Travaux dirigés (TD) n°1:

Etude des circuits linéaires simples :

Lois de Kirchhoff et de Théorème de Thévenin

Exercice 1 (lois de Kirchhoff)

On considère le schéma suivant :

Par la méthode des lois de Kirchhoff, calculer I₁, I₂ et I₃.

11=9.6

12 = 9.87

On prend : E_1 =10 V ; E_2 =5 V ; R_1 =15 Ω ; R_2 =10 Ω R_3 =5 Ω

13 = -0.27

Exercice 2 (lois de Kirchhoff)

On considère le schéma suivant :

Calculer:

a/ le courant I_{s} ; b/ la tension V_{s} c/ la tension V_{s1}

d/ la tension $V_{e'}$ **e**/ la tension V_{R2} **f**/ le courant I_{e2}

 \mathbf{g} / le courant I_{e1} \mathbf{h} / la tension V_{R1} \mathbf{i} / le courant I_{e}

j/ la tension V_e

Exercice 3 (Théorème de Thévenin)

On reprend le schéma de l'exercice 1 et on veut maintenant calculer le courant I_2 en utilisant le théorème de Thévenin. On a toujours : E_1 =10 V ; E_2 =5 V ; R_1 =15 Ω ; R_2 =10 Ω R_3 =5 Ω

a/ Proposer le schéma théorique équivalent de Thévenin du circuit ci-dessus.

Eth=14

b/ Calculer E_{Th}

Rth=6 I2=1.27

c/ Calculer R_{Th}

d/ Calculer I₂

e/ Proposer un schéma équivalent de Norton à la place du schéma de Thévenin.

Exercice 4 (Théorème de Thévenin. Exercice donné à l'examen 2017-18)

On a le circuit suivant :

On sait que le schéma équivalent de Thévenin de ce circuit est le suivant :

a/ Calculer la valeur de R₃

b/ Calculer la valeur de V₁

Exercice 5 (Exercice donné à l'examen 2017-18)

On a le schéma suivant :

On donne:

 $R=3~k\Omega~;~R_1=1~k\Omega~;~R_2=2~k\Omega~;~R_3=4~k\Omega~;~R_4=R_5=3~k\Omega~;~E=5~V$

Calculer V_{AB}. (Il faut donner tous les calculs et pas que le résultat final).

Travaux dirigés (TD) n°2:

Etude de filtres du 1er ordre

Exercice 1

Sur un diagramme de Bode, tracez un filtre passe-bas passif de fréquence de coupure f_c =40 kHz

Exercice 2

- 1/ Donner le schéma d'un filtre RL passe-bas
- 2/ Donner l'expression de la fonction de transfert de ce filtre
- $3/R=820 \Omega$ et f_c=10 kHz.

Une tension de 1,91 V est mesurée à la sortie du filtre lorsqu'un signal de 1 kHz est appliqué à l'entrée. Calculer la valeur de la bobine ainsi que la valeur de la tension à l'entrée du filtre.

Exercice 3

Soit le filtre RL suivant :

Ue = 10V R = 10k L = 100mH

On prend f = 100 kHz

- 2/ Quelle est la fréquence de coupure du circuit ?
- **3/** Donner Us, Av (en dB) et le déphasage φ à la fréquence de coupure.
- **4/** On branche maintenant en parallèle avec L une résistance R2 = 4,7 k Ω .
- **4a/** Simplifier le schéma en utilisant le théorème de Thévenin
- **4b/** Quelle sera la tension maximale Us possible et la nouvelle fréquence de coupure
- **4c/** Donner Us, Av (en dB) et le déphasage ϕ à la fréquence de coupure.

Exercice 4

On prend un filtre <u>passif</u> passe-haut du 1^{er} ordre. V_{out} / V_{in} = 0,4 V lorsque f=100 Hz.

Tracer le diagramme de Bode de ce filtre.

Exercice 5

On a le schéma :

- **5.1.** On dit que l'amplificateur opérationnel est idéal.
- **5.2.** Calculer la fonction de transfert de ce filtre.
- **5.3.** Dire si c'est un filtre passe-bas ou un filtre passe-haut.

Travaux dirigés (TD) n°3:

Etude des montages à base d'amplificateurs opérationnels en régime linéaire

Exercice 1

On considère le montage amplificateur suivant :

1/ Sans faire de calcul, vous pensez que ce montage est un inverseur ou un non-inverseur ?

 $2/V_e$ est un signal sinusoïdal d'amplitude 0,8 V. On veut un signal de sortie V_s avec une amplitude de 5 V. Calculer l'amplification en tension A_V .

3/ On appelle G_V le gain en tension en dB. Donnez la valeur de G_V

4/ On veut un courant efficace $i_{efficace}$ =0,1 mA. Calculer R_1 et R_2 pour avoir cette valeur de courant.

Rappel: Dans le cas d'une fonction sinusoïdale, la relation entre valeur maximale et valeur efficace est: $U_{max} = U_{efficace} \sqrt{2}$ et $I_{max} = I_{efficace} \sqrt{2}$

Exercice 2

On considère le montage amplificateur suivant :

L'AOP est considéré idéal. Le voltmètre V et utilisé sur le calibre 1 volt. On donne V_e =1 V et R_0 =10 $k\Omega$. R_X est une résistance variable.

- 1/ Donner une relation entre V_e , I et R_0 .
- 2/ Ecrire V_S en fonction de V_e , R_X et R_0 .
- **3/** Tracer la courbe $V_S = f(R_X)$; Echelles : 1 k Ω /cm et 0,1 V/cm.
- 4/ Déduire de la question précédente la valeur maximale de R_X.

Exercice 3

On considère le montage amplificateur suivant :

On donne R1=R3= 1 k Ω ; R2 = 5 k Ω ; Ve = 2 V

Calculer I.

Exercice 4

On considère le montage amplificateur suivant :

R1 = 3,3 k Ω et R2 = 165 k Ω .

Donner la relation littérale entre Ve et Vs. Faites ensuite l'application numérique

Exercice 5

On considère le montage amplificateur suivant :

A partir du théorème de Millman, calculer le gain en tension de ce montage.

Vous donnerez le résultat en dB

Exercice 6

Proposer un montage inverseur qui aura un gain de 30 dB.

Exercice 7 (exercice donné dans l'examen 2017-18)

Le gain en tension en dB d'un amplificateur opérationnel est donné sur le schéma suivant :

a/ Quelle est la valeur du produit gainxbande de cet amplificateur opérationnel?

b/ Avec cet amplificateur opérationnel, on veut fabriquer un montage inverseur qui aura un gain en tension <u>en linéaire</u> égal à 316. Jusqu'à quelle fréquence, le montage inverseur pourra fonctionner ?

c/ Quelle sera la valeur de la tension de sortie de ce montage inverseur à la fréquence de 200 kHz si la tension d'entrée est égale à 10 mV?

Exercice 8

On considère le montage amplificateur suivant :

Donner la relation entre Vs, V1 et V2

Exercice 9 (exercice donné dans l'examen 2017-18)

On a le montage suivant :

On donne : R1=R3= 1 k Ω , R2=R4= 5 k Ω , V1=10 mV et V2=5 mV

Calculer V_S

Exercice 10

On considère le montage amplificateur suivant en considérant un AOP réel.

En prenant en compte le gain interne A0 de l'AOP, donner la relation entre Vs et Ve

Exercice 11

On considère le montage amplificateur suivant en considérant un AOP réel.

Trouver la relation entre V_s , I_{b1} et I_{b2} .