Введение в Теорию Типов Конспект лекций

Штукенберг Д. Г. Университет ИТМО

27 января 2023 г.

Содержание

1	Лег	Лекция 1				
	1.1	λ-исчисление	4			
	1.2	Представление некоторых функций в λ -исчислении	-			
	1.3	Черчевские нумералы	6			
2	Лен	кция 2	6			
	2.1	Формализация λ -термов, классы α -эквивалентности термов	6			
	2.2	Нормальная форма, λ -выражения без нормальной формы,				
		комбинаторы S,K,I,Ω	7			
	2.3	eta-редуцируемость				
	2.4	Ромбовидное свойство	7			
	2.5	Теорема Чёрча-Россера, следствие о единственности				
		нормальной формы	7			
	2.6	Нормальный и аппликативный порядок вычислений	10			
3	Лен	кция 3	10			
	3.1	Ү-комбинатор	10			
	3.2	Рекурсия	11			
	3.3	Парадокс Карри	12			
	3.4	Импликационный фрагмент интуиционистского исчисления				
		высказываний	13			
	3.5	Просто типизированное по Карри λ -исчисление	15			
	3.6	Отсутствие типа у Ү-комбинатора	15			
	3.7	Изоморфизм Карри-Ховарда	16			
4	Лен	кция 4	17			
	4.1	Расширение просто типизированного λ -исчисления				
		до изоморфного ИИВ	17			
	4.2	Изоморфизм Карри-Ховарда для расширения				
		просто типизированного λ -исчисления	20			
	4.3	Просто типизированное по Чёрчу λ -исчисление	20			
	4.4	Связь типизации по Чёрчу и по Карри	21			

9	Изоморфизм Карри-Ховарда (завершение),					
	Уни	фикация	2 2			
	5.1	Изоморфизм Карри-Ховарда	22			
	5.2	Уравнение в алгебраических термах $\Theta_1 = \Theta_2$				
		Система уравнений в алгебраических термах	23			
	5.3	Алгоритм Унификации. Определения				
	5.4	Алгоритм унификации				
6	Лек	ция 6				
	Рек	онструкция типов в просто типизированном				
	λ -ис	· · · · · · · · · · · · · · · · · · ·	28			
	6.1	Алгоритм вывода типов	28			
	6.2	Сильная и слабая нормализации	31			
	6.3	Выразимость комбинаторов	31			
7	Лек	ция 7	32			
	7.1	Импликационный фрагмент ИИП второго порядка	32			
	7.2	Теория Моделей	33			
	7.3	Система F	33			
8	Лек	ция 8	3 4			
	8.1	Экзистенциальные типы				
	8.2		35			
9	Лек	ция 9	35			
			36			
	0.1		36			
			36			
		9.1.3 Экзистенциальные типы в XM (TODO)				
			37			
	9.2		37			
		±	37			
	9.4	Рекурсивные типы				
	9.4	v I	40			
	9.0		41			
		9.9.1 П-типы и Д-типы	41			
10			42			
			42			
			43			
			44			
	10.4	Свойства	45			
11			47			
	11.1	Теорема Диаконеску	47			
12	Лек	ция 14	47			
	12.1	Индуктивные типы и равенства	47			
	12.2	Пути и равенство в Arend	48			
	12.3	Основные функции	49			
	12.4	Σ- и П-типы	50			

12.5 Prop, Universe	50
---------------------	----

1 Лекция 1

1.1 λ -исчисление

Определение 1.1 (λ -выражение). λ -выражение — выражение, удовлетворяющее грамматике:

$$\Phi ::= x | (\lambda x. \Phi) | (\Phi \Phi)$$

Иногда для упрощения записи мы будем опускать скобки. В этом случае перед разбором выражения следует расставить все опущенные скобки. При их расставлении будем придерживаться правил:

- 1. В аппликации расставляем скобки слева направо: $A \ B \ C \implies (A \ B) \ C$.
- 2. Абстракции жадные поглощают скобками все, что могут, до конца строки: $\lambda a. \lambda b. a \ b \implies \lambda a. (\lambda b. (a \ b)).$

Пример.
$$\lambda x.(\lambda f.((fx)(fx)\lambda y.(yf)))$$

Договоримся, что:

- Переменные x, a, b, c.
- Термы (части λ -выражения) X, A, B, C.
- Фиксированные переменные обозначаются буквами из начала алфавита, метапеременные из конца.

Есть понятия связанного и свободного вхождения переменной (аналогично исчислению предикатов).

Определение 1.2. Если вхождение x находится в области действия абстракции по x, то такое вхождение называется связанным, иначе вхождение называется свободным.

Определение 1.3. Терм Q называется свободным для подстановки в Φ вместо x, если после подстановки ни одно свободное вхождение переменной в Q не станет связанным.

Пример. $\lambda x.A$ связывает все свободные вхождения x в A.

Определение 1.4. Функция V(A) — множество переменных, входящих в A.

Определение 1.5. Функция FV(A) — множество свободных переменных, входящих в A:

$$\mathrm{FV}(A) = \begin{cases} \{x\} & \text{если } A \equiv x \\ \mathrm{FV}(P) \cup \mathrm{FV}(Q) & \text{если } A \equiv PQ \\ \mathrm{FV}(P) \backslash \{x\} & \text{если } A \equiv \lambda x.P \end{cases}$$

 λ -выражение можно понимать как функцию. Абстракция — это функция с аргументом, аппликация — это передача аргумента.

Определение 1.6 (α -эквивалентность). $A =_{\alpha} B$, если имеет место одно из следующих условий:

1.
$$A \equiv x$$
, $B \equiv y \times x \equiv y$.

2.
$$A \equiv P_1 Q_1$$
, $B \equiv P_2 Q_2$ if $P_1 =_{\alpha} P_2$, $Q_1 =_{\alpha} Q_2$.

3.
$$A \equiv \lambda x. P_1, \ B \equiv \lambda y. P_2$$
 и $P_1[x \coloneqq t] =_{\alpha} P_2[y \coloneqq t]$, где t — новая переменная.

Пример. $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx.$

Доказательство.

- 1. $tz =_{\alpha} tz$ верно по второму условию.
- 2. Тогда получаем, что $\lambda y.ty =_{\alpha} \lambda x.tx$ по третьему условию, так как из предыдущего пункта следует $ty[y \coloneqq z] =_{\alpha} tx[x \coloneqq z]$.
- 3. Из второго пункта получаем, что $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx$ по третьему условию, так как $\lambda y.xy[x:=t] =_{\alpha} \lambda x.yx[y:=t]$.

Определение 1.7 (β -редекс). β -редекс — выражение вида: ($\lambda x.A$) B

Определение 1.8 (β -редукция). $A \to_{\beta} B$, если имеет место одно из следующих условий:

1.
$$A\equiv P_1Q_1,\ B\equiv P_2Q_2$$
 и либо $P_1=_{\alpha}P_2,\ Q_1\to_{\beta}Q_2,$ либо $P_1\to_{\beta}P_2,\ Q_1=_{\alpha}Q_2$

- 2. $A \equiv (\lambda x.P)\,Q,\, B \equiv P[x \coloneqq Q]$ причем Q свободна для подстановки вместо x в P
- 3. $A \equiv \lambda x.P$, $B \equiv \lambda x.Q$ и $P \rightarrow_{\beta} Q$

Пример. $(\lambda x.x) y \rightarrow_{\beta} y$

Пример. $a((\lambda x.x)y) \rightarrow_{\beta} ay$

1.2 Представление некоторых функций в λ -исчислении

Логические значения легко представить в терминах λ -исчисления. В самом деле, положим:

- True $\equiv \lambda a \lambda b.a$
- False $\equiv \lambda a \lambda b.b$

Также мы можем выражать и более сложные функции

Определение 1.9. If $\equiv \lambda c.\lambda t.\lambda e.(ct)e$

Пример. If T $a \ b \rightarrow_{\beta} a$

Доказательство.

$$((\lambda c.\lambda t.\lambda e.(ct)e) \ \lambda a\lambda b.a) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.(\lambda a\lambda b.a) \ t \ e) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.(\lambda b.t) \ e) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.t) \ a \ b \rightarrow_{\beta} (\lambda e.a) \ b \rightarrow_{\beta} a$$

Как мы видим, If T действительно возвращает результат первой ветки. Другие логические операции:

Not =
$$\lambda a.a$$
 F T And = $\lambda a.\lambda b.a$ b F Or = $\lambda a.\lambda b.a$ T b

1.3 Черчевские нумералы

Определение 1.10 (черчевский нумерал).

$$\overline{n} = \lambda f. \lambda x. f^n x$$
, где $f^n x = \begin{cases} f(f^{n-1}x) & \text{при } n > 0 \\ x & \text{при } n = 0 \end{cases}$.

Пример.

$$\overline{3} = \lambda f. \lambda x. f(f(fx))$$

Несложно определить прибавление единицы к такому нумералу:

$$(+1) = \lambda n.\lambda f.\lambda x.f(nfx)$$

Арифметические операции:

- 1. IsZero = $\lambda n.n(\lambda x. F) T$
- 2. Add = $\lambda a.\lambda b.\lambda f.\lambda x.a f(b f x)$
- 3. Pow = $\lambda a.\lambda b.b$ (Mul a) $\overline{1}$
- 4. IsEven = $\lambda n.n$ Not T
- 5. Mul = $\lambda a. \lambda b. a$ (Add b) $\overline{0}$

Для того, чтобы определить (-1), сначала определим пару:

$$\langle a, b \rangle = \lambda f. f \, a \, b$$
 First $= \lambda p. p \, T$ Second $= \lambda p. p \, F$

Затем n раз применим функцию $f(\langle a,b\rangle) = \langle b,b+1\rangle$ и возьмём первый элемент пары:

$$(-1) = \lambda n. \operatorname{First}(n(\lambda p. \langle (\operatorname{Second} p), (+1) (\operatorname{Second} p) \rangle) \langle \overline{0}, \overline{0} \rangle)$$

2 Лекция 2

2.1 Формализация λ -термов, классы α -эквивалентности термов

Определение 2.1 (λ -терм). Рассмотрим классы эквивалентности $[A]_{=_{\alpha}}$. Будем говорить, что $[A] \to_{\beta} [B]$, если существуют $A' \in [A]$ и $B' \in [B]$, что $A' \to_{\beta} B'$.

Лемма 2.1. $(=_{\alpha})$ — отношение эквивалентности.

Пусть в А есть β -редекс $(\lambda x.P)Q$, но Q не свободен для подстановки вместо x в P, тогда найдем $y \notin V[P], y \notin V[Q]$. Сделаем замену P[x := y]. Тогда замена P[x := y][y := Q] допустима. То есть, можно сказать, что мы просто переименовали переменную x в P и получили свободу для подстановки, тем самым получив возможность редукции.

Лемма 2.2. $P[x := Q] =_{\alpha} P[x := y][y := Q]$, если замена допустима.

2.2 Нормальная форма, λ -выражения без нормальной формы, комбинаторы $S,\ K,\ I,\ \Omega$

Определение 2.2. λ -выражение A находится в нормальной форме, если оно не содержит β -редексов.

Определение 2.3. A — нормальная форма B, если существует последовательность термов $A_1 \dots A_n$ такая, что $B =_{\alpha} A_1 \to_{\beta} A_2 \to_{\beta} \dots \to_{\beta} A_n =_{\alpha} A$ и A находится в нормальной форме.

Определение 2.4. Комбинатор — λ -выражение без свободных переменных.

Определение 2.5.

- $S \equiv \lambda x. \lambda y. \lambda z. (xz)(yz)$ (Substitution)
- $K \equiv \lambda a.\lambda b.a$ (Konstanz)
- $I \equiv \lambda x.x$ (Identitant)
- $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$

Лемма 2.3. Ω — не имеет нормальной формы.

Доказательство. Ω имеет единственный β -редекс, где $A \equiv xx$, $B \equiv (\lambda x.xx)$. Тогда единственный возможный путь редукции — подставить B вместо x в A. Но тогда мы получим Ω . Следовательно, у Ω нет нормальной формы, так как в полученном выражении у нас всегда будет β -редекс.

2.3 β -редуцируемость

Определение 2.6. Будем говорить, что $A woheadrightarrow_{\beta} B$, если \exists такие $X_1 \dots X_n$, что $A =_{\alpha} X_1 woheadrightarrow_{\beta} X_2 woheadrightarrow_{\beta} X_{n-1} woheadrightarrow_{\beta} X_n =_{\alpha} B$.

 $(\twoheadrightarrow_{\beta})$ — рефлексивное и транзитивное замыкание $(\twoheadrightarrow_{\beta})$. $(\twoheadrightarrow_{\beta})$ не обязательно приводит к нормальной форме

Пример. $\Omega \twoheadrightarrow_{\beta} \Omega$

2.4 Ромбовидное свойство

Определение 2.7 (Ромбовидное свойство). Отношение R обладает ромбовидным свойством, если для любых a,b,c таких, что $aRb,\ aRc,\ b\neq c$, существует d, что bRd и cRd.

Пример. (\leq) на множестве натуральных чисел обладает ромбовидным свойством, (>) на множестве натуральных чисел не обладает ромбовидным свойством.

2.5 Теорема Чёрча-Россера, следствие о единственности нормальной формы

Теорема 2.4 (Черча-Россера). $(\twoheadrightarrow_{\beta})$ обладает ромбовидным свойством.

Следствие 2.1. Если у A есть нормальная форма, то она единственная с точностью до $(=_{\alpha})$ (переименования переменных).

Доказательство. Пусть $A \twoheadrightarrow_{\beta} B$ и $A \twoheadrightarrow_{\beta} C$. B, C — нормальные формы и $B \neq_{\alpha} C$. Тогда по теореме Черча-Россера $\exists D \colon B \twoheadrightarrow_{\beta} D$ и $C \twoheadrightarrow_{\beta} D$. Тогда $B =_{\alpha} D$ и $C =_{\alpha} D \Rightarrow B =_{\alpha} C$. Противоречие.

Лемма 2.5. Если B — нормальная форма, то не существует Q такой, что $B \to_{\beta} Q$. Значит если $B \to_{\beta} Q$, то количество шагов редукции равно 0.

Лемма 2.6. Если R — обладает ромбовидным свойством, то и R^* (транзитивное, рефлексивное замыкание R) им обладает.

Доказательство. Пусть $M_1R^*M_n$ и M_1RN_1 . Тогда существуют такие $M_2\dots M_{n-1}$, что $M_1RM_2\dots M_{n-1}RM_n$. Так как R обладает ромбовидным свойством, M_1RM_2 и M_1RN_1 , то существует такое N_2 , что N_1RN_2 и M_2RN_2 . Аналогично, существуют такие $N_3\dots N_n$, что $N_{i-1}RN_i$ и M_iRN_i . Мы получили такое N_n , что $N_1R^*N_n$ и $M_nR^*N_n$.

Пусть теперь $M_{1,1}R^*M_{1,n}$ и $M_{1,1}R^*M_{m,1}$, то есть имеются $M_{1,2}\dots M_{1,n-1}$ и $M_{2,1}\dots M_{m-1,1}$, что $M_{1,i-1}RM_{1,i}$ и $M_{i-1,1}RM_{i,1}$. Тогда существует такое $M_{2,n}$, что $M_{2,1}R^*M_{2,n}$ и $M_{1,n}R^*M_{2,n}$. Аналогично, существуют такие $M_{3,n}\dots M_{m,n}$, что $M_{i,1}R^*M_{i,n}$ и $M_{1,n}R^*M_{i,n}$. Тогда $M_{1,n}R^*M_{m,n}$ и $M_{m,1}R^*M_{m,n}$.

Лемма 2.7 (Грустная лемма). (\rightarrow_{β}) не обладает ромбовидным свойством.

Доказательство. Пусть $A = (\lambda x. xx)(\mathcal{I}\mathcal{I})$. Покажем, что в таком случае не будет выполняться ромбовидное свойство:

Рис. 1: Нет такого D, что $B \rightarrow_{\beta} D$ и $C \rightarrow_{\beta} D$.

Определение 2.8 (Параллельная β -редукция). $A \rightrightarrows_{\beta} B$, если

- 1. $A =_{\alpha} B$
- 2. $A \equiv P_1Q_1$, $B \equiv P_2Q_2$ if $P_1 \rightrightarrows_{\beta} P_2$, $Q_1 \rightrightarrows_{\beta} Q_2$
- 3. $A \equiv \lambda x. P_1, B \equiv \lambda x. P_2$ и $P_1 \rightrightarrows_{\beta} P_2$
- 4. $A =_{\alpha} (\lambda x. P_1)Q_1, B =_{\alpha} P_2[x \coloneqq Q_2]$ причем Q_2 свободна для подстановки вместо x в P_2 и $P_1 \rightrightarrows_{\beta} P_2, Q_1 \rightrightarrows_{\beta} Q_2$

Лемма 2.8. Если $P_1 \rightrightarrows_{\beta} P_2$ и $Q_1 \rightrightarrows_{\beta} Q_2$, то $P_1[x \coloneqq Q_1] \rightrightarrows_{\beta} P_2[x \coloneqq Q_2]$

 $\ensuremath{\mathcal{A}\!\mathit{okaзательство}}$. Будем доказывать индукцией по определению $\ensuremath{\Rightarrow_{\!\beta}}$. Рассмотрим случаи:

• Пусть $P_1 =_{\alpha} P_2$. Тогда лемма легко доказывается индукцией по структуре выражения.

- Пусть $P_1 \equiv A_1B_1$, $P_2 \equiv A_2B_2$. По определению (\Rightarrow_{β}) $A_1 \Rightarrow_{\beta} A_2$ и $B_1 \Rightarrow_{\beta} B_2$. Рассмотрим два случая:
 - 1. $x \in FV(A_1)$. По индукционному предположению $A_1[x := Q_1] \rightrightarrows_{\beta} A_2[x := Q_2]$. Тогда $A_1[x := Q_1]B_1 \rightrightarrows_{\beta} A_2[x := Q_2]B_2$. Тогда $A_1B_1[x := Q_1] \rightrightarrows_{\beta} A_2B_2[x := Q_2]$.
 - 2. $x \in FV(B_1)$. По индукционному предположению $B_1[x := Q_1] \Rightarrow_{\beta} B_2[x := Q_2]$. Тогда $A_1B_1[x := Q_1] \Rightarrow_{\beta} A_2B_2[x := Q_2]$.
- Пусть $P_1 \equiv \lambda y. A_1$, $P_2 \equiv \lambda y. A_2$. По определению $(\Rightarrow_{\beta}) A_1 \Rightarrow_{\beta} A_2$. Тогда по индукционному предположению $A_1[x \coloneqq Q_1] \Rightarrow_{\beta} A_2[x \coloneqq Q_2]$. Тогда $\lambda y. (A_1[x \coloneqq Q_1]) \Rightarrow_{\beta} \lambda y. (A_2[x \coloneqq Q_2])$ по определению (\Rightarrow_{β}) . Следовательно $\lambda y. A_1[x \coloneqq Q_1] \Rightarrow_{\beta} \lambda y. A_2[x \coloneqq Q_2]$ по определению подстановки.
- Пусть $P_1 =_{\alpha} (\lambda y. A_1) B_1$, $P_2 =_{\alpha} A_2[y \coloneqq B_2]$ и $A_1 \rightrightarrows_{\beta} A_2$, $B_1 \rightrightarrows_{\beta} B_2$. По индукционному предположению получаем, что $A_1[x \coloneqq Q_1] \rightrightarrows_{\beta} A_2[x \coloneqq Q_2]$, $B_1[x \coloneqq Q_1] \rightrightarrows_{\beta} B_2[x \coloneqq Q_2]$. Следовательно, по определению $(\rightrightarrows_{\beta})$ получаем, что $(\lambda y. A_1[x \coloneqq Q_1]) B_1[x \coloneqq Q_1] \rightrightarrows_{\beta} A_2[y \coloneqq B_2][x \coloneqq Q_2]$

Лемма 2.9. (\Rightarrow_{β}) обладает ромбовидным свойством.

Доказательство. Будем доказывать индукцией по определению $(\rightrightarrows_{\beta})$. Покажем, что если $M \rightrightarrows_{\beta} M_1$ и $M \rightrightarrows_{\beta} M_2$, то существует M_3 , что $M_1 \rightrightarrows_{\beta} M_3$ и $M_2 \rightrightarrows_{\beta} M_3$. Рассмотрим случаи:

- Если $M \equiv M_1$, то просто возьмем $M_3 \equiv M_2$.
- Если $M \equiv \lambda x.P$, $M_1 \equiv \lambda x.P_1$, $M_2 \equiv \lambda x.P_2$ и $P \Rightarrow_{\beta} P_1$, $P \Rightarrow_{\beta} P_2$, то по предположению индукции существует P_3 , что $P_1 \Rightarrow_{\beta} P_3$, $P_2 \Rightarrow_{\beta} P_3$, тогда возьмем $M_3 \equiv \lambda x.P_3$.
- Если $M \equiv PQ, M_1 \equiv P_1Q_1$ и по определению $(\Rightarrow_{\beta}) P \Rightarrow_{\beta} P_1, Q \Rightarrow_{\beta} Q_1$, то рассмотрим два случая:
 - 1. $M_2 \equiv P_2 Q_2$. Тогда по предположению индукции существует P_3 , что $P_1 \rightrightarrows_{\beta} P_3, P_2 \rightrightarrows_{\beta} P_3$. Аналогично для Q. Тогда возьмем $M_3 \equiv P_3 Q_3$.
 - 2. $P \equiv \lambda x. P'$ значит $P_1 \equiv \lambda x. P_1'$ и $P' \rightrightarrows_{\beta} P_1'$. Пусть тогда $M_2 \equiv P_2[x \coloneqq Q_2]$, по определению $(\rightrightarrows_{\beta}) P' \rightrightarrows_{\beta} P_2, Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме 2.8 существует $M_3 \equiv P_3[x \coloneqq Q_3]$ такой, что $P_1' \rightrightarrows_{\beta} P_3, \ Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3, \ Q_2 \rightrightarrows_{\beta} Q_3$.
- Если $M \equiv (\lambda x.P)Q, M_1 \equiv P_1[x \coloneqq Q_1]$ и $P \rightrightarrows_{\beta} P_1, Q \rightrightarrows_{\beta} Q_1$, то рассмотрим случаи:
 - 1. $M_2 \equiv (\lambda x. P_2)Q_2$, $P \rightrightarrows_{\beta} P_2$, $Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме 2.8 существует такой $M_3 \equiv P_3[x \coloneqq Q_3]$, что $P_1 \rightrightarrows_{\beta} P_3$, $Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3$, $Q_2 \rightrightarrows_{\beta} Q_3$.
 - 2. $M_2 \equiv P_2[x \coloneqq Q_2], \ P \rightrightarrows_{\beta} P_2, \ Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме 2.8 существует такой $M_3 \equiv P_3[x \coloneqq Q_3],$ что $P_1 \rightrightarrows_{\beta} P_3, \ Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3, \ Q_2 \rightrightarrows_{\beta} Q_3$.

Лемма 2.10.

1. $(\Rightarrow_{\beta})^* \subseteq (\rightarrow_{\beta})^*$

$$2. \ (\rightarrow_{\beta})^* \subseteq (\rightrightarrows_{\beta})^*$$

Следствие 2.2.
$$(\rightarrow_{\beta})^* = (\rightrightarrows_{\beta})^*$$

Из приведенных выше лемм и следствия докажем теорему Черча-Россера.

Доказательство. $(→_{\beta})^* = (→_{\beta})$. Тогда $(→_{\beta}) = (⇒_{\beta})^*$. Значит из того, что $(⇒_{\beta})$ обладает ромбовидным свойством и леммы 2.6, следует, что $(→_{\beta})$ обладает ромбовидным свойством.

2.6 Нормальный и аппликативный порядок вычислений

Пример. Выражение $KI\Omega$ можно редуцировать двумя способами:

1.
$$\mathcal{K} \mathcal{I} \Omega =_{\alpha} ((\lambda a.\lambda b.a) \mathcal{I})\Omega \to_{\beta} (\lambda b.\mathcal{I})\Omega \to_{\beta} \mathcal{I}$$

2.
$$\mathcal{K}\mathcal{I}\Omega =_{\alpha} ((\lambda a.\lambda b.a)\mathcal{I})((\lambda x.x \ x)(\lambda x.x \ x)) \rightarrow_{\beta} ((\lambda a.\lambda b.a)\mathcal{I})((\lambda x.x \ x)(\lambda x.x \ x)) \rightarrow_{\beta} \mathcal{K}\mathcal{I}\Omega$$

Как мы видим, в первом случае мы достигли нормальной формы, в то время как во втором мы получили бесконечную редукцию. Разница двух этих способов в порядке редукции. Первый называется нормальный порядок, а второй аппликативный.

Определение 2.9 (нормальный порядок редукции). Редукция самого левого β -редекса.

Определение 2.10 (аппликативный порядок редукции). Редукция самого левого β -редекса из самых вложенных.

Теорема 2.11 (Приводится без доказательства). Если нормальная форма существует, она может быть достигнута нормальным порядком редукции.

Нормальный порядок хоть и приводит к нормальной форме, если она существует, но бывают ситуации, в которых аппликативный порядок вычисляется быстрее, чем нормальный.

Пример. Рассмотрим λ -выражение ($\lambda x.x \ x \ x)(\mathcal{I}\mathcal{I}$). Попробуем редуцировать его нормальным порядком:

$$(\lambda x.x \ x \ x)(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} (\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} (\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} \dots \rightarrow_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} \dots \rightarrow_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} \dots \rightarrow_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} \dots \rightarrow_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} \dots \rightarrow_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}$$

Как мы увидим, в данной ситуации аппликативный порядок редукции оказывается значительно эффективней:

$$(\lambda x.x \ x \ x)(\mathcal{I}\mathcal{I}) \rightarrow_{\beta} (\lambda x.x \ x \ x)\mathcal{I} \rightarrow_{\beta} \mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I} \rightarrow_{\beta} \mathcal{I}\mathcal{I}\mathcal{I} \rightarrow_{\beta} \mathcal{I}\mathcal{I} \rightarrow_{\beta} \mathcal{I}\mathcal{I}$$

3 Лекция 3

3.1 Ү-комбинатор

Определение 3.1. Комбинатором называется λ -выражение, не имеющее свободных переменных

Определение 3.2. (Y-комбинатор)

$$Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$$

Очевидно, У-комбинатор является комбинатором.

```
Теорема 3.1. Yf =_{\beta} f(Yf)
```

Доказательство. β -редуцируем выражение Yf

```
=_{\beta} (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))f
=_{\beta} (\lambda x.f(xx))(\lambda x.f(xx))
=_{\beta} f((\lambda x.f(xx))(\lambda x.f(xx)))
=_{\beta} f(Yf)
```

Так как при второй редукции мы получили, что $Y f =_{\beta} (\lambda x. f(xx))(\lambda x. f(xx))$

Следствием этого утверждения является теорема о неподвижной точке для бестипового λ -исчисления

Теорема 3.2. В λ -исчислении каждый терм f имеет неподвижную точку, то есть такое p, что f p = $_{\beta}$ p

Доказательство. Возьмём в качестве p терм Yf. По предыдущей теореме, $f(Yf) =_{\beta} Yf$, то есть Yf является неподвижной точкой для f. Для любого терма f существует терм Yf, значит, у любого терма есть неподвижная точка.

3.2 Рекурсия

С помощью Y-комбинатора можно определять рекурсивные функции, например, функцию, вычисляющую факториал Чёрчевского нумерала. Для этого определим вспомогательную функцию

```
fact' \equiv \lambda f.\lambda n.isZero\ n\ \overline{1}(mul\ n\ f((-1)n)) Тогда fact \equiv Y fact'
```

Заметим, что fact $\overline{n} =_{\beta} fact'$ (Y fact') $\overline{n} =_{\beta} fact'$ fact \overline{n} , то есть в тело функции fact' вместо функции f будет подставлена fact (заметим, что это значит, что именно функция fact будет применена к $\overline{n-1}$, то есть это соответствует нашим представлениям о рекурсии).

Для понимания того, как это работает, посчитаем $fact \bar{2}$

```
fact \ \overline{2}
=_{\beta} Y \ fact' \ \overline{2}
=_{\beta} fact'(Y \ fact') \overline{2}
=_{\beta} (\lambda f. \lambda n. is Zero \ \overline{1} (mul \ n \ f((-1)n))(Y \ fact') \overline{2}
=_{\beta} is Zero \ \overline{2} \ \overline{1} (mul \ \overline{2} \ ((Y \ fact')((-1) \overline{2})))
=_{\beta} mul \ \overline{2} \ ((Y \ fact')((-1) \overline{2}))
=_{\beta} mul \ \overline{2} \ (Y \ fact' \ \overline{1})
=_{\beta} mul \ \overline{2} \ (fact' \ (Y \ fact' \ \overline{1}))
```

Раскрывая fact' $(Y\ fact'\ \overline{1})$ так же, как мы раскрывали fact' $(Y\ fact'\ \overline{2})$, получаем

$$=_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ (Y \ fact' \ \overline{0}))$$

Посчитаем $(Y fact' \overline{0})$

$$(Y \ fact' \ \overline{0})$$

$$=_{\beta} fact' \ (Y \ fact') \ \overline{0}$$

$$=_{\beta} (\lambda f. \lambda n. is Zero \ n \ \overline{1}(mul \ n \ f((-1)n))) \ (Y \ fact') \ \overline{0}$$

$$=_{\beta} is Zero \ \overline{0} \ \overline{1}(mul \ \overline{0} \ ((Y \ fact'))((-1)\overline{0})) =_{\beta} \overline{1}$$

Таким образом,

$$\begin{array}{c} fact \ \overline{2} \\ =_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ (Y \ fact' \ \overline{0})) \\ =_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ \overline{1}) =_{\beta} mul \ \overline{2} \ \overline{1} =_{\beta} \overline{2} \end{array}$$

3.3 Парадокс Карри

Попробуем построить логику на основе λ -исчисления. Введём логический символ \rightarrow . Будем требовать от этого исчисления наличия следующих схем аксиом:

$$1. \vdash A \rightarrow A$$

$$2. \vdash (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

3.
$$\vdash A =_{\beta} B$$
, тогда $A \to B$

А также правила вывода МР:

$$\frac{\vdash A \to B \qquad \vdash A}{\vdash B}$$

Не вводя дополнительные правила вывода и схемы аксиом, покажем, что данная логика является противоречивой. Для чего введём следующие условные обозначения:

$$F_{\alpha} \equiv \lambda x.(x \ x) \rightarrow \alpha$$

 $\Phi_{\alpha} \equiv F_{\alpha} \ F_{\alpha} \equiv (\lambda x.(x \ x) \rightarrow \alpha) \ (\lambda x.(x \ x) \rightarrow \alpha)$
Редуцируя Φ_{α} , получаем

$$\Phi_{\alpha}$$

$$=_{\beta} (\lambda x.(x \ x) \to \alpha) (\lambda x.(x \ x) \to \alpha)$$

$$=_{\beta} (\lambda x.(x \ x) \to \alpha) (\lambda x.(x \ x) \to \alpha) \to \alpha$$

$$=_{\beta} \Phi_{\alpha} \to \alpha$$

Теперь докажем противоречивость введённой логики. Для этого докажем, что в ней выводимо любое утверждение.

$$\begin{array}{lll} 1) \vdash \Phi_{\alpha} \to \Phi_{\alpha} \to \alpha & \text{Так как } \Phi_{\alpha} =_{\beta} \Phi_{\alpha} \to \alpha \\ 2) \vdash (\Phi_{\alpha} \to \Phi_{\alpha} \to \alpha) \to (\Phi_{\alpha} \to \alpha) & \text{Так как } \vdash (A \to (A \to B)) \to (A \to B) \\ 3) \vdash \Phi_{\alpha} \to \alpha & \text{MP 1, 2} \\ 4) \vdash (\Phi_{\alpha} \to \alpha) \to \Phi_{\alpha} & \text{Так как } \vdash \Phi_{\alpha} \to \alpha =_{\beta} \Phi_{\alpha} \\ 5) \vdash \Phi_{\alpha} & \text{MP 3, 4} \\ 6) \vdash \alpha & \text{MP 3, 5} \end{array}$$

Таким образом, введённая логика оказывается противоречивой.

3.4 Импликационный фрагмент интуиционистского исчисления высказываний

Рассмотрим подмножество ИИВ, со следующей грамматикой:

$$\Phi ::= x \mid (\Phi \to \Phi)$$

То есть состоящее только из переменных и импликаций.

Добавим в него одну схему аксиом

$$\Gamma, \varphi \vdash \varphi$$

И два правила вывода

1. Правило введения импликации:

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

2. Правило удаления импликации:

$$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

Пример. Докажем $\vdash \varphi \rightarrow \psi \rightarrow \varphi$

$$\frac{\varphi,\psi \vdash \varphi}{\varphi \vdash \psi \to \varphi} \text{ (Введение импликации)} \\ \frac{\varphi \vdash \psi \to \varphi}{\vdash \varphi \to (\psi \to \varphi)} \text{ (Введение импликации)}$$

Пример. Докажем $\alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \gamma$

$$\frac{\alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \alpha \to \beta \to \gamma \qquad \alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \alpha}{\alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \beta \to \gamma} \qquad \qquad \alpha \to \beta \to \gamma, \alpha, \ \beta \vdash \beta \\ \hline \alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \gamma$$

Замечание 3.1. В дальнейшем символом \vdash_{\rightarrow} будем обозначать доказуемость в импликационном фрагменте.

Теорема 3.3. Замкнутость И.Ф.ИИВ

Если Γ и φ состоят только из импликаций, то $\Gamma \vdash \varphi$ равносильна $\Gamma \vdash \to \varphi$.

Лемма 3.4. Если $\Gamma \vdash \varphi$, то в любой модели Крипке из $\Vdash \Gamma$ следует $\Vdash \varphi$

Доказательство.

Пусть $\Gamma \vdash \varphi$. Тогда $\vdash \&\Gamma \to \varphi$, где $\&\Gamma$ — конъюнкция всех утверждений в Γ . По корректности моделей Крипке, будет выполнено $\Vdash \&\Gamma \to \varphi$. Переписывая & и \to по определению, получаем $\Vdash \Gamma \implies \Vdash \varphi$.

Теорема 3.5. $\Gamma \vdash \rightarrow \varphi$ т.и.т.т. в любой модели Крипке из $\vdash \Gamma$ следует $\vdash \varphi$

Доказательство.

• (\Rightarrow) Очевидно по лемме 3.4.

• (\Leftarrow) Пусть в любой модели Крипке из $\Vdash \Gamma$ следует $\Vdash \varphi$. Докажем $\Gamma \vdash_{\to} \varphi$.

Выберем подходящую модель Крипке. Напомним, что моделью Крипке называется тройка $\langle C, \geq, \Vdash \rangle$, где C — множество миров, \geq — отношение частичного порядка на C, \Vdash — отношение вынужденности переменной.

Построим модель Крипке $C = \langle C, \geq, \Vdash \rangle$.

Пусть $C = \{ \Delta \mid \Gamma \subseteq \Delta, \Delta \text{ замкнут относительно } \vdash_{\rightarrow} \}$. Δ замкнут относительно доказуемости, когда для любого φ если $\Delta \vdash_{\rightarrow} \varphi$, то $\varphi \in \Delta$.

 $C_1 \geqslant C_2$, если $C_1 \supseteq C_2$.

 $\Delta \Vdash \alpha$, если $\alpha \in \Delta$, α – переменная.

Лемма 3.6. В модели $\mathcal{C} \Delta \Vdash \varphi$ т.и.т.т. $\varphi \in \Delta$

Доказательство. Индукция по структуре φ .

База. $\varphi \equiv \alpha$. $\Delta \Vdash \alpha \Leftrightarrow \alpha \in \Delta$ следует из определения вынужденности.

Индукционный переход. $\varphi \equiv \psi \rightarrow \sigma$

Индукционное предположение: $\forall \Delta \in C : \Delta \Vdash \psi \Leftrightarrow \psi \in \Delta, \Delta \Vdash \sigma \Leftrightarrow \sigma \in \Delta.$

Докажем, что $\Delta \Vdash \psi \to \sigma \Leftrightarrow \psi \to \sigma \in \Delta$.

- (⇒) Пусть $\Delta \Vdash \psi \rightarrow \sigma$.

Рассмотрим мир $\Pi = (\Delta \cup \{\psi\})^*$. $\Pi \Vdash \psi \to \sigma$, т.к. $\Delta \leqslant \Pi$.

 $\psi \in \Pi$. Тогда, по инд. пред., $\Pi \Vdash \psi$. Значит, $\Pi \Vdash \sigma$. В самом деле, из определения вынужденности импликации в Π следует, что если $\Pi \Vdash \psi$, то $\Pi \Vdash \sigma$.

По инд. пред. заключаем $\sigma \in \Pi$, т.е. $\Pi \vdash_{\to} \sigma$, т.к. Π – замкнут по доказуемости. Ясно, что $\Delta, \psi \vdash_{\to} \sigma$. Действительно, в гипотезах доказательства $\Pi \vdash_{\to} \sigma$ использовалось не все бесконечное множество Π , а лишь конечный набор утверждений из него. Каждое такое утверждение выводится из Δ, ψ , потому что Π - замыкание $\Delta \cup \{\psi\}$.

Из $\Delta, \psi \vdash \to \sigma$ следует $\Delta \vdash \to \psi \to \sigma$. Таким образом, $\psi \to \sigma \in \Delta$.

- (\Leftarrow) Пусть ψ → $\sigma \in \Delta$.

Рассмотрим произвольный мир $\Pi: \Delta \leqslant \Pi \land \Pi \Vdash \psi$. По инд. пред. $\psi \in \Pi$. $\psi \to \sigma \in \Pi$, т.к. $\Delta \subseteq \Pi$. $\Pi \vdash_{\to} \psi$, $\Pi \vdash_{\to} \psi \to \sigma$. Очевидно, $\Pi \vdash_{\to} \sigma$. $\sigma \in \Pi$. Тогда, по инд. пред., $\Pi \Vdash \sigma$. Таким образом, $\Pi \Vdash \psi \to \sigma$, а следовательно, $\Delta \Vdash \psi \to \sigma$.

 $\mathcal{C} \Vdash \Gamma$, т.к. любой мир модели \mathcal{C} – надмножество Γ . В любой модели Крипке из $\Vdash \Gamma$ следует $\Vdash \varphi$. В частности, это выполнено в модели \mathcal{C} . Значит $\mathcal{C} \Vdash \varphi$, в том числе $\Gamma^* \Vdash \varphi$. По лемме 3.6 $\varphi \in \Gamma^*$, то есть $\Gamma^* \vdash_{\rightarrow} \varphi$. Следовательно, $\Gamma \vdash_{\rightarrow} \varphi$.

Теперь можем доказать теорему о замкнутости ИФИИВ.

Доказательство.

Следствие $\Gamma \vdash \rightarrow \varphi \Rightarrow \Gamma \vdash \varphi$ очевидно.

Пусть $\Gamma \vdash \varphi$. По 3.4 получаем, что в любой модели Крипке из $\Vdash \Gamma$ следует $\Vdash \varphi$. Отсюда, по теореме 3.5, доказывается $\Gamma \vdash_{\rightarrow} \varphi$.

Замечание 3.2. Заметим, что комбинаторы S и K соответствуют первым двум аксиомам пропозициональной логики из которых состоит И.Ф. Поэтому замкнутость ИФ означает выразимость любого терма через S и K.

3.5 Просто типизированное по Карри λ -исчисление

Определение 3.3. Тип в просто типизированном λ -исчислении по Карри — это либо маленькая греческая буква $(\alpha, \phi, \theta, \ldots)$, либо импликация $(\theta_1 \to \theta_2)$

Таким образом, $\Theta ::= \theta_i | (\Theta \to \Theta)$

Импликация при этом считается правоассоциативной операцией.

Определение 3.4. Язык просто типизированного λ -исчисления — это язык бестипового λ -исчисления.

Определение 3.5. Контекст Γ — это список выражений вида A : θ , где A — λ -терм, а θ — тип.

Определение 3.6. Просто типизированное λ -исчисление по Карри.

Рассмотрим исчисление с единственной схемой аксиом:

$$\Gamma, x : \theta \vdash x : \theta$$
, если x не входит в Γ

И следующими правилами вывода

1. Правило типизации абстракции

$$\frac{\Gamma,x:\varphi\vdash P:\psi}{\Gamma\vdash (\lambda\;x.\;P):\varphi\to\psi}$$
если x не входит в Γ

2. Правило типизации аппликации:

$$\frac{\Gamma \vdash P : \varphi \to \psi \qquad \Gamma \vdash Q : \varphi}{\Gamma \vdash PQ : \psi}$$

Если λ -выражение типизируется с использованием этих двух правил и одной схемы аксиом, то будем говорить, что оно типизируется по Карри.

Пример. Докажем $\vdash \lambda x. \lambda y. x: \alpha \rightarrow \beta \rightarrow \alpha$

$$\frac{x:\alpha,y:\beta\vdash x:\alpha}{x:\alpha\vdash\lambda\;y.\;x:\beta\to\alpha}\;\text{(Правило типизации абстракции)}\\ \vdash\lambda\;x.\;\lambda\;y.\;x:\alpha\to\beta\to\alpha\;\;\text{(Правило типизации абстракции)}$$

Пример. Докажем $\vdash \lambda \ x. \ \lambda \ y. \ x \ y: (\alpha \to \beta) \to \alpha \to \beta$

$$\frac{x:\alpha \to \beta, y:\alpha \vdash x:\alpha \to \beta \qquad x:\alpha \to \beta, y:\alpha \vdash y:\alpha}{x:\alpha \to \beta, y:\alpha \vdash x:\alpha \to \beta} \\ \frac{x:\alpha \to \beta, y:\alpha \vdash x:\alpha \to \beta}{x:\alpha \to \beta \vdash \lambda y. x:\alpha \to \beta} \\ \vdash \lambda x. \lambda y. x: x:x:\alpha \to \beta \to \alpha \to \beta}$$

3.6 Отсутствие типа у Ү-комбинатора

Теорема 3.7. Y-комбинатор не типизируется в просто типизированном по Карри λ - исчислении.

Неформальное доказательство $Y f =_{\beta} f (Y f)$, поэтому Y f и f (Y f) должны иметь одинаковые типы.

Пусть $Y f : \alpha$

Тогда $Y:\beta \to \alpha, f:\beta$

Из $f(Y f): \alpha$ получаем $f: a \to \alpha$ (так как $Y f: \alpha$)

Тогда $\beta = \alpha \to \alpha$, из этого получаем $Y : (\alpha \to \alpha) \to \alpha$

Можно доказать, что λ x. $x:\alpha \to \alpha$. Тогда Y λ x. $x:\alpha$, то есть любой тип является обитаемым. Так как это невозможно, Y-комбинатор не может иметь типа, так как тогда он сделает нашу логику противоречивой.

Формальное доказательство Докажем от противного. Пусть Y-комбинатор типизируем. Тогда в выводе его типа есть вывод типа выражения x x. Так как x x — абстракция, то и типизирована она может быть только по правилу абстракции. Значит, в выводе типа Y-комбинатора есть такой вывод:

$$\frac{\Gamma \vdash x : \varphi \to \psi \qquad \Gamma \vdash x : \varphi}{\Gamma \vdash xx : \psi}$$

Рассмотрим типизацию $\Gamma \vdash x : \varphi \to \psi$ и $\Gamma \vdash x : \varphi$. x это атомарная переменная, значит, она могла быть типизирована только по единственной схеме аксиом.

Следовательно, x типизируется следующим образом.

$$\frac{\Gamma', x:\varphi \to \psi, x:\varphi \vdash x:\varphi \to \psi \qquad \Gamma', x:\varphi \to \psi, x:\varphi \vdash x:\varphi}{\Gamma', x:\varphi \to \psi, x:\varphi \vdash xx:\psi}$$

Следовательно, в контексте Γ переменная x встречается два раза, что невозможно по схеме аксиом.

3.7 Изоморфизм Карри-Ховарда

Заметим, что аксиомы и правила вывода импликационного фрагмента ИИВ и просто типизированного по Карри λ -исчисления точно соответствуют друг другу.

Просто типизированное λ-исчисление	Импликативный фрагмент ИИВ
$\Gamma, x: \theta \vdash x: \theta$	$\Gamma, \varphi \vdash \varphi$
$ \frac{\Gamma, x : \varphi \vdash P : \psi}{\Gamma \vdash (\lambda \ x. \ P) : \varphi \to \psi} $	$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$
$\begin{array}{ c c c }\hline \Gamma \vdash P : \varphi \to \psi & \Gamma \vdash Q : \varphi \\\hline \Gamma \vdash PQ : \psi & \\\hline \end{array}$	$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$

Установим соответствие и между прочими сущностями ИИВ и просто типизированного по Карри λ -исчисления.

Просто типизированное λ-исчисление	Импликативный фрагмент ИИВ
Тип	Высказывание
Терм	Доказательство высказывания
Проверка того, что терм имеет заданный	Проверка доказательства на корректность
тип	
Обитаемый тип	Доказуемое высказывание
Проверка того, что существует терм, име-	Проверка того, что заданное высказыва-
ющий заданный тип	ние имеет доказательство

4 Лекция 4

4.1 Расширение просто типизированного λ -исчисления до изоморфного ИИВ

Заметим, что между просто типизированным по Карри λ -исчислением и импликационным фрагментом ИИВ существует изоморфизм, но при этом в просто типизированном λ -исчислении нет аналогов лжи, а также связок \vee и &.

Для установления полного изоморфизма между ИИВ и просто типизированным λ исчислением введём три необходимые для установления этого изоморфизма сущности:

- 1. Тип "Ложь"(⊥)
- 2. Тип упорядоченной пары A & B, соответствующий логическому "И"
- 3. Алгебраический тип $A \vee B$, соответствующий логическому "ИЛИ"

Тип \bot Введём тип \bot , соответствующий лжи в ИИВ. Поскольку из лжи может следовать что угодно, добавим в исчисление новое правило вывода

$$\frac{\Gamma \vdash A : \bot}{\Gamma \vdash A : \tau}$$

То есть выражение, типизированное как \bot , может быть типизировано также любым другим типом.

В программировании аналогом этого типа может являться тип Nothing, который является подтипом любого другого типа.

Tuп Nothing является необитаемым, им типизируется выражение, никогда не возвращающее свой результат (например, throw new Error() : Nothing).

Тот факт, что выражение, типизированное как Nothing, может быть типизировано любым другим типом, позволяет писать следующие функции:

```
def assertStringNotEmpty(s: String): String = {
  if (s.length != 0) {
    s
  } else {
    throw new Error("Empty string")
  }
}
Tak kak throw new Error("Empty string"): Nothing, To
```

throw new Error ("Empty string"): String, поэтому функция может иметь тип String. Теперь, имея тип \bot , можно ввести связку "Отрицание". Обозначим $\neg A = A \to \bot$, то есть в программировании это будет соответствовать функции

```
def throwError(a: A): Nothing = throw new Error()
```

Упорядоченные пары Введём возможность запаковывать значения в пары. Функция makePair будет выглядеть следующим образом:

```
makePair \equiv \lambda \ first. \ \lambda \ second. \ \lambda \ f. \ f \ first \ second
```

Тогда

$$< first, second > \equiv makePair\ first\ second$$

Надо также написать функции, которые будут доставать из пары упакованные в неё значения. Назовём их Π_1 и Π_2 .

Пусть

$$\Pi_1 \equiv \lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ a)$$

$$\Pi_2 \equiv \lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ b)$$

Заметим, что

$$\Pi_{1} < A, B >$$

$$=_{\beta} (\lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ a)) (makePair \ A \ B)$$

$$=_{\beta} (\lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ a)) ((\lambda \ first. \ \lambda \ second. \ \lambda \ f. \ f \ first \ second) \ A \ B)$$

$$=_{\beta} (\lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ a)) (\lambda \ f. \ f \ A \ B)$$

$$=_{\beta} (\lambda \ f. \ f \ A \ B) \ (\lambda \ a.\lambda \ b. \ a) \ A \ B$$

$$=_{\beta} (\lambda \ b. \ A) \ B$$

$$=_{\beta} (\lambda \ b. \ A) \ B$$

$$=_{\beta} (\lambda \ b. \ A) \ B$$

Аналогично, $\Pi_2 < A, B > =_{\beta} B$

Таким образом, мы умеем запаковывать элементы в пары и доставать элементы из пар. Теперь, добавим к просто типизированному λ -исчислению правила вывода, позволяющие типизировать такие конструкции.

Добавим три новых правила вывода:

1. Правило типизации пары

$$\frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \psi}{\Gamma \vdash < A . B >: \varphi \& \psi}$$

2. Правило типизации первого проектора:

$$\frac{\Gamma \vdash < A, B >: \varphi \& \psi}{\Gamma \vdash \Pi_1 < A, B >: \varphi}$$

3. Правило типизации второго проектора:

$$\frac{\Gamma \vdash < A, B >: \varphi \& \psi}{\Gamma \vdash \Pi_2 < A, B >: \psi}$$

Алгебраические типы Добавим тип, который является аналогом union в C++, или алгебраического типа в любом функциональном языке. Это тип, который может содержать одну из двух альтернатив.

Haпример, тип OptionInt = None | Some of Int может содержать либо None, либо Some of Int, но не обе альтернативы разом, причём в каждый момент времени известно, какую альтернативу он содержит.

Заметим, что определение алгебраического типа похоже на определение дизъюнкции в ИИВ (в ИИВ если выполнено $\vdash a \lor b$, известно, что из $\vdash a$ и $\vdash b$ выполнено).

Для реализации алгебраических типов в λ -исчислении напишем три функции:

- 1. in_1 , создающее экземпляр алгебраического типа из первой альтернативы, то есть запаковывающее первую альтернативу в алгебраический тип
- $2. in_2$, выполняющее аналогичные действия, но со второй альтернативой.
- 3. case, принимающую три параметра: экземпляр алгебраического типа, функцию, определяющую, что делать, если этот экземпляр был создан из первой альтернативы (то есть с использованием in_1), и функцию, определяющую, что делать, если этот экземпляр был создан из второй альтернативы (то есть с использованием in_2)

Аналогом *case* в программировании является конструкция, известная как pattern-matching, или сопоставление с образцом.

Функция in_1 будет выглядеть следующим образом:

$$in_1 \equiv \lambda x. \lambda f. \lambda q. f x$$

 $A in_2$ - следующим:

$$in_2 \equiv \lambda x. \lambda f. \lambda g. g. x$$

То есть in_1 принимает две функции и применяет первую к x, а in_2 применяет вторую. Тогда case будет выглядеть следующим образом:

$$case \equiv \lambda \ algebraic. \ \lambda \ f. \ \lambda \ g. \ algebraic \ f \ g$$

Заметим, что

```
case \ (in_1A) \ F \ G
=_{\beta} (\lambda \ algebraic. \ \lambda \ f. \ \lambda \ g. \ algebraic \ f \ g) \ ((\lambda \ x. \ \lambda \ h. \ \lambda \ s. \ h \ x)A) \ F \ G
=_{\beta} (\lambda \ algebraic. \ \lambda \ f. \ \lambda \ g. \ algebraic \ f \ g) \ (\lambda \ h. \ \lambda \ s. \ h \ A) \ F \ G
=_{\beta} (\lambda \ f. \ \lambda \ g. \ (\lambda \ h. \ \lambda \ s. \ h \ A) \ F \ g) \ G
=_{\beta} (\lambda \ g. \ (\lambda \ h. \ \lambda \ s. \ h \ A) \ F \ G
=_{\beta} (\lambda \ s. \ F \ A) \ G
=_{\beta} F \ A
```

Аналогично, case (in_2B) F $G =_{\beta} G$ B.

То есть case, in_1 и in_2 умеют применять нужную функцию к запакованной в экземпляр алгебраического типа одной из альтернатив.

Теперь добавим к просто типизированному λ -исчислению правила вывода, позволяющие типизировать эти конструкции.

Добавим три новых правила вывода:

1. Правило типизации левой инъекции

$$\frac{\Gamma \vdash A : \varphi}{\Gamma \vdash in_1 \ A : \varphi \lor \psi}$$

2. Правило типизации правой инъекции:

$$\frac{\Gamma \vdash B : \psi}{\Gamma \vdash in_2 \ B : \varphi \lor \psi}$$

3. Правило типизации case:

$$\frac{\Gamma \vdash L : \varphi \lor \psi, \quad \Gamma \vdash f : \varphi \to \tau, \quad \Gamma \vdash g : \psi \to \tau}{case \ L \ f \ g : \tau}$$

4.2 Изоморфизм Карри-Ховарда для расширения просто типизированного λ -исчисления

Заметим точное соответствие только что введённых конструкций аксиомам ИИВ.

Расширенное просто типизированное	ИИВ
λ-исчисление	
$\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \psi$	
$\Gamma \vdash : \varphi \& \psi$	$\vdash \varphi \to \psi \to \varphi \& \psi$
$\Gamma \vdash < A, B >: \varphi \& \psi$	
$\Gamma \vdash \Pi_1 < A, B >: \varphi$	$\vdash \varphi \& \psi \to \varphi$
Γ A D A A B A	
$\frac{\Gamma \vdash \langle A, B \rangle : \varphi \& \psi}{\Gamma \vdash \Pi \land A B \geqslant \varphi \land \varphi}$	1 0 / .
$\Gamma \vdash \Pi_2 < A, B >: \psi$	$\vdash \varphi \& \psi \to \psi$
$\Gamma \vdash A : \varphi$	
$\frac{\Gamma \vdash in_1 \ A : \varphi}{\Gamma \vdash in_1 \ A : \varphi \lor \psi}$	$\vdash \varphi \rightarrow \varphi \lor \psi$
Ι , οπι 11. φ ν φ	
$\Gamma \vdash B : \psi$	
$\Gamma \vdash in_2 \ B : \varphi \lor \psi$	$\vdash \psi \rightarrow \varphi \lor \psi$
- , ,	
$\Gamma \vdash L : \varphi \lor \psi, \Gamma \vdash f : \varphi \to \tau, \Gamma \vdash g : \psi \to \tau$	
	$\vdash (\varphi \to \tau) \to (\psi \to \tau) \to (\varphi \lor \psi) \to \tau$

4.3 Просто типизированное по Чёрчу λ -исчисление

Определение 4.1. Тип в просто типизированном по Чёрчу λ -исчислении — это то же самое, что тип в просто типизированном по Карри λ -исчислении

Определение 4.2. Язык просто типизированного по Чёрчу λ -исчисления удовлетворяет следующей грамматике

$$\Lambda_{\mathbf{q}} ::= x \mid (\Lambda_{\mathbf{q}} \Lambda_{\mathbf{q}}) \mid (\lambda \ x^{\tau}. \ \Lambda_{\mathbf{q}})$$

Замечание 4.1. Иногда абстракция записывается не как λ x^{τ} . $\Lambda_{\mathbf{q}}$, а как λ x: τ . $\Lambda_{\mathbf{q}}$

Определение 4.3. Просто типизированное по Чёрчу λ -исчисление.

Рассмотрим исчисление с единственной схемой аксиом:

$$\Gamma, x : \theta \vdash x : \theta$$
, если x не входит в Γ

И следующими правилами вывода

1. Правило типизации абстракции

$$\frac{\Gamma,x:\varphi \vdash P:\psi}{\Gamma \vdash (\lambda\;x:\varphi.\;P):\varphi \to \psi} \text{ если } x \text{ не входит в } \Gamma$$

2. Правило типизации аппликации:

$$\frac{\Gamma \vdash P : \varphi \to \psi \qquad \Gamma \vdash Q : \varphi}{\Gamma \vdash PQ : \psi}$$

Если λ -выражение типизируется с использованием этих двух правил и одной схемы аксиом, то будем говорить, что оно типизируется по Чёрчу.

В исчислении по Чёрчу остаются верными все предыдущие теоремы (в том числе теорема Чёрча-Россера), но правило строгой типизации абстракций позволяет доказать ещё одну теорему:

Теорема 4.1 (Уникальность типов в исчислении по Чёрчу).

- 1. Если $\Gamma \vdash_{\mathbf{q}} M : \theta$ и $\Gamma \vdash_{\mathbf{q}} M : \tau$, то $\theta = \tau$
- 2. Если $\Gamma \vdash_{\P} M : \theta$ и $\Gamma \vdash_{\P} N : \tau$, и $M =_{\beta} N$ то $\theta = \tau$

4.4 Связь типизации по Чёрчу и по Карри

Определение 4.4 (Стирание). Функцией стирания называется следующая функция: $|\cdot|:\Lambda_{\text{\tiny H}} \to \Lambda_{\text{\tiny K}}:$

$$|A| = \begin{cases} x & A \equiv x \\ |M| |N| & A \equiv M |N| \\ \lambda x. |P| & A \equiv \lambda |x| : \tau. |P| \end{cases}$$

Лемма 4.2. Пусть $M, N \in \Lambda_{\mathsf{q}}, M \to_{\beta} N$, тогда $|M| \to_{\beta} |N|$

Лемма 4.3. Если $\Gamma \vdash_{\mathbf{q}} M : \tau$, тогда $\Gamma' \vdash_{\mathbf{k}} |M| : \tau$, где Γ' получается из Γ применением функции стирания к каждому терму из Γ

Теорема 4.4 (Теорема о поднятии).

- 1. Пусть $M,N\in\Lambda_{\mathbf{k}},P\in\Lambda_{\mathbf{q}},|P|=M,M\to_{\beta}N.$ Тогда найдётся такое $Q\in\Lambda_{\mathbf{q}},$ что |Q|=N, и $P\to_{\beta}Q$
- 2. Пусть $M \in \Lambda_{\mbox{\tiny K}}, \Gamma \vdash_{\mbox{\tiny K}} M : \tau$. Тогда существует $P \in \Lambda_{\mbox{\tiny Y}},$ что |P| = M, и $\Gamma \vdash_{\mbox{\tiny Y}} P : \tau$

5 Лекция 5Изоморфизм Карри-Ховарда (завершение),Унификация

5.1 Изоморфизм Карри-Ховарда

Определение 5.1. Изоморфизм Карри-Ховарда

- 1. $\Gamma \vdash M : \sigma$ влечет $|\Gamma| \vdash \sigma$ т.е. $|\{x_1 : \Theta_1 \ldots x_n : \Theta_n\}| = \{\Theta_1 \ldots \Theta_n\}$
- 2. Если $\Gamma \vdash \sigma$, то существует M и существует Δ , такое что $|\Delta| = \Gamma$, что $\Delta \vdash M : \sigma$, где $\Delta = \{x_\sigma : \sigma \mid \sigma \in \Gamma\}$

Пример. $\{f:\alpha\to\beta,\,x:\beta\}\vdash f\,x:\beta$ Применив изоморфизм Карри-Ховарда, получим: $\{\alpha\to\beta,\,\beta\}\vdash\beta$

Доказательство. П.1 доказывается индукцией по длине выражения

1.
$$\Gamma$$
, $x : \Theta \vdash x : \Theta \implies_{KH} |\Gamma|, \Theta \vdash \Theta$

2.

$$\frac{\Gamma, \ x: \tau_1 \vdash P: \tau_2}{\Gamma \vdash \lambda x. \ P: \tau_1 \ \rightarrow \ \tau_2} \qquad \Rightarrow_{KH} \qquad \frac{|\Gamma|, \tau_1 \vdash \tau_2}{|\Gamma| \vdash \tau_1 \ \rightarrow \ \tau_2}$$

3.

$$\frac{\Gamma \vdash P : \tau_1 \to \tau_2 \qquad \Gamma \vdash Q : \tau_1}{\Gamma \vdash P \ Q : \tau_2} \qquad \Rightarrow_{KH} \qquad \frac{|\Gamma| \vdash \tau_1 \to \tau_2 \qquad |\Gamma| \vdash \tau_1}{|\Gamma| \vdash \tau_2}$$

П.2 доказывается аналогичным способом, но действия обратные.

Т.е. отношения между типами в системе типов могут рассматриваться как образ отношений между высказываниями в логической системе, и наоборот.

Определение 5.2. Расширенный полином:

$$E(p, q) = \begin{cases} C, & \text{if } p = q = 0\\ p_1(p), & \text{if } q = 0\\ p_2(q), & \text{if } p = 0\\ p_3(p, q), & \text{if } p, q \neq 0 \end{cases}$$

где C — константа, p_1, p_2, p_3 — выражения, составленные из *, +, p, q и констант.

Пусть $v=(\alpha \to \alpha) \to (\alpha \to \alpha)$, где α -произвольный тип и пусть $F \in \Lambda$, что $F:v \to v \to v$, то существует расширенный полином E, такой что $\forall a,\ b \in \mathbb{N}$ $F(\overline{a},\ \overline{b})=_{\beta}$ $\overline{E(a,\ b)}$, где \overline{a} -черчевский нумерал.

Теорема 5.1. У каждого терма в просто типизируемом λ исчислении существует расширенный полином.

Утверждение 5.1. Типы черчевских нумералов

1.
$$0: \lambda f \lambda x. x: a \rightarrow b \rightarrow b$$

2.
$$1: \lambda f \lambda x. f x: (a \rightarrow b) \rightarrow a \rightarrow b$$

3.
$$2: \lambda f \lambda x. f(f x): (a \rightarrow a) \rightarrow a \rightarrow a$$

4.
$$\forall i, i \geq 2$$
 $\lambda f \lambda x. f(\dots(f x)) : (a \rightarrow a) \rightarrow a \rightarrow a$

Доказательство. Пункты 1, 2, 3— очевидно. Рассмотрим более подробно пункт 4: Разберем нумерал и рассмотрим два последних шага—

$$f: a \to b \vdash x: a \qquad \{1\}$$

$$f: a \to b \vdash f x: b \qquad \{2\}$$

$$\{3\}$$

$$\lambda f \lambda x. \ f(\dots(fx))$$

на шаге 3 становится понятно, что $f:a\to a$ и x:a (\bot в данном контексте означает, что такой терм не типизируем в данном предположении)

Утверждение 5.2. Основные задачи типизации λ -исчисления

- 1. Проверка типа—выполняется ли $\Gamma \vdash M : \sigma$ для контекста Γ , терма M и типа σ (для проверки типа обычно опускают σ и рассматривают п.2).
- 2. Реконструкция типа—можно ли подставить вместо ? и $?_1$ в $?_1 \vdash M : ?$ конкретный тип σ в ? и контекст Γ в $?_1$.
- 3. Обитаемость типа—пытается подобрать, такой терм M и контекст Γ , чтобы было выполнено $\Gamma \vdash M : \sigma$.

Определение 5.3. Алгебраический терм

$$\Theta ::= a \mid (f \Theta_1 \ldots \Theta_n)$$

где a-переменная, $(f \Theta_1 \dots \Theta_n)$ -применение функции

5.2 Уравнение в алгебраических термах $\Theta_1 = \Theta_2$ Система уравнений в алгебраических термах

Определение 5.4. Система уравнений в алгебраических термах

$$\begin{cases} \Theta_1 = \sigma_1 \\ \vdots \\ \Theta_n = \sigma_n \end{cases}$$
где Θ_i и σ_i — термы

Определение 5.5. $\{a_i\} = A$ -множество переменных, $\{\Theta_i\} = T$ -множество термов.

Определение 5.6. Подстановка—отображение вида: $S_0: A \to T$, которое является решением в алгебраических термах.

 $S_0(a)$ может быть либо $S_0(a) = \Theta_i$, либо $S_0(a) = a$.

S то же, что и много if'ов, либо map строк. Доопределим $S: T \to T$, где

1.
$$S(a) = S_0(a)$$

2.
$$S(f(\Theta_1 \dots \Theta_k)) = f(S(\Theta_1) \dots S(\Theta_k))$$

Определение 5.7. Решить уравнение в алгебраических термах—найти такое S, что $S(\Theta_1) = S(\Theta_2)$

Пример.

Заранее обозначим: a, b — переменные f, g, h — функции

- 1. f(a(gb)) = f(he)d имеет решение S(a) = he и S(d) = gb
 - (a) S(f a (q b)) = f (h e) (q b)
 - (b) S(f(he)d) = f(he)(gb)
 - (c) f(he)(gb) = f(he)(gb)
- 2. f a = g b-решений не имеет

Таким образом, чтобы существовало решение, необходимо равенство строк полученной подстановки.

5.3 Алгоритм Унификации. Определения

- 1. Система уравнений E_1 эквивалентна E_2 , если они имеют одинаковые решения (унификаторы).
- 2. Любая система E эквивалентна некоторому уравнению $\Sigma_1 = \Sigma_2$.

Доказательство. Возьмем функциональный символ f, не использующийся в E,

$$E = \begin{cases} \Theta_1 = \sigma_1 \\ \vdots \\ \Theta_n = \sigma_n \end{cases}$$

это же уравнение можно записать как $-f\Theta_1...\Theta_n=f\sigma_1...\sigma_n$

Если существует подстановка S такая, что

$$S(\Theta_i) = S(\sigma_i) \ \forall i, \text{ TO } S(f \Theta_1 \dots \Theta_n) = f S(\sigma_1) \dots S(\sigma_n)$$

Обратное аналогично.

3. Рассмотрим операции

(а) Редукция терма

Заменим уравнение вида $-f_1$ $\Theta_1 \dots \Theta_n = f_1$ $\sigma_1 \dots \sigma_n$ на систему уравнений $\Theta_1 = \sigma_1$

:

$$\Theta_n = \sigma_n$$

(b) Устранение переменной

Пусть есть уравнение $x = \Theta$, заменим во всех остальных уравнениях переменную x на терм Θ .

Утверждение 5.3. Эти операции не изменяют множества решений.

Пусть есть решение вида $T=\begin{cases} a=\Theta_a\\ \vdots \end{cases}$ и уравнение вида f a . . . z = Θ_c , тогда, T(f a . . . z) = f T(a) . . . T(z) , которое в свою очередь является f Θ_a . . . T(z)

Определение 5.8. Система уравнений в разрешенной форме, если

- 1. Все уравнения имеют вид $a_i = \Theta_i$
- 2. Каждый из a_i входит в систему уравнений только один раз

Определение 5.9. Система несовместна, если

- 1. существует уравнение вида $f \Theta_1 \dots \Theta_n = g \sigma_1 \dots \sigma_n$, где $f \neq g$
- 2. существует уравнение вида $a=f\ \Theta_1\dots\Theta_n$, причем a входит в какой-то из Θ_i

5.4 Алгоритм унификации

- 1. Пройдемся по системе, выберем такое уравнение, что оно удовлетворяет одному из условий:
 - (a) Если $\Theta_i = a_i$, то перепишем, как $a_i = \Theta_i$, Θ_i —не переменная
 - (b) $a_i = a_i y$ далим
 - (c) $f \Theta_1 \dots \Theta_n = f \sigma_1 \dots \sigma_n$ применим редукцию термов
 - (d) $a_i = \Theta_i$ —Применим подстановку переменной подставим во все остальные уравнения Θ_i вместо a_i (Если a_i встречается в системе где-то еще)
- 2. Проверим разрешима ли система, совместна ли система (два пункта несовместимости)
- 3. Повторим пункт 1

Утверждение 5.4. Алгоритм не изменяет множества решений

Утверждение 5.5. Несовместная система не имеет решений

Утверждение 5.6. Если система имеет решение, то его разрешенная форма единственна

Утверждение 5.7. Система в разрешенной форме имеет решение:

$$\begin{cases} a_1 = \Theta_1 \\ \vdots \\ a_n = \Theta_n \end{cases}$$
 имеет решение —
$$\begin{cases} S_0(a_1) = \Theta_1 \\ \vdots \\ S_0(a_n) = \Theta_n \end{cases}$$

Утверждение 5.8. Алгоритм всегда заканчивается

Доказательство. По индукции, выберем три числа $\langle x \, y \, z \rangle$, где

x-количество переменных, которые встречаются строго больше одного раза в левой части некоторого уравнения (b не повлияет на x, а a повлияет в уравнении $f(a(ga)b) = \Theta)$,

у- количество функциональных символов в системе,

z-количество уравнений типа a=a и $\Theta=b$, где Θ не переменная.

Определим отношение < между двумя кортежами, как $\langle x_1 \ y_1 \ z_1 \rangle < \langle x_2 \ y_2 \ z_2 \rangle$, если верно одно из следующих условий:

- 1. $x_1 < x_2$
- 2. $x_1 = x_2 \& y_1 < y_2$
- 3. $x_1 = x_2 \& y_1 = y_2 \& z_1 < z_2$

Заметим, что операции (a) и (b) всегда уменьшают z и иногда уменьшают x.

Операция (c) всегда уменьшает y иногда x и, возможно, увеличивает z.

Операция (d) всегда уменьшает x, и иногда увеличивает y.

В случае если у системы нет решений, алгоритм определит это на одном из шагов и завершится.

Иначе с каждой операцией a-d данная тройка будет уменьшаться, а так как $x,y,z\geqslant 0$, данный алгоритм завершится за конечное время.

Пример.

Исходная система

$$E = \left\{ \begin{array}{c} g(x_2) = x_1 \\ f(x_1, h(x_1), x_2) = f(g(x_3), x_4, x_3) \end{array} \right\}$$

Применим пункт (c) ко второму уравнению верхней системы получим:

$$E = \left\{ \begin{array}{l} g(x_2) = x_1 \\ x_1 = g(x_3) \\ h(x_1) = x_4 \\ x_2 = x_3 \end{array} \right\}$$

Применим пункт (d) ко второму уравнению верхней системы (оно изменит 10е уравнение) получим:

$$E = \left\{ \begin{array}{l} g(x_2) = g(x_3) \\ x_1 = g(x_3) \\ h(g(x_3)) = x_4 \\ x_2 = x_3 \end{array} \right\}$$

Применим пункт (c) ко первому ур-ию и пункт (a) к третьему уравнению верхней системы

$$E = \left\{ \begin{array}{c} x_2 = x_3 \\ x_1 = g(x_3) \\ x_4 = h(g(x_3)) \\ x_2 = x_3 \end{array} \right\}$$

Применим пункт (d) для первого уравнения к последнему уравнению, удалим последнее уравнение и

получим систему в разрешенной форме

$$E = \left\{ \begin{array}{c} x_2 = x_3 \\ x_1 = g(x_3) \\ x_4 = h(g(x_3)) \end{array} \right\}$$

Решение системы:

$$S = \left\{ \begin{array}{c} (x_1 = g(x_3)) \\ (x_2 = x_3) \\ (x_4 = h(g(x_3)))) \end{array} \right\}$$

Утверждение 5.9. Если система имеет решение, алгоритм унификации приводит систему в разрешенную форму

Доказательство. От противного.

Пусть алгоритм завершился и получившаяся система не в разрешенной форме. \Box

Тогда верно одно из следующих утверждений:

- 1. Одно из уравнений имеет вид отличный от $a_i = \Theta_i$, где a_i переменная, то есть имеет следующий вид:
 - (a) $f_i \ \sigma_1...\sigma_n = f_i \ \Theta_1...\Theta_n$ должна быть применена редукция термов \Rightarrow алгоритм не завершился противоречие.
 - (b) $f_i \ \sigma_1...\sigma_n = a_i$ должно быть применено правило разворота равенства противоречие.

2. Все уравнения имеют вид $a_i = \Theta_i$, где a_i – переменная, но a_i встречается в системе больше одного раза.

В таком случае должно быть применено правило подстановки – противоречие.

Определение 5.10. $S \circ T$ -композиция подстановок, если $S \circ T = S(T(a))$

Определение 5.11. S—наиболее общий унификатор, если любое решение (R) системы X может быть получено уточнением: $\exists T: R = T \circ S$

Утверждение 5.10. Алгоритм дает наиболее общий унификатор системы, если у нее есть решения.

 \mathcal{A} оказательство. Пусть S — решение, полученное алгоритмом унификации

R — произвольное решение системы

 S_0, R_0 — их сужения на множество переменных соответственно

$$E = \begin{cases} \dots \\ a_i = \Theta_i \\ \dots \end{cases}$$

где Е — разрешенная форма исходной системы

Согласно утверждению 6.9, алгоритм унификации приведет систему в разрешенную форму, и полученное решение S будет иметь сужение S_0 , имеющее следующий вид:

1. $S_0(a_l) = \Theta_l$, если a_l входит в левую часть E

2. $S_0(a_r) = a_r$, если a_r входит в правую часть E

Рассмотрим, какой вид может иметь R. Для этого достаточно рассмотреть R_0 . Заметим, что R является решением E, так как E эквивалентна исходной системе. Следовательно, R_0 имеет следующий вид:

- 1. $R_0(a_r) = \Theta$, где Θ произвольный терм, если a_r входит в правую часть E
- 2. $R_0(a_l) = \Theta_l[a_{r_1} := R_0(a_{r_1}), ..., a_{r_m} := R_0(a_{r_m})]$, где a_{r_k} переменная из правой части E, если a_l входит в левую часть E

Построим $T: R = T \circ S$. Зададим его через сужение T_0 :

- 1. $T_0(a_r) = R_0(a_r)$, если a_r входит в правую часть E
- 2. $T_0 = id$, иначе

Покажем, что $R = T \circ S$. Для этого достаточно доказать, что $R_0 = T \circ S_0$ Рассмотрим 2 случая:

- 1. a_r переменная из правой части E, тогда $(T \circ S_0)(a_r) = T(a_r) = T_0(a_r) = R_0(a_r)$
- 2. a_l переменная из левой части E, тогда $(T \circ S_0)(a_l) = T(\Theta_l) = \Theta_l[a_{r_1} := R_0(a_{r_1}), ..., a_{r_m} := R_0(a_{r_m})] = R_0(a_l)$

Таким образом, мы для любого решения R предъявили подстановку $T: R = T \circ S$, что является определением того, что S — наиболее общий унификатор.

6 Лекция 6

Реконструкция типов в просто типизированном λ -исчислении, комбинаторы

6.1 Алгоритм вывода типов

Пусть есть: ? $\vdash A$: ?, хотим найти пару \langle контекст, тип \rangle **Алгоритм:**

- 1. Рекурсия по структуре формулы Построить по формуле A пару $\langle E, \tau \rangle$, где E—система уравнений, τ —тип A
- 2. Решение уравнения, получение подстановки S и из решения E и S (τ) получение ответа

Т.е. необходимо свести вывод типа к алгоритму унификации.

Пункт 6.1. Рассмотрим 3 случая

Обозначение -> - алгебраический тип

1. $A \equiv x \implies \langle \{\}, \alpha_A \rangle$, где $\{\}$ -пустой контекст, α_A -новая переменная, нигде не встречавшаяся до этого в формуле

2.
$$A \equiv P \ Q \implies \langle E_P \cup E_Q \cup \{\tau_P = \to \ (\tau_Q \ \alpha_A)\}, \alpha_A \rangle$$
, где α_A —новая переменная

3.
$$A \equiv \lambda x.P \implies \langle E_P, \alpha_x \rightarrow \tau_P \rangle$$

Пункт 6.2. Алгоритм унификации

Рассмотрим E-систему уравнений, запишем все уравнения в алгебраическом виде, т.е. $\alpha \to \beta \Leftrightarrow \to \alpha \beta$, затем применяем алгоритм унификации.

Лемма 6.1. Рассмотрим терм M и пару $\langle E_M, \tau_M \rangle$, Если $\Gamma \vdash M : \rho$, то существует:

- 1. S—решение E_M тогда $\Gamma = \{x: S(\alpha_x) \mid x \in FV(M)\}, FV$ —множество свободных переменных в терме M, α_x – переменная, полученная при разборе терма M $\rho = S(\tau_M)$
- 2. Если S— решение E_M , то $\Gamma \vdash M : \rho$,

Доказательство. индукция по структуре терма M

- (a) Если $M \equiv x$, то так как решение существует, то существует и $S(\alpha_x)$, что: $\Gamma, x: S(\alpha_x) \vdash x: S(\alpha_x)$
- (b) Если $M \equiv \lambda x$. P, то по индукции уже известен тип P, контекст Γ и тип x, тогда:

$$\frac{\Gamma, x : S(\alpha_x) \vdash P : S(\alpha_P)}{\Gamma \vdash \lambda x. P : S(\alpha_x) \to S(\alpha_P)}$$

(c) Если $M \equiv P Q$, то по индукции:

$$\frac{\Gamma \vdash P : S(\alpha_P) \equiv \tau_1 \to \tau_2}{\Gamma \vdash P Q : \tau_2} \frac{\Gamma \vdash Q : S(\alpha_Q) \equiv \tau_1}{\Gamma}$$

 $\langle \Gamma, \tau \rangle$ — основная пара для терма M, если

- 1. $\Gamma \vdash M : \tau$
- 2. Если $\Gamma' \vdash M : \tau'$, то существует $S : S(\Gamma) \subset \Gamma'$

Пример.

Рассмотрим терм: $\lambda f \, \lambda x. \, f(f(x))$, построим и пронумеруем его дерево разбора:

1.
$$\langle E_1, \tau_1 \rangle = \langle \{\}, \alpha_x \rangle$$

2.
$$\langle E_2, \tau_2 \rangle = \langle \{\}, \alpha_f \rangle$$

3.
$$\langle E_3, \tau_3 \rangle = \langle \{\}, \alpha_f \rangle$$

4.
$$\langle E_4, \tau_4 \rangle = \langle \{\alpha_f = \rightarrow (\alpha_x \alpha_1)\}, \alpha_1 \rangle$$

5.
$$\langle E_5, \tau_5 \rangle = \left\langle \begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{cases}, \, \alpha_2 \right\rangle$$

6.
$$\langle E_6, \tau_6 \rangle = \langle \begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{cases}, \, \alpha_x \to \alpha_2 \rangle$$

7.
$$\langle E_7, \tau_7 \rangle = \left\langle \begin{cases} \alpha_f = \to (\alpha_x \alpha_1) \\ \alpha_f = \to (\alpha_1 \alpha_2) \end{cases}, \ \alpha_f \to (\alpha_x \to \alpha_2) \right\rangle$$

 $E = \begin{cases} \alpha_f = \rightarrow (\alpha_x \, \alpha_1) \\ \alpha_f = \rightarrow (\alpha_1 \, \alpha_2) \end{cases}$, решим полученную систему:

1. Решим систему:

(a)
$$\begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{cases}$$

(b)
$$\left\{ \to (\alpha_1 \, \alpha_2) = \to (\alpha_x \, \alpha_1) \right\}$$

$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_1 \end{cases}$$

(d)
$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

2. Получим

$$S = \begin{cases} \alpha_f = \rightarrow (\alpha_x \, \alpha_1) \\ \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

3. $\Gamma = \{\}$, так как в заданной формуле нет свободных переменных

4. Тип терма
$$\lambda f \lambda x. f(f(x))$$
 является результатом подстановки $S(\to \alpha_f (\alpha_x \to \alpha_2)),$ получаем $\tau = (\alpha_x \to \alpha_x) \to (\alpha_x \to \alpha_x)$

6.2 Сильная и слабая нормализации

Определение 6.1. Если существует последовательность редукций, приводящая терм M в нормальную форму, то M-слабо нормализуем. (Т.е. при редуцировании терма M мы можем не прийти в н.ф.)

Определение 6.2. Если не существует бесконечной последовательности редукций терма M, то терм M- сильно нормализуем.

Утверждение 6.1.

1. $KI\Omega$ — слабо нормализуема

Пример.

Перепишем $KI\Omega$ как $((\lambda x \lambda y. x)(\lambda x. x))(((\lambda x. x x)(\lambda x. x x)))$, очевидно, что этот терм можно средуцировать двумя разными способами:

(а) Сначала редуцируем красную скобку

```
i. ((\lambda x \lambda y. x)(\lambda x. x))(((\lambda x. x x)(\lambda x. x x)))
```

ii.
$$((\lambda y. (\lambda x. x)))(((\lambda x. x x)(\lambda x. x x)))$$

iii.
$$(\lambda x. x)$$

Видно, что в этом случае количество шагов конечно.

- (b) Редуцируем синюю скобку. Очевидно, что комбинатор Ω не имеет нормальной формы, тогда понятно, что в этом случае терм $KI\Omega$ никогда не средуцируется в нормальную форму.
- 2. Ω не нормализуема
- 3. *II* сильно нормализуема

Лемма 6.2. Сильная нормализация влечет слабую.

6.3 Выразимость комбинаторов

Утверждение 6.2. Для любого λ -выражения без свободных переменных существует β эквивалентное ему выражение, записываемое только с помощью комбинаторов S и K, где

$$S = \lambda x \, \lambda y \, \lambda z. \, (x \, z) \, (y \, z) : (a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$$

$$K = \lambda x \, \lambda y. \, x : a \rightarrow b \rightarrow a$$

Утверждение 6.3. Комбинаторы S и K являются аксиомами в ИИВ

Утверждение 6.4. Соотношение комбинаторов с λ исчислением:

1.
$$T(x) = x$$

2.
$$T(PQ) = T(P)T(Q)$$

3.
$$T(\lambda x.P) = K(T(P)), x \notin FV(P)$$

4.
$$T(\lambda x.x) = I$$

5.
$$T(\lambda x \lambda y.P) = T(\lambda x. T(\lambda y.P))$$

6.
$$T(\lambda x.PQ) = S T(\lambda x.P) T(\lambda x.Q)$$

Утверждение 6.5. Альтернативный базис:

1.
$$B = \lambda x \lambda y \lambda z \cdot x (y z) : (a \rightarrow b) \rightarrow (c \rightarrow a) \rightarrow c \rightarrow b$$

2.
$$C = \lambda x \lambda y \lambda z. ((x z) y) : (a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c$$

3.
$$K = \lambda x \lambda y. x : a \rightarrow b \rightarrow a$$

4.
$$W = \lambda x \lambda y. ((x y) y) : (a \rightarrow a \rightarrow b) \rightarrow a \rightarrow b$$

Лекция 7 7

Импликационный фрагмент ИИП второго порядка 7.1

$$\mathbf{A} ::= \mathbf{p} \mid (\mathbf{A} \to \mathbf{A}) \mid (\forall \mathbf{p}.\mathbf{A})$$

В этой системе все остальные связки могут быть выражены через основные 4, представленные выше. Например, \bot представима в следующем виде

$$\forall \mathbf{p.p}$$

Также добавим два новых правила вывода для квантора существования и два для квантора всеобщности к уже существующим в ИИВ:

Для квантора всеобщности:

$$\frac{\Gamma \vdash \phi}{\Gamma \vdash \forall p.\phi} (p \notin FV(\Gamma)) \qquad \frac{\Gamma \vdash \forall p.\phi}{\Gamma \vdash \phi[p := \Theta]}$$

И два для квантора существования:

$$\frac{\Gamma \vdash \phi[p := \psi]}{\Gamma \vdash \exists p.\phi} \qquad \frac{\Gamma \vdash \exists p.\phi \quad \Gamma, \phi \vdash \psi}{\Gamma \vdash \psi} (p \notin FV(\Gamma, \psi))$$

Определение 7.2. Грамматику ИИП второго порядка с приведенными выше правилами вывода назовем Импликационным фрагментом ИИВ второго порядка

С помощью этих правил вывода можно доказать, что $\bot = \forall p.p$ Действительно, воспользовавшись вторым правилом вывода квантора всеобщности для этого выражения, мы можем вывести любое другое выражение.

С помощью правил вывода также можно доказать, что

$$\phi \& \psi \equiv \forall a. ((\phi \to \psi \to a) \to a)$$

$$\phi \lor \psi \equiv \forall a.((\phi \to a) \to (\psi \to a) \to a)$$

Докажем например, что

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \phi}$$

Воспользуемся вторым правилом вывода для квантора всеобщности

$$\frac{\Gamma \vdash \forall \alpha. \alpha}{\Gamma \vdash \alpha[\alpha := \phi]}$$

7.2 Теория Моделей

Добавим к нашему исчислению модель. Напомню, что модель это функция которая сопоставляет некому терму элемент из множества истинностных значений. В нашем случае мы будем сопоставлять высказываниям элементы из множества $[\![\mathbf{U},\!\mathbf{J}]\!]$ по следующим правилам:

$$[p] = p$$
, T. e. $[p]^{p=x} = x$

$$\llbracket p \to Q \rrbracket = \begin{cases} \Pi, \llbracket p \rrbracket = \Pi, \llbracket Q \rrbracket = \Pi \\ \Pi, \text{иначе} \end{cases}$$

$$\llbracket \forall p.Q \rrbracket = \begin{cases} \mathbf{H}, \llbracket Q \rrbracket^{p=\mathrm{л, \, u}} = \mathbf{H} \\ \mathbf{\Pi}, \mathrm{unave} \end{cases}$$

Эта модель корректна, но не полна.

7.3 Система F

Определение 7.3. Под типом в системе F будем понимать следующее

$$\tau = \begin{cases} \alpha, \beta, \gamma... & \text{(атомарные типы)} \\ \tau \to \tau \\ \forall \alpha. \tau & \text{(α - переменная)} \end{cases}$$

Определение 7.4. Введем определение грамматики в системе F:

$$\mathcal{L} ::= \mathbf{x} \mid (\lambda x^{\tau}.\mathcal{L}) \mid (\mathcal{L} \ \mathcal{L}) \mid (\Lambda \alpha.\mathcal{L}) \mid (\mathcal{L} \tau)$$

где $\Lambda \alpha.\Lambda$ — типовая абстракция, явное указание того, что вместо каких-то типов мы можем подставить любые выражения, а $\Lambda \tau$ — это применение типа.

Так, пример типовой абстракции это:

```
template<typename T>
class W {
    T x;
}
```

Типовая аппликация — это объявление переменной класса с каким-то типом

```
W<int> w_test;
```

Теорема 7.1. Изоморфизм Карри - Ховарда:

$$\Gamma \vdash_F M : \tau \Leftrightarrow |\Gamma| \vdash_{\forall,\rightarrow} \tau$$

В системе F определены следующие правила вывода:

$$\frac{\Gamma \vdash M : \sigma \to \tau \qquad \Gamma \vdash N : \sigma}{\Gamma, x : \tau \vdash x : \tau}$$

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x^{\tau}.M : \tau \to \sigma} \quad (x \notin FV(\Gamma))$$

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \Lambda \alpha.M : \forall \alpha.\sigma} \quad (\alpha \notin FV(\Gamma)) \qquad \frac{\Gamma \vdash M : \forall \alpha.\sigma}{\Gamma \vdash M \tau : \sigma[\alpha := \tau]}$$

Приведем пример. Покажем как выглядит в системе F левая проекция. В просто типизированном λ - исчислении π_1 имеет тип $\alpha \& \beta \to \alpha$. В системе F явно указывается, что элементы пары могут быть любыми и пишется соответственно $\forall \alpha. \forall \beta. \alpha \& \beta \to \alpha$. Само выражение для проекции также изменится и будет иметь вид $\pi_1 = \Lambda \alpha. \Lambda \beta. \lambda p^{\alpha \& \beta}. p\alpha$ Т

Давайте определим еще несколько понятий из простого λ -исчисления. *Начнем с* β -редукции:

- 1. Типовая β -редукция: $(\Lambda \alpha. M^{\sigma}) \tau \rightarrow_{\beta} M[\alpha := \tau] : \sigma[\alpha := \tau]$
- 2. Классическая β -редукция: $(\lambda x^{\sigma}.M)^{\sigma \to \tau}X \to_{\beta} M[x:=X]:\tau$

Выразим еще несколько функций

- 1. Не бывает М:⊥
- 2. Рассмотрим пару <P, Q> ::= $\Lambda \alpha.\lambda z^{\tau \to \sigma \to \alpha}.zPQ$ Проекторы мы рассмотрели ранее.

3.
$$in_L(M^{\tau}) ::= \Lambda \alpha. \lambda u^{\tau \to \alpha}. \lambda \omega^{\sigma \to \alpha}. uM$$

 $in_R(M^{\sigma}) ::= \Lambda \alpha. \lambda u^{\tau \to \alpha}. \lambda \omega^{\sigma \to \alpha}. uM$

- 1. Теорема Чёрча-Россера и прочие теоремы, доказуемые в строго-типизированном лямбда-исчислении, доказуемы и в системе F
- 2. $\lambda_{(\forall,\rightarrow)}$ Система F сильно нормализуема
- 3. У комбинатор не типизируем
- 4. Исчисление неразрешимое, но не противоречивое

8 Лекция 8

8.1 Экзистенциальные типы

1)
$$\frac{\Gamma \vdash \phi[\alpha := \theta]}{\Gamma \vdash \exists \alpha. \phi}$$

$$2) \ \frac{\Gamma \vdash \exists \alpha. \phi \qquad \Gamma, \phi \vdash \psi}{\Gamma \vdash \psi}$$

Экзистенциальные типы это способ инкапсуляции данных. Предположим, что у нас есть стек с хранилищем типа α , у которого определены следующие операции:

```
empty: \alpha
push: \alpha \& \nu \to \alpha
pop: \alpha \to \alpha \& \nu
```

Тогда очевидно, что тип stack $\equiv \alpha \& (\alpha \& \nu \to \alpha) \& (\alpha \to \alpha \& \nu)$. Но что если мы реализовали хранилище как-то по-особенному, не меняя типов операций. Мы хотим скрыть данные о реализации, в частности о типе α . Вместо деталей просто скажем, что существует интерфейс, удовлетворяющий такому типу:

```
\exists \alpha. \alpha \& (\alpha \& \nu \to \alpha) \& (\alpha \to \alpha \& \nu)
```

8.2 Абстрактные типы

Предположим, что мы захотим создать стек, в котором лежат целые числа. Рассмотрим, как тогда будет выглядеть тип созданного стека:

```
\mathbf{stack} \equiv \forall \nu. \exists \alpha. \alpha \& (\alpha \& \nu \to \alpha) \& (\alpha \to \alpha \& \nu)
```

По аналогии с правилом удаления квантора существования, можно определить правила вывода для выражений абстрактных типов:

$$\frac{\Gamma \vdash M : \varphi[\alpha := \theta]}{\Gamma \vdash (\operatorname{pack} M, \theta \text{ to } \exists \alpha. \varphi) : \exists \alpha. \varphi}$$

Это правило вывода позволяет скрыть реализацию стека, так как если α — это тип стека, то $\alpha[\nu:=\theta]$ — его конкретная реализация, например ArrayStack, LinkedListStack и подобные

$$\frac{\Gamma \vdash M : \exists \alpha. \varphi \qquad \Gamma, x : \varphi \vdash N : \psi}{\Gamma \vdash \text{abstype } \alpha \text{ with } x : \varphi \text{ in } M \text{ is } N : \psi} (\alpha \notin FV(\Gamma, \psi))$$

Это правило вывода соответствует виртуальному вызову стека какой-то реализации, например:

```
foo(Stack s) {
...
}
```

Поскольку выводимые формулы выглядят слишком громоздко, перепишем их, вспомнив, что:

$$\exists \alpha. \sigma \equiv \forall \beta. (\forall \alpha. \sigma \rightarrow \beta) \rightarrow \beta$$

Тогда:

```
pack M, \theta to \exists \alpha. \varphi = \Lambda \beta. \lambda x^{\forall \alpha. \varphi \to \beta}. x \theta M
abstype \alpha with x : \varphi in M is N : \psi = M \psi(\Lambda \alpha. \lambda x^{\varphi}. N)
```

9 Лекция 9

Определение 9.1 (Ранг типа). R(x) — все типы ранга x.

• R(0) — все типы без кванторов

• $R(x+1) = R(x) \mid R(x) \rightarrow R(x+1) \mid \forall \alpha . R(x+1)$

Например:

• $\alpha \in R(0)$

• $\forall \alpha. \alpha \in R(1)$

• $(\forall \alpha.\alpha) \to (\forall b.b) \in R(2)$

• $((\forall \alpha.\alpha) \to (\forall b.b)) \to b \in R(3)$

Тут видно, если выражение слева от знака импликации имеет ранг n, то все выражение будет иметь ранг $\geqslant (n+1)$.

9.1 Типовая система Хиндли-Милнера

Начнем с определения типа. В XM они могут быть двух видов:

- Тип или монотип выражение в грамматике вида $\tau ::= \alpha | (au o au)$
- Типовая схема или политип выражение в грамматике вида $\sigma ::= \tau | \forall \alpha. \sigma$ (типы с поверхностными кванторами)

Термы же в XM имеют грамматику:

$$\Lambda ::= x | (\lambda x. \Lambda) | (\Lambda \Lambda) | (\text{let } \mathbf{x} = \Lambda \text{ in } \Lambda)$$

9.1.1 Типовые схемы и специализация

Определение 9.2 (Типовая схема).

$$\sigma ::= \forall \alpha_1. \forall \alpha_2. \ldots \forall \alpha_n. \tau$$
, где $\tau \in R(0)$ и, следовательно, $\sigma \in R(1)$.

Определение 9.3 (Частный случай (специализация) типовой схемы).

 σ_1, σ_2 — типовые схемы

 σ_2 — частный случай σ_1 (обознается как $\sigma_1 \sqsubseteq \sigma_2$), если

1.
$$\sigma_1 = \forall \alpha_1. \forall \alpha_2... \forall \alpha_n. \tau_1$$

2.
$$\sigma_2 = \forall \beta_1. \forall \beta_2.... \forall \beta_m. \tau_1 [\alpha_i := S(\alpha_i)]$$

3.
$$\forall i.\beta_i \in FV(\tau_1)$$

Пример.

$$\forall \alpha. \alpha \to \alpha \sqsubseteq \forall \beta_1. \forall \beta_2 : (\beta_1 \to \beta_2) \to (\beta_1 \to \beta_2)$$

Вполне возможно, что в ходе замены, все типы будут уточнены (α уточнится как $\beta_1 \to \beta_2$).

9.1.2 У-комбинатор в ХМ

Хотя в системе Хиндли-Милнера (как и во всех рассматриваемых нами типовых системах) нельзя типизировать \mathcal{Y} -комбинатор, можно добавить его, расширив язык. Давайте определим его как $\mathcal{Y}f = f(\mathcal{Y}f)$. Какой у него должен быть тип? Пусть \mathcal{Y} принимает f типа α , и возвращает нечто типа β , то есть $\mathcal{Y}: \alpha \to \beta$. Функция f должна принимать то же, что возвращает \mathcal{Y} , так как результат \mathcal{Y} передаётся в f, и возвращать она должна то же, что

возвращает \mathcal{Y} , так как тип выражений с обеих сторон равенства должен быть одинаковый, то есть $f: \beta \to \beta$ Кроме того, α и тип f это одно и то же, $\alpha = \beta \to \beta$. После подстановки и заключения свободной переменной под квантор получаем $\mathcal{Y}: \forall \beta. (\beta \to \beta) \to \beta$.

Через такой ${\cal Y}$ можно определять рекурсивные функции, и они будут типизироваться.

9.1.3 Экзистенциальные типы в XM (TODO)

•
$$\exists p. \phi \equiv \forall b. (\forall p. (\phi \rightarrow b)) \rightarrow b$$

$$\bullet \frac{\Gamma, \forall p. (\phi \to b) \vdash \forall p. (\phi \to b)}{\Gamma, \forall p. (\phi \to b) \vdash \phi [p := \Theta] \to b}$$

$$\frac{\Gamma, \forall p. (\phi \to b) \vdash b}{\Gamma \vdash (\forall p. (\phi \to b)) \to b}$$
$$\frac{\Gamma \vdash (\forall p. (\phi \to b)) \to b}{\Gamma \vdash \forall b. (\forall p. (\phi \to b)) \to b}$$

9.1.4 Ложь и отрицание в XM (TODO)

- $\bot \equiv \forall b.b$
- $\phi \to \bot \equiv \forall b. (\phi \to b)$

9.2 Правила вывода в системе Хиндли-Милнер

1.
$$\overline{\Gamma, x : \sigma \vdash x : \sigma} \quad x \notin FV(\Gamma)$$

2.
$$\frac{\Gamma \vdash e_0 : \tau \to \tau' \qquad \Gamma \vdash e_1 : \tau}{\Gamma \vdash e_0 \ e_1 : \tau'}$$

3.
$$\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda x.e : \tau \to \tau'}$$

4.
$$\frac{\Gamma \vdash e_0 : \sigma \qquad \Gamma, x : \sigma \vdash e_1 : \tau}{\Gamma \vdash let \ x = e_0 \ in \ e_1 : \tau} \ , \ let \ x = a \ in \ b \equiv (\lambda x.b) \ a$$

5.
$$\frac{\Gamma \vdash e : \sigma' \qquad \sigma' \sqsubseteq \sigma}{\Gamma \vdash e : \sigma}$$

6.
$$\frac{\Gamma \vdash e : \sigma}{\Gamma \vdash e : \forall \alpha.\sigma} \ \alpha \notin FV(\Gamma)$$

9.3 Алгоритм вывода типов в системе Хиндли-Милнера W

На вход подаются $\Gamma,\ M,$ на выходе наиболее общая пара (S,τ)

- 1. $M=x,\ x:\tau\in\Gamma$ (иначе ошибка)
 - \bullet Выбросить все кванторы из τ
 - Переименовать все свободные переменные в свежие Например: $\forall \alpha_1. \phi \Rightarrow \phi[\alpha_1 := \beta_1]$, где β_1 свежая переменная

$$(\emptyset, \Gamma(x))$$

2.
$$M = \lambda n.e$$

• au — новая типовая переменная

```
• \Gamma' = \Gamma \setminus \{n : \_\} (т.е. \Gamma без переменной n)

• \Gamma'' = \Gamma' \cup n : \tau

• (S', \tau') = W(\Gamma'', e)

(S', S'(\tau) \to \tau')

3. M = P Q

• (S_1, \tau_1) = W(\Gamma, P)

• (S_2, \tau_2) = W(S_1(\Gamma), Q)

• S_3 - \text{Унификация } (S_2(\tau_1), \tau_2 \to \tau)

(S_3 \circ S_2 \circ S_1, S_3(\tau))

4. let \ x = P \ in \ Q

• (S_1, \tau_1) = W(\Gamma, P)

• \Gamma' = \Gamma без x

• \Gamma'' = \Gamma' \cup \{x : \forall \alpha_1 \dots \alpha_k \cdot \tau_1\}, где \alpha_1 \dots \alpha_k — все свободные переменные в \tau_1

• (S_2, \tau_2) = W(S_1(\Gamma''), Q)

((S_2 \circ S_1), \tau_2)
```

Надеемся, что логика второго порядка противоречива.

9.4 Рекурсивные типы

Ранее мы уже рассматривали Y-комбинатор, но не могли типизировать его и отказывались. Однако в программировании хотелось бы использовать рекурсию, поэтому тут мы введем его аксиоматически.

```
Yf =_{\beta} f(Y \ f)
 Y : \forall \alpha.(\alpha \to \alpha) \to \alpha — аксиома
```

И теперь, когда мы хотим написать какую-то рекурсивную функцию, скажем, на языке Ocaml, то интерпретировать ее можно будет следующим образом:

Рекурсивными могут быть не только функции, но и типы. Как, например, список из целых чисел:

```
type intList = Nil | Cons of int * intList;;
```

На нем мы можем вызывать рекурсивные функции, например, ниже представлен фрагмент кода, позволяющий найти длину списка.

```
let my_list = Cons(1, Cons (2, Cons (3, Nil)));;
print_int (length my_list);; (* output: 3 *)

Рассмотрим, что из себя представляет тип списка выше: Nil = inLeft\ O = \lambda a.\lambda b.a\ O
Cons = inRight\ p = \lambda a.\lambda b.b\ p
\lambda a.\lambda b.a\ O: \forall \gamma.(\alpha \to \gamma) \to (\beta \to \gamma) \to \gamma
\lambda a.\lambda b.b\ p: \forall \gamma.(\alpha \to \gamma) \to (\beta \to \gamma) \to \gamma
\delta = \forall \gamma.(\alpha \to \gamma) \to (\beta \to \gamma) \to \gamma
\lambda a.\lambda b.b\ (\lambda a.\lambda b.a\ O): \forall \alpha.(\alpha \to \gamma) \to (\delta \to \gamma) \to \gamma
```

Научимся задавать рекурсивные типы, а именно рассмотрим два способа решения:

1. Эквирекурсивный

```
list = Nil | Cons a * list
```

 $\alpha = f(\alpha)$ — уравнение с неподвижной точкой. Пусть $\mu\alpha.f(\alpha) = f(\mu\alpha.f(\alpha))$. Используем это в типах, μf — это и есть тип списка. То есть мы ввели оператор μ , действующий на типах, аналогично Y-комбинатору для выражений.

На практике такой подход используется и в языке программирования Java:

```
class Enum <E extends Enum<E>>
```

Также приведем пример вывода типа $\lambda x.x$ x (можно вспомнить, что именно этот терм помешал нам типизировать Y-комбинатор в просто типизированном λ -исчислении):

```
Пусть \tau = \mu \alpha. \alpha \rightarrow \beta. Если мы раскроем еще раз, то получим \tau = \tau \rightarrow \beta. Если раскроем еще раз, то получим \tau = (\tau \rightarrow \beta) \rightarrow \beta.
```

Ранее мы ввели Y-комбинатор аксиоматически, а можем ли мы его типизировать используя рекурсивные типы? Ответ: Да, можем. Напомним, что $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$.

```
\frac{\lambda f:\beta \to \beta, \ x:\tau \vdash f:\beta \to \beta \quad \  f:\beta \to \beta, \ x:\tau \vdash x \ x:\beta}{\frac{f:\beta \to \beta \vdash \lambda x.f \ (x \ x):\tau}{\lambda f:\beta \to \beta \vdash \lambda x.f \ (x \ x):\tau}} \underbrace{\frac{f:\beta \to \beta \vdash \lambda x.f \ (x \ x):\tau}{\lambda f:\beta \to \beta \vdash \lambda x.f \ (x \ x):\tau}}_{\frac{f:\beta \to \beta \vdash (\lambda x.f \ (x \ x)) \ (\lambda x.f \ (x \ x)):\beta}{\vdash \lambda f.(\lambda x.f \ (x \ x)) \ (\lambda x.f \ (x \ x)):\forall \beta.(\beta \to \beta) \to \beta}}_{\frac{f:\beta \to \beta \vdash \lambda x.f \ (x \ x)) \ (\lambda x.f \ (x \ x)):\forall \beta.(\beta \to \beta) \to \beta}}
```

Загадочка: А можно ли типизировать, скажем $\lambda x : Nat.x(Sx)$?

2. Изорекурсивный

В отличие от эквирекурсивных типов будем считать, что $\mu\alpha.f(\alpha)$ изоморфно $f(\mu\alpha.f(\alpha))$. Такой подход используется в языке программирования С.

```
struct list {
    list* x;
    int a;
```

```
}
(*x).(*x).(*x).a
// или, что эквивалентно
x->x->x.a
```

Можно заметить, что выше для работы со списком мы использовали специальную операцию: $*: list* \rightarrow list$ — разыменование

В изорекурсивных типах введены специальные операции для работы с этими типами, и оператор * из С как раз был примером одной из них (в частности roll):

- $Roll: Nil|Cons(a*list) \rightarrow list$
- $Unroll: list \rightarrow Nil|Cons(a*list)$

В более общем виде (введение в типовую систему):

- $roll: f(\alpha) \to \alpha$
- $unroll : \alpha \to f(\alpha)$

Можно привести еще примеры из языка С:

- $\bullet * : T* \rightarrow T$
- $\&: T \to T*$
- $T = \alpha$
- $T* = f(\alpha)$

9.5 Зависимые типы

Рассмотрим функцию sprintf из языка C:

```
sprintf: string \rightarrow smth \rightarrow string \\ sprintf"\%d": int \rightarrow string \\ sprintf"\%f": float \rightarrow string
```

Легко видеть, что тип sprintf определяется первым аргументом. То есть тип этой функции зависит от терма — именно такой тип и называется зависимым (англ: dependent type).

Рассмотрим несколько иной пример, а именно список. Предположим, что мы хотим скалярно перемножить два списка:

Было бы очень здорово уметь отлавливать эту ошибку не в рантайме, а во время компиляции программы и зависимые типы могут в этом помочь. Например в языке Idris можно использовать Vect:

Если подойти к типу функции dot ближе с точки зрения теории типов, то мы бы записали это так (о * речь пойдет в следующей главе [стоит ее воспринимать как тип типа]):

```
Nat:*, Integer:*, Vect : Nat -> Integer -> * \vdash \Pi n:Nat . Vect n Integer -> Vect n Integer -> Integer
```

9.5.1 П-типы и Σ -типы

- $\Pi x: \alpha.P(x)$ эту запись можно читать как (в каком-то смысле в интуиционистском понимании): "У меня есть метод для конструирования объекта типа P(x), использующий любой предоставленный x типа α ". Если же смотреть на эту запись с точки зрения классической логики, то ее можно понимать как бесконечную коньюнкцию $P(x_1)\&P(x_2)\&...$ Данная конъюнкция соответствует декартовому произведению, отсюда и название Π -типа (иногда в англоязычной литературе можно встретить dependent function type).
- $\Sigma x: \alpha.P(x)$. Аналогично предыдущему пункту рассмотрим значение с интуиционистской точки зрения: "У меня есть объект x типа α , но больше ничего про него не знаю кроме того, что он обладает свойством P(x)". Это как раз в стиле интуиционизма, что нам приходится знать и объект x и его свойство P(x). Это можно представить как пару, а пара бинарное произведение. С точки же зрения классической логики, мы можем принимать эту формулу как бесконечную дизъюнкцию $P(x_1) \vee P(x_2) \vee ...$, которая соответствует алгебраическим типам данных. (иногда в англоязычной литературе можно встретить $dependent\ sum$).

Ранее обсуждалось, что тип может быть сопоставлен множеству его значений, как например тип uint32_t в C++ может быть сопоставлен множеству $\{0,1,...,2^{32}-1\}$. Рассмотрим $\Pi x:\alpha.P(x)$: этому Π -типу можно сопоставить прямое произведение B^A (где A — множество, сопоставленное типу P(a)), которое следует воспринимать, как $P(a)=\{f:A\}$ ($P(a)=\{f:A\}$) $P(a)=\{f:A\}$ ($P(a)=\{f:A\}$) $P(a)=\{f:A\}$ ($P(a)=\{f:A\}$) не меняется, собственно поэтому этот тип в таком случае записывают как $P(a)=\{f:A\}$. Р. Рассмотрим $P(a)=\{f:A\}$ от типу можно сопоставить дизъюнктное объединение $P(a)=\{f:A\}$ ($P(a)=\{f:A\}$), где $P(a)=\{f:A\}$ — множество, сопоставленное типу $P(a)=\{f:A\}$, где $P(a)=\{f:A\}$ от также можно отметить, что если $P(a)=\{f:A\}$ от также можно отметить, что если $P(a)=\{f:A\}$ от также можно отметить, что если $P(a)=\{f:A\}$ от результатом дизъюнктивного объединения будет прямое произведение $P(a)=\{f:A\}$ от $P(a)=\{f:A\}$ от P(

```
data DPair : (a : Type) -> (P : a -> Type) -> Type where
   MkDPair : {P : a -> Type} -> (x : a) -> P x -> DPair a P
```

Также есть некоторый синтаксический сахар (a : A ** P), который обозначает зависимую пару типа DPair A P, где P может содержать в себе имя a.

В документации Idris'а есть хороший пример использования: мы хотим отфильтровать вектор (Vect) по какому-то предикату - мы не можем знать заранее длину результирующего вектора, поэтому зависимая пара выручает:

10 Лекция 10

10.1 Введение

Прежде мы разбирали просто типизированное лямбда-исчисление, в котором термы зависели от термов, например, терм $(F\ M)$ зависит от терма M. После того, как было замечено, что, скажем, I может иметь разные типы, которые по сути различаются лишь аннотацией, например, $\lambda x.x:\alpha\to\alpha$, $\lambda x.x:(\alpha\to\alpha)\to(\alpha\to\alpha)$, была введена типовая абстракция, то есть термы теперь могли зависеть от типов и такая типовая система была названа System F и можно было писать $\Lambda \alpha.\lambda x:\alpha.x:\forall \alpha.\alpha\to\alpha$. То есть это было своего рода изобретением шаблонов в языке C++. Но на этом все не ограничено. System F_w , в которой типы могут зависеть от типов, как, например, список - алгебраический тип данных, у которого есть две альтернативы $Nil:\forall \alpha.List\alpha$ и $Cons:\forall \alpha.\alpha\to List\alpha\to\alpha$ (рекурсивные типы смотри выше). Для лучшего понимания различия системы F и F_w ниже представлены грамматики для типов:

```
• T_{\rightarrow} ::= \alpha \mid (T_{\rightarrow}) \mid T_{\rightarrow} \rightarrow T_{\rightarrow}
```

- $T_F ::= \alpha \mid \forall \alpha. T_F \mid (T_F) \mid T_F \rightarrow T_F$
- $T_{F_w} ::= \alpha \mid \lambda \alpha. T_{F_w} \mid (T_{F_w}) \mid T_{F_w} \rightarrow T_{F_w} \mid T_{F_w} \mid T_{F_w}$

Ничего не мешает рассматривать типовую систему, в которой тип может зависеть от терма, как это было сделано раньше. Пусть для всех $a:\alpha$ мы можем определить тип β_{α} и пусть существует $b_{\alpha}:\beta_{\alpha}$. Тогда вполне обоснована запись функции $\lambda\alpha:b_{\alpha}$. Тип данного выражения принято записывать как $\Pi a:\alpha.\beta_{\alpha}$ (стоит сделать замечание, что если β_{α} не зависит от α [то есть функция константа], то вместо $\Pi a:\alpha.\beta_{\alpha}$ пишут $\alpha \to \beta$). Примером может быть тип вектора, длина которого зависит от натурального числа и типа (пример из языка Idris):

```
data Vect : (len : Nat) -> (elem : Type) -> Type where
  Nil : Vect Z elem
  (::) : (x : elem) -> (xs : Vect len elem) -> Vect (S len) elem
```

Теперь наша грамматика стала обширной и появилась необходимость более формально говорить о типах, т.е. ввести их в систему. Для этого был придуман род (anc. kind), который обозначают *. Используя * можно задавать типы типовых конструкторов.

Рассмотрим пару примеров, как используется род:

```
• \lambda m : \alpha . F \ m : (\alpha \to \beta) : *
```

• $\lambda \alpha : *.I_{\alpha} : (\Pi \alpha : *.\alpha \rightarrow \alpha) : *$

• $\lambda n : Nat.A^n \to B : Nat \to *$

• $\lambda a : *.a \rightarrow a : * \rightarrow *$

Попробуем разобраться, что же написано в примерах.

- Первый пример это типизация привычной нам абстракции. Утверждение $a \to b$: * значит $a \to b$ это тип.
- Во втором примере мы рассматриваем лямбда-выражение, которое принимает на вход тип и возвращает терм I_{α} . Таким образом мы собираемся типизировать терм, зависящий от типа. Для этого как сказано выше мы вводим символ Π , а вот в известной нам системе F тип выражения $\lambda \alpha : *.I_{\alpha}$ был бы $\forall \alpha.(\alpha \to \alpha)$.
- В третьем пункте мы хотим сформировать утверждения для типа, зависящего от терма. Интуитивно понятно, что у такого выражения будет род $Nat \to *$. И заселять его будут конструкторы типов, которые принимают на вход число и возвращают тип, например $\lambda x : Nat.int[x]$ это терм, который заселяет род $Nat \to *$
- В четвертом пункте мы типизируем конструктор типа, который принимает на вход тип. Действительно, его родом будет $* \to *$.

Возникает желание каким-то образом объединить все роды, и это необходимо для дальнейшей формализации происходящего. $* \to *:?$. Что можно поставить на место вопросика? Это не тип, так как иначе бы могли записать $* \to *: *$, однако понятно, что это не так. В частности, для этого вводится понятие сорта (англ. sort), которое можно воспринимать как тип рода и тогда $* \to *: \square$ и $*: \square$. Для любого выражения вида $A \to *$, где $A \to *$ то что угодно, верно, что оно типизируется \square . Например,

 $* \to * \to * : \Box$ - этот род очень похож на $* \to *$, и действительно, единственное отличие заключается в количестве аргументов нашего типового конструктора. В частности, этот род заселяет конструктор map, $\lambda keyType: *.(\lambda valueType.map < keyType, valueType>)$

Теперь мы ознакомились со всеми необходимыми обозначениями и неформальными определениями. Обобщая все вышесказанное, построим обобщенную типовую систему.

10.2 Обобщенная типовая система

- Copta: {*, □}
 - Выражение "A : *"означает, что A тип. И тогда, если на метаязыке мы хотим сказать "Если A тип, то и A A тоже тип то формально это выглядит как A : * \vdash (A A) : *
 - $-\Box$ это абстракция над сортом для типов.
 - Например:

*
$$5:$$
 int : * : \square
* \square : * \rightarrow * : \square
* $\Lambda M.$ List< M > : * \rightarrow * : \square

- $T ::= x \mid c \mid (T \mid T) \mid (\lambda x : T \mid T) \mid (\Pi x : T \mid T)$
- Аксиома:

• Правила вывода:

1.
$$\frac{\Gamma \vdash A : S}{\Gamma, x : A \vdash x : A} x \notin \Gamma$$
2. $\frac{\Gamma \vdash A : B}{\Gamma, x : C \vdash A : B} \frac{\Gamma \vdash C : S}{\Gamma, x : C \vdash A : B}$ — правило ослабления (примерно как $\alpha \to \beta \to \alpha$ в И.В.)
3. $\frac{\Gamma \vdash A : B}{\Gamma \vdash A : B'} \frac{\Gamma \vdash B' : S}{\Gamma \vdash A : B'}$ — правило конверсии
4. $\frac{\Gamma \vdash F : (\Pi x : A . B)}{\Gamma \vdash (F \ a) : B[x := a]}$ — правило применения

• Семейства правила (generic-правила) Пусть $(s_1, s_2) \in S \subseteq \{*, \square\}^2$.

1. П-правило:
$$\frac{\Gamma \vdash A: s_1 \qquad \Gamma, x: A \vdash B: s_2}{\Gamma \vdash (\Pi x: A.B): s_2}$$
 2. λ -правило:
$$\frac{\Gamma \vdash A: s_1 \qquad \Gamma, x: A \vdash b: B \qquad \Gamma, x: A \vdash B: s_2}{\Gamma \vdash (\lambda x: A.b): (\Pi x: A.B)}$$

В одном из примеров мы рассмотрели утверждение $\lambda\alpha:*.I_\alpha:(\Pi\alpha:*.\alpha\to\alpha):*.$ Теперь мы можем до конца понять, почему $(\Pi\alpha:*.\alpha\to\alpha):*$ и что такое $\Pi.$ Неформально говоря, Π -правило говорит нам о том, что выражение $(\Pi x:A.B)$ типизируется либо *, либо \square , а именно тем, чем является B. То есть, $(\Pi x:A.B)$ — это либо тип конструктора типа, либо тип конструктора терма. В приведенном примере мы принимаем на вход любой тип α и возвращаем терм, а значит $(\Pi\alpha:*.\alpha\to\alpha):*.$

Еще пару слов про П. Этот символ является обобщением \rightarrow , поэтому, во всех рассмотренных ранее родах, согласно нашей обобщенной типовой системе, можно заменить \rightarrow на П, согласно замечанию выше. Например, $*\to *=\Pi a:*.*$. Важно понимать, что подразумевается под зависимостью тела от аргумента и не путать понятия терм и тип. В $\Pi a:*.*$ тело не зависит от аргумента, потому что тело — это просто звездочка, то есть $\Pi a:*.*$ говорит нам просто о том, что наше выражение принимает тип и выдает тип. В то время как термы, населяющие $\Pi a:*.*$, разумеется, могут иметь тело, зависящее от аргумента, как, например, $\lambda a:*.a\to a$

10.3 λ -куб

В обобщенных типовых системах есть generic-правила, которые зависят от выбора s_1 и s_2 из множества сортов. Этот выбор можно проиллюстрировать в виде куба.

Выбор правил означает следующее:

- (*, *) позволяет записывать термы, которые зависят от термов
- (\square , *) позволяет записывать термы, которые зависят от типов
- \bullet (*, \square) позволяет записывать типы, которые зависят от термов
- \bullet (\square , \square) позволяет записывать типы, которые зависят от типов

На самом деле в данной формулировке под типом понимается не только привычный тип. Потому что для привычного типа верно $\tau: *.$ Здесь же τ может типизироваться чем угодно, кроме \square . В частности $* \to *,$ это значит, что например std::vector<T> тоже подходит.

Также на этом кубике можно расположить языки программирования, например:

- ullet Haskell будет располагаться на левой грани куба, недалеко от λw
- Idris и Coq, очевидно, будут находиться в λC
- C++ очень ограниченно приближается к λC (мысли вслух):
 - 1. (*, *) без этого не может обойтись ни один язык программирования
 - 2. $(\square, *)$ например, sizeof(type)
 - 3. $(*, \Box)$ например, std::array<int, 19> тут есть ограничение на то, значение каких типов можно подставлять.
 - 4. (\square, \square) например, std::vector<int>, int*

10.4 Свойства

Для систем в λ -кубе верны следующие утверждения:

- Th. SN Обобщенная типовая система сильно нормализуема
 - 1. Для любых трёх элементов A, B и C, таких, A woheadrightarrow B и A woheadrightarrow C верно, что существует D, что B woheadrightarrow D и C woheadrightarrow D
- Тh. Черча-Россера
- 2. Для любых двух элементов A, B, для которых верно $A =_{\beta} B,$ существует C, что $A \twoheadrightarrow C$ и $B \twoheadrightarrow C$
- Th. Subject reduction $\Gamma \vdash A : T$ и $A \twoheadrightarrow B$, тогда $\Gamma \vdash B : T$

• Th. Unicity of types $\Gamma \vdash A : T$ и $\Gamma \vdash A : T'$ тогда $T =_{\beta} T'$

Примеры:

• $\lambda \omega$:

$$\vdash (\lambda \alpha : *.\alpha \to \alpha) : (* \to *) : \Box$$

$$\begin{array}{c|c}
 & \frac{\vdash * . \square}{a : * \vdash * . \square} \\
 & \vdash (* \to *) : \square \\
\hline
 & \alpha : * \vdash \alpha : * \quad \alpha : *, x : \alpha \vdash \alpha : * \\
\hline
 & \alpha : * \vdash \alpha \to \alpha : x \\
 & \vdash (\lambda \alpha : * . \alpha \to \alpha) : * \to *
\end{array}$$

Notes:

- $(\lambda x.x):(A\to A)$ implicit typing (Curry style)
- $I_A = \lambda x : A.x$ explicit typing (Church style)

Рассмотрим еще примеры для улучшения понимания лямбда-куба и обобщенной типовой системы:

• В системе $F(\lambda 2)$ выводимо:

1.
$$\vdash (\lambda \alpha : *.\lambda a : \alpha.a) : (\Pi \alpha : *.(\alpha \rightarrow \alpha)) : *$$

2.
$$A : * \vdash (\lambda \alpha : *.\lambda a : \alpha.a)A : (A \rightarrow A)$$

3.
$$A:*,b:A \vdash (\lambda\alpha:*.\lambda a:\alpha.a)Ab:A$$

Разумеется, здесь имеет место редукция: $(\lambda \alpha : *.\lambda a : \alpha.a)Ab \to_{\beta} b$.

• В λw выполняется

1.
$$\vdash (\lambda \alpha : *.\alpha \to \alpha) : * \to * : \square$$

2.
$$\beta : * \vdash (\lambda \alpha : * \cdot \alpha \rightarrow \alpha) \beta : *$$

3.
$$\beta: *, x: \beta \vdash (\lambda y: \beta.x): (\lambda \alpha: *.\alpha \rightarrow \alpha)\beta$$

4.
$$a:*, f:* \to * \vdash f(fa):*$$

5.
$$a : * \vdash (\lambda f : * \to *.f(fa)) : (* \to *) \to *$$

• B λP верно:

1.
$$A : * \vdash (A \to *) : \Box$$

2. Рассмотрим тип A как множество значений типизируемых таким образом и введем $P:A \to *$ Тогда $A:*,P:A \to *,a:A \vdash Pa:*$ Можно рассматривать в таком контексте P как предикат на A. Если для a он возвращает населенный тип, то будем считать это за true, иначе за false. Это теоретико-множественный смысл зависимых типов.

Можно строить утверждения вида ($\Pi a:A.Pa$) - для любого a верен предикат P.

• В λw можно задать конъюнкцию, как мы делали еще в системе F. $a\&b=\Pi\gamma:*.(a\to b\to\gamma)\to\gamma$

Тогда
$$AND = \lambda a: *.\lambda b: *.a\&b \ K = \lambda a: *.\lambda b: *.\lambda x: a.\lambda y: b.x$$

$$\vdash AND: * \rightarrow * \rightarrow *$$

$$\vdash K : (\Pi a : *.\Pi b : *.a \rightarrow b \rightarrow a)$$

Тогда получается доказательство того, что из конъюнкции следует первый аргумент! $a:*,b:*\vdash(\lambda x:AND\;ab.xa(Kab)):(AND\;ab\to a):*$

11 Лекция 13

11.1 Теорема Диаконеску

Теорема 11.1 (Диаконеску). В аксиомах ZF аксиома выбора влечет закон исключенного третьего.

Доказательство. По аксиоме выделения для любого утверждения P мы можем построить два множества из множества $\{0, 1\}$:

$$A = \{x \in \{0, 1\} \mid (x = 0) \lor P\} \qquad B = \{x \in \{0, 1\} \mid (x = 1) \lor P\}$$

По аксиоме выбора мы знаем, что их декартово произведение непусто. Иначе говоря, существует функция $f:\{A,B\} \to \{0,1\}$, что

$$f(A) \in A \& f(B) \in B$$

Это, по определению двух множеств, эквивалентно

$$(f(A) = 0 \lor P) \& (f(B) = 1 \lor P)$$

Из этого следует, что

$$(f(A) \neq f(B)) \vee P \tag{*}$$

Однако, по принципу объёмности $P \to (A = B)$. Значит, $P \to (f(A) = f(B))$. Значит,

$$(f(A) \neq f(B)) \to \neg P \tag{**}$$

Из * и ** можно вывести $P \vee \neg P$.

Важным следствием данной теоремы является то, что мы не можем воспринимать типы как множества, так как системы типов изоморфны интуиционистской логике, в которой нет закона исключенного третьего.

12 Лекция 14

12.1 Индуктивные типы и равенства

Возьмём исчисление конструкций λC^{-1} и дополним его базовыми конструкциями — **ин- дуктивными типами** и **равенством**.

 $^{^{1}}$ См. λ -куб

Индуктивный тип: это обобщение конструкций, которые можно получить с помощью индукции, пользуясь некоторым набором базовых утверждений и индукционных переходов. В качестве примера можно рассмотреть аксиоматику Пеано. Здесь конструкторами (выражениями, конструирующими объекты надлежащего типа) будут 0 и ': если n— натуральное, то и n' натуральное.

Таким образом, мы определяем новый тип, индуктивно задавая объекты, которые населяют его.

Рассмотрим реализацию натуральных чисел в языке Аренд.²

Здесь zero — постулирует терм, населяющий Nat (является базой индукции), а suc из Nat конструирует Nat (таким образом, мы производим структурную индукцию). В блоке where задаются связанные с типом определения, а elim представляет из себя сопоставление с образцом.

Равенство. Традиционно рассматривается два типа равенств — экстенсиональное и интенсиональное. Интенсиональное основано на сравнении объектов по внутренней структуре, а экстенсиональное — предполагает, что объекты неразличимы внешне.

Основными отличиями этих двух типов равенств являются разрешимость и сила. Интенсиональное — разрешимо, но слабо, а экстенсиональное — сильно, но неразрешимо. Например, сравнение 0'' и 0'' интенсиональный подход успешно завершит, а при экстенсиональном подходе — нам необходимо предоставить доказательство.

Кроме этого, важным отличием экстенсионального подхода является то, что в нём равенство термов по определению не отличимо от пропозиционального равенства, которое уже доказывается внутри языка (происходит построение терма соответствующего типа).

12.2 Пути и равенство в Arend

В основе подхода языка Arend лежит HoTT — Homotopy Type Theory.³

В нём произвольный тип α является некоторым пространством, а терм $A:\alpha$ — точкой в нём. Равенство же в топологии представляет из себя непрерывный путь между двумя точками.

Введём интервальный тип I, представляющий из себя интервал [l,r]. Определим тип Path.

```
\data Path (A : I -> \Type) (a : A left) (a' : A right) | path (\Pi (i : I) -> A i)
```

Разберём это определение. Здесь A — это пространство, a и a' — точки в нём. Единственный конструктор является функцией, которая по левому концу пути вернёт конечную точку, a по правому концу — начальную точку.

Теперь, с помощью путей, определим равенство.

²https://github.com/JetBrains/Arend/blob/master/lib/Prelude.ard

³The HoTT Book: https://homotopytypetheory.org/book/

Таким образом, равенство — это функция, которая по типу и двум точкам возвращает зависимый тип Path, соединяющий две точки.

Следует обратить внимание на то, что в Arend запрещено на уровне компилятора выполнять pattern matching по интервальному типу. Иначе — можно написать функцию, нарушающую непрерывность и впоследствии получить доказательство 0=1:

12.3 Основные функции

idp: Вспомним определение равенства. Попробуем населить тип 0=0. Это можно сделать так:

```
path (\lam _ => 0)
```

На практике, необходимость доказать равенство является типичной ситуацией, и конструкция idp является удобным обобщением, составляющим путь по неявному аргументу a.

```
\cons idp \{A : \forall A : A\} => path (\lambda => a)
```

coe: Функция **coe** позволяет «разобрать» равенство. Более формально — она служит элиминатором для интервального типа.

```
\func coe (A : I -> \Type) (a : A left) (i : I) : A i
```

Первый аргумент показывает, на каких типах определено равенство. Второй — начальное значение. Третий — интервал. Результатом будет применение \mathbf{A} к \mathbf{i} .

С её помощью, например, можно показать, что у І один элемент

Для доказательства left = right можно применить эту же лемму

```
\func l=r : left = right => left=i right
```

ртар: Принимает функцию f и тип равенства A = B. Возвращает тип f(A) = f(B). Пример: докажем, что если a = b, то a + 1 = b + 1.

```
\lemma example (a b : Nat) (p : a = b)
: (suc a = suc b) => pmap suc p
```

absurd: Позволяет получить любой тип из лжи (Empty).

```
\func absurd {A : \Type} (x : Empty) : A
```

rewrite: Принимает тип равенства A = B, некоторое выражение t, и эта функция переписывает его, подставляя B вместо A. Пример:

```
\lemma example (x y : Nat) (f : Nat -> Nat)
: f (x + y) = f (y + x)
=> rewrite (NatSemiring.+-comm {x} {y}) idp
```

transport: Эта функция является основным механизмом для работы rewrite.

```
\func transport {A : \Type} (B : A -> \Type) 
{a a' : A} (p : a = a') (b : B a) : B a'
```

12.4 Σ - и Π -типы

Иногда мы хотим оперировать с кортежами зависимых типов, например, если мы хотим, чтобы одновременно удовлетворялись несколько условий. В языке Аренд сигма-тип — это тип (зависимых) кортежей.

Покажем их использование на примере:

Здесь, чтобы доказать, что число 10 делится нацело на 5, мы предоставили кортеж из частного m и доказательства, что $m \cdot 5 = 10$.

Также, с помощью сигма-типов удобно требовать выполнение нескольких условий одновременно.

```
\lemma example (a b k : Nat) (p : a + b < k) 
 : (\Sigma (a < k) (b < k))
```

Чтобы доказать эту лемму, потребуется предоставить доказательства (a < k) и (b < k). Получить произвольный элемент из сигма-типа можно с помощью паттерн-матчинга или обращения к полям, например p.1.

Вспомним реализацию путей в языке Аренд. В ней использовался пи-тип — функция, возвращавшая начальную или конечную точку пути. Итак, Π -тип в Arend — это тип зависимых функций. Такая конструкция соответствует квантору всеобщности \forall , так как тип (Ψ) (Ψ) -> Ψ) населён, когда для любого элемента Ψ 0 в существует элемент Ψ 0 а.

Например, представим, что мы определили понятие «делится нацело» и хотим определить понятие простого числа n. Хочется проверить, что если число делит n нацело, то оно либо 1, либо n. Здесь можно применить пи-типы.

```
\P (d : Nat) (k : Divisible n d) -> ((d = 1) || (d = n))
```

12.5 Prop, Universe

Универсум — это «тип типов». В Arend присутствует следующая иерархия универсумов.

- Все типы, которые не содержат в своём определении типы из других универсумов, принадлежат универсуму 0. Например, Int: \Type 0
- Если есть функция, отображающая куда-нибудь тип, она принадлежит универсуму 1: (\Type -> Int) : \Type 1

• Кумулятивная последовательность — каждый следующий универсум включает предыдущий

Такая иерархия нужна, чтобы избежать парадоксов, например, парадокса Рассела.

Концепция похожа на сорта, но при этом она включает предыдущие в иерархии. Например, Int : \Type 100

Заметим, что доказательств существования Int много — например, 10, 2 или 9999. Давайте заведём некий набор типов, в которых всегда присутствует ровно один элемент если присутствует и назовём такой тип собственными утверждениями. Чем такой тип интересен — в нем есть утверждения, которые либо истинны, либо ложны.

Введём специальный универсум Prop. Этот универсум состоит только из тех значений, у которых единственный элемент.

```
\func isProp (A : \Type) \Rightarrow \Pi (a a' : A) \Rightarrow a = a'
```

Такой тип может быть либо пустым, либо одноэлементным (ложь/истина).

Одно из преимуществ **Prop** — если этот тип обитаем, то мы не зависим от доказательств. Любое доказательство равно любому другому.

```
\func proofIrrelevance (P : \Prop) (p q : P)
    : p = q => Path.inProp {P} p q
```

Теперь введём понятие множества (Set). Множеством будут называться все такие элементы, у которых единственное доказательство равенства.

```
\func isSet (A : \Type) => \Pi (a b : A) -> isProp (a = b)
```

Наконец, научимся делать из любого типа Ргор.

По типу а строим тип ||А||

- Если (a : A), то |a| : ||A||
- Если (x y : A), то |x| = |y|

Это называется **пропозициональным обрезанием**. В Аренде его можно сделать с помощью ключевого слова \truncated.

Например, с помощью этой конструкции можно определить понятие «существует»:

```
\truncated \data Exists (A : \Type) (B : A -> \Type) : \Prop
| mkExists (a : A) (B a)
```

Здесь тип Exists определяет существование такого a : A, что B a. При этом мы не можем "достать" это a из Exists:

Но мы можем элиминировать $\mathsf{Exists},$ если возвращаемый тип тоже является утверждением:

Таким образом мы можем выражать неконструктивность. Например, мы можем определить аксиому выбора через TruncP, которое аналогично \truncated производит пропозициональное обрезание:

Эта функция недоказуема (без других аксиом). Однако если попытаться определить аксиому выбора без обрезания, то мы получим тривиальное утверждение, доказуемое в ИИВ:

```
\func choice (A B : \Set) (Q : A -> B -> \Prop)
    (not_empty : \Pi (x : A) -> \Sigma (y : B) (Q x y)):
    \Sigma (f : \Pi (x : A) -> B) (\Pi (x : A) -> Q x (f x))
    => (\lam x => (not_empty x).1, \lam x => (not_empty x).2)
```

С помощью \truncated можно обрезать не только пропозиционально, но и до других универсумов. Например, можно построить фактор-множество над типом A с отношением эквивалентности R с помощью обрезания до \Set:

Число n из \Туре n называется предикативным уровнем типа. Помимо уровня предикативности, универсумы также образуют иерархию по гомотопическому уровню, который определяется индуктивно следующим предикатом:

$$\texttt{is-n-type}(A) \coloneqq \begin{cases} \texttt{isProp}(A) & n = -1 \\ \Pi(x,y:A) \to \texttt{is-n'-type}(x=y) & n' = n-1 \end{cases}$$

Таким образом, гомотопический уровень типа A это 1 + гомотопический уровень типа равенства элементов A и гомотопический уровень \Prop это -1. Универсум с гомотопическим уровнем n и предикативным уровнем n обозначается n-Туре n.

Компилятор не всегда может доказать предикативный уровень типа, иногда нужно доказать самостоятельно с помощью \use \level:

```
\data PropInType-to-Prop (A : \Type) (p : isProp A)
| inc A
| \where {
| \use \level dataIsProp {A : \Type} {p : isProp A}
| (d1 d2 : PropInType-to-Prop A p) : d1 = d2
| \elim d1, d2
| inc a1, inc a2 => pmap inc (p a1 a2)
| }
```