MU5IN852

BDLE 2024

Parallel data processing on Spark

Hubert Naacke december 2024

Data processing

- Query processing over files
 - Select
 - Group by
 - Join
 - Order by (ordered data)

Query processing on a parallel computing platform

- data can be distributed
- operations can execute in parallel

Notations:

DAG (directed acyclic graph) of operations

DAG execution

- Execute a DAG... what for ?
- DAG needs an « ending operation » to execute
 - serves an application that asks for results
 - show() displays a piece of result
 - collect() brings result into an application
 - saves result to a file
 - write(file)

Data partitionning

- Distribute a dataframe D into several partitions
 - Assigns a partition to each data element based on its attributes
 - Applies a partitionning function f over each element of D
 - $D_i = \{e \in D \mid f(e) = i\}$
- D.repartition(n, L)
 - n: number of partitions
 - L: list of attributes. All attributes by default
 - The partitionning function can be specified. Hash function by default

D.repartition(2, name)

Re-partitionning partitionned data

- Same syntax as initial partitionning
- D.repartition(n, L)
 - n: number of partitions
 - L: list of attributes
- Apply f for each tuple of Di to determine the target partition
 - Can be applied in parallel
- Transfer tuples to build the new partitions D'_i.
 - This step is denoted shuffle read

D is partitioned by name

D' = D.repartition(2, product)

Partition by range

- D.repartitionByRange(n, a)
 - n: number of partitions
 - a: attribute
 - Dom(a) = $]a_0, a_1] \cup [a_1, a_2] \cup ... \cup [a_{n-1}, a_n]$
- Partitioning function
 - $f(a) = i \text{ iff } a_{i-1} < a \le a_i$
- Exemple

f(age) = 1 iff $10 \le age < 18$ = 2 iff $18 \le age < 25$

D.repartitionByRange(2, age)

SELECT over a single file

- Read a (semi) structured data file
 - May provide the file schema definition
 - D(id, name) expressed as schema = "string name, int age"
 - D = spark.read(data.csv , schema)
- Apply any function F for each element of D
 - F can be user-defined,
 - F may wrap a «black-box» function...
 - D.select(name, age+1)

(name,age) (Alice,20) (Bob,17) (Carol,20)

Parallel SELECT over a single file

- Processing model : one core per partition
 - Degree of parallelism = min(#cores, #partitions)
- Example
 - D.repartition(2, id).select(name, age+1)

Parallel Select over a distributed file (1/2)

- Read a distributed file
 - D= spark.read(hdfs://data.csv)
- Apply any function F over each element of D
 - D.select(name, F(age))

F(age) = age+1

Parallel Select over a distributed file (2/2)

- Distributed storage coupled with compute nodes
 - Data locally stored

Applies to any distributed input: file or cached result of a pipeline

Centralised GROUP BY key

- Data: ratings(user, prodID, rating)
 - ratings = spark.read(ratings.csv)
 - ratings is small enough to fit in one partition
- Compute average rating per user
 - A = ratings.groupBy(user).avg(rating)

Parallel GROUP BY key over 1 file

- Data: ratings(user, prodID, rating)
 - ratings = spark.read(ratings.csv)
- Compute average rating per user
 - A' = ratings.repartition(2, user).groupBy(user).avg(rating)

Group by key over distributed data

- Ratings(user, prod, rating)
 - ratings = spark.read(hdfs://ratings.csv)
 - ratings is large, thus stored in many partitions
- Compute average rating per user
 - A'' = ratings.groupBy(user).avg(rating)

Partial average (user, sum, nb) is computed independently on each partition

Final average A'(user, avg) is computed independently on each partition

Evaluate distinct() operator over distributed data

- Rate(user, prod, rating)
 - Rate = spark.read(hdfs://ratings.csv)
- Compute the set of distinct (product, rating) tuples
 - D = R.select(product, rating).distinct()

Partial distinct

Final distinct

JOIN operator

Outline

- Join algorithms
 - Parallel hash join
 - Nested-loop broadcast join
- Joining skewed data

Running example

```
Data: R (rID, name)
S (sID, rID) S.rID references R.rID

Query: Join R with S to get (sID, rID, name) tuples
R.join(S, rID)
```

Parallel hash Join

- Join R(rid, name) with S(sid, rid) to get J(sid, rid, name)
 - J = R.join(S, rid)
- Distribute the 2 relations R and S on the join key
 - Using the same partitioning function

Nested loop broadcast join

- Initial state
 - S is large thus stored on many partitions
 - S is distributed on any key (not on rid in general)
- Join R and S
 - Replicate R data to every compute unit
 - J = S.join(broadcast(R), rid)

Skew aware parallel join

- Context
 - Two large relations R, S
 - S is skewed on the join key
 - S has many tuples with the same value of the join key
- Join R with S using nested loop broadcast join ?
 - No because is would cause too much data transfer
- Start a parallel hash join
 - Distribute R and S
- Observe that S is skewed
 - Isolate Si: the part of S that is skewed
- Distribute Si (not on the join key!)
- Join Si with Ri using a nested loop broadcast join

Process other operators in parallel?

- Subtract
- Order by attributes
- Limit n
- Select f() over (partition by ...)
- any combinations of these operators ...
- Optimized execution ? Save data transfer :
 - Do not repartition already «adequately » partitioned data
 - Do not broadcast the same relation multiple times
 - ...

Extensible user defined operations

- mapPartition(f)
 - function f applied on each partition
- repartition
 - repartition function
- agregation

Conclusion

- Builtin parallel (and distributed) processing
 - For every SQL operator
 - select, project, join, group by, order by, over, ...
- Ease of use
 - Logical data model
 - Hides data distribution and parallel processing
 - SQL compliant: process any query (+ UDF) in parallel
- Query optimisation
 - 2 parallel join algorithms implemented
 - Skew aware
 - Dynamic query planning
- Control and monitoring
 - Tuning : degree of parallelism, ...
 - Execution report: shuffle size, task durations