Chapter 4
Filtering in the Frequency Domain

Complex numbers

A complex number, C, is defined as $\ R+jI$ where R and I are real numbers and $j=\sqrt{-1}$

Real part Imaginary part

The conjugate of a complex number C, denoted C^* , is defined as $C^* = R - jI$

Complex numbers

Complex numbers can be viewed geometrically as points on a plane (called the complex plane)

Complex numbers

Sometimes it is useful to represent complex numbers in polar coordinates

$$C = |C|(\cos\theta + j\sin\theta)$$

where

$$|C| = \sqrt{R^2 + I^2}$$
 real C

$$\theta = \arctan(\frac{I}{R})$$

$$|C|$$

$$\theta$$
 imaginary

The arctan function returns angles in the range $[-\Pi/2]$, $\Pi/2$. But, because I and R can be positive and negative independently, we need to be able to obtain angles in the full range $[-\Pi, \Pi]$ We do this by keeping track of the sign of I and R when computing θ .

Euler's formula

$$e^{j\theta} = \cos \theta + j \sin \theta$$
 where $e = 2.71828...$

gives the following familiar representation of complex numbers in polar coordinates

$$C = |C| e^{j\theta}$$

For example, the polar representation of the complex number 1+2j is $\sqrt{5}e^{63.4j}$, where θ = 63.4° or 1.1 radians.

Complex number representation

We can show a complex number in three format :

$$C = R + jI$$

$$C = |C|(\cos\theta + j\sin\theta)$$

$$C = |C| e^{j\theta}$$

We can look at an image from another aspect

0	0
1	0

Basis

Note: if basis are orthonormal (orthogonal + normal) then the computation of coefficients

would be very much cheaper

How to compute coefficients

$$f(x) s(x,u=0) s(x,u=1)$$

Basis: s(x,u) for all u: orthogonal, why?

Coefficients: T(u)

T(u)
$$T(u = i) = \frac{\langle f(x), s(x, u = i) \rangle}{||s(x, u = i)||2}$$

If basis are orthonormal:

$$f(x) = \sum_{u=0}^{N-1} T(u)s(x, u)$$

$$T(u) = \sum_{x=0}^{N-1} f(x)r(x,u)$$

$$T(u) = \langle f(x), s(x, u) \rangle$$

$$r(x,u) = s^*(x,u)$$

If s() is not complex then r = s

9

-0.5

-1

$$s(x,y,u=0,v=0)$$

$$s(x,y,u=1,v=0)$$

$$s(x,y,u=1,v=0)$$
 $s(x,y,u=0,v=1)$

$$s(x,y,u=1,v=1)$$

+ 0.5

orthogonal

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u,v)s(x,y,u,v)$$

$$T(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)r(x,y,u,v)$$

1	0.5
-0.5	0

NOTE

Basis are not normal, so we need to make them normalize Divide by $||s||^2$

How to choose basis

All of the transformations must be the inverse

	D	FT	DCT	WHT	SLT
u = 0	<u> </u>	*****************			
u = 1	**********	********	1111111	11111111	111111
u = 2	19-010-119-1	*********	111	11111 11111	111
u = 3	1. 11 11 11	-10-10-11-11	11.0111.0111.0111.011	 	1111
u = 4	-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	-1-1-1-1-1-1-1		'''''''''''''''	
u = 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1-1-1-1-1			
u = 6	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			'''''''''''	
u = 7	1,000,000				
u = 8	 	•••••			
u = 9	1,000,000	•••••••••••		'''''.	
u = 10	**** ********************************	-*_**-*_**	 	 	
u = 11	7-7-17-07-7	-		 	
u = 12	 	-1-1-1-1-1-1-1		 	
u = 13	70-17-77-10	-1111-	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	 	
u = 14	19-010-19-010-9	***********	-, 	 	
u = 15	111000000000000000000000000000000000000	**************************************			

Fourier serries and transform

Fourier's contribution in this field states that any periodic function can be expressed as the sum of sines and/or cosines of different frequencies, each multiplied by a different coefficient (we now call this sum a Fourier series)

It does not matter how complicated the function is; if it is periodic and satisfies some mild mathematical conditions, it can be represented by such a sum

Functions that are not periodic (but whose area under the curve is finite) can be expressed as the integral of sines and/or cosines multiplied by a weighting function. The formulation in this case is the Fourier transform

Symmetric and separable basis

Separable : $r(x,y,u,v) = r_1(x,u) r_2(y,v)$

Simplicity and fast in computation

Symmetric and separable: $r(x,y,u,v) = r_1(x,u) r_1(y,v)$

e.g : Fourier transform
$$\mathbf{r}(\mathbf{x},\mathbf{y},\mathbf{u},\mathbf{v}) = e^{-j2\pi(\frac{ux}{N} + \frac{vy}{N})}$$

= $e^{-j2\pi(\frac{ux}{N})} e^{-j2\pi(\frac{vy}{N})}$ => $\mathbf{r}_1(\mathbf{x},\mathbf{u}) = e^{-j2\pi(\frac{ux}{N})}$

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u,v) s(x,y,u,v)$$

$$T(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) r(x,y,u,v)$$

$$T(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) r_1(x,u) r_2(y,v)$$

$$T(u,v) = \sum_{x=0}^{M-1} r_1(x,u) \sum_{y=0}^{N-1} f(x,y) r_2(y,v)$$

Fourier in x dimension then in y dimension or vise versa

Example of Fourier transform

compute the Fourier transform of below 2D signal. Which one are zero? Why?

2	2	2	2
1	1	1	1

$$T(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) r(x,y,u,v) , M = 2, N = 4$$

$$r(x,y,u,v) = e^{-j2\pi(\frac{ux}{N} + \frac{vy}{N})}$$

$$T(0,0) = \sum_{x=0}^{1} \sum_{y=0}^{3} f(x,y) r(x,y,0,0) = \sum_{x=0}^{1} \sum_{y=0}^{3} f(x,y) e^{0} = 12$$

$$T(0,1) = \sum_{x=0}^{1} \sum_{y=0}^{3} f(x,y) r(x,y,0,1) = \sum_{x=0}^{1} \sum_{y=0}^{3} f(x,y) e^{-j2\pi(\frac{y}{4})} =$$

$$2 \times (1 - j - 1 + j) + 1 \times (1 - j - 1 + j) = 0$$

[4.+0.j 0.+0.j 0.+0.j 0.+0.j]]

Basis Image

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u,v) s(x,y,u,v)$$

$$\mathbf{F} = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u, v) \mathbf{S}(u, v)$$

F

$$S(u=0,v=0)$$

$$S(u=0,v=0)$$
 $S(u=1,v=0)$

$$S(u=0,v=1)$$

$$S(u=1,v=1)$$

f(x,y)

$$s(x,y,u=0,v=0)$$

$$s(x,y,u=1,v=0)$$

$$s(x,y,u=0,v=0)$$
 $s(x,y,u=1,v=0)$ $s(x,y,u=0,v=1)$ $s(x,y,u=1,v=1)$

$$s(x,y,u=1,v=1)$$

Basis Image

$$\mathbf{F} = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u, v) \mathbf{S}(u, v)$$

$\mathbf{S}_{0,0}$	$\mathbf{S}_{0,1}$			$\mathbf{S}_{0,N-1}$
${\bf S}_{1,0}$	٠٠.			÷
÷				
		··.		
				:
$S_{N-1,0}$			•••	$\mathbf{S}_{N-1,N-1}$

_									
	0	1	2	3	4	5	6	7	
0									
1									
2		\Box	\Box		\Box		Ŀ	己	
3	oxdot	oxdot	oxdot	\cdot	oxdot	\Box	·	己	
4	oxdot	\Box	\Box	$\overline{\cdot}$	oxdot	\Box	·	\Box	
5		\Box	. I		\Box		Ŀ	\Box	
6				\Box					
7							П	П	

Basis Image of Fourier

$$s(x,y,u,v) = e^{+j2\pi(\frac{ux}{N} + \frac{vy}{N})} \begin{cases} \text{Real} : \cos(2\pi(\frac{ux}{N} + \frac{vy}{N})) \\ \text{Imaginary} : i \sin(2\pi(\frac{ux}{N} + \frac{vy}{N})) \end{cases}$$

Real of
$$s(x,y,u=0,v=0)$$

DFT

1-D

2-D (v = 0)

(a)

(b)

(d)

(c)

(a)

(b)

(c)

(d)

magnitude

phase

- So we can show every images by a linear combination of basis image
- If we change one of the transform coefficient and then come back to the original space (spatial) whole image will change.
- The greatest frequency in image occurs at v = N/2 and u = N/2 where phase will be 0 and the magnitude will be like a chess board
- The lowest frequency would be zero

DCT transform

$$s(x,u) = \alpha(u)\cos\left(\frac{(2x+1)u\pi}{2N}\right) \qquad s(x,y,u,v) = \alpha(u)\alpha(v)\cos\left(\frac{(2x+1)u\pi}{2N}\right)\cos\left(\frac{(2y+1)v\pi}{2N}\right)$$

$$\alpha(u) = \begin{cases} \sqrt{\frac{1}{N}} & \text{for } u = 0\\ \sqrt{\frac{2}{N}} & \text{for } u = 1, 2, \dots, N - 1 \end{cases}$$

26

DCT vs DFT

 DCT is good for image compression because it does not estimate high frequency for end of signal

DFT transform

DFT transform

Noise reduction / image denoising

White noise that has value for all comprised frequency

Yasin Fakhar

Walsh-Hadamard Transforms (WHT)

$$p_0(u) = b_{n-1}(u)$$

$$p_1(u) = b_{n-1}(u) + b_{n-2}(u)$$

$$p_2(u) = b_{n-2}(u) + b_{n-3}(u)$$

$$\vdots$$

$$p_{n-1}(u) = b_1(u) + b_0(u)$$

$$N = 2^n$$

Binary form of u:

$$s(x,u) = \frac{1}{\sqrt{N}} (-1)^{\sum_{i=0}^{n-1} b_i(x) p_i(u)}$$

$$s(x, y, u, v) = \frac{1}{N} (-1)^{\sum_{i=0}^{n-1} [b_i(x)p_i(u) + b_i(y)p_i(v)]}$$

Walsh-Hadamard Transforms (WHT)

SLANT Transform

HAAR Transform

- Model the local changes in image
- It's fast

$$h_u(x) = \begin{cases} 1 & u = 0 \text{ and } 0 \le x < 1\\ 2^{p/2} & u > 0 \text{ and } q/2^p \le x < (q+0.5)/2^p\\ -2^{p/2} & u > 0 \text{ and } (q+0.5)/2^p \le x < (q+1)/2^p\\ 0 & \text{otherwise} \end{cases}$$

$$u = 2^p + q$$

$$s(x,u) = \frac{1}{\sqrt{N}} h_u \left(\frac{x}{N}\right)$$

$$s(x, y, u, v) = \frac{1}{N} h_u \left(\frac{x}{N}\right) h_v \left(\frac{y}{N}\right)$$

Increase locality

In 1987, wavelets were shown to be the foundation of a powerful new approach to signal processing and analysis called multiresolution theory

A scaling function is used to create a series of approximations of a function or image, each differing by a factor of 2 in resolution from its nearest neighboring approximations, and complementary functions, called wavelets, are used to encode the differences between adjacent approximations

discrete wavelet transform (DWT) uses those wavelets, together with a single scaling function, to represent a function or image as a linear combination of the wavelets and scaling function.

- Scaling Function: generating approximation of signal (image)
- Wavelet Function : generating differences between approximations

Set of functions to approximate a signal

Consider the unit-height, unit-width scaling function:

NOTE

Scaling functions should be orthogonal and expand the whole space

$$\varphi_{j,k}(x) = 2^{j/2} \varphi(2^j x - k)$$

$$\varphi(x) = \begin{cases} 1 & 0 \le x < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f(x) = \varphi_{1,0} + 2\varphi_{1,1} - 0.25\varphi_{1,4}$$

$$f(x) = \varphi_{1,0} + \varphi_{1,1} + 2\varphi_{1,2} + 2\varphi_{1,3} - 0.25\varphi_{1,8} - 0.25\varphi_{1,9}$$

$$\varphi_{j,k}(x) = 2^{j/2} \varphi(2^{j} x - k)$$

J = 0

we can not estimate a function with $\varphi_{j,k}(x) = 2^{j/2} \varphi(2^j x - k)$ for any 'j' values

If we can estimate a function with j, we can estimate it with j+1, j+2, ...

If we can estimate a function with set of $\varphi_{\rm j0,k}$, we call these functions $V_{\rm j0}$ that is $f(x)\in Vj_0$

The function spaces spanned by the scaling function at low scales are nested within those spanned at higher scales. That is

$$V_{-\infty} \subset ... \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset ... \subset V_{\infty}$$

we can estimate any function with V_{∞}

Base on previous notes , $\varphi(x)$ can be expressed as a linear combination of double-resolution copies of itself:

$$\varphi(x) = \sum_{k \in \mathbb{Z}} h_{\varphi}(k) \sqrt{2} \varphi(2x - k)$$

$$\varphi_{0,0} \qquad \varphi_{1,k}$$

$$h_{\varphi}(k) = \left\langle \varphi(x), \sqrt{2}\varphi(2x - k) \right\rangle \quad \longleftarrow \quad h_{\varphi}(k) = \frac{\sqrt{2} \left\langle \varphi(x), \varphi(2x - k) \right\rangle}{2 \left\langle \varphi(2x - k), \varphi(2x - k) \right\rangle}$$

scaling function coefficients

Compute scaling function coefficients for HAAR scaling function (j = 0)

Answer:

$$h_{\varphi}(k) = \left\langle \varphi(x), \sqrt{2}\varphi(2x-k) \right\rangle$$

$$k = 0$$

$$h_{\varphi}(0) = \langle$$

$$=\frac{\sqrt{2}}{2}$$

$$k = 1$$
 $h_{\varphi}(1) = <$
 $\frac{1}{1}$
 $h_{\varphi}(1) = <$
 $\frac{\sqrt{2}}{2}$
 $h_{\varphi}(1) = <$
 $h_{$

$$\{h_{\varphi}(n)|n=0,1\} = \{1/\sqrt{2},1/\sqrt{2}\}$$

$$\varphi(x) = \frac{1}{\sqrt{2}} \left[\sqrt{2}\varphi(2x)\right] + \frac{1}{\sqrt{2}} \left[\sqrt{2}\varphi(2x-1)\right]$$

$$= \varphi(2x) + \varphi(2x-1)$$

father scaling function $\varphi({\sf x})$: that is, the set of scaled and translated functions $\varphi_{j-k}({\sf x})$

Given a father scaling function that meets the previous requirements, there exists a mother wavelet function $\Psi(x)$

$$\psi_{i,k}(x) = 2^{j/2} \psi(2^j x - k)$$

We denote W_{j0} as Set of functions that can be represents $\Psi_{j0,k}(x)$

 $\Psi_{i,k}$ (x) span the difference between any two adjacent scaling spaces

 \bigoplus denotes the union of function spaces

$$\langle \varphi_{i,k}(\mathbf{x}), \varphi_{i,l}(\mathbf{x}) \rangle = 0 \ \mathbf{k} \neq l$$

$$\varphi(x) = \sum_{k \in \mathbb{Z}} h_{\varphi}(k) \sqrt{2} \varphi(2x - k)$$

$$h_{\varphi}(k) = \frac{\sqrt{2} \langle \varphi(x), \varphi(2x-k) \rangle}{2 \langle \varphi(2x-k), \varphi(2x-k) \rangle}$$

$$\langle \varphi_{i,k}(\mathbf{x}), \Psi_{i,l}(\mathbf{x}) \rangle = 0 \ \mathbf{k} \neq l$$

$$\psi(x) = \sum_{k} h_{\psi}(k) \sqrt{2}\varphi(2x - k)$$

$$h_{\psi}(k) = \frac{\sqrt{2} \langle \psi(x), \varphi(2x-k) \rangle}{2 \langle \varphi(2x-k), \varphi(2x-k) \rangle}$$

wavelet function coefficients

It can be demonstrated that :

$$h_{\psi}(k) = (-1)^k h_{\varphi}(1-k)$$

Compute wavelet function coefficients for HAAR scaling function (j = 0)

$$\{h_{\varphi}(n)|n=0,1\} = \{1/\sqrt{2},1/\sqrt{2}\} \qquad \varphi(x) = \frac{1}{\sqrt{2}} \left[\sqrt{2}\varphi(2x)\right] + \frac{1}{\sqrt{2}} \left[\sqrt{2}\varphi(2x-1)\right]$$
$$= \varphi(2x) + \varphi(2x-1)$$

$$h_{\psi}(k) = (-1)^{k} h_{\varphi}(1-k) \longrightarrow \begin{cases} h_{\psi}(0) = (-1)^{0} h_{\varphi}(1-0) = 1/\sqrt{2} \\ h_{\psi}(1) = (-1)^{1} h_{\varphi}(1-1) = -1/\sqrt{2} \end{cases} \longrightarrow \{h_{\psi}(n) | n = 0, 1\} = \{1/\sqrt{2}, -1/\sqrt{2}\}$$

$$\psi(x) = \sum_{k} h_{\psi}(k) \sqrt{2} \varphi(2x - k) \quad \longrightarrow \quad \psi(x) = \varphi(2x) - \varphi(2x - 1)$$

$$\psi(x) = \varphi(2x) - \varphi(2x - 1)$$

$$\psi(x) = \begin{cases} 1 & 0 \le x < 0.5 \\ -1 & 0.5 \le x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

$$f(x) = f_a(x) + f_d(x)$$

$$f_a(x) = \frac{3\sqrt{2}}{4}\varphi_{0,0}(x) - \frac{\sqrt{2}}{8}\varphi_{0,2}(x)$$

$$f_a(x) = \frac{3\sqrt{2}}{4}\varphi_{0,0}(x) - \frac{\sqrt{2}}{8}\varphi_{0,2}(x) \qquad \qquad f_d(x) = \frac{-\sqrt{2}}{4}\psi_{0,0}(x) - \frac{\sqrt{2}}{8}\psi_{0,2}(x)$$

Wavelet Series

$$L^2(\mathbf{R}) = V_{j_0} \oplus W_{j_0} \oplus W_{j_0+1} \oplus \dots$$

$$f(x) = \sum_{k} c_{j_0}(k) \varphi_{j_0,k}(x) + \sum_{j=j_0}^{\infty} \sum_{k} d_j(k) \psi_{j,k}(x)$$

 c_{j0} and d_j for $j \ge j_0$ are called approximation and detail coefficients, respectively.

$$c_{j_0} = \langle f(x), \varphi_{j_0,k}(x) \rangle$$
 $d_j = \langle f(x), \psi_{j,k}(x) \rangle$

Yasin Fakhar

By consider the simple function below, compute approximation and detail coefficients (start with $j_0 = 0$)

$$y = \begin{cases} x^2 & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

$$c_{j_0} = \langle f(x), \varphi_{j_0,k}(x) \rangle$$

$$c_{j_0} = \langle f(x), \varphi_{j_0,k}(x) \rangle$$
 $c_0(0) = \int_0^1 x^2 \varphi_{0,0}(x) dx = \int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3}$

 $1/3 \varphi_{0,0}$

$$d_j = \langle f(x), \psi_{j,k}(x) \rangle$$

$$d_0(0) = \int_0^1 x^2 \psi_{0,0}(x) dx = \int_0^{0.5} x^2 dx - \int_{0.5}^1 x^2 dx = -\frac{1}{4}$$

$$d_1(0) = \int_0^1 x^2 \psi_{1,0}(x) dx = \int_0^{0.25} x^2 \sqrt{2} dx - \int_{0.25}^{0.5} x^2 \sqrt{2} dx = -\frac{\sqrt{2}}{32}$$

$$d_1(1) = \int_0^1 x^2 \psi_{1,1}(x) dx = \int_0^{0.75} x^2 \sqrt{2} dx - \int_0^1 x^2 \sqrt{2} dx = -\frac{3\sqrt{2}}{32}$$

$$y = \underbrace{\frac{1}{3}\varphi_{0,0}(x)}_{V_0} + \underbrace{\left[-\frac{1}{4}\psi_{0,0}(x)\right]}_{W_0} + \underbrace{\left[-\frac{\sqrt{2}}{32}\psi_{1,0}(x) - \frac{3\sqrt{2}}{32}\psi_{1,1}(x)\right]}_{W_1} + \cdots$$

$$V_2 = V_1 \oplus W_1 = V_0 \oplus W_0$$

$$V_2 = V_1 \oplus W_1 = V_0 \oplus W_0 \oplus W_1$$

Discrete Wavelet Transform

Like a Fourier series expansion, the wavelet series expansion of the previous section maps a function of a single continuous variable into a sequence of discrete coefficients. If the function being expanded is discrete, the coefficients of the expansion are its discrete wavelet transform (DWT)

$$f(x) = \frac{1}{\sqrt{N}} \left[T_{\varphi}(0,0)\varphi(x) + \sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} T_{\psi}(j,k) \psi_{j,k}(x) \right]$$

$$T_{\varphi}(0,0) = \left\langle f(x), \varphi_{0,0}(x) \right\rangle = \left\langle f(x), \varphi(x) \right\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} f(x) \varphi^{*}(x)$$

$$T_{\psi}(j,k) = \left\langle f(x), \psi_{j,k}(x) \right\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} f(x) \psi_{j,k}^{*}(x)$$

$$f(x) = \frac{1}{\sqrt{N}} \left[T_{\varphi}(0,0)\varphi(x) + \sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} T_{\psi}(j,k)\psi_{j,k}(x) \right]$$

F(x)

1

4

-3

$$f(x) = \frac{1}{\sqrt{N}} \left[T_{\varphi}(0,0)\varphi(x) + \sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} T_{\psi}(j,k)\psi_{j,k}(x) \right]$$

F(x)

1

4

-3

$$f(x) = \frac{1}{\sqrt{N}} \left[T_{\varphi}(0,0)\varphi(x) + \sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} T_{\psi}(j,k)\psi_{j,k}(x) \right]$$

F(x)

1

4

-3

$$f(x) = \frac{1}{\sqrt{N}} \left[T_{\varphi}(0,0)\varphi(x) + \sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} T_{\psi}(j,k)\psi_{j,k}(x) \right]$$

F(x)

1

4

-3

$$f(x) = \frac{1}{\sqrt{N}} \left[T_{\varphi}(0,0)\varphi(x) + \sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} T_{\psi}(j,k)\psi_{j,k}(x) \right]$$

The 1-D wavelet transform of the previous section is easily extended to 2-D functions such as images.

$$\varphi(x,y) = \varphi(x)\varphi(y)$$

Linear Combination of two arphi

$$\psi^H(x,y) = \psi(x)\varphi(y)$$

Horizontal

$$\psi^V(x,y) = \varphi(x)\psi(y)$$

Vertical

$$\psi^D(x,y) = \psi(x)\psi(y)$$

Diagonal

$$\psi^H(x,y) = \psi(x)\varphi(y)$$
 $\psi^V(x,y) = \varphi(x)\psi(y)$

1	1
-1	-1

ı D	()	,	<i>-</i> \		<i>,</i> ,
ψ^{ν}	(x, y)	$= \psi$	(x)	ושו	(ν)

1	-1
-1	1

 V_j

$$V_{j-1} + W_{j-1}^H + W_{j-1}^V + W_{j-1}^O$$

$$V_{j-1} + W_{j-1}^H + W_{j-1}^V + W_{j-1}^O$$

$$(V_{j-2} + W_{j-2}^H + W_{j-2}^V + W_{j-2}^O) + W_{j-1}^H + W_{j-1}^V + W_{j-1}^O$$

To get an idea of the relative computational advantages of filtering in the frequency versus the spatial domain, consider square images and kernels, of sizes $M \times M$ and $m \times m$, respectively. The computational advantage (as a function of kernel size) of filtering one such image with the FFT as opposed to using a nonseparable kernel is defined as

$$C_n(m) = \frac{M^2 m^2}{2M^2 \log_2 M^2}$$
$$= \frac{m^2}{4 \log_2 M}$$

If the kernel is separable, the advantage becomes

$$C_s(m) = \frac{2M^2 m}{2M^2 \log_2 M^2}$$
$$= \frac{m}{2\log_2 M}$$

a b

FIGURE 4.2

(a) Computational advantage of the FFT over nonseparable spatial kernels.
(b) Advantage over separable kernels.
The numbers for *C(m)* in the inset tables are not to be multiplied by the

factors of 10 shown

for the curves.

END