Modelling Bluetooth Inquiry for SUMO

M. Behrisch, G. Gurczik

Motivation **Bluetooth Traffic Monitoring** The Inquiry Process Modelling and Simulation Results Conclusions and Future Prospects

Motivation

Effective traffic and mobility management...

- requires reliable (i.e. up-to-date, spatiotemporal and area-wide) traffic information
- And thus needs appropriate sensor systems

New systems such as Bluetooth traffic monitoring uses wireless radio-based technologies to detect traffic objects.

Research Question:

How likely is it to monitor a detectable traffic object within the detection range?

Bluetooth Traffic Monitoring

Bluetooth Traffic Monitoring Principle

- Based on wireless radio-based communication between electronical devices (e.g. smartphones and headsets)
- Using communication standards like Bluetooth, Wi-Fi, ZigBee, ...
- Traffic object detection via mobile or stationary electronical on-board devices equipped with Bluetooth (identification token: device address, called MAC)
- advantages: unique identifiability and therefore chance for redetection (origin-destination information!)

Bluetooth Traffic Monitoring Applications

- Derivation of spatio-temporal traffic information (travel times, velocity, ...)
- Special feature: area-wide origin-destination / route information due to redetection chance
- Additional traffic objects (e.g. cyclists, pedestrians, public transport systems) can be monitored as well

Use cases:

- Queue time measurement at the airport
- Visitor flow measurements e.g. at trade fairs
- Temporary traffic measurements e.g. in case of road works and rerouting
- Long-term traffic measurements on highways
- Pedestrian stay time measurements for advertising spaces

Motivation **Bluetooth Traffic Monitoring** The Inquiry Process Modelling and Simulation Results Conclusions and Future Prospects

Inquiry Process

Scanning frequencies in two different trains

Detecting several devices which appear only for a short time period

Neglecting several properties

- Backoff time
- Length of the appearance interval

Analytical Model

Traffic monitoring using Bluetooth depends not only on penetration rates, detection range or velocity but also on the Bluetooth inquiry process itself.

Modelling approach:

We calculate the probability that the overlapping time intervall t contains the target frequency which has to be scanned for being detected.

Analytical Model

$$P_1(t, p_d, b) = 1 - (1 - p_d)^{\frac{t}{b}}$$

Two additional approaches:

$$P_{2}(t,l) = \frac{\int_{0}^{l} p(t,l,x)dx}{l}$$
1. $t < l$:
$$P_{2}(t,l) = \frac{t}{l} - \frac{t^{3}}{6l^{3}}$$

$$1. \quad t < l:$$

$$P_2(t,l) = \frac{t}{l} - \frac{t^3}{6l^3}$$

$$2. \quad l \leq t < 2l:$$

2.
$$l \le t < 2l$$
: $P_2(t, l) = 1 - \frac{(2l-t)^3}{6l^3}$

3.
$$t \ge 2l$$
: $P_2(t, l) = 1$

$$P_2(t,l) = 1$$

$$P_3(t) = 1 - e^{-.24 * t^{2.68}}$$

Simulation

Simulation

- Adaptations in SUMO
 - ✓ Bluetooth inquiry model implemented
 - ✓ Equipment rates:
 - BTreceiver rate (--device.btreceiver.probability)
 - BTsender rate (--device.btsender.probability)
 - ✓ Detection range (--device.btreceiver.range)
- Simulation scenario
 - representing DLR test track (Ernst-Ruska-Ufer)
 - 2 fixed BTreceiver (east and west)
 - fixed BTsender equipment rate of 30%
 - detection range 100m

Simulation

Simulation Results

Intertimes represent the inquiry time process

Real World Measurements Laboratory Test

Real World Measurements

Field Test

- Test run (2013-08-20, 1h) at the DLR test track using
 - 2 stationary Bluetooth detectors
 - 8 moving Bluetooth observer objects (cars and bikes, 4 of each)

Real World Measurements

Results from Stationary Bluetooth Detection

Real World Measurements

Results from Moving Bluetooth Detection

Results Comparison

Motivation **Bluetooth Traffic Monitoring** The Inquiry Process Modelling and Simulation Results Conclusions and Future Prospects

Conclusions

- Bluetooth inquiry process was modelled and implemented in SUMO.
- A specific scenario was simulated and the results were compared to laboratory and real world measurements.
- We could see that:
 - Probability density seems to be best fitted by exponential function
 - Simulation results fit the real world stationary Bluetooth monitoring results quite well
 - Unusual "plateau behaviour" between 2 and 7 seconds in case moving Bluetooth observers

Thank you for your attention!

Contact:

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Institut für Verkehrssystemtechnik

Michael Behrisch

Rutherfordstr. 2 12489 Berlin

Tel.: +49 30 67055 - 210 Fax: +49 30 67055 - 291

Mail: michael.behrisch@dlr.de

Web: www.dlr.de

