Lentes gravitacionales en astrofísica y cosmología

Actividad Práctica 2

- 1. Hacer gráficas de la curva de luz de un evento de lente y fuente puntuales en términos de $\Delta m \times (t-t_0)/t_E$. ¿Qué se puede medir a partir de la curva de luz de un evento de lente y fuente puntuales?
- 2. A partir de la solución de la ecuación de la lente puntual para una fuente puntual, obtener la expresión del desplazamiento del centróide

$$\delta \vec{\theta} = \frac{\vec{y}}{y^2 + 2} \theta_E \tag{1}$$

- 3. Hacer gráficas del *shift* astrometrico en las dos direcciones $(\delta_{\parallel} \, \mathbf{y} \, \delta_{\perp})$ en función de $\times (t-t_0)/t_E$, para un evento de lente y fuente puntuales en movimiento uniforme. *Tip:* pueden correr el *notebook* Lecture 9 de http://pico.oabo.inaf.it/~massimo/teaching_2016.html
- 4. Obtener la diferencia entre los tiempos de máxima aproximación Δt_0 y entre los parámetros de impacto Δu_0 de un evento medido a partir de dos puntos de observación separados de una distancia D_{\perp} en la dirección perpendicular a la linea de visión. Mostrar que el paralaje normalizado por θ_E se puede obtenir a partir de:

$$\vec{\pi}_E = \frac{1}{D_\perp} \left(\frac{\Delta t_0}{t_E}, \Delta u_0 \right) \tag{2}$$

5. Equación de da lente en el formalismo complejo

Definiendo

$$x = \frac{\theta_x + i\theta_y}{\xi_0}$$
 y $y = \frac{\beta_x + i\beta_y}{\eta_0}$, (3)

muestre que la jacobiana del mapeo del plano das imágenes en el plano de las fontes es dado por

$$J = \det \left(\begin{array}{cc} \frac{\partial y}{\partial x} & \frac{\partial y}{\partial \bar{x}} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial \bar{x}} \end{array} \right) = \left| \frac{\partial y}{\partial x} \right|^2 - \left| \frac{\partial y}{\partial \bar{x}} \right|^2,$$

donde la barra denota el complejo conyugado.

6. Hacer gráficas de magnificación versus posición en el plano de las fuentes para lentes puntuales y: i) fuentes uniformes con distintos valores de radio en unidades del radio de Einstein $(r = R/(D_S\theta_E), ii)$ una fuente con r = 0.25 y coeficientes de oscurecimiento del limbo $u_{\lambda} = 0.3, 0.6, 0.9$.

Para ambos casos pueden usar las expresiones que vimos en la clase teórica o bien usar algun código público como los mencionados en la práctica 1.

7. Lentes binárias

Muestre que con las variables complejas definidas en la Eq. (3), la ecuación de la lente para lentes binarias se puede escribir como:

$$y = x - \frac{\mu_A}{\bar{x} - \bar{x}_A} - \frac{\mu_B}{\bar{x} - \bar{x}_B},$$

donde $\mu_i := M_i/(M_A + M_B)$ y x_i son las posiciones de las masas puntuales (i = A, B). Para obtener este resultado, elija $\xi_0 = \theta_E$, donde el radio de Einstein es el asociado a la masa total $M_A + M_B$.

Encuentre la ecuación que define las curvas críticas. Por simplicidad, defina el origen en el punto medio de las dos componentes (es decir, $z_A = -z_B$) y alinéelas a lo largo del eje real.

La forma de las cáusticas y curvas críticas depende de la separación entra las componentes de la lente (en unidades del radio de Einstein), $d:=|x_A-x_B|=2\,|x_A|$, y de la relación entre las masas, $q:=\mu_A/\mu_B$. Obtenga las curvas críticas y cáusticas para algunos valores de estas cantidades.

Existen tres diferentes regímenes para las formas de las cáusticas y curvas críticas, dependiendo de la topología de estas curvas: sistemas de gran separación, intermedia y pequeña. Obtenga la distancia que define la transición entre estos regímenes (en función de μ_A y μ_B).

Tip: La transición entre estos regímenes ocurre cuando dos curvas críticas se fusionan (o se separan) en uno o más puntos. Como las curvas críticas tienen el mismo valor de J (J=0), en el momento en que se fusionan, el gradiente de J debe anularse (al menos en una dirección). Así, los puntos de fusión deben satisfacer J=0 y $\partial J/\partial \bar{x}=0$. La combinación de estas condiciones lleva a $\partial^2 y/\partial \bar{x}^2=0$, lo que fija la relación entre el valor crítico de \bar{x} y μ_i . Más específicamente, esta relación será dada por:

$$\bar{x} + \bar{x}_A = 2x_A \left[1 - \left(-\frac{\mu_A}{\mu_B} \right)^{1/3} \right]^{-1}.$$

La raíz cúbica llevará a tres soluciones para esta ecuación. Insertando estas soluciones en la condición J=0, se obtiene la expresión final para la separación (que es función solo de μ_1 y μ_2). La solución -1 de la raíz cúbica llevará al valor d_g , referente a la transición entre los regímenes intermedios y de gran separación. Ya las soluciones $e^{\pm i\pi/3}$ llevarán al valor d_p , referente a la transición entre los regímenes intermedios y de pequeña separación. Obtenga d_g y d_p . Note que, como dos soluciones de la ecuación anterior llevan al mismo d_p , esto significa que las curvas críticas se fusionan en dos valores distintos de x. Compare sus resultados con los de Meneghetti.

Referencia: Para el formalismo de lentes con números complejos, vea el capítulo 15 del libro Singularity Theory and Gravitational Lensing (sección 15.1 para el formalismo general y sección 15.2.2 para lentes binarias). Para el formalismo complejo, vea también Schramm, T.; Kayser, R., The complex theory of gravitational lensing. Beltrami equation and cluster lensing, A&A, 299, 1 (1995).

8. Hacer gráficas de las curvas críticas y cáusticas de lentes binárias. *Tip:* pueden correr el *notebook* Lecture 11 de

http://pico.oabo.inaf.it/~massimo/teaching_2016.html