Statistics is the art of summarization. It is an art because, for any given set of data, there are many ways of summarizing that data.

We'll focus on some fairly standard techniques for summarizing sets of data called:

#### **Descriptive statistics**

Descriptive statistics are usually a single number, whose purpose is to describe the data;

Examples include:

Range Number of Observations Average (mean) Proportion (fraction, frequency)

As a general rule, there is not a statistical or probability model associated descriptive statistics.

This is good and bad. Why?

#### Summarization

Review: Types of data

- Categorical Nominal and Ordinal
- Numerical Discrete and Continuous

Different types of data require will require different descriptive statistics!

Example:

Proportion of females vs. Average Gender

Average Height vs. Proportion of height

There is no rule for determining which summary measure should be used. Use the context in which the data arose for a guide.

**DATA**: Male Life Expectancy by Country (from 1993 Demographic Yearbook)

|     | Country              | <u>Years</u> | <b>Notation</b>        |
|-----|----------------------|--------------|------------------------|
| 1.  | Canada               | 73.02        | X <sub>1</sub>         |
| 2.  | Costa Rica           | 72.89        | $x_2$                  |
| 3.  | Cuba                 | 72.74        | $x_3$                  |
| 4.  | <b>United States</b> | 72.00        | $x_4$                  |
| 5.  | Jamaica              | 71.41        | <b>X</b> 5             |
| 6.  | Bermuda              | 70.23        | <b>X</b> <sub>6</sub>  |
| 7.  | Panama               | 69.78        | <b>X</b> <sub>7</sub>  |
| 8.  | Bahamas              | 68.32        | <b>X</b> 8             |
| 9.  | Aruba                | 68.30        | <b>X</b> 9             |
| 10. | Barbados             | 67.15        | <b>X</b> <sub>10</sub> |
| 11. | Nicaragua            | 64.80        | X <sub>11</sub>        |
| 12. | Mexico               | 62.10        | X <sub>12</sub>        |
| 13. | Greenland            | 60.40        | X <sub>13</sub>        |
| 14. | Haiti                | 54.95        | X <sub>14</sub>        |
| 15. | El Salvador          | 50.74        | X <sub>15</sub>        |

Note: *Lower case* letters, such as  $x_9$  or  $y_{22}$ , always represent observed data.

Mean -- object (average -- verb)

Observations:  $x_1, x_2, ..., x_n$ 

The Mean is defined as:  $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$ 

Example: Mean Male Life Expectancy

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{15} x_i}{15}$$
$$= \frac{(73.02 + 72.89 + \dots + 50.74)}{15} = 66.59$$

Note: The mean is *very* sensitive to the magnitude of the observations

2. Weighted Average

(Observations:  $x_1, x_2, ..., x_n$ )

Let  $w_1,...,w_n$  each be a number between 0 and 1, such that  $w_1+...+w_n=1$ .

The weighted average is defined as

$$\overline{x} = \sum_{i=1}^{n} w_i \times x_i = (w_1 \times x_1 + \dots + w_n \times x_n)$$

Some familiar weights:

w<sub>i</sub> = 1/n gives the normal average (mean)

For the Male Life Expectancy data:

- $w_1,...,w_{14} = 0$  and  $w_{15} = 1$  gives the minimum
- $w_2,...,w_{15} = 0$  and  $w_1 = 1$  gives the maximum

Every average is a weighted average. We just leave off the 'weighted' phrase if all the weights are equal.

#### 3. Median

<u>ORDERED</u> observations:  $x_1, x_2, ..., x_n$ ⇒ Ordered implies  $x_1 < x_2 < ... < x_n$ 

(Note: our data set is already ordered, but in the opposite direction, i.e.  $x_1$  is the largest and  $x_n$  is the smallest)

The median is defined as the 50<sup>th</sup> percentile of the observations.

'middle most number' 'half the data is below, half above'

n odd: Median is the  $((n+1)/2)^{th}$  observation

n even: Median is the *average* of the  $(n/2)^{th}$  observation and the  $(n/2+1)^{th}$  observation

Example: Median Male Life Expectancy

15 is odd: the Median observation is 
$$x_8 = 68.32$$
 {Bahamas b/c  $(15+1)/2=8$ }

Now throw out El Salvador (observation  $x_{15}$ ) so the data set only has 14 observations.

Now the median is

14 is even: The median is 
$$(x_7 + x_8)/2 = 69.05$$
  
 $x_7$  b/c  $14/2=7$ , and  
 $x_8$  b/c  $(14/2+1)=8$ , and  
 $(69.78 + 68.32)/2 = 69.05$ 

Example: Median Male Life Expectancy (continued)

Mean is now: 
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{14} x_i}{14} = 67.72$$

Unlike the mean, the median is *not* sensitive to the magnitude of the observations!

Regardless of magnitude for El Salvador (x<sub>15</sub>),
the Median Male Life Expectancy
remains the same (in both data sets)!

However the Mean Male Life Expectancy depends heavily on the magnitude of the Male Life Expectancy in El Salvador  $(x_{15})$ 

(Trick) Question:

Which do you prefer, mean or median?

4. Centiles (percentiles)

<u>ORDERED</u> observations:  $x_1, x_2, ..., x_n$ ⇒ Ordered implies  $x_1 < x_2 < ... < x_n$ 

(Note: our data set is already ordered, but in the opposite direction, i.e.  $x_1$  is the largest and  $x_n$  is the smallest)

The z<sup>th</sup> centile is the observation that is greater than z% of the data and less than (100-z)% of the data.

Rules for calculating the z<sup>th</sup> centile can be found on page 44 of Pagano. But nobody does them, so just find a computer and make it do the work.

Stata command for percentiles: centile *varname*, centile(10,20,33,78,94)

## Example: Male Life Expectancy data in Stata

## I entered the data by hand into stata

| . list |                      |       |
|--------|----------------------|-------|
|        | country              | life  |
| 1.     | El Salvador          | 50.74 |
| 2.     | Haiti                | 54.95 |
| 3.     | Greenland            | 60.4  |
| 4.     | Mexico               | 62.1  |
| 5.     | Nicaragua            | 64.8  |
| 6.     | Barbados             | 67.15 |
| 7.     | Aruba                | 68.3  |
| 8.     | Bahamas              | 68.32 |
| 9.     | Panama               | 69.78 |
| 10.    | Bermuda              | 70.23 |
| 11.    | Jamaica              | 71.41 |
| 12.    | <b>United States</b> | 72    |
| 13.    | Cuba                 | 72.74 |
| 14.    | Costa Rica           | 72.89 |
| 15.    | Canada               | 73.02 |
|        |                      |       |

#### . summarize life

|      |  | Std. Dev. |  |
|------|--|-----------|--|
| life |  | 6 81074   |  |

## Example: Male Life Expectancy data in Stata

. centile life, centile(1,5,10,25,50,75,90,95,99)

| Variable | Obs | Percentile | Centile | Binom. I<br>[95% Conf | •         |
|----------|-----|------------|---------|-----------------------|-----------|
| life     | 15  | 1          | 50.74   | 50.74                 | 54.45343* |
| j        |     | 5          | 50.74   | 50.74                 | 61.01954* |
| j        |     | 10         | 53.266  | 50.74                 | 64.02599* |
| j        |     | 25         | 62.1    | 51.47319              | 68.31608  |
| j        |     | 50         | 68.32   | 62.58105              | 71.89488  |
| j        |     | 75         | 72      | 68.60591              | 72.99736  |
| j        |     | 90         | 72.942  | 71.57914              | 73.02*    |
| j        |     | 95         | 73.02   | 72.47032              | 73.02*    |
| j        |     | 99         | 73.02   | 72.90533              | 73.02*    |

<sup>\*</sup> Lower (upper) confidence limit held at minimum (maximum) of sample

Actually the rules for the 25<sup>th</sup> and 75<sup>th</sup> percentile are easy:

$$75^{th}$$
 centile =  $(3*(n+1)/4)^{th}$  observation round down

5. Mode

Observations:  $x_1, x_2, ..., x_n$ 

The mode is defined as the most frequent observation.

Example: Median Male Life Expectancy

As the data stand, each observation is unique, so there is no mode (or each observation is a mode).

But if we round the Male Life Expectancy data to the nearest integer (see next page),

the mode is 73  $(x_1 = x_2 = x_3 = 73)$ 

#### Summarization

# **Rounded DATA**: Male Life Expectancy by Country (from 1993 Demographic Yearbook)

. generate rlife=round(life,1)

. list

|     | country              | life  | rlife |
|-----|----------------------|-------|-------|
| 1.  | Canada               | 73.02 | 73    |
| 2.  | Coata Rica           | 72.89 | 73    |
| 3.  | Cuba                 | 72.74 | 73    |
| 4.  | <b>United States</b> | 72    | 72    |
| 5.  | Jamaica              | 71.41 | 71    |
| 6.  | Bermuda              | 70.23 | 70    |
| 7.  | Panama               | 69.78 | 70    |
| 8.  | Bahamas              | 68.32 | 68    |
| 9.  | Aruba                | 68.3  | 68    |
| 10. | Bardados             | 67.15 | 67    |
| 11. | Nicaragua            | 64.8  | 65    |
| 12. | Mexico               | 62.1  | 62    |
| 13. | Greenland            | 60.4  | 60    |
| 14. | Haiti                | 54.95 | 55    |
| 15. | El Salvador          | 50.74 | 51    |

#### Measures of Dispersion (Variation)

#### 1. Range

The range is defined as the difference between the maximum and minimum observation.

Example: Range of Male Life Expectancy  
Range = 
$$x_1 - x_{15} = 73.02-50.74 = 22.28$$

## 2. Interquartile Range (IQR)

The Interquartile Range is defined as the difference between the 75<sup>th</sup> centile observation and 25<sup>th</sup> centile observation.

$$IQR = x_4 - x_{12} = 72-62.1 = 9.9$$

#### Measures of Dispersion (Variation)

#### 2. Variance and Standard Deviation

The variance can be thought of as the <u>average</u> squared deviation of the observations from the sample mean.

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} = \frac{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}}{n-1}$$

However, the variance is in squared x units, unlike to the mean  $\overline{x}$ , which is in regular units of measurement.

Therefore, it is easier to talk about,  $s = \sqrt{s^2}$ , which is known as the **standard deviation (s)**. Now, units of measurement for s are the same as  $\overline{x}$ .

#### Example: Male Life Expectancy

- . egen xbar=mean(life)
- . generate diff=life-xbar
- . generate diff2=diff^2
- . list

|     | country              | life  | xbar  | diff   | diff2  |
|-----|----------------------|-------|-------|--------|--------|
| 1.  | Canada               | 73.02 | 66.59 | 6.43   | 41.36  |
| 2.  | Coata Rica           | 72.89 | 66.59 | 6.30   | 39.701 |
| 3.  | Cuba                 | 72.74 | 66.59 | 6.15   | 37.84  |
| 4.  | <b>United States</b> | 72    | 66.59 | 5.41   | 29.28  |
| 5.  | Jamaica              | 71.41 | 66.59 | 4.82   | 23.25  |
| 6.  | Bermuda              | 70.23 | 66.59 | 3.64   | 13.26  |
| 7.  | Panama               | 69.78 | 66.59 | 3.19   | 10.18  |
| 8.  | Bahamas              | 68.32 | 66.59 | 1.73   | 2.998  |
| 9.  | Aruba                | 68.3  | 66.59 | 1.71   | 2.929  |
| 10. | Bardados             | 67.15 | 66.59 | 0.56   | 0.315  |
| 11. | Nicaragua            | 64.8  | 66.59 | -1.79  | 3.199  |
| 12. | Mexico               | 62.1  | 66.59 | -4.49  | 20.15  |
| 13. | Greenland            | 60.4  | 66.59 | -6.19  | 38.30  |
| 14. | Haiti                | 54.95 | 66.59 | -11.64 | 135.46 |
| 15. | El Salvador          | 50.74 | 66.59 | -15.85 | 251.18 |

#### . summ xbar diff diff2

| Į.    |    | Mean     |          | Min      | Max      |
|-------|----|----------|----------|----------|----------|
| xbar  | 15 | 66.58867 | 0        | 66.58867 | 66.58867 |
| diff  |    |          |          |          | 6.431328 |
| diff2 | 15 | 43.29376 | 66.34464 | 0.31510  | 251.1803 |

#### . summarize life

| • |  | Std. Dev. |  |
|---|--|-----------|--|
| • |  | 6.81074   |  |

Notice:  $s^2 = (6.811)^2 = 46.39 = 43.29376*(15/14)$ 

Example: Thinking about variability

Sample 1: 66, 66, 66, 67, 67, 67, 68, 69

$$\bar{x} = 67$$
 s = 1.069

Sample 2: 52, 53, 61, 67, 71, 72, 78, 82

$$\bar{x} = 67$$
 s = 10.98

Sample 3: 43, 44, 50, 54, 67, 90, 91, 97

$$\bar{x} = 67$$
 s = 22.58

- All three samples have the same mean but different amounts of variability.
- Often a single summary measure will not do!

# Measures of Dispersion (Variation)

3. Coefficient of Variation (cv)

The Coefficient of Variation relates the standard deviation to the mean.

$$cv = \frac{s}{\overline{x}}$$

Sometimes the CV is expressed in percentages.

# Measures of Dispersion (Variation) for Grouped Data

Pagano and Gauvreau take some time to discuss how to calculate the 'mean' and 'variance' of grouped data.

I think this is a bad idea. We should not make a habit of treating categorical data as if it was continuous.

Example: Pagano page 51

| Cholesterol | Midpoint | Number of |
|-------------|----------|-----------|
| Level       |          | Men       |
| 80-119      | 99.5     | 13        |
| 120-159     | 139.5    | 150       |
| 160-199     | 179.5    | 442       |
| 200-239     | 219.5    | 299       |
| 240-279     | 259.5    | 115       |
| 280-319     | 299.5    | 34        |
| 320-359     | 339.5    | 9         |
| 360-399     | 379.5    | 5         |
| Total       | Total    | 1067      |

# Measures of Dispersion (Variation) for Grouped Data

Pagano averages the midpoint of the categories, pretending that the midpoints were actual observations. He gets a mean of **198.8**.

This is a dangerous practice because it implies that you have more information than you really do.

For example, instead averaging the midpoint of the categories, average the lower boundaries to a mean of **179.3**. If the upper boundary is averaged the mean is **218.3**.

So all we can really say is that the true mean is between **179.3** and **218.3**.

(Grouped variance has similar problems.)

Why not use the table itself as the summary statistic?

#### **Moments**

Moments are average deviations about the mean. They characterize or summarize the distribution.

$$m_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})}{n}$$

$$m_{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}$$

$$m_{3} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{3}}{n}$$

$$m_{j} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{j}}{n}$$

etc..

#### Why are moments useful?

# 1<sup>st</sup> moment (m<sub>1</sub>)

Automatically sums to zero

$$m_1=0$$
 (by definition)

## 2<sup>nd</sup> moment (m<sub>2</sub>)

- average squared deviation from the mean
- each terms is non-negative
- related to sample variance

$$S^2 = m_2 \times n/(n-1)$$

#### Summarization

# 3<sup>rd</sup> moment (m<sub>3</sub>)

- Average cubed deviation about the mean
- Each term negative or positive
- Does not automatically sum to zero
- Measures symmetry about the mean

When  $m_3=0$ , then the distribution is *symmetric* about the mean

**Skewness** is measured by the 3<sup>rd</sup> moment

Skewness 
$$(\gamma) = m_3 / (m_2)^{3/2}$$

(standardized so that skewness does not depend on the units of measure)

#### Summarization

| Variable | mean | $\operatorname{median}$ | IQR | SD  | Skewness |
|----------|------|-------------------------|-----|-----|----------|
| DBP 24   | 61.8 | 61                      | 8   | 7.6 | 0.1      |
| FIRI     | 11.3 | 9.5                     | 9.8 | 8.0 | 1.7      |
| CPR      | 2.5  | 1.8                     | 2.1 | 2.3 | 2.5      |

