

PONTOS PRINCIPAIS

Introdução

Método de resolução

GPU vs CPU

Busca Exaustiva

INTRODUÇÃO

O projeto conta com um relatório detalhado com dados da busca paralelizada multi-core em comparação com a o algorítmo não paralelizado. Para garantir testes mais precisos, o algorítmo original foi alterado minimamente para se adaptar a paralelização.

MÉTODO DE RESOLUÇÃO

COMPARATIVO DE PERFORMANCE

	ORIGINAL	MULTI-CORE
IN-0.TXT	0.000803578s	0.0208339s
IN-5.TXT	0.0672707s	0.0884273s
IN-10.TXT	0.13049s	0.135509s

CONCLUSÃO

COMO PUDERMOS VER NO COMPARATIVO, PARA OS TESTES DISPONÍVEIS O ALGORÍTMO ORIGINAL PERFORMOU MELHOR QUE O PARALELISADO. ENTRETANTO, À MEDIDA QUE A COMPLEXIDADE DOS TESTES EVOLUIU, A PERFORMANCE DO ALGORÍTMO PARALELISADO FOI SE APROXIMANDO CADA VEZ MAIS DO ORIGINAL. ISSO É ESPERADO, JÁ QUE A PARALELISAÇÃO SÓ SE TORNA VERDADEIRAMENTE VANTAJOSA EM CASOS DE TESTES BEM COMPLEXOS.

GPU VS CPU

PARA O NOSSO ALGORÍTMO VALERIA MAIS A PENA INVESTIR EM UM GPU MAIS POTENTE DO QUE EM UM CPU MELHOR. ISSO PORQUE O CPU É UM COMPONENTE OTIMIZADO PARA TAREFAS SEQUÊNCIAIS, JA QUE POSSUI UMA ULA POTENTE E MINIMIZA A LATÊNCIA DAS OPERAÇÕES. JÁ O GPU MAXIMIZA O THROUGHPUT ER POSSUI UMA ULA SIMPLES, O QUE O TORNA MAIS INDICADO PARA ALGORÍTMOS PARALELOS.

BUSCA EXAUSTIVA

A BUSCA EXAUSTIVA É UM
ALGORÍTMO QUE SE ULTILIZA DA
RECURSIVIDADE. GPUS NÃO
OPERAM BEM EM TAREFAS
RECURSIVAS, ENTÃO ESPERA-SE
QUE A CPU PERFORME MELHOR EM
ALGORÍTMOS RECURSIVOS. LOGO,
NÃO VALE A PENA ESPERAR PELO
RESULTADO DO TESTE.

OBRIGADO!