

Determinants:A-[a,b] is mortible hat the expression ad-be is alled the determinant of matrix + Written as 1A1 = a b = ad-bc -: to extry o sonit water matrix, then the minor of entry is denoted by Mi and is defined be the determinant of the submatrix at xemain after the ith you & ith column oxe delete from A efactor of entry a ;- (Include Hinor det in the The number 1)" Mij is denoted by Gi and is called the cofactor of entry and Question I to 4 same. Find the minor and colores of matrix A

- 1/21 gion conflor del (A)=0 319 D 20 (some) the determinant co Fector expansion along (b) (First & woltrait) (d) Expansion 022.09.16 10:09

=1(b)-K(c)+K ₅ (c) -1(K ₃ -K ₃)-K(K ₅ -K ₅)+K ₅ (K-K) -1(K ₃ -K ₃)-K(K ₅ -K ₅)+K ₅ (K-K)
[A] = 0 - 0 + 0 [A] = 0] (324)
A= K+1 K-1 7
Solt K+1 K-1 7
1A1 = 2 K-3 4 5 K+1 K
Expand by C,
= K+1 K3 4 -2 K-1 7 +5 K1 7 K3 4
$= K+1(K^2-3K-4K-4)-2(K^2-K-7K-7)+5(4K-4)$ $= K+1(K^2-7K-4)-2(K^2-8K-7)+5(3K+17)$
$= (k^3 - 7k^2 - 4k + k^2 - 7k - 4) - (2k^2 - 16k - 14) + (-15k + 8)$ $= k^3 - 6k^2 - 11k - 4 - 2k^2 + 16k + 14 + 85 - 15k$
(A) = K3-8K2-10K +95

Linear Algebra EXII Alxady mantioned Linear system has intinte solution so we use parametric equation Altrody mentioned system tops in tingto solution by Good Parametric question or check solution Atternative equation

21 - 4 + 22 = -4

64 - 34 + 62 = -12

While y 3 940

64 - 34 + 64 = -12 1502 OSY OV

28 X + 13 X=1 The given equation is a linear COS (2) N - Ly = 1093 The given equation is non-linear Because in linear equation Toignometric and logarithmic function is (e) The given equation is non linear Because in linear equation product of two variable with each other rot involved is allowed Lineax System:-Finite set of Lineax Equations is called system of linear Equation or Linear System. Fox Example: 2x+4y=1 7 Timent

The given equation equation is non-broad in Linear country Toignameter and logarithmic Function is not used (0) e given equation is non linear in Tineas equation product not involved or allowed Equations

Inknown: The voxiables axe talled unknowns 08 The voxiables used in linear system is called unknown briables. tox Example: unknown variables. System axe ducation 5:stem of the general linear amondan in two unknowns three Egyption in three wiknowns 2x+y+5z=1 3x+2y+4z=2 4x+3y+3z=3 6 Y20 2021

QT (b)	_
1 9 3 3	
Sh -1 -5 0 10 -1 3 2 12 -9 3 3	_
Intexcharge Ry with R3	_
T1 4 -3 3 12 -9 3 2	
=7 \[\(\text{0} \) -1 -5 \(\text{0} \) \\ \(\text{Q18 (a)} \)	
7 1 4 3	-
Soll- F2 4 -6 8	-
= 7 1 4 3 5 4 2 7	31
R, divided by 2	
7 = 7 1 4 3 vivo yzo zozi 4 2 7	

030 (0)	
-	
13	
1-6 8 51	
Solli-	
13 -4 K8	
3 +4 +5/2]	
34-Ly=K	
= 3x + xy = +5/2	
0 = K+5/2	aris
TK-E	=> 0=2K+5
1/2-3	
	1
G20(1	0)
K 1 -2	if K=4
Solt	1x(4-4)=0
KK+K =-Z	x(0) = 0
- 4n-x = -2	0=0
Kx-4x = 0	So the Lither
x(K-4) =0 -	- (i) system of
K-4-0	(ii) Jougnmented
K-4=0 [K=4]	is consistent ?
VIV0 Y20 2021	2022.09

4x-64=p let a=1 , b=2 2x-3y=1 4x-6y=2 Multiply by (2) eq (1) 0=0 (considert but infinite solution) shon we sypose a=1 & b=2 in Lincol System then after solving the system. No of solution occur of linear system when we put a=2, b=2 In Lineas System. 24-34-2 When put a=2, b=2 in livered systems. Hen no solution found of this

00(0) (7,7,5) 2x, -4x2- 13=1 K1-3K2+ K3=1 34, -51/2 -31/3=1 2(17)-4(7)-5=1 17 -3(7)+5=1 3(17)-5(7)-3(5)=1 34-28-5=1 17-21+5=1 51-35-15=1 The given 3-taple (17,7,5) is a solution of the given lines system. x+2y-2z=3 3x-y+z=1- N +5y-5z=5 vivo Y20 2021 2022.09.16 10:15

X, +5 x, + x, x, = 2 The given equation is not linear Because two voxible not product in Linear equation. X,= - 7x,+3/3 given equation is Linear. The given equation is non-linear Because in Linear equation powers of variable is only one and do not apposit re given equation is non-linear-Brance in linear Equation power of variable occur given equation is linear. 2022.09.16 10:14

Takhometric Jagaxithmic or exponential function) is a Linear Equation. given Equation is Linear

M ₂₃ = 1 C ₂₃ M ₂₂ Then Find C ₂₃ M ₂₂ Using Fobrula: [M ₂₃ = 1]	1 2 3 6 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1
vivo Y20 2021	

Q4(c)
Mu and Cui Solvi 12: 3 -1 1
H ₁ = -3 2 0 3 3 -2 1 0 3 -2 1 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

A= 3 2 0 3	
Find (a) Msz and Csz	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 2 1 1
= -3 0 3 = -3 0 3 = 3 12 4 Expand by R	
$= 2 \begin{vmatrix} 0 & 3 \end{vmatrix} - (-1) \begin{vmatrix} -3 & 3 \end{vmatrix} + 1 \begin{vmatrix} -3 & 0 \end{vmatrix}$ $= 2(0-3)+1(-12-9)+1(-3-0)$ $= 2(-3)+1(-21)+1(-3)$	
$M_{32} = -6 - 21 - 3$	
The Find G ₃ (3) = (-1) ³ , 2 (M ₃) (3) = 30 Vivo Y20 2021 (-30) 2022.09.16.10.18	

033	
(0)	
Sind COSO	
-cose sine!	
Solt	
= Sina cosa	
1-cosa sinal	
(2007-4000)	-
= (sino.sino) - (coso coso) = sin20 - (-coso)	
= cin20 + co20	-
= \	-
(6)	
sina cosa	
-coso sino	
Siha-cola Sinatcola 1	
jol-	
Sino cosa o	
= -cosa Sina o	
Sina cosa Sinatcosa	
Sina sina o - cosa - cosa o +	-(050 Six
Sinarcosa 1 Sina-cosa 1	Sine Sin
Sina (sina - 0) - cosa (-cosa - 0) +0	
- sina (sina) - cosa (-cosa)	
= sin2a + cos2a	
eo.ssos vivo vivo sossos	16 10:35

$$= \frac{3}{9} \left[\frac{1}{4} - \frac{1}{2} - \frac{1}{4} \right]$$

$$= \frac{3}{9} \left[\frac{4}{9} - \frac{1}{9} - \frac{1}{9} - \frac{1}{9} \right]$$

$$= \frac{3}{9} \left[\frac{4}{9} \right] - 0 \left(-\frac{13}{9} \right) + 0 \left(\frac{19}{9} \right)$$

$$= \frac{3}{123} - 0 + 0$$

$$|A| = -123$$

$$|A| = \frac{3}{9} \cdot \frac{9}{9} \cdot \frac{9}{9} \cdot \frac{1}{9} \cdot \frac{9}{9} \cdot \frac{9}{9} \cdot \frac{1}{9} \cdot \frac{9}{9} \cdot \frac{9}{9$$

Evalute the determine in Q12 by a catactor exponsion along.
1-1 1 2 3 6 -5 1 7 2 the third row
Sdt IAI = -1 1 2 3 0 -5 1 7 2 Expand by R3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
IP = 47 he third column olt IA = 3 0 -5 7 SHIFT #5
20 2021 7 2

- Exa
Remains are (8)
E-Congrad By Ca
2/30/-(5)/7/7/2/30/1
= a(a1-0) + 5(-7-1) + 2(03-3)
= 3(21-0)+3(-8)+2(-9) $= 3(21-0)+3(-8)+2(-9)$
= 4d - 90 - 4d - 46
101-08-4
1111
Q21 to 26 (some)
Evalute det (A) by a coloctor exponsion
along a you or column or gord
923
H= 1 K K3
1 K K2
TIK K3
Solt
1A 1 K K2
IFT = 1 K K2
Except 1 0

	-
29	
TIZ 16	
4 13	
Solv 15 16	
let A = 12 16 4 13	
then IT IR	
then 1A1= 152 18 4 13	
= (12 x 13) - (16 X4)	
1A1 = 6-476 1A1 = 2(3-256) =>=-3.7	
So the source matrix is injextible.	
Then also Find A-1 A - \[\bar{12} \] \[\bar{16} \]	
4 13	
adj H = 13 -18	
Then A-1 1 1:0	
IAI adji A	
= 1 13 -51	
37 -4 12	
R-1 -1-13	
vivo y20 2021 737 2022.09.16	
vivo Y20 2021 3.7 2022.09.16	10:09

	01.17
- done	Algelia
CH4	(a) 182 -5/2
	1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/
13 5	0 = 3
1-2	50
Selt	(A-1 = 3/4 - 8/2)
A= 3 5	1/1/1801
-2 45	- (10)
ad determinant	141
Al = 3 S	[82]
10 (10)	Solt
= (12 - (-10))	lot
= 12+10	P= 14 1
Al = 2 2 matrix	[82] 1 to
Yes the given matrix	Find determinant to
- INVESCIONE	check given matery
Fren use Find adj A A = 3 5	is invertible
H= 1-2 41	1A1 = 14 11
adjA = 4 -5	1821
- F 1 0-1	(8+8)-(8+8)
Then Find AT	=8-8
Using Formula.	-0
0-1 1 at A	
IAI adj 11.	Squase motion is
est value in cal	Squase matrix is not investible -
0-1 -0-1 14 -5/	and proceedings

CH	Filgebia (b)
M23 and C23 Given Mediaix is Given Mediaix is 4 -1 1 4 1 0 4 1 3	6 3 4 2
	$M = -48 - 48 + 0$ $M_{23} = -96$ Then Find C ₂₃ $M_{23} = (-1)^{2+3} M_{23}$
= 4(2-14)+1(8-58)+6(4) = 4(2-14)+1(8-58)+6(4) = 4(2-14)+1(8-58)+6(4)	$=(-1)^{5}(-96)$ $=(-1)(-96)$ $=(-1)(-96)$ $=(-1)(-96)$

Sylv 1 -2 3 N= 6	and C 3 7 -1 7 3 7 4 1
A = 6 7 -1 Find N ₃ = 6 7 -1 M ₂₁ N ₃ = 6 7 -1 M ₂₁	= 1 -2 3
- 6 7	1-3 1 4
$M_{13} = \frac{6}{6} + \frac{1}{2} = \frac{1}{2}$ $M_{13} = \frac{1}{2} = \frac{1}{2}$ Then Then	=(-2+4)-(1+3) $=-8-3$ $=-11$
C13 = $(-1)^{1+3}$ M13 C2	mula. += (-D2+1 M2)
(FE) (C) = (J) (Z)	$= (-1)^{3} (-11)$ $= (-1) (-11)$ $= (-1) (-11)$ $= (-1) (-11)$ $= (-1) (-11)$ $= (-1) (-11)$ $= (-1) (-11)$

Pick the xo = 0 2 7 -4 0 2 1 -4 2 1 2 2	2-3 12
6	2022.09.16 10:36

Towner or a	
Cick the some that continues of the cont	
0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
*Pand by Ry 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 2 2 3 0 0
0-0+0-4/1/2 2/-1/0 2/	+10
= -4/1(6-0)-1(0-0)+1(0-0)	
= -4(6)	
ivo Y20 2021	