Matrix-Circle

SHREYASH CHANDRA PUTTA

October 25, 2022

Contents

1	Problem Statement		
2	Construction		
3	solution		
	3.1 Case 1: Major Arc	2	
	3.2 Case 2: Minor Arc	2	

plot of an inscribed triangle PQR -- side OR **∠**QPR = 45 Circle **-**2

Figure 1: triangle inscribed in Circle and its angle QPR

Problem Statement 1

To find angle QPR of the triangle PQR which is inscribed in the circle $x^2 + y^2 = 25$. If Q and R have co-ordinates (3,4) and (-4,3) respectively.

Construction 2

Symbol	Value	Description
О	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Center point
r	5	Radius
Q	$\begin{pmatrix} 3 \\ 4 \end{pmatrix}$	given point
R	$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	given point
P	$\begin{pmatrix} r\cos(\alpha) \\ r\sin(\alpha) \end{pmatrix}$	user defined point

Table 1: Parameters

solution 3

Given that Points given are on the circle forms an inscribed triangle the points Q, R and any pointP on the given circle

The circle given,

$$\mathbf{x}^{\mathsf{T}}\mathbf{x} = 25\tag{1}$$

From General Equation:

$$\mathbf{x}^{\mathsf{T}}\mathbf{x} + 2\mathbf{u}^{\mathsf{T}}\mathbf{x} + f = 0 \tag{2}$$

where

$$\mathbf{u} = -\begin{pmatrix} 0\\0 \end{pmatrix},\tag{3}$$

$$f = -25 \tag{4}$$

Centre and Radius of given circle are:

$$\mathbf{O} = -\mathbf{u} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{5}$$

$$r = \sqrt{\mathbf{u}^{\mathsf{T}} \mathbf{u} - f} = 5 \tag{6}$$

Point on the circle should satisfy the circle equation so, we take

$$\mathbf{P} = \begin{pmatrix} rcos(\alpha) \\ rsin(\alpha) \end{pmatrix} \tag{7}$$

$$\mathbf{Q} = \begin{pmatrix} 3\\4 \end{pmatrix} \tag{8}$$

$$\mathbf{R} = \begin{pmatrix} -4\\3 \end{pmatrix} \tag{9}$$

Considering P,Q and R as the Coordinates of the Inscribed Triangle

We know, The direction vector of the line joining two points **A**, **B** is given by

$$\mathbf{m} = \mathbf{B} - \mathbf{A} \tag{10}$$

we Know The angle between two vectors is given by

$$\theta = \cos^{-1} \frac{\mathbf{A}^{\top} \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} \tag{11}$$

By the equations (10) and (11) for $\angle \mathbf{QPR}$ we consider,

$$\angle \mathbf{QPR} = \cos^{-1} \frac{(\mathbf{P} - \mathbf{Q})^{\top} (\mathbf{P} - \mathbf{R})}{\|\mathbf{P} - \mathbf{Q}\| \|\mathbf{P} - \mathbf{R}\|}$$
(12)

3.1 Case 1: Major Arc

If P lies on major Arc of the circle for given Q and R points

$$\angle \mathbf{QPR} = 45^{\circ} \tag{13}$$

3.2 Case 2: Minor Arc

If P lies on minor Arc of the circle for given Q and R points.

$$\angle \mathbf{QPR} = 135^{\circ} \tag{14}$$

where, ${f P}$ is a random point on the given circle for its ${m lpha}$

4 Software

Download the following code using,

https://github.com/chanduputta/ FWC-Module1Assignments/blob/ main/circle/circle.py

and execute the code by using command cmd1:Python3 circle.py cmd2:Input your α value (0 to 360°)

5 Conclusion

We found the $\angle \mathbf{QPR}$ of the $\triangle \mathbf{PQR}$ which is inscribed in the circle $\mathbf{x^2 + y^2} = \mathbf{25}$. Where **P** is point on the circle as

- i) 45°, If P lies on Major Arc of Given Circle
- ii) 135° , If P lies on Minor Arc of Given Circle