Opgaver lektion 1

Simon

4/8/2022

Opgave 1

I ttilfældet hvor produktionsfunktionen er Cobb-Douglas, $f(x) = k\alpha$, omskriv resultatet fra slide 11. i en form der inkludere ρ, n, g, θ og α , (Hint: brug at $f'(k^*) = \rho + \theta g$)

Opgave 2

Lad kapital per effektiv arbejder være bestemt af funktionen $k = \frac{K}{AL}$ hvor udviklingen i kapital over tid er givet ved $\dot{K} = [Y(t) - C(t)] - \delta K(t)$ Labor in time t $L(t) = L(0)e^{nt}$ and technology in time t: $A(t) = A(0)e^{gt}$ find udviklingen i k over tid (\dot{k})

• Hint opstil vækst-raten \dot{A}/A og \dot{L}/L

Opgave 3

Antag funktionen for constant relative risk aversion (CRRA): $f(L_t) = \frac{b(1-L_t)^{1-\gamma}}{1-\gamma}$ Find $f'(L_t)$ med respekt til L_t

Opgave 4

- (a.) Find følgende Euler equation $\frac{C_{2,t+1}}{C_{1,t}} = \left[\frac{1+r_{t+1}}{1+\rho}\right]^{1/\theta}$ ved brug af budgetrestriktion og nyttefunktion ved slide 18. Antag nu blot at $U(C_{jt}) = \frac{C_{jt}^{1-\theta}}{1-\theta}$
- (b.) Forklar hvordan en stigning i renten i næste periode r_{t+1} påvirker fordellingen mellem forbrug i denne periode og næste periode.
- (c.) Kommenter på forskellen i effekten af en stigning i r_{t+1} ved $\theta=0.8,1$ og 1.2.