Branden Fitelson

Philosophy 57 Lecture

Branden Fitelson

Philosophy 57 Lecture

Philosophy 57 — Day 23

- Quiz #5 to Returned Today
 - "Curve": 92–100 (A); 75–91 (B); 62–74 (C); 50–61 (D); < 50 (F)
- Quiz #6 Next Tuesday (On §6.1 of Text: Translation & Syntax of PL)
- Extra-Credit Problems to be Posted Soon on Website
 - Five questions from chapter 6
 - Will be due on (or soon after) the final exam date
- Back to Chapter 6 Remaining Material
 - Review on the translation of conditionals
 - Truth-Functions and Truth Conditions for PL Statements
 - Truth-Tables for Arbitrary PL Sentences (§6.3)
 - Truth-Tables for Arbitrary PL Arguments (§6.4)

SJSU Philosophy

Chapter 6

04/24/03

Chapter 6 — **Propositional Logic Translations (Conditionals)**

• The following are eight ways of asserting the same conditional statement (in quasi-English). All of these get translated into PL as " $p \supset q$ ".

Quasi-English	PL	
If p , then q .	$p\supset q$	
q if p .	$p\supset q$	
p only if q .	$p\supset q$	
q provided that p .	$p\supset q$	
q on condition that p .	$p\supset q$	
p implies that q .	$p\supset q$	
p is a sufficient condition for q .	$p\supset q$	
q is a necessary condition for p .	$p \supset q$	

SJSU Philosophy

Chapter 6

04/24/03

Branden Fitelson

Philosophy 57 Lecture

3

Branden Fitelson Philosophy 57 Lecture

Chapter 6 — Propositional Logic: Truth Functions I

- Propositional Logic is truth-functional because the truth value of a compound statement is a function of the truth values of its atomic components.
- We use lower-case letters "p", "q", "r", ... to denote statement variables, which can stand for any statement in propositional logic.
- A statement form is an expression (not a statement of PL!) constructed out of statement variables and PL connectives which becomes a statement of PL if (simple) statements of PL are substituted for all statement variables.
 - -e.g., $p \bullet (q \lor r)$ is a statement form, since $A \bullet (B \lor C)$ is a statement.
 - Note: $(A \lor B) \bullet ((C ≡ D) \lor (E ⊃ \sim F))$ is also of the form $p \bullet (q \lor r)$. Why?
- With this basic terminology out of the way, we're ready to give a precise account of the truth conditions (i.e., the meaning) of PL statements.
- All statement forms are defined by truth tables, which tell us how to determine the truth value of molecular statements from the truth values of their atoms.

Chapter 6 — Propositional Logic: Truth Functions II

• We begin with negations, which have the simplest truth functions. The truth table for negation is as follows (we use T and F for true and false):

$$\begin{array}{c|c} p & \sim p \\ \hline T & F \\ F & T \end{array}$$

- In words, this table says that if p is true than $\sim p$ is false, and if p is false, then $\sim p$ is true. This is quite intuitive, and corresponds well to the English meaning of "not". So, truth-functional (PL) negation is like English negation.
- Examples:
 - It is not the case that Wagner wrote operas. ($\sim W$)
 - It is not the case that Picasso wrote operas. $(\sim P)$
- " $\sim W$ " is false, since "W" is true, and " $\sim P$ " is true, since "P" is false (like English).

Chapter 6 04/24/03

Chapter 6 — Propositional Logic: Truth Functions III

p	q	$p \bullet q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

- Notice how we have four (4) rows in our truth table this time (not 2). This is because there are four possible ways of assigning truth values to p and q.
- The truth-functional definition of is very close to the English "and". A PL conjunction is true if *both* conjuncts are true; and, it is false otherwise.
 - Monet and van Gogh were painters. $(M \bullet V)$
 - Monet and Beethoven were painters. $(M \bullet B)$
 - Beethoven and Einstein were painters. $(B \bullet E)$
- " $M \bullet V$ " is true, since both "M" and "V" are true. " $M \bullet B$ " is false, since "B" is false. And, " $B \bullet E$ " is false, since "B" and "E" are both false (like English).

SJSU Philosophy

Chapter 6

04/24/03

Chapter 6 — Propositional Logic: Truth Functions IV

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

- The truth-functional definition of \vee is not as close to the English "or". A PL disjunction is true if at least one disjunct is true; and, it is false otherwise.
- In English, "A or B" often implies that "A" and "B" are not both true. That is called exclusive or. In PL, " $A \lor B$ " is not exclusive; it is inclusive (it is true if both disjuncts are true). But, we can express exclusive or in PL. How?
 - Either Jane austen or René Descartes was novelist. $(J \vee R)$
 - Either Jane Austen or Charlotte Bronte was a novelist. $(J \vee C)$
 - Either René Descartes or David Hume was a novelist. $(R \lor D)$
- The first two disjunctions are true because at least one their disjuncts is true, but the third disjunction is false, since both of its disjuncts are false.

SJSU Philosophy

Chapter 6

04/24/03

Branden Fitelson

Philosophy 57 Lecture

Chapter 6 — Propositional Logic: Truth Functions V

p	q	$p \supset q$
Т	Т	Т
Τ	F	F
F	Т	Т
F	F	Т

- The truth-functional definition of \supset is farther from the English "only if". A PL conditional is false iff its antecedent is true and its consequent is false.
- Consider the following English conditionals. [Let M = the moon is made of green cheese, O = life exists on other planets, and E = life exists on Earth
 - If the moon is made of green cheese, then life exists on other planets.
 - If life exists on other planets, then life exists on earth.
- The PL translations of these sentences are both true. $M \supset O$ is true because its antecedent M is false. $O \supset E$ is true because its consequent E is true. This does *not* capture the English "if". We'll see later that $p \supset q \approx \sim p \vee q$.

Branden Fitelson

Philosophy 57 Lecture

Chapter 6 — Propositional Logic: Truth Functions VI

p	q	$p \equiv q$
Т	Т	T
Т	F	F
F	Т	F
F	F	Т

- The truth-functional definition of \equiv is far from the English "if and only if". A PL biconditional is true iff both of its components have the same truth value.
- Consider these two biconditionals. [M = the moon is made of green cheese, U]= there are unicorns, E = life exists on Earth, and S = the sky is blue]
 - The moon is made of green cheese if and only if there are unicorns.
 - Life exists on earth if and only if the sky is blue.
- The PL translations of these sentences are both true. $M \equiv U$ is true because M and U are false. $E \equiv S$ is true because E and S are true. This does *not* capture the English "if and only if". We'll see that $p \equiv q \approx (p \bullet q) \vee (\sim p \bullet \sim q)$.

SJSU Philosophy

Chapter 6 — Propositional Logic: Truth Functions VII

Philosophy 57 Lecture

- With the truth-table definitions of the five connectives in hand, we can now construct truth tables for arbitrary compound PL statements.
- The procedure for constructing the truth-table of p is as follows:
 - 1. Determine the number of rows in the truth-table. This is 2^n , where n is the number of atomic sentences in the compound statement p.
 - 2. The table will have n + 1 main columns: n columns for the atomic sentences in p, and one for the truth-values of p itself.
 - 3. The table will also have some "quasi-columns" one for each PL statement occurring in the compound *p* which needn't be drawn explicitly, but which will go into the determination of the truth values of *p*.
 - 4. Place the atomic symbols in the left most columns, going in alphabetical order from left to right. And place p in the right most column.
 - 5. Write in all possible combinations of truth-values for the atomic statements. There will be 2^n of these one for each row of the table.

Chapter 6 04/24/03

- 6. The convention here is to start on the *n*th column (farthest down the alphabet) with the pattern TFTF ... repeated until the column is filled. Then, go TTFF ... in the *n* − 1st column. And, TTTTFFFF ... in the *n* − 2nd column, etc..., until the very first column has been completed.
- 7. Next, we need to compute the truth-values of *p* in each row of the table. Here, we start from the inside-out. We first copy the truth-values of the atoms, then we compute the negations, conjunctions, etc. which compose *p*. Finally, we will be in a position to compute the value of the main connective of *p*, at which point we will be done with *p*'s truth table.
- Example: Step-By-Step Truth-Table Construction of " $A \equiv (B \bullet A)$."

\boldsymbol{A}	$\mid B \mid$	A	=	(B		A)
Т	Т	Т	Т	Т	Т	Т
Т	F	1		F	F	Т
F	Т	F	Т	Т	F	F
F	F	F	Т	F	F	F

