

Gammapy - A prototype for the CTA science tools

Christoph Deil^a, Julien Lefaucheur^b, Régis Terrier^c, Bruno Khélifi^c, Matthew Wood^d, Roberta Zanin^a, Lars Mohrmann^e, Nachiketa Chakraborty^a, Jason Watson^a, Rubén López Coto^a, Stefan Klepser^f, Matteo Cerruti^g, Jean-Philippe Lenain^g, Fabio Acero^h, Arache Djannati-Ataï^c, Santiago Pita^c, Zeljka Bosnjakⁱ, Jose Enrique Ruiz^j, Cyril Trichard^k, Thomas Vuillaume^l, for the CTA Consortium, Axel Donath^a, Johannes King^a, Léa Jouvin^c, Marion Spir-Jacob^c, Ellis Owen^m, Manuel Paz Arribasⁿ, Brigitta Sipocz^o, Dirk Lennarz^p

```
<sup>a</sup>MPIK, Heidelberg, Germany
```

E-mail: Christoph.Deil@mpi-hd.mpg.de, julien.lefaucheur@obspm.fr, Roberta.Zanin@mpi-hd.mpg.de, khelifi@apc.in2p3.fr,

Gammapy is a Python package for high-level gamma-ray data analysis, written in Python and built on Numpy, Scipy and Astropy. Starting with event lists and instrument response information, it is possible to analyse gamma-ray data and to create for example sky images, spectra and lightcurves, and to determine the position, morphology and spectra of gamma-ray sources.

So far Gammapy has mostly been used to analyse data from H.E.S.S. and Fermi-LAT, and now it is being used for the simulation and analysis of observations from the Cherenkov Telescope Array (CTA). We have proposed Gammapy as a prototype for the CTA science tools. This contribution will give an overview of the Gammapy package and show analysis application examples with simulated CTA data.

35th International Cosmic Ray Conference — ICRC2017 10–20 July, 2017 Bexco, Busan, Korea

^bLUTH, Obs. de Paris/Meudon, France

^cAPC/CNRS, Paris, France

^dSLAC National Accelerator Laboratory, US

^eFAU, Erlangen, Germany

fDESY, Zeuthen, Germany

gLPNHE, Paris, France

^hCEA/IRFU, Saclay, France

ⁱUniversity of Rijeka, Croatia

^jInstituto Astrofísica de Andalucía, Granada, Spain

^kCPPM, Marseille, France

¹LAPP, Annecy-le-Vieux, France

^mUCL-MSSL, Dorking, United Kingdom

ⁿHumboldt University, Berlin, Germany

^oCambridge, UK

^pGeorgia Tech, Atlanta, US

1. Introduction

TODO: write me! Astropy [1], Sherpa [?], pyfact [2]

2. Gammapy

TODO: write me!

TODO: add figure with dependencies.

3. Code example

TODO: show and explain the events fill into sky image or cube code example and explain. Message: Gammapy is high-level Python, data in Numpy arrays, others have written C and Python wrappers already (WCSLib, CFITSIO, SOFA/ERFA).

4. Application example

TODO: add a CTA analysis example (probably only an image, no spectrum or lightcurve yet). See https://nbviewer.jupyter.org/github/gammapy/gammapy-extra/blob/master/notebooks/cta_data_analysis.ipynb or if CTA-DC becomes available, a TS image from the Galactic plane survey would be nice.

5. Conclusions

TODO: write me!

Briefly discuss Gammapy approach pro / con here or above?

References

- [1] Astropy Collaboration, T. P. Robitaille, E. J. Tollerud, and P. Greenfield et al., *Astropy: A community Python package for astronomy*, *AAP* **558** (Oct., 2013) A33.
- [2] M. Raue and C. Deil, *PyFACT: Python and FITS analysis for Cherenkov telescopes*, in *American Institute of Physics Conference Series* (F. A. Aharonian, W. Hofmann, and F. M. Rieger, eds.), vol. 1505 of *American Institute of Physics Conference Series*, pp. 789–792, Dec., 2012.