Duality Theory Associated with every linear program.
there is another linear program.
called its dual. motivation. Finding upper bounds. (consider the following LPP Max $Z = H x_1 + x_2 + 3x_3 - 0$ 8.t. $x_1 + 4x_2 \le \frac{1}{2} - 0$ $\frac{1}{3}x_1 - x_2 + x_3 \le \frac{3}{2} - 2$ x1/x2/x3/20. observation! Let 2* be the obtimal value of the objective function. Every feasible solution is a lower bound to the optimal solution.

Z value of any feasible solution. then Z' \leq Z* Z' Z*

for example: $(\chi_1,\chi_2,\chi_3) = (1,0,0)$ is a feasible solution. How Z = 4 => 4 < 2* $\mathcal{L}(\alpha_1, \alpha_2, \alpha_3) = (0, 0, 4)$ is a feasible solution $Z = \frac{3}{4}$ How good is this bound? Is it close to the obtimal?? To answer we need to give one upper bound.

Let on multiply 1) by 2 and by 3 then add. ≤2.1 (2) (x, + 4x2) ≤ 3.3 $+(3)(3x_1-x_2+x_3)$ $11x_1 + 5x_2 + 3x_3 \le 11 - 3$ we already have 71,72,7370 Now compare 3 with 6 we have. $Z = 4x_1 + x_2 + 3x_3 \leq 11x_1 + 5x_2 + 3x_3 \leq 11$ we can say 2× < 11 we can localise our search to find optimal solution between 4 and 11 3/4 4

question_ can we improve these bounds?? can we improve the upper bound?? If so then How?? We apply the same upper bound technique but with variables instead of two magical numbers And then we try to find the values of the variables. that gives the best uppers bound.

 $m_{1} = 3_{1} + 37_{2}$ 8 H. M, +37274 48, -7271 y27/3 8,7270 Pz is the dual linear

Program of Pi

Lower hound

_ upper bound

Dual linear program
Frima dinear program in standard frimal primal Prim
from on. The c'xi
man $Z = \sum_{j=1}^{j} C_j C_j$
Man $Z = \frac{1}{J=1}$ $S = \frac{1}{J=1}$
2,7,0 7 P. 13.
The associated according
min w = 5 - 621i
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1}{\sqrt{1}} = 1, 2, \dots, m$

Example: Paimod Man Z=57, +372-423 $= \frac{1}{21} - \frac{2}{12} + \frac{3}{13} \le 9 - \frac{1}{12}$ Dual min w = 67, +972 8.t. 28,+8275 71-27273 -71+372>-4w 8, 7, 70.

A more complex example minimise Z =5x1+2x2+7x3 8.t. 3x1 +5x2 +2x3 7/12~ $x_1 + 2x_2 + 3x_3 \leq 8$ Pi 2211 + X2 +4x3 = 5 $\chi_1 \gamma_2 0$, $\chi_2 \leq 0$, χ_3 unrestricted in raign. replace as with - 24, with xupo replace no with (25-26) with 25,76% $\min Z = 5x_1 - x_4 + 7(x_5 - x_6) - 0$ 37, -574+2(75-76)7/2-71,-274+3(x5-76) <8-0 221 -xy +4(x5-76) =5 -3 x1, x4, x5, x6 70. , replace = In 3 by multiply (1) with -1 two equations 5" 2" and ">" multiply -1 multiply -1 with @

max $W = -2 = -5\pi_1 + 2\pi_4 - 7\pi_5 + 7\pi_6$ 8.6. $-3\pi_1 + 5\pi_4 - 2\pi_5 + 2\pi_6 \le -12 - 7_1$ $x_1 - 2\pi_4 + 3\pi_5 - 3\pi_6 \le 8 - - - \frac{\pi}{2}$ $2\pi_1 - \pi_4 + 4\pi_5 - 4\pi_6 \le 5 - \frac{\pi}{2}$ $-2\pi_1 + \pi_4 - 4\pi_5 + 4\pi_6 \le -5 - \frac{\pi}{2}$ $\pi_1, \pi_4, \pi_5, \pi_6 > 0$ The dyal is

Whin $Z' = -127_1 + 87_2 + 57_3 - 57_4$ 8.6. $-37_1 + 7_2 + 27_3 - 27_4 > -5$ $57_1 - 27_2 - 7_3 + 7_4 > 2$ $-27_1 + 37_2 + 47_3 - 47_4 > -7$ $27_1 - 37_2 - 47_3 + 47_4 > 7$ $7_1 - 7_2, 7_3, 7_4 > 0$

First convert it to a manimisation Problem by multiplying by -1

man $W' = -2' = 127_1 - 87_2 - 57_3 + 57_4$ define y5 = y4-73 then y5 becomes unrestricted. man w/= 1281-882+ 575-5 571-272-48572 -281+372-4857-77 VIIIZZO 75 umrestacted. 12 = -76 sothat 76 ≤0. man w' = 128, +886 +585 -371-76-275755 5 J1 + 276 + 45 72 1-27, +376-475277 1-27, +376-4785277 27, +376+475=7 21 >0, 8≤0, 85 unrestricted.