

Topic 8: Applied Math (C) Optimization Methods

Group Number 9
Ryan Hammonds, Benjamin Pham, Gabriel Riegner
08 November 2022

Sec 1: Introduction

Overview of Optimization

Optimization involves minimizing (or maximizing) an objective or loss function.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

- Solved using:
 - Linear algebra:

$$Ax = b$$

- Iterative methods
 - **Gradient Descent**
 - (Quasi) Newton Method

Importance of the topic

- Optimization is required to solve regression and classification problems.
 - Parameter tuning
- Applies to simple and complex models.
 - Linear Regression
 - Neural networks
- Applications
 - Medicine
 - Economics / Finance
 - Computer vision
 - Speech recognition

$$Y_1 = \beta_0 + \beta_1 X_1 + \epsilon_1$$

$$Y_2 = \beta_0 + \beta_1 X_2 + \epsilon_2$$

$$\vdots \vdots \vdots$$

$$Y_n = \beta_0 + \beta_1 X_n + \epsilon_n$$

Sec 2: Problem Formulation

#1 Problem formulation

- 1. Let **X** be a vector of unknown parameters.
- 2. Let y be a vector of the known targets.
- 3. Given an arbitrary loss function (e.g. L0, L1, or L2), iteratively minimize:

$$f(\mathbf{x}) = loss(\hat{\mathbf{y}}, \mathbf{y})$$
$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

- 4. At each iterative step k, update \mathbf{x} by subtracting either:
 - a. the gradient $\nabla \cdot$ scaled by step size η

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta_k \nabla f(\mathbf{x}_k)$$

b. the gradient $\nabla \cdot$ scaled by the inverse Hessian \mathbf{H}^{-1}

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{H}(\mathbf{x}_k)^{-1} \nabla f(\mathbf{x}_k)$$

#2 Relation to Numerical Linear Algebra

In general, an optimization problem involves solving a linear system with multiple parameters to minimize the loss function.

Solved via two main types of methods:

- Closed Form (Exact)
- Numerical (Estimation)

The solution of this linear system results in the set of the most optimal parameters

Simple Example

$$Y = \beta X + \epsilon$$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ 1 & x_{31} & x_{32} \\ \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \vdots \\ \epsilon_n \end{bmatrix}$$
Known
Unknown

Optimization Problem: Get β that creates the best fit line while minimizing the error term (distance between points and the best fit line)

Sec 3: State of the Art (SOTA)

Quasi Newton Methods: L-BFGS

- Computing the inverse Hessian is costly
 - Replace Hessian with an approximation
- Approximations must satisfy the secant equation:

$$\mathbf{B}_{k+1} \Delta \mathbf{x} = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$$

- L-BFGS
 - Store last *m* gradients and parameter estimates
 - At each step *k*:
 - Use last *m* estimates to approximate the Hessian

$$\begin{bmatrix} \nabla f(x_{k-1}) \cdots \nabla f(x_{k-m}) \\ [x_{k-1} \cdots x_{k-m}] \end{bmatrix}$$

Stochastic Gradient Descent

- Batch GD computes a gradient from the entire dataset, then steps.
 - batch_size = len(X)
- SGD computes a gradient from one instance, then steps.
 - batch size = 1
- SOTA: First-Order Optimizers
 - Adam, AdaGrad, RMSProp
 - Adaptive learning rates (step sizes)

Normal Equation vs SGD vs Newton vs L-BFGS

Method	Normal Equation	SGD	Newton	L-BFGS
Speed	Depends on the size of X (slower as (X'X)^-1 becomes harder to compute)	Fast (approximation of Gradient)	Very Slow (computes the full Hessian at each update)	Medium (approximation of Hessian)
Convergence	N/A	Linear	Quadratic	Quadratic
Computational Cost	O(mn^2)	O(kmn)	O(m^3)	O(kn)
Туре	Exact	Estimation	Estimation	Estimation

Scheme

Simulations:

- Simulate Regression coefficients (1,10,100,1000 betas), Compare iterative methods
- 100 Simulations with observations (100,5000), L-BFGS and SGD; Ir: 0.01
- Criterions: Accuracy (MSE), Computation Time (seconds), Effectiveness (Iteration to convergence)
- Goal: Identify the best iterative method for a general dataset type

Simple LR Simulation Results

Simulation: n = 5000; 100 replicates

Second-Order Methods Converge Fast

Simulation: n = 5000; 100 replicates

DSC 210 FA'22 Numerical Linear Algebra

At a High-Dimensional Case, the NLA approach starts to break...

Simulations: n = 100; 100 replicates

Computation Speed and MSE of SOTA Iterative Methods in the High-Dimensional case are still quite good

Simulations: n = 100; 100 replicates

DSC 210 FA'22 Numerical Linear Algebra

Simple LR Simulation Summary

SOTA methods were designed with large datasets in mind

 In general, SGD is very fast but estimates may not be as good as those found with L-BFGS

 For extreme cases, SOTA methods perform better than typical NLA approaches but the performance is not generalizable

Non-linear least squares

Friedman regression problem

$$f(x) = 10sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5 + \epsilon \quad \text{(known weights)}$$

$$f(x) = \beta_1 sin(\pi x_1 x_2) + \beta_2 (x_3 - \beta_3)^2 + \beta_4 x_4 + \beta_5 x_5 + \epsilon \quad \epsilon \sim \mathcal{N}(0, 1)$$

LBFGS performs better than SGD with 0 noise but is sometimes unstable

Descriptive summary of MSE, Friedman, n = 100, noise = 0, 100 sims

	SGD	LBFGS
Count (non-NA sims)	100	93
mean	82.61681	3.1E+11
std	4.025522	2.93E+12
min	72.7221	5.57E-09
25%	81.55313	3.56E-08
50%	83.72334	4.04E-08
75%	85.12831	7.53E-08
max	88.90165	2.82E+13

DSC 210 FA'22 Numerical Linear Algebra

With Higher Noise, SGD and LBFGS solutions become more unstable

tive summary of MSE Friedman, n = 100, noise = 100, 100 sin						
	SGD	LBFGS				
Count (non-NA sims)	71	92				
mean	167.8209	8.55E+13				
std	77.80087	8.2E+14				
min	61.92406	139.574				
25%	124.2768	599.0084				
50%	146.8394	1256.123				
75%	201.3837	3135.622				
max	437.6005	7.87E+15				

DSC 210 FA'22 Numerical Linear Algebra

Scheme

Simulations:

- Simulate Regression coefficients (1,10,100,1000 betas), Compare iterative methods
- 100 replicates for each, L-BFGS and SGD, Ir: 0.01
- Criterions: Accuracy (MSE), Computation Time (seconds), Effectiveness (Iteration to convergence)
- Goal: Identify the best iterative method for a general dataset type

Actual Data:

- Datasets: Diabetes and California Housing (Scikit-Learn)
- Criterion: Accuracy (MSE) in out-of-sample prediction and computation time
- We expect second order methods will outperform first order methods in accuracy, but not in computation time

Datasets

Diabetes dataset > (420 samples, 6 features)

X : age, sex, body mass index, blood pressure, cholesterol levels (s1-2)

 ${f y}\,$: quantitative measure of disease progression one year after baseline

out-of-sample prediction accuracy

California housing dataset > (20640 samples, 6 features)

X: medium income, house age, average rooms, average bedrooms, population, household members

y : medium house value for California districts

Sec 4: Concluding remarks

Conclusions

- We explored different optimization methods in the context of both least-squares linear regression and non-linear regression
- We confirmed our expectations with rigorous theoretical simulations
- We applied these methods to real datasets
- We utilized numpy, pytorch, and pandas to carry out these experiments
- We conclude that the best method for these problems is dependent on the data and available computational resources

References

https://course.ece.cmu.edu/~ece739/lectures/18739-2020-spring-lecture-08-second-order.pdf

https://www.psychologie.uni-heidelberg.de/ae/meth/team/mertens/blog/hessian.nb.html

https://www.inf.ed.ac.uk/teaching/courses/irds/miniproject-datasets.html

Hardt, M., & Recht, B. (2022). Patterns, predictions, and actions: A story about machine learning. Princeton University Press.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991.