MATH180C: Introduction to Stochastic Processes II

www.math.ucsd.edu/~ynemish/teaching/180c

Today: Pure death processes.

Birth and death processes

> Q&A: October 9

Next: PK 6.5

Week 1:

- homework 1 (due Friday October 9)
- join Piazza

Pure death processes Infinitesimal description: Pure death process (X+)+20 of rates (µk)k=1 is a continuous time MC taking values in {0,1,2,--, N-1, N} (state O is absorbing) with stationary infinitesimal transition probability functions (a) $P_{k,k-1}(h) = V = 1,-1, N$ (b) PKK (h) = , K=1, ..., N (c) Pkj (h) = for j>k. State 0 is absorbing (uo=0)

Differential equations for pure birth processes Define Pn(t) = P(Xt = n | Xo = N) distribution of Xt C starting in state N (a), (b), (c) implies (check) $\begin{cases}
P_n'(t) = \\
P_n'(t) =
\end{cases}$ for n=0 -.. N-1 (note that uo=0) Initial conditions: Solve recursively: Po(t) = $\rightarrow P_{N-1}(t) \rightarrow \cdots \rightarrow P_{o}(t)$ General solution (assume Mi + Mi) Pn(t)= Mn+1--- MN (Annemt+---+ AN, nemt), Axn= 1 Me-MK

Linear death process

Similar to Yule process: death rate is proportional to the size of the population

Compute
$$P_{n}(t)$$
: • $\mu_{n+1} \cdots \mu_{n} = \frac{N-n}{n!}$
• $A_{kn} = \prod_{\substack{\ell=n \\ \ell \neq k}} \frac{1}{\mu_{\ell} - \mu_{k}} = \frac{1}{\alpha^{N-n}(-1)^{n-k}(k-n)!(N-k)!}$
• $P_{n}(t) = \alpha \frac{N-n}{n!} \cdot \frac{1}{\alpha^{N-n}} \sum_{k=n}^{N-n} \frac{1}{(-1)^{n-k}(k-n)!(N-k)!} \cdot e^{-k\alpha t} \left\{ j = k-n \\ k = j+n \right\}$
= $\frac{N!}{n!} \sum_{k=n}^{N-n} \frac{1}{(-1)^{k}} e^{-(j+n)\alpha t}$

• $P_{n}(t) = d \frac{N!}{n!} \cdot \frac{1}{d^{N-n}} \sum_{k=n}^{N} \frac{1}{(-1)^{n-k}(k-n)!(N-k)!} \cdot e^{-kdt} \left\{ j = k-n \right\}$ $= \frac{N!}{n!} \sum_{j=0}^{N-n} (-1)^{j} e^{-(j+n)dt}$ $= \frac{N!}{n!} \sum_{j=0}^{N-n} (-1)^{j} e^{-(j+n)dt} \cdot e^{-kdt} \left\{ j = k-n \right\}$ $= \frac{N!}{n!} \sum_{j=0}^{N-n} (-1)^{j} e^{-(j+n)dt} \cdot e^{-kdt} \left\{ j = k-n \right\}$ $= \frac{N!}{n!} = \frac{1}{n!} = \frac{1}{n$

Interpretation of Xt ~ Bin (n, e-dt) Consider the following process: Let &i, i=1...N, be i.i.d. r.v.s, &i ~ Exp(d). Denote by Xt the number of zis that are bigger than t (zi is the lifetime of an individual, Xt = size of the population at t). Xo = N. lifetime Then: 5k ~ , independent Ly (Xt)t20 is a pure death process Probability that an individual survives to time t is | Xt Probability that exactly n individuals survive to time t is S₃ W₁ S₂ W₂ S₁ W₃ $\binom{N}{n} e^{-\lambda t n} \binom{1-\alpha t}{e} = P(X_t = n)$

Example. Cable Xt = number of fibers in the cable If a fiber fails, then this increases the load on the remaining fibers, which results in a shorter lifetime. La pure death process

Infinitesimal definition

Det Let (X+)+20 be a continuous time MC, X+ 6 {0,1,2,...} with stationary transition probabilities. Then (X+)+20 is called a birth and death process with birth rates (1/2) and death rates (4/2) if 1. Pi, i+1 (h) =

 $\left(P\left(X_{o}=j\mid X_{o}=i\right)=\left\{\begin{array}{c}l\mid if(i=j)\\ o\quad if\quad i\neq j\end{array}\right)$

4.
$$P_{ij}(0) =$$

Example: Linear growth with immigration Dynamics of a certain population is described by the following principles: during any small period of time of length h - each individual gives birth to one new member with probability independently of other members; - each individual dies with probability independently of other members; - one external member joins the population with probability

Can be modeled as a Markov process

Example: Linear growth with immigration Let (Xt) teo denote the size of the population. Using a similar argument as for the Yule/pure death models: · Pn,n+1(h)= · Pn,n-1(h) = • Pn,n (h) = Is birth and death process with \\ \n =

