Section with Barbara

Week 4

AI Stories

Projects

Learning

Al Stories: AlphaGo

SUPERVISED LEARNING

Make predictions from data

UNSUPERVISED LEARNING

Find patterns in data

REINFORCEMENT LEARNING

Generates data from an environment

https://towardsdatascience.com/

PyCon Talks

Andrew Ng's Machine Learning Course

PROCESS

Data Collection, Feature Engineering, Server Infrastructure

PAYOFF

Configuration, Evaluation, Verification, Debugging

PREDICTION

Automation, Deployment, Management, Monitoring

PROCESS

SQL, JSON, Pandas, Numpy, APIs, etc

PAYOFF

Sci-Kit Learn, Keras, Tensorflow, Pytorch, etc

PREDICTION

Kubernetes, Spark, Flask, Dask, etc

DATA MIRRORS HUMAN BIAS

https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html

DATA AND HUMAN PRIVACY

https://www.nytimes.com/series/new-york-times-privacy-project

GAMING

AUTONOMOUS DRIVING

FINANCIAL TRADING

projects

shopping

def load_data(filename):

Follow the instructions in the docstring (the docstring was too long to include on this slide)

shopping


```
def train_model(evidence, labels):
    """

    Given a list of evidence lists and a list of
    labels, return a fitted k-nearest neighbor model
    (k=1) trained on the data.
    """
```

Check out the lecture if you are stuck!

shopping

def evaluate(labels, predictions):

......

11 11 11

Given a list of actual labels and a list of predicted labels, return a tuple (sensitivity, specificity). Assume each label is either a 1 (positive) or 0 (negative). `sensitivity` should be a floating-point value from 0 to 1 representing the "true positive rate": the proportion of actual positive labels that were accurately identified. `specificity` should be a floating-point value from 0 to 1 representing the "true negative rate": the proportion of actual negative labels that were accurately identified.

See next slide for hints!

confusion matrix

	Actual Positive	Actual Negative
Predicted Positive	True Positive	False Positive
Predicted Negative	False Negative	True Negative

sensitivity

	Actual Positive	Actual Negative
Predicted Positive	True Positive	False Positive
Predicted Negative	False Negative	True Negative

specificity

	Actual Positive	Actual Negative
Predicted Positive	True Positive	False Positive
Predicted Negative	False Negative	True Negative

sensitivity = (predicted and labeled positive) /(labeled positive)

Specificity = (predicted and labeled negative)
/(labeled negative)

sensitivity and specificity are two of many metrics to evaluate your machine learning model. always choose a metric that makes sense for your model and your business or research objective.


```
def get_q_value(self, state, action):
    """"
    Return the Q-value for the state `state` and the action `action`. If no Q-value exists yet in `self.q`, return 0.
    """"
```

Be mindful of the data type `state` and `action` should be

def update_q_value(self, state, action, old_q, reward,
future_rewards):

11 11 11

Update the Q-value for the state `state` and the action `action` given the previous Q-value `old_q`, a current reward `reward`, and an estiamte of future rewards `future_rewards`. Use the formula: Q(s, a) <- old value estimate + alpha * (new value estimate - old value estimate) where `old value estimate` is the previous Q-value, `alpha` is the learning rate, and `new value estimate` is the sum of the current reward and estimated future rewards.

All that is expected is for you to implement the formula!

def best_future_reward(self, state):

Given a state `state`, consider all possible `(state, action)` pairs available in that state and return the maximum of all their Q-values. Use 0 as the Q-value if a `(state, action)` pair has no Q-value in `self.q`. If there are no available actions in `state`, return 0.

Hint: Q-values can be negative

def choose_action(self, state, epsilon=True):

Given a state `state`, return an action `(i, j)` to take. If `epsilon` is `False`, then return the best action available in the state (the one with the highest Q-value, using \emptyset for pairs that have no Q-values). If `epsilon` is `True`, then with probability `self.epsilon` choose a random available action, otherwise choose the best action available. If multiple actions have the same Q-value, any of those options is an acceptable return value.

 $\Pi/\Pi/\Pi$

The python module `random` will be helpful here! How do you determine if something is within a probability?