Assignment 8 Papoulis Chapter 2 Question 18

Vedant Bhandare (cs21btech11007)

May 2022

1/8

Outline

- Question
- Random Variable Definition
- Solution
- Graphs

Question

Ten passengers get into a train that has three cars. Assuming a random placement of passengers, what is the probability that the first car will contain three of them?

Random Variable Definition

Random Variable X	Event
X = 0	0 people in Car 1
X = 1	1 people in Car 1
X = 2	2 people in Car 1
X = 3	3 people in Car 1
X = 4	4 people in Car 1
X = 5	5 people in Car 1
X = 6	6 people in Car 1
X = 7	7 people in Car 1
X = 8	8 people in Car 1
X = 9	9 people in Car 1
X = 10	10 people in Car 1

Table 2: Random Variables

Solution

Binomial Distribution

$$Pr(X=i) = {10 \choose i} \times p^i \times (1-p)^{10-i}$$
 (1)

where *i* denotes the number of people in Car 1. The values for *i* can be substituted in the above formula, and the graph of the PMF can be obtained.

p (probability of people choosing Car 1) =
$$\frac{1}{3}$$
 (2)

Solution

For three people in Car 1,

$$Pr(X=3)$$

$$Pr(X=3) = {10 \choose 3} \times \left(\frac{1}{3}\right)^3 \times \left(\frac{2}{3}\right)^7 \tag{3}$$

$$Pr(X=3) = 0.26$$
 (4)

PMF Graph

Figure 2: Probability Mass Function

CDF Graph

Figure 2: Cumulative Distributive Function

