THE TWO-PERIOD CROSS-OVER CLINICAL TRIAL

Eamonn O'Brien 25 July, 2019

Contents

Hardcode in the data from Hills and Armitage Br. J. clin. Pharmac. (1979), 8, 7-20	3
Period and treatment summary stats, agree with paper	
Fit a random effects model (not checking for order nor interaction) and linear regression model	
Function to analyse using permutation approach to duplicate Stephen Senn talk	10
Execute the simulations	12
Plot the distributions	13
Permutation p values	14
Summary statisites	15
Computing Environment	16

CONTENTS LIST OF TABLES

Contents

List of Figures

List of Tables

Hardcode in the data from Hills and Armitage Br. J. clin. Pharmac. (1979), 8, 7-20

```
patient1 <- c(1, 3, 4, 6, 7, 9, 11, 13, 16, 18, 19, 21, 22, 24,
    25, 27, 28)
y1 \leftarrow c(8, 14, 8, 9, 11, 3, 6, 0, 13, 10, 7, 13, 8, 7, 9, 10,
treatment1 <- rep("Treatment1", length(patient1))</pre>
order <- rep("First", length(treatment1))</pre>
treatment2 <- rep("Treatment2", length(treatment1))</pre>
order2 <- rep("Second", length(treatment1))</pre>
y2 \leftarrow c(5, 10, 0, 7, 6, 5, 0, 0, 12, 2, 5, 13, 10, 7, 0, 6, 2)
patient2 <- c(2, 5, 8, 10, 12, 14, 15, 17, 20, 23, 26, 29)
y1a \leftarrow c(12, 6, 13, 8, 8, 4, 8, 2, 8, 9, 7, 7)
treatment2a <- rep("Treatment2", length(patient2))</pre>
order3 <- rep("First", length(patient2))</pre>
y1b \leftarrow c(11, 8, 9, 8, 9, 8, 14, 4, 13, 7, 10, 6)
order4 <- rep("Second", length(patient2))</pre>
treatment3a <- rep("Treatment1", length(patient2))</pre>
grp1 <- cbind(as.numeric(patient1), (as.character(treatment1)),</pre>
    (as.character(order)), as.numeric(y1))
grp2 <- cbind(as.numeric(patient1), (as.character(treatment2)),</pre>
    (as.character(order2)), as.numeric(y2))
grp3 <- cbind(as.numeric(patient2), (as.character(treatment2a)),</pre>
    (as.character(order3)), as.numeric(y1a))
grp4 <- cbind(as.numeric(patient2), (as.character(treatment3a)),</pre>
    (as.character(order4)), as.numeric(y1b))
all <- as.data.frame(rbind(grp1, grp2, grp3, grp4))</pre>
all <- plyr::arrange(all, V1, V2)
names(all) <- c("Patient", "Treatment", "Order", "Response")</pre>
all$Patient <- as.numeric(as.character(all$Patient))</pre>
all$Response <- as.numeric(as.character(all$Response))</pre>
all <- plyr::arrange(all, Patient, Treatment)</pre>
knitr::kable(all)
```

Patient	Treatment	Order	Response
1	Treatment1	First	8
1	Treatment2	Second	5
2	Treatment1	Second	11
2	Treatment2	First	12
3	Treatment1	First	14
3	Treatment2	Second	10
4	Treatment1	First	8
4	Treatment2	Second	0
5	Treatment1	Second	8
5	Treatment2	First	6
6	Treatment1	First	9
6	Treatment2	Second	7
7	Treatment1	First	11
7	Treatment2	Second	6
8	Treatment1	Second	9
8	Treatment2	First	13
9	Treatment1	First	3
9	Treatment2	Second	5
10	Treatment1	Second	8
10	Treatment2	First	8
11	Treatment1	First	6
11	Treatment2	Second	0
12	Treatment1	Second	9
12	Treatment 2	First	8
13	Treatment1	First	0
13	Treatment 2	Second	0
13 14	Treatment1	Second	8
$\frac{14}{14}$	Treatment 2	First	4
15	Treatment1	Second	14
$\frac{15}{15}$		First	8
_	Treatment2	First	13
16	Treatment1		_
16	Treatment2	Second	12
17	Treatment1	Second	4
17	Treatment2	First	2
18	Treatment1	First	10
18	Treatment2	Second	2
19	Treatment1	First	7
19	Treatment2	Second	5
20	Treatment1	Second	13
20	Treatment2	First	8
21	Treatment1	First	13
21	Treatment2	Second	13
22	Treatment1	First	8
22	Treatment2	Second	10
23	Treatment1	Second	7
23	Treatment2	First	9
24	Treatment1	First	7
24	Treatment2	Second	7
25	Treatment1	First	9
25	Treatment2	Second	0
26	Treatment1	Second	10
26	Treatment2	First	7

Patient	Treatment	Order	Response
27	Treatment1	First	10
27	Treatment2	Second	6
28	Treatment1	First	2
28	Treatment2	Second	2
29	Treatment1	Second	6
29	Treatment2	First	7

Period and treatment summary stats, agree with paper

```
# with(all, tapply(Response, list(Treatment, Order), mean))
require(tidyverse)
all %>% group_by(Treatment, Order) %>% summarise_each(funs(n = length(!is.na(.)),
   mean, sd, se = sd(.)/sqrt(n())), Response)
# A tibble: 4 x 6
# Groups: Treatment [2]
 Treatment Order n mean sd se
  <fct> <fct> <int> <dbl> <dbl> <dbl> <dbl>
1 Treatment1 First 17 8.12 3.84 0.931
2 Treatment1 Second 12 8.92 2.81 0.811 3 Treatment2 First 12 7.67 2.99 0.865
4 Treatment2 Second 17 5.29 4.25 1.03
# calc difference in treatements and summarise
w <- spread(select(all, -c(Order)), Treatment, Response)
w <- w %>% select(Treatment1, Treatment2) %>% mutate(Response = Treatment1 -
    Treatment2) #%>% head()
w %>% summarise(mean = mean(Response), sd = sd(Response), n = length(!is.na(Response)),
   se = sd/sqrt(n)
     mean sd n
1 2.172414 3.317367 29 0.6160197
```

Fit a random effects model (not checking for order nor interaction) and linear regression model

```
require(nlme)
f <- lme(Response ~ Treatment, random = ~1 | Patient, data = all,
   na.action = "na.omit")
anova(f)
          numDF denDF F-value p-value
(Intercept) 1 28 146.48262 <.0001
Treatment 1 28 12.43644 0.0015
summary(f)$tTable
                      Value Std.Error DF t-value
            8.448276 0.6818213 28 12.390749
(Intercept)
TreatmentTreatment2 -2.172414 0.6160197 28 -3.526533
                                p-value
             0.000000000006969003
(Intercept)
TreatmentTreatment2 0.0014712573664130472
intervals(f)
Approximate 95% confidence intervals
Fixed effects:
                      lower
                               est.
                                          upper
(Intercept) 7.051628 8.448276 9.8449234
TreatmentTreatment2 -3.434273 -2.172414 -0.9105547
attr(,"label")
[1] "Fixed effects:"
Random Effects:
 Level: Patient
                 lower est.
                                 upper
sd((Intercept)) 1.963652 2.824724 4.06338
Within-group standard error:
           est.
                   upper
1.805238 2.345733 3.048054
qqnorm(resid(f), main = "Normal Q-Q Plot")
qqline(resid(f), col = "red")
```

Normal Q-Q Plot


```
# collect the treatment effect estimate to make inferences
# later
z <- as.matrix(summary(f)$tTable)
Treatment <- z[2, 1][[1]]

f <- lm(Response ~ Treatment, data = all, na.action = "na.omit")
summary(f)</pre>
```

Call:

lm(formula = Response ~ Treatment, data = all, na.action = "na.omit")

Residuals:

Min 1Q Median 3Q Max -8.4483 -1.4483 0.1379 1.7241 6.7241

Coefficients:

Residual standard error: 3.672 on 56 degrees of freedom Multiple R-squared: 0.08311, Adjusted R-squared: 0.06674 F-statistic: 5.076 on 1 and 56 DF, p-value: 0.0282

qqnorm(resid(f), main = "Normal Q-Q Plot")
qqline(resid(f), col = "red")

Normal Q-Q Plot

Function to analyse using permutation approach to duplicate Stephen Senn talk

```
Dq1 <- all
library(data.table)
Dq1 <- as.data.table(all)</pre>
# function to get permuted distribution of treatment effect
perm.dist <- function(block = "yes", n.sims = 10000) {</pre>
    # set up an array to store parameter estimates
    estArray \leftarrow array(NA, dim = c(n.sims, 4))
    for (s in 1:n.sims) {
        # permute
        if (block == "yes") {
            # permute within person
            permz <- Dq1[, `:=`(y, sample(Response)), by = Patient]</pre>
        } else {
            # no blocking
            permz <- Dq1[, `:=`(y, sample(Response))]</pre>
        }
        # analysis
        # respecting blocking
        possibleError <- tryCatch(f1 <- lme(y ~ Treatment, random = ~1 |</pre>
            Patient, data = permz, method = "REML"), error = function(e) e)
        # http://stackoverflow.com/questions/8093914/skip-to-next-value-of-loop-upon-error-in-r-trycatc
        if (!inherits(possibleError, "error")) {
            modelint <- possibleError</pre>
            z <- as.matrix(summary(modelint)$tTable)</pre>
        }
        # ignoring blocking
        possibleError2 <- tryCatch(f0 <- lm(y ~ Treatment, data = permz),</pre>
            error = function(e) e)
        if (!inherits(possibleError, "error")) {
            modelint1 <- possibleError2</pre>
```

```
zz <- as.matrix(summary(modelint1)$coefficients)

}

estArray[s, 1] <- z[2, 1][[1]] # collect trt effect estimate
    estArray[s, 2] <- vcov(modelint)[2, 2] # collect variance of trt effect estimate

estArray[s, 3] <- zz[2, 1][[1]] # collect trt effect estimate
    estArray[s, 4] <- vcov(modelint1)[2, 2] # collect variance of trt effect estimate
}

list(estArray = estArray)
}</pre>
```

Execute the simulations LIST OF TABLES

Execute the simulations

```
block <- perm.dist(block = "yes", n.sims = 10000)
no.block <- perm.dist(block = "no", n.sims = 10000)</pre>
```

Plot the distributions LIST OF TABLES

Plot the distributions

plot(density(block))
plot(density(no.block))

Permutation p values LIST OF TABLES

Permutation p values

```
# see Senn 34.09mins right panel youtube, good match!
sum(abs(block$estArray[, 1]) >= abs(Treatment))/10000 # Senn 0.0014

[1] 0.0014
sum(abs(no.block$estArray[, 1]) >= abs(Treatment))/10000 # Senn 0.034
```

[1] 0.0288

Summary statistics LIST OF TABLES

Summary statisites

```
apply(block$estArray, 2, summary)
                [,1]
                          [,2]
                                       [,3]
                                                 [,4]
       -2.448275862 0.3091558 -2.448275862 0.8945983
Min.
1st Qu. -0.517241379 0.5214880 -0.517241379 1.0007644
Median 0.034482759 0.5384745 0.034482759 1.0092577
Mean -0.006193103 0.5292576 -0.006193103 1.0046492
3rd Qu. 0.517241379 0.5459486 0.517241379 1.0129947
         2.586206897 0.5479870 2.586206897 1.0140139
apply(block$estArray, 2, var)
[1] 0.5256265744 0.0006348833 0.5256265744 0.0001587210
apply(no.block$estArray, 2, summary)
               [,1]
                        [,2]
                                     [,3]
                                               [,4]
Min.
        -3.75862069 0.3471208 -3.75862069 0.7617632
1st Qu. -0.72413793 0.8626212 -0.72413793 0.9909122
Median -0.03448276 0.9710379 -0.03448276 1.0063700
       -0.03222759 0.9197404 -0.03222759 0.9960086
3rd Qu. 0.65517241 1.0063700 0.65517241 1.0123153
         3.41379310 1.0140139 3.41379310 1.0140139
apply(no.block$estArray, 2, var)
```

[1] 1.0085490390 0.0126192077 1.0085490390 0.0006195791

Computing Environment

sessionInfo() R version 3.6.1 (2019-07-05) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows 10 x64 (build 17134) Matrix products: default locale: [1] LC COLLATE=English United Kingdom.1252 [2] LC_CTYPE=English_United Kingdom.1252 [3] LC_MONETARY=English_United Kingdom.1252 [4] LC_NUMERIC=C [5] LC_TIME=English_United Kingdom.1252 attached base packages: [1] stats graphics grDevices utils datasets [6] methods base other attached packages: [1] data.table_1.12.2 nlme_3.1-140 forcats_0.4.0 purrr_0.3.2 [4] stringr_1.4.0 dplyr_0.8.3 [7] readr_1.3.1 tidyr_0.8.3 tibble 2.1.3 [10] ggplot2_3.2.0 tidyverse_1.2.1 knitr_1.23 loaded via a namespace (and not attached): [1] tidyselect_0.2.5 xfun_0.8 haven_2.1.1 [4] lattice_0.20-38 colorspace_1.4-1 generics_0.0.2 [7] vctrs_0.2.0 htmltools_0.3.6 yaml_2.2.0 [10] utf8_1.1.4 rlang_0.4.0 pillar_1.4.2 [13] glue_1.3.1 withr_2.1.2 modelr_0.1.4 [16] readxl_1.3.1 plyr_1.8.4 munsell_0.5.0 [19] gtable_0.3.0 cellranger_1.1.0 rvest_0.3.4 munsell_0.5.0 [22] evaluate_0.14 fansi_0.4.0 highr_0.8 [25] broom_0.5.2 Rcpp_1.0.1 [28] backports_1.1.4 formatR_1.7 [25] broom_0.5.2 scales_1.0.0 jsonlite_1.6 [31] hms_0.5.0 digest_0.6.20 stringi_1.4.3 [34] grid_3.6.1 cli_1.1.0 tools_3.6.1 [37] magrittr_1.5 lazyeval_0.2.2 crayon_1.3.4 [40] pkgconfig_2.0.2 zeallot_0.1.0 xm12_1.2.0

[43] lubridate_1.7.4 assertthat_0.2.1 rmarkdown_1.14

rstudioapi_0.10 R6_2.4.0

This took 655.85 seconds to execute.

[46] httr_1.4.0

[49] compiler_3.6.1