Lab 3

F(A,B,C,D) = A' B' C' D + CD + A C' D

,00	1. Simplify F using	K-map method.	CD	
AB	00	01	11	10
00	0	'	3	2 0
01	0	5	7	ن
11	il o	13	15	0
10	8	9	1	0
	V (, L			

The simplified of F(A, B, C, D) = AD + B'D + CD

2. Draw the logic diagram (with gates) of the simplified F function from part (1).

Simplified Circuit:

Explanation:

The negation of any logical identity P is nothing but opposite truth value for P. If P is T then (negation P) is F AND gate is used to find the product of two literals P AND gate Q output is PQ OR gate is used to find the sum of two literals P OR Gate Q output is P + Q.

3. Implement the logic diagram from part(2) with NAND gates.

Given F(A, B, C, D) = AD + B'D + CD [F']' = [(AD + B'D + CD)']'F = [(AD)'(B'D)'(CD)']'

Explanation:

NAND gate is used to find the product of two literals P NAND gate Q output is (PQ)'.

4. Simplify the function F algebraically (you should get the same as the simplified function from part(1), please use proper algebraic rules to simplify).

$$F = A'B'C'D + CO + AC'D$$

$$F = A'B'C'D + AC'D + CD$$

$$F = C'D(A'B'+A) + CD(CO_1 + CD_2 + CD_3)$$

$$F = C'D(CA' + A)(B'+A) + CD(CO_1 + CD_3 + CD_3)$$

$$F = C'D(CA' + A)(B'+A) + CD(CO_1 + CD_3 + CD$$

Which is the required simplified function from part 1