Name:	Sign:
	8
School:	Reference No:

KAMOTA MOCK EXAMINATIONS 2023

UGANDA ADVANCED CERTIFICATE OF EDUCATION

Chemistry P525/3

Practical Examination

3 hours 15 minutes

INSTRUCTIONS

Answer **ALL** questions.

Record your answers in this paper in the spaces provided

Mathematical tables and silent non programmable calculators may be used

Candidates are not allowed to start interacting with the apparatus for the first 15 minutes. This time is to enable candidates to read the question paper and make sure they have the apparatus and chemicals they may need.

Qn.1(a). You are provided with FA2 which is solution made by dissolving 24.8g sodium thiosulphate, $Na_2S_2O_3.xH_2O$ in every dm^3 of solution. You are required to determine the value of x (water of crystallisation) in FA2.

You are required to prepare solution FA1 by mixing 3.1g of solid iodine with 3.9g of solid potassium iodide in a beaker, stir well and add drops of water, continue stirring then add 50cm³ of more water to make a solution. Transfer the solution to a 250cm³ volumetric flask and make the solution to the 250cm³ mark with water. Shake well to ensure uniformity, label it FA1.

Determining value of x in FA2

Mass of container/g	
Mass of container + iodine/g	
Mass of container after transferring iodine/g	
Mass of iodine transferred/g	

Mass of container/g	
Mass of container + potassium iodide /g	
Mass of container after transferring KI/g	
Mass of potassium iodide transferred/g	

Pipette 25.0 cm³ of FA2 to a clean flask, add two drops of starch indicator. Titrate the mixture with FA1 until the mixture just turns faintly blue in colour. Record your results in the table. Repeat the experiment to obtain consistent results.

Pipette = cm^3

Run	1	2	3
Final reading/cm ³			

Initid	al read	ling/cm ³				
Volu	me of	FA1 used/cm ³				
	the vo	olumes of FA1 to be used to ca	lculate the	average	,	,
Calo	culate;					
	i)	Mean volume of FA1 used.				
	ii)	Molarity of FA1 (I= 127)				
	• • • • • • •					
	• • • • • • •					
j	iii)	Moles of FA2 pipetted.				

iv)	Molarity of FA2. $(2S_2O_3^{2-}(aq) + I_2(aq) \longrightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq))$
 v)	Value of x. (Na =23, S=32, O=16, H=1)
 • • • • • • • •	

Q1b You are provided FA3 which is solution made by dissolving 2.45gl⁻¹ of chlorate of formula XClO₃ dissolved in 0.5M sulphuric acid as well as FA2 which you standardized in 1a) above.

Pipette 25.0 cm³ of FA2 to a clean flask; add 5cm³ of potassium iodide solution followed by two drops of starch indicator. Titrate the mixture with FA3 until the mixture just turns faintly blue in colour. Record your results in the table. Repeat the experiment to obtain consistent results.

Pipette = cm^3

Run	1	2	3
Final reading/cm ³			

Initial reading/cm ³		
Volume of FA3 used/cm ³		

List the	volumes of FA3 to be used to calculate the average,cm ³
Calculat	te;
i)	Mean volume of FA3 used.
ii)	Moles of FA2 used.
iii) Moles of Iodine liberated in mixture.
iv	Moles of FA3 in pipetted volume.
(6	$5I^{-}(aq) + ClO_{3}^{-}(aq) + 6H^{+}(aq)$ \longrightarrow $3I_{2}(aq) + Cl^{-}(aq) + 3H_{2}O(l))$
v)	Molarity of FA3.

vi)	The relative formula mass of chlorate used to prepare FA3 and relative atomic mass of X. ($Cl = 35.5$, $O = 16$).
anions. Per	a are provided with substance R which contains two cations and two rform the tests given below on R, record your observations and in the space provided. You must identify fully gas(es) evolved ly, if any.

Test	Observation	Deduction
1. Place little of R in a		
dry tube and heat strong		
until there is no further		
change.		
2. To two spatula ends		
full of R add drops of concentrated sulphuric		
acid, then warm the		
mixture.		
3. To little of R in a		
test tube add dil. NaOH		
drop by drop until in		
excess, shake well,		
then filter. Keep		
residue and filtrate. To		
the filtrate add dil.		
HNO ₃ solution drop by		
drop until in excess.		
Divide the filtrate in		
six parts.		
a) To the first add dil. NaOH drop by drop		
until in excess. The add		
limus solution.		
minus solution.		
b) To the second, add		
dil. NH ₃ drop by drop		
until in excess.		

c) To the third portion add dil. Na ₂ CO ₃ solution drp by drop until in excess.	
d) To the add dil. HCl drop by drop until in excess.	
e) To the fifth, drops of lead (II) nitrate solution. Heat to boiling.	
f) To the sixth part add drops of silver nitrate solution, then add dil. NH ₃ drop by drop until in excess.	
f) Use the sixth part to perform test of your choice to confirm another anion in filtrate.	
4) Transfer the residue to a clean tube. Wash with water, then add dil. HCl drop by drop until in excess. Divide the solution in three portions.	

i)To the 1 st add dil.NaOH drop by drop until in excess.	
ii)To the 2nd portion, add dil. NH ₃ drop by drop until in excess .	
iii)To the add a spatula end full of red lead oxide followed by drops of conc HNO ₃ .	

Cations = 1.

2.

Anions = 1.

2.

Q3 You are provided with substance S. Perform the tests given on S. Record your observations and deductions in the table.

Test	Observation	Deduction
1) Put little of S on spatula end and heat in a flame.		
2) To little of S in a test tube, add water and shake. Then add litmus.		

3) To little of S, add drops of bromine water.	
4) To little of S,	
add dilute FeCl ₃ solution drop by drop.	
5) To little of S in a tube add drop of potassium chromate solution then dil H ₂ SO ₄ and heat to boiling.	
6) To little of S in a tube add drops of 2,4dinitrophe ny l hydrazine solution then dil. H ₂ SO ₄	

7) To little of S	
add drops of	
2M NaOH	
followed by	
iodine	
solution drop	
by drop until	
in excess.	
Warm the	
mixture.	

Comment on nature of S.....

END