P - 161 - 2017

폐용제 정제공정의 안전에 관한 기술지침

2017. 10.

한국산업안전보건공단

안전보건기술지침의 개요

- O 작성자: 박승규
- O 제·개정 경과
 - 2017년 10월 화학안전분야 제정위원회 심의(제정)
- O 관련 규격 및 자료
 - FM Global 7-2, "WASTE SOLVENT RECOVERY", 2000
 - KOSHA GUIDE D-2-2012, "활성탄흡착설비의 안전설치에 관한 기술지침"
- O 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고하시 기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 교정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2017년 10월 31일

제 정 자 : 한국산업안전보건공단 이사장

폐용제 정제공정의 안전에 관한 기술지침

1. 목적

이 지침은 폐용제 정제설비의 안전에 필요한 사항을 제시하는데 그 목적이 있다.

2. 적용범위

이 지침은 인화점이 150℃이하로서 비등점이상으로 가열되는 폐 용제를 취급하는 설비로서, 패키지형태의 폐유기용제 정제설비 및 소규모의 정제설비에 대하여 적용한다. 다만, 석유화학공업 및 정제분리업종의 대단위 정제설비는 제외한다.

3. 정의

- 이 지침에서 사용되는 용의 정의는 다음과 같다.
- (1) "폐용제"라 함은 화학공정에 사용되는 용제가 사용되고 난 후 불순물과 함께 배출되는 폐기물을 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고 는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정의하는 바에 따른다

4. 폐용제의 수거 및 반입

4.1 원료의 수거 및 저장

- (1) 폐용제의 수거에 있어 수거되는 폐용제의 물리화학적 특성에 대한 정보가 확보하고, 사고를 유발할 수 있는 다른 물질이 포함되어 있는지 확인하여야 한다.
- (2) 수거되는 폐용제의 추정 인화점에 따른 위험을 고려하여 수거 및 저장에서의 안 전이 확보되어야 한다.
- (3) 폐용제를 수거하는 용기는 견고하고 부식성이 없는 철재용기나 전용의 이동식

P - 161 - 2017

위험물 저장탱크를 사용하여야 한다. 특히, 부식성 물질의 취급을 위한 프라스틱 재질의 용기를 폐용제 수거 및 제품보관에 사용하거나, 인화성 폐용제를 취급하던 드럼을 개조하는 등 허가된 용기를 다른 용도로 사용하지 않도록 해야 한다.

- (3) 수거된 폐용제를 저장하는 저장탱크 및 고정용기에는 액면계가 설치되어 과충전되지 않도록 하여야 한다.
- (4) 폐용제 저장탱크 상부에는 외부로부터 화염을 방지하기 위하여 물질의 인화성에 따른 화염방지기, 통기밸브 또는 인화방지망 등을 적절하게 설치하여야 한다.
- (5) 폐용제 저장탱크 주위에는 방유제가 관련기준에 맞게 설치되어야 한다.

4.2 취급시 안전조치

4.2.1 누출방지조치

(1) 폐용제를 수거하여 이송, 호스 또는 배관을 사용하여 공정에 공급하는 과정에 있어 누출되지 않도록 호스의 이상유무, 펌프와 배관의 상태를 충분히 확인하여 야 하다.

4.2.2 점화원관리

- (1) 수거된 폐용제의 저장탱크와 취급지역 주위에는 폐용제의 추정인화점, 누출위험, 환기 등을 고려하여 적정한 범위의 폭발위험지역을 설정하여야 한다.
- (2) 폭발위험지역내에 설치되는 설치·사용되는 전기기기는 방폭형을 설치하여야 한다.
- (2) 폐용제의 인화성이 있을 경우 취급용기, 설비 및 저장탱크의 접지, 본딩, 하역시 의 정치시간 등을 통하여 정전기로 인한 화재위험이 없어야 한다.

5. 정제설비의 설치

5.1 정제설비 위치 및 구획

- (1) 정제설비는 공정설비, 사무실, 저장탱크로부터 산업안전보건기준에 관한 규칙에 서 정한 안전거리를 확보하여야한다.
- (2) 건물내에 설치할 경우 건물구조는 불연재의 재질로서 다른 용도의 지역과는 방화구획하고, 건물상부는 폭발로 인한 위험을 방지하기 위하여 가벼운 재질로 설

P - 161 - 2017

치하여야 한다.

- (3) 정제된 용제의 저장탱크 또는 용기는 방화구획된 실내 또는 옥외저장탱크에 보관하여야 한다.
- (4) 패키지형태의 용제 재생설비를 실내에 설치될 경우 다음의 위험경감조치를 하여 야 한다.
- (가) 다른 설비로부터 위험이 없도록 최대한 이격하여 설치하거나, 방화구획된 별 도의 장소에 설치하여야 한다.
- (나) 구획된 공간에 설치할 경우 지붕은 경량구조로 하고, 벽은 폭발로부터 견딜 수 있는 구조로 하여야 한다.
- (다) 설치된 실내에 필요한 소화설비를 설치하여야 한다.
- (라) 실내에 인화성 증기가 축적되지 않도록 적절한 환기를 하여야 한다.
- (5) 정제설비가 폭발위험지역내의 구조물위에 설치된 경우 관련규정에 따라 구조물에 대한 내화조치가 이루어져야 한다.
- (6) 정제설비 주위에는 취급물질의 물성, 취급 및 누출위험과 환기특성에 따라 폭발 위험지역을 설정하고, 위험지역내 전기설비는 방폭형으로 설치하여야 한다.

5.2 설비 및 공정운전의 안전조치

- (1) 정제용기에 대해 다음의 과압방지조치를 하여야 한다.
- (가) 압력용기에 해당할 경우 관련규정에 따라 설계, 설치 및 검사를 하여야 한다.
- (나) 정제용기 및 콘덴서에 진공 및 압력에 대비한 안전밸브를 설치하고, 압력방 출시 외부의 안전장소로 유도한다.
- (다) 안전밸브로부터 대기중으로 방출할 경우 지상에서 6m 및 지붕으로부터 2m 이상 높이에서 방출되어야 하며, 방출된 증기가 건물로 다시 유입되지 않도록 하여야 한다.
- (2) 정제설비에는 고온, 고압경보기를 설치하여 정제설비의 온도 또는 압력상승시 적정한 수준에서 열원이 차단되도록 하여야 한다.
- (3) 콘덴서에 대한 냉각수의 공급은 확실하게 이루어져야 하며, 콘덴서 후단에 냉각수에 대한 압력계나 유량계의 설치, 냉각수펌프 가동표시 또는 콘덴서를 통

P - 161 - 2017

하여 배출되는 배관의 온도계 설치 등의 방법으로 안전을 확보할 수 있다.

- (4) 냉각수가 공급되지 않거나, 다른 이상상태가 감지될 경우 경보가 울리고 정제 탑이나 용기에 대한 열원은 차단하여야 한다.
- (5) 가열로에 스팀을 사용할 경우 스팀 공급측에 안전밸브를 설치하여야 한다. 다만, 스팀발생 설비의 운전압력이 가열로에 공급되는 스팀의 감압밸브 1차측 배관의 최대설계압력이하로 설계된 경우에는 안전밸브설치를 생략할 수 있다.
- (6) 격리되어 있거나, 자주 감시되지 못하는 장소에 설치된 정제설비 주위에는 가 연성증기의 발생이나 용제의 누설을 감지하기 위한 가스감지기를 설치하여야 한다.
- (7) 가스감지기는 고용노동부고시 "가스누출감지경보기 설치에 관한 기술상의 지 침"에 따라 설치되고 KOSHA Guide "가스누출감지경보기 설치에 관한 기술지침에 따라 정비보수하여야 한다.
- (8) 용제정제설비에 대해 부록 3의 점검표를 참고하여 설비전반에 관한 정기점검을 주기적으로 실시하여야 한다.

5.3 용제저장설비

- (1) 저장탱크 벤트구에는 관련기준에 따라 화염방지기 등이 설치되어야 한다.
- (2) 정제된 용제의 탱크 및 고정용기에는 상하한 레벨 인터록이 부착된 액면계를 설치하여어 이송펌프와 연동하고 경보가 발하도록 한다.
- (3) 제품저장탱크 주위에는 방유제가 설치되어야 한다.
- (4) 점화원제어와 관련하여 4.2.2항의 조치가 이루어져야 한다.

5.2 카본 흡착탑

5.2.1 설치 및 위치

- (1) 정제설비에서 콘덴서를 거쳐 대기로 방출되는 유기용제의 처리를 위해 카본흡착 설비를 사용할 경우 옥외에 설치하되, 주요건물이나 설비로부터 8m이상 이격하 는 것이 바람직하며, 별도의 방화구획된 실이나 부속건물에 설치할 수도 있다.
- (2) 실내에 흡착탑이 설치될 경우 정제설비에서와 같은 방화구획과 소화설비를 설치하여야 한다.

P - 161 - 2017

5.2.2 흡착탑 화재위험 예방조치

- (1) 과열이나 화재발생시 작동할 수 있도록 흡착탑 내부 상당에 고정식 물분무 헤드를 설치하여 대상지역 면적당 12 mm/min의 유속으로 방수될 수 있는 용량으로 하되, 하단에 물이 적체될 경우 용제가 부유하여 화재위험이 확산되지 않도록 고려한다.
- (2) 흡착탑에 주수로 인한 물이 채워지더라도 견딜수 있도록 구조물의 강도를 확보하여야 한다.
- (3) 흡착탑내 고정소화설비의 작동에 의한 수두압으로 인한 구조물의 손상이 우려 될 경우 자동배수밸브를 설치하되 배관경은 5cm 이상으로 하고, 신속한 배수 가 이루어지도록 가능한 직선으로 설치한다.
- (4) 지속적인 가열을 유발하는 물질을 취급할 경우 CO의 감지에 의한 자동물분무 가 이루어지도록 하여 조기에 감지 및 진압하도록 한다.
- (5) CO 경보농도는 평상시의 값보다 50% 높은 수치에서 설정하고, 100% 높은 수 치에서는 공정을 차단하도록 한다.
- (6) CO감지기외에 열감지기를 사용할수도 있으나, 열감지에 지장이 없도록 정확히 설치하여야 한다.

5.2.3 흡착설비운전

- (1) 흡착탑에 유입되는 공기의 양이 최저인 상태에서 유입되는 인화성증기의 농도 가 LEL의 25%미만이 되도록 유지하여야 한다. 다만, 인화성증기 감지기가 설치되고 LEL의 60%이하에서 경보 및 설비의 중지가 연동된 경우 정상적인 유입농도를 50%까지 유지할 수도 있다.
- (2) 공정운전을 설계치 이하로 운전하기 위해 흡착기에 유입 및 배출되는 온도를 측정하고 기록하며, 경보하는 설비를 설치하여야 한다.
- (3) 흡착탑 배출측 고온경보를 제어할 수 없을 경우 수동으로 물분무설비를 작동하 도록 운전지침에 명시하여야 한다.
- (4) 교대 또는 일상근무의 전후에 흡착기의 온도를 확인하여야 하며, 운전자는 매일 1회이상, 감독자에 의해 매주 1회이상 운전기록을 확인하여 운전상태를 확인할 수 있어야 한다.

P - 161 - 2017

- (5) 흡착단계에서 온도의 지속적인 상승을 방지하기 위하여 다음중에서 하나의 조치를 하여야 한다.
 - (가) 스팀가열을 하지 않을 경우 정상 공기유량의 75%이상이 흐르도록 한다.
 - (나) 흡착단계에서 스팀가열을 연장하고 건조/냉각 단계가 다음 흡착단계이전에 완료되도록 운전시퀀스를 설정하여, 카본베드가 전체의 흡착단계에서 젖은 상태를 유지하도록 한다.
 - (다) 야간 및 주말의 가동정지 전에 흡착설비는 탈착(Desorb)되고 냉각 및 밀봉되도록 한다.
 - (라) 가동정지기간동안 CO농도계 및 자동물분무 설비는 가용상태로 둔다.
 - (마) 탈착을 위해 과열된 스팀을 사용할 경우 흡착제와 흡착된물질의 발화점을 넘기지 않도록 하여야 한다.
 - (바) 흡착기의 설계시 카본베드를 통한 공기의 흐름이 분산적으로 이루어지도록 하여 사각지대로 부터의 발열가능성이 없도록 하여야 한다.

5.2.4 가동정지 중 과열방지조치

가동정지기간이 길어질 경우 과열이 발생하지 않도록 다음중 하나의 조치를 하여야 한다.

- (1) 카본의 제거
- (2) 공기유량을 정상상태의 75%이상 유지
- (3) 물 또는 스팀을 정기적으로 분사하여 흡착베드를 젖은 상태로 유지
- (4) 질소 또는 이산화탄소를 주입하여 설비내부의 산소함량이 1%를 넘지 않도록 유지

5.2.5 기타조치

이외에 흡착탑의 안전운전에 대하여 언급하지 않은 사항은 KOSHA Guide D-2 "활성타 흡착설비의 안전설치에 관한 기술지침"을 참조한다.

6. 안전운전계획의 운영

P - 161 - 2017

- (1) 정제설비의 운전을 위한 지침을 운영하여야 하며, 고용노동부의 공정안전보고 서 제출·심사·확인·평가 등에 관한 고시(이하 "고시"라 한다)의 제31조(안전운 전지침서)에 명시된 내용 중 필요한 사항을 포함하여야 한다.
- (2) 설비의 유지관리를 위한 지침을 운영하여야 하며, 고시의 제 32조(설비점검·검 사 및 보수계획, 유지계획 및 지침서)에 명시된 내용 중 필요한 사항을 포함하 여야 한다.
- (3) 정제설비에 대한 화기작업, 탱크 입조작업 등 위험작업에서의 안전확보를 위한 안전작업허가지침을 운영하여야 하며, 고시의 제33조(안전작업허가)에 명시된 내용 중 필요한 사항을 포함하여야 한다.
- (4) 운전운전계획의 내용을 해당 운전자와 정비보수자에게 교육하고, 운전자가 공정위험이나 이상상황에 대처할 수 있도록 충분한 훈련이 이루어져야 한다.
- (5) 기타 설비의 안전운전을 위한 도급업체관리, 가동전점검, 변경관리, 자체감사, 공정사고조사, 비상조치계획 등은 고시의 해당조항 중 필요한 사항을 포함하여 작성, 운영되어야 한다.

KOSHA GUIDE P - 161 - 2017

[부록 1]

폐용제 정제공정 흐름도

P - 161 - 2017

[부록 2]

사고사례

사례 1.

2016.12.21. 20:46분경 울산광역시 소재 폐유정제처리 사업장인 ㈜OOO에서 피재자가 응축저장 탱크 내부 세척상태를 확인하기 위하여 탱크내부에 입조한 후 쓰러져있는 것을 동료작업자가 발견하여 119를 통해 병원으로 후송하였으나, 사망함. 폐유정제과정에서 발생되는 유독성가스에 중독된 것으로 추정.

사례 2.

2016.2.3. 충북 진천군 소재 ㈜OO케미칼에서 폐유기용제에서 정제된 아세톤과 알코올을 탱크로부터 200리터 드럼으로 이송하여 포장하는 작업 중 정전기로 폭발 및화재가 발생하여 공장동과 관리동이 전소함.

사례 3.

2016.1.25. 낮 12시 쯤, 경남 김해시 진영읍에 있는 폐유 재활용 공장에서 불이 나서 50분 만에 진압되고, 설비 등 1억 2천여만 원의 재산피해 발생. 폐유를 재활용하기 위해 온도를 높이는 작업 중 기름이 꿇어 넘치면서 불이 시작된 것으로 추정.

사례 4.

2016.1.14. 오후 5시 40분쯤 경남 김해시 진영읍의 폐유 재활용 공장에서 불이 나 제조 공장 1개 동을 1시간 40분간 태우고, 소방서 추산 7천만 원의 재산피해 발생.

사례 5.

2014.4.7. 오전 경남 김해시 진영읍 모 폐유 정제공장에서 옥외 제조탱크에서 폐유가 넘쳐 흐르면서 화재가 발생하여 폐유 정제설비 일부를 태워 9000만원(소방서 추산) 상당의 재산피해를 내고 30여분만에 진화됨.

사례 6.

2013.9.10. 저녁 7시쯤 경북 영천시 금호읍 원기리 폐유 정제 공장에서 화재가 발생하여 4시가 동안 연소됨.

사례 7.

2013.6.24일 밤 11시 반쯤 충남 아산시 신창면 수장리의 한 폐유정제공장에서 불이 나

P - 161 - 2017

2시간 반 동안 불에 탐. 공장 2동 500제곱미터와 기계 등이 불에 탔고 소방서 추산 7억 원의 재산피해가 발생.

사례 8.

2013.3.25. 새벽 1시 반쯤 경기도 화성시 정남면의 한 폐기물 처리 공장에서 불이 나소방대에 의해 2시간 만에 진화됨. 건물 1개 동 3백 제곱미터가 불에 타고 탱크로리차량 2대가 일부 그을려 소방서 추산 4천7백여만 원의 재산피해가 발생.

사례 9.

2013.3.22. 오전 9시 40분쯤 충북 진천군 덕산면 화학물질 제조공장에서 폭발 사고가 나 59살 김 모 씨 등 직원 2명이 2도 화상을 입고 제조 설비와 유류통 300여 개를 2시간 동안 태워 소방서 추산 1억 7천만 원의 피해가 발생.

사례 10.

2012.12.30. 오후 1시 50분경 경기도 포천시 소재 OO산업의 아크릴수지 재생공정 지하피트에서 아크릴수지 재생공정의 시험가동 중 아크릴수지 누출여부를 확인하기 위해 제품저장 지하피트에 들어갔다 재생공정에서 발생되어 제품과 함께 탱크로 이송된 유해가스에 중독되어 2명 모두 사망한 사고임.

사례 11.

2012년 충북 진천시 소재 폐유정제업체에서 평소 처리하지 않던 폐 DEG(Diethylene Glycol) 정제하기 위하여 감압운전을 실시하던 중 원료에 포함되어 있던 수분이 완전히 제거하지 않아 정제탑에 과압이 발생되어 폭발·화재가 발생하여 1명이 화상을 입은 재해. 신규물질처리에 대한 위험성평가 검토가 부족하였음.

사례 12.

2010.7.29. 울산시 울주군 온산읍 화산리 온산공단 내 폐유재생업체인 (주)00켐에서 드럼통 내부에 히터기를 넣고 굳어 있는 폐유를 녹이던 중 히터기에서 일어난 스파크로 화재가 발생하여 철골 구조물 2층 4동이 불에 타 5천여만원(소방서추산)의 재산피해가 발생.

사례 13.

2010.6.5. 새벽 5시 쯤 경기도 양주시의 한 폐기물 처리 공장에서 불이 나 공장 내부 약 160여 제곱미터와 폐유저장시설을 태우고 4500여만원의 재산피해를 낸 뒤 25분만에 꺼짐.

P - 161 - 2017

사례 14.

2010.04.22. 14:46분경 인천 남동공단 소재 OO에서 폐유기용제를 폐유저장탱크가아닌 폐기물창고내에있는폐수저장탱크로 이송완료 후 창고내 유증기냄새가 심하여 선풍기로 창고 내부에 체류되어 있던 유증기를 불어내던 중 화재가 발생, 폐기물저장창고 2 개동, 사무실동 2층이 전소되고, 탱크로리 1대와 주변 차량 10여대 및 인접한 2개 사업장 일부가 피해를 입음.

사례 15.

2009.9.2. 09시 20분경 경주시 안강읍 소재 폐윤활유 정제공장에서 RTO(Regenerative Thermal Oxidizer, 대기오염방지시설)설비의 부속설비인 기액분리기 탱크 상부에서 2명의 작업자가 시운전중 잘못 설치된 맹판 제거작업 및 파열판 교체작업 중 기액분리기 탱크내의 가연성가스가 폭발하여 작업자 2명이 사망. 시운전상태로 인화성분위기가설비내에 조성된 상태에서 보수작업을 진행함.

사례 16.

2007.7.12. 오후 5시 반 쯤 경북 영천시 채신동에 있는 폐유 정제공장에서 불이 나 공장 건물 3개 동 가운데1개 동 3백제곱미터와 폐유 40톤 등을 2시간 반동안 태워 소방서 추산 4천 100여 만원의 재산 피해 발생. 연마기로 작업을 하다 튄 불꽃 때문에 불이 난 것으로 추정.

사례 17.

2007.4.13. 새벽 3시 반쯤 경남 김해시 생림면의 한 폐유정제 공장 저장탱크에서 폭발과 함께 화재 발생하여 1억원의 재산피해발생. 인근 비방폭 배전기에서 불이 시작된 것으로 추정.

사례 18.

2006.9.11. 7:20분경 경남 진해시 경화동 생활관 신축공사장에서 고철 수거함을 만들기 위하여 고철 수집장에서 구입한 폐드럼의 뚜껑을 산소절단기로 절단작업 중 폐드럼에 잔류해 있던 톨루엔증기가 폭발함과 동시에 뚜껑이 비래하여 피재자의 안면부를 강타하여 사망.

사례 19.

2006.2.18. 아침 11시쯤 경기도 시흥시 시화공단의 한 폐유정제공장 보일러실에서 불이나 내부와 지붕 등을 태우고 20여분만에 꺼짐. 보일러실에서 기름이 샜거나 전기설비에 문제가 있었던 것으로 추정.

P - 161 - 2017

사례 20.

2005년 11월 14:00분경 전북 정읍시 소재 ○○화학의 자동차 폐오일을 재활용 정제공장에서 중고로 들어온 저장탱크 경판 위에서 배관을 설치하기 위해 작업자 3명이 용단작업을 하던 중 저장탱크내에 잔류하고 있던 벙커C유가 용접불티에 분해되어 체류한 가스가 폭발하면서 파열된 경판과 함께 추락하여 작업자 2명이 사망하고 1명이 부상.

사례 21.

2004.09.30. 수원의 00에너지에서 폐유저장탱크에서의 이송작업 중 폭발.

사례 22.

2003.9.22. 저녁 6시 40분쯤 충북 진천군 덕산면 신척리에 있는 한 폐유 재생공장에서 불이나, 이 공장 직원 40살 김모씨 등 두 명이 2도 화상을 입음. 불은 폐유와 재생유 등 기름 8천리터와 공장 창고건물 50평을 태워 3천여만원의 재산 피해를 낸 뒤 한 시간만에 진화됨. 화물차 적재함에 실려있던 재생유에서 갑자기 불길이 치솟았다는 공장 직원들의 말에 따라, 누출된 재생유나 인화성 증기가 차량의 점화원에 의해 화재가 발생한 것으로 추정.

사례 23.

2003.7.29. 밤 9시 반쯤 경기도 화성시 우정면의 한 폐유 재활용 공장에서 원인을 알수 없는 불이나 수십억원의 재산피해를 낸 뒤 4시간만에 꺼짐.

사례 24.

2002.3.26. 충북 진천군 소재 (주)0OOO의 폐유기용제 회분식 정제공정에서 정제작업 준비를 위한 중화조에서 수산화칼슘을 이용하여 폐유기용제의 중화작업 중 과반응으로 화재·폭발사고가 발생하여 정제공정과 창고, 사무실이 전소되었고, 공장장 등 3명의 근로자가 중화상을 입음.

사례 25.

1995.08.11. 여수 00화학에서 폐수처리장의 Cabon Absorber가 폭발하여 1명 부상.

사례 26.

1995.04.27. 안산의 00정유에서 폐유탱크로리 용접중 폭발하여 1명사망, 1명 부상.

KOSHA GUIDE P - 161 - 2017

[부록 3]

폐용제 재처리공정 점검 체크리스트

구분	점검항목	규정	결과	
1. 위험물질				
1-1.	위험물취급에 따른 작업장내 안전보건표지 부착여부? - 금지(출입, 화기), 경고(인화성물질취급), 지시, 안내 등	규칙 별표 1의2		
1-2.	원료, 제품 등의 물질안전보건자료 확보(폐기물관리법에 의한 폐기물 제외) 및 교육 실시 여부? - 명칭, 유해위험성, 주의사항 및 보호구, MSDS이해하는 방법 등	산안법 제41조		
1-3.	원료, 제품 용기의 경고표지 부착 여부? - 물질명칭, 그림문자, 신호어, 유해위험문구, 예방조치문 구, 공급자 정보 등	산안법 제41조		
2. 원료·제품탱크				
2-1.	설계압력은 적정한가?			
2-2.	통기관(통기밸브) 및 긴급통기설비 설치여부?	규칙 제268조		
2-3.	인화성액체인 경우 화염방지기 설치여부?	규칙 제269조		
2-4.	공정지역, 사무실, 조정실 등과의 안전거리(20 m) 확보여 부?	규칙 제271조		
2-5.	저장탱크 주변에 방유제의 적정설치 여부? - 용량, 배수밸브 설치위치 및 상태 등 확인	규칙 제272조		
2-6	저장탱크 액위계 및 액위경보장치 설치 여부?	규칙 제274조		
3. 정제탑 등				
3-1.	과압방지용 안전밸브 설치 여부?	규칙 제261조		
3-2.	안전밸브의 전·후단에 차단밸브 설치 여부? * 복수의 안전밸브 등을 제외하고 차단밸브 설치금지(CSO형 으로 설치)	규칙 제266조		
3-3.	안전밸브 배출물질의 안전한 처리여부? - 플래어스택, 냉각드럼, 회수설비 등의 설치	규칙 제267조		
3-4.	온도계, 압력계 등의 설치여부?	규칙 제273조		
3-5.	온도경보장치, 압력경보장치 등의 설치 여부?	규칙 제274조		
3-6.	긴급차단밸브 또는 긴급방출밸브 설치 여부?	규칙 제275조		

P - 161 - 2017

구분	점검항목	규정	결과		
4. 보일러					
4-1.	안전밸브 및 압력제한스위치가 정상적으로 설치되어 과압을 해소할 수 있는가?	규칙 제116조 등			
4-2.	고저수위 조절장치가 적절하게 설치되어 보일러의 액위를	규칙			
4-3.	안전하게 조절하는가? 화염검출기가 정상적으로 설치되어 화염이 꺼질 경우 연료	제118조 규칙			
	는 차단되는가?	재119조			
5. 정전기 등 점화원관리					
5-1.	저장탱크, 정제탑 등의 접지 여부?	규칙 제325조			
5-2.	원료·제품 입·출하 설비의 접지 및 본딩 여부?	규칙 제325조			
5-3.	저장탱크 입하배관의 침액(Dipping) 구조 여부?	규칙 제325조			
5-4.	제품을 드럼 등 이동식용기로 이송할 경우 접지 및 본딩	규칙			
	여부? 제품을 드럼 등 이동식용기로 이송할 경우 유증기 제거 여	제325조 규칙			
5-5.	부?	제232조			
5-6.	제전복, 제전화, 제전장갑, 도전성바닥 등 인체의 정전지 제거 여부?	규칙 제325조			
5-7.	지기 역구: 목발위험지역내 사용 전기기기의 방폭형 유지여부?	규칙			
6. 정비·보수·청:		제325조			
		산안법			
6-1.	화기작업, 밀폐공간작업 등의 작업허가서 발행 여부?	제49조의2			
6-2.	밀폐공간 작업시 밀폐공간보건작업 프로그램 시행 여부?	규칙 제619조			
6-3.	저장탱크 등 내부의 내용물 배출 및 퍼지 여부?	산안법 제49조의2			
6-4.	내용물 배출 후 밸브 차단 및 맹판 설치 여부?	산안법			
		제49조의2 산안법			
6-5.	작업 전 인화성 가스농도 및 산소농도 측정 여부?	제49조의2			
6-6.	밀폐공간 작업시 출입을 금지하고 대피용 기구, 송기마스 크 비치 등의 여부?	규칙 제619조			
7. 기타	- 5170 OT 911.	, 10 7 0 <u>T</u>			
7-1.	저장탱크 및 공정지역을 폭발위험장소로 구분 여부?	규칙			
7-2.	- 인화점 40℃ 이하 및 인화점이상으로 취급하는 경우에 한함 저장탱크 및 공정지역에 가스감지기 설치 여부?	제230조 규칙			
7-2.	- 대상가스와 센서일치, 25% 이하 경보, 비상전원 연결 여부	제232조			
7-3.	정제탑 지지대, 건축물의 기둥 등의 내화조치 여부? - 폭발위험장소로 설정된 지역내에 한함	규칙 제270조			
7-4.	방폭형 이송펌프사용, 취급용기의 불연성, 접지 여부?	규칙 제311조			
7-5.	작업과 공정에 대한 위험성평가, 안전운전계획 절차운영	산안법			
7-6	여부? 화재·폭발 등의 화학사고에 대한 시나리오 선정 및 비상대	제49조의2 산안법			
, 0	응계획이 구체적으로 작성되어 있는가?	제49조의2			