# Basi Available Copy Rec'd PET/PTO 14 APR 2005



PCT/JP03/12383

# JAPAN PATENT OFFICE

29.09.03 10/531362

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年10月15日

REC'D 13 NOV 2003

PCT

**WIPO** 

出 願 Application Number:

特願2002-299938

[ST. 10/C]:

[JP2002-299938]

出 願 人 Applicant(s):

日東電工株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner. Japan Patent Office 2003年10月31日





【書類名】 特許願

【整理番号】 P02386ND

【提出日】 平成14年10月15日

【あて先】 特許庁長官 殿

【国際特許分類】 G02B 05/30

【発明者】

【住所又は居所】 大阪府茨木市下穂積1丁目1番2号 日東電工株式会社

内

【氏名】 矢野 周治

【特許出願人】

【識別番号】 000003964

【住所又は居所】 大阪府茨木市下穂積1丁目1番2号

【氏名又は名称】 日東電工株式会社

【代理人】

【識別番号】 100092266

【弁理士】

【氏名又は名称】 鈴木 崇生

【電話番号】 06-6838-0505

【選任した代理人】

【識別番号】 100104422

【弁理士】

【氏名又は名称】 梶崎 弘一

【電話番号】 06-6838-0505

【選任した代理人】

【識別番号】 100105717

【弁理士】

【氏名又は名称】 尾崎 雄三

【電話番号】 06-6838-0505

【選任した代理人】

【識別番号】 100104101

【弁理士】

【氏名又は名称】 谷口 俊彦

【電話番号】 06-6838-0505

【手数料の表示】

【予納台帳番号】 074403

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9903185

【プルーフの要否】 要

#### 【書類名】 明細書

【発明の名称】 光学フィルムおよび液晶表示装置

#### 【特許請求の範囲】

【請求項1】 偏光板の吸収軸と位相差フィルムの遅相軸が直交するように・ 積層した光学フィルムにおいて、

前記偏光板が、偏光子の両面に透明保護フィルムを積層してなり、当該透明保護フィルム面内の面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、Z1 、Z2 、Z3 、Z4 、Z4 、Z5 の Z4 の厚さ方向のZ4 を Z5 の Z4 に Z5 の Z5 の Z5 の Z6 の Z6 の Z7 の Z7 の Z9 の Z9 の Z1 、 Z1 、 Z2 、 Z3 の Z4 の Z5 の Z5 の Z6 の Z6 の Z7 の Z7 の Z9 の

面内位相差 $Re_1 = (nx_1 - ny_1) \times d_1$  が、10nm以下であり、かつ厚み方向位相差 $Rth = \{(nx_1 + ny_1) / 2 - nz_1\} \times d_1$  が、 $30 \sim 100$  nmであり、

前記位相差フィルムが、当該フィルム面内の面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の 5 5 0 n m における屈折率をn  $x_2$  、n  $y_2$  、n  $z_2$  、 $y_3$   $y_4$   $y_5$   $y_6$   $y_7$   $y_8$   $y_9$   $y_9$ 

 $Nz=(nx_2-nz_2)$  /  $(nx_2-ny_2)$  で表されるNz値が、0.1 ~ 0.8 を満足し、

かつ面内位相差Re2 =  $(nx_2 - ny_2) \times d_2$ が、 $100 \sim 160$  nmであることを特徴とする液晶表示装置用光学フィルム。

【請求項2】 IPSモードの液晶セルを用いたIPSモード液晶表示装置 に適用するものであることを特徴とする請求項1記載の光学フィルム。

【請求項3】 550nmにおける位相差値が電圧無印加時において230~300nmであるIPSモードの液晶セルを用いたIPSモード液晶表示装置に適用するものであることを特徴とする請求項2記載の光学フィルム。

【請求項4】 液晶層を狭持する一対の基板からなるIPSモードにて駆動される液晶セルと、液晶セルの両側に直交状態に配置される一対の偏光板とを有する透過型液晶表示装置において、

少なくとも一方の偏光板として、請求項2または3記載の光学フィルムを、当



該光学フィルムの位相差フィルム側が液晶セル側になるように配置したことを特 徴とする透過型液晶表示装置。

【請求項 5 】 視認側のセル基板には請求項 2 または 3 に記載の光学フィル ムが配置されており、

無印加状態において液晶セル内の液晶物質の異常光屈折率方向と入射側の偏光 板の吸収軸が平行状態にあることを特徴とする請求項4記載の透過型液晶表示装 置。

【請求項6】 入射側のセル基板には請求項2または3に記載の光学フィル ムが配置されており、

無印加状態において液晶セル内の液晶物質の異常光屈折率方向と前記光学フィ ルムの偏光板の吸収軸が直交状態にあることを特徴とする請求項4記載の透過型 液晶表示装置。

#### 【発明の詳細な説明】

[0001]

#### 【発明の属する技術分野】

本発明は、偏光板と位相差フィルムを積層した光学フィルムに関する。本発明 の光学フィルムは、いわゆるIPSモードで動作する液晶表示装置に適している 、特に透過型液晶表示装置に適している。

[0002]

#### 【従来の技術】

従来より、液晶表示装置としては、正の誘電率異方性を有する液晶を、相互に 対向する基板間にネジレ水平配向したいわゆるTNモードの液晶表示装置が主と して使われている。しかし、TNモードではその駆動特性上、黒表示をしようと しても基板近傍の液晶分子により複屈折が生じる結果、光漏れが生じてしまい、 完全な黒表示を行うことが困難であった。これに対し、IPSモードの液晶表示 装置は、非駆動状態において液晶分子が基板面に対して略平行なホモジニアス配 向を有するため、光は液晶層を、その偏光面をほとんど変化させること無く通過 し、その結果基板の上下に偏光板を配置することにより非駆動状態でほぼ完全な 黒色表示が可能である。



しかしながら、IPSモードではパネル法線方向においてはほぼ完全な黒色表示ができるものの、法線方向からズレた方向からパネルを観察する場合、液晶セルの上下に配置する偏光板の光軸方向からズレた方向では偏光板の特性上避けられない光漏れが発生する結果、視野角が狭くなるという問題があった。すなわち、一般的に用いられているトリアセチルセルロース(TAC)フィルムを保護フィルムとして用いた偏光板では、TACフィルムの有する複屈折性により視野角が狭くなるという問題があった。

[0004]

この問題を解決するために、斜め方向から観察した場合に生じる偏光板の幾何学的な軸ズレを、位相差フィルムにより補償した偏光板が用いられている(たとえば、特許文献1、特許文献2参照。)。前記特許文献1、2に記載の偏光板では、偏光子の保護フィルムとして位相差フィルムが使用されている。しかしながら、特許文献1、特許文献2に記載の位相差フィルムではIPSモードの液晶表示装置の充分な広視野角を実現し難い。

[0005]

【特許文献1】

特開平4-305602号公報(第1頁)

[0006]

【特許文献2】

特開平4-371903号公報(第1頁)

[0007]

【発明が解決しようとする課題】

本発明は、偏光板と位相差フィルムを積層した光学フィルムであって、IPS モードで動作する液晶表示装置に適用した場合に、広範囲にわたり高いコントラスト比を有する見やすい表示を実現可能な光学フィルムを提供することを目的とする。

[0008]

また本発明は、前記光学フィルムを用いた広範囲にわたり高いコントラスト比



#### [0009]

#### 【課題を解決するための手段】

本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す光学フィルムを見出し、本発明を完成するに至った。

#### [0010]

すなわち本発明は、位相差フィルムの遅相軸と偏光板の吸収軸が直交するよう に積層した光学フィルムにおいて、

前記偏光板が、偏光子の両面に透明保護フィルムを積層してなり、当該透明保護フィルム面内の面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z 、 Z

面内位相差 $Re_1 = (nx_1 - ny_1) \times d_1$ が、10nm以下であり、かつ厚み方向位相差 $Rth = \{(nx_1 + ny_1) / 2 - nz_1\} \times d_1$ が、 $30 \sim 100nm$ であり、

前記位相差フィルムが、当該フィルム面内の面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の 5 5 0 n mにおける屈折率をn  $x_2$  、n  $y_2$  、n  $z_2$  、 $y_3$  、 $y_4$  、 $y_5$  、 $y_6$  、 $y_6$  、 $y_6$  、 $y_6$  、 $y_6$  、 $y_7$  、 $y_8$  、 $y_9$  、 $y_9$ 

 $Nz = (nx_2 - nz_2) / (nx_2 - ny_2)$  で表されるNz値が、0.1 ~ 0.8を満足し、

かつ面内位相差Re2 =  $(nx_2 - ny_2) \times d_2$  が、 $100 \sim 160$  nmであることを特徴とする液晶表示装置用光学フィルム、に関する。

#### [0011]

上記本発明の光学フィルムは、上記所定位相差値の保護フィルムを有する偏光板をクロスニコル状態で配置した場合に、光軸からズレた方向での光漏れを、上記特定の位相差フィルムにより解消することができ、たとえば、IPSモードの液晶表示装置に好適に用いられる。特に液晶層の斜め方向におけるコントラスト



#### [0012]

前記偏光板の透明保護フィルムは、面内位相差Relが10nm以下、より好ましくは6nm以下であり、かつ厚み方向位相差Rthは30~100nm、好ましくは30~60nmである。本発明は、偏光子の透明保護フィルムとして、は、かかる位相差を有するものに対して、位相差フィルムにより補償効果の高い光学フィルムを得るものである。透明保護フィルムの厚さ $d_1$ は特に制限されないが、一般には500 $\mu$ m以下であり、1~300 $\mu$ mが好ましい。特に5~200 $\mu$ mとするのが好ましい。

#### [0013]

位相差フィルムは前記N z 値が0.  $1\sim0$ . 8 であり、かつ面内位相差R  $e_2$ が100 $\sim$ 160 n m である。N z 値は補償機能を高める点から0. 2 以上、さらには0. 2 5以上であるの好ましい。一方、N z 値は0. 6 以下、さらには0. 5 5以下であるのが好ましい。面内位相差R  $e_2$  は補償機能を高める点から1 2 3 n m以上、さらに1 2 8 n m以上であるの好ましい。一方、面内位相差R  $e_2$  は1 5 0 n m以下、さらには1 4 5 n m以下であるのが好ましい。位相差フィルムの厚さ $d_2$  は特に制限されないが、通常4 0 $\sim$ 100  $\mu$  m程度、好ましくは5 0 $\sim$ 70  $\mu$  m である。

#### [0014]

前記光学フィルムは、550nmにおける位相差値が電圧無印加時において 230~300nmである IPSモードの液晶セルを用いた IPSモード液晶表示装置に適用することが好ましい。

#### [0015]

本発明の光学フィルムはIPSモード液晶表示装置への適用が好適である。IPSモードの液晶セルを構成する材料は特に限定されるものではなく、通常、使用されるものを適宜使用できるが、液晶セルの550nmにおける位相差値が電圧無印加時において230~300nmのものへの適用が、位相差フィルムによる補償機能を好適に付与できる点から好適である。前記液晶セルの550nmに



おける位相差値は電圧無印加時において、より好ましくは250~280nmで ある。

#### [0016]

また本発明は、液晶層を狭持する一対の基板からなるIPSモードにて駆動さ れる液晶セルと、液晶セルの両側に直交状態に配置される一対の偏光板とを有す る透過型液晶表示装置において、

少なくとも一方の偏光板として、前記光学フィルム(前記位相差フィルムの遅 相軸と前記偏光板の吸収軸が直交するように積層した光学フィルム)を、当該光 学フィルムの位相差フィルム側が液晶セル側になるように配置したことを特徴と する透過型液晶表示装置、に関する。

#### [0017]

前記透過型液晶表示装置では、視認側のセル基板には前記光学フィルムを配置 し、無印加状態において液晶セル内の液晶物質の異常光屈折率方向と入射側の偏 光板の吸収軸を平行状態にすることが好ましい。

#### [0018]

前記透過型液晶表示装置では、入射側のセル基板には前記光学フィルムを配置 し、無印加状態において液晶セル内の液晶物質の異常光屈折率方向と前記光学フ ィルムの偏光板の吸収軸が直交状態にあることが好ましい。

#### [0019]

本発明のIPSモードの液晶表示装置では、偏光板と位相差フィルムを積層し た本発明の光学フィルムをIPSモードの液晶セルのいずれか一方の表面に配置 することにより、IPSモードの液晶表示装置おいて従来生じていた黒表示時の 光漏れを低減することができる。かかるIPSモードの液晶表示装置は、全方位 にわたり高いコントラスト比を有し、広視野角で見やすい表示を実現可能である

#### [0020]

#### 【発明の実施の形態】

以下本発明の光学フィルムおよび画像表示装置を図面を参照しながら説明する 。図1に示す通り、本発明の光学フィルム3は、偏光板1に、位相差フィルム2



が積層されている。偏光板1としては、偏光子1 aの両面に透明保護フィルム1 bが積層されたものが用いられる。片面に、位相差フィルム2が積層されている場合の例である。偏光板1の吸収軸と位相差フィルム2の遅相軸は直交となるように積層されている。

#### [0021]

偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、たとえば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等があげられる。これらのなかでもポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。これら偏光子の厚さは特に制限されないが、一般的に、 $5\sim80~\mu$  m程度である。

#### [0022]

ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、たとえば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいてもよいヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよいし、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。

#### [0023]

前記偏光子に設けられる透明保護フィルムとしては、前記面内位相差  $Re_1$  が 10 n m以下であり、かつ厚み方向位相差 R t h が  $30 \sim 100$  n m のものを特



#### [0024]

前記透明保護フィルムの偏光子を接着させない面(前記塗布層を設けない面) には、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアン チグレアを目的とした処理を施したものであってもよい。

#### [0025]

ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて 形成することができる。反射防止処理は偏光板表面での外光の反射防止を目的に



施されるものであり、従来に準じた反射防止膜などの形成により達成することが できる。また、スティッキング防止処理は隣接層との密着防止を目的に施される

#### [0026]

またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式 やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式 にて透明保護フィルムの表面に微細凹凸構造を付与することにより形成すること ができる。前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平 均粒径が 0. 5 ~ 5 0 μ m のシリカ、アルミナ、チタニア、ジルコニア、酸化錫 、酸化インジウム、酸化カドミウム、酸化アンチモン等からなる導電性のことも ある無機系微粒子、架橋又は未架橋のポリマー等からなる有機系微粒子などの透 明微粒子が用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、 表面微細凹凸構造を形成する透明樹脂100重量部に対して一般的に2~50重 量部程度であり、5~25重量部が好ましい。アンチグレア層は、偏光板透過光 を拡散して視角などを拡大するための拡散層(視角拡大機能など)を兼ねるもの であってもよい。

#### [0027]

なお、前記反射防止層、スティッキング防止層、拡散層やアンチグレア層等は 、透明保護フィルムそのものに設けることができるほか、別途光学層として透明 保護フィルムとは別体のものとして設けることもできる。

### [0028]

前記偏光子と透明保護フィルムとの接着処理には、イソシアネート系接着剤、 ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水 系ポリエステル等が用いられる。

#### [0029]

位相差フィルムとしては、前記Nz値が $0.1\sim0.8$ であり、面内位相差値  $Re_2$  が 100~160 nmであるものを特に制限なく使用することができる。 たとえば、高分子ポリマーフィルムの複屈折性フィルム、液晶ポリマーの配向フ



#### [0030]

高分子ポリマーとしては、たとえば、ポリカーボネート、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリノルボルネン等の脂環式ポリオレフィン、ポリビニルアルコール、ポリビニルブチラール、ポリメチルビニルエーテル、ポリヒドロキシエチルアクリレート、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ポリアリレート、ポリスルホン、ポリアエニレンスルファイド、ポリフェニレンオキサイド、ポリアリルスルホン、ポリビニルアルコール、ポリアミド、ポリイミド、ポリ塩化ビニル、セルロース系重合体、またはこれらの二元系、三元系各種共重合体、グラフト共重合体、ブレンド物などがあげられる。位相差フィルムは、高分子ポリマーフィルムを面方向に二軸に延伸する方法、面方向に一軸または二軸に延伸し、厚さ方向にも延伸する方法等により厚さ方向の屈折率を制御することにより得られる。また高分子ポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸処理又は/及び収縮処理して傾斜配向させる方法等により得られる。

#### [0031]

液晶性ポリマーとしては、たとえば、液晶配向性を付与する共役性の直線状原子団(メソゲン)がポリマーの主鎖や側鎖に導入された主鎖型や側鎖型の各種のものなどがあげられる。主鎖型の液晶性ポリマーの具体例としては、屈曲性を付与するスペーサ部でメソゲン基を結合した構造の、例えばネマチック配向性のポリエステル系液晶性ポリマー、ディスコティックポリマーやコレステリックポリマーなどがあげられる。側鎖型の液晶性ポリマーの具体例としては、ポリシロキサン、ポリアクリレート、ポリメタクリレート又はポリマロネートを主鎖骨格とし、側鎖として共役性の原子団からなるスペーサ部を介してネマチック配向付与性のパラ置換環状化合物単位からなるメソゲン部を有するものなどがあげられる。これら液晶性ポリマーの配向フィルムは、たとえば、ガラス板上に形成したポリイミドやポリビニルアルコール等の薄膜の表面をラビング処理したもの、酸化



#### [0032]

前記位相差フィルムと偏光板の積層法は特に制限されず、粘着剤層等により行うことができる。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。

#### [0033]

光学フィルムや粘着剤層などの各層には、例えばサリチル酸エステル系化合物 やベンゾフェノール系化合物、ベンゾトリアゾール系化合物やシアノアクリレー ト系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの方式 により紫外線吸収能をもたせたものなどであってもよい。

#### [0034]

本発明の光学フィルムはIPSモードの液晶表示装置に好適に用いられる。IPSモードの液晶表示装置は、液晶層を狭持する一対の基板と、前記一対の基板の一方に形成された電極群と、前記基板間に挟持された誘電異方性を有する液晶組成物質層と、前記一対の基板の対向に形成されて前記液晶組成物質の分子配列を所定の方向に配列させるための配向制御層および前記電極群に駆動電圧を印加するための駆動手段とを具備した液晶セルを有する。前記電極群は前記配向制御層および前記液晶組成物質層の界面に対して、主として平行な電界を印加するごとく配置された配列構造を有している。当該液晶セルは、前述の通り、550nmにおける位相差値が電圧無印加時において230~300nmであることが好ましい。

#### [0035]

本発明の光学フィルム3は液晶セルの視認側、入射側の少なくとも一方に配置



#### [0036]

図2のように、光学フィルム3をIPSモードの液晶セル4の視認側に配置する場合には、視認側と反対側(光入射側)のセル基板4には、偏光板1を電圧無印加状態において液晶セル4内の液晶物質の異常光屈折率方向と偏光板1の吸収軸が平行状態になるように配置するのが好ましい。

#### [0037]

また図3のように、光学フィルム3をIPSモードの液晶セル4の光入射側に配置する場合には、視認側のセル基板4には偏光板1を配置し、電圧無印加状態において液晶セル4内の液晶物質の異常光屈折率方向と光学フィルム3の偏光板1の吸収軸が直交状態になるように配置するのが好ましい。

#### [0038]

前記光学フィルム、偏光板は、実用に際して他の光学層を積層して用いることができる。その光学層については特に限定はないが、例えば位相差板(1/2や1/4等の波長板を含む)などの液晶表示装置等の形成に用いられることのある光学層を1層または2層以上用いることができる。特に、偏光板に更に輝度向上フィルムが積層されてなる偏光板が好ましい。

#### [0039]

偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板について説明する。直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板などが用いられる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変える位相差板としては、いわゆる1/4波長板(λ/4板とも言う)が用いられる



#### [0040]

精円偏光板は液晶表示装置の液晶層の複屈折により生じた着色(青又は黄等) を補償(防止)して、前記着色のない白黒表示する場合などに有効に用いられる 。更に、三次元の屈折率を制御したものは、液晶表示装置の画面を斜め方向から 見た際に生じる着色も補償(防止)することができて好ましい。円偏光板は、例 えば画像がカラー表示になる反射型液晶表示装置の画像の色調を整える場合など に有効に用いられ、また、反射防止の機能も有する。

#### [0041]

偏光板と輝度向上フィルムを貼り合わせた偏光板は、通常液晶セルの裏側サイ ドに設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックラ イトや裏側からの反射などにより自然光が入射すると所定偏光軸の直線偏光また は所定方向の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フ ィルムを偏光板と積層した偏光板は、バックライト等の光源からの光を入射させ て所定偏光状態の透過光を得ると共に、前記所定偏光状態以外の光は透過せずに 反射される。この輝度向上フィルム面で反射した光を更にその後ろ側に設けられ た反射層等を介し反転させて輝度向上フィルムに再入射させ、その一部又は全部 を所定偏光状態の光として透過させて輝度向上フィルムを透過する光の増量を図 ると共に、偏光子に吸収させにくい偏光を供給して液晶表示画像表示等に利用し うる光量の増大を図ることにより輝度を向上させうるものである。すなわち、輝 度向上フィルムを使用せずに、バックライトなどで液晶セルの裏側から偏光子を 通して光を入射した場合には、偏光子の偏光軸に一致していない偏光方向を有す る光は、ほとんど偏光子に吸収されてしまい、偏光子を透過してこない。すなわ ち、用いた偏光子の特性によっても異なるが、およそ50%の光が偏光子に吸収 されてしまい、その分、液晶画像表示等に利用しうる光量が減少し、画像が暗く なる。輝度向上フィルムは、偏光子に吸収されるような偏光方向を有する光を偏 光子に入射させずに輝度向上フィルムで一旦反射させ、更にその後ろ側に設けら れた反射層等を介して反転させて輝度向上フィルムに再入射させることを繰り返



#### [0042]

輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。輝度向上フィルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態となる。すなわち、拡散板は偏光を元の自然光状態にもどす。この非偏光状態、すなわち自然光状態の光が反射層等に向かい、反射層等を介して反射し、再び拡散板を通過して輝度向上フィルムに再入射することを繰り返す。このように輝度向上フィルムと上記反射層等の間に、偏光を元の自然光状態にもどす拡散板を設けることにより表示画面の明るさを維持しつつ、同時に表示画面の明るさのむらを少なくし、均一で明るい画面を提供することができる。かかる拡散板を設けることにより、初回の入射光は反射の繰り返し回数が程よく増加し、拡散板の拡散機能と相俟って均一の明るい表示画面を提供することができたものと考えられる

#### [0043]

前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光は反射する特性を示すもの(3 M社製、D-BEF等)、コレステリック液晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持したものの(日東電工社製、PCF350やMerck社製、Transmax等)如き、左回り又は右回りのいずれか一方の円偏光を反射して他の光は透過する特性を示すものなどの適宜なものを用いうる。

#### [0044]

従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィルムでは、その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより、 偏光板による吸収ロスを抑制しつつ効率よく透過させることができる。一方、コ レステリック液晶層の如く円偏光を投下するタイプの輝度向上フィルムでは、そのまま偏光子に入射させることもできるが、吸収ロスを抑制する点よりその円偏光を位相差板を介し直線偏光化して偏光板に入射させることが好ましい。なお、その位相差板として1/4波長板を用いることにより、円偏光を直線偏光に変換することができる。

#### [0045]

可視光域等の広い波長範囲で1/4波長板として機能する位相差板は、例えば波長550nmの淡色光に対して1/4波長板として機能する位相差層と他の位相差特性を示す位相差層、例えば1/2波長板として機能する位相差層とを重畳する方式などにより得ることができる。従って、偏光板と輝度向上フィルムの間に配置する位相差板は、1層又は2層以上の位相差層からなるものであってよい

#### [0046]

なお、コレステリック液晶層についても、反射波長が相違するものの組み合わせにして2層又は3層以上重畳した配置構造とすることにより、可視光領域等の広い波長範囲で円偏光を反射するものを得ることができ、それに基づいて広い波長範囲の透過円偏光を得ることができる。

#### [0047]

また、偏光板は、上記の偏光分離型偏光板の如く、偏光板と2層又は3層以上の光学層とを積層したものからなっていてもよい。従って、上記の反射型偏光板や半透過型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏光板などであってもよい。

#### [0048]

前記光学層を積層した光学フィルム、偏光板は、液晶表示装置等の製造過程で順次別個に積層する方式にても形成することができるが、予め積層して光学フィルムとしたのものは、品質の安定性や組立作業等に優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いうる。前記の偏光板と他の光学層の接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。



液晶表示装置の形成は、従来に準じて行いうる。液晶表示装置は、一般に必要に応じての照明システム等の構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明において前記光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについては、前記例示のIPSモードの他、例えばVA型、π型などの任意なタイプのものを用いうる。

#### [0050]

液晶表示装置は、照明システムあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。さらには液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層又は2層以上配置することができる。

#### [0051]

#### 【実施例】

以下に、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。

#### [0052]

透明保護フィルムの550nmにおける屈折率nx、ny、nzを自動複屈折測定装置(王子計測機器株式会社製,自動複屈折計KOBRA21ADH)により計測し、面内位相差 $Re_1$ 、厚み方向位相差Rt hを算出した。また、位相差フィルムについて同様に計測し、Nz、面内位相差 $Re_2$  を算出した。また液晶セルの550nmにおける電圧無印加時の位相差値は、セナルモン法により測定した。

#### [0053]

#### 実施例1

#### (偏光板の作製)

ポリビニルアルコール系フィルムにヨウ素を吸着させて延伸したフィルム(偏 光子: $20\,\mu\,\mathrm{m}$ )の両面に、トリアセチルセルロース( $\mathrm{TAC}$ )フィルム(透明 保護フィルム: $80\,\mu\,\mathrm{m}$ )を、接着剤を用いて積層した。 $\mathrm{TAC}$ フィルムは、面



[0054]

(光学フィルム)

ポリカーボネートフィルムを延伸することにより、厚さ $45\mu$ m、面内位相差 Re $_2$ が 140nm、Nz=0.5の位相差フィルムを得た。この位相差フィルムと前記偏光板を、位相差フィルムの遅相軸と偏光板の吸収軸が直交状態となるように粘着剤を用いて積層し、光学フィルムを作製した。

[0055]

(液晶表示装置)

550 nmにおける位相差値が280 nmであるIPSモードの液晶セルを用い、図3に示すように、光学フィルムの位相差フィルム側を、IPSモードの液晶セルの光入射側の面になるように粘着剤で積層した。一方、液晶セルの反対側の面には偏光板を粘着剤で積層して液晶表示装置を作製した。入射側の偏光板(光学フィルム)の吸収軸と液晶セル内の液晶の有する異常光屈折率方向を直交になるように積層した。位相差フィルム(光学フィルム)の遅相軸は視認側偏光板の吸収軸と平行となった。入射側偏光板(光学フィルム)の吸収軸と視認側偏光板の吸収軸は直交状態とした。

[0056]

(評価)

この液晶表示装置をバックライトの上に設置し、直交する偏光板の光軸に対する方位方向45度において法線方向からの傾き70度方向のコントラスト比を測定したところ、コントラスト比=50であった。コントラスト比の測定は、EZContrast (ELDIM社製)を用いて行った。

[0057]

実施例2

(光学フィルム)

ポリカーボネートフィルムを延伸することにより、厚さ $46\mu$ m、面内位相差 Re2 が140nm、Nz=0.3の位相差フィルムを得た。この位相差フィルムと実施例1で用いたのと同様の前記偏光板を、位相差フィルムの遅相軸と偏光



#### [0058]

#### (液晶表示装置)

550 nmにおける位相差値が280 nmであるIPSモードの液晶セルを用い、図2に示すように、光学フィルムの位相差フィルム側を、IPSモードの液晶セルの視認側の面になるように粘着剤で積層した。一方、液晶セルの反対側の面には偏光板を粘着剤で積層して液晶表示装置を作製した。入射側の偏光板(光学フィルム)の吸収軸と液晶セル内の液晶の有する異常光屈折率方向を平行になるように積層した。位相差フィルム(光学フィルム)の遅相軸は入射側偏光板の吸収軸と平行となった。視認側偏光板(光学フィルム)の吸収軸と入射側偏光板の吸収軸は直交状態とした。

#### [0059]

#### (評価)

この液晶表示装置をバックライトの上に設置し、直交する偏光板の光軸に対する方位方向45度において法線方向からの傾き70度方向のコントラスト比を測定したところ、コントラスト比=45であった。

#### [0060]

#### 比較例1

#### (液晶表示装置)

実施例1で作製した偏光板を、実施例1と同様のIPSモードの液晶セルの両面に粘着剤で積層して液晶表示装置を作製した。また液晶セルの両面に配置した 偏光板は吸収軸が互いに直交するように配置した。

#### [0061]

#### (評価)

この液晶表示装置をバックライトの上に設置し、直交する偏光板の光軸に対する方位方向45度において法線方向からの傾き70度方向のコントラスト比を測定したところ、コントラスト比=10であった。

#### [0062]

#### 比較例2

(光学フィルム)

ポリカーボネートフィルムを延伸することにより、厚さ50μm、面内位相差 Re2が140nm、Nz=1の位相差フィルムを得た。この位相差フィルムと 実施例1で作製した偏光板を、位相差フィルムの遅相軸と偏光板の吸収軸が直交 状態となるように粘着剤を用いて積層し、光学フィルムを作製した。

[0063]

#### (液晶表示装置)

実施例1において、光学フィルムとして、上記で作製した光学フィルムを用いたこと以外は実施例1と同様にして液晶表示装置を作製した。

[0064]

#### (評価)

この液晶表示装置をバックライトの上に設置し、直交する偏光板の光軸に対する方位方向45度において法線方向からの傾き70度方向のコントラスト比を測定したところ、コントラスト比=11であった。

#### 【図面の簡単な説明】

#### 【図1】

本発明の光学フィルムの断面図の一例である。

#### 【図2】

本発明の液晶表示装置の概念図である。

#### 【図3】

本発明の液晶表示装置の概念図である。

#### 【符号の説明】

- 1 偏光板
- 1 a 偏光子
- 1 b 透明保護フィルム
- 2 位相差フィルム
- 3 光学フィルム
- 4 IPSモード液晶セル



図面

# 【図1】



# 【図2】



# 【図3】



【書類名】

要約書

#### 【要約】

【課題】 偏光板と位相差フィルムを積層した光学フィルムであって、IPSモードで動作する液晶表示装置に適用した場合に、広範囲にわたり高いコントラスト比を有する見やすい表示を実現可能な光学フィルムを提供すること。

【解決手段】 偏光板の吸収軸と位相差フィルムの遅相軸が直交するように積層した光学フィルムにおいて、前記偏光板が、偏光子の両面に透明保護フィルムを積層してなり、当該透明保護フィルムの面内位相差Rel= $(nx_1-ny_1)$ × $d_1$ が、10nm以下であり、かつ厚み方向位相差Rth= $\{(nx_1+ny_1)/2-nz_1\}$ × $d_1$ が、 $30\sim100$ nmであり、前記位相差フィルムのNz= $\{(nx_2-nz_2)/(nx_2-ny_2)$ で表されるNz値が、 $0.1\sim0.8$ を満足し、かつ面内位相差Re2= $\{(nx_2-ny_2)\times d_2$ が、 $100\sim160$ nmであることを特徴とする液晶表示装置用光学フィルム。

【選択図】 図1

## 特願2002-299938

### 出願人履歴情報

識別番号

[000003964]

1. 変更年月日 [変更理由]

1990年 8月31日

变更理由] 新規登録 住 所 大阪府茨

大阪府茨木市下穂積1丁目1番2号

氏 名 日東電工株式会社

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.