chapter3 处理数据

1) climits中的符号常量:

climits 定义了符号常量,这里总结了部分常用是:

符号常量	表示
CHAR_BIT	char的位数
INT_MAX	int的最大值
LONG_MAX	long的最大值
SHAR_MAX	short的最大值
LLONG_MAX	long long 的最大值
CHAR_MAX,CHAR_MIN	char的最大值和最小值
SCHAR_MAX,SCHAR_MIN	signed char的最大值和最小值
UCHAR_MAX,UCHAR_MIN	unsigned char的最大值和最小值

```
#include <iostream>
#include <climits>
using namespace std;
int main(int argc, char const *argv[])
{
    int n_int = INT_MAX;
    short n_short = SHRT_MAX;
    long n_long = LONG_MAX;
    long long n_llong = LLONG_MAX;
    std::cout << "int is " << CHAR_BIT << " bytes." << '\n';
    std::cout << "short is " << sizeof(short) << " bytes." << '\n';
    std::cout << "long is " << sizeof(long) << " bytes." << '\n';
    std::cout << "long long is " << sizeof(long long) << " bytes." << '\n';</pre>
```

```
std::cout << "Maxinum values:" << '\n';</pre>
    std::cout << "int : " << n_int << '\n';</pre>
    std::cout << "short : " << n_short << '\n';</pre>
    std::cout << "long : " << n_long << '\n';</pre>
    std::cout << "long long : " << n_llong << '\n';</pre>
    std::cout << "Bits per byte : " << CHAR_BIT << '\n';</pre>
    return 0;
}
结果:
int is 8 bytes.
short is 2 bytes.
long is 4 bytes.
long long is 8 bytes.
Maxinum values:
int : 2147483647
short : 32767
long : 2147483647
long long : 9223372036854775807
Bits per byte : 8
```

2) ASCII 表:

ASCII码对照全表

二进制	十进制	十六进制	符号	解释	二进制	十进制	十六进制	符号	二进制	十进制	十六进制	符号	二进制	十进制	十六进制	符号
0000 0000	0	0	NUL	空字符	0010 0000	32	20	100	0100 0000	64	40	@	0110 0000	96	60	` `
0000 0001	1	1	SOH	标题开始	0010 0001	33	21	į.	0100 0001	65	41	Α	0110 0001	97	61	а
0000 0010	2	2	STX	正文开始	0010 0010	34	22	"	0100 0010	66	42	В	0110 0010	98	62	b
0000 0011	3	3	ETX	正文结束	0010 0011	35	23	#	0100 0011	67	43	С	0110 0011	99	63	С
0000 0100	4	4	EOT	传输结束	0010 0100	36	24	\$	0100 0100	68	44	D	0110 0100	100	64	d
0000 0101	5	5	ENQ	询问	0010 0101	37	25	96	0100 0101	69	45	E	0110 0101	101	65	е
0000 0110	6	6	ACK	收到通知	0010 0110	38	26	&	0100 0110	70	46	F	0110 0110	102	66	f
0000 0111	7	7	BEL	铃	0010 0111	39	27		0100 0111	71	47	G	0110 0111	103	67	g
0000 1000	8	8	BS	退格	0010 1000	40	28	(0100 1000	72	48	Н	0110 1000	104	68	h
0000 1001	9	9	HT	水平制表符	0010 1001	41	29)	0100 1001	73	49	1	0110 1001	105	69	i
0000 1010	10	0A	LF	换行键	0010 1010	42	2A	*	0100 1010	74	4A	J	0110 1010	106	6A	g
0000 1011	11	OB	VT	垂直制表符	0010 1011	43	2B	+	0100 1011	75	4B	K	0110 1011	107	6B	k
0000 1100	12	0C	FF	换页键	0010 1100	44	2C		0100 1100	76	4C	L	0110 1100	108	6C	1
0000 1101	13	0D	CR	回车键	0010 1101	45	2D	-	0100 1101	77	4D	M	0110 1101	109	6D	m
0000 1110	14	0E	SO	移出	0010 1110	46	2E		0100 1110	78	4E	N	0110 1110	110	6E	n
0000 1111	15	OF	SI	移入	0010 1111	47	2F	/	0100 1111	79	4F	0	0110 1111	111	6F	0
0001 0000	16	10	DLE	数据链路转义	0011 0000	48	30	0	0101 0000	80	50	Р	0111 0000	112	70	р
0001 0001	17	11	DC1	设备控制1	0011 0001	49	31	1	0101 0001	81	51	Q	0111 0001	113	71	q
0001 0010	18	12	DC2	设备控制2	0011 0010	50	32	2	0101 0010	82	52	R	0111 0010	114	72	r
0001 0011	19	13	DC3	设备控制3	0011 0011	51	33	3	0101 0011	83	53	S	0111 0011	115	73	s
0001 0100	20	14	DC4	设备控制4	0011 0100	52	34	4	0101 0100	84	54	Т	0111 0100	116	74	t
0001 0101	21	15	NAK	拒绝接收	0011 0101	53	35	5	0101 0101	85	55	U	0111 0101	117	75	u
0001 0110	22	16	SYN	同步空闲	0011 0110	54	36	6	0101 0110	86	56	V	0111 0110	118	76	٧
0001 0111	23	17	ETB	传输块结束	0011 0111	55	37	7	0101 0111	87	57	W	0111 0111	119	77	W
0001 1000	24	18	CAN	取消	0011 1000	56	38	8	0101 1000	88	58	Х	0111 1000	120	78	х
0001 1001	25	19	EM	介质中断	0011 1001	57	39	9	0101 1001	89	59	Υ	0111 1001	121	79	у
0001 1010	26	1A	SUB	替换	0011 1010	58	3A	:	0101 1010	90	5A	Z	0111 1010	122	7A	Z
0001 1011	27	1B	ESC	换码符	0011 1011	59	3B	:	0101 1011	91	5B	[0111 1011	123	7B	{
0001 1100	28	1C	FS	文件分隔符	0011 1100	60	3C	<	0101 1100	92	5C	\	0111 1100	124	7C	
0001 1101	29	1D	GS	组分隔符	0011 1101	61	3D	=	0101 1101	93	5D	1	0111 1101	125	7D	}
0001 1110	30	1E	RS	记录分隔符	0011 1110	62	3E	>	0101 1110	94	5E	٨	0111 1110	126	7E	~
0001 1111	31	1F	US	单元分隔符	0011 1111	63	3F	?	0101 1111	95	5F	_				
0111 1111	127	7F	DEL	删除												
二进制	十进制	十六进制	符号	解释	二进制	十进制	十六进制	符号	二进制	十进制	十六进制	符号	二进制	十进制	十六进制	符号
1000 0000	128	80	€	欧盟符号	1010 0000	160	A0		1100 0000	192	CO	À	1110 0000	224	EO	à
1000 0001	129	81			1010 0001	161	A1	i	1100 0001	193	C1	Á	1110 0001	225	E1	á
1000 0010	130	82		单低 9 引号	1010 0010	162	A2	¢	1100 0010	194	C2	Â	1110,0010	226	E2	م م راق م
1000 0011	101	02		带钩的	1010 0011	160	42	r	1100 0011	105	CO	×	1110 0011	227	Fa	anangas.

3) 缩放因子表示方法: AeB/AEB

eg: 1e6 = 10^6 5.98E24 = 5.98 x 10^24 9.11e-34

- (1) 指数可以是正数, 也可以是负数
- (2) E与e在此处等价
- (3) 数字中不可以有空格 eg: 7.2 e6 非法

4) c++11中的auto声明: 自动推断变量的类型

例如:

```
auto n = 100;  // n is int
auto x = 1.5;  // x is double
auto y = 1.3e12L;  // y is long double
```

auto的真正优势在处理复杂类型中得以体现,比如STL中的类型:

```
[approach1]
std::vector<double> hbx;
std::vector<double>::iterator hhh = hbx.begin();
[approach2]
```

```
std::vector<double> hbx;
auto hhh = hbx.begin();

对比可知:
std::vector<double>::iterator = auto
```