NONNEGATIVE MULTIPLICATIVE FUNCTIONS WITH MODERATE DECAY ALONG THE PRIMES

PAUL POLLACK AND ENRIQUE TREVIÑO

ABSTRACT. In 1961, Wirsing proved an asymptotic formula for the partial sums of nonnegative multiplicative functions that possess a positive mean value on the primes. We prove an analogue of Wirsing's result when the mean value on the primes $p \leq x$ decays like a positive power of $\log x$. As a consequence, we obtain estimates for the counting function of multiplicative semigroups generated by certain thin sets of primes.

The Golomb primes are the elements of the sequence $3, 5, 17, 23, \ldots$, with each prime chosen as small as possible to not be 1 modulo a previous prime. While this set of primes is too thick for our main result to apply, we nevertheless show that the counting function of the corresponding 'Golomb semigroup' grows like $Cx/\log x$ for an explicit constant $C \approx 0.7$.

1. Introduction

Every working analytic number theorist is occasionally confronted with the task of estimating the partial sums of a multiplicative function f. When all of the values that f assumes are nonnegative, one can often apply the following general and elegant result of Wirsing [7] from 1961 (cf. [8, Satz 1.1]).

Theorem A. Let f be a nonnegative multiplicative function. Suppose that along the sequence of primes, f has a (finite) positive mean value τ , in other words, $\sum_{p \leq x} f(p) \sim \tau x/\log x$, as $x \to \infty$. Suppose also that at prime powers p^k with $k \geq 2$, we have

$$f(p^k) \le \gamma_1 \cdot \gamma_2^k$$
, where $\gamma_1 > 0$ and $0 < \gamma_2 < 2$.

Then as $x \to \infty$,

$$\sum_{n \le x} f(n) \sim \tau \frac{x}{\log x} \sum_{m \le x} \frac{f(m)}{m}, \quad while$$

$$\sum_{m \le x} \frac{f(m)}{m} \sim \frac{e^{-\tau \gamma}}{\tau \cdot \Gamma(\tau)} \prod_{p \le x} \left(1 + \frac{f(p)}{p} + \frac{f(p^2)}{p^2} + \dots \right).$$

Here γ is the Euler-Mascheroni constant and $\Gamma(\cdot)$ is the gamma-function.

What if f does not have a positive mean value on the primes? If the average value of f(p) along the primes $p \leq x$ decays to zero, but does so very slowly, then the following theorem of Shikorov [6] may be used.

Theorem B. Let f be a nonnegative multiplicative function. Suppose that for a constant $0 < \lambda < \frac{1}{2}$, we have $f(p^k) \ll p^{k\lambda}$ for all primes p and all $k \geq 1$. Suppose also that $\sum_{p \leq x} f(p) \sim \tau(x) \frac{x}{\log x}$ as $x \to \infty$, where $\tau(x)$ is nonnegative, continuous for $x \geq 1$, and satisfies the following conditions:

- (i) $\tau(x) \to 0$ as $x \to \infty$.
- (ii) if $0 < \delta < 1$, and $x^{\delta} \le y \le x$, then $\tau(x) \sim \tau(y)$ uniformly in y, as $x \to \infty$,

²⁰¹⁰ Mathematics Subject Classification. Primary: 11N37, Secondary: 11K65.

(iii) if we define $\phi(x) = \int_2^x \frac{\tau(u)}{u} du$, then $\phi(x) \leq \theta \tau(x) \log x$, where $\theta > 0$ is a constant. Under these hypotheses,

$$\sum_{n \le x} f(n) \sim \tau(x) \frac{x}{\log x} \prod_{p \le x} \left(1 + \frac{f(p)}{p} + \frac{f(p^2)}{p^2} + \dots \right). \tag{1}$$

Let A, B > 0. A typical example of a τ for which hypotheses (i)–(iii) hold is the function $\tau_{A,B}$ defined piecewise by $\tau_{A,B}(x) := A/(\log \log x)^B$ for $x \ge x_0 := \exp(\exp(A^{1/B}))$ and $\tau_{A,B}(x) = 1$ for $1 \le x \le x_0$. See [6, Theorem 2] for details of the verification.

Our main objective here is to establish an estimate of the same kind as Theorems A and B when f exhibits more pronounced (average) decay along the primes.

Definition. If L(x) is a positive-valued function which is nondecreasing for $x \ge 1$, we say that L is slowly increasing if both of the following conditions hold:

- (i) for fixed u > 0, we have $L(ux) \sim L(x)$ as $x \to \infty$,
- (ii) for fixed u > 0, we have $L(x^u) \gg_u L(x)$ for all $x \geq 1$.

Theorem 1. Let f be a nonnegative multiplicative function for which

$$\sum_{p^k} \frac{f(p^k)}{p^k} < \infty, \tag{2}$$

where the sum is over all prime powers p^k with $k \ge 1$. Suppose that for a certain slowly increasing function L(x),

- (i) $\sum_{p^k \le x} f(p^k) \sim x/L(x),$
- (ii) for each fixed prime p_0 , we have $\sum_{p_0^k \leq x} f(p_0^k) = o(x/L(x))$.

Then as $x \to \infty$,

$$\sum_{n \le x} f(n) \sim C_f \frac{x}{L(x)}, \quad where \quad C_f := \sum_{m=1}^{\infty} \frac{f(m)}{m}.$$

Remark. The convergence of the sum defining C_f follows from (2) and the Euler product expansion $\sum_{m=1}^{\infty} \frac{f(m)}{m} = \prod_p \left(1 + \frac{f(p)}{p} + \frac{f(p^2)}{p^2} + \dots\right)$.

In contrast to Theorem B, our Theorem 1 requires the convergence of the series (2). However, the hypotheses on L(x) are fairly weak, and Theorem 1 applies in many cases when the partial sums of $f(p^k)$ are smaller than allowed by Theorem B. One such scenario is when $\sum_{p^k \leq x} f(p^k) \sim Ax/(\log x)^B$ for constants A > 0 and B > 1. Here the convergence criterion (2) follows by partial summation, and we may take $L = L_{A,B}$, where $L_{A,B}(x) := \frac{1}{A}(\log x)^B$ for $x \geq e$ and $L(x) = \frac{1}{A}$ for $x \leq e$.

In practice, Theorems A, B and Theorem 1 together cover most of the naturally occurring cases where $\sum_{p\leq x} f(p)$ possesses a reasonable asymptotic formula of the shape $x^{1-o(1)}$. If we apply iteratively condition (ii) in the definition of a slowly increasing function, we find that $L(x) \leq (\log x)^{O_L(1)}$ for large x. So none the theorems we have discussed apply when $\sum_{p^k \leq x} f(p^k)$ is very small, say smaller than $x^{1-\delta}$; here much remains to be understood.

We now give two examples of Theorem 1.

Example. Consider the completely multiplicative function f specified by setting $f(p) = 1/\log p$ for all primes p. It is simple to prove, using the prime number theorem, that

 $\sum_{p^k \leq x} f(p^k) \sim x/(\log x)^2$. Moreover, for any fixed prime p_0 , one has

$$\sum_{p_0^k \le x} f(p_0^k) \le \sum_{k \le \log x/\log 2} (\log 2)^{-k} \ll x^{\log(\frac{1}{\log 2})/\log 2} < x^{0.53}.$$

We conclude that the hypotheses of Theorem 1 are satisfied with $L(x) = L_{1,2}(x)$. Now replacing C_f by its Euler product expansion, we deduce from Theorem 1 that

$$\sum_{n \le x} f(n) \sim \frac{x}{(\log x)^2} \prod_{p} \left(1 + \sum_{k=1}^{\infty} \frac{1}{(p \log p)^k} \right).$$

Example. An arbitrary set of primes \mathscr{P} generates a multiplicative semigroup $S_{\mathscr{P}} := \{n \in \mathbb{N} : p \mid n \Rightarrow p \in \mathscr{P}\}$. Suppose that $\sum_{p \in \mathscr{P}} \frac{1}{p} < \infty$ and that the counting function $\pi_{\mathscr{P}}(x)$ of \mathscr{P} satisfies $\pi_{\mathscr{P}}(x) \sim x/L(x)$ for a slowly increasing function L(x). Then the characteristic function of $S_{\mathscr{P}}$ satisfies the hypotheses of Theorem 1, and we find that

$$\#\{n \le x : p \mid n \Rightarrow p \in \mathscr{P}\} \sim \frac{x}{L(x)} \prod_{p \in \mathscr{P}} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots\right), \text{ as } x \to \infty.$$

We now turn to our second topic. By a Golomb prime, we mean a member of the sequence $3, 5, 17, 23, 29, 53, 83, \ldots$ Here the rule for producing the next term in the sequence is to take the least prime that is not 1 modulo any previous term. Golomb introduced this sequence in 1955 [2], noting that the semigroup generated by these primes has the property that each of its squarefree elements n satisfies $\gcd(n, \varphi(n)) = 1$. (Cf. [5, Chapter 7.3].) We call this the Golomb semigroup.

In 1961, Erdős [1] gave an asymptotic formula for the number of Golomb primes $p \leq x$. Our second theorem describes the asymptotic behavior of the counting function of the Golomb semigroup.

Theorem 2. Let \mathscr{P} be the collection of Golomb primes. As $x \to \infty$, there are asymptotically $Gx/\log x$ members of the Golomb semigroup in [1,x], where the constant $G := \prod_{p \in \mathscr{P}} (1-1/(p-1)^2)$.

Theorem 2 may be quickly derived from Erdős's results in [1] and Shirokov's Theorem B. However, we have chosen instead to present a simple argument independent of Shirokov's work (but still using some of Wirsing's ideas). We believe that our short proof may be of some independent interest.

Notation. Throughout, we use O and o-notation, as well as the associated Vinogradov \ll and \gg notations, with their standard meanings. We also use $F \lesssim G$ to mean that $\limsup F/G \leq 1$. We write P(n) for the largest prime factor of n, with the convention that P(1) = 1. If p is a prime, we write $p^e \parallel n$ to mean that $p^e \mid n$ but that $p^{e+1} \nmid n$. We use $\omega(n)$ for the number of distinct primes dividing n, so that $\omega(n) = \sum_{p \mid n} 1$.

2. Proof of Theorem 1

We begin by demonstrating an upper bound for $\sum_{n\leq x} f(n)$ of the correct order of magnitude. This lemma and its proof were inspired by recent work of Gottschlich [3, Lemma 2.3].

Lemma 3. Let f be a nonnegative multiplicative function satisfying (2). Suppose that for a certain slowly increasing function L(x), we have

$$\sum_{p^k \le x} f(p^k) \ll x/L(x) \quad \text{for all } x \ge 1.$$
 (3)

Then for $x \geq 1$,

$$\sum_{n \le x} f(n) \ll x/L(x).$$

The implied constant in this last estimate depends on the implied constant in (3), an upper bound for the sum of the series in (2), and the function L.

Proof. By hypothesis, we can choose C_1 so that $\sum_{p^k \leq x} f(p^k) \leq C_1 x/L(x)$ holds for all $x \geq 1$. We choose C_2 so that $L(x) \leq C_2 L(\sqrt{x})$ for all $x \geq 1$, and we put $C_3 = \sum_{p^e} \frac{f(p^e)}{p^e}$. Finally, we set

$$C := \max\{C_1, C_2C_3\}.$$

We prove by induction that for every natural number k,

$$\sum_{\substack{n \le x \\ \omega(n) = k}} f(n) \le \frac{C^k}{(k-1)!} \frac{x}{L(x)}.$$
(4)

When k = 1, this holds since $C \ge C_1$. Now suppose the claim to be proved for k. Let $n \le x$ denote a generic natural number with k + 1 distinct prime factors. At most one of the prime power components of n can exceed \sqrt{x} . We pivot on the other components to discover that

$$k \sum_{\substack{n \le x \\ \omega(n) = k+1}} f(n) \le \sum_{p^e \le \sqrt{x}} \sum_{\substack{n \le x \\ p^e || n}} f(n) = \sum_{p^e \le \sqrt{x}} f(p^e) \sum_{\substack{m \le x/p^e \\ p \nmid m}} f(m)$$

$$\le \frac{C^k}{(k-1)!} x \sum_{p^e \le \sqrt{x}} \frac{f(p^e)}{p^e} \frac{1}{L(x/p^e)}.$$

Using that $L(x/p^e) \ge L(\sqrt{x}) \ge C_2^{-1}L(x)$, we find upon rearranging that

$$\sum_{\substack{n \le x \\ \omega(n) = k+1}} f(n) \le \frac{C^k C_2 C_3}{k!} \frac{x}{L(x)} \le \frac{C^{k+1}}{k!} \frac{x}{L(x)}.$$

This completes the proof of (4). Summing the relation (4) over $k \geq 1$ shows that $\sum_{n \leq x} f(n) \leq 1 + Ce^C x/L(x) \ll x/L(x)$, as desired.

Lemma 4. Suppose that f satisfies the hypotheses of Theorem 1 for a certainly slowly increasing function L(x). For each natural number $m \ge 1$, put

$$\mathscr{A}_m := \{ mp^e : p > P(m), e \ge 1 \}.$$

For every fixed natural number m,

$$\sum_{\substack{n \le x \\ n \in \mathcal{A}_m}} f(n) = \left(\frac{f(m)}{m} + o(1)\right) \frac{x}{L(x)}, \quad as \ x \to \infty.$$

Proof. Observe that

$$\sum_{\substack{n \leq x \\ n \in \mathscr{A}_m}} f(n) = f(m) \sum_{\substack{p^e \leq x/m \\ p \leq P(m)}} f(p^e) - f(m) \sum_{\substack{p^e \leq x/m \\ p \leq P(m)}} f(p^e).$$

By condition (ii) in the statement of Theorem 1, the subtracted term is o(x/L(x)). Also,

$$\sum_{p^e < x/m} f(p^e) \sim \frac{x/m}{L(x/m)} \sim \frac{x}{mL(x)},$$

using that f is slowly increasing. Collecting these estimates completes the proof.

Proof of Theorem 1. We have $\sum_{1 < n \le x} f(n) = \sum_{m \ge 1} \sum_{n \in \mathscr{A}_m \cap [1,x]} f(n)$. So for each fixed y, Lemma 4 yields $\sum_{n \le x} f(n) \ge (C_{f,y} + o(1))x/L(x)$ as $x \to \infty$, where we put $C_{f,y} := \sum_{m \le y} f(m)/m$. Letting $y \to \infty$ proves the lower bound implicit in the theorem. On the other hand, we also have from Lemma 4 that for each fixed y,

$$\limsup_{x \to \infty} \frac{\sum_{n \le x} f(n)}{x/L(x)} \le C_f + \limsup_{x \to \infty} \frac{\sum_{m > y} \sum_{\substack{n \le x \\ n \in \mathscr{A}_m}} f(n)}{x/L(x)}.$$

Let us show that the lim sup on the right-hand side tends to zero as $y \to \infty$. We first estimate the contribution from those n corresponding to $m \le \sqrt{x}$. Since $L(x/m) \ge L(\sqrt{x}) \gg L(x)$,

$$\sum_{y < m \le \sqrt{x}} \sum_{\substack{n \le x \\ n \in \mathcal{A}_m}} f(n) \le \sum_{y < m \le \sqrt{x}} f(m) \sum_{p^e \le x/m} f(p^e) \ll \sum_{m > y} f(m) \frac{x/m}{L(x/m)} \ll \frac{x}{L(x)} \sum_{m > y} \frac{f(m)}{m}.$$

Since the final sum tends to zero as $y \to \infty$, this contribution is acceptable. Next, consider the contribution from values of n with $m > \sqrt{x}$ and P(n) > y. We have

$$\sum_{\substack{n \le x \\ n \in \mathscr{A}_m, \ P(n) > y}} f(n) \le \sum_{\substack{p^e \le x \\ p > y}} f(p^e) \sum_{\sqrt{x} < m \le x/p^e} f(m).$$

We use Lemma 3 to estimate the inner sum and find, since $L(x/p^e) \ge L(\sqrt{x}) \gg L(x)$, that

$$\sum_{\substack{p^e \leq x \\ p > y}} f(p^e) \sum_{\sqrt{x} < m \leq x/p^e} f(m) \ll x \sum_{\substack{p^e \leq x \\ p > y}} \frac{f(p^e)}{p^e} \frac{1}{L(x/p^e)} \ll \frac{x}{L(x)} \sum_{p^e > y} \frac{f(p^e)}{p^e}.$$

Again, the remaining sum tends to zero as $y \to \infty$. To complete the proof, it suffices to show that

$$\sum_{\substack{x^{1/2} < n \le x \\ P(n) \le y}} f(n) = o(x/L(x)), \quad \text{as } x \to \infty.$$
 (5)

Write $n = p_0^e h$, where p_0^e is the largest prime power component of n. Then $p_0^e \ge n^{1/\omega(n)} \ge x^{1/2y}$, and we find that

$$\sum_{\substack{x^{1/2} < n \le x \\ P(n) \le y}} f(n) \le \sum_{h \le x^{1 - \frac{1}{2y}}} f(h) \sum_{\substack{x^{1/2y} \le p_0^e \le x/h \\ p_0 \le y}} f(p_0^e).$$
 (6)

Using assumption (ii) in the statement of Theorem 1, the inner sum is $o(\frac{x}{hL(x/h)})$, which is $o(\frac{x}{hL(x)})$ by condition (ii) in the definition of slowly increasing. (Recall that $x/h \geq p_0^e \geq x^{1/2y}$ and y is fixed.) Putting this estimate back into (6) and noting that $\sum_{h \leq x^{1-1/2y}} f(h)/h \leq C_f \ll_f 1$ completes the proof of (5) and also of Theorem 1.

Remark. In some applications, we may only have an upper bound $\sum_{p^k \leq x} f(p^k) \lesssim x/L(x)$ and not a precise asymptotic formula. In this case, our proof of Theorem 1 shows that (under all of the remaining hypotheses of that theorem) $\sum_{n \leq x} f(n) \lesssim C_f x/L(x)$. This result is similar in spirit to an upper-bound variant of Wirsing's Theorem A put forward by Halberstam and Richert [4, Theorem 2].

3. Proof of Theorem 2

Throughout this section, \mathscr{P} denotes the collection of Golomb primes. The following estimates are due to Erdős [1].

Theorem C. $As x \to \infty$,

$$\pi_{\mathscr{P}}(x) \sim \frac{x}{\log x \log \log x}$$

and

$$\prod_{\substack{p \in \mathscr{P} \\ p < x}} \left(1 - \frac{1}{p-1}\right)^{-1} \sim \log \log x.$$

Acknowledgements

We thank Daniel Loughran, whose MathOverflow question about mean values of multiplicative functions was the initial inspiration for this note.

References

- 1. P. Erdős, On a problem of G. Golomb, J. Austral. Math. Soc. 2 (1961/1962), 1–8.
- 2. S. W. Golomb, Sets of primes with intermediate density, Math. Scand. 3 (1955), 264-274.
- 3. A. Gottschlich, On positive integers n dividing the nth term of an elliptic divisibility sequence, New York J. Math. 18 (2012), 409–420.
- 4. H. Halberstam and H.-E. Richert, On a result of R. R. Hall, J. Number Theory 11 (1979), 76–89.
- 5. C. Hooley, Applications of sieve methods to the theory of numbers, Cambridge Tracts in Mathematics, vol. 70, Cambridge University Press, Cambridge, 1976.
- 6. B. M. Shirokov, *The summation of multiplicative functions*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) **106** (1981), 158–169, 172 (Russian).
- 7. E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen, Math. Ann. 143 (1961), 75–102.
- 8. _____, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Acad. Sci. Hungar. 18 (1967), 411–467.

University of Georgia, Department of Mathematics, Athens, Georgia 30602, USA *E-mail address*: pollack@uga.edu

SWARTHMORE COLLEGE, DEPARTMENT OF MATHEMATICS AND STATISTICS, SWARTHMORE, PENNSYLVANIA 19081, USA

E-mail address: etrevin1@swarthmore.edu