Supplementaries

Total loss function for multiDGD

$$-\log p(x,z,\phi,\theta) = \sum\nolimits_{\rm mod} {\rm Loss_{recon}^{mod} + Loss_{rep}^{basal} + \sum\nolimits_{cov} {\rm Loss_{rep}^{cov} + Loss_{prior}^{cov}} }$$

The softball priors

The composition of the Dirichlet prior loss is given as follow:

$$\begin{aligned} & \operatorname{Loss}_{\operatorname{prior}}^{\operatorname{basal}} = -\log p(\phi) = -\log p(\mu, w, -\log \Sigma) \\ & = -\log(p(\mu) \, p(w) \, p(-\log \Sigma)) \end{aligned}$$

$$egin{aligned} p(\mu) &= \prod_k p_{ ext{Softball}}(\mu_k| ext{scale}, ext{sharpness}) \ p(w) &= \prod_k ext{Dir}(\mu_k|lpha) \ p(-\log \Sigma) &= \prod_k \prod_l \mathcal{N}\left(-\log \Sigma_{k,l}|-\log 0.2 imes rac{scale}{K}, 1
ight) \end{aligned}$$

Figures

Figure 1: Latent space visualization. (a) Initialized latent space. (b) Latent space learnt after training.

Figure 2: Latent space learnt for covariate in multiDGD

Figure 3: Testing the model's ability to identify cell's phenotypes like infection status in low-dimensional space

Figure 4: Training progress of the scDGD model

Tables

Table 1: DGD Hyperparameters Search

Parameter	Search
Learning rate decay	1e - 4, 1e - 3
Dirichlet alpha (α)	1,2,5
Hidden layers	20,50,100
Dropout	0.1, 0.2
Standard deviation (GMM)	0.1,0.2,0.5
Batch size	200~800