SESM6047 Finite Element Analysis in Solid Mechanics Author: Yusaf Sultan Lecturer: Alex Dickinson Word Count: 302

Contents

D	efinitions)
0.	Lecture 0	
	0.1. Matrix Terminology	
	0.2. Vector Terminology	l
	0.3. Matrix Addition and Subtraction	1
	0.4. Matrix Multiplication 5)
	0.4.1. Scalar Multiplication)
	0.4.2. Matrix Multiplication)

List of Figures

List of Tables

Definitions

ABAB Allahumabarik

0. Lecture 0

0.1. Matrix Terminology

A matrix is a structured way of organizing data in a rectangular array with rows and columns. For this module the notation of a matrix and reference to matrix terms is shown in **Eq. 1**.

$$[K]_{i \times j} = \begin{bmatrix} k_{11} & k_{12} & \dots & k_{1j} \\ k_{21} & k_{22} & \dots & k_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ k_{i1} & k_{i2} & \dots & k_{ij} \end{bmatrix}_{i \times j}$$

$$(1)$$

Where:

- $[K]_{i \times j}$: The matrix [K] (Note for this module a matrix will be defined by the [] notation).
- i: The row index (indexed from 1).
- j: The column index (indexed from 2).
- $i \times j$: The shape of the matrix (i number of rows, j number of columns).
- k_{ij} : The item in the ith row and the jth column.

A special type of commonly used matrix is a **diagonal matrix** shown in **Eq. 2**. This type of matrix only features terms that sit on the indexes where the row index is equal to the column index (i = j).

$$[K]_{i\times j} = \begin{bmatrix} k_{11} & 0 & \dots & 0 \\ 0 & k_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & k_{ij} \end{bmatrix}_{i\times j}$$
 (2)

0.2. Vector Terminology

A vector is a quantity that has a **magnitude** as well as a **direction**. A vector is like one column out of a matrix, the number of terms signifies the dimensions of a vector, the notation used in this module for a vector is shown in **Eq. 3**.

$$\{q\}_{i\times 1} = \begin{cases} q_1 \\ q_2 \\ \vdots \\ q_i \end{cases}_{i\times 1}$$

$$(3)$$

0.3. Matrix Addition and Subtraction

Matrixes with the same shape can be added or subtracted. Matrix addition or subtraction is a **commutative** property and the process to do so is shown in **Eq. 4**.

$$[A]_{i \times j} \pm [B]_{i \times j} \tag{4.1}$$

$$= \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} \\ a_{21} & a_{22} & \dots & a_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} \end{bmatrix}_{i \times j} \pm \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1j} \\ b_{21} & b_{22} & \dots & b_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \dots & b_{ij} \end{bmatrix}_{i \times j} = \begin{bmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} & \dots & a_{1j} \pm b_{1j} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} & \dots & a_{2j} \pm b_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} \pm b_{i1} & a_{i2} \pm b_{i2} & \dots & a_{ij} \pm b_{ij} \end{bmatrix}_{i \times j}$$

$$[A]_{i \times j} \pm [B]_{i \times j} = [B]_{i \times j} \pm [A]_{i \times j}$$

$$(4.2)$$

0.4. Matrix Multiplication

0.4.1. Scalar Multiplication

A scalar can be multiplied with a matrix or vector of any shape, the scalar value is multiplied with every term within the matrix, as shown in **Eq. 5**.

$$k[A]_{i\times j} = k \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} \\ a_{21} & a_{22} & \dots & a_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} \end{bmatrix}_{i\times j} = \begin{bmatrix} ka_{11} & ka_{12} & \dots & ka_{1j} \\ ka_{21} & ka_{22} & \dots & ka_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ ka_{i1} & ka_{i2} & \dots & ka_{ij} \end{bmatrix}_{i\times j}$$
(5)

0.4.2. Matrix Multiplication

Any two matrices can be multiplied as long as the number of columns of the first matrix is the same as the number of rows in the second matrix. Given this criteria is satisfied the formula to then multiply two matrices together is shown in Eq. 6.

$$[A]_{i\times k}[B]_{k\times j} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ik} \end{bmatrix}_{i\times k} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1j} \\ b_{21} & b_{22} & \dots & b_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \dots & b_{kj} \end{bmatrix}_{k\times j}$$

$$(6.1)$$

$$= \begin{bmatrix} \sum_{r:1}^{k} (a_{1r}b_{r1}) & \sum_{r:1}^{k} (a_{1r}b_{r2}) & \dots & \sum_{r:1}^{k} (a_{1r}b_{rj}) \\ \sum_{r:1}^{k} (a_{2r}b_{r1}) & \sum_{r:1}^{k} (a_{2r}b_{r2}) & \dots & \sum_{r:1}^{k} (a_{2r}b_{rj}) \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{r:1}^{k} (a_{ir}b_{r1}) & \sum_{r:1}^{k} (a_{ir}b_{r2}) & \dots & \sum_{r:1}^{k} (a_{ir}b_{rj}) \end{bmatrix}_{i \times j}$$

$$(6.2)$$

Note that matrix multiplication is **not commutable** $([A]_{i\times k}[B]_{k\times j}\neq [B]_{k\times j}[A]_{i\times k}).$