Examen

Durée 3h00. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. Les exercices sont indépendants. La qualité de la rédaction sera prise en compte.

Exercice 1. Un livre contient des erreurs de rédaction. À chaque relecture, une faute non corrigée est corrigée avec une probabilité de 1/3. Les corrections des différentes fautes sont indépendantes les unes des autres ; les relectures successives aussi.

1. On suppose que le livre contient exactement 4 erreurs. Soit $n \in \mathbb{N}$, calculer la probabilité que toutes les fautes ait été corrigées en n relectures.

On note C_i la variable aléatoire correspondant au nombre de relectures nécessaires pour corriger la faute i = 1, 2, 3, 4. On cherche donc la probabilité de l'évènement

$$A_n = \{C_1 \le n\} \cap \cdots \cap \{C_4 \le n\}.$$

A chaque relecture, la probabilité de succès est 1/3 et on reconnaît un schéma de Bernoulli répété de manière i.i.d. Autrement dit, C_i suit une loi géométrique de paramètre 1/3 et on a

$$\mathbb{P}(C_i \le n) = \sum_{\ell=1}^n \mathbb{P}(C_i = \ell) = \frac{1}{3} \sum_{\ell=1}^n \left(\frac{2}{3}\right)^{\ell-1} = 1 - \left(\frac{2}{3}\right)^n$$

Ainsi, la probabilité que toutes les fautes soient corrigées en n relectures est

$$\mathbb{P}\left(\max_{i=1,\dots,4} \left\{C_i\right\} \le n\right) = \left(1 - \left(\frac{2}{3}\right)^n\right)^4. \tag{1}$$

2. On suppose maintenant que le livre contient un nombre aléatoire d'erreurs qui suit une loi uniforme sur $\{0, 1, 2, 3, 4\}$. Soit $n \in \mathbb{N}$, calculer la probabilité que toutes les fautes ait été corrigées en n relectures.

Pour faire le calcul, il faut conditionner par le nombre aléatoire E de fautes dans le livre. On a, avec les notations de la question précédente,

$$\mathbb{P}\left(\left\{C_1 \le n\right\} \cap \dots \cap \left\{C_e \le n\right\} \middle| \left\{E = e\right\}\right) = \left(1 - \left(\frac{2}{3}\right)^n\right)^e$$

En utilisant la formule des probabilités totale (principe de partition), il vient,

$$\mathbb{P}\left(\max_{i=0,\dots,E} \{C_i\} \le n\right) = \sum_{e=0}^{4} \mathbb{P}\left(\{C_1 \le n\} \cap \dots \cap \{C_e \le n\} \mid \{E=e\}\right) \mathbb{P}(E=e) \\
= \frac{1}{5} \frac{1 - \left(1 - \left(\frac{2}{3}\right)^n\right)^5}{\left(\frac{2}{3}\right)^n}.$$
(2)

3. Dans lequel des 2 cas, faudra-t-il faire le moins de relectures pour que la probabilité qu'il ne subsiste aucune erreur soit supérieure à 0.9?

Dans le deuxième cas, car le nombre de fautes est au plus 4. On peut faire l'application numérique : le membre de droite de 1 est plus grand que 0.9 dès lors que $n \ge 10$ tandis que le membre de droite de l'équation (2) le sera quand $n \ge 8$.

Exercice 2. Soit $\varphi:[0,\infty[\to\mathbb{R}$ dérivable et de dérivée continue sur $[0,\infty[$. On pose :

$$f: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}$$
$$(x,y) \quad \longmapsto \quad \varphi(\sqrt{x^2 + y^2})$$

1. Montrer que $f \in \mathcal{C}(\mathbb{R}^2)$.

La fonction f est la composée d'une fonction continue $(x,y)\mapsto \sqrt{x^2+y^2}$ et d'une fonction $\mathcal{C}^1(\mathbb{R})$. Elle est donc bien continue sur \mathbb{R}^2 .

2. Montrer que $f \in \mathcal{C}^1(\mathbb{R}^2 \setminus \{(0,0)\})$ et calculer $\nabla f(x,y)$ pour tout $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$.

La fonction f est la composée d'une fonction $\mathcal{C}^1(\mathbb{R}^2 \setminus \{(0,0)\})$ (toujours l'application $(x,y) \mapsto \sqrt{x^2 + y^2}$) et d'une fonction $\mathcal{C}^1(\mathbb{R})$. Elle est donc bien $\mathcal{C}^1(\mathbb{R}^2 \setminus \{(0,0)\})$. On a

$$\frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2 + y^2}} \varphi'(\sqrt{x^2 + y^2}) \quad \text{ et } \quad \frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}} \varphi'(\sqrt{x^2 + y^2})$$

- 3. En déduire que $f \in \mathcal{C}^1(\mathbb{R}^2)$ si et seulement si $\varphi'(0) = 0$. On supposera cette condition satisfaite par la suite.
 - $\Rightarrow \text{ Comme } f \in \mathcal{C}^1(\mathbb{R}^2) \text{ on a } \lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}(x,y) = \lim_{x\to 0^+} \frac{\partial f}{\partial x}(x,0) = \lim_{x\to 0^-} \frac{\partial f}{\partial x}(x,0).$ De plus, on a $\lim_{x\to 0^+} \frac{\partial f}{\partial x}(x,0) = \varphi'(0)$ et $\lim_{x\to 0^-} \frac{\partial f}{\partial x}(x,0) = -\varphi'(0)$. Ce qui donne $\varphi'(0) = 0$ (car "0 est le seul nombre égal à son opposé").
 - ← Le taux d'accroissement de la première fonction partielle satisfait :

$$\lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\varphi(|h|)}{h} = \varphi'(0) = 0$$

et on a $\frac{\partial f}{\partial x}(0,0) = 0$. De même $\frac{\partial f}{\partial y}(0,0) = 0$. Reste à montrer que les dérivées partielles sont continues en 0. C'est bien le cas car

$$\left| \frac{\partial f}{\partial x}(x,y) \right| \le \frac{r \left| \cos \theta \right|}{r} \varphi'(r) \le \varphi'(r) \xrightarrow[r \to 0]{} 0.$$

Le même raisonnement permet de voir que $\frac{\partial f}{\partial y}$ est aussi continue en l'origine.

- 4. On suppose de plus φ' dérivable et φ'' continue sur $[0, \infty[$.
 - (a) Montrer que $f \in \mathcal{C}^2(\mathbb{R}^2 \setminus \{(0,0)\})$ et, pour $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, calculer

$$\Delta f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y),$$

en fonction de $\sqrt{x^2 + y^2}$, $\varphi'(\sqrt{x^2 + y^2})$ et $\varphi''(\sqrt{x^2 + y^2})$.

La fonction f est C^2 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ car elle c'est la composée de $(x,y) \mapsto \sqrt{x+y}$

qui est $C^2(\mathbb{R}^2 \setminus \{(0,0)\},]0, +\infty[)$ et de φ qui est $C^2(]0, +\infty[, \mathbb{R})$. On a $\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{y^2}{(x^2+y^2)^{3/2}} \varphi'(\sqrt{x^2+y^2}) + \frac{x^2}{x^2+y^2} \varphi''(\sqrt{x^2+y^2})$ et $\frac{\partial^2 f}{\partial y^2}(x,y) = \frac{x^2}{(x^2+y^2)^{3/2}} \varphi'(\sqrt{x^2+y^2}) + \frac{y^2}{x^2+y^2} \varphi''(\sqrt{x^2+y^2})$. Ainsi,

$$\Delta f(x,y) = \frac{1}{\sqrt{x^2 + y^2}} \varphi'(\sqrt{x^2 + y^2}) + \varphi''(\sqrt{x^2 + y^2}).$$

(b) Montrer que $\Delta f \in \mathcal{C}(\mathbb{R}^2 \setminus \{(0,0)\})$ et admet un prolongement par continuité sur \mathbb{R}^2 . La fonction φ est \mathcal{C}^2 sur \mathbb{R} et Δf est donc $\mathcal{C}(\mathbb{R}^2 \setminus \{(0,0)\})$ par composition. On rappelle au passage que $\varphi'(0) = 0$ et que φ'' est continue en 0. Reste à voir la limite en l'origine :

$$\lim_{(x,y)\to(0,0)} \Delta f(x,y) = \lim_{\substack{r\to 0 \\ r\to 0^+}} \frac{\varphi'(r)}{r} + \varphi''(0) = 2\varphi''(0).$$

On peut donc prolonger par continuité Δf en l'origine avec la valeur $2\varphi''(0)$.

Exercice 3. On définit les applications $\mathbb{R}^2 \to \mathbb{R}$ suivantes :

$$N_1(x, y) = |x| + |y| + \max\{|x|, |y|\},$$

$$N_2(x, y) = |x| + |y| + \min\{|x|, |y|\},$$

$$N_3(x, y) = N_1(x, y) + N_2(x, y).$$

- 1. Tracer la courbe de niveau 1 de chacune de ces applications.
- 2. Au vu des dessins, justifier dans quels cas ces applications définissent une norme sur \mathbb{R}^2 .

Exercice 4. On pose pour tout $x, y \in \mathbb{R}$,

$$f(x,y) = \left| 4(x-1)^2 + 9(y+2)^2 - 1 \right|.$$

1. On pose $N=\{(x,y)\in\mathbb{R}^2, 4(x-1)^2+9(y+2)^2-1\leq 0\}$. C'est l'intérieur de l'ellipse suivante :

Calculer $I = \iint_N f(x,y) dx dy$ en utilisant un changement de variable.

Posons le changement de variable affine $(x,y) \mapsto (X=2(x-1),Y=3(y+2))$. On a alors :

$$I = \iint_{N} f(x, y) dx dy = 6 \iint_{M} (1 - X^{2} - Y^{2}) dX dY$$

avec $M=\{(X,Y)\in\mathbb{R}^2|X^2+Y^2<1\}.$ On peut passer en coordonnées polaire pour simplifier et on a

HLMA410

$$I = 6 \int_0^{2\pi} \int_0^1 (1 - r^2) r dr d\theta = 12\pi \left(\frac{1}{2} - \frac{1}{3}\right) = 2\pi.$$

2. Étudier la continuité f et donner l'ensemble image de f.

La fonction f est définie et continue sur \mathbb{R}^2 (composée d'un polynome et de la valeur absolue). Elle est à valeurs dans $[0, +\infty[$ car le polynôme s'annule (cf question précédente) et n'est pas borné sur \mathbb{R}^2 .

3. Dessiner l'ensemble $L = \{(x, y) \in \mathbb{R}^2 | f(x, y) > 1/2 \}.$

Il faut séparer les cas N et N^c . Ainsi, dans N

$$f(x,y) = -4(x-1)^2 - 9(y+2)^2 + 1$$

et $L_N = \{(x,y) \in \mathbb{R}^2 | 4(x-1)^2 + 9(y-2)^2 < 1/2 \}$. Et dans N^c on a

$$f(x,y) = 4(x-1)^2 + 9(y+2)^2 - 1$$

et $L_{N^c} = \{(x,y) \in \mathbb{R}^2 | 4(x-1)^2 + 9(y-2)^2 > 3/2 \}$. L'ensemble recherché est $L = L_N \cup L_{N^c}$ et est le complémentaire d'une couronne ellipsoïdale centrée en (1,-2).

4. Sur quel ensemble f est-elle \mathcal{C}^{∞} ? Justifier la réponse.

Soit $Z = \{(x, y), 4x^2 + 9y^2 - 8x + 36y + 39 = 0\}$. La fonction f est C^{∞} sur Z (car c'est la composée de 2 fonctions régulières). Sur Z, la fonction f n'est pas différentiable (point anguleux dû à la non dérivabilité de la fonction valeur absolue en 0). Cette dernière affirmation mériterait une étude un peu plus poussée...

5. Donner les points de minimum de f sur \mathbb{R}^2 . Indiquer, en justifiant, la nature de ces points (minimum global ou local). Indication: cette question se traitera sans calcul

On a vu à la question 2 que f est à valeurs positives. Sur Z elle s'annule. L'ensemble des points de Z sont des minima globaux.

6. Calculer le gradient et la Hessienne de f en les points de \mathbb{R}^2 pour lesquels ces quantités sont bien définies.

Attention : bien séparer les cas N et $N^c \setminus Z$ (car f n'est pas différentiable en Z) :

$$\nabla f(x,y) = \begin{cases} (-8x + 8, -18y - 36) & \text{si } (x,y) \in N \\ (8x - 8, 18y + 36) & \text{si } (x,y) \in N^c \setminus Z \end{cases}$$

 et

$$\operatorname{Hess}_{f}(x,y) = \begin{cases} \begin{pmatrix} -8 & 0 \\ 0 & -18 \end{pmatrix} & \operatorname{si}(x,y) \in \mathbb{N} \\ \begin{pmatrix} 8 & 0 \\ 0 & 18 \end{pmatrix} & \operatorname{si}(x,y) \in \mathbb{N}^{c} \setminus \mathbb{Z} \end{cases}$$

7. Déterminer alors le(s) point(s) critique(s) de f donner leur nature (minimum/maximum, local/global, point selle,...).

On a $\nabla f(x,y) = (0,0)$ si et seulement si (x,y) = (1,-2). La Hessienne en $(1,-2) \in N$ est definie négative et (1,-2) est un maximum local.

8. Tracer qualitativement le graphe de f.

