7.5 Black Magic

Contents 8 Others 25 8.1 Find max tangent(x,y is increasing) 1 Basic 1.1 Increase Stack Size 1 Basic 1.1 Increase Stack Size 1.4 python-related //stack resize (linux) 2.1 ISAP #include <sys/resource.h> 2.2 MinCostFlow void increase_stack_size() 2.3 Dinic const rlim_t ks = 64*1024*1024; 2.4 Kuhn Munkres 最大完美二分匹配 struct rlimit rl; 2.5 Directed MST . . . int res=getrlimit(RLIMIT_STACK, &rl); **if**(res==0){ if(rl.rlim_cur<ks){</pre> rl.rlim_cur=ks; res=setrlimit(RLIMIT_STACK, &rl); 3 Math } } } 1.2 Misc 編譯參數:-std=c++14 -Wall -Wshadow (-fsanitize= undefined) //check special cases for example (n==1) //check size arrays #include <random> 3.10Chinese Remainder mt19937 gen(0x5EED); 3.12Josephus Problem int randint(int lb, int ub) { return uniform_int_distribution<int>(lb, ub)(gen); } #define SECs ((double)clock() / CLOCKS_PER_SEC) 3.17Prefix Inverse . . struct KeyHasher { 3.18 Roots of Polynomial 找多項式的根 size_t operator()(const Key& k) const { return k.first + k.second * 100000; typedef unordered_map<Key,int,KeyHasher> map_t; __builtin_popcountll // 換成二進位有幾個1 1.3 check 4.5 Intersection of 2 segments 11 4.6 Intersection of circle and segment for ((i=0;;i++)) 4.7 Intersection of 2 circles 11 do 11 echo "\$i" 11 python3 gen.py > input 12 ./ac < input > ac.out 13 ./wa < input > wa.out diff ac.out wa.out || break done 14 1.4 python-related 4.17Heart of Triangle int(eval(num.replace("/","//"))) 5.3 Strongly Connected Component from fractions import Fraction 15 from decimal import Decimal, getcontext 5.5 Maximum General graph Matching 16 5.6 Minimum General Weighted Matching 16 getcontext().prec = 250 # set precision 16 18 itwo = Decimal(0.5)5.9 BCC based on vertex 18 two = Decimal(2)19 N = 20019 def angle(cosT): 5.14差分約束 """given cos(theta) in decimal return theta""" for i in range(N): 6 String 20 cosT = ((cosT + 1) / two) ** itwo sinT = (1 - cosT * cosT) ** itwo return sinT * (2 ** N) 20 21 pi = angle(Decimal(-1))2 flow 6.8 ZValue Palindrome 22 2.1 ISAP 6.9 Smallest Rotation 23 6.10Cyclic LCS 23 struct Maxflow { Data Structure static const int MAXV = 20010; static const int INF = 1000000; struct Edge { 24 int v, c, r; Edge(int _v, int _c, int _r):

```
v(_v), c(_c), r(_r) {}
  int s, t;
  vector<Edge> G[MAXV*2];
  int iter[MAXV*2], d[MAXV*2], gap[MAXV*2], tot;
  void init(int x) {
    tot = x+2;
    s = x+1, t = x+2;
    for(int i = 0; i <= tot; i++) {</pre>
       G[i].clear()
       iter[i] = d[i] = gap[i] = 0;
  } }
  void addEdge(int u, int v, int c) {
   G[u].push_back(Edge(v, c, SZ(G[v]) ));
   G[v].push_back(Edge(u, 0, SZ(G[u]) - 1));
  int dfs(int p, int flow) {
    if(p == t) return flow;
    for(int &i = iter[p]; i < SZ(G[p]); i++) {</pre>
       Edge &e = G[p][i]
       if(e.c > 0 \& d[p] == d[e.v]+1)
         int f = dfs(e.v, min(flow, e.c));
         if(f) {
           G[e.v][e.r].c += f;
           return f;
    if((--gap[d[p]]) == 0) d[s] = tot;
    else {
       d[p]++;
      iter[p] = 0;
       ++gap[d[p]];
    return 0;
  int solve() {
    int res = 0;
    gap[0] = tot;
    for(res = 0; d[s] < tot; res += dfs(s, INF));</pre>
    return res;
  void reset() {
    for(int i=0;i<=tot;i++) {</pre>
       iter[i]=d[i]=gap[i]=0;
} } flow;
```

2.2 MinCostFlow

```
struct MinCostMaxFlow{
typedef int Tcost;
  static const int MAXV = 20010;
  static const int INFf = 1000000;
  static const Tcost INFc = 1e9;
  struct Edge{
     int v, cap;
     Tcost w;
     int rev
    Edge(){}
     Edge(int t2, int t3, Tcost t4, int t5)
     : v(t2), cap(t3), w(t4), rev(t5) {}
  int V, s, t;
vector<Edge> g[MAXV];
  void init(int n, int _s, int _t){
    V = n; S = _S; t = _t;
for(int i = 0; i <= V; i++) g[i].clear();
  void addEdge(int a, int b, int cap, Tcost w){
  g[a].push_back(Edge(b, cap, w, (int)g[b].size()));
  g[b].push_back(Edge(a, 0, -w, (int)g[a].size()-1));
  Tcost d[MAXV];
  int id[MAXV], mom[MAXV];
  bool inqu[MAXV];
  queue<int> q;
  pair<int,Tcost> solve(){
  int mxf = 0; Tcost mnc = 0;
    while(1){
       fill(d, d+1+V, INFc);
       fill(inqu, inqu+1+V, 0);
       fill(mom, mom+1+V, -1);
       mom[s] = s;
```

```
d[s] = 0;
        q.push(s); inqu[s] = 1;
        while(q.size()){
          int u = q.front(); q.pop();
          inqu[u] = 0;
          for(int i = 0; i < (int) g[u].size(); i++){</pre>
             Edge &e = g[u][i];
             int v = e.v
             if(e.cap > 0 \& d[v] > d[u]+e.w){
               d[v] = d[u] + e.w;
               mom[v] = u;
               id[\bar{v}] = i;
               if(!inqu[v]) q.push(v), inqu[v] = 1;
        } } }
        if(mom[t] == -1) break;
        int df = INFf;
        for(int u = t; u != s; u = mom[u])
  df = min(df, g[mom[u]][id[u]].cap);
for(int u = t; u != s; u = mom[u]){
          Edge &e = g[mom[u]][id[u]];
          e.cap
          g[e.v][e.rev].cap += df;
       mxf += df;
       mnc += df*d[t];
      return {mxf,mnc};
} }flow;
2.3 Dinic
```

```
const int MXN = 10000;
struct Dinic{
  struct Edge{ int v,f,re; };
  int n,s,t,level[MXN];
  vector<Edge> E[MXN];
  void init(int _n, int _s, int _t){
    n = _n;    s = _s;    t = _t;
    for (int i=0; i<n; i++) E[i].clear();</pre>
  void add_edge(int u, int v, int f){
    E[u].PB(\{v,f,SZ(E[v])\})
    E[v].PB({u,0,SZ(E[u])-1});
  bool BFS(){
    for (int i=0; i<n; i++) level[i] = -1;</pre>
    queue<int> que;
    que.push(s)
    level[s] = 0;
    while (!que.empty()){
      int u = que.front(); que.pop();
      for (auto it : E[u]){
  if (it.f > 0 && level[it.v] == -1){
           level[it.v] = level[u]+1;
           que.push(it.v);
    return level[t] != -1;
  int DFS(int u, int nf){
    if (u == t) return nf;
    int res = 0;
    for (auto &it : E[u]){
      if (it.f > 0 && level[it.v] == level[u]+1){
         int tf = DFS(it.v, min(nf,it.f));
         res += tf; nf -= tf; it.f -= tf;
         E[it.v][it.re].f += tf;
         if (nf == 0) return res;
    if (!res) level[u] = -1;
    return res;
  int flow(int res=0){
    while ( BFS() )
      res += DFS(s,2147483647);
    return res;
} }flow;
```

Kuhn Munkres 最大完美二分匹配

```
struct KM{ // max weight, for min negate the weights
  static const int MXN = 2001; // 1-based
  static const ll INF = 0x3f3f3f3f;
```

```
int n, mx[MXN], my[MXN], pa[MXN];
ll g[MXN][MXN], lx[MXN], ly[MXN], sy[MXN];
  bool vx[MXN], vy[MXN];
  void init(int _n) {
     for(int i=1; i<=n; i++) fill(g[i], g[i]+n+1, 0);</pre>
  void addEdge(int x, int y, ll w) \{g[x][y] = w;\}
  void augment(int y) {
     for(int x, z; y; y = z)
x=pa[y], z=mx[x], my[y]=x, mx[x]=y;
  void bfs(int st) {
     for(int i=1; i<=n; ++i) sy[i]=INF, vx[i]=vy[i]=0;
queue<int> q; q.push(st);
     for(;;) {
       while(q.size()) {
  int x=q.front(); q.pop(); vx[x]=1;
  for(int y=1; y<=n; ++y) if(!vy[y]){</pre>
            ll t = lx[x]+ly[y]-g[x][y];
            if(t==0){
               pa[y]=x;
               if(!my[y]){augment(y);return;}
               vy[y]=1, q.push(my[y]);
            }else if(sy[y]>t) pa[y]=x,sy[y]=t;
       } }
       11 cut = INF;
       for(int y=1; y<=n; ++y)</pre>
          if(!vy[y]&&cut>sy[y]) cut=sy[y];
       for(int j=1; j<=n; ++j){
  if(vx[j]) lx[j] -= cut;
  if(vy[j]) ly[j] += cut;</pre>
          else sy[j] -= cut;
        for(int y=1; y<=n; ++y) if(!vy[y]&&sy[y]==0){</pre>
          if(!my[y]){augment(y); return;}
          vy[y]=1, q.push(my[y]);
  ll solve(){
     fill(mx, mx+n+1, 0); fill(my, my+n+1, 0);
     fill(ly, ly+n+1, 0); fill(lx, lx+n+1, -INF);
     for(int x=1; x<=n; ++x) for(int y=1; y<=n; ++y)</pre>
       lx[x] = max(lx[x], g[x][y]);
     for(int x=1; x<=n; ++x) bfs(x);</pre>
     11 ans = 0;
     for(int y=1; y<=n; ++y) ans += g[my[y]][y];
     return ans:
} }graph;
```

2.5 Directed MST

```
/* Edmond's algoirthm for Directed MST
 * runs in O(VE) */
const int MAXV = 10010;
const int MAXE = 10010;
const int INF = 2147483647;
struct Edge{
  int u, v, c;
  Edge(int x=0, int y=0, int z=0) : u(x), v(y), c(z){}
int V, E, root;
Edge edges[MAXE]
inline int newV(){ return ++ V; }
inline void addEdge(int u, int v, int c)
{ edges[++E] = Edge(u, v, c); }
bool con[MAXV];
int mnInW[MAXV], prv[MAXV], cyc[MAXV], vis[MAXV];
inline int DMST(){
  fill(con, con+V+1, 0);
  int r1 = 0, r2 = 0;
  while(1){
    fill(mnInW, mnInW+V+1, INF);
    fill(prv, prv+V+1, -1);
    REP(i, 1, E)
       int u=edges[i].u, v=edges[i].v, c=edges[i].c;
      if(u != v && v != root && c < mnInW[v])</pre>
        mnInW[v] = c, prv[v] = u;
    fill(vis, vis+V+1, -1);
    fill(cyc, cyc+V+1, -1);
    r1 = 0;
    bool jf = 0;
```

```
REP(i, 1, V){
  if(con[i]) continue;
    if(prv[i] == -1 && i != root) return -1;
    if(prv[i] > 0) r1 += mnInW[i];
    for(s = i; s != -1 && vis[s] == -1; s = prv[s])
      vis[s] = i;
    if(s > 0 \& vis[s] == i){
        // get a cycle
       jf = 1; int v = s;
       do{
         cyc[v] = s, con[v] = 1;
         r2 += mnInW[v]; v = prv[v];
       }while(v != s);
       con[s] = 0;
  if(!jf) break ;
REP(i, 1, E){
    int &u = edges[i].u;
    int &v = edges[i].v;
    if(cyc[v] > 0) edges[i].c -= mnInW[edges[i].v];
    if(cyc[u] > 0) edges[i].u = cyc[edges[i].u];
    if(cyc[v] > 0) edges[i].v = cyc[edges[i].v];
if(u == v) edges[i--] = edges[E--];
return r1+r2;
```

2.6 SW min-cut (不限 S-T 的 min-cut)

```
// global min cut
struct SW{ // 0(V^3)
  static const int MXN = 514;
  int n,vst[MXN],del[MXN]:
  int edge[MXN][MXN],wei[MXN];
  void init(int _n){
    n = _n; FZ(edge); FZ(del);
  void addEdge(int u, int_v, int w){
    edge[u][v] += w; edge[v][u] += w;
  void search(int &s, int &t){
    FZ(vst); FZ(wei);
    s = t = -1;
    while (true){
      int mx=-1, cur=0;
for (int i=0; i<n; i++)</pre>
         if (!del[i] && !vst[i] && mx<wei[i])</pre>
      cur = i, mx = wei[i];
if (mx == -1) break;
      vst[cur] = 1;
      s = t; t = cur;
      for (int i=0; i<n; i++)
         if (!vst[i] && !del[i]) wei[i] += edge[cur][i];
    }
  int solve(){
    int res = 2147483647;
for (int i=0,x,y; i<n-1; i++){
      search(x,y);
      res = min(res,wei[y]);
       del[y] = 1;
       for (int j=0; j<n; j++)
         edge[x][j] = (edge[j][x] += edge[y][j]);
    return res;
  }
}graph;
```

2.7 Max flow with lower/upper bound

```
out[ l[ i ] ] += a[ i ];
flow.addEdge( l[ i ] , r[ i ] , b[ i ] - a[ i ] );
// flow from l[i] to r[i] must in [a[ i ], b[ i ]]
int nd = 0;
for( int i = 1 ; i <= n ; i ++ ){
  if( in[ i ] < out[ i ] ){
    flow.addEdge( i , flow.t , out[ i ] - in[ i ] );
    nd += out[ i ] - in[ i ];
}</pre>
   if( out[ i ] < in[ i ] )</pre>
     flow.addEdge(flow.s , i , in[i] - out[i]);
// original sink to source
flow.addEdge( n , 1 , INF );
if( flow.maxflow() != nd )
  // no solution
  return -1:
int ans = flow.G[ 1 ].back().c; // source to sink
flow.G[1].back().c = flow.G[n].back().c = 0;
// take out super source and super sink
for( size_t i = 0 ; i < flow.G[ flow.s ].size() ; i</pre>
   flow.G[flow.s][i].c = 0;
  Edge &e = flow.\overline{G}[flow.s][i];
  flow.G[e.v][e.r].c = 0;
for( size_t i = 0 ; i < flow.G[ flow.t ].size() ; i</pre>
  ++ ){
flow.G[ flow.t ][ i ].c = 0;
Edge &e = flow.G[ flow.t ][ i ];
  flow.G[e.v][e.r].c = 0;
flow.addEdge( flow.s , 1 , INF
flow.addEdge( n , flow.t , INF );
flow.reset();
return ans + flow.maxflow();
```

2.8 HLPPA (稠密圖 flow)

```
template <int MAXN, class T = int>
struct HLPP {
  const T INF = numeric_limits<T>::max();
  struct Edge {
    int to, rev; T f;
  int n, s, t;
  vector<Edge> adj[MAXN];
  deque<int> lst[MAXN]
  vector<int> gap[MAXN];
  int ptr[MAXN];
  T ef[MAXN];
  int h[MAXN], cnt[MAXN], work, hst=0/*highest*/;
 void init(int _n, int _s, int _t) {
    n=_n+1;    s = _s;    t = _t;
    for(int i=0;i<n;i++) adj[i].clear();</pre>
  void addEdge(int u,int v,T f,bool isDir = true){
    adj[u].push_back({v,adj[v].size(),f});
    adj[v].push_back({u,adj[u].size()-1,isDir?0:f});
  void updHeight(int v, int nh) {
    work++;
    if(h[v] != n) cnt[h[v]]--;
    h[v] = nh;
    if(nh == n) return;
    cnt[nh]++, hst = nh; gap[nh].push_back(v);
    if(ef[v]>0) lst[nh].push_back(v), ptr[nh]++;
  void globalRelabel() {
    work = 0;
    fill(h, h+n, n);
    fill(cnt, cnt+n, 0);
    for(int i=0; i<=hst; i++)</pre>
    lst[i].clear(), gap[i].clear(), ptr[i] = 0;
queue<int> q({t}); h[t] = 0;
    while(!q.empty()) {
  int v = q.front(); q.pop();
       for(auto &e : adj[v])
         if(h[e.to] == n & adj[e.to][e.rev].f > 0)
           q.push(e.to), updHeight(e.to, h[v] + 1);
```

```
hst = h[v];
   } }
   void push(int v, Edge &e) {
     if(ef[e.to] == 0)
        lst[h[e.to]].push_back(e.to), ptr[h[e.to]]++;
     T df = min(ef[v], e.f);
     e.f -= df, adj[e.to][e.rev].f += df;
ef[v] -= df, ef[e.to] += df;
   void discharge(int v) {
     int nh = n;
     for(auto &e : adj[v]) {
        if(e.f > 0) {
           if(h[v] == h[e.to] + 1) {
             push(v, e);
             if(ef[v] <= 0) return;</pre>
           else nh = min(nh, h[e.to] + 1);
      if(cnt[h[v]] > 1) updHeight(v, nh);
     else {
        for(int i = h[v]; i < n; i++) {</pre>
          for(auto j : gap[i]) updHeight(j, n);
gap[i].clear(), ptr[i] = 0;
   } } }
   T solve() {
    fill(ef, ef+n, 0);
    ef[s] = INF, ef[t] = -INF;
     globalRelabel();
     for(auto &e : adj[s]) push(s, e);
for(; hst >= 0; hst--) {
        while(!lst[hst].empty())
           int v=lst[hst].back(); lst[hst].pop_back();
          discharge(v);
if(work > 4 * n) globalRelabel();
     } }
     return ef[t] + INF;
} };
```

2.9 Flow Method

```
Maximize c^T x subject to Ax \leq b, x \geq 0; with the corresponding symmetric dual problem, Minimize b^T y subject to A^T y \geq c, y \geq 0.
```

Maximize c^T x subject to $Ax \le b$; with the corresponding asymmetric dual problem, Minimize b^T y subject to A^T y = c, y ≥ 0 .

Minimum vertex cover on bipartite graph = Maximum matching on bipartite graph

找出最小點覆蓋,做完dinic之後,從源點dfs只走還有流量的邊,紀錄每個點有沒有被走到,左邊沒被走到的點跟右邊被走到的點就是答案

|Maximum density subgraph (\sum W_e + \sum W_v) / |V|

```
Binary search on answer:

For a fixed D, construct a Max flow model as follow:

Let S be Sum of all weight( or inf)

1. from source to each node with cap = S

2. For each (u,v,w) in E, (u->v,cap=w), (v->u,cap=w)

3. For each node v, from v to sink with cap = S + 2 * D

- deg[v] - 2 * (W of v)

where deg[v] = \sum weight of edge associated with v

If maxflow < S * |V|, D is an answer.
```

Requiring subgraph: all vertex can be reached from source with edge whose cap > 0.

3 Math

3.1 FFT

```
// const int MAXN = 262144;
// (must be 2^k)
// before any usage, run pre_fft() first
typedef long double ld;
typedef complex<ld> cplx; //real() ,imag()
const ld PI = acosl(-1);
```

```
const cplx I(0, 1)
cplx omega[MAXN+1];
void pre_fft(){
  for(int i=0; i<=MAXN; i++)
  omega[i] = exp(i * 2 * PI / MAXN * I);</pre>
// n must be 2^k
void fft(int n, cplx a[], bool inv=false){
  int basic = MAXN / n;
  int theta = basic;
  for (int m = n; m >= 2; m >>= 1) {
    int mh = m \gg 1;
    for (int i = 0; i < mh; i++) {
  cplx w = omega[inv ? MAXN-(i*theta%MAXN)</pre>
                             : i*theta%MAXN];
       for (int j = i; j < n; j += m) {
         int k = j + mh;
cplx x = a[j] - a[k];
         a[j] += a[k];
         a[k] = w * x;
    theta = (theta * 2) % MAXN;
  for (int j = 1; j < n - 1; j++) {
  for (int k = n >> 1; k > (i ^= k); k >>= 1);
    if (j < i) swap(a[i], a[j]);</pre>
  if(inv) for (i = 0; i < n; i++) a[i] /= n;
cplx arr[MAXN+1];
inline void mul(int _n,ll a[],int _m,ll b[],ll ans[])
{
  int n=1,sum=_n+_m-1;
  while(n<sum)</pre>
    n << =1;
  for(int i=0;i<n;i++)</pre>
    double x=(i<_n?a[i]:0), y=(i<_m?b[i]:0);
    arr[i]=complex<double>(x+y,x-y);
  fft(n,arr);
  for(int i=0;i<n;i++)</pre>
    arr[i]=arr[i]*arr[i];
  fft(n,arr,true);
  for(int i=0;i<sum;i++)</pre>
    ans[i]=(long long int)(arr[i].real()/4+0.5);
3.2 NTT
  'Remember coefficient are mod P
/* p=a*2^n+1
         2^n
                                          root
         65536
                       65537
   16
                                    1
                                          3 */
         1048576
                       7340033
// (must be 2^k)
template<LL P, LL root, int MAXN>
struct NTT{
```

```
static LL bigmod(LL a, LL b) {
  LL res = 1;
  for (LL bs = a; b; b >>= 1, bs = (bs * bs) % P)
    if(b&1) res=(res*bs)%P;
  return res;
static LL inv(LL a, LL b) {
  if(a==1)return 1;
  return (((LL)(a-inv(b%a,a))*b+1)/a)%b;
LL omega[MAXN+1];
NTT() {
  omega[0] = 1;
  LL r = \overline{bigmod(root, (P-1)/MAXN)};
  for (int i=1; i<=MAXN; i++)
    omega[i] = (omega[i-1]*r)%P;
// n must be 2^k
void tran(int n, LL a[], bool inv_ntt=false){
  int basic = MAXN / n , theta = basic;
  for (int m = n; m >= 2; m >>= 1) {
    int mh = m >> 1;
    for (int i = 0; i < mh; i++) {
```

```
LL w = omega[i*theta%MAXN];
    for (int j = i; j < n; j += m) {
        int k = j + mh;
        LL x = a[j] - a[k];
        if (x < 0) x += P;
        a[j] += a[k];
        if (a[j] > P) a[j] -= P;
        a[k] = (w * x) % P;
        }
    }
    theta = (theta * 2) % MAXN;
}
int i = 0;
for (int j = 1; j < n - 1; j++) {
    for (int k = n >> 1; k > (i ^= k); k >>= 1);
    if (j < i) swap(a[i], a[j]);
}
if (inv_ntt) {
    LL ni = inv(n,P);
    reverse( a+1 , a+n );
    for (i = 0; i < n; i++)
        a[i] = (a[i] * ni) % P;
}
};
const LL P=2013265921, root=31;
const int MAXN=4194304;
NTT<P, root, MAXN> ntt;
```

3.3 Fast Walsh Transform

```
/* xor convolution:
 * x = (x0,x1) , y = (y0,y1)
* z = (x0y0 + x1y1 , x0y1 + x1y0 )
 * x' = (x0+x1, x0-x1), y' = (y0+y1, y0-y1)
* z' = ((x0+x1)(y0+y1), (x0-x1)(y0-y1))
 *z = (1/2) *z'
 * or convolution:
 * x = (x0, x0+x1), inv = (x0, x1-x0) w/o final div
 * and convolution:
 * x = (x0+x1, x1), inv = (x0-x1, x1) w/o final div */
typedef long long LL;
const int MAXN = (1 << 20) + 10;
const LL MOD = 1e9+7;
inline LL inv( LL x )
   return mypow( x , MOD-2 );
inline void fwt( LL x[ MAXN ] , int N , bool inv=0 ) {
   for( int d = 1 ; d < N ; d <<= 1 ) {
      int d2 = d << 1;
      for( int s = 0; s < N; s += d2)
        for( int i = s , j = s+d ; i < s+d ; i++, j++ ){
  LL ta = x[ i ] , tb = x[ j ];
  x[ i ] = ta+tb;
  x[ j ] = ta-tb;
  if [ i = ta-tb ];</pre>
           if( x[ i ] >= MOD ) x[ i ] -= MOD;
if( x[ j ] < 0 ) x[ j ] += MOD;</pre>
   if( inv )
     for( int i = 0 ; i < N ; i++ ) {
    x[ i ] *= inv( N );
    x[ i ] %= MOD;</pre>
```

3.4 Poly operator

```
| struct PolyOp {
#define FOR(i, c) for (int i = 0; i < (c); ++i)
NTT<P, root, MAXN> ntt;
static int nxt2k(int x) {
   int i = 1; for (; i < x; i <<= 1); return i;
}

// c[i]=sum{j=0~i}a[j]*b[i-j] -> c[i+j]+=a[i]*b[j](加分卷積)

// if c[i-j]+=a[i]*b[j] (減法卷積)

// (轉換成加法捲積) -> reverse(a); c=mul(a,b);
   reverse( c );
void Mul(int n, LL a[], int m, LL b[], LL c[]) {
   static LL aa[MAXN], bb[MAXN];
   int N = nxt2k(n+m);
   copy(a, a+n, aa); fill(aa+n, aa+N, 0);
```

```
copy(b, b+m, bb); fill(bb+m, bb+N, 0);
ntt.tran(N, aa); ntt.tran(N, bb);
     FOR(i, N) c[i] = aa[i] * bb[i] % P;
    ntt.tran(N, c, 1);
  void Inv(int n, LL a[], LL b[]) {
     // ab = aa^{-1} = 1 \mod x^{(n/2)}
     // (b - a^{-1})^2 = 0 \mod x^n
    // bb - a^{-2} + 2 ba^{-1} = 0
     // bba - a^-1 + 2b = 0
     // bba + 2b = a^{-1}
     static LL tmp[MAXN];
     if (n == 1) {b[0] = ntt.inv(a[0], P); return;}
Inv((n+1)/2, a, b);
     int N = nxt2k(n*2);
    copy(a, a+n, tmp);
fill(tmp+n, tmp+N, 0);
fill(b+n, b+N, 0);
     ntt.tran(N, tmp); ntt.tran(N, b);
     FOR(i, N) {
       LL t1 = (2 - b[i] * tmp[i]) % P;
       if (t1 < 0) t1 += P;
       b[i] = b[i] * t1 % P;
    ntt.tran(N, b, 1);
    fill(b+n, b+N, 0);
  void Div(int n, LL a□, int m, LL b□, LL d□, LL r
     // Ra = Rb * Rd mod x^{n-m+1}
    // Rd = Ra * Rb^{-1} mod
     static LL aa[MAXN], bb[MAXN], ta[MAXN], tb[MAXN];
     if (n < m) {copy(a, a+n, r); fill(r+n, r+m, 0);
          return;}
     // d: n-1 - (m-1) = n-m (n-m+1 terms)
    copy(a, a+n, aa); copy(b, b+m, bb);
reverse(aa, aa+n); reverse(bb, bb+m);
     Inv(n-m+1, bb, tb);
    Mul(n-m+1, ta, n-m+1, tb, d);
fill(d+n-m+1, d+n, 0); reverse(d, d+n-m+1);
      '/ r: m-1 - 1 = m-2 (m-1 terms)
    Mul(m, b, n-m+1, d, ta);
     FOR(i, n) \{ r[i] = a[i] - ta[i]; if (r[i] < 0) r[i] \}
           += P; }
  void dx(int n, LL a[], LL b[]) { REP(i, 1, n-1) b[i -1] = i * a[i] % P; }
  void Sx(int n, LL a[], LL b[]) {
    b[0] = 0;
     FOR(i, n) b[i+1] = a[i] * ntt.inv(i+1, P) % P;
  void Ln(int n, LL a[], LL b[]) {
    // Integral a' a^-1 dx
     static LL a1[MAXN], a2[MAXN], b1[MAXN];
     int N = nxt2k(n*2);
     dx(n, a, a1); Inv(n, a, a2);
    Mul(n-1, a1, n, a2, b1);

Sx(n+n-1-1, b1, b);

fill(b+n, b+N, 0);
  void Exp(int n, LL a[], LL b[]) {
    // Newton method to solve g(a(x)) = \ln b(x) - a(x)
    // b' = b - g(b(x)) / g'(b(x))
// b' = b (1 - lnb + a)
    static LL lnb[MAXN], c[MAXN], tmp[MAXN];
assert(a[0] == 0); // dont know exp(a[0]) mod P
     if (n == 1) {b[0] = 1; return;}
Exp((n+1)/2, a, b);
     fill(b+(n+1)/2, b+n, 0);
     Ln(n, b, lnb);
     fill(c, c+n, \emptyset); c[\emptyset] = 1;
     FOR(i, n) {
       c[i] += a[i] - lnb[i];
if (c[i] < 0) c[i] += P</pre>
       if (c[i] >= P) c[i] -= P;
    Mul(n, b, n, c, tmp);
    copy(tmp, tmp+n, b);
} polyop;
```

```
3.5 \, O(1) \, \text{mul}
LL mul(LL x,LL y,LL mod){
  LL ret=x*y-(LL)((long double)x/mod*y)*mod;
  // LL ret=x*y-(LL)((long double)x*y/mod+0.5)*mod;
  return ret<0?ret+mod:ret;</pre>
3.6 BigInt
struct Bigint{
  static const int LEN = 60;
  static const int BIGMOD = 10000;
  int s
  int vl, v[LEN];
  // vector<int> v;
  Bigint() : s(1) \{ vl = 0; \}
  Bigint(long long a) {
    s = 1; vl = 0;
    if (a < 0) { s = -1; a = -a; }
while (a) {
      push_back(a % BIGMOD);
      a \neq BIGMOD;
  Bigint(string str) {
    s = 1; vl = 0;
    int stPos = 0, num = 0;
    if (!str.empty() && str[0] == '-') {
      stPos = 1;
      s = -1;
    for (int i=SZ(str)-1, q=1; i>=stPos; i--) {
  num += (str[i] - '0') * q;
  if ((q *= 10) >= BIGMOD) {
         push_back(num);
         num = 0; q = 1;
    if (num) push_back(num);
    n();
  int len() const {
    return vl; // return SZ(v);
  bool empty() const { return len() == 0; }
  void push_back(int x) {
    v[v]++] = x; // v.PB(x);
  void pop_back() {
    vl--; // v.pop_back();
  int back() const {
    return v[vl-1]; // return v.back();
  void n() {
    while (!empty() && !back()) pop_back();
  void resize(int nl) {
    vl = nl;
    fill(v, v+vl, 0)
           v.resize(nl);
    //
           fill(ALL(v), 0);
  void print() const {
    if (empty()) { putchar('0'); return; }
    if (s == -1) putchar('-');
printf("%d", back());
    for (int i=len()-2; i>=0; i--) printf("%.4d",v[i]);
  friend std::ostream& operator << (std::ostream& out,</pre>
      const Bigint &a) {
    if (a.empty()) { out << "0"; return out; }
if (a.s == -1) out << "-";</pre>
    out << a.back();
    for (int i=a.len()-2; i>=0; i--) {
      char str[10];
      snprintf(str, 5, "%.4d", a.v[i]);
      out << str;
    return out;
```

int cp3(const Bigint &b)const {
 if (s != b.s) return s - b.s;

```
if (s == -1) return -(-*this).cp3(-b);
  if (len() != b.len()) return len()-b.len();//int
                                                                          r.v[i] = d;
  for (int i=len()-1; i>=0; i--)
                                                                       s = oriS;
r.s = s * b.s;
    if (v[i]!=b.v[i]) return v[i]-b.v[i];
  return 0;
                                                                       r.n();
bool operator<(const Bigint &b)const</pre>
                                                                       return r;
  { return cp3(b)<0; }
bool operator <= (const Bigint &b) const
                                                                     Bigint operator % (const Bigint &b) {
  { return cp3(b)<=0; ]
                                                                       return (*this)-(*this)/b*b;
bool operator == (const Bigint &b)const
  { return cp3(b)==0; }
                                                                   3.7 Linear Recurrence
bool operator!=(const Bigint &b)const
  { return cp3(b)!=0; }
bool operator>(const Bigint &b)const
                                                                  // Usage: linearRec({0, 1}, {1, 1}, k) //k'th fib
                                                                  typedef vector<ll> Poly;
  { return cp3(b)>0; }
bool operator>=(const Bigint &b)const
  { return cp3(b)>=0; }
                                                                   //S:前i項的值,tr:遞迴系數,k:求第k項
                                                                  ll linearRec(Poly& S, Poly& tr, ll k) {
Bigint operator - () const {
                                                                     int n = tr.size()
                                                                     auto combine = [&](Poly& a, Poly& b) {
  Poly res(n * 2 + 1);
  rep(i,0,n+1) rep(j,0,n+1)
  Bigint r = (*this);
  r.s = -r.s;
  return r;
                                                                        res[i+j]=(res[i+j] + a[i]*b[j])%mod;
for(int i = 2*n; i > n; --i) rep(j,0,n)
Bigint operator + (const Bigint &b) const {
                                                                          res[i-1-j]=(res[i-1-j] + res[i]*tr[j])%mod;
  if (s == -1) return -(-(*this)+(-b));
  if (b.s == -1) return (*this)-(-b);
                                                                       res.resize(n + 1);
  Bigint r;
                                                                        return res;
  int nl = max(len(), b.len());
  r.resize(nl + 1);
for (int i=0; i<nl; i++) {
   if (i < len()) r.v[i] += v[i];
   if (i = h.l.n()) r.v[i]</pre>
                                                                     Poly pol(n + 1), e(pol);
                                                                     pol[0] = e[1] = 1;
for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
    if (i < b.len()) r.v[i] += b.v[i];</pre>
    if(r.v[i] >= BIGMOD) {
  r.v[i+1] += r.v[i] / BIGMOD;
                                                                       e = combine(e, e);
       r.v[i] %= BIGMOD;
                                                                     11 \text{ res} = 0;
                                                                     rep(i,0,n) res=(res + pol[i+1]*S[i])%mod;
  } }
  r.n();
                                                                     return res;
                                                                  }
  return r;
                                                                   3.8 Miller Rabin
Bigint operator - (const Bigint &b) const {
  if (s == -1) return -(-(*this)-(-b));
                                                                                                         2, 7, 61
2, 13, 23, 1662803
6: pirmes <= 13
  if (b.s == -1) return (*this)+(-b);
                                                                  // n < 4,759,123,141
                                                                  // n < 1,122,004,669,633
                                                                                                    4:
  if ((*this) < b) return -(b-(*this));</pre>
                                                                  // n < 3,474,749,660,383
  Bigint r;
  r.resize(len());

for (int i=0; i<len(); i++) {

   r.v[i] += v[i];
                                                                   // n < 2^64
                                                                  // 2, 325, 9375, 28178, 450775, 9780504, 1795265022
                                                                  // Make sure testing integer is in range [2, n-2] if
                                                                   // you want to use magic.
    if (i < b.len()) r.v[i] -= b.v[i];</pre>
    if (r.v[i] < 0) {
  r.v[i] += BIGMOD;</pre>
                                                                  LL magic[]={}
                                                                  bool witness(LL a,LL n,LL u,int t){
                                                                     if(!a) return 0;
       r.v[i+1]--;
                                                                     LL x=mypow(a,u,n);
  } }
                                                                     for(int i=0;i<t;i++) {</pre>
  r.n();
                                                                        LL nx=mul(x,x,n)
  return r;
                                                                        if(nx==1&&x!=1&&x!=n-1) return 1;
                                                                       x=nx;
Bigint operator * (const Bigint &b) {
                                                                     }
  Bigint r;
  r.resize(len() + b.len() + 1);
r.s = s * b.s;
                                                                     return x!=1;
  for (int i=0; i<len(); i++) {</pre>
                                                                  bool miller_rabin(LL n) {
    for (int j=0; j<b.len(); j++) {
  r.v[i+j] += v[i] * b.v[j];
  if(r.v[i+j] >= BIGMOD) {
                                                                     int s=(magic number size)
                                                                     // iterate s times of witness on n
                                                                     if(n<2) return 0;</pre>
                                                                     if(!(n&1)) return n == 2;
         r.v[i+j+1] += r.v[i+j] / BIGMOD;
                                                                     ll u=n-1; int t=0;
         r.v[i+j] %= BIGMOD;
                                                                     // n-1 = u*2^t
  } } }
                                                                     while(!(u&1)) u>>=1, t++;
  r.n();
                                                                     while(s--){
  return r;
                                                                       LL a=magic[s]%n;
                                                                        if(witness(a,n,u,t)) return 0;
Bigint operator / (const Bigint &b) {
  Biaint r:
                                                                     return 1;
  r.resize(max(1, len()-b.len()+1));
  int oriS = s;
  Bigint b2 = b; // b2 = abs(b)
                                                                          Faulhaber (\sum_{i=1}^{n} i^p)
  s = b2.s = r.s = 1;
  for (int i=r.len()-1; i>=0; i--) {
    int d=0, u=BIGMOD-1;
                                                                  /* faulhaber's formula - 
 * cal power sum formula of all p=1~k in 0(k^2) */
    while(d<u) {</pre>
       int m = (d+u+1)>>1;
       r.v[i] = m;
                                                                  #define MAXK 2500
                                                                  const int mod = 1000000007;
int b[MAXK]; // bernoulli number
       if((r*b2) > (*this)) u = m-1;
       else d = m;
```

```
int inv[MAXK+1]; // inverse
int cm[MAXK+1][MAXK+1]; // combinactories
int co[MAXK][MAXK+2]; // coeeficient of x^j when p=i
inline int getinv(int x) {
  int a=x, b=mod, a0=1, a1=0, b0=0, b1=1;
  while(b) {
    int q,t;
     q=a/b; t=b; b=a-b*q; a=t;
     t=b0; b0=a0-b0*q; a0=t;
     t=b1; b1=a1-b1*q; a1=t;
  return a0<0?a0+mod:a0;
inline void pre() {
  /* combinational
  for(int i=0;i<=MAXK;i++) {</pre>
    cm[i][0]=cm[i][i]=1;
for(int j=1;j<i;j++)
   cm[i][j]=add(cm[i-1][j-1],cm[i-1][j]);</pre>
  /* inverse */
  for(int i=1;i<=MAXK;i++) inv[i]=getinv(i);</pre>
   /* bernoulli */
  b[0]=1; b[1]=getinv(2); // with b[1] = 1/2
  for(int i=2;i<MAXK;i++) {</pre>
     if(i&1) { b[i]=0; continue; }
     b[i]=1;
     for(int j=0;j<i;j++)</pre>
       b[i]=sub(b[i],
                  mul(cm[i][j],mul(b[j], inv[i-j+1])));
  }
/* faulhaber */
  // sigma_x=1~n {x^p} = 
// 1/(p+1) * sigma_j=0~p {C(p+1,j)*Bj*n^(p-j+1)}
  for(int i=1;i<MAXK;i++) {</pre>
     co[i][0]=0;
     for(int j=0;j<=i;j++)
  co[i][i-j+1]=mul(inv[i+1], mul(cm[i+1][j], b[j]))</pre>
  }
/* sample usage: return f(n,p) = sigma_x=1\sim (x^p) */
inline int solve(int n,int p) {
  int sol=0,m=n;
  for(int i=1;i<=p+1;i++)</pre>
    sol=add(sol,mul(co[p][i],m));
    m = mul(m, n);
  return sol;
}
3.10 Chinese Remainder
LL x[N],m[N];
```

3.11 Pollard Rho

```
// does not work when n is prime
LL f(LL x, LL mod){ return add(mul(x,x,mod),1,mod); }
LL pollard_rho(LL n) {
   if(!(n&1)) return 2;
   while(true){
     LL y=2, x=rand()%(n-1)+1, res=1;
     for(int sz=2; res==1; sz*=2) {
```

```
for(int i=0; i<sz && res<=1; i++) {
    x = f(x, n);
    res = __gcd(abs(x-y), n);
}
    y = x;
}
if (res!=0 && res!=n) return res;
} }</pre>
```

3.12 Josephus Problem

```
int josephus(int n, int m){ //n人每m次
  int ans = 0;
  for (int i=1; i<=n; ++i)
      ans = (ans + m) % i;
  return ans;
}</pre>
```

3.13 Gaussian Elimination

```
const int GAUSS_MOD = 100000007LL;
struct GAUSS{
     int n;
     vector<vector<int>> v;
     int ppow(int a , int k){
   if(k == 0) return 1;
          if(k % 2 == 0) return ppow(a * a % GAUSS_MOD ,
              k >> 1);
          if(k % 2 == 1) return ppow(a * a % GAUSS_MOD ,
              k \gg 1) * a % GAUSS_MOD;
     vector<int> solve(){
          vector<int> ans(n);
         ][now] != 0)

swap(v[i] , v[now]); // det = -det;

if(v[now][now] == 0) return ans;
              int inv = ppow(v[now][now] , GAÚSS_MOD - 2)
              REP(i, 0, n) if(i!= now){
                   int tmp = v[i][now] * inv % GAUSS_MOD;
                   REP(j , now , n + 1) (v[i][j] +=
GAUSS_MOD - tmp * v[now][j] %
                        GAUSS_MOD) %= GAUSS_MOD;
              }
              i , 0 , n) ans[i] = v[i][n + 1] * ppow(v[i
][i] , GAUSS_MOD - 2) % GAUSS_MOD;
          return ans;
     // gs.v.clear() , gs.v.resize(n , vector<int>(n + 1
           , 0));
|} gs;
```

3.14 ax+by=gcd

```
PII gcd(int a, int b){
   if(b == 0) return {1, 0};
   PII q = gcd(b, a % b);
   return {q.second, q.first - q.second * (a / b)};
}
```

3.15 Discrete sqrt

```
void calcH(LL &t, LL &h, const LL p) {
   LL tmp=p-1; for(t=0;(tmp&1)==0;tmp/=2) t++; h=tmp;
}
// solve equation x^2 mod p = a
bool solve(LL a, LL p, LL &x, LL &y) {
   if(p == 2) { x = y = 1; return true; }
   int p2 = p / 2, tmp = mypow(a, p2, p);
   if (tmp == p - 1) return false;
   if ((p + 1) % 4 == 0) {
        x=mypow(a,(p+1)/4,p); y=p-x; return true;
} else {
   LL t, h, b, pb; calcH(t, h, p);
   if (t >= 2) {
        do {b = rand() % (p - 2) + 2;
        } while (mypow(b, p / 2, p) != p - 1);
        pb = mypow(b, h, p);
        int s = mypow(a, h / 2, p);
```

```
for (int step = 2; step <= t; step++) {
   int ss = (((LL)(s * s) % p) * a) % p;
   for(int i=0;i<t-step;i++) ss=mul(ss,ss,p);
   if (ss + 1 == p) s = (s * pb) % p;
   pb = ((LL)pb * pb) % p;
   } x = ((LL)s * a) % p; y = p - x;
} return true;
}</pre>
```

3.16 Romberg 定積分

```
// Estimates the definite integral of
// \int_a^b f(x) dx
template<class T>
double romberg( T& f, double a, double b, double eps=1e
    -8){
    vector<double>t; double h=b-a,last,curr; int k=1,i=1;
    t.push_back(h*(f(a)+f(b))/2);
    do{ last=t.back(); curr=0; double x=a+h/2;
        for(int j=0;j<k;j++) curr+=f(x), x+=h;
        curr=(t[0] + h*curr)/2; double k1=4.0/3.0,k2
        =1.0/3.0;
    for(int j=0;j<i;j++){ double temp=k1*curr-k2*t[j];
        t[j]=curr; curr=temp; k2/=4*k1-k2; k1=k2+1;
    } t.push_back(curr); k*=2; h/=2; i++;
}while( fabs(last-curr) > eps);
    return t.back();
}
```

3.17 Prefix Inverse

```
void solve( int m ){
  inv[ 1 ] = 1;
  for( int i = 2 ; i < m ; i ++ )
    inv[ i ] = ((LL)(m - m / i) * inv[m % i]) % m;
}</pre>
```

3.18 Roots of Polynomial 找多項式的根

```
const double eps = 1e-12;
const double inf = 1e+12;
double a[ 10 ], x[ 10 ];
int n;
int sign( double x ){return (x < -eps)?(-1):(x>eps);}
double f(double a[], int n, double x){
 double tmp=1,sum=0;
for(int i=0;i<=n;i++)</pre>
  { sum=sum+a[i]*tmp; tmp=tmp*x; }
  return sum;
double binary(double l,double r,double a[],int n){
  int sl=sign(f(a,n,l)),sr=sign(f(a,n,r));
  if(sl==0) return l; if(sr==0) return r;
  if(sl*sr>0) return inf;
 while(r-l>eps){
    double mid=(l+r)/2;
    int ss=sign(f(a,n,mid));
    if(ss==0) return mid;
    if(ss*sl>0) l=mid; else r=mid;
 }
  return 1;
void solve(int n,double a[],double x[],int &nx){
  if(n==1){ x[1]=-a[0]/a[1]; nx=1; return; }
  double da[10], dx[10]; int ndx;
for(int i=n;i>=1;i--) da[i-1]=a[i]*i;
  solve(n-1,da,dx,ndx);
 nx=0:
  if(ndx==0){
    double tmp=binary(-inf,inf,a,n);
    if (tmp<inf) x[++nx]=tmp;</pre>
    return;
 double tmp;
tmp=binary(-inf,dx[1],a,n);
  if(tmp<inf) x[++nx]=tmp;</pre>
  for(int i=1;i<=ndx-1;i++){</pre>
    tmp=binary(dx[i],dx[i+1],a,n);
    if(tmp<inf) x[++nx]=tmp;</pre>
  tmp=binary(dx[ndx],inf,a,n);
  if(tmp<inf) x[++nx]=tmp;</pre>
```

```
}
int main() {
    scanf("%d",&n);
    for(int i=n;i>=0;i--) scanf("%lf",&a[i]);
    int nx;
    solve(n,a,x,nx);
    for(int i=1;i<=nx;i++) printf("%.6f\n",x[i]);
}</pre>
```

3.19 Primes

```
/* 12721, 13331, 14341, 75577, 123457, 222557, 556679 * 999983, 1097774749, 1076767633, 100102021, 999997771
 * 1001010013, 1000512343, 987654361, 999991231
* 999888733, 98789101, 987777733, 999991921, 1010101333
* 1010102101, 100000000039, 10000000000037

* 2305843009213693951, 4611686018427387847

* 9223372036854775783, 18446744073709551557 */
int mu [ N ] , p_tbl[ N ];
 vector<int> primes;
 void sieve() {
  mu[ 1 ] = p_tbl[ 1 ] = 1;
     for( int i = 2; i < N; i ++){
        if( !p_tbl[ i ] ){
   p_tbl[ i ] = i;
           primes.push_back( i );
           mu[ i ] = -1;
        for( int p : primes ){
  int x = i * p;
  if( x >= M ) break;
           p_tbl[ x ] = p;
mu[ x ] = -mu[ i ];
if( i % p == 0 ){
              mu[x] = 0;
              break;
 vector<int> factor( int x ){
    vector<int> fac{ 1 };
    while( x > 1 ){
  int fn = SZ(fac), p = p_tbl[ x ], pos = 0;
        while (x \% p == 0)
          x /= p;
for( int i = 0 ; i < fn ; i ++ )
  fac.PB( fac[ pos ++ ] * p );</pre>
    } }
    return fac;
}
```

3.20 Result

- Lucas Theorem : For $n,m\in\mathbb{Z}^*$ and prime P, C(m,n) mod $P=\Pi(C(m_i,n_i))$ where m_i is the i-th digit of m in base P.
- Stirling approximation : $n! \approx \sqrt{2\pi n} (\frac{n}{e})^n e^{\frac{1}{12n}}$
- Stirling Numbers(permutation |P|=n with k cycles): S(n,k)= coefficient of x^k in $\Pi_{i=0}^{n-1}(x+i)$
- Stirling Numbers(Partition n elements into k non-empty set): $S(n,k)=\tfrac{1}{k!}\sum_{j=0}^k (-1)^{k-j} {k \choose j} j^n$
- Pick's Theorem : A=i+b/2-1 其面積 A 和內部格點數目 b 的關係
- $$\begin{split} \bullet & \text{ Catalan number } : & C_n = \binom{2n}{n}/(n+1) \\ & C_n^{n+m} C_{n+1}^{n+m} = (m+n)! \frac{n-m+1}{n+1} & for \quad n \geq m \\ & C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!} \\ & C_0 = 1 & and & C_{n+1} = 2(\frac{2n+1}{n+2})C_n \\ & C_0 = 1 & and & C_{n+1} = \sum_{i=0}^n C_i C_{n-i} & for \quad n \geq 0 \end{split}$$
- Kirchhoff's theorem : $A_{ii}=deg(i), A_{ij}=(i,j)\in E$?-1:0, Deleting any one row, one column, and cal the det(A)
- Polya' theorem (c 為方法數,m 為總數): $(\sum_{i=1}^m c^{gcd(i,m)})/m$
- 錯排公式: (n 個人中,每個人皆不再原來位置的組合數): dp[0] = 1; dp[1] = 0; dp[i] = (i-1)*(dp[i-1] + dp[i-2]);

```
• Bell 數 (有 n 個人,把他們拆組的方法總數): B_0=1 B_n=\sum_{k=0}^n s(n,k) (second-stirling) B_{n+1}=\sum_{k=0}^n \binom{n}{k}B_k • Wilson's theorem: (p-1)!\equiv -1 (mod\ p) • Fermat's little theorem: a^p\equiv a (mod\ p)
```

4 Geometry

4.1 Intersection of 2 lines

```
Pt interPnt( Pt p1, Pt p2, Pt q1, Pt q2){
  double f1 = ( p2 - p1 ) ^ ( q1 - p1 );
  double f2 = ( p2 - p1 ) ^ ( p1 - q2 );
  double f = ( f1 + f2 );
  if( fabs( f ) < eps ) return Pt( nan(""), nan("") );
  return q1 * ( f2 / f ) + q2 * ( f1 / f );
}</pre>
```

4.2 halfPlaneIntersection

```
bool isin( Line 10, Line 11, Line 12 ){
  // Check inter(l1, l2) in l0
  bool res; Pt p = interPnt(l1, l2, res);
return ( (l0.SE - l0.FI) ^ (p - l0.FI) ) > eps;
/* If no solution, check: 1. ret.size() < 3
 * Or more precisely, 2. interPnt(ret[0], ret[1])</pre>
 * in all the lines. (use (l.S - l.F) ^{\wedge} (p - l.F) > 0
/* --^- Line.FI --^- Line.SE --^- */
vector<Line> halfPlaneInter( vector<Line> lines ){
  int sz = lines.size();
  vector<double> ata(sz), ord(sz);
  for( int i=0; i<sz; i++) {</pre>
     ord[i] = i;
     Pt d = lines[i].SE - lines[i].FI;
     ata[i] = atan2(d.Y, d.X);
  sort( ord.begin(), ord.end(), [&](int i, int j) {
  if( fabs(ata[i] - ata[j]) < eps )</pre>
       return ( (lines[i].SE - lines[i].FI) ^ (lines[j].SE - lines[i].FI) ) < 0;
     return ata[i] < ata[j];</pre>
  });
  vector<Line> fin;
  for (int i=0; i<sz; i++)
   if (!i or fabs(ata[ord[i]] - ata[ord[i-1]]) > eps)
       fin.PB(lines[ord[i]]);
  deque<Line> dq;
  for (int i=0; i<(int)(fin.size()); i++) {</pre>
     while((int)(dq.size()) >= 2 and
          not isin(fin[i], dq[(int)(dq.size())-2]
                              dq[(int)(dq.size())-1]))
       dq.pop_back();
     while((int)(dq.size()) >= 2 and
         not isin(fin[i], dq[0], dq[1]))
       dq.pop_front()
     dq.push_back(fin[i]);
  while( (int)(dq.size()) >= 3 and
  not isin(dq[0], dq[(int)(dq.size())-2]
                           dq[(int)(dq.size())-1]))
     dq.pop_back();
  while( (int)(dq.size()) >= 3 and
       not isin(dq[(int)(dq.size())-1], dq[0], dq[1]))
     dq.pop_front()
  vector<Line> res(dq.begin(),dq.end());
  return res;
```

4.3 Convex Hull

```
double cross(Pt o, Pt a, Pt b){
  return (a-o) ^ (b-o);
}
vector<Pt> convex_hull(vector<Pt> pt){
  sort(pt.begin(),pt.end());
  int top=0;
```

```
vector<Pt> stk(2*pt.size());
for (int i=0; i<(int)pt.size(); i++){
   while (top >= 2 && cross(stk[top-2],stk[top-1],pt[i
        ]) <= 0)
      top--;
   stk[top++] = pt[i];
}
for (int i=pt.size()-2, t=top+1; i>=0; i--){
   while (top >= t && cross(stk[top-2],stk[top-1],pt[i
        ]) <= 0)
      top--;
   stk[top++] = pt[i];
}
stk.resize(top-1);
return stk;
}</pre>
```

4.4 Convex Hull 3D

```
struct Pt{
  Pt cross(const Pt &p) const
  { return Pt(y * p.z - z * p.y, z * p.x - x * p.z, x *
        p.y - y * p.x; }
} info[N];
int mark[N][N],n, cnt;;
double mix(const Pt &a, const Pt &b, const Pt &c)
{ return a * (b ^ c); }
double area(int a, int b, int c)
{ return norm((info[b] - info[a]) ^ (info[c] - info[a])
double volume(int a, int b, int c, int d)
{ return mix(info[b] - info[a], info[c] - info[a], info
    [d] - info[a]); }
struct Face{
  int a, b, c; Face(){}
  Face(int a, int b, int c): a(a), b(b), c(c) {}
  int &operator [](int k)
  { if (k == 0) return a; if (k == 1) return b; return
       c; }
vector<Face> face;
void insert(int a, int b, int c)
{ face.push_back(Face(a, b, c)); }
void add(int v) {
  vector <Face> tmp; int a, b, c; cnt++;
for (int i = 0; i < SIZE(face); i++) {
    a = face[i][0]; b = face[i][1]; c = face[i][2];</pre>
    if(Sign(volume(v, a, b, c)) < 0)
mark[a][b] = mark[b][a] = mark[b][c] = mark[c][b] =</pre>
          mark[c][a] = mark[a][c] = cnt;
    else tmp.push_back(face[i]);
  } face = tmp;
  for (int i = 0; i < SIZE(tmp); i++) {
    a = face[i][0]; b = face[i][1]; c = face[i][2];
    if (mark[a][b] == cnt) insert(b, a, v);
if (mark[b][c] == cnt) insert(c, b, v);
    if (mark[c][a] == cnt) insert(a, c, v);
}}
int Find(){
  for (int i = 2; i < n; i++) {
    Pt ndir = (info[0] - info[i]) ^ (info[1] - info[i])
    if (ndir == Pt()) continue; swap(info[i], info[2]);
     for (int j = i + 1; j < n; j++) if (Sign(volume(0,
       1, 2, j)) != 0) {
swap(info[j], info[3]); insert(0, 1, 2); insert
            (0, 2, 1); return 1;
} } return 0; }
int main() {
  for (; scanf("%d", &n) == 1; ) {
  for (int i = 0; i < n; i++) info[i].Input();</pre>
    sort(info, info + n); n = unique(info, info + n) -
    face.clear(); random_shuffle(info, info + n);
if (Find()) { memset(mark, 0, sizeof(mark)); cnt =
       for (int i = 3; i < n; i++) add(i); vector<Pt>
           Ndir;
       for (int i = 0; i < SIZE(face); ++i) {
```

p = p / norm(p); Ndir.push_back(p);

```
} sort(Ndir.begin(), Ndir.end());
      int ans = unique(Ndir.begin(), Ndir.end()) - Ndir
   .begin();
printf("%d\n", ans);
} else printf("1\n");
} }
double calcDist(const Pt &p, int a, int b, int c)
{ return fabs(mix(info[a] - p, info[b] - p, info[c] - p
    ) / area(a, b, c)); }
//compute the minimal distance of center of any faces
double findDist() { //compute center of mass
 double totalWeight = 0; Pt center(.0, .0, .0);
 Pt first = info[face[0][0]];
 double weight = mix(info[face[i][0]] - first, info[
        face[i][1]]
        - first, info[face[i][2]] - first);
    totalWeight += weight; center = center + p * weight
 } center = center / totalWeight;
 double res = 1e100; //compute distance
for (int i = 0; i < SIZE(face); ++i)</pre>
    res = min(res, calcDist(center, face[i][0], face[i
        ][1], face[i][2]));
    return res; }
```

4.5 Intersection of 2 segments

4.6 Intersection of circle and segment

4.7 Intersection of 2 circles

4.8 Circle cover

```
#define N 1021
#define D double
struct CircleCover{
    int C; Circ c[N]; //填入C(圓數量),c(圓陣列)
    bool g[N][N], overlap[N][N];
    // Area[i]: area covered by at least i circles
    D Area[N];
    void init( int _C ){ C = _C; }
    bool CCinter( Circ& a , Circ& b , Pt& p1 , Pt& p2 ){
        Pt o1 = a.0 , o2 = b.0;
        D r1 = a.R , r2 = b.R;
        if( norm( o1 - o2 ) > r1 + r2 ) return {};
        if( norm( o1 - o2 ) < max(r1, r2) - min(r1, r2) )
            return {};
        D d2 = ( o1 - o2 ) * ( o1 - o2 );
        D d = sqrt(d2);
        if( d > r1 + r2 ) return false;
        Pt u=(o1+o2)*0.5 + (o1-o2)*((r2*r2-r1*r1)/(2*d2));
```

```
D A=sqrt((r1+r2+d)*(r1-r2+d)*(r1+r2-d)*(-r1+r2+d));
      Pt v=Pt( o1.Y-o2.Y , -o1.X + o2.X ) * A / (2*d2);
p1 = u + v; p2 = u - v;
      return true:
   struct Teve {
      Pt p; D ang; int add;
      Teve() {}
      Teve(Pt _a, D _b, int _c):p(_a), ang(_b), add(_c){}
bool operator<(const Teve &a)const</pre>
      {return ang < a.ang;}
   }eve[ N * 2 ];
   // strict: x = 0, otherwise x = -1
bool disjuct( Circ& a, Circ &b, int x )
{return sign( norm( a.0 - b.0 ) - a.R - b.R ) > x;}
   bool contain( Circ& a, Circ &b, int x )
   {return sign( a.R - b.R - norm( a.0 - b.0 ) ) > x;} bool contain(int i, int j){
       /* c[j] is non-strictly in c[i]. */
      return (sign(c[i].R - c[j].R) > 0 ||
(sign(c[i].R - c[j].R) == 0 && i < j) ) &&
                        contain(c[i], c[j], -1);
   void solve(){
      for( int i = 0 ; i <= C + 1 ; i ++ )</pre>
      Area[ i ] = 0;
for( int i = 0; i < C; i ++)
for( int j = 0; j < C; j ++)
      overlap[i][j] = contain(i, j);
for( int i = 0 ; i < C ; i ++ )
  for( int j = 0 ; j < C ; j ++ )
    g[i][j] = !(overlap[i][j] || overlap[j][i] ||</pre>
      disjuct(c[i], c[j], -1));
for( int i = 0 ; i < C ; i ++ ){</pre>
         int E = 0, cnt = 1;
         for( int j = 0 ; j < C ; j ++</pre>
            if( j != i && overlap[j][i] )
               cnt ++;
         for( int j = 0 ; j < C ; j ++ )
  if( i != j && g[i][j] ){</pre>
               Pt aa, bb;
               CCinter(c[i], c[j], aa, bb);

D A=atan2(aa.Y - c[i].0.Y, aa.X - c[i].0.X);

D B=atan2(bb.Y - c[i].0.Y, bb.X - c[i].0.X);
               eve[E ++] = Teve(bb, B, 1);
eve[E ++] = Teve(aa, A, -1);
               if(\bar{B} > A) cnt ++;
         if( E == 0 ) Area[ cnt ] += pi * c[i].R * c[i].R;
         else{
            sort( eve , eve + E );
            eve[\hat{E}] = eve[0];
            for( int j = 0; j < E; j ++ ){
               cnt += eve[j].add;
               Area[cnt] += (eve[j].p ^ eve[j + 1].p) * 0.5;
D theta = eve[j + 1].ang - eve[j].ang;
               if (theta < 0) theta += 2.0 * pi;
               Area[cnt] +=
                  (theta - sin(theta)) * c[i].R*c[i].R * 0.5;
}}}};
```

4.9 Convex Hull trick

```
/* Given a convexhull, answer querys in O(\lg N)
CH should not contain identical points, the area should
be > 0, min pair(x, y) should be listed first */
double det( const Pt& p1 , const Pt& p2 )
{ return p1.X * p2.Y - p1.Y * p2.X; }
struct Conv{
  int n;
  vector<Pt> a;
  vector<Pt> upper, lower;
  Conv(vector<Pt> _a) : a(_a){
    n = a.size();
    int ptr = 0;
    for(int i=1; i<n; ++i) if (a[ptr] < a[i]) ptr = i;
    for(int i=0; i<=ptr; ++i) lower.push_back(a[i]);
    for(int i=ptr; i<n; ++i) upper.push_back(a[i]);
    upper.push_back(a[0]);
}
int sign( LL x ){ // fixed when changed to double
    return x < 0 ? -1 : x > 0; }
```

```
pair<LL,int> get_tang(vector<Pt> &conv, Pt vec){
  int l = 0, r = (int)conv.size() - 2;
                                                                int p0 = get_tang(u - v), p1 = get_tang(v - u);
if(sign(det(v-u,a[p0]-u))*sign(det(v-u,a[p1]-u))<0){</pre>
  for(; l + 1 < r; ){
int mid = (l + r) / 2;
                                                                  if (p0 > p1) swap(p0, p1);
                                                                  i0 = bi\_search(u, v, p0, p1);
    if(sign(det(conv[mid+1]-conv[mid],vec))>0)r=mid;
                                                                  i1 = bi\_search(u, v, p1, p0 + n);
    else l = mid;
                                                                  return 1;
                                                                }
  return max(make_pair(det(vec, conv[r]), r)
                                                                return 0;
              make_pair(det(vec, conv[0]), 0));
                                                               };
void upd_tang(const Pt &p, int id, int &i0, int &i1){
  if(det(a[i0] - p, a[id] - p) > 0) i0 = id;
                                                            4.10 Tangent line of two circles
  if(det(a[i1] - p, a[id] - p) < 0) i1 = id;
                                                            vector<Line> go( const Cir& c1 , const Cir& c2 , int
                                                                 sign1 ){
void bi_search(int l, int r, Pt p, int &i0, int &i1){
                                                               // sign1 = 1 for outer tang, -1 for inter tang
  if(l == r) return;
                                                               vector<Line> ret;
  upd_tang(p, 1 % n, i0, i1);
                                                               double d_{sq} = norm2(c1.0 - c2.0);
  int sl=sign(det(a[l % n] - p, a[(l + 1) % n] - p));
                                                               if( d_sq < eps ) return ret;</pre>
  for(; l + 1 < r; ) {
  int mid = (l + r) / 2;
                                                               double d = sqrt( d_sq );
                                                               Pt v = ( c2.0 - c1.0 ) / d;
double c = ( c1.R - sign1 * c2.R ) / d;
    int smid=sign(det(a[mid%n]-p, a[(mid+1)%n]-p));
    if (smid == sl) l = mid;
                                                               if( c * c > 1 ) return ret;
                                                              else r = mid;
  upd_tang(p, r % n, i0, i1);
                                                                          v.Y * c + sign2 * h * v.X };
int bi_search(Pt u, Pt v, int l, int r)
                                                                 Pt p1 = c1.0 + n * c1.R;
                                                                 Pt p2 = c2.0 + n * (c2.R * sign1);
  int sl = sign(det(v - u, a[l % n] - u));
                                                                 if( fabs( p1.X - p2.X ) < eps and fabs( p1.Y - p2.Y ) < eps )
  for( ; l + 1 < r; ) {
  int mid = (l + r) / 2;</pre>
                                                                   p2 = p1 + perp(c2.0 - c1.0);
    int smid = sign(det(v - u, a[mid % n] - u));
    if (smid == sl) l = mid;
                                                                 ret.push_back( { p1 , p2 } );
    else r = mid;
                                                               return ret;
  return 1 % n;
// 1. whether a given point is inside the CH
                                                            4.11 KD Tree
bool contain(Pt p) {
  if (p.X < lower[0].X || p.X > lower.back().X)
                                                            const int MXN=100005;
                                                             const int MXK=10;
  int id = lower_bound(lower.begin(), lower.end(), Pt
                                                            struct KDTree{
       (p.X, -INF)) - lower.begin();
                                                               struct Nd{
  if (lower[id].X == p.X) {
                                                                 LL x[MXK],mn[MXK],mx[MXK];
    if (lower[id].Y > p.Y) return 0;
                                                                 int id,f;
  }else if(det(lower[id-1]-p,lower[id]-p)<0)return 0;</pre>
                                                                 Nd *1,*r
  id = lower_bound(upper.begin(), upper.end(), Pt(p.X
                                                               }tree[MXN],*root;
        INF), greater<Pt>()) - upper.begin();
                                                               int n,k;
  if (upper[id].X == p.X) {
                                                               LL dis(LL a,LL b){return (a-b)*(a-b);}
    if (upper[id].Y < p.Y) return 0;</pre>
                                                               LL dis(LL a[MXK],LL b[MXK]){
  }else if(det(upper[id-1]-p,upper[id]-p)<0)return 0;</pre>
                                                                 LL ret=0:
                                                                 for(int i=0;i<k;i++) ret+=dis(a[i],b[i]);</pre>
                                                                 return ret;
// 2. Find 2 tang pts on CH of a given outside point
// return true with i0, i1 as index of tangent points
                                                               void init(vector<vector<LL>> &ip,int _n,int _k){
// return false if inside CH
                                                                 n=_n, k=_k;
bool get_tang(Pt p, int &i0, int &i1) {
                                                                 for(int i=0;i<n;i++){</pre>
                                                                   tree[i].id=i;
  if (contain(p)) return false;
  i0 = i1 = 0;
                                                                   copy(ip[i].begin(),ip[i].end(),tree[i].x);
  int id = lower_bound(lower.begin(), lower.end(), p)
  - lower.begin();
bi_search(0, id, p, i0, i1);
                                                                 root=build(0,n-1,0);
  bi_search(id, (int)lower.size(), p, i0, i1);
                                                               Nd* build(int l,int r,int d){
  id = lower_bound(upper.begin(), upper.end(), p,
                                                                 if(l>r) return NULL;
       greater<Pt>()) - upper.begin();
                                                                 if(d==k) d=0;
  bi_search((int)lower.size() - 1, (int)lower.size()
                                                                 int m=(l+r)>>1;
       -1 + id, p, i0, i1);
                                                                 nth_element(tree+l,tree+m,tree+r+1,[&](const Nd &a,
  bi_search((int)lower.size() - 1 + id, (int)lower.
                                                                      const Nd &b){return a.x[d]<b.x[d];});</pre>
      size() - 1 + (int)upper.size(), p, i0, i1);
                                                                 tree[m].f=d:
                                                                 copy(tree[m].x,tree[m].x+k,tree[m].mn);
  return true:
                                                                 copy(tree[m].x,tree[m].x+k,tree[m].mx);
// 3. Find tangent points of a given vector
                                                                 tree[m].l=build(l,m-1,d+1);
// ret the idx of vertex has max cross value with vec
                                                                 if(tree[m].l){
int get_tang(Pt vec){
                                                                   for(int i=0;i<k;i++){</pre>
  pair<LL, int> ret = get_tang(upper, vec);
                                                                     tree[m].mn[i]=min(tree[m].mn[i],tree[m].l->mn[i
  ret.second = (ret.second+(int)lower.size()-1)%n;
  ret = max(ret, get_tang(lower, vec));
                                                                     tree[m].mx[i]=max(tree[m].mx[i],tree[m].l->mx[i
  return ret.second;
                                                                          ]);
                                                                   }
// 4. Find intersection point of a given line
// return 1 and intersection is on edge (i, next(i))
                                                                 tree[m].r=build(m+1,r,d+1);
// return 0 if no strictly intersection
                                                                 if(tree[m].r){
bool get_intersection(Pt u, Pt v, int &i0, int &i1){
                                                                   for(int i=0;i<k;i++){</pre>
```

```
tree[m].mn[i]=min(tree[m].mn[i],tree[m].r->mn[i
         tree[m].mx[i]=max(tree[m].mx[i],tree[m].r->mx[i
             ]);
      }
    return tree+m;
  LL pt[MXK],md;
  int mID;
  bool touch(Nd *r){
    LL d=0;
    for(int i=0;i<k;i++){</pre>
      if(pt[i]<=r->mn[i]) d+=dis(pt[i],r->mn[i]);
         else if(pt[i]>=r->mx[i]) d+=dis(pt[i],r->mx[i])
    return d<md;</pre>
  void nearest(Nd *r){
    if(!rll!touch(r)) return;
    LL td=dis(r->x,pt);
    if(td<md) md=td,mID=r->id;
nearest(pt[r->f]<r->x[r->f]?r->l:r->r);
    nearest(pt[r->f]< r->x[r->f]?r->r:r->l);
  pair<LL,int> query(vector<LL> &_pt,LL _md=1LL<<57){</pre>
    mID=-1, md=\underline{md};
    copy(_pt.begin(),_pt.end(),pt);
    nearest(root);
    return {md,mID};
}tree;
```

4.12 Lower Concave Hull

```
const ll is_query = -(1LL<<62);</pre>
struct Line {
  ll m, b;
  mutable function<const Line*()> succ;
  bool operator<(const Line& rhs) const {</pre>
    if (rhs.b != is_query) return m < rhs.m;</pre>
    const Line* s = succ();
    return s ? b - s->b < (s->m - m) * rhs.m : 0;
}; // maintain upper hull for maximum
struct HullDynamic : public multiset<Line> {
  bool bad(iterator y) {
    auto z = next(y)
    if (y == begin()) {
      if (z == end()) return 0;
      return y->m == z->m && y->b <= z->b;
    auto x = prev(y);
    if(z==end())return y->m==x->m&y->b<=x->b;
return (x->b-y->b)*(z->m-y->m)>=
              (y->b-z->b)*(y->m-x->m);
  void insert_line(ll m, ll b) {
    auto y = insert({m, b});
    y->succ = [=]{return next(y)==end()?0:&*next(y);};
if(bad(y)) {erase(y); return; }
while(next(y)!=end()&&bad(next(y)))erase(next(y));
    while(y!=begin()&&bad(prev(y)))erase(prev(y));
  ll eval(ll x) {
    auto l = *lower_bound((Line) {x, is_query});
    return l.m * x + l.b;
```

4.13 Min Enclosing Circle

```
struct Mec{
  // return pair of center and r
  static const int N = 101010;
  int n;
  Pt p[ N ], cen;
  double r2;
  void init( int _n , Pt _p[] ){
    n = _n;
    memcpy( p , _p , sizeof(Pt) * n );
}
```

```
double sqr(double a){ return a*a; }
  Pt center(Pt p0, Pt p1, Pt p2) {
     Pt a = p1-p0;
     Pt b = p2-p0;
     double c1=norm2( a ) * 0.5;
     double c2=norm2( b ) * 0.5;
     double d = a \wedge b;
     double x = p0.X + (c1 * b.Y - c2 * a.Y) / d;
     double y = p0.Y + (a.X * c2 - b.X * c1) / d;
     return Pt(x,y);
  pair<Pt,double> solve(){
    random_shuffle(p,p+n);
     r2=0;
     for (int i=0; i<n; i++){
       if (norm2(cen-p[i]) <= r2) continue;</pre>
       cen = p[i];
       r2 = 0;
       for (int j=0; j<i; j++){
  if (norm2(cen-p[j]) <= r2) continue;</pre>
         cen=Pt((p[i].X+p[j].X)/2,(p[i].Y+p[j].Y)/2);
         r2 = norm2(cen-p[j]);
for (int k=0; k<j; k++){
   if (norm2(cen-p[k]) <= r2) continue;
            cen = center(p[i],p[j],p[k]);
            r2 = norm2(cen-p[k]);
      }
    return {cen,sqrt(r2)};
} mec;
```

4.14 Min Enclosing Ball

```
// Pt : { x , y , z } #define N 202020
int n, nouter; Pt pt[ N ], outer[4], res;
double radius,tmp;
void ball() {
   Pt q[3]; double m[3][3], sol[3], L[3], det;
   int i,j; res.x = res.y = res.z = radius = 0;
switch ( nouter ) {
       case 1: res=outer[0]; break;
       case 2: res=(outer[0]+outer[1])/2; radius=norm2(res
                 outer[0]); break;
       case 3:
          for (i=0; i<2; ++i) q[i]=outer[i+1]-outer[0];
for (i=0; i<2; ++i) for(j=0; j<2; ++j) m[i][j]=(q
       [i] * q[j])*2;</pre>
          for (i=0; i<2; ++i) sol[i]=(q[i] * q[i]);
if (fabs(det=m[0][0]*m[1][1]-m[0][1]*m[1][0])<eps</pre>
          L[0]=(sol[0]*m[1][1]-sol[1]*m[0][1])/det;
L[1]=(sol[1]*m[0][0]-sol[0]*m[1][0])/det;
res=outer[0]+q[0]*L[0]+q[1]*L[1];
          radius=norm2(res, outer[0]);
          break;
       case 4:
          for (i=0; i<3; ++i) q[i]=outer[i+1]-outer[0], sol
    [i]=(q[i] * q[i]);</pre>
          for (i=0;i<3;++i) for(j=0;j<3;++j) m[i][j]=(q[i]
                  * q[j])*2;
          det= m[0][0]*m[1][1]*m[2][2]
+ m[0][1]*m[1][2]*m[2][0]
+ m[0][2]*m[2][1]*m[1][0]
              - m[0][2]*m[1][1]*m[2][0]

- m[0][1]*m[1][0]*m[2][2]

- m[0][0]*m[1][2]*m[2][1];
          if ( fabs(det)<eps ) return;</pre>
          for (j=0; j<3; ++j) {
  for (i=0; i<3; ++i) m[i][j]=sol[i];</pre>
             for (1=0; 1<3; ++1) m[1][]]=sol[
L[j]=( m[0][0]*m[1][1]*m[2][2]
+ m[0][1]*m[1][2]*m[2][0]
+ m[0][2]*m[2][1]*m[1][0]
- m[0][2]*m[1][1]*m[2][0]
- m[0][1]*m[1][0]*m[2][2]
- m[0][0]*m[1][2]*m[2][1]
                      ) / det;
              for (i=0; i<3; ++i) m[i][j]=(q[i] * q[j])*2;
          } res=outer[0];
```

4.15 Minkowski sum

```
vector<Pt> minkowski(vector<Pt> p, vector<Pt> q){
  int n = p.size() , m = q.size();
  Pt c = Pt(0, 0);
  for( int i = 0; i < m; i ++) c = c + q[i];</pre>
  for( int i = 0; i < m; i ++) q[i] = q[i] - c;
  int cur = -1;
  for( int i = 0; i < m; i ++)
    if( (q[i] \land (p[0] - p[n-1])) > -eps)
       if( cur == -1 || (q[i] \wedge (p[0] - p[n-1])) > (q[cur] \wedge (p[0] - p[n-1])) )
         cur = i;
  vector<Pt> h;
  p.push_back(p[0]);
  for( int i = 0; i < n; i ++)
  while( true ){</pre>
       h.push_back(p[i] + q[cur]);
int nxt = (cur + 1 == m ? 0 : cur + 1);
       if((q[cur] ^ (p[i+1] - p[i])) < -eps) cur = nxt;
       else if( (q[nxt] ^ (p[i+1] - p[i])) > (q[cur] ^ (p[i+1] - p[i])) ) cur = nxt;
       else break;
  for(auto &&i : h) i = i + c;
  return convex_hull(h);
```

4.16 Min dist on Cuboid

```
typedef LL T;
Tr;
if(i>=0 && i< 2) turn(i+1, j, x0+L+z, y, x0+L-x,
  x0+L, y0, H, W, L);

if(j>=0 && j< 2) turn(i, j+1, x, y0+W+z, y0+W-y,

x0, y0+W, L, H, W);

if(i>=0 && i>=2) +unci 1 = unci =
  if(i<=0 && i>-2) turn(i-1, j, x0-z, y, x-x0;
  x0-H, y0, H, W, L);
if(j<=0 && j>-2) turn(i, j-1, x, y0-z, y-y0,
x0, y0-H, L, H, W);
T solve(T L, T W, T H,
         T x1, T y1, T z1, T x2, T y2, T z2){
  if( z1!=0 && z1!=H ){
     if( y1==0 || y1==W )
       swap(y1,z1), swap(y2,z2), swap(W,H);
  else swap(x1,z1), swap(x2,z2), swap(L,H);
  if (z1==H) z1=0, z2=H-z2;
  r=INF; turn(0,0,x2-x1,y2-y1,z2,-x1,-y1,L,W,H);
  return r;
}
```

4.17 Heart of Triangle

```
Pt inCenter( Pt &A, Pt &B, Pt &C) { // 内心 double a = norm(B-C), b = norm(C-A), c = norm(A-B); return (A * a + B * b + C * c) / (a + b + c);
```

```
Pt circumCenter( Pt &a, Pt &b, Pt &c) { // 外心 Pt bb = b - a, cc = c - a; double db=norm2(bb), dc=norm2(cc), d=2*(bb ^ cc); return a-Pt(bb.Y*dc-cc.Y*db, cc.X*db-bb.X*dc) / d; } Pt othroCenter( Pt &a, Pt &b, Pt &c) { // 垂心 Pt ba = b - a, ca = c - a, bc = b - c; double Y = ba.Y * ca.Y * bc.Y, A = ca.X * ba.Y - ba.X * ca.Y, x0= (Y+ca.X*ba.Y*b.X-ba.X*ca.Y*c.X) / A, y0= -ba.X * (x0 - c.X) / ba.Y + ca.Y; return Pt(x0, y0); }
```

5 Graph

5.1 DominatorTree

```
const int MAXN = 100010;
struct DominatorTree{
#define REP(i,s,e) for(int i=(s);i<=(e);i++)</pre>
#define REPD(i,s,e) for(int i=(s);i>=(e);i--)
  int n, m, s;

vector< int > g[ MAXN ], pred[ MAXN ];

vector< int > cov[ MAXN ];

int dfn[ MAXN ], nfd[ MAXN ], ts;

int par[ MAXN ]; //idom[u] s到u的最後一個必經點
  int sdom[ MAXN ] , idom[ MAXN ];
  int mom[ MAXN ] , mn[ MAXN ];
inline bool cmp( int u , int v )
   { return dfn[ u ] < dfn[ v ]; }
  int eval( int u ){
  if( mom[ u ] == u ) return u;
      int res = eval( mom[ u ] );
     if(cmp( sdom[ mn[ mom[ u ] ] ] , sdom[ mn[ u ] ] ))
   mn[ u ] = mn[ mom[ u ] ];
     return mom[ u ] = res;
  void init( int _n , int _m , int _s ){
    ts = 0; n = _n; m = _m; s = _s;
    respect to _n; m = _m; s = _s;
     REP( i, 1, n ) g[ i ].clear(), pred[ i ].clear();
  void addEdge( int u , int v ){
     g[ u ].push_back( v );
pred[ v ].push_back( u );
  void dfs( int u ){
     ts++;
dfn[ u ] = ts;
     nfd[ts] = u;
     for( int v : g[ u ] ) if( dfn[ v ] == 0 ){
  par[ v ] = u;
        dfs(v);
     }
  void build(){
     REP( i , 1 , n ){
  dfn[ i ] = nfd[ i ] = 0;
  cov[ i ].clear();
  mom[ i ] = mn[ i ] = sdom[ i ] = i;
     dfs( s );
     REPD( i , n , 2 ){
        int u = nfd[ i ];
if( u == 0 ) continue;
        for( int v : pred[ u ] ) if( dfn[ v ] ){
           eval( v );
if( cmp( sdom[ mn[ v ] ] , sdom[ u ] ) )
    sdom[ u ] = sdom[ mn[ v ] ];
        cov[ sdom[ u ] ].push_back( u );
        mom[ u ] = par[ u ];
        for( int w : cov[ par[ u ] ] ){
           if( cmp( sdom[ mn[ w ] ] , par[ u ] ) )
           idom[w] = mn[w];
else idom[w] = par[u];
        cov[ par[ u ] ].clear();
     REP( i , 2 , n ){
```

```
int u = nfd[ i ];
if( u == 0 ) continue;
if( idom[ u ] != sdom[ u ] )
    idom[ u ] = idom[ idom[ u ] ];
}
}
}
domT;
```

5.2 MaxClique 最大團

```
#define N 111
struct MaxClique{ // 0-base
  typedef bitset< N > Int;
  Int linkto[N], v[N];
  int n:
  void init( int _n ){
   v[ i ].reset();
  void addEdge( int a , int b ){
    v[a][b] = v[b][a] = 1;
  int popcount(const Int& val)
  { return val.count(); }
  int lowbit(const Int& val)
  { return val._Find_first(); }
  int ans , stk[ N ];
int id[ N ] , di[ N ] , deg[ N ];
  Int cans:
  void maxclique(int elem_num, Int candi){
    //if(candi.none()){
    if(elem_num > ans){
      ans = elem_num;
      cans.reset();
       for( int i = 0 ; i < elem_num ; i ++ )</pre>
         cans[ id[ stk[ i ] ] ] = 1;
         //potential,smaller_candi
    int potential = elem_num + popcount(candi);//
    if(potential <= ans) return;//</pre>
    int pivot = lowbit(candi);
    Int smaller_candi = candi & (~linkto[pivot]);//
    while(smaller_candi.count() && potential > ans){
      int next = lowbit(smaller_candi);
      candi[next] = !candi[next];
      smaller_candi[ next ] = !smaller_candi[ next ];//
      potential --;/
       if(next == pivot || (smaller_candi & linkto[next
           ]).count() ){//
         stk[elem_num] = next;
        maxclique(elem_num + 1, candi & linkto[next]);
  } } }
  int solve(){
    for( int i = 0 ; i < n ; i ++ ){
  id[ i ] = i;
  deg[ i ] = v[ i ].count();</pre>
    sort( id , id + n , [&](int id1, int id
    return deg[id1] > deg[id2]; } );
                          [&](int id1, int id2){
    for( int_i = 0_; i < n ; i ++ )
      di[ id[ i ] ] = i;
    for( int i = 0; i < n; i ++ )
  for( int j = 0; j < n; j ++ )
    if( v[ i ][ j ] )
      linkto[ di[ i ] ][ di[ j ] ] = 1;</pre>
    Int cand; cand.reset();
    for( int i = 0; i < n; i ++ )
      cand[i] = 1;
    cans.reset(); cans[0] = 1;
    maxclique(0, cand);
    return ans;
} solver;
```

5.3 Strongly Connected Component

```
struct Scc{
  int n, nScc, vst[MXN], bln[MXN];
  vector<int> E[MXN], rE[MXN], vec;
  void init(int _n){
```

```
n = _n;
for (int i=0; i<MXN; i++)</pre>
      E[i].clear(), rE[i].clear();
  void addEdge(int u, int v){
    E[u].PB(v); rE[v].PB(u);
  void DFS(int u){
    vst[u]=1;
    for (auto v : E[u]) if (!vst[v]) DFS(v);
    vec.PB(u);
  }
  void rDFS(int u){
    vst[u] = 1; bln[u] = nScc;
    for (auto v : rE[u]) if (!vst[v]) rDFS(v);
  void solve(){
    nScc = 0;
    vec.clear();
    FZ(vst);
    for (int i=0; i<n; i++)</pre>
      if (!vst[i]) DFS(i);
    reverse(vec.begin(),vec.end());
    FZ(vst);
    for (auto v : vec)
      if (!vst[v]){
        rDFS(v); nScc++;
  }
};
```

5.4 Dynamic MST

```
/* Dynamic MST O( Q lg^2 Q )
 (qx[i], qy[i])->chg weight of edge No.qx[i] to qy[i]
 delete an edge: (i, \infty)
 add an edge: change from \infty to specific value
const int SZ=M+3*MXQ;
int a[N],*tz;
int find(int xx){
  int root=xx; while(a[root]) root=a[root];
  int next; while((next=a[xx])){a[xx]=root; xx=next; }
  return root;
bool cmp(int aa,int bb){ return tz[aa]<tz[bb]; }</pre>
int kx[N],ky[N],kt, vd[N],id[M], app[M];
bool extra[M];
void solve(int *qx,int *qy,int Q,int n,int *x,int *y,
    int *z,int m1,long long ans){
  if(Q==1){
    for(int i=1;i<=n;i++) a[i]=0;
z[ qx[0] ]=qy[0]; tz = z;
for(int i=0;i<m1;i++) id[i]=i;</pre>
    sort(id,id+m1,cmp); int ri,rj;
    for(int i=0;i<m1;i++){</pre>
      ri=find(x[id[i]]); rj=find(y[id[i]]);
      if(ri!=rj){ ans+=z[id[i]]; a[ri]=rj; }
    printf("%lld\n",ans);
    return;
  int ri,rj;
  //contract
  kt=0;
  for(int i=1;i<=n;i++) a[i]=0;</pre>
  for(int i=0;i<Q;i++){</pre>
    ri=find(x[qx[i]]); rj=find(y[qx[i]]); if(ri!=rj) a[
         ri]=rj;
  int tm=0:
  for(int i=0;i<m1;i++) extra[i]=true;</pre>
  for(int i=0;i<Q;i++) extra[ qx[i] ]=false;</pre>
  for(int i=0;i<m1;i++) if(extra[i]) id[tm++]=i;</pre>
  tz=z; sort(id,id+tm,cmp);
  for(int i=0;i<tm;i++){</pre>
    ri=find(x[id[i]]); rj=find(y[id[i]]);
    if(ri!=rj){
      a[ri]=rj; ans += z[id[i]];
       kx[kt]=x[id[i]]; ky[kt]=y[id[i]]; kt++;
  }
```

```
for(int i=1;i<=n;i++) a[i]=0;
for(int i=0;i<kt;i++) a[ find(kx[i]) ]=find(ky[i]);</pre>
  for(int i=1;i<=n;i++) if(a[i]==0)</pre>
  vd[i]=++n2;
  for(int i=1;i<=n;i++) if(a[i])</pre>
 vd[i]=vd[find(i)];
int m2=0, *Nx=x+m1, *Ny=y+m1, *Nz=z+m1;
  for(int i=0;i<m1;i++) app[i]=-1;</pre>
 app[qx[i]]=m2; m2++;
  for(int i=0;i<Q;i++){ z[ qx[i] ]=qy[i]; qx[i]=app[qx[</pre>
      i]]; }
  for(int i=1;i<=n2;i++) a[i]=0;
for(int i=0;i<tm;i++){</pre>
    ri=find(vd[ x[id[i]] ]); rj=find(vd[ y[id[i]] ]);
    if(ri!=rj){
      a[ri]=rj; Nx[m2]=vd[ x[id[i]] ]
      Ny[m2]=vd[ y[id[i]] ]; Nz[m2]=z[id[i]]; m2++;
  int mid=Q/2;
  solve(qx,qy,mid,n2,Nx,Ny,Nz,m2,ans);
  solve(qx+mid,qy+mid,Q-mid,n2,Nx,Ny,Nz,m2,ans);
int x[SZ],y[SZ],z[SZ],qx[MXQ],qy[MXQ],n,m,Q;
void init(){
  scanf("%d%d",&n,&m);
  for(int i=0;i<m;i++) scanf("%d%d%d",x+i,y+i,z+i);</pre>
  scanf("%d",&Q);
  for(int i=0;i<Q;i++){ scanf("%d%d",qx+i,qy+i); qx[i</pre>
void work(){ if(Q) solve(qx,qy,Q,n,x,y,z,m,0); }
int main(){init(); work(); }
```

5.5 Maximum General graph Matching

```
const int N = 514, E = (2e5) * 2;
struct Graph{
  int to[E],bro[E],head[N],e;
  int lnk[N],vis[N],stp,n;
void init( int _n ){
    stp = 0; e = 1; n = _n;
    for( int i = 1 ; i <= n ; i ++ )</pre>
       lnk[i] = vis[i] = 0;
  void add_edge(int u,int v){
     to[e]=v,bro[e]=head[u],head[u]=e++;
     to[e]=u,bro[e]=head[v],head[v]=e++;
  bool dfs(int x){
     vis[x]=stp;
     for(int i=head[x];i;i=bro[i]){
       int v=to[i];
       if(!lnk[v]){
         lnk[x]=v, lnk[v]=x;
          return true
       }else if(vis[lnk[v]]<stp){</pre>
          int w=lnk[v]
         lnk[x]=v, lnk[v]=x, lnk[w]=0;
         if(dfs(w)){
            return true;
          lnk[w]=v, lnk[v]=w, lnk[x]=0;
       }
     return false;
  int solve(){
     int ans = 0;
     for(int i=1;i<=n;i++)</pre>
       if(!lnk[i]){
         stp++; ans += dfs(i);
     return ans;
} graph;
```

5.6 Minimum General Weighted Matching

```
struct Graph {
   // Minimum General Weighted Matching (Perfect Match)
   static const int MXN = 105;
   int n, edge[MXN][MXN];
   int match[MXN],dis[MXN],onstk[MXN];
   vector<int> stk;
   void init(int _n) {
     n = _n; for( int i = 0 ; i < n ; i ++ )
       for( int j = 0 ; j < n ; j ++ )
  edge[ i ][ j ] = 0;</pre>
   void add_edge(int u, int v, int w)
   \{ edge[u][v] = edge[v][u] = w; \}
   bool SPFA(int u){
     if (onstk[u]) return true;
     stk.PB(u);
     onstk[u] = 1;
     for (int v=0; v<n; v++){
       if (u != v && match[u] != v && !onstk[v]){
          int m = match[v];
          if (dis[m] > dis[u] - edge[v][m] + edge[u][v]){
            dis[m] = dis[u] - edge[v][m] + edge[u][v];
            onstk[v] = 1;
            stk.PB(v);
            if (SPFA(m)) return true;
            stk.pop_back();
            onstk[v] = 0;
     } } }
     onstk[u] = 0
     stk.pop_back();
     return false:
   int solve() {
     // find a match
     for (int i=0; i<n; i+=2){
       match[i] = i+1;
match[i+1] = i;
     while (true){
  int found = 0;
       for( int i = 0 ; i < n_; i ++ )</pre>
       onstk[ i ] = dis[ i ] = 0;
for (int i=0; i<n; i++){</pre>
         stk.clear()
          if (!onstk[i] && SPFA(i)){
            found = 1:
            while (SZ(stk)>=2){
              int u = stk.back(); stk.pop_back();
              int v = stk.back(); stk.pop_back();
              match[u] = v;
              match[v] = u;
       } } }
       if (!found) break;
     int ret = 0;
     for (int i=0; i < n; i++)
       ret += edge[i][match[i]];
     ret /= 2:
     return ret;
}graph;
```

5.7 Maximum General Weighted Matching

```
struct WeightGraph {
    static const int INF = INT_MAX;
    static const int N = 514;
    struct edge{
        int u,v,w; edge(){}
        edge(int ui,int vi,int wi)
            :u(ui),v(vi),w(wi){}
    };
    int n,n_x;
    edge g[N*2][N*2];
    int lab[N*2];
    int match[N*2],slack[N*2],st[N*2],pa[N*2];
    int flo_from[N*2][N+1],S[N*2],vis[N*2];
    vector<int> flo[N*2];
    queue<int> q;
```

```
int e_delta(const edge &e){
  return lab[e.u]+lab[e.v]-g[e.u][e.v].w*2;
void update_slack(int u,int x){
  if(!slack[x]||e_delta(g[u][x])<e_delta(g[slack[x]][</pre>
      x]))slack[x]=u;
void set_slack(int x){
  slack[x]=0;
  for(int u=1;u<=n;++u)</pre>
    if(g[u][x].w>0&&st[u]!=x&&S[st[u]]==0)
      update_slack(u,x);
void q_push(int x){
  if(x<=n)q.push(x);</pre>
  else for(size_t i=0;i<flo[x].size();i++)</pre>
    q_push(flo[x][i]);
void set_st(int x,int b){
  st[x]=b;
  if(x>n)for(size_t i=0;i<flo[x].size();++i)</pre>
    set_st(flo[x][i],b);
int get_pr(int b,int xr){
  int pr=find(flo[b].begin(),flo[b].end(),xr)-flo[b].
      begin();
  if(pr%2==1){
    reverse(flo[b].begin()+1,flo[b].end());
    return (int)flo[b].size()-pr;
  }else return pr;
void set_match(int u,int v){
 match[u]=g[u][v].v;
if(u<=n) return;</pre>
  edge e=g[u][v];
  int xr=flo_from[u][e.u],pr=get_pr(u,xr);
  for(int i=0;i<pr;++i)set_match(flo[u][i],flo[u][i</pre>
      ^1]);
  set_match(xr,v);
  rotate(flo[u].begin(),flo[u].begin()+pr,flo[u].end
void augment(int u,int v){
  for(;;){
    int xnv=st[match[u]];
    set_match(u,v);
    if(!xnv)return
    set_match(xnv,st[pa[xnv]]);
    u=st[pa[xnv]],v=xnv;
int get_lca(int u,int v){
  static int t=0;
  for(++t;ullv;swap(u,v)){
    if(u==0)continue;
    if(vis[u]==t)return u;
    vis[u]=t
    u=st[match[u]];
    if(u)u=st[pa[u]];
 }
  return 0;
void add_blossom(int u,int lca,int v){
  int b=n+1:
  while(b<=n_x&&st[b])++b;</pre>
  if(b>n_x)++n_x;
  lab[b]=0, S[b]=0;
  match[b]=match[lca];
  flo[b].clear();
  flo[b].push_back(lca);
  for(int x=u,y;x!=lca;x=st[pa[y]])
    flo[b].push\_back(x), flo[b].push\_back(y=st[match[x]])
         ]]),q_push(y)
  reverse(flo[b].begin()+1,flo[b].end());
  for(int x=v,y;x!=lca;x=st[pa[y]])
    flo[b].push_back(x),flo[b].push_back(y=st[match[x
        ]]),q_push(y);
  set_st(b,b);
  for(int x=1;x<=n_x;++x)g[b][x].w=g[x][b].w=0;
  for(int x=1;x<=n;++x)flo_from[b][x]=0;</pre>
  for(size_t i=0;i<flo[b].size();++i){</pre>
    int xs=flo[b][i];
    for(int x=1;x<=n_x;++x)</pre>
```

```
if(g[b][x].w==0|le_delta(g[xs][x])<e_delta(g[b]
           ΊΓΧΊ)
         g[\bar{b}][x]=g[xs][x],g[x][b]=g[x][xs];
    for(int x=1;x <=n;++x)
      if(flo_from[xs][x])flo_from[b][x]=xs;
  set_slack(b);
}
void expand_blossom(int b){
  for(size_t i=0;i<flo[b].size();++i)
  set_st(flo[b][i],flo[b][i]);</pre>
  int xr=flo_from[b][g[b][pa[b]].u],pr=get_pr(b,xr);
  for(int i=0;i<pr;i+=2){
  int xs=flo[b][i],xns=flo[b][i+1];</pre>
    pa[xs]=g[xns][xs].u;
    S[xs]=1,S[xns]=0;
    slack[xs]=0,set_slack(xns);
    q_push(xns);
  S[xr]=1,pa[xr]=pa[b];
  for(size_t i=pr+1;i<flo[b].size();++i){</pre>
    int xs=flo[b][i];
    S[xs]=-1,set\_slack(xs);
  st[b]=0;
bool on_found_edge(const edge &e){
  int u=st[e.u],v=st[e.v];
  if(S[v]==-1){
    pa[v]=e.u,S[v]=1
    int nu=st[match[v]];
    slack[v]=slack[nu]=0;
  S[nu]=0,q_push(nu);
}else if(S[v]==0){
    int lca=get_lca(u,v);
    if(!lca)return augment(u,v),augment(v,u),true;
    else add_blossom(u,lca,v);
  return false;
bool matching(){
  memset(S+1,-1,sizeof(int)*n_x);
  memset(slack+1,0,sizeof(int)*n_x);
  q=queue<int>();
  for(int x=1;x<=n_x;++x)</pre>
    if(st[x]==x\&\&!match[x])pa[x]=0,S[x]=0,q_push(x);
  if(q.empty())return false;
  for(;;){
    while(q.size()){
      int u=q.front();q.pop();
      if(S[st[u]]==1)continue;
      for(int v=1;v<=n;++v)
  if(g[u][v].w>0&&st[u]!=st[v]){
           if(e_delta(g[u][v])==0){
             if(on_found_edge(g[u][v]))return true;
           }else update_slack(u,st[v]);
    int d=INF;
    for(int b=n+1;b<=n_x;++b)</pre>
      if(st[b]==b&&S[b]==1)d=min(d,lab[b]/2);
    for(int x=1;x<=n_x;++x)</pre>
      if(st[x]==x\&slack[x]){
         if(S[x]==-1)d=min(d,e_delta(g[slack[x]][x]));
         else if(S[x]==0)d=min(d,e_delta(g[slack[x]][x
             ])/2);
    for(int u=1;u<=n;++u){</pre>
      if(S[st[u]]==0){
         if(lab[u]<=d)return 0;</pre>
         lab[u]-=d;
      }else if(S[st[u]]==1)lab[u]+=d;
    for(int b=n+1;b<=n_x;++b)</pre>
      if(st[b]==b){
         if(S[st[b]]==0)lab[b]+=d*2;
         else if(S[st[b]]==1)lab[b]-=d*2;
    q=queue<int>();
    for(int x=1;x<=n_x;++x)</pre>
      if(st[x]==x&&slack[x]&&st[slack[x]]!=x&&e_delta
           (g[slack[x]][x])==0)
         if(on_found_edge(g[slack[x]][x]))return true;
```

```
for(int b=n+1;b<=n_x;++b)</pre>
         if(st[b]==b&&S[b]==1&&lab[b]==0)expand_blossom(
    return false;
  pair<long long,int> solve(){
    memset(match+1,0,sizeof(int)*n);
    n x=n:
    int n_matches=0;
    long long tot_weight=0;
    for(int u=0;u<=n;++u)st[u]=u,flo[u].clear();</pre>
    int w_max=0;
    for(int u=1;u<=n;++u)</pre>
       for(int v=1;v<=n;++v){</pre>
         flo_from[u][v]=(u==v?u:0);
         w_max=max(w_max,g[u][v].w);
    for(int u=1;u<=n;++u)lab[u]=w_max;</pre>
    while(matching())++n_matches;
    for(int u=1;u<=n;++u)</pre>
       if(match[u]&&match[u]<u)</pre>
         tot_weight+=g[u][match[u]].w;
    return make_pair(tot_weight,n_matches);
  void add_edge( int ui , int vi , int wi ){
    g[ui][vi].w = g[vi][ui].w = wi;
  void init( int _n ){
    n = _n;
for(int u=1;u<=n;++u)</pre>
       for(int v=1;v<=n;++v)</pre>
         g[u][v]=edge(u,v,0);
} graph;
```

5.8 Minimum Steiner Tree

```
// Minimum Steiner Tree 重要點的mst
// 0(V 3^T + V^2 2^T)
struct SteinerTree{
#define V 33
#define T 8
#define INF 1023456789
  int n , dst[V][V] , dp[1 << T][V] , tdst[V];</pre>
  void init( int _n ){
     for( int i = 0 ; i < n ; i ++ ){
       for( int j = 0; j < n; j ++ );

dst[ i ][ j ] = INF;

dst[ i ][ i ] = 0;
  } }
  void add_edge( int ui , int vi , int wi ){
  dst[ ui ][ vi ] = min( dst[ ui ][ vi ] , wi );
  dst[ vi ][ ui ] = min( dst[ vi ][ ui ] , wi );
  void shortest_path(){
     for( int k = 0 ; k < n ; k ++ )
for( int i = 0 ; i < n ; i ++ )
          for( int j = 0; j < n; j ++</pre>
             int solve( const vector<int>& ter ){
     int t = (int)ter.size();
     for( int i = 0 ; i < ( 1 << t ) ; i ++ )
  for( int j = 0 ; j < n ; j ++ )
    dp[ i ][ j ] = INF;
for( int i = 0 ; i < n ; i ++ )
    dp[ 0 ][ i ] = ;
for( int i = 0 ; i < n ; i ++ )</pre>
     for( int msk = 1 ; msk < ( 1 << t ) ; msk ++ ){
       if( msk == ( msk & (-msk) ) ){
          int who = __lg( msk );
          for( int i = 0 ; i < n ; i ++ )
  dp[ msk ][ i ] = dst[ ter[ who ] ][ i ];</pre>
          continue;
        for( int i = 0 ; i < n ; i ++ )
          for( int submsk = ( msk - 1 ) & msk ; submsk ;
                       submsk = (submsk - 1) \& msk)
```

5.9 BCC based on vertex

```
struct BccVertex {
  int n,nScc,step,dfn[MXN],low[MXN];
vector<int> E[MXN],sccv[MXN];
   int top,stk[MXN];
   void init(int _n) {
  n = _n;  nScc = step = 0;
     for (int i=0; i<n; i++) E[i].clear();</pre>
   void addEdge(int u, int v)
   { E[u].PB(v); E[v].PB(u); }
   void DFS(int u, int f) {
     dfn[u] = low[u] = step++;
     stk[top++] = u;
     for (auto v:E[ú]) {
       if (v == f) continue;
if (dfn[v] == -1) {
         DFS(v,u);
          low[u] = min(low[u], low[v]);
          if (low[v] >= dfn[u]) {
            int z; //進到if裡面u為關節點
            sccv[nScc].clear();
            do {
              z = stk[--top]
              sccv[nScc].PB(z);
            } while (z != v);
            sccv[nScc++].PB(u);
       }else
         low[u] = min(low[u],dfn[v]);
   } }
   vector<vector<int>>> solve() {
     vector<vector<int>> res;
     for (int i=0; i<n; i++)</pre>
       dfn[i] = low[i] = -1;
     for (int i=0; i<n; i++)</pre>
       if (dfn[i] == -1) {
         top = 0;
         DFS(i,i);
     REP(i,nScc) res.PB(sccv[i]);
     return res;
  }
}graph;
```

5.10 Min Mean Cycle

```
/* minimum mean cycle O(VE) */
struct MMC{
#define E 101010
#define V 1021
#define inf 1e9
#define eps 1e-6
    struct Edge { int v,u; double c; };
    int n, m, prv[V][V], prve[V][V], vst[V];
    Edge e[E];
    vector<int> edgeID, cycle, rho;
    double d[V][V];
    void init( int _n )
    { n = _n; m = 0; }
    // WARNING: TYPE matters
    void addEdge( int vi , int ui , double ci )
    { e[ m ++ ] = { vi , ui , ci }; }
    void bellman_ford() {
        for(int i=0; i<n; i++) d[0][i]=0;</pre>
```

```
d[i+1][u] = d[i][v]+e[j].c;
          prv[i+1][u] = v;
          prve[i+1][u] = j;
  1 1 1 1
  double solve(){
    // returns inf if no cycle, mmc otherwise
    double mmc=inf;
    int st = -1;
    bellman_ford();
    for(int i=0; i<n; i++) {</pre>
      double avg=-inf;
      for(int k=0; k<n; k++) {
  if(d[n][i]<inf-eps) avg=max(avg,(d[n][i]-d[k][i])</pre>
            ])/(n-k));
        else avg=max(avg,inf);
      if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
    fill(vst,0); edgeID.clear(); cycle.clear(); rho.
        clear();
    for (int i=n; !vst[st]; st=prv[i--][st]) {
      vst[st]++;
      edgeID.PB(prve[i][st]);
      rho.PB(st);
    while (vst[st] != 2) {
      if(rho.empty()) return inf;
      int v = rho.back(); rho.pop_back();
      cycle.PB(v);
      vst[v]++;
    reverse(ALL(edgeID));
    edgeID.resize(SZ(cycle));
    return mmc;
} }mmc;
```

5.11 Directed Graph Min Cost Cycle

```
// works in O(N M)
#define INF 1000000000000000LL
#define N 5010
#define M 200010
struct edge{
  int to; LL w;
  edge(int a=0, LL b=0): to(a), w(b){}
struct node{
  LL d; int u, next;
node(LL a=0, int b=0, int c=0): d(a), u(b), next(c){}
}b[M];
struct DirectedGraphMinCycle{
  vector<edge> g[N], grev[N];
  LL dp[N][\bar{N}], p[N], d[N], mu;
  bool inq[N];
  int n, bn, bsz, hd[N];
  void b_insert(LL d, int u){
     int i = d/mu;
    if(i >= bn) return;
    b[++bsz] = node(d, u, hd[i]);
    hd[i] = bsz;
  void init( int _n ){
    n = _n;
for( int i = 1 ; i <= n ; i ++ )
  g[ i ].clear();
  void addEdge( int ai , int bi , LL ci )
  { g[ai].push_back(edge(bi,ci)); }
  LL solve(){
     fill(dp[0], dp[0]+n+1, 0);
for(int i=1; i<=n; i++){
       fill(dp[i]+1, dp[i]+n+1, INF);
for(int j=1; j<=n; j++) if(dp[i-1][j] < INF){
  for(int k=0; k<(int)g[j].size(); k++)</pre>
            dp[i][g[j][k].to] =min(dp[i][g[j][k].to]
                                        dp[i-1][j]+g[j][k].w);
    } }
```

```
mu=INF; LL bunbo=1;
      for(int i=1; i<=n; i++) if(dp[n][i] < INF){</pre>
         LL a=-INF, b=1;
         for(int j=0; j<=n-1; j++) if(dp[j][i] < INF){
  if(a*(n-j) < b*(dp[n][i]-dp[j][i])){</pre>
              a = dp[n][i]-dp[j][i];
              b = n-j;
         } }
         if(mu*b > bunbo*a)
           mu = a, bunbo = b;
      if(mu < 0) return -1; // negative cycle</pre>
      if(mu == INF) return INF; // no cycle
      if(mu == 0) return 0;
      for(int i=1; i<=n; i++)</pre>
         for(int j=0; j<(int)g[i].size(); j++)
g[i][j].w *= bunbo;</pre>
      memset(p, 0, sizeof(p));
      queue<int> q;
      for(int i=1; i<=n; i++){
         q.push(i);
         inq[i] = true;
      while(!q.empty()){
        int i=q.front(); q.pop(); inq[i]=false;
for(int j=0; j<(int)g[i].size(); j++){
   if(p[g[i][j].to] > p[i]+g[i][j].w-mu){
      p[g[i][j].to] = p[i]+g[i][j].w-mu;
}
              if(!inq[g[i][j].to]){
   q.push(g[i][j].to);
                 inq[g[i][j].to] = true;
      for(int i=1; i<=n; i++) grev[i].clear();
for(int i=1; i<=n; i++)</pre>
         for(int j=0; j<(int)g[i].size(); j++){
  g[i][j].w += p[i]-p[g[i][j].to];</pre>
           grev[g[i][j].to].push_back(edge(i, g[i][j].w));
     LL mldc = n*mu;
for(int i=1; i<=n; i++){
         bn=mldc/mu, bsz=0;
        memset(hd, 0, sizeof(hd));
fill(d+i+1, d+n+1, INF);
b_insert(d[i]=0, i);
         for(int_j=0; j<=bn-1; j++) for(int k=hd[j]; k; k=</pre>
              b[k].next){
            int u = b[k].u;
           LL du = b[k].d;
           if(du > d[u]) continue;
for(int l=0; l<(int)g[u].size(); l++) if(g[u][l</pre>
                  ].to > i){
              if(d[g[u][1].to] > du + g[u][1].w){
  d[g[u][1].to] = du + g[u][1].w;
                 b_insert(d[g[u][l].to], g[u][l].to);
        } } for(int j=0; j<(int)grev[i].size(); j++) if(grev[</pre>
               i | [i] \cdot to > i)
           mldc=min(mldc,d[grev[i][j].to] + grev[i][j].w);
      return mldc / bunbo;
} }graph;
5.12 K-th Shortest Path
```

```
// time: O(|E| \setminus lg \mid E| + \mid V| \setminus lg \mid V| + K)
// memory: 0(|E| \lg |E| + |V|)
struct KSP{ // 1-base
  struct nd{
     int u, v, d;
     nd(int ui = 0, int vi = 0, int di = INF)
{ u = ui; v = vi; d = di; }
  struct heap{
     nd* edge; int dep; heap* chd[4];
  static int cmp(heap* a,heap* b)
  { return a->edge->d > b->edge->d; }
  struct node{
     int v; LL d; heap* H; nd* E;
     node(){}
     node(LL _d, int _v, nd* _E) { d =_d; v = _v; E = _E; }
```

```
node(heap* _H, LL _d) {    H = _H;    d = _d;    }
                                                                               if(L(i) < V.size()) V[i]->chd[2] = V[L(i)];
                                                                               else V[i]->chd[2]=nullNd;
     friend bool operator<(node a, node b)
                                                                               if(R(i) < V.size()) V[i]->chd[3] = V[R(i)];
     { return a.d > b.d; }
                                                                               else V[i]->chd[3]=nullNd;
  int n, k, s, t, dst[N];
nd *nxt[N];
                                                                            head[u] = merge(head[u], V.front());
                                                                        } }
  vector<nd*> g[ N ], rg[ N ];
                                                                        vector<LL> ans;
  heap *nullNd, *head[ N ];
                                                                        void first_K(){
  void init( int _n , int _k , int _s , int _t ){
  n = _n;  k = _k;  s = _s;  t = _t;
  for( int i = 1 ; i <= n ; i ++ ){</pre>
                                                                          ans.clear();
                                                                          priority_queue<node> Q;
                                                                          if( dst[ s ] == -1 ) return;
      g[ i ].clear(); rg[ i ].clear();
nxt[ i ] = head[ i ] = NULL;
dst[ i ] = -1;
                                                                          ans.push_back( dst[ s ] );
                                                                          if( head[s] != nullNd )
                                                                            Q.push(node(head[s], dst[s]+head[s]->edge->d));
                                                                          for( int _ = 1 ; _ < k and not Q.empty() ; _ ++ ){
                                                                            node p = Q.top(), q; Q.pop(); ans.push_back( p.d );
  void addEdge( int ui , int vi , int di ){
  nd* e = new nd(ui, vi, di);
  g[_ui ].push_back( e );
                                                                             if(head[ p.H->edge->v ] != nullNd){
    rg[ vi ].push_back( e );
                                                                               q.H = head[p.H->edge->v];
                                                                               q.d = p.d + q.H->edge->d;
  queue<int> dfsQ;
                                                                               Q.push(q);
  void dijkstra(){
                                                                            for( int i = 0 ; i < 4 ; i ++ )
  if( p.H->chd[ i ] != nullNd ){
    while(dfsQ.size()) dfsQ.pop();
    priority_queue<node> Q;
                                                                                 q.H = p.H- chd[i];
    Q.push(node(0, t, NULL));
    while (!Q.empty()){
                                                                                 q.d = p.d - p.H->edge->d + p.H->chd[i]->
       node p = Q.top(); Q.pop();
                                                                                      edge->d;
       if(dst[p.v] != -1) continue;
                                                                                 Q.push( q );
      dst[ p.v ] = p.d;
nxt[ p.v ] = p.E;
                                                                        } }
                                                                        void solve(){
       dfsQ.push( p.v );
                                                                          dijkstra();
       for(auto e: rg[ p.v ])
                                                                          build()
         Q.push(node(p.d + e->d, e->u, e));
                                                                          first_K();
  heap* merge(heap* curNd, heap* newNd){
                                                                     } solver;
     if(curNd == nullNd) return newNd;
    heap* root = new heap;
                                                                     5.13 SPFA
    memcpy(root, curNd, sizeof(heap));
if(newNd->edge->d < curNd->edge->d){
                                                                     bool spfa(){
       root->edge = newNd->edge;
                                                                        deque<int> dq;
       root->chd[2] = newNd->chd[2];
root->chd[3] = newNd->chd[3];
                                                                        dis[0]=0;
                                                                        dq.push_back(0);
       newNd->edge = curNd->edge;
                                                                        inq[0]=1;
       newNd - > chd[2] = curNd - > chd[2]
                                                                        while(!dq.empty()){
       newNd \rightarrow chd[3] = curNd \rightarrow chd[3];
                                                                          int u=dq.front()
                                                                               dq.pop_front();
    if(root->chd[0]->dep < root->chd[1]->dep)
                                                                          inq[u]=0;
       root->chd[0] = merge(root->chd[0], newNd);
                                                                          for(auto i:edge[u]){
                                                                             if(dis[i.first]>i.second+dis[u]){
                                                                               dis[i.first]=i.second+dis[u];
       root->chd[1] = merge(root->chd[1],newNd);
     root->dep = max(root->chd[0]->dep, root->chd[1]->
                                                                               len[i.first]=len[u]+1;
                                                                               if(len[i.first]>n) return 1;
          dep) + 1;
    return root;
                                                                               if(inq[i.first]) continue;
                                                                               if(!dq.empty()&&dis[dq.front()]>dis[i.first])
  vector<heap*> V;
                                                                                 dq.push_front(i.first);
  void build(){
                                                                                 dq.push_back(i.first);
    nullNd = new heap;
    nullNd->dep = 0;
                                                                               inq[i.first]=1;
                                                                       } } }
    nullNd->edge = new nd;
    fill(nullNd->chd, nullNd->chd+4, nullNd);
                                                                        return 0;
    while(not dfsQ.empty()){
  int u = dfsQ.front(); dfsQ.pop();
       if(!nxt[ u ]) head[ u ] = nullNd;
else head[ u ] = head[nxt[ u ]->v];
                                                                     5.14 差分約束
                                                                        約束條件 V_j - V_i \leq W 建邊 V_i - > V_j 權重為 W-> bellman-ford or spfa
       V.clear();
       for( auto&& e : g[ u ] ){
                                                                           String
         int v = e->v;
if( dst[ v ] == -1 ) continue;
e->d += dst[ v ] - dst[ u ];
if( nxt[ u ] != e ){
    becn* n - new heap:
                                                                     6.1 PalTree
                                                                    |// len[s]是對應的回文長度
                                                                     // num[s]是有幾個回文後綴
            heap* p = new heap;
            fill(p->chd, p->chd+4, nullNd);
                                                                     // cnt[s]是這個回文子字串在整個字串中的出現次數
                                                                     // fail[s]是他長度次長的回文後綴,aba的fail是a
            p->dep = 1;
            p->edge = e;
                                                                     const int MXN = 1000010;
            V.push_back(p);
                                                                     struct PalT{
                                                                        int nxt[MXN][26],fail[MXN],len[MXN];
                                                                       int tot,lst,n,state[MXN],cnt[MXN],num[MXN];
int diff[MXN],sfail[MXN],fac[MXN],dp[MXN];
       if(V.empty()) continue;
       make_heap(V.begin(), V.end(), cmp);
#define L(X) ((X<<1)+1)
#define R(X) ((X<<1)+2)
                                                                        char s[MXN] = \{-1\};
                                                                        int newNode(int 1, int f){
       for( size_t i = 0 ; i < V.size() ; i ++ ){</pre>
                                                                          len[tot]=1,fail[tot]=f,cnt[tot]=num[tot]=0;
```

```
National Taiwan Ocean University HongLongLong
   memset(nxt[tot],0,sizeof(nxt[tot]));
diff[tot]=(l>0?l-len[f]:0);
    sfail[tot]=(l>0&&diff[tot]==diff[f]?sfail[f]:f);
    return tot++;
  int getfail(int x){
   while(s[n-len[x]-1]!=s[n]) x=fail[x];
    return x;
  int getmin(int v){
   dp[v]=fac[n-len[sfail[v]]-diff[v]];
    if(diff[v]==diff[fail[v]])
        dp[v]=min(dp[v],dp[fail[v]]);
    return dp[v]+1;
  int push(){
   int c=s[n]-'a',np=getfail(lst);
if(!(lst=nxt[np][c])){
      lst=newNode(len[np]+2,nxt[getfail(fail[np])][c]);
      nxt[np][c]=lst; num[lst]=num[fail[lst]]+1;
    fac[n]=n;
    for(int v=lst;len[v]>0;v=sfail[v])
        fac[n]=min(fac[n],getmin(v));
    return ++cnt[lst],lst;
  void init(const char *_s){
    tot=lst=n=0;
    newNode(0,1),newNode(-1,1);
    for(;_s[n];) s[n+1]=_s[n],++n,state[n-1]=push();
    for(int i=tot-1;i>1;i--) cnt[fail[i]]+=cnt[i];
}palt;
6.2 KMP
len-failure[k]:
在k結尾的情況下,這個子字串可以由開頭
長度為(len-failure[k])的部分重複出現來表達
failure[k]:
failure[k]為次長相同前綴後綴
如果我們不只想求最多,而且以0-base做為考量
, 那可能的長度由大到小會是
failuer[k] \ failure[failuer[k]-1]
^ failure[failure[failuer[k]-1]-1]...
直到有值為0為止
```

```
int failure[MXN];
void KMP(string& t, string& p)
    if (p.size() > t.size()) return;
    for (int i=1, j=failure[0]=-1; i<p.size(); ++i)</pre>
        while (j \ge 0 \& p[j+1] != p[i])
             j = failure[j];
         if (p[j+1] == p[i]) j++;
        failure[i] = j;
    for (int i=0, j=-1; i<t.size(); ++i)
        while (j >= 0 && p[j+1] != t[i])
    j = failure[j];
        if (p[j+1] == t[i]) j++;
        if (j == p.size()-1)
             cout << i - p.size() + 1<<" ";
             j = failure[j];
    }
        }
}
```

6.3 SAIS

```
const int N = 300010;
struct SA{
#define REP(i,n) for ( int i=0; i<int(n); i++ )</pre>
#define REP1(i,a,b) for ( int i=(a); i <= int(b); i++)
 bool _t[N*2];
  int _s[N*2], _sa[N*2], _c[N*2], x[N], _p[N], _q[N*2],
 hei[N], r[N];
int operator [] (int i){ return _sa[i]; }
```

```
void build(int *s, int n, int m){
  memcpy(_s, s, sizeof(int) * n);
      sais(_s, _sa, _p, _q, _t, _c, n, m);
mkhei(n);
   void mkhei(int n){
      REP(i,n) r[\_sa[i]] = i;
      hei[0] = 0;
      REP(i,n) if(r[i]) {
  int ans = i>0 ? max(hei[r[i-1]] - 1, 0) : 0;
         while(_s[i+ans] == _s[_sa[r[i]-1]+ans]) ans++;
         hei[r[i]] = ans;
      }
   }
   void sais(int *s, int *sa, int *p, int *q, bool *t,
          int *c, int n, int z){
      bool uniq = t[n-1] = true, neq;
int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
            lst = -1;
#define MSO(x,n) memset((x),0,n*sizeof(*(x)))
#define MAGIC(XD) MSO(sa, n); \
    memcpy(x, c, sizeof(int) * z); \
      \label{eq:memcpy} \begin{array}{ll} \text{memcpy}(\texttt{x} + \texttt{1}, \texttt{c}, \texttt{sizeof}(\texttt{int}) * (\texttt{z} - \texttt{1})); \\ \text{REP}(\texttt{i},\texttt{n}) \text{ if}(\texttt{sa}[\texttt{i}] & \texttt{\&} ! \texttt{t}[\texttt{sa}[\texttt{i}] - \texttt{1}]) \text{ sa}[\texttt{x}[\texttt{s}[\texttt{sa}[\texttt{i}] - \texttt{n}]) \end{array}
            ]-1]]++] = sa[i]-1; \setminus
      memcpy(x, c, sizeof(int) * z);
for(int i = n - 1; i >= 0; i--) if(sa[i] && t[sa[i
             MS0(c, z);
      REP(i,n) uniq \&= ++c[s[i]] < 2;
      REP(i,z-1) c[i+1] += c[i];
      if (uniq) { REP(i,n) sa[--c[s[i]]] = i; return; }
for(int i = n - 2; i >= 0; i--) t[i] = (s[i]==s[i +1] ? t[i+1] : s[i]<s[i+1]);</pre>
      MAGIC(\overline{REP1}(i,1,n-1) \overline{if}(t[i] \&\& !t[i-1]) sa[--x[s[i] \&\& !t[i-1]])
      ]]]=p[q[i]=nn++]=i);
REP(i, n) if (sa[i] && t[sa[i]] && !t[sa[i]-1]) {
         neq=lst<0|lmemcmp(s+sa[i],s+lst,(p[q[sa[i]]+1]-sa[i])|
                [i])*sizeof(int));
         ns[q[lst=sa[i]]]=nmxz+=neq;
      sais(ns, nsa, p + nn, q + n, t + n, c + z, nn, nmxz
              + 1);
      MAGIC(for(int i = nn - 1; i \ge 0; i--) sa[--x[s[p[
            nsa[i]]]] = p[nsa[i]];
}sa;
int H[ N ], SA[ N ];
void suffix_array(int* ip, int len) {
   // should padding a zero in the back
   // ip is int array, len is array length
// ip[0..n-1] != 0, and ip[len] = 0
   ip[len++] = 0;
   sa.build(ip, len, 128);
for (int i=0; i<len; i++) {</pre>
      H[i] = sa.hei[i + 1];
      SA[i] = sa.\_sa[i + 1];
   // resulting height, sa array \in [0,len)
```

6.4 SuffixAutomata

```
// any path start from root forms a substring of S
// occurrence of P : iff SAM can run on input word P
// number of different substring : ds[1]-1
// total length of all different substring : dsl[1]
// max/min length of state i : mx[i]/mx[mom[i]]+1
// assume a run on input word P end at state i:
// number of occurrences of P : cnt[i]
// first occurrence position of P : fp[i]-IPI+1
// all position of P : fp of "dfs from i through rmom"
const int MXM = 1000010;
  int tot, root, lst, mom[MXM], mx[MXM]; //ind[MXM]
int nxt[MXM][33]; //cnt[MXM],ds[MXM],dsl[MXM],fp[MXM]
  // bool v[MXM]
  int newNode(){
    int res = ++tot;
    fill(nxt[res], nxt[res]+33, 0);
mom[res] = mx[res] = 0; //cnt=ds=dsl=fp=v=0
```

```
return res:
  void init(){
    tot = 0;
    root = newNode();
    lst = root;
  void push(int c){
    int p = lst;
    int np = newNode(); //cnt[np]=1
mx[np] = mx[p]+1; //fp[np]=mx[np]-1
for(; p && nxt[p][c] == 0; p = mom[p])
      nxt[p][c] = np;
    if(p == 0) mom[np] = root;
    else{
      int q = nxt[p][c];
      if(mx[p]+1 == mx[q]) mom[np] = q;
        int nq = newNode(); //fp[nq]=fp[q]
        mx[nq] = mx[p]+1;
        for(int i = 0; i < 33; i++)
           nxt[nq][i] = nxt[q][i];
        mom[nq] = mom[q];
        mom[q] = nq;
        mom[np] = nq;
        for(; p && nxt[p][c] == q; p = mom[p])
          nxt[p][c] = nq;
    } }
    lst = np;
  void calc(){
    calc(root);
    iota(ind,ind+tot,1)
    sort(ind,ind+tot,[&](int i,int j){return mx[i]<mx[j</pre>
         ];});
    for(int i=tot-1;i>=0;i--)
    cnt[mom[ind[i]]]+=cnt[ind[i]];
  void calc(int x){
    v[x]=ds[x]=1;dsl[x]=0; //rmom[mom[x]].push_back(x);
    for(int i=1;i<=26;i++){</pre>
      if(nxt[x][i]){
         if(!v[nxt[x][i]]) calc(nxt[x][i]);
        ds[x]+=ds[nxt[x][i]];
        dsl[x]+=ds[nxt[x][i]]+dsl[nxt[x][i]];
  } } }
  void push(char *str){
    for(int i = 0; str[i]; i++)
      push(str[i]-'a'+1);
  }
} sam;
6.5 Aho-Corasick
struct ACautomata{
  struct Node{
    int cnt,i
    Node *go[26], *fail, *dic;
    Node (){
      cnt = 0; fail = 0; dic=0;
```

```
memset(go,0,sizeof(go));
}pool[1048576],*root;
int nMem,n_pattern;
Node* new_Node(){
  pool[nMem] = Node()
  return &pool[nMem++];
void init() {nMem=0;root=new_Node();n_pattern=0;}
void add(const string &str) { insert(root, str, 0); }
void insert(Node *cur, const string &str, int pos){
  for(int i=pos;i<str.size();i++){</pre>
    if(!cur->go[str[i]-'a'])
  cur->go[str[i]-'a'] = new_Node();
    cur=cur->go[str[i]-'a'];
  cur->cnt++; cur->i=n_pattern++;
void make_fail(){
  queue<Node*> que;
  que.push(root);
  while (!que.empty()){
```

```
Node* fr=que.front(); que.pop();
for (int i=0; i<26; i++){</pre>
         if (fr->go[i]){
           Node *ptr = fr->fail;
           while (ptr && !ptr->go[i]) ptr = ptr->fail;
           fr->go[i]->fail=ptr=(ptr?ptr->go[i]:root);
           fr->go[i]->dic=(ptr->cnt?ptr:ptr->dic);
           que.push(fr->go[i]);
  1111
  void query(string s){
   Node *cur=root;
       for(int i=0;i<(int)s.size();i++){</pre>
           while(cur&&!cur->go[s[i]-'a']) cur=cur->fail;
           cur=(cur?cur->go[s[i]-'a']:root);
           if(cur->i>=0) ans[cur->i]++;
           for(Node *tmp=cur->dic;tmp;tmp=tmp->dic)
                ans[tmp->i]++;
  } }// ans[i] : number of occurrence of pattern i
}AC:
```

6.6 Z Value

```
char s[MAXN];
int len,z[MAXN];
void Z_value() { //z[i] = lcp(s[1...],s[i...])
   int i,j,left,right;
   left=right=0; z[0]=len;
   for(i=1;i<len;i++) {
      j=max(min(z[i-left],right-i),0);
      for(;i+j<len&&s[i+j]==s[j];j++);
      z[i]=j;
      if(i+z[i]>right) {
        right=i+z[i];
        left=i;
   }
}
```

6.7 BWT

```
struct BurrowsWheeler{
#define SIGMA 26
#define BASE 'a'
  vector<int> v[ SIGMA ];
  void BWT(char* ori, char* res){
    // make ori -> ori + ori
    // then build suffix array
  void iBWT(char* ori, char* res){
    for( int i = 0 ; i < SIGMA ; i ++ )
      v[i].clear()
    int len = strlen( ori );
    for( int i = 0 ; i < len ; i ++ )
      v[ ori[i] - BASE ].push_back( i );
    vector<int> a;
    for( int i = 0 , ptr = 0 ; i < SIGMA ; i ++ )
for( auto j : v[ i ] ){</pre>
        a.push_back( j );
ori[ ptr ++ ] = BASE + i;
    for( int i = 0 , ptr = 0 ; i < len ; i ++ ){</pre>
      res[ i ] = ori[ a[ ptr ] ];
      ptr = a[ptr];
    res[len] = 0;
} bwt;
```

6.8 ZValue Palindrome

6.9 Smallest Rotation

```
//rotate(begin(s),begin(s)+minRotation(s),end(s))
int minRotation(string s) {
  int a = 0, N = s.size(); s += s;
  rep(b,0,N) rep(k,0,N) {
    if(a+k == b || s[a+k] < s[b+k])
      {b += max(0, k-1); break;}
  if(s[a+k] > s[b+k]) {a = b; break;}
  } return a;
}
```

6.10 Cyclic LCS

#define L 0

```
#define LU 1
#define U 2
const int mov[3][2]=\{0,-1, -1,-1, -1,0\};
int al,bl;
char a[MAXL*2],b[MAXL*2]; // 0-indexed
int dp[MAXL*2][MAXL];
char pred[MAXL*2][MAXL];
inline int lcs_length(int r) {
  int i=r+al,j=bl,l=0;
while(i>r) {
     char dir=pred[i][j];
     if(dir==LU) l++;
     i+=mov[dir][0];
     j+=mov[dir][1];
  return 1;
inline void reroot(int r) \{ // r = new base row \}
  int i=r, j=1;
  while(j<=bl&&pred[i][j]!=LU) j++;</pre>
  if(j>bl) return;
  pred[i][j]=L;
while(i<2*al&&j<=bl) {</pre>
     if(pred[i+1][j]==U) {
       pred[i][j]=L
       else if(j<bl&&pred[i+1][j+1]==LU) {</pre>
       i++;
       j++:
       pred[i][j]=L;
     } else {
       j++;
} } }
int cyclic_lcs() {
   // a, b, al, bl should be properly filled
  // note: a WILL be altered in process
               -- concatenated after itself
  char tmp[MAXL];
  if(al>bl) {
     swap(al,bl);
     strcpy(tmp,a);
    strcpy(a,b);
    strcpy(b,tmp);
  strcpy(tmp,a);
  strcat(a,tmp);
  // basic lcs
  for(int i=0;i<=2*al;i++) {</pre>
     dp[i][0]=0;
    pred[i][0]=U;
  for(int j=0;j<=bl;j++) {
  dp[0][j]=0;</pre>
    pred[0][j]=L;
  for(int i=1;i<=2*al;i++) {
     for(int j=1;j<=bl;j++) {</pre>
       if(a[i-1]==b[j-1]) dp[i][j]=dp[i-1][j-1]+1;
       else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
if(dp[i][j-1]==dp[i][j]) pred[i][j]=L;
else if(a[i-1]==b[j-1]) pred[i][j]=LU;
       else pred[i][j]=U;
  } }
// do cyclic lcs
  int clcs=0;
  for(int i=0;i<al;i++) {</pre>
     clcs=max(clcs,lcs_length(i));
```

```
reroot(i+1);
}
// recover a
a[al]='\0';
return clcs;
}
```

7 Data Structure

7.1 Segment tree

```
struct seg_tree{
  static const int MXN=1e5+5,NO_TAG=0; // to be set
  ll a[MXN], val[MXN*4], tag[MXN*4], v;
  int n,ql,qr;
  void push(int i,int l,int r){
  if(tag[i]!=NO_TAG){
      val[i]+=tag[i]; // update by tag
      if(l!=r){
        tag[cl(i)]+=tag[i]; // push
        tag[cr(i)]+=tag[i]; // push
      tag[i]=NO_TAG;
  } }
  void pull(int i,int l,int r){
    int mid=(l+r)>>1;
    push(cl(i),l,mid);push(cr(i),mid+1,r);
    val[i]=max(val[cl(i)],val[cr(i)]); // pull
  void build(int i,int l,int r){
    if(l==r){
      val[i]=a[l]; // set value
      return;
    int mid=(l+r)>>1;
    build(cl(i),1,mid);build(cr(i),mid+1,r);
    pull(i,l,r);
  void update(int i,int l,int r){
    push(i,l,r);
    if(ql<=l&&r<=qr){
      tag[i]+=v; // update tag
      return;
    int mid=(l+r)>>1;
    if(ql<=mid) update(cl(i),l,mid);</pre>
    if(qr>mid) update(cr(i),mid+1,r);
    pull(i,l,r);
  void query(int i,int l,int r){
    push(i,1,r);
    if(ql \le l\&r \le qr){
      v=max(v,val[i]); // update answer
      return:
    int mid=(l+r)>>1;
    if(ql<=mid) query(cl(i),l,mid);</pre>
    if(qr>mid) query(cr(i),mid+1,r);
} }tree;
```

7.2 Treap

```
struct Treap{
  int sz , val , pri , tag;
  Treap *l , *r;
  Treap( int _val ){
    val = _val; sz = 1;
    pri = rand(); l = r = NULL; tag = 0;
  }
};
void push( Treap * a ){
  if( a->tag ){
    Treap *swp = a->l; a->l = a->r; a->r = swp;
    int swp2;
    if( a->l ) a->l->tag ^= 1;
    if( a->r ) a->r->tag ^= 1;
    a->tag = 0;
}
inline int Size( Treap * a ){ return a ? a->sz : 0; }
void pull( Treap * a ){
  a->sz = Size( a->l ) + Size( a->r ) + 1;
}
```

 $x \rightarrow setCh(p, !d);$

p->pull(); x->pull();

```
Treap* merge( Treap *a , Treap *b ){
  if( !a || !b ) return a ? a : b;
                                                                 vector<Splay*> splayVec;
  if( a->pri > b->pri ){
                                                                 void splay(Splay *x){
    push( a );
                                                                    splayVec.clear();
    a \rightarrow r = merge(a \rightarrow r, b);
                                                                    for (Splay *q=x;; q=q->f){
    pull( a );
                                                                      splayVec.push_back(q);
                                                                      if (q->isr()) break;
    return a;
  }else{
    push( b );
                                                                    reverse(begin(splayVec), end(splayVec));
                                                                    for (auto it : splayVec) it->push();
while (!x->isr()) {
    b->l = merge(a, b->l);
    pull( b );
                                                                      if (x->f->isr()) rotate(x);
    return b;
                                                                      else if (x->dir()==x->f->dir())
void split_kth( Treap *t , int k, Treap*&a, Treap*&b ){
  if( !t ){ a = b = NULL; return; }
                                                                        rotate(x->f),rotate(x);
                                                                      else rotate(x),rotate(x);
  push( t )
  if( Size( t -> l ) + 1 <= k ){
                                                                 }
                                                                 int id(Splay *x) { return x - Splay::mem + 1; }
Splay* access(Splay *x){
    split_kth(t\rightarrow r, k-Size(t\rightarrow l)-1, a\rightarrow r, b)
                                                                    Splay *q = nil;
    pull( a );
                                                                    for (;x!=nil;x=x->f){
  }else{
                                                                      splay(x)
                                                                      x->setCh(q, 1);
    b = t;
    split_kth(t->l,k,a,b->l);
                                                                      q = x;
    pull( b );
                                                                    }
                                                                    return q;
void split_key(Treap *t, int k, Treap*&a, Treap*&b){
                                                                 }
 if(!t){ a = b = NULL; return; }
                                                                 void chroot(Splay *x){
  push(t);
                                                                    access(x);
  if(k \le t - val)
                                                                    splay(x);
    b = t;
                                                                    x->rev ^= 1;
                                                                    x->push(); x->pull();
    split_key(t->l,k,a,b->l);
    pull(b);
                                                                 void link(Splay *x, Splay *y){
  else{
                                                                    access(x);
    a = t;
                                                                    splay(x)
    split_key(t->r,k,a->r,b);
                                                                    chroot(y)
    pull(a);
                                                                    x \rightarrow setCh(y, 1);
} }
                                                                 void cut_p(Splay *y) {
                                                                   access(y);
7.3
      Link-Cut Tree
                                                                    splay(y)
const int MXN = 100005;
                                                                    y->push();
const int MEM = 100005;
                                                                    y->ch[0] = y->ch[0]->f = nil;
struct Splay {
  static Splay nil, mem[MEM], *pmem;
Splay *ch[2], *f;
                                                                 void cut(Splay *x, Splay *y){
                                                                    chroot(x);
  int val, rev, size;
                                                                    cut_p(y);
  Splay (int _val=-1) : val(_val), rev(0), size(1)
{ f = ch[0] = ch[1] = &nil; }
                                                                 Splay* get_root(Splay *x) {
  bool isr()
                                                                    access(x);
  { return f->ch[0] != this && f->ch[1] != this; }
                                                                    splay(x);
                                                                    for(; x \rightarrow ch[0] != nil; x = x \rightarrow ch[0])
  int dir()
  { return f->ch[0] == this ? 0 : 1; }
                                                                      x->push();
  void setCh(Splay *c, int d){
                                                                    splay(x);
    ch[d] = c;
                                                                    return x:
    if (c != &nil) c->f = this;
                                                                 bool conn(Splay *x, Splay *y) {
    pull();
                                                                   x = get_root(x);
                                                                    y = get_root(y);
  void push(){
                                                                    return x == y;
    if( !rev ) return;
    swap(ch[0], ch[1]);
if (ch[0] != &nil) ch[0]->rev ^= 1;
                                                                 Splay* lca(Splay *x, Splay *y) {
    if (ch[1] != &nil) ch[1]->rev ^= 1;
                                                                    access(x);
    rev=0;
                                                                    access(y);
                                                                    splay(x);
  void pull(){
                                                                    if (x->f == nil) return x;
    size = ch[0] -> size + ch[1] -> size + 1;
                                                                    else return x->f;
                                                                 }
    if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
                                                                 7.4 Disjoint Set
} Splay::nil, Splay::mem[MEM], *Splay::pmem = Splay::
                                                                 struct DisjointSet{
    mem;
Splay *nil = &Splay::nil;
                                                                    // save() is like recursive
void rotate(Splay *x){
                                                                    // undo() is like return
  Splay *p = x->f;
int d = x->dir();
                                                                    int n, fa[ N ], sz[ N ];
                                                                    vector< pair<int*,int> > h;
  if (!p->isr()) p->f->setCh(x, p->dir());
                                                                    vector<int> sp;
  else x->f = p->f;
                                                                    void init( int tn ){
  p->setCh(x->ch[!d], d);
```

for(int i = 0 ; i < n ; i ++){</pre>

fa[i]=i;

```
sz[ i ]=1;
  sp.clear(); h.clear();
void assign( int *k, int v ){
  h.PB( {k, *k} );
  *k = v;
void save(){ sp.PB(SZ(h)); }
void undo(){
  assert(!sp.empty());
  int last=sp.back(); sp.pop_back();
  while( SZ(h)!=last ){
    auto x=h.back(); h.pop_back();
     *x.first = x.second;
} }
if( sz[ x ] < sz[ y ] ) swap( x, y );
assign( &sz[ x ] , sz[ x ] + sz[ y ] );
assign( &fa[ y ] , x);</pre>
} }djs;
```

7.5 Black Magic

```
#include <bits/extc++.h>
using namespace __gnu_pbds;
typedef tree<int,null_type,less<int>,rb_tree_tag,
     tree_order_statistics_node_update> set_t;
#include <ext/pb_ds/assoc_container.hpp>
typedef cc_hash_table<int,int> umap_t;
typedef priority_queue<int> heap;
#include<ext/rope>
using namespace __gnu_cxx;
int main(){
  \ensuremath{\text{//}} Insert some entries into s.
  set_t s; s.insert(12); s.insert(505);
  // The order of the keys should be: 12, 505.
  assert(*s.find_by_order(0) == 12);
  assert(*s.find_by_order(3) == 505);
  // The order of the keys should be: 12, 505. assert(s.order_of_key(12) == 0);
  assert(s.order_of_key(505) == 1);
  // Erase an entry.
  s.erase(12);
  // The order of the keys should be: 505.
  assert(*s.find_by_order(0) == 505);
  // The order of the keys should be: 505.
  assert(s.order_of_key(505) == 0);
  heap h1 , h2; h1.join( h2 );
  rope<char> r[ 2 ];
r[ 1 ] = r[ 0 ]; // persistenet
string t = "abc";
  r[1].insert(0, t.c_str());
r[1].erase(1,1);
cout << r[1].substr(0,2);
```

8 Others

8.1 Find max tangent(x,y is increasing)

```
now++;
calc = sum[i + l] - pnt[now - 1];
if (ans.y * calc.x < ans.x * calc.y)
    ans = calc,st = pnt[now - 1].x,ed = i + l;
}
return (double)(sum[ed].y-sum[st].y)/(sum[ed].x-sum[st].x);
}</pre>
```

8.2 Exact Cover Set

```
// given n*m 0-1 matrix
// find a set of rows s.t.
// for each column, there's exactly one 1
#define N 1024 //row
#define M 1024 //column
#define NM ((N+2)*(M+2))
char A[N][M]; //n*m 0-1 matrix
int used[N]; //answer: the row used
int id[N][M];
int L[NM],R[NM],D[NM],U[NM],C[NM],S[NM],ROW[NM];
void remove(int c){
  L[R[c]]=L[c]; R[L[c]]=R[c];
for( int i=D[c]; i!=c; i=D[i] )
  for( int j=R[i]; j!=i; j=R[j] )
       U[D[j]]=U[j]; D[U[j]]=D[j]; S[C[j]]--;
void resume(int c){
  for( int i=D[c]; i!=c; i=D[i] )
    for( int j=L[i]; j!=i; j=L[j] ){
  U[D[j]]=D[U[j]]=j; S[C[j]]++;
  L[R[c]]=R[L[c]]=c;
}
int dfs(){
  if(R[0]==0) return 1;
  int md=100000000, c
  for( int i=R[0]; i!=0; i=R[i] )
     if(S[i]<md){ md=S[i]; c=i; }</pre>
  if(md==0) return 0;
  remove(c);
  for( int i=D[c]; i!=c; i=D[i] ){
     used[ROW[i]]=1
     for( int j=R[i]; j!=i; j=R[j] ) remove(C[j]);
     if(dfs()) return 1
     for( int
               j=L[i]; j!=i; j=L[j] ) resume(C[j]);
    used[ROW[i]]=0;
  resume(c);
  return 0:
int exact_cover(int n,int m){
  for( int i=0; i<=m; i++ )
    R[i]=i+1; L[i]=i-1; U[i]=D[i]=i;
     S[i]=0; C[i]=i;
  R[m]=0; L[0]=m;
  int t=m+1;
  for( int i=0; i<n; i++ ){</pre>
    int k=-1;
for( int j=0; j<m; j++ ){
   if(!A[i][j]) continue;
   if(k=-1) L[t]=R[t]=T;</pre>
       else{ L[t]=k; R[t]=R[k];
       k=t; D[t]=j+1; U[t]=U[j+1];
L[R[t]]=R[L[t]]=U[D[t]]=D[U[t]]=t;
       C[t]=j+1; S[C[t]]++; ROW[t]=i; id[i][j]=t++;
  } }
  for( int i=0; i<n; i++ ) used[i]=0;</pre>
  return dfs();
                            (__)
                                       / Hong~Long~Long~Long~
```

/ (00) _

_o\

/|_\/_/_|__\/|_

AC

(00)/----/_

_|/////== *- *

Chong~Chong~Chong~

AC | NO BUG /== -*