# **빅데이터 특강**

신지은 (서울시립대학교 통계학과)

# 목차

- #01 데이터의 이해
- #02 정형 데이터를 위한 분석 방법 및 실습
- #03 비정형 데이터를 위한 분석방법 및 실습

- ➤ 실습자료 다운로드: <u>https://github.com/jiieunshin/high-univ</u>
- ➤ 문의메일: jieunstat@gmail.com

# 데이터의 분류

# 데이터

# 정형 데이터

| id | 이름   | 나이 | 성별 |
|----|------|----|----|
| 01 | Kim  | 32 | M  |
| 02 | Lee  | 26 | F  |
| 03 | Park | 72 | F  |
| 04 | Choi | 15 | М  |



# 비정형 데이터







# 정형 데이터의 분류

순서가 있는 범주형 자료 ex. 만족도/지지도 범주에 아무런 순서가 없는 자료 ex. 성별/종교 수치형 자료 (양적 자료) numerical data

개체의 특성을 수치로 나타내는 자료

이산형 자료 discrete data

정수형 자료 ex. 각 가정의 어린이 수, 교통사고 발생 건수 연속형 자료 continuous data

실수형 자료 ex. 체중/기온

# ┌------ 파이썬데이터프레임

# DataFrame



## 

|    | 화재발생연도 | 시군구 | 사망자수 | 부상자수 | 재산피해금액   | 출동횟수 | 출동횟수_겨울 | 출동횟수_여름 |
|----|--------|-----|------|------|----------|------|---------|---------|
| 0  | 2017   | 은평구 | 0.0  | 3    | 218200   | 159  | 51      | 32      |
| 1  | 2017   | 종로구 | 1.0  | 3    | 1077665  | 234  | 55      | 69      |
| 2  | 2017   | 중구  | 5.0  | 14   | 485392   | 198  | 48      | 47      |
| 3  | 2017   | 중랑구 | 2.0  | 5    | 332366   | 196  | 53      | 38      |
| 4  | 2018   | 은평구 | 5.0  | 10   | 419503   | 214  | 58      | 47      |
| 5  | 2018   | 종로구 | 14.0 | 22   | 574300   | 254  | 71      | 70      |
| 6  | 2018   | 중구  | 0.0  | 23   | 1257005  | 275  | 76      | 74      |
| 7  | 2018   | 중랑구 | 2.0  | 8    | 201421   | 254  | 72      | 55      |
| 8  | 2019   | 은평구 | 3.0  | 20   | 2412769  | 196  | 62      | 34      |
| 9  | 2019   | 종로구 | 4.0  | 16   | 801094   | 232  | 60      | 63      |
| 10 | 2019   | 중구  | 3.0  | 17   | 74077097 | 213  | 51      | 39      |
| 11 | 2019   | 중랑구 | 1.0  | 9    | 322650   | 210  | 54      | 49      |
| 12 | 2020   | 은평구 | 2.0  | 6    | 504788   | 192  | 48      | 46      |
| 13 | 2020   | 종로구 | 2.0  | 5    | 639751   | 217  | 50      | 49      |
| 14 | 2020   | 중구  | 0.0  | 10   | 1284422  | 185  | 41      | 54      |
| 15 | 2020   | 중랑구 | 2.0  | 12   | 229566   | 225  | 54      | 57      |
| 16 | 2021   | 은평구 | 3.0  | 8    | 875722   | 160  | 57      | 42      |
| 17 | 2021   | 종로구 | 0.0  | 12   | 465499   | 192  | 48      | 54      |

| ı | <b>-</b> | 정형 데( | 이터의집 | 계 방법: | 기초통계 | 링 |
|---|----------|-------|------|-------|------|---|
|   |          |       |      |       |      |   |

|    |        |     |      |      |          |      |         | 1       |                                       |
|----|--------|-----|------|------|----------|------|---------|---------|---------------------------------------|
|    | 화재발생연도 | 시군구 | 사망자수 | 부상자수 | 재산피해금액   | 출동횟수 | 출동횟수_겨울 | 출동횟수_여름 |                                       |
| 0  | 2017   | 은평구 | 0.0  | 3    | 218200   | 159  | 51      | 32      | 세 척도 갯수 (count), 합산 (sum)             |
| 1  | 2017   | 종로구 | 1.0  | 3    | 1077665  | 234  | 55      | 69      |                                       |
| 2  | 2017   | 중구  | 5.0  | 14   | 485392   | 198  | 48      | 47      | 중심척도 평균 (mean), 중위수 (median)          |
| 3  | 2017   | 중랑구 | 2.0  | 5    | 332366   | 196  | 53      | 38      |                                       |
| 4  | 2018   | 은평구 | 5.0  | 10   | 419503   | 214  | 58      | 47      |                                       |
| 5  | 2018   | 종로구 | 14.0 | 22   | 574300   | 254  | 71      | 70      | 표준편차 (standard deviation), 백분위 (quant |
| 6  | 2018   | 중구  | 0.0  | 23   | 1257005  | 275  | 76      | 74      |                                       |
| 7  | 2018   | 중랑구 | 2.0  | 8    | 201421   | 254  | 72      | 55      |                                       |
| 8  | 2019   | 은평구 | 3.0  | 20   | 2412769  | 196  | 62      | 34      | ·● 범주형 자료 수치형 자료                      |
| 9  | 2019   | 종로구 | 4.0  | 16   | 801094   | 232  | 60      | 63      |                                       |
| 0  | 2019   | 중구  | 3.0  | 17   | 74077097 | 213  | 51      | 39      | (셈 척도) count, percent (셈 척도) sum      |
| 1  | 2019   | 중랑구 | 1.0  | 9    | 322650   | 210  | 54      | 49      |                                       |
| 2  | 2020   | 은평구 | 2.0  | 6    | 504788   | 192  | 48      | 46      | 산포척도 모두                               |
| 3  | 2020   | 종로구 | 2.0  | 5    | 639751   | 217  | 50      | 49      |                                       |
| 4  | 2020   | 중구  | 0.0  | 10   | 1284422  | 185  | 41      | 54      |                                       |
| 15 | 2020   | 중랑구 | 2.0  | 12   | 229566   | 225  | 54      | 57      |                                       |
| 16 | 2021   | 은평구 | 3.0  | 8    | 875722   | 160  | 57      | 42      | 재산피해금액, 출동횟수                          |
| 17 | 2021   | 종로구 | 0.0  | 12   | 465499   | 192  | 48      | 54      |                                       |

## ·------ 집계를위한문제와설계

|    | 화재발생연도 | 시군구 | 사망자수 | 부상자수 | 재산피해금액   | 출동횟수 | 출동횟수_겨울 | 출동횟수_여름 |
|----|--------|-----|------|------|----------|------|---------|---------|
| 0  | 2017   | 은평구 | 0.0  | 3    | 218200   | 159  | 51      | 32      |
| 1  | 2017   | 종로구 | 1.0  | 3    | 1077665  | 234  | 55      | 69      |
| 2  | 2017   | 중구  | 5.0  | 14   | 485392   | 198  | 48      | 47      |
| 3  | 2017   | 중랑구 | 2.0  | 5    | 332366   | 196  | 53      | 38      |
| 4  | 2018   | 은평구 | 5.0  | 10   | 419503   | 214  | 58      | 47      |
| 5  | 2018   | 종로구 | 14.0 | 22   | 574300   | 254  | 71      | 70      |
| 6  | 2018   | 중구  | 0.0  | 23   | 1257005  | 275  | 76      | 74      |
| 7  | 2018   | 중랑구 | 2.0  | 8    | 201421   | 254  | 72      | 55      |
| 8  | 2019   | 은평구 | 3.0  | 20   | 2412769  | 196  | 62      | 34      |
| 9  | 2019   | 종로구 | 4.0  | 16   | 801094   | 232  | 60      | 63      |
| 10 | 2019   | 중구  | 3.0  | 17   | 74077097 | 213  | 51      | 39      |
| 11 | 2019   | 중랑구 | 1.0  | 9    | 322650   | 210  | 54      | 49      |
| 12 | 2020   | 은평구 | 2.0  | 6    | 504788   | 192  | 48      | 46      |
| 13 | 2020   | 종로구 | 2.0  | 5    | 639751   | 217  | 50      | 49      |
| 14 | 2020   | 중구  | 0.0  | 10   | 1284422  | 185  | 41      | 54      |
| 15 | 2020   | 중랑구 | 2.0  | 12   | 229566   | 225  | 54      | 57      |
| 16 | 2021   | 은평구 | 3.0  | 8    | 875722   | 160  | 57      | 42      |
| 17 | 2021   | 종로구 | 0.0  | 12   | 465499   | 192  | 48      | 54      |

#### 문제

시군구별평균재산피해금액과총출동횟수

#### 설계

- ▶ 그룹화:시군구
- ▶ 계산하고 싶은 열:재산피해금액,출동횟수
- ➢ 집계함수:sum,mean

#### ---● 파이썬 구현 예시

df5.groupby(['시군구']).agg({"재산피해금액" : "mean", "출동횟수" : "sum"})

| 시군구 | 재산피해금액     | 술농욋수 |
|-----|------------|------|
| 은평구 | 886196.4   | 921  |
| 종로구 | 711661.8   | 1129 |
| 중구  | 15976858.0 | 1042 |
| 중랑구 | 286252.0   | 1098 |

#### ┌----- 정형데이터의시각화

#### 범주형 자료



#### 원 그래프





#### 분할표

|      |    | 결혼생활 |           |
|------|----|------|-----------|
| 교육수준 | 빈약 | 원만   | 대단히<br>양호 |
| 대학   | 72 | 112  | 245       |
| 고등학교 | 65 | 90   | 120       |
| 중학교  | 95 | 103  | 98        |

[표] 교육수준과 결혼생활

┌----- 정형데이터의시각화

범주형 자료





#### ┌------ 정형데이터의시각화

수치형 자료

▶ 도수분포표와 히스토그램

아래의 수학 점수를 도수분포표로 나타내보자

| Female                                                                                    | Male                                                                                                                      |  |  |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 7, 59, 78, 79, 60, 65, 68, 71, 75, 48, 51, 55, 56, 41, 43, 44, 75, 78, 80, 81, 83, 83, 85 | 48, 49, 49, 30, 30,<br>31, 32, 35, 37, 41,<br>86, 42, 51, 53, 56,<br>42, 44, 50, 51, 65,<br>67, 51, 56, 58, 64,<br>64, 75 |  |  |  |  |



2. <u>구간</u>을 몇 개로 나눌 것인가? ⇒ 10개

**>>>** 

- 3. <u>구간 폭</u>을 정하자 ⇒ 구간 폭 = (최댓값 - 최솟값) / 구간수 = 78 / 10 = 7.8
- 4. <u>도수</u>와 상대도수, 누적도수, 누적상대도수 등을 산출한다.

### ┌------ 정형데이터의시각화

#### 수치형 자료

#### ▶ 도수분포표와 히스토그램

| 점수        | 학생 수 (명) |
|-----------|----------|
| (0, 10]   | 1        |
| (10, 20]  | 0        |
| (20, 30]  | 2        |
| (30, 40]  | 4        |
| (40, 50]  | 12       |
| (50, 60]  | 12       |
| (60, 70]  | 7        |
| (70, 80]  | 9        |
| (80, 90]  | 5        |
| (90, 100] | 0        |
| 계         | 50       |





#### ┌----- 정형데이터의시각화

#### 수치형 자료

▶ 평균과 중위수

두 가지 자료 (0, 1, 2, 2, 2, 3, 4)와 (70, 1, 2, 2, 2, 3, 4)의 평균, 중앙값을 비교해보자

▶ 백분위수와 상자그림



\_----- 정형데이터의시각화

수치형 자료

우리나라 18대 국회의원 선거구의 선거인수 분포



┌----- 정형데이터의시각화

수치형 자료

- ▶ 분산과 표준편차
  - 분산 (variance)
    - : 각 자료값들과 평균과의 차이  $x_i \bar{x}$ 로 산포를 나타낸다. 즉, 평균으로부터 멀리 떨어져 있을수록  $x_i \bar{x}$ 의 절댓값이 커짐. 표본분산  $s^2$ 은 다음과 같은 식으로 구한다.

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

- 표준편차 (s.d., standard deviation)
  - : 분산의 제곱근. 분산을 구할 때 제곱을 취함으로써 원래 자료값의 단위가 달라진 것을 복구한 것이다. 표본표준편차 s은 다음과 같은 식으로 구한다.

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

┌------ 정형데이터의시각화

수치형 자료



# 비정형 데이터의 분류

#### 이미지 데이터

#### CIFAR-10

- 32x32픽셀의 60,000개의 컬러 이미지 각10개의 클래스

비행기

자동차

새

고양이

사슴

개

개구리

말

배

트럭



#### **MNIST**

- 28x28픽셀의 60,000개의 손글씨 데이터 각10개의 클래스

# 이미지 데이터

#### 텍스트 데이터

#### IMDB 리뷰 데이터

- 감성분류를위한영화사이트IMDB의 50,000개의 리뷰데이터 해당리뷰가긍정인경우1(50%),부정인경우0(50%)으로라벨링

<sos> this film was just brilliant casting location scenery story d irection everyone's really suited the part they played and you coul d just imagine being there robert <unk> is an amazing actor and now the same being director <unk> father came from the same scottish is land as myself so i loved the fact there was a real connection with this film the witty remarks throughout the film were great it was j ust brilliant so much that i bought the film as soon as it was rele ased for <unk> and would recommend it to everyone to watch and the fly fishing was amazing really cried at the end it was so sad and y ou know what they say if you cry at a film it must have been good a nd this definitely was also <unk> to the two little boy's that play ed the <unk> of norman and paul they were just brilliant children a re often left out of the <unk> list i think because the stars that play them all grown up are such a big profile for the whole film bu t these children are amazing and should be praised for what they ha ve done don't you think the whole story was so lovely because it wa s true and was someone's life after all that was shared with us all

# 이변량 데이터

-→ Female과Male을 동시에 분석할 수는 없을까?

| Female                                                                                    | Male                                                                                                                      |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 7, 59, 78, 79, 60, 65, 68, 71, 75, 48, 51, 55, 56, 41, 43, 44, 75, 78, 80, 81, 83, 83, 85 | 48, 49, 49, 30, 30,<br>31, 32, 35, 37, 41,<br>86, 42, 51, 53, 56,<br>42, 44, 50, 51, 65,<br>67, 51, 56, 58, 64,<br>64, 75 |



#### 테이블을재구성하자

| obs | Female | Male |
|-----|--------|------|
| 1   | 7      | 48   |
| 2   | 59     | 49   |
| 3   | 78     | 49   |
| 4   | 79     | 30   |
| 5   | 60     | 30   |
| 6   | 65     | 31   |
|     | •••    | •••  |

#### ι-----● 이변량 데이터의 시각화:산점도



#### ı----- 두 변수간 관련성이 있는가?









- > 상관계수
  - 변수 간의 관계의 강함을 보는 척도
  - $(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)$ 을 얻어진 표본 (2변량 자료)이라 하자.  $\bar{x}$ 와 $\bar{y}$ 를 각각 x와 y의 표본평균으로 하였을 때

$$S_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

x와 y 표본 공분산(sample covariance)이라고 한다.

- 또  $S_x^2$ 와  $S_y^2$ 을 각각 x와 y의 표본분산이라고 하면

$$\gamma = \frac{S_{xy}}{\sqrt{S_x^2 S_y^2}}$$

를 표본상관계수 (sample correlation coefficient)라고 한다.

# 정형 데이터 분석방법



회귀

선형회귀모형

-데이터를가장잘설명하는선을찾는방법



분류

#### KNN

-내이웃의정보를사용하여데이터를나누는방법



분류

KNN

-내이웃의정보를사용하여데이터를나누는방법



분류

#### **KNN**

-내이웃의정보를사용하여데이터를나누는방법



분류

의사결정나무

-데이터의 조합에 대한의사결정 규칙에 따라 데이터를 분류하는 방법



#### 분류

#### 의사결정나무 -데이터의조합에대한의사결정규칙에따라데이터를 분류하는 방법

- 데이터 과학에서 Iris DataSet
  - 아이리스 품종 중 Setosa, Versicolor, Virginica 분류에 대한 로널드 피션의 1936년 논문에서 사용된 데이터 셋.



• 꽃받침(Sepal)과 꽃잎(Petal)의 길이 너비로 세개 품종을 분류

|   | sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | species    |
|---|-------------------|------------------|-------------------|------------------|------------|
| 0 | 4.9               | 3.0              | 1.4               | 0.2              | setosa     |
| 1 | 4.7               | 3.2              | 1.3               | 0.2              | setosa     |
| 2 | 4.6               | 3.1              | 1.5               | 0.2              | setosa     |
| 3 | 6.4               | 3.2              | 4.5               | 1.5              | versicolor |
| 4 | 6.9               | 3.1              | 4.9               | 1.5              | versicolor |
| 5 | 5.5               | 2.3              | 4.0               | 1.3              | versicolor |
| 6 | 7.1               | 3.0              | 5.9               | 2.1              | virginica  |
| 7 | 6.3               | 2.9              | 5.6               | 1.8              | virginica  |
| 8 | 7.6               | 3.0              | 6.6               | 2.1              | virginica  |







# 데이터의 분할

!----- 데이터를 분할시켜 학습하는 것이 기본!



#### ı----● 데이터를왜 분할해야될까?

|    | 화재발생연도 | 시군구 | 사망자수 | 부상자수 | 재산피해금액   | 출동횟수 | 출동횟수_겨울 | 출동횟수_여름 |
|----|--------|-----|------|------|----------|------|---------|---------|
| 0  | 2017   | 은평구 | 0.0  | 3    | 218200   | 159  | 51      | 32      |
| 1  | 2017   | 종로구 | 1.0  | 3    | 1077665  | 234  | 55      | 69      |
| 2  | 2017   | 중구  | 5.0  | 14   | 485392   | 198  | 48      | 47      |
| 3  | 2017   | 중랑구 | 2.0  | 5    | 332366   | 196  | 53      | 38      |
| 4  | 2018   | 은평구 | 5.0  | 10   | 419503   | 214  | 58      | 47      |
| 5  | 2018   | 종로구 | 14.0 | 22   | 574300   | 254  | 71      | 70      |
| 6  | 2018   | 중구  | 0.0  | 23   | 1257005  | 275  | 76      | 74      |
| 7  | 2018   | 중랑구 | 2.0  | 8    | 201421   | 254  | 72      | 55      |
| 8  | 2019   | 은평구 | 3.0  | 20   | 2412769  | 196  | 62      | 34      |
| 9  | 2019   | 종로구 | 4.0  | 16   | 801094   | 232  | 60      | 63      |
| 10 | 2019   | 중구  | 3.0  | 17   | 74077097 | 213  | 51      | 39      |
| 11 | 2019   | 중랑구 | 1.0  | 9    | 322650   | 210  | 54      | 49      |
| 12 | 2020   | 은평구 | 2.0  | 6    | 504788   | 192  | 48      | 46      |
| 13 | 2020   | 종로구 | 2.0  | 5    | 639751   | 217  | 50      | 49      |
| 14 | 2020   | 중구  | 0.0  | 10   | 1284422  | 185  | 41      | 54      |
| 15 | 2020   | 중랑구 | 2.0  | 12   | 229566   | 225  | 54      | 57      |
| 16 | 2021   | 은평구 | 3.0  | 8    | 875722   | 160  | 57      | 42      |
| 17 | 2021   | 종로구 | 0.0  | 12   | 465499   | 192  | 48      | 54      |

#### 모델링의 목적

새로운 데이터가 들어왔을 때 이 데이터의 값/라벨을 예측하는 것!

---● 2017~2021년도의 화재발생 데이터로 모델링

→ '2022년도의 화재발생 사망자수' 예측할 수 있지 않을까??





#### 훈련데이터

독립변수(X\_train): 2017~2021년도의 시군구/출동건수/부상자수/... 종속변수(y\_train): 2017~2021년도의 사망자수





#### 시험데이터

독립변수(X\_test):2022년도의 시군구/출동건수/부상자수/... 종속변수(y\_test)=?

# ├────**● 훈련데이터로모델을학습시키자**

Batch Size = 100 Batch Size = 500 Batch Size = 1000 Iterations per Iterations per Iterations per

Epoch = 10

Epoch = 2

Epoch = 1

#### 이미지 분류

**CNN (Convolution Neural Network)** 





이미지 분류

**CNN (Convolution Neural Network)** 



#### 3. 비정형 데이터를 위한 분석 방법 및 실습 이미지 분류 **CNN (Convolution Neural Network)** --♦ 2. max pooling과정 downsampling Convolution Max Pooling \* -8 Kernel -1 Output Output **Image** Feature Map

#### 이미지 분류

**CNN (Convolution Neural Network)** 

\_\_\_\_\_ 3. fully connected과정



#### 텍스트 분류

#### **RNN** (Recursive Neural Network)

noun: 0.1

pronoun: 0.1

noun: 0.2

pronoun: 0.1

noun: 0.8 pronoun: 0.0

pronoun: 0.8

verb: 0.7

verb: 0.1

noun: 0.2

verb: 0.2

verb: 0.0

preposition: 0.0 preposition: 0.6

preposition: 0.0

