

CONTENTS

CHAPTER 1	随机事件及其概率	PAGE 2
1.1	随机事件	2
1.2	频率	3
1.3	概率 概率的性质 — 3	3
1.4	条件概率 乘法公式— 4 •全概率公式— 5	4

Chapter 1

随机事件及其概率

1.1 随机事件

Definition 1.1.1: Sample Space

考虑样本空间集合S,我们有 $S := \{ \text{所有样本点} \}$.

由定义,我们可以得到几种特殊的样本空间:

Example 1.1.1 (特殊的样本空间)

- · Ø事件:不可能发生的事件.
- • $S-\emptyset$ 发生的事件.
- 基本事件 ω : $|\omega| = 1$ i.e. 基本事件只含有一个样本点.

Note

由于 \emptyset 事件和 $S-\emptyset$ 事件是互为对偶的,我们可以得到**对偶律(De Morgan)**:

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Definition 1.1.2: 和、积事件

$$\bigcup_{i=1}^{n} A_i \text{ happen} \iff \exists i \in [1, n] \text{ s.t. } A_i \text{ happens}$$

$$\bigcap_{i=1}^{n} A_i \text{ happen} \iff \forall i \in [1, n] \text{ s.t. } A_i \text{ happens}$$

1.2 频率

Definition 1.2.1: 频率

考虑事件A,其发生的**频率**是

$$f_n(A) := \frac{r_n(A)}{n} \in [0, 1]$$

其中频数 $\frac{r_n(A)}{n} \in [0, n]$. 显然有 $f_n(S) = 1$.

Corollary 1.2.1 有限可加性

若 $A_i \cap A_j = \emptyset$ 且 $i \neq j$, $i, j \in [1, k]$ i.e. 互斥事件则有

$$f_n(\bigcap_{i=1}^k A_i) = \sum_{i=1}^k f_n(A_i)$$

1.3 概率

Definition 1.3.1: 概率

(Kolmogorov 公理化定义) 设有随机试验 E 且与之对应的样本空间 S, 考虑事件 A

for
$$\forall A \in E$$
, if

- $\widehat{\mathbf{1}}$ $0 \leq P(A) \leq 1$
- (2) P(S) = 1
- ③ $\Pr\{\bigcup_{i=1}^{\infty} A_i\} = \sum_{i=1}^{\infty} \Pr\{A_i\}$ i.e. 可列可加性

则称P为S上的概率.

1.3.1 概率的性质

由上面的定义我们能够得到概率的性质:

- 1. $Pr\{\emptyset\} = 0$
- 2. $\Pr\{\bigcup_{i=1}^{n} A_i\} = \sum_{i=1}^{n} \Pr\{A_i\}$ $\iff \forall i, j (i \neq j \rightarrow A_i A_i = \emptyset)$
- 3. $\Pr{\overline{A}} + \Pr{A} = 1$
- 4. $Pr{A B} = Pr{A} Pr{AB}$ $\Rightarrow (A - B) \cap B = \emptyset$
- 5. (单调性) $B \subseteq A \Rightarrow \Pr\{B\} \leqslant \Pr\{A\}$
- 6. 若满足 5, 由 4 可得 $Pr\{A B\} = Pr\{A\} Pr\{B\}$
- 7. (容斥原理) $Pr\{A \cup B\} = Pr\{A\} + Pr\{B\} Pr\{AB\}$

1.4 条件概率

Definition 1.4.1: 条件概率

设AB是两个事件,且 $P(A) \neq 0$,则称

$$\Pr\{A \mid B\} = \frac{\Pr\{AB\}}{\Pr\{B\}} \tag{1.1}$$

为在事件 A 发生的条件下, 事件 B 的条件概率.

Corollary 1.4.1条件概率之性质

概率满足的性质条件概率都满足.

Theorem 1.4.1

设 A_1, A_2, \cdots, A_n 是n个互斥事件,则有

$$\Pr\left\{\bigcup_{i=1}^{n} A_i \mid A\right\} = \sum_{i=1}^{n} \Pr\left\{A_i \mid A\right\}$$
 (1.2)

Question 1: 证明

$$\Pr\{\overline{B}|A\} = 1 - \Pr\{B|A\} \tag{1.3}$$

☺

Proof:

$$\Pr\{\overline{B}|A\} = \frac{\Pr\{\overline{B}A\}}{\Pr\{A\}}$$

$$= \frac{\Pr\{A\} - \Pr\{BA\}}{\Pr\{A\}}$$

$$= 1 - \frac{\Pr\{B|A\}}{\Pr\{A\}}$$

$$= 1 - \Pr\{B|A\}$$

1.4.1 乘法公式

由条件概率的定义,我们可以得到乘法公式:

Theorem 1.4.2 乘法公式

$$\Pr\{A_1A_2\cdots A_n\} = \Pr\{A_1\} \Pr\{A_2\,|\, A_1\} \Pr\{A_3\,|\, A_1A_2\} \cdots \Pr\{A_n\,|\, A_1A_2\cdots A_{n-1}\} \tag{1.4}$$

$$= \prod_{i=1}^{n} \Pr\left\{ A_i \mid \bigcup_{i=1}^{n-1} A_i \right\} \tag{1.5}$$

Example 1.4.1(「买彩票」)

第一次买中的概率为 $\frac{1}{2}$,第二次买中而第一次未中的概率是 $\frac{7}{10}$,第三次买中而前两次未中的概率是 $\frac{9}{10}$,求三次都未中的概率.

Solution: 以 A_i (i=1,2,3) 表示事件「第 i 次买中」, 以 B 表示事件「三次都未中」, 那么

$$\begin{split} \because B &= \overline{A_1 A_2 A_3} \\ \therefore \Pr \big\{ B \big\} &= \Pr \Big\{ \overline{A_1 A_2 A_3} \Big\} \\ &= \Pr \Big\{ \overline{A_1} \Big\} \Pr \Big\{ \overline{A_2} \, | \, \overline{A_1} \Big\} \Pr \Big\{ \overline{A_3} \, | \, \overline{A_1 A_2} \Big\} \\ &= \bigg(1 - \frac{1}{2} \bigg) \bigg(1 - \frac{7}{10} \bigg) \bigg(1 - \frac{9}{10} \bigg) \\ &= \frac{3}{200} \end{split}$$

1.4.2 全概率公式

Lemma 1.4.1 完备事件组

设 A_1, A_2, \cdots, A_n 是有限或可数个事件,若其满足

- 1. 两两互斥
- $2. \bigcup_{i=1}^n A_i = S$

则称 A_1, A_2, \cdots, A_n 是一个完备事件组.

Theorem 1.4.3 全概公式

设 A_1, A_2, \cdots, A_n 是一个完备事件组,且 $\Pr\{A_i\} > 0$ for i in 1...n,则对任一事件B,有

$$\Pr\{B\} = \sum_{i=1}^{n} \Pr\{A_i\} \Pr\{B | A_i\}$$
 (1.6)

Figure 1.1: 全概公式示意图

Question 2: P14-10

从1到9的整数中有放回地依次随机抽取3次,求取出的3个数之积能被10整除的概率。

显然这三个数中必有两数为5和{2,4,6,8},因此

法一: 分情况讨论

- 1. A = {三个数里有两个5和一个偶数}
- 2. B={三个数里有一个5和两个偶数}
- 3. C = {三个数里有一个5一个偶数和一个其他的奇数}

那么有
$$\Pr\{A\} = \frac{\binom{4}{1}\cdot 3}{9^3} \Pr\{B\} = \frac{\binom{4}{1}\cdot 3+\binom{4}{2}A_3^3}{9^3} \Pr\{C\} = \frac{\binom{4}{1}\binom{4}{1}A_3^3}{9^3}$$
 相加得 $\frac{156}{729}$.

法二: 对立事件

不妨设三个数中出现 5 的事件为 A,出现偶数的事件为 B,那么

$$\begin{aligned} \Pr\{AB\} &= 1 - \Pr\{\overline{AB}\} \\ &= 1 - \left(\Pr\{\overline{A}\} + \Pr\{\overline{B}\} - \Pr\{\overline{A}\overline{B}\}\right) \\ &= 1 - \left(\frac{8^3}{9^3} + \frac{5^3}{9^3} - \frac{4^3}{9^3}\right) \\ &= \frac{156}{729} \end{aligned}$$

(2)

法三: 另一种分情况讨论(笔者的分法)

- 1. **A** = {三个数中有两个相同的}
 - 2. B = {三个数全不同}
 - **2.1.** $B_1 = \{ 三个数全不同且有两个偶数 \}$
 - **2.2.** B_2 = {三个数全不同且有两个奇数} !! 此项须要分成上述两项,一起算会重!!(惨痛教训

那么有
$$\Pr\{A\} = \frac{\binom{4}{1}\binom{3}{1}+\binom{4}{1}\binom{3}{1}}{9^3} \Pr\{B_1\} = \frac{\binom{4}{1}\binom{4}{1}\binom{3}{1}}{9^3} \Pr\{B_2\} = \frac{\binom{4}{1}\binom{4}{1}A_3^3}{9^3}$$
 相加得 $\frac{156}{729}$.

$$RQSZ$$
 $RQSZ$
 $RQSZ$