

배달노동자를 위한 서울시 이동노동자 간이 쉼터 최적 입지 선정

CONTENTS

- · 분석 배경 및 필요성
 - · 분석 개요
- · 데이터 수집 및 가공

- · 우선입지 대상 행정구 선정
- 우선입지 대상 행정동 선정
 - · 최적 입지 선정

- ㆍ기대효과 및 활용방안
 - ·한계점

서론 분석 배경 및 필요성 분석 개요 데이터 수집 및 가공

분석 배경 및 필요성

최근 온라인 음식 배달 시장의 급격한 성장과 배달업 시장의 규모 증가로

배달노동자가 2배 이상 증가

〈그림〉 온라인 음식 배달 시장의 성장

출처 : 통계청

〈그림〉배달노동자의 증가 출처: 바로고

서론 분석 배경 및 필요성 분석 개요 데이터 수집 및 가공

분석 배경 및 필요성

배달노동자는 지속적으로 증가하지만, 배달 대기 시간에 이용할 쉼터는 턱없이 <mark>부족</mark>

2021년 8월 기준, 서울시가 운영하는 쉼터는

4곳에 불과

(서초구, 중구, 마포구, 도봉구)

간이 이동노동자 쉼터 필요

이에 대한 대책으로 서울시는 2023년까지 모든 행정구에 간이 쉼터를 조성할 계획

*간이 쉼터 : 공공주차장 및 공터 등의 유휴지에 캐노피 및 컨테이너 형식으로 설치한 쉼터

*이동노동자: 배달기사, 대리운전기사, 택배기사 등 직업 특성상 업무장소가 일정하게 정해져 있지 않고, 주된 업무가 이동을 통해 이뤄지는 노동자

⟨그림⟩ 서울시 배달노동자를 위한 쉼터
*배달노동자 대상이 아닌 이동노동자쉼터 두 곳 제외

WHY 간이 이동노동자 쉼터?

'꼭꼭 숨은' 이동노동자 쉼터…당사자도 몰라

멀어서 몰라서 발길 뜸한 이동노동자 무더위쉼터

"여기서 어떻게 쉬라는 건지…" 이동노동자에 외면받는 쉼터

현재의 이동노동자 쉼터는 접근성이 떨어진다는 문제점 발생 🛂

분석 목적

- · 간이 쉼터 증설을 통해 건물 공간을 임차해야 하는 이전 쉼터의 경제적 문제점 해소 가능
- · 모든 행정구에 간이 쉼터를 1개씩 설치하기 위해서는 우선순위를 파악할 필요성이 있음
- · 우선 순위가 높은 행정구와 행정동을 선정하고 현실적 문제를 고려해 최종 쉼터 입지 제안

서론 분석 배경 및 필요성 분석 개요 데이터 수집 및 가공

분석 프로세스

GMM

공간 최적화 모델

우선입지 위치 선정

LSCP(Location Set Covering Problem) MCLP(Maximal Covering Location Problem)

토지 현황 파악

최적 입지 선정

최종 입지 지도

서론 분석 배경 및 필요성 분석 개요

데이터 수집 및 가공

데이터 수집 및 가공 – 주성분 분석

수집한 데이터를 행정구 별로 병합 후 변수 차원 축소 진행

- 서울시 이동노동자 쉼터 선정 시 고려했던 유동인구 등의 변수와 입지선정 연구(송하진, 이건학, 2017)를 참고하여 변수 수집

> 서울시 행정구역(구별) 통계 공공자전거 대여소 정보 서울시 행정구별 대학교 학령인구 통계

> > 서울시 인구이동(동별)통계 서울시 개별공시지가 정보 서울시 코로나 19 확진자 현황

> > > 데이터 병합

행정구	공공 자전거	대학생 수	면적		총전입	코로나19 확진자	토지 공시지가
강남구							
강동구		_,	-, -,,	_,_,		0/5/	
강북구	/	가공된	! 행성	ST	걸 네	0 E	
강서구							
:							

주성분 분석을 통해 각 주성분 별로 핵심 변수 추출

- 세 주성분에 주는 영향력이 모두 낮은 변수는 분석에서 제외 ('대학생수', '배달상점개수', '수준지수', '아파트수', '운수및창고사업체수', '운수및창고종사자수', '면적', '인구밀도', '일인가구비율')

/[행정구	주문 인구수	총인 구	총전입	대학 생수	코로나 19 확진자	토지 공시지가	지역내 총생산	버스 정류소 수	주차장 수	공공자 전거대 여소수
	강남구	25901	544055	190650	24333	935	7200000	135157	540	398603	145
	강동구	21499	463998	202874	17032	582	3676000	21123	388	203140	111
	강북구	14895	311569	83250	12724	445	2294000	10286	412	11107	60
	강서구	28048	585901	174396	22970	1339	2620000	30233	600	18858	162
	:		:	÷	÷		<u> </u>			:	

제 1주성분(인구 특성 변수) 결과 추출한 변수

제 2주성분 (경제 특성 변수) 결과 추출한 변수

> 제 3주성분(교통 적합성 변수) 결과 추출한 변수

행정구 선정 - 군집분석 후 VOTING

4가지 군집 분석 방법론의 실험 결과를 바탕으로 VOTING 진행

VOTING

강남구, 강동구, 강서구, 관악구, 동작구, 송파구, 영등포구

* 보팅 결과 두 표 이상 받은 행정구 선택 * 이미 쉼터가 있는 서초구는 제외

행정동 선정 – 공간 최적화 모델 LSCP

LSCP 결과, 각 행정구 경계를 바탕으로 최대 수요를 만족시킬 수 있는 공공부지 좌표 추출(행정구마다 평균 3개)

 $s.t \sum_{j \in N_i} x_j \ge 1 \quad for all \quad i \in I$ $x_i \in 0, 1$ for all $j \in J$

〈수식〉 LSCP 알고리즘 공식

i : 수요 포인트 index

i : 설비지역 포인트 index

Ⅰ : 수요 포인트 집합

J : 설비지역 포인트 집합

K : 설치해야 하는 설비 개수

x : 설비 후보 지역 중 위치 j 에 설치되면 1, 아니면 0

v : 적어도 하나의 설비로 그 포인트가 커버되면 1, 아니면 0

〈수식〉 LSCP 결과(강서구, 강남구, 동작구, 관악구, 송파구)

우선입지 대상 행정구 선정 **우선입지 대상 행정동 선정** 최적 입지 선정

입지 선정 – LSCP, MCLP 결과 비교

공간 최적화 모델 LSCP

- 공간 내 모든 수요를 충족시키는 것이 주요 목표
- 분석을 통해 입지 수가 결정되는 LSCP 방법은 연구의 방향성과 맞지 않아 사용하지 않기로 결정

공간 최적화 모델 MCLP

- 제한적인 조건 하에서 수요를 최대한 충족시키는 것이 주요 목표
- 입지 수를 정한 뒤에 분석을 진행할 수 있어 현실적인 제약을 고려할 수 있는 모델로 결정

입지 선정 - 공간 최적화 모델 MCLP

반경 2,000m 기준 각 지역에서 최대 수요를 만족시킬 수 있는 최적 입지 선정 서울시 음식점을 수요 포인트로, 유휴지를 설비 후보지역으로 선정하여 분석 진행

사용한 데이터 - 음식점, 공공공지, 공영주차장, 도로데이터

입지 선정 - 공간 최적화 모델 MCLP

영등포구 - 교통량이 많고 퇴근시간과 배달량이 증가하는 시간이 겹치므로 여의도 내 입지(1,000m, 2,000m)는 고립이 될 수 있다고 판단

[Coverage]

해당 자치구 내 입지의 포용 범위

입지 선정 - QGIS

MCLP 결과로부터 얻은 최적 입지를 QGIS를 통해 서울시 지도에 시각화

최종 입지 제안 - 강남구 역삼1동

〈역삼1동〉

Coverage 30.416%

토지 면적 670.13 m²

3개의 컨테이너 및 오토바이 주차장을 위한 공간 확보 가능

〈최종 입지 현황 파악〉

최종 입지 제안

강동구 (471.88 m², 상)

강서구 (683.97 m², 상)

동작구 $(83.19\,\mathrm{m}^2,\, \frac{8}{5})$

영등포구 $(83.06\,\mathrm{m}^2,\, \frac{8}{5})$

근로 환경 및 복지 개선

표준화 모델 제시

접근성이 낮았던 기존 쉼터의 단점 완화

전국적으로 이동노동자 '간이' 쉼터 확대

입지 선정 알고리즘 구축

배달노동자의 근로 환경 증진

상담 및 법률 서비스 연계를 통한 복지 개선 쉼터 설치가 미비한 지역으로 확산 가능 각 시·도의 의사결정에 참고자료로 활용

> 소음, 담배 냄새 등의 민원 및 오토바이 주차 문제 해결

모든 이동노동자를 고려한 알고리즘으로 확대 가능

자원의 **효율적인 활용**으로 신속한 설치와 효과적인 예산 활용 가능

기술적 이용 간과

수요 및 접근성 측면에서 음식점 개수로 간이 쉼터의 커버리지를 산정

BUT

실질적인 쉼터 수용 한계 인원, 컨테이너 설치가능 여부 등의 세부적인 사항의 고려 미흡

데이터의 오류

'서울시 공영주차장 안내 정보.csv'

공영주차장 데이터에 오류가 다소 존재

따라서 도출된 결과의 오류 가능성

데이터의 한계

최신화된 배달앱 데이터, 현 쉼터 사용자 데이터 등

추가적으로 구체적이고 다양한 정보들을 입지선점지수에 반영한다면,

더욱 최적화된 결론 도출의 기대 가능

부록 사용 데이터 참조문헌 분석 도구

[사용 데이터] * 데이터 목록이 많아 주요 데이터만 표기

[사이 데이디] 데이디 국국에 많이 무표 데이디곤 표기							
데이터명	기간	활용목적	출처				
서울시 자치구별 대학교 학령인구 통계	2020년 기준	행정구 클러스터링 및 보팅	서울 열린 데이터 광장				
서울시 인구이동(동별) 통계	2020.01~2020.12	행정구 클러스터링 및 보팅	국가통계포털				
서울시 연령별 인구	2020년 기준	행정구 클러스터링 및 보팅	행정안전부				
서울시 코로나 19 확진자 현황	2020.01~2020.12	행정구 클러스터링 및 보팅	서울 열린 데이터 광장				
서울시 개별공시지가 정보	2020.01 기준	행정구 클러스터링 및 보팅	서울 열린 데이터 광장				
서울시 자치구별 1인당 지역내총생산 및 수준지수	2018년 기준	행정구 클러스터링 및 보팅	서울 열린데이터 광장				
서울특별시 공공자전거 대여소 정보	2021년 기준	행정구 클러스터링 및 보팅	서울 열린데이터 광장				
서울시 버스정류소 위치정보	2021.01 기준	행정구 클러스터링 및 보팅	서울 열린데이터 광장				
서울 주차장 (동별) 통계	2021.03 기준	행정구 클러스터링 및 보팅	서울 열린데이터 광장				
서울시 도시계획시설(공간시설) 위치정보	2021.05 기준	입지선정	서울 열린데이터 광장				
서울시 공영주차장 안내 정보	2019.06~2021.08	입지선정	서울 열린데이터 광장				

[분석도구]

[참조문헌]

- [1] Church, R., & ReVelle, C. (1974). The maximal covering location problem. In Papers of the regional science association, 32(1), 101-118.
- [2] Eva Patel, Daharmender Singh Kushwaha (2020). Clustering Cloud Workloads: K-means vs Gaussian Mixture Model, 171, 158-167.
- [3] Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations research, 19(6), 1363-1373.
- [4] 권민철.(2020).파이썬 머신러닝 완벽 가이드.위키북스.
- [5] 김우철. (2006).현대통계학, 영지문화사
- [6] 김재희. (2005). SAS를 이용한 다변량 통계 분석. 교우사.
- [7] 이윤정, 이기용. (2004). 화자 식별을 위한 GMM의 혼합 성분의 개수 추정. 음성과학, 11(2), 237 245.

감사합니다

