WEEKLY PRESENTATION

Presented By: Shruthi R K

Introduction To Algorithms

Algorithm restaurant management system

- step 1: Start
- step 2 receive the menu
- step 3: search for the good food and cost
- step 4: cost min 100
- step 5: order
- step 6: receive another menu
- **tep 7: cost>100**
- step & order
- step 9: stop

Flowcharts

There is saying that a picture is worth thousand words, likewise in programming,

a solution can be well expressed using flowcharts.

Start/stop: A flowchart terminator used at the beginning and end of the algorithm

Arrow: A line connector that shows the logical flow of the process.

<u>Input/Output</u>: A parallelogram used for denoting program inputs and outputs.

Process: A rectangle, which indicates logic blocks with instructions.

<u>Decision</u>: A diamond that stands for decision statements in a program where answer is either Yes or Nb.

Looping: Repeats the process multiple times.

PSEUDO CODE

- Pseudocode is a text-based algorithm to instruct a computer to perform various tasks.
- It is expressed in an informal language, which is usually English.

EXAMPLE

- :: Begin
- Numeric num1,num2
- Print("enter the num1,num2")
- iii Input num1
- Input num2
- Sum=num1+num2
- Print(sum)

FLOW: //Arithmetic operation

- begin
- numeric num1,num2,sum,difference,product,quotient
- print("enter the num1,num2 value")
- input num1,num2
- sum=num1+num2
- difference=num1-num2
- product=num1*num2
- quotient=num1/num2
- print("The Addition of" +num1 "and" +num2 "is" +sum)
- print(("The Subtraction of" +num1 "and" +num2 "is" +difference)
- print(product)
- print(quotient)
- end

CODE

//Sum of two number

```
class Exampleprogram1
 public static void main(String args[])
   int num1=10,num2=20,sum
   summum1+num2;
   Systemout.println(sum);
```

IF STATEMENT

Use if to specify a block of code to be executed, if a specified condition is true or false.

FLOW: //Voting Eligibility Check

- begin
- numeric age
- print("Enter the age")
- input age
- **If(age>=18)**
- print("Eligible to vote")
- **e**lse
- print("Not Eligible to vote")
- **end**

CODE://Taking input from the user

```
import java.util.Scanner;
class Week1pratice
public static void main (String args[])
Scanner s=new Scanner(System.in);
int age;
System.out.println("Enter the age");
age=s.nextInt();
if(age>18)
 System.out.println("Eligible for voting");
else
 System.out.println("Not Eligible for voting");
```


IF ELSE STATEMENT

Use else if to specify a new condition to test, if the first condition is false

FLOW://Even or odd check

- begin
- numeric num
- print("Enter the number")
- input num
- if(num%2==0)
- print("The number is even")
- else
- print("The number is odd")
- end

CODE

```
import java.util.Scanner;
class Week1pratice
public static void main (String args[])
Scanner s=new Scanner(System.in);
int num=0;
System.out.println("Enter the num");
num=s.nextInt();
if(num%2==0)
 System.out.println("Even number");
else
 System.out.println("Odd number");
```


WHILE LOOP

The Java while loop is used to iterate a part of the program repeatedly until the specified Boolean condition is true

FLOW //printing even numbers

- begin
- numeric num=1
- while(num<=n)</p>
- •
- if(num%2==0){
- print(num)
- num++
- enc

DO WHILE LOOP

Java do-while loop is called an **exit control loop**. Therefore, unlike while loop and for loop, the do-while check the condition at the end of loop body. The Java *do-while loop* is executed at least once because condition is checked after loop body.

FLOW

- begin
- numeric num
- print("enter the num")
- input num
- do
- {
- print(num)
- num++
- while(num<=10)
- end

CODE

```
import java.util.Scanner;
class Week1pratice{
public static void main (String args[])
Scanner s=new Scanner(System.in);
int s1,s2,s3;
System.out.println("enter the marks");
s1=s.nextInt();
System.out.println("enter the marks");
s2=s.nextInt();
System.out.println("enter the marks");
s3=s.nextInt();
int sum=0:
int total=0;
if(s1>90&&s2>80&&s3>50)
 sum=s1+s2+s3;
 System.out.println(sum);
  total=(70*s1/100)+(20*s2/100)+(10*s3/100);
 System.out.println(total);
}}
```


PRINTING THE START AND STOP VALUE

- begin
- numeric startvalue, stop value
- print("enter startvalue and stopvalue)
- input startvalue
- input stopvalue
- while(startvalue<=stopvalue){</pre>
- print ("startvalue")
- startvalue++
- end

PRINTING THE MID VALUE

- begin
- numeric startvalue,stopvalue, s
- print("enter the start value")
- input start value
- print("enter the stop value")
- input stop value
- while(stop value<=10)</pre>
- •
- s=stop value-start value/2
- print(s)
- end

Java is a high-level, class-based, object-oriented programming language ,Java is a platform-independent language. Java achieves this using JVM and Byte Code. Java compiler converts the programming code into byte code.

INTRODUCTION TO JRE, JVM, JDK AND JIT

JRE

Java Virtual Machine (JVM) is an abstract computing machine.

JVM

Java Runtime Environment (JRE) is an implementation of the JVM

JDK

Java Development Kit (JDK) contains JRE along with various development tools

JIT

Just In Time compiler

(JIT) is runs after the program has started executing, on the fly

DATA TYPES

DATA TYPE

NON-PRIMITIVE DATA TYPE

PRIMITIVE DATA TYPES

Stores whole numbers from -128 to 127

Stores whole numbers from -32,768 to 32,767

Stores whole numbers from -2,147,483,648 to 2,147,483,647

4 float

Stores whole numbers from - 9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits Stores fractional numbers.
Sufficient for storing 15
decimal digits

Stores true or false values

Stores single character values or ASCII

NON PRIMITIVE DATA TYPES

THANK

YOU

