Работа 1.1.4

Измерение интенсивности радиационного фона

Балдин Виктор Б01-303

21 октября 2023 г.

1 Аннотация

Цель работы: применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.

Оборудование: счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

2 Теоретические сведения

В данной работе измеряется число частиц, проходящих через счетчик за 10 секунд, с помощью которого мы можем найти и количество за 40 секунд. Такие времена выбраны для того, чтобы показать, что при большем времени лучше выполняется нормальное распределение измеряемых величин и гистограмма более симметрична, чем при малых временах, когда при обработке лучше воспользоваться законом Пуассона.

Если случайные события, такие как регистрация частицы счётчиком, однородны во времени и являются независимыми, то результаты их измерений подчиняются распределению Пуассона. Теория вероятности утверждает, что в таком случае:

$$\sigma = \sqrt{n_0} \tag{1}$$

Для рассмотренной выборки из n измерений относительная ошибка отдельного измерения равна:

$$\varepsilon_{\text{\tiny otd}} \approx \frac{1}{\sqrt{n_i}}$$
(2)

При проведении многочисленных опытов за n_0 принимается среднее арифметическое всех результатов $\langle n \rangle$, а стандартное отклонение $\langle n \rangle$ от n_0 может быть вычислено по формуле:

$$\sigma_{\langle n \rangle} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (n_i - \langle n \rangle)^2},$$

где N - количество измерений, n_i - результат i-того измерения. Относительная же погрешность составит:

$$\varepsilon_{\langle n \rangle} = \frac{1}{\sqrt{\langle n \rangle N}}.$$

Таким образом, можно по результатам измерений можно построить гистограмму $\omega_n = f(n)$, где ω_n – доля случаев, для которых число срабатывания счетчика за 10 с равно n.

3 Методика измерений

Рис. 1: Схема включения датчика

Космические лучи обнаруживают с помощью ионизации, которую они производят, используя счетчик Гейгера-Мюллера. Схема его подключения приведена на рисунке 1. Счетчик представляет собой наполненный газом сосуд с двумя электродами. Частицы космических лчей ионизируют газ, выбивают электроны из стенок сосуда. Те, сталкиваясь с молекулами газа, выбивают из них электроны. Таким образом, получается лавина электронов, вследствие которой через счетчик резко увеличивается сила тока.

4 Используемое оборудование

Счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер.

5 Результаты измерений и обработка данных

- 1. Включим установку и убедимся в ее работоспособности, проведя демонстрационный эксперимент.
- 2. Проведем основной эксперимент. Данные, полученные для количества частиц, прошедших за 20 с:

Таблица 1: Количество срабатываний за 20 с

№ опыта	1	2	3	4	5	6	7	8	9	10
0	31	25	24	19	24	19	27	27	22	25
10	23	37	36	25	25	22	28	24	23	29
20	24	21	28	28	24	24	28	25	27	30
30	23	29	26	36	21	35	23	20	34	24
40	22	19	34	22	30	30	20	32	33	20
50	28	28	21	25	35	18	26	22	24	26
60	16	27	26	24	27	19	31	15	28	38
70	24	33	24	29	31	21	15	20	26	19
80	20	18	41	25	22	24	22	21	30	25
90	20	31	31	24	14	19	29	17	14	28
100	25	31	29	29	18	25	18	24	24	35
110	31	21	31	32	34	13	29	30	21	20
120	30	22	20	32	32	29	33	20	31	29
130	26	18	22	29	33	20	33	20	31	29
140	22	25	27	23	18	28	21	23	24	27
150	27	25	30	21	24	23	22	33	21	32
160	28	22	26	20	31	29	30	27	23	26
170	22	24	20	31	38	18	24	28	26	24
180	41	28	27	29	25	23	21	24	26	19
190	27	24	25	34	28	28	19	28	26	21

3. Переносим данные для $\tau=10$ с:

Таблица 2: Данные для гистограммы для $\tau=10~{\rm c}$

Число импульсов п	Число случаев	Доля случаев ω_n
4	4	0.0100
5	1	0.0025
6	9	0.0225
7	20	0.0500
8	19	0.0475
9	25	0.0625
10	39	0.0975
11	33	0.0825
12	41	0.1025
13	43	0.1075
14	47	0.1175
15	36	0.0900
16	23	0.0575
17	11	0.0275
18	27	0.0675
19	6	0.0150
20	6	0.0150
21	3	0.0075
22	2	0.0050
23	4	0.0100
27	1	0.0025

4. Построим гистограмму по таблице 2:

0.1400 0.1400 0.1200 **0.**1200 0.1000 0.1000 0.0800 0.0800 0.0600 0.0600 0.0400 0.0400 0.0200 0.0200 0.0000 0.0000 n 10 0 15 20 25 30

Рис. 2: Гистограмма для $\tau=10~\mathrm{c}$

Среднее значение для этой выборки $\overline{n}_1=14.1$, стандартное отклонение $\sigma_{\overline{n}_1}=6.5$, относительная ошибка $\varepsilon_1=0.014$.

5. Аналогичным образом обработаем данные для $\tau = 40~{\rm c.}$

Таблица 3: Гистограмма для $\tau = 40~{\rm c}$

Число импульсов п	Число случаев	Доля случаев ω_n
26	1	0.0100
32	0	0.0025
34	2	0.0225
36	5	0.0500
38	5	0.0475
40	6	0.0625
42	10	0.0975
44	8	0.0825
46	10	0.0975
48	11	0.1125
50	12	0.1175
52	9	0.0900
54	6	0.0575
56	7	0.0675
58	1	0.0125
60	2	0.0150
62	2	0.0150
64	1	0.0075
66	2	0.0225
76	1	0.0050
82	1	0.0050

6. Гистограмма по таблице 3:

0.1400 0.1200 0.1000 0.0800 0.0600 0.0400 0.0200 0.0000 30 40 50 60 70 80 90

Рис. 3: Гистограмма для $\tau = 40 \ {\rm c}$

Среднее значение $\overline{n}_2=50.7$, отклонение $\sigma_{\overline{n}_2}=14.5$. Относительная ошибка $\varepsilon_2=$ 0.015.

Обсуждение результатов 6

Согласно теории, стандартное отклонение для распределения Пуассона можно оценить по формуле (1) как $\sigma = \sqrt{\overline{n}}$. Можно составить таблицу для этих опытов для сравнения результатов с теоретической оценкой:

Таблица 4: Стандартное отклонение для 2-х выборок

Выборка	$\sigma_{\scriptscriptstyle m SKCII}$	$\sigma_{ m reop}$
10 c	6.5	3.8
40 c	14.5	7.1

Нетрудно видеть, что порядок сходится с теоретической оценкой. Так же видна тенденция к уменьшению отклонения при увеличении числа измерений, что согласуется с теорией. Причиной существенного несовпадения значений с теорией могут быть некоторые радиационные аномалии, а также системная погрешность аппаратуры.

7 Вывод

В результате эксперимента удалось подтвердить характер распределения Пуассона, а также измерить средние значения.