RACHUNEK PRAWDOPODOBIEŃSTWA 1R LISTA ZADAŃ NR 8

1. d-wymiarowa zmienna losowa X ma rozkład normalny $N(m, A^{-1})$ o gęstości

$$g(x) = \frac{\sqrt{\det A}}{(2\pi)^{d/2}} \exp \left[-\frac{1}{2} \langle A(x-m), (x-m) \rangle \right].$$

Udowodnij, że $\mathbb{E}X=m$ oraz $\Lambda=A^{-1}$ jest macierzą kowariancji X.

- **2.** d-wymiarowa zmienna losowa na rozkład normalny w \mathbb{R}^d , o średniej m i macierzy kowariancji Λ . Niech T będzie przekształceniem afinicznym \mathbb{R}^d na \mathbb{R}^k ($k \leq d$). Pokaż, że TX ma rozkład normalny w \mathbb{R}^k . Wyznacz jego średnią i macierz kowariancji.
- 3. Niech X_1 i X_2 będą niezależnymi zmiennymi losowymi o rozkładzie N(0,1). Wykaż, że zmienne losowe $\frac{X_1+X_2}{\sqrt{2}}$ i $\frac{X_1-X_2}{\sqrt{2}}$ są niezależne i obie mają rozkład N(0,1).
- **4.** Niech $\mathbf{X}=(X_1,X_2,\ldots,X_n)$ będzie wektorem losowym o standardowym rozkładzie normalnym $N(\mathbf{0},I)$, gdzie I jest macierzą identyczności. Sprawdź, że X_1,X_2,\ldots,X_n są niezależnymi zmiennymi losowymi o jednakowym standardowym rozkładzie normalnym N(0,1).
- 5. Niech X_1, X_2, \ldots, X_n będą wzajemnie nieskorelowanymi zmiennymi losowymi, takimi, że ich łączny rozkład jest normalny. Wykazać, że X_1, X_2, \ldots, X_n są niezależne.
- **6.** Niech X_1, \ldots, X_n będą niezależnymi zmiennymi losowymi o rozkładzie normalnym N(0,1) oraz niech $\mathbf{a}=(a_1,\ldots,a_n)$ i $\mathbf{b}=(b_1,\ldots,b_n)$ będą ustalonymi wektorami. Pokaż, że zmienne losowe

$$W = \sum_{j=1}^{n} a_j X_j, \quad Z = \sum_{j=1}^{n} b_j X_j$$

są niezależne wtedy i tylko wtedy, gdy wektory a i b są prostopadłe. Opisz rozkłady W i Z.

- 7. Podaj przykład nieskorelowanych zmiennych losowych o rokładzie normalnym, które nie są niezależne.
- 8. (Transformata Boxa-Müllera) Pokaż, że jeżeli zmienne losowe X,Y są niezależne o rozkładzie jednostajnym na (0,1), to

$$U = \sqrt{-2\log X}\cos(2\pi Y) \qquad \text{i} \qquad V = \sqrt{-2\log X}\sin(2\pi Y)$$

są niezależne i mają rozkład N(0,1).

9. Niech X będzie zmienną losową taką, że $\mathbb{E}|X| < \infty$. Niech

$$X_n(\omega) = \begin{cases} -n & \text{jeżeli } X(\omega) < -n, \\ X(\omega) & \text{jeżeli } |X(\omega)| \le n, \\ n & \text{jeżeli } X(\omega) > n. \end{cases}$$

Czy $\{X_n\}_n$ zbiega do X p.n.? A czy zbiega w L^1 ?

- **10.** Dane są dwa ciągi $\{X_n\}_{n\geq 1}$, $\{Y_n\}_{n\geq 1}$ zbieżne p.n. do zmiennych X,Y. Pokaż, że jeśli dla każdego n zmienne X_n i Y_n mają ten sam rozkład, to X i Y też mają ten sam rozkład.
- 11. Dany jest ciąg $\{X_n\}_{n\geq 1}$ niezależnych zmiennych losowych takich, że X_n ma rozkład Poissona z parametrem 1/n. Czy ten ciąg jest zbieżny wg prawdopodobieństwa, p.n., w L^2 , w $L^{3/2}$?
- 12. Niech $\{X_n\}$ będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie takim, że $\mathbb{E}|X_1|<\infty$. Pokaż, że $\frac{1}{n}\max_{1\leq i\leq n}|X_i|$ zbiega do zera według prawdopodobieństwa.

- **13.** Dane są zmienne losowe X_1, X_2, \ldots takie, że $\mathbb{P}(X_k = k^2) = 1/k^2$, $\mathbb{P}(X_k = -1) = 1 1/k^2$. Pokaż, że $\sum_{k=1}^n X_k \to -\infty$, p.w. gdy $n \to \infty$.
- 14. Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną taką, że Ω jest zbiorem przeliczalnym, a $\mathcal{F}=2^{\Omega}$. Pokaż, że na tej przestrzeni zbieżność według prawdopodobieństwa jest równoważna zbieżności p.w.