अनुवांशिक कलन विधि एवं भूभौतिकी में इसके अनुप्रयोग

डॉ. अजय मालकोटी (वैज्ञानिक) वै.औ.अ.प.-राष्ट्रीय भूभौतिकी अनुसंधान संस्थान

निर्माण तिथि: २० फ़रवरी २०१७, संशोधन तारीख: २३ दिसम्बर २०२१

१ भूमिका

भूभौतिकी में जब कोई शोध समस्या सम्बोधित की जाती है तब धरती की आंतिरक संरचना ज्ञात करना भी उसका एक अभिन्न अंग होता है। यह आंतिरक संरचना कुछ विशिष्ट प्राचलों के मान, जो की धरती की गहराई में साथ परिकलित किये जाते हैं, के द्वारा दर्शायी जाती है। इन मानो को परिकलित किये जाने के लिए सर्वप्रथम एक विशिष्ट विधि, उदाहरणतः विधुतीय विधुत-चुंबकीय भूकंपीय ने वेधछिद्र आदि, द्वारा उस क्षेत्र के आंकड़े जुटाए जाते है। उसके बाद विलोमन विधि द्वारा उन आंकड़ों को प्रयोग कर प्रचालो का मान प्राप्त किया जाता है। परिणाम की परिशुद्धता निर्भर करती है कि १) प्रयोग किये गए भौतिकी के नियम किस सीमा तक उस प्राकृतिक प्रक्रम/परिघटना को यथावत् बताते है, २) प्राचल का मान ज्ञात करने के लिए किस प्रकार की विलोमन विधि प्रयोग की गयी। इस समय हम यह मान के चलते हैं की भौतिक नियम अग्र-प्रतिकपण के लिए परिणाम आपेक्षित परिशुद्धता के भीतर देते हैं। इस प्रकार प्रयोग में ली जाने वाली विलोमन विधि को भूमिका बहुत महत्वपूर्ण बन जाती है। जब प्रयोग किये गए समीकरण/फलन अरैखिक र होते हैं तब इस प्रकार की समस्याओ में प्रचाल ज्ञात करना एक जिटल एव किन कार्य बन जाता है एवं अनुसंधानकर्ताओं के समक्ष एक चुनौती प्रस्तुत करता है। विलोमीकरण की प्रिक्रिया को एक और युक्ति, इष्टतमीकरण के द्वारा भी किया जा सकता है।

⁹ electrical ^γ electro-magnetic ^β seismic ⁸ borehole ⁹ imaging technique ^β variables ⁹ accuracy of results ^β physics ^β natural phenomenon ⁹ forward-modeling ⁹⁹ inversion method ⁹⁷ non-linear

चित्र १: अन्वेषी तकनीको के प्रकार (संक्षिप्त में)

इस वर्ग के अंतर्गत आने वाली एक तकनीक, जिसे की अनुवांशिक कलन⁹³ कहते हैं, का प्रयोग आज कल बहुत प्रचलन में है। आगे हम इस तकनीक की विस्तारपूर्वक व्याख्या के साथ-साथ भूभौतिकी⁹⁸ के क्षेत्र में इसके अनुप्रयोग का वर्णन करेंगे।

२ अनुवांशिक कलन

इस तकनीक का उपयोग इष्टतमीकरण⁹⁴ तथा सन्निकट हल⁹⁶ प्राप्त करने के लिए किया जाता है। इसका पहली बार प्रयोग जॉन हॉलैंड द्वारा १९७० किया गया था। हाल ही में इसे काफी शोधकर्ताओं द्वारा विभिन्न क्षेत्रों में प्रयोग किया गया है (गोल्डबर्ग, १९८८; देब, २०१२; सेन, २०१३)। यह इष्टतमीकरण कलन विधि जैविक विकास⁹⁰ की अवधारणाओं (चित्र १) का अनुसरण करती है। इसमें हल समष्टि⁹² के प्रत्येक हल को एक गुणसूत्र⁹⁸ के रूप में प्रस्तुत किया जाता हैं। किसी जनसंख्या में एक निर्दिष्ट संख्या में, उदाहरण के लिये N, गुणसूत्र लिए जाते हैं जो कि हल समष्टि का उपसमुद्यय होते हैं। इस विकास पद्धित की शुरुआत आबादी के प्रत्येक गुणसूत्र के लिए दिए गए व्यवरोध के मध्य एक यादिष्ठक मान प्रदान करके किया जाता है। इस के बाद प्रत्येक गुणसूत्र की उस आबादी में रहने की योग्यता के लिए उसका मूल्यांकन एक योग्यता फलन के अनुसार किया जाता है। अधिक योग्यता वाले गुणसूत्र को ही दुसरे गुणसूत्र के साथ

 $^{^{93}}$ Genetic Algorithm 98 geophysics 94 optimization 94 closest solution 90 biological evolution 90 problem 99 chromosome

चित्र २: उर्पयुक्त पहले चित्र (ऊपर) में किसी गुणसूत्र द्वारा एक प्रचाल एवं दूसरे चित्र (नीचे) में एक गुणसूत्र द्वारा तीन प्राचलों को दर्शाया गया है।

पुन:संयोजन का एवं उत्त्परिवर्तन का अवसर मिलता है। इस प्रकार बने नए गुणसूत्र अगली पीढ़ी की जनसँख्या बनाते हैं। हम एक एक करके इनके जरूरी पहलुओ जैसे गुणसूत्र निरूपण^{२०}, पुन:संयोजन^{२१}, उत्परिवर्तन^{२२} और चयन संकारको^{२३} पर नजर डालते हैं।

२.१ गुणसूत्र निरूपण:

एक गुणसूत्र या क्रोमोज़ोम निरूपण के लिए प्रायः द्वि-आधारी संख्या²⁸ का प्रयोग किया जाता है अर्थात 0 एवं 9। इस पद्दित की प्रयोग से अन्य संकारको का प्रयोग सरल हो जाता है। एक गुणसूत्र की लम्बाई उसके द्वारा दी जाने वाली वियोजन परिशुद्धता की परिसीमा पर निर्भर करता है। उदाहरण के लिए, कोई एक प्राचल एवं इसकी परिशुद्धता क्रमशः X एवं dX हैं तब इसके निरूपण के लिए प्रयोग में लाये जाने वाले क्रोमोसोम की लम्बाई (L) को निम्न समीकरण द्वारा ज्ञात किया जा सकता है।

$$2^{L} \ge \frac{X_{max} - X_{min}}{dx} \tag{9}$$

एक बार हम प्रत्येक प्रचाल के लिए लम्बाई ज्ञात कर लें उसके बाद हम उन सभी को जोड़ कर एक ही गुणसूत्र से दिखा सकते हैं। ऊपर दीये गए चित्र २ में गुणसूत्र निरूपण के दो उदहारण दर्शाये गए हैं जो की ऋमशः एक प्रचाल व तीन प्रचाल के लिए है।

२.२ अनुवांशिक कलन का आरंभ:

इस तकनीक में अच्छे परिणाम जनसंख्या के चुनाव पर काफी निर्भर करते है । इसमें मुख्य रूप से निम्न दो बिन्दुओ पर ध्यान दिया जाता है- १) एक पीढ़ी में सदस्यों की संख्या, व २)

Representation Repres

हर सदस्य को दिया जाने वाला मान। सदस्यों की संख्या प्रतिदर्श समिष्टि^{२५} पर निर्भर करती है। इसका पर्याप्त संख्या में होना यह सुनिश्चित करती है कि दिए गए पीढ़ी में ढूढे जाने वाला हल कम से कम एक बार प्रकट हो। जनसंख्या का पर्याप्त आकार ज्ञात करने के लिए अभी तक कोई नियम ज्ञात नहीं है हालांकि बहुत बड़ी जनसंख्या लेने पर इसे सुनिश्चित किया जा सकता है, परन्तु इस वजह से अभिकलन^{२६} की लागत अत्यधिक हो सकती है। हर सदस्य को एक याद्दिक चर^{२७} माना जाता है इसलिये उसे दिए जाने वाला मान उसकी परिसीमाओ के भीतर प्रसंभाव्य प्रक्रम^{२८} द्वारा लिया जाता है।

२.३ अनुवांशिक कलन संकारक (पुन:संयोजन एवं उत्परिवर्तन):

यह दो इस प्रिक्रिया के बहुत महत्वपूर्ण हिस्से है जो की प्राकृतिक विकास का अनुकरण करते हैं। पुनःसंयोजन एवं उत्परिवर्तन संकारक डी.न.ए. 98 में होने वाली प्रिक्रियाओं से प्रेरित हैं। पुनःसंयोजन के लिए सबसे पहले पूरी जनसंख्या में से दो व्यक्तियों को उनकी योग्यता के अनुसार चुना उनकी जाता है। इसके लिए चक्रीय चयन 30 की प्रिक्रिया अपनायी जाती है। इसमें प्रत्येक हल को एक निश्चित प्रायिकता प्रदान की जाती है जो की चक्र पर उसके क्षेत्र द्वारा दर्शायी जाती है। उदहारण के लिये नीचे दिये गए चित्र ३ में एक रौलेट व्हील दिखाया गया है जिसे की घूमाने पर उसकी परिधि पर लिखे अंको में से एक का चयन, दी गयी सुई द्वारा किया जाता है। यदि हम यह माने की अभी जनसँख्या में कुल ४ व्यक्ति है तब उसके भीतरी भाग को अलग अलग ४ रंगो में प्रदर्शित किया जा सकता है। यदि किसी गुणसूत्र की योग्यता y_i है तब उसके चयन की प्रायिकता 30 निम्न प्रकार से दी जायेगी।

$$P_i = \frac{y_i}{\sum y_i} \tag{?}$$

पुन:संयोजन जिस प्रकार किसी सेल के दो गुणसूत्र एक स्थान से जुड़ कर अपने एल्लेल्स की आदान-प्रदान करते हैं उसी प्रकार अनुवांशिक कलन में भी गुणसूत्र पुन:संयोजन करते हैं । इसके लिए एक याद्दिछक स्थान, जिसे पुन:संयोजन बिन्दु भी कह सकते हैं, का चयन कर पुन:संयोजन की प्रिक्रिया पूरी की जाती है।

उत्परिवर्तन डी.न.ए. में केवल कुछ स्थान की संरचना को बदल देता है। इसी तथ्य को प्रयोग कर यहाँ भी एक या कुछ उत्परिवर्तन बिन्दु चयन कर वहां की द्वि-आधारी संख्या मान विश्व sample space रिव computation रिव random variable रिव stochastic process रिव DNA रिव roulette wheel selection रिव probability

चित्र ३: यहाँ दो गुणसूत्रो द्वारा पुनःसंयोजन की प्रिक्रिया दर्शायी गयी है जो की पुनःसंयोजन बिंदु पर निर्भर करती है।

चित्र ४: गुणसूत्र में उत्परिवर्तन।

को पलट दिया जाता है। निम्न चित्र ४ में उत्परिवर्तन का कार्य एक बिन्दु पर दिखाया गया है।

२.४ चयन संकारक (सर्वश्रेष्ठ की उत्तरजीविता) :

यह डार्विन की प्राकृतिक चयन के सिद्धांत पर आधारित है। इसके अनुसार " प्रकृति केवल श्रेष्ठतम को ही जीवित रहने का अधिकार देती है।" अनुवांशिक कलन में किसी की श्रेष्ठता का मूल्यांकन उसके योग्यता फलन द्वारा कीया जाता है। अतः जनसंख्या के प्रत्येक व्यक्ति की योग्यता का मूल्यांकन करना आवश्यक है। योग्यता फलन का एक उदाहरण न्यूनतम-वर्ग-त्रुटि-फलन^{३२} है।

३ जेनेटिक अल्गोरिथम के प्रयोग हेतू संक्षेप में चरण

प्रारंभ

जनसंख्या की प्रारंभिक स्थापना

प्रत्येक व्यक्ति की योग्यता का मूल्यांकन

पुनरावृत्ति खंड: (परीक्षण समाप्ति के लिए शर्ते, जब तक परीक्षण सफल न हो तो निम्न कार्य करे)

- १. जनसँख्या में से कोई दो व्यक्ति चुने
- २. उन दोनो के गुणसूत्र को पुन: संयोजित करे

³² least-square-error function

चित्र ५: चक्रीय चयन की प्रक्रिया

- ३. नए गुणसूत्र पर उत्परिवर्तन प्रक्रिया लगाये
- ४. इन नए गुणसूत्र की योग्यता का परीक्षण करे
- ५. अगली पीढ़ी की जनसँख्या के लिए इनका निरीक्षण/परीक्षण करे

पुनरावृत्ति खंड समाप्त

अंत

४ भूभौतिकी में अनुवांशिक कलन के अनुप्रयोग

४.१ स्व-जनित विभव

इस विधि द्वारा प्राप्त विसंगति को सामान्यतः एक अनन्तः लम्बाई के सुचालक गेंद/गोले के द्वारा समझाया जा सकता है। सतह पर किसी बिन्दु पर इसके कारण उत्पन्न स्व-विभव (चित्र ६) को निम्न समीकरण द्वारा ज्ञात किया जा सकता है। इसमें h गोले के केंद्र की सतह से दूरी को, x_i सतह अथवा x अक्ष के सामानांतर केंद्र से दूरी को दर्शाता है. यहाँ पर q वस्तु के आकर के अनुसार लिया जाता है (गोल आकार के लिए q=) एवं ध्रुवीकरण का कोण है।

$$v(x_j, h, a, q) = M \frac{x_j \cos \alpha + h \sin \alpha}{(x_j^2 + h^2)^q}$$
(3)

चित्र ६: स्व-जनित विभव की प्रक्रिया के लिए गणितीय प्रतिरूपण

ऊपर दिए गए समीकरण का प्रयोग हम इसके प्रचालों के मान को इष्टतमीकरण के द्वारा ज्ञात करने के लिए कर सकते हैं । अनुवांशिक कलन के प्रयोग के लिए हमारे पास एक योग्यता फलन की आवश्यकता है जो की नीचे दिए न्यूनतम वर्ग त्रुटि फलन के सामान है।

$$\psi = \left(\sum_{i=1}^{n} \left[V_0(x_i, h, \alpha, q) - V(x_i, h, \alpha, q)\right]^2\right)^{1/2}$$
 (8)

४.२ टोमोग्राफी

इस विधि में अनुदैर्ध्य तरंग³³ की गित का मापन किआ जाता है। इसके लिए दो सामानांतर वेधछिद्र प्रयोग में लाये जाते हैं जिसमे से एक में भूकंप तरंग प्रेषी व दुसरे में इस अभिग्राही यंत्र प्रयोग किये जाते हैं। तरंग एक सीधी रेखा में चलती है, इस परिकल्पना को आधार मान कर निम्न चित्र ७ से

$$t_k = \int_{R_k} \frac{ds}{v(x,y)} \tag{9}$$

या

$$t_k = \int_{R_k} u(x, y) ds \tag{\xi}$$

³³ Longitudinal-wave

चित्र ७: टोमोग्राफी की प्रिक्रया के लिए गणितीय प्रतिरूपण।

समीकरण प्राप्त किया जा सकता है। इसमें किसी तरंग (चित्र में एक किरण द्वारा दिखाई गयी है) द्वारा एक प्रेषी यन्न से ग्राही यंत्र तक पहुँचने में लिए गए समय को t_k द्वारा दर्शाया गया है। चित्र में प्रत्येक खंड में P तरंग की गित तथा उसमे तय की गयी दूरी को ऋमशः v(x,y) व ds(x,y) द्वारा दर्शाया गया है। इसी समीकरण को असंतत रूप में निम्न प्रकार लिखा जा सकता है।

$$t_k = \sum_{i=1}^{m} \sum_{j=1}^{n} u_{i,j} \Delta s_{i,j,k}$$
 (9)

इसमें भी प्रचालो $(u_i j)$ के मान को इष्टतमीकरण के द्वारा ज्ञात करने के लिए एक योग्यता फलन को निम्न प्रकार से दर्शाया जा सकता है ।

$$\delta = \left[\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} (t_{i,j}^{0} - t_{i,j})}{k^{2}} \right]^{1/2} \tag{2}$$

५ उपसंहार

हमने यहाँ एक सरल इष्टतमीकरण की प्रिक्रिया का उसके भूभौतिकी में अनुप्रयोगों के साथ वर्णन किया । यह प्रकृति के नियमों , अर्थात अनुवांशिक कलन पर आधारित हैं। याद्यच्छिक प्रिक्रिया इसका का बहुत अहम हिस्सा है। इसका प्रयोग अत्यंत सरल है जो की दी गयी परिसीमाओं के भीतर हल ढूढ़ने में सक्षम है । हालांकि जब हल समष्टि का आकर बहुत बड़ा हो जाता है तब

अभिकलन लागत एक समस्या बन सकती है। अन्य युक्तियों को अनुवांशिक कलन के साथ संयुक्त रूप से प्रयोग कर इसकी अभिकलन लागत को कम किया जा सकता है।

अभिस्वीकृति

यह लेख लैटेक्स³⁸, जो कि एक मुक्त स्रोत एवं निःशुल्क सॉफ्टवेयर है, में लिखा गया है।

संदर्भग्रंथ सूची

गोल्डबर्ग, जॉन हेनरी (१९८८): जेनेटिक एल्गोरिदम और मशीन लर्निंग. , क्रूवर एकेडिमक पब्लिशर्स-प्लेनम पब्लिशर्स; क्रूवर अकादिमक प्रकाशक.

देब, कल्याणमय (२०१२): इंजीनियरिंग डिजाइन के लिए ऑप्टिमाइजेशन: एल्गोरिदम और उदाहरण. , पीएचआई लर्निंग प्रा. लिमिटेड.

सेन, पॉल एल (२०१३): ग्लोबल ऑप्टिमाइजेशन मेथड्स इन जियोफिजिकल इन्वर्सन. , कैम्ब्रिज यूनिवर्सिटी प्रेस.

³⁸ FALEX