1 一些性质 1

我们首先会是定义期望,个人思考了一会这个期望之定义的动机,目前认为,这个定义是和 Lebesgue-Stieljes 积分息息相关的.

一上来,我们能够定义简单函数的积分,就是离散随机变量的期望,我们说对于离散随机变量 X ,存在划分 $\{\Lambda_n\}$ 和数列 $\{b_n\}$,使得 $X=\sum_{i=1}^n b_i 1_{\Lambda_i}^{-1}$

那么

$$E(X) = \sum_{i=1}^{n} b_i P(\Lambda_i)$$

对于一般函数,假设是正值函数,定义划分 $\left\{ \Lambda_{mn} \right\}, \Lambda_{mn} = \left\{ \omega : \frac{n}{2^m} \leq X\left(\omega\right) < \frac{n+1}{2^m} \right\}$

据此构造一个随机变量序列,记为 $X_m=\sum_{i=1}^\infty \frac{n}{2^m}1_{\Lambda_{mn}}$ 我们有 $X_m\left(\omega\right)-X\left(\omega\right)\leq \frac{1}{2^m}$,因此我们说,

$$\lim_{m \to \infty} X_m = X$$

我们现在用 X_m 的期望的极限值来定义 X 的期望值.

$$E\left(X\right) = \lim_{m \to \infty} E\left(X_m\right)$$

如果 LHS 不是 ∞ .

上面就是期望值的定义, 我觉得这是从 Lebesgue-Stieljes 积分出发的, 这样的定义之下, 可以将期望写为 LS 积分.

$$E(X) = \int_{\Omega} X(\omega) P(d\omega)$$
 简写为 $\int_{\Omega} X dP$

前面说 X 是正值函数, 对于一般函数, 我们只需要分别取正值部分和负值部分, 记为 X^+ 和 $-X^-$, 然后 $E(X) = E(X^+) - E(X^-)$.

对于 $(\mathcal{U},\mathcal{B},m)$ ²上的随机变量,将 X 换为 f, ω 为 x,就有

$$\int_{a}^{b} f(x) m(dx) = \int_{a}^{b} f(x) dx$$

LHS 是 Lebesgue 积分.

1 一些性质

接下来我们介绍一些性质,其中有非常重要的定理,但是我们的书中并没有给出证明.当然我们的读者可以很容易在网上找到这些性质的证明,但我还是认为,这些证明虽然说比较偏分析,但还是有必要掌握的,至少说,我们把它抄录在这里,读者能够读个几遍,能够看懂.

定理 1 (Absolute integrability). $\int_{\Lambda} dP$ 是有限的, iff

$$\int_{\Lambda} |X| \, \mathrm{d}P < \infty$$

定理 2 (linearity).

$$\int_{\Lambda} (aX + bY) dP = a \int_{\Lambda} X dP + b \int_{\Lambda} Y dP$$

就如同极限的可加性的定义, 最好 LHS 都是有定义的.

 $^{^{1}1}_{\Lambda_{i}}$ 的定义在上一节已经给出了

²就是 [0,1] 上的均匀分布

2 一个定理的证明 2

定理 3 (additivity over sets). $if \Lambda_n$ 是不相交的, 那么

$$\int_{\bigcup \Lambda_n} X \, dP = \sum^n \int_{\Lambda_n} X \, dP$$

定理 4 (positivity). if $X \ge 0$ a.e. on Λ , 那么

$$\int_{\Lambda} X \, dP \ge 0$$

定理 5 (monotonicity). 如果 $X_1 \leq X \leq X_2$ a.e. on Λ , 那么

$$\int_{\Lambda} X_1 \, \mathrm{d}P \le \int_{\Lambda} X \, \mathrm{d}P \le \int_{\Lambda} X_2 \, \mathrm{d}P$$

定理 6. ...

省略啦, 烦死了捏.

2 一个定理的证明

定理 7.

$$\sum_{n=1}^{\infty} P(|X| \ge n) \le E(|X|) \le 1 + \sum_{n=1}^{\infty} P(|X| \ge n)$$

证明. 我们进行一个划分, $\Lambda_n = \{\omega : n \leq |X(\omega)| < n+1\}$ 使用 mean value thm 就有

$$\sum_{n=1}^{\infty} nP\left(\Lambda_n\right) \le E(|X|) \le \sum_{n=1}^{\infty} (n+1) P(\Lambda_n) = 1 + \sum_{n=1}^{\infty} nP(\Lambda_n)$$

接下来证明

$$\sum_{n=1}^{\infty} nP\left(\Lambda_n\right) = \sum_{n=1}^{\infty} P\left(|X| \ge n\right)$$

 Λ_n 可以写为 $X \in [n, \infty) - X \in [n+1, \infty)$, 于是

$$\sum_{n=1}^{N} nP(\Lambda_n) = \sum_{n=1}^{N} n \Big(P(|X| \ge n) - P(|X| \ge n+1) \Big)$$
$$= \sum_{n=1}^{N} P(|X| \ge n) - NP(|X| \ge N+1)$$

只需要证明 $\lim_{N \to \infty} NP(|X \ge N+1|) = 0$ 就行了. 实际上这是显然的, 只需要注意到

$$NP\left(|X| \geq N+1\right) \leq \int_{|X| > N+1} |X| \ \mathrm{d}P$$

LHS 是趋于零的, 因为积分是收敛的.

3 几个有名的不等式

3.1 Holder Minkowski 不等式

3.2 Jensen 不等式

 φ 是一个凸函数, 那么

$$E(\varphi(x)) \le \varphi(E(X))$$

3 几个有名的不等式 3

3.3 chebyshev 不等式

 φ 是一个增函数, 那么

$$P\left(X \ge u\right) \le \frac{E\left(\varphi(X)\right)}{\varphi(u)}$$

证明.

$$E\left(X\right) = \int_{\Omega} \varphi\left(X\right) \; \mathrm{d}P \geq \int_{\{|X| \geq u\}} \varphi\left(X\right) \; \mathrm{d}P \geq \varphi(u)P(|X| \geq u)$$

换一下位置不等式就证明完了.

当 $\varphi\left(x\right)=x^{2}$ 将 X 换为 $X-E\left(X\right)$ 时, 就能够得到基础概率论中的 chebyshev 不等式

$$P\left(X - E\left(X\right) \ge u\right) \le \frac{\operatorname{var}\left(X\right)}{u^2}$$