Impédance

- généralisation de la notion de résistance (peut dépendre de la fréquence)
- nombre complexe $\mathbf{Z} = R + jX$
- la partie réelle $R = \Re e(\mathbf{Z})$ est appelée résistance. La partie résistive s'exprime en ohms (Ω) .
- la partie imaginaire $X = \mathfrak{T}\mathfrak{m}(\mathbf{Z})$ est appelée réactance. La partie réactive dépend de la fréquence et s'exprime en ohms (Ω) .
- le module de \mathbf{Z} : $|\mathbf{Z}| = \sqrt{R^2 + X^2}$

Exemples:

- Pour une résistance $\mathbb{Z} = R$, élément purement résistif.
- Pour un condensateur $\mathbf{Z} = \frac{-j}{\omega C}$, élément purement réactif.
- Pour une bobine (inductance) $\mathbf{Z} = j\omega L$, élément purement réactif.

Loi d'Ohm généralisée

$$\mathbf{U} = \mathbf{Z} \cdot \mathbf{I}$$

Attention U, Z et I sont des nombres complexes!

En module, nous avons : $|U| = |Z| \cdot |I|$

ou
$$\frac{|U|}{|I|} = |Z|$$

Exemples:

- Pour une résistance $\frac{|U|}{|I|} = R$ Pour un condensateur $\frac{|U|}{|I|} = \frac{1}{\omega C}$
- Pour une bobine (inductance) $\frac{|U|}{|I|} = \omega L$

• $\mathbf{Z}_{\mathbf{R}} = R$ (nombre réel)

- $\mathbf{Z}_{\mathbf{R}} = R$ (nombre réel)
- $\mathbf{U} = R \cdot \mathbf{I}$,

où $\mathbf{U} = U_m e^{j\phi}$ et $\mathbf{I} = I_m e^{j\phi}$ sont les amplitudes complexes

• $U_m = RI_m$

- $\mathbf{Z}_{\mathbf{R}} = R$ (nombre réel)
- $\mathbf{U} = R \cdot \mathbf{I}$,

où $\mathbf{U} = U_m e^{j\phi}$ et $\mathbf{I} = I_m e^{j\phi}$ sont les amplitudes complexes

•
$$U_m = RI_m$$

Le courant i(t) et la tension u(t) sont en phase.

•
$$\mathbf{Z_C} = \frac{1}{j\omega C} = \frac{-j}{\omega C}$$
 (nombre imaginaire pur)

$$|\mathbf{Z_C}| = \frac{1}{\omega C} = \frac{1}{2\pi fC}$$

- . Lorsque $\lim_{\omega\to 0}|\mathbf{Z}_{\mathbf{C}}|=+\infty$, à basse fréquence, le condensateur se comporte comme un circuit ouvert (un interrupteur ouvert).
- . Lorsque $\lim_{\omega\to +\infty}|\mathbf{Z}_{\mathbf{C}}|=0$, à haute fréquence, le condensateur se comporte comme un court-circuit (un interrupteur fermé).

•
$$\mathbf{Z_C} = \frac{1}{j\omega C}$$
 (nombre imaginaire pur)
• $\mathbf{U} = \frac{1}{j\omega C}\mathbf{I} = \frac{1}{\omega C}\mathbf{I} \cdot e^{-j\frac{\pi}{2}}$
• $U_m = \frac{I_m}{\omega C}$

•
$$\mathbf{U} = \frac{1}{j\omega C}\mathbf{I} = \frac{1}{\omega C}\mathbf{I} \cdot e^{-j\frac{\pi}{2}}$$

•
$$U_m = \frac{I_m}{\omega C}$$

La tension est en retard de phase de $\frac{\pi}{2}$ sur le courant.

 I_{m}

Re

•
$$\mathbf{Z_C} = \frac{1}{j\omega C}$$
 (nombre imaginaire pur)
• $\mathbf{U} = \frac{1}{j\omega C}\mathbf{I} = \frac{1}{\omega C}\mathbf{I} \cdot e^{-j\frac{\pi}{2}}$
• $U_m = \frac{I_m}{\omega C}$

•
$$\mathbf{U} = \frac{1}{i\omega C}\mathbf{I} = \frac{1}{\omega C}\mathbf{I} \cdot e^{-j\frac{\pi}{2}}$$

•
$$U_m = \frac{I_m}{\omega C}$$

La tension est en retard de phase de $\frac{\pi}{2}$ sur le courant.

Loi d'association en série

$$\bullet \ \mathbf{Z} = \mathbf{Z}_1 + \mathbf{Z}_2$$

•
$$U = U_1 + U_2$$

Loi d'association en parallèle

•
$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} \Leftrightarrow Z = \frac{Z_1 \cdot Z_2}{Z_1 + Z_2}$$

•
$$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2$$

Exemple : circuit RC série

•
$$\mathbf{Z} = \mathbf{Z}_{\mathbf{R}} + \mathbf{Z}_{\mathbf{C}} = \mathbf{R} - \frac{\mathbf{j}}{\omega \mathbf{C}}$$

$$|\mathbf{Z}| = \sqrt{\mathbf{R}^2 + \frac{1}{\omega^2 \mathbf{C}^2}}$$

R=1kOhms, C=10 nF et $f=100~{\rm Hz}$

Re

•
$$\tan(\phi) = \frac{-1}{\omega \mathbf{RC}}$$
 $|Z| = \sqrt{(10^3)^2 + \frac{1}{(2\pi \cdot 100)^2 \cdot (10^{-8})^2}}$

Exemple: diviseur de tension

$$\begin{split} \cdot & |U_{out}| = \frac{|Z_C|}{|Z_C + Z_R|} |U_{in}| = \frac{1/\omega C}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}} |U_{in}| = \frac{1}{\sqrt{1 + \omega^2 R^2 C^2}} |U_{in}| \\ \cdot & |U_{out}| = \frac{1}{\sqrt{1 + \omega^2 R^2 C^2}} |U_{in}| \end{split}$$

Exemple: diviseur de tension

$$|\mathbf{U}_{\text{out}}| = \frac{1}{\sqrt{1 + \omega^2 \mathbf{R}^2 \mathbf{C}^2}} |\mathbf{U}_{\text{in}}|$$

$$\lim_{\omega \to 0} |\mathbf{U}_{\mathbf{out}}| = |\mathbf{U}_{\mathbf{in}}|$$

$$\lim_{\omega \to \infty} |\mathbf{U}_{\mathbf{out}}| = 0$$

Gain
$$G = \frac{|\mathbf{U}_{\text{out}}|}{|\mathbf{U}_{\text{in}}|} = \frac{1}{\sqrt{1 + \omega^2 \mathbf{R}^2 \mathbf{C}^2}}$$

$$\lim_{\omega \to 0} G = 1$$

$$\lim_{\omega \to \infty} G = 0$$

Calculer, sous la forme a+jb, l'impédance équivalente complexe à une fréquence de $100\ Hz$ des groupements d'impédances suivants :

- (a) $R=330~\Omega$ en parallèle avec $C=2,20~\mu F.$
- (b) $R=330~\Omega$ en série avec $C=2,20~\mu F$.

Calculer, sous la forme a+jb, l'impédance équivalente complexe à une fréquence de $100\ Hz$ des groupements d'impédances suivants :

- (a) $R=330~\Omega$ en parallèle avec $C=2,20~\mu F.$
- (b) $R=330~\Omega$ en série avec $C=2,20~\mu F$.

Le circuit ci-dessous est alimenté par une tension sinusoïdale de valeur efficace U=24~V et de fréquence f=1,0~kHz. Il comprend une résistance $R=3,3~k\Omega$ et un condensateur de capacité C=33~nF associés en parallèle.

- (a) Calculer les intensités efficaces I_1 et I_2 .
- (b) Tracer le diagramme vectoriel des intensités.
- (c) Déterminer graphiquement l'intensité efficace I du courant traversant le circuit ainsi que le déphasage ϕ du courant par rapport à la tension.

Le circuit ci-dessous est alimenté par une source sinusoïdale de fréquence f=50~kHz. Il comprend une résistance $R=100~\Omega$ et deux condensateurs de capacité $C_1=47~\mu F$ et $C_2=22~\mu F$.

- (a) Calculer les tensions efficaces U_1 et U_2 .
- (b) Tracer le diagramme vectoriel des tensions. Déterminer graphiquement la tension efficace U aux bornes du circuit.
- (c) Calculer l'intensité efficace I_2 du courant traversant le condensateur C_2 . Compléter le diagramme vectoriel des tensions par le diagramme vectoriel des intensités.
- (d) Déterminer graphiquement la valeur efficace *I* de l'intensité du courant traversant le circuit.

Un circuit de bornes A et B est alimenté par une tension alternative sinusoïdale :

$$u(t) = 100\sqrt{2}\cos(100\pi t)$$

- (a) Calculer la fréquence f de la tension d'alimentation.
- (b) On monte en série entre A et B, une résistance $R_1=100~\Omega$ et un condensateur de capacité $C_1=33,0~\mu F$.
 - Calculer la valeur efficace I du courant dans le dipôle.
 - Calculer le déphasage ϕ de l'intensité i(t) par rapport à la tension d'alimentation u(t).