Laboratorinis darbas Nr. 2

Tema: Matricos, duomenų tipai

- 1. 10 dienų telefoninių pokalbių trukmė minutėmis: 17 16 20 24 22 15 21 15 17 22. Kiek minučių buvo kalbėta per 10 dienų? Kiek kartu kalbėta buvo ilgiau nei 20 minučių?
- 2. Pilant į automobilį degalus fiksuojamas nuvažiuotas atstumas nuo vienos degalinės iki kitos. Skaitiklio rodmenys: 65311 65624 65908 66219 66499 66821 67415 67447.
 - 1) Šiuos duomenis įveskite kaip vektorių;
 - 2) apskaičiuokite nuvažiuotus atstumus tarp degalinių (funkcija diff(x));
 - 3) raskite mažiausią, didžiausią nuvažiuotą atstumą, bei vidutinį atstumą (atstumo vidurkį).
- 3. Sukurkite vektorių **x**, kurios elementai būtų 1, 3, 5, ..., 11. Sudarykite iš šių elementų matricą A, turinčią 2 eilutes ir 3 stulpelius, elementus įrašant nuosekliai į eilutes.
 - a. Išsiaiškinkite ir komentaru užrašykite, kokius veiksmus atlieka šios komandos: A[2,2]; A[2,]; A[,-3].
 - b. Įveskite matricą $B = \begin{pmatrix} 1 & -2 & 5 \\ 3 & -7 & 0 \end{pmatrix}$;
 - c. Apskaičiuokite matricų A ir B atitinkamų narių sumą A + B;
 - d. Apskaičiuokite matricų A ir B atitinkamų narių sandauga A*B;
 - e. Raskite matricų A ir B^T sandaugą, pagal matricų daugybos taisykles (čia B^T- matricos B transponuota matrica).
- 4. Įveskite matricą $C = \begin{pmatrix} 24 & 4 & 5 \\ -6 & 7 & 12 \\ 9 & 3 & -7 \end{pmatrix}$. Apskaičiuokite det(C), C^T ir matricos C atvirkštinę C⁻¹.
- 5. Išspręsti TLS $\begin{cases} 2x 5y + 3z = 5\\ 4x + 2y + z = 5\\ 3x + y + 6z = 9 \end{cases}$
- 6. Sukurkite vektorius **metai** = (50, 17, 30), **balai** = (8, 7, 2) ir **asmenys** = (Ignas, Karina, Jonas).
 - a. Sujunkite šiuos vektorius naudodami funkciją *cbind()* ir nustatykite gauto objekto **tipą**, **klasę bei atributus**. *Komentare užrašykite ką gavote*.
 - b. Sujunkite šiuos vektorius naudodami funkciją *data.frame()* ir nustatykite gauto objekto **tipą**, **klasę bei atributus**. *Komentare užrašykite ką gavote*.
 - c. Sujunkite vektorius **metai** ir **balai** naudodami funkciją *cbind()* ir nustatykite gauto objekto **tipą**, **klasę bei atributus**. *Komentare užrašykite ką gavote*.
- 7. Naudodami komandą *data*() atidarykite **R** duomenų rinkinių sąrašą.
 - a. Komentare užrašykite kokią informaciją pateikė komandos: help(Orange); summary(Orange); str(Orange).
 - b. Nustatykite duomenų rinkinio *Orange* tipą, klasę, dimensiją ir atributus
 - c. Apskaičiuokite medžių amžiaus vidurkį. Komentare užrašykite ką gavote.
 - d. Kokį rezultatą duoda komanda **max**(*circumference*)? (pasinaudokite komandos *attach*() funkcionalumu).

KOMANDŲ LENTELĖ

Komanda	Komandos paaiškinimas
choose(n,k)	Skaičiuoja derinių, iš n elementų po k, skaičių.

matrix(x,nrow=2,ncol=6)	Sukuriama matrica, iš vektoriaus x elementų, kurie išdėliojami į	
	2 eilutes ir 6 stulpelius. Reikšmės surašomos stulpeliais.	
matrix(x,nrow=2,ncol=6,byrow=TRUE)	Sukuriama matrica, iš vektoriaus x elementų, kurie išdėliojami į	
	2 eilutes ir 6 stulpelius. Reikšmės surašomos eilutėmis.	
t < -numeric(k)	Skaičių vektoriui rezervuojama k vietų.	
$\dim(t) < -c(n, m)$	Rezervuotos vietos išdėstomos į n eilučių ir m stulpelių.	
B < -edit(t)	Atidaro lentelę matricos reikšmių įvedimui.	
data.entry(matrica)	Atidaroma lentelė su objekto <i>matrica</i> reikšmėmis.	
solve(A)	Išvedama matricos A atvirkštinė matrica	
solve(A,b)	Tiesinių lygčių sistema išsprendžiama matriciniu metodu, A ir b	
	yra matricos, kurias reikia įvesti pirmiau.	
%*%	#matricų sandauga, pagal matricų daugybos taisykles.	
*, +, -	Matricos atitinamų elementų *, +,	
t(A)	matrica A transponuoja	
det(A)	matricos A determinantą	
diag(x)	Sukuria diagonalinę matricą, kurios diagonalėje yra vektoriaus x	
	elementai.	
getwd()	Nustatoma, koks yra darbinis katalogas	
setwd("Z:\\Laboratoriniai\\")	Nurodomas naujas darbinis katalogas	
mean(x)	Apskaičiuojamas vektoriaus x elementų vidurkis.	
class(A)	Išveda objekto A klasę (numeric, matrix, data.frame)	
mode(A)	Išveda objekto A tipą (numeric, character, list)	
attributes(A)	Išveda objekto A atributus (dimensiją, klasę, tipą)	
dim(A)	Pateikiamai objekto A eilučių ir stulpelių skaičiai.	
attach(Orange)	Prijungia duomenų rinkinį Orange	

Kiekvienas R duomeninis **objektas** visuomet turi du vidinius požymius:**tipą** (mode) ir **ilgį** (length)) ir dar gali turėti vieną ar kelis papildomus požymius (attributes) (pvz., **klasę** (class) ar **matavimų skaičių** (dimension). Žemiau esančioje lentelėje pateikta šių faktų santrauka.

2.1 lentelė. Objektai ir jų savybės

Objektas	Galimi tipai mode	Ar galimi skirtingi tipai viename objekte?	Klasė class
Vektorius (vector)	numeric, character, complex, logical	ne	Tokia pat kaip mode
Vardų kintamasis arba faktorius (factor)	numeric, character	ne	factor
Ranginis kintamasis (factor ordered)	numeric, character	ne	factor ordered
Masyvas (array)	skaitinis, simbolinis, kompleksinis, loginis	ne	NULL
Matrica (matrix)	"	ne	matrix
Duomenų sistema (data frame)	list	taip	data.frame
Sąrašas (list)	list	taip	Priklauso nuo sąrašą sukū- rusios funkcijos

[Šaltinis: D. Krapavickaitė, 2017]