Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik

Blatt 6 Abgabe: 4.12.2018 14 Uhr

Gruppennummer angeben!

Aufgabe 1 (4 Punkte).

Zeige mit Hilfe des Vollständigkeitssatzes, dass eine konsistente Theorie genau dann vollständig ist, wenn je zwei Modelle elementar äquivalent sind.

Aufgabe 2 (6 Punkte).

Sei \mathcal{S} die Kollektion aller Teilmengen von $\{1, 2, 3, 4\}$ mit höchstens 2 Elementen. Die Menge \mathcal{S} ist partiell geordnet bezüglich Inklusion (siehe Appendix A im Skript).

- (a) Gibt es eine obere Schranke für $\Gamma = \{\emptyset, \{1\}, \{2\}, \{3\}\}\$ in S?
- (b) Beschreibe alle maximalen Elemente von S.
- (c) Zeige, dass jede linear geordnete Teilmenge Γ von \mathcal{S} eine obere Schranke besitzt.

Aufgabe 3 (4 Punkte).

Zeige, dass jedes maximale Element einer linear geordneten Menge (S, \leq) das größte Element sein muss. Insbesondere gibt es höchstens ein maximales Element in S. Muss S ein maximales Element besitzen?

Aufgabe 4 (6 Punkte).

Ein offenes Intervall I von \mathbb{R} hat beschränkte Länge, falls I=(a,b), mit $a\leq b$ aus \mathbb{R} (In diesem Fall ist b-a die Länge von I). Sei \mathcal{S} die Kollektion aller offenen Intervalle beschränkter Länge von \mathbb{R} . Durch Inklusion wird \mathcal{S} partiell angeordnet.

- (a) Zeige, dass je zwei Elemente aus \mathcal{S} eine obere Schranke in \mathcal{S} haben.
- (b) Zeige, dass die Kollektion $\Gamma = \{(0, n)\}_{n \in \mathbb{N}}$ linear geordnet ist. Besitzt Γ eine obere Schranke in S?
- (c) Gibt es maximale Elemente in S?

DIE ÜBUNGSBLÄTTER MÜSSEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM EG DES GEBÄUDES 51.