11. Übungsblatt

- 1. Aufgabe. Zeigen Sie, dass die Funktion $f(x) = e^x$ überall Linkskrümmung hat. Wie groß sind Krümmund und Krümmungsradius an der Stelle x = 0?
- 2. Aufgabe. Welche Krümmung hat die Kurve $y = 1 \cos x$ an der Stelle $x = \pi$?
- **3.** Aufgabe. Bestimmen Sie die relativen Extremwerte der Funktion $y = x \arctan(2x)$.
- **4. Aufgabe**. We besitzt die Funktion $y = 2\sqrt{1-x} + 2\sqrt{x+1}$, $-1 \le x \le 1$ ihre relativen Extremwerte?
- 5. Aufgabe. Ein Balken auf zwei Stützen (Stützweile l) hat bei gleichmäßig verteilter Last q im Abstand x vom linken Auflager das Biegemoment

$$M(x) = \frac{q}{2}(l-x)x \quad (0 \le x \le l)$$

An welcher Stelle ist das Biegemoment am größten?

6. Aufgabe. Die Leistungaaufnahme eines Verbrauchers vom Widerstand R, der durch eine Zweipolquelle (Innenwiderstand R_i ; Quellspannung U_0) gespeist wird, beträgt

$$P(R) = U_0^2 \frac{R}{(R + R_i)^2}$$

Zeigen Sie, dass der Verbraucherwiderstand R die größtmögliche Leistung aufnimmt, wenn $R = R_i$ gewählt wird (sog. Leistungsanpassung).

- **7. Aufgabe**. Diskutieren Sie den Verlauf der Funktionen und Kurven nach dem folgenden Schema:
 - 1) Definitionsbereich,
 - 2) Symmetrie,
 - 3) Nullstellen,
 - 4) Schnittpunkte mit der y-Achse,
 - 5) Pole (senkrechte Asymptoten),
 - 6) relative Extremwerte,
 - 7) Monotonie,
 - 8) Wende- und Sattelpunkte,
 - 9) Krümmungsverhalten,
 - 10) Verhalten "in Unendlichen", Asymptoten,
 - 11) Wertebereich,
 - 12) Skizzieren Sie den Kurvenverlauf.

a)
$$y = x^4 - x^3 - 3x^2 + 5x - 2$$

b)

$$y = -\frac{(x-2)^2}{x+2}$$

•

c)
$$y = \frac{1}{2}x + \sqrt{9 - x^2}$$

$$y = \frac{\ln x}{x}$$

$$y = \sin x + \cos x$$

f)
$$y = (1 - e^{-2x})^2$$

8. Aufgabe. Wie ist α zu wählen, damit

$$f(x) = \frac{x^2 + \alpha}{x - \alpha}$$

in einer Umgebung der Stelle $x_0 = 1$ streng monoton fallend ist?

9. Aufgabe. Wie ist α zu wählen, damit

$$f(x) = e^{-\frac{x^2}{\alpha}}$$

in $x_0 = 1$ einen Wendepunkt hat? Man diskutiere die Kurve.

10. Aufgabe. Die Kurve $y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$ soll bezüglich des Ursprungs symmetrisch sein und dort eine Waagerechte Tangente haben. An der Stelle $x_0 = 1$ soll ein Wendepunkt vorliegen; die Wendetangente soll durch (0; -2) gehen. Wie lautet die Kurvengleichung?