

随机过程作业

题	目	Bayes的极限分布与极大似然
学	院	信息科学与工程学院
专	业	控制科学与工程
姓名	学号	孟庆鑫 2018 312 032
		刘芳正 2019 310 704
		韩亚楠 2019 310 708
任课	教师	严彦文

Bayes的极限分布与极大似然

孟庆鑫 刘芳正 韩亚楠 2018 312 032 2019 310 704 2019 310 708

摘 要: 类比于 Markov 链的状态转移算子思路,本文构造了序贯 Bayes 分布列,以不太严谨的方式证明了 Bayes 的极限分布与极大似然的关系: 对于存在极大似然估计的似然函数、任意有界正先验分布下, Bayes 极限分布弱收敛于取值在极大似然估计值的 $Dirac\delta$ 分布. 共轭先验方法可用于构造特殊的显式序贯 Bayes 分布列.

1 基本定义

一个 Markov 链 \mathcal{M} 由其初始分布 π (0) 和状态转移矩阵 P 完全确定. 若 \mathcal{M} 存在极限分布 $\lim_{n\to\infty}\pi(n)=\pi$, 则 π 满足

$$\pi P = \pi,\tag{1}$$

 π 是平稳分布, 刚好是 P 的特征值 1 对应的特征向量. 一个 Markov 链, 不论初始分布 $\pi(0)$ 是什么, 如果能达到平稳分布, 那么平稳分布由状态转移矩阵 P 确定.

记 Θ 为分布参数, $\mathcal D$ 为样本对应的随机变量, $\mathbb P(\Theta)$ 是 Θ 的先验分布, 根据 Bayes 公式

$$\underbrace{\mathbb{P}(\Theta|\mathcal{D})}_{\text{fighth}} = \frac{\mathbb{P}(\mathcal{D}|\Theta)\,\mathbb{P}(\Theta)}{\mathbb{P}(\mathcal{D})} \propto \underbrace{\mathbb{P}(\mathcal{D}|\Theta)}_{\text{WMSAB}} \underbrace{\mathbb{P}(\Theta)}_{\text{fighth}}, \tag{2}$$

若 $\mathbb{P}(\Theta|\mathcal{D})$, $\mathbb{P}(\Theta)$ 有相同的形式, 则称 $\mathbb{P}(\Theta)$ 是 $\mathbb{P}(\mathcal{D}|\Theta)$ 关于 Θ 的共轭先验分布 [1].

2 Bayes 的极限分布

将 Markov 链的状态转移矩阵 P 看作算子, 等式 (1) 的 π 即为算子 P 的不动点. 一个可达平稳分布的 Markov 链可以看作算子 P 连续作用下趋近不动点的过程.

同样的,等式 (2) 的先验分布 $\mathbb{P}(\Theta)$ 可以看作是来自于其它数据集 \mathcal{D}' 上的经验, 即 $\mathbb{P}(\Theta) = \mathbb{P}(\Theta|\mathcal{D}')$,为使先验尽可能符合当前样本,取 $\mathcal{D}' = \mathcal{D}$,如果把

$$\frac{(\bullet)\,\mathbb{P}\,(\mathcal{D}|\Theta)}{\sum_{\Omega_{\Theta}}(\bullet)\,\mathbb{P}\,(\mathcal{D}|\Theta)}$$

看作算子 *D*, 这就与 Markov 链很相似了: 算子 *D* 连续作用在先验分布上, 极限分布趋 近于分布空间的某个不动点. 下面通过例子来说明这一观点.

2.1 二项分布的例子

考虑 n 次独立重复试验并观测到一组样本, 事件出现的次数记为随机变量 X, $X \sim B(n, \theta)$,

$$\mathbb{P}(X = x | \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x},$$

将 θ 也视为随机变量, $\theta \in (0,1)$, 但 θ 的分布不清楚, 我们先假设 $\theta \sim \text{Uniform}(0,1)$,

$$\mathbb{P}(\theta|x) = \frac{\mathbb{P}(x|\theta)\,\mathbb{P}(\theta)}{\int_0^1 \mathbb{P}(x|\theta)\,\mathbb{P}(\theta)\,d\theta} = \frac{\Gamma(n+2)}{\Gamma(x+1)\,\Gamma(n-x+1)}\theta^{(x+1-1)}\left(1-\theta\right)^{(n-x+1)-1},$$

即 $\theta|x \sim \text{Beta}(x+1,n-x+1)$. 注意到 Uniform $(\theta|0,1) = \text{Beta}(\theta|1,1)$, 实际上我们选取均匀分布恰好是共轭先验的一个特例. 为此, 重新假设 $\theta \sim \text{Beta}(\alpha,\beta)$, 同理可得 $\theta|x \sim \text{Beta}(x+\alpha,n-x+\beta)$. 再将此后验分布作为先验分布, 如此, 可构造分布列 $\left\{\text{Beta}(kx+\alpha,k(n-x)+\beta)\right\}_{k=0}^{+\infty}$, 并有 $k \to +\infty$,

Beta
$$(kx + \alpha, k(n-x) + \beta) \rightharpoonup \delta\left(\frac{x}{n}\right),$$
 (3)

 δ 是 Dirac 函数. (3) 式说明 $\forall \varepsilon > 0$,

$$\mathbb{P}\left(\left|\theta - \frac{x}{n}\right| \leqslant \varepsilon\right) = 1,$$

因此可确定 $\hat{\theta} = \frac{x}{n}$.

上面的讨论是在共轭先验构成的分布列上做的, 我们再重新假设 $\theta \sim \mathbb{P}(\theta)$, 其中 $\mathbb{P}(\theta)$ 满足

$$\forall \theta \in (0,1), \mathbb{P}(\theta) > 0, |\mathbb{P}(\theta)| < \infty, \, \coprod \int_{0}^{1} \mathbb{P}(\theta) \, d\theta = 1, \tag{4}$$

仍有 $k \to +\infty$,

$$\frac{1}{Z_{k}(x)}\mathbb{P}\left(\theta\right)\left(\theta^{x}\left(1-\theta\right)^{n-x}\right)^{k} \rightharpoonup \delta\left(\frac{x}{n}\right),$$

其中 $Z_k(x)$ 是归一化系数. 这个结论说明, 不论先验分布如何选, 只要满足 (4) 式, 如此构造的序贯贝叶斯的极限分布都是 $\delta\left(\frac{x}{n}\right)$, 即参数 θ 在极限分布上只能取 $\frac{x}{n}$, 这个值恰好是 θ 的极大似然估计. 这里需要注意, 有界分布序列收敛到了无界可积分布 Dirac δ .

2.2 Poisson 分布的例子

假设有一组观测样本 $n_i \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda)$, $i=1,2,\cdots,m$, 记 $\mathbf{n}=(n_1,n_2,\cdots,n_m)$, 即

$$\mathbb{P}(\boldsymbol{n}|\lambda) = \prod_{i=1}^{m} \frac{\mathrm{e}^{-\lambda} \lambda^{n_i}}{\Gamma(n_i+1)},$$

选取参数 λ 的共轭先验 [2]

Gamma
$$(\lambda | \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} e^{-\beta \lambda} \lambda^{\alpha - 1},$$

可以得到后验分布 $\mathbb{P}(\lambda|\mathbf{n},\alpha,\beta) = \operatorname{Gamma}(\lambda|\alpha + \sum \mathbf{n},\beta + m)$, 再将此后验分布作为先验分布, 如此, 可构造分布列 $\left\{\operatorname{Gamma}(\lambda|\alpha + k\sum \mathbf{n},\beta + km)\right\}_{k=0}^{+\infty}$, 并有 $k \to +\infty$,

Gamma
$$(\lambda | \alpha + k \sum n, \beta + km) \rightarrow \delta(\overline{n})$$
.

选取先验 $\lambda \sim \mathbb{P}(\lambda)$ 满足

$$\forall \lambda \in \mathbb{R}^{+}, \mathbb{P}(\lambda) > 0, \ |\mathbb{P}(\lambda)| < \infty, \ \text{\mathbb{H}} \int_{\mathbb{R}^{+}} \mathbb{P}(\lambda) \ \mathrm{d}\lambda = 1,$$

仍有 $k \to +\infty$,

$$\frac{1}{Z_k(\mathbf{n})} \mathbb{P}(\lambda) \left(e^{-\lambda} \lambda^{\overline{\mathbf{n}}} \right)^{mk} \rightharpoonup \delta(\overline{\mathbf{n}}),$$

其中 $Z_k(n)$ 是归一化系数. 再次注意到, \bar{n} 恰好是 λ 的极大似然估计.

2.3 正态分布的例子

假设一组观测样本 $x_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, $i = 1, 2, \dots, n$, 其中 μ 是未知的, σ^2 是已知的, 记 $\mathbf{x} = (x_1, x_2, \dots, x_n)$, 则似然为

$$\mathbb{P}(\boldsymbol{x}|\boldsymbol{\mu}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x_i - \boldsymbol{\mu})^2},$$

假设参数 μ 的共轭先验为 $\mathcal{N}(\mu|\mu_k,\sigma_k^2)^{[3]}$, 则可计算后验分布为 $\mathcal{N}(\mu|\mu_{k+1},\sigma_{k+1}^2)$, 满足 递推关系

$$\frac{1}{\sigma_{k+1}^2} = \frac{1}{\sigma_k^2} + \frac{n}{\sigma^2}, \quad \frac{\mu_{k+1}}{\sigma_{k+1}^2} = \frac{\mu_k}{\sigma_k^2} + \frac{n\overline{x}}{\sigma^2},$$

从而有

$$\frac{1}{\sigma_k^2} = \frac{1}{\sigma_0^2} + \frac{kn}{\sigma^2}, \quad \frac{\mu_k}{\sigma_k^2} = \frac{\mu_0}{\sigma_0^2} + \frac{kn\overline{x}}{\sigma^2},$$

因此

$$\mathcal{N}\left(\mu|\mu_k,\sigma_k^2\right) = \mathcal{N}\left(\mu \left| \frac{\mu_0\sigma^2 + kn\overline{x}\sigma_0^2}{\sigma^2 + kn\sigma_0^2}, \left(\frac{1}{\sigma_0^2} + \frac{kn}{\sigma^2}\right)^{-1}\right) \underset{k \to +\infty}{\rightharpoonup} \delta\left(\overline{x}\right).\right)$$

对 μ 的任意先验不再特别讨论, 而是统一的放在指数家族分布里说明.

2.4 指数家族的例子

考虑指数家族分布[1]

$$\mathbb{P}(X|\eta) = h(X) e^{\eta^T T(X) - A(\eta)}$$

及一组观测样本 $x = (x_1, x_2, \dots, x_n)$, 似然函数为

$$\mathbb{P}(\boldsymbol{x}|\boldsymbol{\eta}) = e^{\sum_{i=1}^{n} \boldsymbol{\eta}^{T} T(\boldsymbol{x}_{i}) - nA(\boldsymbol{\eta})} \prod_{i=1}^{n} h(\boldsymbol{x}_{i}),$$
 (5)

选取先验 $\eta \sim \mathbb{P}(\eta)$ 满足

$$\forall\,\eta\in\Omega_{\eta},\mathbb{P}\left(\eta\right)>0,\;\left|\mathbb{P}\left(\eta\right)\right|<\infty,\;\text{$\mathrm{\underline{H}}\int_{\Omega_{\eta}}\mathbb{P}\left(\eta\right)\;\mathrm{d}\eta=1$,}$$

注意 Bayes 分布列

$$\left\{\frac{1}{Z_k(\mathbf{x})}\mathbb{P}\left(\eta\right)\left(e^{\eta^T\overline{T(\mathbf{x})}-A(\eta)}\right)^{nk}\right\}_{k=0}^{\infty},$$

记 $f(\eta) = e^{\eta^T T(x)} - A(\eta)$ 的最大值在 η^* 处取得, 一方面, η^* 是 (5) 式的极大似然估计, 一方面, 考虑 $f \in C(\Omega_{\eta})$, $\exists \zeta > 0$, 使得 $\forall \varepsilon > 0$, $\varepsilon < \zeta$, $\forall \xi \in B(\eta^*, \varepsilon)$, $\forall \eta \notin B(\eta^*, \varepsilon)$, $f(\xi) > f(\eta)$, 则

$$\lim_{k \to +\infty} \mathbb{P} \left(\frac{\mathbb{P} \left(\eta \right) f^{nk} \left(\eta \right)}{Z_{k} \left(x \right)} \in B \left(\eta^{\star}, \, \varepsilon \right) \right) = \lim_{k \to +\infty} \int_{B(\eta^{\star}, \, \varepsilon)} \frac{\mathbb{P} \left(\eta \right) f^{nk} \left(\eta \right)}{\int_{\Omega_{\eta}} \mathbb{P} \left(\eta \right) f^{nk} \left(\eta \right) \, \mathrm{d} \eta} \, \mathrm{d} \eta$$

$$\frac{\int_{B(\eta^{\star}, \, \varepsilon)} \mathbb{P} \left(\eta \right) \, \mathrm{d} \eta}{\int_{\Omega_{\eta} \setminus B(\eta^{\star}, \, \varepsilon)} \mathbb{P} \left(\eta \right) \left(\frac{f \left(\eta \right)}{f \left(\vartheta \right)} \right)^{nk} \, \mathrm{d} \eta + \int_{B(\eta^{\star}, \, \varepsilon)} \mathbb{P} \left(\eta \right) \, \mathrm{d} \eta} = 1,$$

这说明 $k \to +\infty$,

$$\frac{1}{Z_{k}(x)}\mathbb{P}\left(\eta\right)f^{nk}\left(\eta\right)\rightharpoonup\delta\left(\eta^{\star}\right),$$

于是得到结论: 指数家族分布的 Bayes 极限分布弱收敛于 Dirac $\delta(\eta^*)$ 分布, η^* 恰好是极大似然估计值.

3 结论

将 Bayes 后验分布当作先验分布, 构造了类似 Markov 链的分布列, 对于存在极大似然估计的似然函数, 任意有界正先验分布, 其 Bayes 极限分布弱收敛于 Dirac $\delta(\theta)$ 分布, 其中 θ 恰好是唯一的极大似然估计值, 即 $\forall \Theta \in \Omega_{\Theta}$, $\mathbb{P}(\Theta) > 0$, $|\mathbb{P}(\Theta)| < \infty$, 且 $\oint_{\Omega_{\Theta}} \mathbb{P}(\Theta) = 1$, $\exists ! \theta = \arg \max_{\Theta} \mathbb{P}(\mathcal{D}|\Theta)$, 记 $f(\Theta) = \mathbb{P}(\mathcal{D}|\Theta)$, $f \in C(\Omega_{\Theta})$, $\exists \zeta > 0$, 使得 $\forall \varepsilon > 0$, $\varepsilon < \zeta$, $\forall \xi \in B(\theta, \varepsilon)$, $\forall \eta \notin B(\theta, \varepsilon)$, $f(\xi) > f(\eta)$, 则有

$$\left(\frac{(\bullet)\mathbb{P}(\mathcal{D}|\Theta)}{\sum_{\Omega_{\Theta}}(\bullet)\mathbb{P}(\mathcal{D}|\Theta)}\right)^{k}\mathbb{P}(\Theta) \underset{k \to +\infty}{\rightharpoonup} \delta(\theta),$$

且有推论

$$\arg\max_{\Theta} \left(\frac{(\bullet) \mathbb{P}(\mathcal{D}|\Theta)}{\sum_{\Omega_{\Theta}} (\bullet) \mathbb{P}(\mathcal{D}|\Theta)} \right)^{k} \mathbb{P}(\Theta) \xrightarrow[k \to +\infty]{} \theta.$$

证明过程类似于指数家族分布例子的证明,

$$\lim_{k \to +\infty} \mathbb{P}\left(\left(\frac{(\bullet)\,\mathbb{P}\,(\mathcal{D}|\Theta)}{\sum_{\Omega_{\Theta}}(\bullet)\,\mathbb{P}\,(\mathcal{D}|\Theta)}\right)^{k}\mathbb{P}\,(\Theta) \in B\,(\theta,\,\varepsilon)\right) = \lim_{k \to +\infty} \mathbb{P}\left(\frac{\mathbb{P}\,(\Theta)\,f^{k}\,(\Theta)}{Z_{k}\,(\mathcal{D})} \in B\,(\theta,\,\varepsilon)\right) = 1,$$

以及 $\exists K$, 使 k > K,

$$\arg\max_{\Theta} \left(\frac{(\bullet) \mathbb{P}(\mathcal{D}|\Theta)}{\sum_{\Omega_{\Theta}} (\bullet) \mathbb{P}(\mathcal{D}|\Theta)} \right)^{k} \mathbb{P}(\Theta) \in B(\theta, \varepsilon),$$

再由 ε 的任意性可得结论.

本文基于以下想法: 当 Markov 链到达极限分布的时候, 极限分布就是平稳分布, 并只由状态转移矩阵决定, 亦可看作状态转移矩阵的特征, 与初始分布无关; 从 Bayes 估计的角度看, 先验经过似然算子反复作用到达极限分布, 那么极限分布也由似然算 子决定, 亦可看作似然算子的特征, 与初始先验无关, 似然由样本生成, 这意味着经过 无穷次数据作用得到的后验, 将"抹去"先验的痕迹.

从结论来看, 任何 Dirac δ 分布都是似然算子的不动点, 这意味着初始先验分布不能选择 Dirac δ 分布, 选取有界正先验的意义在于, 先验是依赖有限次数据作用后得到, 并且对随机变量的任何取值均有概率, 而 Dirac δ 分布意味着经历了无限的数据作用, 变量已不再随机.

本文在举例中使用了共轭先验,该方法可用于构造特殊的显式序贯 Bayes 分布列,尤其是正态分布的例子,可以直接看出极限分布. 对于非共轭先验分布,先验后验之间一般不具备良好的解析性质.

References

- [1] C. Bishop and S. ligne, Pattern Recognition and Machine Learning, vol. 1. 01 2006.
- [2] "Gamma distribution." https://en.wikipedia.org/wiki/Gamma_distribution.
- [3] K. Murphy, "Conjugate bayesian analysis of the gaussian distribution," pp. 445–470, 11 2007.