Autômato Finito Não-Determinista

- Generalização de AFD
 - em um estado pode-se ter mais de uma transição para um dado símbolo $a \in \Sigma$.

$$(q_n, a) = \{ \}$$
 $\delta (q_n, a) = \{ q_i \}$ $\delta (q_n, a) = \{ q_i, q_i, q_k \}$

- Formalmente um AFN é uma quíntupla M = (Q, Σ , δ , q₀, F):
 - Q = conjunto finito de estados.

 $\forall \Sigma$ = alfabeto de entrada.

 $\forall \delta$ = função total de Q x $\Sigma \rightarrow P(Q)$.

- $q_0 \in Q$ = estado inicial.
- F ⊆ Q = estados de aceitação.

Exemplos

- $ightharpoonup L_1 = \{ w \mid w = a(a \cup b)*bb \}$
- $ightharpoonup L_2 = \{ w \mid w = a(bb)^*aa \}$
- \rightarrow L₃ = L₁ U L₂

- Linguagem reconhecida por M
 - L(M) = { $w \in \Sigma^*$ | existe **uma** computação [q₀, w] |*- [q_i, λ], q_i ∈ F }

Transições Lambda

- Relaxar a definição de AFN:
 - transições de estado sem processamento da entrada.
- Formalmente um AFN- λ é uma quíntupla M = (Q, Σ , δ , q₀, F):
 - Q = conjunto finito de estados.
 - $\forall \Sigma$ = alfabeto de entrada.
 - $\forall \delta$ = função total de Q x ($\Sigma \cup \{\lambda\}$) \rightarrow P(Q).
 - $q_0 \in Q$ = estado inicial.
 - F ⊆ Q = estados de aceitação.

Exemplos

$$ightharpoonup L_1 = \{ w \mid w = a(a \cup b)*bb \}$$

$$ightharpoonup L_2 = \{ w \mid w = a(bb)^*aa \}$$

$$\rightarrow$$
 L₃ = L₁ U L₂

Teorema

- \succ Considere M₁ e M₂ AFN-λ. Existem AFN-λ's que reconhecem:
 - $L(M_1) L(M_2)$.
 - $L(M_1) \cup L(M_2)$.
 - $L(M_1)^*$.
- Prova por construção.

Nota

- Todo AFD é um AFN que, por sua vez, é um AFN-λ.
- Todo AFN-λ tem um AFN equivalente e todo AFN tem um AFD equivalente.

Remoção de Não-Determinismo

- Como construir um AFN a partir de um AFN-λ:
 - $\sqrt{(q_i, a)}$ determinar os estados alcançados por q_i lendo a.
- Que estados podem ser alcançados a partir de 1 quando a é lido na entrada?

Definição

- \succ λ -fecho de um estado q_i :
 - conjunto de todos os estados que podem ser alcançados a partir de q_i sem nenhum processamento da entrada.
- \rightarrow λ -fecho(1) = ?
- Populario Popu
 - base: $q_i \in \lambda$ -fecho(q_i).
 - recursão: se $q_n \in \lambda$ -fecho (q_i) e $\delta(q_n, \lambda) = q_k$, então $q_k \in \lambda$ -fecho (q_i) .

Transformação

Pado um AFN-λ $M_1 = (Q, \Sigma, \delta, q_0, F)$, um AFN equivalente $M_2 = (Q, \Sigma, t, q_0, F)$ pode ser construído por

$$t(q_n, a) = \bigcup_{q_j \in \lambda \text{-} fecho(q_n)} \lambda \text{-} fecho(\delta(q_j, a))$$

- Idéia é definir o conjunto de estados que podem ser alcançados por q_n quando um símbolo **a** é lido da entrada:
 - para cada $q_j \in \lambda$ -fecho (q_n) , inclua $q_k = \delta(q_j, a)$ no conjunto.
 - inclua também o λ -fecho de cada um destes estados q_k .

Exemplo

Construir o AFN equivalente ao seguinte AFN-λ.

Transformação

```
\triangleright Dado o AFN M<sub>1</sub>= (Q<sub>1</sub>, \Sigma, t, q<sub>0</sub>, F<sub>1</sub>), um AFD equivalente
                                                                                                  M_2
    = (Q_2, \Sigma, \delta, q_0, F_2) pode ser construído por:
          insira \{q_0\} em Q_2.
           para cada estado X de Q<sub>2</sub> faça
                     para cada símbolo a \in \Sigma faça
                                crie o estado Y = \bigcup \delta(q_i, a) e o insira em Q<sub>2</sub>.
                                crie a transição \delta(X, a) = Y.
                     fim para
          fim para
          F_2 = \{ X \in Q_2 \mid X \text{ contém algum } q_i \in F_1 \}.
```

Exemplo

Construir o AFD equivalente ao AFN dado abaixo. Considere q₁ e q₂ os estados de aceitação.

t	а	b	С
q_{o}	${q_o, q_1, q_2}$	{ }	{ }
q_1	{ }	$\{q_1\}$	{ }
q_2	{ }	$\{q_1\}$	$\{q_1, q_2\}$