1 Integral Domains

Recall that rings do not have multiplicative cancellation. That is, ab = ac does not imply that b = c. However, there are exceptions to this rule.

Definition 1.1: Zero-Divisors

A **zero-divisor** is a nonzero element a of a commutative ring R such that there is a nonzero element $b \in R$ with ab = 0.

For example, $2 \in \mathbb{Z}/4\mathbb{Z}$ is a zero divisor. That is:

$$2 \cdot 2 \equiv 0 \pmod{4}$$

Another example is $M_2(\mathbb{R})$. Take $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Then:

$$A \cdot B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Definition 1.2: Integral Domain

An **integral domain** is a commutative ring with unity and no zero-divisors.

Remarks:

- Recall that a ring R has unity if $1 \in R$ is a multiplicative identity; that is, 1a = a1 = a.
- Essentially, in an integral domain, a product is 0 only when one of the facts is 0. That is, ab = 0 only when a = 0 or b = 0.

1.1 Examples

Here are some examples of integral domains.

1.1.1 Example 1: The Integers

The ring of integers is an integral domain.

1.1.2 Example 2: Gaussian Integers

The ring of Gaussian integers $Z[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ is an integral domain.

1.1.3 Example 3: Ring of Polynomials

The ring $\mathbb{Z}[x]$ of polynomials with integer coefficients is an integral domain.

1.1.4 Example 4: Square Root 2

The ring $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ is an integral domain.

1.1.5 Example 5: Modulo Prime Integers

The ring $\mathbb{Z}/p\mathbb{Z}$ of integers modulo a prime p is an integral domain. This is because:

$$ab \equiv 0 \pmod{p} \iff p|ab \implies p|a \text{ or } p|b \implies a \equiv 0 \pmod{p} \text{ or } b \equiv 0 \pmod{p}$$

1.1.6 Non-Example 1: Modulo Integers

The ring $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n is not an integral domain when n is not prime. If we write n=ab, then 1 < a and b < n implies that $ab \equiv 0 \pmod{b}$.

1.1.7 Non-Example 2: Matrices

The ring $M_2(\mathbb{Z})$ of 2×2 matrices over the integers is not an integral domain.

1.1.8 Non-Example 3: Direct Product

 $\mathbb{Z} \oplus \mathbb{Z}$ is not an integral domain. The reason why is because, for:

$$\mathbb{Z} \oplus \mathbb{Z} = \{(x, y) \mid x, y \in \mathbb{Z}\}\$$

Take $(0,1) \in \mathbb{Z} \oplus \mathbb{Z}$ and $(1,0) \in \mathbb{Z} \oplus \mathbb{Z}$. Then:

$$(0,1) \cdot (1,0) = (0,0)$$

1.2 Properties of Integral Domains

Theorem 1.1: Cancellation

Let a, b, and c belong to an integral domain. If ab = ac, then:

$$a = 0$$
 or $b = c$

Proof. From ab = ac, we know that ab - ac = 0. Then, we know that a(b - c) = 0. There are two cases to consider:

- If $a \neq 0$, it follows that b c = 0.
- Otherwise, a = 0 and it's trivial.

So, we are done.

2 Fields

Definition 2.1: Field

A **field** is a commutative ring with unity in which every nonzero element is a unit (i.e. every nonzero element has a multiplicative inverse).

Remarks:

- To verify that every field is an integral domain, observe that if a and b belong to a field with $a \neq 0$ and ab = 0, we can multiply both sides of the last expression by a^{-1} to obtain b = 0.
- In other words, you can never have an x such that 0x = 1.

2.1 Examples of Fields

Here are some examples and non-examples of fields.

2.1.1 Example 1: Infinite Sets

 \mathbb{R} , \mathbb{C} , and \mathbb{Q} are all fields.

2.1.2 Non-Example 1: Integers

 \mathbb{Z} is not a field because 2 does not have a multiplicative inverse.

2.1.3 Example 2: Matrices

 $M_2(\mathbb{R})$ is not a field because not all matrices have an inverse.

2.1.4 Non-Example 2: Polynomials

 $\mathbb{R}[x]$ is not a field. This is because not all functions have a polynomial inverse. For example, the inverse of x+3 is $\frac{1}{x+3}$, which isn't a polynomial. However, $\mathbb{R}[x]$ is an integral domain.

Properties of Fields

Theorem 2.1

A finite integral domain is a field.

Proof. Let R be a finite integral domain and suppose $a \in R \setminus \{0\}$. Consider the set:

$$\{a, a^2, a^3, a^4, \dots\} \subseteq R$$

Because R is finite, there must be some overlap, i.e. there exists two integers j < i such that $a^j = a^i$. This implies that $a^j = a^{i-j}a^j$. Since we have an integral domain, we can perform multiplicative cancellation; so:

$$1 = a^{i-j}$$
 for $i - j \ge 1$

Then, $i-j-1 \ge 0$ with $(a)(a^{i-j-1}) = a^{i-j} = 1$. So, $a^{-1} = a^{i-j-1}$ is a multiplicative inverse of a. \square

Corollary 2.1

For every prime p, $\mathbb{Z}/p\mathbb{Z}$, the ring of integers modulo p is a field.

Remark: This is often denoted \mathbb{F}_p in this context.

Some other examples are:

- Fields with 9 elements: $\mathbb{F}_3[i] = \{0, 1, 2, i, 1+i, 2+i, 2i, 1+2i, 2+2i\}$. Recall that $i^2 = -1 \equiv 2 \pmod{3}$.
- Fields with 4 elements: $\{0, 1, a, b\}$.

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0
•	0	1	a	b
0	0	0	$\frac{a}{0}$	$\frac{b}{0}$
$\begin{array}{c} \cdot \\ \hline 0 \\ 1 \end{array}$				
	0	0	0	0
1	0 0	0	0 a	0 b

• $\mathbb{Q}[\sqrt{5}] = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\} \subseteq \mathbb{R}$ is a field. First, to show that it's a field, we need to show that every nonzero element has multiplicative inverses. Suppose $a + b\sqrt{5} \neq 0$. Then:

$$a + b\sqrt{5} \neq 0 \iff b\sqrt{5} \neq a \iff (a, b) \neq (0, 0)$$

In other words, a, b are not both zero. Note that since $\sqrt{5}$ is irrational, $\sqrt{5} \neq \frac{a}{b}$. So, $\frac{1}{a+b\sqrt{5}} \in \mathbb{R}$ by $a+b\sqrt{5}$ is not zero and \mathbb{R} is a field.