Sistemas Informáticos

TEMA 2

Estructuras de Sistemas Operativos

Estructura Monolítica

Estructura Jerárquica

Estructura en Anillos

Máquina Virtual

Estructuras Cliente-Servidor

Estructura monolítica

- Original de los primeros Sistemas Operativos
 - Un único programa compuesto de rutinas entrelazadas para que puedan ser llamadas entre ellas
- Estructura indefinida y niveles de funcionalidad sin separar
- Difícil configuración y actualización, sin protecciones ni privilegios
- Buena definición de parámetros de enlace entre rutinas
- Hechos a medida
 - Eficientes y rápidos
 - No muy flexibles para diferentes trabajos o tipos de aplicaciones

Estructura Jerárquica

- Mayor organización del software
 - Subpartes y niveles
- Pequeños módulos bien definidos
 - El módulo de cada nivel utiliza los servicios del nivel anterior
 - Mayor protección y acceso al sistema
 - Estructura de la mayoría de los SSOO actuales

Estructura en Anillos

- Es una evolución del anterior
- Anillos concéntricos o rings
 - Cada anillo tiene una apertura o trampa (trap) donde pueden entrar las llamadas de las capas inferiores
 - Las zonas más internas están más protegidas de accesos indeseados
 - Las capas más internas serán más privilegiadas de las externas

Máquina Virtual

Muestra una o varias máquinas que parecen idénticas a una máquina real

- Dos conceptos que suelen estar unidos en los Sistemas Operativos:
 - Máquina extendida
 - Hardware y núcleo del sistema operativo unido
 - Multiprogramación
 - Se ejecutan varios procesos en la misma memoria

Multiprogramación: el núcleo de las máquinas virtual se denomina monitor virtual y puede ejecutar varios **Sistemas Operativos**.

Máquinas extendidas: las máquinas virtuales **no son máquinas extendidas**, utilizan una réplica de la máquina real para ejecutar varios sistemas operativos, simulará varias **máquinas extendidas al usuario**

Máquina virtual vs SO

Estructura Cliente-Servidor

- Es el más reciente y se puede utilizar en la mayoría de computadoras
- Es altamente modular y los módulos del sistema no tienen acceso al Hardware
- Sirve para cualquier clase de aplicaciones
- El núcleo establece la comunicación entre los clientes y los servidores. Los procesos del SO pueden ser tanto servidores como clientes
 - a. El proceso solicita al núcleo un servicio
 - b. El núcleo recibe el mensaje, planifica y envía el mensaje al proceso servidor
 - c. El proceso servidor ejecuta la función y devuelve al núcleo el mensaje con el resultado
 - d. El núcleo reenvía en mensaje al proceso cliente indicando que el servicio se ha cumplido

Evolución histórica de los SSOO

Primera generación (1945-1955)

- No existían SSOO
- Se programaba directamente sobre el Hardware
 - En código máquina
 - El control se realizaba mediante paneles enchufables
- A finales de 1950 aparecen las tarjetas perforadas que sustituyen a los paneles enchufables
- Las tarjetas perforadas permiten codificar las instrucciones de programa y los datos en una cartulina
- Se automatiza la carga de programas ejecutables (origen de un SO)

Segunda generación (1955-1965)

- Aparecen los transistores
 - Ordenadores más pequeños y potentes
- Lenguajes Ensamblador y FORTRAN sobre tarjetas perforadas
- Comienza el procesamiento por lotes
 - Mientras se ejecuta un proceso, éste dispone de todos los recursos para terminar completamente
- El SO reside en memoria y tiene un programa de control para interpretar las tarjetas perforadas

Tercera generación (1965-1980)

- Aparecen los circuitos integrados
 - Menor tamaño y relación de precio/rendimiento
- Comienza la multiprogramación (ejecución de varios procesos en la misma memoria)
- Comienzan los sistemas compartidos (el tiempo del procesador se reparte entre los procesos cargados en memoria)
- Ejemplos:
 - o OS/360, MULTICS y UNIX

Cuarta generación (1980-hoy)

- Aparición del ordenador personal con SO como:
 - MS-DOS (Microsoft)
 - MacOS (Apple) con interfaz gráfica robada a Xerox
 - Más adelante Microsoft Windows
 - Linux durante los años 90, desarrollado por Linus Torvalds y basado en el sistema
 UNIX
- Avances principales
 - Desarrollo de redes de ordenadores con SSOO en red
 - Sistemas operativos integrados como teléfonos móviles, PDAs, tabletas, electrodomésticos, etc.

Clasificación de los SSOO

Por los servicios ofrecidos

Por la forma de ofrecer los servicios

Por su disponibilidad

Clasificación por los servicios ofrecidos

- Monousuario: soporta un usuario a la vez
- Multiusuario: da servicio de más de un usuario a la vez
- Monotarea: permite una tarea a la vez por usuario
- Multitarea: permite al usuario realizar varios trabajos al mismo tiempo
- Monoproceso: permite realizar un proceso solo, pero permite la multitarea realizando rotaciones de ejecución
- Multiproceso: permite realizar varios procesos y tareas al mismo tiempo

Clasificación por la forma de ofrecer servicios

- Centralizados: sistemas Mainframe con todo el procesamiento y terminales tontos
- Distribuidos: distribuyen trabajos o procesos entre un conjunto de procesadores (en el mismo o distinto equipo)
- SO en red: mantiene dos o más computadoras unidas para compartir recursos e información
- SO de escritorio: relativos a las estaciones de trabajo

Clasificación por su disponibilidad

- Propietarios: la propiedad intelectual es de alguna empresa
 - Se necesitan licencias para su uso
 - No hay acceso al código fuente
- Libres:
 - Libertad de usar el programa para cualquier propósito
 - Libertad de estudiar cómo funciona, modificarlo y adaptarlo
 - Libertad de distribuir copias del sistema
 - Libertad de mejorar y obligación de hacer públicos estos cambios
- No hay que asociar software libre a software gratuito, ya que conservando su carácter de ser libre puede distribuirse comercialmente

Tipos de Software

- Nivel 0 o Lógica digital: hardware real con impulsos eléctricos
- Nivel 1 o Microprogramación: comandos y protocolos de los circuitos integrados. Es la frontera entre hardware y software
- **Nivel 2 o Lenguaje máquina:** nivel accesible por el usuario. Instrucciones que forman un lenguaje directamente interpretable por el hardware. Organización de memoria, tipos de datos, etc
- Nivel 3 o Sistema Operativo: conjunto de programas que proporciona acceso y facilidades a los recursos del sistema. Entorno amigable de uso para el usuario
- **Nivel 4 o Lenguajes de alto nivel:** lenguajes de programación con alta abstracción respecto al hardware. Entorno amigable para la codificación de algoritmos
- Nivel 5 o Nivel de aplicación: el más alejado de la realidad física

Lenguajes de programación

- Instrucciones: órdenes que recibe la computadora
- Programa: conjunto de instrucciones y datos
- Lenguaje de programación: símbolos y reglas empleados para codificar las instrucciones de un programa

Tipos de aplicaciones

- Gestores de Bases de Datos
- Hojas de cálculo
- Procesadores de texto
- Correo electrónico
- Creador de presentaciones
- Diseño
- Tratamiento fotográfico

Existen paquetes que reúnen las aplicaciones ofimáticas principales para trabajar (Microsoft Office, LibreOffice, Lotus, etc)

Núcleo del Sistema Operativo

Gestión de los procesos

Gestión de la memoria

Gestión de Entrada y Salida Gestión del sistema de archivos

Gestión de procesos

- Un proceso puede estar en varios estados:
 - En ejecución
 - Listo
 - Bloqueado

• El sistema operativo planifica la prioridad de ejecución de los procesos según distintos algoritmos

Tipos de planificación

- **FCFS**: primero en llegar, primero en ejecutarse
- SPF: más corto, primero en ejecutarse
- SRT: menos tiempo de ejecución restante, primero en ejecutarse
- Round Robin: los procesos tienen un tiempo limitado de ejecución, una vez transcurrido ese tiempo se ponen de nuevo al final de la cola

Gestión de memoria

Gestión de Entrada y Salida

- A través de controladores o drives
- Permite la comunicación entre los programas y el hardware

Gestión del sistema de archivos

- Tanto de forma física en el disco duro como lógica mediante software
- Atributos:
 - Nombres
 - Extensiones
 - Permisos
 - Etc.
- Rutas de acceso
 - Absolutas (ruta completa del sistema)
 - Relativas (ruta a partir del directorio activo)