POLYNOMIUNKTIONEN HÖHEREN GRADES

Eine Zusammenfassung

POTENZFUNKTION

$$f(x) = a \cdot x^n$$

mit $x \in \mathbb{R}$ und $n \in \mathbb{N}^*$

eindeutige Zuordnung

→zu jedem x-Wert gibt es genau einen y-Wert

 $x \mapsto y$

Tipp: Geodreieck entlang der x-Achse führen

Definition: POLYNOMFUNKTION n-ten Grades

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 \text{ mit } a_n \neq 0, x \in \mathbb{R}$$

Beispiel: $f: y = 2x^3 - 3x$

Grad = Exponent der größten Potenz von x

Definition: POLYNOMFUNKTION 3. Grades

$$f(x) = a x^3 + bx^2 + cx + d \text{ mit } a \neq 0, x \in \mathbb{R}$$

Beispiel: $f: y = 2x^3 - 3x$

SCHAUBILDER VON POLYNOMFUNKTIONEN 3. Grades

$$f(x) = a x^3 + bx^2 + cx + d$$

Globaler Verlauf?

- a > 0: Verlauf vom III. in den I. Quadranten
- a < 0: Verlauf vom II. in den IV. Quadranten
- Schnittpunkt mit y-Achse: S_v (0 | d)

Symmetrie zum Ursprung (0 | 0)?

- Kommen im Funktionsterm <u>nur ungerade Exponenten</u> von x vor, dann ist das Schaubild symmetrisch zum Ursprung.
 - \rightarrow Bedingung f(x) = -f(-x) ist erfüllt!

$$\rightarrow f(x) = a x^3 + cx$$

$$K_f$$
: $f(x) = x^3 - x^2 + 2$

$$K_g: g(x) = \frac{1}{4}x^3 - \frac{9}{4}x$$

$$K_h: h(x) = -x^3 + 5x^2 - 7x + 3$$

Definition: POLYNOMFUNKTION 4. Grades

$$f(x) = a x^4 + bx^3 + cx^2 + dx + e \text{ mit } a \neq 0, x \in \mathbb{R}$$

Beispiel: $f: y = x^4 - 3x^2 + 1$

SCHAUBILDER VON POLYNOMFUNKTIONEN 4. Grades

$$f(x) = a x^4 + bx^3 + cx^2 + dx + e$$

Globaler Verlauf?

- a > 0: Verlauf vom II. in den I. Quadranten
- a < 0: Verlauf vom III. in den IV. Quadranten
- Schnittpunkt mit y-Achse: S_v (0 | e)

Symmetrie zur y-Achse?

- Kommen im Funktionsterm <u>nur gerade Exponenten</u> von x vor, dann ist das Schaubild symmetrisch zur y-Achse.
 - \rightarrow Bedingung f(x) = f(-x) ist erfüllt!

$$f(x) = ax^4 + cx^2 + e$$

$$\mathbf{K}_f: f(x) = x^4$$

$$K_g: g(x) = 0.5x^4 - 2x^2 + 3$$

$$K_h: h(x) = -x^4 + 2x^3 - 1$$

POLYNOWGLEICHUNGEN HÖHEREN GRADES LÖSEN

Form	Lösen durch	Beispiel
$\mathbf{ax}^3 + \mathbf{d} = 0 \ (\mathbf{a} \neq 0)$	Umformung: x³ = und Wurzelziehen →Gleichung hat immer eine Lösung!	$x^{3} - 8 = 0$ $x = \sqrt[3]{8} = 2$
$ax^4 - e = 0$ (a\neq 0)	Umformung: $x^4 =$ und Wurzelziehen	$x^{3} - 8 = 0$ $x = \sqrt[3]{8} = 2$
$ax^{3} + bx^{2} + cx = 0$ $ax^{4} + bx^{3} + cx^{2} = 0$ $(a\neq 0)$	Ausklammern der höchsten gemeinsamen Potenz von x und Satz vom Nullprodukt: "Ein Produkt ist null, wenn mindestens ein Faktor null ist."	$x^3 - x^2 = 0$ $x^2 (x - 1) = 0$ $x^2 = 0 \text{ oder } x - 1 = 0$ $x_{1,2} = 0 \text{ und } x_3 = 1$
$ax^4 + cx^2 + e = 0$ (a,b,c\neq 0)	Substitution: $x^2 = z$, Lösung der quadratischen Gleichung in z (z.B. mittels abc-Formel) und Rücksubstitution	$x^4 - 9x^2 + 20 = 0$ Substitution $x^2 = z$ $z^2 - 9z + 20 = 0$ ($x - 7$) = 0 $z_1 = 4$ und $z_2 = 5$. Rücksubstitution: $z_1 = x^2 = 4 \implies x_{1,2} = \pm 2$ $z_2 = x^2 = 5 \implies x_{3,4} = \pm \sqrt{5}$

Nullstelle bedeutet Schnittpunkt S_x mit der x-Achse

Eine **Polynomfunktion vom Grad n** hat höchstens n Nullstellen.

Eine Polynomfunktion mit **ungeradem Grad n** hat mindestens eine Nullstelle.

- → Polynomfunktion 3. Grades: mindestens eine Nullstelle und höchstens drei Nullstellen
- → Polynomfunktion 4. Grades: höchstens vier Nullstellen
- 1) Falls die **Funktion als Produkt von Linearfaktoren** angegeben ist: Nullstellen mithilfe des Satzes vom Nullprodukt ohne Rechnung ablesen

Beispiel:

- → Nullstellen sind Lösungen für f(x)=0:
- →Satz vom Nullprodukt:

$$f(x) = -0.5 \cdot (x-3) \cdot (x-1)^2 \cdot (x+2)$$

$$-0.5 \cdot (x-3) \cdot (x-1)^2 \cdot (x+2) = 0$$

$$(x-3) = 0$$
 oder $(x-1)=0$ oder $(x+2)=0$

- → Nullstellen: $x_1 = 3$ und $x_2 = 1$ und $x_3 = -2$
- 2) Falls Funktionsterm nur **mit Summanden** dargestellt ist: f(x) = 0 setzen + Gleichung nach x auflösen

Beispiel 1:

Beispiel 2:

→ Nullstellen sind Lösungen für f(x)=0:

→ Nullstellen sind Lösungen für f(x)=0:

→Satz vom Nullprodukt:

$$f(x) = x^3 - 2x^2$$

$$x^3 - 2x^2 = 0$$
 | Ausklammern von x^2

$$x^2 (x-2) = 0$$

$$x^2 = 0 \text{ oder } x - 2 = 0$$

$$\rightarrow$$
 Nullstellen: $x_{1,2} = 0$ und $x_2 = 2$

$$f(x) = x^4 - 7x^2 + 12$$

$$x^4 - 7x^2 + 12 = 0$$
 | Substitution $z = x^2$

$$z^2 - 7z + 12 = 0$$
 | pq-Formel oder abc-Formel

$$z_1 = 4$$
 und $z_2 = 3$ | Rücksubstitution

$$z_1 = x^2 = 4$$
 und $z_2 = x^2 = 3$

Nullstellen:
$$x_1 = -2$$
 und $x_2 = 2$ und $x_3 = \sqrt{3}$ und $x_4 = -\sqrt{3}$

VIELFACHHEIT VON NULLSTELLEN

einfache Nullstelle	doppelte Nullstelle	dreifache Nullstelle
x ₀	x ₀	x ₀
Schaubild schneidet x-Achse (mit Vorzeichenwechsel)	Schaubild berührt x-Achse (ohne Vorzeichenwechsel)	Schaubild schneidet und berührt x-Achse (mit Vorzeichenwechsel) Schnittpunkt mit der x-Achse heißt Sattelpunkt oder Terrassenpunkt

Beispiele:

 $g(x) = -0.8 \cdot (x + 1) \cdot (x - 1)^3$ Verlauf vom III. in

IV. Quadranten, denn:
Polynomfunktion 4.

Grades mit a = -0.8 < 0 $x_{2,3,4} = 1$ ist dreifache
Nullstelle
Nullstelle

SCHNITTPUNKTE ZWEIER FUNKTIONEN - I

- 1) Gleichung f(x) = g(x) lösen
- 2) Lösungen der Gleichung in f(x) oder g(x) einsetzen

Beispiel:
$$f(x) = x^3 - 3x$$
 und $g(x) = x$

$$x^3 - 3x = x \qquad | -x$$

$$x^3 - 4x = 0 \qquad | x \text{ ausklammern}$$

$$x(x^2 - 4) = 0 \qquad | \text{Satz vom Nullprodukt}$$

$$x = 0 \text{ oder } x^2 - 4 = 0$$

$$\Rightarrow x_1 = 0$$

$$x^2 - 4 = 0$$

$$\Rightarrow x_2 = 4$$

$$\Rightarrow x_2 = 2 \text{ und } x_3 = -2$$

 $(x_1, x_2 \text{ und } x_3 \text{ sind einfache L\"osungen!})$

x-Werte in f(x) oder g(x) einsetzen, um die y-Werte der Schnittpunkte zu erhalten:

$$g(0) = 0$$
 und $g(2) = 2$ und $g(-2) = -2$

 \rightarrow Antwort: Die Schnittpunkte der Funktionen sind S_1 (0 | 0) und S_2 (2 | 2) und S_3 (-2 | -2).

SCHNTTPUNKTE ZWEIER FUNKTIONEN - II

Ähnlich wie bei den Nullstellen, zeigt uns die Lösung der Gleichung f(x) = g(x) auch an, wie die Schnittpunkte im Graph aussehen:

Beispiele:

3 einfache Lösungen:

 x_1, x_2, x_3 $\rightarrow K_f \text{ und } K_g \text{ schneiden}$ sich in x_1, x_2, x_3

l einfache Lösung:

 \mathbf{X}_1 \mathbf{K}_f und \mathbf{K}_g schneiden sich in \mathbf{X}_1

l einfache Lösung: x_1 und l doppelte Lösung: x_2 $\rightarrow K_f$ und K_g schneiden sich in x_1 und berühren sich in x_2

l einfache Lösung: x₁
 und l dreifache Lösung: x₂
 → K₁ und K₂ schneiden sich in x₁, berühren und schneiden sich in x₂

FUNKTIONSGLEICHUNG BESTIMMEN — Beispiel I

gegeben: Graph der Funktion

1) falls möglich, **Nullstellen ablesen** und als **Produkt von Linearfaktoren darstellen**:

2) Koordinaten eines weiteren Punktes

(kein Schnittpunkt mit x-Achse) einsetzen:

Beispiel:

$$x_{1,2} = -1,5; x_3 = 1$$

$$f(x) = a(x+1,5)^2 \cdot (x-1)$$

$$P(0,5 | -2,5)$$

$$-2.5 = a(0.5+1.5)^2 \cdot (0.5-1)$$

$$-2.5 = -2a$$

$$\frac{5}{4} = a$$

→ Antwort: Die Funktionsgleichung lautet $f(x) = \frac{5}{4} \cdot (x+1,5)^2 \cdot (x-1)$.

FUNKTIONSGLEICHUNG BESTIMMEN — Beispiel II

gegeben: Punkte + Grad + Angaben zur Symmetrie

Beispiel:

Polynomfunktion 3. Grades; punktsymmetrisch zum Ursprung; durch $A(-2 \mid -8)$ und $B(1 \mid 2,5)$

- 1) Symmetrie zeigt Art der Funktionsgleichung:
- $f(x) = a x^3 + cx$ (Punktsymmetrie \rightarrow nur ungerade Exponenten)
- 2) Punktprobe(Punkte jeweils in Funktionsterm einsetzen):

$$-8 = a \cdot (-2)^3 + c \cdot (-2)$$

2,5 = a \cdot 1 + c \cdot 1

Vereinfachung:

$$-8 = -8 a - 2 c$$

$$2,5 = a + c$$

Additions verfahren $(I) + (II) \cdot 2$:

$$-3 = -6a$$

$$\Leftrightarrow 0,5 = a$$

Einsetzen von a = 0.5 in (II):

$$2.5 = 0.5 + c$$

$$\Leftrightarrow$$
 2 = c

 \rightarrow Antwort: Die Funktionsgleichung lautet $f(x) = 0.5 x^3 + 2 x$.

FUNKTIONSGLEICHUNG BESTIMMEN — Beispiel III

gegeben: Punkte + Funktionsterm mit Parametern

Beispiel:

1) Punktprobe (Punkte jeweils in den allgemeinen Funktionsterm einsetzen): gegeben: A(1|1), B(2|4); $f(x) = x^3 + bx^2 + cx - 2$

$$1^{3} + b \cdot 1^{2} + c \cdot 1 - 2 = 1$$

$$2^{3} + b \cdot 2^{2} + c \cdot 2 - 2 = 4$$

2) Gleichungen so umformen und gegenseitig einsetzen, dass man a, b und c erhält:

$$1 + b + c - 2 = 1$$

 $8 + b \cdot 4 + c \cdot 2 - 2 = 4$

$$b + c = 2$$
 (I)
 $4b + 2c = -2$ (II)

$$4b + 2c = -2$$

Additions verfahren (1) · (-2) + (11):
$$2b = -6$$

 $\Leftrightarrow b = -3$

Einsetzen von
$$b = -3$$
 in (I): $-3 + c = 2$
 $\Leftrightarrow c = 5$

 \rightarrow Antwort: Die Funktionsgleichung lautet $f(x) = x^3 - 3x^2 + 5x - 2$