Problem 7.24

Part (a): The likelihood function for x is:

$$L(\lambda | \chi) = \frac{1}{|\chi|} e^{-\lambda} \frac{\lambda^{\chi_i}}{|\chi_i|} = e^{-\eta \lambda} \frac{\lambda^{\chi_i}}{|\chi_i|}$$

The prior density for a is:

Hence, the joint pdf of 2,2 is:

$$f_{x,\lambda}(x,\lambda) = e^{-n\lambda} \frac{\lambda_{i=1}^{2} \lambda_{i}}{\frac{1}{1!!} x_{i}!} \frac{1}{1!!} \frac{$$

Note that for fixed Z,

$$f_{\lambda|\underline{x}}(\lambda|\underline{x}) = \frac{f_{\underline{x},\lambda}(\underline{x},\lambda)}{f_{\underline{x}}(\underline{x})} \propto f_{\underline{x},\lambda}(\underline{x},\lambda)$$
 [as a function of λ]

Therefore, identifying the terms involving λ in $\int_{X_1\lambda}(\chi_1\lambda)$ we get $\int_{\lambda|\chi}(\chi|\chi) \propto e^{-\lambda(h+\frac{1}{p})} \chi^{d+\sum_{i=1}^{p}\chi_i-1}$

with the right hand side being the kernel of Gamma $(\alpha + \sum_{i=1}^{n} x_i, \frac{1}{n+1}) = Gamma (\alpha + \sum_{i=1}^{n} x_i, \frac{\beta}{n\beta+1})$ distribution. Therefore, the posterior distribution $(\alpha + \sum_{i=1}^{n} x_i, \frac{\beta}{n\beta+1})$

Part (b): Using results for Gamma distribution, we have $E(\lambda | X) = (\alpha + \sum_{i=1}^{n} x_i) \frac{\beta}{n\beta + 1}$ $Van(\lambda | X) = (\alpha + \sum_{i=1}^{n} x_i) \frac{\beta^2}{(n\beta + 1)^2}$

is $\sum_{i=1}^{\infty} (Y_i) \times_i = \overline{X}$.

Part (a): We have
$$x_i : id \text{ with } E(x) = \mu$$
 $E\mu\left(\sum_{i=1}^{n} a_i \times i\right) = \sum_{i=1}^{n} a_i E\mu(x_i) \stackrel{\text{def}}{=} \sum_{i=1}^{n} a_i \mu = \mu\left(\sum_{i=1}^{n} a_i\right)$

Therefore, $\sum_{i=1}^{n} a_i \times i$ is unbiased for μ if

 $E\mu\left(\sum_{i=1}^{n} a_i \times i\right) = \mu\left(\sum_{i=1}^{n} a_i\right) = \mu$ for all $\mu \Rightarrow \sum_{i=1}^{n} a_i = 1$

Port (b)! We have
$$x_i$$
's are intep x_i int with $v_{angr}(x_0) = \sigma^2$

$$V_{ax} = \sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} a_i^2 V_{ax} = \sum_{i=1}^{n} a_i^2 \sigma^2 = \sigma^2 \left(\sum_{i=1}^{n} a_i^2\right)$$

which implies
$$Van_{\sigma}(\frac{\pi}{2} a_i x_i) = \sigma^2(\frac{\pi}{2} a_i^2) > \sigma_n^2$$

Equality in the above Canchy- Schwarz inequality is attained if $a_i = k \cdot 1$ for all i, for some constant k. This, together with $\sum_{i=1}^{n} a_i = 1$ from part (a) implies that $\sum_{i=1}^{n} k = 1$ =) k = 1/n. Therefore, $v_{on_{\sigma r}}(\sum_{i=1}^{n} a_i \times i)$ is the minimum when equality is attained in the above Couchy Schwarz inequality. In that case, the estimator

Part (a):

from the theory of order statistics, the pdf of $Y = \min \{X_1, \dots, X_n\}$ is obtained as:

$$f_{y}(y|\lambda) = n f_{x}(y|\lambda) \left[1-F_{x}(y|\lambda)\right]^{n-1} = n \frac{1}{\lambda} e^{-\frac{1}{2}\lambda} \left(1-\left(1-e^{-\frac{1}{2}\lambda}\right)^{\frac{n-1}{2}}\right)^{\frac{n-1}{2}}$$

$$= \frac{n}{\lambda} e^{-\frac{n}{2}\lambda}, \quad y>0$$

This implies that Y ~ Exponential (1/2) = Exponential (7/01)

Therefore. $\xi_{\lambda}(Y) = \frac{1}{2}n \Rightarrow \xi_{\lambda}(nY) = \lambda \text{ for all } \lambda > 0.$

Hence, ny is an unbiased estimator of 7.

Part (b):

Since $x_1,..., x_n \sim iid$ Exponential (1), and Exponential (1) is a member of the exponential family, therefore, $Z = \sum_{i=1}^{n} x_i$ is complete sufficient for λ . Hence, ving Rao-Blackwell theorem and Lehmann-Scheffe theorem. it follows that $\phi(x) = E(Y|Z)$ is the UMVUE of λ .

Again, since $E_{\chi}(Z) = E_{\chi}(\sum_{i=1}^{\infty} x_i) = n \lambda$, therefore $\Psi(\chi) = \frac{\pi}{2}n$ is an unbiased estimator for χ which is based on the complete sufficient statistic Z. Hence $\Psi(\chi)$ is UMAUE for χ .

By uniqueness of UMVUE, we must have $\phi(x) = \psi(x)$ which implies $\phi(x) = E(Y|Z) = Z_h = \frac{1}{h} \sum_{i=1}^{h} x_i$.

That $\frac{7}{2}$ is the UMVUE, implies that $\frac{7}{2}$ is better than $\frac{1}{2}$. (another unbiased estimator.