

Day 18-100 Data Science

Decision Tree

- A decision tree is a non-parametric supervised learning algorithm for classification and regression tasks.
- It has a hierarchical tree structure consisting of a root node, branches, internal nodes, and leaf nodes.
- Decision trees are used for classification and regression tasks, providing easy-tounderstand models.
- It is a tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome.
- It is a graphical representation for getting all the possible solutions to a problem/decision based on given conditions.
- In order to build a tree, we use the CART algorithm, which stands for Classification and Regression Tree algorithm.

Decision Tree Terminologies

 Root Node: Root node is from where the decision tree starts. It represents the entire dataset, which further gets divided into two or more homogeneous sets.

 Leaf Node: Leaf nodes are the final output node, and the tree cannot be segregated further after getting a leaf node.

- Splitting: Splitting is the process of dividing the decision node/root node into sub-nodes according to the given conditions.
- Branch/Sub Tree: A tree formed by splitting the tree.
- Pruning: Pruning is the process of removing the unwanted branches from the tree.
- Parent/Child node: The root node of the tree is called the parent node, and other nodes are called the child nodes

Attribute Selection Measures

Selecting the right Attribute Selection Measure (ASM) is crucial for building an effective decision tree in machine learning.

There are two popular techniques for ASM, which are:

- Entropy
- Information Gain
- Gini Index

Entropy

Entropy is the measure of the degree of randomness or uncertainty in the dataset.

Entropy(s)= -P(yes)log2 P(yes)- P(no) log2 P(no)

Where,

- S= Total number of samples
- P(yes)= probability of yes
- P(no)= probability of no

Information Gain:

Information gain is the measurement of changes in entropy after the segmentation of a dataset based on an attribute.

Information Gain(H, A) =
$$H - \sum \frac{|H_V|}{|H|} H_v$$

where

- A is the specific attribute or class label
- |H| is the entropy of dataset sample S

• |HV| is the number of instances in the subset S that have the value v for attribute A

Gini Index

It is a measure of impurity or purity used while creating a decision tree.

Gini Impurity =
$$1 - \sum p_i^2$$

implementation of Decision Tree

```
import numpy as np
 In [1]:
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          %matplotlib inline
 In [ ]:
          #Load dataset
In [23]:
          data = pd.read_csv("diabetes.csv")
          data.head()
             Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction
Out[23]:
                       6
          0
                             148
                                             72
                                                          35
                                                                   0 33.6
                                                                                              0.627
                                                                                                      50
          1
                              85
                                             66
                                                           29
                                                                   0 26.6
                                                                                              0.351
                                                                                                      31
          2
                      8
                                                           0
                                                                                                      32
                             183
                                             64
                                                                   0 23.3
                                                                                              0.672
          3
                       1
                              89
                                             66
                                                          23
                                                                  94
                                                                     28.1
                                                                                              0.167
                                                                                                      21
          4
                       0
                             137
                                             40
                                                          35
                                                                 168 43.1
                                                                                              2.288
                                                                                                      33
In [24]:
          data.isna().sum()
                                         0
          Pregnancies
Out[24]:
          Glucose
                                         0
          BloodPressure
                                         0
          SkinThickness
                                         0
          Insulin
          BMI
          DiabetesPedigreeFunction
                                         0
          Age
          Outcome
                                         0
          dtype: int64
In [25]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64
	63 (4 4 4 6) (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

In [27]: data.describe()

Out[27]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigr
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

```
In [35]: pre_value =data['Pregnancies'].value_counts()
   pre_value
```

```
Pregnancies
Out[35]:
                 135
          0
                 111
          2
                 103
          3
                  75
          4
                  68
          5
                  57
          6
                  50
          7
                  45
          8
                  38
          9
                  28
          10
                  24
          11
                  11
          13
                  10
                   9
          12
          14
                   2
          15
                   1
          17
                   1
```

Name: count, dtype: int64

```
In [44]: sns.countplot(data,x='Pregnancies',color='yellowgreen')
Out[44]: <Axes: xlabel='Pregnancies', ylabel='count'>
```



```
In [ ]:
In [49]: sns.histplot(data, x="Pregnancies", hue="Outcome", multiple="stack",bins = 50, kde=Tru
Out[49]: <Axes: xlabel='Pregnancies', ylabel='Count'>
```



```
In [50]: #model building
In [57]: #split dataset in features and target variable
    X = data.drop(['Outcome'], axis=1)
    y = data['Outcome']
In [58]: X.head()
```

Out[58]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	Age
	0	6	148	72	35	0	33.6	0.627	50
	1	1	85	66	29	0	26.6	0.351	31
	2	8	183	64	0	0	23.3	0.672	32
	3	1	89	66	23	94	28.1	0.167	21
	4	0	137	40	35	168	43.1	2.288	33

In [59]: y.head()
Out[59]: 0 1
1 0 0
2 1
3 0 4 1

Name: Outcome, dtype: int64

```
In [60]: # split X and y into training and testing sets
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_sta
In [61]: # check the shape of X_train and X_test
         X_train.shape, X_test.shape
         ((514, 8), (254, 8))
Out[61]:
In [62]: # check data types in X_train
         X_train.dtypes
         Pregnancies
                                       int64
Out[62]:
         Glucose
                                       int64
         BloodPressure
                                       int64
         SkinThickness
                                       int64
         Insulin
                                       int64
         BMI
                                     float64
         DiabetesPedigreeFunction
                                     float64
                                       int64
         dtype: object
In [63]: # import DecisionTreeClassifier
         from sklearn.tree import DecisionTreeClassifier
         # instantiate the DecisionTreeClassifier model with criterion gini index
         DTree = DecisionTreeClassifier(criterion='gini', max_depth=3, random_state=0)
         # fit the model
         DTree.fit(X_train, y_train)
Out[63]:
                          DecisionTreeClassifier
         DecisionTreeClassifier(max_depth=3, random_state=0)
In [66]: y_pred = DTree.predict(X_test)
         y_pred
         array([1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
Out[66]:
                1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1,
                0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0,
                0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0,
                1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1,
                0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1,
                0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1,
                0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0,
                1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0,
                0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1,
                1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
                1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0], dtype=int64)
```

3/4/24, 5:44 PM

```
Decision Tree
In [67]: from sklearn.metrics import accuracy_score
         print('Model accuracy score with criterion gini index: {0:0.4f}'. format(accuracy_score
         Model accuracy score with criterion gini index: 0.6929
In [71]: # Create a confusion matrix
         from sklearn.metrics import confusion_matrix
         conf_matrix = confusion_matrix(y_test, y_pred)
         conf_matrix
         array([[117, 51],
Out[71]:
                [ 27, 59]], dtype=int64)
In [81]: # Display the confusion matrix using Seaborn heatmap
         plt.figure(figsize=(8, 6))
         sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='crest', cbar=False)
         <Axes: >
Out[81]:
                                117
```



```
In [84]: # Create a classification report
         from sklearn.metrics import classification_report
         class_report = classification_report(y_test, y_pred)
         print(class_report)
```

```
precision
                             recall f1-score
                                                  support
            0
                               0.70
                     0.81
                                          0.75
                                                       168
            1
                     0.54
                               0.69
                                          0.60
                                                       86
                                                       254
    accuracy
                                          0.69
                                                       254
   macro avg
                     0.67
                               0.69
                                          0.68
weighted avg
                     0.72
                               0.69
                                          0.70
                                                       254
```

```
In [72]: plt.figure(figsize=(12,8))
from sklearn import tree
tree.plot_tree(DTree.fit(X_train, y_train))
```

```
[Text(0.5, 0.875, 'x[1] <= 154.5 \setminus = 0.457 \setminus = 514 \setminus = [332, 182]'),
Out[72]:
                                   Text(0.25, 0.625, 'x[7] \le 30.5 \text{ ngini} = 0.382 \text{ nsamples} = 432 \text{ nvalue} = [321, 111]
                                   Text(0.125, 0.375, 'x[1] \le 127.5 \cdot gini = 0.24 \cdot gini = 251 \cdot gini =
                                   Text(0.0625, 0.125, 'gini = 0.153\nsamples = 203\nvalue = [186, 17]'),
                                   Text(0.1875, 0.125, 'gini = 0.469\nsamples = 48\nvalue = [30, 18]'),
                                   Text(0.375, 0.375, 'x[5] \leftarrow 26.95 \cdot = 0.487 \cdot = 181 \cdot = [105, 76]'),
                                   Text(0.3125, 0.125, 'gini = 0.105\nsamples = 36\nvalue = [34, 2]'),
                                   Text(0.4375, 0.125, 'gini = 0.5\nsamples = 145\nvalue = [71, 74]'),
                                   Text(0.75, 0.625, 'x[5] \leftarrow 28.7 \cdot = 0.232 \cdot = 82 \cdot = [11, 71]'),
                                   Text(0.625, 0.375, 'x[5] \le 25.35 \cdot ngini = 0.486 \cdot nsamples = 12 \cdot nvalue = [5, 7]'),
                                   Text(0.5625, 0.125, 'gini = 0.0\nsamples = 4\nvalue = [0, 4]'),
                                   Text(0.6875, 0.125, 'gini = 0.469\nsamples = 8\nvalue = [5, 3]'),
                                   Text(0.875, 0.375, 'x[6] <= 1.428\ngini = 0.157\nsamples = 70\nvalue = [6, 64]'),
                                   Text(0.8125, 0.125, 'gini = 0.116\nsamples = 65\nvalue = [4, 61]'),
                                   Text(0.9375, 0.125, 'gini = 0.48\nsamples = 5\nvalue = [2, 3]')]
```


In []:

In []:

In []:

Follow us on Social Media

Linkedin: https://www.linkedin.com/company/eternaltek/about/?viewAsMember=true

Medium: https://medium.com/@eternaltek.info

WhatsApp Channel: https://whatsapp.com/channel/0029Va5onCbDjiOTi6D1vU36

Github: https://github.com/Vamsi-2203

In []: