

Cambridge International AS & A Level

MATHEMATICS				970	9/33
CENTRE NUMBER			CANDIDATE NUMBER		
CANDIDATE NAME					

Paper 3 Pure Mathematics 3

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

862605169*

JC20 06_9709_33/RP © UCLES 2020

[Turn over

Solve the inequality $ 2x - 1 > 3 x + 2 $.	[4]

	Find the exact value of $\int_0^1 (2-x)e^{-2x} dx$.	
••		•••••
••		••••••
••		
••		
••		••••••
••		••••••
••		
••		
••		•••••
••		••••••
••		
••		
••		•••••
••		

		·
3	(a)	Show that the equation
	()	$\ln(1 + e^{-x}) + 2x = 0$
		can be expressed as a quadratic equation in e^x . [2]
		can be expressed as a quadratic equation in e. [2]
	(b)	Hence solve the equation $ln(1 + e^{-x}) + 2x = 0$, giving your answer correct to 3 decimal places.
		[4]

a)	Find $\frac{dy}{dx}$.
o)	The tangent to the curve at the point where $x = 2$ meets the y-axis at the point with coordinat $(0, p)$.
b)	The tangent to the curve at the point where $x = 2$ meets the <i>y</i> -axis at the point with coordinat $(0, p)$. Find p .
))	(0, p).
))	(0, p).
))	(0, p).
•)	(0, p).
)	(0, p).
•)	(0, p).
•)	(0, p).
b)	(0, p).

5	Bv	first	ex	press	ing	the	ea	uatio	on
_		HILDU	C21	PICOO.		uic	νч	uuu	011

$\tan \theta \tan (\theta + 43^{\circ}) = 2 \cot 2\theta$	
as a quadratic equation in tan θ , solve the equation for $0^{\circ} < \theta < 90^{\circ}$.	[6]
	······································

6	(a)	By sketching a suitable pair of graphs, show that the equation $x^3 = 2 + x$ has exactly one real root. [2]
	(b)	Show that if a sequence of values given by the iterative formula
	(10)	Show that it a sequence of values given by the herative formula $x_{n+1} = \frac{4x_n^5 + 2}{5x_n^4 - 1}$
		$3x_n - 1$ converges, then it converges to the root of the equation in part (a). [2]

		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
c)	Use the iterative formula with initial value $x_1 = 1.5$ to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]	1
		•
		•

7	Let	$t f(x) = \frac{2}{(2x-1)(2x+1)}.$					
	(a)	Express $f(x)$ in partial fractions. [2]					
	(b)	Using your answer to part (a), show that					
		$(f(x))^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}.$ [2]					

(c)	Hence show that $\int_{1}^{2} (f(x))^{2} dx = \frac{2}{5} + \frac{1}{2} \ln(\frac{5}{9}).$ [5]]
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•

	$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\overrightarrow{OB} = 2\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OD} = 3\mathbf{i} + 2\mathbf{k}$.
A fo	burth point C is such that $ABCD$ is a parallelogram.
(a)	Find the position vector of C and verify that the parallelogram is not a rhombus. [5]

(b)	Find angle <i>BAD</i> , giving your answer in degrees.	[3]
(c)	Find the area of the parallelogram correct to 3 significant figures.	[2]

9	(a)	The complex numbers u and w are such that	
		u - w = 2i and $uw = 6$.	
		Find u and w , giving your answers in the form $x + iy$, where x and y are real and exact.	[5]
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••

$$|z-2-2i| \le 2$$
, $0 \le \arg z \le \frac{1}{4}\pi$ and $\operatorname{Re} z \le 3$. [5]

10

A tank containing water is in the form of a hemisphere. The axis is vertical, the lowest point is A and the radius is r, as shown in the diagram. The depth of water at time t is h. At time t = 0 the tank is full and the depth of the water is r. At this instant a tap at A is opened and water begins to flow out at a rate proportional to \sqrt{h} . The tank becomes empty at time t = 14.

The volume of water in the tank is V when the depth is h. It is given that $V = \frac{1}{3}\pi(3rh^2 - h^3)$.

(a) Show that h and t satisfy a differential equation of the form

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{B}{2rh^{\frac{1}{2}} - h^{\frac{3}{2}}},$$

where B is a positive constant.	[4]

So	olve the differential equation and obtain an expression for t in terms of h and r .	[
•••		
		•••••
•••		
		•••••
•••		
•••		
		•••••
		•••••
•••		
•••		
•••		
•••		
		•••••
•••		
•••		
•••		

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.					

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

老师微信: liuxue119118 (题目有修改过,请加微信确认是否完整,以免影响您的学习!