

In the Claims:

Please cancel Claim 1

- 1 2. (New) A method of soft decision decoding, the method comprising the steps of:
 - 2 a. receiving an input signal over a channel; and
 - 3 b. approximating a Log-Likelihood-Ratio result of the input signal, wherein
 - 4 the Log-Likelihood-Ratio result is independent of a signal to noise ratio
 - 5 value calculable over the channel.
- 1 3. (New) The method of soft decision decoding according to claim 2 wherein the
2 step of approximating further comprises calculating an actual
3 Log-Likelihood-Ratio value for each of a plurality of m bits per symbol
4 contained in the input signal.
- 1 4. (New) The method of soft decision decoding according to claim 3 wherein the
2 step of approximating further comprises separating the actual Log-
3 Likelihood-Ratio values into one or more n-regions, wherein n is an
4 integer.
- 1 5. (New) The method of soft decision decoding according to claim 4 wherein the
2 step of approximating further comprises determining a constant, a_n , by
3 computing a partial derivative for the actual Log-Likelihood-Ratio values
4 in the one or more n-regions.
- 1 6. (New) The method of soft decision decoding according to claim 5 wherein the
2 step of approximating further comprises determining a slope for the actual
3 Log-Likelihood-Ratio value for each of the plurality of m bits per symbol.
- 1 7. (New) The method of soft decision decoding according to claim 6 wherein the
2 slope is determined by use of a linear equation, wherein the linear equation
3 utilizes the constant a_n .

1 8. (New) The method of soft decision decoding according to claim 6 wherein the
2 step of approximating further comprises quantizing the slope for each m
3 bit per symbol.

1 9. (New) The method of soft decision decoding according to claim 8 wherein the
2 step of quantizing is performed using a quantizing equation
3

4

$$\text{Quantize} = \left(\text{LLR} \frac{2^{\text{SOFT_BITS}-1}}{q\text{LIMIT}} + 2^{\text{SOFT_BITS}-1} \right)$$

5 wherein the SOFT_BITS value and the qLIMIT value are dependent on the signal to
6 noise ratio.

1 10. (New) A method of soft decision decoding over a channel, the method
2 comprising the steps of:
3 a. receiving an input signal over the channel, wherein the input signal has a
4 plurality of m bits per symbol;
5 b. calculating an actual Log-Likelihood-Ratio value for each of the plurality
6 of m bits per symbol;
7 c. determining a slope for the actual Log-Likelihood-Ratio value of each m
8 bit; and
9 d. quantizing the slope for each m bit per symbol and generating a
10 Log-Likelihood-Ratio result, wherein the Log-Likelihood-Ratio value is
11 independent of noise over the channel.

1 11. (New) The method of soft decision decoding according to claim 10 further
2 comprising separating the actual Log-Likelihood-Ratio values into one or
3 more n-regions, wherein n is an integer.

1 12. (New) The method of soft decision decoding according to claim 11 further
2 comprising determining a constant a_n by computing a partial derivative for
3 the actual Log-Likelihood-Ratio values in the one or more n-regions.

1 13. (New) The method of soft decision decoding according to claim 12 wherein the
2 slope is determined by use of a linear equation, wherein the linear equation
3 utilizes the constant a_n .

1 14. (New) The method of soft decision decoding according to claim 10 wherein the
2 step of quantizing is performed using a quantizing equation

$$Quantize = \left(LLR \frac{2^{SOFT_BITS-1}}{aLIMIT} + 2^{SOFT_BITS-1} \right)$$

5 wherein the SOFT_BITS value and the qLIMIT value are dependent on the signal to
6 noise ratio.

1 15. (New) A method of soft decision decoding over a modulated channel wherein a
2 signal to noise ratio may be calculated over the channel, the method comprising
3 the steps of:

- a. receiving an input signal over the channel, wherein the input signal has a plurality of m bits per symbol;
- b. calculating an actual Log-Likelihood-Ratio value for each of the plurality of m bits per symbol, wherein the actual Log-Likelihood-Ratio value includes a SOFT_BITS value for each of the plurality of m bits per symbol;
- c. separating the actual Log-Likelihood-Ratio values into one or more n -regions, wherein n is an integer;
- d. determining a constant, a_n by computing a partial derivative for the actual Log-Likelihood-Ratio values in the one or more n -regions;
- e. calculating a slope by use of a linear equation, wherein the linear equation utilizes the constant a_n ; and
- f. quantizing the constant a_n by utilizing the quantizing equation

$$Quantize = \left(LLR \frac{2^{SOFT_BITS-1}}{qLIMIT} + 2^{SOFT_BITS-1} \right)$$

1 wherein the SOFT_BITS value and qLIMIT are dependent on the signal to noise ratio,
2 the quantizing equation generating a quantized Logarithmic-Likelihood-Ratio result
3 substantially independent of the signal to noise ratio over the channel.

1 16. (New) A Logarithmic Likelihood Ratio module for soft decision decoding over a
2 modulated channel, the Logarithmic Likelihood Ratio module comprising:
3 a. an input module for receiving a plurality of (I,Q) data symbols;
4 b. a modulation unit for determining a modulation scheme for calculating a
5 Logarithmic Likelihood Ratio result for the plurality of (I,Q) data symbols,
6 wherein the Logarithmic Likelihood Ratio result is substantially
7 independent of a signal to noise ratio over the modulated signal; and
8 c. a converter module for converting the Logarithmic Likelihood Ratio result
9 of the plurality of (I,Q) data symbols into unsigned values.

1 17. (New) The Logarithmic Likelihood Ratio module according to claim 16 further
2 comprising a gain module for amplifying the plurality of data symbols by a
3 multiplicative factor.

1 18. (New) The Logarithmic Likelihood Ratio module according to claim 16 further
2 comprising a PSK module for calculating the Logarithmic Likelihood
3 Ratio result by determining a slope of the plurality of (I,Q) data symbols in
4 a phase shift key modulation scheme.

1 19. (New) The Logarithmic Likelihood Ratio module according to claim 16 further
2 comprising a QAM module for calculating the Logarithmic Likelihood
3 Ratio result by a determining a slope of the plurality of (I,Q) data symbols
4 over a quadrature amplitude modulation scheme.

1 20. (New) The Logarithmic Likelihood Ratio module according to claim 19 further
2 comprising a second QAM module for calculating the Logarithmic
3 Likelihood Ratio result for a portion of the m bits in parallel with the
4 QAM module.

1 21. (New) The Logarithmic Likelihood Ratio module according to claim 16 further
2 comprising a multiplexer coupled to the modulation unit, wherein
3 multiplexer provides the Logarithmic Likelihood Ratio result to the
4 converter module.