- 32. Justifique, se é verdadeira ou falsa cada uma das afirmações seguintes:
 - (a) $91 \equiv_7 0$;
 - (b) $-2 \equiv_8 2$;
 - (c) $17 \not\equiv_2 13$.

Notação: $a \equiv nb$ (=) $a \equiv b$ (mod n)

(=) $n \mid a-b$

a) $91 \equiv 0 \mod 7 \iff 7 \mid 91 \qquad \text{Veedadeino}$

c) 17 = 13 (mod2) (=> 2/17-13 (=> 2/4 Verdadeino

Pertante 17 / 13 (mad 2) Falso.

- 33. Prove que
 - (a) se $a \equiv_n b$ e $m \mid n$, então $a \equiv_m b$;
 - (b) se $a \equiv_n b$ e c > 0, então $ca \equiv_n cb$.
 - al Suponhamas que $a \equiv b \pmod{n}$ e que $m \pmod{n}$.

 Temas que $m \pmod{n}$, então a-b=mx, para algum $x \in \mathcal{R}$. Como $m \pmod{n}$ então n=my, para algum $y \in \mathcal{R}$.

 Logo a-b=(my)x=m(yx) e partambo $m \pmod{a-b}$.

 Assem $a \equiv b \pmod{m}$.
 - b) Suponhamos que $a = b \pmod{n}$ enter $n \mid a b$, ou seja, $a b = n \times n$, para algum $x \in \mathbb{Z}$.

 Assum $C(a b) = C(n \times n) = n C(x)$ lugo $n \mid C(a b)$ e pertanto $Ca = cb \pmod{n}$.

34. Dê um exemplo que mostre que $a^2 \equiv_n b^2$ não implica que $a \equiv_n b$.

Pereremos dar earn exemplo que mostra que $n \mid a^2 - b^2 \neq n \mid a - b$ Basta borrar n = 3 a = 2 b = 1Termos $3 \mid 2^2 - 1$ mas $3 \nmid 2 - 1$ or n = 1 a = 4 b = 3 $1 \mid 4^2 - 3^2$ mas $1 \nmid 4 \mid 4 \mid 3$

36. Para que valores de n se tem $25 \equiv_n 4$?

Queremos saber quais são as valures de n para as quais se tem $n \mid 25-4$ ou seja $n \mid 21$ logo $n \in \{1,3,7,21\}$.

37. Verifique se:

- (a) o conjunto $\{-12, -4, 11, 13, 22, 32, 91\}$ é um sistema completo de resíduos módulo 7;
- (b) o conjunto $\{-2, -1, 0, 1, 2\}$ é um sistema completo de resíduos módulo 5.

Tixado nEIN, dado XE N então X é congruente com em e em 80 elemento de conjunto do, 2,2, --, n-1 de (telo Tosrema do algoritmo da divisão, x é congruente com o seu resto na divisão poe n)

Definição: Um conjunto de residuos médulo n (ou um sistema completo de residuos modulo n) e um conjuento com n elementos tal que dado x E 7% então x é congruente com um e em só elemento de se conjuento.

NOTA O Conjeinte d'0,1, ---, n-1, et um sistema complete de re sideros moderle n.

a) d - 12, -4, 11, 13, 22, 32, 91 je et un conjeint de résidues médels 7?

Temos $4 \equiv 11 \text{ and} + 4 \equiv 32 \text{ anod} +$

Logo o conjuento apresentado não é um insterio completo de residuos modelo 7.

b) d-2,-1,0,1,2} i um sisteme le residuos médeulos?

 $0 \equiv 0 \mod 5$ $1 \equiv 1 \mod 5$ $-2 \equiv 3 \mod 5$ $2 \equiv 2 \mod 5$

Sabemos que clado um qualques interos x E 7% então x e congruente cum um a eson se elemento de do, 7, 2, 3, 4 jo logo pela toransitividade da relação de congruência módulos contas qualques x E 7% vai ser congruente com eson a sum só dos elementos do conjunto do, 1, 2, -2, -4 jo. 40. Indique quatro inteiros, dois positivos e dois negativos, na classe [3]₆:

A relação de congruencia
$$\equiv n$$
 é uma relação de apuivalence
 $\mathbb{E} \times \mathbb{I} n$ denota a classe de apuivalência de \times médulo n .

Ou seja $\mathbb{E} \times \mathbb{I} n = \int_{\mathbb{R}^2} g \in \mathbb{Z}$: $\times = g$ (modni) $\int_{\mathbb{R}^2} g \in \mathbb{Z}$: $\times = g$ $\mathbb{E} \times \mathbb{I} n = g$

Dois inteiros fositivos em [3]6 : 3,9 (t=0,t=1)Dois inteiros regativos em [3]6 : -3,-9 (t=-1,t=-2)

41. Indique, justificando, caso existam:

(a) um inteiro primo x tal que $x \in [-22]_{15}$;

(b) um número primo x tal que $x \equiv_{12} 6$;

(c) dois inteiros positivos em $[-182]_9$;

(d) o maior número par n tal que $-89 \equiv_n 5$;

(e) o maior inteiro x par, não positivo, tal que $x \equiv_{109} 50$.

a) $[-22]_{15} = \begin{cases} -22 + 15t : t \in \mathbb{Z}_{5} \end{cases}$ $Para t = 3 temos -22 + 3 \times 15 = 23 \in \mathbb{Z}_{-22}$ $23 \neq 25 \text{ formo}$

b) $\begin{bmatrix} 6 \end{bmatrix}_{12} = \begin{cases} 6 + 12t : t \in \mathbb{Z} \\ \end{cases}_{9} = \begin{cases} 6 (1+2t) : t \in \mathbb{Z} \\ \end{cases}_{9}$ geolgeen $x \in \begin{bmatrix} 6 \end{bmatrix}_{12} = 0$ um multiple ele 6 logo

nato é primo.

c) $[-182]q = \{-182 + qt : t \in \mathbb{Z}\}$

$$t=21$$
 $f\in [-182]q$
 $t=22$ $16\in [-182]q$
d) Paior interior for n tell que $-89=5$ moden
 $-39=5$ (moden) (=) $n\mid -89-5$ (=) $n\mid -94$
 $logo n=94$.
e) Paior interior x for $n=2$ for $n=2$

Se t=-1 entain $x \in impar$ se $t \ge 0$ entain $x \ge 0$ 42. Indique os restos das divisões de 2^{50} e 41^{63} por 7.

Proposedade:
$$a \equiv b \pmod{1} \implies a^k \equiv b^k \pmod{1}$$
 $41 \equiv -1 \mod 1 \implies 41^{63} \equiv (-1)^{63} \pmod{1}$
 $E \implies 41^{63} \equiv -1 \pmod{1}$
 $E \implies 41^{63} \equiv 6 \pmod{1}$

O resto de divisão de $41^{63} \mod 7 \pmod{1}$
 $50 \equiv 3 \times 16 + 2$
 $(2^3)^{16} \equiv 1 \pmod{7} \pmod{7}$
 $E \implies 2^5 \equiv 2 \pmod{7}$

O resto de divisão de $2^5 \pmod{7} \pmod{7}$

O resto de divisão de $2^5 \pmod{7} \pmod{7}$

43. Calcule o resto da divisão de 4^{215} por 9.

44. Usando as propriedades das congruências, mostre que, para $n \ge 1$, se tem:

$$13|3^{n+2} + 4^{2n+1}$$

$$4^{2} \equiv 3 \pmod{13} \implies 4^{2n} \equiv 3^{n} \pmod{13}$$
 $\Rightarrow 4^{2n+1} \equiv 4 \times 3^{n} \pmod{13}$
 $\Rightarrow 4^{2n+1} \pm 3^{n+2} \equiv 4 \times 3^{n} + 3^{n+2} \pmod{13}$
 $\Rightarrow 4^{2n+1} + 3^{n+2} \equiv 3^{n} (4+3^{2}) \pmod{13}$
 $\Rightarrow 4^{2n+1} + 3^{n+2} \equiv 3^{n} (4+3^{2}) \pmod{13}$
 $\Rightarrow 4^{2n+1} + 3^{n+2} \equiv 3^{n} \pmod{13}$

Temos $13 \times 3^{n} \equiv 0 \pmod{13}$ logo for transitividade $4^{2n+1} + 3^{n+2} \equiv 0 \pmod{13}$, or soja,

 $13 \mid 4^{2n+1} + 3^{n+2} \equiv 0 \pmod{13}$, or soja,

45. Na divisão por 5, um inteiro p admite resto 3. Qual é o resto da divisão de $p^2 + 2p - 1$ por 5?

$$P = 3 \pmod{5} = P^2 = 9 \pmod{5}$$
 $p^2 = 4 \pmod{5}$
 $p^2 = 4 \pmod{5}$