Linear Algebra

주재걸 고려대학교 컴퓨터학과

Lecture Overview

- Elements in linear algebra
- Linear system
- Linear combination, vector equation, Four views of matrix multiplication
- Linear independence, span, and subspace
- Linear transformation
- Least squares
- Eigendecomposition
- Singular value decomposition

Linear Equation 4th 1993.4

• A linear equation in the variables x_1, \dots, x_n is an equation that can be written in the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b, \Rightarrow \text{the banks}$$

 $a_1x_1+a_2x_2+\cdots+a_nx_n=b, \text{ where }b$ and the coefficients a_1,\cdots,a_n are real or complex numbers that are usually known in advance.

The above equation can be written as

短t, bold
$$+$$
 matrix $\mathbf{a}^T\mathbf{x} = b^{\prime\prime}$

where
$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$.

Linear System: Set of Equations

L > 200 मित्रका विके

• A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables - say, x_1, \dots, x_n .

Linear System Example

• Suppose we collected persons' weight, height, and life-span (e.g., how long s/he lived)

	Parson D	Weight	(leigh)	(s_smokin)	Life-span
/	1	60kg	5.5ft	Yes (=1)	66
	2	65kg	5.0ft	No (=0)	74
	3	55kg	6.0ft	Yes (=1)	78

We want to set up the following linear system:

$$60x_1 + 5.5x_2 + 1 \cdot x_3 = 66$$

 $65x_1 + 5.0x_2 + 0 \cdot x_3 = 74$
 $55x_1 + 6.0x_2 + 1 \cdot x_3 = 78$

• Once we solve for x_1 , x_2 , and x_3 , given a new person with his/her weight, height, and is_smoking, we can predict his/her life-span,

Linear System Example

- The essential information of a linear system can be written compactly using a matrix.
- In the following set of equations,

$$60x_1 + 5.5x_2 + 1 \cdot x_3 = 66$$

$$65x_1 + 5.0x_2 + 0 \cdot x_3 = 74$$

$$55x_1 + 6.0x_2 + 1 \cdot x_3 = 78$$

Let's collect all the coefficients on the left and form a matrix

$$A = \begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \end{bmatrix} \rightarrow \text{THE 2016}$$
• Also, let's form two vectors: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$

From Multiple Equations to Single Matrix Equation

Multiple equations can be converted into a single matrix equations

How can we solve for x?

Identity Matrix

- **Definition**: An <u>identity matrix</u> is a square matrix whose diagonal entries are all 1's, and all the other entries are zeros. Often, we denote it as $I_n \in \mathbb{R}^{n \times n}$.
 - e.g., $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- An identity matrix I_n preserves any vector $\mathbf{x} \in \mathbb{R}^n$ after multiplying \mathbf{x} by I_n :

$$\forall \mathbf{x} \in \mathbb{R}^n$$
,

$$I_n \mathbf{x} = \mathbf{x}$$

Inverse Matrix
$$AA^{-1} \neq I_n$$
? $\begin{bmatrix} A^{-1} \neq I_n \\ AA^{-1} \neq I_n \end{bmatrix} \neq \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

MARKA 2

• **Definition**: For a square matrix $A \in \mathbb{R}^{n \times n}$, its inverse matrix A^{-1} is defined such that

$$A^{-1}A = AA^{-1} = I_n.$$

• For a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, its inverse matrix A^{-1} is defined

$$\begin{bmatrix} \frac{1}{2} & \frac{2}{3} \\ \frac{4}{5} & \frac{5}{6} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{2}{3} \\ \frac{2}{3} \\ \frac{3}{3} \\ \frac{3}{3}$$

수 일부 존재. 기건나 오른쪽이 유하면 상등해된 안녕 + 여행된 이번

Solvi

Solving Linear System via Inverse Matrix

• We can now solve $A\mathbf{x} = \mathbf{b}$ as follows:

$$A\mathbf{x} = \mathbf{b}$$

$$A\mathbf{x} = A^{-1}\mathbf{b}$$

$$I_{n}\mathbf{x} = A^{-1}\mathbf{b}$$

$$\mathbf{x} = A^{-1}\mathbf{b}$$

Solving Linear System via Inverse Matrix

Example:

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix} \longrightarrow A^{-1} = \begin{bmatrix} 0.0870 & 0.0087 & -0.0870 \\ -1.1304 & 0.0870 & 1.1314 \\ 2.0000 & -1.0000 \end{bmatrix}$$

One can verify

$$A^{-1}A = AA^{-1} = I_n$$
.

$$\bullet \mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} 0.0870 & 0.0087 & -0.0870 \\ -1.1304 & 0.0870 & 1.1314 \\ 2.0000 & -1.0000 & -1.0000 \end{bmatrix} \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix} = \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix}$$

Solving Linear System via Inverse Matrix

Now, the life-span can be written as

(life-span) =
$$-0.4 \times (\text{weight}) + 20 \times (\text{height})$$

 $-20 \times (\text{is_smoking}).$

Non-Invertible Matrix A for Ax = b

- Note that if \underline{A} is invertible, the solution is uniquely obtained as $\mathbf{x} = A^{\text{trip}} \oplus \mathbf{b}$. $= A \text{ of the problem of the probl$
- - E.g., For $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, in $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, the denominator ad-bc= 0, so A is not invertible.

4 010 9772 FMX ad = bc + a:b = C:d

• For $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, ad - bc is called the determinant of A, or $\det A$.

Does a Matrix Have an Inverse Matrix?

- $\det A$ determines whether A is invertible (when $\det A \neq 0$) or not (when $\det A = 0$).
- For more details on how to compute the determinant of a matrix $A \in \mathbb{R}^{n \times n}$ where $n \geq 3$, you can study the following:
 - https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-20 10/video-lectures/lecture-18-properties-of-determinants/
 - https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-20 10/video-lectures/lecture-19-determinant-formulas-and-cofactors/

```
3x3, 4x4, ... 2 729 determinant
```


Inverse Matrix Larger than 2×2

- If invertible, is there any formula for computing an inverse matrix of a matrix $A \in \mathbb{R}^{n \times n}$ where $n \geq 3$?
- No, but one can compute it.
- We skip details, but you can study Gaussian elimination in Lay Ch1.2 and then study Lay Ch2.2.

Non-Invertible Matrix A for Ax = b

• Back to the linear system, if A is non-invertible, Ax = b will have either no solution or infinitely many solutions.

ann Prai Sect

$$\begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 2 & 2 \\ 2 & 4 & 2$$

SMIT SICH

Rectangular Matrix A in Ax = b

• What if A is a rectangular matrix, e.g., $A \in \mathbb{R}^{m \times n}$, where $m \neq n$?

	Parson ID	Weight	Height	ls_smeking	Life-span	F.C.O.		47	ΓΥ ¬		- <i></i>	
	1	60kg	5.5ft	Yes (=1)	66	 60	5.5	1	$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$		66	
3	2	65kg	5.0ft	No (=0)	74	65	5.0	0	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$	=	74	
m	\ 3	55kg	6.0ft	Yes (=1)	78	L55	6.0	1	$[x_3]$	Į	₋ 78J	

- Recall m= #equations and n= #variables. A regularization = \mathbf{b} m < n: more variables than equations the first the following the status of the first testing $\frac{1}{2}$ (PNA) when $\frac{1}{2}$ is the first testing $\frac{1}{2}$ (PNA) when $\frac{1}{2}$ is the first testing $\frac{1}{2}$ is the first testing $\frac{1}{2}$ (PNA) when $\frac{1}{2}$ is the first testing $\frac{1}{2}$ is the first testing $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ is the first testing $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ in $\frac{1}{2}$ is $\frac{1}{2}$ in $\frac{1}{2}$ in
- - Usually infinitely many solutions exist (under-determined system).
- m > n: more equations than variables the $7 > \frac{1}{2}$
 - Usually no solution exists (over-determined system).
- To study how to compute the solution in these general cases, check out Lay Ch1.2 and Lay Ch1.5.

> 7/52/MO2 WER 7892 Jan