Homework 3

Alex Carbajal

Washington State University Tri-Cities

CPT_S 411 Introduction to Parallel Computing

November 11, 2024

Simulation & Analysis

M = 64, N = 64, T = 500

Threads	Execution Time (s)	Speedup	Efficiency
1	0.106	BASELINE	BASELINE
2	0.062	1.710	0.855
4	0.049	2.163	0.541
8	0.017	6.235	0.779
16	0.396	0.268	0.017
32	0.624	0.170	0.005
64	0.971	0.109	0.002

M = 256, N = 256, T = 500

Threads	Execution Time (s)	Speedup	Efficiency
1	1.726	BASELINE	BASELINE
2	1.739	0.993	0.497
4	1.712	1.008	0.252
8	2.493	0.692	0.087
16	8.226	0.210	0.013
32	10.550	0.164	0.005
64	8.340	0.207	0.003

M = 512, N = 512, T = 100

Threads	Execution Time (s)	Speedup	Efficiency
1	1.461	BASELINE	BASELINE
2	1.373	1.064	0.532
4	1.523	0.959	0.240
8	2.192	0.667	0.083
16	4.780	0.306	0.019

32	7.496	0.195	0.006
64	4.966	0.294	0.005

The simulations for the program saw initial speedups as the number of threads increased but performance became progressively worse as more threads were used to run the program. It seems that smaller boards benefit more from parallelism while larger boards face worse performance with more threads. This is most likely because the process of spreading out the board between many threads is significantly slower than processing the board in just one thread. Efficiencies were decent for some of the simulations though most of them dropped to very low values when more threads were used.