Foundations of DL

Deep Learning

Alfredo Canziani, Ritchie Ng @alfcnz, @RitchieNg

Overfitting and regularisation

Connection between them

Model selection and regularisation

Regularisation – definitions

- Regularisation adds prior knowledge to a model;
 a prior distribution is specified for the parameters
- Restriction of set of possible learnable functions
- Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error -- lan Goodfellow

Regularising techniques

A few examples

Xavier (initialising techniques)

- Xavier
 - torch.nn.init.xavier_normal_(tensor, gain=1)
 - Docs: pytorch.org/docs/master/nn.html#torch.nn.init.xavier_normal_
 - Author
 - Xavier Glorot

Weight-decay

- Weight-decay
 - Docs: pytorch.org/docs/master/optim
 - Alternative names
 - L2
 - Ridge
 - Gaussian prior

Weight-decay

$$J_{\mathrm{train}}(\boldsymbol{\theta}) = J_{\mathrm{train}}^{\mathrm{old}}(\boldsymbol{\theta}) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_{2}^{2}$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} J_{\mathrm{train}}^{\mathrm{old}}(\boldsymbol{\theta}) - \eta \lambda \boldsymbol{\theta}$$

L1

- L1
 - Docs: pytorch.org/docs/master/optim
 - Alternative names
 - LASSO: Least Absolute Shrinkage Selector Operator
 - Laplacian prior
 - Sparsity prior

L1

$$J_{\text{train}}(\boldsymbol{\theta}) = J_{\text{train}}^{\text{old}}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_{1}$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} J_{\text{train}}^{\text{old}}(\boldsymbol{\theta}) - \eta \lambda \operatorname{sign}(\boldsymbol{\theta})$$

values distribution

Dropout

- Dropout
 - torch.nn.Dropout(rate=0.5)
 - Docs: pytorch.org/docs/master/nn.html#torch.nn.Dropout
 - Variants
 - torch.nn.Dropout2d(rate=0.5)
 - torch.nn.Dropout3d(rate=0.5)
 - torch.nn.AlphaDropout(rate=0.5)

Early-stopping

- Early-stopping
 - if acc > best_acc: torch.save(model, 'model.pth')

Fighting overfitting

Techniques that ends up regularising our parameters

Batch-norm (regularisation by-product)

- Batch-normalisation
 - torch.nn.BatchNorm1d(num_features)
 - Docs: pytorch.org/docs/master/nn.html #batchnorm1d

reset batch μ and σ^2

More-data

- More-data
 - \$\$\$

Data-augmentation

- Data-augmentation
 - torchvision.transforms.Compose(transforms)
 - Docs: pytorch.org/docs/stable/torchvision/transforms.html
 - Tranformations
 - torchvision.transforms.CenterCrop(size)
 - torchvision.transforms.ColorJitter(brightness, contrast, saturation, hue)
 - torchvision.transforms.FiveCrop(size)
 - torchvision.transforms.LinearTransformation(transformation_matrix)
 - torchvision.transforms.RandomAffine(degrees, translate, scale, shear)
 - torchvision.transforms.RandomCrop(size, padding, pad_if_needed, fill)
 - torchvision.transforms.RandomRotation(degrees)
 - torchvision.transforms.RandomHorizontalFlip(p=0.5)

Transfer learning (TL) & fine tuning (FT)

- Few data ~ train ⇒ TL
- Lots data ~ train ⇒ FT
- Few data! train ⇒ early TL
- Lots data! train ⇒ T

Use diversified learning rates

remove a few more layers from the top