

ulm university universität **UUI**

Sommersemester 2020

INSTITUT FÜR STOCHASTIK

Dr. Larisa Yaroslavtseva Freimut von Loeper

Angewandte Stochastik 1

Musterlösung zum Übungsblatt 2

Aufgabe (1)[1+1+1+1+1 Punkte]

- a) Geben Sie die Potenzmenge $\mathcal{P}(\Omega)$ für $\Omega = \{a, 2, \star\}$ an.
- b) Bestimmen Sie, welche der folgenden Mengensysteme σ -Algebren auf $\Omega = \{a,b,c,d\}$ sind:
 - (i) $\Sigma = \{\emptyset, \Omega, \{a\}, \{b\}, \{c\}, \{d\}\},\$
 - (ii) $\Sigma = {\Omega, {a,b}, {c,d}},$
 - (iii) $\Sigma = \{\emptyset, \Omega\},\$
 - (iv) $\Sigma = \{\emptyset, \{a, b\}, \{c, d\}, \Omega\}.$

Lösung:

- a) $\mathcal{P}(\Omega) = \{\emptyset, \Omega, \{a\}, \{2\}, \{\star\}, \{a, 2\}, \{a, \star\}, \{2, \star\}\}.$
- b) (i) Keine σ -Algebra, da Def. 2.1.5 (iii) nicht erfüllt ist: $\{a\}, \{b\} \in \Sigma$, aber $\{a\} \cup \{b\} = \{a,b\} \notin \Sigma$
 - (ii) Keine σ -Algebra, da Def. 2.1.5 (ii) nicht erfüllt ist: $\Omega \in \Sigma$, aber $\Omega^c = \emptyset \notin \Sigma$
 - (iii) σ -Algebra, da alle Eigenschaften in Def. 2.1.5 erfüllt sind.
 - (iv) σ -Algebra, da alle Eigenschaften in Def. 2.1.5 erfüllt sind.

Aufgabe (2)[2+2+2 Punkte]

Zeigen oder widerlegen Sie die folgenden Aussagen:

- a) Für jede Menge $\Omega \neq \emptyset$ und alle σ -Algebren Σ_1, Σ_2 auf Ω gilt: $\Sigma_1 \cup \Sigma_2$ ist σ -Algebra auf Ω ,
- b) Für jede Menge $\Omega \neq \emptyset$ und alle σ -Algebren Σ_1, Σ_2 auf Ω gilt: $\Sigma_1 \setminus \Sigma_2$ ist σ -Algebra auf Ω ,
- c) Für jede Menge $\Omega \neq \emptyset$ und alle σ -Algebran Σ_1, Σ_2 auf Ω gilt: $\Sigma_1 \cap \Sigma_2$ ist σ -Algebra auf Ω .

Lösung:

- a) Falsch, Gegenbeispiel $\Omega = \{a, b, c, d\}$: Dann ist $\Sigma_1 = \{\emptyset, \{a, b\}, \{c, d\}, \Omega\}$ eine σ -Algebra, siehe Aufgabe 1b). Analog gilt: $\Sigma_2 = \{\emptyset, \{a, d\}, \{c, b\}, \Omega\}$ ist eine σ -Algebra. Angenommen $\Sigma_1 \cup \Sigma_2$ ist eine σ -Algebra. Es gilt $\{a, b\} \cap \{a, d\} = \{a\} \notin \Sigma_1 \cup \Sigma_2$ ein Widerspruch zu Thm. 2.1.7 (ii).
- b) Falsch, Gegenbeispiel $\Omega \neq \emptyset$: $\Sigma_2 = \Sigma_1 = \{\emptyset, \Omega\}$, dann ist $\Sigma_1 \setminus \Sigma_2 = \{\emptyset\}$. Folglich ist Def. 2.1.5 (i) nicht erfüllt.
- c) Richtig. Überprüfung der Def. 2.1.5:
 - (i) $\forall i \in \{1, 2\} : \Omega \in \Sigma_i \Rightarrow \Omega \in \Sigma_1 \cap \Sigma_2$
 - (ii) $A \in \Sigma_1 \cap \Sigma_2 \Rightarrow \forall i \in \{1, 2\} : A \in \Sigma_i \Rightarrow \forall i \in \{1, 2\} : A^c \in \Sigma_i \Rightarrow A^c \in \Sigma_1 \cap \Sigma_2$
 - (iii) $(A_n)_{n\in\mathbb{N}}\subset\Sigma_1\cap\Sigma_2\Rightarrow \forall i\in\{1,2\}\forall n\in\mathbb{N}:A_n\in\Sigma_i\Rightarrow \forall i\in\{1,2\}:\bigcup_{n\in\mathbb{N}}A_n\in\Sigma_i\Rightarrow\bigcup_{n\in\mathbb{N}}A_n\in\Sigma_1\cap\Sigma_2$

Aufgabe (3)[1+2+1+1 Punkte]

Sei (Ω, Σ, P) ein Wahrscheinlichkeitsraum mit zwei Ereignissen $A, B \in \Sigma$.

- a) Zeigen Sie die folgenden Identitäten:
 - (i) $P(B \setminus A) = P(B) P(A \cap B)$,
 - (ii) $P(A^c \cap B^c) P(A^c)P(B^c) = P(A \cap B) P(A)P(B)$.
- b) Die Ereignisse A und B haben Wahrscheinlichkeiten P(A) = 1/4, P(B) = 1/3 und $P(A \cap B) = 1/8$. Berechnen Sie:
 - (i) $P(A \cap B^c)$,
 - (ii) $P(A^c \cap B^c)$.

Lösung:

- a) (i) Wegen $(A \cap B) \subset A$ und $A \cap (B \setminus A) = \emptyset$ sind die Mengen $(A \cap B)$ und $(B \setminus A)$ disjunkt. Weiterhin gilt $(B \setminus A) \cup (A \cap B) = B$. Es folgt mit Bemerkung nach Def. 2.1.9 $P(B) = P((B \setminus A) \cup (A \cap B)) = P(B \setminus A) + P(A \cap B)$, also $P(B \setminus A) = P(B) P(A \cap B)$.
 - (ii) Thm. 2.1.11 (ii) liefert: $P(A \cap B) = P(A) + P(B) P(A \cup B)$ Addieren von (1 - P(A))(1 - P(B)): $P(A \cap B) + (1 - P(A))(1 - P(B)) = 1 - P(A \cup B) + P(A)P(B)$ Wegen $P(C^c) = 1 - P(C)$ für $C \subset \Sigma$ folgt: $P(A \cap B) + P(A^c) \cdot P(B^c) = P((A \cup B)^c) + P(A)P(B)$ Wegen der de Morgansche Regel $(A \cup B)^c = A^c \cap B^c$: $P(A \cap B) + P(A^c) \cdot P(B^c) = P(A^c \cap B^c) + P(A)P(B)$ Umstellen: $P(A^c \cap B^c) - P(A^c)P(B^c) = P(A \cap B) - P(A)P(B)$
- b) (i) Mit Bemerkung nach Def. 2.1.9 gilt: $P(A) = P(A \cap B^c) + P(A \cap B)$ Es folgt: $P(A \cap B^c) = P(A) - P(A \cap B) = 1/4 - 1/8 = 1/8$.
 - (ii) Aus a) (ii) folgt: $P(A^c \cap B^c) = P(A^c)P(B^c) + P(A \cap B) P(A)P(B) = (1 P(A))(1 P(B)) + P(A \cap B) P(A)P(B) = 1 1/4 1/3 + 1/8 = 13/24$

Aufgabe (4)[1+1+1+1+1 Punkte]

Ein Passwortgenerator erzeugt zufällig ein dreistelligen Passworts bestehend aus Zahlen von 0 bis 9. Die drei Zahlen werden unabhängig von einander erzeugt und die Werte von 0 bis 9 sind jeweils gleichwahrscheinlich. 0 wird als eine gerade Zahl angenommen.

- a) Modellieren Sie dieses Zufallsexperiment durch ein geeignetes Wahrscheinlichkeitsraum (Ω, Σ, P) .
- b) Berechnen Sie die Wahrscheinlichkeit dafür, dass das Passwort aus 3 gleichen Zahlen besteht.
- c) Berechnen Sie die Wahrscheinlichkeit dafür, dass das Passwort keine 3 und keine 9 enthält.
- d) Berechnen Sie die Wahrscheinlichkeit dafür, dass das Passwort genau zwei gerade Zahlen enthält.
- e) Berechnen Sie die Wahrscheinlichkeit dafür, dass das Passwort nur aus geraden, aber 3 verschiedenen Zahlen besteht.

Lösung:

- a) Wir verwenden den Laplace-W-Raum mit $\Omega = \{(w_1, w_2, w_3) : w_1, w_2, w_3 \in \{0, \dots, 9\}\} = \{0, \dots, 9\}^3$.
- b) Es gilt:

$$A = \{(0,0,0), (1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,5), (6,6,6), (7,7,7), (8,8,8), (9,9,9)\}.$$

Folglich ist |A| = 10 und wegen $|\Omega| = 1000$ ist P(A) = 10/1000 = 0,01.

- c) Es gilt: $A = \{(w_1, w_2, w_3) : w_1, w_2, w_3 \in \{0, 1, 2, 4, 5, 6, 7, 8\}\}$. Folglich ist $|A| = 8 \cdot 8 \cdot 8 = 512$ und wir erhalten P(A) = 512/1000 = 0, 512.
- d) Es gilt:

$$A = \{(w_1, w_2, w_3) : w_1, w_2 \in \{0, 2, 4, 6, 8\}, w_3 \in \{1, 3, 5, 7, 9\}\} \cup \{(w_1, w_2, w_3) : w_1, w_3 \in \{0, 2, 4, 6, 8\}, w_2 \in \{1, 3, 5, 7, 9\}\} \cup \{(w_1, w_2, w_3) : w_2, w_3 \in \{0, 2, 4, 6, 8\}, w_1 \in \{1, 3, 5, 7, 9\}\}.$$

Folglich ist $|A| = 5 \cdot 5 \cdot 5 \cdot 3 = 375$ und wir erhalten P(A) = 375/1000 = 0,375.

e) Es gilt: $A = \{(w_1, w_2, w_3) : w_1, w_2, w_3 \in \{0, 2, 4, 6, 8\}, w_i \neq w_j \text{ für } i \neq j\}$. Folglich ist $|A| = 5 \cdot 4 \cdot 3 = 60$ und wir erhalten P(A) = 60/1000 = 0, 06.