Probabilistic Modelling of Sequences: Learning

TTT4185 Machine Learning for Signal Processing

Giampiero Salvi

Department of Electronic Systems NTNU

HT2020

HMM Inference: Learning

ullet Given observations X update model parameters

$$\theta = \{\pi, A, \phi\}$$

- to maximise either:
 - model fit to data (e.g. likelihood, posterior)
 - classification performance (discriminative training)

HMM Inference: Learning

- ullet problem: incomplete data, state sequence Z
- there is no closed-form solution
- ullet only iterative procedures: given $heta^{
 m old}$ how to estimate $heta^{
 m new}$

Viterbi training (simple approach)

Viterbi training (simple approach)

Viterbi training (simple approach)

problem: sensitive to misalignments but still used for ANN/DNN training

HMM Inference: Learning

Latent variables → Expectation Maximisation

- ullet locally maximise the likelihood of the complete data X,Z
- efficient solution with froward-backward or Baum-Welch algorithm¹
- general idea: sum over all possible paths weighted by posterior probability of the path
- also: every observation vector contributes to all parameter updates

¹L. E. Baum, T. Petrie, G. Soules, and N. Weiss. "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains". In: *Ann. Math. Statist.* 41.1 (1970), pp. 164–171.

Expectation Maximization for Mixture Models

$$P(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k P(\mathbf{x}|\theta_k),$$

$$\theta = \{\pi_1, \dots, \pi_k, \theta_1, \dots, \theta_K\},$$

$$\sum_{k=1}^{K} \pi_k = 1$$

$$\mathbf{x}_{n-1}$$

$$\mathbf{x}_n$$

$$\mathbf{x}_{n+1}$$

- augment the data with the latent variables: $z_i \in \{1,\ldots,K\}$ assignment of each data point x_i to a component of the mixture
- interpret the mixture as marginal of the joint

$$P(\mathbf{x}|\theta) = \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{z}|\theta)$$

Expectation Maximization: Idea

Ideally we would like to maximize:

$$\log p(X|\theta) = \log \left\{ \sum_{Z} p(X, Z|\theta) \right\}$$

with $X = \{x_1, \dots, x_N\}, Z = \{z_1, \dots, z_N\}$... but log of sum hard to optimize

Instead optimize likelihood of complete data:

$$\log p(X, Z|\theta)$$

Z not known, but we can compute posterior given current model $p(Z|X,\theta^{\text{old}})$ Optimize the expected value of the likelihood:

$$Q(\theta, \theta^{\mathsf{old}}) = \sum_{Z} p(Z|X, \theta^{\mathsf{old}}) \log p(X, Z|\theta)$$

Expectation Maximization in Practice

- Initialization: choose initial value of θ^{old}
- **2** Expectation step: evaluate posterior $p(Z|X, \theta^{\text{old}})$
- **Maximization step:** evaluate θ^{new} with:

$$\theta^{\mathsf{new}} = \arg \max_{\theta} \mathcal{Q}(\theta, \theta^{\mathsf{old}})$$

$$= \arg \max_{\theta} \sum_{Z} p(Z|X, \theta^{\mathsf{old}}) \log p(X, Z|\theta)$$

• Check for convergence, otherwise $\theta^{\text{old}} \leftarrow \theta^{\text{new}}$ and go to step 2.

• Posterior of latent variable z_n depends on full sequence X

$$\gamma_n(k) = P(z_n = k | X, \theta^{(t)}) \neq P(z_n = k | x_n, \theta^{(t)})$$

1 Posterior of latent variable z_n depends on full sequence X

$$\gamma_n(k) = P(z_n = k \mid X, \theta^{(t)}) \neq P(z_n = k \mid x_n, \theta^{(t)})$$

We also need the posterior of two subsequent latent variables

$$\xi_n(i,j) = P(z_{n-1} = s_i, z_n = s_j | X, \theta)$$

Baum-Welch E-Step

Estimate posterior $P(Z|X, \theta^{\text{old}})$ or, at least the sufficient statistics given:

- current model parameters
- ullet full sequence of observations X
- Posterior of latent variable z_n

$$\gamma_n(i) = P(z_n = s_i | X, \theta)$$

Posterior of two subsequent latent variables

$$\xi_n(i,j) = P(z_{n-1} = s_i, z_n = s_j | X, \theta)$$

Baum-Welch E-Step

Estimate posterior $P(Z|X,\theta^{\sf old})$ or, at least the sufficient statistics given:

- current model parameters
- ullet full sequence of observations X
- Posterior of latent variable z_n

$$\gamma_n(i) = P(z_n = s_i | X, \theta)$$

Posterior of two subsequent latent variables

$$\xi_n(i,j) = P(z_{n-1} = s_i, z_n = s_j | X, \theta)$$

Note: Huang, Acero and Hon call this $\gamma_n(i,j)$

Note: posteriors conditioned to full sequence X not only x_n

Baum-Welch M-Step

Weighted Maximum Likelihood estimates:

Emission probabilities:

Same as mixture model given $\gamma_n(i) = P(z_n = s_j | X, \theta)$

Transition probabilities

$$\begin{split} a_{ij}^{\text{new}} &= \frac{E\left[s_i \to s_j | X, \theta^{\text{old}}\right]}{E\left[s_i \to s_{\text{any}} | X, \theta^{\text{old}}\right]} = \frac{\sum_{n=2}^N \xi_n(i,j)}{\sum_{n=2}^N \sum_{k=1}^M \xi_n(i,k)} \\ &\text{or, equivalently,} \\ &= \frac{E\left[s_i \to s_j | X, \theta^{\text{old}}\right]}{E\left[s_i | X, \theta^{\text{old}}\right]} = \frac{\sum_{n=2}^N \xi_n(i,j)}{\sum_{n=1}^{N-1} \gamma_n(i)} \end{split}$$

Expectations are over the posteriors $P(Z|X, \theta^{\text{old}})$.

Example: Transition Probability

$$\begin{split} a_{12}^{\mathsf{new}} & = & \frac{E\left[s_1 \to s_2 | X, \theta^{\mathsf{old}}\right]}{E\left[s_1 \to s_{\mathsf{any}} | X, \theta^{\mathsf{old}}\right]} = \frac{\sum_{n=2}^N \xi_n(1, 2)}{\sum_{n=2}^N \sum_{k=1}^3 \xi_n(1, k)} \\ & = & \frac{E\left[s_1 \to s_2 | X, \theta^{\mathsf{old}}\right]}{E\left[s_1 | X, \theta^{\mathsf{old}}\right]} = \frac{\sum_{n=2}^N \xi_n(1, 2)}{\sum_{n=1}^{N-1} \gamma_n(1)} \end{split}$$

Example: Transition Probability

- $\sum_{n=2}^{N} \xi_n(i,j)$ is the expected number of transitions between state s_i and s_j (given X and θ^{old})
- $\sum_{n=1}^{N-1} \gamma_n(i)$ is the expected number of times we are in state s_i (given X and θ^{old})
- we never take a hard decision on when the transition happened

Emission probabilities

- Discrete HMMs (DHMMs)
 - vector quantisation
- Continuous HMMs
 - Single Gaussian $\phi_j(x_n) = N(x_n|\mu_j, \Sigma_j)$
 - Gaussian Mixture
- Semi-continuous HMMs (SCHMMs)

Discrete HMMs

- quantise feature vectors
- observation: sequence of discrete symbols
- $\phi_i(x_n)$ simple discrete probability distribution
- problem: quantisation error

Discrete HMMs: learn $\phi_j(x_n)$

Remember that

$$\gamma_n(j) = P(z_n = s_j | X, \theta)$$

are the posteriors of the latent variable Update rule:

$$\phi_j(x_n = k) = p(x_n = k | z_n = s_j) = \frac{E[x_n = k, z_n = s_j]}{E[z_n = s_j]} = \frac{\sum_{n:(x_n = k)} \gamma_n(j)}{\sum_{n=1}^{N} \gamma_n(j)}$$

HMMs with Gaussian Emission Probability

$$\phi_j(x_n) = N(x_n | \mu_j, \Sigma_j)$$

Update rules:

$$\mu_j = \frac{\sum_{n=1}^N \gamma_n(j) x_n}{\sum_{n=1}^N \gamma_n(j)}$$

$$\Sigma_j = \frac{\sum_{n=1}^N \gamma_n(j) (x_n - \mu_j) (x_n - \mu_j)^T}{\sum_{n=1}^N \gamma_n(j)}$$

Calculate sufficient statistics

$$\gamma_n(i) = P(z_n = s_i | X, \theta)$$
 $\xi_n(i, j) = P(z_{n-1} = s_i, z_n = s_i | X, \theta)$

We can do this with the help of the forward and backward variables:

$$\alpha_n(i) = P(x_1, \dots, x_n, z_n = s_i | \theta)$$

$$\beta_n(i) = P(x_{n+1}, \dots, x_N | z_n = s_i, \theta)$$

$$\gamma_n(i) = P(z_n = s_i | X, \theta)$$

$$\gamma_n(i) = P(z_n = s_i | X, \theta)$$

$$= \frac{p(X, z_n = s_j | \theta)}{p(X | \theta)}$$

$$\gamma_n(i) = P(z_n = s_i | X, \theta)
= \frac{p(X, z_n = s_j | \theta)}{p(X | \theta)}
= \frac{p(x_1, \dots, x_n, x_{n+1}, \dots, x_N, z_n = s_j | \theta)}{p(X | \theta)}$$

$$\gamma_{n}(i) = P(z_{n} = s_{i} | X, \theta)
= \frac{p(X, z_{n} = s_{j} | \theta)}{p(X | \theta)}
= \frac{p(x_{1}, \dots, x_{n}, x_{n+1}, \dots, x_{N}, z_{n} = s_{j} | \theta)}{p(X | \theta)}
= \frac{p(x_{1}, \dots, x_{n}, x_{n+1}, \dots, x_{N} | z_{n} = s_{j}, \theta) P(z_{n} = s_{j} | \theta)}{p(X | \theta)}$$

$$\gamma_{n}(i) = P(z_{n} = s_{i} | X, \theta)$$

$$= \frac{p(X, z_{n} = s_{j} | \theta)}{p(X | \theta)}$$

$$= \frac{p(x_{1}, \dots, x_{n}, x_{n+1}, \dots, x_{N}, z_{n} = s_{j} | \theta)}{p(X | \theta)}$$

$$= \frac{p(x_{1}, \dots, x_{n}, x_{n+1}, \dots, x_{N} | z_{n} = s_{j}, \theta) P(z_{n} = s_{j} | \theta)}{p(X | \theta)}$$

$$= \frac{p(x_{1}, \dots, x_{n} | z_{n} = s_{j}, \theta) p(x_{n+1}, \dots, x_{N} | z_{n} = s_{j}, \theta) P(z_{n} = s_{j} | \theta)}{p(X | \theta)}$$

$$\gamma_{n}(i) = P(z_{n} = s_{i} | X, \theta)
= \frac{p(X, z_{n} = s_{j} | \theta)}{p(X | \theta)}
= \frac{p(x_{1}, \dots, x_{n}, x_{n+1}, \dots, x_{N}, z_{n} = s_{j} | \theta)}{p(X | \theta)}
= \frac{p(x_{1}, \dots, x_{n}, x_{n+1}, \dots, x_{N} | z_{n} = s_{j}, \theta) P(z_{n} = s_{j} | \theta)}{p(X | \theta)}
= \frac{p(x_{1}, \dots, x_{n} | z_{n} = s_{j}, \theta) p(x_{n+1}, \dots, x_{N} | z_{n} = s_{j}, \theta) P(z_{n} = s_{j} | \theta)}{p(X | \theta)}
= \frac{p(x_{1}, \dots, x_{n}, z_{n} = s_{j} | \theta) p(x_{n+1}, \dots, x_{N} | z_{n} = s_{j}, \theta)}{p(X | \theta)}$$

$$\begin{split} \gamma_n(i) &= P(z_n = s_i | X, \theta) \\ &= \frac{p(X, z_n = s_j | \theta)}{p(X | \theta)} \\ &= \frac{p(x_1, \dots, x_n, x_{n+1}, \dots, x_N, z_n = s_j | \theta)}{p(X | \theta)} \\ &= \frac{p(x_1, \dots, x_n, x_{n+1}, \dots, x_N | z_n = s_j, \theta) P(z_n = s_j | \theta)}{p(X | \theta)} \\ &= \frac{p(x_1, \dots, x_n | z_n = s_j, \theta) p(x_{n+1}, \dots, x_N | z_n = s_j, \theta) P(z_n = s_j | \theta)}{p(X | \theta)} \\ &= \frac{p(x_1, \dots, x_n, z_n = s_j | \theta) p(x_{n+1}, \dots, x_N | z_n = s_j, \theta)}{p(X | \theta)} \\ &= \frac{\alpha_n(i) \beta_n(i)}{\sum_i \alpha_N(i)} \end{split}$$

Calculate γ : Illustration

$$\gamma_n(i) = P(z_n = s_i | X, \theta) = \frac{\alpha_n(i)\beta_n(i)}{\sum_i \alpha_N(i)}$$

Calculate ξ (forward-backward)

$$\xi_n(i,j) = P(z_n = s_j, z_{n-1} = s_i | X, \theta)$$

Calculate ξ (forward-backward)

$$\xi_n(i,j) = P(z_n = s_j, z_{n-1} = s_i | X, \theta)$$

= $\frac{P(z_n = s_j, z_{n-1} = s_i, X | \theta)}{P(X | \theta)}$

Calculate ξ (forward-backward)

training utterance

Baum-Welch: Properties

instance of Expectation Maximisation:

- iterative procedure
- guaranteed to convert to local maximum of the likelihood $P(X|\theta^{new})$
- sensitive to initialisation
- update formulae for emission probability model $\phi_j(x_n)$ same as for mixture models (with new version of posteriors)

Numerical Problems

Product of many probabilities.

Solution: work in log domain

Train on several utterances

Set of utterances X^1, X^2, \dots, X^U

- cannot concatenate them: need to calculate α , β , γ and ξ each time Each utterance corresponds to several models
 - reuse model states (sentence \rightarrow words \rightarrow phonemes)

Concatenating HMMs

Utterance to words:

sil one zero one three sil

Words to phones

sil w ah n sp z iy r ow sp w ah n sp th r iy sp sil

Phones to states

sil0 sil1 sil2 w0 w1 w2 ah0 ah1 ah2 n0 n1 n2 sp0 z0 z1 z2 iy0 iy1 iy2 r0 r1 r2 ow0 ow1 ow2 sp0 w0 w1 w2 ah0 ah1 ah2 n0 n1 n2 sp0 th0 th1 th2 r0 r1 r2 iy0 iy1 iy2 sp0 sil0 sil1 sil2

HMMs with Mixture Emission Probability

Often the Emission probability is modelled as a Mixture of Gaussians

$$\phi_j(x_n) = \sum_{k=1}^K w_{jk} N(x_n | \mu_{jk}, \Sigma_{jk})$$
$$\sum_{k=1}^M w_{jk} = 1$$

HMMs with Mixture Emission Probability

Emission:

$$p(x_n|z_n, m_n) = \mathcal{N}(x_n; \mu_{z_n, m_n}, \Sigma_{z_n, m_n})$$
$$p(m_n|z_n) = W(m_n, z_n)$$

Semi-Continuous HMMs

- All Gaussian distributions in a pool of pdfs
- ullet each $\phi_j(x_n)$ is a discrete probability distribution over the pool of Gaussians
- similar to quantisation, but probabilistic
- used for sharing parameters

Hybrid HMM+Multi Layer Perceptron

Figure from Yu and Deng

Combining probabilities

- HMMs use likelihoods P(sound|state)
- MLPs and DNNs estimate posteriors P(state|sound)

We can combine with Bayes:

$$P(\mathsf{sound}|\mathsf{state}) = \frac{P(\mathsf{state}|\mathsf{sound})P(\mathsf{sound})}{P(\mathsf{state})}$$

- \bullet P(state) can be estimated from the training set
- ullet P(sound) is constant and can be ignored

Use scaled likelihoods:

$$\bar{P}(\mathsf{sound}|\mathsf{state}) = \frac{P(\mathsf{state}|\mathsf{sound})}{P(\mathsf{state})}$$