Universidade Federal da Bahia Departamento de Matemática

Matemática Discreta II Prof. Ciro Russo

Primeira unidade, segunda chamada - 20 de dezembro de 2017

Atenção: é preciso justificar todas as respostas.

1. Seja \prec a relação binária em $\mathbb{N} \times \mathbb{N}$ definida por

$$(a,b) \prec (c,d)$$
 se, e somente se, $(a \mid c) \land (b > d)$.

Verifique quais, entre as propriedades reflexiva, irreflexiva, simétrica, antissimétrica e transitiva, valem para \prec . Consequentemente, determine se ela é uma relação de equivalência, de ordem, de ordem estrita, ou nenhuma dessas.

2. Demonstre, usando o princípio de indução, que o cubo de todo número natural ímpar é ímpar, ou seja, que em \mathbb{N} vale:

$$\forall n \exists a ((2n+1)^3 = 2a+1).$$

3. Demonstre, usando apenas os axiomas da Aritmética de Peano e a propriedade comutativa da soma, a seguinte formula:

$$\forall x \exists y ((x = y + y) \lor (x = s(y + y)).$$

- **4.** Verifique que as seguintes equações diofantinas são solucionáveis e encontre os conjuntos das soluções.
 - (a) 25x + 30y = 40;
 - (b) 110x + 76y = 6.

Escreva, também, as duas equações congruenciais (uma na incógnita x e a outra em y) associadas a cada equação diofantina, com os respectivos conjuntos de soluções.

SOLUÇÕES.

1. Primeiramente, observe-se que, em \mathbb{N} , tanto | quanto \leq são relações de ordem, ou seja, são reflexivas, antissimétricas e transitivas.

 $\forall a,b \in \mathbb{N}, \ a \mid a \in a \le a, \ \text{então} \ (a,b) \prec (a,b) \ \text{e} \prec \text{\'e} \ \text{reflexiva}.$ Portanto não é irreflexiva.

 \prec não é simétrica pois, por exemplo, $(1,0) \prec (0,0)$ mas $(0,0) \not\prec (1,0)$ uma vex que 0 não divide 1.

 $\forall a, b, c, d \in \mathbb{N}$, se $(a, b) \prec (c, d)$ e $(c, d) \prec (a, b)$, então $a \mid c, c \mid a, b \leq d$ e $d \leq b$. Como \mid e \leq são antissimétricas, isso implica que a = c e b = d. Logo, (a, b) = (c, d) e, então, \prec é antissimétrica.

Sejam $a, b, c, d, e, f \in \mathbb{N}$ tais que $(a, b) \prec (c, d)$ e $(c, d) \prec (e, f)$. Então $a \mid c, c \mid e, b \leq d$ e $d \leq f$. Pela transitividade de $| e \leq$, seguem $a \mid e$ e $b \leq f$. Logo, $(a, b) \prec (e, f)$ e \prec é transitiva.

Concluindo, ≺ é uma relação de ordem.

2. É preciso provar a seguinte:

$$\forall n \exists a ((2n+1)^3 = 2a+1).$$

Base de indução: n = 0.

$$(2 \cdot 0 + 1)^3 = 1 = 2 \cdot 0 + 1$$
 verificada.

Hipótese de indução: n = k.

$$\exists a((2k+1)^3 = 2a+1).$$

Tese: n = k + 1.

$$\exists a'((2(k+1)+1)^3 = 2a'+1).$$

Vamos calcular $(2(k+1)+1)^3$:

$$(2(k+1)+1)^3 =$$
= $(2k+3)^3 =$
= $8k^3 + 36k^2 + 54k + 27 =$
= $(8k^3 + 12k^2 + 6k + 1) + 24k^2 + 48k + 26 \stackrel{\text{HP}}{=} 2a + 1 + 2(12k^2 + 24k + 13) =$
= $2(a+12k^2 + 24k + 13) + 1$.

Então a tese vale com $a' = a + 12k^2 + 24k + 13$.

3. Vamos usar o princípio de indução (PA7) na variável x (que, por sinal, é única que podemos usar, pois é a única quantificada universalmente).

Base: x = 0.

 $0\stackrel{PA3}{=}0+0$, então a base de indução é verificada, com y=0.

Hipótese de indução: x = k. $\exists y ((k = y + y) \lor (k = s(y + y))$.

Tese:
$$x = s(k)$$
. $\exists z ((s(k) = z + z) \lor (s(k) = s(z + z))$.

Como a hipótese de indução contém uma disjunção, vamos distinguir dois casos: k = y + y e k = s(y + y).

No primeiro caso, s(k) = s(y+y), então a tese é verificada de maneira óbvia. No segundo caso, $s(k) = s(s(y+y)) \stackrel{PA4}{=} s(y+s(y)) \stackrel{C}{=} s(s(y)+y) \stackrel{PA4}{=} s(y) + s(y)$, então a tese vale com z = s(y).

Logo, a tese de indução vale em todo caso, e portanto a asserção segue do axioma PA7.

4. (a) O mdc positivo de 25 e 30 é 5, e $40 = 8 \cdot 5$. Então a equação é solucionável. Temos, também: $25 = 5 \cdot 5$ e $30 = 6 \cdot 5$.

O algoritmo das divisões sucessivas de Euclides retorna $5=25\cdot (-1)+30\cdot 1$, o que implica $25\cdot (-8)+30\cdot 8=40$. Logo, o conjunto das soluções é

$$\{(-8+6k, 8-5k) : k \in \mathbb{Z}\}.$$

As equações congruenciais associadas à equação diofantina dada são as seguintes:

 $25x \equiv 40 \pmod{30}$, cujo conjunto das soluções é

$$\{-8+6k : k \in \mathbb{Z}\}, e$$

 $30y \equiv 40 \pmod{25}$, cujo conjunto das soluções é

$$\{8+5k:k\in\mathbb{Z}\}.$$

(b) O mdc positivo de 110 e 76 é 2, e 6 = $3 \cdot 2$. Então a equação é solucionável. Temos, também: $110 = 55 \cdot 2$ e $76 = 38 \cdot 2$.

O algoritmo das divisões sucessivas de Euclides retorna $2=110\cdot 9+76\cdot (-13)$, o que implica $6=110\cdot 27+76\cdot (-39)$. Logo, o conjunto das soluções é

$$\{(27+38k, -39-55k) : k \in \mathbb{Z}\}.$$

As equações congruencias associadas à equação diofantina dada são as seguintes:

 $110x \equiv 6 \pmod{76}$, cujo conjunto das soluções é

$$\{27 + 38k : k \in \mathbb{Z}\}, e$$

 $76y \equiv 6 \pmod{110}$, cujo conjunto das soluções é

$$\{-39 + 55k : k \in \mathbb{Z}\}.$$