Politechnika Warszawska

Zakład Podstaw Konstrukcji

Projektowanie

mgr inż. Grzegorz Kamiński grzegorz kaminski@pw.edu.pl

10 marca 2023 Wersja 1.22

Zalety zastosowania

- * spokojna, cicha i płynna praca urządzenia,
- * tanie przeniesienie napędu (niskie koszty eksploatacji i konserwacji),
- łagodzenie gwałtownych zmian obciążenia i tłumienie drgań,
- * zmiana parametrów pracy urządzenia,
- * wariatory paskowe,
- * niewrażliwe na brak właściwego ustawienia osi wałów.

Co wpływa na żywotność przekładni

- liczba pasów (optymalna),
- * naciąg (poślizg na kole nie powinien przekraczać 1%),
- * stan techniczny kół pasowych,
- * typ pasa.

W najkorzystniejszych warunkach najlepiej pracuje pas pojedynczy.

Nie stosować pasów od różnych producentów.

Nie wolno, na koła dla zespołów pasowych, stosować pasów zespolonych.

Co wpływa na żywotność przekładni

- * napinacze (unikać, bo użycie rolek zwiększa częstotliwość przegięć pasa oraz wprowadza dodatkowe naprężenia zginające, co skraca jego żywotność),
- * rolki napinające umieszczone po zewnętrznej stronie pasa powodują ugięcie pasa w przeciwną stronę niż przy normalnej pracy,
- * czystość.

Podział pasów Pasy klinowe owijane Pojedyncze Zespolone Pasy Wzmocnione Pasy Wzmocnione Pasy Wzmocnione Pasy Wzmocnione [SPZ, SPA, IZ. A. B. 20. TA BP, B BP, [15J, SPC BP] SPB. SPC1 C. 25. D. E1 C BP1 Pasy Standard Pasy Standard Pasy Standard Pasy Standard [SPZ/S, SPA/S. TA BP/S. B BP/S. IZ/S, A/S, B/S, [15J/S. SPC BP/S] C BP/ST 20x12.5/S. C/S. 25x16/S, D/S, E/S] Pasv Wzmocnione o długości powyżei 10 000 mm Politechnika Warszawska

Pasy wąskoprofilowe

- * przenoszone moce są znacznie większe od wersji klasycznej,
- * prędkością pasa do $40 \frac{m}{s}$,
- * minimalne średnice kół pasowych są większe niż dla pasów klasycznych,
- duża powierzch<mark>ni</mark>a zewnętrzna pasa w stosunku do pola przekroju polepsza odprowadzenie ciepła,
- * mogą pracować w temperaturze od 35°C do 100°C.

Nakładka gumowa

Cięgno z kordu linkowego

Rdzeń gumowy

Owijka

Geometria pasów wąskoprofilowych

Pas wąski oznaczenie ISO, DIN	SPZ	SPA	SPB	SPC
orientacyjna szerokość górna l ₀	9,7	12,7	16,3	22
szerokość podziałowa lp	8,5	11	14	19
wysokość pasa h ₀	8	10	13	18
wysokość nad linią podziałową b _p	2	2,8	3,5	4,8
minimalna <mark>średni</mark> ca podziałowa koła d _p	63	90	140	224
dopuszczalna prędkość pasa	riin	40	[<u>m</u>]	

Zestawienie długości pasa wąskoprofilowego

P. Carlotte	SPZ			SPA SPB		S	PC		
JIII	Lp	JIII) _	III,	Lp	,[III]	L	р	1	Lp
537	875	1212	723	1232	3750	1250	4000	1800	6700
562	887	1237	757	1250	4000	1320	4250	2240	7100
587	900	1250	782	1320	4250	1400	4500	2360	7500
612	912	1320	832	1400	4500	1500	4750	2500	8000
637	925	1400	857	1500	4750	1600	5000	2650	8500
662	937	1500	882	1600	5000	1700	5300	2800	9000
687	947	1600	932	1700	CIIII	1800	5600	3000	9500
700	962	1700	957	1800		1900	6000	3150	10000
712	987	1800	982	1900		2000	1,10	3350	111111
719	1000	1900	1007	2000		2120	_AAA	3550	_filh
721	1012	2000	1032	2120		2240	1	3750	(1)
737	1037	2120	1057	2240		2360		4000	
762	1062	2240	1082	2360	_000	2500	_IIIIn	4250	m
787	1087	2360	1107	2500	6.7	2650	()	4500) .
800	1112	3000	1132	2650		2800		4750	
812	1125	riffty	1157	2800	100	3000	nin-	5000	ribs
825	1137	Giiii	1180	3000	- 6	3150	6,,,,	5300	Gun
837	1162		1182	3150	_	3350		5600	
850	1187	-De	1207	3350	and the	3550	and the	6000	
862	1200		III,	3550	,[III]	3750		6300	11)

Varszawska

- * maszyna napędzająca: silnik trójfazowy indukcyjny włączany przełącznikiem gwiazda-trójkąt o mocy $N=10\,kW$ i obrotach $n_d=2920\,\frac{obr}{min}$,
- * maszyna napędzana: wentylator o obrotach $n_b = 1950 \frac{obr}{min}$,
- * parametry przekładni: dzienny czas pracy: T = 10 16 h,
- * średnice kół i rozstaw osi optymalne.

Współczynniki warunków pracy

	Przykłady maszyn napędowych							
	silniki o normalnym M _{roz} silniki o wysokim M _{roz}							
Przykłady maszyn napędzanych	Współczynnik warunków pracy k _T							
Garage Garage Garage Garage	dla dzie	nnego czasu trw	ania pracy [h]	dla dzie	nnego <mark>czasu</mark> trw	ania pracy [h]		
	do 10	od 10 do 16	powyżej 16	do 10	od 10 do 16	powyżej 16		
Napędy lekkie: dmuchawy i wyciągi, mieszalniki cieczy, pompy i sprężarki odśrodkowe, przenośniki taśmowe do materiatów lekkich, wentylatory o mocy do 7,5 kW;	1,0	0 1,1	1,2	1,1	1,2	1,3		
Napędy średnie: maszyny drukarskie, mieszadła do ciasta, obrabiarki do metali (tokarki, szlifierki), pędnie,				6				
pompy i sprężarki tłokowe trzy i więcej cylindrowe, pralki, prasy, tłocznie, nożyce, prądnice, przenośniki łańcuchowe i taśmowe do materiałów ciężkich,	1,1	1,2	,3	1,2	1,3	1,4		
sita obrotowe i wibracyjne, wentylatory i pompy o mocy powyżej 7,5 kW;	(III)	m,	m "m	, m	m	(iii)		
Napędy ciężkie:								
dmuchawy wyporowe, maszyny: cegielniane, papiernicze i włókiennicze, młyny młotkowe, piły tartaczne, pompy i sprężarki tłokowe jedno i dwu cylindrowe,	1,2	1,3	1,4	1,4	1,5	1,6		
prasy, brykieciarki, przenośniki: kubełkowe, zgarniakowe i ślimakowe, rozpyłacze, wzbudnice;	nin-	m _b	m _n		0	100-		
Napędy bardzo ciężkie: dźwigniki i podnośniki, kalandry do gumy, kruszarki do kamieni, młyny: kulowe, prętowe i rurowe.	1,3	1,4	1,5	1,5	1,6	1,8		

Moc obliczeniowa N_0

$$N_0 = N \cdot k_T \qquad (1$$

$$N_0 = 10 \, kW \cdot 1.2 = 12 \, kW$$

Na podstawie wykresu dobrano pas **SPZ**. Średnicę małego koła przyjęto $d_p = 160 \, mm$

Predkość pasa v

$$\mathbf{v} = \frac{n_d \cdot d_p}{2}$$

$$v = 24,46 \frac{m}{s} < v_{max}$$

Przełożenie przekładni i

$$i = \frac{n_d}{n_b}$$

Średnica dużego koła D_p

$$D_p = 239,6 \, \text{mm}$$

Najbliższa znormalizowana wielkość koła wynosi $D_p = 250 mm$ Wstepny rozstaw osi A₀

$$A_{max} = 2 \cdot (D_p + d_p)$$
$$A_{min} = 0.7 \cdot (D_p + d_p)$$

$$A_{max} = 820 \, mm$$

$$A_{min} = 287 \text{mm}$$

Przyjęto rozstaw osi $A_0 = 540 \,\mathrm{mm}$

Varszawska

Kąt opasania mniejszego koła φ wynosi:

$$\varphi = 2 \cdot a\cos(\frac{\mathsf{D}_p - d_p}{2 \cdot \mathsf{A}_0}) = 171,44^{\circ} \tag{7}$$

a kąt γ odchylenia pasa od linii środków kół rowkowych $\gamma=90^\circ-\frac{\varphi}{2}=4{,}78^\circ.$

Długość pasa L_p

$$L_p \approx 2 \cdot \mathbf{A_0} + 1.57 \cdot (\mathbf{D_p} + d_p) + \frac{(\mathbf{D_p} + d_p)^2}{4 \cdot \mathbf{A_0}}$$
 (8)

$$L_{p} = 2 \cdot \mathbf{A}_{0} \cdot \sin(\frac{\varphi}{2}) + \frac{\pi}{2} \cdot (\mathbf{D}_{p} + \mathbf{d}_{p}) + \frac{\gamma \cdot \pi}{180^{\circ}} \cdot (\mathbf{D}_{p} - \mathbf{d}_{p})$$
(9)

 $L_p \approx 1727.8 \,\mathrm{mm}$

Politechnika Wybrano pas o $L_p = 1700 \, \text{mm}$.

6,,,,		4						
	SPZ							
m	L_p							
537	875	1212						
562	887	1237						
587	900	1250						
612	912	1320						
637	925	1400						
662	937	1500						
687	947	1600						
700	962	1700						
712	987	1800						
719	1000	1900						
721	1012	2000						
737	1037	2120						
762	1062	2240						
787	1087	2360						
800	1112	3000						
812	1125	700-						
825	1137	Cilli						
837	1162							
850	1187							
862	1200	II)						

$$p = 0.25 \cdot L_p - 0.393 \cdot (D_P + d_p)$$
 (10)

$$q = 0.125 \cdot (D_P - d_p)^2$$
(11)
$$A \approx p + \sqrt{p^2 - q}$$
(12)

$$p = 263.9 \, \text{mm}$$

$$q = 1012.5 \, \text{mm}^2$$

$$A \approx 526 \,\mathrm{mm}$$

Zakres ruchu osi

$$\mathbf{x} \ge 0.03 \cdot \mathbf{L}_p$$

$$\mathbf{y} > 0.015 \cdot \mathbf{L}_p$$

$$y \ge 25.5 \, \text{mm}$$

Współczynnik kąta opasania k_{φ} wyznaczono na podstawie danych z tabeli dla współczynnika $\frac{D_p-d_p}{A}$. W przykładzie wynosi on 0.15

$(D_p - d_p)/A$	kąt opasania φ	współczynnik kąta opasania k_{φ}
0,00	180°	1,00
0,05	177°	0,99
0,10	174°	0,99
0,15	171°	0,98
0,20	169°	0,97
0,25	166°	0,97
0,30	163°	0,96
0,35	160°	0,95
0,40	157°	0,94
0,45	154°	0,93
0,50	151°	0,93
0,55	148°	0,92
0,60	145°	0,91
0,65	142°	0,90
0,70	139°	0,89
0,75	136°	0,88
0,80	133°	0,87
0,85	130°	0,86
0,90	127°	0,85
0,95	123°	0,83
1,00	120°	0,82
1,05	117°	0,81
1,10	113°	0,80
1,15	110°	0,78
1,20	106°	0,77
1,25	103°	0,75
1,30	99°	0,73
1,35	95°	0,72
1,40	91°	0,70
1,45	87°	0,68
1,50	83°	0,65

Współczynnik długości pasa k_L wyznaczono na podstawie danych z tabeli stosując interpolację wartości. W przykładzie wynosi on $k_L = 1,005$

Pas SPZ		Pas SPA		Pas SPB		Pas SPC	
L_p	k_L	L_p	k_L	Lp	k _L	L_p	k_{L}
630	0,82	800	0,81	1250	0,82	2240	0,83
710	0,84	900	0,83	1400	0,84	2500	0,8
800	0,86	1000	0,85	1600	0,86	2800	0,88
900	0,88	1120	0,87	1800	0,88	3150	0,90
1000	0,90	1250	0,89	2000	0,90	3550	0,9
1120	0,93	1400	0,91	2240	0,92	4000	0,9
1250	0,94	1600	0,93	2500	0,94	4500	0,9
1400	0,96	1800	0,95	2800	0,96	5000	0,98
1600	1,00	2000	0,96	3150	0,98	5600	1,00
1800	1,01	2240	0,98	3550	1,00	6300	1,0
2000	1,02	2500	1,00	4000	1,02	7100	1,0
2240	1,05	2800	1,02	4500	1,04	8000	1,0
2500	1,07	3150	1,04	5000	1,06	9000	1,0
2800	1,09	3550	1,06	5600	1,08	10000	1,10
3150	1,11	4000	1,08	6300	1,10	11200	1,1:
3550	1,13	4500	1,09	7100	1,12	12500	1,14
11	0	11 (11	ellii.	8000	1,14		111

Na podstawie danych z tabeli określono moc przenoszoną przez jeden pas $N_1 = 7.99 \, kW$. Wymaga liczba pasów

$$z \geq \frac{N \cdot k_T}{N_1 \cdot k_{\varphi} \cdot k_L}$$
 (15)
 $z \geq 1,52$

Wynik zostaje zaokrąglony w górę do najbliższej liczby całkowitej z = 2.

Wymiary koła pasowego

/- /	1.	7- 1		100
pas wąski		SPA	SPB	SPC
(n)	Z	A	В	C
	8,5	CITI	14	19
górna w _e	9,7	12,7	16,3	22
oodziałową b	2	2,8	3,5	4,8
wka h _{min}	11	13,8	17,5	23,8
e	12 ± 0.3	15 ± 0.3	19 ± 0.4	$25,5 \pm 0,5$
podziałka brzegowa f		10 ± 0.8	12.5 ± 0.8	17 ± 1
maksymalna suma odchyłek e		±0,6	±0,8	±111
wąskie	63	90	140	224
normalny	50	71	112	180
$\alpha = 34^{\circ}$	> 80	< 118	< 190	< 315
$\alpha = 38^{\circ}$	< 80	> 118	> 190	> 315
α łki α	±0,5°	±0,5°	±0,5°	±0,5°
1	16	20	25	30
2	28	35	44	53
3	40	50	63	76
4	52	65	82	99
	chyłek e wąskie normalny $\alpha = 34^{\circ}$ $\alpha = 38^{\circ}$ rłki α 1 2 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- * to samo koło dla pasa wąskiego i klasycznego,
- * zmienny kąt α .

Średnice koła pasowego

Naciąg pasa

Określenie statycznej siły w cięgnie pasa T_s przez pomiar wartości ugięcia odcinka pomiarowego pasa pod działaniem siły kontrolnej (dla pasa SPZ $c=0.08 \, \frac{kg}{m}$).

$$T_s = \frac{(2,02 - k_{\varphi}) \cdot \mathbf{N} \cdot k_T}{2 \cdot k_{\varphi} \cdot z \cdot \mathbf{v}} + c \cdot \mathbf{v}^2 \quad (16)$$

$$T_s = 178 N$$

Pol	ited	hni	ika
\Va	rsz	aws	ka

pas wąski	SPZ	SPA	SPB	SPC	Tolerancja
pas klasyczny	Z	A	В	C	bicia t
	50*	1			/
	56*	-		elle.	-000
iii) "m ,	63	0		CIII	
	71	71*			0,2
	80	80			
	90	90	ffh	n)	h
6,	100	100	6	6.,	(""
srednica podziałowa	112	112	112*		
Po	er Chris	118	(118)*	ed Con	
zia	125	125	125	e III	
O PO		132	(132)*		0,3
ар	140	140	140		
nic	150	150	150	n n	lo III
d p	160	160	160	Ca.	(111)
ŝre		(170)	(170)		
	180	180	180	180*	n n
lind 📶 🧸	190	190	190	190*	clii
	200	200	200	200*	0,4
		(212)	(212)	212*] 0,4
	224	224	224	224	h film
6	6	236	236	236	
	250	250	250	250	

Ugiecie pasa

Na tej podstawie można określić dopuszczalne ugięcie pasa dla siły kontrolnej $q=25\,N$ korzystając z wykresu. W przykładzie ta wartość wynosi U=2,49

$$U_p = \frac{U}{100} \cdot \mathbf{A} \cdot \sin(\frac{\varphi}{2}) \tag{17}$$

$$U_p = 13,05 \, \text{mm}$$

Ugięcie pasa

Wyznaczenie statycznej siły naciągu pasa N_{stat}

$$N_{stat} = 2 \cdot T_s \cdot z \cdot sin(\frac{\varphi}{2})$$

 $N_{\text{stat}} = 709,6 \, \text{N}$

Obciążenia dynamiczne wału i łożysk

Obciążenie osi od sił w cięgnach czynnych

$$T_c \approx \frac{1.02 \cdot N \cdot k_T}{k_{\varphi} \cdot v}$$
 (19)

$$T_c \approx 510,6 N$$

Obciążenie osi od sił w cięgnach biernych

$$T_b \approx \frac{1.02 \cdot (1.02 - \mathbf{k}_{\varphi}) \cdot \mathbf{N} \cdot \mathbf{k}_T}{\mathbf{k}_{\varphi} \cdot \mathbf{v}} \quad (20)$$

$$T_b \approx 20.4 N$$

P<mark>olit</mark>echnika Warszawska

Dynamicznej siła osiowa - siła działaj<mark>ąc</mark>a na wał

$$N_s \approx \sqrt{T_c^2 + T_b^2 - 2 \cdot T_c \cdot T_b \cdot \cos(\varphi)}$$
 (21)

$$N_s \approx 530,7 \, \text{N}$$

Bibliografia

A. Dziurski, E. Mazanek, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Łożyska, sprzęgła i hamulce, przekładnie mechaniczne. tom 2. WNT, 2015. isbn: 9788393491360.

L. W. Kurmaz and O. L. Kurmaz. Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania. Samodzielna Sekcja "Wydawnictwo Politechniki Świetokrzyskiej". 2011 isbn: 9788388906343.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe.

W. Starego. Poradnik konstruktora przekładni pasowych.

