Az Automaták és formális nyelvek vizsga teljesítése

A vizsgán 60 pont szerezhető, amely két 30 pontos részből áll össze az alábbi módon:

- 1. Öt kis kérdés megválaszolása írásban, egyenként 6 pontért, melyet minimum 12 pontra kell teljesíteni. A rendelkezésre álló idő 30 perc.
- 2. Szóbeli felelet egy tételből 30 pontért, melyet minimum 7 pontra kell teljesíteni. Felkészülési idő 40 perc.

Sikeres vizsgáért a minimális pontszámot mindkét részben meg kell szerzni. Értékelés:

${ m pontsz\'{a}m}$	jegy
0-18	1
19-29	2
30 - 40	3
41 - 50	4
51 – 60	5

Automaták és formális nyelvek rövid kérdések

- 1. Definiálja, hogy a $\rho \subseteq A \times A$ reláció szaturálja a $B \subseteq A$ halmazt.
- 2. A ρ és σ ekvivalencia relációkra teljesül, hogy $\rho \subseteq \sigma$ és σ véges indexű. Igaz-e, hogy ρ is véges indexű? Válaszát indokolja!
- 3. A monoid definíciója.
- 4. Lehet-e a $h: \Sigma^* \to \Delta^*$ leképezés homomorfizmus, ha h(aa) = ba? Válaszát indokolja!
- 5. A ρ_L szintaktikus jobbkongruencia definíciója.
- 6. A ρ jobbkongruencia szaturálja az L nyelvet. Milyen összefüggés álla fenn ρ és a ρ_L szintaktikus jobbkongruencia között?
- 7. A θ_L szintaktikus kongruencia definíciója.
- 8. Van-e olyan L nyelv, amelyre ρ_L véges indexű, de θ_L nem véges indexű? Válaszát indokolja!
- 9. Definiálja az $M = (Q, \Sigma, \delta, q_0, F)$ automatából az $M' = (Q', \Sigma, \delta', q'_0, F')$ automatába képező homomorfizmus fogalmát.
- 10. Ismer-e valamilyen kapcsolatot egy automata és egy homomorf képe által felismert nyelvek között?
- 11. Tegyük fel, hogy ρ_L véges indexű. Adja meg az L nyelvet felismerő minimális automatát a ρ_L segítségével. (Különös tekintettel az átmenetfüggvényre!)
- 12. Milyen kapcsolatot ismer egy adott L nyelvet felismerő minimális automaták között?
- 13. Az $M = (Q, \Sigma, \delta, q_0, F)$ automatán értelmezett kongruencia fogalma.
- 14. Az $M = (Q, \Sigma, \delta, q_0, F)$ automata M/ρ faktor automatájának definíciója.
- 15. Áll-e fenn valamilyen összefüggés egy M automata és tetszőleges M/ρ faktor automatája által felismert nyelvek között? Ha igen, adja meg.
- 16. A ρ_M kongruencia definíciója.
- 17. A ρ_M kongruenciát kiszámító algoritmus három lépése.
- 18. Az M automata átmenet monoidjának definíciója.
- 19. Milyen összefüggés áll fenn S_L és T_M között, ha L=L(M)?
- 20. Adja meg a felismerhetőség véges monoidokkal történő jellemzését.

- 21. Definiálja a Σ^+ nyelvet MSO formulával a felismerő automatára való hivatkozás nélkül, ahol $\Sigma = \{a, b\}$.
- 22. Definiálja a $\Sigma^* b \Sigma^*$ nyelvet MSO formulával a felismerő automatára való hivatkozás nélkül, ahol $\Sigma = \{a, b\}$.
- 23. Definiálja az a^*b^* nyelvet MSO formulával a felismerő automatára való hivatkozás nélkül, ahol $\Sigma = \{a, b\}$.
- 24. Definiálja MSO-ban, hogy X a páratlan pozíciók halmaza.
- 25. A (W_1, W_2) -struktúra definíciója.
- 26. Mi annak a feltétele, hogy az $(a_1, S_1, T_1) \dots (a_r, S_r, T_r)$ (W_1, W_2) -struktúra kielégíti az y = x + 1 formulát? (Feltesszük, hogy $\{x, y\} \subseteq W_1$.)
- 27. Mi annak a feltétele, hogy az $(a_1, S_1, T_1) \dots (a_r, S_r, T_r)$ (W_1, W_2) -struktúra kielégíti az $x \in Y$ formulát? (Feltesszük, hogy $x \in W_1$ és $Y \in W_2$.)
- 28. A közvetlen balrekurzió és a balrekurzió fogalma.
- 29. A Greibach normálformájú környezetfüggetlen nyelvtan definíciója.
- 30. A lineáris vektorhalmaz definíciója.
- 31. A Parikh függvény definíciója.
- 32. Legven $\Sigma = \{a, b\}$, par(xy) = (3, 4) és par(x) = (2, 3). Mivel egyenlő y?
- 33. Legyen $\Sigma = \{a, b\}$ és $L = \{ab^n \mid n \ge 0\}$. Adja meg par(L)-et.
- 34. Legyen $\Sigma = \{a, b, c\}$ és $L = \{a^n b^{n^2} c^n \mid n \ge 0\}$. Adja meg par(L)-et.
- 35. Adjon meg olyan reguláris nyelvet, amely betűekvivalens az $L = \{a^nb^n \mid n \geq 0\}$ nyelvvel.
- 36. Létezik-e olyan környezetfüggetlen nyelv a $\Sigma = \{b\}$ ábécé felett, amely nem reguláris? Válaszát indokolja!
- 37. A G_n nyelvtan definíciója (Chosmky-Schützenberger tétel).
- 38. A Chosmky-Schützenberger tétel.

Automaták és formális nyelvek tételek

- 1. Nerode és Myhill tételei.
- 2. A minimális automata egyértelműségének bizonyítása.
- 3. A minimális automata algoritmikus konstrukciója.
- 4. Automaták kísérő monoidjai. Reguláris nyelvek jellemzése véges monoidokkal.
- 5. Az MSO(+1) logika, szintaxis és szemantika.
- 6. Reguláris nyelvek megadása MSO(+1) logikával.
- 7. Balrekurzió megszüntetése környezetfüggetlen nyelvtanban.
- 8. Környezetfüggetlen nyelvtanok Greibach normálalakra hozása.
- 9. Parikh tétele és következményei.
- 10. A Chomsky-Schützenberger tétel.

2019. november 25.