COMP0174 Practical Program Analysis Live Variables Analysis

Sergey Mechtaev

s.mechtaev@ucl.ac.uk

UCL Computer Science

Four Classic Analyses

	Forward	Backward
Must	Available Expressions	Very Busy Expressions
May	Reaching Definitions	Live Variables

Live Variables

A variable is live at the exit from a label if there exists a path from the label to a use of the variable that does not re-define the variable.

Live variables analysis determines for each program point, which variables may be live at the exit from the point.

It is backward may analysis.

Applications: Optimization (don't store variables that aren't live, eliminate assignments where variables are dead)

```
[x \coloneqq 2]^{1};
[y \coloneqq 4]^{2};
[x \coloneqq 1]^{3};
if [y > x]^{4} then
[z \coloneqq y]^{5};
else
[z \coloneqq y * y]^{6};
[x \coloneqq z]^{7}
```

The variable x is not live at the exit from label 1 (the assignment is redundant).

Both x and y are live at the exit from label 3.

Killed Variables

A variable is killed by an assignment if it appears on the left hand side of it:

$$kill_{LV}: Blocks_* \rightarrow P(Var_*)$$

$$kill_{LV}([x \coloneqq a]^{l}) = \{x\}$$

$$kill_{LV}([skip]^{l}) = \emptyset$$

$$kill_{LV}([b]^{l}) = \emptyset$$

Generated Variables

A variable is generated in the block:

$$gen_{LV}: Blocks_* \rightarrow P(Var_*)$$

$$gen_{LV}([x \coloneqq a]^l) = Vars(a)$$

 $gen_{LV}([skip]^l) = \emptyset$
 $gen_{LV}([b]^l) = Vars(b)$

if it appears on the right-hand side of an assignment or in some condition.

Analysis

The goal of the analysis is to compute the smallest set satisfying the equation for LV_{exit} :

$$LV_{exit}(l) = \begin{cases} \emptyset & if \ l = final(program) \\ \bigcup \{LV_{entry}(l') \mid (l', l) \in flow^R(program)\} \text{ otherwise} \end{cases}$$

$$LV_{entry}(l) = \left(LV_{exit}(l) \setminus kill(B^l)\right) \cup gen_{LV}(B^l)$$

where $B^l \in blocks(program)$

$[x \coloneqq 2]^1;$
$[y \coloneqq 4]^2$;
$[x \coloneqq 1]^3$;
if $[y > x]^4$ then
$[z \coloneqq y]^5$;
else
$[z \coloneqq y * y]^6;$
$[x \coloneqq z]^7$

$kill_{AE}(l)$	$gen_{AE}(l)$
{ <i>x</i> }	Ø
{ <i>y</i> }	Ø
{ <i>x</i> }	Ø
Ø	$\{x,y\}$
$\{z\}$	{ <i>y</i> }
$\{z\}$	{ <i>y</i> }
{ <i>x</i> }	$\{z\}$
	{x} {y} {x} Ø {z} {z}

```
 \begin{array}{lll} LV_{entry}(1) = LV_{exit}(1) \setminus \{x\} & LV_{exit}(1) = LV_{entry}(2) \\ LV_{entry}(2) = LV_{exit}(2) \setminus \{y\} & LV_{exit}(2) = LV_{entry}(3) \\ LV_{entry}(3) = LV_{exit}(3) \setminus \{x\} & LV_{exit}(3) = LV_{entry}(4) \\ LV_{entry}(4) = LV_{exit}(4) \cup \{x,y\} & LV_{exit}(4) = LV_{entry}(5) \cup LV_{entry}(6) \\ LV_{entry}(5) = (LV_{exit}(5) \setminus \{z\}) \cup \{y\} & LV_{exit}(5) = LV_{entry}(7) \\ LV_{entry}(6) = (LV_{exit}(6) \setminus \{z\}) \cup \{y\} & LV_{exit}(6) = LV_{entry}(4) \\ LV_{entry}(7) = \{z\} & LV_{exit}(7) = \emptyset \end{array}
```

Equations for entry and exit functions:

$$LV_{exit}(1) = LV_{entry}(2)$$

$$LV_{entry}(1) = LV_{exit}(1) \setminus \{x\}$$

$$LV_{exit}(2) = LV_{entry}(3)$$

$$LV_{entry}(2) = LV_{exit}(2) \setminus \{y\}$$

$$LV_{exit}(3) = LV_{entry}(4)$$

$$LV_{entry}(3) = LV_{exit}(3) \setminus \{x\}$$

$$LV_{entry}(4) = LV_{exit}(4) \cup \{x, y\}$$

$$LV_{exit}(5) = LV_{entry}(7)$$

$$LV_{entry}(5) = (LV_{exit}(5) \setminus \{z\}) \cup \{y\}$$

$$LV_{exit}(6) = LV_{entry}(4)$$

$$LV_{entry}(6) = (LV_{exit}(6) \setminus \{z\}) \cup \{y\}$$

$$LV_{entry}(7) = \{z\}$$

Live variables at exit of Block 4 = union of live variables at entry of Block 5 and Block 6, corresponding to both the branches (if the variables are used somewhere, they are going to be live also in the if condition).

$[x \coloneqq 2]^1;$
$[y \coloneqq 4]^2$;
$[x \coloneqq 1]^3$;
if $[y > x]^4$ then
$[z \coloneqq y]^5$;
else
$[z \coloneqq y * y]^6;$
$[x \coloneqq z]^7$

l	$LV_{entry}(l)$	$LV_{exit}(l)$
1	Ø	Ø
2	Ø	{ <i>y</i> }
3	{ <i>y</i> }	$\{x,y\}$
4	$\{x,y\}$	{ <i>y</i> }
5	{ <i>y</i> }	$\{z\}$
6	{ <i>y</i> }	{z}
7	$\{z\}$	Ø