Division in modules and Kummer theory

Sebastiano Tronto

Kummer theory

Kummer theory

- $A \leq \mathbb{Q}^{\times}$, $\sqrt[n]{A} = \{x \in \mathbb{C} \mid x^n \in A\}$
- Kummer extension $\mathbb{Q}(\sqrt[n]{A})$
- Galois over \mathbb{Q} , contains $\mathbb{Q}(\zeta_n)$

Kummer theory for algebraic groups

G commutative algebraic group over K number field

- $A \leq G(K)$, $n^{-1}A = \{P \in G(\overline{K}) \mid nP \in A\}$
- "Kummer extension" $K(n^{-1}A)$
- Galois over \mathbb{Q} , contains $\mathbb{Q}(G(\overline{K})[n])$
- Classical Kummer theory when $G = \mathbb{G}_m$

Results for elliptic curves

$$G = E$$
 elliptic curve, $A = \langle \alpha \rangle$

- Ribet, 1979: $cn^2 \le [K(n^{-1}A) : K(E(\overline{K})[n])] \le n^2$
- Lombardo-T., 2020: Effective $c = c(E, K, \alpha)$ if no CM
- Lombardo-T., 2021: over $K=\mathbb{Q}$ $c^{-1} < 2^{28} \cdot 3^{18} \cdot 5^8 \cdot 7^7 \cdot 11^5 \cdot 13 \cdot 17 \cdot 19 \cdot 37 \cdot 43 \cdot 67 \cdot 163$
- A. Javan Peykar, 2021: CM case

Endomorphism rings

A. Javan Peykar, 2021: CM case \rightarrow take $\stackrel{A}{\rightarrow}$ an End $_K(E)$ -module

Division modules

 $R \text{ ring}, M \subseteq N \text{ (left) modules}, I \text{ (right) ideal}$

$$(M:_N I) := \{x \in N \mid Ix \subseteq M\}$$

For M = 0 we have the *I*-torsion

$$N[I] := (0 :_N I)$$

Division in modules

Facts

- $(M:_N 0) = N$ and $(M:_N R) = M$
- If $I \subseteq I'$ we have $(M :_N I) \supseteq (M :_N I')$

We want to work with **infinite unions** like $\bigcup_{n>1} n^{-1}A$

Ideal filters

An **ideal filter** \mathcal{J} on R is a set of right ideals such that:

- **1** If I and I' are in \mathcal{J} , then $I \cap I' \in \mathcal{J}$
- 2 If $I \in \mathcal{J}$ and I' is a right ideal with $I' \supseteq I$, then $I' \in \mathcal{J}$

We let

$$(M:_{N}\mathcal{J}) = \bigcup_{I \in \mathcal{J}} (M:_{N}I)$$
 and $N[\mathcal{J}] = (0:_{N}\mathcal{J})$

Ideal filters

Examples

$$\infty := \{ I \text{ ideal of } R \mid I \supseteq nR \text{ for some } n \geq 1 \}$$

$$\mathfrak{p}^{\infty} := \{ I \text{ ideal of } R \mid I \supseteq p^k R \text{ for some } k \ge 0 \} \quad (p \text{ prime})$$

\mathcal{J} -injectivity

 Γ is ${\mathcal J}\text{-injective}$ if maps to Γ lift over " ${\mathcal J}\text{-extensions}$ "

\mathcal{J} -injectivity

- Injective $\iff \mathcal{J}$ -injective for $\mathcal{J} = \{\text{all ideals}\}$
- Over \mathbb{Z} : injective \iff ∞ -injective, and $M[\infty] = M_{\mathsf{tors}}$
- Over \mathbb{Z} : p-divisible $\iff \mathfrak{p}^{\infty}$ -injective
- Baer's criterion
- Existence of " \mathcal{J} -hull" (smallest \mathcal{J} -injective extension)

$$(\mathcal{J}, T)$$
-extensions

Definition

Fix an ideal filter $\mathcal J$ and a $\mathcal J$ -injective module T with $T=T[\mathcal J]$. A $(\mathcal J,T)$ -extension of M is a module $N\supseteq M$ such that:

- **1** $(M:_N \mathcal{J}) = N$
- $N[\mathcal{J}] \hookrightarrow T$

Example
$$(\mathcal{J} = \infty, T = E(\overline{K})_{tors})$$

For $M \leq E(K)$, the modules $N = n^{-1}M$ are (\mathcal{J}, T) -extensions.

(\mathcal{J}, T) -extensions

- Abstraction for division modules of Kummer theory
- Maximal (\mathcal{J}, T) -extension: \mathcal{J} -hull of M + T
- Behave like field extensions (Galois-like category)
- Pullback and pushforward along certain maps $(\varphi_* \dashv \varphi^*)$

Galois representations

$$A \le G(K)$$
 $\Gamma = \bigcup_{n \ge 1} n^{-1} A \subseteq G(\overline{K})$ $T = G(\overline{K})_{tors}$

$$\mathsf{Gal}(K(\Gamma) \mid K)$$

$$\downarrow$$
 $\mathsf{Aut}_A(\Gamma)$

Galois representations

$$A \le G(K)$$
 $\Gamma = \bigcup_{n \ge 1} n^{-1} A \subseteq G(\overline{K})$ $T = G(\overline{K})_{tors}$

$$\mathsf{Gal}(\mathcal{K}(\Gamma)\mid\mathcal{K})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \mathsf{Aut}_{A+T}(\Gamma) \hookrightarrow \qquad \qquad \mathsf{Aut}_{A\mathsf{tors}}(\mathcal{T})$$

Galois representations

$$A \le G(K)$$
 $\Gamma = \bigcup_{n \ge 1} n^{-1} A \subseteq G(\overline{K})$ $T = G(\overline{K})_{tors}$

$$\operatorname{\mathsf{Gal}}(\mathcal{K}(\Gamma) \mid \mathcal{K}(\mathcal{T})) \hookrightarrow \operatorname{\mathsf{Gal}}(\mathcal{K}(\Gamma) \mid \mathcal{K}) \longrightarrow \operatorname{\mathsf{Gal}}(\mathcal{K}(\mathcal{T}) \mid \mathcal{K})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{\mathsf{Aut}}_{A+T}(\Gamma) \hookrightarrow \operatorname{\mathsf{Aut}}_{A}(\Gamma) \longrightarrow \operatorname{\mathsf{Aut}}_{A_{\mathsf{tors}}}(\mathcal{T})$$

Final tools

- $Gal(K(T) \mid K) \hookrightarrow Aut_{A_{tors}}(T) \hookrightarrow Aut(T)$: classic Glaois rep.
- Aut_{A+T}(Γ) abelian with action of Aut_{Ators}(T)
- Bounds on exponent of $H^1(Gal(K(T) | K), T)$
- Morita duality

New results

- General "open image framework" for Kummer extensions
- Completed and unified CM and non-CM cases
- Better understanding of Kummer theory for algebraic groups
- In progress: higher-dimensional abelian varieties

Thank you for your attention