Índice general

Ι	Va	riables aleatorias discretas	3									
1.	Dist	ribución Binomial	4									
	1.1.	1.1. Descripción										
	1.2.	Función de Probabilidad	4									
	1.3.	Condición de cierre	5									
	1.4.	Esperanza	6									
	1.5.	Varianza y desvió estándar	6									
	1.6.	Ejemplos	7									
		1.6.1. Lanzamiento de monedas	7									
		1.6.2. Apuestas a la ruleta	8									
2.	Dist	ribución Geométrica 10	0									
	2.1.	Descripción	0									
	2.2.	Función de Probabilidad	0									
	2.3.	Condición de Cierre	1									
	2.4.	Esperanza	1									
	2.5.	Varianza y desvió estándar	1									
	2.6.	Ejemplos	1									
		2.6.1. Juego de poker	1									
		2.6.2. Reproducción Humana	2									
3.	Dist	Distribución Hipergeométrica 1										
	3.1.	- 9	4									
	3.2.	Función de Probabilidad	4									
	3.3.	Condición de Cierre	5									
	3.4.	Esperanza	5									
	3.5.	Varianza y desvió estándar	5									
	3.6.	Ejemplos	5									

ÍNDICE GENERAL

4.	Dist	tribución de Pascal								16
	4.1.									16
	4.2.	Función de Probabilidad								
	4.3.									
	4.4.	Esperanza								
	4.5.	Varianza y desvió estándar								
		Ejemplos								
5.	Dist	tribución de Poisson								17
	5.1.	Descripción				٠	•			17
	5.2.	Función de Probabilidad								
	5.3.	Condición de Cierre								
	5.4.	Esperanza								
	5.5.	Varianza y desvió estándar								
	5.6.									
6.	Dist	tribución Multinomial								19
	6.1.	Descripción								19
	6.2.	Función de Probabilidad								19
	6.3.	Condición de Cierre								19
	6.4.	Esperanza								19
	6.5.	-								19
	6.6.									
Δ	Res	sumen de distribuciones discreta	96							20

2

Parte I Variables aleatorias discretas

Distribución Binomial

1.1. Descripción

La distribución binomial es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos.

Es decir, sean \mathcal{E} un experimento, S el espacio muestral asociado a tal experimento y A un suceso del espacio con probabilidad p, entonces X: «Numero de ocurrencias del suceso A en n repeticiones independientes de \mathcal{E} » es una variable aleatoria con distribución binomial.

- $X \sim B(n,p).$
- $R_X = \{0, \dots, n\}$

1.2. Función de Probabilidad

La probabilidad de que una variable aleatoria $X \sim B(n, p)$ sea x es:

$$P(X = x) = \binom{n}{x} p^x q^{n-x}$$

Demostración Consideremos una sucesión s de ensayos del experimento \mathcal{E} que satisfaga la condición de que X(s) = x. Tal resultado aparecería, por ejemplo, si las primeras x repeticiones del experimento resultasen en la ocurrencia de A, mientras que las ultimas n-x resultasen \overline{A} , es decir:

$$\left(\underbrace{A,A,\ldots,A}_{x},\underbrace{\overline{A},\overline{A},\ldots,\overline{A}}_{n-x}\right)$$

Puesto que todas las repeticiones son independientes, la probabilidad de esta sucesión sería p^xq^{n-x} , pero exactamente la misma probabilidad estaría asociada con cualquier otro orden de dicha sucesión.

Debemos elegir x posiciones entre n para ubicar a las A. La cantidad total de dichas sucesiones es justamente $\binom{n}{x}$ de donde sigue el resultado.

1.3. Condición de cierre

1

$$\sum_{i \in R_X} P(X = i) = \sum_{i=0}^{n} \binom{n}{i} p^i q^{n-i} \underbrace{=}_{1} (p+q)^n = 1^n = 1$$

¹Teorema del binomio

1.4. Esperanza

$$E(X) = \sum_{i \in R_X} iP(X = i) = \sum_{i=0}^n i \binom{n}{i} p^i q^{n-i} = \sum_{i=0}^n i \binom{n}{i} p^i (1-p)^{n-i} =$$

$$= \sum_{i=1}^n i \frac{n!}{i! (n-i)!} p^i (1-p)^{n-i} = \sum_{i=1}^n \frac{n!}{(i-1)! (n-i)!} p^i (1-p)^{n-i} =$$

$$= \sum_{i=0}^{n-1} \frac{n!}{i! (n-[i+1])!} p^{i+1} (1-p)^{n-(i+1)} = \sum_{i=0}^{n-1} \frac{n (n-1)!}{i! (n-i-1)!} pp^i (1-p)^{n-i-1} =$$

$$= np \sum_{i=0}^{n-1} \frac{(n-1)!}{i! (n-i-1)!} p^i (1-p)^{n-i-1} = np \sum_{i=0}^{n-1} \binom{n-1}{i} p^i (1-p)^{n-i-1} =$$

$$= np [p+(1-p)]^{n-1} = np$$

Alternativa Si $X \sim B(n, p)$ podemos expresar a X como suma de n variables de Bernoulli $Y_i(y) = \begin{cases} 1 & y = A \\ 0 & y = \overline{A} \end{cases}$, es decir: $X = \sum_{i=1}^n Y_i$. Luego:

$$E(X) = E\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} E(Y_i) = \sum_{i=1}^{n} p = np$$

1.5. Varianza y desvió estándar

$$V(Y_i) = E(Y_i^2) - [E(Y_i)^2] = p - p^2 = p(1 - p) = pq$$

$$V(X) = V\left[\sum_{i=1}^n Y_i\right] = \sum_{i=1}^n V(Y_i) = \sum_{i=1}^n pq = npq$$

$$\sigma_X = \sqrt{npq}$$

7

1.6. Ejemplos

1.6.1. Lanzamiento de monedas

 \mathcal{E} : «Se tira una moneda y se observa el resultado».

•
$$S = \{ \odot, \otimes \}. \ \#S = 2.$$

•
$$A = \{ \text{Salio cara} \}. \# A = 1. P(A) = \frac{1}{2}.$$

• X: «Cantidad de caras en 3 repeticiones independientes de \mathcal{E} ».

•
$$X \sim B(3, \frac{1}{2})$$
.

•
$$X(x_1, x_2, x_3) = \sum_{i=1}^{3} Y(x_i) = Y(x_1) + Y(x_2) + Y(x_3).$$

•
$$P(X = x) = \binom{3}{x} \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{3-x}$$
. • $R_X = \{0, \dots, 3\}$.

•
$$X(\otimes, \otimes, \otimes) = 0$$
. • $X(\odot, \otimes, \otimes) = 1$.

•
$$X(\otimes, \otimes, \odot) = 1$$
. • $X(\odot, \otimes, \odot) = 2$.

•
$$X(\otimes, \odot, \otimes) = 1$$
.
• $X(\odot, \odot, \otimes) = 2$.

•
$$X(\otimes, \odot, \odot) = 2$$
.
• $X(\odot, \odot, \odot) = 3$.

1. ¿Cual es la probabilidad de que salgan 2 caras en 3 repeticiones del experimento?

a)
$$P(X = 2) = {3 \choose 2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^{3-2} = 3 \cdot \frac{1}{4} \cdot \frac{1}{2} = \frac{3}{8}.$$

b) Probabilidad clásica:

$$S' = \{(x_1, x_2, x_3) / x_i \in S\}. \#S' = 2^3 = 8.$$

$$\bullet \ B = \{ \text{Salieron exactamente 2 caras} \} = \{ (\otimes, \odot, \odot) \,, (\odot, \otimes, \odot) \,, (\odot, \odot, \otimes) \}.$$

■
$$P(B) = \frac{\#B}{\#S'} = \frac{3}{8}$$
.

2. ¿Cual es la probabilidad de que salgan al menos 2 caras en 3 repeticiones del experimento?

a)
$$P(X \ge 2) = p(2) + p(3) = \frac{3}{8} + {3 \choose 3} \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^{3-3} = \frac{3}{8} + 1 \cdot \frac{1}{8} \cdot 1 = \frac{4}{8}$$
.

CAPÍTULO 1. DISTRIBUCIÓN BINOMIAL

8

- b) Probabilidad clásica:
 - $C = \{\text{Salieron exactamente 3 caras}\} = \{(\odot, \odot, \odot)\}. \#C = 1.$
 - $D = \{\text{Salieron al menos 2 caras}\} = B \cup C$. #D = 3 + 1 = 4.
 - $P(D) = \frac{\#D}{\#S'} = \frac{4}{8}.$
- 3. ¿Cuantas caras se espera que salgan en 4 repeticiones del experimento?

a)

$$\begin{split} E\left(X'\right) &= \sum_{i=0}^{n} i \binom{n}{i} p^{i} q^{n-i} = \\ &= 0 + 1 \cdot 4 \cdot \left(\frac{1}{2}\right)^{1} \cdot \left(\frac{1}{2}\right)^{3} + 2 \cdot 6 \cdot \left(\frac{1}{2}\right)^{2} \cdot \left(\frac{1}{2}\right)^{2} + 3 \cdot 4 \cdot \left(\frac{1}{2}\right)^{3} \cdot \left(\frac{1}{2}\right)^{1} + 4 \cdot 1 \cdot \left(\frac{1}{2}\right)^{4} \cdot 1 = \\ &= 0 + \frac{1}{4} + \frac{3}{4} + \frac{3}{4} + \frac{1}{4} = 2 \end{split}$$

b)
$$E(X') = 4 \cdot \frac{1}{2} = 2$$
.

1.6.2. Apuestas a la ruleta

 \mathcal{E} : «Se tira la bolilla y se observa el resultado».

- $S = \{0, \dots, 36\}. \#S = 37.$
- $A = \{ \text{Sale un numero negro} \}. \#A = 18. P(A) = \frac{18}{37}.$
- X: «Cantidad de números negros en 4 repeticiones independientes de \mathcal{E} ».
 - $X \sim B\left(4, \frac{18}{37}\right)$.
 - $P(X = x) = \binom{4}{x} \left(\frac{18}{37}\right)^x \left(\frac{19}{37}\right)^{4-x}$.
 - $R_X = \{0, \dots, 4\}.$
- 1. ¿Cual es la probabilidad de que la mayoría sean negros?

a)
$$P(X > 2) = p(3) + p(4) = {4 \choose 3} \left(\frac{18}{37}\right)^3 \left(\frac{19}{37}\right)^{4-3} + {4 \choose 4} \left(\frac{18}{37}\right)^4 \left(\frac{19}{37}\right)^{4-4} = \frac{16399584}{69343957} + \frac{104976}{1874161} \approx 0,2925.$$

9

- b) Probabilidad clásica:
 - $\#S' = 37^4 = 1874161.$
 - $B = \{\text{Hay exactamente 3 numeros negros}\}. \#B = 4 \cdot 19 \cdot 18^3 = 443232.$
 - $C = \{\text{Hay exactamente 4 numeros negros}\}. \#C = 18^4 = 104976.$
 - $D = \{\text{La mayoria son negros}\} = B \cup C$. #D = 548208.
 - $P(D) = \frac{\#D}{\#S'} = \frac{548208}{1874161} \approx 0,2925.$
- 2. ¿Cual es la probabilidad de que todos sean rojos?

a)
$$P(X=0) = \binom{4}{0} \left(\frac{18}{37}\right)^0 \left(\frac{19}{37}\right)^{4-0} = 1 \cdot 1 \cdot \left(\frac{19}{37}\right)^4 \approx 0,0695.$$

- b) Probabilidad clásica:
 - $E = \{\text{No hay ning\'un n\'umero negro}\}. \#E = 19^4 = 130321.$ $P(E) = \frac{\#E}{\#S'} = \frac{130321}{1874161} \approx 0,0695.$
- 3. ¿Cuantos números negros se esperan en 37 repeticiones del experimento?

$$E(X') = 37 \cdot \frac{18}{37} = 18$$

Distribución Geométrica

2.1. Descripción

La distribución geométrica es una distribución de probabilidad discreta que cuenta el número repeticiones independientes necesarias hasta que ocurra un determinado evento.

Es decir, sean \mathcal{E} un experimento, S el espacio muestral asociado a tal experimento y A un suceso del espacio con probabilidad p, entonces X: «Numero de repeticiones independientes de \mathcal{E} hasta que ocurre A por primera vez» es una variable aleatoria con distribución geométrica.

- $\blacksquare X \sim G(p).$
- $R_X = \mathbb{N}$.

2.2. Función de Probabilidad

La probabilidad de que una variable aleatoria $X \sim G(p)$ sea x es:

$$P(X = x) = q^{x-1}p$$

Demostración El resultado es trivial ya que X=x si y solo si las primeras x-1 repeticiones de \mathcal{E} resultaron \overline{A} mientras que la restante da por resultado A.

2.3. Condición de Cierre

 $\sum_{i \in R_X} P(X = i) = \sum_{i=1}^{\infty} q^{i-1} p = \sum_{i=0}^{\infty} q^i p \underbrace{=}_{2} \frac{p}{1-q} = \frac{p}{p} = 1$

2.4. Esperanza

$$\begin{split} E\left(X\right) &= \sum_{i \in R_X} i P\left(X=i\right) = \sum_{i=1}^{\infty} i P\left(X=i\right) = \sum_{i=1}^{\infty} i q^{i-1} p = p \sum_{i=0}^{\infty} i q^{i} = \\ &= p \left[\frac{d}{dp} \left(\sum_{i=0}^{\infty} q^{i}\right)\right] = p \left[\frac{d}{dp} \left(-\frac{1}{p}\right)\right] = p \frac{1}{p^2} = \frac{1}{p} \end{split}$$

2.5. Varianza y desvió estándar

- $V(X) = \frac{q}{n^2}$.
- $\quad \bullet \quad \sigma_X = \frac{\sqrt{q}}{p}.$

2.6. Ejemplos

2.6.1. Juego de poker

 \mathcal{E} : «Se reparte una mano de poker».

•
$$C = \{(x, y) / x \in \{A, 2, \dots, 10, J, Q, K\} \land y \in \{\clubsuit, \heartsuit, \spadesuit, \diamondsuit\}\}. \#C = 52.$$

•
$$S = \{X \in \mathcal{P}(C) / |X| = 5\}. \#S = {52 \choose 5} = 2598960.$$

•
$$A = \{ \text{Poker} \}. \ \#A = 13 \cdot 48 = 624. \ P(A) = \frac{624}{2598960}.$$

²Convergencia de series geométricas (q < 1)

- 12
- X: «Cantidad de manos necesarias hasta que sale poker».
 - $X \sim G\left(\frac{624}{2598960}\right)$.
 - $R_X = \mathbb{N}$.
 - $P(X = x) = \left(\frac{2598336}{2598960}\right)^{x-1} \left(\frac{624}{2598960}\right)$
- 1. ¿Cual es la probabilidad de conseguir un poker en una partida de 15 manos?

$$P(X \le 15) = \sum_{i=0}^{15} \left(\frac{2598336}{2598960}\right)^{i-1} \left(\frac{624}{2598960}\right) \approx 0,0036$$

2. ¿Cuantas manos deben jugarse para que lo mas probable sea haber recibido un poker?

$$\begin{split} P\left(X \leq x\right) > \frac{1}{2} \iff \sum_{i=1}^{x} pq^{i-1} > \frac{1}{2} \iff p\frac{1-q^{x}}{1-q} > \frac{1}{2} \iff \\ \iff 1-q^{x} > \frac{1}{2} \iff \frac{1}{2} > q^{x} \iff \log_{\frac{2598336}{2598960}}\left(\frac{1}{2}\right) > ?x \end{split}$$

Deben jugarse 2887 manos.

3. ¿Luego de cuantas manos se espera recibir un poker?

$$E(X) = \frac{1}{p} = \frac{2598960}{624} = 4165$$

2.6.2. Reproducción Humana

 \mathcal{E} : «Se realiza el acto sexual en el día de ovulación».

 $p = \frac{30}{100}$: Probabilidad de quedar embarazada a los 25 años, teniendo sexo en el día de la ovulación.

- X: «Cantidad de relaciones sexuales durante la ovluación necesarias hasta quedar embarazada».
 - $X \sim G\left(\frac{30}{100}\right)$.
 - $R_X = \mathbb{N}$.
 - $P(X = x) = \left(\frac{70}{100}\right)^{x-1} \left(\frac{30}{100}\right)$.

1. ¿Cual es la probabilidad de que sea necesario tener 13 relaciones durante la ovluación para quedar embarazada a los 25 años?

$$P(X = 13) = \left(\frac{70}{100}\right)^{13-1} \left(\frac{30}{100}\right) \approx 0,004$$

2. ¿Cuantas relaciones sexuales durante la ovulación se esperan sean necesarias para quedar embarazada a los 25 años?

$$E\left(X\right) = \frac{1}{p} = \frac{100}{30} \approx 3,33$$

Distribución Hipergeométrica

3.1. Descripción

La distribución hipergeométrica es una distribución de probabilidad discreta que cuenta el número de elementos que pertenecen a una determinada categoría en una muestra simple sin reemplazo de una determinada población.

Sea S la población en estudio y A un subconjunto de S, entonces X: «Numero de elementos de A en una muestra simple sin reemplazos de n elementos» es una variable aleatoria con distribución hipergeométrica.

- $X \sim H(\#S, \#A, n)$.
- $R_X = \{ \max(0, n + \#A \#S), \dots, \min(n, \#A) \}$

3.2. Función de Probabilidad

La probabilidad de que una variable aleatoria $X \sim H\left(\#S, \#A, n\right)$ sea x es:

$$P(X = x) = \frac{\binom{\#A}{x} \cdot \binom{\#S - \#A}{n - x}}{\binom{\#S}{n}}$$

Demostración Observemos que si X=x entonces nuestra muestra contiene x elementos de la categoría A. La cantidad de formas diferentes de extraerlos es $\binom{\#A}{x}$. Por cada una de ellas habrá $\binom{\#S-\#A}{n-x}$ formas de elegir los res-

tantes elementos de la categoría complementaria. En total hay $\binom{\#A}{x} \cdot \binom{\#S-\#A}{n-x}$ formas de componer una muestra con x elementos de la categoría A.

La cantidad de muestras diferentes de n elementos de un total de #S elementos es $\binom{\#S}{n}$.

Luego, calculando el cociente entre los casos favorables y los posibles, logramos derivar la función de probabilidad.

3.3. Condición de Cierre

- 3.4. Esperanza
- 3.5. Varianza y desvió estándar
- 3.6. Ejemplos

Distribución de Pascal

- 4.1. Descripción
- 4.2. Función de Probabilidad
- 4.3. Condición de Cierre
- 4.4. Esperanza
- 4.5. Varianza y desvió estándar
- 4.6. Ejemplos

Distribución de Poisson

- 5.1. Descripción
- 5.2. Función de Probabilidad
- 5.3. Condición de Cierre

$$\sum_{i \in R_X} P\left(X = i\right) = \sum_{i=0}^{\infty} \frac{e^{-\lambda} \lambda^i}{i!} = e^{-\lambda} \sum_{i=0}^{\infty} \lambda^i \frac{1}{i!} = e^{-\lambda} e^{\lambda} = 1$$

5.4. Esperanza

$$E\left(X\right) = \sum_{i \in R_X} iP\left(X = i\right) = \sum_{i=0}^{\infty} iP\left(X = i\right) = \sum_{i=0}^{\infty} i\frac{e^{-\lambda}\lambda^i}{i!} = e^{-\lambda}\sum_{i=1}^{\infty} i\frac{\lambda^i}{i!} = e^{-\lambda}\sum_{i=1}^{\infty} i\frac{\lambda^i}{i!} = e^{-\lambda}\sum_{i=1}^{\infty} \frac{\lambda^i}{i!} = \lambda e^{-\lambda}\sum_{i=1}^{\infty} \lambda^i \frac{1}{i!} = \lambda e^{-\lambda}e^{\lambda} = \lambda$$

5.5. Varianza y desvió estándar

$$E\left(X^{2}\right) = \sum_{i \in R_{X}} i^{2} P\left(X = i\right) = \sum_{i = 0}^{\infty} i^{2} P\left(X = i\right) = \sum_{i = 0}^{\infty} i^{2} \frac{e^{-\lambda} \lambda^{i}}{i!} = \sum_{i = 1}^{\infty} i^{2} \frac{e^{-\lambda} \lambda^{i}}{i!} =$$

$$= \sum_{i = 1}^{\infty} i \frac{e^{-\lambda} \lambda^{i}}{(i - 1)!} = \sum_{i = 0}^{\infty} \left(i + 1\right) \frac{e^{-\lambda} \lambda \lambda^{i}}{i!} = \sum_{i = 0}^{\infty} \left[i \frac{e^{-\lambda} \lambda \lambda^{i}}{i!} + \frac{e^{-\lambda} \lambda \lambda^{i}}{i!}\right] =$$

$$= \sum_{i = 0}^{\infty} \left[\lambda \left(i \frac{e^{-\lambda} \lambda^{i}}{i!} + \frac{e^{-\lambda} \lambda^{i}}{i!}\right)\right] = \lambda \sum_{i = 0}^{\infty} \left[i \frac{e^{-\lambda} \lambda^{i}}{i!} + \frac{e^{-\lambda} \lambda^{i}}{i!}\right] =$$

$$= \lambda \left[\sum_{i = 0}^{\infty} i \frac{e^{-\lambda} \lambda^{i}}{i!} + \sum_{i = 0}^{\infty} \frac{e^{-\lambda} \lambda^{i}}{i!}\right] = \lambda^{2} + \lambda$$

$$V(X) = E\left(X^{2}\right) - \left[E\left(X\right)\right]^{2} = \lambda^{2} + \lambda - \lambda^{2} = \lambda$$

$$\sigma_{X} = \sqrt{\lambda}$$

5.6. Ejemplos

Distribución Multinomial

- 6.1. Descripción
- 6.2. Función de Probabilidad
- 6.3. Condición de Cierre
- 6.4. Esperanza
- 6.5. Varianza y desvió estándar
- 6.6. Ejemplos

Apéndice A

Resumen de distribuciones discretas

Distribución	R_X	$p\left(x\right)$	E(X)	$V\left(X\right)$	\approx
Be(p)	{0,1}	p^xq^{1-x}	p	pq	-
Bi(n,p)	$\{0,\ldots,n\}$	$\binom{n}{x} p^x q^{n-x}$	np	npq	$Po\left(np\right)$
$Pa\left(r,p\right)$	$\{r,\ldots\}$	$\binom{x-1}{r-1}p^rq^{x-r}$	$\frac{r}{p}$	$\frac{rq}{p^2}$	
$G\left(p\right)$	N	$q^{x-1}p$	$\frac{1}{p}$	$\frac{q}{p^2}$	Pa(1,p)
H(N,d,n)		$\frac{\binom{d}{x} \cdot \binom{N-d}{n-x}}{\binom{N}{n}}$	np	$npq\frac{N-n}{N-1}$	$Bi\left(n, \frac{d}{N}\right)$
$Po\left(\lambda\right)$	\mathbb{N}_0	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ	