Elementary Graph Algorithms

Breadth First Search, Depth First Search

Graphs

- Graph G = (V, E)
 - V = set of vertices
 - \blacksquare E = set of edges \subseteq (V×V)
- Types of graphs
 - Undirected: edge (u, v) = (v, u); for all $v, (v, v) \notin E$ (No self loops.)
 - Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
 - Weighted: each edge has an associated weight, given by a weight function $w : E \to \mathbb{R}$.
 - Dense: $|E| \approx |V|^2$.
 - Sparse: $|E| << |V|^2$.
- $|E| = O(|V/^2)$

Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
 - Symmetric if *G* is undirected.
 - Not necessarily so if *G* is directed.
- If G is connected:
 - There is a path between every pair of vertices.
 - $|E| \ge |V| 1$.
 - Furthermore, if |E| = |V| 1, then *G* is a tree.

Representation of Graphs

- Two standard ways.
 - Adjacency Lists.

Adjacency Matrix.

	1	2	3 1 1 0 1	4
1	0	1	1	<u> </u>
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

Adjacency Lists

- Consists of an array Adj of |V| lists.
- One list per vertex.
- For $u \in V$, Adj[u] consists of all vertices adjacent to u.

Pros and Cons: adj list

- Pros
 - Space-efficient, when a graph is sparse.
 - Can be modified to support many graph variants.
- Cons
 - Determining if an edge $(u,v) \in G$ is not efficient.
 - Have to search in u's adjacency list. $\Theta(\text{degree}(u))$ time.
 - \circ $\Theta(V)$ in the worst case.

Adjacency Matrix

- $|V| \times |V|$ matrix A.
- Number vertices from 1 to |V| in some arbitrary manner.
- A is then given by:

	1	2	3 1 1 0 0	4
1	0	1	1	<u> </u>
2	0	0	1	0
3	0	0	0	1
4	0	0	0	0

$\Delta[i i] = \alpha$	1	if $(i, j) \in E$
$A[i,j] = a_{ij} = \langle$	0	otherwise

 $A = A^{T}$ for undirected graphs.

Space and Time

- Space: $\Theta(V^2)$.
 - Not memory efficient for large graphs.
- Time: to list all vertices adjacent to $u: \Theta(V)$.
- Time: to determine if $(u, v) \in E$: $\Theta(1)$.
- Can store weights instead of bits for weighted graph.
- Advantages:
 - Simpler, preferred for graphs that are reasonably small.
 - Only one bit per entry for unweighted graphs

Graph Searching

- Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree

Breadth-First Search

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
 - Pick a *source vertex* to be the root
 - Find ("discover") its children, then their children, etc.

Breadth-first Search

• Input: Graph G = (V, E), either directed or undirected, and source vertex $s \in V$.

• Output:

- d[v] = distance (smallest # of edges, or shortest path) from s to v, for all $v \in V$. $d[v] = \infty$ if v is not reachable from s.
- π[v] = u such that (u, v) is last edge on shortest path s v.
 u is v's predecessor.
- Builds breadth-first tree with root *s* that contains all reachable vertices.

Definitions:

Path between vertices u and v: Sequence of vertices $(v_1, v_2, ..., v_k)$ such that $u=v_1$ and $v=v_k$, and $(v_i, v_{i+1}) \in E$, for all $1 \le i \le k-1$.

Length of the path: Number of edges in the path.

Path is simple if no vertex is repeated.

Breadth-first Search

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
 - A vertex is "discovered" the first time it is encountered during the search.
 - A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
 - White Undiscovered.
 - All vertices start out white
 - Gray Discovered but not finished/fully explored.
 - Adjacent to white vertices
 - Black Discovered and Finished/fully explored.
 - Colors are required only to reason about the algorithm. Can be implemented without colors.
- Explore vertices by scanning adjacency list of grey vertices

```
BFS(G,s)
1. for each vertex u in V[G] - \{s\}
2
             do color[u] \leftarrow white
3
                 d[u] \leftarrow \infty
                 \pi[u] \leftarrow \text{nil}
4
     color[s] \leftarrow gray
    d[s] \leftarrow 0
   \pi[s] \leftarrow \text{nil}
7
   Q \leftarrow \Phi
     enqueue(Q,s)
10 while Q \neq \Phi
11
             do u \leftarrow dequeue(Q)
12
                           for each v in Adj[u]
13
                                        do if color[v] = white
14
                                                      then color[v] \leftarrow gray
15
                                                             d[v] \leftarrow d[u] + 1
16
                                                             \pi[v] \leftarrow u
17
                                                             enqueue(Q,v)
18
                           color[u] \leftarrow black
```

white: undiscovered gray: discovered black: finished

Q: a queue of discovered vertices color[v]: color of v d[v]: distance from s to v π[u]: predecessor of v

Q: s

Q: w r

 $Q: \begin{array}{|c|c|c|c|c|} \hline r & t & x \\ \hline \end{array}$

 $Q: \left[\begin{array}{c|cc} t & x & v \end{array}\right]$

Q: x v u

Q: v u y

 $Q: \left[\begin{array}{c|c} u & y \end{array}\right]$

Q: y

Q: Ø

Analysis of BFS

- Initialization takes O(V).
- Traversal Loop
 - After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1). So, total time for queuing is O(V).
 - The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$.
- Summing up over all vertices => total running time of BFS is O(V+E), linear in the size of the adjacency list representation of graph.

Breadth-First Search: Properties

- BFS calculates the *shortest-path distance* to the source node
 - Shortest-path distance $\delta(s,v)$ = minimum number of edges from s to v, or ∞ if v not reachable from s
- BFS builds *breadth-first tree*, in which paths to root represent shortest paths in G
 - Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time

Depth-First Search

- *Depth-first search* is another strategy for exploring a graph
 - Explore "deeper" in the graph whenever possible
 - Edges are explored out of the most recently discovered vertex *v* that still has unexplored edges
 - When all of *v*'s edges have been explored, backtrack to the vertex from which *v* was discovered

Depth-First Search

- Vertices initially colored white
- Then colored gray when discovered
- Then black when finished

Pseudo-code

DFS(*G*)

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. $time \leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(u)

DFS-Visit(u)

- color[u] ← GRAY ∇ White vertex u
 has been discovered
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
- 5. **do if** color[v] = WHITE
- 6. **then** $\pi[v] \leftarrow u$
- 7. DFS-Visit(v)
- 8. $color[u] \leftarrow BLACK \quad \nabla Blacken \ u;$ it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

Uses a global timestamp time.

Depth-First Sort Analysis

- "Charge" the exploration of edge to the edge:
 - Each loop in DFS_Visit can be attributed to an edge in the graph
 - Thus loop will run in O(E) time, algorithm O(V+E)

What is the structure of the grey vertices? What do they represent?

Pseudo-code

DFS(*G*)

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. $time \leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(u)

DFS-Visit(u)

- color[u] ← GRAY ∇ White vertex u
 has been discovered
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
- 5. **do if** color[v] = WHITE
- 6. **then** $\pi[v] \leftarrow u$
- 7. DFS-Visit(v)
- 8. $color[u] \leftarrow BLACK \quad \nabla Blacken \ u;$ it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

Uses a global timestamp time.

Analysis of DFS

- Loops on lines 1-2 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex $v \in V$ when it's painted gray the first time. Lines 4-7 of DFS-Visit is executed |Adj[v]| times. The total cost of executing DFS-Visit is $\sum_{v \in V} |Adj[v]| = \Theta(E)$
- Total running time of DFS is $\Theta(V+E)$.

Example 2

DFS-Properties

- u=v. π , iff DFS-Visit(G,v) was called during a search of u's adjacency list
- V is descendent of u in DFS iff v is discovered when u is grey.
- Paranthesis structure
 - If we represent the discovery of vertex *u* with a left parenthesis "(*u*" and represent its finishing by a right parenthesis "*u*)", then the history of discoveries and finishings makes a well-formed expression in the sense that the parentheses are properly nested.

Parenthesis Theorem

Theorem 22.7

For all u, v, exactly one of the following holds:

- 1. d[u] < f[u] < d[v] < f[v] or d[v] < f[v] < d[u] < f[u] and neither u nor v is a descendant of the other.
- 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u.
- 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

Classification of Edges

- Tree edge: in the depth-first forest. Found by exploring (u, v).
- Back edge: (u, v), where u is a descendant of v (in the depth-first tree).
- Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

Theorem:

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

Tree edges Back edges Forward edges Cross edges

DFS And Graph Cycles

- Theorem: An undirected graph is *acyclic* iff a DFS yields no back edges
 - If acyclic, no back edges (because a back edge implies a cycle
 - If no back edges, acyclic
 - No back edges implies only tree edges
 - Only tree edges implies we have a tree or a forest which by definition is acyclic
- Thus, can run DFS to find whether a graph has a cycle

Problem

