VolkovValA 23122024-171519

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.28721 - 0.43297i, s_{31} = -0.44401 - 0.29453i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

- 1) -28 дБн 2) -30 дБн 3) -32 дБн 4) -34 дБн 5) -36 дБн 6) -38 дБн 7) -40 дБн
- 8) -42 дБн 9) 0 дБн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 1 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 29 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 13.5 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

- 1) 6.2 дБ 2) 6.8 дБ 3) 7.4 дБ 4) 8 дБ 5) 8.6 дБ 6) 9.2 дБ 7) 9.8 дБ 8) 10.4 дБ
- 9) 11 дБ

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 4368 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 11 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 1009 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 2 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 14170 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 5326 МГц до 5376 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

1) -80 дБм 2) -83 дБм 3) -86 дБм 4) -89 дБм 5) -92 дБм 6) -95 дБм 7) -98 дБм 8) -101 дБм 9) -104 дБм

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 149 МГц, частота ПЧ 28 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 93 MΓ_Ι
- 2) 475 MΓ_Ц
- 3) 149 МГц
- 4) 121 MΓ_{II}.

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 30 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна $81~\mathrm{MFH}$?

Варианты ОТВЕТА:

1) 113.4 нГн 2) 171.7 нГн 3) 85.1 нГн 4) 56.7 нГн

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 3. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 2?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 3 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{7; -8\} \quad 2) \ \{9; -8\} \quad 3) \ \{7; -13\} \quad 4) \ \{9; -43\} \quad 5) \ \{9; -33\} \quad 6) \ \{9; -3\} \quad 7) \ \{9; 7\}$$

8) $\{5; -18\}$ 9) $\{3; -13\}$