HW4

Shane Drafahl

18 September ,2017

1. Use the pumping lemma to prove that L = { $ww : w \in \{0,1\}^*$ } is nonregular.

We will prove this by proof of contradition and assume that L is a regular language. So therefore for L, $\exists_n \in N$ such that $\forall_x \in L$, if $|v| \geq n$, then x can be decomposed into three strings $\exists_{u,v,w} \in \{0,1\}^*$. Where $\mathbf{x} = \mathbf{u}\mathbf{v}\mathbf{w}$. $|uv| \leq n, |v| > 0$ such that $\forall_k \in N, uv^k w \in L$.

Because there are two w's we know that |ww| = 2a where a are some natural number. Suppose that $uvw = a^pb^la^pb^l$ where p+l=n, p and l are natural numbers. This implies that $v=b^i$ where some i is a natural number greater than 0. Suppose that $uv^2w = a^pb^{l+i}a^pb^l$. $|uv^2w| = p+l+i+p+l = 2(n)+i$. This is a contradiction because the cardinality is no longer a multiple of 2 and should be in the language but it is not so therefore L is not regular.

2. Prove that $L = \{ w \in \{ a, b \}^* : |w|_a \neq |w|_b \}$ is not regular.

Using the closure properties we can take the complement of language L and take its complement $L'(M_1) = \Sigma L_M$. $L'(M_1) = \{w : \{a,b\}^* | w|_a = |w|_b\}$. We can then concat $L''(M_3) = L'(M_1) * L'(m_2)$ where $L''(M_3) = \{ww : \{a,b\}^* | w|_a = |w|_b\}$. That last part we can use homomorphism where $a \to 0$ and $b \to 1$. To get $L'''(M_4) = \{ww : w \in \{0,1\}^*\}$ we proved in question 1 that $\{ww : w \in \{0,1\}^*\}$ is not regular and because we produced a non-regular language from the closure of two regular languages that is a contradiction so therefore L is not a regular language.