Rank Revealing QR factorization

F. Guyomarc'h, D. Mezher and B. Philippe

Outline

- Introduction
- Classical Algorithms
 - * Full matrices
 - * Sparse matrices
- Rank-Revealing QR
- Conclusion

Situation of the problem

See Bjorck SIAM96: Numerical Methods for Least Squares Problems.

Data : $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

Problem \mathcal{P} : Find $x \in \mathcal{S}$ such that ||x|| minimum where $\mathcal{S} = \{x \in \mathbb{R}^n \mid ||b - Ax|| \text{ minimum } \}$.

$$(\|.\| \equiv \|.\|_2)$$

The solution is unique : $\hat{x} = A^+b$.

Property:

$$x \in \mathcal{S}$$
 iff $A^T(b - Ax) = 0$,
iff $A^TAx = A^Tb$.

The last equation is consistent since $\mathcal{R}(A^TA) = \mathcal{R}(A^T)$.

Rank-Revealing QR factorization

Theorem : $A \in \mathbb{R}^{m \times n}$ with rank(A) = r $(r \le min(m, n))$.

There exist Q, E, R_{11} and R_{12} such that

- $Q \in \mathbb{R}^{m \times m}$ is orthogonal,
- $E \in \mathbb{R}^{n \times n}$ is a permutation,
- $R_{11} \in \mathbb{R}^{r \times r}$ is upper-triangular with positive diagonal entries,
- \bullet $R_{12} \in \mathbb{R}^{r \times (n-r)}$,

and
$$AE = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix}$$
.

RRQR

The factorization is not unique. Let RRQR be any of them.

Actually, if we consider a complete orthogonal decomposition

$$A = Q \left(\begin{array}{cc} T & 0 \\ 0 & 0 \end{array} \right) V^T$$

where Q and V are orthogonal and T triangular with positive diagonal entries, we have $A^+ = V \begin{pmatrix} T^{-1} & 0 \\ 0 & 0 \end{pmatrix} Q^T$.

Such a factorization can be obtained from the previous one by performing a QR factorization of $\left(R_{12}^T\right)$

Column pivoting strategy

Householder QR factorization using Householder reflections:

Sparse QR factorization

Factorizing a sparse matrix implies fill-in in the factors.

The situation is worse with QR than with LU since when updating the tailing matrix :

- LU : the elementary transformation $x \longrightarrow y = (I \alpha v e_k^T)x$ keeps x invariant when $x_k = 0$.
- QR : the elementary transformation $x \longrightarrow y = (I \alpha v v^T)x$ keeps x invariant when $x \perp v$.

Since $A^TA = R^TR$, the QR factorization A is related to the Cholesky factorization of A^TA . It is known that a symmetric permutation on a sparse s.p.d. matrix changes the level of fill-in.

Therefore, a permutation of the columns of A changes the fill-in of R.

⇒ there is conflict between pivoting to minimize fill-ins and pivoting associated with numerical properties.

We choose to decouple the sparse factorization phase and the rankrevealing phase

For a standard QR factorization of a sparse matrix :

Multi-frontal QR method [Amestoy-Duff-Puglisi '94]

Routine MA49AD in Library HSL.

Column pivoting strategy

Householder QR factorization using Householder reflections:

Householder QR with Column Pivoting (Businger and Golub):

At step k, the column $j_k \ge k$ defining the Householder transformation is chosen so that $||A(k:m,j_k)|| \ge ||A(k:m,j)||$ for $j \ge k$.

Some properties on R_{11}

At step k:

$$A^{(k)} \equiv H_k \cdots H_1 A E(k) = \begin{pmatrix} R_{11}^{(k)} & R_{12}^{(k)} \\ 0 & A_{22}^{(k)} \end{pmatrix}.$$

Any column a of $\begin{pmatrix} R_{12}^{(k)}(k,:) \\ A_{22}^{(k)} \end{pmatrix}$ satisfies $R_{11}^{(k)}(k,k) \ge \|a\|$.

Moreover
$$||A|| \ge ||R_{11}^{(k)}|| \ge R_{11}^{(k)}(1,1)$$

 $R_{11}^{(k)}(k,k) \ge \sigma_{\min}(R_{11}^{(k)}) \ge \sigma_{\min}(A)$,

This implies that :
$$cond(A) \ge cond(R_{11}^{(k)}) \ge \frac{R_{11}^{(k)}(1,1)}{R_{11}^{(k)}(k,k)}$$
.

Bad new

The quantity $\frac{R_{11}^{(k)}(1,1)}{R_{11}^{(k)}(k,k)}$ cannot be considered as an estimator of $cond(R_{11}^{(k)})$ since it can be of different order of magnitude :

```
Example (Kahan's matrix of order n):

f_{n} = 0 f_{n} = 0
```

for $\theta \in (0, \frac{\pi}{2})$, $c = \cos \theta$ and $s = \arcsin \theta$:

MATLAB: $d=c.^{(0:n-1)}$; M=diag(d)*(eye(n)-s*triu(ones(n),1));

n=100 ;
$$\theta = \arcsin(0.2)$$
 :
$$\sigma_{\min}(R_{11}) = 3.7e - 9 \ll R_{11}(100, 100) = 1.3e - 1$$

Therefore a better estimate of $cond(R_{11}^{(k)})$ is needed.

Incremental Condition Estimator (ICE) [Bischof 90]

which is implemented in LAPACK:

it estimates $cond(R_{11}^{(k)})$ from an estimation of $cond(R_{11}^{(k-1)})$.

However, the strategy which consists in stopping the factorization when

$$cond(R_{11}^{(k)}) < \frac{1}{\epsilon} \le cond(R_{11}^{(k+1)})$$

may fail in very special situations:

Counterexample:

M = Kahan's matrix of order 30 with $\theta = \arccos(0.2)$

$$cond(R_{11}^{(16)}) < \frac{1}{\epsilon} < cond(R_{11}^{(17)})$$

indicates a numerical rank equal to 16 although the numerical rank of M computed by SVD is 22.

Pivoting strategies

Convert ${\cal R}$ to reveal the rank by pushing the singularities towards the right end

- Apply an Incremental Condition Estimator to evaluate σ_{\max} and σ_{\min} of $R_{1 \to i, 1 \to i}$,
- if $\sigma_{\text{max}}/\sigma_{\text{min}} > \tau$, move column i towards the right end and re-orthogonalise R using Givens rotations

Pivoting strategies

 \bullet RRQR uses a set of thresholds to overcome numerical singularities,

• A predifined set of thresholds might fail

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 10^{-6} & 1 & 1 \\ 0 & 0 & 10^{-3} & -10^{-3} \end{bmatrix}$$

rank=2 if $\tau = \{10^7\}$, rank=3 if $\tau = \{10^4, 10^7\}$

- ullet RRQR adapts the thresholds to avoid failure
 - \star Upon completion, check if $\left|\left|R_{22}\right|\right|<rac{\sigma_{\max}}{ au}\simeq\sigma_{\min}$
 - * On failure, insert new thresholds and restart algorithm

Numerical results

Numerical results

Second strategy

The k+1 column is not the worst usually for the condition number. Can we select the worst one for the conditionement of R_{11} ? Then we reject this worst column to the end.

We need to recompute the singular values and vectors estimates.

Reverse ICE

Second strategy

Conclusion

Work is still on progress:

Case where R is sparse

• ICE might fail, so does the Reverse ICE.

ullet Using the elimination tree, we can try to keep R as sparse as possible.