GIỚI THIỆU MỘT SỐ THỦ THUẬT CƠ BẢN LÀM NHANH TRẮC NGHIỆM MÔN TOÁN

Một số công thức tính nhanh " thường gặp " liên quan cực trị hàm số $y = ax^4 + bx^2 + c$

$$A(0;c), B\left(-\sqrt{-\frac{b}{2a}}; -\frac{\Delta}{4a}\right), C\left(\sqrt{-\frac{b}{2a}}; -\frac{\Delta}{4a}\right) \Rightarrow AB = AC = \sqrt{\frac{b^4}{16a^2} - \frac{b}{2a}}, BC = 2\sqrt{-\frac{b}{2a}} \text{ v\'oi } \Delta = b^2 - 4ac$$

Gọi
$$\widehat{BAC} = \alpha$$
, ta luôn có: $8a(1 + \cos\alpha) + b^3(1 - \cos\alpha) = 0 \Rightarrow \cos\alpha = \frac{b^3 + 8a}{b^3 - 8a}$ và $S = \frac{1}{4} \cdot \frac{b^2}{|a|} \sqrt{-\frac{b}{2a}}$

Phương trình đường tròn đi qua $A, B, C: x^2 + y^2 - (c+n)x + c.n = 0$, với $n = \frac{2}{b} - \frac{\Delta}{4a}$

1 cực trị: $ab \ge 0$		3 cực trị: ab < 0		
a > 0: 1 cực tiểu	<i>a</i> < 0 : 1 cực đại	a > 0: 1 cực đại, 2 cực tiểu	a < 0: 2 cực đại, 1 cực tiểu	

Hàm số $y = ax^4 + bx^2 + c$ có 3 cực trị $A \in Oy, B, C$ tạo thành:

DỮ KIỆN	CÔNG THỨC	VÍ DU
Tam giác	$8a + b^3 = 0$	m ? để hàm số $y = x^4 + (m + 2015)x^2 + 5$ có 3 cực trị tạo thành tam giác vuông
vuông cân		cân. $V \acute{o}i \ a = 1, b = m + 2015$. $T \grave{v} \ 8a + b^3 = 0 \Rightarrow b^3 = -8 \Rightarrow m = -2017$
Tam giác đều	$24a + b^3 = 0$	m ? để hàm số $y = \frac{9}{8}x^4 + 3(m-2017)x^2$ có 3 cực trị tạo thành tam giác đều.
		Với $a = 9 / 8, b = 3(m - 2017)$. Từ $24a + b^3 = 0 \Rightarrow b^3 = -27 \Rightarrow m = 2016$
$\widehat{BAC} = \alpha$	$8a + b^3 \cdot \tan^2 \frac{\alpha}{2} = 0$	m ? để hàm số $y = 3x^4 + (m-7)x^2$ có 3 cực trị tạo thành tam giác có một góc
	Z	120°. $V \acute{o}i \ a = 3, b = m - 7$. $T \grave{u} \ 8a + 3b^3 = 0 \Rightarrow b = -2 \Rightarrow m = 5$
$S_{\Delta ABC} = S_0$	$32a^3(S_0)^2 + b^5 = 0$	m ? để hàm số $y = mx^4 + 2x^2 + m - 2$ có 3 cực trị tạo thành tam giác có diện tích
		bằng 1. $V \acute{o}i \ a = m, b = 2$. Từ $32a^3(S_0)^2 + b^5 = 0 \Rightarrow m^3 + 1 = 0 \Rightarrow m = -1$
$max(S_0)$	$s = b^5$	m ? để hàm số $y = x^4 - 2(1 - m^2)x^2 + m + 1$ có 3 cực trị tạo thành tam giác có
	$S_0 = \sqrt{-\frac{b^5}{32a^3}}$	diện tích lớn nhất. $Với~a=1, b=-2(1-m^2)$. Từ $S_0=\sqrt{(1-m^2)^5}\leq 1\Rightarrow m=0$
$r_{\Delta ABC} = r_0$	$r_0 = \frac{b^2}{ a \left(1 + \sqrt{1 - \frac{b^3}{a}}\right)}$	m ? để hàm số $y = x^4 - mx^2 + \frac{3}{2}$ có 3 cực trị tạo thành tam giác có bán kính
	$ a \left(1+\sqrt{1-\frac{b}{a}}\right)$	đường tròn nội tiếp bằng 1. Với $a=1/2, b=-m$. Từ $r_0 \Rightarrow m=2$
$BC = m_0$	$am_0^2 + 2b = 0$	m ? để hàm số $y = m^2 x^4 - mx^2 + 1 - m$ có 3 cực trị mà trong đó có $BC = \sqrt{2}$
		$V\acute{o}i \ a=m^2, b=-m$. Từ $am_0^2+2b=0 \Rightarrow m=1$ vì $m>0$
$AB = AC = n_0$	$16a^2n_0^2 - b^4 + 8b = 0$	m ? để hàm số $y = mx^4 - x^2 + m$ có 3 cực trị mà trong đó có $AC = 0.25$
		Với $a = m, b = -1$. Từ $16a^2n_0^2 - b^4 + 8b = 0 \Rightarrow m = 3 \text{ do } m > 0$
$B,C \in Ox$	$b^2 - 4ac = 0$	m ? để hàm số $y = x^4 - mx^2 + 1$ có 3 cực trị tạo thành tam giác có $B, C \in Ox$
		Với $a = 1, b = -m, c = 1$. Từ $b^2 - 4ac = 0 \Rightarrow m = 2$ do $m > 0$
Tam giác cân tại <i>A</i>	Phương trình qua điểm cực trị:	$BC: y = -\frac{\Delta}{4a} \text{ và } AB, AC: y = \pm \left(\sqrt{\frac{-b}{2a}}\right)^3 x + c$
Tam giác có	$8a+b^3>0$	m ? để hàm số $y = -x^4 - (m^2 - 6)x^2 + m + 2$ có 3 cực trị tạo thành tam giác có
3 góc nhọn		3 góc đều nhọn $Với~a=-1, b=-(m^2-6)$. Từ $8a+b^3>0 \Rightarrow b>2 \Rightarrow -2 < m < 2$
Tam giác có	$b^2 - 6ac = 0$	m ? để hàm số $y = x^4 + mx^2 - m$ có 3 cực trị tạo thành tam giác nhận gốc tọa độ
tr. tâm <i>O</i>		<i>O</i> làm trọng tâm. Với $a=1,b=m,c=-m$. Từ $b^2-6ac=0 \Rightarrow m=-6$ do $m<0$
Tam giác có	$b^3 + 8a - 4ac = 0$	m ? để hàm số $y = x^4 + mx^2 + m + 2$ có 3 cực trị tạo thành tam giác có trực tâm
trực tâm <i>O</i>		O. $V \acute{o}i \ a = 1, b = m, c = m + 2$. $T i \acute{v} \ b^3 + 8a - 4ac = 0 \Rightarrow m = -2 \ do \ m < 0$

Thủ Thuật Giải Nhanh Trắc Nghiệm Toán

$R_{\Delta ABC}=R_0$	$R_0 = \frac{b^3 - 8a}{8 a b}$	m ? để hàm số $y = mx^4 + x^2 + 2m - 1$ có 3 cực trị tạo thành tam giác nội tiếp trong đường tròn có bán kính $R = 9/8$ $Với \ a = m, b = 1. \ Từ \ R_0 = \frac{b^3 - 8a}{8 a b} \Rightarrow m = -1 \ do \ m < 0$
m ·/	12 0 0	
Tam giác	$b^2 - 2ac = 0$	m ? để hàm số $y = 2x^4 + mx^2 + 4$ có 3 cực trị cùng gốc tọa độ O lập thành hình
cùng <i>O</i> tạo		thoi.
hình thoi		Với $a = 2, b = m, c = 4$. Từ $b^2 - 2ac = 0 \Rightarrow m = -4 \text{ do } m < 0$
Tam giác,	$b^3 - 8a - 4abc = 0$	m ? để hàm số $y = mx^4 + 2x^2 - 2$ có 3 cực trị lập tam giác có O là tâm đường
tâm <i>O</i> nội		tròn nội tiếp.
tiếp		$V\acute{o}i \ a = m, b = 2, c = -2 \ . \ Tiv \ b^3 - 8a - 4abc = 0 \Rightarrow m = -1 \ do \ m < 0$
Tam giác,	$b^3 - 8a - 8abc = 0$	m ? để hàm số $y = -mx^4 + x^2 - 2m - 1$ có 3 cực trị lập tam giác có O là tâm
tâm <i>O</i>		đường tròn ngoại tiếp.
ngọai tiếp		Với $a = -m, b = 1, c = -2m - 1$. Từ $b^3 - 8a - 8abc = 0 \Rightarrow m = 0,25$ do $m > 0$

Hàm số $y = ax^4 + 2bx^2 + c$ có 3 cực trị $A \in Oy, B, C$ tạo thành:

DỮ KIỆN	CÔNG THỨC	VÍ DŲ		
Tam giác	$a+b^3=0$	m ? để hàm số $y = x^4 + 2(m + 2016)x^2 + 2016m - 2017$ có 3 cực trị tạo thành tam		
vuông cân		giác vuông cân. $V \acute{o}i \ a=1, b=m+2016$. Từ $a+b^3=0 \Rightarrow b=-1 \Rightarrow m=-2017$		
tại A				
Tam giác	$3a+b^3=0$	m ? để hàm số $y = 9x^4 + 2(m - 2020)x^2 + 2017m + 2016$ có 3 cực trị tạo thành		
đều		tam giác đều. $V \acute{o}i \ a=9, b=m-2020$. Từ $3a+b^3=0 \Rightarrow b=-3 \Rightarrow m=2017$		
$\widehat{BAC} = \alpha$	$a+b^3$. $\tan^2\frac{\alpha}{2}=0$	m ? để hàm số $y = 3x^4 + 2(m - 2018)x^2 + 2017$ có 3 cực trị tạo thành tam giác có		
	$u + v \cdot tan = 0$	một góc 120°.		
		$V\acute{o}i \ a = 3, b = m - 2018$. $T\grave{u} \ a + b^3$. $tan^2 60^0 = 0 \Rightarrow b = -1 \Rightarrow m = 2017$		
$S_{\Delta ABC} = S_0$	$a^3(S_0)^2 + b^5 = 0$	m ? để hàm số $y = mx^4 + 4x^2 + 2017m - 2016$ có 3 cực trị tạo thành tam giác có		
		diện tích bằng $4\sqrt{2}$. $Với~a=m,b=2$. $Từ~a^3(S_0)^2+b^5=0 \Rightarrow m=-1$		
$R_{\Delta ABC} = R_0$	$R_0 = \frac{1}{2 a } \left(b^2 - \frac{a}{b} \right)$	m ? để hàm số $y = mx^4 - 2x^2 + 2017m^3 - 2016$ có 3 cực trị tạo thành tam giác có		
	$A_0 = 2 a \begin{pmatrix} b \\ b \end{pmatrix}$	bán kính ngoại tiếp bằng 1. Với $a=m, b=-1$. Từ $R_0=\frac{1}{2 a }\left(b^2-\frac{a}{b}\right)\Rightarrow m=1$		
$r_{\Delta ABC} = r_0$	b^2	m ? để hàm số $y = x^4 + 2(m+5)x^2 + 2016m^3 + 2017$ có 3 cực trị tạo thành tam		
$r_{\Delta ABC} = r_0$ $r_0 = \frac{b^2}{ a \left(1 + \sqrt{1 - \frac{b^3}{a}}\right)}$		giác có bán kính nội tiếp bằng 1.		
	$ a \left(1 + \sqrt{1 - \frac{a}{a}}\right)$	$V\acute{o}i \ a = 1, b = m + 5, r_0 = 1 \Rightarrow b \in \{-2, 1\} \Rightarrow m = -7 \lor m = -4$		

Tiệm cận: Tổng khoảng cách từ điểm M trên đồ thị hàm số $y = \frac{ax+b}{cx+d}$ đến 2 tiệm cận đạt $\min d = 2\sqrt{\left|\frac{ad-bc}{c^2}\right|}$

Tương giao: Giả sử d: y = kx + m cắt đồ thị hàm số $y = \frac{ax + b}{cx + d}$ tại 2 điểm phân biệt M, N.

Với $kx + m = \frac{ax + b}{cx + d}$ cho ta phương trình có dạng: $Ax^2 + Bx + C = 0$ thỏa điều kiện $cx + d \neq 0$, có $\Delta = B^2 - 4AC$

$$MN = \sqrt{\frac{k^2 + 1}{A^2}} \Delta, MN \text{ ngắn nhất}$$

$$\Delta OMN \text{ cân tại } O$$

$$(x_1 + x_2)(1 + k^2) + 2km = 0$$

$$\Delta OMN \text{ vuông tại } O$$

$$(x_1, x_2)(1 + k^2) + (x_1 + x_2)km + m^2 = 0$$

$$\Delta OMN \text{ cân tại } O$$

$$(x_1 + x_2)(1 + k^2) + 2km = 0$$

$$\Delta OMN$$
 vuong tại O
 $(x_1.x_2)(1+k^2)+(x_1+x_2)km+m^2=0$

khi tồn tại $\min \Delta, k = const$

Khối đa diện: loại $\{n, p\}$ có D đỉnh, C cạnh, M mặt thì nM = p.D = 2.C hoặc Euler: D + M = 2 + C

Khối đa diện đều	Số đỉnh	Số cạnh	Số mặt	Kí hiệu	Thể tích
Tứ diện đều	4	6	4	{3,3}	$V = (\sqrt{2}/12)a^3$
Khối lập phương	8	12	6	$\{4,3\}$	$V=a^3$
Khối bát diện đều	6	12	8	{3,4}	$V = (\sqrt{2} / 3)a^3$
Khối thập nhị diện (12) đều	20	30	12	{5,3}	$V = (15 + 7\sqrt{5})a^3 / 4$
Khối nhị thập diện (20) đều	12	30	20	{3,5}	$V = (15 + 5\sqrt{5})a^3 / 12$

Một số công thức tính nhanh " thường gặp " liên quan thể tích khối chóp

TÍNH CHẤT	HÌNH VỀ	VÍ DŲ
Cho hình chóp SABC với các mặt	A	Cho hình chóp SABC với các mặt phẳng
phẳng (SAB) , (SBC) , (SAC) vuông		(SAB),(SBC),(SAC) vuông góc với nhau từng đôi
góc với nhau từng đôi một, diện tích các tam giác SAB,SBC,SAC		một, diện tích các tam giác SAB , SBC , SAC lần lượt là $15cm^2$, $20cm^2$, $18cm^2$. Thể tích khối chóp là:
lần lượt là S_1, S_2, S_3 .		
Khi đó: $V_{S.ABC} = \frac{\sqrt{2S_1.S_2.S_3}}{3}$		A. $a^3\sqrt{20}$. B. $\frac{a^3\sqrt{20}}{3}$. C. $\frac{a^3\sqrt{20}}{2}$. D. $\frac{a^3\sqrt{20}}{6}$
Khi đo: $V_{S.ABC} = \frac{\sqrt{3}}{3}$	B	$V_{ABCD} = \frac{\sqrt{2S_1.S_2.S_3}}{3} = a^3\sqrt{20} \Rightarrow Chọn đáp án A.$
Cho hình chóp <i>S.ABC</i> có <i>SA</i> vuông góc với (<i>ABC</i>), hai mặt	s	Cho hình chóp $SABC$ có SA vuông góc với mặt phẳng (ABC) , hai mặt phẳng (SAB) và
phẳng (SAB) và (SBC) vuông góc		(SBC) vuông góc với nhau, $SB = a\sqrt{3}$, $\widehat{BSC} = 45^{\circ}$,
với nhau, $\widehat{BSC} = \alpha$, $\widehat{ASB} = \beta$.		$\widehat{ASB} = 30^{\circ}$. Thể tích khối chóp $SABC$ là:
Khi đó: $V_{S.ABC} = \frac{SB^3 \cdot \sin 2\alpha \cdot \tan \beta}{12}$	$A \longrightarrow C$	A. $\frac{3a^3}{8}$. B. $\frac{a^3\sqrt{6}}{8}$. C. $\frac{a^3\sqrt{2}}{2}$. D. $\frac{a^3\sqrt{3}}{6}$.
	B	$V_{S.ABC} = \frac{SB^3.\sin 2\alpha.\tan \beta}{12} = \frac{3a^3}{8} \Rightarrow $ Chọn đáp án A.
Cho hình chóp đều S.ABC có đáy ABC là tam giác đều cạnh bằng a,	S	Cho hình chóp đều $S.ABC$ có đáy ABC là tam giác đều cạnh bằng a , cạnh bên bằng a . Thể tích khối
cạnh bên bằng b .		chóp $S.ABC$ là:
Khi đó: $V_{S.ABC} = \frac{a^2 \sqrt{3b^2 - a^2}}{12}$	A	A. $\frac{a^3\sqrt{3}}{24}$. B. $\frac{a^3\sqrt{2}}{12}$. C. $\frac{a^3\sqrt{2}}{24}$. D. $\frac{a^3\sqrt{3}}{12}$.
	G M	$a=b\Rightarrow V_{\scriptscriptstyle SABC}=rac{a^{3}\sqrt{2}}{12}\Rightarrow$ Chọn đáp án B.
Cho hình chóp tam giác đều S.ABC	S	Cho hình chóp tam giác đều S.ABC có cạnh đáy
có cạnh đáy bằng a và mặt bên tạo với mặt phẳng đáy góc α .		bằng a và mặt bên tạo với mặt phẳng đáy góc 60° . Thể tích khối chóp $S.ABC$ là :
Khi đó: $V_{S.ABC} = \frac{a^3 \tan \alpha}{24}$		A. $\frac{a^3\sqrt{3}}{48}$. B. $\frac{a^3}{24}$. C. $\frac{a^3\sqrt{3}}{24}$. D. $\frac{a^3}{12}$.
Riff uo. $V_{S.ABC} = \frac{1}{24}$	$A \leftarrow C$	40 24 24 12
	B	$V_{SABC} = \frac{a^3 \tan \alpha}{24} = \frac{a^3 \sqrt{3}}{24} \Rightarrow Chọn đáp án C.$
Cho hình chóp tam giác đều $S.ABC$ có các cạnh bên bằng b và cạnh bên	S	Cho hình chóp tam giác đều $S.ABC$ có các cạnh bên bằng 2 và cạnh bên tạo với mặt phẳng đáy góc 30° .
tạo với mặt phẳng đáy góc β .		Thể tích khối chóp <i>S.ABC</i> là :
Khi đó: $V_{S.ABC} = \frac{\sqrt{3}b^3 \cdot \sin \beta \cos^2 \beta}{4}$		A. $\frac{3\sqrt{3}}{4}$. B. $\frac{\sqrt{3}}{24}$. C. $\frac{3\sqrt{3}}{6}$. D. $\frac{3}{4}$.
$V_{S.ABC} = {4}$	$A \longrightarrow C$	
	B M	$V_{S.ABC} = \frac{\sqrt{3}b^3 \cdot \sin \beta \cos^2 \beta}{4} = \frac{3\sqrt{3}}{4} \Rightarrow Chọn đáp án A.$
Cho hình chóp tam giác đều S.ABC có các cạnh đáy bằng a,	S	Cho hình chóp tam giác đều $S.ABC$ có các cạnh đáy bằng a , mặt bên tạo với mặt phẳng đáy góc 30° .
cạnh bên tạo với mặt phẳng đáy		Thể tích khối chóp <i>S.ABC</i> là :
góc β .		A. $\frac{a^3}{48}$. B. $\frac{a^3}{24}$. C. $\frac{a^3\sqrt{3}}{24}$. D. $\frac{a^3\sqrt{3}}{36}$.
Khi đó: $V_{S.ABC} = \frac{a^3 \cdot \tan \beta}{12}$	A	10 24 24 30
12	G M	$V_{SABC} = \frac{a^3 \tan \beta}{12} = \frac{a^3 \sqrt{3}}{36}. \Rightarrow Chọn đáp án D.$
Cho hình chóp tứ giác đều	S	Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là
S.ABCD có đáy ABCD là hình vuông cạnh bằng a, và		hình vuông cạnh bằng a , và $SA = SB = SC = SD = a$. Thể tích khối chóp
SA = SB = SC = SD = b.		S.ABCD là:
Khi đó: $V_{S.ABC} = \frac{a^2 \sqrt{4b^2 - 2a^2}}{6}$	D. A	A. $\frac{a^3\sqrt{6}}{6}$. B. $\frac{a^3\sqrt{2}}{2}$. C. $\frac{a^3\sqrt{2}}{6}$. D. $\frac{a^3\sqrt{3}}{3}$.
	C B	⇒ Chọn đáp án C.

Thủ Thuật Giải Nhanh Trắc Nghiệm Toán

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt phẳng đáy

Khi đó:
$$V_{S.ABCD} = \frac{a^3 \cdot \tan \alpha}{6}$$

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, $\widehat{SAB} = \alpha$,

$$v\acute{o}i \alpha \in \left(\frac{\pi}{4}; \frac{\pi}{2}\right)$$

Khi đó:
$$V_{S.ABCD} = \frac{a^3 \sqrt{\tan^2 \alpha - 1}}{6}$$

Cho hình chóp tứ giác đều S.ABCD có các cạnh bên bằng a, góc tạo bởi mặt bên và mặt đáy là α với

$$\alpha \in \left[0; \frac{\pi}{2}\right].$$

Khi đó:
$$V_{S.ABCD} = \frac{4a^3 \cdot \tan \alpha}{3\sqrt{(2 + \tan^2 \alpha)^3}}$$

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Gọi (P) là mặt

phẳng đi qua A song song với BC và vuông góc với (SBC), góc giữa (P) với mặt phẳng đáy là α .

Khi đó:
$$V_{S.ABCD} = \frac{a^3 \cot \alpha}{24}$$

Khối tám mặt đều có đỉnh là tâm các mặt của hình lập phương cạnh

Khi đó:
$$V = \frac{a^3}{6}$$

Cho khối tám mặt đều canh a. Nối tâm của các mặt bên ta được khối lập phương.

Khi đó:
$$V = \frac{2a^3\sqrt{2}}{27}$$

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt phẳng đáy là 45°. Thể tích khối chóp S.ABCD là:

A.
$$\frac{a^3}{12}$$
.

B.
$$\frac{a^3\sqrt{3}}{6}$$
.

A.
$$\frac{a^3}{12}$$
. **B.** $\frac{a^3\sqrt{3}}{6}$. **C.** $\frac{a^3\sqrt{6}}{2}$. **D.** $\frac{a^3}{6}$.

D.
$$\frac{a^3}{6}$$

$$V_{SABCD} = \frac{a^3 \tan \alpha}{6} = \frac{a^3}{6} \Rightarrow Chọn đáp án D.$$

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, $\widehat{SAB} = 60^{\circ}$. Thể tích khối chóp S.ABCD là:

A.
$$\frac{a^3\sqrt{2}}{12}$$
. B. $\frac{a^3\sqrt{2}}{6}$. C. $\frac{a^3\sqrt{6}}{2}$. D. $\frac{a^3}{6}$.

B.
$$\frac{a^3\sqrt{2}}{6}$$

C.
$$\frac{a^3\sqrt{6}}{2}$$

D.
$$\frac{a^3}{6}$$
.

$$V_{\rm SABCD} = {a^3 \sqrt{\tan^2 \alpha - 1} \over 6} = {a^3 \sqrt{2} \over 6} \Rightarrow {\it Chon \ d\'{a}p \ \'{a}n \ B}.$$

Cho hình chóp tứ giác đều S.ABCD có các cạnh bên bằng 1, góc tạo bởi mặt bên và mặt đáy là 45°. Thể tích khối chóp S.ABCD là:

A.
$$\frac{4\sqrt{3}}{7}$$
. **B.** $\frac{4\sqrt{3}}{27}$. **C.** $\frac{\sqrt{3}}{2}$. **D.** $\frac{4}{27}$.

$$V_{S.ABCD} = \frac{4\sqrt{3}}{27} \Rightarrow Chọn đáp án B.$$

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Gọi (P) là mặt phẳng đi qua A song song

với BC và vuông góc với (SBC), góc giữa (P) với mặt phẳng đáy là 30°. Thể tích khối chóp S.ABC là:

A.
$$\frac{a^3\sqrt{3}}{24}$$
 B. $\frac{a^3\sqrt{3}}{8}$ **C.** $\frac{a^3}{8}$

B.
$$\frac{a^3\sqrt{3}}{8}$$

C.
$$\frac{a^3}{8}$$

D.
$$\frac{3a^3}{8}$$

$$V_{SABC} = \frac{a^3 \cot 30^0}{24} = \frac{a^3 \sqrt{3}}{24} \Rightarrow Chọn đáp án A$$

Khối tám mặt đều có đỉnh là tâm các mặt của hình lập phương cạnh a có thể tích là:

A.
$$\frac{a^3}{12}$$
.

B.
$$\frac{a^3 \sqrt{3}}{4}$$

C.
$$\frac{a^3}{6}$$

A.
$$\frac{a^3}{12}$$
. **B.** $\frac{a^3\sqrt{3}}{4}$. **C.** $\frac{a^3}{6}$. **D.** $\frac{a^3\sqrt{3}}{2}$.

⇒ Chọn đáp án C.

Cho khối tám mặt đều cạnh a. Nối tâm của các mặt bên ta được khối lập phương có thể tích bằng V. Tỷ

số $\frac{a^3}{V}$ gần nhất giá trị nào trong các giá trị sau?

A.	9,5.	

A. 9,5. B. 7,8. C. 15,6. D. 22,6.
$$V = \frac{2a^3\sqrt{2}}{27} \Rightarrow \frac{a^3}{V} = \frac{27\sqrt{2}}{4} \approx 9,5 \Rightarrow Chọn đáp án A.$$