CARTS: Classification and Regression Trees

Regression Trees

Basic idea:

- Dbreak up space of Xs into rectangles
- 2) on each rectangle, fit some really simple method

(predict y in each rectangle

 X_2 y_1 y_2

R3 Cg = Y4

• 44

R2ts C2 = 43

·95 · 96 P4 c4=45+Y0

 X_{I}

.0 400

$$\hat{f}(z) = c_i \quad \text{if} \quad z \in R_i$$

Uny culled a tree?

Can represent f as a decision tree

e.S. (above)

Goel: de His well

Need to decide:

(1) which variable to split on (j)

2) where I split the var (t)

- (2) where I split the var (t)
 (3) when do I stop.
- Optimal: try all possible trees not computationally tractible

Soln! Use greedy approach

Define R, (j,t) and Rz (j,t) to be the two half-spaces formed by Splitting variable j at point t

 $R_{1}(j,t)$ $R_{2}(j,t)$

 $RSS(j,t) = RSS(R_i(j,t)) + RSS(R_j(j,t))$

$$= \sum_{i=1}^{n} (y_i - c_i)^2 + \sum_{i=1}^{n} (y_i - c_i)^2$$

error

ieR₁(j,t) A ieR₂(j,t) A

I get by

Splithy var

j at point t

l.e. means of yi in

each rectangle

Algorithm: fitting tree

- (1) For each j search over possible to and cale (255(j,t)
- (2) choose j, t to minimize RSS(j, t)
- (3) Split at var j at point t
- (4) recursively do this for each new half space.

When do I stop?

> too many splits > over fit

- > too many splits > over fit
- 1) Set some maximu depth and use something like x-vol to set this value
- Bad idea: can split until 1255

 falls below some threshold

 problem: bad split may lead to a
 Better approach! better split later
 - 1) graw a really large tree
 - 2) prune its size (reduce)

Aside: a tree T, is called a

Sub-tree of T2 if I can get

T, by Collapsing part of T2

. T.

Cost-Complexity Pruning penalty penalty
$$C_{\alpha}(T) = RSS(T) + \alpha |T|$$
Size = # of leaf nodes

Want to find tree T that minimizes $C_{\alpha}(T)$.

Way to do Hais:

- 1) grow a really large tree
- 2) search over Sub-trees (i.e. prime parts of tree) to find one that minimizes (a(T)

to find one that minimizes (a(T)

If
$$\alpha = 0 \Rightarrow$$
 no pruning (larger) parsille
tree) $\Rightarrow \infty \Rightarrow$ reduce size of free

Turns out that:

(1) If I prime out parts of tree that increase RSS (east I got series of nested Silv-trees:

To CT, CT, CT,

Coptimal tree that minimizes Q(T) is somewhere in this sequence

2) If $\alpha_1 \leq \alpha_2$ then the optmal tree to min $(\alpha_1(T))$ contains the tree that min $(\alpha_2(T))$.

Ta, DTa2

