Beginning Time Series Analysis and Forecasting with R

INTRODUCTION

Overview

Managing expectations

Prerequisites

Time series analysis background

Datasets

What You Can Learn in This Course

Managing expectations

Prerequisites and preparation

Introductory Course on Time Series Analysis

Module: Introduction

General course outline

Datasets to be used

Module: Traits of Time Series Data

Statistical principles Stationarity Time series format **Autocorrelation** Visualizing time Univariate time series series Lags

Module: Simple Time Series Models

Mean method

Naïve method

Drift method

Model comparison

Model selection

Module: Advanced Time Series Models

After completing this course, you will be able to analyze and forecast standard univariate datasets in R.

Prerequisites and Preparation

Technical tools

Knowledge

Software Requirements

R and RStudio installed on your computer

Two add-on packages to install in RStudio

Install the packages once, activate them in each session.

> library()

Add-on Packages

Downloadable R Code

Preparation Material

RStudio: Get Started by Casimir Saternos

Basic understanding of coding

Principles

Where to find time series and how to process it?

Which models/ model systems exist?

Predictions vs. Forecasting

Predictive Speculations

Quantitative Forecasting

How This Process Work

Stock data

Example: closing prices of the last twelve months

Harvesting stock data in R with the library 'quantmod'

Further Examples of Time Series Data

Weather Forecasting and Meteorology

Medical and Biological Research

Univariate Time Series

Linear

ARIMA

Exponential Smoothing

Simple Methods

Nonlinear **K Nearest Neighbors**

Clustering

Neural Nets

Support Vector Machines

Q Learning

Decision Trees

Datasets We Use

Lynx trappings in Canada

Temperature measurements in Nottingham

Randomly generated series

Annual Canadian lynx trappings

1821-1934

Integers

Length = 114

Pulse at every 7-10 years

Autocorrelation in 'lynx'

Monthly average temperature in °F

Nottingham

1920-1939

Length: 240

Seasonal

Radom number generation

Function rnorm()

Normal distribution

Zero mean

Standard dev. = 1

Introduction

Course Overview

Introduction to Time Series

Datasets

