CHAPITRE IV

FONCTIONS DE CLASSE C2 APPLICATION A LA RECHERCHE D'EXTREMA

1. FONCTIONS DE CLASSE C2

Définition fonction admettant des dérivées partielles à l'ordre 2 :

Une fonction f sur R^n à valeurs dans R de clase C^1 sur un ouvert U admet des **dérivées partielles à l'ordre 2** en tout point de U, si les applications dérivées partielles premières sont dérivables par rapport à toutes les variables en tout point de U.

Ces dernières dérivées sont alors appelées dérivées partielles seconde de f et sont

notées :
$$\frac{\partial^2 f}{\partial x_i \partial x_i}$$

Exemple : $f: R^2 \rightarrow R$ de classe C^1 admet des dérivées partielles à l'ordre 2 sur R^2 si :

si les applications :

$$\frac{\partial f}{\partial x} : \begin{cases} R^2 \to R \\ (x, y) \mapsto \frac{\partial f}{\partial x}(x, y) \end{cases} \text{ et } \frac{\partial f}{\partial y} : \begin{cases} R^2 \to R \\ (x, y) \mapsto \frac{\partial f}{\partial y}(x, y) \end{cases}$$

sont dérivables par rapport à x et par rapport à y en tout point (x,y) de R^2 .

Les dérivées partielles seconde de f et sont : $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$ et $\frac{\partial^2 f}{\partial y \partial y}$ notée $\frac{\partial^2 f}{\partial y^2}$.

Définition : fonction de classe C²

Une fonction f sur R^n à valeurs dans R est dite de **clase C**² sur un ouvert U si elle admet des dérivées partielles à l'ordre 2 en tout point de U, et si de plus les applications dérivées partielles secondes sont continues sur U.

Théorème de Schwarz (admis)

Si f est de classe C^2 sur un ouvert U de R^2 alors en tout (x,y) de U on a :

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y)$$

2. FORMULE DE TAYLOR A L'ORDRE 2

Proposition:

Soit f une application de classe C^2 sur un ouvert U de R^2 à valeurs dans R. Pour tout point M(x,y) de U et pour tout H(h,k) au voisinage de 0 dans R^2 on a :

$$f(M+H) = f(M) + \frac{df_M(H)}{1!} + \frac{d^2 f_M(H,H)}{2!} + o(\|H\|^2)$$

MAT2052

$$d^{2} f_{M}(H, H) = \frac{\partial^{2} f}{\partial x^{2}}(x, y)h^{2} + 2\frac{\partial^{2} f}{\partial x \partial y}(x, y)hk + \frac{\partial^{2} f}{\partial y^{2}}(x, y)k^{2}$$

est la différentielle seconde de f au point M calculée en (H,H).

 NB : si la différentielle première de f en M : $\mathit{df}_{\scriptscriptstyle M}$ set une application linéaire de R^2 dans R, la différentielle seconde $d^2f_{\scriptscriptstyle M}$ est une application bilinéaire de $R^2 \times R^2$ dans R.

Preuve:

Considérons la fonction de la variable réelle $t: \varphi(t) = f(M + tH)$

Alors on peut écrire :
$$\varphi = f \circ g$$
 où $g : \begin{cases} R \to R^2 \\ t \mapsto M + tH \end{cases}$

arphi étant une composée d'applications de classe $\mathit{C}^{\scriptscriptstyle 2}$ elle est elle même de classe C^2 et d'après les règles de dérivation on a :

$$\varphi'(t) = \frac{\partial f}{\partial x}(M + tH)h + \frac{\partial f}{\partial y}(M + tH)k$$

$$\varphi'(t) = \frac{\partial f}{\partial x}(M + tH)h + \frac{\partial f}{\partial y}(M + tH)k$$
et:
$$\varphi''(t) = \frac{\partial^2 f}{\partial x^2}(M + tH)h^2 + 2\frac{\partial^2 f}{\partial x \partial y}(M + tH)hk + \frac{\partial^2 f}{\partial y^2}(M + tH)k^2$$

Appliquons la formule de Taylor-Lagrange à l'ordre 1 sur [0,1] :
$$\varphi(1) = \varphi(0) + \frac{\varphi'(0)}{1!} + \frac{\varphi''(\theta)}{2!} \quad \text{où} \quad \theta \in]0,1[$$

Soit :
$$f(M+H) = f(M) + \frac{\partial f}{\partial x}(M)h + \frac{\partial f}{\partial y}(M)k + \frac{\partial^2 f}{\partial x^2}(M+\theta H)h^2 + 2\frac{\partial^2 f}{\partial x \partial y}(M+\theta H)hk + \frac{\partial^2 f}{\partial y^2}(M+\theta H)k^2$$
 Soit encore
$$\binom{*}{f(M+H)} = f(M) + \frac{df_M(H)}{1!} + \frac{d^2 f_{M+\theta h}(H,H)}{2!}$$
 Comme les dérivées partielles de f sont continue en M (f est de classe C^2 sur

(*)
$$f(M+H) = f(M) + \frac{df_M(H)}{1!} + \frac{d^2 f_{M+\theta_n}(H,H)}{2!}$$

Comme les dérivées partielles de f sont continue en M (f est de classe C^2 sur

$$\frac{\partial^2 f}{\partial x^2}(M + \theta H) = \frac{\partial^2 f}{\partial x^2}(M) + \varepsilon_1(H), \quad \frac{\partial^2 f}{\partial x \partial y}(M + \theta H) = \frac{\partial^2 f}{\partial x \partial y}(M) + \varepsilon_2(H) \text{ et}$$

MAT2052

D Kateb

$$\frac{\partial^2 f}{\partial y^2}(M + \theta H) = \frac{\partial^2 f}{\partial y^2}(M) + \varepsilon_3(H)$$

où les fonctions ε_i , i=1,2,3 sont de limite nulle en 0.

En remplaçant dans (*), on obtient :

$$f(M+H) = f(M) + \frac{df_M(H)}{1!} + \frac{d^2 f_M(H,H)}{2!} + o(\|H\|^2)$$

3. APPLICATION A LA RECHERCHE D'EXTREMA

Définition:

Soient f une application de R^2 dans R et M un point de R^2 .

On dit que f admet un **maximum local** en M (respectivement un minimum), s'il existe un voisinage de M sur lequel on a : $f(M+H) \le f(M)$

(respectivement : $f(M+H) \ge f(M)$).

On dit que f admet un **extremum local** en M, si elle y admet un maximum ou un minimum local.

On dit que f admet un **point col** ou un point selle en M si dans tout voisinage de Mil existe des points M+H et M+H' tel que $f(M+H) \ge f(M)$ et $f(M+H') \le f(M)$

Exemples:

Pour la fonction définie par : $f(x, y) = -(x^2 + y^2)$, l'origine est

un maximum

Pour la fonction définie

par : $f(x, y) = x^2 + y^2 - 2(x - y)$, le point

(1,-1,-2) est un minimum :

2008-2009

Pour la fonction définie par : $f(x, y) = x^2 - y^2$, l'origine est un point col :

Proposition: Condition nécessaire

Soient f une application différentiable sur un ouvert U de \mathbb{R}^2 , à valeurs dans \mathbb{R} et M un point de U.

Si f admet un extremum local en M alors $df_M = 0$.

Preuve:

Si f admet un extremum local en M(x,y) alors les fonctions partielles de f admettent un extremum local en x et en y respectivement, comme elles sont dérivables , leurs dérivée s'annule en ce point , on a donc : $\frac{\partial f}{\partial x}(x,y)=0 \text{ et } \frac{\partial f}{\partial y}(x,y)=0 \text{ . D'où } df_{\scriptscriptstyle M}=0 \text{ .}$

$$\frac{\partial f}{\partial x}(x,y) = 0$$
 et $\frac{\partial f}{\partial y}(x,y) = 0$. D'où $df_M = 0$.

Définition:

Soient f une application différentiable sur un ouvert U de \mathbb{R}^2 et à valeurs dans \mathbb{R} . Un point M(x,y) de U est appelé **point critique** de f, si $df_M = 0$.

Proposition: (conditions suffisantes)

Soient f une application de classe \mathbb{C}^2 de \mathbb{R}^2 dans \mathbb{R} et M(x,y) un point critique de f.

Posons:
$$R = \frac{\partial^2 f}{\partial x^2}(x, y)$$
, $S = \frac{\partial^2 f}{\partial x \partial y}(x, y)$ et $T = \frac{\partial^2 f}{\partial y^2}(x, y)$.

Alors:

- si $RT S^2 > 0$ et R < 0, f admet un maximum en M
- si $RT S^2 > 0$ et R > 0, f admet un minimum en M
- si $RT S^2 < 0$ f n'admet pas d'extrémum en M : on a un col ou un point selle
- si $RT S^2 = 0$ on ne peut pas conclure

49

Preuve:

C'est l'étude du signe de f(M+H)-f(M) qui précise s'il y a un extremum

Or d'après la formule de Taylor, on a :

$$f(M+H) - f(M) = Rh^2 + 2Shk + Tk^2 + o(||(h,k)||^2)$$

Il suffit donc d'étudier le signe de $Rh^2 + 2Shk + Tk^2 = k^2 \left(R\left(\frac{h}{k}\right)^2 + 2S\left(\frac{h}{k}\right) + T\right)$

pour $k \neq 0$.

Le discriminant du trinôme en $\frac{h}{k}$ étant égal à $S^2 - RT$:

- Si $RT S^2 > 0$, le trinôme est du signe de R donc f admet un maximum en M pour R < 0 et un minimum pour R > 0.
 - Si $RT S^2 < 0$, le trinôme change de signe : il existe a et b tels que $(Ra^2 + 2Sb + T) > 0$ et $(Ra^2 + 2Sb + T) < 0$

Alors en prenant $h = \frac{a}{n}$ et $k = \frac{1}{n}$ avec n assez grand puis $h' = \frac{b}{n}$ et $k' = \frac{b}{n}$

On montre que f(M+H)-f(M) change de signe au voisinage de 0 et donc f n'a pas d'extremum en ce point.

Ce type de point est appelé col ou point selle.

• Enfin si $RT - S^2 = 0$ on ne peut pas conclure, car dans ce cas le trinôme s'annule en un point a et est de signe constant par ailleurs.

Mais alors en choisissant comme précédemment (h,k), on montre que dans tout voisinage de 0

il existe des points qui annulent l'expression $Rh^2 + 2Shk + Tk^2$.

On ne peut donc pas connaître le signe de celle-ci au voisinage de 0 et déterminer la nature du point M.

On envisage alors une autre méthode.

Exemple : Considérons la fonction définie par $f(x,y) = (x^2 - y^2)e^{-\frac{x^2 + y^2}{2}}$

Déterminons les points critiques, pour cela nous devons résoudre le système :

$$\begin{cases} \frac{\partial f}{\partial x}(x, y) = 0\\ \frac{\partial f}{\partial y}(x, y) = 0 \end{cases}$$
Soit
$$\begin{cases} \left[2 - (x^2 - y^2)\right] x e^{-\frac{x^2 + y^2}{2}} = 0\\ \left[-2 - (x^2 - y^2)\right] y e^{-\frac{x^2 + y^2}{2}} = 0 \end{cases}$$

Les solutions de ce système sont alors : (0,0), $(0,\sqrt{2})$, $(0,-\sqrt{2})$, $(\sqrt{2},0)$, et $(-\sqrt{2},0)$, En calculant les dérivées partielles secondes, on obtient les résultats suivants :

2008-2009 MAT2052 *D Kateb* 50

Points	R	S		T $RT-S^2$	nature du point
(0,0)	2	0	-2	-4	col
$(0, \sqrt{2})$	4 e	0	4 e	16 e ²	minimum
$(0,-\sqrt{2})$	4 e	0	4 e	16 e ²	minimum
$(\sqrt{2},0)$	-4 e	0	-4 e	16 e ²	maximum
$(-\sqrt{2},0)$	-4 e	0	-4 e	16 e ²	maximum

Représentation graphique :

 $f[x_{y_{1}}:=(x^{2}-y^{2}) Exp[-(x^{2}+y^{2})/2]$ Plot3D[f[x,y],{x,-3,3},{y,-3,3}]

<u>Exercice 1 : f</u> est classe C2 si elle admet des dérivées partielles qui admettent elles mêmes des dérivées partielle continues.

Soit f définie par :
$$f(x, y) = \begin{cases} x \frac{x^2 - y^2}{x^2 + y^2} & si(x, y) \neq (0,0) \\ 0 & si(x, y) = (0,0) \end{cases}$$

- a) Montrer que f est de classe C2 sur $R^2 \setminus \{(0,0)\}$ et préciser ses dérivées partielles secondes.
- b) Etudier l'existence des dérivées partielles secondes en (0,0).
- c) f est-elle de classe C2 en (0,0)?

Exercice 2:

Etudier les extréma des fonctions suivantes :

a)
$$f(x, y) = x[(\ln(x))^2 + y^2]$$

b)
$$f(x, y) = x^3 - 3x^2 + y^2$$

c)
$$f(x, y) = x^2 + y^3$$

d)
$$f(x, y) = x^3 y^2 (1 - x - y)$$

Exercice 3 : Déterminer la plus courte distance entre le point (1,0,-2) et le plan d'équation : x+2y+3=4

Exercice 4 : Calculer le volume maximal d'une boîte rectangulaire sans couvercle qu'on peut fabriquer avec 12 m² de carton.

Exercice 5 : On fabrique une boîte rectangulaire sans couvercle de 12 m³ en utilisant des matériaux différents pour chaque face. Le matériau du fond coûte 4€ le m², le matériau de face opposées coûte 3 € le m², et le matériau des deux faces restantes 2€ le m². Déterminer la taille de la boîte correspondant au projet de coût minimal.

Exercice 6 : Méthode des moindres carrés

On dispose d'une suite de points $(x_1,y_1),\dots,\,(x_N,y_N)$ obtenus à la suite d'une expérience.

On cherche une droite D d'équation : y=ax+b qui approxime au mieux cet ensemble de mesures.

Soit (x_n, y_n) un point de la suite. On note e_n l'écart vertical entre y_n et et D : $e_n = |y_n - a x_n - b|$.

On cherche a et b de façon que l'écart moyen quadratique $E = \sum_{n=1}^{N} e_n^2$ soit minimal.

Posons: $f(a,b) = \sum_{n=1}^{N} |y_n - ax_n - b|^2$

Déterminer les points critiques de f. Puis déterminer la droite D pour :

X _n :	0	1,1	3,2	3,9	7,1	8,9			
y n :	1,1	1,6	1,6	2,8	2,9	3,8			