Quantum Software Development

Lecture 3: Quantum Control Logic (cont.),

Quantum Communication

February 7, 2024

What does the Controlled Z gate do?

CZ gate applies Z to target when control is |1>

$$egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & -1 \ \end{bmatrix}$$

Controlled Z flips the phase of the superposition term where the control(s) and target is a $|1\rangle$.

Common Multi-Qubit Gates

SWAP

 $egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$

Swaps amplitudes of two qubits

UR

CNOT (CX)

 $egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$

Applies X to target when control is |1>

CZ

 $egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & -1 \end{bmatrix}$

Flips phase when both control and target are |1>

CCNOT (Toffoli)

Applies X to target when both controls are |1>

Try multi-qubit gates in Quirk.

- Go to https://algassert.com/quirk
- Apply controlled and SWAP gates to the first two qubits.
- Can you prepare a state that renders the Bloch sphere representation useless?
- What happens to the size of the amplitudes display as you add more qubits?

The Bell states are the four maximally entangled states for two qubits.

$$|\Phi^+
angle=rac{1}{\sqrt{2}}(|00
angle+|11
angle)$$

$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\mathbf{1}\rangle + |\mathbf{1}\mathbf{0}\rangle)$$

$$|\Phi^{-}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\mathbf{1}\rangle - |\mathbf{1}\mathbf{0}\rangle)$$

State	Extra Ops
$ \Phi^+ angle$	-
$ \Psi^+ angle$	X
$ \Phi^- angle$	Z
$ \Psi^{-} angle$	X, Z

Each of the Bell states correspond to a different value when "disentangled".

$$|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|\mathbf{00}\rangle + |\mathbf{11}\rangle)$$

$$|\Phi^{+}
angle egin{pmatrix} lackbox{\mathsf{H}} - |0
angle \ lackbox{\mathsf{H}} - |0
angle \$$

$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\mathbf{1}\rangle + |\mathbf{1}\mathbf{0}\rangle)$$

$$|\Phi^-\rangle = \frac{1}{\sqrt{2}}(|\mathbf{00}\rangle - |\mathbf{11}\rangle)$$

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\mathbf{1}\rangle - |\mathbf{1}\mathbf{0}\rangle)$$

State	Value
$ \Phi^+ angle$	00
$ \Psi^+ angle$	01
$ \Phi^- angle$	10
$ \Psi^{-} angle$	11

The superdense coding protocol allows two bits of information to be encoded into a pair of entangled qubits.

Quantum communication protocols are theoretically immune* from eavesdroppers.

*This does NOT mean systems that implement them cannot be hacked.

