметра $b \in \mathbb{R}$, при которых многочлен $f=x^3y+bxy^3z^2$ принадлежит идеалу $I.\ f=x^3y+bxy^3z^2 \stackrel{f_1\cdot xy}{\rightarrow} bxy^3z^2-2xy^3 \stackrel{f_4\cdot 2xy}{\rightarrow} bxy^3z^2+4xy^3z^2.$ Заметим, что при b=-4 f редуцируется к 0 относительно системы Грёбнера идела I, те тогда f принадлежит $I. \ \, \text{Пусть} \,\, b \neq -4. \,\, bxy^3z^2 + 4xy^3z^2 \stackrel{f_2 \cdot 4y^3z}{\to} \,\, bxy^3z^2 + 4y^4z \stackrel{f_2 \cdot by^3z}{\to} \,\, 4y^4z + by^4z \,\,. \,\, \text{Заметим, что} \,\, by^4z, 4y^4z \,\, \text{не делятся на}$ $L(f_1), L(f_2), L(f_3), L(f_4)$, а значит $by^4z + 4y^4z$ нередуцируем к 0 относительно $\{f_1, f_2, f_3, f_4\}$ при $b \neq -4$. Таким образом, многочлен $f = x^3y + bxy^3z^2$ принадлежит идеалу $I = (x^2 + 2y^2, xz - y)$ кольца $\mathbb{R}[x, y, z]$ только при b = -4.

Ответ: при b = -4

№2

Найдите минимальный редуцированный базис Грёбнера в идеале $(xy+2yz,x-y^2,yz^2-y)\subseteq \mathbb{R}[x,y,z]$ относительно лексикографического порядка, задаваемого условием z>x>y.

Решение:

Обозначим $f_1 = xy + 2yz$, $f_2 = x - y^2$, $f_3 = yz^2 - y$. Построим с помощью алгоритма Бухбергера произвольный базис Грёбнера в идеале, а потом преобразуем его в минимальный редуцированный базис Грёбнера в идеале. $L(f_1) = 2yz$, $L(f_2) = x$, $L(f_3) = yz^2$. Заметим, что $L(f_1)$ и $L(f_2)$, $L(f_3)$ и $L(f_2)$ вхаимно просты, а значит

 $S(f_1,f_2),S(f_2,f_3)$ редуцируемы к нулю относительно f_1,f_2 и f_2,f_3 соотв. $\mathrm{HOK}(f_1,f_3)=2yz^2\Rightarrow S(f_1,f_3)=xyz+2yz^2-2yz^2+2y=xyz+2y\stackrel{f_1\cdot 0.5x}{\to} 2y-0.5x^2y\stackrel{f_2\cdot 0.5xy}{\to} 2y-0.5xy^3\stackrel{f_2\cdot -0.5y^3}{\to} 2y-0.5y^5$. Заметим, что $2y-0.5y^5$ нередуцируем относительно f_1,f_2,f_3 , тогда добавим $f_4=-4y+y^5$ (можно домножить на -2, тк $2y-0.5y^5$ - остаток) в систему. $L(f_4)=y^5\Rightarrow L(f_4)$ взаимно прост с $L(f_2)\Rightarrow S(f_2,f_4)$ редуцируем к 0 относительно f_2,f_4 . $\mathrm{HOK}(L(f_1),L(f_4))=2y^5z\Rightarrow S(f_1,f_4)=xy^5+8zy\stackrel{f_1\cdot 4}{rel}\to xy^5-4xy\stackrel{f_4\cdot x}{\to} -4xy+4xy=0$. $\mathrm{HOK}(L(f_3),L(f_4))=y^5z^2\Rightarrow S(f_3,f_4)=-y^5+4z^2y\stackrel{f_3\cdot 4}{\to} -y^5+4y\stackrel{-f_4}{\to} 0$. Таким образом, $\{f_1,f_2,f_3,f_4\}=\{xy+2yz,x-y^2,yz^2-y,-4y+y^5\}$ - базис Грёбнера в идеале.

По определению базис Грёбнера F идеала $I \subseteq R$ называет минимально редуцированным, если:

- 1) для любых двух различных многочленов $f_1, f_2 \in F$ никакой одночлен в f_1 не делится на $L(f_2)$
- 2) старшие коэффициенты всех многочленов из F равны 1.

Тк $L(f_3)=yz^2$: $2yz=L(f_1)$, то f_3 нужно убрать из базиса. Так же для $f_1=xy+2yz$ xy делится на $x=L(f_2)$, а значит f_1 следует заменить на f_1 $\frac{f_2\cdot y}{2}$ $2yz+y^3$ (для остальных условие 1 соблюдается). Итого, получили новую систему $\{yz+0.5y^3,x-y^2,-4y+y^5\}$. Теперь изменим базис так, чтобы выполнялось условие 2. Таким образом, $\{2yz+y^3,x-y^2,-4y+y^5\}$ - минимальный редуцированный базис Грёбнера в идеале $(xy+2yz,x-y^2,yz^2-y)\subseteq \mathbb{R}[x,y,z]$ относительно лексикографического порядка, задаваемого условием z>x>y.

Ответ: $\{yz + 0.5y^3, x - y^2, -4y + y^5\}$

№3

Дан идеал $I=(x^2y+2xz+z^2,yz-1)\subseteq\mathbb{R}[x,y,z]$. Найдите порождающую систему для идеала $I\cap\mathbb{R}[x,y]$ кольца $\mathbb{R}[x,y]$.

Решение:

Известно (№7 листа 7), что если $I\subseteq R$ - ненулевой идеал и F - его базис Грёбнера, и так же $1\le k\le n-1$ и $R_k=K[x_{k+1},\ldots,x_n]$, то множество $F\cap R_k$ является базисом Грёбнера идеала $I\cap R_k$ кольца R_k . Введём лексикографический порядок z>x>y. Тогда с учётом первого факта получаем, что чтобы найти базис $I\cap \mathbb{R}[x,y]$ кольца $\mathbb{R}[x,y]$, нужно найти базис Грёбнера идеала I в R[z,x,y] (обозначим как F) и пересечь его с R[x,y]. Чтобы найти базис Грёбнера применим алгоритм Бухбергера. Пусть $f_1=x^2y+2xz+z^2, f_2=yz-1$. $L(f_1)=z^2, L(f_2)=zy\Rightarrow \mathrm{HOK}(L(f_1),L(f_2))=z^2y\Rightarrow S(f_1,f_2)=x^2y^2+2zxy+z\xrightarrow{f_2\cdot 2x}x^2y^2+z+2x=f_3$. Заметим, что f_3 нередущируем относительно $\{f_1,f_2\}\Rightarrow$ добавим f_3 в базис. $L(f_3)=z$. $\mathrm{HOK}(L(f_1),L(f_3))=z^2\Rightarrow S(f_1,f_3)=x^2y-x^2y^2z\xrightarrow{f_2\cdot -x^2y}0$. $\mathrm{HOK}(L(f_2),L(f_3))=zy\Rightarrow S(f_2,f_3)=-1-x^2y^3-2xy=f_4$. Заметим, что f_4 нередущируем относительно $\{f_1,f_2,f_3\}\Rightarrow$ добавим f_4 в базис. $L(f_4)=-x^2y^3$ - взаимно прост с $L(f_1),L(f_3)\Rightarrow S(f_1,f_4),S(f_3,f_4)$ редуцируются к нулю относительно $\{f_1,f_2,f_3,f_4\}$. $\mathrm{HOK}(L(f_2),L(f_4))=-x^2y^3z\Rightarrow S(f_2,f_4)=-x^2y^3z+x^2y^2+z+x^2y^3z+2xyz=x^2y^2+z+2xyz\xrightarrow{f_2\cdot 2x}x^2y^2+z+2x\xrightarrow{f_3}0\Rightarrow$ базис Грёбнера для I в R[z,x,y]- это $\{f_1,f_2,f_3,f_4\}=\{x^2y+2xz+z^2,yz-1,x^2y^2+z+2x,-1-x^2y^3-2xy\}$. Найдём пересечение с R[x,y]- это многочлены, которые зависят только от x,y, значит нам подходит только многочлен $f_4=-1-x^2y^3-2xy\Rightarrow I\cap \mathbb{R}[x,y]=(-1-x^2y^3-2xy)$.

Ответ: $(-1 - x^2y^3 - 2xy)$

№4

Найдите конечный базис Грёбнера (относительно стандартного лексикографического порядка, задаваемого условием x>y>z) для идеала I кольца $\mathbb{R}[x,y,z]$, где $I=\{f\in\mathbb{R}[x,y,z]\mid f(a,a+1,a^2-2a)=0\;\forall a\in\mathbb{R}\}.$

Решение:

Заметим, что $f_1 = x - y + 1$ в точке $(a, a + 1, a^2 - 2a)$ равен $a - a - 1 + 1 = 0 \ \forall a \in \mathbb{R} \Rightarrow f_1 \in I$. Аналогично $f_2 = y^2 - z - 4y + 3$ в точке $(a, a + 1, a^2 - 2a)$ равен $a^2 + 2a + 1 - a^2 + 2a - 4a - 4 + 3 = 0 \ \forall a \in \mathbb{R} \Rightarrow f_2 \in I$. При этом $L(f_1) = x, L(f_2) = y^2 \Rightarrow L(f_1), L(f_2)$ взаимно просты $\Rightarrow S(f_1, f_2)$ редуцируется к нулю относительно $F = \{f_1, f_2\} \Rightarrow F$ - базис Грёбнера идела (f_1, f_2) . Теперь покажем, что этот идеал равен иделу I из условия (обозначим $J = (f_1, f_2) \Rightarrow$ докажем, что I = J).

Заметим, что I задан так, что любая комбинация многочленов из I является многочленом из I (каждый такой многочлен в точке $(a,a+1,a^2-2a)$ равен 0, а значит комбинация этих многочленов равна 0 в точке $(a,a+1,a^2-2a)$), значит, тк $f_1,f_2\in I$ и f_1,f_2 - порождающая система в J, то $J\subseteq I$.

Теперь покажем, что $I\subseteq J$. Для этого рассмотрим произвольный $f\in I$ (нужно доказать, что тогда $f\in J$). Пусть $f=m_1f_1+m_2f_2+r$, где r - некоторый остаток f относительно F. Тогда $r=f-m_1f_1-m_2f_2$, и тк $f,f_1,f_2\in I\Rightarrow f,m_1f_1,m_2f_2\in I$, то $r\in I$. Значит $r(a,a+1,a^2-2a)=0$ $\forall a\in\mathbb{R}$. Тк r - некоторый остаток f относительно F, то L(r) не делится на $L(f_1)=x$ и $L(f_2)=y^2\Rightarrow$ либо $L(r)=z^k$, либо $L(r)=yz^k$ для некоторого $k\geq 0\in\mathbb{Z}$.

- 1) Пусть $L(r) = z^k$. Тогда, тк x > y > z, r зависит только от z, а значит, тк $r(a, a+1, a^2-2a) = 0 \ \forall a \in \mathbb{R}$, то r многочлен от одной переменной, который имеет конечную степень, и в этой степени он равен 0 при любом $a \in \mathbb{R}$ (те имеет бесконечно много корней), а значит $r = 0 \Rightarrow f \in (f_1, f_2) \Rightarrow f \in J$.
- 2) Пусть $L(r) = yz^k$. Заметим, что f_2, r не зависят от x, а значит для любого x выполняется $f_2(x, a+1, a^2-2a) = 0$, $r(x, a+1, a^2-2a) = 0$, тк $f_2, r \in I$. Значит $f(x, a+1, a^2-2a) = m_1 f_1(x, a+1, a^2-2a) \forall x, a \Rightarrow f \in J$ (тк f делится на f_1).

Таким образом, $I \subseteq J \Rightarrow I = J \Rightarrow (f_1, f_2)$ — конечный базис Грёбнера для I.

Ответ: $(x-y+1, y^2-z-4y+3)$