Zusammenfassung Numerik von PDEs

© BY: Tim Baumann, http://timbaumann.info/uni-spicker

Dies ist ein verkürztes Skript zur gleichnamigen Vorlesung von Frau Prof. Dr. Tatjana Stykel an der Universität Augsburg im WS 15/16.

Def. Sei $\Omega \subseteq \mathbb{R}^n$ offen. Eine DGL der Form

$$F(x, u, \mathcal{D}u, \dots, \mathcal{D}^k u) = 0$$

heißt partielle DGL/PDE der Ordnung $k \geq 1$, wobei

$$F: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \ldots \times \mathbb{R}^{n^k} \to \mathbb{R}$$

eine gegebene Funktion und $u:\Omega\to\mathbb{R}$ gesucht ist.

Def (Klassifikation von PDEs).

• Die PDE heißt linear, wenn sie die Form

$$\sum_{|\alpha| \le k} a_{\alpha}(x) \mathcal{D}^{\alpha} u = f(x)$$

mit Funktionen $a_{\alpha}, f: \Omega \to \mathbb{R}$ besitzt.

• Die PDE heißt semilinear, wenn sie die Form

$$\sum_{|\alpha|=k} a_{\alpha}(x) \mathcal{D}^{\alpha} u + a_0(x, u, \mathcal{D}u, \dots, \mathcal{D}^{k-1}u) = 0$$

besitzt, wobei $a_{\alpha}: \Omega \to \mathbb{R}$ und $a_0: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \ldots \times \mathbb{R}^{n^{k-1}} \to \mathbb{R}$ gegeben sind.

• Die PDE heißt quasilinear, wenn sie die Form

$$\sum_{|\alpha|=k} a_{\alpha}(x, u, \mathcal{D}u, \dots, \mathcal{D}^{k-1}u)\mathcal{D}^{\alpha}u + a_{0}(x, u, \mathcal{D}u, \dots, \mathcal{D}^{k-1}u) = 0$$

hat, wobei $a_{\alpha}, a_0 : \Omega \times \mathbb{R} \times \mathbb{R}^n \times \ldots \times \mathbb{R}^{n^k}$ gegeben sind.

• Die PDE heißt nichtlinear, falls die Ableitungen der höchsten Ordnung nicht linear vorkommen.

Def. Sei $\Omega \subseteq \mathbb{R}^n$ offen und $F: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ gegeben. Eine **PDE zweiter Ordnung** ist eine PDE der Form

$$F(x, u, \partial_{x_1} u, \dots, \partial_{x_n} u, \partial_{x_1} \partial_{x_1} u, \dots, \partial_{x_n} \partial_{x_n} u, \dots, \partial_{x_n} \partial_{x_n} u) = 0.$$

Notation. Für eine PDE 2. Ordnung sei $p_i := \partial_{x_i} u$, $p_{ij} := \partial_{x_i x_j}^2 u$,

$$M(x) := \begin{pmatrix} \frac{\partial F}{\partial p_{11}} & \cdots & \frac{\partial F}{\partial p_{1n}} \\ \vdots & & \vdots \\ \frac{\partial F}{\partial p_{n1}} & \cdots & \frac{\partial F}{\partial p_{nn}} \end{pmatrix} = M(x)^{T}.$$

Def (Typeneinteilung für PDEs der 2. Ordnung). Obige PDE zweiter Ordnung heißt

- elliptisch in x, falls die Matrix M(x) positiv o. negativ definit ist.
- parabolisch in x, falls genau ein EW von M(x) gleich null ist und alle anderen EWe dasselbe Vorzeichen haben.
- hyperbolisch in x, falls genau ein EW von M(x) ein anderes Vorzeichen als die anderen EWe hat.

Lösungstheorie elliptischer PDEs

Def. Sei $\Omega \subset \mathbb{R}^n$ offen, zusammenhängend und beschränkt.

• $C(\overline{\Omega}, \mathbb{R}^m) := \{u : \overline{\Omega} \to \mathbb{R}^m \mid u \text{ stetig}\}, C(\overline{\Omega}) := C(\overline{\Omega}, \mathbb{R}), \text{ mit Norm}\}$

$$||u||_{\mathcal{C}(\overline{\Omega},\mathbb{R}^m)} \coloneqq \sup_{x \in \overline{\Omega}} ||u(x)||.$$
 (Supremumsnorm)

• $C^k(\overline{\Omega}, \mathbb{R}^m)$, $k \in \mathbb{N}$ ist der Raum aller auf Ω k-mal stetig diff'baren Funktionen $u: \Omega \to \mathbb{R}^m$, die zusammen mit ihren Ableitungen bis zur Ordnung k stetig auf $\overline{\Omega}$ fortgesetzt werden können mit Norm

$$||u||_{\mathcal{C}^k(\overline{\Omega},\mathbb{R}^m)} \coloneqq \sum_{|\alpha| \le k} ||\mathcal{D}^\alpha u||_{\mathcal{C}(\overline{\Omega},\mathbb{R}^m)}.$$

• Für $\alpha \in (0,1]$ ist $\mathcal{C}^{0,\alpha}(\overline{\Omega},\mathbb{R}^m) := \{ u \in \mathcal{C}(\overline{\Omega},\mathbb{R}^m) \mid H_{\alpha}(u,\overline{\Omega}) < \infty \}$ mit

$$H_{\alpha}(u,\overline{\Omega}) \coloneqq \sup_{x,y \in \overline{\Omega}, x \neq y} \frac{\|u(x) - u(y)\|}{\|x - y\|^{\alpha}} \qquad (\textit{H\"{o}lder-Koeffizient})$$

der Raum der glm. Hölder-stetigen Fktn zum Exponent α . Der Hölder-Koeffizient ist dabei eine Seminorm auf $\mathcal{C}^{0,\alpha}(\overline{\Omega},\mathbb{R}^m)$.

• $\mathcal{C}^{k,\alpha}(\overline{\Omega},\mathbb{R}^m) := \{ u \in \mathcal{C}^k(\overline{\Omega},\mathbb{R}^m) \mid \forall | \gamma| = k : \mathcal{D}^{\gamma} u \in \mathcal{C}^{0,\alpha}(\overline{\Omega},\mathbb{R}^m) \}$ heißt **Hölder-Raum**. Eine Norm ist gegeben durch

$$||u||_{\mathcal{C}^{k,\alpha}(\overline{\Omega},\mathbb{R}^m)} := ||u||_{\mathcal{C}^k(\overline{\Omega},\mathbb{R}^m)} + \sum_{|\gamma|=k} H_{\alpha}(\mathcal{D}^{\gamma}u,\overline{\Omega}).$$

Bem. \bullet Jede Hölder-stetige Funktion ist gleichmäßig stetig.

- $C^{0,1}(\overline{\Omega}, \mathbb{R}^m)$ heißt Raum der Lipschitz-stetigen Funktionen.
- \mathcal{C} , \mathcal{C}^k und $\mathcal{C}^{k,\alpha}$ sind Banach-Räume mit den jeweiligen Normen.

Def. Sei $\Omega \subset \mathbb{R}^n$ offen, zusammenhängend und beschränkt. Das Gebiet Ω gehört zur Klasse $\mathcal{C}^{k,\alpha}$, wenn in jedem Punkt $x \in \partial \Omega$ eine Umgebung in $\partial \Omega$ existiert, die sich in einem geeigneten Koordinatensystem als ein Graph einer Funktion aus $\mathcal{C}^{k,\alpha}$ darstellen lässt und Ω lokal immer auf einer Seite von $\partial \Omega$ liegt.

Satz (Gauß'scher Integralsatz). Sei $\Omega \subset \mathbb{R}^n$ ein Lipschitz-Gebiet und $u \in \mathcal{C}(\overline{\Omega}, \mathbb{R}^n) \cap \mathcal{C}^1(\Omega, \mathbb{R}^n)$. Dann gilt

$$\int_{\Omega} \operatorname{div} u \, dx = \int_{\Omega} \sum_{i=1}^{n} \frac{\partial u_{i}}{\partial x_{i}} \, dx = \int_{\partial \Omega} \sum_{i=1}^{n} u_{i} \nu_{i} \, d\rho(x) = \int_{\partial \Omega} u \cdot \nu \, d\rho(x),$$

wobei ν der äußere Normalenvektor an an den Rand von Ω ist.

Problem. Wir betrachten das Randwertproblem

(RWP)
$$\begin{cases} \mathcal{L}u &= f & \text{in } \Omega & \text{(PDE)} \\ \mathcal{R}u &= g & \text{auf } \partial\Omega & \text{(Randbedingung)} \end{cases}$$

wobei \mathcal{L} der lineare Differentialoperator

$$\mathcal{L}u = -\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} + c(x)u$$

mit Fktn $a_{ij}, b_i, c, f: \Omega \to \mathbb{R}, g: \partial \Omega \to \mathbb{R}$ ist, sodass $A(x) := (a_{ij}(x))$ symmetrisch ist. Als Randbedingung (RB) verlangen wir:

Dirichlet-RB:
$$u = g$$
 auf $\partial\Omega$,
Neumann-RB: $(A(x)\nabla u) \cdot \nu = g$ auf $\partial\Omega$ oder
Robin-RB: $(A(x)\nabla u) \cdot \nu + \delta u = g$ auf $\partial\Omega$.

Bemn. • Man kann auch auf verschiedenen Teilstücken des Randes verschiedene Bedingungen stellen.

• Falls die Funktionen a_{ij} differenzierbar sind, so kann \mathcal{L} in **Divergenzform** geschrieben werden:

$$\mathcal{L}u = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=1}^{n} \underbrace{\left(\left(\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} a_{ij}(x) \right) + b_{i}(x) \right)}_{\tilde{b}(x) :=} \underbrace{\frac{\partial u}{\partial x_{i}} + c(x)u}_{}$$

$$= -\operatorname{div}(A(x)\nabla u) + \tilde{b}(x) \cdot \nabla u + c(x)u$$

Voraussetzung. Wir nehmen im Folgenden an:

• \mathcal{L} ist gleichmäßig elliptisch, d.h.

$$\exists \lambda_0 > 0 : \forall \xi \in \mathbb{R}^n : \forall x \in \Omega : \xi^T A(x) \xi \ge \lambda_0 \|\xi\|^2.$$

Dabei heißt λ_0 Elliptizitätskonstante.

• $a_{ij}, b_i, c, f \in \mathcal{C}(\overline{\Omega}), q \in \mathcal{C}(\partial\Omega)$

Bem. \mathcal{L} ist elliptisch auf Ω : \iff A(x) > 0 (spd) für alle $x \in \Omega$

Def. Eine Fkt $u \in C^2(\Omega) \cap C(\overline{\Omega})$ heißt **klassische Lsg** vom (RWP) mit $\mathcal{R}u := u$, wenn die beiden Gleichungen in (RWP) in jedem Punkt von Ω bzw. des Randes $\partial \Omega$ erfüllt sind.

Satz (Maximumprinzip). Sei $\Omega \subset \mathbb{R}^n$ offen, zshgd u. beschränkt. Sei $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ eine Lösung vom (RWP), $f \leq 0$ in Ω und $c \equiv 0$. Dann nimmt u sein Maximum auf dem Rand $\partial \Omega$ an, d. h.

$$\sup_{x \in \overline{\Omega}} u(x) = \sup_{x \in \partial \Omega} u(x) = \sup_{x \in \partial \Omega} g(x)$$

 $\mathbf{Kor.} \ \ \mathrm{Sei} \ c \geq 0 \ \mathrm{und} \ f \leq 0. \ \mathrm{Dann} \ \mathrm{gilt} \ \sup_{x \in \overline{\Omega}} u(x) \leq \max \big\{ \sup_{x \in \partial \Omega} u(x), 0 \big\}.$

Kor (Vergleichsprinzip). Für $u_1, u_2 \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ und $c \geq 0$ gelte $\mathcal{L}u_1 \leq \mathcal{L}u_2$ in Ω und $u_1 \leq u_2$ auf $\partial\Omega$. Dann gilt $u_1 \leq u_2$ auf $\overline{\Omega}$.

Kor (Eindeutigkeit). Sei $c \geq 0$. Dann hat (RWP) höchstens eine Lösung $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$.

Satz. Sei Ω ein beschr. Lipschitz-Gebiet, $a_{ij}, b_i, c \in \mathcal{C}(\overline{\Omega}), c \geq 0$, \mathcal{L} glm. elliptisch, $f \in \mathcal{C}^{0,\alpha}(\overline{\Omega})$ für ein $\alpha \in (0,1)$ und $g \in \mathcal{C}(\partial\Omega)$. Dann besitzt (RWP) genau eine Lsg $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$.

Achtung. Es muss aber nicht $u \in C^2(\overline{\Omega})$ gelten!

Differenzenverfahren

Verfahren (DV). Am Beispiel des Poisson-Problems

(RWP₁)
$$\begin{cases} -\Delta u = f & \text{in } \Omega = (0, 1) \\ u(0) = g_0, u(1) = g_1 & \text{auf } \partial \Omega \end{cases}$$

Wir führen folgende Schritte durch:

1. Diskretisierung: Wähle $n \in \mathbb{N}$, setze $h := \frac{1}{n}$ und

$$\begin{split} \Omega_h &\coloneqq \{x_i \coloneqq ih \,|\, i=1,\ldots,n-1\} \qquad \text{(innere Gitterpunkte)} \\ \partial \Omega_h &\coloneqq \{x_0=0,x_n=1\} \qquad \qquad \text{(Randpunkte)} \end{split}$$

2. Approx. der Ableitungen durch Differenzenquotienten (DQ)

$$u'(x_i) \approx \frac{1}{h} (u(x_i + h) - u(x_i))$$
 (Vorwärts-DQ)
 $u'(x_i) \approx \frac{1}{h} (u(x_i) - u(x_i - h))$ (Rückwärts-DQ)
 $u'(x_i) \approx \frac{1}{2h} (u(x_i + h) - u(x_i - h))$ (zentraler DQ)

Für die zweite Ableitung ergibt sich

$$u''(x_i) = (u'(x_i))' \approx \frac{1}{h} (u'(x_i + h) - u'(x_i)) \approx$$

$$\approx \frac{1}{h} \cdot (\frac{1}{h} (u(x_i + h) - u(x_i)) - \frac{1}{h} (u(x_i) - u(x_i - h)))$$

$$= \frac{1}{h^2} (u(x_i + h) - 2 \cdot u(x_i) + u(x_i - h)) =: \Delta_h u$$

Dabei heißt Δ_h der diskrete eindim. Laplace-Operator. Das diskretisierte Randwertproblem ist nun

$$\begin{array}{c} (\text{RWP}_1)_{\text{h}} & \left\{ \begin{array}{c} -\Delta_h u_h = f & \text{ in } \Omega_h, \\ u_h(0) = g_0, u_h(1) = g_1 & \text{ auf } \partial \Omega_h. \end{array} \right.$$

3. Aufstellen des linearen Gleichungssystems

$$\begin{split} \frac{1}{h^2} \left(2u_h(x_1) - u_h(x_2) \right) &= f(x_1) + \frac{g_0}{h^2} \qquad (i = 1) \\ \frac{1}{h^2} \left(-u_h(x_{i-1}) + 2u_h(x_i) - u_h(x_{i+1}) \right) &= f(x_i) \quad (i = 2, ..., n-2) \\ \frac{1}{h^2} \left(-u_h(x_{n-2}) + 2u_h(x_{n-1}) \right) &= f(x_{n-1}) + \frac{g_1}{h^2} \left(i = n-1 \right) \end{split}$$

Als lineares Gleichungssystem: $-\tilde{\Delta}_h \tilde{u}_h = \tilde{f}_h$ mit

$$-\tilde{\Delta}_h = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & & & & 0 \\ -1 & 2 & -1 & & & & \\ & -1 & 2 & -1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \\ 0 & & & & -1 & 2 \end{pmatrix} \in \mathbb{R}^{(n-1)\times(n-1)},$$

$$\tilde{u}_h = \begin{pmatrix} u_h(x_1) \\ \vdots \\ u_h(x_{n-1}) \end{pmatrix}, \quad \tilde{f}_h = \begin{pmatrix} f(x_1) + \frac{g_0}{h^2} \\ f(x_2) \\ \vdots \\ f(x_{n-2}) \\ f(x_{n-1}) + \frac{g_1}{h^2} \end{pmatrix}$$

Konvergenz, Konsistenz und Stabilität des DV

Ziel. Herausfinden, was die Lösung u_h von (RWP)_h (die man durch Lösen von (LGS) erhält) mit der Lösung u zum ursprünglichen Problem (RWP) zu tun hat. Ist etwa u_h die Einschränkung von u, oder zumindest annäherungsweise? Wenn ja, wie klein muss man h wählen, damit die Approximation gut wird?

$$\begin{array}{ll} \text{(RWP)} & \left\{ \begin{array}{l} -\mathcal{L}u = f & \text{in } \Omega, \\ u = g & \text{auf } \partial \Omega \end{array} \right. \\ \\ \text{(RWP)}_h & \left\{ \begin{array}{l} -\mathcal{L}_h u = f_h & \text{in } \Omega_h, \\ u_h = g_h & \text{auf } \partial \Omega_h \end{array} \right. \\ \\ \text{(LGS)} & \tilde{\mathcal{L}}_h \tilde{u}_h = \tilde{f}_h \end{array}$$

Notation. $U_h := \{\Omega_h \to \mathbb{R}\}, \quad R_h : \mathcal{C}(\overline{\Omega}) \to U_h, \ u \mapsto u|_{\Omega_h}$

Def. Das Differenzenverfahren (RWP)_h heißt

• **konvergent** von der Ordnung p, falls C > 0, $h_0 > 0$ existieren, sodass für die Lsg u von (RWP) und die Lsg u_h von (RWP)_h gilt:

$$||u_h - R_h u||_h \le Ch^p$$
 für alle $0 < h \le h_0$,

wobei $\|-\|_h$ eine Norm zu U_h ist, wie z. B. $\|u_h\|_h := \max_{x \in \Omega_h} |u_h(x)|$.

 \bullet konsistent von der Ordnung p, falls

$$\|\mathcal{L}_h R_h u - R_h \mathcal{L} u\|_h \le ch^p \|u\|_{\mathcal{C}^{p+2}(\overline{\Omega})} \quad \forall u \in \mathcal{C}^{p+2}(\overline{\Omega}).$$

• stabil, falls \tilde{L}_h invertierbar ist und ein $h_0 > 0$ existiert mit

$$\sup_{0< h \leq h_0} \|\tilde{\mathcal{L}}_h^{-1}\|_h < \infty, \quad \text{wobei } \|\tilde{\mathcal{L}}_h^{-1}\|_h \coloneqq \sup_{f \neq 0} \frac{\|\tilde{\mathcal{L}}_h^{-1}f\|_h}{\|f\|_h}.$$

 $(i=1) \quad \textit{Bem. Die ind. Matrix$ $norm ist } \|\tilde{\mathcal{L}}_h^{-1}\|_h = \|\tilde{\mathcal{L}}_h^{-1}\|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^n |l_{ij}|.$

Satz. Ist das DV (RWP)_h konsistent und stabil, so auch konvergent. Genauer gilt: Ist (RWP)_h stabil und konsistent von der Ordnung p und $u \in \mathcal{C}^{p+2}(\overline{\Omega})$, dann ist (RWP)_h konvergent von der Ordnung p.

Beweis. Setze $w_h:=u_h-R_hu.$ Für $x\in\partial\Omega_h$ gilt dann $w_h(x)=0$ und für $x\in\Omega_h$ gilt

$$\begin{split} \tilde{\mathcal{L}}_h w_h(x) &= \mathcal{L}_h w_h(x) = \mathcal{L}_h u_h(x) - \mathcal{L}_h R_h u(x) \\ &= f_h(x) - \mathcal{L}_h R_h u(x) = R_h f(x) - \mathcal{L}_h R_h u(x) \\ &= R_h \mathcal{L}u(x) - \mathcal{L}_h R_h u(x) \end{split}$$

Somit gilt $w_h = \tilde{\mathcal{L}}_h^{-1} (R_h \mathcal{L}u - \mathcal{L}_h R_h u)$ in Ω_h , also

$$||w_h||_h = ||\tilde{\mathcal{L}}_h^{-1} (R_h \mathcal{L}u - \mathcal{L}_h R_h u)|| \le ||\tilde{\mathcal{L}}_h^{-1}||_h \cdot ||R_h \mathcal{L}u - \mathcal{L}_h R_h u||_h$$

$$\le c_1 \cdot c_2 \cdot h^p \cdot ||u||_{\mathcal{C}^{p+2}(\overline{\Omega})} \le Ch^p \quad \text{für } 0 < h \le h_0.$$

 $\bf Lem.$ Das DV $({\rm RWP_1})_{\rm h}$ ist konsistent von der Ordnung 2. Es gilt

$$\|\Delta_h R_h u - R_h \Delta u\|_h \le \frac{1}{12} \|u\|_{\mathcal{C}^4(\overline{\Omega})} h^2 \quad \forall u \in \mathcal{C}^4(\overline{\Omega}).$$

Bem. Um zu zeigen, dass (RWP₁)_h konvergent ist, müssen wir noch zeigen, dass $\tilde{L}_h=-\tilde{\Delta}_h$ invertierbar ist und $\sup_{0< h \leq h_0} \|\tilde{\Delta}_h\| < \infty.$

Def. Eine Matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ heißt **M-Matrix**, falls

- a) $a_{ii} > 0$ für i = 1, ..., n, b) $a_{ij} \le 0$ für $i \ne j, i, j = 1, ..., n$,
- c) A invertierbar ist und d) für $A^{-1} =: B = (b_{ij})$ gilt $b_{ij} \ge 0$.

Lem. Erfülle $A \in \mathbb{R}^{n \times n}$ die Bedingungen a) und b). Zerlege A = D + L + R in eine Diagonalmatrix und strikte untere/obere Dreiecksmatrizen. Dann ist A genau dann eine M-Matrix wenn

$$\rho(D^{-1}(L+R)) < 1.$$

 $Bem.\ \, \mbox{Es}$ gilt folgende Monotonie-Eigenschaft für M-Matrizen:

$$x \le y \implies A^{-1}x \le A^{-1}y$$
.

Def. Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt **reduzibel** (oder zerlegbar), wenn es eine Permutationsmatrix $P \in \mathbb{R}^{n \times n}$ gibt, sodass

$$PAP^{T} = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$$
 mit $A_{11} \in \mathbb{R}^{k \times k}$, $0 < k < n$.

Lem (Gerschgorin). Alle EWe einer Matrix $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ liegen in der Menge

$$\bigcup_{i=1}^n \overline{B_{r_i}(a_{ii})} \quad \text{mit} \quad r_i := \sum_{j=1}^n |a_{ij}|.$$

Falls A irreduzibel ist, so liegen sie sogar in

$$\left(\bigcup_{i=1}^{n} B_{r_i}(a_{ii})\right) \cup \left(\bigcap_{i=1}^{n} \partial B_{r_i}(a_{ii})\right)$$

Def. Sei $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ eine Matrix.

• A heißt schwach diagonaldominant, falls

$$\sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \le |a_{ii}| \quad \text{für } i = 1, \dots, n$$

und ein i_0 existiert, sodass die Ungleichung strikt ist.

• A heißt diagonaldominant, falls

$$\sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| < |a_{ii}| \quad \text{für } i = 1, \dots, n$$

 A heißt irreduzibel diagonaldominant, falls A irreduzibel und schwach diagonaldominant ist.

Lem. Sei $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ eine Matrix mit $a_{ii} > 0$, i = 1, ..., n und $a_{ij} \leq 0$, i, j = 1, ..., n, $i \neq j$, die diagonaldominant oder irreduzibel diagonaldominant ist. Dann ist A eine M-Matrix.

Bem. $-\tilde{\Delta}_h$ ist irreduzibel diagonal
dominant, also eine M-Matrix.

Lem. Sei A eine irreduzible M-Matrix. Dann gilt $A^{-1} > 0$.

 \square Lem. Sei $A \in \mathbb{R}^{n \times n}$ eine M-Matrix und es existiere ein Vektor v, sodass $(Av)_j \geq 1, j = 1, \dots, n$. Dann gilt $||A^{-1}||_{\infty} \leq ||v||_{\infty}$.

Lem.
$$\|\tilde{\Delta}_h^{-1}\|_{\infty} \leq \frac{1}{8}$$

Satz. Das DV (RWP₁)_h ist konvergent von der Ordnung 2, falls die Lösung von (RWP₁) zu $C^4([0,1])$ gehört. Es gilt die Abschätzung

$$||u_h - R_h u||_{\infty} \le \frac{h^2}{96} ||u||_{\mathcal{C}^4([0,1])}.$$

Differenzenverfahren in $(0,1) \times (0,1) \subset \mathbb{R}^2$

Problem. Wir betrachten nun

$$\begin{array}{cccc} \text{(RWP_2)} & \left\{ \begin{array}{cccc} -\Delta u & = & f & \text{ in } \Omega = (0,1) \times (0,1) \\ u & = & g & \text{ auf } \partial \Omega \end{array} \right. \end{array}$$

1. Diskretisierung: Setze $h := \frac{1}{n}, n \in \mathbb{N}$ und

$$\Omega_h := \{(x,y) \in \Omega \mid x = ih, y = jh, i, j = 1, \dots, n-1\}$$
$$\partial \Omega_h := \{(x,y) \in \partial \Omega \mid x = ih, y = jh, i, j = 1, \dots, n-1\}$$

2. Approximation der Ableitungen

$$\begin{split} -\Delta u(x,y) &= -\frac{\partial^2 u}{\partial x^2}(x,y) - \frac{\partial^2 u}{\partial y^2}(x,y) \\ &\approx -\frac{u(x+h,y) - 2u(x,y) + u(x-h,y)}{h^2} - \frac{u(x,y+h) - 2u(x,y) + u(x,y-h)}{h^2} \\ &= -\frac{u(x+h,y) + u(x-h,y) - 4u(x,y) + u(x,y+h) + u(x,y-h)}{h^2} =: -\Delta_h u \end{split}$$

Dabei hat der diskrete Laplace-Operator Δ_h die Form eines Differenzensterns. Gesucht ist die Lsg $u_h:\Omega_h\cup\partial\Omega_h\to\mathbb{R}$ von

$$(RWP_2)_h \quad \left\{ \begin{array}{rcl} -\Delta_h u_h & = & f_h & \text{ in } \Omega_h \\ u_h & = & g & \text{ auf } \partial \Omega_h. \end{array} \right.$$

3. Aufstellen des linearen Gleichungssystems $-\tilde{\Delta}_h \tilde{u}_h = f_h$:

$$\tilde{u}_h = \begin{pmatrix} u_{11} \\ u_{12} \\ \vdots \\ u_{n-1,n-2} \\ u_{n-1,n-1} \end{pmatrix} \in \mathbb{R}^{(n-1)^2},$$

$$-\tilde{\Delta}_{h} = \frac{1}{h^{2}} \begin{pmatrix} A & -I & & & 0 \\ -I & A & -I & & & \\ & \ddots & \ddots & \ddots & \\ & & -I & A & -I \\ 0 & & & -I & A \end{pmatrix} \in \mathbb{R}^{(n-1)^{2} \times (n-1)^{2}},$$

$$A = \begin{pmatrix} 4 & -1 & & & 0 \\ -1 & 4 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 4 & -1 \end{pmatrix} \in \mathbb{R}^{n-1 \times n-1}$$

Lem. Das DV (RWP₂)_h ist konsistent von der Ordnung 2. Es gilt $\|\Delta_h R_h u - R_h \Delta u\|_h \leq \frac{1}{6} \|u\|_{\mathcal{C}^r(\overline{\Omega})} h^2.$

Lem. Das DV (RWP₂)_h ist stabil. Es gilt $\|\tilde{D}_h^{-1}\|_{\infty} \leq 1/8$.

 $\bf Satz.$ Das DV (RWP2)h ist konvergent von der Ordnung 2, falls die Lösung von (RWP2) zu $C^4(\overline\Omega)$ gehört. Es gilt

$$||u_h - R_h u||_h \le 1/48||u||$$

Bem. Durch die Einbeziehung weiterer Gitterpunkte zur Approximation des Differentialoperators lässt sich die Konvergenzordnung erhöhen:

$$\begin{split} -\Delta_h^{(9)}u(x,y) &= \frac{1}{12h^2}\left(u(x-2h,y) - 16u(x-h,y) + 30u(x,y) \right. \\ &\quad -16u(x+h,y) + u(x+2h,y) + u(x,y-2h) - 16u(x,y-h) \\ &\quad +30u(x,y) - 16u(x,y+h) + u(x,y+2h)\right) \approx -\Delta u(x,y) \end{split}$$

Damit erreicht man die Konsistenzordnung 4.

Differenzenverfahren in allg. Gebieten $\Omega \subset \mathbb{R}^2$ Situation. Sei $\Omega \subset \mathbb{R}^2$ beschränkt.

Def. • $\Omega_h := \{x, y \in \Omega \mid x/h, y/h \in \mathbb{Z}\}$ heißen innere Gitterpkte.

- Ein Punkt $z_R \in \partial \Omega$ heißt **Randgitterpunkt** (notiert $z_R \in \partial \Omega_h$), falls es einen inneren Gitterpunkt $z \in \Omega_h$ gibt, sodass $z_R = r + \alpha h e_1$ oder $z_R = z + \alpha h e_2$ mit $|\alpha| \leq 1$. Die Nachbarn N(x,y) eines Punktes (x,y) sind $(x+s_rh,y), (x-s_lh,y), (x,y+y_oh), (x,y-s_uh)$, falls $s_r,s_l,s_o,s_u \in (0,1]$ und die Verbindungsstrecken zu (x,y) in Ω liegen.
- Ein Punkt $(x,y) \in \Omega_h$ heißt **randnah**, falls (x,y) die Nachbarn $(x-s_lh,y), (x+s_rh,y), (x,y-s_uh), (x,y+s_oh)$ hat mit mindestens einem $s_i < 1$. Ansonsten heißt (x,y) **randfern**.

Notation. Wir haben eine Einteilung $\Omega_h = \Omega_h^{\rm rn} \sqcup \Omega_h^{\rm rf}$ der Gitterpunkte in randnahe und randferne Punkte.

Lem (Dividierte Differenzen von Newton).

Für $u \in \mathcal{C}^3([x_l, x_r]), x \in (x_l, x_r)$ gilt

$$u''(x) = \frac{2}{x_r - x_l} \left(\frac{u(x_r) - u(x)}{x_r - x} - \frac{u(x) - u(x_l)}{x - x_l} \right) + \mathcal{O}(x_r - x_l)$$

$$= \frac{2}{x_r - x_l} \left(\frac{1}{x_r - x} u(x_r) + \frac{1}{x - x_l} u(x_l) \right) - \frac{2}{(x_r - x)(x - x_l)} u(x)$$

Verfahren (Shortley-Weller-Diskretisierung).

Dadurch inspiriert approximieren wir den Laplace-Operator durch

$$\begin{split} \mathcal{D}_h u(x,y) &= \frac{1}{h^2} \left(\frac{2u(x-s_l h,y)}{s_l(s_r + s_l)} + \frac{2u(x+s_r h,y)}{s_r(s_r + s_l)} \right. \\ &+ \frac{2u(x,y - s_u h)}{s_u(s_o + s_u)} + \frac{2u(x,y + s_o h)}{s_o(s_o + s_u)} - \left(\frac{2}{s_l s_r} + \frac{2}{s_o s_u} \right) u(x,y) \right) \end{split}$$

wobei $x_r - x = s_r h$, $x - x_l = s_l h$, $y_o - y = s_o h$, $y - y_u = s_u h$. Wir betrachten nun

$$(RWP_2)_{\mathbf{h}'} \begin{cases} -\mathcal{D}_h u_h &= f_h & \text{in } \Omega_h \\ u_h &= g & \text{auf } \partial \Omega_h \end{cases}$$

$$(LGS_2)' \begin{cases} -\tilde{\mathcal{D}}_h \tilde{u}_h &= \tilde{f}_h \\ \tilde{f}_h &= f_h + g_h \end{cases}$$

$$\text{vit } g_h(x,y) = {}^{1}/h^2 \qquad \sum \qquad S_{x_N,y_N} g(x_N,y_N)$$

 $\text{mit}\quad g_h(x,y)=\tfrac{1}{h^2}\sum_{(x_N,y_N)\in N(x,y)\cap\partial\Omega_h}S_{x_N,y_N}g(x_N,y_N)$ wobei

 $S_{x_N,y_N} \coloneqq \begin{cases} 2/s_l(s_l + s_r) & \text{falls } (x_N, y_N) = (x - s_l h, y), \\ 2/s_r(s_l + s_r) & \text{falls } (x_N, y_N) = (x + s_r h, y), \\ 2/s_o(s_o + s_u) & \text{falls } (x_N, y_N) = (x, y + s_o h), \\ 2/s_u(s_o + s_u) & \text{falls } (x_N, y_N) = (x, y - s_u h), \end{cases}$

$$-\tilde{\mathcal{D}}_h = (d_{ij}) \quad \text{mit} \quad d_{ii} = 1/h^2 \left(\frac{2}{s_{il}s_{ir}} + \frac{2}{s_{iu}s_{io}}\right) \quad \text{und}$$

$$d_{ij} = 1/h^2 \begin{cases} -2/s_{il}(s_{il} + s_{ir}) & \text{falls } j \text{ der linke Nachbar von } i \text{ ist,} \\ -2/s_{ir}(s_{il} + s_{ir}) & \text{falls } j \text{ der rechte Nachbar von } i \text{ ist,} \\ -2/s_{iu}(s_{iu} + s_{io}) & \text{falls } j \text{ der untere Nachbar von } i \text{ ist,} \\ -2/s_{io}(s_{iu} + s_{io}) & \text{falls } j \text{ der obere Nachbar von } i \text{ ist.} \end{cases}$$

Lem. • Die Matrix $-\tilde{\mathcal{D}}_h$ ist eine M-Matrix.

• Sei $\Omega \subset \mathbb{R}^2$ beschränkt und gehöre zu dem Streifen $(x_0, x_0 + d) \times \mathbb{R}$ oder $\mathbb{R} \times (y_0, y_0 + d)$. Dann gilt $\|\tilde{D}_h^{-1}\| \leq d^2/8$.

Bem. Das DV (RWP2) $_{\rm h}'$ hat in den randnahen Punkten nur die Konsistenzordnung 1. Dennoch gilt:

Satz. Sei $\Omega \subset \mathbb{R}^3$ beschränkt und Teilmenge des Streifens $(x_0, x_0 + d) \times \mathbb{R}$ oder $\mathbb{R} \times (y_0, y_0 + d)$. Dann ist das Verfahren $(\mathrm{RWP}_2)_{\mathrm{h}}$ 'konvergent von der Ordnung 2. Es gilt

$$||u_h - R_h u||_h \le (1/3h^3 + d^2/48h^2) ||u||_{\mathcal{C}^4(\overline{\Omega})}.$$

Idee. Bestimme den Wert von u bei randnahen Punkten (x,y) durch lineare Interpolation:

•
$$u(x,y) \approx \frac{s_r}{s_r + s_l} u(x - s_l h, y) + \frac{s_l}{s_r + s_l} u(x + s_r h, y)$$

•
$$u(x,y) \approx \frac{s_o}{s_u + s_o} u(x, y - s_u h) + \frac{s_u}{s_u + s_o} u(x, y + s_o h)$$

$$(RWP_2)_h'' \quad \left\{ \begin{array}{rcl} -\mathcal{D}_h u &=& f_h & \text{in } \Omega_h \\ u_h &=& g & \text{auf } \partial \Omega_h \end{array} \right.$$

$$(LGS_2)'' \qquad \qquad -\tilde{\mathcal{D}}_h \tilde{u}_h = \tilde{f}_h$$

Lem. Dieses Verfahren besitzt Konsistenzordnung (und somit Konvergenzordnung) 2.

Allgemeine Differentialoperatoren

Problem. Wir betrachten nun

(RWP₃)
$$\begin{cases} -\mathcal{L}u &= f & \text{in } \Omega = (0,1) \times (0,1) \\ u &= q & \text{auf } \partial \Omega \end{cases}$$

mit

$$-\mathcal{L}u = -(a_{11}(x,y)u_{xx} + 2a_{12}(x,y)u_{xy} + a_{22}(x,y)u_{yy})$$
$$+ b_1(x,y)u_x + b_2(x,y)u_y + c(x,y)u$$

wobei $c(x, y) \leq 0, \, \xi^T A(x, y) \xi \geq \lambda_0 \|\xi\|^2, \, \lambda_0 > 0 \text{ und}$

$$A(x,y) = \begin{pmatrix} a_{11}(x,y) & a_{12}(x,y) \\ a_{21}(x,y) & a_{22}(x,y) \end{pmatrix}$$

Verfahren. 1. Diskretisierung: h = 1/n, Ω_h , $\partial \Omega_h$ wie früher. 2. Approximation:

$$u_x(x,y) \approx \frac{u(x+h,y)-u(x-h,y)}{2h}, \qquad u_y(x,y) \approx \dots$$
$$u_{xx}(x,y) \approx \frac{u(x+h,y)-2u(x,y)+u(x-h,y)}{h^2}, \quad u_{yy}(x,y) \approx \dots$$

Für die Approx. von u_{xy} haben wir mehrere Möglichkeiten: Wir könnten etwa den zentralen DQ in x- und y-Richrung verwenden und erhalten

$$u_{xy}(x,y) \approx \frac{1}{4h^2} (u(x+h,y+h) - u(x+h,y-h) - u(x-h,y+h) + u(x-h,y-h))$$

Diese Annäherung hat allerdings den Nachteil, dass sie zu keiner M-Matrix führt. Stattdessen nehmen wir

$$u_{xy}(x,y) \approx \frac{1}{2h^2} \begin{pmatrix} 0 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{pmatrix} \frac{1}{2h^2} \begin{pmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$
für $a_{12} > 0$ für $a_{12} < 0$.

Wir fassen diese Approx. in folgendem 7-Stern zusammen:

$$-\mathcal{L}_h u := \frac{1}{h^2} \begin{pmatrix} a_{12}^- & |a_{12}| - a_{22} & a_{12}^+ \\ |a_{12}| - a_{11} & 2(a_{11} + a_{22} - |a_{12}|) & |a_{12}| - a_{11} \\ -a_{12}^+ & |a_{12}| - a_{22} & a_{12} \end{pmatrix} + \frac{1}{h} \begin{pmatrix} -b_2 & b_1 \\ b_2 & b_2 \end{pmatrix} + \begin{pmatrix} c & c \\ b_2 & b_1 \end{pmatrix}$$

Dabei ist $a_{ij}^+ := \max(a_{ij}, 0)$ und $a_{ij}^- := \min(a_{ij}, 0)$.

$$(RWP_3)_h \quad \left\{ \begin{array}{rcl} -\mathcal{L}_h u_h &=& f_h & \text{in } \Omega_h \\ u_h &=& g & \text{auf } \partial \Omega_h \end{array} \right.$$

$$(LGS_3) \qquad \left(-\tilde{\mathcal{L}}_h \tilde{u}_h = \tilde{f}_h \right)$$

Satz. Sei $|a_{12}| \leq \min(a_{11}, a_{22}), c \geq 0$ in Ω , \mathcal{L} gleichmäßig elliptisch. Falls $a_{ii} > |a_{12}| + \frac{h}{2}|b_i|$ für i = 1, 2 in Ω und $u \in \mathcal{C}^4(\overline{\Omega})$, so ist das DV (RWP₃)_h konvergent von der Ordnung 2.

Differenzenverfahren für parabolische DGLn Problem. Wärmeleitungsgleichung

$$(\text{RWP_4}) \quad \left\{ \begin{array}{ll} u_t(x,t) - \Delta_x u(x,t) &= f(x,t) \ \text{in} \ \Omega = (0,1) \times (0,T) \\ u(x,0) &= g(x) \quad \text{für } x \in (0,1) \\ u(0,t) &= g_0(t) \quad \text{für } t \in [0,T] \\ u(1,t) &= g_1(t) \quad \text{für } t \in [0,T] \end{array} \right.$$

Verfahren. 1. Diskretisierung mit n Raum- und m Zeitschritten:

$$x_i = ih, \ h = 1/n, \ t_k = k\tau, \ \tau = T/m, \ u(x_i, t_k) \approx u_i^k$$

2. Approximation der Ableitungen:

$$u_{xx}(x,t) \approx \frac{1}{h^2} (u(x-h,t) - 2u(x,t) + u(x+h,t)) =: \Delta_h u(x,t)$$

Wir wollen nun eine Lösung von

$$\begin{cases} \dot{u}_h(t) - \tilde{\Delta}_h u_h(t) &= f_h(t) \\ u_h(0) &= g_h \end{cases}$$

für alle Zeiten t mit

$$u_h(t) = \begin{pmatrix} u_h(h,t) \\ u_h(2h,t) \\ \vdots \\ u_h(1-h,t) \end{pmatrix}, \quad f_h(t) = \begin{pmatrix} f(h,t) + \frac{1}{h^2}g_0(t) \\ f(2h,t) \\ \vdots \\ f(1-h,t) + \frac{1}{h^2}g_1(t) \end{pmatrix}$$

berechnen. Dazu verwenden wir ein Einschrittverfahren, wie das expl./impl. Gauß-Verfahren oder das Crank-Nicolson-Verfahren:

$$\begin{aligned} & (\text{EEV}) & \left\{ \begin{array}{l} \frac{1}{\tau}(u_i^{k+1} - u_i^k) - \tilde{\Delta}_h u_i^k &= f_i^k \\ u_i^0 &= g_h \end{array} \right. \\ & (\text{IEV}) & \left\{ \begin{array}{l} \frac{1}{\tau}(u_i^{k+1} - u_i^k) - \tilde{\Delta}_h u_i^{k+1} &= f_i^{k+1} \\ u_i^0 &= g_h \end{array} \right. \\ & (\text{CNV}) & \left\{ \begin{array}{l} \frac{1}{\tau}(u_i^{k+1} - u_i^k) - \frac{1}{2}\tilde{\Delta}_h(u_i^k + u_i^{k+1}) &= f(x_i, t_k + \frac{\tau}{2}) \\ u_i^0 &= g_h \end{array} \right. \end{aligned}$$

Lem. Sei $f(x,-) \in C^1([0,T])$ für alle $x \in [0,1]$. Dann gilt für die Approximation von (RWP₄):

- Die Verfahren (EEV) und (IEV) besitzen einen Konsistenzfehler von $\mathcal{O}(h^2 + \tau)$, falls $u \in \mathcal{C}^4([0, 1] \times [0, T])$
- Das Verfahren (CNV) besitzt einen Konsistenzfehler von $\mathcal{O}(h^2 + \tau^2)$, falls $u \in \mathcal{C}^4([0, 1] \times [0, T])$.

Lem. Es gelte $2\tau \leq h^2$ für (EEV). Die Verfahren (EEV), (IEV) und (CNV) sind stabil.

Differenzenverfahren für hyperbolische DGLn Problem. Wellengleichung

$$\begin{cases} \partial_{tt} u - c^2 \partial_{xx} u = f(x,t) & \text{in } \Omega = (0,1) \times [0,T] \\ u(0,t) = g_0(t), \ u(1,t) = g_1(t) & \text{für } t \in [0,T] \\ u(x,0) = q_0(x), \ u_t(x,0) = q_1(x) & \text{für } x \in (0,1) \end{cases}$$

Verfahren. 1. Diskretisierung: $x_i = ih$, $h = \frac{1}{n}$, $t_k = k\tau$, $\tau = \frac{T}{m}$ 2. Approximation:

$$\begin{split} \partial_{xx} u(x_i, t_k) &\approx \frac{1}{h^2} \left(u(x_{i-1}, t_k) - 2u(x_i, t_k) + u(x_{i+1}, t_k) \right) \\ \partial_{tt} u(x_i, t_k) &\approx \frac{1}{\tau^2} \left(u(x_i, t_{k-1}) - 2u(x_i, t_k) + u(x_i, t_{k+1}) \right) \\ \partial_t u(x_i, 0) &\approx \frac{1}{2\tau} (u(x_i, t_1) - u(x_i, t_{-1})) \end{split}$$

Wir erhalten das lineare Gleichungssystem

$$\begin{cases} \frac{1}{\tau^2}(u_i^{k-1}-2u_i^k+u_i^{k+1})-\frac{c^2}{h^2}(U_{i-1}^k-2u_i^k+u_{i+1}^k)=f_i^k\\ \text{ für } i=1,\ldots,n-1 \text{ und } k=0,\ldots,m.\\ u_0^k=g_0^k=g_0(t_k),\quad u_n^k=g_1^k=g_1(t_k),\\ u_i^0=q_{0,i}=q_0(x_i),\quad \frac{1}{2\tau}(u_i^1-u_i^{-1})=q_{1,i}=q_1(x_i) \end{cases}$$

Bem. Das Differenzenverfahren ...

- \odot ... ist einfach in der Herleitung und Implementierung.
- ⊕ ... besitzt eine gute Konvergenz (z. B. Ordnung 2) bei genügend glatter Lösung.
- 😊 ... ermöglicht Adaptivität bzw. unregelm. Gitter nur schwer.

Schwache Lsgstheorie für elliptische DGLn

Def. Der L^p -Raum ist für $1 \le p < \infty$ definiert durch

$$L^p(\Omega) := \left\{ v: \Omega \to \mathbb{R} \, | \, \left\| v \right\|_p < \infty \right\} \quad \text{mit} \ \left\| v \right\|_p := \left(\int\limits_{\Omega} |v(x)|^p \, \mathrm{d}x \right)^{1/p},$$

für $p = \infty$ durch

$$L^{\infty}(\Omega) := \left\{v: \Omega \to \mathbb{R} \,|\, \left\|v\right\|_{\infty} < \infty\right\} \quad \text{mit} \ \left\|v\right\|_{\infty} := \underset{x \in \Omega}{\operatorname{ess \, sup}} |v(x)|.$$

 $Bem.~(L^p(\Omega),\|-\|_p)$ ist ein Banachraum, für p=2sogar ein Hilbertraum mit Skalarprodukt $\langle u,v\rangle_{L^2(\Omega)}\coloneqq\int\limits_{\Omega}u(x)v(x)\,\mathrm{d}x.$

Satz (Höldersche Ungleichung). Sei $u \in L^p(\Omega)$ und $v \in L^q(\Omega)$ mit $1 \le p, q, r \le \infty$ und $1/p + 1/q = \frac{1}{r}$. Dann ist $uv \in L^r(\Omega)$ mit

$$||uv||_r \le ||u||_p \cdot ||v||_q$$
.

 $\bf Def.$ Die Menge aller k-malstetig differenzierbaren Funktionen auf Ω mit kompaktem $\bf Träger$ ist

$$\mathcal{C}^k_0(\Omega) := \{ \varphi \in \mathcal{C}^k(\Omega) \mid \operatorname{supp}(\varphi) := \overline{\{ x \in \Omega \mid \varphi(x) \neq 0 \}} \text{ ist kompakt} \}.$$

Def. $\mathcal{D}(\Omega) := \mathcal{C}_0^{\infty}(\Omega)$ heißt Raum der **Testfunktionen** in Ω .

Lem (Partielle Integration). Für $u, v \in \mathcal{C}^1(\overline{\Omega})$ gilt

$$\int_{\Omega} v(x) \mathcal{D}_i u(x) dx = \int_{\partial \Omega} v(x) u(x) \eta_i(x) dx - \int_{\Omega} \mathcal{D}_i v(x) u(x) dx.$$

Für $u \in \mathcal{C}^k(\overline{\Omega}), \varphi \in \mathcal{C}_0^k(\Omega)$ und $\alpha = (\alpha_1, \dots, \alpha_n), |\alpha| \leq k$ gilt

$$\int\limits_{\Omega} \varphi(x) \mathcal{D}^{\alpha} u(x) \, \mathrm{d}x = (-1)^{|\alpha|} \int\limits_{\Omega} \mathcal{D}^{\alpha} \varphi(x) u(x) \, \mathrm{d}x.$$

Def. $L^1_{\text{loc}}(\Omega) \coloneqq \{v : \Omega \to \mathbb{R} \, | \, v|_K \in L^1(K) \text{ für jedes kpkte } K \subset \Omega \}$ heißt Raum der **lokal integrierbaren Funktionen**.

Def. Sei $u \in L^1_{loc}(\Omega)$ und $\alpha \in \mathbb{N}^n$. Eine Funktion $v \in L^1_{loc}(\Omega)$ heißt schwache (partielle) Ableitung von u (oder die Ableitung von u im distributionellen Sinn) der Ordung α , wenn

$$\int\limits_{\Omega} \varphi(x) v(x) \, \mathrm{d}x = (-1)^{|\alpha|} \int\limits_{\Omega} \mathcal{D}^{\alpha} \varphi(x) u(x) \, \mathrm{d}x \quad \text{für alle } \varphi \in \mathcal{D}(\Omega).$$

 $Bem.\$ Ist eine Funktion im klassischen Sinne differenzierbar, so auch im schwachen mit derselben Ableitung.

Lem (Fundamentallemma der Variationsrechung). Für $u \in L^1_{loc}$:

$$\int\limits_{\Omega} u(x)\varphi(x)\,\mathrm{d}x = 0 \ \forall \varphi \in \mathcal{D}(\Omega) \implies u \equiv 0 \text{ (fast-überall)}.$$

Kor. Die schwache Ableitung ist eindeutig bestimmt, d. h. sind $v,w\in L^1_{\mathrm{loc}}(\Omega)$ schwache Ableitungen von u, so gilt $v\equiv w$ f. ü. in Ω .

Bsp. Die schw. Abl. von u(x) = |x| ist $v(x) = \mathbb{1}_{(0,\infty)} - \mathbb{1}_{(-\infty,0)}$.

Lem. •
$$\mathcal{D}^{\alpha}(u + \lambda v) = \mathcal{D}^{\alpha}u + \lambda \mathcal{D}^{\alpha}v$$
 • $\mathcal{D}^{\alpha+\beta}u = \mathcal{D}^{\alpha}(\mathcal{D}^{\beta}u)$

Def. Der Sobolev-Raum für $1 \le p < \infty$ ist

$$W^{k,p}(\Omega) := \left\{ u \in L^p(\Omega) \mid \begin{array}{c} \forall \alpha \in \mathbb{N}^n \text{ mit } |\alpha| \le k : \\ \exists \text{ schwache Ableitung } \mathcal{D}^{\alpha} u \in L^p(\Omega) \end{array} \right\}$$

$$||u||_{k,p} := \left(\sum_{|\alpha| \le k} ||\mathcal{D}^{\alpha} u||_p^p\right)^{1/p}.$$

Notation. $H^k(\Omega) := W^{k,2}(\Omega)$

Satz. $(W^{k,p}(\Omega), \|-\|_{k,p})$ ist ein Banachraum.

 $Bem.\ H^k(\Omega)$ ist sogar ein Hilbertraum mit Skalarprodukt

$$\langle u, v \rangle_{H^k(\Omega)} := \int_{\Omega} \sum_{\alpha \le k} D^{\alpha} u D^{\alpha} v \, \mathrm{d}x.$$

Satz ("H = W"). $W^{k,p}(\Omega) \cap C^{\infty}(\Omega)$ liegt dicht in $W^{k,p}(\Omega)$, d. h.

$$\overline{W^{k,p}(\Omega)\cap\mathcal{C}^{\infty}(\Omega)}^{\|-\|_{k,p}}=W^{k,p}(\Omega).$$

Def. $W_0^{k,p}(\Omega) \coloneqq \overline{\mathcal{D}(\Omega)}^{\|-\|_{k,p}}, \quad H_0^1(\Omega) \coloneqq W_0^{1,2}(\Omega)$

Satz. Sei Ω ein beschränktes \mathcal{C}^1 -Gebiet und $1 \leq p < \infty$. Dann existiert eine lineare stetige Abbildung $\tau : W^{1,p}(\Omega) \to L^p(\partial\Omega)$, sodass für alle $u \in W^{1,p}(\Omega) \cap \mathcal{C}(\overline{\Omega})$ gilt: $\tau(u) = u|_{\partial\Omega}$.

Def. Die Abbildung τ heißt **Spuroperator**, $\tau(u)$ heißt die **Spur** von $u \in W^{1,p}(\Omega)$ auf $\partial\Omega$.

Satz. Sei Ω ein beschränktes \mathcal{C}^1 -Gebiet. Dann gilt

$$W_0^{1,p}(\Omega) = \{ v \in W^{1,p}(\Omega) \mid \tau(v) = 0 \}.$$

Def. Der **Dualraum** eines Banachraums $(U, ||-||_U)$ ist

 $U' := \{ \text{ lineare, stetige Abbildungen } \psi : U \to \mathbb{R} \} \text{ mit}$

$$\|\psi\|_{U'} \coloneqq \sup_{u \in U \setminus \{0\}} \frac{|\psi(u)|}{\|u\|_U} = \sup_{u \in U, \|u\|_U = 1} \psi(u).$$

Bsp. Gelte 1/p + 1/q = 1 mit $p, q \in (1, \infty)$. Dann ist die Abb.

$$j: L^q(\Omega) \to (L^p(\Omega))', \quad f \mapsto (g \mapsto \int_{\Omega} f(x)g(x) dx)$$

ist ein isometrischer Isomorphismus.

Notation. $\langle \psi, u \rangle_{U',U} := \psi(u)$ für $\psi \in U', u \in U$.

 ${\bf Satz} \ ({\bf Riesz's cher} \ {\bf Darstellungs satz}).$

Sei $(H, \langle -, - \rangle_H)$ ein Hilbertraum. Dann ist

$$j: H \to H', \quad \psi \mapsto (\phi \mapsto \langle \psi, \phi \rangle_H)$$

ein isometrischer Isomorphismus.

Def.
$$W^{-1,q} := (W_0^{1,p}(\Omega))'$$
, wobei $\frac{1}{p} + \frac{1}{q} = 1$, $H^{-1}(\Omega) := W^{-1,2} = (H_0^1(\Omega))'$.

Variationsgleichungen

Situation. Sei $\Omega \subset \mathbb{R}^d$ beschränkt. Wir betrachten nun wieder

$$(\text{RWP}_1) \quad \left\{ \begin{array}{l} \mathcal{L}u &= f & \text{in } \Omega \\ u &= 0 & \text{auf } \partial \Omega \end{array} \right.$$
 mit
$$\mathcal{L}u(x) = -\sum_{i=1}^d \mathcal{D}_i (\sum_{j=1}^d a_{ij}(x)\mathcal{D}_j u) + \sum_{i=1}^d b_i(x)\mathcal{D}_i u + c(x)u \\ = -\operatorname{div}(A(x)\mathcal{D}u) + b(x) \cdot \mathcal{D}u + c(x)u.$$

Sei u eine Lösung von (RWP₁) und $\phi \in \mathcal{D}(\Omega)$. Dann gilt

$$\int_{\Omega} f(x)\phi(x) dx = \int_{\Omega} \mathcal{L}u(x)\phi(x) dx$$

$$= -\int_{\Omega} \operatorname{div}(A(x)\mathcal{D}u(x))\phi(x) dx + \int_{\Omega} (b(x) \cdot \mathcal{D}u(x) + c(x)u(x)) \cdot \phi(x) dx$$

$$= \int_{\Omega} A(x)\mathcal{D}u(x) \cdot \mathcal{D}\phi(x) dx + \int_{\Omega} (b(x) \cdot \mathcal{D}u(x) + c(x)u(x)) \cdot \phi(x) dx$$

Def. Eine Funktion $u \in H_0^1(\Omega)$ heißt schwache Lösung von (RWP₁), wenn u folgende Variationsgleichung erfüllt:

$$\int_{\Omega} A(x) \mathcal{D}u(x) \cdot \mathcal{D}\phi(x) + b(x) \cdot \mathcal{D}u(x)\phi(x) + c(x)u(x)\phi(x) dx$$

$$= \int_{\Omega} f(x)\phi(x) dx \quad \text{für alle } \phi \in H_0^1(\Omega). \tag{VGL_1}$$

Sprechweise. Der Raum, in dem man u sucht, heißt Lsgsraum (oder Ansatzraum), der Raum von ϕ heißt Testraum.

Problem (Allg. Variationsproblem). Seien Abb. $\ell: H_0^1(\Omega) \to \mathbb{R}$ und $B: H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ gegeben. Gesucht ist $u \in H_0^1(\Omega)$, sodass

$$(VGL_1)'$$
 $B(u,\phi) = \ell(\phi) \quad \forall \phi \in H_0^1(\Omega).$

Bem. Im obigen Setting ist $\ell(\phi) := \int_{\Omega} f(x)\phi(x) dx$ und

$$B(u,\phi) := \int_{\Omega} A(x) \mathcal{D}u(x) \cdot \mathcal{D}\phi(x) + b(x) \cdot \mathcal{D}u(x)\phi(x) + c(x)u(x)\phi(x) dx$$

Def. Sei X ein Banachraum. Eine bilin. Abb. $B: X \times X \to \mathbb{R}$ heißt

- **positiv**, falls B(u, u) > 0 für alle $u \in X \setminus \{0\}$,
- stark positiv (oder koerziv), falls $\lambda > 0$ existiert, sodass

$$\forall u \in X : B(u, u) \ge \lambda ||u||_X^2,$$

• beschränkt (oder stetig), falls ein $\mu > 0$ existiert, sodass

$$\forall u, \phi \in X : |B(u, \phi)| < \mu ||u||_{Y} ||\phi||_{Y}.$$

Lem. • Die Abbildung B in $(VGL_1)'$ ist bilinear und beschränkt.

• Die Abbildung ℓ in $(VGL_1)'$ ist linear und stetig.

Satz. Sei Ω ein beschr. Lipschitz-Gebiet. Dann ist jede klassische Lsg $u \in \mathcal{C}^2 \cap \mathcal{C}^1(\partial \Omega)$ von (RWP₁) eine schwache Lsg von (VGL₁)'.

Eindeutige Lösung elliptischer DGLn

Satz (Lax-Milgram). Sei H ein Hilbertraum und $B: H \times H \to \mathbb{R}$ eine beschränkte, koerzitive Bilinearform. Dann gibt es für jedes $\ell \in H'$ eine eindeutige Lösung $u \in H$ von $\forall \phi \in H: B(u,\phi) = \ell(\phi)$. Es gilt $\|u\|_H \leq 1/\lambda \|\ell\|_{H'}$ mit der Koerzitivitätskonstante λ von B.

Lem (Poincaré-Ungleichung).

Sei $\Omega \subset \mathbb{R}^d$ beschränkt. Dann existiert eine Konstante C > 0, sodass

$$||u||_{L^2(\Omega)} \le C||\nabla u||_{L^2(\Omega,\mathbb{R}^d)} = C\left(\int_{\Omega} \sum_i |\mathcal{D}_i u|^2 \,\mathrm{d}x\right)^{1/2} \quad \forall \, u \in H^1_0(\Omega).$$

Kor. Mit $C_1 := (1 + C^2)^{-1/2}$ und $C_2 := 1$ gilt für alle $u \in H_0^1(\Omega)$: $C_1 \|u\|_{H^1(\Omega)} \le \|\nabla u\|_{L^2(\Omega, \mathbb{R}^d)} \le C_2 \|u\|_{H^1(\Omega)}$.

Lem. Falls $b(x) \equiv 0$ und $c(x) \geq 0$ in Ω , so ist B in $(VGL_1)'$ koerziv.

Satz. Sei $\Omega \subset \mathbb{R}^d$ beschränkt und sei $\mathcal{L}u = -\operatorname{div}(A(x)\mathcal{D}u) + c(x)u$ glm. elliptisch, $c(x) \geq 0$ in Ω , $a_{ij}, c_j \in L^{\infty}(\Omega)$ und $f \in L^2(\Omega)$. Dann besitzt $(\operatorname{VGL}_1)'$ eine eindeutige Lösung $u \in H^1_0(\Omega)$. Außerdem existiert ein $\hat{C} > 0$, sodass $\|u\|_{H^1(\Omega)} \leq \hat{C} \cdot \|f\|_{L^2(\Omega)}$.

Def. Sei $f \in H^{-1}(\Omega)$. Eine Fktn $u \in H_0^1(\Omega)$ heißt schwache Lösung von (RWP₁), falls $B(u,\phi) = \langle f,\phi \rangle_{H^{-1}(\Omega),H_0^1(\Omega)} \ \forall \ \phi \in H_0^1(\Omega)$.

Bem. Gelte $b\equiv 0,\ c\geq 0,$ glm. Elliptizität, $c,a_{ij}\in L^\infty(\Omega).$ Dann existiert nach Lax-Milgram genau eine schwache Lösung.

Lem. Sei A gleichmäßig elliptisch und $a_{ij}, b_i, c \in L^{\infty}(\Omega)$. Dann existiert ein $\mu_0 > 0$, sodass für alle $\mu > \mu_0$ das RWP

$$\left\{ \begin{array}{cccc} \mathcal{L}u + \mu u & = & f & \text{ in } \Omega \\ u & = & 0 & \text{ auf } \partial \Omega \end{array} \right.$$

für alle $f \in H^{-1}(\Omega)$ eine eindeutige Lösung $u \in H^1_0(\Omega)$ besitzt.

RWPe mit anderen Randbedingungen

Problem. Wir untersuchen nun das inhomogene Randwertproblem

$$(\text{RWP}_2) \quad \left\{ \begin{array}{rcl} \mathcal{L}u & = & f & \text{in } \Omega, \\ u & = & g & \text{auf } \partial \Omega. \end{array} \right.$$

Angenommen, $g \in \mathcal{C}(\partial\Omega) \cap L^2(\partial\Omega)$ besitzt eine Fortsetzung $\tilde{g} \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ mit $\tilde{g}|_{\partial\Omega} = g$. Dann ist $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ genau dann eine Lösung von (RWP₂), wenn $v \coloneqq u - \tilde{g}$ eine Lösung von

$$(RWP_2)' \quad \left\{ \begin{array}{rcl} \mathcal{L}v & = & f - \mathcal{L}\tilde{g} & \text{in } \Omega, \\ v & = & 0 & \text{auf } \partial\Omega \end{array} \right.$$

ist. Schwache Formulierung von (RWP₂)': Ges. ist $v \in H'_0(\Omega)$ mit $\int\limits_{\Omega} (A(x)\mathcal{D}v(x)\cdot\mathcal{D}\phi(x) + b(x)\cdot\mathcal{D}v(x)\phi(x) + c(x)v(x)\phi(x)) \,\mathrm{d}x$ $= \int\limits_{\Omega} f\cdot\phi\,\mathrm{d}x + \int\limits_{\Omega} (A(x)\mathcal{D}\tilde{g}\cdot\mathcal{D}\phi + b\cdot\mathcal{D}\tilde{g}\phi + c\tilde{g}\phi) \,\mathrm{d}x \quad \forall\,\phi\in H^1_0(\Omega).$

Voraussetzungen: $a_{ij}, b_i, c \in L^{\infty}(\Omega), f \in L^2(\Omega), \tilde{g} \in C(\overline{\Omega}) \cap H^1(\Omega)$ und $g \in L^2(\partial \Omega)$. Ges. ist ein $u \in U := \{w \in H^1(\Omega) \mid \tau(w) = g\}$ mit $\int_{\Omega} A(x) \mathcal{D}u \cdot \mathcal{D}\phi + b \mathcal{D}u\phi + cu\phi \, \mathrm{d}x = \int_{\Omega} f\phi \, \mathrm{d}x \quad \forall \phi \in H^1_0(\Omega). \text{ (VGL}_2)$ $\underbrace{\int_{\Omega} F(u,\phi) := \int_{\Omega} f\phi \, \mathrm{d}x}_{B(u,\phi) := \Omega} = \underbrace{\int_{\Omega} f\phi \, \mathrm{d}x}_{\ell(\phi) := \Omega} = \underbrace{\int_{\Omega} f\phi \, \mathrm{d}x}_{\ell(\phi) := \Omega}$

Für $f \in H^{-1}(\Omega)$ verwendet man

$$B(u,\phi) = \ell'(\phi) := \langle f, \phi \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} \quad \forall \phi \in H_0^1(\Omega). \quad \text{(VGL}_2)'$$

Satz. Sei $B: H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ beschränkt und koerziv. Dann besitzt (VGL₂) genau dann eine eindeutige Lösung $u \in U$, wenn ein $u_0 \in H^1(\Omega)$ existiert, sodass $\tau(u_0) \equiv g$ f. ü. auf $\partial\Omega$.

Problem. Wir betrachten nun die Randbedingung

$$\begin{array}{ccccc} \text{(RWP_3)} & \left\{ \begin{array}{cccc} \mathcal{L}u & = & f & \text{in } \Omega, \\ A(x)\mathcal{D}u \cdot \nu + \mu u & = & g & \text{auf } \partial \Omega \text{ (glatt)} \end{array} \right. \\ \end{array}$$

Falls $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ eine Lösung ist und $\phi \in \mathcal{C}^{\infty}(\overline{\Omega})$, so gilt

$$\begin{split} & \int\limits_{\Omega} f \phi \, \mathrm{d}x = - \int\limits_{\Omega} \mathrm{div}(A(x) \mathcal{D}u) \phi + b(x) \mathcal{D}u \phi + c(x) u \phi \, \mathrm{d}x \\ = - \int\limits_{\partial \Omega} A(x) \mathcal{D}u \cdot \nu \phi \, \mathrm{d}s + \int\limits_{\Omega} A(x) \mathcal{D}u \mathcal{D}\phi + b(x) \mathcal{D}u \phi + c(x) u \phi \, \mathrm{d}x. \end{split}$$

Aus der Randbedingung bekommen wir

$$\int_{\partial \Omega} A(x) \mathcal{D} u \cdot \nu \phi \, \mathrm{d} s + \mu \int_{\partial \Omega} u \phi \, \mathrm{d} s = \int_{\partial \Omega} g \phi \, \mathrm{d} s$$

Zusammengesetzt erhalten wir die Variationsgleichung

$$\mu \int_{\partial \Omega} u\phi \, \mathrm{d}s + \int_{\Omega} A \mathcal{D}u \mathcal{D}\phi + b \cdot \mathcal{D}u\phi + cu\phi \, \mathrm{d}x = \int_{\Omega} f\phi \, \mathrm{d}x + \int_{\partial \Omega} g\phi \, \mathrm{d}s.$$

Wegen Dichtheit von $\mathcal{C}^{\infty}(\overline{\Omega})$ in $H^1(\Omega)$ ist diese Gleichung nicht nur für $\phi \in \mathcal{C}^{\infty}(\overline{\Omega})$ sondern allgemeiner für $\phi \in H^1(\Omega)$ erfüllt.

Def. Sei $\mu \in \mathbb{R}$, $f \in L^2(\Omega)$, $g \in L^2(\partial \Omega)$. Eine Fktn $u \in H^1(\Omega)$ heißt schwache Lösung von (RWP₃), falls für alle $\phi \in H^1(\Omega)$ gilt:

$$\underbrace{\mu\int\limits_{\Omega}u\phi\,\mathrm{d}s+\int\limits_{\Omega}A\mathcal{D}u\mathcal{O}\phi+b\mathcal{D}u\phi+cu\phi\,\mathrm{d}x}_{B(u,\phi):=}=\underbrace{\int\limits_{\Omega}f\phi\,\mathrm{d}x+\int\limits_{\partial\Omega}g\phi\,\mathrm{d}s}_{\ell(\phi):=}.$$

Approximation von Variationsgleichungen

Verfahren. Gegeben sei ein Hilbertraum H, eine beschränkte, koerzive Bilinearform $B: H \times H \to \mathbb{R}$ und ein $\ell \in H'$. Gesucht ist eine Lösung $u \in H$ der Variationsgleichung

(VGL)
$$B(u, \varphi) = \ell(\varphi) \quad \forall \varphi \in H.$$

Wir wollen diese Lösung annähern durch die Lösung eines möglichst ähnlichen, aber endlichdim. Problems. Dazu wählen wir einen endlichdim. Unterraum $U_n \subset H$ (dieser ist wieder ein Hilbertraum), eine beschränkte, koerzitive Bilinearform $B_n: U_n \times U_n \to \mathbb{R}$ und ein Element $\ell_n \in U'_n$. Wir bestimmen dann die Lösung u_n von

$$(VGL)_n$$
 $B_n(u_n, \varphi) = \ell_n(\varphi) \quad \forall \varphi \in U_n.$

Fragen. 1. Wie berechnet man die Lösung u_n von $(VGL)_n$? 2. Wie kann man U_n , B_n und ℓ_n wählen, sodass $u_n \xrightarrow[n \to \infty]{} u$?

Def. Die Approximation von (VGL) mittels (VGL)_n mit $U_n \subset H$ und $B_n = B|_{U_n \times U_n}$ heißt konforme Approximation von (VGL). Eine solche Methode wird als **Verfahren von Ritz** bezeichnet.

Vorgehen. Um die Lösung u_n von $(VGL)_n$ zu berechnen, wählen wir zunächst eine Basis w_1, \ldots, w_{d_n} von U_n . Wir setzen

$$\hat{\ell} := (\ell_n(w_1), \dots, \ell_n(w_{d_n}))^T \in \mathbb{R}^{d_n}, \quad \text{und}$$
$$\hat{B} := (B_{ij}) \in \mathbb{R}^{d_n \times d_n} \quad \text{mit} \quad B_{ij} := B(w_i, w_j).$$

Dann ist $u_n = \gamma_1 w_1 + \ldots + \gamma_{d_n} w_{d_n} \in U_n$ genau dann eine Lösung von (VGL)_n, wenn $\gamma = (\gamma_1, \ldots, \gamma_{d_n})^T \in \mathbb{R}^{d_n}$ erfüllt:

$$\hat{B}\gamma = \hat{l}$$
 (Galerkin-Gleichung).

Lem (Céa). Für die Lsgn u_n der konformen Approximation (VGL)_n und die Lösung u von (VGL) gilt

$$||u_n - u||_H \le C \left(\inf_{v \in U_n} ||u - v||_H + ||\ell_n - \ell||_{U_n'}\right)$$

Folgerung. Für $u_n \xrightarrow[n \to \infty]{} u$ genügt es, U_n u. ℓ_n so zu wählen, dass

$$\forall u \in H : \inf_{v_n \in U_n} \|u - v_n\|_H \xrightarrow[n \to \infty]{} 0, \qquad \|\ell_n - \ell\|_{U_n'} \xrightarrow[n \to \infty]{} 0.$$

Bem. Ist $\ell(\phi)$ durch Integration einer Funktion gegeben, so kann man für $\ell_n(\phi)$ eine Annäherung dieses Integrals etwa mittels der summierten Trapezregel verwenden.

Bem. Wir betrachten (VGL₁). Es gibt mehrere sinnvolle Möglichkeiten, die Basiselemente w_i zu wählen. Man versucht dabei zu erreichen, dass die Matrix \hat{B} möglichst einfach (wenige von null verschiedene Einträge) und gut konditioniert ist.

- 1. Angenommen, es gibt eine Basis von Eigenfunktionen w_j von \mathcal{L} , $\mathcal{L}w_j = \lambda_j w_j$, die in $L^2(\Omega)$ eine Orthonormalbasis bilden. Dann ist \hat{B} eine Diagonalmatrix mit Einträgen λ_j . Beispielsweise ist $w_j(x) := \sin(\pi j x)$ eine EF von $\mathcal{L} := -\Delta$ auf $\Omega = (0, 1)$ zum EW $\pi^2 j^2$ und es gilt $\langle w_i, w_j \rangle_{L^2(\Omega)} = 0$ für $i \neq j$.
- 2. $U_n := \operatorname{span}\{w_j(x) = x^j(1-x) \mid j=1,\ldots,n\} \subset H_0^1(\Omega)$ (Das ist eine schlechte Wahl, da dann \hat{B} vollbesetzt.)
- 3. Wir unterteilen $\Omega = (0,1)$ durch das Gitter $0 = x_0 < x_1 < \ldots < x_n < x_{n+1} = 1, \ x_i = ih \ \text{mit} \ h = 1/n+1,$ $U_n := \{v \in \mathcal{C}(0,1) \, | \, \forall i : v|_{[x_{i-1},x_i]} \in \mathbb{P}_1[x], v(0) = v(1) = 0\}$

Eine Basis von
$$U_n$$
 sind die Hutfunktionen

Wir betrachten die VGL zu (RWP₁) mit $g_0 = g_1 = 0$. Wenn wir ℓ durch die Trapezregel approximieren, erhalten wir

$$\hat{B} = \frac{1}{h} \begin{pmatrix} 2 & -1 & & & & 0 \\ -1 & 2 & -1 & & & & \\ & -1 & 2 & -1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \\ 0 & & & & -1 & 2 \end{pmatrix}, \quad \ell_n(w_j) = hf(x_j),$$

also das Finite-Differenzen-Verfahren.

Methode der Finiten Elemente (FEM)

Ziel. (VGL) mittels (VGL)_n approximieren.

Idee. Zerlege Ω in endlich viele Teilgebiete. Wir wählen U_n als Raum der Funktionen, die sich als Linearkombination von Basisfktn schreiben lassen, deren Träger nur auf wenige Teilgebiete umfasst.

Bem. Als Teilgebiete verwendet man in \mathbb{R}^1 regelmäßige Teilintervalle, in \mathbb{R}^2 Dreiecke oder Rechtecke und in \mathbb{R}^3 Tetraeder. Als lokale Ansatzfunktionen über den Teilgebieten verwenden wir Polynome. Globale Ansatzf
ktn über Ω sind lokale Ansatzfktn mit bestimmten Glattheitsbedingungen am Rand der Teilgebiete.

Def. Ein finites Element (FE) in \mathbb{R}^d ist ein Tripel (K, P, Σ) mit

- $K \subset \mathbb{R}^d$ ist kompakt. ∂K ist Lipschitz-stetig.
- P ist ein endlichdim. lin. Raum von Funktionen $p \in \mathcal{C}^s(K,\mathbb{R})$
- $\Sigma = \{b_1, \ldots, b_m\}$ mit $b_i \in (\mathcal{C}^s(K, \mathbb{R}))'$ ist *P*-unisolvent, d. h.

$$\forall \alpha \in \mathbb{R}^m : \exists! p \in P : b_j(p) = \alpha_j, \ j = 1, \dots, m$$

Bem. Σ ist P-unisolvent $\iff \Sigma$ ist Basis von $P' \subset (\mathcal{C}^s(K,\mathbb{R}))'$

Lem. • Sei $\Sigma = \{b_1, \ldots, b_m\}$ P-unisolvent.

- $-b_1, \ldots b_m$ sind linear unabhängig.
- Sei $p_i \in P$ so gewählt, dass $b_i(p_i) = \delta_{ij}$. Dann ist $\{p_1, \ldots, p_m\}$ eine Basis von P.
- Sei $\{p_1,\ldots,p_m\}$ eine Basis von P und seien $b_i\in (\mathcal{C}^s(K,\mathbb{R}))'$ mit $b_i(p_i) = \delta_{i,i}, i, j = 1, \dots, m$. Dann ist $\{b_1, \dots, b_m\}$ P-unisolvent.

Finite Elemente vom Lagrange-Typ

Def. Der d-Simplex mit Ecken $a_1, \ldots, a_{d+1} \in \mathbb{R}^d$ ist

$$K = \{x = \sum_{j=1}^{d+1} \mu_j a_j \mid 0 \le \mu_j \le 1, j = 1, \dots, d+1, \sum_{j=1}^{d+1} \mu_j = 1\} \subset \mathbb{R}^d.$$

Dabei heißen μ_1, \dots, μ_{d+1} baryzentrische Koordinaten von x. K heißt nicht entartet, falls a_1, \ldots, a_{d+1} affin unabhängig sind. Das Simplex mit den Ecken $a_j = e_j \in \mathbb{R}^d$, j = 1, ..., d, und $a_{d+1} = 0$ heißt d-Einheitssimplex \hat{K} .

Bspe. Ein nichtentartetes Simplex im \mathbb{R}^1 ist ein geschlossenes Intervall, im \mathbb{R}^2 ein Dreieck und im \mathbb{R}^3 ein Tetraeder.

Lem. Jedes nicht entartete d-Simplex K ist affin äquivalent zu \hat{K} : Es gibt genau eine Abb. $F: \hat{K} \to K, \ \hat{x} \mapsto A_K \hat{x} + b_K$ mit einer Matrix $A_K \in GL(d)$, sodass $F(e_i) = a_i$ und $F(0) = a_{d+1}$.

Def. Ein simpliziales finites Element vom Lagrange-Typ der Ordnung k ist ein Tripel (K, P, Σ) mit

- einem d-Simplex K mit Ecken a_1, \ldots, a_{d+1} ,
- $P = \mathbb{P}_k := \mathbb{R}[x_1, \dots, x_d]_{\leq k} = \{\text{Polynome vom Grad} \leq k\}$
- $\Sigma = \{b_a : P \to \mathbb{R}, p \mapsto p(a) \mid a \in \mathcal{K}_k\}$ mit der Knotenmenge

$$\mathcal{K}_k = \{ x = \sum_{j=1}^{d+1} \mu_j a_j \mid \sum_{j=1}^{d+1} \mu_j = 1, \ \mu_j \in \{0, \frac{1}{k}, \dots, \frac{k-1}{k}, 1\} \}.$$

Bemn. • Sei K ein d-Simplex. Dann ist $\dim(\mathbb{P}_k) = |\mathcal{K}_k| = \binom{k+d}{r}$.

• Die kanonische Basis von \mathbb{P}_1 für $\hat{K} \subset \mathbb{R}^d$ ist

$$\hat{p}_i(\hat{x}) = \hat{x}_i \text{ für } i = 1, \dots, d, \qquad \hat{p}_{d+1}(\hat{x}) = 1 - \hat{x}_1 - \dots - \hat{x}_d.$$

Dann bilden die $\hat{b}_i \in \Sigma$ eine Dualbasis der \hat{p}_i , d. h. $\hat{b}_i(\hat{p}_i) = \delta_{ij}$.

• Die duale Basis von \mathbb{P}_2 zu Σ für $\hat{K} \subset \mathbb{R}^d$ ist

$$\begin{aligned} & \{ \hat{p}_i \mid i \in \{1, \dots, d+1\} \} \cup \{ \hat{p}_{ij} \mid i \neq j \in \{1, \dots, d+1\} \} \quad \text{wobei} \\ & \hat{p}_i(\hat{x}) = \mu_j(\hat{x}) (2\mu_j(\hat{x}) - 1), \quad \hat{p}_{ij}(\hat{x}) = 4\mu_i(\hat{x})\mu_j(\hat{x}), \\ & \mu_i(\hat{x}) = \hat{x}_i \text{ für } i = 1, \dots, d, \quad \mu_{d+1}(\hat{x}) = 1 - \hat{x}_1 - \dots - \hat{x}_d \end{aligned}$$

- Kanonische Basiselemente $p_1, \dots, p_m \in \mathbb{P}_k$ für einen allgemeinen Simplex $K \subset \mathbb{R}^d$ kann man wie folgt berechnen:
- 1. Finde eine affin lineare Bijektion $F: \hat{K} \to K$ wie früher.
- 2. Setze $p_i(x) := \hat{p}_i(F^{-1}(x))$ für $i = 1, \dots, m$.

Räume von Finite-Elemente-Funktionen auf Ω

Def. Sei $\Omega \subset \mathbb{R}^d$ ein beschränktes, polygonal berandetes Gebiet. Eine **Triangulierung** von Ω mit simplizialen finiten Elementen vom Lagrange-Typ der Ordnung k ist eine endliche Menge

$$T(\overline{\Omega}) = \{(K_i, P(K_i), \Sigma(K_i)) | i = 1, \dots, N\}$$
 mit

- $(K_i, P(K_i), \Sigma(K_i))$ sind simpl. El. vom Lagrange-Typ der Ord. k,
- $\operatorname{int}(K_i) \cap \operatorname{int}(K_i) = \emptyset$ für $i \neq j$, • $\overline{\Omega} = K_1 \cup \ldots \cup K_N$.
- Jede Seite von K_i , d. h. jedes von d Eckpunkten von K_i aufgespannte (d-1)-dimensionale Simplex, ist entweder Teil des Gebietrandes $\partial\Omega$ oder gleichzeitig Seite eines anderen Simplex K_i .

Def. Die Knotenmenge von $T(\overline{\Omega})$ ist die Vereinigung der Knotenmengen der simpl. FE, d. h. $\mathcal{K}_k = \mathcal{K}_k(K_1) \cup \ldots \cup \mathcal{K}_k(K_N)$

Def. Der Raum der finiten Elemente zu einer Triang. $T(\overline{\Omega})$ von Ω mit simplizialen FE vom Lagrange-Typ der Ordnung k und Knotenmenge $\mathcal{K}_k = \{\tilde{a}_1, \dots, \tilde{a}_n\}$ ist

$$U_n = \{ v \in \mathcal{C}(\overline{\Omega}) \mid v | K_i \in \mathbb{P}_1(K_i) \text{ für } i = 1, \dots, N \}.$$

Satz (k=1). Sei U_n der Raum der linearen finiten Elemente zu einer Triang. $T(\overline{\Omega})$ mit simpl. FE vom Lagrange-Typ der Ord. 1.

• Sei K ein nichtentart. d-Simplex mit Ecken a_1, \ldots, a_{d+1} . Dann ist durch $p(a_i), \ldots, p(a_{d+1})$ ein Polynom $p \in \mathbb{P}_1(K)$ eindeutig bestimmt. Für alle $p \in \mathbb{P}_1(K)$ und $x \in K$ gilt

$$p(x) = p(a_1)p_1(x) + \ldots + p(a_{d+1})p_{d+1}(x)$$
. wobei $p_i(a_j) = \delta_{ij}$.

- Sind $\mathcal{K} = \{\tilde{a}_1, \dots, \tilde{a}_n\}$ die Knoten der Triangulierung, so ist eine Funktion $v \in U_n$ durch die Vorgabe von $v(\tilde{a}_1), \ldots, v(\tilde{a}_n)$ eindeutig definiert. Es gilt $U_n \subset H^1(\Omega)$.
- Eine Basis von U_n ist gegeben durch die Funktionen $p_i \in U_n$ mit $p_i(\tilde{a}_i) = \delta_{ij}$ für $i, j = 1, \dots, n$. Insbesondere gilt dim $U_n = n$.

Satz (k > 1). Sei $T(\overline{\Omega})$ eine Triangulierung mit finiten Lagrange-Elementen der Ordnung k, U_n der zugehörige Raum der FE und \mathcal{K}_k die Knotenmenge von $T(\overline{\Omega})$. Dann ist durch Vorgabe von $v|_{\mathcal{K}_k}$ eindeutig ein $v \in U_n \subset H^1(\Omega)$ bestimmt. Eine Basis von U_n ist durch $p_i \in U_n$ mit $p_i(\tilde{a}_i) = \delta_{ij}$, $i, j = 1, \ldots, n$, gegeben.

Verfahren (Realisierung der Finite-Elemente-Methode).

- 1. Eingabe und Beschreibung des RWPs
- 2. Umformulierung in ein Variationsproblem
- 3. Generierung einer Triangulierung. Entweder uniforme Zerlegung oder Zerlegung mit lokaler Verfeinerung von Ω .
- 4. Erzeugung eines endlich-dim. Problems, d. h. Berechnen der Koeffizientenmatrix und der rechten Seite der Galerkin-Gleichung
- 5. Lösung der Galerkin-Gleichung

Konvergenz der FE-Methode

Def. Sei (K, P, Σ) ein finites Element, $P \subset \mathcal{C}^s(K)$. Dann heißt $\Pi_K w$ P-Interpolierende einer Fktn $w \in \mathcal{C}^s(K)$, falls

• $\Pi_K w \in P$. • $b_i(\Pi_K w) = b_i(w)$ für jedes $b_i \in \Sigma$.

Bem. • Ist p_1, \ldots, p_m eine zu Σ duale Basis von P, d. h. $b_i(p_j) = \delta_{ij}$, so gilt $\Pi_K w = \sum_{i=1}^m b_i(w) p_i$.

- Für Lagrange-FE gilt $w(\tilde{a}_i) = b_i(w) = b_i(\Pi_K w) = \Pi_K w(\tilde{a}_i)$
- $\forall p \in P : \Pi_K p = p$

Def. Sei U_n ein FE-Raum zu einer Triangulierung $T(\overline{\Omega})$ und sei $\{p_1,\ldots,p_n\}$ die kanonische Basis von U_n , d. h. $b_i(p_i)=\delta_{ij}$. Die U_n -Interpolierende einer Funktion $w \in \mathcal{C}^s(\overline{\Omega})$ ist dann

$$\Pi w \coloneqq \sum_{i=1}^{n} b_i(w) p_i \in U_n.$$

 $\begin{array}{ll} \textbf{Lem.} \ \ \text{Für alle} \ K_i \in T(\overline{\Omega}) \ \text{und} \ w \in \mathcal{C}^s(\overline{\Omega}) \ \text{gilt} \ (\Pi w)|_K = \Pi_{K_i}(w|_{K_i}) \\ \text{und somit} \ \|w - \Pi w\|_{H^1(\Omega)} = \sum\limits_{K_i \in T(\overline{\Omega})} \|w - \Pi_{K_i} w\|_{H^1(K_i)}. \end{array}$

Lem. Sei $F: \hat{K} \to K$ mit $F(\hat{x}) = A\hat{x} + b$, $A \in GL(d)$, und $l \in \mathbb{N}$.

• Es existiert eine Konstante c > 0, sodass

$$|v \circ F|_{H^{l}(\hat{K})} \leq c \cdot ||A||_{2}^{l} \cdot \frac{1}{\sqrt{|\det(A)|}} \cdot |v|_{H^{l}(K)}$$
$$|\hat{v} \circ F^{-1}|_{H^{l}(K)} \leq c \cdot ||A^{-1}||_{2}^{l} \cdot \sqrt{|\det(A)|} \cdot |\hat{v}|_{H^{l}(\hat{K})}$$

für alle $v \in H^l(K)$ bzw. $\hat{v} \in H^l(\hat{K})$ gilt, wobei

$$|v|_{H^{l}(K)} \coloneqq \left(\int_{K} \sum_{|\alpha|=l} \|\mathcal{D}^{\alpha} v\|^{2} \, \mathrm{d}x \right)^{1/2}$$

eine Seminorm auf $H^l(K)$ ist.

• Es gilt $v \in H^l(K) \iff v \circ F \in H^l(\hat{K})$

Def. Sei K ein d-Simplex mit Ecken a_1, \ldots, a_{d+1} . Wir definieren:

$$h(K) := \max_{i,j=1}^{d+1} |a_i - a_j|$$

 $\sigma(K) := h(K)/\rho(K) > 1$

Durchmesser

$$\rho(K) := 2 \sup \{R > 0 \mid \exists x \in K : B_R(x) \subseteq K\}$$
 Innendurchmesser

(misst "Spitzheit")

Lem. Sei der d-Simplex K affin äquivalent zu \hat{K} vermöge $F: \hat{K} \to K, \ \hat{x} \mapsto A\hat{x} + b, \ A \in GL(d)$. Dann gilt:

$$||A||_2 \le h(K)/\rho(\hat{K}), \qquad ||A^{-1}||_2 \le h(\hat{K})/\rho(K).$$

Lem. Sei k > 0. Dann existiert eine Konstante c > 0, sodass

$$\inf_{\hat{p}\in\mathbb{P}_k(\hat{K})}\|\hat{v}-\hat{p}\|_{H^{k+1}(\hat{K})}\leq c\cdot|\hat{v}|_{H^{k+1}(\hat{K})}\qquad\forall\,\hat{v}\in H^{k+1}(\Omega).$$

Satz (Abschätzung des lokalen Interpolationsfehlers). Seien $(\hat{K}, P(\hat{K}), \Sigma(\hat{K}))$ ein finites Element vom Lagrange-Typ. Dann existiert ein $c_K > 0$, sodass für alle zu $(\hat{K}, P(\hat{K}), \Sigma(\hat{K}))$ affin äquivalente FE $(K, P(K), \Sigma(K))$ und für alle $v \in H^{k+1}(K)$ gilt:

$$|v - \Pi_k v|_{H^r(K)} \le c_K \frac{h(K)^{k+1}}{\rho(K)^r} |v|_{H^{k+1}(K)}$$

$$\begin{split} \text{falls } 0 & \leq r \leq k+1, \, H^{k+1}(\hat{K}) \hookrightarrow \mathcal{C}^s(\hat{K}) \text{ und } \\ \mathbb{P}_k(\hat{K}) & \subseteq P(\hat{K}) \subset H^r(\hat{K}). \end{split}$$

TODO: genauer formulieren

Kor. Seien die Voraussetzungen des letzten Satzes für das finite Element $(\hat{K}, P(\hat{K}), \Sigma(\hat{K}))$ erfüllt. Sei eine Familie von zu diesem affin äquivalenten finiten Elementen $(K_i, P(K_i), \Sigma(K_i))_{i \in I}$ gegeben. Dann existiert eine Konstante $\tilde{c}_K > 0$, sodass für alle Elemente K_i der Familie mit $h(K_i) \leq 1$ und für alle $v \in H^{k+1}(K_i)$ gilt:

$$||v - \Pi_k v||_{H^r(K_i)} \le \tilde{c}_K \frac{h(K_i)^{k+1}}{\rho(K_i)^r} |v|_{H^{k+1}(K_i)}$$
$$= \tilde{c}_K \sigma(K_i)^r h(K_i)^{k+1-r} |v|_{H^{k+1}(K_i)}.$$

TODO: was ist r?

Bspe. Das letzte Korollar liefert für FE vom Lagrange-Typ:

	Ordnung	k = 1	k=2
Voraussetzungen	Regularität für v	$H^2(K)$	$H^3(K)$
	Beschränkung für d	$d \leq 3$	$d \leq 5$
	Beschränkung für r	$0 \le r \le 2$	$0 \le r \le 3$
Konvergenz	$ v - \Pi v _{H^r(K)}$	$\mathcal{O}(h^{2-r})$	$\mathcal{O}(h^{3-r})$

 $H'_0(\Omega) \subseteq U \subseteq H^1(\Omega)$, U ist der Lösungsraum

Voraussetzungen. Wir suchen die Lösung von (VGL) im Lösungsraum U mit $H^1_0(\Omega) \subseteq U \subseteq H^1(\Omega)$. Es gelte:

- $\begin{array}{ll} (\mathrm{V}_1) \ \ \overline{\Omega} \ \mathrm{ist} \ \mathrm{ein} \ \mathrm{Polyeder} \ \mathrm{und} \ \mathcal{T} = (T_n(\overline{\Omega}))_{n \in \mathbb{N}} \ \mathrm{ist} \ \mathrm{eine} \ \mathrm{Familie} \ \mathrm{von} \\ \mathrm{Triangulierungen} \ \mathrm{von} \ \Omega. \ \mathrm{Es} \ \mathrm{sei} \ \mathcal{T} \ \mathbf{regulär}, \ \mathrm{d}. \ \mathrm{h}. \ \mathrm{es} \ \mathrm{existiert} \\ \mathrm{eine} \ \mathrm{Konstante} \ \sigma_0 > 0, \ \mathrm{sodass} \ \sigma(K) \leq \sigma_0 \ \mathrm{für} \ \mathrm{alle} \ n \in \mathbb{N} \ \mathrm{und} \\ K \in T_n(\overline{\Omega}) \ \mathrm{und} \ \mathrm{es} \ \mathrm{gilt} \ h_n \coloneqq \max_{K \in T_n(\overline{\Omega})} h(K) \xrightarrow[n \to \infty]{} 0. \end{array}$
- (V₂) Alle finiten Elemente $(K, P(K), \Sigma(K))$ der Familie \mathcal{T} sind affin äquivalent zu einem Referenzelement $(\hat{K}, P(\hat{K}), \Sigma(\hat{K}))$.
- (V_3) $U_n \subset \mathcal{C}(\overline{\Omega})$ ist der FE-Funktionenraum zu $T_n(\overline{\Omega})$.
- (V₄) Für $k+1 \ge r \ge 0$ gilt $H^{k+1}(\hat{K}) \hookrightarrow \mathcal{C}(\hat{K})$ und $\mathbb{P}_k(\hat{K}) \subseteq P(\hat{K}) \subseteq H^r(\hat{K})$.

Satz. Seien obige Voraussetzungen erfüllt. Sei $\Pi_n: U \to U_n$ der zu $T_n(\overline{\Omega})$ gehörende U_n -Interpolationsoperator. Dann existiert ein c > 0, sodass für alle $0 \le l \le r$, $n \in \mathbb{N}$ und $v \in H^{k+1}(\Omega) \cap U$ gilt:

$$\left(\sum_{K \in T_n(\overline{\Omega})} \|v - \Pi_n v\|_{H^l(K)}^2\right)^{1/2} \le c \cdot h_n^{k+1-l} \cdot |v|_{H^{k+1}(\Omega)}.$$

Bemn. Für $l = 0 \le r$ gilt $U_n \subset L^2(\Omega)$ und

$$\|v - \Pi_n v\|_{L^2(\Omega)} = \left(\sum_{K \in T_n(\overline{\Omega})} \|v - \Pi_K v\|_{L^2(K)}^2 \right)^{1/2} \le c \cdot h_n^{k+1} \cdot |v|_{H^{k+1}(\Omega)}.$$

Für $l = 1 \le r$ gilt $U_n \subset H^1(\Omega)$ und

$$||v - \Pi_n v||_{H^1(\Omega)} = \left(\sum_{K \in T_n(\overline{\Omega})} ||v - \Pi_K v||_{H^1(K)}^2 \right)^{1/2} \le c \cdot h_n^k \cdot |v|_{H^{k+1}(\Omega)}.$$

Satz (Konvergenz der konformen Approximation). Seien die Voraussetzungen $(V_1) - (V_3)$ und (V_4) mit r=1 erfüllt. Dann gilt für die Lösung u von (VGL) und die Lösung u_n der konformen Approximation $(VGL)_n$ mit $\ell_n = \ell|_{U_n}$ die Abschätzung

$$||u - u_n||_{H^1(\Omega)} \in \mathcal{O}(h_n^k \cdot |u|_{H^{k+1}(\Omega)})$$
 falls $u \in H^{k+1}(\Omega)$.

Bsp. Für k = 1, $u \in H^2(\Omega)$ ist die Konvergenzordnung bloß 1.

Bem. Die konforme Approximation von u hat (nach bisherigem Kenntnissstand) im Vergleich zur Interpolation von u eine um eins schlechtere Konvergenzordnung:

$$||u - u_n||_{L^2(\Omega)} \le ||u - u_n||_{H^1(\Omega)} \in \mathcal{O}(h_n^k \cdot |u|_{H^{k+1}(\Omega)})$$

$$||u - \Pi_n u||_{L^2(\Omega)} \in \mathcal{O}(h_n^{k+1} \cdot |u|_{H^{k+1}(\Omega)})$$

Dieser Missstand lässt sich mit weiteren Voraussetzungen beheben:

Lem (Aubin-Nitsche). Seien U und H Hilberträume, $E:U\to H$ eine stetige inj. Einbettung und $U_n\subset U$ ein endlichdim. Teilraum. Sei $B:U\times U\to \mathbb{R}$ eine stetige, koerzitive Bilinearform und $\ell\in U'$. Seien $u\in U,\ u_n\in U_n$ die Lösungen (VGL) bzw. (VGL)_n. Dann gilt

$$||E(u-u_n)||_H \le c_B \cdot ||u-u_n||_U \cdot \sup_{r \in H \setminus \{0\}} \frac{\inf_{w \in U_n} ||w(r)-w||_U}{||r||_H},$$

wobei $w(r) \in U$ für $r \in H$ die Lösung des adjungierten Problems

$$B(\phi, w(r)) = \langle E(\phi), r \rangle_H \quad \forall \phi \in U \quad \text{ist.}$$

Kor. Seien die Voraussetzungen aus dem Satz zur Konvergenz der konformen Approximation erfüllt. Zusätzlich existiere ein $c_a > 0$, sodass für alle $r \in L^2(\Omega)$ die Lösung w(r) vom adjungierten Problem

$$B(\phi, w(r)) = \langle \phi, r \rangle_{L^2(\Omega)} \quad \forall \phi \in H^1(\Omega)$$

die Abschätzung $||w(r)||_{H^2(\Omega)} \le c_a \cdot ||r||_{L^2(\Omega)}$ erfüllt. Dann gilt

$$\|u - u_n\|_{L^2(\Omega)} \in \mathcal{O}(h_n^{k+1} \cdot |u|_{H^{k+1}(\Omega)})$$
 falls $u \in H^{k+1}(\Omega)$.

Rechteckige finite Elemente

Def. Ein rechteckiges finites Element vom Lagrange-Typ der Ordnung k ist ein Tupel $(K, P(K), \Sigma(K))$ mit

- $K = [c_1, c_1 + r_1] \times ... \times [c_d, c_d + r_d] \subset \mathbb{R}^d$ ist ein Rechteck,
- $P(K) = \mathbb{Q}_k(K) := \{ p(x) = \sum_{\alpha \in \{0, \dots, k\}^d} \lambda_\alpha x_1^{\alpha_1} \cdot \dots \cdot x_d^{\alpha_d} \} \subset \mathbb{P}_{dk}(K)$
- $\Sigma(K) = \{b : P(K) \to \mathbb{R}, p \mapsto p(a) \mid a \in \mathcal{K}_k\}, \text{ wobei } \mathcal{K}_k = \{(c_1 + i_1 \frac{r_1}{k}, \dots, c_d + i_d \frac{r_d}{k}) \mid i_j \in \{0, \dots, k\}, j = 1, \dots, d\}.$

Satz. Jedes Polynom $p \in \mathbb{Q}_k(K)$ ist eindeutig durch die Werte auf der Knotenmenge \mathcal{K}_k definiert.

Def. $T_n(\overline{\Omega}) := \{(K_i, P(K_i), \Sigma(K_i)) | i = 1, \dots, N\}$ heißt Triangulierung von $\overline{\Omega}$ mit rechteckigen FE vom Lagrange-Typ, wenn

- $\overline{\Omega} = K_1 \cup \ldots \cup K_N$, $\operatorname{int}(K_i) \cap \operatorname{int}(K_i) = \emptyset$ für $i \neq j$,
- Jede Seite von K_i ist entweder eine Teilmenge von $\partial\Omega$ oder die Seite von einem anderen K_i

Def. Der *Finite-Element-Raum* zur Triangulierung $T_n(\overline{\Omega})$ ist

$$U_n := \{ v \in \mathcal{C}(\overline{\Omega}) \mid v | K_i \in \mathbb{Q}_k(K_i), i = 1, \dots, N \}.$$

Lem. • $U_n \subset H^1(\Omega)$

• Eine Basis von U_n ist durch Polynome $p_j \in U_n$ mit $p_i(a_j) = \partial_{ij}$ für alle $ia_j \in \mathcal{K}_k$ gegeben.

Simpliziale Elemente vom Hermite-Typ

Def. Ein simpliziales finites Element vom Hermite-Typ ist ein Tupel $(K, P(K), \Sigma(K))$ mit

- einem d-Simplex K mit Ecken a_1, \ldots, a_{d+1} ,
- $P(K) := \mathbb{P}_3(K)$
- $\Sigma(K) := \{ p \mapsto p(a_i) \mid i = 1, \dots, d+1 \}$ $\cup \{ p \mapsto p(a_{ijl}) \mid 1 \le i < j < l \le d+1, \ a_{ijl} := \frac{1}{3} (a_i + a_j + a_l) \}$ $\cup \{ p \mapsto \mathcal{D}p(a_i)(a_j - a_i) \mid 1 \le i \ne j \le d+1 \}$

Der zugehörige Finite-Elemente-Raum zu einer Triangulierung $T(\overline{\Omega})$ mit simpl. finiten Elementen vom Hermite-Typ ist

$$U_n := \{ v \in \mathcal{C}(\overline{\Omega}) \mid v \mid_K \in \mathbb{P}_3(K) \, \forall K \in T(\overline{\Omega}) \}$$

Bem. $U_n \subset C^1(\overline{\Omega})$ gilt (nur) für d=1. $U_n \subset C^1(\overline{\Omega})$ für d=2 erreicht man mit folgenden Elementen:

- Argyris-Dreieck: $(K, P(K), \Sigma(K))$ mit
 - einem 2-Simplex K mit Ecken a_1, a_2, a_3 ,
- $-P(K) := \mathbb{P}_{5}(K)$ und
- $\begin{array}{l} \ \Sigma(K) \coloneqq \{p(a_i) \mid 1 \le i \le 3\} \cup \{\partial_x p(a_i) \mid 1 \le i \le 3\} \cup \{\partial_y p(a_i) \mid 1 \le i \le 3\} \cup \{\partial_y p(a_i) \mid 1 \le i \le 3\} \cup \{\partial_{xx} p(a_i) \mid 1 \le i \le 3\} \cup \{\partial_{xx} p(a_i) \mid 1 \le i \le 3\} \cup \{\partial_{xy} p(a_i) \mid 1 \le i \le 3\} \cup \{\mathcal{D}p(\frac{a_i + a_j}{2}) \cdot \nu_{ij} \mid 1 \le i < j \le 3\} \\ \text{(wobei } \nu_{ij} \coloneqq \text{\"{au}} \text{\'{Berer Normalenvektor an } \frac{a_i + a_j}{2}) \text{ ist.} \end{array}$
- Bell-Dreieck: $(K, P(K), \Sigma(K))$ mit
 - einem 2-Simplex K mit Ecken a_1, a_2, a_3 ,
- $-P(K) := \{ p \in \mathbb{P}_5 \mid \frac{\partial p}{\partial \nu_{i,i}} \in \mathbb{P}_3(K') \text{ für alle Kanten } K' \text{ von } K \}$
- $\begin{array}{ll} \ \Sigma(K) \coloneqq & \{p \mapsto p(a_i) \,|\, 1 \leq i \leq 3\} \\ & \cup \{p \mapsto \partial_x p(a_i) \,|\, 1 \leq i \leq 3\} \\ & \cup \{p \mapsto \partial_{xx} p(a_i) \,|\, 1 \leq i \leq 3\} \cup \{p \mapsto \partial_y p(a_i) \,|\, 1 \leq i \leq 3\} \\ & \cup \{p \mapsto \partial_{xy} p(a_i) \,|\, 1 \leq i \leq 3\} \end{array}$

Nichtkonforme finite Elemente

Bisher war $B_n = B_{U_n \times U_n}$. Manchmal ist es schwierig, B exakt auszuwerten und muss daher angenähert werden, etwa wenn Bdurch Integration definiert ist. Dann hilft folgende Verallgemeinerung des Lemmas von Céa:

Satz (1. Lemma von Strang). Sei $B_U \times U \to \mathbb{R}$ eine beschränkte, koerzitive Bilinearform, $U_n \subset U$, $B_n : U_n \times U_n \to \mathbb{R}$ eine beschränkte, gleichmäßig koerzitive Bilinearform, d. h.

$$\exists \alpha > 0 : \forall n : B_n(u_n, u_n) \geq \alpha ||u_n||_U^2$$
 für alle $u \in U_n$.

Dann existiert eine Konstante c > 0, sodass

$$||u - u_n||_U \le c \left(\inf_{v_n \in U_n} \Phi(v_n) + ||\ell - \ell_n||_{U'} \right)$$

$$\Phi(v_n) := ||u - v_n||_U + \sup_{w_n \in U_n, w_n \ne 0} \frac{|B(v_n, w_n) - B_n(v_n, w_n)|}{||w_n||_U}$$

Def. Das Fehlerfunktional der Quadraturformel mit Stützpunkten x_i^K und Gewichten w_i^K ist

$$E_K(\psi) := \int_K \psi(x) \, \mathrm{d}x - \sum_{i=1}^q w_i^K \psi(x_i^K).$$

Satz (Konvergenzsatz für das Modellproblem). Seien die Voraussetzungen (V_1) – (V_3) erfüllt, $P(\hat{K}) = \mathbb{P}_k(\hat{k})$ mit k > d/2 (damit $H^{k+1}(\Omega) \hookrightarrow \mathcal{C}^s(\hat{K})$). Sei die Quadraturformel so gewählt, dass $E_{\hat{K}}(p)=0$ für alle $p\in\mathbb{P}_{2k-2}$. Für die Lösung $u \in H_0^1(\Omega)$ von (VGL) mit $B(u,\varphi) := \int_{\Omega} \mathcal{D}u \cdot \mathcal{D}\varphi \, \mathrm{d}x, \ \ell(\varphi) := \int_{\Omega} f\varphi \, \mathrm{d}x$ mit $f \in H^k(\Omega)$ gelte $u \in H^{k+1}(\Omega)$. Dann gilt:

• Es gibt eine Konstante $C_1 > 0$, sodass $\forall p, q \in \mathbb{P}_k(K)$:

$$E_K(\mathcal{D}p \cdot \mathcal{D}q) \le C_1 \cdot h^k(K) \cdot ||p||_{H^k(K)} \cdot ||q||_{H^1(K)}$$

• Es gibt eine Konstante $C_2 > 0$, sodass $\forall f \in H^k(K), \varphi \in H^1(K)$:

$$E_K(f\varphi) \le C_2 \cdot h^k(K) \cdot ||f||_{H^k(K)} \cdot ||\varphi||_{H^1(K)}$$

• Für die Lsg $u_n \in U_n$ von $(VGL)_n$ mit der nicht-konformen Approx. $B_n(u,\varphi)$ und $\ell_n(\varphi)$ mittels der Quadraturformel gilt:

$$||u - u_n||_{H^1(\Omega)} \le C \cdot (||u||_{H^{k+1}(\Omega)} + ||f||_{H^k(\Omega)})$$

Def. Sei $\Omega \subset \mathbb{R}^d$ ein Gebiet mit glattem Rand. Dann heißt $(\Omega_n, T(\overline{\Omega}_n))$ zulässige Gebietsapproximation, falls $T_n(\overline{\Omega}_n)$ eine zulässige Triangulierung von Ω_n ist und

 $\partial\Omega_n\cap\{\text{ Eckpunkte der Simplizes in }T(\overline{\Omega}_n)\}\subset\partial\Omega.$

Wir betrachten nun

Problem.

(VGL_n)
$$\begin{cases} \underbrace{\int_{\Omega_n} \mathcal{D}u_n \cdot \mathcal{D}\varphi_n \, \mathrm{d}x}_{B_n(u_n,\varphi_n) :=} = \underbrace{\int_{\Omega_n} \tilde{f}\varphi_n \, \mathrm{d}x}_{f_n(u_n) \in U_n} \\ \underbrace{\int_{\Omega_n} \mathcal{D}u_n \cdot \mathcal{D}\varphi_n \, \mathrm{d}x}_{g_n(u_n) \in U_n} = \underbrace{\int_{\Omega_n} \tilde{f}\varphi_n \, \mathrm{d}x}_{g_n(u_n) \in U_n} \\ \underbrace{\int_{\Omega_n} \mathcal{D}u_n \cdot \mathcal{D}\varphi_n \, \mathrm{d}x}_{g_n(u_n) \in U_n} = \underbrace{\int_{\Omega_n} \tilde{f}\varphi_n \, \mathrm{d}x}_{g_n(u_n) \in U_n}$$

wobei $\tilde{f} \in L^2(\Omega_n \cup \Omega)$ mit $\tilde{f}|_{\Omega} = f$

Isoparametrische Finite Elemente

Def. Sei $(\hat{K}, \hat{P}, \hat{\Sigma})$ ein gerades (simpliziales oder rechteckiges) FE vom Lagrange-Typ. Ein finites Element (K, P, Σ) vom Langrange-Typ (k) heißt isometrisch äquivalent zu $(\hat{K}, \hat{P}, \hat{\Sigma})$, falls eine umkehrbare Abbildung

$$F: \hat{K} \to K, \quad \hat{x} \mapsto (F_1(\hat{x}), \dots, F_d(\hat{x}))$$

mit $F_1, \ldots, F_d \in \hat{P}$ existiert sodass

• $K = F(\hat{K})$

• $P = \{ p = \hat{p} \circ F^{-1} \mid \hat{p} \in \hat{P} \}$

•
$$\Sigma = \{p \mapsto p(a_i) \mid \text{ für Punkte } a_i \coloneqq F(\hat{a}_i), \hat{a}_i \in \mathcal{K}_k\}$$

Bem. Die zu (K, P, Σ) isoparametrische Abbildung F ist für isoparametrische FE vom Langrange-Typ (k) eindeutig durch die Werte an den Knoten \hat{a}_i definiert.

Finite Elemente für parabolische Probleme

Problem. Wärmeleitungsgleichung:

$$\begin{cases} u_t(x,t) - \Delta_x u(x,t) &= f(x,t) \text{ in } \Omega \times (0,T) \\ u(x,0) &= u_0(x) \text{ für } x \in \Omega \\ u(x,t) &= 0 \text{ für } x \in \partial \Omega, t \in [0,T] \end{cases}$$

Variationsgleichung: Gesucht ist $u \in \mathcal{C}^1([0,T]; H_0^1(\Omega))$ mit $\int\limits_{\Omega} u_t(x,t)\varphi(x)\,\mathrm{d}x = \int\limits_{\Omega} \Delta u(x,t)\varphi(x)\,\mathrm{d}x + \int\limits_{\Omega} f(x,t)\varphi(x)\,\mathrm{d}x \quad \forall t\in[0,T]$

$$= - \int\limits_{\Omega} \!\! \mathcal{D} u(x,t) \cdot \mathcal{D} \varphi(x) \, \mathrm{d}x + \int\limits_{\Omega} \!\! f(x,t) \varphi(x) \, \mathrm{d}x \quad \forall \varphi \in H^1_0(\Omega)$$

und Anfangsbedingung $u(0) = u_0$. Anders geschrieben:

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle u(t,-), \varphi \rangle + B(u,\varphi) - \langle f(t,-), \varphi \rangle \qquad \forall \varphi \in H_0^1(\Omega)$$

Verfahren (Vertikale Linienmethode).

Idee: Erst Diskretisierung im Ort, dann Diskretisierung in der Zeit Wir wählen dazu einen endlichdim. Teilraum $U_n \subset U = H_0^1(\Omega)$ und betrachten dann die approximierte VGL

 $\frac{\mathrm{d}}{\mathrm{d}t} \langle u_n(t), \varphi_n \rangle + B_n(u_n, \varphi_n) = \langle f(t, -), \varphi_n \rangle \quad \forall \varphi_n \in U_n$ Sei $\varphi_1, \ldots, \varphi_{d_n}$ eine Basis von U_n . Wir schreiben

$$u_n(t,x) = \sum_{j=1}^{d_n} \gamma_j(t) \varphi_j(x).$$

Sei $u_n^0 = \sum \gamma_i^0 \varphi_i$ eine Approximation von u_0 . Wir erhalten die GGL

$$\begin{cases} \sum_{i=1}^{d_n} \frac{\mathrm{d}}{\mathrm{d}t} \gamma_i(t) \langle \varphi_j, \varphi_i \rangle + \sum_{i=1}^{d_n} \gamma_i(t) B_n(\varphi_j, \varphi_i) &= \langle f(t, -), \varphi_j \rangle \ \forall j, \\ \gamma_j(0) &= \gamma_j^0 \ \forall j. \end{cases}$$

mit $\gamma(t) \in \mathbb{R}^{d_n}$. Wir definieren die *Massenmatrix* $M \in \mathbb{R}^{d_n \times d_n}$, die Matrix $B \in \mathbb{R}^{d_n \times d_n}$ und $g: [0, T] \to \mathbb{R}^{d_n}$ durch

$$M_{ij} = \int_{\Omega} \varphi_j(x) \varphi_i(x) \, \mathrm{d}x, \ B_{ij} = \int_{\Omega} \mathcal{D} \varphi_j \cdot \mathcal{D} \varphi_i \, \mathrm{d}x, \ g_j(t) = \int_{\Omega} f(t, x) \varphi_j(x) \, \mathrm{d}x$$

Dann können wir obige GGL wie folgt umschreiben:

$$\begin{cases} M \frac{\mathrm{d}}{\mathrm{d}t} \gamma(t) + B \gamma(t) &= g(t) \\ \gamma(0) &= \gamma^0 \end{cases}$$

Durch Modellreduktion erhält man eine Gleichung

$$\left\{ \begin{array}{rcl} \tilde{M}\frac{\mathrm{d}}{\mathrm{d}t}\tilde{\gamma}(t) + \tilde{B}\tilde{\gamma}(t) & = & \tilde{g}(t) \\ \tilde{\gamma}(0) & = & \tilde{\gamma}^0 \end{array} \right.$$

sodass $\gamma \in \mathbb{R}^r$, $r < d_n$ und $\gamma \approx V\tilde{\gamma}$

Verfahren (Horizontale Linienmethode, Rothe-Methode).

Idee: Erst Diskretisierung in der Zeit, dann Diskretisierung im Ort Sei $\tau := T/q$, $t_i := i \cdot \tau$ und

$$\psi_i(t) := \begin{cases} t - t_{i-1} / \tau & \text{für } t \in [t_{i-1}, t_i], \\ t_i - t / \tau & \text{für } t \in [t_i, t_{i+1}], \\ 0 & \text{sonst.} \end{cases}$$

Wir verwenden die Approx. $u(x,t) \approx u_{\tau}(x,t) = \sum_{j=1}^{q} \psi_{j}(t)c_{j}(x)$, also $u_{\tau}(x, t_i) = c_i(x)$. Implizites Euler-Verfahren:

$$\frac{\mathrm{d}}{\mathrm{d}t}u_{\tau}(x,t_{i+1})\approx\frac{u_{\tau}(x,t_{i+1})-u_{\tau}(x,t_{i})}{\tau}=\frac{c_{i+1}(x)-c_{i}(x)}{\tau},$$
 Dies führt pro Zeitpunkt t_{i} zu je einer VGL

$$\underbrace{\int\limits_{\Omega} \frac{\langle c_{i+1} - c_i \rangle}{\tau}, \varphi \rangle + B(c_{i+1}, \varphi) = \langle f(t_{i+1}), \varphi \rangle}_{\hat{B}(c_{i+1}, \varphi)} \forall \varphi \quad \text{bzw.}$$

$$\underbrace{\int\limits_{\Omega} c_{i+1} \varphi \, dx + \tau \int\limits_{\Omega} \mathcal{D}c_{i+1} \cdot \mathcal{D}\varphi \, dx}_{\hat{B}(c_{i+1}, \varphi)} = \underbrace{\tau \int\limits_{\Omega} f(t_{i+1}, x) \varphi(x) \, dx + \int\limits_{\Omega} c_i \varphi \, dx}_{\hat{\ell}(\varphi)} \quad \forall \varphi.$$

Diese VGLn lösen wir dann mittels der FEM iterativ für $i = 1, \dots, q$.