Birla Institute of Technology and Science, Pilani

Work Integrated Learning Programmes Division

M.Tech. in Artificial Intelligence and Machine Learning.

I Semester 2022-23

Course Number AIMLCZ C416

Course Name Mathematical Foundations for Machine Learning

Nature of Exam Open Book

Open book

Weightage for grading 30%

Duration 120 minutes

Date of Exam 08/01/2023 (14:00 - 16:00)

Instructions

- 1. All questions are compulsory.
- 2. All parts of a question should be answered consecutively. Each answer should start from a fresh page.
- (1) Find the Taylor's series expansion to three terms of the function e^{5x} around the point x = 1 and x = 0 respectively. Which approximation would give less error with respect to the original function at x = 2?

 [3 Marks]
- (2) Let the vector $\mathbf{f} = \begin{bmatrix} \frac{x}{\sqrt{x^2 + y^2}} \\ \frac{y}{\sqrt{x^2 + y^2}} \end{bmatrix}$. Calculate the Jacobian matrix and find its rank, when $x \neq 0, y \neq 0$.

(3) Consider a 2×2 real matrix given below

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

where a, b, c, d > 0. We claim that A has an eigenvector

$$\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \text{ with } x, y > 0$$

Is this claim true or false? Provide a suitable justification.

[5 Marks]

Questions 8

(4) Data analysis led to a matrix $A = (a_{i,j}), i, j = 1, \dots, n$ where n is positive integer such that

$$a_{i,i} = 4, \forall i = 1, \dots, n$$

 $a_{i,i+1} = -2, \forall i = 1, \dots, n-1$
 $a_{i,i-1} = -2, \forall i = 2, \dots, n$
 $a_{i,i} = 0, \text{ otherwise}$

1

We claim that every eigenvalue of A is positive real number. Is this claim true or false? Give a mathematical justification for your answer.

[3 Marks]

- (5) An engineer named H working on a machine learning problem from Oil industry encountered a square matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$. He made an important observation that the matrix \mathbf{C} satisfies an interesting property i.e $\mathbf{C}\mathbf{C}^{\mathbf{T}} = \mathbf{C}^{\mathbf{T}}\mathbf{C}$. Then his manager asked him to study the properties of eigenvalues and eigenvectors of this matrix with help from other team members. ($\bar{\alpha}$ represents the complex conjugate of α).
 - (a) A colleague named A1 then claimed that if (λ, \mathbf{x}) is an eigenpair of \mathbf{C} then (λ, \mathbf{x}) must always be an eigenpair of $\mathbf{C}^{\mathbf{T}}$.
 - (b) A colleague named A2 instead claimed that if (λ, \mathbf{x}) is an eigenpair of \mathbf{C} then $(\bar{\lambda}, \mathbf{x})$ must always be an eigenpair of $\mathbf{C}^{\mathbf{T}}$.
 - (c) The manager claimed that if (λ, \mathbf{x}) is an eigenpair of \mathbf{C} then \mathbf{x} can never be an eigenvector of $\mathbf{C^T}$.

Prove/Disprove the claims made by A1, A2 and the manager. (Note : answers without proper reasoning will not be awarded marks).

[4 Marks]

- (6) Consider the last 2 digits of your BITS email id. For example, if your email is $2022da098\beta_1\beta_2@wilp.bits-pilani.ac.in$, then look at the last 2 digits before the @ symbol represented by β_1 and β_2 here.
 - (a) Write down your BITS email id
 - (b) Write down the β_1 and β_2 values as extracted from your BITS email id.
 - (c) Construct a matrix **B** using the extracted values of β_1 and β_2 as follows:

$$\mathbf{B} = \begin{bmatrix} \beta_1 & \beta_2 \\ 0 & 0 \end{bmatrix}$$

- (d) Derive the largest singular value σ_1 of this matrix **B**.
- (e) Calculate the value of $\alpha = \sigma_1^2$.
- (f) Derive left singular vector $\mathbf{u_1}$ corresponding to σ_1 .
- (g) Derive right singular vector $\mathbf{v_1}$ corresponding to σ_1 .
- (h) Find a matrix $\mathbf{C} = \mathbf{u_1}\mathbf{v_1^T}$ and Calculate $\|\mathbf{B} \mathbf{C}\|_{\mathbf{F}}$ where $\|\mathbf{Q}\|_{\mathbf{F}}$ denotes the sum of the squares of the entries of the matrix \mathbf{Q} .
- (i) Find a matrix $\mathbf{E} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T$ and Calculate $\|\mathbf{B} \mathbf{E}\|_F$.

[4 Marks]

(7) Find two mutually orthogonal vectors each of which is orthogonal to the vector (4, -1, 3) of \mathbb{R}^3 w.r.t the standard inner product.

[4 Marks]

(8) Using row elementary operations, transform the basis $\{(1,0,1), (1,0,-1), (0,3,5)\}$ of \mathbb{R}^3 to obtain an orthonormal basis.

[3 Marks]