# Лекция 23 от 29.02.2016

## Сумма собственных подпространств

Вспомним, чем закончилась прошлая лекция.

Пусть V — векторное пространство,  $U_1,\ldots,U_k\subseteq V$  — векторные подпространства.

Сумма  $U=U_1+\ldots+U_k$  является прямой, если из условия  $u_1+\ldots+u_k=0$  следует, что  $u_1=\ldots=u_k=0$ , где  $u_i\in U_i$ . Обозначение:  $U=U_1\oplus\ldots\oplus U_k$ .

Эквивалентные условия:

- 1.  $U = U_1 \oplus \ldots \oplus U_k$ .
- 2. Если  $e_i$  базис  $U_i$ , то  $e = e_1 \cup \ldots \cup e_k$  базис U.
- 3.  $\dim U = \dim U_1 + \ldots + \dim U_k$ .

Пусть V — векторное пространство над полем  $F, \varphi \in L(V), \lambda_1, \ldots, \lambda_k$  — набор собственных значений  $\varphi$ , где  $\lambda_i \neq \lambda_j$  при  $i \neq j$ , и  $V_{\lambda_i}(\varphi) \subseteq V$  — соответствующее собственное подпространство.

Предложение. Сумма  $V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_k}(\varphi)$  является прямой.

Доказательство. Докажем индукцией по k.

База: k = 1. Тут все ясно.

Теперь пусть утверждение доказано для всех значений, меньших k. Докажем для k.

Пусть  $v_i \in V_{\lambda_i}(\varphi)$  и пусть  $v_1 + \ldots + v_k = 0$ . Тогда:

$$\varphi(v_1 + \ldots + v_k) = \varphi(0) = 0$$
  
$$\varphi(v_1) + \ldots + \varphi(v_k) = 0$$
  
$$\lambda_1 v_1 + \ldots + \lambda_k v_k = 0$$

Теперь вычтем из нижней строчки  $v_1 + \ldots + v_k = 0$ , домноженное на  $\lambda_k$ . Получим:

$$(\lambda_1 - \lambda_k)v_1 + \ldots + (\lambda_k - \lambda_k)v_k = 0$$
  
$$(\lambda_1 - \lambda_k)v_1 + \ldots + (\lambda_{k-1} - \lambda_k)v_{k-1} + 0v_k = 0$$

Но из предположения индукции, а также потому что  $\lambda_i \neq \lambda_j$  при  $i \neq j$ , следует, что  $v_1 = \ldots = v_{k-1} = 0$ . Но тогда и  $v_k = 0$ .

Следовательно, сумма прямая, что нам и требовалось.

## Диагонализируемость

**Следствие.** Если характеристический многочлен имеет ровно n попарно различных корней, где  $n = \dim V$ , то  $\varphi$  диагонализируем.

Доказательство. Пусть  $\lambda_1, \ldots, \lambda_n$  — корни  $\chi_{\varphi}(t), \lambda_i \neq \lambda_j$ . Тогда для всех i выполняется, что  $V_{\lambda_i}(\varphi) \neq \{0\}$  и, следовательно,  $\dim V_{\lambda_i}(\varphi) = 1$ . Но так как сумма  $V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_k}(\varphi)$  — прямая, то  $\dim(V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_k}(\varphi)) = \dim V_{\lambda_1}(\varphi) + \ldots + \dim V_{\lambda_k}(\varphi) = n$ . Иными словами,  $V = V_{\lambda_1}(\varphi) \oplus \ldots \oplus V_{\lambda_k}(\varphi)$ .

Выберем произвольные  $v_i \in V_{\lambda_i} \setminus \{0\}$ . Тогда  $(v_1, \dots, v_n)$  будет базисом в V. И так как все  $v_i$  — собственные значения для  $\varphi$ , то  $\varphi$  диагонализируем.

**Теорема** (Критерий диагонализируемости - 2). Линейный оператор  $\varphi$  диагонализируем тогда и только тогда, когда

- 1.  $\chi_{\varphi}(t)$  разлагается на линейные множители;
- 2. Если  $\chi_{\varphi}(t) = (t \lambda_1)^{k_1} \dots (t \lambda_s)^{k_s}$ , где  $\lambda_i \neq \lambda_j$  при  $i \neq j$ , то  $\dim V_{\lambda_i}(\varphi) = k_i \, \forall i \, (mo \, ecmb \, d$ ля любого собственного значения V равны геометрическая u алгебраическая кратности).

Доказательство.

 $\Rightarrow$  Так как  $\varphi$  — диагонализируем, то существует базис  $\mathfrak{e}=(e_1,\ldots,e_n)$  такой, что:

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \mu_1 & 0 \\ & \ddots & \\ 0 & & \mu_n \end{pmatrix} = \operatorname{diag}(\mu_1, \dots, \mu_n).$$

Тогда:

$$\chi_{\varphi}(t) = (-1)^n \begin{vmatrix} \mu_1 & 0 \\ & \ddots \\ 0 & \mu_n \end{vmatrix} = (-1)^n (\mu_1 - t) \dots (\mu_n - t) = (t - \mu_1) \dots (t - \mu_n).$$

Итого, первое условие выполняется.

Теперь перепишем характеристический многочлен в виде  $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \dots (t - \lambda_s)^{k_s}$ , где  $\lambda_i \neq \lambda_j$  при  $i \neq j$  и  $\{\lambda_1, \dots, \lambda_s\} = \{\mu_1, \dots, \mu_n\}$ . Тогда  $V_{\lambda_i} \supseteq \langle e_j \mid \mu_j = \lambda_i \rangle$ , следовательно,  $\dim V_{\lambda_i}(\varphi) \geqslant k_i$ . Но мы знаем, что  $\dim V_{\lambda_i} \leqslant k_i$ ! Значит,  $\dim V_{l_i} = k_i$ .

 $\Leftarrow$  Так как  $V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_s}(\varphi)$  — прямая, то  $\dim(V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_s}(\varphi)) = k_1 + \ldots + k_s = n$ . Пусть  $e_i$  — базис в  $V_{\lambda_i}$ . Тогда  $e_1 \cup \ldots \cup e_s$  — базис в V. То есть мы нашли базис из собственных векторов, следовательно,  $\varphi$  диагонализируем.

Инвариантные подпространства в  $\mathbb{R}^n$ 

Пусть V — векторное пространство над полем  $\mathbb{C}$ ,  $\varphi \in L(V)$ . Тогда в V есть собственный вектор (или одномерное  $\varphi$ —инвариантное пространство).

Теперь пусть V — векторное пространство над полем  $\mathbb{R}$ ,  $\varphi \in L(V)$ .

**Теорема.** Существует одномерное или двумерное  $\varphi$ -инвариантное векторное подпространство.

Доказательство. Пусть  $e = (e_1, \dots, e_n)$  — базис в V. Комплексифицируем V.

$$V^{\mathbb{C}} = \{ u + iv \mid u, v \in V \}$$
$$V^{\mathbb{C}} \supset V = \{ u + i0 \mid u \in V \}$$

Рассмотрим линейный оператор  $\varphi_{\mathbb{C}} \in L(V^{\mathbb{C}})$ , заданный как  $\varphi_{\mathbb{C}}(e_i) = \varphi(e_i)$ ,  $\forall i$ . Значит,  $e_1, \ldots, e_n$  базис в  $V^{\mathbb{C}}$ . Следовательно,  $\chi_{\varphi_{\mathbb{C}}}(t) = \chi_{\varphi}(t)$ , так как  $A(\varphi_{\mathbb{C}}, e) = A(\varphi, e)$ .

<u>Случай 1</u>:  $\chi_{\varphi}(t)$  имеет один действительный корень. Отсюда следует, что в V есть собственный вектор, что равносильно существованию одномерного  $\varphi$ -инвариантного подпространства (тогда  $V^{\mathbb{C}}$  нам не нужен).

Случай 2:  $\chi_{\varphi}$  не имеет действительных корней. Пусть  $\lambda + i\mu$  — некоторый корень  $\chi_{\varphi}(t)$ , который, напомним, равен  $\chi_{\varphi_{\mathbb{C}}}(t)$ . Тогда существует собственный вектор  $u + iv \in V^{\mathbb{C}}$  такой, что:

$$\varphi_{\mathbb{C}}(u+iv) = (\lambda + i\mu)(u+iv)$$

$$\varphi_{\mathbb{C}}(u+iv) = \varphi_{\mathbb{C}}(u) + i\varphi_{\mathbb{C}}(v) = \varphi(u) + i\varphi(v)$$

$$(\lambda + u\mu)(u+iv) = \lambda\mu - \mu\nu + i(\mu u + \lambda v)$$

Сравнивая два последних равенства, получаем:

$$\varphi(u) = \lambda u - \mu v$$
$$\varphi(v) = \mu u + \lambda v$$

Следовательно,  $\langle u,v \rangle - \varphi$ -инвариантное подпространство, двумерное если u и v линейно независимы и одномерное в противном случае.

Пример. Поворот на  $\alpha$  в  $\mathbb{R}^2$ :  $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ . Тогда  $u=e_1,\ v=e_2,\ \lambda+i\mu=\cos \alpha+i\sin \alpha$ .

Пусть V — векторное пространство над F, dim V = n.

Операции над L(V):

- 1. Сложение:  $(\varphi + \psi)(v) = \varphi(v) + \psi(v)$ .
- 2. Умножение на скаляр:  $(\alpha \varphi)(v) = \alpha \varphi(v)$ .
- 3. Умножение:  $(\varphi \psi)(v) = \varphi(\psi(v))$ .

В частности, для любого  $P(x) \in \mathbb{F}[x]$ ,  $P(x) = a_n x^n + \ldots + a_1 x + a_0$  и для любого  $\varphi \in L(V)$  определен линейный оператор  $P(\varphi) \in L(V)$ :  $P(\varphi) = a_n \varphi^n + \ldots + a_1 \varphi + a_0 \mathrm{id}$ .

## Корневые векторы и корневые подпространства

Определение. Вектор  $v \in V$  называется корневым вектором линейного оператора  $\varphi$ , отвечающим значению  $\lambda \in F$ , если существует  $m \geqslant 0$  такое, что  $(\varphi - \lambda \mathrm{id})^m(v) = 0$ .

Наименьшее такое т называют высотой корневого вектора v.

#### Замечание.

- 1. Вектор v = 0 для любого  $\varphi$  имеет высоту  $\theta$ .
- 2. Высоту 1 имеют все собственные векторы.

**Пример.**  $V = \mathbb{F}[x]_{\leq n}, \ \Delta : f \to f'. \ 3 \ decb \ \lambda = 0 - e \ duнcmbehnoe \ coбственное \ значение. Все векторы — корневые, отвечающие <math>\lambda = 0$ .

**Определение.** Множесство  $V^{\lambda}(\varphi) = \{v \in V \mid \exists m \geqslant 0 : (\varphi - \lambda \mathrm{id})^m(v) = 0\}$  называется корневым пространством для  $\lambda \in F$ .

**Упражнение.**  $V^{\lambda}(\varphi)$  — nodnpocmpancmeo в V.

Замечание.  $V_{\lambda}(\varphi) \subseteq V^{\lambda}(\varphi) \ \forall \lambda \in F.$