Cryptographic Techniques

Encryption Fundamentals

Symmetric Encryption:

- Same key used for encryption and decryption
- Fast, efficient for large datasets
- Examples: AES, ChaCha20
- Challenge: Secure key distribution

Asymmetric Encryption:

- Public/private key pairs
- Slower but solves key distribution problems
- Examples: RSA, ECC
- Applications: Secure communications, digital signatures

Hybrid Systems:

- Use asymmetric for key exchange, symmetric for data encryption
- Examples: TLS, Signal protocol

Advanced Cryptographic Techniques

Secure Multi-party Computation (MPC):

- Allows multiple parties to jointly compute functions over inputs while keeping inputs private
- Applications: Privacy-preserving analytics, federated learning enhancement
- Implementation options: Garbled circuits, secret sharing

Zero-Knowledge Proofs:

- Prove knowledge of a value without revealing the value itself
- Applications: Authentication, compliance verification
- Types: zk-SNARKs, Bulletproofs

Searchable Encryption:

- Allows searching encrypted data without decryption
- Balances functionality and privacy
- Applications: Encrypted databases, secure cloud storage

Attribute-Based Encryption:

- Access control embedded into encryption
- Enables fine-grained data sharing policies
- Applications: Healthcare data sharing, IoT

Selection Criteria for Cryptographic Solutions

- Data volume and processing requirements
- Trust model (who can see what data)
- Regulatory requirements
- Performance constraints
- Required functionality (analysis, sharing, etc.)

Decision Framework Components

For Differential Privacy

Key Questions for Tool Implementation:

- 1. What type of data is being protected? (numerical, categorical, text)
- 2. What is the sensitivity level of the data? (low, medium, high)
- 3. Is there a trusted central authority? (yes/no)
- 4. What accuracy level is required? (low, medium, high)
- 5. How many queries are expected? (few, many, continuous)

Epsilon Selection Guidance:

- High sensitivity (medical): $\varepsilon = 0.1-1$
- Medium sensitivity (demographics): $\varepsilon = 1-3$
- Lower sensitivity (aggregated usage): $\varepsilon = 3-10$

For Cryptographic Techniques

Key Questions for Tool Implementation:

- 1. Who needs access to the raw data? (single party, multiple parties)
- 2. What operations need to be performed on the data? (storage, analysis, sharing)
- 3. What are the performance requirements? (real-time, batch processing)
- 4. What are the regulatory requirements? (GDPR, HIPAA, etc.)
- 5. What is the threat model? (external attackers, internal threats, etc.)

Integration Points With Other Privacy Techniques

- **Differential Privacy** + **Federated Learning**: Adding DP noise during federated learning training
- Cryptography + Homomorphic Encryption: Enhances MPC capabilities
- **Differential Privacy + Anonymization**: Adding DP as a post-processing step after anonymization
- Cryptographic Techniques + Legal Frameworks: Implementing encryption requirements of regulations

Practical Implementation Considerations

Differential Privacy Libraries

- Google's Differential Privacy library
- OpenDP (Harvard)
- IBM's Diffprivlib
- Microsoft's SmartNoise

Cryptography Implementation

- OpenSSL
- libsodium
- Microsoft SEAL (for homomorphic encryption)
- TFHE (for homomorphic encryption)

Trade-offs to Highlight in Your Tool

- 1. Privacy vs. Utility: Stronger privacy generally means less accurate results
- 2. **Complexity vs. Usability**: More sophisticated techniques can be harder to implement correctly
- 3. **Performance vs. Security**: Stronger security often requires more computational resources
- 4. Centralized vs. Decentralized: Trust requirements vs. computational efficiency