Урок 63 Розв'язування задач з теми «Переміщення під час рівноприскореного прямолінійного руху. Рівняння координати»

Мета уроку: закріпити знання за темою «Переміщення під час рівноприскореного прямолінійного руху. Рівняння координати», продовжити формувати навички та вміння розв'язувати фізичні задачі, застосовуючи отримані знання.

Очікувані результати: учні повинні вміти розв'язувати задачі різних типів за темою «Переміщення під час рівноприскореного прямолінійного руху. Рівняння координати».

Тип уроку: урок застосування знань, умінь, навичок.

Наочність і обладнання: навчальна презентація, комп'ютер, підручник.

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

ІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

1. Провести бесіду за матеріалом § 29

Бесіда за питаннями

- 1. За допомогою яких формул можна обчислити проекцію переміщення s_x для рівноприскореного прямолінійного руху? Виведіть ці формули.
- 2. Доведіть, що графіком залежності переміщення тіла від часу спостереження є парабола. Як напрямлені вітки цієї параболи? Якому моменту руху відповідає вершина параболи?
- 3. Запишіть рівняння координати для рівноприскореного прямолінійного руху. Назвіть фізичні величини, які пов'язує це рівняння.
 - 2. Перевірити виконання вправи № 29 (1)

Розв'язання

III. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

1. Велосипедист, що рухається зі швидкістю 3 м/с, починає прискорюватися. Визначте, яку відстань подолає велосипедист за 6 с, якщо прискорення велосипедиста є постійним і дорівнює 0.8 м/c^2 .

Дано:

$$v_0 = 3\frac{M}{c}$$

 $t = 6 c$
 $a = 0.8 \frac{M}{c^2}$

$$s_{x} = v_{0x}t + \frac{a_{x}}{2}t^{2}$$

$$s_{x} = s; \quad v_{0x} = v_{0}; \quad a_{x} = a$$

$$s = v_{0} \cdot t + \frac{a}{2}t^{2}; \quad [s] = \frac{M}{c} \cdot c + \frac{M}{c^{2}} \cdot c^{2} = M + M = M$$

$$s = 3 \cdot 6 + \frac{0.8}{2} \cdot 6^{2} = 18 + 14.4 = 32.4 \text{ (M)}$$

Відповідь: s = 32,4 м.

2. За який час автомобіль, рухаючись зі стану спокою з постійним прискоренням 0.6 м/c^2 , пройде шлях 30 м?

Розв'язання

Відповідь: t = 10 с.

3. Автомобіль, рухаючись із постійним прискоренням, пройшов за 30 с відстань 450 м і набрав швидкості руху 18 м/с. Визначте початкову швидкість руху автомобіля.

Розв'язання

Відповідь: $v_0 = 12 \frac{M}{c}$.

4. Куля, що летіла зі швидкістю 400 м/с, пробила стіну завтовшки 20 см, унаслідок чого швидкість руху кулі зменшилася до 100 м/с. Скільки часу рухалася куля в стіні?

Розв'язання

Відповідь: t = 0.8 мс.

5. Літак відривається від землі за швидкості руху 216 км/год. З яким прискоренням він має рухатися по злітній смузі, довжина якої 1,2 км?

Дано:
$$v = 216 \frac{\text{км}}{\text{год}} = 60 \frac{\text{м}}{\text{с}}$$
 $v_0 = 0$ $s = 1,2 \text{ км}$ $s = 1200 \text{ m}$ $s = 200 \text{ m}$

Розв'язання

Відповідь: прискорення літака має бути не менше ніж $1,5\frac{M}{c^2}$.

IV. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VI. ДОМАШН€ ЗАВДАННЯ

Повторити § 29, Вправа № 29 (2, 3)

Виконане д/з надішліть на human, або на електрону адресу kmitevich.alex@gmail.com