Imperial College London

Course: M5MA47
Setter: Colin Cotter
Checker: David Ham
Editor: Editor
External: External

Date: March 7, 2016

MSc EXAMINATIONS (MATHEMATICS) XXXX 2015

M5MA47

Finite Elements: numerical analysis and implementation

Setter's signature	Checker's signature	Editor's signature

Imperial College London

MSc EXAMINATIONS (MATHEMATICS) XXXX 2015

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science.

M5MA47

Finite Elements: numerical analysis and implementation

Date: XXXday, XX XXXXX 2015 Time: XX.00 Xm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly incomplete answers.

Calculators may not be used.

1. 1. Provide a variational formulation for the following equation for u.

$$u'' - u = -f$$
, $u(0) = 0$, $u'(1) = 1$.

Solution: SEEN SIMILAR

Multiply by test function v that satisfies v(0) = 0, integrate by parts to get

$$\int_0^1 v'u' + vu \, dx = \int_0^1 fv \, dx + [vu']_0^1.$$

[2 Marks]

Then, applying the boundary condition we get

$$\int_0^1 v'u' + vu \, dx = \int_0^1 fv \, dx + v(1).$$

[1 Marks]

Defining

$$a(u,v) = \int_0^1 v'u' + vu \, dx, \quad F(v) = \int_0^1 fx \, dx + v(1),$$

and

$$V = \{u : a(u, u) < \infty : u(0) = 0\},\$$

the problem becomes to find $u \in V$ such that

$$a(u, v) = F(v), \quad \forall v \in V.$$

[2 Marks]

2. A quadrature rule on a reference element K has degree of precision m if it produces the exact answer for all polynomials of degree m or less. What is the minimum degree of precision required to exactly assemble the matrix for the bilinear form

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v dx,$$

on a mesh of elements that are affine equivalent to the finite element $(K, \mathcal{P}_2, \mathcal{N})$, where \mathcal{P}_2 are the polynomials of degree 2 or less, and \mathcal{N} is the dual basis corresponding to evaluation at triangle vertices and midpoints.

Solution: SEEN SIMILAR

The transformation to a reference element results in integrals of the form

$$\int_{K} |\det J| \nabla \bar{u} \cdot \nabla \bar{v} \, \mathrm{d} \, x,$$

where \bar{u} and \bar{v} are the pullbacks of u and v to K, respectively. Since the transformation is affine, $|\det J|$ is a constant. Further, since u and v are polynomials of degree 2 or less, so are \bar{u} and \bar{v} (by affine-equivalence). Hence ∇u and ∇v are polynomials of degree 1 or less, and hence we need to integrate a polynomial of degree 2 or less, i.e. we need a quadrature rule of degree 2. **[5 Marks]**

3. Obtain the nodal basis function $\phi_1(x)$ for the finite element $(K=[0,1],\mathcal{P}_2,\mathcal{N})$, with $\mathcal{N}=(N_1,N_2,N_3)$ given by

$$N_1(f) = f'(0),$$

 $N_2(f) = f'(1),$
 $N_3(f) = \int_0^1 f dx.$

Solution: SEEN SIMILAR

We write

$$\phi_1(x) = ax^2 + bx + c,$$

SO

$$\phi_1'(x) = 2ax + b.$$

The first two dual basis functions imply that $\phi_1'(0) = 1$, $\phi_1'(1) = 0$, so we obtain b = 1, a = -1/2. Then

$$\int_0^1 \phi_1(x) \, \mathrm{d} \, x = \int_0^1 \frac{-x^2}{2} + x + c \, \mathrm{d} \, x = -\frac{1}{6} + \frac{1}{2} + c = 0,$$

so c = -1/3, hence

$$\phi_1(x) = -\frac{x^2}{2} + x - \frac{1}{3}.$$

[5 Marks]

4. What is the global continuity of finite element spaces constructed from the finite element described in part (3) of this question? Explain your answer.

Solution: NOT SEEN

The finite element functions are not even C^0 . This is because the basis function $\phi_3(x)=1$, and so it contributes to the value of finite element functions at x=0 and x=1 in the reference element. [5 Marks]

- 2. 1. Consider the finite element $(K, \mathcal{P}, \mathcal{N})$ where
 - -K is a non-degenerate triangle.
 - ${\cal P}$ is the space of polynomials of degree 2 or less.
 - $-\mathcal{N}=(N_1,N_2,N_3,N_4,N_5,N_6)$ with

$$N_{i}(v) = v(z_{i}), i = 1, 2, 3,$$

$$N_{4}(v) = v\left(\frac{z_{1} + z_{2}}{2}\right),$$

$$N_{5}(v) = v\left(\frac{z_{1} + z_{3}}{2}\right),$$

$$N_{6}(v) = v\left(\frac{z_{2} + z_{3}}{2}\right),$$

where z_1 , z_2 and z_3 are the vertices of K.

Show that \mathcal{N} determines \mathcal{P} .

Solution: SEEN

It is sufficient to show that $N_i(p) = 0$ $i = 1, ..., 6 \implies p = 0 \quad \forall p \in \mathcal{P}$. [1 Marks] We use the fact that if a degree p polynomial P(x) vanishes on a line defined by L(x) = 0 for a non-degenerate linear polynomial L, then

$$P(x) = L(x)Q(x),$$

for some degree p-1 polynomial Q(x). [3 Marks]

Let $L_1(x)$ be the non-degenerate linear polynomial that vanishes on the line intersecting z_2 and z_3 . P(x) restricted to that line is a quadratic polynomial that vanishes at three points, hence is zero by fundamental theorem of algebra. Hence,

$$P(x) = L_1(x)Q(x),$$

where Q(x) is a linear polynomial. [2 Marks] By a similar argument we get

$$Q(x) = cL_2(x),$$

where c is a constant and $L_2(x)$ is a non-degenerate linear polynomial that vanishes on the line intersecting z_1 and z_3 . [2 Marks] Hence,

$$P(x) = cL_1(x)L_2(x).$$

Neither $L_1(x)$ nor $L_2(x)$ vanish at $x=(z_1+z_2)/2$, but P(x) must vanish there, so c=0, implying that $P(x)\equiv 0$ as required. [2 Marks]

- 2. Now consider the finite element $(K,\hat{\mathcal{P}},\hat{\mathcal{N}})$ where
 - -K is a non-degenerate triangle (with boundary ∂K).
 - $\hat{\mathcal{P}}$ is the space spanned by polynomials of degree 2 or less, plus the cubic "bubble" function B(x) satisfying B(x)=0 for all $x\in\partial K$, and $\int_K B(x)\,\mathrm{d}\,x=1$.

- $\hat{\mathcal{N}}=(N_1,N_2,N_3,N_4,N_5,N_6,N_7)$ with N_i as above for $i=1,\dots,6$, and

$$N_7(v) = v\left(\frac{z_1 + z_2 + z_3}{3}\right).$$

Show that \hat{N} determines \hat{P} .

Solution: NOT SEEN

We assume that we have a polynomial $P \in \hat{P}$ that vanishes under the nodal basis \mathcal{N} . Then P is at most degree 3. [2 Marks]

By arguments identical to those above, we deduce that

$$P(x) = dL_1(x)L_2(x)L_3(x),$$

where d is a constant, and $L_3(x)$ is a non-degenerate linear polynomial that vanishes on the line intersecting z_1 and z_2 . [4 Marks]

None of $L_i(x)$, i=1,2,3, vanish at the midpoint $(z_1+z_2+z_3)/3$, but P(x) does, so d=0 and hence P(x)=0 as required. [4 Marks]

- 3. Let K be the interval [0,1], and let \mathcal{P} be one-dimensional polynomials of degree 3 or less, with a dual basis \mathcal{N} . Let T_h be the corresponding subdivision of the interval [a,b], with elements defined on each subinterval that are affine-equivalent to $(K,\mathcal{P},\mathcal{N})$.
 - 1. Determine a dual basis \mathcal{N} on K, such that the corresponding global interpolation operator \mathcal{I}_{T_h} has C^1 continuity. Show that your dual basis determines \mathcal{P} .

Solution: NOT SEEN

The dual basis is point evaluation at x=0, x=1, and derivative evaluation at x=0 and x=1. [3 Marks]

If P is a cubic polynomial that vanishes under the action of each dual basis element, this means that it has double roots at both x=0 and x=1. Hence, by fundamental theorem of algebra, it is identically equal to zero, and hence the dual basis determines \mathcal{P} . [2 Marks]

2. Determine the corresponding nodal basis for \mathcal{P} .

Solution: NOT SEEN

 $\phi_1(x)$ has a double root at x=1, so it takes the value

$$\phi_1(x) = (x-1)^2 (ax+b).$$

At x = 0,

$$1 = \phi_1(0) = b.$$

We have

$$\phi_1'(x) = 2(x-1)(ax+1) + (x-1)^2 a = (x-1)(2ax+2 + a(x-1)) = (x-1)(3ax+2 - a).$$

At x = 0.

$$0 = \phi_1'(0) = -(2-a) \implies a = 2.$$

Hence, we get

$$\phi_1(x) = (x-1)^2(1+2x) = 2x^3 - 3x^2 + 1.$$

[4 Marks]

By symmetry, we have $\phi_2(x) = \phi_1(1-x) = x^2(1+2(1-x)) = x^2(3-2x) = 3x^2-2x^3$. [1 Marks]

 $\phi_3(x)$ must vanish at x=0 (with a double root) and x=1, so it takes the form

$$\phi_3(x) = cx^2(x-1).$$

Differentiating,

$$\phi_3'(x) = c(2x^2(x-1) + x^2) = c(2x^3 - x^2).$$

Evaluation of ϕ_3' at x=1 gives

$$1 = \phi_3'(1) = c,$$

hence

$$\phi_3(x) = x(x-1)^2 = x^3 - 2x^2 + x.$$

[4 Marks]

By symmetry, we have

$$\phi_4(x) = -\phi_3(1-x) = -(1-x)x^2 = -x^2 + x^3.$$

[1 Marks]

3. Consider the variational problem for $u \in V$,

$$\int_0^1 u''v'' \, \mathrm{d} x = \int_0^1 fv \, \mathrm{d} x, \quad \forall v \in V,$$

where

$$V = \left\{ u : \int_0^1 (u'')^2 \, \mathrm{d} \, x < \infty, \, u(0) = u'(0) = u(1) = u'(1) = 0 \right\}.$$

Define a corresponding finite element discretisation based on the nodal basis defined above. Assume that a unique solution u exists the variational problem, and a unique solution u_h to the corresponding finite element discretisation. Prove the Galerkin orthogonality result

$$\int_0^1 (u - u_h)'' v'' \, \mathrm{d} \, x = 0, \quad \forall v \in S,$$

for an appropriately defined space S.

Solution: NOT SEEN

We define the finite element space with cubic polynomials in each subdomain, and C^1 continuity between elements, and let S be the subspace satisfying the boundary conditions of the variational problem (this is possible since the finite element space allows separate specification of u and u' at each nodal point). Then, since $C^1 \subset H^2$ in 1 dimension from Sobolev's inequality, we have $S \subset V$. [2 Marks]

The finite element discretisation then has solution $u_h \in S$ with

$$a(u_h, v) = F(v), \quad \forall v \in S,$$

where

$$a(u, v) = \int_0^1 u''v'' dx, \quad F(v) = \int_0^1 v f dx.$$

Since $S \subset V$, the solution the full variational problem satisfies

$$a(u, v) = F(v), \quad \forall v \in S,$$

and subtracting, we obtain

$$a(u - u_h, v) = 0, \quad \forall v \in S,$$

as required. [3 Marks]

4. Let K be the reference square element K with vertices (0,0), (0,1), (1,0) and (1,1). Let $\mathcal P$ be the space of bilinear functions defined on K. Let $\mathcal N$ be the dual basis given by pointwise evaluation at each element vertex. Let $\mathcal I_K:C^0(K)\to \mathcal P$ be the interpolation operator defined by the corresponding nodal basis for $\mathcal P$.

We assume that it can be shown that

$$|u - \mathcal{I}_K u|_{H^1(K)} \le c_0 |u|_{H^2(K)}, \quad \forall u \in H^2(K),$$

where $c_0 > 0$ is a constant that is independent of u, and where $|\cdot|_{H^m(K)}$ is the $H^m(K)$ seminorm on K.

1. For a mesh element K_h with vertices (x_i,y_j) , (x_{i+1},y_j) , (x_i,y_{j+1}) , (x_{i+1},y_{j+1}) , with $x_i=x_0+ih$, $y_j=y_0+jh$, show that

$$|u - \mathcal{I}_{K_h} u|_{H^1(K_h)} \le c_0 h |u|_{H^2(K_h)}, \quad \forall u \in H^2(K_h),$$

where \mathcal{I}_{K_h} is the nodal interpolation operator to bilinear polynomials defined on K_h .

Solution: SEEN SIMILAR

Squaring the interpolation result, we obtain

$$\int_{K} \left(\frac{\partial}{\partial x} (u - \mathcal{I}_{K} u) \right)^{2} + \left(\frac{\partial}{\partial y} (u - \mathcal{I}_{K} u) \right)^{2} dx dy$$

$$\leq c_{0}^{2} \int_{K} \left(\frac{\partial^{2}}{\partial x^{2}} (u - \mathcal{I}_{K} u) \right)^{2} + \left(\frac{\partial^{2}}{\partial x y} (u - \mathcal{I}_{K} u) \right)^{2} + \left(\frac{\partial^{2}}{\partial y^{2}} (u - \mathcal{I}_{K} u) \right)^{2} dx dy.$$

[6 Marks] Then we apply a change of variables

$$x \mapsto \bar{x} = x_i + xh, \quad y \mapsto \bar{y} = y_i + yh,$$

to obtain

$$\int_{K_{h}} \left(h \frac{\partial}{\partial \bar{x}} (u - \mathcal{I}_{K_{h}} u) \right)^{2} + \left(h \frac{\partial}{\partial \bar{y}} (u - \mathcal{I}_{K_{h}} u) \right)^{2} \frac{1}{h^{2}} d \bar{x} d \bar{y}$$

$$\leq c_{0}^{2} \int_{K} \left(\left(h^{2} \frac{\partial^{2}}{\partial \bar{x}^{2}} (u - \mathcal{I}_{K_{h}} u) \right)^{2} + \left(h^{2} \frac{\partial^{2}}{\partial \bar{x} \bar{y}} (u - \mathcal{I}_{K_{h}} u) \right)^{2} + \left(h^{2} \frac{\partial^{2}}{\partial \bar{y}^{2}} (u - \mathcal{I}_{K_{h}} u) \right)^{2} \right) \frac{1}{h^{2}} d \bar{x} d \bar{y},$$

and hence

$$\begin{split} & \int_{K_h} \left(\frac{\partial}{\partial \bar{x}} (u - \mathcal{I}_{K_h} u) \right)^2 + \left(\frac{\partial}{\partial \bar{y}} (u - \mathcal{I}_{K_h} u) \right)^2 \mathrm{d}\,\bar{x}\,\mathrm{d}\,\bar{y} \\ \leq & c_0^2 h^2 \int_K \left(\left(\frac{\partial^2}{\partial \bar{x}^2} (u - \mathcal{I}_{K_h} u) \right)^2 + \left(\frac{\partial^2}{\partial \bar{x} \bar{y}} (u - \mathcal{I}_{K_h} u) \right)^2 + \left(\frac{\partial^2}{\partial \bar{y}^2} (u - \mathcal{I}_{K_h} u) \right)^2 \right) \mathrm{d}\,\bar{x}\,\mathrm{d}\,\bar{y}. \end{split}$$

Taking the square root, we obtain the result. [8 Marks]

2. Use this result to show that

$$|u - \mathcal{I}_h u|_{H^1(\Omega)} \le Ch|u|_{H^2(\Omega)},$$

where \mathcal{I}_h is the global interpolation operator to bilinear Lagrange elements defined on a mesh of a square domain Ω constructed from $h \times h$ squares.

Solution: SEEN SIMILAR

Squaring the previous result, and summing over all of the elements, we get

$$\sum_{K_h} \int_{K_h} \left(\frac{\partial}{\partial x} (u - \mathcal{I}_{K_h} u) \right)^2 + \left(\frac{\partial}{\partial y} (u - \mathcal{I}_{K_h} u) \right)^2 dx dy$$

$$\leq c_0^2 h^2 \sum_{K_h} \int_{K} \left(\left(\frac{\partial^2}{\partial x^2} (u - \mathcal{I}_{K_h} u) \right)^2 + \left(\frac{\partial^2}{\partial xy} (u - \mathcal{I}_{K_h} u) \right)^2 + \left(\frac{\partial^2}{\partial y^2} (u - \mathcal{I}_{K_h} u) \right)^2 \right) dx dy,$$

and hence

$$\int_{\Omega} \left(\frac{\partial}{\partial x} (u - \mathcal{I}_{K_h} u) \right)^2 + \left(\frac{\partial}{\partial y} (u - \mathcal{I}_{K_h} u) \right)^2 dx dy$$

$$\leq c_0^2 h^2 \Omega \left(\left(\frac{\partial^2}{\partial x^2} (u - \mathcal{I}_{K_h} u) \right)^2 + \left(\frac{\partial^2}{\partial xy} (u - \mathcal{I}_{K_h} u) \right)^2 + \left(\frac{\partial^2}{\partial y^2} (u - \mathcal{I}_{K_h} u) \right)^2 \right) dx dy,$$

and square root leads to the result. [6 Marks]