#### Grupo ARCOS

# uc3m Universidad Carlos III de Madrid

# Tema 4 (III) El procesador

Estructura de Computadores Grado en Ingeniería Informática



#### Contenido

- 1. Elementos de un computador
- 2. Organización del procesador
- La unidad de control
- 4. Ejecución de instrucciones
- 5. Diseño de la unidad de control
- 6. Modos de ejecución
- 7. Interrupciones
- 8. Arranque de un computador
- 9. Prestaciones y paralelismo

#### Contenido: relación con AC

- La CPU moderna busca las mejores prestaciones:
  - Uso de paralelismo a distintos niveles.
  - Más GHz → más cores → cores específicos → ...

- 6. Modos de ejecución
- 7. Interrupciones
- 8. Arranque de un computador
- 9. Prestaciones y paralelismo



Arquitectura de computadores

#### Contenido: relación con SSOO

- La CPU tiene alta integración con el sistema operativo:
  - ▶ Hay aspectos de la CPU necesarios por parte de los SSOO.

- 6. Modos de ejecución
- 7. Interrupciones
- 8. Arranque de un computador
- 9. Prestaciones y paralelismo



Sistemas Operativos

# Sistema operativo



Sistema operativo: software destinado a permitir la comunicación del usuario con un ordenador y gestionar sus recursos de manera cómoda y eficiente.









# Sistema operativo



#### Tres contextos donde está presente el S.O:

- . Arranque del sistema.
- 2. Procesos de núcleo.
- 3. Tratamiento de eventos.

S.O. (kernel)









# (1/2) Arranque del sistema...

- Realiza labores de iniciar el hardware y los procesos en el orden apropiados.
- Ejecuta como programa ejecutable.



# (2/3) Procesos de núcleo...

- Realiza labores del S.O. que se hacen mejor en el contexto de un proceso independiente
- Como procesos prioritarios, para tareas especiales.



# (3/3) Tratamiento de eventos...

- Finalizado el arranque, el sistema operativo es una entidad pasiva.
- Acceso a los servicios del S.O.
- Como biblioteca.



ejecución (general)





ejecución (general)



código (general)

```
int main ( ... )
{
    ...
    On (event1, handler1);
    ...
}

I) Asociar el manejador
    (handler1) al evento
```

código (general)

```
void handler1 ( ... )

{
    int main ( ... )
{
        ...
        On (event1, handler1);
        ...
}

2) Codificar la función manejador que tratará el evento

1) Asociar el manejador (handler1) al evento

(handler1) al evento
```

código (general)

```
3) Para comunicar funciones,
                                        se usa variables globales
int global1;
                                                  2) Codificar la función
void handler1 ( ... )
                                             manejador que tratará el evento
. . .
int main ( ... )
                                                     I) Asociar el manejador
   On (event1, handler1);
                                                       (handler I) al evento
```







#### Contenido

- 1. Elementos de un computador
- 2. Organización del procesador
- La unidad de control
- 4. Ejecución de instrucciones
- Diseño de la unidad de control
- 6. Modos de ejecución
- 7. Interrupciones
- 8. Arranque de un computador
- 9. Prestaciones y paralelismo

# Modos de ejecución

 Durante el arranque el sistema operativo puede usar un modo privilegiado de la CPU



# Modos de ejecución

- ▶ Se indica con un bit situado en el registro de estado (U)
- Al menos 2 modos:
  - Modo núcleo
    - Reservado al sistema operativo sin restricciones:
      - □ El procesador puede ejecutar todo el repertorio de instrucciones.
      - □ Se puede acceder a todo el espacio de memoria.
  - Modo usuario:
    - Se ejecutan procesos de usuario/a con ciertas restricciones:
      - El procesador tiene limitado no puede ejecutar instrucciones privilegiadas (ejemplo: instrucciones de E/S, ...)
      - □ El procesador no puede acceder a todo el espacio de memoria.
    - Si un proceso de usuario intenta saltar las restricciones se produce una excepción

#### Contenido

- 1. Elementos de un computador
- 2. Organización del procesador
- La unidad de control
- 4. Ejecución de instrucciones
- 5. Diseño de la unidad de control
- 6. Modos de ejecución
- 7. Interrupciones
- 8. Arranque de un computador
- 9. Prestaciones y paralelismo

# Eventos en el sistema operativo



# Idea de interrupción

#### soporte hardware



- Señal que llega a la U.C. y que rompe la secuencia normal de ejecución:
  - Se pausa la ejecución del programa actual y se transfiere la ejecución a otro programa que atiende a la interrupción llamado a la ISR<sub>en</sub> / RTI<sub>es</sub>
  - Al terminar el ISR/RTI la ejecución del programa se reanuda.
- Ejemplo de causas:
  - Cuando un periférico solicita la atención del procesador, etc.
  - (en general son eventos tratados por el sistema operativo)

#### WepSIM: int., syscall, excepción...

# Interrupciones



- Originan una ruptura de secuencia no programada
  - Antes del ciclo de fetch de instrucción siguiente, ver si hay interrupción pendiente (CRI), y si la hay...
  - ...Bifurcación a subrutina del S.O. que la trata (RTI)
- Posteriormente, restituye el estado y devuelve el control al programa interrumpido.
- Causa asíncrona a la ejecución del programa en curso
  - Atención a periférico
  - Etc.

## Excepciones y ll. al sistema

WepSIM: int., syscall, excepción...



- Originan una ruptura de secuencia no programada
  - Dentro del microprograma de la instrucción en curso...
  - ...Bifurcación a subrutina del S.O. que la trata (RTE)
- Posteriormente, restituye el estado y devuelve el control al programa interrumpido o finaliza su ejecución
- Causa síncrona a la ejecución del programa en curso
  - División entre cero
  - Etc.

#### Clasificación de los eventos

- Asíncronas
  - Excepciones hardware asíncronas
    - Errores en el hardware no relacionados con la instrucción en curso: impresora sin papel, etc.
  - Interrupciones externas
    - Cuando un periférico precisa de atención por parte de la CPU: periféricos, interrupción del reloj, etc.
- Síncronas
  - Excepciones hardware síncronas
    - Cuando un error ocurre en la ejecución de la instrucción en curso:
       División por cero, acceso a una posición de memoria ilegal, etc.
  - Llamadas al sistema
    - Instrucciones máquina especiales que generan una interrupción para activar al sistema operativo (petición de servicio del sistema operativo)

#### CRI: Ciclo de reconocimiento de la interrupción

WepSIM: int., syscall, excepción...

- Forma parte del microcódigo antes del ciclo de fetch
  - Trata especialmente las interrupciones asíncronas
- Estructura general del CRI:
- Comprueba se hay activada una señal de interrupción.
- Si está activada:

28

- 1. Salva PC y RE (el contador de programa y el registro de estado)
  - ☐ Equivalent to "push PC, push RE"
- 2. Pasa de modo usuario a modo núcleo
  - □ Equivalent to "SR.U = 0"
- 3. Obtiene la dirección de la rutina de tratamiento de la interrupción
  - Equivalent to "isr addr = Vector interrupts[id interrupt]"
- 4. Almacena en el contador de programa la dirección obtenida (de esta forma la siguiente instrucción será la de la rutina de tratamiento)
  - Equivalent to "PC = isr addr"

## RTI: Rutina de tratamiento de la interrupción

WepSIM: int., syscall, excepción...

- Forma parte del código del sistema operativo
  - Hay una RTI por cada interrupción que pueda darse
- Estructura general de las RTI:
- 1. Salva el resto de registros del procesador (que precise)
- 2. Atiende la interrupción
- 3. Restaura los registros del procesador guardados en (1)
- 4. Ejecuta una instrucción máquina especial: RETI
  - Restaura el RE (registro de estado) del programa interrumpido (fijando de nuevo el modo del procesador a modo usuario)
  - 2. Restaura el PC (contador de programa) de forma que la siguiente instrucción es la del programa interrumpido.
  - 3. Pasa de modo núcleo a modo usuario ("SR.U = I")

# Interrupciones vectorizadas

# Elemento que interrumpe INT Unidad de Control Rutina de Tratamiento de Interrupción

- Se usa una tabla de direcciones de memoria con las rutinas de tratamiento asociadas a cada interrupción:
  - El elemento que interrumpe suministra el vector de interrupción
  - Este vector de interrupción es el índice en la tabla de direcciones de RTI
- Cada S.O. rellena esta tabla con las direcciones de las rutinas de tratamiento durante el proceso de arranque.
  - Las rutinas son dependientes de cada sistema operativo

# Interrupciones en un PC

#### Windows



#### Linux

```
cloud9@lab.inf:~$ cat /proc/interrupts
           CPU0
 0:
             33
                 IO-APIC
                                        timer
                            2-edge
 1:
                  IO-APIC
                            1-edge
                                        i8042
  6:
                  IO-APIC
                            6-edge
                                        floppy
  8:
              1
                 IO-APIC
                            8-edge
                                        rtc0
  9:
                  IO-APIC
                            9-fasteoi
                                        acpi
                 IO-APIC 11-fasteoi
11:
                                        virtio3, uhci_hcd:usb1
12:
                 IO-APIC 12-edge
                                        i8042
14:
                  IO-APIC 14-edge
                                        ata piix
15:
         289039
                  IO-APIC 15-edge
                                        ata piix
NMI:
                  Non-maskable interrupts
LOC:
        5397142
                 Local timer interrupts
SPU:
                  Spurious interrupts
PMT:
                  Performance monitoring interrupts
IWI:
                  IRQ work interrupts
```

#### Activación de interrupción en el registro de estado

Se indica con un bit situado en el registro de estado (I)



#### Activación de interrupción en el registro de estado



#### Operación de SELEC:

```
if (SelP1 = 1 AND SelP0 == 1)
  Output = C' V' N' Z' I U

if (SelP1 == 1 AND SelP0 == 0)
  Output = C V N Z I' U

if (SelP1 == 0 AND SelP0 == 1)
  Output = C V N Z I U'
```



# Interrupciones del reloj y sistemas operativos

WepSIM: int. de reloj

- La señal que gobierna la ejecución de las instrucciones máquina se divide mediante un divisor de frecuencia para generar una interrupción externa cada cierto intervalo de tiempo (pocos milisegundos)
- Estas interrupciones de reloj o tics son interrupciones periódicas que permite que el sistema operativo entre a ejecutar de forma periódica evitando que un programa de usuario monopolice la CPU
  - Permite alternar la ejecución de diversos programas en un sistema dado la apariencia de ejecución simultánea
  - Cada vez que llega una interrupción de reloj se suspende al programa y se salta al sistema operativo que ejecuta el planificador para decidir el siguiente programa a ejecutar



# Interrupciones por software. Llamadas al sistema y sistemas operativos

- El mecanismo de llamadas al sistema es el que permite que los programas de usuario puedan solicitar los servicios que ofrece el sistema operativo
  - Cargar programas en memoria para su ejecución
  - Acceso a los dispositivos periféricos
  - Etc.
- Similar a las llamadas al sistema que ofrece el simulador CREATOR
  - Hay ejemplos en WepSIM que muestran cómo internamente se puede implementar las llamadas al sistema

# Interrupciones software Llamadas al sistema (ejemplo: Linux)



Modo Kernel

# Interrupciones software Llamadas al sistema (ejemplo: Linux)



# Interrupciones software Llamadas al sistema (ejemplo: Linux)



#### Contenido

- 1. Elementos de un computador
- 2. Organización del procesador
- La unidad de control
- 4. Ejecución de instrucciones
- 5. Diseño de la unidad de control
- 6. Modos de ejecución
- 7. Interrupciones
- 8. Arranque de un computador
- 9. Prestaciones y paralelismo

- ▶ El Reset carga en los registros sus valores predefinidos
  - PC ← dirección de arranque del programa iniciador (en memoria ROM)



- El Reset carga en los registros sus valores predefinidos
  - PC ← dirección de arranque del programa iniciador (en memoria ROM)
- Se ejecuta el programa iniciador
  - Test del sistema (POST)



```
Award Modular BIOS v6.00PG, An Energy Star Ally
  Copyright (C) 1984-2007, Award Software, Inc.
Intel X38 BIOS for X38-DQ6 F4
Main Processor : Intel(R) Core(TM)Z Extreme CPU X9650 @ 4.00GHz(333x1Z
CPUID:0676 Patch ID:0000>
Menory Testing : 2096064K OK
Memory Runs at Dual Channel Interleaved
IDE Channel 0 Slave ; WDC WD3200AAJS-00RYA0 12.01801
IDE Channel 1 Slave : WDC WD3Z00AAJS-00RYA0 12.01B01
Detecting IDE drives ...
IDE Channel 4 Master : Mone
IDE Channel 4 Slave : Mone
IDE Channel 5 Master : Mone
IDE Channel 5 Slave : Mone
<DEL>:BIOS Setup <F9>:XpressRecoveryZ <F1Z>:Boot Menu <End>:Qflash
 9/19/2007-X38-ICH9-6A790G0QC-00
```

- ▶ El Reset carga en los registros sus valores predefinidos
  - PC ← dirección de arranque del programa iniciador (en memoria ROM)
- Se ejecuta el programa iniciador
  - Test del sistema (POST)
  - Carga en memoria el cargador del sistema operativo (MBR)



- ▶ El Reset carga en los registros sus valores predefinidos
  - PC ← dirección de arranque del programa iniciador (en memoria ROM)
- Se ejecuta el programa iniciador
  - Test del sistema (POST)
  - Carga en memoria el cargador del sistema operativo (MBR)
- Se ejecuta el cargador del sistema operativo
  - Establece opciones de arranque







- ▶ El Reset carga en los registros sus valores predefinidos
  - PC ← dirección de arranque del programa iniciador (en memoria ROM)
- Se ejecuta el programa iniciador
  - Test del sistema (POST)
  - Carga en memoria el cargador del sistema operativo (MBR)
- Se ejecuta el cargador del sistema operativo
  - Establece opciones de arranque
  - Carga el programa de carga



- ▶ El Reset carga en los registros sus valores predefinidos
  - PC ← dirección de arranque del programa iniciador (en memoria ROM)
- Se ejecuta el programa iniciador
  - Test del sistema (POST)
  - Carga en memoria el cargador del sistema ope
- Se ejecuta el cargador del s
  - Establece opciones de ai
  - Carga el programa de ca
- Se ejecuta el programa de carga
  - Establece estado inicial para el S.O.
  - Carga el sistema operativo y lo ejecuta



```
Configuring ISA PNP
Setting system time from the hardware clock (localtime).
Using /etc/random-seed to initialize /dev/urandom.
Initializing basic system settings ...
Updating shared libraries
Setting hostname: emppe/23.murdoch.edu.au
INII: Entering runlevel: 4
rc.M => Going multiuser...
Starting system logger ... [ OK ]
Initialising advanced hardware
Setting up modules ... [ OK ]
Initialising network
Setting up localhost ... [ OK ]
Setting up localhost ... [ OK ]
Setting up foach ... [ OK ]
Feeded ninter services of runlevel 4
Starting services of runlevel 4
Starting dnsmasq ... [ OK ]

Service Soing to multiuser GUI mode ...
KFeede Display Manager
Framebuffer /dev/fb0 is 307200 bytes.
Grabbing 640x480 ...
```

#### resumen

- ▶ El Reset carga en los registros sus valores predefinidos
  - PC ← dirección de arranque del programa iniciador (en memoria ROM)
- Se ejecuta el programa iniciador
  - Test del sistema (POST)
  - Carga en memoria el cargador del sistema operativo (MBR)
- Se ejecuta el cargador del sistema operativo
  - Establece opciones de arranque
  - Carga el programa de carga
- Se ejecuta el programa de carga
  - Establece estado inicial para el S.O.
  - Carga el sistema operativo y lo ejecuta



#### Contenido

- 1. Elementos de un computador
- 2. Organización del procesador
- La unidad de control
- 4. Ejecución de instrucciones
- 5. Diseño de la unidad de control
- 6. Modos de ejecución
- 7. Interrupciones
- 8. Arranque de un computador
- 9. Prestaciones y paralelismo

# Tiempo de ejecución de un programa

Iron law of processor performance

$$Tiempo_{ejecución} = NI \times CPI \times t_{ciclo\_CPU} + NI \times AMI \times t_{ciclo\_mem}$$

- NI es el número de instrucciones máquina del programa
- es el número medio de ciclos de reloj necesario para ejecutar una instrucción
- t<sub>ciclo CPI</sub> es el tiempo que dura el ciclo de reloj del procesador
- AMI es el número medio de accesos a memoria por instrucción
- t<sub>ciclo mem</sub> es el tiempo de un acceso a memoria

### Factores que afecta al tiempo de ejecución

|                              | NI       | СРІ      | t <sub>ciclo_CPI</sub> | AMI      | t <sub>ciclo_mem</sub> |
|------------------------------|----------|----------|------------------------|----------|------------------------|
| Programa                     | <b>✓</b> |          |                        | <b>√</b> |                        |
| Compilador                   | <b>✓</b> | <b>√</b> |                        | <b>√</b> |                        |
| Juego de instrucciones (ISA) | <b>✓</b> | <b>✓</b> | <b>✓</b>               | <b>✓</b> |                        |
| Organización                 |          | <b>√</b> | <b>✓</b>               |          | <b>✓</b>               |
| Tecnología                   |          |          | <b>√</b>               |          | <b>✓</b>               |

### Paralelismo a nivel de instrucción

- Procesamiento concurrente de varias instrucciones
- ▶ Combinación de elementos que trabajan en paralelo:
  - Procesadores segmentados: utilizan técnicas de pipeline para procesar varias instrucciones simultáneamente
  - Procesadores superescalares: procesador segmentado que puede ejecutar varias instrucciones en paralelo cada una de ellas en una unidad segmentada diferente
  - Procesadores multicore: procesador que combina dos o más procesadores independientes en un solo empaquetado

# Segmentación de instrucciones



- Etapas de ejecución de una instrucción:
  - LI: Lectura de la instrucción e incremento del PC
  - D: Decodificación
  - ▶ LO: Lectura de Operandos
  - EJ: Ejecución de la instrucción
  - **EO**: Escritura de Operandos

# Modelo de procesador basado en camino de datos (sin bus interno)



# Segmentación de instrucciones sin pipeline



### Etapas de ejecución de una instrucción:

- LI: Lectura de la instrucción e incremento del PC
- D: Decodificación
- ▶ LO: Lectura de Operandos
- Ej: Ejecución de la instrucción
- **EO**: Escritura de Operandos

# Segmentación de instrucciones sin pipeline



Si cada fase dura N ciclos de reloj, entonces

56

- Una instrucción se ejecuta en 5\*N ciclos de reloj
- Se ejecuta 1/5 de instrucción cada N ciclos de reloj

# Segmentación de instrucciones con pipeline



- Si cada fase dura N ciclos de reloj, entonces
  - ▶ Una instrucción se ejecuta en 5\*N ciclos de reloj
  - Cada N ciclos de reloj termina I de instrucción

# Superescalar



Pipeline con varias unidades funcionales en paralelo

### Multicore

Múltiples procesadores en el mismo encapsulado





#### Grupo ARCOS

# uc3m Universidad Carlos III de Madrid

# Tema 4 (III) El procesador

Estructura de Computadores Grado en Ingeniería Informática

