Tema 5 - Vectores

Ramon Ceballos

28/2/2021

Estructura euclidiana de \mathbb{R}^n

1. Producto escalar

El producto escalar es un número real que se escribe del modo $\langle \vec{u}, \vec{v} \rangle$.

Producto escalar. Sean $\vec{u} = (u_1, \dots, u_n)$ y $\vec{v} = (v_1, \dots, v_n)$ dos vectores de \mathbb{R}^n . Se define el producto escalar $\vec{u} \cdot \vec{v}$ o $\langle \vec{u}, \vec{v} \rangle$ como el número real:

$$\langle \vec{u}, \vec{v} \rangle = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

El producto escalar es la tercera operación básica entre vectores de \mathbb{R}^n .

Del producto escalar es de donde se derivan los conceptos métricos como la ortogonalidad, la norma, el ángulo y se abre camino a múltiples aplicaciones geométricas y físicas del álgebra lineal.

Ejemplo 6

Sean $\vec{u} = (2, 3, 0)$ y $\vec{v} = (-1, 3, 2)$ dos vectores de \mathbb{R}^3 .

Su producto escalar será:

$$\langle \vec{u}, \vec{v} \rangle = 2 \cdot (-1) + 3 \cdot 3 + 0 = 7$$

1.1. Propiedades del producto escalar

Propiedades del producto escalar.

- Conmutativa: $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$
- Distributiva respecto de la suma:

$$\langle \vec{u}, (\vec{v} + \vec{w}) \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$$

• Asociativa y conmutativa entre escalares y vectores:

$$\langle (\lambda \vec{u}), \vec{v} \rangle = \lambda \langle \vec{u}, \vec{v} \rangle$$
$$\langle \vec{u}, (\lambda \vec{v}) \rangle = \lambda \langle \vec{u}, \vec{v} \rangle$$

- Si $\vec{u} = 0$, entonces $\langle \vec{u}, \vec{u} \rangle = 0$
- Si $\vec{u} \neq 0$, entonces $\langle \vec{u}, \vec{u} \rangle > 0$

2. Norma o longitud de un vector

Se calcula a partir del producto escalar (raíz cuadrada del producto escalar del vector dado). La norma de un vector se denota como $||\vec{u}||$.

Norma. Dado $\vec{u} = (u_1, u_2, \dots, u_n) \in \mathbb{R}^n$ su norma o longitud viene dada por:

$$||\vec{u}|| = \sqrt{\langle \vec{u}, \vec{u} \rangle} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

2.2. Propiedades de la norma de un vector

Propiedades de la norma.

- $||\vec{u}|| > 0$, $\forall \vec{u} \neq \vec{0}$, es decir, será positiva para cualquier vector que no sea el vector 0.
- $||\lambda \vec{u}|| = |\lambda|||\vec{u}||$, es decir, se puede multiplicar el valor absoluto del escalar por la norma.
- Designaldad triangular: $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$
- Teorema de Pitágoras: $||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 \Leftrightarrow \vec{u} \perp \vec{v}$ (siempre y cuando sean perpendiculares se cumplirá)
- Desigualdad de Cauchy-Schwarz: $|\langle \vec{u}, \vec{v} \rangle| \leq ||\vec{u}|| \cdot ||\vec{v}||$. Se dice que el valor absoluto del producto escalar de dos vectores es menor o igual que multiplicar el módulo de uno de los vectores por el módulo del otro.

Demostración Desigualdad de Cauchy-Schwarz

Tal y como vimos anteriormente, una de las propiedades de la norma es que el producto escalar en valor absoluto de dos vectores es menor o igual al producto de sus normas.

$$|\langle \vec{u}, \vec{v} \rangle| \le ||\vec{u}|| \cdot ||\vec{v}||$$

A partir de la igualdad siguiente:

$$\cos(\alpha) = \frac{\langle \vec{u}, \vec{v} \rangle}{||\vec{u}|| \cdot ||\vec{v}||}$$

Si tenemos en cuenta que el valor absoluto del coseno para cualquier ángulo es siempre menor o igual a 1, obtenemos:

$$|\cos(\alpha)| = \left|\frac{\langle \vec{u}, \vec{v} \rangle}{||\vec{u}|| \cdot ||\vec{v}||}\right| \leq 1 \Leftrightarrow |\langle \vec{u}, \vec{v} \rangle| \leq ||\vec{u}|| \cdot ||\vec{v}||$$

2.2. Vector unitario

Vector unitario. Un vector \vec{e} es unitario si tiene norma 1. Es decir, si:

$$||\vec{e}|| = 1$$

3. Distancia entre dos puntos

Distancia entre dos puntos. Dados dos puntos A y B, se define la distancia entre ambos como $d(A, B) = ||\vec{AB}|| = \sqrt{\langle \vec{AB}, \vec{AB} \rangle}$

Por tanto, la distancia entre A y B es la raíz cuadrada del producto escalar del vector \vec{AB} consigo mismo.

3.1. Teoremas

Teorema. Dados dos vectores \vec{u} y \vec{v} y α el ángulo que forman ambos, entonces se cumple que:

$$\langle \vec{u}, \vec{v} \rangle = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos(\alpha)$$

Figure 1: Idea gráfica de lo que nos dice el Teorema

Teorema del coseno. En un triángulo $\triangle ABC$ cualquiera y siendo α, β, γ los ángulos y a, b, c los lados opuestos a los ángulos anteriores, entonces:

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

Se le conoce también como el Teorema de Pitágoras generalizado.

Figure 2: Triángulo descrito en el Teorema

Demostración del teorema

A continuación demostraremos el Teorema que nos da la igualdad:

$$\langle \vec{u}, \vec{v} \rangle = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos(\alpha)$$

Consideremos el vector $\vec{u} - \vec{v}$. Éste, junto con los vectores \vec{u} y \vec{v} formarán un triángulo.

Aplicando $||\vec{w}||^2 = \langle \vec{w}, \vec{w} \rangle$ al vector $\vec{u} - \vec{v}$, resulta que:

$$||\vec{u} - \vec{v}||^2 = \langle \vec{u} - \vec{v}, \vec{u} - \vec{v} \rangle = \langle \vec{u}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle - 2\langle \vec{u}, \vec{v} \rangle = ||\vec{u}||^2 + ||\vec{v}||^2 - 2\langle \vec{u}, \vec{v} \rangle$$

Por otro lado, aplicando el Teorema del coseno al triángulo antes mencionado, tenemos:

$$||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 - 2||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos(\alpha)$$

Comparando ambas expresiones, obtenemos que:

$$\langle \vec{u}, \vec{v} \rangle = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos(\alpha)$$

4. Ángulo entre dos vectores

Ángulo entre dos vectores. Se define el ángulo que forman dos vectores como el valor real α tal que:

$$\cos(\alpha) = \frac{\langle \vec{u}, \vec{v} \rangle}{||\vec{u}|| \cdot ||\vec{v}||}$$

4.1. Vectores ortogonales o perpendiculares

Vectores ortogonales. Dos vectores son ortogonales si su producto escalar es 0. Para que se cumpla esto para cuando los vectores \mathbf{v} y \mathbf{u} son distintos de cero, se tiene que dar que el coseno de α sea cero y por tanto valga $\frac{\pi}{2}$, que son 90 grados.

$$\vec{u} \perp \vec{v} \Leftrightarrow \langle \vec{u}, \vec{v} \rangle = 0 \Leftrightarrow \alpha = \frac{\pi}{2}$$

4.2. Vectores ortonormales

Vectores ortonormales. Dos vectores son ortonormales si son ortogonales y la norma de ambos es 1, es decir, son vectores unitarios.

Ejercicio 2

Encontrar el valor de a para el cual (a,0,-1,3) sea perpendicular a (1,7,a-1,2a+3)

5. Proyección Ortogonal

Proyección ortogonal. La proyección ortogonal de un vector \vec{v} sobre otro vector \vec{u} es un vector paralelo a \vec{u} tal que sumado a otro perpendicular a \vec{u} dará \vec{v} .

Figure 3: Idea gráfica del significado de proyección ortogonal

5.1. Cálculo de la proyección ortogonal

Se trata de obtener $P_{\vec{v}}(\vec{u}) = \vec{v}_1$ conociendo los vectores \vec{u} o \vec{v} .

- 1. Se descompone el vector $\vec{v} = \vec{v}_1 + \vec{v}_2$ donde $\vec{v}_1 || \vec{u}$ (paralela) y $\vec{v}_2 \perp \vec{u}$ (perpendicular) son sus componentes.
- 2. $\vec{v}_1 = \lambda \vec{u}$ por paralelismo, ya que ambos vectores son paralelos.
- 3. Se sustituye en base a lo anterior, obteniendo lo siguiente: $\vec{v} = \lambda \vec{u} + \vec{v}_2 \Rightarrow \vec{v}_2 = \vec{v} \lambda \vec{u}$.
- 4. Debido a la perpendicularidad se cumple que $\langle \vec{v}_2, \vec{u} \rangle = 0 \Rightarrow \langle (\vec{v} \lambda \vec{u}), \vec{u} \rangle = 0$ por ortogonalidad.
- 5. Con todo lo dictado se obtiene que:

$$\lambda = \frac{\langle \vec{v}, \vec{u} \rangle}{\langle \vec{u}, \vec{u} \rangle} = \frac{\langle \vec{u}, \vec{v} \rangle}{||\vec{u}||^2}$$

Por lo tanto, la proyección ortogonal del vector v sobre el vector u se calcula del siguiente modo:

$$P_{\vec{v}}(\vec{u}) = \vec{v}_1 = \lambda \vec{u} = \frac{\langle \vec{u}, \vec{v} \rangle}{||\vec{u}||^2} \vec{u}$$

Ejemplo 7

Calcular la proyección ortogonal del vector $\vec{v} = (1, 2)$ sobre $\vec{u} = (3, 1)$.

Por el resultado anterior:

$$P_{\vec{v}}(\vec{u}) = \frac{\langle \vec{u}, \vec{v} \rangle}{||\vec{u}||^2} \vec{u}$$

En primer lugar, calculemos:

$$\langle \vec{u}, \vec{v} \rangle = \langle (1, 2), (3, 1) \rangle = 5$$

Por otro lado:

$$||\vec{u}||^2 = 10$$

Con lo cual:

$$P_{\vec{v}}(\vec{u}) = \frac{5}{10}\vec{u} = \frac{1}{2}(3,1)$$