Example Problem: A* on Grid

$$f(n) = h(n) + g(n)$$

heuristic cost L1 (MD)

+ path cost so far

	0	1	2	3	4	5	6	7	8	9
0	inf	inf	9	8	inf	inf	inf	inf	inf	inf
1	inf	9	8	7	6	5	inf	3	4	inf
2	inf	8	7	6	5	4	inf	2	3	inf
3	inf	7	6	5	4	3	inf	1	2	inf
4	inf	6	5	4	3	2	inf	0	1	inf
5	inf	7	6	5	inf	inf	inf	inf	2	inf
6	inf	8	7	6	5	4	3	2	3	inf
7	inf	9	8	7	6	5	4	3	4	inf
8	inf	10	9	8	7	6	5	4	5	inf
9	inf									

all MDs (for illustration)

equal distances
=> order of visits matters!!!

illustration of the total cost in each step f(n) = h(n) + g(n) (heuristic cost (MD)+cost so far)

orange: visited node yellow: visited neighbors light green: CLOSED

	0	1	2	3	4	5	6	7	8	9
0	inf	inf			inf	inf	inf	inf	inf	inf
1	inf						inf			inf
2	inf						inf			inf
3	inf				4+1		inf			inf
4	inf			4+1	<i>3+0</i>	2+1	inf			inf
5	inf				inf	inf	inf	inf		inf
6	inf									inf
7	inf									inf
8	inf									inf
9	inf	inf	inf	inf	inf	inf	inf	inf	inf	inf
			_							

	0	1	2	3	4	5	6	7	8	9
0	inf	inf			inf	inf	inf	inf	inf	inf
1	inf						inf			inf
2	inf						inf			inf
3	inf				4+1	3+2	inf			inf
4	inf			4+1	3+0	2+1	inf			inf
5	inf				inf	inf	inf	inf		inf
6	inf									inf
7	inf									inf
8	inf									inf
9	inf									
	4									

	0	1	2	3	4	5	6	7	8	9
0	inf	inf			inf	inf	inf	inf	inf	inf
1	inf						inf			inf
2	inf					4+3	inf			inf
3	inf				4+1	<i>3</i> +2	inf			inf
4	inf			4+1	3+0	2+1	inf	0		inf
5	inf				inf	inf	inf	inf		inf
6	inf									inf
7	inf									inf
8	inf									inf
9	inf	inf	inf	inf	inf	inf	inf	inf	inf	inf
	_		_							

inf inf

5+2 4+1 **3+2** inf

5+2 inf inf inf

5+2 4+1 **3+0 2+1** inf

inf

5+4 inf

5+4 **4+3** inf

step1

step2

step3

inf

inf

inf

inf

inf

inf

inf

0

4

6

inf

	0	1	2	3	4	5	6	7	8	9
0	inf	inf			inf	inf	inf	inf	inf	inf
1	inf						inf			inf
2	inf				5+2	4+3	inf			inf
3	inf			5+2	4+1	3+2	inf			inf
4	inf			4+1	3+0	2+1	inf	0		inf
5	inf				inf	inf	inf	inf		inf
6	inf									inf
7	inf									inf
8	inf									inf
9	inf									

	0	1	2	3	4	5	6	7	8	9
0	inf	inf			inf	inf	inf	inf	inf	inf
1	inf						inf			inf
2	inf				5+2	4+3	inf			inf
3	inf			5+2	4+1	3+2	inf			inf
4	inf		5+2	4+1	3+0	2+1	inf	0		inf
5	inf			5+2	inf	inf	inf	inf		inf
6	inf									inf
7	inf									inf
8	inf									inf
9	inf									

step4

step5

Alternative: L1 Voronoi on Regular Grid

max. clearance to the walls (instead of passing by walls)

compute via wave-front (aka bushfire method)

- propagate a wave front
 - from the obstacles boundaries away
 - in every step, update for every cell a pointer to the obstacle from which the wave front originated
- "collision" of 2 wave fronts from 2 different obstacles
 - collision point must be on the equidistant edge
 - hence on the GVD, i.e., mark this pixel as GVD part

Voronoi on Regular Grid

```
// initialize all occupied cells with 0, all unoccupied ones with infinity
 2 \forall (x,y) \text{ with } M[x][y] = 1 : D[x][y] = 0
 3 \forall (x,y) \text{ with } M[x][y] = 0: D[x][y] = \infty
    // put all occupied cells into queue Q
    \forall (x,y) \text{ with } M[x][y] = 1 : \text{queue}(Q,(x,y))
    // take element from Q, update its distance, queue its neighbors if not yet visited
    while(notempty(Q)) {
            (x,y) = dequeue(Q)
 8
            visit(x, y) = true
            D[x][y] = \min (D[x][y], D[x+1][y]+1, D[x-1][y]+1, D[x][y+1]+1, D[x][y-1]+1)
10
            if(\neg visit(x+1,y)): queue(Q,(x+1,y))
11
            if(\neg visit(x-1,y)): queue(Q,(x-1,y))
12
            if(\neg visit(x, y + 1)): queue(Q, (x, y + 1))
13
            if(\neg visit(x, y - 1)): queue(Q, (x, y - 1))
14
15
```

Voronoi on Regular Grid

black : obstacles

brightness : D[x][y]

- the brighter,
- the higher the distance to the nearest obstacle

Path-Planning Approaches

- Roadmap
- Cell decomposition
- Potential field

Potential Fields

- attraction and repulsion
- similar to physical fields (for example electric fields)
- agent follows gradients

Potential Fields

- originally proposed for realtime obstacle avoidance
- close relation to behavior-oriented programming

Potential Field Generation

- potential field function U(q)
- artificial force field F(q)

$$F(q) = -\nabla U(q) = -\nabla U_{att}(q) - \nabla U_{rep}(q) = \begin{vmatrix} \frac{\partial U}{\partial x} \\ \frac{\partial U}{\partial y} \end{vmatrix}$$

• set robot speed (v_x, v_y) proportional to the force F(q)

Attractive Potential Field

$$q = [x, y]^T q_{goal} = [x_{goal}, y_{goal}]^T$$

e.g., parabolic function representing the Euclidean distance to the goal

$$U_{att}(q) = k_{att} \cdot (q - q_{goal})^2$$

attracting force converges linearly towards 0 (goal)

$$F_{att}(q) = -\nabla U_{att}(q)$$
$$= k_{att} \cdot (q - q_{goal})$$

Repulsing Potential Field

idea: a barrier around all the obstacle

- strong if close to the obstacle
- no influence if far from the obstacle

$$U_{rep}(q) = \begin{cases} \frac{1}{2} k_{rep} \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0}\right)^2 & \text{if } \rho(q) \leq \rho_0 \\ 0 & \text{if } \rho(q) \geq \rho_0 \end{cases} \quad \begin{array}{l} \bullet & \rho(q) = \text{minimum distance to} \\ \text{the object (to point } q_{goal}) \\ \bullet & \rho_0 = \text{distance of influence of} \\ \text{the object} \end{cases}$$

Force is positive or zero and *tends to infinity* as q gets closer to the object

$$F_{rep}(q) = -\nabla U_{rep}(q) = \begin{cases} k_{rep} \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0}\right) \frac{1}{\rho^2(q)} \frac{q - q_{goal}}{\rho(q)} & \text{if } \rho(q) \le \rho_0 \\ 0 & \text{if } \rho(q) \ge \rho_0 \end{cases}$$

Potential Fields

attractive and repulsive fields

- as fct's computed on the fly based on distance
- or precomputed in grids

Potential Fields

problems with local optima

option: combine with random walk but better alternatives are possible...

Potential Fields: Navigation Function

- potential field with no local minima
 - for any point p
 - the navigation function N(p)
 - is the minimum cost to the goal
- use a wavefront algorithm
 - propagating from the goal to the current location
 - an active point updates costs of its 8 neighbors
 - a point becomes active if its cost decreases.
 - continue until robot's position is reached

Potential Fields: Navigation Function

- potential field with no local minima
 - for any point p
 - the navigation function N(p)
 - is the minimum cost of a path to the goal
- use a wavefront algorithm
 - propagating from the good fill at thent location
 an active point pook factors of its 8 neighbors
 a point active if its cost decreases.

 - rue until robot's position is reached

Bug Algorithm

- follow straight line segment to the goal
- hit an obstacle => follow boundary
- when returning to the hitting point
 - follow the boundary
 - to the point on the boundary
 - that is on the line segment and closest to the goal
- then resume the straight line segment path

Bug Algorithm

- reactive attraction to goal
- but always finds a path (if it exists)

Bug Alg: 2nd version

follow obstacle always on the left (or right) side

leave obstacle if the direct connection between

start and goal is crossed

Bug Alg: 2nd version

can also
lead to
long paths

Path Planning beyond 2D

Example: Visibility Graph in 3D

shortest collision-free path in a polyhedral space is NP-hard

Path Planning in 2.5D Maps

2.5D Elevation

elevation map

- (typically regular) grid
 - cell value = elevation
- aka
 - Digital Elevation Model (DEM),
 - Digital Terrain Model (DTM),
 - Digital Surface Model (DSM)
 - marine: bathymetry
- often falsely denoted as 3D
- but 2D manifolds in 3D space

2.5D Cost Maps

- grid map: edge values = cost to traverse that edge, e.g.,
 - local gradients from elevation (slope) by absolute differences
 - terrain classification (road, grass, sand, gravel, etc.)
- path-planning as before (e.g., A*)
 - but now on weighted graph
 - edge $e=(v_1,v_2)$ & weight w(e)

