1 实验概况

本实验任务是车辆贷款违约预测,具体要求如下:

给定某机构实际业务中的相关借款人信息,包含53个与客户相关的字段,其中loan_default字段表明借款人是否会拖欠付款。任务目标是通过训练集训练模型,来预测测试集中loan_default字段的具体值,即借款人是否会拖欠付款,以此为依据,降低贷款风险。

1.1 实验环境

名称	规格		
CPU	Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz 2.50 GHz		
Python	3.6.5 (anaconda)		
Numpy	1.19.5		
Matplotlib	3.3.4		
pandas	1.1.5		
seaborn	0.11.2		
scikit-learn	0.19.1		
xgboost	1.5.1		

1.2 数据集说明

赛题数据由训练集和测试集组成,总数据量超过25w,包含52个特征字段。为了保证比赛的公平性,将会从中抽取15万条作为训练集,3万条作为测试集,同时会对部分字段信息进行脱敏。

特征字段	字段描述
customer_id	客户标识符
main_account_loan_no	主账户申请贷款数量
main_account_active_loan_no	主账户申请的有效贷款数量
main_account_overdue_no	主账号逾期数量
main_account_outstanding_loan	主账户未偿还的贷款余额
main_account_sanction_loan	主账户所有贷款被批准的贷款金额
main_account_disbursed_loan	主账户所有贷款已发放的贷款金额
sub_account_loan_no	二级账户申请贷款数量
sub_account_active_loan_no	二级账户申请的有效贷款数量
sub_account_overdue_no	二级账户逾期数量
sub_account_outstanding_loan	二级账户未偿还的贷款金额
sub_account_sanction_loan	二级账户所有贷款被批准的贷款金额
sub_account_disbursed_loan	二级账户所有贷款已发放的贷款金额
disbursed_amount	已发放贷款金额
asset_cost	资产成本
branch_id	发放贷款的分行
supplier_id	发放贷款的车辆经销商
manufacturer_id	汽车制造商
year_of_birth	客户出生日期
disbursed_date	贷款日期
area_id	付款区域
employee_code_id	记录付款的对接员工
mobileno_flag	是否填写手机号
idcard_flag	是否填写身份证
Driving_flag	是否出具驾驶证
passport_flag	是否填写护照
credit_score	信用评分
main_account_monthly_payment	主账户月供金额
sub_account_monthly_payment	二级账户的月供金额
last_six_month_new_loan_no	过去六个月客户的新贷款申请数量

特征字段	字段描述	
last_six_month_defaulted_no	过去六个月客户的违约数量	
average_age	平均贷款期限	
credit_history	信用记录	
enquirie_no	客户查询贷款次数	
loan_to_asset_ratio	贷款与资产比例	
total_account_loan_no	所有账户申请贷款数量	
main_account_inactive_loan_no	主账户申请的无效贷款数量	
sub_account_inactive_loan_no	二级账户申请的无效贷款数量	
total_inactive_loan_no	所有账户申请的无效贷款数量	
total_overdue_no	所有账户的逾期次数	
total_outstanding_loan	所有账户的未结余额的总额	
total_sanction_loan	来自所有账户的所有贷款被批准的贷款金额	
total_disbursed_loan	为所有账户的所有贷款支付的贷款金额	
total_monthly_payment	所有账户的月供金额	
outstanding_disburse_ratio	已发放贷款总额/未偿还贷款总额 (两者比例)	
main_account_tenure	主账户还款期数	
sub_account_tenure	二级账户还款期数	
disburse_to_sactioned_ratio	已发放贷款/批准贷款 (两者比例)	
active_to_inactive_act_ratio	有效贷款次数/无效贷款次数 (两者比例)	
Credit_level	信用评分	
employment_type	工作类型	
age	年龄	
loan_default	1表示客户逾期,0表示客户未逾期	

1.3 评价指标

本次竞赛的评价标准采用F1 score 指标,具体地为macro-f1指标; F1指标的计算公式为:

$$F1 = 2*(precision*recall)/(precision+recall)$$

而macro-f1指标是在多分类或者多标签问题上,对多个类别F1指标的平均的一种方式,其中macro-f1指的是直接求F1值的平均,意味着不考虑多个类别之间的类别不平衡问题。

$$macro-f1 = \sum_{i=1}^{N} F1_i$$

2数据集分析

2.1 数据导入

首先加载必要的相关python库,包括numpy, matplotlib, pandas, seaborn等

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#显示所有列
pd.set_option('display.max_columns', None)
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

然后通过 pandas. read_csv 函数加载数据集,并查看前五行信息

```
df = pd.read_csv("train_2.csv")
df.head() #查看前5行信息
```

		ead() # <u>世</u> 才	看前5行信息				
Out[2]:		ustomer_id	main_account_loan_no	main_account_active_loan_no	main_account_overdue_no	main_account_outstanding_loan	main_account_sanction_loan
	0	105691	4	3	0	384989	666207
	1	24938	7	2	0	268670	387994
	2	104389	5	4	1	3519013	3613854
	3	54688	43	13	6	1867106	2484678
	4	63894	0	0	0	0	0

2.2 类别分布统计

数据集中的loan_default代表类别信息,0表示没有违约记录,1表示存在违约记录。我们通过 value_counts 函数简单统计下两个类别的数量,分布情况。

```
In [3]: df["loan_default"].value_counts() #查看数据集类别分布

Out[3]: 0 98808
1 21192
Name: loan_default, dtype: int64
```

发现该数据集存在一个比较严重的类别不平衡情况,未违约与存在违约的数量比例大概是5:1,这也是本次实验比较大的挑战之一。

2.3 异常值分析

首先是查找是否存在缺失值,使用 isnu11() 函数查找缺失值, 结果如下图所示。发现并不存在缺失值。

```
In [7]:
         #查看缺失值
         df. isnull().sum()
Out[7]: customer_id
                                           0
                                           0
         main_account_loan_no
                                           0
         main_account_active_loan_no
                                           0
         main_account_overdue_no
         main_account_outstanding_loan
         main_account_sanction_loan
                                           0
         main_account_disbursed_loan
                                           0
         sub_account_loan_no
                                           0
         sub_account_active_loan_no
         sub_account_overdue_no
                                           0
         sub_account_outstanding_loan
                                           0
         sub_account_sanction_loan
                                           0
         sub_account_disbursed_loan
         disbursed_amount
                                           0
         asset_cost
                                           0
                                           0
         branch_id
         supplier_id
                                           0
                                           0
         manufacturer_id
         area id
                                           0
                                           0
         employee_code_id
                                           0
         mobileno_flag
         idcard_flag
                                           0
         Driving_flag
                                           0
                                           0
         passport_flag
         credit score
                                           0
                                           0
         main_account_monthly_payment
         sub_account_monthly_payment
                                           0
                                           0
         last_six_month_new_loan_no
         last_six_month_defaulted_no
         average_age
                                           0
         credit_history
                                           0
                                           0
         enquirie_no
         loan_to_asset_ratio
                                           0
         total_account_loan_no
                                           0
         sub_account_inactive_loan_no
                                           0
         total_inactive_loan_no
                                           0
         main_account_inactive_loan_no
         total_overdue_no
                                           0
         total_outstanding_loan
                                           0
         total_sanction_loan
                                           0
         total_disbursed_loan
                                           0
         total_monthly_payment
                                           0
         outstanding_disburse_ratio
                                           0
         main_account_tenure
                                           0
                                           0
         sub_account_tenure
         disburse_to_sactioned_ratio
                                           0
         active_to_inactive_act_ratio
                                           0
         year_of_birth
                                           0
         disbursed_date
                                           0
         Credit_level
                                           0
                                           0
         employment_type
                                           0
         age
                                           0
         loan_default
         dtype: int64
```

In [4]: df. dtypes #查看各个特征的数据类型

A (Fall) () () ()

使用 df.describe() 来展示各个特征值的数值信息,该函数将返回均值、方差、最小值、中位数、最大值等信息。

n [6]: Out[6]:	df. des	scribe()						
	d_loan	total_monthly_payment	outstanding_disburse_ratio	main_account_tenure	sub_account_tenure	disburse_to_sactioned_ratio	active_to_inactive_act_ratio	
	00e+05	1.200000e+05	120000.00	1.200000e+05	1.200000e+05	1.200000e+05	120000.000000	12
	03e+05	1.287669e+04	inf	5.387051e+04	2.774115e+03	7.533143e+02	1.439262	
	25e+06	1.442883e+05	NaN	2.914938e+06	1.112462e+05	1.465863e+05	0.790481	
	00e+00	0.000000e+00	-70847.67	0.000000e+00	0.000000e+00	0.000000e+00	1.000000	
	00e+00	0.000000e+00	1.00	0.000000e+00	0.000000e+00	1.000000e+00	1.000000	
	00e+00	0.000000e+00	1.00	0.000000e+00	0.000000e+00	1.000000e+00	1.000000	
	00e+04	2.045000e+03	1.26	2.500000e+01	0.000000e+00	1.000000e+00	1.670000	
	00e+09	2.076655e+07	inf	1.000000e+09	1.980000e+07	5.000000e+07	18.000000	
	4							-

在结果统计中,发现在outstanding_disburse_ratio该特征上存在一个特殊值inf,考虑到模型无法处理inf。所以需要将inf替换成一个有限大的值。首先我查找所有inf所在的位置,

发现仅有outstanding_disburse_ratio这一列出现了inf,然后我决定查找该列除inf外之外最大的数(500001.0),所以我将inf替换成了稍大于500001的600001。

2.4 数据类型分析

其次是数据类型分析,使用df.dtypes打印所有特征的数值类型,结果如下:

In [4]	df.dtypes #查看各个特征的数据类	型	
Out[4]:	customer_id main_account_loan_no	int64 int64	
	main_account_active_loan_no	int64	
	main_account_overdue_no	int64	
	main_account_outstanding_loan	int64	
	main_account_sanction_loan	int64	
	main_account_disbursed_loan	int64	
	sub_account_loan_no	int64	
	sub_account_active_loan_no	int64	
	sub_account_overdue_no	int64	
	sub_account_outstanding_1oan	int64	
	sub_account_sanction_loan	int64	
	sub_account_disbursed_loan	int64	
	disbursed_amount	int64	
	asset_cost	int64	
	branch_id	int64	
	supplier_id	int64	
	manufacturer_id	int64	
	area_id	int64	
	employee_code_id	int64	
	mobileno_flag	int64	
	idcard_flag	int64	
	Driving_flag	int64	
	passport_flag	int64	
	credit_score	int64	
	main_account_monthly_payment	int64	
	sub_account_monthly_payment	int64	
	last_six_month_new_loan_no	int64	
	last_six_month_defaulted_no	int64	
	average_age	int64	
	credit_history	int64	
	enquirie_no	int64 float64	
	loan_to_asset_ratio total_account_loan_no	int64	
	sub_account_inactive_loan_no	int64	
	total_inactive_loan_no	int64	
	main_account_inactive_loan_no	int64	
	total_overdue_no	int64	
	total_outstanding_loan	int64	
	total_sanction_loan	int64	
	total_disbursed_loan	int64	
	total_monthly_payment	int64	
	outstanding_disburse_ratio	float64	
	main_account_tenure	int64	
	sub_account_tenure	int64	
	disburse_to_sactioned_ratio	float64	
	active_to_inactive_act_ratio	float64	
	year_of_birth	int64	
	disbursed_date	int64	
	Credit_level	int64	
	employment_type	int64	
	age	int64	
	loan_default	int64	
	dtvpe: object		

结果显示,数据集仅存在数值型特征,包括浮点型float类型,以及整数型int类型。由于不存在非数值型数据,所以特征编码这步可以省去。

In [12]: #各个特征的特征值的个数 df. nunique()

	- "	
Out[12]:	customer_id	120000
	main_account_loan_no	98
	main_account_active_1oan_no	35
	main_account_overdue_no	19
	main_account_outstanding_loan	39796
	main_account_sanction_1oan	25212
	main_account_disbursed_loan	27031
	sub_account_1oan_no	36
	sub_account_active_loan_no	20
	sub_account_overdue_no	8
	sub_account_outstanding_loan	1688
	sub_account_sanction_loan	1241
	sub_account_disbursed_loan	1405
	disbursed_amount	16888
	asset_cost	35284
	branch_id	82
	supplier_id	2835
	manufacturer_id	10
	area_id	22
	employee_code_id	3229
	mobileno_flag	1
	idcard_flag	1
	Driving_flag	2
	passport_flag	2
	credit_score	568
	main_account_monthly_payment	18608
	sub_account_monthly_payment	1063
	last_six_month_new_loan_no	24
	last_six_month_defaulted_no	14
	average_age	100
	credit_history	100
	enquirie_no	22
	loan_to_asset_ratio	111726
	total_account_loan_no	97
	sub_account_inactive_loan_no	84
	total_inactive_loan_no	26
	main_account_inactive_loan_no	86
	total_overdue_no	19
	total_outstanding_loan	40423
	total_sanction_loan	25723
	total_disbursed_loan	27588
	total_monthly_payment	18894
	outstanding_disburse_ratio	3830
	main_account_tenure	10718
	sub_account_tenure	1016
	disburse_to_sactioned_ratio	330
	active_to_inactive_act_ratio	206
	year_of_birth	48
	disbursed_date	1
	Credit_level	14
	employment_type	3
	age	48
	loan_default	2
	dtvne: int64	

然后需要将所有特征进一步区分成一下三种类型,特征值唯一型,连续型数据,离散型数据。特征值唯一型数据,顾名思义指的是该特征仅有一个特征值,正因该特征仅有一个特征值,所以没有额外信息,故后续试验中可以将这些特征删除。结果如下:

```
In [18]: #划分1: 该特征仅有一个取值,这些特征在后续的实验中会考虑主除
unique_feas = [col for col in df.columns if df[col].nunique()==1]
unique_feas
Out[18]: ['mobileno_flag', 'idcard_flag', 'disbursed_date']
```

第二个划分是连续型数值型数据,该特征有两个条件,一是该特征取值数量较多,另外如果该特征取值数量为n,那么该特征并不为取值为(0,1,.....,n-1),即取值并不连续有断层,结果如下:

```
In [8]: #划分2. 数值型连续型特征,该特征有两个条件,一是特征取值数量较多,另外如果该特征取值数量为n,那么该特征并不为取值为(0,1,……,n-1),即取值并)
numerical_serial_feas = [col for col in df.columns if df[col].nunique()>40 or list(set(df[col])) != list(range(df[col].nunique()))]
numerical_serial_feas = [fea for fea in numerical_serial_feas if fea not in unique_feas]
print(numerical_serial_feas)

['customer_id', 'main_account_loan_no', 'main_account_overdue_no', 'main_account_outstanding_loan', 'main_account_sanction_loan', 'main_account_disbursed_loan', 'sub_account_loan_no', 'sub_account_active_loan_no', 'sub_account_outstanding_loan', 'sub_account_sanction_loan', 'sub_account_outstanding_loan', 'sub_account_sanction_loan', 'sub_account_outstanding_loan', 'sub_account_sanction_loan', 'sub_account_monthly_payment', 'disbursed_code_id', 'credit_score', 'main_account_monthly_payment', 'disbursed_toan_no', 'sub_account_inactive_loan_no', 'enquirie_no', 'loan_to_asset_ratio', 'total_account_loan_no', 'sub_account_inactive_loan_no', 'total_disbursed_loan', 'total_sanction_loan', 'total_sanction_loan', 'total_disbursed_loan', 'total_monthly_payment', 'outstanding_disburse_ratio', 'main_account_tenure', 'sub_account_tenure', 'disburse_to_sactioned_ratio', 'active_to_inactive_act_ratio', 'year_of_birth', 'Credit_level', 'age']
```

剩下的一个划分是离散型数值型数据,结果如下:

离散型数据后续可能会做的一个处理是,将该特征one-hot化。

3 数据可视化分析

3.1 连续型数据小提琴图

采用小提琴图来查看连续型数据的分布情况,小提琴图结合了箱线图和密度图的特征,用来显示数据的分布形状。如下图所示,中间的黑色粗条表示四分位数范围,从其延伸的幼细黑线代表 95% 置信区间,而白点则为中位数。

在本次实验中,采用小提琴图的目的是直观地显示在各个特征中,不同label的特征值是否存在着分布的差异,如果存在较大差异,那么该特征则是我们需要重点关注的特征,结果如下图所示:

```
#将宽数据类型转换为长数据类型,目的是方便后面画图

arr = [list(df["loan_default"]) * len(numerical_serial_feas)]

arr = [y for x in arr for y in x]

f = pd.melt(df,value_vars=numerical_serial_feas,var_name="var")

f["class"] = arr

#画多视图violin图

g = sns.FacetGrid(data=f, col="var",col_wrap=3, sharex=False, sharey=False)

g = g.map_dataframe(sns.violinplot,x="class",y="value",hue="class")
```


从图上可以看出很多特征的小提琴图呈"钉字型",这表明该特征的特征值都集中分布在某个很小的区间内;另外很多特征的class0的class1的小提琴图非常相似,这表明该特征并不存在显著的(能区分类别的)差异性。

3.2 离散型数据直方图

对于离散型数据,画出直方图,代码如下:

```
arr = [list(df["loan_default"]) * len(numerical_noserial_feas)]
arr = [y for x in arr for y in x]
f = pd.melt(df,value_vars=numerical_noserial_feas,var_name="var")
f["class"] = arr
g = sns.FacetGrid(data=f, col="var",col_wrap=2, sharex=False, sharey=False)
g =
g.map_dataframe(sns.histplot,x="value",hue="class",multiple="dodge",discrete=True,stat="density", common_norm=False)
```

结果如下:

根据图中显示的结果,我们发现所有的离散型特征都不具备很好的区分度。反应在图中就是蓝色的柱状图和橙色的柱状图十分相像。

3.3 特征相关度的热力图

使用 df.corr() 计算各个特征之间的pearson;接着使用 seaborn.heatmap 来可视化特征之间的相关度。

```
#查看特征之间的相关性
fig = plt.figure(figsize=(20,20))
sns.heatmap(df.corr(), square=True, cmap='coolwarm', annot_kws={'size': 14})
```

结果,如下图所示:

根据图中结果发现,有很多对特征的相关度非常高;于是我统计了相关度超过0.99,以及小于-0.99的特征对;结果如下:

```
#统计一些相关度非常高的特征对,后续可以仅保持一个特征 index = np.where(np.logical_or(df.corr() > 0.99,df.corr() <-0.99)) feature_pair = [(df.columns[i],df.columns[j]) for (i,j) in zip(*index) if i<j] feature_pair
```

4 模型训练和推理

4.1 逻辑回归模型

首先进行训练集和测试集划分,数据集中一共有120000条数据;划分100000条数据为训练集,20000 条数据为测试集

```
from sklearn.model_selection import train_test_split
X,y = df.iloc[:,1:-1],df.iloc[:,-1]
X_train,X_test,y_train,y_test =
train_test_split(df.iloc[:,1:-1],df.iloc[:,-1],test_size=20000,random_state=222,
stratify=y)
```

这边我设置了 stratify=y ,这条语句的作用在于保持训练集和测试集的类别分布与原来一致,测试集的类别分布为:

```
In [15]: np.bincount(y_test)
Out[15]: array([16468, 3532], dtype=int64)
```

首先测试最简单的逻辑回归模型,结果如下图

```
# test logistic regression
from sklearn.linear_model import LogisticRegression,LogisticRegressionCV
lr = LogisticRegressionCV(class_weight="balanced",scoring="f1_macro")
lr.fit(X_train,y_train)
y_lr_pred = lr.predict(X_test)
print(f"macro-f1 score: {metrics.f1_score(y_lr_pred,
y_test,average='macro'):.3f}")
print("confusion_matrix:")
print(confusion_matrix(y_lr_pred,y_test))
print("classification_report(y_lr_pred,y_test))
```

macro-f1的指标仅为0.447,需要注意的是因为训练数据存在类别不平衡的问题;所以我在设置分类时,将class_weight参数设置为"balanced",这样会一定程度上缓解类别不平衡的问题。

4.2 支持向量机模型

支持向量机也是一个非常经典的机器学习算法,它的主要思想是最大化分类间隔。

```
# test SVC
from sklearn.svm import SVC
clf = SVC(class_weight="balanced")
clf.fit(X_train,y_train)
y_svc_pred = clf.predict(X_test)
print(f"macro-f1 score: {metrics.f1_score(y_svc_pred,
y_test,average='macro'):.3f}")
print("confusion_matrix:")
print(confusion_matrix(y_svc_pred,y_test))
print("classification_report:")
print(classification_report(y_svc_pred,y_test))
```

同样是将class_weight设置成balanced,结果为

```
macro-f1 score: 0.457
confusion_matrix:
[[16429 3511]
[ 39
        21]]
classification_report:
           precision recall f1-score support
        0
               1.00
                      0.82
                                0.90
                                       19940
                       0.35
        1
               0.01
                                0.01
                                          60
                    0.82 0.90
avg / total 0.99
                                        20000
```

尽管设置了class_weight,但是SVM还是会非常倾向于给出"0"的预测结果,可以看出在类别为0的样本上,模型的查准率和召回率都很高。但是在类别为1的样本上,模型无论是查准率还是召回率都非常低,因为在2w个测试集中,模型只认为60个样本的类别为1,而实际上真实数量有4千左右。

4.3 随机森林模型

随机森林是集成学习的一种,它在决策树的基础上,通过随机采样部分数据和部分特征来达到模型集成的目的,有利于减少过拟合的风险。

```
rf0 = RandomForestClassifier(oob_score=True,
  random_state=222,class_weight="balanced")
  rf0.fit(X_train,y_train)
  print(f"oob_score: {rf0.oob_score_:.3f}")
  y_rf_pred = rf0.predict(X_test)
  print(f"macro-f1 score: {metrics.f1_score(y_rf_pred,
    y_test,average='macro'):.3f}")
  print("confusion_matrix:")
  print(confusion_matrix(y_rf_pred,y_test))
  print("classification_report(y_rf_pred,y_test))
```

随机森林的结果如下,和SVM模型一样,非常倾向于给出0的预测结果。macro-f1指标稍好于svm模型。

```
macro-f1 score: 0.479
confusion_matrix:
[[16230 3416]
      116]]
238
classification_report:
          precision recall f1-score support
              0.99
                     0.83
        0
                               0.90
                                      19646
              0.03
        1
                     0.33
                               0.06
                                        354
          0. 97 0. 82 0. 88
avg / total
                                      20000
```

4.4 xgboost模型

Xgboost是梯度提升树(GBDT)的一种实现,它的主要思路是boosting;组合多个弱分类器,通过boosting的方式组成一个强分类器。

```
import xgboost as xgb

model = xgb.XGBClassifier()

model.fit(X_train, y_train)

y_xgb_pred = model.predict(X_test)

print(f"macro-f1 score: {metrics.f1_score(y_xgb_pred,
 y_test,average='macro'):.3f}")

print("confusion_matrix:")

print(confusion_matrix(y_xgb_pred,y_test))

print("classification_report:")

print(classification_report(y_xgb_pred,y_test))
```

首先使用不带任何参数的xgboost拟合训练数据,结果如下:

```
macro-f1 score: 0.466
confusion_matrix:
[[16391 3479]
  77
        53]]
classification_report:
          precision recall f1-score support
             1.00
                     0.82
                            0.90
                                     19870
             0. 02
                          0.03
        1
                     0.41
                                      130
avg / total 0.99 0.82 0.90
                                     20000
```

这个结果与随机森林和SVM相差无几,考虑到类别不平衡的因素。与上述模型类似,xgboostClassifier中有一个参数 scale_pos_weight 可以调整类别权重,在本例中,尝试设置成类别0的数量与类别1数量之比。

```
size0,size1 = np.bincount(y_train)
model = xgb.XGBClassifier(scale_pos_weight=size0/size1)
```

再次训练xgboost模型,得到结果如下

```
macro-fl score: 0.541
confusion_matrix:
[[10419 1511]
[ 6049 2021]]
classification_report:
           precision recall f1-score support
        0
               0.63
                      0.87
                               0.73
                                      11930
                       0.25
        1
               0.57
                                0.35
                                        8070
avg / total 0.61 0.62 0.58 20000
```

macro-f1指标达到了0.541,在上述所有模型中最高。

4.5 交叉验证和参数搜索

由于测试集仅能片面反应模型的好坏,于是我采用5折交叉验证的方式提升指标结果的可靠性。同时对上述表现最佳的xgboost模型进行参数调优,采用 sklearn 的 Gridsearchcv 函数进行参数搜索,找出在交叉验证中表现最好的模型超参。首先是交叉验证:

```
from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=5,random_state=222)
```

StratifiedKFold相比于普通KFold的优势在于,划分测试集和训练集时保持了原来的类别比例。然后时参数搜索,首先用一个字典记录所有待搜索的参数:

```
scale_pos_weight = [1+(4.6-1)/3*i for i in range(5)] #[1.0, 2.2, 3.4, 4.6, 5.8]
max_depth = [4,5,6,7,8]
n_estimators = [50,100,150]
params =
dict(scale_pos_weight=scale_pos_weight,max_depth=max_depth,n_estimators=n_estimators)
```

- scale_pos_weight指类别权重,这里我给出了从1.0到5.8五种权重。
- max_depth指的是树的最大高度
- n_estimators指的是元分类器个数

然后进行参数搜索

```
base_xgb = xgb.XGBClassifier()
grid_clf = GridSearchCV(estimator = base_xgb, param_grid = params, cv =
skf,scoring="f1_macro",n_jobs=-1, verbose=4)
grid_clf.fit(X,y)
```

参数搜索的结果如下:

```
In [64]: grid_clf.best_score_
Out[64]: 0.5769158375556602

In [65]: grid_clf.best_params_
Out[65]: {'max_depth': 4, 'n_estimators': 100, 'scale_pos_weight': 3.4}

In [66]: grid_clf.best_index_
Out[66]: 7
```

经过简单的参数搜索后,模型的macro-f1指标来到了0.576超过了上述所有的模型。

4.6 测试集推理

首先依然是导入测试集,代码如下:

```
df_test = pd.read_csv("test_2.csv")
df_test = df_test.drop(unique_feas,axis=1)
X_test = df_test.iloc[:,1:-1]
y_test = df_test.iloc[:,-1]
print(X_test.shape)
print(y_test.shape)
```

使用最优的xgboost模型进行模型推理

```
y_pred = grid_clf.predict(X_test)
print(f"macro-f1 score: {metrics.f1_score(y_pred, y_test,average='macro'):.3f}")
print("confusion_matrix:")
print(confusion_matrix(y_pred,y_test))
print("classification_report:")
print(classification_report(y_pred,y_test))
```

最终的macro-f1指标,混淆矩阵,分类结果报告如下

macro-fl score: 0.571 confusion_matrix: [[19291 3271] [5356 2082]]

CLASSII	fication	report.

support	fl-score	recal1	precision	Classification
22562 7438	0. 82 0. 33	0. 86 0. 28	0. 78 0. 39	0 1
30000	0.70	0.71	0. 69	avg / total