

Edexcel A Level Maths: Pure

5.2 Trigonometric Functions

Contents

- * 5.2.1 Graphs of Trigonometric Functions
- * 5.2.2 Transformations of Trigonometric Functions

5.2.1 Graphs of Trigonometric Functions

Your notes

Graphs of Trigonometric Functions

Graphs of trigonometric functions

- The Trigonometric Functions Sin, Cos and Tan all have special periodic graphs that you need to be able to sketch and remember
- You'll need to know their properties and how to sketch them to solve equations and for transforming trig functions

Your notes

y=sinx AND y=cosx

Sinx AND Cosx ARE ALWAYS
IN THE RANGE -1 TO 1

Sin x PASSES THROUGH THE ORIGIN
Cos x PASSES THROUGH 1

Sinx AND Cosx
ARE PERIODIC
REPEATING EVERY 360°

Sinx HAS ROTATIONAL SYMMETRY ABOUT THE ORIGIN SO $\sin(-x) = -\sin(x)$ Cosx IS SYMMETRICAL THROUGH THE y-AXIS SO $\cos(-x) = \cos(x)$

y = tan x

Page 3 of 17

Head to www.savemyexams.com for more awesome resources

Sketching trigonometric graphs

Using trigonometric graphs

- By sketching the graph you can read off all the solutions in a given range (or interval)
- Your calculator will only give you the principal value
- You should recognise any values/angles associated with exact values
- You should be able to spot the pattern of solutions using the **symmetry** and **periodicity** of the graph

Your notes

STEP 2: DRAW A HORIZONTAL LINE TO SEE WHERE THE SOLUTIONS SHOULD BE, YOU MAY BE ABLE TO READ DIRECTLY OFF THE GRAPH TO FIND ALL OF THE SOLUTIONS

STEP 3: IF NOT, USE YOUR CALCULATOR TO FIND THE PRINCIPAL VALUE (YOU MAY ALREADY KNOW IT IF IT IS A TRIG EXACT VALUE) AND MARK THIS ON THE GRAPH

STEP 4: USE THE SYMMETRY OF THE GRAPH TO FIND ALL OTHER SOLUTIONS BY ADDING/SUBTRACTING FROM POINTS OF REPETITION WITHIN THE SPECIFIED RANGE

FOR THE SOLUTIONS TO THE EQUATION $\cos x = -\frac{1}{2}$ IN THE RANGE $-180^{\circ} \le x \le 360^{\circ}$

HERE THE FUNCTION IS $y=\cos x$ AND THE RANGE IS $-180^{\circ} \le x \le 360^{\circ}$

Page 5 of 17

ADD AND SUBTRACT 120° FROM THE POINTS OF REPETITION: 0° AND 360° GIVING SOLUTIONS OF -120°, 120°, AND 240°

Copyright © Save My Exams. All Rights Reserved

Examiner Tip

- Always sketch with a pencil and draw a smooth curve and pay attention to the key features of each graph:
 - Where it crosses the x and y axes
 - How often it repeats
 - Whether it is symmetrical
- Remember, when answering exam questions that ask for solutions, a sketch will help ensure you give **all** the appropriate solutions for a given interval.

By sketching a graph, find all the solutions to $\sin x = -0.25 \text{ for } -180^{\circ} \le x \le 270^{\circ}.$

x=-165.5, x=-14.5 AND x=194.5

Head to www.savemyexams.com for more awesome resources

5.2.2 Transformations of Trigonometric Functions

Your notes

Transformations of Trigonometric Functions

Transformations of trigonometric functions

- You should already have a good idea about translating, stretching and reflecting basic functions (see Transformations of Functions)
- The basic principles are exactly the same for transforming any trigonometric graph
 - $y = n \cos x$ gives a **vertical stretch or squash**
 - y = sin nx gives a horizonal stretch or squash
 - $y = \tan(x + c)$ gives a horizonal translation

y=ncosx GIVES A VERTICAL STRETCH OR SQUASH THE GRAPH OF y=cosx

STRETCHED VERTICALLY

BY A FACTOR OF 2

MAKING IT TWICE AS TALL

STEP 1: SKETCH THE ORIGINAL sin, cos OR tan FUNCTION

STEP 2: PICK KEY CO-ORDINATE POINTS TO PLOT

THE NEW GRAPH

STEP 3: SKETCH IN THE NEW TRANSFORMED GRAPH

FOR A VERTICAL STRETCH (OR SQUASH)

- \circ IF n>1, THE GRAPH IS **STRETCHED VERTICALLY** BY A SCALE FACTOR OF n
- IF O<n<1, THE GRAPH IS SQUASHED BY THAT SCALE FACTOR
- IF n<0, THE GRAPH IS ALSO REFLECTED IN THE x-AXIS
- REMEMBER THE x COORDINATES STAY THE SAME; y COORDINATES ARE MULTIPLIED BY n

Copyright © Save My Exams. All Rights Reserved

Your notes

y=sinnx GIVES A HORIZONTAL STRETCH OR SQUASH THE GRAPH OF y=sinx

SQUASHED HORIZONTALLY

BY A FACTOR OF 2

MEANING IT REPEATS

ITSELF TWICE EVERY 360°

STEP 1: SKETCH THE ORIGINAL sin, cos OR tan FUNCTION

STEP 2: PICK KEY CO-ORDINATE POINTS TO PLOT

THE NEW GRAPH

STEP 3: SKETCH IN THE NEW TRANSFORMED GRAPH

FOR A HORIZONTAL STRETCH (OR SQUASH)

- IF n>1, THE GRAPH IS SQUASHED HORIZONTALLY BY A SCALE FACTOR OF n
- IF O<n<1, THE GRAPH IS STRETCHED BY THAT SCALE FACTOR
- IF n<0, THE GRAPH IS ALSO REFLECTED IN THE y-AXIS
- REMEMBER THE y COORDINATES STAY THE SAME;

x COORDINATES ARE MULTIPLIED BY 'n

Copyright © Save My Exams. All Rights Reserved

Your notes

y=tan(x+c) GIVES A HORIZONTAL TRANSLATION

THE GRAPH OF y=tanx

TRANSLATED HORIZONTALLY
TO THE LEFT BY 60

STEP 1: SKETCH THE ORIGINAL sin, cos OR tan FUNCTION

STEP 2: PICK KEY CO-ORDINATE POINTS TO PLOT

THE NEW GRAPH

STEP 3: SKETCH IN THE NEW TRANSFORMED GRAPH

FOR A HORIZONTAL TRANSLATION

- IF c>0, THE GRAPH IS TRANSLATED LEFT BY c e.g. $\sin(x+40)$ IS $\sin x$ MOVED 40 LEFT
- IF c<0, THE GRAPH IS **TRANSLATED RIGHT** BY c e.g. cos(x-20) IS cosx MOVED 20 RIGHT
- REMEMBER THE y COORDINATES STAY THE SAME; x COORDINATES WILL BE ±c

Copyright © Save My Exams. All Rights Reserved

Examiner Tip

- Always sketch with a pencil and draw a smooth curve.
- When you sketch the transformation of a graph, be sure to indicate the new coordinates of any points that are marked on the original graph.
- Try to indicate the coordinates of points where the new graph intersects the axes.

✓ Worked example	

- a) Sketch the graph of $y = \cos 3x$, for $0^{\circ} \le x \le 360^{\circ}$.
- b) Write down all the values of x where $\cos 3x = 0$, for $0^{\circ} \le x \le 360^{\circ}$.

Page 16 of 17

