HW2 MNIST

404410030 資工三 鄭光宇

環境設置:

使用 python 的 **sklearn** 套件,裡面有的 **SVM**, PCA, t-SNE 等工具完成分類問題,使用 matplotlib 來繪製圖表。

資料集:

使用這次作業指定的 MNIST 和最近流行的 Fashion Mnist。

MNIST:

28x28 大小的手寫數字,共有 10 種數字(0~9)。每筆資料先是他對應的 1abel(0~9),之後是 784 維的向量,以 " index:value" 的方式表示。

Fashion Mnist:

來源:

github: https://github.com/zalandoresearch/fashion-mnist

鑑於 MNIST 手寫分類問題對於現代機器學習模型不夠難,所以有人發展出了這個 Fashion Mnist,如果是使用 SVM,最好的 benchmark 在測試集上,大約也只有 89%左右的 accuracy。

28x28 大小的灰階服飾圖片,共有 10 種服飾。每筆資料先是對應的 1abel(0~9),然後是 784 維的向量。

(如果是使用 python 可以用它 github 上提供的工具讀資料)

以下是Fashion Mnist 的Label 意義:

LABEL	DESCRIPTION
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

實驗結果:

以下兩個實驗結果, SVM 使用的 kernel 均為 RBF (radial basis function), 因為不知道什麼原因, Polynomial kernel 的 SVM 執行時間很長,所以沒有實驗使用 Polynomial kernel 的結果。

MNIST:

為了避免高維詛咒,把資料送進 SVM 前,我先將圖片數值 scale 到 [0,1]的浮點數,之後用 PCA 將維度降至 20 維,保留約 64% 的資訊量,經過一些測試,雖然只有 64% 資訊量,但 SVM 在此問題上仍然可以表現優秀。

為了找出較好的 SVM 超參數 (C, gamma),以 log 尺度、5 種 C、5 種 gamma,共 25 種參數以 3-fold Cross-Validation 取平均 accuracy 做 grid-search,看看是否能找到好的參數。

結果如下:

(註記:兩個座標都是 log scale)

找到最好的參數在

 $C=10^{1.0}$, gamma= $10^{-1.5}$

在這樣的參數下,training set 上的 10-fold Cross-Validation 可以達到 $98\pm1\%$ 左右,其中 $\pm1\%$ 的意思是,這十組測試 accuracy 的兩倍標準 差為 $\pm1\%$ 。

訓練集上測試得 10-fold Cross-Validation 如下:

10-fold cross-validation

- 0.983516483516
- 0.980176578377
- 0.978003666056
- 0.981666666667
- 0.9755
- 0.978996499417
- 0.976829471579
- 0.978996499417
- 0.976821744205
- 0.984823215477

Accuracy: 0.98 (+/-0.01)

之後,在測試集上面驗證效果。

測試集上的 Confusion Matrix 如下:

	0	1	2	3	4	5	6	7	8	9
0	973	0	1	1	0	2	1	1	1	0
1	0	1132	1	1	0	0	0	0	1	0
2	3	0	1012	4	1	1	0	7	4	0
3	0	1	2	994	0	4	0	4	4	1
4	0	0	1	0	965	0	4	0	1	11
5	2	0	0	8	1	870	3	1	5	2
6	5	4	1	0	4	4	938	1	1	0
7	0	5	11	2	2	0	0	997	0	11
8	2	0	3	4	3	5	2	2	951	2
9	2	4	0	5	11	5	0	8	1	973

對於每一個類別,效能評估基準如下表:

	precision	recall	F1-score	support
0	0.99	0.99	0.99	980
1	0.99	1.00	0.99	1135
2	0.98	0.98	0.98	1032
3	0.98	0.98	0.98	1010
4 5 6 7 8 9	0.98	0.98	0.98	982
	0.98	0.98	0.98	892
	0.99	0.98	0.98	958
	0.98	0.97	0.97	1028
	0.98	0.98	0.98	974
	0.97	0.96	0.97	1009
avg/total	0.98	0.98	0.98	10000

⇒ 總結測試測試集的 Accuracy: 0.9805 可以看出效果還不錯。

資料可視化:

使用最近流行的 t - SNE 將資料降維、投影到 2D 平面上,使資料可視化。 測試集上可視化結果如下:

第二張圖片是 SVM 預測的結果,可以看出預測結果與 Ground Truth 很接近, SVM 很好地切開了各個類別。

Fashion Mnist:

為了避免高維詛咒,把資料送進 SVM 前,我先將圖片數值 scale 到 [0,1]的浮點數,之後用 PCA 將維度降至 26 維,保留約 81% 的資訊量。以 log 尺度、6 種 C、5 種 gamma,共 30 種參數以 3-fold Cross-Validation 取平均 accuracy 做 grid-search。

結果:

最好的參數:

C=101.0, gamma=10-1.5

與在 MNIST 資料集上相同。

10-fold Cross-Validation:

10-fold Cross-

Validation

- 0.8925
- 0.892166666667
- 0.884166666667
- 0.891833333333
- 0.893166666667
- 0.889166666667
- 0.893166666667
- 0.887166666667
- 0.890833333333
- 0.882333333333

Accuracy: 0.89 (+/-

0.01)

測試集上的 Confusion Matrix:

	0	1	2	3	4	5	6	7	8	9
0	852	1	15	23	4	1	96	0	8	0
1	6	970	1	16	4	0	3	0	0	0
2	16	0	805	11	88	0	78	0	2	0
3	24	9	13	892	36	0	23	0	3	0
4	0	0	89	25	825	0	59	0	2	0
5	0	0	0	1	0	939	0	43	1	16
6	132	0	89	28	75	0	662	0	14	0
7	0	0	0	0	0	21	0	949	0	30
8	5	0	3	3	3	3	2	4	976	1
9	0	0	0	0	0	13	1	39	0	947

測試集上的效能:

	PRECISION	RECALL	F1-SCORE	SUPPORT
0	0.82	0.85	0.84	1000
1	0.99	0.97	0.98	1000
2	0.79	0.81	0.80	1000
3	0.89	0.89	0.89	1000
4	0.80	0.82	0.81	1000
5	0.96	0.94	0.95	1000
6	0.72	0.66	0.69	1000
7	0.92	0.95	0.93	1000
8	0.97	0.98	0.97	1000
9	0.95	0.95	0.95	1000
AVG/TOTAL	0.88	0.88	0.88	10000

使用 t-SNE 降維、可視化:

可以看出,Fashion Mnist 的資料降維後,看起來非常的複雜、難分,也許是因為資料真的比較複雜,SVM 在這個資料集上面的表現,不如 MNIST 上好,也許使用最近的 CNN 會得到比較好的結果?

結論:

這次使用完 SVM 後,了解到它是個優秀的算法,在 MNI ST 上能夠輕鬆得到 97~98%的 正確率,但也了解到它也有一些限制,例如在新的資料集上表現地較不理想。

參考資料:

我的 gi thub:

https://github.com/peter0749/Multimedia-Content-Analysis

Fashion Mnist:

https://github.com/zalandoresearch/fashion-mnist

bayesian-optimization

https://github.com/thuijskens/bayesian-optimization