

Ecole Nationale des Sciences Appliquées de Tanger

CONTRÔLE CONTINU : ÉLÉMENTS D'ÉLECTRONIQUE

Durée: 2H

2016-2017

Excercice 1:

On considère les quadripôles Q_T et Q_{II} de la figure 1. Notez bien qu'il faut distinguer entre 2 majuscule lors de présentation des résultats.

Figure 1: Le quadripôle Q_T a) et le quadripôle équivalent Q_D b)

- 1. Déterminer les paramètres impédances, [Z]_T, du quadripôle Q_T de la figure 1-a.
- 2. Déterminer les paramètres impédances, $[Z]_\Pi$, du quadripôle Q_Π de la figure 1-b.
- 3. Trouver les trois relations $\eta_{j_1,j_2,1,2,3} = f(Z_1,Z_2,Z_3)$ pour que $[Z]_T = [Z]_H$. Conclure.

Excercice 2:

On propose le filtre de la figure 2

- 1. Quel est le degré du filtre proposé ?
- Par une analyse rapide, déterminer le comportement fréquentiel du filtre.
- 3. Calculer la fonction de transfert $\underline{H}(j\omega) = \frac{V_{\perp}}{V}$
- Tracer les diagrammes de Bode du filtre. Conclure.

Figure 2: filtre à étudier $C = 10 \mu F$, $R_1 = 1 \text{ K}\Omega$ et $R_2 = 111.11\Omega$

Excercice 3:

Soit le circuit de la figure 3; la tension d'entée est supposé sinusoïdale ;

 $V_e = E_M \sin(\omega t)$

- On suppose au départ que la diode est idéale (() lète approximation):
 Déterminer la tension de sortie, V_s, et tracer la
- Refaire la même question on tenant compte de la tension seuil et la résistance dynamique de la diode (V_{seuil}, R_d) (3^{ième} approximation).

Figure 3: Circuit à diode

Excercice

Soit le circuit à base du transistor bipolaire NPN présenté sur la figure 4. Il s'agit du transistor 2N1711, dont les caractéristiques sont données sur le document réponse 5. On donne: $V_{BB} = 1.25 \, V_{c} \, R_{B} = 125 \, V_{c} \, R_{C} = 1$

Figure 4: Circuit à base du transistor bipolairé

Étude statique

- 1. De quel type de montage s'agit-il? Quelle sont les propriétés d'un tel montage?
- 2. Quel sont les rôles des condensateurs Cg et CL?
- 3. Donner le schéma équivalent statique du montage.
- 4. Déterminer l'équation de la droite d'attaque, tracer la sur le document réponse 5 et placer alors le point de fonctionnement d'entrée P_{FE}. Quelles sont les coordonnées I_{B0} et V_{BE0} du point P_{FE}.
- 5. Sachant que le coefficient d'amplification en courant, du transistor 2N1711, β = 150, tracer caractéristique de transfert en courant I_C = $f(I_B)$.
- Déterminer l'équation de la droite de charge, tracer la sûr le document réponse 5 et placer alors le point de fonctionnement de sortie P_{FS}. Quelles sont les coordonnées I_{CO} et V_{CEO} du point P_{FS}.

Étude dynamique

- 1. Donner le schéma équivalent du montage aux basses fréquences petits signaux.
- 2. Calculer l'amplification en tension A_V , sachant que $h_{12}=h_{22}=0$.

$$\begin{bmatrix}
Z_{1} \\ Q_{2} \\
\end{bmatrix} = \begin{bmatrix}
R_{1} & R_{2} \\
R_{2} & R_{2} \\
R_{3} \\
\end{bmatrix} = \begin{bmatrix}
R_{1} & R_{2} \\
R_{3} & R_{2} \\
R_{4} & R_{2} \\
R_{5} & R_{5} \\
R_{5}$$

Diviseur de Tension: Pen + Re = Ra/jew + Re/ Ra+ Jew = RE (1+iR, cw)

Re+ RA+jBARE CW. H = 1 + j w = ow = 1 = 100 M53. · Hz = 1+j w . wz = Risher 10 Nd 4/ diagramme de Rade etude de Hai

Etude Statique: 'il s'agit de montage Emetteur commun. De l'oxentation est au misseau de Base, et Us sur collecten. las proprietos d'un tel montage - rondre le transtor un quel pole de Riaison, louis role est de réparen les grandeur continu des alternatifs. o en statique Goodfal N Ja , regime deparamoque Gosetico ~ _00 3/ le shoma equivalent: w=0. regime Stations 2got2 _ so ++ => 1 4 - la droite d'attaque. en cherche en et Bra ren je l'entre de transcistot. (Se calcule à vide, I =0)

Aroite d'attaque. IB=6 (VBE) loi des mail. VBB = I6 R6+DBE It = UBB-VBE 125- UBE 15000. equation d'une d'este sepont -1-2000 on represente le droite lept de parch onoment est l'intersection de diroite d'attagne avec I6=6 (Pe) 5/ Ic= BIB = (SOIB c'est une equation d'une diroite deponte 150. Passe par (Ic=0, Ig=0) 6/ l'équation de Ralage. E Vcc = Vcc - VcE 12: Vec " equation d'une droite de

los cordonnés de PFS est l'intersection (26) de la droite de charge et Ic=f (Ve). (determiné à partide Iso). 1 pour los signaux ++ = le montage devient. (gn'elimine les sources contino) de circuit dervient: 2/- caladows No. le boursistans est equipolent à (petit sirgnal.) un quadripole dert In représentation hypride Ube = Pan Ib + Pale Uce Ic = healb . healter = ona. Prez = D. le circuit devient. I = Per I 6 = I 6 - Per I = 1

