Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчет по лабораторной работе №4

Тема: Раздельная компиляция Вариант 16

Выполнил студент гр. 3530901/90002		П.В.Рубинова
	(подпись)	
Руководитель		Д. С. Степанов
	(подпись)	
	· · · · · · · · · · · · · · · · · · ·	2021 г.

Санкт-Петербург

Постановка задачи:

- 1. На языке С разработать функцию, реализующую определенную вариантом задания функциональность. Поместить определение функции в отдельный исходный файл, оформить заголовочный файл. Разработать тестовую программу на языке С.
- 2. Собрать программу «по шагам». Проанализировать выход препроцессора и компилятора. Проанализировать состав и содержимое секций, таблицы символов, таблицы перемещений и отладочную информацию, содержащуюся в объектных файлах и исполняемом файле.
- 3. Выделить разработанную функцию в статическую библиотеку. Разработать make-файлы для сборки библиотеки и использующей ее тестовой программы. Проанализировать ход сборки библиотеки и программы, созданные файлы зависимостей.

Формулировка задачи:

Определение максимального простого числа, не превышающего заданное число N, методом решета Эратосфена (используется рабочий массив длины не более N).

Теория:

Решето Эратосфена — алгоритм нахождения всех простых чисел до некоторого целого числа N, который приписывают древнегреческому математику Эратосфену Киренскому.

В данном случае решето подразумевает фильтрацию всех чисел за исключением простых. По мере обработки массива чисел нужные числа (простые) остаются, а ненужные (составные) исключаются.

Программа на языке С

Листинг 1. Тестовая программа main.c.

```
#include <stdio.h>
#include "lab4C.h"

int main() {
    int array[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
    int n = 10;
    lab4C(array, n);
    printf("%d", array[0]);
    return 0;
}
```

Листинг 2. Основной файл lab4C.c.

```
void lab4C(int array[], int n) {
    for(int i = 1; i < n; i++){
        if(array[i] != 0){
            array[0] = i + 1;
            for(int j = i; j < n; j += i + 1){
                 array[j] = 0;
            }
        }
    }
}</pre>
```

Листинг 3. Заголовочный файл lab4C.h.

```
#ifndef lab4C_H
#define lab4C_H
void lab4C(int array[], int n);
```

#endif

Тестирование

```
#include <stdio.h>
   3 void lab4C(int array[], int n) {
          for(int i = 1; i < n; i++){
              if(array[i] != 0){
                  array[0] = i + 1;
                  for(int j = i; j < n; j += i + 1){
                      array[j] = 0;
              }
          }
  11
  12
  13
  14 int main() {
  15
          int array[] = \{1, 1, 1, 1, 1, 1, 1, 1, 1, 1\};
          int n = 10;
  17
          lab4C(array, n);
          printf("%d", array[0]);
  18
  19
          return 0;
  21 }
...Program finished with exit code 0
Press ENTER to exit console.
```

В результате программы в нулевой элемент массива записывается, а впоследствии и выводится на экран, максимальное простое число, не превышающее заданное число N.

Сборка программы «по шагам»

Препроцессирование

Препроцессирование выполняется следующими командами:

```
riscv64-unknown-elf-gcc -march=rv64iac -mabi=lp64 -O1 -v -E main.c -o main.i riscv64-unknown-elf-gcc -march=rv64iac -mabi=lp64 -O1 -v -E lab4C.c -o lab4C.i
```

Результат препроцессирования содержится в файлах main.i и lab4C.i. По причине того, что main.c содержит заголовочный файл стандартной библиотеки языка C stdio.h, результат препроцессирования этого файла имеет достаточно много добавочных строк.

Листинг 4. Файл main.i (фрагмент)

```
# 1 "main.c"
# 1 "<built-in>"
#1 "<command-line>"
# 1 "main.c"
# 2 "main.c" 2
#1 "lab4C.h" 1
#3 "lab4C.h"
void lab4C(int array[], int n);
# 3 "main.c" 2
```

```
int main() {
  int array[] = {1, 1, 1, 1, 1, 1, 1, 1, 1};
  int n = 10;
  lab4C(array, n);
  printf("%d", array[0]);
  return 0;
}
```

Листинг 5. Файл lab4C.i

```
# 1 "lab4C.c"
# 1 "<built-in>"
#1 "<command-line>"
# 1 "lab4C.c"
# 1 "lab4C.h" 1
void lab4C(int array[], int n);
# 2 "lab4C.c" 2
void lab4C(int array[], int n) {
  for(int i = 1; i < n; i++){
     if(array[i]!=0){
       array[0] = i + 1;
       for(int j = i; j < n; j += i + 1){
          array[j] = 0;
        }
```

Компиляция

Компиляция препроцессированных файлов осуществляется следующими командами:

```
riscv64-unknown-elf-gcc -march=rv64iac -mabi=lp64 -O1 -v -S -fpreprocessed main.i -o main.s
riscv64-unknown-elf-gcc -march=rv64iac -mabi=lp64 -O1 -v -S -fpreprocessed lab4C.i -o lab4C.s
```

Листинг 6. Файл main.s

```
"main.c"
        .file
       .option nopic
       .attribute arch, "rv64i2p0 a2p0 c2p0"
       .attribute unaligned access, 0
       .attribute stack align, 16
        .text
        .section .rodata.str1.8,"aMS",@progbits,1
       .align
               3
.LC1:
       .string "%d"
       .text
       .align
               1
              main
        .globl
               main, @function
       .type
main:
               sp,sp,-64
       addi
       sd
               ra,56(sp)
               a5,%hi(.LANCHOR0)
       lui
               a5,a5,%lo(.LANCHOR0)
       addi
               a1,0(a5)
       ld
```

```
a2,8(a5)
       ld
       ld
               a3,16(a5)
       ld
               a4,24(a5)
       ld
               a5,32(a5)
       sd
               a1,8(sp)
       sd
               a2,16(sp)
       sd
               a3,24(sp)
               a4,32(sp)
        sd
       sd
               a5,40(sp)
       li
               a1,10
       addi
               a0,sp,8
               lab4C
       call
       1w
               a1,8(sp)
       lui
               a0,%hi(.LC1)
       addi
               a0,a0,%lo(.LC1)
       call
               printf
       li
               a0,0
       ld
               ra,56(sp)
       addi
               sp,sp,64
       jr
               ra
       .size
               main, .-main
       .section .rodata
        .align
               3
        .set
                .LANCHOR0,.+0
.LC0:
        .word
               1
       .word
               1
        .word
               1
        .word
               1
        .word
               1
```

```
.word 1
```

Листинг 7. Файл lab4C.s

```
.file
                "lab4C.c"
        .option nopic
        .attribute arch, "rv64i2p0\_a2p0\_c2p0"
        .attribute unaligned_access, 0
        .attribute stack_align, 16
        .text
                1
        .align
        .globl
               lab4C
                lab4C, @function
        .type
lab4C:
        li
                a5,1
        ble
                a1,a5,.L1
                a2,a0,4
        addi
                a3,1
        li
        li
                t1,4
                t1,t1,a0
        sub
        j
                .L5
.L3:
        addiw a3,a3,1
                a2,a2,4
        addi
                a1,a3,.L1
        beq
.L5:
```

```
a5,0(a2)
       1w
       beq
               a5,zero,.L3
       addiw a5,a3,1
       sext.w a6,a5
               a5,0(a0)
       sw
       ble
               a1,a3,.L3
       add
               a7,t1,a2
               a4,a2
       mv
               a5,a3
       mv
.L4:
               zero,0(a4)
       sw
       addw
               a5,a5,a6
       add
               a4,a4,a7
       bgt
               a1,a5,.L4
       j
               .L3
.L1:
       ret
       .size
               lab4C, .-lab4C
               "GCC: (SiFive GCC-Metal 10.2.0-2020.12.8) 10.2.0"
       .ident
```

Ассемблирование

Ассемблирование для получения объектных файлов программы осуществляется следующими командами:

riscv64-unknown-elf-gcc -march=rv64iac -mabi=lp64 -v -c main.s -o main.o riscv64-unknown-elf-gcc -march=rv64iac -mabi=lp64 -v -c lab4C.s -o lab4C.o

Отображение заголовков секций файла "main.o" осуществляется командой:

riscv64-unknown-elf-objdump -h main.o

Листинг 8. Заголовки секций файла main.o

file format elf64-littleriscy main.o: Sections: Idx Name Size VMA LMA File off Algn 0.text CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE 1 .data CONTENTS, ALLOC, LOAD, DATA 2.bss **ALLOC** 2**3 CONTENTS, ALLOC, LOAD, READONLY, DATA 4 .rodata 2**3 CONTENTS, ALLOC, LOAD, READONLY, DATA 5 .comment 2**0 CONTENTS, READONLY

CONTENTS, READONLY

Отображение таблицы символов файла "main.o" осуществляется командой:

riscv64-unknown-elf-objdump -t main.o

Листинг 9. Таблица символов файла main.o

```
file format elf64-littleriscy
    main.o:
    SYMBOL TABLE:
    00000000000000000001
                         df *ABS* 000000000000000 main.c
    00000000000000000001
                         d .text 000000000000000 .text
    00000000000000000001
                          d .data 000000000000000 .data
    00000000000000000001
                         d .bss 000000000000000 .bss
    000000000000000000001
                          d .rodata.str1.8 00000000000000 .rodata.str1.8
                          d .rodata
    000000000000000000001
                                       0000000000000000 .rodata
                           .rodata
    00000000000000000001
                                      0000000000000000 .LANCHOR0
                           .rodata.str1.8 0000000000000000 .LC1
    00000000000000000001
    00000000000000000001
                          d .comment
                                         0000000000000000 .comment
    000000000000000000001
                          d .riscv.attributes
                                             0000000000000000
.riscv.attributes
    00000000000000000 g
                           F.text 000000000000046 main
                           *UND* 000000000000000 lab4C
    0000000000000000
                       *UND* 000000000000000 printf
0000000000000000
```

Отображение таблицы перемещений файла "main.o" осуществляется командой:

riscv64-unknown-elf-objdump -r main.o

Листинг 10. Таблица перемещений файла main.o

file format elf64-littleriscy main.o: RELOCATION RECORDS FOR [.text]: **OFFSET TYPE VALUE** 0000000000000004 R RISCV HI20 .LANCHOR0 0000000000000004 R RISCV RELAX *ABS* 0000000000000008 R RISCV LO12 I .LANCHOR0 0000000000000008 R RISCV RELAX *ABS* 0000000000000024 R RISCV CALL lab4C 0000000000000024 R RISCV RELAX *ABS* 0000000000000002e R RISCV HI20 .LC1 0000000000000002e R RISCV RELAX *ABS* 00000000000000032 R RISCV LO12 I .LC1 0000000000000032 R RISCV RELAX *ABS* 0000000000000036 R RISCV CALL printf 0000000000000036 R RISCV RELAX *ABS*

Аналогичными командами отобразим заголовки секций, таблицу символов и таблицу перемещений файла lab4C.c.

Листинг 11. Заголовки секций файла lab4C.o

lab4C.o:	file format elf64-littleriscv				
Sections:					
Idx Name	Size	VMA	LMA	File off Alg	n
0 .text	00000048	000000000	00000000	000000000000000000000000000000000000000	00000040 2**1
	CONTENTS	S, ALLOC,	LOAD, RE	ELOC, READONLY,	CODE
1 .data	00000000	00000000	00000000	00000000000000000	00000088 2**0
	CONTENTS	S, ALLOC,	LOAD, DA	ATA	
2 .bss	00000000	000000000	00000000	00000000000000000	00000088 2**0

ALLOC

CONTENTS, READONLY

CONTENTS, READONLY

Листинг 12. Таблица символов файла lab4C.o

file format elf64-littleriscy lab4C.o: SYMBOL TABLE: 0000000000000000 1 df *ABS* 000000000000000 lab4C.c 00000000000000000001 d .text 000000000000000 .text d .data 000000000000000 .data 00000000000000000001 000000000000000000001 d .bss 000000000000000 .bss 00000000000000461 .text 00000000000000 .L1 000000000000001c1 .text 000000000000000 .L5 00000000000000141 .text 000000000000000 .L3 00000000000000361 .text 000000000000000 .L4 d .comment 00000000000000000001 0000000000000000 .comment 000000000000000000001 d .riscv.attributes 0000000000000000 .riscv.attributes F.text 000000000000048 lab4C 00000000000000000 g

Листинг 13. Таблица перемещений файла lab4C.o

lab4C.o: file format elf64-littleriscv

RELOCATION RECORDS FOR [.text]:

OFFSET TYPE VALUE

 $000000000000000002 \ R_RISCV_BRANCH \quad .L1$

```
0000000000000012 R_RISCV_RVC_JUMP .L5
```

 $0000000000000018\ R_RISCV_BRANCH\quad .L1$

0000000000000002a R_RISCV_BRANCH .L3

00000000000000040 R_RISCV_BRANCH .L4

 $00000000000000044 \; R_RISCV_RVC_JUMP \; .L3$

Компоновка

Компоновка осуществляется следующей командой:

```
riscv64-unknown-elf-gcc -march=rv64iac -mabi=lp64 -v main.o lab4C.o
```

Для того чтобы рассмотреть секцию кода созданного исполняемого бинарного файла a.out воспользуемся следующей командой:

riscv64-unknown-elf-objdump –j .text –d –M no-aliases a.out >a.ds

Листинг 14. Исполняемый файл a.out (фрагмент)

```
file format elf64-littleriscv
a.out:
Disassembly of section .text:
...
000000000010156 <main>:
                               c.addi16sp
  10156:
               7139
                                               sp,-64
  10158:
               fc06
                               c.sdsp ra,56(sp)
  1015a:
               67f5
                               c.lui
                                       a5,0x1d
  1015c:
               83878793
                               addi
                                       a5,a5,-1992 # 1c838 < clzdi2+0x42>
  10160:
               638c
                               c.ld
                                       a1,0(a5)
  10162:
               6790
                               c.ld
                                       a2,8(a5)
 10164:
               6b94
                               c.ld
                                       a3,16(a5)
               6f98
                               c.ld
  10166:
                                       a4,24(a5)
  10168:
               739c
                               c.ld
                                       a5,32(a5)
  1016a:
               e42e
                               c.sdsp a1,8(sp)
  1016c:
               e832
                               c.sdsp a2,16(sp)
```

1016e:	ec36	c.sdsp	a3,24(sp)
10170:	f03a	c.sdsp	a4,32(sp)
10172:	f43e	c.sdsp	a5,40(sp)
10174:	45a9	c.li	a1,10
10176:	0028	c.addi4	spn a0,sp,8
10178:	018000ef	jal	ra,10190 <lab4c></lab4c>
1017c:	45a2	c.lwsp	a1,8(sp)
1017e:	6575	c.lui	a0,0x1d
10180:	83050513	addi	a0,a0,-2000 # 1c830 <clzdi2+0x3a></clzdi2+0x3a>
10184:	1a8000ef	jal	ra,1032c <printf></printf>
10188:	4501	c.li	a0,0
1018a:	70e2	c.ldsp	ra,56(sp)
1018c:	6121	c.addi1	6sp sp,64
1018e:	8082	c.jr	ra
00000000001	0190 <lab4c>:</lab4c>		
10190:	4785	c.li	a5,1
10192:	04b7d263	bge	a5,a1,101d6 <lab4c+0x46></lab4c+0x46>
10196:	00450613	addi	a2,a0,4
1019a:	4685	c.li	a3,1
1019c:	4311	c.li	t1,4
1019e:	40a30333	sub	t1,t1,a0
101a2:	a029	c.j	101ac < lab4C+0x1c>
101a4:	2685	c.addiv	v a 3, 1
101a6:	0611	c.addi	a2,4
101a8:	02d58763	beq	a1,a3,101d6 < lab4C+0x46>
101ac:	421c	c.lw	a5,0(a2)
101ae:	dbfd	c.beqz	a5,101a4 < lab4C+0x14>
101b0:	0016879b	addiw	a5,a3,1
101b4:	0007881b	addiw	a6,a5,0

101b8:	c11c	c.sw	a5,0(a0)
101ba:	feb6d5e3	bge	a3,a1,101a4 <lab4c+0x14></lab4c+0x14>
101be:	00c308b3	add	a7,t1,a2
101c2:	8732	c.mv	a4,a2
101c4:	87b6	c.mv	a5,a3
101c6:	00072023	SW	zero,0(a4)
101ca:	010787bb	addw	a5,a5,a6
101ce:	9746	c.add	a4,a7
101d0:	feb7cbe3	blt	a5,a1,101c6 < lab4C+0x36>
101d4:	bfc1	c.j	101a4 < lab4C+0x14>
101d6:	8082	c.jr	ra

Создание статической библиотеки и make-файлов

Выделим функцию lab4C.c в статическую библиотеку lab4Clib. Тестовую программу main.c оставим без изменений.

Для создания статической библиотеки получим объектный файл используемой программы lab4C.o, воспользовавшись следующей программой:

riscv64-unknown-elf-gcc -march=rv64iac -mabi=lp64 -O1 -c lab4C.c -o lab4C.o

Соберем библиотеку следующей командой

riscv64-unknown-elf-ar -rsc lab4Clib.a lab4C.o

Рассмотрим список символов библиотеки, воспользовавшись следующей командой:

riscv64-unknown-elf-nm lab4Clib.a

Листинг 15. Таблица символов lab4Clib.a

lab4C.o:

0000000000000046 t.L1

000000000000014 t.L3

0000000000000036 t.L4

00000000000001c t .L5

00000000000000000 T lab4C

Используя получившуюся библиотеку, соберем исполняемый файл программы следующей командой:

riscv64-unknown-elf-gcc -march=rv64iac -mabi=lp64 -O1 main.c lab4Clib.a

Листинг 16. Таблица символов исполняемого файла (фрагмент)

file format elf64-littleriscy a.out: **SYMBOL TABLE:** 0000000000100b01 d .text 000000000000000 .text df *ABS* 00000000000000000001 0000000000000000 main.c 00000000000000000001 df *ABS* 00000000000000000 lab4C.c 00000000000000000001 df *ABS* 00000000000000000 exit.c df *ABS* 00000000000000000001 0000000000000000 impure.c 00000000001eab01 O.data 000000000000748 impure data

Можно заметить, что в состав программы вошло содержимое объектного файла lab4C.o.

Процесс выполнения команд выше можно заменить make-файлами, которые произведут создание библиотеки и сборку программы.

Листинг 16. MakeLib для создания статической библиотеки

.PHONY: all clean

Исходные файлы, необходимые для сборки библиотеки

#Вызываемые приложения

AR = riscv64-unknown-elf-ar

CC = riscv64-unknown-elf-gcc

```
# Файл библиотеки
MYLIBNAME = lab4Clib.a
# Параметры компиляции
CFLAGS=-O1
# Включаемые файлы следует искать в текущем каталоге
INCLUDES+= -I.
# Make должна искать файлы *.h и *.c в текущей директории
vpath %.h.
vpath %.c.
# Построение объектного файла из исходного текста
# $@ = %.o
%.o: %.c
      $(CC) -MD $(CFLAGS) $(INCLUDES) -c $< -o $@
# Чтобы достичь цели "all", требуется построить библиотеку
all: $(MYLIBNAME)
# $^ = (lab4C.o)
$(MYLIBNAME): lab4C.o
      $(AR) -rsc $@ $^
```

Листинг 17. MakeApp для сборки исполняемого файла

"Фиктивные" цели
.PHONY: all clean

```
# Файлы для сборки исполнимого файла
OBJS= main.c \
       lab4Clib.a
#Вызываемые приложения
CC = riscv64-unknown-elf-gcc.exe
# Параметры компиляции
CFLAGS= --save-temps
# Включаемые файлы следует искать в текущем каталоге
INCLUDES+=-I.
# Make должна искать файлы *.c и *.a в текущей директории
vpath %.c.
vpath %.a.
# Чтобы достичь цели "all", требуется собрать исполнимый файл
all: a.out
# Сборка исполнимого файла и удаление мусора
a.out: $(OBJS)
       $(CC) $(CFLAGS) $(INCLUDES) $^
       del *.o *.i *.s *.d
```

Сначала мы запускаем MakeLib со сборкой библиотеки, а затем MakeLib со сборкой исполняемого файла.

Вывод

В ходе данной лабораторной работы я изучила раздельную компиляцию на примере определения максимального простого числа, не превышающего заданное число N, методом решета Эратосфена.