

Universidad Nacional Autónoma de México

Facultad de Estudios Superiores Acatlán

Examen Unidad 1

Ecuaciones Diferenciales

Autor:

Jorge Miguel Alvarado Reyes 421010301

14 de marzo de 2024

${\rm \acute{I}ndice}$

1.	3																						2
	1.1.	3.4		 																			4
2.	4																						•
	2.1.	4.1	 	 																			6
	2.2.	4.2	 	 																			6

1. 3

Observe entonces que

$$\mathcal{L}^{-1}\{F(s)G(s)\} = \int_0^\infty f(\tau)g(t-\tau)\,d\tau,$$

determine la Transformada Inversa de Laplace de

1.1. 3.4

$$F(s) = \frac{7s^2 + 7s - 14}{s^6 + 3s^4 + 3s^2 + 1}, \quad G(s) = \frac{2}{s^2}$$

2. 4

Encuentre la solución de las siguientes ecuaciones diferenciales.

2.1. 4.1

$$y''(t) + 2y'(t) + 2y(t) = \delta(t-5), \quad y(0) = 1, \quad y'(0) = 0$$

2.2. 4.2

$$y''(t) + 4y'(t) + 3y(t) = 1 + \delta(t - 3), y(0) = 0, y'(0) = 1$$