1 Objetivo

O objetivo do presente documento é de fazer um resumo de toda a formulação para ajuste de curvas, e na sequência, apresentar exercícios a serem desenvolvidos pelos alunos.

2 Introdução

Em todas as situações que serão apresentadas neste texto, temos sempre um conjunto de pontos (x_i, y_i) com $i = 1, \dots, n$, onde cada um dos y_i é obtido de forma experimental. A proposta é de se calcular uma função y = f(x) de tal forma que o erro entre os pontos experimentais e os encontrados seja o menor possivel.

3 Ajuste a uma reta

No caso do ajuste a uma reta, temos uma função na forma: $y = a_0 + a_1x$. A formulação para cálculo de a_0 e a_1 , é dada por:

$$f(x) = \begin{cases} na_0 + \left(\sum_{i=1}^n x_i\right) a_1 = \sum_{i=1}^n = y_i \\ \left(\sum_{i=1}^n x_i\right) a_0 + \left(\sum_{i=1}^n x_i^2\right) a_1 = \sum_{i=1}^n x_i y_i \end{cases}$$
(1)

Exemplo: Dada a tabela de pontos (x_i, y_i) abaixo, determine a equação da reta que melhor se ajusta a estes pontos:

X	-2.1500	-1.1000	0.8500	1.49000	2.9500
У	-3,9938	-1,1042	4.2622	6.02348	10.0414

Para resolver o problema, calculam-se as seguintes expressões: $n=5, \sum x_i=2.04, \sum y_i=15.22908, \sum x_i^2=17.4776, \sum x_iy_i=52.02128.$ A solução é: y=1.923+2.752x

4 Ajuste a um polinômio de grau 2

Para calcular o polinômio de grau $(y = a_0 + a_1x + a_2x^2)$, tem-se o seguinte sistema de equações a ser calculado:

$$\begin{cases}
 na_0 + \sum x_i a_1 + \sum x_i^2 a_2 &= \sum y_i \\
 \sum x_i a_0 + \sum x_i^2 a_1 + \sum x_i^3 a_2 &= \sum x_i y_i \\
 \sum x_i^2 a_0 + \sum x_i^3 a_1 + \sum x_i^4 a_2 &= \sum x_i^2 y_i
\end{cases}$$
(2)

O sistema dado pela equação 2 é simétrico. Para encontrar as incógnitas a_0 , a_1 e a_2 , podem ser utilizados quaisquer métodos numéricos para a solução de sistemas Ax = b.

Exemplo: Dado o conjunto de pontos abaixo, encontre o respectivo polinômio de grau 2:

X	-3	-2	-1	1	2	3
У	26	17	10	2	1	26

Para resolver o sistema, monta-se a tabela abaixo, calculando-se cada um dos somatórios que são apresentados na equação 2. Assim temos:

i	X	У	x^2	x^3	x^4	xy	x^2y
1	-3	26	9	-27	81	-78	234
2	-2	17	4	-8	16	-34	68
3	-1	10	1	-1	1	-10	10
4	1	2	1	1	1	2	2
5	2	1	4	8	16	2	4
6	3	26	9	-27	81	-78	318
\sum	0	82	28	-54	230	-236	636

Χ	-3	-2	-1	1	2	3
У	-38	-11	-2	10	37	94

O sistema é dado por (3):

$$\begin{bmatrix} 6 & 0 & 28 \\ 0 & 28 & -54 \\ 28 & -54 & 230 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 82 \\ -236 \\ 636 \end{bmatrix}$$
 (3)

a solução fica: $y = x^2 - 4x + 5$

5 Ajuste a um polinômio de grau N

Fazendo-se um comparativo entre as equações (2) e (3), percebe-se que se aumentarmos o grau do polinômio em 1, acrescenta-se uma linha e uma coluna com o somatório da potência de x acrescida de 1 também. Por exemplo, para ajustarmos um polinômio de 3º grau, temos:

$$\begin{cases}
 na_0 + \sum x_i a_1 + \sum x_i^2 a_2 + \sum x_i^3 a_3 &= \sum y_i \\
 \sum x_i a_0 + \sum x_i^2 a_1 + \sum x_i^3 a_2 + \sum x_i^4 a_3 &= \sum x_i y_i \\
 \sum x_i^2 a_0 + \sum x_i^3 a_1 + \sum x_i^4 a_2 + \sum x_i^5 a_3 &= \sum x_i^2 y_i \\
 \sum x_i^3 a_0 + \sum x_i^4 a_1 + \sum x_i^5 a_2 + \sum x_i^6 a_3 &= \sum x_i^3 y_i
\end{cases}$$

$$(4)$$

e assim sucessivamente.

Exemplo: A partir do conjunto de pontos abaixo, encontre o polinômio interpolador de grau 3:

Solução: $y = 2x^3 + 3x^2 + 4x + 1$

6 Outros tipos de ajustes

Os ajustes que serão apresentados são transformados para serem resolvidos da mesma forma que o ajuste linear.

6.1 Ajuste a uma exponencial

Parte-se da equação: $y=a_0e^{a_1x}$. Esta pode ser ajustada transformando-se em uma expressão linear, a partir do cálculo do logaritmo natural em ambos os lados da expressão:

$$\ln y = \ln(a_0 e^{a_1 x}) = \ln(a_0) + a_1 x \tag{5}$$

Fazendo-se $Y = \ln(y)$ e $b = \ln(a_0)$, reduzimos a equação 5 ao caso linear.

Exemplo: A partir do conjunto de pontos abaixo, encontre a função $y=a_0e^{a_1x}$:

X	-2,08	-1,15	-0,35	1,2	1,9	2,5
У	28,307975	7,015651	2,113074	0,206624	0,072305	0,029397

Solução: Monta-se a tabela abaixo:

i	X	у	ln(y)	x^2	x*ln(y)
1	-2,08	28,307975	3,343144	4,3264	-6,953739
2	-1,15	7,015651	1,948144	1,3225	-2,240365
3	-0,35	2,113074	0,748144	0,1225	-0,261850
4	1,20	0,206624	-1,576856	1,44	-1,892228
5	1,90	0,072305	-2,626856	3,61	-4,991027
6	2,50	0,029397	-3,526856	6,25	-8,817141
\sum	2,02	37,745026	-1,691139	17,0714	-25,15635

A seguir, montam-se as expressões:

$$f(x) = \begin{cases} nY + \sum x_i b = y_i \\ \sum x_i Y + \sum x_i^2 b = \sum x_i ln(y_i) \end{cases}$$
 (6)

O sistema a ser resolvido fica:

$$\begin{bmatrix} 6 & 2,02 \\ 2,02 & 17,0714 \end{bmatrix} \begin{bmatrix} Y \\ b \end{bmatrix} = \begin{bmatrix} -1.691139 \\ -25,15635 \end{bmatrix}$$
 (7)

Os valores calculados são: Y = 0.2231435 e $a_1 = b = -1.5$.

Importante: para que se encontre o a_0 , deve-se calcular $a_0 = e^Y \to a_0 = e^{0.2231435} \to 1.25$. Assim, a expressão fica: $f(x) = 1.25e^{-1.5x}$

6.2 Ajuste a uma hipérbole

Uma hipérbole é dada pela seguinte expressão: $y = \frac{1}{a_0 + a_1 x}$. A transformação que deve ser feita neste caso é: $z = \frac{1}{y} = a_0 + a_1 x$.

Exemplo: A partir do conjunto de pontos abaixo, encontre a função que melhor se ajusta a uma hipérbole.

X	-2,1	-1,05	0,08	1,03	2,15	3,45
У	-0,675676	2,439024	0,409165	0,240732	0,162075	0,117509

Solução: Monta-se a tabela abaixo:

i	X	У	$\frac{1}{y}$	x^2	$x\frac{1}{y}$
1	-2,10	-0,675676	-1,480000	4,410000	3,108000
2	-1,05	2,439024	0,410000	1,102500	-0,430500
3	0,08	0,409165	2,444000	0,006400	0,195520
4	1,03	0,240732	4,154000	1,060900	4,278620
5	2,15	0,162075	6,170000	4,622500	13,265500
6	3,45	0,117509	8,510000	11,902500	29,359500
\sum	3,56	2,692829	20,208000	23,104800	49,776640

O próximo passo é a montagem do sistema:

$$\begin{bmatrix} 6 & 3.56 \\ 3.56 & 23.1048 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 2.692829 \\ 49.776640 \end{bmatrix}$$
 (8)

E cuja solução é: $\begin{bmatrix} 2.3 \\ 1.8 \end{bmatrix}$ A função que está sendo procurada é: $y = \frac{1}{2.3 + 1.8x}$

6.3 Ajuste a uma curva exponencial

Uma função exponencial tem a forma: $y=a_0a_1^x$. Neste caso, basta fazer as seguintes transformações: $z=ln(y)=\underbrace{ln(a_0)}_{}+x\underbrace{ln(a_1)}_{}=a+bx$

Exemplo: A partir do conjunto de pontos abaixo, encontre a função exponencial que melhor se ajusta.

X	-3	-2	-1	1	2	3
У	3,90625	3,125	2,5	1,6	1,28	1,024

Solução:O processo de solução é similar aos exercícios anteriores. Para se chegar a solução, é necessário construir uma tabela como a que está abaixo:

i	x	У	ln(y)	x^2	x ln(y)
1	-3,000000	3,906250	1,362578	9,000000	-4,087734
2	-2,000000	3,125000	1,139434	4,000000	-2,278869
3	-1,000000	2,500000	0,916291	1,000000	-0,916291
4	1,000000	1,600000	0,470004	1,000000	0,470004
5	2,000000	1,280000	0,246860	4,000000	0,493720
6	3,000000	1,024000	0,023717	9,000000	0,071150
\sum	0,000000	13,435250	4,158883	28,000000	-6,248019

A partir da tabela acima, monta-se o sistema de equações:

$$\begin{bmatrix} 6 & 0 \\ 0 & 28 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4,158883 \\ -6,248019 \end{bmatrix} \tag{9}$$

A solução fica:

$$\begin{bmatrix} a = 0,693147 \\ b = -0,223144 \end{bmatrix}$$
 (10)

Para se chegar à solução, basta calcular o $a_0=e^a\to a_0=e^{0,693147}\to a_0=2$ e o $a_1=e^b\to a_0=e^{-0,223144}\to a_1=-0,8$ e a expressão que está sendo procurada: $y=2\times (-0,8)^x$

7 Ajuste a uma curva geométrica

Uma curva geométrica tem a forma $y=a_0x^{a_1}$. Neste caso, assim como nos anteriores, basta fazer as seguintes transformações: $z=ln(y)=\underbrace{ln(a_0)}_{\text{a}}+\underbrace{(a_1)}_{\text{b}}\underbrace{ln(x)}_{\text{t}}=a+bt$. Neste caso, estão sendo minimizadas as somas dos quadrados dos desvios dos logaritmos de x.

Exemplo: A partir da tabela de pontos abaixo, encontre a equação que melhor se ajusta a curva: $y = a_0 x^{a_1}$

	1,000000	,	,	,	5,000000	6,000000
У	2,500000	7,071068	12,990381	20,000000	27,950850	36,742346

Solução: Novamente, a solução é dada a partir da montagem da tabela respectiva:

i	x	У	ln(y)	ln(x)	$ln(x)^2$	$ln(x) \times ln(y)$
1	1,000000	2,500000	0,916291	0,000000	0,000000	0,000000
2	2,000000	7,071068	1,956012	0,693147	0,480453	1,355804
3	3,000000	12,990381	2,564209	1,098612	1,206949	2,817072
4	4,000000	20,000000	2,995732	1,386294	1,921812	4,152967
5	5,000000	27,950850	3,330448	1,609438	2,590290	5,360149
6	6,000000	36,742346	3,603930	1,791759	3,210402	6,457376
	21,000000	107,254645	15,366621	6,579251	9,409906	20,143367

A seguir, monta-se o sistema de equações:

$$\begin{bmatrix} 6.000000 & 6.579251 \\ 6.579251 & 9.409906 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 15.366621 \\ 20.143367 \end{bmatrix}$$
 (11)

A solução do sistema de equações dado por (11) é: $y = \begin{bmatrix} 0.916291 \\ 1.5 \end{bmatrix}$. Para se chegar à função correta deve-se calcular: $a_0 = e^a \to a_0 = e^{0.916291} \to a_0 = 2.5$. Assim, $f(x) = 2.5x^{1.5}$

8 Exercícios propostos

- 1. Para cada conjunto de pontos, ajuste os mesmos ao polinômio solicitado:
 - (a) $y = a_0 + a_1 x$:

x	\mathbf{y}	x^2	x.y
-2.4	-2.090		
-0.6	-1.460		
-0.4	-1.390		
1.5	-0.7250		
2.5	-0.375		
3.9	0.115		

Solução:

(b) $f(x) = a_0 + a_1 x + a_2 x^2$:

J ("")	00 010 020							
x	y	x^2	x^3	x^4	x.y	$x^2.y$		
-2.4	14.544							
-0.6	2.664							
-0.4	1.704							
1.5	-3.825							
2.5	-4.125							
3.9	-1.521							

Solução: _____

(c) $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3$:

x	y	x^2	x^3	x^4	x^5	x^6	x.y	$x^2.y$	$x^3.y$
-2	-56								
-1	-21								
1	1								
2	12								
3	39								
4	94								

Solução: _

(d) $y = a_0 e^{a_1 x}$:

x	у	ln(y)	x^2	x.ln(y)
-2.40	0.115313			
-1.20	0.529348			
-0.40	1.462126			
0.60	5.206414			
1.20	11.155038			
1.90	27.136814			