Exercices - Transformations géomé-triques, morho-math, convolution

Nicholas Journet - Traitement d'images - IUT INFORMATIQUE - 1

2.1 Transformation d'images

Question 1

Démontrez que

$$M_{st} = \begin{bmatrix} S_x & 0 & S_x.T_x \\ 0 & S_y & S_y.T_y \\ 0 & 0 & 1 \end{bmatrix}$$

Question 2

Démontrez qu'effectuer une mise à l'échelle puis une translation est différent d'une translation puis une mise à l'échelle $(M_{ST} \neq M_{TS})$

Question 3

Pour chacun des 7 exemples, déterminez la matrice (en coordonnées homogènes) ayant permis de transformer l'objet.

^{1.} Certaines questions sont inspirées des notes de cours C Rougier - Alain Boucher et T Guyer

2.2 Morphologie mathématique

Question 4

Calculez une érosion, une dilatation puis une ouverture sur l'image suivante. Vous utiliserez l'élément structurant qui vous ai donné.

2.3 Convolution

Soit l'image suivante :

0	140	51	191	140	51
0	51	191	140	140	51
51	140	20	20	140	0
51	140	20	20	20	140
0	140	191	0	20	51
0	10	51	10	140	51

Question 5

Convoluez les deux filtres suivants avec cette image

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Question 6

Que font ces filtres?

Question 7

Déterminer le masque 5x5 correspondant à un filtre gaussien d'écart type sigma = 1.25. On rappelle que $e\approx 2.71828$

Ce document est publié sous Licence Creative Commons « By-NonCommercial-ShareAlike ». Cette licence vous autorise une utilisation libre de ce document pour un usage non commercial et à condition d'en conserver la paternité. Toute version modifiée de ce document doit être placée sous la même licence pour pouvoir être diffusée.

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/