72. Let $\mathbf{W} = (W_1, ..., W_n)$ be a collection of IID random variables from a gamma (η, θ) population with known shape parameter η and unknown rate θ (that is, the scale is θ^{-1}). The probability density function for this parameterization of the gamma distribution is

$$f(\omega|\eta,\theta) = \frac{\theta^{\eta}}{\Gamma(\eta)} \omega^{\eta-1} \exp\{-\omega\theta\}, \quad \omega > 0,$$

with parameter space $\Theta = \{(\eta, \theta) : \eta > 0, \theta > 0\}$. For modeling the uncertainty in θ , use a gamma (α, β) prior, where β is the rate.

- (a) Show that the posterior distribution for Bayesian estimation of θ is a gamma with shape parameter $\alpha + n\nu$ and rate parameter $\beta + \sum_{i=1}^{n} w_i$. You do not need to find an expression for $m(\boldsymbol{w})$, the marginal distribution of \boldsymbol{W} .
- (b) Under Bayes rule for absolute error loss, what is the Bayes estimator of θ ? (Provide a specific mathematical explanation, not just one word).
- (c) Under Bayes rule for squared error loss, what is the Bayes estimator of θ ? (Provide a specific mathematical explanation, not just one word).
- (d) What is the Bayes test of

$$H_0: \theta \leq \theta_0$$
 versus $H_1: \theta > \theta_0$?

Be as specific as possible.

(e) Determine the shortest $1 - \alpha$ Bayesian credible set for θ . What is the name given to this credible set?