

SENIOR CERTIFICATE EXAMINATION/ SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P1/WISKUNDE V1

2015

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 19 pages./ Hierdie memorandum bestaan uit 19 bladsye.

NOTE:

- If a candidate answers a QUESTION TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die memorandum van toepassing.

1.1.1	x(x-1)=0	$\checkmark x = 0$
	x = 0 or $x = 1$	$\checkmark x = 1$
1.1.0		(2)
1.1.2	$2x^2 - 4x - 5 = 0$	✓ correct
	$-(-4)\pm\sqrt{(-4)^2-4(2)(-5)}$	substitution
	$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(-5)}}{2(2)}$	into correct
		formula
	$=\frac{4\pm\sqrt{56}}{4}$	
	7	
	x = -0.87 or $x = 2.87$	✓✓ answers
	ODIOE	(3)
	OR/OF	
	5	
	$x^2 - 2x - \frac{3}{2} = 0$	
	$x^{2} - 2x - \frac{5}{2} = 0$ $(x-1)^{2} = \frac{5}{2} + 1$ $x - 1 = \pm \sqrt{\frac{7}{2}}$	√ completing
	$(x-1)^2 = \frac{3}{2} + 1$	the square/
	Z	voltooiing van
	$x-1=\pm \sqrt{\frac{1}{2}}$	die vierkant
	V 2	
	$\therefore x = 1 \pm \sqrt{\frac{7}{2}}$	
	1 2	✓✓answers
	x = -0.87 or $x = 2.87$	(3)
1 1 2		
1.1.3	$5^x = \frac{1}{125}$	√ 5 ⁻³
	$5^x = 5^{-3}$	
	x = -3	✓ answer
	N = S	(2)
	OR/OF	(2)
	OR/OF	

	NSC/NSS – Memorandum		
	$5^{x} = \frac{1}{125}$ $\left(\frac{1}{5}\right)^{-x} = \left(\frac{1}{5}\right)^{3}$ $-x = 3$ $x = -3$	$\checkmark \left(\frac{1}{5}\right)^{-x} = \left(\frac{1}{5}\right)^{3}$ \(\sigma\) answer (2)	
	OR / OF $5^{x} = \frac{1}{125}$ $x = \log_{5} \left(\frac{1}{125}\right)$ $= -3$	✓use of logs ✓ answer (2)	
	OR / OF $5^{x} = \frac{1}{125}$ $5^{x} \cdot 125 = 1$ $5^{x} \cdot 5^{3} = 1$ $5^{x+3} = 5^{0}$	✓ 5 ³	
1.1.4	x+3=0 x = -3 $(x-3)(2-x) > 0$	✓ answer (2)	
	$OR/OF \qquad \frac{- + -}{2 3}$	✓ critical values	
	$2 < x < 3$ \mathbf{OR}/\mathbf{OF}	✓ solves an equality ✓ answer (3)	
	(x-3)(2-x) > 0 $(x-3)(x-2) < 0$	✓ critical values	
	$ \begin{array}{c cccc} \hline 2 & 3 \\ \hline 2 < x < 3 \\ \hline \end{array} $	$\begin{array}{c} \checkmark 2 < x \\ \checkmark x < 3 \end{array} \tag{3}$	

1.2.1	x = 3	✓answer
		(1)
1.2.2	$x+1 = \frac{-4}{x-3}$ $(x+1)(x-3) = -4$ $(x+1)(x-3) + 4 = 0$ $x^2 - 2x + 1 = 0$ $(x-1)^2 = 0$ $x = 1$	✓ $(x+1)(x-3)=-4$ ✓ standard form ✓ factors ✓ answer
	x = 1	(4)
1.2.3	Yes, the graph of f and the graph of g have equal roots at $x = 1$. Ja, die grafiek van f en die grafiek van g het gelyke wortels by $x = 1$. OR/OF	✓yes ✓reason (2)
	Yes, the graphs of f and g intersect in only one point, which is at $x = 1$. /Ja die grafieke van f en g sny in slegs een punt wat by $x = 1$ is.	✓yes ✓reason (2)

В

В

1.3

A

Speed/Spoed = y km/hDistance/Afstand = x km

 $Time/Tyd = \frac{x}{y}$

Speed/Spoed = $\frac{3y}{2}$ km/h

Distance/Afstand = x km

$$Time/Tyd = \frac{x}{\frac{3y}{2}} = \frac{2x}{3y}$$

✓ time from A to B is $\frac{x}{y}$

✓ time from B to A is $\frac{2x}{3y}$

OR/OF

	S	D	T
A to/na B	у	x	$\frac{x}{y}$
B to/na A	$\frac{3y}{2}$	x	$\frac{2x}{3y}$

Average speed travelled/Gemiddelde spoed afgelê:

Total distance travelled/Totale afstand gereis

Total time taken/Totale tyd geneem $= \frac{2x}{\frac{x}{y} + \frac{2x}{3y}}$ $= \frac{2x}{\frac{3x + 2x}{3y}}$ $= \frac{6xy}{5x}$ $= \frac{6y}{5} \text{ km/h}$

$$\checkmark 2x$$

$$\checkmark \frac{x}{y} + \frac{2x}{3y}$$

$$\checkmark \frac{6xy}{5x}$$

$$\checkmark \frac{6y}{5} \text{ km/h}$$

(6) [**23**]

2.1	$T_4 = 31$	✓answer
2.2	$T_n = 9n - 5$	(1) ✓ 9n ✓ -5
	OR/OF	\ \ -3
	$T_n = a + (n-1)d$	(2)
	=4+(n-1)(9)	√ 4
	=9n-5	$\checkmark (n-1)(9)$
		(2)
2.3	4; 22; 40	
	a = 4	
	d = 18	$\checkmark \checkmark d = 18$
	$S_{25} = \frac{n}{2} [2a + (n-1)d]$	
	$= \frac{25}{2} [2(4) + (24)(18)]$	✓ correct substitution into correct
	$=\frac{25}{2}(440)$	formula
	= 5500	✓answer (4)
	OR/OF	
	$T_{25} = 9(49) - 7$	$\checkmark \checkmark T_{25} = 436$
	= 436	✓substitution
	$S_{25} = \frac{25}{2} [4 + 436]$	into correct
	$ \begin{array}{c} 2 & 2 \\ = 5500 \end{array} $	formula
	= 3300	✓ answer (4)
	OR/OF	
		$\checkmark \checkmark T_{25} = 436$
	4+22+40+58+76+94+112+130+148+166+184+202+220+238+	✓ expands
	256 + 274 + 292 + 310 + 328 + 346 + 364 + 382 + 400 + 418 + 436	whole series
	= 5500	✓ answer (4)
L	I	(ד)

Matne	NSC/NSS – Memorandum	DBE/20
2.4	-6 -2 11 33 4 9 9 9	✓ sets up quadratic sequence
	$2a = 9 3a + b = 4 a + b + c = -6$ $a = \frac{9}{2} 3\left(\frac{9}{2}\right) + b = 4 \frac{9}{2} - \frac{19}{2} + c = -6$ $b = -\frac{19}{2} c = -1$ $T_n = \frac{9}{2}n^2 - \frac{19}{2}n - 1$	$\checkmark a = \frac{9}{2}$ $\checkmark b = -\frac{19}{2}$ $\checkmark c = -1$
	OR/OF $T_{n} = T_{1} + (n-1)d_{1} + \frac{(n-1)(n-2)d_{2}}{2}$	(4) ✓ formula & substitution
	$= -6 + (n-1)(4) + \frac{(n-1)(n-2)(9)}{2}$ $= -6 + 4n - 4 + \frac{9n^2 - 27n + 18}{2}$ $= \frac{9}{2}n^2 - \frac{19}{2}n - 1$	$\checkmark a = \frac{9}{2}$ $\checkmark b = -\frac{19}{2}$ $\checkmark c = -1$
	OR/OF $T_n = an^2 + bn + c$ $2a = 9$ $a = \frac{9}{2}$	(4) ✓ sets up quadratic sequence ✓ $a = \frac{9}{2}$
	$T_{1} = \left(\frac{9}{2}\right)(1)^{2} + b(1) + c$ $-6 = \frac{9}{2} + b + c \qquad \text{ line 1}$ $T_{2} = \left(\frac{9}{2}\right)(2)^{2} + b(2) + c$	2
	$-2 = 18 + 2b + c \qquad \qquad line 2$ $4 = \frac{27}{2} + b \qquad \qquad line 2 - line 1$ $b = \frac{-19}{2}$	$\checkmark b = -\frac{19}{2}$ $\checkmark c = -1$

(4) [11]

2.1		
3.1	Given $\sum_{p=4}^{21} (-3)^p$ $T_1 = (-3)^4 = 81$	
3.1.1	$T_1 = (-3)^4 = 81$	√ 81
	$T_2 = (-3)^5 = -243$	✓-243 and 729
	$T_3 = (-3)^6 = 729$ $r = -3$	(2)
3.1.2	r = -3	✓answer (1)
3.1.3	$\sum_{p=4}^{\infty} (-3)^p \text{ will NOT converge/sal NIE konvergeer.}$	✓NOT converge/ NIE konvergeer
	To converge/om te konvergeer, $-1 < r < 1$ and $r = -3$	we do not have $-1 < r < 1$ (2)
	OR/OF	(2)
	$\sum_{p=4}^{\infty} (-3)^p \text{ will NOT converge/sal NIE konvergeer.}$	✓ NOT converge/ NIE konvergeer ✓ $r < -1$
	Because/ $Omdat \ r < -1$	(2)
3.1.4	$S_{18} = \frac{81x(1 - (-3)^{18})}{1 - (-3)}$ $= -7845264882 x$	✓ $n = 18$ ✓ $a = 81x$ ✓ correct substitution into correct formula
	OR/OF	(3)
	$S_{18} = \frac{81x((-3)^{18} - 1)}{(-3) - 1}$	✓ n = 18
	=-7845264882x	✓ $a = 81x$ ✓ correct substitution into correct formula (3)
3.2.1	$6-x$; 5; $\sqrt{4x+12}$	
	$5 - (6 - x) = \sqrt{4x + 12} - 5$	$\checkmark T_2 - T_1 = T_3 - T_2$
	$x - 1 = \sqrt{4x + 12} - 5$	-2 -1 -3 -2
	$x + 4 = \sqrt{4x + 12}$ (and $x \ge -4$ and $x \ge -3$)	$\checkmark x + 4 = \sqrt{4x + 12}$
	$x^2 + 8x + 16 = 4x + 12$	$\sqrt{x^2 + 8x + 16} = 4x + 12$
	$x^2 + 4x + 4 = 0$	✓ factorisation
	$(x+2)^2 = 0$	✓ answer
	x = -2	(5)

3.2.2	$T_1 = 6 - (-2) = 8$	
	$T_2 = 5$	
	$T_3 = \sqrt{4(-2)+12}$	
	= 2	
	d = -3	$\checkmark d = -3$ $\checkmark \text{ correct}$
	$T_{10} = 8 + 9(-3)$ = -19	substitution into
	=-19	correct formula
		✓ answer
		(3)
		[16]

4.1	\mathbf{R} , $y \neq -2$	$\checkmark \checkmark y \neq -2$
		(2)
	OR/OF	
	$(-\infty;-2)\cup(-2;\infty)$	$\checkmark (-\infty; -2)$ $\checkmark (-2; \infty)$
		(2)
4.2	$g(x) = \frac{a}{x - 1} - 2$	
	$-5 = \frac{a}{-1} - 2$ $5 = a + 2$	✓ substitution of the point $(0; -5)$ in to $g(x)$
	a = 3	✓answer (2)
4.3	For g, asymptotes intersect at/Vir g, asimptote sny by $(1;-2)$ \therefore For/Vir $y = g(x-3)+7$, asymptotes will intersect at/ asimptote sal sny by $(1+3;-2+7)$ i.e./d.i. at/by $(4;5)$	$\checkmark (1;-2) \text{ for } g$ $\checkmark x = 4$ $\checkmark y = 5$ (3)
	OR/OF	
	$g(x) = \frac{a}{x-1} - 2$ $y = g(x-3) + 7$	
	$y = g(x-3)+7$ $= \frac{3}{x-3-1} - 2 + 7$	✓subs
	$=\frac{3}{x-4}+5$	$\checkmark x = 4$
		$\checkmark y = 5$
	(4;5)	(3) [7]

	(> -?	
5.1	$y = \left(\frac{1}{4}\right)^{-2}$ $= 4^{2}$	✓substitution
	$=4^{2}$	
	= 16	✓ answer (2)
5.2	$(1)^x$	
3.2	$y = \left(\frac{1}{4}\right)^{x}$ $f^{-1}: x = \left(\frac{1}{4}\right)^{y}$ $y = \log_{\frac{1}{4}} x \qquad \text{or} \qquad y = -\log_{4} x$	
	f^{-1} : $\mathbf{r} - \left(\frac{1}{1}\right)^{y}$	Z
	J = X - (4)	✓ interchange x and y
	$y = \log_{\frac{1}{2}} x$ or $y = -\log_4 x$	x und y
	4	✓ answer (2)
5.3	f and f^{-1} are symmetrical about the line $y = x$, to obtain f^{-1} , reflect f	(-)
	in the line $y = x$.	✓ reflect in $y = x$
	$\int en f^{-1}$ is simmetries om die lyn $y = x$, om dus f^{-1} te kry reflekteer $\int f$ in die lyn $y = x$.	(1)
	OR/OF	
	The x and y -coordinates of points on f may be swopped around to	
	obtain the coordinates of the points on f^{-1} . Two points that lie on the	
	graph of f are $(0; 1)$ and $(-2; 16)$. The corresponding points that	\checkmark swop x and y
	will lie on f^{-1} will therefore be (1; 0) and (16; -2). Die x- en y-koördinate van punte op f mag omgeruil word om die	
	koördinate van punte op f^{-1} te kry. Twee punte op die grafiek van f	(4)
	is $(0; 1)$ en $(-2; 16)$. Die ooreenstemmende punte op f^{-1} sal dus	(1)
	(1; 0) and/en $(16; -2)$ wees.	
5.4		
		c c-1
		\checkmark shape of f^{-1}
	(1;0)	$\checkmark x$ -int of f^{-1} at 1
	f^{-1}	
		(2)
	-	

5.5	w> 0	1 × × 0	
3.3	x > 0	$\checkmark x > 0$	(1)
	OR/OF		
		$\checkmark(0;\infty)$	
<i>5.6</i>	$(0;\infty)$		(1)
5.6	$f^{-1}(x) \ge -2$		
	From 5.1, $f^{-1}(16) = -2$	$\checkmark x > 0$ $\checkmark x \le 16$	
	$0 < x \le 16$ or $x \in (0; 16]$	$\checkmark x \le 16$	(2)
5.7.1	1	. 1	(2)
0.7.1	$q = \frac{1}{2}$ (using a calculator/gebruik 'n sakrekenaar)	$\checkmark q = \frac{1}{2}$	
			(1)
	OR/OF		
	Without a calculator (not necessary)/Sonder sakrekenaar (nie nodig)		
	1		
	$q = \log_{\frac{1}{4}} \frac{1}{2}$ $q = \log_{\frac{1}{4}} \frac{1}{2}$		
	1^q 1 $\log \frac{1}{r}$		
	$\frac{1}{4}^{q} = \frac{1}{2}$ $2^{-2q} = 2^{-1}$ OR/OF $q = \frac{\log \frac{1}{2}}{\log \frac{1}{4}}$		
	/		
	2q=1	_ 1	
	$q = \frac{1}{2}$ $q = \frac{-\log 2}{-2\log 2}$	$\checkmark q = \frac{1}{2}$	
	1 2		(1)
	$q = \frac{1}{2}$		
5.7.2	At the intersection point of f and f^{-1} , $y = x$ (by symmetry).		
	Thus need only solve $f^{-1}(x) = x$ (instead of $f(x) = f^{-1}(x)$)		
	By die snypunt van f en f^{-1} , $y = x$ (deur simmetrie).		
	Slegs nodig om $f^{-1}(x) = x$ op te los (in plaas van $f(x) = f^{-1}(x)$		
	$\log_{\frac{1}{4}} x = x$.1 . 1	
	1 1 5 5 7 1	$\checkmark \frac{1}{2} = \log_{\frac{1}{4}} \frac{1}{2}$	
	$\log_{\frac{1}{4}} \frac{1}{2} = \frac{1}{2}$ from 5.7.1	$\checkmark x = \frac{1}{2}$	
	<u></u> 1	$x = \frac{1}{2}$	
	$x = \frac{1}{2}$	$\checkmark y = \frac{1}{2}$	
	$y = \frac{1}{2}$	$\checkmark y = \frac{1}{2}$	
	2	_	(3)
	$\left(\frac{1}{2},\frac{1}{2}\right)$		
	\mathbf{OR}/\mathbf{OF}		
	By/ $Van 5.7.1$, $\frac{1}{2} = \log_{\frac{1}{4}} \frac{1}{2}$	$\checkmark \frac{1}{2} = \log_{\frac{1}{4}} \frac{1}{2}$	
	Which means that $\left(\frac{1}{2}; \frac{1}{2}\right)$ lies on the graph of f^{-1} ./	$\frac{2}{4}$	
	which means that $(2, 2)$ has on the graph of j .		

Wat beteken $\left(\frac{1}{2};\frac{1}{2}\right)$ lê op die grafiek van f^{-1} .	$\checkmark x = \frac{1}{2}$
But clearly, $\left(\frac{1}{2}; \frac{1}{2}\right)$ lies on $y = x/Maar$, $\left(\frac{1}{2}; \frac{1}{2}\right) l\hat{e}$ op $y = x$	$\checkmark y = \frac{1}{2}$
Hence $\left(\frac{1}{2}; \frac{1}{2}\right)$ is the intersection point of f and f^{-1}/Dus is $\left(\frac{1}{2}; \frac{1}{2}\right)$ die snypunt van f en f^{-1}	(3) [14]

6.1	$-3x^2 - 9x + 30 = 0$	$\checkmark -3x^2 - 9x + 30 = 0$
	$x^2 + 3x - 10 = 0$	✓ factors
	(x+5)(x-2)=0	✓answers
	x = -5 or $x = 2$	(47) 5
	AB = 7 units	$\checkmark AB = 7 \tag{4}$
6.2	$-3x^2 - 9x + 30 = -12x + 12$	✓ equating of
	$-3x^2 + 3x + 18 = 0$	equations
	$x^2 - x - 6 = 0$	$\checkmark x^2 - x - 6 = 0$
	(x-3)(x+2)=0	✓ factors
	x = -2 or $x = 3$	$\checkmark x = 3$
	At K, $x > 0$, hence $y = -12(3) + 12 = -24$	$\checkmark y = -24$
	K(3;-24)	(5)
6.3	$f(x) \le g(x)$	$\checkmark x \le -2$
	$x \le -2$ or $x \ge 3$	$\begin{array}{c} \checkmark x \ge 3 \\ \checkmark \text{ or} \end{array}$
	OR/OF	
		(3)
	$f(x) \le g(x)$	√ (-∞; -2]
	$x \in (-\infty; -2]$ or $[3; \infty)$	√ [3;∞)
	OR/OF	✓ or
		(3)
	$-3x^2 - 9x + 30 - (-12x + 12) \le 0$	
	$-3x^2 + 3x + 18 \le 0$	
	$x^2 - x - 6 \ge 0$	
	$(x-3)(x+2) \ge 0$	$\checkmark x \le -2$
	$x \le -2 \text{or} x \ge 3$	$\checkmark x \ge 3$ $\checkmark \text{ or}$
		(3)

6.4
$$CD = -3x^2 - 9x + 30 - (-12x + 12)$$

 $= -3x^2 + 3x + 18$
 $CD = y_f - y_g$
 $x = -\frac{b}{2a}$ **OR/OF** $f'(x) = 0$ **OR/OF** $CD = -3(x^2 - x) + 18$
 $= \frac{-3}{2(-3)}$ $-6x + 3 = 0$ $= -3\left[\left(x - \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2\right] + 18$ \checkmark method

 $= \frac{1}{2}$ $x = \frac{1}{2}$ $= -3\left(x - \frac{1}{2}\right)^2 + \frac{3}{4} + 18$ $\checkmark x = \frac{1}{2}$

Max length/Maks lengte CD **OR/OF** Max length/Maks lengte CD

 $= -3\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right) + 18$ $= 18\frac{3}{4}$
 $= 18\frac{3}{4}$ \checkmark max length

 $CD = \frac{75}{4}$ or $18\frac{3}{4}$ (5)

[17]

7.1	Anisha: Final investment value/Finale beleggingswaarde = $P(1+in)+7.5\%$ of R12 000 = $12000(1+0.085\times5)+900$ = R18 000	✓ 900 or 7,5% of R12 000 ✓ 12000(1+0,085×5) ✓ R18 000
	Lindiwe: Final investment value / Finale beleggingswaarde $= P(1+i)^n$ $= 12000 \left(1 + \frac{0,085}{4}\right)^{20}$ $= R18 273,54$	$✓ 12000 \left(1 + \frac{0,085}{4}\right)^{20}$ ✓ R18273,54
	Therefore Lindiwe will have a larger final amount./ Lindiwe sal 'n groter finale bedrag hê.	✓ conclusion (6)

7.2	$A = P(1-i)^n$	√formula
	$41 \ 611,57 = 120000(1-0,124)^n$	✓substitution
	$\frac{41\ 611,57}{120000} = (0,876)^n$	$ \checkmark n = \log_{(0.876)} \frac{41611,57}{120000} $
	$n = \log_{(0.876)} \frac{41611,57}{120000}$	120000
	= 8 years	✓answer
	OR/OF	(4)
	$A = P(1-i)^n$	
	$41611,57 = 120000(1-0,124)^n$	√formula
	$\frac{41611,57}{120000} = (0,876)^n$	✓substitution
	$\log \frac{41611,57}{120000} = n \log(0.876)^n$	
	$n = \frac{\log \frac{41611,57}{120000}}{\log 0,876}$ = 8 years	$ \checkmark n = \frac{\log \frac{41611,57}{120000}}{\log 0,876} $ ✓ answer (4)
7.3	final amount / finale bedrag $= P(1+i)^{n} + \frac{x[(1+i)^{n}-1]}{i}$	$\checkmark i = \frac{0.15}{12}$ $\checkmark n = 24$
	$= P(1+i)^{n} + \frac{x[(1+i)^{n}-1]}{i}$ $= 5000\left(1+\frac{0.15}{12}\right)^{24} + \frac{800\left[\left(1+\frac{0.15}{12}\right)^{24}-1\right]}{\frac{0.15}{12}}$ $= 6736.755 + 22 230.467$	✓ (subs) ✓ (adding) $5000 \left(1 + \frac{0.15}{12}\right)^{24} + \frac{800 \left[\left(1 + \frac{0.15}{12}\right)^{24} - 1\right]}{\frac{0.15}{12}}$
	= R28 967,22	✓ answer (5) [15]

8.1	$f(x+h) = \frac{4}{x+h}$	
	$f(x+h) = \frac{4}{x+h}$ $f(x+h) - f(x) = \frac{4}{x+h} - \frac{4}{x}$, 4 4
	$= \frac{x+h}{4x-4(x+h)}$ $= \frac{4x-4(x+h)}{x(x+h)}$	$\sqrt{\frac{4}{x+h} - \frac{4}{x}}$ $\sqrt{\frac{4x - 4(x+h)}{x(x+h)}}$ $\sqrt{\frac{-4}{x(x+h)}}$
	$-\frac{1}{x(x+h)}$	$\checkmark \frac{4x-4(x+h)}{}$
	$=\frac{4x-4x-4h}{x(x+h)}$	x(x+h)
	$=\frac{-4h}{x(x+h)}$	$\sqrt{-4}$
	-4h	x(x+h)
	$\frac{f(x+h)-f(x)}{h} = \frac{\frac{-4h}{x(x+h)}}{h}$	
	$=\frac{-4h}{xh(x+h)}$	
	$\frac{-4}{x(x+h)}$	✓ formula
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	V Ioimuia
	$=\lim_{h\to 0}\frac{-4}{x(x+h)}$	
		✓ answer (5)
	$=\frac{-4}{x^2}$ OR / OF	

	NSC/NSS – Memorandum	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	√formula
	$= \lim_{h \to 0} \frac{\frac{4}{x+h} - \frac{4}{x}}{h}$ $= \lim_{h \to 0} \frac{\frac{4x - 4(x+h)}{x}}{h}$ $= \lim_{h \to 0} \frac{x(x+h)}{h}$	✓ subst. into formula $ ✓ \frac{4x - 4(x + h)}{x(x + h)} $
	$= \lim_{h \to 0} \frac{4x - 4x - 4h}{hx(x+h)}$ $= \lim_{h \to 0} \frac{-4h}{xh(x+h)}$ $= \lim_{h \to 0} \frac{-4}{x(x+h)}$	$\checkmark \frac{-4}{x(x+h)}$
	$= \frac{-4}{x^2}$ $y = 5x^2 + 5x + 2$	✓ answer (5)
8.2.1		✓10 <i>x</i> ✓ 5
	$\frac{dy}{dx} = 10x + 5$	(2)
8.2.2	$D_{x} \left[\sqrt[3]{x^{2}} - \frac{1}{2}x \right]$ $= D_{x} \left[x^{\frac{2}{3}} - \frac{1}{2}x \right]$ $= \frac{2}{3}x^{-\frac{1}{3}} - \frac{1}{2}$	$\checkmark x^{\frac{2}{3}}$ $\checkmark \frac{2}{3}x^{\frac{-1}{3}}$ $\checkmark -\frac{1}{2}$ (3)
8.3	$p(x) = x^3 + 2x$ $p'(x) = 3x^2 + 2$ $3x^2 \ge 0$ or $/of$ $x^2 \ge 0$ for all/vir alle $x \in \mathbf{R}$ $\therefore 3x^2 + 2 \ge 2 > 0$ for all/vir alle $x \in \mathbf{R}$ i.e. $p'(x) > 0$ for all/vir alle $x \in \mathbf{R}$ i.e. all tangents to p have gradient greater than (or equal to) 2. Thus there is no tangent to p that has negative gradient. Alle raaklyne aan p sal dus 'n gradiënt groter (of gelyk aan) p hê. Daar sal dus geen raaklyn aan p wees met 'n negatiewe gradiënt nie.	✓ $p'(x) = 3x^2 + 2$ ✓ states & justifies $p'(x) > 0$ ✓ linking derivative to gradient of tangent/verband tussen gradiënt en afgeleide (3) [13]

0.1		/ 2
9.1	x=1 or $x=3$	$\checkmark x = 3$ $\checkmark x = 1$
9.2	1 < x < 3	(2) ✓ answer
9.2	1 < x < 3	v answer (2)
9.3	For a point x close to $3/Vir$ 'n punt naby aan 3 :	
9.3	1 · · · · · · · · · · · · · · · · · · ·	$\checkmark f \text{ dec for } x < 3$ $f \text{ dalend vir } x < 3$
	If $x < 3$, $f'(x) < 0 \Rightarrow f$ decreasing/dalend	f incr for $x > 3$
	If $x > 3$, $f'(x) > 0 \Rightarrow f$ increasing/stygend	f stygend vir
	Therefore: 1 3	x > 3
	f has a local minimum at/f het lokale minimum by $x = 3$	$\checkmark x = 3 \text{ local min}$
		(2)
	OR/OF	(-)
	ORIOT	
	At $x = 3$, the gradient function changes from negative to positive	✓ at $x = 3$ gradient
	therefore the function will have a local minimum point at $x = 3$ /	changes from
	By $x = 3$ verander die gradiëntfunksie van negatief na positief	neg to pos
	dus sal die funksie 'n lokale minimum punt hê by $x = 3$.	$\checkmark x = 3 \text{ local min}$
		(2)
	OR/OF	
	f'(3) = 0 and $f''(3) > 0$ therefore the function will have a local	d 01/0) 0
	minimum point at $x = 3$ /	$\int f''(3) > 0$
	f''(3) > 0 dus sal die funksie 'n lokale minimum punt hê by $x = 3$.	$\checkmark x = 3 \text{ local min}$
9.4	f''(x) = 0 at the turning point of/by die draaipunt van $f'(x)$	(2)
). T		
	Using symmetry/Deur simmetrie $x = \frac{1+3}{2}$	
	2	✓answer
	= 2	(1)
9.5	Concave up if/Konkaaf op as $f''(x) > 0$	$\checkmark f''(x) > 0$
	x > 2	✓answer
		(2)
		[9]

	Given: $M(t) = t^3 - 9t^2 + 3000$; $0 \le t \le 30$		
10.1	$M(0) = 0^3 - 9(0)^2 + 3000$		
	=3000g or $3kg$	✓answer	(1)
10.2	$t^3 - 9t^2 + 3000 = 3000$	$\checkmark M(t) = 3000$	
	$t^3 - 9t^2 = 0$	$\checkmark t^3 - 9t = 0$	
	$t^2(t-9)=0$	$\checkmark t^3 - 9t = 0$ $\checkmark \text{ factors}$	
	t = 0 or $t = 9$	V lactors	
	Baby's mass will return to the birth mass on the 9 th day/	$\checkmark t = 9$	(4)
10.3	Baba se massa keer terug na massa by geboorte op die 9^{de} dag. M'(t) = 0	$\checkmark M'(t) = 0$	(4)
10.5	$3t^2 - 18t = 0$	$\checkmark 3t^2 - 18t$	
	3t(t-6) = 0	✓ factors	
	t = 0 or $t = 6$	$\checkmark t = 6$	
	Baby's mass will be a minimum on the 6 th day/	V = 0	(4)
10.4	Baba se massa sal 'n minimum wees op die 6 ^{de} dag.	✓ 6t –18	
10.4	$M'(t) = 3t^2 - 18t$	✓ oi – i o ✓ answer	
	M''(t) = 6t - 18 $0 = 6t - 18$		(2)
	t = 3		
	<i>i</i> – 3		
	OR / OF	0 + 6	
	Using symmetry/ <i>Deur simmitrie</i> :	$\checkmark \frac{0+6}{2}$	
	$t = \frac{0+6}{2}$	✓answer	
	~		(2)
	= 3		[11]

11.1.1		
	n(S)=600	
	Hockey Rugby	
		$\checkmark 372 - x$ for
	X \	Hockey only
		$\checkmark 288 - x$ for
	(x) (x) (x) (x) (x)	Rugby only
		Rugoy omy
	X /	✓ 56 outside of
	56	Hockey & Rugby
		(3)
11.1.2	(372 - x) + x + (288 - x) + 56 = 600	✓ setting up the
	716 - x = 600	equation
		✓ answer
	x = 116 OR / OF	(2)
	(H. D) (00 56	
	n(H or R) = 600 - 56	
	= 544	✓ setting up the
	n(H or R) = n(H) + n(R) - n(H and R)	equation
	544 = 372 + 288 - x	
	x = 372 + 288 - 544	✓ answer
	=116	(2)
11.1.3	No, they are not mutually exclusive.	✓ No
	There is an intersection between the two sets/	✓ justification
	Nee, hul is nie onderling uitsluitend nie. Daar is 'n snyding tussen die twee stelle	(2)
11.2.1	5! = 120	✓ answer
		(1)
11.2.2	$1 \times 2! \times 3!$	√ 2!
	=12	√ 3!
		✓ answer
11 2 2	51. (1. 2	(3)
11.2.3	$\frac{5! \times 6! \times 2}{1!!}$	✓ 5!×6!×2
	11!	✓ division by 11!
	$=\frac{1}{231}$	✓ answer (3)
	231	[14]
	TOTAL/TOTAAL:	150
		<u> </u>