Kaggle Project

Chest X-ray images of Pneumonia

Clémence LAUDEN Arnaud LY Erwan PETIT

Summary

Introduction

- I) Defining the project
 - 1) Datasets
 - 2) Pre-processing
- II) Neural networks
 - 1) Convolutional Neural Network
 - 2) Residual Network
- III) Results
 - 1) CNN
 - 2) ResNet
- IV) Conclusion/Future perspectives

Introduction

- Pneumonia:
 - Inflammatory disease affecting lung
 - By viruses or bacteria
- X-ray Imaging
 - Standard imaging for detection

Example from dataset
a) Normal lung, b) Pneumonia lung

Al-assisted detection of pneumonia

I) Defining the project

Dataset

- 5 863 radiographs
 - 3 datasets
 - 2 classes
 - Different shapes
 - **(1017, 1268)**
 - **(1322, 1742)**
 - **•** (920, 1306)
 - **(1167, 1644)**
 - **(2534, 2890)**

Data	Normal	Pneumonie	Total
Train	1341	3875	5216
Test	234	390	624
Val	8	8	16

Presentation of original dataset

Pre-processing

- Data Modification
 - Rescale shape to (64, 64)
 - Split data to create a bigger validation dataset
 - DataGenerator to increase data variability
- Sample weighting

Data	Normal	Pneumonie	Total
Train	1073	3100	4173
Test	234	390	624
Val	268	775	1043

Presentation of adjusted dataset

II) Neural Network

1) Networks description cnn

- 2 convolution layers
- 411 105 parameters
- (64,64,1) input images
- ReLu function
- Binary classification
- MaxPooling2D -> maximum value of the feature map

Layer (type)	Output Shape	Param #			
input_1 (InputLayer)	[(None, 64, 64, 1)]	0			
conv2d (Conv2D)	(None, 62, 62, 32)	320			
max_pooling2d (MaxPooling2D)	(None, 31, 31, 32)	9			
conv2d_1 (Conv2D)	(None, 29, 29, 32)	9248			
max_pooling2d_1 (MaxPooling2	(None, 14, 14, 32)	0			
flatten (Flatten)	(None, 6272)	0			
dense (Dense)	(None, 64)	401472			
dropout (Dropout)	(None, 64)	9			
dense_1 (Dense)	(None, 1)	65			

Total params: 411,105

Trainable params: 411,105 Non-trainable params: 0

1) Networks description

ResNet

- 5 modules with 3 convolution
- 1 069 886 parameters
- (64,64,1) input images
- ReLu function
- Binary classification
- MaxPooling2D -> maximum value of the feature map

Layer (type)	Output Shape	Param #	Connected to
input_2 (InputLayer)	[(None, 64, 64, 1)]		
conv2d_2 (Conv20)	(None, 64, 64, 32)	64	input_2[0][0]
conv2d_3 (Conv20)	(None, 64, 64, 56)	528	conv2d_2(0)[0]
conv2d_4 (Conv20)	(None, 64, 64, 26)	2320	conv2d_3(0)[0]
conv26_5 (Conv20)	(None, 64, 64, 32)	544	conv2d_4(0)[0]
add (Add)	(None, 64, 64, 32)	0	conv2d_5(0)[0] conv2d_2[0][0]
activation (Activation)	(None, 64, 64, 32)	0	add[0][0]
conv2d_6 (Conv20)	(None, 64, 64, 32)	2856	activation[0][0]
conv26_7 (Conv20)	(None, 64, 64, 16)	528	conv2d_6(0)[0]
conv2d_8 (Conv29)	(None, 64, 64, 16)	2320	conv2d_7(@)[@]
conv2d_9 (Conv20)	(None, 64, 64, 32)	544	com/2d_8(0)[0]
edd_1 (Add)	(None, 64, 64, 32)	0	conv2d_9(0)[0] conv2d_6(0)[0]
activation_1 (Activation)	(None, 64, 64, 32)	0	add_10
conv2d_10 (Conv20)	(None, 64, 64, 32)	3856	activation_1[0][0]
conv2d_11 (Conv20)	(None, 64, 64, 56)	528	comv2d_18[8][8]
conv2d_12 (Comv20)	(None, 64, 64, 56)	2320	comv2d_11[0][0]
conv2d_13 (Conv20)	(None, 64, 64, 32)	544	comv2d_120
Md_2 (Add)	(None, 64, 64, 32)	0	conv2d_13[0][0] conv2d_10[0][0]
ectivation_2 (Activation)	(None, 64, 64, 32)	0	add_2(0)[0]
comv2d_14 (Conv20)	(None, 64, 64, 32)	1056	activation_2[0][0]
com/2d_15 (Conv20)	(None, 64, 64, 16)	528	comv2d_14[0][0]
com/28_16 (Conv20)	(None, 64, 64, 16)	2320	comv2d_15(0)[0]
comv2d_17 (Conv20)	(None, 64, 64, 32)	544	comv2d_16[0][0]
add_3 (Add)	(None, 64, 64, 32)	0	conv2d_17[0][0] conv2d_14[0][0]
activation_3 (Activation)	(None, 64, 64, 32)	ė	add_3[0][0]
com/2d_18 (Conv20)	(None, 64, 64, 32)	1056	activation_3(0)[0]
com/2d_19 (Conv29)	(None, 64, 64, 16)	528	com/2d_18[0][0]
conv2d_28 (Conv20)	(None, 64, 64, 16)	2320	conv2d_19[8][8]
comv2d_li (Conv10)	(None, 64, 64, 32)	544	com/2d_20[0][0]
add_4 (Add)	(None, 64, 64, 32)	ф	comv2d_21[0][0] comv2d_10[0][0]
activation_4 (Activation)	(None, 64, 64, 32)	0	add_4{0}[0]
max_pooling2d_2 (FaxPooling2D)	(None, 32, 32, 32)	0	activation_4[0][0]
flatten_i (flatten)	(None, 32768)	0	max_pooling2d_2[0][0]
dense_2 (Dense)	(None, 32)	1048608	flatten_1[0][0]
dropout_1 (Oropout)	(None, 32)	0	dense_2(0)(0)
			dropout_1[0][0]

Total params: 1,009,889 Trainable params: 1,009,889 Non-trainable params: 0

1) Parameters

- Rectified Linear Unit (ReLu) function
 - Simple, fast, better performance
 - Rectify vanishing gradient
- Output function : Sigmoid activation
 - Binary classification
 - Fixed value range: 0 and 1
- MaxPooling2D
 - Decrease parameters
 - Better spatial recognition

Heatmap of CNN with Softmax output function

III) Results

CNN

- Increased accuracy and decreased loss over epochs
- No intersecting of curves
- Fluctuation for validation set
 -> overfitting and/or insufficient data set
- Accuracy = 0,87
- Loss = 0.37

CNN

- More false positives than false negative
- Satisfying F1 score -> Ours CNN is well suited

CNN

- In some cases areas around the rib cage were taken into account -> Artifact of patient arm position
- Area of the lungs were used in most cases

2) ResNet

- 10 epochs
- Batch size of 128
- Accuracy: 0.84
- Loss: 0.40

	precision	recall	f1-score	support
NORMAL PNEUMONIA	0.84 0.86	0.75 0.92	0.79 0.89	234 390
accuracy macro avg ighted avg	0.85 0.85	0.83 0.85	0.85 0.84 0.85	624 624 624

Heatmap of prediction results

- Precision: 0.86
- Recall: 0.94
- F1 score well suited
- ROC AUC: 0.93

SHAP figure

- Areas of interest within the lungs
- Shape of the rib cage less important

Pneumonia

Pneumonia

Pneumonia

Conclusion

- Success in creating two working networks
- ResNet less efficient than CNN

PERSPECTIVE

- Limit artifact by randomly occluding areas of the image (Data Generator)
- K-fold cross validation to limit overfitting
- EfficientNet V1 (more efficient than ResNet)
- Type of pneumonia: bacterial or viral
- Set weight for favorise one class
- Transfer learning for other lung diseases

THANKS FOR YOUR ATTENTION