PH9321 MARCH 29

Elliptical alits & Keplers $\mu \frac{d^2}{dt^2} = F(r) + \frac{L^2}{\mu t^3} \frac{1d\phi}{dt}$ $F(a) = -\frac{dV(a)}{dz}$ V(2) = - </2 &= 6 m, m2 µi = - 2/22 + 1003 Vess (1) = - 0/2 + LC 2m12 nmin panaldic Elliptra (, (min rmax) r E (Turin) dvegg

$$\frac{d^{2}}{dt^{2}} = \frac{2u}{u} \frac{d}{dt}$$

$$\frac{d^{2}}{dt^{2}} = \frac{2u^{2}}{u} \frac{d(1)}{dt}$$

$$\frac{d^2}{dt^2} = \frac{d}{dt} \left(\frac{d^2}{dt} \right) =$$

$$\frac{L u^{2}}{u} \frac{d}{d\phi} \left[-\frac{L}{u} \frac{du}{d\phi} \right]$$

$$= -\frac{2u}{u^{2}} \frac{d^{2}u}{d\phi^{2}}$$

$$\frac{u}{u} \frac{d^{2}u}{d\phi^{2}} = -\frac{u}{u^{2}} + \frac{u^{2}u}{u^{3}}$$

$$\frac{u}{u} \frac{d^{2}u}{d\phi^{2}} = -\frac{u}{u} + \frac{u}{u^{2}}$$

$$\frac{d^{2}u}{d\phi^{2}} = -\frac{u}{u} + \frac{u}{u^{2}}$$

$$\frac{d^{2}u}{d\phi^{2}} = -\frac{u}{u} + \frac{u}{u^{2}}$$

$$\frac{d^{2}u}{d\phi^{2}} = -\frac{u}{u} + \frac{u}{u^{2}}$$

Define
$$a = a(\phi) + \frac{ma}{C^2}$$
 $w(\phi) = u(\phi) - \mu \alpha$
 $\frac{d^2w}{d\phi^2} = -w$
 $w(\phi) = A\cos(\phi - \delta)$
 $u(\phi) = A\cos(\phi - \delta) + \mu \alpha$
 $\delta = 0$
 $\delta = 0$

hyperbola $\begin{cases} \mathcal{E} = 1 \\ \mathcal{E} > 1 \end{cases}$ mo blow. san u(4) = an (1+ E cost) 1+ 8 0050 2 15 constant

Vegga) => \$=0 V &= 11 $\phi = 0$ $\alpha(\phi=0) = \frac{C}{1+\epsilon}$ $r(\phi = \overline{t}) = \frac{C}{1 - \varepsilon} = Rmax$

period for a = 2TT The Moblan 15 an ellipse; $X = n\cos\phi$ $y = nom\phi$ 1 (1+ E C 05 4) = C square both sides-= $\times^2 + 9^2$ $\chi^{2}(1-\varepsilon^{2})+2C\varepsilon\chi+q^{2}=c^{2}$ $\frac{\left(x+\alpha\right)^2}{2} + \frac{9^2}{2} = 1$