USTC体系结构LAB5实验报告

谭泽霖 PB18010454

1.分别截图 (当前周期2和当前周期3) ,请简要说明load部件做了什么改动

周期2:Load部件:占用Load2部件,Busy置位;R2就绪,将地址保存在Load1部件的地址寄存器

周期三:Load1部件将从存储器读到的值保存在Load1部件寄存器;R3就绪,将地址保存在Load2部件地址寄存器

2.请截图(MUL.D刚开始执行时系统状态),并说明该周期相比上一周期整个系统发生了哪些改动(指令状态、保留站、寄存器和Load部件)

周期五是"上一周期"

指令			流出	1	执行		写结果	- 3	A		Load部的	牛					
. D	F6, 21(R2)	1		2~3		4				名称	В	usy	地址	ſ	直	
. D	F2, O(R3)		2		3~4		5				Load1	No					
	FO, F2, F		3								Load2	No					
	F8, F6, F		4					_			Load3	No					
OIV. D ADD. D	F10, F0,		5		_			_									
DD. D	10, 10, 1	_															
					_												
						_											
						_							邓丰	金田期			
모임하	5												当官	前周期	: 5		
		Busy	0р		Vi	Vk		Qi	Qk		1 🛦				: 5	go	
	名称	Busy	Op		Vj W1	111		Qj	Qk		A			前周期 移至	: 5	go	
	名称 Add1	Yes	Op SUB. I		Vj W1	Vk M2		Qj	Qk		*				: 5	go	
	名称 Add1 Add2	Yes No				111		Qj	Qk		•				: 5	go	
	名称 Add1	Yes)]		M2		Qj	Qk		A				: 5	go	
保留站 Time	名称 Add1 Add2 Add3	Yes No No	SVB. I	ן ת	VC1	111		Qj Mult1	Qk		•				: 5	go	
Time	名称 Add1 Add2 Add3 Mul+1 Mul+2	Yes No No Yes	SUB. I	ן ת	VC1	M2 R[F4]			Qk		•				: 5	go	
Time	名称 Add1 Add2 Add3 Mul+1 Mul+2	Yes No No Yes Yes	SUB. I	נ ת נ ת	VC1	M2 R[F4]			Qk		•				: 5	go	
Time	名称 Add1 Add2 Add3 Mul+1 Mul+2	Yes No No Yes	SUB. I	ן ת	VC1	M2 R[F4]			Qk F16	F18	F20	F22			: 5 F28	go F30	14
Time	名称 Add1 Add2 Add3 Mult1 Mult2	Yes No No Yes Yes	MULT. DIV. D	נ ת נ ת	W11 W2	M2 R[F4] M1		Mult1		F18		F22	转	移至			

MUL.D刚开始执行时:第六周期

变化如下:

指令状态: 发射第6条指令; 第三条、第四条指令进入执行状态

Load部件: 无变化

保留站:新发射的ADD.D指令占用Add2保留站,进入执行的指令MUL.D和SUB.D开始执行,时间开始

倒计时

寄存器:新发射的指令ADD.D指令等待F8寄存器

3.简要说明是什么相关导致MUL.D流出后没有立即执行

源操作数F2为写回,直到第五周期M2写入后才就绪

4.请分别截图(15周期和16周期的系统状态),并分析系统发生了哪些变化

第15周期:指令ADD.D和指令SUB.D在周期7~15周期内执行完毕,将结果写回,释放相应的保留站和寄存器;此时MULT.D指令执行了10个周期。

第16周期:指令MUL.D写回结果,释放保留站CBD将结果广播到寄存器和指令DIV.D对应的保留站。

5.回答所有指令刚刚执行完毕时是第多少周期,同时请截图 (最后一条指令写CBD时认为指令流执行结束)

所有指令执行完毕需要57个周期

多cache一致性算法-监听法

1.利用模拟器进行下述操作,并填写下表

所进 行的 访问	是否发 生了替 换?	是否发 生了写 回?	监听协议进行的操作与块状态改变
CPU A读 第5 块	替换 Cache A的块1	0	CacheA发射Read Miss,存储器传输第5块到CacheB, CacheA的块1从状态l转为S
CPU B读 第5 块	替换 CacheB 的块1	0	CacheB发射Read Miss,存储器传输第五块到CacheB, CacheB的块1从状态l转为S
CPU C读 第5 块	替换 CacheC 的块1	0	CacheC发射Read Miss,存储器传输第5块到CacheC, CacheC的块1从状态l转换为S
CPU B写 第5 块	0	0	CacheB发射Invalidate,CacheA的块1从状态S转换到I, CacheC的块1从状态S转换到I,CacheB的块1从S转换到M
CPU D读 第5 块	替换 CacheD 的块1	CacheB 的块1 写回	CacheD发射Read Miss,CacheB写回第5块,存储器传输第5块到CacheD,CacheB的块1从状态M转换到S,CacheD的块从状态I转换到S
CPU B写 第21 块	替换 CacheB 的块1	0	CacheB发射Write Miss,存储器传输第21块到CacheB, CacheB的块1从状态S转换为M
CPU A写 第23 块	替换 CacheA 的块3	0	CacheA发射Write Miss,存储器传输第23块到CacheA, CacheA的块1从状态l转换到M
CPU C写 第23 块	替换 CacheC 的块3	CacheA 的块3 写回	CacheC发射Read Miss,CacheA写回第23块,存储器传输第 23块到CacheC,CacheA的块3从状态M转换到I,CacheC的块 3从状态I转换到M
CPU B读 第29 块	替换 CacheB 的块1	CacheB 的块1 写回	CacheB写回第21块,CacheB发射Read Miss,存储器传输第 29块到CacheB,CacheB的块1从状态M转换到S
CPU B写 第5 块	替换 CacheB 的块1	0	CacheB发射Write Miss,存储器传输第5块到CacheB, CacheB的块1从状态S转换到M,CacheD的块1从状态S转换带 I

三.多cache一致性-目录法

所进 行的 访问	监听协议进行的操作	块状态改变
CPU A 读 第6 块	Cache A发送Read Miss <a,6>到Memory A, Memory A传输第6块到Cache A,Cache A的块2 从状态l转换为S</a,6>	Memory A的块6,状态:U->S, Presence bits:0000->0001,共 享集合{A}
CPU B 读 第6 块	Cache B发送Read Miss <b,6>到Memory A, Memory A传输第6块到CacheB,Cache B的块2 从状态2转为S</b,6>	Memory A的块6,状态:S->S, Presence bits:0001->0011,共 享集合{A, B}
CPU D读 第6 块	Cache D发送Read Miss <d,6>到Memory A, Memory A传输第6块到Cache D,Cache D的块2 从状态I转为S</d,6>	Memory A的块6,状态:S->S, Presence bits: 0011->1011,共 享集合{A,B,D}
CPU B写 第6 块	Cache B发送Write Hit <b,6>到Memory A, Memory A发送Invalidate(6)到Cache A, Cache A 的块2从状态S转为I,Memory A发送Invalidate(6) 到到Cache D,Cache D的块2从状态S转换到I, Cache B的块2从状态S转换到M</b,6>	Memory A到块6,状态:S->M, Presence bits:1011->0010,共 享集合{B}
CPU C 读 第6 块	Cache C发送Read Miss <c,6>到Memory A, Memory A发送Fetch(6)到Cache B, Cache B传输 第6块到Memory A, Cache B的块2从状态M转为 S, Memory A传输第6块到Cache C, Cache C的 块2从状态I转为S</c,6>	Memory A的块6,状态:M->S, Presence bits:0010->0110,共 享集合:{B,C}
CPU D写 第 20 块	Cache D发送Write Miss <d,20>到Memory C, Memory C传输第20块到Cache D,Cache D的块 0从状态I转为M</d,20>	Memory C的块20,状态: U- >M,Presence bits: 0000- >1000,共享集合{D}
CPU A写 第 20 块	Cache A发送Write Miss <a,20>到Memory C, Memory C发送Fetch&Invalidate(20)到Cache D, Cache D传输第20块到Memory C, Cache D 的块0从状态M转为I, Memory C传输第20块到 Cache A, Cache A的块0从状态I转换到M</a,20>	Memory C的块20,状态: M- >M,Presence bits: 1000- >0001,共享集合{A}
CPU D写 第6 块	Cache D发送Write Miss <d,6>到Memory A, Memory A发送Invalidate(6)到Cache B, Cache B 的块2从状态S转为I, Memory A传输第6块到 Cache D, Cache D的块2从状态I转为M</d,6>	Memory A的块6,状态:S->M, Presence bits:0110->1000,共 享集合{D}
CPU A读 第 12 块	Cache A发送Write Back <a,20>到Memory C, Cache A的块0从状态M转为I,Cache A发送Read Miss<a,12>到Memory B,Memory B传输第12块 到Cache A,Cache A的块0从状态I转为S</a,12></a,20>	Memory C的块20,状态: M->U,Presence bits: 0001->0000,共享集合{}; Memory B 的块12,状态: U->S,Presence bits: 0000->0001,共享集合: {A}

多Cache一致性模拟器——目录法

四.综合回答

1.目录法和监听法分别是集中式和基于总线,两者优劣是什么? (言之有理即可)

监听法

优势:保证了Cache的一致性,实现了写互斥和写串行

劣势:

扩展性差, 总线上能够连接的处理器数目有限

存在总线竞争问题

总线的带宽会带来一些限制

在非总线和或环形网络上监听困难

总线事务多,通信开销大

目录法

优势:

拓展性强,可以连接的处理器数目更多

降低了对于总线带宽的占用

可以有效地适应交换网络进行通信

劣势:

需要额外的空间来存储Presence Bits, 当处理器数目较多的时候会有很大的存储开销

总线竞争

存储器接口通信压力大,存储器速度成为限制

2.Tomasulo算法相比Score Board算法有什么异同? (简要回答两点: 1.分别解决了什么相关, 2.分别是分布式还是集中式) (参考第五版教材)

Tomasulo

特点:分布式;指令状态、相关控制和操作数缓存分布在各个部件中(保留站)

WAR相关:使用RS的寄存器或指向RS的指针代替指令中的寄存器-寄存器重命名

WAW相关: 使用RS中的寄存器值或指向RS的指针代替指令中的寄存器

RAW相关: 检测到寄存器就绪即没有冲突再读取操作数, 进入执行阶段

结构相关:有结构冲突不发射

结果Forward: 从FU广播结果到RS和寄存器

Score Board

特点:集中式;指令状态和相关控制都在记分牌处理

WAR相关:对操作排队,仅在读操作数阶段读寄存器

WAW相关:检测到相关后,停止发射前一条指令,直到前一条指令完成

RAW相关:检测到没有冲突(寄存器就绪)再读取操作数,进入执行阶段

结构相关: 有结构相关不发射

结果Forward: 写回寄存器接触等待

3.Tomasulo算法是如何解决结构、RAW、WAR和WAW相关的? (参考第五版教材)

结构相关: 有结构冲突不发射

RAW: 检测到没有冲突,即存储器就绪再读取操作操作数,进入执行阶段

WAW: 使用RS中的寄存器值或指向RS的指针代替指令中的寄存器-寄存器重命名

WAR: 使用RS中的寄存器值或指向RS的指针代替指令中的寄存器-寄存器重命名