Project 2: Wrangling and Exploratory Data Analysis

Joseph Kahadze March 27, 2019

 \mathbf{SQL}

PROBLEM 1

To calculate the total payroll and the winning percentage I joined the Salaries and Teams tables on the teamID and the yearID and then filtered all the entities with yearID >= 1990 or less than <= 2014.

I used an inner join to filter out values with missing data so that only values with corresponding yearID and teamID. Furthermore, I reviewed the table myself to make sure there were no missing entries.

```
SELECT t.teamID, t.franchID, t.yearID, t.W, t.L, t.G, s.sum_sal, ((t.W * 1.0)/(t.G * 1.0)*100.0) AS WPERC FROM Teams as t inner join (SELECT teamID, yearID, sum(salary) as sum_sal FROM Salaries

GROUP BY teamID, yearID) as s ON t.teamID = s.teamID and t.yearID = s.yearID

WHERE t.yearID >= 1990 and t.yearID <=2014
```

PROBLEM 2

I used a box plot to graph the distribution of payrolls across teams because it visually shows the mean and variance of the payroll per year.

```
sum_df <- payroll_df

sum_df %>%
  ggplot(mapping=aes(x=factor(yearID), y=sum_sal)) +
    geom_boxplot() + scale_y_continuous(labels = scales::comma) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    xlab("Year") + ylab("Sum Payroll") +
    ggtitle("Sum Payroll by Year from 1990 to 2014")
```


Question 1

The mean payroll in the MLB increased from 1990 to 2014 from about 25,000,000 to about 100,000,000. Furthermore, the variation in payroll between teams also increased from 1990 to 2014.

PROBLEM 3

I calculated the mean payroll for each year and then plotted it for every year to show that the payroll has a tendency to increase over time.

```
mean_df <- payroll_df %>%
  group_by(yearID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal))

mean_df %>%
  ggplot(mapping=aes(x=factor(yearID), y=mean_sal)) +
   geom_bar(stat="identity") +
   theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
   xlab("Year") + ylab("Mean Payroll") +
   ggtitle("Mean Payroll by Year from 1990 to 2014")
```


PROBLEM 4

I split the payroll_df into five categories based on yearID in 5 year ranges. Then I calculated the mean winning percentage and mean payroll for each of the 5 tables and plotted them.

```
cut_df <- payroll_df</pre>
cut_df$group <- cut_df$yearID %>%
  cut(breaks=5)
X <- split(cut_df, cut_df$group)</pre>
per1 <- X[[1]]
per1 <- per1 %>%
  group_by(teamID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal), mean_wp = mean(WPERC))
per2 <- X[[2]]
per2 <- per2 %>%
  group_by(teamID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal), mean_wp = mean(WPERC))
per3 <- X[[3]]
per3 <- per3 %>%
  group_by(teamID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal), mean_wp = mean(WPERC))
```

```
per4 <- X[[4]]
per4 <- per4 %>%
  group_by(teamID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal), mean_wp = mean(WPERC))
per5 <- X[[5]]
per5 <- per5 %>%
  group_by(teamID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal), mean_wp = mean(WPERC))

per1 %>%
  ggplot(mapping=aes(x=mean_sal, y=mean_wp)) +
   geom_point() + scale_x_continuous(labels = scales::comma) +
  geom_smooth(method=lm) + xlab("Mean Payroll") + ylab("Mean Winning Percentage") +
  ggtitle("Mean Winning Percentage by Mean Payroll 1990-1995")
```

Mean Winning Percentage by Mean Payroll 1990–1995


```
per2 %>%
  ggplot(mapping=aes(x=mean_sal, y=mean_wp)) +
    geom_point() + scale_x_continuous(labels = scales::comma) +
  geom_smooth(method=lm) + xlab("Mean Payroll") +
  ylab("Mean Winning Percentage") +
  ggtitle("Mean Winning Percentage by Mean Payroll 1995-2000")
```

Mean Winning Percentage by Mean Payroll 1995–2000


```
per3 %>%
    ggplot(mapping=aes(x=mean_sal, y=mean_wp)) +
        geom_point() + scale_x_continuous(labels = scales::comma) +
        geom_smooth(method=lm) + xlab("Mean Payroll") + ylab("Mean Winning Percentage") +
        ggtitle("Mean Winning Percentage by Mean Payroll 2000-2004")
```

Mean Winning Percentage by Mean Payroll 2000–2004


```
per4 %>%
    ggplot(mapping=aes(x=mean_sal, y=mean_wp)) +
        geom_point() + scale_x_continuous(labels = scales::comma) +
        geom_smooth(method=lm) + xlab("Mean Payroll") + ylab("Mean Winning Percentage") +
        ggtitle("Mean Winning Percentage by Mean Payroll 2004-2009")
```

Mean Winning Percentage by Mean Payroll 2004–2009


```
per5 %>%
    ggplot(mapping=aes(x=mean_sal, y=mean_wp)) +
        geom_point() + scale_x_continuous(labels = scales::comma) +
        geom_smooth(method=lm) + xlab("Mean Payroll") + ylab("Mean Winning Percentage") +
        ggtitle("Mean Winning Percentage by Mean Payroll 2009-2014")
```


QUESTION 2

There is a positive correlation between the mean payroll and mean winning percentage for every 5 year period. The most significant positive correlation in the periods 1995 to 2000 and 2004 to 2009.

PROBLEM 5

I calculated the standardized formula using the given formula st_payroll = (pay_roll - mean_payroll)/st_dev

```
values <- payroll_df %>%
  group_by(yearID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal), sd_sal = sd(sum_sal)) %>%
  inner_join(payroll_df, by="yearID") %>%
  mutate (z = (((sum_sal * 1.0) - (mean_sal*1.0)) / (sd_sal*1.0)))
```

Warning: package 'bindrcpp' was built under R version 3.5.2

```
values
```

```
## # A tibble: 728 x 11
## yearID mean_sal sd_sal teamID franchID W L G sum_sal WPERC
## <int> <dbl> <dbl> <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> </dbl>
```

```
##
    1
        1990
                1.71e7 3.77e6 ATL
                                        ATL
                                                     65
                                                           97
                                                                 162
                                                                      1.46e7
                                                                               40.1
##
    2
        1990
                1.71e7 3.77e6 BAL
                                                     76
                                                           85
                                                                               47.2
                                       BAL
                                                                 161
                                                                      9.68e6
                1.71e7 3.77e6 BOS
##
    3
        1990
                                       BOS
                                                     88
                                                           74
                                                                 162
                                                                      2.06e7
                                                                               54.3
##
    4
        1990
                1.71e7 3.77e6 CAL
                                                     80
                                                                 162
                                                                      2.17e7
                                                                               49.4
                                       ANA
                                                           82
##
    5
        1990
                1.71e7 3.77e6 CHA
                                       CHW
                                                     94
                                                           68
                                                                 162
                                                                      9.49e6
                                                                               58.0
    6
        1990
##
                1.71e7 3.77e6 CHN
                                       CHC
                                                     77
                                                           85
                                                                 162
                                                                      1.36e7
                                                                               47.5
    7
##
        1990
                1.71e7 3.77e6 CIN
                                       CIN
                                                     91
                                                           71
                                                                 162
                                                                      1.44e7
                                                                               56.2
                                                     77
##
    8
        1990
                1.71e7 3.77e6 CLE
                                       CLE
                                                           85
                                                                 162
                                                                      1.45e7
                                                                               47.5
##
    9
        1990
                1.71e7 3.77e6 DET
                                       DET
                                                     79
                                                           83
                                                                 162
                                                                      1.76e7
                                                                               48.8
## 10
        1990
                1.71e7 3.77e6 HOU
                                       HOU
                                                     75
                                                           87
                                                                 162
                                                                      1.83e7
                                                                               46.3
## # ... with 718 more rows, and 1 more variable: z <dbl>
```

PROBLEM 6

I split the payroll_df into five categories based on yearID in 5 year ranges. Then I created a standardized variable z to standardize payroll. Finally I graphed all 5 split tables with mean standardized value on the x-axis and the mean winning percentage on the y-axis.

```
values <- payroll_df %>%
  group_by(yearID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal), sd_sal = sd(sum_sal)) %>%
  inner_join(payroll_df, by="yearID") %>%
  mutate (z = (((sum_sal * 1.0) - (mean_sal*1.0)) / (sd_sal*1.0)))
```

```
# A tibble: 728 x 11
##
##
      yearID mean_sal sd_sal teamID franchID
                                                            L
                                                                  G sum_sal WPERC
       <int>
##
                                                                       <dbl> <dbl>
                 <dbl> <dbl> <chr>
                                       <chr>
                                                 <int> <int>
                                                              <int>
##
    1
        1990
                1.71e7 3.77e6 ATL
                                       ATL
                                                    65
                                                           97
                                                                162
                                                                      1.46e7
                                                                              40.1
##
    2
        1990
                1.71e7 3.77e6 BAL
                                       BAL
                                                    76
                                                           85
                                                                161
                                                                      9.68e6
                                                                              47.2
                1.71e7 3.77e6 BOS
##
    3
        1990
                                       BOS
                                                    88
                                                           74
                                                                162
                                                                      2.06e7
                                                                              54.3
        1990
##
                1.71e7 3.77e6 CAL
    4
                                       ANA
                                                    80
                                                           82
                                                                162
                                                                      2.17e7
                                                                              49.4
    5
        1990
                                                    94
##
                1.71e7 3.77e6 CHA
                                       CHW
                                                           68
                                                                162
                                                                      9.49e6
                                                                              58.0
##
    6
        1990
                1.71e7 3.77e6 CHN
                                       CHC
                                                    77
                                                           85
                                                                162
                                                                     1.36e7
                                                                              47.5
##
    7
        1990
                1.71e7 3.77e6 CIN
                                       CIN
                                                    91
                                                           71
                                                                162
                                                                     1.44e7
                                                                              56.2
        1990
                1.71e7 3.77e6 CLE
                                                    77
                                                                              47.5
##
    8
                                       CLE
                                                           85
                                                                162
                                                                     1.45e7
##
    9
        1990
                1.71e7 3.77e6 DET
                                       DET
                                                    79
                                                           83
                                                                162
                                                                     1.76e7
                                                                              48.8
## 10
        1990
                1.71e7 3.77e6 HOU
                                       HOU
                                                    75
                                                           87
                                                                162
                                                                     1.83e7
                                                                              46.3
## # ... with 718 more rows, and 1 more variable: z <dbl>
```

```
scut_df <- values

scut_df$group <- scut_df$yearID %>%
    cut(breaks=5)

X <- split(scut_df, scut_df$group)

per1 <- X[[1]]
per1 <- per1 %>%
    group_by(teamID) %>%
    dplyr::summarise(mean_z = mean(z), mean_wp = mean(WPERC))
```

```
per2 <- X[[2]]</pre>
per2 <- per2 %>%
  group_by(teamID) %>%
  dplyr::summarise(mean_z = mean(z), mean_wp = mean(WPERC))
per3 <- X[[3]]</pre>
per3 <- per3 %>%
  group_by(teamID) %>%
  dplyr::summarise(mean_z = mean(z), mean_wp = mean(WPERC))
per4 <- X[[4]]
per4 <- per4 %>%
  group_by(teamID) %>%
  dplyr::summarise(mean_z = mean(z), mean_wp = mean(WPERC))
per5 <- X[[5]]
per5 <- per5 %>%
  group_by(teamID) %>%
  dplyr::summarise(mean_z = mean(z), mean_wp = mean(WPERC))
per1 %>%
  ggplot(mapping=aes(x=mean_z, y=mean_wp)) +
    geom_point() + scale_x_continuous(labels = scales::comma) +
  geom_smooth(method=lm) + xlab("Mean Z Statistic") +
  ylab("Mean Winning Percentage") +
  ggtitle("Mean Winning Percentage by Mean Payroll 1990-1995")
```

Mean Winning Percentage by Mean Payroll 1990–1995


```
per2 %>%
    ggplot(mapping=aes(x=mean_z, y=mean_wp)) +
        geom_point() + scale_x_continuous(labels = scales::comma) +
        geom_smooth(method=lm) + xlab("Mean Z Statistic") +
        ylab("Mean Winning Percentage") +
        ggtitle("Mean Winning Percentage by Mean Payroll 1995-2000")
```

Mean Winning Percentage by Mean Payroll 1995–2000


```
per3 %>%
    ggplot(mapping=aes(x=mean_z, y=mean_wp)) +
        geom_point() + scale_x_continuous(labels = scales::comma) +
        geom_smooth(method=lm) + xlab("Mean Z Statistic") +
        ylab("Mean Winning Percentage") +
        ggtitle("Mean Winning Percentage by Mean Payroll 2000-2004")
```

Mean Winning Percentage by Mean Payroll 2000–2004


```
per4 %>%
    ggplot(mapping=aes(x=mean_z, y=mean_wp)) +
        geom_point() + scale_x_continuous(labels = scales::comma) +
        geom_smooth(method=lm) + xlab("Mean Z Statistic") +
        ylab("Mean Winning Percentage") +
        ggtitle("Mean Winning Percentage by Mean Payroll 2004-2009")
```

Mean Winning Percentage by Mean Payroll 2004–2009


```
per5 %>%
  ggplot(mapping=aes(x=mean_z, y=mean_wp)) +
    geom_point() + scale_x_continuous(labels = scales::comma) +
  geom_smooth(method=lm) + xlab("Mean Z Statistic") +
  ylab("Mean Winning Percentage") +
  ggtitle("Mean Winning Percentage by Mean Payroll 2009-2014")
```


QUESTION 3

The standardized plots follow similar trends but have a mean closer to 0. You can see parallels between specific time periods in the dots spread and patter.

PROBLEM 7

To plot the overall standardized value for the entire time period I didn't split the data frame. I just calculated the standardized value and graphed it using a scatter plot from 1994 to 2014.

```
values <- values %>%
  group_by(teamID) %>%
  dplyr::summarise(mean_z = mean(z), mean_wp = mean(WPERC))

values %>%
  ggplot(mapping=aes(x=mean_z, y=mean_wp)) +
    geom_point() + scale_x_continuous(labels = scales::comma) +
  ggtitle("1990-2014") + geom_smooth(method=lm) + xlab("Mean Z Statistic") +
  ylab("Mean Winning Percentage") +
  ggtitle("Mean Winning Percentage by Mean Payroll 1990-2014")
```


PROBLEM 8

I calculated the efficiency using the expected winning percentage and the actual winning percentage based on the payroll and the plotted the data for the 5 given teams using a line graph. I plotted the efficiency on the y-axis and year on the x-axis.

```
values <- payroll_df %>%
  group_by(yearID) %>%
  dplyr::summarise(mean_sal = mean(sum_sal), sd_sal = sd(sum_sal)) %>%
  inner_join(payroll_df, by="yearID") %>%
  mutate (z = (((sum_sal * 1.0) - (mean_sal*1.0)) / (sd_sal*1.0)))
values <- values %>%
  mutate(exp_wp = 50.0 + (2.5 * z)) \%
  mutate(efficiency = WPERC - exp_wp) %>%
  filter(teamID == "OAK" | teamID == "BOS" | teamID == "NYA" |
           teamID == "ATL" | teamID == "TBA")
values %>%
  ggplot(aes(x=factor(yearID), y=efficiency, group=teamID)) +
  labs(color = NULL) +
  geom_smooth(aes(color=teamID), se=FALSE)+
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  xlab("Year") + ylab("Team Efficiency") +
  ggtitle("Team Efficiency By Year from 1990 to 2014")
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Question 4

This plot shows the efficiency of the teams from 1990 to 2014. Compared to plots 2 and 3 which showed the relationship between winning percentage and payroll, this graph shows the calculated efficiency for specific teams over a period of time.

The graph shows a clear peak in Oakland's efficiency during the "Moneyball period," from 2000 to 2005. But, then the efficiency