tail ratio approx. for $pstable(\alpha = 1, \beta = 0.5)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_{P}(x, .))/\overline{F}_{P}(x, .)$

tail ratio approx. for pstable($\alpha = 1.1, \beta = 0.25$) $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_{P}(x, .)) / \overline{F}_{P}(x, .)$

tail ratio approx. for $pstable(\alpha = 0.99, \beta = 0.992)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_P(x, .)) / \overline{F}_P(x, .)$

tail ratio approx. for $pstable(\alpha = 1.2, \beta = 0.5)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_P(x, .)) / \overline{F}_P(x, .)$

tail ratio approx. for $pstable(\alpha = 0.7, \beta = 0.9)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_{P}(x, .))/\overline{F}_{P}(x, .)$

tail ratio approx. for pstable $(\alpha = 1.7, \beta = 0.6)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_P(x, .)) / \overline{F}_P(x, .)$

tail ratio approx. for $pstable(\alpha = 0.1, \beta = 0.5)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_P(x, .)) / \overline{F}_P(x, .)$

tail ratio approx. for pstable $(\alpha = 0.2, \beta = 0.9)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_P(x, .))/\overline{F}_P(x, .)$

tail ratio approx. for $pstable(\alpha = 0.5, \beta = 0.6)$ $\epsilon(x) = (\overline{F}(x, .) - \overline{F}_{P}(x, .))/\overline{F}_{P}(x, .)$

tail ratio approx. for dstable ($\alpha = 1.01$, $\beta = 0.8$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable $(\alpha = 1.05, \beta = 0.4)$

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable $(\alpha = 1.1, \beta = 0.4)$

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable ($\alpha = 1.2$, $\beta = 0.5$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable($\alpha = 1.3$, $\beta = 0.6$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable($\alpha = 1.4$, $\beta = 0.7$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable($\alpha = 1.5, \beta = 0.8$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

tail ratio approx. for dstable $(\alpha = 1.5, \beta = 0.8)$ $\epsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$

tail ratio approx. for dstable $(\alpha = 1.5, \beta = 0.8)$ $\epsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$

tail ratio approx. for $dstable(\alpha = 1.5, \beta = 0.8)$ $\epsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$

tail ratio approx. for $dstable(\alpha = 1.6, \beta = 0.9)$ $\epsilon(x) = (f(x, .) - f_P(x, .)) / f_P(x, .)$

tail ratio approx. for dstable($\alpha = 1.7$, $\beta = 0.1$) $\epsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$

tail ratio approx. for dstable ($\alpha = 1.8$, $\beta = 0.2$)

$$\varepsilon(x) = (f(x, .) - f_P(x, .))/f_P(x, .)$$

 $dstable(x, \alpha = 0.999, \beta = 0.1, log = T)$ -20 **-**-40 type dstable -60 **-**-80 restand 1e+12 1e+04 1e+08 Χ

 $dstable(x, \alpha = 0.999, \beta = 0.9, log = T)$ -20 type -40 dstable -60 **-**-80 restand 1e+12 1e+04 1e+08

Χ

 $dstable\big(x,\,\alpha=0.999,\,\beta=0.99,\,log=T\big)$

 $dstable\big(x,\,\alpha=0.999,\,\beta=0.99,\,log=T\big)$ 0 --200 type $>_{-400}$ dstable -600 **-**1e+30 1e+68 1e+106 1e+144

Χ

 $dstable\big(x,\,\alpha=1.001,\,\beta=0.99,\,log=T\big)$ -10 type dstable -20 **-**-30 tion rection certion rection rection rection rection 1e+02 1e+04 1e+06 Χ

 $dstable\big(x,\,\alpha=1.001,\,\beta=0.99,\,log=T\big)$

