Linguaggi di Programmazione

Alessio Marini, 2122855

Appunti presi durante il corso di **Linguaggi di Programmazione** nell'anno **2025/2026** del professsore Pietro Cenciarelli. Gli appunti li scrivo principalmente per rendere il corso più comprensibile **a me** e anche per imparare il linguaggio Typst. Se li usate per studiare verificate sempre le informazioni ...

Contatti:

? alem1105

☑ marini.2122855@studenti.uniroma1.it

September 27, 2025

Indice

1.	Algebre e Strutture Dati Induttive	. 3
2.	Algebre	. 4
	2.1. Chiusura rispetto ad una funzione	
	2.2. Algebre Induttive	. 5

1. Algebre e Strutture Dati Induttive

Questa tipologia di Algebre ci servirà a dare un significato alla struttura dei programmi, ovvero la **semantica**, sono inoltre la base matematica di strutture dati come *alberi, liste ecc...*, ci serviranno anche per fare induzione su altre strutture e non solo su sistemi numerici, questa è chiamata **induzione strutturale**.

Ci serviranno delle strutture universali, proviamo ad esempio a descrivere i numeri naturali $\mathbb N$ attraverso delle regole, gli **Assiomi di Peano**.

Assiomi di Peano

- $0 \in \mathbb{N}$
- $n \in \mathbb{N} \Rightarrow \operatorname{succ}(n) \in \mathbb{N}$
- $\nexists n$ t.c. $0 = \operatorname{succ}(n)$
- $\forall n, m \text{ se } \operatorname{succ}(n) = \operatorname{succ}(m) \Rightarrow n = m$
- $\forall S \subseteq \mathbb{N} (0 \in S \land n \in S \Rightarrow \operatorname{succ}(n) \in S) \Rightarrow S = \mathbb{N}$

Grazie a queste regole possiamo «staccarci» dagli elementi dei numeri naturali, abbiamo descritto la loro **struttura**.

L'ultimo degli assiomi viene anche chiamato **assioma di Induzione**, infatti è molto simile al **principio di induzione**.

Principio di Induzione

Data una proprietà P che vale per un n=0, la assumiamo vera per un $n \in \mathbb{N}$ e dimostriamo che è vera anche per n+1, se riusciamo abbiamo dimostrato che P vale $\forall n \in \mathbb{N}$.

In simboli:

$$P(0) \land (P(n) \Rightarrow P(n+1)) \Rightarrow \forall m \in \mathbb{N} P(m)$$

2. Algebre

Proprietà ed Insiemi

Dire che un elemento appartiene ad un insieme o che soddisfa una proprietà possiamo vederla come la stessa cosa.

Quando definiamo un'algebra dobbiamo definire l'insieme dei suoi elementi le operazioni che ne fanno parte, ad esempio: (A, Γ) e le sue operazioni possono essere:

$$\Gamma = \{\Gamma_1, \Gamma_2, \Gamma_3, \ldots\}$$

Questo serve perché sullo stesso insieme possiamo definire più algebre.

Esempio

Prendiamo come insieme di elementi delle liste di numeri naturali e due operazioni:

- **append**: Prende in input due liste e restituisce la lista che concatena le due prese in input.
- \mathbf{cons} : Prende in input un numero da $\mathbb N$ ed una lista e inserisce il numero all'inizio della lista.

Graficamente abbiamo che:

- append(<3,4,7>,<2,5>)=<3,4,7,2,5>
- cons(5, <3, 4, 7>) = <5, 3, 4, 7>

Notiamo che come risultato abbiamo sempre un elemento dell'algebra.

Come input possiamo avere anche elementi estranei, se questo accade allora l'algebra prende il nome di **Algebra Eterogenea**.

2.1. Chiusura rispetto ad una funzione

Data un'algebra A prendiamo $S\subseteq A$ e una funziona $f:A\to S$

• S è **chiusa** rispetto a f quando

$$x \in S \Rightarrow f(x) \in S$$

Quindi se prendo come input un elemento da S devo tornare in S, questo deve funzionare anche se prendo come input più elementi.

• Se abbiamo ad esempio un insieme $B \not\subseteq A$ e $S \subseteq A$ allora:

$$\forall y \in B$$

$$x \in S \Rightarrow f(x,y) \in S$$

• Ultimo caso da tenere in mente è quando come input non abbiamo elementi di S, in questo caso la funzione S è comunque chiusa rispetto ad f dato che stiamo negando la prima parte dell'implicazione.

Adesso, con questo concetto in mente possiamo parlare di Algebre Induttive.

2.2. Algebre Induttive

Definizione

Un Algebra (A,Γ) si dice induttiva quando:

- Tutte le Γ_i sono induttive
- Tutte le Γ_i hanno immagini disgiunte
- $\forall S \subseteq A$ se S è chiuso rispetto a tutte le Γ_i allora S = A

Proviamo a costruire un'algebra induttiva con i numeri naturali usando queste 3 regole e gli assiomi di Peano.

I primi due assiomi di Peano:

- $0 \in \mathbb{N}$
- $n \in \mathbb{N} \Rightarrow \operatorname{succ}(n) \in \mathbb{N}$

Ci danno la segnatura dell'algebra:

$$\left(\mathbb{N},\underbrace{\{0,\mathrm{succ},\mathrm{zero}\}}_{\Gamma}\right)$$

La funzione nullaria zero ci serve per rappresentare l'elemento 0.

Funzione Nullaria

Prendiamo come esempio la coppia (7,3) questa sarà elemento di \mathbb{N}^2 mentre (7,3,5) sarà elemento di \mathbb{N}^3 ma allora () sarà elemento di \mathbb{N}^0 e sarà anche l'**unico**. Indichiamo con $\mathbb{1}$ questo insieme.

$$\mathbb{N}^0=\{()\}=\mathbb{1}$$

Quindi una funzione nullaria su un insieme A avrà una segnatura del tipo $\mathbb{1} \to A$.

Una funzione nullaria su un insieme A può essere vista come un elemento di A.

Vediamo se rispettiamo le proprietà delle algebre induttive:

- Entrambe le funzioni sono induttive, zero è nullaria mentre succ rispetta l'induzione:
 - ▶ Vale per 0
 - Se vale per n vale anche per n+1
- Le due funzioni hanno immagini disgiunte, una ha solo 0 come immagine mentre l'altra ha $\mathbb{N}-\{0\}$.
- Prendiamo un $S\subseteq \mathbb{N}$ e supponiamo che sia chiuso su entrambe le funzione succ, zero questo implica che:
 - $0 \in S$ per zero
 - $n \in S \Rightarrow n+1 \in S$ per succ

Quindi se S è chiuso su entrambe allora abbiamo preso $\mathbb N$ e l'algebra è induttiva perché rispettiamo le 3 proprietà.

5 Assiomi - Algebra Induttiva

I 5 Assiomi di Peano sono quindi un caso particolare di Algebra Induttiva con le operazioni zero e succ.

Quando un'algebra è induttiva le sue operazioni Γ_i si chiamano **costruttori dell'algebra**.