Computer Graphics Zusammenfassung

Lucien Zürcher

January 2, 2019

C	ontents	4.8 Skalarprodukt im beliebigem Koordinatensystem	4		
1	Farbe	2		4.9 Rechenregel Skalarprodukt	5
•	1.1 Was ist Farbe?	2		4.10 Orthogonal	5
	1.2 Farbe eines Objektes	2		4.11 Länge des Vektors	5
	1.3 Licht besteht aus?	2		4.12 Einheitsvektor	5
	1.4 Das Auge	2		4.13 Euklidische Distanz	6
	1.5 Wie sehen wir Farbe?	2		4.14 Gerade im 2/3D	6
	1.6 Wahrnehmung	2		4.15 Hessische Normalform	6
	1.7 Farbsysteme	2		4.16 Hessische Normalform Ebene	6
	1.8 Additives Farbsystem	2		4.17 Achsenabschnitt	6
		2		4.18 Projektion eines Vektors	6
	1.9 Subtraktives Farbsystem	2		4.19 Vektorprodukt	6
				4.20 Spatprodukt	6
	1.11 Gamma Korrektur	3		4.21 Translation 2D	6
	1.12 Normfarbtafel	3		4.22 Skalierung 2D	6
	1.13 Helligkeitswahrnehmung	3		4.23 Rotation 2D	6
	1.14 Nibs (Lichtdichte)	3		101 7 100	6
	1.15 Mach bending	3		4.24 Degime	·
	1.16 Farbtäschung	3	5	Transformation	6
	1.17 HD,UHD,UK	3		5.1 Transformation des Koordinatenystems .	6
	1.18 Was ist HDR?	3		5.2 homogene Koordinaten	7
	1.19 Begriffe	3		5.3 Ebene im Raum	7
_		_		5.4 Prokektive Transformation	7
2	WebGL	3		5.5 Euklidische Transformationen	7
	2.1 OpenGL Merkmale	3		5.6 Rotation um beliebige Achse	7
	2.2 Grafikpipeline	3		5.7 Rotation um eine Achse durch den Ur-	,
	2.3 Programmierbare Shaders	3		sprung	7
	2.4 Vertex Processing	4		5.8 Parallele Projektion	8
	2.5 Fragment Processing	4		5.9 Parallele Projektionsmatrix	8
	2.6 Datenfluss	4		5.10 Perspektivische Projektion	8
	2.7 Attribut Variablen und Buffer definieren .	4		5.11 Perspektivische Projektionmatrix	8
				5.12 Sichtvolumen Clipping	8
3	Halbtontechnik	4		3.12 Sientvolumen Empfing	
	3.1 Verfahren der Halbtontechnik	4	6	Curves	8
	3.2 Quantisierung	4	_	6.1 Kurvie in der Ebene	8
	3.3 Dithering	4		6.2 Kurve im Raum	9
	3.4 Dithermatrizen	4		6.3 Spirale entlang des Zylinders	ģ
	3.5 Dithering bei gleich bleibender Auflösung	4		6.4 Methode unbestimmte Koeffizienten	ç
	3.6 Dispersed Dot Dithering	4		6.5 Lagrange Methode	ç
	3.7 Error Diffusion	4		6.6 Lineare Bézier spline	9
				6.7 Quadric Bézier spline	9
4	Vektoren	5		6.8 Qubic Bézier Spline	9
	4.1 Addition	5			9
	4.2 Multiplikation mit Skalar	5		0.) Bernstemporynome	
	4.3 Nullvektor	5	7	Appendix	9
	4.4 Vektorinverses	5	-	7.1 Radians	9
	4.5 Vektoren Gleichheit	5			
	4.6 Vektor Rechenregeln	5			
	4.7 Skalarprodukt	5			

1 Farbe

1.1 Was ist Farbe?

- Physikalisch, Lichtzusammensetzung, Elektromagnetischestrahlen
- Physologisch, Warnehmung und Interpretation

Farbe besteht aus:

- Farbton/Farbe
- Farbstich/Sättigung
- Helligkeit

1.2 Farbe eines Objektes

Ein Objekt nimmt Farbe auf und strahlt Farbe ab. Die Farbe des Objektes ist definiert durch die abgestrahlte Farbe

- Beleuchtung (Illumination)
- Reflektion (Reflection)
- Farbsignal (Color Signal)

1.3 Licht besteht aus?

Licht besitzt verschiedene Wellenlängen, Kombinationen dieser Frequenzen ergeben eine Farbe.

- Sichtbares Licht (380mn 780mn)
- Infrarot (780mn+)
- Ultraviolet (-380mn)

1nm = 10Å(Ångstr"om) $1\text{Å} = \phi Atom$

1.4 Das Auge

Das Auge besteht aus; **Iris** (Muskel und Lichteinschränken), **Linse**, **Pupille** (Kontrolliert Iris) und **Retina** (Farb- und Lichtaufnahme am Rand des Auges)

Die Retina besteht aus 75-100 10^6 Stäbchen (Lichtintensität) und 6-7 10^6 Zäpfchen (Farbe). Die Forea ist der dichteste Platz.

1.5 Wie sehen wir Farbe?

Durch die 3 Arten von Zäpfchen:

Kurz (S)		Mittel (M)		Lang (L)
Blau		Grün		Rot
440mn		530mn		560mn
1	:	5	:	10

1.6 Wahrnehmung

Grün 530mn wird am intensivsten wargenommen Die Helligkeitswahrnehmung zwischen Stäbchen und Zäpfchen ist unterschiedlich

1.7 Farbsysteme

- **RGB** (Monitor, Spotligths, Pointilismus), additiv, C = (Rot, Grün, Blau)
- CMY (Drucken), subtraktiv, C = (Cyan, Magenta, Yellow)
- CMYK, CMY Mit Schwarz erweitert,
 K = min(Cyan, Magenta, Yellow)
 C = C K, M = M K, Y = Y K
- HSV, Farbton (Hue) / Reinheit, Sättigung (Saturation) / Intensität (Value)
- **YUV** (Alte Fernseher, UV = 1/4 Auflösung Farbkorrektur)

$$\begin{split} \mathbf{Y} &= 0.229*R + 0.587G + 0.114*B, \\ \mathbf{U} &= 0.436(B-Y)/(1-0.114), \\ \mathbf{V} &= 0.615(R-Y)/(1-0.299) \end{split}$$

CIE-Lab, absolutes Farbsystem
 Achsensystem mit Helligkeit als Y-Achse und X/Z-Achse definieren Farbunterschiede

1.8 Additives Farbsystem

Farben additeren (1,1,1) = Weiss, (0,0,0) = Schwarz

1.9 Subtraktives Farbsystem

Farben absorbieren (0,0,0) = Weiss, (1,1,1) = Schwarz

1.10 Farben Konvertieren

Zu Grau: I = 0.229 * R + 0.587G + 0.114 * B

$$RGB \iff CMY: \begin{pmatrix} C \\ M \\ Y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

HSV <> RGB:

Farbe +	H +	S ¢	V +	R ¢	G ¢	В ф
Schwarz	-	-	0 %	0 %	0 %	0 %
Rot	0°	100 %	100 %	100 %	0 %	0 %
Gelb	60°	100 %	100 %	100 %	100 %	0 %
Braun	24,3°	75 %	36,1 %	36 %	20 %	9 %
Weiß	-	0 %	100 %	100 %	100 %	100 %
Grün	120°	100 %	100 %	0 %	100 %	0 %
Dunkelgrün	120°	100 %	50 %	0 %	50 %	0 %
Cyan	180°	100 %	100 %	0 %	100 %	100 %
Blau	240°	100 %	100 %	0 %	0 %	100 %
Magenta	300°	100 %	100 %	100 %	0 %	100 %
Orange	30°	100 %	100 %	100 %	50 %	0 %
Violett	270°	100 %	100 %	50 %	0 %	100 %

1.11 Gamma Korrektur

Erreichen von gleichmässiger Verteilung der Helligkeit / Kontrast. Das Empfinden der Helligkeit ist nicht linear.

Korrektur der Helligkeit des Bildes mit Gamme Wert. Wichtig für Bildschirme einstellen. Beim einstellen der Monitore Grauwerte mit echten Werten vergleichen (Gamma Test Pattern).

1.12 Normfarbtafel

1.13 Helligkeitswahrnehmung

Helligkeit wird logarithmisch wahrgenommen, Webers Law

$$\frac{\Delta I}{I} = C \\ \log(I + \Delta I) - \log(I) = Const$$

1.14 Nibs (Lichtdichte)

Gibt Helligkeitsdichte für Auge an. 10nits werden stärker wargenommen denn 100nits. Heisst, weniger Licht wird stärker wargenommen.

1.15 Mach bending

Optische Illusion, bei zwei verschiedenen Grauwerten nebeneinander unterschieden sich diese vermeitlich stärker.

1.16 Farbtäschung

Farbe wird abhängig durch Umgebung anderst wargenommen (Dunkler, Heller). Optische Illusionen

1.17 HD,UHD,UK

Unterscheiden sich durch Pixelauflösung.

1.18 Was ist HDR?

High Dynamic Range, speichert zusätzlichen Wert um Helligkeitsunterschiede besser unterschieden zu können (RGB-Pixelwerte propertianal zum Licht). Detailreichere dunkel und helle Spots, weniger Verlust durch Farben mit weniger Helligkeitsunterschiede.

1.19 Begriffe

Natürliches Licht	Gemisch aus verschiedenen
	Lichtwellen / Frequenzen
Spektralfarben	reine Farbfrequenz; Alle Farben
	am Rand des CIE-Farbsystems
Spektrum	Alle Frequenzen und deren
	Verteilung
Spektralverteilung	Charakterisiert die Farbe, definiert
	durch Frequenzen
	(Bsp. Verschiedenes Weiss)
Komplementärfarben	Addieren ergeben Grau,
	gegenüberligende Farben im
	CIE-Farbsystem

2 WebGL

2.1 OpenGL Merkmale

- Low Level Graphics API
- Verschiedene Platformen
- 1.0/2.0 Fixe Funktionspipeline
- Vorlage für WebGL

2.2 Grafikpipeline

2.3 Programmierbare Shaders

Shaders werden für die Berechnung der zu zeichnenden Objekte verwendet. Das Programm wird direkt auf der Grafikkarte ausgeführt.

2.4 Vertex Processing

Berechnen der Positionen der Vertexe (Punkte) und Werte für den folgenden Fragmentshader.

2.5 Fragment Processing

Berechnet die Farbe der einzelnen Pixel.

2.6 Datenfluss

2.7 Attribut Variablen und Buffer definieren

Erzeugen

- 1. Buffer erzeugen (gl.createBuffer())
- 2. Array Buffer auf Buffer setzen (gl.bindBuffer(...))
- 3. Daten füllen (gl.BufferData(..))

Zeichnen

- 1. Buffer binden
- 2. Attribut und/oder uniform setzen (gl.vertexAttribPointer(..))
- 3. Attribut als Array setzen (gl.enableVertexAttribArray(..))
- 4. Zeichnen (gl.drawArrays(..))

3 Halbtontechnik

3.1 Verfahren der Halbtontechnik

Da nur Schwarz und Weiss gedruckt werden kann, werden die verschiedenen Stufen durch Intänsitätsstufen dargestellt. Dafür gibt es drei Verfahren:

- Quantisierung
- Dithering
- Error Diffusion

3.2 Quantisierung

Höhere Auflösung auf tiefere Auflösung durch Runden der Pixelfarbwerte. Bsp. 16Bit -> 8Bit (Runden der Werte)

3.3 Dithering

Wenn der Drucker eine grössere Auflösung besitzt, jedoch weniger Farbstufen kann Dithering verfahren verwendet werden.

3.4 Dithermatrizen

Kann als Matrix dargestellt werden. Matrix gibt an, auf welcher stufe welche Pixel gesetzt werden

Es gibt zwei Regeln; Gesetzter **Pixel bleibt gesetzt** und **Strukturen** in der Ditheringmatrix **vermeiden**. Es soll möglichst ein Kreis approximiert werden.

3.5 Dithering bei gleich bleibender Auflösung

Handhabung, wenn die Auflösung gleichbleibt

- Mittelwert von n x n Region mit Ditheringmatrix ersetzen.
- Dispersed Dot Dithering

3.6 Dispersed Dot Dithering

Bayer Matrizen können hierfür verwendet werden, wodurch die Methode Bayer Dithering genannt wird.

2 x 2 Bayer Matrix

0 2 3 1			
3 1	0	2	
	3	1	

4 x 4 Bayer Matrix				
0	8	2	10	
12	4	14	6	
3	11	1	9	
15	7	13	5	

$$k = \frac{W_{max}}{n*n+1}$$

 W_{max} : Maximalwert des Pixels (255 bei 8Bit) n: Grösse der Matrix (2 x 2 => n = 2) k: Faktor für Umrechnung

$$I_{new} = \frac{I_{old}}{k}$$

Für jeden Pixel den neuen Wert ausrechnen, danach mit Bayermatrix den Wert vergleichen. Pixel setzen wenn $I(x,y)_{new} > D_{ij}$

i = x modulo nj = y modulo n

3.7 Error Diffusion

Anstatt Kreise, Punkte verschiedener Dichte anordnen. Das Bild wird dabei sequenziell durchlaufen; links -> rechts, oben -> unten Error Diffusion verteilt den Fehler auf die umliegenden Pixel

		7/16
1/16	5/16	3/16

Gewichtungsmatrix

Beispiel:

X	191	140	113
244	221	105	100

$$191 - 255 = -64$$
, da Pixel Schwarz (255), Fehler: -64

X	X	140 + (7/16 * -64)	113
244 +	221 +	105 +	100
(1/16 * -64)	(5/16 * -64)	(3/16 * -64)	

Wenn Wert > 128 = 255, ansonten Wert <= 128 = 0

4 Vektoren

- Skalarprodukt
- · Matrixprodukt

4.1 Addition

$$\vec{a} + \vec{b} = \begin{bmatrix} a_1 \\ a_2 \\ a_n \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_n \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_n + b_n \end{bmatrix}$$

4.2 Multiplikation mit Skalar

$$\lambda \vec{a} = \lambda \begin{bmatrix} a_1 \\ a_2 \\ a_n \end{bmatrix} = \begin{bmatrix} \lambda a_1 \\ \lambda a_2 \\ \lambda a_n \end{bmatrix}$$

 $\lambda \in \mathit{Skalar}$

4.3 Nullvektor

$$\vec{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

4.4 Vektorinverses

$$-\vec{a} = - \begin{bmatrix} a_1 \\ a_2 \\ a_n \end{bmatrix} = \begin{bmatrix} -a_1 \\ -a_2 \\ -a_n \end{bmatrix}$$

Vektor mit negativen Komponenten

4.5 Vektoren Gleichheit

$$\vec{a} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \vec{b}$$

Vektoren sind gleich, wenn Komponenten gleich

4.6 Vektor Rechenregeln

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 Kommutativgesetz
$$\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$$
 Assoziativgesetz Existenz Neutralelement $\vec{0}$ Existenz Inverses $-\vec{a}$ ($\vec{a} + \vec{b}$) = $\lambda \vec{a} + \lambda \vec{b}$ ($\lambda + \mu$) $\vec{a} = \lambda \vec{a} + \mu \vec{a}$ ($\lambda \mu$) $\vec{a} = \lambda(\mu \vec{a}) = \mu(\lambda \vec{a})$
$$1\vec{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \vec{a} = \vec{a}$$

4.7 Skalarprodukt

$$\vec{a} \bullet \vec{b} = \begin{bmatrix} a_1 \\ a_2 \\ a_n \end{bmatrix} \bullet \begin{bmatrix} b_1 \\ b_2 \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + \dots + a_nb_n$$

$$\vec{a} \bullet \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \phi$$

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

$$|\vec{b}| = \sqrt{b_1^2 + b_2^2 + \dots + b_n^2}$$

$$\cos \phi = \frac{\vec{a} \bullet \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

4.8 Skalarprodukt im beliebigem Koordinatensystem

$$\vec{a} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3 = [a_1 a_2 a_3]^T$$

 $\vec{b} = b_1 \vec{e}_1 + b_2 \vec{e}_2 + b_3 \vec{e}_3 = [b_1 b_2 b_3]^T$

$$\vec{a} \bullet \vec{b} = [a_1 a_2 a_3] \begin{bmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \mathbf{a}^T \mathbf{G} \mathbf{b}$$

Matrix G wird metrisch Tensor genannt

4.9 Rechenregel Skalarprodukt

$$\vec{a} \bullet \vec{b} = \vec{b} \bullet \vec{a}$$

$$\vec{a} \bullet (\vec{b} + \vec{c}) = \vec{a} \bullet \vec{b} + \vec{a} \bullet \vec{c}$$

$$\lambda (\vec{a} \bullet \vec{b}) = (\lambda \vec{a}) \bullet \vec{b} = \vec{a} \bullet (\lambda \vec{b})$$

4.10 Orthogonal

$$\vec{e}_x \bullet \vec{e}_y = 0$$

 $\vec{a} \bullet \vec{b} = 0 \Leftrightarrow \vec{a} \vdash \vec{b}$

Senkrecht zueinander, wenn Skalarprodukt zweier Einheitsvektoren 0 ergibt.

4.11 Länge des Vektors

$$|\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

4.12 Einheitsvektor

$$e_v = \frac{1}{||v||} \bullet v = \frac{1}{\sqrt{v \cdot v}} \bullet v$$
$$(i = e_1, j = e_2, k = e_3)$$

$$\vec{e}_x = [1, 0, 0]^T \\ \vec{e}_y = [0, 1, 0]^T \\ \vec{e}_z = [0, 0, 1]^T$$

4.13 Euklidische Distanz

$$\bar{AB} = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_n - a_n)^2}$$

4.14 Gerade im 2/3D

• Punkt-Punktform mit Vektoren 2/3D $\vec{r} = \vec{r}_1 + t(\vec{r}_1 - \vec{r}_0), t \in \mathbb{R}$ \vec{r}_1 : Punkt, \vec{r}_2 : Punkt

• Punkt-Richtungsform mit Vektoren 2/3D $\vec{r} = \vec{r_0} + t\vec{r_1}, t \in \mathbb{R}$ $\vec{r_0}$: Punkt, $\vec{r_1}$: Richtungsvektor

• Achsenabschnitt-Steigungsform y = mx + b b: Achsenabschnitt, m: Steigung

 (x₀,y₀): Punkt, m: Steigung
 Allgemeine Geradengleichung ax + by + c = 0

4.15 Hessische Normalform

 $a, b, c \in \mathbb{R}$

• **Punkt-Richtungsform** $(y - y_0) = m(x - x_0)$

Viktorielle Schreibweise der Hessischen Normalform

 $\tilde{\mathbf{n}} \bullet (\tilde{\mathbf{x}} - \tilde{\mathbf{x}}_0) = \mathbf{0}$ $\operatorname{da} \vec{n} \vdash (\vec{x} - \vec{x}_0)$ $\Rightarrow n_x(x - x_0) + n_y(y - y_0) =$ $n_x x + n_y y - (n_x x_0 + n_y y_0)$

 $d=(n_xx_0+n_yy_0)=\vec{n}\bullet\vec{x}_0$ \vec{n} muss normalisiert sein: $|\vec{n}|=1\Rightarrow \frac{1}{\sqrt{n_x^2+n_y^2}}\bullet\vec{n}$

Abstand vom Uhrsprung: d

 $\mathbf{n_x} \mathbf{x} + \mathbf{n_y} \mathbf{y} - \mathbf{d} = \mathbf{0}$ $d = (n_x x_0 + n_y y_0) = \vec{n} \bullet \vec{x}_0$

 $d > 0 \Leftrightarrow (0,0) \in -HE$ $d < 0 \Leftrightarrow (0,0) \in +HE$

$$g: ax + by + c = 0$$

$$\vec{n} = \begin{bmatrix} n_x \\ n_y \end{bmatrix} = \frac{1}{\sqrt{a^2 + b^2}} \begin{bmatrix} a \\ b \end{bmatrix}$$

$$d = -\frac{c}{\sqrt{a^2 + b^2}}$$

4.16 Hessische Normalform Ebene

$$\epsilon: ax + by + cz + d = 0$$

$$n_x x + n_y y + n_z z - D = 0$$
; HNF der Ebene $\epsilon \in \mathbb{R}^3$

$$\vec{n} = \begin{bmatrix} n_x \\ n_y \\ n_z \end{bmatrix} = \frac{1}{\sqrt{a^2 + b^2 + c^2}} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$D = -\frac{d}{\sqrt{a^2 + b^2 + c^2}}$$

4.17 Achsenabschnitt

Gegeben sind 3 Punkte $p_x = x$, $p_y = y$, $p_z = z$ die ergeben eine Ebenegleichung:

$$\frac{\mathbf{x}}{\mathbf{p_x}} + \frac{\mathbf{y}}{\mathbf{p_y}} + \frac{\mathbf{z}}{\mathbf{p_z}} - 1 = 0$$

4.18 Projektion eines Vektors

 $ec{b}$ Richtung $ec{a}$: $ec{b}_{ec{a}} = rac{ec{a} ullet ec{b}}{|ec{a}|^2} ec{a}$

 $\begin{array}{l} b_a \ \textit{mal Einheitsvektor} \ \vec{a} \\ \vec{b}_{\vec{a}} = b_a \frac{1}{|\vec{a}|} \vec{a} = |\vec{a}| |\vec{b}| \cos \phi \frac{1}{|\vec{a}|} \vec{a} \\ = \frac{\vec{a} \bullet \vec{b}}{|\vec{a}|^2} \vec{a} \end{array}$

4.19 Vektorprodukt

4.20 Spatprodukt

4.21 Translation 2D

4.22 Skalierung 2D

4.23 Rotation 2D

4.24 Begriffe

Ortsvektor Richtungsvektor Einheitsvektor

Linearkombination *kollinear*

Linear Unabhängig komplanar

Skalar Rechtssystem Eine Richtung im Raum Eine Einheit in eine beliebige Richtung Ein Vektor, der ein vielfaches eines Einheitvektors ist. $\vec{c} = \lambda \vec{a} + \mu \vec{b}$ Vektoren sind unabhängig wenn $\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \dots + \lambda_n \vec{a}_n = \vec{0}$ $\Leftrightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0$ Ist ein reelle oder komplexe Zahl Koordinatensystem aufgebaut wie die rechte Hand wobei; der Zeigfinger X-Achse (\vec{e}_x) , Mittelfinger

Vom Ursprung zum Punkt

Y-Achse (\vec{e}_y) und Daumen

Z-Achse (\vec{e}_z)

5 Transformation

5.1 Transformation des Koordinatenystems

TODO

5.2 homogene Koordinaten

jeder Punkt P(x,y,z) des Raumes $\mathbb{R}^{1/2}$ besitzt eine 4komponenten Vektor \vec{r}

$$\vec{r} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, x = \frac{x_1}{x_4}, y = \frac{x_2}{x_4}, z = \frac{x_3}{x_4}$$

$$(x, y, z) = (\frac{x_1}{x_4}, \frac{x_2}{x_4}, \frac{x_3}{x_4})$$

5.3 Ebene im Raum

Ebene ϵ *im Raum* \mathbb{R}^3 $\epsilon : ax + by + cz + d = 0$ Hessische Normalform

$$\vec{w} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}, \text{Punkt: } \vec{r} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Ebenengleichung:

$$\vec{w} \bullet \vec{r} = w^T \cdot r = ax + by + cz + d = 0$$

5.4 Prokektive Transformation

Die homogene Matrix H ist nur bis auf einen konstanten Faktor bestimmt, heisst, alle Vielfachen von H sind auch gültig

 $\eta: \mathbb{P}^3 \mapsto \mathbb{P}^3$ stellt eine **projektiven Transformation** dar

$$\eta(r) = \mathbf{H} \cdot r = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Euklidisch (starre Bewegung

$$D = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{bmatrix}$$

Abstand zwischen zwei Punkten, alle Winkel $(R^{-1} = R^T)$

Ähnlichkeit

$$S = \begin{bmatrix} k \cdot \mathbf{M} & t \\ 0^T & 1 \end{bmatrix}$$

Winkel zwischen zwei Punkten, alle Winkel

$$A = \begin{bmatrix} \mathbf{C} & t \\ 0^T & 1 \end{bmatrix}$$

Parallelität, Verhältnis zwischen Volumeninhalt

Allgemein

$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix}$$
Geraden bleiben Geraden

TODO Translation, Spiegelung an einer Ebene, Rotation, Zusammensetzen von

5.6 Rotation um beliebige Achse

5.5 Euklidische Transformationen

- 1) Rotation um ϕ um z-Achse (Matrix D)
- 2) Rotation um den Winkel $\theta \in [0, \pi]$ (um frühere X-Achse) (Matrix C)
- 3) Eigentlich Rotation um den gegeben Winkel ψ (Matrix

$$c_{\alpha} = \cos \alpha, \, s_{\alpha} = \cos \alpha, \, \alpha \in \phi, \theta, \psi$$

$$\mathbf{D} = \begin{bmatrix} c_{\phi} & s_{\phi} & 0 \\ -s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\theta} & s_{\theta} \\ 0 & -s_{\theta} & c_{\theta} \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} c_{\psi} & s_{\psi} & 0 \\ -s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Danach wieder zurück rotieren um ϕ und θ

5.7 Rotation um eine Achse durch den **Ursprung**

TODO insert T / $R_{y,x,z}$

Todo rotation around any axis

Todo altertative, rotation around origin

5.8 Parallele Projektion

Projektion auf Ebene $\epsilon: ax+by+cz+d=0$ Die ebene ist definiert durch Normalvektor $\vec{n}=\begin{bmatrix} a\\b\\c\end{bmatrix}$ Normalenvektor erhalten: $|\vec{n}|=\sqrt{a^2+b^2+c^2}=1$

Projektionsrichtung definiert durch $\vec{v} = (v_x, v_y, v_z)$ Normalisieren von Projektionsrichtung: $|\vec{v}|$

Ist $|\vec{n}|$ (Ebenen Normalenvektor) und $|\vec{v}|$ (Projektion-srichtung) gegeben

$$\vec{x} = \vec{x}_0 + t \vec{v}$$
, komponentenweise
$$\begin{bmatrix} x = x_0 + t v_x \\ y = y_0 + t v_y \\ y = y_0 + t v_y \end{bmatrix}$$

Wobei x₀ Punkt wo auf x auf Ebene Projeziert wird

 ψ entspricht Winkel zwischen \vec{n} und \vec{v}

$$cos(\psi) = \vec{v} \bullet \vec{n}$$

TODO - gleichung t t*

5.9 Parallele Projektionsmatrix

$$\begin{bmatrix} x^* \\ y^* \\ z^* \end{bmatrix} = \mathbf{H} \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} =$$

$$\underbrace{\begin{bmatrix} (c_{\psi} - av_x) & -bv_x & -cv_x & -dv_x \\ -av_y & (c_{\psi} - bv_y) & -cv_y & -dv_y \\ -av_z & -bv_z & (c_{\psi} - cv_z) & -dv_z \\ 0 & 0 & 0 & c_{\psi} \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \\ z_0 \\ 1 \end{bmatrix}$$

$$\cos(\psi) = c_{\psi}$$

5.10 Perspektivische Projektion

Fall wenn Zentrum O im Nullpunkt

$$\epsilon: ax + by + cz + d = 0$$
, Ebene

Beliebigen Punkt $A_0(x_0,y_0,z_0)$ mit Projektionspunkt $A^*(x^*,y^*,z^*)$ in Ebene ϵ

$$\begin{bmatrix} x^* \\ y^* \\ z^* \end{bmatrix} = \begin{bmatrix} \lambda x_0 \\ \lambda y_0 \\ \lambda z_0 \end{bmatrix}$$
$$\lambda = -\frac{d}{ax_0 + by_0 + cx_0}$$

$$(ax_0 + by_0 + cz_0) \cdot \begin{bmatrix} x^* \\ y^* \\ z^* \\ 1 \end{bmatrix} = \begin{bmatrix} -dx_0 \\ -dy_0 \\ -dz_0 \\ ax_0 + by_0 + cz_0 \end{bmatrix} = \begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & -d & 0 \\ a & b & c & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \\ z_0 \\ 1 \end{bmatrix}$$

5.11 Perspektivische Projektionmatrix

$$\mathbf{H} = \begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & -d & 0 \\ a & b & c & 0 \end{bmatrix}$$

5.12 Sichtvolumen Clipping

Das kanonische Sichtvolmen ist ein Würfel mit $P(\pm 1, \pm 1, \pm 1)$

Defür sind vorne und hinten, sowie zwei Punkte bestimmend Grösse gegeben

P links unten, Q rechts oben z vorne z = -a, z hinten z = -b

$$\mathbf{T} = \begin{bmatrix} \frac{2a}{x_Q - x_P} & 0 & \frac{x_Q + x_P}{x_Q - x_P} & 0\\ 0 & \frac{2a}{y_Q - y_P} & \frac{y_Q + y_P}{y_Q - y_P} & 0\\ 0 & 0 & -\frac{b + a}{b - a} & -2\frac{ba}{b - a}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

6 Curves

6.1 Kurvie in der Ebene

Explizite Darstellung

 $\gamma:[a,b] o \mathbb{R}, x \mapsto y = f(x)$ Kreis: oberer Halbkreis $\sqrt{r^2-x^2}$ unterer Halbkreis $\sqrt{r^2-x^2}$

Implizite Darstellung

$$F(x,y) = 0$$

Kreis: $x^2 + y^2 - r^2 = 0$

Parameterdarstellung

$$\gamma: [a,b] \to \mathbb{R}^2, t \mapsto X(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Punkte miteinander verbunden, einzeln angegeben

6.2 Kurve im Raum

$$\gamma: [a,b] \to \mathbb{R}^3, t \mapsto X(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$$

6.3 Spirale entlang des Zylinders

$$\begin{split} x^2 + y^2 &= r^2 \\ \gamma : [0, 4\pi] \to \mathbb{R}^3, t \mapsto X(t) = \begin{bmatrix} r \cos t \\ r sint \\ ht/(2\pi) \end{bmatrix} \\ \textit{Grundriss ergibt Kreis, H\"{o}he Linear} \end{split}$$

6.4 Methode unbestimmte Koeffizienten

$$P_3(x) = c_0 + c_1 x^2 + c_2 x^2 + c_3 x^3$$

$$\begin{bmatrix} 1 & x_0 & x_0^2 & x_0^3 \\ 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$c_0 = c_1 = c_2 = c_3 = 1$$

6.5 Lagrange Methode

$$l_0(x) = (x - x_1)(x - x_2) \dots$$

$$L_0(x) = \frac{l_0(x)}{l_0(x_0)} = \frac{(x - x_1)(x - x_2) \dots}{(x_0 - x_1)(x_0 - x_2) \dots}$$

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n(x)$$

$$l_k(x) = \prod_{i=0}^n i \neq k} (x - x_i)$$

$$L_k(x) = \frac{l_k(x)}{l_k(x_k)}$$

6.6 Lineare Bézier spline

$$P(t) = (1-t)P_0 + P_1(0 \le t \le 1)$$

Gewichteter Durchschnitt der Kontrollpunkte

$$P(t) = (P_1 - P_0)t + P_0$$
Polynom in t

$$P(t) = \begin{bmatrix} P_0, P_1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix} (0 \le t \le 1)$$
Matrixform

6.7 Quadric Bézier spline

drei Kontrollpunkte P_0, P_1, P_2

$$P_0^1(t) = (1-t)P_0 + P_1$$

$$P_1^1(t) = (1-t)P_0 + P_1$$

$$P(t) = (1-t)^2 P_0 + 2(1-t)t P_1 + t^2 P_2$$

6.8 Qubic Bézier Spline

vier Kontrollpunkte P_0, P_1, P_2, P_3

$$\begin{aligned} &\textit{Mit } P_0^1, \, P_1^1 \, \textit{und} \\ &P_2^1(t) = (1-t)P_2 + tP_3 \\ \\ &P_1^2(t) = (1-t)P_0^1(t) + tP_1^1(t) \\ &P_2^2(t) = (1-t)P_1^1(t) + tP_2^1(t) \\ \\ &P(t) = (1-t)^3P_0 + 3(1-t)^2tP_1 + 3(1-t)t^2P_2 + t^3P_3 \end{aligned}$$

6.9 Bernsteinpolynome

7 Appendix

7.1 Radians

Winkel α°	Bogenmass	Sinus	Kosinus
0°	0	$\frac{1}{2}\sqrt{0} = 0$	$\frac{1}{2}\sqrt{4} = 1$
30°	$\frac{\pi}{6}$	$\frac{1}{2}\sqrt{1} = \frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
45°	$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2} = \frac{1}{\sqrt{2}}$	$\frac{1}{2}\sqrt{2} = \frac{1}{\sqrt{2}}$
60°	$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{1} = \frac{1}{2}$
90°	$\frac{\pi}{2}$	$\frac{1}{2}\sqrt{4} = 1$	$\frac{1}{2}\sqrt{0} = 0$
180°	π	0	-1
270°	$\frac{3\pi}{2}$	-1	0
360°	2π	0	1

$$\frac{1}{\cos^2(\alpha) = \frac{1}{1 + \tan^2(\alpha)}, \sin^2(\alpha) = \frac{\tan^2(\alpha)}{1 + \tan^2(\alpha)}}$$