Thera Bank - Loan Purchase Modeling

Submitted by, Ajuna John

Objective

Thera Bank is interested in expanding the customer base of which majority are liability customers, to bring in more loan business and in the process, earn more through the interest on loans. A campaign that the bank ran last year for liability customers showed a healthy conversion rate of over 9% success. The objective of this project is to build the best model that will help Thera bank, to identify the potential customers who have a higher probability of purchasing the loan. This will increase the success ratio while at the same time reduce the cost of the campaign.

DataSet

Data	Description			
ID	Customer ID			
Age	Customer's age in years			
Experience	Years of professional experience			
Income	Annual income of the customer (\$000)			
ZIPCode	Home Address ZIP code			
Family	Family size of the customer			
CCAvg	Avg. spending on credit cards per month (\$000)			
Education	Education Level. 1: Undergrad; 2: Graduate; 3: Advanced/Professional			
Mortgage	Value of house mortgage if any (K)			
Personal Loan	Did the customer accept the personal loan offered in the last campaign?			
Securities Account	Does the customer have a securities account with the bank?			
CD Account	Does the customer have a certificate of deposit (CD) account with the bank?			
Online	Does the customer use internet banking facilities?			
CreditCard	Does the customer use a credit card issued by the bank?			

The dataset has 5000 observations with 14 variables.

Assumption

The data has one dependent variable and other response variables

Importing libraries

library(grid) library(gridExtra) library(lattice) library(ModelMetrics) library(randomForest) library(corrplot) library(ineq) library(ROCR) library(caret) library(tidyverse) library(readxl) library(dplyr) library(randomForest) library(rpart) library(ggplot2) library(rpart.plot)

Analysis of Dataset

Personal Loan is considered as the Dependent variable and all other attributes as Independent variables.

The dataset has customer information like Age, Experience, Income, zip code, family members, CCAvg and Education which represent the customer behavior that needs to be considered.

The variables like **Mortgage**, **Securities Account**, **CD Account**, **online**, **credit card** helps us to understand the facilities availed by the customer which encourage them to take personal loan which needs to be considered too.

Here we should not consider the customer ID and Zip code as it does not help in model building.

Treatment of missing data:

Found missing values in 18 places in the 'Family members' column of the dataset. Since 18 observation rows having "NA" as family members are also having vital other information, we may replace NA with "median value of the column" to factor them instead of discarding them

Structure of the dataset

Dataframe - 5000 observations of 14 variables

```
$ ID
               : num [1:5000] 1 2 3 4 5 6 7 8 9 10 ...
$ Age (in years)
                    : num [1:5000] 25 45 39 35 35 37 53 50 35 34 ...
$ Experience (in years): num [1:5000] 1 19 15 9 8 13 27 24 10 9 ...
$ Income (in K/year) : num [1:5000] 49 34 11 100 45 29 72 22 81 180 ...
                   : num [1:5000] 91107 90089 94720 94112 91330 ...
$ ZIP Code
                      : num [1:5000] 4 3 1 1 4 4 2 1 3 1 ...
$ Family members
$ CCAvg
                 : num [1:5000] 1.6 1.5 1 2.7 1 0.4 1.5 0.3 0.6 8.9 ...
$ Education
                   : num [1:5000] 1 1 1 2 2 2 2 3 2 3 ...
$ Mortgage
                   : num [1:5000] 0 0 0 0 0 155 0 0 104 0 ...
                    : num [1:5000] 0 0 0 0 0 0 0 0 1 ...
$ Personal Loan
$ Securities Account : num [1:5000] 1 1 0 0 0 0 0 0 0 0 ...
                    : num [1:5000] 0 0 0 0 0 0 0 0 0 0 ...
$ CD Account
$ Online
                 : num [1:5000] 0 0 0 0 0 1 1 0 1 0 ...
$ CreditCard
                   : num [1:5000] 0 0 0 0 1 0 0 1 0 0 ...
```

All the observations are numeric

Experience has negative values. We will fix them with corresponding absolute values

Age_in_years `Experience(yea~ `Income(K/year)` Family_members CCAvg Education

_	<dbl></dbl>	<dbl></dbl>	<dbl> <fct></fct></dbl>	<dbl> <ord></ord></dbl>
1	25	-1	113 4	2.3 3
2	24	-1	39 2	1.7 2
3	24	-2	51 3	0.3 3
4	28	-2	48 2	1.75 3
5	24	-1	75 4	0.2 1
6	25	-1	43 3	2.4 2
7	25	-1	109 4	2.3 3
8	25	-1	48 3	0.3 3
9	24	-1	38 2	1.7 2
10	24	-2	125 2	7.2 1

... with 42 more rows, and 6 more variables: Mortgage <dbl>, Personal_loan <fct>,

[#] Securities_Account <fct>, CD_Amount <fct>, Online <fct>, CreditCard <fct>

Columns like Personal Loan, Securities Account, CD Account, Online, Credit card etc are factor values with levels "0" and "1". Education is ordered factor with 3 levels 1, 2 and 3

Education (in Years) is converted into ordered factors

summary(bankdata)

Age (in years) Experience (in years) Income (in K/year)

Min. :23.00 Min. :-3.0 Min. : 8.00
1st Qu.:35.00 1st Qu.:10.0 1st Qu.: 39.00
Median :45.00 Median :20.0 Median : 64.00
Mean :45.34 Mean :20.1 3rd Qu.:55.00 3rd Qu.:30.0 Max. :67.00 Max. :43.0 Max. :224.00

 Family members
 CCAvg
 Education
 Mortgage

 Min. :1.000
 Min. : 0.000
 Min. : 1.000
 Min. : 0.0

 1st Qu.:1.000
 1st Qu.: 0.700
 1st Qu.:1.000
 1st Qu.: 0.0

 Median :2.000
 Median : 1.500
 Median : 2.000
 Median : 0.0

 Mean :2.396
 Mean : 1.938
 Mean : 1.881
 Mean : 56.5

 3rd Qu.:3.000
 3rd Qu.: 2.500
 3rd Qu.:3.000
 3rd Qu.:101.0

 Max. :4.000
 Max. :10.000
 Max. :3.000
 Max. :635.0

Personal Loan Securities Account CD Account Online Min. :0.000 Min. :0.0000 Min. :0.0000 Min. :0.0000 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 Median :0.000 Median :0.0000 Median :0.0000 Median :1.0000 Mean :0.096 Mean :0.1044 Mean :0.0604 Mean :0.5968 3rd Qu.:0.000 3rd Qu.:0.0000 3rd Qu.:1.0000 Max. :1.000 Max. :1.0000 Max. :1.0000

CreditCard

Min. :0.000 1st Qu.:0.000 Median :0.000 Mean :0.294 3rd Qu.:1.000 Max. :1.000

Personal loan is having mean of 0.096

Exploratory Data analysis on the dataset

Univariate analysis

Boxplot of Age

There is no outliers present in Age

Histogram of Age

We observe that Age is very close to the normal distribution

Boxplot of Experience in years

Boxplot of Experience

Histogram of Experience in years

Histogram of Experience

No outliers in Experience data

Boxplot of Annual Income

Boxplot of Annual Income

There are outliers in the Annual income data

Histogram of Annual Income

Boxplot of Average spending of credit card per month

Boxplot of Average Spending of credit card per month

There are outliers in average spending of credit card per month

Histogram of Average spending of credit card per month

Histogram of bankdata\$CCAvg

Boxplot of value of House mortgage

Boxplot of House Mortgage

There are outliers in value of house mortgage

Histogram of bankdata\$Mortgage

Multivariate analysis

Barplot – Number of family members Vs Personal Loan

Families having more members have higher likelihood to take loan

Table to view relation between number of family members and personal loan

1 1358 106 2 1202 108 3 876 133 4 1084 133

Barplot – Education Vs Personal Loan

Advanced/Professionals require loan

Table to view relation between Education category and Personal loan

Correlation between the numeric variables

Age_in_years Experience(years) Income(K/year) CCAvg 0.99 -0.06 -0.05 Age in years 1.00 Experience(years) 0.99 1.00 -0.05 -0.05 Income(K/year) -0.06 1.00 0.65 -0.05 CCAvg -0.05 -0.05 0.65 1.00

- Age and Experience are highly positively correlated
- Monthly Income and Average credit card spend is also positively correlated

The customers who took personal loan vs no personal loan was 90.4% and 9.6% respectively

Following plots give us insight about how two categories of Personal Loan predictor are stacked across various other predictors

- 1. Income (density)
- Mortgage (density)
- 3. Age (density)
- 4. Experience (density)
- 5. Income vs Education (histogram)
- 6. Income vs Mortgage (scatterplot)

Proportion of no-loan takers is very high across all three categories of Education - Undergrad, Grad, and Advanced Proffessionals

The customers who took personal loan vs no personal loan was 90.4% and 9.6% respectively

CART and Random Forest algorithm

Dataset is split into train (3500 observations and 12 variables) and test (1500 observations and 12 variables) data.

```
table(testdata$Personal_loan)
```

```
0 1
1356 144
```

table(traindata\$Personal_loan)

0 1 3164 336

90.4% of train data says No and only 9.6% says Yes to personal loan. Similarly, 90.4% of test data says No and only 9.6% says Yes to personal loan. Hence, we need to balance the dataset. Both the train and test datasets are balanced with the help of certain functions.

CART Model

Using the below control parameters, the below CART model for the entire dataset is built.

minsplit = 20, minbucket = 10,xval = 5

Using the below control parameters, the below CART model is built in the train dataset minsplit = 20, minbucket = 10,xval = 5

n= 672

node), split, n, loss, yval, (yprob)

- * denotes terminal node
- 1) root 672 336 0 (0.500000000 0.500000000)
 - 2) Income(K/year) < 87 271 14 0 (0.948339483 0.051660517)
 - 4) CCAvg< 2.95 247 0 0 (1.000000000 0.000000000) *
 - 5) CCAvg>=2.95 24 10 1 (0.416666667 0.583333333)
 - 10) CCAvg>=3.45 10 3 0 (0.700000000 0.300000000) *
 - 11) CCAvg< 3.45 14 3 1 (0.214285714 0.785714286) *
 - 3) Income(K/year)>=87 401 79 1 (0.197007481 0.802992519)
 - 6) Education=1 124 61 0 (0.508064516 0.491935484)
 - 12) Family_members=1,2 68 6 0 (0.911764706 0.088235294) *

 - 7) Education=2,3 277 16 1 (0.057761733 0.942238267)
 - 14) Income(K/year)< 106.5 37 14 1 (0.378378378 0.621621622)
 - 28) CCAvg< 2.7 12 0 0 (1.000000000 0.000000000) *
 - 29) CCAvg>=2.7 25 2 1 (0.080000000 0.920000000) *
 - 15) Income(K/year)>=106.5 240 2 1 (0.008333333 0.991666667) *

CP Table – Train dataset

CP nsplit rel error xerror xstd

 3 0.01785714
 3 0.11011905 0.12500000 0.01867545

 4 0.01190476
 5 0.07440476 0.09821429 0.01667184

 5 0.01000000
 7 0.05059524 0.09821429 0.01667184

We will have to prune the train data considering .039 as the pruned parameter from the rpart plot.

After pruning the train data, we obtain the below tree

n = 672

node), split, n, loss, yval, (yprob)
* denotes terminal node

- 1) root 672 336 0 (0.50000000 0.50000000)
 - 2) Income(K/year) < 87 271 14 0 (0.94833948 0.05166052) *
 - 3) Income(K/year)>=87 401 79 1 (0.19700748 0.80299252)
 - 6) Education=1 124 61 0 (0.50806452 0.49193548)
 - 12) Family_members=1,2 68 6 0 (0.91176471 0.08823529) *
 - 13) Family members=3,4 56 1 1 (0.01785714 0.98214286) *
 - 7) Education=2,3 277 16 1 (0.05776173 0.94223827) *

Cp table of the pruned data:

```
Classification tree:
```

rpart(formula = train_new\$Personal_loan ~ ., data = train_new, method = "class", control = r.ctrl)

Variables actually used in tree construction:

[1] Education Family_members Income(K/year)

Root node error: 336/672 = 0.5

n= 672

CP nsplit rel error xerror xstd

Path of the pruned tree is:

node number: 1

root

node number: 2

root

Income(K/year)< 87

node number: 3

root

Income(K/year)>=87

node number: 6

root

Income(K/year)>=87

Education=1

node number: 7

root

Income(K/year)>=87

Education=2,3

node number: 12

root

Income(K/year)>=87

Education=1

Family_members=1,2

We shall now predict on test data and the confusion matrix we get is:

Confusion Matrix and Statistics

0 1 0 131 13 1 6 138

Accuracy: 0.934

95% CI : (0.8989, 0.9598) No Information Rate : 0.5243

P-Value [Acc > NIR] : <2e-16

Kappa: 0.8681

Mcnemar's Test P-Value: 0.1687

Sensitivity: 0.9562
Specificity: 0.9139
Pos Pred Value: 0.9097
Neg Pred Value: 0.9583
Prevalence: 0.4757
Detection Rate: 0.4549
Detection Prevalence: 0.5000
Balanced Accuracy: 0.9351

'Positive' Class: 0

Accuracy is 93.4%

Sensitivity: 95.62 % Specificity: 91.39%

ROC

Area under the curve

Area under the curve is around **0.935**

The high values show that the model is built good and perform well CART Model is close to 93.5% accurate in predicting personal loan on test data

Random Forest Model

672 samples 11 predictor 2 classes: '0', '1'

No pre-processing

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 672, 672, 672, 672, 672, 672, ...

Resampling results across tuning parameters:

mtry Accuracy Kappa 2 0.9506534 0.9012110 8 0.9708063 0.9415348 14 0.9651945 0.9303459

Accuracy was used to select the optimal model using the largest value. The final value used for the model was mtry = 8.

Accuracy is 97.08%

Prediction on test data

Confusion Matrix and Statistics

Reference Prediction 0 1 0 140 4 1 3 141

> Accuracy: 0.9757 95% CI: (0.9506, 0.9902) No Information Rate: 0.5035 P-Value [Acc > NIR]: <2e-16

> > Kappa: 0.9514

Mcnemar's Test P-Value: 1

Sensitivity: 0.9790 Specificity: 0.9724 Pos Pred Value: 0.9722 Neg Pred Value: 0.9792 Prevalence: 0.4965 Detection Rate: 0.4861 Detection Prevalence: 0.5000

Balanced Accuracy: 0.9757

'Positive' Class: 0

ROC is close to ideal one

Accuracy is 95.8%

Area under the curve: 0.9974

Monthly Income and Education is the most significant factor that decides personal loan