PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11330554 A

(43) Date of publication of application: 30.11.99

(51) Int. CI

H01L 33/00 H01S 3/18

(21) Application number: 11062589

(22) Date of filing: 10.03.99

(30) Priority: 12.03.98 JP 10 60233

(71) Applicant:

NICHIA CHEM IND LTD

(72) Inventor:

MITANI TOMOJI

NAKAGAWA YOSHINORI TAKAGI HIRONORI

(54) NITRIDE SEMICONDUCTOR ELEMENT

(57) Abstract:

PROBLEM TO BE SOLVED: To raise the output of a nitride semiconductor element and also to raise the luminous efficiency of the element by a method wherein the film thickness of at least either of a first nitride semiconductor layer containing In and a second nitride semiconductor layer having a composition different from that of the first nitride semiconductor layer is formed in a film thickness of a specified value or lower.

SOLUTION: An N side nitride semiconductor layer, which is the N side nitride semiconductor layer on one side of P side and N side nitride semiconductor layers sandwiching an active layer 7 between them and is located under the lower part of the layer 7, has an N side multilayer film layer 6 formed by stacking a first nitride semiconductor layer containing In and a second nitride semiconductor layer having a composition different from that of the first nitride semiconductor layer. The film thickness of at least either of the first nitride semiconductor layer and the second nitride semiconductor layer is formed in a film thickness of 100 angstroms or thinner. Thereby, a thin film layer of the N side nitride semiconductor layer is formed in a film thickness thinner than an elastic critical film thickness to modify the crystal of the thin film layer and the crystallizability of the first or second nitride semiconductor layer, which is stacked on the thin film

layer, is modified. Accordingly, as the crystallizability of the whole multilayer film layer is modified, the output of a nitride semiconductor element having the active layer between the P side and N side nitride semiconductor layers can be raised.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-330554

(43)公開日 平成11年(1999)11月30日

(51) Int.Cl. ⁶	徽別記号	FΙ	
H01L 33/00		H01L 33/00	С
H01S 3/18	673	H01S 3/18	673

審査請求 未請求 請求項の数16 OL (全 10 頁)

	² 11-62589 1年(1999) 3月10日	(71)出顧人	000226057 日亜化学工業株式会社	
(22)出顧日 平成1	1年(1999) 3月10日		日亜化学工業株式会社	
(22)出顧日 平成1	1年(1999) 3月10日	ı		
		1	徳島県阿南市上中町岡491番地100	
		(72)発明者	三谷 友次	
(31)優先権主張番号 特願平	² 10-60233	(10)	徳島県阿南市上中町岡491番地100	日亜化
				H 3E/IL
	1998) 3月12日	()	学工業株式会社内	
(33)優先権主張国 日本	(JP)	(72)発明者	中河義典	
			徳島県阿南市上中町岡491番地100	日亜化
			学工業株式会社内	
		(72)発明者	高木 宏典	
			徳島県阿南市上中町岡491番地100	日亜化
			学工業株式会社内	

(54) 【発明の名称】 窒化物半導体素子

(57)【要約】

【目的】 主としてLED、LD等の窒化物半導体素子の出力を向上させると共に、Vf、関値を低下させて素子の発光効率を向上させる。

【構成】 n側の窒化物半導体層と、p側の窒化物半導体層との間に活性層を有する窒化物半導体素子において、前記n側の窒化物半導体層には、Inを含む第1の窒化物半導体層と、その第1の窒化物半導体層と異なる組成を有する第2の窒化物半導体層とが積層されたn側多層膜層を有し、前記第1の窒化物半導体層、または前記第2の窒化物半導体層の内の少なくとも一方の膜厚が100オングストローム以下である。特に多層膜を超格子構造とすることにより活性層の結晶性が良くなるので素子の効率が向上する。

【特許請求の範囲】

【請求項1】 n側の窒化物半導体層と、p側の窒化物 半導体層との間に活性層を有する窒化物半導体素子において、前記n側の窒化物半導体層には、Inを含む第1 の窒化物半導体層と、その第1の窒化物半導体層と異なる組成を有する第2の窒化物半導体層とが積層されたn側多層膜層を有し、前記第1の窒化物半導体層、または前記第2の窒化物半導体層の内の少なくとも一方の膜厚が100オングストローム以下であることを特徴とする窒化物半導体素子。

【請求項2】 前記第1の窒化物半導体層がI n x G a 1-x N (0 < X < 1) よりなり、前記第2の窒化物半導体層が $I n y G a 1-y N (0 \le Y < 1 X < X)$ よりなることを特徴とする請求項1に記載の窒化物半導体素子。

【請求項3】 前記第1の窒化物半導体層または前記第2の窒化物半導体層の内の少なくとも一方の膜厚が、近接する第1の窒化物半導体層または第2の窒化物半導体層同士で互いに異なることを特徴とする請求項1または2に記載の窒化物半導体素子。

【請求項4】 前記第1の窒化物半導体層、または前記 20 導体素子。 第2の窒化物半導体層の内の少なくとも一方のIII族元素の組成が、近接する第1の窒化物半導体層または第2 の窒化物半導体層の同一III族元素の組成同士で互いに 異なることを特徴とする請求項1または2に記載の窒化 いずれか1 物半導体素子。

【請求項5】 前記n側多層膜層が活性層に接して形成されていることを特徴とする請求項1乃至4の内のいずれか1項に記載の窒化物半導体素子。

【請求項6】 前記第1の窒化物半導体層および第2の 窒化物半導体層がアンドープであることを特徴とする請 30 求項1乃至5の内のいずれか1項に記載の窒化物半導体 素子。

【請求項7】 前記第1の窒化物半導体層または第2の 窒化物半導体層のいずれか一方に、n型不純物がドープ されていることを特徴とする請求項1乃至5の内のいず れか1項に記載の窒化物半導体素子。

【請求項8】 前記第1の窒化物半導体層および第2の 窒化物半導体層の両方にn型不純物がドープされている ことを特徴とする請求項1乃至5の内のいずれか1項に 記載の窒化物半導体素子。

【請求項9】 前記 p 側の窒化物半導体層には、A 1 を含む第3の窒化物半導体層と、第3の窒化物半導体と異なる組成を有する第4の窒化物半導体層とが積層されてなる p 側多層膜層を有し、前記第3の窒化物半導体層、または前記第4の窒化物半導体の層の内の少なくとも一方の膜厚が100オングストローム以下であることを特徴とする請求項1乃至8の内のいずれか1項に記載の窒化物半導体素子。

【請求項10】 前記第3の窒化物半導体層がAlaGal-aN(0<a≤1)よりなり、前記第4の窒化物半

導体層が I nb G a1-b N (0 ≤b<1、b<a) よりなることを特徴とする請求項 9 に記載の窒化物半導体素子。 【請求項 1 1】 前記第 3 の窒化物半導体層、または前記第 4 の窒化物半導体層の内の少なくとも一方の膜厚が、近接する第 3 の窒化物半導体層または第 4 の窒化物半導体層同士で互いに異なることを特徴とする請求項 9または 1 0 に記載の窒化物半導体素子。

【請求項12】 前記第3の窒化物半導体層、または前記第4の窒化物半導体層の内の少なくとも一方のIII族元素の組成が、近接する第3の窒化物半導体層または第4の窒化物半導体層の同一III族元素の組成同士で互いに異なることを特徴とする請求項9または10に記載の窒化物半導体素子。

【請求項13】 前記p側多層膜層が活性層に接して形成されていることを特徴とする請求項9乃至12の内のいずれか1項に記載の窒化物半導体素子。

【請求項14】 前記第3の窒化物半導体層および第4 の窒化物半導体層がアンドープであることを特徴とする 請求項9乃至13の内のいずれか1項に記載の窒化物半 導体妻子。

【請求項15】 前記第3の窒化物半導体層または第4の窒化物半導体層のいずれか一方に、p型不純物がドープされていることを特徴とする請求項9乃至13の内のいずれか1項に記載の窒化物半導体素子。

【請求項16】 前記第3の窒化物半導体層および第4 の窒化物半導体層の両方にp型不純物がドープされてい ることを特徴とする請求項9乃至13の内のいずれか1 項に記載の窒化物半導体素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、発光ダイオード(LED)、レーザダイオード(LD)、太陽電池、光センサー等の発光素子、受光素子、あるいはトランジスタ、パワーデバイス等の電子デバイスに使用される窒化物半導体(例えば、I nx A ly G a 1-x-y N、 $0 \le X$ 、 $0 \le Y$ 、 $X + Y \le 1$)素子に関する。

[0002]

【従来の技術】窒化物半導体は高輝度純緑色発光LED、青色LEDとして、既にフルカラーLEDディスプ40レイ、交通信号灯、イメージスキャナー光源等の各種光源で実用化されている。これらのLED素子は基本的に、サファイア基板上にGaNよりなるバッファ層と、SiドープGaNよりなるの側コンタクト層と、単一量子井戸構造、若しくは多重量子井戸構造のInGaN層を包含する活性層と、MgドープAlGaNよりなる即側クラッド層と、MgドープGaNよりなる即側クラッド層と、MgドープGaNよりなる即間のラッド層とが順に積層された構造を有しており、20mAにおいて、発光波長450nmの青色LEDで5mW、外部量子効率9.1%、520nmの緑色LEDで3m

50 W、外部量子効率6.3%と非常に優れた特性を示す。

【0003】また、本出願人は窒化物半導体基板の上 に、活性層を含む窒化物半導体レーザ素子を作製して、 世界で初めて室温での連続発振1万時間以上を達成した ことを発表した (ICNS'97 予稿集, October 27-31, 1997, P444-446、及びJpn.J.Appl.Phys.Vol.36(1997) pp.L156 8-1571, Part2, No. 12A, 1 December 1997) .

【0004】このように窒化物半導体発光デバイスには InGaNよりなる井戸層を有する単一量子井戸構造、 若しくは多重量子井戸構造の活性層を有するダブルヘテ ロ構造が採用されている。しかし活性層を多重量子井戸 10 構造とすると、単一量子井戸構造のものに比較して、活 性層全体の膜厚が厚いため、縦方向の直列抵抗が高くな り、例えばLED素子ではVf (順方向電圧)が高くな る傾向にある。

【0005】Vfを低下させる技術とほぼ同じ技術内容 として、例えば特開平9-298341号に活性層より も上にある p 側の光導波層、コンタクト層等を I n A l GaN層を含む超格子層とするレーザ素子が記載されて いる。この技術はp型の窒化物半導体層をInを含む窒 化物半導体層を含む超格子構造とすることによって、p 層のキャリア濃度を増加させ、レーザ素子の閾値を低減 させようとするものである。しかし、現実にはInAl GaNのような4元混晶の窒化物半導体は結晶性が悪 く、またInを含む窒化物半導体はp型になりにくいた め、実際に素子を作製することは難しい傾向にある。

[0006]

【発明が解決しようとする課題】例えば、LED素子を 照明用光源、直射日光の当たる屋外ディスプレイ等に使 用するためには、Vfが低下した発光効率の高い素子が 求められている。またLDの閾値を低下させて長寿命に 30 し、光ピックアップ等の光源に実用化するためには、よ りいっそうの改良が必要である。本発明はこのような事 情を鑑みて成されたものであって、その目的とするとこ ろは、主としてLED、LD等の窒化物半導体素子の出 力を向上させると共に、Vf、閾値を低下させて素子の 発光効率を向上させることにある。発光効率が向上する ことにより、ひいては受光素子等の窒化物半導体を用い た他の電子デバイスの効率も向上させることができる。

[0007]

子は、n側の窒化物半導体層と、p側の窒化物半導体層 との間に活性層を有する窒化物半導体素子において、前 記n側の窒化物半導体層には、Inを含む第1の窒化物 半導体層と、その第1の窒化物半導体層と異なる組成を 有する第2の窒化物半導体層とが積層されたn側多層膜 層を有し、前記第1の窒化物半導体層、または前記第2 の窒化物半導体層の内の少なくとも一方の膜厚が100 オングストローム以下であることを特徴とする。好まし くは第1の窒化物半導体層および第2の窒化物半導体層 の両方を100オングストローム以下、さらに好ましく 50

は70オングストローム以下、最も好ましくは50オン グストローム以下にする。このように膜厚を薄くするこ とにより、多層膜層が超格子構造となって、多層膜層の 結晶性が良くなるので、出力が向上する傾向にある。な お、活性層は少なくともInを含む窒化物半導体、好ま しくはInGaNよりなる井戸層を有する単一量子井戸 構造、若しくは多重量子井戸構造とすることが望まし

【0008】第1の窒化物半導体層はInxGaュ-xN (0 < X < 1) とし、第2の窒化物半導体層はInvGa 1-YN (0≦Y<1、Y<X)、好ましくはGaNとするこ とが最も好ましい。

【0009】さらに、前記第1の窒化物半導体層または 前記第2の窒化物半導体層の内の少なくとも一方の膜厚 が、近接する第1の窒化物半導体層または第2の窒化物 半導体層同士で互いに異なることを特徴とする。即ち、 第1の窒化物半導体層または第2の窒化物半導体層を複 数層積層した多層膜層を形成した場合に、第2の窒化物 半導体層(第1の窒化物半導体層)を挟んだ第1の窒化 物半導体層(第2の窒化物半導体層)の膜厚が互いに異 なることを意味する。

【0010】さらにまた、前記第1の窒化物半導体層、 または前記第2の窒化物半導体層の内の少なくとも一方 のIII族元素の組成が、近接する第1の窒化物半導体層 または第2の窒化物半導体層の同一口族元素の組成同 士で互いに異なることを特徴とする。即ち、第1の窒化 物半導体層または第2の窒化物半導体層を複数層積層し た多層膜層を形成した場合に、第2の窒化物半導体層

(第1の窒化物半導体層) を挟んだ第1の窒化物半導体 層(第2の窒化物半導体層)のIII族元素の組成比が互 いに異なることを意味する。

【0011】n側多層膜層は活性層と離間して形成され ていても良いが、最も好ましくは活性層に接して形成さ れているようにする。活性層に接して形成する方がより 出力が向上しやすい傾向にある。

【0012】また、本発明の第1の窒化物半導体層およ び第2の窒化物半導体層がアンドープであることを特徴 とする。アンドープとは意図的に不純物をドープしない 状態を指し、例えば隣接する窒化物半導体層から拡散に 【課題を解決するための手段】本発明の窒化物半導体素 40 より混入される不純物も本発明ではアンドープという。 なお拡散により混入される不純物は層内において不純物 **濃度に勾配がついていることが多い。**

> 【0013】第1の窒化物半導体層または第2の窒化物 半導体層のいずれか一方に、n型不純物がドープされて いてもよい。これは変調ドープと呼ばれるもので、変調 ドープすることにより、出力が向上しやすい傾向にあ る。なおn型不純物としては、Si、Ge、Sn、S等 のIV族、VI族元素を好ましく選択し、さらに好ましくは Si、Snを用いる。

【0014】また、第1の窒化物半導体層および第2の

20

窒化物半導体層の両方に n 型不純物がドープされていて もよい。n型不純物をドープする場合、不純物濃度は5 ×10²¹/cm³以下、好ましくは1×10²⁰/cm³以下に 調整する。5×10²¹/cm³よりも多いと窒化物半導体 層の結晶性が悪くなって、逆に出力が低下する傾向にあ る。これは変調ドープの場合も同様である。

【0015】さらに本発明の好ましい態様として、前記 p側の窒化物半導体層には、Alを含む第3の窒化物半 導体層と、第3の窒化物半導体と異なる組成を有する第 4 の窒化物半導体層とが積層されてなる p 側多層膜層を 有し、前記第3の窒化物半導体層、または前記第4の窒 化物半導体の層の内の少なくとも一方の膜厚が100オ ングストローム以下であることを特徴とする。好ましく は第3の窒化物半導体層、および第4の窒化物半導体層 の両方を100オングストローム以下、さらに好ましく は70オングストローム以下、最も好ましくは50オン グストローム以下にする。このように膜厚を薄くするこ とにより、多層膜層が超格子構造となって、多層膜層の 結晶性が良くなるので、出力が向上する傾向にある。

【0016】第3の窒化物半導体層はAlaGa1-aN (0 < a ≤ 1) とし、前記第4の窒化物半導体層はIn ь G а ı - ь N (0 ≤b< 1、b<a)、好ましくは G a N と する。

【0017】さらに、前記第3の窒化物半導体層、また は前記第4の窒化物半導体層の内の少なくとも一方の膜 厚が、近接する第3の窒化物半導体層または第4の窒化 物半導体層同士で互いに異なることを特徴とする。即 ち、第3の窒化物半導体層または第2の窒化物半導体層 を複数層積層した多層膜層を形成した場合に、第3の窒 化物半導体層 (第4の窒化物半導体層)を挟んだ第4の 窒化物半導体層(第3の窒化物半導体層)の膜厚が互い に異なることを意味する。

【0018】さらにまた、前記第3の窒化物半導体層、 または前記第4の窒化物半導体層の内の少なくとも一方 の川族元素の組成が、近接する第3の窒化物半導体層 または第4の窒化物半導体層の同一口族元素の組成同 士で互いに異なることを特徴とする。即ち、第3の窒化 物半導体層または第4の窒化物半導体層を複数層積層し た多層膜層を形成した場合に、第3の窒化物半導体層 層(第3の窒化物半導体層)のIII族元素の組成比が互

【0019】p側多層膜層は、n側多層膜層と同じく活 性層と離間して形成されていても良いが、最も好ましく は活性層に接して形成されているようにする。活性層に 接して形成する方がより出力が向上しやすい傾向にあ

いに異なることを意味する。

【0020】また、本発明の第3の窒化物半導体層およ び第4の窒化物半導体層がアンドープであることを特徴 とする。p側の多層膜層をアンドープとする場合、その 膜厚は 0. 1 μ m以下にすることが望ましい。 0. 1 μ mよりも厚いと、活性層に正孔が注入されにくくなっ て、出力が低下しやすい傾向にある。なお、アンドープ の定義についてはn側多層膜層と同じであるので省略す

【0021】さらに第3の窒化物半導体層または第4の 窒化物半導体層のいずれか一方に、p型不純物がドープ されていてもよい。変調ドープすることにより、出力が 向上しやすい傾向にある。なおp型不純物としては、M g、Zn、Cd、Be、Ca等のII族元素を好ましく選 択し、好ましくは、Mg、Beを用いる。

【0022】また第3の窒化物半導体層および第4の窒 化物半導体層の両方にp型不純物がドープされていても よい。 p型不純物をドープする場合、不純物濃度は1× 10²²/cm³以下、好ましくは5×10²⁰/cm³以下に調 整する。1×10²²/cm³よりも多いと窒化物半導体層 の結晶性が悪くなって、出力が低下する傾向にある。こ れは変調ドープの場合も同様である。

[0023]

【発明の実施の形態】図1は本発明の一実施例に係るL ED素子の構造を示す模式的な断面図である。このLE D素子はサファイア基板1の上に、GaNよりなる第1 のバッファ層2、アンドープGaNよりなる第2のバッ ファ層3、SiドープGaNよりなるn側コンタクト層 4、アンドープGaN層よりなる第3のバッファ層5、 InGaN/GaN超格子構造よりなるn側多層膜層 6、InGaN/GaNよりなる多重量子井戸構造の活 性層7、AIGaN/GaN超格子構造よりなるp側多 層膜屬 8 、MgドープGaNよりなるp側コンタクト層 30 9が順に積層された構造を有する。

【0024】本発明の窒化物半導体素子では、図1に示 すように、活性層 7 を挟んで下部にある n 側窒化物半導 体層に、 I nを含む第1の窒化物半導体層と、その第1 の窒化物半導体層と異なる組成を有する第2の窒化物半 導体層とが積層されたn側多層膜層6を有している。n 側多層膜層において、第1の窒化物半導体層、第2の窒 化物半導体層はそれぞれ少なくとも一層以上形成し、合 計で3層以上、さらに好ましくはそれぞれ少なくとも2 層以上積層し、合計で4層以上積層することが望まし (第4の窒化物半導体層) を挟んだ第4の窒化物半導体 40 い。n側多層膜層が活性層に接して形成されている場 合、活性層の最初の層(井戸層、若しくは障壁層)と接 する多層膜層は第1の窒化物半導体層でも、第2の窒化 物半導体層いずれでも良く、n側多層膜層の積層順序は 特に問うものではない。なお、図1ではn側多層膜層 6 が、活性層7に接して形成されているが、この多層膜層 と活性層との間に、他のn型窒化物半導体よりなる層を 有していても良い。このn側多層膜層を構成する第1の 窒化物半導体層または第2の窒化物半導体層の少なくと も一方の膜厚を100オングストローム以下、好ましく 50 は70オングストローム以下、最も好ましくは50オン

グストローム以下とすることにより、薄膜層が弾性臨界 膜厚以下となって結晶が良くなり、その上に積層する第 1、若しくは第2の窒化物半導体層の結晶性が良くな り、多層膜層全体の結晶性が良くなるため、素子の出力 が向上する。

【0025】第1の窒化物半導体層はInを含む窒化物 半導体、好ましくは3元混晶の Inx Gai-x N (0 < X <1) とし、さらに好ましくはX値が0.5以下のInx Ga1-xN、最も好ましくはX値が0. 1以下のInxG a1-xNとする。一方、第2の窒化物半導体層は第1の 窒化物半導体層と組成が異なる窒化物半導体であれば良 く、特に限定しないが、結晶性の良い第2の窒化物半導 体を成長させるためには、第1の窒化物半導体よりもバ ンドギャップエネルギーが大きい2元混晶あるいは3元 混晶の窒化物半導体を成長させ、その中でもGaNとす ると、全体に結晶性の良い多層膜層が成長できる。従っ て最も好ましい組み合わせとしては、第1の窒化物半導 体層がX値が 0. 5以下の Inx Gai-x Nであり、第2 の窒化物半導体層がGaNとの組み合わせである。

【0026】好ましい態様として、第1および第2の窒 化物半導体層の膜厚を100オングストローム以下、好 ましくは70オングストローム以下、最も好ましくは5 0オングストローム以下にする。単一窒化物半導体層の 膜厚を100オングストローム以下とすることにより、 窒化物半導体単一層の弾性臨界膜厚以下となり、厚膜で 成長させる場合に比較して結晶性の良い窒化物半導体が 成長できる。また、両方を70オングストローム以下に することによって、多層膜層が超格子構造となり、この 結晶性の良い超格子構造の上に活性層を成長させると、 多層膜層がバッファ層のような作用をして、活性層が結 晶性よく成長できる。

【0027】さらにまた、第1、または前記第2の窒化 物半導体層の内の少なくとも一方の膜厚を、近接する第 1、または第2の窒化物半導体層同士で互いに異なるよ うにすることも好ましい。例えば第1の窒化物半導体層 をInGaNとし、第2の窒化物半導体層をGaNとし た場合、GaN層とGaN層との間のInGaN層の膜 厚を、活性層に接近するに従って次第に厚くしたり、ま た薄くしたりすることにより、多層膜層内部において屈 折率が変化するため、実質的に屈折率が次第に変化する 層を形成することができる。即ち、実質的に組成傾斜し た窒化物半導体層を形成するのと同じ効果が得られる。 このため例えばレーザ素子のような光導波路を必要とす る素子においては、この多層膜層で導波路を形成して、 レーザ光のモードを調整できる。

【0028】また、第1、または前記第2の窒化物半導 体層の内の少なくとも一方のIII族元素の組成を、近接 する第1または第2の窒化物半導体層の同一口族元素 の組成同士で互いに異なるようにすることも望ましい。 例えば、第1の窒化物半導体層をInGaNとし、第2 の窒化物半導体層をGaNとした場合、GaN層とGa N層との間の I n G a N層の I n 組成を活性層に接近す るに従って次第に多くしたり、また少なくしたりするこ とにより、前述の態様と同じく、多層膜層内部において 屈折率を変化させて、実質的に組成傾斜した窒化物半導 体層を形成することができる。なおIn組成が減少する に従い、屈折率は小さくなる傾向にある。

【0029】第1および第2の窒化物半導体層は両方と もアンドープでも良いし、両方にn型不純物がドープさ 10 れていても良いし、またいずれか一方に不純物がドープ されていてもよい。結晶性を良くするためには、アンド ープが最も好ましく、次に変調ドープ、その次に両方ド ープの順である。なお両方にn型不純物をドープする場 合、第1の窒化物半導体層のn型不純物濃度と、第2の 窒化物半導体層の n 型不純物濃度は異なっていても良

【0030】さらに本発明の態様では、p側窒化物半導 体層側に、図1に示すように、活性層7を挟んで上部に あるp側窒化物半導体層に、Alを含む第3の窒化物半 導体層と、その第3の窒化物半導体層と異なる組成を有 する第4の窒化物半導体層とが積層されたp側多層膜層 8を有している。p側多層膜層 8 において、n側の多層 膜層6と同様に第3の窒化物半導体層、第4の窒化物半 導体層それぞれ少なくとも一層以上形成し、合計で3層 以上、さらに好ましくはそれぞれ少なくとも2層以上積 層し、合計で4層以上積層することが望ましい。さら に、p側にも多層膜層を設ける場合、n側の多層膜層よ りも膜厚を薄くする方が、素子のVf、閾値が低下しや すくなる傾向にある。p側多層膜層が活性層に接して形 成されている場合、活性層の最終層(井戸層、若しくは 障壁層)と接するp側多層膜層は第3の窒化物半導体層 でも、第4の窒化物半導体層いずれでも良い。なお、図 1ではp側多層膜層 8が、活性層 7に接して形成されて いるが、この多層膜層8と活性層7との間に、他の窒化 物半導体よりなる層を有していても良い。

【0031】さらにまた、第3、または第4の窒化物半 導体層の内の少なくとも一方の膜厚を、近接する第3、 または第4の窒化物半導体層同士で互いに異なるように することも好ましい。例えば第3の窒化物半導体層をA 1GaNとし、第4の窒化物半導体層をGaNとした場 合、GaN層とGaN層との間のAlGaN層の膜厚 を、活性層に接近するに従って次第に厚くしたり、また 薄くしたりすることにより、多層膜層内部において屈折 率を変化させることができるため、実質的に屈折率が次 第に変化する層を形成することができる。即ち、実質的 に組成傾斜した窒化物半導体層を形成するのと同じ効果 が得られる。このため例えばレーザ素子のような光導波 路、光閉じ込め層を必要とする素子においては、この多 層膜層で導波路、閉じ込め層を兼用して、レーザ光のモ 50 ードを調整できる。

30

40

【0032】また、第3、または第4の窒化物半導体層の内の少なくとも一方のIII族元素の組成を、近接する第3、または第4の窒化物半導体層の同一III族元素の組成同士で互いに異なるようにすることも望ましい。例えば、第1の窒化物半導体層をA1GaNとし、第2の窒化物半導体層をGaNとした場合、GaN層とGaN層との間のA1GaN層のA1組成を活性層に接近するに従って次第に多くしたり、また少なくしたりすることにより、前述の態様と同じく、多層膜層内部において屈折率を変化させて、実質的に組成傾斜した窒化物半導体 10層を形成することができる。なおA1組成が増加するに従い、屈折率は小さくなる。従って目的に応じて、これら組成傾斜した層をp層側に配することができる。

【0033】第3の窒化物半導体層はA1を含む窒化物半導体、好ましくは3元混晶のA1aGa1-aN(0<X<1)とし、最も好ましくはa値が0.5以下のA1aGa1-aNとする。0.5を超えると結晶性が悪くなってクラックが入りやすい傾向にある。一方、第4の窒化物半導体層は第3の窒化物半導体層と組成が異なる窒化物半導体であれば良く、特に限定しないが、結晶性の良い第4の窒化物半導体を成長させるためには、第1の窒化物半導体よりもバンドギャップエネルギーが小さい2元混晶あるいは3元混晶の窒化物半導体を成長させ、その中でもGaNとすると、全体に結晶性の良い多層膜層が成長できる。従って最も好ましい組み合わせとしては、第3の窒化物半導体層がa値が0.5以下のA1aGa1-aNであり、第4の窒化物半導体層がGaNとの組み合わせである。

【0034】さらに、第3の窒化物半導体層の膜厚を100オングストローム以下、好ましくは70オングストローム以下、最も好ましくは50オングストローム以下にする。同様に第4の窒化物半導体層の膜厚も100オングストローム以下、好ましくは70オングストローム以下、最も好ましくは50オングストローム以下とする。このように単一窒化物半導体層の膜厚を100オングストローム以下とすることにより、窒化物半導体の弾性臨界膜厚以下となり、厚膜で成長させる場合に比較して結晶性の良い窒化物半導体が成長でき、また窒化物半導体層の結晶性が良くなるので、p型不純物を添加した場合にキャリア濃度が大きく抵抗率の小さいp層が得られ、素子のVf、閾値等が低下しやすい傾向にある。

【0035】第3の窒化物半導体層および第4の窒化物半導体層は両方ともアンドープでも良いし、両方に p型不純物がドープされていても良いし、またいずれか一方に p型不純物がドープされていてもよい。キャリア濃度の高い p層を得るには、変調ドープが最も好ましい。なお、先にも述べたようにアンドープとした場合にはその 膜厚は 0.1μm以下、好ましくは 700オングストローム以下、さらに好ましくは 500オングストローム以下にする。 0.1μmを超えると、アンドープ層の抵抗

値が高くなる傾向にあるからである。両方に p 型不純物をドープする場合、第3の窒化物半導体層の p 型不純物 濃度と、第4の窒化物半導体層の p 型不純物濃度は異なっていても良い。

[0036]

【実施例】 [実施例1] 図1を元に実施例1について説明する。サファイア (C面) よりなる基板1をMOVP Eの反応容器内にセットし、水素を流しながら、基板の温度を1050℃まで上昇させ、基板のクリーニングを行う。基板1にはサファイアC面の他、R面、A面を主面とするサファイア、その他、スピネル(MgA1204)のような絶縁性の基板の他、SiC(6H、4H、3Cを含む)、Si、ZnO、GaAs、GaN等の半導体基板を用いることができる。

【0037】(第1のバッファ層2)続いて、温度を510℃まで下げ、キャリアガスに水素、原料ガスにアンモニアとTMG(トリメチルガリウム)とを用い、基板1上にGaNよりなるバッファ層2を約200オングストロームの膜厚で成長させる。なおこの低温で成長させる第1のバッファ層2は基板の種類、成長方法等によっては省略できる。

【0039】(n側コンタクト層4)続いて1050℃で、同じく原料ガスにTMG、アンモニアガス、不純物ガスにシランガスを用い、Siを3×10¹⁹/cm³ドープしたGaNよりなるn側コンタクト層を3μmの膜厚で成長させる。このn側コンタクト層4も第2のバッファ層3と同様に、InxAlyGa1-x-yN(0≤X、0≤Y、X+Y≤1)で構成でき、その組成は特に問うものではないが、好ましくはGaN、X値が0.2以下のAlxGa1-xNとすると結晶欠陥の少ない窒化物半導体層が得られやすい。膜厚は特に問うものではないが、n電極を形成する層であるので1μm以上の膜厚で成長させることが望ましい。さらにn型不純物濃度は窒化物半導体の結晶性を悪くしない程度に高濃度にドープすることが望ましい。

【0040】 (第3のバッファ層5) 次にシランガスの

50

30

みを止め、1050℃で同様にしてアンドープGaNよ りなる第3のバッファ層5を100オングストロームの 膜厚で成長させる。この第3のバッファ層5もInxA $l_Y G a_{1-X-Y} N (0 \leq X, 0 \leq Y, X+Y \leq 1)$ で構成で き、その組成は特に問うものではないが、好ましくはG a N、X値が0. 2以下のA lxG a1-x N、またはY値が 0. 1以下の Inv Gai-v Nとすると結晶欠陥の少ない 窒化物半導体層が得られやすい。このアンドープGaN 層を成長させることにより、高濃度で不純物をドープし たn側コンタクト層4の上に直接活性層を成長させるの 10 と異なり、下地の結晶性が良くなるため、次に成長させ る窒化物半導体を成長しやすくする。このように、アン ドープの窒化物半導体層よりなる第2のバッファ層3の 上に、高濃度でn型不純物をドープした窒化物半導体よ りなるn側コンタクト層4、次にアンドープの窒化物半 導体 (n側多層膜層も含む。) よりなる第3のバッファ 層5を積層した3層構造とすると、LED素子にした場 合にV f が低下しやすい傾向にある。なおn側多層膜層 6をアンドープにする場合は第3のバッファ層5を省略 することができる。

【0041】 (n側多層膜層 6) 次に、温度を 800℃ にして、TMG、TMI、アンモニアを用い、アンドー プIno.03 Gao.97 Nよりなる第1の窒化物半導体層を 25オングストローム成長させ、続いて温度を上昇さ せ、その上にGaNよりなる第2の窒化物半導体層を2 5オングストローム成長させる。そしてこれらの操作を 繰り返し、第1+第2の順で交互に10層づつ積層した 超格子構造よりなるn側多層膜を500オングストロー ムの膜厚で成長させる。

【0042】(活性層7)次に、アンドープGaNより なる障壁層を200オングストロームの膜厚で成長さ せ、続いて温度を800℃にして、TMG、TMI、ア ンモニアを用いアンドープIno.4Gao.6Nよりなる井 戸層を30オングストロームの膜厚で成長させる。そし て障壁+井戸+障壁+井戸・・・・+障壁の順で障壁層 を5層、井戸層4層交互に積層して、総膜厚1120オ ングストロームの多重量子井戸構造よりなる活性層7を 成長させる。活性層7は障壁層から積層したが、積層順 は井戸層から積層して、井戸層で終わってもよく、また 井戸層から積層して障壁層で終わる場合、障壁層から積 40 同等の特性を有するLEDが得られた。 層して井戸層で終わっても良く積層順は特に問わない。 井戸層の膜厚としては100オングストローム以下、好 ましくは70オングストローム以下、さらに好ましくは 50オングストローム以下に調整する。100オングス トロームよりも厚いと、出力が向上しにくい傾向にあ る。一方、障壁層の厚さは300オングストローム以 下、好ましくは250オングストローム以下、最も好ま しくは200オングストローム以下に調整する。

【0043】 (p側多層膜層 8) 次に、TMG、TM A、アンモニア、Cp2Mg(シクロペンタジエニルマ グネシウム)を用い、Mgを5×10¹⁹/cm³ドープし たp型A lo.05 G ao.95 Nよりなる第3の窒化物半導体 層を25オングストロームの膜厚で成長させ、続いてC p2Mg、TMAを止めアンドープGaNよりなる第4 の窒化物半導体層を25オングストロームの膜厚で成長 させる。そしてこれらの操作を繰り返し、第3+第4の 順で交互に4層ずつ積層した超格子よりなるp側多層膜 層8を200オングストロームの膜厚で成長させる。

【0044】 (p側コンタクト層 9) 続いて1050℃ で、TMG、アンモニア、Cp2Mgを用い、Mgを1 ×10²⁰/cm³ドープしたp型GaNよりなるp側コン タクト層8を700オングストロームの膜厚で成長させ る。p側コンタクト層8もInxAlyGa1-x-yN(0 **≤X、0≤Y、X+Y≤1**)で構成でき、その組成は特に問 うものではないが、好ましくはGaNとすると結晶欠陥 の少ない窒化物半導体層が得られやすく、またp電極材 料と好ましいオーミック接触が得られやすい。

【0045】反応終了後、温度を室温まで下げ、さらに 窒素雰囲気中、ウェーハを反応容器内において、700 20 ℃でアニーリングを行い、p型層をさらに低抵抗化す

【0046】アニーリング後、ウェーハを反応容器から 取り出し、最上層のp側コンタクト層9の表面に所定の 形状のマスクを形成し、RIE(反応性イオンエッチン グ)装置でp側コンタクト層側からエッチングを行い、 図1に示すようにn側コンタクト層4の表面を露出させ

【0047】エッチング後、最上層にあるp側コンタク ト層のほぼ全面に膜厚200オングストロームのNiと Auを含む透光性のp電極10と、そのp電極10の上 にボンディング用のAuよりなるpパッド電極11を 0. 5 μmの膜厚で形成する。一方、エッチングにより 露出させたn側コンタクト層4の表面にはWとAlを含 むn電極12を形成してLED素子とした。

【0048】このLED素子は順方向電圧20mAにお いて、520mmの純緑色発光を示し、Vfは3.2V しかなく、従来の多重量子井戸構造のLED素子に比較 して、Vfで0.8 V近く低下し、出力は2倍以上に向 上した。そのため、10mAで従来のLED素子とほぼ

【0049】本実施例において、n側多層膜層を構成す る第2の窒化物半導体層はGaNで構成したが、他のI $n \times A \mid Y \mid G \mid a \mid -x - y \mid N \mid (0 \leq X, 0 \leq Y, X + Y \leq 1)$, 好 ましくは I n組成が第1の窒化物半導体よりも小さい I nGaNで構成することもできる。またp側多層膜層を 構成する第4の窒化物半導体層はGaNで構成したが、 他のInxAlyGa١-х-үN(0≦X、0≦Y、X+Y≦ 1) 、好ましくは第3の窒化物半導体よりもAl組成の 小さいAIGaNで構成することもできる。

【0050】なお、従来のLED素子の構成は、GaN 50

よりなる第1のバッファ層の上に、アンドープGaNよりなる第2のバッファ層、SiドープGaNよりなるn 側コンタクト層、実施例1と同一の多重量子井戸構造よりなる活性層、単一のMgドープAlo.1Gao.9N層、MgドープGaNからなるp側コンタクト層を順に積層

したものである。

【0051】 [実施例2] 図2は実施例2に係るLED素子の構造を示す模式断面図である。このLED素子は、実施例1において、第3のバッファ層5を成長させず、さらにp側多層膜層8を超格子構造とせずに、Mgを5×10¹⁹/cm³ドープしたp型Alo.1Gao.9N層よりなるp側クラッド層8'を200オングストロームの膜厚で成長させる他は、同様にしてLED素子を作製したところ、同じく20mAにおいて、Vfは3.3Vと非常に良好な値を示し、出力も1.8倍以上に向上した。

【0052】 [実施例3] 実施例1において、n側多層 膜層6を成長する際に、第2の窒化物半導体層のみを、Siを1×10¹⁸/cm³ドープしたGaNとする。また、p側多層膜層を超格子構造とせずに、Mgを5×10¹⁹/cm³ドープしたp型Alo.1Gao.9N層よりなるp側クラッド層8'を200オングストロームで成長させる他は同様にして、LED素子を作製したところ、実施例2とほぼ同等の特性を有するLED素子が得られた。

【0053】 [実施例4] 実施例1において、n側多層 膜層6を成長する際に、第1の窒化物半導体層をSiを 1×10¹⁸/cm³ドープしたIn0.03Ga0.97層とし、第2の窒化物半導体層を、Siを5×10¹⁸/cm³ドープしたGaNとする。また、p側多層膜層を超格子構造 30とせずに、Mgを5×10¹⁹/cm³ドープしたp型Al0.1Ga0.9N層よりなるp側クラッド層8'とする他は同様にして、LED素子を作製したところ、20mAにおいてVfは3.4V、出力は従来のものに比較して、1.5倍以上と優れた特性を示した。

【0054】 [実施例5] 実施例1において、第3のバッファ層5を成長させず、さらにp側多層膜層8を成長する際に、第4の窒化物半導体層にMgを1×10¹⁹/cm³ドープしたp型GaN層を成長させる他は同様にしてLED素子を作製したところ、実施例1とほぼ同等の 40特性を有するLED素子が得られた。

【0055】[実施例6] 実施例1において、第3のバッファ層5を成長させず、さらにp側多層膜層8を成長する際に、アンドープA10.05Ga0.95Nよりなる第3の窒化物半導体層を25オングストロームと、アンドープGaNよりなる第4の窒化物半導体層を25オングストロームとでそれぞれ2層づつ交互に積層して絵膜厚100オングストロームとする他は同様にしてLED素子を作製したところ、実施例4とほぼ同等の特性を有するLED素子が得られた。

14

【0056】 [実施例1において、n側多層膜層6を成長させる際、アンドープIno.03 Gao.97 Nよりなる第1の窒化物半導体層を50オングストローム成長させ、次にアンドープGaNよりなる第2の窒化物半導体層を25オングストローム成長させる。続いてアンドープIno.03 Gao.97 N層を45オングストローム成長させ、続いてアンドープGaN層を25オングストローム成長させ、次にアンドープIno.03 Gao.97 N層を40オングストローム成長させる。このようにして第1の窒化物半導体層のみを5オングストロームずつ薄くして、5オングストロームまで成長させ、第1の層と第2の層とを交互に10層づつ積層した超格子構造よりなるn側多層膜を合計525オングストロームの膜厚で成長させる。

【0057】一方、同じく実施例1において、p側多層 膜層8を成長させる際、Mgを5×10¹⁹/cm³ドープしたp型A10.05 Ga0.95 Nよりなる第3の窒化物半導体層を40オングストロームの膜厚で成長させ、次にアンドープGaNよりなる第4の窒化物半導体層を25オングストロームの膜厚で成長させ、次にMgを同量ドープしたp型A10.05 Ga0.95 N層を35オングストローム、次にアンドープGaNを25オングストローム成長させる。このようにして第3の窒化物半導体層のみを5オングストロームずつ薄くして、20オングストロームまで成長させ、第3の層と、第4の層とを交互に5層づつ積層した超格子構造よりなるp側多層膜を合計275オングストロームの膜厚で成長させる。

【0058】その他は実施例1と同様にしてLED素子を得たところ、実施例1のものとほぼ同等の特性を有する素子が得られた。なお、本実施例において、n側多層膜6を構成する第1の窒化物半導体層のみの膜厚を変えていったが、第2の窒化物半導体層の膜厚を変えても同様の効果が得られる。またp側多層膜8を構成する第3の窒化物半導体層のみの膜厚を変えていったが、第4の窒化物半導体層のみの膜厚を変えていったが、第4の窒化物半導体層の膜厚を変えても同様の効果が得られる。

【0059】[実施例8] 実施例1において、n側多層 膜層6を成長させる際、アンドープIno.03 Gao.97 Nよりなる第1の窒化物半導体層を25オングストローム 成長させ、次にアンドープGaNよりなる第2の窒化物 半導体層を25オングストローム成長させる。続いてInのモル比を若干多くしたInGaN層を25オングストローム成長させ、続いてアンドープGaN層を25オングストローム成長させる。このようにして第1の窒化 物半導体層のIn組成を徐々に増加させて成長させ、第1の層と、第2の層とを交互に10層ずつ積層し、最終的に第1の層がIno.3 Gao.7 Nとなるようにして、総 膜厚500オングストロームのn側多層膜を成長させる

50 【0060】一方、同じく実施例1において、p側多層

30

せる他は、実施例1と同様にしてLED素子を作製したところ、実施例1のものとほぼ同等の特性を有する素子が得られた。

膜層 8 を成長させる際、Mgを 5×10¹⁹/cm³ドープしたp型A10.05 G a0.95 Nよりなる第3の窒化物半導体層を25オングストロームの膜厚で成長させ、次にアンドープGaNよりなる第4の窒化物半導体層を25オングストロームの膜厚で成長させ、続いて、Mgを同量ドープして、A1の組成比を若干多くしたp型A1GaN層を25オングストローム、次にアンドープGaNを25オングストローム成長させる。このようにして第3の窒化物半導体層のA1組成を徐々に多くして成長させ、第3の層と、第4の層とを交互に4層づつ積層し、最終的に第3の層がA10.2 G a0.8 Nとなるようにして、総膜厚200オングストロームのp側多層膜を成長させる。

【0066】[実施例13] 実施例1において、p側多層膜層8を成長させる際、MgドープAlo.05 Gao.95 Nよりなる第1の窒化物半導体層を25オングストローム成長させ、次にアンドープIno.1 Gao.9 Nよりなる第2の窒化物半導体層を25オングストローム成長させる他は、実施例1と同様にしてLED素子を作製したところ、実施例1のものとほぼ同様の特性を有する素子が得られた。

【0061】その他は実施例1と同様にしてLED素子を得たところ、実施例1のものとほぼ同等の特性を有する素子が得られた。なお、本実施例において、n側多層膜6を構成する第1の窒化物半導体層のみのIII族元素組成を変えていったが、第2の窒化物半導体層を3元混晶、4元混晶の窒化物半導体として、そのIII族元素の組成を変えても同様の効果が得られる。またp側多層膜208を構成する第3の窒化物半導体層のみのIII族元素の組成を変えていったが、第4の窒化物半導体層を3元混晶の変化物半導体として、そのIII族元素の組成を変えていったが、第4の窒化物半導体層を3元混晶、4元混晶の窒化物半導体として、そのIII族元素の組成を変えても同様の効果が得られる。

【0067】 [実施例14] 実施例1において、n側多層膜層6を成長させる際、アンドープIno.03 Gao.97 Nよりなる第1の窒化物半導体層の膜厚を200オングストローム成長させる他は、実施例1と同様にしてLE D素子を作製したところ、実施例1のものとはほぼ同等の特性を有する素子が得られた。

【0062】 [実施例9] 実施例7において、p側多層 膜層8を多層膜層とせずに、Mgを 5×10^{19} / cm^3 ドープしたp型A10.1G a0.9N層よりなるp側クラッド 層87 を200オングストロームの膜厚で成長させる他は、同様にしてLED素子を作製したところ、実施例2とほぼ同等の特性を有するLED素子が得られた。

【0068】 [実施例15] 実施例1において、p側多層膜層8を成長させる際、MgドープA10.05 Ga0.95 Nよりなる第1の窒化物半導体層の膜厚を200オングストローム成長させる他は、実施例1と同様にしてLE D素子を作製したところ、実施例1のものとほぼ同様の特性を有する素子が得られた。

【0063】 [実施例10] 実施例8において、p側多層膜層8を多層膜層とせずに、Mgを5×10¹⁹/cm³ドープしたp型Alo.1Gao.9N層よりなるp側クラッド層8'を200オングストロームの膜厚で成長させる他は、同様にしてLED素子を作製したところ、実施例2とほぼ同等の特性を有するLED素子が得られた。

【0069】 [実施例16] 本発明にかかる実施例16 の窒化物半導体素子は、図3に示すレーザダイオードである。実施例16のレーザダイオードは、80μmの厚さのGaN基板50上に、(1)3μmの厚さのSiドープのGaNよりなるn型GaN層52、(2)0.1μmの厚さのIn0.1Ga0.9N層53、(3)第1の窒化物半導体層と第2の窒化物半導体層とからなる超格子構造のn側多層膜層54、(4)Siがドープされた0.1μmの厚さのn型GaN光ガイド層55、(5)In0.4Ga0.6N/In0.02Ga0.98N多重量子井戸構造の活性層56、(6)Mgがドープされた200オングストロームの厚さのAlo.2Ga0.8N層57、(7)Mgがドープされた0.1μmの厚さのp型GaN光ガイド層58、(8)第3の窒化物半導体層と第4の窒化物半導体層からなる超格子構造のp側多層膜層59、

【0064】 [実施例11] 実施例8において、n側多層膜を構成する第1の窒化物半導体のIn組成を実施例8と逆にし、さらにp側多層膜を構成する第3の窒化物半導体のA1組成を逆にする。つまり第1の窒化物半導40体層のInを活性層に接近するに従って少なくなるようにし、第3の窒化物半導体層のA1組成を活性層から離れるに従って少なくなるようにする他は同様にしてLED素子を作製したところ、実施例8とほぼ同等の特性を有するLED素子が得られた。

(9) Mgがドープされた 0.05μmの厚さのp型GaNコンタクト層 60、以上の各層を成長させることにより作製される。なお、n側多層膜層 54は、25オングストロームの厚さを有するアンドープのInGaNと、25オングストロームの厚さを有するSiドープのGaN層とが各 240層、交互に積層されてなる。但し、アンドープのInGaNは、最初はIno.01Gao.99Nで成長させ、2回目以降はInの組成比を徐々に増加させ、最終の層がIno.3Gao.7Nとなるように組成傾斜している。また、活性層 56は、それぞれ20オングストロームの厚さを有しSiがドープされた4つのIno.4Gao.6N井戸層が、50オングストロームの厚

【0065】 [実施例12] 実施例1において、n側多層膜層6を成長させる際に、アンドープI no.2 G ao.8 Nよりなる第1の窒化物半導体層を25オングストローム成長させ、次にアンドープI no.05 G ao.95 Nよりなる第2の窒化物半導体層を25オングストローム成長さ

(10)

17

さを有しSiがドープされたIno.o2Gao.98N障壁層 と交互に設けられてなる。また、p側多層膜層59は、 25オングストロームの厚さを有しアンドープのAIG a N層と、25オングストロームの厚さを有しMgがド ープされたGaN層とが各120層、交互に積層されて なる。但し、アンドープのAIGaNは、最初はAI 0.01 G a 0.99 N で成長させ、2回目以降はA l の組成比 を徐々に増加させ、最終の層がAlo.2Gao.8Nとなる ように組成傾斜している。本実施例16では、上記の (1)~(9)の各層を形成した後、エッチングをする 10 を示す模式断面図。 ことにより、幅3μm、長さ450μmのリッジ形状と し、p型コンタクト層60上にAu/Niからなるp電 極61を形成し、図3のように露出されたn型GaN層 52上にTi/Alからなるn電極を形成する。なお、 リッジの両端面は、TiO2/SiO2を2ペア形成する ことにより、両端面の反射係数を50%にした。以上の ようにして得られた実施例16のレーザダイオードは、 良好な連続発振をする。

[0070]

【発明の効果】以上説明したように、本発明の窒化物半 20 7・・・活性層 導体素子によると活性層の下に I n を含む窒化物半導体 層を有するn側多層膜層を有しているため、このn側の 多層膜層が何らかの作用を行い、発光素子の出力を向上 させる。そのため、低電流で従来のLED素子と同等の 出力が得られる。これについては活性層の結晶性を向上 させることによるためと推察されるが詳しいことは不明

である。LED素子の発光出力が向上するということ は、同時にレーザ素子、SLD等の他の発光素子にも同 様の作用がある。さらに、本発明は受光素子、太陽電池 等、窒化物半導体を用いたあらゆる電子デバイスに適用 可能である。

18

【図面の簡単な説明】

本発明の一実施例に係るLED素子の構造を 【図1】 示す模式断面図。

本発明の他の実施例に係るLED素子の構造 【図2】

本発明の他の実施例に係るLD素子の構造を 【図3】 示す模式断面図。

【符号の説明】

1・・・サファイア基板

2・・・第1のバッファ層

3・・・第2のバッファ層

4··・n側コンタクト層

5・・・第3のバッファ層

6 · · · n 側多層膜層

8··・p側多層膜層

8' · · p側クラッド層

9 · · · p 側コンタクト層

10・・・全面電極

11・・・p電極

12···n電極

図2】 【図1】

【図3】