$$u_{E} + \left(\frac{1}{2}u^{2}\right)_{x} = 0$$

$$f(u) = \frac{1}{2}u^2 \qquad f'(u) = u$$

: all characteristic curves are straight lines



 $f'(u_1)=1$  and  $f'(u_r)=0$ since  $f'(u_1) > f'(u_r)$  there is a shock here

for x = 1 u(x) is either flat

or increasing: there are

no shocks for x = 1

shock speed

$$\frac{\lambda}{2}(t) = \underbrace{\int (u_r) - \int (u_x)}_{u_r - u_x}$$



b) at t=0, 
$$\chi = 1$$

$$\hat{\chi}'(t) = \frac{0 - (\frac{1}{2})}{0 - 1} = \frac{1}{2}$$

On characteristic curves x(t):  $\frac{dx(t)}{dt} = \frac{df(u)}{du} = U$ 

Consider the range 0 < x < 1, let  $z(t=0) = z_0$   $z(t) = z_0 + u(x=z_0)t=0)t$  $= x_0 + z_0 t$ 

Since u(x,t) is constant on a characteristic Curve  $u(x(t),t)=u(x_0,0)=x_0$ 

 $u(z(u),t) = \frac{z(t)}{1+t} \qquad f(u) = \frac{1}{2} \frac{z(t)}{(1+t)!}$ 

Using 1

$$\frac{1}{2}(t) = \frac{2}{0 - \frac{2}{2(1+t)^2}} = \frac{2}{2} \text{ is}$$

$$\frac{1}{0 - \frac{2}{2(1+t)}} = \frac{2}{0 + \frac{2}{1+t}} = \frac{2}{0 + \frac{2}{1+t}}$$

$$\frac{2}{0 + \frac{2}{1+t}} = \frac{2}{0 + \frac{2}{1+t}}$$

$$\frac{2}{0 + \frac{2}{1+t}} = \frac{2}{0 + \frac{2}{1+t}}$$

$$\frac{2}{0 + \frac{2}{1+t}} = \frac{2}{0 + \frac{2}{1+t}}$$

Change of notation: f (u(-00,+))=0 f(u(\pi)t1)=0 Let dxs(+) = x(t) ( hdn + ) udn  $\chi_s^{\dagger}(t)$  $G_{x}^{\dagger}(x_{s}^{\dagger}(t),t)$ G (2 (t),t) Since d. G.  $u_{\downarrow} + (f(u))_{\varkappa} = 0$  $= u(x_s(t),t)\frac{dz_s}{dt} + \int_0^{x_s(t)} \frac{du}{dt} dx$ , Since  $u_t = -f(u)_x$ =  $u(x_{3}^{-}(t),t)\frac{dx_{3}}{dt} + \left[-4(u(x_{3}(t),t))+f(u(0,t))\right]$ =  $u(x_s^-(t),t) \frac{dx_s}{dt} - \left(u(x_s^-(t),t)\right)$ Similarly  $\frac{d}{dt} \left( \int_{1}^{t} (x_{s}^{+}(t),t) dx + \int_{1}^{t} (u(x_{s}^{+}(t),t)) dx + \int_{1}^{t} (u(x_{s}^{+}(t),t)) dx \right)$ So  $\underline{d}$   $G(x_s(t),t) + \underline{d}$   $G^+(x_s^+(t),t) = 0$  $\frac{d x_s(t)}{dt} = \frac{x_s(t)}{2}$  $u = u(x_s(t), t)$  and  $u^{\dagger} = u(z_s^{\dagger}(t), t)$  $\int \frac{1}{x_1} dx_3 = \int \frac{1}{2} dt$ ln (xs)=/1+c  $u^{\dagger} dx_{s} + f(u^{\dagger}, t) = 0$ x3= Ce 1/2t .. C= 1 2<sub>s</sub>= e<sup>½t</sup>  $f(u) - f(u) = (u) = \overline{u}$  $\frac{dx_s}{dt} = \frac{x_s}{2}$ then

$$=\frac{dx_s}{dt} = \frac{x_s}{2(1+t)}$$

$$\left( \left( \frac{1}{\chi_{3}} \right) d\chi_{3} = \int_{\lambda(1+b)}^{1} dt$$

$$\ln (x_s) = \int_{\frac{1}{2}m} dm$$

$$\ln (x_s) = \int_{\frac{1}{2}} \ln (m) + C$$

$$x_{3} = e^{i \ln(m) + c}$$
 $x_{4} = e^{i \ln(m) + c}$ 
 $x_{5} = e^{i \ln(m) + c}$ 

let m = 1+t

then t = m-1

 $\frac{dt}{dm} = 1$ 

$$\therefore x_5 = (1+t)^{2}$$

$$t = x_5^2 - 1$$

Ut + 
$$f(u)_{x=0}$$
,  $U_{t}+f'(u)u_{x=0}$ 

U is constant along characteristic curves  $x(t)$  i.e.  $U_{t}=0$ 
 $x'(t)=f'(u)$ 

Consider a particular characteristic curve  $x_{\xi}(t)$  and its neighbouring curve  $x_{\xi+\Delta\xi}(t)$  such that  $x_{\xi}(t)=\xi+\Delta\xi$ 

Considering curves close fagather implies taking the limit  $\Delta\xi$  approximate zero i.e.  $\Delta\xi\to d\xi$ 

Tak the integral with respect to time over a characteristic curves  $x_{\xi+\Delta\xi}(t)$  and  $x_{\xi}(t)$ 
 $\begin{cases} x_{\xi}' = x_{\xi}(t) dt = \int_{0}^{t} f'(u_{\xi+\Delta\xi}) dt & \int_{0}^{t} x_{\xi}'(t) dt = \int_{0}^{t} f'(u_{\xi}) dt \\ x_{\xi}(t) - (\xi+\xi\xi) = \int_{0}^{t} f'(u_{\xi+\Delta\xi}) dt & x_{\xi}(t) - \xi = \int_{0}^{t} f'(u_{\xi}) dt \\ x_{\xi+\delta\xi}'(t) = \xi + \xi + f'(u_{\xi+\delta\xi}) dt & x_{\xi}(t) = \xi + f'(u_{\xi}) dt \end{cases}$ 

Since  $u$  is constant over characteristic curves for any  $t$ 
 $x_{\xi+\delta\xi}(t) = \xi + \xi + f'(u_{\xi+\delta\xi}) dt & x_{\xi}(t) = \xi + f'(u_{\xi}) dt \end{cases}$ 

Characteristic curves intersect when:

 $x_{\xi+\delta\xi}'(t) = x_{\xi}(t) = x_{\xi}(t)$ 

This insults in sheet formation.

Softing  $0 = 2$ 
 $\xi + \xi + f'(u_{\xi+\delta\xi}) = \xi + f'(u_{\xi}) dt$ 

Substituting  $3$ 

Substituting 3
$$g + dg + f'(u_s)t + f''(u_s)\frac{du_s}{dz_g} sgt + ... = g + f'(u_s)t$$

$$g + f''(u_s)\frac{du_s}{dz_g} sgt + ... = 0$$

Since a subsequent terms of the Taylor series will have 
$$(S\xi)^n$$
 with  $n \ge 1$ 
 $(S\xi)$  can be factored out:

$$dS \left[1 + f''(u_\xi) \frac{du_s}{dx_\xi} t + ...\right] = 0$$

$$f''(u_\xi) \frac{du_s}{dx_\xi} t + ... = -1$$

$$dx_\xi$$

Factoring t and rearranging gives:

$$dx_\xi = \frac{-1}{f''(u_\xi) \frac{du_s}{dx_\xi} + ...}$$

$$dx_\xi = \frac{3u}{dx_\xi} \left( \frac{3u_s}{3x_\xi} \right) = \frac{3u_s}{3x_s} \left( \frac{3u_s}{3x_s} \right) = \frac{3u_s}{3x_s} \left( \frac{3u_s}{3$$

References used:

Salsa S. Partial Differential Equations in Action: From Modelling to Theory © Springer-Verlag 2008, Milan

Since we want the earliest shock time

Chapter 4 Section 4.4