Algorithmic complexity and graphs: the matching problem

September 22, 2024

Introduction

augmenting path step 1

The matching problem

The matching problem

Definition of the problem Experimental solutions Brute force algorithm Greedy algorithm

Maximum matching (Optimal assignment, problème d'affectation)

Figure: Problem: Building the largest possible number of teams of 2 persons.

Matching problem

Figure: Problem: not optimal assignment

Matching problem

Figure: Problem: optimal assignment

Other examples

- Assigning students to internships
- Assigning machines to a task

Matching problem: formal definition

Given a **undirected** graph G = (V, E), we want a **matching**, which means:

- ▶ A subset of edges $M \subset E$
- Such that no pairs of edges of M are incident
- Equivalently, each node in the graph is at most in one edge of M.

Maximum matching

- ▶ The size of a matching is the number of edges it contains.
- We want to find the matching of largest possible size in a given graph.

Definition of the problem

Figure: Is this a matching?

Definition of the problem

Figure: Is this a matching?

☐ Definition of the problem

Figure: Is this an optimal matching?

Definition of the problem

Figure: Is this an optimal matching?

Definition of the problem

Figure: With neato

Exercice 1: What is the maximum size possible for a matching, in a general graph of size n? (in the sense that no graph with n nodes contains a larger matching)

Exercice 1: What is the maximum size possible for a matching, in a general graph of size n? (in the sense that no graph with n nodes contains a larger matching)

- ▶ If *n* is even : $\frac{n}{2}$
- ► Else *n* is odd : $\frac{n-1}{2}$

Hence,

$$\lfloor \frac{n}{2} \rfloor$$
 (1)

Exercice 1: Can you think of a graph with n nodes that contains a matching of size $\frac{n}{2}$? (assuming n is even)

Optimal

Exercice 1: Can you think of a graph with n nodes that contains a matching of size $\frac{n}{2}$? (assuming n is even)

Figure: The complete graph works

Exercice 1: Can you think of a graph with n nodes that does **not** contains a matching of size $\frac{n}{2}$? (assuming n is even)

Definition of the problem

Optimal matching

Exercice 1: Can you think of a graph with n nodes that does **not** contains a matching of size $\frac{n}{2}$? (assuming n is even)

Exercice 1: Can you think of a **non trivial** graph that does **not** contains a matching of size $\frac{n}{2}$? (assuming n is even)

Definition of the problem

Optimal matching

Exercice 2: Can you think of a **non trivial** graph that does **not** contains a matching of size $\frac{n}{2}$? (assuming n is even)

Figure: Star graph

Experiments

Possibilities to code a graph:

- list of sets of size 2 (for an undirected graph)
- a dictionary of successors (directed of undirected)

Coding a graph: as a list of edges

$$g1 = [\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{1,4\}]$$

Coding a graph: as a dictionary of neighbors

$$g1 = \{ 1: \{2,3,4\}, 2: \{1,3\}, 3: \{1,2,4\}, 4: \{1,3\} \}$$

$Generating\ graphs\ with\ networks.$

Overview

The matching problem

Experimental solutions

Overview

The matching problem

Experimental solutions

Directed graph

Experimental solutions

Directed graph II

Experimental solutions

Directed graph III

Experimental solutions

Big graph

We could not manually find an optimal matching in this graph :

Summary

- ▶ We have defined the matching problem.
- When the size of the problem is large, we can not manually find an optimal matching.

Brute force approach

Exercice 3: Enumeration

Given a graph, what would a brute force approach on the matching problem be ?

Brute force approach

Exercice 3: Exhaustive search

- Given a graph what would a brute force approach on the matching problem be ?
 - 1) Enumerate all possible subsets in the set of the edges.
 - 2) Check if each subset is a matching.
 - > 3) Return the biggest one obtained.

If the graph contains n nodes, and p edges:

- what is the complexity of step 1?
- what is the complexity of step 2?

Brute force approach

Exercice 3: Exhaustive search

- Given a graph what would a brute force approach on the matching problem be ?
 - ▶ 1) Enumerate all possible subsets in the set of the edges.
 - 2) Check if each subset is a matching.
 - 3) Return the biggest one obtained.

If the graph contains n nodes, and p edges:

- what is the complexity of step 1 ? $\mathcal{O}(2^p)$ exponential
- what is the complexity of step 2 ? $\mathcal{O}(np)$: polynomial

Hence, as expected, brute force is not possible on graphs that are not very small.

Notion of maximal and maximum matching

We will say that a matching M of cardinality |M| is:

- ► Maximum if it has the maximum possible number of edges (it is thus optimal)
- ▶ Maximal if the set of edges obtained by adding any edge to it is not a matching. This means that $M \cup \{e\}$ is not a matching for any e not in M.
- ▶ ∪ means union of sets.

Is being a maximal matching the same thing as beeing a maximum matching ?

A matching that is maximal is **not necessary Maximum** (example).

(a) A maximal matching not maximum

(b) A maximum matching

Can you propose a greedy algorithm to address the maximum matching problem ?

```
\begin{aligned} & \text{Result}: \text{ Matching M} \\ & M \leftarrow \emptyset; \\ & \text{for } e \in E \text{ do} \\ & & \text{ if } M \cup \{e\} \text{ is a matching then} \\ & & | M \leftarrow M \cup \{e\} \\ & \text{ end} \\ & \text{end} \\ & \text{return } M \\ & & \text{Algorithme 0}: \text{ Greedy algorithm to find a matching} \end{aligned}
```

- What is the type of matching algorithm returned by this algorithm ?
- ▶ What is the complexity of this algorithm ? (as a function of the number of nodes *n* of the graph)

- The greedy algorithm returns a maximal matching (proof)
- Its complexity is smaller than $\mathcal{O}(np)$ (n nodes, p edges) (proof)
- ▶ smaller than **cubic** in the number of nodes : $\mathcal{O}(n^3)$

We will implement the greedy algorithm to find a maximal matching. Exercice 3: Implementing the greedy algorithm
Using main_matching_greedy.py, you can generate problem
instances and apply the greedy algorithm by fixing
matching_greedy/greedy_matching.py. The images are stored
in matching_greedy/images/.

initial graph

Matching size: 1 Algo step: 1 Nb nodes: 20

Matching size: 2 Algo step: 3 Nb nodes: 20

Matching size: 3 Algo step: 6 Nb nodes: 20

Matching size: 4 Algo step: 11 Nb nodes: 20

Matching size: 5 Algo step: 17 Nb nodes: 20

Matching size: 6 Algo step: 22 Nb nodes: 20

Matching size: 7 Algo step: 25 Nb nodes: 20

Matching size: 8 Algo step: 34 Nb nodes: 20

Matching size: 9 Algo step: 36 Nb nodes: 20

The matching problem

Matching size: 1 Algo step: 1 Nb nodes: 50

Matching size: 3 Algo step: 10 Nb nodes: 50

Matching size: 7 Algo step: 30 Nb nodes: 50

Matching size: 14 Algo step: 54 Nb nodes: 50

Matching size: 19 Algo step: 72 Nb nodes: 50

Matching size: 21 Algo step: 78 Nb nodes: 50

initial graph

Matching size: 3 Algo step: 8 Nb nodes: 50

The matching problem

Greedy algorithm

Matching size: 5 Algo step: 15 Nb nodes: 50

The matching problem

Greedy algorithm

Matching size: 7 Algo step: 20 Nb nodes: 50

Matching size: 12 Algo step: 38 Nb nodes: 50

The matching problem

Greedy algorithm

Matching size: 19 Algo step: 79 Nb nodes: 50

Example

Exercice 3: Can you think of an example where the greedy algorithm gives a **bad** matching, e.g. of the size **half** the size of an optimal matching?

Example

Exercice 3: Can you think of an example where the greedy algorithm gives a **bad** matching, e.g. of the size **half** the size of an optimal matching?

Greedy matching

However, is |M| is the cardinality of a matching returned by the greedy algorithm, and if $|M^*|$ is the cardinal of the real optimal matching, we can theoretically show that :

$$|M| \ge \frac{|M^*|}{2} \tag{2}$$

Speed comparison as a function of the data structure

Figure: The functions will be available in code/solutions and shown during the class.

Matchings and vertex covers

Exercice 4: Show that the nodes of the edges selected in a maximal matching form a **vertex cover**. https://en.wikipedia.org/wiki/Vertex_cover

Matchings and vertex covers

Exercice 5: Show that any matching is smaller than any vertex cover.