3

数字逻辑实验报告

实验 1

学	期	2018-2019 学年第 1 学期		Ì	班 级	学生	填写	组	号	学生	上填写
学	院	学生填写		À	学号	学生	填写	姓	名	学生	 上填写
专	业	学生填写		Ē	学 号	学生	填写	姓	名	学生	
实验日期 学生填写		报	告日期	学生填写							
评阅内容 此栏内容由教师填写											
柜	图	实 现	仿	真	下 载	总总	结	格ュ	t	成	绩

题 目

实验一: XXXXXX (根据具体实验修改)

一. 实验目的 (参考实验指导书撰写)

- 1. 掌握计数器的工作原理
- 2. 掌握利用集成器件设计计数器的方法
- 二. 实验任务及要求(参考实验指导书撰写)

报告部分,尽量格式、字体统一,减少不要的空行;各部分要有相应的文字描述,不能只有图没有说明

任务:设计一个十进制计数器

要求: 1、输入端包括: 时钟端、清零端、计数控制端。 输出端包括: 4 位计数输出端和 1 位进位输出端。

- 2、课前编写好程序。
- 3、 Quartus II 13.0 软件进行编辑、编译、仿真。
- 4、根据实验平台进行引脚分配并下载演示实验结果。

三. 原理框图 (主要能够体现出按模块划分电路,尽量用框图来描述)

图 1 为十进制计数器原理框图,本次实验共涉及三个模块。其中输入信号可由拨动开关提供,显示模块可以由直接由 LED 显示或通过七段译码电路送数码管显示,计数器模块包括计数逻辑和清零逻辑,其中计数逻辑完成计数器加 1 的功能,清零逻辑在计数到 9 时输出清零信号,在下一个时钟到来时完成计数器清零。

数字逻辑实验报告

实验 1

图 1 十进制计数器原理框图

四. 电路实现(根据原理框图进行设计,要有文字性描述并给出电路原理图或代码。如涉及到有关真值表、化简、状态图等内容,也需要列出。)

图 274163 符号图

表 1 74163 功能表

	输	入控制	喘	74. OL					
CLRN	LDN	ENP	ENT	CLK	功能				
0	X	X	X	1	清零				
1	0	X	X	1	置数(接收输入端 ABCD 数据)				
1	1	0	X	X	保持				
1	1	X	0	X	保持				
1	1	1	1	1	计数器加1				

根据要求需采用集成计数器实现,可选用 74163 十六进制加法计数器(也称四位二进制计数器)。图 2 为该器件的符号图,表 1 为该器件的功能表。可以看出该器件具有同步清零或置数功能,且输入端已包含时钟端、清零端、计数控制端,输出端包含 4 位计数输出端和 1 位进位输出端。由于 74163 器件在 ENT、 ENP、 LDN 和 CLRN 均为" 1"时,输出端 Y3、 Y2、 Y1 和 Y0 在时钟 CLK 作用下按 0000、0001、……1111、0000 规律循环变化。因此只需提供一个时钟和计数使能信号就可以实现计数器加 1 的功能;若要完成 1001 跳转至 0000,只要增加一个与非门并有效利用其同步清零或同步置数功能就可以

3

数字逻辑实验报告

实验 1

实现。

电路实现如图 3 所示。置数端始终接至高电平; Y3、Y1 的输出通过一个与非门接至74163 的 CLRN 端(CLRN 端为电平有效), 当输出端 QD、QC、QB、QA 为 1001 时,利用清零端 CLRN 为"0"使其输出为 0000。

图 3 用 74163 同步清零功能实现的十进制加法计数器

五. 仿真波形(对于主要波形需有文字性描述或解释)

图 4 十进制计数器仿真波形

从仿真波形图上可以看到, en 为低电平时计数器不计数, en 为高电平时进入计数状态, clk 每一个上升沿,计数器加 1; 当计数器从 0000 计数到 1001 时,计数器清 0, 从波形上可以验证本电路设计符合要求。

六. 下载调试

(1)引脚分配(说明输入输出分别连接到实验台上的哪些部件,如开关, LED、数码管等。)

输入端 en 接拨动开关。

输入端的时钟信号 clk,选择 EDTEND-MODULE1 中 FPGA_EA2 上的 PIN_P20;

4 个输出连接红色信号指示灯 D4~D0。

具体引脚分配见表 2。

3

数字逻辑实验报告

实验 1

表 2 十进制计数器所选平台端口及对应引脚编号

平台端口	SW1	EA2	LED1	LED2	LED3	LED4
引脚号	PIN_N18	PIN_P20	PIN_U12	PIN_V12	PIN_V15	PIN_W13
输出端名称	en	clk	y[3]	y[2]	y[1]	y[0]

参考表 2, 在 Quartus II 中进行引脚分配并锁定, 如图 5 所示

	From	То	Assignment Name	Value	Enabled
1		i clk	Location	PIN_P20	Yes
2		i en	Location	PIN_N18	Yes
3		 ∀	Location		Yes
4			Location	PIN_W13	Yes
5			Location	PIN_V15	Yes
6			Location	PIN_V12	Yes
7			Location	PIN_U12	Yes
8	< <new>></new>	< <new>></new>	< <new>></new>		

图 5 引脚分配图

(2) 实验现象(根据输入, 记录下观察到的现象; 也可用表的形式将现象记录下来)

下载后,将 en 拨至下,四个 LED 灯全亮(实验台上 LED 低电平时点亮),处于保持状态;将 en 拨至上,可以看到四个 LED 灯按照计数值依次点亮。

七、总结

(1) 器件封装

输入端: en 使能信号

clk 工作时钟

输入端: y[3..0] 计数值

(2) 遇到的故障和解决方法

调试中如果遇到故障或问题,是什么故障或问题,如何解决的?如果无故障或问题,就写无。

(3) 收获体会

根据实际情况填写。

$\widehat{3}$

数字逻辑实验报告

实验 1

