Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

ОТЧЁТ

по ознакомительной практике

Выполнил: М. А. Переверзев

Студент группы 321702

Проверил: Н. В. Малиновская

СОДЕРЖАНИЕ

Bı	ведение	3
1	Постановка задачи	4
2	Семантическое представление формализованных объектов и сцены	5
38	аключение	8
Cı	писок использованных источников	9

ВВЕДЕНИЕ

Цель:

Закрепить практические навыки формализации информации в интеллектуальных системах с использованием семантических сетей.

Задачи:

- Построение формализованных фрагментов теории интеллектуальных компьтерных систем и технологий их разработки.
- Построение формальной семантической спецификации библиографических источников, соответствующих указанным выше фрагментам.
- Оформление конкретных предложений по развитию текущей версии Стандарта интеллектуальных компьтерных систем и технологий их разработки.

1 ПОСТАНОВКА ЗАДАЧИ

Часть 3 Учебной дисциплины ''Представление и обработка информации в интеллектуальных системах''

- \Rightarrow библиографическая ссылка*:
 - Семантическое представления объектов
 - $\Rightarrow URL^*$:

[https://bstudy.net/905427/tehnika/semanticheskaya_nodel_predstavleniya_naniy]

- Семантические объекты и сцены в базах знаний
 - $\Rightarrow URL^*$:

[https://libeldoc.bsuir.by/bitstream/123456789/31757/1/Ivashenko_semantic.PDF]

- \Rightarrow аттестационные вопросы*:
 - Вопрос 4 по Части 4.4 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"

Вопрос 4 по Части 4.4 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"

- [Операционная семантика логических языков. Предметная область логических моделий решения задач. Абстракный sc-areнт]
- \Rightarrow библиографическая ссылка*:
 - V.V. Golenkov, N.A. Guliakina, M.D. Stepanova, S.A. Samodumkin .Формальные основы семантического представления знаний в интеллектуальных системах, 2014
 - := [Семантическое представление объектов и сцены]

2 СЕМАНТИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ФОРМАЛИЗОВАННЫХ ОБЪЕКТОВ И СЦЕНЫ

В процессе коммуникации человек не задумывается над тем, почему он использует то или иное слово для обозначения того или иного объекта. При том представления об этих объектах меняются с течением времени. Эти изменения, в свою очередь, зависят от многих факторов. На сегодняшний день очевидно, что многие, если не все, объекты имеют тесную взаимосвязь или так называемую семантическую связь.

семантическая связь

: [связь объекта с другим объектом, которые в свою очередь входят в общую семантическую сеть]

семантическая сеть

- := [сеть, которая включает в свой состав ключевые понятия, объекты и их связи и позволяет представить предметную область]
- \Rightarrow noяснение*:

[Вышеприведенные понятия рассматриваются в рамках проектирования объектов и семантического пространства в интеллектуальных системах, разрабатываемых с помощью *Технологии OSTIS*.]

семантическое представление

- ≔ [способ представления смысловой информации, который используется в компьютерной лингвистике (в данном случае в Технологии OSTIS) для анализа и обработки естественного языка]
- \Rightarrow включает*:
 - **{ ●** информацию о значениях слов
 - информацию о значениях фраз
 - информацию о значениях предложений
 - семантические отношения между ними

виды представления семантического пространства

- \Rightarrow разбиение*:
 - **{ ●** rpaф
 - дерево
 - логическая форма
 - другие фомализованные структуры данных

семантическое представление объектов

- := [это способ представления смысловой информации о конкретных объектах, таких как люди, места, предметы и т.д.]
- \Rightarrow noschehue*:

[Обычно такое представление включает информацию о характеристиках и свойствах объекта, его отношениях с другими объектами и окружающей средой, а также о функциях, которые объект может выполнять.]

- \Rightarrow используется e^* :
 - машинное обучение
 - робототехника
 - компьютерное зрение
 - другие области, связанные с искусственным интеллектом
- \Rightarrow примеры семантического представления объектов*:
 - { онтологии
 - базы знаний
 - компьютерное зрение
 - графы знаний и т.д.

онтология

- := [формальное описание понятий, связей между ними и правил, которые определяют, как эти понятия могут быть использованы в той или иной предметной области]
- \Rightarrow noschehue*:

[Онтология используется для создания структурированного и формализованного семантического представления знаний, что позволяет организовать знания о предметной области в систематическую и иерархическую структуру, что в свою очередь стимулирует более точное и эффективное взаимодействие между людьми и машинами.]

 \Rightarrow noяснение*:

[Онтология описывает понятия и их отношения между ними в виде терминов и атрибутов. Один из важных аспектов онтологии - это ее предметная область, которую она описывает: знания в онтологии обычно сконцентрированы вокруг определенной сферы знаний, такой как медицина, геология, философия или другие.]

база знаний

- [структурированное собрание информации о предметной области, которое может быть использовано для решения задач в этой области]
- \Rightarrow пояснение*:

[База знаний содержит факты, правила и модели, которые описывают, как система должна работать и принимать решения. База знаний может быть создана на основе экспертного знания, то есть знания, которые имеют высокую степень достоверности и опыту в определенной области, или на основе данных, которые были собраны и структурированы методами анализа данных.]

граф знаний

- := [семантическая структура данных, которая используется для представления множества связей между объектами и понятиями в предметной области]
- \Rightarrow пояснение*:

[Граф знаний состоит из узлов и ребер, где узлы представляют объекты и понятия, а ребра - отношения между ними. Граф знаний обладает высокой гибкостью и позволяет легко добавлять и изменять новые связи и объекты. Это делает граф знаний эффективным инструментом для хранения и обработки знаний в динамичных и изменяющихся средах.]

 \Rightarrow noschehue*:

[Семантическое представление является необходимым для машинного понимания естественного языка и его использования в приложениях и системах искусственного интеллекта, разработанных при помощи Технологии OSTIS.]

 \Rightarrow noschehue*:

[Объекты, а также отношения, построенные между ними, "существуют"в рамках некого семантического пространства. Иначе говоря, такое семантическое пространство называется]

сцена.

сцена

 \Rightarrow

- ≔ [визуальная среда или окружающая обстановка, которая содержит множество объектов и их отношений друг с другом.]
- \Rightarrow представляется в виде*:
 - { изображения
 - структурированной информации в электронном формате

пояснение*:

[Сцена может быть описана с помощью *семантических тегов*, которые представляют каждый объект в ней и его свойства. Это позволяет системам, которые работают с сценами, принимать решения на основе понимания ее содержания.]

- ⇒ примеры применения семантического представления сцены*:
 - **{●** автономная навигацию роботов
 - интерпретация реального мира в виртуальной и дополненной реальности
 - оптическую систему слежения за водителем автомобиля
- \Rightarrow noяснение*:

[Семантическое представление объектов и сцены — это ключевая технология в области компьютерного зрения, робототехники и других областей, связанных с зрительным восприятием и анализом окружающей среды. Она позволяет создавать структурированные и формализованные представления визуальных объектов и их отношений, что позволяет компьютерным системам точно определять объекты, понимать их свойства и взаимодействовать с ними. Однако, говоря о выгодном (!) взаимодействии интеллектуальных компьютерных систем, нельзя не сказать про выгодное (!) взаимодействие разработчиков таких систем.]

- ⇒ Проблема в сфере создания интеллектуальных систем нового поколения*:
 - € обеспечение семантической совместимости различных моделей представления и обработки знаний
 - создание общей теории семантических моделей интеллектуальных систем, не противопоставляя, а интегрируя самые различные подходы
 - обеспечение максимально возможной независимости интеллектуальных систем от многобразия вариантов и платформ их технической реализации

7

ЗАКЛЮЧЕНИЕ

В ходе ознакомительной практики были подробно формализованы элементы семантического представления объектов и сцены в формате scn-кода. Были описаны такие элементы, как семантическая связь, семантическая сеть, семантическое представление, семантическое представление объектов, и т.д. Также были специфицированы семантические спецификации библиографических источников в формате scn-кода и раскрыты основные проблемы в сфере создание интеллектуальных систем нового поколения.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Кормен, Д. Алгоритмы. Построение и анализ / Д. Кормен. Вильямс, 2015. С. 1328.
- [2] Кузнецов, О. П. Дискретная математика для инженера / О. П. Кузнецов, Г. М. Адельсон-Вельский. Энергоатомиздат, 1988. С. 480.
 - [3] Оре, О. Теория графов / О. Оре. Наука, 1980. С. 336.
- [4] Харарри, Ф. Теория графов / Ф. Харарри. Эдиториал УРСС, 2018. С. 304.
- [5] Wooldridge, M. An introduction to multiagent systems / M. Wooldridge. 2nd ed. Chichester : J. Wiley, 2009. 484 p.