```
import pandas as pd
 In [1]:
          import numpy as np
          import matplotlib as mpl
          import matplotlib.pyplot as plt
          mpl.style.use(['ggplot'])
          %matplotlib inline
          df = pd.read_csv('MY2022_Fuel_Consumption_Ratings[1].csv')
In [20]:
          df.head()
In [21]:
Out[21]:
                                                                                   Fuel
                                                                                                    Fuel
                                                                                                                     Fuel
                                                                                                                                        Fuel
                                 Vehicle Engine
             Model
                                                                      Fuel Consumption
                                               Cylinders Transmission
                                                                                        Consumption(Hwy Consumption(Comb Consumption(Comb
                    Make Model
                                  Class Size(L)
              Year
                                                                      Type
                                                                             (City (L/100
                                                                                                                                             Emissions(g
                                                                                                                                      (mpg))
                                                                                              (L/100 km))
                                                                                                                (L/100 km))
                                                                                   km)
              2022 Acura
                            ILX Compact
                                            2.4
                                                       4
                                                                 AM8
                                                                         Ζ
                                                                                    9.9
                                                                                                     7.0
                                                                                                                       8.6
                                                                                                                                         33
                           MDX
                                   SUV:
              2022 Acura
                                            3.5
                                                       6
                                                                AS10
                                                                        Ζ
                                                                                   12.6
                                                                                                     9.4
                                                                                                                      11.2
                                                                                                                                         25
                           SH-
                                   Small
                          AWD
                           RDX
                                   SUV:
              2022 Acura
                           SH-
                                            2.0
                                                       4
                                                                AS10
                                                                         Ζ
                                                                                   11.0
                                                                                                     8.6
                                                                                                                       9.9
                                                                                                                                         29
                                   Small
                           AWD
                           RDX
                           SH-
                                   SUV:
                                            2.0
                                                                         Ζ
                                                                                                                      10.3
                                                                                                                                         27
              2022 Acura
                          AWD
                                                       4
                                                                AS10
                                                                                   11.3
                                                                                                     9.1
                                   Small
                             A-
                          SPEC
                           TLX
                                                                                                                                         29
              2022 Acura
                           SH- Compact
                                            2.0
                                                       4
                                                                AS10
                                                                        Ζ
                                                                                   11.2
                                                                                                     8.0
                                                                                                                       9.8
                          AWD
          df.columns
In [22]:
          Index(['Model Year', 'Make', 'Model', 'Vehicle Class', 'Engine Size(L)',
Out[22]:
                  'Cylinders', 'Transmission', 'Fuel Type',
                  'Fuel Consumption (City (L/100 km)', 'Fuel Consumption(Hwy (L/100 km))',
                  'Fuel Consumption(Comb (L/100 km))', 'Fuel Consumption(Comb (mpg))',
                  'CO2 Emissions(g/km)', 'CO2 Rating', 'Smog Rating'],
                dtype='object')
In [23]:
          df.shape
          (946, 15)
Out[23]:
```

```
df.info()
In [24]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 946 entries, 0 to 945
         Data columns (total 15 columns):
          #
              Column
                                                   Non-Null Count
                                                                   Dtvpe
              _ _ _ _ _
              Model Year
                                                   946 non-null
                                                                   int64
          1
              Make
                                                   946 non-null
                                                                   object
           2
              Model
                                                   946 non-null
                                                                   object
              Vehicle Class
                                                   946 non-null
                                                                   object
              Engine Size(L)
                                                                   float64
                                                   946 non-null
              Cylinders
                                                   946 non-null
                                                                   int64
              Transmission
                                                   946 non-null
                                                                   object
           7
                                                                   object
              Fuel Type
                                                   946 non-null
              Fuel Consumption (City (L/100 km)
           8
                                                                   float64
                                                   946 non-null
              Fuel Consumption(Hwy (L/100 km))
                                                                   float64
                                                   946 non-null
          10 Fuel Consumption(Comb (L/100 km))
                                                                   float64
                                                   946 non-null
          11 Fuel Consumption(Comb (mpg))
                                                   946 non-null
                                                                   int64
          12 CO2 Emissions(g/km)
                                                   946 non-null
                                                                   int64
              CO2 Rating
          13
                                                   946 non-null
                                                                   int64
          14 Smog Rating
                                                   946 non-null
                                                                   int64
         dtypes: float64(4), int64(6), object(5)
         memory usage: 111.0+ KB
         df.isna().sum()
In [26]:
         Model Year
                                                0
Out[26]:
         Make
                                                0
         Model
         Vehicle Class
         Engine Size(L)
         Cylinders
         Transmission
                                                0
                                                0
         Fuel Type
         Fuel Consumption (City (L/100 km)
                                                0
         Fuel Consumption(Hwy (L/100 km))
                                                0
         Fuel Consumption(Comb (L/100 km))
                                                0
         Fuel Consumption(Comb (mpg))
                                                0
         CO2 Emissions(g/km)
                                                0
         CO2 Rating
                                                0
                                                0
         Smog Rating
         dtype: int64
         df.duplicated()
In [27]:
                 False
Out[27]:
```

False

```
2
       False
3
       False
       False
4
       . . .
941
       False
942
       False
943
       False
944
       False
945
       False
Length: 946, dtype: bool
```

In [29]: df.describe()

Out[29]:

:	Model Year	Engine Size(L)	Cylinders	Fuel Consumption (City (L/100 km)	Fuel Consumption(Hwy (L/100 km))	Fuel Consumption(Comb (L/100 km))	Fuel Consumption(Comb (mpg))	CO2 Emissions(g/km)	CO2 Rating	Smog Rating
count	946.0	946.000000	946.000000	946.000000	946.000000	946.000000	946.000000	946.000000	946.000000	946.000000
mean	2022.0	3.198732	5.668076	12.506448	9.363319	11.092072	27.247357	259.172304	4.539112	4.950317
std	0.0	1.374814	1.932670	3.452043	2.285125	2.876276	7.685217	64.443149	1.471799	1.679842
min	2022.0	1.200000	3.000000	4.000000	3.900000	4.000000	11.000000	94.000000	1.000000	1.000000
25%	2022.0	2.000000	4.000000	10.200000	7.700000	9.100000	22.000000	213.250000	3.000000	3.000000
50%	2022.0	3.000000	6.000000	12.200000	9.200000	10.800000	26.000000	257.000000	5.000000	5.000000
75%	2022.0	3.800000	6.000000	14.700000	10.700000	12.900000	31.000000	300.750000	5.000000	6.000000
max	2022.0	8.000000	16.000000	30.300000	20.900000	26.100000	71.000000	608.000000	10.000000	7.000000

In [31]: cdf = df[['Engine Size(L)','Cylinders','Fuel Consumption(Comb (L/100 km))','C02 Emissions(g/km)']]
 cdf.head(9)

Out[31]:

	Engine Size(L)	Cylinders	Fuel Consumption(Comb (L/100 km))	CO2 Emissions(g/km)
0	2.4	4	8.6	200
1	3.5	6	11.2	263
2	2.0	4	9.9	232
3	2.0	4	10.3	242
4	2.0	4	9.8	230
5	2.0	4	9.8	231
6	3.0	6	11.0	256
7	3.0	6	11.2	261

cdf.rename(columns={'Engine Size(L)':'ENGINESIZE', 'Cylinders':'CYLINDERS','Fuel Consumption(Comb (L/100 km))':'FUEL COM COMB', In [32]: C:\Users\ahmed\AppData\Local\Temp\ipykernel 26568\1429791454.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user quide/indexing.html#returning-a-view-ve

rsus-a-copy cdf.rename(columns={'Engine Size(L)':'ENGINESIZE', 'Cylinders':'CYLINDERS', 'Fuel Consumption(Comb (L/100 km))':'FUEL COM COM

B', 'CO2 Emissions(g/km)': 'CO2 EMISSIONS'}, inplace=True)

cdf.head() In [33]:

8

Out[33]: ENGINESIZE CYLINDERS FUEL_COM_COMB CO2_EMISSIONS 0 2.4 4 8.6 200 1 3.5 6 263 11.2 2 2.0 4 9.9 232 3 2.0 4 10.3 242 4 4 9.8 2.0 230

cdf.corr() In [43]:

ENGINESIZE CYLINDERS FUEL COM COMB CO2 EMISSIONS Out[43]: **ENGINESIZE** 1.000000 0.920698 0.818694 0.824188 **CYLINDERS** 0.920698 1.000000 0.821718 0.833241 **FUEL COM COMB** 0.818694 0.821718 1.000000 0.971671 CO2 EMISSIONS 0.824188 0.833241 0.971671 1.000000

cdf.hist() In [39]:

array([[<AxesSubplot:title={'center':'ENGINESIZE'}>, Out[39]: <AxesSubplot:title={'center':'CYLINDERS'}>], [<AxesSubplot:title={'center':'FUEL_COM_COMB'}>, <AxesSubplot:title={'center':'C02_EMISSIONS'}>]], dtype=object)


```
plt.scatter(cdf.FUEL_COM_COMB, cdf.CO2_EMISSIONS ,color = 'blue')
plt.xlabel('FUEL_COM_COMB')
plt.ylabel('CO2_EMISSIONS')
plt.show()
```



```
In [41]: plt.scatter(cdf.ENGINESIZE, cdf.CO2_EMISSIONS ,color = 'blue')
    plt.xlabel('ENGINESIZE')
    plt.ylabel('CO2_EMISSIONS')
    plt.show()
```



```
In [42]: plt.scatter(cdf.CYLINDERS, cdf.CO2_EMISSIONS ,color = 'blue')
plt.xlabel('CYLINDERS')
plt.ylabel('CO2_EMISSIONS')
plt.show()
```



```
In [44]: msk = np.random.rand(len(df)) < 0.8
    train = cdf[msk]
    test = cdf[~msk]</pre>
```

```
In [45]: plt.scatter(train.ENGINESIZE, train.CO2_EMISSIONS, color='blue')
    plt.xlabel("Engine size")
    plt.ylabel("Emission")
    plt.show()
```


Text(0, 0.5, 'Emission')

Out[50]:

```
In [48]: from sklearn import linear_model
    reg = linear_model.LinearRegression()
    train_x = np.asanyarray(train[['ENGINESIZE']])
    train_y = np.asanyarray(train[['CO2_EMISSIONS']])
    reg.fit(train_x,train_y)
    print('Coefficients:', reg.coef_)
    print('Intercept:', reg.intercept_)

Coefficients: [[38.44579138]]
    Intercept: [136.80469491]

In [50]: plt.scatter(train_ENGINESIZE, train_CO2_EMISSIONS, color='blue')
    plt.plot(train_x, reg.coef_[0][0]*train_x + reg.intercept_[0], '-r')
    plt.xlabel("Engine size")
    plt.ylabel("Emission")
```



```
from sklearn.metrics import r2_score
In [54]:
         test_x = np.asanyarray(test[['ENGINESIZE']])
         test_y = np.asanyarray(test[['CO2_EMISSIONS']])
         test_y_ = reg.predict(test_x)
         print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
         print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
         print("R2-score: %.2f" % r2_score(test_y , test_y_))
         Mean absolute error: 27.83
         Residual sum of squares (MSE): 1307.99
         R2-score: 0.66
         train_x = np.asanyarray(train[['FUEL_COM_COMB']])
In [55]:
         train_y = np.asanyarray(train[['CO2_EMISSIONS']])
         reg.fit(train_x, train_y)
         print('Coefficients:', reg.coef_)
         print('Intercept:', reg.intercept_)
         Coefficients: [[22.09494781]]
         Intercept: [14.3423615]
         plt.scatter(train.FUEL_COM_COMB, train.CO2_EMISSIONS, color='blue')
In [56]:
         plt.plot(train_x, req.coef_[0][0]*train_x + req.intercept_[0], '-r')
         plt.xlabel("FUEL_COM_COMB")
         plt.ylabel("Emission")
         Text(0, 0.5, 'Emission')
Out[56]:
```



```
In [58]: from sklearn.metrics import r2_score

test_x = np.asanyarray(test[['FUEL_COM_COMB']])
test_y = np.asanyarray(test[['CO2_EMISSIONS']])
test_y = reg.predict(test_x)

print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
print("R2-score: %.2f" % r2_score(test_y , test_y_))

Mean absolute error: 6.64
Residual sum of squares (MSE): 351.86
R2-score: 0.91
In []:
```