Coding thoery 오류 수정 부호 이론

Professor Sang-Mok Kim, Department of Mathematics, Kwangwoon University

Spring 2024

About this lecture...

1. TEXTBOOK:

- ① Code: A First course in Coding Theory (by R. Hill), Clarendon Press(1986)
- ② Crypto: PDF for this lecture / 이산수학(김상목 저, 드림미디어,2021)

2. 운영

- ① 100%대면강의 (♣ 참고: 휴일에 한하여 강의동영상 업로드)
- ② 영어강의 60% : 영문ppt + 국어강의 + 영문과제와 평가
- ③ Communication : 강의게시판예정/SNS(2주차까지 조교에 의해 카톡방 개설 후 이용가능 전망???)
- ④ 질의응답: 월/수 pm6:00~8:00 통화로 사전예약 바람-Webex를 통해 비대면 질의응답가능

3. 평가

- ① 출석(10%)
- ② 과제(10%)
- ③ 중간시험(40%) + 과제/도전과제(extra α)
- ④ 기말시험(대면) (40%)

4. 담당교수 정보

- ① 김상목, 010-6797-1767, smkim@kw.ac.kr, 옥의관 604
- ② 조교 선생님: 이원홍(010-8342-1304)

00000000

Information transfer

A to B: Infromation transferring

0000000

Information transfer

Infromation transfer on codes

Information transfer

Infromation transfer on crypto

Information transfer

Infromation transfer

$$C_1 = \begin{cases} 0 & 0 = N \\ 0 & 1 = W \\ 1 & 0 = E \\ 1 & 1 = S. \end{cases}$$

Definitions and Examples

Definition

1. C is a code $\Leftrightarrow C \subseteq Q^n = \underbrace{Q \times Q \times \cdots \times Q}_{n-\text{times}}$.

Here, Q is a finite set of cardinal q.

- * Mathmatically, C is defined as a subset of \mathbb{F}_q^n where \mathbb{F}_q^n is a finite field of order q.
- 2. $x \in C$ a code is written as $x = (x_1, \dots, x_n)$ or $x = x_1, \dots x_n$.

Note

- 1. Q can be any set of cardinal q.
- 2. When $Q^n = \mathbb{F}_2^n$,

$$q=2$$
 or $Q=\{0,1\}=\mathbb{Z}_2$: very typical case : {on, off} system $q=p^k$ \Leftrightarrow $Q=\mathbb{F}_q$: finite field exists.

$$\Leftrightarrow$$
 $Q = GF(q)$

- 3. $Q \neq \mathbb{F}_q$, q = 4
 - $\Rightarrow \exists$ genetic code $Q = \{A, G, C, T\}$ Code(genetic)

$$Q^3 = \{(x, y, z) | x, y, z \in Q\} = \text{the set of 3-mers}$$

 \Rightarrow $A \subset Q^3$, A= the set of amino acides where \exists 22 amino acides(decoded messages)

Genetic Code=Codon Table

Standard genetic code

1st	2nd base						3rd		
base		Т		С		А		G	
Т	TTT	(1110/17	TCT	(Ser/S) Serine	TAT	(Tyr/Y) Tyrosine	TGT	(Cys/C) Cysteine	Т
	TTC		TCC		TAC	TAC (19171) Tyrosino	TGC	TGC (Cys/C) Cystems	С
	TTA	(Leu/L) Leucine	TCA		TAA	Stop (Ochre)[B]	TGA	Stop (Opal)[B]	Α
	TTG ^[A]		TCG		TAG	Stop (Amber) ^[B]	TGG	(Trp/W) Tryptophan	G
с	CTT		ССТ	(Pro/P) Proline	CAT	(His/H) Histidine	CGT	(Arg/R) Arginine	Т
	СТС		ccc		CAC		CGC		С
	CTA		CCA		CAA		CGA		Α
	CTG ^[A]		CCG		CAG	(GIN/Q) Giutamine	CGG		G
	ATT		ACT		AAT	(Asn/N) Asparagine	AGT	(Ser/S) Serine	Т
Α	ATC	(Ile/I) Isoleucine	ACC	(Thr/T)	AAC	(ASII/IV) Asparagine	AGC	(Sel/S) Sellile	С
	ATA		ACA	Threonine	AAA	(Lun (1/2) Lunion	AGA	(Arg/R) Arginine	Α
	ATG ^[A]	(Met/M) Methionine	ACG		AAG	(Lys/K) Lysine	AGG		G
G	GTT		GCT	(Ala/A) Alanine	GAT	(Asp/D) Aspartic	GGT	(Glv/G) Glycine	Т
	GTC		GCC		GAC		GGC		С
	GTA	(Val/V) Valine	GCA		GAA		GGA		Α
	GTG	G	GCG		GAG	acid	GGG		G

Examples of code(mathematically simplified)

1. Messages: 동서남북
$$C_1 = \{00, 01, 10, 11\} = \mathbb{Z}_2^2$$
 $C_2 = \{000, 011, 101, 110\}$ $C_3 = \{00000, 01101, 10110, 11011\}$

2. Repeatition

Yes	No	Error detected	Error corrected
0	1	0	0
0 0	1 1	1	0
0 0 0	1 1 1	2	1
0 0 0 0	1 1 1 1	3	1
0 0 0 0 0	1 1 1 1 1	4	2

Note that

- 1. We suppose that (the probability of error) $\leq \frac{1}{2}$. (infact, real prob(e) $<<\frac{1}{2}$)
- This error correcting method is called the nearest neighborhood decoding.

Definition

(metric or distance on X) A distance on X is a function

$$d: X \times X \to \mathbb{R}^+ \cup \{0\}$$

such that for $x, y \in X$,

(i)
$$d(x,y) = 0 \Leftrightarrow x = y$$

(ii)
$$d(x,y) = d(y,x)$$

(iii)
$$d(x,y) + d(y,z) \ge d(x,y)$$
, $\forall x,y \in X$

† Ex) 강의실에서 수강생 사이에 있을 수 있는 distances

- 이름 철자의 다른 정도 = hamming distance
- 좌석의 좌표 간의 Eulid distance

Definitions and Examples

Definition

(Hamming distance) Let Q be a q-set. For $x, y \in Q^n$, define $d: Q^n \longrightarrow \mathbb{N} \cup \{0\}$ called "the Hamming distance" between x and y to be denoted by $d_H(x,y)$, as the number of places in which $\pi_i(x) \neq \pi_i(y)$ for $i = 1, \dots, n$.

Example

In
$$\mathbb{Z}_2^5$$
, let $x=(00111)$, and $y=(11100)$
Then $d_H(x,y)=4$.

1. (Shown in the next page) Check [Hamming distance] d is a distance on Q^n .

(i)
$$x = y \Leftrightarrow x_i = y_i \forall i \in [n]$$

 $\Leftrightarrow d(x,y)=0$

- (ii) clear
- (iii) $d(x) \leq d(x,z) + d(z,y)$
- 2.

For
$$x, y \in \mathbb{R}$$
, $d(x, y) = |x - y|$
For $x, y \in \mathbb{R}^2$, $d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} = ||x - y||$
 \vdots

For
$$x, y \in \mathbb{R}^n$$
, $d(x, y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{\frac{1}{2}}$

: [Euclidean distance]

3. For
$$x, y \in \mathbb{R}^2$$
, $d(x, y) = |x_1 - y_1| + |x_2 - y_2|$
4. In \mathbb{R}^2 , $d_{\infty}((x_1, x_2), (y_1, y_2)) = max\{|x_1 - y_1|, |x_2 - y_2|\}$
(:) δ 's rule
$$d((x_1, x_2), (z_1, z_2)) + d((z_1, z_2), (y_1, y_2))$$

$$= max\{|x_1 - z_1|, |x_2 - z_2|\} + max\{|z_1 - y_1|, |z_2 - y_2|\}$$

$$\geq max\{|x_1 - z_1| + |z_1 - y_1|, |x_2 - z_2| + |z_2 - y_2|\}$$

$$\geq max\{|x_1 - y_1|, |y_1 - y_2|\}$$

$$= d((x_1, x_2), (y_1, y_2))$$

5. discrete metric

$$X : \text{any set } x, y \in X$$
$$d(x, y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

6. $C[0,1] = \text{the set of all real valued continuous functions on} \ [0,1] \ d_1(f,g) = \int_0^1 |f(x) - g(x)| \mathrm{d}x \ d_2(f,g) = (\int_0^1 |f(x) - g(x)|^2 \mathrm{d}x)^{\frac{1}{2}} \ \vdots \ d_{\infty}(f,g) = \max\{|f(x) - g(x)| : 0 < x < 1\}$

Note

(i) Definition(Hamming distance) Let $x, y \in Q$ and |Q| = q. Define

$$d_o = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

Define $d_H: Q^n \times Q^n \to \mathbb{Z}$ (Hamming distance on Q^n) as

$$d_{H}((x_1,\cdots x_n),(y_1\cdots y_n))=\sum_{k=1}^n d_o(x_k,y_k)$$

(ii)
$$d_H(x, y) = |\{i \in [n] | x_i \neq y_i\}|$$

Remark

In this lecture, Hamming distance is considered as the only metric. (not in general : poset metric

1	2	3
4	5	6
7	8	9
*	0	#

$$d_H(423,422) = 1$$

= $d_H(423,239)$.

Do you think it is reasonable?

Hamming distance was named by Richard Hamming.(Error correcting and error correcting codes, Bell system technical Jonnal: 1950)

Parameters of a code

1. A code $C \subset Q^n$ is represented as follows. C = (n, m, d) q-ary code where $n = \text{the length of a codeword i.e.}, <math>x \in C \Rightarrow n = x_1 \cdots x_n \in Q^n$ M = |C| and d = the min distance of C $= \min\{d(x, y) \mid x, y \in C \mid x \neq y\}$

Symmetric channel

- 2. Decoding = the nearest neighbor decoding(NND) $y \in Q^n$: transmitted signal distorted by noise through the channel.
 - (i) $y \in C \Rightarrow \text{decode } y \text{ to } y$.
 - (ii) $y \notin C \Rightarrow \text{decode } y \text{ to } x \in C.$ if $\exists ! \ x \in C \text{ such that } d(x,y) = \min\{d(x',y) \mid x' \in C\}$ (Note $d(x,y) \geq d$) Otherwise, we can not decode y.

Note that the errors are supposed to the following assumptions made about the chennal.

- (i) For each symbol x, it has the same prob. $p < \frac{1}{2}$
- (ii) If a symbol is received in error, then each of the q-1 possible errors is equally likely.
 - \Rightarrow *q*-ary 'symmetric' channel.

Definitions and Examples

- 3. Assumptins of errors of code for NND in |Q| = q.
 - (i) Each symbol has the same $\operatorname{prob}(<\frac{1}{2})$ of being received in error.
 - (ii) If a symbol is received in error, then each of the q-1 possible errors is equally likely

 On received symbol in error
 - each position in a received vector is same.
 - each alphabet has same error rate ex) in Q with |Q|=q, q-1 alphabet has same error rate from one genuine symbol.

4. Let p = the symbol error probability of binary symmetric channel. Then

$$C_1 = \{000, 111\} \in \mathbb{Z}_2^3$$
. By NND,

The probability that A received vector is decoded as 000 or 111 is

$$3P(1-P)^2 + (1-P)^3 = (1-P)^2(1+2P)$$

ex)
$$P = 0.01 \Rightarrow P_{error}(C) = 0.000298$$
.

Professor Sang-Mok Kim, Department of Mathematics, Kwangwoon University

Examples of codes for EWSN

Message	c_1	c_2	C_3
동	10	101	10110
서	01	011	01101
남	11	110	11011
북	00	00	00000
	d = 1	d=2	d=3
	2 - (4, 2, 1)	2 - (4, 3, 2)	2 = (4, 5, 3)

Theorem

Under NND,

- (i) If $d = d(C) \ge s + 1$, then we detect up to s errors.
- (ii) If $d = d(C) \ge 2t + 1$, then we correct up to t errors.

Proof.

(ii) Suppose $d=d(C)\geq 2t+1$. Let y be a received vector such that $d(x,y)\leq t$, for some $x\in C.(\because d(C)\geq 2t+1)$ Assume that $\exists x'\in C$ with $x\neq x'$ such that $d(y,x')\leq t$. (둘다 $\geq t$ 임에도 불구하고 y가 수정될 수 없는 상황) Then

$$d(x,x') \leq d(y,x) + d(x',y)$$

$$\leq t+t \leq 2t$$

which implies a contradiction since $d(C) \ge 2t + 1$

Corollary

Under NND, if d(C) = d then C can be used either

- (i) to detect up to d-1 errors, or
- (ii) to correct up to $\lfloor \frac{d-1}{2} \rfloor$ errors.

Examples of Codes q-ary (n, M, d)

- (i) $C_1 = 2$ -ary (2,4,1) code $C_2 = 2$ -ary (3,4,2) code $C_3 = 2$ -ary (5,4,3) code
- (ii) $(q ext{-ary repeatition code: } q ext{-ary } (n,q,n) ext{ code})$ $\begin{cases} 00\cdots 0 \\ 11\cdots 1 \\ \vdots \\ q-1\cdots q-1 \end{cases}$
- (iii) 1^{st} order Reed-Muller code \Rightarrow 2-ary (32,64,16)-code : used by Mariner 9 for transmision of pictures from Mars in (1971, 30 May)

(History of Mariner 9)

```
5/30 1971 launhed
11/14 1971 reached to Mars
 oct 1972 dead
```

- ▶ 1st spacecraff to the ordit of another planet ; us beat USSR: Soviet Mars 2, 3 arrived with in a month to Mars.
- ▶ 7329 images had been sent for a year
- (iv) Genetic Code: m-rna, t-ran · · · ISBN MP3 Convolution code

Extra History

- 1963 Mariner 4 2-(6,64,1) code
 - 100 × 100 화면
 - 셀당 2⁶⁰ 명암 000000 → 111111 까지
 - no error correction
 - 22장 전송 8.33 bits/sec : 장당 8시간 소요
- 1972 Mariner $6.7(8 \text{ disappeared}) : \exists \text{ some improvements}$
- 1972 Mariner 9
 - Read Miiller 2-(32,64,16) code
 - 7 error correction
 - 장당 19분 (Mariner 4 대비 2000배 향상)
- 1976 Viking 1
 - 천연색사진 전송

Good code?

A good code (n, m, d):

- ► Shorter *n* (short length of a codeword)
- Bigger M (more number of codewords)
- Bigger d (more error corrections)

Definition

 $A_q(n, d)$ = the largest value of M such that \exists a q - (n, m, d) code (for given q, n, and d)

Main coding theory problem

To optimize one of n, m, d Find the largest code of given n and d = A(n, d)

Theorem

- (i) $A_q(n,1) = q^n$
- (ii) $A_q(n,n) = q$

Proof.

- (i) \forall codewords are distinct $\Rightarrow d \geq 1$ The largest q - (n, M, 1) is the whole of \mathbb{F}_q^n
- (ii) Suppose C is a q-(n,M,n)-code Then $\forall x,y,\in C$, $\forall i=1,\cdots,n$, we have $x_i\neq y_i$. Thus $\forall q$ symbols appear at any position. $\therefore M\leq q \quad \therefore A_q(n,n)\leq q$. Next, \exists the repeatation code of length n and |C|=q $\therefore A_q(n,n)=q$

Note that $A_a(n, d)$ is NP - complete.

$$A_2(5,3)=4$$

- (i) C_3 is a 2-ary (5,4,3) code $A_2(5,3) \le 4$
- (ii) To show $A_2(5,3) \ge 4$, we have to show that \nexists 2-ary (5,5,3) code. It is not so simple to check every cases by hand.
 - We have to check $\binom{2^5}{5} = 2^5(2^5 1) \cdots (2^5 4) = 201376$.
 - ▶ For each case, we have to check $\binom{5}{2}$ distances.
 - To calculate a hamming dstance, 5 comparisions of digits to check whether they are different or not.
 - ... Roughly calculating, there are about at least ten million (10,000,000) operation times.

Show that $A_2(5,3) \le 4$.

Proof.

- (i) Suppose that C is a 2-ary (5,5,3) code and WLOG, let $(00000) = x_0 \in C$.
- (ii) Then $\forall x (\neq x_0) \in C$, $w(x) \geq 3$.
- (iii) $(11111) \notin C$: if so, then $x(\notin x_0) \in C \Rightarrow w(x) \ge 3$ $\Rightarrow d((11111,), x) \le 2 \quad (\rightarrow \leftarrow)$
- (iv) $x \in C \Rightarrow x = x_0$, w(x) = 3 or w(x) = 4.
- (v) \nexists two distinct 4-type codewords in C (or more) (: If $y, z \in C$ are two distinct 4-type, then $3 = d(C) \le d(y, z) \le 2 \; (\rightarrow \leftarrow)$)


```
(vi)-1 Case : C = \{00000, y_4, x_1, x_2, x_3\} where y_4 is 4-type and x_i 3-type : WLOG, let x_1 = 11100 \in C : then y_4 is one of the followings ; \begin{cases} 11110 \\ 11101 \\ 10111 \\ 01111 \end{cases}
```

00000000

▶ Let $y_4 = (11011)$. Up to now, we know that $00000, 11100, 11011 \in C$ compare 11100, 11011 with $\binom{5}{2}$ vectors of weight 3.

$y_4 =$	11011		
$x_1 =$	11100	$d(x_1,x)$	$d(y_4,x)$
	11010	2	
	11001	2	
	10110	2	
	10101	2	
	10011	4	1
	01110	2	
	01101	2	
	01011	4	1
	00111	4	4

∴ 00111 is the only remaind 3-type codeword ∴ $\rightarrow \leftarrow$ Since $C = \{00000, 11011, 11100, 00111\}$ which means |C| = 4. Similar arguments can be applied that to the otehr cases.

(vi)-2 Suppose that there are 4 3-type codewords in C, and that WLOG $x_1=11100\in C$. Then, from the table, C could be as follows.

$$C = \{00000, 11100, 10011, 01011, 00111\}$$

However,
$$d(10011, 01011) = 2 < d(C) = 3$$

Therefore there is no 2-ary(5,5,3) code.