

Skript zur Vorlesung

Algebraische Geometrie I

JProf. Dr. Gabriela Weitze-Schmithüsen

Wintersemester 2010/2011

Jonathan Zachhuber, Jens Babutzka und Michael Fütterer Karlsruher Institut für Technologie

Inhaltsverzeichnis

ı	Die	Kategorie der affinen Varietäten	7			
	1	Affine Varietäten und Verschwindungsideale	7			
	2	Zariski-Topologie	9			
	3	Der Hilbertsche Nullstellensatz	13			
	4	Morphismen zwischen affinen Varietäten	16			
	5	Die Garbe der regulären Funktionen	20			
	6	Rationale Abbildungen	26			
	7	Spektrum eines Rings	30			
ii	Proj	Projektive Varietäten				
	1	Der Projektive Raum $\mathbb{P}^n(k)$	39			
	2	Projektive Varietäten	40			
	3	Quasi-projektive Varietäten	48			
	4	Reguläre Funktionen	49			
	5	Morphismen	53			
	6	Graßmann-Varietäten	59			
iii	Geo	metrische Eigenschaften	63			
	1	Lokale Ringe zu Punkten	63			
	2	Dimension von Varietäten	66			
	3	Der Tangentialraum	69			
	4	Der singuläre Ort einer Varietät	76			
	5	Reguläre Ringe und Krullscher Höhensatz	79			
iv	Nicht-singuläre Kurven					
	1	Divisoren	83			
	2	Verzweigungsindizes	86			
	3	Das Geschlecht einer Kurve	92			
	4	Der Satz von Riemann-Roch	96			
v	List	e der Sätze	99			
St	ichw,	ortverzeichnis	101			

Motivation

Ziel: Untersuche Nullstellenmengen von Polynomen: Für eine Menge von Polynomen

$$p_1,...,p_r \in k[X_1,...,X_n]$$

über einem Körper k möchte man die Menge der Nullstellen

$$\{x = (x_1,...,x_n) \mid p_i(x) = 0 \text{ für alle } i\}$$

analysieren.

BEISPIEL: (a) Betrachte $ax^2 + by^2 = 1 \iff ax^2 + by^2 - 1 = 0$ über $k = \mathbb{R}$. Das liefert eine Ellipse, für a = b = 1 einen Kreis.

- (b) Betrachte $x^2 + y^2 = z^2$.
- (c) Betrachte (b) mit x = 1: Dann ist $1 + y^2 = z^2 \iff 1 = z^2 y^2$, also eine Hyperbel.
- (d) Bei linearen Gleichungen sehen wir mit Hilfe der linearen Algebra, das wir affine Unterräume erhalten.
- (e) Die Lösungsmengen sind abhängig vom Körper, z.B. sehen wir, dass das Polynom $X^3 X$ für $k = \mathbb{Z}/3\mathbb{Z}$ als Lösungsmenge ganz k hat.

Der Inhalt der Vorlesung wurde in großen Teilen von der Algebraischen-Geometrie-Vorlesung von Prof. Dr. Frank Herrlich inspiriert.