Instructions for Weakly Supervised Segmentation with CAM

This document provides detailed steps to run the code and reproduce all reported results.

Additional Packages

Within the comp0197-cw1-pt environment, install the additional required libraries:

pip install matplotlib opencv-python pytorch-grad-cam

Alternatively, you can use the provided requirements.txt:

pip install -r requirements.txt

Project Steps

- 1. Data Preparation and Pre-training Classification Models
- 2. CAM Evaluation And Extraction
- 3. Preprocessing CAM files
- 4. Self-Training (Alternative Open-Ended Question)
- 5. Evaluation of Segmentation Models
- 6. Experiments for Open-Ended Questions
 - Experiment 1: Effect of Irrelevant Samples
 - o Experiment 2: Effect of Multi-task Training
 - Experiment 3: Effect of Self-training with Augmentations

Step 1: Data Preparation and Pre-training Classification Models

First, prepare the data and train classification models for CAM generation:

python pre_training.py

This script will:

- Download the Oxford Pet Dataset (if not already downloaded)
- Prepare and split the dataset (split ratio 0.7:0.15:0.15). Set use_augmentation=True if you want to apply data augmentations. Use target_type= ["class", "species", "bbox", "segmentation"] with the values you would like returned in the target.
- Train various models including CNN and ResNet variants
- Train on different tasks (species classification, breed classification, bounding box regression)
- Train multi-task models with various combinations of tasks
- Save models to the checkpoints/ directory

Note: Pre-training with non-animal data is also supported

- To use this feature, download the background data using: bg_directory = download_kaggle_dataset("arnaud58/landscape-pictures")
- Then call: mixed_data.create_mixed_dataloaders(*args, bg_directory=bg_directory, **kwargs)

Step 2: CAM Evaluation And Extraction

Use trained models to evaluate and generate Class Activation Maps from checkpoints stored in checkpoints/run_x (where run_name is configurable):

python cam_evaluation.py

To customize parameters for this step, edit self_training.py and modify the following:

- run_name : name of the checkpoints sub-folder
- train_mode: set to True to retrain the model or False to use an existing one
- get_new_cam: set to True to generate new CAMs or False to load existing ones

Step 3: Preprocessing CAM files

- Place the best CAMs file in the folder cam_data/. Previously we used:
 res_species_breed_bbox_50_ClassifierHead(2)_GradCAM_idx46_cams.pt
- If the CAMs are in 256x256, run resize_CAM.py with the appropriate directory to produce resized_64_species_breed_cam_mask_raw.pt
- If the CAMs contain black pixels between the boundary and the foreground (we experienced this issue in the past, but it did not occur in our most recent runs),
 run cleanup_CAM.py to obtain

resized_64_species_breed_cam_mask.pt

Step 4: Self-Training (Alternative Open-Ended Question)

The self_training.py file includes the complete self-training process. To adjust parameters:

- Open self_training.py
- 2. Modify the line:

resized_data = torch.load("cam_data/resized_64_species_breed_cam_mask_raw.pt")
if your CAM file has a different name

- 3. Set Skip_first_round = False (since we don't have a first-round model yet)
- 4. Adjust epochs, BOOTSTRAP_ROUNDS and other parameters as needed
- 5. Run the script:

python self_training.py

- Unet Models trained in each round of each experiment will be saved under the folder checkpoints/Bootstrap/model. To save time for further experiments, you can set Skip_first_round = True , if first_round_model.pt is saved under checkpoints/EVA/ after the first round of training is completed for any experiment
- 2. Find the best model with highest IOU score, move it to checkpoints/EVA/ and rename it as best_model_selftrain.pt

This process:

- 1. Uses CAM as initial pseudo-labels
- 2. Trains a U-Net segmentation model on these labels
- 3. Predicts segmentation on unlabeled data with confidence thresholds
- 4. Adds these predictions to the training set
- 5. Retrains the model
- 6. Repeats for the specified number of rounds
- 7. Creates visualizations in the visualizations/ directory

Step 5: Evaluation of Segmentation Models

- 1. Train a baseline model
 - 1. In baseline_training.py, set the desired epochs like epochs=5. If you want to train from scratch, set epochs_previous=0. Otherwise you can load a previously trained baseline model and continue on training.
 - 2. baseline model will be saved under checkpoints/EVA/
- 2 Evaluate models
 - 1. In final_evaluation_models.py, modify the file name model_name=f"first_round_model" to the model that you want to evaluate under the folder checkpoints/EVA/
 - 2. run final_evaluation_models.py, it will evaluate the model both on the small validation set and the testing set.

Step 6: Experiments for Open-Ended Questions

Experiment 1: Effect of Irrelevant Samples

Test if adding irrelevant samples (images without pets) helps improve CAM quality:

python mixed_data.py

This script:

- Downloads landscape images as background/irrelevant samples
- Creates mixed datasets with pet and landscape images. Need to download the background images with the following code bg_directory =
 download_kaggle_dataset("arnaud58/landscape-pictures"). Then pass bg_directory=bg_directory into the create_mixed_dataloaders
 function.
- · Creates dataloaders suitable for training

Experiment 2: Effect of Multi-task Training

pre_training.py already generates models for multi-task training. The different model variants include:

- Single-task: cnn_species, cnn_breed, cnn_bbox, res_species, res_breed, res_bbox
- Two-task combinations: cnn_breed_species, cnn_breed_bbox, cnn_species_bbox, etc.
- Three-task combinations: cnn_species_breed_bbox, res_species_breed_bbox

Compare results using $\prescript{pretraining.json}$ in the $\prescript{logs/}$ folder.

Experiment 3: Effect of Self-training with Augmentations

To experiment with augmentations during self-training:

- Open data.py
- 2. Find the create_dataloaders function
- 3. Set use_augmentation=True
- 4. Run self_training.py as before

Directory Structure

- oxford_pet_data/ : Dataset directory
- checkpoints/: Saved model checkpoints
- checkpoints/Bootstrap/: Saved self-training models and images (directory will be automatically created when running self-training)
- checkpoints/EVA/ : Saved baseline models
- cam_data/: Generated CAM pseudo-labels
- visualizations/: Generated visualization outputs
- logs/: Training logs

Key Files Description

- data.py: Oxford Pet Dataset handling
- pre_training.py: Pre-training classification models
- models.py: Model architectures (CNN, ResNet, U-Net)
- self_training.py: Self-training implementation
- baseline_training.py: Training a baseline model
- final_evaluation_models.py: Evaluating Basic, Best and Baseline models on the small validation set and testing set
- evaluation.py: Evaluation metrics and functions
- mixed_data.py : Mixed dataset handling with background images
- utils.py: Utility functions