

Outline

- i. Overview
- ii. Topic Modeling Approaches
- iii. Structural Topic Model (STM)
- iv. Keyword-Based Topic Extraction

Overview

Overview Goal of Topic Modeling

- Goal: discover latent semantic structures in a corpus & group documents into topical clusters
- Exploratory method that does not require prior knowledge
 - → Unsupervised learning

as opposed to: topic classification

- Often particularly useful in early phases of text analysis
 - Getting a better feeling for the corpus at hand
 - Facilitating/enhancing downstream tasks (e.g., sentiment analysis)

Overview **Terminology**

So, what exactly is a topic?

- Topic modeling revolves around the probability of words occurring in texts of a specific cluster.
- Intuitively, we would expect some words to appear more frequently in documents about a certain topic than in others.

e.g., the word tasty should be more likely to occur in a text about food than in one about stock markets

In fact, a topic is just a probability distribution over a fixed vocabulary.

Overview Terminology

- Topic-word distribution β_k : probability distribution over vocabulary given topic k
 - Constant across documents
 - Characteristic of a topic

• **Topic proportions:** length-*K* vector of probabilities of a document belonging to a certain topic

Topic Modeling Approaches

Approaches Rough Taxonomy

Approaches Deterministic

- Deterministic approaches
 - Term-by-document matrix
 - LSA, NMF: matrix factorization to identify latent topics

• **Problems**: inference & out-of-sample extension

Approaches Probabilistic/Generative

- Probabilistic/generative approaches
 - Hierarchical Bayesian mixture models
 - Idea: reverse-engineer the imaginative process of document generation

- 1. For each of document d within a corpus draw a vector of topic proportions from the assumed distribution
- 2. For each word position n within d
 - 1. draw a topic assignment from the assumed distribution
 - 2. draw a word from the assumed distribution

Approaches Probabilistic/Generative

 Example corporate writing cat dog C-level author profit topic 3 topic 1 topic 2 Document d position 1 position 1 position 1 position 1 position 1 writing profit dog cat cat

Overview Challenges

- Hyperparameters: most importantly, number of topics
- Extreme brevity of Twitter data
 - Problematic for most topic modeling approaches
 - Potential mitigation by pooling
 - Special models dedicated to short texts

Structural Topic Model (STM)

STM Expert Talk

Expert Talk: STM

Patrick Schulze & Simon Wiegrebe: **Twitter in the Parliament – A Text-based Analysis of German Political Entities**

STM Approach

Demo 7: STM

STM Exercise

Exercise 4: Topic Modeling

Keyword-Based Topic Extraction

Keyword-Based TE Idea

Situation

- (Statistical) topic modeling not always producing meaningful topics
- Quite some human input required still
- Also, unsupervised approach not always appropriate
- Idea: specify keywords & find related documents

Approach

- 1. Specify list of keywords
- Find similar words (both morphologically & semantically)
- 3. Assign all documents using these words to the associated topic

Literature and References

Blei, D., Ng, A., and Jordan, M. (2003): Latent Dirichlet Allocation. *Journal of Machine Learning Research 3*, pp. 993-1022.

Blei, D., and Lafferty, J. (2007): A Correlated Topic Model of Science. *The Annals of Applied Statistics* 1(1), pp. 17-35.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., and Harshman, R. (1990): Indexing by Latent Semantic Analysis. *Journal of the American Society for Information Science* 41(6), pp. 391-407.

Hofmann, T. (1999): Probabilistic Latent Semantic Indexing. *Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 50-57.

Roberts, M., Stewart, B., Tingley, D., and Airoldi, E. (2013): The Structural Topic Model and Applied Social Science. *Advances in Neural Information Processing Systems Workshop on Topic Models*.

Salton, G., and McGill, M. (1983): Introduction to Modern Information Retrieval, McGraw-Hill.

Vayansky, I., and Kumar S.A.P. (2020): A Review of Ttopic Modeling Methods, *Information Systems*, doi: https://doi.org/10.1016/j.is.2020.101582.