# Statistical Graphics: What is Exploratory Data Analysis?



### **Objective**



Objective
Describe
exploratory
data analysis

### **Exploratory Data Analysis**

Approach to analyzing data sets to summarize main characteristics





Exploratory
Data
Analysis

#### Elements include:

- Data visualization
- Residual analysis
- Data transformations/ re-expression
- Resistance procedures

### **Data Visualization**

Data visualization facilitates advanced data analysis

Checks distributional and other assumptions

Observes timebased processing

Spots outliers

Examines relationships

Discriminates clusters

Compares mean differences

### **Data Distributions**

## The type of data distribution affects

- How it should be analyzed
- How it should be visualized

Key step is preconditioning data



### **The Normal Distribution**

## Normal (Gaussian) Distribution

- Popular
- Fully characterizes with two parameters
- Probability is determined knowing distance from mean
- Many measures and tests are designed for this

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

### **Mean and Standard Deviation**

For sample population  $X = \{x_1, ..., x_n\}$  the mean is defined as:

$$\mu = \frac{1}{N} \sum_{i=0}^{N} x_i$$

The standard deviation is defined as:

$$\sqrt{\frac{1}{N}\sum_{i=0}^{N}(x_i-\mu)^2}$$

### Skewness

Measure of the asymmetry of the probability distribution





### **Skewed Data**

For a sample of N values, the sample skewness is:

$$\gamma = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^3}{\left(\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2\right)^{3/2}}$$