# Magnetic Field Intensity

#### Biot-Savart Law (1)

ความเข้มสนามแม่เหล็กเกิดจากกระแสไฟฟ้า

$$d\vec{H} = \frac{Id\vec{L} \times \vec{a}_R}{4\pi R^2}$$

 $\vec{H}$ : Magnetic Field Intensity (A/m)

### Biot-Savart Law (2)

ความเข้มสนามแม่เหล็กที่เกิดจากกระแสบนเส้นลวดยาวอนันต์



$$d\vec{L} = dz\vec{a}_{z}$$

$$\vec{R} = \rho \vec{a}_{\rho} - z\vec{a}_{z}$$

$$R = (\rho^{2} + z^{2})^{1/2}$$

$$\vec{a}_{R} = \frac{1}{(\rho^{2} + z^{2})^{1/2}} (\rho \vec{a}_{\rho} - z\vec{a}_{z})$$

# Biot-Savart Law (3)

$$\begin{split} d\vec{H} &= \frac{Id\vec{L} \times \vec{a}_R}{4\pi R^2} \\ &= \frac{Idz\vec{a}_z}{4\pi (\rho^2 + z^2)} \times \frac{1}{(\rho^2 + z^2)^{1/2}} (\rho \vec{a}_\rho - z \vec{a}_z) \\ &= \frac{I\rho dz}{4\pi (\rho^2 + z^2)^{3/2}} \vec{a}_\phi \end{split}$$

$$\vec{H} = \frac{I}{4\pi} \int_{-\infty}^{\infty} \frac{\rho dz}{(\rho^2 + z^2)^{3/2}} \vec{a}_{\phi}$$

### Biot-Savart Law (4)



$$z = \rho \tan \theta$$

$$dz = \rho \sec^2 \theta \, d\theta$$

$$z \to -\infty \Longrightarrow \theta \to -\frac{\pi}{2}, \ z \to \infty \implies \theta \to \frac{\pi}{2}$$

$$\int_{-\infty}^{\infty} \frac{\rho dz}{(\rho^2 + z^2)^{3/2}} = \frac{1}{\rho^2} \int_{-\infty}^{\infty} \frac{\rho}{\sqrt{\rho^2 + z^2}} \frac{\rho}{\sqrt{\rho^2 + z^2}} \frac{\rho}{\sqrt{\rho^2 + z^2}} dz$$

$$= \frac{1}{\rho^2} \int_{-\pi/2}^{\pi/2} \cos^3 \theta \, \rho \sec^2 \theta \, d\theta$$

$$= \frac{1}{\rho} \int_{-\pi/2}^{\pi/2} \cos \theta \, d\theta$$

$$= \frac{1}{\rho} \sin \theta \Big|_{\theta = -\pi/2}^{\pi/2}$$

$$= \frac{2}{\rho}$$

# Biot-Savart Law (5)

$$\vec{H} = \frac{I}{4\pi} \int_{-\infty}^{\infty} \frac{\rho dz}{(\rho^2 + z^2)^{3/2}} \vec{a}_{\phi}$$

$$= \frac{I}{4\pi} \left(\frac{2}{\rho}\right) \vec{a}_{\phi}$$

$$= \frac{I}{2\pi\rho} \vec{a}_{\phi}$$

$$\vec{H} = \frac{I}{2\pi\rho} \vec{a}_{\phi} \qquad (A/m)$$

#### Example

กำหนดให้  $I_1=2$  A ไหลในทิศทาง  $\bar{a}_z$  อยู่ที่ตำแหน่ง x=-3 m, y=4 m และ  $I_2=1$  A ไหลในทิศทาง $-\bar{a}_z$  อยู่ที่ตำแหน่ง x=-5 m, y=-3 m จงหา  $\bar{H}$  ที่พิกัด (2,-2,0)

### Solution (1)

หา 
$$\bar{H}_1$$
 ที่เกิดจาก  $I_1=2$  A ได้

$$\vec{a}_{z'} = \vec{a}_{z}$$

$$\vec{\rho} = (2+3)\vec{a}_{x} + (-2-4)\vec{a}_{y} = 5\vec{a}_{x} - 6\vec{a}_{y}$$

$$\rho = \sqrt{5^{2} + (-6)^{2}} = \sqrt{61}$$

$$\vec{a}_{\rho} = \frac{5}{\sqrt{61}}\vec{a}_{x} - \frac{6}{\sqrt{61}}\vec{a}_{y}$$

$$\vec{a}_{\phi} = \vec{a}_{z'} \times \vec{a}_{\rho} = \vec{a}_{z} \times \left(\frac{5}{\sqrt{61}}\vec{a}_{x} - \frac{6}{\sqrt{61}}\vec{a}_{y}\right) = \frac{6}{\sqrt{61}}\vec{a}_{x} + \frac{5}{\sqrt{61}}\vec{a}_{y}$$

$$\vec{H}_{1} = \frac{I_{1}}{2\pi\rho}\vec{a}_{\phi} = \frac{2}{2\pi\sqrt{61}}\left(\frac{6}{\sqrt{61}}\vec{a}_{x} + \frac{5}{\sqrt{61}}\vec{a}_{y}\right)$$

$$= 31.31\vec{a}_{x} + 26.09\vec{a}_{y} \text{ mA/m } \#$$

# Solution (2)

หา  $\bar{H}_2$  ที่เกิดจาก  $I_2=1$  A ได้

$$\begin{split} \vec{a}_{z'} &= -\vec{a}_z \\ \vec{\rho} &= (2+5)\vec{a}_x + (-2+3)\vec{a}_y = 7\vec{a}_x + \vec{a}_y \\ \rho &= \sqrt{7^2 + 1^2} = \sqrt{50} \\ \vec{a}_{\rho} &= \frac{7}{\sqrt{50}}\vec{a}_x + \frac{1}{\sqrt{50}}\vec{a}_y \\ \vec{a}_{\phi} &= \vec{a}_{z'} \times \vec{a}_{\rho} = -\vec{a}_z \times \left(\frac{7}{\sqrt{50}}\vec{a}_x + \frac{1}{\sqrt{50}}\vec{a}_y\right) = \frac{1}{\sqrt{50}}\vec{a}_x - \frac{7}{\sqrt{50}}\vec{a}_y \\ \vec{H}_2 &= \frac{I_2}{2\pi\rho}\vec{a}_{\phi} = \frac{2}{2\pi\sqrt{50}}\left(\frac{1}{\sqrt{50}}\vec{a}_x - \frac{7}{\sqrt{50}}\vec{a}_y\right) \\ &= 3.18\vec{a}_x - 22.28\vec{a}_y \quad \text{mA/m} \quad \# \end{split}$$

# Solution (3)

หา  $ar{H}$  ได้

$$\vec{H} = \vec{H}_1 + \vec{H}_2$$
  
= 34.49 $\vec{a}_x + 3.81\vec{a}_y$  mA/m

#### Quiz 6

กำหนดให้  $I_1=1$  A ใหลในทิศทาง  $\bar{a}_x$  อยู่ที่ตำแหน่ง y=3 m, z=-5 m และ  $I_2=3$  A ใหลในทิศทาง $-\bar{a}_x$  อยู่ที่ตำแหน่ง y=5 m, z=4 m จงหา  $\bar{H}$  ที่พิกัด (0,2,1)

 $\vec{H}_1 = -25.81 \vec{a}_y - 4.30 \vec{a}_z \quad \text{mA/m}, \quad \vec{H}_2 = -79.58 \vec{a}_y + 79.58 \vec{a}_z \quad \text{mA/m}, \quad \vec{H} = -105.39 \vec{a}_y + 75.28 \vec{a}_z \quad \text{mA/m}$ 

| H. I. 1 A y = 3 m (0, 2, 1)                                                                                                                                                                            | H_ I,=3A y=5m                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H <sub>1</sub> I <sub>1</sub> =1A y=3m (0,2,1)<br>$\vec{a}_{y}$ Z=-5m                                                                                                                                  | H <sub>2</sub> I <sub>2</sub> =3A y=5m                                                                                                                                                                         |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                |
| a <sub>x</sub> ··a <sub>x</sub>                                                                                                                                                                        | a <sub>x</sub> -a <sub>x</sub>                                                                                                                                                                                 |
| $\vec{\rho} = (2-3)\vec{a}_y + (1+5)\vec{a}_z = -\vec{a}_y + 6\vec{a}_z$                                                                                                                               | $\vec{p} = (2-5)\vec{a}_y + (1-4)\vec{a}_z = -3\vec{a}_y - 3\vec{a}_z$                                                                                                                                         |
| $P = \sqrt{(-1)^2 + (6)^2} = \sqrt{37}$                                                                                                                                                                | $P = \int (-1)^2 + (-1)^2 = \sqrt{18}$                                                                                                                                                                         |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                |
| $\vec{\alpha}_{\rho}^{2} = \frac{-1}{\sqrt{57}} \vec{\alpha}_{\gamma} + \frac{6}{\sqrt{57}} \vec{\alpha}_{z}$                                                                                          | $\vec{\alpha}_{p} = \frac{1}{\sqrt{15}} \vec{\alpha}_{y} - \frac{3}{\sqrt{16}} \vec{\alpha}_{z}$                                                                                                               |
| $\hat{\alpha}_{\beta} = \hat{\alpha}_{\beta} \times \hat{\alpha}_{\beta} = \hat{\alpha}_{\beta} \times \left(\frac{-1}{\sqrt{3}7} \hat{\alpha}_{\gamma} + \frac{6}{\sqrt{5}7} \hat{\alpha}_{z}\right)$ | $\vec{\alpha}_{j} = \vec{\alpha}_{x} \times \vec{\alpha}_{j} = -\vec{\alpha}_{x} \times \left( -\frac{3}{11} \vec{\alpha}_{x} - \frac{3}{11} \vec{\alpha}_{z} \right)$                                         |
| 7 7 (15) 7 (3) -7                                                                                                                                                                                      |                                                                                                                                                                                                                |
| $z = \frac{6}{\sqrt{57}} \hat{\alpha}_{\gamma} = \frac{1}{\sqrt{57}} \hat{\alpha}_{z}$                                                                                                                 | = - 3 ay + 3 a 2                                                                                                                                                                                               |
| - I ( 6 5 7 1 5 )                                                                                                                                                                                      | $\vec{H}_2 = \frac{\vec{I}_2}{2\pi P} \vec{\alpha} \vec{\phi} = \frac{3}{2\pi \Gamma_{12}} \left( -\frac{3}{\sqrt{\Gamma_{12}}} \vec{\alpha}_{\gamma} + \frac{3}{\sqrt{\Gamma_{12}}} \vec{\alpha}_{2} \right)$ |
| $\vec{\mu}_1 \cdot \frac{\vec{I}_1}{2\pi P} \hat{\vec{a}}_{\phi} \cdot \frac{1}{2\pi \sqrt{57}} \left( -\frac{6}{\sqrt{57}} \hat{\vec{a}}_{\gamma} - \frac{1}{\sqrt{57}} \hat{\vec{a}}_{z} \right)$    | H2 2mp 2nsis ris 2)                                                                                                                                                                                            |
| H, = -25.91 a, -4.30 a, m//m                                                                                                                                                                           | 12 = -79.58 dy +79.58 dz m/m                                                                                                                                                                                   |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                |
| Hi= -25. 51 dy -4.30 d2 mA/m                                                                                                                                                                           |                                                                                                                                                                                                                |
| 112-79.58 ay+ 79.58 a2 mA/m                                                                                                                                                                            |                                                                                                                                                                                                                |
|                                                                                                                                                                                                        | นางสาว รับยมับ จิตศารางก์ 66010375                                                                                                                                                                             |
| H = -105.39 ฉิ้ง +75.28 ฉิ้อ mA/m                                                                                                                                                                      | นาย กฤษณ์ เกษมเทวันทร์ 660 11314                                                                                                                                                                               |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                |

#### Assignment 6

กำหนดให้กระแส  $I_1=2$  A ไหลในทิศทาง  $-\bar{a}_y$  อยู่ตำแหน่ง x=4 m, z=4 m, กระแส  $I_2=3$  A ไหลในทิศทาง  $-\bar{a}_y$  อยู่ตำแหน่ง x=5 m, z=-4 m, กระแส  $I_3=1$  A ไหลใน ทิศทาง  $\bar{a}_y$  อยู่ตำแหน่ง x=-5 m, z=3 m และกระแส  $I_4=4$  A ไหลในทิศทาง  $\bar{a}_y$  อยู่ตำแหน่ง x=-3 m, z=-4 m จงหาความเข้มสนามแม่เหล็ก  $\bar{H}$  ที่พิกัด (-1,0,1)

$$\begin{split} \vec{H}_1 &= 28.09 \vec{a}_x - 46.81 \vec{a}_z \quad \text{mA/m}, \\ \vec{H}_2 &= -39.14 \vec{a}_x - 46.96 \vec{a}_z \quad \text{mA/m}, \\ \vec{H}_3 &= -15.92 \vec{a}_x - 31.83 \vec{a}_z \quad \text{mA/m}, \\ \vec{H}_4 &= 109.76 \vec{a}_x - 43.90 \vec{a}_z \quad \text{mA/m}, \\ \vec{H} &= 82.79 \vec{a}_x - 169.50 \vec{a}_z \quad \text{mA/m} \end{split}$$

| (4) (-1,0,1)                                                                                                                                                   |                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                |                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                           |
| H <sub>1</sub> I <sub>1</sub> = 2 A x = 9 m<br>- \hat{a} <sub>2</sub> z = 9 m                                                                                  | H I2 = 3A ×= 5m - 2 - 4m                                                                                                                                                                                      | H 1,=1A x=-5m                                                                                                                                          | H <sub>q</sub> I <sub>q</sub> =4A x=-3m<br>a <sub>y</sub> z=-4m                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                           |
| åy · · · åy                                                                                                                                                    | ay · - ay                                                                                                                                                                                                     | å, . å,                                                                                                                                                | ā <sub>y</sub> ā <sub>y</sub>                                                                                                                                             |
| $\vec{p} = (-1-4)\vec{a}_x + (1-4)\vec{a}_z = -5\vec{a}_x - 3\vec{a}_z$                                                                                        | p= (-1-5)ax+(1+4)a2=-6ax+5a2                                                                                                                                                                                  | P = (-1+5) ax+(1->) az = 4ax-2az                                                                                                                       | p = (-1+3) a, +(1+4) a, = 2a, +5a,                                                                                                                                        |
| $\rho = \sqrt{(-5)^2 + (-5)^2} = \sqrt{34}$                                                                                                                    | P = V(-6)2 + 52 = J61                                                                                                                                                                                         | $\rho = \sqrt{4^2 + (-2)^2} = \sqrt{20}$                                                                                                               | P= \22+52 = J29                                                                                                                                                           |
| $\hat{\alpha}_{p} = -\frac{5}{55} \hat{\alpha}_{p} - \frac{3}{55} \hat{\alpha}_{p}$                                                                            | $\hat{\alpha}_{p} = -\frac{6}{\sqrt{61}} \hat{\alpha}_{p} + \frac{5}{\sqrt{61}} \hat{\alpha}_{2}$                                                                                                             | $\hat{\alpha}_p : \frac{4}{\sqrt{2}} \hat{\alpha}_n - \frac{2}{\sqrt{3}} \hat{\alpha}_2$                                                               | $\hat{\alpha}_{p} : \frac{2}{\sqrt{2}} \hat{\alpha}_{x} + \frac{5}{\sqrt{2}} \hat{\alpha}_{z}$                                                                            |
| a, a, na, -a, -(-5, a, -3, a)                                                                                                                                  | $\vec{\alpha}_{g} : \vec{\alpha}_{y} = \vec{\alpha}_{g} : -\vec{\alpha}_{y} : \left(-\frac{6}{56}, \vec{\alpha}_{y} + \frac{5}{56}, \vec{\alpha}_{z}\right)$                                                  | $\vec{\alpha}_{g}: \vec{\alpha}_{y} = \vec{\alpha}_{z}: \vec{\alpha}_{y} = \left(\frac{u}{120}\vec{\alpha}_{z} - \frac{2}{120}\vec{\alpha}_{z}\right)$ | a = a = a = a = a = a = a = a = a = a =                                                                                                                                   |
|                                                                                                                                                                |                                                                                                                                                                                                               | y ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                                                                                                                |                                                                                                                                                                           |
| = 13 0 7 - 154 0 2                                                                                                                                             | = - \frac{5}{61} \alpha - \frac{6}{61} \alpha \cdot 2                                                                                                                                                         | = 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                | $= \frac{5}{\sqrt{2}q} \hat{\alpha}_{x} - \frac{2}{\sqrt{2}q} \hat{\alpha}_{z}$                                                                                           |
| $\hat{\beta}_{1} = \frac{\Sigma_{1}}{2\pi p} = \frac{2}{2\pi \sqrt{59}} \times \left(\frac{3}{559}, \hat{\alpha}_{2} - \frac{5}{559}, \hat{\alpha}_{2}\right)$ | $\hat{\mu}_{2} = \frac{T_{2}}{2\pi p} = \frac{3}{2\pi J \tilde{\epsilon}_{1}} \times \left(-\frac{5}{J \tilde{\epsilon}_{1}} \tilde{\alpha}_{2} - \frac{6}{J \tilde{\epsilon}_{1}} \tilde{\alpha}_{2}\right)$ | $\hat{\mu}_3 = \frac{2}{2\pi p} = \frac{1}{2\pi \sqrt{20}} = \left(-\frac{2}{\sqrt{30}}\hat{\alpha}_p - \frac{4}{\sqrt{30}}\hat{\alpha}_z\right)$      | $\hat{\mathfrak{H}}_{q} = \frac{\mathbb{E}_{q}}{2\pi f} = \frac{q}{2\pi \sqrt{2q}} \times \left( \frac{5}{52q} \hat{\alpha}_{x} - \frac{2}{52q} \hat{\alpha}_{z} \right)$ |
| H, = 28.09 a = -46.81 a = mA/m                                                                                                                                 | H2= -39.14 a, -46.96 a mA/m                                                                                                                                                                                   | H = - 15.92 a = -31.83 a = mA/m                                                                                                                        | Hq= 109.76 ax -43.90 az mA/m                                                                                                                                              |
|                                                                                                                                                                |                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                           |
| ų₁ = 28.09 å <sub>x</sub> -46.81 å <sub>2</sub>                                                                                                                |                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                           |
| 1 -39,14 an -46,96 a                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                               | นายกฤษณ์ เกษมเทลนท์                                                                                                                                    |                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                               | 66011314                                                                                                                                               |                                                                                                                                                                           |
| H = 82.79 Å, -169.50 Å, 1                                                                                                                                      | nA/m                                                                                                                                                                                                          | <b>1000</b> 1171 1                                                                                                                                     |                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                           |