

Figure 1: Correlation between features

1 Dataset

The Aidelman dataset contains 3.300.000 samples and each sample is labeled as an $H\alpha$ emitting object (EM) and/or a Be star (Be). Each sample includes measurements from 10 different channels: u, g, r, $H\alpha$, i, J, H, K, W1 and W2.

2 Experiments

2.1 EM classification

In order to establish a baseline performance for classifying EM objects, we split the dataset 80/20, obtaining training and test subsets, and we train three common models using SKLearn:

- Random Forest, with a max depth of 6
- 3-layer neural network, with (10,10) hidden states
- Gradient Boosting, with 300 tree estimators

Figure 2: F-Score for train (left) and test (right) sets when classifying stars as EM or not.

Figure 3: F-Score for train (left) and test (right) sets when classifying stars as BE or not.

Train:		Model	fscore pre	cision	recall
0	RandomForestClassifier	0.951191	0.908095	0.998581	
1	MLPClassifier	0.954169	0.919153	0.991958	
2	GradientBoostingClassifier	0.951439	0.911145	0.995461	
Test:					
Te	st:	Model :	fscore pred	ision	recall
Te 0	st: RandomForestClassifier		-		
		0.951387	0.908369	0.998682	