An Introduction to WEKA

a popular suite of machine learning software

Waikato Environment for Knowledge Analysis

Download and Install WEKA

Website:

http://www.cs.waikato.ac.nz/~ml/weka/inde
x.html

SourceForge:

http://sourceforge.net/projects/weka/

3.6 is the latest stable version

Content

- Intro and background
- Exploring WEKA
 - Data Preparation
 - Creating Models/ Applying Algorithms
 - Evaluating Results

Available Data Mining Tools

COTs:

- IBM Intelligent Miner
- SAS Enterprise Miner
- Oracle ODM
- Microstrategy
- Microsoft DBMiner
- Pentaho
- Matlab
- Teradata

Open Source:

- WEKA
- KNIME
- Orange
- RapidMiner
- NLTK
- \blacksquare R
- Rattle

What is WEKA?

- Waikato Environment for Knowledge Analysis
 - WEKA is a data mining/machine learning application developed by Department of Computer Science, University of Waikato, New Zealand
 - WEKA is open source software in JAVA issued under the GNU General Public License
 - WEKA is a collection tools for data pre-processing, classification, regression, clustering, association, and visualization.
 - WEKA is a collection of machine learning algorithms for data mining tasks
 - WEKA is well-suited for developing new machine learning schemes
- WEKA is a bird found only in New Zealand

Advantages of Weka

- Free availability
 - Under the GNU General Public License
- Portability
 - Fully implemented in the Java programming language and thus runs on almost any modern computing platforms
 - Windows, Mac OS X and Linux
- Comprehensive collection of data preprocessing and modeling techniques
 - Supports standard data mining tasks: data preprocessing, clustering, classification, regression, visualization, and feature selection
- Easy to use GUI
- Provides access to SQL databases
 - Using Java Database Connectivity and can process the result returned by a database query

Disadvantages of Weka

- Sequence modeling is not covered by the algorithms included in the Weka distribution
- Not capable of multi-relational data mining
- Memory bound

KDD Process: How does WEKA fit in?

WEKA Walk Through: Main GUI

- Three graphical user interfaces
 - "The Explorer" (exploratory data analys
 - pre-process data
 - build "classifiers"
 - · cluster data
 - find associations
 - attribute selection
 - data visualization
 - "The Experimenter" (experimental environment)
 - used to compare performance of different learning schemes
 - "The KnowledgeFlow" (new process model inspired interface)
 - Java-Beans-based interface for setting up and running machine learning experiments.
- Command line Interface ("Simple CLI")

More at: http://www.cs.waikato.ac.nz/ml/weka/index_documentation.html

WEKA:: Explorer: Preprocess

- Importing data
 - Data format
 - Uses flat text files to describe the data
 - Data can be imported from a file in various formats:
 - ARFF, CSV, C4.5, binary
 - Data can also be read from a URL or from an SQL database (using JDBC)

WEKA:: ARFF file format

```
@relation heart-disease-simplified

numeric attribute

@attribute age numeric

@attribute sex { female, male}

@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina}

@attribute cholesterol numeric

@attribute exercise_induced_angina { no, yes}

@attribute class { present, not_present}

@data

63,male,typ_angina,233,no,not_present

67,male,asympt,286,yes,present

67,male,asympt,229,yes,present

38,female,non_anginal,?,no,not_present

...
```

A more thorough description is available here http://www.cs.waikato.ac.nz/~ml/weka/arff.html

Weka: Explorer:Preprocess

- Preprocessing data
 - Visualization
 - Filtering algorithms
 - filters can be used to transform the data (e.g., turning numeric attributes into discrete ones) and make it possible to delete instances and attributes according to specific criteria.
 - Removing Noisy Data
 - Adding Additional Attributes
 - Remove Attributes

WEKA:: Explorer: Preprocess

- Used to define filters to transform Data.
- WEKA contains filters for:
 - Discretization, normalization, resampling, attribute selection, transforming, combining attributes, etc

WEKA:: Explorer: building "classifiers"

- Classifiers in WEKA are models for predicting nominal or numeric quantities
- Implemented learning schemes include:
 - Decision trees and lists, instance-based classifiers, support vector machines, multi-layer perceptrons, logistic regression, Bayes' nets, ...
- "Meta"-classifiers include:
 - Bagging, boosting, stacking, error-correcting output codes, locally weighted learning, ...

WEKA:: Explorer: Building "Cluster"

- WEKA contains "clusters" for finding groups of similar instances in a dataset
- Implemented schemes are:
 - k-Means, EM, Cobweb, X-means, FarthestFirst
- Clusters can be visualized and compared to "true" clusters (if given)
- Evaluation based on loglikelihood if clustering scheme produces a probability distribution

Explorer: Finding Associations

- WEKA contains an implementation of the Apriori algorithm for learning association rules
 - Works only with discrete data
- Can identify statistical dependencies between groups of attributes:
 - milk, butter ⇒ bread, eggs (with confidence 0.9 and support 2000)
- Apriori can compute all rules that have a given minimum support and exceed a given confidence

Explorer: Attribute Selection

- Panel that can be used to investigate which (subsets of) attributes are the most predictive ones
- Attribute selection methods contain two parts:
 - A search method: best-first, forward selection, random, exhaustive, genetic algorithm, ranking
 - An evaluation method: correlation-based, wrapper, information gain, chi-squared, ...
- Very flexible: WEKA allows (almost) arbitrary combinations of these two

Explorer: Visualize

- Visualization very useful in practice: e.g. helps to determine difficulty of the learning problem
- WEKA can visualize single attributes (1-d) and pairs of attributes (2-d)
 - To do: rotating 3-d visualizations (Xgobi-style)
- Color-coded class values
- "Jitter" option to deal with nominal attributes (and to detect "hidden" data points)
- "Zoom-in" function

References and Resources

References:

- WEKA website: <u>http://www.cs.waikato.ac.nz/~ml/weka/index.html</u>
- WEKA Tutorial:
 - Machine Learning with WEKA: A <u>presentation</u> demonstrating all graphical user interfaces (GUI) in Weka.
 - A <u>presentation</u> which explains how to use Weka for exploratory data mining.
- WEKA Data Mining Book:
 - · Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques (Second Edition)
- WEKA Wiki: <u>http://weka.sourceforge.net/wiki/index.php/Main_Page</u>
- Thank you to Nicole Wolter for helping prepare the slides!