Project 3 - FYS3150*

Andreas G. Lefdalsnes

Student: University of Oslo, Department of Physics email-address: andregl@student.matnat.uio.no

Tellef Storebakken

Student: University of Oslo, Department of Physics email-address: tellefs@student.matnat.uio.no

(Dated: October 19, 2016)

An abstract

I. INTRODUCTION

* Computational Physics, autumn 2016, University of Oslo

B. The second part

An introduction.

II. THEORY AND METHODS

A. Newton's law of gravitation

Newton's law of gravitation states for two objects of mass m_1 and m_2 , the force on object 1 from object 2 is given by [1],

$$F_{1,2} = \frac{Gm_1m_2}{r^2}u_r = \frac{Gm_1m_2}{r^3}r$$
 (1)

where G is the gravitational constant and $u_r = r/r$ is a radial unit vector. r is a radial vector pointing at object 2 and r = |r| is the distance. Newton's third law gives us that the force on object 2 from object 1 is $F_{2,1} = -F_{1,2}$. Newton's third law gives us the differential equation governing the motion of object 1

$$\ddot{r(t)} = a(t) = F_{1,2}(t, r(t))/m_1,$$
 (2)

where a is the acceleration, and we can solve this equation to find the motion r(t). For a two-body system this equation will produce closed elliptical orbits around a common center of mass.

If we assume that the orbit of object 2 around object 1 is circular we know that the force obeys the following equation

$$F_{2,1} = \frac{Gm_1m_2}{r^2} = \frac{m_1v_1^2}{r},\tag{3}$$

which implies that

$$v_1^2 r = Gm_2. (4)$$

Introducing 1 AU = $1.5 \cdot 10^{11}$ m

$$1 = 1 \tag{5}$$

C. The third part

A reference

III. RESULTS AND DISCUSSION

A. First subpart

An equation reference

B. Second subpart

More text.

IV. CONCLUSION

Do stuff.

V. APPENDIX

All code used is available at: The programs used in this project are listed in this section:

main.cpp: Program1

plot.py: Program2

[1] All theory in this project adapted from FYS3150 Project 3 (Fall 2016) linkname.