# COMPLIANCE ON NETWORKS

07/02/2018

Duccio Gamannossi degl'Innocenti <sup>1</sup> Matthew Rablen <sup>1</sup> <sup>2</sup>

<sup>1</sup> Tax Administration Research Centre, University of Exeter

 $^2$ University of Sheffield





## CONTENT

- 1. Overview
- 2. Model
- 3. Conclusions



## COMPLIANCE AND REFERENCE DEPENDENCE

- → We relate non compliant behaviour to a body of evidence on the **importance of positional concerns** (keeping up with the Jones)
- → Tax avoidance and evasion may be used to improve agents' relative standing
- → As a consequence, the choice on how much to avoid or evade is affected by social interaction
- → In our current project we develop **two models to investigate separately evasion and avoidance**

#### TAX AVOIDANCE - RELEVANCE AND RESEARCH

- → Tax avoidance causes significant losses of public revenues (1.6 bn. £ in UK)
- → Growing interest by tax agencies on understanding avoidance so to design efficient deterrence measures
- → Formal understanding of avoidance is limited
  - → No established modelling approach
  - → Most research focused on evasion.

## PURPOSE OF THE MODEL

- → Investigate how tax avoidance is impacted by social network interaction
- → Analyse how network information may be exploited by the tax agency to target interventions
- → Study the dynamic response of avoidance to interventions

## RELATED LITERATURE

- → Kahneman and Tversky 1979 Reference dependence of utility
- → Gali 1994 "Keeping up with the Jones"
- → Myles and Naylor 1996
  Tax evasion and group conformity
- → Ballester, Calvo, Zenou 2006
  Network game with local payoff complementarities
- → Quah 2007 Monotone comparative statics on network games

## RESEARCH GOALS

# Provide a Model where:

- → Agents differ in income, reference group and probability of detection
- → Taxpayers may engage in **costly** and **risky** tax avoidance
- → **Self** and **social** comparison shape the reference income
- → **Social** comparison depends on agents' **social network**
- → Monotone comparative statics to analyse optimal avoidance and agent based modelling to address policy questions



## SOCIAL INTERACTION

- → Taxpayers do their avoidance decision based on a benchmark or "reference" level of income
- → Reference income depends upon :
  - → **Self**: Own past consumption (habit consumption)
  - → Social: The (weighted) average consumption of individuals in a taxpayer's social network

## SOCIAL NETWORK AS AN ADJACENCY MATRIX

Undirected Network Weighted Network Directed Network







|             | A  | B | C | D | E  | F   |
|-------------|----|---|---|---|----|-----|
|             |    |   |   |   |    | 0   |
|             | 1  | 0 | 0 | 0 | 0  | 0   |
|             | 1  | 0 | 0 | 0 | 0  | 0   |
|             | .2 | 0 | 0 | 0 | .4 | .4  |
|             |    |   |   |   |    | 0   |
| $\setminus$ | 0  | 0 | 0 | 1 | 0  | 0 / |
| `           |    |   |   |   |    | ,   |

## MODELLING OF AVOIDANCE

→ We define avoidance as actions that "use the tax law to get a tax advantage that Parliament never intended"

## → Avoidance is risky

→ The tax agency may succeed in shutting down the avoidance scheme if it learns of it

## → Avoidance is costly

- → A fraction of the tax payments that the taxpayer stands to avoid paying are paid as a fee to the "promoter" of the scheme
- → If the avoidance scheme is shut down, only the avoided income is paid – no fine can be imposed –

#### ANTI AVOIDANCE INTERVENTION

- → The **tax agency** is assumed to be actively seeking to detect and **shut-down abusive schemes**
- $\rightarrow$  There is a (compound) probability,  $p_i$ , that
  - $\rightarrow$  Taxpayer *i* is discovered as using a scheme
  - → The tax agency chooses to take legal action against the scheme
  - ightarrow The tax agency legal action is successful in closing the scheme

## TAXPAYERS CHARACTERISTICS

- → Taxpayers are risk averse (quadratic utility)
- → Taxpayers are distinguished by:
  - → Income
  - → Who they compare to in the social network ("reference group")
  - → Probability of successful anti-avoidance intervention

## NETWORK STRUCTURE AND UPDATING

- → The network is **generated** using preferential attachment (Barabási–Albert)
- → Model allows for lagged updating of the social network based on consumption
- → We know people compare to similar others (homophily)
  - ightarrow Accordingly, we allow taxpayers to update their comparisons when their own characteristics change

## THEORETICAL FINDINGS

- → Key theoretical result is that avoidance is closely related to the concept of "Bonacich" Network Centrality
  - → More "central" taxpayers avoid more
- → Network centrality is a concept developed in sociology
  - → Measures the amount of influence/power players have within a network

## RESEARCH QUESTIONS

- → Our analysis has centred on **three** questions:
  - 1. How do **changes in the exogenous parameters** (income, risk aversion, etc., affect avoidance?
  - 2. How do the of marginal revenue effects of an additional intervention vary between taxpayers with different degrees of centrality in the social network?
  - 3. What is the **dynamic profile of the response** of avoidance to an effective **anti-avoidance intervention**?

## WHAT INFLUENCES AVOIDANCE

→ The parameters of the model have differing short-run and long-run effects:

#### → Short-run

→ Before taking into account the effects of lagged adjustments in habit consumption and network updating

## → Long-run

→ After taking into account the effects of lagged adjustments in habit consumption and network updating

## MONOTONE COMPARATIVE STATICS

|                   | $A_i^*$ |                   | $A_i^*$ |
|-------------------|---------|-------------------|---------|
| Risk Aversion     | _       | Tax rate          | +       |
| Habit consumption | +       | Avoidance cost    | +/-     |
| Audit prob. $pi$  | _       | Audit prob. $pj$  | -/0     |
| Own comparison    | +       | Social comparison | +/0     |

Monotone comparative statics for interior  $A_i^*$ 

These results apply in the short and long run

## AVOIDANCE AND INCOME

- → In the case of income the short-run and long-run effects can go in different directions
- → Short-run effect is for avoidance to fall after an increase in income
- → But, in the long-run, taxpayers:
  - → compare to higher income taxpayers
  - → increase their habit consumption

## NETWORK STRUCTURE AND INCOME



If taxpayers with similar income tend to **group together** (homophily) and **social comparison plays a relevant role** in shaping reference income, the model predicts **avoidance to be increasing in income** 

#### INTERVENTIONS AND CENTRALITY

Is there any evidence in favor of targeting interventions against more central taxpayers ("celebrities")?

In general, **three revenue effects** follows from an anti-avoidance intervention

#### → Own effect

- → Direct on targeted taxpayer, by averting attempted avoidance
- → Indirect on targeted taxpayer, from change in future avoidance behaviour

#### → Others effect

→ From induced change in the avoidance behaviour of non-targeted taxpayers

## INTERVENTIONS AND CENTRALITY



#### INTERVENTIONS AND CENTRALITY

- → The **own effects increase linearly** in centrality (avoidance)
- → The others indirect effect is highly non-linear (convex)
  - → Taxpayer with the lowest centrality in the network has around 35% of the centrality of the most central taxpayer, yet commands an indirect effect on other taxpayers of just 0.44% of that of the most central taxpayer.
- → Targeting most central taxpayers maximises all three revenue effects!

## DYNAMIC RESPONSE TO LEGAL INTERVENTION



#### DYNAMIC RESPONSE TO LEGAL INTERVENTION

- → Here periods interpreted as years
- → Deterrence is maximal after the intervention and slowly fades
- → There is a return to baseline after 5 years
- → Consistent with empirical literature showing a persistent effect of interventions on behaviour

## FURTHER RESEARCH

- → Extend the analysis to tax evasion
- → Analyse how different measures of centrality that may be available to the tax agency correlate with revenue effects
- → Derive theoretical steady state results to avoid computational burden of simulations



## **CONCLUDING REMARKS**

- → The evolution of the taxpayer's reference group and habit consumption may heavily affect avoidance behaviour
- → There are objective grounds for tax authorities to target taxpayers who are central in the network
- → A tax authority interventions have a persistent effect on avoidance, with a return to baseline occurring in around five years

# Thank You!

Questions?

# Relevant parameters and variables:

$$t \in (0, 1)$$

$$\phi \in (0,1)$$

$$p_i \in (0,1)$$

$$W_i \in [W, \overline{W}]$$

$$X_i = (1 - t) W_i$$

$$A_i \in (0, tW_i)$$

$$R_i$$

I inear tax rate

Per-unit linear fee on avoided tax

Probability of audit

Exogenous income

Honest after-tax income

Avoided income

Reference Income

## THE AVOIDANCE PROBLEM

## Taxpayer's problem is:

$$\max_{A_i} \mathbb{E}[U] = (1 - p_i) U(W_i^n - R_i) + p_i U(W_i^a - R_i)$$

After-tax income if not audited

$$W_i^n = X_i + [1 - \phi]A_i$$

After-tax income if audited

$$W_i^a = X_i - \phi A_i$$

Utility is quadratic

$$U(z) = z[b - \frac{az}{2}]$$

## Optimal Avoidance at an interior solution is:

$$A_i^* = \frac{1 - p_i - \phi}{a\zeta_i} \{a[\mathbf{R}_i - X_i] + b\}, \zeta_i > 0$$

## REFERENCE DEPENDENCE

Agents' reference income is a weighted average of habitual income and the average of her reference group

Taxpayer i expected after-tax income when avoiding  $A_i$  is:

$$q_i = X_i + [1 - p_i - \phi]A_i$$

And the reference income may be expressed as:

$$R_i = \iota_h D_i + \iota_s \sum_{j \neq i} g_{ij} q_j$$

| $\iota_h$ | Relative importance of habit |
|-----------|------------------------------|
| $D_i$     | Habit income                 |

$$\iota_s$$
 Relative importance of peers

$$g_{ij}$$
 weight of agent  $j$  in  $i$  reference group

#### ACCOUNTING FOR SOCIAL NETWORK

Expanding  $A_i^*$  using the definitions of  $R_i$  and  $q_i$  we solve à la **Cournot-Nash**:

$$A_i = \alpha_i + \iota_s \sum_{j \neq i} g'_{ij} A_j =$$
  
 $\mathbf{A} = \alpha + \mathbf{G}' \boldsymbol{\beta} \mathbf{A}$ 

Where:

$$\alpha_i = \frac{1 - p_i - \phi}{a\zeta_i} \{ a[\iota_h D_i + \iota_s \sum_{j \neq i} g_{ij} X_j - X_i] + b \}$$

$$\beta = Diag(\iota_s)$$

$$g'_{ij} = \frac{[1 - p_i - \phi][1 - p_j - \phi]}{\zeta_i}g_{ij}$$

## BONACICH CENTRALITY AND AVOIDANCE

The nash equilibrium is then:

$$\mathbf{A} = [\mathbf{I} - \mathbf{G}' \boldsymbol{\beta}]^{-1} \boldsymbol{\alpha} = b(\mathbf{G}', \boldsymbol{\beta}, \boldsymbol{\alpha})$$

 $b(\mathbf{G}', \boldsymbol{\beta}, \boldsymbol{\alpha})$  is the weighted Bonacich centrality defined on:

 $\mathbf{G}^{'}$  Edge weights scaled by agents' relative ER of A

β Scales weight of longer paths

lpha Weights centrality by agent characteristics

 $[\mathbf{I} - \mathbf{G}'\boldsymbol{\beta}]^{-1}$  Well defined by row-scaling

#### TAXPAYERS' INTERACTION AS A GAME

The game arising from taxpayers interaction is:

# Smooth Supermodular Game (Milgrom and Roberts 1990)

Bounds on strategies

 $A_i \in (0, tW_i)$ 

Differentiability

 $\mathbb{E}[U]_i$  is of class  $C^2$ 

Strategic Complements

$$\frac{\partial^2 \mathbb{E}[U]_i}{\partial A_i \partial A_i} \ge 0$$

## MONOTONE COMPARATIVE STATICS

**Smooth Supermodular Games** can be analyzed using **Monotone comparative statics** 

Following Quah (2007) we exploit the **weaker** condition of **local supermodularity** around the Nash equilibrium point:

Then, for a given parameter z, it holds:

$$\left. \frac{\partial^2 \mathbb{E}[U]_i}{\partial A_i \partial z} \right|_{A_i = A_i^*} \ge 0 \Leftrightarrow \frac{\partial A_i^*}{\partial z} \begin{cases} > 0 \text{ if } \frac{\partial^2 \mathbb{E}[U]_i}{\partial A_i \partial z} \Big|_{A_i = A_i^*} > 0 \\ \ge 0 \text{ if } \frac{\partial^2 \mathbb{E}[U]_i}{\partial A_i \partial z} \Big|_{A_i = A_i^*} = 0 \end{cases}$$

## MONOTONE COMPARATIVE STATICS

|           | $A_i^*$ |        | $A_i^*$ |
|-----------|---------|--------|---------|
| a         | _       | t      | +       |
| b         | +       | $\phi$ | +/-     |
| $D_i$     | +       | $R_i$  | +       |
| $p_i$     | _       | $X_i$  | _       |
| $p_j$     | -/0     | $X_j$  | +/0     |
| $\iota_h$ | +       | $l_s$  | +/0     |

Monotone comparative statics for interior  $A_i^*$ 

## NETWORK STRUCTURE AND INCOME



The pure effect of  $X_i$  on  $A_i^*$  is negative

#### However, if:

- $\rightarrow X_i$  increases with  $X_i$
- $\rightarrow \iota_s$  is high enough

The positive peer-effect may cause a reversal

If taxpayers with similar income tend to **group together** (homophily) and **social comparison plays a relevant role** in shaping reference income, the model predicts **avoidance to be increasing in income** 

## **BEST RESPONSE**

Quadratic utility leads to linear best response



Positive slope of best response functions follows from strategic complementarity in  $A_i, A_i$