structure. We define $\mathcal{G}_s = (\mathcal{G}_1^s, \dots, \mathcal{G}_g^s, \dots, \mathcal{G}_{G_s}^s)$ a group partition in G_s
groups and $\mathbf{X}^s_{\mathcal{G}^s} = \left[\mathbf{X}^s_{\mathcal{G}^s_1}, \dots, \mathbf{X}^s_{\mathcal{G}^s_{G^s}}\right]$ the concatenated matrix of variables for
the partition \mathcal{G}^s .
2. for $s = 1,, S$ do
Create supergenes matrix $\tilde{\mathbf{X}}^s = \tilde{\mathbf{X}}^s_{\mathcal{G}^s_1}, \dots, \tilde{\mathbf{X}}^s_{\mathcal{G}^s_{G_s}}$ by averaging the gene
expressions at each cluster of the current group partition \mathcal{G}^s :
1
$\tilde{x}^s = \frac{1}{n} \sum_{i=1}^{n} \mathbf{v}^s$ with $i = 1, \dots, n$

1. Apply hierarchical clustering of the genes to yield the nested correlation

Algorithm 3: Hierarchical Clustering and Averaging Regression

 $x_{ig} = \overline{G_s} \sum_{g \in \mathcal{G}_s} \mathbf{X}_{i\mathcal{G}_g^s}$ with $i = 1, \ldots, n$

Fit Lasso, using the supergenes matrix X^s as input and retrieve the set of solution paths of the coefficients end 3. Using cross-validation, find the optimal degree of shrinkage and level of the

hierarchy.