Christopher Wood March 22, 2012

PROBLEM Becky's Vroom Vroom Dilemma. Let C_1 and C_2 be two cars travelling on the highway. If both cars are moving at an equivalent constant velocity and are at a distance of d apart, is it possible for the separation between C_1 and C_2 to ever change from d?

$$\left[\begin{array}{cc} I & \vec{0} \\ A & -B \end{array}\right] \left[\begin{array}{c} U \\ 1 \end{array}\right] = \left[\begin{array}{c} U \\ \vec{0} \end{array}\right]$$

Solution.

Let v_1 and v_2 be the velocity of cars C_1 and C_2 , respectively, and $d_{0,1}$ and $d_{0,2}$ initial displacement scalar values for C_1 and C_2 at time t = 0. The distance of both cars can be modeled using the following equation,

$$d_i(t) = (v_i t) + d_{0,i},$$

where i is the index of the car C_1 or C_2 . Since the initial separation between the cars is d, and by treating the initial displacement value as 0, we know $d_{0,1} = 0$ and $d_{0,2} = d$. Also, we know that the cars are travelling at the same velocity v, so $v_1 = v_2 = v$. Therefore, we know the following:

$$d_1(t) = v_1 t + d_{0,1} = v_1 t = v t$$

$$d_2(t) = v_2t + d_{0,2} = v_2t + d = vt + d$$

If we analyze d_1 and d_2 as $t \to \infty$, we can determine the separation of the cars. However, notice that the difference between d_1 and d_2 will always correspond to the difference between C_1 and C_2 at time t. We now compute the difference as follows:

$$d_2(t) - d_1(t) = (vt + d) - vt = d$$

Therefore, since $d_2(t) - d_1(t) = d$ is independent of time, we know that the difference will always equal d for all instances of time. Thus, the separation between the cars will never change.