Partiel 2

Durée : quatre heures

Documents et calculatrices non autorisés

Exercice 1 (4 points)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour tout $(x,y) \in \mathbb{R}^2$ par $f(x,y) = x^2 + xy + y^2 + \frac{1}{4}x^3$.

- 1. Déterminer les points critiques de f.
- 2. Pour chacun des points critiques, préciser s'il s'agit d'un maximum local, d'un minimum local ou d'un point-col.

Exercice 2 (3,5 points)

Soit f la fonction 2π -périodique définie pour tout $x \in [-\pi, \pi[$ par $\begin{cases} f(x) = -1 & \text{si } x \in [-\pi, 0[\\ f(x) = 1 & \text{si } x \in [0, \pi[$

- 1. Tracer le graphe de f sur $[-\pi, \pi]$.
- 2. Déterminer les coefficients de Fourier a_n et b_n associés à f et écrire la série de Fourier associée à f.
- 3. En déduire $\sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)}$
- 4. En utilisant l'égalité de Parseval, déterminer $\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$
- 5. En déduire $\sum_{p=1}^{+\infty} \frac{1}{p^2}$

Exercice 3 (5,5 points)

Soit $E = \mathbb{R}_2[X]$ muni du produit scalaire

$$\langle P, Q \rangle = \int_0^1 P(x)Q(x)p(x)dx$$

où p est une fonction non nulle continue et positive sur [0,1].

1. On suppose dans cette question que pour tout $x \in [0, 1], p(x) = x$.

A partir de la base canonique $(1, X, X^2)$, construire par la méthode de Gram-Schmidt, une base orthogonale de E relativement à ce produit scalaire.

N.B. : après calculs, n'oubliez pas de vérifier l'exactitude de votre base en vérifiant l'orthogonalité des 3 polynômes.

- 2. On suppose dans cette question que pour tout $x \in [0,1], p(x) = 1$.
 - a. Déterminer le projeté orthogonal P_0 de X^2 sur $\mathbb{R}_1[X] = Vect(1, X)$.
 - b. Déterminer

$$\min_{(a,b) \in \mathbb{R}^2} \int_0^1 (x^2 - ax - b)^2 dx$$

Exercice 4 (4,5 points)

Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définie pour tout $x\in\mathbb{R}^+$ par $f_n(x)=nx^2e^{-nx}$.

- 1. Etudier la convergence simple de (f_n) sur \mathbb{R}^+ .
- 2. Etudier la convergence uniforme de (f_n) sur \mathbb{R}^+ .
- 3. Etudier la convergence simple de $\sum f_n$ sur \mathbb{R}^+ .
- 4. Etudier la convergence normale de $\sum f_n$ sur \mathbb{R}^+ .
- 5. Etudier la convergence uniforme de $\sum f_n$ sur \mathbb{R}^+ .

Exercice 5 (3,5 points)

Soit f la fonction 2π -périodique définie pour tout $x \in [-\pi, \pi[$ par $f(x) = e^x$.

- 1. Déterminer la série de Fourier de f.
- 2. En déduire $\sum_{n=1}^{+\infty} \frac{1}{1+n^2}$