## De la quantique en cryptographie

Élie Besnard, Malo Leroy, Yun Marcola–da-Cunha Macedo

Lycée Chateaubriand

27 juin 2022

#### Motivation

• Qu'est-ce que la cryptographie?

#### Motivation

- Qu'est-ce que la cryptographie?
- Ancrage au thème

Modèle du cicruit quantique

# Principes de quantique

■ Fonction d'état

# Principes de quantique

- Fonction d'état
- États propres :  $|0\rangle$ ,  $|1011\rangle$ , etc.

# Principes de quantique

- Fonction d'état.
- États propres :  $|0\rangle$ ,  $|1011\rangle$ , etc.
- États superposés, amplitudes :  $|\psi\rangle=\frac{1}{\sqrt{2}}\,|0\rangle-\frac{1}{\sqrt{2}}\,|1\rangle$

# Principes de quantique

- Fonction d'état.
- États propres :  $|0\rangle$ ,  $|1011\rangle$ , etc.
- États superposés, amplitudes :  $|\psi\rangle=\frac{1}{\sqrt{2}}\,|0\rangle-\frac{1}{\sqrt{2}}\,|1\rangle$
- Probabilité

### Un exemple



$$(I_2 \otimes X) \cdot S \cdot (X \otimes I_2) \cdot S = I_4$$

Application : tests de parité

#### Oracles

- Phase :  $U_f |x\rangle = (-1)^{f(x)} |x\rangle$
- Somme :  $U_f |x, y\rangle = |x, y \oplus f(y)\rangle$

### Calcul formel

■ Valeurs exactes :  $\frac{2}{5}$ ,  $\sqrt{2}$ ,  $e^{\frac{i\pi}{7}}$ ,  $\pi + 3^{2/3}$ , etc.

#### Calcul formel

- Valeurs exactes :  $\frac{2}{5}$ ,  $\sqrt{2}$ ,  $e^{\frac{i\pi}{7}}$ ,  $\pi + 3^{2/3}$ , etc.
- Produit de Kronecker, produit matriciel, etc.

#### Calcul formel

- Valeurs exactes :  $\frac{2}{5}$ ,  $\sqrt{2}$ ,  $e^{\frac{i\pi}{7}}$ ,  $\pi + 3^{2/3}$ , etc.
- Produit de Kronecker, produit matriciel, etc.
- Efficacité algorithmique

### Performances



## Interface graphique





#### Deutsch-Jozsa et Bernstein-Vazirani



Application: Bernstein-Vazirani, 
$$f(x_1,...,x_n) = \sum_{i=0}^n x_i \cdot a_i \in \mathbb{F}_2$$

# Shor: principe

- 1 a pseudo-aléatoire
- 2 Algorithme d'Euclide
- 3 Recherche de période

# Shor: circuit

QFT-1

I

Ι

Fonction d'oracle :  $f(x) = a^x \mod N$ 

## Grover: principe

Équation :  $f(x_1,...,x_n) = 1$ , résolution par rotations successives



### Grover : circuit



### Grover : résultats

Exemple : la seule solution est (0, 1, 0, 1, 1, 0) soit 22



### Protocoles

■ Protocole E91

### Protocoles

- Protocole E91
- Expérience : loi de Malus

## Travaux sur la polarisation



Début



Filtre 2



Filtre 1



Mesure

#### Conclusion

- Tentative de création d'un protocole
- Les applications