复习范围

1. 人工智能学史(1获得, 0未获得)

	图灵奖	诺贝尔奖
Geffrey Hinton	1	1
John Hopfield	0	1

- 2. 深度学习——"深度":神经网络的深度(层数)。
- 3. 前馈神经网络(Feed-Forward Neural Network, FNN)

特点:相邻层间神经元密集连接。

- 4. 全连接神经网络(Full Connect Neural Network, FCNN)
- 前向传播: 计算结果并保存梯度。
- 反向传播:链式规则。
- 5. 卷积神经网络 (Convolutional Neural Networks, CNN)
- 结构

卷积层: 提取局部特征。

池化层:降低特征维度。

全连接层。

● 卷积计算过程

原图像尺寸: $H_0 = N_0 \times M_0 \times A_0$ 卷积核尺寸: B个, $F \times F \times A_0$

Padding: P Stride: S

新图像尺寸: $N_1 = \frac{N_0 + 2P - F}{S} + 1$, $A_1 = B$

参数量: $F \times F \times A_0 \times B$

● 池化计算过程

最大池化(Max Pooling):选取区域的最大值作为代表性的特征值。 平均池化(Average Pooling):计算区域的平均值作为代表性的特征值。 池化层参数量为 0。

● 填充 (Padding)

增加感受野,减少信息损失:确保边缘像素能被卷积核充分覆盖,得到有效处理, 而不是丢失。

控制输出尺寸:通过调整填充量可以精确控制每一层的输出尺寸。

● 步幅 (Stride):

控制输出尺寸、下采样程度:较大步幅可以减小输出的空间尺寸,降低计算复杂度,减少参数量,提高特征图的缩放比例。

调整感受野:较大步幅意味着输出单元会覆盖较大输入区域,增加感受野,减少重叠区域数量。

平衡速度与精度: 较大步幅可以加速计算过程, 但可能丢失细节信息; 较小步幅能更精细地捕捉特征, 但会增加计算成本。

● 1×1 卷积

维度变换(降维/升维):改变特征图的深度(通道数)。降维有助于降低模型 复杂度和计算量,同时保持大部分有用信息。

非线性引入: 在卷积后添加激活函数, 可以在不改变空间尺寸的情况下引入非线

性, 使模型能够学习更复杂的模式。

作为瓶颈层:在一些架构中(如ResNet、Inception),可以用作瓶颈层(先1×1卷积降维,再进行其他卷积,最后1×1卷积恢复维度)。显著减少参数数量和计算成本,同时维持性能。

特征融合: 融合不同尺度或不同来源的特征图, 合并成一个新的特征表示。

● 实例

LeNet: 没有使用 ReLU。

AlexNet: 最早使用了 ReLU, 最早使用了 GPU。

VGGnet: 小卷积核(感受野上, 3个3×3=1个7×7)。 GoogleNet: 使用了ReLU。Inception。1×1卷积。

ResNet:使用了ReLU。恒等映射直连边。残差模块。 趋势:卷积核变小、层数增加,抛弃池化层、全连接层。

6. 损失函数

交叉熵损失函数更适用于分类问题,常用于衡量模型预测的概率分布与真实标记的概率分布之间的差异。

7. 激活函数

		【石四级		I	·
激	函数	(导函数)	函数图像	优点	缺点
活					
函					
数					
r	γ	(1,z>0)	Rule函数	计算简单, 收敛速度	存在"死区"问
e	= max(0, x)	$y' = \begin{cases} 1, z > 0 \\ 0, z \le 0 \end{cases}$	10	快。	题 (神经元输入
		,	8	解决了梯度消失问题,	小于0时将永远
- U				允许误差迅速回传。	不会被激活)。
				有助于稀疏激活, 更简	非零中心化,可
				洁且减少过拟合风险。	能导致下一层权
			2	10年成人之初日八四。	重更新不均衡。
			10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0		里文明小均伪。
	1	!(1)!	Sigmoid語數	从小世国田户去	日份七、少十分
S	$y = \frac{1}{1 + e^{-z}}$	y' = y(1-y)'	1.0	输出范围固定在	易饱和,造成梯
i	$1 + e^{-2}$		0.8	(0,1),适用于二分类	度消失问题。
g			0.6	问题。	非零中心化,输
m			0.4	函数平滑且处处可微,	出总是正数,减
0				有利于梯度计算。	慢收敛速度。
i			0.2		计算成本高。
d			0.0 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0		
S	(对单个是y=	e^{x})	1.0	适用于多分类问题。	不适合作为隐藏
0	-	α^{χ_i}	0.8		层激活函数。
f	$y(x_i) =$	$\frac{e^{x_i}}{\sum_{i=1}^n e^{x_i}}$	/		存在数值溢出问
l t		$\sum_{i=1}^{n} e^{x_i}$	0.6-		题。
m			0.4		
''' a			0.2		
			-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 0.0		
X					

t a	$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	$f(y) = \frac{\phi' - \phi'}{\phi' + \phi'}$		存在易饱和和梯 度消失问题。
n h		41	适用于二分类问题。	
L	y = max(0.1x, x)	leaky relu		
e a		6 -		
k		4-		
У		2 -		
R		-5 https://blog.csdn.net/jac5llnux		
L				
U				
E L U	$y = \begin{cases} x, & x \ge 0 \\ a(e^x - 1), & x < 0 \end{cases}$	ELU 函数		
		子教 COMPERENTALES		
M	$y = max(w_1^T x + b_1, w_2^T x + b_2)$			
a				
X o				
u				
t				

● ReLU相比于 Sigmoid 的优点:

梯度问题: ReLU 在正区间内不会导致梯度消失; Sigmoid 容易陷入饱和区, 在区域内梯度几乎为零, 导致梯度消失。

计算效率: ReLU 只需判断输入是否大于 0, Sigmoid 涉及指数运算, 前者计算效率高于后者。

稀疏激活: ReLU 有助于产生稀疏激活, 使模型更简洁, 减少过拟合风险。

收敛速度: ReLU 可以使随机梯度下降更快收敛。

● Sigmoid 相比于 ReLU 的优点:

输出范围: Sigmoid 将输入映射到(0, 1)之间, ReLU 则没有进行约束, 前者对特定任务(如二分类问题)更有效。

适用于特定架构或任务:在RNNs中,Sigmoid被用于门控机制,控制信息流。非线性表达能力:Sigmoid在定义域上平滑且处处可微,非线性表达能力强。

8. 优化算法

不常用:二阶算法、牛顿法。

常用: SGD (+Momentum)、ADam、ADamW。

9. 参数

超参数:网络层数、学习率(学习率策略)、批量大小。

非超参数: 网络权重(不唯一, 比如倍数)。

超参数的获得:不能只在训练数据或测试数据上获得,要通过训练和验证获得。

10. 权重初始化

方法	特点	优点
高斯分布随机初始化	基于正态分布,权重应围	确保信号在传播中既不
	绕零均值分布, 并具有一	会迅速消失也不会爆炸。
	定方差。	
Xavier 初始化	确保前向传播和反向传	对于使用tanh或sigmoid
	播过程中激活值和梯度	激活函数的网络表现较
	的方差保持一致。	好。
Kaiming 均匀分布初始化		对于使用 ReLU 及其变体
(He 初始化)		激活函数的网络表现较
		好。

11. 正则化: 防止过拟合

● 批量规范化 (Batch Normalization)

通过对每个小批量样本进行归一化,使输入特征具有零均值和单位方差,有助于减少梯度消失和梯度爆炸问题,从而加速收敛。其可以提高模型稳定性、泛化能力,并减少对其他正则化技术的依赖。

● 丢弃法 (dropout)

在训练过程中随机失活部分神经元(输出0),减少模型对训练数据的过度 依赖,阻止特征间自适应。可以防止过拟合,提高鲁棒性,间接减小计算量,实 现模型平均效果。

L1 正则化: 使权重稀疏。L2 正则化: 是权重分散。

● 早停。

12. 欠拟合和过拟合

	描述	训练收敛的网络	
		训练误差	测试误差
欠拟合	模型未训练收敛	大	大
过拟合	模型在训练集上表现良好,但不能	小	大
	推广到测试集		

13. 梯度消失和梯度爆炸

10. 你没有人不懂人人都有			
	定义	问题	改善方法
梯度消失	网络层数增加, 反	导致权重	使用 ReLU 及其变种作为激活函数。
	向传播过程中梯	更新缓慢,	采用 Batch Normalization。
	度逐渐变小, 甚至	甚至停止	选择合适的权重初始化方法(如
	趋于零。	更新, 从而	Xavier 初始化或 He 初始化)。
	使用 sigmoid 或	影响模型	
	tanh 等激活函数	的学习能	
	时,它们的导数在	力,使网络	
	远离原点时变得	难以训练。	
	非常小。		

梯度爆炸

在反向传播过程 中,梯度值变得非 常大。 网络权重更新过 程中, 因梯度的累

积效应引起。

更新过大, 学习过程 至发散,无 法收敛到 最优解。

导 致 权 重│使用 ReLU 及其变种作为激活函数。 采用梯度截断 (Gradient 使模型的 Clipping),即限制梯度大小,防 止其变得过大。 不稳定, 甚 | 使用 Adam 优化器, 自动调整学习 率,控制梯度大小。

采用 Batch Normalization, 帮助 稳定梯度,减少梯度爆炸影响。

14. 循环神经网络 (Recurrent Neural Network, RNN)

循环核计算

隐藏状态更新: $h_t = f_w(h_{t-1}, x_t) = tanh(w_{xh}x_t + w_{hh}h_{t-1} + b_h)$

输出生成: $y_t = f_{whv}(h_t) = softmax(w_{hv}h_t + b_v)$

长短期记忆网络(Long Short-Term Memory networks, LSTM) 遗忘门、输入门、输出门中使用 sigmoid 激活函数。

细胞状态 (Cell State)

贯穿模型,在整个序列上进行少量的线性交互,使信息流动而不发生太多改 变。其中黄色框部分对应细胞状态的更新, 其根据遗忘门和输入门的结果进行。 遗忘门(Forget Gate)

对应上图红色框部分, 决定从细胞状态中丢弃哪些信息。 其查看前一时刻的 隐藏状态 h_{t-1} 和当前输入 x_t ,输出介于 0 和 1 之间的值给细胞状态 c_{t-1} 的每个元 素。0意味着完全丢弃,1意味着完全保留。

输入门(Input Gate)

对应上图蓝色框部分,包含一个用于确定要更新哪些部分的 sigmoid 层,和 一个创建新候选值向量的 tanh 层。

输出门(Output Gate)

对应上图绿色框部分,决定细胞状态的输出。sigmoid 层决定细胞状态的哪 些部分将输出, tanh 层缩放细胞状态, 与 sigmoid 门的输出相乘, 得到本时刻 输出。

- 门控循环单元网络(Gated Recurrent Unit networks, GRU) 只有两个门控机制(重置门和更新门),没有单独的细胞状态。
- GRU和 LSTM 相比于传统 RNN, 主要改善了梯度消失问题。

15. 注意力机制

- 组件包括键(Key)、值(Value)、查询(Query),不包括池化。
- 多头自注意力 (Multi-Head Self-Attention) 计算过程
 - 对于输入序列 X = [x₁, x₂,, x_n], 其维度是[n, d_{model}],
 - 由权重矩阵 W^Q 、 W^K 、 W^V 生成查询、键、值:

 $Q = XW^Q$

 $K = XW^K$

 $V = XW^V$

Q、K、V 的维度是[d_{model} , d_k], $d_k < d_{model}$,

■ 将其分割成 h 个头,每个头维度为^{d_k}:

 $Q_{split} = Split(Q)$

 $K_{\text{split}} = \text{Split}(K)$

 $V_{\text{split}} = \text{Split}(V)$

■ 对每个头计算注意力分数(点乘查询与键, dk缩放, softmax, 加权求和):

$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_k}})V$$

■ 合并头,其中W^o是一个可学习参数矩阵,维度为[hd_k,d_{model}],用来向d_{model}维映射:

 $MultiHead(Q, K, V) = Concat(head_1, head_2,, head_h)W^o$

● 在注意力机制中使用位置编码

原始的自注意力机制不包含序列中元素顺序信息, 计算仅基于元素间关系。 为使模型能有效处理序列数据, 并理解不同元素间的相对或绝对位置关系, 引入位置编码。位置编码保持了序列信息, 使其可以学习更复杂的模式, 有助于提高模型的理解能力和表达能力。另外, 位置编码还使得模型可以处理任意长度的序列, 支持变长输入。

16. Transformer

在 Transformer 解码器中使用掩蔽注意力(Masked Attention)

确保模型在生成序列时不依赖未来信息, 只关注到它之前的元素。这能模拟 真实场景, 保证因果关系, 维持了逻辑性和连贯性, 这对于生成符合语法和语义 规范的句子非常重要。

17. 自监督学习: 使用输入中的一部分预测另一部分, 即将部分输入作为标签, 无须人工标注标签。

18. 生成式模型

- 预训练(Pre-training): 在大型、通用数据集上训练模型, 让模型学习到输入数据中的基本特征和模式。
- 微调(Fine-tuning):在预训练后,将模型应用到具体任务上,并根据该

任务的相关数据集进行进一步训练, 调整参数, 以优化特定任务的表现。

● 分两步:

- 迁移学习: 预训练模型已经在大量数据上学到了丰富的特征, 在新任务 上只需对模型进行少量调整就可以获得良好效果。
- 充分利用数据,适应不同任务需求:有效结合预训练大数据集带来的泛 化能力和微调小数据集中特有的领域信息。
- 节省时间和成本: 获取大规模标注数据是困难而昂贵的, 预训练-微调允许在较小规模的数据集上快速开发和部署模型, 大大减少了从零开始训练所需的时间和计算资源. 同时还能保持较高的性能水平。

● 采用自监督学习的预训练方法:

- 数据效率:使模型能够利用丰富的未标注资源学习有用的表示,而不需要为每个样本都提供昂贵的手工标注。
- 泛化能力:通过在广泛无关数据上训练,可以学到更通用的语言理解能力和其他领域知识.提高模型对不同任务的适应性和泛化能力。
- 减少过拟合风险:相比于在小规模标注数据集上直接训练,在更大规模的数据集上预训练减少了过拟合风险。
- 加速后续学习:预训练得到的特征可以帮助模型更快地收敛到特定任务 的最佳解。
- 19. 物体检测与图像分割
- 语义分割与实例分割。
- 物体检测: R-CNN, FastR-CNN。
- 转置卷积: 可学习的上采样方法。
- 20. 可视化与理解
- 可视化: 卷积核、输出层。
- 理解:重要像素、显著性。
- 对抗性扰动。
- 风格迁移。