Chapter 4.1

2. **a.** If
$$\mathbf{u} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 is in W , then the vector $c\mathbf{u} = c \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix}$ is in W because $(cx)(cy) = c^2(xy) \ge 0$ since $xy \ge 0$.

b. Example: If
$$\mathbf{u} = \begin{bmatrix} -1 \\ -7 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, then \mathbf{u} and \mathbf{v} are in W but $\mathbf{u} + \mathbf{v}$ is not in W .

- **8.** Yes. The zero vector is in the set H. If \mathbf{p} and \mathbf{q} are in H, then $(\mathbf{p} + \mathbf{q})(0) = \mathbf{p}(0) + \mathbf{q}(0) = 0 + 0 = 0$, so $\mathbf{p} + \mathbf{q}$ is in H. For any scalar c, $(c\mathbf{p})(0) = c \cdot \mathbf{p}(0) = c \cdot 0 = 0$, so $c\mathbf{p}$ is in H. Thus H is a subspace by Theorem 1.
- **9**. The set $H = \text{Span}\{\mathbf{v}\}$, where $\mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$. Thus H is a subspace of \mathbb{R}^3 by Theorem 1.
- 13. a. The vector w is not in the set $\{v_1, v_2, v_3\}$. There are 3 vectors in the set $\{v_1, v_2, v_3\}$.
 - **b.** The set $Span\{v_1, v_2, v_3\}$ contains infinitely many vectors.
 - **c**. The vector **w** is in the subspace spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ if and only if the equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{w}$ has a solution. Row reducing the augmented matrix for this system of linear equations gives

$$\begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 1 & 2 & 1 \\ -1 & 3 & 6 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

so the equation has a solution and w is in the subspace spanned by $\{v_1, v_2, v_3\}$.

- 23. a. False. The zero vector in V is the function \mathbf{f} whose values $\mathbf{f}(t)$ are zero for all t in \mathbb{R} .
 - **b**. False. An arrow in three-dimensional space is an example of a vector, but not every arrow is a vector.
 - **c**. False. See Exercises 1, 2, and 3 for examples of subsets which contain the zero vector but are not subspaces.
 - d. True. See the paragraph before Example 6.

37. [M] The graph of $\mathbf{f}(t)$ is given below. A conjecture is that $\mathbf{f}(t) = \cos 4t$.

The graph of g(t) is given below. A conjecture is that $g(t) = \cos 6t$.

Chapter 4.2

1. One calculates that
$$A\mathbf{w} = \begin{bmatrix} 3 & -5 & -3 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
, so \mathbf{w} is in Nul A .

5. First find the general solution of $A\mathbf{x} = \mathbf{0}$ in terms of the free variables. Since

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & -9 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \text{ the general solution is } x_1 = 2x_2 - 4x_4, \ x_3 = 9x_4, \ x_5 = 0, \text{ with } x_5 = 0$$

$$x_{2} \text{ and } x_{4} \text{ free. So } \mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} = x_{2} \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_{4} \begin{bmatrix} -4 \\ 0 \\ 9 \\ 1 \\ 0 \end{bmatrix}, \text{ and a spanning set for Nul } A \text{ is } \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \\ 9 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ 0 \\ 9 \\ 1 \\ 0 \end{bmatrix} \right\}.$$

7. The set W is a subset of \mathbb{R}^3 . If W were a vector space (under the standard operations in \mathbb{R}^3), then it would be a subspace of \mathbb{R}^3 . But W is not a subspace of \mathbb{R}^3 since the zero vector is not in W. Thus W is not a vector space.

- 17. The matrix A is a 4×2 matrix. Thus
 - (a) Nul A is a subspace of \mathbb{R}^2 , and
 - (b) Col A is a subspace of \mathbb{R}^4 .
- 19. The matrix A is a 2×5 matrix. Thus
 - (a) Nul A is a subspace of \mathbb{R}^5 , and
 - (b) Col A is a subspace of \mathbb{R}^2 .
- 21. Either column of A is a nonzero vector in Col A. To find a nonzero vector in Nul A, find the general

is $x_1 = 3x_2$, with x_2 free. Letting x_2 be a nonzero value (say $x_2 = 1$) gives the nonzero vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, which is in Nul A.

- 25. a. True. See the definition before Example 1.
 - **b**. False. See Theorem 2.
 - **c**. True. See the remark just before Example 4.
- **d**. False. The equation $A\mathbf{x} = \mathbf{b}$ must be consistent for every **b**. See #7 in the table on page 206.
- e. True. See Figure 2.
- **f**. True. See the remark after Theorem 3.
- 27. Let A be the coefficient matrix of the given homogeneous system of equations. Since $A\mathbf{x} = \mathbf{0}$ for

$$\mathbf{x} = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$$
, \mathbf{x} is in NulA. Since NulA is a subspace of \mathbb{R}^3 , it is closed under scalar multiplication.

Thus
$$10\mathbf{x} = \begin{bmatrix} 30\\20\\-10 \end{bmatrix}$$
 is also in NulA, and $x_1 = 30$, $x_2 = 20$, $x_3 = -10$ is also a solution to the system of equations.

31. a. Let **p** and **q** be arbitary polynomials in \mathbb{P}_2 , and let c be any scalar. Then

$$T(\mathbf{p}+\mathbf{q}) = \begin{bmatrix} (\mathbf{p}+\mathbf{q})(0) \\ (\mathbf{p}+\mathbf{q})(1) \end{bmatrix} = \begin{bmatrix} \mathbf{p}(0)+\mathbf{q}(0) \\ \mathbf{p}(1)+\mathbf{q}(1) \end{bmatrix} = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix} + \begin{bmatrix} \mathbf{q}(0) \\ \mathbf{q}(1) \end{bmatrix} = T(\mathbf{p}) + T(\mathbf{q})$$

and
$$T(c\mathbf{p}) = \begin{bmatrix} (c\mathbf{p})(0) \\ (c\mathbf{p})(1) \end{bmatrix} = c \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix} = cT(\mathbf{p})$$
, so T is a linear transformation.

b. Any quadratic polynomial **q** for which $\mathbf{q}(0) = 0$ and $\mathbf{q}(1) = 0$ will be in the kernel of T. The polynomial **q** must then be a multiple of $\mathbf{p}(t) = t(t-1)$. Given any vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ in \mathbb{R}^2 , the polynomial $\mathbf{p} = x_1 + (x_2 - x_1)t$ has $\mathbf{p}(0) = x_1$ and $\mathbf{p}(1) = x_2$. Thus the range of T is all of \mathbb{R}^2 .