ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 08 gennaio 2016

Esercizio A

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=0.5 mA/V² e $V_T=1$ V; Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_6 in modo che, in condizioni di riposo, la tensione sull'emettitore di Q_2 sia 12 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_1 . (R: $R_6 = 5093.2 \Omega$)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -1.9$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 9136.6$ Hz; $f_{z2} = 1562.4$ Hz; $f_{p2} = 14452$ Hz; $f_{z3} = 0$ Hz; $f_{p3} = 66.2$ Hz;)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = (\overline{A+B})(C+\overline{DE}) + \overline{A}B(C+\overline{E}) + \overline{B}(A\overline{D}+\overline{C})$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 500 \Omega$	$R_5 = 250 \Omega$
$R_2 = 1 \text{ k}\Omega$	$R_6 = 1 \text{ k}\Omega$
$R_3 = 1 \text{ k}\Omega$	C = 68 nF
$R_4 = 5 \text{ k}\Omega$	$V_{CC} = 6 V$

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6V$, Q_1 ha una $R_{on} = 0$ e $V_T = 1V$; Q_2 ha una $R_{on} = 0$ e $V_T = -1V$; gli inverter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 10957 Hz)