## DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf)

## CUESTIONARIO DE LA QUINTA/SEXTA PRÁCTICA (Modelo A)

| 1. | Aplica la | secuencia | Calculus:Limit | para | determinar | el | siguiente | límite: |
|----|-----------|-----------|----------------|------|------------|----|-----------|---------|
|----|-----------|-----------|----------------|------|------------|----|-----------|---------|

$$\lim_{n} \left( \frac{2n+1}{2n-\sqrt{n}} \right)^{\sqrt{n+2}} = \boxed{(2)}$$

2. Aplica la secuencia Calculus: Limit para comparar los órdenes de magnitud de las sucesiones

$$a_n = \sqrt{n^5} - \sqrt{n^3 + 1}$$

$$o_n = \log(n)$$

Tendrás que calcular

$$\lim_{n} \frac{a_n}{b_n} = \boxed{ } \bigcirc$$

de donde puedes concluir

$$a_n \gg b_n$$

IF (contrain, valor si, valor no

3. Define, usando la cláusula IF, la sucesión recurrente

$$\begin{cases} a_1 & = 2 \\ a_{n+1} & = 1 + \frac{1}{3a_n} \end{cases}$$

El término  $a_{10}$  de la sucesión, con nueve decimales, es 1, 26376



4. Define, usando ITERATE, la sucesión recurrente

$$\begin{cases} a_1 & = 3 \\ a_{n+1} & = \sqrt{5 + 4a_n} \end{cases}$$

El término a<sub>15</sub> de la sucesión, con veinte decimales, es 4, 49 9 9 9 3 7 3 9

5. Resuelve la ecuación en diferencias que proporciona la forma explícita de la sucesión que define el problema de las torres de Hanoi:

$$\begin{cases} a_1 = 1 \\ a_{n+1} = 2a_n + 1 \end{cases}$$

La expresión explícita para  $a_n$ , tras simplificar la función LIN1\_DIFFERENCE, quedará

$$a_n = 2^{n+1}$$

LINI\_DIFFERENCE (Sh, th, h, h)

6. Considera  $\{a_n\}$  la sucesión de Fibonacci, definida mediante la recurrencia

$$a_{n+2} = a_n + a_{n+1}$$
,  $a_1 = a_2 = 1$ 

de gran interés por sus numerosas aplicaciones en Ciencias de la Computación, en Matemáticas y en la Teoría de Juegos. Debes, de acuerdo con el formato que usa D5W, resolver la ecuación LINZ\_CCF\_BV(p,q, th, n, h, A, N, o)

$$A \cdot a_{n+2} + \begin{bmatrix} a_{n+1} + b_{n+1} \end{bmatrix} \cdot a_{n+1} + \begin{bmatrix} a_{n+1} + b_{n+1} \end{bmatrix} \cdot a_n = \begin{bmatrix} a_{n+1} + b_{n+1} \end{bmatrix}$$

La expresión explícita para  $a_n$ , tras simplificar la función LIN2\_CCF\_BV correspondiente, quedará  $\sqrt{a_n r_L + p_n a_n + q_n a_n r_L}$ 

$$a_n = \frac{\sqrt{5}(\frac{5}{2} + \frac{1}{2})^h}{5} \sqrt{\sqrt{5}(\frac{5}{2} - \frac{1}{2})^h} \cdot (-1)^h}{5}$$

Determina una sucesión exponencial  $b_n$  del mismo orden de magnitud que  $a_n$ 

$$b_n =$$

## DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf) CUESTIONARIO DE LA QUINTA/SEXTA PRÁCTICA (Modelo B)

1. Aplica la secuencia Calculus:Limit para determinar el siguiente límite

 $\lim_{n} \left(\frac{n+1}{n-\sqrt{n}}\right)^{\sqrt{n+2}-\sqrt{n}} = \boxed{\qquad \text{a siempre tiende}}$ 

2. Aplica la secuencia Calculus: Limit para determinar el siguiente límite

 $\lim_{n} \left( \frac{\log(n^5)}{\sqrt{n}} \right) = \bigcirc \bigcirc \Rightarrow \log(n^5)$ 

3. Define, usando la función ITERATE, la sucesión recurrente

TTERATE(f, x, x<sub>0</sub>, n)  $\begin{cases} a_1 = 2 \\ a_{n+1} = \sqrt{1+3a_n} \text{ for ya esta ealculado} \\ con nueve decimales exactos, es 3, 30275050. \end{cases}$ 

4. Define, usando la cláusula IF, la sucesión recurrente

 $F(\text{condicion, valor cand falsa}) \begin{cases} a_1 = 5 \\ a_{n+1} = 2 + \frac{1}{a_n} \end{cases}$ 

- El término  $a_{20}$  de la sucesión, con quince decimales, es
- 5. Utiliza la función LIN1\_DIFFERENCE para resolver la ecuación en diferencias (lineal de primer orden)

$$\left\{\begin{array}{lcl} a_1 & = & 0 \\ a_n & = & 3a_{n-1} + n \end{array}\right.$$

reescribiéndola previamente en la forma que usa D5W. La expresión explícita para  $a_n$  queda

 $a_n = \begin{bmatrix} 5 \cdot 3^{n-1} & 2 \cdot n \cdot 3 \\ 4 & 4 \end{bmatrix}.$ 

Comprueba que  $a_n \approx 3^n$ . Para ello, calcula

6. Sea  $a_n$  el número de cadenas de bits de longitud n que pueden generarse de forma que nunca haya dos ceros consecutivos. Observa (y calcula para n=5) que las cadenas posibles para los primeros valores serán

Si  $n = 2 \Rightarrow 01$  11 10 Si  $n = 3 \Rightarrow 010$  011 101 110 111 Si  $n = 4 \Rightarrow 0101$  0110 0111 1010 1110 1101 1111

de donde se deduce que  $a_1 = 2$  ,  $a_2 = 3$  ,  $a_3 = 5$  ,  $a_4 = 8$  ,  $a_5 = 13$  , ...

Define  $a_n$  como sucesión recurrente:

$$a_1 = 2$$
 ,  $a_2 = 3$  ,  $a_1 = 3$ 

La expresión explícita para  $a_n$ , tras simplificar la función LIN2\_CCF\_BV correspondiente, quedará

$$a_n = \left(\frac{1}{2} - \frac{3\sqrt{5}}{10}\right) \left(\frac{\sqrt{5}}{2} - \frac{1}{2}\right)^n \cdot (-1)^n t \left(\frac{\sqrt{5}}{2} + \frac{1}{2}\right)^n \cdot \left(\frac{3\sqrt{5}}{10} + \frac{1}{2}\right)^n$$

¿Cuántas cadenas podrías generar por este procedimiento si n = 100?  $\boxed{91777692193678999176}$ 

APELLIDOS:

NOMBRE:

GRUPO: