第14章 深度学习

Growing Use of Deep Learning at Google

Across many products/areas:

Android
Apps
drug discovery
Gmail
Image understanding
Maps
Natural language
understanding
Photos
Robotics research
Speech
Translation
YouTube
... many others ...

什么是深度学习?

• 【Wikipedia的定义】 **Deep learning** is part of a broader family of machine learning methods based on **artificial neural networks**.

起源:

• **1943年**,神经学家Warren McCulloch(麦卡洛克)和数学家Walter Pitts(皮茨)提出第一个<mark>脑神经元</mark>的抽象模型(M-P模型)

第一次浪潮:

- **1958年**,计算机科学家Frank Rosenblatt(罗森布拉特)基于M-P神经元模型提出第一个**感知机**模型
- **1969年**,MIT 的 Marvin Minsky (明 斯 基) 和 Seymour Papert (帕尔特)出版了《Perceptron》一书,分析了感知机模型的局限性,神经网络研究进入"冰河期"

第二次浪潮:

- **1974年**, Paul Werbos (沃博斯)发明了BP算法, 因正值"冰河期",未受到重视
- **1986年**, D.E. Rumelhart, G.E. Hinton 和 R.J. Williams发表论文,阐释并推广了**反向传播算法** (Back Propagation, BP),并采用Sigmoid函数,有效解决了非线性分类问题
- 1991年, BP算法被指出存在梯度消失问题

第三次浪潮:

- 2006年,Hinton等人提出一种可以实现快速学习的深度信念网络(DBN)
- 2009年,GPU被用于训练深度神经网络
- 2011年,深度学习用于语音辨识
- 2012年, 欣顿课题组首次使用深度学习在ImageNet 图像识别竞赛中夺冠, 高出第二名(SVM)10个百分点

第三次浪潮:

- **2015年**,微软的ResNet以96.43%的Top5精度,超过人类水平(94.9%)
- 2016年,AlphaGo击败<mark>围棋</mark>世界冠军Lee Sedol
- 2017年,AlphaGo Zero以100:0击败AlphaGo
- **2017年**,IBM将**语音识别**错误率降到5.5%(人类 5.1%)

人脑神经元

神经元模型

神经元模型

M-P神经元模型

神经元模型

人工神经元模型

施加在线性加权求和之上的函数。

1. 阶跃函数

施加在线性加权求和之上的函数。

2. Sigmoid函数

$$h'(x) = h(x)(1 - h(x))$$

施加在线性加权求和之上的函数。

3. 双曲正切函数

施加在线性加权求和之上的函数。

4. ReLU函数

——人工神经网络(ANN)

神经元(Neuron)

$$z = h(x_1\omega_1 + x_2\omega_2 + \dots + x_d\omega_d + b)$$

一一人工神经网络(ANN)

感知机(Perceptron)

由两层神经元组成,输入层接收外界信号后传递给输出层,输出层是M-P神经元,也叫阈值逻辑单元

——人工神经网络(ANN)

感知机(Perceptron)

能容易地实现与、或、非运算

与:
$$\diamondsuit \omega_1 = \omega_2 = 1$$
, $\theta = 2$

$$\sharp$$
: $\diamondsuit \omega_1 = -0.6$, $\omega_2 = 0$, $\theta = -0.5$

一一人工神经网络(ANN)

感知机(Perceptron)

——人工神经网络(ANN)

多层感知机(Multi Layer Perceptron)

——人工神经网络(ANN)

多层感知机(Multi Layer Perceptron)

不同的连接将产生不同的网络结构

权重和偏置是神经网络的参数的

机器学习≈寻找一个函数

• 语音识别

深度学习三部曲

深度学习很简单

深度学习三部曲

第一步: 第二步: 第三步: 构建神经 确定学习 学习! 网络 目标 第二步: 第三步: 第一步: 定义函数 选择最优 给出函数 的优度 函数 集合

给定网络结构,就定义了一组函数

输出层 (多类分类器)

案例应用: 手写数字识别

输入

墨水→1 无墨水→0

输出

每一维表示预测为一个 数字的概率

案例应用: 手写数字识别

输 入: 784维向量

输 出: 10维向量

案例应用: 手写数字识别

你需要构建一个神经网络结构以包含一个 好的可用于手写数字识别的函数.

深度学习三部曲

第一步: 第二步: 第三步: 确定学习 构建神经 学习! 网络 目标 第三步: 第一步: 第二步: 选择最优 给出函数 定义函数 集合 函数 的优度

训练数据

• 准备训练数据: 图像及其标签

学习目标定义在训练数据之上

学习目标

墨水→1 无墨水→0

学习目标是:

损失

一个好的函数应该使所有的训练样例产生的损失尽可能小.

整体损失

对于所有的训练数据...

整体损失:

$$L = \sum_{r=1}^{R} l_r$$

尽可能小

在函数集中找到使 整体损失L最小的 一个函数

找到能最小化整体 损失L的<u>一组网络</u> 参数 $\boldsymbol{\theta}^*$

深度学习三部曲

如何选择最优的函数

找到能最小化整体损失L的一组网络参数 θ^*

枚举所有可能的参数值

例如,

语音识别: 8层, 1000个 神经元/层

网络参数 $\theta = \{ w_1, w_2, \cdots, b_1, b_2, \cdots \}$

网络参数
$$\theta$$
 = { $w_1, w_2, \dots, b_1, b_2, \dots$ }

网络参数
$$\theta$$
 = { $w_1, w_2, \dots, b_1, b_2, \dots$ }

网络参数
$$\theta$$
 = $\{w_1, w_2, \dots, b_1, b_2, \dots\}$

局部极小点

局部极小点

• 梯度下降法无法保证全局最小点

反向传播算法(Backpropagation)

- 一个神经网络有成百上千万个参数,反向传播算法是一种高效计算所有梯度 $\partial L/\partial w$ 的算法。
- 许多已有的深度学习框架可以自动计算梯度。

theano

案例应用: 手写数字识别

MNIST 数据集: http://yann.lecun.com/exdb/mnist/

深度学习技巧

深度学习技巧

Dropout

正则化 (Regularization)

提前终止(Early Stopping)

Good Results on Testing Data?

新的激活函数

合适的损失函数

自适应的学习率、动量

Good Results on
Training Data?

Hard to get the power of Deep ...

梯度消失问题

梯度消失问题

更小梯度

计算导数的直观方法 ...

$$\frac{\partial l}{\partial w} = ? \frac{\Delta l}{\Delta w}$$

Hard to get the power of Deep ...

新的激活函数

Rectified Linear Unit (ReLU)

• 原因:

- 1. 快速计算
- 2. 符合生物神经元特征
- 3. Infinite sigmoid with different biases
- 4. 解决梯度消失问题

ReLU-变体

Leaky ReLU

Parametric ReLU

α也用梯度下降法学习

合适的损失函数

选择合适的损失函数

当使用softmax输出层时,使用交叉熵损失函数

http://jmlr.org/procee dings/papers/v9/gloro t10a/glorot10a.pdf

学习率

小心设置学习率n

学习率

小心设置学习率n

学习率

- 简单常用的想法:每几个epoch就将学习率减小 一定幅度
 - 一开始,我们离目标很远,可以使用较大的学习率
 - 训练几个epoch后,我们接近目标了,就减小学习率如: $\eta^t = \eta/\sqrt{t+1}$
- 学习率不可能是one-size-fits-all
 - 不同的参数应该有不同的学习率

自适应的 学习率

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$

Adam: RMSProp (改进的Adagrad) + 动量

难以发现最优的网络参数

在物理世界中.....

• 动量

动量 (Momentum)

仍然不能保证到达全局最优,但增加了一些希望......

Dropout

训练:

- > 每次修改参数值前
 - 每个神经元有p%的概率退出

Dropout

训练:

- > 每次修改参数值前
 - 每个神经元有p%的概率退出
 - 网络的结构变了
 - 训练新的网络

对每个mini-batch, 我们重新随机选取退出的神经元

Dropout

测试:

➤ 没有dropout

- 如果训练时的退出概率是p%,则所有的权重都乘以(1-p%)
- 假设退出概率是50%, 如果一个权重w训练得到的值是1,则测试时将w的值设为0.5

Dropout - 直观理解

Training

Dropout (腳上綁重物)

Testing

No dropout (拿下重物后就变很強)

Dropout - 直观理解

• 为什么测试时网络的权重应该乘以(1-p)% (dropout rate)?

Training of Dropout

假设退出率是50%

Testing of Dropout

没有退出

训练一组不同结构的网络

<u>集成学习</u>

- ▶用一个mini-batch训练一个网络
- ➤ 网络中的一些参数是共享的

正则化-权重衰减

• 正则化即在损失函数中加入一个正则项。

• 直观地, 正则化的作用是让网络偏好学习更小的权值,

即复杂度低的网络。

人脑会将神经元之间 没用的连接滤去

人工神经网络类似地可以通过权重衰减改善性能

提前终止

整体 损失

遍数 (Epochs)

增加样本量

- 增加样本量可以减轻过拟合的风险
 - 过拟合本质上是模型对数据分布的学习过头了,以至于记住了数据的点点滴滴,这样过分的记忆导致模型在测试集上表现不好
 - 增加样本量使得模型记住数据全部细节变得困难
- 增加样本量能够更加直接地避免过拟合