CT303 Lecture 14: 7 October 2020

- Review of Lecture 13.
- ▶ Bandwidth efficiency: $\eta_B = \frac{R_s}{R}$.
- ▶ Duobinary coding Use *sinc* waveforms.
- ► Closer to being realizable Use *sinc* waveforms to encode

 $V_k = X_k + X_{k-1}$.

2. ye {-2V,0,2V}.

≣ ୬५୯

Pre-coding

- Define $\tilde{w}_k = x_k \oplus \tilde{w}_{k-1}$.
- Convert the bit sequence \tilde{w}_k into bipolar amplitude sequence w_k .
- ► Transmit $\sum_{k} y_{k} sinc(Tt k)$.
- ► Decoding:

$$y_{k} = 2V \longrightarrow \omega_{k} = V, \widetilde{\omega_{k}} = 1$$

 $y_{k} = -2V \longrightarrow \omega_{k} = -V, \widetilde{\omega_{k}} = 0$

Decoding:

If
$$y_k = \pm 2V$$
, $\hat{x_k} = 0$
If $y_k = 0$, $\hat{x_k} = 1$

=> Ensures that the error does not propagate!!

Dubbinaly coding with Proceeding

24 C & V, - V& \(\frac{y_{k} - 24 + 24 - 1}{y_{k}} \) \(\xi \) \(\frac{y_{k} - 24 + 24 - 1}{y_{k}} \) \(\xi \) \(\xi

End of Chapter 2

Chapter 3: Baseband Demodulation & Detection

- Binary transmission: Bit-1: $s_1(t)$, Bit-0: $s_2(t)$.
- Assumptions: (1) The channel is modeled as an LTI system with impulse response $H_c(t)$, and frequency response $H_c(f)$. (2) Noise AWGN.
- ► Received signal: $r(t) = s_i(t) * h_c(t) + \eta(t)$, with $G_{\eta}(f) = \frac{N_0}{2}$
- Demodulation: Process of recovering the transmitted waveform $[r-(\tilde{s}_i])$ = efficient of S_i
- Detection: Determining the digital message from the recovered waveform.

Demodulation

Analog: Carupted wif - Restablished Receiving filter to improve SNR. (Tuprove SNR.)

- In some cases, another filter is used to compensate for channel induced ISI. This is called *Equalization filter*.
- Let $h_r(t)$ denote the impulse response of the receiving filter. Let $\underline{z(t)} = (h_r) * \underline{r)(t)}$ denote the output of the receiving filter.
- Since s_i corresponds to one bit for every $T = 1/R_b$ secs, \underline{r} also correspond to the received signal and output of the receiving filter for one transmitted bit every T secs, resp.
 - The output of the receiving filter z is sampled every T secs to give a real number z(T)
 - The detector takes in z(T) and determines which bit was sent for $t \in [0, T]$.

Detection

•
$$r(t) = h_c(t) * s_i(t) + \eta(t)$$
.
• $z(t) = h_r(t) * h_c(t) * s_i(t) + h_r(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * h_r(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t) + a_i(t) * \eta(t)$.
• $z(t) = a_i(t)$.
• $z(t) = a_i(t) * \eta(t)$.
• $z(t) = a_i(t) * \eta(t)$.

$$\frac{p(z/z_1)}{2\sigma_0} = \frac{1}{2\sigma_0} \frac{e^{-\frac{(y-u_1)}{2\sigma_0}}}{e^{-\frac{(y-u_1)}{2\sigma_0}}} \Rightarrow \frac{1}{2} \frac{|x| |x| |y|}{2} \\
\frac{p(z/z_1)}{2\sigma_0} = \frac{e^{-\frac{(y-u_1)}{2\sigma_0}}}{e^{-\frac{(y-u_1)}{2\sigma_0}}} \Rightarrow \frac{1}{2} \frac{|x| |x| |y|}{2} \\
\frac{p(z/z_1)}{2\sigma_0} = \frac{e^{-\frac{(y-u_1)}{2\sigma_0}}}{e^{-\frac{(y-u_1)}{2\sigma_0}}} \Rightarrow \frac{1}{2} \frac{|x| |y|}{2} \\
\frac{p(z/z_1)}{2\sigma_0} = \frac{1}{2} \frac{|x|}{2\sigma_0} \Rightarrow \frac{1}{2} \frac{|x|}{2\sigma_0}$$

 $\frac{-(9-9)^2}{200} > \text{likelihood}$

MLE: $s_k = \arg \max_{z \in S_k(z)} p(z/s_i)$.

MAP: $s_k = \arg \max_{z \in S_k(z)} p(s/z)$ MLE and MAP estimation 1p(82 Z) Ly Posterior distribution p(e/z) > p(ez/z) => 2, 2 MaxPunm p(ez/z) > p(ez/z) => 2] Aposteriani probability (MAP).