Painel / Meus cursos / SC26EL / 4-Projeto de Controlador PD pelo Método do Lugar das Raízes

/ Questionário sobre Projeto de Controlador PD pelo Método do Lugar das Raízes

Iniciado em	quarta, 17 mar 2021, 23:30
Estado	Finalizada
Concluída em	quarta, 17 mar 2021, 23:32
Tempo	2 minutos 8 segundos
empregado	
Notas	3,0/3,0
Avaliar	10,0 de um máximo de 10,0(100 %)

_	• •	Questionalis sealer l'isjoie de controlador l'Espoie iniciada de Eugar dus Maleses. Noviede du tontaura	
	Questão 1 Correto		
	Atingiu 1,0	de 1,0	
		e a(s) alternativa(s) correta(s): O controlador PD pode ser empregado quando deseja-se melhorar a resposta transitória de sistemas. Seu projeto e similar ao do controlador de avanço, porém, tem-se apenas um zero para ser posicionado ao invés de um zero e um polo como no controlador de avanço.	~
	□ b.	A existência de ruídos na malha de controle não afeta a ação e controle fornecida pelo controlador PD.	
	C.	Uma alternativa para se reduzir os efeitos de ruídos na malha de controle quando desejamos um controlador PD é a inserção de um polo no controlador. Esse polo tem frequência maior do que a do zero do PD. Neste caso, o controlador resultante é um controlador de avanço.	~

🔲 d. Para limitarmos o ganho do controlador PD nas altas frequências inserimos um polo no controlador em uma frequência

maior do que a do zero do PD. Neste caso, o controlador resultante é um controlador de atraso.

Questão **2**

Correto

Atingiu 1,0 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{1}{s^2-2}$. Esta planta, em malha fechada com realimentação unitária e sem controlador é instável. Deseja-se projetar um controlador PD $C(s)=K_p(T_ds+1)$ para que o sistema, em malha fechada, seja estabilizado e tenha polos dominantes com coeficiente de amortecimento $\zeta=0$, 707 e frequência natural $\omega_n=2\ rad/s$. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

Os polos dominantes de malha fechada após a compensação devem estar em : $s_{1,2} = \begin{bmatrix} -1,41 \\ & \pm j \end{bmatrix}$ 1,41

A contribuição angular que o compensador PD deve inserir no lugar das raízes é $\phi = \begin{bmatrix} 63,4 \\ \end{bmatrix}$ graus.

O zero do compensador PD deve estar em $s = \begin{bmatrix} -2,12 \end{bmatrix}$

A constante de tempo derivativo vale $T_d = 0.471$

O ganho proporcional do compensador projetado é $K_p = 6,00$

A função de transferência do controlador PD é: C(s) = 2,83

Questão **3**

Correto

Atingiu 1,0 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{1}{s(s^2+2)}$. Esta planta, em malha fechada com realimentação unitária e sem controlador é instável. Deseja-se que o sistema, em malha fechada, tenha polos dominantes $s_{1,2}=-1+j\sqrt{3}$. Utilize compensação PD na forma $C_{PD}(s)=K_p(T_ds+1)$ para atender o requisito de projeto. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

A contribuição angular que o controlador deve inserir no lugar das raízes é $\phi=$ 210 \checkmark graus.

Como essa contribuição angular é muito elevada, um único controlador PD não é capaz de resolver o problema. Assim, propõe-se o uso de dois controladores PD idênticos em cascata. Com isso, a contribuição angular de cada controlador no lugar das raízes é

$$\phi_1=\phi_2=$$
 105 \checkmark graus.

O zero de cada compensador PD deve estar em s = -0.536

A constante de tempo derivativo para cada compensador PD vale $T_d = 1.87$

O ganho proporcional de cada compensador projetado é $K_p = 0,785$

A função de transferência do controlador C(s) para atender a especificação do problema é: $C(s) = \begin{vmatrix} 2 & 16 \end{vmatrix}$

■ Comparação PD x Avanço - Xcos

Seguir para...

Aula 5 - Projeto de Compensador PI pelo Método do Lugar das Raízes -