第27回応用力学シンポジウム [21001-06-06]

高次元不確定性を扱う構造信頼性解析への 正則化深層カーネル学習サロゲートモデル構築

才田 大聖 (筑波大学大学院) 西尾真由子 (筑波大学)

対象構造物

Probability

ex)橋脚質量

数値解析の計算回数が膨大となる

サロゲートモデルを構築することで、 信頼性解析の計算コストを低減

【既往研究】信頼性解析・高次元不確定性のサロゲートモデル

Echard et al. 2011

ガウス過程回帰(GPR) に 能動学習を組み込み、 サロゲートモデル構築の計算コストを低減 (*Structural Safety*, Vol.33)

Zhou et al. 2022

- 全結合型NN+GPRで、 高次元不確定性への対処
- 建物の構造解析の サロゲートモデルを構築

(Mechanical Systems and Signal Processing, Vol.162)

- 過学習の可能性
- 何次元から有効かが不明

高次元への適用が困難

- 過学習への対処
- 深層学習+GPRが有効となる次元数の把握

【目的】高次元不確定性を考慮する深層カーネル学習モデル

深層カーネル学習(DKL)

深層学習器とGPRを組み合わせた深層カーネル学習(DKL) サロゲートモデルに対する過学習への対処の有効性と、GPRに対して DKLが有効な次元数を明らかにする

【手法】GPR+深層学習・過学習について

ガウス過程回帰

- ・ ノンパラメトリック
- 予測分散の出力が可能

$$y = f(\mathbf{x})$$

$$f \sim GP(\mathbf{0}, k(\mathbf{x}, \mathbf{x'}))$$

$$\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$$

x:入力ベクトル

v:出力ベクトル

k:カーネル関数

K:カーネル行列

カーネル行列

$$K_{\rm nm} = k(\mathbf{x}_{\rm n}, \mathbf{x}_{\rm m})$$

 K_{nm} : カーネル行列の要素

カーネル関数

RBFカーネル

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\frac{\left(\mathbf{x}_n - \mathbf{x}_m\right)^2}{2\theta_1}\right) + \theta_2$$

【手法】GPR+深層学習・過学習について

ガウス過程回帰

- ノンパラメトリック
- 予測分散の出力が可能

$$y = f(\mathbf{x})$$

$$f \sim GP(\mathbf{0}, k(\mathbf{x}, \mathbf{x'}))$$

$$\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$$

x:入力ベクトル

v:出力ベクトル

k:カーネル関数

K:カーネル行列

カーネル行列

$$K_{\rm nm} = k(\mathbf{x}_{\rm n}, \mathbf{x}_{\rm m})$$

 K_{nm} : カーネル行列の要素

カーネル関数

RBFカーネル

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\frac{\left(\mathbf{x}_n - \mathbf{x}_m\right)^2}{2\theta_1}\right) + \theta_2$$
 +深層学習

Deep Kernel Learning (DKL)

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\frac{\left(\mathbf{g}(\mathbf{x}_n) - \mathbf{g}(\mathbf{x}_m)^2\right)^2}{2\theta_1}\right) + \theta_2$$

g: MLP (Multi-Layer Perceptron)

パラメータ数が多い

【手法】GPR+深層学習・過学習について

ガウス過程回帰

- ノンパラメトリック
- 予測分散の出力が可能

$$y = f(\mathbf{x})$$

 $f \sim GP(\mathbf{0}, k(\mathbf{x}, \mathbf{x'}))$

 $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$

x:入力ベクトル

y:出力ベクトル

k:カーネル関数

K:カーネル行列

カーネル行列

$$K_{nm} = k(\mathbf{x}_{n}, \mathbf{x}_{m})$$

 K_{nm} : カーネル行列の要素

カーネル関数

RBFカーネル

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\frac{\left(\mathbf{x}_n - \mathbf{x}_m\right)^2}{2\theta_1}\right) + \theta_2$$
 +深層学習

Deep Kernel Learning (DKL)

$$k(\mathbf{x}_n, \mathbf{x}_m) = \exp\left(-\frac{(\mathbf{g}(\mathbf{x}_n) - (\mathbf{g}(\mathbf{x}_m))^2)}{2\theta_1}\right) + \theta_2$$

g: MLP (Multi-Layer Perceptron)

パラメータ数が多い

最適化

$$L = \ln p(\mathbf{y}) = -\frac{1}{2} \ln |\mathbf{K}| - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \mathbf{K}^{-1} \mathbf{y} - \frac{N}{2} \ln(2\pi)$$

$$\propto -\ln |\mathbf{K}| - \mathbf{y}^{\mathrm{T}} \mathbf{K}^{-1} \mathbf{y} + \alpha$$
複雑性 データへのフィッティング

ペナルティ

パラメータ数:大 ⇒ 過学習の可能性:大

【手法】GPR+深層学習の過学習への対処

なぜ過学習を考慮する必要があるのか?

- パラメータ数が大きい
- 学習データが少数

高次元のサロゲートに当てはまる

L2正則化

- ・ モデルが過度にデータにフィッティングするのを防ぐ
- モデルパラメータのL2ノルム正則化項を損失関数に追加

$$Loss = \ln |\mathbf{K}| + \mathbf{y}^{\mathrm{T}} \mathbf{K}^{-1} \mathbf{y} + \lambda |\mathbf{w}|^{2}$$
 正則化項

Dropout

• 訓練中にランダムにモデルを不活性化する

【手法】GPR+深層学習の過学習への対処

なぜ過学習を考慮する必要があるのか?

- 学習データが少数
- パラメータ数が大きい

高次元のサロゲートに当てはまる

L2正則化

- ・ モデルが過度にデータにフィッティングするのを防ぐ
- モデルパラメータのL2ノルム正則化項を損失関数に追加

$$Loss = \ln |\mathbf{K}| + \mathbf{y}^{\mathrm{T}}\mathbf{K}^{-1}\mathbf{y} + \lambda |\mathbf{w}|^{2}$$
 正則化項

Dropout

• 訓練中にランダムにモデルを不活性化する

【手法】GPR+深層学習の過学習への対処

なぜ過学習を考慮する必要があるのか?

- 学習データが少数
- パラメータ数が大きい

高次元のサロゲートに当てはまる

L2正則化

- ・ モデルが過度にデータにフィッティングするのを防ぐ
- モデルパラメータのL2ノルム正則化項を損失関数に追加

$$Loss = \ln |\mathbf{K}| + \mathbf{y}^{\mathrm{T}}\mathbf{K}^{-1}\mathbf{y} + \lambda |\mathbf{w}|^{2}$$
 正則化項

Dropout

• 訓練中にランダムにモデルを不活性化する

【問題】本研究で扱った問題

不確定性次元数が3から283の問題まで、10の問題設定で検証

問題名	不確定性次元数	参考文献		
非線形関数	3 Zou et al., RESS, 2002			
液体水素タンク	5 Bichon et al., RESS, 2011			
非線形振動	6	Echard et al., SS, 2011		
車両の側面衝突	11	Bichon et al., RESS, 2011		
10バートラス	14	Xiao et al., QREI, 2022		
片持ち梁	23	Meng et al., SS, 2021		
トラス構造	30	Hadidi et al., SS, 2017		
高次元関数	40	Li et al., MSSP, 2020		
フレーム構造	67	Hadidi et al., SS, 2017		
アーチ橋	283	Keshtegar et al., Appl Math Mo, 2019		

【問題】本研究で扱った問題

不確定性次元数が3から283の問題まで、10の問題設定で検証

問題名	不確定性次元数	参考文献	
非線形関数	3 Zou et al., RESS, 2002		
液体水素タンク	5 Bichon et al., RESS, 2011		
非線形振動	6	Echard et al., SS, 2011	
車両の側面衝突	11 Bichon et al., RESS, 2011		
10バートラス	14	Xiao et al., QREI, 2022	
片持ち梁	23	Meng et al., SS, 2021	
トラス構造	30	Hadidi et al., SS, 2017	
高次元関数	40	Li et al., MSSP, 2020	
フレーム構造	67	Hadidi et al., SS, 2017	
アーチ橋	283	Keshtegar et al., Appl Math Mo, 2019	

【例題】横荷重を受けるフレーム構造

解析詳細

- 6階建てフレーム構造
- OpenSeesPyでモデル化
- 断面積、弾性係数、断面二次モーメント、荷重を不確定性として設定
- 不確定パラメータ数:67
- ・ 水平変位 $H(\mathbf{x})$ が許容変位量を 超えたら故障とみなす $g(\mathbf{x}) = 0.07 - H(\mathbf{x})$

不確定パラメータ

参考:Hadidi et al., SS, 2017

Random variable	Unit	Distribution	Mean	Std
$A_{C1} - A_{C18}$	m^2	Normal	0.0130	0.0013
$I_{C1} - I_{C18}$	m^4	Normal	0.0003	0.00003
$A_{B1}-A_{B12}$	m^2	Normal	0.0130	0.0013
$I_{B1}-I_{B12}$	m ⁴	Normal	0.0007	0.00007
$P_{1} - P_{6}$	kN	Normal	80	8.0
E	GPa	Normal	200	20

【結果】横荷重を受けるフレーム構造

サロゲートモデル構築結果

構築回数:10回

• 実線:平均、範囲:標準偏差

- · DKLモデルがGPRモデルに比べて、精度が良い
- ・ 正則化DKLモデルがDKLモデルに比べて、精度が良い

【結果】不確定性次元数に対するDKLの有効性

平均絶対誤差(MAE)によるサロゲートモデルの精度比較

【結果】不確定性次元数に対するDKLの有効性

平均絶対誤差(MAE)によるサロゲートモデルの精度比較

【結果】不確定性次元数に対するDKLの有効性®

平均絶対誤差(MAE)によるサロゲートモデルの精度比較

次元数>20: DKL>GP

次元数>10: 正則化DKL>GPR

正則化DKL>DKL

・不確定性次元数が10を超える範囲で、正則化DKLモデルが GPRモデルおよびDKLモデルよりも高精度である

結論と今後の展望

結論

- ガウス過程回帰(GPR)+深層学習のモデルである深層カーネル学習 (DKL) に対し、L2正則化とDropoutを用いて正則化した
- 正則化DKLモデルの有効性を調べるために、広範な不確定性次元数を持つ 10の信頼性解析の問題が検証された
- フレーム構造を扱った問題において、正則化DKLはGPRおよびDKLよりも 決定係数および推定故障確率の精度が高かった
- 不確定性次元数が10を超えるすべての問題において、正則化DKLはGPRおよびDKLよりも精度が高く、次元数の高い問題における正則化の有効性を示した

今後の展望

アダプティブサンプリングなどの組み合わせによって、 より低計算コストにサロゲートモデルが構築できる可能性がある