In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.preprocessing import StandardScaler
 from sklearn.neighbors import KNeighborsClassifier
 from sklearn.model_selection import train_test_split
 from sklearn.metrics import confusion_matrix, f1_score, recall_score, precis

In [2]: df = pd.read_csv("diabetes.csv")

In [3]: df.head()

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Pedigree	Age	Outco
0	6	148	72	35	0	33.6	0.627	50	
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	

In [4]: df.shape

Out[4]: (768, 9)

In [5]: df.describe()

Out[5]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Pe
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.0
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.4
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.0
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.2
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.0
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.6
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.4

In [6]: #replace zeros

zero_not_accepted=["Glucose","BloodPressure","SkinThickness","BMI","Insulin
for column in zero_not_accepted:

df[column]=df[column].replace(0,np.NaN)
mean=int(df[column].mean(skipna=True))
df[column]=df[column].replace(np.NaN,mean)

```
In [7]: df["Glucose"]
 Out[7]: 0
                148.0
                 85.0
         2
                183.0
         3
                 89.0
                137.0
                . . .
         763
                101.0
         764
                122.0
         765
                121.0
         766
                126.0
         767
                 93.0
         Name: Glucose, Length: 768, dtype: float64
 In [8]: #split dataset
         X=df.iloc[:,0:8]
         y=df.iloc[:,8]
         X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=0,test_size
 In [9]: #feature Scaling
         sc_X=StandardScaler()
         X_train=sc_X.fit_transform(X_train)
         X_test=sc_X.transform(X_test)
In [10]: knn=KNeighborsClassifier(n_neighbors=11)
In [11]: knn.fit(X_train,y_train)
Out[11]: (
                  KNeighborsClassifier
          KNeighborsClassifier(n_neighbors=11)
In [12]: y_pred=knn.predict(X_test)
In [13]: #Evaluate The Model
```

cf_matrix=confusion_matrix(y_test,y_pred)

```
In [14]: ax = sns.heatmap(cf_matrix, annot=True, cmap='Blues')
    ax.set_title('Seaborn Confusion Matrix with labels\n\n');
    ax.set_xlabel('\nPredicted Values')
    ax.set_ylabel('Actual Values ');

## Display the visualization of the Confusion Matrix.
    plt.show()
```

Seaborn Confusion Matrix with labels

In [19]: #error rate=1-accuracy which is lies bertween 0 and 1
error_rate=1-accuracy_score(y_test,y_pred)

In [20]: error_rate

Out[20]: 0.18181818181818177

Out[18]: 0.6808510638297872