```
In []: import pandas as pd import numpy as np

In []: df = pd.read_csv('Dataset/titanic.csv')

Out[]: Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

O 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
```

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	s
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In []: d	f.describe()
-----------	--------------

Out[]:		Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [ ]: df.nunique()
Out[]: PassengerId
                      891
                      2
        Survived
        Pclass
        Name
                      891
        Sex
                       88
        Age
                      7
7
        SibSp
        Parch
        Ticket
                      681
        Fare
                      248
        Cabin
                      147
        Embarked
                       3
        dtype: int64
In [ ]: df.duplicated().sum()
```

In []: df.isna().sum()

Out[]: 0

```
Out[]: PassengerId
   Survived
   Pclass
          0
   Name
          0
   Sex
          0
   Age
         177
   SibSp
          0
   Parch
          0
   Ticket
          0
   Fare
          0
   Cabin
         687
   Embarked
          2
   dtype: int64
   Cabin column is dropped because of too many missing values Name and Ticket dropped because it is unique at each column
In [ ]: df2 = df.drop(columns=['Name', 'Ticket', 'Cabin'])
   Dropped 2 rows where embarked is null
In [ ]: df2.dropna(inplace=True, subset=['Embarked'])
In [ ]: data = df2.values
   X = data[:, 2:]
   print(X)
  [[3 'male' 22.0 ... 0 7.25 'S']
   [1 'female' 38.0 ... 0 71.2833 'C']
   [3 'female' 26.0 ... 0 7.925 'S']
   [3 'female' nan ... 2 23.45 'S']
   [1 'male' 26.0 ... 0 30.0 'C']
   [3 'male' 32.0 ... 0 7.75 'Q']]
In [ ]: y = data[:,1]
   print(y)
  [0\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 1
   0]
In [ ]: from sklearn.model_selection import train_test split
   Splitting the array into test and train sets
In [ ]: X train, X test, y train, y test = train test split(X,y, test size=0.2, random state=1)
In [ ]: print(X_train.shape)
   print(X_test.shape)
   print(y_train.shape)
   print(y_test.shape)
  (711, 7)
  (178, 7)
  (711,)
  (178,)
In [ ]: print(X_train)
```

```
[[3 'male' nan ... 0 8.05 'S']
        [3 'male' 19.0 ... 0 10.1708 'S']
        [3 'male' nan ... 0 7.75 'Q']
        [3 'male' 26.0 ... 0 14.4542 'C']
        [2 'male' 44.0 ... 0 26.0 'S']
        [3 'male' 21.0 ... 0 8.05 'S']]
In [ ]: from sklearn.impute import SimpleImputer
        Imputer to fill null values using mode
In [ ]: imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
         Replacing null values in age with mode
In [ ]: imputer.fit(X_train[:, 2:3])
Out[]: ▼
                        SimpleImputer
        SimpleImputer(strategy='most_frequent')
In [ ]: X_train[:, 2:3] = imputer.transform(X_train[:, 2:3])
        print(X_train)
       [[3 'male' 24.0 ... 0 8.05 'S']
        [3 'male' 19.0 ... 0 10.1708 'S']
        [3 'male' 24.0 ... 0 7.75 'Q']
        [3 'male' 26.0 ... 0 14.4542 'C']
        [2 'male' 44.0 ... 0 26.0 'S']
        [3 'male' 21.0 ... 0 8.05 'S']]
In [ ]: X_{\text{test}}[:, 2:3] = \text{imputer.transform}(X_{\text{test}}[:, 2:3])
        print(X_test)
       [[2 'female' 36.0 ... 0 13.0 'S']
        [2 'female' 50.0 ... 1 26.0 'S']
        [3 'male' 48.0 ... 0 7.8542 'S']
        [1 'male' 22.0 ... 0 135.6333 'C']
        [3 'male' 22.0 ... 0 8.05 'S']
        [2 'male' 24.0 ... 0 10.5 'S']]
        Min Max Feature Scaling on columns Age and Fare
In [ ]: from sklearn.preprocessing import MinMaxScaler
        min_max_scaler = MinMaxScaler(feature_range=(0,1))
In []: X train[:,(2,5)] = min max scaler.fit transform(X train[:,(2,5)])
        X_{\text{test}}[:,(2,5)] = \min_{\text{max}} \text{scaler.transform}(X_{\text{test}}[:,(2,5)])
In [ ]: print(X_train)
       [[3 'male' 0.2963056044232219 ... 0 0.03060836501901141 'S']
        [3 'male' 0.2334757476752953 ... 0 0.038672243346007606 'S']
        [3 'male' 0.2963056044232219 ... 0 0.029467680608365018 'Q']
        [3 'male' 0.32143754712239253 ... 0 0.05495893536121673 'C']
        [2 'male' 0.5476250314149284 ... 0 0.09885931558935361 'S']
        [3 'male' 0.2586076903744659 ... 0 0.03060836501901141 'S']]
In [ ]: print(X_test)
       [[2 'female' 0.4470972606182458 ... 0 0.049429657794676805 'S']
        [2 'female' 0.6230208595124404 ... 1 0.09885931558935361 'S']
        [3 'male' 0.5978889168132697 ... 0 0.029863878326996197 'S']
        [1 'male' 0.2711736617240512 ... 0 0.515715969581749 'C']
        [3 'male' 0.2711736617240512 ... 0 0.03060836501901141 'S']
        [2 'male' 0.2963056044232219 ... 0 0.039923954372623575 'S']]
In [ ]: from sklearn.compose import ColumnTransformer
        from sklearn.preprocessing import OneHotEncoder
         Encoding Sex and Embarked columns using OneHotEncoder
```

In []: ct = ColumnTransformer(transformers=[('encode', OneHotEncoder(),[1,-1])], remainder='passthrough')

```
In [ ]: X_train = ct.fit_transform(X_train)
        X_test = ct.transform(X_test)
In [ ]: print(X_train)
       [[0.0 1.0 0.0 ... 0 0 0.03060836501901141]
        [0.0 1.0 0.0 ... 0 0 0.038672243346007606]
        [0.0 1.0 0.0 ... 0 0 0.029467680608365018]
        [0.0 \ 1.0 \ 1.0 \ \dots \ 1 \ 0 \ 0.05495893536121673]
        [0.0\ 1.0\ 0.0\ \dots\ 1\ 0\ 0.09885931558935361]
        [0.0 \ 1.0 \ 0.0 \ \dots \ 0 \ 0.03060836501901141]]
In [ ]: print(X_test)
       [[1.0 0.0 0.0 ... 0 0 0.049429657794676805]
        [1.0 \ 0.0 \ 0.0 \ \dots \ 0 \ 1 \ 0.09885931558935361]
        [0.0 1.0 0.0 ... 0 0 0.029863878326996197]
        [0.0 1.0 1.0 ... 0 0 0.515715969581749]
        [0.0 1.0 0.0 ... 0 0 0.03060836501901141]
        [0.0 1.0 0.0 ... 0 0 0.039923954372623575]]
In [ ]: df_train = pd.DataFrame(X_train)
        df_train
Out[]:
                       2
                           3
                               4 5
                                             7
          0 0.0 1.0 0.0 0.0 1.0
                                  3 0.296306
                                 3 0.233476
          1 0.0 1.0 0.0 0.0 1.0
                                                  0 0.038672
                                  3 0.296306
                 1.0 0.0 1.0 0.0
                                                  0 0.029468
                 1.0 0.0 0.0 1.0
                                  3 0.296306
                                                  0 0.030608
                 1.0 1.0
                        0.0 0.0
                                  1 0.723549
                                              0
                                                  2 0.430703
                0.0 1.0 0.0 0.0
                                  1 0.472229
                                              0
                                                  0
                                                   0.865114
                 1.0 0.0
                        1.0 0.0
                                  3 0.296306
                 1.0 1.0 0.0 0.0
                                  3 0.321438
                                                  0 0.054959
                 1.0 0.0 0.0 1.0
                                 2 0.547625
                                                  0 0.098859
        710 0.0 1.0 0.0 0.0 1.0 3 0.258608 0 0 0.030608
        711 rows × 10 columns
In [ ]: df_test = pd.DataFrame(X_test)
        df_test
Out[ ]:
                                                           9
                       2
                           3
                               4 5
                                              7
          0 1.0 0.0 0.0 0.0 1.0 2 0.447097
                                              0
                                                  n
                                                     0.04943
          1 1.0 0.0 0.0 0.0 1.0 2 0.623021
                                                    0.098859
                                              0
          2 0.0 1.0 0.0 0.0 1.0
                                  3 0.597889
                                              0
                                                  0 0.029864
                                  3 0.195778
                                              0
                                                  0 0.029468
          3 1.0 0.0 0.0 1.0 0.0
          4 0.0 1.0 0.0 0.0 1.0
                                  3 0.170646
                                              5
                                                  2 0.178327
         173 0.0 1.0 0.0 0.0 1.0 3 0.296306
                                                 0 0.029642
                                             0
        174 0.0 1.0 1.0 0.0 0.0 3 0.132948
                                              0
                                                  0 0.071435
         175 0.0 1.0 1.0 0.0 0.0
                                  1 0.271174
                                              Ω
                                                  0 0.515716
        176 0.0 1.0 0.0 0.0 1.0 3 0.271174 0 0 0.030608
        177 0.0 1.0 0.0 0.0 1.0 2 0.296306 0 0 0.039924
```

178 rows × 10 columns