

J**S**006797466**B**1

(12) United States Patent Bult et al.

(10) Patent No.: US 6,797,466 B1 (45) Date of Patent: Sep. 28, 2004

(54) COMPLETE GENOME SEQUENCE OF THE METHANOGENIC ARCHAEON, METHANOCOCCUS JANNASCHII

(75) Inventors: Carol J. Bult, Bar Harbor, ME (US);
Owen R. White, Gaithersburg, MD
(US); Hamilton O. Smith, Baltimore,
MD (US); Carl R. Woese, Urbana, IL
(US); J. Craig Venter, Rockville, MD
(US)

(73) Assignees: The Institute for Genomic Research,
Rockville, MD (US); Johns Hopkins
University, Baltimore, MD (US); The
Board of Trustees of the University of
Illinois, Urbana, IL (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 137 days.

(21) Appl. No.: 09/692,570(22) Filed: Oct. 20, 2000

Related U.S. Application Data

- (63) Continuation of application No. 08/916,421, filed on Aug. 22, 1997.
- (60) Provisional application No. 60/024,428, filed on Aug. 22, 1996.

(51)	Int. Cl. ⁷ C12Q	1/68
(52)	U.S. Cl. 435/6; 435/320.1; 435/2.	52.3;
` ′	435/325; 536/23.7; 536/2	24.32
(58)	Field of Search 536/23.7. 2	4.32:

(56) References Cited

U.S. PATENT DOCUMENTS

4,431,739 A		2/1984	Riggs	
4,601,980 A		7/1986	Goeddel et al.	
5,518,911 A		5/1996	Abo et al.	
5,919,620 A	*	7/1999	Brodeur et al	 435/6

435/320.1, 325, 252.3, 64.1, 6

OTHER PUBLICATIONS

GIBCOBRL, 1993-1994 Catalogue and Reference Guide, pp. R-114.*

Robert D. Fleischmann et al., Science, vol. 269 Jul 28, 1995, pp. 496–520.*

Akio Adachi et al., Journal of Virology, Aug. 1986, pp. 284-291.*

Almond et al., "Complementation of a thr-1 mutation of *Escherichia coli* by DNA from the extremely thermophilic archaebacteruim *Methanococcus jannaschii*," Appl. Microbiol. Biotechnol. 30:148-152 (1989).

Belay et al. "Dinitrogen fixation by a thermophilic methanogenic bacterium," Nature 312:286–288 (1984).

Bernad et al., "Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases," EMBO J. 6(13):4219–4225 (1987).

Blaut et a., "Metaboism of methanogens," Antonie van Leeuwenhoek 66:187-208 (1994).

Brown et al., "Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications," Proc. Natl. Acad. Sci. USA 92:2441–2445 (1995).

Bult et al.., Science 273:1043–1045 and 1067–1072 (1996). Cooper et al., "Protein splicing of the yeast TFP1 intervening protein sequence: a model for self–excision," EMBO J. 12(6):2575–2583 (1993).

Cooper et al., "Protein splicing: Self-Splicing of Genetically Mobile Elements at the Protein Level," TIBS 20:351–356 (1995).

Cullman et al., "Characterization of the five replication factor C genes of *Saccharomyces cerevisiae*," Mol. Cell. Biol. 15(9):4661–4671 (1995).

Delaure et al., "An attempt to unify the structure of polymerases," Protein Engineering 3(6):461–467 (1990).

De Pouplana et al., "Evidence that two present—day components needed for the genetic code appeared after nucleated cells separated from eubacteria," Proc. Natl. Acad. Sci. USA 93:166–170 (1996).

Dimarco et al., "Unusual coenzymes of methanogenesis," Annu. Rev. Biochem. 569:355–394 (1990).

Eberhart et al., "The pelota locus encodes a protein required for meiotic cell division: an analysis of G_2/M arrest in Drosophila spermatogeneiss," Development 121:3477–3486 (1995).

Faguy et al., "Molecular analysis of aarchaeal flagellins: similarity to the type IV pilin—transport superfamily widwspread in bacteria," Can. J. Microbiol. 40:67–71 (1994).

Flieschmann et al., "Whole-genome random sequencing and assembly of *Haemophilus influenzae* Rd," Science 269:496–512 (1995).

Gavin et al., "Conserved initiator proteins in eukaryotes," Science 270:1667–1671 (1995).

GenBank report, "B. thuringiensis insertion element IS240–B protein gene, complete cds," Locus BACIS2402, Accession No. M23741 J03315 (1989), with associated report for Locus Bank BACIS2401, Accession No. M23740 J03315 (1989).

GenBank report, "Insertion sequence IS982 (From *Lactococcus lactis*) transposase gene, c9mplete cds," Locus INSTRANB, Accession No. L34754 (1996).

Gogarten et al., "Evolution of the vacuolar H⁺-ATPase: Implications for the origin of eukaryotes," Proc. Natl. Acad. Sci. USA 86:6661–6665 (1989).

(List continued on next page.)

Primary Examiner—Dave T Nguyen
Assistant Examiner—Richard Schnizer
(74) Attorney, Agent, or Firm—Human Genome Sciences,
Inc.

(57) ABSTRACT

The present application describes the complete 1.66-megabase pair genome sequence of an autotrophic archaeon, *Methanococcus jannaschii*, and its 58- and 16-kilobase pair extrachromosomal elements. Also described are 1738 predicted protein-coding genes.

31 Claims, 2 Drawing Sheets

OTHER PUBLICATIONS

Hall et al., "Molecular cloning and primary structure of squid (*loligo forbesi*) rhodopsin, a phospholipase C-directed G-protein linked receptor," Biochem. J. 274 (Pt. 1):35–40; GenBank Accession No. X56788, Dec. 21, 1994.

Hamilton et al., "Structure of genes and an insertion element in the methane producing archaebacterium *Methanobrevibacter smithii*," Mol. Gen. Genet. 200:47–59 (1985). Hartman et al., "Uridine and dolichyl diphosphate activated

Hartman et al., "Uridine and dolichyl diphosphate activated oligosaccharides are intermediates in the biosynthesis of the S-layer glycoprotein of *Methanonthermus fervidus*," Arch. Microbiol. 151:274–281 (1989).

Hillier et al., "The WashU-Merck EST Project," GenBank Accession No. H46528, Jul. 31, 1995, Washington University School of Medicine, USA.

Hillier et al., "The WashU-Merck EST Project," GenBank Accession No. R07848, Apr. 5, 1995, Washington University School of Medicine, USA.

Hillier et al., "Washington University Caenorhabditis briggsae EST Project," GenBank Accession No. R04180, Mar. 31, 1995, Washington University School of Medicine, USA. Hillier et al., "The WashU–Merck EST Project," GenBank Accession No. R08145, Apr. 5, 1995, Washington University School of Medicine, USA.

Hillier et al., "The WashU-Merck EST Project," GenBank Accession No. R15715, Apr. 13, 1995, Washington University School of Medicine, USA.

Hillier et al., "The WashU-Merck EST Project," GenBank Accession No. N21111, Dec. 19, 1995, Washington University School of Medicine, USA.

Hillier et al., "The WashU-Merck EST Project," GenBank Accession No. R96366, Sep. 11, 1995, Washington University School of Medicine, USA.

Hirata et al., "Molecular structure of a gene, VMA1, encoding the catalytic subunit of H⁺-Translocating adenosine triphosphatase from vacuolar membranes of *Saccharomyces cerevisiae*," J. Biol. Chem. 265(12):6726–6733 (1990).

Iwabe et al. "Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes," Proc. Natl. Acad. Sci. USA 86:9355–9359 (1989).

Jiang et al., "Structure and sequence of the rfb (0 antigen) gene cluster of Salmonella serovar typhimurium (strain LT2)," Molec. Microbiol. 5(3):697–713 (1991).

Jones et al., "Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent," Arch. Microbiol. 136:254–261 (1983). Kaine et al., "Isolation and characterization of the 7S RNA gene from Methanococcus voltae," J. Bacteriol. 171(8):4261–4266 (1989).

Kalmokoff et al., "Relatedness of the flagellins from methanogens," Arch. Microbiol. 157:481–487 (1992).

Kane et al., "Protein splicing converts the yeast TFP1 gene product to the 69–kD subunit of the vacuolar H+–adenosine triphosphatase," Science 250:651–657 (1990).

Klenk et al., "Archaea and eukaryotes versus bacteria?," Current Biology 4(10):920–922 (1994).

Köpke et al., "Comparative studies of ribosomal proteins and their genes from *Methanococcus vannielii* and other organisms," Can J. Microbiol. 35:11–20 (1989).

Langer et al., "Transcription in archaea: Similarity to that in eucarya," Proc. Natl. Acad. Sci. USA 92:5768–5772 (1995). Lanzendorfer et al., "Structure and function of the DNA-dependent RNA polymerase of Sulfolobus," System. Appl. Microbiol. 16:656–664 (1994).

Lechner et al., "Organization and nucleotide sequence of a transcriptional unit of *Methanococcus vannielii* comprising genes for protein synthesis elongation factors and ribosomal proteins," J. Mol. Evol. 29:20–27 (1989).

Logan et al., "Crystal structure of glycyl-tRNA synthetase from *Thermus thermophilus*," EMBO J. 14(17):4156–4167 (1995).

Lutkenhaus, J. "Escherichia coli cell division," Curr. Opin. Genet. Devel. 3:783–788 (1993).

McCombie et al., "Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologoues", Nature Genet. 1:124–131; GenBank Accession No. M79739, (1992).

McCombie et al., "Caenorhabditis briggsae cDNAs," Gen-Bank Accession No. T01773, Nov. 10, 1992, The Institute for Genomic Research, Rockville, MD, USA.

Michel et al., "Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure," Biochimie 64:867–881 (1982).

Mojica et al., "Long stretches of short tandem repeats are present in the largest replicons of the Archaea *Haloferax mediterranei* and *Haloferax volcanii* and could be involved in replicon partitioning,": Molec. Microbiol. 17(1):85–93 (1995).

Perler et al., "Intervening sequences in an Archaea DNA polymerase gene," Proc. Natl. Acad. Sci. USA 89:5577–5581 (1992).

Pietrokovski et al., "Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins," Protein Science 3:2340–2350 (1994).

Poritz et al., "Human SRP RNA and *E. coli* 4.5wS RNA contain a highly homologous structural Domain," Cell 55:4–6 (1988).

Riley et al., "Functions of the gene products of *Escherichia coli*," Microbiol. Rev. 57(4):862–952.

Rothfield et al., "How do bacterial decide where to divide?," Cell 84:183–186 (1996).

Sandman et al., "HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon *Methanothermus fervidus*, is most closely related to histones," Proc. Natl. Acad. Sci. USA 87:5788–5791 (1990).

Schön et al., "Misaminoacylation and transamidation are required for protein biosynthesis in *Lactobacillus bulgaricus*," Biochimi 70:391–394 (1988).

Sevier et al., "Monoclonal antibodies in clinical immunology," Clin. Chem. 27(11):1979–1806 (1981).

Uemori et al., "The hyperthermophilic Archaeon *Pyrodictium occultum* has two α-like DNA polymerase," J. Bacteriol. 177(8):2164–2177 (1995).

Wagar et al., "The glycyl-tRNA synthetase of the *Chlamydia trachomatis*," J. Bacteriol. 177(17):5179–5185 (1994). Whitbread et al., "Cdc54 belongs to the Cdc45/Mcm3 family of proteins which are esential for initiation of eukaryotic DNA replication," Gene 155:113–117 (1995).

Woese et al. "Towards a natural system of organisms: Proposal for the domains archaea, bacteria, and eucarya," Proc. Natl. Acad. Sci. USQ 87:4576–4579 (1990).

Wood et al., "The acetyl-CoA pathway: a newly discovered pathway of autotriphic growth," TIBS 11:14-18 (1986).

Xu et al., "In vitro protein splicing of purified precursor and the identification of a branched intermediate," Cell 75:1371–1377 (1993).

Zhao et al., "An extremely thermophilic Methanococcus from a deep see hydrothermal vent and its plasmid," Arch. Microbiol. 150:178–183 (1988).

International Search Report for International Application No. PCT/US97/14900.

^{*} cited by examiner

FIG.1

COMPLETE GENOME SEQUENCE OF THE METHANOGENIC ARCHAEON, METHANOCOCCUS JANNASCHII

This application is a Continuation of U.S. application 5 Ser. No. 08/916,421, filed Aug. 22, 1997, which is hereby incorporated by reference; said U.S. application Ser. No. 08/916,421 claims priority of U.S. Provisional Application No. 60/024,428, filed Aug. 22, 1996, which is hereby incorporated by reference.

Part of the work performed during development of this invention utilized U.S. Government funds. The U.S. Government may have certain rights in the invention—DE-FC02-95ER61962; DE-FCO2-95ER61963; and NAGW 15 2554.

BACKGROUND OF THE INVENTION

Statement as to Rights to Inventions Made Under Federally-Sponsored Research and Development

1. Reference to a Sequence Listing Provided on Compact

This application refers to a "Sequence Listing", which is provided as an electronic document on two identical compact discs (CD-R), labeled "Copy 1" and "Copy 2." These compact discs each contain the electronic document, filename "PB275C1.ST25.txt" (2,259,883 bytes in size, created on Nov. 14, 2002), which is hereby incorporated in its 30 entirety herein.

2. Field of the Invention

The present application discloses the complete 1.66megabase pair genome sequence of an autotrophic archaeon, 35 Methanococcus jannaschii, and its 58- and 16-kilobase pair extrachromosomal elements. Also identified are 1738 predicted protein-coding genes.

3. Related Background Art

The view of evolution in which all cellular organisms are in the first instance either prokaryotic or eukaryotic was challenged in 1977 by the finding that on the molecular level life comprises three primary groupings (Fox, G. E., et al., Proc. Natl. Acad. Sci. USA 74:4537 (1977); Woese, C. R. & 45 Fox, G. E., Proc. Natl. Acad. Sci. USA 74:5088 (1977); Woese, C. R., et al., Proc. Natl., Acad. Sci. USA 87:4576 (1990)): the eukaryotes (Eukarya) and two unrelated groups of prokaryotes, Bacteria and a new group now called the Archaea. Although Bacteria and Archaea are both prokary- 50 otes in a cytological sense, they differ profoundly in their molecular makeup (Fox, G. E., et al., Proc. Natl. Acad. Sci. USA 74:4537 (1977); Woese, C. R. & Fox, G. E., Proc. Natl. Acad. Sci. USA 74:5088 (1977); Woese, C. R., et al., Proc. 55 cells for M. jannaschii protein production by recombinant Natl. Acad. Sci. USA 87:4576 (1990)). Several lines of molecular evidence even suggest a specific relationship between Archaea and Eukarya (Iwabe, N., et al., Proc. Natl. Acad. Sci. USA 86:9355 (1989); Gogarten J. P., et al., Proc. Natl. Acad. Sci. USA 86:6661 (1989); Brown, J. R. and 60 Doolittle, W. F., *Proc. Natl. Acad. Sci. USA* 92:2441 (1995)).

The era of true comparative genomics has been ushered in by complete genome sequencing and analysis. We recently described the first two complete bacterial genome 65 sequences, those of Haemophilus influenzae and Mycoplasma genitalium (Fleischmann, R. D., et al., Science

2

269:496 (1995); Fraser, C. M., et al., Science 270:397 (1995)). Large scale DNA sequencing efforts also have produced an extensive collection of sequence data from eukaryotes, including Homo sapiens (Adams, M. D., et al., Nature 377:3 (1995)) and Saccharomyces cerevisiae (Levy, J., Yeast 10:1689 (1994)).

M. jannaschii was originally isolated by J. A. Leigh from a sediment sample collected from the sea floor surface at the base of a 2600 m deep "white smoker" chimney located at 21° N on the East Pacific Rise (Jones, W., et al., Arch. Microbiol. 136:254 (1983)). M. jannaschii grows at pressures of up to more than 500 atm and over a temperature range of 48-94° C. with an optimum temperature near 85° C. (Jones, W., et al., Arch. Microbiol. 136:254 (1983)). The organism is autotrophic and a strict anaerobe; and, as the name implies, it produces methane. The dearth of archaeal nucleotide sequence data has hampered attempts to begin 20 constructing a comprehensive comparative evolutionary framework for assessing the molecular basis of the origin and diversification of cellular life.

SUMMARY OF THE INVENTION

The present invention is based on whole-genome random sequencing of an autotrophic archaeon, Methanococcus jannaschii. The M. jannaschii genome consists of three physically distinct elements: (i) a large circular chromosome; (ii) a large circular extrachromosomal element (ECE); and (iii) a small circular extrachromosomal element (ECE). The nucleotide sequences generated, the M. jannaschii chromosome, the large ECE, and the small ECE, are respectively provided on pages 153-586 (SEQ ID NO:1), pages 586-601 (SEQ ID NO:2), and pages 602-606 (SEQ ID NO:3).

The present invention is further directed to isolated nucleic acid molecules comprising open reading frames (ORFs) encoding M. jannaschii proteins. The present invention also relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of M. jannaschii proteins. Further embodiments include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to the nucleotide sequence of a M. jannaschii ORF described herein.

The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, host cells containing the recombinant vectors, as well as methods for making such vectors and host techniques.

The invention further provides isolated polypeptides encoded by the M. jannaschii ORFs. It will be recognized that some amino acid sequences of the polypeptides described herein can be varied without significant effect on the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine activity. In general, it is possible to replace residues which form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type

of residue may be completely unimportant if the alteration occurs at a non-critical region of the protein.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention. The epitope-bearing portion is an immunogenic or antigenic epitope useful for raising antibodies.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1. A schematic showing the relationship of the three domains of life based on sequence data from the small subunit of rRNA (Fox, G. E., et al., Proc. Natl. Acad. Sci. USA 74:4537 (1977); Woese, C. R. & Fox, G. E., Proc. Natl. 15 Acad. Sci. USA 74:5088 (1977); Woese, C. R., et al., Proc. Natl. Acad. Sci. USA 87:4576 (1990)).

FIG. 2. Block diagram of a computer system 102 that can be used to implement the computer-based systems of present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is based on whole-genome random 25 sequencing of an autotrophic archaeon, Methanococcus jannaschii. The M. jannaschii genome consists of three physically distinct elements: (i) a large circular chromosome of 1,664,976 base pairs (bp) (shown on pages 153-586 and in SEQ ID NO:1), which contains 1682 predicted protein- 30 coding regions and has a G+C content of 31.4%; (ii) a large circular extrachromosomal element (the large ECE) of 58,407 bp (shown on pages 586–601 and in SEQ ID NO:2), which contains 44 predicted protein-coding regions and has 35 a G+C content of 28.2%; and (iii) a small circular extrachromosomal element (the small ECE) of 16,550 bp (shown on pages 602-606 and in SEQ ID NO:3), which contains 12 predicted protein-coding regions and has a G+C content of

The primary nucleotide sequences generated, the M. jannaschii chromosome, the large ECE, and the small ECE, are provided in SEQ ID NOs:1, 2, and 3, respectively. As used herein, the "primary sequence" refers to the nucleotide 45 sequence represented by the IUPAC nomenclature system. The present invention provides the nucleotide sequences of SEQ ID NOs:1, 2, and 3, or a representative fragment thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein; a "representative fragment" refers to M. jannaschii protein-encoding regions (also referred to herein as open reading frames), expression modulating fragments, uptake modulating fragments, and fragments that can be 55 used to diagnose the presence of *M. jannaschii* in a sample. A non-limiting identification of such representative fragments is provided in Tables 2(a) and 3. As described in detail below, representative fragments of the present invention further include nucleic acid molecules having a nucleotide sequence at least 90% identical, preferably at least 95, 96%, 97%, 98%, or 99% identical, to an ORF identified in Table 2(a) or 3.

provided in SEQ ID NOs:1, 2 and 3 was obtained by sequencing the M. jannaschii genome using a megabase 4

shotgun sequencing method. The sequences provided in SEQ ID NOs:1, 2 and 3 are highly accurate, although not necessarily a 100% perfect, representation of the nucleotide sequence of the M. jannaschii genome. As discussed in detail below, using the information provided in SEQ ID NOs:1, 2 and 3 and in Tables 2(a) and 3 together with routine cloning and sequencing methods, one of ordinary skill in the art would be able to clone and sequence all "representative 10 fragments" of interest including open reading frames (ORFs) encoding a large variety of M. jannaschii proteins. In rare instances, this may reveal a nucleotide sequence error present in the nucleotide sequences disclosed in SEQ ID NOs:1, 2, and 3. Thus, once the present invention is made available (i.e., once the information in SEQ ID NOs:1, 2, and 3 and in Tables 2(a) and 3 have been made available), resolving a rare sequencing error would be well within the skill of the art. Nucleotide sequence editing software is ₂₀ publicly available. For example, Applied Biosystem's (AB) AutoAssembler™ can be used as an aid during visual inspection of nucleotide sequences.

Even if all of the rare sequencing errors were corrected, it is predicted that the resulting nucleotide sequences would still be at least about 99.9% identical to the reference nucleotide sequences in SEQ ID NOs:1, 2, and 3. Thus, the present invention further provides nucleotide sequences that are at least 99.9% identical to the nucleotide sequence of SEQ ID NO:1, 2, or 3 in a form which can be readily used; analyzed and interpreted by the skilled artisan. Methods for determining whether a nucleotide sequence is at least 99.9% identical to a reference nucleotide sequence of the present invention are described below.

Nucleic Acid Molecules

The present invention is directed to isolated nucleic acid fragments of the M. jannaschii genome. Such fragments include, but are not limited to, nucleic acid molecules encoding polypeptides (hereinafter open reading frames (ORFs)), nucleic acid molecules that modulate the expression of an operably linked ORF (hereinafter expression modulating fragments (EMFs)), nucleic acid molecules that mediate the uptake of a linked DNA fragment into a cell (hereinafter uptake modulating fragments (UMFs)), and nucleic acid molecules that can be used to diagnose the presence of M. jannaschii in a sample (hereinafter diagnostic fragments (DFs)).

By "isolated nucleic acid molecule(s)" is intended a nucleic acid molecule, DNA or RNA, that has been removed from its native environment. For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells, purified (partially or substantially) DNA molecules in solution, and nucleic acid molecules produced synthetically. Isolated RNA molecules include in vitro RNA transcripts of the DNA molecules of the present invention.

In one embodiment, M. jannaschii DNA can be mechanically sheared to produce fragments about 15-20 kb in As indicated above, the nucleotide sequence information 65 length, which can be used to generate a M. jannaschii DNA library by insertion into lambda clones as described in Example 1 below. Primers flanking an ORF described in

Table 2(a) or 3 can then be generated using the nucleotide sequence information provided in SEQ ID NO:1, 2, or 3. The polymerase chain reaction (PCR) is then used to amplify and isolate the ORF from the lambda DNA library. PCR cloning is well known in the art. Thus, given SEQ ID NOs:1, 2, and 3, and Tables 2(a) and 3, it would be routine to isolate any ORF or other representative fragment of the *M. jannaschi* genome. Isolated nucleic acid molecules of the present invention include, but are not limited to, single stranded and double stranded DNA, and single stranded RNA, and complements thereof.

Tables 2(a), 2(b) and 3 describe ORFs in the M. jannaschii genome. In particular, Table 2(a) (pages 68-116 below) indicates the location of ORFs (i.e., the position) within the 15 M. jannaschii genome that putatively encode the recited protein based on homology matching with protein sequences from the organism appearing in parentheticals (see the fourth column of Table 2(a)). The first column of Table 2(a) provides a name for each ORF. The second and third columns in Table 2(a) indicate an ORF's position in the nucleotide sequence provided in SEQ ID NO:1, 2 or 3. One of ordinary skill in the art will appreciate that the ORFs may be oriented in opposite directions in the M. jannaschii 25 genome. This is reflected in columns 2 and 3. The fifth column of Table 2(a) indicates the percent identity of the protein sequence encoded by an ORF to the corresponding protein sequence from the organism appearing in parentheticals in the fourth column. The sixth column of Table 2(a) indicates the percent similarity of the protein sequence encoded by an ORF to the corresponding protein sequence from the organism appearing in parentheticals in the fourth column. The concepts of percent identity and percent similarity of two polypeptide sequences are well understood in the art and are described in more detail below. The eighth column in Table 2(a) indicates the length of the ORF in nucleotides. Each identified gene has been assigned a putative cellular role category adapted from Riley (Riley, M., 40 Microbiol. Rev. 57:862 (1993)).

Table 2(b) (page 117 below) provides the single ORF identified by the present inventors that matches a previously published *M. jannaschii* gene. In particular, ORF MJ0479, which is 585 nucleotides in length and is positioned at nucleotides 1,050,508 to 1,049,948 in SEQ ID NO:1, shares 100% identity to the previously published *M. jannaschii* adenylate kinase gene.

Table 3 (pages 118–151 below) provides ORFs of the *M. jannaschii* genome that did not elicit a homology match with a known sequence from either *M. jannaschii* or another organism. As above, the first column in Table 3 provides the ORF name and the second and third columns indicate an ORF's position in SEQ ID NO:1, 2, or 3.

Table 4 (page 152 below) provides genes of *M. jannaschii* that contain inteins.

In the above-described Tables, there are three groups of ORF names. The one thousand six hundred and eighty two ORFs named "MJ-" (MJ0001-MJ1682) were identified on the *M. jannaschii* chromosome (SEQ ID NO:1). The forty four ORFs named "MJECL-" (MJECL01-MJECL44) were identified on the large ECE (SEQ ID NO:2). The twelve 65 ORFs named "MJECS-" (MJECS01-MJES12) were identified on the small ECE (SEQ ID NO:3).

6

Further details concerning the algorithms and criteria used for homology searches are provided in the Examples below. A skilled artisan can readily identify ORFs in the *Methanococcus jannaschii* genome other than those listed in Tables 2(a), 2(b) and 3, such as ORFs that are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

Isolated nucleic acid molecules of the present invention include DNA molecules having a nucleotide sequence substantially different than the nucleotide sequence of an ORF described in Table 2(a) or 3, but which, due to the degeneracy of the genetic code, still encode a *M. jannaschii* protein. The genetic code is well known in the art. Thus, it would be routine to generate such degenerate variants.

The present invention further relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of a M. Jannaschii protein encoded by an ORF described in Table 2(a) or 3. Non-naturally occurring variants may be produced using art-known mutagenesis techniques and include those produced by nucleotide substitutions, deletions or additions. The substitutions, deletions or additions may involve one or more nucleotides. The variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding regions may produce conservative or nonconservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the M. jannaschii protein or portions thereof. Also especially preferred in this regard are conservative substitutions.

Further embodiments of the invention include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to (a) the nucleotide sequence of an ORF described in Table 2(a) or 3, (b) the nucleotide sequence of an ORF described in Table 2(a) or 3, but lacking the codon for the N-terminal methionine residue, if present, or (c) a nucleotide sequence complementary to any of the nucleotide sequences in (a) or (b). By a polynucleotide having a nucleotide sequence at least, for example, 95% identical to the reference M. jannaschii ORF nucleotide sequence is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the ORF sequence. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference ORF nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular nucleic acid molecule is at least 90%, 95%, 96%, 97%, 98% or 99%

identical to the nucleotide sequence of a M. jannaschii ORF can be determined conventionally using known computer programs such as the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, Wis. 53711). Bestfit uses the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2:482–489 (1981), to find the best segment of homology between two sequences. When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95\% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference 15 nucleotide sequence and that gaps in homology of up to 5% of the total number of nucleotides in the reference sequence are allowed.

Preferred are nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence of a M. jannaschii ORF that encode a functional polypeptide. By a "functional polypeptide" is intended a polypeptide exhibiting activity similar, but not necessarily identical, to an activity of the protein encoded by 25 the M. jannaschii ORF. For example, the M. jannaschii ORF MJ1434 encodes an endonuclease that degrades DNA. Thus, a "functional polypeptide" encoded by a nucleic acid molecule having a nucleotide sequence, for example, 95% identical to the nucleotide sequence of MJ1434, will also degrade DNA. As the skilled artisan will appreciate, assays for determining whether a particular polypeptide is "functional" will depend on which ORF is used as the reference sen for measuring polypeptide activity will be readily apparent in light of the role categories provided in Table 2(a).

Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequence of a reference ORF will encode a functional polypeptide. In fact, since degenerate variants all encode the same amino acid sequence, this 45 will be clear to the skilled artisan even without performing a comparison assay for protein activity. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a functional polypeptide. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly affect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid).

For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," Science 247:1306–1310 (1990), wherein the authors indicate that 60 there are two main approaches for studying the tolerance of an amino acid sequence to change. The first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection. The second 65 approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selections

or screens to identify sequences that maintain functionality. As the authors state, these studies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at a certain position of the protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described in Bowie, J. U. et al., supra, and the references cited therein.

The present invention is further directed to fragments of the isolated nucleic acid molecules described herein. By a fragment of an isolated nucleic acid molecule having the nucleotide sequence of a M. jannaschii ORF is intended fragments at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length that are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments 50-500 nt in length are also useful according to the present invention as are fragments corresponding to most, if not all, of the nucleotide sequence of a M. jannaschii ORF. By a fragment at least 20 nt in length, for example, is intended fragments that include 20 or more contiguous bases from the nucleotide sequence of a M. jannaschii ORF. Since M. jannaschii ORFs are listed in Tables 2(a) and 3 and the genome sequence has been provided, generating such DNA fragments would be routine to the skilled artisan. For example, restriction endonuclease cleavage or shearing by sonication could easily be used to generate fragments of various sizes. Alternatively, such fragments could be generated synthetically.

Preferred nucleic acid fragments of the present invention sequence. Depending on the reference ORF, the assay cho- 35 include nucleic acid molecules encoding epitope-bearing portions of a M. jannaschii protein. Methods for determining such epitope-bearing portions are described in detail below.

> In another aspect, the invention provides an isolated nucleic acid molecule comprising a polynucleotide that hybridizes under stringent hybridization conditions to a portion of the polynucleotide in a nucleic acid molecule of the invention described above, for instance, an ORF described in Table 2(a) or 3. By "stringent hybridization conditions" is intended overnight incubation at 42° C. in a solution comprising: 50% formamide, 5×SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1×SSC at about 65° C.

By a polynucleotide that hybridizes to a "portion" of a polynucleotide is intended a polynucleotide (either DNA or RNA) hybridizing to at least about 15 nucleotides (nt), and 55 more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably about 30-70 nt of the reference polynucleotide. These are useful as diagnostic probes and primers as discussed above and in more detail below.

Of course, polynucleotides hybridizing to a larger portion of the reference polynucleotide (e.g., a M. jannaschii ORF), for instance, a portion 50-500 nt in length, or even to the entire length of the reference polynucleotide, are also useful as probes according to the present invention, as are polynucleotides corresponding to most, if not all, of a M. jannaschii ORF.

By "expression modulating fragment" (EMF), is intended a series of nucleotides that modulate the expression of an operably linked ORF or EMF. A sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments that induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event. EMF sequences can be identified within the M. jannaschii genome by their proximity to the ORFs described in Tables 2(a), 2(b), and 3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken 5' from any one of the ORFs of Tables 2(a), 2(b) or 3 will modulate the expression of an operably linked 3' ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to the fragments of the *M. jannaschii* genome that are between two ORF(s) 20 herein described. Alternatively, EMFs can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a ²⁵ cloning site 5' to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below.

A sequence that is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

By "uptake modulating fragment" (UMF), is intended a 45 series of nucleotides that mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

By a "diagnostic fragment" (DF), is intended a series of nucleotides that selectively hybridize to *M. jannaschii* sequences. DFs can be readily identified by identifying unique sequences within the *M. jannaschii* genome, or by generating and testing probes or amplification primers consisting of the DF sequence in an appropriate diagnostic format for amplification or hybridization selectivity.

Each of the ORFs of the *M. jannaschii* genome disclosed in Tables 2(a) and 3, and the EMF found 5' to the ORF, can

10

be used in numerous ways as polynucleotide reagents. The sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence *M. jannaschii* in a sample. This is especially the case with the fragments or ORFs of Table 3, which will be highly selective for *M. jannaschii*.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix—see Lee et al., *Nucl. Acids Res.* 6:3073 (1979); Cooney et al., *Science* 241:456 (1988); and Dervan et al., *Science* 251:1360 (1991)) or to the mRNA itself (antisense—Okano, *J. Neurochem.* 56:560 (1991); *Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression*, CRC Press, Boca Raton, Fla. (1988)).

Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the 30 design of an antisense or triple helix oligonucleotide.

Vectors and Host Cells

The present invention further provides recombinant constructs comprising one or more fragments of the M. jann-35 aschii genome. The recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which, for example, a M. jannaschii ORF is inserted. The vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs and UMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF or UMF. Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda P_R, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments (preferably an ORF) of

the M. jannaschii genome described herein. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the can be a procaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., Basic Methods in Molecular Biology (1986)). Host cells containing, for example, a M. jannaschii ORF can be used 10 conventionally to produce the encoded protein.

Polypeptides and Fragments

The invention further provides an isolated polypeptide encoded by a M. jannaschii ORF described in Tables 2(a) or 3, or a peptide or polypeptide comprising a portion of the isolated polypeptide. The terms "peptide" and "oligopeptide" are considered synonymous (as is commonly recognized) and each term can be used interchangeably as 20 the context requires to indicate a chain of at least two amino acids coupled by peptidyl linkages. The word "polypeptide" is used herein for chains containing more than ten amino acid residues.

It will be recognized in the art that some amino acid sequence of the M. jannaschii polypeptide can be varied without significant affect of the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the 30 protein which determine activity. In general, it is possible to replace residues which form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the alteration occurs at a non-critical region of the protein.

Thus, the invention further includes variations of a M. jannaschii protein encoded by an ORF described in Table 2(a) or 3 that show substantial protein activity. Methods for 40 assaying such "functional polypeptides" for protein activity are described above. Variations include deletions, insertions, inversions, repeats, and type substitutions (for example, substituting one hydrophilic residue for another, but not strongly hydrophilic for strongly hydrophobic as a rule). Small changes or such "neutral" amino acid substitutions will generally have little effect on protein activity.

Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino 50 acids Ala, Val, Leu and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gln, exchange of the basic residues Lys and Arg and 55 replacements among the aromatic residues Phe, Tyr.

As indicated in detail above, further guidance concerning amino acid changes that are likely to be phenotypically silent (i.e., are not likely to have a significant deleterious effect on function) can be found in Bowie, J. U., et al., 60 "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," Science 247:1306-1310 (1990).

jannaschii polypeptide encoded by an ORF described in Table 2(a) or 3, may be (i) one in which one or more of the

12

amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the polypeptide, such as an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

Of particular interest are substitutions of charged amino acids with another charged amino acid and with neutral or negatively charged amino acids. The latter results in proteins with reduced positive charge to improve the characteristics of a M. jannaschii ORF-encoded protein. The prevention of aggregation is highly desirable. Aggregation of proteins not only results in a loss of activity but can also be problematic when preparing pharmaceutical formulations, because they can be immunogenic. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36:838-845 (1987); Cleland et al. Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993)).

As indicated, changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein (see Table 1).

TABLE 1

Conservative Amir	no Acid Substitutions.
Aromatic	Phenylalanine
	Tryptophan
	Tyrosine
Hydrophobic	Leucine
	Isoleucine
	Valine
Polar	Glutamine
	Asparagine
Basic	Arginine
	Lysine
	Histidine
Acidic	Aspartic Acid
	Glutamic Acid
Small	Alanine
	Serine
	Threonine
	Methionine
	Glycine
	-

Amino acids in a M. jannaschii ORF-encoded protein of the present invention that are essential for function can be identified by methods known in the art, such a s site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, Science 244:1081–1085 (1989)). The latter procedure introduces single alanine mutaions at every residue in the molecule.

The polypeptides of the present invention are preferably The fragment, derivative, variant or analog of a M. 65 provided in an isolated form. By "isolated polypeptide" is intended a polypeptide removed from its native environment. Thus, a polypeptide produced and/or contained within

a recombinant host cell is considered isolated for purposes of the present invention. Also intended as an "isolated polypeptide" are polypeptides that hive been purified, partially or substantially, from a recombinant host cell. For example, a recombinant produced version of a *M. jannaschii* ORF-encoded protein can be substantially purified by the one-step method described in Smith and Johnson, *Gene* 67.231–40 (1988).

The polypeptides of the present invention include the proteins encoded by (a) an ORF described in Table 2(a) or 3 or (b) an ORF described in Table 2(a) or 3, but minus the codon for the N-terminal methionine residue, if present, as well as polypeptides that have at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98% or 99% similarity to a *M. jannaschii* ORF-encoded protein. Further polypeptides of the present invention include polypeptides at least 90% identical, more preferably at least 95% identical, still more preferably at least 96%, 97%, 98% or 99% identical to a *M. jannaschii* ORF-encoded protein.

By "% similarity" for two polypeptides is intended a similarity score produced by comparing the amino acid sequences of the two polypeptides using the Bestfit program 25 (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, Wis. 53711) and the default settings for determining similarity. Bestfit uses the local homology algorithm of Smith and Waterman (*Advances in Applied Mathematics* 2:482–489, 1981) to find the best segment of similarity between two sequences.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a reference amino acid 35 sequence of a M. jannaschii ORF-encoded protein is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with 45 another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or 50 anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide has an amino acid sequence at least 90%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of a *M. jannaschii* ORF-encoded protein can be determined conventionally using known computer programs such the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, Wis. 53711). When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present

14

invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference amino acid sequence and that gaps in homology of up to 5% of the total number of amino acid residues in the reference sequence are allowed.

As described in detail below, the polypeptides of the present invention can also be used to raise polyclonal and monoclonal antibodies, which are useful in assays for detecting *M. jannaschii* protein expression.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention. The epitope of this polypeptide portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitopes." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., *Proc. Natl. Acad. Sci. USA* 81:3998–4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Learner, R. A. (1983). Antibodies that react with predetermined sites on proteins are described in Science 219:660–666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, peptides, especially those containing proline residues, usually are effective. Sutcliffe et al., supra, at 661. For instance, 18 of 20 peptides designed according to these guidelines, containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HAI polypeptide chain, induced antibodies that reacted with the HAI protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.

Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. Thus, a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an antigen epitope-bearing peptide generally secrete antibody reactive with the native protein. Sutcliffe et al., supra, at 663. The antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational pro-

cessing. The peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (e.g., about 9 amino acids) can bind and displace the larger peptides in 5 immunoprecipitation assays. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777. The anti-peptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods well known in the art.

Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to 15 about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 30 to about 50 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are considered epitopebearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mim- 25 icked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means for making peptides or polypeptides including recombinant 35 means using nucleic acid molecules of the invention. For instance, a short epitope-bearing amino acid sequence may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis. For instance, Houghten has described a simple method for synthesis of large numbers of peptides, such as 10–20 mg of 248 different 45 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks. Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82:5131-5135. This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Pat. No. 55 4,631,211 to Houghten et al. (1986). In this procedure the individual resins for the solid-phase synthesis of various peptides are contained in separate solvent-permeable packets, enabling the optimal use of the many identical repetitive steps involved in solid-phase methods. A completely manual procedure allows 500-1000 or more syntheses to be conducted simultaneously. Houghten et al, supra,

tion are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra;

16

Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen Virol. 66:2347-2354 (1985). Generally, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine may be coupled to carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 g peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of antipeptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance, Geysen et al., supra, discloses a procedure for rapid concurrent synthesis on solid supports of hundreds of peptides of sufficient purity to react in an enzyme-linked immunosorbent assay. Interaction of synthesized peptides with antibodies is then easily detected without removing them from the support. In this manner a peptide bearing an immunogenic epitope of a desired protein may be identified routinely by one of ordinary skill in the art For instance, the immunologically important epitope in the coat protein of foot-andmouth disease virus was located by Geysen et al. with a resolution of seven amino acids by synthesis of an overlapping set of all 208 possible hexapeptides covering the entire 213 amino acid sequence of the protein. Then, a complete replacement set of peptides in which all 20 amino acids were substituted in turn at every position within the epitope were synthesized, and the particular amino acids conferring specificity for the reaction with antibody were determined. Thus, peptide analogs of the epitope-bearing peptides of the invention can be made routinely by this method. U.S. Pat. No. 4,708,781 to Geysen (1987) further describes this method of identifying a peptide bearing an immunogenic epitope of a desired protein.

Further still, U.S. Pat. No. 5,194,392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Pat. No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence Epitope-bearing peptides and polypeptides of the inven- 65 of monomer which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Pat. No.

5,480,971 to Houghten, R. A. et al. (1996) on Peralkylated Oligopeptide Mixtures discloses linear C₁-C₇-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

The entire disclosure of each document cited in this section on "Polypeptides and Peptides" is hereby incorporated herein by reference.

As one of skill in the art will appreciate, the polypeptides 15 of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. This has been demonstrated, e.g., for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins (EPA 394,827; 25 Traunecker et al., Nature 331:84-86 (1988)). Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than the monomeric protein or protein fragment alone (Fountoulakis et al., J Biochem 30 270:3958-3964 (1995)).

Protein Function

Each ORF described in Table 2(a) was assigned to bio- 35 logical role categories adapted from Riley, M., Microbiology Reviews 57(4):862 (1993)). This allows the skilled artisan to determine a function for each identified coding sequence. For example, a partial list of the M. jannaschii protein functions provided in Table 2(a) includes: methanogenesis, amino acid biosynthesis, cell division, detoxification, protein secretion, transformation, central intermediary metabolism, energy metabolism, degradation of DNA, DNA replication, restriction, modification, recombination and 45 repair, transcription, RNA processing, translation, degradation of proteins, peptides and glycopeptides, ribosomal proteins, translation factors, transport, tRNA modification, and drug and analog sensitivity. A more detailed description of several of these functions is provided in Example 1 below.

Diagnostic Assays

The present invention further provides methods to identify the expression of an ORF of the present invention, or homolog thereof, in a test sample, using one of the DFs or antibodies of the present invention. Such methods involve incubating a test sample with one or more of the antibodies or one or more of the DFs of the present invention and 60 assaying for binding of the DFs or antibodies to components within the test sample.

Conditions for incubating a DF or antibody with a test employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay.

18

One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the DFs or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, Fla. Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers including comprising: (a) a first container comprising one of the DFs or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound DF or antibody.

A compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allow one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not crosscontaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Trisbuffers, etc.), and containers which contain the reagents used to detect the bound antibody or DF.

Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents that are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed DFs and antibodies of the present invention can be readily incorporated into one of the established kit formats that are well known in the art.

Screening Assay for Binding Agents

Using the isolated proteins described herein, the present sample vary. Incubation conditions depend on the format 65 invention further provides methods of obtaining and identifying agents that bind to a protein encoded by a M. jannaschii ORF or to a fragment thereof.

The method involves:

- (a) contacting an agent with an isolated protein encoded by a *M. jannaschii* ORF, or an isolated fragment thereof; and
- (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques. For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their 15 ability to bind to the protein encoded by an ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides, In *Synthetic Peptides*, A *User's Guide*, W. H. Freeman, NY (1992), pp. 289–307, and 30 Kaspczak et al., *Biochemistry* 28:9230–8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed and selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs that rely on the same EMF for expression control.

One class of DNA binding agents are those that contain nucleotide base residues that hybridize or form a triple helix 45 by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives having base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al, Science 241:456 (1988); and Dervan et al., Science 251: 55 1360 (1991)) or to the mRNA itself (antisense—Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, Fla. (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is 65 necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

20

Computer Related Embodiments

The nucleotide sequence provided in SEQ ID NO:1, 2, or 3, a representative fragment thereof, or a nucleotide sequence at least 99.9% identical to the sequence provided in SEO ID NO:1, 2, or 3, can be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, that contains a nucleotide sequence of the present invention, i.e., the nucleotide sequence provided in SEQ ID NO:1, 2, or 3, a representative fragment thereof, or a nucleotide sequence at least 99.9% identical to SEQ ID NO:1, 2, or 3. Such a manufacture provides the M. jannaschii genome or a subset thereof (e.g., a M. jannaschii open reading frame (ORF)) in a form that allows a skilled artisan to examine the manufacture using means not directly applicable to examining the M. jannaschii genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium that can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of dataprocessor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing the nucleotide sequence of SEQ ID NO:1, 2, or 3, a representative fragment thereof, or a nucleotide sequence at least 99.9% identical to SEQ ID NO:1, 2, or 3, in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., *J. Mol. Biol.* 215:403410 (1990)) and

BLAZE (Brutiag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system can be used to identify open reading frames (ORFs) within the M. jannaschii genome that contain homology to ORFs or proteins from other organisms. Such ORFs are protein-encoding fragments 5 within the M. jannaschii genome and are useful in producing commercially important proteins such as enzymes used in methanogenesis, amino acid biosynthesis, metabolism, fermentation, transcription, translation, RNA processing, nucleic acid and protein degradation, protein modification, and DNA replication, restriction, modification, recombination, and repair. A comprehensive list of ORFs encoding commercially important M. jannaschii proteins is provided in Tables 2(a) and 3.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify commercially important fragments of the M. jannaschii genome. As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present 25 invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

As indicated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention supporting and implementing a search means. As used herein, "data storage means" refers to memory that can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention. As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored 45 within the data storage means. Search means are used to identify fragments or regions of the M. jannaschii genome that match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are available and can be used in the computerbased systems of the present invention. Examples of such software include, but are not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or 60 amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the 65 database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about

22

30 to 300 nucleotide residues. However, it is well recognized that during searches for commercially important fragments of the M. jannaschii genome, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

Thus, the present invention further provides an input means for receiving a target sequence, a data storage means for storing the target sequence and the homologous M. jannaschii sequence identified using a search means as described above, and an output means for outputting the identified homologous M. jannaschii sequence. A variety of structural formats for the input and output means can be used to input and output information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the M. jannaschii genome possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a and the necessary hardware means and software means for 35 target sequence or target motif with the data storage means to identify sequence fragments of the *M. jannaschii* genome. For example, implementing software which implement the BLAST and BLAZE algorithms (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) can be used to identify open reading frames within the M. jannaschii genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention.

> One application of this embodiment is provided in FIG. 8. FIG. 8 provides a block diagram of a computer system 102 that can be used to implement the present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114 once inserted in the removable medium storage device 114.

> A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any

of the secondary storage devices 110, and/or a removable storage medium 116. Software for accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108 during execution.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

EXPERIMENTAL

COMPLETE GENOME SEQUENCE OF THE METHANOGENIC ARCHAEON, METHANOCOCCUS JANNASCHII

EXAMPLE 1

A whole genome random sequencing method (Fleischmann, R. D., et al., Science 269:496 (1995); Fraser, C. M., et al., *Science* 270:397 (1995)) was used to obtain the 20 complete genome sequence for M. jannaschii. A small insert plasmid library (2.5 Kbp average insert size) and a large insert lambda library (16 Kbp average insert size) were used as substrates for sequencing. The lambda library was used to form a genome scaffold and to verify the orientation and 25 integrity of the contigs formed from the assembly of sequences from the plasmid library. All clones were sequenced from both ends to aid in ordering of contigs during the sequence assembly process. The average length of sequencing reads was 481 bp. A total of 36,718 sequences were assembled by means of the TIGR Assembler (Fleischmann, R. D., et al., Science 269:496 (1995); Fraser, C. M., et al., Science 270:397 (1995); Sutton G., et al, Genome Sci. Tech. 1:9 (1995)). Sequence and physical gaps 35 were closed using a combination of strategies (Fleischmann, R. D., et al., Science 269:496 (1995); Fraser, C. M., et al., Science 270:397 (1995)). The colinearity of the in vivo genome to the genome sequence was confirmed by comparing restriction fragments from six, rare cutter, restriction enzymes (Aat II, BamHI, Bgl II, Kpn I, Sma I, and Sst II) to those predicted from the sequence data Additional confidence in the colinearity was provided by the genome scaffold produced by sequence pairs from 339 large-insert 45 lambda clones, which covered 88% of the main chromosome. Open reading frames (ORFs) and predicted proteincoding regions were identified as described (Fleischmann, R. D., et al., Science 269:496 (1995); Fraser, C. M., et al., Science 270:397 (1995)) with some modification. In particular, the statistical prediction of M. jannaschii genes was performed with GeneMark (Borodovsky, M. & McIninch, J. Comput. Chem. 17:123 (1993)). Regular GeneMark uses nonhomogeneous Markov models derived from 55 a training set of coding sequences and ordinary Markov models derived from a training set of noncoding sequences. Only a single 16S ribosomal RNA sequence of M. jannaschii was available in the public sequence databases before the whole genome sequence described here. Thus, the initial training set to determine parameters of a coding sequence Markov model was chosen as a set of ORFs>1000 nucleotides (nt). As an initial model for non-coding sequences, a zero-order Markov model with genome-specific nucleotide 65 frequencies was used. The initial models were used at the first prediction step. The results of the first prediction were

24

then used to compile a set of putative genes used at the second training step. Alternate rounds of training and predicting were continued until the set of predicted genes stabilized and the parameters of the final fourth-order model of coding sequences were derived. The regions predicted as noncoding were then used as a training set for a final model for noncoding regions. Cross-validaton simulations demonstrated that the GeneMark program trained as described above was able to correctly identify coding regions of at least 96 nt in 94% of the cases and noncoding regions of the same length in 96% of the cases. These values assume that the self-training method produced correct sequence annotation for compiled control sets. Comparison with the results 15 obtained by searches against a nonredundant protein database (Fleischmann, R. D., et al., Science 269:496 (1995); Fraser, C. M., et al., Science 270:397 (1995)) demonstrated that almost all genes identified by sequence similarity were predicted by the GeneMark program as well. This observation provides additional confidence in genes predicted by GeneMark whose protein translations did not show significant similarity to known protein sequences. The predicted protein-coding regions were search against the Blocks database (Henikoff, S. & Henikoff, J. G., Genomics 19:97 (1994)] by means of BLIMPS (Wallace, J. C. & Henikoff, S., CABIOS 8:249 (1992)) to verify putative identifications and to identify potential functional motifs in predicted proteincoding regions that had no database match. Genes were assigned to known metabolic pathways. When a gene appeared to be missing from a pathway, the unassigned ORFs and the complete M. jannaschii genome sequence were searched with specific query sequences or motifs from the Blocks database. Hydrophobicity plots were performed on all predicted protein-coding regions by means of the Kyte-Doolittle algorithm (Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157:105 (1982)) to identify potentially functionally relevant signatures in these sequences.

The *M. jannaschii* genome comprises three physically distinct elements: i) a large circular chromosome of 1,664, 976 base pairs (bp) (SEQ ID NO:1), which contains 1682 predicted protein-coding regions and has a G+C content of 31.4%; ii) a large circular extrachromosomal element (ECE) (Zhao, H., et al., *Arch. Microbiol*. 150:178 (1988)) of 58,407 bp (SEQ ID NO:2), which contains 44 predicted protein coding regions and has a G+C content of 28.2% (FIG. 3); and iii) a small circular ECE (Zhao, H., et al., *Arch. Microbiol*. 150:178 (1988)) of 16,550 bp (SEQ ID NO:3), which contains 12 predicted protein coding regions, and has a G+C content of 28.8% (FIG. 3). With respect to its shape, size, G+C content, and gene density the main chromosome resembles that of *H. influenzae*. However, here the resemblance stops.

Of the 1743 predicted protein-coding regions reported previously for *H. influenzae*, 78% had a match in the public sequence database (Fleischmann, R. D., et al., *Science* 269:496 (1995); Fraser, C. M., et al., *Science* 270:397 (1995)). Of these, 58% were matches to genes with reasonably well defined function, while 20% were matches to genes whose function was undefined. Similar observations were made for the *M. genitalium* genome (Fleischmann, R. D., et al., *Science* 269:496 (1995); Fraser, C. M., et al., *Science* 270:397 (1995)). Eighty-three percent of the pre-

dicted protein coding regions from M. genitalium have a counterpart in the H. influenzae genome. In contrast, only 38% of the predicted protein-coding regions from M. jannaschii match a gene in the database that could be assigned a putative cellular role with high confidence; 6% of the predicted protein-coding regions had matches to hypothetical proteins (FIG. 4; Tables 2–3). Approximately 100 genes in M. jannaschii had marginal similarity to genes or segments of genes from the public sequence databases and could not be assigned a putative cellular role with high confidence. Only 11% of the predicted protein-coding regions from H. influenzae and 17% of the predicted protein coding regions from M. genitalium matched a predicted protein coding region from M. jannaschii. Clearly the M. 15 jannaschii genome, and undoubtedly, therefore, all archaeal

genomes are remarkably unique, as the phylogenetic posi-

tion of these organisms would suggest.

Energy production in M. jannaschii occurs via the reduction of CO₂ with H₂ to produce methane. Genes for all of the known enzymes and enzyme complexes associated with methanogenesis (DiMarco, A. A., et al., Ann. Rev. Biochem. 59:355 (1990)) were identified in M. jannaschii, the sequence and order of which are typical of methanogens. M. 25 jannaschii appears to use both H₂ and formate as substrates for methanogenesis, but lacks the genes to use methanol or acetate. The ability to fix nitrogen has been demonstrated in a number of methanogens (Belay, N., et al., Nature 312:286 (1984)) and all of the genes necessary for this pathway have been identified in M. jannaschii (Tables 2–3). In addition to its anabolic pathways, several scavenging molecules have been identified in M. jannaschii that probably play a role in importing small organic compounds, such as amino acids, 35 from the environment (Tables 2-3).

Three different pathways are known for the fixation of CO₂ into organic carbon: the non-cyclic, reductive acetylcoenzyme A-carbon monoxide dehydrogenase pathway (Ljungdahl-Wood pathway), the reductive trichloroacetic acid (TCA) cycle, and the Calvin cycle. Methanogens fix carbon by the Ljungdahl-Wood pathway (Wood, H. G., et al., TIBS 11:14 (1986)), which is facilitated by the carbon monoxide dehydrogenease enzyme complex (CODH) 45 (Blaat, M., Antonie van Leewenhoek 66:187 (1994)). The complete Ljungdahl-Wood pathway, encoded in the M. jannaschii genome, depends on the methyl carbon in methanogenesis; however, methanogenesis can occur independently of carbon fixation.

Although genes encoding two enzymes required for gluconeogenesis (glucopyruvate oxidoreductase and phosphoenolpyruvate synthase) were found in the M. jannaschii genome, genes encoding other key intermediates of gluco- 55 neogenesis (fructose bisphosphatase and fructose 1,6bisphosphate aldolase) were not been identified. Glucose catabolism by glycolysis also requires the aldolase, as well as phosphofructokinase, an enzyme that also was not found in M. jannaschii and has not been detected in any of the Archaea. In addition, genes specific for the Entner-Doudoroff pathway, an alternative pathway used by some microbes for the catabolism of glucose, were not identified nearly complete metabolic pathways suggests that some key genes are not recognizable at the sequence level, although

26

we cannot exclude the possibility that M. jannaschii may use alternative metabolic pathways.

In general, M. jannaschii genes that encode proteins involved in the transport of small inorganic ions into the cell are homologs of bacterial genes. The genome includes many representatives of the ABC transporter family, as well as genes for exporting heavy metals (e.g., the chromateresistance protein) and other toxic compounds (e.g the nor A drug efflux pump locus).

More than 20 predicted protein-coding regions have sequence similarity to polysaccharide biosynthetic enzymes. These genes have only bacterial homologs or are most closely related to their bacterial counterparts. The identified polysaccharide biosynthetic genes in M. jannaschii include those for the interconversion of sugars, activation of sugars to nucleotide sugars, and glycosyltransferases for the polymerization of nucleotide sugars into oligo- and polysaccharides that are subsequently incorporated into surface structures (Hartmann, E. and König, H., Arch Microbiol. 151:274 (1989)). In an arrangement reminiscent of bacterial polysaccharide biosynthesis genes, many of the genes for M. jannaschii polysaccharide production are clustered together (Tables 2-3, FIG. 4). The G+C content in this region is <95% of that in the rest of the M. jannaschii genome. A similar observation was made in Salmonella typhimurium (Jiang, X. M., et al., Mol. Microbiol. 5:695 (1991)) in which the gene cluster for lipopolysaccharide 0 antigen has a significantly lower G+C ratio than the rest of the genome. In that case, the difference in G+C content was interpreted as meaning that the region originated by lateral transfer from another organism.

Of the three main multicomponent information processing systems (transcription, translation, and replication), translation appears the most universal in its overall makeup in that the basic translation machinery is similar in all three domains of life. M. jannaschii has two ribosomal RNA operons, designated A and B, and a separate 5S RNA gene that is associated with several transfer RNAs (tRNAs). Operon A has the organization, 16S—23S—5S, whereas operon B lacks the 5S component An alanine tRNA is situated in the spacer region between the 16S and 23S subunits in both operons. The majority of proteins associated with the ribosomal subunits (especially the small subunit) are present in both Bacteria and Eukaryotes. However, the relatively protein-rich eukaryotic ribosome contains additional ribosomal proteins not found in the bacterial ribosome. A smaller number of bacteria-specific ribosomal proteins exist as well. The M. jannaschii genome contains all ribosomal proteins that are common to eukaryotes and bacteria. It shows no homologs of the bacterial-specific ribosomal proteins, but does possess homologs of a number of the eukaryotic-specific ones. Homologs of all archaeaspecific ribosomal proteins that have been reported to date (Lechner, K., et al., J. Mol. Evol. 29:20 (1989); Köpke, A. K. E. and Wittimann-Liebold, B., Can. J. Microbiol. 35:11 (1989)) are found in M. jannaschii.

As previously shown for other archaea (Iwabe, N., et al., Proc. Natl. Acad. Sci. USA 86:9355 (1989); Gogarten J. P., in the genomic sequence. The presence of a number of 65 et al., Proc. Natl. Acad. Sci. USA 86:6661 (1989); Brown, J. R. and Doolittle, W. F., Proc. Natl. Acad. Sci. USA 92:2441 (1995)), the Methanococcus translation elongation factors

EF-1 α (EF-Tu in bacteria) and EF-2 (EF-G in bacteria) are most similar to their eukaryotic counterparts. In addition, the M. jannaschii genome contains 11 translation initiation factor genes. Three of these genes encode the subunits homologous to those of the eukarvotic IF-2, and are reported here in the Archaea for the first time. A fourth initiation factor gene that encodes a second IF-2 is also found in M. jannaschii. This additional IF-2 gene is most closely related to the yeast protein FUN12 which, in turn, appears to be a homolog of the bacterial IF-2. It is not known which of the two IF-2-like initiation factors identified in M. jannaschii plays a role in directing the initiator tRNA to the start site of the mRNA. The fifth identified initiation factor gene in M. jannaschii encodes IF-1A, which has no bacterial homolog. 15 The sixth gene encodes the hypusine-containing initiation factor eIF-5a. Two subunits of the translation initiation factor eIF-2B were identified in *M. jannaschii*. Finally, three putative adenososine 5'-triphosphate (ATP)-dependent helicases were identified that belong to the eIF-4a family of translation initiation factors.

Thirty-seven tRNA genes were identified in the M. jannaschii genome. Almost all amino acids encoded by two codons have a single TRNA, except for glutamic acid, which has two. Both an initiator and an internal methionyl tRNA are present. The two pyrimidine-ending isoleucine codons are covered by a single tRNA, while the third (AUA) seems covered by a related tRNA having a CAU anticodon. A single tRNA appears to cover the three isoleucine codons. Those amino acids encoded by f our codons each have two tRNAs, one to cover the Y-, the other the R-ending, codons. Valine has a third tRNA, which is specific for the GUG spacer regions separating the 16S and 23S subunits in the two ribosomal RNA operons). Leucine, serine and arginine, all of which have six codons, each posses three corresponding tRNAs. The genes for the internal methionine and tryptophan tRNAs contain introns in the region of their 40 anti-codon loops.

A tRNA also exists for selenocysteine UGA codon). At least four genes in M. jannaschii contain internal stop codons that are potential selenocysteine codons: the α chain 45 of formate dehydrogenase, coenzyme F420 reducin hydrognase, β-chain tungsten formyl methanofuran dehydrogenase, and a heterodisulfide reductase. Three genes with a putative role in selenocysteine metabolism were identified by their similarity to the sel genes from other 50 organisms (Tables 2–3).

Recognizable homologs for four of the aminoacyl-tRNA synthetases (glutamine, asparagine, lysine, and cysteine) were not identified in the M. jannaschii genome. The 55 absence of a glutaminyl-tRNA synthetase is not surprising in that a number of organisms, including at least one archaeon, have none (Wilcox, M., Eur. J Biochem. 11:405 (1969); Martin, N. C., et al., J. Mol. Biol. 101:285 (1976); Martin, N. C., et al., Biochemistry 16:4672 (1977); Schon, A., et al., Biochimie 70:391 (1988); Soll, D. and RajBhandary, U., Eds. Am. Soc. for Microbiol. (1995)). In these instances, glutaminyl tRNA charging involves a post-charging conversion mechanism whereby the tRNA is charged by the 65 glutamyl-tRNA synthetase with glutamic acid, which then is enzymatically converted to glutamrine. Apost-charging con28

version is also involved in selenocysteine charging via the seryl-tRNA synthetase. A similar mechanism has been proposed for asparagine charging, but has never been demonstrated (Wilcox, M., Eur. J. Biochem. 11:405 (1969); Martin, N. C., et al., J. Mol. Biol. 101:285 (1976); Martin, N. C., et al., Biochemistry 16:4672 (1977); Schon, A., et al., Biochimie 70:391 (1988); Soll, D. and RaiBhandary, U., Eds. Am. Soc. for Microbiol. (1995)). The inability to find homologs of the lysine and cysteine aminoacyl-tRNA synthetases is surprising because bacterial and eukaryotic versions in each instance show clear homology.

Aminoacyl-tRNA synthetases of M. jannaschii and other archaea resemble eukarvoticsynthetases more closely than they resemble bacterial forms. The tryptophanyl synthetase is one of the more notable examples, because the M. jannaschii and eukaryotic version do not appear to be specifically related to the bacterial version (de Pouplana, R., et al., Proc. Natl. Acad. Sci., USA 93:166 (1996)). Two versions of the glycyl synthetase are known in bacteria, one that is very unlike the version found in Archaea and Eukaryote and one that is an obvious homolog of it (Wagner, E. A., et al., J. Bacteriol. 177:5179 (1995); Logan, D. T., et al., EMBO J. 14:4156 (1995)).

Eleven genes encoding subunits of the DNA-dependent RNA polymerase were identified in the M. jannaschii genome. The sequence similarity between the subunits and their homologs in Sutfolobus acidocaldarius supports the evolutionary unity of the archaeal polymerase complex (Woese, C. R. and Wolfe, R. S., Eds. The Bacteria, vol. VIII (Academic Press, NY, 1985); Langer, D., et al., Proc. Natl. Acad. Sci. 92:5768 (1995); Lanzendoerfer, M. et al., System. codon; and alanine has three tRNAs (two of which are in the 35 Appl. Microbiol. 16:656 (1994)). All of the subunits found in M. jannaschii show greater similarity to their eukaryotic counterparts than to the bacterial homologs. The genes encoding the five largest subunits (A', A", B', B", D) have homologs in all organisms. Six genes encode subunits shared only by Archaea and Eukaryotes (E, H, K, L, and N). The M. jannaschii homolog of the S. acidocaldarius subunit E is split into two genes designated E' and E". Sulfolobus acidocaldarius also contains two additional small subunits of RNA polymerase, designated G and F, that have no counterparts in either Bacteria or Eukarvotes. No homolog of these subunits was identified in M. iannaschii.

> The archaeal transciption initiation system is essentially the same as that found in Eukaryotes, and is radically different from the bacterial version (Klenk, H. P. and Doolittle, W. F., Curr. Biol. 4.920 (1994)). The central molecules in the former systems are the TATA-binding protein (TBP) and transcription factor B (TFIIB and TFIIIB in Eukaryotes, or simply TFB). In the eukaryotic systems, TBP and TFB are parts of larger complexes, and additional factors (such as TFIIA and TFIIF) are used in the transcription process. However, the M. jannaschii genome does not contain obvious homologs of TFIIA and TFIIF.

Several components of the replication machinery were identified in M. jannaschii. The M. jannaschii genome appears to encode a single DNA-dependent polymerase that is a member of the B family of polymerases (Bernard, A., et al., EMBO J. 6:4219 (1987); Cullman, G., et al., Molec. Cell Biol. 15:4661 (1995); Uemori, T., et al., J. Bacteriol. 117:2164 (1995); Delarue, M., et al., Prot. Engineer. 3:461

(1990); Gavin, K. A., et al., *Science* 270:1667 (1995)). The polymerase shares sequence similarity and three motifs with other family B polymerases, including eukaryotic α , γ , and ϵ polymerases, bacterial polymerase II, and several archaeal polymerases. However, it is not homologous to bacterial polymerase I and has no homologs in *H. influenzae* or *M. genitalium*.

Primer recognition by the polymerase takes place through a structure-specific DNA binding complex, the replication 10 factor complex (rfc) (Bernard, A., et al., EMBO J. 6:4219 (1987); Cullman, G., et al., Molec. Cell Biol. 15:4661 (1995); Uemori, T., et al., J. Bacteriol. 117:2164 (1995); Delarue, M., et al., Prot. Engineer. 3:461 (1990); Gavin, K. A., et al., Science 270:1667 (1995)). In humans and yeast, 15 the rfc is composed of five proteins: a large subunit and four small subunits that have an associated adenosine triphosphatase (ATPase) activity stimulated by proliferating cell nuclear antigen (PCNA). Two genes in M. jannaschii are putative members of a eukaryotic-like replication factor complex. One of the genes in M. jannaschii is a putative homolog of the large subunit of the rfc, whereas the second is a putative homolog of one of the small subunits. Among Eukaryotes, the rfc proteins share sequence similarity in 25 eight signature domains (Bernard, A., et al., EMBO J. 6:4219 (1987); Cullman, G., et al., Molec. Cell Biol. 15:4661 (1995); Uemori, T., et al., J. Bacteriol. 117:2164 (1995); Delarue, M., et al., *Prot. Engineer*. 3:461 (1990); Gavin, K. A., et al., Science 270:1667 (1995)). Domain I is conserved only in the large subunit among Eukaryotes and is similar in sequence to DNA ligases. This domain is missing in the large-subunit homolog in M. jannaschii. The remaining domains in the two M. jannaschii genes are well-conserved 35 relative to the eukaryotic homologs. Two features of the sequence similarity in these domains are of particular interest. First, domain II (an ATPase domain) of the smallsubunit homolog is split between two highly conserved amino acids (lysine and threonine) by an intervening sequence of unknown function. Second, the sequence of domain VI has regions that are useful for distinguishing between bacterial and eukaryotic rfc proteins (Bernard, A., et al., EMBO J. 6:4219 (1987); Cullman, G., et al., Molec. 45 Cell Biol. 15:4661 (1995); Uemori, T., et al., J. Bacteriol. 117:2164 (1995); Delarue, M., et al., Prot. Engineer. 3:461 (1990); Gavin, K. A., et al., Science 270:1667 (1995)); the rfc sequence for M. jannaschii shares the characteristic eukaryotic signature in this domain.

We have attempted to identify an origin of replication by searching the *M. jannaschii* genome sequence with a variety of bacterial and eukaryotic replication-origin consensus sequences. Searches with oriC, Co1E1, and autonomously 55 replicating sequences from yeast (Bernard, A., et al., *EMBO J.* 6:4219 (1987); Cullman, G., et al., *Molec. Cell Biol.* 15:4661 (1995); Uemori, T., et al., *J. Bacteriol.* 117:2164 (1995); Delarue, M., et al., *Prot. Engineer.* 3:461 (1990); Gavin, K. A., et al., *Science* 270:1667 (1995)) did not identify an origin of replication. With respect to the related cellular processes of replication initiation and cell division, the *M. jannaschii* genome contains two genes that are putative homologs of Cdc54, a yeast protein that belongs to a family of putative DNA replication initiation proteins (Whitbred, L. A. and Dalton, S., *Gene* 155:113 (1995)). A

30

third potential regulator of cell division in *M. jannaschii* is 55% similar at the amino acid level to pelota, a Drosophila protein involved in the regulation of the early phases of meiotic and mitotic cell division (Eberhart, C. G. and Wasserman, S. A., *Development* 121:3477 (1995)).

In contrast to the putative rfc complex and the initiation of DNA replication, the cell division proteins from M. jannaschii most resemble their bactiial counterparts (Rothfield, L. I. and Zhao, C. R., Cell 84:183 (1996); Lutkenhaus, J., Curr. Opp. Gen. Devel. 3:783 (1993)). Two genes similar to that encoding FtsZ, a ubiquitous bacterial protein, are found in M. jannaschii. FtsZ is a polymerforming, guanosine triphosphate (GTP)-hydrolyzing protein with tubulin-like elements; it is localized to the site of septation and forms a constricting ring between the dividing cells. One gene similar to FtsJ, a bacterial cell division protein of undetermined function, also is found in M. jannaschii. Three additional genes (MinC, MinD, and MinE) function in concert in Bacteria to determine the site of septation during cell division. In M. jannaschii, three MinD-like genes were identified, but none for MinC or MinE. Neither spindle-associated proteins characteristic of eukaryotic cell division nor bacterial mechanocherical enzymes necessary for partitioning the condensed chromosomes were detected in the M. jannaschii genome. Taken together, these observations raise the possibility that cell division in M. jannaschii might occur via a mechanism specific for the Archaea.

The structural and functional conservation of the signal peptide of secreted proteins in Archaea, Bacteria, and Eukaryotes suggests that the basic mechanisms of membrane targeting and translocation may be similar among all three domains of life. The secretory machinery of M. jannaschii appears a rudimentary apparatus relative to that of bacterial and eukaryotic systems and consists of (i) a signal peptidase (SP) that cleaves the signal peptide of translocating proteins, (ii) a preprotein translocase that is the major constituent of the membrane-localized translocation channel, (iii) a ribonucleoprotein complex (signal recognition particle, SRP) that binds to the signal peptide and guides nascent proteins to the cell membrane, and (iv) a docking protein that acts as a receptor for the SRP. The 7S RNA component of the SRP from M. jannaschii shows a highly conserved structural domain shared by other Archaea, Bacteria, and Eukaryotes (Kaine, B. P. and Merkel, V. L., J. Bacteriol. 171:4261 (1989); Poritz, M. A. et al., Cell 55:4 (1988)). However, the predicted secondary structure of the 7S RNA SRP component in Archaea is more like that found in Eukaryotes than in Bacteria (Kaine, B. P. and Merkel, V. L., J. Bacteriol. 171:4261 (1989); Poritz, M. A. et al., Cell 55:4 (1988)). The SP and docking proteins from M. jannaschii are most similar to their eukaryotic counterparts; the translocase is most similar to the SecY translocationassociated protein in Escherichia coli.

A second distinct signal peptide is found in the flagellin genes of *M. jannaschii*. Alignment of flagellin genes from *M. voltae* (Faguy, D. M., et al., *Can. J. Microbiol.* 40:67 (1994); Kalmokoff, M. L., et al., *Arch. Microbiol.* 157:481 (1992)) and *M. jannaschii* reveals a highly conserved NAH₂-terminus (31 of the first 50 residues are identical in all of the mature flagellins). The peptide sequence of the *M.*

jannaschii flagellin indicates that the protein is cleaved after the canonical Gly-12 position, and it is proposed to be similar to type-IV pilins of Bacteria (Faguy, D. M., et al., Can. J. Microbiol. 40:67 (1994); Kalmokoff, M. L., et al., Arch. Microbiol. 157:481 (1992)).

Five histone genes are present in the *M. jannaschii* genome—three on the main chromosome and two on the large ECE. These genes are homologs of eukaryotic histones (H2a, H2b, H3, and H4) and of the eukaryotic transcription-related CAAT-binding factor CBF-A (Sandman, K., et al., *Proc. Natl. Acad. Sci. USA* 87:5788 (1990)). The similarity between archaeal and eukaryotic histones suggests that the two groups of organisms resemble one another in the roles histones play both in genome supercoiling dynamics and in gene expression. The five *M. jannaschii* histone genes show greatest similarity among themselves even though a histone sequence is available from the closely related species, *Methanococcus voltae*. This intraspecific similarity suggests 20 that the gene duplications that produced the five histone genes occurred on the *M. jannaschii* lineage per se.

Self-splicing portions of a peptide sequence that generally encode a DNA endonuclease activity are called inteins, in 25 analogy to introns (Kane, P. M., et al., Science 250:651 (1990); Hirata, R., et al., J. Biol. Chem. 265:6726 (1990); Cooper, A. and Stevens, T., TIBS 20:351 (1995); Xu, M. Q., et al., Cell 75:1371 (1993); Perler et al., Proc. Natl. Acad. Sci. USA 89:5577 (1992); Cooper et al., EMBO J. 225.75 (1993); Michel et al., Biochimie 64:867 (1992); Pietrokovski S., Prot. Sci. 3:2340 (1994). Most inteins in the M. jannaschii genome were identified by (i) similarity of the bounding exteins to other proteins, (ii) similarity of the inteins to 35 those previously described, (iii) presence of the dodecapeptide endonuclease motifs, and (iv) canonical inteinexteinjunction sequences. In two instances (MJ0832 and MJ0043), the similarity to other database sequences did not unambiguously define the NH2-terminal extein-intein 40 junction, so it was necessary to rely on consensus sequences to select the putative site. The inteins in MJ1042 and MJ0542 have previously uricharacterized COOH-terminal splice junctions, GNC and FNC, respectively).

The sequences remaining after an intein is excised are called exteins, in analogy to exons. Exteins are spliced together after the excision of one or more inteins to form functional proteins. The biological significance and role of inteins are not clearly understood (Kane, P. M., et al., Science 250:651 (1990); Hirata, R., et al., J. Biol. Chem. 265:6726 (1990); Cooper, A. and Stevens, T., TIBS 20:351 (1995); Xu, M. Q., et al., Cell 75:1371 (1993); Perler et al., Proc. Natl. Acad. Sci. USA 89:5577 (1992); Cooper et al., 55 EMBO J. 12:2575 (1993); Michel et al., Biochimie 64:867 (1992); Pietrokovski S., Prot. Sci. 3:2340 (1994)). Fourteen genes in the M. jannaschii genome contain 18 putative inteins, a significant increase in the approximately 10 inteincontaining genes that have been described (Kane, P. M., et al., Science 250:651 (1990); Hirata, R., et al., J. Biol. Chem. 265:6726 (1990); Cooper, A. and Stevens, T., TIBS 20:351 (1995); Xu, M. Q., et al., Cell 75:1371 (1993); Perler et al., Proc. Natl. Acad. Sci. USA 89:5577 (1992); Cooper et al., 65 EMBO J. 12:2575 (1993); Michel et al., Biochimie 64:867 (1992); Pietrokovski S., Prot. Sci. 3:2340 (1994)) (Table 4).

32

The only previously described inteins in the Archaea are in the DNA polymerase genes of the Thermococcales (Kane, P. M., et al., Science 250:651 (1990); Hirata, R., et al., J. Biol. Chem. 265:6726 (1990); Cooper, A. and Stevens, T., TIBS 20:351 (1995); Xu, M. Q., et al., Cell 75:1371 (1993); Perler et al., Proc. Natl. Acad. Sci. USA 89:5577 (1992); Cooper et al., EMBO J. 12:2575 (1993); Michel et al., Biochimie 64:867 (1992); Pietrokovski S., Prot. Sci. 3:2340 (1994)). The M. jannaschi DNA polymerase gene has two inteins in the same locations as those in Pyrococcus sp. strain KOD1. In this case, the exteins exhibit 46% amino acid identity, whereas intein 2 of the two organisms has only 33% identity. This divergence suggests that intein 2 has not been recently (laterally) transferred between the Thermococcales and M. jannaschii. In contrast, the intein 1 sequences are 56% identical, more than that of the gene containing them, and comparable to the divergence of inteins within the Thermococcales. This high degree of sequence similarity might be the result of an intein transfer more recent than the splitting of these species. The large number of inteins found in M. jannaschii led us to question whether these inteins have been increasing in number by moving within the genome. If this were so, we would expect to find some pairs of inteins that are particularly similar. Comparisons of these and other available intein sequences showed that the closest relationships are those noted above linking the DNA polymerase inteins to correspondingly positioned elements in the Thermococcales. Within M. jannaschii, the highest identity observed was 33% for a 380-bp portion of two inteins. This finding suggests that the diversification of the inteins predates the divergence of the M. jannaschii and Pyrococcus DNA polymerases.

Three families of repeated genetic elements were identified in the M. jannaschii genome. Within two of the families, at least two members were identified as ORFs with a limited degree of sequence similarity to bacterial transposases. Members of the first family, designated ISAMJ1, are repeated 10 times on the main chromosome and once on the large ECE (FIG. 5). There is no sequence similarity between the IS elements in M. jannaschii and the ISM1 mobile element described previously for Methanobrevibacter smithii (Hamilton, P. T. et al., Mol. Gen. Genet. 200:47 (1985)). Two members of this family were identified as ORFs and are 27% identical (at the amino acid sequence level) to a transposase from Bacillus thuringiensis (IS240; GenBank accession number M23741). Relative to these two members, the remaining members of the ISAMJ1 family are missing an internal region of several hundred nucleotides (FIG. 5). With one exception, all members of this family end with 16-bp terminal inverted repeats typical of insertion sequences. One member is missing the terminal repeat at its 5' end. The second family consists of two ORFs that are identical across 928 bp. The ORFs are 23% identical at the amino acid sequence level to the COOH-terminus of a transposase from Lactococcus lactis (IS982; GenBank accession number L34754). Neither of the members of the second family contains terminal inverted repeats.

Eighteen copies of the third family of repeated genetic structures (FIG. 6) are distributed fairly evenly around the *M. jannaschii* genome (FIG. 4). Unlike the genetic elements described above, none of the components of this repeat unit appears to have coding potential: The repeat structure is

composed of a long segment followed by one to 25 tandem repetitions of a short segment. The short segments are separated by sequence that is unique within and among the complete repeat structure. Three similar types of short segments were identified; however, the type of short repeat is consistent within each repeat structure, except for variation of the last short segment in six repeat structures. Similar tandem repeats of short segments have been observed in Bacteria and other Archaea (Mojica, F. J. M., et al., *Mol. Micro.* 17:85 (1995)) and have been hypothesized to participate in chromosome partitioning during cell division.

The 16-kbp ECE from *M. jannaschii* contains 12 ORFs, none of which had a significant full-length match to any published sequence (FIG. 3). The 58-kbp ECE contains 44 15 predicted protein-coding regions, 5 of which had matches to genes in the database. Two of the genes are putative archaeal histones, one is a sporulation-related protein (SOJ protein), and two are type I restriction modification enzymes. There are several instances in which predicted protein-coding regions or repeated genetic elements on the large ECE have similar counterparts on the main chromosome of *M. jannaschii* (FIG. 3). The degree of nucleotide sequence similarity between genes present on both the ECE and the main 25 chromosome ranges from 70 to 90%, suggesting that there has been relatively recent exchange of at least some genetic material between the large ECE and the main chromosome.

All the predicted protein-coding regions from *M. jannaschii* were searched against each other in order to identify families of paralogous genes (genes related by gene duplication, not speciation). The initial criterion for grouping paralogs was >30% amino acid sequence identity over 50 consecutive amino acid residues. Groups of predicted 35 protein-coding regions were then aligned and inspected individually to ensure that the sequence similarity extended over most of their lengths. This curatorial process resulted in the identification of more than 100 gene families, half of which have no database matches. The largest identified gene family (16 members) (FIG. 7) contains almost 1% of the total predicted protein-coding regions in *M. jannaschii*.

Despite the availability for comparison of two complete bacterial genomes and several hundred megabase pairs of 45 eukaryotic sequence data, the majority of genes in M. jannaschii cannot be identified on the basis of sequence similarity. Previous evidence for the shared common ancestry of the Archaeal and Eukaryotic was based on a small set gene sequences (Iwabe, N., et al., Proc. Natl. Acad. Sci. USA 86:9355 (1989); Gogarten J. P., et al., Proc. Natl. Acad. Sci. USA 86:6661 (1989); Brown, J. R. and Doolittle, W. F., Proc. Natl. Acad. Sci. USA 92:2441 (1995)). The complete genome of M. jannaschii allows us to move beyond a "gene 55 by gene" approach to one that encompasses the larger picture of metabolic capacity and cellular systems. The anabolic genes of M. jannaschii (especially those related to energy production and nitrogen fixation) reveal an ancient metabolic world shared largely by Bacteria and Archaea. That many basic autotrophic pathways appear to have a common evolutionary origin suggests that the most recent universal common ancestor to all three domains of extant life had the capacity for autotrophy. The Archaea and 65 Bacteria also share structural and organizational features that the most recent universal prokaryotic ancestors also

34

likely possessed, such as circular genomes and genes organized as operons. In contrast, the cellular information-processing and secretion systems in *M. jannaschii* demonstrate the common ancestry of Eukaryotes and Archaea.

Although there are components of these systems are present in all three domains, their apparent refinement over time-especially transcription and translation-indicate that the Archaea and Eukaryotes share a common evolutionary trajectory independent of the lineage of Bacteria.

EXAMPLE 2

Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Methanococcus jannaschii* genome, such as those disclosed in Tables 2(a), 2(b) and 3 can be used, in accordance with the present invention, to prepare PCR primers. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers are useful during PCR cloning of the ORFs described herein.

EXAMPLE 3

Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the *Methanococcus jannaschii* genome (preferably, a protein-encoding sequence) provided in Tables 2(a), 2(b) or 3 is introduced into an expression vector using conventional technology (techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art). Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, Calif.), Promega (Madison, Wis.), and Invitrogen (San Diego, Calif.). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield et al, U.S. Pat. No. 5,082,767, which is hereby incorporated by reference.

The following is provided as one exemplary method to generate polypeptide(s) from a cloned ORF of the Methanococcus genome whose sequence is provided in SEQ ID NOS:1, 2 and 3. A poly A sequence can be added to the construct by, for example, splicing out the poly A sequence from pSGS (Stratagene) using Bg/I and Sa/I restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene from Moloney Murine Leukemia Virus. The position of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Methanococcus DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Methanococcus DNA and containing restriction endonuclease sequences for PstI incorporated

into the 5' primer and Bg/II at the 5' end of the corresponding Methanococcus DNA 3' primer, taking care to ensure that the Methanococcus DNA is positioned such that its followed with the poly A sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt on the ended with an exonuclease, digested with Bg/II, purified and ligated to pXT1, now containing a poly A sequence and digested Bg/II.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, N.Y.) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Mo.). The protein is preferably released into the supernatant. 15 However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface.

Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted Methanococcus DNA isequence are injected into mice to generate antibody to the polypeptide encoded by the Methanococcus DNA.

If antibody production is not possible, the Methanococcus 25 DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as a chimeric with, for example, β -globin. Antibody to β -globin is used to purify the chimeric. Corresponding protease cleavage sites engineered between the β-globin gene and the Methanococcus DNA are then used to separate the two polypeptide fragments from one another after translation. One useful expression vector for generating β -globin chimerics is pSG5 (Stratagene). This vector encodes rabbit β -globin. Intron II of the rabbit 35 β -globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques as described are well known to those skilled in the art of molecular biology. Standard methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides may additionally be produced from either construct using in vitro translation systems such as In vitro Express™ Translation Kit 45 (Stratagene).

EXAMPLE 4

E. coli Expression of a M. jannaschii ORF and protein purification

A *M. jannaschii* ORF described in Table 2(a), 2(b), or 3 is selected and amplified using PCR oligonucleotide primers designed from the nucleotide sequences flanking the selected ORF and/or from portions of the ORF's NH₂- or COOH-terminus. Additional nucleotides containing restriction sites to facilitate cloning are added to the 5' and 3' sequences, respectively.

The restriction sites are selected to be convenient to restriction sites in the bacterial expression vector pD10 ⁶⁰ (pQE9), which is used for bacterial expression. (Qiagen, Inc. 9259 Eton Avenue, Chatsworth, Calif., 91311). [pD10]pQE9 encodes ampicillin antibiotic resistance ("Amp") and contains a bacterial origin of replication ("ori"), an IPTG inducible promoter, a ribosome binding site ("RBS"), a 6-His tag and restriction enzyme sites.

36

The amplified *M. jannaschii* DNA and the vector pQE9 both are digested with SalI and XbaI and the digested DNAs are then ligated together. Insertion of the *M. jannaschii* DNA into the restricted pQE9 vector places the *M. jannaschii* coding region downstream of and operably linked to the vector's IPTG-inducible promoter and in-frame with an initiating AUG appropriately positioned for translation of the *M. jannaschii* protein.

The ligation mixture is transformed into competent *E. coli* cells using standard procedures. Such procedures are described in Sambrook et al., Molecular Cloning: a Laboratory Manual, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989). *E. coli* strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses lac repressor and confers kanamycin resistance ("Kan"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing *M. jannaschii* protein, is available commercially from Qiagen.

Transformants are identified by their ability to grow on LB plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis. Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin ($100 \mu g/ml$) and kanamycin ($25 \mu g/ml$).

The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:100 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. Isopropyl-B-D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from lac repressor sensitive promoters, by inactivating the lacI repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation and disrupted, by standard methods. Inclusion bodies are purified from the disrupted cells using routine collection techniques, and protein is solubilized from the inclusion bodies into 8M urea. The 8M urea solution containing the solubilized protein is passed over a PD-10 column in 2×phosphate-buffered saline ("PBS"), thereby removing the urea, exchanging the buffer and refolding the protein. The protein is purified by a further step of chromatography to remove endotoxin followed by sterile filtration. 50 The sterile filtered protein preparation is stored in 2×PBS at a concentration of 95 μ /ml.

EXAMPLE 5

Cloning and Expression of a *M. jannaschii* protein in a Baculovirus 25 Expression. System

A M. jannaschii ORF described in Table 2(a), 2(b), or 3 is selected and amplified as above. The amplified DNA is isolated from a 1% agarose gel using a commercially available kit ("Gene clean," BIO 101 Inc., La Jolla, Calif.). The DNA then is digested with XbaI and again purified on a 1% agarose gel. This DNA is designated herein as F2.

The vector pA2-GP is used to express the *M. jannaschii* protein in the baculovirus expression system as described in Summers et al., A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Agricul-

tural Experimental Station Bulletin No. 1555 (1987). The pA2-GP expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites. The signal peptide of AcMNPV gp67, including the N-terminal methionine, is located just upstream of a BamHI site. The polyadenylation site from the simian virus 40 ("SV40") is used for efficient polyadenylation. For an easy selection of recombinant virus, the beta-galactosidase gene from *E. coli* is inserted in the same orientation as the polyhedrin promoter and is followed by the polyadenylation signal of the polyhedrin gene. The polyhedrin sequences are flanked at both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate viable virus that express the cloned polynucleotide.

Many other baculovirus vectors could be used in place of pA2-GP, such as pAc373, pVL941 and pAcIMI provided, as those of skill readily will appreciate, that construction provides appropriately located signals for transcription, translation, trafficking and the like, such as an in-frame AUG and a signal peptide, as required. Such vectors are described in Luckow et al., *Virology* 170: 31–39, among others.

The plasmid is digested with the restriction enzyme XbaI 25 and then is dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Calif.). This vector DNA is designated herein "V".

Fragment F2 and the dephosphorylated plasmid V2 are ligated together with T4 DNA ligase. *E. coli* HB101 cells are transformed with ligation mix and spread on culture plates. Bacteria are identified that contain the plasmid with the *M. jannaschii* gene by digesting DNA from individual colonies using XbaI and then analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing. This plasmid is designated herein pBac*M. jannaschii*.

5 μg of the plasmid pBacM. jannaschii is co-transfected with 1.0 µg of a commercially available linearized baculovirus DNA ("BaculoGoldTM baculovirus DNA", Phanningen, San Diego, Calif.), using the lipofection 45 method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84: 7413–7417 (1987). 1 µg of BaculoGold™ virus DNA and 5 µg of the plasmid pBacM. jannaschii are mixed in a sterile well of a microtiter plate containing 50 μ l of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, Md.). Afterwards 10 µl Lipofectin plus 90 µl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) 55 seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is rocked back and forth to mix the newly added solution. The plate is then incubated for 5 hours at 27° C. After 5 hours the transfection solution is removed from the plate and 1 ml of Grace's insect 60 medium supplemented with 10% fetal calf serum is added. The plate is put back into an incubator and cultivation is continued at 27° C. for four days.

After four days the supernatant is collected and a plaque 65 assay is performed, as described by Summers and Smith, cited above. An agarose gel with "Blue Gal" (Life Tech-

38

nologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9–10).

Four days after serial dilution, the virus is added to the cells. After appropriate incubation, blue stained plaques are picked with the tip of an Eppendorf pipette. The agar containing the recombinant viruses is then resuspended in an Eppendorf tube containing 200 μ l of Grace's medium. The agar is removed by a brief centrifugation and the supernatant containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatant of these culture dishes are harvested and then they are stored at 4° C. A clone containing properly inserted hESSB I, II and III is identified by DNA analysis including restriction mapping and sequencing. This is designated herein as V-M. jannaschii.

Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus V-M. jannaschii at a multiplicity of infection ("MOI") of about 2 (about 1 to about 3). Six hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Gaithersburg). 42 hours later, 5 μ Ci of ³⁵S-methionine and 5 μ Ci ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then they are harvested by centrifugation, lysed and the labeled proteins are visualized by SDS-PAGE and autoradiography.

EXAMPLE 6

Cloning and Expression in Mammalian Cells

Most of the vectors used for the transient expression of a *M. jannaschii* gene in mammalian cells should carry the SV40 origin of replication. This allows the replication of the vector to high copy numbers in cells (e.g., COS cells) which express the T antigen required for the initiation of viral DNA synthesis. Any other mammalian cell line can also be utilized for this purpose.

A typical mammalian expression vector contains the promoter element, which mediates the initiation of transcription of mRNA, the protein-coding sequence, and signals required for the termination of trancription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription can be achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular signals can also be used (e.g., human actin promoter). Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146) and pBC12MI (ATCC 67109). Mammalian host cells that could be used include, human Hela, 283, H9 and Jurkart cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, African

green monkey cells, quail QC1-3 cells, mouse L cells and Chinese hamster ovary cells.

Alternatively, the gene can be expressed in stable cell lines that contain the gene integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) is a useful marker to develop cell lines that carry several hundred or even several thousand copies of the gene of interest. Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et $_{15}$ al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169–175 (1992)). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified genes(s) integrated into a chromo- 20 some. Chinese hamster ovary (CHO) cells are often used for the production of proteins.

The expression vectors pC1 and pC4 contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al, $_{25}$ Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985)). Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp7l8, facilitate the cloning of the gene of interest. The vectors 30 contain in addition the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene.

EXAMPLE 6(a)

Cloning and Expression in COS Cells

The expression plasmid, pM. jannaschii HA, is made by cloning a cDNA encoding a M. jannaschii protein into the expression vector pcDNAI/Amp (which can be obtained 40 from Invitrogen, Inc.).

The expression vector pcDNAI/amp contains: (1) an E. coli origin of replication effective for propagation in E. coli and other prokaryotic cells; (2) an ampicillin resistance gene 45 for selection of plasmid-containing prokaryotic cells; (3) an SV40 origin of replication for propagation in eukaryotic cells; (4) a CMV promoter, a polylinker, an SV40 intron, and a polyadenylation signal arranged so that a cDNA conveniently can be placed under expression control of the CMV 50 promoter and operably linked to the SV40 intron and the polyadenylation signal by means of restriction sites in the polylinker.

an HA tag fused in frame to its 3' end is cloned into the polylinker region of the vector so that recombinant protein expression is directed by the CMV promoter. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein described by Wilson et al., Cell 37: 767 (1984). The fusion of the HA tag to the target protein allows easy detection of the recombinant protein with an antibody that recognizes the HA epitope.

The PCR amplified DNA fragment (generated as 65 chromosome(s). described above) and the vector, pcDNAI/Amp, are digested with HindIII and XhoI and then ligated. The ligation mixture

40

is transformed into E. coli strain SURE (available from Stratagene Cloning Systems, 11099 North Torrey Pines Road, La Jolla, Calif. 92037), and the transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysis and gel sizing for the presence of the M. jannaschii protein-encoding fragment.

For expression of recombinant M. jannaschii, COS cells are transfected with an expression vector, as described above, using DEAE-DEXTRAN, as described, for instance, in Sambrook et al., Molecular Cloning: a Laboratory Manual, Cold Spring Laboratory Press, Cold Spring Harbor, N.Y. (1989). Cells are incubated under conditions for expression of M. jannaschii protein by the vector.

Expression of the M. jannaschii HA fusion protein is detected by radiolabelling and immunoprecipitation, using methods described in, for example Harlow et al., Antibodies: A Laboratory Manual, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1988). To this end, two days after transfection, the cells are labeled by incubation in media containing 35S-cysteine for 8 hours. The cells and the media are collected, and the cells are washed and the lysed with detergent-containing RIPA buffer: 150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP40, 0.5% DOC, 50 mM TRIS, pH 7.5, as described by Wilson et al. cited above. Proteins are precipitated from the cell lysate and from the culture media using an HA-specific monoclonal antibody. The precipitated proteins then are analyzed by SDS-PAGE gels and autoradiography. An expression product of the expected size is seen in the cell lysate, which is not seen in negative 35 controls.

EXAMPLE 6(b)

Cloning and Expression in CHO Cells

The vector pC1 is used for the expression of a M. jannaschii protein. —Plasmid pC1 is a derivative of the plasmid pSV2-dhfr [ATCC Accession No. 37146]. Both plasmids contain the mouse DHFR gene under control of the SV40 early promoter. Chinese hamster ovary- or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life Technologies) supplemented with the chemotherapeutic agent methotrexate. The amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented (see, e.g., Alt, F. W., Kellems, R. M., Bertino, J. R., and Schirnke, R. T., 1978, J. Biol. Chem. 253:1357-1370, Hamlin, J. L. and Ma, C. 1990, Biochem. et Biophys. Acta, 1097:107-143, Page, M. A DNA fragment encoding the M. jannaschii protein and 55 J. and Sydenham, M. A. 1991, Biotechnology Vol. 9:64-68). Cells grown in increasing concentrations of MTX develop resistance to the drug by overproducing the target enzyme, DHFR, as a result of amplification of the DHFR gene. If a second gene is linked to the DHFR gene it is usually co-amplified and over-expressed. It is state of the art to develop cell lines carrying more than 1,000 copies of the genes. Subsequently, when the methotrexate is withdrawn, cell lines contain the amplified gene integrated into the

> Plasmid pC1 contains for the expression of the gene of interest a strong promoter of the long terminal repeat (LTR)

of the Rouse Sarcoma Virus (Cullen, et al., Molecular and Cellular Biology, March 1985:4384470) plus a fragment isolated from the enhancer of the immediate early gene of human cytomegalovirus (CMV) (Boshart et al., Cell 41:521–530, 1985). Downstream of the promoter are the following single restriction enzyme cleavage sites that allow the integration of the genes: BamHI, Pvull, and Nrul. Behind these cloning sites the plasmid contains translational stop codons in all three reading flames followed by the 3' intron and the polyadenylation site of the rat preproinsulin gene. Other high efficient promoters can also be used for the expression, e.g., the human β -actin promoter, the SV40 early or late promoters or the long terminal repeats from other retroviruses, e.g., HIV and HTLVI. For the polyadenylation 15 of the mRNA other signals, e.g., from the human growth hormone or globin genes can be used as well.

Stable cell lines carrying the gene of interest integrated into the chromosomes can also be selected upon co-transfection with a selectable marker such as gpt, G418 20 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate.

The plasmid pC1 is digested with the restriction enzyme BamHI and then dephosphorylated using calf intestinal 25 phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

The *M. jannaschii* protein-encoding sequence is is amplified using PCR oligonucleotide primers as described above. 30 An efficient signal for initiation of translation in eukaryotic cells, as described by Kozak, M., J. Mol. Biol. 196:947–950 (1987) is appropriately located in the vector portion of the construct. The amplified fragments are isolated from a 1% agarose gel as described above and then digested with the endonucleases BamHI and Asp718 and then purified again on a 1% agarose gel.

The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 cells are 40 then transformed and bacteria identified that contained the plasmid pC1 inserted in the correct orientation using the restriction enzyme BamHI. The sequence of the inserted gene is confirmed by DNA sequencing.

Transfection of CHO-DHFR-cells

Chinese hamster ovary cells lacking an active DHFR enzyme are used for transfection. 5 μ g of the expression plasmid C1 are cotransfected with 0.5 μ g of the plasmid pSVneo using the lipofecting method (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the gene neo from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented 55 with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) and cultivated from 10-14 days. After this period, single clones are trypsinized and then seeded in 6-well petri dishes using different concentrations of methotrexate (25 nM, 50 60 nM, 100 nM, 200 nM, 400 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (500 nM, 1 μ M, 2 μ M, 5 μ M). The same ₆₅ procedure is repeated until clones grow at a concentration of $100 \mu M.$

42

The expression of the desired gene product is analyzed by Western blot analysis and SDS-PAGE.

EXAMPLE 7

Production of an Antibody to a *Methanococcus* jannaschii Protein

Substantially pure *M. jannaschii* protein or polypeptide is isolated from the transfected or transformed cells described above using an art-known method. The protein can also be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows:

Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the -classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the'system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. Basic Methods in Molecular Biology Elsevier, New York. 45 Section 21-2 (1989).

Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than other molecules and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988–991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as deter-

mined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall (See Ouchterlony, O. et al., Chap. 19 in: *Handbook of Experimental Immunology*, Wier, D., ed, Blackwell (1973)). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12_{μ} M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: *Manual of Clinical*

44

Immunology, second edition, Rose and Friedman, (eds.), Amer. Soc. For Microbio., Washington, D.C. (1980).

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample.

TABLE 1A

			Amino acid biosynthesis			
Aromatic a	amino acid fai	nily				
MJ1454	47830	48390	3-dehydroquinate dehydratase {Escherichia coli}	32.6	54.0	50
MJ0502	1029204	1027915	5-enolpyruvylshikimate 3-phosphate synthase {Haemophilus influenzae}	38.2	60.0	129
MJ1075	456842	458158	anthranilate synthase, subunit I {Clostridium thermocellum}	52.7	72.1	13
MJ0234	1247181	1246243	anthranilate synthase, subunit II' {Thermotoga maritima}	44.1	64.3	9.
MJ0238	1242410	1241916	anthranilate synthase, subunit II" {Thermotoga maritima}	52.6	75.0	4
MJ 0246	1238364	1238660	chorismate mutase subunit A {Erwinia herbicola}	37.4	59.4	2
MJ0612	929781	928723	chorismate mutase subunit B {Escherichia coli}	33.2	56.2	10
MJ1175	357469	358572	chorismate synthase {Synechocystis sp}	48.8	66.5	11
MJ 0918	621924		indole-3-glycerol phosphate synthase {Halobacterium volcanii}	42.7	67.7	7
MJ 0451	1068501	1067845	N-phosphoribosyl anthranilate isomerase {Haloferax volcanii}	41.9	62.5	6
4J 0637	904569	905264	prephenate dehydratase {Lactococcus lactis}	39.3	61.7	6
4J 1084	449533	448757	shikimate 5-dehydrogenase {Escherichia coli}	38.9	57.4	7
MJ 1038	502619		tryptophan synthase, subunit alpha {Methanobacterium thermoautotrophicum}	49.8	69.3	8
MJ 1037	503929		tryptophan synthase, subunit beta {Acinetobacter calcoaceticus}	62.2	78.7	11
Aspartate 1						
MJ 1116	414120	415679	asparagine synthetase {Escherichia coli}	34.0	54.3	15
AJ 1056	476613		asparagine synthetase {Bacillus subtilis}	33.0	54.6	4
AJ 1391	132691		aspartate aminotransferase {Sulfolobus solfataricus}	31.0	52.2	11
⁄IJ 0684	859565	860632	aspartate aminotransferase {Sulfolobus solfataricus}	37.8	63.7	10
4J 0001	1469369	1470142	aspartate aminotransferase {Sulfolobus solfataricus}	39.2	63.8	7
MJ 0205	1273947	1274951	aspartate-semialdehyde dehydrogenase {Leptospira interrogans}	50.4	67.2	10
MJ0571	963902		aspartokinase I {Serratia marcescens}	37.0	56.7	13
MJ1473	26812		cobalamin-independent methionine synthase {Methanobacterium thermoautotrophicum}	47.7	65.3	7
4J 1097	433957		diaminopimelate decarboxylase {Haemophilus influenzae}	43.2	66.6	12
⁄IJ 1119	412913		diaminopimelate epimerase {Haemophilus influenzae}	36.2	56.6	8
4J 0422	1090629		dihydrodipicolinate reductase {Haemophilus influenzae}	45.0	64.4	8
4J 0244	1239093		dihydrodipicolinate synthase {Haemophilus influenzae}	46.6	64.4	6
MJ 1003	540278		homoaconitase {Saccharomyces cerevisiae}	35.7	56.9	11
MJ 1602	1563296		homoserine dehydrogenase {Bacillus subtilis}	40.4	63.2	10
⁄IJ 1104	427241		homoserine kinase {Haemophilus influenzae}	30.1	53.9	8
4J 0020	1450056		L-asparaginase I {Haemophilus influenzae}	34.8	53.1	11
4J 0457	1064285		succinyl-diaminopimelate desuccinylase {Haemophilus influenzae}	27.0	45.8	11
MJ 1465	36982		threoninesynthase {Bacillus subtilis}	51.2	71.1	11
ilutamate	family					
4J 0069	1406333	1405455	acetylglutamate kinase {Bacillus stearothermophilus}	44.4	65.7	8
4J 0791	757315		argininosuccinate lyase {Campylobacter jejuni}	41.3	65.6	13
4J 0429	1087105		argininosuccinate synthase {Methanococcus vannielii}	70.2	86.8	10
MJ0186	1287178		glutamate N-acetyltransferase {Bacillus stearothermophilus}	47.4	63.1	9
ИЈ1351	172535		glutamate synthase (NADPH), subunit alpha {Escherichia coli}	40.5	54.0	14
MJ1346	179417		glutamine synthetase {Methanococcus voltae}	70.5	84.7	13
4J 1096	435486		N-acetyl gamma-glutamyl-phosphate reductase {Bacillus subtilis}	40.4	63.6	10
MJ0721	817148		N-acetylornithine aminotransferase {Anabaena sp.}	46.7	67.0	11
MJ0881	664952		ornithine carbamoyltransferase {Halobacterium halobium}	43.0	69.6	8
yruvate f		005015	omanic caroano, aanotato (maroano maroano)	12.0	05.0	•
4J 0503	1027812	1026610	2-isopropylmalate synthase {Lactococcus lactis}	44.4	61.1	12
иј1392	131826		2-isopropylmalate synthase {Anabaena sp.}	43.0	63.1	11
MJ1271	256614		3-isopropylmalate dehydratase {Salmonella typhimurium}	44.1	62.0	3
AJ 1271 AJ 1277	249421		3-isopropylmalate dehydratase { Sumonetta typnumurum } 3-isopropylmalate dehydratase { Clostridium pasteurianum }	49.5	70.2	3
AJ0663	884580		acetolactate synthase, large subunit {Porphyra umbilicalis}	34.5	54.6	
4J0277	1207735		acetolactate synthase, large subunit {Forphyra umotiticatis} acetolactate synthase, large subunit {Bacillus subtilis}	50.2	69.7	17
AJ0277 AJ0161	1307199		acetolactate synthase, small subunit {Bacillus subtilis}	49.4	74.1	1 /
и л отот И Л 1008						
	533323		branched-chain amino acid aminotransferase {Escherichia coli}	42.6 44.6	59.0 65.1	16
MJ1276	250052		dihydroxy-acid dehydratase {Lactococcus lactis}	44.6	65.1	16
MJ1195	333450		isopropylmalate synthase {Haemophilus influenzae}	42.9	63.7	15
MJ1543 Corino form	1615932	1014931	ketol-acid reductoisomerase $\{Bacillus \ subtilis\}$	53.7	77.0	10
Serine fam	шу					
Л Ј1597	1568671	1567445	glycine hydroxymethyltransferase {Methanobacterium thermoautotrophicum}	69.8	80.7	12
VIJ 1397						

MJ1594	1571545	1571039	phosphoserine phosphatase {Haemophilus influenzae}	40.4	62.7	507	
MJ0959	580672		serine aminotransferase {Methanobacterium thermoformicicum}	54.5	74.9	1107	
		201770	serine difficultivities (income recommended in the control of the	0 1.0	, ,,,	110.	
Histidine	lamily						
MJ1204	324063	324878	ATP phosphoribosyltransferase {Escherichia coli}	34.0	57.3	816	
MJ1456	46532	45354	histidinol dehydrogenase {Lactococcus lactis}	47.6	67.5	1179	
MJ0955	586179	585073	histidinol-phosphate aminotransferase {Bacillus subtilis}	37.7	60.8	1107	
MJ0698	848921	848364		51.7	71.2	558	
MJ0506	1024803	1025237		45.6	62.1	435	
MJ0411	1101451	1100636	imidazoleglycerol-phosphate synthase (cyclase) {Azospirillum brasilense}	61.5	78.8	816	
MJ1430	71328	71047	phosphoribosyl AMP cyclohydrolase {Methanococcus vannielii}	70.0	86.3	282	
MJ0302	1186990	1187208	phosphoribosyl-ATP pyrophosphohydrolase {Azotobacter chroococcum}	54.1	68.9	219	
MJ1532	1628155	1627745	phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase	51.9	81.1	411	
			{Methanococcus thermolithotrophicus}				
Biosynthe	esis of cofactor	s, prosthetic	c groups, and carriers				
							
MJ0603	937289	938566	glutamate-1-semialdehyde aminotransferase {Bacillus subtilis}	51.7	70.6	1278	
			, , ,				
MJ0569	966316	967137	porphobilinogen deaminase {Bacillus subtilis}	41.2	61.4	822	
MJ0493	1035991	1036839	quinolinate phosphoribosyltransferase {Escherichia coli}	39.3	61.6	849	
MJ0407	1105699	1104965	quinolinate synthetase {Cyanophora paradoxa}	37.2	58.8	735	
MJ1388	136484	135309	S-adenosylhomocysteine hydrolase {Sulfolobus solfataricus}	61.7	78.5	1176	
Biotin	200.0.	10000	a memory memory memor is repersional adjunctional.				
Diotili							
MJ1297	227704	227021	6-carboxyhexanoate-CoA ligase {Bacillus sphaericus}	42.2	62.2	684	
MJ1298	227005	225890	8-amino-7-oxononanoate synthase {Bacillus sphaericus}	44.4	64.8	1116	
MJ1300	225025	223709	adenosylinethionine-8-amino-7-oxononanoate aminotransferase {Bacillus sphaericus}	39.9	64.2	1317	
	1543130	1543552	,	25.7	54.9	423	
MJ1619			1 (1)				
MJ1296	228286	228843	biotin synthetase {Bacillus sphaericus}	38.2	62.5	558	
MJ1299	225741	225100	dethiobiotin synthetase {Bacillus sphaericus}	37.0	59.0	642	
Heme and	d porphyrin						
	1 1 7						
MI1 420	66220	65022	abalania (Elabarabata) anniba (Elabariabia ati)	26.1	40.7	400	
MJ1438	66330		cobalamin (5'-phosphate) synthase {Escherichia coli}	26.1	48.7	498	
MJ0552	983686	984417	cobalamin biosynthesis J protein {Salmonella typhimurium}	26.7	51.2	732	
MJ1314	212528	211842	cobalamin biosynthesis protein D {Pseudomonas denitrificans}	38.0	61.0	687	
MJ0022	1448163	1447273	cobalamin biosynthesis protein D {Salmonella typhimurium}	35.5	61.1	891	
MJ1569	1592308	1591700	cobalamin biosynthesis protein M {Salmonella typhimurium}	29.5	54.7	609	
MJ1091	442661	443239	cobalamin biosynthesis protein M {Salmonella typhimurium}	53.7	74.4	579	
MJ 0908	635150	631647	cobalamin biosynthesis protein N {Pseudomonas denitrificans}	37.5	57.6	3504	
MJ0484	1046784	1045324	cobyric acid synthase {Methanococcus voltae}	73.7	89.8	1461	
MJ1421	85381		cobyrinic acid a,c-diamide synthase {Salmonella typhimurium}	32.1	55.0	972	
MJ0143				47.8	66.9	1116	
	1332080	1330965	glutamyl-tRNA reductase {Methanobacterium thermoautotrophicum}				
MJ0643	899800	898910	porphobilinogen synthase {Methanothermus sociabilis}	62.5	79.9	891	
MJ 0930	612059	611430	precorrin isomerase {Salmonella typhimurium}	38.7	62.0	630	
MJ0771	780420	779932	precorrin-2 methyltransferase {Salmonella typhimurium}	30.4	55.9	489	
MJ0813	734876	735547		44.2	68.4	672	
MJ1578	1583277	1582501		54.6	76.5	777	
MJ1522	1637017	1636385	precorrin-6Y methylase {Salmonella typhimurium}	30.6	52.3	633	
MJ0391	1116729	1117202	precorrin-8W decarboxylase {Salmonella typhimurium}	23.9	49.1	474	
MJ0965	573234	572509	uroporphyrin-III C-methyltransferase {Bacillus megaterium}	54.7	72.5	726	
MJ0994	549022	549444		27.8	49.4	423	
			uroporphyrmogen in synthase (bactuas suomis)	27.0	72.7	723	
Menaquii	none and ubiqu	inone					
MJ1645	1509624	1508923	coenzyme PQQ synthesis protein III {Haemophilus influenzae}	32.2	53.3	702	
Molybdo	nterin						
	F						
1410004	705006	70.67.60		20.0	57.2	777	
MJ0824	725986		molybdenum cofactor biosynthesis moaA protein {Haemophilus influenzae}	30.0	57.3	777	
MJ 0167	1301836	1302162	molybdenum cofactor biosynthesis moaB protein {Escherichia coli}	46.4	69.6	327	
MJ1135	396359	396781	molybdenum cofactor biosynthesis moaC protein {Haemophilus influenzae}	49.2	70.9	423	
MJ0886	654158	656017	molybdenum cofactor biosynthesis moeA protein {Escherichia coli}	34.5	55.2	1860	
MJ0666					56.4		
	879771	880943	molybdenum cofactor biosynthesis moeA protein {Haemophiius influenzae}	33.6		1173	
MJ1663	1491265	1490831	molybdopterin-guanine dinucleotide biosynthesis protein A {Escherichia coli}	27.7	48.0	435	
MJ1324	197777	197076	molybdopterin-guanine dinucleotide biosynthesis protein B {Escherichia coli}	32.2	57.7	702	
Pantother			,				
MIOCHO	/0/000	(00000	and the second line flowers in the second line is a second line in	211		700	
MJ0913	626982	627779	pantothenate metabolism flavoprotein {Haemophilus influenzae}	34.1	55.7	798	
Riboflavi	n						
MJ0055	1416688	1417278	GTP cyclohydrolase II {Bacillus subtilis}	35.8	56.0	591	
MJ0671	874773		riboflavin-specific deaminase {Actinobacillus pleuropneumoniae}	43.0	65.3	624	
Thioredo	xin, glutaredoxi	in, and glut	athione				
MJ1536	1622694	1623533	thioredoxin reductase {Mycoplasma genitalium}	38.5	58.0	840	
MJ0530	1005917	1005420	thioredoxin-2 {Saccharomyces cerevisiae}	33.0	63.3	498	
MJ0307	1184114	1184332	thioredoxin/glutaredoxin {Methanobacterium thermoautotrophicum}	48.7	69.5	219	
			- ,				

Thiamine						
MI1026	514170	515440	this mine his grathesis matrin (Pavillus subtilis)	45.0	661	1260
MJ1026	514172	515440		45.0	66.1	1269
MJ0601	940113	939400	thiamine biosynthetic enzyme {Zea mays}	35.1	53.0	714
Pyridine nu	creotides					
MJ1352	170567	171163	NH(3)-dependent NAD+ synthetase {Mycoplasma genitalium}	47.5	63.8	597
			Cell envelope			
Membranes.	, lipoproteins	, and porin	<u>.s</u>			
MT0544	000005	000442	delichvil aheemhete areanees synthese (Tangaressones barres)	25 1	57.1	639
MJ0544 MJ1057	989805 475508	474981	dolichyl-phosphate mannose synthase {Trypanosoma brucei} glycosyl transferase {Neisseria gonorrhoeae}	35.1 25.8	50.0	528
MJ0611	931098	930679		50.0	57.2	420
MJ0827	724322	723900		44.9	67.0	423
	culus and pep		1 (1)		07.0	.20
MITTE	271701	270200	- (Manualla anno 182)	24.6	261	1200
MJ1160 MJ0204	371691		amidase {Moraxella catarrhalis}	24.6 52.0	36.1 72.9	1302 1059
	1276277 vsaccharides.		amidophosphoribosyltransferase {Bacillus subtillis} ccharides and antigens	32.0	12.9	1039
	,,	<u>r</u> <u>r</u> y				
MJ0924	617598		capsular polysaccharide biosynthesis protein {Staphylococcus aureus}	31.3	46.9	438
MJ1061	469649	470293		56.3	72.2	645
MJ1055	478643	477735	capsular polysaccharide biosynthesis protein I {Staphylococcus aureus}	50.7	74.4	909
MJ 1059	472326	471904		34.4	55.0	423
MJ1607	1555624	1554455	LPS biosynthesis related rfbu-protein {Haemophilus influenzae}	33.4	57.6	1170
MJ1113	417528	418352	N-acetylglucosamine-1-phosphate transferase {Sulfolobus acidocaldarius}	29.9	57.9	825
MJ0399	1110873	1112204		37.0	57.8	1332
MJ1068	462901	464265	putative O-antigen transporter {Shigella flexneri}	24.5	46.6	1365
MJ1066	464369	465430		55.3	75.8	1062
MJ1065	465444	466454		37.9	59.0	1011
MJ1063	467331	467828		36.0	55.4	498
MJ1062	467870	469279		32.0	54.5	1410
MJ0211	1269601		UDP-glucose 4-epimerase {Streptococcus thermophilus}	35.1	54.8	870
MJ1054	481027		UDP-glucose dehydrogenase {Xanthomonas campestris}	42.8	63.4	2316
MJ0428	1087456		UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase {Escherichia coli}	45.1	68.2	1200
Surface stru		1000000	DI I accept D-mannosammatome acid denydrogenase (Escherichia con)	45.1	00.2	1200
MJ 0891	650616		flagellin 31 {Methanococcus voltae}	55.4	71.6	612
MJ0892	649880	649269	flagellin 32 {Methanococcus voltae}	61.1	78.4	612
MJ0893	649163	648516	flagellin 33 {Methanococcus voltae}	59.1	78.7	648
			Cellular processes			
Cell division	n					
	_					
MJ 1489	10595	8721	cell division control protein {Saccharomyces cerevisiae}	34.8	57.7	1875
MJ1489 MJ0363	10595 1142460		cell division control protein {Saccharomyces cerevisiae} cell division control protein 21 {Schizosaccharomyces pombe}	34.8 30.0	57.7 51.4	1875 2241
		1140220				
MJ0363	1142460	1140220 377947	cell division control protein 21 {Schizosaccharomyces pombe}	30.0	51.4	2241
MJ0363 MJ1156	1142460 375317	1140220 377947 1300329	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae}	30.0 51.9	51.4 71.7	2241 2631
MJ0363 MJ1156 MJ0169	1142460 375317 1300988	1140220 377947 1300329 958088	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis}	30.0 51.9 28.8	51.4 71.7 51.2	2241 2631 660
MJ0363 MJ1156 MJ0169 MJ0579	1142460 375317 1300988 957291	1140220 377947 1300329 958088 988732	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis}	30.0 51.9 28.8 31.8	51.4 71.7 51.2 53.2	2241 2631 660 798
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547	1142460 375317 1300988 957291 988025	1140220 377947 1300329 958088 988732 1392869	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor facillus subtillis}	30.0 51.9 28.8 31.8 32.8	51.4 71.7 51.2 53.2 57.7	2241 2631 660 798 708
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174	1142460 375317 1300988 957291 988025 1393471 1295971	1140220 377947 1300329 958088 988732 1392869 1294976	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster}	30.0 51.9 28.8 31.8 32.8 32.1 28.4	51.4 71.7 51.2 53.2 57.7 50.4 54.6	2241 2631 660 798 708 603 996
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370	1142460 375317 1300988 957291 988025 1393471 1295971 1135876	1140220 377947 1300329 958088 988732 1392869 1294976 1134956	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster} cell division protein ftsZ {Anabaena 7120}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7	2241 2631 660 798 708 603 996 921
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster} cell division protein ftsZ {Anabaena 7120} cell division protein J {Haemophilus influenzae}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5	2241 2631 660 798 708 603 996 921 633
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster} cell division protein fsz {Anabaena 7120} cell division protein J {Haemophilus influenzae} cell division protein Z {Haloferax volcanii}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7	2241 2631 660 798 708 603 996 921 633 1140
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster} cell division protein ftsZ {Anabaena 7120} cell division protein J {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7	2241 2631 660 798 708 603 996 921 633 1140 741
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor flacillus subtillis} cell division protein {Bacillus subtillis} cell division protein {Drosophila melanogaster} cell division protein ftsZ {Anabaena 7120} cell division protein J {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7 80.3	2241 2631 660 798 708 603 996 921 633 1140 741 258
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0347 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster} cell division protein ftsZ {Anabaena 7120} cell division protein J {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7	2241 2631 660 798 708 603 996 921 633 1140 741
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor flacillus subtillis} cell division protein {Bacillus subtillis} cell division protein {Drosophila melanogaster} cell division protein ftsZ {Anabaena 7120} cell division protein J {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7 80.3	2241 2631 660 798 708 603 996 921 633 1140 741 258
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0347 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Bacillus subtillis} cell division protein {Bacillus subtillis} cell division protein {Drosophila melanogaster} cell division protein fSz {Anabaena 7120} cell division protein I {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7 80.3	2241 2631 660 798 708 603 996 921 633 1140 741 258
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor facillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster} cell division protein faz {Anabaena 7120} cell division protein J {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7 80.3 55.4	2241 2631 660 798 708 603 996 921 633 1140 741 258 3507
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor flacillus subtillis} cell division protein {Bacillus subtillis} cell division protein {Drosophila melanogaster} cell division protein ftsZ {Anabaena 7120} cell division protein I {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis} chaperonin {Methanopyrus kandleri} heat shock protein {Clostridium acetobutylicum}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7 80.3 55.4	2241 2631 660 798 708 603 996 921 633 1140 741 258 3507
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones MJ0999 MJ0285	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor flacillus subtillis} cell division protein {Bacillus subtillis} cell division protein {Drosophila melanogaster} cell division protein ftsZ {Anabaena 7120} cell division protein I {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis} chaperonin {Methanopyrus kandleri} heat shock protein {Clostridium acetobutylicum}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7 80.3 55.4	2241 2631 660 798 708 603 996 921 633 1140 741 258 3507
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0347 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones MJ0999 MJ0285 MJ0278	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857 - 543921 1202058 1207276 725091	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster} cell division protein fbrosophila melanogaster} cell division protein fstz {Anabaena 7120} cell division protein J {Haenophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis} chaperonin {Methanopyrus kandleri} heat shock protein {Clostridium acetobutylicum} rotamase, peptidyl-prolyl cis-trans isomerase {Haemophilus influenzae}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7 80.3 55.4	2241 2631 660 798 708 603 996 921 633 1140 741 258 3507
MJ0363 MJ1156 MJ0169 MJ0579 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones MJ0999 MJ0285 MJ0278 MJ0825 Detoxification	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857 - 543921 1202058 1207276 725091 on	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351 545471 1202459 1207548 725765	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division protein {Bacillus subtillis} cell division protein {Drosophila melanogaster} cell division protein {Is Z {Anabaena 7120} cell division protein I {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis} chaperonin {Methanopyrus kandleri} heat shock protein {Clostridium acetobutylicum} rotamase, peptidyl-prolyl cis-trans isomerase {Haemophilus influenzae} rotamase, peptidyl-prolyl cis-trans isomerase {Pseudomonas fluorescens}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7 80.3 55.4 87.6 44.6 60.5 60.8	2241 2631 660 798 708 603 996 921 633 1140 741 258 3507 1551 402 273 675
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones MJ0999 MJ0285 MJ0278 MJ0825 Detoxification	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857 - 543921 1202058 1207276 725091 on	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351 545471 1202459 1207548 725765	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster} cell division protein ftsZ {Anabaena 7120} cell division protein ftsZ {Anabaena 7120} cell division protein J {Haenophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis} chaperonin {Methanopyrus kandleri} heat shock protein {Clostridium acetobutylicum} rotamase, peptidyl-prolyl cis-trans isomerase {Haemophilus influenzae} rotamase, peptidyl-prolyl cis-trans isomerase {Pseudomonas fluorescens} alkyl hydroperoxide reductase {Sulfolobus solfataricus}	30.0 51.9 28.8 31.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7 80.3 55.4 87.6 44.6 60.5 60.8	2241 2631 660 798 708 603 996 921 633 1140 741 258 3507 1551 402 273 675
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones MJ0999 MJ0285 MJ0278 MJ0278 MJ0825 Detoxification	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857 - 543921 1202058 1207276 725091 on 804803 1618786	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351 545471 1202459 1207548 725765	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division protein {Bacillus subtillis} cell division protein {Drosophila melanogaster} cell division protein {Is Z {Anabaena 7120} cell division protein I {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis} chaperonin {Methanopyrus kandleri} heat shock protein {Clostridium acetobutylicum} rotamase, peptidyl-prolyl cis-trans isomerase {Haemophilus influenzae} rotamase, peptidyl-prolyl cis-trans isomerase {Pseudomonas fluorescens}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7 80.3 55.4 87.6 44.6 60.5 60.8	2241 2631 660 798 708 603 996 921 633 1140 741 258 3507 1551 402 273 675
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones MJ0999 MJ0285 MJ0278 MJ0278 MJ0825 Detoxification	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857 - 543921 1202058 1207276 725091 on	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351 545471 1202459 1207548 725765	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster} cell division protein ftsZ {Anabaena 7120} cell division protein ftsZ {Anabaena 7120} cell division protein J {Haenophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis} chaperonin {Methanopyrus kandleri} heat shock protein {Clostridium acetobutylicum} rotamase, peptidyl-prolyl cis-trans isomerase {Haemophilus influenzae} rotamase, peptidyl-prolyl cis-trans isomerase {Pseudomonas fluorescens} alkyl hydroperoxide reductase {Sulfolobus solfataricus}	30.0 51.9 28.8 31.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7 80.3 55.4 87.6 44.6 60.5 60.8	2241 2631 660 798 708 603 996 921 633 1140 741 258 3507 1551 402 273 675
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1643 Chaperones MJ0999 MJ0285 MJ0285 MJ0278 MJ0825 Detoxification MJ1541 Protein and	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857 - 543921 1202058 1207276 725091 on 804803 1618786 peptide secre	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351 545471 1202459 1207548 725765 805453 1619868 ettion	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor flacillus subtillis} cell division protein {Bacillus subtillis} cell division protein {Drosophila melanogaster} cell division protein florsophila melanogaster} cell division protein I {Haemophilus influenzae} cell division protein I {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis} chaperonin {Methanopyrus kandleri} heat shock protein {Clostridium acetobutylicum} rotamase, peptidyl-prolyl cis-trans isomerase {Haemophilus influenzae} rotamase, peptidyl-prolyl cis-trans isomerase {Pseudomonas fluorescens} alkyl hydroperoxide reductase {Sulfolobus solfataricus} N-ethylammeline chlorohydrolase {Rhodococcus rubropertinctus}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3 73.5 29.0 40.7 31.8	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 64.7 80.3 55.4 87.6 60.5 60.8 84.8 56.3	2241 2631 6600 798 708 603 996 633 1140 741 258 3507 1551 402 273 675
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones MJ0999 MJ0285 MJ0278 MJ0278 MJ036 MJ036 MJ036 MJ036 MJ036 MJ036 MJ036 MJ0378	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857 - 543921 1202058 1207276 725091 on 804803 1618786 peptide secret	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351 545471 1202459 1207548 725765 805453 1619868 etion 1056078	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Bacillus subtillis} cell division protein ftsZ {Anabaena 7120} cell division protein ftsZ {Anabaena 7120} cell division protein Z {Haloferax volcanii} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis} chaperonin {Methanopyrus kandleri} heat shock protein {Clostridium acetobutylicum} rotamase, peptidyl-prolyl cis-trans isomerase {Haemophilus influenzae} rotamase, peptidyl-prolyl cis-trans isomerase {Pseudomonas fluorescens} alkyl hydroperoxide reductase {Sulfolobus solfataricus} N-ethylammeline chlorohydrolase {Rhodococcus rubropertinctus}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3 73.5 29.0 40.7 31.8	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 80.3 55.4 87.6 60.5 60.8 84.8 56.3	2241 2631 6600 798 708 603 996 633 1140 741 258 3507 1551 402 273 675 651 1083
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones MJ0999 MJ0285 MJ0278 MJ0825 Detoxification MJ0736 MJ1541 Protein and	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857 	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351 545471 1202459 1207548 725765 805453 1619868 etion 1056078 13604216	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster} cell division protein {Drosophila melanogaster} cell division protein I {Haenophilus influenzae} cell division protein I {Haenophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis} chaperonin {Methanopyrus kandleri} heat shock protein {Clostridium acetobutylicum} rotamase, peptidyl-prolyl cis-trans isomerase {Haemophilus influenzae} rotamase, peptidyl-prolyl cis-trans isomerase {Pseudomonas fluorescens} alkyl hydroperoxide reductase {Sulfolobus solfataricus} N-ethylammeline chlorohydrolase {Rhodococcus rubropertinctus} preprotein translocase secY {Methanococcus vannielii} protein-export membrane protein {Streptomyces coelicolor}	30.0 51.9 28.8 31.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3 73.5 29.0 40.7 31.8	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 58.5 71.7 64.7 80.3 55.4 87.6 44.6 60.5 60.8 84.8 56.3	2241 2631 6600 798 603 996 633 1140 741 258 3507 1551 402 273 675 651 1083
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones MJ0999 MJ0285 MJ0278 MJ0278 MJ0736 MJ1541 Protein and	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857 - 543921 1202058 1207276 725091 on 804803 1618786 peptide secret 1051985 1365253 276673	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351 545471 1202459 1207548 725765 805453 1619868 stion	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster} cell division protein {Interpolation protein protein {Interpolation protein {Inte	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3 73.5 29.0 40.7 31.8 66.1 29.2	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 64.7 80.3 55.4 87.6 60.8 84.8 56.3	2241 2631 6600 798 708 603 996 921 140 741 258 3507 1551 402 273 675 651 1083 1038 705
MJ0363 MJ1156 MJ0169 MJ0579 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones MJ0285 MJ0278 MJ0285 MJ0278 MJ0285 MJ0278 MJ0478 MJ0478 MJ0478 MJ0478 MJ0478	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857 - 543921 1202058 1207276 725091 on 804803 1618786 peptide secret 1051985 1365253 276673 1226090	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351 545471 1202459 1207548 725765 805453 1619868 etion 1056078 1364216 277377 1226644	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor flacillus subtillis} cell division protein {Bacillus subtillis} cell division protein {Drosophila melanogaster} cell division protein {Drosophila melanogaster} cell division protein I {Haemophilus influenzae} cell division protein I {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis} chaperonin {Methanopyrus kandleri} heat shock protein {Clostridium acetobutylicum} rotamase, peptidyl-prolyl cis-trans isomerase {Haemophilus influenzae} rotamase, peptidyl-prolyl cis-trans isomerase {Pseudomonas fluorescens} alkyl hydroperoxide reductase {Sulfolobus solfataricus} N-ethylammeline chlorohydrolase {Rhodococcus rubropertinctus} preprotein translocase secY {Methanococcus vannielii} protein-export membrane protein {Streptomyces coelicolor} protein-export membrane protein {Escherichia coli} signal peptidase {Canis familiaris}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3 73.5 29.0 40.7 31.8 66.1 29.2 70.9 25.9 30.5 32.6	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 64.7 80.3 55.4 87.6 60.8 84.8 56.3	2241 2631 6600 798 708 603 996 921 140 741 258 3507 1551 402 273 675 651 1083 1308 1038 705 555
MJ0363 MJ1156 MJ0169 MJ0579 MJ0547 MJ0084 MJ0174 MJ0370 MJ1376 MJ0622 MJ0148 MJ1647 MJ1643 Chaperones MJ0999 MJ0285 MJ0278 MJ0278 MJ0736 MJ1541 Protein and	1142460 375317 1300988 957291 988025 1393471 1295971 1135876 147975 920029 1326798 1508164 1513857 - 543921 1202058 1207276 725091 on 804803 1618786 peptide secret 1051985 1365253 276673	1140220 377947 1300329 958088 988732 1392869 1294976 1134956 147343 921168 1327538 1507907 1510351 545471 1202459 1207548 725765 805453 1619868 etion 1056078 1364216 277377 1226644 1377308	cell division control protein 21 {Schizosaccharomyces pombe} cell division control protein CDC48 {Saccharomyces cerevisiae} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor {Bacillus subtillis} cell division inhibitor minD {Escherichia coli} cell division protein {Drosophila melanogaster} cell division protein {Drosophila melanogaster} cell division protein I {Haemophilus influenzae} cell division protein I {Haemophilus influenzae} cell division protein I {Haemophilus influenzae} cell division protein Z {Haloferax volcanii} centromere/microtubule-binding protein {Saccharomyces cerevisiae} DNA binding protein {Methanococcus voltae} P115 protein {Mycoplasma hyorhinis} chaperonin {Methanopyrus kandleri} heat shock protein {Clostridium acetobutylicum} rotamase, peptidyl-prolyl cis-trans isomerase {Haemophilus influenzae} rotamase, peptidyl-prolyl cis-trans isomerase {Pseudomonas fluorescens} alkyl hydroperoxide reductase {Sulfolobus solfataricus} N-ethylammeline chlorohydrolase {Rhodococcus rubropertinctus} preprotein translocase secY {Methanococcus vannielii} protein-export membrane protein {Streptomyces coelicolor} protein-export membrane protein {Escherichia coli} signal peptidase {Canis familiaris}	30.0 51.9 28.8 31.8 32.8 32.1 28.4 50.7 39.8 51.0 42.7 54.7 30.3 73.5 29.0 40.7 31.8 66.1 29.2	51.4 71.7 51.2 53.2 57.7 50.4 54.6 71.7 64.7 80.3 55.4 87.6 60.8 84.8 56.3	2241 2631 6600 798 708 603 996 921 140 741 258 3507 1551 402 273 675 651 1083 1038 705

			TABLE TA-continued			
Transformat	tion					
1410704	7/0702	770700	III.A (DI I D.W.)	24.6	540	2007
MJ0781 MJ0940	768702 602402		klbA protein {Plasmid RK2} transformation sensitive protein {Homo sapiens}	34.6 35.0	54.9 53.9	2097 474
Cellular pro		001929	transformation sensitive protein {Homo suprens}	33.0	33.9	4/4
<u>centilar pro</u>						
MJECL17	20110	19889	archaeal histone {Pyrococcus sp.}	58.8	81.0	221
MJECL29	36456	26220	archaeal histone {Pyrococcus sp.}	64.2	83.6	236
MJ1258	271686	271486		71.7	83.6	201
MJ0168	1301348		archaeal histone {Pyrococcus sp.}	67.2	86.6	201
MJ0932	610153	609953	archaeal histone {Pyrococcus sp.}	67.2	86.6	201
			Central intermediary metabolism			
Amino suga	ars					
MJ1420	90244	86939	glutamine-fructose-6-phosphate transaminase {Escherichia coli}	41.2	61.5	3306
Degradation	of polysacc					
MJ1611	1550816	1549542		27.0	50.5	1275
MJ0555 MJ1610	981500 1551992	980529	endoglucanase {Homo sapiens} glucoamylase {Clostridium sp}	44.1 28.0	66.8 49.2	972 1026
Other	1331992	1330907	giucoaniyiase {Ciosuituluii sp}	20.0	49.2	1020
Other						
MJ1656	1498675		2-hydroxyhepta-2,4-diene-1,7-dioate isomerase {Escherichia coli}	40.2	61.6	711
MJ 0406	1106800		ribokinase {Escherichia coli}	23.2	46.3	894
MJ0309	1182259	1183077	ureohydrolase {Methanothermus fervidus}	40.9	60.7	819
Phosphorus	compounds					
MJ 0963	575418	577040	N-methylhydantoinase {Arthrobacter sp.}	32.6	53.0	1632
MJ0964	573516		N-methylhydantoinase {Arthrobacter sp.}	37.7	56.4	1830
Polyamine b		0,00.0	The months and the management of the months and the	2111		1000
MJ0535	1001006		acetylpolyamine aminohydolase {D01044 Mycoplana}	33.3	48.6	1026
MJ0313	1179250		spermidine synthase {Homo sapiens}	32.3	57.7	552
Polysacchar	ides-(cytopla	smic)				
MJ 1606	1555858	1551354	glycogen synthase {Hordeum vulgare}	33.7	58.3	1497
Nitrogen me		1551554	grycogen synthase (Horacum vargare)	55.7	50.5	1427
MJ1187	345237	344335	ADP-ribosylglycohydrolase (draG) {Rhodospirillum rubrum}	29.8	50.8	903
MJ0713	824113	826278		33.8	54.8	2166
MJ0214	1267658	1267314		30.7	56.5	345
MJ0676 MJ0442	869311 1075480	870276 1076028		46.1 44.6	65.3 64.0	966 549
MJ0200	1279494	1279739	hydrogenase expression/formation protein C {Azotobacter vinelandii}	40.0	68.8	246
MJ0993	549539	550525	hydrogenase expression/formation protein D {Alcaligenes eutrophus}	44.7	63.5	987
MJ0631	914544	914089		33.9	58.9	456
MJ1093	441468	440584		43.1	67.2	885
MJ 0879	667622	666984	5	77.2	89.1	639
MJ0685	859442	858696		31.7	49.6	747
MJ1051	483344	484411	nodulation factor production protein {Bradyrhizobium japonicum}	32.1	51.1	1068
MJ1058 Carbon Fixa	473947	473141	nodulation factor production protein {Bradyrhizobium japonicum}	37.7	58.0	807
Caroon Pix	**1011					
MJ0152	1325036	1322820	carbon monoxide dehydrogenase, alpha subunit {Clostridium thermoaceticum}	42.1	65.6	2217
MJ0153	1322553	1320256	carbon monoxide dehydrogenase, alpha subunit {Methanothrix soehngenii}	47.9	67.3	2298
MJ0156	1319256	1317883	carbon monoxide dehydrogenase, alpha subunit {Clostridium thermoaceticum}	47.8	69.5	1374
MJ0728	809951	811783		35.9	55.0	1833
MJ0112	1362285	1363667	corrinoid/iron sulfur protein, large subunit {Clostridium thermoaceticum}	32.9	55.1	1383
MJ0113 MJ1235	1361128 292453	1362030 293673	corrinoid/iron sulfur protein, small subunit {Clostridium thermoaceticum} ribulose bisphosphate carboxylase, large subunit {Synechococcus sp}	37.7 42.4	58.8 60.3	903 1221
10111233	292433	293013		+2.4	00.5	1221
			Energy metabolism			
<u>Aerobic</u>						
MJ 0649	896262	894919	NADH oxidase {Enterococcus faecalis}	28.0	50.4	1344
MJ0520	1011104		NADH-ubiquinone oxidoreductase, subunit 1 {Paracentrotus lividus}	29.5	53.9	789
Anaerobic			1)			
			(m)	40.4		
MJ0092	1385748		fumarate reductase {Thermoplasma acidophilum}	40.2	57.0	1467
AIP-proton	motive force	interconve	ersion			
MJ0217	1263468	1265171	ATP synthase, subunit A {Enterococcus hirae}	60.3	76.6	1704
MJ0217	1265356		ATP synthase, subunit B {Methanosarcina barkeri}	69.4	84.5	1260
MJ0219	1261985		ATP synthase, subunit C {Haloferax volcanii}	28.1	50.0	1056
MJ0615	926124		ATP synthase, subunit D {Enterococcus hirae}	34.8	56.8	540
MJ0220	1261297	1261737	ATP synthase, subunit E {Methanosarcina mazeii}	29.0	50.0	441

MJ0218 MJ0222	1263054 1258252		ATP synthase, subunit F {Haloferax volcanii} ATP synthase, subunit I {Enterococcus hirae}	21.5 27.6	52.1 52.2	294 2043
MJ0221	1260641		ATP synthase, subunit K {Enterococcus hirae}	34.6	59.8	420
Electron tra	ansport					
MJ1446	57416	56646	cytochrome-c3 hydrogenase, gamma chain {Pyrococcus furiosus}	40.1	52.4	771
MJ 0741	803000	803320	desulfoferrodoxin {Desulfovibrio vulgaris}	44.0	59.4	321
MJ0578	958094		ferredoxin {Clostridium sticklandii}	49.1	56.9	807
MJ0061 MJ0722	1411998 815808	1411759	ferredoxin {Methanococcus thermolithotrophicus} ferredoxin {Methanobacterium thermoautotrophicum}	42.9 42.3	59.0 60.6	240 231
MJ0722 MJ0099	1379076		ferredoxin {Methanovacierum thermoutuotrophicum} ferredoxin {Desulfovibrio desulfuricans}	40.0	62.0	381
MJ0199	1279976		ferredoxin {Methanococcus thermolithotrophicus}	74.6	84.8	186
MJ0533	1003408		ferredoxin 2[4Fe—4S] homolog {Methanosarcina thermophila}	36.9	54.4	168
MJ0624	918981			48.0	68.0	174
MJ0267	1217567	1218463		29.4 44.5	50.2	897
MJ0276 MJ0266	1209645 1218644		ferredoxin oxidoreductase, alpha subunit {Halobacterium halobium} ferredoxin oxidoreductase, beta subunit {Klebsiella pneumoniae}	32.6	63.0 51.0	1083 744
MJ0537	998693		ferredoxin oxidoreductase, beta subunit {Halobacteriuin halobiuin}	41.3	61.1	732
MJ0268	1217015		ferredoxin oxidoreductase, delta subunit {Pyrococcus furiosus}	58.9	71.8	258
MJ0536	999441	999980	ferredoxin oxidoreductase, gamma subunit {Pyrococcus furiosus}	32.0	50.9	540
MJ0269	1216601		ferredoxin oxidoreductase, gamma subunit {Pyrococcus furiosus}	55.6	74.7	393
MJ0732 MJ1192	806970 339066	808100	flavoprotein {Methanobacterium thermoautotrophicum} methylviologen-reducing hydrogenase, alpha chain {Methanococcus voltae}	40.4 75.0	62.3 88.6	1131 972
MJ1192 MJ1191	340221	339385	methylviologen-reducing hydrogenase, aipna chain {Methanococcus voltae} methylviologen-reducing hydrogenase, gamma chain {Methanococcus voltae}	73.0	83.3	837
MJ1362	160414		NADH deydrogenase, subunit 1 {Mitochondrion Oncorhynchus}	23.1	50.0	642
MJ0514	1016474	1017223	polyferredoxin {Methanococcus voltae}	36.7	52.5	750
MJ0934	608147		polyferredoxin {Methanothermus fervidus}	40.9	54.3	627
MJ1303	220214	221701		39.5	56.1	1488
MJ1193 MJ1227	337655 301853	336591 301257	polyferredoxin {Methanococcus voltae} pyruvate formate-lyase activating enzyme {Clostridium pasteurianum}	61.7 31.4	74.5 50.0	1065 597
MJ0735	805546	805785	rubredoxin {Clostridium thermosaccharolyticum}	59.7	77.0	240
MJ 0740	803522	803659	rubredoxin {Clostridium thermosaccharolyticum}	64.5	84.5	138
Fermentation	on_					
MJ0007	1463447	1462359	2-hydroxyglutaryl-CoA dehydratase, subunit beta {Acidaminococcus fermentans}	22.6	48.2	1089
Gluconeog	enesis					
MJ1479	22527	21358	alanine aminotransferase 2 {Panicum miliaceum}	30.1	50.0	1170
MJ0542	991264	994794	phosphoenolpyruvate synthase {Pyrococcus furiosus}	60.3	78.3	3531
Glycolysis	_					
3.674.400	40046	40044		47.4	70.0	002
MJ1482 MJ0641	18946 901393	18044 902325	1 1 27	47.1 58.2	70.9 78.1	903 933
MJ0232	1248239	1249432		57.7	78.2	1194
MJ1605	1557395	1558597	glucose-6-phosphate isomerase {Bacillus stearothermophilus}	32.3	54.6	1203
MJ 1146	386093	387055	glyceraldehyde 3-phosphate dehydrogenase {Methanothermus fervidus}	59.5	77.6	963
MJ0490	1038560		lactate dehydrogenase {Thermotoga maritima}	39.9	63.2	864
MJ1411 MJ0108	100555 1367951	1366716	NADP-dependent glyceraldehyde-3-phosphate dehydrogenase {L15191 Streptococcus} pyruvate, kinase {Bacillus stearothermophilus}	39.2 39.1	59.6 60.5	1389 1236
MJ0108 MJ1528	1631071	1631589	triosephosphate isomerase {Mycoplasma genitalium}	29.0	49.1	519
	osphate pathw		tatospinospinas monietase (injectprassia germanni)	22.00		0.25
MJ0680	865484		pentose-5-phosphate-3-epimerase {Solanum tuberosum}	44.2	62.5	600
MJ1603 MJ0960	1560724		ribose 5-phosphate isomerase {Mus musculus}	42.0 60.7	63.4 79.5	678 456
MJ0980 MJ0681	580121 864603		transaldolase {Bacillus subtilis} transketolase' {Homo sapiens}	43.7	58.5	753
MJ0679	866375	867073	transketolase" {Homo sapiens}	36.0	61.3	699
	ehydrogenase		· · ·			
1.570.62.6		005000			~ . o	44.50
MJ0636	906464	905292	dihydrolipoamide dehydrogenase {Haloferax volcanii}	28.9	51.0	1173
Sugars						
MJ1418	91211	90669	$fuculose-1-phosphate \ aldolase \ \{\textit{Haemophilus influenzae}\}$	29.1	48.7	543
TCA cycle	_					
1410400	1001001	1022525		20.7	40.0	1000
MJ0499 MJ1294	1031331 229770	1032530	aconitase {Saccharomyces cerevisiae}	29.7 35.1	49.8 55.7	1200 612
MJ1294 MJ0617	925239	230381 924778	fumarate hydratase, class I' {Bacillus stearothermophilus} fumarate hydratase, class I'' {Bacillus stearothermophilus}	43.8	66.0	462
MJ1596	1568967	1569998		43.8 42.9	61.4	1032
MJ0720	817433	818431	isocitrate dehydrogenase (NADP) {Thermus aquaticus}	48.0	64.7	999
MJ1425	77051	76299	malate dehydrogenase {Methanothermus fervidus}	61.3	77.6	753
MJ0033	1438609	1437116	succinate dehydrogenase, flavoprotein subunit {Escherichia coli}	41.8	58.1	1494
MJ1246	282664	283449	succinyl-CoA synthetase, alpha subunit {Escherichia coli}	59.6	74.8	786
MJ0210	1271318	1270227	succinyl-CoA synthetase, beta subunit {Thermus aquaticus}	48.8	68.7	1092
Methanoge	nesis					
MJ0253	1232773	1232405	8.hydroxy-5.deazaflayin-reducing hydrogenase dalta cubunit	47.1	71.0	369
W1JU233	1232773	1232405	8-hydroxy-5-deazaflavin-reducing hydrogenase, delta subunit {Methanobacterium thermoautotrophicum}	47.1	71.0	309
			[]			

MJ1035	505234	506022	coenzyme F420-dependent N5,N10-methylene-tetrahydromethanopterin dehydrogenase	66.5	79.8	789
MJ0727	811895	812725	{Methanobacterium thermoautotrophicum} coenzyme F420-reducing hydrogenase, alpha subunit {Methanobacterium	26.8	45.8	831
11100727	011070	012720	thermoautotrophicum}	2010		001
MJ0029	1442517	1441279	coenzyme F420-reducing hydrogenase, alpha subunit {Methanococcus voltae}	50.3	66.1	1239
MJ0030	1441022	1440558	coenzyme F420-reducing hydrogenase, alpha subunit {Methanococcus voltae}	66.5	83.3	465
MJ1349	175566	176222	, , , ,	36.6	55.7	657
MJ0725	813779	814453	coenzyme F420-reducing hydrogenase, beta subunit {Methanobacterium thermoautotrophicum}	41.0	62.0	675
MJ 0870	677657	679372		42.7	63.2	1716
MJ0032	1439835	1438990	coenzyme F420-reducing hydrogenase, beta subunit {Methanococcus voltae}	72.0	85.5	846
MJ0726	812987	813499		42.7	59.4	513
MJ0031	1440505	1439873		75.5	87.3	633
MJ0295	1192687		formate dehydrogenase (fdhD) {Wolinella succinogenes}	35.6	57.7	618
MJ0006 MJ1353	1463887 168767	170344	formate dehydrogenase, alpha subunit {Methanobacterium formicicum} formate dehydrogenase, alpha subunit {Methanobacterium formicicum}	41.6 54.2	61.1 70.9	1134 1578
MJ0005	1465405	1466247		49.5	72.1	843
MJ0155	1319767		formate dehydrogenase, iron-sulfur subunit {Wolinella succinogenes}	41.7	56.9	453
MJ0264	1220122		formate hydrogenlyase, subunit 2 {Escherichia coli}	42.9	59.8	312
MJ0265	1219502	1219930	formate hydrogenlyase, subunit 2 {Escherichia coli}	45.5	61.0	429
MJ0515	1013710		formate hydrogenlyase, subunit 5 {Escherichia coli}	31.0	51.1	1026
MJ1027	514001		formate hydrogenlyase, subunit 5 {Escherichia coli}	34.3	53.3	1131
MJ1363	159614		formate hydrogenlyase, subunit 7 {Escherichia coli}	38.4	60.9	405
MJ0516	1013157		formate hydrogenlyase, subunit 7 {Escherichia coli}	48.8	65.6	444 750
MJ0318	1175065	1175823	formylmethanofuran:tetrahydromethanopterin formyltransferase {Methanobacterium thermoautotrophicum}	68.6	84.5	759
MJ1338	185930	185007	H(2)-dependent methylenetetrahydromethanopterin dehydrogenase related protein	29.1	50.5	924
MJ0715	823334	822423	{Methanobacterium thermoautotrophicum} H2-forming N5,N10-methylene-tetrahydromethanopterin dehydrogenase-related protein	29.9	52.5	912
1410704	7.65070		{Methanococcus voltae}	72.6	05.5	1000
MJ0784	765279		H2-forming N5,N10-methylene-tetrahydromethanopterin dehydrogenease {Methanococcus voltae}	73.6	85.5	1008
MJ1190	342199		heterodisulfide reductase, subunit A {Methanobacterium thermoautotrophicum}	58.0	75.2	1197
MJ0743	801736	802422		59.3	79.0	687
MJ0863 MJ0744	684944	685798 801489	* *	63.2 53.4	80.2 68.4	855 387
MJ0744 MJ0864	801103 684283	684840	* *	52.6	69.9	558
MJ0118	1357167	1356667		53.2	77.5	501
MJ0083	1395319	1393880	methyl coenzyme M reductase II, alpha subunit {Methanothermus fervidus}	89.8	95.5	1440
MJ0081	1397700	1396351		79.7	89.4	1350
MJ0082	1396335	1395538		83.0	92.1	798
MJ0844	702037	701465	methyl coenzyme M reductase operon, protein C {Methanococcus vannielii}	82.5	92.6	573
MJ0843	702395	702069	methyl coenzyme M reductase operon, protein D {Methanococcus voltae}	58.0	81.4	327
MJ1662	1491537	1493201	methyl coenzyme M reductase system, component A2 {Methanobacterium thermoauotrophicum}	37.1	60.1	1665
MJ1242	284878	286338	methyl coenzyme M reductase system, component A2 {Methanobacterium thermoautotrophicum}	60.9	77.8	1461
MJ 0846	700322	698880		86.1	92.1	1443
MJ0842	703907	702576		75.3	87.4	1332
MJ0845	701389	700673	, , , , , , , , , , , , , , , , , , , ,	78.7	91.3	717
MJ1636	1520054		N5,N10-methenyl-tetrahydromethanopterin cyclohydrolase {Methanobacterium thermdautotrophicum}	69.6	82.3	927
MJ1534	1625526		N5,N10-methylene tetrahydromethanopterin reductase {Methanobacterium thermoautotrophicum}	66.2	79.7	993
MJ 0850	696203	695895	N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase {Methanobacterium thermoautotrophicum}	36.6	59.8	309
MJ 0849	696884	696216	N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase {Methanobacterium thermoautotrophicum}	41.8	62.3	669
MJ0852	695117	694914	N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase {Methanobacterium thermoautotrophicum}	37.1	64.6	204
MJ 0851	695866	695138		55.2	73.5	729
MJ 0847	698519	697749		58.3	76.4	771
MJ0854	694607	693651	N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase	62.1	77.5	957
MJ 0848	697696	697043		63.5	77.8	654
MJ0853	694857	694639		51.1	76.6	219
MJ 1169	363822	362122		69.4	81.5	1701
MJ 1194	336096	335260	$thermoautotrophicum \} \\ tungsten formylmethanofuran dehydrogenase, subunit B \{\textit{Methanobacterium} \}$	71.1	84.0	837
MJ 1171	361740	360973		52.7	67.7	768
MJ0658	887575	886886	thermoautotrophicum} tungsten formylmethanofuran dehydrogenase, subunit C related protein {Methanobacterium thermoautotrophicum}	35.4	53.4	690
			· · · · · · · · · · · · · · · · · · ·			

MJ1168	364202	363852	tungsten formylmethanofuran dehydrogenase, subunit D {Methanobacterium thermoautotrophicum}	55.2	74.8	351
MJ1165	366038	365637	tungsten formylmethanofuran dehydrogenase, subunit E {Methanobacterium thermoautotrophicum}	38.3	61.1	402
MJ 1166	365484	364567	* * * * * * * * * * * * * * * * * * *	47.6	67.4	918
MJ1167	364516	364271		43.1	58.5	246
Fatty acid	d and phospholi	ipid metabo				
MJ0705	840072	838927	3-hydroxy-3-methylglutaryl coenzyme A reductase {Haloferax volcanii}	49.8	67.3	1146
MJ1546	1612371	1611697		63.1	78.0	675
MJ 0860	688696	689499	bifunctional short chain isoprenyl diphosphate synthase {Methanobacterium thermoautotrophicum}	49.5	71.7	804
MJ1229	299478	300644	biotin carboxylase {Anabaena sp}	58.9	76.2	1167
MJ1212	316229	316786	CDP-diacylglycerol-serine O-phosphatidyltransferase {Bacillus subtilis}	45.5	63.7	558
MJ1504	1661217	1662188	lipopolysaccharide biosynthesis protein (bp1D) {Bordetella pertussis}	44.3	63.1	972
MJ1087	446091	445231	melvalonate kinase {Schizosaccharomyces pombe}	31.5	53.7	861
MJ1549	1610772	1609735	nonspecific lipid-transfer protein {Pyrococcus furiosus}	46.9	66.0	1038
			Purines, pyrimidines, nucleosides, and nucleotides			
2'-Deoxyı	ribonucleotide	metabolism	<u> </u>			
MJ0832	719820		anaerobic ribonucleoside-triphosphate reductase {Escherichia coli}	28.1	49.9	5217
MJ 0430	1085497	1086009		40.4	61.5	513
MJ1102	429115	428648	,-,-,, _f , _f	32.1	53.2	468
MJ0511	1019410	1020075		39.4	59.6	666
MJ0937	606252	604921	glycinamide ribonucleotide synthetase {Homo sapiens}	37.1	55.0	1332
Purine rib	onucleotide bi	osynthesis				
1410020	612404	(10125	i i ' i (n. m. 1.m.)	10.6	67.4	1250
MJ0929	613484	612135		42.6	67.4	1350
MJ0561	976592	975741	, , ,	41.0	59.1	852
MJ1575	1586386		GMP synthetase {Borrelia burgdorferi}	41.4	66.7	564
MJ1131	399509		GMP synthetase {Haemophilus influenzae}	52.0	72.3	756
MJ1616	1545605	1544271		61.8	80.4	1335
MJ1265	262116	262436	1 1 (1 ,	51.5	68.3	321
MJ0616 MJ1592	925486 1572482	925941 1572009		56.3 51.0	76.2 69.1	456 474
MJ0203	1277597	1276734		42.7	64.4	864
MJ1648	1507541	1507071		52.9	71.5	471
MJ1264	262585	264714		43.3	65.1	2130
MJ1486	13611	14633		61.8	75.9	1023
MJ1366	155580		ribose-phosphate pyrophosphokinase {Haemophilus influenzae}	34.1	55.5	852
	ne ribonucleotic			0 112	00.0	002
MJ1581	1581578	1580661	aspartate carbamoyltransferase catalytic chain {Escherichia coli}	50.0	70.7	918
MJ1406	104548	104183	aspartate carbamoyltransferase regulatory chain {Escherichia coli}	39.1	65.1	366
MJ1378	145461	144037	carbamoyl-phosphate synthase, large chain {Bacillus subtilis}	59.7	80.0	1425
MJ1381	143097	141328	carbamoyl-phosphate synthase, pyrimidine-specific, large subunit {Bacillus caldolyticus}	54.7	75.7	1770
MJ 1019	523003	522041		49.6	69.1	963
MJ1174	358774		CTP synthase {Haemophilus influenzae}	56.7	74.0	1506
MJ0656	888785	888306	cytidylate kinase {Bacillus subtilis}	31.9	59.5	480
MJ 1490	8032	6764	dihydroorotase {Bacillus caldolyticus}	34.5	56.3	1269
MJ0654	889442	890284	dihydroorotase dehydrogenase {Bacillus subtilis}	43.1	66.6	843
MJ0293	1196756	1196196	thymidylate kinase {Schizosaccharomyces pombe}	31.2	58.7	561
MJ1109	421875	421348	uridine 5'-monophosphate synthase {Dictyostelium discoideum}	38.4	64.6	528
MJ1259	271220	270543	uridylate kinase {Haemophilus influenzae}	27.5	48.7	678
Salvage o	of nucleosides a	and nucleot	ides			
MJ1459	43987		adenine deaminase {Bacillus subtilis}	35.9	61.7	1575
MJ1655	1499440	1499075	1 1 2 4 7 7	35.8	62.5	366
MJ 0060	1412894	1412139	methylthioadenosine phosphorylase {Homo sapiens}	41.3	63.2	756
MJ0667 Sugar-nuc	879550 eleotide biosynt	878150 thesis and c		30.5	52.2	1401
MJ 1101	430386	429235	glucose-1-phosphate thymidylyltransferase {Streptomyces griseus}	32.0	56.0	1152
MJ1334	188314	189084	UDP-glucose pyrophosphorylase {Mycoplasma genitalium}	42.7	63.6	771
Regulator	y functions					
MJ 0800	748410	747352	activator of (R)-2-hydroxyglutaryl-CoA dehydratase {Acidaminococcus fermentans}	31.8	51.2	1059
MJ0004	1466944	1466255		39.0	61.1	690
MJ1344	180975	181229		56.5	73.0	255

			TABLE TA-continued			
MJ0059	1413301		nitrogen regulatory protein P-II {Haemophilus influenzae}	56.5	75.3	255
MJ0300	1188832	1188194		27.8	50.3	639
MJ0151 MJ0723	1325766 815573	1325323 815190		51.0 51.2	65.0 82.3	444 384
1130725	013373	013170		31.2	02.0	
D d. t'	C DNIA		Replication			
Degradation	1 OL DINA					
MJ1434	68536		endonuclease III {Bacillus subtilis}	28.7	58.1	489
MJ0613 MJ1439	927393 65786	928424 65208	endonuclease III {Bacillus subtilis} thermonuclease precursor {Staphylococcus hyicus}	41.3 36.8	66.3 64.1	1032 579
			cation, recombination, and repair	30.6	04.1	319
MJ 1029	510633	509875	dimethyladenosine transferase {Bacillus subtilis}	38.4	58.8	759
MJ0104	1373055		DNA helicase, putative {Homo sapiens}	35.2	56.7	1926
MJ 0171	1297428		DNA ligase {Desulfurolobus ambivalens}	35.8	62.4	1626
MJ0869	680404		DNA repair protein {Saccharomyces cerevisiae}	44.6	62.2	960
MJ1444	58945 1232179		DNA repair protein RAD2 {Homo sapiens}	37.3 32.5	63.5 58.4	894 423
MJ0254 MJ0961	579580		DNA repair protein RAD51 {Homo sapiens} DNA replication initiator protein {Xenopus laevis}	28.1	40.0	2157
MJ1652	1503610		DNA topoisomerase I {Mycoplasma genitalium}	34.0	55.0	2052
MJ0885	656470		DNA-dependent DNA polymerase family B {Pyrococcus sp.}	47.3	68.0	4491
MJ1529	1630880		methylated DNA protein cysteine methyltransferase {Haemophilus influenzae}	35.9	66.4	468
MJ1498	1548	715	, (1 1 ,)	31.6	52.2	834
MJ0598 MJ1328	942522 193775	941860 192987	, , ,	32.4 31.1	53.8 56.1	663 789
MJ0563	974521	975309	, (1 , ,	34.7	56.2	789 789
MJ1200	326214	327248		39.7	56.7	1035
MJ0985	555045	555896		54.5	73.0	852
MJ 1149	383742	384248	mutator mutT protein {Escherichia coli}	40.3	63.9	507
MJ0942	600802	598916	probable ATP dependent helicase {Haemophilus influenzae}	31.9	54.7	1887
MJ0247	1237945	1237322	proliferating-cell nuclear antigen {Saccharomyces cerevisiae}	31.5	54.3	624
MJ0026	1444598 79304	1445224 84727	proliferating-cell nucleolar antigen, 120 kDa {Homo sapiens}	48.1 45.2	66.1 64.6	627 5424
MJ1422 MJ0884	662042	660969	replication factor C {Homo sapiens} replication factor C, large subunit {Homo sapiens}	32.5	49.2	1074
MJ1220	308420	310102		32.9	54.4	1683
MJ0132	1345009	1345548		37.3	61.1	540
MJ0130	1346511	1347179	restriction modification system S subunit {Spiroplasma citri}	29.3	59.2	669
MJ1512	1653580	1648742		41.8	62.4	4839
MJ0135	1341301	1341939	ribonuclease HII (rnhB) {Escherichia coli}	45.2	64.6	639
MJECL42 MJ0124	55944 1349371	54271 1352847	type I restriction enyzme ECOR124/3 I M protein {Haemophilus influenzae} type I restriction enzyme {Haemophilus influenzae}	39.7 31.1	61.4 52.2	1673 3477
MJ1214	313714	315828	type I restriction enzyme {Haemophilus influenzae}	29.5	52.2	2115
MJECL40	52581	49456		36.2	59.9	3125
MJ1531	1629137	1628493	type I restriction enzyme CfrI, specificity subunit {Citrobacter freundii}	38.4	57.9	645
MJ1218	310547	311776	type I restriction-modification enzyme, S subunit {Escherichia coli}	29.7	49.7	1230
MJ 0984	556397	555909	type II restriction enzyme {Methanobacterium thermoformicicum}	45.9	67.2	489
MJ0600	940932	940315	type II restriction enzyme DPNII {Streptococcus pneumoniae}	46.0	67.4	618
			Transcription			
DNA-depen	ndent RNA p	olymerases	_			
MJ1042	497715	493732	DNA-dependent RNA polymerase, subunit A' {Methanococcus vannielii}	74.5	88.1	3984
MJ1043	493546		DNA-dependent RNA polymerase, subunit A" {Methanococcus vannielii}	66.7	83.5	2469
MJ1041	499305	497866	DNA-dependent RNA polymerase, subunit B' {Methanococcus vannielii}	76.3	91.3	1440
MJ 1040	501124	499862	DNA-dependent RNA polymerase, subunit B" {Methanococcus vannielii}	72.7	87.4	1263
MJ0192	1283621	1283148	DNA-dependent RNA polymerase, subunit D {Arabidopsis thaliana}	39.5	58.6	474
MJ0397	1113901	1114371		47.9	70.8	471
MJ0396	1114384		DNA-dependent RNA polymerase, subunit E" {Sulfolobus acidocaldarius}	35.9	62.3	177
MJ1039	501599		DNA-dependent RNA polymerase, subunit H {Methanococcus vannielii}	49.4	78.7	234
MJ1390	134111		DNA-dependent RNA polymerase, subunit I {Sulfolobus acidocaldarius}	-0.9	-0.9	240
MJ0197 MJ0387	1281417	1281247		43.5	65.3	171 297
MJ0367 MJ0196	1119216 1281779	1119512	DNA-dependent FNA polymerase, subunit L {Sudjoioous actaocataarius} DNA-dependent RNA polymerase, subunit N {Haloarcula marismortui}	35.6 53.8	63.4 83.4	219
Transcriptic		1201301	Divi dependent Keri polymetase, sucum 14 (raioarema marismorim)	33.0	05.4	217
MJ 0941	601867	600923	putative transcription initiation factor IIIC {Saccharomyces cerevisiae}	20.1	44.1	945
MJ1045	490363	489848	putative transcription initiation factor file {Saccharomyces cerevisite} putative transcription termination-antitermination factor nusA {Methanococcus vannielii}	47.9	73.7	516
MJ0372	1134509	1134123	putative transcription termination and termination factor nusG {Homo sapiens}	38.6	63.8	387
MJ0507	1024170	1024631	TATA-binding transcription initiation factor {Thermococcus celer}	51.4	74.0	462
MJ 0782	766586	768592	transcription initiation factor IIB {Pyrococcus woesei}	63.8	77.6	2007
MJ 1148	384277	384567		56.4	69.0	291
RNA proces						
MJ 0697	849814	849125	fibrillarin-like pre-rRNA processing protein {Methanococcus vannielii}	75.3	88.3	690

Translatio	on					
MJ0160	1308036 cyl tRNA synth		PET112 protein {Saccharomyces cerevisiae}	32.3	53.7	1230
Allillio ac	cyr tNNA synth	etases				
MJ0564	971657	974149	alanyl-tRNA synthetase (alaRS) {Haemophilus influenzae}	28.0	53.1	2493
MJ0237	1244137	1242641	arginyl-tRNA synthetase {Mycobacterium leprae}	31.3	52.7	1497
MJ1555 MJ1377	1605935	1604679	aspartyl-tRNA synthetase {Pyrococcus sp.}	57.8 51.7	75.6 73.6	1257 1530
MJ0228	145796 1253254	147325 1251524	glutamyl-tRNA synthetase {Methanobacterium thermoautotrophicum} glycyl tRNA synthetase {Schizosaccharomyces pombe}	45.8	65.2	1731
MJ1000	543634		histidyl-tRNA synthetase {Streptococcus equisimilis}	35.5	56.3	1239
MJ0947	591914		isoleucyl-tRNA synthetase {Methanobacterium thermoautotrophicum}	52.1	70.0	2904
MJ0633	912642		leucyl-tRNA synthetase {Saccharomyces cerevisiae}	34.4	54.9	2628
MJ1263	266697	264745		35.6	56.0	1953
MJ0487 MJ1108	1041343 423555	1039994 425198	phenylalanyl-tRNA synthetase, subunit alpha {Saccharomyces cerevisiae} phenylalanyl-tRNA synthetase, subunit beta {Saccharomyces cerevisiae}	41.0 31.6	64.0 55.4	1350 1644
MJ1238	287985		prolyl-tRNA synthetase {Homo sapiens}	39.3	59.5	1188
MJ 1197	332116		threonyl-tRNA synthetase {Synechocystis sp.}	29.1	52.1	1860
MJ1415	96418	95369	tryptophanyl-tRNA synthetase {Schizosaccharomyces pombe}	30.5	55.3	1050
MJ0389	1118380			39.9	63.7	765
MJ1007	536642		valyl-tRNA synthetase {Bacillus stearothermophilus} and glycopeptides	36.1	56.6	2457
Degradat	ion or proteins,	peptides, a	ind grycopepides			
MJ1176	356300	357370	ATP-dependent 26S protease regulatory subunit 4 {Homo sapiens}	51.0	74.1	1071
MJ1494	4302	5123	ATP-dependent 26S protease regulatory subunit 8 (Methanobacterium	58.6	78.2	822
			thermoautotrophicum}			
MJ1417	93716		ATP-dependent protease La {Bacillus brevis}	32.8	54.3	1785
MJ0090 MJ1130	1387867 400455		collagenase {Porphyromonas gingivalis} O-sialoglycoprotein endopeptidase {Saccharomyces cerevisiae}	32.6 50.6	35.2 67.9	1113 1515
MJ0651	891988		protease IV {Haemophilus influenzae}	35.0	56.2	855
MJ0591	947601	946861		57.5	78.8	741
MJ1237	289440	289967	proteasome, subunit beta {Methanosarcina thermophila}	47.5	68.2	528
MJ0806	742381	743364		36.1	65.2	984
MJ0996	547987 nodification	546635	Zn protease {Haemophilus influenzae}	33.9	55.0	1353
I TOTCHI II	lodification					
MJ0814	733804	734793	deoxyhypusine synthase {Homo sapiens}	50.0	70.7	990
MJ1274	253925	254653	diphthine synthase {Saccharomyces cerevisiae}	40.7	61.5	729
MJ0172	1296723		L-isoaspartyl protein carboxyl methyltransferase {Escherichia coli}	47.6	59.4	453
MJ1329	192979 1630123	192098		36.2 39.7	55.1 55.7	882 360
MJ1530 MJ1591	1573833		N-terminal acetyltransferase complex, subunit ARD1 {Homo sapiens} selenium donor protein {Homo sapiens}	34.3	57.1	762
	al proteins: synt					
MJ0509	1022576		acidic ribisomal protein P0 (L10E) {Methanococcus vannielii}	63.2	82.1	927
MJ0242 MJ1203	1240163 325110	325460	ribosomal protein HG12 {Catus (cat)} ribosomal protein HS6-type {Haloarcula marismortui}	63.7 47.0	81.9 71.4	66 351
MJ0510	1021912	1022460	ribosomal protein L1 {Methanococcus vannielii}	64.5	80.3	549
MJ0373	1133926		ribosomal protein L11 {Sulfolobus solfataricus}	47.2	72.4	387
MJ0508	1023632		ribosomal protein L12 {Methanococcus vannielii}	72.8	80.9	306
MJ0194	1282568	1282260	ribosomal protein L13 {Haloarcula marismortui}	44.9	66.4	309
MJ0466 MJ0657	1058694 888216		ribosomal protein L14 {Methanococcus vannielii}	78.8 36.4	92.5 59.8	243 240
MJ0477	1052625		ribosomal protein L14B {Saccharomyces cerevisiae} ribosomal protein L15 {Methanococcus vannielii}	62.7	79.5	324
MJ0983	556982		ribosomal protein L15B {Thermoplasma acidophilum}	62.3	78.6	309
MJ 0474	1054523		ribosomal protein L18 {Methanococcus vannielii}	73.3	84.3	585
MJ0473	1054978		ribosomal protein L19 {Methanococcus vannielii}	67.0	86.4	420
MJ0179 MJ0040	1291786	1291052	ribosomal protein L2 {Methanococcus vannielii} ribosomal protein L21 {Haloarcula marismortui}	74.0 54.5	87.0 62.3	735 303
MJ0040 MJ0460	1431958 1061493	1432260 1061089	ribosomal protein L21 {Haloarcula marismortui} ribosomal protein L22 {Haloarcula marismortui}	54.5 40.7	62.3	303 405
MJ0178	1292097	1291840	ribosomal protein L23 {Methanococcus vannielii}	69.8	91.9	258
MJ0467	1058340	1058062	ribosomal protein L24 {Methanococcus vannielii}	70.5	83.0	279
MJ1201	325929	326078	ribosomal protein L24E {Haloarcula marismortui}	54.6	66.7	150
MJ0462	1060388	1060212		51.0	69.9	177
MJ0193 MJ0176	1283076 1293794	1282705 1292934	ribosomal protein L29E {Haloarcula marismortui} ribosomal protein L3 {Haloarcula marismortui}	48.7 45.2	68.7 63.9	372
MJ1044	490704	490399	ribosomal protein L30 {Methanococcus vannielii}	63.9	84.1	861 306
MJ0049	1421907	1422152	ribosomal protein L31{Nicotiana glutinosa}	40.9	66.2	246
MJ0472	1055464	1055063	ribosomal protein L32 {Methanococcus vannielii}	58.0	77.4	402
MJ0655	889197	888931	ribosomal protein L34 {Aedes albopictus}	36.8	58.3	267
MJ0098	1380525	1380686	ribosomal protein L37 {Leishmania infantum,}	50.0	67.4	162
MJ0593 MJ0177	945958 1292889	945683 1292134	ribosomal protein L37a {Homo sapiens} ribosomal protein L4 (human) {Haloarcula marismortui}	44.6 49.4	58.7 66.3	276 756
MJ0707	838122	838229	ribosomal protein L4 (human) {Hatoarcuia marismoriui} ribosomal protein L40 {Saccharomyces cerevisiae}	57.6	66.7	108
MJ0249	1236729	1236448	ribosomal protein L44 {Haloarcula marismortui}	38.8	58.1	282
MJ0689	854995	855150	ribosomal protein L46 {Sulfolobus solfataricus,}	52.0	70.0	156
MJ 0469	1057259	1056723	ribosomal protein L5 {Methanococcus vannielii}	72.5	84.5	537
MJ0471	1056071	1055526	ribosomal protein L6 {Methanococcus vannielii}	66.5	82.5	546
MJ 0476	1053137	1052745	ribosomal protein L7 {Methanococcus vannielii}	70.3	88.6	393

MJ0595	944670	044473	ribosomal protein LX {Sulfolobus acidocaldarius}	38.9	66.7	198
MJ0322	1172916	1173218	ribosomal protein S10 {Pyrococcus woesei}	67.0	91.0	303
MJ0191	1283956	1283735	ribosomal protein S11 {Haloarcula marismortui}	67.2	80.0	222
MJ1046	489559	489260	ribosomal protein S12 {Methanococcus vannielii}	87.0	96.0	300
MJ0036	1434801	1434352	ribosomal protein S13 {Brugia pahangi,}	49.4	71.0	450
MJ1474	26554	26054	ribosomal protein S15A {Brassica napus}	21.7	48.2	501
MJ0465	1059233	1058883	ribosomal protein S17 {Methanococcus vannielii}	71.6	82.4	351
MJ0245	1238750	1238896	ribosomal protein S17B {Saccharomyces cerevisiae}	55.4	80.9	147
		1284771		42.3	68.5	450
MJ 0189	1285220		ribosomal protein S18 {Arabidopsis thaliana}			
MJ 0180	1290861	1290508	ribosomal protein S19 {Haloarcula marismortui}	56.9	73.3	354
MJ0692	853669	854046	ribosomal protein S19S {Ascaris suum}	49.6	67.0	378
MJ0394	1115064	1115366	ribosomal protein S24 {Haloarcula marismortui}	42.6	64.4	303
MJ0250	1236377	1236192	ribosomal protein S27 {Saccharomyces cerevisiae}	42.6	53.8	186
MJ0393	1115369	1115548	ribosomal protein S27A {Caenorhabditis elegans}	58.4	68.8	180
MJ 0461	1061060	1060437	ribosomal protein S3 {Haloarcula marismortui}	49.1	72.1	624
MJ1202	325575	325808	ribosomal protein S33 {Kluyveromyces lactis}	62.1	81.1	234
MJ 0980	558761	559252		29.8	52.1	492
MJ 0190	1284710	1284150	ribosomal protein S4 {Sulfolobus acidocaldarius}	51.3	68.4	561
MJ 0468	1057935	1057318	ribosomal protein S4E {Methanococcus vannielii}	70.9	84.5	618
MJ0475	1053877	1053275	ribosomal protein S5 {Methanococcus vannielii}	75.7	88.6	603
MJ1260	270075	269683	ribosomal protein S6 {Homo sapiens}	36.2	58.0	393
MJ0620	922671	921799	ribosomal protein S6 modification protein {Haemophilus influenzae}	34.4	57.3	873
MJ1001	542227	541487	ribosomal protein S6 modification protein II {Haemophilus influenzae}	24.8	47.4	741
MJ1047	489046	488627	ribosomal protein S7 {Methanococcus vannielii}	65.8	83.6	420
MJ0470	1056445	1056113	ribosomal protein S8 {Methanococcus vannielii}	71.2	89.2	333
	873106		· · · · · · · · · · · · · · · · · · ·			387
MJ0673		872720	ribosomal protein S8E {Haloarcula marismortui}	50.0	69.7	
MJ0195	1282118	1281840	ribosomal protein S9 {Haloarcula marismortui}	50.0	75.0	279
tRNA mo	dification		,			
titi (74 iii)	diffication					
MJ0946	595006	596040	N2,N2-dimethylguanosine tRNA methyltransferase {Saccharomyces cerevisiae}	31.6	56.0	1035
MJ1675	1478684	1477755	pseudouridylate synthase I {Haemophilus influenzae}	33.5	57.2	930
MJ0436	1081116	1082732	queuine tRNA ribosyltransferase {Escherichia coli}	30.4	47.6	1617
		1002732	queume trava noosyttamsterase (Escherichia con)	50.7	77.0	1017
Translatio	on factors					
		700000	and the second s	22.0		
MJ0829	723534	722260	peptide chain release factor, eRF, subunit 1 {Xenopus laevis}	33.0	57.3	1275
MJ1505	1659133	1661085	putative ATP-dependent RNA helicase, eIF-4A family {Saccharomyces cerevisiae}	30.8	51.9	1953
MJ1574	1587062	1588927	putative ATP-dependent RNA helicase, eIF-4A family {Bacillus subtilis}	33.1	56.0	1866
MJ 0669	876636	877637	putative ATP-dependent RNA helicase, eIF-4A family {Bacillus subtilis}	44.5	65.8	1002
MJ 0495	1035432	1034644	putative translation factor, EF-TU/1 alpha family {Thermus aquaticus}	36.9	55.9	1389
MJ0262	1225060	1221653	putative translation initiation factor, FUN12/bIF-2 family {Saccharomyces cerevisiae}	39.3	61.5	3408
MJ0324	1171724	1172830	translation elongation factor, EF-1 alpha {Methanococcus vannielii}	78.9	90.8	1107
MJ1048		486336		74.8	88.5	2136
	488471		translation elongation factor, EF-2 {Methanococcus vannielii}			
MJ0445	1073262	1073483	translation initiation factor, eIF-1A {Thermoplasma acidophilum}	52.8	70.3	222
MJ0117	1357516	1358196	translation initiation factor, eIF-2, subunit alpha {Saccharomyces cerevisiae}	32.2	56.5	681
		1330190				
MJ 0097	1380885	1381313	translation initiation factor, eIF-2, subunit beta {Drosophila melanogaster}	32.1	60.4	429
MJ1261	269396	268164	translation initiation factor, eIF-2, subunit gamma {Homo sapiens}	52.6	71.9	1233
MJ0454	1066217	1067065	translation initiation factor, eIF-2B, subunit alpha {Saccharomyces cerevisiae}	37.9	56.4	849
MJ0122	1353264			29.4	54.6	864
		1354127	translation initiation factor, eIP-2B, subunit delta {Mus musculus}			
MJ1228	300895	301236	translation initiation factor, eIF-5a {Sulfolobus acidocaldarius}	50.0	69.7	342
Transport	and binding p	roteine				
Tansport	and omaing p	Totems				
MJ 0719	818577	820280	ABC transporter ATP-binding protein {Saccharomyces cerevisiae}	49.6	66.9	1713
MJ1023	518606	517821	ABC transporter ATP-binding protein {Bacillus firmus}	49.2	72.4	786
MJ1572	1590114		ABC transporter ATP-binding protein {Mycoplasma genitalium}	50.0	87.5	597
MJ0035	1435236	1435829	ABC transporter subunit {Cyanelle Cyanophora}	33.9	58.1	594
MJ1508	1656015		ABC transporter, probable ATP-binding subunit {Haemophilus influenzae}	45.7	68.3	570
MJ1332	189987	191117	GTP-binding protein {Saccharomyces cerevisiae}	38.7	59.8	1131
MJ1326	196392	195292	GTP-binding protein {Schizosaccharomyces pombe}	51.4	71.5	1101
MJ1408	103449	102430	GTP-binding protein, GTP1/OBG-family {Saccharomyces cerevisiae}	30.5	58.4	1020
MJ1464	39865	38858	hypothetical GTP-binding protein (SP:P40010) {Saccharomyces cerevisiae}	32.0	55.5	1008
MJ1033	507274	506324	magnesium and cobalt transport protein {Haemophilus influenzae}	42.2	57.9	951
MJ0091	1386551	1385751	Na+/Ca+ exchanger protein {Escherichia coli}	32.3	58.6	801
MJ0283	1204330	1203563	nucleotide-binding protein {Homo sapiens}	47.5	68.0	768
Amino ac	cids; peptides a	nd amines				
	, populates a					
MJ 0609	933328	934587	amino acid transporter {Arabidopsis thaliana}	21.9	48.7	1260
MJ1343	181359	182519	ammonium transport protein AMT1 {Arabidopsis thaliana}	35.6	53.3	1161
MJ0058	1413598	1414770	ammonium transporter {Escherichia coli}	34.2	52.2	1173
MJ1269	258901	257993	branched-chain amino acid transport protein livH {Escherichia coli}	30.8	54.6	909
MJ1266	261404	260577	branched-chain amino acid transport protein livJ {Escherichia coli}	28.8	55.2	828
MJ1270	257896	256934	branched-chain amino acid transport protein livM {Escherichia coli}	28.7	52.2	963
MJ 1196	332430	333311	cationic amino acid transporter MCAT-2 {Mus musculus}	24.6	50.6	882
MJ0304	1185908	1186333	ferripyochelin binding protein {Pseudomonas aeruginosa}	55.6	74.7	426
MJ 0796	752786	752118	glutamine transport ATP-binding protein Q {Escherichia coli}	47.9	67.2	669
MJ1267	260465	259707	high-affinity branched-chain amino acid transport ATP-binding protein	34.2	60.8	759
			{Pseudomonas aeruginosa}			
			t			

			TABLE 1A-continued			
M J1268	259458	258973	high-affinity branched-chain amino acid transport ATP-binding protein {Salmonella typhimurium}	40.4	68.6	486
Anions						
MJ0412	1099862	1100608	nitrate transport ATP-binding protein {Synechococcus sp}	44.6	70.1	747
MJ0413	1099077	1099826		34.2	59.4	750
MJ1012	529685	530431		60.9	80.7	747
MJ1013	528941	529642	phosphate transport system permease protein A {Haemophilus influenzae}	39.6	60.5	702
MJ 1014	528397	528810	phosphate transport system permease prdtein C {Haemophilus influenzae}	40.0	66.5	414
MJ 1009	532458	533165	phosphate transport system regulatory protein {Escherichia coli}	28.5	54.6	708
MJ1015	526871	527698	phosphate-binding protein {Xanthomonas oryzae}	45.8	60.2	828
Carbohydra	ates, organic	alcohols, an	ad acids			
MJ0576	960439	959399	malic acid transport protein {Schizosaccharomyces pombe}	23.8	47.9	1041
MJ 0762	786703	787524	malic acid transport protein {Schizosaccharomyces pombe}	26.5	49.3	822
MJ 0121	1354728	1355291	SN-glycerol-3-phosphate transport ATP-binding protein {Escherichia coli}	33.4	51.7	564
MJ1319	206861	205926	$sodium-dependent\ noradrenaline\ transporter\ \{\textit{Haemophilus\ influenzae}\}$	37.8	61.0	936
Cations						
MJ 1088	444480	445223	cobalt transport ATP-binding protein O {Salmonella typhimurium}	46.1	66.6	744
MJ 1090	443372	443527	cobalt transport protein N {Salmonella typhimurium}	59.1	79.6	156
MJ 1089	443778	444374	cobalt transport protein Q {Salmonella typhimurium}	28.9	55.6	597
MJ 0089	1388820	1388059	ferric enterobactin transport ATP-binding protein {Escherichia coli}	33.1	59.6	762
MJ0873	674824	674123	ferric enterobactin transport ATP-binding protein {Escherichia coli}	31.5	60.3	702
MJ0566	967842	969857	ferrous iron transport protein B {Escherichia coli}	35.8	61.2	2016
MJ 0877	670239	670442	hemin permease {Haemophilus influenzae}	27.9	62.3	204
MJ 0087	1390284	1389385	hemin permease {Yersinia enterocolitica}	40.6	67.7	900
MJ0085	1392668	1391613		32.9	53.3	1056
MJ 0876	670677	671498		30.8	52.8	822
MJ1441	64080	60403	magnesium chelatase subunit {Arabidopsis thaliana}	35.3	57.3	3678
MJ0911	628932	629972		54.9	73.4	1041
MJ1275 MJ0672	253661 873748	252597 874665		29.8 39.3	59.9 63.1	1065 918
MJ1231	297233	298873	, , , , , , , , , , , , , , , , , , ,	52.0	68.7	1641
MJ1357	164247	165065	putative potassium channel protein {Bacillus cereus}	42.9	66.7	819
MJ1367	154669	155559	sulfate permease (cysA) {Synechococcus sp}	38.5	64.5	891
MJ1368	153995	154666	sulfate/thiosulfate transport protein {Escherichia coli}	30.9	59.4	672
MJ1485	16909		TRK system potassium uptake protein {Escherichia coli}	29.5	58.5	1197
MJ1105	426702	427217	TRK system potassium uptake protein A {Methanosarcina mazei}	39.3	57.6	516
Other						
MJ1142	390844	389885	arsenical pump-driving ATPase {Escherichia coli}	34.7	55.9	960
MJ0822	727897	729522	· · · · · · · · · · · · · · · · · · ·	48.1	69.0	1626
MJ0718	820399		chromate resistance protein A {Alcaligenes eutrophus}	27.9	52.4	1125
MJ1226	304219	301988		45.1	63.7	2232
MJ 1560	1600958	1601974		28.8	51.1	1017
Other-categ	gories					
MJ1365	157333	156458	pheromone shutdown protein {Enterococcus faecalis}	31.2	57.2	876
MJECL24	28069		SOJ protein {Bacillus subtilis}	34.0	62.1	776
	analog sensiti		•	20		
MI1520	1601424	1620601	V locatic towin concitivity protein VTI12 (Casabananunga agranicias)	28.4	48.8	744
MJ1538	1621434		K. lactis toxin sensitivity protein KTI12 {Saccharomyces cerevisiae}			297
MJ0102 Phage-relat	1375563 ted functions		phenylacrylic acid decarboxylase {Saccharomyces cerevisiae} ges	50.0	74.0	291
		1 1	<u>-</u>			
MJ 0630	915023	914598	sodium-dependent phosphate transporter $\{Cricetulus\ griseus\}$	32.6	60.8	426

35 0,757,400 **D**1

64

			TABLE TA-Continued			
Transposon	-related funct	tions				
MJ 0367	1138754	1138080	integrase {Weeksella zoohelcum}	30.9	54.4	675
	1455555		ε ,	29.5	55.0	610
MJ0017 Other	1400000	1454940	transposase {Bacillus thuringiensis}	29.3	55.0	010
MJ1064	466505		acetyltransferase {Escherichia coli}	47.0	62.4	591
MJ1612	1549430		BcpC phosphonopyruvate decarboxylase {Streptomyces hygroscopicus}	31.1	48.9	1134
MJ0677	868213	869160	ethylene-inducible protein homolog {Hevea brasiliensis}	68.3	81.0	948
MJ0534	1003199	1002072	* }	34.6	57.2	1128
MJ0748	797504		flavoprotein {Methanobacterium thermoautotrophicum}	67.0	82.6	1170
MJ0256	1230191	1229760		36.7	58.5	432
MJ1682	1472535	1473320	heat shock protein X {Haemophilus influenzae}	30.4	55.5	786
MJ0866	682753		HIT protein, member of the HIT-family {Saccharomyces cerevisiae}	39.4	64.8 53.6	387
MJ0294 MJ0010	1193529 1460660		large helicase related protein, LHR {Escherichia coli} phosphonopyruvate decarboxylase {Streptomyces hygroscopicus}	31.4 28.0	47.2	2289 1164
MJ0734	805855	1459497 806439	rubrerythrin {Clostridium perfringens}	48.9	69.2	585
MJ0559	978287	977490		34.7	55.6	798
MJ1100	431754	430489	urease operon protein {Mycobacterium leprae}	33.2	55.0	1266
MJ0543	990687	991100		45.6	64.9	414
MJ0765	784011	785549	[6Fe-65] prismane-containing protein {Desulfovibrio desulfuricans}	60.2	72.8	1539
Hypothetic		1000 15	[ore or] promise comming process (2 comportors acompositions)	00.2	,2.0	1005
1470450	1062165	10.0051-		0.5		
MJ0458	1063165		hypothetical protein {Sulfolobus acidocaldarius}	-0.9	-0.9	648
MJ0483	1047280		hypothetical protein {Saccharomyces cerevisiae}	27.7	48.7	971
MJ0920	620866	621357	71 1 (7 1 0)	28.3	51.3	492
MJ0443	1074680	1075348		27.8	52.8	669
MJ0144	1330246	1330962	71 1 (33.4	58.6	717
MJ0044	1426552	1427241	hypothetical protein (GP:D38561_6) {Streptomyces wedmorensis}	24.1	49.8	690
MJ0868	680710	681000		42.2	65.0	291
MJ1502	1662923		hypothetical protein (GP:D64001_24) {Synechocystis sp.}	36.4 37.5	60.1 57.9	792 231
MJ1129 MJ0057	402152 1414899	1416176	hypothetical protein (GP:D64001_53) {Synechocystis sp.}	28.4	53.2	1278
MJ1335	187757		hypothetical protein (GP:D64003_36) {Synechocystis sp.} hypothetical protein (GP:D64004_11) {Synechocystis sp.}	46.2	63.5	165
MJ0640	902502		$ \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	33.9	58.8	957
MJ1347	177726	177280		32.1	58.6	447
MJ0392	1116428	1115556		29.1	54.3	873
MJ0590	950234	948222	hypothetical protein (GP:D64044_18) {Escherichia coli}	30.6	52.6	2013
MJ1178	355642	355956		27.1	55.3	315
MJ0438	1080099	1079128	hypothetical protein (GP:L47838_15) {Bacillus subtilis}	29.6	55.8	972
MJ0644	898810	898223	hypothetical protein (GP:M18279_1) {Pseudomonas sp.}	28.3	53.4	588
MJ0828	723763	723668		58.1	87.1	96
MJ1526	1632280	1632810		42.6	66.5	531
MJ0888	652964	653473	hypothetical protein (GP:U00011_3) {Mycobacterium leprae}	29.5	51.4	510
MJ0729	809665	809321	hypothetical protein (GP:U18744_1) {Bacillus firmus}	29.4	56.9	345
MJ0787	761402		hypothetical protein (GP:U19363_11) {Methanobacterium	49.9	71.9	1326
			thermoautotrophicum}			
MJ0693	852445	853059	hypothetical protein (GP:U19363_2) {Methanobacterium thermoautotrophicum}	42.8	61.9	615
MJ0489	1039414	1038686	hypothetical protein (GP:U19363_4) {Methanobacterium thermoautotrophicum}	41.3	57.5	729
MJ 0446	1072662	1071784	hypothetical protein (GP:U19363_5) {Methanobacterium thermoautotrophicum}	29.8	50.7	879
MJ 0076	1400741	1400403	hypothetical protein (GP:U19364_10) {Methanobacterium	25.3	56.1	339
			thermoautotrophicum}			
MJ0034	1435995		hypothetical protein (GP:UI9364_2) {Methanobacterium thermoautotrophicum}	23.9	49.7	927
MJ1251	277892		hypothetical protein (GP:UI9364_4) {Methanobacterium thermoautotrophicum}	37.8	61.0	501
MJ0927	615224		hypothetical protein (GP:U19364_6) {Methanobacterium thermoautotrophicum}	37.9	57.2	471
MJ0785	763999		hypothetical protein (GP:U19364_8) {Methanobacterium thermoautotrophicum}	57.5	76.6	1077
MJ0746	799630	799935	hypothetical protein (GP:U21086_2) {Methanobacterium thermoautotrophicum}	60.3	76.4	306
MJ1155	378926	380485	hypothetical protein (GP:W28377_114) {Escherichia coli}	40.0	63.7	1560
MJ0653	890904	890359	hypothetical protein (GP:U31567_2) {Methanopyrus kandleri}	42.2	64.8	546
MJ0532	1003608	1004750	hypothetical protein (GP:U32666_1) {Methanosarcina barkeri}	39.3	59.5	1143
MJ0674	872153	871623	hypothetical protein (GP:X83963_2) {Thermococcus litoralis}	58.3	76.7	531
MJ1552	1608984	1608592	hypothetical protein (GP:X85250_3) {Pyrococcus furiosus}	48.5	68.0	393
MJ0709	837195	835996	hypothetical protein (GP:X91006_2) {Pyrococcus sp.}	25.1	50.5 60.6	1200
MJ0226	1255943	1255389	hypothetical protein (GP:Z49569_1) {Saccharomyces cerevisiae}	39.0	60.6	555 618
MJ1476	25468	24851	hypothetical protein (HI0380) {Haemophilus influenzae}	39.7	62.6 51.1	618
MJ0441 MI1372	1076859	1076125	hypothetical protein (HI0902) {Haemophilus influenzae}	29.2 46.7	51.1 67.5	735 675
MJ1372 MJ0931	151434 611416	150760	hypothetical protein (HI0920) {Haemophilus influenzae} hypothetical protein (MG372) {Mycoplasma genitalium}	46.7 34.9	67.5 59.9	675 1119
MJ0931 MJ0861	687240	610298 688532	hypothetical protein (MG423) {Mycoplasma genitalium}	34.9 33.9	53.9	1293
MJ0861 MJ1252	087240 277977	278609	hypothetical protein (MG423) {Mycopiasma gentaium} hypothetical protein (PIR:B48653) {Lactococcus lactis}	33.9 32.5	55.9 47.2	633
MJ1232 MJ0279	1206983	1206147	hypothetical protein (PIR:048033) {Luciococcus tucus} hypothetical protein (PIR:01072) {Desulfurococcus mobilis}	32.3 29.2	53.4	837
MJ0279 MJ0299	1189620	1190600	hypothetical protein (PIR:S01012) {Desatjurococcus mobilis} hypothetical protein (PIR:S11602) {Thermoplasma acidophilum}	62.1	76.6	981
MJ0299 MJ1208	320842	319766	hypothetical protein (PIR:S11602) {Inermopiasma aciaophitum} hypothetical protein (PIR:S21569) {Metbanobacterium thermoautotrophicum}	55.4	74.8	1077
MJ1208 MJ1533	1625982	1627727	hypothetical protein (PIR:S28724) {Methanococcus vannielii}	67.3	83.3	1746
MJ0323	1172727	1172257	hypothetical protein (PIR:S28724) {memanococcus vannient} hypothetical protein (PIR:S38467) {Desulfurococcus mobilis}	60.7	71.7	471
MJ0323 MJ1162	368773	369060	hypothetical protein (PIR:S38467) {Desatjurococcus mobilis} hypothetical protein (PIR:S41581) {Methanothermus fervidus}	48.3	67.9	288
MJ1102 MJ0922	619284	619598	hypothetical protein (PIR:S41581) { <i>Methanothermus fervidus</i> }		73.4	315
MJ0922 MJ0867			hypothetical protein (PIR:S49379) {Methanothermus jerviaus} hypothetical protein (PIR:S49379) {Pseudomonas aeruginosa}	48.6 28.7	55.2	315 1248
	681124 1423924	682371 1424988				
MJ 0047	1423924	1424988	hypothetical protein (PIR:S51413) {Saccharomyces cerevisiae}	26.9	49.9	1065

MIL126 298570 292111 Daysolical poteiic (PRESS1413) Saccharmoyees cerevisiae*) 33.9 54.6 1522 Mil1026 1530878 153131 Daysolic (PRESS1413) Saccharmoyees cerevisiae*) 34.5 56.1 74.6				TI DDL III Commute			
MID025	MJ1236	290570	292111	hypothetical protein (PIR:S51413) {Saccharomyces cerevisiae}	33.9	54.6	1542
MII625	MJ0162	1306782	1305562	hypothetical protein (PIR:S51413) {Saccharomyces cerevisiae}	32.4	56.4	1221
MID882	MJ0928	614493	614957	hypothetical protein (PIR:S51868) {Saccharomyces cerevisiae}	38.4	61.7	465
M01412	MJ1625	1535098	1533113	hypothetical protein (PIR:S52522) {Saccharomyces cerevisiae}	27.6	50.4	1986
M00170	MJ0862	686185	687054	hypothetical protein (PIR:S52979) {Erwinia herbicola}	35.5	59.2	870
MJ0170	MJ1432	69872	69453	hypothetical protein (PIR:S53543) {Saccharomyces cerevisiae}	38.5	66.0	420
M1193	MJ0710	835912	834914	hypothetical protein (SP:P05409) {Methanococcus thermolithotrophicus}	59.2	79.9	999
M00463	MJ 0170	1299322	1300185	hypothetical protein (SP:P11666) {Escherichia coli}	30.1	54.8	864
MO444	MJ1593	1571988	1571740	hypothetical protein (SP:P12049) {Bacillus subtilis}	40.3	69.6	249
Monass	MJ0463	1060127	1059819	hypothetical protein (SP:P14021) {Methanococcus vannielii}	78.5	92.2	309
MD1388 1118696 1119244 hypothetical protein (SPP.15886) Methanococcus vannielii 46,9 66,3 549 11125 305183	MJ0464	1059719	1059435	hypothetical protein (SP:P14022) {Methanococcus vannielii}	58.8	79.4	285
MIJ125	MJ0136	1340892	1340105	hypothetical protein (SP:P14027) {Methanococcus vannielii}	63.4	87.8	788
MII123 398771 39750 hypothetical protein (SPP.2249) Methanobrevibacter smithi	MJ0388	1118696	1119244	hypothetical protein (SP:P15886) {Methanococcus vannielii}	46.9	66.3	549
MI1423	MJ1225	305183	304425	hypothetical protein (SP:P15889) {Thermofilum pendens}	24.1	53.9	759
MII 142	MJ1133	398771	397509	hypothetical protein (SP:P22349) {Methanobrevibacter smithii}	45.9	67.4	1263
MID954 986782 986360 hypothetical protein (SP:P2801) {Escherichia colf} 33.9 59.3 423	MJ1273	255725	254676	hypothetical protein (SP:P25125) {Thermus aquaticus}	41.4	60.2	1050
Milys	MJ1426	76255	75812	hypothetical protein (SP:P25768) {Methanobacterium ivanovii}	47.3	69.3	444
Min Min	MJ0549	986782	986360	hypothetical protein (SP:P28910) {Escherichia coli}	33.9	59.3	423
Milos	MJ0982	557497	558078	hypothetical protein (SP:P29202) {Haloarcula marismortui}	55.9	75.4	582
MID132	MJ 0990	552446	552658	hypothetical protein (SP:P31065) {Escherichia coli,}	39.2	62.4	213
Mil1586	MJ0326	1170026	1168809	hypothetical protein (SP:P31466) {Escherichia coli}	45.6	71.7	1218
MIIS68 1578018 1578648 Mypothetical protein (SP:P31805) { Sexcharomyces cerevisiae} { Saccharomyces cerevisiae} { 3.2, 4 5.2, 1 43.4 MiII112 450726 Mypothetical protein (SP:P32698) { Saccharomyces cerevisiae} { Saccharomyces cerevisiae} { 3.8, 2 6.2, 8 399 MIII1413 97390 97629 Mypothetical protein (SP:P332698) { Sexcharomyces cerevisiae} { 4.2, 2 6.3, 9 267 MIII113 97390 97629 Mypothetical protein (SP:P33382) { Listeria monocytogenes} { 4.2, 2 6.3, 9 267 MIII113 419180 1419670 Mypothetical protein (SP:P33382) { Listeria monocytogenes} { 4.2, 2 6.3, 9 267 MIII113 419180 Mypothetical protein (SP:P34222) { Saccharomyces cerevisiae} { 4.2, 3 6.3, 9 267 MIII113 419380 Mypothetical protein (SP:P37487) { Bacillus subtilis} { 4.3, 7 1.4 777 MII 61 1493810 Mypothetical protein (SP:P37487) { Bacillus subtilis} { 4.3, 7 1.4 777 MII 61 1493810 Mypothetical protein (SP:P37487) { Bacillus subtilis} { 4.3, 7 1.4 777 MII 61 1493810 Mypothetical protein (SP:P37487) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P37487) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P37825) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P37825) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P37825) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P37825) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P37825) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P38423) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P39164) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P39164) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P39164) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P39364) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P39364) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P39364) { Bacillus subtilis} { 4.4, 0 10023 Mypothetical protein (SP:P493964) { Bacillus subtilis} { 4.4, 0 10023	MJ0812	736053	736679	hypothetical protein (SP:P31473) {Escherichia coli}	25.8	54.3	627
MIII124 409090 406.36 hypothetical protein (SP.P32639) Saccharomyces cerevisiae} Saccharomyces cerevisiae 26.9 51.5 3888 MII1081 451124 450726 hypothetical protein (SP.P32638) Escherichia coll} 30.2 62.8 399 MII107 36208 361820 hypothetical protein (SP.P33382) Listeria monocytogenes} 42.2 63.9 267 MI0051 1419978 1419670 hypothetical protein (SP.P33382) Listeria monocytogenes} 42.2 63.9 267 MI0051 1493801 hypothetical protein (SP.P37002) Escherichia coll} 43.0 65.0 372 MI0068 9.34974 935750 hypothetical protein (SP.P37528) Bacillus subtilis} 47.0 72.6 386 MI1582 1580646 1579909 hypothetical protein (SP.P37555) Bacillus subtilis} 45.0 45.0 48.6 1188 MI0231 1249786 1250814 hypothetical protein (SP.P37555) Bacillus subtilis} 45.0 48.6 1188 MI0231	MJ 0079	1398567	1399694	hypothetical protein (SP:P31473) {Escherichia coli}	38.0	63.3	1128
MI1081 451124 450726 hypothetical protein (SP.P.32698) {Escherichia coli} 38.2 62.8 399 MI1413 97300 97629 hypothetical protein (SP.P.33882) {Listeria monocytogenes} 40.0 60.0 240 MI0151 1419978 1419670 hypothetical protein (SP.P.33882) {Listeria monocytogenes} 42.2 63.9 267 MI0521 1419978 1419670 hypothetical protein (SP.P.33882) {Listeria monocytogenes} 42.2 63.9 26.0 MI10523 1636316 1635945 hypothetical protein (SP.P.37022) {Escherichia coli} 43.0 65.0 372 MI10608 934974 935750 hypothetical protein (SP.P.375487) {Bacillus subtilis} 47.0 72.6 396 MI1182 1580646 1579909 hypothetical protein (SP.P.37558) {Bacillus subtilis} 47.0 72.6 396 MI0321 1249786 1250814 hypothetical protein (SP.P.37555) {Bacillus subtilis} 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 10.0 40.0 40	MJ1586	1578018	1576645	hypothetical protein (SP:P31806) {Escherichia coli}	32.4	52.1	1434
Mil Mil	MJ1124	409920	406336	hypothetical protein (SP:P32639) {Saccharomyces cerevisiae} {Saccharomyces cerevisiae}	26.9	51.5	3585
MIII 70 362086 361820 hypothetical protein (SP:P33382) {Listeria monovyogenes} 42.2 63.9 267 MIJ0051 141978 141970 hypothetical protein (SP:P34222) {Saccharomyces cerevisiae} 38.5 55.8 309 MIJ083 16363161 1635945 hypothetical protein (SP:P37002) {Escherichia coli} 43.0 65.0 372 MIJ060 934974 93550 hypothetical protein (SP:P37487) {Bacillus subtilis} 43.3 71.4 772 396 MIJ182 1580646 1579909 hypothetical protein (SP:P37587) {Bacillus subtilis} 25.0 48.6 138 MIJ031 1249786 1250814 hypothetical protein (SP:P37859) {Bacillus subtilis} 40.0 47.0 72.6 38 MIJ031 1249786 663910 hypothetical protein (SP:P37859) {Bacillus subtilis} 40.0 44.0 68.7 673 MIJ031 1249606 1427252 hypothetical protein (SP:P38819) {Bacillus subtilis} 45.5 58.4 235 MIJ048 1422153 hypothetical protein (SP:P38619) {Bacillus subtilis} 45.5	MJ1081	451124	450726	hypothetical protein (SP:P32698) {Escherichia coli}	38.2	62.8	399
M0051 1419978 1419670 hypothetical protein (SP:P34222) {Saccharomyces cerevisiae} 38.5 55.8 309 M11523 1636316 1635945 hypothetical protein (SP:P3702) {Escherichia coll} 43.0 65.0 372 M10608 934974 935750 hypothetical protein (SP:P37487) {Bacillus subtillis} 44.3 71.4 777 M1161 1493414 1493809 hypothetical protein (SP:P37528) {Bacillus subtillis} 35.4 60.6 738 M11375 148221 149408 hypothetical protein (SP:P37852) {Bacillus subtillis} 25.0 48.6 1188 M10231 1249786 1250814 hypothetical protein (SP:P37869) {Bacillus subtillis} 40.0 44.0 1029 M10832 66482 663910 hypothetical protein (SP:P37869) {Bacillus subtillis} 44.0 45.5 85.4 235 M10043 1422159 1422842 hypothetical protein (SP:P38619) {Suffolobus acidocaldarius} 45.5 45.5 25.8 4255 M10043 1506277 150706 hypothetical protein (SP:P39164) {Escherichia coli} 2	MJ1413	97390	97629	hypothetical protein (SP:P33382) {Listeria monocytogenes}	40.0	60.0	240
MJ1523 1636316 1635945 hypothetical protein (SP:P37002) {Escherichia coli} 43.0 65.0 372 MJ0608 934974 935750 hypothetical protein (SP:P37487) {Bacillus subillis} 47.0 72.6 396 MJ1582 1580646 1579909 hypothetical protein (SP:P37548) {Bacillus subillis} 25.0 48.6 1188 MJ1375 148221 149408 hypothetical protein (SP:P37555) {Bacillus subillis} 25.0 48.6 1188 MJ0311 1249786 1250814 hypothetical protein (SP:P37555) {Bacillus subillis} 44.0 66.7 673 MJ0604 1429606 1427252 hypothetical protein (SP:P37869) {Bacillus subillis} 44.0 68.7 673 MJ0048 1422159 1422842 hypothetical protein (SP:P38619) {Bacillus subillis} 41.0 68.7 673 MJ0148 1422159 1422842 hypothetical protein (SP:P38423) {Bacillus subillis} 41.0 68.7 673 673 MJ0148 14257 14258 hypothetical protein (SP:P38423) {Bacillus subillis} 41.0 68.7 673 673 MJ0148 14259 1422842 hypothetical protein (SP:P38619) {Bacillus subillis} 41.0 68.7 673 68.7 68.4 68.7 68.8	MJ 1170	362086	361820	hypothetical protein (SP:P33382) {Listeria monocytogenes}	42.2	63.9	267
MI10608 934974 935750 hypothetical protein (SP.P37487) Bacillus subtilis 44.3 71.4 777 716 716 718	MJ0051	1419978	1419670	hypothetical protein (SP:P34222) {Saccharomyces cerevisiae}	38.5	55.8	309
MJ1661 1493414 1493809 hypothetical protein (SP:P37528) {Bacillus subtilis} 47.0 72.6 396 MJ1852 1580646 1579909 hypothetical protein (SP:P375545) {Bacillus subtilis} 35.4 60.6 738 MJ1375 148221 14908 hypothetical protein (SP:P37555) {Bacillus subtilis} 25.0 48.6 1188 MJ0231 1249786 1250814 hypothetical protein (SP:P37859) {Bacillus subtilis} 40.0 44.0 1029 MJ0882 664582 663910 hypothetical protein (SP:P38772) {Bacillus subtilis} 45.5 58.4 2355 MJ0043 1429606 1427252 hypothetical protein (SP:P38423) {Bacillus subtilis} {Bacillus subtilis} 45.5 58.4 2355 MJ0489 552670 553011 hypothetical protein (SP:P38619) {Sulfolobus acidocaldadrius} 29.0 51.8 342 MJ11547 415733 416479 hypothetical protein (SP:P39504) {Escherichia coli} 27.1 48.3 747 MJ0577 959388 958903 hypothetical protein (SP:P42297) {Bacillus subtilis} 33.6 55.7	MJ1523	1636316	1635945	hypothetical protein (SP:P37002) {Escherichia coli}	43.0	65.0	372
MJ1582 1580646 1579909 hypothetical protein (SP:P37545) {Bacillus subiilis} 35.4 60.6 738 MJ1375 148221 149408 hypothetical protein (SP:P37555) {Bacillus subiilis} 25.0 48.6 1188 MI0321 1249786 1250814 hypothetical protein (SP:P37859) {Bacillus subilis} 40.0 44.0 162.7 MI0882 664582 663910 hypothetical protein (SP:P37872) {Bacillus subilis} 44.0 68.7 67.3 MI0043 1422159 1422842 hypothetical protein (SP:P38619) {Sulfolobus acidocaldarius} 45.5 58.4 2355 MI0048 1422159 1422842 hypothetical protein (SP:P39164) {Escherichia coli} 29.0 51.8 342 MI1155 415733 416479 hypothetical protein (SP:P39364) {Escherichia coli} 27.1 48.3 747 MI1649 1506277 1507068 hypothetical protein (SP:P4297) {Bacillus subilis} 28.9 48.5 792 MI1247 282030 281677 hypothetical protein (SP:P42297) {Bacillus subilis} 38.4 60.0 354	MJ 0608	934974	935750	hypothetical protein (SP:P37487) {Bacillus subtilis}		71.4	777
MJ1375 148211 149408 hypothetical protein (SP:P3755) {Bacillus subtilis} 25.0 48.6 1188 MJ0231 1249786 1250814 hypothetical protein (SP:P37869) {Bacillus subtilis} 40.0 44.0 60.7 63 MJ0842 664582 663910 hypothetical protein (SP:P37872) {Bacillus subtilis} 45.5 58.4 2355 MJ0048 1422159 1422842 hypothetical protein (SP:P38619) {Sulfolobus acidocaldarius} 36.6 59.1 684 MJ0989 552670 553011 hypothetical protein (SP:P39164) {Escherichia coli} 29.0 51.8 342 MJ1115 415733 416479 hypothetical protein (SP:P39584) {Escherichia coli} 27.1 48.3 742 MJ0577 959388 958903 hypothetical protein (SP:P42297) {Bacillus subtilis} 31.6 56.4 486 MJ0486 1041905 1042681 hypothetical protein (SP:P42297) {Bacillus subtilis} 33.4 60.0 53.7 MJ0449 1070080 1069565 hypothetical protein (SP:P46346) {Escherichia coli} 33.4 67.7	MJ1661	1493414	1493809	hypothetical protein (SP:P37528) {Bacillus subtilis}	47.0	72.6	396
MJ0231 1249786 1250814 hypothetical protein (SP:P37869) {Bacillus subtilis} 40.0 44.0 62.7 MJ0882 664582 663910 hypothetical protein (SP:P37872) {Bacillus subtilis} {Bacillus subtilis} 44.0 68.7 673 MJ0043 1429606 1427252 hypothetical protein (SP:P38423) {Bacillus subtilis} {Bacillus subtilis} 36.6 59.1 684 MJ0048 1422159 1422842 hypothetical protein (SP:P38619) {Sulfolobus acidocaldarius} 36.6 59.1 684 MJ0989 552670 553011 hypothetical protein (SP:P39164) {Escherichia coli} 29.0 51.8 342 MJ1115 415733 416479 hypothetical protein (SP:P39364) {Escherichia coli} 27.1 48.3 747 MJ1649 1506277 1507068 hypothetical protein (SP:P39587) {Bacillus subtilis} 28.0 48.5 792 MJ0531 1004977 1004759 hypothetical protein (SP:P42297) {Bacillus subtilis} 34.3 68.7 721 MJ1247 282030 281677 hypothetical protein (SP:P45476) {Escherichia coli} 33.4	MJ1582	1580646	1579909	hypothetical protein (SP:P37545) {Bacillus subtilis}			738
MJ0882 664582 663910 hypothetical protein (SP:P37872) {Bacillus subtilis} 44.0 68.7 673 MJ0043 1429606 1427252 hypothetical protein (SP:P38423) {Bacillus subtilis} {Bacillus subtilis} 45.5 58.4 2355 MJ0048 1422159 1422842 hypothetical protein (SP:P38619) {Sulfolobus acidocaldarius} 36.6 59.1 684 MJ088 552670 553011 hypothetical protein (SP:P39164) {Escherichia coli} 29.0 51.8 342 MJ1115 415733 416479 hypothetical protein (SP:P39364) {Escherichia coli} 27.1 48.3 747 MJ1649 1506277 1507068 hypothetical protein (SP:P39387) {Bacillus subtilis} 28.9 48.5 792 MJ0571 959388 958903 hypothetical protein (SP:P42297) {Bacillus subtilis} 31.6 65.4 486 MJ0477 1004759 hypothetical protein (SP:P42297) {Bacillus subtilis} 33.6 68.7 777 MJ0486 1041905 1042681 hypothetical protein (SP:P42404) {Bacillus subtilis} 33.3 35.9 35.7	MJ1375	148221	149408	hypothetical protein (SP:P37555) {Bacillus subtilis}	25.0	48.6	1188
MJ0043 1429606 1427252 hypothetical protein (SP:P38423) {Bacillus subtilis} {Bacillus subtilis} {Bacillus subtilis} 45.5 58.4 2355 MJ0048 1422159 1422842 hypothetical protein (SP:P38619) {Sulfolobus acidocaldarius} 36.6 59.1 684 MJ0989 552670 553011 hypothetical protein (SP:P39164) {Escherichia coli} 29.0 51.8 342 MJ115 415733 416479 hypothetical protein (SP:P39364) {Escherichia coli} 27.1 48.3 747 MJ1649 1506277 1507068 hypothetical protein (SP:P39587) {Bacillus subtilis} 31.6 56.4 486 MJ0531 1004977 1004759 hypothetical protein (SP:P42297) {Bacillus subtilis} 33.6 65.7 219 MJ1247 282030 281677 hypothetical protein (SP:P45476) {Escherichia coli} 38.4 60.0 35.4 MJ0449 1070080 1069565 hypothetical protein (SP:P46348) {Bacillus subtilis} 31.8 60.7 516 MJ0582 861537 864374 hypothetical protein (SP:P46850) {Escherichia coli} 33.4	MJ0231	1249786	1250814	hypothetical protein (SP:P37869) {Bacillus subtilis}	40.0	44.0	1029
MJ0048 1422159 1422842 hypothetical protein (SP:P38619) {Sulfolobus acidacaldarius} 36.6 59.1 684 MJ0989 552670 553011 hypothetical protein (SP:P39164) {Escherichia coli} 29.0 51.8 342 MJ1115 415733 416479 hypothetical protein (SP:P39364) {Escherichia coli} 27.1 48.3 747 MJ1649 1506277 1507068 hypothetical protein (SP:P39587) {Bacillus subtilis} 28.9 48.5 792 MJ0577 959388 958903 hypothetical protein (SP:P42297) {Bacillus subtilis} 31.6 56.4 486 MJ0431 1004977 1004759 hypothetical protein (SP:P42297) {Bacillus subtilis} 38.4 60.0 354 MJ1247 282030 281677 hypothetical protein (SP:P42404) {Bacillus subtilis} 38.4 60.0 354 MJ0486 1041905 1042681 hypothetical protein (SP:P46348) {Bacillus subtilis} 31.8 60.7 516 MJ0682 861537 864374 hypothetical protein (SP:P46850) {Escherichia coli} 33.4 53.9 2838 </td <td>MJ0882</td> <td>664582</td> <td>663910</td> <td>hypothetical protein (SP:P37872) {Bacillus subtilis}</td> <td>44.0</td> <td>68.7</td> <td>673</td>	MJ0882	664582	663910	hypothetical protein (SP:P37872) {Bacillus subtilis}	44.0	68.7	673
MJ0989 552670 553011 hypothetical protein (SP:P39164) {Escherichia coli} 29.0 51.8 342 MJ1115 415733 416479 hypothetical protein (SP:P39364) {Eschenchia coli} 27.1 48.3 747 MJ1649 1506277 1507068 hypothetical protein (SP:P39587) {Bacillus subtilis} 28.9 48.5 792 MJ0577 959388 958903 hypothetical protein (SP:P42297) {Bacillus subtilis} 43.3 68.7 219 MJ0431 1004977 1004759 hypothetical protein (SP:P42297) {Bacillus subtilis} 43.3 68.7 219 MJ1247 282030 281677 hypothetical protein (SP:P42297) {Bacillus subtilis} 38.4 60.0 354 MJ0486 1041905 1042681 hypothetical protein (SP:P46348) {Bacillus subtilis} 38.4 60.0 354 MJ0489 1070080 1069565 hypothetical protein (SP:P46388) {Bacillus subtilis} 31.8 60.7 516 MJ0528 861537 864374 hypothetical protein (SP:P46851) {Escherichia coli} 33.4 53.9 2838 <	MJ0043	1429606	1427252	hypothetical protein (SP:P38423) {Bacillus subtilis} {Bacillus subtilis}	45.5	58.4	2355
MJ1115 415733 416479 hypothetical protein (SP:P39364) {Eschenchia coli} 27.1 48.3 747 MJ1649 1506277 1507068 hypothetical protein (SP:P39587) {Bacillus subtilis} 28.9 48.5 792 MJ0577 959388 958903 hypothetical protein (SP:P42297) {Bacillus subtilis} 31.6 56.4 486 MJ0531 1004977 1004759 hypothetical protein (SP:P42297) {Bacillus subtilis} 43.3 68.7 219 MJ1247 282030 281677 hypothetical protein (SP:P42404) {Bacillus subtilis} 38.4 60.0 354 MJ0486 1041905 1042681 hypothetical protein (SP:P45476) {Escherichia coli} 30.6 55.7 777 MJ0449 1070080 1069565 hypothetical protein (SP:P46348) {Bacillus subtilis} 31.8 60.7 516 MJ0682 861537 864374 hypothetical protein (SP:P46850) {Escherichia coli} 33.4 53.9 2838 MJ0758 951068 952243 hypothetical protein GP:L07942 2 {Escherichia coli} 40.1 55.0 1176 <	MJ0048		1422842	hypothetical protein (SP:P38619) {Sulfolobus acidocaldarius}			684
MJ1649 1506277 1507068 hypothetical protein (SP:P39587) {Bacillus subtilis} 28.9 48.5 792 MJ0577 959388 958903 hypothetical protein (SP:P42297) {Bacillus subtilis} 31.6 56.4 486 MJ0531 1004977 1004759 hypothetical protein (SP:P42297) {Bacillus subtilis} 43.3 68.7 219 MJ1247 282030 281677 hypothetical protein (SP:P42404) {Bacillus subtilis} 38.4 60.0 354 MJ0486 1041905 1069565 hypothetical protein (SP:P45476) {Escherichia coli} 30.6 55.7 777 MJ0489 1070080 1069565 hypothetical protein (SP:P46348) {Bacillus subtilis} 31.8 60.7 516 MJ0582 861537 864374 hypothetical protein (SP:P46850) {Escherichia coli} 33.4 53.9 2838 MJ1677 1476726 1476376 hypothetical protein GP:P469851) {Escherichia coli} 40.3 62.0 351 MJ0388 951068 952243 hypothetical protein GP:L07942_2 {Escherichia coli} 31.1 55.0 117	MJ 0989	552670	553011	hypothetical protein (SP:P39164) {Escherichia coli}	29.0	51.8	342
MJ0577 959388 958903 hypothetical protein (SP:P42297) {Bacillus subtilis} 31.6 56.4 486 MJ0531 1004977 1004759 hypothetical protein (SP:P42297) {Bacillus subtilis} 43.3 68.7 219 MJ1247 282030 281677 hypothetical protein (SP:P42297) {Bacillus subtilis} 38.4 60.0 354 MJ0486 1041905 1042681 hypothetical protein (SP:P45476) {Escherichia coli} 30.6 55.7 777 MJ0489 1070080 1069565 hypothetical protein (SP:P46348) {Bacillus subtilis} 31.8 60.7 516 MJ0682 861537 864374 hypothetical protein (SP:P46850) {Escherichia coli} 33.4 53.9 2838 MJ1677 1476676 1476376 hypothetical protein (SP:P46851) {Escherichia coli} 40.3 62.0 351 MJ0288 951068 952243 hypothetical protein GP:U00014_23 {Mycobacterium leprae} 31.1 55.0 176 MJ0376 130650 1129136 hypothetical protein GP:U00017_21{Mycobacterium leprae} 32.2 52.7 750 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
MJ0531 1004977 1004759 hypothetical protein (SP:P42297) {Bacillus subtilis} 43.3 68.7 219 MJ1247 282030 281677 hypothetical protein (SP:P42404) {Bacillus subtilis} 38.4 60.0 354 MJ0486 1041905 1042681 hypothetical protein (SP:P45476) {Escherichia coli} 30.6 57.7 MJ0489 1070080 1069565 hypothetical protein (SP:P46348) {Bacillus subtilis} 31.8 60.7 516 MJ0682 861537 864374 hypothetical protein (SP:P46881) {Escherichia coli} 33.4 53.9 2838 MJ1677 1476726 1476376 hypothetical protein (SP:P46881) {Escherichia coli} 40.3 62.0 351 MJ0285 951068 952243 hypothetical protein GP:L07942 2 {Escherichia coli} 31.1 55.0 1176 MJ0225 1256840 1256121 hypothetical protein GP:U00017 21{Mycobacterium leprae} 27.4 49.0 720 MJ0376 1130650 1129136 hypothetical protein GP:U29579 58 {Escherichia coli} 30.1 51.5 1521							
MJ1247 282030 281677 hypothetical protein (SP:P42404) {Bacillus subtilis} 38.4 60.0 354 MJ0486 1041905 1042681 hypothetical protein (SP:P45476) {Escherichia coli} 30.6 55.7 777 MJ0449 1070080 1069565 hypothetical protein (SP:P46348) {Bacillus subtilis} 31.8 60.7 516 MJ0682 861537 864374 hypothetical protein (SP:P46850) {Escherichia coli} 33.4 53.9 2838 MJ1677 1476726 1476376 hypothetical protein GP:P46851) {Escherichia coli} 40.3 62.0 351 MJ0588 951068 952243 hypothetical protein GP:U07942 _2 {Escherichia coli} 31.1 55.0 1176 MJ0225 1256840 1256121 hypothetical protein GP:U00014_23 {Mycobacterium leprae} 27.4 49.0 720 MJ0376 1130650 1129136 hypothetical protein GP:U00017_21{Mycobacterium leprae} 30.1 51.5 1521 MJ0028 143023 1443023 1443024 hypothetical protein GP:U29579_58 {Escherichia coli} 30.1 51.5				71 1 1 1			
MJ0486 1041905 1042681 hypothetical protein (SP:P45476) {Escherichia coli} 30.6 55.7 777 MJ0449 1070080 1069565 hypothetical protein (SP:P46348) {Bacillus subtilis} 31.8 60.7 516 MJ0682 861537 864374 hypothetical protein (SP:P46850) {Escherichia coli} 33.4 53.9 2838 MJ1677 1476726 1476376 hypothetical protein (SP:P46851) {Escherichia coli} 40.3 62.0 51 MJ0588 951068 952243 hypothetical protein GP:U07942 2 {Escherichia coli} 31.1 55.0 1176 MJ0225 1256840 1256121 hypothetical protein GP:U00014_23 {Mycobacterium leprae} 27.4 49.0 720 MJ0376 1130650 1129136 hypothetical protein GP:U00017_21{Mycobacterium leprae} 32.2 52.7 750 MJ038 1443023 1443023 1443023 1443024 hypothetical protein GP:U20579_58 {Escherichia coli} 30.1 51.5 1521 MJ0136 395844 394486 hypothetical protein HI1305 {Haemophilus influenzae} 27.0 <td></td> <td></td> <td></td> <td>71 1 1 1</td> <td></td> <td></td> <td></td>				71 1 1 1			
MJ0449 1070080 1069565 hypothetical protein (SP:P46348) {Bacillus subtilis} 31.8 60.7 516 MJ0682 861537 864374 hypothetical protein (SP:P46850) {Escherichia coli} 33.4 53.9 2838 MJ1677 1476726 1476376 hypothetical protein (SP:P46851) {Escherichia coli} 40.3 62.0 351 MJ0588 951068 952243 hypothetical protein GP:L07942_2 {Escherichia coli} 31.1 55.0 1176 MJ0325 1256840 1256121 hypothetical protein GP:U00014_23 {Mycobacterium leprae} 32.2 52.7 750 MJ0376 1130650 1129136 hypothetical protein GP:U29579_58 {Escherichia coli} 30.1 51.5 1521 MJ0136 395844 394846 hypothetical protein HI1305 {Haemophilus influenzae} 27.0 50.0 822 MJ0952 588063 588479 hypothetical protein PIR:S49633 {Saccharomyces cerevisiae} 46.2 63.8 15.5 417 MJ0403 1109067 1108276 hypothetical protein PIR:S55196 {Saccharomyces cerevisiae} 27.6 48.							
MJ0682 861537 864374 hypothetical protein (SP:P46850) {Escherichia coli} 33.4 53.9 2838 MJ1677 1476726 1476376 hypothetical protein (SP:P46851) {Escherichia coli} 40.3 62.0 351 MJ0588 951068 952243 hypothetical protein GP:L07942 _2 {Escherichia coli} 31.1 55.0 1176 MJ0252 1256840 1256121 hypothetical protein GP:U00014_23 {Mycobacterium leprae} 27.4 49.0 720 MJ0376 1342043 1342792 hypothetical protein GP:U29579_58 {Escherichia coli} 30.1 51.5 1521 MJ0028 144303 1443844 hypothetical protein HI1305 {Haemophilus influenzae} 27.0 50.0 822 MJ1136 395844 394486 hypothetical protein Lpg22p (GP:U43281_22) {Saccharomyces cerevisiae} 46.2 63.8 15.9 MJ0952 588063 588479 hypothetical protein PIR:S49633 {Saccharomyces cerevisiae} 26.8 55.0 417 MJ0403 1109067 1108276 hypothetical protein PIR:S55196 {Saccharomyces cerevisiae} 27.6 48.2 79							
MJ1677 1476726 1476376 hypothetical protein (SP:P46851) {Escherichia coli} 40.3 62.0 351 MJ0588 951068 952243 hypothetical protein GP:L07942_2 {Escherichia coli} 31.1 55.0 1176 MJ0225 1256840 1256121 hypothetical protein GP:U00014_23 {Mycobacterium leprae} 27.4 49.0 720 MJ0134 1342043 1342792 hypothetical protein GP:U00017_21{Mycobacterium leprae} 32.2 52.7 750 MJ0376 1130650 112913 hypothetical protein GP:U29579_58 {Escherichia coli} 30.1 51.5 51.2 MJ0028 1443023 1443844 hypothetical protein HI1305 {Haemophilus influenzae} 27.0 50.0 822 MJ1136 395844 39486 hypothetical protein Lpg2p (GP:U43281_22) {Saccharomyces cerevisiae} 46.2 63.8 1359 MJ0952 588063 58879 hypothetical protein PIR:S49633 {Saccharomyces cerevisiae} 26.8 55.0 417 MJ0403 1109067 1108276 hypothetical protein PIR:S55196 {Saccharomyces cerevisiae} 27.6 48.2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
MJ0588 951068 952243 hypothetical protein GP:L07942_2 {Escherichia coli} 31.1 55.0 1176 MJ0225 1256840 1256121 hypothetical protein GP:U00014_23 {Mycobacterium leprae} 27.4 49.0 720 MJ0134 1342043 1342792 hypothetical protein GP:U00017_21{Mycobacterium leprae} 32.2 52.7 750 MJ0376 1130650 1129136 hypothetical protein GP:U29579_58 {Escherichia coli} 30.1 51.5 1521 MJ0028 1443023 1443844 hypothetical protein HI1305 {Haemophilus influenzae} 27.0 50.0 822 MJ1136 395844 394486 hypothetical protein Lpg2p (GP:U43281_22) {Saccharomyces cerevisiae} 46.2 63.8 1359 MJ0952 588063 58879 hypothetical protein PIR:S49633 {Saccharomyces cerevisiae} 26.8 55.0 417 MJ0403 1109067 1108276 hypothetical protein PIR:S55196 {Saccharomyces cerevisiae} 27.6 48.2 792							
MJ0225 1256840 1256121 hypothetical protein GP:U00014_23 {Mycobacterium leprae} 27.4 49.0 720 MJ0134 1342043 1342792 hypothetical protein GP:U00017_21{Mycobacterium leprae} 32.2 52.7 750 MJ0376 1130650 1129136 hypothetical protein GP:U29579_58 {Escherichia coli} 30.1 51.5 1521 MJ0028 1443023 1443023 1443024 hypothetical protein HJ1305 {Haemophilus influenzae} 27.0 50.0 822 MJ136 395844 394486 hypothetical protein Lpg2p (GP:U43281_22) {Saccharomyces cerevisiae} 46.2 63.8 1359 MJ0952 588063 588479 hypothetical protein PIR:S49633 {Saccharomyces cerevisiae} 26.8 55.0 417 MJ0403 1109067 1108276 hypothetical protein PIR:S55196 {Saccharomyces cerevisiae} 27.6 48.2 792							
MJ0134 1342043 1342792 hypothetical protein GP:U00017_21{Mycobacterium leprae} 32.2 52.7 750 MJ0376 1130650 1129136 hypothetical protein GP:U29579_58 {Escherichia coli} 30.1 51.5 1521 MJ0028 1443023 1443844 hypothetical protein HI1305 {Haemophilus influenzae} 27.0 50.0 822 MJ1136 395844 394486 hypothetical protein Lpg22p (GP:U43281_22) {Saccharomyces cerevisiae} 46.2 63.8 155.9 MJ0952 588063 588479 hypothetical protein PIR:S49633 {Saccharomyces cerevisiae} 26.8 55.0 417 MJ0403 1109067 1108276 hypothetical protein PIR:S55196 {Saccharomyces cerevisiae} 27.6 48.2 792				· · · · · · · · · · · · · · · · · · ·			
MJ0376 1130650 1129136 hypothetical protein GP:U29579_58 {Escherichia coli} 30.1 51.5 1521 MJ0028 1443023 1443844 hypothetical protein HI1305 {Haemophilus influenzae} 27.0 50.0 822 MJ1136 395844 394486 hypothetical protein Lpg22p (GP:U43281_22) {Saccharomyces cerevisiae} 46.2 63.8 15.9 MJ0952 588063 588479 hypothetical protein PIR:S49633 {Saccharomyces cerevisiae} 26.8 55.0 417 MJ0403 1109067 1108276 hypothetical protein PIR:S55196 {Saccharomyces cerevisiae} 27.6 48.2 792							
MJ0028 1443023 1443844 hypothetical protein HI1305 {Haemophilus influenzae} 27.0 50.0 822 MJ1136 395844 394486 hypothetical protein Lpg22p (GP:U43281_22) {Saccharomyces cerevisiae} 46.2 63.8 1359 MJ0952 588063 588479 hypothetical protein PIR:S49633 {Saccharomyces cerevisiae} 26.8 55.0 417 MJ0403 1109067 1108276 hypothetical protein PIR:S55196 {Saccharomyces cerevisiae} 27.6 48.2 792							
MJ1136 395844 394486 hypothetical protein Lpg22p (GP:U43281_22) {Saccharomyces cerevisiae} 46.2 63.8 1359 MJ0952 588063 588479 hypothetical protein PIR:S49633 {Saccharomyces cerevisiae} 26.8 55.0 417 MJ0403 1109067 1108276 hypothetical protein PIR:S55196 {Saccharomyces cerevisiae} 27.6 48.2 792							
MJ0952 588063 588479 hypothetical protein PIR:S49633 {Saccharomyces cerevisiae} 26.8 55.0 417 MJ0403 1109067 1108276 hypothetical protein PIR:S55196 {Saccharomyces cerevisiae} 27.6 48.2 792							
MJ0403 1109067 1108276 hypothetical protein PIR:S55196 {Saccharomyces cerevisiae} 27.6 48.2 792							
MJ1031 509420 508506 hypothetical protein SP:P45869 { <i>Bacillus subtilis</i> } 26.8 51.1 915							
	MJ1031	509420	508506	nypotnetical protein SP:P45869 {Bacillus subtilis}	26.8	51.1	915

TABLE 1B	TABLE 2-continued
TABLETB	LABLE /-continued

MJ0479 1,050,508	1,049,948 adenylate kinase {Meth-anococcus jannaschii}	100.0% 100.0%	585	55	MJ0012 MJ0013 MJ0014 MJ0015 MJ0016 MJ0018	13927 14836 15455 15514 16416 17658	13427 14351 14820 15804 15866 19229	
				60	MJ0019	21121	19232	
	TABLE 2			60	MJ0021 MJ0023 MJ0024	22762 25284 26105	23886 25637 25689	
MJ0002 MJ0003	4071 4911	3343 5378			MJ0024 MJ0025 MJ0027	27122 28572	26109 28021	
MJ0008	10075	10734			MJ 0037	38073	38786	
MJ 0009 MJ 0011	10743 12983	11570 13459		65	MJ0038 MJ0039	39443 39974	38793 39654	

TABLE 2-continued				TABLE 2-continued			
MJ0041	41838	40477		MJ0198	191384	192259	
MJ0042	42527	41883		MJ0201	193486	193007	
MJ0045	46506	45907	5	MJ0202	193687	194454	
MJ 0046	47351	46569		MJ0206	198871	198467	
MJ0050	52237	51050		MJ0207	198967	199419	
МJ0052	53374	52709		MJ0208	200166	199429	
MJ0053	54068	53388		MJ0209	200956	200159	
MJ0054	55001	54159		MJ0212	203759	204019	
МJ0056	56154	55759	10	MJ0213	204137	204583	
МЈ0062	60618	61238	10	MJ0215	205636	205190	
МJ0063	61322	61855		MJ0223	214474	214163	
MJ0064	61897	62454		MJ0224	215072	214566	
MJ0065	63551	62463		MJ0227	218176	219099	
MJ 0066	65078	63657		MJ0229	221136	220852	
MJ 0067	65160	65468	15	MJ0230	221386	221144	
MJ0068	65861	65517	15	MJ0233	224281	225111	
MJ 0070	66966	67211		MJ0235	226124	226369	
MJ 0071	67211	67480		MJ0236	226362	227639	
MJ 0072	67562	67693		MJ0239	230506	230988	
MJ0073	67729	68007		MJ0240	231618	231094	
MJ 0074	69089	68016	20	MJ0241	232062	231628	
MJ0075	70324	69236	20	MJ0243	232563	232318	
MJ 0077	71539	70394		MJ0248	235142	235651	
MJ 0078	72674	72054		MJ0251	238728	238288	
MJ 0080	74182	73802		MJ0252	238849	239487	
MJ 0086	80788	81903		MJ0255	241359	240607	
MJ 0088	83019	83537	2.5	MJ0257	242764	243696	
MJ 0093	88517	88092	25	MJ0258	245039	243840	
MJ 0094	89481	88564		MJ0259	245717	245112	
MJ 0095	89828	89568		MJ0261	247082	246423	
MJ 0096	90752	89967		MJ0263	251686	250727	
MJ 0100	94823	93297		MJ 0270	256421	256188	
MJ0103	97958	99256		MJ0271	256902	257441	
MJ0105	101649	101239	30	MJ0272	257452	257649	
MJ0106	102541	101840		MJ0273	258107	258412	
MJ0107	102733	104295		MJ0274	260378	258819	
MJ0109	106419	105664		MJ0275	261121	260516	
MJ0110	106880	106614		MJ0280	266375	266758	
MJ0114	111874	112782		MJ0281	267291	266761	
MJ0115 MJ0116	113249 113931	112785 113257	35	MJ0282 MJ0284	267341 269902	267787 269174	
MJ0116 MJ0119	116397	115726		MJ0284 MJ0286	270849	270499	
MJ0119 MJ0120	117070	116372		MJ0287	271160	270499	
MJ0123	117070	119195		MJ0288	271755	271222	
MJ0125	123378	123031		MJ0289	272805	271801	
MJ0126	123685	123392		MJ0290	273753	273121	
MJ0127	124034	123672	40	MJ0292	275409	275137	
MJ0128	124341	124048		MJ0296	279767	280360	
MJ0129	124487	124996		MJ0297	281155	280406	
MJ0131	126783	126475		MJ0298	281290	281739	
MJ0133	129427	128609		MJ0301	285101	284220	
MJ0137	134976	134119		MJ0303	285971	285558	
MJ0138	136566	135121	45	MJ0305	286594	287778	
MJ0139	136616	138244		MJ0306	287997	287818	
MJ 0140	139150	139539		MJ0308	289084	288386	
MJ 0141	139529	139825		MJ0310	290609	290268	
MJ 0142	139797	140237		MJ0311	290981	290652	
MJ0145	142991	142188		MJ0312	291845	291228	
MJ 0146	143409	143203	50	MJ0314	293767	294369	
MJ 0147	144813	143701		MJ0315	294826	294455	
MJ 0149	146003	145830		MJ0316	295458	294964	
MJ0150	146069	146587		MJ0317	296374	295733	
MJ0154	152143	152589		MJ0319	297675	297902	
MJ0157	159807	160085		MJ0320	298001	298645	
MJ0158	160155	161276	55	MJ0321	298675	299040	
MJ0159	163046	161430		MJ0325	302095	301172	
MJ0163	167378	166818		MJ0327	303625	303927	
MJ0164 MJ0165	168614	167430 168627		MJ0328 MJ0320	304755 306607	304318 304760	
MJ0165 MJ0166	169394 170194	168627		MJ0329 MJ0330	306607 308266	304760 306620	
MJ0166 MJ0173	170194 175871	169430 176341		MJ0330 MJ0331	308266 308670	306620 308266	
MJ0173 MJ0175	175871 178089	177475	60	MJ0331 MJ0332	308995	308266 308678	
MJ0175 MJ0181	182625	181918		MJ0332 MJ0333	308993 309670	309410	
MJ0181 MJ0182	183311	182730		MJ0334	309816	310112	
MJ0182 MJ0183	183491	183348		MJ0334 MJ0335	310179	310919	
MJ0183 MJ0184	183606	183827		MJ0336	310179	311288	
MJ0184 MJ0185	183886	184032		MJ0337	311299	312084	
MJ0183 MJ0187	185874	185440	65	MJ0337 MJ0338	312100	312402	
MJ0188	186674	185880		MJ0339	312374	312694	
	= : :				== : :	•	

	TABLE 2-continue	d		TABLE 2-continued				
MJ0340	312697	313398		MJ0455	406863	406285		
MJ0341	313411	313770		MJ0456	406888	407943		
MJ0342	313918	314286	5	MJ0459	410088	410354		
MJ0343	314270	316807		MJ 0480	422470	423063		
MJ0344	316820	317359		MJ0481	423792	424085		
MJ0345	317314	318264		MJ0482	423793	423074		
MJ0346	318277	318579		MJ0485	427056	428102		
MJ0347	318593	319045		MJ0488	432390	432854		
MJ0348	319620	321995	10	MJ 0491	434681	435106		
MJ0349	322367	322053		MJ0492	435385	435101		
MJ0350	322681	322418		MJ0494	436499	436891		
MJ0351 MJ0352	323154 323901	322705 323185		MJ 0496 MJ 0497	438482 439219	438823 438821		
MJ0352 MJ0353	324142	323891		MJ0498	439679	439212		
MJ0354	324296	324123	4.5	MJ0500	442304	441537		
MJ0355	324661	324374	15	MJ0501	442990	442394		
МЈ0356	324957	324697		MJ0504	445785	446372		
МJ0357	326407	325943		MJ0505	446365	447117		
MJ0358	326796	326413		MJ0512	453993	453292		
MJ0359	327449	326808		MJ0513	454868	454149		
MJ0360	328174	327770	20	MJ0517	459731	459321		
MJ0361	329502	329182	20	MJ0518	460018	459737		
MJ0362	329659	329847		MJ0519	460275	460033		
MJ0364	332163	332495		MJ0521	461746	461549		
MJ0365	332503	333030		MJ0522	462422	461769		
МJ0366	333033	333308		MJ0523	463226	462534		
MJ0368	334581	334886	25	MJ0524	463697	463239		
MJ0369	336040	334934	23	MJ0525	463997	463839		
MJ0371	337418 339873	337639 338884		MJ0526	464308	464123		
MJ0374 MJ0375	339920	340681		MJ0527 MJ0528	465146 465442	464655 465149		
MJ0373 MJ0377	343243	343752		MJ0528 MJ0529	466215	465520		
MJ0377 MJ0378	343921	344886		MJ0538	474805	474026		
MJ0379	345500	344889	30	MJ0539	476422	474833		
MJ0380	345657	345974	50	MJ0540	476947	476693		
MJ0381	345977	346936		MJ0541	477507	476971		
MJ0382	346955	347683		MJ0545	483451	482711		
MJ0383	347677	349518		MJ0546	483623	483456		
MJ0384	349546	350259		MJ0548	485032	484589		
MJ0385	350252	351304	35	MJ0550	487106	486012		
MJ0386	351648	351307		MJ0551	487918	487106		
MJ0390	355149	354760		MJ0553	489383	488925		
MJ0395	357787	357314		MJ0554	490365	489910		
MJ0398	359111	359923		MJ0556	492396	491875		
MJ0400	361593	362411		MJ0557	493186	492572		
MJ0401 MJ0402	362717 363046	362520 362729	40	MJ0558 MJ0560	493984 495301	493202 494891		
MJ0402 MJ0404	364804	364355		MJ0562	496903	496691		
MJ0405	365385	365002		MJ0565	502486	502046		
MJ0408	367518	367880		MJ0567	504742	504497		
MJ0409	367946	370054		MJ0568	504847	505221		
MJ0410	370074	370865		MJ0570	506837	506112		
MJ 0414	374603	373419	45	MJ0572	509860	510117		
MJ0415	374712	375197		MJ0573	510262	510828		
MJ 0416	375222	375791		MJ0574	510865	511143		
MJ 0417	376510	375800		MJ0575	511121	511807		
MJ 0418	376627	377388		MJ0580	515428	515075		
MJ 0419	377369	378430		MJ0581	515692	515937		
MJ0420	378394	379533	50	MJ0582	515940	516323		
MJ0421	379640	380719		MJ0583	516393	516563		
MJ0423	381855	382031		MJ0584	516563	517657		
MJ0424	382046	382336		MJ0585	517680	518294		
MJ0425 MJ0426	382317 383243	382712 382704		MJ0586 MJ0587	518563 519994	519057 519536		
MJ0427	383719	383243		MJ0589	521451	521768		
MJ0431	387350	387135	55	MJ0592	525620	526357		
MJ0432	388127	387852		MJ0594	526886	527392		
MJ0433	388663	388139		MJ0596	528074	528475		
MJ0434	389342	388677		MJ0597	528539	529612		
MJ0435	389620	389342		MJ0599	530524	531120		
МJ0437	391903	391667	60	MJ0602	533752	532970		
MJ0439	394280	393234	60	MJ 0604	535443	535144		
MJ 0440	394492	395292		MJ0605	535634	535443		
MJ 0444	398609	397740		MJ 0606	536194	535922		
MJ 0447	401037	400555		MJ 0607	536435	536199		
MJ 0448	401168	401935		MJ 0610	540394	539093		
MJ0450	403277	403834	6 5	MJ0614	545444	545061		
MJ0452	404962	404519	65	MJ0618	547877	547584		
MJ0453	405287	404967		MJ 0619	549378	547861		

TABLE 2-continued				TABLE 2-continued			
MJ0621	551088	550573		MJ 0769	690987	690481	
MJ0623	552787	553362		MJ 0770	691651	690983	
MJ0625	553606	554613	5	MJ0772	692429	693487	
MJ0626	554709	555335		MJ0773	694540	694016	
MJ0627	555369	555719		MJ 0774	695228	696454	
MJ0628	555715	556203		MJ0775	696438	697379	
MJ 0629	556208	556849		MJ 0776	697375	698523	
MJ 0632	558292	559380		MJ 0777	698474	699046	
MJ0634	562682	564565	10	MJ 0778	699097	699603	
MJ0635	564797	565636		MJ0779	700509	699613	
MJ0638	568586	567912		MJ0780	701537	700533	
MJ0639	568870 571462	568586		MJ0783 MJ0786	706171	706737 710620	
MJ0642 MJ0645	571462 574498	572451 574743		MJ0788	710078 712303	710620	
MJ0646	574757	575248		MJ0789	712625	712972	
MJ0647	575457	575296	15	MJ0790	713001	713696	
MJ0648	575881	575441		MJ0792	715511	715777	
MJ0650	577458	579521		MJ0793	716398	716931	
MJ0652	580869	580471		MJ 0794	716992	717405	
MJ0659	585626	586039		MJ0795	717488	718999	
MJ 0660	586366	586136	20	MJ 0797	720647	721759	
MJ 0661	587014	586496	20	MJ 0798	721779	722780	
MJ 0662	587657	587007		MJ 0799	722786	723667	
MJ 0664	589291	590163		MJ0801	725037	726173	
MJ0665	590629	590180		MJ0802	726398	726961	
MJ0668	594556	594314		MJ0803	726984	727499	
MJ0670	596945	595887	25	MJ0804	727530	728387	
MJ0675	601925	600753	23	MJ0805	728332 730149	728994	
MJ0678 MJ0683	605240 611696	604263 610920		MJ0807 MJ0808	730149	730670 731804	
MJ0686	615407	613668		MJ0809	733025	733525	
MJ0687	616482	615478		MJ0810	733584	733325	
MJ0688	616670	617110		MJ0811	735675	734359	
MJ 0690	617965	617375	30	MJ0815	739584	738697	
MJ 0691	618300	617974		MJ0816	740542	739652	
MJ 0694	620244	621365		MJ0817	741119	740502	
MJ 0695	621809	621486		MJ0818	741733	741125	
MJ 0696	622409	621933		MJ 0819	742225	741899	
MJ 0699	625837	624698		MJ0820	742295	742191	
MJ 0700	625851	626822	35	MJ0821	742765	742598	
MJ 0701	626831	628063		MJ0823	744830	745600	
MJ0702	628050	629831		MJ0826	747462	747875	
MJ0703	629859	630536		MJ0830	750568	750101 750245	
MJ 0704 MJ 0706	631069 633440	632199 634081		MJ0831 MJ0833	750950 758976	752245 758239	
MJ0708	634868	634425		MJ0834	759796	759083	
MJ0711	643995	644960	40	MJ0835	760901	759822	
MJ0712	645967	644963		MJ0836	762786	762430	
MJ0714	648530	648880		MJ0837	762860	763606	
MJ 0716	650013	650270		MJ0838	764466	764816	
MJ 0717	650815	650459		MJ0839	765906	764857	
MJ 0724	657809	657189		MJ0840	765992	766972	
MJ 0730	663605	663048	45	MJ0841	768225	766981	
MJ 0731	664213	663620		MJ0856	780538	779996	
MJ 0733	665883	665521		MJ0857	781920	781099	
MJ0737	667834	667652		MJ0858	782318	781980	
MJ0738	668149	667877		MJ0859	782837	782355	
MJ0739	668627	668175	~ 0	MJ0865	788311	789585	
MJ0742 MJ0745	669819	669496	50	MJ0871	795055	795975 796022	
MJ0745 MJ0747	672208 673416	671675 672961		MJ0872 MJ0874	797236 798213	798022 798491	
MJ0747 MJ0749	675903	675151		MJ0875	798611	800854	
MJ0750	676710	675997		MJ0878	803147	804388	
MJ0751	677628	676795		MJ0880	805402	806325	
MJ0752	677942	677715	55	MJ0883	808397	809404	
MJ0753	678766	678146	33	MJ0887	818880	818209	
MJ0754	679347	678775		MJ0889	819606	821000	
MJ0755	680644	679619		MJ 0890	821429	821019	
MJ 0756	681296	680889		MJ 0894	824064	824486	
MJ0757	682155	681424		MJ0895	824467	825492	
MJ0758	682653	682213	60	MJ0896	825552	825953	
MJ0759	683029	682700	50	MJ0897	825946	826362	
MJ0760	683871	683047		MJ0898	826495	826932	
MJ0761	684833	684072		MJ0899	826954	827643	
MJ0763 MJ0764	686251 686611	685889 686264		MJ0900 MJ0001	827668 829430	829308 830998	
MJ 0764 MJ 0766	686611 688821	686264 688729		MJ 0901 MJ 0902	829430 831028	830998 831729	
MJ0767	689531	689100	65	MJ0902 MJ0903	831942	833855	
MJ0768	689589	690335		MJ0904	834299	834547	
1.20.00	,,,,,,				00. <u>-</u> ,,	10 11	

TABLE 2-continued				TABLE 2-continued			
MJ0905	834622	834954		MJ1067	1008238	1008681	
МЈ0906	834959	836056		MJ1069	1010805	1009630	
MJ 0907	836917	836072	5	MJ1070	1011399	1010929	
МJ0909	840933	841220		MJ1071	1012337	1011399	
MJ 0910	841954	841433		MJ1072	1012709	1012362	
MJ0912	843688	844416		MJ1073	1013688	1012879	
MJ0912 MJ0914	845908	845783		MJ1074	1014135	1013800	
MJ0915	847507	846707		MJ1076	1016646	1015636	
MJ0916	847875	847609	10	MJ1077	1018245	1016683	
MJ0916 MJ0917	847950	849671	10	MJ1077 MJ1078	1019039	1018338	
	850996						
MJ0919		850550		MJ1079	1020506	1019316	
MJ0921	852470	851571		MJ1080	1021091	1020687	
MJ0923	853368	854258		MJ1082	1021657	1022016	
MJ0925	855529	855212		MJ1083	1022089	1022667	
MJ0926	856378	856638	15	MJ1085	1023633	1025159	
MJ0933	862692	863390		MJ1086	1025159	1026178	
MJ0935	864824	865447		MJ1092	1030102	1030743	
MJ0936	865545	866042		MJ1094	1033051	1031897	
MJ0938	868207	867473		MJ1095	1034350	1033088	
MJ 0939	868278	869102		MJ1098	1039265	1038627	
MJ0943	875111	873870	20	MJ 1099	1040323	1039619	
MJ 0944	875300	875659	20	MJ1103	1043990	1043727	
MJ0945	876358	875687		MJ 1106	1046606	1046052	
MJ 0948	881231	880668		MJ 1107	1047073	1046627	
MJ 0949	881637	881269		MJ 1110	1052574	1051117	
MJ 0950	882370	881684		MJ1111	1053691	1052540	
MJ0951	883634	882570		MJ1112	1053818	1053645	
MJ0953	884488	884787	25	MJ1114	1055795	1055220	
MJ 0954	886106	884802		MJ1117	1058450	1059037	
MJ0956	887437	888216		MJ1118	1059065	1059331	
MJ0957	888219	889268		MJ1120	1060339	1061175	
MJ0958	889276	890553		MJ1121	1061532	1061251	
MJ0962	894937	895320		MJ1122	1061729	1061508	
MJ 0966	899875	901197	30	MJ1123	1061809	1062423	
MJ 0967	901940	901326		MJ1125	1066578	1066399	
MJ0968	901996	902814		MJ1126	1067325	1068140	
MJ 0969	903935	903126		MJ1127	1068204	1069043	
MJ0970	904627	904199		MJ1128	1069964	1069050	
MJ0971	904756	905844		MJ1132	1073401	1073048	
MJ0972	905808	906488	25	MJ1134	1075567	1074881	
MJ0973	907728	906496	35	MJ1137	1078625	1078035	
MJ0974	908172	907741		MJ1137	1078694	1079215	
MJ0974 MJ0975	908365	908162		MJ1139	1080031	1079213	
MJ0976	908463	909560		MJ1139 MJ1140	1080732	1080049	
MJ0977	909594	911000		MJ1140 MJ1141	1080810	1081406	
MJ0978	911359	911688		MJ1141 MJ1143	1082498	1083604	
MJ0978 MJ0979	912309		40			1083607	
		911719		MJ1144	1084575		
MJ0981	914246	913641		MJ1145	1085112	1084918	
MJ0986	917606	917373		MJ1147	1086431	1087786	
MJ0987	917909	918247		MJ1150	1088688	1089230	
MJ0988	918361	919347		MJ1151	1089352	1089681	
MJ 0991	920189	920608	45	MJ1152	1089693	1089902	
MJ0992	920924	921142	43	MJ1153	1089902	1090087	
MJ0995	924316	923636		MJ1154	1091598	1090246	
MJ0997	925109	925719		MJ1157	1097614	1098636	
MJ0998	926425	926012		MJ1158	1097631	1097245	
MJ1002	930965	931891		MJ1159	1098676	1100610	
MJ1004	933349	933990		MJ1161	1102129	1102629	
MJ1005	933994	934386	50	MJ1163	1104052	1104747	
MJ 1006	934412	935437		MJ1164	1106045	1105095	
MJ 1010	941079	939958		MJ1172	1111539	1111781	
MJ 1011	941860	941471		MJ1173	1111785	1112066	
MJ 1016	946060	946941		MJ1177	1117451	1118467	
MJ 1017	946934	947542		MJ 1179	1118839	1119285	
MJ1020	950418	951194	55	MJ1180	1119545	1119979	
MJ1021	951732	951244		MJ1181	1120081	1120677	
MJ1022	953674	951968		MJ1182	1121087	1122184	
MJ1024	954536	955744		MJ1183	1122200	1122670	
MJ1025	956917	955751		MJ1184	1122741	1123160	
MJ1028	959569	961611		MJ1185	1125032	1123167	
MJ1030	962492	962932		MJ1186	1125194	1126231	
MJ1032	963985	965082	60	MJ1188	1127047	1126238	
MJ1034	966050	966310		MJ1189	1128908	1128060	
MJ1036	967587	968276		MJ1198	1142323	1144605	
MJ 1049	986885	987367		MJ1199	1145059	1144631	
MJ1050	987438	987968		MJ1205	1148679	1148371	
МЈ1052	989793	989503		MJ1206	1149937	1148675	
MJ1053	990349	989861	65	MJ1207	1150577	1151254	
MJ1060	1000457	1002067		MJ1209	1154047	1152613	

TABLE 2-continued				TABLE 2-continued				
MJ1210	1154918	1154148		MJ1348	1295149	1296126		
MJ1210 MJ1211	1155290	1154943		MJ1350	1298227	1297454		
MJ1211	1156520	1156191	5	MJ1354	1304338	1304772		
MJ1215	1159884	1159639		MJ1355	1304858	1306531		
MJ1216	1160233	1159871		MJ1356	1306729	1307295		
MJ1217	1160540	1160247		MJ1358	1309040	1308648		
MJ1217	1162177	1161875		MJ1359	1309889	1309164		
MJ1221	1164080	1164958		MJ1360	1310249	1309953		
MJ1222	1165703	1164984	10	MJ1361	1310355	1311230		
MJ1223	1165956	1165681	10	MJ1364	1313354	1314619		
MJ1224	1167016	1166600		MJ1369	1318564	1319028		
MJ1230	1173450	1173235		MJ1370	1319061	1320044		
MJ1230 MJ1232	1176334	1175447		MJ1370 MJ1371	1320053	1320775		
MJ1232 MJ1233	1176475	1177311		MJ1373	1321601	1322086		
MJ1233 MJ1234	1178669	1177947		MJ1374	1322262	1322954		
MJ1234 MJ1239	1184644	1185318	15	MJ1374 MJ1379	1328524	1328823		
MJ1239 MJ1240	1185617	1185327		MJ1379 MJ1380	1328819	1329052		
MJ1240 MJ1241	1185877	1185644		MJ1382	1331473	1331036		
MJ1241 MJ1243	1187992	1187624		MJ1383	1332364	1331597		
MJ1243 MJ1244	1188410	1188087		MJ1383 MJ1384	1332304	1331397		
MJ1244 MJ1245	1188760	1188425				1333205		
	1191184		20	MJ1385	1333741 1333877			
MJ1248		1190723		MJ1386		1334008 1334297		
MJ1249 MJ1250	1191367 1192973	1192449		MJ1387	1335433			
	1192973	1193731		MJ1389	1337813	1337412		
MJ1254		1197400		MJ1393	1341979	1343802		
MJ1255	1197430	1198611		MJ1394	1343895	1346852		
MJ1256	1198911	1199543	25	MJ1395	1347176	1347571		
MJ1257	1199543	1200589	23	MJ1396	1347707	1356388		
MJ1262	1204364	1205530		MJ1397	1356457	1357905		
MJ1272	1216145	1216633		MJ1398	1358183	1359355		
MJ1278	1223720	1223184		MJ1399	1359929	1359339		
MJ1279	1224266	1223724		MJ1400	1360142	1359942		
MJ1280	1224460	1224930		MJ1401	1360259	1362682		
MJ1281	1224854	1227994	30	MJ1402	1364357	1363320		
MJ1282	1228714	1229769		MJ1403	1365794	1364673		
MJ1283	1231676	1231017		MJ1404	1366111	1367364		
MJ1284	1232029	1231667		MJ1405	1367427	1367639		
MJ1285	1232580	1232029		M J1407	1368408	1368794		
MJ1286	1234269	1232587		MJ1409	1370733	1369939		
MJ1287	1235086	1234319	35	MJ 1410	1371310	1370834		
MJ1288	1235901	1235155		MJ1412	1373210	1374703		
MJ1289	1236778	1236284		MJ1414	1375807	1375094		
MJ 1290	1237713	1236778		M J1416	1378350	1376995		
MJ 1291	1238448	1237729		M J1419	1382016	1381714		
MJ1292	1238662	1241124		MJ1423	1394263	1393208		
MJ1293	1241174	1241866	40	MJ1424	1394481	1395002		
MJ1295	1243251	1242847	40	MJ1427	1396680	1397633		
MJ1301	1250120	1248921		MJ1428	1397643	1399343		
MJ1302	1250541	1250149		MJ1429	1399343	1400842		
MJ1304	1252617	1252162		MJ1431	1401322	1402398		
MJ1305	1253036	1252596		MJ1433	1402914	1403654		
MJ1306	1253300	1253052		MJ1435	1404402	1404614		
MJ1307	1254110	1253325	45	MJ1436	1404758	1405048		
MJ1308	1254426	1254115		MJ1437	1405055	1405738		
MJ1309	1255877	1254459		MJ1440	1407288	1408133		
MJ1310	1256325	1255942		MJ1442	1412130	1412735		
MJ1311	1256457	1257287		MJ1443	1412784	1413104		
MJ1312	1257321	1258283		MJ1445	1414331	1414858		
MJ1313	1258388	1259596	50	MJ1447	1415840	1416982		
MJ1315	1260519	1261589		MJ1448	1416982	1418571		
MJ1316	1261606	1261833		MJ1449	1418577	1419686		
MJ1317	1263015	1261822		MJ1450	1419699	1420811		
MJ1318	1264868	1263063		MJ1451	1420869	1422320		
MJ1320	1268194	1267802		MJ1452	1422616	1423392		
MJ1321	1270356	1268218	55	MJ1453	1423398	1423973		
MJ1322	1273392	1270378	55	MJ1455	1425643	1424729		
MJ1323	1274489	1273392		MJ1457	1427021	1427422		
MJ1325	1275428	1275694		MJ1458	1427487	1428140		
МЈ1327	1277081	1277815		MJ1460	1430419	1429943		
МЈ1330	1280424	1280792		MJ1461	1431156	1430560		
MJ1331	1281220	1280801		MJ1462	1431506	1431258		
MJ1333	1282515	1282766	60	MJ1463	1432201	1431530		
МЈ1336	1284800	1285282		MJ1466	1436397	1435756		
МJ1337	1285743	1286216		MJ1467	1436562	1437008		
MJ1339	1287389	1287850		MJ1468	1437029	1440055		
MJ1340	1287925	1288266		MJ1469	1440055	1440279		
MJ1341	1289221	1288286		MJ1470	1440747	1442618		
MJ1342	1289457	1289798	65	MJ1471	1442618	1443151		
MJ1345	1291918	1292841		MJ1472	1443165	1444796		

	,,				00			
	TABLE 2-continue	d		TABLE 2-continued				
MJ1475	1446447	1446821		MJ1601	1573539	1574018		
MJ 1477	1447530	1448537		MJ 1604	1578693	1577308		
MJ 1478	1449448	1448540	5	MJ1608	1582917	1583126		
MJ 1480	1451452	1452720		MJ1609	1583168	1584289		
MJ 1481	1452735	1453373		MJ1613	1589822	1589058		
MJ1483	1454337	1454783		MJ1614	1590582	1589830		
MJ1484	1454768	1455217		MJ1615	1591350	1590586		
MJ1487	1459016	1460293		MJ1617	1593103	1593381		
MJ1488	1460315	1461493	10	MJ1618	1593786	1593397		
MJ1491	1465684	1466055		MJ1620	1594531	1596084		
MJ1492	1466067	1466534		MJ1621	1596297	1596127		
MJ1493 MJ1495	1466552 1468532	1467235 1469377		MJ1622 MJ1623	1597169 1597939	1597719 1599474		
MJ1495 MJ1496	1469370	1469711		MJ1624	1599991	1599602		
MJ1497	1469711	1470748		MJ1626	1602381	1600087		
MJ1499	1472128	1471649	15	MJ1627	1604683	1604231		
MJ1500	1472920	1472363		MJ1628	1606127	1604231		
MJ1501	1473615	1472947		MJ1629	1607293	1606418		
MJ1503	1474982	1474587		MJ1630	1610737	1607330		
MJ1506	1479963	1478767		MJ1631	1611184	1612740		
MJ1507	1480030	1481214	20	MJ1632	1612697	1613446		
MJ1509	1482024	1482482	20	MJ1633	1614897	1613467		
MJ1510	1483084	1482506		MJ1634	1615733	1615011		
MJ1511	1483234	1483572		MJ1635	1615933	1617174		
MJ1513	1489601	1488606		MJ1637	1618268	1619686		
MJ1514	1489692	1490078		MJ1638	1620457	1619678		
MJ1515	1490084	1491148	25	MJ1639	1620605	1621036		
MJ1516	1491173	1491466	23	MJ1640	1621671	1621057		
MJ1517 MJ1518	1492030	1492863		MJ1641	1622664	1621804		
MJ1518 MJ1519	1492917 1494094	1493975 1497618		MJ1642 MJ1644	1623032 1627146	1623514 1627667		
MJ1519 MJ1520	1498588	1497656		MJ1646	1628442	1629074		
MJ1521	1498905	1500170		MJ1650	1632586	1631435		
MJ1524	1501404	1501727	30	MJ1651	1633407	1632631		
MJ1525	1501702	1504500		MJ1653	1635797	1636951		
MJ1527	1505607	1505281		MJ1654	1637097	1637693		
MJ1535	1512870	1513766		MJ1657	1639687	1640427		
MJ1537	1515742	1514714		MJ1658	1640511	1640783		
MJ1539	1516728	1517042		MJ1659	1640800	1641870		
MJ1540	1517209	1517466	35	MJ1660	1641857	1643503		
MJ1542	1521169	1518746		MJ1664	1646502	1647179		
MJ1544	1523759	1522470		MJ1665	1648555	1647182		
MJ1545	1523900 1525820	1524592		MJ1666	1650080	1648686		
MJ1547 MJ1548	1525820	1526005 1526427		MJ1667 MJ1668	1651336 1652321	1650083 1651194		
MJ1550	1527849	1528031		MJ1669	1653119	1652376		
MJ1551	1528046	1528216	40	MJ1670	1653547	1653149		
MJ1553	1528749	1529240		MJ1671	1653684	1653550		
MJ1554	1529326	1531191		MJ1672	1656206	1653807		
MJ1556	1532701	1533636		MJ1673	1656630	1656244		
MJ1557	1533644	1534390		MJ1674	1658539	1656638		
MJ1558	1534666	1534397	45	MJ1676	1659621	1660334		
MJ1559	1534699	1535262	45	MJ1678	1660939	1662126		
MJ1561	1538168 1539331	1536510		MJ1679	1662142 1662411	1662432 1662866		
MJ1562 MJ1563	1539812	1538168 1539345		MJ1680 MJ1681	1663887	1662862		
MJ1564	1540186	1540695		MJECS01	1268	432		
MJ1565	1540699	1542237		MJECS02	4814	1272		
MJ1566	1543572	1542232	50	MJECS03	5192	4851		
MJ1567	1544072	1543557		MJECS04	5884	5459		
MJ1568	1544632	1544078		MJECS05	6365	6814		
MJ1570	1545637	1545981		MJECS06	7443	7009		
MJ1571	1546111	1546986		MJECS07	8765	7428		
MJ1573	1548452	1548270		MJECS08	11950	8738		
MJ1576	1551559	1552164	55	MJECS09	12641	11925		
MJ1577	1552197 1555146	1553990		MJECS10	14062 14404	13181		
М Ј1579 М Ј1580	1555498	1554937 1555127		MJECS11 MJECS12	16547	15030 15411		
MJ1583	1557431	1557808		MJECL01	275	1048		
MJ1584	1558268	1557816		MJECL02	1474	1048		
MJ1585	1559172	1558255		MJECL02	1700	1377		
MJ1587	1560732	1561265	60	MJECL04	1865	3250		
MJ1588	1561285	1561620		MJECL05	3235	3450		
MJ1589	1561657	1562379		MJECL06	4170	3787		
MJ 1590	1562770	1563084		MJECL07	5844	4561		
MJ1595	1567357	1566332		MJECL08	7415	5832		
MJ1598	1572075	1571026	65	MJECL09	7780	8103		
MJ1599	1572924	1572094	0.5	MJECL10	8107	8784		
MJ 1600	1573002	1573532		MJECL11	8788	9159		

9887

12483

15427

16541

16811

21505

22019

23290

23298

24854

25136

29167

29178

30571

31534

37151

37599

38828

40125

42231

43115

45394

46865

47197

48329

52613

56187

57341

TABLE 3

TABLE 2-continued 9150

10678

14468

15420

16599

20873

21456

22829

24596

25120

27628

28835

30215

31077

35352

37621

37811

40153

41381

43121

45007

45921

46065

47997

49387

53908

57371

58339

MJECL12

MJECL13

MJECL14

MJECL15

MJECL16

MJECL18

MJECL19

MJECL20

MJECL21

MJECL22

MIECL23

MJECL25

MJECL26

MJECL27

MJECL28

MJECL30

MJECL31

MJECL32

MJECL33

MJECL34

MJECL35

MJECL36

MJECL37

MJECL38

MJECL39

MJECL41

MJECL43

MJECI 44

81

Gene		No. of
No.	Putative identification	inteins
MJ0043	Hypothetical protein (Bacillus subtilis)	1
MJ0262	Putative translation initiation factor, FUN12/IF-2 family	1
MJ0542	Phosphoenolpyruvate synthase	1
MJ0682	Hypothetical protein (Escherichia coli)	1
MJ0782	Transcription initiation factor IIB	1
MJ0832	Anaerobic ribonucleoside-triphosphate reductase	2
MJ0885	DNA-dependent DNA polymerase, family B	2
MJ1042	DNA-dependent RNA polymerase, subunit A'	1
MJ1043	DNA-dependent RNA polymerase, subunit A"	1
MJ1054	UDP-glucose dehydrogenase	1
MJ1124	Hypothetical protein (Saccharomyces cerevisiae)	1
MJ1420	Glutamine-fructose-6-phosphate transaminase	1
MJ1422	Replication factor C, 37-kD subunit	3
MJ1512	Reverse gyrase	1

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled 25 in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications recited herein are hereby incorporated by reference.

SEQUENCE LISTING

The patent contains a lengthy "Sequence Listing" section. A copy of the "Sequence Listing" is available in electronic form from the USPTO web site (http://seqdata.uspto.gov/sequence.html?DocID=5790914B9). An electronic copy of the "Sequence Listing" will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).

What is claimed is:

- 1. An isolated polynucleotide comprising the nucleic acid sequence of ORF MJ0428, represented by nucleotides 1087456-1088655 of SEQ ID NO:1.
- 2. The isolated polynucleotide of claim 1, wherein said 50 polynucleotide comprises a heterologous polynucleotide sequence.
- 3. The isolated polynucleotide of claim 2, wherein said heterologous polynucleotide sequence encodes a heterologous polypeptide.
- 4. A method for making a recombinant vector comprising inserting the isolated polynucleotide of claim 1 into a vector.
- 5. A nucleic acid sequence complimentary to the polynucleotide of claim 1.
- 6. A recombinant vector comprising the isolated polynucleotide of claim 1.
- 7. The recombinant vector of claim 6, wherein said polynucleotide is operably associated with a heterologous regulatory sequence that controls gene expression.
- 8. A recombinant host cell comprising the isolated polynucleotide of claim 1.

- 9. The recombinant host cell of claim 8, wherein said polynucleotide is operably associated with a heterologous regulatory sequence that controls gene expression.
- 10. An isolated polynucleotide fragment comprising a nucleic acid sequence which hybridizes under hybridization conditions, comprising hybridization in 5×SSC and 50% formamide at 50-65° C. and washing in a wash buffer consisting of 0.5×SSC at 50-65° C., to the complementary strand of ORF MJ0428, represented by nucleotides 1087456-1088655 of SEQ ID NO:1.
- 11. The isolated polynucleotide of claim 10, wherein said polynucleotide comprises a heterologous polynucleotide sequence.
- 12. The isolated polynucleotide of claim 11, wherein said heterologous polynucleotide sequence encodes a heterologous polypeptide.
 - 13. A method for making a recombinant vector comprising inserting the isolated polynucleotide of claim 10 into a vector.
 - 14. A nucleic acid sequence complimentary to the polynucleotide of claim 10.

84

- 15. A recombinant vector comprising the isolated polynucleotide of claim 10.
- **16**. The recombinant vector of claim **15** wherein said polynucleotide is operably associated with a heterologous regulatory sequence that controls gene expression.
- 17. A recombinant host cell comprising the isolated polynucleotide of claim 10.
- **18**. The recombinant host cell of claim **17**, wherein said polynucleotide is operably associated with a heterologous ₁₀ regulatory sequence that controls gene expression.
- 19. An isolated polynucleotide for the detection of *Methanococcus jannaschii*, wherein said isolated polynucleotide comprises at least 30 contiguous nucleotides of the nucleic acid sequence of ORF MJ0428, represented by nucleotides 1087456–1088655 of SEQ ID NO:1.
- **20**. The isolated polynucleotide of claim **19**, wherein said polynucleotide comprises a heterologous polynucleotide sequence.
- 21. The isolated polynucleotide of claim 20, wherein said heterologous polynucleotide sequence encodes a heterologous polypeptide.
- 22. A method for making a recombinant vector comprising inserting the isolated polynucleotide of claim 19 into a 25 vector.
- 23. A nucleic acid sequence complimentary to the polynucleotide of claim 19.
- 24. A recombinant vector comprising the isolated polynucleotide of claim 19.
- 25. The recombinant vector of claim 24, wherein said polynucleotide is operably associated with a heterologous regulatory sequence that controls gene expression.
- 26. A recombinant host cell comprising the isolated polynucleotide of claim 19.

- 27. The recombinant host cell of claim 26, wherein said polynucleotide is operably associated with a heterologous regulatory sequence that controls gene expression.
- 28. The isolated polynucleotide of claim 19, wherein said isolated polynucleotide comprises at least 40 contiguous nucleotides of the nucleic acid sequence of ORF MJ0428, represented by nucleotides 1087456–1088655 of SEQ ID NO:1.
- **29**. A method for detecting *Methanococcus jannaschii* comprising:
 - (a) contacting a biological sample with the isolated polynucleotide of claim 10 under conditions suitable for the hybridization of said polynucleotide to a nucleic acid molecule complementary thereto; and
 - (b) detecting the presence or absence of *Methanococcus jannaschii* in the biological sample.
- **30**. A method for detecting *Methanococcus jannaschii* comprising:
 - (a) contacting said biological sample with the isolated polynucleotide of claim 19 under conditions suitable for the hybridization of said polynucleotide to a nucleic acid molecule complementary thereto; and
 - (b) detecting the presence or absence of *Methanococcus jannaschii* in the biological sample.
- 31. A method for detecting *Methanococcus jannaschii* comprising:
 - (a) contacting said biological sample with the isolated polynucleotide of claim 28 under conditions suitable for the hybridization of said polynucleotide to a nucleic acid molecule complementary thereto; and
 - (b) detecting the presence or absence of *Methanococcus jannaschii* in the biological sample.

* * * * *