REPLIKASI SISTEM PAKAR KERUSAKAN MESIN INDUSTRI BERBASIS RULE-BASED, FORWARD CHAINING, DAN CERTAINTY FACTOR DARI PENELITIAN RELEVAN.

Tugas ini dibuat untuk memenuhi mata kuliah Sistem Pakar

Dosen Pengampu:

Liptia Venica, S.T., M.T

disusun oleh:

Andre Saputra	2312601
Nabil Bagus Satrio	2307198

PROGRAM STUDI MEKATRONIKA DAN KECERDASAN BUATAN UNIVERSITAS PENDIDIKAN INDONESIA KAMPUS DAERAH PURWAKARTA

REFERENSI JURNAL SISTEM PAKAR:

Judul	Sistem Pakar untuk Mengidentifikasi Kerusakan Mesin Industri		
	Menggunakan Metode Certainty Factor (2018)		
Penulis	Dedi Suryadi, Rifki Meilianda, Ahmad Fauzan Suryono, Munadib dari		
(Author)	Program Studi Teknik Mesin, Fakultas Teknik, Universitas Bengkulu		

DESKRIPSI SISTEM PAKAR PADA PENELITIAN ASLI:

Metode Inferensi	Forward Chaining (Data-Driven)
Certainty Factor	 CF(H,E) = CF(E) × CF(H) CF_combine = CF_old + (CF_new × (1 - CF_old)) untuk multiple evidence
Knowledge Base	Knowledge base sistem terdiri dari basis
	aturan yang menghubungkan gejala dengan
	jenis kerusakan. Terdapat lima jenis
	kerusakan yang dapat diidentifikasi:
	unbalance, misalignment, mechanical
	looseness, bent shaft, dan bearing defect.
	Setiap kerusakan memiliki kombinasi gejala
	spesifik yang harus terpenuhi, misalnya
	kerusakan unbalance memerlukan gejala Q2
	(getaran dominan di arah radial) dan Q8
	(terdapat puncak pada 1x rpm). Basis
	pengetahuan ini dikembangkan berdasarkan
	pengalaman pakar dan standar industri
	analisis getaran
Tujuan	 Mengidentifikasi kerusakan mesin industri berdasarkan analisis getaran. Spesifik: Menggantikan peran pakar getaran yang tidak selalu tersedia Mempermudah teknisi pemula dalam diagnosis Predictive maintenance untuk mencegah kerusakan parah Analisis cepat dan praktis berbasis Android

REPLIKASI SISTEM YANG KAMI MODIFIKASI (perubahan atau penyesuaian yang dilakukan)

Berdasarkan analisis terhadap jurnal asli dan pengembangan sistem yang dilakukan, kami melakukan replikasi dan significant enhancement pada sistem pakar identifikasi kerusakan mesin. Dalam jurnal awal, sistem hanya mencakup **5 jenis kerusakan** (Unbalance, Misalignment, Mechanical Looseness, Bent Shaft, dan Bearing Defect) dengan **14 gejala** (Q1 hingga Q14) yang diimplementasikan dalam platform Android. Kami mengembangkan sistem ini menjadi platform web-based menggunakan **Flask, HTML, CSS, dan JavaScript** dengan knowledge base yang jauh lebih komprehensif.

Perluasan knowledge base yang kami lakukan sangat signifikan. Dari sebelumnya hanya 5 aturan dasar, kami mengembangkan menjadi 66 rules yang mencakup 13 jenis kerusakan berbeda. Jenis kerusakan baru yang ditambahkan meliputi Resonance, Coupling Problem, Foundation Problem, Rotor Rub, Gear Problem, Oil Whirl, Cavitation, dan Thrust Bearing Failure. Gejala juga diperluas dari 14 menjadi 30 gejala (Q1 hingga Q30) dengan penambahan kategori baru seperti Trend, Time Waveform, Visual, dan Operation.

Dalam hal struktur rules, kami menerapkan pendekatan hierarkis yang lebih sophisticated. Sistem sekarang memiliki rules dengan variasi complexity dari single symptom rules (36.4%) hingga complex rules dengan 6 gejala (3.0%). Nilai Certainty Factor juga dioptimalkan dengan range yang lebih luas (0.2 hingga 0.9) dan distribusi yang lebih granular, memungkinkan sistem memberikan diagnosis dengan confidence level yang lebih akurat.

Platform migrasi dari Android ke web-based Flask memungkinkan akses yang lebih universal dan maintainability yang lebih baik. Penyimpanan rules dalam format JSON memberikan fleksibilitas untuk update knowledge base tanpa perlu modifikasi kode utama. Inference engine yang dikembangkan menggunakan Python mengimplementasikan forward chaining dengan Certainty Factor, mempertahankan metodologi dari jurnal asli namun dengan optimisasi algoritma dan kombinasi evidence yang lebih robust.

Adapun aspek yang dilakukan dalam implementasi ulang ini,

Aspek	Jurnal	Implementasi
Platform	Android Mobile	Web-based (Flask)
Frontend	Native Android	HTML, CSS, JS
Backend	Java/Kotlin	Python Flask

Penyimpanan Rules	Hard-coded dalam app	JSON Files
Jumlah Jenis Kerusakan	5 jenis	13 jenis
Jumlah Gejala	14 gejala (Q1-Q14)	30 gejala (Q1-Q30)
Jumlah Rules/Aturan	5 rules dasar	66 rules
Kategori Gejala	6 kategori dasar	13 kategori lengkap

Ekspansi Knowledge Base

• Jurnal: 5 rules \rightarrow Replikasi: 66 rules (13x lipat)

• Jurnal: 14 gejala → Replikasi: 30 gejala (2.1x lipat)

• Jurnal: 5 kerusakan → Replikasi: 13 kerusakan (2.6x lipat)

TABEL ATURAN (RULE BASE) DAN REPRESENTASI JSON

Berikut adalah tabel aturan rule-based yang lengkap, yang dikembangkan berdasarkan jurnal dan hasil ekspansi kami:

Rule ID	Jenis Kerusakan	Gejala	CF Rule	Deskripsi
R1	Unbalance	Q2, Q8	0,8	Getaran dominan radial + puncak 1x RPM
R2	Unbalance	Q2, Q5	0,6	Radial vibration + 3x RPM
R3	Unbalance	Q8, Q14	0,7	1x RPM + phase difference 90°
R4	Misalignment	Q1, Q2, Q3, Q6, Q7, Q13	0,8	Complete misalignment symptoms
R5	Misalignment	Q1, Q3, Q13	0,7	Axial + $2x RPM + 180^{\circ}$ phase
R6	Misalignment	Q2, Q3, Q7	0,6	Radial + 2x RPM dominan
R7	Mechanical_Looseness	Q2, Q4, Q9	0,8	Radial vibration + sub harmonik + sideband
R8	Mechanical_Looseness	Q4, Q9, Q10	0,7	Sub harmonic + sideband + random vibration
R9	Mechanical_Looseness	Q2, Q4	0,5	Radial + sub harmonic
R10	Bent_Shaft	Q1, Q3	0,8	Axial vibration + puncak 2x RPM
R11	Bent_Shaft	Q1, Q3, Q14	0,9	Axial + 2x RPM + 90° phase
R12	Bearing_Defect	Q10, Q11, Q12	0,6	Random vibration + panas + suara bising
R13	Bearing_Defect	Q10, Q12	0,5	Random vibration + suara bising
R14	Bearing_Defect	Q11, Q12	0,4	Panas + suara bising
R15	Resonance	Q8, Q10, Q14	0,7	$1x RPM + random + 90^{\circ} phase$
R16	Resonance	Q5, Q8, Q10	0,6	3x RPM + 1x RPM + random vibration

R17	Coupling_Problem	Q1, Q2, Q3, Q9	0,7	Axial + radial + 2x RPM + sideband
R18	Coupling_Problem	Q3, Q9, Q13	0,6	2x RPM + sideband + 180° phase
R19	Foundation_Problem	Q2, Q4, Q10	0,8	Radial + sub harmonic + random
R20	Foundation_Problem	Q4, Q9, Q10, Q11	0,9	Sub harmonic + sideband + random + heat
R21	Rotor_Rub	Q1, Q8, Q15	0,7	Axial + 1x RPM + vibration increase at specific speed
R22	Rotor_Rub	Q10, Q16	0,6	Random vibration + subsynchronous vibration
R23	Gear_Problem	Q3, Q5, Q17	0,8	2x RPM + 3x RPM + gear mesh frequency
R24	Gear_Problem	Q9, Q18	0,7	Sideband + modulation
D25	O:1 W/h::1		0.6	Axial + radial + vibration
R25	Oil_Whirl	Q1, Q2, Q19	0,6	changes with load
R26	Oil_Whirl	Q8, Q20	0,5	1x RPM + non-synchronous vibration
R27	Cavitation	Q10, Q21	0,7	Random vibration + broadband noise
R28	Cavitation	Q12, Q22	0,6	Suara bising + pressure fluctuation
R29	Thrust_Bearing_Failure	Q1, Q23	0,8	Axial vibration + axial position change
R30	Thrust_Bearing_Failure	Q11, Q23	0,7	Panas + axial position change
R31	Unbalance	Q2	0,2	Radial vibration saja
R32	Unbalance	Q8	0,3	1x RPM saja
R33	Misalignment	Q1	0,2	Axial vibration saja
R34	Misalignment	Q3	0,4	2x RPM saja
R35	Bent_Shaft	Q1	0,2	Axial vibration
R36	Bent_Shaft	Q3	0,4	2x RPM indicator
R37	Mechanical_Looseness	Q4	0,3	Sub harmonic
R38	Mechanical_Looseness	Q9	0,3	Sideband
R39	Mechanical_Looseness	Q10	0,2	Random vibration
R40	Bearing_Defect	Q10	0,3	Random vibration indicator
R41	Bearing_Defect	Q11	0,2	Panas berlebih
R42	Bearing_Defect	Q12	0,4	Suara bising
R43	Misalignment	Q13	0,3	180° phase
R44	Unbalance	Q14	0,3	90° phase
R45	Mechanical_Looseness	Q2, Q10	0,4	Radial + random
R46	Misalignment	Q1, Q2	0,3	Axial + radial
R47	Mechanical_Looseness	Q8, Q10	0,4	1x RPM + random
R48	Misalignment	Q3, Q8	0,5	2x RPM + 1x RPM
R49	Misalignment	Q2, Q3	0,4	Radial + 2x RPM
R50	Bearing_Defect	Q10, Q11	0,4	Random + panas
R51	Resonance	Q15	0,5	Speed-specific vibration

R52	Oil_Whirl	Q16	0,4	Subsynchronous
R53	Gear_Problem	Q17	0,6	Gear mesh frequency
R54	Gear_Problem	Q18	0,5	Modulation
R55	Oil_Whirl	Q19	0,4	Load-dependent
R56	Oil_Whirl	Q20	0,4	Non-synchronous
R57	Bearing_Defect	Q21	0,4	Broadband noise
R58	Cavitation	Q22	0,5	Pressure fluctuation
R59	Thrust_Bearing_Failure	Q23	0,5	Axial position
R60	Bearing_Defect	Q24	0,3	Progressive increase
R61	Mechanical_Looseness	Q25	0,5	Impact spikes
R62	Mechanical_Looseness	Q26	0,4	High crest factor
R63	Bearing_Defect	Q27	0,3	Oil leakage
R64	Bearing_Defect	Q28	0,3	Discoloration
R65	Bearing_Defect	Q29	0,4	Warmup effect
R66	Bearing_Defect	Q30	0,3	Startup only

Untuk representasi JSON dapat dilihat di <u>link github</u> dengan membuka file knowledge base.json

PENJELASAN PROSES INFERENSI (FORWARD CHAINING + CF)

Sistem ini mengimplementasikan **Forward Chaining** yang digabungkan dengan **Certainty Factor** untuk menangani ketidakpastian. Forward Chaining merupakan strategi inferensi yang bersifat data-driven, dimana proses penarikan kesimpulan dimulai dari fakta-fakta yang diketahui (gejala yang dipilih user) menuju kepada kesimpulan (jenis kerusakan).

Sistem ini juga menggunakan pendekatan SEQUENTIAL dalam proses inferensinya. Berikut alur detailnya:

Tahap 1: Input Gejala

User memilih gejala yang diamati pada mesin

Tahap 2: Matching Rules

Sistem scan sequential semua 66 rules untuk mencari yang match

Tahap 3: Perhitungan Certainty Factor

$$CF(H,E) = CF(Gejala) \times CF(Rule)$$

 $CF(R1) = CF(Q2) \times CF(Q8) \times CF(Rule)$
 $= 0.2 \times 0.8 \times 0.8 = 0.128$

Tahap 4: Kombinasi Evidence

Untuk kerusakan yang sama dari multiple rules

 $CF_combine = CF_lama + (CF_baru \times (1 - CF_lama))$

Tahap 5: Ranking Dan Diagnosis

Hasil akhir diurutkan dari CF tertinggi

Hasil Uji Coba (Tangkapan Layar)

Link Web Preview

Kesimpulan

Replikasi sistem pakar identifikasi kerusakan mesin telah berhasil melakukan transformasi signifikan dari platform Android ke web-based menggunakan Flask, HTML, CSS, dan JavaScript. Perubahan ini memberikan aksesibilitas lebih luas dan kemudahan maintenance yang lebih baik dibanding sistem sebelumnya.

Knowledge base mengalami ekspansi substantial dari 5 rules dasar menjadi 66 rules yang mencakup 13 jenis kerusakan berbeda. Penambahan 16 gejala baru (dari 14 menjadi 30 gejala) dan struktur rules yang hierarkis meningkatkan kemampuan diagnosis secara signifikan. Sistem kini dapat menangani skenario kerusakan yang lebih kompleks dengan confidence level yang lebih akurat.

Implementasi penyimpanan rules dalam format JSON memberikan fleksibilitas tinggi untuk pengembangan berkelanjutan. Metode Certainty Factor yang dipertahankan terbukti efektif menangani ketidakpastian, sementara enhancement yang dilakukan meningkatkan granularitas diagnosis. Sistem ini siap diimplementasikan dalam lingkungan industri untuk mendukung program predictive maintenance yang lebih efektif dan terstandarisasi.