

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日
Date of Application: 2002年12月11日

出願番号
Application Number: 特願2002-359192

[ST. 10/C]: [JP2002-359192]

願人
Applicant(s): セイコーエプソン株式会社

2003年11月26日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
【整理番号】 J0095179
【提出日】 平成14年12月11日
【あて先】 特許庁長官殿
【国際特許分類】 B63C 11/02
G04G 1/00 315
【発明者】
【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーホームズ株式会社内
【氏名】 廣瀬 健
【特許出願人】
【識別番号】 000002369
【氏名又は名称】 セイコーホームズ株式会社
【代理人】
【識別番号】 100091823
【弁理士】
【氏名又は名称】 櫛渕 昌之
【選任した代理人】
【識別番号】 100101775
【弁理士】
【氏名又は名称】 櫛渕 一江
【手数料の表示】
【予納台帳番号】 044163
【納付金額】 21,000円
【提出物件の目録】
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【フルーフの要否】 要

【書類名】 明細書

【発明の名称】 ダイバーズ用情報処理装置、制御方法、制御プログラム及び記録媒体

【特許請求の範囲】

【請求項1】 複数種類の潜水用ガスの混合比率が異なる複数の混合ガスを用いて潜水を行うために用いられるダイバーズ用情報処理装置であって、

あらかじめ設定された予定潜水パターンおよび現在までの実際の潜水パターンに基づいて、前記混合ガスの切換タイミングを判別する切換タイミング判別部と

、
前記切換タイミングに基づいて切換先の混合ガスを特定するための情報及び前記切換タイミングを告知する告知部と、

を備えたことを特徴とするダイバーズ用情報処理装置。

【請求項2】 請求項1記載のダイバーズ用情報処理装置において、
前記複数種類の潜水用ガスの混合比率を入力する混合比率入力部と、
前記潜水用ガス毎に許容する前記混合比率の入力範囲をあらかじめ記憶する入力範囲記憶部と、

記憶した前記入力範囲に基づいて、入力された前記混合比率が前記入力範囲外である場合に、当該混合比率を前記入力範囲内に補正する入力値補正部と、
を備えたことを特徴とするダイバーズ用情報処理装置。

【請求項3】 請求項1または請求項2記載のダイバーズ用情報処理装置において、

前記潜水用ガスは、酸素を含み、
入力された酸素に対応する前記混合比率あるいは入力後に補正された前記混合比率に基づいて他の前記潜水用ガスの混合比率を算出する酸素基準比率算出部を備えたことを特徴とするダイバーズ用情報処理装置。

【請求項4】 請求項3記載のダイバーズ用情報処理装置において、
前記潜水用ガスは、ヘリウムおよび窒素を含み、
前記酸素基準比率算出部は、前記酸素の混合比率および前記ヘリウムの混合比率に基づいて前記窒素の混合比率を算出することを特徴とするダイバーズ用情報

処理装置。

【請求項 5】 請求項 4 記載のダイバーズ用情報処理装置において、前記酸素基準比率算出部は、前記酸素の混合比率および前記ヘリウムの混合比率が 100 [%] を越える場合には、前記酸素の混合比率を変更せずに前記ヘリウムの混合比率を補正し、前記酸素の混合比率および前記ヘリウムの混合比率を 100 [%] に設定することを特徴とするダイバーズ用情報処理装置。

【請求項 6】 複数種類の潜水用ガスの混合比率が異なる複数の混合ガスを用いて潜水を行うために用いられるダイバーズ用情報処理装置の制御方法であつて、

あらかじめ設定された予定潜水パターンおよび現在までの実際の潜水パターンに基づいて、前記混合ガスの切換タイミングを判別する切換タイミング判別過程と、

前記切換タイミングに基づいて切換先の混合ガスを特定するための情報及び前記切換タイミングを告知する告知過程と、

を備えたことを特徴とするダイバーズ用情報処理装置の制御方法。

【請求項 7】 請求項 6 記載のダイバーズ用情報処理装置の制御方法において、

前記潜水用ガス毎に許容する前記混合比率の入力範囲をあらかじめ記憶する入力範囲記憶過程と、

前記複数種類の潜水用ガスの混合比率を入力する混合比率入力過程と、記憶した前記入力範囲に基づいて、入力された前記混合比率が前記入力範囲外である場合に、当該混合比率を前記入力範囲内に補正する入力値補正過程と、を備えたことを特徴とするダイバーズ用情報処理装置の制御方法。

【請求項 8】 請求項 6 または請求項 7 記載のダイバーズ用情報処理装置の制御方法において、

前記潜水用ガスは、酸素を含み、
入力された酸素に対応する前記混合比率あるいは入力後に補正された前記混合比率に基づいて他の前記潜水用ガスの混合比率を算出する酸素基準比率算出過程を備えたことを特徴とするダイバーズ用情報処理装置の制御方法。

【請求項 9】 コンピュータを複数種類の潜水用ガスの混合比率が異なる複数の混合ガスを用いて潜水を行うために用いられるダイバーズ用情報処理装置として機能させるための制御プログラムであって、

あらかじめ設定された予定潜水パターンおよび現在までの実際の潜水パターンに基づいて、前記混合ガスの切換タイミングを判別させ、

前記切換タイミングに基づいて切換先の混合ガスを特定するための情報及び前記切換タイミングを告知させる、

ことを特徴とする制御プログラム。

【請求項 10】 請求項 9 記載の制御プログラムにおいて、

前記複数種類の潜水用ガスの混合比率を入力させ、

あらかじめ記憶させた前記潜水用ガス毎に許容する前記混合比率の入力範囲に基づいて、入力された前記混合比率が前記入力範囲外である場合に、当該混合比率を前記入力範囲内に補正させる、

ことを特徴とする制御プログラム。

【請求項 11】 請求項 9 または請求項 10 記載の制御プログラムにおいて

前記潜水用ガスは、酸素を含み、

入力された酸素に対応する前記混合比率あるいは入力後に補正された前記混合比率に基づいて他の前記潜水用ガスの混合比率を算出させることを特徴とする制御プログラム。

【請求項 12】 請求項 11 記載の制御プログラムにおいて、

前記潜水用ガスは、ヘリウムおよび窒素を含み、

前記酸素基準比率算出部は、前記酸素の混合比率および前記ヘリウムの混合比率に基づいて前記窒素の混合比率を算出させることを特徴とする制御プログラム。

【請求項 13】 請求項 12 記載の制御プログラムにおいて、

前記酸素基準比率算出部は、前記酸素の混合比率および前記ヘリウムの混合比率が 100 [%] を越える場合には、前記酸素の混合比率を変更させずに前記ヘリウムの混合比率を補正させ、前記酸素の混合比率および前記ヘリウムの混合

比率を 100 [%] に設定させることを特徴とする制御プログラム。

【請求項 14】 請求項 9 ないし請求項 13 のいずれかに記載の制御プログラムを記録したことを特徴とするコンピュータ読取可能な記録媒体。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、ダイバーズ用情報処理装置、制御方法、制御プログラム及び記録媒体に係り、特に高深度潜水を行うために用いられるダイバーズ用情報処理装置並びにその制御方法、制御プログラム及び記録媒体に関する。

【従来の技術】

ダイビングにより体内に溶け込んだ呼吸気中の窒素などの不活性ガスは体内で気泡となって減圧症を招くことが知られている。

また、普通の空気を呼吸ガスとして使用する空気潜水では、体质や熟練度によっても差があるが、水深 30 メートル程度を越えて潜水をするといわゆる窒素中毒を起こす可能性が高くなる。

【0002】

このような問題を解決すべく、ダイブコンピュータと称せられるダイバーズ用情報処理装置として、潜水時に一定のアルゴリズムでダイバーの安全性を確保するのに必要な情報、例えば、現在の水深値や体内に過剰に蓄積された不活性ガスが排出されるまでの時間や安全な浮上速度を求め、それを液晶表示パネルなどの表示部に表示するものが知られている。このようなダイバーズ用情報処理装置は、例えば、特許文献 1 に開示されている。

また、さらに深度が深いダイビングを行う場合には、酸素濃度を高くした酸素および窒素の混合ガスを用いる混合ガス潜水が用いられている。

しかしながら、上述した従来の混合ガス潜水でも、水深 40 メートル程度を越えると酸素中毒を起こす可能性が高くなる。

【特許文献 1】

特開平 11-20787 号公報

【0003】

【発明が解決しようとする課題】

ところで、作業潜水などにおいては、水深40メートルより深い水深に潜行するようなダイビング（高深度ダイビング）がごく普通に行われている。

そこで、本発明の目的は、高深度ダイビングにおいて減圧症、窒素中毒あるいは酸素中毒の発生を低減するための情報を提供することが可能なダイバーズ用情報処理装置並びにその制御方法、制御プログラム及び記録媒体を提供することにある。

【0004】**【課題を解決するための手段】**

上記課題を解決するため、複数種類の潜水用ガスの混合比率が異なる複数の混合ガスを用いて潜水を行うために用いられるダイバーズ用情報処理装置は、あらかじめ設定された予定潜水パターンおよび現在までの実際の潜水パターンに基づいて、前記混合ガスの切換タイミングを判別する切換タイミング判別部と、前記切換タイミングに基づいて切換先の混合ガスを特定するための情報及び前記切換タイミングを告知する告知部と、を備えたことを特徴としている。

上記構成によれば、切換タイミング判別部は、あらかじめ設定された予定潜水パターンおよび現在までの実際の潜水パターンに基づいて、混合ガスの切換タイミングを判別する。

【0005】

これにより、告知部は、切換タイミングに基づいて切換先の混合ガスを特定するための情報及び切換タイミングを告知する。

この場合において、前記複数種類の潜水用ガスの混合比率を入力する混合比率入力部と、前記潜水用ガス毎に許容する前記混合比率の入力範囲をあらかじめ記憶する入力範囲記憶部と、記憶した前記入力範囲に基づいて、入力された前記混合比率が前記入力範囲外である場合に、当該混合比率を前記入力範囲内に補正する入力値補正部と、を備えるようにしてもよい。

また、前記潜水用ガスは、酸素を含み、入力された酸素に対応する前記混合比率あるいは入力後に補正された前記混合比率に基づいて他の前記潜水用ガスの混合比率を算出する酸素基準比率算出部を備えるようにしてもよい。

さらに、前記潜水用ガスは、ヘリウムおよび窒素を含み、前記酸素基準比率算出部は、前記酸素の混合比率および前記ヘリウムの混合比率に基づいて前記窒素の混合比率を算出するようにしてもよい。

さらにまた、前記酸素基準比率算出部は、前記酸素の混合比率および前記ヘリウムの混合比率が 100 [%] を越える場合には、前記酸素の混合比率を変更せずに前記ヘリウムの混合比率を補正し、前記酸素の混合比率および前記ヘリウムの混合比率を 100 [%] に設定するようにしてもよい。

【0006】

また、複数種類の潜水用ガスの混合比率が異なる複数の混合ガスを用いて潜水を行うために用いられるダイバーズ用情報処理装置の制御方法は、あらかじめ設定された予定潜水パターンおよび現在までの実際の潜水パターンに基づいて、前記混合ガスの切換タイミングを判別する切換タイミング判別過程と、前記切換タイミングに基づいて切換先の混合ガスを特定するための情報及び前記切換タイミングを告知する告知過程と、を備えたことを特徴としている。

この場合において、前記潜水用ガス毎に許容する前記混合比率の入力範囲をあらかじめ記憶する入力範囲記憶過程と、前記複数種類の潜水用ガスの混合比率を入力する混合比率入力過程と、記憶した前記入力範囲に基づいて、入力された前記混合比率が前記入力範囲外である場合に、当該混合比率を前記入力範囲内に補正する入力値補正過程と、を備えるようにしてもよい。

【0007】

また、前記潜水用ガスは、酸素を含み、入力された酸素に対応する前記混合比率あるいは入力後に補正された前記混合比率に基づいて他の前記潜水用ガスの混合比率を算出する酸素基準比率算出過程を備えるようにしてもよい。

また、コンピュータを複数種類の潜水用ガスの混合比率が異なる複数の混合ガスを用いて潜水を行うために用いられるダイバーズ用情報処理装置として機能させるための制御プログラムは、あらかじめ設定された予定潜水パターンおよび現在までの実際の潜水パターンに基づいて、前記混合ガスの切換タイミングを判別させ、前記切換タイミングに基づいて切換先の混合ガスを特定するための情報及び前記切換タイミングを告知させる、ことを特徴としている。

この場合において、前記複数種類の潜水用ガスの混合比率を入力させ、あらかじめ記憶させた前記潜水用ガス毎に許容する前記混合比率の入力範囲に基づいて、入力された前記混合比率が前記入力範囲外である場合に、当該混合比率を前記入力範囲内に補正させるようにしてもよい。

【0008】

また、前記潜水用ガスは、酸素を含み、入力された酸素に対応する前記混合比率あるいは入力後に補正された前記混合比率に基づいて他の前記潜水用ガスの混合比率を算出させるようにしてもよい。

さらに前記潜水用ガスは、ヘリウムおよび窒素を含み、前記酸素基準比率算出部は、前記酸素の混合比率および前記ヘリウムの混合比率に基づいて前記窒素の混合比率を算出させるようにしてもよい。

さらによくまた、前記酸素基準比率算出部は、前記酸素の混合比率および前記ヘリウムの混合比率が100[%]を越える場合には、前記酸素の混合比率を変更させせずに前記ヘリウムの混合比率を補正させ、前記酸素の混合比率および前記ヘリウムの混合比率を100[%]に設定させるようにしてもよい。

また、上記いずれかの制御プログラムをコンピュータ読取可能な記録媒体に記録させることも可能である。

【0009】

【発明の実施の形態】

次に本発明の好適な実施の形態について図面を参照して説明する。

図1は、実施形態のダイバーズ用情報処理装置を用いる場合の潜水装備の使用態様図である。また図2は実施形態の潜水装備の概要構成説明図である。

潜水装備100は、大別すると、複数のボンベ1A～1Dと、切換バルブ・レギュレータ2と、水深・残圧計3と、ダイバーズ用情報処理装置（以下、ダイブコンピュータという。）4と、を備えている。

ボンベ1A～1Dは、それぞれ2種または3種類の潜水用ガスを混合した混合ガスが充填され、その混合比率がそれぞれ異なっている。

図2は、潜水用ガスの混合比率の一例の説明図である。以下の説明においては、潜水用ガスとして、酸素O₂、窒素N₂およびヘリウムHeの3種類を用いる

場合について説明する。

【0010】

図2に示すように、ボンベ1Aは、酸素O₂の混合比率F O₂ = 21%、窒素N₂の混合比率F N₂ = 79%、ヘリウムHeの混合比率F He = 0%となっており、いわゆる通常の空気と同じ混合比率となっている。この混合比率の混合ガスは、潜行時に深度30m程度まで用いることが可能となる。

ボンベ1Bは、酸素O₂の混合比率F O₂ = 15%、窒素N₂の混合比率F N₂ = 35%、ヘリウムHeの混合比率F He = 40%となっており、潜行時および浮上時の水深30m以深の高深度領域で用いられる。この混合比率の混合ガスは、主として酸素中毒の防止を目的としている。

ボンベ1Cは、酸素O₂の混合比率F O₂ = 50%、窒素N₂の混合比率F N₂ = 0%、ヘリウムHeの混合比率F He = 50%となっており、浮上時における比較的高深度から深度10m程度の比較的低深度までの深度領域で用いられる。この混合比率の混合ガスは、主として窒素中毒の防止を目的としている。

ボンベ1Dは、酸素O₂の混合比率F O₂ = 70%、窒素N₂の混合比率F N₂ = 10%、ヘリウムHeの混合比率F He = 20%となっており、減圧潜水時に用いられる。すなわち、この混合比率の混合ガスは、主として減圧症の防止を目的としている。

【0011】

切換バルブ・レギュレータ2は、ボンベ1A～1Dから供給される混合ガスを切り換えるとともに、混合ガスの圧力を所定の圧力にするファーストステージ2Aと、ファーストステージ2Aにレギュレータホース2Bを介して接続されたセカンドステージ2Cと、を備えている。

水深・残圧計3は、潜水中の水深および各ボンベ1A～1Dのうち現在使用されているボンベの残圧（残量）を計測し、表示を行う。

【0012】

図3はダイブコンピュータの概要構成ブロック図である。

本実施形態のダイブコンピュータ4は、以下のような機能を有している。

- ① 潜水中のダイバーの深度や潜時間などを計算して表示する。

② 潜水中に体内に蓄積される不活性ガス量を計測し、この計測結果から潜後に水からあがった状態で体内に蓄積された窒素が排出されるまでの時間などを表示する。

③ あらかじめ設定された予定潜水パターンおよび現在までの実際の潜水パターンに基づいて、切換バルブ・レギュレータ12の切り換え指示および減圧症などを引き起こさないための現在以降の潜水パターンの指示を行う。

次にダイブコンピュータ4の構成を説明する。

ダイブコンピュータ4は、図2に示すように、略円盤状の装置本体4Aに対して、図面上下方向に腕バンド4Bがそれぞれ連結され、この腕バンド4Bによって腕時計と同様にユーザの腕に装着されて使用されるようになっている。

【0013】

ここで、装置本体4Aは、上ケースと下ケースとが完全水密状態でビス止めなどの方法で固定され、図示しない各種電子部品が内蔵されている。

図3に示すように、ダイブコンピュータ4は、大別すると、各種操作を行うための操作部5、各種情報を表示する表示部10、潜水動作監視スイッチ30、ブザーなどのアラーム音によりユーザに告知を行う報音装置37、振動によりユーザに告知を行う振動発生装置38、ダイブコンピュータ全体の制御を行う制御部50、気圧あるいは水圧を計測するための圧力計測部61および各種計時処理を行う計時部68を備えて構成されている。表示部10は、各種の情報を表示するための液晶表示パネル11および液晶表示パネル11を駆動するための液晶ドライバ12を備えて構成されている。

表示部10は、装置本体の正面側に設けられ、液晶表示パネル11を有している。

【0014】

さらに装置本体にはダイブコンピュータ4における各種動作モードの選択／切替を行うための操作部5が形成され、操作部5は、プッシュボタン形式の複数のスイッチを有している。

さらにまた、装置本体には潜水を開始したか否かを判別するために用いられる導通センサを用いた潜水動作監視スイッチ30が構成されている。この潜水動作

監視スイッチ30は、装置本体に設けられた二つの電極を有し、二つの電極間が海水などにより導通状態となることにより、両電極間の抵抗値が小さくなつた場合に入水したと判断するものである。しかしながら、この潜水動作監視スイッチ30は、あくまで入水したことを検出してダイブコンピュータ4の動作モードをダイビングモードに移行させるために用いるだけであり、実際に潜水（ダイビング）を開始した旨を検出するために用いられる訳ではない。すなわち、ダイブコンピュータ4を装着したユーザの腕が海水に浸かっただけの場合もあり、このような状態で潜水を開始したの判断するのは好ましくないからである。

このため、本実施形態のダイブコンピュータ4においては、装置本体に内蔵した圧力センサによって水圧（水深）が一定値以上、より具体的には、水圧が水深にして1.5[m]相当以上となった場合にダイビングを開始したものとみなしきれども、かつ、水圧が水深にして1.5[m]未満となった場合にダイビングが終了したものとみなしている。

【0015】

制御部50は、スイッチA、B（＝操作部5）および潜水動作監視スイッチ30、報音装置37および振動発生装置38が接続されるとともに、装置全体の制御を行うCPU51と、CPU51の制御下で、各動作モードに対応した表示を液晶表示パネル11に行わせるため液晶ドライバ12を制御し、あるいは、後述の時刻用カウンタ33における各動作モードにおける処理を行う制御回路52と、制御用プログラムおよび制御用データを格納したROM53と、各種データを一時的に格納するRAM54と、を備えて構成されている。

また、圧力計測部61は、ダイブコンピュータ1においては水深（水圧）を計測、表示するとともに、水深および潜水時間からユーザの体内に蓄積される不活性ガス量を計測することが必要であるため、気圧および水圧を計測している。圧力計測部61は、半導体圧力センサにより構成される圧力センサ34と、この圧力センサ34の出力信号を増幅するための増幅回路35と、増幅回路35の出力信号のアナログ／デジタル変換を行い、制御部50に出力するA／D変換回路36と、を備えて構成されている。

計時部68は、ダイブコンピュータ1においては通常時刻の計測や潜水時間の

監視をおこなうために、所定の周波数を有するクロック信号を出力する発振回路31と、この発振回路31からのクロック信号の分周を行う分周回路32と、分周回路32の出力信号に基づいて1秒単位での計時処理を行う時刻用カウンタ33と、を備えて構成されている。

【0016】

次に実施形態の潜水具の使用態様について説明する。

高深度潜水を行う場合、深度に応じて潜水用ガスの混合比率を変更したボンベを潜水中に切り換える必要があり、数本（本実施形態では4本）のボンベを持って潜水を行う。

安全な潜水を行うためにも、複数のボンベ1A～1Dのうちどのタイミングでどのボンベを使用するかをあらかじめシミュレーションしておき、使用者が把握しておく必要がある。

上述したように、本実施形態で使用する混合ガスは酸素O₂、窒素N₂、ヘリウムHeの3種類のガスを用いている。ヘリウムHeは、無臭、無毒性で非爆発性の不活性ガスである。

ところで、混合ガスを用いて潜水を行う場合にガスボンベの気体混合比率を設定する必要があると同時に、深く潜行するダイビングにおいては、潜水パターンに応じて互いに混合比率の異なる複数のガスボンベを用意する必要がある。

このためあらかじめダイビングを行うに際しては、シミュレーションを行い、潜水パターンから使用する気体混合比率を選定する必要がある。

【0017】

以下、シミュレーションの詳細を説明する。実際のシミュレーションは、ダイブコンピュータ4とは別個に設けられたパーソナルコンピュータなどのシミュレータ装置により行われる。

まず、シミュレーションを行うユーザは、シミュレータ装置に対し、潜水時間、この潜水時間に応じた水深値を入力する。より詳細には、潜行あるいは浮上速度がほぼ一定な範囲に相当する潜行（浮上）開始深度、潜行（浮上）目的深度および両深度間の移行に要する時間を入力する。

さらに、ユーザは、複数のボンベ、本実施形態では、4本のボンベ1A～1D

のそれぞれについて酸素、窒素、ヘリウムの混合比率をシミュレータ装置に入力する。この場合において、設定が認められない混合比率については、あらかじめ設定されたデータベースに基づいてその旨をユーザに通知するとともに、再入力を促すこととなる。

そして有効なデータが入力されると、シミュレータ装置は、シミュレーションを実行し、実際のダイビング同様に潜水時間に応じて体内に排出・蓄積される不活性ガス量、酸素量、酸素分圧、無減圧潜水可能時間、減圧潜水の状態時には、減圧停止に必要な時間と深度を潜水用ガスの混合比率と水深値から求める。

【0018】

例えば、酸素分圧 P_{O_2} は、次のように求められる。

$$\text{酸素分圧 } P_{O_2} = (\text{潜水深度での水圧} + \text{大気圧}) \times \text{呼吸気中の酸素比率}$$

そして求めた酸素分圧 P_{O_2} の値は図示しない表示装置に表示されるとともに、シミュレーションデータとして図示しない記憶装置に格納される。

より具体的には、呼吸気中の酸素比率 = 36%で潜水深度が 16 m である場合には、対応する水圧値が 1.6 bar で、かつ、大気圧を 1.0 bar とすると、得られる酸素分圧 $P_{O_2} = 0.9 \text{ bar}$ となる。

ここで、酸素分圧最大許容値 $P_{O_2 \text{ max}}$ は、酸素中毒（酸素酔い）を防ぐという観点から

$$P_{O_2 \text{ max}} = 1.6 \text{ bar}$$

とされる。

従って、このシミュレーション結果に従ってダイビングを行うダイバーは、酸素分圧 P_{O_2} が酸素分圧最大許容値 $P_{O_2 \text{ max}}$ 以下であれば適正なダイビングであり、自分自身を酸素中毒（酸素酔い）から守ることができる。

また、酸素分圧 P_{O_2} が酸素分圧最低許容値 $P_{O_2 \text{ min}} = 0.16 \text{ bar}$ より高ければ、一般的には酸素欠乏からダイバーを守ることができる。

図4は潜水パターンの一例を示す図である。また、図5は各ボンベ 1A～1D に充填された潜水用ガスの混合比率の一例の説明図である。

【0019】

例えば、図4に示す潜水パターンにおいて、潜水時、潜水パターン中のA領域

では、水深がまだ浅いので、大気中の気体（主として酸素及び窒素）の混合比率と同じにして潜ればよい。すなわち、図5に示すように、潜水パターン中のA領域では、酸素比率 $F O_2 = 21\%$ 、窒素比率 $F N_2 = 79\%$ 、ヘリウム比率 $F He = 0\%$ とする。

また、深い水深の地点に潜行したい場合には、体内に窒素や酸素がまだ蓄積されていない潜水初期時（好ましくは潜水開始時）に潜行する。そして、人体に危険を及ぼす恐れがある酸素比率 $F O_2$ および窒素比率 $F N_2$ は低めにしておき、深く潜行することとなる。

また、潜水パターン中のB領域では、図5に示すように、酸素比率 $F O_2 = 15\%$ 、窒素比率 $F N_2 = 30\%$ 、ヘリウム比率 $F He = 45\%$ とする。

100mもの高深度潜行になると減圧症になりやすい状態となるので、徐々に浮上してゆく。このとき、水深が浅くなるまでの気体混合比率の設定は、窒素比率を低くし、酸素中毒も意識する。具体的には、潜水パターン中のC領域では、図5に示すように、酸素比率 $F O_2 = 50\%$ 、窒素比率 $F N_2 = 0\%$ 、ヘリウム比率 $F He = 50\%$ とする。

さらに、潜水パターン中のD領域では、減圧潜水状態で水深が浅いところなので、不活性ガスの比率を低くし、酸素比率を高くしている。具体的には、図5に示すように、酸素比率 $F O_2 = 70\%$ 、窒素比率 $F N_2 = 10\%$ 、ヘリウム比率 $F He = 20\%$ とする。

【0020】

図6は各水深時の目安になる気体混合比率の割合の説明図である。

図6に示すように、実際の潜水では、そのときの潜水時間や各気体の体内蓄積状況が異なることからあくまでも目安であり、用途に応じて切換を行う必要がある。

以下、一般的な設定時の注意事項について説明する。

高深度潜水時には酸素比率は低めにし、酸素中毒にならないような設定をしている。

また、不活性ガスが体内に蓄積し、減圧潜水状態になったら徐々に水深を浅くしていく。

浮上していくにつれて、不活性ガスが排出されていくので、酸素中毒及び減圧症を考慮しつつ、酸素の割合を大きくし、最終的に水深数メートルでは、減圧指示が出ている場合には純酸素に近い設定で減圧潜水することで体内の不活性ガスを排出することとなる。これにより、減圧時間を短縮することができ、無減圧潜水に切り替わった段階で、水面に上がることができる。

次にシミュレーションしたダイビングに際しての準備について説明する。

ダイビングに先立ち、ダイバーは、シミュレーションにより設定した混合比率と同一の潜水用ガスのボンベを用意する。

【0021】

次にダイブコンピュータ4において、使用するボンベに関する潜水用ガスの混合比率を設定しておく。また、ガスボンベを切り換えるタイミングを報知するため、潜水時間、水深値などを目安にユーザが設定する。

ここで、ダイブコンピュータ4へのデータの設定について説明する。

まず、潜水用ガスの混合比率の設定について説明する。

酸素比率FO₂、窒素比率FN₂ およびヘリウム比率FH e の関係は、

$$FO_2 + FN_2 + FH e = 100\%$$

であるから、ユーザが酸素O₂ およびヘリウムH e の比率の設定を行えば、窒素N₂ の比率は自動算出部により酸素O₂ およびヘリウムH e の比率に基づいて自動的に算出することができる。

酸素比率FO₂ の設定は、潜水時に酸素欠乏を考慮し、あまりに低い値の設定ができないように、8～99%の設定範囲（水深が深い所では、酸素中毒を防止すべく酸素比率の低い設定値が使用される）が用いられる。このためにROM53（あるいは不揮発性の場合にはRAM54）は、入力範囲記憶部として機能し、CPU51が記憶された入力範囲に基づいて当該範囲内に設定範囲を制限することとなる。

ヘリウム比率FH e の設定は、0～99%の設定範囲が用いられる。

この場合において、酸素は低い比率では、酸素欠乏となり、高濃度では、水深値に応じて酸素中毒になる危険性が高いことから、ヘリウム比率FH e および自動設定される窒素比率FN₂ の設定の影響を受けないように必ずユーザが設定

する構成を採っており、自動設定は行わないようにしている。

【0022】

まず、酸素混合比率設定の処理について説明する。

図7は、酸素混合比率設定の処理フローチャートである。図8は、酸素混合比率設定時の表示画面（その1）の説明図である。図9は、酸素混合比率設定時の表示画面（その2）の説明図である。

以下の説明においては、ボンベ番号=1のボンベにおいて酸素混合比率設定を行う場合であって、あらかじめ酸素混合比率設定画面を表示させておいたものとして説明する。また、CPU51は、入力値補正部および酸素基準比率算出部として機能している。さらにROM53は、入力範囲記憶部として機能している。

まず、ダイブコンピュータ4のCPU51は、混合比率入力部として機能する操作部5を介して酸素混合比率設定の修正桁が設定されたか否かを判別する（ステップS11）。

具体的には、図8に示すように、操作ボタン5Aを押し下げるにより十の位にカーソルが移動され、修正桁（この場合、十の位）を確定する。

ステップS11の判別において修正桁が設定されていない場合には（ステップS11；No）、CPU51は、酸素混合比率設定処理を終了する。

【0023】

ステップS11の判別において修正桁が設定された場合には（ステップS11；Yes）、CPU51は、酸素O₂の混合比率FO₂の値に1を加算する処理を行う（ステップS12）。

具体的には、初期状態が図8に示すような状態の場合、図9に示すように十の位の値が、「2」から「3」に設定される。

続いて、CPU51は酸素O₂の混合比率FO₂が設定可能範囲最大値を超過したか否かを判別する（ステップS13）。

ステップS13の判別において、酸素O₂の混合比率FO₂が設定可能範囲最大値を超過した場合には、CPU51は酸素O₂の混合比率FO₂を設定可能範囲最小値に設定し（ステップS14）、酸素混合比率設定処理を終了する。具体的には、図6の例の場合、水深40～60mの水深域においては、CPU51は

酸素O₂ の混合比率F O₂ = 16 %とする。

【0024】

ステップS 13の判別において、酸素O₂の混合比率F O₂ が設定可能範囲最大値以下である場合には、C P U 5 1は、酸素O₂ の混合比率F O₂ 及びヘリウムH e の混合比率F H e の和が100 %を超過したか否かを判別する（ステップS 15）。

ステップS 15の判別において、酸素O₂ の混合比率F O₂ 及びヘリウムH e の混合比率F H e の和が100 %を超過した場合には（ステップS 15；Y e s）、C P U 5 1は次式により、ヘリウムH e の混合比率F H e を確定するとともに、窒素N₂ の混合比率F N₂ = 0 %に確定し（ステップS 16）、酸素混合比率設定処理を終了する。

$$F H e = 100 - F O_2 \quad [\%]$$

ステップS 15の判別において、酸素O₂ の混合比率F O₂ 及びヘリウムH e の混合比率F H e の和が100 %以下の場合には（ステップS 15；N o）、C P U 5 1は次式により、窒素N₂ の混合比率F N₂ を確定し（ステップS 17）、酸素混合比率設定処理を終了する。

$$F N_2 = 100 - F O_2 - F H e \quad [\%]$$

【0025】

図10は、酸素混合比率設定後の表示画面の一例である。

酸素混合比率処理が終了すると、図10に示すように、ボンベの番号、酸素O₂の混合比率F O₂ 、ヘリウムH e の混合比率F H e および窒素N₂ の混合比率F N₂ が表示されることとなる。

次にヘリウム混合比率設定の処理について説明する。

【0026】

図11は、ヘリウム混合比率設定の処理フローチャートである。

まず、ダイブコンピュータ4のC P U 5 1は、操作部5を介してヘリウム混合比率設定の修正桁が設定されたか否かを判別する（ステップS 21）。

ステップS 21の判別において修正桁が設定されていない場合には（ステップS 21；N o）、C P U 5 1は、ヘリウム混合比率設定処理を終了する。

ステップS 2 1 の判別において修正桁が設定された場合には（ステップS 2 1 ; Y e s）、C P U 5 1 はヘリウムH e の混合比率の値に1を加算する処理を行う（ステップS 2 2）。

続いて、C P U 5 1 は、酸素O₂の混合比率F O₂ およびヘリウムH e の混合比率F H e の和が100%を超過したか否かを判別する（ステップS 2 3）。

【0027】

ステップS 2 3 の判別において、酸素O₂ の混合比率F O₂ 及びヘリウムH e の混合比率F H e の和が100%以上の場合には（ステップS 2 3 ; Y e s）、C P U 5 1 はヘリウムH e の混合比率F H e = 0%に確定し（ステップS 2 4）、ヘリウム混合比率設定処理を終了する。

ステップS 2 3 の判別において、酸素O₂ の混合比率F O₂ 及びヘリウムH e の混合比率F H e の和が100%未満の場合には（ステップS 2 3 ; N o）、C P U 5 1 は次式により、窒素N₂ の混合比率F N₂ を確定し（ステップS 2 5）、酸素混合比率設定処理を終了する。

$$F N_2 = 100 - F O_2 - F H e \quad [\%]$$

【0028】

次に実際のダイビングを行う場合について説明する。

ダイビング時には、先に行ったシミュレーションと全く同一の水深で潜行するわけではないので、ダイブコンピュータ4は、シミュレーション結果に基づいてボンベを切り換えるタイミングとなっても、そのまま報知する訳ではない。

すなわち、次に切り換えるボンベの潜水用ガスの混合比率で潜行した時に安全か否かを判別するために、ボンベ切換後の混合比率で酸素分圧、無減圧可能時間、減圧状態では減圧停止時間や減圧停止深度が実際にはどのようになるかを算出して液晶表示パネル1 1に表示する。

そして液晶表示パネル1 1に表示された情報に基づいてユーザが適宜ボンベの混合比を選び切換を行うこととなる。

次にダイビング時のダイブコンピュータの具体的処理を説明する。

図12は、ダイビング時のダイブコンピュータの処理フローチャートである。

まず、ダイブコンピュータ4のC P U 5 1 は、自己のタイマに基づいてダイビ

ング開始時間からの経過時間を測定する（ステップS 3 1）。

【0029】

続いて水深計測を行う（ステップS 3 2）。

これによりC P U 5 1は、現在使用すべき、潜水用ガスの混合比率を算出する（ステップS 3 3）。

つぎにC P U 5 1は、酸素分圧F O₂ の算出を行う（ステップS 3 4）。

続いてC P U 5 1は、体内不活性ガス量を算出し（ステップS 3 5）、体内酸素量を算出する（ステップS 3 6）。

続いてC P U 5 1は、今までの潜水パターンに基づいて減圧潜水状態か否かを判別する（ステップS 3 7）。

ステップS 3 7の判別において、C P U 5 1は現在の潜水パターンが減圧潜水状態である場合には（ステップS 3 7；Y e s）、減圧停止深度、減圧停止時間および総浮上時間の算出を行い（ステップS 3 9）、処理をステップS 4 0に移行する。

【0030】

ステップS 3 7の判別において、C P U 5 1は現在の潜水パターンが減圧潜水状態ではない場合には（ステップS 3 7；N o）、無減圧可能時間を算出する（ステップS 3 8）。

これらの結果、C P U 5 1は、表示部10の液晶表示パネル11に減圧停止深度、減圧停止時間および総浮上時間あるいは無減圧可能時間のいずれか一方を表示することとなる（ステップS 4 0）。

以上の説明のように本実施形態によれば、潜水パターンに応じて複数のボンベの潜水用ガスの混合比率を設定し、各ボンベの使用タイミングをダイビング前にシミュレーションする。そして、このシミュレーション結果に基づいて、切換タイミングをダイブコンピュータに設定し、実際のダイビングではダイブコンピュータが実際の潜水パターンを考慮してダイバーにボンベの使用タイミングを報知することによりダイビングの安全性を高めることが可能となる。

また各潜水用ガスの混合比率に対する無減圧潜水可能時間、減圧潜水時には、減圧停止に必要な時間と深度をあらかじめシミュレーションできるので、実際の

ダイビングにおいても、ボンベを切り換えた場合に安全か否かの判別を確実に行うことができる。

【0031】

以上の説明においては、潜水用ガスとして、酸素、窒素及びヘリウムを用いていたが、酸素、窒素および水素の組み合わせなど、潜水状態に応じて既知の各種潜水用ガスを用いることが可能である。

また、以上の説明においては、潜水用ガスを3種類用いる場合において説明したが、4種類以上の潜水用ガスを用いるように構成することも可能である。

さらに以上の説明においては、各ボンベの切換は、ダイバーが行う構成を探っていたが、ダイバーの指示を待って、自動的に切り換えるように構成することも可能である。もちろんこの場合には、万が一を考慮し、手動で切換可能に構成しておくのが好ましい。

【0032】

【発明の効果】

本発明によれば、潜水用ガスの混合比率が異なる複数のボンベを切換装置により切り換え、レギュレータを介してダイバーに供給するに際し、確実にダイバーズ用情報処理装置により切換指示がなされるので、高深度潜水を行う場合でも、酸素中毒、窒素中毒あるいは減圧症の発生を抑制することが可能となる。

さらにダイバーズ用情報処理装置は、各潜水用ガスの混合比率に対する無減圧潜水可能時間、あるいは減圧停止に必要な時間と深度を指示することができ、酸素中毒、窒素中毒あるいは減圧症の発生を抑制しつつ安全なダイビングを行うことができる。

また、ダイバーズ用情報処理装置への潜水用ガスの混合比率の設定は、容易かつ誤りが発生しにくいので、操作性と安全性とを両立させることができる。

【図面の簡単な説明】

【図1】

実施形態の潜水具の使用態様図である。

【図2】

実施形態の潜水具の概要構成説明図である。

【図3】

ダイブコンピュータの概要構成ブロック図である。

【図4】

潜水パターンの一例の説明図である。

【図5】

各ボンベに充填された潜水用ガスの混合比率の一例の説明図である。

【図6】

各水深時の目安になる気体混合比率の割合の説明図である。

【図7】

酸素混合比率設定の処理フローチャートである。

【図8】

酸素混合比率設定時の表示画面（その1）の説明図である。

【図9】

酸素混合比率設定時の表示画面（その2）の説明図である。

【図10】

酸素混合比率設定後の表示画面の一例である。

【図11】

ヘリウム混合比率設定の処理フローチャートである。

【図12】

ダイビング時のダイブコンピュータの処理フローチャートである。

【符号の説明】

100…潜水具、1A～1D…ボンベ、2…切換バルブ・レギュレータ、3…水深・残圧計、4…ダイバーズ用情報処理装置（ダイブコンピュータ）、5…操作部（混合比率入力部）、10…表示部、11…液晶表示パネル、12…液晶ドライバ、30…潜水動作監視スイッチ、37…報音装置（告知部）、38…振動発生装置（告知部）、50…制御部、51…CPU（入力値補正部、切換タイミング判別部、酸素基準比率算出部）、53…ROM（入力範囲記憶部）、61…圧力計測部、68…計時部

【書類名】

図面

【図 1】

100

【図2】

100

【図3】

【図4】

【図5】

ボンベ	O ₂	N ₂	He
A	21%	79%	0%
B	15%	35%	40%
C	50%	0%	50%
D	70%	10%	20%

【図 6】

	O ₂	N ₂	He
0～40m	21～50%	0～79%	0～92%
40～60m	16～40%	0～60%	10～92%
60～100m	8～20%	0～40%	20～92%
減圧潜水時	21～99%	0～50%	0～50%

【図 7】

【図8】

【図9】

【図10】

A

B

5A

5B

4B

【図 1 1】

【図12】

【書類名】 要約書

【要約】

【課題】 高深度ダイビングにおいても減圧症、窒素中毒あるいは酸素中毒の発生を低減する。

【解決手段】 複数種類の潜水用ガスの混合比率が異なる複数の混合ガスを用いて潜水を行うために用いられるダイバーズ用情報処理装置は、あらかじめ設定された予定潜水パターンおよび現在までの実際の潜水パターンに基づいて、前記混合ガスの切換タイミングを判別し、この切換タイミングに基づいて切換先の混合ガスを特定するための情報及び前記切換タイミングを告知する。

【選択図】 図12

特願 2002-359192

出願人履歴情報

識別番号 [000002369]

1. 変更年月日 1990年 8月20日

[変更理由] 新規登録

住所 東京都新宿区西新宿2丁目4番1号

氏名 セイコーエプソン株式会社