Partial fractions

November 26th, 2024

Here are some key ideas from sections 5.6.

a) Here's a video on partial fraction decomposition.

.....

Trig practice: Find all values of \sin , \cos , and \tan for for the following values of θ : $0, \pi/6, \pi/4, \pi/3, \pi/2$.

Problem 1: (Stewart 5.6) This problem will walk you through evaluating $\int \frac{x+5}{x^2+x-2} dx$ using **partial fractions**.

1. Factor the denominator! You should get (x - a)(x - b), so find a and b.

2. Each linear term will be the denominator of a fraction in your partial fraction decomposition. You should get something that looks like

$$\frac{x+5}{x^2+x-2} = \frac{A}{x-a} + \frac{B}{x-b}.$$

Find *A* and *B*.

3. Integrate your partial fraction decomposition term by term! Don't forget to add a constant *C*.

4. Give yourself a well-earned pat on the back.

My Attempt:

(1)
$$\chi^{2} + \chi - \lambda = (\chi - 1)(\chi + 2)$$

(2) $\frac{\chi + S}{\chi^{2} + \chi - 2} = \frac{A}{\chi - 1} + \frac{B}{\chi + 2}$

$$= \frac{A(\chi + 2)}{(\chi - 1)(\chi + 2)} + \frac{B(\chi - 1)}{(\chi + 2)(\chi - 1)}$$

$$= \frac{A(\chi + 2)}{(\chi - 1)(\chi + 2)} + \frac{B(\chi - 1)}{(\chi + 2)(\chi - 1)}$$

$$= \frac{A(\chi + 2)}{(\chi - 1)(\chi + 2)} + \frac{B(\chi - 1)}{(\chi + 2)(\chi - 1)}$$

$$= \frac{\chi(A + B) + 2A + B}{\chi^{2} + \chi - 2}$$
Thus $\frac{\chi + S}{\chi^{2} + \chi - 2} = \frac{q}{\chi + 1} - \frac{3}{\chi + 2}$
(3) $\frac{\chi + S}{\chi^{2} + \chi - 2} = \frac{1}{\chi + 1} - \frac{3}{\chi + 2}$

(a)
$$\int \frac{x+5}{x^2+x-2} dx = \int \frac{4}{x-1} dx - \int \frac{3}{x+2} dx$$

$$= 4 \ln |x-1| - 5 \ln |x+2| + C$$

Problem 2: (Stewart 5.6) Write each fraction as a sum of partial fractions.

a)
$$\frac{1}{x^2-1}$$
;

b)
$$\frac{2}{x^2 + x}$$
;

c)
$$\frac{2-x}{x^2-2x+8}$$
; d) $\frac{x}{x^2+x-2}$.

$$d) \frac{x}{x^2 + x - 2}.$$

My Attempt:

(a)
$$x^2 - l = (x+1)(x-1)$$

$$\frac{1}{x^2 - l} = \frac{A}{x+1} + \frac{B}{x-1} = \frac{A(x-1)}{(x+1)(x-1)} + \frac{B(x+1)}{(x-1)(x-1)} = \frac{x(A+B) + (-A+B)}{x^2 - 1}$$
Thus $A + B = 0 \implies A = -B$

$$-A + B = 1 \implies A = -B$$

$$-A + B = 1 \implies A = -B$$

$$-A+B=1 \implies aB=1 \implies B=\frac{1}{2} \implies A=\frac{1}{2}$$
Then $\frac{1}{x^2-1} = \frac{-1}{2(x+1)} + \frac{1}{2(x-1)}$

(b)
$$\chi^{2} + \chi = \chi (\chi + 1)$$

 $\frac{2}{\chi^{2} + \chi} = \frac{A}{\chi} + \frac{B}{\chi + 1} = \frac{A(\chi + 1)}{\chi (\chi + 1)} + \frac{B\chi}{\chi (\chi + 1)} = \frac{\chi (A + B) + A}{\chi (\chi + 1)}$
Thus $A = 2$
 $A + B = 0 \Rightarrow B = -2$
then $\frac{2}{\chi^{2} + \chi} = \frac{2}{\chi} - \frac{2}{\chi + 1}$

(i)
$$x^{1}-2x-8 = (x-4)(x+2)$$

$$\frac{2-x}{x^{2}-2x-8} = \frac{A}{x-4} + \frac{B}{x+2} = \frac{A(x+2)}{(x-4)(x+2)} + \frac{B(x-4)}{(x-4)(x+2)} = \frac{x(A+B)+2A-4B}{(x-4)(x-2)}$$
Thus $A+B=-1 \Rightarrow B=-1-A$

$$2A-4B=2 \Rightarrow A-2B=1 \Rightarrow A-2(-1-A)=1 \Rightarrow A+2+2A=1 \Rightarrow 3A=-1 \Rightarrow A=-\frac{1}{3}$$
Then $B=-1+\frac{1}{3}=-\frac{2}{3}$
So $\frac{2-x}{x^{2}-2x-8} = \frac{-1}{3(x-4)} - \frac{2}{3(x+2)}$

(a)
$$x^{2}+x-2 = (x-1)(x+2)$$

Then $\frac{x}{x^{2}+x-2} = \frac{A}{x-1} + \frac{B}{x+2} = \frac{A(x+2) + B(x-1)}{(x-1)(x-2)} = \frac{x(A+B) + 2A - B}{(x-1)(x-2)}$
Then $AA - B = 0 \implies B = 2A$
 $A+B=1 \implies A+BA=1 \implies A = \frac{y_{3}}{x^{2}+x^{2}} \implies B = \frac{2y_{3}}{x^{2}}$

Problem 3: Find the antiderivative of each fraction in the previous problem using the decompositions you found.

My Attempt:

a)
$$\int \left(\frac{-1}{2(x+1)} + \frac{1}{2(x-1)}\right) dx = \frac{-1}{2} |n| |x+1| + \frac{1}{2} |n| |x-1| + C$$

b)
$$\int \left(\frac{-1}{3(x-4)} - \frac{2}{3(x+2)}\right) dx = \frac{-1}{3} \ln |x-4| - \frac{2}{3} \ln |x+2| + C$$

c)
$$\int \left(\frac{-1}{3(x-4)} - \frac{2}{3(x+2)}\right) dx = \frac{-1}{3} \ln |x-4| - \frac{2}{3} \ln |x+2| + C$$

d)
$$\int \left(\frac{1}{3(X-1)} + \frac{2}{3(X+2)}\right) dX = \frac{1}{3} \ln |X-1| + \frac{2}{3} \ln |X+2| + C$$

Problem 4: (Stewart 5.6) Evaluate the following integrals.

a)
$$\int \frac{ax}{x^2 - bx} \, dx;$$

b)
$$\int \frac{1}{(x+a)(x+b)} dx;$$

c)
$$\int_0^1 \frac{2}{2x^2 + 3x + 1} dx$$
.

My Attempt:

Solution:

(b) Decompose into partial fractions

Then
$$\frac{1}{(x+a)(x+b)} = \frac{1}{(b-a)(x+a)} - \frac{1}{(b-a)(x+b)}$$

$$\int \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \ln|x+a| - \frac{1}{b-a} \ln|x+b| + c$$

@ Decompose into partial fractions

$$\int \frac{2}{2x^{2}+3x+1} dx = \int \frac{4}{2x+1} dx - \int \frac{2}{x+1} dx$$

$$= 2 \ln |2x+1| - 2 \ln |x+1| + C$$
Then
$$\left[2 \ln |2x+1| - 2 \ln |x+1| \right]_{0}^{1} = -2 \ln \left(\frac{2}{3} \right)$$

Problem 5: (Stewart 5.6) Use both the substitution rule and partial fractions to evaluate the following integrals.

a)
$$\int_{0}^{1} 6 \frac{\sqrt{x}}{x-4} dx$$
;

b) $\int \frac{\cos x}{\sin^2 x + \sin x} dx.$

My Attempt:

Solution:

(a) Let
$$u = \sqrt{x}$$

$$\int_{1}^{10} \frac{\sqrt{x}}{x-4} dx = 2 \int_{3}^{4} \left(1 + \frac{q}{u^{2}-4}\right) du$$

$$= 2 + 6 \int_{3}^{4} \frac{du}{(u+2)(u-2)}$$

$$= 2 + 8 \int_{3}^{4} \left(\frac{1}{u(u+2)} + \frac{1}{4(u-2)}\right) du$$

(a)
$$u = \sin x$$
 $du = \cos x dx$

$$\int \frac{\cos x dx}{\sin^4 x + \sin x} = \int \frac{du}{u^2 + u}$$

$$= \int \left(\frac{1}{u} - \frac{1}{u + 1} \right) du$$

$$= \ln |u| - \ln |u + 1| + C$$

$$= \ln |\sin x| - \ln |\sin x + 1| + C$$

Challenge problem: Evaluate
$$\int \frac{x^2 - 5x + 16}{(2x+1)(x-2)^2} dx$$
. Set fraction = to $\frac{A}{2x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$. A = 3, B = -1, C = 2