1、实验名称及目的

飞机组网实验 2: 创建飞机间数据传输网络, 用以共享自身数据, 订阅其他飞机的数据。

2、实验原理

通过将不同的飞机绑定数据发送端口,订阅端口数据。将数据发送到共享 IP。实现飞机间的数据通信。

3、实验效果

可以看到终端打印其他飞机的飞行信息和飞机间的通信延迟。

4、文件目录

文件夹/文件名称	说明
SITLRun4MavlinkFull.bat	仿真开启配置文件
RedisUtils.py	Redis 初始化程序
UAV1Ctrl	飞机控制程序

5、运行环境

序号	*************************************	硬件要求		
かち	私什安 水	名称	数量	
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1	
2	RflySim 平台免费版			

6、实验步骤

Step 1:

运行 SITLRun4UDPSimple.bat 会创建四个飞机,双击 Python38Run.bat 四次,会创建四个命令提示框。在四个 Python 命令提示框中,分别输入下面四条指令的 1 条

python UAV1Ctrl.py

python UAV2Ctrl.py

python UAV3Ctrl.py

python UAV4Ctrl.py

只输入, 不运行

Step 2:

等待 RflySIm3D 显示所有飞机已 fixed, 或 4 号 CopterSIM 上看到初始化完毕。

本机ID:	UDP收端口: 20106	使用DLL模型文件:	~		仿真模 PX4_SI	式: ITL_RFL UDP Mo
飞控设	选择:			~		UDP_S:
PX4: Com PX4: Com PX4: Com PX4: GPS	nand ID: 512 A nand ID: 512 A nand ID: 512 A	CCEPTED CCEPTED F initialization	finished.			

Step 3:

依次在四个 Python 命令框中按下回车, 执行四个 Python 程序。可以看到四个飞机一个跟一个地飞出去。在终端中可以看到打印其他飞机的数据。

7、参考资料

[1]. 无

8、常见问题

注意:本例子中,以1号飞机为例,直接指定了发往234号飞机的端口60002 60003 60004,同时234号飞机也都指定了会发往60001号端口(被1号飞机监听)。因此,每个飞机都能收到其他三个飞机的数据。

注意:在进行组网例子开发时,需要更改端口规则,例如,所有飞机都先发往特定端口,被组网仿真器接收,延迟或通断处理后,再回传给60000系列端口,被飞机接收。