NORTHEASTERN UNIVERSITY, KHOURY COLLEGE OF COMPUTER SCIENCE

CS 6220 Data Mining — Assignment 2 Due: Jan 25, 2023(100 points)

Yu Wang

Git User Name: titojojo

Email: wang.yu25@northeastern.edu

https://github.com/Titojojo/CS6220-Data-Mining

Frequent Itemsets

Consider the following set of frequent 3-itemsets:

Assume that there are only five items in the data set. This question was taken from Tan et al., which may help in reviewing Candidate Generation.

1. List all candidate 4-itemsets obtained by a candidate generation procedure using the $F_{k-1} \times F_1$ merging strategy.

$$\{1, 2, 3, 4\}, \{1, 2, 3, 5\}, \{1, 2, 4, 5\}, \{1, 3, 4, 5\}, \{2, 3, 4, 5\}$$

2. List all candidate 4-itemsets obtained by the candidate generation procedure in A Priori, using $F_{k-1} \times F_{k-1}$.

$$\{1, 2, 3, 4\}, \{1, 2, 3, 5\}, \{1, 2, 4, 5\}, \{2, 3, 4, 5\}$$

3. List all candidate 4-itemsets that survive the candidate pruning step of the Apriori algorithm.

Association Rules

4. a) What is the maximum number of association rules that can be extracted from this data (including rules that have zero support)?

There are {Beer, Diapers, Milk, Bread, Butter, Cookies, Eggs}. In total 7 items.

So we have $2^7 - 1 = 127$ possible association rules.

b) What is the confidence of the rule $\{Milk, Diapers\} \Rightarrow \{Butter\}$?

$$Confidence = \frac{\sigma(\{\text{Milk}, \text{Diapers}, \text{Butter}\})}{\sigma(\{\text{Milk}, \text{Diapers}\})} = \frac{2}{4} = 0.5$$

c) What is the support for the rule $\{Milk, Diapers\} \Rightarrow \{Butter\}$?

$$Support = \frac{\sigma(\{\text{Milk}, \text{Diapers}, \text{Butter}\})}{|T|} = \frac{2}{10} = 0.2$$

5. True or False with an explanation: Given that $\{a,b,c,d\}$ is a frequent itemset, $\{a,b\}$ is always a frequent itemset.

True.

According to Apriori principle, if an itemset is frequent, then all of its subsets must also be frequent:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(Y) \le s(X)$$

6. True or False with an explanation: Given that $\{a,b\}$, $\{b,c\}$ and $\{a,c\}$ are frequent itemsets, $\{a,b,c\}$ is always frequent.

False.

 $\{a, b\}, \{b, c\},$ and $\{a, c\}$ are frequent does not guarantee that their union $\{a, b, c\}$ is also frequent.

For example, suppose we have the following set: {a, b} with support 5, {b, c} with support 5, and {a, c} with support 6, {a, b, c} with support 1. If minsup is 2 in this case, then {a, b}, {b, c}, and {a, c} are frequent itemsets, but {a, b, c} is not frequent.

7. True or False with an explanation: Given that the support of {a,b} is 20 and the support of {b,c} is 30, the support of {b} is larger than 20 but smaller than 30.

False.

Based on the Anti-monotone property of support, the support of an itemset never exceeds that of its subsets:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(Y) \le s(X)$$

 $\{b\}$ is a subset of both $\{a, b\}$ and $\{b, c\}$, so we have:

$$20 = s(a, b) < s(b)$$

$$30 = s(b, c) < s(b)$$

So the support of b is larger or equal to 30.

8. True or False with an explanation: In a dataset that has 5 items, the maximum number of size-2 frequent itemsets that can be extracted (assuming minsup > 0) is 20.

False.

$$\binom{5}{2} = \frac{5 \times 4}{2 \times 1} = 10$$

The maximum number of size-2 frequent itemsets should be 10.

9. Draw the itemset lattice for the set of unique items $I = \{a, b, c\}$.

