Continuité et limites

I. Rappels

Dans ce paragraphe nous rappelons les principaux théorèmes vus en troisième année.

I.1 Continuité et limite en un réel

Activité 1

Dans chacun des cas suivants déterminer l'ensemble de définition de la fonction f et justifier la continuité de f en tout réel de son ensemble de définition.

$$f: x \mapsto 1 - x + x^{2}.$$

$$f: x \mapsto x - \frac{1}{x^{2} + 4}.$$

$$f: x \mapsto \left| \frac{-5x + 1}{x^{2} + 4} \right|.$$

$$f: x \mapsto \frac{1}{(x+1)(x+2)}$$
. $f: x \mapsto \frac{x+1}{x^2+2x+3}$.

- Toute fonction polynôme est continue en tout réel.
- Toute fonction rationnelle est continue en tout réel de son ensemble de définition.
- Les fonctions $x \mapsto \cos x$ et $x \mapsto \sin x$ sont continues en tout réel.

Théorème

Soit f et g deux fonctions définies sur un intervalle ouvert I et a un réel de I.

- Si f et g sont continues en a, alors les fonctions f + g et $f \times g$ sont continues en a.
- Si f est continue en a, alors les fonctions $\alpha f (\alpha \in \mathbb{R})$, |f| et $f^n (n \in \mathbb{N}^*)$ sont continues en a.
- Si f est continue en a et $f(a) \neq 0$, alors les fonctions $\frac{1}{f}$ et $\frac{1}{f^n} (n \in \mathbb{N}^*)$ sont continues en a.
- Si f et g sont continues en a et $g(a) \neq 0$, alors la fonction $\frac{f}{g}$ est continue en a.
- Si f est positive sur I et f est continue en a, alors la fonction \sqrt{f} est continue en a.

Activité 2

Soit la fonction $f: x \mapsto \frac{2x^2 - 4x + 2}{|x - 1|}$.

- 1. Vérifier que pour tout réel $x \ne 1$, f(x) = 2|x-1|.
- 2. En déduire $\lim_{x\to 1} f(x)$.

Théorème

Soit f une fonction définie sur un intervalle ouvert I, sauf peut-être en un réel a de I. S'il existe une fonction g définie sur I, continue en a et telle que g(x) = f(x) pour tout $x \neq a$, alors $\lim_{x \to a} f(x) = g(a)$.