Thermodynamics & Statistical Physics Chapter 10. Fluctuation

Yuan-Chuan Zou zouyc@hust.edu.cn

School of Physics, Huazhong University of Science and Technology

December 30, 2013

Table of contents

- §10. Fluctuation
 - 10.1 Quasi-thermodynamics of fluctuation
 - 10.5 Brownian motion
 - 10.6 Diffusion and temporal correlation of Brownian particle's momentum
 - 10.7 Examples of Brownian motion

• Statistical average: $\overline{B} = \sum B_s \rho_s$.

- Statistical average: $\overline{B} = \sum_{s} B_{s} \rho_{s}$.
- ullet Deviation to the average: $B-\overline{B}$;

- Statistical average: $\overline{B} = \sum_s B_s \rho_s$.
- Deviation to the average: $\underline{B} \overline{B}$; Average of the deviation: $\overline{B} - \overline{B}$

- Statistical average: $\overline{B} = \sum_s B_s \rho_s$.
- Deviation to the average: $\underline{B-\overline{B}}$; Average of the deviation: $\overline{B-\overline{B}}=\sum_s(B-\overline{B})\rho_s$

- Statistical average: $\overline{B} = \sum_s B_s \rho_s$.
- Deviation to the average: $\underline{B}-\overline{B}$; Average of the deviation: $\overline{B}-\overline{B}=\sum_s(B-\overline{B})\rho_s$

$$=\sum_{s}B_{s}\rho_{s}-\overline{B}\sum_{s}\rho_{s}$$

- Statistical average: $\overline{B} = \sum_s B_s \rho_s$.
- Deviation to the average: $\underline{B} \overline{B}$; Average of the deviation: $\overline{B} \overline{B} = \sum_s (B \overline{B}) \rho_s$ $= \sum_s B_s \rho_s \overline{B} \sum_s \rho_s = \overline{B} \overline{B} = 0.$

- Statistical average: $\overline{B} = \sum_s B_s \rho_s$.
- Deviation to the average: $\underline{B} \overline{B}$; Average of the deviation: $\overline{B} \overline{B} = \sum_s (B \overline{B}) \rho_s$ $= \sum_s B_s \rho_s \overline{B} \sum_s \rho_s = \overline{B} \overline{B} = 0.$
- Use $(B \overline{B})^2$ to indicate the fluctuation.

- Statistical average: $\overline{B} = \sum_s B_s \rho_s$.
- Deviation to the average: $\underline{B} \overline{B}$; Average of the deviation: $\overline{B} \overline{B} = \sum_s (B \overline{B}) \rho_s$ $= \sum_s B_s \rho_s \overline{B} \sum_s \rho_s = \overline{B} \overline{B} = 0.$
- Use $(B-\overline{B})^2$ to indicate the fluctuation. $\overline{(B-\overline{B})^2} = \sum \rho_s (B_s-\overline{B})^2$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- Statistical average: $\overline{B} = \sum B_s \rho_s$.
- Deviation to the average: $B \overline{B}$; Average of the deviation: $\overline{B-\overline{B}}=\sum(B-\overline{B})\rho_s$ $= \sum_{s} B_{s} \rho_{s} - \overline{B} \sum_{s} \rho_{s} = \overline{B} - \overline{B} = 0.$
- Use $\overline{(B-\overline{B})^2}$ to indicate the fluctuation. $(B - \overline{B})^2 = \sum \rho_s (B_s - \overline{B})^2$

$$=\sum_{s}\rho_{s}B_{s}^{2}-2\overline{B}\sum_{s}\rho_{s}B_{s}+\overline{B}^{2}$$

- Statistical average: $\overline{B} = \sum B_s \rho_s$.
- Deviation to the average: $B \overline{B}$; Average of the deviation: $\overline{B-\overline{B}}=\sum(B-\overline{B})\rho_s$ $= \sum_{s} B_{s} \rho_{s} - \overline{B} \sum_{s} \rho_{s} = \overline{B} - \overline{B} = 0.$
- Use $(B \overline{B})^2$ to indicate the fluctuation. $(B - \overline{B})^2 = \sum \rho_s (B_s - \overline{B})^2$

$$= \sum_{s} \rho_{s} B_{s}^{2} - 2\overline{B} \sum_{s} \rho_{s} B_{s} + \overline{B}^{2} = \overline{B}^{2} - \overline{B}^{2}.$$

- Statistical average: $\overline{B} = \sum B_s \rho_s$.
- Deviation to the average: $B \overline{B}$; Average of the deviation: $\overline{B-\overline{B}}=\sum(B-\overline{B})\rho_s$ $= \sum_{s} B_{s} \rho_{s} - \overline{B} \sum_{s} \rho_{s} = \overline{B} - \overline{B} = 0.$
- Use $\overline{(B-\overline{B})^2}$ to indicate the fluctuation. $(B - \overline{B})^2 = \sum \rho_s (B_s - \overline{B})^2$

$$=\sum_s \rho_s B_s^2 - 2\overline{B}\sum_s \rho_s B_s + \overline{B}^2 = \overline{B^2} - \overline{B}^2.$$
 • Fluctuation of thermal parameters: $N,\,V,\,E;\,S,\,T.$

- Statistical average: $\overline{B} = \sum B_s \rho_s$.
- Deviation to the average: $B \overline{B}$; Average of the deviation: $\overline{B-\overline{B}}=\sum (B-\overline{B})\rho_s$ $= \sum_{s} B_{s} \rho_{s} - \overline{B} \sum_{s} \rho_{s} = \overline{B} - \overline{B} = 0.$
- Use $(B \overline{B})^2$ to indicate the fluctuation. $(B - \overline{B})^2 = \sum \rho_s (B_s - \overline{B})^2$

$$= \sum_{s} \rho_{s} B_{s}^{2} - 2\overline{B} \sum_{s} \rho_{s} B_{s} + \overline{B}^{2} = \overline{B^{2}} - \overline{B}^{2}.$$

ullet Fluctuation of thermal parameters: N, V, E; S, T. For S (or T), means $[S(N, V, E) - S(\overline{N}, \overline{V}, \overline{E})]^2$.

• Canonical ensemble:

Canonical ensemble:

Consider the combined system, it has:

$$\Delta E + \Delta E_r = 0$$
, $\Delta V + \Delta V_r = 0$.

• Canonical ensemble: Consider the combined system, it has: $\Delta E + \Delta E_r = 0$, $\Delta V + \Delta V_r = 0$.

• $(\overline{E},\overline{V})$ is the most probable value, the corresponding number of states of the combined system: $\overline{\Omega}^{(0)}$;

- Canonical ensemble: Consider the combined system, it has: $\Delta E + \Delta E_r = 0$, $\Delta V + \Delta V_r = 0$.
- $(\overline{E}, \overline{V})$ is the most probable value, the corresponding number of states of the combined system: $\overline{\Omega}^{(0)}$; the corresponding entropy: $\overline{S}^{(0)} = k \ln \overline{\Omega}^{(0)}$.

- Canonical ensemble: Consider the combined system, it has: $\Delta E + \Delta E_r = 0$, $\Delta V + \Delta V_r = 0$.
- $(\overline{E},\overline{V})$ is the most probable value, the corresponding number of states of the combined system: $\overline{\Omega}^{(0)}$; the corresponding entropy: $\overline{S}^{(0)}=k\ln\overline{\Omega}^{(0)}$.
- Any state: (E, V), the corresponding number of states of the combined system: $\Omega^{(0)}$,

- Canonical ensemble: Consider the combined system, it has: $\Delta E + \Delta E_r = 0$, $\Delta V + \Delta V_r = 0$.
- $(\overline{E}, \overline{V})$ is the most probable value, the corresponding number of states of the combined system: $\overline{\Omega}^{(0)}$; the corresponding entropy: $\overline{S}^{(0)} = k \ln \overline{\Omega}^{(0)}$.
- Any state: (E,V), the corresponding number of states of the combined system: $\Omega^{(0)}$, and entropy: $S^{(0)}(E,V)=k\ln\Omega^{(0)}$.

- Canonical ensemble: Consider the combined system, it has: $\Delta E + \Delta E_r = 0$, $\Delta V + \Delta V_r = 0$.
- \bullet (E,V) is the most probable value, the corresponding number of states of the combined system: $\overline{\Omega}^{(0)}$; the corresponding entropy: $\overline{S}^{(0)} = k \ln \overline{\Omega}^{(0)}$.
- Any state: (E, V), the corresponding number of states of the combined system: $\Omega^{(0)}$. and entropy: $S^{(0)}(E, V) = k \ln \Omega^{(0)}$.
- The relative probability for (E, V) comparing to $(\overline{E}, \overline{V})$: $w = \frac{W}{W_{\text{max}}} = \frac{\Omega^{(0)}}{\overline{\Omega^{(0)}}} = e^{\frac{\Delta S^{(0)}}{k}}$

- Canonical ensemble: Consider the combined system, it has: $\Delta E + \Delta E_r = 0$, $\Delta V + \Delta V_r = 0$.
- \bullet (E,V) is the most probable value, the corresponding number of states of the combined system: $\overline{\Omega}^{(0)}$; the corresponding entropy: $\overline{S}^{(0)} = k \ln \overline{\Omega}^{(0)}$.
- Any state: (E, V), the corresponding number of states of the combined system: $\Omega^{(0)}$, and entropy: $S^{(0)}(E, V) = k \ln \Omega^{(0)}$.
- ullet The relative probability for (E,V) comparing to $(\overline{E}, \overline{V})$: $w = \frac{W}{W_{\text{max}}} = \frac{\Omega^{(0)}}{\overline{\Omega^{(0)}}} = e^{\frac{\Delta S^{(0)}}{k}} \Rightarrow W \propto e^{\frac{\Delta S^{(0)}}{k}}$.

- Canonical ensemble: Consider the combined system, it has: $\Delta E + \Delta E_r = 0$, $\Delta V + \Delta V_r = 0$.
- \bullet (E,V) is the most probable value, the corresponding number of states of the combined system: $\overline{\Omega}^{(0)}$; the corresponding entropy: $\overline{S}^{(0)} = k \ln \overline{\Omega}^{(0)}$.
- Any state: (E, V), the corresponding number of states of the combined system: $\Omega^{(0)}$, and entropy: $S^{(0)}(E, V) = k \ln \Omega^{(0)}$.
- ullet The relative probability for (E,V) comparing to $(\overline{E}, \overline{V})$: $w = \frac{W}{W_{\text{max}}} = \frac{\Omega^{(0)}}{\overline{\Omega^{(0)}}} = e^{\frac{\Delta S^{(0)}}{k}} \Rightarrow W \propto e^{\frac{\Delta S^{(0)}}{k}}$.

• 1. Extensive property of the entropy:

$$\begin{split} \Delta S^{(0)} &= \Delta S + \Delta S_r \text{,} \\ \text{where } \Delta S &= S - \overline{S} \text{, } \Delta S_r = S_r - \overline{S_r}. \end{split}$$

$$W \propto e^{\frac{\Delta S^{(0)}}{k}}$$

• 1. Extensive property of the entropy:

$$\Delta S^{(0)} = \Delta S + \Delta S_r,$$
 where $\Delta S = S - \overline{S}$, $\Delta S_r = S_r - \overline{S}_r$.

• 2. The basic equation: $\Delta S_r = \frac{\Delta E_r + p\Delta V_r}{T}$

• 1. Extensive property of the entropy:

$$\Delta S^{(0)} = \Delta S + \Delta S_r,$$
 where $\Delta S = S - \overline{S}$, $\Delta S_r = S_r - \overline{S_r}$.

• 2. The basic equation: $\Delta S_r = \frac{\Delta E_r + p\Delta V_r}{T} = -\frac{\Delta E + p\Delta V}{T}$

• 1. Extensive property of the entropy:

$$\Delta S^{(0)} = \Delta S + \Delta S_r,$$
 where $\Delta S = S - \overline{S}$, $\Delta S_r = S_r - \overline{S}_r$.

- 2. The basic equation: $\Delta S_r = \frac{\Delta E_r + p\Delta V_r}{T} = -\frac{\Delta E + p\Delta V}{T}$
- $\bullet \Rightarrow W \propto e^{\frac{\Delta S^{(0)}}{k}}$

• 1. Extensive property of the entropy:

$$\Delta S^{(0)} = \Delta S + \Delta S_r,$$
 where $\Delta S = S - \overline{S}$, $\Delta S_r = S_r - \overline{S_r}$.

- 2. The basic equation: $\Delta S_r = \frac{\Delta E_r + p\Delta V_r}{T} = -\frac{\Delta E + p\Delta V}{T}$.
- $\bullet \Rightarrow W \propto e^{\frac{\Delta S^{(0)}}{k}} \propto e^{\frac{\Delta S + \Delta S_r}{k}}$

$$W \propto e^{\frac{\Delta S^{(0)}}{k}}$$

• 1. Extensive property of the entropy:

$$\Delta S^{(0)} = \Delta S + \Delta S_r,$$
 where $\Delta S = S - \overline{S}$, $\Delta S_r = S_r - \overline{S_r}$.

• 2. The basic equation: $\Delta S_r = \frac{\Delta E_r + p\Delta V_r}{T} = -\frac{\Delta E + p\Delta V}{T}$

$$\bullet \Rightarrow W \propto e^{\frac{\Delta S^{(0)}}{k}} \propto e^{\frac{\Delta S + \Delta S_r}{k}} \propto e^{\frac{\Delta S - \frac{\Delta E + p\Delta V}{T}}{k}}$$

• 1. Extensive property of the entropy:

$$\Delta S^{(0)} = \Delta S + \Delta S_r,$$
 where $\Delta S = S - \overline{S}$, $\Delta S_r = S_r - \overline{S_r}$.

• 2. The basic equation: $\Delta S_r = \frac{\Delta E_r + p \Delta V_r}{T} = -\frac{\Delta E + p \Delta V}{T}$

$$\bullet \Rightarrow W \propto e^{\frac{\Delta S^{(0)}}{k}} \propto e^{\frac{\Delta S + \Delta S_r}{k}} \propto e^{\frac{\Delta S - \frac{\Delta E + p\Delta V}{T}}{k}}$$

$$\propto e^{-\frac{\Delta E - T\Delta S + p\Delta V}{kT}}.$$

$$W \propto e^{\frac{\Delta S^{(0)}}{k}}$$

• 1. Extensive property of the entropy:

$$\Delta S^{(0)} = \Delta S + \Delta S_r,$$
 where $\Delta S = S - \overline{S}$, $\Delta S_r = S_r - \overline{S_r}$.

• 2. The basic equation: $\Delta S_r = \frac{\Delta E_r + p\Delta V_r}{T} = -\frac{\Delta E + p\Delta V}{T}$

$$\bullet \Rightarrow W \underset{kT}{\propto} e^{\frac{\Delta S^{(0)}}{k}} \underset{kT}{\propto} e^{\frac{\Delta S + \Delta S_r}{k}} \propto e^{\frac{\Delta S - \frac{\Delta E + p\Delta V}{T}}{k}}$$

• Take E as E(S, V), expand at $(\overline{S}, \overline{V})$ (labeled as 0):

$$W \propto e^{\frac{\Delta S^{(0)}}{k}}$$

• 1. Extensive property of the entropy:

$$\Delta S^{(0)} = \Delta S + \Delta S_r,$$
 where $\Delta S = S - \overline{S}$, $\Delta S_r = S_r - \overline{S_r}$.

- 2. The basic equation: $\Delta S_r = \frac{\Delta E_r + p\Delta V_r}{T} = -\frac{\Delta E + p\Delta V}{T}$
- $\bullet \Rightarrow W \propto e^{\frac{\Delta S^{(0)}}{k}} \propto e^{\frac{\Delta S + \Delta S_r}{k}} \propto e^{\frac{\Delta S \frac{\Delta E + p\Delta V}{T}}{k}}$ $\sim e^{-\frac{\Delta E - T\Delta S + p\Delta V}{kT}}$
- Take E as E(S, V), expand at $(\overline{S}, \overline{V})$ (labeled as 0): $E = \overline{E} + (\frac{\partial E}{\partial S})_0 \Delta S + (\frac{\partial E}{\partial V})_0 \Delta V + \frac{1}{2} [(\frac{\partial^2 E}{\partial S^2})_0 (\Delta S)^2 +$ $2(\frac{\partial^2 E}{\partial S \partial V})_0 \Delta S \Delta V + (\frac{\partial^2 E}{\partial V^2})_0 (\Delta V)^2$].

Fluctuation of canonical ensemble $W \propto e^{-\frac{\Delta E - T \Delta S + p \Delta V}{kT}}$

•
$$dE = TdS - pdV$$
, $\Rightarrow (\frac{\partial E}{\partial S})_0 = T$, $(\frac{\partial E}{\partial V})_0 = -p$, then

Fluctuation of canonical ensemble $W \propto e^{-\frac{\Delta E - T\Delta S + p\Delta V}{kT}}$

• dE = TdS - pdV, $\Rightarrow (\frac{\partial E}{\partial S})_0 = T$, $(\frac{\partial E}{\partial V})_0 = -p$, then $E = \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[\frac{\partial}{\partial S} (\frac{\partial E}{\partial S}) (\Delta S)^2 + \frac{1}{2} (\frac{\partial E}{\partial S})$ $\frac{\partial}{\partial S}(\frac{\partial E}{\partial V})\Delta S\Delta V + \frac{\partial}{\partial V}(\frac{\partial E}{\partial S})\Delta S\Delta V + \frac{\partial}{\partial V}(\frac{\partial E}{\partial V})(\Delta V)^2$

•
$$dE = TdS - pdV$$
, $\Rightarrow (\frac{\partial E}{\partial S})_0 = T$, $(\frac{\partial E}{\partial V})_0 = -p$, then $E = \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[\frac{\partial}{\partial S} (\frac{\partial E}{\partial S}) (\Delta S)^2 + \frac{\partial}{\partial S} (\frac{\partial E}{\partial V}) \Delta S\Delta V + \frac{\partial}{\partial V} (\frac{\partial E}{\partial S}) \Delta S\Delta V + \frac{\partial}{\partial V} (\frac{\partial E}{\partial V}) (\Delta V)^2 \right]$

$$= \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[\frac{\partial T}{\partial S} (\Delta S)^2 + \frac{\partial (-p)}{\partial S} \Delta S\Delta V + \frac{\partial T}{\partial V} \Delta S\Delta V + \frac{\partial (-p)}{\partial V} (\Delta V)^2 \right]$$

•
$$\mathrm{d}E = T\mathrm{d}S - p\mathrm{d}V$$
, $\Rightarrow (\frac{\partial E}{\partial S})_0 = T$, $(\frac{\partial E}{\partial V})_0 = -p$, then $E = \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[\frac{\partial}{\partial S} (\frac{\partial E}{\partial S}) (\Delta S)^2 + \frac{\partial}{\partial S} (\frac{\partial E}{\partial V}) \Delta S\Delta V + \frac{\partial}{\partial V} (\frac{\partial E}{\partial S}) \Delta S\Delta V + \frac{\partial}{\partial V} (\frac{\partial E}{\partial V}) (\Delta V)^2 \right]$

$$= \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[\frac{\partial T}{\partial S} (\Delta S)^2 + \frac{\partial (-p)}{\partial S} \Delta S\Delta V + \frac{\partial T}{\partial V} \Delta S\Delta V + \frac{\partial (-p)}{\partial V} (\Delta V)^2 \right]$$

$$= \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[(\frac{\partial T}{\partial S} \Delta S + \frac{\partial T}{\partial V} \Delta V) \Delta S - (\frac{\partial p}{\partial S} \Delta S + \frac{\partial p}{\partial V} \Delta V) \Delta V \right]$$

6 / 27

• dE = TdS - pdV, $\Rightarrow (\frac{\partial E}{\partial S})_0 = T$, $(\frac{\partial E}{\partial V})_0 = -p$, then $E = \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[\frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S)^2 + \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial S} \right) (\Delta S$ $\frac{\partial}{\partial S}(\frac{\partial E}{\partial V})\Delta S\Delta V + \frac{\partial}{\partial V}(\frac{\partial E}{\partial S})\Delta S\Delta V + \frac{\partial}{\partial V}(\frac{\partial E}{\partial V})(\Delta V)^2$ $= \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[\frac{\partial T}{\partial S} (\Delta S)^2 + \frac{\partial (-p)}{\partial S} \Delta S \Delta V \right] +$ $\frac{\partial T}{\partial V} \Delta S \Delta V + \frac{\partial (-p)}{\partial V} (\Delta V)^2$ $=\overline{E}+T\Delta S-p\Delta V+\frac{1}{2}[(\frac{\partial T}{\partial S}\Delta S+\frac{\partial T}{\partial V}\Delta V)\Delta S \left(\frac{\partial p}{\partial S}\Delta S + \frac{\partial p}{\partial V}\Delta V\right)\Delta V$ $= E + T\Delta S - p\Delta V + \frac{1}{2}(\Delta T\Delta S - \Delta p\Delta V).$

•
$$\mathrm{d}E = T\mathrm{d}S - p\mathrm{d}V$$
, $\Rightarrow (\frac{\partial E}{\partial S})_0 = T$, $(\frac{\partial E}{\partial V})_0 = -p$, then $E = \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[\frac{\partial}{\partial S} (\frac{\partial E}{\partial S}) (\Delta S)^2 + \frac{\partial}{\partial S} (\frac{\partial E}{\partial V}) \Delta S\Delta V + \frac{\partial}{\partial V} (\frac{\partial E}{\partial S}) \Delta S\Delta V + \frac{\partial}{\partial V} (\frac{\partial E}{\partial V}) (\Delta V)^2 \right]$

$$= \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[\frac{\partial T}{\partial S} (\Delta S)^2 + \frac{\partial (-p)}{\partial S} \Delta S\Delta V + \frac{\partial T}{\partial V} \Delta S\Delta V + \frac{\partial (-p)}{\partial V} (\Delta V)^2 \right]$$

$$= \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[(\frac{\partial T}{\partial S} \Delta S + \frac{\partial T}{\partial V} \Delta V) \Delta S - (\frac{\partial P}{\partial S} \Delta S + \frac{\partial P}{\partial V} \Delta V) \Delta V \right]$$

$$= \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} (\Delta T\Delta S - \Delta p\Delta V).$$
• $\Rightarrow \Delta E - T\Delta S + p\Delta V = \frac{1}{2} (\Delta T\Delta S - \Delta p\Delta V)$

•
$$\mathrm{d}E = T\mathrm{d}S - p\mathrm{d}V$$
, $\Rightarrow (\frac{\partial E}{\partial S})_0 = T$, $(\frac{\partial E}{\partial V})_0 = -p$, then $E = \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[\frac{\partial}{\partial S} (\frac{\partial E}{\partial S}) (\Delta S)^2 + \frac{\partial}{\partial S} (\frac{\partial E}{\partial V}) \Delta S\Delta V + \frac{\partial}{\partial V} (\frac{\partial E}{\partial S}) \Delta S\Delta V + \frac{\partial}{\partial V} (\frac{\partial E}{\partial V}) (\Delta V)^2 \right]$

$$= \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[\frac{\partial T}{\partial S} (\Delta S)^2 + \frac{\partial (-p)}{\partial S} \Delta S\Delta V + \frac{\partial T}{\partial V} \Delta S\Delta V + \frac{\partial (-p)}{\partial V} (\Delta V)^2 \right]$$

$$= \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} \left[(\frac{\partial T}{\partial S} \Delta S + \frac{\partial T}{\partial V} \Delta V) \Delta S - (\frac{\partial p}{\partial S} \Delta S + \frac{\partial p}{\partial V} \Delta V) \Delta V \right]$$

$$= \overline{E} + T\Delta S - p\Delta V + \frac{1}{2} (\Delta T\Delta S - \Delta p\Delta V).$$
• $\Rightarrow \Delta E - T\Delta S + p\Delta V = \frac{1}{2} (\Delta T\Delta S - \Delta p\Delta V)$

$$\bullet \Rightarrow W \propto e^{-\frac{\Delta T \Delta S - \Delta p \Delta V}{2kT}}$$
.

$$\Delta S = \left(\frac{\partial S}{\partial T}\right)_V \Delta T + \left(\frac{\partial S}{\partial V}\right)_T \Delta V$$

• If take (T, V) as variable,

$$\Delta S = (\frac{\partial S}{\partial T})_V \Delta T + (\frac{\partial S}{\partial V})_T \Delta V = \frac{C_V}{T} \Delta T + (\frac{\partial p}{\partial T})_V \Delta V;$$

7 / 27

$$\Delta S = \left(\frac{\partial S}{\partial T}\right)_V \Delta T + \left(\frac{\partial S}{\partial V}\right)_T \Delta V = \frac{C_V}{T} \Delta T + \left(\frac{\partial p}{\partial T}\right)_V \Delta V;$$

$$\Delta p = \left(\frac{\partial p}{\partial T}\right)_V \Delta T + \left(\frac{\partial p}{\partial V}\right)_T \Delta V.$$

$$\Delta S = (\frac{\partial S}{\partial T})_V \Delta T + (\frac{\partial S}{\partial V})_T \Delta V = \frac{C_V}{T} \Delta T + (\frac{\partial p}{\partial T})_V \Delta V;$$

$$\Delta p = (\frac{\partial p}{\partial T})_V \Delta T + (\frac{\partial p}{\partial V})_T \Delta V.$$

$$\Delta T \Delta S = \Delta T \Delta V = \frac{C_V}{T} (\Delta T)^2 + (\frac{\partial p}{\partial V})_T \Delta V.$$

$$\therefore \Delta T \Delta S - \Delta p \Delta V = \frac{C_V}{T} (\Delta T)^2 + (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial V})_T (\Delta V)^2$$

$$\Delta S = (\frac{\partial S}{\partial T})_V \Delta T + (\frac{\partial S}{\partial V})_T \Delta V = \frac{C_V}{T} \Delta T + (\frac{\partial p}{\partial T})_V \Delta V;$$

$$\Delta p = (\frac{\partial p}{\partial T})_V \Delta T + (\frac{\partial p}{\partial V})_T \Delta V.$$

$$\therefore \Delta T \Delta S - \Delta p \Delta V = \frac{C_V}{T} (\Delta T)^2 + (\frac{\partial p}{\partial T})_V \Delta T \Delta V -$$

$$\Delta S = (\frac{\partial S}{\partial T})_V \Delta T + (\frac{\partial S}{\partial V})_T \Delta V = \frac{C_V}{T} \Delta T + (\frac{\partial p}{\partial T})_V \Delta V;$$

$$\Delta p = (\frac{\partial p}{\partial T})_V \Delta T + (\frac{\partial p}{\partial V})_T \Delta V.$$

$$\Delta T \Delta S - \Delta p \Delta V = \frac{C_V}{T} (\Delta T)^2 + (\frac{\partial p}{\partial V})_V \Delta T \Delta V - (\frac{\partial p}{\partial V})_V \Delta V - (\frac$$

$$\therefore \Delta T \Delta S - \Delta p \Delta V = \frac{C_V}{T} (\Delta T)^2 + (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial V})_T (\Delta V)^2 = \frac{C_V}{T} (\Delta T)^2 - (\frac{\partial p}{\partial V})_T (\Delta V)^2$$

•
$$W \propto e^{-\frac{C_V}{2kT^2}(\Delta T)^2 + \frac{1}{2kT}(\frac{\partial p}{\partial V})_T(\Delta V)^2}$$

• If take (T, V) as variable,

$$\Delta S = (\frac{\partial S}{\partial T})_V \Delta T + (\frac{\partial S}{\partial V})_T \Delta V = \frac{C_V}{T} \Delta T + (\frac{\partial p}{\partial T})_V \Delta V;$$

$$\Delta p = (\frac{\partial p}{\partial T})_V \Delta T + (\frac{\partial p}{\partial V})_T \Delta V.$$

$$\therefore \Delta T \Delta S - \Delta p \Delta V = \frac{C_V}{T} (\Delta T)^2 + (\frac{\partial p}{\partial T})_V \Delta T \Delta V -$$

$$\therefore \Delta T \Delta S - \Delta p \Delta V = \frac{c_V}{T} (\Delta T)^2 + (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial V})_T (\Delta V)^2 = \frac{c_V}{T} (\Delta T)^2 - (\frac{\partial p}{\partial V})_T (\Delta V)^2$$

• $W \propto e^{-\frac{C_V}{2kT^2}(\Delta T)^2+\frac{1}{2kT}(\frac{\partial p}{\partial V})_T(\Delta V)^2}$, the probability for the system with deviation ΔT and ΔV .

$$\Delta S = (\frac{\partial S}{\partial T})_V \Delta T + (\frac{\partial S}{\partial V})_T \Delta V = \frac{C_V}{T} \Delta T + (\frac{\partial p}{\partial T})_V \Delta V;$$

$$\Delta p = (\frac{\partial p}{\partial T})_V \Delta T + (\frac{\partial p}{\partial V})_T \Delta V.$$

$$\therefore \Delta T \Delta S - \Delta p \Delta V = \frac{C_V}{T} (\Delta T)^2 + (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial V})_T (\Delta V)^2$$

$$= \frac{C_V}{T} (\Delta T)^2 - (\frac{\partial p}{\partial V})_T (\Delta V)^2$$

- $\bullet~W \propto e^{-rac{C_V}{2kT^2}(\Delta T)^2+rac{1}{2kT}(rac{\partial p}{\partial V})_T(\Delta V)^2}$, the probability for the system with deviation ΔT and ΔV .
- Two independent Gaussian distributions indicates ΔT and ΔV are independent,

$$\Delta S = (\frac{\partial S}{\partial T})_V \Delta T + (\frac{\partial S}{\partial V})_T \Delta V = \frac{C_V}{T} \Delta T + (\frac{\partial p}{\partial T})_V \Delta V;$$

$$\Delta p = (\frac{\partial p}{\partial T})_V \Delta T + (\frac{\partial p}{\partial V})_T \Delta V.$$

$$\therefore \Delta T \Delta S - \Delta p \Delta V = \frac{C_V}{T} (\Delta T)^2 + (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial V})_T (\Delta V)^2$$

$$= \frac{C_V}{T} (\Delta T)^2 - (\frac{\partial p}{\partial V})_T (\Delta V)^2$$

- $\bullet~W \propto e^{-rac{C_V}{2kT^2}(\Delta T)^2+rac{1}{2kT}(rac{\partial p}{\partial V})_T(\Delta V)^2}$, the probability for the system with deviation ΔT and ΔV .
- Two independent Gaussian distributions indicates ΔT and ΔV are independent, and $\overline{(\Delta T)^2} = \frac{kT^2}{C_{T}}$,

• If take (T, V) as variable, $\Delta S = (\frac{\partial S}{\partial T})_V \Delta T + (\frac{\partial S}{\partial V})_T \Delta V = \frac{C_V}{T} \Delta T + (\frac{\partial p}{\partial T})_V \Delta V;$ $\Delta p = (\frac{\partial p}{\partial T})_V \Delta T + (\frac{\partial p}{\partial V})_T \Delta V.$

$$\therefore \Delta T \Delta S - \Delta p \Delta V = \frac{C_V}{T} (\Delta T)^2 + (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial T})_V \Delta T \Delta V - (\frac{\partial p}{\partial V})_T (\Delta V)^2 = \frac{C_V}{T} (\Delta T)^2 - (\frac{\partial p}{\partial V})_T (\Delta V)^2$$

- $\bullet~W \propto e^{-rac{C_V}{2kT^2}(\Delta T)^2+rac{1}{2kT}(rac{\partial p}{\partial V})_T(\Delta V)^2}$, the probability for the system with deviation ΔT and ΔV .
- Two independent Gaussian distributions indicates ΔT and ΔV are independent, and $\overline{(\Delta T)^2} = \frac{kT^2}{C_V}$, $\overline{(\Delta V)^2} = -kT(\frac{\partial V}{\partial n})_T = kTV\kappa_T$.

$$W\propto e^{-rac{\Delta T\Delta S-\Delta p\Delta V}{2kT}}$$
, $W\propto e^{-rac{C_V}{2kT^2}(\Delta T)^2+rac{1}{2kT}(rac{\partial p}{\partial V})_T(\Delta V)^2}$

• For magnetic medium, the work part (1.4.8): $dW = \mu_0 V H dM = \mu_0 H dm$.

$$W \propto e^{-rac{\Delta T \Delta S - \Delta p \Delta V}{2kT}}$$
, $W \propto e^{-rac{C_V}{2kT^2}(\Delta T)^2 + rac{1}{2kT}(rac{\partial p}{\partial V})_T(\Delta V)^2}$

• For magnetic medium, the work part (1.4.8): $dW = \mu_0 V H dM = \mu_0 H dm.$ $-p \to \mu_0 H, \ V \to m, \ \text{then}$

$$W \propto e^{-rac{\Delta T \Delta S - \Delta p \Delta V}{2kT}}$$
, $W \propto e^{-rac{C_V}{2kT^2}(\Delta T)^2 + rac{1}{2kT}(rac{\partial p}{\partial V})_T(\Delta V)^2}$

• For magnetic medium, the work part (1.4.8):

$$\begin{split} & dW = \mu_0 V H dM = \mu_0 H dm. \\ & -p \to \mu_0 H, \ V \to m, \ \text{then} \\ & W \propto e^{-\frac{C_m}{2kT^2} (\Delta T)^2 - \frac{\mu_0}{2kT} (\frac{\partial H}{\partial m})_T (\Delta m)^2} \end{split}$$

$$\overline{W \propto e^{-rac{\Delta T \Delta S - \Delta p \Delta V}{2kT}}}$$
, $\overline{W \propto e^{-rac{C_V}{2kT^2}(\Delta T)^2 + rac{1}{2kT}(rac{\partial p}{\partial V})_T(\Delta V)^2}}$

• For magnetic medium, the work part (1.4.8): $dW = \mu_0 V H dM = \mu_0 H dm.$

$$-p\to \mu_0 H$$
 , $V\to m$, then $W\propto e^{-\frac{Cm}{2kT^2}(\Delta T)^2-\frac{\mu_0}{2kT}(\frac{\partial H}{\partial m})_T(\Delta m)^2}$

• For grand canonical ensemble:

$$W \propto e^{-rac{\Delta T \Delta S - \Delta p \Delta V}{2kT}}$$
, $W \propto e^{-rac{C_V}{2kT^2}(\Delta T)^2 + rac{1}{2kT}(rac{\partial p}{\partial V})_T(\Delta V)^2}$

• For magnetic medium, the work part (1.4.8): $dW = \mu_0 V H dM = \mu_0 H dm$.

$$-p
ightarrow \mu_0 H$$
 , $V
ightarrow m$, then $W \propto e^{-\frac{Cm}{2kT^2}(\Delta T)^2 - \frac{\mu_0}{2kT}(rac{\partial H}{\partial m})_T(\Delta m)^2}$

• For grand canonical ensemble:

$$W \propto e^{-\frac{\Delta T \Delta S - \Delta p \Delta V + \Delta \mu \Delta N}{2kT}}$$
.

$$W\propto e^{-rac{\Delta T\Delta S-\Delta p\Delta V}{2kT}}$$
, $W\propto e^{-rac{C_V}{2kT^2}(\Delta T)^2+rac{1}{2kT}(rac{\partial p}{\partial V})_T(\Delta V)^2}$

• For magnetic medium, the work part (1.4.8): $dW = \mu_0 V H dM = \mu_0 H dm.$

$$-p \to \mu_0 H$$
 , $V \to m$, then $W \propto e^{-\frac{C_m}{2kT^2}(\Delta T)^2 - \frac{\mu_0}{2kT}(\frac{\partial H}{\partial m})_T(\Delta m)^2}$

- For grand canonical ensemble: $W \propto e^{-\frac{\Delta T \Delta S \Delta p \Delta V + \Delta \mu \Delta N}{2kT}}$.
- If take (N, V, T) as variables, but keep V fixed,

$$W \propto e^{-rac{\Delta T \Delta S - \Delta p \Delta V}{2kT}}$$
, $W \propto e^{-rac{C_V}{2kT^2}(\Delta T)^2 + rac{1}{2kT}(rac{\partial p}{\partial V})_T(\Delta V)^2}$

• For magnetic medium, the work part (1.4.8): $dW = \mu_0 V H dM = \mu_0 H dm.$ $-p \to \mu_0 H, \ V \to m, \ \text{then}$ $W \propto e^{-\frac{C_m}{2kT^2} (\Delta T)^2 - \frac{\mu_0}{2kT} (\frac{\partial H}{\partial m})_T (\Delta m)^2}$

• For grand canonical ensemble:
$$W \propto e^{-\frac{\Delta T \Delta S - \Delta p \Delta V + \Delta \mu \Delta N}{2kT}}$$

• If take (N,V,T) as variables, but keep V fixed, $\Delta S = (\tfrac{\partial S}{\partial T})_{V,N} \Delta T + (\tfrac{\partial S}{\partial N})_{V,T} \Delta N$

$$W \propto e^{-rac{\Delta T \Delta S - \Delta p \Delta V}{2kT}}$$
, $W \propto e^{-rac{C_V}{2kT^2}(\Delta T)^2 + rac{1}{2kT}(rac{\partial p}{\partial V})_T(\Delta V)^2}$

• For magnetic medium, the work part (1.4.8): $dW = \mu_0 V H dM = \mu_0 H dm.$ $-p \to \mu_0 H, \ V \to m, \ \text{then}$

$$W \propto e^{-\frac{C_m}{2kT^2}(\Delta T)^2 - \frac{\mu_0}{2kT}(\frac{\partial H}{\partial m})_T(\Delta m)^2}$$

- For grand canonical ensemble: $W \propto e^{-\frac{\Delta T \Delta S \Delta p \Delta V + \Delta \mu \Delta N}{2kT}}$.
- If take (N,V,T) as variables, but keep V fixed, $\Delta S = (\frac{\partial S}{\partial T})_{V,N} \Delta T + (\frac{\partial S}{\partial N})_{V,T} \Delta N \\ = \frac{C_V}{T} \Delta T (\frac{\partial \mu}{\partial T})_{V,T} \Delta N;$

$$W \propto e^{-\frac{\Delta T \Delta S - \Delta p \Delta V}{2kT}}$$
, $W \propto e^{-\frac{C_V}{2kT^2}(\Delta T)^2 + \frac{1}{2kT}(\frac{\partial p}{\partial V})_T(\Delta V)^2}$

• For grand canonical ensemble:
$$W \propto e^{-\frac{\Delta T \Delta S - \Delta p \Delta V + \Delta \mu \Delta N}{2kT}}$$

• If take (N,V,T) as variables, but keep V fixed, $\Delta S = (\frac{\partial S}{\partial T})_{V,N} \Delta T + (\frac{\partial S}{\partial N})_{V,T} \Delta N \\ = \frac{C_V}{T} \Delta T - (\frac{\partial \mu}{\partial T})_{V,T} \Delta N; \\ \Delta \mu = (\frac{\partial \mu}{\partial T})_{V,N} \Delta T + (\frac{\partial \mu}{\partial N})_{V,T} \Delta N.$

$$W \propto e^{-\frac{\Delta T \Delta S - \Delta p \Delta V}{2kT}}$$
, $W \propto e^{-\frac{C_V}{2kT^2}(\Delta T)^2 + \frac{1}{2kT}(\frac{\partial p}{\partial V})_T(\Delta V)^2}$

• For grand canonical ensemble:
$$W \propto e^{-\frac{\Delta T \Delta S - \Delta p \Delta V + \Delta \mu \Delta N}{2kT}}$$

• If take (N,V,T) as variables, but keep V fixed, $\Delta S = (\frac{\partial S}{\partial T})_{V,N} \Delta T + (\frac{\partial S}{\partial N})_{V,T} \Delta N \\ = \frac{C_V}{T} \Delta T - (\frac{\partial \mu}{\partial T})_{V,T} \Delta N; \\ \Delta \mu = (\frac{\partial \mu}{\partial T})_{V,N} \Delta T + (\frac{\partial \mu}{\partial N})_{V,T} \Delta N.$

• $W \propto e^{-\frac{C_V}{2kT^2}(\Delta T)^2 - \frac{1}{2kT}(\frac{\partial \mu}{\partial N})_{V,T}(\Delta N)^2}$

- $W \propto e^{-\frac{C_V}{2kT^2}(\Delta T)^2 \frac{1}{2kT}(\frac{\partial \mu}{\partial N})_{V,T}(\Delta N)^2}$.
- \bullet $\overline{(\Delta T)^2} = \frac{kT^2}{C_V}$, $\overline{\Delta N \Delta T} = 0$, $\overline{(\Delta N)^2} = kT(\frac{\partial N}{\partial \mu})_{V,T}$.
- For the energy: $\Delta E = (\frac{\partial E}{\partial T})_{V,N} \Delta T + (\frac{\partial E}{\partial N})_{V,T} \Delta N$.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- $W \propto e^{-\frac{C_V}{2kT^2}(\Delta T)^2 \frac{1}{2kT}(\frac{\partial \mu}{\partial N})_{V,T}(\Delta N)^2}$.
- $\overline{(\Delta T)^2} = \frac{kT^2}{C_V}$, $\overline{\Delta N \Delta T} = 0$, $\overline{(\Delta N)^2} = kT(\frac{\partial N}{\partial \mu})_{V,T}$.
- For the energy: $\Delta E = (\frac{\partial E}{\partial T})_{V,N} \Delta T + (\frac{\partial E}{\partial N})_{V,T} \Delta N$.
- $\overline{(\Delta E)^2} = (\frac{\partial E}{\partial T})_{V,N}^2 \overline{(\Delta T)^2} + 2(\frac{\partial E}{\partial T})_{V,N} (\frac{\partial E}{\partial N})_{V,T} \overline{\Delta N \Delta T} + (\frac{\partial E}{\partial N})_{V,T}^2 \overline{(\Delta N)^2}$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- $W \propto e^{-\frac{C_V}{2kT^2}(\Delta T)^2 \frac{1}{2kT}(\frac{\partial \mu}{\partial N})_{V,T}(\Delta N)^2}$.
- $\bullet \ \overline{(\Delta T)^2} = \tfrac{kT^2}{C_V}, \ \overline{\Delta N \Delta T} = 0, \ \overline{(\Delta N)^2} = kT(\tfrac{\partial N}{\partial \mu})_{V,T}.$
- For the energy: $\Delta E = (\frac{\partial E}{\partial T})_{V,N} \Delta T + (\frac{\partial E}{\partial N})_{V,T} \Delta N$.

•
$$\overline{(\Delta E)^2} = (\frac{\partial E}{\partial T})_{V,N}^2 \overline{(\Delta T)^2} + 2(\frac{\partial E}{\partial T})_{V,N} (\frac{\partial E}{\partial N})_{V,T} \overline{\Delta N \Delta T} + (\frac{\partial E}{\partial N})_{V,T}^2 \overline{(\Delta N)^2} = kT^2 C_V + (\frac{\partial E}{\partial N})_{V,T}^2 \overline{(\Delta N)^2}.$$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

Table of contents

- §10. Fluctuation
 - 10.1 Quasi-thermodynamics of fluctuation
 - 10.5 Brownian motion
 - 10.6 Diffusion and temporal correlation of Brownian particle's momentum
 - 10.7 Examples of Brownian motion

• Microscopic essential: the Brownian particle is collided randomly by the molecules.

- Microscopic essential: the Brownian particle is collided randomly by the molecules.
- For the particle, it obeys Newton's 2nd law (only x): $m\frac{\mathrm{d}^2x}{\mathrm{d}t} = f(t) + \mathcal{F}(t)$, where f(t) is a random force, and $\mathcal{F}(t)$ is the stable external force.

- Microscopic essential: the Brownian particle is collided randomly by the molecules.
- For the particle, it obeys Newton's 2nd law (only x): $m\frac{\mathrm{d}^2x}{\mathrm{d}t} = f(t) + \mathcal{F}(t)$, where f(t) is a random force, and $\mathcal{F}(t)$ is the stable external force.
- f(t) consists by two parts: damping the movement, called viscous force $-\alpha v$;

- Microscopic essential: the Brownian particle is collided randomly by the molecules.
- For the particle, it obeys Newton's 2nd law (only x): $m\frac{\mathrm{d}^2x}{\mathrm{d}t}=f(t)+\mathcal{F}(t)$, where f(t) is a random force, and $\mathcal{F}(t)$ is the stable external force.
- f(t) consists by two parts: damping the movement, called viscous force $-\alpha v$; and randomly fluctuated force F(t), with $\overline{F}(t) = 0$.

11 / 27

§10.5 Brownian motion

- Microscopic essential: the Brownian particle is collided randomly by the molecules.
- For the particle, it obeys Newton's 2nd law (only x): $m\frac{\mathrm{d}^2x}{\mathrm{d}t} = f(t) + \mathcal{F}(t)$, where f(t) is a random force, and $\mathcal{F}(t)$ is the stable external force.
- f(t) consists by two parts: damping the movement, called viscous force $-\alpha v$; and randomly fluctuated force F(t), with $\overline{F}(t)=0$.
- The equation of motion: $m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t) + \mathcal{F}(t)$, called Langevin's equation.

§10.5 Brownian motion

- Microscopic essential: the Brownian particle is collided randomly by the molecules.
- For the particle, it obeys Newton's 2nd law (only x): $m\frac{\mathrm{d}^2x}{\mathrm{d}t} = f(t) + \mathcal{F}(t)$, where f(t) is a random force, and $\mathcal{F}(t)$ is the stable external force.
- f(t) consists by two parts: damping the movement, called viscous force $-\alpha v$; and randomly fluctuated force F(t), with $\overline{F}(t) = 0$.
- The equation of motion: $m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -\alpha\frac{\mathrm{d}x}{\mathrm{d}t} + F(t) + \mathcal{F}(t)$, called Langevin's equation.
- When $\mathcal{F}(t)=0$, $m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}=-\alpha\frac{\mathrm{d}x}{\mathrm{d}t}+F(t)$.

§10. Fluctuation 10.5 Brownian motion

Brownian motion
$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$$

• As
$$x\ddot{x} = \frac{\mathrm{d}(x\dot{x})}{\mathrm{d}t} - \dot{x}^2$$

§10. Fluctuation 10.5 Brownian motion

Brownian motion $m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$

• As
$$x\ddot{x} = \frac{\mathrm{d}(x\dot{x})}{\mathrm{d}t} - \dot{x}^2 = \frac{1}{2} \frac{\mathrm{d}^2(x^2)}{\mathrm{d}t^2} - \dot{x}^2$$
.

Brownian motion
$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$$

• As
$$x\ddot{x} = \frac{d(x\dot{x})}{dt} - \dot{x}^2 = \frac{1}{2}\frac{d^2(x^2)}{dt^2} - \dot{x}^2$$
.

• Introduce $\frac{1}{2} \frac{\mathrm{d}^2(mx^2)}{\mathrm{d}t^2} - m\dot{x}^2$

Brownian motion
$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$$

• As
$$x\ddot{x} = \frac{d(x\dot{x})}{dt} - \dot{x}^2 = \frac{1}{2}\frac{d^2(x^2)}{dt^2} - \dot{x}^2$$
.

$$\bullet$$
 Introduce $\frac{1}{2}\frac{\mathrm{d}^2(mx^2)}{\mathrm{d}t^2}-m\dot{x}^2=mx\ddot{x}$

Brownian motion
$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$$

• As
$$x\ddot{x} = \frac{d(x\dot{x})}{dt} - \dot{x}^2 = \frac{1}{2}\frac{d^2(x^2)}{dt^2} - \dot{x}^2$$
.

$$\bullet$$
 Introduce $\frac{1}{2}\frac{\mathrm{d}^2(mx^2)}{\mathrm{d}t^2}-m\dot{x}^2=mx\ddot{x}=x[-\alpha\dot{x}+F(t)]$

Brownian motion
$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$$

- As $x\ddot{x} = \frac{d(x\dot{x})}{dt} \dot{x}^2 = \frac{1}{2} \frac{d^2(x^2)}{dt^2} \dot{x}^2$.
- Introduce $\frac{1}{2}\frac{\mathrm{d}^2(mx^2)}{\mathrm{d}t^2} m\dot{x}^2 = mx\ddot{x} = x[-\alpha\dot{x} + F(t)]$ $= -\frac{1}{2}\alpha\frac{\mathrm{d}x^2}{\mathrm{d}t} + xF(t).$

Brownian motion
$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$$

- As $x\ddot{x} = \frac{d(x\dot{x})}{dt} \dot{x}^2 = \frac{1}{2} \frac{d^2(x^2)}{dt^2} \dot{x}^2$.
- Introduce $\frac{1}{2}\frac{\mathrm{d}^2(mx^2)}{\mathrm{d}t^2}-m\dot{x}^2=mx\ddot{x}=x[-\alpha\dot{x}+F(t)]$ $= -\frac{1}{2}\alpha \frac{\mathrm{d}x^2}{\mathrm{d}t} + xF(t).$
- Consider average for each item: $\frac{\overline{dx^2}}{dt} = \frac{d\overline{x^2}}{dt}$; $\overline{xF(t)} = \overline{x}\overline{F}(t) = 0$. And $\frac{1}{2}\overline{m}\dot{x}^2 = \frac{1}{2}kT$.

12 / 27

Brownian motion
$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$$

- As $x\ddot{x} = \frac{d(x\dot{x})}{dt} \dot{x}^2 = \frac{1}{2} \frac{d^2(x^2)}{dt^2} \dot{x}^2$.
- Introduce $\frac{1}{2}\frac{\mathrm{d}^2(mx^2)}{\mathrm{d}t^2}-m\dot{x}^2=mx\ddot{x}=x[-\alpha\dot{x}+F(t)]$ $= -\frac{1}{2}\alpha \frac{\mathrm{d}x^2}{\mathrm{d}t} + xF(t).$
- Consider average for each item: $\frac{\overline{dx^2}}{dt} = \frac{d\overline{x^2}}{dt}$; $\overline{xF(t)} = \overline{x}\overline{F}(t) = 0$. And $\frac{1}{2}\overline{m}\dot{x}^2 = \frac{1}{2}kT$.

12 / 27

Brownian motion
$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$$

- As $x\ddot{x} = \frac{d(x\dot{x})}{dt} \dot{x}^2 = \frac{1}{2} \frac{d^2(x^2)}{dt^2} \dot{x}^2$.
- Introduce $\frac{1}{2}\frac{\mathrm{d}^2(mx^2)}{\mathrm{d}t^2}-m\dot{x}^2=mx\ddot{x}=x[-\alpha\dot{x}+F(t)]$ $= -\frac{1}{2}\alpha \frac{\mathrm{d}x^2}{\mathrm{d}t} + xF(t).$
- Consider average for each item: $\frac{\overline{dx^2}}{dt} = \frac{d\overline{x^2}}{dt}$; $\overline{xF(t)} = \overline{x}\overline{F}(t) = 0$. And $\frac{1}{2}\overline{m}\dot{x}^2 = \frac{1}{2}kT$. $\Rightarrow \frac{1}{2}m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\overline{x^2} - m\overline{\dot{x}^2} = -\frac{\alpha}{2}\frac{\mathrm{d}}{\mathrm{d}t}\overline{x^2} + \overline{xF(t)},$

12 / 27

Brownian motion
$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$$

- As $x\ddot{x} = \frac{d(x\dot{x})}{dt} \dot{x}^2 = \frac{1}{2} \frac{d^2(x^2)}{dt^2} \dot{x}^2$.
- Introduce $\frac{1}{2}\frac{\mathrm{d}^2(mx^2)}{\mathrm{d}t^2}-m\dot{x}^2=mx\ddot{x}=x[-\alpha\dot{x}+F(t)]$ $= -\frac{1}{2}\alpha \frac{\mathrm{d}x^2}{\mathrm{d}t} + xF(t).$
- Consider average for each item: $\frac{\overline{dx^2}}{At} = \frac{d\overline{x^2}}{At}$; $\overline{xF(t)} = \overline{x}\overline{F}(t) = 0$. And $\frac{1}{2}\overline{m}\dot{x}^2 = \frac{1}{2}kT$. $\Rightarrow \frac{1}{2}m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\overline{x^2} - m\overline{\dot{x}^2} = -\frac{\alpha}{2}\frac{\mathrm{d}}{\mathrm{d}t}\overline{x^2} + \overline{xF(t)},$ $\Rightarrow \frac{1}{2}m\frac{\mathrm{d}^2}{\mathrm{d}x^2}\overline{x^2} - kT = -\frac{\alpha}{2}\frac{\mathrm{d}}{\mathrm{d}x}\overline{x^2}$

Brownian motion
$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$$

- As $x\ddot{x} = \frac{d(x\dot{x})}{dt} \dot{x}^2 = \frac{1}{2} \frac{d^2(x^2)}{dt^2} \dot{x}^2$.
- Introduce $\frac{1}{2}\frac{\mathrm{d}^2(mx^2)}{\mathrm{d}t^2}-m\dot{x}^2=mx\ddot{x}=x[-\alpha\dot{x}+F(t)]$ $= -\frac{1}{2}\alpha \frac{\mathrm{d}x^2}{\mathrm{d}t} + xF(t).$
- Consider average for each item: $\frac{\overline{dx^2}}{At} = \frac{d\overline{x^2}}{At}$; $\overline{xF(t)} = \overline{x}\overline{F}(t) = 0$. And $\frac{1}{2}\overline{m}\dot{x}^2 = \frac{1}{2}kT$. $\Rightarrow \frac{1}{2}m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\overline{x^2} - m\overline{\dot{x}^2} = -\frac{\alpha}{2}\frac{\mathrm{d}}{\mathrm{d}t}\overline{x^2} + \overline{xF(t)},$ $\Rightarrow \frac{1}{2}m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\overline{x^2} - kT = -\frac{\alpha}{2}\frac{\mathrm{d}}{\mathrm{d}t}\overline{x^2},$ $\Rightarrow \frac{\mathrm{d}^2}{\mathrm{d}t^2} \overline{x^2} + \frac{\alpha}{m} \frac{\mathrm{d}}{\mathrm{d}t} \overline{x^2} - \frac{2}{m} kT = 0.$

Brownian motion
$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$$

• As
$$x\ddot{x} = \frac{d(x\dot{x})}{dt} - \dot{x}^2 = \frac{1}{2}\frac{d^2(x^2)}{dt^2} - \dot{x}^2$$
.

• Introduce
$$\frac{1}{2} \frac{\mathrm{d}^2(mx^2)}{\mathrm{d}t^2} - m\dot{x}^2 = mx\ddot{x} = x[-\alpha\dot{x} + F(t)]$$

= $-\frac{1}{2}\alpha\frac{\mathrm{d}x^2}{\mathrm{d}t} + xF(t)$.

• Consider average for each item:
$$\frac{\overline{\mathrm{d}x^2}}{\mathrm{d}t} = \frac{\overline{\mathrm{d}x^2}}{\mathrm{d}t};$$

$$\overline{xF(t)} = \overline{x}\overline{F}(t) = 0. \text{ And } \frac{1}{2}\overline{m\dot{x}^2} = \frac{1}{2}kT.$$

$$\Rightarrow \frac{1}{2}m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\overline{x^2} - m\dot{x}^2 = -\frac{\alpha}{2}\frac{\mathrm{d}}{\mathrm{d}t}\overline{x^2} + \overline{xF(t)},$$

$$\Rightarrow \frac{1}{2}m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\overline{x^2} - kT = -\frac{\alpha}{2}\frac{\mathrm{d}}{\mathrm{d}t}\overline{x^2},$$

$$\Rightarrow \frac{\mathrm{d}^2}{\mathrm{d}t^2}\overline{x^2} + \frac{\alpha}{m}\frac{\mathrm{d}}{\mathrm{d}t}\overline{x^2} - \frac{2}{m}kT = 0.$$

• The solution: $\overline{x^2} = \frac{2kT}{\alpha}t + C_1e^{-\frac{\alpha}{m}t} + C_2$.

Brownian motion
$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$$

- As $x\ddot{x} = \frac{d(x\dot{x})}{dt} \dot{x}^2 = \frac{1}{2} \frac{d^2(x^2)}{dt^2} \dot{x}^2$.
- Introduce $\frac{1}{2} \frac{d^2(mx^2)}{dt^2} m\dot{x}^2 = mx\ddot{x} = x[-\alpha\dot{x} + F(t)]$ $= -\frac{1}{2}\alpha \frac{\mathrm{d}x^{2}}{\mathrm{d}t} + xF(t).$
- Consider average for each item: $\frac{dx^2}{dt} = \frac{d\overline{x^2}}{dt}$; $\overline{xF(t)} = \overline{x}\overline{F}(t) = 0$. And $\frac{1}{2}\overline{m}\dot{x}^2 = \frac{1}{2}kT$. $\Rightarrow \frac{1}{2}m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\overline{x^2} - m\overline{\dot{x}^2} = -\frac{\alpha}{2}\frac{\mathrm{d}}{\mathrm{d}t}\overline{x^2} + \overline{xF(t)},$ $\Rightarrow \frac{1}{2}m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\overline{x^2} - kT = -\frac{\alpha}{2}\frac{\mathrm{d}}{\mathrm{d}t}\overline{x^2},$ $\Rightarrow \frac{\mathrm{d}^2}{\mathrm{d}t^2} \overline{x^2} + \frac{\alpha}{m} \frac{\mathrm{d}}{\mathrm{d}t} \overline{x^2} - \frac{2}{m} kT = 0.$
- The solution: $\overline{x^2} = \frac{2kT}{\alpha}t + C_1e^{-\frac{\alpha}{m}t} + C_2$.
- As t = 0, x = 0, $\Rightarrow C_2 = -C_1$.

Brownian motion $\overline{x^2} = \frac{2kT}{\alpha}t + C_1e^{-\frac{\alpha}{m}t} - C_1$

Brownian motion
$$\overline{x^2} = \frac{2kT}{\alpha}t + C_1e^{-\frac{\alpha}{m}t} - C_1$$

• As
$$t = 0$$
, $\dot{x} = 0$. $\Rightarrow 0 = \frac{\dot{x}^2}{x^2} = \frac{2kT}{\alpha} - C_1 \frac{\alpha}{m} e^{-\frac{\alpha}{m}0}$

Brownian motion
$$\overline{x^2} = \frac{2kT}{\alpha}t + C_1e^{-\frac{\alpha}{m}t} - C_1$$

• As
$$t=0$$
, $\dot{x}=0$. $\Rightarrow 0=\frac{\dot{x}^2}{x^2}=\frac{2kT}{\alpha}-C_1\frac{\alpha}{m}e^{-\frac{\alpha}{m}0}$ $\Rightarrow C_1=\frac{2mkT}{\alpha^2}$.

Brownian motion
$$\overline{x^2} = \frac{2kT}{\alpha}t + C_1e^{-\frac{\alpha}{m}t} - C_1$$

• As
$$t = 0$$
, $\dot{x} = 0$. $\Rightarrow 0 = \frac{\dot{x}^2}{x^2} = \frac{2kT}{\alpha} - C_1 \frac{\alpha}{m} e^{-\frac{\alpha}{m}0}$
 $\Rightarrow C_1 = \frac{2mkT}{\alpha^2}$.
 $\therefore \overline{x^2} = \frac{2kT}{\alpha} t + \frac{2mkT}{\alpha^2} e^{-\frac{\alpha}{m}t} - \frac{2mkT}{\alpha^2}$.

Brownian motion
$$\overline{x^2} = \frac{2kT}{\alpha}t + C_1e^{-\frac{\alpha}{m}t} - C_1$$

• As
$$t=0$$
, $\dot{x}=0$. $\Rightarrow 0=\overline{x^2}=\frac{2kT}{\alpha}-C_1\frac{\alpha}{m}e^{-\frac{\alpha}{m}0}$
 $\Rightarrow C_1=\frac{2mkT}{\alpha^2}$.
 $\therefore \overline{x^2}=\frac{2kT}{\alpha}t+\frac{2mkT}{\alpha^2}e^{-\frac{\alpha}{m}t}-\frac{2mkT}{\alpha^2}$.

• Exists typical time $\tau = \frac{m}{\alpha}$. For $\tau \ll 1$, $C_1 \to 0$.

Brownian motion
$$\overline{x^2} = \frac{2kT}{\alpha}t + C_1e^{-\frac{\alpha}{m}t} - C_1$$

- As t=0, $\dot{x}=0$. $\Rightarrow 0=\overline{x^2}=\frac{2kT}{\alpha}-C_1\frac{\alpha}{m}e^{-\frac{\alpha}{m}0}$ $\Rightarrow C_1 = \frac{2mkT}{\alpha^2}$. $\therefore \overline{x^2} = \frac{2kT}{\alpha}t + \frac{2mkT}{\alpha^2}e^{-\frac{\alpha}{m}t} - \frac{2mkT}{\alpha^2}.$
- Exists typical time $\tau = \frac{m}{c}$. For $\tau \ll 1$, $C_1 \to 0$.
- 1. $t \ll \tau$. $\overline{x^2} \simeq \frac{2kT}{2}t + \frac{2mkT}{2}(1 - \frac{\alpha}{m}t + \frac{1}{2}\frac{\alpha^2}{m^2}t^2) - \frac{2mkT}{2} \simeq \frac{kT}{m}t^2$

Brownian motion
$$\overline{x^2} = \frac{2kT}{\alpha}t + C_1e^{-\frac{\alpha}{m}t} - C_1$$

- As t=0, $\dot{x}=0$. $\Rightarrow 0=\overline{x^2}=\frac{2kT}{\alpha}-C_1\frac{\alpha}{m}e^{-\frac{\alpha}{m}0}$ $\Rightarrow C_1 = \frac{2mkT}{\alpha^2}$. $\therefore \overline{x^2} = \frac{2kT}{\alpha}t + \frac{2mkT}{\alpha^2}e^{-\frac{\alpha}{m}t} - \frac{2mkT}{\alpha^2}.$
- Exists typical time $\tau = \frac{m}{c}$. For $\tau \ll 1$, $C_1 \to 0$.
- 1. $t \ll \tau$. $\overline{x^2} \simeq \frac{2kT}{2}t + \frac{2mkT}{2}(1 - \frac{\alpha}{m}t + \frac{1}{2}\frac{\alpha^2}{m^2}t^2) - \frac{2mkT}{2} \simeq \frac{kT}{m}t^2$ like a uniform motion.

Brownian motion
$$\overline{x^2} = \frac{2kT}{\alpha}t + C_1e^{-\frac{\alpha}{m}t} - C_1$$

- As t=0, $\dot{x}=0$. $\Rightarrow 0=\overline{x^2}=\frac{2kT}{\alpha}-C_1\frac{\alpha}{m}e^{-\frac{\alpha}{m}0}$ $\Rightarrow C_1 = \frac{2mkT}{\alpha^2}$. $\therefore \overline{x^2} = \frac{2kT}{\alpha}t + \frac{2mkT}{\alpha^2}e^{-\frac{\alpha}{m}t} - \frac{2mkT}{\alpha^2}.$
- Exists typical time $\tau = \frac{m}{\alpha}$. For $\tau \ll 1$, $C_1 \to 0$.
- 1. $t \ll \tau$. $\overline{x^2} \simeq \frac{2kT}{\alpha}t + \frac{2mkT}{\alpha^2}(1 - \frac{\alpha}{m}t + \frac{1}{2}\frac{\alpha^2}{m^2}t^2) - \frac{2mkT}{\alpha^2} \simeq \frac{kT}{m}t^2$, like a uniform motion.
- 2. $t \gg \tau$, $x^2 \simeq \frac{2kT}{r} t \propto t$,

Brownian motion
$$\overline{x^2} = \frac{2kT}{\alpha}t + C_1e^{-\frac{\alpha}{m}t} - C_1$$

- As t=0, $\dot{x}=0$. $\Rightarrow 0=\overline{x^2}=\frac{2kT}{\alpha}-C_1\frac{\alpha}{m}e^{-\frac{\alpha}{m}0}$ $\Rightarrow C_1 = \frac{2mkT}{\alpha^2}$. $\therefore \overline{x^2} = \frac{2kT}{\alpha}t + \frac{2mkT}{\alpha^2}e^{-\frac{\alpha}{m}t} - \frac{2mkT}{\alpha^2}.$
- Exists typical time $\tau = \frac{m}{c}$. For $\tau \ll 1$, $C_1 \to 0$.
- 1. $t \ll \tau$. $\overline{x^2} \simeq \frac{2kT}{2}t + \frac{2mkT}{2}(1 - \frac{\alpha}{m}t + \frac{1}{2}\frac{\alpha^2}{m^2}t^2) - \frac{2mkT}{2} \simeq \frac{kT}{m}t^2$ like a uniform motion.
- 2. $t \gg \tau$, $\overline{x^2} \simeq \frac{2kT}{2} t \propto t$, then $|x| \propto t^{\frac{1}{2}}$.

• In the view of diffusion: $\overrightarrow{J} = -D \nabla n$, where J(x,t)is the number of Brownian particle crossing unit area in unit time

$$\overline{x^2} \simeq \frac{2kT}{\alpha}t$$

- In the view of diffusion: $\overrightarrow{J} = -D \nabla n$, where J(x,t)is the number of Brownian particle crossing unit area in unit time
- Equation of continuity: $\frac{\partial n}{\partial t} + \nabla \cdot \overrightarrow{J} = 0$,

$$\overline{x^2} \simeq \frac{2kT}{\alpha}t$$

- In the view of diffusion: $\overrightarrow{J} = -D \nabla n$, where J(x,t)is the number of Brownian particle crossing unit area in unit time
- Equation of continuity: $\frac{\partial n}{\partial t} + \nabla \cdot \overrightarrow{J} = 0$, then $\frac{\partial n}{\partial u} - D \nabla^2 n = 0.$

$$\overline{x^2} \simeq \frac{2kT}{\alpha}t$$

- In the view of diffusion: $\overrightarrow{J} = -D \nabla n$, where J(x,t)is the number of Brownian particle crossing unit area in unit time
- Equation of continuity: $\frac{\partial n}{\partial t} + \nabla \cdot \overrightarrow{J} = 0$, then $\frac{\partial n}{\partial t} - D \nabla^2 n = 0.$
- For 1-D, $\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2}$.

- In the view of diffusion: $\overrightarrow{J} = -D \nabla n$, where J(x,t)is the number of Brownian particle crossing unit area in unit time
- Equation of continuity: $\frac{\partial n}{\partial t} + \nabla \cdot \overrightarrow{J} = 0$, then $\frac{\partial n}{\partial t} - D \nabla^2 n = 0.$
- For 1-D, $\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2}$.
- Suppose t=0, all particles at x=0, i.e., $n(x,0) = N\delta(x)$

- In the view of diffusion: $\overrightarrow{J} = -D \nabla n$, where J(x,t)is the number of Brownian particle crossing unit area in unit time
- Equation of continuity: $\frac{\partial n}{\partial t} + \nabla \cdot \overrightarrow{J} = 0$, then $\frac{\partial n}{\partial t} - D \nabla^2 n = 0.$
- For 1-D, $\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2}$.
- Suppose t=0, all particles at x=0, i.e., $n(x,0) = N\delta(x)$, the solution: $n(x,t) = \frac{N}{2\sqrt{\pi Dt}}e^{-\frac{x^2}{4Dt}}$.

- In the view of diffusion: $\overrightarrow{J} = -D \nabla n$, where J(x,t)is the number of Brownian particle crossing unit area in unit time
- Equation of continuity: $\frac{\partial n}{\partial t} + \nabla \cdot \overrightarrow{J} = 0$, then $\frac{\partial n}{\partial t} - D \nabla^2 n = 0.$
- For 1-D, $\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2}$.
- Suppose t=0, all particles at x=0, i.e., $n(x,0) = N\delta(x)$, the solution: $n(x,t) = \frac{N}{2\sqrt{\pi Dt}}e^{-\frac{x^2}{4Dt}}$.
- $\overline{x^2(t)} = \frac{1}{N} \int_{-\infty}^{\infty} x^2 n(x, t) dx = 2Dt$,

- In the view of diffusion: $\overrightarrow{J} = -D \nabla n$, where J(x,t)is the number of Brownian particle crossing unit area in unit time
- Equation of continuity: $\frac{\partial n}{\partial t} + \nabla \cdot \overrightarrow{J} = 0$, then $\frac{\partial n}{\partial t} - D \nabla^2 n = 0.$
- For 1-D, $\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2}$.
- Suppose t=0, all particles at x=0, i.e., $n(x,0) = N\delta(x)$, the solution: $n(x,t) = \frac{N}{2\sqrt{\pi Dt}}e^{-\frac{x^2}{4Dt}}$.
- $\overline{x^2(t)} = \frac{1}{N} \int_{-\infty}^{\infty} x^2 n(x,t) dx = 2Dt$, should be the same as (10.5.8),

- In the view of diffusion: $\overrightarrow{J} = -D \nabla n$, where J(x,t)is the number of Brownian particle crossing unit area in unit time.
- Equation of continuity: $\frac{\partial n}{\partial t} + \nabla \cdot \overrightarrow{J} = 0$, then $\frac{\partial n}{\partial t} - D \nabla^2 n = 0.$
- For 1-D, $\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2}$.
- Suppose t=0, all particles at x=0, i.e., $n(x,0) = N\delta(x)$, the solution: $n(x,t) = \frac{N}{2\sqrt{\pi Dt}}e^{-\frac{x^2}{4Dt}}$.
- $\overline{x^2(t)} = \frac{1}{N} \int_{-\infty}^{\infty} x^2 n(x,t) dx = 2Dt$, should be the same as (10.5.8), then, $D = \frac{kT}{c}$.

Table of contents

- §10. Fluctuation
 - 10.1 Quasi-thermodynamics of fluctuation
 - 10.5 Brownian motion
 - 10.6 Diffusion and temporal correlation of Brownian particle's momentum
 - 10.7 Examples of Brownian motion

§10.6 Diffusion and temporal correlation of Brownian particle's momentum

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

§10.6 Diffusion and temporal correlation of Brownian particle's momentum

• Assuming an initial momentum p(0), consider the momentum evolution of Brownian particle.

§10.6 Diffusion and temporal correlation of Brownian particle's momentum

- Assuming an initial momentum p(0), consider the momentum evolution of Brownian particle.
- Only average momentum is available $\overline{p}(t)$.

- Assuming an initial momentum p(0), consider the momentum evolution of Brownian particle.
- Only average momentum is available $\overline{p}(t)$.
- Langevin's equation (10.5.4): $m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\alpha \frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$.

- Assuming an initial momentum p(0), consider the momentum evolution of Brownian particle.
- Only average momentum is available $\overline{p}(t)$.
- Langevin's equation (10.5.4): $m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -\alpha\frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$.
- Convert to momentum: $\frac{\mathrm{d}p}{\mathrm{d}t} = -\gamma p + F(t)$, with $\gamma = \frac{\alpha}{m}$.

§10.6 Diffusion and temporal correlation of Brownian particle's momentum

- Assuming an initial momentum p(0), consider the momentum evolution of Brownian particle.
- Only average momentum is available $\overline{p}(t)$.
- Langevin's equation (10.5.4): $m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -\alpha\frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$.
- Convert to momentum: $\frac{\mathrm{d}p}{\mathrm{d}t} = -\gamma p + F(t)$, with $\gamma = \frac{\alpha}{m}$.
- Before to get \overline{p} , turn to the temporal correlation function: $\overline{F(t)F(t+\tau)} \equiv \frac{1}{N} \sum_{i=1}^{N} F_i(t)F_i(t+\tau)$.

- Assuming an initial momentum p(0), consider the momentum evolution of Brownian particle.
- Only average momentum is available $\overline{p}(t)$.
- Langevin's equation (10.5.4): $m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -\alpha\frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$.
- Convert to momentum: $\frac{\mathrm{d}p}{\mathrm{d}t} = -\gamma p + F(t)$, with $\gamma = \frac{\alpha}{m}$.
- Before to get \overline{p} , turn to the temporal correlation function: $\overline{F(t)F(t+\tau)} \equiv \frac{1}{N} \sum_{i=1}^{N} F_i(t)F_i(t+\tau)$.
- If the duration (τ_c) of the fluctuating force is short enough, $F(t)F(t+\tau) = 2D_{\nu}\delta(\tau)$;

16 / 27

§10.6 Diffusion and temporal correlation of Brownian particle's momentum

- Assuming an initial momentum p(0), consider the momentum evolution of Brownian particle.
- Only average momentum is available $\overline{p}(t)$.
- Langevin's equation (10.5.4): $m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -\alpha\frac{\mathrm{d}x}{\mathrm{d}t} + F(t)$.
- Convert to momentum: $\frac{\mathrm{d}p}{\mathrm{d}t} = -\gamma p + F(t)$, with $\gamma = \frac{\alpha}{m}$.
- Before to get \overline{p} , turn to the temporal correlation function: $\overline{F(t)F(t+\tau)} \equiv \frac{1}{N} \sum_{i=1}^{N} F_i(t)F_i(t+\tau)$.
- If the duration (τ_c) of the fluctuating force is short enough, $F(t)F(t+\tau)=2D_n\delta(\tau)$; and $2D_n=F^2(t)$.

Diffusion and temporal correlation of Brownian particle's

 $\frac{\mathrm{d}p}{\mathrm{d}t} = -\gamma p + F(t)$ momentum

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

Back to the Langevin's equation:

$$e^{\gamma t} \frac{\mathrm{d}p}{\mathrm{d}t} = -e^{\gamma t} \gamma p + e^{\gamma t} F(t),$$

Back to the Langevin's equation:

$$\begin{split} e^{\gamma t} \frac{\mathrm{d}p}{\mathrm{d}t} &= -e^{\gamma t} \gamma p + e^{\gamma t} F(t), \\ \Rightarrow \frac{\mathrm{d}(pe^{\gamma t})}{\mathrm{d}t} &= e^{\gamma t} F(t), \end{split}$$

Back to the Langevin's equation:

$$e^{\gamma t} \frac{\mathrm{d}p}{\mathrm{d}t} = -e^{\gamma t} \gamma p + e^{\gamma t} F(t),$$

$$\Rightarrow \frac{\mathrm{d}(pe^{\gamma t})}{\mathrm{d}t} = e^{\gamma t} F(t),$$

$$\Rightarrow p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} \mathrm{d}\xi.$$

Back to the Langevin's equation:

$$\begin{split} e^{\gamma t} \frac{\mathrm{d}p}{\mathrm{d}t} &= -e^{\gamma t} \gamma p + e^{\gamma t} F(t), \\ \Rightarrow \frac{\mathrm{d}(pe^{\gamma t})}{\mathrm{d}t} &= e^{\gamma t} F(t), \\ \Rightarrow p(t) &= p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} \mathrm{d}\xi. \end{split}$$

• Take the average, noticing $\overline{F(\xi)} = 0$, $\Rightarrow \overline{p}(t) = p(0)e^{-\gamma t}$

Back to the Langevin's equation:

$$\begin{split} e^{\gamma t} \frac{\mathrm{d}p}{\mathrm{d}t} &= -e^{\gamma t} \gamma p + e^{\gamma t} F(t), \\ \Rightarrow \frac{\mathrm{d}(pe^{\gamma t})}{\mathrm{d}t} &= e^{\gamma t} F(t), \\ \Rightarrow p(t) &= p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} \mathrm{d}\xi. \end{split}$$

• Take the average, noticing $\overline{F(\xi)} = 0$, $\Rightarrow \overline{p}(t) = p(0)e^{-\gamma t}$. where $\frac{1}{\gamma}$ is the time scale for a notable change of momentum (larger than τ_c).

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

•
$$\overline{(\Delta p)^2} = \overline{[p(t) - \overline{p}(t)]^2}$$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

$$\overline{(\Delta p)^2} = \overline{[p(t) - \overline{p}(t)]^2}$$

$$= \overline{[e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi]^2}$$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

$$\overline{(\Delta p)^2} = \overline{[p(t) - \overline{p}(t)]^2}$$

$$= \overline{[e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi]^2} = \overline{[\int_0^t F(\xi) e^{-\gamma (t - \xi)} d\xi]^2}$$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

$$\begin{split} \bullet \ \overline{(\Delta p)^2} &= \overline{[p(t) - \overline{p}(t)]^2} \\ &= \overline{[e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} \mathrm{d}\xi]^2} = \overline{[\int_0^t F(\xi) e^{-\gamma(t-\xi)} \mathrm{d}\xi]^2} \\ &= \overline{\int_0^t \mathrm{d}\xi \int_0^t \mathrm{d}\xi' F(\xi) F(\xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}} \end{split}$$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

$$\begin{split} \bullet \ \overline{(\Delta p)^2} &= \overline{[p(t) - \overline{p}(t)]^2} \\ &= \overline{[e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} \mathrm{d}\xi]^2} = \overline{[\int_0^t F(\xi) e^{-\gamma(t-\xi)} \mathrm{d}\xi]^2} \\ &= \overline{\int_0^t \mathrm{d}\xi \int_0^t \mathrm{d}\xi' F(\xi) F(\xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}} \\ &= \int_0^t \mathrm{d}\xi \int_0^t \mathrm{d}\xi' \overline{F(\xi) F(\xi')} e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')} \end{split}$$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

•
$$\overline{(\Delta p)^2} = \overline{[p(t) - \overline{p}(t)]^2}$$

= $\overline{[e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi]^2} = \overline{[\int_0^t F(\xi) e^{-\gamma(t-\xi)} d\xi]^2}$
= $\overline{\int_0^t d\xi \int_0^t d\xi' F(\xi) F(\xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}}$
= $\int_0^t d\xi \int_0^t d\xi' \overline{F(\xi) F(\xi')} e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}$
= $\int_0^t d\xi \int_0^t d\xi' 2D_p \delta(\xi - \xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

•
$$\overline{(\Delta p)^2} = \overline{[p(t) - \overline{p}(t)]^2}$$

= $\overline{[e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi]^2} = \overline{[\int_0^t F(\xi) e^{-\gamma(t-\xi)} d\xi]^2}$
= $\overline{\int_0^t d\xi \int_0^t d\xi' F(\xi) F(\xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}}$
= $\overline{\int_0^t d\xi \int_0^t d\xi' \overline{F(\xi) F(\xi')} e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}}$
= $\overline{\int_0^t d\xi \int_0^t d\xi' 2D_p \delta(\xi - \xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}}$
= $\overline{\int_0^t d\xi 2D_p e^{-2\gamma(t-\xi)}}$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

•
$$\overline{(\Delta p)^2} = \overline{[p(t) - \overline{p}(t)]^2}$$

= $\overline{[e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi]^2} = \overline{[\int_0^t F(\xi) e^{-\gamma(t-\xi)} d\xi]^2}$
= $\overline{\int_0^t d\xi \int_0^t d\xi' F(\xi) F(\xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}}$
= $\overline{\int_0^t d\xi \int_0^t d\xi' F(\xi) F(\xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}}$
= $\overline{\int_0^t d\xi \int_0^t d\xi' 2D_p \delta(\xi - \xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}}$
= $\overline{\int_0^t d\xi 2D_p e^{-2\gamma(t-\xi)}} = \overline{\frac{D_p}{\gamma}} (1 - e^{-2\gamma t}).$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

•
$$\overline{(\Delta p)^2} = \overline{[p(t) - \overline{p}(t)]^2}$$

$$= \overline{[e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi]^2} = \overline{[\int_0^t F(\xi) e^{-\gamma(t-\xi)} d\xi]^2}$$

$$= \overline{\int_0^t d\xi \int_0^t d\xi' F(\xi) F(\xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}}$$

$$= \int_0^t d\xi \int_0^t d\xi' \overline{F(\xi) F(\xi')} e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}$$

$$= \int_0^t d\xi \int_0^t d\xi' 2D_p \delta(\xi - \xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}$$

$$= \int_0^t d\xi 2D_p e^{-2\gamma(t-\xi)} = \frac{D_p}{\gamma} (1 - e^{-2\gamma t}).$$

• 1. $\tau_c \ll t \ll \frac{1}{\gamma}$, $\overline{(\Delta p)^2} = 2D_p t$;

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

$$\begin{split} \bullet \ \overline{(\Delta p)^2} &= \overline{[p(t) - \overline{p}(t)]^2} \\ &= \overline{[e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} \mathrm{d}\xi]^2} = \overline{[\int_0^t F(\xi) e^{-\gamma(t-\xi)} \mathrm{d}\xi]^2} \\ &= \overline{\int_0^t \mathrm{d}\xi \int_0^t \mathrm{d}\xi' F(\xi) F(\xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}} \\ &= \int_0^t \mathrm{d}\xi \int_0^t \mathrm{d}\xi' \overline{F(\xi) F(\xi')} e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')} \\ &= \int_0^t \mathrm{d}\xi \int_0^t \mathrm{d}\xi' 2D_p \delta(\xi - \xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')} \\ &= \int_0^t \mathrm{d}\xi 2D_p e^{-2\gamma(t-\xi)} = \frac{D_p}{\gamma} (1 - e^{-2\gamma t}). \end{split}$$

- 1. $\tau_c \ll t \ll \frac{1}{\gamma}$, $(\Delta p)^2 = 2D_p t$;
- 2. $t \gg \frac{1}{\gamma}$, $\overline{p}(t) = 0$, so $\overline{p^2} = \overline{(\Delta p)^2} = \frac{D_p}{\gamma}$.

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

$$\begin{split} \bullet \ \overline{(\Delta p)^2} &= \overline{[p(t) - \overline{p}(t)]^2} \\ &= \overline{[e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} \mathrm{d}\xi]^2} = \overline{[\int_0^t F(\xi) e^{-\gamma(t-\xi)} \mathrm{d}\xi]^2} \\ &= \overline{\int_0^t \mathrm{d}\xi \int_0^t \mathrm{d}\xi' F(\xi) F(\xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')}} \\ &= \int_0^t \mathrm{d}\xi \int_0^t \mathrm{d}\xi' \overline{F(\xi) F(\xi')} e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')} \\ &= \int_0^t \mathrm{d}\xi \int_0^t \mathrm{d}\xi' 2D_p \delta(\xi - \xi') e^{-\gamma(t-\xi)} e^{-\gamma(t-\xi')} \\ &= \int_0^t \mathrm{d}\xi 2D_p e^{-2\gamma(t-\xi)} = \frac{D_p}{\gamma} (1 - e^{-2\gamma t}). \end{split}$$

- 1. $\tau_c \ll t \ll \frac{1}{\gamma}$, $\overline{(\Delta p)^2} = 2D_p t$;
- 2. $t \gg \frac{1}{\gamma}$, $\overline{p}(t) = 0$, so $\overline{p^2} = \overline{(\Delta p)^2} = \frac{D_p}{\gamma}$.

In equilibrium, $\frac{p^2}{2m} = \frac{1}{2}kT$, $\therefore D_p = m\gamma kT = \alpha kT$.

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

• For $t > \frac{1}{\gamma}$, $e^{-\gamma t} \to 0$, then $p(t) = e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi$.

19 / 27

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

- For $t > \frac{1}{\gamma}$, $e^{-\gamma t} \to 0$, then $p(t) = e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi$.
- The temporal correlation:

$$\overline{p(t)p(t')}$$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

- For $t > \frac{1}{\gamma}$, $e^{-\gamma t} \to 0$, then $p(t) = e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi$.
- The temporal correlation:

$$\overline{p(t)p(t')} = \overline{e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi \cdot e^{-\gamma t'} \int_0^{t'} F(\xi')e^{\gamma \xi'} d\xi'}$$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

- For $t > \frac{1}{\gamma}$, $e^{-\gamma t} \to 0$, then $p(t) = e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi$.
- The temporal correlation:

$$\overline{p(t)p(t')} = \overline{e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi \cdot e^{-\gamma t'} \int_0^{t'} F(\xi')e^{\gamma \xi'} d\xi'}$$
$$= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' \overline{F(\xi)F(\xi')}e^{\gamma(\xi+\xi')}$$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

- For $t > \frac{1}{\gamma}$, $e^{-\gamma t} \to 0$, then $p(t) = e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi$.
- The temporal correlation:

$$\overline{p(t)p(t')} = \overline{e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi \cdot e^{-\gamma t'} \int_0^{t'} F(\xi') e^{\gamma \xi'} d\xi'}$$

$$= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' \overline{F(\xi)F(\xi')} e^{\gamma(\xi+\xi')}$$

$$= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' 2D_p \delta(\xi - \xi') e^{\gamma(\xi+\xi')}$$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

- For $t > \frac{1}{\gamma}$, $e^{-\gamma t} \to 0$, then $p(t) = e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi$.
- The temporal correlation:

$$\overline{p(t)p(t')} = \overline{e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi \cdot e^{-\gamma t'} \int_0^{t'} F(\xi') e^{\gamma \xi'} d\xi'}
= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' \overline{F(\xi)F(\xi')} e^{\gamma(\xi+\xi')}
= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' 2D_p \delta(\xi - \xi') e^{\gamma(\xi+\xi')}$$

• 1. If
$$t < t'$$
, $\overline{p(t)p(t')} = e^{-\gamma(t+t')} \int_0^t \mathrm{d}\xi 2D_p e^{2\gamma\xi}$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

- For $t > \frac{1}{\gamma}$, $e^{-\gamma t} \to 0$, then $p(t) = e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi$.
- The temporal correlation:

$$\overline{p(t)p(t')} = e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi \cdot e^{-\gamma t'} \int_0^{t'} F(\xi')e^{\gamma \xi'} d\xi'$$

$$= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' \overline{F(\xi)F(\xi')}e^{\gamma(\xi+\xi')}$$

$$= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' 2D_p \delta(\xi - \xi')e^{\gamma(\xi+\xi')}$$

• 1. If
$$t < t'$$
, $\overline{p(t)p(t')} = e^{-\gamma(t+t')} \int_0^t d\xi 2D_p e^{2\gamma\xi}$
= $2D_p e^{-\gamma(t+t')} \frac{1}{2\gamma} (e^{2\gamma t} - 1)$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

- For $t > \frac{1}{\gamma}$, $e^{-\gamma t} \to 0$, then $p(t) = e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi$.
- The temporal correlation:

$$\overline{p(t)p(t')} = e^{-\gamma t} \int_0^t F(\xi)e^{\gamma\xi} d\xi \cdot e^{-\gamma t'} \int_0^{t'} F(\xi')e^{\gamma\xi'} d\xi'
= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' \overline{F(\xi)F(\xi')}e^{\gamma(\xi+\xi')}
= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' 2D_p \delta(\xi-\xi')e^{\gamma(\xi+\xi')}$$

• 1. If
$$t < t'$$
, $\overline{p(t)p(t')} = e^{-\gamma(t+t')} \int_0^t d\xi 2D_p e^{2\gamma\xi}$
= $2D_p e^{-\gamma(t+t')} \frac{1}{2\gamma} (e^{2\gamma t} - 1) = \frac{D_p}{\gamma} [e^{-\gamma(t'-t)} - e^{-\gamma(t+t')}].$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

- For $t > \frac{1}{\gamma}$, $e^{-\gamma t} \to 0$, then $p(t) = e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi$.
- The temporal correlation:

$$\overline{p(t)p(t')} = \overline{e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi \cdot e^{-\gamma t'} \int_0^{t'} F(\xi') e^{\gamma \xi'} d\xi'}
= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' \overline{F(\xi)F(\xi')} e^{\gamma(\xi+\xi')}
= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' 2D_p \delta(\xi - \xi') e^{\gamma(\xi+\xi')}$$

- 1. If t < t', $\overline{p(t)p(t')} = e^{-\gamma(t+t')} \int_0^t d\xi 2D_p e^{2\gamma\xi}$ $=2D_p e^{-\gamma(t+t')} \frac{1}{2\gamma} (e^{2\gamma t} - 1) = \frac{D_p}{\gamma} [e^{-\gamma(t'-t)} - e^{-\gamma(t+t')}].$
- 2. Similarly t>t', $\overline{p(t)p(t')}=\frac{D_p}{\gamma}[e^{-\gamma(t-t')}-e^{-\gamma(t+t')}].$

$$p(t) = p(0)e^{-\gamma t} + e^{-\gamma t} \int_0^t F(\xi)e^{\gamma \xi} d\xi$$

- For $t > \frac{1}{\gamma}$, $e^{-\gamma t} \to 0$, then $p(t) = e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi$.
- The temporal correlation:

$$\overline{p(t)p(t')} = e^{-\gamma t} \int_0^t F(\xi) e^{\gamma \xi} d\xi \cdot e^{-\gamma t'} \int_0^{t'} F(\xi') e^{\gamma \xi'} d\xi'
= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' \overline{F(\xi)F(\xi')} e^{\gamma(\xi+\xi')}
= e^{-\gamma(t+t')} \int_0^t d\xi \int_0^{t'} d\xi' 2D_p \delta(\xi - \xi') e^{\gamma(\xi+\xi')}$$

- 1. If t < t', $\overline{p(t)p(t')} = e^{-\gamma(t+t')} \int_0^t d\xi 2D_p e^{2\gamma\xi}$ $=2D_p e^{-\gamma(t+t')} \frac{1}{2\gamma} (e^{2\gamma t} - 1) = \frac{D_p}{\gamma} [e^{-\gamma(t'-t)} - e^{-\gamma(t+t')}].$
- 2. Similarly t > t', $\overline{p(t)p(t')} = \frac{D_p}{\gamma} [e^{-\gamma(t-t')} e^{-\gamma(t+t')}].$
- The combination: $\overline{p(t)p(t')} = \frac{D_p}{\gamma}[e^{-\gamma|t-t'|} e^{-\gamma(t+t')}].$

$$\overline{p(t)p(t')} = \frac{D_p}{\gamma} [e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}]$$

$$\overline{p(t)p(t')} = \frac{D_p}{\gamma} [e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}]$$

• For $t,t'>\frac{1}{\gamma}$ (normal), $e^{-\gamma(t+t')}\to 0$;

$$\overline{p(t)p(t')} = \frac{D_p}{\gamma} [e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}]$$

 $\begin{array}{l} \bullet \ \ \text{For} \ t,t'>\frac{1}{\gamma} \ \text{(normal)}, \ e^{-\gamma(t+t')} \to 0; \ \text{then} \\ \overline{p(t)p(t')}=\frac{D_p}{\gamma}e^{-\gamma|t-t'|}=mkTe^{-\gamma|t-t'|}. \end{array}$

$$\overline{p(t)p(t')} = \frac{D_p}{\gamma} [e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}]$$

- $\begin{array}{l} \bullet \ \ \text{For} \ t,t'>\frac{1}{\gamma} \ \text{(normal)}, \ e^{-\gamma(t+t')} \to 0; \ \text{then} \\ \overline{p(t)p(t')}=\frac{D_p}{\gamma}e^{-\gamma|t-t'|}=mkTe^{-\gamma|t-t'|}. \end{array}$
- Back to $\overline{x^2(t)}$ again.

$$\overline{p(t)p(t')} = \frac{D_p}{\gamma} [e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}]$$

- $\begin{array}{l} \bullet \ \ \text{For} \ t,t'>\frac{1}{\gamma} \ \text{(normal)}, \ e^{-\gamma(t+t')} \to 0; \ \text{then} \\ \overline{p(t)p(t')}=\frac{D_p}{\gamma}e^{-\gamma|t-t'|}=mkTe^{-\gamma|t-t'|}. \end{array}$
- Back to $\overline{x^2(t)}$ again.

$$x(t) = \int_0^t \dot{x}(\xi) d\xi$$

$$\overline{p(t)p(t')} = \frac{D_p}{\gamma} [e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}]$$

- $\begin{array}{l} \bullet \ \ \text{For} \ t,t'>\frac{1}{\gamma} \ \text{(normal)}, \ e^{-\gamma(t+t')} \to 0; \ \text{then} \\ \overline{p(t)p(t')}=\frac{D_p}{\gamma}e^{-\gamma|t-t'|}=mkTe^{-\gamma|t-t'|}. \end{array}$
- Back to $\overline{x^2(t)}$ again.

$$x(t) = \int_0^t \dot{x}(\xi) d\xi = \frac{1}{m} \int_0^t p(\xi) d\xi.$$

$$\overline{p(t)p(t')} = \frac{D_p}{\gamma} [e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}]$$

- $\begin{array}{l} \bullet \ \ \text{For} \ t,t'>\frac{1}{\gamma} \ \text{(normal)}, \ e^{-\gamma(t+t')} \to 0; \ \text{then} \\ \overline{p(t)p(t')}=\frac{D_p}{\gamma}e^{-\gamma|t-t'|}=mkTe^{-\gamma|t-t'|}. \end{array}$
- Back to $\overline{x^2(t)}$ again.

$$\frac{x(t) = \int_0^t \dot{x}(\xi) d\xi = \frac{1}{m} \int_0^t p(\xi) d\xi.}{x^2(t) = \frac{1}{m} \int_0^t p(\xi) d\xi \cdot \frac{1}{m} \int_0^t p(\xi') d\xi'}$$

$$\overline{p(t)p(t')} = \frac{D_p}{\gamma} [e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}]$$

- $\begin{array}{l} \bullet \ \ \text{For} \ t,t'>\frac{1}{\gamma} \ \text{(normal)}, \ e^{-\gamma(t+t')} \to 0; \ \text{then} \\ \overline{p(t)p(t')}=\frac{D_p}{\gamma}e^{-\gamma|t-t'|}=mkTe^{-\gamma|t-t'|}. \end{array}$
- Back to $\overline{x^2(t)}$ again.

$$\frac{x(t) = \int_0^t \dot{x}(\xi) d\xi = \frac{1}{m} \int_0^t p(\xi) d\xi.}{x^2(t) = \frac{1}{m} \int_0^t p(\xi) d\xi \cdot \frac{1}{m} \int_0^t p(\xi') d\xi'}$$
$$= \frac{1}{m^2} \int_0^t d\xi \int_0^t d\xi' p(\xi) p(\xi')$$

$$\overline{p(t)p(t')} = \frac{D_p}{\gamma} [e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}]$$

- For $t,t'>\frac{1}{\gamma}$ (normal), $e^{-\gamma(t+t')}\to 0$; then $\overline{p(t)p(t')}=\frac{D_p}{\gamma}e^{-\gamma|t-t'|}=mkTe^{-\gamma|t-t'|}.$
- Back to $\overline{x^2(t)}$ again.

$$x(t) = \int_0^t \dot{x}(\xi) d\xi = \frac{1}{m} \int_0^t p(\xi) d\xi.$$

$$x^2(t) = \frac{1}{m} \int_0^t p(\xi) d\xi \cdot \frac{1}{m} \int_0^t p(\xi') d\xi'$$

$$= \frac{1}{m^2} \int_0^t d\xi \int_0^t d\xi' \overline{p(\xi)p(\xi')}$$

$$= \frac{kT}{m} \int_0^t d\xi \int_0^t d\xi' e^{-\gamma|\xi-\xi'|}$$

$$\overline{p(t)p(t')} = \frac{D_p}{\gamma} [e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}]$$

- For $t, t' > \frac{1}{2}$ (normal), $e^{-\gamma(t+t')} \to 0$; then $\overline{p(t)p(t')} = \frac{D_p}{\gamma}e^{-\gamma|t-t'|} = mkTe^{-\gamma|t-t'|}.$
- Back to $\overline{x^2(t)}$ again.

$$x(t) = \int_{0}^{t} \dot{x}(\xi) d\xi = \frac{1}{m} \int_{0}^{t} p(\xi) d\xi.$$

$$\overline{x^{2}(t)} = \frac{1}{m} \int_{0}^{t} p(\xi) d\xi \cdot \frac{1}{m} \int_{0}^{t} p(\xi') d\xi'$$

$$= \frac{1}{m^{2}} \int_{0}^{t} d\xi \int_{0}^{t} d\xi' \overline{p(\xi)} p(\xi')$$

$$= \frac{kT}{m} \int_{0}^{t} d\xi \int_{0}^{t} d\xi' e^{-\gamma|\xi-\xi'|}$$

$$= \frac{kT}{m} \int_{0}^{t} d\xi \left[\int_{0}^{\xi} d\xi' e^{-\gamma(\xi-\xi')} + \int_{\xi}^{t} d\xi' e^{-\gamma(\xi'-\xi)} \right]$$

$$\overline{p(t)p(t')} = \frac{D_p}{\gamma} \left[e^{-\gamma|t-t'|} - e^{-\gamma(t+t')} \right]$$

• For $t,t'>\frac{1}{\gamma}$ (normal), $e^{-\gamma(t+t')}\to 0$; then $\overline{p(t)p(t')}=\frac{D_p}{\gamma}e^{-\gamma|t-t'|}=mkTe^{-\gamma|t-t'|}.$

• Back to $\overline{x^2(t)}$ again.

$$\frac{x(t) = \int_{0}^{t} \dot{x}(\xi) d\xi = \frac{1}{m} \int_{0}^{t} p(\xi) d\xi.}{x^{2}(t) = \frac{1}{m} \int_{0}^{t} p(\xi) d\xi \cdot \frac{1}{m} \int_{0}^{t} p(\xi') d\xi'}
= \frac{1}{m^{2}} \int_{0}^{t} d\xi \int_{0}^{t} d\xi' \frac{1}{p(\xi)} p(\xi') d\xi'}
= \frac{kT}{m} \int_{0}^{t} d\xi \int_{0}^{t} d\xi' e^{-\gamma|\xi-\xi'|}
= \frac{kT}{m} \int_{0}^{t} d\xi \left[\int_{0}^{\xi} d\xi' e^{-\gamma(\xi-\xi')} + \int_{\xi}^{t} d\xi' e^{-\gamma(\xi'-\xi)} \right]
= \frac{kT}{m} \int_{0}^{t} d\xi \left[\int_{0}^{\xi} d\xi' e^{\gamma(\xi'-\xi)} + \int_{\xi}^{t} d\xi' e^{\gamma(\xi-\xi')} \right]$$

Yuan-Chuan Zo

$$\overline{x^2(t)} = \frac{kT}{m} \int_0^t d\xi \left[\int_0^{\xi} d\xi' e^{\gamma(\xi' - \xi)} + \int_{\xi}^t d\xi' e^{\gamma(\xi - \xi')} \right]$$

$$\overline{x^2(t)} = \frac{kT}{m} \int_0^t d\xi \left[\int_0^{\xi} d\xi' e^{\gamma(\xi'-\xi)} + \int_{\xi}^t d\xi' e^{\gamma(\xi-\xi')} \right]$$
$$= \frac{kT}{m} \int_0^t d\xi \left[\frac{1}{\gamma} \int_0^{\xi} de^{\gamma(\xi'-\xi)} - \frac{1}{\gamma} \int_{\xi}^t de^{\gamma(\xi-\xi')} \right]$$

$$\overline{x^2(t)} = \frac{kT}{m} \int_0^t d\xi \left[\int_0^{\xi} d\xi' e^{\gamma(\xi'-\xi)} + \int_{\xi}^t d\xi' e^{\gamma(\xi-\xi')} \right]$$

$$= \frac{kT}{m} \int_0^t d\xi \left[\frac{1}{\gamma} \int_0^{\xi} de^{\gamma(\xi'-\xi)} - \frac{1}{\gamma} \int_{\xi}^t de^{\gamma(\xi-\xi')} \right]$$

$$= \frac{kT}{m} \int_0^t d\xi \left[\frac{1}{\gamma} (1 - e^{-\gamma\xi}) - \frac{1}{\gamma} (e^{\gamma(\xi-t)} - 1) \right]$$

$$\begin{split} \overline{x^2(t)} &= \frac{kT}{m} \int_0^t \mathrm{d}\xi \left[\int_0^\xi \mathrm{d}\xi' e^{\gamma(\xi'-\xi)} + \int_\xi^t \mathrm{d}\xi' e^{\gamma(\xi-\xi')} \right] \\ &= \frac{kT}{m} \int_0^t \mathrm{d}\xi \left[\frac{1}{\gamma} \int_0^\xi \mathrm{d}e^{\gamma(\xi'-\xi)} - \frac{1}{\gamma} \int_\xi^t \mathrm{d}e^{\gamma(\xi-\xi')} \right] \\ &= \frac{kT}{m} \int_0^t \mathrm{d}\xi \left[\frac{1}{\gamma} (1 - e^{-\gamma\xi}) - \frac{1}{\gamma} (e^{\gamma(\xi-t)} - 1) \right] \\ &= \frac{kT}{\gamma m} \int_0^t \mathrm{d}\xi \left[2 - e^{-\gamma\xi} - e^{\gamma(\xi-t)} \right] \end{split}$$

$$\begin{split} \overline{x^2(t)} &= \frac{kT}{m} \int_0^t \mathrm{d}\xi \left[\int_0^\xi \mathrm{d}\xi' e^{\gamma(\xi'-\xi)} + \int_\xi^t \mathrm{d}\xi' e^{\gamma(\xi-\xi')} \right] \\ &= \frac{kT}{m} \int_0^t \mathrm{d}\xi \left[\frac{1}{\gamma} \int_0^\xi \mathrm{d}e^{\gamma(\xi'-\xi)} - \frac{1}{\gamma} \int_\xi^t \mathrm{d}e^{\gamma(\xi-\xi')} \right] \\ &= \frac{kT}{m} \int_0^t \mathrm{d}\xi \left[\frac{1}{\gamma} (1 - e^{-\gamma\xi}) - \frac{1}{\gamma} (e^{\gamma(\xi-t)} - 1) \right] \\ &= \frac{kT}{\gamma m} \int_0^t \mathrm{d}\xi \left[2 - e^{-\gamma\xi} - e^{\gamma(\xi-t)} \right] \\ &= \frac{kT}{\gamma m} \left[2t + \frac{1}{\gamma} \int_0^t \mathrm{d}e^{-\gamma\xi} - \frac{1}{\gamma} \int_0^t \mathrm{d}e^{\gamma(\xi-t)} \right] \end{split}$$

$$\begin{split} \overline{x^2(t)} &= \frac{kT}{m} \int_0^t \mathrm{d}\xi \left[\int_0^\xi \mathrm{d}\xi' e^{\gamma(\xi'-\xi)} + \int_\xi^t \mathrm{d}\xi' e^{\gamma(\xi-\xi')} \right] \\ &= \frac{kT}{m} \int_0^t \mathrm{d}\xi \left[\frac{1}{\gamma} \int_0^\xi \mathrm{d}e^{\gamma(\xi'-\xi)} - \frac{1}{\gamma} \int_\xi^t \mathrm{d}e^{\gamma(\xi-\xi')} \right] \\ &= \frac{kT}{m} \int_0^t \mathrm{d}\xi \left[\frac{1}{\gamma} (1 - e^{-\gamma\xi}) - \frac{1}{\gamma} (e^{\gamma(\xi-t)} - 1) \right] \\ &= \frac{kT}{\gamma m} \int_0^t \mathrm{d}\xi \left[2 - e^{-\gamma\xi} - e^{\gamma(\xi-t)} \right] \\ &= \frac{kT}{\gamma m} \left[2t + \frac{1}{\gamma} \int_0^t \mathrm{d}e^{-\gamma\xi} - \frac{1}{\gamma} \int_0^t \mathrm{d}e^{\gamma(\xi-t)} \right] \\ &= \frac{kT}{\gamma m} \left[2t + \frac{1}{\gamma} (e^{-\gamma t} - 1) - \frac{1}{\gamma} (1 - e^{-\gamma t}) \right] \end{split}$$

$$\begin{split} \overline{x^{2}(t)} &= \frac{kT}{m} \int_{0}^{t} \mathrm{d}\xi \left[\int_{0}^{\xi} \mathrm{d}\xi' e^{\gamma(\xi'-\xi)} + \int_{\xi}^{t} \mathrm{d}\xi' e^{\gamma(\xi-\xi')} \right] \\ &= \frac{kT}{m} \int_{0}^{t} \mathrm{d}\xi \left[\frac{1}{\gamma} \int_{0}^{\xi} \mathrm{d}e^{\gamma(\xi'-\xi)} - \frac{1}{\gamma} \int_{\xi}^{t} \mathrm{d}e^{\gamma(\xi-\xi')} \right] \\ &= \frac{kT}{m} \int_{0}^{t} \mathrm{d}\xi \left[\frac{1}{\gamma} (1 - e^{-\gamma\xi}) - \frac{1}{\gamma} (e^{\gamma(\xi-t)} - 1) \right] \\ &= \frac{kT}{\gamma m} \int_{0}^{t} \mathrm{d}\xi \left[2 - e^{-\gamma\xi} - e^{\gamma(\xi-t)} \right] \\ &= \frac{kT}{\gamma m} \left[2t + \frac{1}{\gamma} \int_{0}^{t} \mathrm{d}e^{-\gamma\xi} - \frac{1}{\gamma} \int_{0}^{t} \mathrm{d}e^{\gamma(\xi-t)} \right] \\ &= \frac{kT}{\gamma m} \left[2t + \frac{1}{\gamma} (e^{-\gamma t} - 1) - \frac{1}{\gamma} (1 - e^{-\gamma t}) \right] \\ &= \frac{2kT}{\gamma m} t \quad (e^{-\gamma t} \to 0) \end{split}$$

$$\begin{split} \overline{x^2(t)} &= \tfrac{kT}{m} \int_0^t \mathrm{d}\xi \left[\int_0^\xi \mathrm{d}\xi' e^{\gamma(\xi'-\xi)} + \int_\xi^t \mathrm{d}\xi' e^{\gamma(\xi-\xi')} \right] \\ &= \tfrac{kT}{m} \int_0^t \mathrm{d}\xi \left[\tfrac{1}{\gamma} \int_0^\xi \mathrm{d}e^{\gamma(\xi'-\xi)} - \tfrac{1}{\gamma} \int_\xi^t \mathrm{d}e^{\gamma(\xi-\xi')} \right] \\ &= \tfrac{kT}{m} \int_0^t \mathrm{d}\xi \left[\tfrac{1}{\gamma} (1 - e^{-\gamma\xi}) - \tfrac{1}{\gamma} (e^{\gamma(\xi-t)} - 1) \right] \\ &= \tfrac{kT}{\gamma m} \int_0^t \mathrm{d}\xi \left[2 - e^{-\gamma\xi} - e^{\gamma(\xi-t)} \right] \\ &= \tfrac{kT}{\gamma m} \left[2t + \tfrac{1}{\gamma} \int_0^t \mathrm{d}e^{-\gamma\xi} - \tfrac{1}{\gamma} \int_0^t \mathrm{d}e^{\gamma(\xi-t)} \right] \\ &= \tfrac{kT}{\gamma m} \left[2t + \tfrac{1}{\gamma} (e^{-\gamma t} - 1) - \tfrac{1}{\gamma} (1 - e^{-\gamma t}) \right] \\ &= \tfrac{2kT}{\gamma m} t \quad (e^{-\gamma t} \to 0) \\ &= \tfrac{2kT}{\alpha} t. \quad \text{(same as (10.5.8))}. \end{split}$$

Table of contents

- §10. Fluctuation
 - 10.1 Quasi-thermodynamics of fluctuation
 - 10.5 Brownian motion
 - 10.6 Diffusion and temporal correlation of Brownian particle's momentum
 - 10.7 Examples of Brownian motion

• (i) Thermal noise in the circuit.

- (i) Thermal noise in the circuit.
- In the LC circuit, $L \frac{\mathrm{d}i}{\mathrm{d}t} = -\frac{q(t)}{C}$.

- (i) Thermal noise in the circuit.
- In the LC circuit, $L \frac{\mathrm{d}i}{\mathrm{d}t} = -\frac{q(t)}{C}$.
- Considering the resistance: $L_{\frac{di}{dt}}^{\frac{di}{dt}} = -\frac{q(t)}{C} Ri$.

- (i) Thermal noise in the circuit.
- In the LC circuit, $L \frac{\mathrm{d}i}{\mathrm{d}t} = -\frac{q(t)}{C}$.
- Considering the resistance: $L_{\frac{\mathrm{d}i}{\mathrm{d}t}}^{\frac{\mathrm{d}i}{\mathrm{d}t}} = -\frac{q(t)}{C} Ri$.
- Reason for the resistance: vibrations of the ions scatter the moving electrons.

- (i) Thermal noise in the circuit.
- In the LC circuit, $L rac{\mathrm{d}i}{\mathrm{d}t} = -rac{q(t)}{C}$.
- Considering the resistance: $L \frac{\mathrm{d}i}{\mathrm{d}t} = -\frac{q(t)}{C} Ri$.
- Reason for the resistance: vibrations of the ions scatter the moving electrons. Two effect: macroscopic effective resistance;

- (i) Thermal noise in the circuit.
- In the LC circuit, $L rac{\mathrm{d}i}{\mathrm{d}t} = -rac{q(t)}{C}$.
- Considering the resistance: $L_{\frac{\mathrm{d}i}{\mathrm{d}t}}^{\frac{\mathrm{d}i}{\mathrm{d}t}} = -\frac{q(t)}{C} Ri$.
- Reason for the resistance: vibrations of the ions scatter the moving electrons. Two effect: macroscopic effective resistance; fluctuating potential V(t).

- (i) Thermal noise in the circuit.
- In the LC circuit, $L rac{\mathrm{d}i}{\mathrm{d}t} = -rac{q(t)}{C}.$
- Considering the resistance: $L_{\mathrm{d}i}^{\mathrm{d}i} = -\frac{q(t)}{C} Ri$.
- ullet Reason for the resistance: vibrations of the ions scatter the moving electrons. Two effect: macroscopic effective resistance; fluctuating potential V(t).
- $\bullet :: L_{\frac{\mathrm{d}i}{\mathrm{d}t}} = -\frac{q(t)}{C} Ri + V(t).$

- (i) Thermal noise in the circuit.
- In the LC circuit, $L \frac{\mathrm{d}i}{\mathrm{d}t} = -\frac{q(t)}{C}$.
- Considering the resistance: $L_{\frac{di}{dt}}^{\frac{di}{dt}} = -\frac{q(t)}{C} Ri$.
- Reason for the resistance: vibrations of the ions scatter the moving electrons. Two effect: macroscopic effective resistance; fluctuating potential V(t).
- $\bullet : L_{dt}^{\underline{di}} = -\frac{q(t)}{C} Ri + V(t).$
- Abstracting the external voltage $-\frac{q(t)}{C}$ to $\mathcal{V}(t)$, $L_{\frac{\mathrm{d}i}{\mathrm{d}t}}^{\frac{\mathrm{d}i}{\mathrm{d}t}} = \mathcal{V}(t) - Ri + V(t).$

- (i) Thermal noise in the circuit.
- In the LC circuit, $L_{dt}^{\underline{d}i} = -\frac{q(t)}{C}$.
- Considering the resistance: $L_{\frac{di}{dt}}^{\frac{di}{dt}} = -\frac{q(t)}{C} Ri$.
- Reason for the resistance: vibrations of the ions scatter the moving electrons. Two effect: macroscopic effective resistance; fluctuating potential V(t).
- $\therefore L_{\frac{\mathrm{d}i}{\mathrm{d}t}}^{\frac{\mathrm{d}i}{\mathrm{d}t}} = -\frac{q(t)}{C} Ri + V(t).$
- Abstracting the external voltage $-\frac{q(t)}{C}$ to $\mathcal{V}(t)$, $L_{\frac{\mathrm{d}i}{\mathrm{d}t}}^{\frac{\mathrm{d}i}{\mathrm{d}t}} = \mathcal{V}(t) - Ri + V(t).$
- $m\frac{\mathrm{d}v}{\mathrm{d}t} = \mathcal{F} \alpha v + F(t)$, Langevin's equation. $L \leftrightarrow m$, $i \leftrightarrow v$, $V \leftrightarrow \mathcal{F}$, $R \leftrightarrow \alpha$, and $V \leftrightarrow F$.

• Similar to (10.6.3), $\overline{F(t)F(t+\tau)}=2D_p\delta(\tau)$, $D_p = \alpha kT$;

24 / 27

• Similar to (10.6.3), $\overline{F(t)F(t+\tau)}=2D_p\delta(\tau)$, $D_p = \alpha kT; \rightarrow \overline{V(t)V(t+\tau)} = 2RkT\delta(\tau).$

- Similar to (10.6.3), $F(t)F(t+\tau)=2D_p\delta(\tau)$, $D_p=\alpha kT$; $\rightarrow \overline{V(t)V(t+\tau)}=2RkT\delta(\tau)$.
- Fourier transformation (time domain to frequency domain):

- Similar to (10.6.3), $F(t)F(t+\tau)=2D_p\delta(\tau)$, $D_p=\alpha kT$; $\rightarrow \overline{V(t)V(t+\tau)}=2RkT\delta(\tau)$.
- Fourier transformation (time domain to frequency domain): $V(t) = \int_{-\infty}^{\infty} V(\omega) e^{i\omega t} d\omega$;

- Similar to (10.6.3), $F(t)F(t+\tau)=2D_p\delta(\tau)$, $D_p=\alpha kT$; $\rightarrow \overline{V(t)V(t+\tau)}=2RkT\delta(\tau)$.
- Fourier transformation (time domain to frequency domain): $V(t) = \int_{-\infty}^{\infty} V(\omega) e^{i\omega t} d\omega$; $V(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V(t) e^{-i\omega t} dt$.

- Similar to (10.6.3), $F(t)F(t+\tau)=2D_p\delta(\tau)$, $D_p=\alpha kT$; $\rightarrow \overline{V(t)V(t+\tau)}=2RkT\delta(\tau)$.
- Fourier transformation (time domain to frequency domain): $V(t) = \int_{-\infty}^{\infty} V(\omega) e^{i\omega t} \mathrm{d}\omega$; $V(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V(t) e^{-i\omega t} \mathrm{d}t$.
- $\overline{V(\omega)V^*(\omega')} = \overline{V(\omega)V(-\omega')}$

- Similar to (10.6.3), $F(t)F(t+\tau)=2D_p\delta(\tau)$, $D_p=\alpha kT$; $\rightarrow \overline{V(t)V(t+\tau)}=2RkT\delta(\tau)$.
- Fourier transformation (time domain to frequency domain): $V(t) = \int_{-\infty}^{\infty} V(\omega) e^{i\omega t} \mathrm{d}\omega$; $V(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V(t) e^{-i\omega t} \mathrm{d}t$.
- $\overline{V(\omega)V^*(\omega')} = \overline{V(\omega)V(-\omega')}$ = $\frac{1}{(2\pi)^2} \iint_{-\infty}^{\infty} dt dt' \overline{V(t)V(t')} e^{-i\omega t} e^{i\omega't'}$

Thermal noise in the circuit

- Similar to (10.6.3), $F(t)F(t+\tau)=2D_p\delta(\tau)$, $D_p=\alpha kT$; $\rightarrow \overline{V(t)V(t+\tau)}=2RkT\delta(\tau)$.
- Fourier transformation (time domain to frequency domain): $V(t) = \int_{-\infty}^{\infty} V(\omega) e^{i\omega t} \mathrm{d}\omega$; $V(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V(t) e^{-i\omega t} \mathrm{d}t$.
- $\overline{V(\omega)V^*(\omega')} = \overline{V(\omega)V(-\omega')}$ = $\frac{1}{(2\pi)^2} \iint_{-\infty}^{\infty} dt dt' \overline{V(t)V(t')} e^{-i\omega t} e^{i\omega't'}$ = $\frac{1}{(2\pi)^2} \iint_{-\infty}^{\infty} dt dt' 2RkT \delta(t'-t) e^{-i\omega t} e^{i\omega't'}$

Thermal noise in the circuit

- Similar to (10.6.3), $F(t)F(t+\tau) = 2D_p\delta(\tau)$, $D_p = \alpha kT$; $\rightarrow \overline{V(t)V(t+\tau)} = 2RkT\delta(\tau)$.
- Fourier transformation (time domain to frequency domain): $V(t) = \int_{-\infty}^{\infty} V(\omega) e^{i\omega t} \mathrm{d}\omega$; $V(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V(t) e^{-i\omega t} \mathrm{d}t$.
- $\begin{aligned} \bullet \ \overline{V(\omega)V^*(\omega')} &= \overline{V(\omega)V(-\omega')} \\ &= \frac{1}{(2\pi)^2} \iint_{-\infty}^{\infty} \mathrm{d}t \mathrm{d}t' \overline{V(t)V(t')} e^{-i\omega t} e^{i\omega't'} \\ &= \frac{1}{(2\pi)^2} \iint_{-\infty}^{\infty} \mathrm{d}t \mathrm{d}t' 2RkT \delta(t'-t) e^{-i\omega t} e^{i\omega't'} \\ &= \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} 2RkT e^{-i(\omega-\omega')t} \mathrm{d}t \end{aligned}$

Thermal noise in the circuit

- Similar to (10.6.3), $F(t)F(t+\tau) = 2D_n\delta(\tau)$. $D_n = \alpha kT$; $\rightarrow V(t)V(t+\tau) = 2RkT\delta(\tau)$.
- Fourier transformation (time domain to frequency domain): $V(t) = \int_{-\infty}^{\infty} V(\omega)e^{i\omega t}d\omega$; $V(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V(t)e^{-i\omega t} dt$.
- $\overline{V(\omega)V^*(\omega')} = \overline{V(\omega)V(-\omega')}$ $=\frac{1}{(2\pi)^2}\iint_{-\infty}^{\infty} \mathrm{d}t \mathrm{d}t' \overline{V(t)} \overline{V(t')} e^{-i\omega t} e^{i\omega' t'}$ $= \frac{1}{(2\pi)^2} \iint_{-\infty}^{\infty} dt dt' 2RkT \delta(t'-t) e^{-i\omega t} e^{i\omega' t'}$ $= \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} 2RkT e^{-i(\omega - \omega')t} dt$ $=\frac{kTR}{\pi}\delta(\omega-\omega')$, (white noise) where $\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(\omega'-\omega)t} dt = \delta(\omega-\omega')$.

- (ii) Optical adhesive and Doppler cooling.
- Frequency of laser: ω_L ; of atom: ω_A . $(\omega_L \lesssim \omega_A)$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- (ii) Optical adhesive and Doppler cooling.
- Frequency of laser: ω_L ; of atom: ω_A . $(\omega_L \lesssim \omega_A)$
- For the atom at velocity v_z (1 direction), it feels the frequency of laser $\omega_L(1\pm\frac{|v_z|}{c})$.

- (ii) Optical adhesive and Doppler cooling.
- Frequency of laser: ω_L ; of atom: ω_A . $(\omega_L \lesssim \omega_A)$
- For the atom at velocity v_z (1 direction), it feels the frequency of laser $\omega_L(1\pm\frac{|v_z|}{c})$. Higher velocity, closer to ω_A :

- (ii) Optical adhesive and Doppler cooling.
- Frequency of laser: ω_L ; of atom: ω_A . $(\omega_L \lesssim \omega_A)$
- For the atom at velocity v_z (1 direction), it feels the frequency of laser $\omega_L(1\pm\frac{|v_z|}{c})$. Higher velocity, closer to ω_A ; more easier to absorb the photon and lose its momentum.

- (ii) Optical adhesive and Doppler cooling.
- Frequency of laser: ω_L ; of atom: ω_A . $(\omega_L \lesssim \omega_A)$
- For the atom at velocity v_z (1 direction), it feels the frequency of laser $\omega_L(1\pm\frac{|v_z|}{c})$. Higher velocity, closer to ω_A ; more easier to absorb the photon and lose its momentum. Effective viscous force $-\alpha v_z$.

- (ii) Optical adhesive and Doppler cooling.
- Frequency of laser: ω_L ; of atom: ω_A . $(\omega_L \lesssim \omega_A)$
- For the atom at velocity v_z (1 direction), it feels the frequency of laser $\omega_L(1\pm\frac{|v_z|}{c})$. Higher velocity, closer to ω_A ; more easier to absorb the photon and lose its momentum. Effective viscous force $-\alpha v_z$.
- When the excited atom transits to the ground state,

- (ii) Optical adhesive and Doppler cooling.
- Frequency of laser: ω_L ; of atom: ω_A . $(\omega_L \lesssim \omega_A)$
- For the atom at velocity v_z (1 direction), it feels the frequency of laser $\omega_L(1\pm\frac{|v_z|}{c})$. Higher velocity, closer to ω_A ; more easier to absorb the photon and lose its momentum. Effective viscous force $-\alpha v_z$.
- When the excited atom transits to the ground state, it radiates a photon and feels a repulsive force $F_z(t)$.

- (ii) Optical adhesive and Doppler cooling.
- Frequency of laser: ω_L ; of atom: ω_A . $(\omega_L \lesssim \omega_A)$
- For the atom at velocity v_z (1 direction), it feels the frequency of laser $\omega_L(1\pm\frac{|v_z|}{c})$. Higher velocity, closer to ω_A ; more easier to absorb the photon and lose its momentum. Effective viscous force $-\alpha v_z$.
- When the excited atom transits to the ground state, it radiates a photon and feels a repulsive force $F_z(t)$.
- Langevin's equation: $m \frac{dv_z}{dt} = -\alpha v_z + F_z$.

- (ii) Optical adhesive and Doppler cooling.
- Frequency of laser: ω_L ; of atom: ω_A . $(\omega_L \lesssim \omega_A)$
- For the atom at velocity v_z (1 direction), it feels the frequency of laser $\omega_L(1\pm\frac{|v_z|}{c})$. Higher velocity, closer to ω_A ; more easier to absorb the photon and lose its momentum. Effective viscous force $-\alpha v_z$.
- When the excited atom transits to the ground state, it radiates a photon and feels a repulsive force $F_z(t)$.
- Langevin's equation: $m \frac{\mathrm{d} v_z}{\mathrm{d} t} = -\alpha v_z + F_z$.
- Atom ↔ Brownian particle; laser photons ↔ water (optical adhesive).

- (ii) Optical adhesive and Doppler cooling.
- Frequency of laser: ω_L ; of atom: ω_A . $(\omega_L \lesssim \omega_A)$
- For the atom at velocity v_z (1 direction), it feels the frequency of laser $\omega_L(1\pm\frac{|v_z|}{c})$. Higher velocity, closer to ω_A ; more easier to absorb the photon and lose its momentum. Effective viscous force $-\alpha v_z$.
- When the excited atom transits to the ground state, it radiates a photon and feels a repulsive force $F_z(t)$.
- Langevin's equation: $m \frac{\mathrm{d} v_z}{\mathrm{d} t} = -\alpha v_z + F_z$.
- Atom \leftrightarrow Brownian particle; laser photons \leftrightarrow water (optical adhesive). (10.6.15) $\Rightarrow kT = \frac{D_p}{\alpha}$, the lowest temperature by Doppler cooling.

 However, the optical adhesive can not trap the atom, because of the dissipation.

- However, the optical adhesive can not trap the atom, because of the dissipation.
- Add a magnetic field (1-D) along z-axis, with strength $B_z = \lambda z$.

- However, the optical adhesive can not trap the atom, because of the dissipation.
- Add a magnetic field (1-D) along z-axis, with strength $B_z = \lambda z$.
- Suppose angular momentum quantum number j=0 for ground state, j=1 for excited state.

- However, the optical adhesive can not trap the atom, because of the dissipation.
- Add a magnetic field (1-D) along z-axis, with strength $B_z = \lambda z$.
- Suppose angular momentum quantum number j=0 for ground state, j=1 for excited state. Zeeman splitting: $j=1 \rightarrow m_j=\pm 1,0$, with energy level: $\varepsilon_{2,m_j}=\varepsilon_2+\frac{e\hbar}{2m_e}B_zm_j$.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- However, the optical adhesive can not trap the atom, because of the dissipation.
- Add a magnetic field (1-D) along z-axis, with strength $B_z = \lambda z$.
- Suppose angular momentum quantum number j=0 for ground state, j=1 for excited state. Zeeman splitting: $j=1 \rightarrow m_j=\pm 1,0$, with energy level: $\varepsilon_{2,m_j}=\varepsilon_2+\frac{e\hbar}{2m_e}B_zm_j$.
- The lowest energy changes to $arepsilon_{2,\mathrm{low}} = arepsilon_2 rac{e\hbar}{2m} B_z$

- However, the optical adhesive can not trap the atom, because of the dissipation.
- Add a magnetic field (1-D) along z-axis, with strength $B_z = \lambda z$.
- Suppose angular momentum quantum number j=0 for ground state, j=1 for excited state. Zeeman splitting: $j=1 \to m_j=\pm 1,0$, with energy level: $\varepsilon_{2,m_j}=\varepsilon_2+\frac{e\hbar}{2m_s}B_zm_j$.
- The lowest energy changes to $\varepsilon_{2,\text{low}} = \varepsilon_2 \frac{e\hbar}{2m} B_z$ = $\varepsilon_2 - \frac{e\hbar}{2m} \lambda z$.

26 / 27

- However, the optical adhesive can not trap the atom, because of the dissipation.
- Add a magnetic field (1-D) along z-axis, with strength $B_z = \lambda z$.
- Suppose angular momentum quantum number j=0 for ground state, j=1 for excited state. Zeeman splitting: $j=1 \rightarrow m_j=\pm 1,0$, with energy level: $\varepsilon_{2,m_j}=\varepsilon_2+\frac{e\hbar}{2m_e}B_zm_j$.
- The lowest energy changes to $\varepsilon_{2,\text{low}} = \varepsilon_2 \frac{e\hbar}{2m} B_z$ = $\varepsilon_2 - \frac{e\hbar}{2m} \lambda z$. The energy $\varepsilon_2 - \frac{e\hbar}{2m} \lambda z - \varepsilon_1$ approaching $\hbar \omega_L$ more closely with z increasing.

- However, the optical adhesive can not trap the atom, because of the dissipation.
- Add a magnetic field (1-D) along z-axis, with strength $B_z = \lambda z$.
- Suppose angular momentum quantum number i=0for ground state, j = 1 for excited state. Zeeman splitting: $j = 1 \rightarrow m_i = \pm 1, 0$, with energy level: $\varepsilon_{2,m_i} = \varepsilon_2 + \frac{e\hbar}{2m} B_z m_j$.
- The lowest energy changes to $\varepsilon_{2,\text{low}} = \varepsilon_2 \frac{e\hbar}{2m}B_z$ $= \varepsilon_2 - \frac{e\hbar}{2m}\lambda z$. The energy $\varepsilon_2 - \frac{e\hbar}{2m}\lambda z - \varepsilon_1$ approaching $\hbar\omega_L$ more closely with z increasing. Effective force: -kz, traps the atoms.

Table of contents

- §10. Fluctuation
 - 10.1 Quasi-thermodynamics of fluctuation
 - 10.5 Brownian motion
 - 10.6 Diffusion and temporal correlation of Brownian particle's momentum
 - 10.7 Examples of Brownian motion