Design Microstrip Antenna Using HFSS

Introduction:

Antennae, could be classified as wire antennae, aperture antennae, printed antennae, array antennae, reflector antennae and lens antennae.

Microstrip antenna

The most common version of printed antenna is microstrip antenna. the printed antenna is one that is fabricated using standard photolithography technique.

Advantages of microstrip antennas:

- Low cost to fabricate
- it's easy to form curved surfaces
- Easy to form a large array, spaced at half-wavelength or less
- Light weight

Disadvantages:

- Limited bandwidth (usually 1 to 5%, but much more is possible with increased complexity
- Low power handling

To design Microstrip patch antenna, there are parameters should we know:

- 1. Resonance frequency f_0
- 2. Dielectric constant of the substrate, $\boldsymbol{\epsilon}_{R}$
- 3. Thickness of substrate, h

In this documentation I will use:

- * $f_0 = 500 \text{ MHZ}$,
- * FR4 pcb material (with h=0.039 inches, dielectric constant =4.5 or 4.4)

secondly , we should know the equations to Calculate width of patch (W) , effective dielectric constant , actual length of patch (L)

$$Width = \frac{c}{2f_o\sqrt{\frac{\varepsilon_R+1}{2}}}; \quad \varepsilon_{eff} = \frac{\varepsilon_R+1}{2} + \frac{\varepsilon_R-1}{2} \left[\frac{1}{\sqrt{1+12\left(\frac{h}{W}\right)}} \right]$$

$$Length = \frac{c}{2f_o\sqrt{\varepsilon_{eff}}} - 0.824h\left(\frac{\left(\varepsilon_{eff} + 0.3\right)\left(\frac{W}{h} + 0.264\right)}{\left(\varepsilon_{eff} - 0.258\right)\left(\frac{W}{h} + 0.8\right)}\right)$$

 $c = velocity of light = 3 \times 108 m/s$

now let's calculate them (you can use online calculator)

- * install HFSS correctly
- * open it >> click file >> project

step 1 'Draw Patch'

- 1, 2) Use the rectangle shape to draw the patch "the object Rectangle will appear "
- 3) Note that 'Unassigned'
- 4) Click on 'create rectangle'
- 5) Edit the length from the properties box ($X=180.8 \ mm$, Y=141.3 mm)
- 6) Edit the scale

7) Rename it with 'patch'
by clicking on rectangle object
and change name from the
properties box

feel free to edit transparent and see what's happen !

HINTS

FR4 epoxy glass substrates are the material of choice for most PCB applications. The material is of low cost and has excellent mechanical properties, making it ideal for a wide range of electronic equipments.

Step 2 'Draw The Feeder'

- 8) Create an rectangle object and rename it feeder.
- 9) Select the 2 objects patch and feeder -.
- 10) Click **Unite** button.

Step 3 'The Substrate'

- 11) Using cubic draw the substrate
- 12) Rename it and edit the material select FR4-epoxy

13) Edit the Thickness of substrate (Z=-1mm)

Step 4 'The Ground'

* use this nice tools to move the design get the bottom of the substrate

14) Use the rectangle to draw it

you can notice this here.

Step 5 'Set The Source'

Use the rectangle object to draw the source "the red part"

 $\underline{\text{Hint}}$: zoom the scale in and draw the source between the surface (feeder) and the bottom (ground)

step 6 'Set The Radiation Box'

- 17) draw cubic box around the antenna and rename it 'Radiation'
- 18) set transparent to 0.8 see step 1

20) right click on radiation object

Assign Boundary >> Radiation

step 7 'Assigned Boundary'

21) Right click on patch >> Assigned boundary >> perfect E

22) set ground to perfect E

23) set source to

Assign excitaion >> Lumped port >> Next

set new line >> next

zoom-in till reach the edge of source

move to the second edge in direction of +z

step 8 'Analysis'

This is the time to analyze our design,

click on 🛂 🎱 🎱

ooh! What about this error!

To solve it ..

1 . Go to the project manager box >> right click on analysis

2.

3. now put your frequency f_0

>> ok

check it again 1001

good job!

Step 9 'Draw S parameter'

right click on setup1

click on Add frequency sweep

put the start , stop and step size frequency click on display >> ok

now right click again on setup1

congratulation, you did it!

Now we will refer to a different design for microstrip antenna

calculation of inset depth d

 $R_{\rm in}$ is the resonant input resistance when the patch is fed at a radiating edge. (input impedance)

$$Z_o = R_{in} \cos^2 \left(\frac{\pi}{L} d \right)$$

 Z_0 is equivalent to the feed line impedance. (Characteristics impedance)

L length of patch

if you want to know more about it, this is a good reference: http://www.jeasd.org/images/2016edition/issue-1/8.pdf "