CSE 4711: Artificial Intelligence

Md. Bakhtiar Hasan

Assistant Professor Department of Computer Science and Engineering Islamic University of Technology

What is Search for?

- Assumptions about the world
 - Single agent \rightarrow No adverseries
 - Deterministic actions
 - Fully observed state
 - Discrete state space

What is Search for?

- Assumptions about the world
 - Single agent \rightarrow No adverseries
 - Deterministic actions
 - Fully observed state
 - Discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance

What is Search for?

- Assumptions about the world
 - Single agent \rightarrow No adverseries
 - Deterministic actions
 - Fully observed state
 - Discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are a specialized class of identification problems

- Standard search problems
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything

- Standard search problems
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Standard search problems
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language

- Standard search problems
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

CSP Examples

■ Variables:

- Variables:
 - WA, NT, Q, NSW, V, SA, T

- Variables:
 - WA, NT, Q, NSW, V, SA, T
- Domains:

- Variables:
 - WA, NT, Q, NSW, V, SA, T
- Domains:
 - $\bullet \ D = \{\mathsf{red}, \mathsf{green}, \mathsf{blue}\}$

- Variables:
 - WA, NT, Q, NSW, V, SA, T
- Domains:
 - $D = \{\text{red}, \text{green}, \text{blue}\}$
- Constraints: adjacent regions must have different colors

- Variables:
 - WA, NT, Q, NSW, V, SA, T
- Domains:
 - $D = \{\text{red}, \text{green}, \text{blue}\}$
- Constraints: adjacent regions must have different colors
 - Implicit: $WA \neq NT$

- Variables:
 - WA, NT, Q, NSW, V, SA, T
- Domains:
 - $D = \{\text{red}, \text{green}, \text{blue}\}$
- Constraints: adjacent regions must have different colors
 - Implicit: $WA \neq NT$
 - Explicit: $(WA,NT) \in \{(\mathsf{red},\mathsf{green}),(\mathsf{red},\mathsf{blue}),\dots\}$

- Variables:
 - WA, NT, Q, NSW, V, SA, T
- Domains:
 - $D = \{\text{red}, \text{green}, \text{blue}\}$
- Constraints: adjacent regions must have different colors
 - Implicit: $WA \neq NT$
 - Explicit: $(WA, NT) \in \{(\text{red}, \text{green}), (\text{red}, \text{blue}), \dots \}$
- Solutions are assignments satisfying all constraints

- Variables:
 - WA, NT, Q, NSW, V, SA, T
- Domains:
 - $D = \{\text{red}, \text{green}, \text{blue}\}$
- Constraints: adjacent regions must have different colors
 - Implicit: $WA \neq NT$
 - Explicit: $(WA, NT) \in \{(\text{red}, \text{green}), (\text{red}, \text{blue}), \dots \}$
- Solutions are assignments satisfying all constraints
 - $\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}$

■ Formulation I:

Formulation I:

• Variables: X_{ij}

Formulation I:

• Variables: X_{ij} • Domains: $\{0,1\}$

- Formulation I:
 - Variables: X_{ij}
 - Domains: $\{0,1\}$
 - Constraints:

Formulation 1:

- Variables: X_{ij}
- Domains: $\{0, 1\}$
- Constraints:

$$\forall i, j, k (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}\$$

Formulation 1:

- Variables: X_{ij}
- Domains: $\{0,1\}$
- Constraints:

$$\forall i, j, k (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\forall i, j, k (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\forall i, j, k (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\forall i, j, k (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}$$

Formulation 1:

- Variables: X_{ij}
- Domains: $\{0, 1\}$
- Constraints:

$$\forall i, j, k (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\forall i, j, k (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\forall i, j, k (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\forall i, j, k (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$\sum_{i,j} X_{ij} = N$$

- Formulation 2:
 - Variables: Q_k
 - Domains: $\{1,2,3,\ldots,N\}$
 - Constraints:

- Formulation 2:
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \dots, N\}$
 - Constraints:
- lacksquare Implicit: $\forall i,j$ non-threatening (Q_i,Q_j)

- Formulation 2:
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \dots, N\}$
 - Constraints:

. . .

- Implicit: $\forall i, j$ non-threatening (Q_i, Q_j)
- Explicit: $(Q_i, Q_j) \in \{(1,3), (1,4), \dots\}$

Constraint Graphs

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Applet: CSP - fiveQueens

Example: Cryptarithmetic

- Variables
- Domains:
- Constraints:

Example: Cryptarithmetic

- Variables
 - $F, T, U, W, R, O, X_1, X_2, X_3$
- Domains:
- Constraints:

Example: Cryptarithmetic

- Variables
 - $F, T, U, W, R, O, X_1, X_2, X_3$
- Domains:
 - {0,1,2,3,4,5,6,7,8,9}
- Constraints:

Example: Cryptarithmetic

- Variables
 - $F, T, U, W, R, O, X_1, X_2, X_3$
- Domains:
 - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- Constraints: all diff(F, T, U, W, R, O)

Example: Cryptarithmetic

- Variables
 - $F, T, U, W, R, O, X_1, X_2, X_3$
- Domains:
 - {0,1,2,3,4,5,6,7,8,9}
- Constraints:

alldiff
$$(F, T, U, W, R, O)$$

 $O + O = R + 10 \times X_1$
...

Example: Cryptarithmetic

- Variables
 - $F, T, U, W, R, O, X_1, X_2, X_3$
- Domains:
 - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- Constraints:

alldiff
$$(F, T, U, W, R, O)$$

 $O + O = R + 10 \times X_1$
...

- Variables
 - Each (open) square
- Domains
 - $\{1, 2, \dots, 9\}$
- Constraints

			Г		8	Г		4
	8	4		1	6			
			5			1		
1		3	8			9		
6		8				4		3
		2			9	5		1
		7			2			
			7	8		2	6	
2			3					

- Variables
 - Each (open) square
- Domains
 - $\{1, 2, \dots, 9\}$
- Constraints
 - Unary constraints for given values

									20
			Г		8	Г		4	
	8	4		1	6				
			5			1			
1		3	8			9			\backslash
6		8				4		3	
		2			9	5		1	// _
		7			2	Г			
			7	8		2	6		
2			3					/	

- Variables
 - Each (open) square
- Domains
 - $\{1, 2, \dots, 9\}$
- Constraints
 - Unary constraints for given values
 - 9-way alldiff for each column

- Variables
 - Each (open) square
- Domains
 - $\{1, 2, \dots, 9\}$
- Constraints
 - Unary constraints for given values
 - 9-way alldiff for each column
 - 9-way alldiff for each row

- Variables
 - Each (open) square
- Domains
 - $\{1, 2, \dots, 9\}$
- Constraints
 - Unary constraints for given values
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

<u> </u>		//	4						
			\Box		8			A/	/
	8	4		1	6			$\mathbb{Z}_{\mathbb{Z}}$	
			5			1	/		
1		3	8			9			\backslash
6		8				4		3	
		2		7	9	5		1	
Г		7			2	Г			V .
			7	8		2	6	\Box / \Box	
2			3					7	

- Variables
 - Each (open) square
- Domains
 - $\{1, 2, \dots, 9\}$
- Constraints
 - Unary constraints for given values
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
 - Can also have a bunch of pairwise inequalities

Varieties of CSPs and Constraints

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - ► E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - ► E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

Varieties of CSPs

Discrete Variables

- Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
- Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

Continuous Variables

- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by LP methods

■ Unary constraints involve a single variable (equivalent to reducing domains), e.g.: $SA \neq \text{green}$

- Unary constraints involve a single variable (equivalent to reducing domains), e.g.: $SA \neq \text{green}$
- Binary constraints involve pairs of variables, e.g.: $SA \neq WA$

- Unary constraints involve a single variable (equivalent to reducing domains), e.g.: $SA \neq \text{green}$
- Binary constraints involve pairs of variables, e.g.: $SA \neq WA$
- Higher-order constraints involve 3 or more variables, e.g., cryptarithmetic column constraints

- Unary constraints involve a single variable (equivalent to reducing domains), e.g.: $SA \neq \text{green}$
- Binary constraints involve pairs of variables, e.g.: $SA \neq WA$
- Higher-order constraints involve 3 or more variables, e.g., cryptarithmetic column constraints
- Preferences (soft constraints)
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Scheduling problem
- Timetabling problem
- Assignment problem
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!
- Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

Search Methods

■ What would BFS do?

Website: simple - naive

Search Methods

- What would BFS do?
- What would DFS do?

Website: simple - naive

Search Methods

- What would BFS do?
- What would DFS do?
- What problems does naïve search have?

Website: simple - naive

■ Backtracking search is the basic uninformed algorithm for solving CSPs

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea I: One variable at a time
 - Variable assignments are commutative \rightarrow Any ordering is OK!
 - i.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea I: One variable at a time
 - Variable assignments are commutative \rightarrow Any ordering is OK!
 - i.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - i.e. consider only values which do not conflict with previous assignments
 - Might have to do some computation to check the constraints
 - "Incremental goal test"

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea I: One variable at a time
 - Variable assignments are commutative \rightarrow Any ordering is OK!
 - i.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - i.e. consider only values which do not conflict with previous assignments
 - Might have to do some computation to check the constraints
 - "Incremental goal test"
- Depth-first search with these two improvements is called backtracking search (not the best name)

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea I: One variable at a time
 - Variable assignments are commutative \rightarrow Any ordering is OK!
 - i.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - i.e. consider only values which do not conflict with previous assignments
 - Might have to do some computation to check the constraints
 - "Incremental goal test"
- Depth-first search with these two improvements is called *backtracking search* (not the best name)
- \blacksquare Can solve n-queens for $n \approx 25$


```
function Backtracking-Search(csb) returns a solution, or failure
  return Recursive-Backtracking({}, csb)
function Recursive-Backtracking (assignment, csp) returns a solution, or failure
  if assignment is complete then return assignment
  var \leftarrow Select-Unassigned-Variable(variables[csp], assignment, csp)
  for each value in Order-Domain-Value(var, assignment, csp) do
     if value is consistent with assignment given constraints[csp] then
        add \{var = value\} to assignment
        result \leftarrow Recursive-Backtracking(assignment, csb)
        if result \neq failure then return result
        remove \{var = value\} from assignment
  return failure
```

 \blacksquare Backtracking = DFS + variable-ordering + fail-on-violation

Website: simple - backtracking

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Filtering: Can we detect inevitable failure early?
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Structure: Can we exploit the problem structure?

Filtering

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

■ Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

■ Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

NT and SA cannot both be blue!

■ Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?

■ Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

■ An arc $X \to Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

■ Forward checking: Enforcing consistency of arcs pointing to each new assignment

■ A simple form of propagation makes sure all arcs are consistent:

■ A simple form of propagation makes sure all arcs are consistent:

■ A simple form of propagation makes sure all arcs are consistent:

■ A simple form of propagation makes sure all arcs are consistent:

■ A simple form of propagation makes sure all arcs are consistent:

■ A simple form of propagation makes sure all arcs are consistent:

■ A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Enforcing Arc Consistency in a CSP

```
function AC-\(\tau(csp)\) returns the CSP, possibly with reduced domains
  inputs: csp, a binary CSP with variables \{X_1, X_2, \dots, X_N\}
   local variables: queue, a queue of arcs, initially all the arcs in csp.
  while queue is not empty do
     (X_i, X_i) \leftarrow \mathsf{Remove}\text{-}\mathsf{First}(\mathsf{queue})
     if Remove-Inconsistent-Values(X_i, X_i) then
        for each X_k in Neightbors [X_i] do
           add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_i) returns true iff succeeds
  removed \leftarrow false
  for each x in Domain[X_i] do
     if no value y in Domain[X_i] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from Domain[X_i]; removed \leftarrow true
  return removed
```

Applet: CSP - fiveQueens

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

Website: complex - backtracking, forward, complex - backtracking, arc

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!

Ordering

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

■ Why min rather than max? \rightarrow Fails faster

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

■ Why min rather than max? \rightarrow Fails faster

Website: complex - backtracking, forward, MRV

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- \blacksquare Why min rather than max? \rightarrow Fails faster
- Also called "most constrained variable"

Website: complex - backtracking, forward, MRV

- Given a choice of variable, choose the least constraining value
- i.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (e.g., rerunning filtering)

- Given a choice of variable, choose the least constraining value
- i.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (e.g., rerunning filtering)
- Why least rather than most? \rightarrow Leave more options for others

- Given a choice of variable, choose the least constraining value
- i.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (e.g., rerunning filtering)
- \blacksquare Why least rather than most? \to Leave more options for others

- Given a choice of variable, choose the least constraining value
- i.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (e.g., rerunning filtering)
- Why least rather than most? \rightarrow Leave more options for others
- Combining these ordering ideas makes 1000 queens feasible

Suggested Reading

Russell & Norvig: Chapter 6.1