Universidade de São Paulo Instituto de Matemática e Estatística Bachalerado em Ciência da Computação

Rafael Mota Gregorut

Título da monografia se for longo ocupa esta linha também

São Paulo Dezembro de 2015

Título da monografia se for longo ocupa esta linha também

 ${\it Monografia final \ da \ disciplina}$ ${\it MAC0499-Trabalho \ de \ Formatura \ Supervisionado.}$

Orientadora: Prof. Dr. Ana Cristina Vieira de Melo

São Paulo Dezembro de 2015

Resumo

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave).

Palavra-chave: palavra-chave1, palavra-chave2, palavra-chave3.

Abstract

Elemento obrigatório, elaborado com as mesmas características do resumo em língua portuguesa.

Keywords: keyword1, keyword2, keyword3.

Contents

1	Con	\mathbf{cepts}		1		
	1.1	1.1 Statecharts				
		1.1.1	Nondeterministic finite automata	1		
		1.1.2	A nondeterministic automaton example	2		
		1.1.3	Statechart models	2		
		1.1.4	Orthogonality	2		
		1.1.5	Hierarchy	2		
		1.1.6	Broadcasting	2		
		1.1.7	History	2		
		1.1.8	A statechart example	2		
A	Títı	ılo do	apêndice	3		
Bi	bliog	graphy		5		

Chapter 1

Concepts

1.1 Statecharts

A software specification is a reference document which contains the requisites the program should satisfy. It can also be understood as a model of how the system should behave. A specification may be developed with natural language, with user cases for example, or using formal software engeering techniques.

Statechats are a type of formal software specification based on finite states machines (FSM) specially used in complex systems modeling, such as reactive systems and were defined in [1]. Similar to an automaton, a statechart has sets of states, transitions and input events that cause change of state. However, a statechart has additional features: orthogonality, hierarchy, broadcasting and history.

1.1.1 Nondeterministic finite automata

Definition: A nondeterministic finite automaton is a quintuple $M = (K, \Sigma, \Delta, s, F)$, where:

- K is the set of states
- Σ is the input alphabet
- Δ is the transition relation, a subset of $K \times (\Sigma \cup e) \times K$, where e is the empty string
- $s \in K$ is the initial state
- $F \subseteq K$ is the set of final states

Each tripe $(q, a, p) \in \Delta$ is a transition of M. If M is currently in state q and the next input is a, then M may follow any transition of the form (q, a, p) or (q, e, p). In the later case, no input is read. A configuration of M is an element of K^* and the relation \vdash (yields one step) between two configurations is defined as: $(q, w) \vdash (q', w') \Leftrightarrow$ there is a $u \in \Sigma \cup e$ such that w = uw' and $(q, u, q') \in \Delta$.

Further information and formalism regarding finite automata can be obtained in [2].

2 CONCEPTS

- 1.1.2 A nondeterministic automaton example
- 1.1.3 Statechart models
- 1.1.4 Orthogonality
- 1.1.5 Hierarchy
- 1.1.6 Broadcasting
- 1.1.7 History
- 1.1.8 A statechart example

Appendix A

Título do apêndice

Texto texto.

Bibliography

- [1] David Harel, Amir Pnueli, Jeanette Schmidt, and Rivi Sherman. On the formal semantics of statecharts. In *Proceedings of Symposium on Logic in Computer Science*, pages 55–64, 1987. 1
- [2] Harry R. Lewis and Christos H. Papadimitriou. *Elements of the Theory of Computation*. Prentice Hall, Inc, 2 edition, 1998. 1