Neural Modeling and Probabilistic Sequencing in Movie Script Generation

Ryan Krawczyk

Natural Language Processing · Boston College

Project Overview

Characteristics

- ☐ Model-view-controller web framework
- ☐ Regex search, Markov chains, RNN text generation

Input

genre, title, author, character names. start sentence

Output

100 lines of movie script

Inspiration

- ☐ Accomplishment in artificial intelligence field
- ☐ Capability to engage in human activity, create "art"

Relevance

- ☐ Education on computer science, form of entertainment Objective
- ☐ Generate text distinguishable as movie script, containing readable English and logical flow

Processing & Training Data

U.S. Social Security Database

- ☐ Lexicon of 94,000 most common first names
- ☐ Sentences with names ignored (character conflict)

Action

Horror

IMDb

- ☐ 153 raw text movie scripts from Datasets API
- ☐ Movie scripts manually annotated as action, romance, or

horror

Normalization

- ☐ Sentences with numbers, URLs, or named entities excluded from generation to maintain informational Romance consistency in scripts
 - ☐ No random names, dates, etc.

Core Logic

Training

Concatenate raw text of all 153 movie scripts into one continuous string and write to new text file (length = 29,595,661)

Train character-based RNN on

- 7 epochs at 4,578 steps each - Embedding, GRU, Dense lavers
- Loss function: categorical cross entropy
 - Optimizer: Adam

Loss minimized at 5th epoch with value of 0.9022, prediction input length set to 100 with temperature of 1

Text Processing

153 scripts read in and filtered on normalization rules using regex

Sentences classified by both their context in the script and grammatical type using regex

1grams, 2grams, 3grams of context/type tracked for Markov chains, sentences stored

Text Generation

Markov chains for context/type emit sequences, forming contexttype pairs

For every pair, previous sentence in script fed to RNN to generate

All sentences in genre filtered on context/type of current pair, sentence with lowest edit distance to guide text appended to script

Text Intrusion Results

Question 1: What is this text?

Structure and content of project output recognizable by human eve as movie script

Ouestion 2: Which of these is not a movie script?

Ouality of generated text on par with human script and has characteristics distinguishable from other form of dialogue

Sample Script

RESUME It's a human toe. Frightened, he's wielding a SCISSORS, poised to strike.

IEFF is tattered and ² smeared with vermillion ink.

THE DOCTOR: "Single someone out" MEGAN: "Okav?"

IEFF sits at his desk dark circles beneath his eyes

VICTOR: "Stop that!"

Trying to follow, he COLLIDES With some furniture.

Conclusion & Future Work

Successful Experiment

☐ Test subjects able to reliably identify output as movie script and associate it with human scripts

Looking Ahead

- ☐ More robust software for differentiating dialogue from narration and tagging named entities
- ☐ Generation with sequence-to-sequence modeling
- ☐ Deep learning structures to develop 5-stage plot

Libraries implemented: en_core_web_sm | nltk | numpy | pandas | spacy | setuptools | tensorflow