Assignment 3

- 1. 2/3 time = 0.6667
 - a. $1 (0.6667^5) =$
 - b. 1 0.1317 = 86.83% CPU utilization
- 2. See assignment
- 3. Tables

Test file: medium.txt						
	Observed	Observed speedup compared to	Expected			
# threads	Timing	original	speedup			
original						
program	19.01		1			
1	19.094	0.993243951	1			
2	9.728	1.954152961	2			
3	6.56	2.897865854	3			
4	5.002	3.800479808	4			
8	3.698	5.140616549	8			
16	3.792	5.013185654	16			

Test file: hard.txt						
	Observed	Observed speedup compared to	Expected			
# threads	Timing	original	speedup			
original						
program	6.789			1		
1	6.493			1		
2	3.321	2.044263776		2		
3	2.243	3.026749889		3		
4	1.709	3.972498537		4		
8	1.248	5.439903846		8		
16	1.252	5.422523962		16		

Test file: hard2.txt						
	Observed	Observed speedup compared to	Expected			
# threads	Timing	original	speedup			
original						
program	6.473			1		
1	6.471	1.000309071		1		
2	3.307	1.957363169		2		
3	2.215	2.92234763		3		
4	1.701	3.805408583		4		
8	1.245	5.199196787		8		
16	1.251	5.174260592		16		

Jonathan Harris 30062368

The results of my program are what I had expected. As testing on the CPSC Linux servers you are allocated a limited number of cores and I expected to see diminishing returns after 4 threads. Now, since I allocated 4 threads to do work, and I run the main thread I am running a total of n + 1 threads in the entire program (note that the main thread is not operating on the prime). I expect to see slowdowns because of this when the thread count is surpassing the number of cores.

Also, I would like to note that my program creates and destroys threads on every large number. This will add to the time.