

COMPUTAÇÃO GRÁFICA

Prática 1 – Conceitos de Matlab

Ivan Nunes da Silva

O que é o Matlab?

- MATLAB (MATrix LABoratory): software p/ cálculo numérico e científico de visualização de alta performance.
- Elementos Básicos: Matrizes que não requerem dimensionamento.
- Software de computação científica mais utilizado no mundo.
- Presença de TOOLBOXES: Grande coleção de funções para controle, otimização, manipulação algébrica, redes neurais, sistemas fuzzy, sinais, sistemas dinâmicos, etc.
- Pode ser linkado com o SIMULINK.

CZ

Características do Matlab

- Resolver problemas de engenharia de forma rápida e eficiente.
- Fácil de ser usado.
- Problemas e soluções são expressos quase que da mesma maneira que no papel.
- Facilidade de transcrição de fórmulas matemáticas para serem usadas em computadores.
- Utilizado em aplicações matemáticas, engenharia e análises científicas.
- Forte interação com ferramentas de cunho gráfico.

3

Elementos Básicos do Matlab

- **Escalares**: matriz 1x1
- Vetores: Linha e Coluna
- Matrizes: bi e multidimensionais
- **Palavras Reservadas**: ans, pi, inf, version, flops, NaN, etc.
- Expressões: Lógicas e Aritméticas
- **Gráficos**: 2D e 3D
- Controle de Fluxo: while, for, if, etc.

TSP

Tipos de Dados e Variáveis

• Tipos de Dados:

- Tipo Inteiro: 5; 1000; -564; ...
- Tipo Real: 3; 1.23; .2343; -2.5365e-2, ...
- Tipo Complexo: 2; 1+2i; -47i; -1-3i; ...
 - Distinção entre os tipos numéricos é realizada em tempo de execução.
- Tipo Alfanumérico: 'banana'; 'pneu'; '2ab'; ...

• Nomes Para Identificadores:

- Alfanuméricos com até 32 caracteres.
- 1º caractere deve ser uma letra.
- * São sensíveis a maiúsculo e minúsculo
- * Aceita '_' no meio da variável.

ŗ

CSP

Comando de Atribuição

Variável = expressão; {não mostra o valor da variável}

Variável = expressão {mostra o valor da variável}

Exemplos:

```
x = sin(5);
y = 1/3;
Z = 9.63973;
w = 1.602e-20;
r = .0001;
soma = 3+2i;
c = 'ABC'
```

CSP

Definição de Vetores

- Construção de Vetores
 - * 1a. Forma \rightarrow x = [5.2 6.3 1.2]'
 - * 2a. Forma \rightarrow y = [1.2; 3.6; 9.5]
 - Referenciação a elementos \rightarrow x(1); x(3); y(2); y(3); ...
 - O primeiro elemento do vetor tem sempre índice 1.
 - Funções Para Geração de Vetores:
 - x = [1:0.05:2]' {Vetor de 1 até 2 com incremento de 0.05}
 - y = ones(10,1) {Vetor com 10 elementos de valor 1}
 - z = rand(15,1) {Vetor com 15 elementos aleatórios}
 - w = zeros(8,1) {Vetor com 8 elementos nulos}

7

Definição de Matrizes

- Construção de Matrizes
 - * 1a. Forma \rightarrow x = [5.2 6.3 1.2 6.4 8.3 7.1 9.2 1.2 3.1];
 - 2a. Forma \rightarrow y = [5.2 6.3 1.2; 6.4 8.3 7.1; 9.2 1.2 3.1]
 - Referenciação a elementos \rightarrow x(1,2); x(3,2); y(2,1); y(3,3); ...
 - O primeiro elemento da matriz tem índice (1,1).
 - Funções Para Geração de Matrizes:
 - x = rand(10) {Matriz 10x10 com valores aleatórios uniforme}
 - y = ones(10,5) {Matriz 10x5 com elementos de valor 1}
 - z = randn(15) {Matriz 15x15 com elementos aleatórios N(0,1)}
 - w = zeros(5,8) {Matriz 5x8 com 8 elementos nulos}

Expressões Aritméticas

OPERADOR	OPERAÇÃO
+	Adição
-	Subtração
*	Multiplicação Matricial
.*	Multiplicação Escalar
/	Divisão Matricial

./	Divisão Escalar
٨	Potência
.^	Potência escalar
,	Transposta
0	Precedência

9

Funções Básicas

exp	Exponencial	poly	Polinômio característico
log	Logaritmo natural	det	Determinante
log10	Log de base 10	abs	Valor absoluto
find	Índices não zero	sqrt	Raiz quadrada
max	Máximo valor	real	Parte real de complexo
min	Mínimo valor	imag	Parte imag de complexo
mean	Média aritmética	conj	Conjugado de complexo
std	Desvio padrão	round	Arredondar

Expressões Lógicas

Operador	Significado
<	Menor que
<=	Menor ou igual que
==	Igual
~=	Não igual
>	Maior que
>=	Maior ou igual que

Operadores lógicos: & → Para conjunção

→ Para disjunção

~ → Para a negação

1

Controle de Fluxo (for)

```
1.) for vc = vi : vf <br/> <br/> <br/> end
```

onde: vc é a variável de controle vi é o valor inicial de vc vf é o valor final de vc

Exemplo:

```
>> for i=1:10

v(i) = 3*i;

end
```

Cria um vetor transposto com 10 elementos:

 $[3 \ 6 \ 9 \ 12 \ 15 \ 18 \ 21 \ 24 \ 27 \ 30]$

Controle de Fluxo (while)

2.) while <condição verdadeira> <bloco de comandos> end

onde: <condição verdadeira> deverá retornar sempre um valor lógico 0 ou 1.

```
Exemplo: Somar os 100 primeiros números ímpares:

>> x = 1; quantidade = 1; soma =0;

while quantidade <= 100

soma = soma + x;

quantidade = quantidade + 1;

x = x + 2;

end
```

13

CSP

Controle de Fluxo (if)

3.) Primeira Forma:

if <condição verdadeira> <bloco de comandos>

end

Segunda Forma:

Controle de Fluxo

4.) Funções Especiais:

- break → termina de forma incondicional os laços do *for* e do *while*.
- pause → pausa na execução do programa até que qualquer tecla seja pressionada.
- pause(n) → causa uma pausa de n segundos na execução do programa.
- input \rightarrow recebe dados do teclado.
 - x = input('Entre com o valor de x: ');

15

TSP

Arquivos de Programas

- São caracterizados pela extensão ".m".
- Automatizam uma sequência de comandos.
- Úteis p/entrar com matrizes extensas.
- Podem ser criados a partir de qualquer editor de texto e se caracterizam como arquivos textos comuns.
- São normalmente utilizados para:
 - Scripts de programas.
 - Scripts de funções.

Scripts de Programas

- Quando o programa é chamado, o Matlab executa todos os comandos inseridos dentro do arquivo.
- Exemplo: fazer um programa que armazene num vetor os n primeiros termos da sequência de Fibonacci.

```
% Arquivo "fibonacci.m"

n = input('Entre com o valor de n > 2: ');

f(1) = 0;

f(2) = 1;

for i = 3:n

f(i) = f(i-1) + f(i-2);

end
```

• >> fibonacci {Exemplo de chamada}

17

CSP

Scripts de Funções

- As funções devem ser chamadas por outros programas.
- O nome do programa deve coincidir com o nome da função.
- Exemplo: fazer uma função que calcule o fatorial de um número n passado como argumento.

```
function fat = fatorial(n)

x = 1;

for i=1:n

x = x*i;

end

fat = x
```

• >> fatorial(10) { Exemplo de chamada}

TSP

Manipulação de Matrizes

- Seja a matriz $A = [1 \ 2 \ 3; 4 \ 5 \ 6; 7 \ 8 \ 9].$
 - 1. Trocar todos os elementos da 3ª coluna por 11.
 - 2. Adicionar uma 4ª coluna com todos elementos iguais a 5.
 - 3. Retornar uma matriz *B* de dimensão 2x2 que é formada pela retirada da primeira linha e primeira coluna de *A*.
 - 4. Anexar à matriz A (em linha) uma matriz C de dimensão 3x3 gerada aleatoriamente.
 - 5. Anexar à matriz *A* (em coluna) uma matriz *C* de dimensão 3x6 gerada com elementos unitários.
 - 6. Retornar para *B* o primeiro vetor coluna da *A*.