

TÓPICOS EM INTELIGÊNCIA ARTIFICIAL

Algoritmos Genéticos

Professor Ricardo Kerschbaumer ricardo.kerschbaumer@ifc.edu.br

http://professor.luzerna.ifc.edu.br/ricardo-kerschbaumer/

Algoritmos genéticos Introdução

- Algoritmo Genético (AG) é uma técnica de otimização.
- Baseada nos princípios de Genética e Seleção Natural.
- É frequentemente usado para encontrar soluções ótimas ou quase ótimas para problemas difíceis.
- É frequentemente usado para resolver problemas de otimização, pesquisa e aprendizado automático.
- A otimização é o processo de fazer algo melhor.
- Otimização refere-se a encontrar os valores das entradas de forma a obter os "melhores" valores de saída.

Algoritmos genéticos Introdução

- A definição de "melhor" varia, mas normalmente, refere-se a maximizar ou a minimizar uma ou mais **funções objetivo (fitness)**, variando os parâmetros de entrada.
- O conjunto de todas as soluções possíveis compõe o espaço de busca.
- Neste espaço de busca, é um ponto ou um conjunto de pontos que dá a solução ideal.
- O objetivo da otimização é encontrar esse ponto ou conjunto de pontos no espaço de busca.
- Algoritmos genéticos (AGs) são algoritmos de pesquisa baseados nos conceitos de seleção natural e genética.
- GAs são um subconjunto da Computação Evolutiva ou evolucionária.

Algoritmos genéticos Introdução

- Os AGs foram desenvolvidos por John Holland, David E. Goldberg e seus alunos e colegas da Universidade de Michigan.
- Nos AGs, iniciamos com uma população de possíveis soluções para o problema dado.
- Essas soluções são submetidas a recombinação e mutação (como na genética natural), produzindo novas gerações de soluções.
- O processo é repetido por várias gerações.
- Cada indivíduo (ou solução) recebe um valor de aptidão (com base no valor da função objetiva).
- Os indivíduos mais aptos têm maior chance de se acasalar.
- Desta forma, mantemos "evoluindo" os melhores indivíduos ou soluções ao longo de gerações, até que possamos atingir um critério de parada.

Vantagens dos AGs

- Não requer nenhuma informação derivativa (que pode não estar disponível para muitos problemas do mundo real).
- É mais rápido e eficiente em comparação com os métodos tradicionais.
- Tem bons recursos para paralelização.
- Otimiza funções contínuas e discretas além de problemas multi-objetivo.
- Fornece uma lista de "boas" soluções e não apenas uma única solução.
- Sempre recebe uma resposta para o problema, que melhora ao longo do tempo.
- Útil quando o espaço de pesquisa é muito grande e há uma grande quantidade de parâmetros envolvidos.

Limitações dos AGs

- Os AGs não são adequados para todos os problemas, especialmente problemas que são simples e para os quais informações derivativas estão disponíveis.
- O valor de Fitness é calculado repetidamente, o que pode ser computacionalmente caro para alguns problemas.
- Sendo estocástico, **não há garantias** sobre a otimização ou a qualidade da solução.
- Se não for implementado corretamente, o AG pode não convergir para a solução ideal.

Solução de problemas difíceis

- Problemas NP-Difícil
- Mesmo os sistemas de computação mais poderosos, levam muito tempo.
- Em tal cenário, os AGs se revelam uma ferramenta eficiente.
- Fornecendo soluções quase ótimas úteis em um curto período de tempo.

Falha em métodos baseados em gradientes

- Os métodos baseados em cálculos tradicionais funcionam começando em um ponto aleatório e movendo-se na direção do gradiente, até chegar ao ponto ótimo.
- Esta técnica funciona muito bem para funções objetivos de um único ponto como a função de custo na regressão linear.
- Nas situações do mundo real, temos funções feitas de muitos picos e vales, o que faz com que tais métodos falhem.

Falha em métodos baseados em gradientes

Parameter Value

Terminologia básica dos AGs

- População É um subconjunto de todas as possíveis soluções (codificadas) para o problema dado.
- Cromossomos Um cromossomo é uma dessas soluções para o problema dado.
- Gene Um gene é uma posição ou elemento de um cromossomo.
- Alelo É o valor que um gene leva para um cromossomo em particular.

- Genótipo é a população no espaço computacional.
- Fenótipo é a população no espaço real da solução,
- **Decodificação** é um processo de transformação de uma solução do genótipo para o espaço do fenótipo.
- Codificação é um processo de transformação do fenótipo para o espaço de genótipos.

Por exemplo, considere o problema da mochila 0/1. O espaço do fenótipo consiste em soluções que apenas contêm os números dos itens. Já o genótipo pode ser representado como uma *string* binária de comprimento n onde um 0 na posição x indica que aquele x item não entra na mochila, enquanto um 1 representa o inverso. Este é um caso em que os espaços de genótipos e fenótipos são diferentes.

- Função Objetivo ou Função de Fitness É uma função função que recebe as entradas e retorna a **aptidão** de um determinado indivíduo.
- Operadores genéticos São operadores que alteram a composição genética da prole. Estes incluem cruzamento, mutação, seleção, etc.

A estrutura básica de um AG

Professor Ricardo Kerschbaumer

Representação do Genótipo

Representação Binaria

Representação por valores reais

0.5 0.2	0.6 0.8	0.7 0.4	0.3 0.2	0.1 0.9
---------	---------	---------	---------	---------

Representação por permutação

População

- A população é um subconjunto do conjunto de soluções
- A diversidade da população deve ser mantida, caso contrário poderá levar a uma convergência prematura.
- O tamanho da população não deve ser mantido muito grande, pois vai exigir muito poder computacional.
- Uma população muito pequena pode não ser suficiente para um bom conjunto de acasalamento.
- Portanto, um tamanho ideal de população precisa ser definido por tentativa e erro.
- Normalmente a população é definida como uma matriz de duas dimensões

Inicialização da População

- Inicialização aleatória Preencha a população inicial com soluções completamente aleatórias.
- Inicialização heurística Preencha a população inicial usando uma heurística conhecida para o problema.
- Foi observado que a inicialização heurística, em alguns casos, afeta apenas a aptidão inicial da população, mas, no final, é a diversidade das soluções que levam à otimização.

Modelos de População

Estado estacionário

No AG de estado estacionário, geramos uma ou duas proles em cada iteração e elas substituem um ou dois indivíduos da população. Um AG de estado estacionário também é conhecido como AG Incremental.

Geracional

Em um modelo geracional, geramos 'n' indivíduos, onde n é o tamanho da população, e toda a população é substituída pela nova no final da iteração.

Função Objetivo

- A função objetivo é uma função que toma uma solução candidata como entrada e produz como saída um valor que representa o quão "boa" a solução é em relação ao problema em consideração.
- O cálculo do valor da aptidão é feito repetidamente em um AG e, portanto, deve ser rápido para evitar sobrecargas de processamento.
- Em alguns casos, calcular a função objetivo pode não ser possível devido a complexidades do problema. Nesses casos, faz-se uma aproximação as aptidão para atender necessidades do AG.

Função Objetivo

Knapsack capacity = 15
Total associated profit = 18
Last item not picked as it exceeds knapsack capacity

Seleção pelo método da roleta

Chromosome	Fitness Value	
Α	8.2	
В	3.2	
С	1.4	
D	1.2	
E	4.2	
F	0.3	

Amostragem estocástica

Chromosome	Fitness	
Chromosome	Value	
Α	8.2	
В	3.2	
С	1.4	
D	1.2	
E	4.2	
F	0.3	

Seleção por torneio

Seleção por ranking

Chromosome	Fitness Value	Rank
Α	8.1	1
В	8.0	4
С	8.05	2
D	7.95	6
E	8.02	3
F	7.99	5

Seleção aleatória

Crossover

O operador de crossover é análogo à reprodução e ao crossover biológico. Trata-se de aproveitar o material genético dos pais para a geração da prole.

Operadores de crossover

Crossover de 1 ponto

Crossover

• Crossover de múltiplos ponto

=>

5 8 9 3 4 5 5 7 5 8

Crossover uniforme

5 8 9 4 2 3 5 7 5 8

=>

Crossover

Recombinação aritmética

Davis' Order Crossover

Repeat the same procedure to get the second child

Mutação

- Em termos simples, a mutação pode ser definida como um pequeno ajuste aleatório no cromossomo, para obter uma nova solução.
- A mutação é usada para manter e introduzir diversidade na população e é geralmente aplicado com baixa probabilidade. Se a probabilidade é muito alta, o AG é reduzido a uma pesquisa aleatória.
- Mutação é a parte do AG que está relacionada a "exploração" do espaço de busca. Foi observado que a mutação é essencial para a convergência do AG, enquanto o crossover não é.

Operadores de Mutação

Inversão de bit

Recomposição aleatória Mutação por troca

Mutação por embaralhamento

Mutação por inversão

Seleção dos sobreviventes

- A Política de Seleção de Sobreviventes determina quais indivíduos devem ser expulsos e quais devem ser mantidos na próxima geração.
- É crucial, pois deve garantir que os indivíduos mais aptos não sejam expulso da população, enquanto, ao mesmo tempo, a diversidade deve ser mantida.
- Alguns AGs empregam o elitismo. Em termos simples, significa que o atual membro mais apto da população é sempre propagado para a próxima geração. Portanto, sob nenhuma circunstância o membro mais apto da população atual pode ser substituído.
- A política mais fácil é expulsar membros aleatórios da população, mas essa abordagem frequentemente tem problemas de convergência, portanto, as estratégias a seguir são amplamente usadas.

INSTITUTO FEDERAL Seleção dos sobreviventes

Seleção baseada na idade

EXISTING POPULATION NEW POPULATION

INSTITUTO FEDERAL Seleção dos sobreviventes

Seleção baseada no fitness

NEW POPULATION

Critérios de Parada

O critério de parada é importante para determinar quando a execução do AG terminará. Inicialmente o AG progride muito rapidamente, encontrando melhores soluções a cada poucas iterações, mas isso tende a saturar nos estágios posteriores. Assim, um critério de parada é necessário para definir o ponto final da execução.

Normalmente, mantemos um dos seguintes critérios de parada.

- Quando não houve melhora na população por X iterações.
- Quando alcançamos um número absoluto de gerações.
- Quando o valor da função objetivo atingiu um determinado valor pré-definido.

Tem-se 3 tipos de itens para colocar em uma mochila. A capacidade de mochila é de 20Kg. Os itens tem as seguintes características:

Tipo	Massa(Kg)	Valor	Disponibilidade
1	3	R\$ 40,00	5 unidades
2	5	R\$ 100,00	5 unidades
3	2	R\$ 50,00	5 unidades

Deseja-se maximizar o valor transportado na mochila.

Fitness=40x(N1)+100x(N2)+50x(N3)

Restrições: Máximo de 20Kg e disponibilidade de cada item.

Definição dos Cromossomos:

Cada cromossomo é uma solução para o problema.

N tipo1	N tipo2	N tipo3
---------	---------	---------

Probabilidades dos objetos

Total	Р	P Acum
0	0,167	0,167
1	0,167	0,333
2	0,167	0,5
3	0,167	0,667
4	0,167	0,834
5	0,167	1

Restrição

População inicial de 4 indivíduos, gerada aleatoriamente

				(20Kg)
1º Indivíduo	2	1	0	11 Kg
2º Indivíduo	0	2	Q	25 Kg
2° IIIuiviuu	9			23 Ny
3º Indivíduo	1	0	5	13 Kg
4º Indivíduo	2	1	1	13 Kg
5º Indivíduo	0	1	0	13 Kg 13 Kg 5 Kg

2º Indivíduo é inválido, deve ser descartado

Cálculo do valor do Fitness

A	2	1	0
В	1	0	5
C	2	1	1
D	0	1	0

Indivíduo B tem o melhor Fitness (370)

Determinação dos sucessores

1º passo: Selecionar 2 indivíduos pelo método da roleta

2º passo: Gerar os filhos através do Crossover de 1 ponto

3º passo: Verificar se os filhos respeitam as restrições

4º passo: Repetir até completar a nova geração

5º passo: Substituir a geração atual pela nova geração

Mutação

1º passo: Verifica a possibilidade de um indivíduo sofrer mutação com base na taxa de mutação 2º passo: se o indivíduo vai sofrer mutação escolhe aleatoriamente em qual gene deve ser a mutação

3º passo: Encontrar um novo valor aleatório para este gene

4º passo: Verificar se o indivíduo gerado respeita as restrições

5º passo: Repetir até chegar ao final da população

Calculo do fitness

Calcula o fitness de todos os indivíduos encontrando o valor total dos itens contidos na mochila

Elitismo

Se estiver usando elitismo escolhe um elemento da população aleatoriamente

Substitui este elemento pelo melhor elemento da população anterior

Apresentação dos resultados

A cada geração calcula e apresenta o melhor indivíduo

Critério de parada

Para após um número definido de gerações

A função que gera números aleatórios em C é a rand().

Ela gera números entre 0 e **RAND_MAX**, onde esse **RAND_MAX** é um valor que pode variar de plataforma para plataforma.

Para utilizar o valor de **RAND_MAX**, temos que adicionar a função **stdlib.h**.

Exemplo com a função rand()

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main(void)
  int i;
  printf("intervalo da rand: [0,%d]\n", RAND MAX);
  for(i=1; i <= 10; i++)
     printf("Numero %d: %d\n",i, rand());
```


Utilizando rand() com a srand() : seed

Para evitar que a sequencia de valores aleatório gerados pela função rand() seja sempre a mesma é necessário fornecer ao gerador de números aleatórios uma semente diferente a cada execução.

A função srand() serve para isso, com ela é possível fornecer uma semente para o gerador de números aleatórios.

Uma boa fonte de sementes que diferem a cada execução é o relógio, assim pode-se usar a seguinte linha de programa para este fim.

srand((unsigned)time(NULL)); //antes da chamada de rand()

Exemplo com as funções rand() e srand()

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main()
  int i;
  printf("intervalo da rand: [0,%d]\n", RAND MAX);
  srand( (unsigned)time(NULL) );
  for(i=1; i <= 10; i++)
     printf("Numero %d: %d\n",i, rand());
```


Outras faixar de valores diferente de 0 a RAND_MAX.

Para escolher a faixa de valores vamos usar operações matemáticas, principalmente o operador de módulo: %

Para fazer com que um número 'x' receba um valor:

Entre 0 e 9, fazemos: x = rand() % 10

Entre 1 e 10, fazemos: x = 1 + (rand() % 10)

Entre 0 e 100: x = rand() % 101

Para ter os valores decimais, dividimos por exemplo por 100: x = x/100;