Class: 348

Name

1) (4 pts) The original algorithm for computing a timeout value for a TCP connection is being used with the parameter $\alpha = .75$. If the current estimated RTT is 50 milliseconds and the sample RTT for the most recent transmission is 40 milliseconds.

a) (2 pts) What is the new estimated RTT?

RTT = X × ESTRTT + (1-X) Samp. RTT = (0.75) × 50ms + (0.25) (40ms) RTT = 47.5 ms

b) (2 pts) What is the timeout time used for this new estimated RTT?

Timeout = 2 x RTT Timeout = 2 × 47.5 = 95 ms

- 2) (8 pts) TCP is operating over a 1.28x10⁹ bps link. This link has an RTT of 100 ms.
- a) (3 pts) What is the minimum Advertised Window size (in bits) for this network setting?

to knep pipe full BW x delay = 100 ms x 1.28 x 10° = 1.28 × 108 bits = 160 × 106 Bytes 2" > 160 × 106 > N = 24 bits

b) (3 pts) If TCP utilizes the full bandwidth (keeping the pipe full), how long will it take for the 32-bit sequence number to wrap around?

of bits or bytez 232 x8 = 26.84 100×106 = 26.845 Units

c) (2 pts) If each sequence number is modified to represent 4 bytes of data instead of 1 byte, how long will it take for the 32-bit sequence number to wrap around?

XU $\frac{2^{32} \times 8 \times 4}{1.28 \times 10^{9}} = 107.36s$ $\frac{2^{32} \times 4}{100 \times 10^{6}} = 107.36s$ 3) (6 pts) Given the extended LANs connected by 8 bridges shown below, indicate the trimmed network by the spanning tree algorithm to avoid possible loops. Suppose **B2** is elected as the root. (You may just mark them on the graph.)

inital msg. (node, 0, itsuf)

1. Pick root 7 howest ID unless told

2. sending mags. + picking shorter paths and lower IDs

3. L'ebreaker - Lower ID

& Benare links you double absolutely need. - Check o

- 4) (18 pts) Answer the following short answer questions.
- a) (3 pts) What makes the correct estimation of RTT in TCP difficult or even impossible?

-> PTT is related to distance -> large dist.

-> congestion + BGP

-> intermediate devices (switches)

c) (2 pts) For the Distance Vector Routing Protocol, what information does a node exchange and which nodes receive this information?

cost to nighbors

d) (2 pts) For the Link State Routing Protocol, what information does a node exchange and which nodes receive this information?

cost to all nodes

e) (3 pts) How to address the triangle routing problem in the mobile IP?

Share care-of-address

on exam? email perding. f) (4 pts) Alice decides to start a small company. She asks her ISP, GoChargers, to give her enough addresses for 1000 hosts. GoChargers has the following available address range for Alice. All range (0-255) of IP addresses can be used.

In order to save money, what should Alice claim under CIDR to get fewest number of address possible to cover her hosts? (please use address & prefix format, e.g., 128.2/16) (3pts)

And how many unused IP address will be incurred under this kind of purchase? (1pts)

g) (4 pts) A router has the following (CIDR) entries in its routing table:

For each of the following addresses, what will the router do if a packet with that address arrives?

6) (6 pts) Consider the following network where A, B, C and D are nodes and B1, B2 and B3 are learning bridges.

Assume that the forwarding tables for the three bridges are all empty when the three **transmissions below are made in the order shown**. When the transmissions are made in the following consecutive order, identify if terminal A, B, C, D can overhear the ongoing transmission on its network interface.

Transmission: 1) D transmits to B 2) C transmits to D 3) A transmits to C

If a node can receive that packet for that transmission, please put **Y**; otherwise, put **N**. For the respective initiator (i.e., sender) of each transmission, **N/A** is already placed in the table.

Transmission 1)		Transmission 2)		Transmission 3)	
Node	Hear Transmission?	Node	Hear Transmission?	Node	Hear Transmission?
Α	Ч	Α	\mathcal{N}	Α	N/A
В	7	В	\sim	В	Y
С	3	С	N/A	С	7
D	N/A	D	3	D	\mathcal{N}

CPE 348

7) (8 pts) Distance Vector: The Distance Vector Routing Algorithm is to be performed starting with the initial table shown below. Entries in the table are in the form of cost/next hop. So the initial table indicates which nodes are neighbors of a particular node (i.e. neighbors that will provide updated information to a particular node). In this problem, node A receives vectors from nodes B, D and E. Fill in the tables below for the results after one exchange of vectors and after two exchanges. Give entries in the table in the form of cost/next hop as shown in the initial table. For each of the distance vector tables, complete the known routing table for node B.

Info at	Distance to reach node – initial table				
Node	Α	В	С	D	E
Α		10/B	∞	4/D	1/E
В	10/A		2/C	∞	∞
С	8	2/B		3/D	∞
D	4/A	8	3/C		2/E
E	1/A	8	∞	2/D	

Node B Routing Table			
Destination	Cost	NextHop	
Α	10	A	
С	2	C	
D	1	_	
E	(

Info at		Distance to reach node – after 1 exchange					
	Node	Α	В	С	D	Е	
	Α		WB	710	3/E	IIE	
_	9 B	WA		a /c	5/0	11 /A	
	С	7/0	2 13		3/0	7/0	
_	→ D	3/5	5/6	3/c	-	2/E	
-	→ E	1 /A	U/A	5/0	2/0		

Node B Routing Table				
Destination Cost NextHop				
Α	9	A		
С	U	C		
D	W	C		
E	7	A		

			+ this	, 15	mong	
Info at	Distance to reach node – after 2 exchanges					
Node	Α	В	С	D	E	
Α		80	GIE	3/=	\1€	
В	alc		2/6	51c	TIC	
С	6/0	2/13		310	510	
D	3/E	510	31c		21E	
E	\ / A	7/0	510	5/5		

Node B Routing Table				
Destination Cost NextHop				
Α	9	ر		
С	2	7		
D	2	0		
E	7	C		

Optional

6) (Not graded) Chapter 3 Text Book Problem 52

52. Suppose we have the forwarding tables shown in Table 3.16 for nodes A and F, in a network where all links have cost 1. Give a diagram of the smallest network consistent with these tables.

= tt of hops

Table 3.16	Forwardi	ng Tables	for Exercise 52
I dibit 5.10	I OI Wall all	ing rubics	IOI EXCITEDE DE

	A			
	Node	Cost	Nexthop	
	В	1	В	
	С	2	В	
	D	1	D	
$\sqrt{}$	E	2	В	
	F	3	D	
		F		

 Node
 Cost
 Nexthop

 A
 3
 E

 B
 2
 C

 C
 1
 C

 D
 2
 E

 E
 1
 E

