Assignment #2

18012629 윤성민

모두를위한머신러닝 과제 2

2차원 특징 공간 상에서 다음과 같이 6개의 데이터가 주어졌을 때,

(-1, 1), (0, 0.5), (1, 1), (-1, -0.5), (0, -1), (1, -0.5)

이 데이터들을 K-means 클러스터링 알고리즘을 사용하여 2개의 클러스터로 군집화하고자 한다. 랜덤하게 초기화한 클러스터 1과 2의 중심이 각각 (-1,1)과 (1,-0.5) 라고 하였을 때, 다음 질문에 답하시오:

Q1. 데이터들과 클러스터 중심의 초기값들을 2차원 특징 공간 상에 함께 표시하고, 각 데이터 포인트들이 어느 클러스터에 속하는지 판단하여 다음 표를 완성하시오:

No.	(x_1, x_2)	Distance to Cluster 1	Distance to Cluster 2	Cluster
1	(-1, 1)	0	2.5	1
2	(0, 0.5)	$\frac{\sqrt{5}}{2} \approx 1.11803398875$	$\sqrt{2} \approx 1.41421356237$	1
3	(1, 1)	2	1.5	2
4	(-1, -0.5)	1.5	2	1
5	(0, -1)	$\sqrt{5} \approx 2.2360679775$	$\frac{\sqrt{5}}{2} \approx 1.11803398875$	2
6	(1, -0.5)	2.5	0	2

Q2. 클러스터 중심을 이동시키고 업데이트된 클러스터 중심의 값을 구하시오.

Cluster 1: $(-\frac{2}{3}, \frac{1}{3})$

Cluster 2: $(\frac{2}{3}, -\frac{1}{6})$

Q3. 업데이트된 클러스터 중심을 2차원 특징 공간 상에 데이터들과 함께 표시하고, 각 데이터 포인트들이 어느 클러스터에 속하는지 판단하여 다음 표를 완성하시오:

No.	(x_1, x_2)	Distance to Cluster 1	Distance to Cluster 2	Cluster
1	(-1, 1)	0.74535599249993	2.034425935955617	1
2	(0, 0.5)	0.6871842709362768	0.9428090415820634	1
3	(1, 1)	1.7950549357115013	1.21335164821342	2
4	(-1, -0.5)	0.8975274678557507	1.6996731711975948	1
5	(0, -1)	1.4907119849998598	1.0671873729054748	2
6	(1, -0.5)	1.8633899812498245	0.47140452079103173	2

Q4. 각 클러스터 중심의 업데이트가 필요한가? 만일 필요하다면 업데이트된 클러스터 중심의 값을 구하시오. 만일 필요하지 않다면, 그 이유를 설명하시오.

클러스터 중심의 업데이트가 필요하지 않습니다.

Cluster의 Centroid가 변하지 않았으므로, K-Means 알고리즘이 수렴했다는 것을 알 수 있습니다. 그러므로, 더 이상 클러스터 중심의 값을 업데이트 하지 않아도 됩니다.

Q5. 새로운 데이터 (0, 0), (2, 0), (0, 1)이 주어졌을 때, 이 데이터들과 클러스터 중심을 2차원 특징 공간 상에 함께 표시하고, 이 데이터들이 어느 클러스터에 속하는지 판단하여 다음 표를 완성하시오:

No.	(x_1, x_2)	Distance to Cluster 1	Distance to Cluster 2	Cluster
1	(-1, 1)	0.74535599249993	2.034425935955617	1
2	(0, 0.5)	0.6871842709362768	0.9428090415820634	1
3	(1, 1)	1.7950549357115013	1.21335164821342	2
4	(-1, -0.5)	0.8975274678557507	1.6996731711975948	1
5	(0, -1)	1.4907119849998598	1.0671873729054748	2
6	(1, -0.5)	1.8633899812498245	0.47140452079103173	2
7	(0, 0)	0.7453559924999299	0.6871842709362768	2
8	(2, 0)	2.6874192494328497	1.343709624716425	2
9	(0, 1)	0.9428090415820634	1.343709624716425	1