COMP 9517 Computer Vision

Pattern Recognition (3)

Classification Principles

- A statistical classifier has n inputs and 1 output.
 - Each input describes information about one of the n features x_1 , x_2 ,... x_n
 - An R-class classifier will generate one of R symbols $\Omega_{\rm 1}$, $\Omega_{\rm 2}$,... $\Omega_{\rm R}$ as an output
- The Ω are called the *class identifiers*
- $d(x) = \Omega_R$ is the **decision rule**
 - It divides the feature space into R disjoint subsets K_R , r = 1, 2, ...R, each of which includes all the feature vectors \mathbf{x} for which $d(\mathbf{x}) = \Omega_R$
- Discrimination hyper-surfaces
 - The borders between the subsets K_r
- Discriminant functions
 - R scalar functions $g_1(\mathbf{x})$, $g_2(\mathbf{x})$,... $g_R(\mathbf{x})$ define the hyperspaces

Discriminant functions

- Functions f(x, K) perform some computation on feature vector
 x
- Knowledge K about the class is used
- Final stage determines class

Separability

Separable classes

 if a discrimination hyperspace exists that separates the feature space such that only objects from one class are in each region, then the recognition task has separable classes

Linearly separable

 if the discrimination hyperspaces are hyperplanes, it is linearly separable

Linear Classifier

- For all $\mathbf{x} \in K_r$ and for any $s \in \{1,...,R\}$, $s \neq r$: $g_r(\mathbf{x}) \geq g_s(\mathbf{x})$
- Therefore, the discrimination hyperspace between classes K_r and K_s is defined by $g_r(\mathbf{x}) g_s(\mathbf{x}) = 0$
- From this definition, we obtain the following decision rule:
 - Classify the object pattern x into that class whose discrimination function gives a maximum of all the discriminant functions:

$$d(\mathbf{x}) = \Omega_R \Leftrightarrow g_r(\mathbf{x}) = \max g_s(\mathbf{x})$$

— If the discriminant functions are linear, their form is:

$$g_r(\mathbf{x}) = q_{r0} + q_{r1} x_1 + ... + q_{rn} x_n$$
, for all $r = 1,..., R$.

The corresponding classifier is called a *linear classifier*

Minimum Distance Principle

- Special case of classifiers based on discriminant functions, but computationally simpler
 - Nearest Class Mean Classifier
 - Nearest Neighbours
- Assume R points are defined in feature space $v_1, v_2,...,v_R$ that represent exemplars of the $\Omega_1, \Omega_2,...,\Omega_R$.
- A minimum distance classifier classifies pattern \mathbf{x} into the class to whose exemplar it is closest. $d(\mathbf{x}) = \Omega_R \Leftrightarrow |v_r - x| = \min(|v_s - x|)$
- In this case, each discriminant hyper-plane is perpendicular to the line segment $v_r v_s$ and bisects it.
- If each class is represented by just one exemplar, we get a linear classifier.
- If more than one exemplar per class is used, we get piecewise linear discrimination hyper-planes.

- This is a classifier based on minimum distance principle, where the class exemplars are just the centroids (or means)
- Training
 - summarises sample data from each class using the class mean vector or centroid:

$$x_i = \frac{1}{n_i} \sum_{j=1\dots n_i} x_{i,j}$$

where $x_{i,j}$ is the j_{th} sample feature vector from class I

- Test
 - A new unknown object with feature vector x is classified as class i if it is much closer to the mean vector of class i than to any other class mean vector

- Compute the Euclidean distance between feature vector X and the mean of each class
- Choose closest class, if close enough (reject otherwise)

- Simple, fast, works when classes are compact and far from each other.
- However, if classes are complex (eg. multimodal, nonspherical) nearest mean classification may give poor results
- One solution in such cases is to scale the distance by the spread, or **standard deviation** σ_i of class c along each dimension i.
- Co-ordinate transforms may be required if class axes are not aligned with co-ordinate axes

- Class 2 has two modes;
 where is its mean?
- But if modes are detected, two subclass mean vectors can be used

Nearest Neighbours

- Training
 - simply store the training examples
- Test
 - classify unknown sample vector x into the class of the individual sample closest to it
- More flexible but also more expensive
- Works well when classes have complex structure or overlap
- No assumptions on models, uses only existing training samples

Nearest Neighbour

- Brute force approach computes distance from x to all samples, and remembers minimum distance
- Works in incremental setting
- Trees or grids may be used as data structures to eliminate unnecessary distance computations
- A better version examines the nearest k feature vectors, k > 1
- As number of samples grows, the error rate for even k = 1 is no worse than twice the optimal error rate
- Transferring the original features space into another may improve the performance
 - Using metric learning

Structural Techniques

- Simple numeric or symbolic features may not be sufficient for object recognition
- Relationships among features can be used as higher-level, more powerful features for recognition
- In this approach, called structural pattern recognition, an object is represented by its primitive parts, their attributes and relationships, as well as its global features
- When the relationships between primitive features are binary, a structural description is a graph structure
- Recognition is then by graph-matching techniques

Other Classifiers

- Neural Networks, including Deep Learning
- Support Vector Machines
- Graphical Models, including Bayesian Networks

Evaluation of Error

Error rate

 error rate of classification system measures how well the system solves the problem it was designed for

Reject class

generic class for objects that cannot be placed in any of the known classes

Performance

- Performance determined by both error and rejections made
- Classifying all inputs into reject class means system makes no errors, but is useless!

Classification error

- The classifier makes classification error whenever it classifies input object as class C_i when true class is C_i , $i \neq j$, and $C_i \neq C_r$, the reject class

Empirical error rate

 Empirical error rate is the number of errors made on independent test data divided by number of classifications attempted

Evaluation of Error

Empirical reject rate

 is the number of rejects on independent test data divided by number of classifications attempted

Independent test data

- are sample objects with true class (labels) known, including objects from the reject class, and that were not used in designing the feature extraction and classification algorithms
- Samples used for training and testing should be representative

False Alarms and False Dismissals

- For two-class problems, the errors have a special meaning and are not symmetric
- For example, in medical diagnosis, when a person has disease versus not have disease:
 - If the person does NOT have the disease, but the system incorrectly says she does, then the error is a false alarm/false positive
 - On the other hand, if the person DOES have the disease, but the system incorrectly says he does NOT, then the error is a *false* dismissal or false negative
- Consequences and costs of the two errors are very different

False Alarms and False Dismissals

- There are bad consequences to both, but false negative is generally more catastrophic
- So, we generally try to bias the system to minimize false negatives, possibly at the cost of increasing the false positives
- The Receiver Operator Curve (ROC) relates the false alarm rate to correct detection rate
- In order to increase correct detections, we may have to pay the cost of higher number of false alarms.

Receiver Operating Curve ROC

- Plots correct detection rate versus false alarm rate
- Generally, false alarms go up with attempts to detect higher percentages of known objects
- AUC

actual input object	decision	error type? correct alarm (no error)		
frack	frack			
not a frack	frack	false alarm (error)		
frack	not a frack	false dismissal (error)		
not a frack	not a frack	correct dismissal (no error)		

Confusion Matrix

- Confusion Matrix
 - Matrix whose entry (i, j) records the number of times that an object truly of class i was classified as class j (True positive)
- Used to report results of classification experiments
- The diagonal entries indicate the successes
- High off-diagonal numbers indicate confusion between classes

		cla	iss j	outpu	it by	the p	the pattern recognition					t
		'0'	'1'	'2'	,3,	4'	'5'	'6'	77	'8'	191	'R'
	,0,	97	0	0	0	0	0	1	0	0	1	1
	111	0	98	0	0	1	0	0	1	0	0	0
true	'2'	0	0	96	1	0	1	0	1	0	0	1
object	131	0	0	2	95	0	1	0	0	1	0	1
class	'4'	0	0	0	0	98	0	0	0	0	2	0
	757	0	0	0	1	0	97	0	0	0	0	2
i	'6'	1	0	0	0	0	1	98	0	0	0	0
	777	0	0	1	0	0	0	0	98	0	0	1
	'8'	0	0	0	1	0	0	1	0	96	1	1
	191	1	0	0	0	3	0	0	0	1	95	0

confusion may be unavoidable between some classes for example, between 9's and 4's, or between u's and j's for handprinted characters

Confusion Matrix

- Table of Confusion
 - For binary classification

		Prediction Outcome		
		Р	N	
Actual Vale	P'	True Positive(TP)	False Negative (FN)	
	N'	False Positive(FP)	True Negative(TN)	

Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision versus Recall

Precision/correctness

 is the number of relevant objects retrieved / classified divided by the total number of objects retrieved/classified

$$Precision = \frac{TP}{TP + FP}$$

Recall/sensitivity/completeness

 is the number of relevant objects retrieved / classified divided by total number of relevant/correct objects

$$\operatorname{Re} call = \frac{TP}{TP + FN}$$

More Terminology

true positive (TP)

eqv. with hit

true negative (TN)

eqv. with correct rejection

false positive (FP)

eqv. with false alarm, Type I error

false negative (FN)

eqv. with miss, Type II error

sensitivity or true positive rate (TPR)

eqv. with hit rate, recall

$$TPR = TP / P = TP / (TP + FN)$$

false positive rate (FPR)

eqv. with fall-out

$$FPR = FP / N = FP / (FP + TN)$$

accuracy (ACC)

$$ACC = (TP + TN) / (P + N)$$

specificity (SPC) or True Negative Rate

$$SPC = TN / N = TN / (FP + TN) = 1 - FPR$$

positive predictive value (PPV)

eqv. with precision

$$PPV = TP / (TP + FP)$$

negative predictive value (NPV)

$$NPV = TN / (TN + FN)$$

false discovery rate (FDR)

$$FDR = FP / (FP + TP)$$

Matthews correlation coefficient (MCC)

$$MCC = (TP * TN - FP * FN)/\sqrt{PNP'N'}$$

F1 score

$$F1 = 2TP^2 / (P + P')$$

References and Acknowledgements

- Shapiro and Stockman, Chapter 4
- Duda, Hart and Stork, Chapter 1
- Richard Szeliski, Chapter 14
- More references
 - Sergios Theodoridis, Konstantinos Koutroumbas, Pattern Recognition, 2009
 - Ian H. Witten, Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2005
- Some diagrams are extracted from the above resources