

Cloud Infrastructure

Cloud Computing Einführung

Wiederholung und Vertiefung

© FH Technikum Wien

Source: Gartner (July 2016)

Cloud Computing Einleitung

Cloud Computing

Cloud Computing **Definition**

- Cloud Computing ist eine Form der Bereitstellung von gemeinsam nutzbaren und flexibel skalierbaren IT-Leistungen durch nicht fest zugeordnete IT-Ressourcen über Netze. Idealtypische Merkmale sind die Bereitstellung in Echtzeit als Self Service auf Basis von Internet-Technologien und die Abrechnung nach Nutzung. Damit ermöglicht Cloud Computing den Nutzern eine Umverteilung von Investitions- zu Betriebsaufwand. Die IT-Leistungen können sich auf
 - Anwendungen,
 - Plattformen für Anwendungsentwicklungen und -betrieb,
 - Basisinfrastruktur
- beziehen.

[Bitkom Leitfaden Cloud Computing, NIST konforme Definition]

Cloud Computing Vorteile

- **Cloud Computing soll:**
 - Kosten f
 ür Benutzer senken (durch Abrechnung nach Verbrauch)
 - Kosten für Anbieter senken (durch Konsolidierung)
 - Komplexität für Benutzer verringern (durch hohe Benutzbarkeit und Wegfall von Installation und Administration)
 - Einfachen Ressourcenzugriff bieten (durch Web Services)
 - Benutzerwünsche erfüllen und Flexibilität bieten (durch Virtualisierung)
 - Unbegrenzten (elastischen) Ressourcenzugriff ermöglichen (durch Virtualisierung)
- Kurz: Cloud Computing soll die IT revolutionieren
 - "Eierlegende Wollmilchsau" ②

Cloud Computing

- Was macht eine Cloud Plattform aus?
 - Pay-per-use (no commitment, utility prices)
 - Elastic capacity scale up/down on demand
 - Self-service interface
 - Resource Pooling
 - Resourcen sind in abstrakten, virtualisierten Pools konsolidiert
 - Multitenancy parallele Diensterbringung für mehrere Nutzer (Mandanten)

Produkt vs Service

	Software als Produkt	Software as a Service
Bezug	Installiert	Gehostet
Entwicklung	Lange Zyklen, "big bang"	Kurze Zyklen, kontinuierlich
Preisgestaltung	Lizenz + Wartung	Abonnement
Allokation	Anlage	Aufwand
Zusätzliche Kosten	Installation, Wartung, Anpassung & Upgrades	Konfiguration
Plattform	Mehrere Versionen	eine
Updates	seltene, grössere	häufige, kleinere
Verkaufsfokus	Lizenzverkauf	Bewährung in den ersten 90 Tagen (Testphase)
Feedback Zyklen	Lang	Kurz
Profit	Initialer Verkauf	Laufend
Erfolg	Neue Lizenzgebühren	Geringe Abwanderungsrate

http://www.authorstream.com/Presentation/SmartManQ8-206933-Software-Service-SaaS-SOA-Cloud-Computing-Science-Technology-ppt-powerpoint/

Scalability - Elasticity

- grow/shrink on demand
- Possibility to scale ≠ Application will scale
 - financial
 - application architecture (weakest link in a chain)

- expensive hardware
- low max. throuput
- expensive to add capacity
- cheap commodity hardware
- high max. throuput
- cheap to add capacity
- Open Source/platform independent

Scaling

Cloud Computing Entstehung

Cluster Computing

A Cluster is a

- Linked computer system
- Can co-operate to perform computations
- Deliver services

- Often function/appear as a single server
- Typically linked over fast local area networks
- Offers scalability over single-server
- Used for high-availability, load balancing, shared compute

- 20776 processors
- 42048 GB memory,
- Max performance: 182.83 Tflops
- Top 500 List: Rank 162 (2011: 77)

Grid Computing

- Grid-Computing ist eine Form des verteilten Rechnens, bei der ein virtueller Supercomputer aus einem Cluster lose gekoppelter Computer erzeugt wird
- Unterschied zu Cluster Computing?
 - loseren Kopplung
 - Heterogenität
 - geographischen Zerstreuung der Computer
- Kommerzielle Nutzung (Pharmaindustrie, Genome Sequencing, ...)
- Offene Projekte wie SETI@home, Folding@home

Cloud Computing Voraussetzungen

Enabling Technologies

- Virtualisierung
- SOA
- Web Services
- Mehr dazu in der nächsten Einheit

Cloud Computing Architekturen

Cloud Computing Architekturen

- Öffentlich verfügbare Cloud-Dienste (Public Cloud)
 - Anbieter und Kunden gehören unterschiedlichen Organisationen an
 - Vorteile f
 ür die Kunden
 - Keine Kosten für Anschaffung, Betrieb und Wartung eigener Hardware
 - Ressourcen sind sofort einsatzbereit und unbegrenzt verfügbar
 - Vorbehalte und Hindernisgründe
 - Angst vor mangelnder Datensicherheit und Lock-in sowie Datenschutz

Cloud Computing Architekturen

- Private Cloud-Dienste
 - Anbieter und Benutzer gehören der gleichen Organisation an
 - Schnittstellen sind im Idealfall kompatibel zu öffentlich verfügbaren Cloud-Diensten
 - Vorteile f
 ür die Benutzer
 - Keine Probleme mit Lock-in und Datenschutz
 - Nachteile
 - Kosten ähnlich einer nicht-Cloud-basierten Architektur.
 - Softwarequalität der freien Projekte teilweise verbesserungswürdig
- Hybride Cloud-Dienste
 - Öffentlich verfügbare und private Dienste werden gemeinsam verwendet

Cloud Organizational View

Cloud Computing Modelle

Cloud Data Centers

- Wo ist "die Cloud" ???
- Trend zu riesigen Data Centers
- Kostenvergleich small sized (ca. 1000 Server) und larger (100K Server) data center

Technology	Cost in small-sized Data Center	Cost in Large Data Center	Ratio
Network	\$95 per Mbps/ month	\$13 per Mbps/ month	7.1
Storage	\$2.20 per GB/ month	\$0.40 per GB/ month	5.7
Administration	~140 servers/ Administrator	>1000 Servers/ Administrator	7.1

Hardware Development

- High Performance Computing
 - Cluster Computing
 - Supercomputers
 - Grid Computing
- Towards
 - Commodity clusters
 - Proliferation of inexpensive hardware
 - massive scale
 - Microsoft Generation 4.0 Data Center Vision
 - http://www.youtube.com/watch?v=PPnoKb9fTkA

Cloud Infrastructure

Einschub: IT für Rechenzentren

Stromversorgung

rie	EVU Einspeisung		Z U	
RZ Kategorie	Serverschrank	Serverschrank	Rechenzentrum / Serverraum	zulässige RZ Ausfallzeit
RZ	bis zu 7 kW	ab 7 kW bis zu 40 kW	500 bis zu 2500 Watt/qm	i≓ R
А		Standard		12 h
В	Redundante Einspeisungen		1 h	
С	Redundante Einspeisungen		10 min	
D	Redundante Einspeisungen von verschiedenen Umspannwerken		< 1 min	

Stromversorgung – wichtige Abkürzungen

- EVU Energieversorgungsunternehmen
- USV Unterbrechungsfreie Stromversorgung
- MSHV Mittelspannungshauptverteilung
- NEA (mobile) Netzersatzanlage
- NSHV Niederspannungshauptverteilung
- NT Netzteil

Stromversorgung / Klima

Quelle: Leitfaden Betriebssicheres Rechenzentrum – BITKOM,

Klimatisierung

rie	Klimatisierung			Zu A	
RZ Kategorie	Serverschrank	Serverschrank	Rechenzentrum / Serverraum	zulässige RZ Ausfallzeit	
	bis zu 7 kW	ab 7 kW bis zu 40 kW	500 bis zu 2500 Watt/qm	it R	
А	Klimatisierung notwendig, Redundanz optional	Klimatisierung notwendig, Redundanz notwendig, USV-Unterstützung	Präzisionskühlung, Redundanz, Kalt-Warmgang- Trennung, ggfs. USV Unterstützung	12 h	
В	Klimatisierung notwendig, Redundanz notwendig	Klimatisierung notwendig, Redundanz notwendig, USV-Unterstützung	Präzisionskühlung, Redundanz, Kalt-Warm- gang-Trennung, USV Unterstützung	1 h	
С	Klimatisierung notwendig, Redundanz notwendig, USV Unterstützung	Klimatisierung notwendig, Redundanz notwendig, USV Unterstützung	Präzisionskühlung, Geräte und Rohrleitungen redun- dant, Kalt-Warmgang-Tren- nung, USV Unterstützung	10 min	
D	Klimatisierung notwendig, komplette Redundanz not- wendig, USV Unterstützung	Klimatisierung notwendig, komplette Redundanz not- wendig, USV Unterstützung	Präzisionskühlung, Geräte und Rohrleitungen re- dundant, Kalt-Warmgang- Trennung, USV Unterstüt- zung, Notkühlfunktionen über ein zusätzliches Klimasystem	< 1 min	

Zentrale Gehäuseform

- 19" Schrank, Rack mit b=483 mm, 1HE (= 44,45 mm), 20 HE ca. pro Schrank im Vollausbau
- Server
- Speicher
- Verteiler
- Netzwerkkomponenten
 - Netzwerkschränke werden wesentlich häufiger durch Umstecken belastet, als Serverschränke
 - Farbcodierungen
 - Eindeutige Beschriftungen notwendig

Verkabelung

Bereichs- und Hauptverteilung

Google Datencenter

http://www.google.com/about/datacenters/gallery/#/

Sicherheit

- Physische IT-Sicherheit
 - Brandschutz
 - Schutz gegen Wasser
 - Staub
 - 0 ...
- Zugangskontrolle / Zutrittskontrolle
 - Unterteilung des Rechenzentrums in Zonen
 - Farben geben Zonen wieder
- IT Sicherheit gegen Angriffe von außen
 - Firewalls
 - Ids Intrusion Detection Systems

Physische IT-Sicherheit

Sicherheits- Zonen	Funktion	Kennzeichnung (Beispiel)
1	Grundstück	weiß
2	Halböffentlicher Bereich, angren- zende Büroflächen	grün
3	Operating-Berei- che, Nebenräume der IT	gelb
4	Technische Anlagen zum Betrieb der IT	blau
5	IT- und Netzwer- kinfrastruktur	rot

Firewall / Intrusion Detection Systems

Firewall

- Besser "Zugbrücke" statt "Feuerwand"
- Schützt Rechnersystem vor unerwünschten Zugriffen von außen
- Software-Komponente, die den Netzwerkzugriff beschränkt, basierend auf Adressen und/oder Diensten
- Intrusion Detection System
 - Angrifferkennungssystem
 - Ergänzung zur Firewall
 - Host- oder Netzwerk-basierend
- Honeypot

Quelle: http://de.wikipedia.org/wiki/Intrusion_Detection_System, 19.11.2013

IT-Sicherheits-Standards

- IT-Grundschutzhandbuch vom BSI (Bundesamt für Sicherheit in der Informationstechnik) (DE)
 - IT-Strukturanalyse
 - Schutzbedarfsfeststellung
 - Modellierung
 - Basis-Sicherheitschecks
 - Ergänzende Sicherheitsanalyse
 - Konsolidierung von Maßnahmen
- ISO 27001: IT-Sicherheitsverfahren Informationssicherheits-Managementsysteme – Anforderungen

Schutzziele der IT-Sicherheit

- Informationssicherheit: Eigenschaft von informationsverarbeitenden Systemen
 - (Informations-)Vertraulichkeit
 - Verfügbarkeit
 - (Daten-)Integrität
- Datenschutz Anonymisierung
- Authentizität
- Verbindlichkeit

Speichertechnik

- Lokale HDD/SSD pro Server
 - Betriebssystem
 - Ev. Virtualisierungsumgebung
- Im RZ: Datenspeicher ausgelagert auf unterschiedliche (Speicher-)Systeme
- Backup-Strategien werden erleichtert
- Grundlagen:
 - HDD/SSD
 - RAID
 - NAS

- Redundant Array of Independent Disks
- Mehrere Festplatten verbunden
- Datensicherheit, Redundanz
- Datendurchsatz
- Hardware / Software
- Hot-Plug-Fähigkeit (Hotplugging)

- Software
 - Im Betriebssystem
 - HDD-Cache
 - Keine Pufferbatterie
 - JBODs (Just a Bunch Of Disks)
 - CPU übernimmt
 Festplattenzugriffe =>
 Geschwindigkeitsvorteil

- Hardware
 - Controller
 - Externer Cache
 - Pufferbatterie f. Cache
 - Unabhängig vom Betriebssystem
 - Fehlerredundanz (externes RAID)

- RAID 0
 - Striping
 - Gesteigerte Transfer-raten
 - Parallele Zugriffe
 - Hohes Speichervolumen
 - Datensicherheit gering

Quelle: http://www.abchw.com/content/raid-0, 21.03.2008

- RAID 1
 - Mirroring
 - o mind. 2 HDD
 - Kleinste Platte ist das "Maß"
 - Hohe Ausfallssicherheit
 - Fehler (Schreib-oder Datenfehler)
 übertragen sich auf alle Platten

^{*} Quelle: http://www.abchw.com/content/raid-1, 21.03.2008

- RAID 5
 - Leistung und Parität
 - Redundanz
 - Speichervolumen groß
 - o mind. 3 HDD
 - Eigene Kontroller
 - Besser meist RAID 10

RAID 5 parity across disks

^{*} Quelle: http://www.abchw.com/content/raid-5-%2526amp%3B-conclusion, 21.03.2008

Aq

B3

C3

RAID-Systeme

- RAID 6
 - Ähnlich zu RAID 5
 - Ausfall von 2 HDDs möglich
 - Leistung und Parität
 - Redundanz

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

RAID 6

A3

Bp

Ba

* Quelle: http://de.wikipedia.org/wiki/Redundant_Array_of_Independent_Disks, 19.11.2013

- Speichervolumen
 gg. Ausfallssicherheit reduziert
- Eigene Kontroller

A1

B1

B₂

 C_p

NAS – Network Attached Storage

- Bereitstellung von Speicherplatz im LAN
- Meist Dateibasiert
 - Samba
 - NFS
 - O ...
- Selten Blockbasiert
 - iSCSI
 - 0 ...
- Häufig in KMUs und Home Offices anzutreffen

* Quelle: http://de.wikipedia.org/wiki/Network_Attached_Storage, 19.11.2013

Speichertechnik: Schnittstellen

SATA

- SATA I mit 1.5 Gbit/s
- SATA II mit 3 Gbit/s
- SATA III mit 6 Gbit/s

SATA Express 8 oder 16 Gbit/s

SCSI

- Ultra 320 mit 320 MB/s (parallel, Jahr 2002)
- Nachfolger SAS (seit 2004)

iSCSI

- SCSI Daten werden in TCP/IP-Pakete verpackt und via IP-Netze übertragen => Netzwerk kann "Flaschenhals" beim Datendurchsatz sein
- Blockbasierter Zugriff

Speichertechnik: Schnittstellen

- SAS Serial attached SCSI
 - Bis zu 12 Gbit/s Full Duplex
 - Edge Expander (Bündelt bis zu 128 Geräte auf einen Anschluss) und
 - Fan Out Expander (128*128 = 16384 Geräte)
 - Vorteile:
 - HDD/SSD mit 2 Anschlüssen entweder doppelter
 Datendurchsatz oder redundanter Anschluss an 2 Hosts
 - SATA kompatibel
 - o Nachteil:
 - Punkt zu Punkt Verbindung Pro Drive ein Anschluss notwendig am Controller/Host

Speichertechnik: Schnittstellen

- FC Fibre Channel
 - Hochgeschwindigkeitsübertragung großer Datenmengen
 - Übertragungsraten bis zu 16 Gbit/s
 - Kupferkabel bis 30m
 - Glasfaserkabel bis 10km
 - Hauptanwendung: Übertragung von SCSI Befehlen
 - FC-SW: Fibre Channel Switched Fabric
 - Ähnlich zu Ethernet
 - Intelligente Switches => Bessere Auslastung des Systems
 - FCoE Fibre Channel over Ethernet

Speicherverwaltung im Rechenzentrum

- SAN Storage Area Network
 - Netz zur Anbindung von Disk-Arrays oder Tape-Libraries
 - Serielle, kontinuierliche Hochgeschwindigkeits-Datenübertragung
 - Basierend meist auf FC, kostensparender auf IP
 - DAS Direct Attached Storage: Speicher steht einem Server zur Verfügung
 - SAN Viele Server können auf viel Speicher zugreifen ©
 - Datenzugriff blockbasiert
 - Zugreifender Rechner verwaltet Zugriffe und Dateisystem
 - Beim NAS: stellt einen Dateidienst zur Verfügung

Einfaches SAN-Schema

^{*} Quelle: http://de.wikipedia.org/wiki/Storage_Area_Network, 19.11.2013

Bandroboter bei Google

Verfügbarkeit

- Wahrscheinlichkeit oder das Maß der Erfüllung bestimmter Anforderungen an ein System zu oder innerhalb eines vereinbarten Zeitrahmens
 - Bei Servern im 24x7 Betrieb und 99% Verfügbarkeit
 => max. 87,6h Ausfall pro Jahr
 - Bei Servern im 24x7 Betrieb und 99,99% Verfügbarkeit
 => max. 0,876h Ausfall pro Jahr
 - http://www.uptime.de/de/support/tools/verfuegbarkeitsrechn er.html
- Erreichung durch
 - Redundanz
 - Cluster
 - Weitere technische Maßnahmen

Möglichkeiten zur Steigerung der Verfügbarkeit

- Load Balancer
 - Lastverteilung auf mehrere parallele Systeme
 - Cluster/Verbund verhält sich nach außen wie ein einzelnes System
 - Anfragen werden vom LB verteilt
- Redundanz
 - Strom
 - Klima
 - Services
 - O ...
- Cluster

Cluster

- HPC High Performance Computing
 - Abarbeitung von Rechenaufgaben
 - Job Management System verteilt die Aufgaben an die Knoten
- HA High Availability
 - Cluster muss frei sein von "Single Point of Failure".
 - Fällt ein Teil/Komponente aus, so werden die Services auf andere Teile/Komponenten migriert
 - Cluster können (geographisch) verteilt werde
 - Homogene Cluster: alles ist gleich (HW/SW)
 - Heterogene Cluster: unterschiedliche HW und SW

Hochverfügbarkeit: Failover / Switchover

- Failover: ungeplanter Wechsel zwischen zwei oder n Diensten, bei einem Ausfall
 - Heartbeat zur gegenseitigen Überwachung
 - Cluster Management Software notwendig
- Switchover:
 Bewusster Wechsel zwischen zwei oder n Diensten
- Technische Redundanz muss so rasch als möglich wieder hergestellt werden!

Management-Standards von Rechenzentren

- ITIL IT Infrastructure Library
 - Sammlung von Best Practices
 - Umsetzung eines ITSM (IT Service Managements)
 - Inhalt: Planung, Erbringung, Unterstützung und Effizienz-Optimierung von IT-Serviceleistungen im Hinblick auf ihren Nutzen zum Geschäftsziel
 - Zertifizierungen als Person möglich
- ISO/IEC 20000
 - Norm zum IT Service Management
 - Basierend und ergänzend auf ITIL
 - Zertifizierungen als Organisation möglich

• ...

Cloud Computing Taxonomie

- Everything as a Service (XaaS)
 - bezeichnet einen Ansatz, "alles" als Service zur Verfügung zu stellen und zu konsumieren
 - Evolution vom Konzept "Web Service"
- Infrastructure as a Service
- Platform as a Service
- Software as a Service (see next slides)
- Human as a Service
 - Crowdsourcing: provisioning of human work (simple tasks)
- High Performance Computing as a Service
- Data Intensive Computing as a Service

...

Cloud Computing Modelle

- Software as a Service (SaaS)
 - Webanwendungen werden durch einen Dienstleister betrieben und als Dienst zur Verfügung gestellt
 - Lokale Installation der Anwendungen ist nicht vorgesehen
 - Kunden brauchen nur einen Browser
 - Anbieter kümmert sich um Installationen, Administration und Updates
- Platform as a Service (PaaS)
 - Anbieter betreibt skalierbare Laufzeitumgebungen
 - Häufig werden auch Entwicklungsumgebungen angeboten
 - Anbieter unterstützen meistens 1 oder 2 Programmiersprachen
- Infrastructure as a Service (laaS)
 - Kunden betreiben virtuelle Server-Instanzen mit (fast) beliebigen
 Betriebssystemen und unveränderten Anwendungen auf den Serverfarmen des Anbieters
 - Kunden haben innerhalb ihrer Instanzen Administratorenrechte
 - Firewall-Regeln können selbst definiert werden

SaaS Beispiele

- Beispiele f
 ür kommerziell verf
 ügbare Softwaredienste
 - Office 365, Google Docs, Salesforce.com, Clarizen, SlideRocket, Adobe Photoshop Express, Apple iWork.com, ...
- Beispiele f
 ür private Softwaredienste
 - Sugar und Zimbra
- Weitere Cloud Softwaredienste und Anwendungen
 - Humans as a Service (HuaaS) Croudsourcing
 - Cloud Printing
 - Cloud Gaming
 - Cloud-Betriebssysteme

Cloud Printing

- Google Cloud Print
 - http://code.google.com/apis/cloudprint
 - Für Netbooks, Touchpads usw...
 - HP bietet kompatible Drucker an
- Über eine E-Mail-Adresse lassen sich die Geräte identifzieren und als Cloud-Drucker unter Chrome OS hinzufügen
 - Nutzer sendet sein zu druckendes Dokument an den Dienst, legt die Druckeinstellungen fest und bekommt eine Rückmeldung über die erfolgreiche Ausführung des Auftrags

Cloud Gaming

- Cloud Gaming-Dienste machen High-End Videospiele auf Low-End Geräten (ältere PCs, Fernseher, Mobiltelefone) verfügbar
 - Videospiele werden in den Serverfarmen des Anbieters ausgeführt
 - Ausschließlich die Darstellung erfolgt lokal (wird als komprimierter Videostrom übertragen)
 - Benutzereingaben werden zum Anbieter gesendet und dort ausgewertet
- Nachteile:
 - Kompression reduziert die optischen Qualität
 - Netzwerklatenzen müssen gering sein
- Positiver Nebeneffekt: Keine Raubkopien möglich ©
- Anbieter: OnLive und Gaikai

PaaS Beispiele

- Beispiele f
 ür kommerziell verf
 ügbare Plattformdienste
 - Google App Engine, Windows Azure, Zoho Creator
- Beispiele f
 ür offene Plattformdienste
 - AppScale und typhoonAE
- Google App Engine
 - Webanwendungen in Python, JAVA und Google Go
 - Bis zu gewissen Quotas kostenfrei
- AppScale und typhoonAE sind freie Reimplementierungen
 - Ermöglichen den Aufbau eigener, kompatibler Plattformdienste

laaS Beispiele

- Beispiele f
 ür kommerziell verf
 ügbare Infrastrukturdienste
 - Amazon Elastic Compute Cloud (EC2), IBM Smart Cloud Enterprise, GoGrid, FlexiScale, ...
- Beispiele f
 ür offene Infrastrukturdienste
 - Eucalyptus, OpenNebula, OpenStack und Nimbus
- EC2 ist ein Dienst der Amazon Web Services (AWS)
 - Die AWS sind eine Sammlung verschiedener Cloud-Dienste
 - Abrechnung nach Verbrauch
- Eucalyptus ist eine freie Software, um AWS-kompatible Infrastrukturdienste auf Linux-Clustern aufzubauen
 - OpenNebula, OpenStack und Nimbus bieten eine vergleichbare Funktionalität

Cloud Toolchain

http://dev2ops.org

The Toss Test!*

An alternate (and purely hypothetical!) test to determine how successful your provisioning automation is:

- 1. Grab any machine, rip it out of the rack, and throw it out of the window. Can you automatically re-provision your systems and return the affected application services to their previous state in minutes? (no cheating by failing over to a standby cluster or alternate facility)
- 2.Grab any senior engineer and throw him or her out of the same window. Can your operations proceed as normal?

*adapted from the "The 10th Floor Test" by by Steve Traugott (www.infrastructures.org)

Automated Toolchain

http://www.slideshare.net/AmazonWebServices/building-powerful-web-applications-in-the-aws-cloud-a-love-story-jinesh-varia

Cloud Technical Overview

Cloud Computing Zuverlässigkeit?

28.2.2011

- Google verliert fast 150.000 E-Mail-Konten
- http://www.spiegel.de/netzwelt/web/0,1518,748045,00.html

21.4-24.4.2011

- Ausfall von Amazon EC2 Knoten US-Ostküste, Datenverlust
- http://heise.de/-1234444

21.6.2011

- Dropbox akzeptierte vier Stunden lang beliebige Passwörter
- http://heise.de/-1264100

8.4.2015

- Outlook.com Teilausfall
- http://www.computerworld.com/article/2907894/outlookcompartial-outage-stretches-to-20-hours.html

Cloud Computing Zuverlässigkeit

- https://www.ajubeo.com/blog/top-cloud-outages-issues-2016/
- 28.2.2017 Amazon S3 Service Disruption in the Northern Virginia (US-EAST-1) Region durch einen "Tippfehler"
 - https://aws.amazon.com/de/message/41926/
 - Auswirkungen http://www.zeit.de/digital/internet/2017-03/amazon-aws-s3-cloud-ausfall-infrastruktur-internet-derdinge
- Portal f
 ür Cloud Service Status Check
 - https://cloudharmony.com/status

Cloud Computing Wirtschaftliche Aspekte

- Neue Rolle "Chief Cloud Officer" (CCO)
- Aufgabenbereiche
 - Cloud Controlling als Teil des IT Controlling
 - Demand Management
 - Interne Bedürfnisse erheben
 - Bedarf abschätzen
 - Erkennen von Synergien und Überlappungen
 - Supplier-Relationship-Management (SRM)
 - Auswahl von Angeboten und Anbietern
 - Ansprechpartner f
 ür Cloud Service Provider (CSP)
 - Effektives Risikomanagement "Blick aufs Ganze"

Leitfragen für den Weg in die Cloud

- Warum sollen Dienste aus der Cloud bezogen oder in die Cloud verlagert werden? (Ziele!)
- Was soll in die Cloud?
- Welche Risiken sind aus der Sicht des Management erlaubt, verboten oder unter bestimmten Umständen einzugehen bzw. akzeptabel?
- Wann soll der Schritt in die Cloud erfolgen?
- Wer kommt als CSP in Frage?
- Wo darf der Cloud-Service geografisch (nicht) angesiedelt sein?
- Wie soll der Schritt in die Cloud erfolgen?

Welcher Anbieter (CSP) ist geeignet?

- Vendor Lock-In
- Reputation
 - Objektive Indikatoren
 - Subjektive Indikatoren
- Standard-Angebot des CSP
- Preis/Leistungs-Verhältnis
- Vertragsdauer
- Zuverlässigkeit
- Elastizität, Flexibilität
- Geografischer Standort
- Zertifizierungen, Audits

Rechtliche Aspekte Inhalte eines Cloud Vertrags

- Geltendes Recht vereinbaren
 - Konfliktlösungsmechanismen
 - Gerichtsstand
 - Schiedsgerichtsvereinbarungen
- Leistungsbeschreibung
 - Art der Leistung entscheidet über Vertragstyp
 - Miet-,Dienst-,Werk- oder Leihvertraglicher Charakter
 - Arten und Charakteristika konkret beschreiben, da diese besonders relevant sind
- Service Level Agreements (SLAs)
- Nutzungsrechte

Rechtliche Aspekte Inhalte eines Cloud Vertrags

- Change Request Verfahren
- Vergütung für CC Leistungen
- Governance und Notfall-Management
- Beendigung der Leistung, Kündigung, etc.

• ...

Open Research Topics

Interoperability

- Cloud Computing Interoperability Forum
- OGF Open Cloud Computing Interface Working Group
- Sun Cloud API

Portability

- Amazon Machine Image (AMI)
- VMWare Virtual Machine Disk Image
- Open Virtualization Format (OVF)

Reliability & Monitoring

- E.g.: Amazon AWS outage: 8hrs (7/08), 2 hrs (2/08), 48 hrs (10/07)
- Full transparency is needed: Cloudstatus.com

Data Security and Jurisdiction

- Cloud Servers abstract where processing occurs and where your data is stored
- Software/data are subject to laws & regs. Of where they are execute & stored
- Digital Millenium Copyright Act (DMCA), ...

FH University of Applied Sciences TECHNIKUM WIEN

Referenzen

- Baun, C., Kunze, M., Nimis, J., Tai, S.: Cloud Computing Web-basierte dynamische IT-Services; aus der Reihe Informatik im Fokus;
 2. Auflage; Springer Verlag, 2011
- GOTTFRIED VOSSEN / TILL HASELMANN / THOMAS HOEREN: Cloud-Computing für Unternehmen - Technische, wirtschaftliche, rechtliche und organisatorische Aspekte; ISBN: 978-3-89864-808-0, dpunkt.verlag, 2012
- Bitkom Leitfäden Server Virtualisierung
 - http://www.bitkom.org/de/themen/36365_40545.aspx
- "Network Functions Virtualisation— Introductory White Paper"
- Bitkom Leitfaden f
 ür sicheres Cloud Comuting
 - http://www.bitkom.org/de/publikationen/38337_75420.aspx
- Bitkom Leitfaden für betriebssichere Rechenzentren / Planungshilfe
 - http://www.bitkom.org/de/publikationen/38337_77002.aspx
- Eurocloud Leitfäden
 - http://www.eurocloud.at/projekte/publikationen/leitfaeden.html

Cloud Infrastructure

Glossar

Quelle: "Network Functions Virtualisation— Introductory White Paper"

© Nimmervoll / Tesar

Glossar 1/5

AAA Authentication-Authorisation-Accounting

API Application Programming Interface (a set of routines, protocols, and tools for building software applications)

ASIC Application Specific Integrated Circuit

BNG Broadband Network Gateway

BRAS Broadband Remote Access Server

BSS Business Support System

CDN Content Distribution Network

CG-NAT/NAT Carrier Grade Network Address Translation

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Service

DPDK Data Plane Development Kit

Glossar 2/5

DPI Deep Packet Inspection **DSL** Digital Subscriber Line (typically ADSL2/+, VDSL2, G.fast) **EMS** Element Management System **EPC** Evolved Packet Core **ETSI** European Telecommunications Standards Institute **HSS** Home Subscriber Service **HV** Hypervisor I/O Input/Output **IMS** IP Multimedia System **IPR** Intellectual Property Rights

Glossar 3/5

IPSec/SSL IP Security/ Secure Sockets Layer
IPv6 Internet Protocol version 6
ISG Industry Specification Group
ISSU In Service Software Upgrade
IT Information Technology
KVM Kernel based Virtual Machine
LAN Local Area Network
LB Load Balancer
M2M Machine-to-Machine communications
MME Mobility Management Entity
MVNO Mobile Virtual Network Operator
NFV Network Functions Virtualisation
NGN Next Generation Network
NIC Network Interface Controller
NMS Network Management System

Glossar 4/5

OAM Operations Administration & Maintenance **OGF** Open Grid Forum **ONF** Open Networking Foundation **OpenFlow** Specifications developed by the Open Networking Foundation OpenNaaS Specifications developed by the OpenNaaS community **OpenStack** Specifications developed by the OpenStack Foundation **OSS** Operations Support System **PDN-GW** Packet Data Network Gateway PE Router Provider Edge Router PoP Point of Presence **QoE** Quality of Experience **SBC** Session Border Controller **SDN** Software Defined Network **SDO** Standards Development Organisation

Glossar 5/5

SGSN/GGSN Serving GPRS support node/Gateway GPRS support node

SLA Service Level Agreement

TCP Transmission Control Protocol

VM Virtual Machine

VMWare Proprietary Hypervisor

VNA Virtualised Network Appliance

VPN Virtual Private Network

vswitch Any Ethernet switch implemented in software alongside or inside a hypervisor.

WAN Wide Area Network

Xen Proprietary Hypervisor