Disciplina: Mecânica do Voo Professor: William Reis Silva

e-mail: reis.william@unb.br

Lista de exercícios 1 – Vetores e sistemas de referência

- 1. Encontre as matrizes de rotação $R_x(\phi)$ (feita em sala), $R_y(\theta)$ e $R_z(\psi)$.
- 2. Encontre a matriz de rotação \boldsymbol{D}_b^{NED} que rotaciona um vetor do sistema norte-lestevertical S_{NED} para o sistema do corpo S_b . Informações: A sequência de rotação é ψ , θ , ϕ referentes, respectivamente, aos eixos z-y-x (ou 3-2-1), e todas as rotações são feitas no sentido positivo.
- 3. Encontre a matriz de rotação \boldsymbol{D}_{NED}^{b} , que rotaciona um vetor de S_{b} para S_{NED} . Em seguida encontre \boldsymbol{A}_{NED} , sendo $\boldsymbol{A}_{b}=(1,0,\sqrt{3})$.
- 4. Para a matriz de rotação encontrada ${\pmb D}_b^{NED}$, considere $\phi=0$ e prove que $R(\psi,\theta,0)^{-1}=R(\psi,\theta,0)^t$
- 5. Seja uma aeronave de massa m, cuja atitude atual é definida pelos ângulos ψ , θ , ϕ em um local cuja aceleração da gravidade é g_0 . Qual é a força da gravidade atuante na aeronave, representada em S_b .
- 6. Calcule a força obtida no item anterior se ψ = 120°, θ = 30°, ϕ = 30°, m = 1000 kg e g_0 = 9,81 m/s².
- 7. Encontre a matriz de rotação \boldsymbol{D}_{h}^{w} .
- 8. Uma aeronave voa com velocidade $V_T=100~m/s$ em relação à massa de ar. A massa de ar está parada em relação ao solo. Considerando $\alpha=10^\circ, \beta=5^\circ, \phi=30^\circ, \theta=20^\circ, \psi=90^\circ$, calcule:
 - i. As componentes da velocidade $V_b = [U \ V \ W]$, em S_b
 - ii. As componentes da velocidade $V_{NED} = [V_N V_E V_D]$, em S_{NED}
- 9. Considere um sistema de referência S_{ECEF} com centro no centro da Terra e que rotaciona com ela. O eixo Z está alinhado com o eixo de rotação da Terra, o eixo X passa na latitude $\varphi=0^\circ$ e longitude $\lambda=0^\circ$ e o eixo Y completa o sistema dextrogiro.

(adaptado de https://en.wikipedia.org/wiki/North east down)

Faculdade UnB Gama

- Encontre $m{D}_{NED}^{ECEF}$. Informações: ache primeiro uma matriz de transformação que faça os eixos X,Y, e Z do sistema NED e ECEF coincidirem para $arphi=0^\circ$ e longitude $\lambda = 0^{\circ}$. Então, aplique as rotações $\lambda = -\varphi$.
- Considerando uma Terra perfeitamente esférica (desconsiderando que a Terra ii. é oblata/esferoide) com raio R, como converter de latitude/longitude/altitude para coordenada ECEF? E de coordenada ECEF para latitude/longitude e altitude?
- iii. As coordenadas da sala de aula são: φ = -15.9890146°, λ = -48.0448584°, h = 1221 m. Qual a coordenada ECEF? Assuma R = 6 378 164 m.
- Considere um satélite GPS na posição $[10981457 13087191 20360055]^T$ [m]. i۷. Qual a posição desse GPS em relação à sala de aula (em S_{NED})? Quais os ângulos de azimute e elevação desse satélite?

10. Faça o que se pede:

- Em qual sistema é mais fácil definir o vetor rotação angular da Terra? Como é o vetor? Assuma velocidade angular da Terra ω^e .
- ii. Em qual sistema é mais fácil definir a gravidade local? Como é o vetor? Assuma magnitude g, ignore o efeito de rotação da Terra.
- iii. Represente o vetor rotação angular da Terra em S_{NED} e o vetor gravidade local $em S_{ECEF}$
- 11. Considere um sistema de referência $S_{\it ECEF}$ com centro no centro da Terra e que rotaciona com ela. O eixo Z está alinhado com o eixo de rotação da Terra, o eixo X passa na latitude $\varphi = 0^{\circ}$ e longitude $\lambda = 0^{\circ}$ e o eixo Y completa o sistema dextrogiro.

(adaptado de https://en.wikipedia.org/wiki/North_east_down)

- Encontre D_{ENU}^{ECEF} e D_{ECEF}^{ENU} . Informações: ache primeiro uma matriz de i. transformação que faça os eixos X,Y, e Z do sistema ENU e ECEF coincidirem para $\varphi = 0^{\circ}$ e longitude $\lambda = 0^{\circ}$. Então, aplique as rotações λ e φ .
- Represente o vetor rotação angular da Terra em S_{ENU} ii.
- iii. Represente o vetor gravidade local em S_{ENU}
- Encontre $\boldsymbol{D}_{NED}^{ENU}$ e $\boldsymbol{D}_{ENU}^{NED}$ iv.

12. Sejam os telescópios abaixo:

Ambos os telescópios possuem 2 graus de liberdade, representados pelos ângulos α e β no telescópio T1 e γ e δ em T2. O telescópio T1 está observando uma estrela. Para que a lente de T1 aponte para a estrela, $\alpha=30^\circ$ e $\beta=45^\circ$. Deseja-se que o telescópio T2 aponte sua lente para a mesma estrela. Quais devem ser os valores de γ e δ para que isso ocorra?

Informações:

- os telescópios estão suficientemente próximos, e estão ambos nivelados em relação ao solo, de modo que a estrela está na mesma direção para ambos
- Quando $\alpha = \beta = \gamma = \delta = 0$, os eixos x, y e z de ambos os telescópios se alinham. Veja que, nesse caso, T1 aponta para cima e T2 aponta para "frente".
- As rotações são todas definidas na direção positiva, e eixos seguem a regra da mão direita.
- Essa questão tem dificuldade maior que as anteriores. O correto entendimento e execução, entretanto, mostra que o aluno dominou o tema sistemas de referência.

Dicas (tente resolver, ou pelo menos pensar um pouco no problema, antes de consultar essas dicas. Tente ler uma dica por vez, em ordem, e pensando novamente no problema antes de consultar outra dica):

- a) O telescópio T1 aponta para a direção definida pelo vetor $\boldsymbol{d}_{t_1}^1 = [0\ 0\ 1]$, em que o sobrescrito 1 indica telescópio 1 (e não \boldsymbol{d}_{t_1} elevado a 1), o subscrito t1 indica o sistema de referência alinhado com o telescópio 1, e a magnitude de $\boldsymbol{d}_{t_1}^1$ é irrelevante para o problema e foi arbitrada como unitária.
- b) De modo similar, T2 aponta para $d_{t_2}^2 = [1 \ 0 \ 0]$.
- c) Não é uma hipótese necessária, mas pode-se assumir que, se $\alpha=\beta=\gamma=\delta=0$, ambos os telescópios têm seus eixos alinhados com os eixos do sistema ENU (eastnorth-up), ou seja, o x de ambos os telescópios está alinhado com o leste, y com norte e z para cima.
- d) Sequência de rotações de T1. A partir de S_{ENU} , rotaciona-se primeiro em α (eixo 2) e depois em β (eixo 1) para se obter o vetor em S_{t_1}
- e) Sequência de rotações de T2. A partir de S_{ENU} , rotaciona-se primeiro em γ (eixo 3) e depois em δ (eixo 2) para se obter o vetor em S_{t_2}
- f) Apontar para uma mesma direção significa $oldsymbol{d}^1 = oldsymbol{d}^2$

- g) Veja que, na dica anterior, não foi especificado um sistema de referência. A igualdade vale para qualquer sistema, desde que ambos os vetores sejam representados no mesmo sistema.
- h) Cuidado com o sinal da resposta, pois funções trigonométricas inversas podem fornecer mais de uma resposta. A resposta final deve fornecer o valor correto para as 3 componentes do vetor.