RED DE DIFRACCIÓN

TP LABORATORIO - FÍSICA II

Los resultados obtenidos en el trabajo se presentarán en un **informe** que deberá entregarse uno por grupo en el Campus en formato PDF.

OBJETIVOS

- 1. Hallar la constante de una red de difracción.
- 2. Determinar experimentalmente algunas longitudes de onda de la luz emitida por el mercurio.

INTRODUCCIÓN TEÓRICA

Si d es el espaciamiento entre ranuras, para los máximos de interferencia, se cumple:

$$d \operatorname{sen} \theta = m\lambda$$
 (1)

Con la constante de red K = 1/d y para m = 1 se tiene:

$$K = \frac{1}{\lambda} \operatorname{sen} \theta = \frac{1}{\lambda} \frac{Y}{\sqrt{Y^2 + D^2}}$$
 (2)

donde Y y D se muestran en la figura 1.

Figura 1: Armado experimental para hallar la constante de red *K*

MATERIALES

- láser HeNe.
- lámpara de mercurio con su reactancia.
- diafragma con una ranura de un ancho aproximado a 1 mm, con soporte
- red de difracción de transmisión, con soporte.
- lente convergente de distancia focal 10 cm, con soporte.

1. CONSTANTE DE LA RED

- Con la luz del láser se ilumina la red de difracción. Se podrá observar a cada lado del máximo central un punto luminoso, indicando la ubicación del 1^{er} máximo de interferencia (m = 1; -1).
- Se mide la distancia 2Y entre ellos y la distancia D entre la pantalla y la red y se calculan sus respectivas incertezas, ΔD y ΔY .
- Sabiendo que la longitud de onda de la luz emitida por el láser es $\lambda = 632.8$ nm, se obtiene la constante K de la red con la ecuación (2) con su correspondiente incerteza.

$$K = (\pm) (1/cm)$$

2. LONGITUD DE ONDA DE LAS LÍNEAS AZUL, VERDE Y ROJA DE LA LUZ EMITIDA POR LA LÁMPARA DE MERCURIO.

- Se arma el dispositivo como se indica en la figura 2.
- Se desplaza la lente hasta obtener una imagen nítida de la ranura y luego se coloca la red a continuación.
- Se ubican las imágenes de las líneas de color azul a cada lado del máximo central y se determinen las distancias $2Y_{azul}$ y D y sus respectivas incertezas. Se registran los valores en la tabla 1.
- Se repite el mismo procedimiento para las líneas de color verde y naranja.

Figura 2: Armado experimental para hallar la longitud de onda de las líneas espectrales del mercurio

color línea	D (cm)	<i>∆D</i> (cm)	Y_{Hg} (cm)	ΔY_{Hg} (cm)
azul				
verde				
naranja				

Tabla 1. Mediciones realizadas para obtener la longitud de onda de las líneas del espectro del mercurio.

 Con los valores de K y ΔK obtenidos anteriormente, se calculan las longitudes de onda para cada color usando la ecuación (3).

$$\lambda = \frac{1}{K} \frac{Y}{\sqrt{Y^2 + D^2}} \tag{3}$$

$$\lambda_{azul} = (& \pm &) nm$$

$$\lambda_{verde} = (& \pm &) nm$$

$$\lambda_{naranja} = (& \pm &)$$

• Se comparan las longitudes de onda halladas con las indicadas en la bibliografía.