

Instituto Federal de Minas Gerais Campus Bambuí Departamento de Engenharia e Computação Engenharia de Computação

Atividade: Perceptron - Petróleo

Pela análise de um processo de destilação fracionada de petróleo observou-se que determinado óleo poderia ser classificado em duas classes de pureza $(P_1 \text{ ou } P_2)$ a partir da medição de três grandezas $(x_1, x_2 \text{ e } x_3)$, que representam algumas das suas propriedades físico-químicas. A equipe de engenheiros e cientistas pretende usar uma rede Perceptron para executar a classificação automática dos óleos.

Assim, baseado nas informações coletadas do processo, formou-se o conjunto de treinamento apresentado no arquivo $tabela_treino.csv$, tomando-se por convenção o valor -1 para óleo pertencente a classe P_1 e o valor 1 para óleo da classe P_2 .

Para tanto, a arquitetura *Perceptron* a ser usada terá três entradas e uma saída conforme ilustrado na Figura 1:

Figura 1: Perceptron com uma camada, três entradas e uma saída

Utilizando o algoritmo de aprendizado baseado na Regra de Hebb, e assumindo-se a taxa de aprendizagem $\eta = 0.01$, faça as seguintes atividades:

- 1) Treine uma RNA com arquitetura Perceptron cinco vezes $(T_1 \text{ até } T_5)$, sempre iniciando o vetor de pesos \mathbf{w} com valores aleatórios entre 0 e 1. Garanta que em cada uma das cinco tentativas de treinamento os pesos iniciais do vetor \mathbf{w} sejam diferentes. Garanta que o erro seja baixo testando diferentes números de épocas e observando a convergência do erro médio. Após definir um total de épocas suficiente, mantenha a mesma quantidade de épocas para todos os cinco treinos.
- 2) Registre os resultados dos pesos antes e depois dos treinos, em cada um dos cinco treinos conforme a Tabela 1:

Treino	Pesos Iniciais				Pesos Finais				
	$\overline{W_0}$	W_1	W_2	W_3	$\overline{W_0}$	W_1	W_2	W_3	
1									
2									
3									
4									
5									

Tabela 1: Resultados do treinamento

3) Após o treinamento dos modelos, aplique-os separadamente na classificação das amostras de óleo da tabela abaixo (arquivo $tabela_classificacao.csv$). Anote na Tabela 2 os resultados das saídas (classes) para cada amostra e para cada modelo treinado (T_1 até T_5).

Amostra	X_1	X_2	X_3	$\hat{Y}(T_1)$	$\hat{Y}(T_2)$	$\hat{Y}(T_3)$	$\hat{Y}(T_4)$	$\hat{Y}(T_5)$
1	-0,3665	0,0620	5,9891					
2	-0,7842	1,1267	5,5912					
3	0,3012	0,5611	5,8234					
4	0,7757	1,0648	8,0677					
5	0,1570	0,8028	6,3040					
6	-0,7014	1,0316	3,6005					
7	0,3748	0,1536	6,1537					
8	-0,6920	0,9404	4,4058					
9	-1,3970	0,7141	4,9263					
10	-1,8842	-0,2805	1,2548					

Tabela 2: Amostras e resultados

- 4) Qual foi sua taxa de acerto percentual para cada modelo?
- 5) Qual o efeito de aumentar ou diminuir o número de épocas na qualidade dos resultados?
- 6) Qual o efeito de aumentar ou diminuir a taxa de aprendizagem na qualidade dos resultados?
- 7) Discorra se é possível afirmar se as suas classes, neste problema, são linearmente separáveis.

Você deverá entregar no AVA o jupyter notebook do seu trabalho contendo os códigos-fonte e, usando markdown, comentários relacionados à atividade. O notebook deve ser entregue em formato PDF.