Math Refresher Winter Institute in Data Science

Ryan T. Moore

3 January 2020

Warming Up

- 1. Let " $A \circledast B$ " be defined as $A^B + A \cdot B$. Calculate $4 \circledast 3$.
- 2. Solve this system of two linear equations:

$$\begin{array}{rcl}
2x - y & = & 4 \\
x + y & = & 5
\end{array}$$

▶ A function is a relation (or mapping or transformation) that assigns every member of the domain to exactly one member of the range.

- ▶ A function is a relation (or mapping or transformation) that assigns every member of the domain to exactly one member of the range.
- ▶ Domain: set of all possible inputs. Set X over which f(x) defined.

- ▶ A function is a relation (or mapping or transformation) that assigns every member of the domain to exactly one member of the range.
- ▶ Domain: set of all possible inputs. Set X over which f(x) defined.
- ▶ Range ("Image"): set of all possible (obtained) output values. Set of elements of Y assigned to elements of X by f(x). $f(X) = \{y : y = f(x), x \in X\}$

- ▶ A function is a relation (or mapping or transformation) that assigns every member of the domain to exactly one member of the range.
- ▶ Domain: set of all possible inputs. Set X over which f(x) defined.
- ▶ Range ("Image"): set of all possible (obtained) output values. Set of elements of Y assigned to elements of X by f(x). $f(X) = \{y : y = f(x), x \in X\}$
- ► Mapping notation examples

- ▶ A function is a relation (or mapping or transformation) that assigns every member of the domain to exactly one member of the range.
- ▶ Domain: set of all possible inputs. Set X over which f(x) defined.
- ▶ Range ("Image"): set of all possible (obtained) output values. Set of elements of Y assigned to elements of X by f(x). $f(X) = \{y : y = f(x), x \in X\}$
- ► Mapping notation examples
 - $f: X \to Y$

- ▶ A function is a relation (or mapping or transformation) that assigns every member of the domain to exactly one member of the range.
- ▶ Domain: set of all possible inputs. Set X over which f(x) defined.
- ▶ Range ("Image"): set of all possible (obtained) output values. Set of elements of Y assigned to elements of X by f(x). $f(X) = \{y : y = f(x), x \in X\}$
- ► Mapping notation examples
 - $f: X \to Y$
 - ▶ Function of one variable: $f: \mathbb{R}^1 \to \mathbb{R}^1$

- ▶ A function is a relation (or mapping or transformation) that assigns every member of the domain to exactly one member of the range.
- ▶ Domain: set of all possible inputs. Set X over which f(x) defined.
- ▶ Range ("Image"): set of all possible (obtained) output values. Set of elements of Y assigned to elements of X by f(x). $f(X) = \{y : y = f(x), x \in X\}$
- ► Mapping notation examples
 - $f: X \to Y$
 - Function of one variable: $f: \mathbb{R}^1 \to \mathbb{R}^1$
 - Function of two variables: $f: \mathbb{R}^2 \to \mathbb{R}^1$, $f: \mathbb{R}^2 \to \mathbb{R}^2$

Examples:

$$f(x) = x + 1$$

For each x in \mathbb{R}^1 , f(x) assigns the number x+1.

Examples:

$$f(x) = x + 1$$

For each x in \mathbb{R}^1 , f(x) assigns the number x + 1.

$$f(x,y) = x^2 + y^2$$

For each ordered pair (x, y) in \mathbb{R}^2 , f(x, y) assigns the number $x^2 + y^2$

Examples:

$$f(x) = x + 1$$

For each x in \mathbb{R}^1 , f(x) assigns the number x + 1.

$$f(x,y) = x^2 + y^2$$

For each ordered pair (x, y) in \mathbb{R}^2 , f(x, y) assigns the number $x^2 + y^2$

 \triangleright Often use one variable x as input and another y as output.

Example: y = x + 1

Examples:

$$f(x) = x + 1$$

For each x in \mathbb{R}^1 , f(x) assigns the number x + 1.

$$f(x,y) = x^2 + y^2$$

For each ordered pair (x, y) in \mathbb{R}^2 , f(x, y) assigns the number $x^2 + y^2$

 \triangleright Often use one variable x as input and another y as output.

Example: y = x + 1

- ▶ Input variable: predictor, covariate, indep var
- ▶ Output variable: outcome, response, dep var

$$f(x) = \frac{3}{1+x^2}$$
 Domain $X =$

$$f(x) = \frac{3}{1+x^2}$$

Domain $X = \mathbb{R}^1$

$$\begin{array}{l} f(x) = \frac{3}{1+x^2} \\ \text{Domain } X = \mathbb{R}^1 \\ \text{Range } f(X) = \end{array}$$

$$f(x) = \frac{3}{1+x^2}$$
 Domain $X = \mathbb{R}^1$ Range $f(X) = (0, 3]$

$$f(x) = \begin{cases} x+1, & 1 \le x \le 2\\ 0, & x=0\\ 1-x & -2 \le x \le -1 \end{cases}$$

Domain X =

$$f(x) = \begin{cases} x+1, & 1 \le x \le 2\\ 0, & x = 0\\ 1-x & -2 \le x \le -1 \end{cases}$$

Domain
$$X = [-2, -1] \cup \{0\} \cup [1, 2]$$

$$f(x) = \begin{cases} x+1, & 1 \le x \le 2\\ 0, & x=0\\ 1-x & -2 \le x \le -1 \end{cases}$$

Domain
$$X = [-2, -1] \cup \{0\} \cup [1, 2]$$

Range
$$f(X) =$$

$$f(x) = \begin{cases} x+1, & 1 \le x \le 2\\ 0, & x = 0\\ 1-x & -2 \le x \le -1 \end{cases}$$

Domain $X = [-2, -1] \cup \{0\} \cup [1, 2]$

Range $f(X) = [2, 3] \cup \{0\}$

$$f(x) = \frac{1}{x}$$

Domain $X =$

$$f(x) = \frac{1}{x}$$
 Domain $X = \mathbb{R}^1 \setminus \{0\}$

$$f(x) = \frac{1}{x}$$

Domain $X = \mathbb{R}^1 \setminus \{0\}$
Range $f(X) =$

$$f(x) = \frac{1}{x}$$
 Domain $X = \mathbb{R}^1 \setminus \{0\}$ Range $f(X) = \mathbb{R}^1 \setminus \{0\}$

$$f(x,y) = x^2 + y^2$$

Domain $X = \mathbb{R}^2$

$$f(x,y) = x^2 + y^2$$

Domain $X = \mathbb{R}^2$
Image $f(X,Y) =$

$$f(x,y) = x^2 + y^2$$
 Domain $X = \mathbb{R}^2$ Image $f(X,Y) = \mathbb{R}^1_+ \cup \{0\}$

▶ Monomials: $f(x) = ax^k$

a is the coefficient. k is the degree.

Examples: $y = x^2, y = -\frac{1}{2}x^3$

▶ Monomials: $f(x) = ax^k$

a is the coefficient. k is the degree.

Examples:
$$y = x^2$$
, $y = -\frac{1}{2}x^3$

▶ Polynomials: sum of monomials.

Examples:
$$y = -\frac{1}{2}x^3 + x^2$$
, $y = 3x + 5$

The degree of a polynomial is the highest degree of its monomial terms. Write polynomials with terms in decreasing degree.

▶ Monomials: $f(x) = ax^k$

a is the coefficient. k is the degree.

Examples:
$$y = x^2$$
, $y = -\frac{1}{2}x^3$

▶ Polynomials: sum of monomials.

Examples:
$$y = -\frac{1}{2}x^3 + x^2$$
, $y = 3x + 5$

The degree of a polynomial is the highest degree of its monomial terms. Write polynomials with terms in decreasing degree.

▶ Rational Functions: ratio of two polynomials.

Examples:
$$y = \frac{x}{2}$$
, $y = \frac{x^2+1}{x^2-2x+1}$

Exponential Functions: Example: $y = 2^x$

▶ Monomials: $f(x) = ax^k$

a is the coefficient. k is the degree.

Examples:
$$y = x^2$$
, $y = -\frac{1}{2}x^3$

▶ Polynomials: sum of monomials.

Examples:
$$y = -\frac{1}{2}x^3 + x^2$$
, $y = 3x + 5$

The degree of a polynomial is the highest degree of its monomial terms. Write polynomials with terms in decreasing degree.

▶ Rational Functions: ratio of two polynomials.

Examples:
$$y = \frac{x}{2}$$
, $y = \frac{x^2+1}{x^2-2x+1}$

- **Exponential Functions**: Example: $y = 2^x$
- ► Trigonometric Functions: Examples: $y = \cos(x)$, $y = 3\sin(4x)$

Trigonometric Functions: Gill & Casella (2004)

Fig. 1 A highly multimodal surface.

$$f(x,y) = |(x\sin(20y - 90) - y\cos(20x + 45))^3 a\cos(\sin(90y + 42)x) + (x\cos(10y + 10) - y\sin(10x + 15))^2 a\cos(\cos(10x + 24)y)|_{\frac{36}{10}}$$

Linear and Nonlinear Functions

▶ **Linear**: polynomial of degree 1.

Example: y = mx + b, where m = slope and b = y-intercept.

Linear and Nonlinear Functions

▶ Linear: polynomial of degree 1.

Example: y = mx + b, where m = slope and b = y-intercept.

▶ **Nonlinear**: anything that isn't constant or polynomial of degree 1.

Examples: $y = x^2 + 2x + 1$, $y = \sin(x)$, $y = \ln(x)$, $y = e^x$

Linear and Nonlinear Functions

▶ Linear: polynomial of degree 1.

Example: y = mx + b, where m = slope and b = y-intercept.

▶ **Nonlinear**: anything that isn't constant or polynomial of degree 1.

Examples: $y = x^2 + 2x + 1$, $y = \sin(x)$, $y = \ln(x)$, $y = e^x$

Definition:

$$(\log_b P = Q) \iff (b^Q = P)$$

Definition:

$$(\log_b P = Q) \iff (b^Q = P)$$

- $1. b^{\log_b x} = x$
- 2. $\log_b(xy) = \log_b(x) + \log_b(y)$
- 3. $\log_b(\frac{x}{y}) = \log_b(x) \log_b(y)$
- 4. $\log_b(y^x) = x \log_b y$
- $5. \log_b(\frac{1}{x}) = -\log_b(x)$

Definition:

$$(\log_b P = Q) \iff (b^Q = P)$$

- $1. b^{\log_b x} = x$
- 2. $\log_b(xy) = \log_b(x) + \log_b(y)$
- 3. $\log_b(\frac{x}{y}) = \log_b(x) \log_b(y)$
- 4. $\log_b(y^x) = x \log_b y$
- 5. $\log_b(\frac{1}{x}) = -\log_b(x)$ $b^{-x} = \frac{1}{b^x}$

Definition:

$$(\log_b P = Q) \iff (b^Q = P)$$

- $1. b^{\log_b x} = x$
- 2. $\log_b(xy) = \log_b(x) + \log_b(y)$
- 3. $\log_b(\frac{x}{y}) = \log_b(x) \log_b(y)$
- 4. $\log_b(y^x) = x \log_b y$
- 5. $\log_b(\frac{1}{x}) = -\log_b(x)$ $b^{-x} = \frac{1}{b^x}$
- 6. $\log_b(1) = 0$

Definition:

$$(\log_b P = Q) \iff (b^Q = P)$$

- $1. b^{\log_b x} = x$
- 2. $\log_b(xy) = \log_b(x) + \log_b(y)$
- 3. $\log_b(\frac{x}{y}) = \log_b(x) \log_b(y)$
- 4. $\log_b(y^x) = x \log_b y$
- 5. $\log_b(\frac{1}{x}) = -\log_b(x)$ $b^{-x} = \frac{1}{b^x}$
- 6. $\log_b(1) = 0$ $b^0 = 1$

Definition:

$$(\log_b P = Q) \iff (b^Q = P)$$

- $1. b^{\log_b x} = x$
- 2. $\log_b(xy) = \log_b(x) + \log_b(y)$
- 3. $\log_b(\frac{x}{y}) = \log_b(x) \log_b(y)$
- 4. $\log_b(y^x) = x \log_b y$
- 5. $\log_b(\frac{1}{x}) = -\log_b(x)$ $b^{-x} = \frac{1}{b^x}$
- 6. $\log_b(1) = 0$ $b^0 = 1$
- 7. $\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$

▶
$$\log(\sqrt{10}) =$$

▶
$$\log(\sqrt{10}) = \frac{1}{2}$$

- $\log(\sqrt{10}) = \frac{1}{2}$ $\log(1) =$

- ▶ $\log(\sqrt{10}) = \frac{1}{2}$ ▶ $\log(1) = 0$

- ▶ $\log(\sqrt{10}) = \frac{1}{2}$
- $\log(1) = 0$
- ▶ log(10) =

- ▶ $\log(\sqrt{10}) = \frac{1}{2}$
- $\log(1) = 0$
- $\log(10) = 1$

- ▶ $\log(\sqrt{10}) = \frac{1}{2}$
- $\log(1) = 0$
- $\log(10) = 1$
- ▶ log(100) =

- ▶ $\log(\sqrt{10}) = \frac{1}{2}$
- $\log(1) = 0$
- $\log(10) = 1$
- $\log(100) = 2$

- ▶ $\log(\sqrt{10}) = \frac{1}{2}$
- $\log(1) = 0$
- $\log(10) = 1$
- $\log(100) = 2$
- ▶ ln(1) =

- $\log(\sqrt{10}) = \frac{1}{2}$
- $\log(1) = 0$
- $\log(10) = 1$
- $\log(100) = 2$
- $\ln(1) = 0$

- ▶ $\log(\sqrt{10}) = \frac{1}{2}$
- $\log(1) = 0$
- $\log(10) = 1$
- $\log(100) = 2$
- $\ln(1) = 0$
- $ightharpoonup \ln(e) =$

- ▶ $\log(\sqrt{10}) = \frac{1}{2}$
- $\log(1) = 0$
- $\log(10) = 1$
- $\log(100) = 2$
- $\ln(1) = 0$

- ▶ $\log(\sqrt{10}) = \frac{1}{2}$
- $\log(1) = 0$
- $\log(10) = 1$
- $\log(100) = 2$
- $\ln(1) = 0$

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + x_3 + \dots + x_n$$

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + x_3 + \dots + x_n$$

Let x = (4, -2, 3), y = (-1, 0, 1). Calculate

- $\sum_{i=1}^{2} x_i$
- $\sum_{i=1}^{3} x_i^{y_i}$
- $\sum_{i=2}^{3} (x_i + y_{i-1})$

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + x_3 + \dots + x_n$$

Let x = (4, -2, 3), y = (-1, 0, 1). Calculate

- $\triangleright \sum_{i=1}^{2} x_i$
- $ightharpoonup \sum_{i=1}^3 x_i^{y_i}$
- $\sum_{i=2}^{3} (x_i + y_{i-1})$
- $\sum_{i=1}^{2} x_i = 4 + (-2) = 2$
- $\sum_{i=1}^{3} x_i^{y_i} = 4^{-1} + (-2)^0 + 3^1 = \frac{1}{4} + 1 + 3 = 4\frac{1}{4}$
- $\sum_{i=2}^{5} (x_i + y_{i-1}) = (-2 + -1) + (3 + 0) = 0$

Properties:

$$\sum_{i=1}^{n} cx_i = c \sum_{i=1}^{n} x_i$$

$$\sum_{i=1}^{n} cx_{i} = c \sum_{i=1}^{n} x_{i}$$

$$\sum_{i=1}^{n} (x_{i} + y_{i}) = \sum_{i=1}^{n} x_{i} + \sum_{i=1}^{n} y_{i}$$

$$\sum_{i=1}^{n} c = nc$$

$$\prod_{i=1}^{n} x_i = x_1 x_2 x_3 \cdots x_n$$

$$\prod_{i=1}^{n} x_i = x_1 x_2 x_3 \cdots x_n$$

Let x = (4, -2, 3), y = (-1, 0, 1). Calculate

- $\begin{array}{l}
 \prod_{i=1}^{2} x_{i} \\
 \prod_{i=1}^{3} x_{i}^{y_{i}} \\
 \prod_{i=2}^{3} (x_{i} + y_{i-1})
 \end{array}$

$$\prod_{i=1}^{n} x_i = x_1 x_2 x_3 \cdots x_n$$

Let x = (4, -2, 3), y = (-1, 0, 1). Calculate

$$\prod_{i=2}^{i=1} (x_i + y_{i-1}) = (-2 + -1) \cdot (3 + 0) = -9$$

Properties:

- $\prod_{i=1}^{n} (x_i + y_i) = (x_1 + y_1)(x_2 + y_2) \dots$

$$\log\left(\prod_{i=1}^{n} cx_i\right)$$

$$\log\left(\prod_{i=1}^{n} cx_i\right) = \log(cx_1 \cdot cx_2 \cdot \ldots \cdot cx_n)$$

$$\log \left(\prod_{i=1}^{n} cx_i \right) = \log(cx_1 \cdot cx_2 \cdot \dots \cdot cx_n)$$
$$= \log(cx_1) + \log(cx_2) + \dots + \log(cx_n)$$

$$\log\left(\prod_{i=1}^{n} cx_{i}\right) = \log(cx_{1} \cdot cx_{2} \cdot \dots \cdot cx_{n})$$

$$= \log(cx_{1}) + \log(cx_{2}) + \dots + \log(cx_{n})$$

$$= \sum_{i=1}^{n} \log(cx_{i})$$

$$\log\left(\prod_{i=1}^{n} cx_{i}\right) = \log(cx_{1} \cdot cx_{2} \cdot \dots \cdot cx_{n})$$

$$= \log(cx_{1}) + \log(cx_{2}) + \dots + \log(cx_{n})$$

$$= \sum_{i=1}^{n} \log(cx_{i})$$

$$= [(\log c + \log x_{1}) + (\log c + \log x_{2}) + \dots + (\log c + \log x_{n})]$$

$$\log\left(\prod_{i=1}^{n} cx_{i}\right) = \log(cx_{1} \cdot cx_{2} \cdot \dots \cdot cx_{n})$$

$$= \log(cx_{1}) + \log(cx_{2}) + \dots + \log(cx_{n})$$

$$= \sum_{i=1}^{n} \log(cx_{i})$$

$$= [(\log c + \log x_{1}) + (\log c + \log x_{2}) + \dots + (\log c + \log x_{n})]$$

$$= \sum_{i=1}^{n} \log c + \sum_{i=1}^{n} \log(x_{i})$$

Sums, Products, and Logs

Logarithms can help us change products into sums.

$$\log\left(\prod_{i=1}^{n} cx_{i}\right) = \log(cx_{1} \cdot cx_{2} \cdot \dots \cdot cx_{n})$$

$$= \log(cx_{1}) + \log(cx_{2}) + \dots + \log(cx_{n})$$

$$= \sum_{i=1}^{n} \log(cx_{i})$$

$$= [(\log c + \log x_{1}) + (\log c + \log x_{2}) + \dots + (\log c + \log x_{n})]$$

$$= \sum_{i=1}^{n} \log c + \sum_{i=1}^{n} \log(x_{i})$$

$$= n \log(c) + \sum_{i=1}^{n} \log(x_{i})$$

Vectors

Vectors

▶ **Vector**: A vector in *n*-space is an ordered list of *n* numbers. These numbers can be represented as either a row vector or a column vector:

$$\mathbf{v} = \begin{pmatrix} v_1 & v_2 & \dots & v_n \end{pmatrix}, \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

Vectors

▶ **Vector**: A vector in *n*-space is an ordered list of *n* numbers. These numbers can be represented as either a row vector or a column vector:

$$\mathbf{v} = \begin{pmatrix} v_1 & v_2 & \dots & v_n \end{pmatrix}, \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

• We can also think of a vector as defining a point in n-dimensional space, usually \mathbf{R}^n ; each element of the vector defines the coordinate of the point in a particular direction.

$$\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 + v_1 & u_2 + v_2 & \cdots & u_n + v_n \end{pmatrix}$$

$$\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 + v_1 & u_2 + v_2 & \cdots & u_n + v_n \end{pmatrix}$$

Let
$$\mathbf{u} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$.

$$\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 + v_1 & u_2 + v_2 & \cdots & u_n + v_n \end{pmatrix}$$

Let
$$\mathbf{u} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$.

$$\mathbf{u} + \mathbf{v} =$$

$$\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 + v_1 & u_2 + v_2 & \cdots & u_n + v_n \end{pmatrix}$$

Let
$$\mathbf{u} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$.
 $\mathbf{u} + \mathbf{v} = \begin{pmatrix} 3+2 & -2+0 & 1+1 \end{pmatrix}$

$$\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 + v_1 & u_2 + v_2 & \cdots & u_n + v_n \end{pmatrix}$$

Let
$$\mathbf{u} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$.
 $\mathbf{u} + \mathbf{v} = \begin{pmatrix} 3+2 & -2+0 & 1+1 \end{pmatrix} = \begin{pmatrix} 5 & -2 & 2 \end{pmatrix}$
 $\mathbf{u} \leftarrow \mathbf{c}(3, -2, 1)$
 $\mathbf{v} \leftarrow \mathbf{c}(2, 0, 1)$
 $\mathbf{u} + \mathbf{v}$

► Scalar Multiplication: The product of a scalar *c* and vector **v** is:

$$c\mathbf{v} = \begin{pmatrix} cv_1 & cv_2 & \dots & cv_n \end{pmatrix}$$

► Scalar Multiplication: The product of a scalar *c* and vector **v** is:

$$c\mathbf{v} = \begin{pmatrix} cv_1 & cv_2 & \dots & cv_n \end{pmatrix}$$

Let
$$\mathbf{v} = (3 -2 1), c = 6.$$

▶ Scalar Multiplication: The product of a scalar c and vector \mathbf{v} is:

$$c\mathbf{v} = \begin{pmatrix} cv_1 & cv_2 & \dots & cv_n \end{pmatrix}$$

Let
$$\mathbf{v} = (3 -2 1), c = 6.$$

$$c\mathbf{v} =$$

► Scalar Multiplication: The product of a scalar c and vector **v** is:

$$c\mathbf{v} = \begin{pmatrix} cv_1 & cv_2 & \dots & cv_n \end{pmatrix}$$

Let
$$\mathbf{v} = (3 -2 1), c = 6.$$

$$c\mathbf{v} = \begin{pmatrix} 6 \cdot 3 & 6 \cdot -2 & 6 \cdot 1 \end{pmatrix}$$

► Scalar Multiplication: The product of a scalar c and vector **v** is:

$$c\mathbf{v} = \begin{pmatrix} cv_1 & cv_2 & \dots & cv_n \end{pmatrix}$$

Let
$$\mathbf{v} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$$
, $c = 6$.
 $c\mathbf{v} = \begin{pmatrix} 6 \cdot 3 & 6 \cdot -2 & 6 \cdot 1 \end{pmatrix} = \begin{pmatrix} 18 & -12 & 6 \end{pmatrix}$
 $\mathbf{c} < -6$
 $\mathbf{v} < -\mathbf{c}(3, -2, 1)$
 $\mathbf{c} * \mathbf{v}$

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors, c, d be constants, $\mathbf{0}$ be vector \mathbf{z} s.t. $z_i = 0$.

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors, c, d be constants, $\mathbf{0}$ be vector \mathbf{z} s.t. $z_i = 0$. Then, assuming $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0}$ conformable,

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors, c, d be constants, $\mathbf{0}$ be vector \mathbf{z} s.t. $z_i = 0$.

Then, assuming $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0}$ conformable,

- ightharpoonup Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- Associativity: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- ▶ Distributivity: $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- Scalar Distributivity: $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors, c, d be constants, $\mathbf{0}$ be vector \mathbf{z} s.t. $z_i = 0$.

Then, assuming $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0}$ conformable,

- ightharpoonup Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- Associativity: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- ▶ Distributivity: $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- Scalar Distributivity: $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- ▶ Additive Identity: $\mathbf{u} + \mathbf{0} = \mathbf{u}$

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors, c, d be constants, $\mathbf{0}$ be vector \mathbf{z} s.t. $z_i = 0$.

Then, assuming $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{0}$ conformable,

- ightharpoonup Commutativity: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- Associativity: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- ▶ Distributivity: $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- Scalar Distributivity: $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- Additive Identity: $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- ightharpoonup Scalar Multiplicative Identity: $1\mathbf{u} = \mathbf{u}$

$$\mathbf{u}^T = \mathbf{u}'$$

$$\mathbf{u}^T = \mathbf{u}'$$

Let
$$\mathbf{u} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$$
 be 1×3 .

$$\mathbf{u}^T = \mathbf{u}'$$

Let
$$\mathbf{u} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$$
 be 1×3 . Then, $\mathbf{u}' = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$ is 3×1 .

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$

Let
$$\mathbf{u} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$.

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$

Let
$$\mathbf{u} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$.
 $\mathbf{u} \cdot \mathbf{v} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$

Let
$$\mathbf{u} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$.
 $\mathbf{u} \cdot \mathbf{v} = 3 \cdot 2 + -2 \cdot 0 + 1 \cdot 1$

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$

Let
$$\mathbf{u} = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$.
 $\mathbf{u} \cdot \mathbf{v} = 3 \cdot 2 + -2 \cdot 0 + 1 \cdot 1 = 6 + 1 = 7$.

Inner Product and Orthogonality

If $\mathbf{u} \cdot \mathbf{v} = 0$, the vectors are *orthogonal* (or perpendicular).

Let
$$\mathbf{u} = \begin{pmatrix} 5 & 0 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 0 & -2 \end{pmatrix}$.

Inner Product and Orthogonality

If $\mathbf{u} \cdot \mathbf{v} = 0$, the vectors are *orthogonal* (or perpendicular).

Let
$$\mathbf{u} = \begin{pmatrix} 5 & 0 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 0 & -2 \end{pmatrix}$.
 $\mathbf{u} \cdot \mathbf{v} = 5 \cdot 0 + 0 \cdot -2 = 0 + 0 = 0$.

▶ Think about the $\mathbf{u} \cdot \mathbf{v}$ inner product as

$$\underbrace{\mathbf{u}}_{1\times k}\cdot\underbrace{\mathbf{v}}_{k\times 1}=\underbrace{w}_{1\times 1}$$

▶ Think about the $\mathbf{u} \cdot \mathbf{v}$ inner product as

$$\underbrace{\mathbf{u}}_{1\times k}\cdot\underbrace{\mathbf{v}}_{k\times 1}=\underbrace{w}_{1\times 1}$$

▶ Or, assume \mathbf{u} , \mathbf{v} both $k \times 1$ columns, then $\mathbf{u} \cdot \mathbf{v} \equiv \mathbf{v}^{\mathbf{T}} \mathbf{u}$

▶ Think about the $\mathbf{u} \cdot \mathbf{v}$ inner product as

$$\underbrace{\mathbf{u}}_{1\times k}\cdot\underbrace{\mathbf{v}}_{k\times 1}=\underbrace{w}_{1\times 1}$$

▶ Or, assume \mathbf{u} , \mathbf{v} both $k \times 1$ columns, then $\mathbf{u} \cdot \mathbf{v} \equiv \mathbf{v}^{\mathbf{T}} \mathbf{u}$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v}' \mathbf{u} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$$

▶ Think about the $\mathbf{u} \cdot \mathbf{v}$ inner product as

$$\underbrace{\mathbf{u}}_{1\times k}\cdot\underbrace{\mathbf{v}}_{k\times 1}=\underbrace{w}_{1\times 1}$$

▶ Or, assume \mathbf{u} , \mathbf{v} both $k \times 1$ columns, then $\mathbf{u} \cdot \mathbf{v} \equiv \mathbf{v}^{\mathbf{T}} \mathbf{u}$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v}' \mathbf{u} = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} = 7$$

Inner Product Properties

- ▶ Commutativity: $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- Associativity: $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$
- ▶ Distributivity: $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- ► Zero Product: $\mathbf{u} \cdot \mathbf{0} = 0$

Vector Norm

▶ **Vector Norm**: The *norm* of a vector measures its length. There are many different norms; most common: Euclidean norm (corresponding to usual conception of distance in 3D space):

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1 v_1 + v_2 v_2 + \dots + v_n v_n}$$

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1 v_1 + v_2 v_2 + \dots + v_n v_n}$$

$$||\mathbf{v}|| \ = \ ||\begin{pmatrix} 2 & 0 & 1 \end{pmatrix}||$$

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1 v_1 + v_2 v_2 + \dots + v_n v_n}$$

$$||\mathbf{v}|| = ||(2 \ 0 \ 1)||$$

= $\sqrt{2^2 + 0^2 + 1^2}$

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1 v_1 + v_2 v_2 + \dots + v_n v_n}$$

$$||\mathbf{v}|| = ||(2 \quad 0 \quad 1)||$$
$$= \sqrt{2^2 + 0^2 + 1^2}$$
$$= \sqrt{5}$$

Vector Norm Properties

- Scalar Multiplication: $||c\mathbf{u}|| = |c| \cdot ||\mathbf{u}||$
- ▶ Vector Distance: $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} \mathbf{v}||$
- Norm Squared: $||\mathbf{u}||^2 = \mathbf{u} \cdot \mathbf{u}$
- ► Cosine Rule: $\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \cdot ||\mathbf{v}||}$
- ► Difference Norm: $||\mathbf{u} \mathbf{v}||^2 = ||\mathbf{u}||^2 2(\mathbf{u} \cdot \mathbf{v}) + ||\mathbf{v}||^2$ = $||\mathbf{u}||^2 - 2||\mathbf{u}|| \cdot ||\mathbf{v}||(\cos \theta) + ||\mathbf{v}||^2$
- ▶ Triangle Inequality: $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$
- ightharpoonup Cauchy-Schwartz Inequality: $||\mathbf{u} \cdot \mathbf{v}|| \le ||\mathbf{u}|| \cdot ||\mathbf{v}||$

Mahalanobis Distance

$$MD_{ij} = \sqrt{(\mathbf{x}_i - \mathbf{x}_j)'\Sigma^{-1}(\mathbf{x}_i - \mathbf{x}_j)}$$

Mahalanobis Distance

$$MD_{ij} = \sqrt{(\mathbf{x}_i - \mathbf{x}_j)'\Sigma^{-1}(\mathbf{x}_i - \mathbf{x}_j)}$$

Like Euclidean distance, but scaled by inverse covariances

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{x})'$$

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

is the vector of sample means.

A Bit of R

```
a <- c(3, 0, 0)
b <- c(0, 2, 0)
a %*% b ## inner prod
## [,1]
## [1,] 0
```

Dependence and Independence

▶ Linear combinations: The vector \mathbf{u} is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ if

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$$

Dependence and Independence

▶ Linear combinations: The vector \mathbf{u} is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ if

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$$

▶ Linear independence: A set of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is linearly independent if the only solution to the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0}$$

is $c_1 = c_2 = \cdots = c_k = 0$. If another solution exists, the set of vectors is linearly dependent.

Linear Dependence

- ▶ A set S of vectors is linearly dependent iff at least one of the vectors in S can be written as a linear combination of the other vectors in S.
- ▶ Linear independence is only defined for sets of vectors with the same number of elements
- \blacktriangleright Any linearly independent set of vectors in n-space contains at most n vectors.

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Yes.
$$(c_3 = 0) \Rightarrow (c_2 = 0) \Rightarrow (c_1 = 0)$$

$$\mathbf{v}_1 = \begin{pmatrix} 3\\2\\-1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -2\\2\\4 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 2\\3\\1 \end{pmatrix}$$

$$\mathbf{v}_1 = \begin{pmatrix} 3\\2\\-1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -2\\2\\4 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 2\\3\\1 \end{pmatrix}$$

No.
$$\mathbf{c} = \begin{pmatrix} 2 & 1 & -2 \end{pmatrix}$$
 (e.g.)

Matrix Algebra

▶ Matrix: A matrix is an array of *mn* real numbers arranged in *m* rows by *n* columns.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

- Vectors are special cases of matrices
 - ▶ Col vector of length k is a $k \times 1$ matrix
 - ▶ Row vector of length k is a $1 \times k$ matrix

- Vectors are special cases of matrices
 - ▶ Col vector of length k is a $k \times 1$ matrix
 - ▶ Row vector of length k is a $1 \times k$ matrix
- ► Think of larger matrices as made up of row or column vectors. E.g.,

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{pmatrix}$$

- Vectors are special cases of matrices
 - ▶ Col vector of length k is a $k \times 1$ matrix
 - ▶ Row vector of length k is a $1 \times k$ matrix
- ► Think of larger matrices as made up of row or column vectors. E.g.,

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \cdots \\ \mathbf{b}_n \end{pmatrix}$$

}

Special Matrices

▶ Identity:
$$\mathbf{I_n} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Special Matrices

▶ Diagonal: $\begin{pmatrix} a_{11} & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$

Lower Triangular: $\begin{pmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$

▶ Upper Triangular: $\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$

Triangular: Either upper triangular or lower triangular

Matrix Equality

▶ Let **A** and **B** be two $m \times n$ matrices. Then

$$A = B$$

iff

$$a_{ij} = b_{ij}$$

$$\forall i \in \{1, \dots, m\}, \quad j \in \{1, \dots, n\}$$

Matrix Addition

▶ Let **A** and **B** be two $m \times n$ matrices. Then

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$

▶ A and B must be same size – *conformable* for addition

Matrix Addition Example

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$$
$$\mathbf{A} + \mathbf{B} =$$

Matrix Addition Example

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$$
$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 2 & 4 & 4 \\ 6 & 6 & 8 \end{pmatrix}$$

```
## [,1] [,2] [,3]
```

A + B

[1,] 2 4 4

[2,] 6 6 8

Scalar Multiplication

Scalar Multiplication: Given scalar c, the scalar multiplication $c\mathbf{A}$ is

$$c\mathbf{A} = c \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} ca_{11} & ca_{12} & \cdots & ca_{1n} \\ ca_{21} & ca_{22} & \cdots & ca_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{m1} & ca_{m2} & \cdots & ca_{mn} \end{pmatrix}$$

Scalar Multiplication Example

$$c = 2 \qquad \mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
$$c\mathbf{A} =$$

Scalar Multiplication Example

[2,] 8 10 12

$$c = 2 \qquad \mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
$$c\mathbf{A} = \begin{pmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{pmatrix}$$

```
c <- 2
c * A
## [,1] [,2] [,3]
## [1,] 2 4 6
```

Matrix Multiplication

▶ Matrix Multiplication: If **A** is $m \times k$ and **B** is $k \times n$, then their product $\mathbf{C} = \mathbf{AB}$ is $m \times n$ matrix where

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj}$$

Matrix Multiplication

▶ Matrix Multiplication: If **A** is $m \times k$ and **B** is $k \times n$, then their product $\mathbf{C} = \mathbf{AB}$ is $m \times n$ matrix where

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj}$$

Consider **A** to be composed of stacked rows $\mathbf{a}_i = \begin{pmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{pmatrix}$,

B to be composed of stacked columns
$$\mathbf{b}_j = \begin{pmatrix} b_{1j} \\ b_{2j} \\ \dots \\ b_{mj} \end{pmatrix}$$
.

Then, AB = C, where

$$c_{ij} = \mathbf{a}_i \cdot \mathbf{b}_j$$

Notes on Matrix Multiplication

► To be *conformable* for multiplication, number of cols of first matrix must equal number of rows of second matrix

Notes on Matrix Multiplication

- ► To be *conformable* for multiplication, number of cols of first matrix must equal number of rows of second matrix
- ▶ The sizes of the matrices and product must be

$$(m \times k)(k \times n) = (m \times n)$$

Notes on Matrix Multiplication

- ► To be *conformable* for multiplication, number of cols of first matrix must equal number of rows of second matrix
- ▶ The sizes of the matrices and product must be

$$(m \times k)(k \times n) = (m \times n)$$

► Given **AB**, say **B** is pre-multiplied by **A** or **B** is left-multiplied by **A** or **A** is post-multiplied by **B** or **A** is right-multiplied by **B**

Warning!

► Commutative law for multiplication does **not** hold – order of multiplication matters:

$$AB \neq BA$$

▶ **AB** may exist, while **BA** does not.

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$

AB =

Example

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{AB} = \begin{pmatrix} 2 & 3 \\ -2 & 2 \end{pmatrix}$$

Example

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{AB} = \begin{pmatrix} 2 & 3 \\ -2 & 2 \end{pmatrix}$$

BA =

Example

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$
$$\mathbf{AB} = \begin{pmatrix} 2 & 3 \\ -2 & 2 \end{pmatrix}$$

$$\mathbf{BA} = \begin{pmatrix} 1 & 7 \\ -1 & 3 \end{pmatrix}$$

▶ Transpose: The transpose of the $m \times n$ matrix \mathbf{A} $n \times m$ matrix \mathbf{A}^T (or \mathbf{A}') obtained by interchanging rows and columns of \mathbf{A} .

$$\mathbf{A} = \begin{pmatrix} 4 & -2 & 3 \\ 0 & 5 & -1 \end{pmatrix} \qquad \mathbf{A}^T =$$

- ▶ Transpose: The transpose of the $m \times n$ matrix \mathbf{A} $n \times m$ matrix \mathbf{A}^T (or \mathbf{A}') obtained by interchanging rows and columns of \mathbf{A} .
- ► Examples:

$$\mathbf{A} = \begin{pmatrix} 4 & -2 & 3 \\ 0 & 5 & -1 \end{pmatrix} \qquad \mathbf{A}^T =$$

- ▶ Transpose: The transpose of the $m \times n$ matrix \mathbf{A} $n \times m$ matrix \mathbf{A}^T (or \mathbf{A}') obtained by interchanging rows and columns of \mathbf{A} .
- ► Examples:

$$\mathbf{A} = \begin{pmatrix} 4 & -2 & 3 \\ 0 & 5 & -1 \end{pmatrix} \qquad \mathbf{A}^T =$$

- ▶ Transpose: The transpose of the $m \times n$ matrix \mathbf{A} $n \times m$ matrix \mathbf{A}^T (or \mathbf{A}') obtained by interchanging rows and columns of \mathbf{A} .
- ► Examples:

$$\mathbf{A} = \begin{pmatrix} 4 & -2 & 3 \\ 0 & 5 & -1 \end{pmatrix} \qquad \mathbf{A}^T = \begin{pmatrix} 4 & 0 \\ -2 & 5 \\ 3 & -1 \end{pmatrix}$$

- ▶ Transpose: The transpose of the $m \times n$ matrix \mathbf{A} $n \times m$ matrix \mathbf{A}^T (or \mathbf{A}') obtained by interchanging rows and columns of \mathbf{A} .
- ► Examples:

$$\mathbf{A} = \begin{pmatrix} 4 & -2 & 3 \\ 0 & 5 & -1 \end{pmatrix} \qquad \mathbf{A}^T = \begin{pmatrix} 4 & 0 \\ -2 & 5 \\ 3 & -1 \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \qquad \mathbf{B}^T = \begin{pmatrix} 4 & 0 \\ -2 & 5 \\ 3 & -1 \end{pmatrix}$$

- ▶ Transpose: The transpose of the $m \times n$ matrix \mathbf{A} $n \times m$ matrix \mathbf{A}^T (or \mathbf{A}') obtained by interchanging rows and columns of \mathbf{A} .
- ► Examples:

$$\mathbf{A} = \begin{pmatrix} 4 & -2 & 3 \\ 0 & 5 & -1 \end{pmatrix} \qquad \mathbf{A}^T = \begin{pmatrix} 4 & 0 \\ -2 & 5 \\ 3 & -1 \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \qquad \mathbf{B}^T = \begin{pmatrix} 2 & -1 & 3 \end{pmatrix}$$

Example Property

Example of $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$:

Example Property

Example of $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$:

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 2 \\ 2 & -1 & 3 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 0 & 1 \\ 2 & 2 \\ 3 & -1 \end{pmatrix}$$
$$(\mathbf{A}\mathbf{B})^T =$$

Example Property

Example of $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$:

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 2 \\ 2 & -1 & 3 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 0 & 1 \\ 2 & 2 \\ 3 & -1 \end{pmatrix}$$
$$(\mathbf{A}\mathbf{B})^T =$$

$$\begin{bmatrix} \begin{pmatrix} 1 & 3 & 2 \\ 2 & -1 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 2 \\ 3 & -1 \end{bmatrix} \end{bmatrix}^T = \begin{pmatrix} 12 & 7 \\ 5 & -3 \end{pmatrix}$$

Example Continued

 $\mathbf{B}^T\mathbf{A}^T =$

Example Continued

$$\mathbf{B}^{T}\mathbf{A}^{T} = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & -1 \\ 2 & 3 \end{pmatrix} =$$

Example Continued

$$\mathbf{B}^{T}\mathbf{A}^{T} = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & -1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 12 & 7 \\ 5 & -3 \end{pmatrix}$$

Identity Matrix

The $n \times n$ identity matrix \mathbf{I}_n has diagonal elements = 1 and off-diagonal elements = 0.

Examples:

$$\mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \mathbf{I}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

▶ Linear Equation: $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$ a_i are parameters or coefficients. x_i are variables or unknowns.

- ▶ Linear Equation: $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$ a_i are parameters or coefficients. x_i are variables or unknowns.
- ▶ "Linear": only one variable per term and degree at most 1.

- ▶ Linear Equation: $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$ a_i are parameters or coefficients. x_i are variables or unknowns.
- ▶ "Linear": only one variable per term and degree at most 1.

1.
$$\mathbb{R}^2$$
: line $x_2 = \frac{b}{a_2} - \frac{a_1}{a_2} x_1$

- ▶ Linear Equation: $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$ a_i are parameters or coefficients. x_i are variables or unknowns.
- ▶ "Linear": only one variable per term and degree at most 1.

1.
$$\mathbb{R}^2$$
: line

$$x_2 = \frac{b}{a_2} - \frac{a_1}{a_2} x_1$$

2.
$$\mathbb{R}^3$$
: plane

$$x_3 = \frac{b}{a_3} - \frac{a_1}{a_3} x_1 - \frac{a_2}{a_3} x_2$$

- ▶ Linear Equation: $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$ a_i are parameters or coefficients. x_i are variables or unknowns.
- ▶ "Linear": only one variable per term and degree at most 1.

1.
$$\mathbb{R}^2$$
: line

$$x_2 = \frac{b}{a_2} - \frac{a_1}{a_2} x_1$$

2.
$$\mathbb{R}^3$$
: plane

$$x_3 = \frac{b}{a_3} - \frac{a_1}{a_3} x_1 - \frac{a_2}{a_3} x_2$$

3. \mathbb{R}^n : hyperplane

Often interested in solving linear systems like

ightharpoonup More generally, we might have a system of m equations in n unknowns

ightharpoonup More generally, we might have a system of m equations in n unknowns

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

ightharpoonup More generally, we might have a system of m equations in n unknowns

▶ This scalar system is equivalent to the matrix equation

$$Ax = b$$

▶ A **solution** to a linear system of m equations in n unknowns is a set of n numbers x_1, x_2, \dots, x_n that satisfy each of the m equations.

ightharpoonup More generally, we might have a system of m equations in n unknowns

$$Ax = b$$

- ▶ A **solution** to a linear system of m equations in n unknowns is a set of n numbers x_1, x_2, \dots, x_n that satisfy each of the m equations.
 - 1. \mathbb{R}^2 : intersection of the lines.

ightharpoonup More generally, we might have a system of m equations in n unknowns

$$Ax = b$$

- ▶ A **solution** to a linear system of m equations in n unknowns is a set of n numbers x_1, x_2, \dots, x_n that satisfy each of the m equations.
 - 1. \mathbb{R}^2 : intersection of the lines.
 - 2. \mathbb{R}^3 : intersection of the planes.

ightharpoonup More generally, we might have a system of m equations in n unknowns

$$Ax = b$$

- A solution to a linear system of m equations in n unknowns is a set of n numbers x_1, x_2, \dots, x_n that satisfy each of the m equations.
 - 1. \mathbb{R}^2 : intersection of the lines.
 - 2. \mathbb{R}^3 : intersection of the planes.

▶ Does a linear system have one, no, or multiple solutions? For a system of 2 equations in 2 unknowns (i.e., two lines):

- ▶ Does a linear system have one, no, or multiple solutions? For a system of 2 equations in 2 unknowns (i.e., two lines):
 - 1. One solution: lines intersect at exactly one point.

▶ Does a linear system have one, no, or multiple solutions? For a system of 2 equations in 2 unknowns (i.e., two lines):

1. One solution: lines intersect at exactly one point.

2. No solution: lines are parallel.

▶ Does a linear system have one, no, or multiple solutions? For a system of 2 equations in 2 unknowns (i.e., two lines):

1. One solution: lines intersect at exactly one point.

2. No solution: lines are parallel.

3. Infinite solutions: lines coincide.

Matrices to Represent Linear Systems

Matrices are an efficient way to represent linear systems such as

Matrices to Represent Linear Systems

Matrices are an efficient way to represent linear systems such as

as $\mathbf{A}\mathbf{x} = \mathbf{b}$

Coefficient Matrix

The $m \times n$ coefficient matrix **A** is an array of mn real numbers arranged in m rows by n columns:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Variable & Output Vectors

▶ The unknown quantities are represented by the vector

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Variable & Output Vectors

▶ The unknown quantities are represented by the vector

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

▶ The RHS of the linear system is represented by the vector

$$\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

Inverse of a Matrix

An $n \times n$ matrix **A** is nonsingular or invertible if there exists an $n \times n$ matrix \mathbf{A}^{-1} such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$$

Inverse of a Matrix

An $n \times n$ matrix **A** is nonsingular or invertible if there exists an $n \times n$ matrix \mathbf{A}^{-1} such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$$

▶ Then, \mathbf{A}^{-1} is the inverse of \mathbf{A} .

Inverse of a Matrix

▶ An $n \times n$ matrix **A** is nonsingular or invertible if there exists an $n \times n$ matrix \mathbf{A}^{-1} such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$$

- ▶ Then, \mathbf{A}^{-1} is the inverse of \mathbf{A} .
- ▶ If there is no such A^{-1} , then A is *singular* or *noninvertible*.

Example of Inverses

► Example: Let

$$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 2 & 2 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} -1 & \frac{3}{2} \\ 1 & -1 \end{pmatrix}$$

Example of Inverses

▶ Example: Let

$$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 2 & 2 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} -1 & \frac{3}{2} \\ 1 & -1 \end{pmatrix}$$

Since

$$AB = BA = I_n$$

we conclude that \mathbf{B} is the inverse of \mathbf{A} , \mathbf{A}^{-1} , and that \mathbf{A} is nonsingular.

```
A <- matrix(c(1, 4, 5, 6), 2, 2, byrow = TRUE)

## [,1] [,2]

## [1,] 1 4

## [2,] 5 6
```

```
A <- matrix(c(1, 4, 5, 6), 2, 2, byrow = TRUE)
Α
## [,1] [,2]
## [1,] 1 4
## [2,] 5 6
solve(A)
            [,1] [,2]
##
## [1,] -0.4285714 0.28571429
## [2,] 0.3571429 -0.07142857
```

```
## [,1] [,2]
## [1,] 1.000000e+00 0
## [2,] -5.551115e-17 1
```

```
solve(A) %*% A
##
               [,1] [,2]
## [1,] 1.00000e+00
## [2,] -5.551115e-17 1
A %*% solve(A)
## [,1]
                   [,2]
## [1,] 1 -5.551115e-17
## [2,] 0 1.000000e+00
```

▶ Matrix representation of a linear system

$$Ax = b$$

▶ If **A** is an $n \times n$ matrix,then $\mathbf{A}\mathbf{x} = \mathbf{b}$ is a system of n equations in n unknowns.

$$Ax = b$$

- ▶ If **A** is an $n \times n$ matrix,then $\mathbf{A}\mathbf{x} = \mathbf{b}$ is a system of n equations in n unknowns.
- ▶ Suppose **A** is nonsingular \implies **A**⁻¹ exists.

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

- ▶ If **A** is an $n \times n$ matrix,then $\mathbf{A}\mathbf{x} = \mathbf{b}$ is a system of n equations in n unknowns.
- ▶ Suppose **A** is nonsingular \implies **A**⁻¹ exists.
- ▶ To solve this system, we can premultiply each side by A^{-1} and simplify:

$$\mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}\mathbf{b}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

- ▶ If **A** is an $n \times n$ matrix,then $\mathbf{A}\mathbf{x} = \mathbf{b}$ is a system of n equations in n unknowns.
- ▶ Suppose **A** is nonsingular \implies **A**⁻¹ exists.
- ▶ To solve this system, we can premultiply each side by A^{-1} and simplify:

$$\mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}\mathbf{b}$$
$$(\mathbf{A}^{-1}\mathbf{A})\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

- ▶ If **A** is an $n \times n$ matrix,then $\mathbf{A}\mathbf{x} = \mathbf{b}$ is a system of n equations in n unknowns.
- ▶ Suppose **A** is nonsingular \implies **A**⁻¹ exists.
- ▶ To solve this system, we can premultiply each side by A^{-1} and simplify:

$$\mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}\mathbf{b}$$
$$(\mathbf{A}^{-1}\mathbf{A})\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$
$$\mathbf{I}_{n}\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

- ▶ If **A** is an $n \times n$ matrix,then $\mathbf{A}\mathbf{x} = \mathbf{b}$ is a system of n equations in n unknowns.
- ▶ Suppose **A** is nonsingular \implies **A**⁻¹ exists.
- ▶ To solve this system, we can premultiply each side by A^{-1} and simplify:

$$\mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}\mathbf{b}$$
$$(\mathbf{A}^{-1}\mathbf{A})\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$
$$\mathbf{I}_n\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$
$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

 \triangleright We have linear systems with n obs and k predictors

- \blacktriangleright We have linear systems with n obs and k predictors
 - ${\color{red} \blacktriangleright}$ X is $n\times k$ matrix of predictor variable data

- \triangleright We have linear systems with n obs and k predictors
 - **X** is $n \times k$ matrix of predictor variable data
 - **y** is $n \times 1$ vector of outcome variable values

- \triangleright We have linear systems with n obs and k predictors
 - **X** is $n \times k$ matrix of predictor variable data
 - **y** is $n \times 1$ vector of outcome variable values
 - ▶ **b** is $k \times 1$ vector of linear parameters (β 's)

- \triangleright We have linear systems with n obs and k predictors
 - **X** is $n \times k$ matrix of predictor variable data
 - y is $n \times 1$ vector of outcome variable values
 - ▶ **b** is $k \times 1$ vector of linear parameters (β 's)
- ► Then

$$Xb = y$$

- \triangleright We have linear systems with n obs and k predictors
 - **X** is $n \times k$ matrix of predictor variable data
 - **y** is $n \times 1$ vector of outcome variable values
 - **b** is $k \times 1$ vector of linear parameters (β 's)
- ► Then

$$Xb = y$$

▶ Since usually $n \gg k$, **X** not square

- \triangleright We have linear systems with n obs and k predictors
 - **X** is $n \times k$ matrix of predictor variable data
 - **y** is $n \times 1$ vector of outcome variable values
 - **b** is $k \times 1$ vector of linear parameters (β 's)
- ► Then

$$Xb = y$$

- ▶ Since usually $n \gg k$, **X** not square
- ▶ To isolate **b**, how to make premultiplying matrix square?

- \triangleright We have linear systems with n obs and k predictors
 - **X** is $n \times k$ matrix of predictor variable data
 - \mathbf{y} is $n \times 1$ vector of outcome variable values
 - **b** is $k \times 1$ vector of linear parameters (β 's)
- ► Then

$$Xb = y$$

- ▶ Since usually $n \gg k$, **X** not square
- ► To isolate **b**, how to make premultiplying matrix square?
- ► Observe:

$$\mathbf{X}_{(n\times k)(k\times n)}\mathbf{X'}=_{(n\times n)}$$

can't premultiply **b**.

- \triangleright We have linear systems with n obs and k predictors
 - **X** is $n \times k$ matrix of predictor variable data
 - **y** is $n \times 1$ vector of outcome variable values
 - ▶ **b** is $k \times 1$ vector of linear parameters (β 's)
- ► Then

$$Xb = y$$

- ▶ Since usually $n \gg k$, **X** not square
- ► To isolate **b**, how to make premultiplying matrix square?
- ► Observe:

$$\mathbf{X}_{(n\times k)(k\times n)}\mathbf{X}'=_{(n\times n)}$$

can't premultiply **b**.

- \triangleright We have linear systems with n obs and k predictors
 - **X** is $n \times k$ matrix of predictor variable data
 - y is $n \times 1$ vector of outcome variable values
 - **b** is $k \times 1$ vector of linear parameters (β 's)
- ► Then

$$Xb = y$$

- ▶ Since usually $n \gg k$, **X** not square
- ► To isolate **b**, how to make premultiplying matrix square?
- ► Observe:

$$\mathbf{X}_{(n\times k)(k\times n)}\mathbf{X}' = {}_{(n\times n)}$$

can't premultiply **b**. But this can:

$$\mathbf{X}' \mathbf{X} = {}_{(k \times n)(n \times k)} = {}_{(k \times k)}$$

 $\mathbf{X}\mathbf{b} = \mathbf{y}$

$$\begin{array}{rcl} \mathbf{X}\mathbf{b} & = & \mathbf{y} \\ \mathbf{X}'\mathbf{X}\mathbf{b} & = & \mathbf{X}'\mathbf{y} \end{array}$$

$$\begin{array}{rcl} \mathbf{X}\mathbf{b} & = & \mathbf{y} \\ \mathbf{X}'\mathbf{X}\mathbf{b} & = & \mathbf{X}'\mathbf{y} \end{array}$$

How to isolate **b**?

$$\begin{array}{rcl} \mathbf{X}\mathbf{b} & = & \mathbf{y} \\ \mathbf{X}'\mathbf{X}\mathbf{b} & = & \mathbf{X}'\mathbf{y} \end{array}$$

$$\mathbf{Xb} = \mathbf{y}$$
$$\mathbf{X'Xb} = \mathbf{X'y}$$

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$\begin{array}{rcl} \mathbf{X}\mathbf{b} & = & \mathbf{y} \\ \mathbf{X}'\mathbf{X}\mathbf{b} & = & \mathbf{X}'\mathbf{y} \end{array}$$

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

 $\mathbf{I}_k\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$

$$\begin{array}{rcl} \mathbf{X}\mathbf{b} & = & \mathbf{y} \\ \mathbf{X}'\mathbf{X}\mathbf{b} & = & \mathbf{X}'\mathbf{y} \end{array}$$

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
$$\mathbf{I}_k\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$\mathbf{Xb} = \mathbf{y}$$
$$\mathbf{X'Xb} = \mathbf{X'y}$$

How to isolate **b**? Multiply by an inverse.

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
$$\mathbf{I}_k\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Befriend $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$.

$$\mathbf{Xb} = \mathbf{y}$$
$$\mathbf{X'Xb} = \mathbf{X'y}$$

How to isolate **b**? Multiply by an inverse.

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
$$\mathbf{I}_k\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Befriend $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$. If you understand it, its cousins, and their properties (both strengths and weaknesses), your data-analytic future will be bright.

Solving a System in R

```
x1 < c(1,3,5)
x2 < -c(3,1,2)
x3 \leftarrow c(1,1,1)
y \leftarrow 4 * x1 + 3 * x2 + x3
(X \leftarrow cbind(x1, x2, x3))
## x1 x2 x3
## [1,] 1 3 1
## [2,] 3 1 1
## [3,] 5 2 1
```

```
Solving a System in R
   x1 < c(1,3,5)
   x2 < -c(3,1,2)
   x3 \leftarrow c(1,1,1)
   y \leftarrow 4 * x1 + 3 * x2 + x3
   (X \leftarrow cbind(x1, x2, x3))
   ## x1 x2 x3
   ## [1,] 1 3 1
   ## [2,] 3 1 1
   ## [3,] 5 2 1
   Xinv <- solve(X)</pre>
   c <- Xinv %*% y
   С
   ## [,1]
   ## x1 4
   ## x2 3
```

x3