5.4 E-Plane Tee, H-Plane Tee, Magic Tee

Module:5 Microwave Passive components

Course: BECE305L - Antenna and Microwave Engineering

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: richards.stanislaus@vit.ac.in

Module:5 <u>Microwave Passive components</u> 6 hours

 Microwave Networks - ABCD, 'S' parameter and its properties. E-Plane Tee, H-Plane Tee, Magic Tee and Multi-hole directional coupler. Principle of Faraday rotation, isolator, circulator and phase shifter.

Source of the contents: Pozar

4.1 T-junction power divider Waveguide E plane T junction

- A simple three-port network that can be used for power division or power combining,
- Can be implemented in virtually any type of transmission line medium.
- In the absence of <u>transmission line</u> <u>loss</u>, **lossless junctions**.

4.1 T-junction power divider Waveguide E plane T junction

- A simple three-port network that can be used for power division or power combining,
- Can be implemented in virtually any type of transmission line medium.
- In the absence of transmission line loss, lossless junctions.
- Thus, such junctions cannot be matched simultaneously at all ports.
- But the resistive power divider, which can be matched at all ports but is not lossless. (Power dissipated in resistors)

Waveguide E

plane T junction

4.2 S-matrix analysis of E-Plane Tee

- Attaching simple waveguide (port 3 side arm: E-arm) to the broader dimension of rectangular waveguide (Ports 1 and 2 are collinear arms).
- Side arm is parallel to E field of collinear arms.
- Voltage or Series junction.

4.2 S-matrix analysis of E-Plane Tee

- Attaching simple waveguide (**port 3 side arm: E-arm**) to the broader dimension of rectangular waveguide (Ports 1 and 2 are collinear arms).
- Side arm is parallel to E field of collinear arms.
- Voltage or Series junction.
- Ports 1 and 2 are 180° out of phase with each other.
- Connection made by side arm to bidirectional waveguide to form parallel port.

- S matrix $[S]_{3\times 3}$ matrix
- with $S_{13} = -S_{23}$ (180° out of phase in collinear arms.

- S matrix $[S]_{3\times3}$ matrix
- with $S_{13} = -S_{23}$ (180° out of phase in collinear arms.
- At port 3 perfectly matched, $S_{33} = 0$
- Symmetric property $S_{ij} = S_{ji}$ $S_{12} = S_{21}$; $S_{23} = S_{32}$; $S_{13} = S_{31}$

- S matrix $[S]_{3\times 3}$ matrix
- with $S_{13} = -S_{23}$ (180° out of phase in collinear arms.
- At port 3 perfectly matched, $S_{33} = 0$
- Symmetric property $S_{ij} = S_{ji}$

$$S_{12} = S_{21}$$
; $S_{23} = S_{32}$; $S_{13} = S_{31}$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix}$$

Waveguide E

4.3 Properties of E plane Tee

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix}$$

• With unitary property $[S][S]^* = [I]$

$$\bullet \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* \\ S_{12}^* & S_{22}^* & -S_{13}^* \\ S_{13}^* & -S_{13}^* & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix}$$

• With unitary property $[S][S]^* = [I]$

$$\bullet \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* \\ S_{12}^* & S_{22}^* & -S_{13}^* \\ S_{13}^* & -S_{13}^* & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- R_1C_1 : $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$
- R_2C_2 : $|S_{12}|^2 + |S_{22}|^2 + |S_{13}|^2 = 1$ $S_{11} = S_{22}$

Side arm

Collinear Arms

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix}$$

• With unitary property $[S][S]^* = [I]$

$$\bullet \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* \\ S_{12}^* & S_{22}^* & -S_{13}^* \\ S_{13}^* & -S_{13}^* & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- R_1C_1 : $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$
- R_2C_2 : $|S_{12}|^2 + |S_{22}|^2 + |S_{13}|^2 = 1$ $S_{11} = S_{22}$
- R_3C_3 : $|S_{13}|^2 + |S_{13}|^2 = 1$: $S_{13} = 1/\sqrt{2}$

Collinear Arms

Port - 1

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix}$$

• With unitary property $[S][S]^* = [I]$

$$\bullet \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* \\ S_{12}^* & S_{22}^* & -S_{13}^* \\ S_{13}^* & -S_{13}^* & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- R_1C_1 : $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$
- R_2C_2 : $|S_{12}|^2 + |S_{22}|^2 + |S_{13}|^2 = 1$ $S_{11} = S_{22}$
- R_3C_3 : $|S_{13}|^2 + |S_{13}|^2 = 1$: $S_{13} = 1/\sqrt{2}$
- R_3C_1 : $S_{13}(S_{11}^* S_{12}^*) = 0$: $S_{11} = S_{12}$

• $S_{11} = S_{12} = S_{22}$ $S_{13} = 1/\sqrt{2}$

•
$$R_1C_1$$
: $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$

$$|S_{11}|^2 + |S_{11}|^2 + 1/2 = 1$$
 : $S_{11} = 1/2 = S_{12} = 1/2$

 S_{22}

Waveguide E plane T junction

•
$$S_{11} = S_{12} = S_{22}$$
 $S_{13} = 1/\sqrt{2}$

•
$$R_1C_1$$
: $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$

$$|S_{11}|^2 + |S_{11}|^2 + 1/2 = 1$$
 : $S_{11} = 1/2 = S_{12} =$

 S_{22}

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

Waveguide E plane T junction

•
$$S_{11} = S_{12} = S_{22}$$
 $S_{13} = 1/\sqrt{2}$

•
$$R_1C_1$$
: $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$

$$|S_{11}|^2 + |S_{11}|^2 + 1/2 = 1$$
 : $S_{11} = 1/2 = S_{12} = S_{22}$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$
• $[b] = [S][a]$ (Voltages: Reflected b and incident

• [b] = [S][a] (Voltages: Reflected b and incident a)

•
$$[b] = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix} [a]$$

4.4 S-matrix analysis of H-Plane Tee

- Attaching simple waveguide (port 3 side arm: H-arm) to the narrow dimension of rectangular waveguide (Ports 1 and 2 are collinear arms).
- Side arm is parallel to H field of collinear arms.
- Current junction or Shunt Tee.

4.4 S-matrix analysis of H-Plane Tee

Waveguide H plane T junction

Port - 1

- Attaching simple waveguide (port 3 side arm: H-arm) to the narrow dimension of rectangular waveguide (Ports 1 and 2 are collinear arms).
- Side arm is parallel to H field of collinear arms.
- Current junction or Shunt Tee.
- Ports 1 and 2 are in phase with each other.
- Connection made by side arm to bidirectional waveguide to form parallel port.

- S matrix $[S]_{3\times 3}$ matrix
- with $S_{13} = S_{23}$ (in phase collinear arms.

- S matrix $[S]_{3\times 3}$ matrix
- with $S_{13} = S_{23}$ (in phase collinear arms.
- At port 3 perfectly matched, $S_{33} = 0$
- Symmetric property $S_{ij} = S_{ji}$ $S_{12} = S_{21}$; $S_{23} = S_{32}$; $S_{13} = S_{31}$

- S matrix $[S]_{3\times 3}$ matrix
- with $S_{13} = S_{23}$ (in phase collinear arms.
- At port 3 perfectly matched, $S_{33} = 0$
- Symmetric property $S_{ij} = S_{ji}$

$$S_{12} = S_{21}$$
; $S_{23} = S_{32}$; $S_{13} = S_{31}$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{13} \\ S_{13} & S_{13} & 0 \end{bmatrix}$$

$$\bullet [S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{13} \\ S_{13} & S_{13} & 0 \end{bmatrix}$$

• With unitary property $[S][S]^* = [I]$

$$\bullet \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{13} \\ S_{13} & S_{13} & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* \\ S_{12}^* & S_{22}^* & S_{13}^* \\ S_{13}^* & S_{13}^* & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{13} \\ S_{13} & S_{13} & 0 \end{bmatrix}$$

• With unitary property $[S][S]^* = [I]$

$$\bullet \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{13} \\ S_{13} & S_{13} & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* \\ S_{12}^* & S_{22}^* & S_{13}^* \\ S_{13}^* & S_{13}^* & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

•
$$R_1C_1$$
: $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$

•
$$R_2C_2$$
: $|S_{12}|^2 + |S_{22}|^2 + |S_{13}|^2 = 1$ $S_{11} = S_{22}$

$$\bullet [S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{13} \\ S_{13} & S_{13} & 0 \end{bmatrix}$$

• With unitary property $[S][S]^* = [I]$

$$\bullet \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{13} \\ S_{13} & S_{13} & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* \\ S_{12}^* & S_{22}^* & S_{13}^* \\ S_{13}^* & S_{13}^* & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

•
$$R_1C_1$$
: $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$

•
$$R_2C_2$$
: $|S_{12}|^2 + |S_{22}|^2 + |S_{13}|^2 = 1$ $S_{11} = S_{22}$

•
$$R_3C_3$$
: $|S_{13}|^2 + |S_{13}|^2 = 1$: $S_{13} = 1/\sqrt{2}$

$$\bullet [S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{13} \\ S_{13} & S_{13} & 0 \end{bmatrix}$$

• With unitary property $[S][S]^* = [I]$

$$\bullet \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{13} \\ S_{13} & S_{13} & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* \\ S_{12}^* & S_{22}^* & S_{13}^* \\ S_{13}^* & S_{13}^* & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

•
$$R_1C_1$$
: $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$

•
$$R_2C_2$$
: $|S_{12}|^2 + |S_{22}|^2 + |S_{13}|^2 = 1$ $S_{11} = S_{22}$

•
$$R_3C_3$$
: $|S_{13}|^2 + |S_{13}|^2 = 1$: $S_{13} = 1/\sqrt{2}$

•
$$R_3C_1$$
: $S_{13}(S_{11}^* + S_{12}^*) = 0$: $S_{11} = -S_{12}$

Waveguide H plane T junction

Port - 1

•
$$S_{11} = S_{22} = -S_{12}$$
 $S_{13} = 1/\sqrt{2}$

•
$$R_1C_1$$
: $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$

$$|S_{11}|^2 + |S_{11}|^2 + 1/2 = 1$$
 : $S_{11} = \frac{1}{2} = S_{22} = -S_{12}$

$$S_{11} = \frac{1}{2} = S_{22} = -3$$

Side Arm

Port - 3

•
$$S_{11} = S_{22} = -S_{12}$$
 $S_{13} = 1/\sqrt{2}$

$$S_{13} = 1/\sqrt{2}$$

•
$$R_1C_1$$
: $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$

$$|S_{11}|^2 + |S_{11}|^2 + 1/2 = 1$$
 : $S_{11} = \frac{1}{2} = S_{22} = -S_{12}$

$$S_{11} = \frac{1}{2} = S_{22} = -1$$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{13} \\ S_{13} & S_{13} & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

•
$$S_{11} = S_{22} = -S_{12}$$
 $S_{13} = 1/\sqrt{2}$

•
$$R_1C_1$$
: $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$

$$|S_{11}|^2 + |S_{11}|^2 + 1/2 = 1$$
 : $S_{11} = \frac{1}{2} = S_{22} = -S_{12}$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & S_{13} \\ S_{13} & S_{13} & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

•
$$[b] = [S][a]$$

•
$$[b] = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix} [a]$$

5.1 E-H Plane TEE / MAGIC TEE

- Collinear ports of the wave guide (1,2)
- Port 3: H arm or SUM port (Parallel port)
- Port 4: E arm or Difference port (Series port)
- Side arms are connected to the bidirectional waveguide to form both parallel and serial ports.

• If a signal of equal phase and magnitude is sent to port 1 and port 2, then the output at port 4 is zero and the output at port 3 will be the sum of both the ports 1 and 2.

- If a signal of equal phase and magnitude is sent to port 1 and port 2, then the output at port 4 is zero and the output at port 3 will be the <u>sum</u> of both the ports 1 and 2.
- If a signal is sent to port 4, E-arm then power is divided between port 1 and 2 equally

but in opposite phase, no output at port 3. Hence, $S_{34} = 0$

- If a signal of equal phase and magnitude is sent to port 1 and port 2, then the output at *port 4* is *zero* and the output at <u>port 3</u> will be the <u>sum</u> of both the ports 1 and 2.
- If a signal is sent to port 4, E-arm then power is divided between port 1 and 2 equally but in opposite phase, no output at port 3. Hence, $S_{34} = 0$
- If a signal is sent to port 3, H-arm then power is divided between port 1 and 2 equally and in same phase, no output at port 4. Hence, $S_{43} = 0$

• If a signal is fed at one of the collinear ports, no output at the other collinear port, as the E-arm produces a phase delay and the H-arm produces a phase advance.

$$S_{12} = S_{21} = 0$$

5.3 S matrix properties of MAGIC TEE

$$S_{34} = 0 = S_{43}$$
 and $S_{12} = S_{21} = 0$
It has a H plane Tee section: $S_{13} = S_{23}$, $S_{33} = 0$

5.3 S matrix properties of MAGIC TEE

$$S_{34} = 0 = S_{43}$$
 and $S_{12} = S_{21} = 0$

It has a H plane Tee section: $S_{13} = S_{23}$,

$$S_{33} = 0$$

It has a E plane Tee section: $S_{14} = -S_{24}$ $S_{44} = 0$

5.3 S matrix properties of MAGIC TEE

$$S_{34} = 0 = S_{43}$$
 and $S_{12} = S_{21} = 0$

It has a H plane Tee section: $S_{13} = S_{23}$,

$$S_{33} = 0$$

It has a E plane Tee section: $S_{14} = -S_{24}$ $S_{44} = 0$

Symmetry property: $S_{ij} = S_{ji}$

$$S_{12} = S_{21}$$
 $S_{13} = S_{31}$ $S_{14} = S_{41}$

$$S_{23} = S_{32}$$
 $S_{24} = S_{42}$ $S_{34} = S_{43}$

$$S_{34} = 0 = S_{43}$$
 and $S_{12} = S_{21} = 0$

It has a H plane Tee section: $S_{13} = S_{23}$, $S_{33} = 0$

It has a E plane Tee section: $S_{14} = -S_{24}$ $S_{44} = 0$

Symmetry property:
$$S_{ij} = S_{ji}$$

$$S_{12} = S_{21}$$
 $S_{13} = S_{31}$ $S_{14} = S_{41}$

$$S_{23} = S_{32}$$
 $S_{24} = S_{42}$ $S_{34} = S_{43}$

$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{13} & -S_{14} \\ S_{13} & S_{13} & 0 & 0 \\ S_{14} & -S_{14} & 0 & 0 \end{bmatrix}$$

Apply Unitary property: $[S][S]^* = [I]$

$$\begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{13} & -S_{14} \\ S_{13} & S_{13} & 0 & 0 \\ S_{14} & -S_{14} & 0 & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* & S_{14}^* \\ S_{12}^* & S_{22}^* & S_{13}^* & -S_{14}^* \\ S_{13}^* & S_{13}^* & 0 & 0 \\ S_{14}^* & -S_{14}^* & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Apply Unitary property: $[S][S]^* = [I]$

$$\begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{13} & -S_{14} \\ S_{13} & S_{13} & 0 & 0 \\ S_{14} & -S_{14} & 0 & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* & S_{14}^* \\ S_{12}^* & S_{22}^* & S_{13}^* & -S_{14}^* \\ S_{13}^* & S_{13}^* & 0 & 0 \\ S_{14}^* & -S_{14}^* & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_1C_1$$
: $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 + |S_{14}|^2 = 1$

$$R_2C_2$$
: $|S_{12}|^2 + |S_{22}|^2 + |S_{13}|^2 + |S_{14}|^2 = 1$ $S_{11} = S_{22}$

$$S_{11} = S_{22}$$

Apply Unitary property: $[S][S]^* = [I]$

$$\begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{13} & -S_{14} \\ S_{13} & S_{13} & 0 & 0 \\ S_{14} & -S_{14} & 0 & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* & S_{14}^* \\ S_{12}^* & S_{22}^* & S_{13}^* & -S_{14}^* \\ S_{13}^* & S_{13}^* & 0 & 0 \\ S_{14}^* & -S_{14}^* & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_1C_1$$
: $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 + |S_{14}|^2 = 1$

$$R_2C_2$$
: $|S_{12}|^2 + |S_{22}|^2 + |S_{13}|^2 + |S_{14}|^2 = 1$

$$R_3C_3$$
: $|S_{13}|^2 + |S_{13}|^2 = 1$: $S_{13} = 1/\sqrt{2}$

$$R_4C_4$$
: $|S_{14}|^2 + |S_{14}|^2 = 1$: $S_{14} = 1/\sqrt{2}$

$$S_{11} = S_{22}$$

Apply Unitary property:
$$\begin{bmatrix} S \end{bmatrix} \begin{bmatrix} S \end{bmatrix}^* = \begin{bmatrix} I \end{bmatrix} \\ S_{11} & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{13} & -S_{14} \\ S_{13} & S_{13} & 0 & 0 \\ S_{14} & -S_{14} & 0 & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* & S_{14}^* \\ S_{13}^* & S_{13}^* & 0 & 0 \\ S_{14}^* & -S_{14}^* & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_1C_1 \colon |S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 + |S_{14}|^2 = 1$$

$$R_2C_2 \colon |S_{12}|^2 + |S_{22}|^2 + |S_{13}|^2 + |S_{14}|^2 = 1$$

$$S_{11} = S_{22}$$

$$R_3C_3 \colon |S_{13}|^2 + |S_{13}|^2 = 1 \quad \colon S_{13} = 1/\sqrt{2}$$

$$R_4C_4 \colon |S_{14}|^2 + |S_{14}|^2 = 1 \quad \colon S_{14} = 1/\sqrt{2}$$

$$R_1C_1 \colon |S_{11}|^2 + |S_{12}|^2 + 0.5 + 0.5 = 1$$

$$|S_{11}|^2 + |S_{12}|^2 = 0$$
 Magnitudes are zero

Apply Unitary property:
$$\begin{bmatrix} S \end{bmatrix} \begin{bmatrix} S \end{bmatrix}^* = \begin{bmatrix} I \end{bmatrix} \\ S_{11}^* & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{13} & -S_{14} \\ S_{13}^* & S_{13} & 0 & 0 \\ S_{14}^* & -S_{14} & 0 & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* & S_{14}^* \\ S_{13}^* & S_{13}^* & 0 & 0 \\ S_{13}^* & S_{13}^* & 0 & 0 \\ S_{14}^* & -S_{14}^* & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_1 C_1 \colon |S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 + |S_{14}|^2 = 1$$

$$R_2 C_2 \colon |S_{12}|^2 + |S_{22}|^2 + |S_{13}|^2 + |S_{14}|^2 = 1$$

$$S_{11} = S_{22}$$

$$R_3 C_3 \colon |S_{13}|^2 + |S_{13}|^2 = 1 \ \colon S_{13} = 1/\sqrt{2}$$

$$R_4 C_4 \colon |S_{14}|^2 + |S_{14}|^2 = 1 \ \colon S_{14} = 1/\sqrt{2}$$

$$R_1 C_1 \colon |S_{11}|^2 + |S_{12}|^2 + 0.5 + 0.5 = 1$$

$$|S_{11}|^2 + |S_{12}|^2 = 0$$
 Magnitudes are zero
$$S_{11} = S_{12} = 0 = S_{22}$$

$$S_{14} = 1/\sqrt{2}$$
 and $S_{13} = 1/\sqrt{2}$ and

 $S_{11} = S_{12} = 0 = S_{22}$ Two ports (1,2) are perfectly matched, E (4) and H(3) arms are already perfectly matched

$$S_{14} = 1/\sqrt{2}$$
 and $S_{13} = 1/\sqrt{2}$ and

 $S_{11} = S_{12} = 0 = S_{22}$ Two ports (1,2) are perfectly matched, E (4) and H(3) arms are already perfectly matched

The S matrix becomes

$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{13} & -S_{14} \\ S_{13} & S_{13} & 0 & 0 \\ S_{14} & -S_{14} & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 & 0 \end{bmatrix}$$

$$S_{14} = 1/\sqrt{2}$$
 and $S_{13} = 1/\sqrt{2}$ and

 $S_{11} = S_{12} = 0 = S_{22}$ Two ports (1,2) are perfectly matched, E (4) and H(3) arms are already perfectly matched

The S matrix becomes

$$[S] = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{13} & -S_{14} \\ S_{13} & S_{13} & 0 & 0 \\ S_{14} & -S_{14} & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 & 0 \end{bmatrix}$$

$$[b] = [S][a]$$

5.1 E-H Plane TEE / MAGIC TEE

• To measure the impedance – A null detector is connected to E-Arm port while the Microwave source is connected to H-Arm port. The collinear ports together with these ports make a bridge and the impedance measurement is done by balancing the bridge.

5.1 E-H Plane TEE / MAGIC TEE

- To measure the impedance A null detector is connected to E-Arm port while the Microwave source is connected to H-Arm port. The collinear ports together with these ports make a bridge and the impedance measurement is done by balancing the bridge.
- Used as a duplexer A duplexer is a circuit which works as both the transmitter and the receiver, using a single antenna for both purposes. Port 1 and 2 are used as receiver and transmitter where they are isolated and hence will not interfere. Antenna is connected to E-Arm port. A matched load is connected to H-Arm port, which provides no reflections. Now, there exists transmission or reception without any problem.

5.1 E-H Plane TEE / MAGIC TEE

- To measure the impedance A null detector is connected to E-Arm port while the Microwave source is connected to H-Arm port. The collinear ports together with these ports make a bridge and the impedance measurement is done by balancing the bridge.
- Used as a duplexer A duplexer is a circuit which works as both the transmitter and the receiver, using a single antenna for both purposes.
 Port 1 and 2 are used as receiver and transmitter where they are isolated and hence will not interfere. Antenna is connected to E-Arm port. A matched load is connected to H-Arm port, which provides no reflections. Now, there exists transmission or reception without any problem.
- A mixer E-Arm port is connected with antenna and the H-Arm port is connected with local oscillator. Port 2 has a matched load which has no reflections and port 1 has the mixer circuit, which gets half of the signal power and half of the oscillator power to produce IF frequency.