Planing, Learning and Intelligent Decision Making - Homework 2

99326 - Sebastião Carvalho, 99331 - Tiago Antunes

February 22, 2024

Contents

1	Question 1	1
	1 a)	1
	1 b)	- 4
	1 c)	2

1 Question 1

1 a)

Using X as the state space, $X = \{A, B, C\}$.

The transition matrix is given by
$$\begin{bmatrix} 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 1 & 0 & 0 \end{bmatrix}.$$

Where the first row represents the transition probabilities from state A, the second row from state B and the third row from state C. Each column represents the transition probabilities to state A, B and C, respectively.

The diagram of the Markov chain is given by

Figure 1: Markov Chain

1 b)

For state A, we have 2 possible paths to reach state A again, $A \to B \to A$ and $A \to B \to C \to A$. With the transition matrix, we can calculate the probability of each path.

Using x_t to represent the state at time t.

The probability of the first path is $P(x_1 = B | x_0 = A) * P(x_2 = A | x_1 = B) = 1 * 0.5 = 0.5$.

The probability of the second path is $P(x_1 = B | x_0 = A) * P(x_2 = C | x_1 = B) * P(x_3 = A | x_2 = C) = 1 * 0.5 * 1 = 0.5.$

Since the first path takes 2 steps and the second path takes 3 steps, $T_{AA} = 0.5 * 2 + 0.5 * 3 = 2.5$.

1 c)