CODES CORRECTEURS D'ERREURSTIPE

MATHÉO THOMAS

CODES CORRECTEURS D'ERREURS

MATHÉO THOMAS

Comment assurer l'intégrité de données lors de leur transmission en étudiant et simulant leur émission et réception, à travers l'application de codes correcteurs d'erreur.

CODES CORRECTEURS D'ERREURS

MATHÉO THOMAS

Comment assurer l'intégrité de données lors de leur transmission en étudiant et simulant leur émission et réception, à travers l'application de codes correcteurs d'erreur.

- I. PRINCIPE DES CODES CORRECTEURS D'ERREURS
- II. CODE DE HAMMING
- III. SIMULATION

Distance de Hamming.

Distance de Hamming

Soient
$$m=m_1\ldots m_n,\ m'=m'_1\ldots m'_n\in\mathbb{F}_2^n$$
,

$$\delta(m,m')=\sum_{i=1}^n(m_i\oplus m'_i)$$

Distance de Hamming.

Distance de Hamming

Soient $m = m_1 \dots m_n, \ m' = m'_1 \dots m'_n \in \mathbb{F}_2^n$,

$$\delta(m,m')=\sum_{i=1}^n(m_i\oplus m'_i)$$

Boule de Hamming

Soient m un mot et t représentant le nombre d'erreurs,

$$\mathcal{B}_{H}(m,t) = \{ m' \in \mathbb{F}_2^n \mid \delta(m,m') \le t \}$$

Codes.

Code binaire

Un code binaire dont un mot de longueur k est codé en un mot de longueur n est une partie C de \mathbb{F}_2^n , noté C(n,k).

Codes.

Code binaire

Un code binaire dont un mot de longueur k est codé en un mot de longueur n est une partie C de \mathbb{F}_2^n , noté C(n,k).

Code linéaire

C est linéaire si et seulement si $\forall m, m' \in C, m \oplus m' \in C$.

Codes.

Code binaire

Un code binaire dont un mot de longueur k est codé en un mot de longueur n est une partie C de \mathbb{F}_2^n , noté C(n,k).

Code linéaire

C est linéaire si et seulement si $\forall m, m' \in C, m \oplus m' \in C$.

Code parfait

C(n, k, t) est parfait si et seulement si les boules de Hamming de rayon t forment une partition de l'ensemble des codes.

Encodage et décodage.

Matrice génératrice

Encodage : φ injective telle que $C = \operatorname{Im}(\varphi)$. Représentable matriciellement par $\varphi(m) = mG$, où G de la forme $G = (I_k|B)$, avec G matrice à G lignes et G notation.

Encodage et décodage.

Matrice génératrice

Encodage : φ injective telle que $C = \operatorname{Im}(\varphi)$. Représentable matriciellement par $\varphi(m) = mG$, où G de la forme $G = (I_k|B)$, avec G matrice à G lignes et G colonnes.

Matrice de contrôle

On pose $H = (-B^T | I_{n-k})$ si $G = (I_K | B)$. Alors $\forall m \in C$, $Hm^T = 0$ et $HG^T = 0$. H est la matrice de contrôle de C si C = Ker(H).

Encodage et décodage.

Matrice génératrice

Encodage : φ injective telle que $C = \operatorname{Im}(\varphi)$. Représentable matriciellement par $\varphi(m) = mG$, où G de la forme $G = (I_k|B)$, avec B matrice à k lignes et n - k colonnes.

Matrice de contrôle

On pose $H = (-B^T|I_{n-k})$ si $G = (I_K|B)$. Alors $\forall m \in C$, $Hm^T = 0$ et $HG^T = 0$. H est la matrice de contrôle de C si C = Ker(H).

There is a matrice at a small at

Syndrome

Soit $m \in \mathbb{F}_2^n$, $s = Hm^T$ est le syndrome de m.

Exemple simple

$$G = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}, H = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

m = (10). Le mot codé $w = mG = (10)\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} = (1010)$.

Erreur en deuxième position : w' = (1110).

Syndrome de
$$w' : s = Hw'^T = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

s deuxième colonne de H, erreur en deuxième position.

II. CODAGE DE HAMMING

Distance minimale

La distance minimale δ_C d'un code C est

$$\delta_{\mathsf{C}} = \min\{\delta(\mathsf{m},\mathsf{m}') \mid (\mathsf{m},\mathsf{m}' \in \mathsf{C}^{\mathsf{2}},\mathsf{m} \neq \mathsf{m}')\}$$

Distance minimale

La distance minimale δ_C d'un code C est

$$\delta_{\mathcal{C}} = \min\{\delta(m, m') \mid (m, m' \in \mathcal{C}^2, m \neq m')\}$$

Code de Hamming

Soit r = n - k.

Un code de Hamming est un code de paramètres $(2^r - 1, 2^r - r - 1, \delta_C)$, linéaire et parfait.

```
Soit r=4, étudions C(15, 11, 4).

m=b_1b_2b_3b_4b_5b_6b_7b_8b_9b_{10}b_{11} \in \mathbb{F}_2^{11}, \varphi(m)=b_1b_2b_3b_4b_5b_6b_7b_8b_9b_{10}b_{11}p_1p_2p_3p_4,
```

Prenons m = (10010101111).

Alors w = mG = (10010101111|0111).

Modifions le septième bit : w' = (100101111110111).

Alors
$$s = Hw^{T} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
: septième colonne de H .

 $\begin{cases} p_1 = b_1 \oplus b_2 \oplus b_4 \oplus b_5 \oplus b_7 \oplus b_9 \oplus b_{11} \\ p_2 = b_1 \oplus b_3 \oplus b_4 \oplus b_6 \oplus b_7 \oplus b_{10} \oplus b_{11} \\ p_3 = b_2 \oplus b_3 \oplus b_4 \oplus b_8 \oplus b_9 \oplus b_{10} \oplus b_{11} \\ p_4 = b_5 \oplus b_6 \oplus b_7 \oplus b_8 \oplus b_9 \oplus b_{10} \oplus b_{11} \end{cases}$

III. SIMULATION

Étapes:

- 1. Convertir le message alphanumérique en message binaire.
- 2. Coder le message selon le code de Hamming.
- 3. Convertir le message en un signal "analogique".
- 4. Perturber le signal : inversion de bits + bruit.
- 5. Convertir le signal en message binaire.
- 6. Corriger le message.

Étape	Résultat
Message initial	Hello, World!
Conversion binaire	0100 10000001
Codage de Hamming	0100101 100011010001111

Étape	Résultat
Message initial	Hello, World!
Conversion binaire	0100 10000001
Codage de Hamming	0100101 100011010001111

Étape	Résultat
Message perturbé binaire	0110101100011010011011
Message corrigé	0100101 100011010001111
Conversion alphanumérique	Hello, World!

Étape	Résultat
Message perturbé binaire	0110101100011010011011
Message corrigé	0100101 100011010001111
Conversion alphanumérique	Hello, World!

RÉFÉRENCES

MARC CHAUMONT.

CODES CORRECTEURS D'ERREURS.

https://www.lirmm.fr/~chaumont/download/cours/ codescorrecteur/01_codes_correcteurs_d%27erreurs_ 1_transparent_par_page.pdf.

ÉTIENNE DURIS.

SIGNALISATION, CODAGE, CONTRÔLE D'ERREURS. http://igm.univ-mlv.fr/~duris/RESEAU/L3/ L3-phyCodage-20092010.pdf.

JEAN DUPUY EMMY DUCLOS.

CODES CORRECTEURS : GARDER LES ERREURS À DISTANCE. https://tangente-mag.com/article.php?id=6715.

Code (source : Tangente)

Code parfait (source : Tangente)

Affichage du programme

simulation.py

```
1 ...
2 15643 - THOMAS Mathéo
3 TIPE - Code correcteur d'erreur
5 Simulation de la transmission d'un signal subissant une perturbation
 7
 8 ##########
9 # IMPORTS #
10 ##########
11 import numpy as np
12 import matplotlib.pyplot as plt
13 import random
14 import scipy.fft as sfft
15
16 ######
17 # DAC #
18 #######
19 treshold = 0.5
21 def alphaToBinary(msg):
                              # convertit un message alphanumérique en binaire (code ASCII)
22
       n = len(msq)
23
       res = ''
24
      for i in range(n):
           res += (f'{ord(msg[i]):08b}')
26
       return res
27
28
   def binaryToAnalog(msg): # crée un signal temporel à partir d'un message binaire (1 -> 1 in binary, -1 -> 0 in binary)
29
       N = 10*len(msq)
30
       n = len(msq)
       tab = np.linspace(0,0, N)
31
32
       cut = 0
33
       for i in range(n):
34
           #if i % 8 == 0:
35
           # cut += 10
```

```
for i in range(10):
36
37
               if msq[i] == "1":
38
                   tab[10*i+j+cut] = 1
39
               else:
40
                   tab[10*i+j+cut] = -1
41
        return tab
42
43
   def alphaToAnalog(m): # conversion alphanumérique - 'analogique'
44
       return binaryToAnalog(alphaToBinary(m))
45
46
47
   def binaryToAlpha(msg):
                               # convertit un message binaire en alphanumérique (code ASCII)
48
       res2 = ""
49
       n = len(msa)
50
       for i in range(n//8):
51
           res1 = 0
52
          n = 8
53
           for j in range(8):
54
               res1 += 2**(n-1)*int(msg[j+8*i])
55
               n -= 1
56
           res2 += chr(res1)
57
       return res2
58
59
   def analogToBinary(tab): # convertit un signal temporel en binaire (1 -> 1 en binaire, -1 -> 0 en binaire)
       N = len(tab)
60
61
       i = 1
       res = ""
62
63
       while i < N:
64
           if tab[i] >= treshold:
65
               res += "1"
66
          else:
67
               res += "0"
68
           i += 10
69
        return res
70
   def analogToAlpha(tab): #conversion 'analogique' - alphanumérique
71
72
       return binaryToAlpha(analogToBinary(tab))
73
74
```

```
75 ##########
 76 # HAMMING #
 77 ##########
 78 def add(x, y):
                                 # XOR
 79
        if x == y:
 80
             return '0'
 81
        else:
 82
             return '1'
 83
 84
     def encode(msg):
                                 # calcule les bits de parité pour encoder msg
 85
        msq += add(add(msq[0], msq[1]), msq[3])
        msq += add(add(msq[0], msq[2]), msq[3])
 86
 87
        msg += add(add(msg[1], msg[2]), msg[3])
 88
         return msg
 89
 90 def encoder(msq):
 91
         res = ''
 92
         chunks, chunk_size = len(msg), 4
 93
        m = [ msq[i:i+chunk size] for i in range(0, chunks, chunk size) ]
 94
         for i in range(len(msq)//4):
 95
             res += encode(m[i])
 96
         return res
 97
 98
     def opp(msq. i):
                                 # inverse le bit de msg en position i
 99
         l = list(msq)
100
        if U[i] == '1':
            l[i] = '0'
101
102
         else:
             U(i) = '1'
103
104
         return "".join(l)
105
106 def decode(msq):
                                 # calcule et compare les bits de parité, et modifie en conséquence msq pour le corriger
107
        w4 = add(add(msq[0], msq[1]), msq[3])
108
        w5 = add(add(msg[0], msg[2]), msg[3])
        w6 = add(add(msq[1], msq[2]), msq[3])
109
110
        if w4 != msq[4] and w5 != msq[5] and w6 != msq[6]:
111
112
            # print("msq[3] false")
113
             return opp(msg. 3)
```

```
114
        elif w4 != msq[4] and w5 != msq[5]:
115
             # print("msg[0] false")
116
             return opp(msq, 0)
117
        elif w4 != msg[4] and w6 != msg[6]:
118
             # print("msq[1] false")
119
             return opp(msq, 1)
        elif w5 != msg[5] and w6 != msg[6]:
120
121
             # print("msq[2] false")
             return opp(msg, 2)
122
        elif w4 != msq[4]:
123
124
            # print("msq[4] false")
125
             return opp(msg. 4)
        elif w5 != msq[5]:
126
127
            # print("msq[5] false")
             return opp(msg. 5)
128
129
        elif w6 != msq[6]:
130
             # print("msg[6] false")
131
             return opp(msq, 6)
132
         # print("msg correct")
133
         return msa
134
135 def decoder(msq):
136
         res = ''
137
         chunks, chunk size = len(msq), 7
138
        m = [ msg[i:i+chunk_size] for i in range(0, chunks, chunk_size) ]
        for i in range(len(msg)//7):
139
140
             res += (decode(m[i]))[0:4]
141
         return res
142
143 def perturb(msg):
                              # inverse un bit de msg au hasard
         r = random.randint(0, len(msg))
144
145
        print ("bit modifié :", r)
         return opp(msg. r)
146
147
148 def perturbAnalog(tab):
         r = (random.randint(0, len(tab)))//10
149
150
        print("r : ", r)
151
        for i in range(10):
152
            if (tab[r*10 + i] == 1):
```

```
153
                 tab[(r*10)+i] = -1
154
            else:
155
                 tab[(r*10)+i] = 1
156
         return tab
157
158
    def perturbAnalogMulti(tab):
159
         print("perturbations : ", len(tab)//200)
160
         for i in range(len(tab)//200):
161
             tab = perturbAnalog(tab)
162
         return tab
163
164
     def perturbAnalogMultiEvenlv(tab):
165
         for j in range((len(tab))//140):
166
             r = random.randint(j*14, (j+1)*14)
167
             for i in range(10):
168
                 if (tab[r*10 + i] == 1):
169
                     tab[(r*10)+i] = -1
170
                 else:
171
                     tab[(r*10)+i] = 1
172
         return tab
173
174 def fft(t. s):
                                 # renvoie la décomposition en série de fourier du signal s où f est un tableau de fréquences
     et a est un tableau d'amplitudes complexes décrivant le signal # Paramètres : t : tab[float], points - s : tab[float], le
     signal s evalué en tous les points de t
175
        N, fe = len(t), 1/(t[1]-t[0])
176
         a = sfft.fft(s)
         f = sfft.fftfreq(N, 1/fe)
177
178
         return f. a
179
180
181 ###############
182 # EXECUTION #
183 ############
184 # 1. Message initial
185 m = "Hello, World !"
186 print("Message initial: ". m)
187 atb = alphaToBinary(m)
188 print("Message converti en binaire : ", atb)
189
190 # 2. Codage du message avec le code de Hamming
```

```
191 encodemsg = encoder(atb)
192 print("Message encodé : ", encodemsg)
193
194 # 3. Conversion numérique-analogique
195 analogmsg = binaryToAnalog(encodemsg)
196
197 plt.figure(1)
198 plt.title("Signal analogique émis")
199 plt.xlabel("Temps")
200 plt.vlabel("Amplitude")
201
202 plt.plot(analogmsg)
203
204 # 4. Perturbation
205 # analogmsg = perturbAnalog(analogmsg)
206 # analogmsg = perturbAnalogMulti(analogmsg)
207 analogmsg = perturbAnalogMultiEvenly(analogmsg)
                                                       # Ajout d'erreurs sur les bits (inversion)
208 plt.plot(analogmsg)
209 plt.legend(["Signal initial", "Signal perturbé"], loc = "upper right")
210
211
    analogmsqNoise = analogmsq + np.random.normal(0, .1, len(analogmsq)) # Ajout de bruit sur tout le spectre
212
213 plt.figure(2)
214 plt.title("Signal analogique recu")
215 plt.xlabel("Temps")
216 plt.vlabel("Amplitude")
217 plt.plot(analogmsqNoise)
218
219 x = np.linspace(0, 1, len(analogmsq))
220
221 plt.figure(3)
222 plt.title("Transformée de Fourier (image agrandie)")
223 plt.xlabel("Fréquence")
224 plt.vlabel("Amplitude")
225 f1, an = fft(x, analogmsqNoise)
226 f2, a = fft(x, analogmsg)
227 plt.plot(f2, np.abs(a), f1, np.abs(an))
228 # plt.xlim(left=0)
229 plt.xlim(left=100, right =150)
```