6

Orthogonality and Least Squares

6.1

INNER PRODUCT, LENGTH, AND ORTHOGONALITY

INNER PRODUCT

- If **u** and **v** are vectors in \mathbb{R}^n , then we regard **u** and **v** as $n \times 1$ matrices.
- The transpose \mathbf{u}^T is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^T\mathbf{v}$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $\mathbf{u}^T \mathbf{v}$ is called the **inner product** of \mathbf{u} and \mathbf{v} , and it is written as $u \cdot v$.
- This inner product is also referred to as a dot product.

INNER PRODUCT

• If
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$,

then the inner product of **u** and **v** is

$$\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{vmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{vmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.$$

INNER PRODUCT

• Theorem 1: Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let c be a scalar. Then

$$a. u \cdot v = v \cdot u$$

b.
$$(u+v)\cdot w = u\cdot w + v\cdot w$$

c.
$$(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$$

d.
$$u \cdot u \ge 0$$
, and $u \cdot u = 0$ if and only if $u = 0$

Properties (b) and (c) can be combined several times to produce the following useful $\operatorname{ru}(c_1u_1+\ldots+c_pu_p)\cdot w = c_1(u_1\cdot w) + \cdots + c_p(u_p\cdot w)$

- If v is in \mathbb{R}^n , with entries $v_1, ..., v_n$, then the square root of $v \cdot v$ is defined because $v \cdot v$ is nonnegative.
- **Definition:** The **length** (or **norm**) of **v** is the nonnegative scalar $\|\mathbf{v}\|$ defined by

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
, and $||v||^2 = \sqrt{v \cdot v}$

• Suppose v is in \mathbb{R}^2 , say, $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$

- If we identify \mathbf{v} with a geometric point in the plane, as usual, then $\|\mathbf{v}\|$ coincides with the standard notion of the length of the line segment from the origin to \mathbf{v} .
- This follows from the Pythagorean Theorem applied to a triangle such as the one shown in the following figure.

 (a,b)

 (a,b)

Interpretation of $\|\mathbf{v}\|$ as length.

|b|

• For any scalar c, the length $c\mathbf{v}$ is |c| times the length of \mathbf{v} . That is, $||c\mathbf{v}|| = |c|||\mathbf{v}||$

• A vector whose length is 1 is called a **unit vector**.

- If we *divide* a nonzero vector \mathbf{v} by its length—that is, multiply by $1/\|\mathbf{v}\|$ —we obtain a unit vector \mathbf{u} because the length of \mathbf{u} is $(1/\|\mathbf{v}\|)\|\mathbf{v}\|$.
- The process of creating **u** from **v** is sometimes called **normalizing v**, and we say that **u** is *in the same* direction as **v**.

- **Example 2:** Let v = (1, -2, 2, 0). Find a unit vector **u** in the same direction as v.
- **Solution:** First, compute the length of v:

$$\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v} = (1)^2 + (-2)^2 + (2)^2 + (0)^2 = 9$$
$$\|\mathbf{v}\| = \sqrt{9} = 3$$

• Then, multiply v by $1/\|v\|$ to obtain

$$u = \frac{1}{\|v\|} v = \frac{1}{3} v = \frac{1}{3} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$$
In Education, Ltd.

© 2016 Pearson Education, Ltd.

DISTANCE IN \mathbb{R}^n

• To check that $\|\mathbf{u}\| = 1$, it suffices to show that $\|\mathbf{u}\|^2 = 1$.

$$\|\mathbf{u}\|^{2} = u \cdot u = \left(\frac{1}{3}\right)^{2} + \left(-\frac{2}{3}\right) + \left(\frac{2}{3}\right)^{2} + \left(0\right)^{2}$$
$$= \frac{1}{9} + \frac{4}{9} + \frac{4}{9} + 0 = 1$$

■ **Definition:** For **u** and **v**in \mathbb{R}^n , the **distance between u** and **v**, written as dist (**u**, **v**), is the length of the vector $\mathbf{U} - \mathbf{V}$. That is,

$$dist (u,v) = ||u - v||$$

DISTANCE IN \mathbb{R}^n

- Example 4: Compute the distance between the vectors $\mathbf{u} = (7,1)$ and $\mathbf{v} = (3,2)$.
- Solution: Calculate

$$u - v = \begin{bmatrix} 7 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$
$$\|u - v\| = \sqrt{4^2 + (-1)^2} = \sqrt{17}$$

- The vectors \mathbf{u} , \mathbf{v} , and $\mathbf{u} \mathbf{v}$ are shown in the figure on the next slide.
- When the vector $\mathbf{u} \mathbf{v}$ is added to \mathbf{v} , the result is \mathbf{u} .

DISTANCE IN \mathbb{R}^n

The distance between \mathbf{u} and \mathbf{v} is the length of $\mathbf{u} - \mathbf{v}$.

Notice that the parallelogram in the above figure shows that the distance from \mathbf{u} to \mathbf{v} is the same as the distance from $\mathbf{u} - \mathbf{v}$ to $\mathbf{0}$.

ORTHOGONAL VECTORS

- Consider \mathbb{R}^2 or \mathbb{R}^3 and two lines through the origin determined by vectors **u** and **v**.
- See the figure below. The two lines shown in the figure are geometrically perpendicular if and only if the distance from **u** to **v** is the same as the distance

from \mathbf{u} to $-\mathbf{v}$. $\|\mathbf{u} - \mathbf{v}\| \|\mathbf{u} - (-\mathbf{v})\|$

• This is the same as requiring the squares of the distances to be the same.

ORTHOGONAL VECTORS

Now

$$[dist(u,-v)]^{2} = ||u - (-v)||^{2} = ||u + v||^{2}$$

$$= (u + v) \cdot (u + v)$$

$$= u \cdot (u + v) + v \cdot (u + v)$$

$$= u \cdot u + u \cdot v + v \cdot u + v \cdot v$$

$$= ||u||^{2} + ||v||^{2} + 2u \cdot v$$
Theorem 1(a), (b)
$$= ||u||^{2} + ||v||^{2} + 2u \cdot v$$
Theorem 1(a)

• The same calculations with \mathbf{v} and \mathbf{v} interchanged show that

$$[\operatorname{dist}(\mathbf{u},\mathbf{v})]^{2} = \|\mathbf{u}\|^{2} + \|-\mathbf{v}\|^{2} + 2u \cdot (-v)$$
$$= \|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2} - 2u \cdot -v$$

ORTHOGONAL VECTORS

- The two squared distances are equal if and only if $2u \cdot v = -2u \cdot v$, which happens if and only if $u \cdot v = 0$.
- This calculation shows that when vectors \mathbf{u} and \mathbf{v} are identified with geometric points, the corresponding lines through the points and the origin are perpendicular if and only if $u \cdot v = 0$.
- **Definition:** Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** (to each other) if $u \cdot v = 0$.
- The zero vector is orthogonal to every vector in \mathbb{R}^n because $\mathbf{0}^T \mathbf{v} = \mathbf{0}$ for all \mathbf{v} .

THE PYTHOGOREAN THEOREM

■ Theorem 2: Two vectors **u** and **v** are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Orthogonal Complements

- If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be **orthogonal** to W.
- The set of all vectors \mathbf{z} that are orthogonal to W is called the **orthogonal complement** of W and is denoted by W^{\perp} (and read as "W perpendicular" or simply "Wperp").

ORTHOGONAL COMPLEMENTS

- 1. A vector \mathbf{x} is in W^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.
- 2. W^{\perp} is a subspace of \mathbb{R}^n .

■ Theorem 3: Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^T :

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A \quad (\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$$

ORTHOGONAL COMPLEMENTS

- **Proof:** The row-column rule for computing $A\mathbf{x}$ shows that if \mathbf{x} is in NulA, then \mathbf{x} is orthogonal to each row of A (with the rows treated as vectors in \mathbb{R}^n).
- Since the rows of A span the row space, \mathbf{x} is orthogonal to Row A.

• Conversely, if x is orthogonal to Row A, then x is certainly orthogonal to each row of A, and hence Ax = 0.

This proves the first statement of the theorem.

ORTHOGONAL COMPLEMENTS

• Since this statement is true for any matrix, it is true for A^T .

- That is, the orthogonal complement of the row space of A^T is the null space of A^T .
- This proves the second statement, because $\operatorname{Row} A^T = \operatorname{Col} A$.