

CPSC 340 – Tutorial 8

Lironne Kurzman lironnek@cs.ubc.ca

Slides courtesy of Nam Hee Kim

University of British Columbia

November 15th, 2021

Agenda

1. Gradient Descent?

"Gradient descent is an iterative algorithm, that starts from a random point on a function and travels down its slope in steps until it reaches the lowest point of that function."

Aishwarya V Srinivasan: https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31
Sarthak Gupta: https://hackernoon.com/dl03-gradient-descent-719aff91c7d6

The steps of the algorithm are

 Find the slope of the objective function with respect to each parameter/feature. In other words, compute the gradient of the function.

$$\nabla_{w} f(w) = \left[\frac{\partial f(w)}{\partial w_{1}}, \frac{\partial f(w)}{\partial w_{2}}, ..., \frac{\partial f(w)}{\partial w_{d}}\right]^{T}$$

Aishwarya V Srinivasan: https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31
Sarthak Gupta: https://hackernoon.com/dl03-gradient-descent-719aff91c7d6

2. Pick a random initial value for the parameters.

$$w_{init}^{0} = [w_{1}^{0}, w_{2}^{0}, ..., w_{d}^{0}]^{T}$$

3. Update the gradient function by plugging in the parameter values.

$$\nabla_{w} f(w_{init}) = \left[\frac{\partial f(w_{init})}{\partial w_{1}}, \frac{\partial f(w_{init})}{\partial w_{2}}, ..., \frac{\partial f(w_{init})}{\partial w_{d}}\right]^{T}$$

- 4. Calculate the step sizes for each feature as : step size = gradient * learning rate.
- 5. Calculate the new parameters as : **new params = old params -step size**
- 6. Repeat steps 3 to 5 until gradient is almost 0.

Aishwarya V Srinivasan : https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31

Sarthak Gupta: https://hackernoon.com/dl03-gradient-descent-719aff91c7d6

Principle Component Analysis

- A linear latent-factor model:
 - Given input k, factorizes matrix X into two matrices Z and W:

$$X pprox ZW^{k imes d} \qquad x_i pprox w^T z_i \qquad x_{ij} pprox \left\langle w^j, z_i
ight
angle$$

- Some uses:
 - \circ Dimensionality reduction: Replace X with low dimensional Z (k << d).
 - Outlier detection: If PCA gives poor approximation of example x_i , it could be outlier.
 - o Partial least squares: Use Z as features in regression model.
- Objective function:

$$f(W,Z) = \sum_{i=1}^n \sum_{j=1}^d (\left\langle w^j, z_i
ight
angle - x_{ij})^2 = \left| \left| ZW - X
ight|
ight|_F^2$$

Algorithm

• Training:

- Center data: Each column of X should have mean 0
 - i. Compute mean of each column: $\mu_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$
 - ii. Center data: $x_{ij} \leftarrow x_{ij} \mu_j$
- Use alternating minimization:
 - i. Randomly initialize Z and W
 - Optimize W with Z fixed (solve gradient w.r.t W)

$$abla_W f(W,Z) = Z^T (ZW-X) = 0 \Rightarrow W = (Z^T Z)^{-1} Z^T X$$

i. Optimize Z with W fixed (solve gradient w.r.t Z)

$$abla_Z f(W,Z) = (ZW-X)W^T = 0 \Rightarrow Z = XW^T(WW^T)^{-1}$$

- i. Repeat until convergence.
- At the end of training, we can keep only μ_j and W.

Algorithm

Prediction

o Center data using mean of training data:

$$ilde{X}_{ij} \leftarrow ilde{X}_{ij} - \mu_j$$

 \circ Find $ilde{m{Z}}$ minimizing squared error:

$$ilde{Z} = ilde{X} W^T (WW^T)^{-1}$$

• Now, the reconstruction loss is:

$$|| ilde{Z}W - ilde{X}||_F^2$$
Centered version