R-I-J TİPİ KOMUTLAR

	6-bit	5-bit	5-bit	5-bit	5-bit	5-bit	
LW	ор	rs	rt	immediate			
SW	ор	rs	rt	immediate			
ADD	ор	rs	rt	rd	0	func	
SUB	ор	rs	rt	rd	0	func	
BEQ	ор	rs	rt	immediate			
J	ор		address				

KOMUTLARIN ALU DEĞERLERİ

Operation	RegDst	RegWrite	ALUSrc	ALU0p	MemWrite	MemRead	MemToReg
add	1	1	0	010	0	0	0
sub	1	1	0	110	0	0	0
and	1	1	0	000	0	0	0
or	1	1	0	001	0	0	0
slt	1	1	0	111	0	0	0
lw	0	1	1	010	0	1	1
SW	Х	0	1	010	1	0	Χ
beq	X	0	0	110	0	0	X

BİR KOMUTUN YÜRÜTÜLEBİLMESİ İÇİN 5 AŞAMA

The Five Cycles of MIPS

```
(Instruction Fetch)
   IR:= Memory[PC]
   PC := PC + 4
(Instruction decode and Register fetch)
   A := Reg[IR[25:21]], B := Reg[IR[20:16]]
   ALUout := PC + sign-extend(IR[15:0])
(Execute | Memory address | Branch completion)
   Memory reference: ALUout:= A+ IR[15:0]
   R-type (ALU): ALUout: = A op B
   Branch: if A=B then PC := ALUout
(Memory access | R-type completion)
   LW: MDR:= Memory[ALUout]
   SW: Memory[ALUout]:= B
   R-type: Reg[IR[15:11]]:= ALUout
(Writeback)
           Reg[[20:16]] := MDR
   LW:
```

5 AŞAMA ÜZERİNDE

Break datapath into 5 stages

- ☐ Each stage has its own functional units.
- ☐ Each stage can execute in 2ns
 - Just like the multi-cycle implementation

