DESIGN & ANALYSIS OF ALGORITHM

PCC-CS501

DESIGN & ANALYSIS OF ALGORITHM SCHEDULE ----TOPIC WISE

	Topic	Sub Topic
1	INTRODUCTION	DESIGN OF ALGORITHM, ANALYSIS OF ALGORITHM,
		ALGORITHM PROPERTIES
2	FRAMEWORK FOR ALGORITHM	HOW TO COUNT EXECUTION TIME OF ALGORITHM, INPUT INSTANCES
	ANALYSIS	
3	ASYMPTOTIC NOTATION	BEST CASE, AVERAGE CASE, WORST CASE
4	SOLVING RECURRENCE RELATION	SUBSTITUTION METHOD, MASTER THEOREM
5	ALGORITHM DESIGN TECHNIQUES	DIVIDE & CONQUER, GREEDY, DYNAMIC PROGRAMMING,
		BACKTRACKING,
6	DISJOINT SET MANIPULATION	UNION FIND
7	NETWORK FLOW PROBLEM	FORD FULKERSON ALGORITHM
8	NP COMPLETENESS	NP,NP HARDALGORITHM
9	APPROXIMATION ALGORITHM	COMPLEXITY ANALYSIS OF NP COMPETE PROBLEM

- •The value or profit obtained by putting the items into the knapsack is maximum.
- •And the weight limit of the knapsack does not exceed.

7/30/2020

Knapsack Problem

- Considers All possible solution, then consider the optimal solution.
- Time consuming Method.
- Follows Principle of Optimality: Problem must be solved in sequence of decision.
- Overlapping Sub-problem.
- Memorization
- Tabulation

$$P = \{1,2,5,6\}$$

$$W = \{2,3,4,5\}$$

$$M = 8$$

$$N = 4$$

$$X = ?$$

2	3	4	5
?	?	?	?

7/30/2020

Knapsack Problem

- Determine how to fill a small knapsack optimally.
- Using the above information try to fill the larger knapsack optimally

Kr	Knapsack size →		0	1	2	3	4	5	6	7	8
Pi	Wi	0									
I	2	I									
2	3	2									
5	4	3									
6	5	4									

- Recursive relationship is: g(i,w)=max{g(i-1,w), g(i-1, w-w[i])+p[i]}
- $g(i,w) \rightarrow$ optimum profit of knapsack of a combination of I to i, with cumulative weight of w or less.
- $g(i-1,w) \rightarrow$ optimum profit of knapsack up to previous stage.
- $g(i-1, w-w[i])+p[i] \rightarrow current profit of w[i] + optimum profit of knapsack up to previous stage w.r.t w-w[i].$

Kn	Knapsack size		0	1	2	3	4	5	6	7	8
Pi	Wi	0	0	0	0	0	0	0	0	0	0
I	2	I	0	0	I	I	I	I	I	I	I
2	3	2	0	0	I	2	2	3	3	3	3
5	4	3	0	0	I	2	5	5	6	7	7
6	5	4	0								

$$g(4,I)=max{g(3,I),g(3,I-5)+6}$$

$g(4,1)=\max\{g(3,1),g(3,1-5)+6\}$
$= \max\{ g(3,1), g(3,-4)+6 \}$
= g(3,1) = 0
g(4,2) / g(4,3) / g(4,4)
$g(4,5) = max{g(3,5),g(3,5-5)+6}= 6$
g(4,6) = ?
g(4,7) = ?
g(4,8)= ?

Knapsack size		0	1	2	3	4	5	6	7	8	
Pi	Wi	0	0	0	0	0	0	0	0	0	0
I	2	I	0	0	I	I	I	I	1	I	I
2	3	2	0	0	I	2	2	3	3	3	3
5	4	3	0	0	I	2	5	5	6	7	7
6	5	4	0								

$$g(i,w)=\max\{g(i-1,w),g(i-1,w-w[i])+p[i]\}$$

0/I KNAPSACK PROBLEM

4th object P=6 Remaining=2 3rd object 2nd object Remaining=0 Ist object 0th object

Knapsack size →		0	1	2	3	4	5	6	7	8	
Pi	Wi	0	0	0	0	0	0	0	0	0	0
I	2	I	0	0	1	I	ı	I	I	ı	I
2	3	2	0	0	1	2	2	3	3	3	3
5	4	3	0	0	I	2	5	5	6	7	7
6	5	4	0	0	I	2	5	6	6	7	8

$$X = \{ 0, 0, 0, 0 \}$$

WHICH STRATEGY IS BETTER?

Dynamic programming OR Greedy Approach

• WHICH STRATEGY IS BETTER? Ans — Dynamic Programming

Let W=c, and have n=2 items. Also let wI=c and pI=c-I, and w2=I and p2=I.

The greedy algorithm will select only item 2, but the optimal solution contains only item 1. Meaning that the solution you obtain is (c-1) times as poor as the true optimum.

FRACTIONAL KNAPSACK PROBLEM

WHICH STRATEGY IS BETTER?

Dynamic programming OR Greedy Approach

FRACTIONAL KNAPSACK PROBLEM

- WHICH STRATEGY IS BETTER? Ans- Greedy Method
- They 'usually' don't use extra memory to keep a memory table (as dynamic programming) and have smaller complexity.
- Greedy always ensures optimal profit because of large fraction of weight/profit ratio.

NEXT CLASS

■ Bellman-Ford algorithm.