Chapitre 9: Translations et vecteurs

I Notion de vecteurs

1) Translation

Activité 1 : 1) On considère la translation qui transforme la cocotte 1 en la cocotte 8.

Par cette translation, quelles seraient les images de :

La cocotte 5 ? La cocotte 4 ? La cocotte 10 ?

2) On considère maintenant la translation qui transforme la cocotte 11 en la cocotte 7.

Par cette nouvelle translation, quelles seraient les images de :

La cocotte 5 ? La cocotte 14 ? La cocotte 10 ? La cocotte 4 ? La cocotte 16 ?

<u>Définition</u>: Soient A et B deux points du plan. La translation qui transforme A en B associe à tout point C du plan, l'unique point D tel que les segments [AD] et [BC] aient même milieu.

On dit que D est l'image de C par cette translation.

Autrement dit : D est l'image de C par la translation qui transforme A en B si et seulement si ABDC est un parallélogramme (éventuellement aplati)

Lorsque A et B sont distincts, la translation qui transforme A en B est un « glissement » :

- dans la direction de la droite (AB);
- dans le sens de A vers B ;
- de longueur AB.

Propriétés: Une translation conserve:

- les longueurs
- l'alignement
- les mesures d'angles
- les aires

2) Vecteurs

<u>Définition</u>: La translation qui transforme A en B est appelée translation de vecteur \overrightarrow{AB}

Ce vecteur \overrightarrow{AB} est caractérisé par :

• sa direction : celle de la droite (AB)

• son sens : celui de A vers B

• sa norme, notée $\|\overrightarrow{AB}\|$: la longueur AB.

Remarques:

- Lorsque les points A et B sont distincts, le vecteur \overrightarrow{AB} est représenté sur une figure par une flèche depuis A vers B.
- Le point A est appelé origine du vecteur \overrightarrow{AB} .
- Le point B est appelé extrémité du vecteur \overrightarrow{AB} .

Activité 2:1)

Par la translation de vecteur \overrightarrow{EH} : Quelle est l'image de M? de I? de B? de L? de J? Par la translation de vecteur \overrightarrow{DM} : Quelle est l'image de C? de H? de B? de I? de E?

2) Construire l'image de la figure ci-dessous par la translation de vecteur \overrightarrow{IJ}

3) Construire l'image du quadrilatère ABCD par la translation de vecteur \overrightarrow{IJ} .

3) Vecteurs égaux

<u>Définition</u>: Dire que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux signifie que la translation qui transforme A en B associe au point C le point D.

On note $\overrightarrow{AB} = \overrightarrow{CD}$

<u>Propriété</u>: Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si et seulement si le quadrilatère ABDC est un parallélogramme éventuellement aplati.

ABDC parallélogramme aplati

4) Représentants d'un vecteur

Soit \overrightarrow{AB} un vecteur. On peut tracer à partir de n'importe quel point du plan un vecteur égal au vecteur \overrightarrow{AB} :

On note alors ce vecteur à l'aide d'une seule lettre : $\overrightarrow{u} = \overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF}$ \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{EF} sont alors des représentants du vecteur \overrightarrow{u} .

5) Vecteurs particuliers

- Le vecteur nul, noté $\overrightarrow{0}$, est associé à la translation qui transforme A en A, B en B, C en C ... Ainsi $\overrightarrow{O} = \overrightarrow{AA} = \overrightarrow{BB} = \overrightarrow{CC} = ...$
- Le vecteur opposé au vecteur \overrightarrow{AB} est le vecteur associé à la translation qui transforme B en A.

C'est le vecteur \overrightarrow{BA} et on note \overrightarrow{BA} = - \overrightarrow{AB}

II Somme de deux vecteurs

1) Découverte

Activité 3 : Somme de deux vecteurs

- 1) Construire F' l'image de la figure F par la translation de vecteur \overrightarrow{u} puis F' l'image de la figure F' par la translation de vecteur \overrightarrow{v}
- 2) Conjecturer la nature de la transformation qui transforme F en F".
- 3) Démontrer la conjecture précédente.

<u>Définition</u>: La somme de deux vecteurs \overrightarrow{u} et \overrightarrow{v} est le vecteur associé à la translation correspondant à l'enchainement des translations de vecteur \overrightarrow{u} et de vecteur \overrightarrow{v} .

On note ce vecteur $\overrightarrow{u} + \overrightarrow{v}$.

2) Représentation de la somme de deux vecteurs

1er cas:

Relation de Chasles

Quels que soient les points A, B et C du plan on a \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}

 $2^{i\grave{e}me}$ cas :

Quels que soient les points A, B, C et D du plan :

 \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC} si et seulement si ABCD est un parallélogramme.

3^{ième} cas : Si on ne se trouve pas dans l'un des deux premiers cas on s'y ramène en utilisant d'autres représentants des vecteurs dont on étudie la somme.

3) Propriétés

<u>Propriétés</u>: Quels que soient les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} du plan on a :

1)
$$\overrightarrow{u}$$
 + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}

2)
$$\overrightarrow{u}$$
 + $\overrightarrow{0}$ = \overrightarrow{u}

2)
$$\overrightarrow{u} + \overrightarrow{0} = \overrightarrow{u}$$
 3) $(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$

4) Différence de deux vecteurs

On note \overrightarrow{u} - \overrightarrow{v} le vecteur \overrightarrow{u} + (- \overrightarrow{v})