Using SOFIA's EXES to search for C_6H_2 and C_4N_2 in Titan's atmosphere

Zachary C. McQueen, 1,2 Conor A. Nixon, 1 Curtis de Witt, 3 Véronique Vuitton, 4 Panayotis Lavvas, 5 Juan Alday, 6 Nicholas A. Teanby, 7 Joseph Penn, 8 Antoine Jolly, 9 and Patrick G. J. Irwin 8

¹NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA
²Southeast Universities Research Association, 1201 New York Avenue, Suite 430, Washington, DC 20005, USA
³Space Science Institute, 4765 Walnut St STE B, Boulder, CO 80301, USA
⁴Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
⁵GSMA UMR 7331, University Reims Champagne Ardenne, Reims, France
⁶Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain
⁷University of Bristol, Queens Road Clifton, Bristol, BS8 1RJ, United Kingdom
⁸Oxford University, Clarendon Laboratory, Parks Rd, Oxford OX1 3PU, United Kingdom
⁹Université Paris Est Créteil and Université Paris Cité, Créteil, France

ABSTRACT

In Titan's atmosphere, the chemistry of small hydrocarbons and nitriles represent an important link from molecular species to the ubiquitous organic haze that gives Titan its characteristic yellow color. Here we present a new search for two previously undetected molecules, triacetylene (C_6H_2) and the gas phase dicyanoacetylene (C_4N_2) , using the Echelon-Cross-Echelle Spectrograph (EXES) instrument aboard the SOFIA (Stratospheric Observatory For Infrared Astronomy) aircraft. We do not detect these two molecules but determine upper limits for their mixing ratios and column abundances. We find the 3σ upper limits on the uniform volume mixing ratio (VMR) above 100 km for C_6H_2 to be 4.3×10^{-11} which is lower than the photochemical model predictions. This new upper limit suggests that the growth of linear molecules is inhibited. We also put a strict upper limit on the uniform VMR for gas phase C_4N_2 above 125 km to be 1.0×10^{-10} . This upper limit is well below the saturation mixing ratio at this altitude for C_4N_2 and greatly limits the feasibility of C_4N_2 forming ice from condensation.

Keywords: Titan (2186), Natural satellite atmospheres (2214), Infrared spectroscopy (2285), Atmospheric composition (2120)

1. INTRODUCTION

Titan's major atmospheric components, N₂ and CH₄, photo-dissociate and ionize in Titan's ionosphere, consequentially leading to the formation of other hydrocarbon and nitrile species (Hörst 2017; Nixon 2024). These minor components continue this photochemical process, leading to larger and more complex organic species and ultimately leading to the formation of Titan's characteristic haze (Trainer et al. 2006; Waite Jr. et al. 2007). Discovery of Titan's gaseous atmosphere came from early observations of Titan from Earth based astronomy, where Kuiper (1944) discovered the presence of nitrogen. Then, the Voyager flyby provided the closest infrared observations of Titan's atmosphere, allowing discovery of a wealth of new molecules (Hanel et al. 1981; Maguire et al. 1981; Samuelson et al. 1983; Letourneur

& Coustenis 1993). Space based observatories, like the Infrared Space Observatory, also contributed greatly to discovering new trace gases in Titan's atmosphere including water and benzene (Coustenis et al. 1998, 2003; Encrenaz 2003). The return to Titan with the Cassini mission provided excellent spatial and temporal coverage of Titan's atmosphere (Coustenis et al. 2010; Nixon et al. 2019), allowing for detailed IR studies of Titan over several seasons (Teanby et al. 2008a, 2019). Following the Cassini mission, Earth-based observations at infrared and sub-millimeter wavelengths have been a major contributor to searching for and detecting trace gases that are predicted to be present in Titan's atmosphere at low abundances (Palmer et al. 2017; Thelen et al. 2019; Lombardo et al. 2019; Nixon et al. 2020). Most recently, observations using the James Webb Space Telescope have allowed for the recent discovery of the CH₃ radical in Titan's atmosphere (Nixon et al. 2025).

Table 1. Description of EXES	observations	ot	Titan's	atmosphere.
-------------------------------------	--------------	----	---------	-------------

Target, setting (cm ⁻¹)	Date (yyyy-mm-dd)	Altitude (ft)	Airmass	Distance (A.U.)	$D_v (km/s)$	Integration time (s)
Callisto, 621	2021-06-09	43000	1.84	-	-	1408
Titan, 621	2021-06-09	43000	1.68	9.321	-20.994	1504
Vesta, 472	2021-06-11	39000	1.68	-	-	1504
Titan, 472	2021-06-15	43000	1.84	9.264	-18.930	1600
Titan, 472	2021-06-17	43000	1.67	9.240	-22.499	2560
Titan, 472	2021-12-04	36000	2.00	10.424	+28.940	3392

Polyynes or poly-acetylenes are linear chains of acetylene groups and bear the molecular formula $C_{2n}H_2$ where $n \geq 2$. Polyynes represent one potential pathway to form macromolecules in Titan's atmosphere that bridge the gap between simple molecules and Titan's aerosols (Chassefière & Cabane 1995; Lebonnois et al. 2002). Polyynes form readily through the addition of the ethynyl radical (C_2H) to the precursor acetylene (C_2H_2) or poly-acetylene molecule i.e. diacetylene C₄H₂ (Gu et al. 2009). Although polyynes have been observed in the interstellar medium (Cernicharo et al. 2001b,a), and are predicted to form in Titan's atmosphere at observable abundances (Gu et al. 2009; Vuitton et al. 2019), C₄H₂ is the highest order polyyne that has been detected in Titan's atmosphere (Kunde et al. 1981; Teanby et al. 2009). Triacetylene (C_6H_2), which forms from C_4H_2 , is predicted in photochemical models to have a stratospheric abundance of 0.6 ppb (Vuitton et al. 2019) yet, to this date the spectroscopic detection of C₆H₂ has eluded the community.

There have been two previous studies of Titan's C₆H₂ upper limits. The first upper limit of C₆H₂, reported by Delpech et al. (1994), was determined by comparing the expected signal intensity from the strongest vibrational mode of C₆H₂ to the observed emission features of a reference compound and was found to be 0.6 ppb above 100 km. This study was in agreement with the photochemical model predictions at the time, but was limited by the low spectral resolution of Voyager's IRIS and the authors note that a higher resolution spectrometer may allow C_6H_2 to be detected. Shindo et al. (2003) updated measurements of the C_6H_2 IR spectrum and re-calculated the upper limits and lowered them to 0.44 ppb above 150 km using a similar method. Still, at these upper limits, C₆H₂ and higher order polyvnes represent a potential pathway to the formation of large hydrocarbons in Titan's atmosphere. Therefore, an updated analysis of the upper limits for C₆H₂ at high spectral resolution will provide useful estimations of the potential for higher-order polyyne formation in Titan's atmosphere.

Dicyanoacetylene (C_4N_2) in the gas phase is predicted to form in Titan's atmosphere through the reaction of HC₃N with CN (Vuitton et al. 2019). This was recently shown to occur in crossed molecular beam experiments by de Aragão et al. (2025). Additionally, C_4N_2 can form through HCN reaction with C₃N and through hydrogen elimination of HC_4N_2 , though HC_4N_2 is formed following C_4N_2 formation (Loison et al. 2015). C_4N_2 is unique in Titan's atmosphere because, although the gas phase species has not been detected, C₄N₂ ice has been reported in both Voyager's Infrared Interferometer Spectrometer and Radiometer (IRIS) spectra and Cassini's Composite Infrared Spectrometer (CIRS) spectra (Samuelson et al. 1997; Anderson et al. 2016). Following the Voyager flyby, an emission feature at 478 cm⁻¹ was assigned to the ice-phase ν_8 vibrational mode of C_4N_2 , however, the gas phase emission at 471 cm⁻¹ was not present. Some years later, the same anomalous feature at 478 cm⁻¹ arose in CIRS observations of Titan's atmosphere and was also assigned to C_4N_2 ice. Since then, there have been several studies attempting to understand why this ice feature is so strong but the gas is not present in detectable amounts. Samuelson et al. (1997) suggested that the gas phase C₄N₂ is enriched during the winter, leading to condensation, and then photochemically consumed rapidly at the Spring Equinox while the condensate progressively builds up in the lower stratosphere. This however was suggested to not be feasible by de Kok et al. (2008), as their upper limit of 1×10^8 , before equinox, was too small to allow for ice formation even under the rapid depletion scenario.

The most recent hypothesis for C_4N_2 ice formation in Titan's atmosphere was presented in Anderson et al. (2016) where, rather than C_4N_2 ice forming directly from condensation, it is formed completely via solid-state photochemistry within HCN-HC₃N ice mixtures. This proposed mechanism, however, requires a column abundance of 10^{17} molecules/cm² to obtain a good spec-

tral fit which is larger than the column abundance for cyanogen (C_2N_2) in photochemical model predictions (Loison et al. 2015). Updated estimations of the upper limits on the gas phase abundance of C_4N_2 will help constrain the feasibility of C_4N_2 ice formation in Titan's atmosphere.

In the present study, we use high-resolution ($R \sim 90,000$) mid-IR spectroscopy with observations made by the Echelon-Cross-Echelle Spectrograph (EXES) aboard the SOFIA (Stratospheric Observatory Infrared Astronomy) aircraft at two spectral regions, 621 cm⁻¹ and 472 cm⁻¹, to search for C_6H_2 and C_4N_2 respectively. We perform radiative transfer models of the measured spectra to retrieve the atmospheric abundances of C_4H_2 and C_3H_4 and derive upper limits for the undetected species, C_6H_2 and C_4N_2 . We then compare these upper limits to photochemical model predictions of the target species and discuss the implications these upper limits have on our understanding of Titan's atmospheric chemistry.

2. EXES OBSERVATIONS

Observations of Titan's atmospheric spectra were made using EXES aboard NASA's SOFIA (Stratospheric Observatory for Infrared Astronomy) aircraft (Richter et al. 2018). Details of the observations are listed in Table 1. Spectra were collected during flights 744 and 746 in June of 2021. EXES was operated in a high-medium configuration to obtain high-resolution ($R \sim 75000-90000$) spectra centered at 472 cm⁻¹ and 621 cm⁻¹ to observe the emission features of C₄N₂ for the former and C₄H₂, C₆H₂, and C₃H₄ for the latter region. Targets were nodded along the slit in an ABAB pattern by 7-8" at intervals of 4 minutes to facilitate sky background subtraction.

The 2.65" slit width was used for the 621 cm⁻¹ setting. Even at SOFIA's altitude, the telluric spectrum at 621 cm⁻¹ has interference from densely spaced atmospheric lines of CO_2 , O_3 and N_2O . To enable removal of these features, Callisto (the telluric calibrator) and Titan were observed on adjacent flight legs, at the same altitude and with an air mass difference of 0.16, ensuring the best possible match in telluric transmission. To accurately model the instrument line-shape, we derived the resolving power of the measurement by fitting synthetic transmission models to the Callisto spectrum which were generated by Planetary Spectrum Generator (PSG, Villanueva et al. (2018)). We found the resolving power at the 621 cm⁻¹ spectral setting to be $R = 90000 \pm 2500$.

The 472 cm⁻¹ observations were taken on 3 flights with a slit width 3.2". Due to the low density of telluric atmosphere features near 472 cm⁻¹, telluric interference was a minor issue that could be addressed by synthetic

PSG atmosphere models and masking the regions containing features due to water. The telluric calibrator, Vesta was observed for this setting to mitigate risk, but it was only used to derive a resolving power for the 472 cm⁻¹ setting, $R = 75000 \pm 2500$.

All data were reduced with the EXES Redux pipeline (Clarke et al. 2015) version 3.0.1.dev.7 with the customary steps including spike removal, flat fielding, rectification of the cross-dispersed orders, coadding of nod-pairs, and extraction to the 1-D using optimal PSF weighting. Following data reduction using the Redux pipeline, spectral data points were binned using Nyquist sampling to a $\Delta \bar{\nu} = 0.003$ in order to reduce the noise in the spectrum.

3. RADIATIVE TRANSFER MODELING

Spectra were modeled using the archNEMESIS (Alday et al. 2025) radiative transfer model, which is a Python implementation of the Non-linear Optimal Estimator for Multivariate Spectral Analysis (NEMESIS) (Irwin et al. 2008). NEMESIS has been used extensively to model Titan atmospheric spectra (Nixon et al. 2013; Teanby et al. 2019; Wright et al. 2024; Lombardo et al. 2019; Thelen et al. 2019) and has been used for modeling observations of Titan with TEXES (Texas Echelon-Cross-Echelle Spectrometer), the sister instrument to EXES (Lombardo et al. 2019). archNEMESIS allows for both multi-core processing and larger spectral datasets due to improved memory efficiency in Python.

For this study, archNEMESIS is employed in two different ways to model the target species. First, the spectra are inverted using the optimal estimation method to retrieve the continuous atmospheric profiles of C₄H₂ and C₃H₄ (for the 621 cm⁻¹ spectral setting) as well as the scaling factor for Titan's haze profile (both spectral settings). We retrieved continuous profiles for the known gases (C₄H₂ and C₃H₄) and a scaling factor for the haze profile. We used an atmospheric model with 100 homogeneous layers equally spaced in log pressure to sufficiently sample the vertical profile of Titan's atmosphere. The a priori reference atmosphere used, shown in Figure 1, uses gas and temperature profiles described in the Vuitton et al. (2019) photochemical model. The photochemical model profiles for C₄H₂ and C₃H₄ were each scaled by 0.2 and 0.5, respectively, prior to retrieving the continuous profiles to ensure a good fit to the spectrum was achieved. To fit the continuum level, we retrieved a scaling factor for a uniform haze profile with an a priori concentration of 1.29×10^7 particles/m³ above 50 km (Figure 1), using a uniform cross-section across the wavelength range for both spectra.

Figure 1. Reference profiles of the atmospheric gas composition (left panel), vertical temperature profile (right panel, solid black trace), and haze profiles (gray dashed trace). Temperature and gas profiles are from the photochemical model detailed in Vuitton et al. (2019).

Since the EXES observations are of Titan's disk, we modeled these observations using a weighted average of emission rays from different emission angles of the solid body and emission rays from the limb. We followed a similar approach to Teanby et al. (2013) to both sufficiently sample Titan's radiance and calculate weights for each emission ray. In total, we used 55 emission rays from the disk center out to a limb height of 975 km.

3.1. Spectroscopic Data

Spectra were calculated in line-by-line mode using pre-tabulated line-by-line lookup tables calculated at 30 pressure and temperature levels between 5.6×10^{-9} -2.5 bar and 70-250 K. Line data was then interpolated to the pressures and temperatures at each atmospheric layer in the atmospheric model. Spectra were also calculated using a Gaussian line shape at the resolving power of each spectral setting. The spectroscopic line lists for the known gas emission features at the 621 cm⁻¹ spectral setting, namely the ν_8 band of C_4H_2 and the ν_9 band of C₃H₄, were obtained from the HITRAN (Gordon et al. 2022) and GEISA (Delahaye et al. 2021) spectroscopic databases, respectively. The target species for this study, C₆H₂ and C₄N₂, are less commonly measured in atmospheric spectra and are not available in the standard databases. Shindo et al. (2003) measured the mid-infrared spectrum of C₆H₂ and is the most upto-date line-list for the ν_{11} band at $\sim 622~{\rm cm}^{-1}$. Similarly, Jolly et al. (2015) obtained the line list for the ν_8 bending mode of C_4N_2 in a previous investigation of the upper limits of the gas phase species in Titan's atmosphere. Data for collision-induced absorption was obtained from the 2025 HITRAN database update (Terragni et al. 2025).

3.2. Determining Upper Limits

Following the spectral fit, we determine the upper limits to the C_6H_2 and C_4N_2 abundance. We determine the goodness-of-fit for the modeled spectrum by summing the ratio of the square residual of the fit to the squared uncertainty of the measurement, described in Equation 1.

$$\chi^{2} = \frac{\Delta \bar{\nu}_{obs}}{\Delta \bar{\nu}_{res}} \sum_{i=1}^{M} \frac{(I_{m}(\bar{\nu}_{i}) - I_{r}(\bar{\nu}_{i}))^{2}}{\sigma_{i}^{2}}$$
(1)

Where I_m and I_r are the spectral radiance for the measurement and retrieved spectrum, respectively, at wavenumber $\bar{\nu}_i$, and σ_i is the wavenumber dependent uncertainty. Once the emission features of the spectral region are well fit, the remaining residual will be due to instrument noise and any unfit gas emission features that were not included in the retrieval. The vertical profile of the target species is then set to be uniform volume mixing ratio (VMR) above a condensation altitude and we iterate over a range of VMR values, calculating a

Figure 2. Model fit (red trace) to the measured spectrum (gray trace) for the $621 \, \mathrm{cm}^{-1}$ (A) and $472 \, \mathrm{cm}^{-1}$ (B) spectral settings. Bottom panels show the residual of the model fit to the measured spectra and a 1σ estimation of the instrument uncertainty in the blue shaded regions. Emission features from C_4H_2 and C_3H_4 are indicated by the respective markers in A. There are no known emission features in the $472 \, \mathrm{cm}^{-1}$ spectral setting and only the haze and CIA continuum levels were fit in the retrieval.

forward model of the spectrum at each abundance and determine the change in the χ^2 , $\Delta\chi^2$, with increased abundance of the target species. If the gas is present in detectable amounts, $\Delta\chi^2$ will decrease significantly, indicating the spectral fit is improved with the inclusion of the target species. Alternatively, when $\Delta\chi^2$ increases, the upper limits can be determined at $\Delta\chi^2 = +1, +4$,

and +9 for 1σ , 2σ , and 3σ upper limits, respectively. This method has been used in several previous studies of Titan's atmospheric trace constituents for detections and upper limits (Nixon et al. 2010; Teanby et al. 2009; Jolly et al. 2015).

4. RESULTS

Figure 3. Photochemical model profiles (black trace) and retrieved profiles (colored trace) of C_4H_2 (A) and C_3H_4 (B). Each panel also shows the Jacobian at $\overline{\nu}_{max}$ for each molecule to indicate the altitude range the model is sensitive to.

4.1. Abundance Retrievals for C_4H_2 and C_3H_4

To fit the measured spectra, we used the optimal estimation method for retrieving the vertical profiles of the gases, C_4H_2 and C_3H_4 , known to have emission features in the 621 cm⁻¹ spectral setting and a scaling factor for a uniform haze vertical profile at both spectral settings. The model fit to both spectra are shown in Figure 2. We obtained a good fit ($\chi^2/N = 0.999$) to the measured 621 cm⁻¹ spectrum by fitting to the gas emission features of C_4H_2 and C_3H_4 . The residual of the fit to the measurement is shown in the lower panel and is within the 1σ estimation of the instrument noise. At lower wavenumbers, some of the emission features are slightly

over fit and at longer wavenumbers the radiance of the stronger emission features are not fully captured, however the overall fit is good. C_4H_2 exhibits the strongest peaks, indicated by the blue vertical lines, with emission features originating from the P-branch of the ν_8 vibrational mode. The emission features of C_3H_4 , originating from the ν_9 vibrational mode, are less intense, but tightly bunched and often near emission features from C_4H_2 . Previously, these individual emission lines would not have been resolved with lower resolution spectrometers.

Figure 3 shows the retrieved continuous profiles of each fit species in the altitude region where the Jacobian is peaked. Overall, the shape of the profiles was retained in the retrieval. For C_3H_4 , there was slight enhancement in the stratosphere of the VMR bringing the abundance closer to the photochemical model prediction. For each species, the model was most sensitive in the stratosphere, where the majority of the gas abundance is found, peaking at ~ 130 km ($\sim 5 \times 10^{-3}$ bar) for each species. At the 472 cm⁻¹ spectral setting, we only modeled the continuum level of the spectrum as no clear emission features were present. Without fitting any gas emission features, the model produced a $\chi^2/N=1.01$, indicating the spectrum does not contain any significant features that are not being fit by the model.

4.2. Upper limits for C_6H_2 and C_4N_2

Following the retrievals, to determine the upper limits of C_6H_2 and C_4N_2 we simulate spectra with increasing abundances of the target species while keeping the retrieved profiles of the known gases and haze fixed. The difference between the χ^2 of the updated spectrum and the retrieved spectrum $(\Delta \chi^2)$ is calculated at each abundance or scale factor. If the target species is present, the $\Delta \chi^2$ value will decrease significantly, indicating the spectrum is better fit. A rejection of the detection occurs when the $\Delta \chi^2$ increases sharply with increased abundance. Figure 4 shows the $\Delta \chi^2$ with increased VMR for C_6H_2 (A) and C_4N_2 (C). The cutoff altitude for C_6H_2 was set to 100 km, similarly to Shindo et al. (2003). The $\Delta \chi^2$ dips slightly below zero with increased abundance of C₆H₂, but is nowhere near a significance level to indicate detection, and increases sharply as the VMR increases above 10^{-11} . The upper limit values for both C_6H_2 and C_4N_2 are reported in Table 2. We find a 3σ upper limit on the uniform abundance of 4.29×10^{-11} for C_6H_2 . Figure 4(B) shows the corresponding spectra from each abundance at 1σ , 2σ , and 3σ upper limits. There is a clear growth in the radiance due to the ν_{11} vi-

Figure 4. (A) The $\Delta \chi^2$ plotted as a function of the VMR for the uniform profile of C_6H_2 and (B) the corresponding simulated spectra for the 1σ , 2σ , and 3σ upper limits with C_6H_2 peaks indicated by the black triangle markers. (C-D) The $\Delta \chi^2$ and corresponding spectra for the upper limits of C_4N_2 . All emission features in (D) are due to C_4N_2 .

Table 2. Upper limits for C_6H_2 and C_4N_2 .

		Vo	Column Density (m ⁻²)		
Species	$1\sigma NESR (nW cm^{-2} sr^{-1}/cm^{-1})$	1σ	2σ	3σ	3σ
C_6H_2	1.028	$< 2.30 \times 10^{-11}$	$< 3.24 \times 10^{-11}$	$< 4.29 \times 10^{-11}$	$< 1.69 \times 10^{14}$
C_4N_2	1.003	$< 1.80 \times 10^{-11}$	$< 5.58 \times 10^{-11}$	$< 9.96 \times 10^{-11}$	$< 1.94 \times 10^{14}$

brational mode of C_6H_2 , indicated by the black triangle markers. The three main emission features in this spectra lie near strong emission features from C_4H_2 , highlighting the importance of using the high-resolution capabilities of EXES. These emission features from C_6H_2 would have been smoothed together with emission features from C_4H_2 with lower resolution spectrometers such as CIRS or IRIS, requiring a much higher abundance of C_6H_2 to deviate significantly from the mea-

surement and consequentially leading to higher upper limits.

A uniform vertical profile above 125 km was used to determine the upper limits to the abundance of gas phase C_4N_2 . Figure 4 (C) shows the $\Delta\chi^2$ increases sharply with VMR. We determine a 3σ upper limit on the abundance of 9.96×10^{-11} . The ν_8 bending mode of C_4N_2 is very dense with many emission lines. Figure 4(D) shows the many emission features due to C_4N_2 in

the simulated spectra at each upper limit abundance. This high density of emission features provides strong statistical evidence for the rejection of C_4N_2 presence in the measurement, as each peak in the simulated spectra contributes to the total χ^2 of the model.

5. DISCUSSION

5.1. C_6H_2

Previous attempts at detecting C₆H₂ in Titan's atmosphere have ultimately led to non-detection and upper limit determinations of the abundance. Figure 5 shows the upper limits determined from this study in comparison with those from Delpech et al. (1994) and Shindo et al. (2003). The new upper limits improve upon the previous ones by over an order of magnitude. This can be attributed to the high-resolution of EXES which can resolve individual emission features in a small wavenumber range that may have previously been blended together at lower resolutions. Figure 5 also compares the present results with photochemical model predictions of the vertical C₆H₂ profile. Comparing to the Vuitton et al. (2019) profile of the C₆H₂ abundance, these upper limits are significantly lower than the predicted stratospheric abundance. We derived a scale factor of the Vuitton et al. (2019) profile of 0.093.

Included in Figure 5 is a vertical profile from an updated photochemical model for both C₆H₂ and C₄N₂ shared in private communication by Panayotis Lavvas (Lavvas (2025) in Figure 5). These profiles are the results of a model similar to that presented in Vuitton et al. (2019), which is a 1D photochemical model of Titan's atmosphere including neutral and ionic chemical processes (Lavvas et al. 2008a, 2021). In addition to the model described in Lavvas et al. (2008a), the model includes high-resolution description of the energy deposition in Titan's upper atmosphere through solar photons (Lavvas et al. 2011), and the contribution of the photochemical haze opacity in the radiation transfer in Titan's atmosphere based on measurements made by the Hyugens Descent Imager/Spectral Radiometer (Lavvas et al. 2010). The photochemical model also accounts for the escape of atomic and molecular hydrogen according to the Jean escape rate and methane is allowed to escape at a fixed velocity of 100 cm/s to match the observed profiles of methane and argon in the upper atmosphere based on measurements made by the Cassini Ion Neutral Mass Spectrometer (Yelle et al. 2008; Lavvas et al. 2008b).

The low upper limit for C_6H_2 in this work, combined with a lower retrieved abundance of its precursor, C_4H_2 suggests that loss mechanisms for C_4H_2 are not being fully represented in Vuitton et al. (2019). C_4H_2 can be lost in Titan's atmosphere through combination with atomic hydrogen (H + C_4H_2) (Vuitton et al. 2012, 2019). The Lavvas (2025) model prediction presented here does not include a heterogeneous loss mechanism of H to haze particle surfaces, described in Sekine et al. (2008), enriching the H abundance and decreasing the C₄H₂ abundance compared to Vuitton et al. (2019). Consequentially, this leads to a lower predicted C₆H₂ abundance as shown in Figure 5, which is in closer agreement with the present upper limits. Furthermore, additional loss of C₄H₂ could occur through the reaction with 1,3-butadiene (C_4H_6 isomer). Medvedkov et al. (2025) recently showed through crossed molecular beam experiments that the C₄H radical can add directly to 1,3-butadiene or 2-methyl-1,3-butadiene followed by isomerization to form aromatic rings. Additionally, C_2H_2 has been shown to react with HCO+ to initiate a cascade of chemical reactions ultimately leading to the formation of benzene (Pentsak et al. 2024). HCO+ has not been detected in Titan's atmosphere but is present in models of Titan's oxygen cycle (Hörst et al. 2008; Dobrijevic et al. 2016). Such reactions that form aromatics from C₂H₂ and C₄H₂, have not been well studied under Titan relevant conditions, but represent other potential loss mechanisms for the precursors to polyvne propagation in Titan's atmosphere. This suggests that polyvne propagation is not a suitable pathway to larger hydrocarbons or organic aerosols in Titan's atmosphere.

5.2. C_4N_2

The assignment of the emission feature at 478 cm^{-1} to ice-phase C₄N₂ in both Voyager's IRIS data(Samuelson et al. 1997) and CIRS data (Anderson et al. 2016) has led to many studies attempting to understand the lack of gas phase C_4N_2 in spectra of Titan's atmosphere. Several upper-limits have been determined, including the most stringent ones from Jolly et al. (2015) where a 3σ upper limit on the stratospheric abundance of 1.5×10^{-9} using both nadir and limb observations of Titan's atmosphere using CIRS. Figure 5B shows the 3σ upper limit presented in this study (gray square) in comparison with previous estimations of the C_4N_2 gas phase upper limits (gray points). The upper limits of this study lower the upper limits of the gas phase C_4N_2 abundance by an order of magnitude. This improvement largely stems from the high-resolution of EXES where the individual emission features of the $C_4N_2 \nu_8$ vibrational mode can be resolved. In previous studies of the upper limits, the lower resolution of CIRS and IRIS smooth the entire band into one peak, dampening the contribution of each line to the $\Delta \chi^2$. Figure 5B also compares the upper limits here to the photochemical model of Vuitton et al. (2019) and

Figure 5. The 3σ upper limits found for this study (gray squares) for C_6H_2 (A) and C_4N_2 (B) along with previous studies of the upper limits. Also included are the photochemical model vertical profiles of each species (red and blue traces), the uniform profiles used for the upper limits (gray solid trace), and the scaling factor for the Vuitton et al. (2019) C_6H_2 profile (gray dashed trace). The gray dotted line in panel (B) is the saturation altitude calculated using the Vuitton et al. (2019) temperature profile and equation for the saturation vapor pressures in Fray & Schmitt (2009).

the aforementioned Lavvas (2025) model. The photochemical models predict an abundance of C_4N_2 gas in the stratosphere between $\sim 10^{-13} - 10^{-12}$ which is substantially lower than the upper limits presented here.

Also present in Figure 5B are the altitudes at which C_4N_2 gas should condense (gray dotted line) based on the saturation vapor pressure temperatures presented in Fray & Schmitt (2009). We calculated the saturation mixing ratios based on the temperature profile used in this study (Vuitton et al. 2019) based on the empirical determination of the saturation vapor pressure of C_4N_2 gas in Fray & Schmitt (2009). Because the temperature changes dramatically with altitude in the stratosphere, the saturation mixing ratio also increases rapidly with altitude, hence the flat nature of the trace. We find that the upper limits presented here, calculated at 125 km, are below the saturation mixing ratio of C_4N_2 at this altitude which suggests that ice nucleation is not likely.

Additionally, this value for the upper limit was determined from a disk averaged measurement, which is more sensitive to changes in the abundance at the equator where trace gas concentrations in Titan's atmosphere tend to be diminished (Teanby et al. 2008b; Vinatier et al. 2020). If C_4N_2 is present in lower abundances, it is possible, still that it could be enriched in the polar regions of titan during winter seasons, however, observations from Earth are obstructed from the winter poles. The current proposed mechanism of C_4N_2 formation is that C_4N_2 ice is formed totally in the solid-state through UV induced photochemistry (Anderson et al. 2016). Based on this mechanism, Anderson et al. (2016) requires a C_4N_2 column abundance of 10^{17} molecules/cm²

for C_4N_2 which is substantially larger than the present value of $\sim 2 \times 10^{14}$. This would suggest that the C_4N_2 ice is highly out of equilibrium with the gas phase and would need to be retained completely in the closed shell. Laboratory experiments studying more closely the gas and ice phase partitioning of C_4N_2 ice formed in closed shells would be needed to better understand the feasibility of this disequilibrium.

6. CONCLUSIONS

This study presents spectra collected in the midinfrared of Titan's atmosphere using EXES during the SOFIA mission. These spectra represent the lone study of Titan's atmosphere during the SOFIA mission but display the value of using high-resolution infrared spectroscopy for atmospheric studies. The spectra presented in this study showed spectral signatures for C₄H₂ and C₃H₄, which allowed for their continuous stratospheric profiles to be retrieved. We showed the C₃H₄ profile to be similar to that of Vuitton et al. (2019), but the C_4H_2 profile was lower than the photochemical model prediction. The target species, C₆H₂ and C₄N₂ were not detected; instead, we performed an upper limits study to the atmospheric abundances of the target species. The C₆H₂ upper limit, which has not been assessed since the Voyager mission (Delpech et al. 1994), was found to be lower than previous studies of Delpech et al. (1994) and Shindo et al. (2003) and constrains the photochemical model in Vuitton et al. (2019). We show by comparing to an update to the Lavvas et al. (2008a) photochemical model, that C₄H₂ is over predicted in the Vuitton et al. (2019) model and ultimately leads to the over prediction of the C_6H_2 stratospheric abundance. These results show the potential for C_6H_2 formation and large polyyne propagation is low and the precursors are likely lost to other chemical processes.

Additionally we lower the upper limit for C_4N_2 gas in Titan's atmosphere by an order of magnitude. This new value for the C_4N_2 upper limit shows that ice nucleation is unlikely to occur in Titan's atmosphere directly. The formation of C_4N_2 ice through solid-state photochemistry is still possible, however, the ice would be substantially out of equilibrium with the gas phase. Further work would be needed to better understand the

gas-solid phase partitioning of C_4N_2 ice formed in an enclosed shell.

ACKNOWLEDGMENTS

The material is based upon work supported by NASA under award number 80GSFC24M0006. NAT is supported by UK Science and Technology Facilities Council grant ST/Y000676/1.

Facilities: SOFIA, EXES Software: archNEMESIS

REFERENCES

- Alday, J., Penn, J., Irwin, P., et al. 2025, Journal of Open Research Software, 13, doi: 10.5334/jors.554
- Anderson, C. M., Samuelson, R. E., Yung, Y. L., & McLain, J. L. 2016, Geophysical Research Letters, 43, 3088, doi: 10.1002/2016gl067795
- Cernicharo, J., Heras, A. M., Pardo, J. R., et al. 2001a, The Astrophysical Journal Letters, 546, L127–L130, doi: 10.1086/318872
- Cernicharo, J., Heras, A. M., Tielens, A. G. G. M., et al. 2001b, The Astrophysical Journal Letters, 546, L123–L126, doi: 10.1086/318871
- Chassefière, E., & Cabane, M. 1995, Planetary and Space Science, 43, 91–103, doi: 10.1016/0032-0633(94)00138-h
- Clarke, M., Vacca, W. D., & Shuping, R. Y. 2015, in Astronomical Society of the Pacific Conference Series, Vol. 495, Astronomical Data Analysis Software an Systems XXIV (ADASS XXIV), ed. A. R. Taylor & E. Rosolowsky, 355
- Coustenis, A., Salama, A., Schulz, B., et al. 2003, Icarus, 161, 383–403, doi: 10.1016/s0019-1035(02)00028-3
- Coustenis, A., Salama, A., Lellouch, E., et al. 1998, Astronomy and Astrophysics, L85–L89
- Coustenis, A., Jennings, D., Nixon, C., et al. 2010, Icarus, 207, 461–476, doi: 10.1016/j.icarus.2009.11.027
- de Aragão, E. V. F. d., Liang, P., Mancini, L., et al. 2025, ACS Earth and Space Chemistry, 9, 2199–2214, doi: 10.1021/acsearthspacechem.5c00154
- de Kok, R., Irwin, P., & Teanby, N. 2008, Icarus, 197, 572, doi: $10.1016/\mathrm{j.icarus.}$ 2008.05.024
- Delahaye, T., Armante, R., Scott, N., et al. 2021, Journal of Molecular Spectroscopy, 380, 111510, doi: 10.1016/j.jms.2021.111510
- Delpech, C., Guillemin, J., Paillous, P., et al. 1994,Spectrochimica Acta Part A: Molecular Spectroscopy, 50, 1095, doi: 10.1016/0584-8539(94)80031-6

- Dobrijevic, M., Loison, J., Hickson, K., & Gronoff, G. 2016, Icarus, 268, 313–339, doi: 10.1016/j.icarus.2015.12.045
- Encrenaz, T. 2003, Planetary and Space Science, 51, 89–103, doi: 10.1016/s0032-0633(02)00145-9
- Fray, N., & Schmitt, B. 2009, Planetary and Space Science, 57, 2053–2080, doi: 10.1016/j.pss.2009.09.011
- Gordon, I., Rothman, L., Hargreaves, R., et al. 2022, Journal of Quantitative Spectroscopy and Radiative Transfer, 277, 107949, doi: 10.1016/j.jqsrt.2021.107949
- Gu, X., Kim, Y. S., Kaiser, R. I., et al. 2009, Proceedings of the National Academy of Sciences, 106, 16078, doi: 10.1073/pnas.0900525106
- Hanel, R., Conrath, B., Flasar, F. M., et al. 1981, Science, 212, 192–200, doi: 10.1126/science.212.4491.192
- Hörst, S. M. 2017, Journal of Geophysical Research: Planets, 122, 432–482, doi: 10.1002/2016je005240
- Hörst, S. M., Vuitton, V., & Yelle, R. V. 2008, Journal of Geophysical Research: Planets, 113, doi: 10.1029/2008je003135
- Irwin, P., Teanby, N., Kok, R. d., et al. 2008, Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 1136, doi: 10.1016/j.jqsrt.2007.11.006
- Jolly, A., Cottini, V., Fayt, A., et al. 2015, Icarus, 248, 340, doi: 10.1016/j.icarus.2014.10.049
- Kuiper, G. P. 1944, Astrophysical Journal, 378–383
- Kunde, V. G., Aikin, A. C., Hanel, R. A., et al. 1981, Nature, 292, 686, doi: 10.1038/292686a0
- Lavvas, P., Coustenis, A., & Vardavas, I. 2008a, Planetary and Space Science, 56, 27–66, doi: 10.1016/j.pss.2007.05.026
- —. 2008b, Planetary and Space Science, 56, 67–99, doi: 10.1016/j.pss.2007.05.027
- Lavvas, P., Galand, M., Yelle, R., et al. 2011, Icarus, 213, 233–251, doi: 10.1016/j.icarus.2011.03.001

- Lavvas, P., Lellouch, E., Strobel, D. F., et al. 2021, Nature Astronomy, 5, 289–297, doi: 10.1038/s41550-020-01270-3
- Lavvas, P., Yelle, R., & Griffith, C. 2010, Icarus, 210, 832–842, doi: 10.1016/j.icarus.2010.07.025
- Lebonnois, S., Bakes, E., & McKay, C. P. 2002, Icarus, 159, 505–517, doi: 10.1006/icar.2002.6943
- Letourneur, B., & Coustenis, A. 1993, Planetary and Space Science, 41, 593–602, doi: 10.1016/0032-0633(93)90079-h
- Loison, J., Hébrard, E., Dobrijevic, M., et al. 2015, Icarus, 247, 218–247, doi: 10.1016/j.icarus.2014.09.039
- Lombardo, N. A., Nixon, C. A., Greathouse, T. K., et al. 2019, The Astrophysical Journal Letters, 881, L33, doi: 10.3847/2041-8213/ab3860
- Maguire, W. C., Hanel, R. A., Jennings, D. E., Kunde, V. G., & Samuelson, R. E. 1981, Nature, 292, 683–686, doi: 10.1038/292683a0
- Medvedkov, I. A., Yang, Z., Nikolayev, A. A., et al. 2025, The Journal of Physical Chemistry Letters, 16, 658, doi: 10.1021/acs.jpclett.4c03150
- Nixon, C. A. 2024, ACS Earth and Space Chemistry, 8, 406, doi: 10.1021/acsearthspacechem.2c00041
- Nixon, C. A., Achterberg, R. K., Teanby, N. A., et al. 2010, Faraday Discussions, 147, 65, doi: 10.1039/c003771k
- Nixon, C. A., Jennings, D. E., Bézard, B., et al. 2013, The Astrophysical Journal Letters, 776, L14, doi: 10.1088/2041-8205/776/1/l14
- Nixon, C. A., Ansty, T. M., Lombardo, N. A., et al. 2019, The Astrophysical Journal Supplement Series, 244, 14, doi: 10.3847/1538-4365/ab3799
- Nixon, C. A., Thelen, A. E., Cordiner, M. A., et al. 2020, The Astronomical Journal, 160, 205, doi: 10.3847/1538-3881/abb679
- Nixon, C. A., Bézard, B., Cornet, T., et al. 2025, Nature Astronomy, 9, 969–981, doi: 10.1038/s41550-025-02537-3
- Palmer, M. Y., Cordiner, M. A., Nixon, C. A., et al. 2017, Science Advances, 3, e1700022, doi: 10.1126/sciadv.1700022
- Pentsak, E. O., Murga, M. S., & Ananikov, V. P. 2024, ACS Earth and Space Chemistry, 8, 798–856, doi: 10.1021/acsearthspacechem.3c00223
- Richter, M. J., DeWitt, C. N., McKelvey, M., et al. 2018, Journal of Astronomical Instrumentation, 07, 1840013, doi: 10.1142/s2251171718400135
- Samuelson, R., Mayo, L., Knuckles, M., & Khanna, R. 1997, Planetary and Space Science, 45, 941, doi: 10.1016/s0032-0633(97)00088-3

- Samuelson, R. E., Maguire, W. C., Hanel, R. A., et al. 1983, Journal of Geophysical Research: Space Physics, 88, 8709–8715, doi: 10.1029/ja088ia11p08709
- Sekine, Y., Lebonnois, S., Imanaka, H., et al. 2008, Icarus, 194, 201–211, doi: 10.1016/j.icarus.2007.08.030
- Shindo, F., Benilan, Y., Guillemin, J.-C., et al. 2003, Planetary and Space Science, 51, 9, doi: 10.1016/s0032-0633(02)00151-4
- Teanby, N., Irwin, P., Kok, R. d., et al. 2009, Icarus, 202, 620, doi: 10.1016/j.icarus.2009.03.022
- —. 2008a, Icarus, 193, 595–611, doi: 10.1016/j.icarus.2007.08.017
- Teanby, N., Irwin, P., Nixon, C., et al. 2013, Planetary and Space Science, 75, 136–147, doi: 10.1016/j.pss.2012.11.008
- Teanby, N. A., Sylvestre, M., Sharkey, J., et al. 2019, Geophysical Research Letters, 46, 3079–3089, doi: 10.1029/2018gl081401
- Teanby, N. A., Kok, R. d., Irwin, P. G. J., et al. 2008b, Journal of Geophysical Research: Planets, 113, doi: 10.1029/2008je003218
- Terragni, J., Gordon, I., Adkins, E., et al. 2025, Journal of Quantitative Spectroscopy and Radiative Transfer, 109631, doi: 10.1016/j.jqsrt.2025.109631
- Thelen, A. E., Nixon, C. A., Cordiner, M. A., et al. 2019, The Astronomical Journal, 157, 219, doi: 10.3847/1538-3881/ab19bb
- Trainer, M. G., Pavlov, A. A., DeWitt, H. L., et al. 2006, Proceedings of the National Academy of Sciences, 103, 18035–18042, doi: 10.1073/pnas.0608561103
- Villanueva, G. L., Smith, M. D., Protopapa, S., Faggi, S., & Mandell, A. M. 2018, JQSRT, 217, 86, doi: 10.1016/j.jqsrt.2018.05.023
- Vinatier, S., Mathé, C., Bézard, B., et al. 2020, Astronomy & Astrophysics, 641, A116, doi: 10.1051/0004-6361/202038411
- Vuitton, V., Yelle, R., Klippenstein, S., Hörst, S., & Lavvas, P. 2019, Icarus, 324, 120, doi: 10.1016/j.icarus.2018.06.013
- Vuitton, V., Yelle, R. V., Lavvas, P., & Klippenstein, S. J. 2012, The Astrophysical Journal, 744, 11, doi: 10.1088/0004-637x/744/1/11
- Waite Jr., J. H., Young, D. T., Cravens, T. E., et al. 2007, Science, 316, 870–875, doi: 10.1126/science.1139727
- Wright, L., Teanby, N. A., Irwin, P. G. J., & Nixon, C. A. 2024, Experimental Astronomy, 57, 15, doi: 10.1007/s10686-024-09934-y
- Yelle, R. V., Cui, J., & Müller-Wodarg, I. C. F. 2008, Journal of Geophysical Research: Planets, 113, doi: 10.1029/2007je003031