Relativity Quiz - 1

John Rötter

July 20, 2020

Problem 1:

a.) Consider a particle's energy is twice it's rest mass energy. Then $E = \gamma mc^2$ with $E = 2mc^2$ gives that $\gamma = 2$. Therefore the Lorentz factor is,

$$\gamma = 2$$
.

b.) Since $\gamma=\frac{1}{\sqrt{1-\beta^2}}$ then we can rearrange using algebra and find that $\beta=\sqrt{1-\frac{1}{\gamma^2}}$. Plugging in $\gamma=2$ gives us

$$\beta = \frac{\sqrt{3}}{2}.$$

- c.) The allowed values of β and γ are that $\beta \in [0,1)$ and $\gamma \in [1,\infty)$
- d.) Below is the graph of $\gamma(\beta)$.

Problem 2:

- a.) On average, the muon will live for $2.2\mu s$ in it's rest frame before it will decay.
- b.) If the muon has an energy of 60 GeV then using $E = \gamma mc^2$ we can find that

$$\gamma = \frac{E}{mc^2}$$
$$= \frac{60}{.105}$$
$$= 571$$

Therefore, using $\Delta t = \gamma \Delta \tau$ we can see that $\Delta t = (571)(2.2\mu s) = 1256\mu s$. Therefore the muon will live for 0.001256s in the lab frame.

- c.) Since we know $\gamma = 571$, we can find that $\beta = 0.999$ so the muon will travel for 376423m before decaying so it is safe to say we do not need to worry about the muon decaying before it reaches the detector.
- d.) As found before, $\gamma = 571$ and v = .999c for our muon. Additionally, the muon mass and charge are known to be 105~MeV/c and -1e respectively. Therefore we can use the formula for radius of curvature,

$$r = \frac{\gamma mv}{|q|B}$$

$$= \frac{198 * .999}{|-1|(3.8T)}$$

$$= 52m$$

Therefore, the radius of curvature is 52 meters.

e.) The μ^+ will decay using the weak interaction, and the W boson will decay further into a positron. Each step along the way a neutrino must also be created. Thus, the full interaction must be,

$$\mu^+ \to \bar{\nu_{\mu}} + W^+ \to \bar{\nu_{\mu}} + e^+ + \nu_e.$$
 (1)

f.) Similar to the μ^+ decay, the μ^- decay just has the charge and lepton number reversed giving,

$$\mu^- \to \nu_{\mu} + W^- \to \nu_{\mu} + e^- + \bar{\nu_e}.$$
 (2)

Problem 3:

a.) The Pythagorean equation for E, m, and $|\vec{p}| = p$ is

$$E^2 = m^2 c^4 + p^2 c^2. (3)$$

b.) The relation from Problem 1, $\gamma = \frac{1}{\sqrt{1-\beta^2}}$, gives that $\gamma^2 = \frac{1}{1-\beta^2}$. This can be rearranged to give,

$$1 = \beta^2 + \frac{1}{\gamma^2}.\tag{4}$$