Implicit Application

Madiba Hudson-Quansah

March 2023

Contents

1																							3
2																							4
3																							5
	3.1 3.2																						5 5
4																							6
5																							7
6																							8
	6.1																						9
	6.2									•					•								9
7																							10
	7.1				•		•						•								•	•	10
8																							11
	8.1																						11
	8.2																						11
9																							12
10																							13
	10.1																						13
	10.2																						14

Height of the wall is y(t)

Distance from the wall is x(t)

From Pythagoras $y(t)^2 + x(t)^2 = 10^2$

Known

$$\frac{dy}{dx} = 10, \ x(t) = 6$$

$$\frac{dx}{dt}$$

$$y^{2} + x^{2} = 10^{2}$$

$$2y\frac{dy}{dt} + 2x\frac{dy}{dt} = 0$$

$$2y(10) + 2x\frac{dy}{dt} = 0$$

$$20y + 2x\frac{dy}{dt} = 0$$

$$\frac{dx}{dt} = -\frac{20y}{2x}$$

$$y^{2} = \sqrt{10^{2} - x^{2}}$$

$$\frac{dx}{dt} = -\frac{20(\sqrt{10^{2} - (6)^{2}})}{2(6)}$$

$$\frac{dx}{dt} = -\frac{40}{3} \text{ m/sec}$$

Figure 1: Balloon deflating

Known

$$A=4\pi r^2, \ \, \frac{dV}{dt}=2, \ \, r=12, \ \, V=\frac{4}{3}\pi r^3, \label{eq:A}$$

$$\frac{dr}{dt}$$

$$\pi r^2 \frac{dr}{dt} = \frac{dV}{dt}$$

$$4\pi r^2 \frac{dr}{dt} = \frac{dV}{dt}$$
$$4\pi r^2 \frac{dr}{dt} = -2$$
$$\frac{dr}{dt} = -\frac{2}{4\pi r^2}$$

$$4\pi r^2 = A$$

$$8\pi r \frac{dr}{dt} = \frac{dA}{dt}$$

$$8\pi r(-\frac{2}{4\pi r^2}) = \frac{dA}{dt}$$

$$\frac{dA}{dt} = -\frac{1}{3}ft^2/min$$

 $\begin{array}{c|c}
20 & 5 \\
\hline
 & 7+7 & I
\end{array}$

Known

$$\frac{dx}{dt} = 4$$

$$\frac{dl}{dt}$$

$$\frac{x+l}{20} = \frac{l}{5}$$

$$x+l = 4l$$

$$x = 3l$$

$$\frac{x}{3} = l$$

$$\frac{dl}{dx} = \frac{1}{3}$$

$$\frac{dl}{dt} = \frac{dl}{dx} \times \frac{dx}{dt}$$
$$\frac{dl}{dt} = \frac{4}{3}$$

3.1

Let L be the sum of the distance from the lamppost and the length of the boy's shadow.

$$\frac{dL}{dt} = \frac{dl}{dt} + \frac{dx}{dt} :: \frac{dL}{dt} = \frac{16}{3} \ ft/sec$$

$$\frac{dl}{dt} = \frac{4}{3} \; ft/sec$$

Figure 2: Balloon inflating

Known

$$V = \frac{4}{3}\pi r^3, \quad \frac{dV}{dt} = 5$$

$$\frac{dr}{dt}$$

$$4\pi r^2 \frac{dr}{dt} = \frac{dV}{dt}$$
$$4\pi r^2 \frac{dr}{dt} = 5$$
$$\frac{dr}{dt} = \frac{5}{4\pi r^2}$$

$$D=r+r\mathrel{\therefore} r=10$$

$$\frac{dr}{dt} = \frac{5}{4\pi r^2}$$

$$\frac{dr}{dt} = 3.978\,873\,577\times10^{-3}\,\text{ft/min}$$

 ${\rm Known}$

$$\frac{dx}{dt} = \frac{1}{4}$$
 When $t = 0$, $x = 10$
$$\therefore t = 0$$
, $y = \sqrt{15^2 - 10^2}$
$$y = 5\sqrt{5}$$

$$y^2 + x^2 = 15^2$$

$$2y\frac{dy}{dt} + 2x\frac{dx}{dt} = 0$$

$$\frac{dy}{dt} = \frac{-2x(-\frac{1}{4})}{2y}$$

$$\frac{dy}{dt} = \frac{\frac{1}{2}x}{2y}$$

$$x(t) = x(0) + \frac{dx}{dt} \times t$$

$$x(t) = 10 - \frac{1}{4} \times t$$

$$x(t) = 10 - \frac{t}{4}$$

$$y(t) = \sqrt{15^2 - x^2}$$

$$\begin{split} x &= 10 - \frac{t}{4}, \ t = 12, \ y = \sqrt{15^2 - x^2} \\ \frac{dy}{dt} &= \frac{\frac{1}{2}(10 - \frac{t}{4})}{2(\sqrt{15^2 - (10 - \frac{t}{4})^2})} \\ \frac{dy}{dt} &= 0.132 \ ft/sec \end{split}$$

Known

$$\frac{dV}{dt} = -2, \quad r = 5, \quad h = 14, \quad V = \pi r^2 \frac{h}{3}$$

$$\frac{dh}{dt}$$
, $\frac{dr}{dt}$

$$\frac{dV}{dt} = (\pi r^2)(\frac{1}{3}\frac{dh}{dt}) + (2\pi r\frac{dr}{dt})(\frac{h}{3})$$
$$\frac{dV}{dt} = \frac{\pi r^2}{3}\frac{dh}{dt} + \frac{2\pi rh}{3}\frac{dr}{dt}$$

$$\frac{r}{h} = \frac{5}{14}$$

$$r = \frac{5}{15}h$$

$$h = 6$$

$$r = \frac{5(6)}{14}$$

$$r = \frac{15}{7}$$

$$\frac{dr}{dt} = \frac{5}{14} \frac{dh}{dt}$$

6.1

$$-2 = \frac{\pi(\frac{15}{7})^2}{3} \frac{dh}{dt} + \frac{2\pi(\frac{15}{7})(6)}{3} (\frac{5}{14}) \frac{dh}{dt}$$

$$-2 = \frac{75}{49} \pi \frac{dh}{dt} + \frac{150}{49} \pi \frac{dh}{dt}$$

$$-2 = \frac{225}{49} \pi \frac{dh}{dt}$$

$$-\frac{2}{\frac{225}{49} \pi} = \frac{dh}{dt}$$

$$\frac{dh}{dt} = -\frac{98}{225} ft/hour$$

$$\frac{dh}{dt} = -\frac{98}{225} \text{ when } h = 6$$

$$\frac{dr}{dt} = \frac{5}{14}(-\frac{98}{225}\pi)$$

$$\frac{dr}{dt} = -\frac{7}{45}\pi ft/hour$$

Known

$$\frac{dx}{dt} = 2$$

Unknown

Let
$$L = x + l$$

$$\frac{dL}{dt}$$
 when $x = 25$

$$\frac{x+l}{12} = \frac{l}{5.5}$$

$$x+l = \frac{24}{11}l$$

$$x = \frac{13}{11}l$$

$$\frac{11}{13}x = l$$

$$\frac{11}{13}\frac{dx}{dt} = \frac{dl}{dt}$$

$$L = x + lL = x + \frac{11}{13}x$$

$$L = \frac{24}{13}x$$

$$\frac{dL}{dt} = \frac{24}{13}\frac{dx}{dt}$$

$$\frac{dL}{dt} = \frac{48}{13} ft/sec$$

L

Known

$$L = 3l, \quad \frac{dl}{dt} = -2$$

$$\frac{dL}{dt}$$

Unknown

8.1

$$\frac{dL}{dt} = 3 \frac{dl}{dt}$$

$$\frac{dL}{dt} = -6 \; inches/min$$

8.2

Known

$$A=L\times l, \ \frac{dl}{dt}=-2, \ l=6$$

$$\frac{dA}{dt}=(L)(\frac{dl}{dt})+(\frac{dL}{dt})(l)$$

$$\frac{dA}{dt}=3(6)(-2)+3(-2)(6)$$

$$\frac{dA}{dt}=-72\ inches^2/min$$

Known

$$\frac{dA}{dt} = -0.5, \quad A = 12$$

$$\frac{dr}{dt}$$

$$A = \pi r^{2}$$

$$12 = \pi r^{2}$$

$$\frac{12}{\pi} = r^{2}$$

$$\sqrt{\frac{12}{\pi}} = r$$

$$\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$$

$$-0.5 = 2\pi \left(\sqrt{\frac{12}{\pi}}\right) \frac{dr}{dt}$$

$$\frac{-0.5}{2\pi \left(\sqrt{\frac{12}{\pi}}\right)} = \frac{dr}{dt}$$

$$\frac{dr}{dt} = -0.0407 \ m/sec$$

 Known

$$\frac{dh}{dt} = 15$$

$$350^{2} + h^{2} = S^{2}$$
$$0 + 2h\frac{dh}{dt} = 2S\frac{dS}{dt}$$

$$h = h_0 + \frac{dh}{dt} \times t$$
$$h = 0 + 15 \times (20)$$
$$h = 300$$

$$350^{2} + 300^{2} = S^{2}$$

$$212500 = S^{2}$$

$$50\sqrt{85} = S$$

$$2(300)(15) = 2(50\sqrt{85})\frac{dS}{dt}$$

$$\frac{2(300(15))}{2(50\sqrt{85})} = \frac{dS}{dt}$$

$$\frac{dS}{dt} = 9.762 \ ft/sec$$

10.2

$$h = 900$$

$$350^{2} + 900^{2} = S^{2}$$

$$50\sqrt{373} = S$$

$$2(900)(15) = 2(50\sqrt{373})\frac{dS}{dt}$$

$$\frac{dS}{dt} = 13.980 \ ft/sec$$

 $h=15\times 6$