IMPORT LIBRARIES

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
```

LOAD AND VIEW THE DATASET

```
In [2]: df=pd.read_csv('Advertising.csv')
    df.head()
```

Out[2]:		Unnamed: 0	TV	Radio	Newspaper	Sales
	0	1	230.1	37.8	69.2	22.1
	1	2	44.5	39.3	45.1	10.4
	2	3	17.2	45.9	69.3	9.3
	3	4	151.5	41.3	58.5	18.5
	4	5	180.8	10.8	58.4	12.9

DATA PREPROCESSING

```
In [3]: print(df.isnull().sum())
```

Unnamed: 0 0
TV 0
Radio 0
Newspaper 0
Sales 0
dtype: int64

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	200 non-null	int64
1	TV	200 non-null	float64
2	Radio	200 non-null	float64
3	Newspaper	200 non-null	float64
4	Sales	200 non-null	float64

dtypes: float64(4), int64(1)

memory usage: 7.9 KB

```
In [5]: df.describe()
```

Out[5]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

SPLIT THE DATA INTO TRAIN-TEST SETS

```
In [6]: X=df[['TV', 'Radio', 'Newspaper']]
    y=df['Sales']
    X_train, X_test, y_train, y_test= train_test_split(X,y,test_size=0.2, random_sta
    print(f"Training data shape: {X_train.shape}")
    print(f"Testing data shape: {X_test.shape}")

Training data shape: (160, 3)
    Testing data shape: (40, 3)
```

TRAIN THE LINEAR REGRESSION MODEL

EVALUATE THE MODEL

```
In [8]: mae = mean_absolute_error(y_test,y_pred)
    mse = mean_squared_error(y_test,y_pred)
    r2 = r2_score(y_test,y_pred)
    print(f"Mean Absolute Error (MAE): {mae: 2f}")
    print(f"Mean Squared Error (MSE): {mse: 2f}")
    print(f"R-Squared (R² Score): {mae: 2f}")
Mean Absolute Error (MAE): 1.460757
```

VISUALIZE THE RESULTS

Mean Squared Error (MSE): 3.174097 R-Squared (R² Score): 1.460757

```
In [9]: X_tv = df[['TV']]
y_sales = df['Sales']

X_train_tv, X_test_tv, y_train_tv, y_test_tv = train_test_split(X_tv, y_sales, t

lr_tv = LinearRegression()
lr_tv.fit(X_train_tv, y_train_tv)
```

```
y_pred_tv = lr_tv.predict(X_test_tv)
```

```
In [10]: plt.figure(figsize=(8,6))
    plt.scatter(X_test_tv, y_test_tv, color='blue', label='Actual Sales')
    plt.plot(X_test_tv, y_pred_tv, color='red', linewidth=2, label='Regression Line'
    plt.xlabel('TV Advertising Budget')
    plt.ylabel('Sales')
    plt.title('Simple Linear Regression: TV vs Sales')
    plt.legend()
    plt.show()
```

Simple Linear Regression: TV vs Sales

INTERPRET THE COEFFICIENTS

```
In [11]: print("Intercept:", lr.intercept_)
    print("Coefficient:", lr.coef_)

coef_df = pd.DataFrame({
        'Feature': ['TV','Radio','Newspaper'],
        'Coefficient': lr.coef_
})

coef_df
```

Intercept: 2.9790673381226256

Coefficient: [0.04472952 0.18919505 0.00276111]

Out[11]:		Feature	Coefficient
	0	TV	0.044730
	1	Radio	0.189195
	2	Newspaper	0.002761

In []: