Hard diffraction at HERA: Recent Results and QCD Interpretation

Workshop on Diffraction and Glueballs at RHIC May 2002, BNL / Upton (New York)

Frank-Peter Schilling (DESY)

H1 Collaboration

- Introduction
- ullet New results in inclusive diffraction (F_2^D)
- New NLO DGLAP QCD fit and diffractive pdf's
- Diffractive final states (jets and charm)
- Dipole Models
- Summary and conclusions

HERA and the H1 Detector

The HERA ep Collider at DESY / Hamburg: H1 and ZEUS:

- HERA I: until 09/2000: $\mathcal{L} \sim 120 \; \mathrm{pb}^{-1}$
- Upgrade (lumi and dets.) just completed
- HERA II: $\mathcal{L} \sim 1~\mathrm{fb}^{-1}$ until 2006

 $oldsymbol{ep}$ collisions at $oldsymbol{\sqrt{s}}=320\,\,\mathrm{GeV}$

The H1 Experiment:

 \sim 400 physicists

Preface: Deep-Inelastic Scattering (DIS) at HERA

$$Q^2 = -q^2 = (k - k')^2$$

Photon virtuality

$$x=rac{-q^2}{2P\cdot q}\,(0 < x < 1)$$
 Parton momentum frac. Bjorken-x

Precise measurements of $F_2(x, Q^2)$: Scaling violations

Preface: DIS at low x, gluons and α_s

QCD analysis of F_2 in framework of DGLAP:

$$rac{dg(x,Q^2)}{d\ln Q^2} = rac{lpha_s}{2\pi} \int_{m{x}}^1 rac{dm{z}}{m{z}} \left[\sum_{m{i}} q_{m{i}}(m{z},Q^2) P_{m{g}m{q}} \left(rac{m{x}}{m{z}}
ight) + g(m{z},Q^2) P_{m{g}m{g}} \left(rac{m{x}}{m{z}}
ight)
ight]$$

 \Rightarrow Precise determinations of the gluon distribution and α_s

Diffraction in DIS at HERA

Early Observation at HERA:

10% of low-x DIS events are diffactive ep
ightarrow e'p'X

Can be viewed as diffractive γ^*p interaction:

More generally: $\gamma^{(*)} p o XY$

COLOUR SINGLET EXCHANGE PROCESSES IN γ^* -p INTERACTIONS

All can be measured by varying Q^2 , W, t, M_X , M_Y

This talk mostly $\gamma^* p o X p$ (large Q^2 , small |t|)

Diffractive DIS

$$m{x}_{I\!\!P} = m{\xi} = rac{Q^2 + M_X^2}{Q^2 + W^2} = m{x}_{I\!\!P/p}$$
 (momentum fraction of colour singlet exchange)

$$eta = rac{Q^2}{Q^2 + M_X^2} = x_{q/I\!\!P}$$
 (fraction of exchange momentum carried by q coupling to $m{\gamma}^*$, hence $m{x} = m{x}_{I\!\!P}m{eta}$)

$$t = (p - p')^2$$
 (4-momentum transfer squared at p vertex)

Diffractive reduced cross section σ_r^D :

$$rac{d^4\sigma}{dx_{I\!\!P} \; dt \; deta \; dQ^2} = rac{4\pilpha^2}{eta Q^4} \left(1 - y + rac{y^2}{2}
ight) \sigma_r^{D(4)}(x_{I\!\!P}, t, eta, Q^2)$$

Structure functions F_2^D and F_L^D :

$$\sigma_r^{D(4)} = F_2^{D(4)} - rac{y^2}{2(1-y+y^2/2)} \; F_L^{D(4)}$$

Integrated over t: $F_2^{D(3)} = \int dt \; F_2^{D(4)}$

Experimental Techniques

Forward Proton Spectrometer

at
$$z = 65...90 \text{ m}$$

Measure leading proton

- Free of *p* dissociation bkgd.
- Measure *t* distribution
- low statistics (acceptance)

Rapidity Gap Selection in central detector

Require large rapidity gap

- ullet $\Delta\eta$ large when $M_X\ll W$
- integrate over M_Y , t
- high statistics

Factorization Properties of F_2^D

QCD Factorization for diffractive DIS:

• Diffractive parton distributions (Trentadue, Venezianio, Berera, Soper, Collins, ...):

$$rac{d^2\sigma(x,Q^2,x_{I\!\!P},t)^{\gamma^*p o p'X}}{dx_{I\!\!P}\ dt} = \sum_i \int_x^{x_{I\!\!P}} d\xi \hat{\sigma}^{\gamma^*i}(x,Q^2,\xi) \,\, p_i^D(\xi,Q^2,x_{I\!\!P},t)$$

- $\hat{\sigma}^{\gamma^*i}$ hard scattering part, as in incl. DIS
- p_i^D diffractive PDF's in proton, conditional probabilities, valid at fixed $x_{I\!\!P}, t$, obey DGLAP
- not proven for diffractive hadron-hadron scattering

Regge Factorization / resolved Pomeron model:

 $oldsymbol{x_{I\!\!P}},oldsymbol{t}$ dependence factorizes out: Donnachie, Landshoff, Ingelman, Schlein, ...)

$$F_2^D(x_{I\!\!P},t,eta,Q^2) = f_{I\!\!P/p}(x_{I\!\!P},t) \; F_2^{I\!\!P}(eta,Q^2)$$

- additional assumption, no proof!
- consistent with present data if sub-leading IR included

New measurement of $F_2^{D(4)}$ using Roman Pots

Cross section differential in t at different $x_{I\!\!P}$:

Kinematic range:

$$2 < Q^2 < 50~{
m GeV}^2$$
, $0.005 < eta < 1$ $x_{I\!\!P} < 0.09$, $-0.45 < t < -0.08~{
m GeV}^2$

t dependence: $\frac{d\sigma}{dt} \sim e^{Bt}$

In Regge theory expect shrinkage:

$$B=B_0+2lpha' ext{ln} rac{1}{x_{I\!\!P}}$$

... data inconclusive so far

$$B = (5.0 \pm 0.3 \pm 0.8) \text{ GeV}^{-2}$$

New $F_2^{D(3)}$ measurement (Rapidity gap)

5 times more statistics than previous data

Fit to $x_{I\!\!P}$ dependence: effective $\alpha_{I\!\!P}(0)$ $F_2^D(x_{I\!\!P},\beta,Q^2)\sim B(\beta,Q^2)\left(\frac{1}{x_{I\!\!P}}\right)^{2\alpha_{I\!\!P}-1}$

Inclusive
■ H1 F₂ 96-97
Diffractive

A H1 F₂D(3) 94

• H1 F₂^{D(3)} 97 (prel.)

 $lpha_{I\!\!P}(0) = 1.173 \pm 0.02 \pm 0.02^{+0.06}_{-0.03}$

Growth with Q^2 slower in diffractive case?

Comparison Leading proton / rapidity gap data

$$F_2^{D(3)} = \int \mathrm{d}t \ F_2^{D(4)}$$

good agreement between methods

justifies rapidity gap method!

$F_2^{D(3)}$: eta and Q^2 dependence overview

 β dependence at fixed Q^2 :

 Q^2 dependence at fixed β :

sensitive to diffr. pdf's integrated over t

Different behaviour than for proton!

Taking out the $x_{I\!\!P}$ dependence ...

Data divided by flux factor $f_{I\!\!P}(x_{I\!\!P})$

 β dependence at fixed Q^2 :

 Q^2 dependence at fixed β :

eta dep.: $F_2^D = \sum e_i^2 (q_i + ar{q}_i)$

Scaling violations: gluon

Data consistent with Regge factorization

Modelling of $\sigma_r^{D(3)}$:

NLO DGLAP QCD Fit

• Shape of Q^2 , β dep. of σ_r^D observed to be largely independent of $x_{I\!\!P}$:

$$\sigma_r^{D(4)}(x_{I\!\!P},t,eta,Q^2) = f_{I\!\!P}(x_{I\!\!P},t) * \sigma_r^{D(2)}(eta,Q^2)$$

ullet $oldsymbol{x}_{I\!\!P}$ dependence conveniently parameterized as

$$f_{I\!\!P}(x_{I\!\!P}) = \int \, dt \,\, x_{I\!\!P}^{1-2lpha_{I\!\!P}(t)} e^B t$$

using $\alpha_{I\!\!P}(0)=1.173\pm0.018$ (determined from data)

ullet Small contribution from sub-leading exchange at large $x_{I\!\!P}>0.01$ required

PDF parameterization:

- At starting scale $Q_0^2 = 3 \text{ GeV}^2$:
 - Singlet distribution $\Sigma(z,Q_0^2)$

($\Sigma=6u$, $u=d=s=ar{u}=ar{d}=ar{s}$)

- Gluon distribution $g(z,Q_0^2)$
- Parameterization using unbiased, flexible functional form: Chebychev polynomials

Technique:

- Charm treatment in massive approach (BGF)
- ullet Cut $M_X > 2~{
 m GeV}$ justifies leading twist analysis
- Full propagation of exp. and model systematic uncertainties!

Result of NLO fit

H1 2002 σ_r^D NLO QCD Fit

- pdfs extending to large fractional momenta z
- ullet precise measurement of singlet distribution $\Sigma(oldsymbol{z}, oldsymbol{Q}^2)$
- ullet hard gluon distribution, flat or rising towards z o 1 (LO fit more peaked than central NLO fit)
- ullet large uncertainty for $g(z,Q^2)$ at z>0.6 (mainly related to model)

Leading order Fit and Comparison with previous H1 fits

H1 2002 σ_r^D LO QCD Fit

- Comparisons with previous
 LO fits to 1994 data:
 - H1 Fit 2 ("flat gluon")H1 Fit 3 ("peaked gluon")
- ullet Reasonable agreement of $\Sigma(z,Q^2)$ for z<0.65 (common fit range)
- Gluon normalization smaller by 20-30% at low z, 50% at high z

Agreement reasonable, taking errors of old and new fits into account

Comparison of NLO QCD fit with Data: Q^2 dep.

Two example $x_{I\!\!P}$ bins

 $oldsymbol{Q}^2$ scaling violations well constrained by data

Rising except at highest β

Well reproduced by QCD fit up to $Q^2=800~{
m GeV}^2$

Sub-leading contribution at $x_{I\!\!P}=0.03$, smaller than for previous data

Comparison of NLO QCD fit with Data: β , x dep.

Example $x_{I\!\!P}$ bin at 0.003:

Rising behaviour at eta o 1, low Q^2 reflected by $\Sigma(z,Q^2)$

 $oldsymbol{eta}$ dependence independent of $oldsymbol{x_{I\!\!P}}$

high $y \leftrightarrow \mathsf{low} \; x \; \mathsf{or} \; eta \; \mathsf{at} \; \mathsf{fixed} \; x_{I\!\!P}$: Effect of F_L^D

presently no direct handle on $oldsymbol{F}_L^D$ from data

Gluon Momentum Fraction

From NLO Fit:

• Integration of pdf's in measured range 0.01 < z < 1

• Momentum fraction of colour singlet exchange carried by gluons 75% for $6.5 < Q^2 < 800~{\rm GeV}^2$

 Fully consistent with results from previous H1 data

Longitudinal Structure Fraction F_L^D

At NLO QCD, the leading twist longitudinal structure function ${\it F}_{\it L}^{\it D}$ is predicted:

$$egin{aligned} F_L^D \sim rac{lpha_s}{2\pi} \left[C_q^L \otimes \overline{F_2^D + C_g^L} \otimes \sum_i e_i^2 \ oldsymbol{z} g^D(oldsymbol{z}, oldsymbol{Q}^2)
ight] \end{aligned}$$

ightarrow pert. F_L^D rel. large, in particular at low Q^2 , low eta (due to large $g(z,Q^2)$)

Comparison with H1 diffractive DIS final states

Use pdf's from LO fit to predict dijets / D^* cross sections in diffractive DIS as measured by H1:

Comparison based on MC model (RAPGAP) $\mu^2 = Q^2 + p_T^2 + m^2$

Diffferential distributions remain well described Normalization: pdf/NLO/scale uncertainty

⇒ Consistent with QCD factorization!

Diffractive Dijets

Good agreement, taking NLO/pdf/scale uncertainties into account

Consistent with QCD factorization

Diffractive Charm

Comparison with CDF diffractive Dijet cross sections

Dijet production with tagged leading anti-proton at TEVATRON:

Effective diffractive structure function \tilde{F}_{ij}^{D} :

$$ilde{F}^D_{jj}(eta) = \int dx_{I\!\!P} dt f(x_{I\!\!P},t) \; eta \left[g(eta, ilde{Q}^2) + rac{4}{9} \Sigma(eta, Q^2)
ight] \qquad (Q^2 = 75 \; GeV^2)$$

- New fit confirms serious breakdown of factorization (gap survival, absorptive corrections)
- β dependence similar
 (except highest β)
- NOTE $x_{I\!\!P}$ domain: 50% contribution from sub-leading exchange in this kinematic regime

Control Experiment: Dijets in Photoproduction

Hard diffractive photoproduction: With and w/o remnants ...

 $oldsymbol{x}_{\gamma}$: fraction of γ momentum entering hard scatter

Resolved γp resembles hadron-hadron!

ightarrow Description based on diffractive partons from F_2^D improved by suppressing resolved interactions by 'gap survival probability' of < S>=0.6

More data needed for firm conclusions ...

Colour Dipole and 2-gluon Exchange models

Consider low x in p rest frame:

 $\gamma^* \to q \bar q$ well in advance of target Interaction between photon and $q \bar q$ dipole

Diffractive if dipoles scatter elastically

Inclusive:

$$\sigma \sim |\Psi_{T,L}(r,z,Q^2)|^2 \otimes \sigma_{ ext{dipole}}(x,r)$$

Diffractive:

$$\sigma^D \sim |\Psi_{T,L}(r,oldsymbol{z},oldsymbol{Q}^2)|^2 \otimes \sigma_{ ext{dipole}}^2(oldsymbol{x},oldsymbol{r})$$

 $\Psi_{T,L}(r,oldsymbol{z},Q^2)$: Light cone wave functions

$$egin{array}{l} \gamma_T^*
ightarrow qar q \ \gamma_L^*
ightarrow qar q ext{ (high $eta)$} \ \gamma_T^*
ightarrow qar q g ext{ (low $eta)$} \end{array}$$

Dipole cross section $\sigma_{
m dipole}$:

Model dependent, e.g. Golec-Biernat:

$$\sim r^2 \text{ as } r o 0$$

 $o ext{const as } r o \infty$

Sat. radius $R_0(x)$

Fix parameters by fit to inclusive $F_2(x,Q^2)$

Predict F_2^D at t=0Need t slope as input

Dipole models: Comparison with Data

Inclusive: $oldsymbol{F}_2^D$

Agreement reasonable, except low Q^2 , β

Diffr. Dijets

Saturation model underestimates normalization by factor 2

BJLW: Bartels et al. pQCD calculation for hard jets can describe data

Summary and Conclusions

Disclaimer:

- Impossible to cover everything in one talk. Here, the focus was on new results on inclusive hard diffraction (F_2^D) and QCD interpretation
- Many other interesting results (Vector mesons, DVCS, ...) could not be shown

Conclusions:

- Data on diffraction at HERA has reached high precision!
- Virtual photon in diffractive DIS enables to study quark/gluon (QCD) structure of diffraction
- New DGLAP NLO QCD fit to determine diffractive parton distributions (as for F_2) (justified by semi-inclusive QCD factorization proof)
- Large diffractive gluon distribution extending to large β
- Diffractive final states (Jets, charm):
 QCD factorization works in ep, failure in pp confirmed!
- Real photoproduction: Bridge HERA TEVATRON to understand factorization breaking ep vs pp ?