$12n_{0221} (K12n_{0221})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 2258808925u^{16} + 15860359921u^{15} + \dots + 96479313856d - 115431185160,$$

$$154139657205u^{16} + 1193150529938u^{15} + \dots + 2508462160256c - 2116899433348,$$

$$4410667u^{16} + 32637095u^{15} + \dots + 83243584b - 126220048,$$

$$7888753u^{16} + 58699357u^{15} + \dots + 83243584a - 107418368, u^{17} + 8u^{16} + \dots - 8u - 16 \rangle$$

$$I_2^u = \langle d - a, c - a, b - a, a^2 - a + 1, u - 1 \rangle$$

$$I_3^u = \langle d + 1, c, b - 1, a - 1, u - 1 \rangle$$

$$I_4^u = \langle da - ca + 1, c^2 - c + 1, b - a, u - 1 \rangle$$

$$I_4^v = \langle c, d - a - 1, b, a^2 + a + 1, v - 1 \rangle$$

- * 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 22 representations.
- * 1 irreducible components of $\dim_{\mathbb{C}} = 1$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle 2.26 \times 10^9 u^{16} + 1.59 \times 10^{10} u^{15} + \dots + 9.65 \times 10^{10} d - 1.15 \times 10^{11}, \ 1.54 \times 10^{11} u^{16} + 1.19 \times 10^{12} u^{15} + \dots + 2.51 \times 10^{12} c - 2.12 \times 10^{12}, \ 4.41 \times 10^6 u^{16} + 3.26 \times 10^7 u^{15} + \dots + 8.32 \times 10^7 b - 1.26 \times 10^8, \ 7.89 \times 10^6 u^{16} + 5.87 \times 10^7 u^{15} + \dots + 8.32 \times 10^7 a - 1.07 \times 10^8, \ u^{17} + 8 u^{16} + \dots - 8 u - 16 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0614479u^{16} - 0.475650u^{15} + \cdots - 2.87951u + 0.843903 \\ -0.0234124u^{16} - 0.164391u^{15} + \cdots + 0.757508u + 1.19643 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0269638u^{16} + 0.213054u^{15} + \cdots + 1.26938u + 0.117878 \\ -0.00435471u^{16} - 0.0521688u^{15} + \cdots + 0.124403u - 0.745012 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0947671u^{16} - 0.705152u^{15} + \cdots + 0.385893u + 1.29041 \\ -0.0529851u^{16} - 0.392067u^{15} + \cdots - 0.532273u + 1.51627 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.115939u^{16} - 0.867332u^{15} + \cdots + 0.946013u + 1.95892 \\ -0.0618930u^{16} - 0.460152u^{15} + \cdots - 0.813462u + 1.63140 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.118012u^{16} - 0.895172u^{15} + \cdots - 0.266541u + 1.78486 \\ -0.0519178u^{16} - 0.373867u^{15} + \cdots + 0.197985u + 1.94957 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0656989u^{16} - 0.494197u^{15} + \cdots - 2.08468u + 1.58103 \\ -0.0178046u^{16} - 0.118986u^{15} + \cdots + 0.894693u + 1.10503 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0678023u^{16} + 0.515689u^{15} + \cdots + 1.99680u - 0.449277 \\ 0.0201677u^{16} + 0.140474u^{15} + \cdots + 0.214188u - 1.03624 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{3288027181}{156778885016}u^{16} - \frac{220303787499}{627115540064}u^{15} + \dots - \frac{1274298730399}{156778885016}u - \frac{92162275708}{19597360627}u^{15} + \dots + \frac{1274298730399}{19597360627}u^{15} + \dots + \frac{1274298730399}{195973$$

Crossings	u-Polynomials at each crossing
c_1	$u^{17} - 6u^{16} + \dots + 32u + 256$
c_{2}, c_{4}	$u^{17} - 8u^{16} + \dots - 8u + 16$
c_{3}, c_{8}	$u^{17} + u^{16} + \dots - 1024u + 512$
<i>c</i> ₅	$u^{17} + 14u^{16} + \dots + 6768u + 2592$
c_{6}, c_{12}	$u^{17} - 5u^{16} + \dots - 11u^2 + 4$
c_7,c_{10}	$u^{17} + 8u^{16} + \dots - 8u + 16$
c_9	$u^{17} - 34u^{16} + \dots + 6176u - 256$
c_{11}	$u^{17} - 15u^{16} + \dots + 88u + 16$

Crossings	Riley Polynomials at each crossing		
c_1	$y^{17} + 66y^{16} + \dots + 2613760y - 65536$		
c_2, c_4	$y^{17} + 6y^{16} + \dots + 32y - 256$		
c_3, c_8	$y^{17} + 81y^{16} + \dots - 524288y - 262144$		
c_5	$y^{17} - 66y^{16} + \dots + 36764928y - 6718464$		
c_6, c_{12}	$y^{17} + 15y^{16} + \dots + 88y - 16$		
c_7, c_{10}	$y^{17} - 34y^{16} + \dots + 6176y - 256$		
<i>c</i> ₉	$y^{17} - 94y^{16} + \dots + 7397888y - 65536$		
c_{11}	$y^{17} - 21y^{16} + \dots + 36640y - 256$		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.789321		
a = 0.386224		
b = -0.304855	-1.13318	-9.61860
c = 0.374974		
d = -0.586930		
u = 1.281020 + 0.078323I		
a = 0.027802 - 0.314358I		
b = -0.060236 + 0.400521I	-0.72956 - 1.37071I	-0.698150 + 0.213889I
c = 0.519378 - 0.243814I		
d = 0.992769 + 0.281518I		
u = 1.281020 - 0.078323I		
a = 0.027802 + 0.314358I		
b = -0.060236 - 0.400521I	-0.72956 + 1.37071I	-0.698150 - 0.213889I
c = 0.519378 + 0.243814I		
d = 0.992769 - 0.281518I		
u = -0.709544 + 0.075286I		
a = 0.27087 + 2.81412I		
b = 0.40406 + 1.97635I	-0.79868 + 2.33972I	0.33078 - 5.26516I
c = 0.41875 + 1.62653I		
d = 0.386110 + 1.184900I		
u = -0.709544 - 0.075286I		
a = 0.27087 - 2.81412I		
b = 0.40406 - 1.97635I	-0.79868 - 2.33972I	0.33078 + 5.26516I
c = 0.41875 - 1.62653I		
d = 0.386110 - 1.184900I		
u = 0.491842 + 0.197993I		
a = -0.746901 + 0.354453I		
b = 0.437536 - 0.026454I	0.77904 - 2.74622I	-2.48507 + 7.16740I
c = -0.68906 + 1.41559I		
d = 1.212590 - 0.601554I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.491842 - 0.197993I		
a = -0.746901 - 0.354453I		
b = 0.437536 + 0.026454I	0.77904 + 2.74622I	-2.48507 - 7.16740I
c = -0.68906 - 1.41559I		
d = 1.212590 + 0.601554I		
u = -0.118015 + 0.350813I		
a = -0.50791 + 1.75422I		
b = 0.555461 + 0.385207I	1.75773 + 0.71028I	3.71531 + 0.02644I
c = 1.154330 + 0.052946I		
d = 0.083184 + 0.147223I		
u = -0.118015 - 0.350813I		
a = -0.50791 - 1.75422I		
b = 0.555461 - 0.385207I	1.75773 - 0.71028I	3.71531 - 0.02644I
c = 1.154330 - 0.052946I		
d = 0.083184 - 0.147223I		
u = -1.65818 + 0.90820I		
a = 0.976512 + 0.609189I		
b = 2.17250 + 0.12328I	18.4182 + 12.9335I	-1.01650 - 5.27491I
c = -0.94081 - 1.33349I		
d = -5.94499 - 2.01193I		
u = -1.65818 - 0.90820I		
a = 0.976512 - 0.609189I		
b = 2.17250 - 0.12328I	18.4182 - 12.9335I	-1.01650 + 5.27491I
c = -0.94081 + 1.33349I		
d = -5.94499 + 2.01193I		
u = -1.62328 + 1.28695I		
a = -0.780321 - 0.614432I		
b = -2.05742 + 0.00684I	15.3110 + 5.6503I	-2.10303 - 1.68119I
c = 0.67125 + 1.78783I		
d = 8.16028 + 1.30179I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.62328 - 1.28695I		
a = -0.780321 + 0.614432I		
b = -2.05742 - 0.00684I	15.3110 - 5.6503I	-2.10303 + 1.68119I
c = 0.67125 - 1.78783I		
d = 8.16028 - 1.30179I		
u = -0.77580 + 2.21598I		
a = -0.394911 - 0.622157I		
b = -1.68506 + 0.39245I	9.63429 + 3.26152I	0.10201 - 1.44169I
c = -1.69156 - 0.56408I		
d = 4.42924 + 7.49395I		
u = -0.77580 - 2.21598I		
a = -0.394911 + 0.622157I		
b = -1.68506 - 0.39245I	9.63429 - 3.26152I	0.10201 + 1.44169I
c = -1.69156 + 0.56408I		
d = 4.42924 - 7.49395I		
u = -1.28271 + 2.40373I		
a = 0.461749 + 0.538038I		
b = 1.88559 - 0.41977I	-17.4865 - 1.7702I	-60.10 + 0.657690I
c = -0.25477 - 2.11813I		
d = -12.0257 + 7.8857I		
u = -1.28271 - 2.40373I		
a = 0.461749 - 0.538038I		
b = 1.88559 + 0.41977I	-17.4865 + 1.7702I	-60.10 - 0.657690I
c = -0.25477 + 2.11813I		
d = -12.0257 - 7.8857I		

II.
$$I_2^u = \langle d-a, \ c-a, \ b-a, \ a^2-a+1, \ u-1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ a \end{pmatrix}$$

$$a_6 = \begin{pmatrix} a-1 \\ a \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a \\ a \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a \\ a \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ a \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ a \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} a \\ a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4a 7

Crossings	u-Polynomials at each crossing	
c_1, c_2	$(u-1)^2$	
c_3, c_7, c_8 c_9, c_{10}	u^2	
c_4	$(u+1)^2$	
c_5, c_{11}, c_{12}	$u^2 + u + 1$	
<i>C</i> ₆	$u^2 - u + 1$	

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_4	$(y-1)^2$	
c_3, c_7, c_8 c_9, c_{10}	y^2	
c_5, c_6, c_{11} c_{12}	$y^2 + y + 1$	

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000		
a =	0.500000 + 0.866025I		
b =	0.500000 + 0.866025I	-1.64493 + 2.02988I	-9.00000 - 3.46410I
c =	0.500000 + 0.866025I		
d =	0.500000 + 0.866025I		
u =	1.00000		
a =	0.500000 - 0.866025I		
b =	0.500000 - 0.866025I	-1.64493 - 2.02988I	-9.00000 + 3.46410I
c =	0.500000 - 0.866025I		
d =	0.500000 - 0.866025I		

III.
$$I_3^u = \langle d+1, \ c, \ b-1, \ a-1, \ u-1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing	
c_1, c_2, c_{10}	u-1	
c_3, c_5, c_6 c_8, c_{11}, c_{12}	u	
c_4, c_7, c_9	u+1	

Crossings	Riley Polynomials at each crossing	
$c_1, c_2, c_4 \\ c_7, c_9, c_{10}$	y-1	
c_3, c_5, c_6 c_8, c_{11}, c_{12}	y	

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000		
b = 1.00000	0	0
c = 0		
d = -1.00000		

IV.
$$I_4^u = \langle da - ca + 1, c^2 - c + 1, b - a, u - 1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} c \\ d \end{pmatrix}$$

$$a_6 = \begin{pmatrix} c - 1 \\ dc + 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a \\ a \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a \\ a \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} c+a\\d+a \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} c \\ d-c \end{pmatrix}$$

$$a_7 = \begin{pmatrix} c \\ d \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $d^2 2dc + a^2 3c 1$
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$u = \cdots$		
$a = \cdots$		
$b = \cdots$	-2.02988I	-0.06692 - 3.42770I
$c = \cdots$		
$d = \cdots$		

V.
$$I_1^v = \langle c, d-a-1, b, a^2+a+1, v-1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ a+1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -a \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ a+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a+1\\a+1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -a - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4a + 1

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_8	u^2
c_5, c_{12}	$u^2 - u + 1$
c_6, c_{11}	$u^2 + u + 1$
c_7, c_9	$(u+1)^2$
c_{10}	$(u-1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_8	y^2
c_5, c_6, c_{11} c_{12}	$y^2 + y + 1$
c_7, c_9, c_{10}	$(y-1)^2$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = -0.500000 + 0.866025I		
b = 0	1.64493 + 2.02988I	3.00000 - 3.46410I
c = 0		
d = 0.500000 + 0.866025I		
v = 1.00000		
a = -0.500000 - 0.866025I		
b = 0	1.64493 - 2.02988I	3.00000 + 3.46410I
c = 0		
d = 0.500000 - 0.866025I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{2}(u-1)^{3}(u^{17}-6u^{16}+\cdots+32u+256)$
c_2	$u^{2}(u-1)^{3}(u^{17}-8u^{16}+\cdots-8u+16)$
c_3, c_8	$u^5(u^{17} + u^{16} + \dots - 1024u + 512)$
c_4	$u^{2}(u+1)^{3}(u^{17}-8u^{16}+\cdots-8u+16)$
c_5	$u(u^{2} - u + 1)(u^{2} + u + 1)(u^{17} + 14u^{16} + \dots + 6768u + 2592)$
c_6, c_{12}	$u(u^{2} - u + 1)(u^{2} + u + 1)(u^{17} - 5u^{16} + \dots - 11u^{2} + 4)$
c_7	$u^{2}(u+1)^{3}(u^{17}+8u^{16}+\cdots-8u+16)$
<i>c</i> 9	$u^{2}(u+1)^{3}(u^{17}-34u^{16}+\cdots+6176u-256)$
c_{10}	$u^{2}(u-1)^{3}(u^{17}+8u^{16}+\cdots-8u+16)$
c_{11}	$u(u^{2} + u + 1)^{2}(u^{17} - 15u^{16} + \dots + 88u + 16)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{2}(y-1)^{3}(y^{17}+66y^{16}+\cdots+2613760y-65536)$
c_2, c_4	$y^2(y-1)^3(y^{17}+6y^{16}+\cdots+32y-256)$
c_3, c_8	$y^5(y^{17} + 81y^{16} + \dots - 524288y - 262144)$
<i>C</i> ₅	$y(y^2 + y + 1)^2(y^{17} - 66y^{16} + \dots + 3.67649 \times 10^7 y - 6718464)$
c_6, c_{12}	$y(y^2 + y + 1)^2(y^{17} + 15y^{16} + \dots + 88y - 16)$
c_7, c_{10}	$y^{2}(y-1)^{3}(y^{17}-34y^{16}+\cdots+6176y-256)$
<i>c</i> 9	$y^{2}(y-1)^{3}(y^{17}-94y^{16}+\cdots+7397888y-65536)$
c_{11}	$y(y^2 + y + 1)^2(y^{17} - 21y^{16} + \dots + 36640y - 256)$