Downfolding interacting models in the constrained random phase approximation (cRPA)

Step-by-step demonstration with an Fe impurity in AlN using the VASP code

Kevin Kleiner Downfolding School May 12, 2022

1

Applying the downfolding procedure for Fe-in-AlN

Despite the large system size, a beyond-DFT treatment should only be needed for the 3d-subspace

 \hat{H}_{DC} removes DFT-treated interactions in the 3d-subspace

Steps and approximations in the DFT+cRPA procedure

- 1. Compute the Kohn-Sham band structure
- 2. Determine the active space and \hat{H}_{1-body}
- Truncate the Hilbert space being described
- Take \hat{H}_{band} as the non-interacting starting point
- 3. Determine the bare and screened interaction in the active space
- Calculate the screening to linear order in perturbation theory
- Truncate the sum for the bulk dielectric screening ϵ_{bulk}
- Take the static screening limit
 - 4. Correct double counting of interactions in \hat{H}_{1-body}
 - Approximate the interactions included through \hat{V}_H and \hat{V}_{xc}

Step 1: Compute the Kohn-Sham band structure

Perform a spin-unpolarized SCF calculation in VASP set up as below

```
SYSTEM = Fe_in_wz_AlN

ENCUT = 500
NBANDS = 300

ISMEAR = 0
SIGMA = 0.01

EDIFF = 1E-06
ALGO = All

NELM = 60
NELMIN = 5
```

PAW PBE pseudopotentials for {Al, N, Fe}

$$k\text{-mesh} \begin{tabular}{ll} Automatically generated mesh \\ 0 \\ Gamma \\ 1 \ 1 \ 1 \\ 0 \ 0 \ 0 \\ \end{tabular}$$

Plot the Kohn-Sham band structure

After converging SCF, we perform a non-self-consistent calculation along the high-symmetry k-path

This band structure is the starting point for downfolding

Step 2: Determine the active space and \hat{H}_{1-body}

I project the active space KS bands onto localized Fe d-orbitals with the WANNIER90 code

Active space and \hat{H}_{1-body}

Active space consisting of bands within the box

Real-space orbitals spanning the active space

$$\hat{H}_{eff} = \sum_{ij,\sigma}^{Active} t_{ij,\sigma} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma}$$

```
8.264876
 0.000000
 0.000001
-0.000001
-0.000001
 0.000000
 7.690532
 0.000001
0.000001
 0.322868
 0.000001
 0.000001
7.690530
 0.322867
-0.000001
-0.000001
 0.000001
 0.322867
 8.049096
-0.000001
-0.000001
 0.322868
-0.000001
```

At this stage, \hat{H}_{eff} only describes the bands <u>inside the box</u>, not the entire band structure

Step 3: Determine the bare and screened interaction in the active space

I calculate $\langle ij | \hat{V} | kl \rangle$ and $\langle ij | \epsilon_{bulk}^{-1} \hat{V} | kl \rangle$ in the basis of 5 d-orbitals

Include many unoccupied bands to converge ϵ_{bulk}

ISMEAR = 0

SIGMA = 0.01

EDIFF = 1E-06

LORBIT = 11

Perform a static-limit linear response calculation of ϵ_{bulk}

Exclude active space orbitals in ϵ_{bulk}

$$ENCUTGW = 333$$

 $ENCUTGWS0FT = 333$

Truncate sum over G-vectors in ϵ_{bulk}

Output the all interaction terms in the 5-orbital basis

Our active space is small, so bulk screening significantly alters the interaction terms

Step 4: Correct double counting of interactions in \hat{H}_{1-body}

Apply the Hartree double counting correction* $\hat{H}_{DC} = \sum_{ij,\sigma}^{Active} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} \sum_{kl,\sigma'} \rho_{kl,\sigma'} U_{iljk,\sigma'\sigma}$ then diagonalize \hat{H}_{eff}

Double counting is difficult to control: even the ground state symmetry depends on it

^{*}H. Ma, et. al., J. Chem. Theory Comput. 17 2116 (2021).

DFT+cRPA downfolding is promising, but far from perfect

In the process of determining an active space and Hamiltonian

$$\hat{H}_{eff} = \sum_{ij,\sigma}^{Active} t_{ij,\sigma} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \sum_{ijkl,\sigma\sigma'}^{Active} U_{ijkl,\sigma\sigma'} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma}^{\dagger} \hat{c}_{k,\sigma'} \hat{c}_{l,\sigma'} - \hat{H}_{DC} + hc,$$

this method makes several approximations affecting the accuracy

- Truncating the Hilbert space
- Taking \hat{H}_{band} as the non-interacting starting point
- Determining \hat{H}_{int} with first order perturbation theory
- Approximating double counting of interactions in \hat{H}_{1-body}

Backup: converging the dielectric screening and system size

We control these two sources of error in the DFT+cRPA method

Backup: different "non-interacting" starting points

Final states depend on the choice of functional, an uncontrolled approximation

L. Muechler, et. al., arXiv:2105.08705 (2022).