5.二叉树

树

Two roads diverged in a yellow wood

And sorry I could not travel both

邓俊辉

deng@tsinghua.edu.cn

有根树

- ❖ 树是特殊的图T = (V, E), 节点数|V| = n, 边数|E| = e
- ❖指定任一节点r ∈ V作为根 后,T即称作有根树 (rooted tree)
- ❖若:T₁, T₂, ... T_d为有根树

则:T = $((\cup V_i) \cup \{r\}, (\cup E_i) \cup \{\langle r, r_i \rangle \mid 1 \le i \le d\})$ 也是

❖相对于T, T_i称作以r_i为根的子树(subtree rooted at r_i),记作T_i = subtree(r_i)

有序树

- ❖ r_i称作r的孩子 (child), r_i之间互称 兄弟 (sibling)
 r为其父亲 (parent), d = degree(r)为r的(出) 度 (degree)
- \diamond 可归纳证明: e= $\sum_{r \in V} degree(r)$ =n= $\Theta(n)$ 故在衡量相关复杂度时,可以n作为参照
- ❖若指定T_i作为T的第i棵子树,r_i作为r的第i个孩子,则T称作 有序树(ordered tree)

路径 + 环路

❖ V中的k+1个节点,通过E中的k条边依次相联,构成一条 路径 (path) //亦称 通路

$$\pi = \{ (v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k) \}$$

❖ 路径 长度 : |π| = 边数 = k

//早期文献,或以节点数为长度

连通 + 无环

❖ 节点之间均有路径,称作 连通图 (connected)

不含环路,称作无环图 (acyclic)

❖ 树: 无环连通图

极小连通图

极大无环图

❖ 故: 任一节点∨与根之间存在 唯一 路径

path(v, r) = path(v)

❖ 于是:以|path(v)|为指标

可对所有节点做等价类划分...

深度 + 层次

- ◇不致歧义时,路径、节点和子树可相互指代path(v) ~ v ~ subtree(v)
- ❖ v的 深度 : depth(v) = |path(v)|
- ❖ path(v)上节点,均为v的祖先 (ancestor)
 v是它们的后代 (descendent)
- ❖其中,除自身以外,是真(proper)祖先/后代
- ❖ 半线性 : 在任一深度

v的祖先/后代若存在,则必然/未必唯一

深度 + 层次

- ❖ 根节点是所有节点的 公共祖先 ,深度为0
- ❖ 没有后代的节点称作 叶子 (leaf)
- ❖ 所有叶子深度中的最大者

称作(子)树(根)的高度

height(v) = height(subtree(v))

- ❖特别地,空树的高度取作-1
- ❖ depth(v) + height(v) ≤ height(T)
 何时取等号?

