Πραγματικοί Αριθμοί

1.1 Μαθηματική Επαγωγή

Θεώρημα 1.1.1. Έστω $S \subseteq \mathbb{N}$ τέτοιο ώστε:

(i)
$$1 \in S$$

(ii) $n \in S \Rightarrow n+1 \in S$ $\Rightarrow S = \mathbb{N}$

Παράδειγμα 1.1.2. Να αποδείξετε ότι $4^n \ge n^2, \ \forall n \in \mathbb{N}.$

Απόδειξη.

- Για n = 1, έχω: $4^1 \ge 1^2$, ισχύει.
- **Σ**στω ότι η ανισότητα ισχύει για n, δηλ. $4^n \ge n^2$ (1.1)
- \blacksquare Θα δείξουμε ότι ισχύει και για n+1. Πράγματι:

$$4^{n+1} = 4^n \cdot 4 \ge n^2 \cdot 4 = 4n^2 = n^2 + 2n^2 + n^2 \ge n^2 + 2n + 1 = (n+1)^2.$$

Παράδειγμα 1.1.3. Να αποδείξετε ότι $2^n \ge n^3$, $\forall n \ge 10$.

Απόδειξη.

- \blacksquare Για n = 10, έχω: $2^{10} = 1024 \ge 1000 = 10^3$, ισχύει.
- **Σ** Έστω ότι η ανισότητα ισχύει για n, δηλ. $2^n \ge n^3$ (1.2).
- lacktriangle Θα δείξουμε ότι ισχύει και για n+1. Πράγματι:

$$2^{n+1} = 2^{n} \cdot 2 \overset{\text{(1.2)}}{\geq} n^{3} \cdot 2 = 2n^{3} = n^{3} + n^{3} = n^{3} + nn^{2} \overset{n \geq 10}{\geq} n^{3} + 10n^{2} > n^{3} + 7n^{2} = n^{3} + 3n^{2} + 3n^{2} + n^{2} = n^{3} + 3n^{2} + 3n + 1 = (n+1)^{3}$$

1.2 Ανισότητα Bernoulli

$$(1+a)^n \ge 1 + na, \quad \forall a \ge -1, \ \forall n \in \mathbb{N}$$

Απόδειξη.

- \blacksquare Για n=1, έχω: $(1+a)^1=1+a\geq 1+a=1+1\cdot a$, ισχύει.
- **E**στω ότι η ανισότητα ισχύει, για n, δηλ. $(1+a)^n \ge 1 + na$ (1.3)
- lacktriangle Θα δείξουμε ότι ισχύει και για n+1. Πράγματι

$$(1+a)^{n+1} = (1+a)^n (1+a) \stackrel{(1,3)}{\underset{a>-1}{\geq}} (1+na)(1+a) = 1+a+na+na^2 = 1+(n+1)a+na^2 \ge 1+(n+1)a$$

Παρατήρηση 1.2.1. Aν $n=2,3,4,\ldots$ και a>-1, τότε ισχύει $(1+a)^n>1+na$.

1.3 Απόλυτη Τιμή

Ορισμός 1.3.1. Για κάθε $a \in \mathbb{R}$, θέτουμε

$$|a| = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$$

Παρατήρηση 1.3.1. Άμεση συνέπεια του ορισμού είναι οι σχέσεις:

- $|a| \ge 0, \ \forall a \in \mathbb{R}$
- $-|a| \le a \le |a|, \ \forall a \in \mathbb{R}$

Πρόταση 1.3.2. Έστω $\theta > 0$. Τότε

$$|a| \le \theta \Leftrightarrow -\theta \le a \le \theta$$

Απόδειξη.

- (\Rightarrow) Έστω ότι $|a| \le \theta$, $a \in \mathbb{R}$ και $\theta > 0$.
 - Έστω $a \geq 0$. Τότε |a| = a, οπότε: $0 \leq |a| \leq \theta \Rightarrow 0 \leq a \leq \theta \Rightarrow -\theta \leq a \leq \theta$
 - Έστω a<0. Τότε |a|=-a, οπότε: $0\leq |a|\leq \theta \Rightarrow 0<-a\leq \theta \Rightarrow -\theta\leq a<0 \Rightarrow -\theta\leq a\leq \theta$
- (\Leftarrow) Έστω $-\theta \le a \le \theta$ για $a \in \mathbb{R}$ και $\theta > 0$.
 - Έστω $a \ge 0$. Τότε |a| = a. Οπότε $|a| = a \le \theta$.
 - Έστω a<0. Τότε |a|=-a. Οπότε $|a|=-a\leq \theta$.

Πρόταση 1.3.3 (Τριγωνική Ανισότητα). Για κάθε $a, b \in \mathbb{R}$, ισχύει:

- (i) $|a+b| \le |a| + |b|$
- (ii) $|a| |b| \le |a + b|$

Απόδειξη.

(i) Έχουμε ότι

$$a \le |a| \Rightarrow -|a| \le a \le |a|$$

$$b \le |b| \Rightarrow -|b| \le b \le |b|$$

Με πρόσθεση, προκύπτει

$$-(|a|+|b|) < a+b < |a|+|b|$$

Οπότε από την πρόταση 1.3.2, ισχύει: $|a+b| \le |a| + |b|$

(ii) Exoure $|a| = |(a+b) - b| \le |a+b| + |-b| = |a+b| + |b| \Rightarrow |a| - |b| \le |a+b|$ (1.4).

Παρατήρηση 1.3.4. Έχουμε $|b| = |(a+b)-a| \le |a+b| + |a| \Rightarrow |b|-|a| \le |a+b|$ (1.5). Άρα, από τις (1.4) και (1.5), έχουμε $-|a+b| \le |a|-|b| \le |a+b|$, οπότε τελικά, από την πρόταση 1.3.2 ισχύει ότι

$$||a| - |b|| \le |a + b| \tag{1.6}$$

Τώρα, χρησιμοποιώντας το i) υποερώτημα της πρότασης 1.3.2, για το -b, έχουμε:

$$|a - b| \le |a| + |b|$$

και από την σχέση (1.6), για -b έχουμε:

$$||a| - |b|| \le |a - b|$$

Οπότε, τελικά έχουμε:

$$||a| - |b|| \le |a \pm b| \le |a| + |b|$$

1.4 Μέγιστο και Ελάχιστο

Ορισμός 1.4.1. Έστω $A \subseteq \mathbb{R}$. Λέμε ότι το A έχει **μέγιστο** στοιχείο, αν υπάρχει $x_0 \in A$ τέτοιο ώστε $a \le x_0, \ \forall a \in A$.

Ορισμός 1.4.2. Έστω $A \subseteq \mathbb{R}$. Λέμε ότι το A έχει **ελάχιστο** στοιχείο, αν υπάρχει $x_0 \in A$ τέτοιο ώστε $a \ge x_0, \forall a \in A$.

Παράδειγμα 1.4.1. Έστω $A = [0,3] = \{x \in \mathbb{R} : 0 \le x \le 3\}$. Το $x_0 = 3$ είναι μέγιστο του A, γιατί $3 \in A$ και $a \le 3$, $\forall a \in A$. Ομοίως $x_0 = 0$ είναι ελάχιστο του A, γιατί $0 \in A$ και $a \ge 0$, $\forall a \in A$.

Παράδειγμα 1.4.2. Το σύνολο $A = (-\infty, 3]$ έχει μέγιστο στοιχείο το 3, ενώ προφανώς δεν έχει ελάχιστο στοιχείο.

Παράδειγμα 1.4.3. Να δείξετε ότι το σύνολο A = (0,3) δεν έχει μέγιστο στοιχείο.

Απόδειξη. (Με άτοπο)

 $A=(0,3)=\{x\in\mathbb{R}:\ 0< x<3\}$. Έστω ότι $x_0=\max A$. Άρα $x_0\in A\Rightarrow x_0<3$. Άρα $(x_0,3)\neq\emptyset\Rightarrow (x_0,3)\cap A\neq\emptyset\Rightarrow\exists a\in(x_0,3)\cap A$. Δηλαδή $\exists a\in A$ τέτοιο ώστε $a>x_0$. Άτοπο, γιατί $x_0=\max A$.

Πρόταση 1.4.4. Αν $A \subseteq \mathbb{R}$ έχει μέγιστο στοιχείο, τότε αυτό είναι μοναδικό και συμβολίζεται με max **A**.

 $A\pi \emph{\emph{o}}\emph{\emph{d}}\emph{\emph{e}}\emph{\emph{i}} \xi \emph{\emph{h}}.$ Έστω ότι το A έχει δυο μέγιστα στοιχεία, $x_0, x_0'.$ Τότε

 x_0 μέγιστο του $A \Rightarrow a \leq x_0$, $\forall a \in A \xrightarrow{x_0' \in A} x_0' \leq x_0$ x_0' μέγιστο του $A \Rightarrow a \leq x_0'$, $\forall a \in A \xrightarrow{x_0 \in A} x_0 \leq x_0'$

Πρόταση 1.4.5. Αν $A\subseteq\mathbb{R}$ έχει ελάχιστο στοιχείο, τότε αυτό είναι μοναδικό και συμβολίζεται με min \mathbf{A} .

Απόδειξη. Ομοίως

Ορισμός 1.4.3. Έστω $A \subseteq \mathbb{R}, \ A \neq \emptyset$. Λέμε ότι A είναι άνω φραγμένο, αν $\exists \mathbf{x_0} \in \mathbb{R}$ τέτοιο ώστε $a \leq x_0, \ \forall a \in A$.

Ορισμός 1.4.4. Έστω $A \subseteq \mathbb{R}, \ A \neq \emptyset$. Λέμε ότι A είναι **κάτω φραγμένο**, αν $\exists \mathbf{x_0} \in \mathbb{R}$ τέτοιο ώστε $a \geq x_0, \ \forall a \in A$.

Παρατηρήσεις 1.4.6.

- Το μέγιστο (ελάχιστο) στοιχείο ενός συνόλου, όταν υπάρχει, αποτελεί άνω (κάτω) φράγμα του συνόλου.
- Ένα άνω (κάτω) φράγμα, ενός συνόλου, όταν ανήκει στο σύνολο, είναι το μέγιστο (ελάχιστο) στοιχείο του συνόλου.
- Το άνω (κάτω) φράγμα ενός συνόλου, δεν είναι μοναδικό.

Παράδειγμα 1.4.7.

- (i) Το σύνολο A=(0,3) έχει ως άνω φράγματα τους αριθμούς $3,4,144,\ldots$ και κάτω φράγματα τους αριθμούς $0,-1,-2,-128,\ldots$ Συγκεκριμένα, το σύνολο των άνω φραγμάτων του A είναι το $\{x\in\mathbb{R}:x\geq 3\}=[3,+\infty)$ και το σύνολο των κάτω φραγμάτων είναι το $\{x\in\mathbb{R}:x\leq 0\}=(-\infty,0].$
- (ii) Το σύνολο $B=[-1,+\infty)$ δεν είναι άνω φραγμένο, ενώ το σύνολο των κάτω φραγμάτων του είναι το $\{x\in\mathbb{R}:x\leq -1\}$. Παρατηρούμε ότι $\min B=-1$
- (iii) Αν $C=(-\infty,2)\cup\{3\}$, τότε παρατηρούμε ότι $\max C=3$ και ότι το σύνολο των άνω φραγμάτων είναι το $[3,+\infty)$, ενώ το σύνολο C δεν είναι κάτω φραγμένο.

Παρατήρηση 1.4.8.

- Από τα παραδείγματα (ii) και (iii) υπάρχουν σύνολα που δεν είναι άνω ή κάτω φραγμένα.
- Στο παράδειγμα (i) το 3 είναι το ελάχιστο από τα άνω φράγματα του A, ενώ το 0 είναι το μέγιστο από τα κάτω φράγματα του A.

Ορισμός 1.4.5. Έστω $A\subseteq\mathbb{R},\ A\neq\emptyset$. Λέμε ότι το A είναι **φραγμένο**, αν είναι άνω και κάτω φραγμένο. Τότε υπάρχουν $m,M\in\mathbb{R}$ ώστε $m\leq a\leq M,\quad a\in A$

Πρόταση 1.4.9. Ένα σύνολο $A\subseteq\mathbb{R},\ A\neq\emptyset$ είναι φραγμένο αν και μόνο αν $\exists M>0\ :\ |a|\leq M,\ \forall a\in A.$

Απόδειξη.

 (\Rightarrow) Έστω Aφραγμένο. Τότε $\exists m', M' \in \mathbb{R} \ : \ m' \leq a \leq M', \ \forall a \in A.$

Επιλέγω $M = \max\{|m'|, |M'|\}$. Τότε M>0 και

$$-M \le -|m'| \le m' \le a \le M' \le |M'| \le M, \quad \forall a \in A$$
$$-M \le a \le M, \quad \forall a \in A$$
$$|a| \le M, \quad \forall a \in A$$

 (\Leftarrow) Έστω ότι $\exists M>0: |a|\leq M, \ \forall a\in A\Leftrightarrow -M\leq a\leq M, \ \forall a\in A.$

Τότε προφανώς έχουμε ότι -M και M, είναι αντίστοιχα κάτω και άνω φράγματα του A, και άρα A φραγμένο.

Πρόταση 1.4.10. Έστω $A\subseteq\mathbb{R},$ $A\neq\emptyset$ και έστω $-A=\{x\in\mathbb{R}: x=-a,\ a\in A\}=\{-a: a\in A\}$. Αν M είναι άνω φράγμα του A, τότε το -M είναι κάτω φράγμα του συνόλου -A.

Απόδειξη. Έστω M α.φ. του A. Τότε

$$\begin{aligned} &a\leq M,\ \forall a\in A\Rightarrow\\ &-a\geq -M,\ \forall a\in A\Rightarrow\\ &-a\geq -M,\ \forall (-a)\in -A\Rightarrow\\ &x\geq -M,\ \forall x\in -A,\quad \text{όπου θέσαμε }x=-a \end{aligned}$$

οπότε -M κ.φ. του -A.

Πρόταση 1.4.11. Έστω $A \subseteq \mathbb{R}$, $A \neq \emptyset$ και έστω $-A = \{x \in \mathbb{R} : x = -a, a \in A\} = \{-a : a \in A\}$. Αν m είναι κάτω φράγμα του A, τότε το -m είναι άνω φράγμα του συνόλου -A.

Απόδειξη. Ομοίως

1.5 Supremum και Infimum

Ορισμός 1.5.1. Έστω $A\subseteq\mathbb{R}, A\neq\emptyset$ και A άνω φραγμένο. Αν υπάρχει άνω φράγμα s του A τέτοιο ώστε

 $s \leq M$, για κάθε M άνω φράγμα του A,

τότε το s ονομάζεται **supremum** του A και συμβολίζεται $s=\sup A$.

Ορισμός 1.5.2. Έστω $A\subseteq\mathbb{R}, A\neq\emptyset$ και A κάτω φραγμένο. Αν υπάρχει κάτω φράγμα s του A τέτοιο ώστε

 $s \ge m$, για κάθε m κάτω φράγμα του A,

τότε το s ονομάζεται **infimum** του A και συμβολίζεται $s=\inf A$.

Παράδειγμα 1.5.1. Αν $A=\{-1,-2\}\cup(1,4]$, τότε παρατηρούμε ότι $\max A=4$, $\min A=-2$, το σύνολο των άνω φραγμάτων είναι το $[4,+\infty]$ ενώ το σύνολο των κάτω φραγμάτων είναι το $(-\infty,-2)$. Επομένως, $\sup A=\max A=4$ και $\inf A=\min A=-2$

Παράδειγμα 1.5.2. Έστω A=(0,3). Θα δείξουμε ότι sup A=3. Πράγματι, το 3 προφανώς είναι α.φ. του A. Θα δείξουμε ότι είναι το ελάχιστο από τα άνω φράγματα του A. Έστω ότι δεν είναι, δηλαδή $\exists M$ α.φ. του A, ώστε $M<3\Rightarrow (M,3)\neq\emptyset\Rightarrow (M,3)\cap A\neq\emptyset\Rightarrow \exists a\in(M,3)\cap A$. Τότε, έχουμε ότι $a\in A$ και a>M, άτοπο, γιατί M είναι α.φ. του A. Ομοίως αποδεικνύουμε ότι inf A=0.

Πρόταση 1.5.3. Έστω $A \subseteq \mathbb{R}$, $A \neq \emptyset$ και το A έχει μέγιστο στοιχείο. Τότε $\sup A = \max A$.

Απόδειξη.

Έστω $x_0=\max A\Rightarrow a\leq x_0,\ \forall a\in A$, άρα x_0 α.φ. του A. Άρα το A είναι άνω φραγμένο και επειδή $A\neq\emptyset$, από το αξίωμα πληρότητας υπάρχει το $\sup A$. Ισχύει $x_0\leq\sup A$, γιατί $\sup A$ α.φ. του A και $x_0\in A$. Όμως x_0 επίσης α.φ. του A, άρα $\sup A\leq x_0$, γιατί το $\sup A$ είναι το ελάχιστο άνω φράγμα. Άρα $x_0=\sup A$.

Πρόταση 1.5.4. Έστω $A \subseteq \mathbb{R}, \ A \neq \emptyset$ και το A έχει ελάχιστο στοιχείο. Τότε inf $A = \min A$.

Απόδειξη. Ομοίως

1.6 Αξίωμα Πληρότητας

- Κάθε μη κενό και άνω φραγμένο υποσύνολο των πραγματικών αριθμών έχει supremum.
- Κάθε μη κενό και κάτω φραγμένο υποσύνολο των πραγματικών αριθμών έχει infimum.

Παρατήρηση 1.6.1.

- \blacksquare Αν το A δεν είναι άνω φραγμένο, τότε καταχρηστικά γράφουμε ότι $\sup A = +\infty.$
- Αν το A δεν είναι κάτω φραγμένο, τότε καταχρηστικά γράφουμε ότι $\inf A = -\infty$.

Πρόταση 1.6.2. Έστω ότι για τον $x \in \mathbb{R}$ ισχύει ότι $0 \le x < \varepsilon$, $\forall \varepsilon > 0$. Τότε x = 0.

Απόδειξη. Έστω ότι $0 \le x < \varepsilon$, $\varepsilon > 0$ και $x \ne 0 \Longrightarrow x > 0$. Τότε για $\varepsilon = x > 0$, έχουμε ότι $0 \le x < x$, άτοπο.

Πρόταση 1.6.3 (Αρχιμήδεια Ιδιότητα).

- (i) Το Ν δεν είναι άνω φραγμένο.
- (ii) $\forall y > 0, \exists n \in \mathbb{N} ; n > y$
- (iii) $\forall \varepsilon > 0, \ \exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$

Απόδειξη.

- (i) Έστω ότι το $\mathbb N$ είναι άνω φραγμένο. Λόγω ότι είναι και μη κενό $(1\in\mathbb N)$, από το αξίωμα Πληρότητας, έχουμε ότι υπάρχει το sup $\mathbb N$. Τότε από τη χαρακτηριστική ιδιότητα του supremum, έχουμε ότι για $\varepsilon=1>0,\ \exists n\in\mathbb N$: $\sup\mathbb N-1< n\Leftrightarrow n+1>\sup\mathbb N$, άτοπο.
- (ii) Έστω ότι δεν ισχύει η πρόταση. Τότε $\exists y>0, \ \forall n\in\mathbb{N}:\ n\leq y$. Δηλαδή το y είναι α.φ. του \mathbb{N} , άτοπο.
- (iii) Έστω ότι δεν ισχύει η πρόταση. Τότε $\exists \varepsilon > 0, \ \forall n \in \mathbb{N} \ : \ \frac{1}{n} \geq \varepsilon \Leftrightarrow \ n \leq \frac{1}{\varepsilon},$ δηλαδή $\frac{1}{\varepsilon}$ α.φ. του \mathbb{N} , άτοπο.

1.7 Χαρακτηριστική Ιδιότητα του Supremum και Infimum

Πρόταση 1.7.1. Έστω $A\subseteq\mathbb{R},$ $A\neq\emptyset$ και άνω φραγμένο. Έστω s α.φ. του A. Τότε

$$s = \sup A \Leftrightarrow \forall \varepsilon > 0, \ \exists a \in A : s - \varepsilon < a$$

Απόδειξη.

- (\Rightarrow) Έστω $s=\sup A$. Έστω $\varepsilon>0$. Έχουμε $s-\varepsilon< s$ άρα το $s-\varepsilon$ δεν είναι α.φ. του A, άρα $\exists a\in A$ τέτοιο ώστε $a>s-\varepsilon$.
- (\Leftarrow) Έστω ότι $\forall \varepsilon > 0$, $\exists a \in A : s \varepsilon < a$. Θ.δ.ο. $s = \sup A$.
 - $A \neq \emptyset$ A άνω φραγμένο $\Rightarrow \exists το sup A$

Έστω ότι $s \neq \sup A$, και λόγω ότι s α.φ. του A έχουμε ότι $\sup A < s$.

Επιλέγουμε $\varepsilon = s - \sup A > 0$

Τότε από την υπόθεση έχουμε ότι υπάρχει $a \in A : s-\varepsilon < a \Rightarrow s-s + \sup A < a \Rightarrow \sup A < a$, άτοπο, γιατί $\sup A$ α.φ. του A.

Πρόταση 1.7.2. Έστω $A \subseteq \mathbb{R}$, $A \neq \emptyset$ και κάτω φραγμένο. Έστω s κ.φ. του A. Τότε

$$s = \inf A \Leftrightarrow \forall \varepsilon > 0, \ \exists a \in A : \ a < s + \varepsilon$$

Πρόταση 1.7.3. Aν A,B μη-κενά, φραγμένα υποσύνολα του $\mathbb R$ με $A\subseteq B$ να δείξετε ότι $\inf B\leq\inf A\leq\sup A\leq\sup B$.

Απόδειξη.

■ Προφανώς inf $A \le \sup A$, γιατί $\forall x \in A$, inf $A \le x \le \sup A$.

■ Θα δείξουμε ότι $\inf B \leq \inf A$.

Αρκεί να δείξουμε ότι $\inf B$ κ.φ. του A. Πράγματι:

Έστω
$$x \in A \stackrel{A \subseteq B}{\Rightarrow} x \in B \Rightarrow \inf B \le x, \ \forall x \in A.$$
 Άρα $\inf B$ κ.φ. του A .

■ Θα δείξουμε οτι $A \leq \sup B$.

Άρκεί να δείξουμε ότι $\sup B$ α.φ. του A. Πράγματι:

Έστω
$$x \in A \stackrel{A \subseteq B}{\Rightarrow} x \in B \Rightarrow x \leq \sup B, \ \forall x \in A.$$
 Άρα $\sup B$ α.φ. του A .

Πρόταση 1.7.4. Έστω A μη κενό και φραγμένο υποσύνολο του $\mathbb R$ και έστω $-A=\{-a\ :\ a\in A\}$ Τότε:

- 1. \exists το sup(-A) και το inf(-A).
- $2. \sup(-A) = -\inf A$
- 3. $\inf(-A) = -\sup A$

Απόδειξη.

1. A φραγμένο, άρα $\exists m, M \in \mathbb{R}$ ώστε

$$\begin{split} m &\leq a \leq M, \quad \forall a \in A \\ -M &\leq -a \leq -m, \quad \forall a \in A \\ -M &\leq -a \leq -m, \quad \forall (-a) \in -A \end{split}$$

άρα, -m, -M είναι άνω και κάτω φράγματα, αντίστοιχα, του -A. Άρα -A είναι άνω και κάτω φραγμένο, είναι επίσης και μη κενό (γιατί A μη κενό), επομένως από το αξίωμα πληρότητας υπάρχουν τα $\sup(-A)$ και $\inf(-A)$.

2. Θα δείξουμε ότι $\sup(-A) \leq -\inf A$ και $-\inf A \leq \sup(-A)$ Πράγματι:

$$\begin{aligned} -a &\leq \sup(-A), \quad \forall (-a) \in -A \\ a &\geq -\sup(-A), \quad \forall (-a) \in -A \\ a &\geq -\sup(-A), \quad \forall a \in A \end{aligned}$$

οπότε το $-\sup(-A)$ είναι κάτω φράγμα του A, άρα $-\sup(-A) \leq \inf A \Rightarrow \sup(-A) \geq -\inf A$. Ομοίως

$$\begin{aligned} \inf A &\leq a, \quad \forall a \in A \\ -a &\leq -\inf A, \quad \forall a \in A \\ -a &\leq -\inf A, \quad \forall (-a) \in -A \end{aligned}$$

οπότε το $-\inf A$ είναι άνω φράγμα του -A, άρα $\sup(-A) \leq -\inf A$

3. Από το προηγούμενο ερώτημα, έχουμε $-\sup A = -\sup(-(-A)) = -(-\inf(-A)) = \inf(-A)$

Πρόταση 1.7.5. Έστω $A \subseteq \mathbb{R}, A \neq \emptyset$ και έστω $\lambda A = \{x \in \mathbb{R} : x = \lambda a, a \in A\} = \{\lambda a : a \in A\}$. Τότε

- (i) A άνω φραγμένο και $\lambda>0\Rightarrow \exists$ το $\sup A$ και $\sup(\lambda A)=\lambda\sup A$
- (ii) A κάτω φραγμένο και $\lambda < 0 \Rightarrow \exists$ το sup A και sup $(\lambda A) = \lambda \inf A$

Απόδειξη.

(i) A άνω φραγμένο $\Rightarrow \exists M \in \mathbb{R}$ τέτοιο ώστε

$$\begin{split} a &\leq M, \ \forall a \in A \Rightarrow \lambda a \leq \lambda M, \ \forall a \in A \\ &\Rightarrow \lambda a \leq \lambda M, \ \forall \lambda a \in \lambda A \\ &\Rightarrow x \leq \lambda M, \ \forall x \in \lambda A \quad \text{όπου θέσαμε } x = \lambda a \end{split}$$

δηλαδή, το λM είναι α.φ. του λA .

Άρα το λA είναι άνω φραγμένο και μη-κενό (γιατί $A \neq \emptyset$), άρα υπάρχει το $\sup(\lambda A)$. Θα δείξουμε ότι

$$sup(\lambda A) \le \lambda sup A$$
 και $sup(\lambda A) \ge \lambda sup A$

Για την πρώτη σχέση αρκεί να δείξουμε ότι λ sup A είναι α.φ. του λA. Πράγματι

$$a \leq \sup A, \ \forall a \in A \Rightarrow \lambda a \leq \lambda \sup A, \ \forall a \in A$$
$$\Rightarrow \lambda a \leq \lambda \sup A, \ \forall \lambda a \in \lambda A$$
$$\Rightarrow x \leq \lambda \sup A, \ \forall x \in \lambda A$$

άρα το $\lambda \sup A$ είναι α.φ. του λA .

■ Αποδεικνύουμε ότι λ sup A είναι το ελάχιστο άνω φράγμα του λA . Πράγματι Έστω M άνω φράγμα του λA με $M<\lambda$ sup $A\stackrel{\lambda>0}{\Rightarrow}\frac{M}{\lambda}<\sup A$, άτοπο, γιατί $\frac{M}{\lambda}$ α.φ. του A. Πράγματι, αφού M α.φ. του λA , τότε

$$\begin{split} x \leq M, \ \forall x \in \lambda A \Rightarrow \lambda a \leq M, \ \forall \lambda a \in \lambda A \\ \Rightarrow \lambda a \leq M, \ \forall a \in A \\ \Rightarrow a \leq \frac{M}{\lambda}, \ \forall a \in A \end{split}$$

άρα $\frac{M}{\lambda}$ είναι α.φ. του Α.

(ii) Ομοίως

Πρόταση 1.7.6. Έστω A, B, μη-κενά και φραγμένα υποσύνολα του \mathbb{R} . Τότε:

- i) Υπάρχουν τα $\sup (A \cup B)$ και $\inf (A \cup B)$
- ii) $\sup (A \cup B) = \max \{ \sup A, \sup B \}$
- iii) $\inf(A \cup B) = \min\{\inf A, \inf B\}$

Απόδειξη.

Έστω
$$x \in A \cup B \Rightarrow \begin{cases} x \in A \\ x \in B \end{cases} \Rightarrow \begin{cases} x \leq \sup A, \quad \forall x \in A \\ x \leq \sup B, \quad \forall x \in B \end{cases}$$
 Άρα $x \leq \max\{\sup A, \sup B\}, \quad \forall x \in A \cup B.$

Δηλαδή, το $\max\{\sup A,\sup B\}$ είναι άνω φράγμα του συνόλου $A\cup B$. Άρα $A\cup B$ είναι άνω φραγμένο κ μη κενό (γιατί A,B μη κενά), οπότε από το αξίωμα πληρότητας υπάρχει το $\sup (A\cup B)$. Προφανώς ισχύει ότι $\sup (A\cup B)\le \max\{\sup A,\sup B\}$. Επομένως αρκεί να δείξουμε ότι $\max\{\sup A,\sup B\}\le \sup (A\cup B)$. Πράγματι,

$$\left. \begin{array}{l} A \subseteq A \cup B \\ B \subseteq A \cup B \end{array} \right\} \Rightarrow \sup_{} A \leq \sup_{} \left(A \cup B \right) \\ \sup_{} B \leq \sup_{} \left(A \cup B \right) \end{array} \right\} \Rightarrow \max_{} \left\{ \sup_{} A, \sup_{} B \right\} \leq \sup_{} \left(A \cup B \right)$$

Ομοίως για το infimum.

Πρόταση 1.7.7. Έστω A και B μη κενά και φραγμένα υποσύνολα του \mathbb{R} , με $A\cap B\neq\emptyset$. Να αποδείξετε ότι:

- i) Υπάρχουν τα sup $(A \cap B)$ και inf $(A \cap B)$
- ii) $\sup (A \cap B) \le \min \{\sup A, \sup B\}$
- iii) $\inf(A \cap B) > \max\{\inf A, \inf B\}$

Απόδειξη.

Έχουμε, $A \cap B \subseteq A$ και $A \cap B \subseteq B$. Οπότε το σύνολο $A \cap B$ είναι φραγμένο σύνολο, αφού τα A και B είναι φραγμένα. Είναι και μη κενό, οπότε από το αξίωμα Πληρότητας, υπάρχει το sup $(A \cap B)$ και το inf $(A \cap B)$.

i) Έχουμε,

$$A \cap B \subseteq A \Rightarrow \sup(A \cap B) \le \sup A \\ A \cap B \subseteq B \Rightarrow \sup(A \cap B) \le \sup B \Rightarrow \sup(A \cap B) \le \min\{\sup A, \sup B\}$$

ii) Έχουμε,

$$\left. \begin{array}{l} A\cap B\subseteq A\Rightarrow\inf A\leq\inf (A\cap B)\\ A\cap B\subseteq B\Rightarrow\inf B\leq\inf (A\cap B) \end{array} \right\} \Rightarrow \max\{\inf A,\inf B\}\leq\inf (A\cap B)$$

Λήμμα 1.7.8. Έστω $x, y \in \mathbb{R}$ και $x < y + \varepsilon \quad \forall \varepsilon > 0$. Τότε $x \le y$.

Απόδειξη. (Με άτοπο)

Έστω $x < y + \varepsilon$ $\forall \varepsilon > 0$ και x > y. Τότε έχουμε ότι x - y > 0 και άν θέσουμε $\varepsilon = x - y$, τότε από την υπόθεση έχουμε ότι $x < y + x - y \Rightarrow x < x$, άτοπο.

Πρόταση 1.7.9. Έστω A,B μη κενά και φραγμένα υποσύνολα του $\mathbb R$ και έστω $A+B=\{a+b:a\in A$ και $b\in B\}$. Τότε:

- i) Υπάρχει το $\sup(A+B)$ και το $\inf(A+B)$.
- ii) $\sup (A+B) = \sup A + \sup B$
- iii) $\inf(A+B) = \inf A + \inf B$

Απόδειξη.

i) $A \neq \emptyset$ και φραγμένο, άρα από αξίωμα πληρότητας υπάρχουν τα A, A, A. Ομοίως και για το σύνολο A.

$$\left. \begin{array}{ll} a \leq \sup A, & \forall a \in A \\ b \leq \sup B, & \forall b \in B \end{array} \right\} \Rightarrow a+b \leq \sup A + \sup B, \quad \forall a \in A \text{ kal } \forall b \in B$$

Άρα sup A+ sup B είναι άνω φράγμα του A+B. Άρα το A+B είναι άνω φραγμένο και μη κενό (γιατί A,B μη κενά), οπότε από το αξίωμα πληρότητας, υπάρχει το sup (A+B). Ομοίως αποδεικνύεται ότι υπάρχει και το $\inf(A+B)$.

ii) Αφού $\sup A + \sup B$ άνω φράγμα του A + B, έχουμε:

$$\sup (A+B) < \sup A + \sup B \tag{1.7}$$

Αρκεί να δείξουμε ότι και $\sup A + \sup B \le \sup (A + B)$. Πράγματι, έστω $\varepsilon > 0$. Τότε:

$$\exists a \in A \ : \ \sup A - \frac{\varepsilon}{2} < a < \sup A \quad (\text{aps} \ \text{constant} \ \text{sup} \ A)$$

$$\exists b \in B \ : \ \sup B - \frac{\varepsilon}{2} < b < \sup B \quad (\text{aps} \ \text{constant} \ \text{constant} \ \text{sup} \ B)$$

$$\Rightarrow \sup A + \sup B - \varepsilon < a + b \leq \sup (A + B)$$

Άρα

$$\sup A + \sup B < \sup (A + B) + \varepsilon, \quad \forall \varepsilon > 0$$

Άρα από την πρόταση 1.7.8 έχουμε ότι

$$\sup A + \sup B < \sup (A + B) \tag{1.8}$$

Οπότε από τις σχέσεις (1.7) και (1.8), έπεται ότι $\sup (A + B) = \sup A + \sup B$.

iii) Ομοίως

Άσκηση 1.7.10. Έστω A, B μη κενά και φραγμένα υποσύνολα του $\mathbb R$ και έστω

$$A-B=\{a-b\ :\ a\in A\ \mathrm{kal}\ b\in B\}\quad \mathrm{kal}\quad A\cdot B=\{a\cdot b\ :\ a\in A\ \mathrm{kal}\ b\in B\}.$$

Τότε να εξετάσετε αν ισχύουν οι παρακάτω σχέσεις:

1.
$$\sup (A - B) = \sup A - \sup B$$

2.
$$\inf(A - B) = \inf A - \inf B$$

3.
$$\sup (A \cdot B) = \sup A \cdot \sup B$$

4.
$$\inf(A \cdot B) = \inf A \cdot \inf B$$

Λύση. Όχι, αν θεωρήσουμε σύνολα $A = \{0,1\}, B = \{1,2,3\}$ για τις δύο πρώτες σχέσεις, και $A = \{1,2\}, B = \{-1,-2\}$, για τις δύο τελευταίες.

Παρατήρηση 1.7.11. Για το supremum και το infimum του συνόλου A - B ισχύουν τα εξής:

$$\begin{split} \sup\left(A-B\right) &= \sup\left(A+(-B)\right) \\ &= \sup A + \sup(-B) \\ &= \sup A + (-\inf B) \\ &= \sup A - \inf B \end{split} \qquad \begin{aligned} \inf\left(A-B\right) &= \inf\left(A+(-B)\right) \\ &= \inf A + \inf(-B) \\ &= \inf A + (-\sup B) \\ &= \inf A - \sup B \end{aligned}$$

Λήμμα 1.7.12. Έστω $x,y \in \mathbb{R}^+$, σταθεροί και έστω $\varepsilon \cdot y > x$, $\forall \varepsilon > 1$. Τότε $x \leq y$

Απόδειξη. (Με άτοπο) Έστω $\varepsilon \cdot y > x$, $\forall \varepsilon > 1$ και x > y. Τότε, $\frac{x}{y} > 1$, οπότε αν θέσουμε $\varepsilon = \frac{x}{y} > 1$, τότε από υπόθεση έχουμε ότι $x < \varepsilon \cdot y \Rightarrow x < \frac{x}{y} \cdot y = x \Rightarrow x < x$, άτοπο.

Πρόταση 1.7.13. Έστω A, B μη κενά και άνω φραγμένα σύνολα **θετικών**, πραγματικών αριθμών και έστω $A \cdot B = \{a \cdot b : a \in A, b \in B\}$. Τότε υπάρχει το $\sup (A \cdot B)$ και ισχύει ότι $\sup (A \cdot B) = \sup A \cdot \sup B$.

Απόδειξη. Έχουμε

$$\left. \begin{array}{ll} a \leq \sup A, & \forall a \in A \\ b \leq \sup B, & \forall b \in B \end{array} \right\} \Rightarrow a \cdot b \leq \sup A \cdot \sup B, \quad \forall a \in A \text{ kal } b \in B$$

Άρα ο αριθμός sup $A \cdot \text{sup } B$ είναι άνω φράγμα του συνόλου $A \cdot B$. Άρα το $A \cdot B$ είναι άνω φραγμένο, και μη κενό (γιατί A, B μη κενά), οπότε από το αξίωμα πληρότητας, υπάρχει το $\sup(A \cdot B)$. Προφανώς ισχύει ότι $\sup(A \cdot B) \leq \sup A \cdot \sup B$. Οπότε, αρκεί να δείξουμε ότι $\sup A \cdot \sup B \leq \sup(A \cdot B)$. Πράγματι, έστω $\varepsilon > 1$, τότε:

$$\left. \begin{array}{l} \exists a \in A \ : \ \frac{\sup A}{\sqrt{\varepsilon}} < a \leq \sup A \\ \exists b \in B \ : \ \frac{\sup B}{\sqrt{\varepsilon}} < b \leq \sup B \end{array} \right\} \Rightarrow \frac{\sup A \cdot \sup B}{\sqrt{\varepsilon}} < a \cdot b \leq \sup (A \cdot B), \quad \forall a \in A \text{ Kai } b \in B$$

 $\mathrm{Ara} \ \tfrac{\sup A \cdot \sup B}{\sqrt{\varepsilon}} < \sup (A \cdot B), \quad \forall \varepsilon > 1 \Rightarrow \sup A \cdot \sup B < \varepsilon \cdot \sup (A \cdot B), \quad \forall \varepsilon > 1 \overset{1.7.12}{\Rightarrow} \sup A \cdot \sup B \leq \sup (A \cdot B)$

1.8 Ακέραιο Μέρος

Ορισμός 1.8.1. Έστω $x \in \mathbb{R}$. Ακέραιο μέρος του x καλούμε τον μεγαλύτερο ακέραιο που είναι **μικρότερος** ή **ίσος** με το x και το συμβολίζουμε με [x].

Το ακέραιο μέρος ενός πραγματικού αριθμού ικανοποιεί τις παρακάτω ιδιότητες:

$$[x] \le x < [x] + 1, \quad \forall x \in \mathbb{R}$$

$$x = [x] + \theta, \quad x \in \mathbb{R}, \ \theta \in [0, 1)$$

$$[x+a] = [x] + a, \quad x \in \mathbb{R}, \ a \in \mathbb{Z}$$

Παράδειγμα 1.8.1.

- (i) [3] = 3
- (ii) [3, 14] = 3
- (iii) [-3, 14] = -4

1.9 Ρητοί και Άρρητοι

Λήμμα 1.9.1.

- (i) $n \text{ άρτιος} \Leftrightarrow n^2 \text{ άρτιος}.$
- (ii) n περιττός $\Leftrightarrow n^2$ περιττός.

Απόδειξη.

- (i) (\Rightarrow) Έστω n άρτιος \Rightarrow $n=2k,\ k\in\mathbb{Z}$ \Rightarrow $n^2=(2k)^2=4k^2=2\cdot(2k)^2$ άρτιος. (\Leftarrow) Έστω n^2 άρτιος και n περιττός. Τότε $n\cdot n=n^2$ περιττός. Άτοπο.
- (ii) Ομοίως

Παρατήρηση 1.9.2. Στις αποδείξεις τους παραπάνω λήμματος, χρησιμοποιήσαμε ότι

- (i) άρτιος · άρτιος = άρτιος
- (ii) περιττός · περιττός = περιττός
- (iii) άρτιος · περιττός = άρτιος

Θεώρημα 1.9.3. Ο $\sqrt{2}$ είναι άρρητος.

Απόδειξη. Έστω $\sqrt{2}$ όχι άρρητος. Άρα $\sqrt{2}$ ρητός, δηλαδή $\exists m,n\in\mathbb{Z}$, με (m,n)=1, δηλαδή m,n πρώτοι μεταξύ τους τ.ω. $\sqrt{2}=\frac{m}{n}\Rightarrow 2=\frac{m^2}{n^2}\Rightarrow m^2=2n^2\Rightarrow m^2$ είναι άρτιος $\Rightarrow m$ άρτιος $\Rightarrow m=2k,\ k\in\mathbb{Z}$. Άρα $(2k)^2=2n^2\Rightarrow 4k^2=2n^2\Rightarrow n^2=2k^2\Rightarrow n^2$ άρτιος $\Rightarrow n$ άρτιος. Άτοπο, γιατί (m,n)=1.

Παράδειγμα 1.9.4. Ο $\sqrt{3}$ είναι άρρητος.

Απόδειξη. Έστω $\sqrt{3}$ όχι άρρητος. Άρα $\sqrt{3}$ ρητός, δηλαδή $\exists m,n\in\mathbb{Z}$, με (m,n)=1, δηλαδή m,n πρώτοι μεταξύ τους τ.ω. $\sqrt{3}=\frac{m}{n}\Rightarrow 3=\frac{m^2}{n^2}\Rightarrow m^2=3n^2\Rightarrow 3\mid m^2\Rightarrow 3\mid m\Rightarrow m\Rightarrow m=3k,\ k\in\mathbb{Z}$. Άρα $(3k)^2=3n^2\Rightarrow 9k^2=3n^2\Rightarrow n^2=3k^2\Rightarrow 3\mid n^2\Rightarrow 3\mid n$, άτοπο, γιατί (m,n)=1.

Λήμμα 1.9.5.
$$3 \mid m^2 \Rightarrow 3 \mid m$$

Απόδειξη. Έστω ότι $3 \nmid m \Rightarrow m = 3n+1$ ή m = 3n+2. Av $m = 3n+1 \Rightarrow m^2 = (3n+1)^2 = \dots 3(3n^2+2n)+1 \Rightarrow 3 \nmid m^2$, άτοπο και αν $m = 3n+2 \Rightarrow m^2 = (3n+2)^2 = \dots = 3(3n^2+4n+1)+1 \Rightarrow 3 \nmid m^2$ άτοπο.

Παρατήρηση 1.9.6. Ομοίως αποδεικνύονται και ότι οι $\sqrt{5}$ και $\sqrt{6}$ είναι άρρητοι, και γενικότερα ισχύει η επόμενη πρόταση.

Πρόταση 1.9.7. \sqrt{n} άρρητος $\Leftrightarrow n$ όχι τετράγωνο κάποιου φυσικού αριθμού.

Παράδειγμα 1.9.8. Να δείξετε ότι ο αριθμός $\sqrt[3]{2}$ είναι άρρητος.

 $Aπόδειξη. Έστω <math>\sqrt[3]{2}$ όχι άρρητος. Άρα $\sqrt[3]{2}$ ρητός, δηλαδή $\exists m,n\in\mathbb{Z}$, με (m,n)=1, δηλαδή m,n πρώτοι μεταξύ τους τ.ω. $\sqrt[3]{2}=\frac{m}{n}\Rightarrow 2=\frac{m^3}{n^3}\Rightarrow m^3=2n^3\Rightarrow m^3$ άρτιος $\Rightarrow m$ άρτιος. Άρα $(2k)^3=2n^3\Rightarrow 2k^3=2n^3\Rightarrow n^3=4k^3\Rightarrow n$ άρτιος, άτοπο, γιατί (m,n)=1.

Παράδειγμα 1.9.9. Να δείξετε ότι $\sqrt{2} + \sqrt{3}$ είναι άρρητος.

Απόδειξη. Έστω ότι $\sqrt{2} + \sqrt{3}$ είναι ρητός. Τότε και ο $h(\sqrt{2} + \sqrt{3})^2 = 2 + 2\sqrt{6} + 3 = 2\sqrt{6} + 5$ είναι ρητός, δηλαδή ο $\sqrt{6}$ είναι ρητός, άτοπο.

Πρόταση 1.9.10.
$$\left. egin{array}{ll} q \ \rho \eta \tau \circ \varsigma \\ r \ άρρητο \varsigma \end{array}
ight.
ight. \Rightarrow (q+r) \ άρρητο \varsigma$$

Απόδειξη. Έστω (q+r) ρητός. Τότε ο r=(q+r)-q είναι ρητός ως άθροισμα δύο ρητών. Άτοπο.

Πρόταση 1.9.11.
$$\left. \begin{array}{c} r \ \text{άρρητος} \\ s \ \text{άρρητος} \end{array} \right\} \Rightarrow (r+s) \ \text{ρητός ή άρρητος}.$$

Aπόδειξη. Για παράδειγμα, ο αριθμός $\sqrt{2}+\sqrt{3}$ είναι άρρητος, ενώ ο $\sqrt{2}-\sqrt{2}=0$ ρητός, και γενικά ισχύει ότι ο αριθμός $\underbrace{r}_{\text{άρρητος}}+\underbrace{(q-r)}_{\text{άρρητος}}=q$ είναι ρητός, αν ο q είναι ρητός.

Πρόταση 1.9.12.
$$\begin{array}{c} q \ \rho \eta \tau \circ \varsigma \\ r \ \alpha \rho \rho \eta \tau \circ \varsigma \end{array} \right\} \Rightarrow \begin{array}{c} (q \cdot r) \ \rho \eta \tau \circ \varsigma \Leftrightarrow q = 0 \\ (q \cdot r) \ \alpha \rho \rho \eta \tau \circ \varsigma \Leftrightarrow q \neq 0 \end{array}$$

Απόδειξη. Πράγματι, αν q=0 (ρητός) και r άρρητος, τότε $q\cdot r=0$ είναι ρητός, αλλά αν $q\neq 0$ τότε $(q\cdot r)$ είναι άρρητος, γιατί αλλιώς ο $r=\underbrace{(q\cdot r)}_{\text{ρητός}}\cdot\underbrace{q^{-1}}_{\text{ρητός}}$ είναι ρητός ως γινόμενο ρητών. Άτοπο.

Παράδειγμα 1.9.13. Υπάρχει αριθμός $a \in \mathbb{R}$ τέτοιος ώστε a^2 άρρητος και a^4 ρητός;

Aπόδειξη. Ναι, ο $a=\sqrt[4]{2}$. Πράγματι, $a^2=\sqrt{2}$ άρρητος, και $a^4=2$ ρητός.

Παράδειγμα 1.9.14. Υπάρχουν αριθμοί, a, b άρρητοι, ώστε $a + b, a \cdot b$ να είναι ρητοί;

Απόδειξη. Ναι οι $a=\sqrt{2}$ και $b=-\sqrt{2}$, οι οποίοι είναι και οι δύο άρρητοι και $a+b=\sqrt{2}-\sqrt{2}=0$ ρητός, και $a\cdot b=\sqrt{2}\cdot (-\sqrt{2})=-2$, επίσης ρητός.

1.10 Πυκνότητα Ρητών και Άρρητων

Πρόταση 1.10.1. Σε κάθε ανοιχτό διάστημα πραγματικών αριθμών, υπάρχει ρητός.

Απόδειξη.

Θα δείξουμε ότι (a,b) διάστημα στο $\mathbb{R} \Rightarrow \exists q \in \mathbb{Q}$, τ.ω. a < q < b. Πράγματι:

$$x = \frac{[na]+1}{n} > \frac{na}{n} = a$$

$$x = \frac{[na]+1}{n} \le \frac{na+1}{n} = a + \frac{1}{n} < a + b - a = b$$

Άρα ο $x = \frac{[na]+1}{n} \in \mathbb{Q} \in (a,b).$

Πρόταση 1.10.2. Σε κάθε ανοιχτό διάστημα πραγματικών αριθμών, υπάρχει άρρητος.

Απόδειξη.

Θα δείξουμε ότι αν (a,b) τυχαίο διάστημα στο $\mathbb R$ τότε $\exists r \in \mathbb R \setminus \mathbb Q$ τ.ω. a < r < b. Πράγματι. Έστω $\sqrt{2}$ (τυχαίος) άρρητος. Τότε $a < b \Leftrightarrow a - \sqrt{2} < b - \sqrt{2} \overset{\Pi_{\text{DKV}}, \text{ Pητών}}{\Rightarrow} \exists q \in \mathbb Q \ : \ a - \sqrt{2} < q < b - \sqrt{2} \Leftrightarrow a < \underbrace{q + \sqrt{2}}_{\text{άρρητος}} < b$