Treinar classificador: SVM + bow, SVM + embeddings, BERT + Bônus

Diego Felipe Lourenço da Silva

Objetivo Geral:

Analisar sentimentos em avaliações de produtos da Amazon utilizando diferentes modelos de aprendizado de máquina.

Problema: avalie e compare a eficácia de três abordagens

- 1. SVM com Bag-of-Words.
- 2. SVM com Embeddings Pré-treinados.
- 3. BERT para classificação de textos.

Conjunto de dados:

- O conjunto de dados utilizado contém 568.454 avaliações de produtos da Amazon, com informações como texto da avaliação (Text) e nota atribuída (Score).
- Essas notas foram convertidas em três categorias de sentimento: positivo (notas ≥ 4), neutro (nota = 3) e negativo (notas ≤ 2).
- O conjunto de dados é representativo de um amplo conjunto de produtos e foi pré-processado para remover ruídos como números, pontuações e palavras irrelevantes (stopwords).

Metodologia:

1. Pré-processamento:

- Remoção de números, pontuação e stopwords.
- Tokenização.

2. Divisão do Dataset:

- 70% para treinamento.
- 15% para validação.
- 15% para teste.

cin.ufpe.br

Modelos Treinados:

1. SVM com Bag-of-Words:

Textos convertidos em vetores de contagem.

2. SVM com Embeddings:

Embeddings calculados usando word2vec.

3. BERT:

Modelo pré-treinado bert-base-uncased.

Desempenho dos Modelos:

Modelo	Acurácia	F1- Pontuação Positiva	F1- Pontuação Neutro	F1- Pontuação Negativa
SVM + Bag- of-Words	77%	87%	18%	41%
SVM + Embeddings	78%	88%	0%	0%
BERT	82%	90%	0%	42%

Conclusão:

1. SVM com Bag-of-Words:

• Simples, rápido, mas menos preciso.

2. SVM com Embeddings:

• Bom equilíbrio entre desempenho e custo computacional.

3. BERT:

Melhor desempenho geral, mas exige maior poder computacional.

cin.ufpe.br

Sugestões:

1. SVM com Bag-of-Words:

 Substituir Bag-of-Words por TF-IDF (Term Frequency-Inverse Document Frequency) para dar mais peso a palavras menos frequentes, mas mais relevantes.

2. SVM com Embeddings:

• Substituir embeddings estáticos como Word2Vec por embeddings contextuais, como aqueles gerados por modelos como BERT ou FastText.

3. BERT:

 Substituir BERT por DistilBERT, uma versão reduzida e mais eficiente:

Bônus:

cin.ufpe.br

Referência

[1] A. Rumi, "Amazon Product Reviews Dataset", Kaggle, [Online]. Disponível em: https://www.kaggle.com/datasets/arhamrumi/amazon-product-reviews/data. [Acessado em: 28 de novembro de 2024]