Math Tools

Note: Math Tools

Nov 2024

Lecturer: Typed by: Zhuohua Shen

Contents

1	Nonlinear Optimization	1
	1.1 KKT Conditions	1
	References:	

- CUHKSZ: MAT3007 Optimization I
- CUHKSZ: MAT3220 Optimization II. Textbook:
- 1. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB, Amir Beck.
 - 2. Convex Optimization, S. Boyd and L. Vandenberghe.
 - 3. Nonlinear Programming, D. Bertsekas.
 - 4. First-Order Methods in Optimization, Amir Beck

1 Nonlinear Optimization

1.1 KKT Conditions

Theorem 1.1 (The Fritz-John necessary conditions). Let x^* be a local minimum of the problem

min
$$f(x)$$

s.t. $g_i(x) \le 0$, $i = 1, 2, ..., m$

where $f, g_1, \ldots, g_m \in C^1(\mathbb{R}^n)$. Then \exists multipliers $\lambda_0, \ldots, \lambda_m \geq 0$, which are not all zeros, such that

$$\lambda_0 \nabla f(\boldsymbol{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\boldsymbol{x}^*) = \mathbf{0}$$

$$\lambda_i g_i(\boldsymbol{x}^*) = 0, \quad i = 1, 2, \dots, m.$$

A major drawback of the Fritz-John conditions is, they allow $\lambda_0 = 0$. Under an additional regularity condition, we can assume $\lambda_0 = 1$. Let $I(\boldsymbol{x}^*)$ be the set of active constraints at \boldsymbol{x}^* :

$$I(\mathbf{x}^*) = \{i : q_i(\mathbf{x}^*) = 0\}.$$

Theorem 1.2 (The KKT conditions for inequality constrained problems). Let x^* be a local minimum of

min
$$f(x)$$

s.t. $g_i(x) \le 0$, $i = 1, 2, ..., m$

where $f, g_1, \ldots, g_m \in C^1(\mathbb{R}^n)$. If $\{\nabla g_i(\mathbf{x}^*)\}_{i \in I(\mathbf{x}^*)}$ are linearly independent. Then $\exists \lambda_1, \ldots, \lambda_m \geq 0$ such that

$$\nabla f(\boldsymbol{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\boldsymbol{x}^*) = \mathbf{0}$$
$$\lambda_i g_i(\boldsymbol{x}^*) = 0, \quad i = 1, 2, \dots, m.$$

Theorem 1.3 (The KKT conditions for inequality/equality constrained problems). Let x^* be a local minimum of

min
$$f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \le 0$, $i = 1, 2, ..., m$
 $h_j(\mathbf{x}) = 0$, $j = 1, ..., p$ (1)

where $f, g_1, \ldots, g_m, h_1, \ldots, h_p \in C^1(\mathbb{R}^n)$. If $\{\nabla g_i(\boldsymbol{x}^*), \nabla h_j(\boldsymbol{x}^*), i \in I(\boldsymbol{x}^*), j = 1, \ldots, p\}$ are linearly independent.

Then $\exists \lambda_1, \ldots, \lambda_m \geq 0, \ \mu_1, \ldots, \mu_p \in \mathbb{R}, \ such \ that$

$$\nabla f(\boldsymbol{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\boldsymbol{x}^*) + \sum_{j=1}^p \mu_j \nabla h_j(\boldsymbol{x}^*) = \mathbf{0},$$

$$\lambda_i g_i(\boldsymbol{x}^*) = 0, \quad i = 1, 2, \dots, m.$$
(2)

Consider problem (1), a feasible point \boldsymbol{x}^* is called a KKT point if $\exists \lambda_1, \dots, \lambda_m \geq 0, \mu_1, \dots, \mu_p \in \mathbb{R}$, such that (2) holds. \boldsymbol{x}^* is called regular if $\{\nabla g_i(\boldsymbol{x}^*), \nabla h_j(\boldsymbol{x}^*), i \in I(\boldsymbol{x}^*), j = 1, \dots, p\}$ are linearly independent.

• The additional requirement of regularity is not required in linearly constrained problems in which no such assumption is needed.