§6.4 几个初等函数构成的映射

- 一、幂函数
- 二、指数函数
- 三、综合举例

一、幂函数 $w=z^n$, $(n \ge 2$ 整数)

1. 映射特点

令
$$z = re^{i\theta}$$
, 则有 $w = r^n e^{in\theta}$, 即 $|w| = r^n$, $\arg w = n\theta$.

特点 幂函数 $w=z^n$ 扩大顶点在原点的角形域(或扇形域)。

• 类似地,根式函数 $w = \sqrt[n]{z}$ 作为幂函数的逆映射,其映射 特点是缩小顶点在原点的角形域(或扇形域)。

一、幂函数 $w=z^n$, $(n \ge 2$ 整数)

2. 保形性

- 解析性 (1) 在z 平面上处处可导, $\frac{dw}{dz} = nz^{n-1}$;
 - $(2) \quad \exists z \neq 0 \qquad \text{时} \frac{\mathrm{d}w}{\mathrm{d}z} \neq 0.$
- <u>单值性 在 ^z</u> 平面上不是双方单值的比如:

对于
$$w=z^4$$
, 取 $z_1=e^{\frac{\pi}{2}i}$ $z_2=e^{\pi i}$, 则 $z_1^4=z_2^4$.

结论 幂函数 $w = z^n$ 在 平面上除原点外是第一类保角映射。

• 在角形域 $0 < \theta < \theta_0$ 上,如果 $0 < \frac{2\pi}{n}$,则幂函数 = z^n 是 共形映射。

例 已知区域 $D = \{z : \frac{\pi}{4} < \arg z < \frac{\pi}{2}, 0 < |z| < 2\}, 求区域 <math>D$ 在

映射 $w = (ze^{-\frac{n}{4}i})^4$ 下的象区域 G。

解 令
$$w_1 = ze^{-\frac{n}{4}i}$$
, w 则 w_1^4 .

如图, 所求的象区域 G 为:

$$G = \{z : |z| < 8, \text{ Im } z > 0\}.$$

例 设区域 $D = \{z: 0 < \arg z < \frac{4\pi}{5}\}$, 求一共形映射将 D 映射成单位圆域。 P158 例 6.14

二、指数函数 $w = e^z$

回顾 令 z = x + iy, 有 $w = e^z = e^x(\cos y + i\sin y) = e^x \cdot e^{iy}$,

即
$$\begin{cases} |w| = e^x, \\ Arg w = y + 2k\pi, \end{cases}$$
 由 z 的实部得到 w 的模; $(k=0,\pm 1,\pm 2,\cdots)$ 。

二、指数函数 $w = e^z$

1. 映射特点

特点 指数函数 $w = e^z$ 将水平带形域变为角形域。

二、指数函数 $w = e^z$

2. 保形性

- 解析性 在 z 平面上处处可导,且 $\frac{dw}{dz} = e^z \neq 0$.
- 单 单值性 在 ^z 平面上不是双方单值的比如:

取
$$z_1 = x_1 + iy_1$$
, $z_2 = x_1 + i(y_1 + 2\pi)$, 则 $e^{z_1} = e^{z_2}$.

结论 指数函数 $w = e^z$ 在 平面上是第一类保角映射。

• 在水平带形域0 < y < h 上,如果 $h < 2\pi$,则指数函数 = e^z 是共形映射。

例 已知区域 $D = \{z: -\frac{\pi}{2} < \operatorname{Re} z < \frac{\pi}{2}, \operatorname{Im} z > 0\}$, 求区域 D 在

映射 $w = e^{iz}$ 下的象区域 G。

 \mathbf{p} 令 $w_1 = iz$, $\mathbf{p} = \mathbf{e}^{w_1}$.

如图,所求的象区域 G 为:

$$G = \{z : |z| < 1, \operatorname{Re} z > 0\}.$$

第二章

六形映射

例 设区域 $D = \{z : \frac{\pi}{2} < \text{Im } z < \pi\}$,求一共形映射将 D 映射成上半平面。 P159 例 6.15

三、综合举例

主要步骤(一般)

(1) 预处理___

目标 使区域的边界至多由两段圆弧(或直线段)构成。 工具 几种简单的分式映射、幂函数、指数函数等。

(2) 将区域映射为角形域(或者带形域)____

方法 将区域边界的一个交点 映射效

[另一个(交)点 映射的 0。

工具
$$w = k \frac{1}{z - z_1}$$
, 或者 $w = k \frac{z - z_2}{z - z_1}$.

三、综合举例

主要步骤(一般)

(3) 将角形域 (或者带形域) 映射为上半平面

$$w = z^n$$
, $w = \sqrt[n]{z}$. (对于角形域)
 $w = e^z$. (对于带形域)

(4) 将上半平面映射为单位圆域

工具
$$w = \frac{z-i}{z+i}$$
. (无附加条件)
$$w = e^{i\theta_0} \frac{z-z_0}{z-\overline{z}_0}.$$
 (由附加条件确定 θ_0 , z_0)

设区域 $D = \{z: |z| < 1, \text{Im } z > 0\}$, 求一共形映射将 D 映射成 单位圆域。 P162 例 6.18

解

$$w = z^{2}? (ff!!)$$

$$w = \frac{\left(-\frac{z+1}{z-1}\right)^{2} - i}{\left(-\frac{z+1}{z-1}\right)^{2} + i}$$

$$z_{2} = z_{1}^{2}$$

$$z_2 = z_1^2 \longrightarrow$$

注 从上半单位圆域到上半平面的映射为 $w = \left(-\frac{z+1}{z-1}\right)^2$.

例 设区域 $D = \{z: |z| < 1, 2 \}$ 公到 1 有割痕 $\}$,求一共形映射,将 D 映射成单位圆域。

$$z_1 = \sqrt{z}$$

$$\begin{array}{c|c} & & & \\ \hline & & & \\ \hline & & & \\ \hline & -1 & 0 & 1 \end{array}$$

$$z_2 = \left(-\frac{z_1 + 1}{z_1 - 1}\right)^2$$

设区域 $D = \{z: |z| > 2, \text{Im } z > 0\}$, 求一共形映射将 D 映射 例 成单位圆域。

$$z_1=\frac{z}{2} \$$

$$z_2 = \frac{1}{z_1} \downarrow$$

(w)

设区域 D 由两个圆弧围成(如图所示其中r>1, 共形映射将 D 映射成单位圆域 P161 例 6.17

$$z_2 = z_1^6$$

例 设区域 $D = \{z: |z| < 2, |z-1| > 1\}$,求一共形映射将 D 映射 成单位圆域。 P160 例 6.16

例 设区域 $D = \{z: |z| > 2, |z-3| > 1\}$, 求一共形映射将D映射成单位圆域。

例 设区域 $D = \{z: -\frac{\pi}{2} < \text{Re } z < \frac{\pi}{2}, \text{Im } z < 0\}$, 求一共形映射

将D映射成上半平面。 P163 例 6.19

*例 设区域 $D = \{z: \text{Im } z > 0, |z - \frac{1}{2}| > \frac{1}{2}, |z + \frac{1}{2}| > \frac{1}{2}\},$

映射将 D 映射成上半平面 P163 例 6.20

$$z_1 = \frac{1}{z}$$

$$w = \left(\frac{1 + ie^{-iz_2}}{1 - ie^{-iz_2}}\right)^2$$

*例 设区域 D 如图所示,求一共形映射将 D 映射成单位圆式

解

 (z_1)

$$z_1 = \frac{1}{z}$$

$$z_2 = -\frac{z_1 + 1}{z_1 - 1}$$

(w)

第二章

六形映射

*例 求一共形映射,将有割痕ez = a, $0 \le \text{Im } z \le h$ 映射成单位圆域。

的上

休息一下