Update on the Sectoral DSGE Model

Marc Hinterschweiger, Kunal Khairnar, Tolga Ozden, Tom Stratton

October 30, 2019

Overview

- Model overview
- ► Estimation highlights
- ► Policy analysis & Counterfactuals
- ▶ Interest rate pass-through & Prudential policy

Model Overview

Estimation-I

- ▶ Quarterly data for the U.K. economy over 1998Q1-2016Q4.
- ▶ 10 observables in:
 - ► Interest rates (Official bank rate, mortgage & corporate rates)
 - ► Growth rates (Real output, investment, consumption and wages)
 - Credit growth rates (Mortgage & corporate)
 - ► House price growth

Estimation-II

- ▶ Model: $X_t = f(E_t X_{t+1}, X_{t-1}, \epsilon_t)$
- Linear approximation around steady-state: $X_t = TX_{t-1} + R\epsilon_t$
- Problem: steady-state is not available in closed-form: has to be numerically approximated for each parameter draw.
- Solution: the vast majority of parameters affecting the steady-state are calibrated / fixed using conventional values.
- Prudential regulation parameters fixed at their historical averages.
- ▶ The remaining parameters estimated using a Bayesian likelihood approach.

Historical Variance Decompositions: Output Growth

▶ Each variable over the sample is a combination of shocks

Historical Variance Decompositions: Consumption Growth

▶ Each variable over the sample is a combination of shocks

Historical Variance Decomposition: Household Lending Growth

▶ Each variable over the sample is a combination of shocks

Estimated Shocks

- ▶ What does it take in the model to generate the observed data?
 - Sequence of shocks over the estimation sample.

Some Key Unobservables

Macroprudential Policy

- Available tools in the model:
 - ▶ Minimum and sectoral capital requirements (Benchmark: 11 %)
 - LTV limit on businesses and households (Benchmark: 86 %)
 - CCyB (Benchmark: 0)
- Steady-state welfare analysis
- ► Shock propagation and counterfactuals
- ▶ Prudential policy & Imperfect interest-rate pass through

Minimum Capital Requirements and Steady-state

Minimum Capital Requirements and Volatility

Optimal Policies

Ad-hoc objective function: $E[W_t] - \omega \sqrt{Var[W_t]}$

Table: Maximizing over prudential policy parameters, one at a time.

	ω	0	0.1
Parameter			
LTV		89.4 % (0.014 %)	86.6 % (0.001 %)
SCR-Mortgage		20.7 % (7.47 %)	17.6 % (4.26 %)
SCR-Corporate		15.5 % (3.33 %)	16.7 % (3.22 %)
CAR		15.5 % (5.11 %)	14.5 % (3.82 %)
ССуВ		0 % (0 %)	Max. attainable

Table: Optimal joint SCRs and LTV

	ω	0	0.1
Parameter			
LTV		91.25 %	94.06 %
SCR-Mortgage		21.25 %	15.88 %
SCR-Corporate		5(Min. attainable) %	12.50 %
Welfare Improvement		8.01 %	4.8 %

Counterfactual I

Figure: Counterfactual I: using optimized values with 0.1 weight on volatility. $\phi_H = 15.8\%, \phi_F = 12.5\%, \epsilon_H = 94\%.$

Changes in the Level and Volatility

Variable	% Change in Level	% Change in Volatility
Corporate Credit	0.039	0.041
Mortgage Credit	0.024	0.147
Output	0.019	-0.354 0.0437
Household Welfare	0.175	0.0437

Counterfactual II: Phasing-in

Figure: Same counterfactual phased-in over a 5-year period over 2001-2006 in equal increments.

Changes in the Level and Volatility

Table: Policies introduced at once at the beginning of the sample.

Variable	% Change in Level	% Change in Volatility
Corporate Credit	0.039	0.041
Mortgage Credit	0.024	0.147
Output	0.019	-0.354 0.0437
Household Welfare	0.175	0.0437

Table: Policies phased-in over 2001-2006.

Variable	% Change in Level	% Change in Volatility
Corporate Credit	0.024	-0.001
Mortgage Credit	0.006	-0.007 -0.356
Output	0.014	-0.356
Household Welfare	0.12	0.096

Table: Policies phased-in over 2001-2006, without interest rate stickiness.

Variable	% Change in Level	% Change in Volatility	_	
Corporate Credit	0.041	0.02	-	
Mortgage Credit	0.029	0.08		
Output	0.02	-0.28		
Household Welfare	0.12	0.098	←□→ ←□→ ←□→ □	₹ 99€

Introducing CCyB

Table: Does CCyB improve things when optimal SCRs are in place?

Variable	% Change in Level	% Change in Volatility
Optimal SCR+LTV		
Corporate Credit	0.039	0.041
Mortgage Credit	0.024	0.147
Output	0.019	-0.354
Household Welfare	0.175	0.0437

Table: Does CcyB improve things when SCRs are at their baseline value?

Variable	% Change in Level	% Change in Volatility
Baseline SCR+LTV		
Corporate Credit	0.007	0.042
Mortgage Credit	0.003	0.029
Output	0.0019	0.37
Household Welfare	0.003	-0.002
No Interest Stickiness		
Corporate Credit	0.016	0.072
Mortgage Credit	0.008	0.108
Output	0.005	0.675
Household Welfare	0.013	-0.009

Figure: TFP Shock

Figure: Bank Capital Shock

Interest Rate Pass-through & Prudential Policy Interactions-I

Figure: Positive housing supply shock. Cumulative difference calculated as the

Interest Rate Pass-through & Prudential Policy Interactions-II

