SRS. Иерархия Хомского. Регулярные грамматики

Теория формальных языков *2021* г.

String RS, или semi-Thue systems

Частный случай TRS — SRS (плоские TRS).

- Множество данных строки (слова) в алфавите ${\mathfrak A}.$
- Правила переписывания имеют вид $\mathfrak{u} \to \nu$, где \mathfrak{u}, ν строки из $\mathfrak{A}^*.$
- Правило $\mathfrak{u} \to \mathfrak{v}$ применимо к строке Φ , если Φ содержит хотя бы одну подстроку \mathfrak{u} .
- В общем случае применение не детерминированно.

String RS, или semi-Thue systems

Частный случай TRS — SRS (плоские TRS).

- Множество данных строки (слова) в алфавите ${\mathfrak A}.$
- Правила переписывания имеют вид $\mathfrak{u} \to \nu$, где \mathfrak{u}, ν строки из $\mathfrak{A}^*.$
- Правило $\mathfrak{u} \to \mathfrak{v}$ применимо к строке Φ , если Φ содержит хотя бы одну подстроку \mathfrak{u} .
- В общем случае применение не детерминированно.

Каково множество нормализованных строк в алфавите $\{{\bf A},{\bf B}\}$ относительно системы правил ${\bf AB}\to \varepsilon$, ${\bf AA}\to {\bf A?}$ относительно только правила ${\bf AB}\to \varepsilon$?

Выразительная сила SRS

Теорема

SRS позволяют выразить любую рекурсивную функцию.

Доказательство: алгорифмы Маркова.

Определение

Нормальный алгоритм (алгорифм) Маркова (HAM) — это SRS с детерминированным поведением:

- top-down сопоставление (от верхних правил к нижним);
- выбор самой левой подстроки;
- существование терминальных правил.

Грамматики

Определение

Грамматика — это четвёрка $G = \langle N, \Sigma, P, S \rangle$, где:

- N алфавит нетерминалов;
- Σ алфавит терминалов;
- Р множество правил переписывания $\alpha \to \beta$ типа $\langle (\mathsf{N} \cup \Sigma)^+ \times (\mathsf{N} \cup \Sigma)^* \rangle$;
- $S \in N$ начальный символ.

 $\alpha \Rightarrow \beta$, если $\alpha = \gamma_1 \alpha' \gamma_2$, $\beta = \gamma_1 \beta' \gamma_2$, и $\alpha' \to \beta' \in P$. \Rightarrow^* — рефлексивное транзитивное замыкание \Rightarrow .

Определение

Язык L(G), порождаемый G — множество $\{u \,|\, u \in \Sigma^* \ \& \ S \Rightarrow^* u\}$.

α -преобразование

По-разному воспринимают переименовку:

- Переменные vs конструкторы в TRS;
- Нетерминалы vs терминалы в грамматиках.

α-преобразование

По-разному воспринимают переименовку:

- Переменные vs конструкторы в TRS;
- Нетерминалы vs терминалы в грамматиках.

Для любой инъективной σ применение σ к правилам грамматики/trs для переменных и нетерминалов также называется α -преобразованием.

- \bullet α -преобразование не меняет терминальный язык;
- обычно термы различаются с точностью до α -преобразования.

α -преобразование

По-разному воспринимают переименовку:

- Переменные vs конструкторы в TRS;
- Нетерминалы vs терминалы в грамматиках.

Для любой инъективной σ применение σ к правилам грамматики/trs для переменных и нетерминалов также называется α -преобразованием.

- α -преобразование не меняет терминальный язык;
- обычно термы различаются с точностью до α -преобразования.

Неформально: контейнеры определяются не именем, а содержимым (см. экстенсиональность в логике).

Иерархия Хомского без ε-правил

A, B \in N, $\alpha \in \Sigma^*$, α , $\beta \in (N \cup \Sigma)^*$, $\gamma \in (N \cup \Sigma)^+$

Иерархия грамматик

Тип 0	Рекурсивно-перечислимые	\forall
Тип 1	Контекстно-зависимые	$\alpha A\beta \rightarrow \alpha \gamma \beta$, $\gamma \neq \epsilon$
Тип 2	Контекстно-свободные	$A o \gamma$
Тип 3	Праволинейные (регулярные	e) $A \rightarrow a$, $A \rightarrow aB$

Иерархия Хомского без ε-правил

A, B \in N, $\alpha \in \Sigma^*$, α , $\beta \in (N \cup \Sigma)^*$, $\gamma \in (N \cup \Sigma)^+$

Иерархия грамматик

Тип 0 Рекурсивно-перечислимые Тип 1 Контекстно-зависимые $\alpha A\beta \rightarrow \alpha \gamma \beta$, $\gamma \neq \varepsilon$

Тип 2 Контекстно-свободные $A \rightarrow \gamma$

Тип 3 Праволинейные (регулярные) $A \rightarrow a$, $A \rightarrow aB$

Примеры языков

Тип 0 $\{u \mid L(u) = L(r)\}$, r — фикс. regex, u — regex;

Тип 1 $\{ww \mid w \in \Sigma^+\}$

Тип 2 непустые палиндромы в алфавите $\{a, b\}$

Tun 3 $\{w \mid w = aw_1 \& (w = a^{2k} \lor w = a^{3k} \lor w \neq a^{5k})\}$

Иерархия Хомского с *є*-правилами

A, B \in N, $\alpha \in \Sigma^*$, α , $\beta \in (N \cup \Sigma)^*$, $\gamma \in (N \cup \Sigma)^+$.

Иерархия грамматик

Тип 0 Рекурсивно-перечислимые \forall Тип 1 Контекстно-зависимые $\alpha A\beta \to \alpha \gamma \beta$, $\gamma \neq \epsilon$

 $\forall S \rightarrow \varepsilon \& \forall p : \alpha \rightarrow \beta \in P \forall \beta_1, \beta_2 (\beta \neq \beta_1 S \beta_2)$

Тип 2 Контекстно-свободные A
ightarrow lpha

Тип 3 Регулярные A o a, A o aB, $A o \epsilon$

Академические регулярные выражения $\Re \mathcal{E}$

Допустимые операции

- A* замыкание Клини ноль или больше итераций A;
- A⁺ одна или больше итерация A;
- A? 0 или 1 вхождение A;
- A|B альтернатива (вхождение либо A, либо B).

Академические регулярные выражения $\Re ε$

Допустимые операции

- A* замыкание Клини ноль или больше итераций A;
- А+ одна или больше итерация А;
- A? 0 или 1 вхождение А;
- A|B альтернатива (вхождение либо A, либо B).

Следствия

Если r_1 , $r_2 - \Re \mathcal{E}$, тогда

- $\mathbf{r}_1 | \mathbf{r}_2 \Re \mathcal{E}$;
- $\mathbf{r}_1\mathbf{r}_2 \Re \mathcal{E}$;
- r_1^* , $r_2^+ \Re \mathcal{E}$.

Операции в регулярных грамматиках

Объединение

Дано: G_1 и G_2 — праволинейные. Построить $G: L(G) = L(G_1) \cup L(G_2)$.

- Переименовать нетерминалы из N_1 и N_2 , чтобы стало $N_1 \cap N_2 = \emptyset$ (сделать α -преобразование). Применить переименовку к правилам G_1 и G_2 .
- ② Объявить стартовым символом свежий нетерминал S и для всех правил G_1 вида $S_1 \to \alpha$ и правил G_2 вида $S_2 \to \beta$, добавить правила $S \to \alpha$, $S \to \beta$ в правила G.
- **3** Добавить в правила G остальные правила из G_1 и G_2 .

Операции в регулярных грамматиках

Конкатенация

Дано: G_1 и G_2 — праволинейные. Построить $G: L(G) = L(G_1)L(G_2)$.

- Переименовать нетерминалы из N_1 и N_2 , чтобы стало $N_1 \cap N_2 = \emptyset$ (сделать α -преобразование).
- \mathbf{Q} Построить из G_1 её вариант без ϵ -правил (см. ниже).
- $footnote{\bullet}$ По всякому правилу из G_1 вида A o a строим правило G вида $A o aS_2$, где S_2 стартовый нетерминал G_2 .
- **②** Добавить в правила G остальные правила из G_1 и G_2 . Объявить S_1 стартовым.
- § Если $\varepsilon \in L(G_1)$ (до шага 2), то по всем $S_2 \to \beta$ добавить правило $S_1 \to \beta$.

0/

Операции в регулярных грамматиках

Положительная итерация Клини

Дано: G_1 — праволинейная. Построить $G: L(G) = L(G_1)^+$.

- $oldsymbol{0}$ Построить из G_1 её вариант без ϵ -правил.
- ② По всякому правилу из G_1 вида $A \to \alpha$ строим правило G вида $A \to \alpha S_1$, где S_1 стартовый нетерминал G_1 .
- **3** Добавить в правила G все (включая вида $A \to \alpha$) правила из G_1 . Объявить S_1 стартовым.
- **©** Если $\varepsilon \in L(G_1)$ (до шага 2), добавить правило $S_1 \to \varepsilon$ и вывести S_1 из рекурсии.

Построение грамматики без ε -правил

Дано: G — праволинейная. Построить G' без правил вида $A \to \varepsilon$ такую, что L(G') = L(G) или $L(G') \cup \{\varepsilon\} = L(G)$.

- Перенести в G' все правила G, не имеющие вид $A \to \varepsilon$.
- $oldsymbol{2}$ Если существует правило A o arepsilon, то по всем правилам вида $B o \alpha A$ дополнительно строим правила $B o \alpha$.

Пересечение регулярных грамматик

Дано: G_1 , G_2 — праволинейные. Построить G' такую, что $L(G') = L(G_1) \cap L(G_2)$.

- ① Построить стартовый символ G' пару $\langle S_1, S_2 \rangle$, где S_i стартовый символ грамматики G_i .
- ② Поместить $\langle S_1, S_2 \rangle$ в множество U неразобранных нетерминалов. Множество T разобранных нетерминалов объявить пустым.
- $oldsymbol{3}$ Для каждого очередного нетерминала $\langle A_1,A_2 \rangle \in U$:
 - $oldsymbol{\odot}$ если $A_1 o a\in G_1$, $A_2 o a\in G_2$, тогда добавить в G' правило $\langle A_1,A_2
 angle o a;$
 - ③ если $A_1 \to \alpha A_3 \in G_1$, $A_2 \to \alpha A_4 \in G_2$, тогда добавить в G' правило $\langle A_1, A_2 \rangle \to \alpha \langle A_3, A_4 \rangle$, а в U нетерминал $\langle A_3, A_4 \rangle$, если его ещё нет в множестве T;
 - ③ если все пары правил, указанные выше, были обработаны, тогда переместить $\langle A_1, A_2 \rangle$ из U в T.
- Повторять шаг 3, пока множество U не пусто.
- f 5 Если $\epsilon \in L(G_1)$ & $\epsilon \in L(G_2)$, тогда добавить в G' правило $\langle S_1, S_2 \rangle o \epsilon$.

От $\Re \mathcal{E}$ к грамматике

Теорема

Если $E\in\mathcal{RE}$, то существует праволинейная регулярная грамматика G такая, что L(G)=L(E)

От $\Re \mathcal{E}$ к грамматике

Теорема

Если $E\in\mathcal{RE}$, то существует праволинейная регулярная грамматика G такая, что L(G)=L(E)

Для каждой константы a_i в E построим правило $S_i \to a_i$. Объявим грамматику с одним этим правилом G_i . Последовательно соберём из таких грамматик грамматику для E, используя вышеописанные операции итерации, конкатенации, объединения.

Построим регулярную грамматику для $(a|(ab))^*b^+$.

- Объявим исходные правила: $S_1 \to a$, $S_2 \to ab$, $S_3 \to b$ (для краткости сразу для ab).
- ullet Создадим грамматику G_4 для $G_1 \cup G_2$: $S_4 o lpha \quad S_4 o lpha b$
- По G_4 построим $G_5 = (G_4)^*$:

$$\begin{array}{cccc} S_5 \rightarrow \alpha T & S_5 \rightarrow \alpha b T & S_5 \rightarrow \epsilon \\ S_5 \rightarrow \alpha & S_5 \rightarrow \alpha b & T \rightarrow \alpha \end{array}$$

$$T \rightarrow aT$$
 $T \rightarrow abT$ $T \rightarrow ab$

- По G_3 построим $G_6 = (G_3)^+ \colon S_6 \to bS_6, S_6 \to b.$
- Осталось построить $G_7=G_5G_6$. Удаляем ϵ -правило:

$$S_5 \rightarrow aT$$
 $S_5 \rightarrow abT$ $S_5 \rightarrow a$ $S_5 \rightarrow ab$ $T \rightarrow a$ $T \rightarrow abT$ $T \rightarrow ab$

Проводим конкатенацию и возвращаем ε -правило:

$$S_5
ightarrow aT$$
 $S_5
ightarrow abT$ $S_5
ightarrow aS_6$ $S_5
ightarrow abS_6$ $T
ightarrow aT$ $T
ightarrow abT$ $T
ightarrow abS_6$ $S_5
ightarrow b$ $S_5
ightarrow bS_6$ $S_6
ightarrow bS_6
ightarrow b$

Неподвижная точка $\mathcal{R}\mathcal{E}$

Лемма Ардена

Пусть $X=(AX)\,|\, B$, где X — неизвестное \mathcal{RE} , а A, B — известные, причём $\varepsilon \not\in L(A).$ Тогда $X=(A)^*B.$

Рассмотрим систему уравнений:

$$X_1 = (A_{11}X_1)|(A_{12}X_2)|...|B_1$$

 $X_2 = (A_{21}X_1)|(A_{22}X_2)|...|B_2$

. . .

$$X_n = (A_{n1}X_1) | (A_{n2}X_2) | \dots | B_n$$

Положим $\varepsilon \notin A_{ij}$. Будем последовательно выражать X_1 через X_2, \ldots, X_n , X_2 через $X_3, \ldots X_n$ и т.д. Получим регулярное выражение для X_n .

Α.

От грамматики к $\Re \mathcal{E}$

- Объявляем каждый нетерминал переменной и строим для него уравнение:
 - По правилу $A \to \alpha B$ добавляем альтернативу αB ;
 - ullet По правилу A o b добавляем альтернативу без переменных.
 - Правило $S \to \varepsilon$ обрабатываем отдельно, не внося в уравнение: добавляем в язык альтернативу $(\mathcal{RE} \mid \varepsilon)$.
- Решаем систему относительно S.

От грамматики к $\Re \mathcal{E}$

Пример

Построим $\Re \mathcal{E}$ по грамматике:

$$S \rightarrow aT$$
 $S \rightarrow abS$

$$T \to aT \quad T \to bT \quad T \to b$$

Строим по правилам грамматики систему:

$$S = (abS) | (aT)$$

$$T = ((\alpha \,|\, b)T) \,|\, b$$

Решаем второе уравнение:

$$T = (a \mid b)^*b$$

Подставляем в первое:

$$S = (abS) | (a(a|b)*b)$$

Получаем ответ:

$$S = (ab)^*a(a|b)^*b$$