(1) Veröffentlichungsnummer:

0 117 972

A₁

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 84100159.7

(2) Anmeldetag: 09.01.84

(5) Int. Cl.³: A 61 N 1/04 A 61 N 1/36

(30) Priorität: 11.01.83 DE 3300672

(43) Veröffentlichungstag der Anmeldung: 12.09.84 Patentblatt 84/37

(84) Benannte Vertragsstaaten: DE FR IT NL

71) Anmelder: SIEMENS AKTIENGESELLSCHAFT Berlin und München Wittelsbacherplatz 2 D-8000 München 2(DE)

22) Erfinder: Elmqvist, Hakan, Dr. Sunnedalsvaegen 7 S-161 38 Bromma(SE)

22 Erfinder: Mund, Konrad, Dr. Langenbrucker Weg 6 D-8521 Uttenreuth(DE)

(54) Indifferente Elektrode für ein Herzschrittmachersystem.

(57) Um durch die indifferente Elektrode hervorgerufenen Probleme zu vermeiden oder zumindest zu vermindern, ist vorgesehen, diese Elektrode (1) im aktiven Bereich (10) mit einer Schicht zu versehen, die an der Phasengrenze zur Körperflüssigkeit eine hohe Doppelschichtkapazität besitzt. Vorteilhaft ist dazu eine poröse Schicht aus einem Carbid, Nitrid oder Carbonitrid wenigstens eines der Metalle Titan, Vanadium, Zirkonium, Niob, Molybdan, Hafnium, Tantal oder Wolfram. Weiterhin kann die Schicht aus Aktivkohle bestehen. Am einfachsten wird die Schicht durch Aufrauhen der vorhandenen Elektrodenoberfläche erzeugt.

SIEMENS AKTIENGESELLSCHAFT Berlin und München -1- Unser Zeichen VPA 83 P 7302 E

Siehe Titelseite

5 Herzschrittmachersystem

Die Erfindung betrifft ein Herzschrittmachersystem mit mit mindestens einer aktiven und einer indifferenten Elektrode, insbesondere dem Herzschrittmachergehäuse.

- 10 Derartige Herzschrittmachersysteme werden u.a. zur bifokalen Stimulierung benutzt und weisen beispielsweise
 eine aktive Elektrode auf, die nach der Implantation
 des Herzschrittmachers in die Vorkammer des Herzens geführt ist und eine weitere aktive Elektrode, die in die
- 15 Herzkammer geführt ist. An derartige implantierbare Reizelektroden, die allgemein aus einem isolierten Leiter und einem mit diesem Leiter verbundenen Elektrodenkopf mit dem aktiven Bereich bestehen, werden im wesentlichen zwei Forderungen gestellt:

20

1. Das Elektrodenmaterial muss körperverträglich sein, so dass die Bildung von Bindegewebsschichten mit einer Dicke grösser 100 um unterbunden wird, damit die Reizschwelle weitgehend konstant bleibt.

25

- 2. An der Phasengrenze Elektrode/Körperflüssigkeit soll sich eine hohe Doppelschichtkapazität ausbilden,so dass der Polarisationsanstieg während der Reizimpulse (0,5 bis 1 ms, 1 Hz, 10 mA, 10 mm² kleiner als 0,1 V bleibt.
- Diese Forderungen werden in besonders hohem Masse von Elektroden erfüllt, bei denen der aktive Bereich aus Glaskohlenstoff besteht (s.DE-OS 2613072).Hierbei wird eine hohe Doppelschichtkapazität von bis zu 0,1 F/cm² 35 durch eine Aktivierung der Oberfläche des Glaskohlen-

Gdl 1 Een / 3.1.1983

stoffes erreicht.

5

An die indifferente Elektrode wurde bisher lediglich die Forderung nach Körperverträglichkeit gestellt.

Bei den genannten Herzschrittmachersystemen mit zwei aktiven Elektroden und einer gemeinsamen indifferenten Elektrode können unter Umständen aufgrund von Wechselwirkungen zwischen den Elektroden Probleme entstehen.

- 10 Die Ursache dazu ist ein Polarisationsanstieg an der indifferenten Elektrode bei der Stimulierung mit einer aktiven Elektrode. Diese Polarisation baut sich nur langsam wieder ab und beeinflusst nachteilig die Möglichkeit, die andere aktive Elektrode zur Detektierung
- 15 von Herzdepolarisationen während dieser Zeit auszunützen, da die Polarisation eine Erhöhung der elektrochemischen Impedanz des Systemes darstellt, die das Erfassen der sehr kleinen Mesströme erheblich erschwert.
- 20 Weiterhin kann die Funktionsfähigkeit des Herzschrittmachersystemes durch Muskelzuckungen beeinträchtigt werden. Diese Muskelzuckungen beruhen im allgemeinen darauf, dass die Stimulierungsimpulse nicht nur den Herzmuskel, sondern auch reizbares Gewebe in der Nähe des
- 25 Herzschrittmachergehäuses, dass die indifferente Elektrode in dem Elektrodensystem darstellt, stimuliert. Die mit diesen Muskelzuckungen verbundenen elektrischen Spannungsimpulse können unter Umständen nicht vorhandene Herzaktivitäten vortäuschen. Bisher wurde versucht,
- 30 diese Gefahr zu beseitigen, indem der Herzschrittmacher mit einer isolierenden Hülle umgeben wurde. In dieser Hülle befindet sich ein Loch, durch das der Strom passieren kann (SIEMENS-ELEMA Prospekt ME 372/5406.101, 1979). Der Herzschrittmacher wird dann so implantiert,

35 dass sich das Loch auf der dem reizbaren Gewebe abge-

wendeten Seite befindet. Im allgemeinen hören damit die Muskelzuckungen auf.

Neben diesen Muskelzuckungen bestand weiterhin das Problem, dass der Herzschrittmacher Myopotentiale der Skelettmuskulatur in der Nähe des Herzschrittmachers als
Depolarisationen der Herzmuskulatur detektieren konnte.
Auch hierdurch bestand wieder die Gefahr einer Beeinträchtigung der Herzschrittmacherfunktion. Auch dieses
10 Problem liess sich durch die isolierende Hülle und die
richtige Plazierung des Herzschrittmachers bei der Implantation lösen.

Diese isolierende Hülle weist aber auch Nachteile auf.

Tum einen vermindert sich die Oberfläche der indifferenten Elektrode, wodurch die Polarisationseffekte ansteigen und die Effektivität der Stimulierungsimpulse und die Empfindlichkeit des Herzschrittmachers zum Detektieren von Herzaktivitäten herabgesetzt wird. Zum anderen ergeben sich hinsichtlich der Herstellung, der Hygiene und der Zuverlässigkeit Nachteile durch diese normalerweise aus irgendeinem organischen Material bestehende isolierende Hülle.

25 Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, die bislang bei Herzschrittmachersystemen der eingangs genannten Art durch die indifferente Elektrode hervorgerufenen Probleme zu vermeiden oder zumindest wesentlich zu vermindern und gleichzeitig die Empfind-30 lichkeit des Elektrodensystemes zu erhöhen.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass zumindest der aktive Bereich der indifferenten Elektrode eine Oberflächenschicht aufweist, die an der Phasen-35 grenze zur Körperflüssigkeit eine hohe Doppelschichtkapazität besitzt. Dadurch wird beispielsweise erreicht, dass der Polarisationsanstieg bei der Stimulierung senr gering ist. Bei einem bifokalen System kann daher mit einer Elektrode stimuliert und praktisch ohne Empfind5 lichkeitsverlust mit der anderen Elektrode detektiert werden.

Weiterhin ist es damit möglich, das Herzschrittmachergehäuse als indifferente Elektrode insgesamt leitfähig

10 zu belassen, d.h. von einer isolierenden Hülle abzusenen. Die bisher von der Isolierung freigelassene Fläche oder eine entsprechende wird mit der erfindungsgemässen Oberflächenschicht versehen und weist daher gegegenüber dem umgebenden Gewebe eine wesentlich niedri15 gere elektrochemische Impedanz auf als die restliche
Oberfläche des Herzschrittmachergehäuses. Dadurch erhält man eine Spannungs- respektive Stromteilung. Den
Bereich mit der erfindungsgemässen Oberflächenschicht
wird man bei der Implantation wiederum von dem reizba20 ren Gewebe oder von Myopotentiale erzeugenden Geweben
abwenden.

Besonders vorteilhaft für das Herzschrittmachersystem ist es beispielsweise, wenn die Reiz- und die indiffe- 25 rente Elektrode aus demselben Material besteht, weil dann keine materialbedingten Potentialdifferenzen auftreten können.

In einem in-vitro-Experiment wurden dazu eine TiN-Reiz30 elektrode und zwei aus Ti gefertigte Gehäusehälften des
Schrittmachers in einen mit 0,035 M NaCl gefüllten Elektrolyttrog so eingebaut, dass sie die Schrittmacheranordnung simulierten. Beide Gehäuseteile waren getrennt
kontaktiert, und über Messwiderstände (152) konnten die
35 Teilströme bei Belastung mit galvanostatischen Impulsen

- 5 - VPA 83 P 7302 E

(I = 10 mA, 1 ms) verfolgt werden. Es zeigte sich, dass zu Beginn des Impulses die der Reizelektrode zugewandte Gehäusehälfte bevorzugt wird und dass nach ca. 0,4 ms die hintere Gehäusehälfte stärker belastet wird.

Im Vergleichsexperiment wurde das hintere Gehäuseteil mit einer 6 µm dicken Schicht aus porösem TiN versehen. Dabei zeigte sich, dass jetzt bereits nach 0,2 ms bevorzugt der Strom von der Rückseite getragen wird. Diese 10 Seite soll also bei Implantation kein Muskelgewebe berühren.

Auf besonders einfache Art und Weise ergibt sich die erfindungsgemässe Oberflächenschicht, in dem man die 15 leitfähige Oberfläche der indifferenten Elektrode, bei Herzschrittmachergehäusen handelt es sich beispielsweise um metallische Materialien wie Platin/Iridium, im aktiven Bereich aufrauht. Durch dieses Aufrauhen vergrössert sich quasi die Oberfläche um ein Vielfaches 20 gegenüber einer glatten Oberflächenschicht, wodurch bereit eine erhebliche Steigerung der Doppelschichtkapazität erzielt wird. Eine weitere Steigerung der Doppelschichtkapazität erhält man dadurch, dass die Oberflächenschicht aus Aktivkohle – insbesondere aktiviertem 25 Glaskohlenstoff – besteht, wie es bereits für die Elektrodenköpfe der Reizelektroden bekannt ist.

Eine besonders einfach herzustellende und mechanisch stabile Oberflächenschicht bildet eine poröse Schicht 30 aus einem Carbid, Nitrid oder Carbonitrid wenigstens eines der Metalle Titan, Vanadium, Zirkonium, Niob, Molybdän, Hafnium, Tantal oder Wolfram.

Die die Carbide, Nitride und Carbonitride bildenden Me-35 talle sind sämtlich Elemente der vierten bis sechsten

_ 6 _ VPA 83 P 7302 E

Nebengruppe des Periodensystems und zählen somit zu den sogenannten Uebergangsmetallen. Carbide MeC und Nitride MeN der genannten Art (Me = Metall) sind beispielsweise TiC, TiN, ZrC, oder TaN. Die poröse Schicht ist dabei gut leitend und weist eine Dicke zwischen 1 und 100 µm auf. Dabei ergeben sich Doppelschichtkapazitäten die etwa in der gleichen Grössenordnung wie die von Aktivkohle liegen. Die Herstellung der Schichten ist jedoch erheblich einfacher. Als Träger10 material für die Schichten dienen gewebefreundliche Metalle oder Metall-Legierungen wie beispielsweise Elgiloy oder vorzugsweise Platin und Titan.

Um das Auftreten von Mischpotentialen zu vermeiden,
15 kann in Weiterbildung der Erfindung vorgesehen sein,
dass sich zwischen der porösen Schicht und dem Trägermaterial eine dichte Schicht befindet, die aus demselben Material besteht wie die poröse Schicht. Dadurch
ist es unter Umständen auch möglich, als Trägermaterial
20 ein nichtgewebefreundliches Material zu wählen, das zunächst mit einer dichten Schicht aus einem gewebefreundlichen Material umgeben wird, das dann wiederum zumindest im aktiven Bereich mit einer porösen Schicht diesen Materiales beschichtet wird. Die porösen Carbid-,
25 Nitrid- oder Carbonitrid-Schichten werden vorzugsweise
durch reaktives Ionenplattieren, d.h. durch physikalische Dampfabscheidung, auf dem als Substrat dienenden
Trägermaterial aufgebracht.

30 Anhand einer Figur wird im folgenden eine Ausführungsform des erfindungsgemässen Herzschrittmachersystemes näher beschrieben und erläutert. Die Figur zeigt dabei schematisch ein für die bifokale Stimulierung vorgesehenes System.

- 7 - VPA 83 P 7302 E

Das Herzschrittmachersystem besteht aus dem eigentlichen implantierbaren Herzschrittmacher 1 mit einem geschlossenen Gehäuse 10 beispielsweise aus Titan. An diesen Herzschrittmacher sei eine Elektrodenleitung 2 für 5 zwei Stimulierungselektroden 3 und 4 angeschlossen. Die Stimulierungselektrode 3 weist einen Elektrodenkopf 30 auf, der für die Stimulierung und zum Abfühlen der Herzaktivitäten in der linken Vorkammer 5 eines Patienten vorgesehen ist. Die Elektrodenleitung 4 weist einen 10 Elektrodenkopf 40 auf, der entsprechend für die Stimulierung und Detektierung von Herzaktivitäten in der linken Herzkammer 6 vorgesehen ist.

Wesentlich für dieses Herzschrittmachersystem ist nun, 15 dass das Gehäuse 10 des Herzschrittmachers 1 einen Bereich 11 mit einer porösen Schicht aus beispielsweise Titannitrid aufweist. Durch diese Beschichtung werden gleichzeitig zwei Effekte möglich. Zum einen wird die Doppelschichtkapazität zwischen dem Gehäuse 10 und dem 20 umgebenden nicht dargestellten Gewebe stark vergrössert, wodurch Polarisationseffekte vermieden werden. Zum anderen besteht die Möglichkeit, bei der Implantation das Gehäuse so anzuordnen, das die Schicht von reizbarem Muskelgewebe oder von Myopotentiale erzeugende Mus-25 kelgewebe abgewendet ist, so dass die daner rührenden elektrischen Impulse im wesentlichen unterdrückt werden und die Funktion des Herzschrittmachersystems nicht störend beeinflussen.

⁸ Ansprüche

¹ Figur

Patentansprüche

- Herzschrittmachersystem mit mindestens einer aktiven und einer indifferenten Elektrode, wobei für die letzte 5 re insbesondere das Herzschrittmachergehäuse dient, d a d u r c h g e k e n n z e i c h n e t , dass zumindest der aktive Bereich (10) der indifferenten Elektrode (1) eine Oberflächenschicht aufweist, die an der Phasengrenze zur Körperflüssigkeit eine hohe Doppelschichtkapazi 10 tät besitzt.
- 2. Herzschrittmachersystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Oberflächenschicht durch eine aufgerauhte Oberfläche der 15 Elektrode (1) gebildet ist.
- 3. Herzschrittmachersystem nach Anspruch 1, da durch gekennzeichnet, dass die Oberflächenschicht aus Aktivkohle insbesondere aktivier- 20 tem Glaskohlenstoff besteht.
- Herzschrittmachersystem nach Anspruch 1, da durch gekennzeichnet, dass die Oberflächenschicht aus einer porösen Schicht aus einem Carbid, Nitrid oder Carbonitrid wenigstens eines der Metalle Titan, Vanadium, Zirkonium, Niob, Molybdän, Hafnium, Tantal oder Wolfram besteht.
 - 5. Herzschrittmachersystem nach einem der Ansprüche 1 30 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass die Oberflächenschicht eine Schichtdicke zwischen 2 und 100 μm, vorzugsweise zwischen 5 und 50 μm, aufweist.
 - 35 6. Herzschrittmachersystem nach Anspruch 4, d a -

d u r c h g e k e n n z e i c h n e t , dass das Trägermaterial für die Oberflächenschicht Titan oder Platin ist.

- 5 7. Herzschrittmachersystem nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , dass sich zwischen dem Trägermaterial und der porösen Schicht eine dichte Schicht aus einem entsprechenden Material wie die poröse Schicht befindet.
- 8. Herzschrittmachersystem nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , dass die dichte Schicht eine Schichtdicke zwischen 2 und 10 µm aufweist.

EUROPEAN SEARCH REPORT

EP 84100159.7

			EF 64100155.7
DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int. Cl. ³⁾
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
A	US - A - 4 281 669 (MACGREGOR) * Spalte 3, Zeilen 8-15, 29-31; Spalte 5, Zeilen 14-41; Fig. 1,2 *	1,2,5- 8	
A	EP - A1 - 0 054 781 (KONTRON) * Seite 3, Zeilen 8-37 *	1,2,4, 6	
A	DE - A1 - 2 702 240 (CASE WESTERN) * Seite 9, Zeile 2 von unten - Seite 10, Absatz 2; Seite 1, Absatze 2,3 *	1-3,6	TECHNICAL FIELDS SEARCHED (Int. Ci. ³)
A	<pre>DE - A1 - 2 638 563 (VITATRON) * Seite 18, Ansprüche 1,2 *</pre>	6	
A	DE - A - 2 165 622 (SIEMENS) * Seite 5, Ansprüche 1-6; Seite 6, Ansprüch 8 *	4,6	

EUROPÄISCHER RECHERCHENBERICHT

TEP 84100159.7

EINSCHLÄGIGE DOKUMENTE				EP 64100159.7
Kategorie	Kennzeichnung des Dokumont der meßge	s mit Angsbo, soweit artordartich, iblichon Tailo	Botrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl. ³)
	DF _ A1 _ 2 700	6 636 (CORATOMIC)		A 61 N 1/04
Y	* Seite 15,	Zeilen 7,8; Zeilen 25,26 *	1	A 61 N 1/36
A	* Seite 15,	;	6	
	DE - A1 - 2 84	2 318 (SIEMENS)		
Y	* Seite 9,	Zeilen 18,19 *	1	
A		Zeilen 13-17; Ansprüche 4,5 * -	2,3	
Α	DE - A1 - 2 92	2 354 (BISPING)	2	
1	* Seite 5,	Absatz 3; Fig. *		
	-	_		
A		E TECHNIK, Band 25, August 1980, Berlin		RECHERCHIERTE SACHGEBIETE (Int. Ci. 3)
		Neue Schrittmacher- ericht aus Montreal"		A 61 N
	* Seite 172 Spalte, A	, Bild 3,4, linke bsatz 3 *		
A	DE - A1 - 2 61	- 3 072 (SIEMENS)	1-3	
		Ansprüche 1,2,5; Zeile 12 - Seite 16 *		
ļ	-			
Do	r vorliogando Racharchanbericht wur	do für allo Patentansprücho erstellt.	-	
		Abschlußdetum der Rocherche 27-04-1984	T	Prüter NEGWER
 				

KATEGORIE DER GENANNTEN DOKUMENTEN

X: von besonderer Bedeutung allein betrachtet

Y: von besonderer Bedeutung in Vorbindung mit einer anderen Veröffentlichung derselben Kategorie

A: technologischer Hintergrund

O: nichtschriftliche Offenbarung

P: Zwischenilteratur

T: der Erfindung zugrunde liegende Theorien oder Grundsätze

E: Alteres Patentdokument, das jedoch erst am oder nach dom Anmeldedatum veröffentlicht worden ist
 D: in der Anmeldung angeführtes Dokument
 L: aus andem Gründen angeführtes Dokument

[&]amp;: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument