COXETER GRAPHS

We start with the notion of level for a Coxeter graph.

Definition 1 (Level). Let Γ be the Coxeter graph of an (irreducible) Coxeter system. Its level is the smallest non-negative integer r such that every choice of r vertices in Γ , when removed, leaves a (possibly disconnected) Coxeter graph of level 0 (finite or affine type).

We denote level of a graph Γ by $L(\Gamma)$.

It'll be useful to define a set of all possible values of level of a Coxeter graph with n nodes.

 $L_n = \{ L(\Gamma) \mid \Gamma \text{ is a Coxeter graph with } n \text{ nodes} \}.$

Corollary 1. n-1 is an upper bound for L_n

Lemma 1. n-1 is in fact a maximum for L_n .

Proof. From the corollary above we know that n-1 is an upper bound for L_n . Hence, it suffices to show that \exists a Coxeter graph with n nodes, say H, such that L(H) = n - 1.

Consider the following graph H^2 :

Notice that $L(H^2) = 1$ since $L(H^2) > 0$ and $L(H^2) \le 1$.

Finally consider the following construction with H^2 : After adding a node we get H^3 , where $L(H^3) = 2$:

 H^4 , where $L(H^4) = 3$

and so on....

We claim that $L(H^n) = n - 1$.

Note that by symmetry on removing any node of H^n we get the graph H^{n-1} . In fact, on removing any choice of n-2 nodes we get H^2 . Hence, $L(H^n) > n-2$ and we also have $L(H^n) \le n-1$. And so, $L(H^n) = n-1$

Therefore, a complete graph of n nodes with -2 on all edges gives us what we need.