Definição

Um λ -termo (também chamado de expressão lambda) é definido de forma indutiva sobre um conjunto de identificadores $\{x,y,z,u,v...\}$ que representam variáveis:

- ▶ Uma variável (também chamada "átomo") é um λ -termo;
- ▶ Aplicação: se M e N são λ -termos, então (MN) é um λ -termo; representa a aplicação de M a N;
- ▶ Abstração: se M é um λ -termo e x é uma variável, então $(\lambda x.M)$ é um λ -termo; representa a função que retorna M com o parâmetro x;

A linguagem lambda é composta de todos os λ -termos que podem ser construídos sobre um certo conjunto de identificadores; trata-se de uma linguagem com apenas dois operadores: aplicação de função a argumentos e abstração.

Linguagem lambda

Gramática

$$V \rightarrow u|v|x|y|z|w|...$$

$$T \rightarrow V$$

$$T \rightarrow (TT)$$

$$T \rightarrow (\lambda V.T)$$

Linguagem lambda

Exemplos

São exemplos de λ -termos:

- $\triangleright x$
- **▶** (xy)
- $ightharpoonup (\lambda x.(xy))$
- $\blacktriangleright ((\lambda y.y)(\lambda x.(xy)))$
- $\blacktriangleright (x(\lambda x.(\lambda x.x)))$
- $ightharpoonup (\lambda x.(yz))$

Associatividade e precedência

Para reduzir a quantidade de parênteses, são usadas as seguintes convenções:

- Aplicações tem prioridade sobre abstrações;
- Aplicações são associativas à esquerda;
- Abstrações são associativas à direita.

Por exemplo:

- $\blacktriangleright \lambda x.PQ$ denota $(\lambda x.(PQ))$ e não $((\lambda x.P)Q)$;
- ▶ MNPQ denota (((MN)P)Q);
- $\blacktriangleright \lambda xyz.M$ denota $(\lambda x.(\lambda y.(\lambda z.M)))$

O símbolo \equiv será usado para denotar a equivalência sintática de λ -termos.

Linguagem lambda

Exemplos

- $ightharpoonup xyz(yx) \equiv (((xy)z)(yx))$
- $\lambda x.(uxy) \equiv (\lambda x.((ux)y))$
- $\lambda u.u(\lambda x.y) \equiv (\lambda u.(u(\lambda x.y)))$
- $(\lambda u.vuu)zy \equiv (((\lambda u.((vu)u))z)y)$
- $ux(yz)(\lambda v.vy) \equiv (((ux)(yz))(\lambda v.(vy)))$
- $(\lambda xyz.xz(yz))uvw \equiv (\lambda x.(\lambda y.(\lambda z.((xz)(yz))))u)v)w)$