## **COMPSCI 402 Artificial Intelligence**

Assignment 2 – MDP Total points: 8-point

- **Q1.** Pacman is using MDPs to maximize his expected utility. In each environment:
  - Pacman has the standard actions {North, East, South, West} unless blocked by an outer wall
  - There is a reward of 1 point when eating the dot (for example, in the grid below, R(C; South; F) = 1)
  - The game ends when the dot is eaten
- (a) Consider the following grid where there is a single food pellet in the bottom right corner (F). The discount factor is 0.5. There is no living reward. The states are simply the grid locations.

| А | В | С    |
|---|---|------|
| D | Е | F () |

(i) What is the optimal policy for each state? (1-point)

| State | $\pi(state)$ |
|-------|--------------|
| Α     |              |
| В     |              |
| С     |              |
| D     |              |
| E     |              |

(ii) What is the optimal value for the state of being in the upper left corner (A)? Reminder: the discount factor is 0.5. (1-point)

 $V^{*}(A) =$ 

| k | V(A) | V(B) | V(C) | V(D) | V(E) | V(F) |
|---|------|------|------|------|------|------|
| 0 |      |      |      |      |      |      |
| 1 |      |      |      |      |      |      |
| 2 |      |      |      |      |      |      |
| 3 |      |      |      |      |      |      |
| 4 |      |      |      |      |      |      |

(iii) Using value iteration with the value of all states equal to zero at k=0, for which iteration k will  $V_k(A) = V^*(A)$ ? (1-point)

k =

(b) Consider a new Pacman level that begins with cherries in locations D and F. Landing on a grid position with cherries is worth 5 points and then the cherries at that position **disappear**. There is still one dot, worth 1 point. The game still only ends when the dot is eaten.



(i) With no discount ( $\gamma = 1$ ) and a living reward of -1, what is the optimal policy for the states in this level's state space? (1-point)

| State (hint: three-element tuple) | $\pi(state)$ |
|-----------------------------------|--------------|
| Α,                                |              |
| Α,                                |              |
| Α,                                |              |
| Α,                                |              |
| С,                                |              |
| С,                                |              |
| С,                                |              |
| С,                                |              |
| D,                                |              |
| D,                                |              |
| Ε,                                |              |
| Ε,                                |              |
| Ε,                                |              |
| Ε,                                |              |
| F,                                |              |
| F,                                |              |

(ii) With no discount ( $\gamma=1$ ), what is the range of living reward values such that Pacman eats exactly one cherry when starting at position A? (1-point)

**Q2**. In this MDP, the available actions at **state A, B, C** are *LEFT, RIGHT, UP*, and *DOWN* unless there is a wall in that direction. The only action at **state D** is the *EXIT ACTION* and gives the agent a **reward of x**. The **reward for non-exit actions is always 1**.



(a) Let all actions be deterministic. Assume  $\gamma = \frac{1}{2}$ . Express the following in terms of x. (1-point)

$$V^*(D) =$$

$$V^*(C) =$$

$$V^*(A) =$$

$$V^{*}(B) =$$

(b) Let any non-exit action be successful with **probability**=  $\frac{1}{2}$ . Otherwise, the agent stays in the same state with **reward = 0**. The EXIT ACTION from the state D is still deterministic and will always succeed. Assume that  $\gamma = \frac{1}{2}$ . For which value of x does  $Q^*(A;DOWN) = Q^*(A;RIGHT)$ ? Box your answer and justify/show your work. (1-point)

(c) We now add one more layer of complexity. Turns out that the reward function is not guaranteed to give a particular reward when the agent takes an action. Every time an agent transitions from one state to another, once the agent reaches the new state s', a fair 6-sided dice is rolled. If the dices lands with value s', the agent receives the reward s', and an array a