

定制你的IC, 给你额外的收获

Version

Ver.	Date	Description
1.0	2023-05-17	初始版本
2.0	2023-05-24	增加3路GPIO扩展输出 更改NTC检测电路供电为常供电 更改防水检测电路,防止VBUS短路到检测引脚,高压烧坏芯片
3.0	2023-05-24	更改NTC的供电方式为内部VREF输出供电,减少一路GPIO扩展
4.0	2023-06-02	更改防水检测电路
5.0	2023-09-07	更改PIN5为VREG_EN,更改PIN6为NTC过温时输出低电平控制电源

Diagram

LS8A10049T功能说明

- 检测各开关机信号,控制开关机操作;
- 检测2路防水检测输入信号,通过中断通知BT,BT通过IIC读取LS8A10049T内部寄存器获取漏水信息;
- 检测NTC过温输入信号,检测的过温时会自动开机,通过中断通知BT,BT通过IIC读取LS8A10049T内部寄存器获取过温信息, 过温时 控制部分电源断电;
- 通过IIC与BT通讯,可通过IIC操作软件开关机,使能操作,获取按键、各事件等信息;

Reference Schematic

注: 所有IO口电平均不能高于VDD电压。 所有对外接口引脚均需做ESD防护。

Pin Defination

Pin No.	Pin Description	Pin Function	Pin Type	Internal Resistor
1	VCC	供电输入, 2.3V~5.5V范围	电源	-
2	POWER_KEY	开关机按键输入	数字输入	上拉100K
3	IIC_SCL	IIC CLK	数字输入+开漏输出	-
4	IIC_SDA	IIC DATA	数字输入+开漏输出	-
5	VREG_EN	蓝牙开机信号	数字推挽	-
6	NTC_PROTECT_CTRL	过温切断电源控制信号	数字开漏输出	-
7	INT_OUT	中断输出,输出给蓝牙	数字开漏输出	-
8	GND	电源低	电源	-
9	POWER_ON	电源开机控制输出	数字推挽输出	-
10	WATER_DET1	USB接口漏水检测输入通道1	模拟输入	-
11	WATER_DET2	USB接口漏水检测输入通道2	模拟输入	-
12	NTC_DET	USB过热保护检测输入	模拟输入	-
13	DC_DETECT	适配器插入检测输入	数字输入	下拉1M
14	VREF_OUT	NTC参考供电电源输出,输出1.2V	模拟输出	-

信号说明:

POWER KEY:接开机按键,LS8A10049T内部上拉100K,按下低电平有效,内部防抖50ms;

DC DETECT:接适配器插入检测,LS8A10049T内部下拉1M,插入适配器高电平有效,内部防抖50ms;

NTC PROTECT CTRL: NTC过温时输出低电平, 常态为OD输出, 防抖时间10ms;

WATER DET1/WATER DET2:接漏水检测输入,内部接入2个比较器;

NTC DET:接NTC电阻输入,内部接入比较器,当检测到温度大于65℃时,会主动触发开机,进入开机时序流程;

VREF OUT: NTC参考供电输出,内部VREF输出1.2V,NTC检测周期为500ms;

POWER ON:控制电源模块使能,开机输出高电平,关机输出低电平;

VREG EN: 控制蓝牙开机PWR信号, 延迟于POWER ON约60ms拉高, 与POWER ON同时拉低;

INT OUT:中断输入,当有按键按下、适配器插入、漏水检测变化、NTC过温等事件发生时,均会发出中断,有中断时输出低电平,蓝牙检测到中断后需主动清

除中断;

IIC SCL/IIC SDA: IIC通讯, 功能包括有:

- a. 在有中断发生时,蓝牙可通过IIC读取LS8A10049T内部相关标志位来获取对应是什么事件发生,并可通过reg[INT CLEAR]进行清除中断;
- b. 开机时蓝牙需通过IIC写入对应寄存器reg[POWER ON RDY]来标志开机成功;
- c. 可通过IIC控制对应寄存器reg[POWER OFF READY]关机;
- d. 当有关机操作时,需通过IIC来控制对应寄存器reg[STANDBY DET]确定是否需要关机;

IIC操作读取寄存器说明:

No.	Reg Description	Reg Address	Type	Reg Function	Remark
1	reg[POWER_KEY]	0x7C	Read	按键按下时,该寄存器会置1,按键松开时,该寄存器会置0,主控可通过读取该寄存器的值获取按键的状态	
2	reg[DC_IN]	0x7C	Read	DC插入时,该寄存器会置1,DC拔出时,该寄存器会置0,主控可通过读取该寄存器的值获取适配器插拔的状态	
3	reg[WATER0] reg[WATER1]	0x7C	Read	当检测到漏水时,该寄存器会置1,未漏水时,该寄存器会置0,主控可通过读取该寄存器的值获取漏水检测状态	
4	reg[NTC]	0x7C	Read	当检测到过温时,该寄存器会置0,未过温时,该寄存器会置1,主控可通过读取该寄存器的值获取过温检测状态	

IIC操作读取寄存器读取方法:

	ANTI MANAGED HENDAND CO.							
No.	Reg Description	Reg Address	Type	读取方法	备注			
1	reg[POWER_KEY]	0x7C	Read	先将0x7E-bit[5~4]写入'01',再将0x7D-bit[5~3]写入'100' 然后读取0x7C的bit6的值,如果读取为1,则说明有按键按下,如果读取为0,则说 明按键松开 读取完后,需要对改寄存器进行清除,清除方法: 写0x7B-bit[7]为0,清除后,再写0x7B-bit[7]为1,以进入下次存储准备状态	需按位操作			
2	reg[DC_IN]	0x7C	Read	先将0x7E-bit[5~4]写入'01',再将0x7D-bit[5~3]写入'001' 然后读取0x7C的bit5的值,如果读取为1,则说明有适配器插入,如果读取为0,则 说明适配器拔出	需按位操作			
3	reg[WATER0]	0x7C	Read	先将0x7E-bit[5~4]写入'00',再将0x7D-bit[2~0]写入'101' 然后读取0x7C的bit7的值,如果读取为1,则说明有检测到漏水,如果读取为0,则 说明没有漏水发生	需按位操作			
4	reg[WATER1]	0x7C	Read	先将0x7E-bit[5~4]写入'00',再将0x7D-bit[2~0]写入'110' 然后读取0x7C的bit0的值,如果读取为1,则说明有检测到漏水,如果读取为0,则 说明没有漏水发生	需按位操作			
5	reg[NTC]	0x7C	Read	先将0x7E-bit[5~4]写入'00',再将0x7D-bit[2~0]写入'110' 然后读取0x7C的bit1的值,如果读取为0,则说明有检测到过温,如果读取为1,则 说明没有过温发生	需按位操作			

IIC操作写入寄存器说明:

N o.	Reg Description	Reg Address	Type	Reg Function	Remark
1	reg[POWER_ON_ RDY]	0x7B-bit[0]	Write	开机成功锁电操作寄存器: A、在按键开机时,POWER_ON输出高,蓝牙上电后,需在2.1S时间将该寄存器位先写0 再写1产生上升沿,以标志蓝牙开机成功,LS8A10049T如果没有收到该寄存器写入上升沿, 则会进行自动重启,拉低1.5s POWER ON再拉高,直到检测到该寄存器的上升沿后才保 持开机; B、在插入DC模式,开机会强制开机,不受该寄存器的影响	需按位操作,建议蓝牙在每次开机时(不区分按键、插入DC或按照到底座),都对改寄存器写入上升沿标志开机成功
2	reg[POWER_OFF _READY]	0x7B-bit[6]	Write	关机操作寄存器: 在开机状态下,对该位写入下降沿(先写1再写0),则会进行关机	需按位操作
4	reg[INT_CLEAR]	0x7B-bit[2]	Write	中断清除寄存器,写0清除中断状态,写1进入中断等待状态	需按位操作
5	reg[STANDBY_D ET]	0x7B-bit[3]	Write	关机看门狗清除寄存器,在开机状态下,如果再有按下POWER KEY,此时主控需在10S内将该寄存器写入一次上升沿(先写0再写1),以清除LS8A10049T内部开门狗定时器。如果LS8A10049T在10s内没有收到上升沿操作,则会在10S后进行关机,拉低POWER_ON。在蓝牙能正常喂狗的情况下,按键长按10s的响应一致,会进行拉低POWER_ON强制关机。	需按位操作 可参照LS4V44057的逻辑, 原来Flip6蓝牙在开机后, 会一直给STANDBY_DET发 脉冲进行喂狗
6	reg[GPIO_OUT1]	0x7B-bit[1]	Write	GPIO_OUT1控制输出,写'1'输出高电平,写'0'输出低电平	需按位操作
7	reg[GPIO_OUT2]	0x7B-bit[4]	Write	GPIO_OUT2控制输出,写'1'输出高电平,写'0'输出低电平	需按位操作

care时间为2100ms。

Package Dimension

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max		
A	0.50	0.55	0.60	D	1.55	1.60	1.65		
A1	0.00	0.02	0.05	Е	1.95	2.00	2.05		
A2		0.40		L	0.25	0.30	0.35		
A3		0.152 REF		L1	0.20	0.30	0.40		
b	0.13	0.18	0.23	L2	0.35	0.40	0.45		
e	0.40 BSC								

STQFN-14-1.6*2.0*0.55mm

