# Overview of CLEF 2024 SimpleText Task 1 Retrieve Passages to Include in a Simplified Summary

Éric SanJuan (LIA, Avignon Université) Stéphane Huet (LIA, Avignon Université) Jaap Kamps (University of Amsterdam) Liana Ermakova (HCTI, UBO)









CLEF 2024, Grenoble, France, September 9, 2024

#### Shared Tasks 2024



- Task 1: Content Selection: retrieving passages to include in a simplified summary
  - topical relevance
  - + text complexity scores (e.g., readability)
  - + authoritativeness scores (e.g., bibliometrics and altmetrics)
- Task 2: Complexity Spotting: identifying and explaining difficult concepts
  - difficult term detection and explanation
  - ullet + usefulness of the provided explanation with regard to a query
  - + difficulty of the provided explanation
- Task 3: Text Simplification: simplify scientific text
  - expand the training and automatic evaluation data
  - ullet + manual evaluation of information distortion & text complexity
  - + both sentence and passage level simplification
- Task 4: SOTA?: tracking the state-of-the-art in scholarly publications

#### Task 1: Content Selection



- Task 1: Retrieving Passages to Include in a Simplified Summary
- Given a popular science article targeted to a general audience, this
  task aims to retrieve passages that can help understand this article
  from a large corpus of academic abstracts and bibliographic metadata
- Citation Network Dataset: DBLP+Citation, ACM Citation network
  - 4,232,520 abstracts in English
- ullet Topics based on 40 press articles + 114 manually extracted queries
  - 20 articles from The Guardian
  - 20 articles from Tech Xplore

### Task 1: Examples



- Text of news articles as context (the topic)
  - 1 Patient data from GP surgeries sold to US companies
  - 2 Baffled by digital marketing? Find your way out of the maze
- Input: query based on these articles
  - 1 patient data
  - 2 digital marketing
  - 2 advertising
- Output:
  - Given the corpus of 4M articles (metadata+abstracts)
  - rank a list of abstracts relevant to the topic/query
  - in JSON format ( $\sim$  trec\_eval + passage)

### The Guardian vs Tech Xplore



- G\* queries : more ambiguous, social issues relating to IT
  - Digital assistant
  - Biases
  - Drug discovery
  - Financial markets
- T\* queries: more technical, associated with a published scientific article
  - RISC-V
  - OFDMA
  - photo transistor
- Number of relevant documents
  - Some queries (e.g. RNN, algorithm, system-on-chip) are common keywords in DBLP (but retrieved documents have still to be associated with the specific topic)
  - Others are more original (e.g. Crispr, nematode), but have still relevant documents

### Task 1: New queries



- 62 additional queries generated with OpenAI GPT 4 and post-edited
  - Only for The Guardian articles
  - Prompt: Find at least three topics in computer science in this paper
  - Query example: "how AI systems, especially virtual assistants, can perpetuate gender stereotypes?"
- Complete Open AI ChatGPT 4 run
  - Limitations: cannot access DBLP data, most of the provided references are out of the computer science field
  - Query delays too long to allow efficient interactive search.
- Towards Retrieval Augmented Generation combining DBLP search with Arxiv full-text content?

## Task 1: Output format



- run\_id Run ID starting with team ID, followed by task1 and run name
- manual Whether the run is manual {0,1}
- topic\_id Topic ID
- query\_id Query ID used to retrieve the document (if one of the queries provided for the topic was used; 0 otherwise)
- doc\_id ID of the retrieved document (to be extracted from the JSON output)
- rel\_score Relevance score (on the [0-1] scale)
- **comb\_score** General score that may combine relevance and other aspects: readability, citation measures...
- passage Text of the selected passage

# SimpleText'24 Submission Stats



| Team                 | Task 1        |        | Task 2 | 2   | Tas    | sk 3   | Tas | sk 4 | Total runs                                                       |
|----------------------|---------------|--------|--------|-----|--------|--------|-----|------|------------------------------------------------------------------|
|                      |               | 2.1    | 2.2    | 2.3 | 3.1    | 3.2    | 4.1 | 4.2  |                                                                  |
| AIIRLab<br>AMATU     | 5             | 3      | 3      |     | 4      | 4      | 3   | 9    | 19<br>12                                                         |
| Arampatzis           | 9             | 5      | 5      | 2   | 4<br>8 | 4<br>2 | ŭ   | ,    | 29                                                               |
| Elsevier             | 10            |        |        |     | 8      | 2      | 10  | 10   | 20                                                               |
| L3S<br>LIA           | 5             |        |        |     |        |        | 12  | 12   | 24<br>5                                                          |
| PiTheory             | 3             |        |        |     | 11     | 10     |     |      | 21                                                               |
| Sharigans<br>SINAI   | 1             | 1<br>3 | 1<br>3 |     | 1      | 1      |     |      | 24<br>5<br>21<br>5<br>6<br>1<br>4<br>2<br>3<br>3<br>4<br>6<br>19 |
| SONAR                |               | 3      | 3      |     | 1      |        |     |      | ĭ                                                                |
| AB/DPV               | 1             | 1      | 1      |     | 1      |        |     |      | 4                                                                |
| Dajana/Katya         |               | 1      | _      |     | 1      |        |     |      | 2                                                                |
| Frane/Andrea         | 1             | 1<br>1 | 1      |     | 1      |        |     |      | 3                                                                |
| Petra/Regina<br>Ruby | $\frac{1}{1}$ | 1      |        |     | 1      | 1      |     |      | 3<br>4                                                           |
| Tomislav/Rowan       | 2             | 1<br>2 |        |     | i      | 1      |     |      | 6                                                                |
| UAmsterdam           | 6<br>1        | 1      |        | 2   | 4<br>2 | 6<br>2 |     |      | 19                                                               |
| UBO                  | 1             | 1 3    | 1<br>3 |     | 2      | 2      |     |      | 7<br>6                                                           |
| UniPD<br>UZHPandas   |               | 3      | 3      |     | 11     |        |     |      | 6<br>11                                                          |
| Total runs           | 42            | 24     | 18     | 4   | 52     | 31     | 15  | 21   | 207                                                              |

### Participants approaches



- AB/DPV (1 run): ElasticSearch + FKGL
- Sharingans (1 run): ColBERT reranker + GPT3.5 to select passages
- Tomislav/Rowan (2 runs): ElasticSearch reranked using TF-IDF vectors + FKGL
- Petra/Regina (1 run) : ElasticSearch reranked using TF-IDF vectors
   + FKGL
- AIIRLab (5 runs): bi-encoder or a cross-encoder reranker, LLaMa3 as a pairwise reranker
- UBO (1 run): MonoT5 reranker
- UAmsterdam (6 runs): cross-encoder rerankings + filtering with FKGL
- Elsevier (10 runs): cross-encoder rerankers fine-tuned on a set of unlabeled scientific + generation new search queries with GPT-3.5
- LIA (5 runs): ElasticSearch + 4 extra baselines



#### Extra baselines



- Three bag-of-words models: ElasticSearch 7, MeiliSearch (bucket search) and boolean Search (PostgreSQL GIN text indexing) based on sparse vector document representation.
- Two MS MARCO Mini LM runs based on embedding vectors and dot product between the query and the abstract (vir\_abstract) or the title (vir\_title) using the pg\_vector PostgreSQL extension and ivvflat dense vector index (k-means vector clustering with  $\sqrt{|D|}$  centroids).
- API: https://guacamole.univ-avignon.fr/stvir\_test?
  - corpus=[abstract|title]
  - phrase=varchar[300]
  - $\bullet$  length=integer < 1000

#### Task 1: Evaluation



| Qrels          | Topics                | #Queries | #Assessed abstracts |       |       | #Avg Ass. |
|----------------|-----------------------|----------|---------------------|-------|-------|-----------|
|                |                       |          | 0                   | 1     | 2     |           |
| 2022 test      | G1-G20, some T*       | 72       | 192                 | 187   | 107   | 6.8       |
| 2023 train     | G01–G15               | 29       | 728                 | 338   | 237   | 44.9      |
| 2023 test      | G16-G20, T01-T05      | 34       | 2260                | 357   | 1218  | 112.8     |
| 2024 train     | G01-G20, T01-T05      | 64       | 3,675               | 768   | 1,655 | 95.5      |
| 2024 test      | G1.C1-G10.C1, T06-T11 | 30       | 2,775               | 1,500 | 579   | 128.5     |
| 2024 test ext. | G1-G10, T01-T20       | 96       | 6,463               | 2,491 | 1,036 | 104.1     |

- Train data for system development:
  - 25 topics (mainly from *The Guardian*), with 64 specific queries.
- Test data:
  - Focus on queries out of the train data
  - Judgments on top 10 abstracts retrieved by all runs
- Evaluation measures:
  - Traditional IR metrics (relevance): NDCG, MAP...
  - Additional complexity/credibility aspect evaluation (automatic metrics)

#### Task 1: 2023 Results on Test Data



| Run                                         | MRR    | Pred   | Precision |        | CG     | Bpref  | MAP    |
|---------------------------------------------|--------|--------|-----------|--------|--------|--------|--------|
|                                             |        | 10     | 20        | 10     | 20     |        |        |
| ElsevierSimpleText_run8                     | 0.8082 | 0.5618 | 0.3515    | 0.5881 | 0.4422 | 0.2371 | 0.1633 |
| ElsevierSimpleText_run7                     | 0.7136 | 0.5618 | 0.4103    | 0.5704 | 0.4627 | 0.2626 | 0.1915 |
| maine_CrossEncoder1 <sup>rel</sup>          | 0.8106 | 0.5382 | 0.4456    | 0.5675 | 0.4908 | 0.3317 | 0.2810 |
| maine_CrossEncoderFinetuned1 <sup>rel</sup> | 0.7691 | 0.5559 | 0.4441    | 0.5542 | 0.4840 | 0.3433 | 0.2572 |
| maine_CrossEncoder1 <sup>comb</sup>         | 0.7309 | 0.5265 | 0.4500    | 0.5455 | 0.4841 | 0.3337 | 0.2754 |
| ElsevierSimpleText_run5                     | 0.6600 | 0.4765 | 0.3838    | 0.4826 | 0.4186 | 0.2542 | 0.1828 |
| UAms_CE100 <sup>rel</sup>                   | 0.7050 | 0.4912 | 0.4044    | 0.4782 | 0.4236 | 0.2616 | 0.2011 |
| UAms_CE1k_Filter                            | 0.6403 | 0.4765 | 0.3559    | 0.4533 | 0.3743 | 0.2727 | 0.1936 |
| UAms_CE1k <sup>rel</sup>                    | 0.6329 | 0.4735 | 0.4044    | 0.4448 | 0.4049 | 0.2797 | 0.2051 |
| Elastic baseline                            | 0.6424 | 0.4059 | 0.3456    | 0.3910 | 0.3541 | 0.2501 | 0.1895 |
| unimib_DoSSIER_2                            | 0.5201 | 0.2853 | 0.2515    | 0.2980 | 0.2683 | 0.1898 | 0.1141 |
| unimib_DoSSIER_4                            | 0.5202 | 0.2853 | 0.2441    | 0.2972 | 0.2632 | 0.1873 | 0.1111 |
| run-LIA.bm25                                | 0.4536 | 0.1912 | 0.1338    | 0.2192 | 0.1700 | 0.1384 | 0.0515 |
| run-LIA.all-MiniLM-L6-v2.query              | 0.3505 | 0.2000 | 0.1662    | 0.2019 | 0.1767 | 0.1956 | 0.0667 |
| run-LIA.all-MiniLM-L6-v2.query-topic        | 0.3655 | 0.1765 | 0.1485    | 0.1912 | 0.1647 | 0.2043 | 0.0591 |

- Neural rankers outcompete lexical systems by a large margin
- In particular precision gains, some also recall
- Some submissions prioritized other aspects than relevance



# 2024 Results on Train Data (G01-G20 and T01-T05)



| Run                                    | MRR Precision |        | NDCG   |        | Bpref  | MAP    |        |
|----------------------------------------|---------------|--------|--------|--------|--------|--------|--------|
|                                        |               | 10     | 20     | 10     | 20     |        |        |
| AIIRLab_Task1_LLaMABiEncoder           | 0.7570        | 0.6467 | 0.4133 | 0.4955 | 0.4206 | 0.3463 | 0.2227 |
| AIIRLab_Task1_LLaMAReranker2           | 0.7531        | 0.6200 | 0.4008 | 0.4708 | 0.4014 | 0.3364 | 0.2086 |
| LIA_vir_title                          | 0.6680        | 0.4433 | 0.2758 | 0.3405 | 0.2766 | 0.2742 | 0.1191 |
| Arampatzis_1.GPT2_search_results       | 0.5732        | 0.3933 | 0.1967 | 0.2972 | 0.2184 | 0.0876 | 0.0676 |
| UAms_Task1_Anserini_rm3                | 0.5613        | 0.3817 | 0.2833 | 0.2805 | 0.2541 | 0.2842 | 0.1408 |
| Elsevier@SimpleText_task_1_run8        | 0.6173        | 0.3633 | 0.2458 | 0.2800 | 0.2406 | 0.1673 | 0.0993 |
| LIA_vir_abstract                       | 0.6015        | 0.3867 | 0.2633 | 0.2795 | 0.2405 | 0.2738 | 0.1168 |
| LIA_bool                               | 0.5646        | 0.3517 | 0.2400 | 0.2552 | 0.2238 | 0.2134 | 0.1037 |
| Ruby_Task_1                            | 0.5231        | 0.3050 | 0.2425 | 0.2387 | 0.2281 | 0.1696 | 0.1018 |
| Elsevier@SimpleText_task_1_run10       | 0.5072        | 0.2983 | 0.2000 | 0.2335 | 0.1983 | 0.1356 | 0.0815 |
| LIA_elastic                            | 0.4540        | 0.2817 | 0.2067 | 0.2213 | 0.1977 | 0.2275 | 0.1103 |
| AB/DPV_SimpleText_task1_FKGL           | 0.4538        | 0.2817 | 0.2067 | 0.2213 | 0.1977 | 0.1623 | 0.0948 |
| Tomislav/Rowan_SimpleText_T1_1         | 0.5023        | 0.2683 | 0.1933 | 0.2108 | 0.1910 | 0.0972 | 0.0650 |
| LIA_meili                              | 0.4372        | 0.2883 | 0.1792 | 0.1833 | 0.1570 | 0.2024 | 0.0691 |
| UBO_Task1_TFIDFT5                      | 0.4134        | 0.1933 | 0.1775 | 0.1621 | 0.1625 | 0.1647 | 0.0730 |
| Sharingans_Task1_marco-GPT3            | 0.4167        | 0.0417 | 0.0208 | 0.0658 | 0.0466 | 0.0085 | 0.0085 |
| Tomislav/Rowan_SimpleText_T1_2         | 0.0108        | 0.0100 | 0.0067 | 0.0057 | 0.0051 | 0.0030 | 0.0011 |
| Petra/Regina_results_simpleText_task_1 | 0.0013        | 0.0000 | 0.0025 | 0.0000 | 0.0018 | 0.0016 | 0.0004 |

# Results on Test Data (G01.C1-G10.C1 and T06-T11)



| Run                                                 | MRR    | Precision |        | NDCG   |        | Bpref  | MAP    |
|-----------------------------------------------------|--------|-----------|--------|--------|--------|--------|--------|
|                                                     |        | 10        | 20     | 10     | 20     |        |        |
| AIIRLab_Task1_LLaMABiEncoder <sup>rel</sup>         | 0.9444 | 0.8167    | 0.5517 | 0.6311 | 0.5240 | 0.3559 | 0.2304 |
| LIA_vir_title                                       | 0.8454 | 0.6933    | 0.4383 | 0.5090 | 0.4010 | 0.3594 | 0.1534 |
| LIA_vir_abstract                                    | 0.7683 | 0.6000    | 0.4067 | 0.4269 | 0.3539 | 0.3857 | 0.1603 |
| UAms_Task1_Anserini_rm3                             | 0.7878 | 0.5700    | 0.4350 | 0.3945 | 0.3506 | 0.4010 | 0.1824 |
| Arampatzis_1.GPT2_search <sup>rel</sup>             | 0.6986 | 0.5100    | 0.2550 | 0.3522 | 0.2465 | 0.0742 | 0.0577 |
| UBO_Task1_TFIDFT5                                   | 0.7132 | 0.4833    | 0.3817 | 0.3506 | 0.3215 | 0.2354 | 0.1274 |
| LIA_bool*                                           | 0.7242 | 0.5233    | 0.3633 | 0.3409 | 0.2906 | 0.2661 | 0.1199 |
| Elsevier@SimpleText_task_1_run8                     | 0.7123 | 0.4533    | 0.3367 | 0.3152 | 0.2755 | 0.1582 | 0.0906 |
| LIA_elastic                                         | 0.6173 | 0.3733    | 0.2900 | 0.2818 | 0.2442 | 0.3016 | 0.1325 |
| AB&DPV_SimpleText_task1_FKGL <sup>rel</sup>         | 0.6173 | 0.3733    | 0.2900 | 0.2818 | 0.2442 | 0.1966 | 0.1078 |
| Ruby_Task_1 <sup>rel</sup>                          | 0.5470 | 0.4233    | 0.3533 | 0.2790 | 0.2688 | 0.1980 | 0.1110 |
| LIA_meili                                           | 0.6386 | 0.4700    | 0.2867 | 0.2736 | 0.2242 | 0.2377 | 0.0833 |
| Tomislav/Rowan&Rowan_SimpleText_T1_1 <sup>rel</sup> | 0.5444 | 0.3733    | 0.2750 | 0.2477 | 0.2201 | 0.0963 | 0.0601 |
| Sharingans_Task1_marco-GPT3                         | 0.6667 | 0.0667    | 0.0333 | 0.1167 | 0.0807 | 0.0107 | 0.0107 |
| Petra&Regina_simpleText_task_1                      | 0.0026 | 0.0000    | 0.0050 | 0.0000 | 0.0035 | 0.0031 | 0.0007 |

# 2024 Results on Test Data (G01.C1-G10.C1)



| Run                                                 | MRR    | Precision |        | NDCG   |        | Bpref  | MAP    |
|-----------------------------------------------------|--------|-----------|--------|--------|--------|--------|--------|
|                                                     |        | 10        | 20     | 10     | 20     |        |        |
| AIIRLab_Task1_LLaMABiEncoder <sup>rel</sup>         | 0.9500 | 0.7600    | 0.5125 | 0.5546 | 0.4777 | 0.3150 | 0.1919 |
| LIA_vir_title                                       | 0.8014 | 0.6100    | 0.3750 | 0.4043 | 0.3307 | 0.2793 | 0.0985 |
| LIA_bool*                                           | 0.7613 | 0.5800    | 0.4175 | 0.3531 | 0.3194 | 0.3384 | 0.1452 |
| LIA_meili                                           | 0.7017 | 0.6100    | 0.3800 | 0.3477 | 0.2929 | 0.3175 | 0.1145 |
| UAms_Task1_Anserini_rm3                             | 0.7150 | 0.5250    | 0.4075 | 0.3248 | 0.3078 | 0.3486 | 0.1463 |
| LIA_vir_abstract                                    | 0.6774 | 0.4900    | 0.3025 | 0.3053 | 0.2537 | 0.3020 | 0.0906 |
| Arampatzis_1.GPT2_search <sup>comb</sup>            | 0.6588 | 0.4900    | 0.2450 | 0.3050 | 0.2237 | 0.0651 | 0.0476 |
| Elsevier@SimpleText_task_1_run8                     | 0.6780 | 0.4400    | 0.2950 | 0.2847 | 0.2424 | 0.1131 | 0.0614 |
| UBO_Task1_TFIDFT5                                   | 0.6198 | 0.4500    | 0.3425 | 0.2774 | 0.2610 | 0.1911 | 0.0903 |
| Ruby_Task_1 <sup>rel</sup>                          | 0.5550 | 0.4100    | 0.3600 | 0.2546 | 0.2587 | 0.1677 | 0.0966 |
| Tomislav/Rowan&Rowan_SimpleText_T1_1 <sup>rel</sup> | 0.5550 | 0.4000    | 0.3200 | 0.2467 | 0.2380 | 0.1125 | 0.0675 |
| LIA_elastic                                         | 0.5163 | 0.3000    | 0.2325 | 0.2010 | 0.1851 | 0.2540 | 0.0988 |
| AB&DPV_SimpleText_task1_FKGL <sup>rel</sup>         | 0.5163 | 0.3000    | 0.2325 | 0.2010 | 0.1851 | 0.1589 | 0.0762 |
| Sharingans_Task1_marco-GPT3                         | 0.5000 | 0.0500    | 0.0250 | 0.0816 | 0.0589 | 0.0070 | 0.0070 |

# 2024 Results on Test Data (T06-T11)



| Run                                                 | MRR    | MRR Precision |        | NDCG   |        | Bpref  | MAP    |
|-----------------------------------------------------|--------|---------------|--------|--------|--------|--------|--------|
|                                                     |        | 10            | 20     | 10     | 20     |        |        |
| AIIRLab_Task1_LLaMABiEncoder <sup>rel</sup>         | 0.9500 | 0.7600        | 0.5125 | 0.5546 | 0.4777 | 0.3150 | 0.1919 |
| LIA_vir_title                                       | 0.8014 | 0.6100        | 0.3750 | 0.4043 | 0.3307 | 0.2793 | 0.0985 |
| LIA_bool                                            | 0.7613 | 0.5800        | 0.4175 | 0.3531 | 0.3194 | 0.3384 | 0.1452 |
| LIA_meili                                           | 0.7017 | 0.6100        | 0.3800 | 0.3477 | 0.2929 | 0.3175 | 0.1145 |
| UAms_Task1_Anserini_rm3                             | 0.7150 | 0.5250        | 0.4075 | 0.3248 | 0.3078 | 0.3486 | 0.1463 |
| LIA_vir_abstract                                    | 0.6774 | 0.4900        | 0.3025 | 0.3053 | 0.2537 | 0.3020 | 0.0906 |
| Arampatzis_1.GPT2_search <sup>comb</sup>            | 0.6588 | 0.4900        | 0.2450 | 0.3050 | 0.2237 | 0.0651 | 0.0476 |
| Elsevier@SimpleText_task_1_run8                     | 0.6780 | 0.4400        | 0.2950 | 0.2847 | 0.2424 | 0.1131 | 0.0614 |
| UBO_Task1_TFIDFT5                                   | 0.6198 | 0.4500        | 0.3425 | 0.2774 | 0.2610 | 0.1911 | 0.0903 |
| Ruby_Task_1 <sup>rel</sup>                          | 0.5550 | 0.4100        | 0.3600 | 0.2546 | 0.2587 | 0.1677 | 0.0966 |
| Tomislav/Rowan&Rowan_SimpleText_T1_1 <sup>rel</sup> | 0.5550 | 0.4000        | 0.3200 | 0.2467 | 0.2380 | 0.1125 | 0.0675 |
| LIA_elastic                                         | 0.5163 | 0.3000        | 0.2325 | 0.2010 | 0.1851 | 0.2540 | 0.0988 |
| AB&DPV_SimpleText_task1_FKGL <sup>rel</sup>         | 0.5163 | 0.3000        | 0.2325 | 0.2010 | 0.1851 | 0.1589 | 0.0762 |
| Sharingans_Task1_marco-GPT3                         | 0.5000 | 0.0500        | 0.0250 | 0.0816 | 0.0589 | 0.0070 | 0.0070 |

# Evaluation of complexity and credibility (all 176 queries)



| Run                                          | Avg   | Avg Avg size of Ratio of |            | Ratio of      | F    | FKGL   |  |
|----------------------------------------------|-------|--------------------------|------------|---------------|------|--------|--|
|                                              | #Refs | vocabulary               | long words | complex words | avg  | median |  |
| AIIRLab_Task1_LLaMABiEncoder <sup>rel</sup>  | 8.7   | 95.8                     | 0.375      | 0.485         | 15.3 | 15.1   |  |
| AIIRLab_Task1_LLaMAReranker2 <sup>comb</sup> | 8.6   | 93.9                     | 0.378      | 0.489         | 15.5 | 15.3   |  |
| AIIRLab_Task1_LLaMAReranker2 <sup>rel</sup>  | 8.6   | 94                       | 0.376      | 0.487         | 15.3 | 15.1   |  |
| Arampatzis_1.GPT2_searchs                    | 10.5  | 91.9                     | 0.392      | 0.511         | 15.7 | 15.1   |  |
| Elsevier@SimpleText_task_1_run4              | 10.7  | 99.1                     | 0.375      | 0.495         | 15.1 | 14.9   |  |
| Elsevier@SimpleText_task_1_run8              | 10.3  | 94.4                     | 0.387      | 0.504         | 15.5 | 15.3   |  |
| LIA_elastic                                  | 9.2   | 92.9                     | 0.384      | 0.505         | 15.3 | 15.1   |  |
| LIA_vir_abstract                             | 7.2   | 69.8                     | 0.378      | 0.484         | 14.6 | 14.3   |  |
| LIA_vir_title                                | 9.8   | 90.4                     | 0.372      | 0.483         | 15   | 14.7   |  |
| Sharingans_Task1_marco-GPT3                  | 9.8   | 59.8                     | 0.373      | 0.436         | 15.5 | 15.5   |  |
| Uams_Task1_Anserini_rm3                      | 11.9  | 112.9                    | 0.387      | 0.508         | 16.8 | 16     |  |
| UAms_Task1_CE1K_CAR <sup>comb</sup>          | 10.2  | 98.5                     | 0.363      | 0.483         | 13.8 | 13.5   |  |
| Uams_Task1_CE1K                              | 10.8  | 101.4                    | 0.387      | 0.499         | 15.9 | 15.4   |  |
| UBO_Task1_TFIDFT5                            | 10.3  | 99.2                     | 0.386      | 0.498         | 15.4 | 15.2   |  |

- Runs targeting relevant and more accessible abstracts
  - Performing competitive on retrieval effectiveness
  - readability level from "university" to "high school"
  - → avoiding very complex (but relevant) abstracts



## Task 1: Findings



- Scientific passage retrieval test collection constructed in 2022-2024
  - High pooling diversity
  - Reusable with limited pooling bias
- Almost all submissions based on neural rankers
  - Crossencoders and biencoders popular and very effective
  - Training on scientific text helps
  - Small set of labeled train data can lead to overfitting (use with caution)
  - Queries alone are too ambiguous (topics or original articles have to be taken into consideration)
- Promising results for runs prioritizing credibility/complexity
  - Possible to factor the text complexity into the ranking
  - Guide users to accessible content first, and more complex text later

#### Task 1: To do list



- the vir\_baseline shows that there are relevant documents which do not have a complete abstract
  - => shall we enrich the corpus?
- consider the citation graphs to improve document retrieval
   SOTA task?
- back to effective passage retrieval ?
- still enriching the q-rels as training corpus ...
- PostGreSQL container with all data and baselines (32 Go): https://guacamole.univ-avignon.fr/pubiutdev/simpletext/clef\_st1.tar.gz









# Thanks!

Website: https://simpletext-project.com<sup>1</sup>

E-mail: contact@simpletext-project.com

Twitter: https://twitter.com/SimpletextW

 ${\sf Google\ group: https://groups.google.com/g/simpletext}$ 

#### References

- Liana Ermakova, Eric SanJuan, Stéphane Huet, Hosein Azarbonyad, Giorgio Maria Di Nunzio, Federica Vezzani, Jennifer D'Souza, and Jaap Kamps. "Overview of the CLEF 2024 SimpleText Track: Improving Access to Scientific Texts for Everyone". In: CLEF'24: Proceedings of the 15th International Conference of the CLEF Association. Lecture Notes in Computer Science. Springer, 2024.
- Eric SanJuan, Stéphane Huet, Jaap Kamps, and Liana Ermakova. "Overview of the CLEF 2024 SimpleText Task 1: Retrieve Passages to Include in a Simplified Summary". In: Working Notes of CLEF 2024: Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings. CEUR-WS.org, 2024.