NF92 Traitement automatique de l'information

Pavol BARGER

Fonctionnement de l'ordinateur

Contenu

- Microprocesseur et mémoire
 - Leur fonctionnement
 - Bus
- Périphériques
- Interruptions
- BIOS

Cœur de l'ordinateur

- Mémoire
- Central Processing Unit (CPU)
 - Arithmetic Logic Unit (ALU)
 - Control unit (CU)
- Bus
 - Liaison entre les composants

CPU

Central Processing Unit

- Aritmetic Logic Unit
 - Toute opération arithmétique et logique
 - Une opération à la fois
- Control Unit
 - Exécution du programme
 - Sélection d'instructions
 - Interfaçage avec les autres

Avec changement de données

Sans changement de données

Registres

- Petites mémoires (quelques bits) dans le CPU
- Utilisations spécifiques
- Dans le microprocesseur 8086 (16 bits)
 - AX accumulateur
 - BX, CX, DX
 - Registre de drapeaux
 - Compteur ordinal
 - Registre d'instruction
 - Pile

Registre de drapeaux

Bits

- Carry Flag (CF) Ce flag est à 1 lorsqu'il y a une retenue.
- Zero Flag (ZF) Ce flag est à 1 lorsque le résultat est zéro.
- Sign Flag (SF) Ce flag est à 1 lorsque le résultat est négatif.
- Overflow Flag (OF) Ce flag est à 1 lorsqu'un débordement a lieu. L'indicateur débordement est une fonction logique (OU exclusif) de la retenue (C) et du signe (S).
- Parity Flag (PF) Ce flag est à 1 lorsque le résultat est un nombre pair de bits à 1.
- Interrupt enable Flag (IF) Lorsque ce flag est à 1, le processeur réagit aux interruptions des dispositifs externes.

Types d'instructions

- Instructions de transfert
 registre → registre
 registre → mémoire
 mémoire → registre
 (mémoire → mémoire)

 - Instructions arithmétiques
- addition, soustraction, multiplication, division
- Instruction logiques
 ET, OU, OU exclusif, négation
- Instructions de décalage et de rotation
- - Instructions de saut
- saut conditionnel
 saut inconditionnel

■ Instructions de commande et d'état

Jeu d'instructions de base

Mnémonique	Valeur hexa	Taille en octets	Description Transfert de données	
MOV				
ADD AX, Val	5	3	Ajoute à AX la valeur indiquée et stocke le résultat dans AX	
ADD AX, Adr	03 06	4	Ajoute à AX la valeur stockée à l'adresse indiquée et stocke le résultat dans AX	
CMP AX, Val	3D	3	Compare AX et la valeur indiquée	
CMP AX, Adr	3B 06	4	Compare AX et la valeur stockée à l'adresse indiquée	
DEC AX	48	1	Décrémente AX (soustrait 1)	
INC AX	40	1	Incrémente AX (ajoute 1)	
JE adr	74	2	Saut à l'adresse indiquée si égalité	
JG adr	7F	2	Saut à l'adresse indiquée si supérieur	
RET			Arrêt du programme	

Traitement d'une instruction 1^{ère} opérande 2ème opérande Registre2 Registre1 Instruction ALU Résultat Drapeaux

Format d'instructions

03h 05 34

Code instruction [Opérande1] [Opérande2]

- Code d'instruction en hexadécimal
- Opérande1 et Opérande2 sont optionnelles et contient
 - valeurs
 - adresses

Format d'instructions

Cette instruction a besoin de 3 octets de mémoire

Format d'instructions

 Utilisation de mnémoniques pour tout ce qu'on peut

Instructions de base : exemple

Faites un programme qui additionne deux valeurs stockées dans la mémoire, si ce résultat est plus grand que une valeur dans la mémoire il affiche 1 à l'écran, sinon il affiche 0.

Instructions de base : exemple

if (a+b)>c then print("1") else print("0")

Instructions de base : exemple

0. Réservation de 3 places dans la mémoire [101] première valeur [102] deuxième valeur [103] seuil de comparaison

PS: on appelle ces 3 places des variables

Instructions de base : exemple

- 1. Transfert de la première valeur dans l'accumulateur mov ax, [101]
- 2. Ajout de la deuxième valeur à l'ax add ax, [102]
- 3. Comparer le contenu de l'ax avec le seuil cmp ax,[103]

Instructions de base : exemple

- 4.a Si le résultat de cette comparaison est plus grand alors fait un saut quelquepart jg quelquepart
- 4.b.1 sinon continue et affiche 0 mov ecran, 0
- 4.b.2 arrêt du programme ret

Instructions de base : exemple

- 5.1 programme quelquepart: affiche 1 mov ecran, 1
- 5.2 arrêt du programme ret

Instructions de base : exemple

if (a+b)>c mov ax, [101] then print("1") else print("0")

add ax, [102] cmp ax, [103] jg quelquepart

mov ecran, 0

ret mov ecran, 1 quelquepart:

Bus

- Accès à la mémoire
- Largeur du bus (L)
 - Nombre de fils en parallèle
- Double utilisation
 - Contenu
 - Adresses
- →Bus séparé en 2
 - Bus contenu (L=p)
 - Bus adresses (L=m)

0	0	0	0
0	0	0	1
0	0	1	2
0	1	0	3
0	1	0	4
0	1	1	1 2 3 4 5 6 7 8
0	1	1	6
0	1	0	/
0	0	1	8
С	onte	Adresse	
			38

38

Cœur et corps de l'ordinateur

- Le bus est géré par un circuit spécifique: northbridge
- Northbridge : connexion entre le CPU, la mémoire et les autres

Cœur et corps

 Southbridge : connexion de northbridge et les périphériques

Cœur et corps

 Chipset : unité logique composée de northbridge et southbridge

Bus SATA

- Bus pour les périphériques autours de la carte mère
- Débits jusqu'à 600 Mo/s
- Possibilité d'alimentation en 3.3V, 5V et 12V
- 8 ou 15 fils

Interruptions

- 1. Le programme se déroule normalement
- 2. L'événement survient
- 3. Le programme achève l'instruction en cours de traitement
- 4. Le programme saute à l'adresse de traitement de l'interruption
- 5. Le programme traite l'interruption
- 6. Le programme saute à l'instruction qui suit la dernière exécutée dans le programme principal.

Interruptions

- Interruptions PC AT
 IRQ 0 : Horloge Système
 IRQ 1 : Clavier
 IRQ 2 : N/A (cascade du IRQ 1 : Clavier
 IRQ 2 : N/A (cascade du second contrôleur)
 IRQ 2 : N/A (cascade du second contrôleur)
 IRQ 3 : Port série (COM/COM4)
 IRQ 4 : Port série (COM/ICOM3)
 IRQ 5 : LPT2 (carte de son)
 IRQ 6 : Lecteur de disquettes
 IRQ 7 : Port parallèle (LPT1)
 IRQ 8 : Horloge temps réel
 IRQ 9 : N/A (PCI)
 IRQ 10 : N/A
 IRQ 11 : N/A (USB)
 IRQ 12 : N/A (PSI/2)
 IRQ 13 : COprocesseur math.
 IRQ 14 : Disque dur primaire
 IRQ 15 : Disque dur secondaire

Le BIOS

Basic Input Output System ou BIOS: système de gestion élémentaires des entrées/sorties

programme contenu dans la mémoire morte (ROM) et dans une mémoire modifiable (EEPROM) de la carte mère s'exécutant au démarrage de l'ordinateur.

Pré-histoire et Histoire de l'Informatique

Calculateurs mécaniques (1/4)

1643 Blaise Pascal invente la *Pascaline*, machine à faire les additions, soustractions et a convertir les monnaies

Lorsqu'un cadran fait un tour complet, le cadran suivant est incrémenté (retenue automatique)

Calculateurs mécaniques (2/4)

1679 Leibnitz améliore la *Pascaline*, en y ajoutant la multiplication et la division : la calculette est née!

Pose les bases de l'arithmétique binaire

Calculateurs mécaniques (3/4)

1820 Charles-Xavier Thomas de Colmar invente l'arithmomètre. Portable, pratique et facile a utiliser: 1500 exemplaires en 30 ans

61

Calculateurs mécaniques (4/4)

1890 Automatisation du recensement américain grâce à la tabulatrice à cartes perforées de Hollerith.

Inspirée des métiers à tisser Jacquard + électricité Création de la « Tabulated Machine Company »

Plein de calculateurs mécaniques jusqu'aux années 1950!

62

XIXème siècle

Boole: bases de la logique binaire (1854) (2 valeurs de vérité, 4 opérations de base)

Babbage: machine a différences

calcul des éphémérides grâce a une suite d'additions et de soustractions

purement mécanique

sortie : gravure d'une plaque de cuivre ! Calcul sophistiqué mais machine spécialisée

63

La Machine Analytique (1/2)

1833, Babbage : « un calculateur universel »

- 1. Entrée (programme)
- 2. Unité de commande
- 3. « Magasin » (mémoire)
- 4. « Moulin » (calcul élémentaire, UAL)
- 5. Sortie

La Machine Analytique (2/2)

Une conception trop en avance! Problèmes de technologie : la machine ne fonctionna jamais.

Assisté de Lady Ada Lovelace, première programmeuse!

Précision de calcul

■ Calculez a*x=b

a=[1e-17 1;1 1]; b=[1;2];

a(2,2)=a(2,2)-a(2,1)/a(1,1)*a(1,2); b(2)=b(2)-a(2,1)/a(1,1)*b(1); x(2)=b(2)/a(2,2); x(1)=(b(1)-a(1,2)*x(2))/a(1,1);disp(x)

Précision de calcul

■ Calculez a*x=b

```
 \begin{array}{l} a = [1 \ 1; 1e-17 \ 1]; \\ b = [2; 1]; \\ a(2,2) = a(2,2) - a(2,1)/a(1,1)*a(1,2); \\ b(2) = b(2) - a(2,1)/a(1,1)*b(1); \\ x(2) = b(2)/a(2,2); \\ x(1) = (b(1) - a(1,2)*x(2))/a(1,1); \\ disp(x) \end{array}
```