Teorema Reziduurilor

Tapalaga Ecaterina Simona

Iunie 2013

1 Notiuni introductive

Notatie 1.

$$\mathbb{C} \qquad \qquad planul\ complex$$

$$C^* := \mathbb{C} \setminus \{0\}$$

$$C_{\infty} := \mathbb{C} \cup \{\infty\}$$

$$\mathcal{P}(\mathbb{C}) \qquad \qquad multimea\ partilor\ lui\ \mathbb{C}$$

$$\mathcal{P}(\mathbb{R}) \qquad \qquad multimea\ partilor\ lui\ \mathbb{R}$$

$$\mathcal{U}(z_0;r) := \{z \in \mathbb{C} : |z-z_0| < r\} \qquad discul\ cu\ centru\ in\ z_0\ si\ raza\ r$$

$$\dot{\mathcal{U}}(z_0;r) := \mathcal{U}(z_0;r) \setminus \{z_0\} \qquad discul\ punctat\ de\ raza\ r\ si\ centrul\ in\ z_0$$

$$\mathcal{U}(z_0;r_1,r_2) := \{z \in \mathbb{C} : r_1 < |z-z_0| < r_2\} \qquad coroana\ circulara\ de\ centru\ z_0\ si\ raze\ r_1,r_2$$

$$\mathcal{U}(z_0;r_2) = \mathcal{U}(z_0;r_1,r_2) \qquad cand\ r_1 = 0$$

$$\bar{\mathcal{U}}(z_0;r) := \{z \in \mathbb{C} : |z-z_0| \le r\} \qquad discul\ inchis\ de\ raza\ r\ si\ centru\ z_0$$

$$\partial \mathcal{U}(z_0;r) := \{z \in \mathbb{C} : |z-z_0| = r\} \qquad bordura\ de\ raza\ r\ si\ zentru\ z_0$$

Definitie 1. Fie D o submultime a lui \mathbb{C} . Spunem ca este deschisa daca $\forall z \in D, \exists \mathcal{U}(z;r) \subset D$

Observatie 1. Multimile \emptyset si $\mathbb C$ se considera deschise

Definitie 2. Fie A o submultime a lui \mathbb{C} . Spunem ca A este inchisa daca complementara ei C(A) este deschisa

Definitie 3. Fie B o submultime a lui \mathbb{C} . Spunem ca B este conexa daca si numai daca $\nexists D_1, D_2 \in \mathbb{C}$ multimi deschise a.i.

$$B \cap D_1 \neq \emptyset$$

$$B \cap D_2 \neq \emptyset$$

$$B \cap D_1 \cap D_2 = \emptyset$$

$$B \subset D_1 \cup D_2$$

Definitie 4. O submultime $B \subset \mathbb{C}$ este conexa daca \nexists doua submultimi nevide disjuncte si deschise a lui B a.i. reuniunea lor este egala cu B

Observatie 2. Daca B este o submultime conexa a lui \mathbb{C} iar $B \cap A \cap \overline{B}$, atunci A este conexa. In particular, aderenta \forall multimi conexe este conexa.

Definitie 5. Fie D o submultime a lui \mathbb{C} . D se numeste domeniu daca este deschisa si conexa.

Notatie 2.

$$\overline{A}$$
 multimea punctelor aderente ale lui A inchiderea A' multimea punctelor de acumulare ale lui A $fr(A)=\partial A$ frontiera lui $A=\overline{A}\cap \overline{CA}$

Definitie 6. O submultime A a lui \mathbb{C} se numeste marginita daca \exists un disc $\mathcal{U}(z_0;r)$ a.i. $A \subset \mathcal{U}(z_0;r)$

Definitie 7. Un domeniu D din \mathbb{C} care pentru $\forall z \in D$ verifica $[z, z_0] \subset D$ se numeste domeniu stelat in raport cu $z_0 \in D$

Observatie 3.

- 1. Un domeniu stelat in raport cu \forall punct al sau se numeste domeniu convex
- 2. \forall disc este stelat si convex
- 3. Discurile punctate sunt domenii, dar nu sunt si stelate: nu exista nici un punct $z_1 \in \dot{\mathcal{U}}(z_0;r)$ in raport cu care sa fie stelat

Definitie 8. Spunem ca A este compacta $\iff \forall \ sir \ (z_u) \ din \ A \ contine \ un \ subsir \ (Z_{n_m}) \ din \ A \ care \ converge \ catre \ un \ punct \ z_0 \in A$

Definitie 9. Fie A, B multimi din \mathbb{C} . Distanta de la A la B este

$$d(A,B) = \inf\{d(a,b) \colon a \in A, b \in B\}$$
 (1)

Observatie 4.

- 1. Fie $A, B \subset \mathbb{C}, A \cap B \neq \emptyset$. Atunci d(A, B) = 0
- 2. Fie $A, B \subset \mathbb{C}, A \cap B = \emptyset$. Atunci $d(A, B) \geq 0$
- 3. Fie A o multime compacta si B o multime inchisa a.i. $A \cap B = \emptyset$. Atunci d(A, B) > 0

Consecinta 1. Fie G o multime deschisa si K compacta , $K \subset G$. Atunci $d(K, \partial B) > 0$

Consecinta 2. Fie G o multime deschisa si K compacta, $K \subset G$. Atunci $\exists \mathcal{U}(z_n;r), 0 < r < d(K,\partial G), z_n \in K, k = \overline{1,n}$ a.i discul compact $\overline{\mathcal{U}}(z_n;r) \subset G$ si $K \subset \bigcup_{k=1}^n \mathcal{U}(z_n;r)$

Definitie 10. Fie functia $f: A \mapsto C$, unde $A \subset \mathbb{C}$ multime deschisa. Functia f se numeste derivabila in z_0 daca \exists si este finita urmatoarea limita:

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \tag{2}$$

Daca \exists , aceasta se noteaza cu $f'(z_0)$ si se numeste derivata functiei f in z_0

Definitie 11. Spunem ca f este olomorfa pe $A(A \subset \mathbb{C} deschisa)$ daca este derivabila in orice punct din A. Notam cu $\mathcal{H}(A)$ multimea tuturor functiilor olomorfe pe A

Definitie 12. Spunem ca functia f este \mathbb{R} differentiabila (real-differentiabila) in $z_0 = x_0 + iy_0 \in A$ daca functiile u = Ref si v = Imf sunt differentiabile in (z_0, y_0)

Definitie 13. Spunem ca functia f este \mathbb{C} diferentiabila (complex-diferentiabila) in $z_0 \in A$ daca \exists un numar complex N si o functie $g: A \setminus \{z_0\} \mapsto \mathbb{C}$ a.i. $\lim_{z \to z_0} g(z) = 0$ si $f(z) = f(z_0) + N(z - z_0) + g(z)(z - z_0), z \in A \setminus \{z_0\}$

Observatie 5. Functia f este derivabila in $z_0 \iff f$ este $\mathbb C$ diferentiabila in z_0

Teorema 1. Cauchy - Riemann

O functie $f: A \mapsto C$ este derivabila in punctul $z_0 \in A$ daca si numai daca

- 1. f este \mathbb{R} diferentiabila in z_0
- 2. este satisfacut sistemul Cauchy-Riemann in z_0

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0)
\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$$
(3)

 $unde\ u=Ref, v=Imf\ si\ z_0=x_0+iy_0$

Ex 1. Fie $f: \mathbb{C} \mapsto C, f(z) = az + b\overline{z}$. So ser determine $a, b \in \mathbb{R}$ a.i. f so fie derivabila in $z, \forall z \in \mathbb{C}$

Rez. Cautam $u ext{ si } v$

Fie
$$z = x + iy \implies f(z) = a(x + iy) + b(x - iy)$$

Deci $u = x(a + b)$ si $v = y(a - b)$

$$\frac{\partial u}{\partial x}(x,y) = a + b$$

$$\frac{\partial u}{\partial y}(x,y) = 0$$

$$\frac{\partial v}{\partial x}(x,y) = 0$$

$$\frac{\partial v}{\partial y}(x,y) = a - b$$

$$\implies \begin{cases} a+b=0 \\ -(a-b)=0 \end{cases} \iff \begin{cases} a+b=0 \\ b-a=0 \\ \Rightarrow b=a=0 \end{cases}$$

Deci
$$f(z) = 0$$