Conservatorio di Musica Santa Cecilia

Dipartimento di Nuove Tecnologie e Linguaggi Musicali

Tesi di Laurea Biennale in Musica Elettronica

Sistemi Complessi Adattivi per la performance musicale in Live Electronics

Relatore:

Giuseppe Silvi

Candidato:

Luca Spanedda

Correlatore:

Agostino Di Scipio

Anno Accademico 2021/2022

Dichiarazione

Dichiaro che il sottoscritto nonché autore del documento è il responsabile del suo contenuto, e per le parti tratte da altri lavori, queste vengono espressamente dichiarate citando le fonti.

Luca Spanedda

${\bf Ringraziamenti}$

qui i ringraziamenti.

Abstract

Il lavoro qui presentato è uno studio di analisi, implementazione e esecuzione di tre Sistemi Complessi Adattivi per la performance musicale in Live Electronics. La scelta di questi tre sistemi corrisponde a tre diversi casi di studio nell'implementazione di dinamiche nonlineari sfruttate per la generazione dei comportamenti emergenti nei Sisitemi Complessi. Una prima parte del lavoro tratterà dell'implementazione e l'analisi di due brani rispettivamente di Agostino Di Scipio e Dario Sanfilippo. Di Agostino di Scipio un sistema con nonlinearità provenenti dal mondo fisico, che sfrutta fenomeni generati dalla catena elettroacustica all'interno dell'ambiente e riportati poi all'interno del sistema digitale. Di Dario Sanfilippo invece un sistema che sfrutta nonlinearità appositamente programmate dal compositore nel mondo digitale, controllate tramite agenti di autoregolazione scritti nel software. Infine l'ultima parte del lavoro è dedicata alla composizione di un mio brano, che sfrutta elementi di logica ibridi appresi dai due casi di studio presentati qui, e che andrà a conclusione del lavoro di ricerca svolto durante il corso della tesi.

Contents

1	Introduzione					
	1.1 La Cibernetica	3				
	1.2 Le cibernetiche nella musica	5				
	1.3 Il Feedback	9				
2	2 La composizione di interazioni ecosistemiche					
A	A First appendix					
В	B Second appendix					
\mathbf{L}_{i}	ist of Tables					
\mathbf{L}_{1}^{2}	ist of Figures					

1 Introduzione

I suppose I could mention from one of the very earliest computer scientists, whose name was Norbert Wiener, and he wrote a book back in the '50s, from before I was even born, called "The Human Use of Human Beings."...

And he has this amazing line where he says, one could imagine, as a thought experiment — and I'm paraphrasing, this isn't a quote — one could imagine a global computer system where everybody has devices on them all the time, and the devices are giving them feedback based on what they did, and the whole population is subject to a degree of behavior modification. And such a society would be insane, could not survive, could not face its problems. And then he says, but this is only a thought experiment, and such a future is technologically infeasible. And yet, of course, it's what we have created, and it's what we must undo if we are to survive. Jaron Lanier:

How we need to remake the internet, TED Talk 2018

All'inizio del XX Secolo si è manifestata una situazione globale di importanti cambiamenti in tutti gli ambiti. Nel mondo dell'arte con la nascita delle avanguardie artistiche e in risposta alla problematica del dover trovare nuovi modi di fare che riflettano le tematiche della società attuale. Nelle scienze, con l'esigenza di dover introdurre nuovi paradigmi per far fronte alla grande crisi dei fondamenti e delle certezze. Durante il corso del secolo poi, questi cambiamenti hanno portato ad importanti punti di incontro non più occasionali fra questi due ambiti. La figura dell'artista inizia ad interessarsi alle nuove tecnologie e teorie scientifiche, e questo è stato un importante punto in comune a tutte le avanguardie dell'epoca, inclusa quella musicale. Nel caso di questa tesi, l'attenzione che ripongo a questo scenario del XX Secolo è in particolare su un cambio di paradigma scientifico nascente durante la seconda guerra mondiale e consolidato al termine di questa, la nascita della cibernetica e la conseguente formulazione di scienze della complessità. La complessità, non è un ambito particolare di una sola scienza che tratta di questo, ma più un nuovo modo di pensare e di osservare i fenomeni della realtà. Se vogliamo, da un punto di vista puramente filosofico, l'idea primordiale di comportamento complesso, che sfugge alla comprensione e formalizzazione da parte dell'uomo, è rintracciabile fino alle più antiche società, in quello che è stato secondo antiche credenze e religioni il principio del mondo, questo non avveniva ad opera di una divinità creatrice come nelle attuali religioni monoteiste, ma dove ogni cosa deriva invece dalla materia e dall'evoluzione del caos primordiale, come è nel caso del mito greco nelle varie Teogonie fra cui la più famosa quella scritta da Esiodo. Nelle mitologie antiche dunque il caos è quasi sempre contrapposto al cosmo, nel senso di universo disordinato il primo e ordinato il secondo, e il caos rimarrà sinonimo di disordine nell'ambito delle scienze almeno fino alla fine del XIX secolo, quando uno studioso nell'ambito della meccanica classica, Henri Poincaré, osservò e analizzò la possibilità di un comportamento fortemente irregolare di alcuni sistemi dinamici studiando il problema dei tre corpi, che lo portò alla scoperta del caos matematico.² La scoperta di Poincaré segnerà un punto di svolta che verrà ripreso poi solamente negli anni '50 del secolo successivo dal meteorologo Edward Norton Lorenz. Nel 1963 Lorenz pubblica il suo articolo Deterministic Nonperiodic Flow, nel quale tratta del comportamento caotico in un sistema semplice e deterministico, con la formazione di un attrattore strano, aprendo di fatto ufficialmente la strada quella che diverrà poi la Teoria del Caos, e mostrando come in realtà all'interno dell'ordine emergano forme di disordine, e all'interno del disordine siano presenti forme di ordine.

1.1 La Cibernetica

Facendo un passo indietro e ritornando a questo complesso scenario del XX secolo, uno dei più importanti avanzamenti nelle scienze al termine della seconda guerra mondiale, che contribuì alla formazione del paradigma della complessità, risedette nell'introduzione della cibernetica.

La cibernetica è la scienza che studia i principi astratti di organizzazione nei sistemi complessi, ed ebbe inizio durante gli anni della seconda guerra mondiale, merito del fisico e matematico Norbert Weiner. Nel 1940 Wiener insieme ad altre ad altre prominenti figure provenienti da diversi ambiti scientifici, come Ross Ashby, Margaret Mead, Gregory Bateson, Heinz von Foer-

¹the free encyclopedia Wikipedia. *Teogonia (Esiodo)*. URL: https://it.wikipedia.org/wiki/Teogonia_(Esiodo). (accessed: 03.11.2022).

²June Barrow-Green. L'Ottocento: astronomia. Il problema dei tre corpi e la stabilità del Sistema solare. URL: https://www.treccani.it/enciclopedia/l-ottocento-astronomia-il-problema-dei-tre-corpi-e-la-stabilita-del-sistema-solare_%28Storia-della-Scienza%29/#:~:text=La%20formulazione%20del%20problema%20dei,il%20moto%20negli%20istanti%20successivi.. (accessed: 03.11.2022).

ster, partecipano ad una serie di conferenze multidisciplinari chiamate "The Macy Conferences", inizialmente intitolate come "Feedback Mechanism in Biology and the Social Sciences" con l'obiettivo comune di andare a definire gli ambiti di interesse della nuova scienza. Norbert Weiner nel 1948, ispirato dalla meccanica ed i suoi risultati durante la guerra, e contemporaneamente dallo sviluppo della teoria della comunicazione (o informazione) di Claude Shannon, e con la volontà di sviluppare una teoria generalizzata dei principi di organizzazione e controllo nei sistemi emersi durante le conferenze, pubblicherà un libro: La cibernetica, controllo e comunicazione nell'animale e nella macchina; in cui definiva l'ambito di interesse e gli obiettivi della nuova disciplina inaugurando anche l'uso del nuovo termine da lui coniato. A seguito di questo libro che riscuoterà un importante successo, le conferenze presero il nome di "Cybernetics, Circular Causal, and Feedback Mechanism in Biological and Social Systems", riconoscendo Wiener come la principale figura di spicco della nuova scienza.

In particolare come evidenziato fino ad ora dalla sua natura multidisciplinare, la cibernetica non si interessa di individuare in cosa consistano questi sistemi, ma più che altro comprenderne il loro funzionamento. Le fortunate premesse iniziali della cibernetica risiedevano in una convinzione da parte di questi scienziati provenienti dai differenti ambiti disciplinari, che esistesse uno "schema processuale" comune ad organismi viventi e macchine, rintracciato attraverso una ricerca uniforme garantita da dell'utilizzo di un metodo "sintetico" e "comportamentale". L'aspetto metadisciplinare del pensiero cibernetico, esplicito nella sua fondazione, raggiungerà la piena realizzazione Fra gli anni '60 e la metà del '70, grazie agli scienziati Heinz von Foerster, Margaret Mead, Gregory Bateson, e altri. Si compierà un ulteriore passo fondamentale che porterà il pensiero sistemico verso il consolidamento in una scienza più concreta, dando vita alla "Cibernetica di secondo ordine",⁴ anche chiamata come "la cibernetica dei sistemi di osservazione", che consiste nell'applicazione ricorsiva della cibernetica a se stessa e la pratica riflessiva della cibernetica secondo tale critica. La differenza fra cibernetica di primo e secondo ordine risiese nel fatto, che mentre nel primo periodo lo studioso di cibernetica (di primo ordine) studiava un sistema da un punto di

 $^{^3{\}rm a}$ cura di Luca Fabbris e Alberto Giustiniano. CFP18 CIBERNETICA. SISTEMI, TEORIE, MODELLI. url: https://philosophykitchen.com/2022/03/cfp18-cibernetica-sistemi-teorie-modelli/. (accessed: 03.11.2022).

⁴the free encyclopedia Wikipedia. Second-order cybernetics. URL: https://en.wikipedia.org/wiki/Second-order_cybernetics. (accessed: 03.11.2022).

vista passivo, da quello dell'osservatore dei comportamenti di un sistema. Il cibernetico di secondo ordine lavora ed interviene nel comportamento e nella costruzione di un sistema complesso, riconoscendo il sistema come un agente con cui interagire e riconoscendo esso stesso come agente nell'interazione col sistema.⁵

A partire dalle sue importanti premesse, la cibernetica ha conseguentemente poi avuto un ruolo centrale nello sviluppo di molti studi scientifici e la nascita di nuovi ambiti come: l'intelligenza artificiale, la teoria del caos, la teoria della catastrofe, la teoria dei controlli, la teoria generale dei sistemi, la robotica, la psicologia, le scienze sociali, e così via.

1.2 Le cibernetiche nella musica

All'inizio degli anni '60 in seno alle nascita delle scienze complesse, l'uso di sistemi di feedback e la rilevanza dei circuiti informativi chiusi nelle strutture organizzate ha goduto di uno slancio popolare anche nel mondo della musica e più in generale dell'arte. Tuttavia come vedremo, a parte casi popolari di deliberate dichiarazioni formali da parte degli artisti, non bisogna pensare ai lavori che andremo a citare come atti pioneristici che sancisono una volta per tutte la nascita della cibernetica in musica, ma è più corretto pensare alle questioni sistemiche come ad una sensibilità comune condivisa in un certo periodo da diversi autori provenienti da diverse parti del mondo, che sono stati influenzati e si sono influenzati a vicenda con le stesse idee proveniente da un interesse condiviso per le teorie cibernetiche di Weiner e delle Macy Conferences.

In Europa nel '51, Herbert Eimert e Werner Meyer-Eppler persuasero il direttore della NWDR, Hanns Hartmann, a creare uno Studio per la Musica Elettronica, che Eimert diresse fino al '62. Questo è diventato lo studio più influente al mondo durante gli anni '50 e '60, con ospiti alcuni dei più importanti compositori contemporanei provenienti da tutta europa, come Roland Kayn, Franco Evangelisti, Karlheinz Stockhausen, Herbert Brun, Cornelius Cardew, e molti altri. In quel periodo il lavoro di ricerca condotto da Werner-

 $^{^5\}mathrm{Bernard}$ Scott. "Second-order cybernetics: an historical introduction". In: Kybernetes 33.9.10 (2003), pp. 1365–1378. DOI: doi:10.1108/03684920410556007. URL: https://sites.ufpe.br/moinhojuridico/wp-content/uploads/sites/49/2021/10/Ciber-2b-22-out.-second-order-cybernetcs.pdf.

⁶Electronic Music Studio (Colonia). URL: https://it.frwiki.wiki/wiki/Studio_de_musique_%C3%A9lectronique_(Cologne). (accessed: 17.10.2022).

Meyer Eppler, scienziato, musicista ideatore e direttore dello studio di Colonia, pone una certa attenzione in quelle che sono state le teorizzazioni della teoria dell'informazione e della cibernetica, che porteranno l'autore alla scrittura di importanti testi di ricerca. Dalle esperienze dello studio di Colonia ne usciranno molti compositori interessati alle teorie cibernetiche. Un caso importante in questo scenario è quello del compositore Roland Kayn, Il progetto di musica cibernetica di Kayn ha ricevuto il suo impulso iniziale quando nel '53, ad allora giovane musicista e studente universitario, venne in contatto con il filosofo Max Bense professore all'Università Tecnica di Stoccarda. Subito dopo il suo primo incontro con Bense sempre nel '53, Kayn entrò in contatto con Herbert Eimert presso lo studio elettronico della Westdeutscher Rundfunk di Colonia. Roland Kayn era affascinato dal potenziale sonoro offerto dalle nuove tecnologie, ma trovava che l'estetica serialista dominante nello studio in quegli anni era per lui qualcosa di troppo restrittivo, esperienza che lo portò per i successivi dieci anni a concentrarsi principalmente sulla composizione strumentale e le applicazioni delle teorie cibernetiche in modo formale. Sempre in quel periodo, sostanzialmente diverso e molto importante è il caso di Franco Evangelisti, che dopo essersi avvicinato alla musica elettronica anche lui sotto la guida e su invito di Herbert Eimert allo studio elettronico della Westdeutscher Rundfunk di Colonia nel 1956, dove ebbe, tra l'altro, contatti decisivi con H. Brün, H. G. Helms, G. M. König, H. K. Metzger, K. Stockhausen (a cui Evangelisti aveva dedicato Proiezioni sonore): iniziò le sue ricerche che dopo un anno e mezzo di intenso lavoro lo portarono al completamento della sua prima composizione elettronica, Incontri di fasce sonore, trasmessa da Radio Colonia nel '57. Nel '59, Evangelisti è nuovamente in Italia, dove fu tra i promotori della Settimana Internazionale di Nuova Musica a Palermo. L'anno seguente, assieme ad altri musicisti fondò l'Associazione Nuova Consonanza, con lo scopo di diffondere "la musica contemporanea italiana e straniera con concerti convegni ed eventi di vario tipo. Dall'associazione nacque più tardi l'omonimo Gruppo di improvvisazione che allora veniva presentato come "il primo ed unico gruppo formato da compositori-esecutori" e che permise ad Evangelisti di mettere in pratica le proprie teorie sull'improvvisazione, riguardo queste citerà più volte deliberatamente in interviste, scritti, e altre documentazioni, il suo approccio sistemico/cibernetico in quelle che saranno le esperienze con il Gruppo. Nel '60 si trasferisce a Roma Roland Kayn da vincitore del Prix de Rome, dove dal '64 assieme ad Aldo Clementi e Franco Evangelisti prende parte al Gruppo di improvvisazione Nuova Consonanza del quale fece parte sino al '68, ed è in quel periodo che Kayn ispirato dalle teorie della cibernetica iniziò a sperimentare estensivamente con sistemi di autoregolazione basati su feedback loops, non più solo come modelli formali per composizioni strumentali ma anche come reti di generatori di segnale analogici.

Sempre negli anni '50 in Europa, uno dei primi artisti nella storia dell'arte ad evocare l'uso della cibernetica nei propri lavori è stato Nicolas Schoeffer con il suo ciclo di lavori "spazio-dinamici", in acronimo CYSP - Cybernetic Spatiodynamic. In particolare Schoeffer ha creato la prima installazione ad implementare meccanismi di auto-regolazione, il CYSP-1⁷, capace di essere sensibile all'ambiente esterno e a se stesso grazie ad una serie di tecnologie offerte dalla compagnia Philips (fotocellule e microfoni), questa prima scultura spaziodinamica, è dotata di totale autonomia di movimento (viaggio in tutte le direzioni a due velocità) e di rotazione assiale ed eccentrica (messa in moto delle sue 16 lastre policrome pivottanti), ed era capace di reagire sonoramente a questi stimoli riproducendo una serie di registrazioni composte dal compositore francese Pierre Henry, collaboratore di Pierre Schaeffer ed insieme a lui figura centrale nella nascita della Musique concrète. Questa scultura è celebrata come una prima e prima opera di carattere cibernetico che è entrata nel mondo dell'arte.

Se cambiamo Continente e passiamo dall'Europa ad osservare cosa accadeva in America in quegli anni, possiamo trovare tanti altri atti pioneristici, come ad esempio quelli che sono stati i lavori di Louis e Bebe Barron. Louis e Bebe Barron furono due compositori e pianisti che si interessarono alla musica elettronica sin dal periodo della sua origine. Intorno al '50 i due si trasferirono al Greewitch Village a New York dove furono attivi in collettivi di musica sperimentale collaborando con persone come John Cage ed altri. I Barron trasformarono la loro casa in una specie di studio di musica Elettronica dove scrivevano soundtracks per film sperimentali. Per Louis e Bebe il grande passo arrivò nel '56, quando i due si ritrovarono a scrivere la soundtrack per il film Forbidden Planet, questo sarà il primo film mainstream di Hollywood ad utilizzare una soundtrack composta solamente ed interamente da elettronica. L'elettronica di Forbidden Planet è stata costituita a partire da circuiti appositamente creati da Louis e Bebe, i due deliberatamente ispirati dalle teorie cibernetiche di Wiener dichiareranno:

⁷Dario Sanfilippo and Andrea Valle. "Feedback Systems: An Analytical Framework". In: Computer Music Journal 37.2 (2013), pp. 12-27. DOI: doi:10.1162/COMJa00176. URL: https://direct.mit.edu/comj/article-abstract/37/2/12/94420/Feedback-Systems-An-Analytical-Framework?redirectedFrom=PDF.

What we did was pretty elementary: we would attach resistors and capacitors to activate these circuits... negative and positive feedback was involved - Wiener talks about all that. The same conditions that would produce breakdowns and malfunctions in machines, made for some wonderful music. The circuits would have a "nervous breakdown" and afterwards they would be very relaxed, and it all came through in the sounds they generated. Bebe Barron in Vale and Juno 1994: 200, emphasis in

original

I circuiti in retroazione erano destinati al corto circuito, e utilizzati appositamente come materiale per la generazione acustica di trame incise su nastro. Se pensiamo ad altri compositori americani nello stesso periodo, troviamo invece ai primi lavori che sfruttano ed esplorano il Feedback in modo artistico: John Cage, David Tudor, Robert Ashley e Steve Reich. Un secondo periodo costituito da un approccio sistemico più consapevole che inizia a tracciare la strada per un pensiero ecosistemico della composizione, inizia invece dal lavoro di Alvin Lucier, che nel 1969 scriverà quello che sarà un brano emblematico per la cibernetica in musica "I'm sitting in a room", è un altro brano importante per quelle che sono le logiche di interazione sistemiche fra uomo/macchina/ambiente e che sancisce una volta per tutte l'interazione sistemica dove il musicista l'ambiente e lo strumento sono parti di un insieme del sistema "più complesso" con un comportamento collettivo derivato dai singoli agenti, in un un'interazione con l'ambiente circostante. In I'm sitting in a room, un performer al centro della stanza recita in un microfono un testo che descrive il fenomeno che avverrà poco a poco, la voce recitante nel microfono viene registrata e poi riprodotta da altoparlanti posti nella stanza, il suono della regitrazione riprodotta da questi altoparlanti viene registrato nuovamente durante la riproduzione, l'operazione viene ripetuta in un in una casualità circolare di volta in volta dove alla fine rimarranno solo i contributi provenienti dalla stanza, dalla voce e dalla catena elettroacustica, dando vita nel loro insieme ad un processo molto lento di Feedback positivo, la natura nonlineare del processo e degli agenti porterà di volta in volta ad un risutato sempre differente. Dopo l'esperienza di Lucier, nel 1974 Nicolas Collins compone "pea soup" mentre è studente alla Wesleyan University. Pea soup consiste in una rete adattiva di circuiti analogici (3 Countryman Phase Shifters), che intona il feedback positivo dell'effetto Larsen ad una frequenza risonante diversa ogni volta che questo inzia ad emergere.

Ad oggi svariati compositori a partire dalle trame delineate dalle scienze complesse e dai lavori citati, operano nell'ambito della musica elettronica con un approccio sistemico, fra questi molti sono italiani. Ci sono casi particolarmente rilevanti come quello di Agostino Di Scipio, uno dei maggiori compositori con più contributi all'attivo, da prima con i suoi studi sul caos e sui sistemi complessi in modo formale ad inizio anni '90, e poi con la composizione ecosistemica con il suo ciclo di lavori - ecosistemico udibile. O del suo (ex)allievo Dario Sanfilippo, compositore e ricercatore con all'attivo recenti importanti pubblicazioni e lavori nell'ambito dei sistemi autonomi DSP in musica. C'è poi il caso di Michelangelo Lupone, che è stato maestro di Agostino Di Scipio, che con i suoi lavori di Feedback sulla materia è arrivato allo sviluppo pioneristico di strumenti aumentati in Feedback quale ad esempio il Feed-Drum, un innovativo strumento elettroacustico a percussione. E ci sono poi altri compositori internazionalmente riconosciuti per altre composizioni e ricerche rilevanti in lavori con il Feedback e i sistemi autonomi come Andrea Valle e Simone Pappalardo. Tornando in origine alle questioni romane, nonostante la natura frammentaria e sottile della musica elettronica romana, alla luce di queste ultime considerazioni in effetti è possibile individuare e tracciare una sorta di collegamento, che ci porta sin dalle prime suggestioni sulla cibernetica avute da Evangelisti con gli altri membri di Nuova Consonanza, fino ad oggi. Michelangelo Lupone ad esempio che abbiamo citato per i suoi lavori e per esser stato maestro di Agostino Di Scipio, studia dal '70 al '79, sotto la guida di Domenico Guaccero per la Composizione, e Giorgio Nottoli per la Musica elettronica, Domenico Guaccero è a sua volta fra i fondatori, insieme ad Evangelisti ed altri compositori quali Aldo Clementi, Daniele Paris, Francesco Pennisi, dell'Associazione di Nuova Consonanza. Walter Branchi noto anche lui per aver preso parte al Gruppo di Improvvisazione Nuova Consonanza, durante gli nni '80 darà vita a degli incontri internazionali su Musica complessità, che radunavano compositori e scienziati di tutto il mondo. Di Scipio e Lupone in questo scenario, si sono interessati alle questioni sul Feedback in contemporanea portando avanti il discorso separatemente intorno alla fine degli anni '80, Di Scipio nel 1989, scrive gli appunti a base di semplici funzioni iterate da cui nacque poi il suo brano Fractus, Lupone dal 1988, fonda ed inizia con il Centro Ricerche Musicali il suo lavoro con team multidisiplinari di ricerca, con la collaborazione di persone come Lorenzo Seno direttore scientifico del CRM.

1.3 Il Feedback

Il feedback (o retroazione) è un concetto cibernetico che sta ad indicare la capacità di un sistema di autoregolarsi tenendo conto degli effetti scaturiti dalla modificazione delle caratteristiche del sistema stesso. In termini appartenenti alla fisica, è la capacità di un sistema dinamico di tenere conto dei risultati del sistema per modificare le caratteristiche del sistema stesso. Negli esseri viventi, ad esempio, i sistemi a retroazione negativa e positiva sono ampiamente utilizzati per regolare l'omeostasi dell'organismo. Esistono idealmente due tipologie di Feedback:

- a Retroazione Positiva
- a Retroazione Negativa

La retroazione positiva tende ad accelerare un processo, mentre la retroazione negativa a rallentarlo. La retroazione negativa aiuta a mantenere la stabilità di un sistema, contrastando i cambiamenti provenienti dall'ambiente esterno. Mentre la positiva tende generalmente alla complessità. Nel controllo di un sistema complesso, come può essere ad esempio quello del feedback acustico, introdurre delle linearità tramite retroazione vuole dire costringere la complessità a dei comportamenti prevedibili, si può pensare ad esempio all'intonazione del feedback, che da un comportamento complesso della sorgente e del ricettore arriva ad uno lineare. Mentre introdurre delle nonlinearità nel sistema tramite la retroazione, vuoldire portare questo verso comportamenti non più prevedibili. Questi due tipi di comportamento possono essere ottenuti per l'appunto sia velocizzando che rallentando questi processi, in maniera dipendente dal caso specifico. I filtri digitali o analogici nell'audio, possono essere pensati per esempio come uno strumento di contrasto rispetto a questo tipo di comportamenti: dove se si allineano le fasi si creano dei poli, mentre se si disallineano si punta alla complessità del sistema. Di fatto la storia delle tecnologie elettroacustiche ha in generale da sempre incorporato il principio del feedback sin dalle sue origini, basti pensare a tecnologie come la valvola audion di Lee De Forest (1910), o i circuiti di feedback negativo di Harold Black (1920)⁸. Fino al caso del feedback elettroacustico (effetto Larsen), che abbiamo visto esser stata una delle

⁸Agostino Di Scipio. A Relational Ontology of Feedback. URL: https://echo.orpheusinstituut.be/article/a-relational-ontology-of-feedback. (accessed: 17.10.2022).

risorse centrali dei primi compositori cibernetici. Addentriamoci ora verso una spiegazione più tecnica del feedback acustico che ci servirà per comprendere più a fondo la poetica di questi compositori, parafrasando l'articolo appena esposto di Agostino Di Scipio: In una stanza vengono collegati fra loro (tramite uno o più stadi di amplificazione) gli elementi di una catena elettroacustica molto elementare: Microfono ed Altoparlante. Anche in una situazione di "silenzio" ideale, viene catturata dal microfono in ogni caso, inevitabilmente, perfino la turbolenza minima appena udibile presente nel rumore ambientale. Questo suono catturato dal microfono, viene amplificato e riprodotto dall'altoparlante a sua volta. E se l'amplificazione è sufficiente il suono dall'altoparlante ritorna al microfono e il design della catena elettroacustica si chiude su se stessa, creando un circuito di retroazione (loop), anche detto di feedback. Il livello di ampiezza, le caratteristiche tecniche trasduttive di microfono e altoparlante, la loro distanza relativa, la distanza dalle pareti ed altri potenziali fattori influenti, delineano un'oscillazione in fase con il segnale che viene a sommarsi ad esso e viene amplificata e riprodotta a sua volta con ampiezza via via crescente, idealmente illimitata. Con livelli di guadagno non troppo elevati, ciò che si genera è un fastidio udibile, una sorta di 'alone': la reiniezione del suono decade più o meno rapidamente, in una specie di effetto riverbero composto da suono spettralmente irregolare. Con livelli di guadagno più elevati, il feedback loop entra in un regime di auto-oscillazione. A causa della reiniezione ripetuta, il rumore di fondo appena udibile ma spettralmente ampio si accumula nel loop e alla fine (rapidamente) produce un suono sostenuto sempre più forte di uno spettro più ristretto - questo è spesso sentito come un tono di picco di altezza definita o un gruppo di toni. E questo è l'effetto Larsen: (dal nome del fisico Søren Absalon Larsen che per primo ne scoprì il principio), detto anche feedback acustico o più prosaicamente ritorno, è timbricamente riconoscibile come un tipico fischio stridente, che si sviluppa come abbiamo detto quando i suoni emessi da un altoparlante vengono captati con sufficiente "potenza di innesco" da un trasduttore (che può però anche essere oltre al microfono, un pick-up di uno strumento musicale elettrico, come una chitarra o un basso, o un trasduttore di altra natura).

2 La composizione di interazioni ecosistemiche

- partendo dagli articoli di Agostino Di Scipio e da Polveri Sonore -

- A First appendix
- B Second appendix

REFERENCES REFERENCES

References

- Barrow-Green, June. L'Ottocento: astronomia. Il problema dei tre corpi e la stabilità del Sistema solare. URL: https://www.treccani.it/enciclopedia/l-ottocento-astronomia-il-problema-dei-tre-corpi-e-la-stabilita-del-sistema-solare_%28Storia-della-Scienza%29/#:~:text=La%20formulazione%20del%20problema%20dei,il%20moto%20negli%20istanti%20successivi.. (accessed: 03.11.2022).
- Electronic Music Studio (Colonia). URL: https://it.frwiki.wiki/wiki/Studio_de_musique_%C3%A9lectronique_(Cologne). (accessed: 17.10.2022).
- Luca Fabbris e Alberto Giustiniano, a cura di. CFP18 CIBERNETICA. SIS-TEMI, TEORIE, MODELLI. URL: https://philosophykitchen.com/ 2022/03/cfp18-cibernetica-sistemi-teorie-modelli/. (accessed: 03.11.2022).
- Sanfilippo, Dario and Andrea Valle. "Feedback Systems: An Analytical Framework". In: Computer Music Journal 37.2 (2013), pp. 12-27. DOI: doi: 10.1162/COMJa00176. URL: https://direct.mit.edu/comj/article-abstract/37/2/12/94420/Feedback-Systems-An-Analytical-Framework?redirectedFrom=PDF.
- Scipio, Agostino Di. A Relational Ontology of Feedback. URL: https://echo.orpheusinstituut.be/article/a-relational-ontology-of-feedback. (accessed: 17.10.2022).
- Scott, Bernard. "Second-order cybernetics: an historical introduction". In: Kybernetes 33.9.10 (2003), pp. 1365-1378. DOI: doi:10.1108/03684920410556007. URL: https://sites.ufpe.br/moinhojuridico/wp-content/uploads/sites/49/2021/10/Ciber-2b-22-out.-second-order-cybernetcs.pdf.
- Wikipedia, the free encyclopedia. Second-order cybernetics. URL: https://en.wikipedia.org/wiki/Second-order_cybernetics. (accessed: 03.11.2022).
- Teogonia (Esiodo). URL: https://it.wikipedia.org/wiki/Teogonia_(Esiodo). (accessed: 03.11.2022).