PREDICTING BROOKLYN APARTMENT RENTAL PRICES

By: Danielo Bennett

INTRODUCTION

• Purpose: Predicting rent can be useful for apartment building owners to know the market value of vacant units. This will better help them find the proper price of a listing in an inflated real estate market.

METHODOLOGY

9 trulia®

DATA SET

Data Set Parameters: ~ I 200 Brooklyn apartment listings, 54 features

Some features such as:

- "Normal" features:
 - # of bathrooms & bedrooms
 - Number of amenities (doorman, fitness center, etc)
 Neighborhood (categorical)
- "Interesting" Features: Distance to **Starbucks**

 - Elevation
 - Tree Coverage %

DISTRIBUTION OF RENT VALUES

The majority of the rental prices range from \$1800-\$3200 a month.

CORRELATION MATRIX

Major Hypothesis:

- Bedrooms, Number of Amenities, & Starbucks distance seem to have the most pull
- Low overall multicollinearity in feature set

MODEL SELECTION PROCESS

Baseline

Model:

Test R^2 = .62

Suspected overfitting

Model

Comparison:

-Linear

Regression

-Ridge

Regression

-Lasso

Regression

Final Model

Final Model:

Lasso Regression

Test R^2 = .607

MAIN TAKEAWAYS

Top Features:

- Number of Bedrooms is the most influential feature
- Starbucks Distance has the most influence with a negative coefficient
- Certain neighborhoods have a premier due to popularity/closeness to Manhattan

Model is Prone to over predicting

• MAE: \$325.34

Mean of Rent: \$2508.89

NEXT STEPS

- -Add more **observations** to create a model that better generalize
- -Extract Additional Features:
 - -Distance to nearest train station
 - -Include sqft of apartment
 - -Replace number of amenities with individual amenities
- A more evenly distribution of listings across neighborhood

THANK YOU! ANY QUESTIONS

APPENDIX A: TABLE OF MODEL SCORES

Model Name	Model Parameters	Additional notes	Training R^2	Test R^2	Valuation Method
Set 1					
Baseline v0 Incomplete	All columns excluding Neighborhood		0.5398976436	0.4635095642	80/20
Baseline v1	Added Neighborhood Dummies		0.772807155	0.6202703273	80/20
Set 2				CV mean score	
Linear Regression	unscaled			0.7304618515	Cross Val= 5 folds
Ridge Regression	scaled, alpha = 1			0.7324368651	Cross Val= 5 folds
Lasso Regression	scaled, alpha = 1			0.7347593317	Cross Val= 5 folds
Ridge Regression	scaled, alpha = (best alpha)	alpha = 7.84282	206133768	0.7352731501	Cross Val= 5 folds
Lasso Regression	scaled, alpha = (best alpha)	alpha = 4.29700	470432083	0.73529964	Cross Val= 5 folds
Set 3				CV mean score	
Ridge Regression w/ Polynomial Features (degree=2)	scaled, alpha=1, polynomial			0.7324368651	Cross Val= 5 folds
Lasso Regression w/ Polynomial Features (degree=2)	scaled, alpha=1, polynomial			0.7347593317	Cross Val= 5 folds
Ridge Regression	scaled, alpha = (best alpha), polynomial			0.7352731501	Cross Val= 5 folds
Lasso Regression	scaled, alpha = (best alpha), polynomial			0.73529964	Cross Val= 5 folds
Final			Training R^2	Test R^2	
Lasso Regression	scaled, alpha = (best alpha)		0.7660645509	0.6070599171	80/20

APPENDIX B: FEATURE COEFFICIENTS

Bathroom: 30.05 Bedrooms: 462.44 Elevation: 67.30 Landmarks: -0.00 Pets Allowed? : 2.89 Starbucks dist: -149.58 Tree Cover Pct: 31.43 Amenities num : 170.35 Bay Ridge: -40.61 Bedford Stuyvesant: 77.86 Bensonhurst: -54.64 Bergen Beach: -5.77 Boerum Hill: 185.91 Borough Park: -0.79 Brighton Beach: -12.57 Brooklyn Heights: 116.89 Brownsville: 18.47 Bushwick: 0.00 Canarsie: 0.00