Bali Sculptures

Time limit: 1000 ms

Memory limit: 65536 KB

Նկարագրություն

Բալի նահանգի ճանապարհներին շատ արձաններ կան։ Դիտարկենք հիմնական ճանապարհներից մեկը։

Այդ հիմնական ճանապարհի վրա կան N արձաններ, հաջորդաբար համարակալված 1-ից N թվերով։ i-րդ արձանի տարիքը Y_i տարի է։ Ճանապարհը դեղեցկացնելու համար կառավարությունը ցանկանում է արձանները բաժանել մի քանի խմբի։ Հետո կառավարությունը դեղեցիկ ծառեր կտնկի խմբերի միջև, Բալին ավելի շատ տուրիստների հրապուրիչ դարձնելու համար։

Ահա, արձանները խմբերի բաժանելու կանոնները.

- Արձանները պետք է բաժանվեն ճիշտ X խմբերի, որտեղ A ≤ X ≤ B։ Յուրաքանչյուր խմբում պետք է լինի առնվազն մեկ արձան։ Յուրաքանչյուր արձան պետք է պատկանի ճիշտ մեկ խմբի։ Յուրաքանչյուր խմբի արձանները պետք է ճանապարհի երկայնքով իրար <u>հաջորդող</u> լինեն։
- Ցուրաքանչյուր խմբի համար հաշվենք այդ խմբի արձանների տարիքների դումարը։
- Վերջապես, հաշվենք այդ գումարների բիթային OR-ը։ Ստացված արժեքն անվանենք խմբերի տրոհման գեղեցկության աստիճան։

Մինիմումը դեղեցկության ի՞նչ աստիճանի կարող է հասնել կառավարությունը։

Դիտողություն, երկու P և Q թվերի բիթային OR-ը հաշվում են հետևյալ կերպ.

- P-ն ևQ-ն ներկալացնենք երկուական տեսքով։
- Դիցուք, nP=P-ի բիթերի քանակ, իսկ nQ=Q-ի բիթերի քանակ։ Նշանակենք $M=\max(nP,nQ)$ ։
- P-ն ներկայացնենք երկուական համակարգում որպես p_{M-1}p_{M-2} .. p₁p₀ իսկ Q-ն ներկայացնենք որպես q_{M-1}q_{M-2} .. q₁q₀, որտեղ p_i -ն և q_i -ն P-ի և Q-ի i-րդ բիթերն են։ (M-1)-րդ բիթերը ամենաբարձր արժեք ունեցող բիթերն են, իսկ 0-րդ բիթերը ամենացածր արժեք ունեցող բիթերն են։
- P OR Q, երկուական համակարգում սահմանվում է այսպես. $(p_{M-1} \text{ OR } q_{M-1})(p_{M-2} \text{ OR } q_{M-2})..(p_1 \text{ OR } q_1)(p_0 \text{ OR } q_0)$, որտեղ
 - \circ 0 OR 0 = 0
 - \circ 0 OR 1 = 1
 - \circ 1 OR 0 = 1
 - \circ 1 OR 1 = 1

Մուտքալին տվլալները

Առաջին տողում տրված են երեք ամբողջ N, A, և B թվեր։ Երկրորդ տողը պարունակում է

իրարից մեկ բացակով անջատված N հատ $Y_1,Y_2,...,Y_N$ ամբողջ \emptyset վեր։

Ել քային տվյալներ

Միակ տողը պետք է պարունակի գեղեցկության մինիմալ աստիճանը։

Մուտքի օրինակ

```
6 1 3
8 1 2 1 5 4
```

Ելքի օրինակ

11

Պարգաբանում

Տրոհենք արձանները երկու խմբի. $(8\ 1\ 2)$ և $(1\ 5\ 4)$ ։ Նրանց դումարներն են (11) և (10)։ Գեղեցկու β յան աստիճանը կազմում է $(11\ OR\ 10)=11$ ։

Ենթախնդիրներ

Ենթախնդիր 1 (9 միավոր)

- $1 \le N \le 20$
- $1 \le A \le B \le N$
- $0 \le Y_i \le 1,000,000,000$

Ենթախնդիր 2 (16 միավոր)

- $1 \le N \le 50$
- $1 \le A \le B \le \min(20, N)$
- $0 \le Y_i \le 10$

Ենթախնդիր 3 (21 միավոր)

- $1 \le N \le 100$
- A = 1
- $1 \le B \le N$
- $0 \le Y_i \le 20$

Ենթախնդիր 4 (25 միավոր)

- $1 \le N \le 100$
- $1 \le A \le B \le N$
- $0 \le Y_i \le 1,000,000,000$

Ենթաանդիր 5 (29 միավոր)

• $1 \le N \le 2,000$

- A = 1• $1 \le B \le N$ $0 \le Y_i \le 1,000,000,000$

Jakarta Skyscrapers

Time limit: 1000 ms

Memory limit: 262144 KB

Նկարագրություն

Ջակարտա քաղաքում կան N հատ երկնաքերներ, որոնք դասավորված են մի դծի վրա և ձախից աջ համարակալված են 0-ից N-1 β վերով։ Այլ երկնաքերներ Ջակարտայում չկան։

Ջակարտայում բնակվում են M առասպելական արարածներ, որոնց անվանում են "դոժեր"։ Դոժերը համարակալված են 0-ից M-1 թվերով։ Սկզբում i-րդ դոժը դտնվում է B_i երկնաքերում։ i համարի դոժն ունի առասպելական հզորություն, որն արտահայտվում է P_i դրական ամբողջ թվով։ Առասպելական հզորությունը հնարավորություն է տալիս դոժերին մի երկնաքերից մեկ այլ երկնաքերի վրա թռչել։ Մի թռիչքով p հզորություն ունեցող դոժը b-րդ երկնաքերից կարող է թռչել կամ b+p-րդ երկնաքերի վրա (եթե $0 \le b$ +p < N) կամ b-p-րդ երկնաքերի վրա (եթե $0 \le b$ -p < N)։

0 համարի դոժը բոլոր դոժերի առաջնորդն է։ Նա 1 համարի դոժին կարևոր լուր ունի հաղորդելու և ցանկանում է, որ այդ լուրը, որքան հնարավոր է, ջուտ հասնի 1 դոժին։ Ցուրաքանչյուր դոժ լուրը ստանալով կարող է կատարել հետևյալ դործողություններից ցանկացածը.

- 8ատկով տեղափոխվել այլ երկնաքեր։
- Լուրը հաղորդել միևնույն երնաքերում գտնվող ուրիշ դոժի։

Օգնեք, խնդրեմ, դոժերին հաշվելու համար, թե մինիմումը քանի ցատկ է պահանջվում բոլոր դոժերից լուրը 1 դոժին հասցնելու համար, եթե հնարավոր է դա անել։

Մուտքային տվյալներ

Առաջին տողում տրված են N և M ամբողջ \emptyset վերը։ Հաջորդ M տողերից յուրաքանչյուրը պարունակում է երկու ամբողջ B_i և P_i \emptyset վեր։

Ել քային տվյալներ

Մեկ տող, որը պարունակում է ընդհանուր ցատկերի մինիմալ քանակը, կամ -1, եթե հնարավոր չէ։

Մուտքի օրինակ

- 5 3
- 0 2
- 1 1
- 4 1

Ելքի օրինակ

Պարգաբանում

Ահա 5 դատկի միջոցով լուրը տեղ հասցնելու տարբերակներից մեկը.

- 0 դոժը ցատկում է 2 երկնաքերի վրա, ապա 4 երկնաքերի վրա (2 ցատկ)։
- 0 դոժը լուրը հաղորդում է 2 դոժին։
- 2 դոժը ցատկում է 3 համարի երնաքերի վրա, ապա 2 երնաքերի և վերջում 1 երնկաքերի վրա (3 ցատկ)։
- 2 դոժը լուրը հաղորդում է 1 դոժին։

Ենթախնդիրներ

Բոլոր ենԹախնդիրներում

• $0 \le B_i < N$

Ենթախնդիր 1 (10 միավոր)

- $1 \le N \le 10$
- $1 \le P_i \le 10$
- $2 \le M \le 3$

Ենթաանդիր 2 (12 միավոր)

- $1 \le N \le 100$
- $1 \le P_i \le 100$
- $2 \le M \le 2.000$

Ենթաանդիր 3 (14 միավոր)

- $1 \le N \le 2,000$
- $1 \le P_i \le 2,000$
- $2 \le M \le 2,000$

Ենթախնդիր 4 (21 միավոր)

- $1 \le N \le 2,000$
- $1 \le P_i \le 2,000$
- $2 \le M \le 30,000$

Ենթախնդիր 5 (43 միավոր)

- $1 \le N \le 30,000$
- $1 \le P_i \le 30,000$
- $2 \le M \le 30,000$

Palembang Bridges

Time limit: 2000 ms

Memory limit: 262144 KB

Նկարագրություն

Մուսի դետը Պալեմբանդ քաղաքը երկու մասի է բաժանում։ Անվանենք դրանք A մաս և B մաս։

Յուրաքանչյուր մասում կա ճիշտ 1,000,000,001 շենք։ Շենքերը դասավորված են դետի երկայնքով և համարակալված են 0-ից 1,000,000,000 թվերով։ Երկու հարևան շենքերի միջև հեռավորությունը մեկ միավոր է։ Գետի լայնությունը նույնպես 1 միավոր է։ А մասի i-րդ շենքը դտնվում է B մասի i-րդ շենքի ճիշտ դիմացը։

Քաղաքում ապրում են և աշխատում N քաղաքացիներ։ i-րդ քաղաքացու բնակարանը դտնվում է P_i մասի S_i շենքում է, իսկ նրա դրասենյակը դտնվում է Q_i մասի T_i շենքում։ Եթե քաղաքացին տնից դրասենյակ դնալու համար պետք է դետն անցնի, նրան նավակ է պետք։ Դա հարմար չէ, դրա համար կառավարությունը որոշել է կառուցել դետի վրայով առավելադույնը K կամուրջ։ Ցուրաքանչյուր կամուրջ պետք է կառուցվի երկու մասերի երկու հանդիպակած շենքերի միջև։ Կամուրջները պետք է դետին ուղղահայաց լինեն։ Կամուրջներն իրար հետ չպիտի հատվեն։

Դիցուք D_i -ն առավելագույնը K կամուրջ կառուցելուց հետո i-րդ քաղաքացու տնից գրասենյակ գնալու <mark>մինիմալ</mark> ճանապարհի երկարությունն է։ Օգնեք կառավարությանը կամուրջները կառուցել այնպես, որ $D_1 + D_2 + ... + D_N$ գումարը լինի մինիմալ։

Մուտքային տվյալներ

Առաջին տողում տրված են երկու ամբողջ K և N \emptyset վեր։ Հաջորդ N տողերից յուրաքանչյուրը պարունակում է P_i, S_i, Q_i , և T_i քառյակ։

Ելքային տվյալներ

Արտածել հեռավորությունների մինիմալ գումարը։

Մուտքի օրինակ 1

- 1 5
- B 0 A 4
- B 1 B 3
- A 5 B 7
- B 2 A 6
- B 1 A 7

Ելքի օրինակ 1

Մուտքի օրինակ 2

2 5

B 0 A 4

B 1 B 3

A 5 B 7

B 2 A 6

B 1 A 7

Ելբի օրինակ 2

22

Պարգաբանում

Այս նկարը համապատասխանում է երկու օրինակների մուտքային տվյալներին.

Այստեղ պատկերված է առաջին օրինակի համար հնարավոր լուծում։ Վարդագույն շերտը նշանակում է կամուրջ։

Իսկ այստեղ պատկերված է 2-րդ մուտքային օրինակի համար հնարավոր լուծում։

Ենթախնդիրներ

Բոլոր ենթախնդիրներում

- P_i -ն և Q_i -ն 'A' կամ 'B' տառեր են։
- $0 \le S_i, T_i \le 1,000,000,000$
- Միևնույն շենքում կարող են լինել մեկից ավել բնակարաններ և գրասենյակներ։ Միևնույն չենքում կարող է լինել և՜ բնակարան, և՜ գրասենյակ։

Ենթաանդիր 1 (8 միավոր)

- K = 1
- $1 \le N \le 1,000$

Ենթախնդիր 2 (14 միավոր)

- K = 1
- $1 \le N \le 100,000$

Ենթախնդիր 3 (9 միավոր)

- K = 2
- $1 \le N \le 100$

Ենթաանդիր 4 (32 միավոր)

- K = 2
- $1 \le N \le 1,000$

Ենթախնդիր 5 (37 միավոր)

- K = 2
- $1 \le N \le 100,000$