Live Session Unit 13 Assignment

MSDS 6306: Introduction to Data Science (403)

Misael Santana

1. Create a list named my_list in python with the following data points - 45.4 44.2 36.8 35.1 39.0 60.0 47.4 41.1 45.8 35.6

a. Print the 5th element in the list

b. Append 55.2 to my list

c. Remove the 6th element in the list

```
In [96]: my_list.remove(my_list[5])
In [97]: print(my_list)
     [45.4, 44.2, 36.8, 35.1, 39.0, 47.4, 41.1, 45.8, 35.6, 55.2]
```

d. Iterate over the list to print data points greater than 45

2. Introduction to numpy -

a. Import the numpy library using the following command - import numpy

```
In [99]: import numpy as np
```

b. Declare numpy array with the same data points as in my_list using numpy.array()

```
In [100]: my_listnp=np.array(my_list)
In [101]: print(my_list)
[45.4, 44.2, 36.8, 35.1, 39.0, 47.4, 41.1, 45.8, 35.6, 55.2]
```

c. Compute the mean and standard deviation using numpy.mean() and numpy.std() of the above array

```
In [102]: my_listnp.mean()
Out[102]: 42.560000000000000000000000000000
In [103]: my_listnp.std()
Out[103]: 5.9709630713981143
```

d. Use logical referencing to get only those values that are less than 45

```
In [104]: my_listnp[np.where(my_listnp<45)]
Out[104]: array([ 44.2, 36.8, 35.1, 39. , 41.1, 35.6])</pre>
```

e. Compute the max and min of the array using numpy.max() and numpy.min()

3. Introduction to pandas -

a. Import the pandas library - import pandas

```
In [107]: import pandas as pd
```

b. Read the IRIS dataset into iris using pandas.read_csv(). Data file -

```
In [108]: iris = pd.read_csv('c:\sasdata\iris.csv')
```

c. Using iris.head(), display the head of the dataset

In [109]: iris.head()

Out[109]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

d. Use DataFrame.drop() to drop the id column

Out[110]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

e. Subset dataframe to create a new data frame that includes only the measurements for the setosa species

```
In [55]: iris2=iris[iris['Species']=='Iris-setosa']
```

In [56]: iris2.head(10)

Out[56]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
5	5.4	3.9	1.7	0.4	Iris-setosa
6	4.6	3.4	1.4	0.3	Iris-setosa
7	5.0	3.4	1.5	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
9	4.9	3.1	1.5	0.1	Iris-setosa

f. Use DataFrame.describe() to get the summary statistics

In [57]: iris.describe()

Out[57]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

g. Use DataFrame.groupby() to create grouped data frames by Species and compute summary statistics using DataFrame.describe()

In [58]: groupby_species=iris.groupby(by='Species')
groupby_species.describe()

Out[58]:

		PetalLengthCm	PetalWidthCm	SepalLengthCm	SepalWidthCm
Species					
	count	50.000000	50.000000	50.000000	50.000000
	mean	1.464000	0.244000	5.006000	3.418000
	std	0.173511	0.107210	0.352490	0.381024
Iris-setosa	min	1.000000	0.100000	4.300000	2.300000
1113-361034	25%	1.400000	0.200000	4.800000	3.125000
	50%	1.500000	0.200000	5.000000	3.400000
	75%	1.575000	0.300000	5.200000	3.675000
	max	1.900000	0.600000	5.800000	4.400000
	count	50.000000	50.000000	50.000000	50.000000
	mean	4.260000	1.326000	5.936000	2.770000
	std	0.469911	0.197753	0.516171	0.313798
Iris-	min	3.000000	1.000000	4.900000	2.000000
versicolor	25%	4.000000	1.200000	5.600000	2.525000
	50%	4.350000	1.300000	5.900000	2.800000
	75%	4.600000	1.500000	6.300000	3.000000
	max	5.100000	1.800000	7.000000	3.400000
	count	50.000000	50.000000	50.000000	50.000000
	mean	5.552000	2.026000	6.588000	2.974000
	std	0.551895	0.274650	0.635880	0.322497
Iris-virginica	min	4.500000	1.400000	4.900000	2.200000
inis-viigiiiica	25%	5.100000	1.800000	6.225000	2.800000
	50%	5.550000	2.000000	6.500000	3.000000
	75%	5.875000	2.300000	6.900000	3.175000
	max	6.900000	2.500000	7.900000	3.800000

h. Use DataFrame.boxplot() to plot boxplots by Species

```
In [79]: import matplotlib.pyplot as plt
fig=plt.figure()
groupby_species.boxplot(return_type='dict', layout = (3,1), figsize=(8,20))
plt.show()
```

<matplotlib.figure.Figure at 0x22cc1c37198>

- i. Plot a scatter matrix plot using the seaborn library. Use the following to load and plot
 - i. Import seaborn
 - ii. Seaborn.pairplot(dataframe,by='column_name')

In [89]: import seaborn as sns
 import matplotlib.pyplot as plt1
 fig=plt1.figure()
 sns.pairplot(iris,hue='Species')
 plt1.show()

<matplotlib.figure.Figure at 0x22cc423c400>

In []: