Civil subsonic

Military subsonic/VTOI

Helicopter

ENGINE – AIRFRAME INSTALLATION

Lecture 5

Military supersonic

Objectives Lecture 5: To detail the issues arising from the installation of a propulsion system into a vehicle.

Topics:

- Introduction
- Thrust/Drag Accounting
- Nacelle Geometry
- Installed Drag

AIR VEHICLE PERFORMANCE

- To calculate Air Vehicle Performance (in steady 1 'g' flight) the following are needed:
- The drag & mass of the aircraft (usually in the form of drag polars & weight breakdowns)
- Engine thrust & fuel flow (characteristics usually in tabular form or as an "Engine Deck"

 Combining the drag polars with the engine performance gives the Air Vehicle performance

BUT

The Aircraft effects the Engine & the Engine effects the Aircraft

EFFECT OF ENGINE ON AIRFRAME

Intake Flow:

Flow into Intake can effect fuselage and wing aerodynamics

Exhaust Flow:

- Scrubbing over fuselage can effect Drag & give rise to structural problems
- Exhaust Flow at certain values of incidence can cause instabilities
 & fatigue problems on Fin & tailplane
- Propeller slipstream can have a significant effect on both wing & tailplane aerodynamics and on the airframe structural design due to the levels of noise & vibration.

EFFECT OF AIRFRAME ON ENGINE

Engine is the source of secondary power and bleed air:

- Power to run systems
- Air for cabin conditioning & cooling etc.

Nozzles

- Special Nozzles can effect Engine Performance
- Vectoring Nozzles may be needed for combat manoeuvring and STOVL

Typical Drag Breakdown for Subsonic Airliner Profile Drag as a percentage of Total Drag

- At Cruise Speed (at Minimum Drag Speed)
- Lift-Induced Drag ~ 25% (50%)

• Profile Drag

~ 75% (50%)

Thrust/Drag Book-keeping Scheme

Thrust is the summation of the forces acting on the internal surfaces of the engine nacelle & pre-entry & post-exit stream-tubes from minus to plus infinity.

Drag is the summation of the forces acting on the external surfaces of the nacelle & pre-entry & post-exit stream-tubes from minus to plus infinity.

Installed Performance Definition - 1

* Required for aircraft performance identical to a/c drag/number of engines for constant speed, straight and level flight

** Normally included in aircraft drag

STATION NUMBERING & NOMENCLATURE

The international standard is ARP755A.

However most companies use their own variations.

Subsonic Nacelle Geometry

Simplified axi-symmetric pod with circular arc afterbody

Major Characteristics of Forebody

Full flow stagnation streamtube

MAJOR CHARACTERISTICS

Max Diam ~ 1.21 x Fan Diameter Throat Mach 0.7 – 0.75

 A_h/A_{th} 1.2 – 1.35

Diffuser Ratio

Fan Face Area to Throat Area 1.25 - 1.35

NACA-1 Series Ordinates

\mathbf{x}/ℓ	y/Y	\mathbf{x}/ℓ	\mathbf{y}/\mathbf{Y}
0	Ω	0.260	0.6035
0.004	0.0663	0.300	0.6489
0.008	0.0933	0.340	0.6908
0.015	0.1272	0.380	0.7294
0.025	0.1657	0.420	0.7648
0.035	0.1994	0.460	0.7974
0.050	0.2436	0.500	0.8269
0.080	0.3181	0.580	0.8795
0.110	0.3815	0.660	0.9220
0.140	0.4366	0.740	0.9548
0.170	0.4840	0.820	0.9787
0.200	0.5270	0.900	0.9940
0.230	0.5666	1.000	1.0000

Comparison of NACA-1 series and Ruden's constant-velocity profiles.

Nacelle, Pylon & Interference Drag

$$\Delta \frac{D_o}{q} = CD \cdot S_{REF} = C_f \cdot S_A \cdot F F i$$
$$q = \frac{1}{2} \rho \cdot V^2$$

- **S**_{REF} = Reference Area for vehicle (usually wing area)
- C_f = Skin Friction Coefficient:

$$C_{f} = 0.455 \times (\log_{10} Re)^{-2.58}$$
 (Prandtl-Schlichting)

- Reynolds Number Re based upon pod length or pylon chord
- **S**_A = Surface area of pod (pylons)

Nacelle, Pylon & Interference Drag

$$\Delta \frac{D_o}{q} = CD \cdot S_{REF} = C_f \cdot S_A \cdot F F i$$
$$q = \frac{1}{2} \rho \cdot V^2$$

- **F** = Form Factor i.e. (integrated pressure distribution)
- **F**_i = Installation Interference factor.
- $F F_i \sim 1.0$
 - for well designed rear fuselage mounted engines & low slung underwing nacelles (close coupled underwing installations have F F_i have in excess of 1 see later lecture).
 - Surface Area of pod from geometry.
- Assumes full flow entry streamtube, static pressure at nozzle exit plane is equal to free-stream static pressure & jet velocity similar to free-stream velocity.

Intake Flow-fields

AIRCRAFT AT REST

STATIC + CROSSWIND

LOW-SPEED FLIGHT

HIGH-SPEED FLIGHT

MFCR >>

MFCR > 1

Note: Mach Number at compressor face ~ 0.6

Mass Flow Capture Ratio:

$$MFCR = A_o/A_i = \frac{\rho_i \cdot c_i}{\rho_0 \cdot c_o}$$

 $\rho = density_{,}$ $A_o = Upstream Flow Area;$

C = Velocity $A_i = Intake Highlight Area$

AENG 31102 Lecture 5

THRUST DEFINITIONS

Fully-expanded Net Thrust: Gross thrust at infinity downstream minus intake momentum drag

$$F_{N'} = F_{G_{\infty}} - F_{G_o} = (\dot{m}_i \cdot C_j - \dot{m}_o \cdot C_a) = \rho_j \cdot A_{FE} \cdot C_j^2 - \rho_o \cdot A_o \cdot C_a^2$$

Standard Net Thrust Gross thrust at Nozzle Plane minus intake momentum drag

$$F_N = FGN - FGo = \dot{m}_i \cdot C_{jN} + AN (P_i - P_a) - \dot{m}_o \cdot C_a$$

Note: This definition relies upon engine parameters only & is independent of installation

 $\mathbf{F}_{\mathbf{Go}}$ = Intake Momentum Drag = $\dot{m} \cdot \mathcal{C}_a$ $\mathbf{\rho}_{\mathbf{o}}$ = Free stream density

 $\mathbf{F}_{\mathbf{G}^{\infty}}$ = Ideal Fully-expanded Gross Thrust $\mathbf{A}_{\mathbf{o}}$ = Intake Capture Area

 \mathbf{F}_{GN} = Stream Gross Thrust

 ρ_i = Density of jet

 \dot{m}_{o} = Intake Mass flow = $\rho_{o} A_{o} C_{a}$ A_{FE} = Area of Fully Expanded Jet

= Mass flow of jet = $\rho_i A_{FE} C_i$ A_N = Area of Jet at Nozzle

= Flight Velocity

C_i = Fully expanded jet velocity

= Velocity of jet at nozzle plane C_{iN}

Infinity

 Ω

Capture

stream tube

Downstream

Cowl

The Concept of the Aerodynamic Duct

Captured Streamtube

$$\dot{m}_o = \rho_o \cdot A_o \cdot C_a$$

$$\dot{m}_i = \rho_i \cdot A_i \cdot C_i$$

Mass Flow Capture Ratio $MFCR = \frac{A_o}{A_i} = \frac{\rho_i \cdot C_i}{\rho_o \cdot C_o}$

$$C = Velocity$$

 $A_o = Upstream Flow Area$

 A_i = Intake Highlight Area

For incompressible flow

$$MFCR = \frac{c_i}{c_o}$$

N

Flow chokes at entrance

Full flow, subsonic

OAENG 31102 Lecture 5

15

Forces acting on a Single-stream Nacelle

Thrust is the summation of the forces acting on the internal surfaces of the engine nacelle & pre-entry & post-exit stream-tubes from minus to plus infinity.

Drag is the summation of the forces acting on the external surfaces of the nacelle & pre-entry & post-exit stream-tubes from minus to plus infinity.

 $\mathbf{F_{Go}}$ = Intake Momentum Drag = $\dot{m} \cdot C_a$

 $\mathbf{F}_{\mathbf{G}^{\infty}}$ = Ideal Fully-expanded Gross Thrust

F_G = Stream Gross Thrust

Φ = Nacelle & Streamtube Forces

 Φ_{pre} = Force on pre-entry streamtube

 Φ_{post} = Force on post-exit streamtube

 Φ_{pre} = Force on nacelle

SEMI-INFINITE BODIES

For the purpose of analysis the nacelle can be divided into two semi-infinite bodies:

- from infinity upstream to the nacelle max diameter
- from the nacelle maximum diameter to infinity downstream

Axial Forces in Inviscid & Real Flows

d'Alembert's Paradox:

• The net force on a closed non-lifting body in isolation in infinite subsonic, potential flow is zero.

Prandtl Extension to d'Alembert's paradox:

- The net force on an infinite or semi-infinite body in subsonic, potential flow is zero.
- **NOTE:** Though the total drag of a body is zero, non-zero forces act in different axial directions on parts of the body. Thus a clear distinction must be made between the force on part of the body and the drag of that part of the body.

PRESSURE FORCES ON UNDUCTED BODIES

Static Pressures on a Nacelle & Afterbody

Experimental Results

V_i/V_o = Intake Velocity ratio = Mass Flow ratio in incompressible flow

Pressure distribution along a nacelle

Pressure distribution along an afterbody

Pre-entry Force

 Assuming a semi-infinite body, then from Prandtl/d'Alembert :

$$\Phi_{pre} + \Phi_{cowl_pot} = 0$$

$$D_c = \Phi_{cowl} - \Phi_{cowl,pot}$$

- Hence: $D_c = \Phi_{pre} + \Phi c_{owl}$
- Under normal operating conditions then the Φ_{pre} balances Φ_{cowl} and the cowl drag is simply that due to skin friction & form.

At very low intake mass flows, separation will occur over lip

Typical Nacelle Forebody Drag Characteristics

Empirical relationships

Mass Flow Capture Ratio:

$$MFCR = A_o/A_i = \frac{\rho_i \cdot C_i}{\rho_o \cdot C_o}$$

 ρ = density_. A_o = Upstream Flow Area

 $C = Velocity; A_i = Intake Highlight Area$

MFR ≥ MFR_{crit} C_{PcowL} ΔC_D MFR_{crit} MFR

Forebody Drag Rise Mach Number

$$M_{DF} = M_{Cruise} + 0.1$$

$$M_{DF} = 1 - \frac{1}{8} \frac{\sqrt{1 - \binom{D_H}{D_M}^2}}{\frac{L_F}{L_M}}$$

Critical Mass Flow Ratio

$$MFR_{crit} = \left[1 - \frac{4\left(1 - \frac{D_{H}}{D_{M}}\right)^{2}}{\frac{L_{F}}{D_{M}}}\right]^{\frac{5}{2}}$$

Post-exit Force

 Assuming a semi-infinite body, Prandtl/d'Alembert :

$$\Phi_{post} + \Phi_{c \ pot} = 0$$

$$D_a = \Phi_a - \Phi_{a \ pot}$$

$$\Phi_{post} = FG_9 \ _FG_{\infty}$$

• As the post-exit force represents the difference between two gross thrusts, it is called **Post-Exit Thrust**.

Post-exit Force

- In general the exhaust static pressure P_{o9} is not equal to the ambient static pressure P_a .
- $(P_{o9} P_a)$ < 0; the exhaust flow is said to be OVEREXPANDED
- $(P_{o9} P_a) = 0$; the exhaust flow is said to be FULLYEXPANDED
- $(P_{o9} P_a) > 0$; the exhaust flow is said to be UNDEREXPANDED

Note the Nozzle Pressure ratio = Nozzle Total Pressure/ambient pressure = P_{o9}/P_a

- In the ideal case when the engine exhaust flow is fully expanded so that $P_{09}=P_{\rm a}$, then the gross thrust $F_{G9}=F_{G\infty}$ (the gross thrust at ∞ downstream)
- The post-exit stream tube area is constant between stations (9) & (∞) and

V

 $\Phi_{\text{post}} = 0$

Afterbody Force Co-efficient

Typical Empirical Data

Afterbody Force Coeff.

 $C_{\Phi,a}$ coefficient based on free-stream dynamic head & afterbody max csa

Key Points from Lecture 5

- Though often treated as separate entities – the airframe affects the engine & the engine effects the airframe.
- There is a "standard" Thrust Drag accounting method to ensure consistency in the overall analysis of platform performance.
- A proper understanding of the interaction between the engine & airframe is essential for the design of the optimum engine installation.

Lecture 6

Engine Placement

Objective ~ Lecture 6
To examine the issues arising from installing the propulsion system into a vehicle.

AENG31102 Lecture 3