

Prof. André Breda Carneiro Prof. Rafael R. da Paz

Organização Básica de Computadores

FACENS Sorocaba/2020

Sistemas de numeração

Revisão dos Sistemas Numéricos

Decimal:

baseado em 10 dígitos (0,1,2,3,4,5,6,7,8,9)

Exemplo:

$$5264_{(10)} = (5x1000) + (2x100) + (6x10) + 4x1$$
$$5264_{(10)} = (5x10^3) + (2x10^2) + (6x10^1) + (4x10^0)$$

Base ou raíz

Decimal:

Valores fracionários:

$$75,32 = (7x10^{1}) + (5x10^{0}) + (3x10^{-1}) + (2x10^{-2})$$

De uma forma geral:

$$X = \sum_{i} x_i 10^i$$

onde: $x_i \in (0,1,2,3,4,5,6,7,8,9)$ e i corresponde a posição do dígito.

Hexadecimal:

baseado em 16 dígitos (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

Onde "A" tem valor 10... e "F" valor 15

Exemplo:

$$7C1_{(16)} = (7x16^2) + (12x16^1) + (1x16^0)$$

$$7C1_{(16)} = (7x256) + (12x16) + (1x1)$$

$$7C1_{(16)} = 1985$$

Ou seja conversão de hexadecimal em decimal

Binário:

baseado em 2 dígitos (0,1)

Exemplo:

$$1101_{(2)} = (1x2^3) + (1x2^2) + (0x2^1) + (1x2^0)$$
$$1101_{(2)} = (8) + (4) + (0) + (1)$$
$$1101_{(2)} = 13$$

Ou seja conversão de binário em decimal

Conversão de decimal para binário

Conversão de decimal para Hexadecimal

7C1, pois 12 em hexa é "C"

$$7C1_{(16)} = (7x16^2) + (12x16^1) + (1x16^0)$$

 $7C1_{(16)} = 1985_{(10)}$

Conversão de decimal para Hexadecimal

7C1, pois 12 em hexa é "C"

$$7C1_{(16)} = (7x16^2) + (12x16^1) + (1x16^0)$$

 $7C1_{(16)} = 1985_{(10)}$

Representação de Inteiros

Na representação de binária podem ser representados com 0 e 1, o sinal de negativo e ponto:

-101.01010

Ao se trabalhar com números binários no computador não é possível se usar o sinal de negativo e o ponto. Com números positivos e inteiros a representação é direta:

00110001 = 49

00010101 = 21

usando-se 8 bits

Representação de sinal

O bit de maior significância (mais a esquerda) é tratado com o bit de sinal. Se o bit de sinal for 0, o número é positivo, se for 1 é negativo.

Representação Sinal-Magnitude

A forma mais simples é tal que os n-1 bits representam a magnitude do número. Assim:

$$A = \begin{cases} \sum_{i=0}^{n-2} a_i 2^i & \text{se } a_{n-1} = 0\\ -\sum_{i=0}^{n-2} a_i 2^i & \text{se } a_{n-1} = 1 \end{cases}$$

Exemplo:

$$+18 = 00010010$$

$$-18 = 10010010$$

Desvantagens

- As operações aritméticas se tornam mais complicadas;
- Existem duas representações para o zero:

$$+0 = 00000000$$

$$-0 = 10000000$$

Representação de Complemento de Dois

Números inteiros:

$$A = \sum_{i=0}^{n-2} a_i 2^i \tag{1}$$

Números negativos:

$$A = -a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$
 (2)

Note que (1) está contido em (2) uma vez que para números positivos, $a_{n-1} = 0$

O zero é identificado como sendo positivo assim em sua representação o bit de sinal é 0.

7	6	5	4	3	2	1	0
- 27	26	25	24	23	2^2	21	2^0
120		22	1.0	0	4		1
-128	64	32	16	8	4	2	

1	0	0	1	0	1	0	1
---	---	---	---	---	---	---	---

-128

16

4

1 = -107

-128 64 32

8

= -24

Conversão do número de bits de representação

representação sinal-magnitude:

 representação de complemento de 2, forma correta de aumentar o número de bits:

completa-se com o mesmo valor do bit de sinal

Aritmética de Inteiros (Representação de Complemento de Dois)

- Negação
 - 1. Tome o complemento booleano de cada bit (inclusive o bit de sinal).
 - 2. Tratando o resultado como um binário inteiro não sinalizado, acrescente 1

Exemplo

$$\begin{array}{c} +0 = 000000000\\ complemento = 111111111\\ + & 1\\ \hline 1 & 000000000 = 0 \\ \\ \text{"carry in" ou "vai um"} \\ \hline -128 = 100000000\\ complemento = 011111111\\ + & 1\\ \hline 100000000 = -128 \\ \hline \end{array}$$

Portanto para 8 bits temos:

7	6	5	4	3	2	1	0
- 27	26	25	24	2^3	2^2	21	2^0
-128	64	32	16	8	4	2	1

O menor número –128 passado por zero e até 127

1	0	0	0	0	0	0	0
---	---	---	---	---	---	---	---

-128 = -128

0	1	1	1	1	1	1	1
---	---	---	---	---	---	---	---

 $0 \quad 64 \quad 32 \quad 16 \quad 8 \quad 4 \quad 2 \quad 1 \quad = 127$

Tipo da ling. C	Número bits	limits.h> Constant	Valores Faixa
		SCHAR_MIN	-128
signed char	8	SCHAR_MAX	127
			0
unsigned char	8	UCHAR_MAX	255
		SHRT_MIN	-32768
signed short	16	SHRT_MAX	32767
			0
unsigned short	16	USHRT_MAX	65535
		INT_MIN	-32768
signed int	16	INT_MAX	32767
			0
unsigned int	16	UNIT_MAX	65535
		LONG_MIN	-2147483647
signed long	32	LONG_MAX	2147483647
			0
unsigned long	32	ULONG_MAX	4294967295
		LLONG_MIN	-9,22337E+18
signed long long	64	LLONG_MAX	9223372036854775807
			0
unsigned long long	64	ULLONG_MAX	1,84467E+19

Considere um número inteiro de 8 bits

- a) Faixa do número para inteiro não sinalizado $2^8 = 256$.: Faixa de número é de 0 .. 255
- b) Faixa do número para inteiro sinalizado (perco bit para sinal)
 - $2^7 = 128$.: Faixa de número é de -128 .. 127

Adição

1001 1100

$$+0101$$
 $+0100$ $+$

$$0011$$
 $+0100$ $+1111$ -5 $(c) (+3) + (+4)$ 1100 $+1111$ -5 $(d) (-4) + (-1)$

ure 8.4 Addition of Numbers in Twos Comp Representation

Quando ocorre um overflow a ALU deve sinalizar para que este resultado não seja usado.

Um overflow pode ocorrer mesmo que não exista um carry.

Regra: se dois números são somados, e têm o mesmo sinal, ocorre um overflow se o resultado tiver sinal oposto.1

Subtração

Para subtrair um número (subtraendo) de outro (minuendo), deve-se tomar o complemento de dois (negação) do subtraendo e soma-lo ao minuendo.

Exemplo:

$$\begin{array}{c} 0010 \\ +\frac{1001}{1011} = -5 \\ \end{array} \qquad \begin{array}{c} 0101 \\ +\frac{1110}{10011} = 3 \\ \end{array} \\ \begin{array}{c} \text{(a)} \quad \text{M} = 2 = 0010 \\ \text{S} = 7 = 0111 \\ -\text{S} = 1001 \\ \end{array} \qquad \begin{array}{c} \text{(b)} \quad \text{M} = 5 = 0101 \\ \text{S} = 2 = 0010 \\ -\text{S} = 1110 \\ \end{array} \\ \begin{array}{c} 1011 \\ +\frac{1110}{1001} = -7 \\ \end{array} \qquad \begin{array}{c} 0101 \\ +\frac{0010}{0111} = 7 \\ \end{array} \\ \text{(c)} \quad \text{M} = -5 = 1011 \\ \text{S} = 2 = 0010 \\ -\text{S} = 1110 \\ \end{array} \qquad \begin{array}{c} \text{(d)} \quad \text{M} = 5 = 0101 \\ \text{S} = -2 = 1110 \\ -\text{S} = 0010 \\ \end{array} \\ \begin{array}{c} \text{O111} \\ +\frac{0111}{1110} = \text{Overflow} \\ \end{array} \\ \begin{array}{c} \text{(e)} \quad \text{M} = 7 = 0111 \\ \text{S} = -7 = 1001 \\ -\text{S} = 0111 \\ \end{array} \qquad \begin{array}{c} \text{(f)} \quad \text{M} = -6 = 1010 \\ \text{S} = 4 = 0100 \\ -\text{S} = 1100 \\ \end{array} \\ \begin{array}{c} \text{S} = 4 = 0100 \\ -\text{S} = 1100 \\ \end{array}$$

Exemplos de subtração em completo de dois (m-s)

Diagrama de blocos de um Hardware para Adição e Subtração

Exercícios

- 1) Converta os números de binário para decimal: a)10011 b)111011 c)1110 1111 d)0110 1110 1111
- 2) Qual é a melhor forma de representação números inteiros: sinal de magnitude ou complemento de dois.
- 3) Demonstre a faixa de funcionamento dos números inteiros sendo sinalizado e não sinalizado com:
 - a) 12 bits b)20 bits c)24 bits
- 4) Demonstre os complemento de dois dos números:
 - a) 23 (para 8 bits)
 - b) 127 (para 8 bits)
 - c) 0 (para 8 bits)
 - d) 128 (para 8 bits)
 - e) 3000(para 16 bits)

Exercícios

- 5) Converta os números da base decimal para: hexa e binário.
 - a)10

- b)64 b)121 c)1255

d)512

- e)497
- 6) Converta os números da base hexadecimal para decimal e binário.
 - a) 36
- b)2000

- c)ABCD
- d) 1204

- e)3333
- 7) Considere o números decimal apresentados nas letras abaixo:
 - a) 36 e 40 b)20 e 20 c)123 e 100 d) 240 e 204

Efetue a soma em binário e indique carry e overflow. Usar operações em 8 bits

- 8) Considere o números decimal apresentados nas letras abaixo:
 - a) 36 e 40 b)20 e 20 c)123 e 100 d) 240 e 204

Efetue a subtração em binário e indique carry e overflow. Usar operações em 8 bits