```
In [39]:

1 import pandas as pd
from scipy.stats import zscore,norm
import matplotlib.pyplot as plt
import seaborn as sns
```

Task1: To calculate household probabilities of cellular

Probability of finding between 55USD and 8USD 0.72 Probability of finding less than 40USD 0.00411

In [8]: 1 smart=pd.read_csv(r"K:\Desktop\NIIT\tables\DS1_C5_S5_SmartCarRiding_Data_Practice.csv")
2 smart

Out[8]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count	
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	1	
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.750325	1	
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	40.772647	1	
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965316	40.803349	3	
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	40.761247	5	
199995	42598914	2012-10-28 10:49:00.00000053	3.0	2012-10-28 10:49:00 UTC	-73.987042	40.739367	-73.986525	40.740297	1	
199996	16382965	2014-03-14 01:09:00.0000008	7.5	2014-03-14 01:09:00 UTC	-73.984722	40.736837	-74.006672	40.739620	1	
199997	27804658	2009-06-29 00:42:00.00000078	30.9	2009-06-29 00:42:00 UTC	-73.986017	40.756487	-73.858957	40.692588	2	
199998	20259894	2015-05-20 14:56:25.0000004	14.5	2015-05-20 14:56:25 UTC	-73.997124	40.725452	-73.983215	40.695415	1	
199999	11951496	2010-05-15 04:08:00.00000076	14.1	2010-05-15 04:08:00 UTC	-73.984395	40.720077	-73.985508	40.768793	1	

200000 rows × 9 columns

Data preprocessing

In [9]: 1 plt.hist(smart.fare_amount);

To extract data using random sampling with replace=True

[11]:			om scipy.stats import skew,kurtosis port statistics as st																	
In [23]:	<pre>samples=pd.DataFrame() cols=[("Sample_"+str(i)) for i in range(0,21)] for i in range(0,21): samples[cols[i]]=smart["fare_amount"].sample(200,replace=True,ignore_index=True) samples</pre>																			
t[23]:		Sample_0	Sample_1	Sample_2	Sample_3	Sample_4	Sample_5	Sample_6	Sample_7	Sample_8	Sample_9	. Sample_11	Sample_12	Sample_13	Sample_14	Sample_15	Sample_16	Sample_17	Sample_18	Sample_19
	0	8.50	6.1	26.5	5.00	10.50	8.90	34.83	4.50	7.70	7.7	3.70	4.5	8.5	6.5	3.7	12.50	12.1	5.5	13.0
	1	7.50	3.7	14.5	6.90	4.10	6.10	10.50	5.30	11.00	19.0	29.85	8.5	11.7	10.5	4.5	7.50	5.8	9.3	9.3
	2	4.90	8.1	4.5	4.50	37.83	4.50	8.00	35.50	57.33	9.3	7.30	14.1	9.7	12.0	18.5	28.27	4.1	9.5	7.5
	3	8.50	7.5	9.5	5.30	9.00	38.33	10.50	10.90	11.70	10.5	4.50	5.0	8.5	6.0	13.0	4.90	4.5	8.9	8.0
	4	7.50	18.9	6.1	29.07	6.50	17.70	30.00	14.00	14.90	18.5	19.50	7.0	6.1	13.0	14.5	4.50	6.5	5.3	13.0
	195	13.50	14.5	47.5	13.50	18.50	8.90	7.70	6.00	3.70	23.0	7.50	7.7	10.0	6.9	9.3	9.30	15.3	9.3	5.3
	196	14.00	11.5	8.5	14.00	57.33	6.50	6.10	11.30	5.30	7.3	16.50	9.3	11.3	7.5	9.5	6.50	6.5	16.0	24.5
	197	11.00	33.7	9.0	6.90	34.04	45.00	13.30	39.33	8.90	7.0	7.70	12.5	4.5	30.5	18.5	7.30	10.1	16.1	6.0
	198	6.50	16.5	4.1	6.00	7.70	7.70	17.30	7.70	26.65	5.5	. 11.30	17.0	8.9	4.5	4.5	6.90	7.5	9.3	8.5

```
In [16]: 1 mean=[]
                 median=[]
               4 kurtosis=[]
              5 skewness=[]
              6 std=[]
              7 for item in samples.columns:
                      mean.append(samples[item].mean())
                       median.append(samples[item].median())
             10
                       mode.append(st.mode(samples[item]))
             11
                       std.append(samples[item].std())
                       skewness.append(skew(samples[item]))
             12
             13
                       kurtosis.append(samples[item].kurtosis())
             14 measures=pd.DataFrame([mean,median,mode,std,skewness,kurtosis],columns=[samples.columns],index=["Mean","Mode","Standard_dev","Skew","Kurtosis"])
In [17]:
             1 measures
Out[17]:
                             Sample_0 Sample_1 Sample_2 Sample_3 Sample_4 Sample_5 Sample_6 Sample_8 Sample_9 ... Sample_12 Sample_12 Sample_13 Sample_14 Sample_15 Sample_16 Sample_17 Sample_18 Sample_18 Sample_19 ...

        Mean
        11.517600
        11.661000
        10.593000
        11.830550
        12.486750
        11.012600
        11.841100
        10.733850
        11.773300
        11.976750
        ...
        11.535700
        10.525500

                                                                                                                                                                                                         11.035450 11.390400

        Median
        8.500000
        8.500000
        8.500000
        8.500000
        8.700000
        8.000000
        8.500000
        8.500000
        8.300000
        ...
        8.900000

                                                                                                                                                                    8.500000 8.000000
                                                                                                                                                                                            8.100000
                                                                                                                                                                                                          8.500000
                                                                                                                                                                                                                     8.500000
                                                                                                                                                                                                                                                7.700000
                                                                                                                                                                                                                                                             8.5000
                                                                                                                                                                                                                                    8.050000

        Mode
        6.500000
        6.500000
        8.500000
        4.900000
        8.500000
        4.500000
        4.500000
        8.500000
        6.500000
        ...

                                                                                                                                                       4.100000
                                                                                                                                                                    8.500000
                                                                                                                                                                                 4.900000
                                                                                                                                                                                              6.500000
                                                                                                                                                                                                          8.500000
                                                                                                                                                                                                                       6.500000
                                                                                                                                                                                                                                    4.500000
                                                                                                                                                                                                                                                 4.500000
                                                                                                                                                                                                                                                             6.5000
             \textbf{Standard\_dev} \quad 10.458328 \quad 11.263995 \quad 8.468545 \quad 10.252627 \quad 13.404688 \quad 8.969840 \quad 11.668283 \quad 8.185524 \quad 9.366782 \quad 10.768075 \quad \dots \\
                                                                                                                                                       9.229335
                                                                                                                                                                    8.881917
                                                                                                                                                                                9.629662
                                                                                                                                                                                              8.886643
                                                                                                                                                                                                          8.394579
                                                                                                                                                                                                                       9.106653
                                                                                                                                                                                                                                    9.710686
                                                                                                                                                                                                                                                 8.732315 10.1791
                                                                                                                                                                                            2.720313
                                                                                                                                                                                                          2.863306
                                                                                                                                                                                                                       2.433555
                                                                                                                                                                                                                                                3.106022

        Skew
        4.221879
        4.304210
        3.037639
        2.650034
        4.975068
        2.429899
        3.528323
        2.848944
        2.553835
        2.783555
        ...
        2.577480
        3.961469
        3.109739

                                                                                                                                                                                                                                    2.920328
                                                                                                                                                                                                                                                             2.9887
                  Kurtosis 27.433934 29.771915 11.690454 8.005107 36.131199 6.264519 15.440936 10.819176 7.672602 8.576162 ... 7.469375 22.274932 12.704213
                                                                                                                                                                                             8.938426 10.761655
                                                                                                                                                                                                                       6.936306
                                                                                                                                                                                                                                    9.584929 13.295919 11.2780
            6 rows × 21 columns
            4
In [53]:
              print(measures.loc["Mean"].std())
              print(smart.fare_amount.std()/(200)**0.5)
print("From the values we can see we have very close values which obeys third rule of CL theorem and all the samples show very similar normal distribution so follows rule1")
            0.5406728817276805
```

0.5406/2881/2/6805

From the values we can see we have very close values which obeys third rule of CL theorem and all the samples show very similar normal distribution so follows rule1