Міністерство освіти і науки України Центральноукраїнський національний технічний університет Механіко-технологічний факультет

ЗВІТ ПРО ВИКОНАННЯ ЛАБОРАТОРНОЇ РОБОТИ № 9 з навчальної дисципліни "Базові методології та технології програмування"

ПРОГРАМНА РЕАЛІЗАЦІЯ ОБРОБЛЕННЯ МАСИВІВ ДАНИХ ТА СИМВОЛЬНОЇ ІНФОРМАЦІЇ

ЗАВДАННЯ ВИДАВ доцент кафедри кібербезпеки та програмного забезпечення Доренський О. П. https://github.com/odorenskyi/

ВИКОНАВ студент академічної групи КБ-23 Чернолєє К.С.

ПЕРЕВІРИВ ст. викладач кафедри кібербезпеки та програмного забезпечення

Дрєєва Г.М.

Мета роботи: полягає у набутті ґрунтовних вмінь і практичнихнавичок реалізації технології модульного програмування, застосування операторів С/С++ арифметичних, логічних, побітовихоперацій, умови, циклів та вибору під час розроблення статичнихбібліотек, заголовкових файлів та програмних засобів у кросплатформовому середовищі Code::Blocks.

- 1. Як складову заголовкового файлу ModulesПрізвище.h розробити класс ClassLab12_Прізвище формальне представлення абстракції сутності предментої області (об'єкта) за варіантом, поведінка об'єкта якого реалізовує розв'язування задачі 7.1.
- 2. Реалізувати додаток Тeacher, якй видає 100 звукових сигналів і в текстовий файл TestResults.txt запитує рядок "Встановлені вимоги порядку виконання лабораторної роботи порушено!", якщо файл проекта main.cpp під час його компіляції знаходиться не в \Lab12\prj, інакше створює об'єкт класу ClassLab12_Прізвище із заголовкового файлу ModulesПрізвище.h та виконує його unit-тестування за тестсьютом(ами) із \Lab12\TestSuite\, протоколюючи результати тестування в текстовий файл \Lab12\TestSuite\TestResults.txt.

Варіант 5

BAPIAHT № 5

— ЗАДАЧА 12.1 —

Дано наступну сутність предметної області (об'єкт).

Об'єкт 1 (екземпляр) класу ClassLab12_ Π різвище, як абстракція даної сутності предметної області, за наданим інтерфейсом забезпечує:

- надання² значень своїх атрибутів;
- надання значення своєї площі³;
- зміну значення заданого атрибута(ів)⁴.

⁴ Всі дані-члени класу є закритими (private); доступ до них (читання, запис) реалізують відповідні відкриті функції-члени (public), які у свою чергу забезпечують валідацію вхідних даних.

Площу кола можна обчислити:

$$S = \pi r^2$$
 as $S = \frac{1}{4}\pi d^2$,

де S – площа кола, R – радіус, d – діаметр.

Аналіз лабораторної роботи:

Ця програма написана на мові C++ і демонструє використання класів, методів, а також основних операцій з атрибутами об'єктів. Програма містить визначення класу ClassLab12_Chernoles, який моделює коло з атрибутами радіуса та кольору. Вона також демонструє основні методи класу для доступу до атрибутів, їх зміни та розрахунку площі кола.

¹ Під час створення об'єкта класу всі його атрибути ініціалізуються конструктором.

² Під наданням розуміється повернення результату відповідними функціями-членами об'єкта класу.

³ Площа обчислюється і повертається відповідною функцією-членом (методом) об'єкта класу за значеннями його атрибутів.

Лістинг програмного коду:

```
#include <iostream>
#include <string>
#include <cmath>
   // Конструктор
   ClassLab12 Chernoles(double r, std::string c) : radius(r), color(c) {}
       if (r > 0) {
          radius = r;
   void setColor(const std::string& c) {
   // Метод для вычисления площади
       return M PI * radius * radius;
```

```
// Метод для изменения площади и обновления радиуса
    if (area > 0) {
       radius = std::sqrt(area / M PI);
// Метод для изменения значения заданного атрибута
void updateAttribute(const std::string& attributeName, const std::string&
    if (attributeName == "color") {
        setColor(value);
    } else if (attributeName == "radius") {
            double r = std::stod(value);
        } catch (const std::invalid argument& e) {
            std::cerr << "Invalid radius value: " << value << std::endl;</pre>
    } else if (attributeName == "area") {
        try {
            double area = std::stod(value);
        } catch (const std::invalid argument& e) {
            std::cerr << "Invalid area value: " << value << std::endl;</pre>
std::cout << "Enter radius: ";</pre>
std::cin.ignore(); // Чтобы игнорировать оставшийся символ новой строки
std::cout << "Enter color: ";</pre>
std::getline(std::cin, color);
```

```
// Создание объекта класса с введенными данными
ClassLab12_Chernoles obj(radius, color);

// Вывод значений атрибутов
std::cout << "Radius: " << obj.getRadius() << std::endl;
std::cout << "Color: " << obj.getColor() << std::endl;

// Вычисление и вывод площади
std::cout << "Area: " << obj.calculateArea() << std::endl;
return 0;
```

Висновок: Ця програма ілюструє основи роботи з класами у С++, включаючи використання конструкторів, сеттерів, геттерів, обчислювальних методів і методів для оновлення атрибутів. Вона також демонструє обробку помилок при некоректному введенні даних для атрибута radius.

Назва тестового набору Test Suite Description	TS_12_1
Назва проекта / ПЗ Name of Project / Software	Lab #12
Рівень тестування Level of Testing	модульний
Автор тест-сьюта Test Suite Author	Чернолєс Кирило
Виконавець Implementer	Чернолєс Кирило

[Розрив обтікання текстом]

Ід-р тест- кейса / Test Case ID	Дії (кроки) / Action (Test Steps)	Очікуваний результат / Expected Result	Результат тестування (пройшов/не вдалося/ заблокований) / Test Result (passed/failed/ blocked)
TCM_1	Вхід: Radius: 20 Color: red	Вихід: Radius: 20 Color: red Area: 1256.64	PASSED

TCM_2	Вхід: Radius:1 Color:blue	Вихід: Radius: 1 Color: blue Area: 3.14159	PASSED
TCM_3	Вхід: Radius: 0 Color: red	Вихід: Radius: 0 Color: red Area: 0	PASSED
TCM_4	Вхід: Radius: -1 Color: green	Вихід: Radius: -1 Color: green Area: 3.14159	PASSED
TCM_5	Вхід: Enter radius:1000000000 Enter color:blue	Вихід: Radius: 1e+09 Color: blue Area: 3.14159e+18	PASSED