SOV/70-4-1-12/26

AUTHORS: Konstantinova, V.P., Sil'vestrova, I.M. and

Aleksandrov, K.S.

是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就

TITLE: The Growing of Crystals of Triglycine Sulphate and Their

Physical Properties (Polucheniye kristallov triglitsin-

sulifata i ikh fizicheskiye svoystva)

PERIODICAL: Kristallografiya, 1959, Vol 4, Nr 1, pp 69-73 (USSR)

ABSTRACT: A new ferroelectric, triglycine sulphate (NH2CH2COOH)3H2SO4

was synthesized by adding 50% H₂SO₄ to a boiling solution of technical quality glycine, NH₂CH₂COOH. Small crystals

were obtained on adoling and two recrystallisations gave materials sufficiently pure for growing large crystals which were obtained by gooling a saturated solution over 10 hours from 52 to 25 °C at a rate automatically controlled to give a constant supersaturation. This sufficed

to grow crystals of 360 g weight. The measured density was 1.68 g/cm2. For physical measurements axes were

designated as follows: the crystals belong to Class 2 with $\theta \sim 105^\circ$, Y is the polar axis, Z the direction parallel

Card1/4

"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550620002-0

SOV/70-4-1-12/26

The Growing of Crystals of Triglycine Sulphate and Their Physical Properties

to the natural face of the crystal and X makes an angle of 15° with the c-face. The Curie point is about 49.2 - 49.3 °C, the ferroelectric axis being in the 2 direction. Dielectric constants were measured with a Q-meter at 500 kc/s on a crystal plate oriented to \pm 1°. The values:

$$\varepsilon_{11} = 8.6 \qquad \varepsilon_{33} = 5.7 \\
\varepsilon_{22} = 43 \qquad \varepsilon_{13} = 0.53$$

were found, the dependence on frequency of ϵ_{22} from 200 c.p.s. to 10 kc/s at 1, 5 and 10 V/cm being given. The piezoelectric moduli were found to be:

Card 2/4

在一个大型,但是一个大型,这种人的一个大型,但是一个大型,但是一个大型,但是一个大型,但是一个大型,但是一个大型,但是一个大型,可以不同的大型,但是一个大型,可

```
507/70-4-1-12/26
The Growing of Crystals of Triglycine Sulphate and Their Physical
               d_{21} = 70.7 \pm 0.1 \times 10^{-8} \text{ c.g.s.u. } d_{14} = +8.3 \pm 0.1 \times 10^{-8} \text{c.g.s.u.}
Properties
                                                               d_{36} = 8.5 \pm 0.1
                d_{22} = 23.8 \pm 0.5
                                                               d_{34} = -9.6 \pm 0.5
d_{15} = -13.7 \pm 0.2.
                d_{23} = 76.0 \pm 0.1
                d_{25} = 73.0 \pm 0.3
                There were considerable differences from specimen to specimen amounting, for Y-cut crystals, to 15-20%.
                The elastic moduli were found by an ultrasonic pulse
                method from a set of six plates with an accuracy of 1-2%.
                They are:
                c_{11} = 4.55 \times 10^{11} \text{ dynes/cm}^2
                                                               c_{31} = 1.98
                                                               c<sub>12</sub> = 1.72
                 c<sub>22</sub> = 3.21
                                                               c_{15} = -0.30
                 c<sub>33</sub> = 2.63
                                                               c_{25}^{-2} = -0.036
                 c_{44} = 0.95
                                                               c<sub>35</sub> = -0.5
                c<sub>55</sub> = 1.11
    Card3/4
```

"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550620002-0

The Growing of Crystals of Triglycine Sulphate and Their Physical Properties

 $c_{66} = 0.62$

 $c_{46} = -0.026$

 $c_{23}^{-1} = 2.08$

Acknowledgments are made to Academician A.V.Shubnikov and I.S. Zheluzov for their advice and to Ye.M. Akulenok for help with experiments. There are 5 figures, 1 table and 6 references, 3 of which are Soviet, 1 English, 1 German and 1 international.

ASSOCIATION: Institut kristallografii AN SSSR (Institute of Crystallography of the Ac.Sc.USSR)

SUBMITTED:

June 17, 1958

Card 4/4

SCV/70-4-1-25/26

Konstantinova. V.P., Sil'vestrova, I.M. and AUTHORS:

Yurin. V.A.

的现在分词,我还是是我们的一个人,我们就是我们的一个人,我们就是我们的一个人,我们就是我们的一个人,我们就是我们的一个人,我们就是我们的一个人,我们就是我们的一个

Twinning and the Dielectric Properties of a Crystal of PITLE:

Triglycine Sulphate (Dvoynikovaniye i dielektricheskiye

svoystva kristalla triglitsinsul'fata)

Kristallografiya, 1959, Vol 4, Nr 1, pp 125-129 (USSR) PERIODICAL:

Y-axio in $(\mathrm{NH_2CH_2COOH})_{5}$, $\mathrm{H_2SO}_{4}$ is the direction of The ABSTRACT:

ferroelectric polarisation and plates cut perpendicular to this axis were examined here. Etching these plates showed the twin structure with individuals from tenths of a mullimetre to several centimetres. The faces at the two ends of the polar axis are etched differently, one kind of etching giving a matte effect and the axes of the individuals are parallel or anti-parallel to the plate normals. This observation is confirmed by the

complementary patterns observed on two sides of the plate.

The hysteresis loop (dielectric hysteresis) of the plate was studied between -80 and +53 °C. The spontaneous polarisation at 23 °C is 2.02 x 10 °C coulém. The

Card1/2

SOV/70-4-1-25/26 Twinning and the Dielectric Properties of a Crystal of Triglycine Sulphate

coercivity for most specimens lay between 200 and 300 V/cm, but some were/90 to 1 000 V/cm. The dielectric constant was measured at various frequencies, temperatures and field strengths; ϵ_{22} shows a sharp dielectric anomaly (λ -point) at 49.2-49.6 °C and ϵ_{11} also shows a small peak at this temperature but ϵ_{33} does not. The spontaneous polarisation falls to zero at about 52 °C. Acknowledgments are made to Academician A.V. Shubnikov and I.S. Zheludev for their advice. There are 9 figures and 1 English reference.

ASSOCIATION: Institut kristallografii AN SSSR (Institute of Crystallography of the Ac.Sc., USSR)

SUBMITTED: June 17, 1958

Card 2/2

		<u>.</u>	or early			<u>.</u>							-		
Card 1:7:	Pro I like and Tw. Survice. Problem of the Commentica Reteren Electric Compactivity of Terrosiantic Crystals and Perrosianticity (Recttal Iclanius) title-Massarch Laboratory of Pleastantonicy, Massard		Ÿ	Champy, B.K. Electrical Properties of the Baridy - "Clifty System Chipprophirately Servicesty universitat (Desprophirately Sixte Infrarel- by)	, i	Emainsifare. T.E. 18 Silesstrament 8,0 Listation over the state of the	Signish LA. Gemestris Hodel for the Description of Polymorphou Flase Transitions in Crystals (Physics Division, Norce State University isani M.F. Louoneser)	Ominants, CA., Al. Arrangembys, T.A. larger, and S.B. Prixt. En- person terms of the Complete Composition Linetitude of Sentendentors, As COM.	distribute projection, leave, and polyhimation, ind with specific indimitive distance of various organia, behaved composed, and certains. Data-capations of various organials, relative projection and irrediction of shortest and advertise are provided by the column contains a list of other feets on delection and provided by. The column contains a list of other papers presented at the conference dealing with specialisation, described, and breakdouts of tidestities, duto were published in the journal isrestits of the dealing of the column conference of the column contains and the column column columns are mornished. **Reference a contract with the conference of the column columns are mornished.**	COTEMACE: The Second All-Chino Conference in the FigUrits of the entropy of the Paylone statistic lead Manage of the Paylone statistic inent [5]. Lawled are [7] year of statistic lead Manage of the Paylone statistic are attended by representative of the principal Paul [18] and the paylone of the Paul [18] and of several other of out true of This color of the Paylone of the paylone presented at the residence and summative leading contexts and the paylone presented at the residence of the paylone o	Purpose This reliaining of reports to intended for extensions investigated the physics of dislatinion	Mt. of Publicating Rosso. Ye.L. Staround enkaye, Tech. Ed.: 1.M. Docabhins, Editional Declar of Physics and Mathematics (perial benefit (Mess. Ed.) G.I. Chance, Declar of Physics and Mathematics. (persected), and E.T. Filippius, Cantitate of Physics and Mathematics.	Titum electric (he 22 All-Daire Cenference on the Physics of Pladeottals) Framenthase of States (1900, 1949, Franks slip inserted, 5,000 ceptes Physics, Indeed at SCD, 1900, 1949, Franks slip inserted, 5,000 ceptes printed. Bennerting Agracy: Atalysiya sauk DATA, Fisionewitz Institut insert P.H. lebeleve.	Venerpusnaya ausfermetsiye po fisika dielektribov. 24. 1955 e. No. Aleksariewe, imdy etosy vanespulksy konferatati (Physics of Dielektr	ä
	610	5	193	365	¥ ¥	751	3	339		1722		•	*	5	

"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550620002-0

24.7800 78116 SOV/70-5-1-25/30

AUTHORS: Sil'vestrove, I. M., Remangair, H. A.

TITLE: Effect of the Exposure of Triglycine Sulfate Crystals

to Ultraviolet Radiation on Their Ferroelectric

Properties. Brief Communications

PERIODICAL: Kristalle-grafiya, 1960, Vol 5, Nr 1, pp 147-150

(USSR)

55°产生,其实是自己的对于特别的对象。

ABSTRACT: Radiation damage effect in Rochelle salt and tri-

glycine salfate has been known. The authors furthered the studies. Triglycine sulfate plates,

0.5 to 3.5 mm thick, parallel to the cleavage running rormal to the polar axis, became dull and yellow after 20- to 30-hr exposure to ultraviolet

radiation emitted from quartz-mercury lamps

DRSh-100 and SVDSh-250. The hysteresis loops became distorted as shown in Fig. 1. The experiments

revealed that absorption in 2-mm-thick plates decreases

from nearly complete for short-wave ultraviolet rays to 57% at λ = 250 m/L and to 40% for violet rays with

Carri 1/6

为。19.1. 3.13 特别的法律**代表企工,我使用的证明,我是国际的证明,我们是国际的证明,这个**是是一个,我们就是一个,他们的是是一个,他们是是一个,他们们就是

Effect of the Exposure of Triglycine Sulfate 78116 Crystals to Ultraviolet Radiation on Their 50V/70-5-1-25/30 Ferroelectric Properties. Brief Communications

Fig. 1. Distortion of hysteresis loop in triglycine sulfate due to exposure to altraviolet radiation:
(a) unexposed specimen; (b, c, d) exposed specimens; (b) hysteresis loop on weak fields, (c, d) on a saturated fields.

Card 2/6

"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550620002-0

您在你还是**我们的现在,我们就是我们的人,我们就是我们的人,我们**是我们的人,我们就是我们的人,我们就是这个人,我们就是一个人,我们们就是这个人,也不是一个人,一个

Effect of the Exponent of Thingly in Latin 7-3116 Organian to Ultraviolet Reita in the 307/70-5-1-25/30 Ferrocleance Properties. Brief Communication

400 mil. Short-wave rays with \u03bb = 250 mil proved to affect the ferroelectric properties of triglycine sulfate to a greater extent. The radiation effect was not confined to a surface layer as two different experiments verified. Ultraviolet radiation begun to alter the hysteresis loop in about 45 seconds; further radiation did not affect spontaneous polarization but increased the coercive field and moved the hysteresis loop along X axis until a new stable state was achieved after 4 months of radiation. The new state remained stable even after annealing above the Curle point for 4 to 5 hr, or after keeping the specimen in a strong electric field. The exposure to altraviolet radiation proved to decrease the dielectric susceptibility of triglycine sulfate from 47 to 30 at 25° C. 1/E vs temperature curves (Fig. 5) point to the applicability of the Curie-Welss law to both expected and unexposed specimens

Card 3/6

Effect of the Exposure of Triglycine Sulfate 78116 Crystals to Ultraviolet Radiation on Their 50V/70-5-1-25/30 Ferroelectric Properties. Brief Communications

of triglycine sulfate. Exposure to radiation changes the slope of the E vs temperature curve and makes the plates less elastic. For instance, and decreases from 87.16 x 10⁻¹³ to 84.95 x 10⁻¹³ cm²/dyne. Piezoelectric modulus d₂₃ decreases from 62.5 x 10⁻³ to 46.7 x 10⁻⁸ and 39.2 x 10⁻⁸ CGSE units after exposure to radiation for 12 and 24 hr respectively. The piezolelectric modulus of an exposed specimen increased, however, to 95.5 x x 10⁻⁸ CGSE units again after application of direct electric field. I. S. Zheludev is acknowledged for advice, I. V. Gavrilova for specimens, and V. N. Varfolomeyeva for assistance. There are 5 figures; and 7 references, 5 Soviet, 1 Indian, 1 U.S. The U.S. reference is: A. G. Chynoweth, Phys. Rev., 113, 159-166 (1959).

Card 4/5

"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550620002-0 当点的有限的**以外的特别的特别和特别和特别的**的特别的特别的特别的特别的特别的特别的共享的人。在完全的主义,在1900年中,1900年中,1900年中,1900年

Effect of the Exposure of Triglyolm Sulfate 70116 507/70-5-1-25/30 Crystals to Ultraviolet Radiation on Their Ferroelectric Properties. Brief Communications

Crystallographical Institute of the Academy of Sciences of the USSR (Institut kristallografii ASSOCIATION:

AN SSSR)

October 21, 1959 SUBMITTED:

card 5/6

9.2180

S/048/60/024/010/008/033 2013/2063

AUTHORS:

Konstantinova, V. P., Sil'vestrovs, I. M., Shuvalov, L.A.,

and Yurin, V. A.

TITLE:

Production and Piezoelectric Properties of Crystals of

Deuterized Triglycin Sulfate

PERIODICAL:

Izvestiya Akademii nauk SSSR. Seriya fizicheskaya, 1960,

Vol. 24, No. 10, pp. 1203-1205

TEXT: Monocrystals of deuterized triglycin sulfate (DTGS) were obtained from monocrystals of ordinary triglycin sulfate (TGS) dissolved in D₂O₂. The solution was boiled, whereupon large DTGS monocrystals with a weight of up to 100 g were bred from it. The external form of the DTGS crystals is the same as in TGS crystals. In their symmetry they belong, like TGS crystals, to the monocline system. The form of the domain boundaries in DTGS crystals is shown in Fig. 1. Measurements have shown that the dependencies of all of the characteristics of reversion of polarization on temperature, on the field, on the frequency, and other quantities (Figs. 2-5) in DTGS crystals exhibit a qualitative similarity with the

Card 1/2

Production and Piezoelectric Properties of S/048/60/024/010/008/033 Crystals of Deuterized Triglycin Sulfate B013/B063

corresponding dependencies of TGS crystals. Fig. 6 illustrates the relations $i_{max}/S = f(E)$ and $1/\tau_{max} = f(E)$, taken at different temperatures. (S - electrode area. E - field strength during the pulse). Fig. 7 gives the temperature dependence of mobility μ , as calculated from formula $\mu = \frac{d}{dr} = \frac{d}{d$

Owing to the fact that DTGS crystals, compared with TGS crystals, are usable within a much wider temperature range, and that their characteristics at room temperature exhibit a lesser temperature dependence, they can be used in the same cases as the TGS crystals in spite of their considerable electrical hardness. The authors thank I. S. Zheludev for his discussion of trical hardness. The authors thank I. S. Zheludev for his discussion of results, and Ye. M. Akulenok, K. A. Pluzhnikov, and L. N. Kurnakovskaya for assistance given in the experiments. The present paper was read at the Third Conference on Piezoelectricity which took place in Moscow from January 25 to 30, 1960. There are 7 figures and 8 references: 5 Soviet.

ASSOCIATION: Institut kristallografii Akademii nauk SSSR

(Institute of Crystallography of the Academy of Sciences

USSR)

Card 2/2

4.5300

85001 \$/048/60/024/010/010/033 B013/B063

AUTHOR:

Sil'vestrova, I. M.

TITLE:

The Problem of Light Receivers Based on the Pyroelectric

Effect N

PERIODICAL:

Izvestiya Akademii nauk SSSR. Seriya fizicheskaya, 1960,

Vol. 24, No. 10, pp. 1213-1215

TEXT: This article deals with the possibility of using triglycin sulfate crystals as light receivers. For this purpose, the author chose a simple position for the crystal relative to the incident light (Fig. 1). The circuit diagram of the experimental arrangement is shown in Fig. 2. The measurement of the temperature dependence of the pyroelectric voltage is illustrated in Fig. 3. A marked increase of sensitivity of the receiver was found in the temperature range about 40°C. From 46 + 47° onward it decreases considerably. The effect of the d-c voltage on the course of the pyroelectric voltage at different temperatures is shown in Fig. 4. The effect of a constant field causing polarity reversal upon the pyroelectric voltage of the receiver at 20°C is shown in Fig. 5. The hysteresis dependence of the pyroelectric voltage on the magnitude of the field is clearly

Card 1/2

85001

The Problem of Light Receivers Based on the Pyroelectric Effect

S/048/60/024/010/010/033 B013/B063

seen therefrom. The coercive field of the sample estimated from the measurements has a strength of 400 v cm⁻¹. This value agrees with the data from Ref. 4. The results obtained lead to the following conclusion:
The crystal under consideration is a particularly suitable light receiver in the temperature range 40 + 45.5°C where its sensitivity increases
2.5 + 2.7 times, compared to its sensitivity at room temperature. Up to 50°C it is necessary to apply strong polarizing constant fields to the sample. Fields up to 180 + 200 v cm⁻¹ and with opposite polarity do not affect the sensitivity of the receiver. The author thanks Yu. N. Sil'-vestroy for making available the circuit diagram of an amplifier, and V. P. Konstantinova for various samples. The present paper was read at the Third Conference on Piezoelectricity, which took place in Moscow from January 25 to 30, 1960. There are 5 figures and 4 non-Soviet references.

ASSOCIATION:

Institut kristallografii Akademii nauk SSSR

(Institute of Crystallography of the Academy of Sciences

USSR)

Card 2/2

S/048/60/024/011/004/036 B006/B056

24,7760(1043,1143,1559)

Konstantinova, V. P., Sil'vestrova, I. K., Shuvalov, L. A.,

and Yurin, V. A.

Production of and Some Ferroelectric Properties of

Lithium Hydroselenite

PERIODICAL: Izvestiya Akademii nauk SSSR. Seriya fizicheskaya, 1960

Vol. 24. No. 11, pp. 1318 - 1323

TEXT: The present paper is a reproduction of a lecture delivered on the 3rd Conference on Ferroelectricity, which took place in Moscow from January 25 to 30, 1960. Lithium hydroselenite (denoted by LHS), LiHSeO₃·H₂SeO₃ form monocline crystals of the space group P_n. Already in Ref.1 it has been identified as ferroelectric, and some data were given. In the present paper the authors first describe the synthesis and chemical properties of this compound. Fig.1 shows the solubility of LHS as a function of temperature (straight line), from which it may be seen that this crystal may be grown in the usual manner by temperature

Card 1/3)

AUTHORS:

TITLE:

Production of and Some Ferroelectric Properties of Lithium Hydroselenite

S/048/60/024/011/004/036 B006/B056

decrease. A monocrystal of 100 g grown by the authors is shown in Fig.2. The fusing point of LHS was found to be at 110.5°C, density \sim

 $q=3.185~g/cm^3$, the angle of monoclinity was 105° . The orientation of the crystallographic axes and the position of the main faces are shown in Fig.3. Fig.4 shows the various hysteresis loops, which are found to exist in the individual crystallographic directions of LHS. Also the direction-dependence of the dielectricity constant ϵ_{33} (broken line) and

the spontaneous polarization P_S in the cleavage face are shown. Figs.5-6 show £, the coercitive force E_C and the spontaneous polarization as a function of temperature. It was found that £ and P_S increase with increasing temperature, whereas E_C decreases. Fig.7 shows £ as a function of the electric field strength at various frequencies. (E_) in all cases has a maximum. The authors thank V. A. Frolova, L. N. Kurkovskaya, and K. A. Pluzhnikov for their collaboration and I. S. Zheludev for valuable advice There are 7 figures, 1 table, and 5 references: 3 Soviet and 2 US.

Card 2/2

24.7800 (1144,1162) 9.2181 (2303,3203) 858**73**

\$/048/60/024/011/009/036 B006/B056

AUTHOR:

Sil'vestrova, I. M.

TITLE:

The Dependence of the Plasticity Constant store of a

Triglycine Sulfate Crystal on a Constant Field Within

the Range of Curie Point

对自然的影响,这种是一种,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就

PERIODICAL:

Izvestiya Akademii nauk SSSR. Seriya fizicheskaya, 1960,

Vol. 24, No. 11, pp. 1337 - 1341

TEXT: The present paper is a reproduction of a lecture delivered on the 3rd Conference on Ferroelectricity, which took place in Moscow from January 25 to 30, 1960. The author gives a report on experimental investigations of the influence exerted by a constant electric field E_c upon s_{12}^{1} of triglycine sulfate (TGS) in the vicinity of the Curie point. The measurements were, as usual, made by recording the resonance—and antiresonance frequencies of a vibrating TGS Y-cut, the size of the samples being $48.73 \times 3.5 \times 1.5$ mm. The Curie point of the sample was (if $E_c=0$), about 49.1° C, if $E_c=1000$ v/cm, about 50.3° C. The results obtained

Card 1/6

V

The Dependence of the Plasticity Constant signs of a Triglycine Sulfate Crystal on a Constant Field Within the Range of Curie Point

85873 \$/048/60/024/011/009/036 B006/B056

by investigations are all illustrated in form of diagrams. Fig.1 shows the resonance frequency f_r as a function of E (polarity is reversed) at various temperatures. The curves show that in reversed polarity f_r decreases rapidly, after which it increases again; this is all the more the case the closer the temperature approaches Curie point. At 48.4°C, the original f_r value was no longer attained by $(-\to +)$ reversed polarity. Fig.2 shows s_{33}^2 and ds_{33}^2 as temperature functions. s_{33}^1 increases with increasing temperature, and after the peak falls very quickly at Curie point. While Δf_r changes from 50 cps at 20°C to 950 at 48°C, Δs_{33}^2 changes from 0.36°10⁻¹³ to 6.12·10⁻¹³cm²/dyn within the same temperature interval. Fig. 3 shows the dependence of f_r and f_{41}^2 (antimesonance frequency) of E at reversed polarity, Fig.4 shows s_{33}^2 as a function of E, and Fig.5 shows the coefficient K as a function of E; the temperature data given beside the curves are in centigrades. K is the electromechanical proportionality factor, defined by

Card 2/6

The Dependence of the Plasticity Constant s: S/048/60/024/011/009/036 of a Triglycine Sulfate Crystal on a B006/B056 Constant Field Within the Range of Curie Point

 $\frac{1/2}{\frac{1}{3}} = K \frac{\frac{22}{4\pi} \text{ s}_{33}^{*}}{\frac{1}{4\pi} \text{ s}_{33}^{*}}, \text{ where d}_{33}^{*} \text{ is the piezoelectric modulus, } \frac{2}{22} - \text{the diffectric constant. From the results obtained it may be concluded that, the greater the constant field applied, the less the crystal will be centrically-symmetric. The author thanks I. V. Gavrilova for placing the samples at her disposal, and L. A. Shuvalov for discussing the results. There are 5 figures and 2 references: 1 Soviet and 1 Japanese.$

ASSCCIATION: Institut kristallografii Akademii nauk SSSR (Institute of Crystallography of the Academy of Sciences USSR)

Fig. 3

Card 3/

Dielectric properties of deuterated triglycine sulfate crystals. Kristallografiia 6 no.4:582-590 Jl-Ag '61. (MIRA 14:8) 1. Institut kristallografii AN SSSR. (Glycine crystals--Electrical properties)

N. 1. 169

5/181/62/004/009/005/045 p108/p186

tilly attention, and rorin, V. A.

he get to a second reliction on the glezoelectric and elastic reservices of trick/cine sulfate cry tals

Finites (vertices tella, v. 4, no. 9, 1962, 2319 - 2327

That: It was its of this other were presented at the III soveshchanii po the netter of clearty. (III Sofference on Ferroelectricity), hoscow, January the netter of clearty of the authors of al., (Izv. AN JOSR, ser. fiz., 1 to 3 16, 11, 1 a, 1,60; arratallografiya, 7, 3, 1962) are continued. The elastic parts of , the electromechanical coupling factor $k_{23}^{\rm e}$, and the picapel orgin modulum it were determined by the resonance method with transverse scallations in the direction of the crystallographic axis c. to terror tre dependences of the mentioned factors above show similar of the control dependences of the mentioned lactors above anon Similar of the curves of the time which he not changed by gamma irradiation. The curves of the state of the control and then rapidly drop to zero. J.r: 1/2

s/181/62/054/909/005/045

After the control of the conver somewhat towards lower temperatures and likely the control of the constant electric field, kin and it. In a constant polarizing man to the formation of the constant polarizing field to obtain a distribution of etc. The constant polarizing field to obtain a distribution by ad Fo R, Moscov)

Out IT. When the constant Formation of the constant polarizing field to obtain a filter by ad Fo R, Moscov)

s/070/62/007/003/007/026 E132/E460

Yurin, V.A., Sillyestrova, I.M., Zheludev, I.S.

The ferroelectric properties of crystals of triglycine sulphate irradiated by Y-rays AUTHORS: TITLE:

PERIODICAL: Kristallografiya, v.7, no.3, 1962, 394-402 An experimental investigation has been made of the influence of gamma rays on the form and parameters of the hysteresis loop, the influence of steady electric fields and of the temperature on the hysteresis loops of irradiated crystals, and the influence of the Y-rays on the dielectric properties of triglycine sulphate the Y-rays on the dielectric properties of triglycine surphate (NH2CH2COOH) 3H2SO4. The results are compared with analogous data for Rochelle salt containing Cu ions. Like the Cu⁺⁺ ion, the products of the radiolysis of TGS are charged and interact with the products of the radiolysis of TGS are charged and interact. field, the radiolysis products redistribute themselves leading to spontaneous internal polarization field. changes in the hysteresis loop (which splits into two loops or may stabilize the spontaneous polarization in a particular direction and a much stronger field is required to move it. be displaced). Card 1/2

"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550620002-0

"APPROVED FOR RELEASE: 08/23/2000
了。1916年至1876年1876年1876年1876年1876年1876年1876年1876年
ACC NR: AR6031884 SOURCE CODE: UR/0058/66/000/006/E090/E090 AUTHOR: Sil'vestroya, L. M.: Panova, V. P.: Belyayey, L. M. TITLE: Investigation of the spectral relationship of the Young modulus and the logarithmic decrement of longitudinal oscillations along the C axis of a cadmium sulfide crystal in the region of its photosensitivity
SOURCE: Ref. zh. Fizika, Abs. 6E710 SOURCE: Ref. zh. Fizika, Abs. 6E710 REF SOURCE: Sh. Nekotoryye vopr. vzaimodeystviya ul'trazvuk. voln s elektronami provodim. v kristallakh. M., 1965, 47-65 provodim. v kristallakh. M., 1965, 47-65 TOPIC TAGS: Young modulus, cadmium sulfide, wave propagation, elastic wave, standing wave, photosensitivity ABSTRACT: A method has been described for determining some parameters needed including elastic constant waves in the for amplification of the supersonic waves, including elastic constant waves in the for amplification of the supersonic waves, including coefficient, and the direction of wave propagation, the electromechanical bonding coefficient, and the direction of wave propagation, the electromechanical bonding to determine the sample conductivity. From the measured values of changes in the logarithmic sample conductivity. From the measured values of changes in the logarithmic direction of attenuation and the elastic moduli, it is possible to determine the sample conductivity. From the measured values of conductivity with the standing and spectral region where an electron interaction of conductivity with the standing and spectral region where an electron interaction of conductivity with the standing and spectral region where an electron interaction of conductivity with the standing and spectral region where an electron interaction of conductivity with the standing and spectral region where an electron interaction of conductivity with the standing and spectral region where an electron interaction of conductivity with the standing and spectral region where an electron interaction of conductivity with the standing and spectral region where an electron interaction of conductivity with the standing and spectral region where an electron interaction of conductivity with the standing and spectral region where an electron interaction of conductivity with the standing and spectral region where an electron interaction and the conductivity with the standing and spectral region whe
Card 1/2

"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550620002-0

•		
, AC	C NR: AR6031884	
tio	astic wave in a crystal is maximum. The data on conducted measureme rve as a criterion for sampling the CdS crystals for amplification and med for creating resonators with variable light, quality, and frequency. B CODE: 20/	nts may ay be [Transla-
!		
;	•	
Card	2/2 Egle	
-		>

1. lul54-65 EEC(b)-2/EWT(1)/EEC(t)/T Pi-4/Pz-6 IJP(c) CG/AT S/0070/65/010/002/0252/0255 S/0070/65/010/002/0252/0255

AUTHOR: Belyayev, L. M.; Krasil'nikov, V. A.; Lyamov, V. Ye.; Panova, V. P.;

TITLE: Interaction of ultrasonic waves with conduction electrons in cadmium sulfide

SOURCE: Kristallografiya, v. 10, no. 2, 1965, 252-255

TOPIC TAGS: cadmium sulfide, ultrasonic wave, photoconductivity

ABSTRACT: The strong interaction of conduction electrons with acoustic wayes along definite crystallographic axes in CdS, together with the photoconductivity of this semiconductor material, which facilitates changing the electron concentration, make cadmium sulfide an excellent material for studying the interaction of ultrasonic waves with conduction electrons. These interactions take the form of attenuation, amplification or modulation of the ultrasonic wave, a change in the voltage-current characteristics of the crystal in a strong electric field, or an electroacoustic effect. All these effects were studied in CdS crystals grown from a melt. The specimens were cut into bars $4 \times 6 \times 7-8$ mm. The hexagonal axis of the crystal was oriented both parallel with and perpendicular to the long dimension of the bar. Dark conduction was 10^{-10} - 10^{-4} $\Omega \cdot \text{cm}^{-1}$. Illumination reduces the conductivity to

Cord 1/3 5

L 44154-65

ACCESSION NR: AP5008473

10⁻⁴-5·10⁻³ Ω·cm⁻¹. The ends of the specimens were coated with indium by vacuum deposition. It was found that the maximum change in elasticity and in the damping constant takes place at maximum photosensitivity. Amplification of ultrasonic pulses was observed in some specimens when measuring attenuation with the application of an external electric field. The amplification amounted to 2.5-3 db/mm for a frequency of 24 Mc and a field strength of 1200 v/cm. Voltage-current characteristics show a deviation from linearity (current saturation) when the drift rate of the electrons is greater than the speed of the transverse or longitudinal ultrasonic waves (depending on the orientation of the specimen). Nonlinearity increases with the conductivity of the crystal. Drift mobility was found to be 130-150 cm²/v·sec. The sign of the electroacoustic emf corresponds to n-type conductivity in CdS. The pulse amplitude of the acoustic emf is on the order of dozens of millivolts. Orig. art. has: 3 figures.

ASSOCIATION: Institut kristallografii AN SSSR (Institute of Crystallography, Academy of Sciences SSSR)

SUBMITTED: 20May64

ENCL: 00

SUB CODE: SS, MP

Card 2/3 2-

"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550620002-0

EWT(1)/EPA(s)-2/EWT(m)/EPF(c)/EEC(k)-2/EPF(n)-2/T/EWP(t)/EWP(b)/EWA(c)ACC NR: AP5028107 IJP(c) JD/GG SOURCE CODE: UR/0048/65/029/011/2005/2008 44,55 44,50 Sil'vestrova, I.M.; Yurin, V.A.; Shuvalov, L.A 44.55 AUTHOR: Podlesskaya, A ORG: none TITLE: The piezoelectric effect and internal friction in gamma-irradiated Roche salt crystals Report, Fourth All-Union Conference on Ferro-electricity held at Rostov-on-the Don 12-16 September 19647 SOURCE: AN SSSR. Izvestiya. Seriya fizicheskaya, v. 29, no. 11, 1965, 2005-2008 21, 411, 5 3 TOPIC TAGS: ferroelectric crystal, single crystal, gamma irradiation, piezoelectric crystal, clastic modulus, internal friction, electric field ABSTRACT: The authors have measured the piezoelectric modulus d14, the electromechanical coupling constant k14, the elastic compliance s22, and the damping constant δ for longitudinal mechanical vibrations, of 7-irradiated 45° X-cut Rochelle salt crystal bars at temperatures from 0 to 35°C and (in the case of s22 and d14) in the presence dc bins field up to 3 kV/cm. The crystals were irradiated (maximum dose, 1.2 x 107 roentgen) at 3-5°C and stored at this temperature for 1-2 days before measurement. The piezoelectric effect was investigated by the resonance-antiresonance method and the internal friction was measured by the technique described by L.A.Shuvalov and Yu.S.Likhacheva (Izv.AN SSSR. Ser. fiz., 24, No. 11, 1216 (1960)). The effect of γ irradiation on the temperature dependence of all these quantities was similar to Card 1/2

L 7313-65

ACC NR: AP5028107

6

its effect on the temperature dependence of the 11-component of the dielectric constant (V.A.Yurin, Izv. AN SSSR. Ser. fiz., 29, 2000 (1965)/see Abstract AP5028106/): the sharp maximum at the Curie point was reduced in magnitude, broadened, and shifted to lower temperatures; in the most highly irradiated samples none of the measured quantiments of siz and did in the presence of bias fields were made at 12°C. In unirradiated samples both these quantities showed sharp maxima at zero bias. The effect of increasing irradiation was to broaden these maxima, shift them to higher bias fields, fields was associated with the appearance of double hysteresis loops, the bias at which these quantities were maximum being approximately the critical field for the double as their values at zero bias, first decreased, then increased, and finally decreased again. The authors thank A.A.Agal tsov and K.A.Pluzhinov for assistance in performing the experiments. Orig. art. has: 3 figures.

SUB CODE: SS EM ME

SUBM DATE: 00/

ORIG. REF: 002

OTH REF: 007

Cord 2/2

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550620002-0"

对社会工作的证明目录自然的工作问题的证明,对社会工作的证明。

L 16240-66 EWT(m) EWP(t)/EWP(b) IJP(c) JD

ACC NR: AT6002258 A SOURCE CODE: UR/2564/65/006/000/0255/0260

AUTHOR: Belyayev, L.M.; Gil'varg, A.B.; Panova, V.P.; Sil'vestrova, I.M.;

ORG: none

TITLE: Growing of CdS crystals from a melt and study of their properties [Paper presented at the Third Conference on Crystal Growing held in Moscow from 18 to 25

SOURCE: AN SSSR. Institut kristallografii. Rost kristallov, v. 6, 1965, 255-260

TOPIC TAGS: cadmium sulfide, crystal growing, photoconductivity, piezoelectric property, zone melting, photosensitivity, crystal defect, dark current, volt ampere characteristic

ABSTRACT: The paper describes the apparatus and methods for growing crystals of type AIBVI from a melt at high pressure and deals with a study of the photoelectric, piezoelectric, and other properties of the CdS crystal. The apparatus, the diagrams of which are given, made it possible to carry out the growing from the melt under pressure both by the method of directional removal of heat and by the method of zone melting.

L 1624C-66	3002258		5	1
The CdS crysphotosensitive concentration tivity (10-7 of one and the dark current and elastic concentrations. I. Gusenke	tals possessed photoconductivity in ty region toward longer wavelength of defects and possible copper imp. 10-10 ohm-1 cm-1) indicated that a same crystal were inhomogeneous and photocurrent of a crystal were onstants were measured by resonant ova, A.V. Podlesskaya, F.I. Dmittorig. art. has: 3 figures and 1 ta	individual crystals and vars. The volt-ampere character measured, and the piezoele methods. Authors than riyeva, and V.F. Miuskova ble."	rious portions eteristic of the ectric moduli k V.A. Demin, a for assistance	The second se
DOB CODE:				
	•	•		

ACC NR: AP60294

SOURCE CODE: CZ/0055/66/016/006/0506/0515

AUTHOR: Sil'vestrova, I. M.

ORG: Institute of Crystallography, AN SSSR, Moscow (Institut kristallografii, AN SSSR)

TITLE: Changes in the natural frequency and Q-factor of a photoconducting piezoresonator composed of quartz and cadmium sulfide exposed to light

SOURCE: Chekhoslovatskiy fizicheskiy zhurnal, v. 16, no. 6, 1966, 506-515

TOPIC TAGS: piezoresonator, composite piezoresonator, photoconducting piezoresonator, quartz resonator, cadmium sulfide piezoresonator, resonator, crystal resonator

ABSTRACT: The author presents the results of an experimental study of Young's modulus and the logarithmic decrement of damping in a crystal grown from the melt within the crystal's photosensitive region. The study was based on measurements of changes in the natural frequency and the Q-factor of a resonator composed of quartz and CdS. The results obtained showed that the spectral dependence of the damping decrement was in agreement with theoretical findings. The

Card 1/2

1 11/11-4

ACC NR: AP6029412

spectral dependence of Young's modulus, however, was found to agree only qualitatively with theoretical findings; quantitative agreement was only partial. The study showed that by measuring changes in decrement and in Young's modulus, it is possible to determine the crystal's spectral region of maximum reaction between conductivity electrons and the standing elastic wave, its electromechanical coupling coefficient, elastic constant, and conductivity. Such measurements may be used as a basis for selecting crystals for ultrasonic magnification and the manufacture of resonators whose Q-factor and frequency are a function of light. Orig. art. has: 12 figures. [Based on author's abstract]

SUB CODE: 20/ SUBM DATE: none/ SOV REF: 003/ OTH REF: 004/

Cord 2/2

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550620002-0"

AUTHOR: Belyayev, L. M., Gil'varg, A. B.; Panova, V. P.; Sil'vestrova, I. M.; Smirnov, S. P.

TITLE: Growing cadmium sulfide crystals from the melt and an investigation of their properties

SOURCE: Ref. zh. Fizika, Abs. 7A435

REF SOURCE: Sb. Nekotoryye vopr. vzaimodeystviya ul'trazvuk. voln. s elektronami provodim. V kristallakh, M., 1965, 33-46

TOPIC TAGS: crystal, cadmium sulfide, melt, cadmium sulfide monocrystal, photoconductivity, visible region, dark current, piezoelectric modulus, elastic modulus

ABSTRACT: A description is given of apparatus for growing large crystals of the

A^{II}B^{VI} type from the melt under pressure, both by the method of controlled heat removal and the method of zone refining. The working space is heated by using a resistance furnace or high-frequency current. Cadmium sulfide monocrystals are

Card 1/2

L 09383-67 ACC NR: AR6033775			0
(spectral photoconduction current volt-amperemoduli and elastic medical control of the control o	ements were made of the tivity curves, transmis characteristics, lux-an oduli at a constant field be in good agreement. However, the monocry	npere characteristics) a intensity and constant in with published data on C	nd piezoelectric inductance. The rystals grown
from the gas phase. less homogeneous. lation of abstract] SUB CODE: 20/	However, the monocry See also Ref. Zh. Fiz.	1966, 5A553. LJ Rashi	ovich. [Trans-
di s			

ACC NR: AR6035054

SOURCE CODE: UR/0058/66/000/008/E072/E072

AUTHOR: Krasil'nikov, V. A.; Belyayev, L. M.; Lyamov, V. Ye.; Sil'vestrova, I. M., Uchastkin, V. I.

现的价格是大数据规则和通常转移的存在的表现的规则的数据的数据的数据的表现。

TITLE: Investigation of the acoustical-electrical effect in cadmium sulfide monocrystals

SOURCE: Ref. zh. Fizika, Abs. 8E550

REF SOURCE: Sb. Nekotoryye vopr. vzaimodeystviya ul'trazvyk, voln s elektronami provodim. v kristallakh. M., 1965, 95-110

TOPIC TAGS: crystal, cadmium sulfide, monocrystal, acoustical electrical effect

ABSTRACT: A study was made which showed that within the frequency range of 20—-75 Mc, the Weinrich formula is satisfied (at least qualitatively) in piezo-semiconductors for the acoustic electric effect (AEE). In cadmium sulfide monocrystals AEE is considerable and because of its linear dependence on ultrasound may be used to measure ultrasound intensity in solids. The spectral characteristics of acoustic-electric emf (AEMF) do not agree with the theoretical (see

Card 1/2

reference 8E549 in the issue). The sillumination of a sample makes it possensitivity of acoustic-electrical meta[Translation of abstract]	sible to use this method for	r increasing the
SUB CODE: 20/		•
`		
d 2/2 .		

5/1 60 - 11: 47, JU. 11,

USSR/Physical Chemistry - Thermodynamics, Thermochemistry, Equilibria.
Physical Chemical Analysis, Phase Transitions.

B-3

Abs Jour: Referat. Zournal Khimiya, No 2, 1958, 3815.

Author : B.G. Korshunov, N.A. Sil'vestrova.

Inst : Moscow Erstitute of Fine Chemical Technology.

Tible : Study of Interaction Between Niobium Pentachloride and

Zircomium Tetrachloride with Magnesium Chloride in Melts.

Orig Pub: Tr. Mosk. in-ta tonkoy khim. tekhnol, 1956, vyp. 6, 21-25.

Abstract: The fisibility graphs of the NbCls - MgCl1 and ZrCl4 - MgCl1 systems were studied. The solubility of MgCl2 in melted NbCls and ZrCl4 is very little. The eutectic of the lat system is at 97% of NbCl3 and 192°; the eutectic of the 2nd system is at 98.5% of ZrCl4 and 426°. NbCl2 and ZrCl4 do not dissolve in melted MgCl1. The vapor pressure of NbO3 on the melted mixture of 30% by weight of MgCl2 and 70% by weight of NbO3 determined

by the flow method (chlorine the carrier) is approximately equal

Card : 1/2 -50-

USSR/Physical Chemistry - Thermodynamics, Thermochemistry, Equilibria, Physical-Chemical Analysis, Phase Transitions.

在14年中的18日本中的18日本中国18日本中国18日本中国18日本中国18日本中国18日本中国18日本中国18日本中国18日本中国18日本中国18日本中国18日本中国18日本中国18日本中国18日本中国18日本中国18日本

B-8

Abs Jour: Referat. Zhurnal Khimiya, No 2, 1958, 3815.

to the NbCl₃ vapor pressure at the corresponding temperature, which indicates the possibility of a complete separation of NbCl₃ and ZrCl₄ from MgCl₂ by sublimation.

Card : 2/2

-51-

SEVAST'YAHOV, I.I., sotrudnik; SIL'VESTROVA, N.H., sotrudnik

New brushes for cleaning flats. Tekst.prom. 19 no.4:91 Ap '59.

(MIRA 12:6)

1. TSentral'nyy nauchno-issledovatel'skiy institut izdeliy i zapasnykh detailiy k tekstil'nosu oborudovaniyu.

(Carding machines---Maintenance and repair)

CINTEREST, A. T., ENTLYN, R. H., ENTRYNES-V., A. T., PROPERTY, H. H.,

"You developments in the study of the natural focus of the plague in the northeastern Caspian region." p.239

Desyntove Soveshchaniya so parazitolorichaskim problemem i prirolnoscha covem bolesavam. 22-29 Oktyabrya 1959 g. (Tenth Conference on Perasitolorical Problems and Diseases with Natural Foci 22-29 October 1959), Moscow-beningrad, 1959, Academy of Felical Sciences VSSN and Landery of Sciences VSSN, No. 1 255pm.

Antiplague Observation Station, Moscow

	L 9252-66 ENT(1)/ENT(m)/ENP(w)/T/ENP(t)/ENP(b) LIP(c) JD SOURCE CODE: UR/0181/65/007/009/2789/2792
ĺ	Add tip appropriate and approp
j	AUTHOR: Bol'shutkin, D. N.; Prokhvatilov, A. I.; Sil'vestrova, T. V.; Startsev,
+	V. I.
	Physicatechnical Institute of Low Temperatures AN UKrSSK, Knarkov (1121kg
	tekhnicheskiy institut nizkikh temperatur AN UkrSSR)
	TITLE: Mechanical properties of polycrystalline ammonia under unilateral compres-
	sion
	SOURCE: Fizika tverdogo tela, v. 7, no. 9, 1965, 2739-2792
	611111
	TOPIC TAGS: ammonia, solid mechanical property, low temperature physics
	ammonia are studied as func-
	ABSTRACT: The strength and ductility of polycrystalizations and policy statistics and policy and po
	temperatures from 77 to 1600k. curves are given in the temperature. These data
	proportionality and relative compression as lanctions to the properties and ductility. show that crystalline ammonia has extremely low strength properties and ductility.
	show that crystalline ammonia has extremely low attempt properly and shows elas- Solid ammonia is quite brittle at the temperature of liquid nitrogen and shows elas-
	Solid ammonia is quite <u>brittle</u> at the temperature of liquid model of 0.5-0.6 kg/mm ² , cracks tic deformation right up to the breaking point. At stresses of 0.5-0.6 kg/mm ² , cracks are formed parallel to the axis of the specimen with an accompanying characteristic
	are formed parallel to the data of the appearant
	2.40
	Card 1/2

CIA-RDP86-00513R001550620002-0

L 9252-66

ACC NR: AP5022724

sound and a slight reduction in loading (up to 100 g). The final breaking stress of $\sim 0.8 \text{ kg/mm}^2$ remains constant throughout the experimental temperature range. At this point there is an instantaneous reduction in loading to zero and the specimen is shattered. The shape of the fragments and the slight degree of deformation before the breaking point show that cleavage is the mechanism responsible for fracture of ammonia crystals between 77 and 130°K. Above 130°K (0.6 T), the ductility of the specimens increases and creep is observed under a constant load. Shearing is responsible for fracture above this point since cleavage strength remains nearly constant with temperature, while an increase in temperature causes a considerable reduction in shearing strength. The relationship between rate of uniform creep V and stress σ is $V = A\sigma^{N}$, where A and n are constants equal to 500 and 5 respectively at 160°K and stresses greater than the limit of proportionality. The energy of creep activation is found to be 5.6 Kcal/mol. This is approximately 10% lower than the heat of sublimation for solid ammonia. Orig. art. has: 3 figures.

SUB CODE: 07,20/ SUBM DATE: 16Apr65/ ORIG REF: 005/ OTH REF: 010

للزز 2/2 Card

PROKHYATILOV, A.I.; PHSTOVALOY, V.V.; SILIVESTROVA, T.V.; STARTSEV, V.I.

Temperature dependence of the hardness of crystalline ammonia. Ukr.fiz.zhur. 10 no.10:1127-1132 0 '65.

(MIRA 19:1)

1. Fiziko-tekhnicheskiy institut nizkikh temperatur AN UkrSSR, Khar'kov. Submitted December 15, 1964.

SAPUTRYAYEV, B.A.; SIL'VESTROVA, T. Ye.

在大型中的中央企业的企业的企业的企业的企业的企业的企业,但是不是不是一个企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业,但是不是一个企业的

Quantitative determination of benzohexomium with the cation exchange resin KU-1. Med. promyshl. SSSR 17 no.8:37-39 Ag 63 (MIRA 17:2)

1. Leningradskiy khimiko-farmatsevticheskiy institut.

SIMIGIN, P.A.; SIL'VESTROVA, Z.N.; RADOVITSKAYA, K.P.

Various methods of imparting water-repellent properties to cotton fabrics. Tekst.prom. 22 no.12:52-57 D *62.

(MIRA 16:1)

1. Sotrudniki TSentral'nogo nauchno-issledovatel'skogo instituta khlopchatobumazhnoy promyshlennosti. (Waterproofing of fabrics)

KOLOMEV. Alekaemar Mempeyevish, incl.; MATWOV, Igori Mikoleyevich, incl.; KLoKTT, s.h., maucha. red.; SHAVESHOVICH, G.A., red.

[Bandoook for beginning electrical machinery winding reprirmen] Spraveranik molodogo omotehika elektricheskikh maninin. Ind.2., lapr. 1 dop. Mo.CVA, Vyashala shkata, led... 309 p.

(MINA 18:1)

KAMNEV. Viktor Hikotayevich; IYAUGI, d.G., nauta. Des.;
SIL'UESTROVICH, 5.A., red.

[Installation and maintenance of secondary systems]
Montach i obsluzivanie vtorichnykh ustroiztv. Izd.2.,
percr. Moskva, Vysshaia shkola, 1965. 5.9 p.

(MIGA 18:5)

SIL'VESTROVICH, I. I.

Electron-microscopic study of the surface of electrodes in a glow discharge.

A. M. Shemaev, A. I. Frimer, and I. I. Silvestrovich. Invest.Akad.Nauk S.5.S.R.,
Ser.Fiz. 15, h13-17(1951).- Sheet electrodes of Ni,Ag,Ta,Mo, and W were sealed in
discharge tubes 25-30 mm. outside diameter, 120 mm. long, filled with Ne of 600 µ pressure
and operated on 3-5kv. a.c. or d.c. The tubes operated on the pump (at constant
pressure) or were sealed off the pump and cleaned up (variable pressure). Ta,for
example on a d.c. supply, cleaned the gas up entirely in 1 hr. Electron micrographs
show that low-melting materials such as Ni on a.c. and at constant pressure give
surfaces covered with a no. of cones and traces of melting which later go over into a
large, partially molten structure. On d.d. the structure with molten cones is enhanced.
In refractory metals the cathodes are etched and the cubical structure appears. At
variable pressure the etching effect appears also on Ni without traces of melting.
Islands of insultating materials enhance the effects considerably because of local
high-field strength regions. Etching at variable gas pressure is recommended for metallographic studies in preference to chem. etching. S.P.

Divide the Porce raise the Role of the Witnesses Press in Forcelain." Moncew Order of Table Order to Tender of Table 10 and Table 10 an

SILIUSCOBOVICH, S.I., kandidat tekhnicheskikh nauk, redaktor; SHILOVTSEVA, L.M., redaktor; PANOVA, L.Ya., tekhnicheskiy redaktor

[The effect of blasting in the ground and calculation of charges; collected articles] Deistvie vsryva v grunte i raschet sariadov; sbornik statei. Moskva, Gos. izd-vo lit-ry po stroitel'nym materialam, 1954. 128 p. [Microfilm] (MIRA 8:2) (Blasting)

12 1151X () (H.) 1

112-6-11868

Translation from: Referativnyy zhurnal, Elektrotekhnika, 1957, Nat pp.13-14 (USSR)

AUTHOR:

Silvestrovich, S.I.

TITLE:

Frit Cordierite Porcelain (Frittovyy kordiyeritovyy farfor)

PERIODICAL:

Trudy Mosk. khimiko-tekhnolog. in-ta, 1956, #21, pp.100-112

ABSTRACT:

Ordinary feldspar porcelain cannot meet the requirements of various branches of industry. Its inadequate physical, mechanical, and thermal properties are due to the high (50-60%) content of the quartz-feldspar vitreous phase. Frit-type porcelains were investigated in which the feldspar had been partly or completely replaced with the frit, i.e., an artificial glass with the composition 2Mg0-2A1203-5Si02 corresponding to nonferrous cordierite. Frit glasses produced by melting together of magnesite, kaolin, and quartz sand have higher viscosity, higher dissolving capacity toward quartz and clay materials, and have a higher tendency to crystallize particularly in the interval 1320-1380°C. Sintering of the cordierite porcelain takes place in a shorter temperature interval as the process is more rapid than in the case of feldspar porcelain. A characteristic feature of microstructure of the cordierite porcelain is the new crystalline formations in addition to the mullite crystals; the new crystals are due to cordierite frit. The glass phase is of grainy nature and is much less extensive than in feldspar porcelain.

Card 1/2

112-6-11868

Translation from: Referativnyy zhurnal, Elektrotekhnika, 1957, Nrf. p. 14 (USSR)

In this connection specimens of cordierite porcelain have higher (25-35%) mechanical strength, higher fire resistance, and very low coefficient of linear expansion (0.6 to 1.5x10⁻⁶ degree⁻¹ at 30°C). Specimens of feldspar cordierite porcelains also show an increase in the mechanical strength Bibliography: 22 titles

Card 2/2

KRESHKOV, Anatoliy Pavlovich; SLL'USTROVICH, S.I., nauchnyy redaktor; GOMOZOYA, N.A., redaktor; GLADITH, F.N., tekhnicheskiy redaktor.

[Silicon organic compounds in engineering] Kremmiiorganicheskie soedineniia v tekhnike. Isd.2-oe, perer. i dop. Moskva, Ges.isd-repe atroit. materialam, 1956. 288 p. (MIRA 10:4)

(Silicon organic compounds)

MATVEYEV, M.A.; SIL'VESTROVICH, S.I., nauchnyy redaktor; NIKOLAYEVA, M.M., redaktor; Frankova, M.D., tekhnicheskiy redaktor

[Solubility of glass forming sodium silicate] Rastvorimost' stekloobrasnykh silikatov natriia. Moskva, Gos.izd-vo lit-ry po stroit.materialam, 1957. 94 p. (MIRA 10:9) (Sodium silicates)

SIL'VESTROVICH, S.I.; LEYBUSH, V.I., redaktor; PYATAKOVA, N.D.,

的运动。 1984年,1984年,1984年,1984年,1984年,1984年,1984年,1984年,1984年,1984年,1984年,1984年,1984年,1984年,1984年,1984年,1984年,1984年,19

[Explosives and specifications for their safe storage] Vsryvchatye veshchestva i uslavia ikh besopasnogo khraneniia. Moskva, Promstroiizdat, 1957. 98 p.

(Explosives--Safety measures)

SIL'VESTROVICH, S.I.; SEBTYURIN, G.G.; TERESHCHENKO, S.G.

Use of finely dispersed materials in glass manufacture. Trudy MKHTI no.24:279-297 '57. (NIRA 11:6)

THE STATE OF THE S

PAVIUSHKIN, N.M.; SENTYURIN, G.G.; SIL! VESTROVICH, S.I., kend.tekhn. nauk, nauchnyy red.; GLADYSHEVA, S.A., red.; GLENSON, P.G., tekhn.red.

[Handbook of glass technology] Praktikum po tekhnologii stekla.
Moskva, Gos.izd-vo lit-ry po stroit.materialam, 1957. 354 p.
(MIRA 11:1)
(Glass)

ŞIL'VESTROVICH, S.I.

Stained opal glass. Trudy MEHTI no.24:298-313 57. (MIRA 11:6) (Glass, Colored)

AUTHORS:

Kitaygorodskiy, I. I.,

SOV/72-58-11-6/15

Sil'vestrovich, S. I., Chetverikova, L. N.

TITLE:

Technical Stone From Glass Corundum (Tekhnicheskiy kamen'

iz steklokorunda)

15

PERIODICAL:

Steklo i keramika, 1958, Nr 11, pp 17 - 21 (USSR)

ABSTRACT:

The synthesis of thick, sintered glass corundum was previously only carried out for the process of producing fire-resistant materials, as can be seen from the papers of I. I. Kitaygorodskiy, N. V. Solomin, A. I. Polinkovskaya, and S. F. Volchanov (Ref 1). In the work reported in this paper the authors used alkali-low and alkali-free aluminum-silicate glasses with high Al₂O₂ and kigO contents, whose positive influence upon the sintering and strengthening processes for ceramic materials was demonstrated in the paper by S. I. Sil'vestrovich (Ref 2). The chemical composition of the glasses and their characteristic properties are given in table 1. The gradation of grain sizes and the specific surface of the fine dispersion powder of the glass and the electrocorundum are given in table 2. The influence of the kind and amount of the glassy phase upon the degree

Card 1/2

Technical Stone From Class Corundum

SOV/72-58-11-6/15

of sintering and strengthening of the glass corundum is indicated in figure 1, while the influence of the burning temperature is shown in figure 2. Table 3 shows the values for the characteristic physical and technical properties of the synthetic glass corundum. Experiments showed that the greatest strength of the glass corundum is related to an optimal content of the glassy phase. Table 4 compares the physical and technical properties of the natural stones agate, jasper and quartzite. The glass corundum is not inferior in its heat mechanical properties to the naturally-occurring stones. There are 2 figures, 4 tables, and 4 references, which are Soviet.

Card 2/2

B.

PHASE I BOOK EXPLOITATION

507/3591

- · Vses, yuznoye khimicheskoye obshchestvo imeni D.I. Mendeleyeva
- Silikaty; sbornik statey po khimii i tekhnologii silikatov, vyp. 1 (Silicates; Gollection of Articles on the Ghemistry and Production of Silicates, No. 1) Moscow, Gosstroyizdat, 1959. 105 p. Errata slip inserted. 3,000 copies printed.
- Editorial Board; M.A. Matveyev (Resp. Ed.), Yu.M. Butt, and M.O. Yushkevich; Ed. of Publishing House: V.A. Rozanova; Tech. Ed.: N.I. Rudakova.
- PURPOSE: This booklet is intended for chemists and geologists interested in silicate analysis.
- COVERAGE: This is a collection of articles on the chemistry and technology of silicates. The contributing authors discuss the effect of admixtures on sintering processes and on the properties of Portland cements. The text also discusses the properties of certain glasses, the processing of ceramic materials, the process of drying facing tile, the stability of solid solutions of calcium

Card 1/3

SOV/3592 Silicates: Sollection (Cont.) alumoferrite, the activation of cement, the production of aluminous cement, the preparation of pulping rolls, the interaction of quartz with lime, and various problems related to the production of silicate-calcite materials. No personalities are mentioned. References are giver at the end of each article. TABLE OF CONTENTS: Sil'vestrovich, S.I. The Properties of Fluoride and Phosphate Opaline 3 Glasses. Kitaygorydskiy, I.I., and Ts.N. Gurevich. The Effect of Small Additions of 14 Certain Oxides on the Process of Sintering Alumina. Manuylova, N.S., and A.A. Mayer. Petrographic Investigation of Processes Occuring During Annealing and Cooling of Ceramic Materials. 20 Grushke, G.A. Intensifying the Process of Drying Facing Tile During Radia-32 tion Heat Exchange. Butt, Yu.M., and V.V. Timashev. Stability of Solid Solutions of Calcium 46 Alumoferrites With Increased Temperature Card 2/3

Silicates; Jullection (Jont.) S07/3592	
Vorob'yev, Kh.S., and M.A. Vorob'yeva. The Effect of Certain Admixtures on the Physical and Chemical Properties of Magnesia-Rich Portland Cements.	52
Gil'denberg, Z.G., and R.I. Benderskaya. Activating Cement by Grinding in Vibrator Mills	59 .
Kuznetsov, A.M., and Ye.S. Kovalev. On the Production of Aluminous Cement by Sintering in Rotary Kilns.	70
Matveyev, M.A., and A.I. Rabukhin. New Method for the Preparation of Pulping Rolls	78
Matveyev, M.A., and G.V. Gerashchenko. Increasing the Strength of Quartz- Cement Pulping Rolls	82
Butt, Yu.M., and A.A. Mayer. Quartz-Lime Interaction at Temperatures Below 1000	88
Satalkin, A.V., and O.V. Kuntsevich. Some Problems in the Production of Silicate-Calcite Materials	100
AVAILABLE: Library of Congress Card 3/3	TM/lsb 5-18-60

RITATOCHORSKIY, T. I.; SIL'VESTHOVICH, S.I.; ELLERN, G.A.

Glasses with higher microheminess. Trudy MARTI no.27:23-37 159.

(Class)

KITAYCOROLG.IY, I I. SILIVENHOVICH, S.I.

Effect of the glassy phase on the process of sintering and properties of corundum materials. Trudy MKHTI no.27:38-64 159. (MIRA 15:6) (Corundum -Analysis)

SILVENTROVICH, S.I.; EMBIROVICH, E.M.

Structure and properties of fluor and phosphate opal glasses. Trudy (MIRA 15:6)

(Glass research)

(Glass research)

15.2120

68275

5-(1) AUTHORS:

Sil'vestrovich, S. I., Boguslavskiv, I. A. SOV/20-129-6-46/69

TITLE:

Increase in the Strength of Glass as a Consequence of Its

Treatment With Organosilicon Compounds

PERIODICAL:

Doklady Akademii nauk SSSR, 1959, Vol 129, Nr 6, pp 1362 - 1365

(USSR)

ABSTRACT:

The low value of mechanical strength of glass as compared with the theoretical strength computed from the values of atomic bonds is due to the inner structural defects as well as to the ultramicroscopic surface cracks (Ref 1). The authors investigated the possibility of increasing the strength of glass by simultaneous chemical and thermal treatment. The glass surface was exposed to the chemical effect of organosilicon compounds combined with various methods of heat treatment. The test material was industrial window glass of the Cortkovskiy steklozavod (Gortkiy Glass Factory) with the composition (in %): SiO₂ 72; Al₂O₃ 1.45; Fe₂O₃ 0.12; CaO 7.37; MgO 4.03; SO₃ 0.38; Na₂O 14.72. The glass samples were parallel epipeds, thickness:

6 or 3 mm, width: 6 mm, length: 42 mm; all facets were ground and polished. The limit of the bending stress was 5.1 kg/mm².

Card 1/3

Increase in the Strength of Glass as a Consequence of S07/20-129-6-46/69
Its Treatment With Organosilicon Compounds

The samples were rinsed in a weakly alkaline solution and allowed to lie in a 5% HCl solution for 30 minutes at room temperature. Pores and a very fine silica film were formed on the surface by partial leaching. This favors the combination of the later-formed polymer film with the glass. At first, the glass was kept for 5-15 minutes in monomeric organosilicon compounds diluted with benzene. Then the samples underwent thermal treatment between 200 and 650° and were cooled in the air. Thus, the mentioned polymer $\left[\text{SiO}_2 \right]_n$ surface film was to be formed. Figure ! shows that the glass was best solidified by strongly concentrated (C2H5)2SiCl2 and C6H5SiCl3 solutions and a heat treatment at 650°. The polymer film "cements" the Glass surface and, apparently, closes the microcracks. The mechanical strength of the glass was doubled by heat treatment at 200-3000, and trebled at 6500. Moreover, the Glass was chilled in anorganosilicon liquid. The glass samples were heated to mollification in the furnace, and then rapidly dipped into a diethylpolysiloxane liquid with increased heat resistance, Previously, the liquid

Card 2/3

881.75

Increase in the Strength of Glass as a Consequence of SOV/20-129-6-46/69 Its Treatment With Organosilicon Compounds

had been heated to 200°, 180°, 160°, 140°, etc. The chilled samples were dried at 200°. Figure 2 shows that the strength of the glass increases rapidly due to this hardening. This increase depends on the temperature difference At between the heated glass and the hardening liquid. With an optimum Δt , the bending stress of the 3-mm glass increases it times, that of the 6-mm glass even more (Fig 2). The inner residual stresses are only slightly higher than those in the usual hardening of glass in the air. Thus, the increased strength of the glass hardened in the above manner is, above all, due to the effect of the polymer film ("armor"). The new method has numerous advantages. The name of A. F. Ioffe is mentioned in the paper. The authors thank Professor 1. 1. Artaygorodskiy for his interest in their investigation. There are 2 figures and 8 references, 7 of which are Soviet.

ASSOCIATION:

Moskovskiy khimiko-tekhnologicheskiy institut im. D. I. Mendeleyeva

(Moscow Institute of Chemical Technology imeni D. I. Mendeleyev)

PRESENTED:

July 24, 1959, by P. A. Rebinder, Academician

SUBMITTED: Card 3/3

July 22, 1959

经过时报码时间的经过的现在分词 "这个时间是是一个时间,我们还是一个时间的一个时间,这个时间,我们还是一个时间的一个时间,我们还是一个时间,我们还是一个时间,

AFANAS'YEV, A.N., kand.tekhn.nauk; BASOV, N.I., kand.tekhn.nauk; BELOVITSKIY, A.A., inzh.; VESELOVSKIY, V.S., doktor tekhn.nauk, prof.;
GORELIK, B.I., kand.tekhn.nauk; DORONENKOV, I.M., inzh.; ZAK, D.L.,
inzh.; IVOEIN, V.I., inzh. [deceased]; KLINOV, I.Ya., doktor tekhn.
nauk, prof.; LEVIN, A.N., doktor tekhn.nauk, prof.; LEVIN, S.N.,
kand.tekhn.nauk; LEPETOV, V.A., kand.tekhn.nauk; LEONT'YEV, N.L.,
doktor tekhn.nauk, prof.; LOKHINA, P.I., kand.tekhn.nauk; MATVEYEVA,
L.V., inzh.; MIKHAYLOV, A.N., doktor tekhn.nauk, prof.; MUDRIK, Kh.I.,
kand.tekhn.nauk; PERLIN, S.N., inzh.; SALAZKIN, K.A., kand.tekhn.nauk;
SIL'VESTROVICH, S.I., kand.tekhn.nauk; SOKOLOVSKAYA, S.I., kand.
tekhn.nauk; KHENKIN, A.A., inzh.; KHUKHRYANSKIY, P.N., doktor tekhn.
nauk, prof.; SHEYDEMAH, I.Yu., kand.tekhn.nauk; YASHUNSKAYA, P.I.,
kand.tekhn.nauk; POGODIN-ALEKSEYEV, G.I., doktor tekhn.nauk, prof.,
red.; RYBAKOVA, V.I., inzh., red.izd-va; SOKOLOVA, T.F., tekhn.red.

[Handbook on materials used in the manufacture of machinery] Spravochnik po mashinostroitel nym materialam; v chetyrekh tomakh. Pod red.G.I.Pogodina-Alekseeva. Moskva, Gos.nauchno-tekhn.izd-vo mashinostroit.lit-ry. Vol.4. [Nonmetallic materials] Nemetallic cheskie materialy. Hed.toma A.N.Levin. 1960. 723 p. (MIRA 13:7)

(Machinery industry) (Monmetallic materials)

507/72-60-1-4/17 15(2)

Boguslavskiy, I. A. Sil'vestrovich, S. I., AUTHORS:

The Use of Organosilicon Compounds to Improve Glass .ro, erties TITLE:

Steklo i keramika, 1960, Nr 1, pp 7-12 ("53R) PERIODICAL:

The authors of the present paper studied the influence of organosilicon compounds on glass properties. In their investi-ARETRACT:

gations at the Chair of Glass Technology of the Moskovskiy khimiko-tekhnologicheskiy institut imeni Mendeleyeva (Moscow Institute of Chemical Technology imeni Mendeleyev) they tried

to study the physicochemical glass properties more thoroughly than it was done in previous papers by A. P. Kreshkov, M. G. Voronkov, and B. I. Dolgov, A. Ya. Korolev, L. M. Vinogradova. The investigations dealt with the hydrophobic nature, the chemical stability, thermal stability and mechanical strength of glass treated under certain conditions with organosilicon compounds. The investigation results are given in figures 1-6 and in the table. The mechanical strength of glass is increased

by the elimination of surface cracks as was shown in the papers by S. M. Zhurkov, G. M. Bartenev, A. I. Ivanova, M. S. Aslanova,

and P. A. Rebinder. In conclusion, the authors state that a high increase in the strength of glass hardened in an organo-

Card 1/2

BOGUSLAVSKIY, I., inzh.; Sil'VESTROVICH, S., kand.tekhn.nauk
Reinforced glass. Tekh.mol. 28 no.4:5 '60. (MIRA 13:11)
(Glass, Safety)

S/063/60/005/002/005/006 A003/A001

AUTHORS Sillwastrovich, S. I., Candidate of Technical Sciences, Rabinovich, E.M.

TITLE Glasslike-Crystalline Materials

TEPTIOTIAL Zburnal vsesoyuznego khimitheskogo ebshchestva im D. I. Merdeleveva, 1960, Vol. 5, No. 2, pp. 186-191

Glasslike-crystalline materials are obtained by introducing special mineralizers with a crystal lattice similar to that of the separating crystalline phases of the glass. There are two types of mineralizers: colloidal dyestuffs (Di, Ag, Au, etc.) and dampers (F, TiO₂, SnO₃). Colloidal dyestuffs are introduced into the glass thange with a reducing agent (tantaric acid, etc.) and tin dioxide or stannous oxide. It is assumed that the copper, gold and silver ions are reduced to neutral atoms. Tin dioxide increases their solubility. Recently glasses were obtained which are sensitive to ultraviolet radiation (Refs. 25-32). The neutral gold atoms, form a latent image and are similar to sensitivity centers in photographic emulsions under the action of light (Ref. 24). At higher holding temperature the colloidal particles become centers of beterogeneous crystallization of the silicates. The process of haterogeneous crystallization of silicates in

Jand 1/2

3/063/60/005/002/005/006 A003/A001

Glasslike-Crystalline Materials

Card 2/2

glasses containing dampers differs from the same process in light-sensitive glasses. It was shown (Ref. 33) that fluorine ions penetrate into the silicon-oxygen frame, replacing the exygen and forming a complex anion. Under the condition of fast cooling the reverse substitution of fluorine by oxygen proceeds incompletely. content of alkali ichs is inversely proportional to the size of the anions mentioned and directly proportional to the solubility of fluorides. The behavior of other dampers (TiO2, SnO2) in the glasses is studied to a lesser degree. The assumptions mentioned were studied in the crystallization of some fluorine-containing glasses molten in a kerosene furnace at 1,550 C with a holding time of 4 hours. The composition of the glasses is cited in a table. Glass 31 starts actively orystallizing at 700°C, glass 81 at 800°C and glass 101 shows almost no signs of crystallization at 800°C. The strength of glasses 31 and 81 increased by 3-4 times to 33 kg/mm2 as a result of the crystallization. The curves of the isothermal change of the volumetric weight during crystallization were also analyzed. The analysis of moentgenograms showed that after a 6-hour holding at 750°C the formation of museovite type crystals is observed in glass 81. Endothermic effects on the heating curves of glass 81 are explained by the melting of fluorides. The study of the low-temperature stage of thermal treatment shows that the holding time at 750°C should not exceed 12-14 hours, at 800°C 7 hours, etc. There are 4 figures, 1 table and 50 references: 35 Soviet, 11 English and 4 German.

KITAYGORODSKIY, I.I., doktor tekhm. nauk, prof.; KACLALOV, N.N., prof.;

VARGIN, V.V., doktor tekhm. nauk, prof.; YEVSTROP'YEV, K.S.,

doktor tekhm. nauk, prof.; GINZBURG, D.B., doktor tekhm. nauk,

prof.; ASLANOVA, M.S., doktor tekhm. nauk, prof.; GURFIRKEL', I.Ye.,

inzh.; ZAK, A.P., kand. tekhm. nauk; KOTLYAR, A.Ye., inzh.; PAVLUSH
KIN, N.M., doktor tekhm. nauk, prof.; SENTYUEIN, G.G., kand. tekhm.

nauk; SIL'VESTROVICH, S.I., kand. tekhm. nauk, dots.; SOLIKOV, F.G.,

kand. tekhm. nauk; SOLOMIN, N.V., doktor tekhm. nauk, prof.; TEMKIN,

B.S., kand. tekhm. nauk; GLADYSHEVA, S.A., red. izd-va; TEMKINA, Ye.L.,

tekhm. red.

[Glass technology] Tekhnologiia stekla. Izd.3., perer. Moskva, Gos. izd-vo lit-ry po stroit., arkhit. i stroit. naterialam, 1961. 622 p. (MIRA 14:10)

1. Chlen-korrespondent AN SSSR (for Kachalov). (Glass manufacture)

31611 S/053/61/006/006/004/006 A057/A126

15 2610

Kitaygorodskiy, I. I., Professor, Sil'vestrovich, S. I., Candidate

of Technical Sciences

TITLE:

AUTHORS:

The problem of increasing strength and heat resistance of glass

PERIODICAL: Zhurnal vsesoyuznogo khimicheskogo obshchestva imeni D. I. Mendeleyeva, v. 6, no. 6, 1961, 635 - 642

TEXT: A discussion on the improvement of glass properties is presented with a review of corresponding literature and some experimental results of the present authors and others. First were discussed glass properties in general, and then existing methods for the improvement of the strength and heat resistance of glass. The practical strength of glasses is effected by several factors, which have to be considered separately, i. e.: 1) the characteristic high brittleness; 2) the non-oriented and heterogeneous structure, and 3) the formation of defects on the glass surface during production and use. Various authors demonstrated that the brittle rupture of glass occurs in two stages (first slow, second quick) caused by the formation of fissures forming so-called "steps" of brittle rupture. In a series of investigations there was proved the existence of a micro-heterogeneous

Card 1/4

31(·11 S/06·3/61/006/006/004/006 A05;;/A126

The problem of increasing strength and ...

structure of glasses, which is mainly influenced by the chemical nature and the conditions of thermal treatment ("thermal past") of the glass. This effect is discussed in the paper by G. G. Sentyurin (this journal, v. 6, no. 6, 1961, 643). The structural micro-heterogeneity is specified by the type of structural links and the chain skeleton of the glass. Heterogeneities in glasses can also be effected by technological processes; defects in the glass surface are of great importance. Also characteristic for glasses is the definite effect of the scale factor on . strength and thermal stability. Observations made by N. K. Dertev [Ref. 39; Some mechanical properties of glass surface layer, Dissertation, Institut khimii silikatov AN SSSR (Institute of Silicate Chemistry AS USSR), L., 1952] revealed that this effect varies with the chemical composition of the glass, proving thus conclusions on the influence of the chemical composition on type and degree of structural micro-heterogeneities and surface defects. The present authors suggest the following trends for the improvement of glass properties: 1) Further improvement of the nature of the glass, 2) strengthening of the surface of industrial glasses, and 3) development of new technological principles and methods for the manufacture of tough and heat resistant industrial glasses. Evidently the influence of the chemical composition can be developed in some cases directly, in others indirectly, and

Card 2/4

3161] \$/06:/61/006/006/004/006 A057/A126

The problem of increasing strength and...

sometimes it is covered by the effect of other factors. Investigations of the present authors [Ref. 49: Trudy MKhTI im. D. I. Mendeleyeva, v. 27, 1959] showed, for instance, a definite effect of the chemical composition of the glass on its microhardness. The possibility of improving the strength and heat resistance of glass by changing the chemical composition is also proved by results obtained by I. I. Kitaygorodskiy et al. [Ref. 49: Trudy MKhTI im. D. I. Mendeleyeva, v. 27, 1959; Ref. 51: Steklo i keramika, no. 7 (1958); Ref. 53: DAN SSSR, 118, no. 2 (1958)], S. K. Dubrovo, and Yu. A. Shmidt [Ref. 50: ZhPKh, 30, no. 4 (1957)], I. D. Tykachinskiy et al. [Ref. 52: Steklo i keramika, no. 6 (1956)], K. T. Bondarev et al. [Ref. 54: ibid no. 4 (1960)], and M. A. Matveyev, and I. N. Semenov [Ref. 55: ibid no. 9 (1958)] with chemical laboratory glasses of the type (C-16 (KS-16), KC -18 (KS-18), glass with increased microhardness, glass for tubes and insulators type 13-B (13-v) and other special glasses. For the strengthening of the glass surface some original methods were developed by S. M. Brekhovskikh [Ref. 56: Steklo 1 keramika, no. 7 (1960); Ref. 57; Steklo, Byulleten' in-ta stekla, no. 1 (1961)] and S. I. Sil'vestrovich, and I. A. Boguslovskiy [Ref. 58: DAN SSSR, 129, no. 6 (1959), Steklo i keramika, no. 1 (1960)]. Most developed are at present thermal, chemical, and thermo-chemical methods of glass surface strengthening. A method of thermochemical treatment of the glass surface with silico-organic compounds was

Card 3/4

The problem of increasing strength and...

31611 \$/**063**/61/006/006/004/006 A057/A126

developed at the kafedra tekhnologii stekla i stekloplastikov MFhTI im. D. I. Mendeleyeva (Department of Technology for Glass and Glassreinforcer Plastics "Moscow Order of Lenin' Institute of Chemical Technology imeni D. I. Mendeleyev). This method was also used by I. A. Boguslavskiy [Ref. 69: Steklo i keramika, no. 9 (1960)] to increase the heat resistance of industrial glass. There are 71 references: 48 Soviet-bloc and 23 non-Soviet-bloc. The references to the 4 most recent English-language publications read as follows: W. Thomas, Phys. a. Chem. Glasses (U. K.), 1960; I. Warshaw, J. Am. Ceram. Soc., 1960; R. Mould, J. Am. Ceram. Soc., 1960, F. Ernsberger, Phys. a. Chem. Glasses, no. 1 (1960).

Card 4/4

TROSTYANSKAYA, Ye.B.; SHISHKIN, V.A.; SIL'VESTROVICH, S.I.; PANTELEYEV, A.S.; POLUBOYARINOV, D.N.; BALKEVHICH, V.L.; NATANSON, A.K.; KOLACHEV, B.A.; PETROV, D.A.; GOL'DEERG, M.M.; SHAROV, M.Ya., inzh., retsenzent; KITAYGORODSKIY, I.I., doktor tekhn. nauk, prof., retsenzent; LIVANOV, V.A., kand. tekhn. nauk, prof., retsenzent; TROSTYANSKAYA, Ye.B., red.; BABUSHKINA, S., ved. red.; TITSKAYA, B.F., ved. red.; VORONOVA, V.V., tekhn. red.

[New kinds of materials in engineering and industry]Novye materialy v tekhnike. Pod red. Trostianskoi E.B., Kolacheva, B.A., Sil'vestrovicha S.I. Moskva, Gostoptekhizdat, 1962. (MIRA 16:2)

(Materials)

SIL VESTROVICH, S.I.; RABINOVICH, E.M.

Glass crystallization in the system SiO₂ - Al₂O₃ - MgO - R₂O in the presence of additives. Trudy MKHTI no.37:75-84 162. (MIRA 16:12)

BYREZETCY, A.I.; BRODSEIY, Yu.A.; BRONSHTEYN, Z.I.; VEYNDERG, K.L.;
GALDINA, N.M.; GLETMAN, B.A.; GIEZBUEG, L.B.; GUTOP, V.G.;
GUREVICH, L.R.; DAUVAL'TER, A.N.; YEGOROVA, L.S.; KOTINAR,
A.Ye.; KUZYAK, V.A.; MAKAROV, A.V.; FOLIYAK, V.V.; POPOVA,
E.N.; PRYANISHNIKOV, V.F.; SELTYURIN, G.G.; SIL'VESTROVICH,
S.I., kand. tekhn. nauk, dots.; SOLOMIN, N.V.; TEMKIN, B.S.;
TYKACHINSKIY, I.D.; SHIGAYEVA, V.F.; SHLAIN, I.B.; EL'KIND,
G.A.[deceased]; KITAYGOLODSKIY, I.I., zasl. devatel' nauki i
tekhniki RSFSR, doktor tekhn. nauk, prof., red.; GCMOZOVA,
N.A., red.idd-va; KCMAROVSKAYA, L.A., tekhn. red.

[Handbook on glass manufacture] Spravochnik po proizvodstvu stekla. [By] A.I.Berezhnoi i dr. Pod red. I.I.Kitaigorodskogo i S.I.Sil'vestrovicha. Moskva, Gosstroiizdat. Vol.2. 1963. [15 p. (MIRA 16:12)]

(Glass manufacture)

L 13964-65 EWP(e)/EPA(s)-2/EWT(m)/EPF(n)-2/EWP(t)/EWP(b) Pq-4/Pt-10/Pu-4 ESD(gs)/ESD(t) JD/WW/JO/WH

ACCESSION NR: AP4046372

\$/0020/64/158/003/0582/0585

AUTHOR: Ritaygorodskiy, I. I.; Sil'vestrovich, S. I.; Firsov, V. H.

TITLE: Strengthening of glass by hardening in molten metal

SOURCE: AN SSSR. Doklady*, v. 158, no. 3, 1964, 582-585

TOPIC TAGS: glass heat treatment, glass hardening, molten metal treatment, glass strengthening, sheet glass, Pyrex glass

ABSTRACT: A new, more efficient method of strengthening glasses having varied thermal expansion coefficients has been developed and investigated. The method consists in heat treating (hardening) glass in low-melting molten metals such as wood alloy or tin and then leachingit with hydrofluoric acid. Data from bending tests indicated that glasses with high or low coefficients of thermal expansion (common sheet glass and 3C-SK or Pyrex, respectively) can be greatly strengthened by the new method. An especially high increase in strength was achieved in thin (1.3-mm) sheet glass and in the heat-resistant glasses, as compared to the heat treatment with the most

Cord 1/2

L 13964-65

ACCESSION NR: AP4046372

hardening for Pyrex glass indicated a much higher strengthening effect for the treatment with wood alloy than with the liquid polyorganosiloxane. This fact is explained by the intense and uniform cooling of glass in molten metal. Such cooling is achieved because of the high thermal conductivity and very high boiling point of the metals, which make possible a high-temperature (50-1000C) treatment resulting in limitation of thermoelastic strain in glass products. The possibility of achieving even higher strength in glasses having tioned. Orig. art. has: 3 figures and 1 table.

ASSOCIATION: Hoskovskiy khimiko-tekhnologicheskiy institut im. D. I. Hendeleyeva (Hoscow Chemical-Technical Institute)

SUBHITTED: 24Apr64

ENCL: 00

SUB CODE: HT

NO REF SOV: 012

OTHER: 000

Card 2/2

Pc-li/Pa-li RM/WH EWT(m)/EWP(e)/EWP(1)/EWP(j)/EWP(b) T. 1,9006-65 8/0081/65/000/002/HO39/H009 ACCESSION NR: AR5007236 SOURCE: Ref. zh. Khimiya. Sv. t., Abs. 2480 B AUTHOR: Kitaygorodskiy, I. I.; Sil'vestrovich, S. I.; Firsov, V. H. TITLE: A study of the strength of glasses quenched in liquid polyorganosiloxanes CITED SOURCE: Tr. Mosk. khim.-tekhnol. in-ta im. D. I. Mendeleyeva, vyp. 45, 1964, 145-153 TOPIC TAGS: glass strength, glass quenching, glass hardening, quenching fluid, polyorganosiloxane, polyethylhydrosiloxane, laboratory glass, electrovacuum glass TRANSLATION: This article presents the results of the first stage of a study on the strengthening of industrial chemical laboratory glasses (:8-34 and Ts-32) and electrovacuum glasses (ED-1 and ZS-5K) The compositions of which are given, by quenching them in polyorganosiloxane (liquids No. 2, 4 and 5) and polyethylhydrosiloxane (liquid CKZh-94) liquids which differ in their nature, properties and cooling capacities. The degree of hardening of the glass samples (rods with a circular cross section) was determined by means of a special polarimeter as the rods were illuminated in a direction perpendicular to their longitudinal axis. Card 1/2

					•	•	
, 49006-65 ACCESSION NR: AR5007236 The results showed that	to to somethic to	strengthe	n various	glasses, di	O		
The results showed that in composition and proper polyorganosiloxanes; the process and the peculiar nature and effect of its references. I. Hikhaylo	effects of the th ities of the chemi strengthening are	ermal con	ditions of	of the quenchi	ing a the		
SUB CODE: HT, OC	KHCL:	00	•		•		
,				•	• • •		
				•			
						t	

SILIVEST CVICE, T.A.: FIRMAY, V.M.; G. MORGY, A.V.

Change in the structural and physical state of glass hardened in molten metal. Dokl. AN SERG 162 no.3:552-555 My 165. (MIRA 1845)

1. Moskovskiy khimiko-tekhnologicheskiy institut im. P.I.Mondeleyeva. Subnitted December 11, 1964.

	The second section of the second section is a second section of the second section sec	ومسومين والمناز والمناز والمناز والمناز والمناز
N5023906	BOOK EXPLOITATION	UR/
		631.4:551.3(47)
kademiya nauk SSSR	. Institut geografii	17
		B+1
ivision of the ter	ritory of the U.S.S.R. into di	stricts according to
basic erosion fac	tors (Rayonirovaniye territori	i SSSR po osnovnym
raktoram erozii)	Ed. by D. L. Armand. Hoscow, I	zd-vo "Nauka", 1965.
255 p. 111us., bi	blio. 1500 copies printed.	
OPIC TAGS: soil s	cience, underground water, ero	sian secretical
regionalization	12.55	aron's Reograpicar
URPOSE AND COVERAGI	E: This book was compiled by	staff members of the
Institute of Geogr	raphy. Academy of Sciences USS	R. under the direc-
tion of S. I. Sil	vestrov. It deals with the ?	egionalization of
the USSR on the bi	asis of the main factors of so	il erosion. The most
important princip	le in regionalization was the	determination,
characterization,	and evaluation of the geograp	hic conditions in
	he process of erosion and the	countermeasures.
Therefore the		
Therefore, the rep	gionally defined units (phytocus provinces, agricultural reg	ixmatic zones, low-

L 3873-66 AM5023906 0 possible to classify the territory consistently, not only on the basis of the forms of erosion, but also by the type of necessary antierosion measures. The book is intended for scientific workers and specialists in agriculture, forestry, and water management, as well as for teachers and students in these fields . There are 133 references, all Soviet. TABLE OF CONTENTS: (Foreword) S. I. Sil'vestrov -- 3 Introduction. S. I. Sil'vestroy -- 5 Principles, plan, and network of regionalization. Sil'vestrov -- 11 S. I. Sil'vestrov -- 20 Zones and provinces. Agricultural regions. S. I. Sil'vestrov -- 38

1 2072 66				
1 3873-66 AM5023906	an a samurantamente e ann er eantamen eindasag upen dans.	management and control of a management	1	6
Comparative evaluates. I. Sil'vestro		ct of basic	factors on er	osion.
Characterization of Ye. N. Lisichek, Stupina 88 55	Ye. A. Mironov,	ic natural S. I. Sil'	and economic covestrov, and N	onditions.
Bibliography 230			1	
SUB CODE: ES	SUBMITTED:	17Apr65	NO REF SOV:	135
			•	
OTHER: 000				
OTHER: 000				_ •
OTHER: 000	• ;			
OTHER: 000	• ,			

SASU, V.; CNA, M.; SILVIA, Dorca

Sudden abdominal accidents caused by ovarian hemorrhage. Cesk. gynek. 28 no.10:662-665 D'63.

1. Gyn. - por. klin., Cluj, RLR.

BILLVINSKATA, E. A.

"Theoretical Investigation of Filters With Linear Fhase Characteristics." Cond Tech Sci, Faculty of Telephone and Telegraph Communications, Moscow Electrical Engineering Inst of Communications, 1953-1.54. (VS, Feb 55) (Brief abstract available)

Survey of Scientific and Technical Dissertations Defended at USSR Higher Educational Institutions (12) SO: Sum. No. 556, 24 Jun 55