Student Online Teaching Advice Notice

The materials and content presented within this session are intended solely for use in a context of teaching and learning at Trinity.

Any session recorded for subsequent review is made available solely for the purpose of enhancing student learning.

Students should not edit or modify the recording in any way, nor disseminate it for use outside of a context of teaching and learning at Trinity.

Please be mindful of your physical environment and conscious of what may be captured by the device camera and microphone during videoconferencing calls.

Recorded materials will be handled in compliance with Trinity's statutory duties under the Universities Act, 1997 and in accordance with the University's policies and procedures.

Further information on data protection and best practice when using videoconferencing software is available at https://www.tcd.ie/info compliance/data-protection/.

© Trinity College Dublin 2020

CSU33031 Computer Networks

High-level Data Link Control (HDLC)

Stefan Weber

email: sweber@tcd.ie

Office: Lloyd 1.41

HDLC

ISO 33009, ISO 4335, Used initially in X.25

1979, ISO 3309

- It's old so, why should we care?
 - Implements framing, addressing
 - Implements flow control mechanisms
- Do we have to learn it by heart?
 - No learn the principles not the frame layouts!

HDLC Station Types

- Primary station
 - Controls operation of link
 - Frames issued are called commands

- Secondary station
 - Under control of primary station
 - Frames issued called responses
- Combined station
 - Combination of primary and secondary station
 - May issue commands and responses

HDLC Station Types

Unbalanced Configuration

Two types of stations:

- Primary station
- Secondary station

Balanced Configuration

One type of stations:

Combined station

HDLC Modes

- Three modes:
 - Normal Response Mode (NRM)
 - Asynchronous Response Mode (ARM)
 - Asynchronous Balanced Mode (ABM)

HDLC frame

- Flag= 01111110
 - specifies beginning and end of frame
- Address
 - specifies secondary station
 - as either sender or receiver
- Control
 - specifies type of frame and seq.&ack. number
- Frame Check Sequence (FCS)
 - either 16- or 32-bit CRC

Bit-Stuffing

- Bit stuffing used to avoid confusion with data containing same combination as flag 01111110
 - O inserted after every sequence of five 1s
 - If receiver detects five 1s
 - it checks next bit
 - If 0, it is deleted
 - If 1 and seventh bit is 0, accept as flag
 - If sixth and seventh bits 1, sender is indicating abort

^{*} Figure is courtesy of B. Forouzan

Bit Stuffing

Process of adding 0 whenever there is a flag or escape sequence in the text.

Bit stuffing in HDLC

^{*} Figure is courtesy of B. Forouzan 10

Bit stuffing in HDLC

^{*} Figure is courtesy of B. Forouzan 11

Address Field

- Usually 8 bits long
- May be extended to multiples of 7 bits
 - LSB of each octet indicates that it is the last octet (1) or not (0)
- All ones (11111111) is broadcast

^{*} Figure is courtesy of W. Stallings 12

HDLC Frame Types

- I-Frame: Information Transfer Format
 - Control= 0 ? ? ? ? ? ? ?
- S-Frame: Supervisory Format
 - Control= 10??????
- U-Frame: Unnumbered Format
 - Control= 11??????

^{*} Figure is courtesy of B. Forouzan 13

I-Frame

- Sequence Number of Sender
- N(R)
 - Sequence Number of Receiver
- P/F
 - Poll/Final bit
 - Set by Primary station as request for information
 - Set by Secondary station to signal response or to signal final frame of a transmission

S-Frame Control Field

- Code 00 = Receive Ready (RR)
 - Acknowledge frames & waiting for more
- Code 10 = Receive Not Ready (RNR)
 - Acknowledge frames & busy right now
- Code 01 = Reject (REJ)
 - Go-Back-N NAK
- Code 11 = Selective Reject (SREJ)
 - Selective Repeat NAK

^{*} Figure is courtesy of B. Forouzan 15

U-Frame Control Field

Code	Command/Response	Meaning	
00 001	SNRM	Set normal response mode	
11 100	SABM	Set asynchronous balanced mode	
00 100	UP	Unnumbered poll	
00 000	UI	Unnumbered information	
00 110	UA	Unnumbered acknowledgment	
00 010	DISC	Disconnect	
10 000	SIM	Set initialization mode	
11 001	RSET	Reset	
11 101	XID	Exchange ID	
10 001	FRMR	Frame reject	

^{*} Figure is courtesy of B. Forouzan 16

Normal Response Mode (NRM)

- Master/Slave architecture
- Unbalanced configuration
- Primary initiates transfer to secondary
- Secondary may only transmit data in response to command from primary
- Used on multi-drop lines

^{*} Figure is courtesy of B. Forouzan 17

Asynchronous Response Mode (ARM)

- Unbalanced configuration
- Secondary may initiate transmission without permission form primary
- Primary responsible for line
- Rarely used

^{*} Figure is courtesy of B. Forouzan 18

Asynchronous Balanced Mode (ABM)

- Balanced configuration
- Either station may initiate transmission without receiving permission
- Most widely used
- No polling overhead

Connection & Disconnection

^{*} Figure is courtesy of B. Forouzan 20

Examples of Operation

SABME	Set asynchronous balanced mode	RR	Receive Ready
1	Information	RNR	Receive Not Ready
UA	Unnumbered acknowledgment	REJ	Reject
DISC	Disconnect	SREJ	Selective Reject

esy of W. Stallings 21

Example

Piggybacking without Error

^{*} Figure is courtesy of B. Forouzan 23

Piggybacking with Error

^{*} Figure is courtesy of B. Forouzan 24

Summary: HDLC

- Three station types
 - Primary station
 - Secondary station
 - Combined station
- Operation modes
 - Normal response mode
 - Asynchronous response mode
- Three frame types
 - I-Frame: Information Transfer Format
 - S-Frame: Supervisory Format Flow Control
 - U-Frame: Unnumbered Format Connection setup/term./etc
- Bit-Stuffing to avoid confusion of data and flag

HDLC – Why?

'should give you a feeling for a protocol

- It includes most of the basic mechanisms
 - Framing
 - Addressing
 - Bit-stuffing
 - Flow/Error control

 Once you can run through HDLC in your head, you understand the basics of link layer protocols

Binary Example

Binary Example

Link Layer

HDLC Frames

Connection & Disconnection

Piggybacking without Error

CSU33031 Computer Networks

Error Detection Speed Run

Stefan Weber

email: sweber@tcd.ie

Office: Lloyd 1.41

Types of Errors: Burst Error

A burst error means that 2 or more bits in the data unit have changed

Redundancy

- Sender includes additional information
- Receiver verifies this information
- Example: Meet Thursday, 26th Sep (→ Wrong!)

Detection of Errors

- Types of detection methods
 - Balance detection against overhead

Even-Parity Concept

A parity bit is added to every data unit so that the total number of 1s is even (or odd for odd-parity).

Two-Dimensional Parity Check

In two-dimensional parity check, a block of bits is divided into rows and a redundant row of bits is added to the whole block.

CRC: Sender

CRC: Receiver

802.3 MAC Format

- 64-bit frame preamble (10101010) used to synchronize reception
 - 7 bit preamble (10101010) + 1 start flag (10101011)

- Maximum frame length: 1536 bytes
 - ⇒ max 1500 bytes payload
- Minimum frame length: 64 bytes
 - ⇒ min 46 bytes payload

Checksum

Checksum II

Sender:

The unit is divided into k sections, each of n bits.

All sections are added using one's complement to get the sum.

The sum is complemented and becomes the checksum.

The checksum is sent with the data.

Receiver:

The unit is divided into k sections, each of n bits.

All sections are added using one's complement to get the sum.

The sum is complemented.

If the result is zero, the data are accepted: otherwise, rejected.

IP Datagram: Example for Checksum

Redundancy Bits Calculation

Redundancy Bit Calculation

Error Detection using Hamming Code

Summary

- Types of Errors
 - Single-Bit & Burst Errors
- Detection of Errors
 - Parity Check / 2D Parity Check
 - CRC ← Sequence of bits
 - Checksum ← Chunks of bits
- Correction of Errors
 - Error Correction by Retransmission
 - Forward Error Correction Hamming Code

