Relation Decomposition Algorithms

Source/References:

Database Systems: The Complete Book, and Elmasir/Navathe

pm jat @ daiict

 Relation Decomposition is done for deriving better normal form relations from a given relation

- Decomposition Algorithms
 - BCNF decomposition algo
 - 3NF synthesis algo

DA-IICT DA-IICT DA CONTROL OF THE PROPERTY OF

What is Decomposition?

 Let us say R(A1,A2,A3,A4,A5,A6) getting decomposed into R1(A1,A2,A3,A4) and R2(A4,A5,A6) – schema decomposition.

 Decomposition also mean instance decomposition, for above schema decomposition, we have instance r(R), getting decomposed as following –

r1
$$\leftarrow \pi_{a1,a2,a3,a4}(r)$$
, and
r2 $\leftarrow \pi_{a4,a5,a6}(r)$

Decomposition should guarantee r = r1 * r2

R(SSN, FNAME, SALARY, DNO, DNAME, MGRSSN)
 FD (Minimal) Set:

SSN → FNAME, SALARY, DNO

DNO → DNAME, MGRSSN (violates BCNF)

Key: SSN.

SSN	fname	salary	dno	dname	mgrssn
103	Alicia	25000	4	Administration	102
104	Ramesh	38000	5	Research	101
105	Joyce	25000	5	Research	101
106	Ahmad	25000	4	Administration	102
107	John	30000	5	Research	101
101	Franklin	40000	5	Research	101
102	Jennifer	43000	4	Administration	102
108	James	56000	5	Research	101

r(R) decomposed into r1(R1) and r2(R2)

ssn	fname	salary	dno
103	Alicia	25000	4
104	Ramesh	38000	5
105	Joyce	25000	5
106	Ahmad	25000	4
107	John	30000	5
101	Franklin	40000	5
102	Jennifer	43000	4
108	James	56000	5

Decomposition should guarantee r1 * r2 = r

dno	dname	mgrssn
4	Administration	102
5	Research	101

Requirements for relational decomposition

Should be attribute preserving

Should be lossless.

Should be FD preserving

Decomposition should be "lossless"

As already stated, decomposition should guarantee

$$r = r1 * r2$$

- When it does, then it is "loss-less join decomposition" or simply "loss-less decomposition"
- It is called "loss-less" because natural join of decomposed relation results into original relation, that is there is no loss of "information"
- Lossy decomposition normally results into additional tuples (also referred as spurious tuples) on having natural join of decomposed relations.

Lossless Decomposition Examples

Given relation R(PNO, PNAME, ESSN, HOURS), and FDs-

```
PNO → PNAME

PNAME → PNO

{PNO, ESSN} → HOURS

{PNAME, ESSN} → HOURS

Keys: {PNO, ESSN}, {PNAME, ESSN}
```

- Relation is in 3NF
- Loss-lessly, there are two possible decompositions-

```
R1(PNO, ESSN, HOURS), R2(PNO, PNAME), or R1(PNAME, ESSN, HOURS), R2(PNO, PNAME)
```


Lossless Decomposition Examples

SSN	PNO	PNAME	HOURS
101	1	PATR	38
101	2	XURT	20
102	1	PATR	64
103	2	XURT	58

SSN	PNO	HOURS
101	1	38
101	2	20
102	1	64
103	2	58

SSN	PNAME	HOURS
101	PATR	38
101	XURT	20
102	PATR	64
103	XURT	58

PNO	PNAME
1	PATR
2	XURT

PNO	PNAME
1	PATR
2	XURT

DA-IICT DA-IIICT DA-IICT DA-IICT DA-IICT DA-IICT DA-IICT DA-IICT DA-IICT DA-II

Decomposition Examples

In given relation R(PNO, PNAME, ESSN, HOURS), let us say
 PName is no more unique; then our FD set is shortened to-

PNO → PNAME

{PNO, ESSN} → HOURS

Keys: {PNO, ESSN}

Relation is in **1NF**

 Now, with modified set of FDs, second decomposition is no more lossless, it is lossy?

R1(PNO, ESSN, HOURS), R2(PNO, PNAME) R1(PNAME, ESSN, HOURS), R2(PNO, PNAME)

Decomposition Examples

SSN	PNO	PNAME	HOURS
101	1	PATR	38
101	2	XURT	20
102	1	PATR	64
103	3	XURT	58

SSN	PNO	HOURS
101	1	38
101	2	20
102	1	64
103	3	58

SSN	PNAME	HOURS
101	PATR	38
101	XURT	20
102	PATR	64
103	XURT	58

PNO	PNAME
1	PATR
2	XURT
3	XURT

PNO	PNAME
1	PATR
2	XURT
3	XURT

ON JOIN we do not get back original relation

Binary Lossless Decomposition

 A test for binary decomposition: Let us say R is decomposed into if R1 and R2, then it is lossless, when

We have one of following FD
 (R1 intersection R2) → (R1-R2), or
 (R1 intersection R2) → (R2-R1), or

• Or in other words, <u>common attribute(s)</u> are key of one of the decomposed relation.

And Andrews and An

BCNF Decomposition Algorithm

(source: Ullman et al.)

- Input: A relation R with set (minimal) of FD's F.
- Output: A decomposition of R into a collection of relations, all of which are in BCNF.
- Method:

T ← R, and G ← F Repeat till T is in BCNF.

- If there is a FD X → Y that violates BCNF condition. Compute X⁺, and choose X⁺ as one relation as R1, and another R2 as {(R X⁺) U X}
- Map FD set G on R1 and R2 (determine FDs on R1 and R2)
- Recursively repeat the algo on R1 and R2

BCNF Decomposition Algorithm (source: Ullman et al.)

 Replace relation R with two relations R1 and R2 such that

$$R_1 = X^+$$
 (with X as key).
 $R_2 = R - (X^+ - X)$, or $R - X^+ U X$.

Project given FD's G onto the two new relations.

BCNF Decomposition Algorithm Worked Examples

Given:

R(SSN,FNAME,PNO,PNAME,HOURS)

 $F=\{\{SSN, PNO\} \rightarrow HOURS; SSN \rightarrow FNAME; PNO \rightarrow PNAME\}$

Key: {SSN, PNO}

R

SSN	FNAME	PNO	PNAME	HOURS
101	Sumit	1	P-1	38
101	Sumit	2	P-2	20
102	Vipul	1	P-1	64
103	Ajay	2	P-2	58

FD SSN → FNAME
violates BCNF requirement;

SSN+={SSN,FNAME}

R1(SSN, FNAME);
R2(SSN,PNO,PNAME,HOURS)

Decomposition of R based on FD SSN → FNAME

R2

SSN	PNO	PNAME	HOURS
101	1	P-1	38
101	2	P-2	20
102	1	P-1	64
103	2	P-2	58

FD set F2 : {SSN, PNO} → HOURS PNO → PNAME R1
SSN FNAME
101 Sumit
102 Vipul

Ajay

FD set F1: $SSN \rightarrow FNAME$

103

Decomposition of R2 based on FD PNO→PNAME

R2(SSN, PNO, PNAME, HOURS)

 $\{SSN, PNO\} \rightarrow HOURS$

PNO → PNAME

R22

•	`~~		
	SSN	PNO	HOURS
	101	1	38
	101	2	20
	102	1	64
	103	2	58

FDs: $\{SSN, PNO\} \rightarrow HOURS$

FD PNO → PNAME

violates BCNF requirement;

PNO⁺={PNO, PNAME}

R21(PNO, PNAME); R22(SSN, PNO, HOURS)

R21

PNO	PNAME
1	P-1
2	P-2

FDs: PNO → PNAME

Final BCNF decomposition

Given:

R(SSN,FNAME,PNO,PNAME,HOURS) $F=\{\{SSN, PNO\} \rightarrow HOURS,$ $SSN \rightarrow FNAME, PNO \rightarrow PNAME\}$

ı	R22			
	SSN	1	PNO	HOURS
	101	1	1	38
	103	1	2	20
	102	2	1	64
	103	3	2	58

FDs: {SSN, PNO} → HOURS

R1	
SSN	FNAME
101	Sumit
102	Vipul
103	Ajay

FDs: SSN → FNAME

D	7	1
U	Z	Т

PNO	PNAME
1	P-1
2	P-2

FDs: PNO → PNAME

 Consider relation Medicine(TradeName, GenericName, BatchNo, Stock, MRP, TaxRate, Manufacturer), and FDs

TradeName → GenericName

TradeName → Manufacturer

BatchNo → TradeName

BatchNo → Stock

BatchNo → MRP

GenericName → TaxRate

- Key: BatchNo
- FD TradeName → GenericName violates BCNF requirement, and TradeName⁺ = {TradeName, GenericName, Manufacturer, TaxRate};
- Therefore, the relation Medicine(TradeName, GenericName, BatchNo, Stock, MRP, TaxRate, Manufacturer) decomposed to:

```
Medicine1( TradeName<sup>+</sup> ), and Medicine2( {Medicine – TradeName<sup>+</sup>} U TradeName )
```


- New relations and their projected FDs you have as following.
- Medicine1(TradeName, GenericName, Manufacturer, TaxRate)
 - FDs

```
TradeName → GenericName
```

TradeName → Manufacturer

GenericName → TaxRate

- Medicine2(BatchNo, TradeName, Stock, MRP)
 - FDs:

BatchNo → TradeName

BatchNo → Stock

BatchNo → MRP

Are both of these in BCNF?

- Medicine1 is not in BCNF (highlighted FD violates BCNF requirement)
- Medicine1(TradeName, GenericName, Manufacturer, TaxRate)
 - FDs

TradeName → GenericName

TradeName → Manufacturer

GenericName → TaxRate

Repeat the process.

DA-IICT DA-IIICT DA-IICT DA-IICT DA-IICT DA-IICT DA-IICT DA-IICT DA-IICT DA-II

BCNF Decomposition— Example #2

- Compute GenericName+, and do decomposition
- Medicine11(GenericName, TaxRate)
 - FDs
 - GenericName → TaxRate
- Medicine12(<u>TradeName</u>, GenericName, Manufacturer)
 - FDs
 - TradeName → GenericName
 - TradeName → Manufacturer
- Both are in BCNF?

Here is final BCNF decomposition

Medicine11(<u>GenericName</u>, TaxRate)
Medicine12(<u>TradeName</u>, GenericName, Manufacturer)
Medicine2(BatchNo, TradeName, Stock, MRP)

 Based on semantics of attributes captured in each relation, we can name the final relations as following-

MedicineBatch(BatchNo, TradeName, Stock, MRP)

Medicine(TradeName, GenericName, Manufacturer)

GenericMedicine(GenericName, TaxRate)

- Determine which Normal Form following relation is?
- Try bringing it in to BCNF. Decomposition should be lossless and should preserve all FDs

Book(ISBN, Title, Author, Publisher, Price, AccessonNo);

FDs:

AccessonNo → ISBN
ISBN → Title, Publisher, Price
Key: ?

Book(ISBN,Title,Author,Publisher,Price, AccessonNo); FDs:

AccessonNo → ISBN ISBN → Title, Publisher, Price

Key: AccessonNo, Author

Relation is not in BCNF. Let us decompose using BCNF decomposition algo

Book(ISBN,Title,Author,Publisher,Price, AccessonNo);

FDs:

AccessonNo → ISBN
ISBN → Title, Publisher, Price

Key: AccessonNo, Author

FD ISBN → Title violates BCNF requirement, and we decompose as following -

R1(ISBN, Title, Publisher, Price)

R2(AccessonNo, Author, ISBN)

Book(ISBN,Title,Author,Publisher,Price,AccessonNo);

Decomposed to:

R1(ISBN,Title,Publisher, Price)

R2(AccessonNo, Author, ISBN)

FDs on R1

ISBN → Title, Publisher, Price

ISBN is the key and the relation is in BCNF.

FDs for R2:

AccessonNo → ISBN

Key for R2: AccessonNo, Author and therefore R2 is not in BCNF.

Book(ISBN,Title,Author,Publisher,Price, AccessonNo);

FDs:

AccessonNo → ISBN ISBN → Title, Publisher, Price

Key: AccessonNo, Author

Final BCNF decomposition-

R1(<u>ISBN</u>,Title,Publisher, Price)

R21(AccessonNo, ISBN)

R22(Author, AccessonNo)

BCNF Decomposition Algorithm

- BCNF decomposition algorithm that we have seen here-
 - Guarantees loss-less decomposition.
 - However this does not guarantee Dependency
 Preservations

Here are few such example (following slides)-

BCNF Decomposition Algorithm

 Consider our example #1 again. We have given relation R(PNO, PNAME, ESSN, HOURS), and FDs

```
PNO → PNAME //FD1

PNAME → PNO //FD2

{PNO, ESSN} → HOURS //FD3

{PNAME, ESSN} → HOURS //FD4
```

 Both of following are loss-less BCNF decompositions but are not FD preserving-

```
R1(PNO, ESSN, HOURS), R2(PNO, PNAME) //Loose FD4
R1(PNAME, ESSN, HOURS), R2(PNO, PNAME) //Loose FD3
```


Given:

R(ABC)

 $AB \rightarrow C$

 $C \rightarrow B$

Key: AB, AC

• FD C → B violates BCNF requirement

C+=BC; R1(BC); R2(AC); F1{C \rightarrow B}; F2{}.

Though both relations are in BCNF, we loose FD AB → C

3NF Synthesis Algorithm and worked Examples

3NF Synthesis Algorithm

 "3-NF Synthesis" algorithm that guarantees lossless and preserves FDs.

 however its resultant relations may not be in BCNF, but surely in 3NF.

Algorithm – 3NF synthesis

Find a minimal FD* set on R.

For each set of FDs where X is determinant; say X→A1,
 X→A2, ... X→An; create a relation schema
 R'(X U A1 U A2 U ... U An).

• If none of the relation created in above step that contains key of R; then create one more relation schema for key of R.

 *Note: also referred as "minimal base", "minimal cover", "canonical cover"

DA-IICT DA-IICT DA-IICT DA COMPANIA COM

3NF Synthesis – Example#1

Given relation R(ABCDEF), and FDs

```
A \rightarrow B
```

$$A \rightarrow C$$

$$C \rightarrow D$$

$$C \rightarrow E$$

- Key: AF
- 3NF Decomposition

```
R1(ABC)
```

3NF Synthesis – Example#2

Book(ISBN,Title,Author,Publisher,Price, AccessonNo)

FDs:

AccessonNo → ISBN ISBN → Title, Publisher, Price

Key: AccessonNo, Author

Decomposition:

R1(<u>AccessonNo</u>,ISBN)
R2(<u>ISBN</u>,Title,Publisher,Price)
R3(AccessonNo,Author)

DA-IICT DA-IIICT DA-IICT DA-IICT DA-IICT DA-IICT DA-IICT DA-IICT DA-IICT DA-II

3NF Synthesis – Example#3

Given relation R(A,B,C,D,E), and FDs

```
{A,B} \rightarrow C

C \rightarrow B

A \rightarrow D
```

Key: ABE

- Using 3NF synthesis algo, we have following decomposition-R1(ABC), R2(CB); R3(AD)
- Since, R2 we do not need because it is subset of R1, and none of determined relation contains the key, we add a relation R4(ABE).
 Finally we have following 3NF relations –

R1(ABC), R3(AD), R4(ABE)

Requirements for relational decomposition (conclude)

Should be attribute preserving

Should be lossless.

Should be FD preserving

Notion of De-normalization

 We accept less normal form than BCNF for efficiency reasons.

Exercises

Exercises

- For following relations, find out FDs (use your understanding of the attribute semantics); find out NF, decompose to best possible normal form without any information and FD loss.
- LibMember(ID, Name, Type, NoOfBooksCanBelssued, IssueDuration)
- R (StudentID, SPI, CPI_UptoDate, CPI_UptoASem, AcadYr, Sem, ProgCode, CourseNo, Grade)
- IssueLog(IssueDate, MemberID, AccessonNo, DueDate, ReturnDate)
- R(A,B,C,D,E); FDs $\{AB \rightarrow C, C \rightarrow B, A \rightarrow D\}$

Sources/References

 Database Systems: The Complete Book, by Hector G. Molina, Jeff Ullman, and Jennifer Widom Pearson Education, India Home Page: http://infolab.stanford.edu/~ullman/dscb.html

• Elmasir/Navathe