Supplementary Table 1: Effects of Gene-deficiency on Tfh cell formation

	Gene/Protein	Effect of ko/mutation on Tfh cells	Comment/potential or actual mechanism	References
Cytokines	IL-6	mild/moderate decrease no effect	 variable results probably reflects different immunisations and infections (eg acute vs chronic LCMV; influenza) combined deficiency of IL-6 and IL-21 reduced Tfh numbers in vivo, consistent with 	1-6
	IL-21, IL-21R	mild decrease no effect	their ability to induce Bcl-6 and c-Maf	1,3-5,7-11
	IL-27Ra	decreased	induces c-Maf, ICOS, IL-21 promotes Tfh cell survival	12,13
	IL-2	• increased	induces Blimp-1 which suppresses Tfh commitment	14,15
	IL-10/IL-10R	• increased	• IL-10 suppresses Tfh formation directly by acting on naïve CD4 ⁺ T cells but also indirectly by suppressing production of cytokines (IL-6, IL-23) by DC that may promote Tfh formation. Molecular mechanism of inhibitory action of IL-10 is unknown.	16-18
Signalling	SH2D1A (SAP)	decreased/non- funcitonal	 requirement for SAP in Tfh cell can be overcome by providing excess Ag to circumvent the dependency on B cells as the primary APC however SAP-deficient Tfh cells are still unable to "help" cognate B cells due to an inability to form stable T-B conjugates mutations in SH2D1A results in impaired Ab production in humans due to a CD4⁺ T cell intrinsic defect 	19-24
	STAT1	transient decrease	• functions downstream of IL-6 receptors; greater defect in Tfh formation when naïve CD4+ T cells lack both STAT1 and STAT3	6
	STAT3	decreased	 role of STAT3 probably accounts for redundancy in the effects of IL-6 or IL-21 deficiency on Tfh formation mutations in STAT3 results in a deficiency in production of Ag-specific Ab, memory B cells and circulating CD4⁺CXCR5⁺ T cells in humans; STAT3 probably acts downstream of IL-6, IL-21 as well as IL-12 in human CD4+ T cells to induce Tfh cells 	1,25,26
	STAT4	transient decrease	IL-12/STAT4 signalling induced T-bet which suppresses Bcl-6 function	27
	STAT5	• increased	directly binds Bcl6 to inhibit expression activated by IL-2, which induces Blimp-1 to suppress Tfh commitment	14
	NIK (NFkB inducible kinase)	decreased	NIK-dependent signaling downstream of BAFF-R on B cells is required for constitutive expression of ICOS-L on these cells, which is required for Tfh formation	28
	Roquin	increased	mutation in san roqin gene causes severe lupus-like disease due to aberrant Tfh accumulation and subsequent formation of GCs and autoAb production	29
Transcription factors	Bcl-6	• absent	 required for Tfh formation inhibits expression/function of T-bet, Gata3, RORγt and generaton of Th1/2/17 cells suppresses expression of clusters of miRNAs that inhibit Tfh formation considered the "master regulator" of Tfh cells, but likely to require actions of other transcription factors to induce Tfh cells 	4,30-32

Page 1 of 4

	c-Maf	• decreased	• induces expression of IL-21, ICOS	13,33-35
			• co-operates with Bcl-6 to induce/enhance expression of some key features of Tfh cells	
	BATF	• absent	 functions by inducing Bcl-6 and c-Maf additional BATF-targets also likely to be involved in Tfh formation 	36,37
	IRF4	decreased/absent	• co-operates with STAT3 to mediate IL-21-induce gene expression in CD4 [†] T cells, however its exact role in Tfh cells remains unknown	38
	PRDM1 (Blimp1)	• increased	Blimp-1 restricts Tfh formation by antagonising Bcl-6 function	30
	Tbx21 (T-bet)	• increased	T-bet suppresses Bcl-6 function	27,39
Surface receptors	CD40/CD40L ICOS/ICOS-L	decreased/absent decreased/absent	 mutations in CD40L or ICOS result in impaired Ab production, memory B cell formation and reduced circulating CD4⁺CXCR5⁺ T cells in humans due to a CD4+ T cell intrinsic defect in the ability to form GC ICOS signalling can also induce c-Maf and IL-21 (although it is unknown whether ICOS directly induces IL-21 or indirectly by inducing c-Maf) 	40-42
	CD28 CD80 CD86	decreased/absent minimal/no effect decreased/absent	• Tfh deficiency in CD28 ko phenocopied by CD86, but not CD80, deficiency; CD86 dominant over CD80 for Tfh formation. CD80 may have role in Tfh formation, but it is modest	41,43,44
	CD84	decreased/no effect	• Tfh cells were reduced in <i>Cd84</i> ^{-/-} mice in response to immunization with protein Ag, but was less severe than SAP deficiency; however there was no defect in Tfh formation following viral infection. Thus additional SLAM receptors are also involved in SAP-dependent development of Tfh cells	21,45
	Ly108	no effect of single gene knockout	• although Ly108 deficiency had no effect on Tfh formation, the absence of both Ly108 and SAP restored the Tfh defect observed in SAP-deficient mice. This revealed the ability of Ly108 to deliver inhibitory signals via SHP-1 which countered the positive signals delivered through other receptors (including SLAM family/SAP-associating receptors) on Tfh formation	45
	OX40/OX40L	decreased/ no effect	OX40 signalling is required for induction of CXCR5 expression on activated CD4 ⁺ T cells and their subsequent relocation from the T zone to the B-cell follicle OX40 expression on CD4 ⁺ T cells depends on CD28 signalling, while OX40L expression on DCs requires engagement of CD40; this places OX40/OX40L interactions downstream of CD28/B7 and CD40L/CD40 interactions between CD4+ T cells and APCs	41,46-49
	TACI	increased	BAFF and APRIL-mediated signals through TACI function to intrinsically suppress ICOS-L expression on B cells	50
	PD-1	• increased	 PD-1 negatively regulates Tfh formation; PD-L1 on B cells is the predominant ligand providing the inhibitory signal to constrain Tfh development via PD-1 depending on the experimental model, the increase in Tfh cells in the absence of PD-1 signalling can result in either enhanced or diminished GC and Ab responses PD-1 may preferentially suppress formation of follicular Treg, rather than Tfh, cells 	51-55

Page 2 of 4

References cited

- Nurieva, R. I. *et al.* Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. *Immunity* **29**, 138-149, (2008).
- 2 Harker, J. A., Lewis, G. M., Mack, L. & Zuniga, E. I. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. *Science* **334**, 825-829, (2011).
- 3 Eto, D. *et al.* IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. *PLoS One* **6**, e17739, (2011).
- 4 Poholek, A. C. et al. In vivo regulation of Bcl6 and T follicular helper cell development. J Immunol 185, 313-326, (2010).
- 5 Karnowski, A. *et al.* B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. *J Exp Med* **209**, 2049-2064, (2012).
- 6 Choi, Y. S., Eto, D., Yang, J. A., Lao, C. & Crotty, S. Cutting Edge: STAT1 Is Required for IL-6-Mediated Bcl6 Induction for Early Follicular Helper Cell Differentiation. *J Immunol*, (2013).
- The Linterman, M. A. et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J Exp Med 207, 353-363, (2010).
- Vogelzang, A. et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. *Immunity* 29, 127-137, (2008).
- 9 Bessa, J., Kopf, M. & Bachmann, M. F. Cutting edge: IL-21 and TLR signaling regulate germinal center responses in a B cell-intrinsic manner. *J Immunol* 184, 4615-4619, (2010).
- 10 Rankin, A. L. *et al.* IL-21 receptor is critical for the development of memory B cell responses. *J Immunol* **186**, 667-674, (2011).
- 11 King, I. L., Mohrs, K. & Mohrs, M. A nonredundant role for IL-21 receptor signaling in plasma cell differentiation and protective type 2 immunity against gastrointestinal helminth infection. *J Immunol* **185**, 6138-6145, (2010).
- Batten, M. et al. IL-27 supports germinal center function by enhancing IL-21 production and the function of T follicular helper cells. J Exp Med 207, 2895-2906, (2010).
- Pot, C. *et al.* Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. *J Immunol* **183**, 797-801, (2009).
- Johnston, R. J., Choi, Y. S., Diamond, J. A., Yang, J. A. & Crotty, S. STAT5 is a potent negative regulator of TFH cell differentiation. J Exp Med 209, 243-250, (2012).
- 15 Ballesteros-Tato, A. *et al.* Interleukin-2 Inhibits Germinal Center Formation by Limiting T Follicular Helper Cell Differentiation. *Immunity*, (2012).
- Cai, G. *et al.* A regulatory role for IL-10 receptor signaling in development and B cell help of T follicular helper cells in mice. *J Immunol* **189**, 1294-1302, (2012).
- 17 Chacon-Salinas, R., Limon-Flores, A. Y., Chavez-Blanco, A. D., Gonzalez-Estrada, A. & Ullrich, S. E. Mast cell-derived IL-10 suppresses germinal center formation by affecting T follicular helper cell function. *J Immunol* **186**, 25-31, (2011).
- Wu, H. Y., Quintana, F. J. & Weiner, H. L. Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+ CD25- LAP+ regulatory T cell and is associated with down-regulation of IL-17+ CD4+ ICOS+ CXCR5+ follicular helper T cells. *J Immunol* 181, 6038-6050, (2008).
- Linterman, M. A. *et al.* Follicular helper T cells are required for systemic autoimmunity. *J Exp Med* **206**, 561-576, (2009).
- Deenick, E. K. *et al.* Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. *Immunity* **33**, 241-253, (2010).
- 21 Cannons, J. L. *et al.* Optimal germinal center responses require a multistage T cell:B cell adhesion process involving integrins, SLAM-associated protein, and CD84. *Immunity* **32**, 253-265, (2010).
- 22 Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L. & Germain, R. N. SAP-controlled T-B cell interactions underlie germinal centre formation. *Nature* **455**, 764-769, (2008).
- Yusuf, I. et al. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). *J Immunol* **185**, 190-202, (2010).

- Ma, C. S. *et al.* Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells. *J Clin Invest* **115**, 1049-1059, (2005).
- Lu, K. T. *et al.* Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitrogenerated and in vivo-derived follicular T helper cells. *Immunity* **35**, 622-632, (2011).
- Ma, C. S. *et al.* Functional STAT3 deficiency compromises the generation of human T follicular helper cells. *Blood* **119**, 3997-4008, (2012).
- Nakayamada, S. et al. Early Th1 cell differentiation is marked by a Tfh cell-like transition. *Immunity* **35**, 919-931, (2011).
- 28 Hu, H. et al. Noncanonical NF-{kappa}B regulates inducible costimulator (ICOS) ligand expression and T follicular helper cell development. Proc Natl Acad Sci U S A 108, 12827-12832, (2011).
- Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452-458, (2005).
- 30 Johnston, R. J. *et al.* Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. *Science* **325**, 1006-1010, (2009).
- Yu, D. *et al.* The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. *Immunity* **31**, 457-468, (2009).
- 32 Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001-1005, (2009).
- Bauquet, A. T. *et al.* The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. *Nat Immunol* **10**, 167-175, (2009).
- Hiramatsu, Y. *et al.* c-Maf activates the promoter and enhancer of the IL-21 gene, and TGF-beta inhibits c-Mafinduced IL-21 production in CD4+ T cells. *J Leukoc Biol* **87**, 703-712, (2010).
- Kroenke, M. A. *et al.* Bcl6 and maf cooperate to instruct human follicular helper CD4 T cell differentiation. *J Immunol* **188**, 3734-3744, (2012).
- 36 Ise, W. *et al.* The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. *Nat Immunol* **12**, 536-543, (2011).
- Betz, B. C. et al. Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. *J Exp Med* **207**, 933-942, (2010).
- Kwon, H. *et al.* Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. *Immunity* **31**, 941-952, (2009).
- Oestreich, K. J., Mohn, S. E. & Weinmann, A. S. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. *Nat Immunol* doi:10.1038/ni.2242, (2012).
- 40 Bossaller, L. *et al.* ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. *J Immunol* **177**, 4927-4932, (2006).
- Akiba, H. *et al.* The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. *J Immunol* **175**, 2340-2348. (2005).
- Fillatreau, S. & Gray, D. T cell accumulation in B cell follicles is regulated by dendritic cells and is independent of B cell activation. *J Exp Med* **197**, 195-206, (2003).
- 43 Salek-Ardakani, S. et al. B cell-specific expression of B7-2 is required for follicular Th cell function in response to vaccinia virus. *J Immunol* **186**, 5294-5303, (2011).
- Good-Jacobson, K. L., Song, E., Anderson, S., Sharpe, A. H. & Shlomchik, M. J. CD80 expression on B cells regulates murine T follicular helper development, germinal center B cell survival, and plasma cell generation. *J Immunol* **188**, 4217-4225, (2012).
- Kageyama, R. *et al.* The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. *Immunity* **36**, 986-1002, (2012).
- 46 Flynn, S., Toellner, K. M., Raykundalia, C., Goodall, M. & Lane, P. CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. *J Exp Med* **188**, 297-304, (1998).
- Walker, L. S. *et al.* Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. *J Exp Med* **190**, 1115-1122, (1999).

- Brocker, T. *et al.* CD4 T cell traffic control: in vivo evidence that ligation of OX40 on CD4 T cells by OX40-ligand expressed on dendritic cells leads to the accumulation of CD4 T cells in B follicles. *Eur J Immunol* **29**, 1610-1616, (1999).
- 49 Boettler, T. et al. OX40 Facilitates Control of a Persistent Virus Infection. PLoS Pathog 8, e1002913, (2012).
- 50 Ou, X., Xu, S. & Lam, K. P. Deficiency in TNFRSF13B (TACI) expands T-follicular helper and germinal center B cells via increased ICOS-ligand expression but impairs plasma cell survival. *Proc Natl Acad Sci U S A* **109**, 15401-15406, (2012).
- Good-Jacobson, K. L. *et al.* PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. *Nat Immunol* **11**, 535-542, (2010).
- 52 Hamel, K. M. *et al.* B7-H1 expression on non-B and non-T cells promotes distinct effects on T- and B-cell responses in autoimmune arthritis. *Eur J Immunol* **40**, 3117-3127, (2010).
- Hams, E. *et al.* Blockade of B7-H1 (programmed death ligand 1) enhances humoral immunity by positively regulating the generation of T follicular helper cells. *J Immunol* **186**, 5648-5655, (2011).
- Kawamoto, S. *et al.* The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. *Science* **336**, 485-489, (2012).
- Sage, P. T., Francisco, L. M., Carman, C. V. & Sharpe, A. H. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. *Nat Immunol*, (2012).

NATURE REVIEWS | IMMUNOLOGY www.nature.com/reviews/immunol