

Formelsammlung

Gleichungen zur Berechnung der Flugeigenschaften

Dipl.-Ing. Lutz Bretschneider, Dipl.-Ing. Vivian Angermann,

- M. Eng. Andrés Arango Pérez
- 2. September 2022

Inhaltsverzeichnis

1	Flug	mechanische Grundlagen	1	
2	Allgemeine Schwingungslehre			
3	Stationäre Längsbewegung			
	3.1	Abschätzformeln für die Längsbewegung	7	
	3.2	Berechnungen für festes Höhenruder	8	
	3.3	Berechnungen für loses Höhenruder	9	
	3.4	Kräfte und Momente im Abfangbogen	10	
	3.5	Berechnung der Steuerkräfte	11	
4	Dyn	amische Längsbewegung	12	
5	Stati	ionäre Seitenbewegung	14	
	5.1	Berechnung zur Steuerung der Seitenbewegung	17	
	5.2	Berechnung der Querruder-Steuerkraft	17	
	5.3	Spezielle unsymmetrische Flugzustände	18	
6	Dyn	amische Seitenbewegung	20	

1 Flugmechanische Grundlagen

Auftrieb

$$A = \bar{q} \cdot S \cdot C_A \tag{1.1}$$

Widerstand

$$W = \bar{q} \cdot S \cdot C_W \tag{1.2}$$

Moment

$$M = \bar{q} \cdot S \cdot C_m \cdot l_{\mu} \tag{1.3}$$

Gewichtskraft

$$G = m \cdot g \tag{1.4}$$

Nickmoment

$$M = \frac{\rho}{2} \cdot V^2 \cdot S \cdot l_{\mu} \cdot C_m \tag{1.5}$$

Kräfte und Momente der Seitenbewegung

$$Y = \frac{\rho}{2} \cdot V^2 \cdot S \cdot C_Y \tag{1.6}$$

$$L = \frac{\rho}{2} \cdot V^2 \cdot S \cdot s \cdot C_l \tag{1.7}$$

$$N = \frac{\rho}{2} \cdot V^2 \cdot S \cdot s \cdot C_n \tag{1.8}$$

Staudruck

$$\bar{q} = \frac{\rho}{2} \cdot V^2 \tag{1.9}$$

Mach-Zahl

$$Ma = \frac{V}{a} \tag{1.10}$$

Flügelstreckung

$$\Lambda = \frac{b^2}{S} \tag{1.11}$$

Flügelhalbspannweite

$$s = \frac{b}{2} \tag{1.12}$$

Manöverpunkt

$$\frac{x_M}{l_u} = \frac{x_N}{l_u} - \frac{C_{mq,NP}}{\mu} \tag{1.13}$$

Abstand r_H^*

$$r_H^* = x_{NH} - x_{FR} {(1.14)}$$

Abstand r_H

$$r_H = r_H^* - (x_S - x_{FR}) \tag{1.15}$$

Abstand r_H in Abhängigkeit der Bezugsflügeltiefe l_μ

$$\frac{r_H}{l_\mu} = \frac{r_H^*}{l_\mu} - \frac{x_S - x_{FR}}{l_\mu} \tag{1.16}$$

Normierte Masse Längsbewegung

$$\mu = \frac{2 \cdot m}{\rho \cdot S \cdot l_u} \tag{1.17}$$

Normierte Masse Seitenbewegung

$$\mu_s = \frac{2 \cdot m}{\rho \cdot S \cdot s} \tag{1.18}$$

Flugmechanische Zeitgröße

$$\tau = \frac{\mu \cdot l_{\mu}}{V_{Tr}} = \frac{\mu_{s} \cdot s}{V_{Tr}} = \frac{m \cdot V_{Tr}}{\bar{q}_{Tr} \cdot S} \tag{1.19}$$

Totzeit

$$t_A = \frac{r_H^*}{V} \tag{1.20}$$

Schwerpunkt aus Einzellasten

$$x_S = \frac{\sum G_i \cdot x_{S_i}}{\sum G_i} \tag{1.21}$$

Schwerpunktsatz im aerodynamischen System

$$\sum \underline{K}_{a} = \frac{d(m\underline{V}_{a})}{dt} = \frac{dm}{dt} \cdot \underline{V}_{a} + m \cdot \frac{d\underline{V}_{a}}{dt}$$
(1.22)

Schwerpunktsatz

$$m\dot{V} = \sum_{i=1}^{n} F_i \cdot \cos(\alpha + \sigma_i) \cdot \cos\beta - W - m \cdot g \cdot \sin\gamma_a$$
 (1.23)

$$mVr_{a} = -\sum_{i=1}^{n} F_{i} \cdot \cos(\alpha + \sigma_{i}) \cdot \sin\beta + Y_{a} + m \cdot g \cdot \cos\gamma_{a} \cdot \sin\mu_{a}$$
 (1.24)

$$-mVq_a = -\sum_{i=1}^n F_i \cdot \sin(\alpha + \sigma_i) - A + m \cdot g \cdot \cos\gamma_a \cdot \cos\mu_a$$
 (1.25)

Drallsatz im flugzeugfesten System

$$\sum \underline{M} = \frac{d\underline{B}}{dt} \tag{1.26}$$

Drall

$$\underline{B} = \underline{\underline{I}} \cdot \underline{w}_f^{gf} \tag{1.27}$$

Drallsatz (unsymmetrisches Flugzeug)

$$I_x \dot{p} - I_{xz} (\dot{r} + pq) - (I_y - I_z) \cdot qr = L - \sum_{i=1}^{n} (F_i \cdot y_{F_i} \cdot sin\sigma_i)$$
 (1.28)

$$I_y \dot{q} - I_{xz} (r^2 - p^2) - (I_z - I_x) \cdot rp = M + \sum_{i=1}^n (F_i \cdot z_{F_i} \cdot cos\sigma_i)$$
 (1.29)

$$I_z \dot{r} - I_{xz} (\dot{p} + qr) - (I_x - I_y) \cdot pq = N - \sum_{i=1}^{n} (F_i \cdot y_{F_i} \cdot cos\sigma_i)$$
 (1.30)

2 Allgemeine Schwingungslehre

Schwingungsdauer

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\omega_0 \cdot \sqrt{1 - D^2}} \tag{2.1}$$

Eigenfrequenz

$$f = \frac{\omega}{2\pi} = \frac{1}{T} \tag{2.2}$$

Kreisfrequenz des gedämpften Systems

$$\omega = \omega_0 \cdot \sqrt{1 - D^2} \tag{2.3}$$

Abklingkonstante

$$\delta = -\omega_0 \cdot D \tag{2.4}$$

Abklingzeit

$$T_D = -\frac{1}{\delta} \tag{2.5}$$

Dämpfungswinkel

$$sin\epsilon_D = -\frac{\delta}{\omega_0} = D$$
 (2.6)

$$cos\epsilon_D = \frac{\omega}{\omega_0} = \sqrt{1 - D^2}$$
 (2.7)

$$tan\epsilon_D = \frac{D}{\sqrt{1 - D^2}} \tag{2.8}$$

3 Stationäre Längsbewegung

Auftrieb des Gesamtflugzeugs

$$A = A_{FR} + A_H \cdot \cos \alpha_W - W_H \cdot \sin \alpha_W \tag{3.1}$$

Auftriebsbeiwert und -derivativ des Gesamtflugzeugs

$$C_A = (C_A)_{FR} + (C_A)_H = (C_A)_{FR} + \frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S} \cdot C_{AH}$$
 (3.2)

$$C_{A\alpha} = \frac{\partial C_A}{\partial \alpha} = (C_{A\alpha})_{FR} + (C_{A\alpha})_H = \frac{\partial (C_A)_{FR}}{\partial \alpha} + \frac{\partial (C_A)_H}{\partial \alpha}$$
(3.3)

Widerstandsderivativ

$$C_{W\alpha} = \frac{\partial C_W}{\partial \alpha} \tag{3.4}$$

Kräfte und Momente der Flügel-Rumpf Kombination

$$A_{FR} = C_{AFR} \cdot \bar{q} \cdot S \tag{3.5}$$

$$W_{FR} = C_{WFR} \cdot \bar{q} \cdot S \tag{3.6}$$

$$M_{0_{FR}} = C_{m0FR} \cdot \bar{q} \cdot S \cdot l_{\mu} \tag{3.7}$$

Auftriebsbeiwert und -derivativ der Flügel-Rumpf-Kombination

$$(C_A)_{FR} = (C_{A\alpha})_{FR} \cdot \alpha = \frac{\partial (C_A)_{FR}}{\partial \alpha} \cdot \alpha$$
 (3.8)

$$(C_{A\alpha})_{FR} = C_{A\alpha FR} \tag{3.9}$$

$$C_{m} = (C_{m0})_{FR} - \frac{r_{H}^{*}}{l_{\mu}} \cdot \frac{\bar{q}_{H}}{\bar{q}} \cdot \frac{S_{H}}{S} \cdot C_{AH} + \frac{x_{S} - x_{FR}}{l_{\mu}} \cdot C_{A}$$
(3.10)

Kräfte und Momente am Höhenleitwerk

$$A_H = C_{AH} \cdot \bar{q}_H \cdot S_H \tag{3.11}$$

$$W_H = C_{WH} \cdot \bar{q}_H \cdot S_H \tag{3.12}$$

$$M_{0H} = C_{m0H} \cdot \bar{q}_H \cdot S_H \cdot l_{\mu H} \tag{3.13}$$

$$\bar{q}_H = \frac{\rho}{2} V_H^2 \tag{3.14}$$

Auftriebsbeiwert und -derivativ des Höhenleitwerks

$$C_{AH} = \frac{A_H}{\bar{q}_H \cdot S_H} = C_{AH\alpha H} \cdot \alpha_H \tag{3.15}$$

$$C_{AH\alpha H} = \frac{\partial C_{AH}}{\partial \alpha_H} \tag{3.16}$$

$$(C_A)_H = \frac{A_H}{\bar{q} \cdot S} = \frac{A_H}{\bar{q}_H \cdot S_H} \cdot \frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S} = C_{AH} \cdot \frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S}$$
(3.17)

$$(C_{A\alpha})_{H} = \frac{\partial (C_{A})_{H}}{\partial \alpha} = \frac{\partial C_{AH}}{\partial \alpha} \cdot \frac{\bar{q}_{H}}{\bar{q}} \cdot \frac{S_{H}}{S} = C_{AH\alpha H} \left(1 - \frac{\partial \alpha_{W}}{\partial \alpha} \right) \cdot \frac{\bar{q}_{H}}{\bar{q}} \cdot \frac{S_{H}}{S}$$
(3.18)

Gesamt-Nullmomentenbeiwert bei ausgetrimmter Horizontalfluglage

$$C_{m0} = (C_{m0})_{FR} - \frac{r_H^*}{l_\mu} \cdot (C_A)_{H,C_{A=0}}$$
(3.19)

Anstellwinkel am Höhenleitwerk

$$\alpha_{H} = \left[1 - \frac{\partial \alpha_{W}}{\partial \alpha}\right] \cdot \alpha - \alpha_{W0} + \epsilon_{H} \tag{3.20}$$

Abwindwinkel des Höhenleitwerks

$$\alpha_W = \alpha_{W0} + \frac{\partial \alpha_W}{\partial \alpha} \cdot \alpha \tag{3.21}$$

Effektiver Einstellwinkel am Höhenleitwerk

$$\epsilon_H^* = \epsilon_H + \frac{\partial \alpha_H}{\partial \eta} \cdot \eta$$
 (3.22)

Effektiver Anstellwinkel

$$C_A = C_{A\alpha} \cdot \alpha_{eff} \tag{3.23}$$

$$\alpha_{eff} = \alpha - \alpha_{C_A=0} \tag{3.24}$$

$$\alpha_{C_A=0} = -\frac{C_{AH\alpha H}}{C_{A\alpha}} \cdot \frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S} \cdot (\epsilon_H^* - \alpha_{W0})$$
(3.25)

Lage des Neutralpunktes

$$x_N - x_{FR} = \frac{\Delta A_H}{\Delta A} \cdot r_H^* \tag{3.26}$$

Lage des Neutralpunktes in Beiwert-Schreibweise

$$\frac{x_N - x_{FR}}{l_u} = \left[1 - \frac{\partial \alpha_W}{\partial \alpha}\right] \cdot \frac{C_{AH\alpha H}}{C_{A\alpha}} \cdot \frac{r_H^*}{l_u} \cdot \frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S}$$
(3.27)

Gesamt-Nickmoment

$$C_m = C_{m0} + C_{m\alpha} \cdot \alpha_{eff} = C_{m0} + \frac{\partial C_m}{\partial \alpha} \cdot \alpha \tag{3.28}$$

Momentenanstieg

$$\frac{\partial C_m}{\partial C_A} = -\frac{x_N - x_S}{l_u} \tag{3.29}$$

Nickmomentenanstieg

$$C_{m\alpha} = \frac{\delta C_m}{\delta \alpha} \tag{3.30}$$

Mathematische Formulierung des Kriteriums für statische Stabilität

$$C_{m\alpha} = -\frac{x_N - x_S}{l_u} \cdot C_{A\alpha} \tag{3.31}$$

$$\frac{\partial C_m}{\partial C_A} = -\frac{x_N - x_S}{l_\mu} \tag{3.32}$$

Leitwerksauslegung (Stabilitätsgrenze) für den Grenzfall $x_S = x_N$

$$C_{m\alpha} = 0 = (C_{A\alpha})_{FR} \cdot \frac{x_N - x_{FR}}{l_{\mu}} - (C_{A\alpha})_H \cdot \frac{r_H}{l_{\mu}}$$
 (3.33)

Auftriebsbeiwert bei Ruderausschlag

$$C_{A\eta} = \frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S} \cdot C_{AH\alpha H} \cdot \frac{\partial \alpha_H}{\partial \eta}$$
(3.34)

Flächenverhältnis Höhenleitwerk zu Flügel für Stabilitätsgrenze

$$\frac{S_H}{S} = \frac{\frac{(C_{A\alpha})_{FR}}{C_{AH\alpha H}}}{\left(1 - \frac{\partial \alpha_W}{\partial \alpha}\right) \cdot \frac{\bar{q}_H}{\bar{q}}} \cdot \frac{\frac{x_N - x_{FR}}{r_H^*}}{1 - \frac{x_N - x_{FR}}{r_H^*}}$$
(3.35)

3.1 Abschätzformeln für die Längsbewegung

Abschätzformel für Tragflügel-Auftriebsanstieg endlicher Spannweite

$$C_{A\alpha} = \frac{C_{A\alpha,\Lambda=\infty}}{1 + \frac{C_{A\alpha,\Lambda=\infty}}{\pi\Lambda e}} = 2\pi \frac{\Lambda e}{\Lambda e + 2}$$
(3.36)

Abschätzformel für Nickmomentenanstieg

$$C_{m\alpha} = \left(\frac{x}{l_u} - \frac{x_N - x_t}{l_u}\right) \cdot C_{A\alpha} \tag{3.37}$$

Abschätzformel des Nullmomentenbeiwertes im Unterschall

$$C_{m0} = C_{m0,\vartheta=0} + \left(\frac{\Delta C_{m0}}{\vartheta}\right) \cdot \vartheta \tag{3.38}$$

Abschätzformel des Nullmomentenbeiwertes eines verwundenen Flügels

$$C_{m0,\vartheta=0} = \frac{\Lambda \cdot \cos\varphi}{A + 2\cos\varphi} \cdot \cos\varphi \left[\frac{C_{m0,Wurzel} + C_{m0,Spitze}}{2} \right]$$
(3.39)

Abschätzung des Abwindfaktors nach Prandtl

$$\frac{\partial \alpha_W}{\partial \alpha} = \frac{4}{\Lambda + 2} \tag{3.40}$$

3.2 Berechnungen für festes Höhenruder

Berechnung der Ruderwinkel

$$C_A = C_{A\alpha} \cdot \alpha_{eff,\eta=0} + C_{A\eta} \cdot \eta \tag{3.41}$$

$$C_m = C_{m0,\eta=0} + C_{m\alpha} \cdot \alpha_{eff,\eta=0} + C_{m\eta} \cdot \eta \tag{3.42}$$

$$\eta = \frac{-C_{m0,\eta=0} - C_A \cdot \frac{C_{m\alpha}}{C_{A\alpha}}}{C_{m\eta} - C_{A\eta} \cdot \frac{C_{m\alpha}}{C_{A\alpha}}}, bei C_m = 0$$
(3.43)

$$\frac{C_{m\alpha}}{C_{A\alpha}} = -\frac{x_N - x_S}{l_u} \tag{3.44}$$

Berechnung der Ruderwinkel mittels unabhängigem Rudermoment

$$C_{m\eta} = -\frac{r_H}{l_\mu} \cdot \frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S} \cdot C_{AH\alpha H} \cdot \frac{\delta \alpha_H}{\delta \eta}$$
(3.45)

$$C_{m\eta,NP} = -\frac{r_{HN}}{l_{\mu}} \cdot \frac{\bar{q}_{H}}{\bar{q}} \cdot \frac{S_{H}}{S} \cdot C_{AH\alpha H} \cdot \frac{\delta \alpha_{H}}{\delta \eta}$$
(3.46)

$$r_{HN} = r_H - (x_N - x_S) (3.47)$$

$$C_{m\eta,NP} = C_{m\eta} + C_{A\eta} \cdot \frac{x_N - x_S}{l_u} \tag{3.48}$$

$$\eta = -\frac{C_{m0,\eta=0}}{C_{m\eta,NP}} + \frac{C_A}{C_{m\eta,NP}} \cdot \frac{x_N - x_S}{l_\mu}$$
 (3.49)

Berechnung des Höhenleitwerksflossenwinkels

$$\epsilon_{H,C_m=0} = -\frac{C_{m0,\epsilon_H=0,\eta=konst.}}{C_{m\epsilon_H,NP}} + \frac{x_N - x_S}{l_\mu} \cdot \frac{2m \cdot g}{C_{m\epsilon_H,NP} \cdot S \cdot \rho \cdot V^2}$$
(3.50)

Rudergradient für das Höhenruder

$$\frac{\partial \eta}{\partial V} = -\frac{x_N - x_S}{l_\mu} \cdot \frac{4 \cdot \frac{m \cdot g}{S}}{C_{m\eta, NP} \cdot \rho \cdot V^3} \tag{3.51}$$

Berechnung des Ruderschwimmwinkels bei $M_r = 0$

$$\eta_s = \frac{\partial M_r / \partial \alpha_H}{\partial M_r / \partial \eta} \cdot \alpha_H \tag{3.52}$$

mit
$$C_{r\alpha H} = \frac{\partial C_r}{\partial \alpha_H}$$
, $C_{r\eta} = \frac{\partial C_r}{\partial \eta}$ und $M_r = C_r \cdot \bar{q} \cdot S_r \cdot l_r$ (3.53)

$$damit \ \eta_s = -\frac{C_{r\alpha H}}{C_{rn}} \cdot \alpha_H \tag{3.54}$$

Neutralpunktbezogenes Nickmoment

$$C_{mq,NP} = C_{mq} + C_{Aq} \cdot \frac{x_N - x_S}{l_{\mu}}$$
 (3.55)

3.3 Berechnungen für loses Höhenruder

Leitwerksauftrieb

$$C_{AH,l} = C_{AH\alpha H} \cdot \left[1 - \frac{\partial \alpha_H}{\partial \eta} \cdot \frac{C_{r\alpha H}}{C_{r\eta}} \right] \cdot \alpha_H \tag{3.56}$$

Auftriebsanstieg

$$C_{AH\alpha H,l} = \delta_l \cdot C_{AH\alpha H} \tag{3.57}$$

$$C_{A\alpha,l} = (C_{A\alpha})_{FR} + \delta_l(C_{A\alpha})_H \tag{3.58}$$

$$mit \ \delta_l = 1 - \frac{\partial \alpha_H}{\partial \eta} \cdot \frac{C_{r\alpha H}}{C_{r\eta}} \tag{3.59}$$

$$C_{r\alpha H} = \frac{\partial C_r}{\partial \alpha_H} \tag{3.60}$$

$$C_{r\eta} = \frac{\partial C_r}{\partial \eta} \tag{3.61}$$

$$C_{A\alpha,l} = (C_{A\alpha})_{FR} + \delta_l \cdot \left(1 - \frac{\partial \alpha_W}{\partial \alpha}\right) \cdot \frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S} \cdot C_{AH\alpha H}$$
(3.62)

Momentenanstieg

$$C_{m\alpha,l} = C_{A\alpha,l} \left[\frac{x_S - x_{FR}}{l_{\mu}} - \delta_l \frac{(C_{A\alpha})_H}{C_{A\alpha,l}} \cdot \frac{r_H^*}{l_{\mu}} \right]$$
(3.63)

Neutralpunktlage

$$\frac{x_{N,l} - x_{FR}}{l_u} = \delta_l \left(1 - \frac{\partial \alpha_W}{\partial \alpha} \right) \cdot \frac{C_{AH\alpha H}}{C_{A\alpha,l}} \cdot \frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S} \cdot \frac{r_H^*}{l_u} = \delta_l \frac{(C_{A\alpha})_H}{C_{A\alpha,l}} \cdot \frac{r_H^*}{l_u}$$
(3.64)

Differenz zwischen der Neutralpunktlage bei losem und festen Ruder

$$\frac{x_N - x_{N,l}}{l_{\mu}} = -\left(1 - \frac{\partial \alpha_W}{\partial \alpha}\right) \cdot \frac{C_{r\alpha H}}{C_{r\eta}} \cdot \frac{C_{m\eta,NP}}{C_{A\alpha,l}}$$
(3.65)

Moment um den Neutralpunkt infolge eines Ruderausschlages

$$C_{m\eta,NP} = C_{m\eta} - C_{A\eta} \cdot \frac{C_{m\alpha}}{C_{A\alpha}} \tag{3.66}$$

Beziehung zwischen Nickmomentenanstieg und Neutralpunktlage

$$\left(\frac{\partial C_m}{\partial C_A}\right)_l = \frac{C_{m\alpha,l}}{C_{A\alpha,l}} = -\frac{x_{N,l} - x_S}{l_\mu} \tag{3.67}$$

Nullmoment

$$C_{m0,l} = (C_{m0})_{FR} - \delta_l C_{AH\alpha H} \cdot \frac{(C_{A\alpha})_{FR}}{C_{A\alpha,l}} \cdot \frac{r_H^*}{l_u} \cdot (\epsilon_H - \alpha_{W0})$$
(3.68)

Derivativ für Momentenanstieg $\frac{\delta C_m}{\delta q}$ am Neutralpunkt

$$C_{mq,NP,l} = C_{mq,NP,FR} - \delta_l \cdot C_{AH\alpha H} \cdot \frac{r_H}{l_u} \cdot \frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S} \cdot \frac{r_H^*}{l_u} \cdot \frac{(C_{A\alpha})_{FR}}{C_{A\alpha,l}}$$
(3.69)

Manöverpunkt

$$x_{M,l} = x_{N,l} - \frac{C_{mq,NP,l}}{\mu} \cdot l_{\mu}$$
 (3.70)

3.4 Kräfte und Momente im Abfangbogen

Kräfte und Momente

$$A_{n=1} = m \cdot g \tag{3.71}$$

$$\Delta A = m \cdot q \cdot V \tag{3.72}$$

$$\Delta n = \frac{\Delta A}{m \cdot g} \tag{3.73}$$

$$\Delta n = \frac{V \cdot q}{g} \tag{3.74}$$

$$\Delta A = \Delta C_A \cdot \frac{\rho}{2} \cdot V^2 \cdot S \tag{3.75}$$

$$\Delta M = \Delta C_m \cdot \frac{\rho}{2} \cdot V^2 \cdot S \cdot l_{\mu} \tag{3.76}$$

$$C_{Aq} = \frac{\partial C_A}{\partial \left(q l_{\mu} / V \right)} \tag{3.77}$$

$$C_{mq} = \frac{\partial C_m}{\partial \left(q l_u / V\right)} \tag{3.78}$$

3.5 Berechnung der Steuerkräfte

Steuerkraft für Rudermomente

$$F_H = K_{\ddot{U}} \cdot M_r \tag{3.79}$$

$$K_{\ddot{U}} = \frac{l_2}{l_1 \cdot l_3} \tag{3.80}$$

Rudermoment

$$M_r = C_r \cdot \bar{q}_H \cdot S_r \cdot l_r \tag{3.81}$$

Trimmruderwinkel für den stationären Geradeausflug

$$\eta_{C_m=0} = -\frac{C_{m0,\eta=0}}{C_{m\eta,NP}} + \frac{C_A}{C_{m\eta,NP}} \cdot \frac{x_N - x_S}{l_\mu}$$
(3.82)

Rudermomentenbeiwert

$$C_r = C_{r\alpha H} \cdot \alpha_{H,\eta=0} + C_{r\eta} \cdot \eta \tag{3.83}$$

Steuerhandkraft Höhenleitwerk ($\alpha_{W0} = \epsilon_H$)

$$F_{H} = K_{F} \cdot \bar{q} \left[-C_{m0,l} + C_{A} \frac{x_{N,l} - x_{S}}{l_{\mu}} \right]$$
(3.84)

$$K_F = K_{\ddot{U}} \cdot S_r \cdot l_r \cdot \frac{\bar{q}_H}{\bar{q}} \frac{C_{r\eta}}{C_{m\eta,NP}} \cdot \frac{C_{A\alpha,l}}{C_{A\alpha}}$$
(3.85)

$$F_H = -K_F \cdot \left[C_{m0,l} \cdot \frac{\rho}{2} V^2 - \frac{m \cdot g}{S} \cdot \frac{x_{N,l} - x_S}{l_\mu} \right]$$
(3.86)

Steuerkraftgradient

$$V_{Tr}^2 = \frac{2m \cdot g}{\rho \cdot S \cdot C_{m0,l}} \cdot \frac{x_{N,l} - x_S}{l_{\mu}}$$
(3.87)

$$\frac{dF_H}{dV} = -2K_F \cdot \frac{m \cdot g/S}{V_{Tr}} \cdot \frac{x_{N,l} - x_S}{l_\mu}$$
(3.88)

Abfanghandkraft

$$\Delta F_H = K_{ij} \cdot \bar{q}_H \cdot S_r \cdot l_r \cdot \Delta C_r \tag{3.89}$$

Abfanghandkraft in Abhängigkeit der Lastvielfachen

$$\frac{dF_H}{dn} = K_F \cdot \frac{m \cdot g}{S} \cdot \frac{x_{M,l} - x_S}{l_u} \tag{3.90}$$

Tragflügel-Auftriebsanstieg nach Prandtl´scher Traglinientheorie

$$C_{A\alpha} = \frac{C_{A\alpha,\Lambda=\infty}}{1 + \frac{C_{A\alpha,\Lambda=\infty}}{\tau_{\Lambda}\Lambda \cdot e}} = 2\pi \cdot \frac{\Lambda \cdot e}{\Lambda \cdot e + 2}$$
(3.91)

Erweiterung der Traglinientheorie durch Weissinger ($\Lambda > 2$)

$$C_{A\alpha} = \frac{\pi \cdot \Lambda \cdot e}{1 + \sqrt{1 + \frac{\Lambda^2}{4}e^2}} \tag{3.92}$$

4 Dynamische Längsbewegung

Momentenbeiwertsänderung

$$(C_{mV})_{\bar{q}} = 2 \cdot C_{m\bar{q}} \tag{4.1}$$

Auftriebsbeiwertsänderung

$$(C_{AV})_{\bar{q}} = 2 \cdot C_{A\bar{q}} \tag{4.2}$$

Verhältnis von Nickmomenten- zu Auftriebsanstieg

$$\frac{C_{m\alpha}}{C_{A\alpha}} = \frac{x_S - x_{FR}}{l_{\mu}} - \frac{C_{AH\alpha H}}{C_{A\alpha}} \cdot \left(1 - \frac{\partial \alpha_W}{\partial \alpha}\right) \cdot \frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S} \cdot \frac{r_H^*}{l_{\mu}} \tag{4.3}$$

Nickdämpfungsderivativ

$$C_{mq} = -C_{AH\alpha H} \sqrt{\frac{\bar{q}_H}{\bar{q}}} \cdot \frac{S_H}{S} \cdot \left(\frac{r_H}{l_\mu}\right)^2 \tag{4.4}$$

<u>Auftriebsderivativ</u>

$$C_{A\dot{\alpha}} = \frac{\partial C_A}{\partial \left(\dot{\alpha} \cdot \frac{l_{\mu}}{V}\right)} \tag{4.5}$$

$$C_{A\dot{\alpha}} = \frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S} \cdot \frac{\partial \alpha_W}{\partial \alpha} \cdot C_{AH\alpha H} \cdot t_A \cdot \frac{V}{l_\mu}$$
(4.6)

<u>Momentenderivativ</u>

$$C_{m\dot{\alpha}} = \frac{\partial C_m}{\partial \left(\frac{\dot{\alpha} \cdot l_{\mu}}{V}\right)} \tag{4.7}$$

$$C_{m\dot{\alpha}} = -\frac{\bar{q}_H}{\bar{q}} \cdot \frac{S_H}{S} \cdot \left(\frac{r_H^*}{l_u}\right)^2 \cdot \left(1 - \frac{x_S - x_{FR}}{r_H^*}\right) \cdot \frac{\partial \alpha_W}{\partial \alpha} \cdot C_{AH\alpha H} \tag{4.8}$$

Eigenwert und Eigenbewegungsform für Phygoide, bei $C_{mV}=0$

$$\omega_{0P}^2 = \omega_{0P0}^2 \approx 2 \cdot \left(\frac{g}{V_{Tr}}\right)^2 \tag{4.9}$$

$$\sigma_{P0} \approx -\left(1 + \frac{C_{WV}}{2 \cdot C_{W_{Tr}}} - \frac{n_V}{2}\right) \cdot \frac{C_{W_{Tr}}}{C_{A_{Tr}}} \cdot \frac{g}{V_{Tr}} \tag{4.10}$$

$$\omega_{0P}^2 \approx \omega_{0P0}^2 \cdot \left[1 - \frac{C_{mV}}{C_{A_{Tr}} \cdot \frac{\partial C_m}{\partial C_A}} \right]$$
 (4.11)

Näherungslösung für Phygoide

$$\sigma_P \approx \sigma_{P0} + k \cdot \frac{g}{V_{Tr}} \cdot \frac{C_{mV}}{\frac{\partial C_m}{\partial C_A}}$$
 (4.12)

Widerstandsgleichung im stationären Zustand für Phygoide

$$C_{W_{Tr}} = C_{W_0} + k \cdot C_{A_{Tr}}^2 \tag{4.13}$$

Auftriebsgleichung im stationären Zustand für Phygoide

$$m \cdot g = A_{Tr} = C_{A_{Tr}} \cdot \left(\frac{\rho}{2}\right) \cdot V_{Tr}^2 \cdot S \tag{4.14}$$

$$C_{A_{Tr}} = \frac{2 \cdot m \cdot g}{\rho \cdot V_{Tr}^2 \cdot S} \tag{4.15}$$

Näherungslösung für Anstellwinkelschwingung

$$\sigma_{\alpha} \approx -\frac{V_{Tr}}{2 \cdot \mu \cdot l_{\mu}} \left[C_{A\alpha} - \left(\frac{l_{\mu}}{i_{y}} \right)^{2} \cdot \left(C_{mq} + C_{m\dot{\alpha}} \right) \right]$$
(4.16)

$$\omega_{0\alpha}^2 \approx -\left(\frac{V_{Tr}}{i_y}\right)^2 \cdot \frac{C_{A\alpha}}{\mu} \cdot \left[\frac{\partial C_m}{\partial C_A} + \frac{C_{mq}}{\mu}\right]$$
 (4.17)

5 Stationäre Seitenbewegung

Schiebe(Gier)-Seitenkraft

$$Y_S = C_{YS\beta S} \cdot \bar{q}_S \cdot S_S = -C_{YS\beta S} \cdot \frac{r \cdot r_S}{\bar{V}_S} \cdot \bar{q}_S \cdot S_S \tag{5.1}$$

$$\beta_S = \beta + \beta_W = \left(1 + \frac{\delta \beta_W}{\delta \beta}\right) \cdot \beta \tag{5.2}$$

$$C_{YS} = \frac{\partial C_{YS}}{\partial \beta_S} \cdot \beta_S = \frac{\partial C_{YS}}{\partial \beta_S} \cdot \left(1 + \frac{\partial \beta_W}{\partial \beta} \right) \cdot \beta \tag{5.3}$$

Schiebe-Querkraft

$$Y(\beta) = C_{Y\beta} \cdot \beta \cdot \bar{q} \cdot S \tag{5.4}$$

Schiebe-Querkraft-Derivativ

$$C_{Y\beta} = (C_{Y\beta})_R + (C_{Y\beta})_F + (C_{Y\beta})_S$$
(5.5)

$$(C_{Y\beta})_R = -0.2 \cdot \frac{V_R^{\frac{2}{3}}}{S}$$
 (5.6)

$$(C_{Y\beta})_F = -C_W \cdot \beta + (C_{Y\beta})_{F,\nu} \tag{5.7}$$

$$(C_{Y\beta})_{F,\nu} = -(C_{A\alpha})_F \cdot \nu^2$$
, wenn ν klein (5.8)

$$(C_{Y\beta})_S = \left(1 + \frac{\partial \beta_W}{\partial \beta}\right) \cdot \frac{\bar{q}_S}{\bar{q}} \frac{S_S}{S} \frac{\partial C_{YS}}{\partial \beta_S} \tag{5.9}$$

Schiebe-Rollmoment

$$L(\beta) = C_{l\beta} \cdot \beta \cdot \bar{q} \cdot S \cdot s \tag{5.10}$$

Schiebe-Rollmoment-Derivativ

$$C_{l\beta} = \frac{\partial C_l}{\partial \beta} = -C_{l\xi} \cdot \frac{\partial \xi}{\partial \beta} \tag{5.11}$$

$$C_{l\beta} = (C_{l\beta})_F + (C_{l\beta})_S \tag{5.12}$$

$$(C_{l\beta})_{F,\nu} = -\frac{4}{3} \cdot \frac{\Lambda \cdot \nu}{\sqrt{\left(\frac{\Lambda^2}{4} + 4\right) + 2}}$$
, für ungepfeilte Flügel (5.13)

$$(C_{l\beta})_{F,\varphi} = -\frac{1}{3} \cdot \frac{\tan\varphi}{1 - (Ma\cos\varphi)^2} \cdot C_A$$
, für gepfeilte Flügel im Unterschall (5.14)

$$(C_{l\beta})_{S} = \left(1 + \frac{\partial \beta_{W}}{\partial \beta}\right) \cdot C_{YS\beta S} \cdot \frac{\bar{q}_{S} \cdot S_{S} \cdot r_{S}}{\bar{q} \cdot S \cdot s} \cdot \left(\frac{z_{S}}{r_{S}} - \alpha\right)$$
 (5.15)

Schiebe-Rollmoment - ungepfeilter Flügel

$$C_{l\beta,\nu} = -\frac{4}{3} \cdot \frac{\Lambda \cdot \nu}{\sqrt{\left(\frac{\Lambda^2}{4} + 4\right)} + 2} \tag{5.16}$$

Schiebe-Rollmoment - gepfeilter Flügel (Unterschall)

$$C_{l\beta,\varphi} = -\frac{1}{3} \cdot \frac{\tan\varphi}{1 - (Ma \cdot \cos\varphi)^2} \cdot C_A \tag{5.17}$$

$$(L(\beta))_{S} = (Y(\beta))_{S} \cdot (z_{S} - r_{S}\alpha)$$
(5.18)

$$(Y(\beta))_{S} = \left(1 + \frac{\partial \beta_{W}}{\partial \beta}\right) \cdot C_{YS\beta S} \cdot \beta \cdot \bar{q}_{S} \cdot S_{S} \tag{5.19}$$

$$C_{YS\beta S} = \frac{\partial C_{YS}}{\partial \beta_S} \tag{5.20}$$

Schiebe-Giermoment

$$N(\beta) = C_{n\beta} \cdot \beta \cdot \bar{q} \cdot S \cdot s \tag{5.21}$$

$$C_{n\beta} = \left(C_{n\beta}\right)_R + \left(C_{n\beta}\right)_S \tag{5.22}$$

$$\left(C_{n\beta}\right)_{R} = -2k \cdot \frac{V_{R}}{S \cdot s} \tag{5.23}$$

$$(C_{n\beta})_{S} = -\left(1 + \frac{\partial \beta_{W}}{\partial \beta}\right) \cdot \frac{\partial C_{YS}}{\partial \beta_{S}} \cdot \frac{\bar{q}_{S}}{\bar{q}} \cdot \frac{r_{S}}{s} \cdot \frac{S_{S}}{S} = -(C_{Y\beta})_{S} \cdot \frac{r_{S}}{s}$$
(5.24)

$$C_{n\beta} = \frac{\partial C_n}{\partial \beta} = -C_{n\zeta} \cdot \frac{\partial \zeta}{\partial \beta} = -2k \cdot \frac{V_R}{S \cdot s} - (C_{Y\beta})_S \cdot \frac{r_S}{s}$$
 (5.25)

Stationären Schiebeflug (kleine Hängewinkel)

$$\begin{pmatrix} C_A & C_{Y\zeta} & C_{Y\xi} \\ 0 & C_{l\zeta} & C_{l\xi} \\ 0 & C_{n\zeta} & C_{n\xi} \end{pmatrix} \begin{pmatrix} \Phi \\ \zeta \\ \xi \end{pmatrix} = \begin{pmatrix} -C_{Y\beta} \\ -C_{l\beta} \\ -C_{n\beta} \end{pmatrix} \cdot \beta$$
 (5.26)

Stationären Schiebeflug bei Triebwerksausfall links

$$\begin{pmatrix} C_{Y\beta} & C_{Y\zeta} & C_{Y\xi} \\ C_{l\beta} & C_{l\zeta} & C_{l\xi} \\ C_{n\beta} & C_{n\zeta} & C_{n\xi} \end{pmatrix} \begin{pmatrix} \beta \\ \zeta \\ \xi \end{pmatrix} = \begin{pmatrix} -C_A \cdot \Phi \\ 0 \\ \frac{\sum_i F_i \cdot y_{F_i}}{\bar{q} \cdot S \cdot s} \end{pmatrix}$$
(5.27)

Induzierter Schiebewinkel am Seitenleitwerk durch Giergeschwindigkeit

$$\beta_{S,r} = -\frac{r \cdot r_S}{\bar{V}_S} \tag{5.28}$$

Gierdämpfung

$$C_{nr} = \frac{\partial C_n}{\partial \left(\frac{r \cdot s}{V}\right)} \tag{5.29}$$

$$C_{nr} = (C_{nr})_S + (C_{nr})_F (5.30)$$

$$(C_{nr})_F = -\frac{2}{3}C_W = -\frac{2}{3}\left(C_{W0} + kC_A^2\right)$$
 (5.31)

$$(C_{nr})_S = C_{YS\beta S} \cdot \frac{V}{\bar{V}_S} \cdot \bar{q}_S \cdot S_S \cdot \frac{r_S}{\bar{q} \cdot S \cdot l_\mu} \cdot \frac{r_S}{s}$$
(5.32)

Gierrollmoment

$$C_{lr} = (C_{lr})_F + (C_{lr})_S (5.33)$$

$$(C_{lr})_F = \left(\frac{\partial C_l}{\partial \left(\frac{r \cdot s}{V}\right)}\right)_F = \frac{C_A}{4} \left[1 + \frac{\sqrt{\Lambda^2/4 + 1} + 1}{\sqrt{\Lambda^2/4 + 4} + 2}\right] \tag{5.34}$$

$$(C_{lr})_S = -C_{YS\beta S} \cdot \frac{\bar{q}_S}{\bar{q}} \cdot \frac{S_S}{S} \cdot \frac{r_S}{S} \cdot \left(\frac{z_S - r_S \cdot \alpha}{S}\right) \tag{5.35}$$

Rollseitenkraft

$$(C_{YP})_S = \frac{C_{YS\beta S}}{2} \cdot \frac{\bar{q}_S}{\bar{q}} \cdot \frac{S_S}{S} \cdot \frac{h_S}{S}$$
(5.36)

Rollgiermoment

$$C_{np} = \frac{\partial C_n}{\partial (\frac{p \cdot s}{V})} = (C_{np})_F + (C_{np})_S$$
(5.37)

$$(C_{np})_F = -\frac{1}{4} \cdot \frac{\sqrt{\frac{\Lambda^2}{4} + 4} - 1}{\sqrt{\frac{\Lambda^2}{4} + 4} + 2} \cdot C_A$$
 (5.38)

$$(C_{np})_S = \frac{C_{YS\beta S}}{2} \cdot \frac{\bar{q}_S}{\bar{q}} \cdot \frac{S_S}{S} \cdot \frac{r_S}{s} \cdot \frac{h_S}{s}$$
 (5.39)

Rolldämpfung

$$C_{lp} = \frac{\partial C_l}{\partial \left(\frac{p \cdot s}{V}\right)} \tag{5.40}$$

Rolldämpfung für inkompressible Strömung

$$C_{lp} = -\frac{1}{4} \cdot \frac{\pi \Lambda}{\sqrt{\frac{\Lambda^2}{4} + 4} + 2} \tag{5.41}$$

Schwimmwinkel bei losem Seitenruder

$$\zeta_S = -\frac{C_{r\beta}}{C_{r\zeta}} \cdot \beta_S \tag{5.42}$$

5.1 Berechnung zur Steuerung der Seitenbewegung

Seitenruderquerkraft

$$C_{YS,\zeta} = C_{YS\beta S} \cdot \frac{\partial \beta_S}{\partial \zeta} \cdot \zeta \tag{5.43}$$

$$(C_{Y\zeta})_S = C_{YS\beta_S} \cdot \frac{\partial \beta_S}{\partial \zeta} \cdot \frac{S_S}{S} \cdot \frac{\bar{q}_S}{\bar{q}}$$
 (5.44)

Seitenruderrollmoment

$$C_{l\zeta} = \frac{\partial C_l}{\partial \zeta} = C_{YS\beta S} \cdot \frac{\partial \beta_S}{\partial \zeta} \cdot \frac{\bar{q}_S}{\bar{q}} \cdot \frac{S_S}{S} \cdot \frac{r_S}{S} \cdot \left(\frac{z_S}{r_S} - \alpha\right)$$
(5.45)

Giermoment infolge Seitenruderausschlag

$$C_{n\zeta} = -C_{YS\beta S} \cdot \frac{\partial \beta_S}{\partial \zeta} \cdot \frac{\bar{q}_S}{\bar{q}} \cdot \frac{S_S}{S} \cdot \frac{r_S}{s}$$
(5.46)

Rudermoment des Seitenruders

$$M_{rS} = C_{rS} \cdot \bar{q}_S \cdot S_{rS} \cdot l_{rS} \tag{5.47}$$

Steuerkräfte

$$F_F = -K_{\ddot{U}S} \cdot \bar{q}_S \cdot S_{rS} \cdot l_{rS} \cdot C_{r\zeta} \cdot \left(\zeta + \beta_S \cdot \frac{C_{r\beta}}{C_{r\zeta}}\right) \tag{5.48}$$

Übersetzungsfaktor

$$K_{\ddot{U}S} = \frac{d\zeta}{ds_F} \tag{5.49}$$

5.2 Berechnung der Querruder-Steuerkraft

Querruder-Rollmoment

$$L\left(\xi\right) = C_{l\xi} \cdot \xi \cdot \bar{q} \cdot S \cdot s \tag{5.50}$$

Rollmomentenbeiwert infolge Querruderausschlag

$$C_{l\xi} = -\frac{4}{3} \cdot \frac{\Lambda}{\sqrt{\frac{\Lambda^2}{4} + 4} + 2} \cdot \frac{\partial \alpha}{\partial \xi} \cdot \left[1 - \left(\frac{y_Q}{s} \right)^2 \right]^{\frac{2}{3}}$$
 (5.51)

Erreichbare Rollgeschwindigkeit

$$p = -\frac{V}{s} \cdot \frac{C_{l\xi}}{C_{lp}} \cdot \xi \tag{5.52}$$

Momentenanteile

$$M_{rQ} \cdot \delta \xi = M_{rQ,r} \cdot \delta \xi_r + M_{rQ,l} \cdot \delta \xi_l \tag{5.53}$$

$$M_{rQ} = 2C_{rQ} \cdot \bar{q} \cdot S_{rQ} \cdot l_{rQ} \tag{5.54}$$

Querruder-Steuerkraft

$$F_Q = -2 \cdot K_{\ddot{U}Q} \cdot \bar{q} \cdot S_{rQ} \cdot l_{rQ} \cdot C_{rQ} \tag{5.55}$$

Übersetzungsverhältnis

$$K_{\ddot{U}Q} = \frac{\partial \xi}{\partial s_O} \tag{5.56}$$

5.3 Spezielle unsymmetrische Flugzustände

Anflug mit Schiebewinkel

$$\xi = -\frac{C_{n\zeta} \cdot C_{l\beta} - C_{l\zeta} \cdot C_{n\beta}}{C_{n\zeta} \cdot C_{l\zeta} - C_{l\zeta} \cdot C_{n\zeta}} \cdot \beta \tag{5.57}$$

$$\xi = -\frac{C_{n\zeta} \cdot C_{l\beta} - C_{l\zeta} \cdot C_{n\beta}}{C_{n\zeta} \cdot C_{l\xi} - C_{l\zeta} \cdot C_{n\xi}} \cdot \beta$$

$$\zeta = -\frac{C_{l\xi} \cdot C_{n\beta} - C_{n\xi} \cdot C_{l\beta}}{C_{n\zeta} \cdot C_{l\xi} - C_{l\zeta} \cdot C_{n\xi}} \cdot \beta$$
(5.57)

Anflug mit Schiebewinkel - bei kleinen Kopplungsthermen

$$\xi = -\beta \cdot \frac{C_{l\beta}}{C_{l\xi}} \tag{5.59}$$

$$\zeta = -\beta \cdot \frac{C_{n\beta}}{C_{n\zeta}} \tag{5.60}$$

Anflug mit Schiebewinkel - benötigter Hängewinkel

$$\Phi = -\left(C_{Y\beta} + C_{Y\zeta} \cdot \frac{\zeta}{\beta} + C_{Y\zeta} \cdot \frac{\zeta}{\beta}\right) \cdot \frac{\beta}{C_A} \tag{5.61}$$

Unsymmetrischer Triebwerksausfall

$$\begin{pmatrix} C_{Y\beta} & C_{Y\zeta} & C_{Y\zeta} \\ C_{l\beta} & C_{l\zeta} & C_{l\zeta} \\ C_{n\beta} & C_{n\zeta} & C_{n\zeta} \end{pmatrix} \begin{pmatrix} \beta \\ \xi \\ \zeta \end{pmatrix} = \begin{pmatrix} -C_A \Phi \\ 0 \\ C_W \frac{y_F}{s} \end{pmatrix}$$
(5.62)

Unsymmetrischer Triebwerksausfall - Giermomentenausgleich bei $\Phi=0$ für 2-strahlige Flugzeuge

$$\beta = \frac{-C_{l\xi} \cdot C_{Y\zeta} \cdot \frac{y_F}{s} \cdot C_W}{C_{Y\beta} \cdot C_{l\xi} \cdot C_{n\zeta} + C_{l\beta} \cdot C_{n\xi} \cdot C_{Y\zeta} - C_{n\beta} \cdot C_{l\xi} \cdot C_{Y\zeta}}$$
(5.63)

$$\zeta = \frac{C_{l\xi} \cdot C_{Y\beta} \cdot \frac{y_F}{s} \cdot C_W}{C_{Y\beta} \cdot C_{l\xi} \cdot C_{n\zeta} + C_{l\beta} \cdot C_{n\xi} \cdot C_{Y\zeta} - C_{n\beta} \cdot C_{l\xi} \cdot C_{Y\zeta}}$$
(5.64)

$$\xi = \frac{\left(C_{Y\beta} \cdot C_{l\zeta} - C_{l\beta} \cdot C_{Y\zeta}\right) \cdot \frac{y_F}{s} \cdot C_W}{C_{Y\beta} \cdot C_{l\zeta} \cdot C_{n\zeta} + C_{l\beta} \cdot C_{n\zeta} \cdot C_{Y\zeta} - C_{n\beta} \cdot C_{l\zeta} \cdot C_{Y\zeta}}$$
(5.65)

Unsymmetrischer Triebwerksausfall - Giermomentenausgleich bei $\beta=0$ für 2-strahlige Flugzeuge

$$\Phi \approx -\frac{C_{Y\zeta}}{C_{n\zeta}} \cdot \frac{C_W}{C_A} \cdot \frac{y_F}{s} \tag{5.66}$$

$$\zeta \approx \frac{C_W}{C_{n\zeta}} \cdot \frac{y_F}{s} \tag{5.67}$$

$$\xi \approx -\frac{C_{l\zeta}}{C_{l\zeta}} \cdot \frac{C_W}{C_{n\zeta}} \cdot \frac{y_F}{s} \tag{5.68}$$

Stationärer Kurvenflug - Hängewinkel Φ

$$tan\Phi_{ref} = \frac{V}{g} \cdot \Omega = \frac{V^2}{r_K \cdot g} \tag{5.69}$$

Längsmomentenbilanz im stationären Kurvenflug

$$C_{m\eta,NP} = C_{m\eta} - C_{A\eta} \cdot \frac{C_{m\alpha}}{C_{A\alpha}} \tag{5.70}$$

$$q = \Omega \cdot \sin \Phi = \frac{n^2 - 1}{n} \cdot \frac{g}{V} \tag{5.71}$$

$$\Delta \eta = -(n-1) \cdot \frac{C_{A,n=1}}{C_{m\eta,NP}} \cdot \left[\frac{\partial C_m}{\partial C_A} + \left(1 + \frac{1}{n} \right) \left(\frac{C_{mq}}{\mu} - \frac{C_{Aq}}{\mu} \cdot \frac{\partial C_m}{\partial C_A} \right) \right]$$
(5.72)

Stationärer Kurvenflug - Allgemein im Derivativsatz

$$\begin{pmatrix} C_{Y\beta} & C_{Y\zeta} & C_{Y\zeta} \\ C_{l\beta} & C_{l\zeta} & C_{l\zeta} \\ C_{n\beta} & C_{n\zeta} & C_{n\zeta} \end{pmatrix} \begin{pmatrix} \beta \\ \zeta \\ \zeta \end{pmatrix} = -r \cdot \frac{s}{V} \begin{pmatrix} C_{Yr} \\ C_{lr} \\ C_{nr} \end{pmatrix}$$
(5.73)

Giergeschwindigkeit

$$r = \Omega \cdot \cos\Phi = \frac{\sqrt{n^2 - 1}}{n} \cdot \frac{g}{V} \tag{5.74}$$

Stationärer Kurvenflug - Schiebefrei ($\beta=0$) im Derivativsatz

$$\begin{pmatrix} C_{Yr} \frac{n^{2}-1}{n} \frac{gs}{V^{2}} - nC_{A,n=1} & C_{Y\xi} & C_{Y\zeta} \\ C_{lr} \frac{n^{2}-1}{n} \frac{gs}{V^{2}} & C_{l\xi} & C_{l\zeta} \\ C_{nr} \frac{n^{2}-1}{n} \frac{gs}{V^{2}} & C_{n\xi} & C_{n\zeta} \end{pmatrix} \begin{pmatrix} \Delta \Phi \\ \xi \\ \zeta \end{pmatrix} = -\frac{\sqrt{n^{2}-1}}{n} \frac{gs}{V^{2}} \begin{pmatrix} C_{Yr} \\ C_{lr} \\ C_{nr} \end{pmatrix}$$
(5.75)

6 Dynamische Seitenbewegung

Trägheitsradien

$$i_x = \sqrt{\frac{I_x}{m}} \tag{6.1}$$

$$i_y = \sqrt{\frac{I_y}{m}} \tag{6.2}$$

$$i_z = \sqrt{\frac{I_z}{m}} \tag{6.3}$$

Deviationsmomente (Rollmoment und Giermoment)

$$k_L = \frac{I_{xz}}{I_x} \tag{6.4}$$

$$k_N = \frac{I_{xz}}{I_z} \tag{6.5}$$

Eigenwerte und Eigenbewegungsformen der Roll-Gier-Schwingung (Taumelschwingung)

$$\sigma_{RG} = \frac{V_{Tr}}{2 \cdot \mu_s \cdot s} \cdot \left[C_{Y\beta} + \left(\frac{s}{i_z} \right)^2 \cdot C_{nr} \right]$$
 (6.6)

$$\omega_{0_{RG}} = \sqrt{\frac{V_{Tr}^2}{\mu_s \cdot i_z^2} \cdot C_{n\beta}} \tag{6.7}$$

Rollzeitkonstante

$$T_R = -\frac{1}{s_R} \approx -\frac{\mu_s \cdot s}{V_{Tr}} \cdot \frac{(i_x/s)^2}{C_{lp}}$$
(6.8)

Näherung 1. Ordnung für Rollbewegung

$$\dot{p}(t) + ap(t) = b\xi(t) + c\zeta(t) \tag{6.9}$$

$$a = -\frac{C_{lp} \cdot s \cdot V_{Tr}}{\mu_s \cdot i_x^2} \tag{6.10}$$

$$b = \frac{V_{Tr}^2}{\mu_s \cdot i_r^2} \cdot C_{l\xi} \tag{6.11}$$

$$c = \frac{V_{Tr}^2}{\mu_s \cdot i_x^2} \cdot C_{l\zeta} \tag{6.12}$$

Näherung 1. Ordnung für Rollbewegung bei einem Querrudersprung

$$\dot{p} - \frac{V_{Tr}}{\mu_S \cdot s} \left(\frac{s}{i_x}\right)^2 \cdot C_{lp} \cdot p = \frac{V_{Tr}^2}{\mu_S \cdot i_x^2} \cdot C_{l\xi} \cdot \xi \tag{6.13}$$

Näherungslösung für die Spiralstabilität

$$s_s = -\frac{g}{V_{Tr}} \cdot \frac{C_{lr}C_{n\beta} - C_{l\beta}C_{nr}}{C_{lp}C_{n\beta}}$$

$$\tag{6.14}$$

Spiralbewegung (Kraft- und Momentengleichung)

$$L = \bar{q}_{Tr} \cdot S \cdot s \left[C_{l\beta} \cdot \beta + C_{lp} \cdot \frac{p \cdot s}{V_{Tr}} + C_{lr} \cdot \frac{r \cdot s}{V_{Tr}} \right] = 0$$
 (6.15)

$$N = \bar{q}_{Tr} \cdot S \cdot s \left[C_{n\beta} \cdot \beta + C_{nr} \cdot \frac{r \cdot s}{V_{Tr}} \right] = 0$$
 (6.16)

Formelzeichen

A Auftrieb

B Drall

*C*_A Auftriebsbeiwert

*C*_W Widerstandsbeiwert

*C*_γ Seitenkraftbeiwert

 C_l Rollmomentenbeiwert

C_m Nickmomentenbeiwert

 C_n Giermomentenbeiwert

C_r Rudermomentenbeiwert

 $C_{A\alpha}$ Auftriebsanstieg

 $C_{A\dot{\alpha}}$ Anstellwinkelgeschwindigkeit-Auftriebsderivativ

 C_{Aq} Nick-Auftriebsderivativ

 $C_{W\alpha}$ Widerstandsanstieg

 $C_{YS,r}$ Seitenruderquerkraft

 $C_{Y\beta}$ Schiebeseitenkraftbeiwert

 C_{Yp} Rollseitenkraft

 C_{Yr} Seitenkraftderivativ infolge der Giergeschwindigkeit

 $C_{l\beta}$ Schiebe-Rollmomentenderivativ

 $C_{l\tilde{c}}$ Querruderrollbeiwert

 $C_{l\zeta}$ Seitenruderrollbeiwert

 C_{lv} Rolldämpfungsbeiwert

 C_{lr} Gier-Rollmomentenderivativ

 $C_{m\dot{\alpha}}$ Anstellwinkeldämpfungsderivativ

 $C_{m0,Spitze}$ Nullmomentenbeiwert, des Flügelspitzenprofils

 $C_{m0,Wurzel}$ Nullmomentenbeiwert, des Flügelwurzelprofils

24 Formelzeichen

 C_{m0} Nullmomentenbeiwert, C_m an der Stelle $C_A = 0$

 $C_{m\alpha}$ Anstellwinkel-Nickmomentenderivativ

 $C_{m\eta}$ Höhenruder-Nickmomentenderivativ

C_{mq} Nichdämpfungsderivativ

 $C_{n\beta}$ Schiebe-Giermomentenderivativ

 $C_{n\xi}$ Querrudergierbeiwert

 $C_{n\zeta}$ Seitenrudergierbeiwert

 C_{np} Roll-Giermomentenderivativ

*C*_{nr} Gierdämpfungsderivativ

 C_{rQ} Scharniermomentenbeitrag

D Dämpfungsfaktor

F Schub

 F_F Steuerkraft zur Betätigung des Seitenruders

*F*_H Steuerkraft

G Gewichtskraft

H Höhe

 $I_{x,y,z}$ Trägheitsmoment

 $I_{yz,zx,xy}$ Deviationsmomente

K_F Steuerkraftkonstante

*K*_{ÜO} Übersetzungsfaktor (Querruder)

 K_{US} Übersetzungsfaktor (Seitenbewegung)

 $K_{\ddot{\text{U}}}$ effektive Übersetzung

L Rollmoment

M Nickmoment

 M_r Moment um die Ruderdrehachse

Ma Machzahl

N Giermoment

NP Neutralpunkt

Q Querkraft

 R_a Resultierende Luftkraft

S Bezugsfläche

SP Schwerpunkt

S_H Bezugsfläche des Höhenleitwerks

 S_S Bezugsfläche des Seitenleitwerks

T Schwingungsdauer

 T_R Rollzeitkonstante

V Fluggeschwindigkeit

 V_H Effektive Fluggeschwindigkeit des Höhenleitwerks

 V_R Rumpfvolumen

W Widerstandskraft

X, Y, Z Längskraft, Seitenkraft, Vertikalkraft

Λ Flügelstreckung

 Ω Drehgeschwindigkeit

Φ Hängewinkel (Rollwinkel)

Ψ Azimut (Gierwinkel)

Θ Längsneigung (Nickwinkel)

α Anstellwinkel

 α_H Effektiver Anstellwinkel des Höhenleitwerks

 α_K Bahnanstellwinkel

*α*_W Abwindwinkel am Höhenleitwerk

 α_{W0} Abwindwinkel bei Nullauftrieb der FR-Kombination

 α_{eff} Effektiver Anstellwinkel

 $\bar{\alpha}_W$ Mittlerer Abwindwinkel am Höhenleitwerk

β Schiebewinkel

 β_S Schiebewinkel am Seitenleitwerk

 β_W Windschiebewinkel

26 Formelzeichen

χ	Bahnazimut
χ_a	Flugwindazimut
δ_F	Schubhebelstellung
δ_l	Faktor zur Vereinfachung der Gleichung des Leitwerksauftriebs bei losem Ruder
ϵ_D	Dämpfungswinkel
ϵ_H	Einstellwinkel des Höhenleitwerks
η	Höhenruderausschlag
η_S	Höhenruderschwimmwinkel
γ	Bahnneigungswinkel
γ_a	Flugwindneigungswinkel
$(C_{AV})_{ar{q}}$	Auftriebsbeiwertsänderung bei der Berücksichtigung von dynamischen Vorgängen der Längsbewegung
$(C_{mV})_{\bar{q}}$	Momentenbeiwertsänderung bei der Berücksichtigung von dynamischen Vorgängen der Längsbewegung
μ	Normierte Masse (Längsbewegung)
μ_S	Normierte Masse (Seitenbewegung)
μ_a	Flugwindhängewinkel
ν	V-Stellungswinkel
ω	Kreisfrequenz
\overline{q}	Staudruck
\overline{q}_H	Staudruck am Höhenleitwerk
π	Mathematische Konstante
ρ	Luftdichte
σ	Realteil eines Eigenwertes
σ	Schubeinstellwinkel
τ	Flugmechanische Zeitkonstante
\underline{K}_a	Kraft im aerodynamischen System
\underline{V}_A	Geschwindigkeitsvektor im aerodynamischen System

$\underline{\omega}_f^{gf}$	Drehgeschwindigkeit des flugzeugfesten Systems gegenüber dem geodätischem System beschrieben im flugzeugfesten System
φ	Pfeilwinkel der l/4-Linie
ϑ	Flügelverwindung
ξ	Querruderausschlag
ζ	Seitenruderausschlag
ζ_S	Schwimmwinkel bei losem Seitenruder
а	Schallgeschwindigkeit
b	Spannweite
е	Oswald-Faktor
f	Eigenfrequenz
8	Fallbeschleunigung
i, j, k	Einheitsvektoren
$i_{x,y,z}$	Trägheitsradius
$k_{l,n}$	Deviationsmomente
l_{μ}	Bezugsflügeltiefe
l _{1,2,3}	Hebelarmlängen
l_{rS}	Länge des Seitenruders
m	Masse
n	Lastvielfaches
n_V	Exponent, der Triebwerkscharakteristik beschreibt
n_{α}	Abfangempfindlichkeit
p	Rollgeschwindigkeit
q	Nickgeschwindigkeit
r	Giergeschwindigkeit
r_H	Abstand zwischen dem Neutralpunkt des Höhenleitwerks und dem Schwerpunkt des Gesamtflugzeugs
r_S	Abstand zwischen dem Neutralpunkt des Seitenleitwerks und dem Schwerpunkt des Gesamtflugzeugs

28 Formelzeichen

r_{HN}	Abstand zwischen dem Neutralpunkt des Höhenleitwerks und dem Neutralpunkt des Gesamtflugzeugs
S	Halbspannweite
s, s_L	Laplace-Variable
s_R	Eigenbewegungsform (Rollbewegung)
t	Zeit
t_A	Totzeit
<i>x</i> , <i>y</i> , <i>z</i>	Flugzeugfestes Achsensystem (äquivalent x_f, y_f, z_f)
x_M	Manöverpunktlage
x_N	Neutralpunktlage des Gesamtflugzeugs
x_S	Schwerpunktlage
x_a, y_a, z_a	Aerodynamisches Koordinatensystem
x_e, y_e, z_e	Experimentelles Koordinatensystem
x_g, y_g, z_g	Geodätisches Koordinatensystem
x_k, y_k, z_k	Bahnfestes Koordinatensystem
x_t	Punkt der höchsten Profilwölbung
x_{FR}	Neutralpunktlage des Flügel-Rumpf-Kombination
y_F	Abstand zwischen Schwerpunkt und Triebwerkssymmetrieebene
z_F	Schubhebelarm
z_H	Vertikaler Abstand zwischen NP_{HLW} und Schwerpunkt
z_S	Vertikaler Abstand zwischen NP_{SLW} und Schwerpunkt
z_{FR}	Vertikaler Abstand zwischen $NP_{Fl\ddot{\mathbf{u}}gel}$ und Schwerpunkt