

ADA 648 068

TECHNICAL REPORT
NATICK/TR-78/002

THERMAL INACTIVATION OF VIRUSES

OCTOBER 1977

Approved for public release;
distribution unlimited.

UNITED STATES ARMY
NATICK RESEARCH and DEVELOPMENT COMMAND
NATICK, MASSACHUSETTS 01760

Food Sciences Laboratory
FSL

Approved for public release; distribution unlimited.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

Destroy this report when no longer needed. Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER <i>(14) NATICK - TR-78/002</i>	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER <i>rept.</i>
4. TITLE (and Subtitle) <i>THERMAL INACTIVATION OF VIRUSES</i>	5. SPONSORING ACTIVITY <i>6</i>	6. COVERS PERIOD <i>9 Final Jan 77 - June 77</i>
7. AUTHOR(s) <i>Edward P. Larkin</i>	8. PERFORMING ORG. REPORT NUMBER	9. CONTRACT OR GRANT NUMBER(s) <i>DRXNM 77-115</i>
10. PERFORMING ORGANIZATION NAME AND ADDRESS <i>Food and Drug Administration Cincinnati, Ohio 45226</i>	11. CONTROLLING OFFICE NAME AND ADDRESS <i>US Army Natick Research and Development Command Natick, MA 01760 ATTN: DRYNM-YMM</i>	12. PROGRAM ELEMENT, PROJECT, TASK AND WORK UNIT NUMBERS <i>11 16 30 1L752724AH99 6.2 DB-061</i>
13. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	14. DISTRIBUTION STATEMENT (of this Report)	15. SECURITY CLASSIFICATION <i>Unclassified</i> 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE <i>JAN 3 1978</i>
16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	Approved for public release; distribution unlimited.	
17. SUPPLEMENTARY NOTES	<i>D D C RECORDED 5</i>	
18. KEY WORDS (Continue on reverse side if necessary and identify by block number)	THERMAL INACTIVATION THERMAL RESISTANCE FOOD PRESERVATION INACTIVATION FOODS CONTAMINATION TEMPERATURE(S) FLUIDS HEAT VIRUSES FOOD PROCESSING VIRAL NUCLEIC ACIDS	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	<p>A review of the literature pertaining to thermal inactivation of virus in fluid media, fluid foods and solid foods indicated that the majority of viruses are inactivated at 71°C for 1 minute when normally expected levels of contamination occur. A limited number of viruses have been reported to require a higher heat process. Whether low level contamination by such viruses, would be expected in foods, would survive the 71°C level is not known because of the limited data available. Most food processes will not inactivate viral nucleic acids.</p>	

392674

Drac

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Item 20 (Continued)

Acids. However, the presence of nucleases, pH extremes in foods and long storage times probably reduce their potential for retaining infectivity.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PREFACE

The U. S. Army's food irradiation program has as its primary objective the use of high doses (>1 Mrad) of irradiation to make pre-packaged enzyme inactivated meats stable and safe from a microbiological health hazard when stored under nonrefrigerated conditions. In this process (radappertization) foods are formulated, placed in cellulose casings or metal molds, heated to an internal temperature of 73 to 77°C to inactivate autolytic enzymes, and chilled to -3 to 5°C. The product is then vacuum packaged in cans or in flexible pouches, frozen to ca. -40°C, and irradiated within a temperature range of -40°C to -8°C to obtain the desired minimal radiation dose (MRD). Inoculated pack studies with 10 strains of C. botulinum spores provide data for the computation of the MRD, the dose required to reduce the number of viable spores of C. botulinum by a factor of 1×10^{12} .

Although viruses are more radiation resistant than C. botulinum spores, they should not present a health problem in radappertized meats because; due to their reported heat sensitivity, they should be destroyed during the preirradiation thermal treatment to inactivate autolytic enzymes. This review of literature, performed under project order number DRXNM 77-115 was deemed essential to confirm the reported heat sensitivity of viruses.

Table of Contents

	page
Preface	1
Report	5
Figure 1. Time-Temperature profile for inactivation of virus single stranded nucleic acid or essential protein in a fluid medium	8
Table 1. Some characteristics of animal viruses	10
Bibliography	11
Table 2. Virus thermal inactivation	12
Bibliography	20
Table 3. Thermal inactivation of viruses in foods	25
Bibliography	31
Table 4. Agents modifying virus thermal inactivation	34
Bibliography	36
Table 5. Naturally occurring virus concentrations in Food Animal Products	38
Bibliography	39
Table 6. The effect of temperature on nucleic acids	40
Bibliography	41
Table 7. Viruses producing systemic infections in food animals (North America)	42
Bibliography: Nucleic Acids	43
Bibliography: Viral Thermal Inactivation Theory	44

THERMAL INACTIVATION OF VIRUSES

The thermal resistance of virus in foods is enhanced by the presence of protective agents that reduce the lethal effect of heat on the viruses at temperatures below 60° C. In addition, when solid foods are processed heat transfer is by conduction, and the required internal temperatures must be attained to effectively inactivate viral contaminants.

In Table 1 some of the characteristics of animal viruses are depicted. The various families have been separated by their buoyant densities and are listed alphabetically. The families 11 through 15 have been separated and also listed alphabetically. This same system was used to depict the information published in the literature pertaining to the familial resistance of viruses in laboratory media and in foods.

Examination of the data shown in Tables 2 and 3 indicate that the vast majority of viruses within the various families are inactivated at temperatures of about 60° C or less. This literature review on viral inactivation indicates that resistance to thermal denaturation appears to be restricted to viruses within the last five families depicted in Table 1. Greater resistance to temperature inactivation has been reported for the parvoviridae, the papoviridae and the picornaviridae. The adenoviridae and the reoviridae appear to be only slightly more resistant to thermal inactivation than the first ten families. Only the parvoviridae and the picornaviridae contain sufficient numbers of viruses to be of importance in studies on viral thermal inactivation. The greatest number of viruses of public health importance are in the family of picornaviridae. At the present time the exact position in the classification system of the hepatitis and gastroenteritis viruses is not known but probably they will be included in the parvoviridae or the picornaviridae.

The thermal inactivation data published in the literature have been concerned chiefly with inactivation of high titers of viruses in fluid preparations. There is great variation in the techniques and procedures used to evaluate the thermal resistance of viruses. In the majority of studies the viral suspensions were heated in test tubes that were held in constant temperature water baths. In some cases the viral suspensions were mixed in an attempt to equalize the temperature in the suspending media. In addition, a number of containers were used to process the virus suspensions such as capillary tubes, ampules and varying types of flasks and bottles. It has been our experience that in evaluating the thermal resistance of viruses that even distribution of the heat occurs only when the viral suspension is processed in ampules or capillary tubes that are submerged in a constant temperature bath. When other types of non-submerged containers are utilized, there is uneven distribution of the heat and possible contamination of the heat processed fluids by viruses surviving on the walls and closures of the vessels. Such contamination may be interpreted as apparent survival of low level virus after the heat treatment process. In some cases these viruses are not detected by cell culture systems but were observed when animal inoculation was utilized. It is possible that free virus nucleic acid may have been the causative agent in some of the reported virus persistence papers, especially when the heat treated preparation was injected into an animal.

In Table 4 a number of substances are listed that have a protective effect on viruses when low temperatures (40 to 60° C) are used in thermal inactivation studies. In addition, this protective effect has been observed with other substrates such as serum, ice cream mix and other high protein-carbohydrate containing suspensions. It has been shown that with higher temperatures, in excess of 60° C, the protective effect on the virus decreases significantly. When virus suspensions containing less than 10⁴ particles/ml are processed, normal inactivation occurs in a short period of time at temperatures of 60 to 70° C and appear to be inactivated at relatively the same rate.

Only a limited number of viruses have been reported to have extremely high thermal resistance. These viruses are foot-and-mouth disease virus, hepatitis "A" (infectious hepatitis), hepatitis "B" (serum hepatitis) and the limited number of viruses in the papova and parvo virus families. In the reported foot-and-mouth disease studies a number of investigations were performed using high titers of viruses and in the majority of investigations tubes or bottles were used to process the suspension in the water bath. Apparent survival of low levels of viruses is possible with this procedure. Only limited or no viruses were reported to survive the heat processing of foods naturally contaminated by foot-and-mouth disease virus. Expected virus levels in naturally infected animals are shown in Table 5. Research in the Food and Drug Administration laboratories in Cincinnati indicates that virus levels of this magnitude were inactivated by temperatures less than those required for pasteurization of ice cream mix (63.3° C for 30 min or 79.4° C for 25 sec).

The reported thermal inactivation data on the hepatitis viruses are limited. In most cases viruses of unknown titer were heat-treated in blood or blood components in an attempt to inactivate viruses, and infectivity was determined by human or primate feeding or inoculation studies. In one series of studies using hepatitis "A" in marmoset serum a temperature of 60° C for one hour was not sufficient to prevent infectivity in marmosets injected with the heated product. When the same virus was suspended in water and heat processed, a reduction in infectivity was reported for the same time-temperature process. Because of the limitations in the reported data and the scarcity of information, the thermal resistance of hepatitis viruses is presently unknown.

It is possible that viral persistence may occur in heat processes using long time-temperature procedures such as cooking solid foods where periods of hours are required to reach internal temperatures of 60° C. Some viruses that could be present in animal foods are shown in Table 7. If viral protective agents are present in food, the lethality of the heat treatment process at levels below 60° C may have only a slight effect on the viruses, and the actual kill will commence only at temperatures above the 60° C. This could cause persistence of viruses in the food unless such considerations are made in determining the total food process, and the

lethality is calculated for the time-temperature process after reaching the 60° C level.

All the reported thermal inactivation data have been incorporated into Figure 1. Because of the variation in the inactivation rates of the different viruses, a range of inactivation data is shown. Normal virus concentrations expected to be encountered in food should be inactivated at the time-temperature points shown in the figure. Only limited virus inactivation data have been reported in solid foods and consideration of this deficit was given, as well as the questionable persistence of some viruses, when the data were used to plot the solid food slope. This slope is close to that of the USPHS Pasteurization Standard for ice cream mix.

Thermal inactivation of viruses is directly related to the chemical composition of the particle. The major organic constituents changed by temperature are lipids, proteins, and nucleic acids. The density of the particle is related to the varying compositions of the three organic constituents. Particles containing lipids or lipid complexes will tend to be more buoyant than particles composed of carbohydrate, protein, and nucleic acids.

Low temperature (20° to 35° C) inactivation of viral infectivity is dependent upon disruption of the nucleic acids. At higher temperatures (> 50° C), inactivation is due to denaturation or disruption of the proteins of the virus particle.

The nucleic acids present in the virus are of two types: ribonucleic acid and deoxyribonucleic acid. In a minority of the cases the nucleic acid may be double stranded. The nucleic acid is highly resistant to thermal inactivation at high temperatures for short periods of time. However, the nucleic acid molecule is disrupted gradually at low temperatures over relatively long time spans.

Some of the thermal characteristics of nucleic acids are shown in Table 6. In the case of the RNA containing viruses, nucleic acid inactivation is probably due to breakage of the phosphate bonds, whereas, in the case of the DNA containing viruses, inactivation is due to cleavage of the purine or pyrimidine bases of the nucleic acid complex. At low temperatures, DNA is about 30-fold more resistant than the RNA. In Figure 1 inactivation of the RNA occurs in a period of 13-25 hours, whereas, the DNA inactivation requires 13-35 days. Complete inactivation is dependent on the viral titer: the higher the nucleic acid content - the longer the period of time necessary for inactivation. At temperatures of approximately 30° - 45° C it is possible to inactivate nucleic acid with little apparent denaturation of the protein containing units of the virus particle. Little information is available pertaining to resistance of single stranded nucleic acid as compared to double stranded nucleic acid.

However, it appears that the complex structure of the double stranded DNA is more resistant to disruption than is single stranded DNA, and double-stranded RNA is more heat sensitive or equivalent to that of the single-stranded RNA.

Virus particles whose outer surface contain envelope structures are susceptible to mechanical injury. Such particles appear to be very sensitive to thermal inactivation. In many cases the envelope is composed of lipid complexes. Whether loss of infectivity is due to a mechanical injury of the envelope or to a change in protein or lipid structures is at present unknown.

Viruses with protein outer surfaces are thermally inactivated by denaturation of the protein that occurs at higher temperatures. In some cases the coat is ruptured and the nucleic acid is liberated into the medium. A certain percentage of particles entrap the nucleic acid in the core as the protein components on the surface are denatured. This particle has lost its ability to attach to the cell due to disruption of the structural integrity of the attachment site. However, these particles still containing nucleic acid may enter into the cell system by some mechanical process such as pinocytosis, or some other means of engulfment, and the nucleic acid may be liberated within the cell and infection occurs.

It has been demonstrated that the nucleic acid from a suspension of virus particles is liberated into the medium during a thermal inactivation process. If nucleases are present, the nucleic acids are rapidly inactivated. However, in the absence of nucleases, the liberated nucleic acid is infectious. Laboratory studies have shown that demonstrated infectivity by nucleic acid is 2 to 4 logs less sensitive than that of the intact viroid. Thus, 10^5 virus particles may be inactivated but infectivity is still demonstrated in the cell or animal system because of the low level infectivity of the free nucleic acid.

The thermal process used to inactivate enzymes in foods, not less than 73°C or more than 77°C , probably will be greater than that required to inactivate viruses. In Figure 1, a 3D virus inactivation process is depicted. If a 12D process is required, the slope will approach the USPHS pasteurization standard for ice cream mix when high temperatures are used. At low temperatures ($<60^{\circ}\text{C}$) longer time-temperature processes will be needed to inactivate the viruses than is required by the pasteurization standard.

Table 1. Some characteristics of animal viruses.

Family	Density ^(a) (Cesium chloride)	Nucleic acid (Type-stranded)	Surface characteristics (Lipid) (Envelope)	
1. Arenaviridae	1.18 ⁽¹⁾	RNA, SS	+	+
2. Bunyaviridae	1.20-1.23	RNA, SS	- ^(c)	+
3. Coronaviridae	1.19-1.23	RNA, SS	-	+
4. Herpetoviridae	1.27-1.29	DNA, DS	+	+
5. Orthomyxoviridae	1.17-1.20	RNA, SS	-	+
6. Paramyxoviridae	1.21-1.24	RNA, SS	+	+
7. Poxviridae		DNA, DS	+	-
8. Retroviridae	1.16-1.18 ⁽¹⁾	RNA, SS	+	+
9. Rhabdoviridae	1.20	RNA, SS	-	+
10. Togaviridae	1.25	RNA, SS	+	+
11. Adenoviridae	1.33-1.35	DNA, DS	-	-
12. Papovaviridae	1.34	DNA, DS	-	-
13. Parvoviridae	1.38-1.46	DNA, SS	-	-
14. Picornaviridae	1.32-1.41	RNA, SS	-	-
15. Reoviridae	1.31-1.38	RNA, DS	-	-

(a) g/cm³; (b) + present; (c) - absent

(1) In sucrose gradient

Abbreviations: RNA-ribonucleic acid, DNA-deoxyribonucleic acid,
SS-single stranded and DS-double stranded.

Bibliography

Some Characteristics of Animal Viruses

- Andrewes, S. C., and H. G. Pereira. 1972. Viruses of vertebrates (3rd ed.).
The Williams and Wilkins Co., Baltimore, Maryland,
William Clowes & Sons, Ltd., London, Beccles and Colchester.
- Fenner. F. 1976. Classification and nomenclature of viruses. Second
report of the International Committee on Taxonomy of Viruses.
Intervirology. 7(1-2):1-116.

Table 2. Virus thermal inactivation.

Family	Virus	Titer	Thermal Effect		Remarks	Method of inactivation*	Reference
			Temp. °C	Time min.			
1. Arenaviridae	Lymphocytic choriomeningitis American haemorrhagic fever viruses				Extremely thermolabile Readily inactivated		Andrewes
2. Bunyaviridae						Thermal characteristics similar to Togaviridae	Andrewes
3. Coronaviridae	Mouse hepatitis Infectious bronchitis (birds)	56 56	30 30		Inactivated Inactivated		Andrewes
	Transmissible gastro-enteritis (pigs)	56	30		Inactivated		
	Haemagglutinating encephalomyelitis	56	30		Inactivated		
4. Herpetoviridae	Herpes simplex	$\sim 10^5$	50	20	~ 5 log loss in infectivity in tris buffer	Plummer	
	Cytomegalovirus	$\sim 10^4$	50	40	~ 2.5 log loss in infectivity in tris buffer		
	Cytomegalovirus	$\sim 10^6$	44	19.9	Tissue culture fluid and WB, T	Krugman	
				half life 2% calf serum			
	Laryngotracheitis	37	>	3 yrs	Persisted, lyophilized allantoic fluid	Hofstad	
	Herpes	50 - 52	30	Inactivated			Andrewes
	Cytomegalovirus	50 56	40 30	" "		Dupré	
	Herpes simplex	52	30	"			

*WB-water bath
T-test tubes
a-ampules

Table 2. Virus thermal inactivation. (contd.)

Family	Virus	Titer	Thermal Effect		Remarks	Method of inactiva-	Reference
			Temp. °C	Time min.			
5 Orthomyxoviridae	NF strains	10^5 to 10^8	62	30	Virus survived, mouse brain emulsions or infected fluids		Burnet
Influenza A		61			Inactivated		Francis
Influenza B		56	15-30		Inactivated, allantoic fluid	WB-T	Andrewes
Influenza A2/ Aichi/2/68		56	22		Four log loss, allantoic fluid	HT-ST	De Flora
Influenza A PR-8		56	25		Inactivated, phosphate buffered saline	tubular apparatus	Sieger
Influenza A ~ 10^4 to 10^5		45	10		Inactivated, allantoic fluids	Black	Lauffer
Orthomyxoviruses		50	30		Usually inactivated		Andrewes
Respiratory syncytial	10^3 to $10^{6.9}$	50	mins		Pellet suspended in distilled water or sodium chloride solution (0.3 M) < 3 log drop in infectivity		Rechsteiner
Newcastle disease		37	~ 10 mos.		Inactivated, lyophilized allantoic fluid		Hofstad
Newcastle disease	10^{12}	79-81	0.033 sec.		Inactivated, allantoic fluid		Dutcher
Measles	> 10^4	56	30		Inactivated, tissue culture fluid		Andrewes
Paramyxoviruses					Heat labile		Dupré
Measles		56	25		Inactivated,		
Mumps		55	20		buffered		
Mumps		56	20		saline		

Table 2. Virus thermal inactivation. (contd.)

Family	Virus	Titer:	Thermal Effect			Remarks	Method of inactiva-	Reference
			T _{50%} °C	Time min.				
7 Poxviridae	Fowl pox	37	> 2 yrs.		Persisted, lyophilized allantoic fluid			Hoffstad
	Variola	55	Half life: 2 minutes		In saline		WB, a	Rahon
	Vaccinia	10 ⁸	60	10	> 7 log loss in infec- tivity. Last fraction persisted for more than 60 min, citrate buffer		WB, T	Kaplan
	Vaccinia	~ 10 ⁶	56	30	~ 5 log loss in infectivity			Sharp
	Vaccinia	5 x 10 ⁸	56		~ 6 log drop in titer			Galaeso
		60			Inactivated, tissue culture medium			
	Goat poxvirus	~ 10 ⁵	50	60	Extracted from scabs,			Pandey
	Sheep poxvirus	~ 10 ⁵	50	60	~ 4 log drop in infectivity of both viruses			
8 Retroviridae	Avian erythro- blastosis	High	56	6	99% drop in infectivity, plasma		WB, T	Bonar
		High	37	minutes	In plasma, rapid		WB, T	Eckert
			56	seconds	Inactivation, tailing			Dougherty
	Rous sarcoma	High	60	6	Phosphate buffer saline + 2% horse serum - half life at 60° is 0.7 min			
	Moloney	~ 10 ³	56		Inactivated, sodium citrate buffer		WB, T	Moloney
	Murine sarcoma (Moloney)	~ 10 ⁴	60		Inactivated, tissue culture fluid		WB, T	Nakata
	AK	~ 10 ³	50-55	30	Inactivated			Sinkovics
	Graffi	~ 10 ³	56-65	30	Inactivated			

Table 2. Virus thermal inactivation. (contd.)

Family	Virus	Titer	Thermal Effect		Remarks	Method of inactivation*	Reference
			Temp. °C	Time min.			
8 Retroviridae (contd.)							
	Friend	$\sim 10^{3-4}$	56	30	Inactivated		
	Moloney leukemia	$\sim 10^{3-4}$	56	30	Inactivated		
	Mouse lympho- cytic leukemia	$\sim 10^3$	56	30	Inactivated, cell free filtrate	Buffet	
	Rauscher leukemia	$\sim 10^4$	56	30	Inactivated, sodium citrate buffer	"Zeigel	
	Bovine leukemia		60	30 sec.	Inactivated, in tissue culture fluid	WB, T	Baumgartene
	Rabies	60	5		Inactivated.		Schultz Andrewes
	Rhabdoviruses				Relatively heat sensitive		
9 Rhabdoviridae	EEE	$10^{7.2}$	37	30 hrs	Tissue	WB, T	Nir
	WEE	$10^{5.6}$	37	48 hrs			
	Sindbis	$10^{5.6}$	37	36 hrs	culture		
	SLE	$10^{6.0}$	37	48 hrs			
	West Nile	$10^{5.6}$	37	72 hrs	fluid,		
	Ntaya	$10^{4.0}$	37	30 hrs	inactivated		
	Semliki Forest		50	20	> 2 log loss in infectivity	WB, T	Fleming
	Modoc	$10^{6.0}$	37	72 hrs	& 2.5 log loss, phosphate buffer saline + 0.5% calf serum	Davis	
	Japanese B encephalitis	$10^{6.0}$	37	90 hrs	> 6 log loss in infec- tivity, tissue culture fluid	WB, a	Darwish

Table 2. Virus thermal inactivation (contd.)

Family	Virus	Titer	Thermal Effect		Remarks	Method of inactiva- tion*	Reference
			Temp. °C	Time min.			
10 Togaviridae (contd.)							
	Tickborne encephalitis	10^7 to 10^9	50	12	Tissue culture fluid, inactivated	WB, T	Mayer
WEE	10 ^{7.6}	56	30		Extract from mouse brain, ~ 4 log drop		Fastier
EEE	~ 10 ⁷	50	> 4 hrs	Survived, ~ log drop			Milka.
VEE	~ 10 ⁷	50	> 7 hrs	PBS, survived, ~ 5 log drop	WB, a		
EEV	10 ⁸	56	2 hrs	Inactivated			Mahdy
11 Adenoviridae	Adenovirus	56	30	Inactivated			Andrewes
Adenovirus	> 10 ²	56	30	Inactivated			Huebner
Infectious bronchitis		37	6 mo	Inactivated, lyophilized allantoic fluid			Hofstad
Ovine adenovirus		60	30	Inactivated			Andrewes
Adenoviruses		56	2.5-5	Inactivated			Dupre'
12 Papovaviridae	S. E. polyoma	70	30	Tissue culture fluid survived, inactivated	WB, a	Eddy	
Mouse polyoma		80	30				Brodsky
		60	30	Tissue culture fluids no effect on infectivity screw cap			
		65	30	4 log drop in infectivity			
Rabbit papilloma		70	30	> 6 log drop in infectivity			Andrewes
		67	30	Inactivated			
Oral papillomatosis		65	30	Survived			
				Survived			

Table 2. Virus thermal inactivation (contd.)

Family	Virus	Titer	Thermal Effect			Remarks	Method of inactiva-tion*	Reference
			Temp. °C	Time min.				
12 Papovaviridae (contd.)								
	Human wart		50	30	Survived		Andrewes	
	Canine oral papillomatosis	58	60		Inactivated		Andrewes	
	Mouse polyoma	70	30	Usually	Inactivated	WB, T	Andrewes	
	K	70	4.5 hrs	Inactivated			Andrewes	
		70	3 hrs	Survived			Andrewes	
13 Parvoviridae								
	Feline panleucopenia of cats	50		Fairly stable			Andrewes	
		80-85	30	Inactivated			Andrewes	
	Porcine parvo	70	2 hrs	Survived			Andrewes	
	Adeno-associated	60	30	half life			Andrewes	
14 Picornaviridae SV-2 enterovirus								
	Foot-and-mouth disease (FMDV)	10 ⁷	55	60	~ 6 log inactivation, WB, T	Bachrach(60)		
	FMDV	~ 10 ⁷	61	3 sec	~ 5 log reduction	WB, a	Bachrach(57)	
				tissue culture				
				fluids, diluted in				
	FMDV	55	6 hrs	veropal-acetate buffer				
	Coxsackie A-21	50	30	~ 10 ² log - inactivate;			Dironoullos	
	Poliovirus 1	50	30	> 4.2 logs loss			Dimmock	
	ECHO-4	50	30	> 6.0 logs				
	ECHO-11	50	60	> 3.0 logs				
	Rhinoviruses HGP	50	60	> 3.7 logs				
	B.632	50	30	> 2.8 logs				
	FEB	50	60	> 2.4 logs				
				> 2.5 logs	infectivity			

Table 2. Virus thermal inactivation. (contd.)

Family	Virus	Titer	Thermal Effect		Remarks	Method of inactivation*	Reference
			Temp. °C	Time min.			
14 Picornaviridae (contd.)							
No.			50	60	3.6 logs	Loss	
DC			50	60	> 3.3 logs		
1098			50	60	2.7 logs	in	
C.V. 11			50	60	2.7 logs		
S.D. 1			50	60	> 3.9 logs	infectivity	
Duck hepatitis	10^2 to 10^6		56	30	2 to 5 log loss	in	
					infectivity		
Poliavirus			60	30	Inactivated		Andrewes
ECHO			65	30	Inactivated		
Coxsackie A			55	30	Inactivated		Dupre'
			53-55	30	Inactivated		
Murine polio			60	30	Water, inactivated	WB sealed tubes	Lawson
SK		10^3					
Modified Lansing		1300/ml	55	30	Water, inactivated		
TO ₄		400/ml	65	30	Water, inactivated		
Coxsackievirus			60	30	Water, inactivated		Helnick
Coxsackievirus			55	30	Brain suspension, inactivated		Dalldorf
Poliovirus 1			50			Most sensitive to heat	Papaevangelou
2			50			Least sensitive to heat	
3			50			Intermediately sensitive to heat	

Table 2. Virus thermal inactivation. (contd.)

Family	Virus	Titer	Thermal Effect		Remarks	Method of inactiva- tion*	Reference
			Temp. °C	Time min.			
14 Picorna- viridae (contd.)							
	Poliovirus		44-51	30	Inactivated	Schultz	
	Poliovirus		55	5	Inactivated, extracts of cord and brain	Shaughnessy	
		Low level	42.5	30	Inactivated		
	Poliovirus 2	$\sim 10^5$	56	30	Inactivated	WB, capil- lary tubes	Stanley
	Poliovirus	$10^{6.5} - 10^{7.3}$	75	60	Few survivors	WB, a	Medearis
	Poliovirus 1-2	$> 10^8$	50	24 hrs	~ 8 log drop	WB, vials, stoppers	Youngner
	Poliovirus 3	$> 10^6$	50	24 hrs	~ 6 log drop	WB, T	Gomatos
	Reovirus 3		56	Half life of 1.6 min	Tissue culture fluid + 5% calf serum	WB, T	Dupre'
	Reovirus		55	15	Inactivated		Andrewes
	African horse sickness		60	60	Persisted		Krugman
	Hepatitis B		98	1	1/10 dilution of serum, inactivated	WB, T	Soulier
	Hepatitis B		60	10 hrs	Inactivated, serum	WB	Provost
	Hepatitis A		100	5	Inactivated, water	WB, large, a	
			60	60	Titer reduced, water		
			60	60	In serum, no apparent reduction in titer		Dupre'
	Hepatitis A		60	60	Inactivated		

Bibliography

Viral Thermal Inactivation

- Andrewes, S. C., and M. G. Pereira. 1972. Viruses of vertebrates (3rd ed.). The Williams and Wilkins Co., Baltimore, Md., and W. Clowes & Sons, Ltd., London, Beccles and Colchester.
- Andrewes, C. H. 1960. The viruses of the common cold. *Sci. Am.* 203(6):88-102.
- Bachrach, H. L., S. S. Breese, Jr., J. J. Callis, W. R. Hess, and R. E. Patty. 1957. Inactivation of foot-and-mouth disease virus by pH and temperature changes and by formaldehyde. *Proc. Soc. Exptl. Biol. Med.* 95:147-152.
- Bachrach, H. L., R. E. Patty, and R. A. Pledger. 1960. Thermal resistant populations of foot-and-mouth disease virus. *Proc. Soc. Exp. Biol. Med.* 103:540-542.
- Baumgartener, L., C. Olson, and M. Onuma. 1976. Effect of pasteurization and heat treatment on bovine leukemia virus. *JAVMA* 169(11): 1189-1191.
- Black, F. L. 1959. Growth and stability of measles virus. *Virol.* 7:184-192.
- Bonar, R. A., D. Beard, G. S. Beaudreau, D. G. Sharp, and J. W. Beard. 1957. Virus of avian erythroblastosis. IV. pH and thermal stability. *J. Nati. Cancer Inst.* 18(6):831-842.
- Brodsky, I., W. P. Rowe, J. W. Hartley, and W. T. Lane. 1959. Studies of mouse polyoma virus infection. II. Virus stability. *J. Exper. Med.* 109(5):439-447.
- Buffett, R. F., J. T. Crace, Jr., and E. A. Mirand. 1964. Properties of a lymphocytic leukemia agent isolated from Ha/ICR Swiss mice. *Proc. Soc. Exptl. Biol. Med.* 116:293-297.
- Burnet, F. M., and P. E. Lind. 1951. A genetic approach to variation in influenza viruses. *J. Gen. Microbiol.* 5:59-66.
- Dalldorf, G. 1955. The coxsackie viruses. *Ann. Rev. Microbiol.* 9:277-296.
- Darwish, M. A., and W. McD. Hammon. 1966. Studies on Japanese B encephalitis virus vaccines from tissue culture. VI. Development of a hamster kidney tissue culture inactivated vaccine for man. 2. The characteristics of inactivation of an attenuated strain of OCT-541. *J. Immunol.* 96(5):806-813.

- Davis, J. W., and J. I. Hardy. 1973. In vitro studies with Modoc virus in Vero cells: plaque assay and kinetics of growth, neutralization, and thermal inactivation. *Appl. Microbiol.* 26(3):344-348.
- De Flora, S., and G. Badolati. 1973. Thermal inactivation of untreated and gamma-irradiated A2/Aichi/2/68 influenza virus. *J. gen. Virol.* 20:261-265.
- Dimmock, N. J. 1966. Differences between the thermal inactivation of picornaviruses at "high" and "low" temperatures. *Virol.* 31:338-353.
- Dimopoulos, G. T. 1960. Effects of physical environment on the virus of foot-and-mouth disease. *Ann. N. Y. Acad. Sci.* 83:706-726.
- Dougherty, R. M. 1961. Heat inactivation of Rous sarcoma virus. *Virol.* 14:371-372.
- Dupré, M. V., and M. Frobisher. 1966. Thermal inactivation: animal viruses. In *Environmental Biology* (ed.) Altman, P. L., and D. S. Dittmer, FASEB, Bethesda, Maryland.
- Dutcher, R. M., R. B. Read, Jr., and W. Litsky. 1960. The immunological antigenicity of rapid heat inactivated viruses. 1. Newcastle disease virus. *Avian Dis.* 4:205-217.
- Eckert, E. A., I. Green, D. G. Sharp, D. Beard, and J. W. Beard. 1955. Virus of erythromyeloblastic leukemia. VII. Thermal stability of virus infectivity; of the virus particles and the enzyme dephosphorylating adenosine-triphosphate. *J. Nat. Cancer Inst.* 16:153-161.
- Eddy, B. E., S. E. Stewart, and G. E. Grubbs. 1958. Influence of tissue culture passage, storage, temperature and drying on viability of SE polyoma virus. *Exper. Biol. and Med. Proc. of the Soc. for Exper. Biol. and Med.* 99:289-292.
- Fastier, L. B. 1952. Toxic manifestations in rabbits and mice associated with the virus of western equine encephalomyelitis. *J. Immunol.* 68:531-541.
- Fleming, P. 1971. Thermal inactivation of Semliki Forest virus. *J. Gen. Virol.* 13(3):385-391.
- Francis, T. J., Jr. 1947. Respiratory viruses. 1947. *Ann. Rev. Microbiol.* 1:351-334.
- Galasso, G. J., and D. G. Sharp. 1965. Effects of heat on the infecting, antibody-absorbing and interfering powers of vaccinia virus. *J. Bacteriol.* 39(3):611-616.
- Gomatos, P. J., I. Tamm, S. Dales, and R. M. Franklin. 1962. Reovirus type 3: physical characteristics and interaction with L cells. *Virol.* 17:441-454.

- Hahon, N., and E. Kozikowski. 1961. Thermal inactivation studies with variola virus. *J. Bacteriol.* 81(4):609-613.
- Heberling, R. L., and F. S. Cheever. 1965. Simian enterovirus SV2 hemagglutination studies. I. Relationship of infectivity to hemagglutination. *Proc. Soc. Exptl. Biol. Med.* 151:154.
- Hofstad, M. S., and H. W. Yoder, Jr. 1963. Inactivation rates of some lyophilized poultry viruses at 37 and 3 degrees C. *Avian Dis.* 7(2):170-177.
- Huebner, R. S., W. P. Rowe, and R. M. Chanock. 1958. Newly recognized respiratory tract viruses. *Ann. Rev. Microbiol.* 12:49-75.
- Hwang, J. 1975. Thermostability of duck hepatitis virus. *Am. J. Vet. Res.* 36(11):1683-1684.
- Kaplan, C. 1958. The heat inactivation of vaccinia virus. *J. Gen. Microbiol.* 18:58-63.
- Krugman, R. D., and C. R. Goodheart. 1964. Human cytomegalovirus. Thermal inactivation. *Virology* 23:290-291.
- Krugman, S., J. P. Giles, and J. Hammond. 1971. Viral hepatitis type B (MS-2 strain). Studies on active immunization. *JAMA* 217:41-45.
- Lauffer, M. A., H. L. Carnelly, and E. MacDonald. 1948. Thermal destruction of influenza A virus infectivity. *Arch. Biochem.* 16:321-328.
- Lawson, R. B., and J. L. Melnick. 1947. Inactivation of murine poliomyelitis viruses by heat. *J. Infec. Dis.* 80:201-205.
- Mahdy, M. S., and M. Ho. 1964. Potentiation effect of fractions of eastern equine encephalomyelitis virus on interferon production. *Proc. Soc. Exptl. Biol. Med.* 116:174-177.
- Mayer, V. 1965. Study of the virulence of tick-borne encephalitis virus. IV. Thermosensitivity of virions and its relationship to other genetic markers. *Acta virol.* 9:397-408.
- Medearis, D. N., Jr., J. H. Arnold, and J. F. Enders. 1960. Survival of poliovirus at elevated temperatures (60-75°C). *Proc. Soc. Exp. Biol. Med.* 104:419-423.
- Melnick, J. L. 1950. Studies on the coxsackie viruses: Properties, immunological aspects and distribution in nature. *Bull. N. Y. Acad. Med.* 26:342-356.

- Mika, L. A., J. E. Officer, and A. Brown. 1963. Inactivation of two arboviruses and their associated infectious nucleic acids. *J. Infect. Dis.* 113:195-203.
- Moloney, J. B. 1962. The murine leukemia. *Fed. Proc.* 21:19-31.
- Nakata, Y., K. Nakata, and Y. Sakamoto. 1975. Heat sensitivity of murine sarcoma virus. *Gann* 66(2):193-195.
- Nir, Y. D., and R. Goldwasser. 1961. Biological characteristics of some of the arbor viruses in vivo and in vitro. I. Thermal inactivation in cell-culture medium. *Amer. J. Hyg.* 73:294-296.
- Pandey, R., I. P. Singh. 1970. Heat, chloroform, and ether sensitivity of sheep pox and goat pox viruses. *Acta Virol. (Prague)*, Eng. Ed. 14(4):318-319.
- Papaeangelou, G. J., and J. S. Youngner. 1961. Correlation between heat-resistance of polioviruses and other genetic markers. *Proc. Soc. Exptl. Biol. Med.* 108:505-507.
- Plummer, G., and B. Lewis. 1965. Therminactivation of Herpes simplex virus and cytomegalovirus. *J. Bacteriol.* 89(3):671-674.
- Provost, P. J., B. S. Wolanski, W. J. Miller, O. L. Ittensohn, W. J. McAleer, and M. R. Hilleman. 1975. Physical, chemical and morphologic dimensions of human hepatitis A virus strain CR326 (28578). *Proc. Soc. for Experm. Biol. & Med.* 148:532-539.
- Rechsteiner, J. 1969. Thermal inactivation of respiratory syncytial virus in water and hypertonic solutions. *J. Gen. Virol.* 5:397-403.
- Schultz, E. W. 1948. The neurotropic viruses. *Ann. Rev. Microbiol.* 2:335-377.
- Sharp, D. G., P. Sadhukhan, and G. J. Galasso. 1964. The slow decline in quality of vaccinia virus at low temperatures (37°C to -62°C). *Proc. Soc. Exptl. Biol. Med.* 115:811-814.
- Shaughnessy, H. J., P. H. Harman, and F. B. Gordon. 1930. The heat resistance of the virus of poliomyelitis. *J. Prev. Med.* 4:149-155.
- Sieger, R., and P. Braune. 1964. The pyrogens of myxoviruses. *Virol.* 24:218-223.
- Sinkovics, J. G. 1962. Viral leukemias in mice. *Ann. Rev. Microbiol.* 16:75-100.
- Soulier, J. P., C. Blatix, A. M Courouce, D Benamou, P. Amouch, and J. Drouet. 1972. Prevention of virus B hepatitis (SH hepatitis). *Am. J. Dis. Child.* 123:429-434.

Stanley, N. F., D. C. Lorman, J. Ponsford, and M. Larkin. 1956. Variants of poliovirus hominis. 4. Inactivation by heat, ultraviolet light and formaldehyde. Aust. J. Exp. Med. Sci. 34:297-300.

Youngner, J. S. 1957. Thermal inactivation studies with different strains of poliovirus. J. Immunol. 78:282-290.

Zeigel, R. F., and F. J. Rauscher. 1964. Electron microscope and bioassay studies on a murine leukemia virus (Rauscher). I. Effects of physiochemical treatments on the morphology and biological activity of the virus. J. Nat. Cancer Inst. 32:1277-1307.

Table 3. Thermal inactivation of viruses in foods.

Family	Virus	Titer	Thermal effect		Remarks	Method of inactivation	Reference
			Temp. °C.	Time min.			
4 Herpeto-viridae	Herpes simplex	~ 10 ⁴	65	2 sec	Inactivated in ice cream mix	WB, a	Sullivan
6 Paramyxo-viridae	Newcastle disease (NCDV)	10	64, 4	160 sec	Suspended in whole egg ~ 3 log drop in infectivity in 160 sec.	WB	Gough
					Survivors after 200 sec.		
	NCDV	Allantoic fluid diluted 1/100	60	5-7	Dependent on virus titer, inactivated	WB, a	Foster
8 Retro-viridae	Rauscher leukemia	~ 10 ³	50	5	Inactivated, ice	WB, a	Sullivan
	Moloney sarcoma	~ 10 ³	55	5 sec.	ice		
	Rous sarcoma	~ 10 ⁵	55	15 sec.	cream		
	Bovine leukemia		65	3 sec.	cream mix		
			73.5	42 sec.	Inactivated, in ice cream mix		
10 Toga-	Swine fever	10 ^{4.7} - 10 ^{6.0}	65	30	Inactivated, in ham	Canned	Terpstra
	Rift Valley fever		56	40	Inactivated, in blood	Dupré	

WB-Water bath

T-Test tubes

a-Ampules

C-Capillary tubes

Table 3. Thermal inactivation of viruses in foods. (contd.)

Family	Virus	Titer	Thermal Effect		Remarks	Method of Inactiva- tion*	Reference
			Temp. °C	Time min.			
10 Toga- viridae (contd.)	Tickborne encephalitis	$10^{5.7}$	70	20	Inactivated, in milk	WB, a	Gresikova
			55	20	5 log loss, in serum		
11 Adeno- viridae		$10^{3.7}$	62	20	Inactivated, in serum		
	Adenovirus 14	$\sim 10^4$	72	10 sec.	Inactivated, in milk	Laboratory pasteurizer	Gresikova
14 Picorna- viridae	Swine vesicular disease	$\sim 10^{6.5}$	65	2 sec.	Inactivated, in ice cream mix	WB, a	Sullivan
			56	30	Inactivated, in milk		Herniman
14 Picorna- viridae	Murine polio- myelitis	60	2		Inactivated, in fecal slurry		
	Poliovirus 1	75-80	60	10	Inactivated, in milk		Aizen
14 Picorna- viridae	Coxsackievirus B-3	80-85	64	30 sec.	Inactivated, in meat balls fried in oil	WB, a	Lawson
	Poliovirus	2.5×10^7	60	> 6 log inactivation, in milk			
14 Picorna- viridae	Poliovirus 1	$\sim 10^4$	~ 2	\log drop		Cheese process	Cliver
			10	~ 2.5		Stewed oysters	Di Girolamo
14 Picorna- viridae			20	~ 2.5		Fried oysters	
			30	~ 2	virus	Baked oysters, oven	Steamed oysters

Table 3. Thermal inactivation of viruses in foods. (contd.)

Family	Virus	Titer	Thermal Effect		Remarks	Method of inactivation	Reference
			Temp. °C	Time min.			
14 Picorna-viridae (contd.)	Poliovirus 1	$10^5 - 10^8$	80	5	Survived, 47% fat most protective ground beef	WB, T, screw cap	Filippi
	Coxsackievirus A-9	7.5×10^5	49	6 hr	In Thuringer sausage ~ 3 log drop in virus		Herrman
	Poliovirus 1	1×10^8	60	30	In sausage, internal temperature, ~ 1 log drop		Kantor
	Echovirus 6	6×10^7	60	30	Inactivated, in milk, cream and ice cream sample in stainless steel tubes indicated survivors	WB, a, C anti stainless steel tubes	Kaplan(52)
	Poliovirus	$10^{2.5} \times 10^{3.5}$	61.7	30			
	Poliovirus Lansing	$10^{2.3} \times 10^{4.0}$	79.5	15 sec.	Survived in ice cream	WB, C	Kaplan(54)
	MEF-1			25 sec.	(10% ground brain)		
	Y-S-K						
	Coxsackievirus	$10^{7.5}$	61.7	15 sec.	Inactivated, in		Kaplan(54)
			71.6	30 sec.			
			72.1	30 sec.			
			67.7	30 sec.			
			71.1	15 sec.	milk		
	Coxsackievirus A-9						Kostenko
			85	20 sec.	Inactivated, in milk		
			75	15 sec.	Survivors, in milk		

Table 3. Thermal inactivation of viruses in foods. (contd.)

Family	Virus	Titer	Thermal Effect		Remarks	Method of inactivation*	Reference
			Temp. °C.	Time min.			
14 Picornaviridae (contd.)							
	Poliovirus 1	3×10^5	71		Inactivated, in beef patties	Broiled	Sullivan
	Coxsackievirus B-2	$1-3 \times 10^4$	71				
	FMDV	$10^{6.7} - 10^{7.5}$	65	64.5	Survived, in milk	WB, tubes	Hyde
			72	15-17 sec.			
			80	15-17 sec.			
			65		Survived, evaporation to 50% of liquid volume		
	FMDV	Natural contamination	90		Inactivated, milk		Felkai
			90	35 sec.	Inactivated, dried virus		
			80	70 sec.	In milk		
	FMDV	$1 \times 10^{7.8}$	80	6 hrs.	Inactivated, tissue suspension		Demopoulos
			80	4 hrs.	Not inactivated, tissue suspension		
	FMDV	$\sim 1 \times 10^6$	72	0.25	Survived, pelleted cell debris	WB, T	Blackwell
			72	5	Survived, whole milk		
			72	3	Survived, evaporated milk		
			93	0.25	Survived, cream		
	KiDV				Cheddar cheese and Camembert cheese process, survived Inactivated in Mozzarella cheese process		Blackwell
			63	6 sec.	Survived in milk		

Table 3. Thermal inactivation of viruses in foods. (contd.)

Family	Virus	Titer	Thermal Effect		Remarks	Method of inactiva- tion*	Reference
			Temp. °C	Time min.			
14 Picorna-viridae (contd.)	FMDV		55	20	Inactivated, in blood	Dubre	
			60	5	Inactivated, in vesicular fluid		
			35	360	Cattle tongue suspension		
	Porcine enterovirus F-7	9.3 x 10 ³	56.7	3.5	Inactivated,	Kelly	
	Echovirus 6 and Poliovirus 1	9.3 x 10 ⁶	57.8	2	in egg white	Strock	
			58.9	1.1	Inactivated, in		
	Echovirus 6 Poliovirus 1	2.4 x 10 ⁴ 2.4 x 10 ⁶	56.7 57.8	20 11	Inactivated, in		
			58.9	7	egg yolk		
		60.0	3				
	Foot-and-mouth disease	~ 10 ^{4.8}			Boiling water bath 65 min, cooled in 45 min, peak internal temperature 74° C, inactivated	In cans	Heidelbaugh

Table 3. Thermal inactivation of viruses in foods. (contd.)

Family	Virus	Titer	Thermal Effect			Remarks	Method of inactiva- tion*	Reference
			Temp. °C	Time min.				
14 Picorna-viridae (contd.)	FMDV	$10^{4.5} - 10^{7.1}$	56	6	~ 5 logs inactivated,	In bottles	Sellers	
			63	1	pH			
			72	17 sec.				
			80-85	> 5 sec.	6.7			
			56	30	~ 5 logs inactivated,			
			63	2				
			72	55 sec.				
			80-85	> 5 sec.	pH 7.6			
	FMDV		65	30 sec.	Inactivated in milk, skim milk, cream and powdered milk	WB, T	Moosbregger	
	FMDV		65	30 min	Inactivated, in milk		Hastell	
15 Reoviridae	Reovirus 1	$\sim 10^4$	65	12 sec.	Inactivated, ice cream mix	WB, a	Sullivan	

Bibliography

Thermal Inactivation of Viruses in Foods

- Aizen, M. S., and E. R. Pille. 1972. An experimental study of the survival of certain enteroviruses in meat products (In Russian; brief English summary). *Gigiyena i Sanitariya* 3:28-30.
- Baumgartener, L., C. Olson, and M. Onuma. 1976. Effect of pasteurization and heat treatment on bovine leukemia virus. *JAVMA* 169(11): 1189-1191.
- Blackwell, J. H. 1976. Survival of foot-and-mouth disease virus in cheese. *J. Dairy Sci.* 59(9):1574-1579.
- Blackwell, J. H., and J. L. Hyde. 1976. Effect of heat on foot-and-mouth disease virus (FMDV) in the components of milk from FMDV-infected cows. *J. Hyg. Camb.* 77:77-83.
- Cliver, D. O. 1973. Cheddar cheese as a vehicle for viruses. *J. Dairy Sci.* 56:1329-1331.
- DiGirolamo, R., J. Liston, and J. R. Matches. 1970. Survival of virus in chilled, frozen and processed oysters. *Appl. Microbiol.* 20:58-63.
- Demopoulos, G. T., O. N. Fellowes, J. J. Collis, G. C. Poppensiek, A. G. Edwards, and J. H. Graves. 1959. Thermal inactivation and antigenicity studies of heated tissue suspensions containing foot-and-mouth disease virus. *Amer. J. Vet. Res.* 20:510-521.
- Dupré, M. V., and M. Frobisher. 1966. Thermal inactivation: Animal viruses. In *Environmental Biology* (ed.) Altman, P. L., and D. S. Dittmer, FASEB, Bethesda, Maryland.
- Felkai, V. T., F. Solyom, M. Szent-Ivanyi, and A. Wagner. 1970. The heat tolerance of foot-and-mouth disease virus in milk. *Magyar Allatorv. Lapja* 25:378-384.
- Filippi, J. A., and G. J. Banwart. 1974. Effect of the fat content of ground beef on the heat inactivation of poliovirus. *J. Food Sci.* 39:865-866.
- Foster, B. S., and C. H. Thompson. 1957. Report of the 60th Annual Meeting, U. S. Livestock Sanitary Association, Chicago, Illinois. *Vet. Med.* 52:118-121.
- Gough, R. E. 1973. Thermostability of Newcastle disease virus in liquid whole egg. *The Vet. Record* 93(24):632-633.

- Grešíková-Kohútová, M. 1959. The effect of heat on infectivity of the tick-borne encephalitis virus. *Acta Virologica* 3:215-221.
- Heidelbaugh, N. D., and J. H. Graves. 1968. Effects of some techniques applicable in food processing on the infectivity of foot-and-mouth disease virus. *Food Technol.* 22(2):120-124.
- Herniman, K. A. J., P. M. Medhurst, J. N. Wilson, and R. F. Sellers. 1973. The action of heat, chemicals and disinfectants on swine vesicular disease virus. *The Vet. Record*, 93:620-624.
- Hermann, J. E., and D. O. Cliver. 1973. Enterovirus persistence in sausage and ground beef. *J. Milk and Food Technol.* 36(8):426-428.
- Hyde, J. L., J. H. Blackwell, and J. J. Callis. 1975. Effect of pasteurization and evaporation on foot-and-mouth disease virus in whole milk from infected cows. *Can. J. Comp. Med.* 39:305-309.
- Kantor, M. A., and N. N. Potter. 1975. Persistence of echovirus and poliovirus in fermented sausages. Effects of sodium nitrite and processing variables. *J. Food Sci.* 40:960-972.
- Kästli, P., and G. A. Moosbrugger. 1968. Destruction of foot-and-mouth disease virus by heat in milk products (in French; brief summary in English). *Schweizer Archiv für Tierheilkunde* 110:89-94.
- Kaplan, A. S., and J. L. Melnick. 1954. Effect of milk and other dairy products on the thermal inactivation of coxsackievirus. *Am. J. Pub. Health* 44:1174-1184.
- Kaplan, A. S., and J. L. Melnick. 1954. Differences in thermostability of antigenically related strains of poliomyelitis virus. *Proc. Soc. Exptl. Biol. Med.* 86:381-384.
- Kaplan, A. S., and J. L. Melnick. 1952. Effect of milk and cream on the thermal inactivation of human poliomyelitis virus. *Am. J. Pub. Health* 42:525-534.
- Kelly, D. F. 1964. Studies on enteroviruses of the pig. VII. Some properties of a porcine enterovirus (E_7). *Res. Vet. Sci.* 5:56-69.
- Koatenko, An. N., and N. E. Botsman. 1971. Transmission of enteroviruses by milk and milk products (in Russian). Materialakh U ShC"yezda gigiyenistov Ukrainskoy SSR v 1971 g. v g. Kieve 165-168.
- Lawson, R. B., and J. L. Melnick. 1947. Inactivation of murine poliomyelitis viruses by heat. *J. Infec. Dis.* 80:201-205.
- Moosbrugger, P. K. 1968. La destruction du virus aphteux par la chaleur dans les produits laitiers. Extrait du Schweizer Archiv für Tierheilleundex fasc. 2, 110:89-94.

- Sellers, R. F. 1969. Inactivation of foot-and-mouth disease virus in milk. Br. Vet. J. 125:163-167.
- Strock, N. R., and N. N. Potter. 1972. Survival of poliovirus and echo-virus during simulated commercial egg pasteurization treatments. J. Milk and Food Tech. 35:247-251.
- Sullivan, R., R. M. Marnell, E. P. Larkin, and R. B. Read, Jr. 1975. Inactivation of poliovirus 1 and coxsackievirus B-2 in broiled hamburgers. J. Milk and Food Technol. 38(8):473-475.
- Sullivan, R., J. T. Tierney, E. P. Larkin, and R. B. Read, Jr. 1971. Thermal resistance of certain oncogenic viruses suspended in milk and milk products. Appl. Microbiol. 22(3):315-320.
- Terpstra, C., and B. Krol. 1976. Effect of heating on the survival of swine fever virus in pasteurised canned ham from experimentally infected animals. Tijdschr. Diergeneesk., deel 101, afl. 22:1237-1241.

Table 4. Agents modifying virus thermal inactivation.

Virus	Remarks	Reference
Poliovirus	Mg ⁺⁺ stabilized virus at 45° C	Ackerman
Policivirus 1	Cations stabilized virus at 45° C	Fujioka
Polioviruses 1, 2, 3	MgCl ₂ stabilized virus during storage at 4° C	Melnick
Polioviruses 1 + 2 Echo 6 and 7 Coxsackie B-5	Reduced sulfhydryl groups Stabilized viruses to inactivation At less than 50° C	Halsted
Poliovirus 1	L-cystine stabilized, 5 different stocks of virus to temperatures below 50° C	Pohjanpelto
Poliovirus 1	Elemental sulfides (tetrasulfide) Stabilized virus against inactivation at 50° C	Pons
Poliovirus 1, 2, 9, 3 Coxsackie A-9, B-3 and Echo-1 Echo-3, 6 and 19	50 µg/ml of L-cystine stabilized viruses 500-2500 µg/ml stabilized of the viruses No stabilization	Pohjanpelto
Echo-32	MgCl ₂ stabilized virus at 50° C	Branche
Poliovirus 2	0.1 M NaCl at 56° C for 1 hr ~ 6 log drop in infectivity 2.0 M NaCl at 56° C for 1 hr ~ 2 log drop in infectivity	Speir
Rhinoviruses and Enteroviruses	MgCl ₂ , less effectively stabilized Rhinoviruses at 50° C	Dimmock
Simian virus SV-2	MgCl ₂ stabilized virus at 50° C	Heberling
Herpesvirus (JES)	Na ₂ SO ₄ and Na ₂ HPO ₄ stabilized at 50° C MgCl ₂ , MgSO ₄ , KH ₂ PO ₄ , 2 M KCl or NaCl did not stabilize virus Very thermosensitive in isotonic salt solution	Wallis

Table 4. Agents modifying virus thermal inactivation (contd.)

Virus	Agents demonstrating modification	Remarks	Reference
Rhabdoviruses	EDTA and serum demonstrated protective effect on virus at 37 and 56° C		Michalski
Newcastle disease	Casein protected virus at 45° C MgSO_4 did not protect virus		Ballesteros
Tick-borne encephalitis	Monovalent metallic cations stabilized virus at 50° C		Mayer
DNA viruses	Not stabilized by divalent cations		Wallis
Reovirus	Stabilized by divalent cations		Wallis
Vesicular exanthoma of swine	No cationic stabilization at 50° C characteristic of human enteroviruses only		Zee

Bibliography

Agents Modifying Virus Thermal Inactivation

- Ackerman, W. W., R. S. Fujioka, and H. B. Kurtz. 1970. Cationic modulation of the inactivation of poliovirus by heat. *Arch. Environ. Hlth.* 21(3): 377-381.
- Ballesteros, S., and B. Lucio. 1972. Effect of magnesium sulfate and casein hydrolysate on thermoinactivation of Newcastle disease virus vaccine. *Avian Dis.* 16(4):724-728.
- Branche, W. C., Jr., V. M. Young, F. M. Houston, and L. W. Koontz. 1965. Characterization of prototype virus Echo-32. *Proc. Soc. Exptl. Biol. Med.* 118(1):186-190.
- Dimmock, N. J., and D. A. J. Tyrrell. 1964. Some physicochemical properties of rhinoviruses. *Brit. J. Exptl. Pathol.* 45:271-280.
- Fujioka, R., H. Kurtz, and W. W. Ackermann. 1969. Effects of cations and organic compounds on inactivation of poliovirus with urea, guanidine, and heat. *Proc. Soc. Exp. Biol. Med.* 132(3):825-829.
- Halsted, C. C., D. S. Y. Seto, J. Simkins, and D. H. Carver. 1970. Protection of enteroviruses against heat inactivation by sulphydryl-reducing substances. *Virol.* 40(3):751-754.
- Heberling, R. L., and F. S. Cheever. 1965. Simian enterovirus SV-2 hemagglutination studies. 1. Relationship of infectivity to hemagglutination. *Proc. Soc. Exptl. Biol. Med.* 151-154.
- Mayer, V., and I. Slavik. 1966. Thermostabilization of the tick-borne encephalitis virus. *Virol.* 29:492-493.
- Melnick, J. L., and C. Wallis. 1963. Effect of pH on thermal stabilization of oral poliovirus vaccine by magnesium chloride. *Proc. Soc. Exptl. Biol. Med.* 112:394-397.
- Michalski, F., N. F. Parks, F. Sokol, and H. F. Clark. 1976. Thermal inactivation of rabies and other rhabdoviruses: stabilization of the chelating agent Ethylenediaminetetraacetic acid at physiological temperatures. *Infec. and Immun.* 14(1):135-143.
- Pohjanpelto, P. 1961. Response of enteroviruses to cystine. *Virol.* 15:225-230.
- Pohjanpelto, P. 1958. Stabilization of poliovirus by cystine. *Virol.* 6:472-487.

- Pons, M. 1964. Stabilization of poliovirus by sodium tetrasulfide. Virol. 22(2):253-261.
- Speir, R. W. 1961. Thermal stability of mengo and poliovirus in hypertonic salt. Virol. 14:382-383.
- Wallis, C., and J. L. Melnick. 1965. Thermostabilization and thermosensitization of herpesvirus. J. Bacteriol. 90:1632-1637.
- Wallis, C., and J. L. Melnick. 1964. Reovirus activation by heating and inactivation by cooling in $MgCl_2$ solutions. Virol. 22:608-619.
- Wallis, C., C. S. Yang, and J. L. Melnick. 1962. Effect of cations on thermal inactivation of vaccinia, herpes simplex, and adenoviruses. J. Immunol. 89:41-46.
- Zee, Y. C., and A. J. Hackett. 1967. The influence of cations on the thermal inactivation of vesicular exanthema of swine virus. Arch. Gesamte Virusforsch 20(4):473-475.

Table 5. Naturally occurring virus concentrations in Food Animal Products

Virus	Titer	Remarks	Reference
Foot-and-mouth disease virus	10^4	In serum, bovine	Burrows
(FMDV)	$10^{4.5-5.3}$	Pharynx	
	$10^{3.3-5.2}$	Milk	
	10^3	Saliva	
FMDV	$10^{4.5}$	Bone marrow, bovine	Cox
FMDV	$10^{2.0}$	Muscle, brain	Cottrial
	$10^{4.0-5.0}$	Blood	
FMDV	$10^{0.7}$ to $10^{2.1}$	Beef, bovine	Henderson
	$10^{1.5}$ to $10^{2.2}$	Liver	
	$10^{1.7}$	Kidney	
	$10^{2.4}$	Blood	
	$10^{0.7}$ to $10^{2.8}$	Rumen	
	$10^{1.8}$ to $10^{2.3}$	Lymph node	
Tickborne encephalitis	$\sim 10^{3.7}$	Goat milk	Gresikova
Enteroviruses	$< 10^1$	Shellfish	Denis
Swine fever virus	$10^{4.7}$ to $10^{6.0}$	Blood	Terpstra

Bibliography

Naturally Occurring Virus Concentrations in Food Animal Products

- Burrows, R., J. A. Mann, A. Greig, W. G. Chapman, and D. Goodridge. 1971. The growth and persistence of foot-and-mouth disease virus in the bovine mammary gland. *J. Hyg. Camb.* 69:307-321.
- Cottral, G. E., B. F. Con, and D. E. Baldwin. 1960. The survival of foot-and-mouth disease virus in cured and uncured meat. *Am. J. Vet. Res.* 21:288-297.
- Cox, B. F., G. E. Cottral, and D. E. Baldwin. 1961. Further studies on the survival of foot-and-mouth disease virus in meat. *Am. J. Vet. Res.* 22:224-226.
- Denis, F., and J. F. Brisou. 1976. Contamination virale des fruits de mer: etude portant sur Panalyse de 15,000 coquillages. *Bull. de L'Academie Nationale de Medecine*, Tome 160(1):18-22.
- Gresikova, M., I. Havranek, and F. Gorner. 1961. The effect of pasteurization on the infectivity of tick-borne encephalitis virus. *Acta virol.* Prague 5:31-36.
- Henderson, W. M., and J. B. Brooksby. 1943. The survival of foot-and-mouth disease virus in meat and offal. *J. Hyg.* 46:394-402.
- Terpstra, C., en B. Krol. 1976. Effect of heating on the survival of swine fever virus in pasteurised canned ham from experimentally infected animals. *Tijdschr. Diergeneesk.*, deel 101, afl. 22:1237-1241.

Table 6. The effect of temperature on nucleic acids.

Virus	Remarks	Reference
Foot-and-mouth disease (FMDV)	Virus heated to 61° and 85° C in RNase free medium produced infectious nucleic equivalent to that produced by phenol extraction	Bachrach
FMDV	Prolonged incubation at 25° C for 24 hrs or 37° C for 8 hrs resulted in a loss of ~ 3 logs of infectious nucleic acid	Brown
Tobacco mosaic virus (TMV)	Loss of RNA biological activity oc- curs at moderate heat in marked con- trast to DNA which is inactivated with a high-temperature coefficient	Ginoza
Poliovirus 1 and TMV	~ 90% loss of RNA infectivity in 80-120 min at 65° C ~ 99% loss of RNA infectivity in 40-45 min at 80° C ~ 99% loss of RNA infectivity in 3-5 min at 100° C	Gordon
Poliovirus 1	Virus rapidly degraded at 56° C liberating viral RNA	Jordan
Polioviruses	Protein denaturation precedes dissociation of viral RNA at 50° C	Meitens
EEE and VEE	RNA inactivated ~ 90% in 4 hrs at 50° C	Mika
Poliovirus	Heating RNA for 5 min at 60° C results Norman in loss of 1 log of infectivity - virus heated same procedure results in 7 log loss of infectivity	
Poliovirus mutants	Variation in sensitivity to heat mutants	Papaevangelou
Bacteriophage	Heat (50-60° C) inactivation is accompanied by release of native DNA. The molecules are intact - 90% removed from virus in 60 min at 60° C	Ritchie

Bibliography

The Effect of Temperature on Nucleic Acids

- Bachrach, H. L. 1961. Thermal degradation of foot-and-mouth disease virus into infectious ribonucleic acid. Proc. Soc. exp. Biol. Med. 107:610-613.
- Brown, F., B. Cartwright, and D. L. Stewart. 1963. The effect of various inactivating agents on the viral and ribonucleic acid infectivities of foot-and-mouth disease and on its attachment to susceptible cells. J. Gen. Microbiol. 31:179-186.
- Ginoza, W. 1958. Kinetics of heat inactivation of ribonucleic acid of tobacco mosaic virus. 1958. Nature 181:958-961.
- Gordon, M. P., J. W. Huff, and J. J. Holland. 1963. Heat inactivation of the infectious ribonucleic acids of polio and tobacco mosaic viruses. Virol. 19(3):416-418.
- Jordan, L., and H. D. Maylor. 1974. Studies on the degradation of poliovirus by heat. Microbos 9:51-60.
- Mietens, C., and K. Koschel. 1971. RNA content and antigenicity of poliovirus before and after inactivation by heating. Z. Naturforsch. 26 b:945-950.
- Mika, L. A., J. E. Officer, and A. Brown. 1963. Inactivation of two arboviruses and their associated infectious nucleic acids. J. Infect. Dis. 113:195-203.
- Norman, A., and R. C. Veomett. 1960. Heat inactivation of poliovirus ribonucleic acid. Virol. 12(1):136-139.
- Papaevangelou, G. J., and J. S. Youngner. 1961. Thermal stability of ribonucleic acid from poliovirus mutants. Virol. 15:509-511.
- Ritchie, D. A. 1970. Physical characterization of the DNA released from phage particles by heat inactivation. Fed. Eur. Biochem. Soc. Lett. 11(1):257-260.

Table 7. Viruses producing systemic infections in food animals (North America)

Virus Group	Bovine	Type of Animal	
		Porcine	Avian
RNA Viruses:			
Picornaviruses	Enteroviruses (+?) ^a Encephalomyocarditis virus ^b	Enteroviruses (+?)	Enteroviruses (+?)
Myxoviruses	Parainfluenza 3+	Swine influenza (type A)+	Influenza virus (type A)+ Newcastle disease virus+
Reoviruses	Types 1, 2, and 3+ Encephalitis viruses+	Probably types 1, 2, and 3+	Probably types 1, 2 and 3+ Eastern encephalitis+ Western encephalitis+
Togaviruses			Rous sarcoma+, Avian Leukosis complex
Retroviruses	Bovine leukemia virus		Infectious bronchitis virus
Other RIA viruses	Bovine diarrhea virus BVD mucosal disease Vesicular stomatitis virus+ Rabies virus+ Bovine syncytial virus (?) ^c	Hog cholera virus Vesicular stomatitis virus+ Lymphocytic choriomeningitis+	
DNA Viruses:			
Herpes viruses	Pseudorabies virus (+) Malignant catarrhal fever virus	Pseudorabies virus (+?)	Marek's disease virus Herpes turkey virus
Adenoviruses	3 serotypes (?)	At least 3 serotypes (?)	At least 10 serotypes (?)
Other DNA viruses		Hemagglutinating encephalomyelitis	Avian encephalomyelitis, viral arthritis agent:

^a (+?) Systemic infection and infectious for man possible.

^b + Infectious for man.

^c ? Systemic infection probable.

Bibliography

Nucleic Acids

- Alexander, H. E., G. Koch, I. H. Mountain, and O. Van Damme. 1958. Infectivity of ribonucleic acid from poliovirus in human cell monolayers. *J. Exptl. Med.* 103:493-506.
- Colter, J. S., H. H. Bird, A. W. Moyer, and R. A. Brown. 1957. Infectivity of ribonucleic acid isolated from virus-infected tissues. *Virology* 4:522-532.
- Dimmock, N. J. 1966. Biophysical studies of a rhinovirus: extraction and assay of infectious ribonucleic acid. *Nature* 209:792-794.
- Gierer, A., and G. Schramm. 1956. Infectivity of ribonucleic acid from tobacco mosaic virus. *Nature* 177:702-703.
- Herriott, R. M. 1961. Infectious nucleic acids, a new dimension in virology. *Science* 134:256-260.
- Holland, J. J., L. C. McLaren, and J. T. Syverton. 1959. Mammalian cell-virus relationship. III. Poliovirus production by non-primate cells exposed to poliovirus ribonucleic acid. *Proc. Soc. Exptl. Biol. Med.* 100:343-347.
- Hollinshead, J. J., L. C. McLaren, and J. T. Syverton. 1959. The mammalian cell virus relationship. IV. Infection of naturally insusceptible cells with enterovirus ribonucleic acid. *Exp. Med.* 110:65-80.
- Iglewski, W. J., and E. M. Franklin. 1967. Purification and properties of reovirus ribonucleic acid. *J. Virol.* 1(2):302-307.
- Love, D. N. 1973. The effect of DEAE-Dextran on the infectivity of a feline calicivirus and its RNA. *Archiv für die gesamte Virusforschung* 41:52-58.
- Weiss, R. 1977. Persistent infections without proviral DNA. *Nature* 265:295-296.
- Yukhananova, S. A., O. V. Nikolayeva, L. L. Fsdelyeva, and M. I. Parfanovich. 1974. Isolation of infectious RNA from arboviruses of the California and C groups. *Acta virol.* 18:30.

Bibliography

Viral Thermal Inactivation Theory

- Apostolov, K., and V. Damjanovic. 1973. Selective inactivation of the infectivity of freeze-dried Sendai virus by heat. *Cryobiol.* 10:255 and 259.
- Banks, B. E. C., V. Damjanovic, and C. A. Vernon. 1972. So-called thermodynamic compensation law and thermal death. *Nature (Lond.)* 240(5377):147-148.
- DiGioia, G. A., J. J. Licciardello, J. T. R. Nickerson, and S. A. Goldblith. 1970. Thermal inactivation of Newcastle disease virus. *Appl. Microbiol.* 19(3):451-454.
- Dimmock, N. J. 1966. Differences between the thermal inactivation of picornaviruses at "high" and "low" temperatures. *Virol.* 31:338-353.
- Eylar, O. R., and C. L. Wisseman, Jr. 1975. Thermal inactivation of type 1 Dengue virus strains. *Acta virol.* 19:167-168.
- Hiatt, C. W. 1964. Kinetics of the inactivation of viruses. *Bacteriol. Reviews* 28(2):150-163.
- Milo, G. E., Jr. 1971. Thermal inactivation of poliovirus in the presence of selective organic molecules (cholesterol, lecithin, collagen, and B-carotene). *Appl. Microbiol.* 21(2):198-202.
- Pollard, E. C. 1953. The physics of viruses. Thermal inactivation of viruses. Academic Press, Inc., New York 10, N. Y., Chapt. 4, p. 103-104.
- Rosenberg, B., G. Kemeny, R. C. Switzer, and T. C. Hamilton. 1971. Quantitative evidence for protein denaturation as the cause of thermal death. *Nature* 232:471-473.
- Wallis, C., and J. L. Melnick. 1963. Thermosensitivity of poliovirus. *J. Bacteriol.* 86(3):499-504.
- Woese, C. 1960. Thermal inactivation of animal viruses. *Ann. N. Y. Acad. Sci.* 83:741-751.