

AI – ENHANCED TILING WINDOW MANAGER FOR LINUX SYSTEMS

A PROJECT REPORT

Submitted by

 SELVA VISWANATH S
 211519205146

 ROHITH VS
 211519205128

 SANTHOSH S
 211519205143

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

INFORMATION TECHNOLOGY

PANIMALAR INSTITUTE OF TECHNOLOGY ANNA UNIVERSITY CHENNAI 600 025

MAY 2023

PANIMALAR INSTITUTE OF TECHNOLOGY ANNA UNIVERSITY CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report "AI – ENHANCED TILING WINDOW MANAGER FOR LINUX SYSTEMS" is the bonafide work of "SELVA VISWANATH S (211519205146), ROHITH VS (211519205128), SANTHOSH S (211519205143)" that carried out the project work under my supervision.

SIGNATURE SIGNATURE

Dr. S. SUMA CHRISTAL MARY, M.E, Ph.D., Mrs. S. IRIN SHERLY, M.E., SUPERVISOR

HEAD OF THE DEPARTMENT ASSOCIATE PROFESSOR

Department of Information Technology, Department of Information Technology,

Panimalar Institute of Technology,

Panimalar Institute of Technology,

Panimalar Institute of Technology,

Poonamallee, Chennai 600 123 Poonamallee, Chennai 600 123

Certified that the candidates were examined in the university project Viva-voce held on ----- at Panimalar Institute of Technology, Chennai 600 123.

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

A project of this magnitude and nature requires kind co-operation and support from many, for successful completion. We wish to express our sincere thanks to all those who were involved in the completion of this project.

We seek the blessing from the **Founder** of our institution **Dr. JEPPIAAR**, **M.A., Ph.D.,** for having been a role model who has been our source of inspiration behind our success in education in his premier institution.

We would like to express our deep gratitude to our beloved **Secretary and Correspondent Dr. P. CHINNADURAI**, M.A., Ph.D., for his kind words and enthusiastic motivation which inspired us a lot in completing this project.

We also express our sincere thanks and gratitude to our dynamic **Directors** Mrs. C. VIJAYA RAJESHWARI, Dr. C. SAKTHI KUMAR, M.E., Ph.D., and Dr. S. SARANYA SREE SAKTHI KUMAR, B.E, M.B.A., Ph.D., for providing us with necessary facilities for completion of this project.

We also express our appreciation and gratefulness to our respected **Principal Dr. T. JAYANTHY, M.E., Ph.D.,** who helped us in the completion of the project. We wish to convey our thanks and gratitude to our **Head of the Department, Dr. S. SUMA CHRISTAL MARY, M.E., Ph.D.,** for her full support by providing ample time to complete our project. We express our indebtedness and special thanks to our **Supervisor, Mrs. S. IRIN SHERLY, M.E.,** for her expert advice and valuable information and guidance throughout the completion of the project.

Last, we thank our parents and friends for providing their extensive moral support and encouragement during the course of the project.

ABSTRACT

The conventional approach to managing windows in a tiling window manager on X11 – window graphical server requires the user to manually allocate each window to a specific workspace. However, this can become tedious and time-consuming, especially when dealing with a large number of windows. To address this issue, a novel approach to dynamically allocate and manage windows using machine learning techniques is presented in this paper.

The proposed system employs a Decision Tree Classifier model to predict the optimal workspace for a given window based on its characteristics, such as its size and name. To train the model, a dataset of window attributes and workspace allocations was utilized, and various classification algorithms were employed. The trained model was then integrated with a custom-built tiling window manager using Python scripts, which enables real-time allocation of windows to workspaces based on the model's predictions.

One of the main advantages of this system is its ability to adapt to changes in the user's working environment. For instance, if a new window is opened, the model can quickly allocate it to the most appropriate workspace without the need for user intervention. Furthermore, the model's accuracy improves over time as it learns from the user's behavior, thus providing a more personalized workspace management experience.

To evaluate the accuracy of the system, a test dataset was used, and the results indicated high accuracy in workspace allocation. This approach has the potential to increase users' efficiency and productivity by automatically organizing their workspaces based on the contents of their windows, freeing up their time to focus on more important tasks. Overall, this research represents a significant step forward in the field of window management, and the proposed approach could have widespread applications in various domains, such as software development, data analysis, and graphic design.

TABLE OF CONTENTS

CHAPTER	TITLE PAGE	NO
	ABSTRACT	iv
	LIST OF FIGURES	viii
	LIST OF SYMBOLS	ix
	LIST OF ABBREVIATIONS	xi
1.	INTRODUCTION	
	1.1 OVERVIEW OF PROJECT	2
	1.2 SCOPE OF THE PROJECT	3
2.	LITERATURE SURVEY	5
3.	SYSTEM ANALYSIS	
	3.1 EXISITING SYSTEM	14
	3.1.1 DISADVANTAGES	15
	3.2 PROPOSED SYSTEM	16
	3.2.1 ADVANTAGES	16
4.	REQUIREMENTS SPECIFICATION	
	4.1 INTRODUCTION	18
	4.2 HARDWARE AND SOFTWARE	
	SPECIFICATIONS	19
	4.2.1 HARDWARE REQUIREMENTS	19
	4.2.2 SOFTWARE REQUIREMENTS	
	4.2.2.1 PYTHON	20
	4.2.2.2 GOOGLE COLAB	33
	4.2.2.3 ARCH REPOSITORY	35

	4.2.2.4 LINUX	37
	4.2.2.5 X11	38
5.	SYSTEM DESIGN	
	5.1 ARCHITECTURE DIAGRAM	41
	5.2 UML DIAGRAMS	
	5.2.1 USECASE DIAGRAM	44
	5.2.2 SEQUENCE DIAGRAM	45
	5.2.3 CLASS DIAGRAM	46
	5.2.4 ACTIVITY DIAGRAM	47
	5.2.5 DATA FLOW DIAGRAM	48
	5.3 MODULES:	49
	5.3.1 DATASET	
	5.3.2 PRE PROCESSING	
	5.3.3 FEATURE ENGINEERING	
	5.3.4 MACHINE LEARNING	
	5.3.5 TILING WINDOW MANAG	ER ALGORITHM
	5.3.6 UI	
6.	CODING AND TESTING	
	6.1 STANDARDS TO FOLLOW	52
	6.2 TESTING	56
	6.3 TYPES OF TESTING	57
	6.3.1 UNIT TESTING	
	6.3.2 FUNCTIONAL TESTING	
	6.3.3 SYSTEM TESTING	
	634 PERFORMANCE TESTIN	G

6.3.6 PROGRAM TESTING	
6.3.7 VALIDATION TESTING	
6.3.8 USER ACCEPTANCE TESTING	\vec{j}
6.4 WHITE BOX AND BLACK BOX TEST	ΓING
6.4.1 WHITE BOX TESTING	
6.4.2 BLACK BOX TESTING	
6.5 SOFTWARE TESTING STRAGIES	
CONCLUSION AND FUTURE SCOPE	63
APPENDICES	
APPENDIX A- DATASET	68
APPENDIX B- SOURCE CODE	69
APPENDIX B- SOURCE CODE APPENDIX C- SNAPSHOTS	69
	6.3.8 USER ACCEPTANCE TESTING 6.4 WHITE BOX AND BLACK BOX TEST 6.4.1 WHITE BOX TESTING 6.4.2 BLACK BOX TESTING 6.5 SOFTWARE TESTING STRAGIES CONCLUSION AND FUTURE SCOPE APPENDICES

6.3.5 INTEGRATION TESTING

LIST OF FIGURES

S.NO	NAME OF THE FIGURES	PAGE.NO
5.1	System Architecture Diagram	26
5.2	Use Case Diagram	28
5.3	Sequence Diagram	29
5.4	Class Diagram	30
5.5	Activity Diagram	31
5.6	Data FlowDiagram	32

LIST OF SYMBOLS

S.NO	NAME	NOTATION	DESCRIPTION
1.	Actor	2	It aggregates several classes into single classes
2.	Communication		Communication between various use cases.
3.	State	State	State of the process.
4.	Initial State	$0 \longrightarrow$	Initial state of the object
5.	Final state	→ ⊙	Final state of the object
6.	Control flow	X_	Represents various control flow between the states.
7.	Decision box	→	Represents decision making process from a constraint
8.	Node		Represents physical modules which are a collection of components.
9.	Data Process/State		A circle in DFD represents a state or process which has been triggered due to some event or action.

10.	External entity		Represents external entities such as keyboard, sensors, etc.
11.	Transition	-	Represents communication that occurs between processes.
12.	Object Lifeline		Represents the vertical dimensions that the object communications.
13.	Message	<u>message</u>	Represents the message exchanged.