Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра теоретической и прикладной информатики

Лабораторная работа № 3 по дисциплине «Методы оптимизации»

МЕТОД ШТРАФНЫХ ФУНКЦИЙ

Факультет: ПМИ

Группа: ПМИ-72

Вариант: 1

Студент: Сычев Егор

Преподаватель: Постовалов Сергей Николаевич

Новосибирск

2020

1. Цель работы

Ознакомиться с методами штрафных функций при решении задач нелинейного программирования. Изучить типы штрафных и барьерных функций, их особенности, способы и области применения, влияние штрафных функций на сходимость алгоритмов, зависимость точности решения задачи нелинейного программирования от величины коэффициента штрафа.

2. Задания

Nº	Вид работы					
1.	Применяя методы поиска минимума 0-го порядка, реализовать программу для решения задачи нелинейного программирования с использованием метода штрафных функций.					
2.	Исследовать сходимость метода штрафных функций в зависимости от					
	 выбора штрафных функций, 					
	начальной величины коэффициента штрафа,стратегии изменения коэффициента штрафа,					
	— начальной точки,					
	 задаваемой точности £. 					
	Сформулировать выводы.					
3*	Применяя методы поиска минимума 0-го порядка, реализовать программу для решения задачи нелинейного программирования с ограничением типа неравенства (только пункт а) с использованием метода барьерных функций.					
4*	Исследовать сходимость метода барьерных функций (только пункт а) в зависимости от					
	– выбора барьерных функций,					
	начальной величины коэффициента штрафа,					
	начальной величины коэффициента штрафа,стратегии изменения коэффициента штрафа,					
	стратегии изменения коэффициента штрафа,начального приближения,					
	– стратегии изменения коэффициента штрафа,					

$$f(x,y) = 5(x-y)^2 + (x-2)^2 \rightarrow \min$$

при ограничении:

a)
$$x + y \le 1$$

б)
$$x = -y$$

3. Ход работы

а. Метод штрафных функций

і.Ограничение неравенством

1. Стандартные параметры

$$G(g(x)) = 0.5 * (g(x) - |g(x)|)$$

r0 = 1

r = R(r) = r * 2

x0 = (0, 0)

 $\epsilon = 0.001$

function calls	iterations	Х		у		f(x, y)
269	2		0,567		0,434	2,143

2. Выбор штрафной функции

 $G(g(x)) = (0.5 * (g(x) - |g(x)|)^{2}$

function calls	iterations	Х	у	f(x, y)			
218	13	0,563	0,437	2,144			
$G(g(x)) = (0.5 * (g(x) - g(x))^{100}$							

(0 (// (1017 101	, , ,		
function calls	iterations	X	У	f(x, y)
1682	996	0,46	0,541	2,406

3. Выбор начальной величины коэффициента штрафа

 $r0 = 2^{-32}$

	function calls	iterations	Х		У		f(x, y)
	269	2		0,567		0,434	2,143
•	r0 = 2 ³²						

function calls	iterations	Х		у		f(x, y)
269	2		0,567		0,434	2,143

4. Выбор стратегии изменения коэффициента штрафа

R(r) = r + r / (1 + r)

function calls	iterations	х	У	f(x, y)			
346	2	0,573	0,427	2,143			
$R(r) = r^2 * 2$							
function calls	iterations	х	у	f(x, y)			
269	2	0,567	0,434	2,143			

5. Выбор начального приближения

x0 = (1, 1)

function calls	iterations	Х	У	f(x, y)			
146	2	0,559	0,441	2,146			
x0 = (100, -100)							
function calls	iterations	Х	у	f(x, y)			
928	2	0,567	0,433	2,143			

6. Выбор точности

 ϵ = 1e-5

function calls	iterations	Х	у	f(x, y)
1011	2	0,56344	0,43656	2,1442

 ϵ = 1e-7

function calls	iterations	Х	у	f(x, y)
2232	2	0,563426	0,436574	2,144202

іі.Ограничение равенством

1. Стандартные параметры

H(h(x)) = |h(x)|

r0 = 1

r = R(r) = r * 2

x0 = (0, 0)

 $\epsilon = 0.001$

function calls	iterations	Х	У	f(x, y)
451	2	0,098	-0,098	3,81

2. Выбор штрафной функции

 $G(g(x)) = (0.5 * (g(x) - |g(x)|)^2$

0(8(7)) (0.5	1817) 181	^/1/					
function calls	iterations	Χ	У	f(x, y)			
213	12	0,086	-0,085	3,811			
$G(g(x)) = (0.5 * (g(x) - g(x))^{100}$							
function calls	iterations	Х	у	f(x, y)			
559	90	0,069	-0,068	3,823			

3. Выбор начальной величины коэффициента штрафа $r0 = 2^{-32}$

function calls	iterations	Х		У	f(x, y)
451	2		0,098	-0,098	3,81

 $r0 = 2^{32}$

function calls	iterations	Х		у	f(x, y)
451	2		0,098	-0,098	3,81

4. Выбор стратегии изменения коэффициента штрафа

R(r) = r + r / (1 + r)

function calls	iterations	Х	у	f(x, y)
559	3	0,087	-0,087	3,811

 $R(r) = r^2 * 2$

function calls	iterations	Х	у	f(x, y)
451	2	0,098	-0,098	3,81

5. Выбор начального приближения

x0 = (1, 1)

function calls	iterations	Х		у	f(x, y)			
280	2		0,099	-0,098	3,809			
x0 = (100, -100)								

function calls	iterations	Х	у	f(x, y)
1065	2	0,101	-0,1	3,809

6. Выбор точности

 ϵ = 1e-5

function calls	iterations	Х	у	f(x, y)
1422	2	0,09718	-0,09718	3,8096

 $\varepsilon = 1e-7$

function calls	iterations	x	У	f(x, y)
2876	2	0,09719	-0,09719	3,809604

b. Метод барьерных функций і.Ограничение неравенством

1. Стандартные параметры

G(g(x)) = -1 / g(x)

r0 = 1

r = R(r) = r / 2

x0 = (0, 0)

 $\epsilon = 0.001$

function calls	iterations	х	у	f(x, y)
22	1	0,215	0,036	3,347

2. Выбор штрафной функции

 $G(g(x)) = (-1 / g(x))^3$

function calls	iterations	Χ		У	f(x, y)			
18	1		0,041	-0,154	4,028			
G(g(x)) = -ln(-g(x))								

function calls	iterations	Х	у	f(x, y)
45	1	0,293	0,122	3,062

3. Выбор начальной величины коэффициента штрафа $r0 = 2^{-32}$

function ca	alls	iterations	Х		У	f(x, y)
	22	1		0,215	0,036	3,347
$r0 = 2^{32}$						

function calls	iterations	х		у	f(x, y)
22	1	0,	215	0,036	3,347

4. Выбор стратегии изменения коэффициента штрафа

R(r) = r - r / (1 + r)

function calls	iterations	х	У	f(x, y)			
22	1	0,215	0,036	3,347			
$R(r) = \sin(r) $							
function calls	iterations	х	у	f(x, y)			
22	1	0,215	0,036	3,347			

5. Выбор начального приближения

x0 = (1, 1)

function calls	iterations	Х		у		f(x, y)	
10216	10000		1,978		1,974	0,001	
x0 = (100, -100)							
c						۲, ۱	

· '	,			
function calls	iterations	Х	у	f(x, y)
696	1	0,215	0,036	3,345

6. Выбор точности

 ϵ = 1e-5

function calls	iterations	х	У	f(x, y)
87	1	0,21501	0,03651	3,34552

 ϵ = 1e-7

function calls	iterations	Х	у	f(x, y)
184	1	0,215008	0,036509	3,345506

4. Выводы

Для всех методов и всех ограничений, существенно на сходимость метода штрафных/барьерных функций влияет только сама штрафная/барьерная функция: чем сильнее она увеличивала штраф, тем больше было нарушений и тем менее точное получалось решение.

Начальные значения коэффициентов ни на что не влияет.

Стратегия изменения штрафа и точность повлияли только на сходимость метода спуска. Выбор начального приближения для метода штрафных функций влияет только на сходимость используемого метода спуска (метод Гаусса). В случае барьерной функции, выбор начального приближения, не удовлетворяющего условию, делает невозможным решение задачи, так как за пределами допустимой области барьерные функции не определены.

Также с помощью барьерных функций удалось получить ответ всего за одну итерацию, вместо двух для штрафных функций, но из-за этого результат оказался значительно хуже.

5. Текст программы

minimize.rs

```
pub struct IterationResult<X> {
    x: X,
    dx: X,
    func calls: usize,
    is_extra: bool,
}
impl<X> IterationResult<X>
where
    X: Clone,
{
    pub fn new(x: X, dx: X, func_calls: usize, is_extra: bool) -> Self {
        Self {
            Χ,
            dx,
            func_calls,
            is_extra,
        }
    }
    pub fn x(&self) -> X {
        self.x.clone()
    pub fn dx(&self) -> X {
        self.dx.clone()
    pub fn func_calls(&self) -> usize {
        self.func_calls
    pub fn is_extra(&self) -> bool {
        self.is_extra
    }
}
```

```
pub struct FinalResult<X> {
    x: X,
    iters: usize,
    func_calls: usize,
}
impl<X> FinalResult<X>
where
    X: Clone,
{
    pub fn new(x: X, iters: usize, func_calls: usize) -> Self {
        Self {
            Χ,
            iters,
            func_calls,
        }
    }
    pub fn x(&self) -> X {
        self.x.clone()
    pub fn func_calls(&self) -> usize {
        self.func_calls
    pub fn iters(&self) -> usize {
        self.iters
    }
}
pub trait Minimize<X: Clone>: Iterator<Item = IterationResult<X>>> {
    fn x(&self) -> X;
    fn dx(&self) -> X;
    fn func_calls(&self) -> usize;
    fn iters(&self) -> usize;
    fn result(&mut self) -> FinalResult<X> {
        let x = self.x();
        self.take_while(|i| !i.is_extra())
            .fold(FinalResult::new(x, 0, 0), |result, i| {
                FinalResult::new(i.x(), result.iters + 1, result.func_calls + i.func_calls())
            })
    }
}
one_dimension_searchers.rs
use super::minimize;
use super::minimize::{FinalResult, IterationResult};
use nalgebra::RealField;
use std::sync::Arc;
fn get_interval<Scalar>(
```

```
f: Arc<dyn Fn(Scalar) -> Scalar>,
    x0: Scalar,
    delta: Scalar,
) -> (Scalar, Scalar, usize)
where
    Scalar: RealField,
{
    let mut h;
    let mut x = x0;
    let mut func_calls = 2;
    let mut f1 = f(x);
    let mut f2 = f(x + delta);
    if f1 > f2 {
        h = delta;
    } else {
        func_calls += 1;
        f2 = f(x - delta);
        if f1 > f2 {
            h = -delta;
        } else {
            return (x - delta, x + delta, 3);
        }
    }
    x = x + h;
    while f1 > f2 {
        h = h * Scalar::from_i8(2).unwrap();
        x = x + h;
        f1 = f2;
        f2 = f(x);
        func_calls += 1;
    let left = (x - Scalar::from_f64(3. / 2.).unwrap() * h).min(x);
    let right = (x - Scalar::from_f64(3. / 2.).unwrap() * h).max(x);
    (left, right, func_calls)
}
trait OneDimensionalMinimize<Scalar>: minimize::Minimize<Scalar>
where
    Scalar: Clone,
{
}
#[derive(Clone)]
struct Fibonacci<Scalar> {
    f: Arc<dyn Fn(Scalar) -> Scalar>,
    left: Scalar,
    right: Scalar,
    fn1: u128,
    fn2: u128,
```

```
x1: Scalar,
    x2: Scalar,
    f1: Scalar,
    f2: Scalar,
    dx: Scalar,
    iters: usize,
    func_calls: usize,
    eps: Scalar,
    max_iters: usize,
}
impl<Scalar> Fibonacci<Scalar>
where
    Scalar: RealField,
{
    fn new(
        left: Scalar,
        right: Scalar,
        f: Arc<dyn Fn(Scalar) -> Scalar>,
        eps: Scalar,
        max_iters: usize,
    ) -> Self {
        let mut fn1 = 1u128;
        let mut fn2 = 1u128;
        while Scalar::from_u128(fn2).unwrap() <= (right - left) / eps {</pre>
            let ft = fn2;
            fn2 += fn1;
            fn1 = ft;
        let x1 = left
            + Scalar::from_u128(fn2 - fn1).unwrap() / Scalar::from_u128(fn2).unwrap()
                * (right - left);
        let x2 = left
            + Scalar::from_u128(fn1).unwrap() / Scalar::from_u128(fn2).unwrap() * (right - left);
        let f1 = f(x1);
        let f2 = f(x2);
        Self {
            left,
            right,
            f,
            fn1,
            fn2,
            f1,
            f2,
            x1,
            x2,
            dx: Scalar::max_value(),
            iters: 0,
            func_calls: 2,
            eps,
```

```
max_iters,
        }
    }
}
impl<Scalar> OneDimensionalMinimize<Scalar> for Fibonacci<Scalar> where Scalar: RealField {}
impl<Scalar> minimize::Minimize<Scalar> for Fibonacci<Scalar>
where
    Scalar: RealField,
{
    fn iters(&self) -> usize {
        self.iters
    fn func_calls(&self) -> usize {
        self.func_calls
    fn x(&self) -> Scalar {
        (self.right + self.left) / Scalar::from_i8(2).unwrap()
    fn dx(&self) -> Scalar {
        self.dx
    }
}
impl<Scalar> Iterator for Fibonacci<Scalar>
where
    Scalar: RealField,
{
    type Item = IterationResult<Scalar>;
    fn next(&mut self) -> Option<Self::Item> {
        if self.fn1 == 0 {
            return None;
        let is_extra = if self.dx.abs() < self.eps || self.iters >= self.max_iters {
            true
        } else {
            false
        };
        let _x = (self.right + self.left) / Scalar::from_i8(2).unwrap();
        if self.f1 < self.f2 {</pre>
            self.right = self.x2;
            self.x2 = self.x1;
            self.x1 = self.left
                + Scalar::from_u128(self.fn2 - self.fn1).unwrap()
                    / Scalar::from_u128(self.fn2).unwrap()
                    * (self.right - self.left);
            self.f2 = self.f1;
            self.f1 = (self.f)(self.x1);
        } else {
```

```
self.left = self.x1;
            self.x1 = self.x2;
            self.x2 = self.left
                + Scalar::from_u128(self.fn1).unwrap() / Scalar::from_u128(self.fn2).unwrap()
                    * (self.right - self.left);
            self.f1 = self.f2;
            self.f2 = (self.f)(self.x2);
        }
        let ft = self.fn1;
        self.fn1 = self.fn2 - self.fn1;
        self.fn2 = ft;
        let x = (self.right + self.left) / Scalar::from_i8(2).unwrap();
        let dx = self.dx;
        self.dx = x - _x;
        self.iters += 1;
        self.func_calls += 1;
        Some(IterationResult::new(x, x - _x, 1, is_extra))
    }
}
pub enum Method {
    Fibonacci,
}
pub struct Minimize<Scalar>
where
   Scalar: RealField,
{
    x: Scalar,
    dx: Scalar,
    func_calls: usize,
    iters: usize,
    method: Box<dyn OneDimensionalMinimize<Scalar>>,
}
impl<Scalar> Minimize<Scalar>
where
    Scalar: RealField,
{
    pub fn new(
        x0: Scalar,
        f: Arc<dyn Fn(Scalar) -> Scalar>,
        method: Method,
        eps: Scalar,
       max_iters: usize,
    ) -> Self {
        let (left, right, func_calls) = get_interval(f.clone(), x0, eps);
        let m = match method {
            Method::Fibonacci => Fibonacci::new(left, right, f, eps, max_iters),
        };
```

```
Self {
            x: (right + left) / Scalar::from_i8(2).unwrap(),
            dx: Scalar::max_value(),
            func_calls: func_calls + m.func_calls,
            iters: 0,
            method: Box::new(m),
        }
    }
    pub fn result(
        x0: Scalar,
        f: Arc<dyn Fn(Scalar) -> Scalar>,
        method: Method,
        eps: Scalar,
        max_iters: usize,
    ) -> FinalResult<Scalar> {
        <Self as minimize::Minimize<Scalar>>::result(&mut Self::new(x0, f, method, eps, max_iters))
    }
}
impl<Scalar> minimize::Minimize<Scalar> for Minimize<Scalar>
where
    Scalar: RealField,
{
    fn iters(&self) -> usize {
        self.iters
    fn func_calls(&self) -> usize {
        self.func_calls
    fn x(&self) -> Scalar {
        self.x
    fn dx(&self) -> Scalar {
        self.dx
    }
}
impl<Scalar> Iterator for Minimize<Scalar>
where
    Scalar: RealField,
{
    type Item = IterationResult<Scalar>;
    fn next(&mut self) -> Option<Self::Item> {
        match self.method.next() {
            Some(r) \Rightarrow {
                self.iters += 1;
                self.x = r.x();
                self.dx = r.dx();
                self.func_calls += r.func_calls();
                Some(IterationResult::new(
```

```
self.x,
                    self.dx,
                    r.func_calls(),
                    r.is_extra(),
                ))
            }
            None => None,
        }
    }
}
descent_methods.rs
use super::minimize;
use super::minimize::{FinalResult, IterationResult};
use super::one_dimension_searchers;
use nalgebra::{allocator::Allocator, DefaultAllocator, DimName, RealField, VectorN};
use std::sync::Arc;
trait DescentMethod<Scalar, Dimension>:
    Iterator<Item = IterationResult<VectorN<Scalar, Dimension>>>
    + minimize::Minimize<VectorN<Scalar, Dimension>>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
    #[allow(non_snake_case)]
    fn S(&self) -> VectorN<Scalar, Dimension>;
}
struct Gauss<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
    x: VectorN<Scalar, Dimension>,
    dx: VectorN<Scalar, Dimension>,
    func calls: usize,
    iters: usize,
    f: Arc<dyn Fn(VectorN<Scalar, Dimension>) -> Scalar>,
    eps: Scalar,
    max iters: usize,
}
impl<Scalar, Dimension> Gauss<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
```

```
{
    fn new(
        x0: VectorN<Scalar, Dimension>,
        f: Arc<dyn Fn(VectorN<Scalar, Dimension>) -> Scalar>,
        eps: Scalar,
        max_iters: usize,
    ) -> Self {
        Self {
            x: x0.clone(),
            dx: VectorN::<Scalar, Dimension>::from element(Scalar::max value()),
            f,
            eps,
            iters: ∅,
            func_calls: 0,
            max_iters,
        }
    }
}
impl<Scalar, Dimension> DescentMethod<Scalar, Dimension> for Gauss<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
    fn S(&self) -> VectorN<Scalar, Dimension> {
        let mut s = nalgebra::zero::<VectorN<Scalar, Dimension>>();
        s[self.iters % Dimension::dim()] = Scalar::one();
    }
}
impl<Scalar, Dimension> minimize::Minimize<VectorN<Scalar, Dimension>> for Gauss<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
    fn iters(&self) -> usize {
        self.iters
    }
    fn func_calls(&self) -> usize {
        self.func_calls
    fn x(&self) -> VectorN<Scalar, Dimension> {
        self.x.clone()
    fn dx(&self) -> VectorN<Scalar, Dimension> {
        self.dx.clone()
    }
```

```
}
impl<Scalar, Dimension> Iterator for Gauss<Scalar, Dimension>
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
    type Item = IterationResult<VectorN<Scalar, Dimension>>;
    fn next(&mut self) -> Option<Self::Item> {
        let is_extra =
            if self.dx.iter().all(|xi| xi.abs() < self.eps) || self.iters >= self.max_iters {
            } else {
                false
            };
        let x = self.x.clone();
        let f = self.f.clone();
        let s = self.S();
        let lambda result = one dimension searchers::Minimize::result(
            Scalar::zero(),
            Arc::new(move |lambda| f(x.clone() + s.clone() * lambda)),
            one_dimension_searchers::Method::Fibonacci,
            self.eps,
            self.max_iters,
        );
        self.dx = self.S() * lambda_result.x();
        self.x += self.dx.clone();
        self.iters += 1;
        self.func_calls += lambda_result.func_calls();
        Some(IterationResult::new(
            self.x.clone(),
            self.dx.clone(),
            lambda_result.func_calls(),
            is_extra,
        ))
    }
}
#[derive(Clone)]
pub enum Method {
    Gauss,
pub struct Minimize<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
```

```
x: VectorN<Scalar, Dimension>,
    dx: VectorN<Scalar, Dimension>,
    func calls: usize,
    iters: usize,
    method: Box<
        dyn DescentMethod<Scalar, Dimension, Item = IterationResult<VectorN<Scalar, Dimension>>>,
    >,
}
impl<Scalar, Dimension> Minimize<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
    pub fn new(
        x0: VectorN<Scalar, Dimension>,
        f: Arc<dyn Fn(VectorN<Scalar, Dimension>) -> Scalar>,
        method: Method,
        eps: Scalar,
        max_iters: usize,
    ) -> Self {
        let m = match method {
            Method::Gauss => Gauss::new(x0.clone(), f, eps, max_iters),
        };
        Self {
            x: x0,
            dx: VectorN::<Scalar, Dimension>::from_element(Scalar::max_value()),
            func_calls: m.func_calls,
            iters: 0,
            method: Box::new(m),
        }
    pub fn result(
        x0: VectorN<Scalar, Dimension>,
        f: Arc<dyn Fn(VectorN<Scalar, Dimension>) -> Scalar>,
        method: Method,
        eps: Scalar,
        max_iters: usize,
    ) -> FinalResult<VectorN<Scalar, Dimension>> {
        <Self as minimize::Minimize<VectorN<Scalar, Dimension>>>::result(&mut Self::new(
            x0, f, method, eps, max_iters,
        ))
    }
}
impl<Scalar, Dimension> minimize::Minimize<VectorN<Scalar, Dimension>>
    for Minimize<Scalar, Dimension>
where
    Scalar: RealField,
```

```
Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
    fn iters(&self) -> usize {
        self.iters
    fn func_calls(&self) -> usize {
        self.func_calls
    fn x(&self) -> VectorN<Scalar, Dimension> {
        self.x.clone()
    fn dx(&self) -> VectorN<Scalar, Dimension> {
        self.dx.clone()
    }
}
impl<Scalar, Dimension> Iterator for Minimize<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
    type Item = IterationResult<VectorN<Scalar, Dimension>>;
    fn next(&mut self) -> Option<Self::Item> {
        match self.method.next() {
            Some(r) \Rightarrow \{
                self.iters += 1;
                self.func_calls += r.func_calls();
                self.x = r.x();
                self.dx = r.dx();
                Some(IterationResult::new(
                    self.x.clone(),
                    self.dx.clone(),
                    r.func_calls(),
                    r.is_extra(),
                ))
            }
            None => None,
        }
    }
}
penalty_methods.rs
use super::descent_methods;
use super::descent methods::Method;
use super::minimize;
use super::minimize::{FinalResult, IterationResult};
use nalgebra::{allocator::Allocator, DefaultAllocator, DimName, RealField, VectorN};
use std::sync::Arc;
```

```
#[derive(Clone)]
pub enum BoundType {
    Equal,
    Unequal,
}
#[derive(Clone)]
pub struct Bound<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
    function: Arc<dyn Fn(VectorN<Scalar, Dimension>) -> Scalar>,
    bound_type: BoundType,
    penalty: Arc<dyn Fn(Scalar) -> Scalar>,
    coefficient: Scalar,
    coefficient_function: Arc<dyn Fn(Scalar) -> Scalar>,
}
impl<Scalar, Dimension> Bound<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
    pub fn new(
        function: Arc<dyn Fn(VectorN<Scalar, Dimension>) -> Scalar>,
        bound_type: BoundType,
        penalty: Arc<dyn Fn(Scalar) -> Scalar>,
        coefficient: Scalar,
        coefficient_function: Arc<dyn Fn(Scalar) -> Scalar>,
    ) -> Self {
        Self {
            function,
            bound_type,
            penalty,
            coefficient,
            coefficient_function,
        }
    }
}
pub struct Minimize<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
```

```
x: VectorN<Scalar, Dimension>,
    dx: VectorN<Scalar, Dimension>,
    f: Arc<dyn Fn(VectorN<Scalar, Dimension>) -> Scalar>,
    func calls: usize,
    iters: usize,
    method: Method,
    max iters: usize,
    eps: Scalar,
    g: Vec<Bound<Scalar, Dimension>>,
    got_result: bool,
}
impl<Scalar, Dimension> Minimize<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
    pub fn new(
        x0: VectorN<Scalar, Dimension>,
        f: Arc<dyn Fn(VectorN<Scalar, Dimension>) -> Scalar>,
        method: Method,
        g: Vec<Bound<Scalar, Dimension>>,
        eps: Scalar,
        max_iters: usize,
    ) -> Self {
        Self {
            x: x0,
            f,
            dx: VectorN::<Scalar, Dimension>::from_element(Scalar::max_value()),
            iters: 0,
            func_calls: 0,
            method,
            max_iters,
            g,
            eps,
            got_result: false,
        }
    }
    pub fn result(
        x0: VectorN<Scalar, Dimension>,
        f: Arc<dyn Fn(VectorN<Scalar, Dimension>) -> Scalar>,
        method: Method,
        g: Vec<Bound<Scalar, Dimension>>,
        eps: Scalar,
        max iters: usize,
    ) -> FinalResult<VectorN<Scalar, Dimension>> {
        <Self as minimize::Minimize<VectorN<Scalar, Dimension>>>::result(&mut Self::new(
            x0, f, method, g, eps, max_iters,
        ))
```

```
}
}
impl<Scalar, Dimension> minimize::Minimize<VectorN<Scalar, Dimension>>
    for Minimize<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
    fn iters(&self) -> usize {
        self.iters
    fn func_calls(&self) -> usize {
        self.func_calls
    }
    fn x(&self) -> VectorN<Scalar, Dimension> {
        self.x.clone()
    }
    fn dx(&self) -> VectorN<Scalar, Dimension> {
        self.dx.clone()
    }
}
impl<Scalar, Dimension> Iterator for Minimize<Scalar, Dimension>
where
    Scalar: RealField,
    Dimension: DimName,
    DefaultAllocator: Allocator<Scalar, Dimension>,
{
    type Item = IterationResult<VectorN<Scalar, Dimension>>;
    fn next(&mut self) -> Option<Self::Item> {
        if self.g.iter().any(|g| {
            let _g = (g.function)(self.x.clone());
            match g.bound_type {
                BoundType::Equal => _g.abs() >= self.eps,
                BoundType::Unequal => _g >= self.eps,
            }
        }) && self
            ٠g
            .iter()
            .filter(|g| {
                let _g = (g.function)(self.x.clone());
                match g.bound_type {
                    BoundType::Equal => _g.abs() >= self.eps,
                    BoundType::Unequal => _g >= self.eps,
                }
            .all(|r| !r.coefficient.is_finite())
        {
```

```
return None;
}
let g = self.g.clone();
let f = self.f.clone();
let result = descent_methods::Minimize::result(
    self.x.clone(),
    Arc::new(move | x: VectorN<Scalar, Dimension>| -> Scalar {
        g.iter().fold(f(x.clone()), |result, i| {
            result + i.coefficient * (i.penalty)((i.function)(x.clone()))
        })
    }),
    self.method.clone(),
    self.eps,
    self.max_iters,
);
self.func_calls += result.func_calls();
let x = self.x.clone();
self.x = result.x();
self.dx = self.x.clone() - x;
let x = self.x.clone();
let eps = self.eps;
let is_extra = (self
    ٠g
    .iter_mut()
    .filter(|g| {
        let _g = (g.function)(x.clone());
        g.coefficient.is_finite()
            && match g.bound_type {
                BoundType::Equal => _g.abs() >= eps,
                BoundType::Unequal => _g >= eps,
            }
    })
    .fold(self.got_result, |_, r| {
        r.coefficient = (r.coefficient_function)(r.coefficient);
        false
    })
    && self.iters > 0)
    || self.iters >= self.max_iters;
self.got_result = self.g.iter().all(|g| {
    let _g = (g.function)(self.x.clone());
    match g.bound_type {
        BoundType::Equal => _g.abs() < self.eps,</pre>
        BoundType::Unequal => _g < self.eps,</pre>
    }
});
self.iters += 1;
return Some(Self::Item::new(
    self.x.clone(),
    self.dx.clone(),
    result.func_calls(),
```

```
is_extra,
));
}
```