CAT811/812

4 脚微控制器电源监控电路

广州周立功单片机发展有限公司

地址:广州市天河北路 689 号光大银行大厦 12 楼 F4

网址: http://www.zlgmcu.com

技术支持

如果您对文档有所疑问,您可以在办公时间(星期一至星期五上午8:30~11:50;下午 1:30~5:30; 星期六上午 8:30~11:50) 拨打技术支持电话或 E-mail 联系。

XX 址: www.zlgmcu.com

联系电话: +86 (020) 22644358 22644359 22644360 22644361

E-mail: zlgmcu.support@zlgmcu.com

销售与服务网络

广州周立功单片机发展有限公司

地址:广州市天河北路 689 号光大银行大厦 12 楼 F4 邮编: 510630 电话: (020)38730972 38730976 38730916 38730917 38730977

传真: (020)38730925

网址: http://www.zlgmcu.com

广州专卖店

地址:广州市天河区新赛格电子城 203-204 室 地址: 南京市珠江路 280 号珠江大厦 2006 室 电话: (020)87578634 87569917 电话: (025)83613221 83613271 83603500

南京周立功

重庆周立功

成都周立功

子桥立交西北角)

传真: (020)87578842 传真: (025)83613271

北京周立功

地址:北京市海淀区知春路 113 号银网中心 A 座 地址:重庆市石桥铺科园一路二号大西洋国际大厦

1207-1208 室 (中发电子市场斜对面) (赛格电子市场) 1611 室

电话: (010)62536178 62536179 82628073 电话: (023)68796438 68796439

传真: (010)82614433 传真: (023)68796439

杭州周立功

地址: 杭州市登云路 428 号浙江时代电子市场 205 号 地址: 成都市一环路南二段 1 号数码同人港 401 室(磨

电话: (0571)88009205 88009932 88009933

传真: (0571)88009204 电话: (028) 85439836 85437446

传真: (028) 85437896

深圳周立功

地址: 深圳市深南中路 2070 号电子科技大厦 A 座 地址:武汉市洪山区广埠屯珞瑜路 158号 12128 室(华

24 楼 2403 室

电话: (0755)83781788 (5线)

传真: (0755)83793285

武汉周立功

中电脑数码市场)

电话: (027)87168497 87168297 87168397

传真: (027)87163755

上海周立功

地址: 上海市北京东路 668 号科技京城东座 7E 室

电话: (021)53083452 53083453 53083496

传真: (021)53083491

Date: 2008/01/26

西安办事处

地址: 西安市长安北路 54 号太平洋大厦 1201 室 电话: (029)87881296 83063000 87881295

传真: (029)87880865

目录

1.	特性	1
2.	应用	1
3.	描述	1
4.	阈值后缀选择器	2
5.	管脚配置	2
6.	订购信息	2
7.	器件表面标识符	3
8.	管脚描述	3
	绝对最大额定值*	
	. 电气特性	
11.	. 典型工作特性	6
12	. 详述	6
	12.1 复位时序	6
	12.2 Vcc 瞬态响应	
	12.3 Vcc 低于 1.0V 时的有效复位	
	12.4 双向复位管脚的连接	
	卦 港台自	

Date: 2008/01/26

1. 特性

- 对以下电源进行精密监控:
 - +5.0V (+/-5%, +/-10%, +/-20%),
 - +3.3V (+/-5%, +/-10%),
 - +3.0V (+/- 10%) 和
 - +2.5V (+/- 5%)
- 提供2种输出配置:
 - -CAT811: 低有效复位
 - -CAT812: 高有效复位
- 手动复位输入
- 在工业级温度范围的应用中可直接代替 MAX811 和 MAX812
- Vcc 低至 1.0V 时复位有效
- 6uA 的电源电流
- 抗电源的瞬态干扰
- 紧凑的 4 脚 SOT143 封装
- 工业级温度范围: -40℃~+85℃

2. 应用

- 计算机
- 服务器
- 手提电脑
- 线调制解调器(Cable modem)
- 无线通信
- 嵌入式控制系统
- 白色家电
- 功率计
- 智能仪器
- PDA 和手持式设备

3. 描述

CAT811 和 CAT812 是微控制器监控电路,用来监控数字系统的电源。在工业级温度范围的应用中可直接代替 MAX811 和 MAX812。CAT811 和 CAT812 都含有手动复位输入管脚。

CAT811 和 CAT812 产生一个复位信号,这个信号在电源电压低于预置的阈值时和电源

电压上升到该阈值后的 140 ms 内有效。由于 Catalyst 半导体运用了底层浮动闸(floating gate)技术 AE^{2TM} ,因此器件可以提供任何特定的复位阈值。7 个工业标准的阈值可支持+5.0V、+3.3V、+3.0V 和+2.5V 的系统。

CAT811 的 RESET 是推挽输出(低有效), CAT812 的 RESET 也是推挽输出(高有效)。 电源的快速瞬态变化可忽略,当 Vcc 低至 1.0V 时输出可保证仍处于正确状态。

CAT811/812 可工作在整个工业级温度范围内 (-40° \sim +85°С), 包含 4 脚 SOT143 的 封装形式。

4. 阈值后缀选择器

指定阈值电压	阈值后缀名称
4.63V	L
4.38V	M
4.00V	J
3.08V	T
2.93V	S
2.63V	R
2.32V	Z

5. 管脚配置

6. 订购信息

Date: 2008/01/26

订购器件型号	RESET 极性	封装	器件/卷
CAT811_EUS-T	推挽 RESET	4 脚 SOT143	3k
CAT811_EUS-T10	推挽 RESET	3 脚 SOT143	10k
CAT811_TBI-T	推挽 RESET	4 脚 SOT143 环保封装	3k
CAT811_TBI-T10	推挽 RESET	4 脚 SOT143 环保封装	10k
CAT812_EUS-T	推挽 RESET	4 脚 SOT143	3k
CAT812_EUS-T10	推挽 RESET	4 脚 SOT143	10k
CAT812_TBI-T	推挽 RESET	4 脚 SOT143 环保封装	3k
CAT812_TBI-T10	推挽 RESET	4 脚 SOT143 环保封装	10k

在器件型号的空白处插入后缀(L, M, J, T, S, R 或 Z)。例如:CAT811LTBI-T 的阈值为 4.63V,包含无铅 SOT143 封装。

7. 器件表面标识符

	SOT143	SOT143 环保封装
CAT811L	AMYM	DHYM
CAT811M	ANYM	DJYM
CAT811J	AZYM	CKYM
CAT811T	APYM	DLYM
CAT811S	AQYM	DMYM
CAT811R	ARYM	DNYM
CAT811Z	AYYM	CPYM
CAT812L	ASYM	DRYM
CAT812M	ATYM	DTYM
CAT812J	AUYM	DUYM
CAT812T	AVYM	DVYM
CAT812S	AWYM	DWYM
CAT812R	AXYM	DXYM
CAT812Z	CIYM	CYYM

YM 代表年和月。

8. 管脚描述

管服	管脚号		描述			
CAT811	CAT812	名称	畑处			
1	1	GND	地。			
2	1	RESET	复位低有效。RESET 在 Vcc 降到低于复位阈值时有效,并在 Vcc 上升到大于复位阈值后的至少 140ms 内仍保持低电平。			
_	2	RESET	复位高有效。RESET 在 Vcc 降低到低于复位阈值时有效,并在 Vcc 上升到大于复位阈值后的至少 140ms 内仍保持高电平。			
3	3	MR	手动复位输入。MR 为低电平时复位管脚有效。只要 MR 为低电平复位管脚就有效,并且,复位管脚的状态将保持到 MR 返回高电平后的 140ms。该低电平有效的输入包含一个内部 20kΩ的上拉电阻。MR 不使用时悬空,可由 TTL 或 CMOS 逻辑驱动,也可通过一个开关短接到地。			
4	4	Vcc	监控的电源电压。			

9. 绝对最大额定值*

Date: 2008/01/26

所有管脚的	为对地电压	-0.3 \sim +6.0V
输入电流,	Vcc	20mA
输出电流,	RESET, RESET	20mA
上升速度,	Vcc	100V/us

持续功耗

大于 70℃时功率以 4mW/℃下降(SOT143)	320mW
工作温度范围	
存储温度范围	65°C∼+105°C
管脚焊接温度(10s)	300℃
*注释	

超出"绝对最大额定值"列出的值的条件下工作会造成器件的永久损坏。以上列出的是器件正常工作的额定值,并未涉及器件在这些条件或超出这些条件下的功能操作。器件不能长时间工作在绝对最大额定值条件下,否则会影响其可靠性。

10. 电气特性

Date: 2008/01/26

Vcc=正常范围, T_A =−40 $^{\circ}$ C $^{\circ}$ +85 $^{\circ}$ C,除非特别说明。典型值在 T_A =+25 $^{\circ}$ C和 Vcc=5V (L/M/J 版本)、Vcc=3.3V (T/S 版本)、Vcc=3V (R 版本)、和 Vcc=2.5V (Z 版本)得到。

参数	符号		条件	最小	典型	最大	单位
Vcc 范围		$T_A=0^{\circ}C\sim +70^{\circ}C$		1.0		5.5	V
		$T_A = -$	40°C∼+85°C	1.2		5.5	
电源电流	Icc	T_A = -40 °C \sim	Vcc<5.5V, J/L/M		8	20	uA
		+85℃	Vcc<3.6V, R/S/T/Z		6	15	
复位阈值电压	V_{TH}	L阈值	T _A =+25°C	4.56	4.63	4.70	V
			$T_{A} = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}$	4.50		4.75	
		M 阈值	T _A =+25°C	4.31	4.38	4.45	
			$T_{A} = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}$	4.25		4.50	
		J阈值	T _A =+25°C	3.93	4.00	4.06	
			$T_{A} = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}$	3.89		4.10	
		T阈值	T _A =+25°C	3.04	3.08	3.11	
			$T_{A} = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}$	3.00		3.15	
		S阈值	T _A =+25°C	2.89	2.93	2.96	
			$T_{A} = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}$	2.85		3.00	
		R 阈值	T _A =+25°C	2.59	2.63	2.66	
			$T_{A} = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}$	2.55		2.70	
		Z阈值	T _A =+25°C	2.28	2.32	2.35	
			$T_{A} = -40 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C}$	2.25		2.38	
复位阈值温度系数					30 ⁽¹⁾		ppm/°C
Vcc 到复位延迟		$Vcc = V_{TH} \sim (V_{TH} - 100 \text{mV})$			20 ⁽¹⁾		us
(注2)							
复位有效超时时间		$T_A = -$	T _A =−40°C ~+85°C		240 ⁽¹⁾	400	ms

续上表

参数	符号	条件	最小	典型	最大	单位
RESET 输出低电压	V _{OL}	Vcc=V _{TH} min, I _{SINK} =1.2mA			0.3	V
(推挽,低有效,		CAT811R/S/T/Z				
CAT811)		$Vcc = V_{TH}min$, $I_{SINK} = 3.2mA$			0.4	
		CAT811J/L/M				
		Vcc>1.0V, I _{SINK} =50uA			0.3	
RESET 输出高电压	V _{OH}	$V_{cc} = V_{TH} max$, $I_{SOURCE} = 500 uA$	0.8Vcc			V
(推挽、低有效,		CAT811R/S/T/Z				
CAT811)		$Vcc = V_{TH}max$, $I_{SOURCE} = 800uA$	V _{CC} -1.5			
		CAT811J/L/M				
RESET 输出低电压	V _{OL}	$Vcc>V_{TH}max$, $I_{SINK}=1.2mA$			0.3	V
(推挽,高有效,		CAT812R/S/T/Z				
CAT812)		$Vcc>V_{TH}max$, $I_{SINK}=3.2mA$			0.4	
		CAT812J/L/M				
RESET 输出高电压	V_{OH}	$1.8V < Vcc \le V_{TH}min$, $I_{SOURCE} = 150uA$	0.8Vcc			V
(推挽,高有效,						
CAT812)						
MR 最小脉宽	t_{MR}		10			us
MR 抗干扰		注 3		100		ns
MR 到复位的延迟	t_{MD}	注 2		0.5		us
MR 输入阈值	V_{IH}	Vcc>V _{TH(MAX)} , CAT811/812L/M/J	2.3			V
	$V_{\rm IL}$				0.8	
	V_{IH}	Vcc>V _{IH(MAX)} , CAT811/812R/S/T/Z	0.7Vcc			
	V_{IL}				0.25Vcc	
MR 上拉电阻	_		10	20	30	kΩ

注 1: 器件的测试温度为 T_A =+25℃,测试温度限制在设计允许的范围内。

注 2: RESET 是 CAT811 的输出; RESET 是 CAT812 的输出。

注 3: 100ns 或更短的脉冲干扰不会产生复位脉冲。

Date: 2008/01/26

11. 典型工作特性

Vcc=正常范围, T_A =−40 $^{\circ}$ C $^{\circ}$ +85 $^{\circ}$ C,除非特别说明。典型值在 T_A =+25 $^{\circ}$ C和 Vcc=5V (L/M/J 版本)、Vcc=3.3V (T/S 版本)、Vcc=3V (R 版本)、和 Vcc=2.5V (Z 版本)得到。

上电复位时间 vs.温度

电源电流 vs.温度 (空载,CAT8xxR/S/T/Z)

掉电复位延时 vs.温度

指定复位阈值 vs.温度

12. 详述

12.1 复位时序

Date: 2008/01/26

当电源电压下降到低于阈值开关电压时, CAT811 的复位信号为低电平, CAT812 的复位信号为高电平。并且, 在电源电压上升到大于阈值后的至少 140ms 内复位信号的状态仍保持有效。

图 1 复位时序图

12.2 Vcc 瞬态响应

CAT811/812 可保护微控制器,防止其掉电出错。典型的 4us 或更短时间的幅值为 100mV 的短时间瞬变不会引起错误的复位。

图 2 所示为不会产生复位的负 Vcc 瞬变的最大脉宽。随着 Vcc 瞬变的幅值较阈值越来越小(V_{TH} -Vcc 的值不断增加),最大脉宽不断减少。在测试过程中,Vcc 从最初的比阈值电压大 0.5V 的值以(V_{TH} -Vcc)的过激励电压幅值为单位降至低于阈值电压。

图 2 不会产生复位脉冲的最大瞬变时间 vs.复位比较器过激励

12.3 Vcc 低于 1.0V 时的有效复位

Date: 2008/01/26

为了确保 CAT811 的 $\overline{\text{RESET}}$ 管脚在 Vcc 低于 1.0V 时的状态可知,建议在 $\overline{\text{RESET}}$ 和 GND 之间连接一个 $100 \text{k}\Omega$ 的下拉电阻,电阻的阻值不作严格限制。对于 CAT812,则需要在 RESET 和 Vcc 之间连接一个上拉电阻。

图 3 Vcc 低于 1.0V 时 RESET 有效

图 4 Vcc 低于 1.0V 时 RESET 有效

12.4 双向复位管脚的连接

CAT811/812 可与 uP/uC 的双向复位管脚相连。通过在 CAT811/812 的复位输出和 uP/uC 的双向复位管脚之间串联一个 4.7kΩ的电阻来实现。

图 5 双向复位管脚的连接

其它监控电路器件

功能	CAT1161/3	CAT1162	CAT809	CAT810	CAT811	CAT812
带 16k 位串行	•	•				
EEPROM 存储器						
看门狗定时器	•					
手动复位输入	•	•			•	•
低电平有效复位			•		•	
高电平有效复位				•		•
双极性复位输出	•	•				
封装	8脚DIP和	8脚DIP和	3 脚 SOT23	3 脚 SOT23	4 脚	4 脚
	SOIC	SOIC	和 SC70	和 SC70	SOT143	SOT143

Rev. 1.0

Date: 2008/01/26 Guangzhou ZLGMCU Development Co., Ltds

13. 封装信息

Date: 2008/01/26

塑料 SOT143 (4 脚)

