Limiti di funzioni e funzioni continue

1. Siano f(x) e g(x) due funzioni tali che

$$\lim_{x\to c} f(x) = -\infty \quad \lim_{x\to c} g(x) = +\infty.$$

Si calcolino correttamente i seguenti limiti.

(a)
$$\lim_{x \to c} \left(e^{f(x)} + g(x) \right) = \underline{\qquad} + \infty$$

(b)
$$\lim_{x \to c} \log g(x) = \underline{\qquad} + \infty$$

(c)
$$\lim_{x \to c} \frac{f(x)}{e^{f(x)}} = \underline{\qquad} -\infty$$

(d)
$$\lim_{x \to c} |f(x)| = \underline{\qquad} + \infty$$

2. Si completino in modo corretto i seguenti enunciati.

(a) Se
$$\lim_{x \to c} f(x) = 1$$
 e $\lim_{x \to c} g(x) = 3$, allora $\lim_{x \to c} \frac{3f(x) - 5g(x)}{f(x) + g(x)} = \underline{\qquad -3}$

(b) Se
$$\lim_{x \to c} f(x) = -1$$
 e $\lim_{x \to c} g(x) = 3$, allora $\lim_{x \to c} \frac{f(x)}{(g(x) - 3)^2} = \underline{\qquad}$

(c) Se
$$\lim_{x \to c} f(x) = -\infty$$
 e $\lim_{x \to c} g(x) = 3$, allora $\lim_{x \to c} \frac{f(x)}{(g(x) - 3)^2} = \underline{\qquad}$

(d) Se
$$\lim_{x\to c} f(x) = 0$$
 e $\lim_{x\to c} g(x) = +\infty$, allora $\lim_{x\to c} \frac{f(x)}{f(x) + g(x)} = \underline{\qquad 0}$

3. Siano f(x) e g(x) due funzioni tali che

$$\lim_{x\to c} f(x) = 0 \quad \lim_{x\to c} g(x) = +\infty.$$

Tra i seguenti enunciati si indichino quelli sicuramente veri.

$$\Box \lim_{x \to c} f(x) \cdot g(x) = +\infty$$

$$\sqrt{\text{Se }h(x)} \sim f(x) \text{ per } x \to c$$
, allora $\lim_{x \to c} h(x) = 0$.

$$\square$$
 Non esiste $\lim_{x\to c} f(x) \cdot g(x)$

- 4. Se f è una funzione definita in [-1,3], tra i sequenti enunciati si indichino quelli veri.
 - \square Se f(x) = |x| + 1, allora f verifica le ipotesi del teorema degli zeri
 - $\sqrt{\operatorname{Se} f(x)} = |x| + 5$, allora f non verifica le ipotesi del teorema degli zeri
 - $\sqrt{\operatorname{Se} f(x)} = |x| 2$, allora f verifica le ipotesi del teorema degli zeri
 - $\sqrt{\mbox{ Se }f}$ è strettamente decrescente e verifica le ipotesi del teorema degli zeri, allora esiste un'unico zero di f.
- 5. Se f è una funzione definita in [-1, 1], tra i sequenti enunciati si indichino quelli veri.
 - $\sqrt{\text{ Se } \lim_{x\to 0^+} f(x)} = 2$, $\lim_{x\to 0^-} f(x) = 2$ allora non è detto che f sia continua in x=0
 - \square Se $\lim_{x\to 0^+} f(x) = 1$, $\lim_{x\to 0^-} f(x) = 1$ e f(0) = 1, allora f non è continua in x=0
 - $\sqrt{\text{Se lim}_{x\to 0^+}} f(x) = 1$, $\lim_{x\to 0^-} f(x) = 1$ allora anche $\lim_{x\to 0} f(x) = 1$
 - □ Se

$$f(x) = \begin{cases} \frac{\text{sen } x}{x} & \text{se } x \neq 0 \\ 2 & \text{se } x = 0 \end{cases}$$

allora f è continua in x = 0

- 6. Considerata l'equazione $x + x^2 + \ln x = 0$, tra i seguenti enunciati si indichino quelli veri.
 - $\sqrt{L'}$ equazione ha un'unica soluzione in $(0, +\infty)$
 - \Box L'equazione ha una soluzione in [-2, -1]
 - ☐ L'equazione non ammette soluzione
 - $\square \ x = 3$ è una soluzione dell'equazione
- 7. Se $f:[a,b] \to \mathbb{R}$ è una funzione, si indichino tra i seguenti enunciati quelli sicuramente veri.
 - $\sqrt{\ }$ Se f è continua in [a,b], allora f ammette massimo.
 - $\sqrt{\text{Se } f}$ è continua [a, b], allora f ammette minimo
 - $\sqrt{\ }$ Se f è continua [a,b], allora f ammette massimo e minimo
 - \square Se f è continua (a, b), allora f ammette massimo e minimo
- 8. Se $f:[0,4]\to\mathbb{R}$ è una funzione continua, si indichino tra i seguenti enunciati quelli sicuramente veri.
 - $\sqrt{\text{L'immagine di } f}$ è un intervallo
 - $\sqrt{\text{Se } f(0)} = 2 \text{ e } f(4) = 10, f \text{ assume il valore 5}$
 - \Box f assume il valore 0
 - $\sqrt{\ }$ Se f(0)>0 e f(4)<0 allora l'equazione f(x)=0 ha almeno una soluzione

- 9. Si indichi quali tra le seguenti funzioni soddisfano le ipotesi del teorema di Weierstrass.
 - $\sqrt{\text{La funzione } f(x) = \log x \text{ se } x \in [1, 4]}$
 - \square La funzione $f(x) = \operatorname{arctg} x$ nel suo dominio
 - $\sqrt{\text{La funzione esponenziale nell'insieme } [0, 4]}$
 - \Box La funzione $f(x) = \log x$ se $x \in (0, 4]$
- 10. Se $f:[a,b] \to \mathbb{R}$ è una funzione, si indichino tra i seguenti enunciati quelli sicuramente veri.
 - $\sqrt{\text{Se } f}$ è continua, f è invertibile se e solo se f è strettamente monotona
 - $\sqrt{\mbox{ Se }f}$ è continua e f è strettamente decrescente, allora f^{-1} è strettamente decrescente e continua
 - $\sqrt{\text{Se }f}$ è continua e f è strettamente monotona, allora f^{-1} è continua
 - $\sqrt{\text{Se }f}$ è invertibile ma non è continua non è detto che f^{-1} sia monotona