Lecture 7 - Phasor

A beginning of AC circuits

AC usually refer to Sinusoidal signal

Outline

- Sinusoidal signals
- Complex numbers
- Phasor

Why Sinusoids?

- Numbers of natural phenomenon are sinusoidal in nature.
 - Motion of a pendulum, vibration of a string, ripples on ocean surface
- A very easy signal to generate and transmit
 - Dominant form of signal in communication/electric power industries
 - In the late 1800's there was a battle between proponents of DC and AC. AC won out due to its efficiency for long distance transmission.
- Lastly, they are very easy to handle mathematically.
 - Derivative and integral are also sinusoids.
- Through Fourier analysis, any practical periodic function can be represented as sum of sinusoids.

Representing a Square Wave as a Sum of Sinusoids

(b) Several of the sinusoidal components and the sum of the first five components

$$v_{\text{sq}}(t) = \frac{4A}{\pi} \sin(\omega_0 t) + \frac{4A}{3\pi} \sin(3\omega_0 t) + \frac{4A}{5\pi} \sin(5\omega_0 t) + \cdots$$
$$\omega_0 = 2\pi/T$$

The Sinusoidal Response

$$v_S = V_m \cos(\omega t + \phi), i(0^-) = 0.$$

Find $i(t), t \ge 0.$

$$L\frac{di}{dt} + Ri = V_m \cos(\omega t + \phi)$$

Ordinary differential equation

$$\frac{dx}{dt} + p(t)x = q(t) \iff x(t) = \frac{1}{u(t)} \left(\int u(t)q(t)dt + C \right) \quad u(t) = e^{\int p(t)dt}$$

$$i = \frac{-V_m}{\sqrt{R^2 + \omega^2 L^2}} \cos(\phi - \theta) e^{-(R/L)t} + \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}} \cos(\omega t + \phi - \theta)$$

Sinusoidal Steady-State Response

$$i = \frac{-V_m}{\sqrt{R^2 + \omega^2 L^2}} \cos(\phi - \theta) e^{-(R/L)t} + \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}} \cos(\omega t + \phi - \theta)$$

Transient response

Steady-state response

- Steady-state solution is sinusoidal
- Response frequency = source frequency
- Magnitude/phase of response differs from that of source

Sinusoidal sources create too much algebra!!!

Types of Circuit Excitation

Steady-State Excitation (DC Steady-State)

Sinusoidal (Single-Frequency) Excitation →AC Steady-State

Transient Excitation

[Source: Berkeley]

AC Analysis of Linear Circuits

Objective: To determine the steady state response of a linear circuit to ac signals.

$$v_{s}(t) = V_{0}\cos(\omega t + \phi)$$

$$angular\ frequency\ \omega$$

$$\phi \text{ is called its } phase\ angle$$

$$v_{s}(t) + \sum_{s=0}^{R_{1}} C$$

$$v_{s}(t) + \sum_{s=0}^{R_{1}} C$$

$$v_{s}(t) + \sum_{s=0}^{R_{1}} C$$

- Sinusoidal input is common in electronic circuits.
- Any time-varying periodic signal can be represented by a series of sinusoids (Fourier Series).
- Time-domain solution method can be cumbersome.

The Magic of Sinusoids

- When a linear, time invariant (LTI) circuit is excited by a sinusoid, it's output is a sinusoid at the *same* frequency.
 - Only the magnitude and phase of the output differ from the input.
- In order to find a steady-state voltage or current, all we need to know is its <u>magnitude</u> and its <u>phase</u> relative to the source.

Sinusoidal Signal (Current or Voltage)

$$v(t) = V_m \cos(\omega t + \theta)$$
 — phase

 V_m is the **peak value**

 ω is the angular **frequency** in radians per second

 θ is the phase angle

T is the **period**

$$\sin(\omega t \pm 180^{\circ}) = -\sin \omega t$$

$$\cos(\omega t \pm 180^{\circ}) = -\cos \omega t$$

$$\sin(\omega t \pm 90^{\circ}) = \pm \cos \omega t$$

$$\cos(\omega t \pm 90^{\circ}) = \mp \sin \omega t$$

AC usually refer to Sinusoidal current

11 Lecture 7

Sinusoidal Signals

$$v(t) = V_{\rm m} \cos(\omega t + \phi)$$

Useful relations

$$\sin x = \pm \cos(x \mp 90^{\circ})$$

$$\cos x = \pm \sin(x \pm 90^{\circ})$$

$$\sin x = -\sin(x \pm 180^{\circ})$$

$$\cos x = -\cos(x \pm 180^{\circ})$$

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$
$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$2 \sin x \sin y = \cos(x - y) - \cos(x + y)$$

$$2 \sin x \cos y = \sin(x + y) + \sin(x - y)$$

$$2 \cos x \cos y = \cos(x + y) + \cos(x - y)$$

Phase Lead/Lag

$$V_{\rm m}\cos\frac{2\pi t}{T}$$
 $V_{\rm m}\cos\left(\frac{2\pi t}{T}-\frac{\pi}{4}\right)$ $V_{\rm m}\cos\left(\frac{2\pi t}{T}+\frac{\pi}{4}\right)$

[Source: Berkeley]

Root-Mean-Square (RMS) Value

• The RMS value of $v(t) = V_m \cos(\omega t + \phi)$ is

$$V_{\text{rms}} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} v^2(t) dt$$

$$= \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} V_m^2 \cdot \cos^2(\omega t + \phi) dt$$

$$= \frac{V_m}{\sqrt{2}}$$

Exercise

• Find the rms value of the periodic triangular current shown below. Express your answer in terms of the peak current I_p .

Outline

- Sinusoidal signals
- Complex numbers
- Phasor

Lecture 7 17

Complex Numbers

- A powerful method for representing sinusoids is the phasor.
- A complex number z can be represented in rectangular form as:

$$z = x + jy$$
 $\operatorname{Re}(z) = x$
 $\operatorname{Im}(z) = y$

 It can also be written in polar or exponential form as:

$$z = r \angle \phi = re^{j\phi}$$

-2j

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Euler's Formula

Euler's Identities $e^{j\pi} + 1 = 0$

$$e^{j\pi} + 1 = 0$$

$$e^{j\varphi} = \cos\varphi + j\sin\varphi$$

$$\cos \varphi = \frac{e^{j\varphi} + e^{-j\varphi}}{2}$$

$$\sin \varphi = \frac{e^{j\varphi} - e^{-j\varphi}}{2}$$

$$\left|e^{j\varphi}\right| = \sqrt{\cos^2\varphi + \sin^2\varphi} = 1$$

Exponential Form of a complex number Z

$$\mathbf{Z} = |\mathbf{Z}|e^{j\varphi} = ze^{j\varphi} = z\angle\varphi$$

Arithmetic With Complex Numbers

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Addition

$$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2) \quad z_1 - z_2 = (x_1 - x_2) + j(y_1 - y_2) \quad z_1 z_2 = r_1 r_2 \angle (\phi_1 + \phi_2)$$

$$z_1 - z_2 = (x_1 - x_2) + j(y_1 - y_2)$$

Multiplication

$$z_1 z_2 = r_1 r_2 \angle \left(\phi_1 + \phi_2 \right)$$

Division

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \angle \left(\phi_1 - \phi_2\right)$$

Reciprocal

$$\frac{1}{z} = \frac{1}{r} \angle \left(-\phi\right)$$

Square Root

$$\sqrt{z} = \sqrt{r} \angle (\phi/2)$$

Complex Conjugate

$$z^* = x - jy = r \angle - \phi = re^{-j\phi}$$

Example

Evaluate these complex numbers

(a)
$$(40/50^{\circ} + 20/-30^{\circ})^{1/2}$$

(b)
$$\frac{10/-30^{\circ} + (3 - j4)}{(2 + j4)(3 - j5)^{*}}$$

Exercise

Evaluate the following complex numbers

(a)
$$[(5 + j2)(-1 + j4) - 5/60^{\circ}]$$
*

(b)
$$\frac{10 + j5 + 3/40^{\circ}}{-3 + j4} + 10/30^{\circ} + j5$$

[Source: Berkeley]

Relations for Complex Numbers

Euler's Identity:
$$e^{j\theta} = \cos\theta + j \sin\theta$$

 $\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$ $\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$
 $\mathbf{z} = x + jy = |\mathbf{z}|e^{j\theta}$ $\mathbf{z}^* = x - jy = |\mathbf{z}|e^{-j\theta}$
 $x = \mathfrak{Re}(\mathbf{z}) = |\mathbf{z}|\cos\theta$ $|\mathbf{z}| = \sqrt[4]{x^2} = \sqrt[4]{x^2 + y^2}$
 $y = \mathfrak{Im}(\mathbf{z}) = |\mathbf{z}|\sin\theta$ $\theta = \tan^{-1}(y/x)$
 $\mathbf{z}^n = |\mathbf{z}|^n e^{jn\theta}$ $\mathbf{z}^{1/2} = \pm |\mathbf{z}|^{1/2} e^{j\theta/2}$
 $\mathbf{z}_1 = \mathbf{z}_1 + jy_1$ $\mathbf{z}_2 = \mathbf{z}_2 + jy_2$
 $\mathbf{z}_1 = \mathbf{z}_2 \text{ iff } x_1 = x_2 \text{ and } y_1 = y_2$ $\mathbf{z}_1 + \mathbf{z}_2 = (x_1 + x_2) + j(y_1 + y_2)$
 $\mathbf{z}_1 \mathbf{z}_2 = |\mathbf{z}_1| |\mathbf{z}_2| e^{j(\theta_1 + \theta_2)}$ $\frac{\mathbf{z}_1}{\mathbf{z}_2} = \frac{|\mathbf{z}_1|}{|\mathbf{z}_2|} e^{j(\theta_1 - \theta_2)}$
 $-1 = e^{j\pi} = e^{-j\pi} = 1 \angle \pm 180^\circ$
 $j = e^{j\pi/2} = 1 \angle 90^\circ$ $-j = e^{-j\pi/2} = 1 \angle -90^\circ$
 $\sqrt{j} = \pm e^{j\pi/4} = \pm \frac{(1 + j)}{\sqrt{2}}$ $\sqrt{-j} = \pm e^{-j\pi/4} = \pm \frac{(1 - j)}{\sqrt{2}}$

Outline

- Sinusoidal signals
- Complex numbers
- Phasor

Lecture 7 24

Phasor

 The idea of phasor representation is based on Euler's identity:

$$e^{\pm j\phi} = \cos\phi \pm j\sin\phi$$

 From this we can represent a sinusoid as the <u>real component</u> of a vector in the complex plane.

$$\cos \phi = \operatorname{Re}(e^{j\phi})$$

$$\sin \phi = \operatorname{Im}(e^{j\phi})$$

Phasor: Rotating Complex Vector

$$v(t) = V \cos(\omega t + \phi) = \text{Re}\left\{Ve^{j\phi}e^{j\omega t}\right\} = \text{Re}\left(\mathbf{V}e^{j\omega t}\right) \quad \mathbf{V} = Ve^{j\phi}$$

The head start angle is ϕ .

Phasors

$$v(t) = V_m \cos(\omega t + \phi)$$
 \Leftrightarrow $\mathbf{V} = V_m / \phi$ (Phasor-domain representation)

Phasors are typically represented at t=0.

Lecture 7 27

Example

Transform these sinusoids to phasors

(a)
$$i = 6 \cos(50t - 40^\circ)$$
 A

(b)
$$v = -4 \sin(30t + 50^\circ) \text{ V}$$

Example

Find the sinusoids represented by these phasors

$$\mathbf{I} = -3 + j4 \,\mathbf{A}$$

$$\mathbf{V} = j8e^{-j20^{\circ}}\,\mathbf{V}$$

$$V = -25/40^{\circ} V$$

$$I = j(12 - j5) A$$

Sinusoid-Phasor Transformation

$$v(t) = V_m \cos(\omega t + \phi)$$
 \Leftrightarrow $\mathbf{V} = V_m / \phi$
(Time-domain representation) (Phasor-domain representation)

Applying a derivative to a phasor yields:

$$\frac{dv}{dt} \Leftrightarrow j\omega V$$
(Time domain) (Phasor domain)

Applying an integral to a phasor yields:

$$\int v dt \Leftrightarrow \frac{V}{j\omega}$$
(Time domain) (Phasor domain)

Time Domain - Phasor Domain Transformation

x(t)		X
$A\cos\omega t$	\leftrightarrow	A
$A\cos(\omega t + \phi)$	\leftrightarrow	$Ae^{j\phi}$
$-A\cos(\omega t + \phi)$	\leftrightarrow	$Ae^{j(\phi\pm\pi)}$
$A \sin \omega t$	\leftrightarrow	$Ae^{-j\pi/2} = -jA$
$A\sin(\omega t + \phi)$	\leftrightarrow	$Ae^{j(\phi-\pi/2)}$
$-A\sin(\omega t + \phi)$	\leftrightarrow	$Ae^{j(\phi+\pi/2)}$
$\frac{d}{dt}(x(t))$	\leftrightarrow	$j\omega\mathbf{X}$
$\frac{d}{dt}[A\cos(\omega t + \phi)]$	\leftrightarrow	$j\omega Ae^{j\phi}$
$\int x(t) dt$	\leftrightarrow	$\frac{1}{j\omega}\mathbf{X}$
$\int A\cos(\omega t + \phi) dt$	\leftrightarrow	$\frac{1}{j\omega} A e^{j\phi}$

It is much easier to deal with exponentials in the phasor domain than sinusoidal relations in the time domain.

 You just need to track magnitude/phase, knowing that everything is at frequency ω.

Example

• Use the phasor approach, determine the current i(t) in the circuit described by the integrodifferential equation

$$4i + 8 \int i \, dt - 3 \frac{di}{dt} = 50 \cos(2t + 75^\circ)$$

Phasor Relationships for Resistors

 For the resistor, the voltage and current are related via Ohm's law. As such, the voltage and current are in phase with each other.

$$i = I_m \cos(\omega t + \phi)$$
 $\mathbf{I} = I_m \angle \phi$
 $v = RI_m \cos(\omega t + \phi)$ $\mathbf{V} = RI_m \angle \phi$

$$V = RI$$

Phasor Relationships for Inductors

$$i = I_m \cos(\omega t + \phi)$$
 $\mathbf{I} = I_m \angle \phi$
 $v = L \frac{di}{dt} = -\omega L I_m \sin(\omega t + \phi)$
 $= \omega L I_m \cos(\omega t + \phi + 90^\circ)$

$$\mathbf{V} = \omega L I_m \angle \phi + 90^\circ = \omega L I_m e^{j(\phi + 90^\circ)} = \omega L e^{j90^\circ} \cdot I_m e^{j\phi} = j\omega L \cdot \mathbf{I}$$

$$\mathbf{V} = j\omega L\mathbf{I}$$

 The voltage leads the current by 90° (phase shift = 90°)

Phasor Relationships for Capacitors

$$v = V_m \cos(\omega t + \phi) \quad \mathbf{V} = V_m \angle \phi$$

$$i = C \frac{dv}{dt} = -\omega C V_m \sin(\omega t + \phi)$$

$$= \omega C V_m \cos(\omega t + \phi + 90^\circ)$$

$$\mathbf{I} = \omega C V_m \angle \phi + 90^\circ = \cdots = j\omega C \cdot \mathbf{V}$$

The voltage lags the current by 90°.

Impedance

The voltage-current relations for R, L and C elements are

$$\mathbf{V} = R\mathbf{I} \qquad \mathbf{V} = j\omega L\mathbf{I} \qquad \mathbf{V} = \frac{\mathbf{I}}{j\omega C}$$

$$\frac{\mathbf{V}}{\mathbf{I}} = R \qquad \frac{\mathbf{V}}{\mathbf{I}} = j\omega L \qquad \frac{\mathbf{V}}{\mathbf{I}} = \frac{1}{j\omega C}$$

 Phasors allow us to express the relationship between current and voltage using a formula like Ohm's law:

$$V = I Z$$
 or $Z = \frac{V}{I}$

- **Z** is called impedance, measured in ohms.
 - Impedance is not a phasor! But it is (often) a complex number.
 - Impedance depends on the frequency ω.

Lecture 7

Admittance

Admittance is simply the inverse of impedance, unit: Simens.

$$\mathbf{Y} = \frac{\mathbf{I}}{\mathbf{V}}$$

Element	Impedance	Admittance
R	$\mathbf{Z} = R$	$\mathbf{Y} = \frac{1}{R}$
L	$\mathbf{Z} = j\omega L$	$\mathbf{Y} = \frac{1}{j\omega L}$
C	$\mathbf{Z} = \frac{1}{j\omega C}$	$\mathbf{Y}=j\omega C$

Summary of R, L, C

[Source: Berkeley]

Property	R	L	C
v– i	v = Ri	$v = L \frac{di}{dt}$	$i = C \frac{dv}{dt}$
V–I	V = RI	$\mathbf{V} = j\omega L\mathbf{I}$	$\mathbf{V} = \frac{\mathbf{I}}{j\omega C}$
Z	R	$j\omega L$	$\frac{1}{j\omega C}$
dc equivalent	R	Short circuit	Open circuit
High-frequency equivalent	R	Open circuit	Short circuit
Frequency response	$R \xrightarrow{ \mathbf{Z}_{R} } \omega$	$ \mathbf{Z}_{L} $ ωL	$ \mathbf{Z}_{\mathrm{C}} $ $1/\omega C$ ω