1. Euler function

$$\varphi(n) = \text{len}(\{1, 2, 3..n\}, \gcd(k, n) = 1)$$

Euler's theorem If a and p is coprime, than $a^{\varphi(n)} \equiv 1 \mod n$.

2. Modular arithmetics

2.1. Congruence

We say that 3 is congruent to 15 by modulo 12, written $15 \equiv 3 \pmod{12}$

Coprime two integers GCD is 1.

2.2. Fermat's little theorem

Special case of euler theorem.

Theorem If p is a prime number, then for any integer a, the number $a^p - a$ is an integer multiple of p

$$a^p \equiv a \operatorname{mod} p$$

If a is coprime to p.

$$a^{p-1} \equiv 1 \operatorname{mod} p$$

2.3. Primitive root modulo

a|b| a divides b=> b/a = 0

Primitive root modulo n g is called primitive root modulo p if every a coprime number to n is congruent to a power of g modulo p.

$$\forall a \in Z : \gcd(a,p) = 1, \exists n : g^n = a \longrightarrow g$$
 is primitive root modulo

N is not required to be prime. G is a *primitive root modulo* n if and only if g is a generator of the multiplicative group of integers modulo n.

2.3.1. Theorem to check generator in p group

 $\alpha \in Z_p^*$ is a generator of Z_p^* if and only if

$$\alpha^{\frac{p-1}{q}} \neg \equiv 1 \operatorname{mod} p$$

For all primes q such that q|(p-1)

Task

Task find the all generators of Z_{11}^*

Let's begin with p - 1 = 10, 10 = 2*5.

Generator check condition for each divider of (p-1):

- $\alpha^5 \neg \equiv 1 \mod 11$
- $\alpha^2 \neg \equiv 1 \mod 11$

Solution is to check each element in group to match conditions.

2.3.2. Theorem to check generator in n group

For $n \ge 1$, we consider Z_n^*

$$Z_n^* = \{k \in \{1,...,n\}/\gcd(k,n) = 1\}$$

 Z_n^* is cyclic when:

- 1. n=2 or 4
- 2. $n = p^x, x \in \{1, 2...\}$
- 3. $2n = p^x, x \in \{1, 2...\}$

Theorem to check generator

Assume Z_n^* is cyclic. $\alpha \in Z_n^*$ is a generator if and only if

$$\alpha^{\frac{\varphi(n)}{p}} \neg \equiv 1 \operatorname{mod} n$$

For each prime p divisor of $\varphi(n)$

2.4. Some equations

$$3B \bmod 13 = 1 \Rightarrow 3B \equiv 1 \bmod 13$$

$$(ab) \bmod m = [(a \bmod m)(b \bmod m)] \bmod m$$

2.5. Discrete logarithm

If $B \in Z_p^*$, then $B = g^x$ for some unique $0 \le x \le p-2$. X is called the discrete logarithm of B to base g. $g^x = B \Rightarrow \log_g B = x$ in Z

Problem find the integer x, such that

$$\log_g \mathbf{B}$$
 in Z_p^*

The naive approach is exhaustive search: compute $g^x, g^2x, ...$ until B is obtained.

2.6. Core Equation for DH

$$y_1 = (a^{x_1} \mod p)^{x_2} \mod p = a^{x_1 x_2} \mod p$$

Some modular arithmetics to proof:

$$y_1 = (a^{x_1} \mod p)^{x_2} \mod p = ((a \mod p)^{x_1} \mod p)^{x_2} \mod p =$$

Reduce extra modulo due to modulo properties:

$$(a \bmod p)^{x_1} \bmod p = a^{x_1} \bmod p$$

Continue:

$$= (a \operatorname{mod} p)^{x_1 x_2} \operatorname{mod} p$$
$$= a^{x_1 x_2} \operatorname{mod} p$$