Contents

1.	Introduction			1
	1.1	Motiv	ration	1
	1.2	Backg	ground	2
		1.2.1	Problem Specification and Geometry Preparation	2
		1.2.2	Selection of Governing Equations	
			and Boundary Conditions	3
		1.2.3	Selection of Gridding Strategy and Numerical Method	3
		1.2.4	Assessment and Interpretation of Results	4
	1.3	Overv	riew	4
	1.4	Notat	ion	4
ก	C		tion I am and the Madal Employee	7
2.			tion Laws and the Model Equations	7
	$\frac{2.1}{2.2}$		ervation Laws	8
			Navier–Stokes and Euler Equations	11
	2.3		inear Convection Equation	
		2.3.1	Differential Form	11
	0.4	2.3.2		12
	2.4		Diffusion Equation	13
		2.4.1	Differential Form	13
	o =	2.4.2	Solution in Wave Space	14
	$\frac{2.5}{5}$		r Hyperbolic Systems	15
	Exe	rcises .		17
3.	Finite-Difference Approximations			
	3.1	Meshe	es and Finite-Difference Notation	19
	3.2	Space	Derivative Approximations	21
	3.3	Finite	-Difference Operators	22
		3.3.1	Point Difference Operators	22
		3.3.2	Matrix Difference Operators	23
		3.3.3	Periodic Matrices	26
		3.3.4	Circulant Matrices	27
	3.4	Const	ructing Differencing Schemes of Any Order	28
		3.4.1	Taylor Tables	28
		3 4 2	Generalization of Difference Formulas	31

X Contents	
------------	--

		3.4.3	Lagrange and Hermite Interpolation Polynomials	33
		3.4.4	Practical Application of Padé Formulas	35
		3.4.5	Other Higher-Order Schemes	36
	3.5	Fourie	er Error Analysis	37
		3.5.1	Application to a Spatial Operator	37
	3.6	Differ	ence Operators at Boundaries	41
		3.6.1	The Linear Convection Equation	41
		3.6.2	The Diffusion Equation	44
	Exe	rcises .		46
4.	The	e Semi	-Discrete Approach	49
	4.1	Reduc	ction of PDE's to ODE's	50
		4.1.1	The Model ODE's	50
		4.1.2	The Generic Matrix Form	51
	4.2	Exact	Solutions of Linear ODE's	51
		4.2.1	Eigensystems of Semi-discrete Linear Forms	52
		4.2.2	Single ODE's of First and Second Order	53
		4.2.3	Coupled First-Order ODE's	54
		4.2.4	General Solution of Coupled ODE's	
			with Complete Eigensystems	56
	4.3		Space and Eigenspace	58
		4.3.1	Definition	58
		4.3.2	Eigenvalue Spectrums for Model ODE's	59
		4.3.3	Eigenvectors of the Model Equations	60
		4.3.4	Solutions of the Model ODE's	62
	4.4	The F	Representative Equation	64
	Exe	rcises .		65
5 .			lume Methods	67
	5.1		Concepts	67
	5.2		l Equations in Integral Form	69
		5.2.1	The Linear Convection Equation	69
		5.2.2	The Diffusion Equation	70
	5.3		Dimensional Examples	70
		5.3.1	A Second-Order Approximation	
			to the Convection Equation	71
		5.3.2	A Fourth-Order Approximation	
			to the Convection Equation	72
		5.3.3	A Second-Order Approximation	
			to the Diffusion Equation	74
	5.4		o-Dimensional Example	76
	Evo	rciese		70

		Contents	XI
c	m·	M 1' M 1 1 C ODDIC	01
6.		ne-Marching Methods for ODE'S	81
	$6.1 \\ 6.2$	Notation	82 83
		Converting Time-Marching Methods to O Δ E's	
	6.3	Solution of Linear O Δ E's with Constant Coefficients	84
		6.3.1 First- and Second-Order Difference Equations	84
	0.4	6.3.2 Special Cases of Coupled First-Order Equations	86
	6.4	Solution of the Representative $O\Delta E$'s	87
		6.4.1 The Operational Form and its Solution	87
		6.4.2 Examples of Solutions to Time-Marching $O\Delta E$'s	88
	6.5	The λ - σ Relation	89
		6.5.1 Establishing the Relation	89
		6.5.2 The Principal σ -Root	90
		6.5.3 Spurious σ -Roots	91
		6.5.4 One-Root Time-Marching Methods	92
	6.6	Accuracy Measures of Time-Marching Methods	92
		6.6.1 Local and Global Error Measures	92
		6.6.2 Local Accuracy of the Transient Solution $(er_{\lambda}, \sigma , er_{\omega})$	93
		6.6.3 Local Accuracy of the Particular Solution (er_{μ})	94
		6.6.4 Time Accuracy for Nonlinear Applications	95
		6.6.5 Global Accuracy	96
	6.7	Linear Multistep Methods	96
		6.7.1 The General Formulation	97
		6.7.2 Examples	97
		6.7.3 Two-Step Linear Multistep Methods	
	6.8	Predictor–Corrector Methods	
	6.9	Runge–Kutta Methods	
	6.10	Implementation of Implicit Methods	
		6.10.1 Application to Systems of Equations	
		6.10.2 Application to Nonlinear Equations	
		6.10.3 Local Linearization for Scalar Equations	107
		6.10.4 Local Linearization for Coupled Sets	
		of Nonlinear Equations	
	Exe	cises	112
7.	Stal	oility of Linear Systems	115
• •	7.1	Dependence on the Eigensystem	
	7.2	Inherent Stability of ODE's	
		7.2.1 The Criterion	
		7.2.2 Complete Eigensystems	
		7.2.3 Defective Eigensystems	
	7.3	Numerical Stability of $O\Delta E$'s	
	1.0	7.3.1 The Criterion	
		7.3.2 Complete Eigensystems	
		7.3.3 Defective Eigensystems	
	7.4	Time–Space Stability and Convergence of $O\Delta E$'s	
	,	Time space stability and convergence of OZI 5	-10

	7.5	Numerical Stability Concepts in the Complex σ -Plane	. 121
		7.5.1 σ -Root Traces Relative to the Unit Circle	
		7.5.2 Stability for Small Δt	. 126
	7.6	Numerical Stability Concepts in the Complex λh Plane	. 127
		7.6.1 Stability for Large h	. 127
		7.6.2 Unconditional Stability, A-Stable Methods	. 128
		7.6.3 Stability Contours in the Complex λh Plane	. 130
	7.7	Fourier Stability Analysis	. 133
		7.7.1 The Basic Procedure	
		7.7.2 Some Examples	. 134
		7.7.3 Relation to Circulant Matrices	. 135
	7.8	Consistency	. 135
	Exe	rcises	
8.	Cho	posing a Time-Marching Method	
	8.1	Stiffness Definition for ODE's	
		8.1.1 Relation to λ -Eigenvalues	
		8.1.2 Driving and Parasitic Eigenvalues	
		8.1.3 Stiffness Classifications	
	8.2	Relation of Stiffness to Space Mesh Size	
	8.3	Practical Considerations for Comparing Methods	. 144
	8.4	Comparing the Efficiency of Explicit Methods	. 145
		8.4.1 Imposed Constraints	. 145
		8.4.2 An Example Involving Diffusion	. 146
		8.4.3 An Example Involving Periodic Convection	. 147
	8.5	Coping with Stiffness	. 149
		8.5.1 Explicit Methods	. 149
		8.5.2 Implicit Methods	. 150
		8.5.3 A Perspective	. 151
	8.6	Steady Problems	. 151
	Exe	rcises	. 152
9.		axation Methods	
	9.1	Formulation of the Model Problem	
		9.1.1 Preconditioning the Basic Matrix	
		9.1.2 The Model Equations	
	9.2	Classical Relaxation	
		9.2.1 The Delta Form of an Iterative Scheme	. 157
		9.2.2 The Converged Solution, the Residual, and the Error	. 158
		9.2.3 The Classical Methods	
	9.3	The ODE Approach to Classical Relaxation	. 159
		9.3.1 The Ordinary Differential Equation Formulation	. 159
		9.3.2 ODE Form of the Classical Methods	
	9.4	Eigensystems of the Classical Methods	. 162
		9.4.1 The Point-Jacobi System	

	Contents	XIII
	9.4.2 The Gauss–Seidel System	166
	9.4.3 The SOR System	
	9.5 Nonstationary Processes	
	Exercises	
10	Multigrid	177
10.	10.1 Motivation	
		177
	10.1.1 Eigenvector and Eigenvalue Identification with Space Frequencies	177
	10.1.2 Properties of the Iterative Method	
	10.1.2 Properties of the Relative Method	
	10.2 The Basic Flocess 10.3 A Two-Grid Process	
	Exercises	181
11.	Numerical Dissipation	
	11.1 One-Sided First-Derivative Space Differencing	
	11.2 The Modified Partial Differential Equation	
	11.3 The Lax-Wendroff Method	
	11.4 Upwind Schemes	
	11.4.1 Flux-Vector Splitting	
	11.4.2 Flux-Difference Splitting	
	11.5 Artificial Dissipation	
	Exercises	200
12.	Split and Factored Forms	203
	12.1 The Concept	203
	12.2 Factoring Physical Representations – Time Splitting	204
	12.3 Factoring Space Matrix Operators in 2D	206
	12.3.1 Mesh Indexing Convention	206
	12.3.2 Data-Bases and Space Vectors	206
	12.3.3 Data-Base Permutations	207
	12.3.4 Space Splitting and Factoring	207
	12.4 Second-Order Factored Implicit Methods	211
	12.5 Importance of Factored Forms	
	in Two and Three Dimensions	212
	12.6 The Delta Form	213
	Exercises	214
13.	Analysis of Split and Factored Forms	217
	13.1 The Representative Equation for Circulant Operators	
	13.2 Example Analysis of Circulant Systems	
	13.2.1 Stability Comparisons of Time-Split Methods	
	13.2.2 Analysis of a Second-Order Time-Split Method	
	13.3 The Representative Equation for Space-Split Operators	
	13.4 Example Analysis of the 2D Model Equation	225

XIV Contents

		13.4.1 The Unfactored Implicit Euler Method	225
		13.4.2 The Factored Nondelta Form	
		of the Implicit Euler Method	226
		13.4.3 The Factored Delta Form of the Implicit Euler Method	227
		13.4.4 The Factored Delta Form of the Trapezoidal Method .	227
	13.5	Example Analysis of the 3D Model Equation	228
	Exe	rcises	230
$\mathbf{A}\mathbf{p}$	pend	lices	231
Α.	Use	ful Relations from Linear Algebra	231
	A.1	Notation	231
	A.2	Definitions	232
	A.3	Algebra	232
	A.4	Eigensystems	233
	A.5	Vector and Matrix Norms	235
в.	Son	ne Properties of Tridiagonal Matrices	237
	B.1	Standard Eigensystem for Simple Tridiagonal Matrices	
	B.2	Generalized Eigensystem for Simple Tridiagonal Matrices	238
	B.3	The Inverse of a Simple Tridiagonal Matrix	239
	B.4	Eigensystems of Circulant Matrices	240
		B.4.1 Standard Tridiagonal Matrices	
		B.4.2 General Circulant Systems	241
	B.5	Special Cases Found from Symmetries	241
	B.6	Special Cases Involving Boundary Conditions	242
C.	The	Homogeneous Property of the Euler Equations	245
\mathbf{Ind}	lex		247

http://www.springer.com/978-3-540-41607-4

Fundamentals of Computational Fluid Dynamics

Lomax, H.; Pulliam, Th.H.; Zingg, D.W.

2001, XIV, 250 p., Hardcover

ISBN: 978-3-540-41607-4