RWC23_ELT2_Regulated_Genes

RTPW

11/10/2020

Decide if plots should be saved to files:

Change plot to TRUE if you want to write plots to a file change plot to FALSE if you do not want to write plots to a file

```
plot <- FALSE
plotdir <- "./03_plots/"
```

Install Packages

```
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
# BiocManager::install()
# BiocManager::install("biomaRt")
# install.packages("tidyverse")
# install.packages("readxl")
# BiocManager::install("ComplexHeatmap")
# install.packages("matrixStats")
# install.packages("pheatmap")
# install.packages("RVAideMemoire")
# install.packages("dendextend")
# install.packages("dendextend")
```

Load Package Libraries

x dplyr::select() masks biomaRt::select()

```
library(biomaRt)
library(tidyverse)
## -- Attaching packages --
## v ggplot2 3.3.0
                  v purrr
                          0.3.3
## v tibble 3.0.0
                          0.8.5
                  v dplyr
## v tidyr
         1.0.2 v stringr 1.4.0
## v readr
         1.3.1
                 v forcats 0.5.0
## -- Conflicts ------ tidyver
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
              masks stats::lag()
```

```
library(readxl)
library(ComplexHeatmap)
## Loading required package: grid
## ==============
## ComplexHeatmap version 2.2.0
## Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
## Github page: https://github.com/jokergoo/ComplexHeatmap
## Documentation: http://jokergoo.github.io/ComplexHeatmap-reference
## If you use it in published research, please cite:
## Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional
    genomic data. Bioinformatics 2016.
library(matrixStats)
##
## Attaching package: 'matrixStats'
## The following object is masked from 'package:dplyr':
##
##
      count
library(pheatmap)
library(RVAideMemoire)
## *** Package RVAideMemoire v 0.9-78 ***
library(dendextend)
##
## -----
## Welcome to dendextend version 1.14.0
## Type citation('dendextend') for how to cite the package.
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
##
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
## Or contact: <tal.galili@gmail.com>
##
## To suppress this message use: suppressPackageStartupMessages(library(dendextend))
## -----
##
## Attaching package: 'dendextend'
## The following object is masked from 'package:stats':
##
##
      cutree
library(binom)
library(circlize)
## ===============
## circlize version 0.4.8
## CRAN page: https://cran.r-project.org/package=circlize
```

```
## Github page: https://github.com/jokergoo/circlize
## Documentation: http://jokergoo.github.io/circlize_book/book/
## If you use it in published research, please cite:
## Gu, Z. circlize implements and enhances circular visualization
    in R. Bioinformatics 2014.
library(lubridate)
## Attaching package: 'lubridate'
## The following objects are masked from 'package:dplyr':
##
##
      intersect, setdiff, union
  The following objects are masked from 'package:base':
##
##
      date, intersect, setdiff, union
```

Background and Rationale

ELT-2 is the C. elegans intestine master regulator. Deletion of ELT-2 leads to a larval lethal phenotype, and expression of ELT-2 in non-intestine tissue induces an intestine fate.

This documet will generate plots to address the questions outlined below.

For genes differentially expressed during elt-2 (-) and/or elt-7(-):

- 1) which expression pattern clusters associate with ELT-2 binding?
- 2) which expression pattern clusters associate with ELT-2 binding categories?
- For all genes
- For only genes bound by ELT-2
- 3) Which expression pattern clusters associate with intestine expression? (MA plot for each expression set)
- For all genes
- For genes only bound by ELT-2

For clusters of transcription factors (TFs) differentially expressed during elt-2 (-) and/or elt-7(-):

- 1) which transcription factor clusters associate with ELT-2 binding?
- 2) which transcription factor clusters associate with ELT-2 binding categories
- for all TFs
- For only TFs bound by ELT-2
- 3) which transcription factor clusters associate with intestine expression?
- for all
- for only ELT-2 bound

Description of Data

I will integrate a RNA-seq experiment, a microarray experiment and a ChIP-seq experiments.

The first is a set of RNA-seq experiments in L1 stage worms (Dineen and Nishimura, 2018). They were collected from the following genotypes, all in the L1 stage:

- wildtype (wt)
- elt-7 deleted (elt7D)
- elt-2 deleted (elt2D)
- combination fo elt-7 and elt-2 deleted (elt2Delt7D)

The purpose of including elt-7 and elt-2/elt-7 double deletion is because these two transcription factors have overlapping functionality. Deletion of elt-7 alone does not have a phenotype, but deletion of elt-7 in combination with elt-2 has an enhanced lethal phenotype of just elt-2 alone.

The second dataset is from a 2011 paper using FACS sorting of Late Embryo (LE) and Larval Stage 2 (L2) intestine cells, measured with microarray. See Spencer et. al, (2011).

The ChIP-seq experiments are performed against ELT-2 and are from the following developmental stages:

- late embryo (LE)
- L1
- L3

They were collected as part of the modENCODE consortium and were processed by David King. He has provided gene mapping of ELT-2 targets and categories of ELT-2 binding. The ELT-2 binding categories are as follows:

- Not changing
- Larval
- L3 high
- Embryonic
- Increasing

Citations

- 1) Dineen, A., Osborne Nishimura, E., Goszczynski, B., Rothman, J. H., & McGhee, J. D. (2018). Quantitating transcription factor redundancy: The relative roles of the ELT-2 and ELT-7 GATA factors in the C. elegans endoderm. Developmental Biology, 435(2), 150–161. https://doi.org/10.1016/J. YDBIO.2017.12.023
- 2) Kudron, M. M., Victorsen, A., Gevirtzman, L., Hillier, L. W., Fisher, W. W., Vafeados, D., ... Waterston, R. H. (2018). The modern resource: genome-wide binding profiles for hundreds of Drosophila and Caenorhabditis elegans transcription factors. Genetics, 208(3), 937–949. https://doi.org/10.1534/genetics.117.300657
- 3) Spencer, W. C., Zeller, G., Watson, J. D., Henz, S. R., Watkins, K. L., McWhirter, R. D., Petersen, S., Sreedharan, V. T., Widmer, C., Jo, J., Reinke, V., Petrella, L., Strome, S., Von Stetina, S. E., Katz, M., Shaham, S., Rätsch, G., & Miller, D. M. (2011). A spatial and temporal map of C. elegans gene expression. Genome Research, 21(2), 325–341. https://doi.org/10.1101/gr.114595.110
- 4) Boeck, M. E., Huynh, C., Gevirtzman, L., Thompson, O. A., Wang, G., Kasper, D. M., Reinke, V., Hillier, L. W., & Waterston, R. H. (2016). The time-resolved transcriptome of C. elegans. Genome Research, 26(10), 1441–1450. https://doi.org/10.1101/gr.202663.115

Code

Source functions

```
source("../RWC23_Functions.R")
```

Load and Process Datasets

Load Dineen and Osborne Nishimura et. al. Data

```
dineen nishimura counts <-
  read_xlsx(path = "./01_input/Table_S2_rlog_Stabilized_Read_Counts.xlsx",
            sheet = "Sheet1")
dineen_nishimura_counts_matrix <- dineen_nishimura_counts %>%
  column_to_rownames(var = "WBGeneID") %>%
  data.matrix()
dineen_nishimura_counts_matrix %>% head
##
                  wt_sorted_1 wt_sorted_2 wt_sorted_3 wt_sorted_4 elt7D_sorted_1
## WBGene0000001
                                  8.858238
                                                                          8.505028
                     8.957161
                                              8.841623
                                                           8.923111
## WBGene00000002
                     7.489159
                                  7.382905
                                              7.518631
                                                           7.492399
                                                                          7.378168
## WBGene0000003
                     9.061810
                                  8.748589
                                              9.295497
                                                           9.286834
                                                                          9.480361
## WBGene0000004
                    10.916559
                                 10.786200
                                             11.010430
                                                          10.826657
                                                                         10.836827
## WBGene0000005
                                              3.116144
                     2.990777
                                  2.864044
                                                           2.715502
                                                                          2.584081
## WBGene0000007
                                                                          5.699261
                     5.799066
                                  6.026780
                                              5.831420
                                                           6.072836
##
                  elt7D_sorted_2 elt7D_sorted_3 elt2D_sorted_1 elt2D_sorted_2
## WBGene0000001
                                        8.517438
                                                        9.172904
                                                                       9.249496
                        8.568569
## WBGene00000002
                        7.582425
                                        7.512668
                                                       7.503760
                                                                       7.289884
## WBGene0000003
                        9.451384
                                        9.008938
                                                       8.669299
                                                                       8.593847
## WBGene0000004
                       10.806534
                                       10.819497
                                                       10.303062
                                                                      10.296768
## WBGene0000005
                         2.881642
                                        2.827526
                                                        2.953325
                                                                       2.835451
## WBGene0000007
                         5.492677
                                        5.220378
                                                        4.683237
                                                                       4.797660
##
                  elt2D_sorted_3 elt2D_sorted_4 elt2Delt7D_sorted_1
## WBGene0000001
                        9.211660
                                        9.346959
                                                             9.379698
## WBGene00000002
                        7.386127
                                        7.262063
                                                             7.904008
## WBGene0000003
                        8.753835
                                        8.781267
                                                             8.791018
## WBGene0000004
                       10.356820
                                       10.366512
                                                            10.332489
## WBGene0000005
                         2.886842
                                        2.979650
                                                             2.499412
## WBGene0000007
                                                             4.602235
                         4.495252
                                        4.593047
##
                  elt2Delt7D_sorted_2 elt2Delt7D_sorted_3
                                                  9.101997
## WBGene0000001
                              9.217403
## WBGene00000002
                             7.870852
                                                  7.762023
## WBGene0000003
                             8.795191
                                                  8.936724
## WBGene0000004
                                                 10.597407
                             10.223675
## WBGene0000005
                             2.763405
                                                  2.428255
## WBGene00000007
                              4.641832
                                                  4.476899
```

list of all dynamically expressed genes

```
dynamic_regulated_genes <-</pre>
  read.table(file = "./01_input/2017-11-20_all_changing_genes_0.1alpha_0.8lfc.txt",
             quote = "",
             header = FALSE)
colnames(dynamic_regulated_genes) <- "WBGeneID"</pre>
dynamic_regulated_genes %>% head
##
           WBGeneID
## 1 WBGene00004020
## 2 WBGene00015956
## 3 WBGene00000216
## 4 WBGene00001795
## 5 WBGene00008167
## 6 WBGene00010049
Load differential expression clusters from Dineen and Nishimura et al (2018).
dineen_nishimura_clusters <-
  read xlsx(path = "./01 input/Table S6 All Dynamically Expressed Genes Clusters.xlsx",
            sheet = "dataset")
dineen_nishimura_sets <-
  dineen_nishimura_clusters %>% select(WBGeneID, set)
dineen nishimura sets ascend <-
  arrange(dineen_nishimura_sets, WBGeneID)
dineen_nishimura_sets_ascend$set <-</pre>
  toupper(dineen_nishimura_sets_ascend$set)
dineen_nishimura_sets_ascend %>% head
## # A tibble: 6 x 2
##
    WBGeneID
##
     <chr>>
                     <chr>
## 1 WBGene00000007 SET6
## 2 WBGene00000008 SET6
## 3 WBGene00000009 SET3
## 4 WBGene00000013 SET1
## 5 WBGene00000016 SET1
## 6 WBGene00000017 SET1
```

Load ELT-2 ChIP-seq binding annotations

Make sure the column names are correct here and that the factor levels match the cluster description names

```
# temp_peaks <- mcols(readRDS("/Users/rtpw/Dropbox/01_GITHUBREPO/RWC23_elt2_regulated_genes/01_ChIPseq_
# write.csv(temp_peaks, file = "./01_input/201019_annotatedPeaks.csv")
library(GenomicRanges)
## Loading required package: stats4</pre>
```

```
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
```

```
## The following objects are masked from 'package:parallel':
##
       clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##
       clusterExport, clusterMap, parApply, parCapply, parLapply,
##
##
       parLapplyLB, parRapply, parSapply, parSapplyLB
  The following objects are masked from 'package:lubridate':
##
##
       intersect, setdiff, union
##
  The following objects are masked from 'package:dplyr':
##
##
       combine, intersect, setdiff, union
##
  The following objects are masked from 'package:stats':
##
##
##
       IQR, mad, sd, var, xtabs
##
  The following objects are masked from 'package:base':
##
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##
       union, unique, unsplit, which, which.max, which.min
## Loading required package: S4Vectors
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:lubridate':
##
##
       second, second <-
##
  The following objects are masked from 'package:dplyr':
##
##
       first, rename
## The following object is masked from 'package:tidyr':
##
##
       expand
## The following object is masked from 'package:base':
##
##
       expand.grid
## Loading required package: IRanges
## Attaching package: 'IRanges'
## The following object is masked from 'package:lubridate':
##
       %within%
##
## The following objects are masked from 'package:dplyr':
##
##
       collapse, desc, slice
```

```
## The following object is masked from 'package:purrr':
##
##
       reduce
## Loading required package: GenomeInfoDb
elt2_peaks <- as.data.frame(mcols(readRDS("./01_input/201109_annotatedPeaks.rds")))
# elt2_peaks <- elt2_peaks %>% rename(cluster.description = k4labels, WBGeneID = feature)
# use this to rename the columns when knitting
elt2 peaks <- elt2 peaks %% rename(k4labels = "cluster.description", feature = "WBGeneID")
elt2_cluster_names <- c("Embryo_Specific",</pre>
                         "Larval",
                         "Increasing",
                         "L3_High",
                         "Not Changing")
elt2_peaks$cluster.description <-</pre>
  factor(
    elt2_peaks$cluster.description,
    levels = c(
      "LE-specific",
      "Post-embryonic",
      "Increasing",
      "L3-high",
      "Not-changing or not IDR-passing"
    ),
    labels = elt2_cluster_names
elt2 peaks %>% head
                               LE_2
                                                                    L3_2 LE_IDR
                     LE_1
                                        L1_1
                                                 L1_2
                                                          L3_1
## ELT2peak00002 1.683526 1.347923 2.673772 2.861924 4.944366 5.051280
                                                                              0
## ELT2peak00003 1.879706 1.724893 2.865070 3.237039 4.966392 5.921998
                                                                              0
## ELT2peak00004 0.540568 0.554968 1.584962 1.543142 2.828888 3.314315
                                                                              0
## ELT2peak00005 1.273018 0.778786 2.362570 2.140178 3.876194 4.516944
                                                                              0
## ELT2peak00006 2.000000 1.972414 2.596804 2.417018 4.078502 4.157214
                                                                              1
## ELT2peak00007 1.955606 2.023084 3.429138 2.929611 4.141166 4.544049
                                                                              1
##
                 L1_IDR L3_IDR k4cluster k6cluster k4weights k6weights
## ELT2peak00002
                      1
                              1
                                                  6
                                                         0.990
                                                                   1.000
                                        4
                                                  6
                                                         0.998
                                                                   1.000
## ELT2peak00003
                      1
                              1
                      0
                                        4
                                                  6
                                                         0.942
## ELT2peak00004
                              1
                                                                   1.000
                      0
                                        4
## ELT2peak00005
                              1
                                                  6
                                                         0.965
                                                                   1.000
                                        4
## ELT2peak00006
                      1
                              1
                                                  6
                                                         0.904
                                                                   1.000
## ELT2peak00007
                      1
                              1
                                        4
                                                  5
                                                         0.666
                                                                   1.000
##
                 LE_nonNormed L1_nonNormed L3_nonNormed LE_std L1_std L3_std
## ELT2peak00002
                        1.516
                                      2.768
                                                   4.998 -0.895 -0.185 1.080
## ELT2peak00003
                        1.802
                                      3.051
                                                   5.444 -0.881 -0.206 1.087
## ELT2peak00004
                        0.548
                                      1.564
                                                   3.072 -0.929 -0.129 1.058
## ELT2peak00005
                        1.026
                                      2.251
                                                   4.197 -0.916 -0.150
                                                                         1.067
## ELT2peak00006
                        1.986
                                      2.507
                                                   4.118 -0.796 -0.327
                                                                         1.123
                                                   4.343 -1.004 0.008 0.996
## ELT2peak00007
                        1.989
                                      3.179
##
                          name cluster.description variance
                                                                       peak
```

```
Increasing 3.424986 ELT2peak00003
## ELT2peak00003 ELT2peak00003
## ELT2peak00004 ELT2peak00004
                                          Increasing 1.612546 ELT2peak00004
## ELT2peak00005 ELT2peak00005
                                          Increasing 2.556449 ELT2peak00005
## ELT2peak00006 ELT2peak00006
                                          Increasing 1.235036 ELT2peak00006
## ELT2peak00007 ELT2peak00007
                                          Increasing 1.384521 ELT2peak00007
                        WBGeneID start_position end_position feature_strand
## ELT2peak00002 WBGene00022277
                                            4116
                                                        10230
## ELT2peak00003 WBGene00022276
                                           11495
                                                        16837
## ELT2peak00004 WBGene00022276
                                           11495
                                                        16837
## ELT2peak00005 WBGene00022276
                                           11495
                                                        16837
                                                        26781
## ELT2peak00006 WBGene00022278
                                           17487
## ELT2peak00007 WBGene00022278
                                           17487
                                                        26781
                  insideFeature distancetoFeature shortestDistance
##
                                              3097
## ELT2peak00002
                    overlapEnd
                                                                 217
## ELT2peak00003
                  overlapStart
                                             -2760
                                                                 267
## ELT2peak00004
                         inside
                                                30
                                                                1965
## ELT2peak00005
                         inside
                                              1250
                                                                1180
                                              5030
## ELT2peak00006
                    overlapEnd
                                                                  42
## ELT2peak00007
                         inside
                                                53
                                                                3734
##
                 fromOverlappingOrNearest
                               Overlapping
## ELT2peak00002
## ELT2peak00003
                               Overlapping
## ELT2peak00004
                               Overlapping
## ELT2peak00005
                               Overlapping
## ELT2peak00006
                               Overlapping
## ELT2peak00007
                               Overlapping
Output the number of ELT-2 peaks within each binding class.
table(mcols(readRDS(file = "./01_input/201109_annotatedPeaks.rds"))$k4labels)
##
##
                         Increasing
                                                              L3-high
##
                               5428
                                                                 2797
##
                        LE-specific Not-changing or not IDR-passing
##
                                273
                                                                  551
##
                    Post-embryonic
##
                               1963
Make a set of genes with ELT-2 binding detected in the L1 stage.
elt2 detected in L1 <-
  elt2_peaks %>% select(WBGeneID, L1_IDR) %>% filter(L1_IDR == 1) %>% select(WBGeneID) %>% unique()
elt2_detected_in_L1 %>% head
##
           WBGeneID
## 1 WBGene00022277
## 2 WBGene00022276
## 3 WBGene00022278
## 6 WBGene00021681
## 7 WBGene00002077
## 8 WBGene00004143
elt2_detected_in_L1 %>% dim
```

Increasing 3.110935 ELT2peak00002

ELT2peak00002 ELT2peak00002

```
## [1] 3791 1
```

Make a dataframe that records the number of peaks per gene that fall in a particular binding catagory.

```
binding_cluster_gene_counts <-
   table(elt2_peaks$WBGeneID, elt2_peaks$cluster.description)
binding_cluster_gene_counts <-
   as.data.frame.matrix(binding_cluster_gene_counts)
binding_cluster_gene_counts %>% head()
```

##		<pre>Embryo_Specific</pre>	Larval	Increasing	L3_High	Not_Changing
##	${\tt WBGene00000004}$	0	0	1	0	0
##	WBGene00000007	0	0	2	0	0
##	WBGene00000008	0	0	1	0	0
##	WBGene00000009	0	0	0	0	1
##	WBGene00000018	0	0	3	0	0
##	WBGene00000022	0	0	1	0	0

Load Spencer et. al. intestine expression

This data is from a 2011 paper using FACS sorting of Late Embryo (LE) and Larval Stage 2 (L2) intestine cells, measured with microarray. See Spencer et. al, (2011).

```
spencerLEgenes <-
 read.table(
    "./01_input/Spencer_et_al_2010_FACS_and_pulldown_tilling_array/LE-intestine_enr_vs_ref.WS200.txt",
    quote = "\"",
    comment.char = "",
    header = TRUE
  )
colnames(spencerLEgenes) <-</pre>
  str_c("spencer_LE_", colnames(spencerLEgenes))
spencer_LE_subset <-</pre>
  spencerLEgenes %>% select(spencer_LE_ID,
                             spencer_LE_AveExpr,
                             spencer_LE_adj_P_Val,
                             spencer_LE_FC)
spencer LE subset %>% head
      spencer_LE_ID spencer_LE_AveExpr spencer_LE_adj_P_Val spencer_LE_FC
## 1 WBGene00008163
                                   7.57
                                                                       13.86
## 2 WBGene00021252
                                   8.21
                                                             0
                                                                        7.30
## 3 WBGene00019986
                                   9.29
                                                             0
                                                                       10.67
## 4 WBGene00007904
                                                             0
                                                                        6.89
                                   8.16
## 5 WBGene00012018
                                                                        6.25
                                  10.14
                                                             0
## 6 WBGene00010540
                                   8.43
                                                                        4.15
```

```
spencerL2genes <-
   read.table(
    "./01_input/Spencer_et_al_2010_FACS_and_pulldown_tilling_array/L2-intestine_enr_vs_ref.WS200.txt",
   quote = "\"",
   comment.char = "",
   header = TRUE
  )
colnames(spencerL2genes) <-</pre>
```

```
str_c("spencer_L2_", colnames(spencerL2genes))
spencer_L2_subset <- spencerL2genes %>%
  select(spencer_L2_ID,
         spencer_L2_AveExpr,
         spencer_L2_adj_P_Val,
         spencer_L2_FC)
spencer L2 subset %>% head
      spencer_L2_ID spencer_L2_AveExpr spencer_L2_adj_P_Val spencer_L2_FC
## 1 WBGene00020352
                                   7.52
## 2 WBGene00017225
                                   7.28
                                                            0
                                                                       5.32
                                   7.91
## 3 WBGene00007973
                                                            0
                                                                       5.93
## 4 WBGene00018683
                                   8.27
                                                            0
                                                                       5.10
                                                            0
## 5 WBGene00003696
                                   7.95
                                                                       3.73
## 6 WBGene00044776
                                   7.77
                                                                       6.65
```

Process rlog counts

Subset rlog matrix based on presence in list 2017-11-20_all_changing_genes_0.1alpha_0.8lfc.txt. Row scale and center the rlog counts per genes.

```
##
                  wt_sorted_1 wt_sorted_2 wt_sorted_3 wt_sorted_4 elt7D_sorted_1
## WBGene00000007
                    1.0068329 1.37348252
                                            1.0589277
                                                        1.4476397
                                                                      0.84613352
## WBGene00000008
                    2.2632093 1.13063525
                                            1.1251278
                                                        1.0262925
                                                                     -0.03607787
## WBGene00000009
                    0.1468716 -0.09556483 -0.3465276 -0.8378633
                                                                      0.07003147
## WBGene00000013 -1.0765042 0.04628523
                                           -1.0478603
                                                       -0.4296435
                                                                     -0.61401384
## WBGene00000016 -0.1629274 0.14035593
                                          -0.8318355
                                                       -0.2209018
                                                                     -0.52814604
## WBGene0000017
                    0.1344074 0.43209491 -0.4453539
                                                        0.5202470
                                                                     -0.19720767
##
                  elt7D sorted 2 elt7D sorted 3 elt2D sorted 1 elt2D sorted 2
## WBGene0000007
                      0.51350637
                                     0.07506888
                                                    -0.7898010
                                                                    -0.6055647
## WBGene00000008
                     -0.39030667
                                     0.02722321
                                                                   -1.0292850
                                                    -0.4521136
## WBGene00000009
                     -0.11586861
                                     0.42221560
                                                     0.8406016
                                                                     1.2349599
## WBGene0000013
                     -0.58009755
                                    -0.38693983
                                                    -0.4767996
                                                                    0.3851813
## WBGene0000016
                     -0.50445577
                                    -0.16186256
                                                    -0.5681545
                                                                   -0.6137809
## WBGene0000017
                      0.05519157
                                     0.37152702
                                                    -0.9790560
                                                                   -1.0378885
##
                  elt2D_sorted_3 elt2D_sorted_4 elt2Delt7D_sorted_1
## WBGene0000007
                     -1.09248186
                                     -0.9350192
                                                         -0.9202246
## WBGene00000008
                     -0.46498937
                                     -0.8771172
                                                         -0.9402531
## WBGene00000009
                      0.98161197
                                     1.7266509
                                                         -1.7004545
## WBGene0000013
                      0.09286966
                                     -0.5163112
                                                          2.5457794
```

```
-0.75209134 -1.0136068
-1.16996644 -1.7376299
## WBGene0000016
                                                             1.7015008
## WBGene0000017
                                                            1.4066491
##
                  elt2Delt7D sorted 2 elt2Delt7D sorted 3
## WBGene0000007
                                                 -1.1220323
                            -0.8564679
## WBGene00000008
                            -0.5550156
                                                 -0.8273297
## WBGene00000009
                            -0.8668929
                                                 -1.4597714
## WBGene0000013
                             1.4999051
                                                  0.5581492
## WBGene0000016
                             2.1353949
                                                  1.3805110
## WBGene0000017
                             1.6701858
                                                  0.9767996
dynamic_counts_matrix_scaled_ascend <-</pre>
  dynamic_counts_matrix_scaled[order(rownames(dynamic_counts_matrix_scaled)),]
```

Must use arrange to sort genes in descending order to ensure row order is preserved

Recreate Supplementary Figure S4a from Dineen and Nishimura et al.

Use expression clusters from Dineen and Nishimura et al to split the clusters.

```
Heatmap(
    dynamic_counts_matrix_scaled_ascend,
    name = "elt2D-elt7D\nRNAseq",
    col = colorRampPalette(c("cyan", "black", "yellow"))(1000),
    cluster_columns = FALSE,
    clustering_distance_rows = "spearman",
    clustering_method_rows = "complete",
    show_row_names = FALSE,
    show_column_names = TRUE,
    row_names_gp = gpar(cex = 0.2),
    column_names_gp = gpar(cex = 0.4),
    heatmap_legend_param = list(color_bar = "continuous"),
    row_split = dineen_nishimura_sets_ascend$set
)
```


Add expression set and column labels.

```
RNA_column_order <-
  factor(c(
    rep("WT", 4),
    rep("elt7D", 3),
    rep("elt2D", 4),
    rep("elt7Delt2D", 3)
  ),
  levels = c("WT", "elt7D", "elt2D", "elt7Delt2D"))
RNA_column_order
##
   [1] WT
                    WT
                               WT
                                           WT
                                                      elt7D
                                                                  elt7D
   [7] elt7D
                    elt2D
                                           elt2D
                                                      elt2D
                                                                  elt7Delt2D
                               elt2D
## [13] elt7Delt2D elt7Delt2D
## Levels: WT elt7D elt2D elt7Delt2D
column_labels <-</pre>
  structure(
    c(
      "rep1",
      "rep2",
      "rep3",
      "rep4",
      "rep1",
      "rep2",
      "rep3",
      "rep1",
```

```
"rep2",
      "rep3",
      "rep4",
      "rep1",
      "rep2",
      "rep3"
    ),
    names = colnames(dynamic_counts_matrix_scaled_ascend)
column_labels
##
           wt_sorted_1
                                wt\_sorted_2
                                                     wt_sorted_3
                                                                         wt_sorted_4
##
                "rep1"
                                     "rep2"
                                                          "rep3"
                                                                               "rep4"
##
        elt7D_sorted_1
                             elt7D_sorted_2
                                                 elt7D_sorted_3
                                                                      elt2D_sorted_1
##
                                                          "rep3"
                "rep1"
                                     "rep2"
                                                                               "rep1"
##
                                                 elt2D_sorted_4 elt2Delt7D_sorted_1
        elt2D_sorted_2
                             elt2D_sorted_3
                                                          "rep4"
                                                                               "rep1"
                "rep2"
                                     "rep3"
##
##
  elt2Delt7D_sorted_2 elt2Delt7D_sorted_3
##
                "rep2"
Ha <- Heatmap(</pre>
  dynamic_counts_matrix_scaled_ascend,
  name = "elt2D-elt7D\nRNAseq",
  col = colorRampPalette(c("cyan", "black", "yellow"))(1000),
  cluster_columns = FALSE,
  clustering_distance_rows = "spearman",
  clustering_method_rows = "complete",
  show_row_names = FALSE,
  show column names = TRUE,
  column_labels = column_labels[colnames(dynamic_counts_matrix_scaled_ascend)],
  column_names_gp = gpar(cex = 0.7),
  heatmap_legend_param = list(color_bar = "continuous"),
  row_split = dineen_nishimura_sets_ascend$set,
  row_title = NULL,
  column_title = NULL,
  column_split = RNA_column_order,
  bottom_annotation = HeatmapAnnotation(
   foo = anno_block(
      labels = c("WT", "elt7D", "elt2D", "elt7D;elt2D"),
      labels_gp = gpar(cex = .8),
      gp = gpar(border = NA, lty = "blank")
      ),
    foo2 = anno_block(gp = gpar(fill = "black"), height = unit(0.5, "mm"))
  ),
  left_annotation = rowAnnotation(foo = anno_block())
    labels = c("SET1", "SET2", "SET3", "SET4", "SET5", "SET6"),
    labels_rot = 0,
    gp = gpar(border = NA, lty = "blank", cex = 0.4)
 ))
)
Нa
```


Sanity check to ensure that cluster splitting is occuring correctly. Remap the Set assignments back to the heatmap as a row annotation.

```
Ha + rowAnnotation(set = dineen_nishimura_sets_ascend$set)
```


Add L1 stage ELT-2 binding

This section will add annotation to the rows of the elt2/elt7 differentiall expression heatmap with ELT-2 ChIP-seq binding during the L1 stage. This will determine what differential expression sets associate with ELT-2 binding during the L1 stage. The reason L1 stage ChIP-seq eaks are being used is because the elt2/elt7 RNA-seq experiment was conducted in the L1 stage.

In ComplexHeatmap the row order of input matrix and annotation df must be identical to accurately plot data.

WBGeneID elt2_detected_in_L1

##

```
## 1 WBGene00000007 bound

## 2 WBGene00000008 bound

## 3 WBGene00000009 not.bound

## 4 WBGene00000013 not.bound

## 5 WBGene00000016 not.bound

## 6 WBGene00000017 not.bound
```

Incorporate this into a heatmap annotation


```
if (plot == TRUE){
myPDFplot(Ha_L1chip, "01a_DE_Heatmap_elt2elt7DERNAseq_L1elt2bound", 4, 4.5, plotdir)
}
```

Add Spencer intestine data

```
spencer_rna_anno <- data.frame(
   spencerLE = ifelse(
     test = rownames(dynamic_counts_matrix_scaled_ascend) %in% spencer_LE_subset$spencer_LE_ID,
     yes = "enriched",
     no = "depleted"
),</pre>
```

```
spencerL2 = ifelse(
    test = rownames(dynamic_counts_matrix_scaled_ascend) %in% spencer_L2_subset$spencer_L2_ID,
    yes = "enriched",
    no = "depleted"
  )
)
Ha_L1chip_spencer <- Ha_L1chip +</pre>
  rowAnnotation(
    LE.intestine = spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  ) +
  rowAnnotation(
    L2.intestine = spencer_rna_anno$spencerL2,
    col = list(L2.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  )
Ha_L1chip_spencer
```



```
if (plot == TRUE) {
   myPDFplot(Ha_L1chip_spencer, "01b_DE_Heatmap_elt2elt7DERNAseq_L1elt2bound_spencerRNA", height = 6.5,
```

```
}
```

Visually it appears that some elt2/elt7 differential expression clusters have more or less ELT-2 binding associated with the sets. I would like to be more quantitative with this assessment.

Determine enrichment of ELT-2 binding during L1 stage. I will calculate the percentage of genes with an ELT-2 ChIP-seq peak detected during the L1 stage.

First use merge to combine the ELT-2 binding status and expression set for each gene.

```
expression_L1_binding <-
  merge(elt2_L1_anno, dineen_nishimura_sets_ascend, by = "WBGeneID")
expression_L1_binding %>% head
```

```
## WBGeneID elt2_detected_in_L1 set
## 1 WBGene00000007 bound SET6
## 2 WBGene00000008 bound SET6
## 3 WBGene00000009 not.bound SET3
## 4 WBGene00000013 not.bound SET1
## 5 WBGene00000016 not.bound SET1
## 6 WBGene00000017 not.bound SET1
```

Next use table to tally the number of bound and not bound genes per expression set.

```
##
##
           bound not.bound
##
     SET1
              48
                         243
             255
##
     SET2
                         953
##
     SET3
             216
                         189
##
     SET4
              51
                          52
##
              26
                          39
     SET5
##
     SET6
             366
                         654
```

Use prop.table to convert these values to percentages within each set.

```
clust_L1bound_prop <- prop.table(clust_L1bound_counts, 1)
clust_L1bound_prop</pre>
```

```
## bound not.bound
## SET1 0.1649485 0.8350515
## SET2 0.2110927 0.7889073
## SET3 0.5333333 0.4666667
## SET4 0.4951456 0.5048544
## SET5 0.4000000 0.6000000
## SET6 0.3588235 0.6411765
```

Adjust the percentages object into a dataframe that ggplot2 can use.

```
clust_Libound_prop_ggplot <- as.data.frame(clust_Libound_prop)

colnames(clust_Libound_prop_ggplot) <- c("SET", "Status", "Freq")

clust_Libound_prop_ggplot$Status <-</pre>
```

```
factor(clust_L1bound_prop_ggplot$Status,
         levels = c("not.bound", "bound"))
clust_L1bound_prop_ggplot$SET <-</pre>
  factor(
    clust_L1bound_prop_ggplot$SET,
    levels = c("SET6", "SET5", "SET4", "SET3", "SET2", "SET1")
  )
clust_L1bound_colors <- c("bound" = "green", "not.bound" = "black")</pre>
l1bound_percents <-
  ggplot(
    clust_L1bound_prop_ggplot %>% filter(Status == "bound"),
    aes(
     x = SET,
     y = Freq,
     fill = Status,
      order = Status
    )
  ) +
  geom_bar(stat = "identity") +
  scale_color_manual(values = clust_L1bound_colors,
                     aesthetics = c("color", "fill")) +
  ggtitle("Percentage of L1 Stage ELT-2 Binding Per
          Expression Set") +
  xlab("Expression Set") +
  ylab("Percentage") +
  theme_classic() +
  theme(axis.text.x = element_text(size = 13)) +
  ylim(0, 1)
11bound_percents
```

Percentage of L1 Stage ELT–2 Binding Per Expression Set

This plot shows that all of the differential expression sets have less than 50% of genes bound by ELT-2.

Rather than viewing percentages of genes bound, what is the number of "bound" vs "not.bound" per cluster?

bound_per_cluster

Number of L1 Stage ELT–2 Binding Site Per Expression Set


```
if (plot == TRUE){
myggsave(
  plot = bound_per_cluster,
  name = "03_number_of_l1elt2_per_expression_cluster",
  height = 2,
  width = 5,
  plotdir = plotdir
)
}
```

Use the binomial test to determine if the different expression clusters are enriched or depleted for ELT-2 binding.

Use binom.test and first do a two-tailed test.

First calculate the proportion of bound genes over the total number of genes in the analysis.

```
proportion = as.numeric(colSums(clust_L1bound_counts)[1]) /
   as.numeric(colSums(clust_L1bound_counts)[1] + colSums(clust_L1bound_counts)[2])
proportion
```

[1] 0.3111255

Use custom function ctable_binom() to calculate p-vaule and confidence intervals for each set.

```
l1bound_binom <- ctable_binom(clust_L1bound_counts, "two.sided")</pre>
```

```
## Set pval conf.lower conf.upper bool
```

```
## 1 SET1 1.823780e-08 0.1241945 0.2126797 TRUE

## 2 SET2 9.784777e-15 0.1883918 0.2352090 TRUE

## 3 SET3 2.243890e-20 0.4834195 0.5827566 TRUE

## 4 SET4 1.067986e-04 0.3951388 0.5954388 TRUE

## 5 SET5 1.399473e-01 0.2803996 0.5290211 FALSE

## 6 SET6 1.159516e-03 0.3293409 0.3891237 TRUE
```

This says that all sets but SET5 have a significant difference in genes bound compared to the entire dataset.

Now use the less or greater argument of binom.test to see if there is more or less binding.

```
ctable_binom(ctable = clust_L1bound_counts, alt = "less")
##
     Set
                 pval conf.lower conf.upper bool
## 1 SET1 9.140980e-09
                               0 0.2049756
## 2 SET2 4.714859e-15
                               0 0.2313324 TRUE
## 3 SET3 1.000000e+00
                               0 0.5750622 FALSE
## 4 SET4 9.999672e-01
                               0 0.5803138 FALSE
## 5 SET5 9.512219e-01
                               0 0.5095451 FALSE
## 6 SET6 9.994911e-01
                               0 0.3842976 FALSE
```

This says that set 1 and 2 have less ELT-2 binding compared to the entire dataset.

Now try greater.

```
ctable_binom(clust_L1bound_counts, "greater")
```

```
##
                  pval conf.lower conf.upper bool
      Set
## 1 SET1 1.000000e+00 0.1301165
                                           1 FALSE
## 2 SET2 1.000000e+00
                        0.1919018
                                           1 FALSE
## 3 SET3 1.670307e-20
                        0.4912403
                                           1 TRUE
                                           1 TRUE
## 4 SET4 7.458666e-05
                        0.4101914
## 5 SET5 8.076086e-02
                        0.2975268
                                           1 FALSE
## 6 SET6 6.418951e-04
                                             TRUE
                       0.3339551
```

This says that SET3, SET4 and SET6 have a higher percentage of genes bound compared the "background" percent of bound genes for the entire dataset.

Make a plot that visually depicts this. Draw line on the percentage plot to indicate background percentage of L1 stage ELT-2 binding.


```
if (plot == TRUE) {
myggsave(
  plot = l1bound_percents_verticle,
  name = "04_percentage_l1bound_per_expression_cluster",
  width = 4,
  height = 5,
  plotdir = plotdir
)
}
```

Use the hypergeometric test to determine: Are changing genes (all sets) enriched for L1 binding?

```
N <- 20470
k <- nrow(elt2_detected_in_L1)
x3 <- as.numeric(colSums(clust_L1bound_counts)[1])
m <-
    as.numeric(colSums(clust_L1bound_counts)[1] + colSums(clust_L1bound_counts)[2])
dhyper(x3, m, N, k)</pre>
```

[1] 3.779117e-113

A very small p-value for the hypergeometric test suggests that the entire dataset is enriched for ELT-2.

The next section with compute pairwise fisher's exact tests for the different sets. I have a difficult time interpreting these results.

```
fisher.multcomp(clust_L1bound_counts, p.method = "bonferroni")
```

##
Pairwise comparisons using Fisher's exact test for count data

```
##
## data: clust_L1bound_counts
##
##
             SET1
                       SET2
                                  SET3
                                         SET4 SET5
## SET2 1.000e+00
## SET3 5.808e-23 1.189e-31
## SET4 4.510e-09 2.175e-08 1.000e+00
## SET5 1.101e-03 1.521e-02 9.100e-01 1.0000
## SET6 1.253e-09 1.810e-13 3.057e-08 0.1112
##
## P value adjustment method: bonferroni
fisher.multcomp(clust_L1bound_counts, p.method = "bonferroni")$p.value < 0.05
##
         SET1 SET2
                    SET3
                          SET4
                                 SET5
## SET2 FALSE
                NA
                      NA
                             NA
                                   NA
## SET3
        TRUE TRUE
                             NA
                                   NA
## SET4
         TRUE TRUE FALSE
                             NA
                                   NA
## SET5
         TRUE TRUE FALSE FALSE
                                   NA
         TRUE TRUE
                   TRUE FALSE FALSE
```

Row annotation of ELT-2 Binding Pattern Clusters

This section will add annotation to the rows of the elt2/elt7 differentiall expression heatmap with ELT-2 ChIP-seq binding pattern clusters. This will determine what differential expression sets associate with ELT-2 binding patters.

Start by using custom function make_cluster_annotation(). This function takes two objects: the matrix of gene expression values and a dataframe of counts ELT-2 binding patterns per genes. It returns a dataframe with the number of ELT-2 binding categories associated with each gene.

```
##
           WBGeneID Embryo Specific Larval Increasing L3 High Not Changing
## 1 WBGene00000007
                                     0
                                            0
                                                        2
## 2 WBGene00000008
                                     0
                                                                               0
                                            0
                                                        1
                                                                 0
## 3 WBGene00000009
                                     0
                                            0
                                                        0
                                                                 0
                                                                               1
## 4 WBGene00000013
                                     0
                                            0
                                                        0
                                                                 0
                                                                               0
## 5 WBGene0000016
                                     0
                                            0
                                                        0
                                                                               0
                                                                 0
## 6 WBGene00000017
                                     0
                                            0
                                                                 0
                                                                               0
```

Sanity check to ensure that the order and number of rows is preserved.

```
unique(rownames(dynamic_counts_matrix_scaled_ascend) == chip_annotation$WBGeneID)
## [1] TRUE
```

```
nrow(dynamic_counts_matrix_scaled) == nrow(chip_annotation)
```

[1] TRUE

Build add row annotation for the number of ELT-2 binding clusters associated with each gene.

```
Ha_L1chip_bindcluster <- Ha_L1chip +
  rowAnnotation(Embryo_Specific = chip_annotation$Embryo_Specific) +
  rowAnnotation(Larval = chip_annotation$Larval) +
  rowAnnotation(Increasing = chip_annotation$Increasing) +
  rowAnnotation(L3_High = chip_annotation$L3_High) +
  rowAnnotation(Not_Changing = chip_annotation$Not_Changing)
Ha_L1chip_bindcluster</pre>
```


Have the colors match plot from David.

Convert ChIP binding clusters to a present/absence list.

```
chip_annotation_present_absent <-
make_cluster_binary_annotation(chip_annotation)</pre>
```

Plot the heatmap with presence/absence.

```
Ha_L1chip_clusterchip <-
Ha_L1chip + binding_cluster_row_annotation(chip_annotation_present_absent)</pre>
```

Ha_L1chip_clusterchip


```
if(plot == TRUE){
  myPDFplot(
    plot = Ha_L1chip_clusterchip,
    name = "05a_DE_Heatmap_L1elt2bound_elt2bindclusters_anno",
    height = 6.5,
    width = 6,
    plotdir = plotdir
)
}
```

Add Spencer intestine RNA row annotation

```
Ha_L1chip_clusterchip_spencerRNA <- Ha_L1chip_clusterchip +
  rowAnnotation(
    LE.intestine = spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
        "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
) +
  rowAnnotation(
    L2.intestine = spencer_rna_anno$spencerL2,
    col = list(L2.intestine = c(
        "enriched" = "blue", "depleted" = "white"
    )),</pre>
```

```
border = TRUE
  )
Ha_L1chip_clusterchip_spencerRNA
        SET1
                                                                   elt2D-elt7D
                                                                                      Not_Changing
                                                                                         absent
                                                                   RNAseq
                                                                      4
                                                                                       present
                                                                      2
                                                                                      LE.intestine
        SET2
                                                                      0
                                                                                          depleted
                                                                      -2
                                                                                       enriched
                                                                      -4
                                                                                      L2.intestine
                                                                   L1bound
                                                                                         depleted
        SET3
                                                                      bound
                                                                                        enriched
                                                                    not.bound
        SET4
                                                                   Embryo_Specific
                                                                      absent
                                                                      present
        SET6
                                                                   Larval
                                                                      absent
                                                                      present
                                                 L3_High[
                 W Telt7 6 t 1200; elt 200 o q 1
                                             Increasing [
                                         Larval
                                                          LE.intestine
                                    Embryo_Specific
                                                      Not_Changing
                                                               L2.intestine
                                                                   Increasing
                                                                      absent
                                                                     present
                                                                   L3_High
                                                                      absent
                                                                      present
if (plot == TRUE){
  myPDFplot(
    plot = Ha_L1chip_clusterchip_spencerRNA,
    name = "05b_DE_Heatmap_L1elt2bound_elt2bindclusters_spencerRNA_anno",
    height = 6.5,
    width = 8,
    plotdir = plotdir
  )
  }
Plot percentage of expression cluster group having binding pattern assignment.
exprclust_bindclust <-
  merge(
    dineen_nishimura_sets_ascend,
```

```
exprclust_bindclust <-
  merge(
    dineen_nishimura_sets_ascend,
    chip_annotation_present_absent,
    by.x = "WBGeneID",
    by.y = "WBGeneID"
)

exprclust_bindclust %>% head
```

WBGeneID set Embryo_Specific Larval Increasing L3_High Not_Changing

##

```
## 1 WBGene00000007 SET6
                                  absent absent
                                                   present
                                                            absent
                                                                          absent
## 2 WBGene00000008 SET6
                                  absent absent
                                                            absent
                                                                          absent
                                                   present
## 3 WBGene00000009 SET3
                                  absent absent
                                                   absent absent
                                                                         present
## 4 WBGene00000013 SET1
                                  absent absent
                                                    absent absent
                                                                          absent
## 5 WBGene00000016 SET1
                                  absent absent
                                                    absent absent
                                                                          absent
## 6 WBGene00000017 SET1
                                  absent absent
                                                    absent absent
                                                                          absent
```

What is the percentage of genes with annotated ELT2 binding clusters per expression dataset?

Make a dataframe that addresses the question:

```
##
       set absent present
                             ELT2 cluster
                                               percent
## 1 SET1
              286
                        5 Embryo_Specific 0.017182131
                       13 Embryo_Specific 0.010761589
## 2
     SET2
             1195
## 3 SET3
              403
                        2 Embryo_Specific 0.004938272
## 4
     SET4
              101
                         2 Embryo_Specific 0.019417476
## 5
     SET5
               65
                         0 Embryo_Specific 0.000000000
## 6
     SET6
                         6 Embryo_Specific 0.005882353
            1014
## 7
     SET1
              268
                       23
                                    Larval 0.079037801
## 8
     SET2
            1093
                      115
                                    Larval 0.095198675
## 9
     SET3
              270
                      135
                                    Larval 0.333333333
## 10 SET4
               72
                       31
                                    Larval 0.300970874
## 11 SET5
               52
                                    Larval 0.200000000
                       13
## 12 SET6
              814
                      206
                                    Larval 0.201960784
## 13 SET1
              232
                                Increasing 0.202749141
                       59
## 14 SET2
              925
                      283
                                Increasing 0.234271523
## 15 SET3
              184
                      221
                                Increasing 0.545679012
## 16 SET4
               47
                       56
                                Increasing 0.543689320
## 17 SET5
               42
                       23
                                Increasing 0.353846154
## 18 SET6
              667
                      353
                                Increasing 0.346078431
## 19 SET1
              266
                       25
                                   L3 High 0.085910653
## 20 SET2
             1070
                      138
                                   L3_High 0.114238411
## 21 SET3
              364
                       41
                                   L3_High 0.101234568
## 22 SET4
               98
                        5
                                   L3_High 0.048543689
```

```
## 23 SET5
               50
                       15
                                   L3_High 0.230769231
## 24 SET6
              922
                       98
                                   L3_High 0.096078431
## 25 SET1
                        7
              284
                             Not_Changing 0.024054983
## 26 SET2
                             Not_Changing 0.024006623
             1179
                       29
## 27 SET3
              400
                        5
                             Not_Changing 0.012345679
## 28 SET4
              101
                        2
                             Not_Changing 0.019417476
## 29 SET5
               60
                        5
                             Not Changing 0.076923077
## 30 SET6
             1005
                             Not_Changing 0.014705882
                       15
```

Make a plot that addresses the question: What is the percentage of genes with annotated ELT2 binding clusters per expression dataset?


```
height = 3)
}
```

What is the percentage of genes within each Expression Set that are associated with an ELT-2 binding cluster?

```
expressionSet_per_BindingCluster_plot <- ggplot(expressionSet_per_BindingCluster,
       aes(x = ELT2_cluster, y = present, fill = set)) +
  geom_bar(stat = "identity", position = "fill") +
  theme_classic()
expressionSet_per_BindingCluster_plot
  1.00
  0.75
                                                                                  set
                                                                                       SET1
                                                                                       SET2
present
0.50
                                                                                       SET3
                                                                                       SET4
                                                                                       SET5
                                                                                       SET6
  0.25
  0.00
                                                     L3_High
        Embryo_Specific
                                                                 Not_Changing
                           Larval
                                       Increasing
                                     ELT2_cluster
if (plot == TRUE){
myggsave(plot = expressionSet_per_BindingCluster_plot,
```

Make a series of horizontal barplots with percentage of ELT-2 binding cluster per expression cluster.

First, calculate the percentage of each ELT-2 binding category against the total dataset.

```
percent_bound_per_ELT2_cluster <-</pre>
  expressionSet_per_BindingCluster %>% group_by(ELT2_cluster) %>% summarise(percent = sum(present) /
                                                                               nrow(dynamic counts matri:
Next calculate the the 95% Confidence Interval with the Bionomial Test.
expressionSet_per_BindingCluster %>% group_by(set, ELT2_cluster) %>% summarise(percent = present /
                                                                                   (present + absent))
## # A tibble: 30 x 3
## # Groups:
               set [6]
##
      set
           ELT2_cluster
                            percent
##
      <chr> <fct>
                              <dbl>
## 1 SET1 Embryo_Specific 0.0172
## 2 SET1 Larval
                             0.0790
## 3 SET1 Increasing
                             0.203
## 4 SET1 L3_High
                             0.0859
## 5 SET1 Not_Changing
                             0.0241
## 6 SET2 Embryo_Specific 0.0108
## 7 SET2 Larval
                             0.0952
## 8 SET2 Increasing
                             0.234
## 9 SET2 L3_High
                             0.114
## 10 SET2 Not_Changing
                             0.0240
## # ... with 20 more rows
Calculate the binomial pvalue and confidence intervals.
# Add a column for the background percentage of ELT2 binding clusters per the whole expression dataset
expression binding stats <-
  expressionSet_per_BindingCluster %>% group_by(ELT2_cluster) %>% mutate(background_percent = sum(prese
                                                                             (sum(present) + sum(absent))
# Use binom.test to calculate pvalue and confidence intervales for the percentage of ELT2 binding clust
expression_binding_stats <- expression_binding_stats %>%
  group_by(ELT2_cluster, set) %>%
  mutate(
   pval = binom.test(
     x = c(present, absent),
      n = present + absent,
      p = background_percent,
      alternative = "two.sided"
   )$p.value,
   conf.upper = binom.test(
     x = c(present, absent),
     n = present + absent,
      p = background_percent,
      alternative = "two.sided"
   )$conf.int[2],
    conf.lower = binom.test(
      x = c(present, absent),
     n = present + absent,
      p = background_percent,
      alternative = "two.sided"
    )$conf.int[1]
```

```
expression_binding_stats$set <-
  factor(
    expression_binding_stats$set,
   levels = c("SET6", "SET5", "SET4", "SET3", "SET2", "SET1")
  )
expression_binding_stats %>% head()
## # A tibble: 6 x 9
              ELT2_cluster, set [6]
## # Groups:
##
          absent present ELT2_cluster percent background_perc~ pval conf.upper
     set
     <fct> <int> <int> <fct>
##
                                         <dbl>
                                                          <dbl> <dbl>
                                                                           <dbl>
## 1 SET1
             286
                       5 Embryo_Spec~ 0.0172
                                                        0.00906 0.198
                                                                          0.0396
## 2 SET2
            1195
                     13 Embryo_Spec~ 0.0108
                                                       0.00906 0.540
                                                                          0.0183
## 3 SET3
            403
                       2 Embryo_Spec~ 0.00494
                                                       0.00906 0.596
                                                                          0.0177
## 4 SET4
            101
                        2 Embryo Spec~ 0.0194
                                                       0.00906 0.239
                                                                          0.0684
## 5 SET5
                        0 Embryo_Spec~ 0
                                                       0.00906 1
                                                                          0.0552
             65
## 6 SET6
             1014
                        6 Embryo_Spec~ 0.00588
                                                       0.00906 0.405
                                                                          0.0128
## # ... with 1 more variable: conf.lower <dbl>
per_cluster_pattern_percent <- ggplot(expression_binding_stats,</pre>
       aes(x = set,
           y = percent, fill = ELT2_cluster)) +
  geom bar(stat = "identity") +
  scale_y_continuous(limits = c(0, 0.75)) +
  theme classic() +
  geom_hline(
   data = percent_bound_per_ELT2_cluster,
   color = "red",
   linetype = "dashed",
   aes(yintercept = percent)
  ) +
  geom_errorbar(
   ymax = expression_binding_stats$conf.upper,
   ymin = expression_binding_stats$conf.lower,
   width = 0.1
  ) +
  coord_flip() +
  facet_grid(. ~ ELT2_cluster) +
  scale_fill_manual(values = as.character(cluster_colors$val))
per_cluster_pattern_percent
```


Subset ELT-2/ELT-7 differentially expressed genes based on ELT-2 binding in L1 stage

```
HA_bound_split <- RNA_heatmap2(
    dynamic_counts_matrix_scaled_ascend,
    column_split = RNA_column_order,
    row_split = elt2_L1_anno$elt2_detected_in_L1
) + elt2_l1_row_annotation(elt2_L1_anno)
HA_bound_split</pre>
```



```
plot <- TRUE
if (plot == TRUE) {
   myPDFplot(
     plot = HA_bound_split,
     name = "05c_DE_Heatmap_L1elt2bound_split",
     height = 6.5, width = 6,
     plotdir = plotdir
)
}</pre>
```

```
## pdf
## 2
```

```
RNA_heatmap2(
    dynamic_counts_matrix_scaled_ascend,
    column_split = RNA_column_order,
    row_split = elt2_L1_anno$elt2_detected_in_L1
) +
    elt2_l1_row_annotation(elt2_L1_anno) +
    binding_cluster_row_annotation(chip_annotation_present_absent)
```



```
data.frame(
    WBGeneID = rownames(dynamic_counts_matrix_scaled_bound_only),
    set = paste("SET", kclus$cluster, sep = "")
  )
head(bound_only_sets)
##
           WBGeneID set
## 1 WBGene00000007 SET4
## 2 WBGene00000008 SET4
## 3 WBGene00000064 SET3
## 4 WBGene00000067 SET2
## 5 WBGene00000107 SET4
## 6 WBGene00000136 SET4
table(bound_only_sets$set)
##
## SET1 SET2 SET3 SET4
## 214 240 158 350
nrow(bound_only_sets)
## [1] 962
```

Draw heatmap and check that set assignment is correct.

TODO: FIX SET NAME ASSIGNMENT AND CLUSTER ORDER


```
height = 6.5, width = 6, plotdir = plotdir
   )
}
```

pdf

TODO: ROTATE CLUSTERS TO MAKE SENSE

```
Ha_bound_only +
 rowAnnotation(sets = bound_only_sets$set)
```


Ha_bound_only_chipClust

Add Spencer intestine expression row annotation

```
bound_only_spencer_rna_anno <- data.frame(
    spencerLE = ifelse(
        test = rownames(dynamic_counts_matrix_scaled_bound_only) %in% spencer_LE_subset$spencer_LE_ID,
        yes = "enriched",
        no = "depleted"
),
    spencerL2 = ifelse(
    test = rownames(dynamic_counts_matrix_scaled_bound_only) %in% spencer_L2_subset$spencer_L2_ID,
        yes = "enriched",
        no = "depleted"
)</pre>
```

```
Ha_bound_only_chipClust_spencer <- Ha_bound_only_chipClust +</pre>
       rowAnnotation(
              LE.intestine = bound_only_spencer_rna_anno$spencerLE,
              col = list(LE.intestine = c(
                     "enriched" = "blue", "depleted" = "white"
             )),
             border = TRUE
      rowAnnotation(
             L2.intestine = bound_only_spencer_rna_anno$spencerL2,
              col = list(L2.intestine = c(
                     "enriched" = "blue", "depleted" = "white"
             )),
             border = TRUE
       )
Ha_bound_only_chipClust_spencer
SET1
                                                                                                                                                                                                             elt2D-elt7D
                                                                                                                                                                                                                                                                      LE.intestine
                                                                                                                                                                                                            RNAseq
                                                                                                                                                                                                                                                                               depleted
                                                                                                                                                                                                                                                                        enriched
                                                                                                                                                                                                                      2
SET2
                                                                                                                                                                                                                                                                      L2.intestine
                                                                                                                                                                                                                      0
                                                                                                                                                                                                                                                                               depleted
                                                                                                                                                                                                                       -2
                                                                                                                                                                                                                                                                        enriched
SET3
                                                                                                                                                                                                             Embryo_Specific
                                                                                                                                                                                                                      absent
                                                                                                                                                                                                               present
                                                                                                                                                                                                            Larval
                                                                                                                                                                                                                      absent
SET4
                                                                                                                                                                                                                 present
                                                                                                                                                                                                            Increasing
                                                                                                                                                                                                                      absent
                                                                                                                                                                                                                present
                                   WT elt7D elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt
                                                                                                                                          Increasing
                                                                                                                                                                                   LE.intestine
                                                                                                                              Larval
                                                                                                                                                        L3_High
                                                                                                                                                                      Not_Changing|
                                                                                                                                                                                                L2.intestine
                                                                                                                                                                                                           L3 High
                                                                                                                                                                                                                      absent
                                                                                                                                                                                                              present
                                                                                                                                                                                                            Not_Changing
                                                                                                                                                                                                                      absent
                                                                                                                                                                                                             present
if (plot == TRUE){
       myPDFplot(
             plot = Ha_bound_only_chipClust_spencer,
             name = "09c_DE_Heatmap_L1elt2boundOnly_elt2bindclusters_spencerRNA",
             height = 6.5,
             width = 6,
             plotdir = plotdir
```

```
## pdf
##
     2
```

What is the percentage of genes with annotated ELT2 binding clusters per ex-

```
pression dataset?
bound_only_exprclust_bindclust <-</pre>
  merge(bound_only_sets,
        chip_annotation_present_absent,
        by.x = "WBGeneID",
        by.y = "WBGeneID")
bound_only_exprclust_bindclust %>% head
           WBGeneID set Embryo_Specific Larval Increasing L3_High Not_Changing
## 1 WBGene0000007 SET4
                                  absent absent
                                                    present absent
                                                                           absent
## 2 WBGene00000008 SET4
                                  absent absent
                                                    present absent
                                                                           absent
## 3 WBGene00000064 SET3
                                  absent absent
                                                    absent present
                                                                           absent
## 4 WBGene00000067 SET2
                                  absent present
                                                                           absent
                                                    present absent
## 5 WBGene00000107 SET4
                                  absent absent
                                                    present present
                                                                           absent
## 6 WBGene00000136 SET4
                                  absent present
                                                    present absent
                                                                           absent
Make a dataframe that addresses the question:
bound_only_expressionSet_per_BindingCluster <- data.frame()</pre>
for (i in elt2_cluster_names) {
  toappend <-
    table(bound_only_exprclust_bindclust$set,
          bound_only_exprclust_bindclust[[i]]) %>%
    as.data.frame.matrix() %>%
   rownames_to_column(var = "set") %>%
   mutate(ELT2_cluster = i,
           percent = present / (present + absent))
  bound_only_expressionSet_per_BindingCluster <-</pre>
    bind_rows(bound_only_expressionSet_per_BindingCluster, toappend)
}
bound_only_expressionSet_per_BindingCluster$ELT2_cluster <-
  factor(bound_only_expressionSet_per_BindingCluster$ELT2_cluster,
         levels = elt2_cluster_names)
```

```
##
      set absent present
                             ELT2_cluster
                                              percent
## 1
                       1 Embryo_Specific 0.004672897
     SET1
             213
## 2
     SET2
             237
                        3 Embryo_Specific 0.012500000
## 3 SET3
             153
                        5 Embryo_Specific 0.031645570
## 4 SET4
             349
                       1 Embryo_Specific 0.002857143
## 5 SET1
             107
                     107
                                  Larval 0.500000000
## 6
     SET2
             143
                      97
                                  Larval 0.404166667
## 7 SET3
                       43
             115
                                 Larval 0.272151899
```

bound_only_expressionSet_per_BindingCluster

```
## 8 SET4
              198
                       152
                                    Larval 0.434285714
## 9
     SET1
               42
                       172
                                Increasing 0.803738318
## 10 SET2
               64
                       176
                                Increasing 0.733333333
               47
                                Increasing 0.702531646
## 11 SET3
                       111
## 12 SET4
              117
                       233
                                Increasing 0.665714286
## 13 SET1
              193
                        21
                                   L3_High 0.098130841
## 14 SET2
              190
                        50
                                   L3 High 0.208333333
## 15 SET3
                        49
                                   L3_High 0.310126582
              109
## 16 SET4
              288
                        62
                                   L3_High 0.177142857
                              Not_Changing 0.004672897
## 17 SET1
              213
                        1
## 18 SET2
              234
                         6
                              Not_Changing 0.025000000
## 19 SET3
              149
                         9
                              Not_Changing 0.056962025
## 20 SET4
              346
                              Not_Changing 0.011428571
                         4
```

Make a plot that addresses the question: What is the percentage of genes with annotated ELT2 binding clusters per expression dataset?

What is the percentage of genes within each Expression Set that are associated with an ELT-2 binding cluster?

```
bound_percent_plot_inverse <- ggplot(
  bound_only_expressionSet_per_BindingCluster,
  aes(x = ELT2_cluster, y = present, fill = set)
) +
  geom_bar(stat = "identity", position = "fill") +
  theme_classic()
bound_percent_plot_inverse</pre>
```



```
Make a series of horizontal barplots with percentage of ELT-2 binding cluster per expression cluster.
First, calculate the percentage of each ELT-2 binding category against the total dataset.
bound_only_percent_bound_per_ELT2_cluster <-</pre>
  bound_only_expressionSet_per_BindingCluster %>% group_by(ELT2_cluster) %>% summarise(percent = sum(pr
                                                                                 nrow(dynamic counts matri:
Next calculate the the 95% Confidence Interval with the Bionomial Test.
bound_only_expressionSet_per_BindingCluster %>% group_by(set, ELT2_cluster) %>% summarise(percent = pre
                                                                                    (present + absent))
## # A tibble: 20 x 3
## # Groups:
               set [4]
##
            ELT2_cluster
      set
                             percent
##
      <chr> <fct>
                               <dbl>
  1 SET1 Embryo_Specific 0.00467
##
##
   2 SET1 Larval
                             0.5
## 3 SET1
           Increasing
                             0.804
## 4 SET1
           L3_High
                             0.0981
## 5 SET1
           Not_Changing
                             0.00467
## 6 SET2
            Embryo_Specific 0.0125
## 7 SET2 Larval
                             0.404
## 8 SET2 Increasing
                             0.733
## 9 SET2 L3_High
                             0.208
## 10 SET2 Not_Changing
                             0.025
## 11 SET3
           Embryo_Specific 0.0316
## 12 SET3
           Larval
                             0.272
## 13 SET3
            Increasing
                             0.703
## 14 SET3 L3_High
                             0.310
## 15 SET3
           Not_Changing
                             0.0570
## 16 SET4 Embryo_Specific 0.00286
## 17 SET4 Larval
                             0.434
## 18 SET4 Increasing
                             0.666
                             0.177
## 19 SET4
            L3_High
## 20 SET4
            Not_Changing
                             0.0114
Calculate the binomial pvalue and confidence intervals.
# Add a column for the background percentage of ELT2 binding clusters per the whole expression dataset
bound_only_expression_binding_stats <-</pre>
  bound_only_expressionSet_per_BindingCluster %>% group_by(ELT2_cluster) %>% mutate(background_percent
                                                                                          (sum(present) + s
# Use binom.test to calculate pualue and confidence intervales for the percentage of ELT2 binding clust
bound_only_expression_binding_stats <-
  bound_only_expression_binding_stats %>%
  group_by(ELT2_cluster, set) %>%
  mutate(
    pval = binom.test(
      x = c(present, absent),
      n = present + absent,
      p = background_percent,
      alternative = "two.sided"
```

```
)$p.value,
    conf.upper = binom.test(
     x = c(present, absent),
     n = present + absent,
      p = background_percent,
     alternative = "two.sided"
   )$conf.int[2],
    conf.lower = binom.test(
     x = c(present, absent),
     n = present + absent,
     p = background_percent,
      alternative = "two.sided"
    )$conf.int[1]
bound_only_expression_binding_stats$set <-</pre>
  factor(bound_only_expression_binding_stats$set,
        levels = c("SET4", "SET3", "SET2", "SET1"))
bound_only_expression_binding_stats %>% head()
## # A tibble: 6 x 9
## # Groups: ELT2_cluster, set [6]
    set absent present ELT2_cluster percent background_perc~ pval conf.upper
     <fct> <int> <int> <fct>
                                                        <dbl> <dbl>
##
                                        <dbl>
                                                                           <dbl>
                                                       0.0104 0.731
## 1 SET1
             213
                       1 Embryo_Spec~ 0.00467
                                                                           0.0258
## 2 SET2
            237
                       3 Embryo Spec~ 0.0125
                                                       0.0104 0.742
                                                                           0.0361
## 3 SET3
                      5 Embryo_Spec~ 0.0316
                                                       0.0104 0.0254
            153
                                                                           0.0723
## 4 SET4
             349
                      1 Embryo_Spec~ 0.00286
                                                        0.0104 0.281
                                                                           0.0158
             107
## 5 SET1
                     107 Larval
                                      0.5
                                                        0.415 0.0124
                                                                          0.569
## 6 SET2
             143
                     97 Larval
                                      0.404
                                                        0.415 0.793
                                                                           0.469
## # ... with 1 more variable: conf.lower <dbl>
bound_percent_multi <- ggplot(bound_only_expression_binding_stats,</pre>
       aes(x = set,
          y = percent, fill = ELT2_cluster)) +
  geom_bar(stat = "identity") +
  scale_y_continuous(limits = c(0, 1.5)) +
  theme_classic() +
  geom_hline(
   data = bound_only_expression_binding_stats %% ungroup() %% select(ELT2_cluster, background_percen
   color = "red",
   linetype = "dashed",
   aes(yintercept = background_percent)
  geom errorbar(
   ymax = bound_only_expression_binding_stats$conf.upper,
   ymin = bound_only_expression_binding_stats$conf.lower,
   width = 0.1
  ) +
  coord_flip() +
  facet_grid(. ~ ELT2_cluster) +
  scale_fill_manual(values = as.character(cluster_colors$val))
```


Make a TF subset heatmap

```
col = colorRampPalette(c("cyan", "black", "yellow"))(1000),
  cluster_columns = FALSE,
  clustering_distance_rows = "spearman",
  clustering_method_rows = "complete",
  show_row_names = TRUE,
  show_column_names = TRUE,
  column_title = "Differential Expression of\nAll Transcription Factors"
)
tf_heatmap
```



```
if (plot == TRUE){
  myPDFplot(
    plot = tf_heatmap,
    name = "12_Differential_Expression_of_All_TFs",
   height = 20,
    width = 4,
    plotdir = plotdir
  )
  }
## pdf
##
     2
Add row annotation to indicate ELT-2 binding in L1 stage
elt2_detected_in_L1 %>% filter(WBGeneID %in% rownames(dynamic_counts_matrix_scaled_TFs))
            WBGeneID
     WBGene00022562
## 1
## 2 WBGene00003621
     WBGene00004096
## 3
      WBGene00019327
## 5
      WBGene00003711
## 6
      WBGene00000793
## 7
      WBGene00021082
      WBGene00003607
## 8
      WBGene00019743
## 9
## 10 WBGene00003689
## 11 WBGene00003648
## 12 WBGene00012101
## 13 WBGene00014193
## 14 WBGene00003698
## 15 WBGene00010215
## 16 WBGene00016997
## 17 WBGene00018704
## 18 WBGene00016865
## 19 WBGene00019344
## 20 WBGene00017687
## 21 WBGene00003727
## 22 WBGene00013976
## 23 WBGene00003511
## 24 WBGene00017651
## 25 WBGene00003106
## 26 WBGene00003678
## 27 WBGene00016888
## 28 WBGene00003845
tf_bound_anno <-
 data.frame(
    WBGeneID = rownames(dynamic_counts_matrix_scaled_TFs),
    elt2_detected_in_L1 = ifelse(
      test = rownames(dynamic_counts_matrix_scaled_TFs) %in% elt2_detected_in_L1$WBGeneID,
      yes = "bound",
      no = "not.bound"
```

Differential Expression of All Transcription Factors


```
# pdf("./03_plots/13a_Differential_Expression_of_All_TFs_L1elt2bound_anno.pdf", height = 5, width = 5.5
# tf_heatmap_L1bound
# dev.off()

if (plot == TRUE){
    myPDFplot(
        plot = tf_heatmap_L1bound,
        name = "13a_Differential_Expression_of_All_TFs_L1elt2bound_anno",
        height = 5,
        width = 5.5,
        plotdir = plotdir
)
}
```

pdf ## 2

Add row annotation of intestine expression from Spencer intestine RNA data

```
tf_spencer_rna_anno <- data.frame(</pre>
  spencerLE = ifelse(
    test = rownames(dynamic_counts_matrix_scaled_TFs) %in% spencer_LE_subset$spencer_LE_ID,
    yes = "enriched",
    no = "depleted"
  spencerL2 = ifelse(
   test = rownames(dynamic_counts_matrix_scaled_TFs) %in% spencer_L2_subset$spencer_L2_ID,
    yes = "enriched",
    no = "depleted"
  )
)
tf_heatmap_L1bound_spencerRNA <- tf_heatmap_L1bound + rowAnnotation(</pre>
    LE.intestine = tf_spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  ) +
  rowAnnotation(
    L2.intestine = tf_spencer_rna_anno$spencerL2,
    col = list(L2.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  )
tf_heatmap_L1bound_spencerRNA
```

Differential Expression of All Transcription Factors


```
if (plot == TRUE){
  myPDFplot(
    plot = tf_heatmap_L1bound_spencerRNA,
    name = "13b_Differential_Expression_of_All_TFs_L1elt2bound_anno",
    height = 5,
    width = 5.5,
    plotdir = plotdir
)
}
```

pdf ## 2

Split heatmap based on L1 binding


```
if (plot == TRUE){
  myPDFplot(
    plot = tf_heatmap_L1bound_split,
    name = "14a_Differential_Expression_of_All_TFs_L1elt2bound_split",
    height = 5,
    width = 5.5,
    plotdir = plotdir
)
}
```

pdf ## 2

Add row annotation of intestine expression from Spencer intestine RNA data to split heatmap

```
tf_heatmap_L1bound_split_spencerRNA <- tf_heatmap_L1bound_split +
    rowAnnotation(
    LE.intestine = tf_spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
        "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
) +
    rowAnnotation(
    L2.intestine = tf_spencer_rna_anno$spencerL2,
    col = list(L2.intestine = c(
        "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE</pre>
```

```
)
tf_heatmap_L1bound_split_spencerRNA
                                                             elt2D
                                                                             elt7Delt2D
                       wt
                                         elt7D
punoq
                                                                                                                  elt2D-elt7D
                                                                                                                  RNAseq
                                                                                                                      2
                                                                                                                      0
                                                                                                                      -2
not.bound
                                                                                                                  L1_bound
                                                                                                                      bound
                                                                                                                      not.bound
                                                                                                                  LE.intestine
                                                                                                                      depleted
                                                                                                                      enriched
                                                                                                                  L2.intestine
                                                                                                       _E.intestine
                                                                                                                      depleted
                                                                                                 L1_bound
                                                                                                            _2.intestine
                                                                              elt7Delt2D
                                         elt7D
                                                              elt2D
                       wt
                                                                                                                      enriched
                                                                                           elt2Delt7D_sorted_3
                                                               elt2D_sorted_2
                                                                                      slt2Delt7D_sorted_2
                wt_sorted_1
                           wt_sorted_3
                                             elt7D_sorted_2
                                                  elt7D_sorted_3
                                                         elt2D_sorted_1
                                                                    elt2D_sorted_3
                                                                          elt2D_sorted_4
                                                                                elt2Delt7D_sorted_1
                                       elt7D_sorted_1
if (plot == TRUE){
   myPDFplot(
      plot = tf_heatmap_L1bound_split_spencerRNA,
      name = "14b_Differential_Expression_of_All_TFs_L1elt2bound_split_spencerRNA",
      height = 5,
      width = 5.5,
      plotdir = plotdir
   )
   }
## pdf
```

Zoom in on only bound TFs

```
dynamic_counts_matrix_scaled_TFs_bound <-</pre>
  matrix_select(dynamic_counts_matrix_scaled_TFs,
                 elt2_detected_in_L1$WBGeneID)
dynamic_counts_matrix_scaled_TFs_bound_names <-</pre>
  id2name(dynamic_counts_matrix_scaled_TFs_bound)
HAboundTF <- Heatmap(</pre>
  dynamic_counts_matrix_scaled_TFs_bound_names,
  col = colorRampPalette(c("cyan", "black", "yellow"))(1000),
```

```
cluster_columns = FALSE,
  clustering_distance_rows = "spearman",
  clustering_method_rows = "complete",
  show_row_names = TRUE,
  row_names_side = "left",
  show_column_names = TRUE,
  column_title = "Differential Expression of\nELT-2 Bound Transcription Factors"
)
HAboundTF
```

Differential Expression of

ELT-2 Bound Transcription Factors


```
if (plot == TRUE){
  myPDFplot(
    plot = HAboundTF,
    name = "15a_Differential_Expression_Bound_TFs_only",
    height = 5,
    width = 5.5,
    plotdir = plotdir
)
}
```

```
## pdf
## 2
```

```
tf_bound_spencer_rna_anno <- data.frame(
    spencerLE = ifelse(
        test = rownames(dynamic_counts_matrix_scaled_TFs_bound) %in% spencer_LE_subset$spencer_LE_ID,
        yes = "enriched",
        no = "depleted"</pre>
```

```
),
  spencerL2 = ifelse(
    test = rownames(dynamic_counts_matrix_scaled_TFs_bound) %in% spencer_L2_subset$spencer_L2_ID,
    yes = "enriched",
    no = "depleted"
)
HAboundTF_spencerRNA <- HAboundTF + rowAnnotation(</pre>
    LE.intestine = tf_spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  ) +
  rowAnnotation(
    L2.intestine = tf_spencer_rna_anno$spencerL2,
    col = list(L2.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  )
HAboundTF_spencerRNA
```

Differential Expression of


```
if (plot == TRUE) {
  myPDFplot(
    plot = HAboundTF_spencerRNA,
```

```
name = "15b_Differential_Expression_Bound_TFs_only_spencerRNA",
height = 5,
width = 5.5,
plotdir = plotdir
)
}
```

pdf ## 2

This plot suggests that transcription factors bound by ELT-2 are typically upregulated in the absence of ELT-2.

TFs to follow up: pqm-1 (intestine), zip-10, odd-1 (repressed by elt-2 alone, normally gut expressed). nhr-58 (vulva), zip-2 (neuron), cebp-1 (neuron), gla-3 (germline), zip-11

Scratch

```
# resWtV2 <- read_excel("./01_input/Table_S3_Pairwise_Comparison.xlsx",
# sheet = "2017-07-12_resWtV2", skip = 2)
# resWtV2
#
# ggplot(elt2_peaks %>% full_join(resWtV2, by = "WBGeneID") %>% filter(L1_IDR == 1, padj >= 0.05) %>% m
# aes(x = L1_mean, y = log2FoldChange)
# ) +
# geom_point() +
# geom_smooth(method = lm)
#
```

Session Info

sessionInfo()

[4] S4Vectors_0.24.4

[7] circlize_0.4.8

```
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Sierra 10.12.5
## Matrix products: default
          /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## BLAS:
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
##
  [1] parallel stats4
                            grid
                                      stats
                                                graphics grDevices utils
##
   [8] datasets methods
                            base
## other attached packages:
```

BiocGenerics_0.32.0 lubridate_1.7.8

dendextend_1.14.0

[1] GenomicRanges_1.38.0 GenomeInfoDb_1.22.1 IRanges_2.20.2

 $binom_1.1-1$

```
## [10] RVAideMemoire 0.9-78 pheatmap 1.0.12
                                                   matrixStats 0.56.0
## [13] ComplexHeatmap_2.2.0 readxl_1.3.1
                                                   forcats_0.5.0
                                                   purrr 0.3.3
## [16] stringr 1.4.0
                             dplyr_0.8.5
                                                   tibble_3.0.0
## [19] readr_1.3.1
                             tidyr_1.0.2
## [22] ggplot2_3.3.0
                             tidyverse_1.3.0
                                                   biomaRt_2.42.1
##
## loaded via a namespace (and not attached):
   [1] nlme_3.1-147
                                bitops 1.0-6
                                                       fs_1.4.1
##
    [4] bit64_0.9-7
                                RColorBrewer_1.1-2
                                                       progress_1.2.2
##
  [7] httr_1.4.1
                                tools_3.6.3
                                                       backports_1.1.6
                                                       DBI_1.1.0
## [10] utf8_1.1.4
                                R6_2.4.1
                                                       withr_2.1.2
## [13] colorspace_1.4-1
                                GetoptLong_0.1.8
## [16] gridExtra_2.3
                                tidyselect_1.0.0
                                                       prettyunits_1.1.1
                                                       compiler_3.6.3
## [19] bit_1.1-15.2
                                curl_4.3
## [22] cli_2.0.2
                                rvest_0.3.5
                                                       Biobase_2.46.0
## [25] xml2_1.3.1
                                labeling_0.3
                                                       scales_1.1.0
## [28] askpass_1.1
                                rappdirs_0.3.1
                                                       digest_0.6.25
## [31] rmarkdown 2.1
                                XVector 0.26.0
                                                       pkgconfig_2.0.3
## [34] htmltools_0.4.0
                                dbplyr_1.4.2
                                                       rlang_0.4.5
## [37] GlobalOptions 0.1.1
                                rstudioapi_0.11
                                                       RSQLite 2.2.0
## [40] farver_2.0.3
                                shape_1.4.4
                                                       generics_0.0.2
## [43] jsonlite 1.6.1
                                RCurl_1.98-1.1
                                                       magrittr_1.5
                                                       munsell_0.5.0
## [46] GenomeInfoDbData_1.2.2 Rcpp_1.0.4.6
## [49] fansi 0.4.1
                                viridis 0.5.1
                                                       lifecycle 0.2.0
## [52] stringi 1.4.6
                                yaml_2.2.1
                                                       zlibbioc_1.32.0
## [55] BiocFileCache_1.10.2
                                blob_1.2.1
                                                       crayon_1.3.4
## [58] lattice_0.20-41
                                haven_2.2.0
                                                       hms_0.5.3
## [61] knitr_1.28
                                pillar_1.4.3
                                                       rjson_0.2.20
## [64] reprex_0.3.0
                                XML_3.99-0.3
                                                       glue_1.4.0
## [67] evaluate_0.14
                                modelr_0.1.6
                                                       png_0.1-7
## [70] vctrs_0.2.4
                                cellranger_1.1.0
                                                       gtable_0.3.0
## [73] openssl_1.4.1
                                clue_0.3-57
                                                       assertthat_0.2.1
## [76] xfun_0.13
                                broom_0.5.5
                                                       viridisLite_0.3.0
                                memoise_1.1.0
                                                       cluster_2.1.0
## [79] AnnotationDbi_1.48.0
## [82] ellipsis_0.3.0
```