

语法分析I

《编译原理和技术(H)》

张昱

0551-63603804, yuzhang@ustc.edu.cn 中国科学技术大学 计算机科学与技术学院

- □ 语法的形式描述:上下文无关文法
- □ 语法分析: 自上而下、自下而上
- □ 语法分析器(parser、syntax analyzer)的自动生成
 - \blacksquare LL(k), ALL(*), SLR(k), LR(k), LALR(k)

3.1 上下文无关文法

- □ 正规式与上下文无关文法的比较
- □上下文无关文法的一些基本概念
 - 定义、推导、二义性
 - 名词:语言、文法等价、句型、句子

□ 正规式的表达能力

■ 定义一些简单的语言,能表示给定结构的固定次数的重复或者没有指定次数的重复

例: $a (ba)^5$, a (ba)*

- 不能描述配对或嵌套的结构
 - □ 例1: 配对括号串的集合,如不能表达 $\binom{n}{n}$, $n \ge 1$

原因: *n*不固定,无法表示右括号的个数必须正好与前面左括号的个数一样

□ 例2: $\{wcw \mid w$ 是由a和b组成的串 $\}$

原因: w的长度不固定, c后面的串要依据c前面不定长的串w来确定;

有限自动机有有限个状态, 无法记录访问同一状态的次数

正规式的表达能力不足

例: $L=\{a^nb^n \mid n \geq 1\}$, L不能用正规式描述

反证法

- 若存在接受L的DFAD, 状态数为k个(有限个)
- 设D读完 ε , a, aa, ..., a^k 分别到达状态 s_0 , s_1 , ..., s_k
- 至少有两个状态相同,例如是 s_i 和 s_i ,则 a^ib^i 属于L,这与假设相矛盾

标记为aj-i的路径

上下文无关文法的定义

Context-free Grammar (CFG) 注: Syntax-语法

\square CFG是四元组 (V_T, V_N, S, P)

 V_T : 终结符(terminal, 记号名,即token的第1元)集合

V_N: 非终结符(nonterminal)集合

S: 开始符号(start symbol),是一个非终结符

P: 产生式(production)集合

产生式的形式: $A \rightarrow \alpha$, $A \in V_N$, $\alpha \in (V_T \cup V_N)^*$

有时用 $A := \alpha$

■ 例 ($\{id, +, *, -, (,)\}, \{expr, op\}, expr, P$) 第一个产生式左部的符号就是文法开始符号

$$expr \rightarrow expr \ op \ expr$$

$$expr \rightarrow (expr)$$
 $expr \rightarrow -expr$

$$expr \rightarrow -expr$$

$$expr \rightarrow id$$

$$op \rightarrow +$$

$$op \rightarrow *$$

□ 表达式的CFG的简化表示

■ 引入选择符 |

 $expr \rightarrow expr \ op \ expr \ | \ (expr) \ | - expr \ | \ id$

$$op \rightarrow + \mid *$$

注: +,*是op的选择(alternatives)

■ 简化名称

$$E \rightarrow E A E / (E) / -E / id$$

$$A \rightarrow + \mid *$$

Backus-Naur Form

巴科斯-诺尔, 范式

John Backus 1977图灵奖 首次在ALGOL 58中实现BNF

Peter Naur 2005图灵奖 在ALGOL 60 中发展和简化

- **☐ John Backus** (1924-2007)
 - 1977图灵奖获奖成就
 - □ Fortran发明组组长
 - □ 提出了BNF
 - 履历
 - □ 弗吉尼亚大学化学(因出勤率低而开除,随后入伍)
 - □ 哥伦比亚大学数学BS 1949, AM 1950
 - □ IBM
 - **英奖演说:** <u>Can Programming Be</u> <u>Liberated From the von Neumann Style?</u>

- **□** Peter Naur (1928-2016)
 - 2005图灵奖获奖成就
 - ☐ ALGOL 60
 - □ 发展BNF并简化
 - 履历
 - □ 哥本哈根大学天文学BS 1949、博士 1957
 - □ 1950-51剑桥: 天气恶劣破坏天文观测计划,但花很多时间编程以解决天文学中的扰动问题
 - □ 毕业后转向计算机科学
 - □ 获奖演说: <u>Computing vs. Human</u>
 <u>Thinking</u>

- □ 都能表示语言
- □ 凡是能用正规式表示的语言,都能用CFG表示
 - 正规式(a|b)*ab

■ 上下文无关文法CFG

可机械地由NFA变换而得,NFA的字母表视为终结符集合

为每个NFA状态i引入一个非终结符 A_i ,NFA中每条弧对应于产生式的一个**分支**(选择),

对于接受状态 i,则引入 $A_i \rightarrow \epsilon$

$$A_0 \rightarrow a A_0 \mid b A_0 \mid a A_1$$

$$A_1 \rightarrow b A_2$$

 $A_2 \rightarrow \varepsilon$ (该产生式并不必要)

如果状态i有一个a转换到状态j,则引入产生式 $A_i \to aA_j$;如果是 ε 转换,则引入 $A_i \to A_j$ 。

分离词法分析器的理由

- □ 正规文法是上下文无关文法的特例
- □ 为什么要用正规式定义词法
 - 词法规则非常简单,不必用上下文无关文法
 - 对于词法记号,正规式描述简洁且易于理解
 - 从正规式构造出的词法分析器(DFA)效率高
- □ 分离词法分析和语法分析的好处(从软件工程看)
 - 简化设计,便于编译器前端的模块划分
 - 改进编译器的效率
 - 增强编译器的可移植性,如输入字符集的特殊性等可以限制在词法分析器中 处理

词法分析并入语法分析?

- □ 直接从字符流进行语法分析
 - 文法复杂化: 文法中需有反映语言的注释和空白的规则
 - 分析器复杂化:处理包含注释和空白的分析器,比注释和空白符已被词法分析器过滤的分析器要复杂得多

- □ 分离但在同一遍(Pass)中进行
 - 是通常编译器的做法

3.1 上下文无关文法

- □ 正规式与上下文无关文法的比较
- □ 上下文无关文法的一些基本概念
 - 定义、推导、二义性
 - 名词:语言、文法等价、句型、句子

□ 推导(derivation)

- 是从文法推出文法所描述的语言中合法串集合的动作
- 把产生式看成重写规则, 把符号串中的非终结符用其产生式右部的串来代替

例
$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$$

$$E \Rightarrow -E$$
 读作 E 推导出 $-E$

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathrm{id}+E) \Rightarrow -(\mathrm{id}+\mathrm{id})$$

上述代换序列称为从 E 到 $-(\mathrm{id}+\mathrm{id})$ 的推导 $-(\mathrm{id}+\mathrm{id})$ 是 E 的实例

记法

- □ 如果 $A \rightarrow \gamma$ 是产生式,α 和β 是文法的任意符号串,那么可以说αAβ ⇒ αγβ
- □ 0步或多步推导 $S \Rightarrow *\alpha$: 1) $\forall \alpha$. $\alpha \Rightarrow *\alpha$; 2) 如果 $\alpha \Rightarrow *\beta$, $\beta \Rightarrow \gamma$, 那么 $\alpha \Rightarrow *\gamma$
- □ 一步或多步推导 $S \Rightarrow w$

□ 上下文无关是什么意思?

■ 指对于文法推导的每一步 $\alpha A \beta \Rightarrow \alpha \gamma \beta$

文法符号串 γ 仅依据A的产生式推导,不依赖A的上下文 α 和 β

语言、文法、句型、句子

□ 上下文无关语言

■ 由上下文无关文法G产生的语言称为上下文无关语言,它包含: 从开始符号S出发,经 \Rightarrow +推导所能到达的所有仅由终结符组成的串

- 句型(sentential form): $S \Rightarrow \alpha$, S是开始符号, α 是由终结符和/或非终结符组成的串,则 α 是文法G的句型
- 句子(sentence): $S \Rightarrow^+ w$, w是仅由终结符组成的句型

□ 等价的文法

■ 它们产生同样的语言

最左推导与最右推导

例
$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$$

□ 最左推导(leftmost derivation)

每步代换句型中最左边的非终结符

$$E \Rightarrow_{lm} -E \Rightarrow_{lm} -(E) \Rightarrow_{lm} -(E + E)$$
$$\Rightarrow_{lm} -(id + E) \Rightarrow_{lm} -(id + id)$$

□ 最右推导(rightmost or canonical,规范推导)

每步代换句型中最右边的非终结符

$$E \Rightarrow_{rm} -E \Rightarrow_{rm} -(E) \Rightarrow_{rm} -(E + E)$$
$$\Rightarrow_{rm} -(E + id) \Rightarrow_{rm} -(id + id)$$

例
$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$$

-(id+id)最左推导的分析树 (parse tree)

$$E \Rightarrow -E$$

例
$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$$

-(id+id)最左推导的分析树 (parse tree)

$$E \Rightarrow -E \Rightarrow -(E)$$

例
$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$$

-(id+id)最左推导的分析树 (parse tree)

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E + E)$$

例
$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$$

-(id+id)最左推导的分析树 (parse tree)

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E + E) \Rightarrow -(id + E)$$

例
$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$$

-(id+id)最左推导的分析树 (parse tree)

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(id + E) \Rightarrow -(id + id)$$

文法的某些句子存在不止一种最左(最右)推导,或者不止一棵分析树,则该文法是二义的。

例
$$E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$$

id*id+id 有两个不同的最左推导

$$E \Rightarrow E * E$$

$$\Rightarrow$$
 id * E

$$\Rightarrow$$
 id * $E + E$

$$\Rightarrow$$
 id * id + E

$$\Rightarrow$$
 id * id + id

$$E \implies E + E$$

$$\Rightarrow E * E + E$$

$$\Rightarrow$$
 id * $E + E$

$$\Rightarrow$$
 id * id + E

$$\Rightarrow$$
 id * id + id

文法的二义性

id*id+id 有两棵不同的分析树

$$E \Rightarrow E * E$$

$$\Rightarrow$$
 id * E

$$\Rightarrow$$
 id * $E + E$

$$\Rightarrow$$
 id * id + E

$$\Rightarrow$$
 id * id + id

$$E \Rightarrow E + E$$

$$\Rightarrow E * E + E$$

$$\Rightarrow$$
 id * $E + E$

$$\Rightarrow$$
 id * id + E

$$\Rightarrow$$
 id * id + id

3.2 语言和文法

- □ 语言和文法:验证、消除二义性
- □非上下文无关文法

验证文法产生的语言

文法 $G: S \to ('S')'S \mid ε$ 语言L(G) = 配对的括号串的集合

- ① 从S 推出的是配对的括号串
- ② 任意配对的括号串可由S 推出
- □ 证明①:按推导步数进行归纳

按任意步推导, 推出的是配对括号串

- 归纳基础(Basis): $S \Rightarrow \varepsilon$
- 归纳 (Induction)假设 少于n步的推导都产生配对的括号串,如 $S \Rightarrow *x, S \Rightarrow *y$
- 归纳步骤: n步的最左推导如下:

$$S \Rightarrow '('S')'S \Rightarrow *'('x')'S \Rightarrow *'('x')'y$$

验证文法产生的语言

文法 $G: S \to ('S')' S \mid \varepsilon$ 语言L(G) =配对的括号串的集合

- \square 证明②:任意长度的配对括号串均可由 S 推导出来
 - 按串长进行归纳
 - 归纳基础(Basis): $S \Rightarrow \varepsilon$
 - 归纳 (Induction)假设: 长度小于 2n 的配对的括号串都可以从 S 推导出来
 - 归纳步骤: 考虑长度为 $2n(n \ge 1)$ 的w = '('x')'y

$$S \Rightarrow '('S')' S \Rightarrow * '('x')' S \Rightarrow * '('x')' y$$

表达式的另一种文法

□ 用一种层次的观点看待表达式

$$id * id * (id+id) + id * id + id$$

□ 无二义的文法

 $expr \rightarrow expr + term \mid term$

term → term * factor | factor

 $factor \rightarrow id \mid (expr)$

左递归文法 * 是自左向右结合

左递归文法 + 是自左向右结合

> 如果改成 expr → term + expr | term 呢? + 是自右向左结合

表达式的另一种文法

 $expr \rightarrow expr + term \mid term$ $term \rightarrow term * factor \mid factor$ $factor \rightarrow id \mid (expr)$

消除二义性(Eliminating ambiguity)


```
stmt → if expr then stmt
| if expr then stmt else stmt
| other
```

□ 句型: if expr then if expr then stmt else stmt

有两个最左推导:

 $stmt \Rightarrow if expr then stmt$

 \Rightarrow if expr then if expr then stmt else stmt

 $stmt \Rightarrow if expr then stmt else stmt$

 \Rightarrow if expr then if expr then stmt else stmt

□ 无二义的文法

stmt → matched _stmt | unmatched_stmt

else 的就近匹配规则

3.2 语言和文法

- □ 语言和文法:验证、消除二义性
- □非上下文无关文法

- 文法 $G = (V_T, V_N, S, P)$
- □ 0型文法: $\alpha \to \beta$, α , $\beta \in (V_N \cup V_T)^*$, $|\alpha| \ge 1$ 短语文法
- □ 1型文法: $|\alpha| \le |\beta|$, 但 $S \to \varepsilon$ 可以例外上下文有关文法
- \square 2型文法: $A \to \beta$, $A \in V_N$, $\beta \in (V_N \cup V_T)^*$ 上下文无关文法
- \square 3型文法: $A \to aB$ 或 $A \to a$ 或 $A \to \epsilon$, $A, B \in V_N$, $a \in V_T$ 正规文法

上下文无关文法的优缺点

□ 优点

- 文法给出了精确的、易于理解的语法说明
- 可以给语言定义出层次结构
- 可以基于文法自动产生高效的分析器
- 以文法为基础实现语言便于对语言修改

□ 缺点

■ 表达能力不足够,只能描述编程语言中的大部分语法

非上下文无关的语言构造

 $L_1 = \{wcw / w属于(a/b)^*\}$

用来抽象: 标识符的声明应先于其引用

C、Java都不是上下文无关语言

 $L_2 = \{a^n b^m c^n d^m \mid n \ge 0, m \ge 0\}$ 用来抽象: 形参个数和实参个数应该相同

 $L_3 = \{a^n b^n c^n \mid n \ge 0\}$

用来抽象: 早先排版描述的一个现象

 $\underline{b} \underline{e} \underline{g} \underline{i} \underline{n}$: 5个字母键, 5个回退键, 5个下划线键

形似的上下文无关语言

wcw

$$L_1' = \{ wcw^R / w \in (a/b)^* \}$$

$$S \to aSa / bSb / c$$

 $a^nb^mc^nd^m$

$$L_{2}' = \{a^{n}b^{m}c^{m}d^{n} \mid n \geq 1, m \geq 1\}$$

$$S \rightarrow aSd \mid aAd$$

$$A \rightarrow bAc \mid bc$$

 $a^nb^nc^n$

$$L_2'' = \{a^n b^n c^m d^m \mid n \ge 1, m \ge 1\}$$

$$S \to AB$$

$$A \to aAb \mid ab$$

$$B \to cBd \mid cd$$

上下文有关文法

$L_3 = \{a^n b^n c^n | n \ge 1\}$ 的上下文有关文法

$$S \rightarrow aSBC$$

$$S \rightarrow aBC$$

$$S \rightarrow aBC \qquad CB \rightarrow BC$$

$$aB \rightarrow ab$$

$$bB \rightarrow bb$$
 $bC \rightarrow bc$ $cC \rightarrow cc$

$$bC \rightarrow bc$$

$$cC \rightarrow cc$$

$a^nb^nc^n$ 的推导过程如下:

$$S \Rightarrow *a^{n-1}S(BC)^{n-1}$$

用
$$S \rightarrow aSBC$$
 $n-1$ 次

$$S \Rightarrow^+ a^n (BC)^n$$

用
$$S \rightarrow aBC$$
 1次

$$S \Rightarrow^+ a^n B^n C^n$$

用 $CB \rightarrow BC$ 交换相邻的CB

$$S \Rightarrow^+ a^n b B^{n-1} C^n$$

用 $aB \rightarrow ab$ 1次

$$S \Rightarrow^+ a^n b^n C^n$$

用 $bB \rightarrow bb$ n-1次

$$S \Rightarrow^+ a^n b^n c C^{n-1}$$

用 $bC \rightarrow bc$ 1次

$$S \Rightarrow^+ a^n b^n c^n$$

用 $cC \rightarrow cc$ n-1次

例题1 写等价的非二义文法

下面的二义文法描述命题演算公式的语法,为它写一个等价的非二义文法

 $S \rightarrow S$ and $S \mid S$ or $S \mid \text{not } S \mid p \mid q \mid '(' S ')'$

解答

非二义文法的产生式如下:

 $E \rightarrow E \text{ or } T \mid T$

 $T \rightarrow T$ and $F \mid F$

 $F \rightarrow \text{not } F \mid '('E')' \mid p \mid q$

例题1 写等价的非二义文法

下面的二义文法描述命题演算公式的语法,为它写一个等价的非二义文法

 $S \rightarrow S$ and $S \mid S$ or $S \mid \text{not } S \mid p \mid q \mid '(' S ')'$

解答

非二义文法的产生式如下:

 $E \rightarrow E \text{ or } T \mid T$

 $T \rightarrow T$ and $F \mid F$

 $F \rightarrow \text{not } E \mid '('E')' \mid p \mid q$?

not p and q有两种不同的最左推导

not p and q not p and q

例题2 写等价的不同文法

设计一个文法:字母表 $\{a,b\}$ 上a和b的个数相等的所有串的集合

 \Box 二义文法: $S \rightarrow a S b S | b S a S | ε$

aabbabab

aabbabab

 \square 二义文法: $S \rightarrow a B \mid b A \mid \varepsilon$

 $A \rightarrow a S \mid b A A$

 $B \rightarrow b S \mid a B \mid B$

aabbabab aabbabab

aabbabab

□ 非二义文法: $S \rightarrow aBS | bAS | ε$

 $A \rightarrow a \mid b \mid A \mid A$

 $a \ abb \ abab \qquad B \rightarrow b \mid a \ B \ B$

a B S

下期预告: 自上而下的分析