Intervals, Transformations, and Slope Solution (version 11)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-4,0) \cup (4,6)$
Negative	$(0,4) \cup (6,7)$
Increasing	$(-4, -3) \cup (1, 5)$
Decreasing	$(-3,1) \cup (5,7)$
Domain	(-4,7)
Range	(-3,9)

Intervals, Transformations, and Slope Solution (version 11)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=39$ and $x_2=79$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 4 & 39 \\ 29 & 79 \\ 39 & 29 \\ 79 & 4 \\ \end{array}$$

$$\frac{f(79) - f(39)}{79 - 39} = \frac{4 - 29}{79 - 39} = \frac{-25}{40}$$

The greatest common factor of -25 and 40 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-5}{8}$$

2