Advanced Modern Algebra

Joseph J. Rotman

September 6, 2019

Contents

1	Group I		
	1.1	Permutations	2
	1.2	Groups	3
	1.3	Lagrange's theorem	4

1 Group I

1.1 Permutations

Definition 1.1. A **permutation** of a set *X* is a bijection from *X* to itself.

Definition 1.2. The family of all the permutations of a set X, denoted by S_X is called the **symmetric group** on X. When $X = \{1, 2, ..., n\}$, S_X is usually denoted by X_n and is called the **symmetric group on** n **letters**

Definition 1.3. Let i_1, i_2, \dots, i_r be distinct integers in $\{1, 2, \dots, n\}$. If $\alpha \in S_n$ fixes the other integers and if

$$\alpha(i_1) = i_2, \alpha(i_2) = i_3, \dots, \alpha(i_{r-1}) = i_r, \alpha(i_r) = i_1$$

then α is called an textbf{r-cycle}. α is a cycle of **length** r and denoted by

$$\alpha = (i_1 \ i_2 \ \dots \ i_r)$$

2-cycles are also called the **transpositions**.

Definition 1.4. Two permutations $\alpha, \beta \in S_n$ are **disjoint** if every i moved by one is fixed by the other.

Lemma 1.5. Disjoint permutations $\alpha, \beta \in S_n$ commute

Proposition 1.6. Every permutation $\alpha \in S_n$ is either a cycle or a product of disjoint cycles.

Proof. Induction on the number k of points moved by α

Definition 1.7. A **complete factorization** of a permutation α is a factorization of α into disjoint cycles that contains exactly one 1-cycle (i) for every i fixed by α

Theorem 1.8. Let $\alpha \in S_n$ and let $\alpha = \beta_1 \dots \beta_t$ be a complete factorization into disjoint cycles. This factorization is unique except for the order in which the cycles occur

Proof. for all
$$i$$
, if $\beta_t(i) \neq i$, then $\beta_t^k(i) \neq \beta_t^{k-1}(i)$ for any $k \leq 1$

Lemma 1.9. If $\gamma, \alpha \in S_n$, then $\alpha \gamma \alpha^{-1}$ has the same cycle structure as γ . In more detail, if the complete factorization of γ is

$$\gamma = \beta_1 \beta_2 \dots (i_1 \ i_2 \dots) \dots \beta_t$$

then $\alpha\gamma\alpha^{-1}$ is permutation that is obtained from γ by applying α to the symbols in the cycles of γ

Example. Suppose

$$\beta = (1\ 2\ 3)(4)(5)$$

 $\gamma = (5\ 2\ 4)(1)(3)$

then we can easily find the α

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 1 & 3 \end{pmatrix}$$

Theorem 1.10. Permutations γ and σ in S_n has the same cycle structure if and only if there exists $\alpha \in S_n$ with $\sigma = \alpha \gamma \alpha^{-1}$

Proposition 1.11. If $n \leq 2$ then every $\alpha \in S_n$ is a product of transositions

Proof.
$$(1\ 2\ \dots\ r) = (1\ r)(1\ r-1)\dots(1\ 2)$$

Definition 1.12. A permutation $\alpha \in S_n$ is **even** if it can be factored into a product of an even number of transpositions. Otherwise **odd**

Definition 1.13. If $\alpha \in S_n$ and $\alpha = \beta_1 \dots \beta_t$ is a complete factorization, then **signum** α is defined by

$$\operatorname{sgn}(\alpha) = (-1)^{n-t}$$

Theorem 1.14. For all $\alpha, \beta \in S_n$

$$\operatorname{sgn}(\alpha\beta) = \operatorname{sgn}(\alpha)\operatorname{sgn}(\beta)$$

Theorem 1.15. 1. Let $\alpha \in S_n$; if $sgn(\alpha) = 1$ then α is even. otherwise odd

2. A permutation α is odd if and only if it's a product of an odd number of transpositions

Corollary 1.16. Let $\alpha, \beta \in S_n$. If α and β have the same parity, then $\alpha\beta$ is even while if α and β have distinct parity, $\alpha\beta$ is odd

1.2 Groups

Definition 1.17. A binary operation on a set *G* is a function

$$*: G \times G \to G$$

Definition 1.18. A **group** is a set *G* equipped with a binary operation * s.t.

- 1. the associative law holds
- 2. identity
- 3. every $x \in G$ has an **inverse**, there is a $x' \in G$ with x * x' = e = x' * x

Definition 1.19. A group G is called **abelian** if it satisfies the **commutative** law

Lemma 1.20. Let G be a group

- 1. The **cancellation laws** holds: if either x * a = x * b or a * x = b * x, then a = b
- e is unique
- 3. Each $x \in G$ has a unique inverse
- 4. $(x^{-1})^{-1} = x$

Definition 1.21. An expression $a_1a_2 \dots a_n$ **needs no parentheses** if all the ultimate products it yields are equal

Theorem 1.22 (Generalized Associativity). If G is a group and $a_1, a_2, \ldots, a_n \in G$ then the expression $a_1 a_2 \ldots a_n$ needs no parentheses

Definition 1.23. Let G be a group and let $a \in G$. If $a^k = 1$ for some k > 1 then the smallest such exponent $k \le 1$ is called the **order** or a; if no such power exists, then one says that a has **infinite order**

Proposition 1.24. If *G* is a finite group, then every $x \in G$ has finite order

Definition 1.25. A **motion** is a distance preserving bijection $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$. If π is a polygon in the plane, then its **symmetry group** $\Sigma(\pi)$ consists of all the motions φ for which $\varphi(\pi) = \pi$. The elements of $\Sigma(\pi)$ are called the **symmetries** of π

Let π_4 be a square. Then the group $\Sigma(\pi_4)$ is called the **dihedral group** with 8 elements, denoted by D_8

Definition 1.26. If π_n is a regular polygon with n vertices v_1, \ldots, v_n and center O, then the symmetry group $\Sigma(\pi_n)$ is called the {dihedral group} with 2n elements, and it's denoted by D_{2n}

1.3 Lagrange's theorem