Argomenti trattati durante la lezione:

- Espressioni Regolari
- Equivalenza con gli automi finiti

Operazioni sui linguaggi

■ Unione:

$$L \cup M = \{w : w \in L \text{ oppure } w \in M\}$$

Intersezione:

$$L \cap M = \{w : w \in L \in w \in M\}$$

■ Complemento:

$$\overline{L} = \{ w : w \notin L \}$$

■ Concatenazione:

$$L.M = \{uv : u \in L \text{ e } v \in M\}$$

■ Chiusura (o Star) di Kleene:

$$L^* = \{ w_1 w_2 \dots w_k : k \ge 0 \text{ e ogni } w_i \in L \}$$

Come per le espressioni aritmetiche, anche per le espressioni regolari ci sono delle regole di precedenza degli operatori:

- 1 Chiusura di Kleene
- 2 Concatenazione (punto)
- **3** Unione (+)

Da KE a arepsilon-NFA

Caso Induttivo:

 \blacksquare automa per R+S

automa per RS

■ automa per R*

Esercizi (2)

Per ognuno dei seguenti linguaggi, costruire una ER sull'alfabeto $\{0,1\}$ che li rappresenti:

- 4 Tutte le stringhe w che contengono la sottostringa 101
- **5** Tutte le stringhe w che non contengono la sottostringa 101

Sfida!

Costruire una ER sull'alfabeto $\{0,1\}$ per il linguaggio di tutti i numeri binari multipli di 3.

Esercizio 4: Stringhe che contengono la sottostringa 101

(0|1)*101(0|1)*

Questa espressione rappresenta qualsiasi stringa che contiene "101" in una posizione qualsiasi:

- (0|1)*: qualsiasi prefisso (anche vuoto)
- 101 : la sottostringa richiesta
- (0|1)*: qualsiasi suffisso (anche vuoto)

Esercizio 5: Stringhe che NON contengono la sottostringa 101

(0|11|10(0|11|10)*)*

Questa espressione funziona perché garantisce che dopo aver letto "10", il carattere successivo non possa mai essere "1":

- 0: possiamo inserire zero
- 11: possiamo inserire due uno consecutivi
- 10(0|11|10)*: dopo "10" possiamo avere solo "0", "11" o un altro "10", mai un singolo "1"

Sfida: Numeri binari multipli di 3

(0|1(01*0)*1)*

Questa espressione deriva dall'automa a stati finiti che riconosce i multipli di 3 tramite i resti:

- Stato 0: resto 0 (accettazione)
- Stato 1: resto 1
- Stato 2: resto 2

Le transizioni seguono la logica: quando aggiungiamo una cifra a destra in un numero binario, il nuovo resto è determinato dal resto precedente e dalla cifra aggiunta secondo le regole:

- $resto(2n) = (2 \times resto(n)) \mod 3$
- $resto(2n+1) = (2 \times resto(n) + 1) \mod 3$

L'espressione cattura tutti i percorsi che, partendo dal resto 0, tornano al resto 0.

ER che mostra che tutte le stringhe contengano ciascun simbolo almeno una volta

$$(a+b+c)*a(a+b+c)*b(a+b+c)*c$$

ER per stringhe binarie che contengono almeno tre 1: (0+1)*1(0+1)*1(0+1)*1(0+1)*

5) Tutte le stringhe che contengono 4k + 1 occorrenze di "b" per "k" >= 0 Soluzione:

((a|c)*b(a|c)*b(a|c)*b(a|c)*b(a|c)*)*(a|c)*

ER per stringhe di testo che descriva le date in formato GG/MM/AAAA 0(1+2...+9)+(1+2)/(1+2+...9)+3(0+1)/(0+1)(1+2)/(0+1+...9)(0+1+...9)(0+1+...9)

Equivalenza tra FA e RE

Sappiamo già che DFA, NFA, e ε -NFA sono tutti equivalenti.

Gli FA sono equivalenti alle espressioni regolari:

- \blacksquare Per ogni espressione regolare R esiste un $\varepsilon\textsc{-NFA}$ A, tale che L(A)=L(R)
- **2** Per ogni DFA A possiamo costruire un'espressione regolare R, tale che L(R) = L(A)

Construct NFA for RE: (a+b)*abb

Construct NFA epsilon for RE: (a*|b*)

Costruite una Espressione Regolare equivalente ai seguenti automi:

Automa 1 (in alto a sinistra)

1*0(0|11*0)*

Questa espressione riflette il comportamento dell'automa dove:

- Si può iniziare con zero o più '1' (rimanendo in q0)
- Si deve poi leggere uno '0' per passare a q1 (stato di accettazione)
- Una volta in q1, possiamo:
 - Leggere un altro '0' e rimanere in q1
 - Leggere un '1', tornare a q0, leggere zero o più '1', e poi un '0' per tornare a q1

Automa 2 (in alto a destra)

Copia

(1|000|01(0|11)*10)*

Questa espressione rappresenta tutte le stringhe accettate dall'automa con stato iniziale e finale q0:

- Si può rimanere in q0 leggendo '1'
- Si può seguire il percorso q0→q1→q2→q0 con la sequenza '000'
- Si può seguire il percorso q0→q1→q3→...→q2→q0 con la sequenza '01' seguita da zero o più '0' o coppie '11', e terminando con '10'

Automa 3 (in basso a sinistra)

0*|1*

Questa espressione rappresenta il comportamento più semplice dell'automa con Etransizioni:

- Oppure possiamo andare con ϵ in q2 (accettazione) e leggere zero o più '1'
- Quindi il linguaggio accetta stringhe composte solo da '0' o solo da '1'

Conversione per eliminazione di stati

- La procedura che vedremo è in grado di convertire un qualsiasi automa (DFA o NFA) in una espressione regolare equivalente
- Si procede per eliminazione di stati
- lacksquare Quando uno stato q viene eliminato, i cammini che passano per q scompaiono
- si aggiungono nuove transizioni etichettate con espressioni regolari che rappresentano i cammini eliminati
- alla fine otteniamo un'espressione regolare che rappresenta tutti i cammini dallo stato iniziale ad uno stato finale
 - ⇒ cioè il linguaggio riconosciuto dall'automa

- Sono NFA dove le transizioni sono etichettate con espressioni regolari
- Ogni transizione consuma un blocco di simboli dall'input che appartiene al linguaggio dell'espressione regolare

Primo passo: da NFA a GNFA

- I Nuovo stato iniziale q_{start} con transizione ε verso il vecchio q_0
- 2 Nuovo stato finale q_{accept} con transizione ε da tutti i vecchi stati finali $q \in F$
- 3 Rimpiazzo transizioni multiple tra due stati con l'unione delle etichette
- 4 Aggiungo transizioni etichettate con ∅ tra stati non collegati da transizioni

(c)

(b)

2.1 Example: From **NFA** to regex in 8 easy figures

Thus, this automata is equivalent to the regular expression $(ab^*a + b)(a + b)^*$.

2. Stringhe binarie che non comprendono la stringa 101

Let's consider the following finite automaton:

Add a new initial state, I. Make a null transition from state I to state q_0 .

Step 2: Add a final state

Add a new final state, F. Make a null transition from state q_3 to state F.

Step 3: State elimination

Perform the elimination of states other than ${\cal I}$ and ${\cal F}.$

Step 3.1

Eliminate state q_0 .

Step 3.2

Eliminate state q_3 . Concatenate transitions from state q_3 to state F as per the basic rules of writing regular expressions.

Step 3.3

Eliminate q_1 . Check for the in-degree and out-degree of state q_1 . Write the regular expressions for the new transitions acquired after removing state q_1 .

Step 3.4

Eliminate state q_2 .

In-degree of q2: {I} Out-degree of q2: {F} New Transitions: (I, F)

Eliminating q2

Step 3.5

Put it all together.

Result

The resultant regular expression for the given finite automaton is as follows:

$$a.a*.(a+b) + ((a.a*.a) + b).(b.a*.a)*.b.a*.(a+b).$$