1
$$a: X = S, Y = O, Z = O, n = 0$$

$$b : X = O, Y = CH_2, Z = O, n = 1$$

$$c : X = O, Y = O, Z = CH_2, n = 1$$

$$d: X = S, Y = CH_2, Z = NH, n = 1$$

Fig. 1A

<u>د</u>يم

2
$$a: n = 1, X = S$$

$$b : n = 0, X = S$$

$$c: n = 1, X = NH$$

$$d : n = 1, X = 0$$

Fig. 1B

3.
$$n = 1$$
, $a : R = hexyl$, $b : R = benzyl$

4.
$$n = 0$$
, $a : R = hexyl$, $b : R = benzyl$

Fig. 1C

$$N$$
 N
 N
 N
 N
 N
 N
 N
 N
 N

ΗÓ

ΉÓ

⁻⁴O₉P₃O

6.
$$X = S$$

5 a : $Ar = p-NO_2-C_6H_4$

b : Ar = $p-NH_2-C_6H_4$

Fig. 1D

Fig. 1E

€3

Fig. 2

£.,

Substrates	Km (µM)	Vmax (µmol/min/mg protein)	Inhibitors	Ki (µM)
ATP	18 ± 1	1.65 ± 0.10	8-cyclohepthylS-ATP 6a	31 ± 2.5
ADP	33 ± 1	1.30 ± 0.08	8-CH2tBuS-ATP 6b	45 ± 2.5
2-BuS-ATP 2a	36 ± 6	0.83 ± 0.05	8-hexylS-ATP 6d	16 ± 2.0
2-BuS-ADP 2b	63 ± 14	0.94 ± 0.10	8-BuS-ATP 6e	10 ± 2.0
2-BuNH-ATP 2c	32 ± 8	0.99 ± 0.10		
2-BuO-ATP2d 2d	28 ± 8	0.82 ± 0.09		
8-bromo-ATP	22 ± 5	0.63 ± 0.04		
8-ethylS-ATP 6c	12 ± 5	0.30 ± 0.03		
8-BuNH-ATP 7	20 ± 7	0.28 ± 0.03		
8-BuO-ATP 8	26 ± 5	0.20 ± 0.01		

*

FIG. 4

FIG. 5A

FIG. 5B

FIG. 6A

[8-cyclohepthylS-ATP, 6a] (µM)

FIG. 6B

FIG. 7A

[8-thiohexyl-ATP, 6d] (µM)

FIG. 7B

FIG. 8A

FIG. 8B

FIG. 8C