Holidays and COVID-19

Allen Lang (al8he)

CS 4774 Final Project Presentation

12/8/2020

Motivation

- Holiday season approaches
- Time of frequent travel/gatherings
- Determine effect of holiday travel/festivities on COVID-19 cases

Background: Pandemic in US

- Implemented quarantine measures in response to COVID-19
- Heated debate in US about "re-openings"
- Studies show COVID-19 spreads faster indoors rather than outdoors
- Concerns about winter time and the holiday season

Lockdown protests opposing COVID-19 restrictions began in mid-April as people grew weary of polices that they felt were unnecessary.

George Floyd incident sparked nationwide protests, pushing BLM back to the forefront of news. Protests began late-May/early-June.

Background: Forecasting

- High demand in many sectors
 - Economics and finance
 - Weather and geosystems
- Low supply of quality forecasting
 - Lack of experts
 - Difficult to tune/understand models
- Contemporary methods: ARIMA, ETS

Background: Prophet

"We are, in effect, framing the forecasting problem as a curve-fitting exercise" – Taylor and Letham

- Facebook Core Data Science Team Python module
- Simplification of time-series statistical analysis

$$y(t) = g(t) + s(t) + h(t) + \epsilon_t$$

Trend

- Non-periodic changes
- Logistic or linear
- Change points

Seasonality

- Daily, weekly, monthly, yearly, etc.
- Fourier Series

Holiday and Events

- Common, predictable shocks without periodicity
- Custom or built-in holidays by country

Error term

 Assumed to be normally distributed

Related Work

- COVID-19 forecasting
 - Compilation of models from various groups
 - Compartmental model of infectious diseases
 - Accounting for human factors
- Prophet forecasting
 - Wikipedia web page visits
 - Stock price predictions
 - Biking usage rates

Target Task

- Claim: holidays/special events lead to greater increase in COVID-19
- Identify patterns/trends in COVID-19 statistics during and after a holiday period

Intuitive Figure

Effect of COVID pandemic on daily movement in China

Effect of COVID pandemic on daily movement across different cities

Proposed Solution and Contribution

- Construct Prophet time-series model
- Fine tune model with hyperparameters
- Introduce outside data sets

- 1. Build/Tune model that accounts for holidays and special events when forecasting COVID-19 cases
- 2. Better understanding of movements during pandemic, holidays, and holidays during pandemic

Implementation

- Cleaning of Data with Numpy/Pandas
- Construction of baseline model with Prophet
- Hyperparameter tuning, figures with Plotly
 - Seasonality/Trends
 - Holidays
 - External regressors
- Prediction forecast

Data Summary

- 1. New York Times COVID-19 cases/deaths
- 2. National holidays across the world
- 3. Stringency index of national governments
- 4. Google Mobility Reports

Daily new cases of COVID-19 in the United States.

Google Mobility data during the COVID-19 pandemic.

Results/Analysis: Baseline

- Prophet model with COVID-19 new case data
- February 15th to November 29th
- Train RMSE: 11186.34
- Test RMSE: 73059.23

Forecasted model with no parameters

- Seasonality: type of seasonality
- Seasonality scale: flexibility of seasonality
- Changepoint scale: flexibility of trend between changepoints
- Fourier order: order of the Fourier series used for seasonality

Result of hyperparameter tuning for additive mode during part 1

```
Seasonality types: ['additive', 'multiplicative']
Seasonality scale: [0.1, 1, 10]
Changepoint scale: [0.1, 0.2, 0.3, 0.5]
Fourier Order: [6, 8, 10, 12]
```

Hyperparameter grid for part 1

• Best parameters:

- Seasonality: multiplicative
- Seasonality scale: 10
- Changepoint scale: 0.5
- Fourier order: 12

• RMSE:

- Train: 3171.63
- Test: 32726.62

Forecasted model using best parameters for part 1.

- Lower window: how far the holiday goes backward
- Upper window: how far the holiday goes forward
- Priority Scale: importance of each holiday as a "shock" to model

• Part 2: Tuning with only generated holidays

	ds	holiday
0	2020-02-17	Washington's Birthday
1	2020-05-25	Memorial Day
2	2020-07-04	Independence Day
3	2020-09-07	Labor Day
4	2020-10-12	Columbus Day
5	2020-11-11	Veterans Day
6	2020-11-26	Thanksgiving
7	2020-12-25	Christmas Day

Holidays used in part 2.

Results of hyperparameter tuning for part 2

```
Lower window: [-1, -2, -3, -4]
Upper window: [1, 2, 3, 4]
Holiday scale [0.05, 1, 5, 10]
```

Hyperparameter grid for part 2 and 3

- Best parameters:
 - Lower window: -4
 - Upper window: 1
 - Holiday Prior Scale: 5

- RMSE:
 - Train: 2886.28
 - Test: 32057.55

Forecasted model using best parameters for part 2.

Holidays influence on forecasting for part 2.

• Part 3: Tuning with addition of special events

holiday	ds	
Washington's Birthday	2020-02-17	0
Memorial Day	2020-05-25	1
BLM Protests	2020-06-01	2
Lessening of Quarantine Measures	2020-06-15	3
Independence Day	2020-07-04	4
Lessening of Quarantine Measures	2020-07-20	5
Labor Day	2020-09-07	6
Lessening of Quarantine Measures	2020-09-12	7
Columbus Day	2020-10-12	8
Lessening of Quarantine Measures	2020-10-26	9
Halloween	2020-10-31	10
Election Day	2020-11-03	11
Veterans Day	2020-11-11	12
Thanksgiving	2020-11-26	13
Christmas Day	2020-12-25	14

Holidays used in part 3.

Stringency index for the US over the pandemic. Lessening of measures highlighted in red.

- Best parameters:
 - Lower window: -4
 - Upper window: 1
 - Holiday Prior Scale: 10

- RMSE:
 - Train: 2786.01
 - Test: 32712.98

Forecasted model using best parameters for part 3.

Holidays influence on forecasting for part 3

Results/Analysis: Tuning with Regressors

- Best regressors:
 - Residential: multiplicative, 5
 - Work: multiplicative, 1
 - Retail: multiplicative, 1

- RMSE:
 - Train: 2850.94
 - Test: 30731.03

Forecasted model using best parameters for part 5.

Retail, work, and residential mobility trends

Results/Analysis: Tuning summary

Results of hyperparameter tuning

Tuning Stage	Train RMSE	Test RMSE
Part 1: Without holidays	3171.63	32726.62
Part 2: With holidays	2886.28	32057.55
Part 3: With holidays/events	2786.01	32712.98
Part 4: With holidays/events manual	3024.23	32700.53
Part 5: With regressors	2850.94	30731.03

Results/Analysis: Prediction

• Baseline:

• Train RMSE: 11186.34

• Test RMSE: 73059.23

• Final model:

• Train RMSE: 4137.23

• Test RMSE: 56454.53

Predicted forecast model with tuned model

Conclusion: Observations

- Inclusion of national holidays improved model performance
- Stark contrast between lower and upper window parameters
- Positive response to other time-series data

Future Work: Extensions within Prophet

- Metrics: looking into percent-error based
- Tuning methods: Prophet's built-in cross validation
- Holidays: precise way to optimizing each holiday's parameters
- Regressors: other time-series data like temperature

Future Work: Extensions outside Prophet

- Benchmarking: comparison with other methods
- Classical statistical methods
 - ARIMA
 - ETS
 - Holt-Winters
- Neural networks
 - LSTM, RNN
 - MLP

Thank You!

Professor Qi, Zhe, Jack, Arshdeep

References

- https://commons.wikimedia.org/wiki/File:CIMG_0355_(49799414598).jpg
- https://en.wikipedia.org/wiki/File:Minneapolis_05-28-20_(49947863357).jpg
- https://facebook.github.io/prophet/
- https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
- https://covid19-projections.com/
- https://nbviewer.jupyter.org/github/nicolasfauchereau/Auckland_Cycling/blob/master/notebooks/Auckland_cycling_and_weather.ipynb
- https://www.kaggle.com/paultimothymooney/nytimes-covid19-data
- https://github.com/dr-prodigy/python-holidays
- https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
- https://www.google.com/covid19/mobility/
- https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194889