Title of the Exercise: Speed control Separately excited DC motor

Date: 13/10/2020

Aim: To obtain speed control characteristic of a Separately excited DC motor.

Tool used: MATLAB and SIMULINK

Electrical Circuit:

Parameters used for the study:

Armature Resistance R_a=1Ω,
Armature inductance L_a=0.046H,
Frictional coefficient B=0.008, Back
emf constant k=0.55,
Input voltage V_a =220 volts,
Moment of inertia J=0.093 Rated
load=2.5HP
Theoretical Analysis:

$$egin{aligned} V_a &= L_a rac{di_a}{dt} + i_a R_a + e_b \ e_b &= k. \ \omega \ T_e &= k. \ i_a \ T_e &= T_L + j rac{d\omega}{dt} + \mathrm{B.} \omega \end{aligned}$$

Procedure:

- Step1-Initialize the input parameters and write coding for the as per requirement of plots in m file and save it
- Step 2-open new Simulink and make mathematical modelling as per circuit diagram and save it
- Step 3-Run the m file first, after that run Simulink file.
- Step 4- Vary the value of load torque TL from 0 to +20 and then tabulate the corresponding values of armature current, speed and electromagnetic torque.
- Using the 'plot' command in MATLAB, plot the electrical and mechanical characteristics of the DC machine.

Simulink file:

M file for simulation study:

```
Ra = 1;

La = 0.046;

J = 0.093;

B = 0.008;

K = 0.55;

Va = 220;

tstop = 5;
```

```
disp('run simulation)
keyboard subplot (6,1,1)
plot(out.y(:,1),out.y(:,2),'b--')
title('Input volatage')
ylabel('Va in V')
subplot(6,1,2)
plot(out.y(:,1),out.y(:,3),'r--')
title('armature current')
ylabel('I in A') subplot(6,1,3)
plot(out.y(:,1),out.y(:,4),'g-o')
title('Electromagnetic Torque')
ylabel('Te in N/m')
subplot(6,1,4)
plot(out.y(:,1),out.y(:,5),'y-.')
title('Load Torque')
ylabel('Tl in N/m')
subplot(6,1,5)
plot(out.y(:,1),out.y(:,6),'m-o')
title('Speed')
ylabel('Wr in rad/sec')
```

M file for obtaining the characteristics:

```
% -----Ra control-----
a = [373.67.987]
 357.5 12.86
 341.4 17.73
 325.3 22.6];
b = [349.3 7.656]
 318.8 12.26
 288.3 16.87
 257.8 21.48];
c=[288.1 6.785]
 231.7 10.17
 175.3 13.58
 118.9 16.98];
figure('Name','Ra control');
plot(a(:,2),a(:,1))
hold on
plot(b(:,2),b(:,1))
hold on
plot(c(:,2),c(:,1))
```

```
% -----Va control-----
a = [373.67.987]
 357.5 12.86
 341.4 17.73
 325.3 22.6];
b=[391.38.13
    375.20 13
    359.1 17.87
    342.99 22.74];
c = [355.88 7.85]
 339.0 12.72
 323.2 17.59
 307.6 22.46];
figure('Name','Va control')
plot(a(:,2),a(:,1))
hold on
plot(b(:,2),b(:,1))
hold on
plot(c(:,2),c(:,1))
% ----- Flux control-----
a = [373.67.987]
 357.5 12.86
 341.4 17.73
 325.3 22.6];
b = [345.1 7.761]
 331.5 12.65
 317.9 17.54
 304.3 22.43];
c = [320.8 7.568]
 308.9 12.47
 297.3 17.38
 285.7 22.29];
figure('Name','Flux control')
plot(a(:,2),a(:,1))
hold on
plot(b(:,2),b(:,1))
hold on
plot(c(:,2),c(:,1))
```

Results and Discussions: CHARACTERISTICS:

For Ra control:

W vs Te graph for Ra=1,2,5

For Va control:
W vs Te graph for Va=210,220,230

For flux control:

W vs Te graph for k= 0.55,0.6.0.65

Observations:

Separately Excited DC motor:

Positive load torque (simulation values)

For Ra control:

Ra=1

T1	W	Te
5	373.6	7.987
10	357.5	12.86
15	341.417	.73
20	325.322	. 6

Ra=2

Tl	W	Te
5	349.3	7.656
10	318.8	12.26
15	288.3	16.87
20	257.8	21.48

Ra=5

Tl	W	Te
5	288.1	6.785
10	231.7	10.17
15	175.3	13.58
20	118.9	16.98

For Va control:

VA = 220

Tl	W	Te
5	373.6	7.987
10	357.5	12.86
15	341.417	.73
20	325.322	. 6

VA=230

Tl		W	Te
	5	391.30	8.13
	10	375.20	13
	15	359.1	17.87
	20	342.99	22.74

VA=210

<u>T1</u>		W	Te
	5	355.88	7.85
	10	339.0	12.72
	15	323.2	17.59
	20	307.6	22.46

$\frac{For flux control:}{K=0.55}$

Tl	W	Te
5	373.6	7.987
10	357.5	12.86
15	341.4	17.73
20	325.3	22.6

K = 0.6

Tl	\mathbf{W}	Te
5	345.1	7.761
10	331.5	12.65
15	317.9	17.54
20	304.3	22.43

K=0.65

Tl		W	Te
	5	320.8	7.568
	10	308.9	12.47
	15	297.3	17.38
	20	285.7	22.29

Conclusion:

Hence, the speed control characteristics of a separately excited DC Motor have been obtained for different values of Load torque.

Inference:

The speed control characteristics of a separately excited DC motor give the variation of: Speed vs electromagnetic torque

References

nil