OPEN SOURCE SOFTWARE LAB (15B17CI575)

Lab Assignment 5 (Practice Lab)

Odd 2021

Week 5 & 6: 28 Sept- 9 Oct

Topic Coverage: Python- Matplotlib and SciPy package

Matplotlib Practice Questions

1. Creating simple plots of sin(x) and cos(x)

import numpy as np

```
X = \text{np.linspace}(-\text{np.pi}, \text{np.pi}, 256, \text{endpoint=True})

C, S = \text{np.cos}(X), \text{np.sin}(X)

import matplotlib.pyplot as plt

plt.plot(X, C)

plt.plot(X, S)

plt.show()
```

Here, X is numpy array with 256 values ranging from $-\pi$ to $+\pi$. C is cosine (256 values) and S is sine (256 values).

2. Exploring all the figure settings that influence the appearance of the plot.

```
# Create a figure of size 8x6 inches, 80 dots per inch plt.figure(figsize=(8, 6), dpi=80)

# Create a new subplot from a grid of 1x1 plt.subplot(1, 1, 1)

# Plot cosine with a blue continuous line of width 1 (pixels) plt.plot(X, C, color="blue", linewidth=1.0, linestyle="-")

# Plot sine with a green continuous line of width 1 (pixels) plt.plot(X, S, color="green", linewidth=1.0, linestyle="-")

# Set x limits plt.xlim(-4.0, 4.0)

# Set x ticks plt.xticks(np.linspace(-4, 4, 9, endpoint=True))
```

```
# Set y limits
   plt.ylim(-1.0, 1.0)
   # Set y ticks
   plt.yticks(np.linspace(-1, 1, 5, endpoint=True))
   # Save figure using 72 dots per inch
   plt.savefig("exercise_2.png", dpi=72)
3. Adding legends
   plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="cosine")
   plt.plot(X, S, color="red", linewidth=2.5, linestyle="-", label="sine")
   plt.legend(loc='upper left')
4. Regular Plots
   n = 256
   X = np.linspace(-np.pi, np.pi, n, endpoint=True)
   Y = np.sin(2 * X)
   plt.plot(X, Y + 1, color='blue', alpha=1.00)
   plt.plot(X, Y - 1, color='blue', alpha=1.00)
5. Scatter Plot
   n = 1024
   X = np.random.normal(0,1,n)
   Y = np.random.normal(0,1,n)
   plt.scatter(X,Y)
6. Bar Chart
   n = 12
   X = np.arange(n)
   Y1 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
   plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white')
   plt.show()
   Y2 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
   plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white')
   plt.show()
7. Plot tan(x), cot(x), sec(x) and cosec(x) for the values of x = [-pi, -pi/4, -pi/2, 0, pi/4, pi/2, pi]
```

8. Represent the following table using bar chart

Method	Result1	Result2
A	2	3
В	5	2
С	8	5
D	5	7

SciPy Practice Questions

SciPy:

SciPy is built in top of the NumPy
SciPy is a fully-featured version of Linear Algebra while Numpy contains only a fewfeatures.
Mostnew Data Science features are available in Scipyrather than Numpy.
SciPy is organized into subpackages covering different scientific computing domains.
These are summarized in the following table:

Subpackage Description

cluster Clustering algorithms

constantsPhysical and mathematical constantsfftpackFast Fourier Transform routines

integrate Integration and ordinary differential equation

solvers

interpolate Interpolation and smoothing splines

io Input and Output linalg Linear algebra

ndimage N-dimensional image processingodr Orthogonal distance regression

optimize Optimization and root-finding routines

signal Signal processing

sparseSparse matrices and associated routinesspatialSpatial data structures and algorithms

special Special functions

Subpackage Description

stats Statistical distributions and

functions

☐ SciPy sub-packages need to be imported separately, for example:

- >>>
- >>>> from scipy import linalg, optimize

- 1. Import the essential library scipy with i/o package and Numpy. Create 4 x 4, dimensional one's array. Store array in **test.text** file. Getdata from **test.text** file and print the output.
- 2. Find cubic root of 27, 64, 891 using sciPy special package.
- 3. Create two matrices with 2x2 dimensions. Initialize them with values [4,5], [3,2]. Calculate determinant of a two-dimensional matrix using scipy.linalg.
- 4. Calculate the inverse of a matrix in Q3.
- 5. Define two-dimensional array with values $\{(5,4),(6,3)\}$. Output eigen values and eigen vectors of the matrix.
- 6. Create Sparse matrices A and B and analyze various functions of sciPy sparse package.