Question: 11

Let $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$

- a. Prove that $\mathbb{Z}[\sqrt{2}]$ is an integral domain.
- b. Find all the units of $\mathbb{Z}[\sqrt{2}]$.
- c. Determine the field of fractions of $\mathbb{Z}[\sqrt{2}]$.
- d. Prove that $\mathbb{Z}[\sqrt{2i}]$ is a Euclidean domain under the Euclidean valuation $v(a+b\sqrt{2}i)=a^2+2b^2$.

Solution:

a. Consider $(a+b\sqrt{2})(c+d\sqrt{2})=0$. This means that $(a+b\sqrt{2})(a-b\sqrt{2})(c+d\sqrt{2})(c-d\sqrt{2})=(a^2-2b^2)(c^2-2d^2)=0$. The irrationality of $\sqrt{2}$ and that fact that a,b,c,d are all integers tells us that either a=b=0 or c=d=0. \$

b.

Question: 17

Prove or disprove: Every subdomain of a UFD is also a UFD.

Solution: $\mathbb{Z}[3i] \subseteq \mathbb{C}$ is a subdomain of a UFD, but is not a UFD. Θ

Question: 18

An ideal of a commutative ring R is said to be **finitely generated** if there exist elements a_1, \ldots, a_n in R such that every element r in the ideal can be written as $a_1r_1 + \cdots + a_nr_n$ for some r_1, \ldots, r_n in R. Prove that R satisfies the ascending chain condition if and only if every ideal of R is finitely generated.

Solution:

Question: 19

Let D be an integral domain with a descending chain of ideals $I_1 \supset I_2 \supset I_3 \supset \cdots$. Suppose that there exists N such that $I_k = I_N$ for all $k \ge N$. A ring satisfying this condition is said to satisfy the **descending chain condition**, or DCC. Rings satisfying the DCC are called **Artinian rings**, after Emil Artin. Show that if D satisfies the descending chain condition, it must satisfy the ascending chain condition.

Solution: