Programación en Matlab

Control PID

Ing. Eddie Ángel
Sobrado Malpartida

Introducción

En esta guía entenderemos el efecto de los parámetros del control PID: Kp, Ti, Td

Recordando que el PID expresado en FT es:

$$G(s) = kp\left(1 + \frac{1}{T_i s} + T_d s\right)$$

Antes de emplear SIMULINK sería bueno modificar los pasos de simulación para tener una respuesta mas fina:

Modificar los parámetro indiicados:

Control Proporcional: K

$$G(s) = kp$$

1. Implementar el siguiente programa:

Ir modificando el valor de K desde la línea de comandos antes de ejecutar el programa de SIMULINK

Conclusión

- a. A mayor ganancia el sistema responderá más rápido, es decir el tiempo de establecimiento es menor.
- b. A mayor ganancia de alguna manera se reduce el error en estado estable, pero no lo elimina

2. Ahora implementar el siguiente programa:

Ir modificando el valor de K desde la línea de comandos antes de ejecutar el programa de SIMULINK

Conclusión

- a. A mayor ganancia el sistema responderá más rápido, es decir el tiempo de establecimiento es menor.
- b. A mayor ganancia de alguna manera se reduce el error en estado estable, pero no lo elimina
- c. Ahora también notamos que a medida que la ganancia aumente, se genera sobre impulsos u oscilaciones y en algunos casos podría llegar a la inestabilidad

Control Proporcional Derivativo: PD

$$G(s) = kp(1 + T_d s)$$

Del programa anterior para un **K=10** se obtuvo:

Implementar el siguiente programa:

Manteniendo un valor de K=10 ir modificando valores de **Td** solamente desde la línea de comandos antes de ejecutar el programa de SIMULINK

Command Window	Modificar:
$f_{x} >> Td=0.1;$	Td = 0.1, 0.3, 0.5

Conclusión

- a. El Td atenúa sobre impulso u oscilación.
- b. A mayor Td se logra atenuar más el sobre impulso u oscilación
- c. El error en estado estable no se ve afectado por el Td
- d. Normalmente no se recomienda usar un Td en procesos que tiene ruido

Control Proporcional Integral: Pl

$$G(s) = kp\left(1 + \frac{1}{T_i s}\right)$$

Del primer programa para un **K=10** se obtuvo:

Implementar el siguiente programa:

Manteniendo un valor de K=10 ir modificando valores de Ti solamente desde la línea de comandos antes de ejecutar el programa de SIMULINK

Command Window	Modificar:
>> Ti=10;	Ti = 10, 3, 1, 0.5

Conclusión

- a. Con el Ti se logra error=0
- b. Si el Ti es grande la respuesta es lenta por ello demora en lograr error cero
- c. A medida que el Ti disminuye, la respuesta se hace menos lento, pero empieza a incrementarse el sobre impulso
- d. Si seguimos disminuyendo Ti, se genera más sobre impulso, oscilaciones y en algunos casos podría llegar a la inestabilidad