第八讲同态基本定理

陈建文

November 14, 2022

定义1. 设 (G_1, \circ) 与 $(G_2, *)$ 为两个群,如果存在一个从 G_1 到 G_2 的映射 ϕ ,使得 $\forall a, b \in G_1$,

$$\phi(a \circ b) = \phi(a) * \phi(b)$$

则称 G_1 与 G_2 同态, ϕ 称为从 G_1 到 G_2 的一个同态(homomorphism)。如果同态 ϕ 为满射,则称 ϕ 为从 G_1 到 G_2 的一个满同态,此时称 G_1 与 G_2 为满同态,并记为 $G_1 \sim G_2$ 。类似的,如果同态 ϕ 为单射,则称 ϕ 为单同态。

定理1. 设 (G_1, \circ) 与 $(G_2, *)$ 为两个群, e_1 和 e_2 分别为其单位元, ϕ 为从 G_1 到 G_2 的 同态,则

$$\phi(e_1) = e_2$$

 $\forall a \in G_1 \phi(a^{-1}) = (\phi(a))^{-1}$

证明. 由 $\phi(e_1) = \phi(e_1 \circ e_1) = \phi(e_1) * \phi(e_1)$ 知 $\phi(e_1) = e_2 \circ \forall a \in G_1, \phi(a^{-1}) * \phi(a) = \phi(a^{-1} \circ a) = \phi(e_1) = e_2, 从而(\phi(a))^{-1} = \phi(a^{-1}) \circ$

定理2. 设 (G_1, \circ) 为一个群, $(G_2, *)$ 为一个代数系。如果存在一个满射 $\phi: G_1 \to G_2$ 使得 $\forall a, b \in G_1$

$$\phi(a \circ b) = \phi(a) * \phi(b)$$

则 $(G_2,*)$ 为一个群。

证明. 验证 $\forall x, y, z \in G_2, (x*y)*z = x*(y*z)$: 由 ϕ 为满射知 $\exists a, b, c \in G_1$ 使得 $\phi(a) = x, \phi(b) = y, \phi(c) = z$, 从而 $(x*y)*z = (\phi(a)*\phi(b))*\phi(c) = \phi(a \circ b)*\phi(c) = \phi((a \circ b) \circ c)$, $x*(y*z) = \phi(a)*(\phi(b)*\phi(c)) = \phi(a)*\phi(b \circ c) = \phi(a \circ (b \circ c))$, (x*y)*z = x*(y*z), 这验证了在 G_2 中*运算满足结合律。

 $\forall x \in G_2$,由 ϕ 为满射知 $\exists a \in G_1$ 使得 $\phi(a) = x$,于是 $\phi(e) * x = \phi(e) * \phi(a) = \phi(e \circ a) = \phi(a) = x \circ$

 $\forall x \in G_2$,由 ϕ 为满射知 $\exists a \in G_1$ 使得 $\phi(a) = x$,于是 $\phi(a^{-1}) * \phi(a) = \phi(a^{-1} \circ a) = \phi(e_1) \circ$

例. 设 $n \in Z^+$, $Z'_n = \{0, 1, \cdots, n-1\}$, 在 Z'_n 上定义运算" \oplus "如下: $i \oplus j = (i+j) \bmod n$, 令 $f: Z \to Z'_n$, $\forall m \in Z, f(m) = m \bmod n$, 则f为从Z到 Z'_n 的满射,并且 $\forall a, b \in Z$, $f(a+b) = f(a) \oplus f(b)$,从而 (Z'_n, \oplus) 为一个群。

证明. f显然为从Z到 Z'_n 的满射。要证 $\forall a,b \in Z$, $f(a+b) = f(a) \oplus f(b)$,就是要证 $(a+b) \bmod n = ((a \bmod n) + (b \bmod n)) \bmod n$,此式显然成立。

定理3. 设 ϕ 为从群(G_1, \circ)到群($G_2, *$)的同态,则

- (1) 如果H为 G_1 的子群,那么 $\phi(H)$ 为 G_2 的子群;
- (2) 如果H为 G_2 的子群,那么 $\phi^{-1}(H)$ 为 G_1 的子群;
- (3) 如果N为 G_1 的正规子群,那 $\Delta_{\phi}(N)$ 为 $\phi(G_1)$ 的正规子群;
- (4) 如果N为 $\phi(G_1)$ 的正规子群,那么 $\phi^{-1}(N)$ 为 G_1 的正规子群。

证明. 以下设 G_1 的单位元为 e_1 , G_2 的单位元为 e_2 。

(1) $e_2 = \phi(e_1) \in \phi(H)$, 从而 $\phi(H)$ 非空。

 $\forall x, y \in \phi(H), \exists a, b \in H$ 使得 $x = \phi(a), y = \phi(b), 则 x * y^{-1} = \phi(a) * \phi(b)^{-1} = \phi(a) * \phi(b^{-1}) = \phi(a \circ b^{-1}) \in \phi(H) \circ$

以上验证了 $\phi(H)$ 为 G_2 的子群。

(2) 由 $\phi(e_1) = e_2 \in H$ 知 $e_1 \in \phi^{-1}(H)$,从而 $\phi^{-1}(H)$ 非空。

以下证明 $\forall a, b \in \phi^{-1}(H), a \circ b^{-1} \in \phi^{-1}(H), 即 \phi(a \circ b^{-1}) \in H$ 。

 $\forall a,b \in \phi^{-1}(H), \ \ \text{则} \phi(a) \in H\,, \ \ \phi(b) \in H\,, \ \ \text{从而} \phi(a \circ b^{-1}) = \phi(a) * \phi(b^{-1}) = \phi(a) * \phi(b^{-1}) = \phi(a) * \phi(b)^{-1} \in H\,, \ \ \text{于是} a \circ b^{-1} \in \phi^{-1}(H) \circ$

这验证了 $\phi^{-1}(H)$ 为 G_1 的子群。

 $(3) \phi(N)$ 显然为 $\phi(G_1)$ 的子群。

以下证明 $\forall h \in \phi(N), \forall g \in \phi(G_1), g * h * g^{-1} \in \phi(N)$ 。

 $\forall h \in \phi(N), \ \exists b \in N 使得 h = \phi(b), \ \forall g \in \phi(G_1), \exists a \in G_1, \ 使得 g = \phi(a) \circ \\ \exists E, \ g*h*g^{-1} = \phi(a)*\phi(b)*\phi(a)^{-1} = \phi(a \circ b)*\phi(a^{-1}) = \phi(a \circ b \circ a^{-1}) \in \phi(N), \\ \exists L \in \phi(N) \to G_2 \text{ 的正规子群} \circ$

(4) 由 (2) 知 $\phi^{-1}(N)$ 为 G_1 的子群。

要证 $\phi^{-1}(N)$ 为 G_1 的正规子群,就是要证 $\forall g \in \phi^{-1}(N), \forall a \in G_1, a \circ g \circ a^{-1} \in \phi^{-1}(N), \ \ \overline{m}\phi(a \circ g \circ a^{-1}) = \phi(a) * \phi(g) * \phi(a^{-1}) = \phi(a) * \phi(g) * \phi(a)^{-1} \in N, \ \ \overline{m}a \circ g \circ a^{-1} \in \phi^{-1}(N), \ \ \text{结论得证}$

定义2. 设 ϕ 为从群 (G_1, \circ) 到群 $(G_2, *)$ 的一个同态, e_2 为 G_2 的单位元,则 G_1 的子群 $\phi^{-1}(\{e_2\})$ 称为同态 ϕ 的核,记为 $Ker\phi \circ \phi(G_1)$ 称为在 ϕ 下 G_1 的同态像。

定理4. 设 ϕ 为从群 (G_1, \circ) 到群 $(G_2, *)$ 的一个同态,则 $Ker \phi$ 为群 G_1 的正规子群。

证明. 设群 G_2 的单位元为 e_2 ,由 $\{e_2\}$ 为群 $\phi(G_1)$ 的正规子群知, $Ker\phi = \phi^{-1}(\{e_2\})$ 为 G_1 的正规子群。

П

定理5. 设N为G的一个正规子群, ϕ 为从G到G/N的一个映射, $\forall x \in G\phi(x) = xN$,则 ϕ 为从G到G/N的一个满同态, $Ker\phi = N$ 。

证明. $\forall x, y \in G, \phi(xy) = (xy)N = (xN)(yN) = \phi(x)\phi(y)$,这验证了 ϕ 为从G到G/N的一个同态。

 ϕ 显然为从G到G/N的满射,因此 ϕ 为从G到G/N的满同态。

 $\forall g \in G, g \in Ker\phi \Leftrightarrow \phi(g) = N \Leftrightarrow gN = N \Leftrightarrow g \in N$

定理6 (群的同态基本定理). 设 ϕ 为从群 (G_1, \circ) 到群 $(G_2, *)$ 的同态,则 $G_1/Ker\phi \cong \phi(G_1)$ 。

证明. 记 $K = Ker\phi \circ \diamondsuit f: G_1/K \to \phi(G_1), \ \forall gK \in G_1/K, f(gK) = \phi(g) \circ$ 设 G_1 的单位元为 e_1 , G_2 的单位元为 $e_2 \circ \forall g_1, g_2 \in G_1$,如果 $g_1K = g_2K$,则 $g_1 = g_1e_1 \in g_1K = g_2K$,从而 $\exists x \in K$ 使得 $g_1 = g_2 \circ x$,于是 $\phi(g_1) = \phi(g_2 \circ x) = \phi(g_2) * e_2 = \phi(g_2)$,所以 $f(g_1K) = f(g_2K)$,这验证了f为映射。 f为单射,这是因为 $\forall g_1K, g_2K \in G_1/K$,如果 $f(g_1K) = f(g_2K)$,则 $\phi(g_1) = \phi(g_2) \circ$ 设 $g_1 = g_2 \circ x$,这里 $x \in G_1 \circ$ 于是, $\phi(g_1) = \phi(g_2) * \phi(x)$,由 $\phi(g_1) = \phi(g_2)$ 的 $\phi(x) = e_2$,所以 $x \in K \circ$ 因此, $g_1K = (g_2 \circ x)K = g_2(xK) = g_2K \circ f$ 为进制 这是因为 $f(g_1K) = g_2K \circ f$

f为满射,这是因为 $\forall g_2 \in \phi(G_1)$, $\exists g_1 \in G_1$ 使得 $\phi(g_1) = g_2$,于是 $f(g_1K) = \phi(g_1) = g_2$ 。

 $\forall g_1K, g_2K \in G_1/K$, $f((g_1K)(g_2K)) = f((g_1 \circ g_2)K) = \phi(g_1 \circ g_2) = \phi(g_1) * \phi(g_2) = f(g_1K) * f(g_2K)$, 因此f为从 G_1/K 到 $\phi(G_1)$ 的同构。

课后作业题:

练习1. 设 (G, \circ) 为m阶循环群, (\bar{G}, \cdot) 为n阶循环群,试证: $G \sim \bar{G}$ 当且仅当 $n|m \circ$ 证明. 由 $G \sim \bar{G}$ 往证n|m :

设 ϕ 为从G到 \bar{G} 的一个满同态,由群同态基本定理, $G/Ker\phi\cong \bar{G}$,于是 $|G/Ker\phi|=|\bar{G}|$ 。由拉格朗日定理, $|G|=|G/Ker\phi||Ker\phi|$,这说明 $|G/Ker\phi|||G|$,从而 $|\bar{G}|||G|$,即n|m。

设n|m, 往证 $G \sim \bar{G}$:

设 $G=(a), \bar{G}=(b)$ 。

 $\diamondsuit \phi: G \to \bar{G}, \ \forall i \in \mathbb{Z}, \ \phi(a^i) = b^i \circ$

 $\forall i,j\in Z, i\neq j$,如果 $a^i=a^j$,则 $a^{j-i}=e$,从而m|(j-i),由n|m知n|(j-i),于是 $b^{j-i}=e$,所以 $b^i=b^j$,这验证了映射定义的合理性。

 $\forall i, j \in Z, \ \phi(a^i \circ a^j) = \phi(a^{i+j}) = b^{i+j} = b^i \cdot b^j = \phi(a^i) \cdot \phi(a^j)$ 。这证明了 ϕ 为从G到 \bar{G} 的同态, ϕ 显然为满同态,于是 $G \sim \bar{G}$ 。

练习2. 设G为一个循环群,H为群G的子群,试证: G/H也为循环群。

证明. 由G为循环群知G为交换群,从而H为G的正规子群。设G=(a),以下证明G/H=(aH),从而G/H为循环群。

 $\forall x \in G/H$,存在整数i使得 $x = a^i H = (aH)^i \in (aH)$,于是 $G/H \subseteq (aH)$; $\forall x \in (aH)$,存在整数i使得 $x = (aH)^i = a^i H \in G/H$,于是 $(aH) \subseteq G/H$ 。以上证明了G/H = (aH)。