In [17]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score,mean_squared_error
%matplotlib inline

df = pd.read_csv(r'D:\dataset mm\archive (1)\data.csv') # Importing the dataset
df.sample(5) #previewing dataset randomly

Out[17]:

	Make	Model	Year	Engine Fuel Type	Engine HP	Engine Cylinders	Transmission Type	Driven_Wheels	Number of Doors	Market Category	Vehicle Size	Vehicle Style
6498	Lincoln	LS	2004	premium unleaded (required)	232.0	6.0	AUTOMATIC	rear wheel drive	4.0	Luxury,Performance	Midsize	Sedan
8909	Volvo	S60	2017	regular unleaded	240.0	4.0	AUTOMATIC	front wheel drive	4.0	Luxury	Midsize	Sedan
11478	Suzuki	X-90	1997	regular unleaded	95.0	4.0	MANUAL	four wheel drive	2.0	NaN	Compact	2dr SUV
5142	Infiniti	G35	2008	premium unleaded (required)	306.0	6.0	AUTOMATIC	rear wheel drive	4.0	Luxury	Midsize	Sedan
154	BMW	3 Series	2016	premium unleaded (required)	320.0	6.0	AUTOMATIC	rear wheel drive	4.0	Luxury,High- Performance	Midsize	Sedan
4		_	_									

In [18]: print(df.shape) # view the dataset shape
 print(df['Make'].value_counts()) # viewing Car companies with their cars number

(11914, 16)	
Chevrolet	1123
Ford	881
Volkswagen	809
Toyota	746
Dodge	626
Nissan	558
GMC	515
Honda	449
Mazda	423
Cadillac	397
Mercedes-Benz	353
Suzuki	351
BMW	334
Infiniti	330
Audi	328
Hyundai	303
Volvo	281
Subaru	256
Acura	252
Kia	231
Mitsubishi	213
Lexus	202
Buick	196
Chrysler	187
Pontiac	186
Lincoln	164
Oldsmobile	150
Land Rover	143
Porsche	136
Saab	111
Aston Martin	93
Plymouth	82
Bentley	74
Ferrari	69
FIAT	62
Scion	60
Maserati	58
Lamborghini	52
Rolls-Royce	31
Lotus	29
Tesla	18
HUMMER	17

Maybach 16						
Alfa Romeo	5					
McLaren	5					
Genesis	3					
Spyker						
Bugatti						

Name: Make, dtype: int64

In [19]: new_df = df[df['Make']=='Volkswagen'] # in this new dataset we only take 'Volkswagen' Cars
 print(new_df.shape) # Viewing the new dataset shape
 print(new_df.isnull().sum()) # Is there any Null or Empty cell presents
 new_df = new_df.dropna() # Deleting the rows which have Empty cells
 print(new_df.shape) # After deletion Vewing the shape
 print(new_df.isnull().sum()) #Is there any Null or Empty cell presents
 new_df.sample(2) # Checking the random dataset sample

(809, 16) Make Model Year Engine Fuel Type Engine HP Engine Cylinders Transmission Type Driven_Wheels Number of Doors Market Category Vehicle Size Vehicle Style highway MPG city mpg Popularity MSRP dtype: int64 (581, 16) Make	0 0 0 0 4 0 0 0 224 0 0 0 0
Model	0
Year Engine Fuel Type	0 0
Engine HP	0
Engine Cylinders	0
Transmission Type	0
Driven_Wheels	0
Number of Doors	0
Market Category	0
Vehicle Size	0
Vehicle Style highway MPG	0 0
city mpg	0
Popularity	0
MSRP	0
dtype: int64	J

Out[19]:

		Make	Model	Year	Engine Fuel Type	_	Engine Cylinders	Transmission Type	Driven_Wheels	Number of Doors	Market Category	Vehicle Size
	6134	Volkswagen	Jetta	2016	premium unleaded (recommended)	210.0	4.0	MANUAL	front wheel drive	4.0	Factory Tuner,Performance	Midsize
1	10529	Volkswagen	Touareg 2	2009	diesel	221.0	6.0	AUTOMATIC	all wheel drive	4.0	Crossover, Diesel	Midsize

In [20]: new_df = new_df[['Engine HP','MSRP']] # We only take the 'Engine HP' and 'MSRP' columns
new_df.sample(5) # Checking the random dataset sample

Out[20]:

	Engine HP	MSRP
2393	200.0	34275
5466	170.0	20995
5419	292.0	37895
6013	200.0	26195
5335	200.0	26895

```
In [21]: X = np.array(new_df[['Engine HP']]) # Storing into X the 'Engine HP' as np.array
y = np.array(new_df[['MSRP']]) # Storing into y the 'MSRP' as np.array
print(X.shape) # Vewing the shape of X
print(y.shape) # Vewing the shape of y
```

(581, 1)

(581, 1)

```
In [22]: plt.scatter(X,y,color="red") # Plot a graph X vs y
    plt.title('HP vs MSRP')
    plt.xlabel('HP')
    plt.ylabel('MSRP')
    plt.show()
```



```
In [23]: X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.25,random_state=15) # Spliting into train
& test dataset
regressor = LinearRegression() # Creating a regressior
regressor.fit(X_train,y_train) # Fiting the dataset into the model
```

Out[23]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

```
In [24]: plt.scatter(X_test,y_test,color="green") # Plot a graph with X_test vs y_test
    plt.plot(X_train,regressor.predict(X_train),color="red",linewidth=3) # Regressior line showing
    plt.title('Regression(Test Set)')
    plt.xlabel('HP')
    plt.ylabel('MSRP')
    plt.show()
```



```
In [25]: plt.scatter(X_train,y_train,color="blue") # Plot a graph with X_train vs y_train
    plt.plot(X_train,regressor.predict(X_train),color="red",linewidth=3) # Regressior line showing
    plt.title('Regression(training Set)')
    plt.xlabel('HP')
    plt.ylabel('MSRP')
    plt.show()
```



```
In [26]: y_pred = regressor.predict(X_test)
print('R2 score: %.2f' % r2_score(y_test,y_pred)) # Priniting R2 Score
print('Mean squared Error:',mean_squared_error(y_test,y_pred)) # Priniting the mean error
```

R2 score: 0.73 Mean squared Error : 55796476.51179166

```
In [27]: def car_price(hp): # A function to predict the price according to Horsepower
    result = regressor.predict(np.array(hp).reshape(1, -1))
    return(result[0,0])

car_hp = int(input('Enter Volkswagen cars Horse Power : '))
print('This Volkswagen Prce will be : ',int(car_price(car_hp))*69,'₹')
```

Enter Volkswagen cars Horse Power : 111 This Volkswagen Prce will be : 1025202 ₹

In []: