1 Spectral Graph Theory

We assume the graph has n vertices and m edges. The vertex set is *V* and the edge set is *E*.

1.1 Courant-Fischer Theorem

1. **Eigenvalue version**: Let A be a symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$, then

$$\lambda_i = \min_{\substack{\text{subspace } W \subseteq \mathbb{R}^n \\ \dim(W) = i}} \max_{\substack{x \in W \\ x \neq \mathbf{0}}} \frac{x^\top A x}{x^\top x} = \max_{\substack{\text{subspace } W \subseteq \mathbb{R}^n \\ \dim(W) = n+1-i}} \min_{\substack{x \in W \\ x \neq \mathbf{0}}} \frac{x^\top A x}{x^\top x}.$$

2. **Eigenbasis version**: Let A be a symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and corresponding orthonormal eigenvectors x_1, \ldots, x_n , then

$$\lambda_i = \min_{\substack{x \perp x_1, \dots, x_{i-1} \\ x \neq 0}} \frac{x^\top A x}{x^\top x} = \max_{\substack{x \perp x_{i+1}, \dots, x_n \\ x \neq 0}} \frac{x^\top A x}{x^\top x}.$$

Note that we also have $\lambda_i = \frac{x_i^t A x_i}{x_i^T x_i}$.

Applying Courant-Fischer theorem, we have $\lambda_2 x^{\top} x \leq x^{\top} L x \leq x^{\top} L$ $\lambda_n x^{\top} x$ for all $x \perp 1$, as 1 is the eigenvector of L corresponding to eigenvalue 0. For connected graphs, $\lambda_2 > 0$.

1.2 PSD Order (Loewner Order)

Defined only for symmetric matrices: $A \leq B$ iff for all $x \in \mathbb{R}^n$, 2. Any unit-weight graph G: Define the diameter D of a we have $x^{\top}Ax \leq x^{\top}Bx$. We also define $G \leq H$ for two graphs G and H iff $L_G \leq L_H$. We always have $G \geq H$ if H is a subgraph of G.

Properties:

- 1. If $A \leq B$ and $B \leq C$, then $A \leq C$.
- 2. If $A \leq B$, then $A + C \leq B + C$ for any symmetric C.
- 3. If $A \leq B$ and $C \leq D$, then $A + C \leq B + D$.
- 4. If A > 0 and $\alpha \ge 1$, then $\frac{1}{\alpha}A \le A \le \alpha A$.
- 5. If $A \leq B$, then $\lambda_i(A) \leq \lambda_i(B)$ for all i. Proof by Courant-Fischer theorem. The converse is not true.

1.3 Bounding the λ_2 and λ_n

1.3.1 Test Vector Method

Since $\lambda_2 \leq \frac{y^{\perp}Ly}{y^{\perp}y}$ for any $y \perp 1$, we can upper bound the λ_2 by any **test vector** y. Similarly, we can lower bound the λ_n by test vectors by $\lambda_n \geq \frac{y^+ L y}{v^+ v}$

- 1. For a complete graph K_n , $L = nI 11^{\top}$ and for any $x \perp 1$ we have $x^{\top}Lx = nx^{\top}x$. Therefore, $\lambda_2(K_n) = \cdots = \lambda_n(K_n) = n$ and any $x \perp 1$ is an eigenvector.
- 2. For a path graph P_n , let x(i) = n + 1 2i be the test vector which satisfies $x \perp 1$, we get $\lambda_2(P_n) \leq \frac{12}{n^2}$. Let x(1) = -1, x(n) = 1 and x(i) = 0 for other i to be the test vector, we get $\lambda_n(P_n) \geq 1$.
- 3. For a complete binary tree T_n (depth equals zero for a single root), let x(i) = 0 for all non-leaf nodes, x(i) = -1 for even-numbered leaf nodes and x(i) = 1 for odd-numbered leaf nodes be the test vector, we get $\lambda_n(T_n) \ge 1$. Let x(1) = 0,

x(i) = 1 for the left subtree of the root and x(i) = -1 for the right subtree of the root be the test vector, we get $\lambda_2(T_n) \leq \frac{2}{n-1}$.

1.3.2 Consequences of PSD Order

Since $x^{\top}(D - A)x = \sum_{(u,v)} w(u,v)(x(u) - x(v))^2 \ge 0$ and $x^{\top}(D + x(v))$ $A(x) = \sum_{(u,v)} w(u,v)(x(u) + x(v))^2 \ge 0$, we have $D \ge A$ and $D \geq -A$. In addition, we have $D \leq (\max D_{i,j})I$. Therefore, we have $L = D - A \ge 2D \ge (2 \max D_{i,i})I$, which implies $\lambda_n \leq 2 \max D_{i,i}$ for any graph. For unit-weight graphs, this means $\lambda_n \leq 2 \max \text{degree}(v)$. The bound is tight for a singleedge graph.

To get lower bounds of $\lambda_2(H)$, we first establish $f(n)H \geq G$ for some G with known lower bounds on $\lambda_2(G)$. Usually $G = K_n$ because $\lambda_2(K_n) = n$. Then it follows that $\lambda_2(H) \ge \lambda_2(G)/f(n)$.

- 1. **Path Graph** P_n : Let $G_{i,j}$ denote a unit-weight graph consisting of one edge (i, j) and P_n be the path graph connecting 1 and n. Then $(n-1)P_n \geq G_{1,n}$. Proof follows from applying Cauchy-Schwartz for $\delta_i := x(i+1) - x(i)$. For weighted paths, we have $G_{1,n} \leq \left(\sum_{i=1}^{n-1} \frac{1}{w_i}\right) \sum_{i=1}^{n-1} w_i G_{i,i+1}$.
 - Applying path inequality, we have $K_n = \sum_{i < j} G_{i,j} \leq \sum_{i < j} (j 1)$ $i)P_{i,j} \leq \sum_{i < j} (j-i)P_n \leq n^3 P_n$, which implies $\lambda_2(P_n) \geq$ $\lambda_2(K_n)/n^3 = 1/n^2$.
- graph *G* to be the maximum length of the shortest paths between any two nodes. Let $G_{i,j}^s$ be the shortest path from *i* to *j*. Applying path inequality, we have $K_n = \sum_{i < j} G_{i,j} \le$ $\sum_{i < j} DG_{i,j}^s \leq \sum_{i < j} DG \leq n^2 DG$, which implies $\lambda_2(G) \geq \frac{1}{nD}$.
- 3. Complete Binary Tree T_n : Define G_e be the single-edge graph with edge e, and $T_{i,j}$ be the unique path between i and j. Applying the weighted path inequality, we have $K_n = \sum_{i < j} G_{i,j} \leq \sum_{i < j} \left(\left(\sum_{e \in T^{i,j}} \frac{1}{w(e)} \right) \left(\sum_{e \in T^{i,j}} w(e) G_e \right) \right) \leq$ $\left(\max_{i < j} \sum_{e \in T^{i,j}} \frac{1}{w(e)}\right) \left(\sum_{i < j} \sum_{e \in T^{i,j}} w(e) G_e\right)$. For e connecting level i and i + 1 for $i \in [d - 1]$, we set $w(e) = 2^i$. Then $\max_{i < j} \sum_{e \in T^{i,j}} \frac{1}{w(e)} \le 4$. Since the number of occurrence of e in $T^{i,j}$ for any i < j is upper bounded by $n^2 2^{-i}$, we have $\sum_{i \le i} \sum_{e \in T^{i,j}} w(e) G_e \le \sum_e w(e) n^2 2^{-i} G_e = \sum_e n^2 G_e = n^2 T_n$. Therefore, $K_n \leq 4n^2T_n$, which implies $\lambda_2(T_n) \geq \frac{1}{4n}$.

2 Conductance

Definitions:

1. **Conductance of a vertex subset**: Given $\emptyset \subset S \subset V$, the conductance $\phi(S) := \phi(S) = \frac{|E(S, V \setminus S)|}{\min\{\text{vol}(S), \text{vol}(V \setminus S)\}}$, where vol(S) := $\sum_{v \in S} \text{degree}(v)$. Define $\mathbf{1}_S$ to be the *n*-dimensional vector with only 1 for the vertices of S and 0 for the vertices of $V \setminus S$. Assuming vol $(S) \leq \text{vol}(V)/2$, thus $|E(V, V \setminus S)| =$ $\sum_{(u,v)\in E} (\mathbf{1}_S(u) - \mathbf{1}_S(v))^2 = \mathbf{1}_S^{\top} L \mathbf{1}_S$ and $vol(S) = \mathbf{1}_S^{\top} D \mathbf{1}_S$. Then **3** Random Walk

$$\phi(S) = \frac{\mathbf{1}_{S}^{\top} L \mathbf{1}_{S}}{\mathbf{1}_{S}^{\top} D \mathbf{1}_{S}}$$

- 2. Conductance of a graph: The conductance $\phi(G) :=$ $\min_{\emptyset \subset S \subset V} \phi(S) = \min_{\emptyset \subset S \subset V}$ $\phi(S)$.
- 3. ϕ -expander: For any $\phi \in (0,1]$, we call a graph G to be a ϕ -expander if $\phi(G) \ge \phi$.
- 4. ϕ -expander decomposition of quality q: A partition $\{X_i\}$ of the vertex set V is called a ϕ -expander decomposition of quality q if (1) each induced graph $G[X_i]$ is a ϕ -expander, and (2.i) #edges not contained in any $G[X_i]$ is at most $g \cdot \phi \cdot m$. The second condition is equivalent to (2.ii) The partition removes at most $q \cdot \phi \cdot m$ edges.
- **Normalized Laplacian**: We define the *normalized Lapla*cian to be $N := D^{-1/2}LD^{-1/2}$. N is still PSD and the first eigenbasis is $D^{1/2}$ 1. By Courant-Fischer theorem, $\lambda_2(N) =$ $\min_{x \perp D^{1/2} \mathbf{1}} \frac{x^\top N x}{x^\top x} = \min_{z \perp d} \frac{z^\top L z}{z^\top D z}$

2.1 Cheeger's Inequality

Notice that the $\lambda_2(N)$ has similar forms to $\phi(G)$. Cheeger's inequality aims to bound $\phi(G)$ by $\lambda_2(N)$.

Cheeger's Inequality: $\frac{\lambda_2(N)}{2} \le \phi(G) \le \sqrt{2\lambda_2(N)}$.

The lower bound is proved by restricting the minimum in $\lambda_2(N)$ to be $z_S = 1_S - \alpha 1$ for some α such that $z_S \perp d$. The upper bound is proved by constructing *S* for any $z \perp d$ such that $\frac{\mathbf{1}_{S}^{\top}L\mathbf{1}_{S}}{\mathbf{1}_{S}^{\top}D\mathbf{1}_{S}} \leq \sqrt{2\frac{z^{\top}Lz}{z^{\top}Dz}}$