Graduate Algebra

1. Week 1 [2025-09-03]

We'll begin by recalling some basic sorts of algebra that you more-or-less encountered before.

1.1. Notations and recollections

We reserve the following letters:

- \mathbb{N} for the set of *natural numbers* 0, 1, 2, ...
- \mathbb{Z} for the set of *integers*, i.e. for all $\pm n$ for $n \in \mathbb{N}$
- \mathbb{Q} for the set of rational numbers m/n for $m, n \in \mathbb{Z}$ with $n \neq 0$
- \mathbb{R} for the set of *real numbers*, and
- \mathbb{C} for the set of *complex numbers* a + bi for $a, b \in \mathbb{R}$.

In this first lecture, I want to recall some of the main objects of study in algebra, including: groups, rings and fields. Ultimately, the goal today is to prove an analogue of Cayley's Theorem - see <u>Theorem 1.6.1</u> and <u>Theorem 1.7.1</u> about embedding arbitrary groups in some standard groups.

1.2. Groups

Recall that a group is a set G together with a binary operation $\cdot: G \times G \to G$ satisfying the following:

- associativity: $\forall x, y, z \in G, (xy)z = x(yz)$
- identity: $\exists e \in G, xe = ex = x$.
- inverses: $\forall x \in G, \exists y \in G, xy = yx = 1$.

Remark 1.2.1:

- a. We usually write 1 or sometimes 1_G rather than e for the inverse element of G.
- b. we usually write x^{-1} for the inverse of $x \in G$
- c. there are *uniqueness* results that I'm eliding here; the identity 1 of G is unique, and the inverse x^{-1} of an element is unique. These statements are *consequences* of the above axioms (they don't require additional assumption.)
- d. A group is abelian if $\forall a, b \in G, ab = ba$
- e. Sometimes we write groups additively; in that case, 0 is the identity element and and the inverse of $a \in G$ is $-a \in G$. We always insist that additive groups are abelian.

Definition 1.2.2: For groups G and H, a function $\varphi: G \to H$ is a group homomorphism provided that $\forall x, y \in G, \varphi(xy) = \varphi(x)\varphi(y)$.

Definition 1.2.3: Let $\varphi: G \to H$ be a group homomorphism. The kernel of φ is

$$\ker \varphi = \{ g \in G \mid \varphi(g) = 1. \}$$

Remark 1.2.4: If $\varphi: G \to H$ is a group homomorphism, $\ker \varphi$ is a subgroup of G – i.e. $\ker \varphi$ is non-empty, and is closed under multiplication and under taking inverses.

Proposition 1.2.5: Let $\varphi:G\to H$ be a group homomorphism. Then φ is an injective (or one-to-one) function if and only if $\ker\varphi=\{1_G\}$.

1.3. Rings

Definition 1.3.1: A ring is an additive abelian group R together with a binary operation of multiplication

$$\cdot: R \times R \to R$$

which satisfies the following:

- multiplication is associative: $\forall a, b, c \in R, (ab)c = a(bc)$.
- there is a multiplicative identity: $\exists 1 \in R, \forall a \in R, 1a = a1 = a$.
- distribution laws: $\forall a, b, c \in R, a(b+c) = ab + ac$ and (b+c)a = ba + ca.

The ring R is commutative provided that $\forall a, b \in R, ab = ba$.

Example 1.3.2:

- a. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings.
- b. For a natural number n > 1, the ring $\mathrm{Mat}_n(\mathbb{Z})$ of $n \times n$ matrices with coefficients in \mathbb{Z} is a non-commutative ring.

Definition 1.3.3: For a commutative ring R, an element $a \in R$ is a unit provided that $\exists v \in R, uv = vu = 1$.

The set R^{\times} of units in R is a group under the multiplication of R.

1.4. Fields

Definition 1.4.1: A field is a commutative ring F such that $\forall a \in F, a \neq 0 \Rightarrow a$ is a unit.

Example 1.4.2: \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields, but \mathbb{Z} is not a field.

1.5. Linear Algebra

Definition 1.5.1: If F is a field, a vector space over F – or an F-vector space – is an additive abelian group V together with an operation of scalar multiplication

$$F\times V\to V$$

written $(t, v) \mapsto tv$, subject to the following:

- identity: $\forall v \in V, 1v = v$.
- associativity: $\forall a, b \in F$ and $v \in V$, a(bv) = (ab)v.
- distributive laws: $\forall a, b \in F$ and $v, w \in V$, (a + b)v = av + bv and a(v + w) = av + aw.

Remark 1.5.2: Probably in a linear algebra class you saw results stated for vector spaces over \mathbb{R} or \mathbb{C} ; however, "most" results in linear algebra remain valid for vector space over F.

Example 1.5.3: Let I be any set, and let V be the set of all functions $f: I \to F$ which have finite support. Recall that the support of f is $\{x \in I \mid f(x) \neq 0\}$.

Then V is a vector space. (The addition and scalar multiplication operations are define "pointwise" – see homework.)

Remark 1.5.4: Recall that a basis of a vector space is subset B of V which is linearly indepent and spans V.

The vector space of finitely supported functions $I \to F$ has a basis $B = \{\delta_i \mid i \in I\}$, where

$$\delta_i:I\to F$$

is the function defined by $\delta_i(j) = 0$ if $i \neq j$ and $\delta_i(i) = 1$.

Definition 1.5.5: If V and W are F-vector spaces, an F-linear map $\varphi:V\to W$ is a homomorphism of additive groups which satisfies the condition

$$\forall t \in F, \forall v \in V, \varphi(tv) = t\varphi(v).$$

Definition 1.5.6: If V is an F-vector space, the general linear group GL(V) is the set

$$\{\varphi: V \to V \mid \varphi \text{ is } F\text{-linear and invertible.}\}$$

 $\mathrm{GL}(V)$ is a group whose operation is given by composition of linear transformations.

Remark 1.5.7: If V is finite dimensional, so that V is isomorphic to F^n as F-vector spaces, linear algebra shows that $\mathrm{GL}(V)$ is isomorphic to the group GL_n of $n\times n$ matrices with non-zero determinant, where $n=\dim_F V$ and where the operation in GL_n is given by matrix multiplication.

1.6. Cayley's Theorem

Let Ω be any set. The set $S(\Omega)$ of all bijective functions $\psi:\Omega\to\Omega$ is a group whose operation is composition of functions.

Theorem 1.6.1 (Cayley's Theorem): Let G be any group. Then G is isomorphic to a subgroup of $S(\Omega)$ for some Ω .

Proof: Let $\Omega = G$. For $g \in G$, define a mapping $\lambda_g : G \to G$ by the rule

$$\lambda_a(h) = gh.$$

We are going to argue that the mapping $g\mapsto \lambda_g$ defines an injective group homomorphism $G\to S(\Omega)=S(G)$.

First of all, we note that $\lambda_1=\mathrm{id}$. Indeed, to check this identity of functions, let $h\in\Omega=G$. Then

$$\lambda_1(h) = 1h = h = id(h);$$

this confirms $\lambda_1 = \mathrm{id}$.

Next, we note that for $g_1,g_2\in G$, we have (*) $\lambda_{g_1}\circ\lambda g_2=\lambda_{g_1g_2}$. Again, to confirm this identify of functions, we let $h\in\Omega=G$. Then

$$\left(\lambda_{g_1} \circ \lambda_{g_2}\right) h = \lambda_{g_1} \left(\lambda_{g_2}(h)\right)) = \lambda_{g_1}(g_2 h) = g_1(g_2 h) = (g_1 g_2) h = \lambda_{g_1 g_2}(h)$$

as required.

Now, using (*) we see for $g \in G$ that $\lambda_g \circ \lambda_{g^{-1}} = \lambda_1 = \mathrm{id} = \lambda_{g^{-1}} \circ \lambda_g$, which proves that λ_g is bijective; thus indeed $\lambda_g \in S(\Omega) = S(G)$.

Moreover, (*) shows that the mapping $\lambda: G \to S(G)$ given by $g \mapsto \lambda_g$ is a group homomorphism.

It remains to see that λ is injective. If $g \in \ker \lambda$, then $\lambda_g = \operatorname{id}$. Thus $1 = \operatorname{id}(1) = \lambda_g(1) = g1 = g$. Thus g = 1 so that $\ker \lambda = \{1\}$ which confirms that λ is injective by Proposition 1.2.5. This completes the proof.

1.7. A linear analogue of Cayley's Theorem.

Let F be a field.

Theorem 1.7.1: Let G be any group. Then G is isomorphic to a subgroup of $\mathrm{GL}(V)$ for some F-vector space V.

Proof: The proof is quite similar to the proof of Cayley's Theorem.

Let V be the vector space of all finitely supported functions $f:G\to F$. Recall that V has a basis $B=\left\{\delta_{g}\mid g\in G.\right\}$

We are going to define an injective group homomorphism $G \to \operatorname{GL}(V)$.

For $g \in G$, we may define an F-linear mapping $\lambda_g : V \to V$ by defining the value of λ_g at each vector in B. We set $\lambda_g(\delta_h) = \delta_{gh}$.

Recall that a typical element v of V has the form

$$v = \sum_{i=1}^n t_i \delta_{h_i}$$

for scalars $t_i \in F$ and elements $g_i \in G$; since λ_q is F-linear, we have

$$\lambda_g(v) = \sum_{i=1}^n t_i \delta_{gh_i}.$$

We now show that $\lambda_1=\mathrm{id}$. To prove this, since the functions $V\to V$ are linear, it is enough to argue that the functions agree at each element of the basis B of V. Well, for $h\in G$,

$$\lambda_1(\delta_h) = \delta_{1h} = \delta_h = \mathrm{id}(\delta_h)$$

as required.

We next show for $g_1,g_2\in G$ that (*) $\lambda_{g_1}\circ\lambda_{g_2}=\lambda_{g_1g_2}$. Again, it suffices to argue that these functions agree at each element δ_h of B. For $h\in G$ we have:

$$\left(\lambda_{g_1}\circ\lambda_{g_2}\right)(\delta_h)=\lambda_{g_1}\Big(\lambda_{g_2}\delta_h\Big)=\lambda_{g_1}\Big(\delta_{g_2h}\Big)=\delta_{g_1(g_2h)}=\delta_{(g_1g_2)h}=\lambda_{g_1g_2}\delta_h$$

as required.

Now, for $g \in G$ we see that by (*) that

$$\mathrm{id} = \lambda_1 = \lambda_q \circ \lambda_{q^{-1}}$$

which proves that λ_q is invertible and hence in $\mathrm{GL}(V)$.

Moreover, (*) shows that the assignment $\lambda:G\to \mathrm{GL}(V)$ given by the rule $g\mapsto \lambda_g$ is a group homomorphism.

It remains to argue that λ is injective. Suppose that $x \in \ker \lambda$, so that $\mathrm{id} = \lambda_x$.

Then $\delta_1 = \operatorname{id}(\delta_1) = \lambda_x(\delta_1) = \delta_{x1} = \delta_x$. This implies that 1 = x so that indeed the kernel of λ is trivial and thus λ is injective by Proposition 1.2.5.

2. Week 2 [2025-09-08]

This week, we'll discuss quotients, and we'll begin our discussion of group actions.

2.1. The Quotient of a set by an equivalence relation

Let S be a set and let R be a relation on S. Formally, R is an assignment $R: S \times S \to \text{Prop}$ – in other words, for $a, b \in S$, R(a, b) is the proposition that a and b are related; of course R(a, b) may or may not hold.

We often use a symbol \sim or $\underset{R}{\sim}$ to indicate this proposition; thus $R(a,b) \Leftrightarrow a\underset{R}{\sim} b$.

Definition 2.1.1: The relation \sim is an equivalence relation if the following properties hold:

- reflexive: $\forall s \in S, s \sim s$.
- symmetric: $\forall s_1, s_2 \in S, s_1 \sim s_2 \Rightarrow s_2 \sim s_1$
- transitive: $\forall s_1, s_2, s_3 \in S, s_1 \sim s_2 \text{ and } s_2 \sim s_3 \Rightarrow s_1 \sim s_3$

Definition 2.1.2: If \sim is an equivalence relation on the set S, a quotient of S by \sim is a set \bar{S} together with a surjective function $\pi: S \to \bar{S}$ with the following properties:

- (Quot 1) $\forall a, b \in S, a \sim b \Rightarrow \pi(a) = \pi(b)$
- (Quot 2) Let T be any set and let f be any function $f: S \to T$ such that $\forall a, b \in S, a \sim b \Rightarrow f(a) = f(b)$. Then there is a function $\bar{f}: S \to T$ for which $f = \bar{f} \circ \pi$.

Proposition 2.1.3: Suppose that (\bar{S}_1,π_1) and (\bar{S}_2,π_2) are two quotients of the set S by the equivalence relation \sim . Let

$$\bar{\pi_2}:\bar{S}_1\to\bar{S}_2$$

be the mapping determined by the quotient property for $\left(\bar{S}_{1},\pi_{1}\right)$ using

$$T = \bar{S}_2$$
 and $f = \pi_2 : S \to \bar{S}_2$,

and let

$$\bar{\pi}_1:\bar{S}_2\to\bar{S}_1$$

be the mapping determined by the quotient property for $\left(ar{S}_{2},\pi_{2}\right)$ using

$$T=\bar{S}_1 \ \ \text{and} \ \ f=\pi_1:S\to\bar{S}_2.$$

Then the maps $\pi_2': \bar{S}_1 \to \bar{S}_2$ and $\pi_{1'}: \bar{S}_2 \to \bar{S}_1$ are inverse to one another, and in particular π_1' and π_2' are bijections.

Proof: By the definition of quotients, we have commutative diagrams

In particular, we have $\pi_2 = \bar{\pi}_2 \circ \pi_1$ and $\pi_1 = \bar{\pi}_1 \circ \pi_2$

Substitution now yields

$$\pi_1 = \bar{\pi}_1 \circ \bar{\pi}_2 \circ \pi_1$$

and

$$\pi_2 = \bar{\pi}_2 \circ \bar{\pi}_1 \circ \pi_2$$

Since π_1 and π_2 are surjective, we conclude that $id = \bar{\pi}_1 \circ \bar{\pi}_2$ and $id = \bar{\pi}_2 \circ \bar{\pi}_1$ so indeed the indicated functions are inverse to one another.

Remark 2.1.4: The point of the Proposition is that a quotient is completely determined by the property indicated in the definition – this property is an example of what is known as a universal property or sometimes as a universal mapping property. The conclusion of the Proposition shows that any two ways of constructing a quotient are equivalent in a strong sense.

One way of constructing the quotient is by considering equivalence classes, as follows:

Definition 2.1.5: For an equivalence relation \sim on a set S, the equivalence class [s] of an element $s \in S$ is the subset of S defined by

$$[s] = \{x \in S \mid x \sim s\}.$$

Proposition 2.1.6: Equivalence classes for the equivalence relation \sim have the following properties for arbitrary $s, s' \in S$:

a.
$$s \sim s' \Leftrightarrow [s] = [s']$$

b. $[s] \neq [s'] \Leftrightarrow [s] \cap [s'] = \emptyset$

Proof: Review!

Theorem 2.1.7 (Existence of quotients): For any equivalence relation \sim on a set S, there is a quotient (\bar{S}, π) .

Proof: We consider the set $\bar{S} = \{[s] \mid s \in S\}$ of equivalence classes and the mapping $\pi : S \to \bar{S}$ given by the rule $\pi(s) = [s]$.

Proposition 2.1.6 confirms condition (a) of Definition 2.1.2.

For condition (b) of <u>Definition 2.1.2</u> suppose that T is a set and that $f:S\to T$ is a function with the property that $\forall a,b\in S, a\sim b\Rightarrow f(a)=f(b)$. We must exhibit a function $\bar f:\bar S\to T$ with the property $f=\bar f\circ\pi$. If $\bar f$ exists, it must satisfy $\bar f([a])=a$ for $a\in S$. On the other hand, in view of <u>Proposition 2.1.6</u> (a), the rule $[a]\mapsto f(a)$ indeed determines a well-defined function $\bar f:\bar S\to T$. Moreover, the identity $f=\bar f\circ\pi$ evidently holds.

Remark 2.1.8: We gave an explicit construction of the quotient using equivalence classes. On the other hand, if one has a quotient (\bar{S}, π) , the equivalence class [x] of an element $x \in S$ is equal to $\pi^{-1}(\pi(x))$.

Proposition 2.1.9: If \sim is an equivalence relation on the set S, then S is the disjoint union of the equivalence classes.

Proof: Each element $x \in S$ is contained in the equivalence classes [x], so it only remains to prove that if two equivalence classes have a common element, they are equal. For this, let $x, y \in S$ and suppose that $z \in [x] \cap [y]$. Then $x \sim z$ and $y \sim z$ so that $x \sim y$ by transitivity; thus [x] = [y].

2.2. Sub-groups

Let G be a group (when giving definitions, we'll write G multiplicatively).

Definition 2.2.1: A subgroup of G is a non-empty subset $H \subseteq G$ such that H is closed under the operations of multiplication in G and inversion in G. In other words,

$$\forall a, b \in G, ab \in H \text{ and } a^{-1} \in H$$

Example 2.2.2: Consider the group $G = \mathbb{Z} \times \mathbb{Z}$ where the operation is componentwise addition. Check the following!

- a. $H_1 = \{(a,b) \in G \mid 2a+3b=0\}$ is a subgroup.
- b. $H_2 = \{n(2,2) + m(1,2) \mid n,m \in \mathbb{Z}\}\$ is a subgroup.

The collection of subgroups of G has a natural partial order given by *containment*.

Proposition 2.2.3: (Constructing subgroups)

- a. If H_i for $i \in I$ is a family of subgroups of G, indexed by some set I, then the intersection $\bigcap_{i \in I} H_i$ is again a subgroup of G.
- b. Let $S \subseteq G$ be a subset. There is a unique smallest subgroup $H(S) = \langle S \rangle$ containing S. In other words, for any subgroup H' of G with $S \subseteq H'$, we have $\langle S \rangle \subseteq H'$.

Remark 2.2.4:

- a. If $S,T\subseteq G$ are subsets, we often write $\langle S,T\rangle$ for $\langle S\cup T\rangle$. If $S=\{s_1,s_2,...,s_n\}$ we often write $\langle S\rangle=\langle s_1,s_2,...,s_n\rangle$.
- b. The subgroup in Example 2.2.2(b) is precisely $\langle (2,2), (1,2) \rangle$.

c. For any group G and $a \in G$, $\langle a \rangle := \langle \{a\} \rangle$ is the cyclic subgroup generated by a. If G is multiplicative, then $\langle a \rangle = \{a^n \mid n \in Z\}$ while if G is additive then $\langle a \rangle = \{na \mid n \in Z\}$.

Proposition 2.2.5: If $\varphi: G \to H$ is a group homomorphism, then $\ker \varphi$ is a subgroup of G.

Proposition 2.2.6: If $X \subseteq G$ is a non-empty subset of G, then X is a subgroup if and only if $(*) \quad \forall a, b \in X, ab^{-1} \in X$.

Proof: (\Rightarrow) : Immediate from the definition of a subgroup.

(\Leftarrow): Assume that (*) holds. We must show that X is a subgroup.

We first argue that X contains the identity element. Since X is non-empty, there is an element $x \in X$. Condition (*) then shows that $xx^{-1} = 1 \in X$ as required.

We now show that X is closed under inversion. Let $x \in X$. Since $1 \in X$, we apply (*) with a = 1 and b = x to learn that $1x^{-1} = x^{-1} \in X$, as required.

Finally, we show that X is closed under multiplication. Let $x, y \in X$. We have already seen that $y^{-1} \in X$. Now apply (*) with a = x and $b = y^{-1}$ to learn that

$$ab^{-1} = x(y^{-1})^{-1} = xy \in X$$

as required.

2.3. Group actions

Definition 2.3.1: Let G be a group and let Ω be a set. An action of G on Ω is a mapping

$$G \times \Omega \to \Omega$$
 written $(g, x) \mapsto gx$

such that for each $x \in \Omega$ we have

- 1x = x
- $\forall g, h \in G, (gh)x = g(hx).$

For brevity, sometimes we say that Ω is a G-space.

Proposition 2.3.2: An action of a group G on a set Ω determines a homomorphism $f:G\to S(\Omega)$ such that f(g)(x)=gx for $g\in G$ and $x\in \Omega$.

Conversely, given a homomorphism $f:G\to S(\Omega)$, there is an action of G on Ω given by gx=f(g)(x) for each $g\in G$ and $x\in \Omega$.

Definition 2.3.3: Suppose that Ω is a G-space. The G-conjugacy relation on Ω is defined as follows: for $x,y\in\Omega$, $x\underset{G}{\sim}y$ provided that $\exists g\in G, gx=y$.

Proposition 2.3.4: The G-conjugacy relation on Ω is an equivalence relation.

Definition 2.3.5: Let Ω be a G-space, and let $\varphi: \Omega \to \Omega/\sim$ be the quotient mapping for the G-conjugacy relation; see <u>Definition 2.1.2</u>. For $x \in \Omega$, the <u>orbit</u> $\mathcal{O}_x = Gx$ of G through x is the subset of Ω defined by

$$\mathcal{O}_x = \varphi^{-1}(\varphi(x)).$$

Thus the G-orbits are the equivalence classes for the relation \sim ; see Remark 2.1.8.

Equivalently, we have $\mathcal{O}_x = \{gx \mid g \in G.\}$

Proposition 2.3.6: Ω is the disjoint union of the G-orbits in Ω .

Proof: This follows from <u>Proposition 2.1.9</u>.

Remark 2.3.7: Each orbit \mathcal{O}_x is itself a G-set.

2.4. Quotients of groups

Let G be a group and let H be a subgroup of G. There is an action of H on the set G by right multiplication: for $h \in H$ and $g \in G$ we can define $h \cdot g = gh^{-1}$.

We are going to consider the quotient of G by the equivalence relation of H-conjugacy; this equivalence relation is defined by

$$g \sim g' \Leftrightarrow \exists h \in H, g = g'h.$$

Definition 2.4.1: The left quotient of G by H is the quotient $(\pi, G/H)$ of G by the equivalence relation of H-conjugacy defined using the action of H on G by right multiplication as described above.

Remark 2.4.2:

- a. Of course, one can use an explicit model for the quotient by taking G/H to be the set of equivalence classes in G for the H-conjugacy relation.
- b. The equivalence classes for the relation of H-conjugacy defined by the action of right multiplication are precisely the left cosets of H in G. The class of $x \in G$ has the form

$$xH = \{xh \mid h \in H\}$$

For $x \in G$,

$$\pi^{-1}(\pi(x)) = xH.$$

c. We can also consider the action of H on G by left multiplication. This action determines an equivalence relation of H-conjugacy, and the quotient of G by this equivalence relation is called the right quotient of G by H and is written $(\pi, H \setminus G)$. In this case, the equivalence classes are the right cosets where the class of $x \in G$ has the form $Hx = \{hx \mid h \in H\}$.

For $x \in G$, we have $\pi^{-1}(\pi(x)) = Hx$.

Proposition 2.4.3: There is an action

$$\alpha: G \times G/H \to G/H$$

of the group G on the set G/H such that

$$\forall g, x \in G$$
, we have $\alpha(g, \pi(x)) = \pi(gx)$

where $\pi:G\to G/H$ is the quotient map.

Proof: To define the action map α , first fix $g \in G$. We are going to define the mapping

$$\alpha(g,-):G/H\to G/H.$$

Consider the mapping $\pi_g:G\to G/H$ given by the rule $\pi_g(x)=\pi(gx)$. This mapping has the property that $x\underset{H}{\sim} x'\Rightarrow \pi_g(x)=\pi_{g(x')}$. Indeed,

$$x \underset{\mathsf{H}}{\sim} x' \Rightarrow \exists h, x = x'h \Rightarrow \pi_g(x) = \pi(gx) = \pi(gx'h) = \pi(gx') = \pi_g(x')$$

by the defining property of π ; see <u>Definition 2.1.2</u>. Again using <u>Definition 2.1.2</u> we find the desired mapping $\alpha(g,-): G/H \to G/H$ with the property that

$$(\clubsuit) \quad \alpha(g,-)\circ\pi=\pi_g.$$

We now assemble the mappings $\alpha(g,-)$ to get a mapping $\alpha:G\times G/H\to G/H$ which satisfies $\alpha(g,\pi(x))=\pi(gx)$ for each $g,x\in G$, and it remains to check that α determines an action as in Definition 2.3.1.

Of course, using (\clubsuit) , we have $\alpha(1,-)\circ\pi=\pi_1=\pi=\mathrm{id}\circ\pi$; since π is surjective, it follows that $\alpha(1,-)=\mathrm{id}$. Thus $\alpha(1,z)=z$ for each $z\in G/H$, which shows that α satisfies the first requirement of <u>Definition 2.3.1</u>.

Now suppose that $g_1, g_2 \in G$. To complete the proof, we must veryify the remaining requirement of Definition 2.3.1; thus we must show that

$$(lackled{\Phi}) \quad \alpha(g_1, \alpha(g_2, -)) = \alpha(g_1g_2, -)$$

On the one hand, using (\clubsuit) we find that

$$\alpha(g_1g_2,-)\circ\pi=\pi_{q_1q_2};$$

on the other hand, for $z \in G$ we have

$$\begin{split} (\alpha(g_1,\alpha(g_2,-))\circ\pi)(z) &= \alpha(g_1,\alpha(g_2,\pi(z))) \\ &= \alpha\Big(g_1,\pi_{g_2}(z)\Big) & \text{ by } (\clubsuit) \\ &= \alpha(g_1,\pi(g_2z)) \\ &= \pi(g_1(g_2z)) & \text{ by } (\clubsuit) \end{split}$$

Since π is surjective, (\heartsuit) follows at once. This completes the proof.

2.5. Quotients of groups and orbits.

Definition 2.5.1: Suppose that G acts on Ω_1 and on Ω_2 . A morphism of G-sets $\varphi:\Omega_1\to\Omega_2$ is a function φ with the property that $\forall g\in G$ and $\forall x\in\Omega_1$, we have $\varphi(gx)=g\varphi(x)$.

The morphism of G-sets φ is an isomorphism (of G-sets) if there is a morphism of G-sets $\psi:\Omega_2\to\Omega_1$ such that $\varphi\circ\psi=\mathrm{id}$ and $\psi\circ\varphi=\mathrm{id}$.

Suppose that G acts on Ω and let $x \in \Omega$.

Definition 2.5.2: The stabilizer of x in G is the subgroup $\operatorname{Stab}_G(x) = \{g \in G \mid gx = x\}$.

Proposition 2.5.3: Write $H = \operatorname{Stab}_G(x)$ and recall that $\pi: G \to G/H$ is the quotient mapping. There is a unique isomorphism of G-sets $\gamma: G/H \to \mathcal{O}_x$ with the property that

$$\gamma(\pi(1)) = x$$
.

Proof: The rule $g\mapsto gx$ determines a surjective mapping $\alpha_x:G\to\mathcal{O}_x$. Recall that the action of H on G by right multiplication determines an equivalence relation \sim on G used to construct the quotient G/H.

For $g_1, g_2 \in G$ we find that

$$g_1 \sim g_2 \Rightarrow \exists h \in H, g_1 = g_2 h \Rightarrow \alpha(g_1) = \alpha(g_2 h) = g_2 h x = g_2 x = \alpha(g_2)$$

since $h \in H = \operatorname{Stab}_G(x) \Rightarrow hx = x$.

Thus <u>Definition 2.1.2</u> shows that there is a mapping $\gamma:G/H\to\mathcal{O}_x$ such that $\gamma\circ\pi=\alpha_x$. To see that γ is a morhpism of G-sets, it suffices to show that (\clubsuit) $\forall g,g'$ we have

$$\gamma(q \cdot \pi(q')) = q \cdot \gamma(\pi(q')).$$

Now by the definition of the G-action on G/H we have $g \cdot \pi(g') = \pi(gg')$; see Proposition 2.4.3. Thus $\gamma(g \cdot \pi(g')) = \gamma(\pi(gg')) = \alpha_x(gg') = gg' \cdot x$. On the other hand, $g \cdot \gamma(\pi(g')) = g \cdot \alpha_{x(g')} = g \cdot g' \cdot x$ which confirms (\clubsuit). This shows that γ is indeed a morphism of G-sets.

Since α_x is surjective and $\gamma \circ \pi = \alpha_x$, also γ is surjective. It only remains to see that γ is injective. Suppose that $z, z' \in G/H$ such that $\gamma(z) = \gamma(z')$. Since $\pi: G \to G/H$ is surjective, we may choose $g, g' \in G$ with $z = \pi(g)$ and $z' = \pi(g')$. Now

$$\gamma(z) = \gamma(z') \Rightarrow \gamma(\pi(g)) = \gamma(\pi(g')) \Rightarrow \alpha_{x(g)} = \alpha_{x(g')} \Rightarrow gx = g'x. `$$

We now conclude that $g^{-1}gx=x$ so that $g^{-1}g\in \operatorname{Stab}_G(x)=H$. Since the quotient mapping π is constant on H-orbits, $z=\pi(g)=\pi(gg^{-1}g')=\pi(g')=z'$. This shows that γ is injective and completes the proof.

Definition 2.5.4: The action of G on Ω is transitive if there is a single G-orbit on Ω . Equivalently, the action is transitive if the quotient Ω/\sim is a singleton set.

Example 2.5.5: Let I be a set and let G = S(I) be the group of permutations of I. Fix $x \in I$ and let $H = \operatorname{Stab}_G(x)$. Notice that G acts on I. Moreover, the G-orbit of x is precisely I - in other words, the action of G on I is transitive.

Notice that $H = S(I - \{x\})$.

Now Proposition 2.5.3 gives an isomorphism of G-sets $G/H \to I$; i.e. $S(I)/S(I - \{x\}) \to I$.

2.6. Normal subgroups

Subgroups of the form ker φ have a property that ordinary subgroups might lack.

Definition 2.6.1: A subset $N \subseteq G$ is a normal subgroup of G if N is a subgroup of G and if for any $g \in G$ and for any $x \in N$, we have $gxg^{-1} \in N$.

Proposition 2.6.2: Let G be a group.

a. For $g \in G$, the assignment $x \mapsto gxg^{-1}$ determines a group isomorphism

$${\rm Inn}_r:G\to G$$

b. The assignment $x \mapsto \operatorname{Inn}_x$ determineds a group homomorphism $G \to \operatorname{Aut}(G)$ where $\operatorname{Aut}(G)$ is the group of *automorphisms* of G.

Proof sketch:

- First check that Inn_x is a group homomorphism.
- Then check that (\spadesuit) $\operatorname{Inn}_x \circ \operatorname{Inn}_y = \operatorname{Inn}_{xy}$ for all $x, y \in G$.
- Next, check that ${\rm Inn}_1={\rm id.\ Using\ }(\blacklozenge),$ this shows that ${\rm (Inn}_x)^{-1}={\rm Inn}_{x^{-1}}$ so indeed ${\rm Inn}_x$ is an *automorphism* of G.
- Finally, (\spadesuit) shows that Inn is a group homomorphism.

In this notation, a subgroup H of G is normal when $\operatorname{Inn}_x(N) \subset N$ for each $x \in G$.

Definition 2.6.3: If $H, K \subseteq G$ are two subgroups, then H normalizes K if for each $g \in H$ and each $x \in K$ we have $gxg^{-1} \in K$.

Proposition 2.6.4: Suppose that $G = \langle S \rangle$ for some subset S. A subgroup H of G is normal if and only if (\clubsuit) $xHx^{-1} \subseteq H$ for each $x \in S$.

Proof: The proof of the implication (\Rightarrow) is immediate. To prove (\leq) , suppose that

Definition 2.6.5: Let H, K be subsets of G. The product of H and K is the subset

$$HK := \{xy \mid x \in H, y \in K\}$$

Proposition 2.6.6: Suppose that H, K are subgroups of G and that H normalizes K.

- a. Then $\langle H, K \rangle = HK$. In particular, HK a subgroup of G.
- b. H is a normal subgroup of HK.

Proof:

a. Let X=HK. Since any subgroup of G which contains both H and K clearly contains X, it only remains to argue that X is a subgroup. For this, we use <u>Proposition 2.2.6</u>. First note that $1=1\cdot 1\in X$, so X is non-empty. Now, let $a_1,b_2\in X$. We must argue that $a_1a_2^{-1}\in X$. By definition, there are elements $x_1,x_2\in H$ and y_1,y_2 in K with $a_i=x_iy_i$ for i=1,2. We now compute

$$a_1a_2^{-1} = x_1y_1(x_2y_2)^{-1} = x_1y_1y_2^{-1}x_2^{-1} = \left(x_1x_2^{-1}\right)\cdot \left(x_2y_1y_2^{-1}x_2^{-1}\right).$$

We notice that $x_1x_2^{-1} \in H$. Moreover, $y_1y_2^{-1} \in K$; since H normalizes K it follows that $x_2y_1y_2^{-1}x_2^{-1} \in K$.

We have now argued that $a_1a_2^{-1}$ has the form xy for $x \in H$ and $y \in K$ so that $a_1a_2^{-1} \in X$. Now <u>Proposition 2.2.6</u> indeed shows that X = HK is a subgroup.

b.

be the natural

Proposition 2.6.7: Let H,K be subgroups of G and let $\varphi: H \times K \to HK$ be the natural mapping given by $\varphi(h,k) = hk$.

- a. For each $\alpha \in HK$, the set $\varphi^{-1}(\alpha)$ is in bijection with $H \cap K$.
- b. In particular, if $H \cap K = \{1\}$, then φ is bijective.

Proof: Let $\alpha = hk \in HK$. Note for any $x \in H \cap K$ that $\varphi(hx, x^{-1}k) = \alpha$ so that $(hx, x^{-1}k) \in \varphi^{-1}(\alpha)$. We argue that the mapping

$$\gamma: H \cap K \to \varphi^{-1}(\alpha)$$
 given by $\gamma(x) = (hx, x^{-1}k)$

is bijective. Well, if $(h_1,k_1)\in \varphi^{-1}(\alpha)$ then $\varphi(h_1,k_1)=\varphi(h,k)$ so that $h_1k_1=hk$ and thus $h^{-1}h_1=kk_1^{-1}$. Now set $x=h^{-1}h_1=kk_1^{-1}\in H\cap K$ and observe that $(h_1,k_1)=\gamma(x)$. This shows that γ is surjective. To see that γ is injective, suppose that $\gamma(x)=\gamma(x')$ for $x\in H\cap K$. Then

$$\left(hx,x^{-1}k\right)=\left(hx',x'^{-1}k\right)\Rightarrow hx=hx'\Rightarrow x=x'.$$

So γ is injective and the proof of a. is complete.

Now, the mapping φ is surjective by the definition of HK. To prove b. we suppose that

$$H \cap K = \{1\}.$$

According to a. the fiber $\varphi^{-1}(\alpha)$ is a singleton for each $\alpha \in HK$; this shows that φ is injective and confirms b.

Remark 2.6.8: If G is a finite group and H, K subgroups of G, then Proposition 2.6.7 shows that

$$|HK| = |H| \cdot |K| / |H \cap K|.$$

Let's introduce some examples of groups in order to investigate this a bit more.

Example 2.6.9: For $n \in \mathbb{N}$ with $n \geq 1$, consider the symmetric group $S = S_n$ viewed as $S(\mathbb{Z}/n\mathbb{Z})$ where $\mathbb{Z}/n\mathbb{Z}$ denotes the collection of integers modulo n.

Consider the elements $\sigma, \tau \in S$ defined by the rules $\sigma(i) = i + 1$ and $\tau(i) = -i$ where the addition and negation occurs in $\mathbb{Z}/n\mathbb{Z}$.

Viewed as permutations, σ identifies with an n-cycle and τ identifies with a product of disjoint transpositions:

$$\sigma = (1,2,...,n) \text{ and } \tau = (1,n-1)(2,n-2)... = \prod_{i=1}^{\lfloor \frac{n}{2} \rfloor} (i,n-i).$$

In particular, σ has order n and τ has order 2. Moreover,

$$(\mathbf{\Psi}) \quad \tau \sigma \tau = \sigma^{-1}$$

Condition (\P) shows that the subgroup $\langle \tau \rangle$ normalizes the subgroup $\langle \sigma \rangle$. Thus <u>Proposition 2.6.6</u> shows that

$$\langle \sigma, \tau \rangle = \langle \sigma \rangle \langle \tau \rangle.$$

We call $\langle \sigma, \tau \rangle$ the dihedral group of order n.

Now $\langle \sigma \rangle$ is a normal

Proposition 2.6.10: Let $N=\ker \varphi$ where $\varphi:G\to H$ is a group homomorphism. Then N is a normal subgroup of G.

Proof: We have already observed that N is a subgroup. Now let $g \in G$ and $x \in N$ so that $\varphi(x) = 1$. Now

$$\varphi\big(gxg^{-1}\big)=\varphi(g)\varphi(x)\varphi\big(g^{-1}\big)$$