(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

		Player 2		
Н		L (q)	R (1-q)	
layer	T (p)	1, 1	0, 0	
<u>∂</u>	B (1-p)	1, 0	2, 1	

Highlight the best responses in pure strategies.

1

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

Player 2

Н		L (q)	R (1-q)
layer	T (p)	1, 1	0, 0
Pla,	B (1-p)	1 , 0	2, 1

For which values of q is Player 1 indifferent?

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
=

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

		Player 2	
Н		L (q)	R (1-q)
layer	T (p)	1, 1	0, 0
ola,	B (1-p)	1 , 0	2, 1

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$q = q + 2(1-q) \Leftrightarrow q = 1$$

For which values of p is Player 2 indifferent?

Find p such that Player 2 expect to have equal payoffs from playing L and R:

$$E[u_2(L)|p] = E[u_2(R)|p]$$

(b) Find all equilibria (pure and mixed), first analytically and then through plotting the BR functions.

		Player 2	
П		L (q)	R (1-q)
layer	T (p)	1, 1	0, 0
Pla,	B (1-p)	1 , 0	2, 1

Find q such that Player 1 expects to have equal payoffs from playing T and B:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$q = q + 2(1-q) \Leftrightarrow q = 1$$

Find p such that Player 2 expect to have equal payoffs from playing L and R:

$$E[u_2(L)|p] = E[u_2(R)|p]$$
$$p = 1 - p \Leftrightarrow p = \frac{1}{2}$$

and chooses q = 1 for p > 1/2.

Write up all NE (pure and mixed).

4

(b) Find all NE, first analytically:

		Player 2	
П		L (q)	R (1-q)
/er	T (p)	1, 1	0, 0
Player	B (1-p)	1 , 0	2, 1

Player 1 is indifferent for:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$q = q + 2(1-q) \Leftrightarrow q = 1$$

Player 2 is indifferent for:

$$E[u_2(L)|p] = E[u_2(R)|p]$$
$$p = 1 - p \Leftrightarrow p = \frac{1}{2}$$

and chooses q = 1 for p > 1/2.

The pure and mixed NE, (p^*, q^*) , are:

$$\left\{(0,0);(1,1);\left(p\in\left[\frac{1}{2},1\right),q=1\right)\right\}$$

5

(b) Find all NE, first analytically:

		Player 2	
П		L (q)	R (1-q)
/er	T (p)	1, 1	0, 0
Player	B (1-p)	1 , 0	2, 1
_			

Player 1 is indifferent for:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$q = q + 2(1-q) \Leftrightarrow q = 1$$

Player 2 is indifferent for:

$$E[u_2(L)|p] = E[u_2(R)|p]$$
$$p = 1 - p \Leftrightarrow p = \frac{1}{2}$$

and chooses q = 1 for p > 1/2.

The pure and mixed NE, (p^*, q^*) , are:

$$\left\{ (0,0); (1,1); \left(p \in \left[\frac{1}{2},1\right), q=1\right) \right\}$$

Write up Player 1's best-response (BR) function, $p^*(q)$

 $BR_1(q) = \{$

(b) Find all NE, first analytically:

Player 1 is indifferent for:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$q = q + 2(1-q) \Leftrightarrow q = 1$$

Player 2 is indifferent for:

$$E[u_2(L)|p] = E[u_2(R)|p]$$
$$p = 1 - p \Leftrightarrow p = \frac{1}{2}$$

and chooses q = 1 for p > 1/2.

The pure and mixed NE, (p^*, q^*) , are:

$$\left\{(0,0);(1,1);\left(p\in\left[\frac{1}{2},1\right),q=1\right)\right\}$$

Plot Player 1's best-response (BR) function, $p^*(q)$

$$BR_1(q) = \left\{ egin{array}{ll} p=0 & ext{if} \quad q<1 \ p\in[0,1] & ext{if} \quad q=1 \end{array}
ight.$$

(b) Find all NE, first analytically:

Н		L (q)	R (1-q)
\er	T (p)	1, 1	0, 0
Player	B (1-p)	1 , 0	2, 1

Player 1 is indifferent for:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$q = q + 2(1-q) \Leftrightarrow q = 1$$

Player 2 is indifferent for:

$$E[u_2(L)|p] = E[u_2(R)|p]$$
$$p = 1 - p \Leftrightarrow p = \frac{1}{2}$$

and chooses q = 1 for p > 1/2.

The pure and mixed NE, (p^*, q^*) , are:

$$\left\{ (0,0); (1,1); \left(p \in \left[\frac{1}{2}, 1 \right), q = 1 \right) \right\}$$

Write up Player 2's BR function, $q^*(p)$

$$BR_1(q) = \left\{ egin{array}{ll} p=0 & ext{if} \quad q<1 \\ p\in[0,1] & ext{if} \quad q=1 \end{array}
ight.$$
 $BR_2(p) = \{$

(b) Find all NE, first analytically:

Player 2 L (q) R (1-q) T (p) B (1-p) 1, 1 0, 0 1, 0 2, 1

Player 1 is indifferent for:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$q = q + 2(1-q) \Leftrightarrow q = 1$$

Player 2 is indifferent for:

$$E[u_2(L)|p] = E[u_2(R)|p]$$
$$p = 1 - p \Leftrightarrow p = \frac{1}{2}$$

and chooses q=1 for p>1/2.

The pure and mixed NE, (p^*, q^*) , are:

$$\left\{ (0,0); (1,1); \left(p \in \left\lceil \frac{1}{2}, 1 \right), q = 1 \right) \right\}$$

Plot Player 2's BR function, $q^*(p)$

$$BR_1(q) = \begin{cases} p = 0 & \text{if} \quad q < 1\\ p \in [0, 1] & \text{if} \quad q = 1 \end{cases}$$

$$BR_2(p) = \begin{cases} q = 0 & \text{if} \quad p < 1/2\\ q \in [0, 1] & \text{if} \quad p = 1/2\\ q = 1 & \text{if} \quad p > 1/2 \end{cases}$$

(b) Find all NE, first analytically:

Player 1 is indifferent for:

$$E[u_1(T)|q] = E[u_1(B)|q]$$
$$q = q + 2(1-q) \Leftrightarrow q = 1$$

Player 2 is indifferent for:

$$E[u_2(L)|p] = E[u_2(R)|p]$$
$$p = 1 - p \Leftrightarrow p = \frac{1}{2}$$

and chooses q = 1 for p > 1/2.

The pure and mixed NE, (p^*, q^*) , are:

$$\left\{ (0,0); (1,1); \left(p \in \left[\frac{1}{2}, 1 \right), q = 1 \right) \right\}$$

$$BR_1(q) = \left\{ \begin{array}{ll} p = 0 & \text{if} \quad q < 1 \\ p \in [0, 1] & \text{if} \quad q = 1 \end{array} \right.$$

$$BR_2(p) = \begin{cases} q = 0 & \text{if} \quad p < 1/2\\ q \in [0, 1] & \text{if} \quad p = 1/2\\ q = 1 & \text{if} \quad p > 1/2 \end{cases}$$

