Oblig 2

Thobias Høivik

Problem med Newton-basisen.

I to av oppgavene skal vi se på Newton-basisen over tre punkter, men viss jeg forstår forklaringen i Seksjon 1.5.2 er ikke t_2 relevant siden det basiselementet med grad lik n er definert som

$$\alpha_n \prod_{i=0}^{n-1} (t-t_i)$$

så en Newton-basisen for \mathcal{P}_2 vil ikke ha noen element som trenger t_2 ?

Kan hende jeg misforstår, men i de oppgavene antar jeg at t_2 står i oppgaveteksten ved uhell og ignorer de.

Problem: Oppgave 2.5.2

Bevis følgende korollar: Alle n-dimensjonelle vektorrom over $\mathbb K$ er isomorfe med hverrandre.

Bevis. La \mathbb{K} være en kropp, og U, V n-dimensjonelle vektorrom over \mathbb{K} .

Vi ønsker å vise at de er isomorfe, og med det at alle n-dimensjonelle vektorrom over \mathbb{K} er isomorfe med hverrandre (siden U, V er vilkårlige).

Siden U og V er n-dimensjonelle vektorrom over \mathbb{K} så har vi $U \cong \mathbb{K}^n$ og $\mathbb{K}^n \cong V$ ifølge Teorem 2.5.1 fra boken.

Siden ≅ utgjør en ekvivalensrelasjon må det være tilfellet at vi har transitivitet:

$$U \cong \mathbb{K}^n \wedge \mathbb{K}^n \cong V \Rightarrow U \cong V$$

Problem: Oppgave 2.5.3

I vektorrommet \mathcal{P}_2 lar vi $\mathcal{B} = (p_0, p_1, p_2)$ være den kanoniske basisen og $\mathcal{C} = (q_0, q_1, q_2)$ være Newton-basisen over punktene $t_0 = 0$, $t_1 = 1$, $t_2 = 2$. Finn $[p]_{\mathcal{B}}$ og $[p]_{\mathcal{C}}$, der $p(t) = 2 - t + 3t^2$.

Løsning. La $\mathcal{B} = (p_0, p_1, p_2)$ være den kanoniske basisen til \mathcal{P}_2 , og $\mathcal{C} = (q_0, q_1, q_2)$ være Newtonbasisen over punktene $t_0 = 0$, $t_1 = 1$, $t_2 = 2$.

Vi ønsker å finne $[p]_{\mathscr{B}}$ og $[p]_{\mathscr{C}}$, der $p(t) = 2 - t + 3t^2$.

Med andre ord, vi skal finne $\alpha_0, \alpha_1, \alpha_2$ og $\beta_0, \beta_1, \beta_2$ slik at

$$p(t) = \alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2$$

og

$$p(t) = \beta_0 q_0 + \beta_1 q_1 + \beta_2 q_2$$

Vi begynner med $[p]_{\mathscr{B}}$.

$$p(t) = \alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2$$
$$2 - t + 3t^2 = \alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2$$

Husk at $p_i = t^i$ så

$$2 - t + 3t^{2} = \alpha_{0} + \alpha_{1}t + \alpha_{2}t^{2}$$

$$\alpha_{0} = 2$$

$$\alpha_{1} = -1$$

$$\alpha_{2} = 3$$

$$\Rightarrow [p]_{\mathcal{B}} = (2, -1, 3)$$

Deretter tar vi $[p]_{\mathscr{C}}$.

$$p(t) = \beta_0 q_0 + \beta_1 q_1 + \beta_2 q_2$$

$$= \beta_0 \cdot 1 + \beta_1 \cdot t + \beta_2 \cdot t (t - 1)$$

$$= \beta_0 + \beta_1 t + \beta_2 (t^2 - t)$$

$$= \beta_2 t^2 + (\beta_1 - \beta_2) t + \beta_0$$

Vi sammenligner med $p(t) = 2 - t + 3t^2$, og får systemet

$$\beta_2 = 3$$

$$\beta_1 - \beta_2 = -1$$

$$\beta_0 = 2$$

Dermed

$$\beta_2 = 3$$
$$\beta_1 = 2$$
$$\beta_0 = 2$$

som gir

$$[p]_{\mathcal{C}}=(2,2,3).$$

Problem: Oppgave 2.5.6

La \mathcal{B} og \mathcal{C} være standardbasisene i henholdsvis \mathbb{K}^n og \mathbb{K}^m , og la $A \in M_{m \times n}(\mathbb{K})$. La $T : \mathbb{K}^n \to \mathbb{K}^m$ være den tilhørende avbildingen T(x) := Ax. Vis at

$$[T]_{\mathscr{L}}^{\mathscr{B}} = A$$

Bevis. La $\mathscr{B} = (e_1, ..., e_n)$ være standardbasisen for \mathbb{K}^n , og la $\mathscr{C} = (f_1, ..., f_m)$ være standardbasisen for \mathbb{K}^m . La $A \in M_{m \times n}(\mathbb{K})$, og definer en lineær avbildning $T : \mathbb{K}^n \to \mathbb{K}^m$ ved T(x) = Ax.

Vi skal vise at

$$[T]_{\mathscr{C}}^{\mathscr{B}} = A.$$

Per definisjon består matrisen $[T]_{\mathscr{C}}^{\mathscr{B}}$ av kolonnene

$$[T]_{\mathscr{C}}^{\mathscr{B}} = ([T(e_1)]_{\mathscr{C}} \ [T(e_2)]_{\mathscr{C}} \ \dots \ [T(e_n)]_{\mathscr{C}}).$$

Siden $T(e_j) = Ae_j$, får vi

$$[T]_{\mathscr{C}}^{\mathscr{B}} = ([Ae_1]_{\mathscr{C}} \ [Ae_2]_{\mathscr{C}} \ \dots \ [Ae_n]_{\mathscr{C}}).$$

Men vektoren Ae_j er nøyaktig den j-te kolonnen i A, og koordinatene til en standardkolonne i standardbasisen er seg selv. Dermed blir hver kolonne $[Ae_j]_{\mathscr{C}}$ lik kolonne j i A.

Altså er

$$[T]_{\mathscr{C}}^{\mathscr{B}} = A.$$

Problem: Oppgave 2.5.9

La U og V være endeligdimensjonelle vektorrom av lik dimensjon, og la $T \in \mathcal{L}(U, V)$. La \mathcal{B} og \mathcal{C} være basiser for henholdsvis U og V. Vis at T er en isomorfi hvis og bare hvis den kvadratiske matrisen $[T]_{\mathcal{L}}^{\mathcal{B}}$ er inverterbar.

Bevis. La U og V være vektorrom slik at $\dim U = \dim V = n, n \in \mathbb{N}$, med basiser \mathscr{B} for U og \mathscr{C} for V. La $T \in \mathscr{L}(U, V)$.

Vi ønsker å vise at T er en isomorfi viss og bare viss $[T]_{\mathscr{C}}^{\mathscr{B}}$ er inverterbar. Dette gjøres enklest med bruk av Proposisjon 2.5.8 fra boken.

Fremover.

Anta at T utgjør en isomorfi fra U til V. Da finnes $T^{-1} \in \mathcal{L}(V, U)$ slik at $TT^{-1} = id$. I følge 2.5.8 har vi at

$$\left[TT^{-1}\right]_{\mathscr{B}}^{\mathscr{B}} = \left[T\right]_{\mathscr{C}}^{\mathscr{B}} \left[T^{-1}\right]_{\mathscr{B}}^{\mathscr{C}}$$

Betrakt

$$\left[TT^{-1}\right]_{\mathscr{B}}^{\mathscr{B}} = [id]_{\mathscr{B}}^{\mathscr{B}}$$

Siden id : $V \to V$ er identitetsavbildingen, er den j-te kolonnen i matrisen $[\mathrm{id}]_{\mathscr{C}}^{\mathscr{B}}$ koordinatvektoren til id $(b_j) = b_j$ uttrykt i basis \mathscr{C} . Koordinatvektoren til b_j i basis \mathscr{C} har 1 i den j-te posisjonen og 0 ellers.

Derfor er

$$[TT^{-1}]_{\mathscr{B}}^{\mathscr{B}} = [\mathrm{id}]_{\mathscr{B}}^{\mathscr{B}} = I,$$

der I er identitetsmatrisen.

Så $[T]_{\mathscr{C}}^{\mathscr{B}}$ har en matrise $[T^{-1}]_{\mathscr{B}}^{\mathscr{C}}$ slik at de multipliserer til identitetsmatrisen. Så $[T]_{\mathscr{C}}^{\mathscr{B}}$ er inverterbar.

Bakover.

Anta nå at $[T]_{\mathscr{C}}^{\mathscr{B}}$ er inverterbar. Da finnes en matrise A^{-1} slik at

$$[T]_{\mathscr{C}}^{\mathscr{B}}A^{-1}=I.$$

I følge Proposisjon 2.5.8 finnes det da en lineær avbildning $S \in \mathcal{L}(V,U)$ slik at $[S]_{\mathscr{B}}^{\mathscr{C}} = A^{-1}$.

Da har vi

$$[T]_{\mathscr{C}}^{\mathscr{B}}[S]_{\mathscr{B}}^{\mathscr{C}} = I = [\mathrm{id}]_{\mathscr{B}}^{\mathscr{B}},$$

som igjen impliserer at

$$T \circ S = \mathrm{id}_V \quad \text{og} \quad S \circ T = \mathrm{id}_U.$$

Dermed er T invertibel som lineær avbildning, altså en isomorfi.

Vi konkluderer da at T er en isomorfi hvis og bare hvis $[T]_{\mathscr{C}}^{\mathscr{B}}$ er inverterbar.

Problem: Oppgave 2.6.4

I vektorrommet \mathbb{R}^2 lar vi $\mathscr{B}=(u_1,u_2)$ være basisen gitt ved $u_1=\begin{pmatrix}1\\2\end{pmatrix},\begin{pmatrix}-2\\2\end{pmatrix}$ og $\mathscr{C}=(e_1,e_2)$ være standardbasisen. Finn basisskiftematrisene $[id]_{\mathscr{B}}^{\mathscr{C}}$ og $[id]_{\mathscr{C}}^{\mathscr{B}}$

Løsning. Vi begynner med å finne

$$[id]_{\mathscr{C}}^{\mathscr{B}} = ([e_1]_{\mathscr{C}} \quad [e_2]_{\mathscr{C}})$$

$$[e_1]_{\mathscr{C}} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix},$$

$$\alpha u_1 + \beta u_2 = e_1$$

$$\alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\alpha - 2\beta = 1$$

$$2(\alpha + \beta) = 0$$

$$3\alpha = 1 \Rightarrow \alpha = \frac{1}{3}$$

$$\Rightarrow \beta = -\frac{1}{3}$$

så

$$[e_1]_{\mathscr{C}} = \frac{1}{6} \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

Deretter

$$[e_2]_{\mathscr{C}} = \begin{pmatrix} \gamma \\ \delta \end{pmatrix},$$

$$\gamma u_1 + \delta u_2 = e_2$$

$$\gamma \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \delta \begin{pmatrix} -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\gamma - 2\delta = 0$$

$$2(\gamma + \delta) = 1$$

$$3\gamma = 1 \Rightarrow \gamma = \frac{1}{3}$$

$$\Rightarrow \delta = \frac{1}{6}$$

så

$$[e_2]_{\mathscr{C}} = \frac{1}{6} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Med dette har vi at

$$[id]_{\mathscr{C}}^{\mathscr{B}} = \frac{1}{6} \begin{pmatrix} 2 & 2 \\ -2 & 1 \end{pmatrix}$$

For å finne

$$[id]^{\mathscr{C}}_{\mathscr{B}}$$

må vi bare finne inversen til matrisen over siden

$$[id]_{\mathcal{B}}^{\mathcal{C}}[id]_{\mathcal{C}}^{\mathcal{B}} = I_n$$

$$\begin{pmatrix} 1 & -2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{6} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\therefore [id]_{\mathscr{B}}^{\mathscr{C}} = \begin{pmatrix} 1 & -2 \\ 2 & 2 \end{pmatrix}$$

Problem: Oppgave 2.6.5

På vektorrommet \mathscr{P}_2 lar vi $\mathscr{B} = (p_0, p_1, p_2)$ være den kanoniske basisen og $\mathscr{C} = (q_0, q_1, q_2)$ være Newton-basisen over punktene $t_0 = 0$, $t_1 = 1$, $t_2 = 2$. Finn basisskiftematrisene $[id]_{\mathscr{B}}^{\mathscr{C}}$ og $[id]_{\mathscr{C}}^{\mathscr{B}}$.

Løsning. La \mathcal{P}_2 være rommet av alle polynomer med reelle koeffisienter av grad ≤ 2 .

La $\mathcal{B} = (p_0, p_1, p_2)$ være den kanoniske basisen, der $p_0(x) = 1$, $p_1(x) = x$, $p_2(x) = x^2$. Newton-basisen $\mathcal{C} = (q_0, q_1, q_2)$ over punktene $t_0 = 0$, $t_1 = 1$, $t_2 = 2$ er definert som $q_0(x) = 1$, $q_1(x) = x - t_0 = x$, og $q_2(x) = (x - t_0)(x - t_1) = x(x - 1) = x^2 - x$.

Vi ønsker å finne basisskiftematrisene.

Vi begynner med $[id]_{\mathscr{C}}^{\mathscr{B}}$. Per definisjon er kolonnene i $[id]_{\mathscr{C}}^{\mathscr{B}}$ koordinatvektorene til basisvektorene i \mathscr{B} uttrykt i basis \mathscr{C} .

$$[id]_{\mathscr{C}}^{\mathscr{B}} = ([p_0]_{\mathscr{C}} \quad [p_1]_{\mathscr{C}} \quad [p_2]_{\mathscr{C}})$$

Vi finner koordinatvektorene:

• For $p_0(x) = 1$: $1 = \alpha_0 q_0(x) + \alpha_1 q_1(x) + \alpha_2 q_2(x) = \alpha_0(1) + \alpha_1(x) + \alpha_2(x^2 - x)$. Ved å sammenligne koeffisienter får vi $\alpha_0 = 1$, $\alpha_1 = 0$, $\alpha_2 = 0$. Dermed er

$$[p_0]_{\mathscr{C}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

• For $p_1(x) = x$: $x = \beta_0 q_0(x) + \beta_1 q_1(x) + \beta_2 q_2(x) = \beta_0(1) + \beta_1(x) + \beta_2(x^2 - x)$. Ved å sammenligne koeffisienter får vi $\beta_0 = 0, \beta_1 - \beta_2 = 1, \beta_2 = 0$. Dette gir $\beta_0 = 0, \beta_1 = 1, \beta_2 = 0$. Dermed er

$$[p_1]_{\mathscr{C}} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

• For $p_2(x) = x^2$: $x^2 = \gamma_0 q_0(x) + \gamma_1 q_1(x) + \gamma_2 q_2(x) = \gamma_0(1) + \gamma_1(x) + \gamma_2(x^2 - x)$. Ved å sammenligne koeffisienter får vi $\gamma_0 = 0, \gamma_1 - \gamma_2 = 0, \gamma_2 = 1$. Dette gir $\gamma_0 = 0, \gamma_1 = 1, \gamma_2 = 1$. Dermed er

$$[p_2]_{\mathscr{C}} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Dette gir oss basisskiftematrisen

$$[id]_{\mathscr{C}}^{\mathscr{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

For å finne $[id]^{\mathscr{C}}_{\mathscr{B}}$ kan vi ta inversen av $[id]^{\mathscr{B}}_{\mathscr{C}}$.

$$\left([id]_{\mathscr{C}}^{\mathscr{B}} \right)^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

8

Dermed er

$$[id]_{\mathscr{B}}^{\mathscr{C}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$