Universidade Federal do Espirito Santo

Física Computacional

Professor: Alan Miguel Velásquez Toribio Núcleo-cosmo ufes Departamento de Física Centro de Ciências Exatas

Teorema de Weierstrass

A base conceitual para representar uma função contínua por um polinômio de grau n É o teorema de Weierstrass. Que pode ser escrito da forma:

Suponha uma função de valor real contínuo, f, definida no intervalo real [a,b]. Então, podemos dizer que para um $\varepsilon>0$, tem um polinomio p tal que para todo $x\in[a,b]$ temos, $|f(x)-P_n|<\varepsilon$

Ou equivalentemente que a norma suprema é

- Este teorema têm implicâncias conceituais e práticas
 - 1. Entre as conceituais permite desenvolver definições sobre funções contínuas, conceitos topológicos, espaços compactos, etc.
 - 2. As práticas são basicamente são a base da interpolação numérica.

Que é interpolação:

Seja que temos os seguintes pontos:

$$(x_0, x_1, ..., x_n)$$

Como dados e queremos construir uma função que inclua todos estos pontos

$$Q(x_j) = f(x_j) \quad 0 \le j \le n$$

Problema de interpolação

Considere que temos $(x_0, x_1, ..., x_n) \in \mathbb{R}$ são pontos diferentes. Então, para qualquer $f(x_0), ..., f(x_n)$ temos um polinômio univoco $Q(x_j)$ de grau <n, tal que a condição $Q(x_j) = f(x_j)$ é satisfeita.

Diferentes soluções: Forma de Newton

Aproximação linear: Ajustar pontos a uma linha reta

$$Q_1(x) = a_0 + a_1(x - x_0).$$
 $Q_0(x) = a_0, \ a_0 = f(x_0).$
$$a_1 = \frac{f(x_1) - Q_0(x_1)}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

Em geral podemos escrever

$$Q_n(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0) \cdot \dots \cdot (x - x_{n-1})$$

$$= a_0 + \sum_{j=1}^n a_j \prod_{k=0}^{j-1} (x - x_k).$$

$$a_0 = f(x_0),$$

$$a_j = \frac{f(x_j) - Q_{j-1}(x_j)}{\prod_{k=0}^{j-1} (x_j - x_k)}, \quad 1 \le j \le n.$$

Exemplo: para ajustar três pontos obtemos

$$Q_2(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) + \frac{f(x_2) - \left[f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x_2 - x_0)\right]}{(x_2 - x_0)(x_2 - x_1)} (x - x_0)(x - x_1).$$

Exemplo:

Determinar o polinomio de interpolação que passa pelos pontos: $\{(0,1),(1,6),(2,5),(3,-8)\}$

Uma forma alternativa é considerar diretamente:

$$Q_n(x) = \sum_{k=0}^n b_k x^k,$$

Depois impor a condição: $Q_n(x_j) = f(x_j), \quad 0 \le j \le n.$

Em forma extensa podemos escrever:

$$b_0 + b_1 x_j + \ldots + b_n x_j^n = f(x_j), \qquad j = 0, \ldots, n.$$

Em forma matricial:

$$\begin{pmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \dots & x_n^n \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix}.$$

Condição para solução única:

$$\begin{vmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \dots & x_n^n \end{vmatrix} \neq 0.$$

Usando este método podemos obter a solução Do problema acima usando Python

Solução em Python

```
import numpy as np
import matplotlib.pyplot as plt

xi = np.array([0,1,2,3], dtype= 'double')
yi = np.array([1,6,5,-8], dtype='double')

A = np.array([xi**3,xi**2,xi**1,xi**0]).transpose()
a = np.linalg.inv(A).dot(yi);
a = np.array([-1, 0., 6, 1.])
xx = np.linspace(-0.5,3.25);
plt.plot(xi,yi,'ro',xx,np.polyval(a,xx),'b-')
plt.grid();plt.show()
```

Forma de Lagrange

Interpolação polinomial é uma combinação linear de n+1 polinômios de grau n

$$Q_n(x) = \sum_{j=0}^n f(x_j) l_j^n(x),$$

Usamos dos índices para os l's sendo que o j roda de 0,..,n e o superíndice indica o grau do polinômio. Condição de interpolação:

$$Q_n(x_i) = f(x_i), \qquad 0 \le i \le n.$$

Por substituir x por x, então obtemos que:

$$Q_n(x_i) = \sum_{j=0}^n f(x_j) l_j^n(x_i), \qquad 0 \leqslant i \leqslant n.$$

Forma de Lagrange

Para que nosso resultado anterior seja compatível com a condição de interpolação:

$$l_j^n(x_i) = \delta_{ij}, \qquad i, j = 0, \dots, n,$$

Onde δ_{ij} é a delta de Krönecker definida como:

$$\delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

Resumo do método de Lagrange:

A condição do delta de Krönecker para os polinômios proporciona um conjunto de n+1 equações que os polinômios l's devem satisfazer. Estas equações devem ser solucionadas para determinar os l's e encontrar o polinômio de interpolação.

Forma de Lagrange

Uma forma de escrever os polinômios l's é escrever

$$l_j^n(x) = \frac{(x - x_0) \cdot \dots \cdot (x - x_{j-1})(x - x_{j+1}) \cdot \dots \cdot (x - x_n)}{(x_j - x_0) \cdot \dots \cdot (x_j - x_{j-1})(x_j - x_{j+1}) \cdot \dots \cdot (x_j - x_n)}, \quad 0 \le j \le n.$$

Ainda de forma compacta pode ser escrito como

$$\prod_{\substack{i=0\\i\neq j\\n\\i\neq j}}^{n}(x-x_i)$$

$$j=0,\ldots,n.$$

Forma de Lagrange

Exemplos:

- 1. Determinar o polinômio de Lagrange para interpolar dois pontos
- 2. Determinar o polinômio de Lagrande para três pontos

$$(x_0,f(x_0))\quad (x_1,f(x_1))$$
 Dois pontos
$$l_0^1(x)=\frac{x-x_1}{x_0-x_1}, \qquad l_1^1(x)=\frac{x-x_0}{x_1-x_0}.$$

Portanto, temos que o polinômio de interpolação:

$$Q_1(x) = f(x_0)l_0^1(x) + f(x_1)l_1^1(x) = f(x_0)\frac{x - x_1}{x_0 - x_1} + f(x_1)\frac{x - x_0}{x_1 - x_0}.$$

Forma de Lagrange

$$(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2))$$
 Três pontos

$$l_0^2(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)},$$

$$l_1^2(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)},$$

$$l_2^2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}.$$

Portanto, o polinômio de interpolação resulta:

$$Q_2(x) = f(x_0)l_0^2(x) + f(x_1)l_1^2(x) + f(x_2)l_2^2(x)$$

$$= f(x_0)\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f(x_1)\frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f(x_2)\frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}.$$

Função de Runge

$$y(x) \approx \frac{1}{1+x^2}$$

Diferenças Divididas de Newton

$$Q_n(x) = a_0 + a_1(x - x_0) + \ldots + a_n(x - x_0) \cdot \ldots \cdot (x - x_{n-1}),$$

$$a_0 = f(x_0)$$

$$a_j = \frac{f(x_j) - Q_{j-1}(x_j)}{\prod_{k=0}^{j-1} (x_j - x_k)}, \quad 1 \le j \le n.$$

Os coeficientes podem ser denotamos como

$$a_j = f[x_0, \dots, x_j],$$

 $a_0 = f[x_0],$
 $f[x_0] = f(x_0).$

Portanto obtemos que

Diferenças Divididas de Newton

$$Q_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + \ldots + f[x_0, \ldots x_n] \prod_{k=0}^{n-1} (x - x_k).$$

Teorema ou lema:

$$f[x_0, \dots x_n] = \frac{f[x_1, \dots x_n] - f[x_0, \dots x_{n-1}]}{x_n - x_0}.$$

Exemplo:

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}.$$

Para três pontos $(x_0, f(x_0))$ $(x_1, f(x_1))$ $(x_2, f(x_2))$

$$Q_2(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$= f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}(x - x_0)(x - x_1).$$

Diferenças Divididas de Newton

Então consideremos explicitamente dados os n pontos

$$\begin{aligned} p_n(x) &= b_0 + b_1(x - x_0) + \dots + b_n(x - x_0)(x - x_1) \dots (x - x_{n-1}) \\ b_0 &= f[x_0] = f(x_0) & \text{Ordem zero} \\ b_1 &= f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} & \text{Ordem 1} \\ b_2 &= f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} & \text{Ordem 2} \end{aligned}$$

$$b_n = f[x_0, x_1, ..., x_n] = \frac{f[x_1, x_2, ..., x_n] - f[x_0, x_1, ..., x_{n-1}]}{x_n - x_0}$$
 Ordem n

Diferenças Divididas de Newton

Temperatura	Concentração
T (°C) (x)	C _p (T) (y)
42	4179
52	4186
82	4199
100	4217

$$C_p(T) = b_0 + b_1(T - T_0) + b_2(T - T_0)(T - T_1) + b_3(T - T_0)(T - T_1)(T - T_2)$$

Diferenças Divididas de Newton

Sites interessantes

http://nm.mathforcollege.com/topics/newton divided difference method.html

http://nm.mathforcollege.com/topics/lagrange method.html

http://nm.mathforcollege.com/topics/direct method.html

Erros na interpolação polinomial

$$f(x) - Q_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_n) \prod_{j=0}^n (x - x_j).$$

Considerando diferenças divididas

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

$$f[x_0, x_1] = f'(\xi), \qquad \xi \in (x_0, x_1).$$

Em geral obtemos que

$$f[x_0, \dots, x_{n-1}, x] = \frac{f^{(n)}(\xi)}{n!},$$

Interpolação de Chebyshev

Erro da interpolação resulta dada pela expressão

$$f(x) - Q_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_n) \prod_{j=0}^n (x - x_j).$$

Neste caso ξ_n representa um ponto dentro do intervalo de interesse [a,b]

Efeitos dos pontos de interpolação:

$$\prod_{j=0}^{n} (x - x_j).$$

$$f^{(n+1)}(\xi_n)$$

Como minimizar os erros de interpolação? Minimizando sobre estes dos termos. Uma forma é usar polinômios de Chebyshev

Interpolação de Chebyshev

Podemos mostra isto da seguinte forma

$$\cos(n+1)\theta = \cos\theta\cos n\theta - \sin\theta\sin n\theta,$$

$$\cos(n-1)\theta = \cos\theta\cos n\theta + \sin\theta\sin n\theta.$$

Usando estas duas equações podemos obter

$$\cos(n+1)\theta = 2\cos\theta\cos n\theta - \cos(n-1)\theta.$$

Considerando que

$$\theta = \cos^{-1} x$$
 pois $x = \cos \theta$,

Então se definimos que $t_n(x) = \cos(n\cos^{-1}x) = \cos(n\theta)$.

Interpolação de Chebyshev

Assim podemos verificar que temos

$$\begin{cases} t_0(x) = 1, \\ t_1(x) = x, \\ t_{n+1}(x) = 2xt_n(x) - t_{n-1}(x), & n \ge 1. \end{cases}$$

Portanto, obtemos então

$$t_n(x) = T_n(x).$$

Implica que um polinômio de grau n resulta

$$T_n(x) = 2^{n-1}x^n + \dots$$

Podemos reescrever que:

$$2^{1-n}T_n(x) = x^n + \dots$$

Interpolação de Chebyshev

Se p(x) é um polinômio mônico se pode mostrar que obtemos

$$\max_{-1 \leqslant x \leqslant 1} |p_n(x)| \geqslant 2^{1-n}.$$

Considerando $q_n(x) = 2^{1-n}T_n(x)$,

Considerando que $\prod_{j=0}^{n} (x - x_j)$

É um polinômio mônico obtemos

$$\max_{|x| \leqslant 1} \left| \prod_{j=0}^{n} (x - x_j) \right| \geqslant 2^{-n}.$$

$$2^{-n}T_{n+1}(x) = \prod_{j=0}^{n} (x - x_j),$$

Onde consideramos que x's j são os pontos raízes do polinômio T(x)

Interpolação de Chebyshev

$$T_{n+1}(x) = \cos((n+1)\cos^{-1}x).$$

$$(n+1)\cos^{-1}(x_j) = \left(j + \frac{1}{2}\right)\pi, \quad 0 \le j \le n,$$

$$x_j = \cos\left(\frac{2j+1}{2n+2}\pi\right), \quad 0 \leqslant j \leqslant n.$$

Estes são os pontos de Chebyshev que permitem minimizar o erro da interpolação

Interpolação de Chebyshev

Teorema: Consideramos que se Q_{n} é o polinômio de interpolação da função f(x) Nos pontos de interpolação que correspondem aos pontos de chebyshev de ordem n+1

- Exemplos de Interpolção polinomial:
 - Revisamos os exemplos usando jupyter notebook usando scipy, numpy e matplotlib, etc.
- Revisar os exemplos
- Fazer os exercícios postados

Exemplos:

Método de Diferenças divididas de Newton Para os dados determinar:

$$f(x) = \cos x, x_0 = 0.2, x_1 = 0.3, x_2 = 0.4.$$
 determinar $f[x_0, x_1, x_2].$

Cálculos:

$$f[x_0, x_1] = \frac{\cos(0.3) - \cos(0.2)}{0.3 - 0.2} \approx -0.2473009 \qquad f'\left(\frac{x_0 + x_1}{2}\right) = -\sin(0.25) \approx -0.247404$$

$$f[x_0, x_1] \approx -0.2473009$$

$$f[x_1, x_2] = \frac{\cos(0.4) - \cos(0.3)}{0.4 - 0.3} \approx -0.3427550$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} \approx \frac{-0.3427550 - (-0.2473009)}{0.4 - 0.2} \approx -0.4772705.$$

Exemplos:

$$(x_0, y_0), (x_1, y_1), (x_2, y_2),$$

$$(0, -1), (1, -1), (2, 7).$$

$$P_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$
$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

$$P_2(x) = (-1) \; \frac{(x-1)(x-2)}{2} \; + \; (-1) \; \frac{x(x-2)}{-1} \; + \; 7 \; \frac{x(x-1)}{2} = \frac{-1}{2}(x-1)(x-2) \; + \; x(x-2) \; + \; \frac{7}{2}x(x-1) \; + \; \frac$$

Métodos de regressão

- Em geral um método de regressão é um método para ajustar dados observacionais usando um modelo matemático.
- O método mais simples é o metodo dos minimos quadrados (MMQ).
- O MMQ foi publicado inicialmente por Legendre e Gauss no início do século XIX.

Métodos de regressão

- DadosObservacionais
- Modelo teórico
- Correspondência?
- Vínculos sobre parâmetros
- Conclusões

Métodos de regressão

Método de mínimos quadrados:

dados

$$\{(x_1,y_1),\ldots,(x_N,y_N)\}$$

Modelo linear:

Os betas são os parâmetros do modelo!

$$y = \beta_0 + \beta_1 x,$$

Minimizamos sobre os parâmetros a grandeza definida como

$$S(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 \qquad \frac{\partial S}{\partial \beta_0} = 0, \qquad \frac{\partial S}{\partial \beta_1} = 0,$$

Método de mínimos quadrados:

Desenvolvendo as derivadas para cada parâmetro obtemos

$$\sum_{i} y_i = n\hat{\beta}_0 + \hat{\beta}_1 \sum_{i} x_i$$
$$\sum_{i} x_i y_i = \hat{\beta}_0 \sum_{i} x_i + \hat{\beta}_1 \sum_{i} x_i^2$$

Solucionando para os parâmetros:

$$\hat{\beta}_0 = \frac{\sum x_i^2 \sum_i y_i - \sum x_i \sum x_i y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

$$\hat{\beta}_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

Método de mínimos quadrados:

Para casos de considerar modelos não lineares temos que considerar uma espécie De linearização, mas para o caso geral temos que usar outros métodos:

Por exemplo, consideramos as formas como se distribui a energia de partículas clássicamente

$$\alpha(T) = Ce^{-E_A/kT}$$

Podemos linearizar usando

$$\log \alpha(T) = \log C - \frac{E_A}{kT}$$

Derivadas

Introdução

$$f'(a) \approx \frac{f(a+h) - f(a)}{h}$$
.

Diferencias para frente

Derivadas Numéricas

Introdução

$$f'(a) \approx \frac{f(a) - f(a-h)}{h}$$

Derivadas Numéricas

Introdução

$$f'(a) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Derivadas Numéricas

Exemplo: determinar a derivada numérica da função:

$$\cos(x) \quad \text{no ponto} \quad x = \pi/3.$$

$$\text{(a)} \quad h = 0.1 \quad \text{(b)} \quad h = 0.01 \quad \text{(c)} \quad h = 0.001 \quad \text{(d)} \quad h = 0.0001$$

$$\text{(a)} \quad f'(a) \approx \frac{\cos(a+h) - \cos(a-h)}{2h} = \frac{0.41104381 - 0.58396036}{0.2} = -0.86458275$$

$$\text{(b)} \quad f'(a) \approx \frac{\cos(a+h) - \cos(a-h)}{2h} = \frac{0.49131489 - 0.50863511}{0.02} = -0.86601097$$

$$\text{(c)} \quad f'(a) \approx \frac{\cos(a+h) - \cos(a-h)}{2h} = \frac{0.49913372 - 0.50086578}{0.002} = -0.86602526$$

$$\text{(d)} \quad f'(a) \approx \frac{\cos(a+h) - \cos(a-h)}{2h} = \frac{0.49991339 - 0.50008660}{0.0002} = -0.86602540$$

Problema:

Determinar o valor da integral $\int f(x)dx$.

$$\int_{a}^{b} f(x)dx.$$

nos pontos:

$$x_i = a + ih$$
, $i = 0, 1, ..., n$, onde temos que $h = \frac{b - a}{n}$.

$$h = \frac{b-a}{n}$$

Podemos resolver esta questão de diferentes formas uma delas é o método do trapézio

Exemplo: considere a função dada por

$$v(t) = 3t^2 e^{t^3}$$
. $V(t) = e^{t^3} - 1$

Regra do trapézio

$$\int_{0}^{1} v(t)dt \approx h_{1}\left(\frac{v(0) + v(0.2)}{2}\right) + h_{2}\left(\frac{v(0.2) + v(0.6)}{2}\right) + h_{3}\left(\frac{v(0.6) + v(0.8)}{2}\right) + h_{4}\left(\frac{v(0.8) + v(1.0)}{2}\right),$$

Regra de trapézio

$$h_1 = (0.2 - 0.0),$$

 $h_2 = (0.6 - 0.2),$
 $h_3 = (0.8 - 0.6),$
 $h_4 = (1.0 - 0.8)$

Usando a função analitica obtemos: 1.718,

Fórmula geral do método do trapézio:

$$\int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{1}} f(x) dx + \int_{x_{1}}^{x_{2}} f(x) dx + \dots + \int_{x_{n-1}}^{x_{n}} f(x) dx,$$

$$\approx h \frac{f(x_{0}) + f(x_{1})}{2} + h \frac{f(x_{1}) + f(x_{2})}{2} + \dots$$

$$+ h \frac{f(x_{n-1}) + f(x_{n})}{2}$$

Regra de trapézio

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \ldots + 2f(x_{n-1}) + f(x_n) \right]$$

$$\int_{a}^{b} f(x) dx \approx h \left[\frac{1}{2} f(x_0) + \sum_{i=1}^{n-1} f(x_i) + \frac{1}{2} f(x_n) \right].$$

Exemplos

Método do trapézio

import numpy as np import matplotlib.pyplot as plt %matplotlib inline

```
f = lambda x : 1/(1 + x**2)
a = 0; b = 5; N = 10

# x e y valores para a regra do trapézio
x = np.linspace(a,b,N+1)
y = f(x)

# Valores para plotar a função f(x)
X = np.linspace(a,b,100)
Y = f(X)
plt.plot(X,Y)
```

Exemplo

Exemplo

```
for i in range(N):  xs = [x[i],x[i],x[i+1],x[i+1]]   ys = [0,f(x[i]),f(x[i+1]),0]   plt.fill(xs,ys,'b',edgecolor='b',alpha=0.2)   plt.title('Método do Trapézio, N = {}'.format(N))   plt.show()
```


 Uma equação diferencial ordinária é uma equação que envolve derivadas de uma função de uma variável pode ser pensada também como um problema de valor inicial.

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0.$$

Método mais simples: método de Euler.

$$x = x_1 = x_0 + h,$$

$$y(x) = y_0 + m(x - x_0),$$

$$y(x) = y_0 + f(x_0, y_0)(x - x_0).$$

$$m = f(x_0, y_0)$$

Método de Euler

$$y_1 = y_0 + f(x_0, y_0)(x_1 - x_0),$$

$$y_1 = y_0 + hf(x_0, y_0).$$

$$x_2 = x_1 + h$$
.

$$y_{n+1} = y_n + hf(x_n, y_n), \qquad n = 0, 1, \dots$$

Método de Euler resumo:

$$y' = f(x, y),$$
 $y(x_0) = y_0$

Solução aproximada nos pontos $x_{n+1} = x_0 + nh \ (n = 0, 1, ...)$

$$y_{n+1} = y_n + hf(x_n, y_n), \qquad n = 0, 1, \dots$$

Exemplo:
$$y' = y - x$$
, $y(0) = \frac{1}{2}$.

Usar como hs: $h = 0.1 \\ h = 0.05$ Para determinar o valor da função y(1).

Determinar o erro se a solução analítica resulta ser: $y(x) = x + 1 - \frac{1}{2}e^x$,

Solução

$$f(x, y) = y - x,$$
 $x_0 = 0,$ $y_0 = \frac{1}{2}.$

Para h=0.1 temos a função y no ponto n+1 dada pela expressão

$$y_{n+1} = y_n + 0.1(y_n - x_n).$$

$$y_1 = y_0 + 0.1(y_0 - x_0) = 0.5 + 0.1(0.5 - 0) = 0.55,$$

 $y_2 = y_1 + 0.1(y_1 - x_1) = 0.55 + 0.1(0.55 - 0.1) = 0.595.$

Solução

n	X_n	\boldsymbol{y}_{n}	valor exato	erro absoluto
1	0.1	0.55	0.547414	0.002585
2	0.2	0.595	0.589299	0.005701
3	0.3	0.6345	0.625070	0.009430
4	0.4	0.66795	0.654088	0.013862
5	0.5	0.694745	0.675639	0.019106
6	0.6	0.714219	0.688941	0.025278
7	0.7	0.725641	0.693124	0.032518
8	0.8	0.728205	0.687229	0.040976
9	0.9	0.721026	0.670198	0.050828
10	1.0	0.703129	0.640859	0.062270
<i>y</i> ₁₀	= 0.7	703129,	_	

Erro absoluto:

 $|y(1) - y_{10}| = 0.062270.$

Solução

Para h= 0.05 temos a função y no ponto n+1 dada pela expressão

Série de Taylor

Consideremos a série de Taylor para a função x(t+h) obtemos

$$x(t+h) = x(t) + hx'(t) + \frac{h^2}{2!}x''(t) + \frac{h^3}{3!}x'''(t) + \cdots$$

Também considerando o problema do valor inicial:

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

Podemos escrever as derivadas da série de Taylor como:

$$x'(t) = f$$

 $x''(t) = f_t + f_x x' = f_t + f_x f$
 $x'''(t) = f_{tt} + f_{tx} f + (f_t + f_x f) f_x + f(f_{xt} + f_{xx} f)$
etc.

 Neste caso usamos repetidamente a regra da cadeia e os subindices são derivadas parciais, assim os primeiros três termos da série de Taylor podem ser escretor como

$$x(t+h) = x + hf + \frac{1}{2}h^{2}(f_{t} + ff_{x}) + O(h^{3})$$

= $x + \frac{1}{2}hf + \frac{1}{2}h[f + hf_{t} + hff_{x}] + O(h^{3})$

Onde x significa x(t) e f significa f(x,t) e considerando

$$f(t + h, x + hf) = f + hf_t + hff_x + O(h^2)$$

Desta forma usando esta definição que é da própria série de Taylor obtemos

$$x(t+h) = x + \frac{1}{2}hf + \frac{1}{2}hf(t+h, x+hf) + O(h^3)$$

 Desta forma usamos explicitamente até o terceira ordem na série de Taylor, assim podemos escrever

$$x(t+h) = x(t) + \frac{h}{2}f(t,x) + \frac{h}{2}f(t+h,x+hf(t,x))$$

Ou equivalentemente em outra notação podemos reescrever

$$x(t+h) = x(t) + \frac{1}{2}(F_1 + F_2)$$

onde

$$\begin{cases} F_1 = hf(t, x) \\ F_2 = hf(t + h, x + F_1) \end{cases}$$

Método de Runge Kutta de quarto ordem

Usando o mesmo procedimento podemos obter o caso do método de Runge-Kutta De quarto ordem como:

$$x(t+h) = x(t) + \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4)$$

onde

$$\begin{cases} F_1 = hf(t,x) \\ F_2 = hf(t + \frac{1}{2}h, x + \frac{1}{2}F_1) \\ F_3 = hf(t + \frac{1}{2}h, x + \frac{1}{2}F_2) \\ F_4 = hf(t + h, x + F_3) \end{cases}$$

Neste caso o erro deste método é da ordem de $O(h^5)$

Considerar a equação diferencial ordinária:

$$\begin{cases} y' = y - t^2 + 1\\ y(0) = 0.5 \end{cases}$$

Solução analítica: $y = t^2 + 2t + 1 - \frac{1}{2}e^t$

Usar o método de Runge-Kutta de quarta ordem para determinar a solução no intervalo

0<t<2

Solução: considerando como h=0.5.

$$t_0 = 0, t_1 = 0.5, t_2 = 1, t_3 = 1.5, t_4 = 2.$$

 Para nosso exemplo podemos escrever a fórmula de Runge-Kutta

$$\begin{cases} y' = f(t, y) & t_i = t_0 + ih. \\ y(t_0) = \alpha & t_0 = \alpha \end{cases}$$

$$w_0 = \alpha$$

$$k_1 = hf(t_i, w_i)$$

$$k_2 = hf\left(t_i + \frac{h}{2}, w_i + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(t_i + \frac{h}{2}, w_i + \frac{k_2}{2}\right)$$

$$k_4 = hf(t_i + h, w_i + k_3)$$

$$w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Para nosso caso podemos fazer

$$t_0 = 0, w_0 = 0.5.$$

 $t_0 = 0, t_1 = 0.5, t_2 = 1, t_3 = 1.5, t_4 = 2.$

Aplicando para os pontos

```
t_1 = 0.5
    k_1 = hf(t_0, w_0) = 0.5f(0, 0.5) = 0.75
    k_2 = hf(t_0 + h/2, w_0 + k_1/2) = 0.5f(0.25, 0.875) = 0.90625
   K_3 = hf(t_0 + h/2, w_0 + k_2/2) = 0.5f(0.25, 0.953125) = 0.9453125
   K_4 = hf(t_0 + h, w_0 + K_3) = 0.5f(0.5, 1.4453125) = 1.09765625
   w_1 = w_0 + (k_1 + 2k_2 + 2k_3 + k_4)/6 = 1.4251302083333333
t_{2} = 1
k_1 = hf(t_1, w_1) = 0.5f(0.5, 1.425130208333333) = 1.087565104166667
k_2 = hf(t_1 + h/2, w_1 + k_1/2) = 0.5f(0.75, 1.968912760416667) = 1.203206380208333
K_3 = hf(t_1 + h/2, w_1 + k_2/2) = 0.5f(0.75, 2.0267333984375) = 1.23211669921875
K_4 = hf(t_1 + h, w_1 + K_3) = 0.5f(1, 2.657246907552083) = 1.328623453776042
w_2 = w_1 + (k_1 + 2k_2 + 2k_3 + k_4)/6 = 2.639602661132812
```

Aplicando para os pontos

```
t_3 = 1.5
k_1 = hf(t_2, w_2) = 0.5f(1, 2.639602661132812) = 1.319801330566406
k_2 = hf(t_2 + h/2, w_2 + k_1/2) = 0.5f(1.25, 3.299503326416016) = 1.368501663208008
K_3 = hf(t_2 + h/2, w_2 + k_2/2) = 0.5f(1.25, 3.323853492736816) = 1.380676746368408
K_4 = hf(t_2 + h, w_2 + K_3) = 0.5f(1.5, 4.020279407501221) = 1.385139703750610
w_3 = w_2 + (k_1 + 2k_2 + 2k_3 + k_4)/6 = 4.006818970044454
t_4 = 2
```

$$k_1 = hf(t_3, w_3) = 0.5f(1.5, 4.006818970044454) = 1.378409485022227$$

$$k_2 = hf(t_3 + h/2, w_3 + k_1/2) = 0.5f(1.75, 4.696023712555567) = 1.316761856277783$$

$$K_3 = hf(t_3 + h/2, w_3 + k_2/2) = 0.5f(1.75, 4.665199898183346) = 1.301349949091673$$

$$K_4 = hf(t_3 + h, w_3 + K_3) = 0.5f(2, 5.308168919136127) = 1.154084459568063$$

$$w_4 = w_3 + (k_1 + 2k_2 + 2k_3 + k_4)/6 = 5.301605229265987$$

Comparando com solução analítica

t	solução exata	solução numérica	erro
0.0	0.5	0.5	0
0.5	1.425639364649936	1.425130208333333	0.000509156316603
1.0	2.640859085770477	2.639602661132812	0.001256424637665
1.5	4.009155464830968	4.006818970044454	0.002336494786515
2.0	5.305471950534675	5.301605229265987	0.003866721268688

Fazendo o mesmo no entanto para valor de h:

$$h = 0.2$$
.

t	valor exato	valor numérico	erro
0.0	0.5	0.5	0
0.2	0.829298620919915	0.8292933333333333	0.000005287586582
0.4	1.214087651179365	1.214076210666667	0.000011440512698
0.6	1.648940599804746	1.648922017041600	0.000018582763146
0.8	2.127229535753766	2.127202684947944	0.000026850805823
1.0	2.640859085770477	2.640822692728752	0.000036393041726
1.2	3.179941538631726	3.179894170232231	0.000047368399496
1.4	3.732400016577663	3.732340072854980	0.000059943722683
1.6	4.283483787802442	4.283409498318406	0.000074289484036
1.8	4.815176267793527	4.815085694579435	0.000090573214092
2.0	5.305471950534674	5.305363000692655	0.000108949842019

Problema Terra-Sol

Sistema de equações

$$m_1\ddot{\mathbf{r}}_1 = \mathbf{F}_{21} \; ; \; m_2\ddot{\mathbf{r}}_2 = \mathbf{F}_{12}$$

Potencial gravitacional entre as duas massas

$$U_{12}(|\mathbf{r}_1 - \mathbf{r}_2|) = U_{21}(|\mathbf{r}_2 - \mathbf{r}_1|) = G \frac{m_1 m_2}{|\mathbf{r}_1 - \mathbf{r}_2|^2},$$

$$G = 6.673 \times 10^{-11} \text{ N m}^2/\text{kg}^2.$$

 Usando o referencial do centro de massa podemos transformar as duas equações de segunda ordem (usar as leis de Newton) em uma equação de segunda ordem

$$\mathbf{R} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{M}$$

$$\mathbf{v}_{CM} = \frac{m_1 \mathbf{v}_1 + m_2 \mathbf{v}_2}{M}.$$

$$\mathbf{F}_{\mathrm{ext}} = M\mathbf{a}_{CM}.$$

Movimento do CM depende da força externa total como o sistema é isolado a velocidade é uma constante

$$\mathbf{v}_{CM}^{(0)} = \frac{m_1 \mathbf{v}_1^{(0)} + m_2 \mathbf{v}_2^{(0)}}{M}.$$
 $\mathbf{R}(t) = \mathbf{v}_{CM}^{(0)} t.$

Podemos usar o radio vetor r

$$\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$$
.

$$\mathbf{r}_1 = \mathbf{R} + \frac{m_2}{m_1 + m_2} \mathbf{r} \; ; \; \mathbf{r}_2 = \mathbf{R} - \frac{m_1}{m_1 + m_2} \mathbf{r}.$$

Equação de movimento para r temos

$$m_1 m_2 \ddot{\mathbf{r}}_1 = m_2 \mathbf{F}_{21} \; ; \; m_1 m_2 \ddot{\mathbf{r}}_2 = m_1 \mathbf{F}_{12}.$$

$$m_1 m_2 (\ddot{\mathbf{r}}_1 - \ddot{\mathbf{r}}_2) = m_2 \mathbf{F}_{21} - m_1 \mathbf{F}_{12} \implies \frac{m_1 m_2}{(m_2 + m_1)} \ddot{\mathbf{r}} = \mathbf{F}_{21},$$

 Força derivada do potencial(tarefa mostrar conservação da energia e momento angular)

$$\mathbf{F}_{21} = -\frac{\partial}{\partial \mathbf{r}_1} U_{12} \left(|\mathbf{r}_1 - \mathbf{r}_2| \right) = \nabla_1 U_{12} \left(|\mathbf{r}_1 - \mathbf{r}_2| \right)$$

$$m_*\ddot{\mathbf{r}} = -\frac{\partial}{\partial \mathbf{r}}U(|\mathbf{r}|) \equiv \mathbf{F}(\mathbf{r}),$$

$$m_* = \frac{m_1 m_2}{(m_2 + m_1)}$$

Se o sol é m, e por ser muito maior que a Terra podemos considerar

$$m_* = \frac{m_1 m_2}{(m_2 + m_1)} \approx m_1, \qquad m_2 \gg m_1 \implies \mathbf{r}_1' \approx \mathbf{r} \; ; \; \mathbf{r}_2' \approx 0.$$

$$\mathbf{r}_1' = \mathbf{r}_1 - \mathbf{R} = \frac{m_2}{m_1 + m_2} \mathbf{r} \; ; \; \mathbf{r}_2' = \mathbf{r}_2 - \mathbf{R} = -\frac{m_1}{m_1 + m_2} \mathbf{r}.$$

 Reescrevendo a equação de movimento em forma adimensional usando o afélio R e período T da Terra entorno do Sol podemos escrever, onde o rho é o r/R

$$\tau \equiv \frac{t}{T}, \, \rho \equiv \frac{r}{R}, \, X \equiv \frac{x}{R} \, e \, Y \equiv \frac{y}{R}.$$

$$\frac{R}{T^2}\frac{d^2\vec{\rho}}{d\tau^2} = -\frac{GM}{R^2\rho^3}\vec{\rho}. \qquad \left[\frac{GMT^2}{R^3}\right] = \frac{N(m/kg)^2 \cdot kg \cdot s^2}{m^3} = 1.$$

$$\frac{d^2\vec{\rho}}{d\tau^2} = -C\frac{\vec{\rho}}{\rho^3}. \qquad C \equiv \frac{GMT^2}{R^3},$$

$$\frac{dX}{d\tau} = U, \qquad \frac{dU}{d\tau} = -C\frac{X}{\rho^3},\tag{1}$$

$$\frac{dY}{d\tau} = V, \qquad \frac{dV}{d\tau} = -C\frac{Y}{\rho^3},\tag{2}$$

- Equações que envolvem derivadas de funções de várias variáveis
- Estas equações surgem naturalmente ao modelar problemas de física principalmente.
- Uma equação diferencial parcial (edp) é dita quase linear e linear se pode ser colocada na forma:

$$u = u(x, y)$$
 Variável dependente e independente x e y

$$F(x,y,u,u_x,u_y,u_{xx},u_{xy},u_{yy})=0$$
 Forma geral da edp

Edp quase-linear

$$A(x,y)u_{xx} + B(x,y)u_{xy} + C(x,y)u_{yy} + G(x,y,u,u_x,u_y) = 0$$

Edp linear

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0$$

Exemplos de edp

Lineares

(a)
$$u_{xx} + u_{yy} + u = 0$$

(b)
$$u_{xx} + \sin(x) u_{yy} + \cos(x) = 0$$

(c)
$$u_{xx} + e^x u_{yy} + 6 = 0$$

(a) **u**
$$u_{xx} + u_{yy} = 0$$

(b)
$$x u_{xx} + y u_{yy} + \mathbf{u^2} = 0$$

(c) **u**
$$u_x + u_{yy} = 0$$

Edp não-homogênea

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0$$

Se G(x, y) = 0 dizemos que a EDP é **homogênea**.

Principais equações diferenciais parciais

Podemos reescrever a equação geral como

$$Au_{xx} + Bu_{xy} + Cu_{xy} + Du_x + Eu_y + Fu = G$$

- (i) **elíptica** em (x_0, y_0) se $d(x_0, y_0) = B^2(x_0, y_0) 4A(x_0, y_0)C(x_0, y_0) < 0$.
- (ii) **parabólica** em (x_0, y_0) se $d(x_0, y_0) = 0$.
- (iii) **hiperbólica** em (x_0, y_0) se $d(x_0, y_0) > 0$.

Exemplos arquetípicos

$$u_{t}=\alpha^{2}u_{xx}\Rightarrow A=\alpha^{2}, B=C=0\Rightarrow d\equiv 0 \text{ , (parabólica)}$$

$$u_{tt}=c^{2}u_{xx}\Rightarrow A=c^{2}, B=0, C=-1\Rightarrow d\equiv 4c^{2}>0 \text{ , (hiperbólica)}$$

$$u_{xx}+u_{yy}=0\Rightarrow A=C=1, B=0\Rightarrow d\equiv -4<0 \text{ , (elíptica)}$$

Considere então uma equação do tipo $y^2u_{xx} - x^2u_{yy} = 0$.

Podemos concluir que é uma edp hiperbólica

$$d = B^2 - 4AC = 4x^2y^2 > 0, \forall x, y \neq 0.$$

Equação parabólica: equação do calor

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

Equação elíptica: equação de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

• Equação Hiperbólica: equação da onda

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

Equação parabólica: solução

 Problema: Considere uma barra quente com CC.

$$\begin{cases} \frac{\partial^2}{\partial x^2} u(x,t) = \frac{\partial}{\partial t} u(x,t) \\ u(0,t) = u(1,t) = 0 \\ u(x,0) = \sin \pi x \end{cases}$$

Método de diferenças finitas aplicado para Equação do calor

$$f'(x) \approx \frac{1}{h} [f(x+h) - f(x)]$$

$$f''(x) \approx \frac{1}{h^2} [f(x+h) - 2f(x) + f(x-h)]$$

Equação parabólica: solução

 Problema: Considere uma barra quente com CC.

Substituindo as derivadas numéricas na equação do calor obtemos

$$\frac{1}{h^2}[u(x+h,t) - 2u(x,t) + u(x-h,t)] = \frac{1}{k}[u(x,t+k) - u(x,t)]$$

Se a função u(x,t) é conhecida para o domínio $0 \le x \le 1$ $0 \le t \le t_0$

Então podemos determinar a função u(x,t) para $t=t_0+k$ depois podemos usar a equação anterior para obter:

$$u(x, t + k) = \sigma u(x + h, t) + (1 - 2\sigma)u(x, t) + \sigma u(x - h, t)$$

$$\sigma = \frac{k}{h^2}$$

Equação parabólica: solução

 Esquema da solução para os pontos que definem uma vizinhança de cálculo

Equação parabólica: solução

Método de Crank-Nicolson

$$\frac{1}{h^2}[u(x+h,t) - 2u(x,t) + u(x-h,t)] = \frac{1}{k}[u(x,t) - u(x,t-k)]$$

$$-u(x-h,t) + ru(x,t) - u(x+h,t) = su(x,t-k)$$

$$r = 2+s \qquad s = \frac{h^2}{k}$$

Equação parabólica: solução

Método de Crank-Nicolson

Métodos de Monte Carlo

- Métodos de monte carlo são uma classe geral de métodos que permitem fazer cálculos em base a amostragens aleatórias de variáveis.
- Estes métodos são importantes quando o sistema inclui muitos graus de liberdade. Isto é, por exemplo, o conjunto de equações diferenciais é grande ou difícil de resolver.
- Exemplos: sistemas financeiros, fluidos turbulentos, sistemas complexos de matéria condensada.
- Problemas onde as variáveis são de carater aleatória ou estocástica.
- Sobre problemas como integrais ou bem definidos funciona bem para problemas multidimensionais. Neste aspecto é importante estudar a convergência destes métodos.
- Métodos de Monte Carlo começam a ser usados com o uso de computadores, pois precisa gerar muitos números aleatórios.
- John Von Neumann cunhou o nome Monte carlo inspirado no casino de Mônaco.

Números Pseudo-aleatórios

- Computadores fazem cálculos determinísticos e não aleatórios.
- Para simular números aleatórios os computadores criam uma sequencia de números com período muito grande para simular a sequência como aleatória.
- Esquema de como gerar números pseudo aleatórios:

$$r_n=f(r_{n-1}).$$

Unidade básica de informação é o bit, então podemos representar uma dada quantidade De N bits como: 2^N

Conclusão: depois de 2^N números a sequência vai se repetir.

Na prática o conjunto de números aleatórios deve ser menor que 2^N

Função comum usada para gerar números pseudo aleatórios:

$$r_n = (ar_{n-1} + b) \mod m$$
 ou $r_n = (ar_{n-1} + b)\%m$

Usando função linear e depois função de resto sobre números inteiros

Conservação da probabilidade:

$$p(x) = \begin{cases} 1 & \text{se } 0 < x < 1 \\ 0 & \text{do contrário} \end{cases} \quad \text{com } \int_{-\infty}^{\infty} p(x) dx = 1 \text{ (normalização)}$$

Esta expressão representa a probabilidade de que a variável aleatória fique entre X e x+dx e isto é denotado como p(x)dx.

 Gerar uma distribuição y com probabilidade p(y) sabendo que conhecemos a distribuição uniforma p(x):

$$|p(y)dy| = |p(x)dx|$$

Podemos escrever então

$$p(y) = p(x) \left| \frac{dx}{dy} \right| = \frac{p(x)}{\left| \frac{dy}{dx} \right|}$$

Basicamente o que estamos fazendo é que se geramos uma distribuição uniforme p(x) a distribuição p(y) resultante pode ser calculada pela expressão anterior, isto é, um exemplo de uma transformação de distribuições.

• Um exemplo concreto consideremos uma função do tipo logaritmo:

$$y(x) = -ln(x) \iff x = e^{-y}.$$

Usando então a definição anterior podemos escrever

$$p(y) = p(x) \left| \frac{dx}{dy} \right| = \left| \frac{dx}{dy} \right| = e^{-y}$$

Distribuições deste tipo são frequentes na física: por exemplo na física de partículas.

Método de transformação pode ser generalizado da forma

$$p(x_1, x_2, ..., x_n)dx_1dx_2...dx_n e y_1, y_2, ..., y_n$$
 Distribuição conjunta dos x's

Probabilidade conjunta dos y's

$$p(y_1, y_2, ..., y_n)dy_1dy_2...dy_n = p(x_1, x_2, ..., x_n) \left| \frac{\partial(x_1, x_2, ..., x_n)}{\partial(y_1, y_2, ..., y_n)} \right| dy_1dy_2...dy_n,$$

Onde o Jacobiano da transformação é dado por:

$$J(y_1, y_2, ..., y_n) = \frac{\partial(x_1, x_2, ..., x_n)}{\partial(y_1, y_2, ..., y_n)} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & ... & \frac{\partial x_1}{\partial y_n} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} & ... & \frac{\partial x_2}{\partial y_n} \\ ... & ... & ... & ... \\ \frac{\partial x_n}{\partial y_1} & \frac{\partial x_n}{\partial y_2} & ... & \frac{\partial x_n}{\partial y_n} \end{vmatrix}$$

- Algoritmo de Box-Muller (1958)
- Considerar duas coordenadas aleatórias de distribuição aleatória uniforma entre (0,1)
- Consideramos uma transformação de variáveis da forma:

$$y_1 = \sqrt{-2\ln(x_1)}\cos(2\pi x_2)$$

 $y_2 = \sqrt{-2\ln(x_1)}\sin(2\pi x_2),$

Podemos colocar em evidências os x's da forma:

$$x_1 = e^{-\frac{1}{2}(y_1^2 + y_2^2)}$$

 $x_2 = \frac{1}{2\pi} \operatorname{atan}\left(\frac{y_2}{y_1}\right).$

Método de Box-Muller

• Jacobiano da transformação resulta da forma:

$$J(y_1, y_2) = \frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} = -\frac{1}{\sqrt{2\pi}} e^{-\frac{y_1^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{y_2^2}{2}}$$

Como resultado obtemos uma distribuições gaussianas

Método de aceitação-rejeição

- Quando a matriz Jacobiana não pode ser determinada analiticamente podemos usar um método de amostragem denominado de aceitação-rejeição.
- Um método de aceitação-rejeição é um método fundado numa interpretação geométrica da amostragem.
- Algoritmo: Estas são as etapas do processo:
- queremos uma variável aleatória x com probabilidade de distribuição p(x)dx no intervalo (a,b)
- Gera-se uma distribuição uniforme para x e depois calcula-se p(x) como distribuição.
- Gera-se outra variável aleatória y no intervalo $(0,y_{max})$, onde y_{max} deve satisfazer $y_{max} \ge p_{max}$
- Se y>p então rejeita-se o valor de x e se gera um novo valor, senão, aceita-se o valor de x .
- Os valores de x's assim aceitos tem uma distribuição p(x)

Método de aceitação-rejeição

 Interpretação geométrica do método de aceitação-rejeição

Método de aceitação-rejeição

 Exemplo de cálculo do número pi usando o método de aceitação-rejeição como exemplo padrão do uso do método

$$\Rightarrow P((x, y) \in circulo) = P(x^2 + y^2 \le 1) = \frac{\pi}{4}$$

Método de geração de distribuições

Entre os métodos temos

Gerando Variáveis Aleatórias Discretas

- ⇒Método da Transformada Inversa
- ⇒ Método da Rejeição (Aceitação/Rejeição)
- ⇒Método da Composição

Algoritmo de Metropolis-Hasting

Consideremos dois pontos

$$(x_0, y_0), (x_1, y_1)$$
 Vamos ajustar ao modleo $y(x) = m$

Estimador:
$$\chi^2(\Theta) = \sum_{i=0}^{1} (m - y_i)^2$$

Podemos derivar

$$P(D|\Theta) = \exp\left(-\sum_{i=0}^{1} (m - y_i)^2\right)$$

Algoritmo de Metropolis-Hasting

Adicionamos números aleatórios

$$\Theta_p = \Theta_0 + X$$

Voltamos a derivar uma distribuição dos números aleatórios

Critério de aceitação

$$r = \frac{P(\Theta_p|D)}{P(\Theta_d|D)}$$

Algoritmo de Metropolis-Hasting

 Implementando o método de metropolis-hasting podemos simular o processo para obtermos uma distribuição da forma onde se pode observar uma certa convergência

Teorema de Bayes

$$Pr(A|B) = \frac{Pr(B|A) Pr(A)}{Pr(B)}$$

Teorema de Bayes total

$$\Pr(A_i|B) = \frac{\Pr(B|A_i)\Pr(A_i)}{\Pr(B|A_i)\Pr(A_i) + \dots + \Pr(B|A_n)\Pr(A_n)}$$

Temos inferência baseada em modelo

$$p(\Theta|\mathbf{y}) = \frac{p(\mathbf{y}|\Theta)p(\Theta)}{p(\mathbf{y})}$$

Inferência Bayesiana

$$\Theta = \theta_1, ..., \theta_j$$

$$p(\mathbf{y}) = \int p(\mathbf{y}|\Theta)p(\Theta)d\Theta$$

$$p(\Theta|\mathbf{y}) = \frac{p(\mathbf{y}|\Theta)p(\Theta)}{\mathbf{c}}$$

$$p(\Theta|\mathbf{y}) \propto p(\mathbf{y}|\Theta)p(\Theta)$$

Inferência Bayesiana: Likelihood para um modelo

Likelihood para uma dada função

$$\mathcal{L}(\theta|\mathbf{y}) = p(\mathbf{y}|\theta) = f(\mathbf{y}|\theta)$$

$$\mathbf{y}_{i} \sim \mathcal{N}(\mu_{i}, \sigma^{2})$$
$$\mu_{i} = \beta_{1} + \beta_{2} \mathbf{X}_{i,1} + \beta_{3} \mathbf{X}_{i,2}$$

$$f(\mathbf{y}) = \frac{1}{\sqrt{2\pi}\sigma} \exp[(-\frac{1}{2}\sigma^2)(\mathbf{y}_i - \mu_i)^2]; \quad \mathbf{y} \in (-\infty, \infty)$$

Likelihood

$$p(\mathbf{y}_i|\Theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp[(-\frac{1}{2}\sigma^2)(\mathbf{y}_i - \mu_i)^2]; \quad \mathbf{y} \in (-\infty, \infty)$$

$$\log[p(\mathbf{y}|\theta)] = \sum_{i=1}^{n} \log[p(\mathbf{y}_i|\theta)]$$

$$p(\mathbf{y}|\theta) = \prod_{i=1}^n p(\mathbf{y}_i|\theta)$$

$$p(\beta, \sigma^2 | \mathbf{y}) = p(\mathbf{y} | \beta, \sigma^2) p(\beta_1) p(\beta_2) p(\beta_3) p(\sigma^2)$$

Likelihood

$$\log[p(\beta, \sigma^2|\mathbf{y})] = \log[p(\mathbf{y}|\beta, \sigma^2)] + \log[p(\beta_1)] + \log[p(\beta_2)] + \log[p(\beta_3)] + \log[p(\sigma^2)]$$

Fator de Bayes

$$B = \frac{p(\mathbf{y}|\mathcal{M}_1)}{p(\mathbf{y}|\mathcal{M}_2)} = \frac{\int p(\mathbf{y}|\Theta_1, \mathcal{M}_1)p(\Theta_1|\mathcal{M}_1)d\Theta_1}{\int p(\mathbf{y}|\Theta_2, \mathcal{M}_2)p(\Theta_2|\mathcal{M}_2)d\Theta_2}$$

Sobre fator de Bayes

$$p(\mathbf{y}|m) = (2\pi)^{d_m/2} |\Sigma_m|^{1/2} p(\mathbf{y}|\Theta_m, m) p(\Theta_m|m)$$

Ajustando Modelos

$$D(\mathbf{y}, \Theta) = -2\log[p(\mathbf{y}|\Theta)]$$

$$pV = var(D)/2$$

• Estatística do chi quadrado: método geral para justar dados

$$\chi_i^2 = \frac{(\mathbf{y}_i - \frac{\sum_{t=1}^T \mathbf{y}_{i,t}^{rep}}{T})^2}{\text{var}(\mathbf{y}_{i,1:T}^{rep})},$$

$$p(\chi_{i,1:T}^{2rep} > \chi_{i,1:T}^{2obs})$$

$$\chi_{i,1:T}^{2obs} = \frac{[\mathbf{y}_i - E(\mathbf{y}_i)]^2}{E(\mathbf{y}_i)}$$

$$\chi_{i,1:T}^{2rep} = \frac{[\mathbf{y}_{i,1:T}^{rep} - E(\mathbf{y}_i^{rep})]^2}{E(\mathbf{y}_i^{rep})}$$

Distribuições de Probabilidade

Binomial

$$P(X = x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

Poisson

$$P(X = x) = e^{-\mu} \frac{\mu^x}{x!}$$

Distribuições de Probabilidade

Distribuição Normal

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2\right\}$$

Distribuições de Probabilidade

Distribuição exponencial

$$f(x) = \lambda e^{-\lambda x}$$

$$E(X) = \frac{1}{\lambda}$$
 and

