Scalar Derivatives

Rule	f(x)	$\frac{d}{dx}f(x)$	Example
Constant	С	0	$\frac{d}{dx}99 = 0$
Multiply by Constant	cf	$c \frac{df}{dx}$	$\frac{d}{dx}3x = 3$
Power Rule	x^n	nx^{n-1}	$\frac{d}{dx}x^3 = 3x^2$
Chain Rule	f(g(x))	$\frac{df(u)}{du}\frac{du}{dx}$, where $u = g(x)$	$\frac{d}{dx}\ln(x^2) = \frac{1}{x^2}2x = \frac{1}{x}$

Partial Derivatives

$$f(x_1, x_2) = 3x_1^2(2x_2 + 7)$$

then $\frac{\partial}{\partial x_1} f(x_1, x_2) = 6x_1(2x_2 + 7)$ and $\frac{\partial}{\partial x_2} f(x_1, x_2) = 6x_1^2$

Derivatives and Computation Graph

Apply Chain Rule with Intermediate functions

$$u_1 = cube(x) = x^3$$

$$u_2 = sin(x) = sin(u_1)$$

$$u_3 = square(x) = u_2^2$$

$$y = u_4 = ln(x) = ln(u_3)$$

$$\frac{dy}{dx} = \frac{du_4}{dx} = \frac{du_4}{du_3} \frac{du_2}{du_2} \frac{du_1}{dx}$$

When the input *x flows in a single direction* to the end to produce *y*, we can simply "flow" backwards in derivatives of the chain of operations to differential.

Dot Product

$$\begin{bmatrix} a & b \end{bmatrix} \bullet \begin{bmatrix} x \\ y \end{bmatrix} = [ax + by]$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \bullet \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{bmatrix}$$