New Constructions of Collapsing Hashes

Mark Zhandry (NTT Research & Princeton University)

AND

The Gap Is Sensitive to Size of Preimages:

Collapsing Property Doesn't Go Beyond Quantum Collision-Resistance for Preimages Bounded Hash Functions

Shujiao Cao (Chinese Academy of Sciences) Rui Xue (Chinese Academy of Sciences)

Classical Collision Resistance

Q: What security should hash functions satisfy when adversary is quantum?

Post-Quantum Collision Resistance

Thm [Ambainis-Rosmanis-Unruh'14,Unruh'16a]: ∃ PQ-CRHF that is not binding as a commitment (relative to an oracle)

Classically, generate collision via rewinding.
Rewinding problematic quantumly

Intuition: if H were injective, measuring x and H(x) both fully collapse input state. Collapsing says compressing H "as good as" injective

Now widely regarded as "right" notion of security for post-quantum hashing

What was previously known?

Thm [Unruh'16a]: Random oracles are collapsing

Thm [Unruh'16b, Liu-Z'19]: LWE → Lossiness → Collapsing

Thm [Z'19]: Non-collapsing PQ-CRHF → quantum lightning/money (notoriously hard to construct)

Thm [Ambainis-Rosmanis-Unruh'14, Unruh'16a]: ∃ non-collapsing CRHF relative to *oracle*

Extreme 1: All standard-model PQ-CRHFs are collapsing?

Extreme 2: Only standard-model collapsing hashes are LWE/lossy based?

Results of Cao-Xue'22 (concurrent and independent)

Thm [Cao-Xue'22]: ∃ collapsing hashes assuming an "almost regular" PQ-CRHF H (even if H itself is not collapsing)

Cor [Cao-Xue'22]: ∃ collapsing hashes assuming SIS is quantum hard

Note:

SIS → LWE [Regev'05] → ∃ collapsing hashes [Unruh'16b]
SIS *itself* is collapsing if modulus super-poly, assuming LWE [Liu-Z'19]
But [Cao-Xue'22] fundamentally different since no lossiness!

Results of Z'22

(concurrent and independent)

Thm [Z'22]: ∃ collapsing hashes assuming **any** one of the following:

- A "semi-regular" PQ-CRHF (major relaxation of "almost regular")
- Quantum hardness of LPN in essentially same parameter regimes known to imply classical collision resistance
- Quantum hardness of finding short cycles in exponentially large expander graphs (e.g. isogenies over elliptic curves)
- An optimally secure PQ-CRHF (no regularity assumed)

Trivial Cor: PQ Statistically hiding commitments and succinct arguments under any of the above assumptions

Starting point of both works

Thm [Cao-Xue'22, Z'22]: If H is a PQ-CRHF and is ≤poly-to-1, then H is collapsing

Proof: Measure x, apply distinguisher, then measure x again ⇒ collision with non-negligible probability

Ex: 2-to-1

 x_1, x_2 : colliding inputs

 $|b_1\rangle$, $|b_2\rangle$: basis for distinguisher

Extension

Thm [Cao-Xue'22]: If H is a PQ-CRHF and is *almost regular*, then ∃ collapsing H' built from H

Thm [Z'22]: If H is a PQ-CRHF and is *semi-regular*, then \exists collapsing H' built from H

Almost/semi-regular: worst-case number of pre-images "not too far" from "expected"

Applications

SIS hash function

[Ajtai'96]

Thm [Cao-Xue'22]: SIS is *almost* regular in many parameter settings

LPN hashing

[Brakerski-Lyubashevsky-Vaikuntanathan-Wichs'19, Yu-Zhang-Weng-Guo-Li'19]

Thm [Z'22]: LPN hashing is *semi*-regular in many parameter settings

Expander-based hashing

[Charles-Lauter-Goren'07]

Thm [Alon-Benjamini-Lubetzky-Sodin'07]: Non-backtracking walks on expanders mix

Cor [Z'22]: Expander hashing is *semi*-regular

Optimal Collision Resistance

Def: H: $\{0,1\}^m \rightarrow \{0,1\}^n$ is optimally (PQ) collision resistant if Pr[A outputs collision] \leq poly/ 2^n

Thm [Z'22]: If m < n+O(log n) and H is optimally PQ C.R., then H is collapsing

Proof: Optimal C.R. \Rightarrow hard to find x that collides with with super-poly values \Rightarrow collapsing by poly-to-1 case

Takeaway: Collapsing is perhaps more prevalent than previously thought

Thanks!