Problema 1. Dada la función f(x) = Ln(1+x)

- a) Hallar el polinomio de Taylor de grado n en el punto $x_0 = 0$.
- b) Calcular el valor de Ln(1'1) con un error que una diezmilésima.
- c) Calcular Ln(1'1) con el polinomio de Taylor de grado 4, encontrando una cota para el error que se comete.
- d) Calcular Ln(1'1) con el polinomio de Taylor de grado 5, encontrando una cota para el error que se comete.

Problema 2. Dada la función $f(x) = \sqrt{x}$

- a) Hallar el polinomio de Taylor de grado n en el punto $x_0 = 4$.
- b) Calcular el valor de $\sqrt{4'3}$ utilizando el polinomio de Taylor de grado 3.
- c) Acotar el error cometido en la aproximación realizada en el apartado b).

Problema 3. Calcular $e^{0.23}$ con un error menor que 10^{-3}

Problema 4. Dada la función f(x) = x. Ln(x)

- a) Calcular el polinomio de Taylor de grado n en el punto $x_0 = 1$.
- b) Evaluar f(1'15) con el polinomio de Taylor de grado 3, acotando el error cometido.
- c) Calcular 1'15*Ln(1'15) con un error menor que una milésima.

Problema 5. Calcular el error que se comete al evaluar sen(0'3) mediante el polinomio de Taylor de grado 5.

Problema 6. Hallar el valor de a en las siguientes funciones, de forma que los polinomios interpoladores sean de grado 3:

- a) f(0,64)=0,417; f(0,65)=0,533; f(0,66)=0,632; f(0,67)=a; f(0,68)=0,887
- b) f(-1)=6; f(0)=a; f(1)=4; f(2)=0; f(3)=42
- c) f(-1)=5; f(0)=2; f(1)=a; f(2)=0; f(3)=1

Problema 7. Hallar las fórmulas de Newton (ascendente y descendente) para las siguientes funciones:

- a) f(0)=5,2; f(1)=8,0; f(2)=10,4; f(3)=12,4; f(4)=14,0; f(5)=15,2
- b) f(0)=2,2; f(1)=4,1; f(2)=11,2; f(3)=12,0; f(4)=8,0

Problema 8. Sabiendo que la suma $1^k+2^k+\cdots+n^k$ es un polinomio de grado k+1, hallar:

- a) $1^2+2^2+\cdots+n^2$
- b) $3^3+4^3+\cdots+n^3$

Problema 9. Sabiendo que $\log_{10}1000=3$, $\log_{10}1010=3$,0043214, $\log_{10}1020=3$,0086002; $\log_{10}1030=3$,0128372; $\log_{10}1040=3$,0170333; $\log_{10}1050=3$,0211893, hallar una aproximación de $\log_{10}1044$.

Problema 10. Buscar los valores de sen 15°, sen 20°, sen 25°,..., sen 55°, y hallar los valores aproximados de sen 14° y sen 56°. Hacer una estimación del error y compararla con el error real (hallado con la calculadora).

Problema 11. Dada la siguiente tabla, hallar f(78°30'):

X	75°	76°	77°	78°	79°	80	81°
F(x)	2,76806	2,83267	2,90256	2,97857	3,06173	3,1539	3,25530

Problema 12. Hallar los polinomios interpoladores para las siguientes tablas:

a)

X _k	-1	0	3	4	5
f(x _k)	2	1	4	4	6

b)

X _k	-1	0	2	5
f(x _k	2	0	4	7

c)

X _k	-1	0	1	2	4
f(x _k	3	3	5	1	3

d)

X _k	-1	-0,5	0	1	2	4
f(x _k)	3	-4	3	5	1	3

Problema 13. En los ejemplos del ejercicio anterior añadir el punto (3,2) y hallar los nuevos polinomios interpoladores.

Problema 14. Sabiendo que sen 0,3=0,29552, sen 0,32=0,31457 y que sen 0,35=0,34290, hallar un valor aproximado para sen 0,34.

Problema 15. Repetir las cuentas del problema anterior, añadiendo el dato conocido sen 0,33=0,32404

Problema 16. Los siguientes datos corresponden a la función $f(x) = e^{x^2-1}$

X_k	1,0	1,1	1,2	1,3	1,4
$F(x_k)$	1,000	1,23368	1,55271	1,99372	2,61170

Utilizarlos para hallar f(1,25). Hallar una cota del error.

Problema 17. El polinomio $p_3(x) = 2 - (x + 1) + x(x + 1) - 2x(x + 1)(x - 1)$ interpola a los primeros cuatro datos de la tabla

Xi	-1	0	1	2	3
$f(x_i)$	2	1	2	-7	10

Añadir un término más a $p_3(x)$ de manera que el polinomio resultante interpole a la tabla entera.

Problema 18. Encontrar las fórmulas de Lagrange y de Newton del polinomio de interpolación para los siguientes datos:

Xi	-2	0	1
f(x _i)	0	1	-1

Escribir ambos en la forma $a_0 + a_1x + a_2x^2$ para ver que son idénticos.

Problema 19. Hallar el polinomio de interpolación de grado ≤ 2 a la función $f(x) = \cos(x)$ en los puntos x = 0, 1/2, 1. Calcular el error de interpolación y dar una cota del error cometido en x = 3/4.

Problema 20. Hallar los cinco primeros términos no nulos de los desarrollos de Taylor de las siguientes funciones:

(a)
$$e^{3x}$$
 (b) e^{x} sen x^{2} (c) $\tan(3x)$ (d) $\sin^{3}x$ (e) $\frac{sen x}{x}$ x (f) $\ln\left(\frac{1+x}{1-x}\right)^{1/x}$

Problema 21. El peso específico p del agua a diversas temperaturas centígradas t es

T	0	1	2	3
P	0.999871	0.999928	0.999969	0.999991

Aproxime el valor en t=4 usando la forma de Lagrange con la interpolación lineal en 2 y 3, la interpolación cuadráticas en 1,2 y 3 y finalmente la cúbica en 0,1,2 y 3.

Problema 22. Encontrar el polinomio interpolador por el método de Newton de las diferencias divididas para los siguientes datos

- a) f(-1)=5, f'(-1)=1, f(0)=3, f'(0)=5, f(1)=2, f'(1)=4
- b) f(-1)=5, f'(-1)=1, f''(-1)=3, f(0)=5, f(1)=2, f'(1)=4
- c) f(-1)=5, f'(-1)=1, f''(-1)=3, f'''(-1)=6, f(1)=3, f(2)=4
- d) f(-2)=-138, f'(-2)=-234, f(1)=24, f'(1)=72, f''(1)=92, f'''(1)=540
- e) f(-2)=-138, f(1)=24, f'(1)=72, f''(1)=92, f'''(1)=540, $f^4(1)=1776$