Comparación de filtros

Analógico Vs Digital

Ejemplo: Filtro pasa bajo 1Khz

Analógico:

Chebyshev de seis polos con un ripple de 0,5dB (6%) – 3 AO, 12 Resistencias y 6 capacitores.

Digital:

Filtro de ventana, Fs 10Khz Fc 0,1 – largo 126 muestras

(6 pole 0.5dB Chebyshev)

Digital Filter

(129 point windowed-sinc)

> Ripple:

Analógico: 6% - limitado por diseño y precisión de resistencias y capacitores (usando Butterworth 1%)

Digital: perfectamente plano (0,02%) limitado por el error de redondeo

> Respuesta en frecuencia:

Muy superior el filtro digital

> Respuesta al escalón

Analógico: Respuesta no simétrica – fase no lineal

Digital: simétrica entre la porción superior e inferior – respuesta lineal

> Overshoot

Analógico: 20 % de un lado del escalón

Digital: 10% en cada lado del escalón

Ventajas del filtro analógico

> Velocidad:

Usando convolución con FFT un sistema estándar puede filtrar datos a razón de 10,000 muestras por segundo. Un Amplificador operacional puede operar de 100kHz a 1 Mhz 10 a 100 veces mas rápido

> Rango dinámico:

Amplitud:

es la relación entre la mayor señal que puede pasar por el sistema y el ruido inherente al sistema.

12 bits ADC – saturación 4095 y ruido de cuantificación 0,29 números digitales. RD: 14000

Amp Op estándar saturación 20 Volts y ruido interno 2uV –RD 10 millones

> Rango dinámico:

Frecuencia:

Analógico

Simple diseñar un circuito con AO para frecuencias de 0,01 Hz a 100 Khz.

Digital

Muestreando a 200Khz necesitamos 20 millones de puntos para capturar un ciclo de 0,01 Hz.

De ventana vs. Chebyshev

Ambos se utilizan para separar una banda de frecuencia de otra

Recursivo:

Chebyshev de seis polos con un ripple de 0,5% - Pasa bajo

Digital:

Filtro de ventana, Fc 0,2 – largo 51 muestras

Esta selección permite una comparación ya que el roll-off del 10 % al 90 % es igual en ambos filtros.

Comparación máxima performance y velocidad

Ej: aislar una señal de 100 mV 61 Hz de la red de 120V 60 Hz

Recursivo:

Chebyshev de seis polos con un ripple de 0,5% - máximo numero de polos para Fc 0,05

Convolución:

Filtro de ventana – largo 1001 muestras conv del filtro con él mismo

Es esperable que el filtro recursivo sea un orden de magnitud mas rápido que el filtro FIR con características similares.

Promedios móviles vs. Polo simple

Promedios móviles:

9 puntos

Polo simple:

Filtro recursivo decaimiento x=0.7

Respuesta en frecuencia

Respuesta al escalón

