1. The Real Numbers
1.1. Reals 1 1.1.1. Comparison 1 1.1.2. Bounds 1 1.2. Cardinality 1 1.3. Topology 1
1.3.1. Points 1 1.3.2. Opened and Closed Sets 1 1.3.3. Compactness 1 1.4. Sequences 1 1.4.1. Bounded 1 1.4.2. Cauchy 1
1.5. Series 1 2. Real functions 1 2.1. Limits 1 2.2. Continuity 1 2.2.1. Composition 1 2.2.2. Results 1 2.3 Derivatives 1
2.3. Derivatives 1 2.3.1. Differentiation 1 2.3.2. Function Character 1 2.3.3. The Mean Value Theorems 1 2.4. Function Graphs 1 2.4.1. Asymptotes 1 2.4.2. Convertity 1
2.4.2. Convexity
it follows that $S = \mathbb{N}$. Definition 2 (Injective/Surjective/Bijective) $f: X \to Y \text{ is injective (or one-to-one) if } x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2) \text{ or equivalently if } f(x_1) = f(x_2) \Longrightarrow x_1 = x_2.$
 f is surjective if ∀y ∃x: f(x) = y. f is bijective if is both injective and surjective or equivalently if each y is mapped to exactly one x. 1. The Real Numbers
1.1. Reals 1.1.1. Comparison Definition 1.1.1 (Equality) $a = b \iff (\forall \varepsilon > 0 \Rightarrow a - b < \varepsilon)$
Theorem 1.1.2 (Triangle Inequalities) (i) $ a+b \le a + b $ (ii) $ a-b \le a-c + c-b $ (iii) $ a-b \ge a - b $
 The reverse triangle inequality (iii) is seldom used. 1.1.2. Bounds Axiom 1.1.3 (Supremum Property or Axiom of Completeness) Every bounded, non-empty set of real numbers has a least upper bound.
The same does not apply for the rationals. Definition 1.1.4 (Least Upper Bound) Assume $s \in \mathbb{R}$ is an upper bound for a set $A \subseteq \mathbb{R}$. Then,
$s = \sup A \iff \forall \varepsilon > 0 \; \exists a \in A : s - \varepsilon < a.$ $\mathbf{1.2. \; Cardinality}$ $\mathbf{Definition \; 1.2.1 \; (Cardinality)}$ $A \; \text{has the same } cardinality \; \text{as } B \; \text{if there exists a bijective } f : A \to B.$
Definition 1.2.2 (Countable/Uncountable) A is countable if $\mathbb{N} \sim A$. Otherwise, A is uncountable if there are infinite elements or finite if there are finite elements.
Theorem 1.2.3 (Countability of \mathbb{Q} , \mathbb{R}) $\mathbb{Q} \text{ is countable.}$ $Proof. \text{ Let } A_1 = \{0\} \text{ and let}$ $A_n = \{\pm p/q : p, q \in \mathbb{N}_+, \gcd(p,q) = 1, p+q = n\}$ for all $n \geq 2$. Each A_n is finite and every rational numbers appears in
exactly one set. $\ \square$ $\ \mathbb{R}$ is uncountable. Proof. Cantor's diagonalization method. $\ \square$ $\ \mathbb{I}$ is uncountable. Proof. $\ \mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ where \mathbb{Q} is countable. $\ \square$
Theorem 1.2.4 (Density of \mathbb{Q} in \mathbb{R}) (i) $\forall a < b \in \mathbb{R} \ \exists r \in \mathbb{Q} : a < r < b$ (ii) $\forall y \in \mathbb{R} \ \exists (r_n) \in \mathbb{Q} : (r_n) \to y$
1.3. Topology 1.3.1. Points Definition 1.3.1 (Limit Point) x is a $limit\ point$ of A if every $V_{\varepsilon}(x)$ intersects A at some point other than x .
Theorem 1.3.2 (Sequential Limit Point) x is a limit point of A if $x = \lim a_n$ for some $(a_n) \subseteq A : a_n \neq x \ \forall n \in \mathbb{N}$. Theorem 1.3.3 (Nested Interval Property)
The intervals $\mathbb{R}\supseteq I_1\supseteq I_2\supseteq I_3\supseteq \cdots$ all contain a point $a=\bigcap_{n=1}^\infty I_n$. 1.3.2. Opened and Closed Sets Definition 1.3.4 (Open/Closed Set) $A\subseteq \mathbb{R}$ is open if $\forall a\in A\ \exists V_\varepsilon(a)\subseteq A$ or equivalently if its complement is
 closed. A ⊆ ℝ is closed if it contains its limit points or equivalently if its complement is open. Theorem 1.3.5 (Clopen Sets) ℝ and ∅ are clopen (both opened and closed).
Theorem 1.3.6 (Unions/Intersections) The union of open (closed) sets is open (closed). The intersection of finitely many open (closed) sets is open (closed).
1.3.3. CompactnessDefinition 1.3.7 (Compact)A set K in a topological space is compact if every open cover has a finite subcover.
Theorem 1.3.8 (Heine–Borel) A set $K \subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded. i Note Compactness is like a generalization of closed intervals.
 1.4. SEQUENCES Definition 1.4.1 (Sequence) A sequence is a function whose domain is N.
Definition 1.4.2 (Convergence)
We write this $\lim_{n\to\infty} a_n = \lim a_n = a$ or $a_n \to a$. Example. Template of a typical convergence proof: (i) Let $\varepsilon > 0$ be arbitrary. (ii) Propose an $N \in \mathbb{N}$ (found before writing the proof). (iii) Assume $n \geq N$.
(iii) Assume $n \ge N$. (iv) Show that $ a_n - a < \varepsilon$. Theorem 1.4.3 (Uniqueness of Limits) The limit of a sequence, if it exists, is unique. 1.4.1. Bounded
1.4.1. Bounded Definition 1.4.4 (Bounded) A sequence is bounded if $\exists M > 0 : a_n < M \ \forall n \in \mathbb{N}$. Theorem 1.4.5 (Convergent/Monotone) Every convergent series is bounded.
Every convergent series is bounded. If a sequence is monotone and bounded it converges. Subsequences of a convergent series converge to the same limit. Theorem 1.4.6 (Bolzano-Weierstrass) Every bounded sequence contains a convergent subsequence.
Every bounded sequence contains a convergent subsequence. 1.4.2. Cauchy Definition 1.4.7 (Cauchy Sequence) A sequence (a_n) is a Cauchy sequence if $\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : m, n \geq N \Longrightarrow a_n - a_m < \varepsilon.$
Theorem 1.4.8 (Cauchy Criterion) A sequence converges if and only if it is a Cauchy sequence. 1.5. Series
Definition 1.5.1 (Infinite Series) Let $(a_j)_{j=0}^{\infty}$ and let $(s_n)_{n=0}^{\infty}$. The sum of the infinite series is defined as $\sum_{j=0}^{\infty} a_j = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{j=0}^n a_j.$
① Caution Beware of treating infinite series like elementary algebra, e.g., by rearranging terms. Theorem 1.5.2 (Series Term Test)
If $\sum_{k=1}^{\infty} a_k$ converges, then $a_k \to 0$. Theorem 1.5.3 (Cauchy Condensation Test) Let (a_n) be a decreasing sequence of non-negative real numbers. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges.
Theorem 1.5.4 (Comparison Test) Let (a_k) and (b_k) satisfy $0 \le a_k \le b_k$. Then, (i) $\sum_{k=1}^{\infty} (a_k)$ converges if $\sum_{k=1}^{\infty} (b_k)$ converges. (ii) $\sum_{k=1}^{\infty} (b_k)$ diverges if $\sum_{k=1}^{\infty} (a_k)$ diverges.
Theorem 1.5.5 (Alternating Series Test) Let (a_n) satisfy (i) $a_1 \ge a_2 \ge \cdots \ge a_n \ge a_{n+1} \ge \cdots$ and (ii) $(a_n) \to 0$. Then, $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.
2. Real functions 2.1. Limits Theorem 2.1.1 (Function Limit) Given $f: A \to \mathbb{R}$ with the limit point c ,
(i) $\lim_{x\to c} f(x) = L$ is equivalent to (ii) if $\forall (x_n) \subseteq A : (x_n \neq c \text{ and } x_n \to c)$ it follows that $f(x_n) \to L$. (i) Note In the $\varepsilon\delta$ -definition of limits, the additional restriction that $0 < x-a $ is
just a way to say $x \neq c$. Definition 2.1.2 (Infinite Limit) Given a limit point $c \in D_f$, we say that $\lim_{x \to c} f(x) = \infty$ if $\forall M \; \exists \delta > 0 : 0 < x - c < \delta \Longrightarrow f(x) \geq M$.
2.2. CONTINUITY Theorem 2.2.1 (Continuity) The following are equivalent: (i) $f: A \to \mathbb{R}$ is continuous at $c \in \mathbb{R}$. (ii) $\forall \varepsilon > 0 \; \exists \delta > 0: x - c < \delta \Longrightarrow f(x) - f(c) < \varepsilon$, where $x \in A$.
(iii) $\forall V_{\varepsilon}(f(c)) \; \exists V_{\delta}(c) : x \in V_{\delta} \cap A \Longrightarrow f(x) \in V_{\varepsilon}$ (iv) $x_n \to c$, where $(x_n) \subseteq A$, implies $f(x_n) \to f(c)$. If c is a limit point of A : (v) $\lim_{x \to c} f(x) = f(c)$, also written $\lim_{h \to 0} f(c+h) - f(c) = 0$. Note that (ii) defines (i). Mostly (v) is used in practice.
Theorem 2.2.2 (Isolated Continuity) All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in \mathbb{R}$
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition)
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and $c \in A$ and $c \in A$ is continuous at $c \in A$ and c
Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at $f(c) \in B$, then $f(a) \in B$ is $f(a) \in B$.
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c . Theorem 2.2.5 (Composition Limit) If f is continuous at $f(g(x)) = f(\lim_{x \to c} g(x)) = f(f(x))$. 2.2.2. Results Theorem 2.2.6 (Intermediate Value) If f is continuous on $f(a, b)$, then for any $f(a, b)$ between $f(a)$ and $f(a)$, there exists some $f(a)$ such that $f(a) = f(a)$. Theorem 2.2.7 (Weierstrass Extreme Value) If f is continuous on the compact set $f(a)$ and $f(a)$ and a maximum and a minimum value on $f(a)$.
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $f(a) \in B$, if f is continuous at $f(c) \in B$, then $f(c) \in B$
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c . Theorem 2.2.5 (Composition Limit) If f is continuous at $f(g) = f(f(x)) = f(g(x)) = f$
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at $c \in A$ and g is continuous at g and g important g and g is continuous at g and g in g and g
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c . Theorem 2.2.5 (Composition Limit) If f is continuous at $f(c) \in B$, then $f(a) \in B$ is continuous at $f(c) \in B$, then $f(a) \in B$ is continuous at $f(c) \in B$, then $f(c) \in B$ is differentiable at $f(c) \in B$, then $f(c) \in B$ is differentiable at $f(c) \in B$, then $f(c) \in B$ is differentiable at $f(c) \in B$, then $f(c) \in B$ is differentiable at $f(c) \in B$, then $f(c) \in B$ is differentiable at $f(c) \in B$ and $f(c) \in B$. Theorem 2.3.1 (Chain Rule) Let $f(c) \in B$, then $f(c) \in B$ is differentiable at $f(c) \in B$ and $f(c) \in B$ is differentiable at $f(c) \in B$. Theorem 2.3.2 (Basic Derivatives) $\frac{d}{df}(f(c) \in B)$ $\frac{d}{df}(f(c)$
Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c . Theorem 2.2.5 (Composition Limit) If f is continuous at f and f a
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in 1$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \in f$ is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $f(a) \subseteq B$, if f is continuous at $f(c) \in B$, then $f(a) \subseteq B$, then $f(a) \subseteq B$ is continuous on $f(a, b)$, then for any g between $f(a)$ and $f(b)$, there exists some $c \in (a, b)$ such that $f(c) = g$. Theorem 2.2.7 (Weierstrass Extreme Value) If f is continuous on the compact set K , then f attains a maximum and a minimum value on K . 2.3. Derivatives 2.3.1. Differentiation Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at $c \in X$ and $c $
Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in 1$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at $c \in A$ and g is continuous at g and g in $g(x) = g(x) = g$, then $\lim_{x \to x} f(g(x)) = f(\lim_{x \to x} g(x)) = f(y).$ 2.2.2. Results Theorem 2.2.6 (Intermediate Value) If f is continuous on $[a,b]$, then for any g between $f(a)$ and $f(b)$, there exists some $c \in (a,b)$ such that $f(c) = g$. Theorem 2.2.7 (Weierstrass Extreme Value) If f is continuous on the compact set K , then f attains a maximum and a minimum value on K . 2.3. Derivatives 2.3.1. Differentiation Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at $f(c) \in Y$ then $g \circ f$ is differentiable at $f(c) \in Y$ then $g \circ f$ is differentiable at $f(c) \in Y$ and $f(c) \in Y$ then $g \circ f$ is differentiable at $f(c) \in Y$ and $f(c) \in Y$ then $g \circ f$ is differentiable at $f(c) \in Y$ and
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Cirvan $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subset B$, if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at $c \in A$ and g is continuous on $f(c, b)$, then for any g between $f(a)$ and $f(b)$, there exists some $c \in (a, b)$ such that $f(c) = g$. Theorem 2.2.6 (Intermediate Value) If f is continuous on $f(c, b)$, then for any g between $f(a)$ and $f(b)$, there exists some $c \in (a, b)$ such that $f(c) = g$. Theorem 2.2.7 (Weleratrass Extreme Value) If f is continuous on the compact set K , then f attains a maximum and a minimum value on K . 2.3. DERIVATIVES 2.3.1. Differentiation Theorem 2.3.1 (Chain Rule) Let $f(c) = g'(f(c))f'(c)$. Theorem 2.3.2 (Hasic Derivatives) $\frac{d}{dx}(arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(sin x) = con x$ $\frac{d}{dx}(arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(sin x) = con x$ $\frac{d}{dx}(arcsin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(sin x) = \frac{1}{1+x^2}$ $\frac{d}{dx}(sin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(sin x) = \frac{1}{1+x^2}$ $\frac{d}{dx}(arcsin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(sin x) = \frac{1}{1+x^2}$ $\frac{d}{dx}(arcsin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(sin x) = con x$ $\frac{d}{dx}(arcsin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(sin x) = con x$ $\frac{d}{dx}(arcsin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(sin x) = con x$ $\frac{d}{dx}(arcsin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(sin x) = con x$ $\frac{d}{dx}(arcsin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(sin x) = con x$ $\frac{d}{dx}(arcsin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(sin x) = con x$ $\frac{d}{dx}(arcsin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(sin x) = con x$ $\frac{d}{dx}(arcsin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(sin x) = con x$ $\frac{d}{dx}(arcsin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(sin x) = con x$ $\frac{d}{dx}(sin$
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: E \to \mathbb{R}$ such that $f(x) = 1$ if $x \in Q$ and $f(x) = 0$ if $x \in I$ a discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at $c \in A$ and g is continuous at g and $\lim_{x \to x} f(x) = y$, then $\lim_{x \to x} f(g(x)) = f(\lim_{x \to x} g(x)) = y$, then $\lim_{x \to x} f(g(x)) = f(\lim_{x \to x} g(x)) = f(y).$ 2.2.2. Results Theorem 2.2.6 (Intermediate Value) If f is continuous on a, b, f , then for any g between $f(a)$ and $f(b)$, there exists some $c \in (a, b)$ such that $f(c) = y$. Theorem 2.2.7 (Weierstrass Extreme Value) If f is continuous on the compact set K , then f attains a maximum and a minimum value on K . 2.3. DERIVATIVES 2.3.1. DERIVATIVES 2.3.1. DIFFCCCUNION Theorem 2.3.2 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at c with $(g + f'(c) = g'(f(c))f'(c))$. Theorem 2.3.2 (Basic Derivatives) $\frac{d}{dx} (\operatorname{arcsin} x) = \frac{1}{\sqrt{1-x^2}} = \frac{d}{dx} (\operatorname{bin} x) = \cos x$ $\frac{d}{dx} (\operatorname{arcsin} x) = \frac{1}{\sqrt{1-x^2}} = \frac{d}{dx} (\operatorname{bin} x) = \cos x$ $\frac{d}{dx} (\operatorname{arcsin} x) = \frac{1}{1+x^2} = \frac{d}{dx} (\operatorname{bin} x) = \cos x$ $\frac{d}{dx} (\operatorname{arcsin} x) = \frac{1}{1+x^2} = \frac{d}{dx} (\operatorname{bin} x) = \cos x$ $\frac{d}{dx} (\operatorname{arcsin} x) = \frac{1}{1+x^2} = \frac{d}{dx} (\operatorname{bin} x) = \cos x$ $\frac{d}{dx} (\operatorname{arcsin} x) = \frac{1}{1+x^2} = \frac{d}{dx} (\operatorname{bin} x) = \cos x$ $\frac{d}{dx} (\operatorname{arcsin} x) = \frac{1}{1+x^2} = \frac{d}{dx} (\operatorname{bin} x) = \cos x$ $\frac{d}{dx} (\operatorname{arcsin} x) = \frac{1}{1+x^2} = \frac{d}{dx} (\operatorname{bin} x) = \cos x$ $\frac{d}{dx} (\operatorname{arcsin} x) = \frac{1}{1+x^2} = \frac{d}{dx} (\operatorname{bin} x) = \sin x$ $\frac{d}{dx} (\operatorname{arcsin} x) = \frac{1}{1+x^2} = \frac{d}{dx} (\operatorname{bin} x$
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{N}$ as the function of the property of the continuous at $c \in \mathbb{R}$ and $g: \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ with $f(A) \subseteq B_i$ if $f: \mathbb{R}$ continuous at $c \in \mathbb{R}$ and $g: \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ with $f(A) \subseteq B_i$ if $f: \mathbb{R}$ continuous at $f: \mathbb{R} \to \mathbb{R}$ and $f(x) = f(x) = f(x)$. Theorem 2.2.5 (Composition Limit) If $f: \mathbb{R}$ continuous on $f: \mathbb{R} \to \mathbb{R}$ and $f(x) = f(x) = f(x)$. Theorem 2.2.6 (Intermediate Value) If $f: \mathbb{R} \to \mathbb{R}$ continuous on $f: \mathbb{R} \to \mathbb{R}$ then for any $g: \mathbb{R}$ between $f(x)$ and $f(b)$, there exists some $c \in (a,b)$ such that $f(c) = g$. Theorem 2.2.7 (Weierstrass Extreme Value) If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ and $f(b)$, there exists some $c \in (a,b)$ such that $f(c) = g$. Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If $f: \mathbb{R}$ differentiable at $c: \mathbb{R}$ and $g: \mathbb{R}$ differentiable at $f(c) \in \mathbb{R}$, then $g: f: \mathbb{R}$ differentiable at $c: \mathbb{R}$ and $g: \mathbb{R}$ differentiable at $f(c) \in \mathbb{R}$. Then $g: f: \mathbb{R}$ differentiable at $c: \mathbb{R}$ and $g: \mathbb{R}$ differentiable at $c: \mathbb{R}$ and $g: \mathbb{R}$ differentiable at $c: \mathbb{R}$ and $f(a) = f(a) = f(a) = f(a)$ decreas $a = f(a) = f(a$
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{R}$ is instruction on everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and g is continuous at $f(a) \in B$, then $g \circ f$ is continuous at $c \in A$ and g is continuous at $f(a) \in B$, then $g \circ f$ is continuous at $c \in A$ and g is continuous at $f(a) \in B$, then $g \circ f$ is continuous at $c \in A$ and g is $f(a) \in B$. Theorem 2.2.5 (Intermediate Value) If f is restrinuous an $f(a) \in A$ then for any g between $f(a)$ and $f(b)$, there exists some $c \in (a, b)$ such that $f(c) = y$. Theorem 2.2.7 (Weierstrass Extreme Value) If f is continuous an the compact set K , then f attains a maximum and a minimum value on K . 2.3. DERIVATIVES 2.3.1. DIRIVATIVES 2.3.1. DIRIVATIVES 2.3.2. (Basic Derivatives) $\frac{d}{d} (arcoin x) = \frac{1}{\sqrt{1-x^2}} \frac{d}{dx} (arc x) = -\sin x$ $\frac{d}{d} (arcoin x) = \frac{1}{1+x^2} \frac{d}{dx} (arc x) = -\sin x$ $\frac{d}{d} (arcoin x) = \frac{1}{1+x^2} \frac{d}{dx} (arc x) = -\sin x$ $\frac{d}{dx} (arcoin x) = \frac{1}{1+x^2} \frac{d}{dx} (arc x) = \frac{1}{f(x)} (f'(x) \neq 0)$ Theorem 2.3.3 (L'Hôphtal's Rule) Let $f(x)$ and $g(x)$ be defined and, with the possible exception of at the finition point c_1 , efficients be in c_1 , $g(x) = 0$ or c_2 and (ii) $g'(x) \neq 0$ for all $x \neq c$, then $\lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x)$ $\lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x)$ In protent Theorem 2.3.4 (Permat's or Interior Extremum) Let $f(x)$ and applying Theorem 2.3.9 gives $\lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x)$ $\lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x)$ $\lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x)$ $\lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x)$ $\lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x)$ $\lim_{x \to f(x)} f(x) = \lim_{x \to f(x)} f(x)$ $\lim_$
All functions are continuous at isolated points. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: 18 > 18$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{N}$ is discontinuous everywhere. 2.2.4. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$, and $g: B \to \mathbb{R}$ with $f(A) \subset B$, if f is continuous at $x \in A$ and g is continuous as $f(x) \in A$, then $g: f(g) \in B$, then $g: f(g) \in B$, then $g: f(g) \in B$, then $f(g) \in B$ is continuous as $f(g) \in B$. Theorem 2.2.5 (Composition Limit) If f is continuous as g and $f(x) = g/f(g) = g$, then $f(g) \in B$. Theorem 2.2.6 (Intermediate Value) If f is continuous ca $f(g) \in B$, then for any g between $f(g)$ and $f(h)$, there exists some $g: f(g)$ such that $f(g) \in g$. Theorem 2.2.7 (Weierstrass Extreme Value) If f is continuous on $f(g) \in B$, then f attains a maximum and rationan-value on $f(g) \in F(f(g)) = g(f(g)) f(g)$. Theorem 2.3.1 (Chain Rule) Let $f(g) = f(f(g)) = f(f(g)) f(g)$. Theorem 2.3.2 (Basic Derivatives) $\frac{d}{dg}(axcian) = \frac{1}{\sqrt{1-g^2}} \frac{d}{dg}(ain x) = \cos x$ $\frac{d}{dg}(axcian) = \frac{1}{1-g^2} \frac{d}{dg}(ain x) = \frac{1}{g} \frac{1}{g}$
Note that the continuous at footated points. The orbidist function $f: E \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{N}$ below intrinses exceptions. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $a \in A$ and $g: f$ is continuous at $a \in A$ and $g: f$ is continuous at $a \in A$ and $g: f$ is continuous at $a \in A$ and $g: f$ is continuous at $a \in A$ and $g: f$ is continuous at $a \in A$ and $g: f$ is continuous at $a \in A$ and $g: f$ is continuous at $a \in A$ and $g: f$ is continuous at $a \in A$ and $g: f$ is continuous at $a \in A$ and $g: f$ is $a \in A$. Theorem 2.2.5 (Composition Limit) If f is continuous as $g: f$ is the f is $g: f \in B$. Theorem 2.2.6 (Intermediate Value) If f is continuous on $g: f \in A$, then f is taking an invariant and a minimum value $a : f \in A$. Theorem 2.2.7 (Weberstrass Extreme Value) If f is continuous in the compares at f , then f istation a maximum and a minimum value $a : f \in A$. 2.3. Districtions Theorem 2.3.1 (Chain Itale) Let $f: f \to A \to Y$ and $g: Y \to X$. If f is differentiable at $a \in X$ and $g: f$ is differentiable at $a : f \in A$ and $a : f \in A$
All functions are continuous at richted points. Theorem 2.2.3 (Dirichlet Discontinuous) The Discine Landine $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{C}$ is discontinuous are respective. 2.2.3. Composition Theorem 2.2.1 (Composition) Giver $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ with $f(A) \subset B$, if f is continuous at $a \in A$ and g is continuous at $f(x) \in B$, then $g: f$ is continuous at $a \in A$ and $g = C$ and $f(x) \in B$, then $g: f$ is continuous at $a \in A$. 2.2.3. Composition Limit) If f is continuous at g and $f(x) \in B$, then $g: f$ is continuous at $a \in A$. 2.2.4. Results Theorem 2.2.5 (Composition Limit) If f is continuous at g and g is g is g is a continuous at g and g is g is g is a continuous at g and g is g is g is g is a continuous at g and g is g is g is g . Theorem 2.2.7 (Wederstress Extreme Value) If f is continuous an $f(A)$, then for any g is an animonal and a virianten value of g . Theorem 2.3.1 (Chain Italia) If $f(x) = f(x) = f(x)$ is g is a differentiable at $g \in X$ and g is differentiable at $g \in X$ and g is g in g is a differentiable at g and g is g in g is g in g in g is g in g is g in
All foretiers are continuous at isolated ports. Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function f , B , -1 with that f
All functions are continuous at industrial polina. Theorem 2.2.4 (Dirichlet Discontinuous) The Dirichlet Instantian $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{Q}$ decomposition) Theorem 2.2.4 (Composition) Ciscan, $f(x) = 0$ and $g(x) = h = x = x + h / (A) \subseteq B$, if $f(x)$ is continuous as $f(x) \in B$, then $g(x) = 0$ to continuous as $f(x) \in B$, then $g(x) = 0$ to continuous as $f(x) \in B$, then $g(x) = 0$, then $\lim_{x \to \infty} f(x) = \int_{\mathbb{R}^n} f(x) = \int_{$
All functions are continuous at industed unital. Disserved 2.2.3 (Dirichlet Discontinuous) 14. Dirichlet function I ** I ** I as not than $I(x) = 1$ if $I \in Q$ and
All fractions accounts control points. Theorem 2.1.3 (Dividios Invariants of 1.8 or 3.8 and 1.4 of 1.6 or 1.8 or 3.9 and 1.6 of 1.8 or 1.4 or 1.8 or 1.8 or 1.4 or 1.8 o
Theorem 2.3.1 (Divided Decontinuous) The Unicke, found of $A = A + a + a + b + b + b + b + b + b + b + b$
Theorem 2.3. (Dirichles Discontinuous) Theorem 2.3. (Dirichles Discontinuous) 1.5. (Faith of the off the off $f \in A$ is $f \in A$ of $f \in A$ of $f \in A$ of $f \in A$ of the off $f \in A$ of $f \in A$ of $f \in A$ of the off $f \in A$ of f
At the communication of inches controls. Theorem 2.2.4 (Thereby 2.2.4) and the Life of the Communication of the District formation of the District
All to waters are included as a factorized point. There 2.2.4 (Heiselstein Hermalthumous) The 2.2.4 (Composition) Give a City of the decommonal everywhere. 2.2.1 (Composition) Give a $(1.4 + 0.0)$ and $(2.2 + 0.0)$ and $(2.2.4)$ for commonal as a City of the Land and $(2.2.4)$ and $(2.2.4)$ for commonal as a City of the Land and $(2.2.4)$ for commonal as a City of the Land and $(2.2.4)$ for commonal as a City of the Land and $(2.2.4)$ for commonal as a City of the Land and $(2.2.4)$ for commonal as a City of the Land and $(2.2.4)$ for commonal as a City of the Land and $(2.2.4)$ for commonal as a City of the Land and $(2.2.4)$ for commonal and $(2.2.4)$ for commonal and $(2.2.4)$ for commonal $(2.2.4)$ (Hermalthumous) Theorem 2.2.4 (Hermalthumous) The commonal $(2.2.4)$ (Hermalthumous) Land $(2.2.4)$ (Hermalth
Theorem 2.2.0 (Burisher Discontinuous) Theorem 2.2.0 (Burisher Discontinuous) (ii) 10 if of the decontinuous exceptions. 2.2.1. Composition Theorem 2.2.2 (Composition) (See In A. 1. 20 and y in P. 2. 2 and y (I) 1. 2 in if it sections in a continuous of the state of the s
The orange and continuous and collection for the District of the Collection Collection (Composition) The District of the Collection (Composition) Composition (Composition) Composition (Composition) Composition (Composition) Composition (Composition) The orange (Composition (Composition) If the Collection (Composition) If the Co
All minimum 2.2.3 (Principles Dissonations on Part 1 (1) and 1 (2) and 2 (2) and 3 (2
The content of the
There are 2.2.1 (Blocked Discussion issues) There are 2.2.1 (Companion issues) There are 2.2.2 (Tompanion issues) There are 2.2.2 (Tompanion issues) There are 2.2.2 (Tompanion issues) There are 2.2.3 (Tompanion issues) There are 2.3.4 (Tom
Theorem 2.2.1 (Definited Definitions) Theorem 2.2.1 (Comparisons) Theorem 2.2.4 (Comparisons) Theorem 2.2.4 (Comparisons) Theorem 2.2.4 (Comparisons) A 1.2.4 (Comparisons) A 1
\$ for the content content of the content of Theorem 2.2.4 (Checkled December of the content of
The content of 2.2.4 (Check the Dissouth Country
All controls are confidence of the control of the