EECS 4412 Data Mining Assignment 1 Report

Name: Chun Ho Li Student ID: 214908800

Date: 22 Feb 2021

Question 1) Part A

levelUp.py works by applying Apriori algorithm to mine frequent itemset for a given threshold. Before

applying the pre-candidate optimization, the algorithm will join on the prefixes which is created randomly

to create pre-candidates, then applying the Apriori property to finalize the candidates. This can lead to a

huge set of pre-candidates' generation, result in a slower running time. Here is the result before

optimization by testing with level 5 of the mushroom dataset.

#pre-candidates: 236859

Lapsed time:

187.406

To achieve a more efficient algorithm, we sort the item in the itemset from least to most frequent, such

that the pre-candidates' generation can be more optimized and less pre-candidates will be created. Hence,

increasing the performance of the algorithm. Here is the result with optimization, the number of pre-

candidates are greatly reduced, and the running time is slightly improved as a result.

#pre-candidates: 173877

172300

Lapsed time:

170.566

Question 2) Part A)

I alt Aj						
	A) Tran	formed :	transactions	i temsets		
			N KE Y}	->	EK EM	0 Y 3
	72	8 DOM	1 KEY3	\rightarrow	{ K E O Y	<i>}</i>
		EMA		->	EKE M3	
	74	{ MUC	KY3	->	EKM Y3	
		200 K		\Rightarrow	{KE O}	
					,	
	Frequent	Items				
	Item	count	Support		[Root	
	K	5	100% -			
	E	4	80% -		> K:5	
	M	3	60%		. 7	441.1
	0	3	60%	1	[F: 4] n	M: 1
	Y	3	60%	, ',	E: 4	
	/	3			TM: 2/10:2	7 17:1
				1 ,	14:51	1
				7		
				``	0:1	1 1
				7		
				[Y: 1 /	
					·	

Part B)

```
B) Constitutal Pattern - Bases and constitutal FP- Thee
     Items conditional-pattern Base
    0 KEM
M KE: 2, K:1
                                               {(K: 37} / M
            K: 4
                                                    { ( K: 4)} ( E
  Frequent Pattern Generated
   {K, 0:3}, {E, 0:3}, {0, E, K:3}
{K, M:3}
{K, E:3}
  Association Rules Generation
   \begin{array}{lll} \{0\} & \rightarrow \{E, K\} & L & Support = 60\%, & confidence = 100\% \\ \{E\} & \rightarrow \{0, K\} & L & Support = 60\%, & confidence = 45\% \\ \{K\} & \rightarrow \{0, E\} & L & Support = 60\%, & confidence = 60\% \\ \end{array}
   \{K\} \rightarrow \{M\} L Support = 60%, confidence = 60%]

\{M\} \rightarrow \{K\} L Support = 60%, confidence = 100%]

\{K\} \rightarrow \{E\} L Support = 80%, confidence = 80%]

\{E\} \rightarrow \{E\} L Support = 80%, confidence = 100%]
```

After pruning by redunancy $\begin{cases} \{Y\} \rightarrow \{K\} \\ \{E\} \rightarrow \{K\} \\ \{K\} \rightarrow \{E\} \\ \{N\} \rightarrow \{E\} \end{cases}$ $\begin{cases} \{N\} \rightarrow \{E,K\} \\ \{N\} \rightarrow \{K\} \end{cases}$