chapter08 LATEX Learning

 $\begin{array}{c} \text{rjp} \\ \text{Tongji Jiading Campus} \end{array}$

2019 - 01 - 22

Abstract

this is chapter 08 learning of LATEX and i find it interesting.

keep going!! Don't stop till you get enough

Contents

1	\mathbf{T}	ne Basics	1
	1.1	Superscripts and subscripts	1
		Roots	
2	cu	stom commands	2
3		ore on maths	2
	3.1	single equation	
	3.2	group of equations	3
	3.3		4
4	mathematics miscellany		
	4.1	matrices	4
	4.2	dots	5
	4.3	delimiters	5
	4.4	putting one over another	6
	4.5	the many faces of math	7

1 The Basics

The equation representing a straight line in the Cartesian plane is of the form ax + by + c = 0, where a, b, c are constants.

The equation representing a straight line in the Cartesian plane is of the form ax + by + c = 0, where a, b, c are constants

The equation representing a straight line in the Cartesian plane is of the form

$$ax + by + c = 0$$

where a, b, c are constants.

The equation representing a straight line in the Cartesian plane is of the form

$$ax + by + c = 0$$

where a, b, c are constants.

The equation representing a straight line in the Cartesian plane is of the form

$$ax + by + c = 0$$

where a, b, c are constants.

1.1 Superscripts and subscripts

In the seventeenth century, Fermat conjectured that if n > 2, then there are no intergers x, y, z for which

$$x^n + y^n = z^n.$$

This is proved in 1994 by Andrew Wiles.

$$x^{mn}$$
 $(x^n)^m$ $x^m n$

The sequence (X_n) defined by

$$x_1 = 1,$$
 $x_2 = 1,$ $x_n = x_{n-1} + x_{n-2} (n > 2)$

1.2 Roots

Which is greater $\sqrt[4]{5}$ or $\sqrt[5]{4}$?

2 custom commands

Here is the rjpvector by rjp:

$$x_1, x_2, \ldots, x_n$$

$$a = 1 \tag{2.1}$$

3 more on maths

3.1 single equation

The equation representing a straight line in the cartesian plane is of the form

$$ax + by + c = 0$$

where a, b, c are constants.

The equation representing a straight line in the cartesian plane is of the form

$$ax + by + c = 0 (3.1)$$

where a, b, c are constants.

Thus for all real numbers x we have

$$x \le |x|$$
 and $x \ge |x|$

and so $\,$

$$x \le |x|$$
 for all x in R

$$(a+b+c+d+e)^2 = a^2 + b^2 + c^2 + d^2 + e^2 + 2ab + 2ac + 2ad + 2ae + 2bc + 2bd + 2be + 2cd + 2ce + 2de$$

i am really happy, yesterday i went gym and work out. rjp is a handsome boy.

$$(a+b+c+d+e)^{2} = a^{2} + b^{2} + c^{2} + d^{2} + e^{2}$$
$$+ 2ab + 2ac + 2ad + 2ae$$
$$+ 2bc + 2be + 2bd$$
$$+ 2cd + 2ce$$

+2de

$$(a+b+c+d+e)^{2} = a^{2} + b^{2} + c^{2} + d^{2} + e^{2}$$

$$+ 2ab + 2ac + 2ad + 2ae$$

$$+ 2bc + 2be + 2bd$$

$$+ 2cd + 2ce$$

$$+ 2de$$

$$(a+b)^{2} = (a+b)(a+b)$$

$$= a^{2} + ab + ba + b^{2}$$

$$= a^{2} + 2ab + b^{2}$$

$$a = 1b = 2$$
(3.2)

3.2 group of equations

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b)(c,d) = (ac,bd)$

$$(a,b) + (c,d) = (a+c,b+d)$$

$$(a,b)(c,d) = (ac,bd)$$
(3.3)

Thus x, y, z satisfy the equations

$$x + y - z = 1$$
$$x - y + z = 1$$

Thus x, y, z satisfy the equations

$$x + y - z = 1$$
$$x - y + z = 1$$

and by hypothesis

$$x + y + z = 1$$

Compare the following sets of equations

$$\cos^2 x + \sin^2 x = 1$$

$$\cos^2 x - \sin^2 x = \cos 2x$$

$$\cosh^2 x - \sinh^2 x = 1$$

$$\cosh^2 x + \sinh^2 x = \cosh 2x$$

Compare the following sets fo equations

$$\cos^2 x + \sin^2 x = 1$$

$$\cos^2 x - \sin^2 x = \cos 2x$$
and
$$\cos^2 x - \sinh^2 x = 1$$

$$\cosh^2 x + \sinh^2 x \cosh 2x$$

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x \le 0 \end{cases}$$

3.3 numbered equation

The equation represents a straight line in the plane

$$ax + by + c = 0 (3.5)$$

where a, b, c are constants.

The equation represents a straight line in the plane

$$ax + by + c = 0 (rjp)$$

where a, b, c are constants.

The equation represents a straight line in the plane

$$ax + by + c = 0$$
 rjp

where a, b, c are constants.

Thus x, y, z satisfy the equations

$$x + y - z = 1$$
$$x - y + z = 1$$

and by hypothesis

$$x + y + z = 1 (rjpH)$$

Thus x, y, z satisfy the equations

$$x + y - z = 1$$
$$x - y + z = 1$$

and by hypothesis

$$x + y + z = 1 (rjpH)$$

$$(a+b)^{2} = (a+b)(a+b)$$

$$= a^{2} + ab + ba + b^{2}$$

$$= a^{2} + 2ab + b^{2}$$
(3.6)

4 mathematics miscellany

4.1 matrices

The system of equations

$$x + y - z = 1$$
$$x - y + z = 1$$
$$x + y + z = 1$$

can be written in matraix terms as

$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Here, the pmatraix $\begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ is invertible

Here, the matraix $\begin{matrix} 1 & 1 & -1 \\ 1 & -1 & 1 \end{matrix}$ is invertible $\begin{matrix} 1 & 1 & 1 \end{matrix}$

Here, the bmatraix $\begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ is invertible

sometimes mathematics write matrices within parentheses as in $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

while others prefer quare brackets as in $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

the determination of $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ is defined by

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

the determination of $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ is defined by

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

a general matrix of $m \times n$ is like

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

4.2dots

consider a finite sequence X_1, X_2, \ldots , its sum $X_1 + X_2 + \ldots$ and product

consider a finite sequence X_1, X_2, \ldots , its sum $X_1 + X_2 + \ldots$ and product

consider a finite sequence X_1, X_2, \ldots , its sum $X_1 + X_2 + \cdots$ and product $X_1X_2\cdots$

4.3 delimiters

since $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$, the matrix $\begin{pmatrix} a & h & g \\ h & b & f \\ g & f & c \end{pmatrix}$ is not invertible.

$$\left. egin{aligned} u_x &= v_y \\ u_y &= -v_x \end{aligned} \right\}$$
 Cauchy-Riemann Equations

$$(x+y)^2 - (x-y)^2 = ((x+y) + (x-y))((x+y) - (x-y))$$

$$(x+y)^2 - (x-y)^2 = \{(x+y) + (x-y)\}\{(x+y) - (x-y)\}$$

$$(x+y)^2 - (x-y)^2 = ((x+y) + (x-y))((x+y) - (x-y))$$

For *n*-tuples of comlex numbers (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n)

$$\left(\sum_{k=1}^{n} |x_k y_k|\right)^2 \le \left(\sum_{k=1}^{n} |x_k|\right) \left(\sum_{k=1}^{n} |y_k|\right)$$

For *n*-tuples of comlex numbers (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n)

$$\left(\sum_{k=1}^{n} |x_k y_k|\right)^2 \le \left(\sum_{k=1}^{n} |x_k|\right) \left(\sum_{k=1}^{n} |y_k|\right)$$

4.4 putting one over another

From the binomial theorem, it easily follows that if n is an even number, then

$$1 - \binom{1}{n} \frac{1}{2} + \binom{2}{n} \frac{1}{2^2} - \dots - \binom{n-1}{n} \frac{1}{2^{n-1}} = 0$$

Since (X_n) converges to 0, there exists a positive integer p such that

$$|x_n| < \frac{1}{2}$$
 for all $n \ge p$

The Christoffel symbol $\binom{ij}{k}$ of the second kind is related to the Christoffel symbol $\binom{ij}{k}$ of the first kind by the equation

$$\left\{ \begin{matrix} ij \\ k \end{matrix} \right\} = g^{k1} \begin{bmatrix} ij \\ k \end{bmatrix} + g^{k2} \begin{bmatrix} ij \\ k \end{bmatrix}$$

$$\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \cdots}}}$$

Thus we can see that

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

is a short exact sequence

Thus we can see that

$$0 \to A \xrightarrow[\text{moni}]{f} B \xrightarrow[\text{gbi}]{g} C \to 0$$

is a short exact sequence Thus we can see that

$$0 \to A \xrightarrow[\text{moni}]{f} B \xrightarrow[\text{gbi}]{g} C \to 0$$

is a short exact sequence

Euler not noly proved that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, but also that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Euler not noly proved that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, but also that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Euler not noly proved that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, but also that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Euler not noly proved that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, but also that

$$\sum\nolimits_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$$

Thus $\lim_{x\to\infty} \int_0^x \frac{\sin x}{x} dx = \frac{\pi}{2}$ and so by definition

$$\int_0^\infty \frac{\sin x}{x} \mathrm{d}x = \frac{\pi}{2}$$

$$p_k(x) = \prod_{\substack{i=1\\i\neq k}}^n \left(\frac{x-t_i}{t_k-t_i}\right)$$

4.5 the many faces of math

inputs: Two pointclouds: $A = \{a_i\}, B = \{b_i\}$ outputs: An initial transformation T_0