Problem G. Just MST

Time limit 1000 ms Memory limit 256MB

Problem Description

Given a connected, undirected graph with N nodes and M edges, each edge has a positive integer weight. The goal is to find the Minimum Spanning Tree (MST) of this graph, which is a subset of the edges that connects all nodes with the minimum possible total weight. Output the weight of this MST.

If there are no spanning trees, output -1.

Input format

The first line contains two integers, N and M ($1 \le N, M \le 2 \times 10^5$), where N is the number of nodes and M is the number of edges.

Each of the next M lines contains three integers $u, v(1 \le u, v \le n)$, and $w(1 \le w \le 10^9)$ representing an edge between nodes u and v with weight w.

Output format

Output a single integer, which is the total weight of the Minimum Spanning Tree of the graph.

If there are no spanning trees, output -1.

Subtask score

Subtask	Score	Additional Constraints
1	100	No constraints

Sample

Sample Input 1

·II	
5 7	
2 5 6	
2 4 6	
1 2 10	
4 1 12	
1 3 14	
5 4 17	
3 2 17	

Sample Output 1

36

Sample Input 2

```
3 4
2 3 8
1 2 20
1 3 9
2 1 9
```

Sample Output 2

17

Notes