DEVELOPING AN EXCLUSION BOUNDARY (EB) FOR THE DASHER-XLS

STAT 938

Alaattin Isilak, Kyu Min Shim, Pamalka Bandara, Sohoon Youn

Team Exclusion Boundary Hunters

Outline

- 1. Introduction
- 2. Description Problem and Data
- 3. Methodology
- 4. Results
- 5. Conclusions

1. Introduction

2. Description of Problem

Problem

Define an exclusion boundary with a confidence level of $\gamma\%$ and a probability of crossing θ based on the impact point data

2. Description of Data

Data

The impact point coordinates (x,y) for multiple Dasher-XLS launches

	X	Y
Min	5	-1325
Max	6355	1265
Median	215	5
Mean	251.7	-0.01

2. Description of Data

When duplicated the impact points, the distribution resembles gaussian

→ Fit a Gaussian model to data

3. Methodology

Step 1:

Create a Gaussian Mixture Model by analyzing the data and its mirrored version

Step 2:

Find an ellipse that leaves out $100^*\theta\%$ of data points using the model's parameters

Step 3:

Bootstrap B ellipses, each excluding 100* θ % of data points Estimate the exclusion boundary with γ % confidence and θ probability

Step 1. Create a Gaussian Mixture Model by analyzing the data and its mirrored version

Density estimates are produced for each data point using a Gaussian mixture model

Step 2. Find an ellipse that leaves out $100^*\theta\%$ of data points using the model's parameters

- Black points : non-excluded data points
- Red points: excluded data points that comprise 5% of the total data points
- Red ellipse boundary: ellipse that excludes 5% of the data points

Step 3. Estimate the exclusion boundary with $\gamma\%$ confidence and θ probability

- A. Resample the data using bootstrap (with replacement) based on the GMM model.
- B. Extract mean and covariance matrix parameters for each resampled data set.
- C. Calculate the trace of each covariance matrix in the resampled data.
- D. Determine the ellipse size using the γ % quantile of the eigenvalues.
- E. Calculate the ellipse radius based on the exclusion probability θ .
- F. Create ellipses representing the exclusion boundary with a confidence interval of γ and the exclusion probability θ .

Simulation Steps:

- A. Specify exclusion probability θ and confidence level γ %
- B. Using the methodology from the previous section, construct an exclusion boundary that has probability θ of crossing with $\gamma\%$ confidence
- C. Take 100 bootstrap samples of size N from the data, and compute the percentage of points in each sample that lies outside of the exclusion boundary
- D. Count the number of bootstrap samples which excludes at most $100^*\theta^*N$ data points to the pre-determined confidence level γ
- E. If our method is exact, there should be $(1-\gamma\%)^*100$ bootstrap samples that have more than $100^*\theta^*N$ data points that lie outside of the exclusion boundary

x-coordinate

N	Number of Unsatisfactory Bootstrap Samples	Mean Exclusion (10%)	Standard Deviation of Exclusion
10,000	27 / 100	9.8035%	0.2998%
100,000	3 / 100	9.8283%	0.0842%
1,000,000	0 / 100	9.8232%	0.0317%

x-coordinate

N	Number of Unsatisfactory Bootstrap Samples	Mean Exclusion (5%)	Standard Deviation of Exclusion
10,000	34 / 100	4.9098%	0.2167%
100,000	8 / 100	4.9199%	0.0620%
1,000,000	0 / 100	4.9278%	0.0200%

x-coordinate

N	Number of Unsatisfactory Bootstrap Samples	Mean Exclusion (0.1%)	Standard Deviation of Exclusion
10,000	26 / 100	0.0856%	0.0297%
100,000	7 / 100	0.0876%	0.0001%
1,000,000	0 / 100	0.0884%	0.0000%

4. Results - Concern

N	Number of Unsatisfactory Bootstrap Samples	Mean Exclusion (0.001%)	Standard Deviation of Exclusion
10,000	100 / 100	0.0453%	0.0172%
100,000	100 / 100	0.0462%	0.0001%
1,000,000	100 / 100	0.0463%	0.0000%

4. Results - Adjustment for Extremely Small Theta

QQ plot of y-coordinates

QQ ploot of x-coordinates

norm quantiles

4. Results - Concern

N	Number of Unsatisfactory Bootstrap Samples	Mean Exclusion % (0.001% Expected)	Standard Deviation of Exclusion %
10,000	8 / 100	0.0009%	0.0032%
100,000	21 / 100	0.0009%	0.0010%
1,000,000	23 / 100	0.0008%	0.0003%

5. Conclusion

- Our method of identifying an exclusion boundary utilizes the distribution of the data by transforming it to a more familiar distribution and fitting the well-known Gaussian Mixture Model.
- The method can provide an exclusion boundary that has θ probability of being crossed with $\gamma\%$ confidence.
- In the case of extremely small θ , the method performs poorly due to the presence of many extreme observations in the data and relatively small data size. We recommend collecting a sufficiently large sample when θ of interest is extremely small in order to identify an exclusion boundary with high levels of confidence.

5. Conclusion

- Our method uses familiar statistical techniques to create an exclusion boundary.
- The boundary has a specific probability of being crossed and a confidence level.
- When dealing with extremely small probabilities, the method may not perform well due to extreme data points and a small dataset.
- To ensure accurate results with high confidence, gather a larger sample when working with very small probabilities.

THANK YOU!

Alaattin Isilak, Kyu Min Shim, Pamalka Bandara, Sohoon Youn

Team Exclusion Boundary Hunters