

Operační zesilovač II

Martin Zlámal

Datum měření 27. března 2014 © Datum poslední revize 29. března 2014 L^AT_EX

1 Zadání

Změřte postupně statickou převodní charakteristiku invertujícího, neinvertujícího zapojení a komparátoru s monolitickým operačním zesilovačem (OZ). Měření proveďte pro různá zesílení a změřené charakteristiky vyneste do grafů.

2 Schémata zapojení

Obrázek 1: Operační zesilovač v invertujícím zapojení

Obrázek 2: Operační zesilovač v neinvertujícím zapojení

Obrázek 3: Operační zesilovač jako komparátor s hysterezí

3 Naměřené a vypočítané hodnoty

Pro měření operačních zesilovačů volíme napájení $\pm 12\,V$. Pro invertující zapojení OZ volíme hodnoty rezistorů $R_1=10\,k\Omega$ a $R_2=20\,k\Omega$ tak, aby bylo zesílení $A_U=-2$ podle následujícího vztahu.

$$A_U = -\frac{R_2}{R_1} = -\frac{20k}{10k} = -2\tag{1}$$

Tabulka 1: Převodní charakteristika invertujícího OZ, kladná polarita

$U_1[V]$	0,98	1,95	2,93	3,90	4,89	5,88	6,86
$U_0[V]$	-1,96	-3,90	-5,86	-7,82	-9,76	-9,92	-9,92

Tabulka 2: Převodní charakteristika invertujícího OZ, záporná polarita

$U_1[V]$	-1,01	-2,00	-2,99	-3,98	-4,97	-5,96	-6,95
$U_0[V]$	2,01	3,99	5,97	7,95	9,93	11,20	11,20

Pro neinvertující zapojení OZ volíme hodnoty rezistorů $R_1=10\,k\Omega$ a $R_2=100\,k\Omega$ tak, aby bylo zesílení $A_U=11$ podle následujícího vztahu.

$$A_U = \frac{R_2}{R_1} + 1 = \frac{100k}{10k} + 1 = 11 \tag{2}$$

Tabulka 3: Převodní charakteristika neinvertujícího OZ, pouze kladná polarita

$U_1[V]$	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	2,0
$U_0[V]$	1,26	2,13	3,46	4,46	5,51	6,62	7,77	8,83	9,90	11,20	11,27

Pro komparátor s hysterezí volíme hodnotu rezistorů $R_1=10\,k\Omega$ a $R_2=100\,k\Omega$ tak, aby šířka hysterezního pásma přibližne $U_H=2\,V$ podle následujícího vztahu.

$$U_H \approx 2 \cdot U_{SAT} \cdot \frac{R_1}{R_1 + R_2} = 2 \cdot 10 \cdot \frac{10k}{10k + 100k} \doteq 1,82$$
 (3)

Tabulka 4: Převodní charakteristika komparátoru

$U_1[V]$	2,30	5,59	5,6	7,00	7,00	3,72	3,71	2,30
$U_0[V]$	11,28	11,28	-9,95	-9,95	-9,95	-9,95	11,28	11,28

4 Grafy

Obrázek 4: Převodní charakteristika invertujícího zapojení OZ

Obrázek 5: Převodní charakteristika neinvertujícího zapojení OZ

Obrázek 6: Převodní charakteristika komparátoru

5 Závěr

Z grafu pro invertující zapojení OZ je vidět, že čím je menší napětí U_1 , tím je větší výstupní napětí U_0 (a obráceně) a to až do saturačního napětí U_{SAT} , které je pro obě polarity U_1 z hlediska velikosti rozdílné.

Oproti tomu neinvertující zapojení má kladné zesílení A_U , ale mnohem větší $(A_U = 11)$. Tzn., že saturace dosáhneme již při hodnotě $U_1 \approx 1 V$.

Jak je vidět, tak hysterezní smyčka není přesně souměrná kolem hodnoty $U_1=5\,V$ viz schéma zapojení. To je způsobeno nepřesnou volbou saturačního napětí U_{SAT} do výpočtu šířky hysterezního pásma. Každopádně samotný výsledek tento fakt nijak neovlivňuje.