Elemente de analiză clasică

— Note de curs —

Titular: lect. dr. Ovidiu Preda

Cuprins

Cuprins			3
1	Dimensiunea Hausdorff și fractali		5
	1.1	Mulţimi Cantor	5
	1.2	Dimensiunea topologică	7
	1.3	Dimensiunea Hausdorff	7
	1.4	Mulțimi fractale autosimilare	10
	1.5	Mulţimi Julia	13
2	Funcții armonice și subarmonice		
	2.1	Funcții olomorfe si armonice	19
	2.2	Problema Dirichlet pe disc	21
	2.3	Funcții armonice pozitive	24
	2.4	Mica teoremă a lui Picard	27
	2.5	Funcții superior semicontinue	30
	2.6	Funcții subarmonice	31
	2.7	Principiul de maximum	31
	2.8	Criterii de subarmonicitate	32
	2.9	Integrabilitatea funcțiilor subarmonice	33
3	Tra	nsformata Fourier	35
	3.1	Transformata Fourier. Definiție și proprietăți	35
	3.2	Teorema de inversiune Fourier	39
	3.3	Clasa funcțiilor Schwartz	41
	3.4	Aplicații ale transformatei Fourier	42
	3.5	Transformata Fourier pentru distributii	43

Cuprins 4

Capitolul 1

Dimensiunea Hausdorff și fractali

1.1 Mulţimi Cantor

Definiția 1.1.1: Fie X un spațiu topologic și $S \subset X$. Spunem că S este:

- Spunem că S este $nicăieri\ densă\ dacă <math>\overset{\circ}{\overline{S}} = \emptyset$.
- \bullet Spunem că S este total disconexă dacă singurele componente conexe ale lui S sunt puncte.

Observația 1.1.2: În \mathbb{R} , o submulțime închisă $S = \overline{S} \subset \mathbb{R}$ este total disconexă dacă și numai dacă este nicăieri densă.

Observația 1.1.3: În \mathbb{R}^2 , o curbă este conexă, dar este nicăieri densă.

Definiția 1.1.4: $S \subset X$ se numește mulțime perfectă dacă S = S'. Altfel spus, $\overline{S} = S$ și orice $x \in S$ este limita unui șir din $S \setminus \{x\}$.

Definiția 1.1.5: [Mulțime Cantor] Fie X un spațiu topologic și $S \subset X$. S se numește $mulțime\ Cantor\ dacă\ sunt\ indeplinite\ următoarele\ trei\ condiții:$

- 1. S este compactă.
- 2. S este perfectă.
- 3. S este total disconexă.

Exemplul 1.1.6: [Middle $-\alpha$ Cantor set] Considerăm J = [0, 1] şi $\alpha \in (0, 1)$. Notăm cu G_1 subintervalul de lungime α centrat în mijlocul lui J. Atunci, $J \setminus G_1 = J_0 \cup J_2$ este o reuniune de două intervale egale, de lungime $\beta = \frac{1-\alpha}{2}$. Mai departe, din J_0 extragem subintervalul central G_{01} de lungime $\alpha\beta$, şi la fel din J_2 subintervalul G_{21} , de aceeași lungime. În continuare, facem notațiile:

$$J_0 \setminus G_{01} = J_{00} \cup J_{02}$$
 si $J_2 \setminus G_{21} = J_{20} \cup J_{22}$.

Repetând acest procedeu, la pasul n, obținem mulțimea

$$S_n = \bigcup_{i_j \in \{0,2\}} J_{i_1 i_2 \cdots i_n}.$$

În final, considerăm $C = \bigcap_{n=1}^{\infty} S_n$.

Observația 1.1.7: Toate capetele intervalelor $J_{i_1 i_2 \cdots i_n}$ se găsesc în mulțimea C.

Teorema 1.1.8: Mulțimea C definită în Exemplul 1.1.6 este o mulțime Cantor.

Demonstrație. Avem de demonstrat cele trei proprietăți din Definiția 1.1.5.

- (1) C este compactă, deoarece este intersecție de mulțimi compacte.
- (2) C este perfectă: dacă $x \in J_{i_1 i_2 \cdots i_{n-1} 0}$, putem lua $J_{i_1 i_2 \cdots i_{n-1} 2}$, iar in acesta un punct care se găsește și în C. În plus, se poate arăta ușor că

$$\ell(J_{i_1 i_2 \cdots i_n}) = \beta^n \text{ si } \operatorname{dist}(J_{i_1 i_2 \cdots i_{n-1} 0}, J_{i_1 i_2 \cdots i_{n-1} 2}) = \alpha \beta^{n-1}.$$

Aşadar, există puncte din C diferite de x, oricât de apropiate de x.

(3) C este total disconexă: pentru orice două puncte din C, există un interval între ele, care este în afara lui C.

În continuare, vom da o descriere a mulțimii Cantor middle–(1/3), pe care o notăm tot C, ce folosește reprezentarea numerelor $x \in [0,1]$ în baza 3. Orice număr $x \in [0,1]$ se poate scrie sub forma $x = \sum_{k=1}^{\infty} \frac{\alpha_k}{3^k}$, unde $\alpha_k \in \{0,1,2\}$ pentru orice $k \geq 1$. Pentru a avea unicitate a reprezentarii numărului x sub forma unui șir $(\alpha_1, \alpha_2, \ldots, \alpha_k, \ldots)$, vom face următoarele convenții:

1. Folosim şirurile $(\alpha_1, \alpha_2, \dots, \alpha_k, \dots)$ pentru care există n astfel încât $\alpha_n = 2$ si $\alpha_k = 0$ pentru orice k > n, dar nu folosim şirurile pentru care există n astfel încât $\alpha_n = 1$ şi $\alpha_k = 2$ pentru orice k > n.

2. Folosim şirurile $(\alpha_1, \alpha_2, \dots, \alpha_k, \dots)$ pentru care există n astfel încât $\alpha_n = 0$ si $\alpha_k = 2$ pentru orice k > n, dar nu folosim şirurile pentru care există n astfel încât $\alpha_n = 1$ şi $\alpha_k = 0$ pentru orice k > n.

Pentru $n \ge 1$, considerăm acum mulțimea

$$\widetilde{S}_n = \left\{ \sum_{k=1}^{\infty} \frac{\alpha_k}{3^k} \mid \alpha_m \in \{0, 2\} \text{ pentru } 1 \le m \le n \right\}.$$

Avem $\widetilde{S}_n = S_n$ pentru orice $n \geq 1$, unde S_n este mulțimea obținută la pasul n în construcția anterioara, cu eliminarea intervalelor din mijloc. În concluzie,

$$C = \bigcap_{n=1}^{\infty} S_n = \bigcap_{n=1}^{\infty} \widetilde{S}_n = \left\{ \sum_{k=1}^{\infty} \frac{\alpha_k}{3^k} \mid \alpha_k \in \{0, 2\} \text{ pentru orice } k \ge 1 \right\}.$$

1.2 Dimensiunea topologică

Definiția 1.2.1: Fie X un spațiu topologic și $\bigcup_{i \in I} U_i$ o acoperire deschisă a lui X. Ordinul acoperirii $\bigcup_{i \in I} U_i$ este cel mai mic număr natural m pentru care orice punct $x \in X$ se află în cel mult m deschiși din acoperire.

Definiția 1.2.2: [Dimensiunea topologică] Fie X un spațiu topologic.

Dimensiunea topologica a lui X este cel mai mic număr natural n astfel încât orice acoperire deschisă finită $\bigcup_{i \in I} U_i$ a lui X are o rafinare $\bigcup_{i \in J} V_i$ cu ordinul n+1.

Dacă nu există un astfel de n, spunem că dimensiunea topologica a lui X este ∞ .

Exemplul 1.2.3: Dimensiunea topologică a unui cerc este 1. Dimensiunea topologică a unui disc in plan este 2.

Exerciții

- 1. Demonstrați că măsura Lebesgue $\mu(C) = 0$.
- 2. Construiți o mulțime Cantor $\tilde{C} \subset [0,1]$ cu măsura Lebesgue $\mu(\tilde{C}) > 0$.
- 3. Calculați dimensiunea topologică a mulțimii Cantor (middle 1/3)

1.3 Dimensiunea Hausdorff

Fie $A\subset\mathbb{R}^n$ mărginită. Pentru o mulțime $B\subset\mathbb{R}^n$, notăm $|B|=\mathrm{diam}(B)$. Pentru s>0, considerăm

$$\mathcal{H}^s_\delta(A) = \inf \left\{ \sum_{i \in I} d_i^s \mid d_i = |B_i| < \delta, \ \bigcup_{i \in I} B_i \supset A, \ B_i \text{ deschişi} \right\}.$$

Propoziția 1.3.1: $Dacă\ 0 < \delta_1 < \delta_2, \ atunci\ \mathcal{H}^s_{\delta_1}(A) \geq \mathcal{H}^s_{\delta_2}(A).$

Demonstrație. Dacă $0 < \delta_1 < \delta_2$, atunci mulțimea pentru care luăm infimumul în cazul lui $\mathcal{H}^s_{\delta_1}(A)$ este inclusă în cea corespunzătoare lui $\mathcal{H}^s_{\delta_2}(A)$.

Observația 1.3.2: Propozitia 1.3.1 ne asigură că există limita

$$\lim_{\delta \searrow 0} \mathcal{H}^{s}_{\delta}(A) =: \mathcal{H}^{s}(A) \in [0, \infty]$$

Teorema 1.3.3: Fie $A \subset \mathbb{R}$ mărginită și 0 < s < t. Atunci,

- 1. $dac \check{a} \mathcal{H}^s(A) < \infty$, $atunci \mathcal{H}^t(A) = 0$;
- 2. $dac \check{a} \mathcal{H}^t(A) > 0$, $atunci \mathcal{H}^s(A) = \infty$.

Demonstrație. (1) Ştim că $\mathcal{H}^s(A) < \infty$. Atunci, pentru orice $\delta > 0$, există o acoperire deschisă $\bigcup_{i \in I} B_i \supset A$ cu $d_i = \operatorname{diam}(B_i) < \delta$ pentru care să avem $\sum_{i=1}^{\infty} \operatorname{diam}(B_i)^s \leq \mathcal{H}^s_{\delta}(A) + 1$. Așadar, vom avea:

$$\mathcal{H}_{\delta}^{t}(A) \leq \sum_{i=1}^{\infty} |B_{i}|^{t} \leq \delta^{t-s} \sum_{i=1}^{\infty} |B_{i}|^{s} \leq \delta^{t-s} (\mathcal{H}_{\delta}^{s}(A) + 1),$$

iar dacă facem $\delta \to 0$, obținem $\mathcal{H}^t_{\delta}(A) \leq 0$, adică $\mathcal{H}^t_{\delta}(A) = 0$.

(2) Avem ipoteza $\mathcal{H}^t(A) > 0$. La fel ca la punctul (1), pentru orice $\delta > 0$, obținem $\mathcal{H}^t_{\delta}(A) \leq \delta^{t-s}(\mathcal{H}^s_{\delta}(A) + 1)$, de unde deducem că

$$\delta^{s-t}\mathcal{H}^t_{\delta}(A) - 1 \leq \mathcal{H}^s_{\delta}(A).$$

Cum $\mathcal{H}^t_{\delta}(A) > 0$ şi s - t < 0, membrul stâng tinde la ∞ când $\delta \to 0$, deci $\mathcal{H}^s(A) = \infty$.

Teorema 1.3.3 ne asigură că următoarea definiție este corectă:

Definiția 1.3.4: [Dimensiunea Hausdorff] Fie $A \subset \mathbb{R}^n$ o mulțime mărginită.

$$\mathcal{HD}(A) = \inf\{s \mid \mathcal{H}^s(A) = 0\} = \sup\{s \mid \mathcal{H}^s(A) = \infty\}$$

se numește $\mathit{dimensiunea}$ $\mathit{Hausdorff}$ a mulțimii A.

Observația 1.3.5: Definiția dimensiunii Hausdorff se poate extinde fără nicio modificare la spații metrice.

Definiția 1.3.6: [Upper and lower box dimension] Fie $A \subset \mathbb{R}^n$ mărginită şi $\delta > 0$. Notăm $N_{\delta}(A) =$ numărul minim de bile de rază δ necesare pentru a acoperi A.

$$\overline{\dim}_B(A) = \limsup_{\delta \searrow 0} \frac{\log N_\delta(A)}{-\log \delta} = \text{ upper box dimension}$$

$$\underline{\dim}_B(A) = \liminf_{\delta \searrow 0} \frac{\log N_{\delta}(A)}{-\log \delta} = \text{ lower box dimension}$$

Propoziția 1.3.7: $\mathcal{HD}(A) \leq \underline{\dim}_B(A) \leq \overline{\dim}_B(A)$.

Demonstrație. Dacă $\mathcal{HD}(A) = 0$, nu avem nimic de demonstrat. Altfel, există s > 0 ce verifică

$$1 < \mathcal{H}^s(A) = \lim_{\delta \searrow 0} \mathcal{H}^s_{\delta}(A), \tag{1.3.1}$$

pentru pentru δ suficient de mic. Din definiția lui $\mathcal{H}^s_{\delta}(A)$ rezultă imediat că $\mathcal{H}^s_{\delta}(A) \leq \delta^s N_{\delta}(A)$, iar (1.3.1) implică $1 < \delta^s N_{\delta}(A)$, care prin logaritmare conduce la $\log N_{\delta}(A) + s \log \delta > 0$, de unde obținem

$$s < \frac{\log N_{\delta}(A)}{-\log \delta}$$

pentru orice $\delta>0$ suficient de mic. Trecând la limita inferioară cu $\delta\searrow0$, vom avea

$$s \leq \liminf_{\delta \searrow 0} \frac{\log N_{\delta}(A)}{-\log \delta}.$$

Luând acum supremum după s > 0 pentru care $\mathcal{H}^s(A) > 1$, obţinem $\mathcal{HD}(A) \leq \underline{\dim}_B(A)$.

Teorema 1.3.8: [Principiul de distribuţie a măsurii] Fie $A \subset \mathbb{R}^n$ şi μ o măsură pozitivă pe A astfel încât există $\delta > 0$, s > 0 şi c > 0 pentru care

$$\mu(U) \le c|U|^s,$$

pentru orice $U \subset A$ cu $|U| < \delta$.

Atunci,
$$\frac{\mu(A)}{c} \leq \mathcal{H}^s(A)$$
 si $s \leq \mathcal{HD}(A) \leq \underline{\dim}_B(A) \leq \overline{\dim}_B(A)$.

Demonstrație. Presupunem că A este acoperită cu mulțimile $\{U_i\}_{i\in I}$. Atunci,

$$\mu(A) \le \mu\left(\bigcup_{i \in I} U_i\right) \le \sum_{i \in I} \mu(U_i) \le c \sum_{i \in I} |U_i|^s,$$

de unde obţinem

$$\frac{\mu(A)}{c} \le \inf \left\{ \sum_{i \in I} |U_i|^s \mid A \subset \bigcup_{i \in I} U_i, \ |U_i| \le \delta \right\} = \mathcal{H}^s_{\delta}(A).$$

Aşadar, avem $0 < \frac{\mu(A)}{c} \le \mathcal{H}^s(A)$, de unde deducem că $\mathcal{HD}(A) \ge s$.

Vrem în cele ce urmează să aplicăm Teorema 1.3.8 pentru a calcula dimensiunea Hausdorff $\mathcal{HD}(C)$ a mulțimii Cantor middle–(1/3). Știm că $C = \cap_{n\geq 1} S_n$, unde S_n este reuniunea a 2^n intervale de lungime $\frac{1}{3^n}$. Rezultă de aici că

$$\mathcal{HD}(C) \le \underline{\dim}_B(C) \le \frac{\log 2^n}{-\log \frac{1}{3^n}} = \frac{\log 2}{\log 3}.$$
 (1.3.2)

Rămâne să demonstrăm că $\mathcal{HD}(C) \geq \frac{\log 2}{\log 3}$. Pentru a aplica Teorema 1.3.8, mai întâi vom construi o măsură pe C cu proprietățile din enunț. Împărțim măsura lui I = [0, 1] în două părți egale, pentru cele 2 subintervale I_1 și I_2 ale lui S_1 .

$$\mu(I_1) = \mu(I_2) = \frac{1}{2}.$$

Continuăm împărțind măsurile fiecaruia dintre cele 2 intervale, I_1 şi I_2 , la rândul lor, în mod egal, pentru $I_{11} \cup I_{12} = S_2 \cap I_1$ şi $I_{21} \cup I_{22} = S_2 \cap I_2$.

$$\mu(I_{11}) = \mu(I_{12}) = \mu(I_{21}) = \mu(I_{22}) = \frac{1}{4}.$$

Continuând acest procedeu inductiv şi luând limita acestor măsuri, obţinem o măsură pozitivă μ pe C, cu $\mu(C) = 1$.

Observația 1.3.9: Mai riguros, mulțimea Cantor C poate fi privită ca un grup compact de șiruri binare, iar μ este măsura Haar normalizată pe C.

Mai departe, trebuie să verificăm că este îndeplinită condiția $\mu(U) \leq M|U|^s$ pentru un s > 0 și un M > 0. Fie U un interval real cu capetele în C. Considerăm J cel mai mic interval component al unui S_k , care îl conține pe U. Avem:

$$U \subset J \subset S_{k}$$
.

Atunci, U intersectează ambele subintervalele componente I_1, I_2 ale lui J. Pentru fiecare subinterval $I \in \{I_1, I_2\}$, avem $\mu(I) = \frac{1}{2^{k+1}}$, iar $|I| = \frac{1}{3^{k+1}}$. Aşadar,

$$\mu(I) = |I|^s$$
, unde $s = \frac{\log 2}{\log 3}$.

În plus, avem $|I_1| \ge \frac{1}{3}|U|$. Prin urmare,

$$\mu(U) \le \mu(J) = \mu(I_1) + \mu(I_2) = |I_1|^s + |I_2|^s = 2|I_1|^s \le \frac{2}{3^s}|U|^s = |U|^s,$$

adică ipotezele Principiului de distribuție a măsurii sunt verificate, cu constantele $s = \frac{\log 2}{\log 3}$ și C = 1. Deducem, de aici, că

$$s = \frac{\log 2}{\log 3} \le \mathcal{HD}(C) \tag{1.3.3}$$

Folosind 1.3.2 şi 1.3.3, obţinem

$$\mathcal{HD}(C) = \frac{\log 2}{\log 3}.$$

1.4 Mulţimi fractale autosimilare

Nu există o definiție standard pentru noțiunea de *mulțime fractală*, dar o posibilitate este varianta următoare:

Definiția 1.4.1: O mulțime mărginită $A \subset \mathbb{R}^n$ se numește mulțime fractală dacă $\mathcal{HD}(A) \not\in \mathbb{N}$. Considerăm mulțimea închisă $D = \overline{D} \subset \mathbb{R}^n$ și $S_i : D \to D$, S_i contracție pentru orice $i = 1, \ldots, m$, cu $|S_i(x) - S_i(y)| \le c_i |x - y|$ pentru orice $x, y \in D$, unde $c_i \in (0, 1)$, pentru orice $1 \le i \le m$. Vom nota

$$S(E) := \bigcup_{i=1}^{m} S_i(E)$$

pentru orice mulțime Boreliană $E \subset D$. Căutăm o mulțime fractală F ce verifică S(F) = F.

Propoziția 1.4.2: Există și este unică F compactă, nevidă ce verifică S(F) = F.

Demonstrație. Se face exact ca în demonstrația existenței și unicității din Teorema 1.4.6, prezentată în secțiunea următoare.

Definiția 1.4.3: S_i se numește aplicație de similaritate dacă

$$|S_i(x) - S_i(y)| = c_i|x - y|,$$

pentru orice $x, y \in D$, unde $c_i \in (0, 1)$.

Familii finite de similarități

Fie S_1, \ldots, S_m similarități cu coeficienții c_1, \ldots, c_m .

Definiția 1.4.4: [Open Set Condition (OSC)] Spunem că familia finită de similarități S_1, \ldots, S_m verifică Open Set Condition (pe scurt, OSC), dacă există un deschis $V = \mathring{V}$ astfel încât

$$V \supset S(V) = \cup_{i=1}^{m} S_i(V)$$

şi mulţimile $S_1(V), \ldots, S_m(V)$ sunt mutual disjuncte.

Lema 1.4.5: Fie $(V_i)_i$ o familie finită de mulțimi deschise din \mathbb{R}^n , mutual disjuncte, astfel încât fiecare V_i conține o bilă de rază αr și este conținut într-o bilă de rază βr .

Atunci, orice bilă de rază r intersectează cel mult $(1+2\beta)^n \alpha^{-n}$ din închiderile $\overline{V_i}$.

 c_1, \ldots, c_m ce verifică OSC (Definiția 1.4.4), atunci există și este unică o mulțime compactă, nevidă, invariantă, astfel încât

$$F = S(F) = \bigcup_{i=1}^{m} S_i(F),$$

$$\mathcal{HD}(F) = \underline{\dim}_B(F) = \overline{\dim}_B(F) = s,$$

 $0 < \mathcal{H}^s(F) < \infty$, si $\mathcal{HD}(F) = \underline{\dim}_B(F) = \overline{\dim}_B(F) = s,$ unde s > 0 este definit prin $\sum_{i=1}^m c_i^s = 1$.

Demonstrație. Arătăm mai întâi că $\mathcal{HD}(F) \leq s$. Pentru o mulțime arbitrară A, vom face notația

$$A_{i_1 i_2 \dots i_k} = S_{i_1 i_2 \dots i_k}(A) = S_{i_1} \circ S_{i_2} \circ \dots \circ S_{i_k}(A),$$

deci vom avea egalitatea

$$|A_{i_1 i_2 \dots i_k}| = c_{i_1} c_{i_2} \dots c_{i_k} |A|.$$

La pasul k, avem

$$F_k = \bigcup_{1 \leq i_1, \dots, i_k \leq m} S_{i_1 i_2 \dots i_k}(D) = \bigcup_{1 \leq i_1, \dots, i_k \leq m} F_{i_1 i_2 \dots i_k}$$

De asemenea,

$$|F_{i_1 i_2 \dots i_k}| = c_{i_1} c_{i_2} \dots c_{i_k} |D|,$$

unde D, care este domeniul de definiție pentru similaritățile din ipoteză, este mărginit. Atunci,

$$\mathcal{H}^{s}(F) \leq \sum_{1 \leq i_{1}, \dots, i_{k} \leq m} (c_{i_{1}} c_{i_{2}} \dots c_{i_{k}})^{s} |D|^{s} = \left(\sum_{i=1}^{m} c_{i}^{s}\right) \cdot \dots \cdot \left(\sum_{i=1}^{m} c_{i}^{s}\right) |D|^{s} = |D|^{s},$$

pentru orice $k \geq 1$, de unde deducem $\mathcal{H}^s(F) \leq |D|^s$ pentru orice k, aşadar $\mathcal{H}^s(F) < \infty$, care implică $\mathcal{HD}(F) \leq s$.

In a doua parte a demonstrației, vom face estimarea inferioară pentru $\mathcal{HD}(F)$. Vrem să folosim principiul de distribuție a măsurii, adică să găsim o măsură pozitivă μ pe F, astfel încât $\mu(B) \leq c|B|^s$, pentru s definit în mod unic de condiția $\sum_{i=1}^m c_i^s = 1$. Din condiția OSC, știm că $S_1(D), \ldots, S_m(D)$ sunt mutual disjuncte. Distribuim măsura Lebesgue inițială de pe D la pasul 1 între mulțimile $S_1(D), \ldots, S_m(D)$, care îl compun pe F_1 , în modul următor: $\mu(S_i(D)) = c_i^s$ pentru orice $1 \le i \le m$. Atunci, avem egalitatea

$$\mu\left(\bigcup_{i=1}^{m} S_i(D)\right) = \sum_{i=1}^{m} \mu(S_i(D)) = \sum_{i=1}^{m} c_i^s = 1.$$

La pasul al 2-lea, $S_{i_1} \circ S_{i_2}(D) = D_{i_1 i_2}$ și $\mu(D_{i_1 i_2}) := c_{i_1}^s c_{i_2}^s$.

$$\mu(F_2) = \mu\left(\bigcup_{1 \le i_1, i_2 \le m} D_{i_1 i_2}\right) = \sum_{1 \le i_1, i_2 \le m} \mu(D_{i_1 i_2}) = \sum_{1 \le i_1, i_2 \le m} c_{i_1}^s c_{i_2}^s = \left(\sum_{i=1}^m c_i^s\right) \cdot \left(\sum_{i=1}^m c_i^s\right) = 1.$$

În general, la pasul k, vom obține

$$\mu(F_k) = \mu\left(\bigcup_{1 \le i_1, \dots, i_k \le m} D_{i_1 \dots i_k}\right) = \sum_{1 \le i_1, \dots, i_k \le m} c_{i_1}^s \dots c_{i_k}^s = 1$$

şi $\mu(D_{i_1...i_k})=c_{i_1}^s\ldots c_{i_k}^s$. La limită, obținem o măsură μ pe F pentru care $\mu(F)=1$ şi $\mu(D_{i_1...i_k})=c_{i_1}^s\ldots c_{i_k}^s=M|D_{i_1...i_k}|^s$.

Vrem să demonstrăm că pentru orice bilă B, avem $\mu(B) \leq M|B|^s$. Mulțimea F se scrie sub forma

$$F = \bigcup_{k \ge 1} \left(\bigcap_{i_1 \dots i_k \in \overline{1,m}} D_{i_1 \dots i_k} \right).$$

Considerăm o bilă oarecare $B \subset D$ și notăm cu r raza lui B. Pentru un șir oarecare $(i_1, i_2, ...) \in \Sigma_m^+ =$ șirurile cu elemente în $\{1, ..., m\}$, considerăm trunchierea $(i_1, ..., i_k)$, astfel încât

$$\left(\min_{1 \le i \le m} c_i\right) r \le c_{i_1} \cdots c_{i_k} < r.$$

Atunci,

$$\mu(B) = \mu(F \cap B) \le \sum_{D_{i_1 \dots i_k} \cap B \ne \emptyset} (c_{i_1} \dots c_{i_k})^s.$$
 (1.4.1)

Ştiind că $\alpha r = c_{i_1} \dots c_{i_k} < r$, putem Folosi Lema 1.4.5 în cazul nostru, cu

$$\alpha = \min_{1 \le i \le m} c_i \text{ şi } \beta = 1,$$

și obținem că B intersectează cel mult M mulțimi de tip $D_{i_1...i_k}$, unde $M \leq 3^n \alpha^{-n}$, de unde se vede că M nu depinde de r. Din inegalitatea 1.4.1, obținem $\mu(B) \leq Mr^s$. Așadar, putem aplica principiul de distribuție a măsurii, și obținem

$$\mathcal{H}^s(F) \ge \frac{1}{M}\mu(F) = \frac{1}{M} > 0.$$

De aici, mai departe vom avea $s \leq \mathcal{HD}(F)$, care împreuna cu ce am făcut în prima parte a demonstrației ne arată că $\mathcal{HD}(F) = s$.

Pentru a arăta celelalte egalități din concluzie, mai trebuie să demonstrăm că $\dim_B(F) \leq s$. Fie $\delta > 0$. Dacă $D_{i_1...i_k}$ verifică

$$\delta > c_{i_1} \cdots c_{i_k} \ge \left(\min_{1 \le i \le m} c_i\right) \delta = \alpha \delta,$$
 (1.4.2)

atunci

$$\delta^s > (c_{i_1} \cdots c_{i_k})^s \ge \alpha^s \delta^s,$$

iar adunând inegalitățile acestea pentru toate D_{i_1,\dots,i_k} -urile ce verifică 1.4.2, care acoperă F și sunt în număr de N, obținem

$$N\delta^{s} > \sum_{D_{i_{1},...,i_{k}}} c_{i_{1}}^{s} \dots c_{i_{k}}^{s} = \sum_{1 \leq i_{1},...,i_{k} \leq m} c_{i_{1}}^{s} \dots c_{i_{k}}^{s} = 1 \geq N\alpha^{s}\delta^{s}$$

De aici, logaritmând, obținem $0 \ge \log(N\alpha^s\delta^s)$, care se poate scrie sub forma

$$\log N \le s(-\log \delta - \log \alpha),$$

1.5. Mulţimi Julia

și mai departe în forma

$$\frac{\log N}{-\log \delta} \le s \left(1 + \frac{\log \alpha}{\log \delta} \right).$$

Trecând la limita superioară cu $\delta \searrow 0$, vom avea $\overline{\dim}_B(F) \leq s$.

A mai rămas de demonstrat unicitatea mulțimii F. Să presupunem că F' este, ca și F, o mulțime nevidă, compactă, astfel încât $F' = S(F') = \bigcup_{i=1}^m S_i(F')$. Arătăm mai întâi că $F' \subset F$. Avem incluziunea $F' = S(F') \subset S(D)$, de unde deducem că

$$F' \subset S^k(D) = \bigcup_{1 \le i_1, \dots, i_k \le m} D_{i_1, \dots, i_k},$$

pentru orice $k \geq 1$. Făcând $k \to \infty$, obţinem $F' \subset F$. Să presupunem în continuare, prin reducere la absurd, că există $x \in F \setminus F'$. Cum F' este compactă, deci închisă, există o vecinătate deschisă $V \ni x$ astfel încât $V \cap F' = \emptyset$. Alegem un $y \in F'$ arbitrar, fixat. Atunci, există un şir de indici $(i_1, i_2, \ldots) \in \Sigma_m$ pentru care $S_{i_1 i_2 \ldots i_k}(y) \to x$ pentru $k \to \infty$. Dar $S_{i_1 i_2 \ldots i_k}(y) \in F'$ pentru orice $k \geq 1$, iar cum F' este închisă, deducem că $x \in F'$, care este o contradicție cu presupunerea $x \in F \setminus F'$. În concluzie, $F \setminus F' = \emptyset$, adică $F \subset F'$. Cele două incluziuni pe care le-am demonstrat arată unicitatea mulţimii F.

1.5 Mulţimi Julia

Fie $f: \mathbb{C} \to \mathbb{C}$ un polinom de grad $n \geq 2$ cu coeficienți complecși,

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0.$$

Vom nota $f^k = f \circ f \circ \cdots \circ f$, unde în membrul drept f apare de k ori. Notăm

$$K(f) = \{ z \in \mathbb{C} \mid f^k(z) \not\to \infty \}$$

și o vom numi mulțimea plină Julia asociată polinomului f.

Definiția 1.5.1: Multimea Julia asociată funcției f este $J(f) = \partial K(f)$.

De obicei, multimea Julia este un fractal.

Definiția 1.5.2: *Mulțimea Fatou* (sau *mulțimea stabilă*) asociată funcției f este mulțimea $F(f) = \mathbb{C} \setminus J(f)$.

Cel mai simplu exemplu este $f(z)=z^2$, pentru care avem $f^k(z)=z^{2^k}$. Atunci, $f^k(z)\to 0$ pentru |z|<1 și $f^k(z)\to \infty$ pentru |z|>1. Așadar, mulțimea plină Julia K este discul $|z|\le 1$, iar mulțimea Julia J este cercul |z|=1. Mulțimea Julia este frontiera între mulțimea unde interatele funcției tind la 0 și cea unde iteratele tind la ∞ . Evident, în acest caz mulțimea Julia nu este fractal.

În continuare, să modificăm foarte puţin exemplul anterior, luând $f(z)=z^2+c$, unde c este un număr complex de modul mic. Se arată uşor că încă avem $f^k(z)\to w$ dacă z este mic, unde w este un punct fix al lui f aproape de 0, şi $f^k(z)\to\infty$ dacă z este de modul mare. Din nou, mulţimea Julia este frontiera între mulţimile de puncte care au aceste două comportamente. De data aceasta, J este fractal.

Înainte de a merge mai departe, trebuie să stabilim terminologia pentru punctele fixe si punctele periodice ale lui f. w se numește punct fx pentru f dacă f(w) = w. Dacă $f^p(w) = w$, atunci w se numește punct periodic. Cel mai mic p cu această proprietate se numește perioda lui w. Numim w, f(w), $f^2(w)$, ..., $f^p(w)$ orbită de perioda p. Fie w un punct periodic de p periodic de p periodic de p qunct p periodic de p quant p quant p periodic de p pentru diverse numere p alese inițial se numește p p pentru diverse numere p alese inițial se numește p p pentru diverse numere p alese inițial se numește p p pentru diverse numere p alese inițial se numește p p pentru diverse numere p alese inițial se numește p p pentru diverse numere p alese inițial se numește p p pentru diverse numere p alese inițial se numește p p pentru diverse numere p alese inițial se numește p p pentru diverse numere p alese inițial se numește p pentru diverse numere p alese inițial se numește p p pentru diverse numere p alese inițial se numește p pentru diverse numere p alese inițial se numește p p pentru diverse numere p alese inițial se numește p pentru diverse numere p pentru p

Următoarea lemă este esențială pentru a determina dacă un șir de iterate tinde la ∞ , adică dacă punctul este în afara mulțimii pline Julia.

Lema 1.5.3: Având dat un polinom $f(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$, cu $a_n \neq 0$, există un număr r astfel încât dacă $|z| \geq r$, atunci $|f(z)| \geq 2r$. În particular, $f^k(z) \rightarrow \infty$ sau $\{f^k(z) \mid k = 0, 1, 2, \ldots\}$ este un şir mărginit.

Demonstrație. Putem alege r suficient de mare astfel încât dacă $|z| \ge r$, atunci $\frac{1}{2}|a_n||z|^n \ge 2|z|$ şi $(|a_{n-1}|z|^{n-1} + \cdots + |a_1||z| + |a_0|) \le \frac{1}{2}|a_n||z|^n$. Atunci, dacă |z| > r, vom avea

$$f(z) \ge |a_n||z|^n - (|a_{n-1}|z|^{n-1} + \dots + |a_1||z| + |a_0|)$$

$$\ge \frac{1}{2}|a_n||z|^n \ge 2|z|.$$

În plus, dacă $|f^m(z)| \ge r$ pentru un m, atunci, aplicând inductiv această metodă, deducem că

$$|f^{m+k}(z)| \ge 2^m |f^k(z)| \ge r,$$

deci $f^k(z) \to \infty$.

Unele observații privind mulțimea Julia și mulțimea plină Julia rezultă ușor din Lema 1.5.3.

Propoziția 1.5.4: Fie f(z) un polinom. Atunci, mulțimea plină Julia K = K(f) și mulțimea Julia J = J(f) sunt nevide și compacte, cu $J(f) \subset K(f)$. Mai mult, J(f) are interiorul vid.

Demonstrație. Cu r dat de Lema 1.5.3, rezultă imediat că $K \subset B_r(0)$, deci este mărginită, și la fel este și frontiera ei, J. Dacă $z \notin K$, atunci $f^k(z) \to \infty$, deci $|f^m(z)| > r$ pentru un întreg m. Din continuitatea lui f^m , deducem că $|f^m(z)| > r$ pentru orice w într-un disc suficient de mic $D_{\alpha}(z)$, așadar pentru un astfel de $w \in D_{\alpha}(z)$, avem $f^k(w) \to \infty$, din Lema 1.5.3, adică $w \notin K$. Asta înseamnă că $\mathbb{C} \setminus K$ este deschisă, deci K este închisă. De aici, rezultă că $J = \partial K \subset K$. Cum J și K sunt închise și mărginite, ele sunt compacte. Ecuația f(z) = z are cel puțin o soluție z_0 , deci $f^k(z_0) = z_0$ pentru orice k, de unde obținem $z_0 \in K$, așadar $K \neq \emptyset$. Cum J este frontiera unei mulțimi compacte nevide, vom avea și $J \neq \emptyset$.

Rămâne să demonstrăm că J are interior vid. Presupunând că U este o mulțime deschisă astfel încât $U \subset J \subset K$, obținem $U \in \mathring{K}$, de unde rezultă $U \cap J = U \cap \partial K = \emptyset$. Dar $U \subset J$, deci trebuie să avem $U = \emptyset$. În concluzie, $\mathring{J} = \emptyset$.

Deloc surprinzător, J(f) va fi invariată de f, și la fel se întâmplă luând preimaginea prin f.

Propoziția 1.5.5: Mulțimea Julia J = J(f) a polinomului f este direct și invers invariantă pentru f, adică $J = f(J) = f^{-1}(J)$.

Demonstrație. Fie $z \in J$. Atunci, $f^k(z) \not\to \infty$, deci putem găsi $w_n \to z$ cu $f^k(w_n) \to \infty$ pentru $k \to \infty$, pentru toți $n \ge 1$. Prin urmare, $f^k(f(z)) \not\to \infty$ și $f^k(f(w_n)) \to \infty$, iar din continuitatea

1.5. Mulţimi Julia

lui f rezultă că putem alege $f(w_n)$ oricât de aproape vrem de f(z). Așadar $f(z) \in J$, deci am demonstrat că $f(J) \subset J$, de unde obținem $J \subset f^{-1}(f(J)) \subset f^{-1}(J)$.

Similar, cu z şi w_n ca mai sus, dacă $f(z_0) = z$, atunci putem găsi $v_n \to z_0$ cu $f(v_n) = w_n$, deoarece f este polinom. Avem $f^k(z_0) = f^{k-1}(z) \not\to \infty$ şi $f^k(v_n) = f^{k-1}(w_n) \to \infty$ pentru $k \to \infty$, deci $z_0 \in J$. Dar $z_0 \in f^{-1}(J)$, deci $f^{-1}(J) \subset J$, de unde rezultă $J = f(f^{-1}(J)) \subset f(J)$. Din cele de mai sus, avem $J \subset f(J) \subset f^{-1}(J) \subset J$, deci $J = f(J) = f^{-1}(J)$.

Propoziția 1.5.6: $J(f^p) = J(f)$ pentru orice întreg $p \ge 1$.

Demonstrație. Din Lema 1.5.3 avem $f^k(z) \to \infty$ dacă și numai dacă $(f^p)^k(z) = f^{kp}(z) \to \infty$, așadar f și f^p au aceleași mulțimi pline Julia $K(f) = K(f^p)$, deci și frontierele lor sunt egale, adică $J(f) = J(f^p)$.

Pentru rezultatele următoare, următorul corolar este esențial.

Corolarul 1.5.7: [al teoremei Montel] Fie $(g_k)_{k\geq 1}$ o familie de funcții olomorfe pe un deschis conex U, astfel încât $(g_k)_{k\geq 1}$ nu este familie normală. Atunci, $\bigcup_{k\geq 1} g_k(U)$ este tot \mathbb{C} -ul, cu exceptia (posibilă) a unui singur punct.

Propoziția 1.5.8: $J = J(f) = \{z \in \mathbb{C} \mid (f^k)_{k \geq 1} \text{ nu este familie normală în } z\}.$

Demonstrație. Notăm $A = \{z \in \mathbb{C} \mid (f^k)_{k \geq 1} \text{ nu este familie normală în } z\}$. Facem demonstrația prin dubla incluziune.

Considerăm, pentru prima parte, că alegem un $z \in J$ arbitrar. Atunci, pentru orice $z \in V = \mathring{V}$, există $w \in V$ astfel încât $f^k(w) \to \infty$, în timp ce $f^k(z)$ este mărginită. Atunci, niciun subșir al lui $(f^k)_{k\geq 1}$ nu poate fi uniform convergent pe V, deci $(f^k)_{k\geq 1}$ nu este familie normală în z. Așadar, $J \subset A$.

Alegem, pentru a doua parte, un $z \notin J$. Cum $J(f) = \partial K$, avem ori $z \in \mathring{K}$, ori $z \in \mathbb{C} \setminus K$.

- Dacă $z \in \mathring{K}$, atunci, cu Lema 1.5.3, există $K \supset V = \mathring{V} \ni z$ şi r > 0, astfel încât $|f^k(w)| \le r$, pentru orice $k \ge 1$ şi orice $w \in V$. Aplicăm Teorema lui Montel şi obţinem că $(f^k)_{k \ge 1}$ este familie normală în z, adică $z \notin A$.
- Dacă $z \in \mathbb{C} \setminus K$, atunci $|f^k(z)| > r$ pentru k suficient de mare, aşadar $|f^k(w)| > r$ pentru orice $w \in V = \mathring{V} \ni z$. Cu Lema 1.5.3, obţinem $f^k(w) \to \infty$ uniform pe V, deci $(f^k)_{k \ge 1}$ este familie normală în z. Am obţinut astfel $z \notin A$.

Aşadar, $\mathbb{C} \setminus J \subset \mathbb{C} \setminus A$, care implică $A \subset J$.

Observația 1.5.9: Caracterizarea din Propoziția 1.5.8 poate fi folosită ca definiție pentru mulțimi Julia care sunt determinate de funcții raționale sau, mai general, funcții meromorfe.

Lema 1.5.10: Fie $w \in J$ şi $w \in U = \mathring{U}$. Atunci, pentru orice $j \geq 1$, $W = \bigcup_{k=j}^{\infty} f^k(U)$ este tot \mathbb{C} -ul, cu excepția (posibilă) a unui singur punct. Acest punct excepțional nu este în J, şi nu depinde nici de w, nici de U.

Demonstrație. Din Propoziția 1.5.8 obținem că $(f^k)_{k\geq 1}$ nu este familie normală în w, iar prima parte rezultă acum imediat din Corolarul 1.5.7.

Pentru a doua parte a concluziei, presupunem că există $v \notin W = \bigcup_{k=j}^{\infty} f^k(U)$. Dacă f(z) = v, cum $f(W) \subset W$, iar $\mathbb{C} \setminus W$ are cel mult un punct, obținem z = v. Deci f este un polinom de grad $n \geq 2$, pentru care f(z) - v are soluție unică z = v. Aceast lucru este posibil numai dacă

 $f(z)=c(z-v)^n$, unde $c\in\mathbb{C}\setminus\{0\}$. Dacă z este suficient de aproape de v, atunci $f^k(z)-v\to 0$ pentru $k\to\infty$, cu convergență uniformă pe mulțimea

$$B = \left\{ z \mid |z - v| < \alpha < c^{\frac{-1}{n-1}} \right\}.$$

Deducem că $(f^k)_{k\geq 1}$ este normală în v, deci $v\not\in J$. Din demonstrație, se vede că v nu depinde de alegerile lui w și U. Dacă pentru alte alegeri am obține un v', atunci $f(z) = c(z-v)^n = c'(z-v')^n$ conduce la v=v'.

Următorul corolar este la baza algoritmului folosit pentru generarea mulțimilor Julia.

Corolarul 1.5.11:

- (a) Pentru orice $z \in \mathbb{C}$, cu cel mult o excepție, dacă U este deschis, $U \cap J \neq \emptyset$, atunci $f^{-k}(U) \cap J \neq \emptyset$ pentru o infinitate de numere $k \geq 1$.
- $(b)\ \ Dac\ \ z\in J,\ atunci\ J=\overline{\bigcup_{k=1}^{\infty}f^{-k}(z)}.$

Demonstrație.

- (a) Rezultă din Lema 1.5.10.
- (b) Dacă $z \in J$, atunci $f^{-k}(z) \subset J$ din Propoziția 1.5.5, deci $\bigcup_{k=1}^{\infty} f^{-k}(z) \subset J$, de unde rezultă incluziunea

$$\overline{\bigcup_{k=1}^{\infty} f^{-k}(z)} \subset J.$$

Pe de altă parte, dacă fixăm un $z \in J$ arbitrar, din Lema 1.5.10, z nu poate fi punctul exceptional. Așadar, dacă U este un deschis astfel încât $z \in U$, atunci $f^{-k}(z) \cap U \neq \emptyset$ pentru un anumit $k \geq 1$, din punctul (a), deci $z \in \overline{\bigcup_{k=1}^{\infty} f^{-k}(z)}$. Așadar, $J \subset \overline{\bigcup_{k=1}^{\infty} f^{-k}(z)}$.

Propoziția 1.5.12: J = J'. În particular, J este nenumărabilă.

Demonstrație. Fie $v \in J$ și $v \in \mathring{U} = U$. Vrem să demonstrăm că U conține și alte puncte din J, în afară de v. Distingem următoarele trei cazuri:

- (1) v nu este punct fix și nici punct periodic pentru f. Atunci, din Corolarul 1.5.11 (b) deducem că U conține un punct din $f^{-k}(v) \subset J$ pentru un $k \geq 1$, iar acest punct este diferit de v, datorită ipotezei cazului în care ne aflăm.
- (2) f(v) = v. Dacă f(z) = v nu are altă soluție în afară de v, atunci $v \notin J$, cu justificarea din demonstrația de la Lema 1.5.10, deci o contradicție. Rămâne că f(z) = v are soluția $w \neq v$. f(w) = v. Din Corolarul 1.5.11 (b) deducem că U conține un punct u al lui $f^{-k}(w) \subset f^{-k-1}(v)$ pentru un $k \geq 1$. Orice astfel de u este în J, datorită invarianței lui J, adică Propoziția 1.5.5, și $u \neq v$, deoarece $f^k(v) = v \neq w = f^k(u)$.
- (3) $f^p(v) = v$, unde $p \ge 1$. Propoziția 1.5.6 ne asigură că $J(f^p) = J(f) = J$. Aplicăm punctul (2) pentru f^p și deducem că U conține puncte din $J(f^p) = J$, diferite de v.

1.5. Mulţimi Julia

În concluzie, J nu are puncte izolate. Cum J este și închisă, obținem J=J'. În particular, J nu poate fi numărabilă.

Teorema 1.5.13: *J* este închiderea mulțimii punctelor periodice de respingere ale lui f.

Demonstrație. Notăm mulțimea punctelor periodice de respingere ale lui f cu P. Fie w un punct periodic de respingere, de perioadă p. Notăm $g = f^p$. g(w) = w. Să presupunem că $(g^k)_{k \geq 1}$ este șir normal în w. Atunci, w are o vecinătate $w \in \mathring{V} \subset V$ pe care $(g^{k_i})_{i \geq 1}$ converge la o funcție olomorfă g_0 (nu poate converge la ∞ , deoarece $g^{k_i}(w) = w$ pentru orice $i \geq 1$). Atunci, avem și convertența derivatelor:

$$(g^{k_i})'(z) \to g_0'(z)$$
 pentru $i \to \infty$, dacă $z \in V$.

Dar cum w era punct periodic de respingere, folosind regula lanțului la derivare, avem:

$$|(g^{k_i})'(w)| = |g'(g^{k_i-1}(w))(g^{k_i-1})'(w)| = \dots = |(g'(w))^{k_i}| \to \infty,$$

care este o contradicție cu $g_0'(w)=$ finit. Prin urmare, $w\in J(g)=J(f^p)=J(f)=J,$ deci $P\subset J.$ Cum J este închisă, luând închiderile în această incluziune, vom avea $\overline{P}\subset \overline{J}=J.$

Acum, vrem să demonstrăm și incluziunea inversă. Considerăm mulțimea

$$E = \{ w \in J \mid \text{ există } v \neq w \text{ cu } f(v) = w, f'(v) \neq 0 \}.$$

Fie $w \in E$. Atunci, există un deschis $w \in \mathring{V} = V$ pe care f are o inversă locală $f^{-1}: V \to \mathbb{C} \setminus V$, $f^{-1}(w) = v \neq w$. Definim o familie de funcții olomorfe $(h_k)_{k \geq 1}$ pe V prin

$$h_k(z) = \frac{f^k(z) - z}{f^{-1}(z) - z}.$$

Fie U astfel încât $w \in \mathring{U} = U \subset V$. Cum $w \in J$, $(f^k)_{k \geq 1}$ nu este normală pe U, iar din definiția lui h_k , pentru că numitorul este mărginit, deducem că nici $(h_k)_{k \geq 1}$ nu este normală pe U. Cu Corolarul 1.5.7, $h_k(z)$ trebuie să ia ori valoarea 0, ori 1, pentru un $z \in U$ și un $k \geq 1$ (nu poate "rata" două valori). Distingem următoarele cazuri:

- (1) Dacă $h_k(z) = 0$, atunci $f^k(z) = z$ pentru un $z \in U$.
- (2) Dacă $h_k(z) = 1$, atunci $f^{k+1}(z) = z$ pentru un $z \in U$.

Aşadar, U conține un punct periodic al lui f. Inegalitatea Fatou–Shishikura ne asigură că f are cel mult deg f-1 puncte periodice care nu sunt de respingere, așadar putem presupune fără a restrânge generalitatea că acesta este punct periodic de respingere. Cum U a fost ales arbitrar, deducem că $w \in \overline{P}$, deci $E \subset \overline{P}$. Dar f este polinom, deci E conține toate punctele din J, cu excepția unui număr finit (condițiile f(z) - z = 0 și f'(z) = 0 elimină cel mult un număr finit de puncte), de unde deducem

$$E = (J \setminus \{ \text{ mulţime finită } \}) \subset \overline{P},$$

iar acum luând închiderile și folosind Propoziția 1.5.12, vom avea incluziunea

$$J = \overline{J \setminus \{ \text{ mulțime finită } \}} \subset \overline{P},$$

adică exact ce voiam să arătăm. În concluzie, $J = \overline{P}$.

Lema 1.5.14: Fie w un punct periodic de atrație pentru f. Notăm

$$A(w) = \{z \in \mathbb{C} \mid f^k(z) \to w \text{ pentru } k \to \infty\} = \text{ bazinul de atracție al lui } w.$$

Atunci, $\partial A(w) = J$. Acelaşi lucru se întâmplă şi pentru $w = \infty$.

Demonstrație. Dacă $z \in J$, atunci $f^k(z) \in J$ pentru orice k, conform Propoziția 1.5.5, deci nu poate converge la un punct periodic de atracție, pentru că A(w) este deschisă pentru orice w. Așadar, $z \notin A(w)$.

Totuşi, dacă $z \in U = U$, atunci $f^k(U)$ conține puncte din A(w) pentru un anumit $k \ge 1$, cu Lema 1.5.10. Deci există puncte arbitrar de apropiate de z, ale căror iterate tind la w. Prin urmare, $z \in \overline{A(w)}$. Am obținut până acum $z \notin A(w)$ şi $z \in \overline{A(w)}$, deci $z \in \partial A(w)$. Avem așadar incluziunea $J \subset A(w)$.

În partea ce urmează, demonstrăm şi incluziunea inversă. Fie $z \in \partial A(w)$. Presupunem, prin absurd, că $z \notin J$. Atunci, z are o vecinătate conexă $z \in \mathring{V} = V$ pe care $(f^k)_{k \geq 1}$ are un subşir care converge uniform fie la o funcție olomorfă, fie la ∞ . Subșirul converge la funcția constantă w pe deschisul $V \cap A(w) \neq \emptyset$, deci nu poate converge la ∞ , iar funcția olomorfă la care converge subșirul nostru este olomorfă și constantă pe mulțimea deschisă și nevidă $V \cap A(w) \subset V$. Cum V este conexă, deducem că subșirul converge uniform la w pe V. Toate punctele lui V sunt trimise în A(w) de iteratele lui V, deci $V \subset A(w)$, care contrazice ipoteza $v \in \partial A(w)$. În consecință, $v \notin J$. Astfel, am obținut $\partial A(w) \subset J$.

Adunând acum toate rezultatele pe care le-am demonstrat, putem scrie următoarea teoremă.

Teorema 1.5.15: [proprietățile mulțimii Julia] Fie $f \in \mathbb{C}[X]$, de grad $n \geq 2$. Atunci,

- (1) $J = J(f) = \partial \{z \in \mathbb{C} \mid f^k(z) \not\to \infty\}$ este o mulţime compactă, nevidă, fără puncte izolate.
- (2) $J = f(J) = f^{-1}(J)$.
- (3) $J(f) = J(f^p)$, pentru orice $p \ge 1$.
- (4) Dacă $z \in J$, atunci $J = \overline{\bigcup_{k=1}^{\infty} f^{-k}(z)}$.
- (5) I este închiderea mulțimii punctelor periodice de respingere.
- (6) $J = \partial A(w)$, pentru orice w = punct periodic de atracție.

Capitolul 2

Funcții armonice și subarmonice

2.1 Funcții olomorfe si armonice

Definiția 2.1.1: Fie $U \subset \mathbb{C}$ o mulțime deschisă. O funcție $h: U \to \mathbb{R}$ se numește armonică dacă $h \in \mathcal{C}^2(U)$ și $\triangle h = 0$ pe U.

Următoarea teoremă nu numai că furnizează exemple de funcții armonice, dar reprezintă și un instrument de a deduce proprietăți elementare ale acestora, pornind de la proprietățile funcțiilor olomorfe.

Teorema 2.1.2: Fie $D \subset \mathbb{C}$ un domeniu.

- 1. Dacă f este olomorfă pe D, iar h = Re f, atunci h este armonică pe D.
- 2. Dacă h este armonică pe D, iar D este simplu conex, atunci $h = \operatorname{Re} f$ pentru o funcție f olomorfă pe D. În plus, f este unică, până la adunarea cu o constantă.

Demonstrație. (1) Scriind f = h + i k, ecuațiile Cauchy-Riemann conduc la $h_x = k_y$ şi $h_y = -k_x$. Prin urmare,

$$\triangle h = h_{xx} + h_{yy} = k_{yx} - k_{xy} = 0.$$

(2) Dacă h = Re f pentru o funcție olomorfă f, dacă avem $f = h + \mathrm{i} k$, atunci

$$f' = h_x + i k_x = h_x = i h_y. (2.1.1)$$

Aşadar, dacă f există, atunci f' este complet determinată de h, de unde rezultă că f este unică până la adunarea cu o constantă. Ecuația 2.1.1 ne arată și cum putem construi funcția f. Definim $g:D\to\mathbb{C}$ prin $g=h_x-\mathrm{i}\,h_y$. Atunci, $g\in\mathcal{C}^1(D)$ și g satisface condițiile Cauchy-Riemann, deoarece $h_{xx}=-h_{yy}$ și $h_{xy}=h_{yx}$. Deci g este olomorfă pe D. Fixăm $z_0\in D$ și definim $f:D\to\mathbb{C}$,

$$f(z) = h(z_0) + \int_{z_0}^{z} g(w)dw,$$

unde integrala este luată pe orice curbă din D de la z_0 la z. Cum D este simplu conex, teorema Cauchy ne asigură că integrala este independentă de curba aleasă. Atunci, f este olomorfă pe D şi $f' = g = h_x - \mathrm{i}\,h_y$. Scriind $\widetilde{h} = \mathrm{Re}\,f$, avem:

$$\widetilde{h}_x - \mathrm{i}\,\widetilde{h}_y = f' = h_x - \mathrm{i}\,h_y,$$

de unde obţinem $(\tilde{h} - h)_x \equiv 0$ şi $(\tilde{h} - h)_y \equiv 0$. Prin urmare, $\tilde{h} - h$ este constantă pe D, iar punând $z = z_0$, vedem că această constantă este 0. În concluzie, h = Re f.

Corolarul 2.1.3: Dacă h este armonică pe un deschis $U \subset \mathbb{C}$, atunci $h \in \mathcal{C}^{\infty}(U)$.

Corolarul 2.1.4: Dacă $U_1, U_2 \in \mathbb{C}$ sunt mulțimi deschise, $f: U_1 \to U_2$ este olomorfă, iar $h: U_2 \to \mathbb{R}$ este armonică, atunci $h \circ f: U_1 \to \mathbb{R}$ este armonică.

Observația 2.1.5: Acest corolar ne permite să extindem noțiunea de armonicitate la sfera lui Riemann: dată o funcție h definită pe o vecinătate deschisă a lui ∞ , spunem că h este armonică pe U dacă $h \circ \phi^{-1}$ este armonică pe $\phi(U)$, unde ϕ este o aplicație biolomorfă de la U la un deschis din \mathbb{C} . Corolarul 2.1.4 ne asigură că definiția aceasta nu depinde de funcția ϕ pe care o alegem: dacă ϕ_1 și ϕ_2 sunt două astfel de funcții, atunci $(h \circ \phi_1^{-1}) = (h \circ \psi_2^{-1}) \circ f$, unde $f = \psi_2 \circ \psi_1^{-1}$, așadar ,conform corolarului, $h \circ \phi_1^{-1}$ este armonică pe $\phi_1(U)$ dacă și numai dacă $h \circ \phi_2^{-1}$ este armonică pe $\phi_2(U)$.

Teorema 2.1.6: [Teorema de medie]

Fie h o funcție armonică pe o vecinătate deschisă a discului $\overline{D}(w,\rho)$. Atunci,

$$h(w) = \frac{1}{2\pi} \int_0^{2\pi} h(w + \rho e^{i\theta}) d\theta.$$

Demonstrație. Alegem $\rho' > \rho$ astfel încât h este armonică pe $D(w, \rho')$. Aplicând Teorema 2.1.2 punctul (2), există o funcție olomorfă $f: D(w, \rho') \to \mathbb{C}$ pentru care Re f = h pe disc. Cu formula Cauchy, avem:

$$f(w) = \frac{1}{2\pi i} \int_{|\zeta - w| = \rho} \frac{f(\zeta)}{\zeta - w} d\zeta = \frac{1}{2\pi} \int_0^{2\pi} f(w + \rho e^{i\theta}) d\theta.$$

Apoi, concluzia se obține luând părțile reale ale ambelor părți.

Vom încheia această secțiune cu două rezultate care arată alte moduri în care funcțiile armonice se comportă similar cu cele olomorfe: teorema de identitate și principiul de maximum. Vom deduce aceaste rezultate folosind versiunile acestora pentru funcții olomorfe.

Teorema 2.1.7: [Teorema de identitate pentru funcții armonice]

Fie h şi k funcții armonice pe un domeniu $D \subset \mathbb{C}$. Dacă h = k pe un deschis nevid $U \subset D$, atunci h = k pe D.

Demonstrație. Putem presupune, fără a reduce generalitatea, că avem $k \equiv 0$. Punem $g := h_x - \mathrm{i}\,h_y$. Cum g este olomorfă pe D, iar g = 0 pe U, obținem g = 0 pe D, de unde deducem $h_x = 0$ și $h_y = 0$ pe D. Aşadar, h este constantă pe D, și cum h = 0 pe U, acea constantă trebuie să fie 0.

Teorema de identitate pentru funcții olomorfe este mai puternică: dacă două funcții olomorfe sunt egale pe o mulțime care are un punct de acumulare în domeniul D, atunci ele sunt egale pe tot D-ul. Acest lucru nu este adevărat pentru funcții armonice. De exemplu, h(z) = Re z și k(z) = 0 sunt armonice pe \mathbb{C} , sunt egale pe \mathbb{R} , dar ele nu coincid pe \mathbb{C} .

Teorema 2.1.8: [Principiul de maximum/minimum pentru funcții armonice] Fie h o funcție armonică pe un domeniu $D \subset \mathbb{C}$.

- (a) Dacă h are un punct de maximum (resp. minimum) local în D, atunci h este constantă.
- (b) Dacă h se extinde continuu la \overline{D} şi $h \le 0$ (resp. $h \ge 0$) pe ∂D , atunci $h \le 0$ (resp. $h \ge 0$) pe D.

Demonstrație. Facem demonstrația doar pentru maximum (pentru minimum funcționează acceași demonstrație aplicată pentru -h).

- (a) Să presupunem că $w \in D$ este punct de maxim local pentru h. Atunci, pentru un r > 0, avem $h \le h(w)$ pe D(w, r). Cu Teorema 2.1.2 (2), există f olomorfă pe D(w, r) pentru care h = Re f pe acest disc. Atunci $|e^f|$ are maxim local în w, deci e^f trebuie să fie constantă. Aşadar, h este constantă pe D(w, r), iar Teorema 2.1.7 ne asigură că h este constantă pe D.
- (b) Cum \overline{D} este compact, h atinge maximum într-un punct $w \in \overline{D}$. Dacă $w \in \partial D$, atunci ipoteza $h \leq 0$ pe ∂D ne asigură că $h \leq 0$ pe D. Dacă $w \in D$, atunci partea (a) implică h constantă pe D, așadar și pe \overline{D} , și cu ipoteza (b) obținem din nou $h \leq 0$ pe D.

Exerciții

- 1. Fie $h(x+iy)=e^x(x\cos y-y\sin y)$. Arătați că h este armonică pe $\mathbb C$ și determinați o funcție olomorfă f pe $\mathbb C$ pentru care $h=\mathrm{Re}\,f$.
- 2. Fie h o funcție armonică pe $\{z \in \mathbb{C} \mid \rho_1 < |z| < \rho_2\}$. Folosind că $h_x \mathrm{i} h_y$ este olomorfă, demonstrați că există niște constante unice $(a_n)_{n \in \mathbb{Z}}$ și b în \mathbb{C} , cu $a_0, b \in \mathbb{R}$, astfel încât

$$h(z) = \operatorname{Re}\left(\sum_{-\infty}^{\infty} a_n z^n\right) + b \log|z|, \text{ unde } \rho_1 < |z| < \rho_2.$$

- 3. Fie h, k funcții armonice neconstante pe un domeniu D. Demonstrați că hk este armonică dacă și numai dacă $h+\mathrm{i}\,ck$ este olomorfă pentru o constantă reală c.
 - Hint: pentru partea "numai dacă", considerați $\frac{f}{g}$, unde $f = h_x \mathrm{i}\,h_y$ și $g = k_x \mathrm{i}\,k_y$.
- 4. Demonstrați că orice funcție armonică este real-analitică.
- 5. Demonstrați că singurele funcții armonice pe $\widehat{\mathbb{C}}$ sunt funcțiile constante.

2.2 Problema Dirichlet pe disc

Problema Dirichlet este găsirea unei funcții armonice pe un domeniu, cu valorile pe frontieră prescrise. Pentru anumite domenii "bune", vor exista întotdeauna soluții.

Definiția 2.2.1: Fie D un subdomeniu în \mathbb{C} , și fie $\phi: \partial D \to \mathbb{R}$ o funcție continuă. Problema Dirichlet este găsirea unei funcții armonice h pe D, pentru care $\lim_{z\to\zeta}h(z)=\phi(\zeta)$ pentru orice $\zeta\in\partial D$.

Unicitatea este foarte uşor de demonstrat.

Teorema 2.2.2: [Unicitatea soluției problemei Dirichlet]

Cu notațiile din Definiția 2.2.1, există cel mult o soluție a problemei Dirichlet.

Demonstrație. Să presupunem că am avea două soluții, h_1 şi h_2 . Atunci, $h_1 - h_2$ este armonică pe D, se extinde continuu la \overline{D} , şi este 0 pe \overline{D} . Aplicând principiul de maxim pentru funcții armonice (Teorema 2.1.8 (b)) pentru $\pm (h_1 - h_2)$, deducem că $h_1 - h_2 \equiv 0$.

Problema existenței soluțiilor este mai complicată, așa că vom studia existența numai pentru cazul particular în care D este un disc. Pentru aceasta, avem nevoie de următoarea definiție:

Definiția 2.2.3:

(a) Notăm $D(0,1) = \mathbb{D}$. Nucleul Poisson $P: \mathbb{D} \times \partial \mathbb{D} \to \mathbb{R}$ este definit prin

$$P(z,\zeta) = \text{Re}\left(\frac{\zeta + z}{\zeta - z}\right) = \frac{1 - |z|^2}{|\zeta - z|^2}, \text{ unde } |z| < 1, |\zeta| = 1.$$

(b) Dacă $D=D(w,\rho)$ și $\phi:\partial D\to\mathbb{R}$ este o funcție integrabilă (Lebesgue), atunci definim integrala Poisson $P_D\phi:D\to\mathbb{R}$ prin

$$P_D\phi(z) := \frac{1}{2\pi} \int_0^{2\pi} P\left(\frac{z-w}{\rho}, e^{i\theta}\right) \phi(w + \rho e^{i\theta}) d\theta$$
, pentru orice $z \in D$.

Mai explicit, dacă $r < \rho$ și $0 \le t \le 2\pi$, atunci

$$P_D\phi(w+re^{it}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\rho^2 - r^2}{\rho^2 - 2\rho r\cos(\theta - t) + r^2} \phi(w + \rho e^{i\theta}) d\theta.$$

Avem nevoie de o lemă pentru a demonstra apoi un rezultat este foarte important.

Lema 2.2.4: Nucleul Poisson P satisface următoarele proprietăți:

- (i) $P(z,\zeta) > 0$, pentru orice |z| < 1 și $|\zeta| = 1$.
- (ii) $\frac{1}{2\pi} \int_0^{2\pi} P(z, e^{i\theta}) d\theta = 1$, pentru orice |z| < 1.
- (iii) $\sup_{|\zeta-\zeta_0|\geq \delta} P(z,\zeta) \to 0$ când $z \to \zeta_0$, unde $|\zeta_0| = 1, \delta > 0$.

Demonstrație. (i) Este clar din Definiția 2.2.3 (a).

(ii) Exprimând integrala cu ajutorul formulei Cauchy, vom avea:

$$\frac{1}{2\pi} \int_0^{2\pi} P(z, e^{it}) d\theta = \operatorname{Re}\left(\frac{1}{2\pi i} \int_{|\zeta|=1} \frac{\zeta + z}{\zeta - z} \cdot \frac{1}{\zeta} d\zeta\right)$$
$$= \operatorname{Re}\left(\frac{1}{2\pi i} \int_{|\zeta|=1} \left(\frac{2}{\zeta - z} - \frac{1}{\zeta}\right) d\zeta\right)$$
$$= \operatorname{Re}(2 - 1) = 1.$$

(iii) Dacă $|z - \zeta_0| < \delta$, atunci

$$\sup_{|\zeta - \zeta_0| \ge \delta} P(z, \zeta) \le \frac{1 - |z|^2}{(\delta - |\zeta_0 - z|)^2},$$

iar concluzia rezultă trecând la limita cu $z \to \zeta_0$.

Continuăm prezentarea cu rezultatul foarte important pe care l-am anunțat.

Teorema 2.2.5: [Existența soluțiilor problemei Dirichlet]

Cu notațiile din Definiția 2.2.3,

- (a) $P_D\phi$ este armonică pe D
- (b) dacă ϕ este continuă in $\zeta_0 \in \partial D$, atunci $\lim_{z \to \zeta} P_D \phi(z) = \phi(\zeta_0)$.

În particular, dacă ϕ este continuă pe ∂D , atunci $h := P_D \phi$ este soluție a probemei Dirichlet pe D.

Demonstrație. (a) Făcând, eventual, o schimbare afină de coordonate, putem presupune că w=0 și $\rho=1$, deci $D=D(0,1)=\mathbb{D}$. Atunci,

$$P_{\mathbb{D}}\phi(z) = \operatorname{Re}\left(\frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{\mathrm{i}\,\theta} + z}{e^{\mathrm{i}\,\theta} - z} \phi(e^{\mathrm{i}\,\theta}) d\theta\right), \text{ unde } z \in \mathbb{D},$$

deci $P_{\mathbb{D}}\phi$ este partea reală a unei funcții olomorfe în variabila z, așadar este armonică.

(b) Din nou, putem presupune $D=\mathbb{D}.$ Pentru această parte, folosim Lema 2.2.4 (i) și (ii) și vom avea:

$$|P_{\mathbb{D}}\phi(z) - \phi(\zeta_0)| = \left| \frac{1}{2\pi} \int_0^{2\pi} P(z, e^{i\theta}) (\phi(e^{i\theta}) - \phi(\zeta_0)) d\theta \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} P(z, e^{i\theta}) |\phi(e^{i\theta}) - \phi(\zeta_0)| d\theta.$$

Fie $\epsilon > 0$. Dacă ϕ este continuă în ζ_0 , atunci există $\delta > 0$ astfel încât

$$|\zeta - \zeta_0| < \delta \Rightarrow |\phi(\zeta) - \phi(\zeta_0)| < \epsilon$$
.

Din nou, Lema 2.2.4 (i) și (ii) implică

$$\frac{1}{2\pi} \int_{|e^{\mathrm{i}\theta} - \zeta_0| < \delta} P(z, e^{\mathrm{i}\theta}) |\phi(e^{\mathrm{i}\theta}) - \phi(\zeta_0)| d\theta \le \frac{1}{2\pi} \int_0^{2\pi} P(z, e^{\mathrm{i}\theta}) \epsilon d\theta = \epsilon.$$

De asemenea, din Lema 2.2.4 (iii), există $\delta' > 0$ astfel încât

$$|z - \zeta_0| < \delta' \Rightarrow \sup_{|\zeta - \zeta_0| \ge \delta} P(z, \zeta) < \epsilon.$$

Deci, dacă $|z - \zeta_0| < \delta'$, atunci

$$\frac{1}{2\pi} \int_{|e^{\mathrm{i}\,\theta} - \zeta_0| \ge \delta} P(z, e^{\mathrm{i}\,\theta}) |\phi(e^{\mathrm{i}\,\theta}) - \phi(\zeta_0)| d\theta \le \frac{1}{2\pi} \int_0^{2\pi} \epsilon |\phi(e^{\mathrm{i}\,\theta}) - \phi(\zeta_0)| d\theta
\le \epsilon \left(\frac{1}{2\pi} \int_0^{2\pi} |\phi(e^{\mathrm{i}\,\theta})| d\theta + |\phi(\zeta_0)|\right).$$

Combinând rezultatele obținute, deducem că dacă $|z - \zeta_0| < \delta'$, atunci

$$|P_{\mathbb{D}}\phi(z) - \phi(\zeta_0)| \le \epsilon \left(1 + \frac{1}{2\pi} \int_0^{2\pi} |\phi(e^{i\theta})| d\theta + |\phi(\zeta_0)|\right),$$

lucru care încheie demonstrația.

Teorema 2.2.6: [Reciproca teoremei de medie] Fie $h: U \to \mathbb{R}$ o funcție continuă pe o mulțime deschisă $U \subset \mathbb{C}$, care are proprietatea de medie, i.e. pentru orice $w \in U$, există $\rho > 0$ pentru care

$$h(w) = \frac{1}{2\pi} \int_0^{2\pi} h(w + re^{it}) dt, \text{ pentru orice } 0 \le r < \rho.$$

Atunci, h este armonică pe U.

Demonstrație. Este suficient să demonstrăm că h este armonică pe fiecare disc deschis D pentru care $\overline{D} \subset U$. Fixăm un astfel de disc D și definim $k : \overline{D} \to \mathbb{R}$, prin

$$k = \begin{cases} h - P_D h & \text{pe } D \\ 0 & \text{pe } \partial D \end{cases}$$

Atunci, k este continnuă pe \overline{D} și are proprietatea de medie pe D. Cum \overline{D} este compact, k îsi atinge maximum M într-un punct din \overline{D} . Definim

$$A = \{ z \in D \mid k(z) < M \}$$
 si $B = \{ z \in D \mid k(z) = M \}.$

k este continuă, deci A este deschisă. Dar şi B este deschisă, pentru că dacă k(w)=M, atunci proprietatea de medie forțează k să fie egală cu M pe toate cercurile centrate în w cu rază suficient de mică. Cum A şi B formează o partiție a mulțimii conexe D, avem ori A=D, ori B=D. Dacă A=D, atunci k îsi atinge maximum pe ∂D , dar k=0 pe ∂D , așadar M=0. Dacă B=D, atunci B=M şi din nou B=0 pe B=0 implică B=0. Prin urmare, B=0 un argument similar pentru B=0 arată că avem şi B=0 Deducem că avem B=0 pe B=0 deci B=00.

Corolarul 2.2.7: Dacă $(h_n)_{n\geq 1}$ este un şir de funcții armonice pe D care converge local uniform la o funcție h, atunci h este armonică pe D.

Demonstrație. Folosim teorema de medie si reciproca teoremei de medie.

2.3 Funcții armonice pozitive

În această secțiune vom folosi integrala Poisson pentru a deduce unele inegalități folositoare pentru funcțiile armonice pozitive. Prin "pozitivă" înțelegem h > 0, deși nu este o diferență esențială, pentru că dacă h îsi atinge minimul egal cu 0 pe D, atunci $h \equiv 0$.

Teorema 2.3.1: [Inegalitățile Harnack] Fie h > 0 o funcție armonică pe discul $D_{\rho}(w)$. Atunci, pentru $r < \rho$ și $0 \le t \le 2\pi$,

$$\frac{\rho-r}{\rho+r}h(w) \leq h(w+re^{it}) \leq \frac{\rho+r}{\rho-r}h(w).$$

Demonstrație. Alegem s astfel încât $r < s < \rho$. Aplicând formula integralei Poisson pentru h pe $D_s(w)$, obținem:

$$h(w + re^{it}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{s^2 - r^2}{s^2 - 2sr\cos(\theta - t) + r^2} h(w + se^{i\theta}) d\theta$$
$$\leq \frac{1}{2\pi} \int_0^{2\pi} \frac{s + r}{s - r} h(w + se^{i\theta}) d\theta$$
$$= \frac{s + r}{s - r} h(w),$$

ultima egalitate fiind obținută prin aplicarea teoremei de medie pentru h. Facem $s \to \rho$ și deducem că

$$h(w + re^{it}) \le \frac{s+r}{s-r}h(w),$$

care este marginea superioară din enunț. Pentru marginea inferioară se procedează similar.

Corolarul 2.3.2: Fie $D \subset \widehat{\mathbb{C}}$ un domeniu şi $z, w \in D$. Atunci, există un număr τ astfel încât pentru orice funcție armonică h > 0 pe D,

$$\tau^{-1}h(w) \le h(z) \le \tau h(w). \tag{2.3.1}$$

Demonstrație. Date $z, w \in D$, scriem $z \sim w$ dacă există un număr τ pentru care inegalitățile 2.3.1 sunt adevărate pentru orice funcție armonică h > 0 pe D. Atunci, din inegalitățile Harnack (Teorema 2.3.1) rezultă că clasele de echivalență sunt mulțimi deschise. Cum D este conex, poate exista o singură clasă de echivalență.

Corolarul anterior conduce la următoarea definiție:

Definiția 2.3.3: [Distanța Harnack] Fie $D \subset \widehat{\mathbb{C}}$ un domeniu. Date $z, w \in D$, distanța Harnack dintre z și w este cel mai mic număr $\tau_D(z, w)$ astfel încât pentru orice funcție armonică h > 0 pe D, sunt verificate inegalitățile

$$\tau_D(z, w)^{-1}h(w) \le h(z) \le \tau_D(z, w)h(w).$$
 (2.3.2)

Există un caz particular pentru care τ_D poate fi calculată imediat: cazul în care D este un disc.

Teorema 2.3.4: $Dac\breve{a} D = D_{\rho}(w)$, atunci

$$au_D(z,w) = \frac{
ho + |z-w|}{
ho - |z-w|}, \ pentru \ orice \ z \in D.$$

Demonstrație. Din inegalitatea Harnack, rezultă că

$$\tau_D(z, w) \le \frac{\rho + |z - w|}{\rho - |z - w|}, \text{ pentru orice } z \in D.$$

Pe de altă parte, considerând funcția armonică pozitivă h pe D definită prin

$$h(z) = P\left(\frac{z-w}{\rho}, \zeta\right) = \operatorname{Re}\left(\frac{\rho\zeta + (z-w)}{\rho\zeta - (z-w)}\right), \text{ unde } |\zeta| = 1,$$

vedem că avem chiar egalitate.

Cu această teoremă, putem estima sau chiar calcula $\tau_D(z, w)$ și pentru alte domenii D, cu ajutorul următorului principiu de subordonare.

Teorema 2.3.5: [Principiul de subordonare] Fie $f: D_1 \to D_2$ o funcție meromorfă între domeniile D_1 și D_2 din $\widehat{\mathbb{C}}$. Atunci,

$$\tau_{D_2}(f(z), f(w)) \leq \tau_{D_1}(z, w)$$
, pentru orice $z, w \in D_1$,

cu egalitate dacă f este biolomorfă de la D_1 la D_2 .

Demonstrație. Fie $z, w \in D_1$. Pentru o funcție armonică pozitivă $h: D_2 \to \mathbb{R}$, compunerea $h \circ f: D_1 \to \mathbb{R}$ este tot armonică și pozitivă. Din 2.3.2, obținem

$$\tau_{D_1}(z,w)^{-1}h(f(w)) \le h(f(z)) \le \tau_{D_1}h(f(w)).$$

Cum această inegalitate are loc pentru orice h, obținem inegalitatea dorită. Dacă, în plus, f este biolomorfism, atunci putem aplica același argument pentru f^{-1} și vom deduce că are avem chiar egalitate.

Corolarul 2.3.6: Dacă $D_1 \subset D_2$, atunci $\tau_{D_2}(z,w) \leq \tau_{D_1}(z,w)$ pentru orice $z,w \in D_1$.

Demonstrație. Aplicăm Teorema 2.3.5 pentru funcția de incluziune $i: D_1 \to D_2$.

Folosim acest rezultat pentru a demonstra continuitatea funcției τ_D .

Propozitia 2.3.7: $Dac\check{a} D \subset \widehat{\mathbb{C}}$, $atunci \log \tau_D$ este o semi-metrică continuă pe D.

Demonstrație. Pentru a arăta că $\log \tau_D$ este o semi-metrică, avem de demonstrat:

- $\tau_D(z,w) \ge 1$, $\tau_D(z,z) = 0$ pentru orice $z,w \in D$.
- $\tau_D(z, w) = \tau_D(w, z)$ pentru orice $z, w \in D$.
- $\tau_D(z,w) \leq \tau_D(z,z')\tau_D(z',w)$ pentru orice $z,z',w\in D$,

care rezultă toate ușor din definiția lui τ_D . Pentru a arăta continuitatea, este suficient să demonstrăm că

$$\log \tau_D(z, w) \to 0$$
 pentru $z \to w$,

iar in general continuitatea va rezulta aplicând inegalitatea triunghiului pentru $\log \tau_D$. Pentru aceasta, fixăm un $w \in D$ și alegem $\rho > 0$ astfel încât $D_{\rho}(w) \subset D$. Atunci, pentru $z \in D_{\rho}(w)$, avem

$$0 \le \log \tau_D(z, w) \le \log \tau_{D_{\rho}(w)}(z, w) = \log \left(\frac{\rho + |z - w|}{\rho - |z - w|} \right),$$

deci într-adevăr $\log \tau_D(z, w) \to 0$ pentru $z \to w$.

Observația 2.3.8: Se poate întâmpla să avem $\log \tau_D(z, w) = 0$ și pentru $z \neq w$, deci $\log \tau_D$ nu este chiar o metrică. Acest lucru are loc, de exemplu, dacă $D = \mathbb{C}$, domeniu pe care toate funcțiile armonice pozitive sunt constante.

Teorema 2.3.9: [Teorema Harnack] Fie $(h_n)_{n\geq 1}$ un şir de funcții armonice pozitive pe un domeniu $D \subset \widehat{\mathbb{C}}$. Atunci, ori $h_n \to \infty$ local uniform, ori există un subşir $(h_{n_j})_{j\geq 1}$, $h_{n_j} \to h$ pentru $j \to \infty$, unde h este armonică.

Demonstrație. Fixăm $w \in D$. Din inegalitățile

$$\tau_D(z, w)^{-1} h_n(w) \le h_n(z) \le \tau_D(z, w) h_n(w) \text{ pentru orice } z \in D, n \ge 1,$$
(2.3.3)

rezultă că dacă $h_n(w) \to \infty$, atunci $h_n(w) \to \infty$ local uniform pe D, iar dacă $h_n(w) \to 0$, atunci $h_n(w) \to 0$ local uniform pe D. Prin urmare, înlocuind eventual cu un subșir, putem presupune că $(\log h_n(w))_{n\geq 1}$ este șir mărginit. Inegalitatea 2.3.3 implică că $(\log h_n)_{n\geq 1}$ este local mărginit pe D, deci rămâne de demonstrat că există un subșir $(h_{n_j})_{j\geq 1}$ pentru care $(\log h_{n_j})_{j\geq 1}$ este local uniform convergent pe D.

Fie $S \subset D$ numărabilă. Atunci, şirul $(\log h_n(\zeta))_{j\geq 1}$ este mărginit pentru orice $\zeta \in S$, deci cu un "argument diagonal", putem găsi un subşir $(h_{n_j})_{j\geq 1}$ astfel încât $(\log h_{n_j}(\zeta))_{j\geq 1}$ este convergent pentru orice $\zeta \in S$. Arătăm acum că, pentru acest subşir, $(\log h_{n_j})_{j\geq 1}$ este local uniform convergent pe D. Fie $K \subset D$ un compact şi $\epsilon > 0$. Pentru orice $z \in K$, fie

$$V_z = \{ z' \in D \mid \log \tau_D(z, z') < \epsilon \},\$$

și fie $V_{z_1}, V_{z_2}, \dots, V_{z_m}$ o acoperire finită a lui K. Cum S este densă în D, pentru fiecare l putem alege un punct $\zeta_l \in V_{z_l} \cap S$. Atunci, există un $N \geq 1$ astfel încât

$$|\log h_{n_j}(\zeta_l) - \log h_{n_k}(\zeta_l)| \le \epsilon$$
, pentru orice $n_j, n_k \ge N, 1 \le l \le m$.

Cu definiția distanței Harnack, avem

$$|\log h_{n_i}(z) - \log h_{n_i}(\zeta_l)| \le \log \tau_D(z, \zeta_l) \le 2\epsilon$$
 pentru orice $z \in V_{z_l}$,

și o inegalitate similară cu n_k . Din aceste inegalități, deducem

$$|\log h_{n_i}(z) - \log h_{n_k}(z)| \le 5\epsilon$$
 pentru orice $n_i, n_k \ge N, z \in K$.

Aşadar, am obținut că $(\log h_{n_i})_{i\geq 1}$ este uniform Cauchy pe K, deci uniform convergent pe K.

2.4 Mica teoremă a lui Picard

Avem nevoie, mai întâi, de un rezultat pregatitor. Vom folosi notația

$$M_h(w,r) := \sup_{D_r(w)} h = \sup_{\partial D_r(w)} h.$$

Lema 2.4.1: Fie h o funcție armonică pe o vecinătate a lui $\overline{D}(0,2R)$, cu h(0) = 0. Atunci, există un disc $D_r(w) \subset D(0,2R)$ astfel încât h(w) = 0,

$$M_h(w,r) \ge 3^{-11} M_h(0,R)$$
 $\qquad \text{si} \qquad M_h\left(w,\frac{r}{2}\right) \ge 3^{-11} M_h(w,r).$

Bineînțeles, constanta 3^{-11} nu este importantă aici. Important este că este pozitivă.

Demonstrație. Pentru $z \in D_{2R}(0)$, notăm $\delta(z) = \operatorname{dist}(z, \partial D_{2R}(0))$ și definim

- $Z = \{z \in D_{2R}(0) \mid h(z) = 0\},\$
- $U = \bigcup_{z \in Z} D_{\frac{\delta(z)}{4}}(z),$
- $\gamma = \sup_U h = \sup_{z \in Z} M_h\left(z, \frac{\delta(z)}{4}\right)$.

Alegem $w \in Z$ astfel încât $M_h\left(w, \frac{\delta(w)}{4}\right) \geq \frac{\gamma}{3}$, și punem $r = \frac{\delta(w)}{2}$. Vom arăta că $D_r(w)$ satisface concluzia lemei. Avem $D_r(w) \subset D_{2R}(0)$ și h(w) = 0. De asemenea, $M_h(w, \frac{r}{2}) \geq \frac{\gamma}{3}$, deci pentru a încheia demonstrația, trebuie să arătăm că:

- (a) $M_h(0,R) \le 3^{10}\gamma$,
- (b) $M_h(w,r) \leq 3^{10} \gamma$.

Demonstrația pentru (a): Luăm $z \in D_R(0)$ cu $h(z) \geq 0$. Dacă $z \in \overline{U}$, atunci din continuitate obținem $h(z) \leq \gamma$. Presupunem în continuare $z \notin \overline{U}$. Atunci, folosind notația obișnuită pentru segmente în \mathbb{C} , va exista $z' \in (z,0) \cap \overline{U}$ pentru care $[z,z') \cap \overline{U} = \emptyset$. Deducem că h < 0 pe [z,z'). De fapt, pentru orice $\zeta \in [z,z')$, avem h < 0 pe $D_{\frac{R}{5}}(\zeta)$, pentru că altfel ar exista $\zeta' \in D_{\frac{R}{5}}(\zeta)$ cu $h(\zeta') = 0$. Dar atunci $\zeta' \in Z$ și

$$\delta(\zeta') \ge \delta(\zeta) - |\zeta' - \zeta| \ge R - \frac{R}{5} = \frac{4R}{5} > 4|\zeta' - \zeta|,$$

care ar implica $\zeta \in U$, o contradicție!! Din inegalitatea Harnack, obținem, pentru orice astfel de ζ , inegalitatea

$$\sup_{D_{\frac{R}{10}}(\zeta)} h \le 3^2 \inf_{D_{\frac{R}{10}}(\zeta)} h.$$

Cum [z,z'] are lungime mai mică decât R, poate fi acoperit de 5 discuri de rază $\frac{R}{10}$ cu centre în [z,z'). Prin urmare,

$$h(z) \le (3^2)^5 h(z') \le 3^{10} \gamma,$$

inegalitatea din urmă având loc pentru că $h \leq \gamma$ pe \overline{U} .

Demonstrația pentru (b): Este practic același lucru ca la (a). Luăm $z \in D_r(w)$ cu $h(z) \geq 0$. Dacă $z \in \overline{U}$, atunci din continuitate avem $h(z) \leq \gamma$. Presupunem acum $z \notin \overline{U}$. Atunci, există $z' \in (z,w) \cap \overline{U}$ astfel încât $[z,z') \cap \overline{U} = \emptyset$. Vom avea h>0 pe [z,z'). De fapt, pentru fiecare $\zeta \in [z,z')$, avem h>0 pe $D_{\frac{r}{5}}(\zeta)$, pentru că în caz contrar, ar exista $\zeta' \in D_{\frac{r}{5}}(\zeta)$ cu $h(\zeta')=0$. Dar atunci $\zeta' \in Z$ și

$$\delta(\zeta') \ge \delta(w) - |\zeta' - \zeta| - |\zeta - w| \ge 2r - \frac{r}{5} - r = \frac{4r}{5} \ge 4|\zeta' - \zeta|,$$

care implică $\zeta \in U$, o contradicție!! Din nou cu inegalitatea Harnack, pentru orice astfel de ζ , vom avea

$$\sup_{D_{\frac{r}{10}}(\zeta)} h \le 3^2 \inf_{D_{\frac{r}{10}}(\zeta)} h.$$

Cum [z,z'] are lungime mai mică decât r, poate fi acoperit de 5 discuri de rază $\frac{r}{10}$ cu centre în [z,z'). Prin urmare,

$$h(z) \le (3^2)^5 h(z') \le 3^{10} \gamma,$$

iar inegalitatea finală are loc, la fel ca la punctul (a), pentru că $h \leq \gamma$ pe \overline{U} .

Teorema 2.4.2: [Mica teoremă Picard] Fie $f: \mathbb{C} \to \mathbb{C}$ o funcție olomorfă, neconstantă. Atunci, $\mathbb{C} \setminus f(\mathbb{C})$ conține cel mult un punct.

Demonstrație. Să presupunem, prin absurd, că $\mathbb{C} \setminus f(\mathbb{C})$ conține cel puțin două puncte, α, β . Atunci, funcțiile $h := \log |f - \alpha|$ și $k := \log |f - \beta|$ sunt armonice pe \mathbb{C} , și satisfac inegalitățile

$$|h^+ - k^+| \le |\alpha - \beta|$$
 si $\max(h, k) \ge \log \frac{|\alpha - \beta|}{2}$,

peste tot pe \mathbb{C} . Cum f este neconstantă, la fel este şi h, deci cu principiul de max/min (Teorema 2.1.8), h este nemărginită atât inferior, cât şi superior. În particular, există $z_0 \in \mathbb{C}$ cu $h(z_0) = 0$. Înlocuind f(z) cu $f(z+z_0)$, putem presupune, fără a reduce generalitatea, că f(0) = 0. Aplicăm acum Lema 2.4.1 pentru h pe fiecare din discurile $D_{2^{j+1}}(0)$ pentru a produce noi discuri $D_{r_j}(w_j)$ astfel încât $h(w_j) = 0$ și

$$M_h(w_j, r_j) \ge 3^{-11} M_h(0, 2^j)$$
 şi $M_h\left(w_j, \frac{r_j}{2}\right) \ge 3^{-11} M_h(w_j, r_j).$

Pentru fiecare $j \geq 1$, punem $M_j = M_h(w_j, r_j)$. Cum h este nemărginită,

$$\lim_{j \to \infty} M_j \ge 3^{-11} \lim_{j \to \infty} M_h(0, 2^j) = \infty.$$

Definim două șiruri de funții armonice $(h_j)_{j\geq 1}$ și $(k_j)_{j\geq 1}$ pe $D_1(0)$ prin

$$h_j(z) = \frac{h(w_j + r_j z)}{M_j}$$
 și $k_j(z) = \frac{k(w_j + r_j z)}{M_j}$, pentru orice $|z| < 1$.

Atunci, h_j și k_j au următoarele proprietăți:

- (a) $h_i(0) = 0$
- (b) $M_{h_j}\left(0, \frac{1}{2}\right) \ge 3^{-11}$
- (c) $|h_j^+ k_j^+| \le \frac{|\alpha \beta|}{M_i}$
- (d) $\max(h_j, k_j) \ge \frac{\log \frac{|\alpha \beta|}{2}}{M_j}$.

Este clar că $h_j \leq 1$ pentru toți $j \geq 1$, deci putem aplica Teorema 2.3.9 pentru $(1 - h_j)_{j \geq 1}$ pentru a deduce că un subșir al lui $(h_j)_{j \geq 1}$ converge local uniform la o funcție $\widetilde{h}: D_1(0) \to \mathbb{R}$. Funcțiile $(k_j)_{j \geq 1}$ sunt, de asemenea, uniform mărginite superior (de exemplu, de $1 + \frac{|\alpha - \beta|}{M_1}$), deci un subșir mai mic converge local uniform la $\widetilde{k}: D_1(0) \to \mathbb{R}$. Atât \widetilde{h} cât și \widetilde{k} sunt armonice (posibil egale cu $-\infty$), și au proprietățile

- (a) $\tilde{h}(0) = 0$
- (b) $M_{\widetilde{h}}(0,\frac{1}{2}) \ge 3^{-11}$
- (c) $\tilde{h}^+ = \tilde{k}^+$

(d)
$$\max(\tilde{h}, \tilde{k}) \ge 0$$
.

Proprietatea (b) implică $\widetilde{h}(\zeta) > 0$ pentru un anumit ζ , iar (c) ne spune că $\widetilde{h} = \widetilde{k}$ pe o vecinătate a lui ζ . Cu principiul de identitate, deducem că $\widetilde{h} = \widetilde{k}$ pe $D_1(0)$. Din (d) deducem apoi că $\widetilde{h} \geq 0$ pe $D_1(0)$, și combinând acest lucru cu (a) și principiul de maximum, deducem că $\widetilde{h} \equiv 0$ pe $D_1(0)$. Dar acest lucru contrazice (b)!! Am ajuns astfel la o contradicție, care încheie demonstrația.

2.5 Funcții superior semicontinue

Prin definiție, funcțiile subarmonice vor fi superior semicontinue, așa că înainte să studiem functiile subarmonice, vom spune câteva lucruri despre functiile superior semicontinue.

Definiția 2.5.1: Fie X un spațiu topologic. Spunem că o funcție $u: X \to [-\infty, \infty)$ este

- superior semicontinuă dacă mulțimea $\{x \in X \mid u(x) < \alpha\}$ este deschisă în X, pentru orice $\alpha \in \mathbb{R}$;
- inferior semicontinuă dacă v este superior semicontinuă.

Un calcul simplu arată că u este superior semicontinuă dacă și numai dacă

$$\limsup_{y \to x} u(y) \le u(x).$$

De asemenea, u este continuă dacă și numai dacă este atât superior, cât și inferior semicontinuă.

Propoziția 2.5.2: Fie $K \subset X$ un compact și $u: X \to [-\infty, \infty)$ superior semicontinuă. Atunci, u este mărginită superior pe K și își atinge marginea superioară.

Demonstrație. Folosim aceeași idee ca la funcții continue.

Teorema 2.5.3: Fie $u: X \to [-\infty, \infty)$ superior semicontinuă pe un spațiu metric (X, d), astfel încât u este mărginită superior pe X. Atunci, există un şir de funcții continue $\phi_n: X \to \mathbb{R}$ ce verifică $\phi_1 \geq \phi_2 \geq \cdots \geq u$ pe X şi $\lim_{n\to\infty} \phi_n = u$.

Demonstrație. Putem presupune că $u \not\equiv -\infty$ (altfel luăm $\phi_n = -n$). Pentru $n \geq 1$, definim $\phi: X \to \mathbb{R}$ prin

$$\phi_n(x) = \sup_{x \in X} (u(y) - nd(x, y)), \text{ pentru orice } x \in X.$$

Atunci, pentru orice $n \geq 1$, vom avea

$$|\phi_n(x) - \phi_n(x')| \le nd(x, x')$$
, pentru orice $x, x' \in X$,

deci ϕ_n este continuă pe X. Este uşor de văzut că au loc şi inegalitățile $\phi_1 \ge \phi_2 \ge \cdots \ge u$, deci în particular avem $\lim_{n\to\infty} \phi_n \ge u$. Pe de altă parte,

$$\phi_n(x) \le \max \left(\sup_{D_{\rho}(x)} u, \sup_X (u - n\rho) \right) \text{ pentru orice } x \in X, \rho > 0,$$

de unde obtinem

$$\lim_{n \to \infty} \phi_n(x) \le \sup_{D_{\rho}(x)} u \text{ pentru orice } x \in X, \rho > 0.$$

Cum u este superior semicontinuă, dacă facem $\rho \to 0$, obținem $\lim_{n \to \infty} \phi_n \le u$.

2.6 Funcții subarmonice

Definiția 2.6.1: Fie $U\subset\mathbb{C}$ o mulțime deschisă. O funcție $u:U\to\mathbb{R}$ se numește subarmonică dacă

- \bullet u este superior semicontinuă
- pentru orice disc închis $\overline{D} \subset U$ și orice h armonică pe D și continuă pe \overline{D} , dacă $u \leq h$ pe ∂D , atunci $u \leq h$ pe D.

2.7 Principiul de maximum

Propoziția 2.7.1: Fie $U \subset \mathbb{C}$ un deschis conex și $u: U \to [-\infty, \infty)$ subarmonică. Dacă u are un punct de maxim în U, atunci u este constantă.

Demonstrație. Fie $M = \max_{x \in U} u(x) = u(a)$. Atunci,

$$\emptyset \neq \mathcal{M} = \{x \in U \mid u(x) = M\} = \bigcap_{n \geq 1} \left\{ x \in U \mid u(x) \geq M - \frac{1}{n} \right\},\,$$

care este mulţime închisă în U. Vom arăta că \mathcal{M} este şi deschisă. Fie $b \in \mathcal{M}$. Cum U este deschisă, există $\overline{D}_r(b) \subset U$. Presupunem, prin absurd, că există $c \in \overline{D}_r(b) \subset U$ astfel încât u(c) < M. Fie $\epsilon > 0$ astfel încât $u(c) < M - \epsilon$. Considerăm mulţimea deschisă

$$\{x \in U \mid u(x) < M - \epsilon\} \ni c.$$

Alegem o funcție continuă $f: \partial D_{|b-c|}(b) \to \mathbb{R}$ astfel încât $M - \epsilon \le f \le M$, f = M pe $\partial D_{|b-c|}(b) \setminus \{u(x) < M - \epsilon\}$, și $f(c) = M - \epsilon$. Atunci, $u \le f$ pe $\partial D_{|b-c|}(b)$. Atunci, există $h: \partial D_{|b-c|}(b) \to \mathbb{R}$ armonică, f = h pe $\partial D_{|b-c|}(b)$. Cum u este subarmonică, deducem că $u \le h$ peste tot. În particular,

$$u(b) \le h(b) = \frac{1}{2\pi} \int_0^{2\pi} f(b + |b - c|e^{it}) dt < M,$$

care este o contradicție. Cum U este conexă, deducem că $\mathcal{M} = U$.

Propoziția 2.7.2: Fie $U \subset \mathbb{C}$ un deschis conex şi $u: U \to [-\infty, \infty)$ superior semicontinuă. Presupunem că pentru orice $a \in U$ şi r > 0 astfel încât $\overline{D}_r(a) \subset U$, este îndeplinită inegalitatea

$$u(a) \le \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{it}) dt.$$

Atunci, dacă u are un punct de maxim în U, atunci u este constantă.

2.8 Criterii de subarmonicitate

Propoziția 2.8.1: Fie $U\subset \mathbb{C}$ deschisă şi $u:U\to [-\infty,\infty)$ superior semicontinuă, $u\not\equiv -\infty$.

• Dacă u este subarmonică, atunci pentru orice $a \in U$ şi r > 0 astfel încât $\overline{D}_r(a) \subset U$, este îndeplinită inegalitatea

$$u(a) \le \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{it}) dt.$$

• Dacă pentru orice $a \in U$, există r > 0 astfel încât $\overline{D}_r(a) \subset U$, are loc

$$u(a) \le \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{it}) dt,$$

atunci u este subarmonică.

Demonstrație.

• $u_{\upharpoonright \partial D_r(a)}$ este superior semicontinuă, deci există un şir de funcții continue $f_j: \partial D_r(a) \to \mathbb{R}$, $j \geq 1$, astfel încât $f_j(x) \searrow u(x)$, pentru orice x. Considerăm $h_j: \overline{D}_r(a) \to \mathbb{R}$ continuă, armonică pe $D_r(a)$, cu $f_j(x) = h_j(x)$ pe $\partial D_r(a)$. Atunci, cu teorema de convergență monotonă,

$$u(a) \le h_j(a) = \frac{1}{2\pi} \int_0^{2\pi} f_j(a + \rho e^{it}) dt \to \frac{1}{2\pi} \int_0^{2\pi} u(a + \rho e^{it}) dt.$$

- Fie $\overline{D}_r(a) \subset U$, $h : \overline{D}_r(a) \to \mathbb{R}$ continuă, armonică pe $D_r(a)$, astfel încâr $u \leq h$ pe $\partial D_r(a)$. Considerăm v = u h pe $D_r(a)$, care este superior semicontinuă și are proprietatea de submedie locală. Prin urmare, v are principiul de maxim pe $D_r(a)$. Distingem următoarele două cazuri:
 - 1. v are punct de maxim pe $D_r(a)$. Atunci, v este constantă, v = k pe $D_r(a)$, unde $k \le 0$, așadar $u \le h$ pe $D_r(a)$, exact ce voiam să arătăm.
 - 2. v nu are punct de maxim pe $D_r(a)$, deci max v se atinge pe $\partial D_r(a)$, dar $v \leq 0$ pe $\partial D_r(a)$, deci max $v \leq 0$ pe $\overline{D}_r(a)$, de unde obţinem iar $u \leq 0$ pe $D_r(a)$.

Corolarul 2.8.2: Subarmonicitatea este o proprietate locală: dacă pentru orice $a \in U$, există r > 0 astfel încât u este subarmonică pe $D_r(a) \subset U$, atunci u este subarmonică pe U.

Corolarul 2.8.3: Dacă $u_j(x) \searrow u(x)$ pentru orice $x, u \not\equiv -\infty$, atunci u este subarmonică.

Lema 2.8.4: Fie $u: U \to \mathbb{R}$ de clasă C^2 , cu $\Delta u > 0$ pe U. Atunci, u este subarmonică.

Demonstrație. Fie $\overline{D}_r(a) \subset U$ și $h : \overline{D}_r(a) \to \mathbb{R}$ continuă, armonică pe $D_r(a)$, $u_{|\partial D_r(a)} \leq h_{|\partial D_r(a)}$, adică $u - h \leq 0$ pe $\partial D_r(a)$. Atunci, $\triangle (u - h) > 0$ pe $D_r(a)$, deci u - h nu are puncte de maxim în $D_r(a)$, pentru că știm că

$$\frac{\partial^2}{\partial x^2}(u-h) + \frac{\partial^2}{\partial y^2}(u-h) > 0,$$

iar dacă b ar fi un punct de maxim, atunci

$$\frac{\partial^2}{\partial x^2}(u-h) \le 0 \text{ și } \frac{\partial^2}{\partial y^2}(u-h) \le 0,$$

care ar conduce la contradicție. Prin urmare, maximum pentru u-h se atinge pe $\partial D_r(a)$ și este ≤ 0 , adică $u \leq h$ pe tot discul.

Teorema 2.8.5: Fie $u: U \to \mathbb{R}$ de clasă C^2 . Atunci, u este subarmonică dacă şi numai dacă $\triangle u \ge 0$.

Demonstrație.

- Începem cu ipoteza u subarmonică. Presupunem, prin absurd, că ar exista $a \in U$ cu $\triangle u(a) < 0$. Atunci, există $V \ni a$, $\triangle u_{|V} < 0$, de unde deducem că $\triangle (-u)_{|V} > 0$, adică -u este subarmonică pe V. Dar şi u este subarmonică pe V, deci u este armonică pe V, adică $\triangle u_{|V} = 0$, contradicție cu $\triangle u(a) < 0$.
- Considerăm $\overline{D}_r(a)\subset U$. Este suficient să demonstrăm că $u_{|D_r(a)}$ este armonică. Considerăm

 $u_j = u + \frac{1}{j}|z|^2$, pentru orice $j \ge 1$.

Atunci, $\triangle u_j > 0$, deci u_j este subarmonică. Dar $u_j(x) \searrow u(x)$ pentru orice x, deci limita u este subarmonică.

2.9 Integrabilitatea funcțiilor subarmonice

Teorema 2.9.1: [Teorema de integrabilitate] Considerăm $u: D \to [-\infty, \infty)$ o funcție subarmonică pe un deschis conex $D \subset \mathbb{C}$, $u \not\equiv -\infty$. Atunci, u este local integrabilă, adică pentru orice compact $K \subset D$, $\int_K |u| dA < \infty$.

Demonstrație. Este suficient să arătăm că pentru orice $w \in D$, există $\rho > 0$ astfel încât

$$\int_{D_{\rho}(w)} |u| dA < \infty. \tag{2.9.1}$$

Fie A mulţimea punctelor $w \in D$ care au această proprietate, şi B a celor care nu o au. Vom arăta că atât A, cât şi B, sunt deschise. Fie $w \in A$, şi alegem $\rho > 0$ pentru care inegalitatea 2.9.1 este verificată. Dat $w' \in D_{\rho}(w)$, punem $\rho' = \rho - |w' - w|$. Atunci, $D_{\rho'}(w') \subset D_{\rho}(w)$, deci

$$\int_{D_{\rho'}(w')} |u| dA < \infty.$$

Aşadar, $D_{\rho}(w) \in A$, deci A este deschisă.

Fixăm acum $w \in B$, și alegem $\rho > 0$ astfel încât $\overline{D}_{2\rho}(w) \subset D$. Atunci, deoarece $w \in B$, avem

$$\int_{D_{\rho'}(w')} |u| dA = \infty.$$

Dat $w' \in D_{\rho}(w)$, punem $\rho' = \rho + |w' - w|$. Atunci, $D_{\rho'}(w') \supset D_{\rho}(w)$ şi u este mărginită superior pe $D_{\rho'}(w')$, deci

$$\int_{D_{\alpha'}(w')} u dA = -\infty.$$

Dar u satisface inegalitatea de submedie

$$u(w') \leq \frac{1}{2\pi} \int_0^{2\pi} u(w' + re^{it}) dt$$
, pentru orice $0 \leq r \leq \rho'$,

iar acum inmulțind cu $2\pi r$ și integrând de la r=0 la $r=\rho'$, obținem

$$\pi {\rho'}^2 u(w') \le \int_{D_{\sigma'}(w')} u dA = -\infty.$$

Prin urmare, $u = -\infty$ pe $D_{\rho}(w)$. Aceasta arată că B este deschisă. Dar D este conexă şi $u \not\equiv -\infty$, deci $B = \emptyset$.

Corolarul 2.9.2: Fie $D \subset \mathbb{C}$ un deschis conex și $u: D \to [-\infty, \infty)$ o funcție subarmonică, $u \not\equiv -\infty$. Dacă $\overline{D}_{\rho}(w) \subset D$, atunci

$$\frac{1}{2\pi} \int_0^{2\pi} u(w + \rho e^{it}) dt > -\infty.$$

Demonstrație. Fixăm $\overline{D}_{\rho}(w) \subset D$. Cum u este mărginită superior pe compacți, scăzând eventual o constantă, putem presupune $u \leq 0$ pe $\overline{D}_{\rho}(w)$. Atunci, pentru orice $0 \leq r \leq \rho$ și orice $0l31t \leq 2\pi$, avem:

$$\begin{aligned} u(w+re^{it}) &\leq \frac{1}{2\pi} \int_0^{2\pi} \frac{\rho^2 - r^2}{\rho^2 - 2r\rho\cos(\theta - t) + r^2} u(w + \rho e^{i\theta}) d\theta \\ &\leq \left(\frac{\rho - r}{\rho + r}\right) \frac{1}{2\pi} \int_0^{2\pi} u(w + \rho e^{i\theta}) d\theta. \end{aligned}$$

Dacă ultima integrală ar fi $-\infty$, atunci am obține $u = -\infty$ pe $D_{\rho}(w)$, care ar contrazice Teorema 2.9.1. În consecință, integrala este finită.

Corolarul 2.9.3: Fie $D \subset \mathbb{C}$ un deschis conex și $u : D \to [-\infty, \infty)$ o funcție subarmonică, $u \not\equiv -\infty$. Atunci, mulțimea $E = \{z \in D \mid u(z) = -\infty\}$ este de măsură zero.

Demonstrație. Rezultă imediat din Teorema 2.9.1.

Capitolul 3

Transformata Fourier

3.1 Transformata Fourier. Definiție și proprietăți

Definiția 3.1.1: [Transformata Fourier] Fie $f \in L^1(\mathbb{R}^n)$. Definim funcția $\widehat{f} : \mathbb{R}^n \to \mathbb{R}$ prin

 $\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{2\pi ix\cdot\xi} dx,$

unde $x \cdot \xi = x_1 \xi_1 + \dots + x_n \xi_n$ este produsul scalar din \mathbb{R}^n . \widehat{f} se numește transformata Fourier a funcției f, este corect definită și $\widehat{f} \in L^{\infty}(\mathbb{R}^n)$.

În continuare, vom enumera și demonstra proprietățile transformatei Fourier. Urmărim să arătăm că transformata Fourier "se comporta frumos" în raport cu toate operațiile uzuale.

Propoziția 3.1.2: Transformarea Fourier $^{\wedge}: L^1(\mathbb{R}^n) \to L^{\infty}(\mathbb{R}^n)$ este o aplicație liniară mărginită. În plus, $\|\widehat{f}\|_{\infty} \leq \|f\|_1$.

Demonstrație. Din definiția transformatei Fourier, este ușor de văzut că $(f+g)^{\wedge} = \hat{f} + \hat{g}$. În plus,

$$|\widehat{f}(\xi)| = \left| \int_{\mathbb{R}^n} f(x) e^{2\pi i x \cdot \xi} dx \right| \le \int_{\mathbb{R}^n} |f(x)| e^{2\pi i x \cdot \xi} dx = \int_{\mathbb{R}^n} |f(x)| dx = ||f||_1.$$

Propoziția 3.1.3: Dacă $f \in L^1(\mathbb{R}^n)$, atunci \widehat{f} este uniform continuă.

Demonstrație. Fixăm $\epsilon>0$. Cum funcția $\xi\mapsto e^{2\pi ix\cdot\xi}$ este uniform contină, există $\delta>0$ astfel încât pentru orice $|\xi_2-\xi_1|\leq \delta$, să avem $|e^{2\pi ix\cdot\xi_1}-e^{2\pi ix\cdot\xi_2}|\leq \epsilon$. Apoi, folosind definiția

transformatei Fourier, vom avea:

$$|\widehat{f}(\xi_1) - \widehat{f}(\xi_2)| = \left| \int_{\mathbb{R}^n} f(x) e^{2\pi i x \cdot \xi_1} dx - \int_{\mathbb{R}^n} f(x) e^{2\pi i x \cdot \xi_2} dx \right| \le$$

$$\le \int_{\mathbb{R}^n} |f(x)| |e^{2\pi i x \cdot \xi_1} - e^{2\pi i x \cdot \xi_2} |dx \le \epsilon \int_{\mathbb{R}^n} |f(x)| dx = \epsilon ||f||_1,$$

pentru orice $|\xi_2 - \xi_1| \le \delta$, deci \hat{f} este uniform continuă.

Propoziția 3.1.4: Dacă
$$f \in L^1(\mathbb{R}^n)$$
, atunci $\widehat{f}(\xi) \to 0$ pentru $\|\xi\| \to \infty$.

Demonstrație. Vom face demonstrația în mai multe etape.

Cazul 1. Începem prin a demonstra propoziția în cazul particular în care $f = \chi_{[a_1,b_1] \times \cdots \times [a_n,b_n]}$ este funcția caracteristică a unui "dreptunghi" compact din \mathbb{R}^n . În acest caz, putem scrie:

$$\int_{\mathbb{R}^n} f(x)e^{-2\pi ix\cdot\xi} dx = \int_{[a_1,b_1]\times\dots\times[a_n,b_n]} e^{-2\pi ix\cdot\xi} dx$$
$$= \left[\int_{a_1}^{b_1} e^{-2\pi ix_1\xi_1} dx_1 \right] \cdot \dots \cdot \left[\int_{a_n}^{b_n} e^{-2\pi ix_n\xi_n} dx_n \right].$$

Mai departe, pentru orice $1 \le j \le n$, avem:

$$\int_{a_j}^{b_j} e^{-2\pi i x_j \xi_j} dx_j = \begin{cases} \frac{-1}{2\pi i \xi_j} e^{-2\pi i \xi_j (b_j - a_j)} & \text{dacă } \xi_j \neq 0 \\ b_j - a_j & \text{dacă } \xi_j = 0. \end{cases}$$

Cum pentru $\|\xi\| \to \infty$ avem cel puţin un $1 \le j \le n$ pentru care $|\xi_j| \to \infty$, deci $\xi_j \ne 0$, demonstrația este completă pentru cazul în care ne aflăm.

Cazul 2. În continuare, pentru funcții simple $g \in L^1(\mathbb{R}^n)$, $g = \sum_{k=1}^n \alpha_k \chi_{I_k}$, unde I_k este un "dreptunghi" pentru orice $1 \le k \le n$, concluzia rezultă din Cazul 1.

Cazul 3. Pentru $f \in L^1(\mathbb{R}^n)$ arbitară, vom aproxima f cu funcții simple. Fie $\epsilon > 0$. Atunci, există g simplă astfel încât $||f - g||_1 \le \epsilon$. Putem scrie f = g + (f - g), deci $\widehat{f} = \widehat{g} + \widehat{f - g}$, de unde obținem, mai departe,

$$\begin{split} |\widehat{f}(\xi)| &\leq |\widehat{g}(\xi)| + |\widehat{f-g}(\xi)| \\ &\leq |\widehat{g}(\xi)| + \|\widehat{f-g}\|_{\infty} \\ &\leq \epsilon + \epsilon = 2\epsilon, \end{split}$$

dacă $\|\xi\|$ este suficient de mare. Așadar, $\widehat{f}(\xi) \to \infty$ pentru $\|\xi\| \to \infty$.

 $L^1(\mathbb{R}^n)$ este spaţiu vectorial peste \mathbb{R} . Vrem să înzestrăm $L^1(\mathbb{R}^n)$ cu o înmulţire, astfel încât acest spaţiu să fie o algebră. Înmulţirea obişnuită a funcţiilor nu "funcţionează" în acest caz, doarece dacă $f \in L^1(\mathbb{R}^n)$, nu rezultă neapărat că $f^2 \in L^1(\mathbb{R}^n)$. În acest scop, vom folosi convoluţia a două funcţii, definită prin:

$$(f * g)(x) = \int_{\mathbb{R}^n} f(x - t)g(t)dt.$$

 $\textbf{Propoziția 3.1.5:} \ \ \textit{Dacă} \ f,g \in L^1(\mathbb{R}^n), \ \textit{atunci} \ f*g \in L^1(\mathbb{R}^n) \ \textit{și, în plus, } \widehat{f*g} = \widehat{f} \ \widehat{g}.$

Demonstrație. Folosind teorema Fubini, avem:

$$||(f * g)||_{1} = \int_{\mathbb{R}^{n}} |f * g|(x) dx = \int_{\mathbb{R}^{n}} \left| \int_{\mathbb{R}^{n}} f(x - t)g(t) dt \right| dx \le \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |f(x - t)g(t)| dt dx = \int_{\mathbb{R}^{n}} |g(t)| \left[\int_{\mathbb{R}^{n}} f(x - t) dx \right] dt = \int_{\mathbb{R}^{n}} |g(t)| ||f||_{1} dt = ||g||_{1} ||f||_{1},$$

aşadar $||f * g||_1 \le ||f||_1 ||g||_1$. Pentru a doua parte a concluziei, din nou folosind teorema Fubini, putem scrie:

$$\widehat{f*g}(\xi) = \int_{\mathbb{R}^n} (f*g)(x)e^{-2\pi ix\cdot\xi} dx = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x-t)g(t)dt e^{-2\pi ix\cdot\xi} dx$$

$$= \int_{\mathbb{R}^n} g(t) \left[\int_{\mathbb{R}^n} f(x-t)dt e^{-2\pi i(x-t)\cdot\xi} dx \right] e^{-2\pi it\cdot\xi} dt$$

$$= \int_{\mathbb{R}^n} g(t)\widehat{f}(\xi)e^{-2\pi it\cdot\xi} dt$$

$$= \widehat{f}(\xi) \int_{\mathbb{R}^n} g(t)e^{-2\pi it\cdot\xi} dt$$

$$= \widehat{f}(\xi)\widehat{g}(\xi).$$

Propoziția 3.1.6: $Dacă f, g \in L^1(\mathbb{R}^n)$, atunci

$$\int_{\mathbb{R}^n} \widehat{f}(x)g(x)dx = \int_{\mathbb{R}^n} f(x)\widehat{g}(x)dx.$$

Demonstrație. Demonstrația constă doar în folosirea definiției și aplicarea teoremei Fubini.

$$\int_{\mathbb{R}^n} \widehat{f}(x)g(x)dx = \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} f(y)e^{-2\pi i y \cdot x} dy \right] g(x)dx$$

$$= \int_{\mathbb{R}^n} f(y) \left[\int_{\mathbb{R}^n} g(x)e^{-2\pi i y \cdot x} dx \right] dy$$

$$= \int_{\mathbb{R}^n} f(y)\widehat{g}(y)dy = \int_{\mathbb{R}^n} f(x)\widehat{g}(x)dx.$$

Propoziția 3.1.7: Dacă notăm $\tau_h(x) = x - h$, adică translația cu vectorul -h, atunci

- $(f \circ \tau_h)^{\wedge}(\xi) = e^{-2\pi i \xi \cdot h} \widehat{f}(\xi)$
- $(e^{2\pi ix \cdot h} f(x))^{\wedge}(\xi) = (\widehat{f} \circ \tau_h)(\xi).$

Demonstrație.

$$(f \circ \tau_h)^{\wedge}(\xi) = \int_{\mathbb{R}^n} (f \circ \tau_h)(x) e^{-2\pi i x \cdot \xi} dx = \int_{\mathbb{R}^n} f(x - h) e^{-2\pi i (x - h) \cdot \xi} e^{-2\pi i \xi \cdot h} dx = e^{-2\pi i \xi \cdot h} \int_{\mathbb{R}^n} f(y) e^{-2\pi i y \cdot \xi} dy = e^{-2\pi i \xi \cdot h} \widehat{f}(\xi),$$

unde pentru ultima penultima egalitate am făcut schimbarea de variabilă y = x - h. Pentru a demonstra a doua egalitate, putem scrie

$$(e^{2\pi ix \cdot h} f(x))^{\wedge}(\xi) = \int_{\mathbb{R}^n} e^{2\pi ix \cdot h} f(x) e^{-2\pi ix \cdot \xi} dx = \int_{\mathbb{R}^n} f(x) e^{-2\pi ix \cdot (\xi - h)} dx = \widehat{f}(\xi - h) = (\widehat{f} \circ \tau_h)(\xi).$$

Propoziția 3.1.8:

• Fie $f \in L^1(\mathbb{R}^n)$, astfel încât $x_k f(x) \in L^1(\mathbb{R}^n)$. Atunci, \widehat{f} este derivabilă în raport cu ξ_k și

$$\frac{\partial \widehat{f}}{\partial \xi_k}(\xi) = (-2\pi i x_k f(x))^{\hat{}}(\xi).$$

• Fie $f \in L^1(\mathbb{R}^n)$, astfel încât $\frac{\partial f}{\partial x_k} \in L^1(\mathbb{R}^n)$ și $|f(x)| \xrightarrow{\|x\| \to \infty} 0$. Atunci,

$$\left(\frac{\partial f}{\partial x_k}\right)^{\wedge}(\xi) = 2\pi i \xi_k \widehat{f}(\xi).$$

Demonstrație. Demonstrația va avea două părți, corespunzătoare celor două egalități pe care le avem de demonstrat.

• Dacă $h = (0, \dots, 0, h_k, 0, \dots, 0)$, atunci putem scrie:

$$\begin{split} \frac{\widehat{f}(\xi+h) - \widehat{f}(\xi)}{h_k} &= \frac{(\widehat{f} \circ \tau_h - \widehat{f})(\xi)}{h_k} = \left[\frac{e^{-2\pi i x \cdot h} - 1}{h_k} f(x) \right]^{\wedge} (\xi) \\ &= \int_{\mathbb{R}^n} \frac{e^{-2\pi i x \cdot h} - 1}{h_k} f(x) e^{-2\pi i x \cdot \xi} dx \end{split}$$

Vrem să aplicăm teorema de convergență dominată. Pentru aceasta, observăm că

$$\left| \frac{e^{-2\pi i x \cdot h} - 1}{h_k} f(x) e^{-2\pi i x \cdot \xi} \right| = \left| \frac{e^{-2\pi i x_k h_k} - 1}{h_k} \right| |f(x)| \le C|f(x)|,$$

unde C>0 este o constantă, a cărei existență este asigurată de derivabilitatea în $h_k=0$ a funcției $h_k\to e^{-2\pi i x_k h_k}$. Cum $C|f(x)|\in L^1(\mathbb{R}^n)$, ipotezele teoremei de convergență dominată sunt îndeplinite. Așadar,

$$\lim_{h_k \to 0} \int_{\mathbb{R}^n} \frac{e^{-2\pi i x \cdot h} - 1}{h_k} f(x) e^{-2\pi i x \cdot \xi} dx = \int_{\mathbb{R}^n} \lim_{h_k \to 0} \frac{e^{-2\pi i x \cdot h} - 1}{h_k} f(x) e^{-2\pi i x \cdot \xi} dx$$
$$= \int_{\mathbb{R}^n} (-2\pi i x_k) f(x) e^{-2\pi i x \cdot \xi} dx$$
$$= (-2\pi i x_k f(x))^{\wedge}(\xi),$$

care încheie demonstrația primului punct.

• Folosind notația $\tilde{x} = (x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n)$, avem următorul șir de egalități:

$$\begin{split} \left(\frac{\partial f}{\partial x_k}\right)^{\wedge}(\xi) &= \int_{\mathbb{R}^n} \frac{\partial f}{\partial x_k}(x) e^{-2\pi i x \cdot \xi} dx \\ &= \int_{\mathbb{R}^{n-1}} \left(\int_{\mathbb{R}} \frac{\partial f}{\partial x_k} e^{-2\pi i x \cdot \xi} dx_k \right) d\tilde{x} \\ &= \int_{\mathbb{R}^{n-1}} \left(\left[f(x) e^{-2\pi i x \cdot \xi} \right]_{x_k = -\infty}^{\infty} - \int_{\mathbb{R}} -2\pi i \xi_k f(x) e^{-2\pi i x \cdot \xi} dx_k \right) d\tilde{x} \\ &= \int_{\mathbb{R}^{n-1}} \left(2\pi i \xi_k \int_{\mathbb{R}} f(x) e^{-2\pi i x \cdot \xi} dx_k \right) d\tilde{x} \\ &= 2\pi i \xi_k \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} dx = 2\pi i \xi_k \hat{f}(\xi), \end{split}$$

unde am folosit ipoteza $|f(x)| \xrightarrow{\|x\| \to \infty} 0$ pentru a deduce că $[f(x)e^{-2\pi ix\cdot\xi}]_{x_k = -\infty}^{\infty} = 0.$

3.2 Teorema de inversiune Fourier

Definiția 3.2.1: [Transformata inversă Fourier] Pentru o funcție $f \in L^1(\mathbb{R}^n)$, definim $\check{f} \in L^{\infty}(\mathbb{R}^n)$, prin formula

$$\widecheck{f}(\xi) = \int_{\mathbb{R}^n} f(y)e^{2\pi i y \cdot \xi} dy,$$

numită transformata inversă Fourier.

Aceasta ne permite ca, știind transformata Fourier \hat{f} , să recuperăm funcția inițială f. Pentru a demonstra acest lucru, avem nevoie de niște rezultate pregătitoare.

Lema 3.2.2:

$$\int_{\mathbb{R}^n} e^{-\pi \|x\|^2} dx = 1.$$

Demonstrație. Deoarece teorema Fubini ne asigură că

$$\int_{\mathbb{R}^n} e^{-\pi \|x\|^2} dx = \left(\int_{\mathbb{R}} e^{-\pi t^2} dt \right)^n,$$

va fi suficient să calculăm integrala din membrul drept.

$$\left(\int_{\mathbb{R}} e^{-\pi t^2} dt\right)^2 = \left(\int_{\mathbb{R}} e^{-\pi t^2} dt\right) \cdot \left(\int_{\mathbb{R}} e^{-\pi s^2} ds\right)$$

$$= \int_{\mathbb{R}^2} e^{-\pi (t^2 + s^2)} dt$$

$$= \int_0^{2\pi} \int_0^{\infty} e^{-\pi r^2} r dr d\theta$$

$$= \int_0^{2\pi} \left[-\frac{1}{2\pi} e^{-\pi r^2} \right]_0^{\infty} d\theta$$

$$= \int_0^{2\pi} \frac{1}{2\pi} d\theta = 1,$$

unde am făcut schimbarea de variabilă $t = r \cos \theta, s = r \sin \theta, \text{ cu } r \in (0, \infty)$ şi $\theta \in [0, 2\pi)$.

Lema 3.2.3:

$$\left(e^{-\pi \|x\|^2}\right)^{\wedge} = e^{-\pi \|\xi\|^2}$$

Demonstrație. Demonstrația acestei leme apelează la rezultate de analiza complexă. Pentru cazul 1-dimensional, folosim teorema Cauchy pentru funcția olomorfă $f(z) = e^{-\pi z^2}$ și dreptunghiul cu vârfurile $-R, R, R + i\xi, -R + i\xi$, orientat pozitiv, după care facem $R \to \infty$. Apoi, aplicând teorema Fubini, obținem concluzia.

Observația 3.2.4: Folosind schimbarea de variabilă $\sqrt{\epsilon \xi} = \eta$ și Lema 3.2.3, avem:

$$\int_{\mathbb{R}^n} e^{-2\pi i(y-x)\cdot\xi - \epsilon\pi \|\xi\|^2} d\xi = \int_{\mathbb{R}^n} \epsilon^{-\frac{n}{2}} e^{-2\pi i \frac{1}{\sqrt{\epsilon}}(y-x)\cdot\eta - \pi \|\eta\|^2} d\xi$$
$$= \epsilon^{-\frac{n}{2}} e^{-\pi \frac{\|y-x\|^2}{\epsilon}}$$

Lema 3.2.5: Fie $f \in L^1(\mathbb{R}^n)$. Atunci, notând $\tau_{-\delta}(x) = x + \delta$, avem:

$$\lim_{\delta \to 0} \|f \circ \tau_{-\delta} - f\|_1 = \lim_{\delta \to 0} \int_{\mathbb{R}^n} |f(x+\delta) - f(x)| dx = 0.$$

Demonstrație. Fie $\epsilon > 0$. Cum $f \in L^1(\mathbb{R}^n)$, există $g \in \mathcal{C}_c^{\infty}$ astfel încât $\|f - g\|_1 \le \epsilon$. În plus, $g \in \mathcal{C}_c^{\infty}$, deci g este uniform continuă, așadar există $\delta > 0$ astfel încât $|g(x) - g(y)| \le \epsilon$ pentru orice $|x - y| \le \delta$. Cum g are suport compact, rezultă că și $g \circ \tau_{-\delta} - g$ are suport compact, deci $\|g \circ \tau_{-\delta} - g\|_1 \le C\epsilon$, unde C > 0 este măsura Lebesgue a mulțimii supp $(g \circ \tau_{-\delta} - g)$. Prin urmare, vom avea:

$$||f \circ \tau_{-\delta} - f||_1 \le ||f \circ \tau_{-\delta} - g \circ \tau_{-\delta}||_1 + ||g \circ \tau_{-\delta} - g||_1 + ||g - f||_1$$

$$= ||g - f||_1 + ||g \circ \tau_{-\delta} - g||_1 + ||g - f||_1$$

$$\le (2 + C)\epsilon,$$

 $\operatorname{deci} \lim_{\delta \to 0} \|f \circ \tau_{-\delta} - f\|_1 = 0.$

Lema 3.2.6:

$$\lim_{\epsilon \to 0} \int_{\mathbb{R}^n} f(y) \epsilon^{-\frac{n}{2}} e^{-\frac{\pi \|x - y\|^2}{\epsilon}} dy = f(x) \quad a.p.t.$$

Demonstrație. Facem schimbarea de variabilă $\frac{y-x}{\sqrt{\epsilon}} = t$. Atunci,

$$\lim_{\epsilon \to 0} \int_{\mathbb{R}^n} f(y) \epsilon^{-\frac{n}{2}} e^{-\frac{\pi \|x - y\|^2}{\epsilon}} dy = \lim_{\epsilon \to 0} \int_{\mathbb{R}^n} f(x + \sqrt{\epsilon}t) e^{-\pi \|t\|^2} dt.$$

Folosind Lema 3.2.2, putem scrie

$$f(x) = \int_{\mathbb{R}^n} f(x)e^{-\pi||t||^2} dt.$$

Din cele scrise anterior, deducem că

$$\int_{\mathbb{R}^{n}} \left| f(x) - \lim_{\epsilon \to 0} \int_{\mathbb{R}^{n}} f(y) \epsilon^{-\frac{n}{2}} e^{-\frac{\pi \|x - y\|^{2}}{\epsilon}} dy \right| dx = \int_{\mathbb{R}^{n}} \lim_{\epsilon \to 0} \left| \int_{\mathbb{R}^{n}} \left(f(x + \sqrt{\epsilon}t) - f(x) \right) e^{-\pi \|t\|^{2}} dt \right| dx
\leq \int_{\mathbb{R}^{n}} \left[\lim_{\epsilon \to 0} \int_{\mathbb{R}^{n}} \left| \left(f(x + \sqrt{\epsilon}t) - f(x) \right) \right| dx \right] e^{-\pi \|t\|^{2}} dt
= \int_{\mathbb{R}^{n}} \left[\lim_{\epsilon \to 0} \|f \circ \tau_{-\sqrt{\epsilon}t} - f\|_{1} \right] e^{-\pi \|t\|^{2}} dt
= \int_{\mathbb{R}^{n}} 0 \cdot e^{-\pi \|t\|^{2}} dt = 0,$$

unde ultimul rând rezultă din Lema 3.2.5

Teorema 3.2.7: [Teorema de inversiune Fourier] $Dac \check{a} f \in L^1(\mathbb{R}^n)$ $si \hat{f} \in L^1(\mathbb{R}^n)$, atunci

$$(f^{\wedge})^{\vee}(x) = \int_{\mathbb{R}^n} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi = f(x) \ a.p.t.$$

Demonstrație. Deoarece $\lim_{\epsilon \to 0} e^{-\epsilon \pi \|\xi\|^2} = 1$ pentru orice $\xi \in \mathbb{R}^n$, putem scrie:

$$\begin{split} \left(f^{\wedge}\right)^{\vee}(x) &= \int_{\mathbb{R}^{n}} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi = \int_{\mathbb{R}^{n}} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} \lim_{\epsilon \to 0} e^{-\epsilon \pi \|\xi\|^{2}} d\xi \\ &= \lim_{\epsilon \to 0} \int_{\mathbb{R}^{n}} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} e^{-\epsilon \pi \|\xi\|^{2}} d\xi \\ &= \lim_{\epsilon \to 0} \int_{\mathbb{R}^{n}} \left[\int_{\mathbb{R}^{n}} f(y) e^{-2\pi i y \cdot \xi} dy \right] e^{2\pi i x \cdot \xi} e^{-\epsilon \pi \|\xi\|^{2}} d\xi \\ &= \lim_{\epsilon \to 0} \int_{\mathbb{R}^{n}} f(y) \left[\int_{\mathbb{R}^{n}} e^{-2\pi i (y-x) \cdot \xi - \epsilon \pi \|\xi\|^{2}} d\xi \right] dy \\ &= \lim_{\epsilon \to 0} \int_{\mathbb{R}^{n}} f(y) \epsilon^{-\frac{n}{2}} e^{-\frac{\pi \|x-y\|^{2}}{\epsilon}} dy \\ &= f(x) \quad \text{a.p.t.} \end{split}$$

Pentru acest sir de egalități am folosit, pe rând, teorema de convergență dominată, teorema Fubini, Observația 3.2.4, și Lema 3.2.6.

3.3 Clasa funcțiilor Schwartz

Deoarece transformata Fourier a unei funcții din $L^1(\mathbb{R}^n)$ nu este neapărat tot în $L^1(\mathbb{R}^n)$, este convenabil să introducem o altă clasă de funcții, care descresc rapid spre 0, numită clasa funcțiilor Schwartz:

$$\mathscr{S}(\mathbb{R}^n) = \left\{ f: \mathbb{R} \to \mathbb{R} \mid \sup_{x \in \mathbb{R}^n} |x^{\alpha}(D^{\beta}f)(x)| < \infty, \text{ pentru orice } \alpha, \beta \in \mathbb{N}^n \right\}.$$

Observația 3.3.1: Dacă $f \in \mathscr{S}(\mathbb{R}^n)$, atunci $\lim_{\|x\| \to \infty} f(x) = 0$.

Observația 3.3.2: Dacă $f \in \mathscr{S}(\mathbb{R}^n)$, atunci $D^{\alpha}(P(x)f(x)) \in \mathscr{S}(\mathbb{R}^n)$, pentru orice polinom $P \in \mathbb{R}[X]$ și orice $\alpha \in \mathbb{N}^n$.

Propoziția 3.3.3: $Dacă f \in \mathcal{S}(\mathbb{R}^n)$, $atunci f \in L^p(\mathbb{R}^n)$ pentru orice $1 \leq p \leq \infty$.

Demonstrație. Fie $f \in \mathscr{S}(\mathbb{R}^n)$. Atunci, conform definiției spațiului Schwartz (pentru $\alpha = \beta = 0$) obținem $f \in L^{\infty}(\mathbb{R}^n)$. În continuare, considerăm $1 \leq p < \infty$. Atunci, putem scrie

$$\int_{\mathbb{R}^{n}} |f(x)|^{p} dx = \int_{\mathbb{R}^{n}} \left| (1 + x_{1}^{2}) \cdots (1 + x_{n}^{2}) f(x) \right|^{p} \frac{1}{(1 + x_{1}^{2})^{p} \cdots (1 + x_{n}^{2})^{p}} dx_{1} \dots dx_{n}
\leq M \int_{\mathbb{R}^{n}} \frac{1}{(1 + x_{1}^{2})^{p}} \cdots \frac{1}{(1 + x_{n}^{2})^{p}} dx_{1} \dots dx_{n}
= M \left[\int_{\mathbb{R}} \frac{1}{(1 + t^{2})^{p}} dt \right]^{n}
\leq M \left[\int_{\mathbb{R}} \frac{1}{1 + t^{2}} dt \right]^{n} = M\pi^{n} < \infty,$$

deci $f \in L^p(\mathbb{R}^n)$.

Propoziția 3.3.4: $Dacă f \in \mathcal{S}(\mathbb{R}^n)$, $atunci \hat{f} \in \mathcal{S}(\mathbb{R}^n)$.

Demonstrație. Fie $f \in \mathcal{S}(\mathbb{R}^n)$. Atunci, folosind Propoziția 3.1.8, putem scrie:

$$\sup_{\xi \in \mathbb{R}^n} |\xi^{\alpha}(D^{\beta} \widehat{f})(\xi)| = \sup_{\xi \in \mathbb{R}^n} |\xi^{\alpha}(P(-2\pi i x)f(x))^{\wedge}(\xi)|$$
$$= \sup_{\xi \in \mathbb{R}^n} \left| \left[\frac{1}{(2\pi i)^{|\alpha|}} D^{\alpha}(P(-2\pi i x)f(x)) \right]^{\wedge}(\xi) \right| < \infty,$$

deoarece Observația 3.3.2 implică $\frac{1}{(2\pi i)^{|\alpha|}}D^{\alpha}(P(-2\pi ix)f(x))\in \mathscr{S}(\mathbb{R}^n)$. Așadar, $\widehat{f}\in \mathscr{S}(\mathbb{R}^n)$.

3.4 Aplicații ale transformatei Fourier

Deoarece transformata Fourier "se comportă" foarte bine în raport cu derivarea (Propoziția 3.1.8), ea va fi un instrument foarte util pentru a rezolva ecuații diferențiale.

Exemplul 3.4.1: Vrem să găsim $u \in \mathcal{C}^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ ce verifică

$$-u'' + u = f,$$

unde $f \in \mathcal{C}^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R}^{n})$. Aplicând transformata Fourier şi folosind Propoziția 3.1.8, obținem:

$$\widehat{f}(\xi) = (-u'' + u)^{\wedge}(\xi)$$

$$= -(2\pi i \xi)^2 \widehat{u}(\xi) + \widehat{u}(\xi)$$

$$= ((2\pi \xi)^2 + 1)\widehat{u}(\xi),$$

de unde deducem că

$$\widehat{u}(\xi) = \frac{1}{(2\pi\xi)^2 + 1} \widehat{f}(\xi).$$

Cum $\frac{1}{(2\pi\xi)^2+1} \in L^1(\mathbb{R})$ şi $\widehat{f} \in L^\infty(\mathbb{R})$, obţinem că $\widehat{u}(\xi) \in L^1(\mathbb{R})$, deci putem aplica transformata inversă Fourier pentru a afla soluția u. Avem așadar

$$u = \left[\frac{1}{(2\pi\xi)^2 + 1}\widehat{f}(\xi)\right]^{\vee} = \left[\frac{1}{(2\pi\xi)^2 + 1}\right]^{\vee} * (f^{\wedge})^{\vee} = \left[\frac{1}{(2\pi\xi)^2 + 1}\right]^{\vee} * f$$
 (3.4.1)

Pentru a scrie explicit această funcție, trebuie să calculăm

$$\left[\frac{1}{(2\pi\xi)^2 + 1}\right]^{\vee}(x) = \int_{-\infty}^{\infty} \frac{1}{(2\pi\xi)^2 + 1} e^{2\pi i x \xi} d\xi.$$

Studiem următoarele trei cazuri:

• Cazul 1: x > 0. Aplicând teorema reziduurilor pentru funcția olomorfă

$$H(\xi) = \frac{e^{2\pi i x \xi}}{(2\pi \xi)^2 + 1}$$

și conturul de integrare γ_R^+ format din segmentul real [-R,R], urmat de arcul de cerc de rază R în semiplanul superior, de la R la -R, iar apoi trecând la limită cu $R \to \infty$, obținem

$$\int_{-\infty}^{\infty} \frac{1}{(2\pi\xi)^2 + 1} e^{2\pi i x \xi} d\xi = \frac{e^{-x}}{2}.$$

• Cazul 2: x < 0. Prin aceeași metodă ca la Cazul 1, folosind aceeași funcție $H(\xi)$, dar conturul de integrare γ_R^- reprezentat de segmentul real [R, -R], urmat de arcul de cerc de rază R de la -R la R, obținem

$$\int_{-\infty}^{\infty} \frac{1}{(2\pi\xi)^2 + 1} e^{2\pi i x \xi} d\xi = \frac{e^x}{2}.$$

• Cazul 3: x = 0. În acest caz, integrala poate fi calculată direct.

$$\int_{-\infty}^{\infty} \frac{1}{(2\pi\xi)^2 + 1} d\xi = \frac{1}{2} = \frac{e^0}{2}.$$

Putem scrie în mod unitar cele trei cazuri sub forma:

$$\left[\frac{1}{(2\pi\xi)^2+1}\right]^{\vee}(x) = \int_{-\infty}^{\infty} \frac{1}{(2\pi\xi)^2+1} e^{2\pi i x \xi} d\xi = \frac{e^{-|x|}}{2}.$$

Revenind la egalitatea 3.4.1, putem scrie

$$u(x) = \left(\frac{e^{-|\cdot|}}{2} * f\right)(x) = \int_{-\infty}^{\infty} \frac{e^{-|x-t|}}{2} f(t) dt,$$

aceasta fiind soluția pe care o căutam.

3.5 Transformata Fourier pentru distribuții