Linear Maps between Normed Spaces

Definition 11.1 A linear map $T: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ is *bounded* if there exists a constant M such that

$$||Tx||_Y \le M||x||_X \qquad \text{for all} \qquad x \in X. \tag{11.1}$$

Lemma 11.2 If X is a finite-dimensional vector space, then any linear map $T:(X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ is bounded.

Lemma 11.3 A linear map $T: X \rightarrow Y$ is continuous if and only if it is bounded.

Proof Suppose that T is bounded; then for some M > 0

$$||Tx_n - Tx||_Y = ||T(x_n - x)||_Y \le M||x_n - x||_X,$$

and so T is continuous. Now suppose that T is continuous; then in particular it is continuous at zero, and so, taking $\varepsilon = 1$ in the definition of continuity, there exists a $\delta > 0$ such that

$$||Tx|| \le 1$$
 for all $||x|| \le \delta$.

It follows that for $z \neq 0$

$$||Tz|| = \left| \left| T\left(\frac{||z||}{\delta} \frac{\delta z}{||z||} \right) \right| = \frac{||z||}{\delta} \left| \left| T\left(\frac{\delta z}{||z||} \right) \right| \le \frac{1}{\delta} ||z||,$$

and so T is bounded.

Corollary The null space N(T) of a bounded operator $T: X \to Y$ is closed.

Let X be a normed linear space. A linear map from X to \mathbb{K} is called a linear functional. The space of all bounded linear functionals on X is denoted by X^* and called the dual of X.

Theorem A linear functional on the normed space X is bounded if and only if its null space is closed.

Proof. (Necessity.) This is a special case of Corollary above.

(Sufficiency.) Let f be a linear functional on X such that $\mathcal{N}(f)$ is a closed subspace of X. Suppose that f is unbounded. Then for every $n \in \mathbb{N}$, there exists $x_n \in X$ such that $||x_n|| = 1$ and $|f(x_n)| > n$. Note that $\mathcal{N}(f) \neq X$. Let $x \in X \setminus \mathcal{N}(f)$, so $f(x) \neq 0$, and define

$$y_n = x - \frac{f(x)}{f(x_n)} x_n \qquad n \in \mathbf{N}.$$

For every $n \in \mathbf{N}$ we have

$$f(y_n) = f(x) - \frac{f(x)}{f(x_n)} f(x_n) = 0.$$

Hence $y_n \in \mathcal{N}(f)$ for all $n \in \mathbb{N}$. Furthermore,

$$||y_n - x|| = \left\| \frac{f(x)}{f(x_n)} x_n \right\| = \frac{|f(x)|}{|f(x_n)|} ||x|| < \frac{|f(x)|||x||}{n} \to 0,$$

as $n \to \infty$. Therefore, the sequence (y_n) converges to x. Because $\mathcal{N}(f)$ is closed, we have $x \in \mathcal{N}(f)$, a contradiction.

The space of all bounded linear maps from X into Y is denoted by B(X, Y); we write B(X) for the space B(X, X) of all bounded linear maps from X into itself.

Definition 11.4 The norm in B(X, Y) or *operator norm* of a linear map $T: X \to Y$ is the smallest value of M such that (11.1) holds,

$$||T||_{B(X,Y)} := \inf\{M : ||Tx||_Y \le M||x||_X \text{ for all } x \in X\}.$$
 (11.2)

Lemma 11.5 As defined in (11.2) $\|\cdot\|_{B(X,Y)}$ is a norm on B(X,Y).

The norm in B(X, Y) is also given by

$$||T||_{B(X,Y)} = \sup_{||x||_X=1} ||Tx||_Y. \quad T \in B(X,Y), S \in B(Y,Z) \implies S \circ T \in B(X,Z)$$

If $T: X \to Y$, then in order to find ||T|| one can try the following: first show that

$$||Tx||_{Y} \le M||x||_{X} \tag{11.7}$$

for some M > 0, i.e. show that T is bounded. It follows that $||T|| \le M$ (since ||T|| is the infimum of all M such that (11.7) holds). Then, in order to show that in fact ||T|| = M, find an example of a particular $z \in X$ such that

$$||Tz||_Y = M||z||_X.$$

This shows from the definition that $||T|| \ge M$ and hence that in fact ||T|| = M.

Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ be normed spaces. Then a linear operator $A: X \to Y$ is continuous if and only if the following implication holds

(*) $x_n \in X$, $||x_n||_X \to 0 \implies (||Ax_n||_Y)$ is a bounded sequence.

Proof

Obviously, if A is continuous, then (*) holds true. For the converse implication, it suffices to prove that there exists an r > 0 such that $A(B_X(0,r)) = \{Ax; x \in X, ||x||_X < r\}$ is bounded in $(Y, ||\cdot||_Y)$. Assume the contrary, i.e., for all $n \in \mathbb{N}$, the set $A(B_X(0,1/n))$ is unbounded. This means there is a sequence (x_n) in X such that $||x_n||_X < 1/n$, $||Ax_n||_Y > n$, for all $n \in \mathbb{N}$, which contradicts (*).

Example 11.7 Consider the right- and left- shift operators $\mathfrak{s}_r : \ell^2 \to \ell^2$ and $\mathfrak{s}_l : \ell^2 \to \ell^2$, given by

$$\mathfrak{s}_r(\mathbf{x}) = (0, x_1, x_2, \ldots)$$
 and $\mathfrak{s}_l(\mathbf{x}) = (x_2, x_3, x_4, \ldots).$

Both operators are linear with $\|\mathfrak{s}_r\| = \|\mathfrak{s}_l\| = 1$.

Proof It is clear that the operators are linear. We have

$$\|\mathfrak{s}_r(\mathbf{x})\|_{\ell^2}^2 = \sum_{i=1}^{\infty} |x_i|^2 = \|\mathbf{x}\|_{\ell^2}^2,$$

so that $\|\mathfrak{s}_r\| = 1$, and

$$\|\mathfrak{s}_l(\boldsymbol{x})\|_{\ell^2}^2 = \sum_{i=2}^{\infty} |x_i|^2 \le \|\boldsymbol{x}\|_{\ell^2}^2,$$

so that $\|\mathfrak{s}_l\| \leq 1$. However, if we choose an x with

$$x = (0, x_2, x_3, \ldots)$$

then we have

$$\|\mathfrak{s}_l(\mathbf{x})\|_{\ell^2}^2 = \sum_{j=2}^{\infty} |x_j|^2 = \|\mathbf{x}\|_{\ell^2}^2,$$

and so we must have $\|\mathfrak{s}_l\| = 1$.

Example 11.9 Consider the map from X = C([a, b]) to \mathbb{R} given by

$$Tf = \int_{a}^{b} \phi(x) f(x) \, \mathrm{d}x,$$

where $\phi \in C([a, b])$. Then T is linear with $||T||_{B(X; \mathbb{R})} = ||\phi||_{L^1}$.

Proof Linearity is clear. For the upper bound we have

$$|Tf| \le \int_a^b ||f||_{\infty} |\phi(x)| dx = ||f||_{\infty} ||\phi||_{L^1}.$$

Setting

$$f_{\varepsilon}(x) = \frac{\phi(x)}{|\phi(x)| + \varepsilon}$$

for $\varepsilon > 0$. Since ϕ attains its maximum on [a, b], we have

$$\frac{\|\phi\|_{\infty}}{\|\phi\|_{\infty} + \varepsilon} \le \|f_{\varepsilon}\|_{\infty} \le 1$$

for
$$\varepsilon > 0$$
. Since ϕ attains its maximum on $[a, b]$, we have
$$\frac{\|\phi\|_{\infty}}{\|\phi\|_{\infty} + \varepsilon} \leq \|f_{\varepsilon}\|_{\infty} \leq 1.$$
 Then
$$\int_{a}^{b} |\phi(x)| \, \mathrm{d}x - \int_{a}^{b} \phi(x) f_{\varepsilon}(x) \, \mathrm{d}x = \int_{a}^{b} |\phi(x)| - \frac{|\phi(x)|^{2}}{|\phi(x)| + \varepsilon} \, \mathrm{d}x = \int_{a}^{b} \frac{\varepsilon |\phi(x)|}{|\phi(x)| + \varepsilon} \, \mathrm{d}x = \int_{a}^{b}$$

$$\left| \int_{a}^{b} \phi(x) f_{\varepsilon}(x) dx \right| \ge \left(\|\phi\|_{L^{1}} - (b - a)\varepsilon \right)$$
$$\ge \left(\|\phi\|_{L^{1}} - (b - a)\varepsilon \right) \|f_{\varepsilon}\|_{\infty}$$

Definition A sequence of vectors (e_n) in a normed space X is said to be a *Schauder basis* (or *basis*) for X if for every $x \in X$, there is a unique sequence of scalars (λ_n) such that the series $\sum_{k=1}^{\infty} \lambda_k e_k$ converges to x, that is,

$$x = \sum_{k=1}^{\infty} \lambda_k e_k.$$

Let c_{00} be the set of sequences (x_n) such that $x_n = 0$ for all but finitely many $n \in \mathbb{N}$.

Example Let $T: c_{00} \to c_{00}$ be a linear operator defined by

$$T: (x_1, x_2, \ldots, x_n, \ldots) \mapsto (x_1, 2x_2, \ldots, nx_n, \ldots)$$
.

The null space of T is the trivial subspace $\{0\}$, which is closed. For the vectors in the standard basis (e_n) of c_{00} , we have

$$||e_n|| = 1$$
 and $||Te_n|| = n$, for all $n \in \mathbb{N}$.

Hence T is an unbounded operator.

Example Let X be the normed space of the polynomials on [0,1] with the sup-norm. A differentiation operator T is defined on X by

$$Tx(t) = \frac{d}{dt}x(t), \quad \text{for } x(t) \in X.$$

For $x_n(t) = t^n$, n > 1, we have $Tx_n(t) = nt^{n-1}$. It is clear that $||x_n|| = 1$ and $||Tx_n|| = n$. It follows that T is an unbounded operator.

Example For $d = (d_n) \in \ell_{\infty}$, the diagonal operator $T_d : \ell_p \to \ell_p$ is defined by

$$T_d:(x_1,\ldots,x_n,\ldots)\mapsto (d_1x_1,\ldots,d_nx_n,\ldots).$$

For $x = (x_n) \in \ell_p$, we have

$$||T_d x||_p = \left(\sum_{k=1}^{\infty} |d_k x_k|^p\right)^{1/p} \le \sup_{k \in \mathbb{N}} |d_k| \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p} = ||d||_{\infty} ||x||_p.$$

Hence, T_d is well defined and $||T_d|| \le ||d||_{\infty}$. Let (e_n) be the standard basis in ℓ_p Clearly, $||T_d e_n|| = |d_n|$ for $n \in \mathbb{N}$. We have

$$||T_d|| = \sup_{\|x\|=1} ||T_d x||_p \ge \sup_{n \in \mathbb{N}} ||T_d e_n|| = ||d||_{\infty}.$$

It follows that $||T_d|| = ||d||_{\infty}$.

Example On the space C[0,1], the operator of indefinite integration is defined by

$$(Tx)(t) = \int_0^t x(u) du, \qquad 0 \le t \le 1, \ x \in C[0, 1].$$

The integral on the right-hand side is a continuous function of the upper limit. Hence T indeed maps the space C[0,1] into itself. For $x \in C[0,1]$, we have

$$||Tx|| = \sup_{t \in [0,1]} \left| \int_0^t x(u) \, du \right| \le \sup_{t \in [0,1]} \int_0^t |x(u)| \, du \le \int_0^1 |x(u)| \, du$$

$$\le \sup_{u \in [0,1]} |x(u)| = ||x||.$$

For the constant function x = 1 on [0, 1], we have

$$||Tx|| = \sup_{t \in [0,1]} \left| \int_0^t 1 \, du \right| = \sup_{t \in [0,1]} t = 1 = ||x||.$$

It follows that ||T|| = 1.

Theorem 11.11 If X is a normed space and Y is a Banach space, then B(X, Y) is a Banach space.

Proof Given any Cauchy sequence (T_n) in B(X, Y) we need to show that $T_n \to T$ for some $T \in B(X, Y)$. Since (T_n) is Cauchy, given $\varepsilon > 0$ there exists an N_{ε} such that

$$||T_n - T_m||_{B(X,Y)} \le \varepsilon$$
 for all $n, m \ge N_{\varepsilon}$. (11.9)

We now show that for every fixed $x \in X$ the sequence $(T_n x)$ is Cauchy in Y. This follows since

$$||T_n x - T_m x||_Y = ||(T_n - T_m)x||_Y \le ||T_n - T_m||_{B(X,Y)} ||x||_X, \tag{11.10}$$

and (T_n) is Cauchy in B(X, Y). Since Y is complete, it follows that

$$T_n x \to z$$

for some $z \in Y$, which depends on x. We can therefore define a mapping $T: X \to Y$ by setting Tx = z.

Now that we have identified our expected limit we need to make sure that $T \in B(X, Y)$ and that $T_n \to T$ in B(X, Y).

First, T is linear since for any $x, y \in X$, $\alpha, \beta \in \mathbb{K}$,

$$T(\alpha x + \beta y) = \lim_{n \to \infty} T_n(\alpha x + \beta y) = \alpha \lim_{n \to \infty} T_n x + \beta \lim_{n \to \infty} T_n y$$
$$= \alpha T x + \beta T y.$$

To show that T is bounded take $n, m \ge N_{\varepsilon}$ (from (11.9)) in (11.10), and let $m \to \infty$. Since $T_m x \to T x$ this limiting process shows that

$$||T_n x - T x||_Y \le \varepsilon ||x||_X. \tag{11.11}$$

Since (11.11) holds for every x, it follows that

$$||T_n - T||_{B(X,Y)} \le \varepsilon \quad \text{for } n \ge N_{\varepsilon}.$$
 (11.12)

In particular, $T_{N_{\varepsilon}} - T \in B(X, Y)$, and since B(X, Y) is a vector space and we have $T_{N_{\varepsilon}} \in B(X, Y)$, it follows that $T \in B(X, Y)$. Finally, (11.12) also shows that $T_n \to T$ in B(X, Y).

Given a linear map $T: X \to Y$, we define

$$\operatorname{Ker}(T) := \{x \in X : Tx = 0\}$$
 Range $(T) := \{y \in Y : y = Tx \text{ for some } x \in X\}.$

Lemma 11.12 If $T \in B(X, Y)$, then Ker T is a closed linear subspace of X.

While $T \in B(X, Y)$ implies that Ker(T) is closed, the same is not true for the range of T: it need not be closed. Indeed, consider the map from ℓ^2 into itself given by

$$T\mathbf{x} = \left(x_1, \frac{x_2}{2}, \frac{x_3}{3}, \frac{x_4}{4}, \dots\right).$$
 (11.13)

Since

$$||T\boldsymbol{x}||_{\ell^2}^2 = \sum_{j=1}^{\infty} \frac{1}{j^2} |x_j|^2 \le \sum_{j=1}^{\infty} |x_j|^2 = ||\boldsymbol{x}||_{\ell^2}^2,$$

we have $||T|| \le 1$ and T is bounded. Now consider $y^{(n)} \in \text{Range}(T)$, where

$$\mathbf{y}^{(n)} = T(\underbrace{1, 1, 1, \dots, 1}_{\text{first } n \text{ terms}}, 0 \dots) = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, \dots\right).$$

We have $y^{(n)} o y$, where y is the element of ℓ^2 with $y_j = j^{-1}$ (observe that $y \in \ell^2$ since $\sum_{j=1}^{\infty} j^{-2} < \infty$). However, there is no $x \in \ell^2$ such that T(x) = y: the only candidate is x = (1, 1, 1, ...), but this is not in ℓ^2 since its ℓ^2 norm is not finite, so $y \notin \text{Range}(T)$.

Definition 11.13 An operator $T \in B(X, Y)$ is *invertible* if there exists an $S \in B(Y, X)$ such that $S \in B(Y, X)$ and $S \in B(Y, X)$ such that $S \in B(Y, X)$ and $S \in B(Y, X)$ such that $S \in B(Y, X)$ and $S \in B(Y, X)$ such that $S \in B(Y, X)$ such that $S \in B(Y, X)$ and $S \in B(Y, X)$ such that $S \in B(Y, X)$ such th

If X and Y are both Banach spaces and T : X \rightarrow Y is a continuous bijection, then T^{-1} is bounded.

Lemma 11.14 Suppose that X and Y are both normed spaces. Then for any $T \in B(X, Y)$, the following are equivalent:

- (i) T is invertible;
- (ii) T is a bijection and $T^{-1} \in B(Y, X)$;
- (iii) T is onto and for some c > 0

$$||Tx||_Y \ge c||x||_X \qquad \text{for every } x \in X. \tag{11.14}$$

Corollary 11.15 *If* X *is finite-dimensional, then a linear operator* $T: X \to X$ *is invertible if and only if* $Ker(T) = \{0\}.$

Lemma 11.16 If X and Y are Banach spaces and $T \in B(X, Y)$ is invertible, then so is T + S for any $S \in B(X, Y)$ with $||S|| ||T^{-1}|| < 1$. Consequently, the subset of B(X, Y) consisting of invertible operators is open.

Proof Suppose that $T \in B(X, Y)$ is invertible; then by (i) \Rightarrow (iii) we know that T is onto and that

$$||Tx||_Y \ge \frac{1}{||T^{-1}||} ||x||_X.$$

We will show that for any $S \in B(X, Y)$ with $||S|| ||T^{-1}|| = \alpha < 1$, T + S is invertible.

First we show that T + S is onto: given $y \in Y$, we want to ensure that there is an $x \in X$ such that

$$(T+S)x=y$$
.

Consider the map $\mathfrak{I}\colon X\to X$ defined by setting

$$x \mapsto \Im(x) := T^{-1}(y - Sx)$$

Then

$$\|\Im(x) - \Im(x')\|_{X} = \|T^{-1}(y - Sx) - T^{-1}(y - Sx')\|_{X}$$

$$= \|T^{-1}S(x - x')\|_{X}$$

$$\leq \|T^{-1}\|\|S\|\|x - x'\|_{X}$$

$$= \alpha\|x - x'\|_{X}.$$

where $\alpha < 1$ by assumption. Since X is a Banach space, we can use the Contraction Mapping Theorem to ensure that there is a unique $x \in X$ such that $x = \mathcal{I}(x)$, i.e. such that $x = T^{-1}(y - Sx)$. Applying T to both sides guarantees that y = (T + S)x and so T + S is onto.

Note that since

$$||S|||T^{-1}|| < 1$$

we have

$$\frac{1}{\|T^{-1}\|} - \|S\| = c > 0.$$

Therefore

$$\begin{split} \|(T+S)x\|_Y &\geq \|Tx\|_Y - \|Sx\|_Y \\ &\geq \frac{1}{\|T^{-1}\|} \|x\|_X - \|S\| \|x\|_X = c \|x\|_X. \end{split}$$

Now using (iii) \Rightarrow (i) we deduce that (T + S) is invertible.

If $\{T_n\}$ and $\{S_n\}$ are sequences in B(X) such that $\lim_{n\to\infty} T_n = T$ and $\lim_{n\to\infty} S_n = S$ then $\lim_{n\to\infty} S_n T_n = ST$.

Proof

As $\{T_n\}$ is convergent it is bounded so there exists K > 0 such that $||T_n|| \le K$ for all $n \in \mathbb{N}$. Let $\epsilon > 0$. There exists $N_1 \in \mathbb{N}$ such that when $n \ge N_1$

$$||S_n - S|| < \frac{\epsilon}{2K},$$

and $N_2 \in \mathbb{N}$ such that when $n \geq N_2$

$$||T_n - T|| < \frac{\epsilon}{2(||S|| + 1)}.$$

As

$$||S_n T_n - ST|| \le ||S_n T_n - ST_n|| + ||ST_n - ST|| \le K||S_n - S|| + ||S||||T_n - T||,$$

when $n \geq \max(N_1, N_2)$ we have

$$||S_n T_n - ST|| \le K||S_n - S|| + ||S|| ||T_n - T|| < \epsilon.$$

Thus
$$\lim_{n\to\infty} S_n T_n = ST$$
.

Let X be a Banach space. If $T \in B(X)$ is an operator with ||T|| < 1 then I - T is invertible and the inverse is given by

$$(I-T)^{-1} = \sum_{n=0}^{\infty} T^n.$$

Proof

Because X is a Banach space, so is B(X) Since ||T|| < 1 the series $\sum_{n=0}^{\infty} ||T||^n$ converges and hence, as $||T^n|| \le ||T||^n$ for all $n \in \mathbb{N}$, the series $\sum_{n=0}^{\infty} ||T^n||$ also converges. Therefore $\sum_{n=0}^{\infty} T^n$ converges

Let $S = \sum_{n=0}^{\infty} T^n$ and let $S_k = \sum_{n=0}^k T^n$. Then the sequence $\{S_k\}$ converges to S in B(X). Now

$$||(I-T)S_k - I|| = ||I - T^{k+1} - I|| = ||-T^{k+1}|| \le ||T||^{k+1}.$$

Since ||T|| < 1 we deduce that $\lim_{k \to \infty} (I - T)S_k = I$. Therefore,

$$(I-T)S = (I-T)\lim_{k \to \infty} S_k = \lim_{k \to \infty} (I-T)S_k = I,$$

Similarly, S(I-T) = I so I-T is invertible and $(I-T)^{-1} = S$.

Lemma 11.17 If $T \in B(X, Y)$ and $S \in B(Y, Z)$ are invertible, then so is $ST \in B(X, Z)$, and $(ST)^{-1} = T^{-1}S^{-1}$.

Proposition 11.18 If $\{T_1, \ldots, T_n\}$ are commuting operators in B(X), then

$$T_1 \cdot \cdot \cdot T_n$$

is invertible if and only if every T_j , j = 1, ..., n, is invertible.

Proof One direction follows from Lemma 11.17 and induction. For the other direction, suppose that $\mathcal{T} = T_1 \cdots T_n$ is invertible; since T_1 commutes with \mathcal{T} it also commutes with \mathcal{T}^{-1} , and so

$$T_1[\mathfrak{I}^{-1}T_2\cdots T_n]=\mathfrak{I}^{-1}T_1T_2\cdots T_n=\mathfrak{I}^{-1}\mathfrak{I}=I.$$

Since $\{T_1, \ldots, T_n\}$ commute we have

$$[\mathfrak{T}^{-1}T_2\cdots T_n]T_1=\mathfrak{T}^{-1}\mathfrak{T}=I$$

as well. All the operators are bounded, so T_1 is invertible.

For other values of j we can use the fact that the $\{T_j\}$ commute to reorder the factors of \mathcal{T} so that the first is T_j . We can now apply the same argument to show that T_j is invertible.