Разработка и исследование массивно-многопоточного алгоритма нелинейной фильтрации изображений в CUDAсреде

Магистрант

Руководитель работы

Елкин Д. А.

Фурсов В.А.

Цель работы

Целью работы является разработка и исследование модели нелинейной фильтрации изображений для устранения динамических искажений. Создание программного обеспечения для исследования качества восстановления изображений с помощью разработанной модели.

Задачи:

- 1. Анализ задачи построения нелинейного фильтра для устранения динамических искажений.
- 2. Разработка модели нелинейного фильтра для искажений с радиальной симметрией.
- 3. Разработка программного комплекса.
- 4. Проведение экспериментов по восстановлению изображений с помощью разработанной модели нелинейного фильтра.

Постановка задачи

Полином Колмагорова-Габора:

$$y(k_1, k_2) = c_0 + \sum_{n_1, n_2 = 1}^{N_1, N_2} c_{n_1, n_2} x(n_1, n_2) + \sum_{n_1, n_2 = 1}^{N_1, N_2} \sum_{m_1, m_2 = 1}^{N_1, N_2} c_{n_1, n_2; m_1, m_2} x(n_1, n_2) x(m_1, m_2) + \dots$$

Матричное соотношение: $\mathbf{y} = \mathbf{X}\mathbf{c} + \mathbf{\xi}$.

Задача заключается в том, чтобы по одной реализации (фрагменту изображения) построить оценку $\hat{\mathbf{c}}$ вектора параметров \mathbf{c} по доступным для непосредственного наблюдения $N \times M$ -матрице \mathbf{X} и $N \times 1$ -вектору $\mathbf{y} (N > M)$, при неизвестном $N \times 1$ -векторе ошибок $\boldsymbol{\xi}$.

Модификация модели для случая радиально симметричных искажений

$$x(r) = \frac{1}{m} \sum_{i=1}^{m} x_i(n_1, n_2, r)$$

1.
$$y(k_1, k_2) = c_0 + \sum_{i=1}^{6} c_i x(r_i) + \sum_{i=1}^{6} \sum_{j=1}^{6} c_{i,j} x(r_i) x(r_j)$$
.

2.
$$y(k_1, k_2) = c_0 + \sum_{i=1}^{6} c_{1,i} x(r_i) + \sum_{i=1}^{6} c_{2,i} x^2(r_i)$$
.

3.
$$y(k_1, k_2) = c_0 + \sum_{i=1}^{6} c_{1,i} x(r_i) + \sum_{i=1}^{6} c_{2,i} x^2(r_i) + \sum_{i=1}^{6} c_{2,i} x^3(r_i)$$
.

4.
$$y(k_1, k_2) = c_0 + \sum_{i=1}^{3} c_{1,i} x(r_i) + \sum_{i=1}^{3} c_{2,i} x^2(r_i) + \sum_{i=1}^{3} c_{2,i} x^3(r_i).$$

5.
$$x'(r_3) = \frac{1}{2}(x(r_3) + x(r_4)); \quad x'(r_4) = \frac{1}{2}(x(r_5) + x(r_6));$$

 $y(k_1, k_2) = c_0 + \sum_{i=1}^4 c_i x(r_i) + \sum_{i=1}^4 \sum_{j=1}^4 c_{i,j} x(r_j) x(r_j).$

Описание программного комплекса

$$y(k_1, k_2) = c_0 + \sum_{i=1}^{6} c_{1,i} x(r_i) + \sum_{i=1}^{6} c_{2,i} x^2(r_i) + \sum_{i=1}^{6} c_{2,i} x^3(r_i)$$

Шаги:

- $oldsymbol{1}$. Инициализация $oldsymbol{y}$ значением $c_{\scriptscriptstyle 0}$.
- 2. Параллельно для каждого отсчета рассчитать $\sum_{i=1}^6 c_{1,i} x(r_i)$.
- 3. Параллельно для каждого отсчета рассчитать $\sum_{i=1}^{6} c_{2,i} x^2(r_i)$.
- 4. Параллельно для каждого отсчета рассчитать $\sum_{i=1}^{6} c_{2,i} x^3(r_i)$.

Сравнение результатов обработки при σ=3

Фильтр	СКО «Лена»	СКО «Город»
$y(k_1, k_2) = c_0 + \sum_{i=1}^{6} c_{1,i} x(r_i) + \sum_{i=1}^{6} c_{2,i} x^2(r_i) + \sum_{i=1}^{6} c_{2,i} x^3(r_i)$	8,7016	15,1467
$y(k_1, k_2) = c_0 + \sum_{i=1}^{6} c_{1,i} x(r_i) + \sum_{i=1}^{6} c_{2,i} x^2(r_i)$	8,7043	15,1555
$x'(r_3) = \frac{1}{2} (x(r_3) + x(r_4)); \qquad x'(r_4) = \frac{1}{2} (x(r_5) + x(r_6));$ $y(k_1, k_2) = c_0 + \sum_{i=1}^4 c_i x(r_i) + \sum_{i=1}^4 \sum_{j=1}^4 c_{i,j} x(r_i) x(r_j)$	8,9613	15,6698
$y(k_1, k_2) = c_0 + \sum_{i=1}^{6} c_i x(r_i) + \sum_{i=1}^{6} \sum_{j=1}^{6} c_{i,j} x(r_i) x(r_j)$	8,9870	15,2948
$y(k_1, k_2) = c_0 + \sum_{i=1}^{3} c_{1,i} x(r_i) + \sum_{i=1}^{3} c_{2,i} x^2(r_i) + \sum_{i=1}^{3} c_{2,i} x^3(r_i)$	8,8932	16,8469
OpenCV (Винеровский фильтр)	9,8238	19,3741

Сравнение результатов обработки при σ=5

Фильтр	СКО «Лена»	СКО «Город»
$y(k_1, k_2) = c_0 + \sum_{i=1}^{6} c_{1,i} x(r_i) + \sum_{i=1}^{6} c_{2,i} x^2(r_i) + \sum_{i=1}^{6} c_{2,i} x^3(r_i)$	11,6262	23,5168
$y(k_1, k_2) = c_0 + \sum_{i=1}^{6} c_{1,i} x(r_i) + \sum_{i=1}^{6} c_{2,i} x^2(r_i)$	11,7534	23,5207
$x'(r_3) = \frac{1}{2} (x(r_3) + x(r_4)); \qquad x'(r_4) = \frac{1}{2} (x(r_5) + x(r_6));$ $y(k_1, k_2) = c_0 + \sum_{i=1}^4 c_i x(r_i) + \sum_{i=1}^4 \sum_{j=1}^4 c_{i,j} x(r_i) x(r_j)$	11,8041	23,6472
$y(k_1, k_2) = c_0 + \sum_{i=1}^{6} c_i x(r_i) + \sum_{i=1}^{6} \sum_{j=1}^{6} c_{i,j} x(r_i) x(r_j)$	11,9505	23,7339
$y(k_1, k_2) = c_0 + \sum_{i=1}^{3} c_{1,i} x(r_i) + \sum_{i=1}^{3} c_{2,i} x^2(r_i) + \sum_{i=1}^{3} c_{2,i} x^3(r_i)$	12,1636	23,6343
OpenCV (Винеровский фильтр)	13,2166	23,8003

Пример 1 — сравнение результатов при σ =3

Исходное изображение

Размытое изображение

Восстановленное нелинейным фильтром

OpenCV

Пример 2 — сравнение результатов при σ=5

Исходное изображение

Размытое изображение

Восстановленное нелинейным фильтром

OpenCV

Пример 3 — сравнение результатов при σ =3

Исходное изображение

Размытое изображение

Восстановленное нелинейным фильтром

OpenCV

Пример 4 — сравнение результатов при σ=5

Исходное изображение

Размытое изображение

Восстановленное нелинейным фильтром

OpenCV

Выводы

По представленным результатам можно судить о преимуществе использования нелинейного фильтра: границы объектов, при восстановлении с помощью нелинейного фильтра более четкие.

Также следует отметить удобство и простоту использования алгоритма идентификации параметров модели для задачи восстановления изображений.