Linear Model Selection and Regularization

• Recall the linear model

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon.$$

- In the lectures that follow, we consider some approaches for extending the linear model framework. In the lectures covering Chapter 7 of the text, we generalize the linear model in order to accommodate non-linear, but still additive, relationships.
- In the lectures covering Chapter 8 we consider even more general *non-linear* models.

In praise of linear models!

- Despite its simplicity, the linear model has distinct advantages in terms of its *interpretability* and often shows good *predictive performance*.
- Hence we discuss in this lecture some ways in which the simple linear model can be improved, by replacing ordinary least squares fitting with some alternative fitting procedures.

Three classes of methods

- Subset Selection. We identify a subset of the p predictors that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.
- Shrinkage. We fit a model involving all p predictors, but the estimated coefficients are shrunken towards zero relative to the least squares estimates. This shrinkage (also known as regularization) has the effect of reducing variance and can also perform variable selection.
- Dimension Reduction. We project the p predictors into a M-dimensional subspace, where M < p. This is achieved by computing M different linear combinations, or projections, of the variables. Then these M projections are used as predictors to fit a linear regression model by least squares.

Subset Selection

 $\{x_{1}, x_{2}, x_{3}\}$

243

{ x2}

Best subset and stepwise model selection procedures

Best Subset Selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no $\{\chi_1,\chi_2\}$ predictors. This model simply predicts the sample mean $\{\chi_1,\chi_2\}$ for each observation.
- 2. For k = 1, 2, ... p:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Example- Credit data set

For each possible model containing a subset of the ten predictors in the Credit data set, the RSS and R^2 are displayed. The red frontier tracks the best model for a given number of predictors, according to RSS and R^2 . Though the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one of the variables is categorical and takes on three values, leading to the creation of two dummy variables

Stepwise Selection

- For computational reasons, best subset selection cannot be κ_2 , κ_3 , applied with very large p. Why not?
- Best subset selection may also suffer from statistical problems when p is large: larger the search space, the higher the chance of finding models that look good on the training data, even though they might not have any predictive power on future data.
- Thus an enormous search space can lead to *overfitting* and high variance of the coefficient estimates.
- For both of these reasons, *stepwise* methods, which explore a far more restricted set of models, are attractive alternatives to best subset selection.

Forward Stepwise Selection

- Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model, one-at-a-time, until all of the predictors are in the model.
- In particular, at each step the variable that gives the greatest *additional* improvement to the fit is added to the model.

In Detail

Forward Stepwise Selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \dots, p 1$:
 - 2.1 Consider all p k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - 2.2 Choose the *best* among these p k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

More on Forward Stepwise Selection

- Computational advantage over best subset selection is clear.
- It is not guaranteed to find the best possible model out of all 2^p models containing subsets of the p predictors. Why not? Give an example. $\{\chi_1, \chi_2, \chi_3\}$

$$\{x_{1}, x_{2}, x_{3}\}\$$
 $\{x_{1}, x_{2}, x_{3}\}\$
 $\{x_{1}, x_{2}\}\$
 $\{x_{3}, x_{3}\}\$

Credit data example

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

The first four selected models for best subset selection and forward stepwise selection on the Credit data set. The first three models are identical but the fourth models differ.

Choosing the Optimal Model

- The model containing all of the predictors will always have the smallest RSS and the largest R^2 , since these quantities are related to the training error.
- We wish to choose a model with low test error, not a model with low training error. Recall that training error is usually a poor estimate of test error.
- Therefore, RSS and R^2 are not suitable for selecting the best model among a collection of models with different numbers of predictors.

Estimating test error: two approaches

- We can indirectly estimate test error by making an adjustment to the training error to account for the bias due to overfitting.
- We can *directly* estimate the test error, using either a validation set approach or a cross-validation approach, as discussed in previous lectures.
- We illustrate both approaches next.

C_p , AIC, BIC, and Adjusted R^2

- These techniques adjust the training error for the model size, and can be used to select among a set of models with different numbers of variables.
- The next figure displays C_p , BIC, and adjusted R^2 for the best model of each size produced by best subset selection on the **Credit** data set.

Credit data example

Shrinkage Methods

Ridge regression and Lasso

- The subset selection methods use least squares to fit a linear model that contains a subset of the predictors.
- As an alternative, we can fit a model containing all *p* predictors using a technique that *constrains* or *regularizes* the coefficient estimates, or equivalently, that *shrinks* the coefficient estimates towards zero.
- It may not be immediately obvious why such a constraint should improve the fit, but it turns out that shrinking the coefficient estimates can significantly reduce their variance.

The Lasso

- Ridge regression does have one obvious disadvantage: unlike subset selection, which will generally select models that involve just a subset of the variables, ridge regression will include all p predictors in the final model
- The *Lasso* is a relatively recent alternative to ridge regression that overcomes this disadvantage. The lasso coefficients, $\hat{\beta}_{\lambda}^{L}$, minimize the quantity

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

• In statistical parlance, the lasso uses an ℓ_1 (pronounced "ell 1") penalty instead of an ℓ_2 penalty. The ℓ_1 norm of a coefficient vector β is given by $\|\beta\|_1 = \sum |\beta_j|$.

The Lasso: continued

- As with ridge regression, the lasso shrinks the coefficient estimates towards zero.
- However, in the case of the lasso, the ℓ_1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large.
- Hence, much like best subset selection, the lasso performs variable selection.
- We say that the lasso yields *sparse* models that is, models that involve only a subset of the variables.
- As in ridge regression, selecting a good value of λ for the lasso is critical; cross-validation is again the method of choice.

Example: Credit dataset

The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient estimates that are exactly equal to zero?

The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient estimates that are exactly equal to zero?

One can show that the lasso and ridge regression coefficient estimates solve the problems

and

minimize
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
 subject to $\sum_{j=1}^{p} \beta_j^2 \le s$,

respectively.

// Mañana, Juni. 20,2015

Selecting the Tuning Parameter for Ridge Regression and Lasso

- As for subset selection, for ridge regression and lasso we require a method to determine which of the models under consideration is best.
- That is, we require a method selecting a value for the tuning parameter λ or equivalently, the value of the constraint s.
- Cross-validation provides a simple way to tackle this problem. We choose a grid of λ values, and compute the cross-validation error rate for each value of λ .
- We then select the tuning parameter value for which the cross-validation error is smallest.
- Finally, the model is re-fit using all of the available observations and the selected value of the tuning parameter.

Simulated data example

Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse simulated data set from Slide 39. Right: The corresponding lasso coefficient estimates are displayed. The vertical dashed lines indicate the lasso fit for which the cross-validation error is smallest.

Dimension Reduction Methods

- The methods that we have discussed so far in this chapter have involved fitting linear regression models, via least squares or a shrunken approach, using the original predictors, X_1, X_2, \ldots, X_p .
- We now explore a class of approaches that *transform* the predictors and then fit a least squares model using the transformed variables. We will refer to these techniques as dimension reduction methods.

Dimension Reduction Methods: details

• Let Z_1, Z_2, \ldots, Z_M represent M < p linear combinations of our original p predictors. That is,

$$Z_m = \sum_{j=1}^p \phi_{mj} X_j \tag{1}$$

for some constants $\phi_{m1}, \ldots, \phi_{mp}$.

• We can then fit the linear regression model,

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \epsilon_i, \quad i = 1, \dots, n,$$
 (2)

using ordinary least squares.

• Note that in model (2), the regression coefficients are given by $\theta_0, \theta_1, \ldots, \theta_M$. If the constants $\phi_{m1}, \ldots, \phi_{mp}$ are chosen wisely, then such dimension reduction approaches can often outperform OLS regression.

• Notice that from definition (1),

$$\sum_{m=1}^{M} \theta_m z_{im} = \sum_{m=1}^{M} \theta_m \sum_{j=1}^{p} \phi_{mj} x_{ij} = \sum_{j=1}^{p} \sum_{m=1}^{M} \theta_m \phi_{mj} x_{ij} = \sum_{j=1}^{p} \beta_j x_{ij},$$

where

$$\beta_j = \sum_{m=1}^M \theta_m \phi_{mj}. \tag{3}$$

- Hence model (2) can be thought of as a special case of the original linear regression model.
- Dimension reduction serves to constrain the estimated β_j coefficients, since now they must take the form (3).
- Can win in the bias-variance tradeoff.

Principal Components Regression

- Here we apply principal components analysis (PCA) (discussed in Chapter 10 of the text) to define the linear combinations of the predictors, for use in our regression.
- The first principal component is that (normalized) linear combination of the variables with the largest variance.
- The second principal component has largest variance, subject to being uncorrelated with the first.
- And so on.
- Hence with many correlated original variables, we replace them with a small set of principal components that capture their joint variation.

Pictures of PCA

The population size (pop) and ad spending (ad) for 100 different cities are shown as purple circles. The green solid line indicates the first principal component, and the blue dashed line indicates the second principal component.

Pictures of PCA: continued

A subset of the advertising data. Left: The first principal component, chosen to minimize the sum of the squared perpendicular distances to each point, is shown in green. These distances are represented using the black dashed line segments. Right: The left-hand panel has been rotated so that the first principal component lies on the x-axis.

Pictures of PCA: continued

Plots of the first principal component scores z_{i1} versus pop and ad. The relationships are strong.

Pictures of PCA: continued

Plots of the second principal component scores z_{i2} versus pop and ad. The relationships are weak.

Application to Principal Components Regression

PCR was applied to two simulated data sets. The black, green, and purple lines correspond to squared bias, variance, and test mean squared error, respectively. Left: Simulated data from slide 32. Right: Simulated data from slide 39.

Choosing the number of directions M

Left: PCR standardized coefficient estimates on the Credit data set for different values of M. Right: The 10-fold cross validation MSE obtained using PCR, as a function of M.