NOTASI ASIMTOTIK (2)

ANALISIS DAN DESAIN ALGORITMA 1

NOTASI OMEGA (Ω)

- Pengucapan: 'big-omega' atau 'omega'
 - Ω (g(n)) diucapkan 'big-omega dari g(n)'.
- Definisi:
 - Untuk suatu fungsi g(n), Ω (g(n)) adalah himpunan fungsi Ω (g(n))={f(n): terdapat konstanta positif c dan n₀ sedemikian hingga 0 ≤ cg(n) ≤ f(n) untuk semua n ≥ n₀ }.
- Jika ditulis $f(n) = \Omega(g(n))$ berarti f(n) adalah anggota himpunan $\Omega(g(n))$.

- Notasi Ω menunjukkan batas bawah asimtotik.
- Jika running time algoritma adalah $\Omega(g(n))$:
 - Tidak peduli bagaimana input berukuran n dipilih untuk setiap nilai n, running time untuk input tersebut paling sedikit g(n), untuk n cukup besar
- Dengan kata lain: g(n) adalah best-case running time dari algoritma.
 - Contoh: best case dari insertion sort adalah Ω (n), yang berarti bahwa best case untuk running time insertion sort adalah Ω (n).
- Jadi: running time insertion sort berada antara $\Omega(n)$ dan $O(n^2)$.

CONTOH BIG-OMEGA

- Contoh: apakah $5n^2$ berada pada $\Omega(n)$?
 - Dengan mengambil c = 5 dan $n_0 = 1$, jelas terlihat bahwa $5n \le 5n^2$ untuk $n \ge 1$. Jadi $5n^2$ berada pada Ω (n).

NOTASI THETA (Θ)

- Pengucapan: 'theta'
 - Θ(g(n)) diucapkan 'theta dari g(n)'.
- Definisi:
 - Untuk suatu fungsi g(n), Θ (g(n)) adalah himpunan fungsi
 Θ (g(n))={f(n): terdapat konstanta positif c₁, c₂, dan n₀ sedemikian hingga 0 ≤c₁g(n) ≤ f(n) ≤c₂g(n) untuk semua n≥n₀ }.
- g(n) disebut sebagai batas ketat asimtotik (asymptotically tight bound) untuk f(n).

Theta mendeskripsikan batas bawah dan atas asimtotik.

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$

- Karena $\Theta(g(n))$ adalah himpunan, kita dapat menulis " $f(n) \in \Theta(g(n))$ ".
 - Biasanya ditulis: " $f(n) = \Theta(g(n))$ "
- Setiap anggota f(n) ∈ Θ(g(n)) harus non-negatif secara asimtotis. Akibatnya, g(n) harus non-negatif secara asimtotis.

CONTOH THETA

- Contoh: akan ditunjukkan bahwa $\frac{1}{2}$ $n^2 3n = \Theta(n^2)$.
 - Tentukan konstanta positif c_1 , c_2 , dan n_0 sedemikian hingga
 - $c_1 n^2 \le \frac{1}{2} n^2 3n \le c_2 n^2$ untuk semua $n \ge n_0$.
 - Menentukan c_1 , c_2 , and n_0
 - $c_1 n^2 \le n^2 / 2 3n$
 - c₁ harus lebih kecil dari ½. Misalkan dipilih c₁ = ¼.
 ½ n² ≤ ½ n² 3n → 3n ≤ ¼ n² → n ≥ 12 (n₀=12)
 - $n^2/2-3n \le n^2$ for $n \ge 1$ ($c_2 = 1, n_0 = 1$)
 - Nilai n_0 diambil dari irisan kedua n_0 di atas.
- Jadi dengan memilih $c_1 = \frac{1}{4}$, $c_2 = 1$, and $n_0 = 12$, terbukti bahwa $\frac{1}{2}$ $n^2 3n = \Theta(n^2)$.

PERBANDINGAN GRAFIK

Cormen et.al. (2009)

HUBUNGAN ANTARA Θ , O, DAN Ω

Teorema:

• Untuk sembarang 2 fungsi f(n) dan g(n), maka $f(n) = \Theta(g(n))$ jika dan hanya jika f(n) = O(g(n)) dan $f(n) = \Omega(g(n))$.

Contoh:

- $n^2/2-3n=\Theta(n^2) \rightarrow n^2/2-3n=O(n^2)$ dan $n^2/2-3n=\Omega(n^2)$
- $n^2/2-3n=O(n^2)$ dan $n^2/2-3n=\Omega(n^2) \rightarrow n^2/2-3n=\Theta(n^2)$

Contoh: Tentukan notasi Θ untuk $T(n) = 2n^2 + 6n + 1$. Jawab:

Karena $2n^2 \le 2n^2 + 6n + 1$ untuk $n \ge 1$, maka dengan $c_1 = 2$ kita memperoleh $2n^2 + 6n + 1 = \Omega(n^2)$

Karena $2n^2 + 6n + 1 \le 2n^2 + 6n^2 + n^2 = 9n^2$ untuk semua $n \ge 1$ $(c_2 = 9 \text{ dan } n_0 = 1)$ maka $2n^2 + 6n + 1 = O(n^2)$

Karena $2n^2 + 5n + 1 = O(n^2)$ dan $2n^2 + 6n + 1 = \Omega(n^2)$, maka $2n^2 + 6n + 1 = \Theta(n^2)$ untuk $n \ge 1$.

Contoh: Tentukan notasi-notasi O, Ω dan Θ untuk $T(n) = 5n^3 + 6n^2 \log n$.

Jawab:

Karena $6n^2 \log n \le 6n^3$, maka $5n^3 + 6n^2 \log n \le 11n^3$ untuk $n \ge 1$. Dengan mengambil $c_1 = 11$, maka $5n^3 + 6n^2 \log n = O(n^3)$

Karena $5n^3 + 6n^2 \log n \ge 5n^3$ untuk $n \ge 1$, maka maka dengan mengambil $c_2 = 5$ kita memperoleh $5n^3 + 6n^2 \log n = \Omega(n^3)$

Karena $5n^3 + 6n^2 \log n = O(n^3) \operatorname{dan} 5n^3 + 6n^2 \log n = \Omega(n^3)$, maka $5n^3 + 6n^2 \log n = \Theta(n^3)$ untuk $n \ge 1$.

CONTOH

 Tentukan kompleksitas waktu dari algoritma di bawah ini dari jumlah operasi a←a+1

• Tentukan pula nilai O-besar, Ω -besar, dan Θ -besar dari algoritma di atas (dengan penjelasan).

JAWABAN

```
Untuk i = 1.
   Untuk j = 1, jumlah perhitungan = n kali
Untuk i = 2,
   Untuk j = 1, jumlah perhitungan = n kali
   Untuk j = 2, jumlah perhitungan = n - 1 kali
Untuk i = n,
   Untuk j = 1, jumlah perhitungan = n kali
   Untuk j = 2, jumlah perhitungan = n - 1 kali
   Untuk j = n, jumlah perhitungan = 1 kali.
Jadi jumlah perhitungan = T(n) = n^2 + (n-1)^2 + (n-2)^2 + ... + 1
```

Salah satu cara penjelasan:

$$T(n) = n^2 + (n-1)^2 + (n-2)^2 + ... + 1$$
$$= n(n+1)(2n+1)/6$$
$$= (2n^3 + 3n^2 + 1)/6$$

Diperoleh T(n) ≤ n³ untuk n ≥ 1 dan
 T(n) ≥ n³/6 untuk n ≥ 1.

Maka: $T(n) = O(n^3) = \Omega(n^3) = \Theta(n^3)$.

NOTASI LITTLE-OH (0)

- Untuk menotasikan batas atas yang tidak ketat secara asimtotik.
- Definisi:
 - Untuk suatu fungsi g(n), o(g(n)) adalah himpunan fungsi o(g(n))={f(n): untuk sembarang konstanta positif c > 0, terdapat konstanta n₀ > 0 sedemikian hingga 0 ≤ f(n) < cg(n) untuk semua n ≥ n₀ }.
- Contoh: $2n = o(n^2)$, tetapi $2n^2 \neq o(n^2)$.
- Perbedaan dengan O(g(n)):
 - Pada f(n) = O(g(n)): batas 0 ≤ f(n) ≤ cg(n) berlaku untuk
 suatu konstanta c > 0.
 - Pada f(n) = o(g(n)): batas $0 \le f(n) < cg(n)$ berlaku untuk **semua** konstanta c > 0.

NOTASI LITTLE-OMEGA (ω)

- Untuk menotasikan batas bawah yang tidak ketat secara asimtotik.
- Definisi:
 - Untuk suatu fungsi g(n), ω (g(n)) adalah himpunan fungsi ω (g(n))={f(n): untuk sembarang konstanta positif c > 0, terdapat konstanta n_0 > 0 sedemikian hingga $0 \le cg(n) < f(n)$ untuk semua $n \ge n_0$ }.
- Contoh: $n^2/2 = \omega(n)$, tetapi $n^2/2 \neq \omega(n^2)$.
- Perbedaan dengan $\Omega(g(n))$:
 - Pada $f(n) = \Omega(g(n))$: batas $0 \le cg(n) < f(n)$ berlaku untuk **suatu** konstanta c > 0.
 - Pada $f(n) = \omega$ (g(n)): batas $0 \le cg(n) < f(n)$ berlaku untuk **semua** konstanta c > 0.

ANALOGI DENGAN BILANGAN REAL

- Jika fungsi f dan g dianalogikan dengan bilangan real a dan b:
 - $f(n) = O(g(n)) \approx a \leq b$
 - $f(n) = \Omega(g(n)) \approx a \ge b$
 - $f(n) = \Theta(g(n)) \approx a = b$
 - $f(n) = o(g(n)) \approx a < b$
 - $f(n) = \omega(g(n)) \approx a > b$
- Properti trichotomy untuk bilangan real tidak berlaku pada notasi asimtotik:
 - Trichotomy: untuk sembarang 2 bilangan real a and b, salah satu dari berikut pasti berlaku: a < b, a = b, or a > b.
 - Tidak semua fungsi dapat dibandingkan secara asimtotik.
 - Untuk 2 fungsi f(n) and g(n), mungkin terjadi bahwa f(n)=O(g(n)) dan f(n)=Ω(g(n)) tidak berlaku.
 - Contoh: fungsi n dan $n^{1+\sin n}$ tidak dapat dibandingkan, karena nilai dari $n^{1+\sin n}$ berosilasi antara 0 dan 2.

SIFAT-SIFAT NOTASI ASIMTOTIK

Transitif:

- $f(n) = \Theta(g(n)) dan g(n) = \Theta(h(n)) maka f(n) = \Theta(h(n))$
- f(n) = O(g(n)) dan g(n) = O(h(n)) maka f(n) = O(h(n))
- $f(n) = \Omega(g(n)) dan g(n) = \Omega(h(n)) maka f(n) = \Omega(h(n))$
- f(n) = o(g(n)) dan g(n) = o(h(n)) maka f(n) = o(h(n))
- $f(n) = \omega(g(n)) dan g(n) = \omega(h(n)) maka f(n) = \omega(h(n))$

Refleksif:

- $f(n) = \Theta(f(n))$
- f(n) = O(f(n))
- $f(n) = \Omega(f(n))$

Simetri:

- $f(n) = \Theta(g(n))$ jika dan hanya jika $g(n) = \Theta(f(n))$
- Simetri transpos:
 - f(n) = O(g(n)) jika dan hanya jika $g(n) = \Omega(f(n))$
 - f(n) = o(g(n)) jika dan hanya jika $g(n) = \omega(f(n))$

HUBUNGAN ANTAR NOTASI ASIMTOTIK

LATIHAN

- Mengapa pernyataan "running time algoritma A paling kecil O(n²)" tidak memiliki arti?
- Apakah $27n^2 + 2n + 12 = O(n^2)$? Buktikan.
- Tunjukkan $T(n) = 6*2^n + 2n^2 = O(2^n)$
- Tunjukkan $T(n) = 1 + 2 + .. + n = O(n^2)$
- Tunjukkan $T(n) = n! = O(n^n)$