Lecture 07: Exponential Families

Mathematical Statistics I, MATH 60061/70061

Tuesday September 21, 2021

Reference: Casella & Berger, 3.4

Exponential families

A family of PDFs or PMFs indexed by $m{ heta}$ is called an **exponential** family if it can be expressed as

$$f(x \mid \boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)\right), \quad \boldsymbol{\theta} \in \boldsymbol{\Theta},$$

where Θ is the set of all values of $\boldsymbol{\theta}$ (parameter space), $h(x) \geq 0$ and $t_1(x),\ldots,t_k(x)$ are real-valued functions of observation x (not depending on $\boldsymbol{\theta}$), and $c(\boldsymbol{\theta}) \geq 0$ and $w_1(\boldsymbol{\theta}),\ldots,w_k(\boldsymbol{\theta})$ are functions of the possibly vector-valued $\boldsymbol{\theta}$ (not depending on x).

Note that the expression for f may not be unique.

Exponential families

Many common families introduced in the previous lectures are exponential families. These include

- Continuous families: Normal, Gamma, Beta
- Discrete families: Binomial, Poisson, Negative Binomial

To verify that a family of PDFs or PMFs is an exponential family, we must identify the functions h(x), $c(\theta)$, $w_i(\theta)$, and $t_i(x)$ and show that the family has the form given above.

How to show a family is not an exponential family

It may be difficult to show that a family is not an exponential family.

We cannot say "we are not able to express $f(x \mid \theta)$ in the form of an exponential family".

How to show a family is not an exponential family

It may be difficult to show that a family is not an exponential family.

We cannot say "we are not able to express $f(x \mid \theta)$ in the form of an exponential family".

If $f(x \mid \boldsymbol{\theta})$, $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ is an exponential family, then

$${x: f(x \mid \boldsymbol{\theta}) > 0} = {x: h(x) > 0}$$

which does not depend on θ values.

This fact can be used to show a family is *non-exponential*, i.e., if $\{x: f(x\mid \pmb{\theta})>0\}$ depends on $\pmb{\theta}$, then $f(x\mid \pmb{\theta})$, $\pmb{\theta}\in \pmb{\Theta}$, is not an exponential family.

Consider the family of two parameters Exponential distributions with PDFs

$$f(x \mid \boldsymbol{\theta}) = \begin{cases} \lambda^{-1} e^{-(x-\mu)/\lambda} & x > \mu \\ 0 & x \le \mu \end{cases} \quad \mu \in \mathbb{R}, \ \lambda > 0$$

Consider the family of two parameters Exponential distributions with PDFs

$$f(x \mid \boldsymbol{\theta}) = \begin{cases} \lambda^{-1} e^{-(x-\mu)/\lambda} & x > \mu \\ 0 & x \le \mu \end{cases} \quad \mu \in \mathbb{R}, \ \lambda > 0$$

It is not an exponential family because

$$\{x:f(x\mid \pmb{\theta})>0\}=\{x:x>\mu\}$$