Atomic Physics

Alpha: $X \rightarrow \frac{4}{2} \dot{\alpha} + Y$	Stopped by skin
Beta: $X \rightarrow {\stackrel{0}{\cdot}}_{-1} \beta + Y$	Stopped by Al Foil
Gamma: $X \rightarrow {}^{0}_{0} \gamma + Y$	Stopped by Lead

Mass	Charge	Typical Energy	Range (air)	Penertrati on	Ionisatio n
Heavy 4	Plus 2	~5 MeV	cm	little	very
Light e	Minus 1	~1 MeV	1-2 metre	more	some
none	none	~0.1MeV	Many m	most	none

1 Bq = 1 Disintegration per second.

Absorbed Dose=	energy(J)	
Absorbed Dose=	Mass (kg)	measured in Grays(gy)

Joules and Electron volts

1 Ev = 1.6 x 10⁻¹⁹ J 1 J =
$$\frac{1}{1.6 \times 10^{-19}}$$
 ev

Dose Equivlent = $Gy \times Quality factor$

Measured in sieverts (sv)				
Alpl	na Particles	20		
Neu	trons	10		

Alpha Particles	20
Neutrons	10
Beta Particles	1
Gamma Rays	1
X rays	1

E = MC squared

 $E(joules) = m(kg) \times (3.0 \times 10^8)^2$ e = m x speed of light squared

Tokamak doughnut shape magnetic field to contain super hot plasma. The heat is taken from the reactor by lithium and water

Inertial confinement Pallet of fusion fuel is struck by high intensity lase creating the high temperatures required for fusion.

Effective dose(sv) = dose Equivalent x Weighting

Ovaries/Testes	0.2
Bone Marrow	0.12
Colon	0.12
Lung	0.12
Stomach	0.12
Bladder	0.05
Breast	0.05
Liver	0.05
Oesophagus	0.05
Thyroid	0.05
Rest of body	0.07
Total	1

H/He fusion in the sun

$${}_{1}^{1}H + {}_{1}^{1}H \rightarrow {}_{1}^{2}H + {}_{1}^{0}e + {}_{0}^{0}v$$

$$_{1}^{1}H + _{1}^{2}H \rightarrow _{2}^{3}He + _{0}^{0}gamma$$

$${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + {}_{1}^{1}H + {}_{1}^{1}H$$

H/He fusion in reactors

$${}_{1}^{1}H + {}_{1}^{1}H \rightarrow {}_{2}^{3}He + {}_{0}^{1}n$$

${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{1}^{3}H + {}_{1}^{1}H$

$$_{1}^{2}H + _{1}^{3}H \rightarrow _{2}^{4}He + _{0}^{1}n$$

Genetic Effects when sex cells are damaged

Somantic Effects any cells in the body are damaged (not sex cells)

Whole body dose (Sv)	Symptom	
<1	Non fatal, only minor symptoms such as nausea white blood cell level drops	
2	Death unlikely, radiation sickness ie nausea vomiting and diarrhoea, skin rashes, hair loss and bone marrow damage	
4	50% chance of death in two months, severe radiation sickness, high chance of leukaemis and tumors	
8	Almost certain death within 1-2 Acute Radiation sickness – convulsions, lethargy	

Electricity

Charge physical property of matter (positive or neg) **Coloumb** is one mole of fundamental charges

Energy ability to do work

Joule work done by a force of one newton when its point of application moves one meter.

Power energy being moved/used/transformed over time subtract the voltages given the orientation. Watt measurement of power in Joules per second

P=VI P=I²
$$P=\frac{V^2}{V}$$

Ampere hours measure of capacity of charge (can supply a certain amount of Coloumbs for an hour)

Batteries in series double voltage, same capacity Batteries in parallel same voltage, double capacity

Earth Leakage/RCD Detects a difference between the amount of current between the active and neutral wires. most likely caused by leakage into the earth.

Safety in Electricity Factors in fatality

- current is the main killer. Voltage is indirectly related through ohms law
- Duration
- Pathway (through heart)
- Voltage (if over 600V)

Causality

- Voltage is the cause of current
- Current can affect resistance in a non-ohmic conductor
- and otherwise resistance affects current in an ohmic conductor.

Force between charges
$$F = \frac{9.0 \times 10^9 Mn^2 C^{-2} \times q_1 \times q_2}{r^2}$$

r is in metres, q are point charges

Force on charge q in field E

$$F = qE$$

Force in Newtons, q in Coloumbs E in N/C

Charge on an electron
$$1.6 \times 10^{-19}$$

Electrons in a coloumb 6.2×10^{18}
Terminal voltage = EMF – I x internal resistance
Watt-hour = 3600 J
Kilowatt-hour = $3600 000 \text{ MJ}$

Kirchoff's laws

The total potential drop around a closed circuit must be equal to the total EMF in the circuit.

In any electric circuit the sum of all currents flowing into any point is equal to the sum of the currents flowing out of it.

Multiple cells or batteries in a circuit then just add or

Circuit diagrams

	Bigger end is positive. Conventional current flows to the negative.	

Wire colours

Active: Brown/Red Neutral: Blue/Black

Earth: Green and yellow/Green

Resistor colours

First two bands are numbers, third is a multiplier with 10\(^(colour number)\). Forth indicates tolerance (gold 5\%) silver 10%)

	Black	0	Green	5
	Brown	1	Blue	6
,	Red	2	Violet	7
	Orange	3	Gray	8
	Yellow	4	White	9

Prefixes

Tenkes				
Giga (G)	10^9	1 000 000 000	Billion	
Mega (M)	10^6	1 000 000	Million	
Kilo (k)	10^3	1 000	Thousand	
Hecto (h)	10^2	100	Hundred	
Deca (da)	10^1	10	Ten	
		1	One	
Deci (d)	10^-1	0.1	Tenth	
Cent (c)	10^-2	0.01	Hundredth	
Milli (m)	10^-3	0.001 .	thousandth	
Micro (µ)	10^-6	0.000 001	Millionth	
Nano (n)	10^-9	0.000 000 001	Billionth	
Pico (p)	10^-12	0.000 000 000 001	Trillionth	

RMS or root mean square is basically average. Of a sin wave it is amplitude divided by square root of 2

Peak to Peak is the difference between peak and trough ie in a sine with 1 amplitude peak to peak is 2

Voltage Divider
$$\frac{R_2 \times Vin}{R_1 + R_2} = Vout$$
 where R2 is the

resistor between the two Vout wires