

Model: Oblivious routing

: Tags	112-2 Oblivious Routing
■ Datum	@11. Februar 2024
© Präsentation	https://docs.google.com/presentation/d/1RmGI7sELMFbk2IOxzNBs6EziNTCBfE1dtSw2Sp2Es1o/edit#slic
🔆 Status	Es kann geändert werden

Der Thikung von dem Lehrer

 $\textbf{Input}: \textbf{Given a Demand Matrix } DM_1$

 $\textbf{Output}: \textbf{Routing } \phi \text{ (Fraction of demand entering vertex)}$

- 1. Find the best routing ϕ_1 of DM_1
- 2. Find the worst demand matrix DM_2 of the routing ϕ_1
- 3. Find the best routing ϕ_2 of DM_1+DM_2
- 4. Iteration until it meet the cutoff condition

ှိုင်္ဂိ Approach

Input: A demand Matrix Output: Routing (Fraction of demand entering vertex)

Best routing: Minimize maximum link ultialization **Worst demand matrix**: Maximum maximum link ultialization

Pseudo code

Algorithm 1: main algorithm

Input: Demand matrix DM

Output: Routing ϕ_{best} (Fraction of demand)

- 1 Initialization : $DM_{worst} = \emptyset$;
- ${f 2}$ while not meet the cutoff condition ${f do}$
- 3 $DM = DM + DM_{worst};$
- 4 Find the best routing ϕ of DM; // The First model
- $\phi_{best} = \phi;$
- Find the worst demand matrix DM_{worst} of ϕ_{best} // The second model
- 7 end
- 8 return ϕ_{best}

Finden Sie größe Routing ϕ

Finding the link weight and traffic splitting ratio to minimize the maximum link ultilization

Indicate

DM Demand matrix

e=(u,v)∈E Edges form vertex u to vertex v

dst Demand form s to t

fst(u) Fraction of demand entering vertex u

ce Link capacity

Given demand matrix DM, find the fraction of

demands that minimizing

the maximum link

ultilization.

Variable

α The maximum link ultilization of the

demand matrix DM

 $\phi_{st}(e)$ Routing fraction for edge e=(u, v)

Indicate

DM	Demand matrix
$e=(u,v)\in E$	Edges
d_{st}	Demand from s to t
$f_{st}(u)$	Fraction of demand entering vertex \boldsymbol{u}
c_e	Link capacity

Variable

lpha The maximum link ultilization of the demand matrix DM

 $\phi_{st}(e)$ Routing fraction for edge e=(u,v)

Objective function

Minimize the maximum link ultilization lpha

 $\min \alpha$

Constraints

$$0 \leq \alpha \leq 1 \text{ (Decision variable constraint)}$$

$$0 \leq \phi_{st}(e) \leq 1 \text{ ,} \forall e \in E \text{ (Decision variable constraint)}$$

$$\sum_{(s,t)} \frac{d_{st}f_{st}(u)\phi_{st}(e)}{c(e)} \leq \alpha \text{ (Link capacity constraint)}$$

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \text{ ,} \forall (s,t) \in D \text{(Flow conservation)} \\ 0 & \text{others} \end{cases}$$

Model: Demand matrix has no constrainted

 $\min \alpha$ (Minimize maximum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \text{ ,} \forall (s,t) \in D, \forall u \in V \\ 0 & \text{others} \end{cases}$$

$$\sum_{(s,t)} \frac{d_{st}f_{st}(u)\phi_{st}(e)}{c(e)} \leq \alpha$$

$$\sum_{(s,t)} \frac{d_{st}f_{st}(u)\phi_{st}(e)}{c(e)} \leq \alpha$$
(Link capacity constraint)
$$0 \leq \phi_{st}(e) \leq 1 \text{ ,} \forall e \in E$$
(Decision variable constraint)
$$0 \leq \alpha \leq 1$$
(Decision variable constraint)

 $\min \alpha$ (Minimize maximum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \text{ , } \forall (s,t) \in D, \forall u \in V \\ 0 & \text{others} \end{cases}$$

$$\sum_{(s,t)} \frac{d_{st} f_{st}(u) \phi_{st}(e)}{c(e)} \leq \alpha$$
(Link capacity constraint)
$$0 \leq \phi_{st}(e) \leq 1 \text{ , } \forall e \in E$$
(Decision variable constraint)
$$0 \leq \alpha \leq 1$$
(Decision variable constraint)

Find the worst demand matrix of routing ϕ

Find the demand matrix maximizing the maximum link ultilization with given routing ϕ

The second model

Indicate

$\phi_{st}(e)$	Given routing fraction for edge e=(u, v)	
e=(u,v)∈E	Edges form vertex u to vertex v	
d st	Demand form s to t	Given routing (Fracttion of demand) φ, find the
fst(u)	Fraction of demand entering vertex u	demand matrix maximizing
Ce	Link capacity	maximum link ultilization with routing φ.

Variable

The maximum link ultilization of the demand matrix DM DM The worstcase demand matrix of given routing ϕ

Indicate

$\phi_{st}(e)$	Given routing
$e=(u,v)\in E$	Edges
d_{st}	Demand from s to t
$f_{st}(u)$	Fraction of demand entering vertex ${\it u}$

Link capacity

Variable

DM The worstcase demand matrix of given routing ϕ lpha The maximum link ultilization of the demand matrix ${
m DM}$

Objective function

Maximize the maximum link ultilization lpha

 $\max \alpha$

Constraints

Demand matrix is unconstrained

$$0 \leq lpha \leq 1 ext{ (Decision variable constraint)} \ \sum_{(s,t)} rac{d_{st}f_{st}(u)\phi_{st}(e)}{c(e)} \leq lpha ext{ (Link capacity constraint)} \ \sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = egin{cases} 1 & ext{if } u=s \ -1 & ext{if } u=t \ , \ orall (s,t) \in D ext{(Flow conservation)} \ 0 & ext{others} \end{cases}$$

Demand matrix must in a set D

$$0 \leq \alpha \leq 1 \text{ (Decision variable constraint)}$$

$$DM \in D(\text{Decision variable constraint})$$

$$\sum_{(s,t)} \frac{d_{st} f_{st}(u) \phi_{st}(e)}{c(e)} \leq \alpha \text{ (Link capacity constraint)}$$

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u=s \\ -1 & \text{if } u=t \end{cases}, \ \forall (s,t) \in D(\text{Flow conservation})$$
 others

Model

Demand matrix is unconstrained

 $\max \alpha$ (Maximize maximum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \text{ ,} \forall (s,t) \in D, \forall u \in V \\ 0 & \text{others} \end{cases}$$

$$\sum_{(s,t)} \frac{d_{st} f_{st}(u) \phi_{st}(e)}{c(e)} \leq \alpha \qquad \qquad \text{(Link capacity constraint)}$$

$$0 \leq \alpha \leq 1 \qquad \qquad \text{(Decision variable constraint)}$$

 $\max \alpha$ (Maximize maximum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \text{ ,} \forall (s,t) \in D, \forall u \in V \\ 0 & \text{others} \end{cases}$$

$$\sum_{(s,t)} \frac{d_{st}f_{st}(u)\phi_{st}(e)}{c(e)} \leq \alpha$$
(Link capacity constraint)
$$0 \leq \alpha \leq 1$$
(Decision variable constraint)

Demand matrix must in a set D

 $\max \alpha$ (Maximize maximum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \text{ ,} \forall (s,t) \in D, \forall u \in V \\ 0 & \text{others} \end{cases}$$

$$\sum_{(s,t)} \frac{d_{st} f_{st}(u) \phi_{st}(e)}{c(e)} \leq \alpha$$
(Link capacity constraint)

 $\mathrm{DM} \in D$

(Decision variable constraint)

 $0 \le \alpha \le 1$

(Decision variable constraint)

 $\max \alpha$ (Maximize maximum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \text{ , } \forall (s,t) \in D, \forall u \in V \\ 0 & \text{others} \end{cases}$$
 (Flow conservation)
$$\sum_{(s,t)} \frac{d_{st} f_{st}(u) \phi_{st}(e)}{c(e)} \leq \alpha$$
 (Link capacity constraint)
$$DM \in D$$
 (Decision variable constraint)
$$0 \leq \alpha \leq 1$$
 (Decision variable constraint)

Etwas Fragen

Some question

About model 1:

What happens if total traffic is over than the total capacity of the network?

About model 2:

- 1. How to defined the constraints of the OD pairs with continuous interval constraints?
- 2. In practice, how to define the first demand matrix?
- 3. In model 2, there is high probability that several feasible solution.

Über Modell Eins

What happens if total traffic is over than the total capacity of the network?

Antwort

Über Modell Zwei

1. How to defined the constraints of the OD pairs with continuous interval constraints?

Antwort

2. In practice, how to define the first demand matrix?

Antwort

3. In model 2, there is high probability that several feasible solution.

Antwort

Some question

About cutoff condition:

- 1. How to set the **cutoff condition**?
- 2. About the routing will **converge with interaction**, how can I prove it?

Else:

How I change model for PD routing?

Über die Abschaltbedingung

1. How to set the cutoff condition?

Antwort

2. About the routing will **converge with interaction**, how can I prove it?

Antwort

Andere

How I change model for PD routing?

Antwort