Digital Logic Theory Assignment 2

12312706 Zhou Liangyu

$$F = A'B' + A'C' + B'C' + \textbf{A'D} + \textbf{B'D}$$

$$= A'B' + (A' + B')C' + (A' + B')\textbf{D}$$

$$= A'B' + (AB)'C' + (AB)'\textbf{D}$$

$$= \{[A'B' + (AB)'C' + (AB)'\textbf{D}]'\}'$$

$$= \{(A'B')'[(AB)'C']'[(AB)'\textbf{D}]'\}'$$

$$F' = AB + ACD' + BCD'$$

$$F = (F')' = (AB + ACD' + BCD')' = [(A' + B')' + (A' + C' + D)' + (B' + C' + D)']'$$

2. a)
$$T_1 = B'C$$
, $T_2 = A'B$, $T_3 = A + T_1 = A + B'C$, $T_4 = T_2 \oplus D = A'BD' + (A + B')D$.
 $F_1 = T_3 + T_4 = A + B'C + A'BD' + (A + B')D = A + B'C + A'BD' + B'D = A + B'(C+D) + BD'$.
 $F_2 = T_2 + D' = A'B + D'$.

b)

Α	B	C	D	T,	Tz	T3	T4	F,	F≥	
0	0	0	0	0	0	0	0	0	1	
0	0	0	1	0	0	0	1	1	0	
0	0	1	0	1	0	1	0	1	V	

A	B	C	D	T_1	T_2	T_3	T_4	F_1	F_2
0	0	1	1	1	0	1	1	1	0
0	1	0	0	0	1	0	1	1	1
0	1	0	1	0	1	0	0	0	ŀ
0	1	1	0	0	1	0	1	1	1
0	1	1	1	0	1	0	0	0	1
1	0	0	0	0	0	1	0	1	1
1	0	0	1	0	0	1	1	1	D
1	0	1	0	1	0	1	0	1	ı
1	0	1	1	1	0	1	1	1	D
1	1	0	0	0	0	1	0	1	1
1	1	0	1	0	0	1	1	1	O
1	1	1	0	0	0	1	0	1	V
1	1	1	1	0	0	1	1	1	0
a)									

3. a)

x	y	z	A	B	C	
0	0	0	0	1	0	
0	0	1	0	1	1	
0	1	0	1	0	0	
0	1	1	0	1	0	
1	0	0	0	1	1	
1	0	1	1	0	0	
1	1	0	1	0	1	
1	1	1	1	1	0	

$$A = xz + yz'$$

$$B = x'y' + y'z' + yz$$

$$C = x'y'z + xz'$$

4.	A	B	C	F_1	F_2	F_3
	0	0	0	1	1	0
	0	0	1	0	0	0
	0	1	0	0	1	1
	0	1	1	0	1	1
	1	0	0	0	1	1
	1	0	1	0	1	1
	1	1	0	1	1	0
	1	1	1	1	1	0

$$F_1 = AB + A'B'C' = (m_1 + m_2 + m_3 + m_4 + m_5)'$$

$$F_2 = A + B + C' = m_1'.$$

$$F_3 = A'B + AB' = (m_0 + m_1 + m_6 + m_7)'.$$

I	A	B	C	D	F
$I_0 = D$	0	0	0	0	0
$I_0 = D$	0	0	0	1	1
	0	0	1	0	0
	0	0	1	1	0
	0	1	0	0	0
	0	1	0	1	0
$I_3 = 1$	0	1	1	0	1
$I_3 = 1$	0	1	1	1	1
$I_4=D$	1	0	0	0	0
$I_4=D$	1	0	0	1	1
$I_5=1$	1	0	1	0	1
$I_5=1$	1	0	1	1	1
$I_6=D'$	1	1	0	0	1
$I_6=D'$	1	1	0	1	0
$I_7=1$	1	1	1	0	1
$I_7 = 1$	1	1	1	1	1

c) When
$$AB = 00$$
, $F = B'C'D = C'D$.

When
$$AB = 01$$
, $F = C$.

When
$$AB = 10$$
, $F = C + C'D$.

When
$$AB = 11$$
, $F = C + D'$.

