Approximate Bayesian Computations via Sufficient Dimension Reduction

Harris Quach

November 28, 2018

Approximate Bayesian Computation: Context

- ▶ Observed sample of size n, $y_{obs} \in \mathbb{R}^n \sim f_{\theta}$, prior $\pi(\theta)$; we want draws from posterior $\pi(\theta|y_{obs}) \propto \pi(\theta) f(y_{obs}|\theta)$
- ▶ Problem: $f(y|\theta)$ is intractable computationally expensive, no analytic form, etc. **But** we can simulate from the f_{θ} .
- ldea: To sample from posterior, find θ that generate simulations y_{sim} matching y_{obs} , i.e. $y_{sim} = y_{obs}$
- Matching y_{sim} to y_{obs} difficult if n is large, especially if y is continuous.

ABC: Role of Sufficiency

- Easier if we have a lower-dimensional summary statistic $\varphi = \varphi(y)$; ideally, $\varphi(y)$ is a sufficient statistic; $\varphi(y)$ being informative on θ also works.
- ▶ Easier if instead of matching, we settle for close enough: $\rho(\varphi(y_{sim}), \varphi(y_{obs})) < \varepsilon$ for ρ a metric, $\varepsilon > 0$

Algorithm 1: ABC

Given: proposal $g(\theta)$; a summary statistic $\varphi(\cdot)$; a metric ρ with some tolerance ε ; your acceptance rule as a function of closeness

- 1 Draw $\theta_{sim} \sim g(\theta)$ for sim = 1, ..., S
- 2 Draw $y_{\textit{sim}} \in \mathbb{R}^{\textit{n}} \sim \textit{f}_{\theta_{\textit{sim}}} \; \text{for} \; \textit{sim} = 1,...,S$
- 3 Accept θ_{sim} according to your rule depending on closeness, e.g $\rho(\varphi(y_{sim}), \varphi(y_{obs})) < \varepsilon$

Result: S Draws from a posterior that approximates $\pi(\theta|y_{obs})$

$$\pi(\theta|\gamma_{obs}) \approx \pi(\theta|\varphi_{obs}) \approx \pi_{ABC}(\theta|\varphi_{obs})$$

Sufficient Dimension Reduction: Context

- ▶ But what if we have no idea about φ ?
- ▶ We have $\theta \in \mathbb{R}^B$, $Y \in \mathbb{R}^{n \times B}$
- ▶ Objective: Find an transformation $\varphi(Y)$ such that

$$\theta \perp \!\!\! \perp Y | \varphi(Y)$$
, or $P(\theta|Y) = P(\theta|\varphi(Y))$

Finding an informative summary $\varphi = \varphi(y)$ such that $\pi(\theta|y) = \pi(\theta|\varphi(Y))$ is a sufficent dimension reduction problem!

Sufficient Dimension Reduction: Heuristics and Methods

- **b** Being informative means $\varphi(Y)$ explains variation in θ
- Work with matrices like $\Lambda_{sdr} = E(\text{"Variation between } \theta \text{ and } Y")$;
- ► The SDR methods we consider are will generally produce estimated functions of the form:

$$\hat{\varphi}(Y) = eigen.vec_d(\hat{\Lambda}_{sdr})("\widehat{VCov_Y}")^{-1}"Y"$$

Estimating Sufficient Statistic via Simulation

Algorithm 2: Estimating Sufficient Statistic for ABC via Simulation

Given: proposal $g(\theta)$;

- 1 Draw $\theta_{sim} \sim g(\theta)$ for sim = 1, ..., B
- 2 For each θ_{sim} : Draw $y_{sim}^{(r)} \in \mathbb{R}^n \sim f_{\theta_{sim}}$ for r=1,...,R
- **3 begin** For each r = 1, ..., R:
- 4 Let $\theta^{(r)}=(\theta_1^r,...,\theta_B^r)\in\mathbb{R}^B$ and $Y^{(r)}=(y_1^r,...,y_B^r)\in\mathbb{R}^{n\times B}$
- 5 Estimate $\hat{\Lambda}_{sdr}^{(r)}$
 - 6 end
- 7 Construct $\hat{\Lambda}_{sdr} = \frac{1}{R} \sum_{r=1}^{R} \hat{\Lambda}_{sdr}^{(r)}$; and $\hat{\varphi}(y) = eigen.vec_d(\hat{\Lambda}_{sdr})(\text{"$\widehat{VCov_Y}$"})^{-1}\text{"y"}$

Output: $\hat{\varphi}$: an estimated sufficient statistic for θ

Example: AR(1) in Ghosh & Zhong (2016)

For t = 1, ..., n, n = 100, $\sigma = 0.5$, B = 1000;

$$y_{t+1} = \theta y_t + \eta_t, \quad \eta_t \sim N(0, \sigma^2), \quad \theta \sim Unif(-1, 1) \implies \theta | y, \sigma \sim N\left(\frac{\sum_{t=0}^{n} y_t y_{t-1}}{\sum_{t=0}^{n} y_{t-1}^2}, \frac{\sigma^2}{\sum_{t=0}^{n} y_{t-1}^2}\right)$$

Algorithm 3: ABC with SDR for AR(1)

Given: proposal $g(\theta)$; estimated summary statistic $\hat{\varphi}(\cdot)$; a metric ρ with some tolerance ε ; your acceptance rule as a function of closeness

- 1 Draw $\theta_{sim} \sim g(\theta)$ for sim = 1, ..., S
- 2 Accept θ_{sim} according to your rule depending on closeness, e.g $\rho(\hat{\varphi}(y_{sim}), \hat{\varphi}(y_{obs})) < \varepsilon$

Output: S Draws from $\pi_{ABC}(\theta|\hat{\varphi}_{obs}) \approx \pi(\theta|\varphi(y_{obs})) \approx \pi(\theta|y_{obs})$

True Posterior vs ABC via (DR, SIR, SAVE, IHT dashed), GSIR, GSAVE

$$g = \pi$$
; $R = 30$ no rep; $B = 1000$, $S = 1000$

Conclusion

- Averaging to estimate Λ_{sdr} enables use of SDR by speeding up computation;
- ▶ Repeated drawing for each θ_{sim} improves effectiveness of non-linear SDR;
- SDR provides an automated way to construct useful summary statistics for ABC;
- Need to develop better SDR implementation within an MCMC ABC framework;