

ReFrame Regression Tests for Measuring Intra/Inter-Node Latency & Bandwidth

Presented by:

Franco Kušek, Heriel Harry SHAO, Ludovic TEMGOUA ABANDA N.

Contents

- Project Objectives
- Test Suite Creation & Execution Strategy
- Methodology & Implementation
- System & Topology Design
- Results (Latency & Bandwidth)
- Result Analysis & Key Takeaways
- Q&A

Project Objectives

Project Objectives

- Objective 1: Create regression tests for MPI communication using ReFrame and OSU Micro-Benchmarks.
- Objective 2: Capture effects of system architecture using hwloc and NUMA-aware bindings.
- Objective 3: Implement tests using multiple binary sources: source, EasyBuild, and EESSI.
- Objective 4: Validate on multiple clusters: Aion and Iris.
- **Objective 5**: Extract meaningful performance baselines using ReFrame's performance functions.

Test Suite Creation & Execution Strategy

Test Suite Creation & Execution Strategy

- Script Organization:
 - Separated into source/, easybuild/, and eessi/ directories.
 - Each contains tests for osu_latency, osu_bw, and build stages.
- Parameterized Tests:
 - o Implemented using @rfm.simple_test and @require_deps.
 - O Test variants: same_numa, diff_numa_same_socket, diff_socket_same_node, inter_node, default.

Test Suite Creation & Execution Strategy

- System Bindings:
 - O SLURM options (--cpu-bind, --distribution) and OMPI_MCA used.
 - Specific placement ensured via topologyaware settings.
- Execution Example:

```
reframe -C reframe/configs/configs.py -c reframe/source -
r --performance-report
```


Methodology & Implementation

Methodology & Implementation

- Benchmark Tool: OSU Micro-Benchmarks v7.2 (MPI-based)
- Automation Framework: ReFrame
- Message Sizes:
 - O osu_latency: 8192 bytes
 - O osu_bw: 1 MB
- Implementation Highlights:
 - O Separate build and run classes.
 - O Used performance functions to extract latency/bandwidth.
 - O Reference values added to detect regressions.
- Output Parsing:
 - O ReFrame compares results against reference thresholds.
 - O Visual results available via --performance-report.

System Topology & Test Variants

System Topology & Test Variants

- Hardware Topology:
 - O Explored using 1stopo and hwloc.
- Variants Designed:
 - O Same_numa
 - O Diff_numa_same_socket
 - O Diff_socket_same_node
 - O Inter_node
- Binding Strategies:
 - O Ensured proper CPU placement for each variant.
 - O Controlled memory access paths to assess true communication overheads.

Results - Performance Metrics

Results – Latency & Bandwidth (Iris)

Visual comparison of bandwidth (MB/s) and latency (µs) on Iris cluster

Results – Latency & Bandwidth (Aion)

Visual comparison of bandwidth (MB/s) and latency (µs) on Aion cluster

Analysis & Key Takeaways

Result Analysis & Key Takeaways

- Latency Insights:
 - O Aion shows consistent sub-microsecond latency for local memory access.
 - O Iris EasyBuild latency can spike in some inter-node cases.
- Bandwidth Observations:
 - O EasyBuild delivers highest values on Iris (up to ~17,500 MB/s).
 - O Aion maintains stable bandwidth ~14,500 MB/s on NUMA-local cases.
- Key Takeaways:
 - O Binary source can affect consistency (e.g., EasyBuild vs EESSI).
 - O Topology awareness is crucial for evaluating MPI performance.
 - O ReFrame enables modular, repeatable regression test design.

Repository

https://github.com/icemc/HPC-Environment-Project

Thank you for your attention!

We're happy to answer your questions.