Generating functions

Gabriela Sánchez Y. 5064

In this activity some exercises of the book Introduction to Probability [1] are solved.

Exercise 1, page 392

Let Z_1, Z_2, \ldots, Z_n describe a branching process in which each parent has j offspring with probability p_j . Find the probability d that the process eventually dies out if

a)
$$p_0 = 1/2$$
, $p_1 = 1/4$, $p_2 = 1/4$.

b)
$$p_0 = 1/3$$
, $p_1 = 1/3$, $p_2 = 1/3$.

c)
$$p_0 = 1/3$$
, $p_1 = 0$, $p_2 = 2/3$.

d)
$$p_j = 1/2^{j+1}$$
, for $j = 0, 1, 2, ...$

e)
$$p_i = (1/3)(2/3)^j$$
, for $j = 0, 1, 2, ...$

f)
$$p_j = (e^{-2}2^j)/j!$$
, for $j = 0, 1, 2, ...$ (estimate d numberically).

Let d the probability that the process will ultimately die out. Theorem 10.2 from page 380 [1] says that if the mean number m of offspring produced by a single parent is ≤ 1 , then d = 1 and the process dies out with probability 1. But if m > 1 then d < 1 and the process dies out with probability d.

In the particular case of a), b) and c), the mean number m of offspring produced by a single parent is $m = p_1 + 2p_2 = 1 - p_0 + p_2$. If m > 1, d can be easily calculated by $d = p_0/p_2$.

a)
$$p_0 = 1/2$$
, $p_1 = 1/4$, $p_2 = 1/4$

The mean number m of offspring produced by a single parent is

$$m = \frac{1}{4} + 2\left(\frac{1}{4}\right) = \frac{3}{4} < 1.$$

Then, by theorem 10.2, follows that the process dies out with probability 1.

b)
$$p_0 = 1/3, p_1 = 1/3, p_2 = 1/3$$

For this exercise $m = \frac{1}{3} + 2\left(\frac{1}{3}\right) = 1$. Therefore the process dies out with probability 1.

c)
$$p_0 = 1/3$$
, $p_1 = 0$, $p_2 = 2/3$

The mean number m of offspring produced by a single parent in this case is

$$m = 0 + 2\left(\frac{2}{3}\right) = \frac{4}{3} > 1.$$

The process dies out with probability $d = p_0/p_2 = \frac{1}{3}/\frac{2}{3} = 0.5$.

To solve d) and e) it is necessary to remember that h(z), the ordinary generating function for the p_i , is

$$h(z) = p_0 + p_1 z + p_2 z^2 + \cdots$$

and m = h'(1). If $m \le 1$, the process will surely die out and d = 1. To find the probability d when m > 1 one must find a root d < 1 of the equation

$$z = h(z)$$
.

d)
$$p_j = 1/2^{j+1}$$
, for $j = 0, 1, 2, ...$

The ordinary generating function of the problem is

$$h(z) = \frac{1}{2} + \frac{1}{2^2}z + \frac{1}{2^3}z^2 + \dots$$

$$= \frac{1}{2} \left(1 + \frac{1}{2}z + \frac{1}{2^2}z^2 + \dots \right)$$

$$= \frac{1}{2} \left[\left(\frac{1}{2}z \right)^0 + \left(\frac{1}{2}z \right)^1 + \left(\frac{1}{2}z \right)^2 + \dots \right]$$

$$= \frac{1}{2} \left(\frac{1}{1 - \frac{1}{2}z} \right)$$

$$= \frac{1}{2 - z}.$$

To get this result it has been used that $1 + r + r^2 + \ldots = \frac{1}{1-r}$. Then

$$h'(z) = \frac{d}{dz} \left(\frac{1}{2-z} \right)$$

$$= \frac{d}{dz} (2-z)^{-1} \quad \text{chain rule}$$

$$= \frac{1}{(2-z)^2},$$

and $m = h'(1) = \frac{1}{(2-1)^2} = 1 \le 1$, therefore d = 1.

e)
$$p_j = (1/3)(2/3)^j$$
, for $j = 0, 1, 2, ...$

The ordinary generating function is

$$h(z) = \frac{1}{3} \left(\frac{2}{3}\right)^0 + \frac{1}{3} \left(\frac{2}{3}\right)^1 z + \frac{1}{3} \left(\frac{2}{3}\right)^2 z^2 + \frac{1}{3} \left(\frac{2}{3}\right)^3 z^3 + \dots$$

$$= \frac{1}{3} \left[1 + \left(\frac{2}{3}z\right)^1 + \left(\frac{2}{3}z\right)^2 + \dots \right]$$

$$= \frac{1}{3} \left(\frac{1}{1 - \frac{2}{3}z}\right)$$

$$= \frac{1}{3 - 2z}.$$

Then, one can calculate h'(z):

$$h'(z) = \frac{d}{dz} \left(\frac{1}{3 - 2z} \right)$$

$$= \frac{d}{dz} (3 - 2z)^{-1} \quad \text{chain rule}$$

$$= \frac{2}{(3 - 2z)^2}.$$

from which $m = h'(1) = \frac{2}{(3-2)^2} = 2$ and d < 1. To find the probability d we need to solve the equation z = h(z). Using the previous result found for h(z) we have

$$2z^2 - 3z + 1 = 0$$
.

The roots of this equation are $z_1 = 1$ and $z_2 = 1/2$. Therefore, the probability d that the process eventually dies out is 0.5.

Excercise 3, page 392

In the chain letter problem (see Example 10.14) find your expected profit if

a)
$$p_0 = 1/2$$
, $p_1 = 0$, $p_2 = 1/2$.

b)
$$p_0 = 1/6$$
, $p_1 = 1/2$, $p_2 = 1/3$.

Show that if $p_0 > 1/2$, you cannot expect to make a profit.

The expected profit of the chain letter problem can be found by the expression $50m + 50m^{12}$, where $m = p_1 + 2p_2$.

a)
$$p_0 = 1/2$$
, $p_1 = 0$, $p_2 = 1/2$.

In this particular case $m = 0 + 2\left(\frac{1}{2}\right) = 1$. Then, the expected profit is: $50(1+1^{12}) - 100 = 0$.

b)
$$p_0 = 1/6$$
, $p_1 = 1/2$, $p_2 = 1/3$.

For this problem $m = \frac{1}{2} + 2\left(\frac{1}{3}\right) = \frac{7}{6}$ and the expected profit is

$$50\left[\frac{7}{6} + \left(\frac{7}{6}\right)^{12}\right] - 100 \approx 376.26 - 100 = 276.26.$$

Exercise 1, page 401

Let X be a continuous random variable with values in [0,2] and density f_X . Find the moment generating function g(t) for X if

- a) $f_X(x) = \frac{1}{2}$.
- b) $f_X(x) = \frac{1}{2}x$.
- c) $f_X(x) = 1 \frac{1}{2}x$.
- d) $f_X(x) = |1 x|$.
- e) $f_X(x) = \frac{3}{8}x^2$.

The moment generating function g(t) for X is define by Equation (1)

$$g(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx. \tag{1}$$

The values of the variable X are in the interval [0,2], therefore the moment generating function will be define by the integral in Equation (2)

$$g(t) = \int_0^2 e^{tx} f_X(x) \, dx.$$
 (2)

a) $f_X(x) = \frac{1}{2}$.

$$g(t) = \int_0^2 e^{tx} \left(\frac{1}{2}\right) dx$$
$$= \frac{1}{2} \int_0^2 e^{tx} dx$$
$$= \frac{1}{2} \left[\frac{1}{t} \cdot e^{tx}\right]_0^2$$
$$= \frac{1}{2} \cdot \frac{e^{2t} - 1}{t}.$$

b) $f_X(x) = \frac{1}{2}x$.

$$g(t) = \int_0^2 e^{tx} \left(\frac{1}{2}x\right) dx$$

$$= \frac{1}{2} \int_0^2 x e^{tx} dx$$
 i.b.p
$$= \frac{1}{2} \left[\frac{x}{t} \cdot e^{tx} - \frac{1}{t^2} \cdot e^{tx}\right]\Big|_0^2$$

$$= \frac{1}{2} \cdot \frac{2te^{2t} - e^{2t} + 1}{t^2}.$$

c) $f_X(x) = 1 - \frac{1}{2}x$.

$$g(t) = \int_0^2 e^{tx} \left(1 - \frac{1}{2}x \right) dx$$

$$= \int_0^2 e^{tx} dx - \int_0^2 e^{tx} \left(\frac{1}{2}x \right) dx$$

$$= \int_0^2 e^{tx} dx - \frac{1}{2} \int_0^2 x e^{tx} dx$$

Note that these integrals were already calculated in a) and b), then

$$g(t) = \int_0^2 e^{tx} dx - \frac{1}{2} \int_0^2 x e^{tx} dx$$

$$= \frac{e^{2t} - 1}{t} - \frac{1}{2} \cdot \frac{2te^{2t} - e^{2t} + 1}{t^2}$$

$$= \frac{3te^{2t} - 3t - 2te^{2t} + e^{2t} - 1}{2t^2}$$

$$= \frac{e^{2t} - 2t + 1}{2t^2}.$$

d) $f_X(x) = |1 - x|$.

Following the definition of absolute value, the density function f_X can be define by Equation (3)

$$f_X(x) = \begin{cases} 1 - x, & \text{if } x \le 1\\ -1 + x, & \text{if } x > 1. \end{cases}$$
 (3)

Therefore the moment generating function will be define by

$$g(t) = \int_{0}^{2} e^{tx} |1 - x| dx$$

$$= \int_{0}^{1} e^{tx} (1 - x) dx + \int_{1}^{2} e^{tx} (-1 + x) dx$$

$$= \int_{0}^{1} e^{tx} dx - \int_{0}^{1} x e^{tx} dx - \int_{1}^{2} e^{tx} dx + \int_{1}^{2} x e^{tx} dx$$

$$= \left[\frac{1}{t} e^{tx} \right]_{0}^{1} - \left[\frac{x}{t} \cdot e^{tx} - \frac{1}{t^{2}} \cdot e^{tx} \right]_{0}^{1} - \left[\frac{1}{t} e^{tx} \right]_{1}^{2} + \left[\frac{x}{t} \cdot e^{tx} - \frac{1}{t^{2}} \cdot e^{tx} \right]_{1}^{2}$$

$$= \frac{1}{t} e^{2t} - \frac{1}{t^{2}} e^{2t} + \frac{2}{t^{2}} e^{t} - \frac{1}{t^{2}} - \frac{1}{t}.$$

e) $f_X(x) = \frac{3}{8}x^2$.

$$g(t) = \int_0^2 e^{tx} \left(\frac{3}{8}x^2\right) dx$$

$$= \frac{3}{8} \int_0^2 x^2 e^{tx} \, dx.$$

Integrating by parts twice, the following result is obtained

$$g(t) = \frac{3}{8} \int_0^2 x^2 e^{tx} dx$$

$$= \frac{3}{8} \left[e^{tx} \left(\frac{x^2}{t} - \frac{2x}{t^2} + \frac{2}{t^3} \right) \right]_0^2$$

$$= \frac{3}{8} \left[e^{2x} \left(\frac{4t^2 - 4t + 2}{t^3} + \frac{2}{t^3} \right) \right].$$

Exercise 6, page 402

Let X be a continuous random variable whose characteristic function $k_X(\tau)$ is $k_X(\tau) = e^{-|\tau|}$, $-\infty < \tau < \infty$. Show directly that the density f_X of X is

$$f_X(x) = \frac{1}{\pi(1+x^2)}.$$

Having the characteristic function k_X , it is possible to determine the density function f_X by Equation (4)

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\tau x} k_X(\tau) d\tau.$$
 (4)

The characteristic function of the problem is define by an absolute value, therefore

$$k_X(\tau) = \begin{cases} -\tau, & \text{if } \tau \ge 0\\ \tau, & \text{if } \tau < 0. \end{cases}$$
 (5)

Using this result, the density function f_X will be

$$\begin{split} f_X(x) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ix\tau} e^{-|\tau|} \, d\tau \\ &= \frac{1}{2\pi} \left(\int_{-\infty}^{0} e^{-ix\tau} e^{\tau} \, d\tau \right) + \frac{1}{2\pi} \left(\int_{0}^{\infty} e^{-ix\tau} e^{-\tau} \, d\tau \right) \\ &= \frac{1}{2\pi} \left(\int_{-\infty}^{0} e^{\tau(1-ix)} \, d\tau \right) + \frac{1}{2\pi} \left(\int_{0}^{\infty} e^{-\tau(1+ix)} \, d\tau \right) \\ &= \frac{1}{2\pi} \lim_{R \to \infty} \left(\int_{-R}^{0} e^{\tau(1-ix)} \, d\tau \right) + \frac{1}{2\pi} \lim_{R \to \infty} \left(\int_{0}^{R} e^{-\tau(1+ix)} \, d\tau \right) \\ &= \frac{1}{2\pi} \lim_{R \to \infty} \left[\left(\frac{1}{1-ix} \right) e^{\tau(1-ix)} \right]_{-R}^{0} + \frac{1}{2\pi} \lim_{R \to \infty} \left[\left(-\frac{1}{1+ix} \right) e^{-\tau(1+ix)} \right]_{0}^{R} \end{split}$$

$$= \frac{1}{2\pi} \left(\frac{1}{1 - ix} + \frac{1}{ix + 1} \right)$$

$$= \frac{1}{2\pi} \cdot \frac{1 + ix + 1 - ix}{(1 - ix)(1 + ix)}$$

$$= \frac{1}{2\pi} \cdot \frac{2}{1 - i^2 x^2}$$

$$= \frac{1}{\pi (1 + x^2)}.$$

Exercise 10, page 403

Let X_1, X_2, \ldots, X_n be an independent trials process with density

$$f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < \infty.$$

- a) Find the mean and variance of f(x).
- b) Find the moment generating function for X_1, S_n, A_n , and S_n^* .
- c) What can you say about the moment generating function of S_n^* as $n \to \infty$?
- d) What can you say about the moment generating function of A_n as $n \to \infty$?

References

[1] Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. AMS, 2003.