

Лабораторная работа 1

- (≡ 0 mod 3) Реализовать алгоритм унификации Мартелли–Монтанари.
- (≡ 2 mod 3) Реализовать алгоритм проверки выполнения отношения Кнута–Бендикса для заданной TRS.

Синтаксис входных данных

Синтаксис записи входных данных для 1 задачи:

```
      constructors
      = ([буква]([нат. число]),)* [буква]([нат. число])

      variables
      = ([буква],)* [буква]

      First term:
      [терм]

      Second term:
      [терм]

      [терм]
      ::= [переменная] | [конструктор (0-местный)]

      | [конструктор](([терм],)*[терм])
```

Множества имён переменных и конструкторов считаем непересекающимися.

Понятия алгоритма М.-М.

Мультиуравнение — это выражение вида

 $\{x_1,\dots,x_n\}=(t_1,\dots,t_m)$, где x_i — переменные, t_j — термы в выбранной сигнатуре (семантически означает, что все они равны друг другу).

Общая часть мультиуравнения — максимальное внешнее общее поддерево конструкторов t_i .

Граница мультиуравнения — множество мультиуравнений, подстановка которых в общую часть порождает термы t_i .

У мультиуравнения

$$\{x_1,x_2\}=(f(g(x_3),h(x_4,g(x_5))),f(x_4,h(g(g(x_6)),x_7)))$$
 общая часть — это $f(x_4,h(x_4,x_7))$, граница — это $\{\{x_4\}=(g(x_3),g(g(x_6))),\{x_7\}=g(x_5)\}.$

Компактная форма системы мультиуравнений — такая, что для всех S = T, S' = T', $S \cap S' = \emptyset$.

Строим исходную систему $U: \{x\} = (t_1, t_2), \{x_i\} = \emptyset$, где x — свежая переменная, x_i — переменные, входящие в термы t_1 и t_2 .

- Выбираем такое мультиуравнение S = M, что переменные из S не встречаются нигде больше в U. Если такого нет, объявляем о неудаче унификации.
- Отроим общую часть С и границу F. Если общей части нет, объявляем о неудаче унификации.
- **3** Делаем шаг редукции: заменяем S = M на $\{S = C\} \cup F$, после чего приводим к компактной форме.
- **1** Перемещаем S = C из U в результирующую систему T.

Если в U не остаётся мультиуравнений, то результат T — это искомая подстановка-унификатор t_1 и t_2 .

Синтаксис задачи 2

```
nonterminals = ([буква],)* [буква]
terminals = ([буква],)^*[буква]
(nonterminal -> (nonterminal | terminal)*)+
```

Множества имён терминалов и нетерминалов считаем непересекающимися.

Постановка задачи 2

Необходимо построить упрощённую форму исходной грамматики, используя альфа-преобразование.

Например, грамматика

 $S \rightarrow \alpha\,S\,\alpha\,|\,b\,|\,\alpha\,T\,\alpha$

 $T \rightarrow \alpha \, T \, \alpha \, | \, \alpha \, S \, \alpha \, | \, b$

эквивалентна грамматике только с двумя первыми правилами (кстати, во входном потоке все правила будут записываться по отдельности, с новой строки).

При этом удобно пользоваться понятием терминальной формы правила — формы, учитывающей только расположение терминалов в правой части. Например, $S \to \alpha_a$.

- Для каждого нетерминала N_i строим список терминальных форм правых частей α правил $N_i \to \alpha$.
- Все нетерминалы, у которых совпали множества терминальных форм, помещаем в один класс разбиения.
- Для каждых двух правил $N_i \to \alpha_1 N_i' \alpha_2$, $N_j \to \alpha_1 N_j' \alpha_2$, где α_1 , α_2 терминальные формы, проверяем, попадают ли N_i' , N_j' в один и тот же класс разбиения. Если не попадают, то разделяем исходный класс разбиения N_i , N_j на классы согласно принадлежности нетерминалов в позиции нетерминала N_i' классам разбиения. Объявляем позицию Т в правой части $\alpha_1 T \alpha_2$ проверенной. После чего объявляем все правила, содержащие нетерминалы исходного класса разбиения в правых частях, непроверенными.
- Продолжаем, пока все позиции нетерминалов во всех правилах не будут проверены.

• ...

• Продолжаем, пока все позиции нетерминалов во всех правилах не будут проверены.

Для построения итоговой грамматики достаточно выбрать по одному представителю из каждого класса разбиения, и подставить соответствующие нетерминалы в терминальные формы правил.

• ..

 Продолжаем, пока все позиции нетерминалов во всех правилах не будут проверены.

Если рассмотреть грамматику

 $S \rightarrow a S a | b | a T a$

 $T \rightarrow a\,C\,\alpha \,|\, a\,S\,\alpha \,|\, b$

 $C \rightarrow a B a | b$

 $B \to c$

то видно, что на первом этапе S, T, C будут отнесены к одному классу разбиения, а В — к другому. Проверка терминальной формы а _ а приведёт к тому, что C отделится в другой класс (а S и T на этом этапе ещё не будут разделены). После чего опять придётся проверять ту же терминальную форму, что приведёт к тому, что S и T также окажутся разделены.

для обращённых кортежей).

Синтаксис входных данных

Синтаксис записи входных данных для 3 задачи:

```
        lexicographic
        | anti-lexicographic

        constructors
        = ([буква]([нат. число]),)* [буква]([нат. число])

        variables
        = ([буква],)* [буква]

        ([терм]
        = [терм])+

        [терм]
        ::= [переменная] | [конструктор](([терм],)*[терм])
```

Множества имён переменных и конструкторов считаем непересекающимися. Арность конструкторов полагаем равной либо 1, либо 2. Также считаем, что максимальная вложенность конструкторов в термах равна 3 (т.е. может быть, самое большее, три уровня вложенных скобок). Первая строка входного потока показывает, какой порядок должен проверяться: лексикографический или обратный ему (т.е. лексикографический

Порядок Кнута–Бендикса $>_{ m lo}$

 $f(t_1,\ldots,t_n)>_{lo}g(\mathfrak{u}_1,\ldots,\mathfrak{u}_m)\Leftrightarrow$ выполнено одно из условий:

- $\exists i (1 \leqslant i \leqslant n \& t_i = g(u_1, \ldots, u_m));$
- **2** $\exists i (1 \leq i \leq n \& t_i >_{lo} g(u_1, ..., u_m));$
- (f = g) & $\forall i (1 \le i \le n \Rightarrow f(t_1, \ldots, t_n) >_{lo} u_i)$ и n-ка (t_1, \ldots, t_n) лексикографически больше, чем (u_1, \ldots, u_n) (т.е. первый её не совпадающий с u_i элемент t_i удовлетворяет условию $t_i >_{lo} u_i$).

 $f(t_1, \ldots, t_n) > x$ (где x — переменная) \Leftrightarrow существует t_i , содержащий вхождение x (или равный x). Если используется обратный лексикографический порядок, то в последнем пункте сравниваются (t_n, \ldots, t_1) и (u_n, \ldots, u_1) (поскольку максимальная арность = 2, то это просто (t_2, t_1) и (u_2, u_1)).