1-

Explain what does the marginal probability $P(F|E) = \Sigma_A P(F, A|E)$ calculate?

Answer:

P(F, A|E) calculates the probability of translating F as a foriegn language with an alignment A (matrix A) given E as a target language.

The whole equation P(F|E) then calculates all possible alignments A of a foriegn language F sentence, given a target language E sentence.

In other words, it calculates the summation of probabilities of a sentence in foriegn language and it's all alignments (E-F alignment matrices) given a sentence in target language E.

2-

$$P(F, A|E) = \prod_{j=1}^{J} P(f_j|e_j).$$
 (2)

Figure 1: Two pairs of E and F. Each pair has two alignments indicated by the links between the words.

$P(\text{casa} \mid \text{green}) = 0.5$	$P(\text{verde} \mid \text{green}) = 0.5$	$P(\text{la} \mid \text{green}) = 0$
$P(\text{casa} \mid \text{house}) = 0.5$	$P(\text{verde} \mid \text{house}) = 0.25$	$P(\text{la} \mid \text{house}) = 0.25$
$P(\text{casa} \mid \text{the}) = 0.5$	$P(\text{verde} \mid \text{the}) = 0$	$P(\text{la} \mid \text{the}) = 0.5$

Table 1: Translation probabilities P(f|e)

E-step a

$$P(A|E,F) = P(A|E) = \frac{P(F,A|E)}{\sum_{A} P(F,A|E)}$$

 $\Sigma_A P(F, A|E)$ for $F = case \ verde \ and \ E = green \ house : 0.125 + 25 = 0.375$

green house casa verde
$$P(A|E,F) = 0.125 / 0.375 = 1/3$$
 green house $P(A|E,F) = 0.25 / 0.375 = 2/3$

$$\Sigma_{A}P(F,A|E)$$
 for $F=la$ casa and $E=the$ house: 0.125 + 25 = 0.375

the house
| 3)

1a casa
$$P(A|E,F) = 0.25 / 0.375 = 2/3$$
the house
| 1a casa $P(A|E,F) = 0.125 / 0.375 = 1/3$

E-step c

Expected count $(W_f|W_e) = \Sigma P(when W_f is aligned with W_e)$, as ws are terms in foriegn and target language

Count(casa green) = 1/3	Count(verde green) = ² / ₃	count(la green) = 0	Total (green) = 1	
count(casa house) = ² / ₃ + ² / ₃	count(verde house) = 1/3	count(la house) = 1/3	total(house) = 2	
count(casa the) = 1/3	count(verde the) = 0	count(la the) = 2/3	total(the) = 1	

3-M-step: re-estimate the translation probabilities by row normalization of the obtained table in the previous question's answer.

Count(casa green) = 1/3	Count(verde green) = 3/3	count(la green) = 0	
count(casa house) = 3/3	count(verde house) = 1/4	count(la house) = %	
count(casa the) = 1/3	count(verde the) = 0	count(la the) = 3/3	

4-

Figure 2: A translation of a French sentence into an English sentence

Answer: A translation of a french sentence into an English sentence means the French is the Source (E) and the english language is the target (F). So, we will have 4 rows and 6 columns.

E\F	1	2	3	4	5	6
1	1					
2		1				
3			1	1	1	1
4			1	1	1	1

^{*}For easier readability I only put 1s for the matches. Empty cells have 0 values.

5-

```
Cand 1: It is a guide to action which ensures that the military always obeys the commands of the party

Cand 2: It is to insure the troops forever hearing the activity guidebook that party direct

Ref 1: It is a guide to action that ensures that the military will forever heed Party commands

Ref 2: It is the guiding principle which guarantees the military forces always being under the command of the Party

Ref 3: It is the practical guide for the army always to heed the directions of the party
```

$$\operatorname{prec}_n = \frac{\sum_{C \in \{Candidates\}} \sum_{n-gram \in C} \operatorname{Count}_{\operatorname{match}}(n \text{-} \operatorname{gram})}{\sum_{C' \in \{Candidates\}} \sum_{n-gram' \in C'} \operatorname{Count}(n \text{-} \operatorname{gram'})}$$

To compute $Prec_2$ For precision for bigrams we have to check every possible bi-grams in cand1 and cand 2 with all three references.

Black circles show there is a match with the bigram and Ref 1, and blue circles show a match to the ref 2. Since, I check matches with references in order of 1 to 3, a black circle does not mean there is only a match with the ref 1, but the first match was seen in the ref1.

(t is to ensure the troops forever hearing the activity guidebook that party direct

$$Prec_{2,candid1} = matches / all - biragram = 10/17$$

 $Prec_{2,candid2} = matches / all - biragram = 1/13$

Clearly the first candidate is a better candidate, based on Precision of bigrams.