E-COMMERCE CHURN

PRESENTED BY MUHAMAD WILDAN TRISIANLY

Business Understanding

Perusahaan e-commerce mengalami masalah customer churn (pelanggan berhenti menggunakan layanan). Jika churn tinggi, perusahaan bisa kehilangan pendapatan dan biaya akuisisi pelanggan baru jadi lebih tinggi.

Stake Holder:

- Tim Marketing & Retention
- Manajemen Perusahaan:

Target:

-Memprediksi pelanggan yang akan churn agar bisa diberi promo untuk mencegah churn.

Data Undestanding

Dataset= data_ecommerce_customer_churn.csv

Terdiri dari = 3941 baris Tiap Baris Mewakili 1 customer

```
1 df.shape

0.0s

(3941, 11)
```

Features

- **Tenure:** Tenure of a customer in the company...
- WarehouseToHome: Distance between the warehouse to the customer's home.
- NumberOfDeviceRegistered: Total number of deceives is registered on a particular customer.
- PreferedOrderCat: Preferred order category of a customer in the last month.
- SatisfactionScore: Satisfactory score of a customer on service.
- MaritalStatus: Marital status of a customer.
- NumberOfAddress: Total number of added on a particular customer.
- Complaint: Any complaint has been raised in the last month.
- DaySinceLastOrder: Day since last order by customer.
- CashbackAmount: Average cashback in last month
- Churn: Churn flag.

Data Exploration

```
1 df.isna().sum() / len(df) * 100
2
```

Tenure	4.922608
WarehouseToHome	4.288252
NumberOfDeviceRegistered	0.000000
PreferedOrderCat	0.000000
SatisfactionScore	0.000000
MaritalStatus	0.000000
NumberOfAddress	0.000000
Complain	0.000000
DaySinceLastOrder	5.404720
CashbackAmount	0.000000
Churn	0.000000
dtype: float64	

Pre-processing

Preprocessing

- Numerik:
 - o Imputasi nilai kosong dengan median untuk mengurangi pengaruh outlier ekstrem.
 - o Scaling menggunakan RobustScaler agar skala data tidak terdistorsi oleh outlier.
- Kategorikal:
 - o Imputasi nilai kosong dengan modus.
 - o Encoding menggunakan OneHotEncoder agar bisa diproses oleh model machine learning.

Cross Validation

	roc_auc	pr_auc	precision	recall	f1
model					
RandomForest	0.9558	0.8405	0.8430	0.6235	0.7153
XGBoost	0.9473	0.8309	0.7530	0.8016	0.7751
LogisticRegression	0.8801	0.6781	0.4499	0.8145	0.5796
DecisionTree	0.8526	0.6247	0.5912	0.7644	0.6655

Before dan After Tuning

=== Befor Tuned XGB @0.50 ===						
	precision	recall	f1-score	support		
0	0.9621	0.9709	0.9665	654		
1	0.8527	0.8148	0.8333	135		
accuracy			0.9442	789		
macro avg	0.9074	0.8929	0.8999	789		
weighted avg	0.9434	0.9442	0.9437	789		
=== TUNED XGB	@0.50 ===					
	precision	recall	f1-score	support		
0	0.9679	0.9679	0.9679	654		
1	0.8444	0.8444	0.8444	135		
accuracy			0.9468	789		
macro avg	0.9062	0.9062	0.9062	789		
weighted avg	0.9468	0.9468	0.9468	789		

Feature Importance

Kesimpulan

⋆ Dari Sisi Model

- Model XGBoost memberikan performa terbaik dibanding model lain.
- Setelah tuning:
- Recall naik 0.8148 → 0.8444
- F1 naik 0.8333 → 0.8444
- Akurasi naik 0.9442 → 0.9468
- FN turun $(25 \rightarrow 21) \rightarrow$ lebih banyak pelanggan churn berhasil terdeteksi
- TP naik (110 → 114) → prediksi churn semakin akurat

⋆ Dari Sisi Bisnis

- Model mampu mendeteksi pelanggan yang berisiko churn secara dini
- Fitur paling berpengaruh: Complain, Tenure, PreferedOrderCat, DaySinceLastOrder, SatisfactionScore
- Pelanggan yang baru bergabung, pernah komplain, atau lama tidak belanja adalah kelompok paling berisiko churn

Rekomendasi

★ Untuk Bisnis

- Gunakan model secara bulanan untuk mendeteksi pelanggan berisiko churn
- Fokuskan tindakan pada:
 - Pelanggan baru (tenure rendah)
 - o Pelanggan yang pernah komplain
 - o Pelanggan lama tidak belanja
- Berikan promo, loyalty point, atau voucher untuk mempertahankan pelanggan ini
- Bangun dashboard internal agar tim marketing bisa langsung melihat daftar pelanggan berisiko churn

★ Untuk Model

- Retrain model setiap 3–6 bulan agar menyesuaikan pola perilaku pelanggan terbaru
- Pantau metrik recall & FN sebagai indikator utama efektivitas model
- Sesuaikan threshold jika distribusi churn berubah, untuk menjaga keseimbangan recall dan precision
- Tambahkan fitur baru (misal: frekuensi login, klik, waktu respon komplain) untuk meningkatkan akurasi ke depan