

Cambridge International AS & A Level

Learner Guide

Cambridge International AS and A Level Mathematics 9709

Cambridge International Examinations retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party even for internal use within a Centre.
© Cambridge International Examinations 2015
Version 2

Contents

How to use this guide	3
Section 1: How will you be tested? Section 2: Examination advice Section 3: What will be tested? Section 4: What you need to know Section 5: Useful websites	
Section 1: How will you be tested?	5
About the examination papers About the papers	
Section 2: Examination advice How to use this advice General advice Advice for P1, P2 and P3 Advice for M1 and M2 Advice for S1 and S2	7
Section 3: What will be tested?	11
Section 4: What you need to know How to use the table Pure Mathematics 1: Unit P1 Pure Mathematics 2: Unit P2 Pure Mathematics 3: Unit P3 Mechanics 1: Unit M1 Mechanics 2: Unit M2 Probability and Statistics 1: Unit S1 Probability and Statistics 2: Unit S2	13
Section 5: Useful websites	34

How to use this guide

This guide describes what you need to know about your Cambridge International AS and A Level Mathematics examination.

It will help you plan your revision programme and it will explain what we are looking for in your answers. It can also be used to help you revise, by using the topic lists in Section 4 to check what you know and which topic areas you have covered.

The guide contains the following sections.

Section 1: How will you be tested?

This section will give you information about the different examination papers that are available.

Section 2: Examination advice

This section gives you advice to help you do as well as you can. Some of the ideas are general advice and some are based on the common mistakes that learners make in exams.

Section 3: What will be tested?

This section describes the areas of knowledge, understanding and skills that you will be tested on.

Section 4: What you need to know

This section shows the syllabus content in a simple way so that you can check:

- what you need to know about each topic;
- how much of the syllabus you have covered.

Not all the information in this checklist will be relevant to you.

You will need to select what you need to know in Sections 1, 2 and 4 by finding out from your teacher which examination papers you are taking.

Section 5: Useful websites

How to use this guide

Section 1: How will you be tested?

About the examination papers

This syllabus is made up of seven units: three of them are Pure Mathematics units (P1, P2 and P3), two are Mechanics units (M1 and M2) and two are Probability and Statistics units (S1 and S2). Each unit has its own examination paper.

You need to take two units for the Cambridge International AS Level qualification or four units for the full Cambridge International A Level qualification. The table below shows which units are compulsory and which are optional, and shows also the weighting of each unit towards the overall qualification.

You will need to check with your teacher which units you will be taking.

Certification title	Compulsory units	Optional units
Cambridge International AS Level Mathematics	P1 (60%)	P2 (40%) or M1 (40%) or S1 (40%)
Cambridge International A Level Mathematics	P1 (30%) and P3 (30%)	M1 (20%) and S1 (20%) or M1 (20%) and M2 (20%) or S1 (20%) and S2 (20%)

The following combinations of units are possible.

AS Level

- P1 and P2
- P1 and M1
- P1 and S1

A Level

- P1, P3, M1 and S1
- P1, P3, M1 and M2
- P1, P3, S1 and S2

If you are taking the full A Level qualification, you can take the examination papers for all four units in one session, or alternatively you can take two of them (P1 and M1 or P1 and S1) at an earlier session for an AS qualification and then take your other two units later.

The AS Level combination of units P1 and P2 **cannot** be used as the first half of a full A Level qualification, so you should not be taking P2 if you intend to do the full Cambridge International A Level Mathematics qualification.

About the papers

Once you have checked with your teacher which units you are doing you can use the table below to find basic information about each unit.

All units are assessed by a written examination, externally set and marked. You must answer all questions and all relevant working must be clearly shown. Each paper will contain both shorter and longer questions, with the questions being arranged approximately in order of increasing mark allocation (i.e. questions with smaller numbers of marks will come earlier in the paper and those with larger numbers of marks will come later in the paper.)

Units P1 and P3 will contain about 10 questions and the other units about 7 questions.

Component	Unit name	Total marks	Duration	Qualification use
Paper 1	P1 Pure Mathematics 1	75	1 hour 45 mins	AS Level Mathematics A Level Mathematics
Paper 2	P2 Pure Mathematics 2	50	1 hour 15 mins	AS Level Mathematics
Paper 3	P3 Pure Mathematics 3	75	1 hour 45 mins	A Level Mathematics
Paper 4	M1 Mechanics 1	50	1 hour 15 mins	AS Level Mathematics A Level Mathematics
Paper 5	M2 Mechanics 2	50	1 hour 15 mins	A Level Mathematics
Paper 6	S1 Probability and Statistics 1	50	1 hour 15 mins	AS Level Mathematics A Level Mathematics
Paper 7	S2 Probability and Statistics 2	50	1 hour 15 mins	A Level Mathematics

Section 2: Examination advice

How to use this advice

This section highlights some common mistakes made by learners. They are collected under various subheadings to help you when you revise a particular topic or area.

General advice

- You should give numerical answers correct to three significant figures in questions where no accuracy is specified, except for angles in degrees when one decimal place accuracy is required.
- To achieve three-figure accuracy in your answer you will have to work with at least four figures in your
 working throughout the question. For a calculation with several stages, it is usually best to use all the
 figures that your calculator shows; however you do not need to write all these figures down in your
 working.
- Giving too many significant figures in an answer is not usually penalised. However, if the question *does* specify an accuracy level then you must keep to it for your final answer, and giving too many significant figures here *will* be penalised.
- There are some questions which ask for answers in exact form. In these questions you must *not* use your calculator to evaluate answers. Exact answers may include fractions, square roots and constants such as p, for example, and you should give them in as simple a form as possible.
- You are expected to use a scientific calculator in all examination papers. Computers, graphical calculators and calculators capable of algebraic manipulation are not permitted.
- Make sure you check that your calculator is in degree mode for questions that have angles in degrees, and in radian mode when you require or are given angles in radians.
- You should always show your working, as marks are usually awarded for using a correct method even if you make a mistake somewhere.
- It is particularly important to show **all** your working in a question where there is a given answer. Marks will not be gained if the examiner is not convinced of the steps in your working out.
- Read questions carefully. Misreading a question can cost you marks.
- Write clearly. Make sure all numbers are clear, for example make sure your '1's don't look like '7's.
- If you need to change a word or a number, or even a sign (+ to for example) it is best to cross out and re-write it. Don't try to write over the top of your previous work. If your alteration is not clear you will not get the marks.
- When an answer is given (i.e. the question says 'show that...'), it is often because the answer is needed in the next part of the question. So a given answer may mean that you can carry on with a question even if you haven't been able to obtain the answer yourself. When you need to use a given answer in a later part of a question, you should **always** use the result exactly as given in the question, even if you have obtained a different answer yourself. You should **never** continue with your own wrong answer, as this will lead to a further loss of marks.
- Make sure you are familiar with all the standard mathematical notation that is expected for this syllabus. Your teacher will be able to advise you on what is expected.

- Although there is no choice of questions in any of the Cambridge International AS and A Level papers,
 you do not have to answer the questions in the order they are printed in the question paper. You don't
 want to spend time struggling on one question and then not have time for a question that you could
 have done and gained marks for.
- Check the number of marks for each question/part question. This gives an indication of how long you should be spending. Part questions with only one or two marks should not involve you doing complicated calculations or writing long explanations. You don't want to spend too long on some questions and then run out of time at the end. A rough guide is that a rate of 'a mark a minute' would leave you a good amount of time at the end for checking your work and for trying to complete any parts of questions that you hadn't been able to do at first.
- As long as you are not running out of time, don't 'give up' on a question just because your working or answers are starting to look wrong. There are always marks available for the method used. So even if you have made a mistake somewhere you could still gain method marks.
- Don't cross out anything until you have replaced it even if you know it's not correct there may still be method marks to gain.
- There are no marks available for just stating a method or a formula. The method has to be applied to the particular question, or the formula used by substituting values in.
- Always look to see if your answer is 'reasonable'. For example if you had a probability answer of 1.2, you would know that you had made a mistake and you would need to go back and check your solution.
- Make sure that you have answered everything that a question asks. Sometimes one sentence asks two things (e.g. 'Show that ... and hence find ...') and it is easy to concentrate only on the first request and forget about the second one.
- Check the formula book before the examination. You must be aware which formulas are given and which ones you will need to learn.
- Make sure you practise lots of past examination papers so that you know the format and the type of
 questions. You could also time yourself when doing them so that you can judge how quickly you will
 need to work in the actual examination.
- Presentation of your work is important don't present your solutions in the examination in double column format.
- Make sure you know the difference between three significant figures and three decimal places, and make sure you round answers rather than truncate them.

Advice for P1, P2 and P3

- Make sure you know all the formulas that you need (even ones from Cambridge IGCSE). If you use an incorrect formula you will score no marks.
- Check to see if your answer is required in exact form. If this is the case in a trigonometry question exact values of sin 60°, etc. will need to be used.
- Make sure you know the exact form for sin 60°, etc. They are not in the formula booklet.

Additional advice for P2 and P3

• Calculus questions involving trigonometric functions use values in radians, so make sure your calculator is in the correct mode if you need to use it.

Advice for M1 and M2

- When using a numerical value for 'g' you must use $10\,\mathrm{m\,s^{-2}}$ (unless the question states otherwise).
- Always draw clear force diagrams when appropriate, whether the question asks for them or not.
- Make sure you are familiar with common words and phrases such as 'initial', 'resultant', and know the difference between 'mass' and 'weight'. Go through some past examination papers and highlight common words and phrases. Make sure you know what they mean.

Advice for S1 and S2

- Questions that ask for probabilities must have answers between 0 and 1. If you get an answer greater than 1 for a probability you should check your working to try to find the mistake.
- Answers for probabilities can often be given as either fractions or decimals. For answers in decimal form, it is important that you know the difference between three significant figures and three decimal places. For example 0.03456 to three significant figures is 0.0346, but to three decimal places is 0.035. A final answer of 0.035 would not score the accuracy mark as it is not correct to the level of accuracy required.
- Sometimes you may be asked to answer 'in the context of the question'. This means that you cannot just give a 'textbook' definition that could apply to any situation; your answer must relate to the situation given in the question. So, for example, you should not just say 'The events must be independent', but 'The scores when the die is thrown must be independent' or 'The times taken by the people must be independent of each other' or whatever it is that the question is about.
- When answering a question about a normal distribution, it is useful to draw a diagram. This can prevent you from making an error; e.g. if you are finding a probability, a diagram will indicate whether your answer should be greater than or less than 0.5.

Additional advice for S2

- When carrying out a hypothesis test, you should always state the conclusion in the context of the question. You should not state conclusions in a way that implies that a hypothesis test has *proved* something; e.g. it is better to say 'There is evidence that the mean weight of the fruit has increased' than 'The test shows that the mean weight of the fruit has increased'.
- When calculating a confidence interval, it may not always be sensible to apply the usual 'three significant figure' rule about accuracy. For example, if an interval for a population mean turns out to be (99.974, 100.316), it makes no sense to round each end to 100, and you should give two or three decimal places in a case like this, so that the width of the interval is shown with reasonable accuracy.

Section 2: Examination advice

Section 3: What will be tested?

The full syllabus, which your teacher will have, says that the assessment covers 'technique with application'.

This means that you will be tested both on your knowledge of all the mathematical topics, methods, etc. that are set out in the syllabus content, and also on your ability to apply your knowledge in solving problems.

The syllabus also lists five 'assessment objectives' that set out the kinds of thing that examination questions will be designed to test.

These assessment objectives indicate that:

- you need to be familiar with all the usual notation and terminology used in your units, as well understanding the mathematical ideas
- you need to work accurately, e.g. in solving equations, etc.
- you may have to decide for yourself how to go about solving a problem, without being told exactly what procedures you need to use
- you may need to use more than one aspect of your knowledge to solve a problem
- your work needs to be clearly and logically set out.

You should ask your teacher if you require more detailed information on this section.

Section 3: What will be tested?

Section 4: What you need to know

This section has a table for each of the seven units. Each table lists the things you may be tested on in the examination for that unit.

How to use the table

You can use the table throughout your mathematics course to check the topic areas you have covered.

You can also use it as a revision aid. You can go through the list at various stages in the course, and put:

- a RED dot against a topic if you are really unsure
- an ORANGE dot if you are fairly sure of the topic, but need some further practice
- a GREEN dot if you are fully confident.

As you progress through the course and prepare for the examination you should be giving yourself more and more green dots!

Remember that we are looking for you to **know** certain skills and facts **and** to be able to **apply** these in different situations.

It is therefore important to learn the facts and practise the skills first, in isolation; but then you need to find more complex questions that use the skills you are learning, so that you can practise applying what you have learnt to solving problems. Working through past examination papers is invaluable here.

You will see that the syllabus has been divided into 'skills', 'knowledge', and 'application'. However, you should remember that each skill and knowledge item could be tested in questions requiring use of that particular skill or knowledge in a situation that may not be specifically mentioned here.

Pure Mathematics 1: Unit P1

lopic	Skill	Knowledge	Application	Checklist
Quadratics	Complete the square		Locate vertex of graph	
	Find discriminant		Sketch graph of quadratic	
	Solve quadratic equations		Use in connection with the number of real roots	
	Solve linear and quadratic inequalities		Recognise and solve equations that	
	Solve by substitution a pair of		can be put into quadratic form	
	simultaneous equations one linear and one quadratic		Solve problems, e.g. involving the intersection of a line and a curve	
Functions	Find range of a given function	Understand terms:	Sketch graphs of a one-one function	
	Find $fg(x)$ for given f and g	function, domain and range	and its inverse	
	Identify one-one functions	one-one function, inverse function	() () () () () () () () () ()	
	Find inverse of one-one function	composition of functions	nestrict a domain to ensure that a function is one-one	
		Understand how the graphs of a one-one function and its inverse are related		
Coordinate	Given end points of a line:	Gradients of parallel lines are equal	Use these relationships in solving	
	find the gradient	Perpendicular gradients: $m_1 m_2 = -1$	Interpret and use linear equations	
	find the mid-point	Know the forms $y = mx + c$ and $y -$		
	Find equation of a line e.g. using	$y_1 = m(x - x_1)$	Solve problems that relate points of intersection of graphs to	
	2 points on it, or 1 point and the gradient	Understand the relationship between a graph and its equation	solution of equations (including the	
		-	being a tangent to curve and an equation having a repeated root)	

Pure Mathematics 1: Unit P1

Topic	Skill	Knowledge	Application	Checklist
Circular measure	Convert between radians and degrees	Definition of a radian	Solve problems involving arc lengths and areas of sectors and segments	
	Use formulae $s=r\theta$ and $A=\frac{1}{2}r^2\theta$ to calculate arc length and sector area			
Trigonometry	Sketch and recognise graphs of the sine, cosine and tangent functions (angles of any size, degrees or	Know exact values for sin, cos, tan of 30°, 45°, 60°	Use trigonometric graphs Use exact values of related angles	
	radians)	Understand notation $\sin^{-1}x$, $\cos^{-1}x$, $\tan^{-1}x$ as denoting principal values	e.g. cos 150°	
	Solve trig equations giving all solutions in specified interval	Identities: $\frac{\sin \theta}{\cos \theta} = \tan \theta$	Use these identities, e.g. to prove other identities or to solve equations	
		$SID_{\tau} \theta + COS_{\tau} \theta = 1$		
Vectors	Add and subtract vectors, and	Standard vector notations	Geometrical interpretation	
	Find magnitude of a vector and the	Meaning of terms:	Use scalar products to find angles and to solve problems involving	
	scalar product of two vectors	displacement vector	perpendicular lines	
		position vector		
Series	Expand $(a + b)^n$ for positive integer n	Notation $n!$ and $\binom{n}{r}$	Use arithmetic progression and/or decometric progression formulae in	
	Find: <i>n</i> th term of AP	Recognise arithmetic progressions	solving problems	
	sum of AP	and geometric progressions		
	<i>n</i> th term GP	Condition for convergence of		
	sum of GP			
	sum to infinity of convergent GP			

Pure Mathematics 1: Unit P1

Topic	Skill	Knowledge	Application	Checklist
Differentiation	Differentiate x^{n} for rational n , together with constant multiples, sums and differences of functions	Understand gradient of a curve Notation $\frac{dy}{dx'} \frac{d^2y}{dx^2}$, $f'(x)$, $f''(x)$	Apply differentiation to: gradients tangents and normals	
	Use the chain rule on composite functions		increasing/decreasing functions connected rates of change	
	Find stationary points and identify maximum/minimum		Use information about stationary points to sketch graphs	
Integration	Integrate $(ax + b)^n$ (rational $n \ne -1$) together with constant multiples, sums and differences.	Integration as reverse differentiation	Use integration to solve problems involving finding a constant of integration	
	Evaluate definite integrals		Solve problems involving: area under a curve	
			area between two curves	
			volume of revolution about one of the axes	

Pure Mathematics 2: Unit P2

Topic	Skill	Knowledge	Application	Checklist
Assumed knowledge		Content of unit P1 is assumed, and may be required in solving problems on P2 topics		
Algebra	Solve modulus equations and inequalities, including use of: $ a = b \Leftrightarrow a^2 = b^2$	Meaning of x Meaning of quotient and remainder	Use of theorems in finding factors, solving polynomial equations, finding unknown coefficients etc.	
	$ x-a < b \Leftrightarrow a-b < x < a+b$	Factor and remainder theorems		
	Carry out algebraic polynomial division			
Logarithmic and exponential	Solve equations of form $a^x = b$ and corresponding inequalities	Relationship between logarithms and indices	Use of laws, e.g. in solving equations	
		Laws of logarithms	Use graphs of e^x and $\ln x$	
		Definition and properties of $\mathbf{e}^{\mathbf{x}}$ and \lnx	Transformation to linear form, and use of gradient and intercept	

Pure Mathematics 2: Unit P2

Topic	Skill	Knowledge	Application	Checklist
Trigonometry		The sec, cosec and cot functions and their relationship to cos, sin and tan	Use properties and graphs of all six trig functions for angles of any magnitude	
		Identities: $\sec^2 \theta = 1 + \tan^2 \theta$ $\csc^2 \theta = 1 + \cot^2 \theta$	Use of these in evaluating and simplifying expressions, and in solving equations, including	
		Expansions of: $\sin(A \pm B)$	forms $R \sin(\theta \pm \alpha)$ and $R \cos(\theta \pm \alpha)$	
		$\cos(A \pm B)$		
		$tan(A \pm B)$		
		Formulae for: sin 2 <i>A</i>		
		cos 2A		
		tan 2A		
Differentiation	Differentiate e^x and $\ln x$,		Applications of differentiation include	
	sin x, cos x and tan x, together with constant multiples, sums, differences and composites			
	Differentiate products and quotients			
	Parametric differentiation			
	Implicit differentiation			

Pure Mathematics 2: Unit P2

Topic	Skill	Knowledge	Application	Checklist
Integration	Integrate: • e ^{ax + b}		Carry out integrations using appropriate trig identities	
	$ (ax + b)^{-1} $ $ \sin(ax + b) $		Applications of integration include all those in unit P1	
	$ \cos(ax + b) $ $ \sec^2(ax + b) $		Use of sketch graphs to identify over/under estimation	
	Trapezium rule			
Numerical solution of equations	Locate root graphically or by sign change $Carry out iteration x_{x,y} = F(x_y)$	Idea of sequence of approximations which converge to a root of an equation, and notation for this	Find approximate roots to a given degree of accuracy	
	1+1	Understand relation between iterative formula and equation being solved		

Pure Mathematics 3: Unit P3

Topic	Skill	Knowledge	Application	Checklist
Assumed knowledge		Content of unit P1 is assumed, and may be required in solving problems on P3 topics		
Algebra	Solve modulus equations and inequalities, including use of: $ a = b \Leftrightarrow a^2 = b^2$ $ x - a < b \Leftrightarrow a - b < x < a + b$ Carry out algebraic polynomial division	Meaning of $ x $ Meaning of quotient and remainder Factor and remainder theorems Know appropriate forms of partial fractions for denominators: $(ax + b)(cx + d)(ex + f)$ $(ax + b)(x^2 + c^2)$ Expansion of $(1 + x)^n$ for rational n and $ x < 1$	Use of theorems in finding factors, solving polynomial equations, finding unknown coefficients etc Use of first few terms, e.g. for approximations Dealing with $(a + bx)^n$	
Logarithmic and exponential functions	Solve equations of form $a^x = b$ and corresponding inequalities	Relationship between logarithms and indices Laws of logarithms Definition and properties of e ^x and ln x	Use of laws, e.g. in solving equations Use graphs of e* and ln x Transformation to linear form, and use of gradient and intercept	

Pure Mathematics 3: Unit P3

Topic	Skill	Knowledge	Application	Checklist
Trigonometry		The sec, cosec and cot functions and their relationship to cos, sin and tan	Use properties and graphs of all six trig functions for angles of any magnitude	
		Identities: $\sec^2 \theta = 1 + \tan^2 \theta$ $\csc^2 \theta = 1 + \cot^2 \theta$	Use of these in evaluating and simplifying expressions, and	
		Expansions of: $\sin(A \pm B)$ $\cos(A \pm B)$ $\tan(A \pm B)$	in solving equations, including expressing $a \sin \theta + b \cos \theta$ in the forms $B \sin(\theta \pm \alpha)$ and $B \cos(\theta \pm \alpha)$	
		Formulae for: sin 2 <i>A</i> cos 2 <i>A</i>		
		tan 2 <i>A</i>		
Differentiation	Differentiate e ^x and ln x, sin x, cos x and tan x, together with constant multiples, sums, differences and composites		Applications of differentiation include all those in unit P1	
	Differentiate products and quotients			
	Parametric differentiation			
	Implicit differentiation			

Pure Mathematics 3: Unit P3

	::		:	:
lopic	SKIII	Knowledge	Application	Checklist
Integration	Integrate: • e ^{ax + b}		Carry out integrations using: appropriate trig identities	
	• $(ax + b)^{-1}$		 partial fractions 	
	• $\sin(ax + b)$		Applications of integration include all	
	• $\cos(ax + b)$		those in unit P1	
	• $\sec^2(ax+b)$		Use of sketch graphs to identify	
	Integrate by means of decomposition into partial fractions		over/under estimation	
	Recognise and integrate $\frac{kf'(x)}{f(x)}$			
	Integration by parts			
	Integration by substitution			
	Trapezium rule			
Numerical solution of equations	Locate root graphically or by sign change	Idea of sequence of approximations which converge to a root of an equation, and notation for this	Find approximate roots to a given degree of accuracy	
	Carry out iteration $x_{n+1} = F(x_n)$	Understand relation between iterative formula and equation being solved		

Pure Mathematics 3: Unit P3

Topic	Skill	Knowledge	Application	Checklist
Vectors	Find: • the angle between two lines	Understand $\mathbf{r} = \mathbf{a} + t\mathbf{b}$ as the equation of a straight line	Determine whether two lines are parallel, intersect or are skew	
	 the point of intersection of two lines when it exists the vector equation of a line the perpendicular distance from the perpendicular distance from 	Understand $ax + by + cz = d$ and $(\mathbf{r} - \mathbf{a}) \cdot \mathbf{n} = 0$ as the equation of a plane	Use equations of lines and planes to solve problems, including: • finding the angle between a line and a plane	
	a point to a line Find:		 determining whether a line lies in a plane, is parallel to it, or intersects it 	
	the equation of a plane the angle between two planes		 finding the point of intersection of a line and a plane when it exists 	
	point to a plane		 finding the line of intersection of two non-parallel planes 	
Differential equations	Form a differential equation from information about a rate of change	General and particular solutions	Use initial conditions and interpret solutions in context	
	Solve a first order differential equation by separating variables			
Complex numbers	Add, subtract, multiply and divide two complex numbers in cartesian form	Meaning of terms: real and imaginary parts modulus and argument	Equality of complex numbers Roots in conjugate pairs	
	Multiply and divide two complex numbers in polar form	conjugate cartesian and polar forms	Geometrical interpretation of conjugation, addition, subtraction, multiplication and division	
	Find the two square roots of a complex number	Argand diagram		
	Illustrate equations and inequalities as loci in an Argand diagram			

Mechanics 1: Unit M1

Topic	Skill	Knowledge	Application	Checklist
Trigonometry		$\sin(90^{\circ} - \theta) \equiv \cos \theta$		
knowieage required		$\cos(90^{\circ} - \theta) \equiv \sin \theta$		
		$ an heta \equiv rac{\sin heta}{\cos heta}$		
		$\sin^2 \theta + \cos^2 \theta \equiv 1$		
Forces and	Identify forces acting	Forces as vectors	Use conditions for equilibrium in	
equilibrium	Find and use components and	Meaning of terms:	problems involving finding forces, angles, etc.	
	resultants	contact force		
	Equilibrium of forces	normal component	Limitations of 'smooth' contact model	
		frictional component		
	Use 'smooth' contact model	limiting friction	Use $F = \mu R$ and $F \leq \mu R$ as appropriate in solving problems	
		limiting equilibrium	involving friction	
		coefficient of friction	Ise this law in solving proplems	
		smooth contact		
		Newton's third law		

Mechanics 1: Unit M1

Topic	Skill	Knowledge	Application	Checklist
Kinematics of motion in a straight line	Sketch displacement-time and velocity-time graphs	Distance and speed as scalars, and displacement, velocity, acceleration as vectors (in one dimension)	Use of positive and negative directions for displacement, velocity and acceleration	
		Velocity as rate of change of displacement, and acceleration as rate of change of velocity	Interpret graphs and use in solving problems the facts that: area under <i>v-t</i> graph represents displacement	
		Formulae for motion with constant acceleration	gradient of <i>s-t</i> graph represents velocity	
			gradient of <i>v-t</i> graph represents acceleration	
			Use differentiation and integration to solve problems involving displacement, velocity and acceleration	
			Use standard <i>SUVAT</i> formulae in problems involving motion in a straight line with constant acceleration	

Mechanics 1: Unit M1

Topic	Skill	Knowledge	Application	Checklist
Newton's laws of motion		Newton's second law Meaning of terms:	Use Newton's laws in problems involving motion in a straight line under constant forces	
		weight	and weight	
			Solve constant acceleration problems involving weight: • particle moving vertically	
			 particle moving on an inclined plane 	
			 two particles connected by a light string passing over a smooth pulley 	
Energy, work and power	Calculate work done by constant force	Concepts of gravitational potential energy and kinetic energy, and formulae mgh and $12mv^2$	Solve problems involving the work-energy principle, and use conservation of energy where	
		Power as rate of working $P = Fv$	appropriate	
			Use the relationship between power, force and velocity with Newton's	
			second law to solve problems about acceleration etc.	

Mechanics 2: Unit M2

knowledge Motion of a Of motion of a of motion		Content of unit M1 is assumed, and		
		may be required in solving problems on M2 topics		
Derive	Use horizontal and vertical equations of motion	Constant acceleration model	Limitations of constant acceleration model	
	Derive the cartesian equation of the trajectory		Solve problems, e.g. finding: the velocity at a given point or instant	
			the range the greatest height	
			Use the trajectory equation to solve problems, including finding the initial velocity and angle of projection	
Equilibrium of a Locate rigid body uniform usi	Locate centre of mass of a single uniform body: using symmetry	Concept of centre of mass Conditions for equilibrium	Solve equilibrium problems, including toppling/sliding	
isn ——	using data from formula list			
Calcula	Calculate the moment of a force			
Locate	Locate centre of mass of a composite body using moments			
Uniform motion		Concept of angular speed	Use of $\omega^2 r$ or v^2/r as appropriate in	
in a circle		$V = F \Omega$	solving problems about a particle moving with constant speed in a	
		Acceleration is towards centre	horizontal circle	

Mechanics 2: Unit M2

Topic	Skill	KnowledgwA	Application	Checklist
Hooke's law		Meaning of terms: modulus of elasticity elastic potential energy	Use of $T = \frac{\lambda x}{l}$ and $E = \frac{\lambda x^2}{2l}$ in solving problems involving elastic string or springs, including those where considerations of work and energy are needed	
Linear motion under a variable force	Use $\frac{dv}{dt}$ or $v \frac{dv}{dx}$ as appropriate in applying Newton's second law	$v = \frac{\mathrm{d}x}{\mathrm{d}t}$ and $a = \frac{\mathrm{d}v}{\mathrm{d}t} = v\frac{\mathrm{d}v}{\mathrm{d}x}$	Set up and solve differential equations for problems where a particle moves under the action of variable forces	

Probability and Statistics 1: Unit S1

Topic	Skill	Knowledge	Application	Checklist
Representation of data	Select suitable ways of presenting raw data	Measures of central tendency: mean, median, mode	Discuss advantages and/ or disadvantages of particular	
	Construct and interpret: • stem and leaf diagram	Measures of variation: • range	representations Calculate and use these measures,	
	 box & whisker plots 	 interquartile range 	e.g. to compare and contrast data	
	 histograms 	 standard deviation 	Solve problems involving means and	
	 cumulative frequency graphs 		standard deviations	
	Estimate median and quartiles from cumulative frequency graph			
	Calculate mean and standard deviation using: individual data items			
	 grouped data 			
	$ullet$ given totals Σx and Σx^2			
	• given $\Sigma(x-a)$ and $\Sigma(x-a)^2$			
Permutations		Meaning of terms:	Solve problems involving selections	
and		 permutation 		
combinations		• combination	solve problems about arrangements in a line including those with:	
		 selection 	• repetition	
		 arrangement 	• restriction	

Probability and Statistics 1: Unit S1

Topic	Skill	Knowledge	Application	Checklist
Probability	Evaluate probabilities by: • counting events in the sample space	Meaning of terms: • exclusive events • independent events	Solve problems involving conditional probabilities, e.g. using tree diagrams	
	 calculation using permutations and combinations 	 conditional probability 		
	Use addition and multiplication of probabilities as appropriate			
	Calculate conditional probabilities			
Discrete random	Construct a probability distribution table	Notation B(<i>n</i> , <i>p</i>)	Recognise situations where the binomial distribution is a suitable	
variables	Calculate $E(X)$ and $Var(X)$		model, and solve problems involving binomial probabilities	
	For the binomial distribution: • calculate probabilities			
	 use formulae np and npq 			
The normal distribution	Use normal distribution tables	Idea of continuous random variable, general shape of normal curve and	Use of the normal distribution as a model	
		Condition for B(n , p) to be approximated by N(np , npq)	Solve problems involving a normal distribution, including: finding probabilities	
			finding μ and/or σ	
			Solve problems involving the use of a normal distribution, with continuity correction, to approximate a binomial distribution	

Probability and Statistics 2: Unit S2

Topic	Skill	Knowledge	Application	Checklist
Assumed knowledge		Content of unit S1 is assumed, and may be required in solving problems on S2 topics		
The Poisson distribution	Calculate Poisson probabilities	Notation Po(μ) Mean and variance of Po(μ)	Use the Poisson distribution as a model, and solve problems involving Poisson probabilities	
		Conditions for random events to have a Poisson distribution	Solve problems which involve approximating binomial probabilities	
		Conditions for $B(n, p)$ to be approximated by $Po(np)$	using a Poisson distribution and/or approximating Poisson probabilities using a normal distribution with	
		Conditions for $Po(\mu)$ to be approximated by $N(\mu, \mu)$	continuity correction	

Probability and Statistics 2: Unit S2

Topic	Skill	Knowledge	Application	Checklist
Linear combinations		For a random variable X : E(aX + b) = aE(X) + b	Solve problems using results about combinations of random variables	
of random variables		$Var(aX + b) = a^2 Var(X)$		
		For random variables X and Y : E(aX + bY) = aE(X) + bE(Y)		
		For independent X and Y : $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$		
		For a normal variable X : $aX + b$ has a normal distribution		
		For independent normal variables X and Y : $aX+bY$ has a normal distribution		
		For independent Poisson variables X and Y : $X+Y$ has a Poisson distribution		
Continuous random	Use a density function to find: probabilities	Understand the concept of a continuous random variable.	Solve problems using density function properties	
variables	the mean the variance	Properties of a density function: always non-negative		
		total area is 1		

Probability and Statistics 2: Unit S2

Ing and Calculate unbiased estimates of population mean and variance population mean flormal population or large sample) Determine a confidence interval for a population mean flormal population proportion (large sample) Determine a confidence interval for a population mean flormany population proportion (large sample) Determine a confidence interval for a population proportion (large sample) Determine a confidence interval for a sampling population proportion (large sample) Determine a confidence interval for a sampling population proportion (large sample) Idea of sample mean as a random variable and population, using either binomial probabilities directly or a normal approximation, as appropriate probabilities directly or a normal approximation, as appropriate and mean where: Type I and Type II errors Meaning of terms: Population numbers for sampling mean from any population and farther and a normal population and a normal approximation, as appropriate and mean where: Type I and Type II errors Type I and Type II errors Population mean where in the above tests				:	
thesis Carry out a test of the mean of approximation, using either population mean where: - Carry out a test of a population mean where: - Carry out a test of a population mean or a supple poisson probabilities directly or a normal approximation, as appropriate or the population is normal withe known variance - Carry out a test of the mean of a normal approximation, as appropriate or the population is normal with known variance - Type I arrors in the above tests - Calculate probabilities of Type I and Type II arrors in the above tests - Calculate probabilities of Type I and Type II arrors in the above tests	Topic	Skill	Knowledge	Application	Checklist
thesis Determine a confidence interval for a population or large sample) Determine a confidence interval for a sampling population mean (normal population are a confidence interval for a sampling population proportion (large sample) Lea of randomness in sampling lede of frandom numbers for any population proportion (large sample) Lea of randomness in sampling lede of frandom numbers for any population of sample mean from variable from any population of sample mean from a normal distribution, using either binomial probabilities directly or a normal approximation, as appropriate of poisson distribution, using either Poisson distribution Poisson distribution Poisson Poisso	Sampling and estimation	Calculate unbiased estimates of population mean and variance	Meaning of terms: sample	Explain why a given sampling method may be unsatisfactory	
or large sample) Determine a confidence interval for a population proportion (large sample) Determine a confidence interval for a population proportion (large sample) Idea of sample mean as a random variable anomal probabilities for a test. Carry out a test of the value of p in a binomial probabilities directly or a normal approximation, using either boisson distribution, using either Poisson probabilities directly or a normal approximation, as appropriate anormal approximation, as appropriate anormal approximation, as appropriate anormal approximation, as appropriate anormal approximation is normal with known variance Type I and Type II errors Type I and Type II errors Calculate probabilities of Type I and Type II errors Calculate probabilities of Type I and Type II errors Calculate probabilities of Type I and Type II errors Calculate probabilities of Type I and Type II errors Type II errors in the above tests		Determine a confidence interval for a population mean (normal population	population Need for randomness in sampling	Solve problems involving the use of $\overline{X} \sim N(\mu, \sigma^2/n)$, including appropriate	
thesis Carry out a test of the walue of a binomial probabilities directly or a normal approximation, using either Poisson probabilities directly or a normal approximation, as appropriate Carry out a test of the mean of a normal approximation, using either Poisson probabilities directly or a normal approximation, as appropriate Carry out a test of the mean of a poisson distribution, using either Poisson probabilities directly or a normal approximation, as appropriate Carry out a test of a population mean where: • the population is normal with known variance • the sample size is large Calculate probabilities of Type I and Type II errors in the above tests		or large sample) Determine a confidence interval for a	Use of random numbers for sampling	use of the Central Limit theorem Interpret confidence intervals and	
thesis Formulate hypotheses for a test Carry out a test of the value of ρ in binomial probabilities directly or a normal approximation, using either Poisson distribution, using either Poisson probabilities directly or a normal approximation, as appropriate Carry out a test of a population mean where: • the population is normal with known variance • the sample size is large Calculate probabilities of Type I and Type II errors Calculate probabilities of Type I and Type II errors Calculate probabilities of Type I and Type II errors Calculate probabilities of Type I and Type II errors Calculate probabilities of Type I and Type II errors Calculate probabilities of Type I and Type II errors Calculate probabilities of Type I and Type II errors			ldea of sample mean as a random variable	intervals	
Calculate probabilities of Type I and Type II are sample size is large Carry out a test of the value of p in a binomial distribution, using either binomial probabilities directly or a normal approximation, as appropriate a normal approximation, as appropriate a normal approximation, as appropriate Carry out a test of a population mean where: Type I and Type II errors Calculate probabilities of Type I and Type II errors are the above tests			Distribution of sample mean from a normal population, and for a large sample from any population		
Carry out a test of the value of p in a binomial distribution, using either binomial probabilities directly or a normal approximation, as appropriate carry out a test of the mean of a normal approximation, using either Poisson distribution, using either Poisson distribution, using either Poisson probabilities directly or a normal approximation, as appropriate carry out a test of a population mean where: • the population is normal with known variance • the sample size is large Calculate probabilities of Type I and Type II errors Calculate probabilities of Type I and Type II errors	Hypothesis	Formulate hypotheses for a test	Concept of a hypothesis test	Relate the results of tests to the	
<u> </u>	tests	Carry out a test of the value of ρ in a binomial distribution using either	Meaning of terms: • one-tail and two-tail	context and interpret Type I and Type II error probabilities	
• • • • • • • •		binomial probabilities directly or a	 null and alternative hypotheses 		
• • • • <u>o</u>		normal approximation, as appropriate	 significance level 		
• • • <u>o</u>		Carry out a test of the mean of a	 rejection (or critical) region 		
• • •		Poisson distribution, using either Poisson probabilities directly or a	 acceptance region 		
•		normal approximation, as appropriate	 test statistic 		
 the population is normal with known variance the sample size is large Calculate probabilities of Type I and Type II errors in the above tests 		Carry out a test of a population mean where:	 Type I and Type II errors 		
the sample size is large Calculate probabilities of Type I and Type II errors in the above tests		 the population is normal with known variance 			
Calculate probabilities of Type I and Type II errors in the above tests					
		Calculate probabilities of Type I and Type II errors in the above tests			

Section 5: Useful websites

The websites listed below are useful resources to help you study for your Cambridge International AS and A Level Mathematics. The sites are not designed specifically for the 9709 syllabus, but the content is generally of the appropriate standard and is mostly suitable for your course.

www.s-cool.co.uk/a-level/maths

This site covers some Pure Maths and Statistics topics, but not Mechanics. Revision material is arranged by topics, and includes explanations, revision summaries and exam-style questions with answers.

www.examsolutions.co.uk

This site has video tutorials on topics in Pure Maths, Mechanics and Statistics. There are also other resources, including examination questions (from UK syllabuses) with videos of worked solutions.

www.bbc.co.uk/bitesize/higher/maths

This site has revision material and test questions covering some Pure Maths topics only.

www.cimt.plymouth.ac.uk

This site contains resources, projects, and publications, and is intended for both learners and teachers. The main items relevant to AS and A Level revision are the course materials and the interactive 'A-level Audits', which you can access from the 'Resources' option; these both cover Pure Maths, Mechanics and Statistics. The course materials are textbook style notes on selected topics, and can be found by following the Mathematics Enhancement Programme (MEP) link. The 'audits' are online tests containing questions of progressive difficulty, and can be found by following the Test and Audits link.

Cambridge International Examinations 1 Hills Road, Cambridge, CB1 2EU, United Kingdom Tel: +44 (0)1223 553554 Fax: +44 (0)1223 553558 Email: info@cie.org.uk www.cie.org.uk

© Cambridge International Examinations 2015

