THE DETERMINATION OF OPERATIONAL AND SUPPORT REQUIREMENTS AND COSTS **DURING THE CONCEPTUAL DESIGN OF SPACE SYSTEMS**

GRAN!

IN-18-CR

115093

FINAL REPORT August 1992

P.269

Prepared for

National Aeronautics and Space Administration

Langley Research Center

under

Grant No. NAG-1-1327

Prepared by

Charles Ebeling Kenneth Beasley

University of Dayton

Engineering Management and Systems Department

300 College Park

Dayton, Ohio 45469-0236

Jnc las

Table of Contents

List of	Figures	V
List of	Tables	v
List of	Attachments	vi
Chapte	I - Introduction	1
_	Background	1
	Related Efforts	1
	Scope of Research	4
Chante	· II - Data Sources	5
Спарк	Reliability and Maintainability Data	
	Military R&M Data Systems	
	Commercial Aircraft R&M Data	
	Aircraft Performance and Design Specifications	
	Initial Data Base	. 1
Chapte	· III - Methodology	6
F	Parametric Analysis	6
	Computation of MTBM	
	Maintainability Estimates	
	Spare Parts Requirements	
	Vehicle Turn Times	
	volicie Turn Times	~
Chapte	IV - Analysis and Results	24
	Preliminaries	24
	Regression Analysis	
	Analysis of Weights and Secondary Variables	
	MTBM Equations	
	MHMA Equations	
	Scheduled Maintenance	
	Removal Rates	
	Crew Sizes	
	Repair Distribution	د،

hapter V - Implementation	
Introduction	
Modes of Operation	
Additional Input Parameters	
Computations	
Output Report	
Validation	. 61
User Options	. 63
hapter VI - Conclusions	. 64
ibliography	. 65
PPENDIX	
A. AFALDP 800-4 Format	
B. MODAS Report Format	
C. Navy 3-M Report Format	
D. R&M Data Sources	
E. Data Generation Programs (BASIC)	
F. Variable Definitions	
G. Design/Performance/Weight Values	G-1
H. Dependent Variable Values	
I. Subsystem Weight Percentage	
J. MTBM Regression Analysis	J-1
K. MHMA Regression Analysis	
L. POFF Regression Analysis	
M. Removal Rate Data & Regression	
N. Abort Rate Data & Regression	
O. Crew Size Data & Regression	0-1
P. Scheduled Maintenance Data	P-1
Q. Learning Curve Data & Regression	Q-1
R. Technology Growth Data	
S. R & M Model - BASIC Program Listing	S-1

List of Figures

1.	AF R&M Summary Format	 			.]	14
2.	Navy R&M Summary Format	 			. :	15
3.	Mission Profile	 			 . 4	48
4.	Driver & System Variables	 			 . 4	48
5.	Weight Menu	 			 . 4	49
6.	Secondary Variable Menu	 	 ٠.		 	50
7.	Calibration Menu - MTBM	 		. ,	 . :	51
8.	Calibration Menu - MH/MA	 			 . :	52
9.	Mission Profile Menu	 			 . :	53
10.	Subsystem Operating Times	 			 . :	54
11.	Technology Factor Display Menu	 			 . :	55
12.	Reliability Report	 			 . :	58
	Maintainability Report					
14.	Subsystem Spares Report	 			 . (60
	Vehicle Turn Time Report					

List of Tables

1.	Aircraft Design/Performance Variables	 11
2.	AF/NAVY Aircraft	 . 12
3.	Aircraft Subsystems 2-Digit Work Unit Codes (WUC)	 13
4.	WUC to WBS Conversions	 25
5.	WUC 11XXX Maintenance Actions	 26
6.	Subsystem Weight Equations	 28
7.	Secondary Variable Equations	 29
8.	Weight Distribution	 . 30
	MTBM Equations	
	Learning Curve Results	
	Technology Growth Rates	
	Critical Failure Rate Equations	
	MHMA Equations	
	Percent Off Equipment Equations	
	Scheduled Maintenance Manhours	
	Removal Rate Equations	
	Crew Size Data	
	Crew Size Regression Equations	
	Crew Size Probability Distribution	
20.	Repair Time Data	 . 44
	Goodness of Fit Tests	
	Model Validation - F16	
23.	Model Validation - C141B	 . 62

List of Attachments

- 1. USAF AFR 66-1 Data
- 2. Navy 3-M Data
- 3. AF/Navy Regression Models
- 4. WUC 11XXX Breakdown Data
- 5. Removal Rate Data
- 6. Scheduled Maintenance Data
- 7. Commercial Data Systems

Chapter I

Introduction

A. Background

This report documents the first year of research conducted by the University of Dayton for the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) under NASA research grant NAG-1-1327. The purpose of the grant is to provide support to NASA in predicting operational and support parameters and costs of proposed space systems. Specific research objectives include: (1) the development of a methodology for deriving reliability and maintainability parameters and based upon their estimates determine operational capability and support costs, and (2) the identification of data sources and the establishment of an initial data base to implement the methodology. Implementation of the methodology is accomplished through the development of a comprehensive computer model. A third objective, not documented in this report, is to assist NASA in the development of a simulation model which will provide an integrated view of the operations and support of proposed space transportation systems.

B. Related Efforts

Several previous studies provide insight and motivation for this research. These studies are discussed briefly below.

The Supportability Assessment Model (SAM) developed by Rockwell International [21] provided much of the motivation for the development of the parametric equations as part of this research. SAM projects maintenance action rates as a function of the dry (empty) weight of a vehicle. Dry weight is considered a surrogate for complexity. This projection is then modified by factors which consider the environment (e.g. space vs. ground), technology (development year) and reliability procurement policies (high or low reliability specifications). Using Air Force Maintenance Data Collection (MDC) data (AFM 66-1) pertaining to the C-9A, C-141A and the C-5A, Rockwell derived a regression equation with maintenance actions per flying hour as a dependent variable and empty weight as an independent variable. Predictions from this equation for estimating spacecraft reliability are then adjusted by an environmental factor derived from MIL-HDBK-217, Reliability Prediction of Electronic Equipment and a technology factor related to the development year.

An enhancement to the original Rockwell SAM model is the Reliability/Maintainability (R/M) Analysis Methodology used by Rockwell in assessing the R&M of the Personnel Launch System, Advanced Manned Launch System (PLS/AMLS). [19] This analysis established regression equations between unscheduled maintenance actions and vehicle dry weight for several aircraft subsystems such as avionics, powerplants, electrical, hydraulic, structural and landing gear. Eight different aircraft including a bomber, fighters and airlift (cargo) are used to generate examples of the correlations obtained between subsystem weight and maintenance actions per

flying hour or per landings. Component removals are computed as a percent of the component maintenance actions in order to determine requirements for spares. Both a bottom-up and a top-down analysis is performed using Air Force, airline and orbiter data.

In a discussion on life cycle costing, Earles [7] presents one of the first successful parametric models for estimating maintenance manhours per flying hour (MH/FH). An estimate of the MH/FH for on-aircraft propulsion is obtained from a regression equation with the thrust/engine and number of engines as independent variables. Five tactical aircraft and the T-38 provided the source of data.

Another early study by Harmon, Pates, and Gregor [9] developed maintenance manhours per flying hour (MH/FH) estimates for tactical aircraft for use during conceptual and development design phases. Again, using AFM 66-1 data, MH/FH estimating relationships were derived using aircraft design and performance parameters. Using ten tactical aircraft, a data base covering maintenance manhours over a 6 month period was developed at the two-digit work unit code (WUC). Different independent variables were selected for each subsystem. For example, landing gear maintenance manhours was assumed to be related to kinetic energy and aircraft weight while the fuel system maintenance manhours was related to weight, number of engines and fuel quantity. Correlations above .90 were reported for each of the examples, however, only 5 to 7 data points (aircraft) were used in the analysis. Technology improvement factors are given for each WUC but details on their derivations are not provided.

Norris and Timmins [16] present another early study which focused on spacecraft performance during its orbital life. Component failure rates over time of 57 unmanned spacecraft were analyzed. Both a Duane reliability growth curve and a Weibull hazard rate function provided an adequate fit to the data. A decreasing failure rate over time and a four-fold increase in failures during the first day following launch were observed from the data.

Decreasing failure rates were also reported in a study by Hecht and Florentino [10] and Hecht and Hecht [11] which focused on electronic systems of over 300 spacecraft. The study concluded that design and environmental causes of failures contributed the most to a decreasing failure rate. They computed Weibull shape and scale parameters for each of several failure classifications. Causes of spacecraft failures, their distribution by subsystem and criticality and mission type are also presented. A reliability prediction method is developed for electronic equipment operating in a space environment which is consistent with MIL-HDBK-217.

Peacore [18] discusses some reliability results pertaining to the Air Force's AWACS (E-3A) system. In flight failure rates were found to be decreasing with flight time which he believes to be characteristic of large multi-engine transport type aircraft. A model, developed by Boeing Aerospace Corporation and based upon B-52 data, has high early failure rates which decrease to a relatively constant rate after 10 hours of flight. The high early failures are attributed to environmental stresses during takeoff, failures occurring when initiating (e.g. turning on) and stabilizing equipment, failures undetected during testing, and maintenance induced failures.

One of the few papers addressing failure time and repair time probability distributions is presented by Ostrofsky [17]. However, only graphical examples of these distributions are provided with no results on fitted theoretical distributions reported.

A comprehensive report prepared for the Goddard Space Flight Center (NASA) by Bloomquist and Graham [5] describes the study of 44 unmanned orbital spacecraft. In fact, this study is an update of earlier studies conducted by the Planning Research Corporation (PRC) which addressed 350 spacecraft. In addition to providing an extensive data base of the 44 spacecraft, the report classified anomalies by satellite mission, subsystem, effect, and incident type (e.g. electrical or mechanical). Subsystem survival times were also computed in units of the spacecraft design life.

A report prepared by Hughes Aircraft for the Rome Air Development Center [14] addresses differences between predicted and demonstrated reliability and the observed field values (primarily MTBF). Prediction models for estimating the field MTBF were derived. The study contains a detailed description of the Air Force's MDC (AFM 66-1) and D056 data systems. The relationship between predicted and observed MTBF was established using multiple regression techniques. Of interest in this report is the derivation of a "K" factor (equipment use factor) to account for the differences between equipment flying hours and equipment operating hours. Equipment operating hours varied from 1.2 to 2.4 times the flying hours depending upon the aircraft.

Maintenance policies may have a significant effect on the maintenance manhours expended in supporting a space vehicle. Barnard and Matteson [4] describe a test conducted by the Navy to perform aircraft maintenance similar to that of the commercial airlines. Both scheduled maintenance manhours and aircraft downtime were significantly reduced while the quality of maintenance increased. Similar changes in maintenance policies may be contemplated as NASA transitions from the Shuttle to the next generation of space transportation vehicles.

C. Scope of Research

This initial effort is limited to the prediction of reliability and maintainability (R&M) parameters and their effect on the operations and support of space transportation vehicles. The focus is on the failure and repair of major subsystems and their impact on vehicle turn times, maintenance manpower, and repairable spares requirements. Other system components such as booster rockets, expendables (e.g. fuels and oxygen), ground support facilities, software development and maintenance, and overhead staff would be subjects for future research activities.

Chapter II discusses various sources of R&M data and documents the data utilized in this study. Chapter III develops the general methodology for estimating R&M parameters and for relating these parameters to the logistics support requirements of the proposed vehicle. Chapter IV presents the analysis and results of applying the methodology to the initial data base while Chapter V describes the implementation of the methodology through the use of a computer model and provides some validation of the model. The report concludes with a summary of the research findings and results.

Chapter II.

Data Sources

The principle approach to be used in establishing R&M estimates of new space systems is based upon comparability with existing systems. In this regard, many of the subsystems defined for manned space vehicles may be favorably compared to corresponding aircraft systems. Therefore, a primary source of data to support this analysis are commercial and military aircraft failure and repair data.

A. Reliability and Maintainability Data

Data requirements consist of the following R&M data pertaining to all relevant aircraft subsystems.

The primary R&M data are:

- (1) Mean time between maintenance (MTBM). This is defined to be the length of time in flying hours between maintenance actions on a particular subsystem or component. Only unscheduled maintenance actions are included. A distinction is made between maintenance actions and failures. Maintenance actions include inherent failures (internal subsystem failures), induced failures (external failure causes) and no defect.
- (2) Maintenance manhours per maintenance action (MH/MA). This is the primary measure of maintainability used in this study. Along with the number of maintenance actions per mission (obtained from the MTBM), it becomes the basis of the maintenance cost estimates.
- (3) Maintenance Task Times. The length of time (usually in hours) to perform a particular task such as troubleshoot, remove and replace, perform minor maintenance, etc. This maintainability parameter is usually summarized at the subsystem or component level as the Mean Time to Repair (MTTR). In this study, task times are obtained by dividing the MH/MA by an average crew size. Task Times include both on and off vehicle times.
- (4) Maintenance crew sizes. The number of maintenance personnel required to perform a particular task. This number may vary depending upon the task, the particular component involved and the skill level of the personnel. An average crew size was determined by subsystem.
- (5) Removal rates (RR). This is the percent of maintenance actions which results in a removal and replacement of a component from the aircraft. It is the basis for establishing demand rates for spare components.

- (6) Abort rates (AB). This is the percent of maintenance actions as a result of a ground or air abort. This rate is used to establish a critical failure rate which in turn is used to compute a mission reliability.
- (7) Percent off equipment (POFF). This is the percent of the total unscheduled maintenance manhours performed on components removed from the aircraft. These hours do not delay processing the vehicle. Therefore 1-POFF, or the percent of on-aircraft work, is used in determining the vehicle turnaround time.

Secondary R&M data which were collected and documented include:

- (1) Maintenance manhours per flying hours (MH/FH). This is sometimes referred to as the maintenance index (MI) and may be broken down into off-equipment (aircraft) and on-equipment (aircraft) manhours. When it differs from flying hours, subsystem operating hours should be used.
- (2) Mean sorties between maintenance actions (MSBMA). This is the average number of sorties flown between unscheduled maintenance actions.

B. Military R&M Data Systems

(1) US Air Force data systems

Reliability and maintainability data for USAF aircraft originates with the Maintenance Data Collection (MDC) system as described in AFM 66-1. This data is collected at the base (squadron/wing) level (AFTO Form 349) and transmitted periodically to AF Logistics Command (AFLC). AFR 65-110 data (aircraft status reporting) reports flying hours and sorties for the same bases monthly. The D056 Product Performance System processes this data producing several R&M reports. D056 also provides data to the Maintenance and Operational Data Access System (MODAS) for on-line viewing and retrieval. AFALD Pamphlet 800-4, Aircraft Historical Reliability and Maintainability Data summarizes the worldwide R&M data at the two-digit work unit code (WUC) in 6-month intervals (see Appendix A for an example of AFALDP 800-4 data). Currently Volumes I through VI covering the years 1972 through 1989 have been published.

The current Office of Primary Responsibility (OPR) for AFALDP 800-4 is ALD(AFLC)/LSR, Wright-Patterson AFB, Ohio. However, with the consolidation of AFLC and the Air Force Systems Command (AFSC) scheduled for July 1992, this office may no longer exist. With the eventual implementation of REMIS (Reliability and Maintainability Information System), the D056 system along with MODAS will also be eliminated. It is not certain at this time what the final configuration and capabilities of REMIS will be.

The MODAS system (G063) is currently sponsored by AFLC/MMES, Wright-Patterson AFB, Ohio 45433. MODAS provides the user with access to various data bases through an interactive menu driven system. It is a Data Base Management System (DBMS) with some automated analytical capability. R&M information may be displayed by aircraft (MDS), WUC, level of WUC, base and by month. Examples of MODAS reports may be found in Appendix B.

In addition, to the above systems, a unique representation of aircraft R&M data exist in the form of Logistics Composite Model (LCOM) data bases. LCOM is a computer simulation model which simulates the operation of a squadron or wing of aircraft with random failures times and repair times of aircraft subsystems and components. LCOM data bases exist for most of the aircraft in the Air Force inventory although many of these data bases are several years old. This data is unique in that the failure times may be based upon several years of (AFM 66-1) data and repair times and crew sizes are often based upon field audits conducted at the unit's themselves. This data, which is usually collected at the 3 or 4 digit WUC level, is a refinement of the MDC data. LCOM data bases may be obtained from ASD/ENSSC, Wright-Patterson AFB, Ohio. LCOM data bases were not used in developing the parametric equations because of the more readily available and more relevant MODAS and AFALDP 800-4 data.

(2) US Navy

Report Title

The primary source of R&M data pertaining to Navy aircraft is the Aviation 3-M Information reports. The Navy Maintenance Support Office (NAMSO), is the central data bank for Aviation 3-M data (Maintenance and Material Management system). NAMSO is part of the Naval Sea Logistics Center. Although preformatted reports are published monthly, quarterly and annually, and are available on request, a potential user may also request the development of a new report. Most reports can be obtained on either hard copy or microfiche. Magnetic tape may be obtained under a special request.

The following R&M reports have been identified as relevant to this research. Examples of each report may be found in Appendix C.

Report Number

Reliability and Maintainability Summary	NAMSO 4790.A7142-01
WUC System R&M Summary	NAMSO 4790.A7142-02
R&M Summary for selected WUCs	NAMSO 4790.A7142-03
R&M Trend Analysis Summary	NAMSO 4790.A7142-04
5-Digit WUC R&M Trend Analysis Summary	NAMSO 4790.A7142-05
R&M Summary for Selected Equipments	NAMSO 4790.A7298-01

The R&M Summary Report provides data similar to that available from the MODAS system. Summary statistics are reported by aircraft type at the 5-digit WUC and include mean flying hours between maintenance actions, maintenance manhours per flying hour, maintenance manhours per maintenance action, and elapsed maintenance time per maintenance action.

Of particular interest in this research is the WUC System R&M Summary. This report provides mean flying hours between maintenance actions, maintenance manhours per flying hour, maintenance manhours per maintenance action, and elapsed maintenance time per maintenance action by system level WUC (2-digit) for all appropriate aircraft. Similar R&M information is provided in the R&M Summary for selected WUCs. However, this report is at the 4-digit WUC and pertains only to engines and avionic components.

The two trend analysis reports provide MTBF and MH/FH information at the 4-digit and 5-digit WUC respectively. Multiple time periods may be displayed to produce trend data, and a comparative failure ranking of the WUC relative to all WUCs for the aircraft is computed.

The final report, R&M Summary for Selected Equipments, allows for R&M data to be presented at the 2nd and 4th level WUC by activity. This report would not add any new information not already available on the other reports other than the activity breakdown.

(3) Reliability Analysis Center

The Reliability Analysis Center (RAC) is one of 21 DOD Information Analysis Centers (IAC). It is operated by IIT Research Institute in Rome, New York. As an IAC, RAC maintains data bases and studies concerning component reliability particularly that of electronic systems. The Center also conducts special studies, publishes newsletters, and offers training courses. In general, the items contained in RAC's data bases are individual parts rather than an entire component. Therefore, this data was not used in this research.

C. Commercial Aircraft R&M Data

Commercial data sources were investigated but not used in developing the initial data base for reasons discussed below. However, examples of the reports and types of data available from these sources is documented in Attachment 8.

(1) Federal Aviation Agency (FAA)

Commercial sources of R&M data include both the airlines and the aerospace contractors. In addition, the Federal Aviation Agency (FAA) in Oklahoma City maintains a data base consisting of component failures by Airline Transport Association (ATA) code which corresponds to the military's WUC. The data base is very detailed with significant variability in reporting by the individual airlines. A narrative on each incident is included, but there is no quantitative data for estimating MTBF or MTTR. This data is of limited use since there is no practical way to obtain failure rates or times of failure without additional information.

(2) Commercial Airlines

Each airline maintains R&M data in a form useful to them. However, they only measure reliability in terms of failures which cause schedule delays (usually of 15 minutes or more) or aborts. Therefore total maintenance activities are generally not captured in their data systems. R&M reports from three different carriers were obtained and analyzed for their relevance to this research. Because of major differences in reporting compared to the military data systems, it was concluded that this data would be of very limited use. For example, USAir produces a monthly reliability assurance program report [22] which focus schedule departure delays and cancellations. Flying hours between events and maintenance hours are not reported.

(3) Aerospace Contractors

Examples of the type of data maintained by the major aerospace corporations may be found in Attachment 7. These contractors are dependent upon the airlines for reporting failures and, as a result, their reports focus on those events which significantly affect scheduled flights resulting in delays (again exceeding 15 minutes), cancellations, diversions, and air turn backs. While this information is very useful in identifying problem areas, failure times cannot be computed from this report. For example, scheduled interruptions are Boeing's major measure of reliability. They maintain very little data on MTBF, MTTR or maintenance MH/FH. McDonnell Douglas maintains a Data Exchange Program which reports various reliability information which is then provided to commercial aircraft customers. Information contained in this report is obtained from participating airlines. Like the Boeing report, it focuses on events which result in excessive delays and cancellations. However, a component removal summary contains some MTBF information.

(4) Other Sources

A secondary source of reliability data consists of subcontractors involved in the manufacture of particular aircraft subsystems and components. For example, Hughes Corporation which, among other things, makes radar systems for various aircraft. We were able to obtain the system specifications and reliability test results on four of their radar systems. As additional information like this on other radar sets is obtained, a parametric estimation of MTBF is possible. We have requested similar input from other subcontractors including Harris Corporation (digital map generators, global positioning system) and E-Systems (electronic systems). This level of detail may be beneficial during the follow-on effort when component level R&M analysis is anticipated.

Other sources which had been pursued include Airbus Industries (Europe), The Society of Automotive Engineers (SAE) which has published a guidebook on rocket booster reliability, the Aeronautical Systems Division (Air Force Systems Command) concerning a comparative study on competing radar systems, and the Air Force Logistics Command's Reliability and Maintainability Information System (REMIS). Some of the information gathered is beyond the scope of this task and has not been incorporated into this report.

Various points of contact for the data sources identified above are summarized in Appendix D.

D. Aircraft Performance and Design Specifications.

In addition to R&M data, aircraft performance and design specifications (Table 1) were necessary to support the parametric analysis. A primary source of this data for military aircraft was a technical report titled "Modular Life Cycle Cost Model for Advanced Aircraft Systems Phase III," prepared by the Grumman Aerospace Corporation [15] for the Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio. This report documents the data base used in developing a life cycle cost model for the proposed aircraft.

Table 1 Aircraft Design/Performance Variables¹ (Potential Drivers)

VEHICLE DRY WEIGHT NUMBER INTERNAL FUEL TANKS VEHICLE LENGTH MISSION LENGTH WETTED AREA **OPERATING CEILING** VEHICLE WING SPAN NUMBER OF WHEELS **FUSELAGE VOLUME** NUMBER ACTUATORS SUBSYSTEM WEIGHTS NUMBER CONTROL SURFACES MAXIMUM ELECTRICAL OUTPUT FUSELAGE SURFACE AREA LANDING DISTANCE NUMBER HYDRAULICS SYSTEMS **CREW SIZE NUMBER AVIONICS SYSTEMS** BTU COOLING CAPACITY **NUMBER PASSENGERS NUMBER ENGINES** AVIONICS INSTALL WEIGHT

The primary source for subsystem weights used in this study was Design Branch of the Plans and Programs Directorate of the Wright Laboratories at Wright-Patterson AFB (WL/XPAD). Secondary data sources included all volumes of <u>Jane's All The World's Aircraft</u> [13], "Aviation Week & Space Technology" [3], and <u>Observer's Directory of Military Aircraft</u> [8].

E. Initial Data Base

The primary source of military R&M data is the Air Force AFM 66-1 Maintenance Data Collection (MDC) system and the Navy 3-M data system. The initial data base consisted of AF MDC data as reported in Volume V (October 1985 to September 1987) of AFALDP 800-4 and Navy data reported in the July 1990 - June 1991 R&M Summary Report. Volume VI of AFALDP 800-4 (October 1987-September 1989) and the MODAS on-line system (January 1990-December 1991) were secondary sources. AFALDP 800-4 summarizes R&M data at 6-month intervals. Four 6-month periods were averaged together in order to provide more accurate measures. The Navy data is presented by quarters. Four quarters were averaged together also to provide for more accurate MTBM's and manhours. Table 2 lists the 37 Air Force and Navy aircraft used in the study and Table 3 identifies the 26 major aircraft subsystems which were included. These subsystems are identified by two-digit work unit codes (WUC).

¹ Variable definitions of those used in the models are found in Appendix F.

Table 2 AF/NAVY Aircraft

TACTICAL	BOMBER	CARGO/TANKER	COMMAND/CONTROL /TRAINER
A -7D/E	B-1B	C-2A	E-2C
A-10A	B-52G	C-5A	E-3A
F-4C/D/E	FB-111A	C-9A	EA-6B
F-5E		KC-10A	T-38
F-14A		C130B/E/H	
F-15A/C		KC-135A	
F-16A/B		C-140A	
F-18A		C-141B	
F-106			
F-111A/D/F		-	

Table 3 Aircraft Subsystems 2-Digit Work Unit Codes (WUC)

wuc	
SYSTEM	SYSTEM NOUN
11	STRUCTURES/AIRFRAME
12	EQUIP/FURNGS/CREW COMPARTMENT
13	LANDING GEAR
14	FLIGHT CONTROLS
23	POWER PLANT SYSTEM
24	AIRBORNE AUXY PWR (APU)
41	AIR CONDITIONING/ENVIRONMENTAL CONTROL
42	ELECTRICAL POWER
44	LIGHTING SYSTEM
45	HYDRAULIC POWER
47	OXYGEN
49	FIRE PROTECTION/MISC UTILITIES
51	INSTRUMENTS
52	AUTO FLIGHT
55	MAL ANLY RECORDING
61	COMMUNICATIONS
62	VHF COMMUNICATIONS
63	UHF SYSTEM
64	PASS ADDRESS SYS
66	EMERG LOCT XMTR
71	NAVIGATION
72	RADAR NAVIGATION
91	EMERG EQUIP
93	DRAG CHUTE EQUIP
. 96	PERSONNEL EQUIP
97	EXP DEV & COMP

Figure 1 AF R&M Summary Format

OUTPUT RESULTS FOR F-15

TOT FLYING-HRS	172258
TOT SORTIES	130501
TOT LANDINGS	146896
AVG MISSION LENGTH	1.319975

WUC 13

13223.61 125632 8 96 78
35954
.2861851
13.02655
9.868786
11.10861
.7293246
.9626899
9.500581
6.781657
2.718924

ECHO CHECK OF INPUT DATA

PERIOD		MYBM	ON-EQUIP MH	OFF-EQUIP	MH
1 2 3 4	13	9.276 13.707 14.368 16.831	30 65 8 2 8229 1 677 6 1 401 5	11548 11707 6976 5723	
		VALIDATION CH	ECK		
PERIOD		ON-EQUIP MH/F	Ħ	OFF-EQUIP	MH/FH
1 2 3 4	13	.7647485 .6180946 .3967458		.2880591 .2563334 .1649797 .1294386	-

Two computer programs, written in interactive Microsoft° BASIC, were utilized for processing the data. The data was aggregated into two years (AF) or one year (Navy) and various R&M parameters computed as illustrated in Figures 1 and 2. These programs are listed in Appendix E; the AF processed data is in Attachment 1; and the Navy processed data is in Attachment 2. These data provided the MTBM and MH/MA dependent variable values used in the subsequent regression analysis.

Values for the independent variables (Table 1) and subsystem weights used in the analysis are found in Appendix G. R&M (Dependent) variable values are summarized in Appendix H.

Figure 2 Navy R&M Summary Format

OUTPUT RESULTS FOR F-14A WUC 45XXX

TOT FLYING-HRS 92011

TOT MAINT ACTIONS 8943

TOT MAN-HRS

56868 32224.9

TOT ELAPSED TIME 3222

MEAN FLYING HR BTWN MAINT

MAN-HOURS PER FLY-HR

AVG ELAPSED MAIN TIME

AVE CREW SIZE

MAN-HOURS PER MAINT ACTION

6.35894

SUMMARY STATS FOR 45XXX HYDRAULICS/PNEUMATIC PWR

AVG TASK TIME 3.38761 AVG CREW SIZE 1.747144

Chapter III

Methodology

A. Parametric Analysis

The primary objective is to develop a methodology for estimating reliability and maintainability parameters for use in life cycle costing, supportability requirements determination and the assessment of operational capabilities and constraints of proposed space vehicles. This methodology utilizes the available data sources identified in the previous chapter. The approach is based upon a comparability analysis with similar aircraft subsystems. By estimating aircraft equipment failure and repair parameters as a function of performance and design specifications, then, with suitable adjustments to account for the differences in operating environment, the R&M parameters of a conceptual space vehicle may be estimated based upon its design and operating specifications. Adjustments are also necessary to account for technological innovation over time. This chapter presents the mathematical foundation for the analysis performed on the data base and described in the following chapter.

Parametric R&M equations are derived using regression analysis. In general, let

$$Y = B_0 + B_1 X_1 + B_2 X_2 + ... + B_k X_k$$
 (1)

where Y = R&M parameter of interest (e.g. MTBF or MH/MA)

and $X_j = jth$ design or performance specification (e.g. vehicle dry weight), j = 1, 2, ... k,

then

 B_0 , B_1 , ..., B_k are the regression coefficients.

These are estimated by performing a least-squares fit of the equation against known paired values for Y and the corresponding X_1, X_2, \ldots, X_k obtained from the data base.

The following R&M parameters have been estimated using this approach:

MTBM - Mean Flying Hours between Maintenance Actions

MH/MA - Maintenance Manhours per Maintenance Actions

RR - Subsystem removal rate

POFF - Percent off-equipment (vehicle) manhours

CREW - Average crew size per maintenance task

AB - Abort Rates (Critical Failure Rate)

In addition to the above R&M parameters, regression equations were derived to estimate subsystem weights and design/performance variables (see Table 1) as functions of the vehicle dry weight (DRY WT) and length + wing span (LEN+WING). These variables are classified as secondary variables while the dry weight and length + wing span are classified as primary variables. Using these equations, it is possible to estimate all of the necessary R&M parameters using only a small number of primary (driver) variables. First subsystem weights are determined from the regression equations, then the secondary variables are computed from their equations, and finally the MTBM, MH/MA and other R&M parameters are estimated from their regression equations. The latter equations will include subsystem weights and those secondary variables which were found to significantly improve upon their prediction capability.

B. Computation of MTBM

An initial MTBM is obtained by subsystem from the derived parametric estimating equations. The MTBM is in units of operating (flying) hours between maintenance actions and reflects a subsystem operating in an aircraft (air/ground) environment.

(1) Technology Growth Factor

In order to account for increased reliability as a result of technological change over time, a growth factor was computed. First, the learning curve effect on the reliability of a subsystem over time was estimated. The learning curve accounts for engineering changes, modifications, and other reliability burn-in phenomena associated with a system maturing over time. This was accomplished by fitting an equation of the form:

$$MTBM = a T^b$$
 (2)

where: T = cumulative calendar time or cumulative operating (flying) hours and "a" and "b" are parameters estimated using least-squares.

Next, a technology adjustment factor was found by averaging several pairwise comparisons between aircraft developed during different technology periods but having similar missions and requirements. An MTBM for both aircraft was obtained from the data set (generally a two-year average value). The MTBM of the newer aircraft was modified using the learning curve growth rate (b) to account for the differences in age between the two systems. That is,

$$Mod MTBM = a \times (1986 - Dev YR Old ACFT)^b$$
 (3)

where solving Equation (2) for "a" provides:

$$a = NEW ACFT MTBM/(1986-DEV YR NEW ACFT)^b$$
 (4)

The baseline year of the data is 1986 and the MTBM reflects the baseline year. The "a" parameter defines the units (e.g. operating hours or years) while the "b" parameter describes the rate of growth.

The adjustment factor was then found by solving the compound growth rate curve:

$$MOD MTBM = OLD ACFT MTBM x (1+ADJ FAC)^{AGE DIFF}$$
 (5)

That is,

ADJ FAC =
$$[MOD MTBM/OLD ACFT MTBM]^{(1/AGE DIFF)} -1$$
 (6)

This factor was then used in adjusting the initial MTBM to account for technological growth in reliability between the baseline year of the data and the expected development year of the proposed system. That is

$$ADJ MTBM = MTBM x (1+ADJ FAC)^{(yr-1986)}$$
 (7)

(2) Environmental Adjustment

A further adjustment to the MTBM was then made to account for the change in failure rates (from those of the aircraft air/ground environment) during launch and orbit. During the air (non-booster launch and re-entry phase) and ground phase, failure rates are assumed to be constant (exponential) with a MTBM based upon the ADJ MTBM defined above. However, during launch under booster rockets, the failure rate may increase dramatically as a result of the increased vibration and stresses. On the other hand, while in orbit, the failure rate is assumed to decrease over time based upon results found in related work cited in Chapter 1. A Weibull failure rate function was assumed for this portion of the mission. Previous studies have shown a decrease in component failure rates occurring in the somewhat more benign space environment. Two approaches have been identified to quantify this change. The first is to include an environmental factor in the regression model. This would require obtaining historical data on comparable components operating in space. This data is quite limited and may be explored during the follow-on effort. An alternate approach is to make use of the earlier research which concluded failure rates in space were decreasing with the Weibull failure distribution providing a reasonable model. This study utilizes the latter approach.

For each subsystem, a mission profile curve was assumed having the following form:

Figure 3 Mission Profile

This failure rate curve may be expressed mathematically as:

$$\lambda (t) = \begin{cases} \lambda & \text{for} & 0 \le t < t_0 \\ \kappa \times \lambda & \text{for} & t_0 \le t < t_1 \\ \lambda & \text{for} & t_1 \le t < t_2 \end{cases}$$

$$\frac{b}{a} \left(\frac{t}{a}\right)^{b-1} \text{ for} & t_2 \le t < t_3$$

$$\lambda & \text{for} & t_3 \le t < t_4$$

$$(8)$$

where:

$$\lambda = \frac{1}{ADJ MTBM}$$

κ=LAUNCH FACTOR

and a, and b are the Weibull scale and shape parameters respectively

Since, in general, a reliability function is given by

$$R(t) = e^{-\int_0^t \lambda(t) dt}$$
 (9)

the reliability function may be obtained from (8) using (9):

$$R(t) = \begin{cases} e^{-\lambda t} & \text{for } 0 \le t < t_{0} \\ e^{-[\lambda t_{0} + \kappa \lambda (t - t_{0})]} & \text{for } t_{0} \le t < t_{1} \\ e^{-\lambda [(t + t_{0} - t_{1}) + \kappa (t_{1} - t_{0})]} & \text{for } t_{1} \le t < t_{2} \end{cases}$$

$$e^{-\lambda (t_{2} + t_{0} - t_{1}) - \kappa \lambda (t_{1} - t_{0}) + \left(\frac{t}{a}\right)^{b} - \left(\frac{t_{2}}{a}\right)^{b}} & \text{for } t_{2} \le t < t_{3}$$

$$e^{-\lambda (t_{2} + t_{0} - t_{1}) - \kappa \lambda (t_{1} - t_{0}) + \left(\frac{t_{3}}{a}\right)^{b} - \left(\frac{t_{2}}{a}\right)^{b} - \lambda (t - t_{3})} & \text{for } t_{3} \le t < t_{4} \end{cases}$$

$$(10)$$

Since the mission profile is repetitive over time, a steady-state MTBM may be computed from equation (11).

SS MTBM =
$$\frac{\int_0^{t_4} R(t) dt}{1 - R(t_4)}$$
 (11)

The use of the Weibull failure distribution in defining R(t) requires a numerical integration to compute the MTBM from Equation (11). In the implementation of the model discussed in Chapter V, Simpson's rule was used to perform the integration.

(3) Critical MTBM

Using aircraft air and ground abort rates (AB), subsystem regression equations were derived to provide estimates of critical failure rates. A critical MTBM was then obtained from

$$CRIT MTBM = SS MTBM/AB$$
 (12)

A vehicle MTBM is calculated from the subsystem MTBM's using:

$$VEH MTBM = 1/[1/MTBM_1 + 1/MTBM_2 + ... + 1/MTBM_k]$$
 (13)

where 1/MTBM; is the failure rate of the ith subsystem.

With critical failure rates replacing 1/(ADJ MTBM), approximate mission reliabilities are found using Equation (10) for each subsystem. A Vehicle reliability is computed by multiplying subsystem reliabilities (R_i)

$$R_{veh} = R_1 \times R_2 \times \dots \times R_k \tag{14}$$

Equation (14) assumes no explicit redundancy at the subsystem level. Some component redundancy may be implicitly taken into account by the critical MTBM.

C. Maintainability Estimates

The primary maintainability parameter used in this study is the maintenance manhours per maintenance action (MH/MA). This parameter is estimated from the parametric regression equations for each subsystem. Then using

$$TOT MA = 1/(SS MTBM) \times OPER HRS$$
 (15)

total maintenance actions per mission is obtained and from

$$TOT MANHRS = MH/MA \times TOT MA$$
 (16)

total maintenance manhours per mission is found. Manhours are then split into on-vehicle and off-vehicle manhours using the percent off-equipment hours (POFF) obtained from regression equations:

TOT ON-VEH MH =
$$(1-POFF) \times TOT MANHRS$$
 (17)

TOT OFF-VEH
$$MH = POFF \times TOT MANHRS$$
 (18)

Maintenance manpower requirements are determined by computing the total manhours of work per month and dividing this total by the number of hours per month available per technician to do direct maintenance work.

Let N = number of mission per month,

AV = available hours per month per individual

IND = percent of indirect work (work not included in the MH/MA)

then,

$$NBR PER = \frac{TOT \ MANHRS \times N}{(1 - IND) \ AV} \ (rounded \ up)$$
 (19)

Scheduled maintenance manhours per mission are found by multiplying the unscheduled manhours by a percentage estimated from a regression equation giving scheduled maintenance as a percent of the unscheduled maintenance.

C. Spare Parts Requirements

In order to estimate spare parts requirements, it is necessary to distinguish between a failure resulting in a remove and (if a spare is available) replace action versus other maintenance actions such as on-aircraft troubleshoot and repair. The MODAS system identifies maintenance actions by an action taken code one of which is a removal code.

Using regression equations or an estimated mean value, a removal rate (RR) per maintenance action was determined and used to obtain the mean number of demands (failures) for spares (MFAIL) per mission as follows:

$$MFAIL = RR \times (TOT MA) \tag{20}$$

Under the common assumption that the number of failures in a given time period follows a Poisson process, a spare parts level can now be found which will satisfy demands a specified percent of the time. This is the frequently used fill rate criterion which represents the percent of time a demand (failure) can be immediately satisfied from the on-hand stock.

Let S = spare parts level to support a given mission and p = desired percent of time demands are satisfied (fill rate), then find the smallest value for S such that F(S) > p where

$$F(S) = \sum_{i=0}^{S} Exp(-MFAIL) \times MFAIL_i/i!$$
(21)

F(S) is the cumulative probability of demands not exceeding the spares level (S).

D. Vehicle Turn Times

In order to determine the time required to perform maintenance on the vehicle, estimates of average repair crew sizes for typical on-vehicle tasks by subsystem must first be obtained. Once the average crew size has been determined from regression equations or averages from the data base, an average repair time can be obtained by

REPAIR TIME =
$$(1-POFF) \times (MH/MA)/AVG CREW$$
 (22)

Average on-vehicle subsystem repair time per mission may be found from

$$MSN REPAIR TIME = \underline{TOT ON-VEH MH}$$

$$AVG CREW$$
(23)

Assuming all tasks are performed sequentially (a worst case), then total vehicle mission repair time is the sum of the subsystem repair times:

VEH REPAIR TIME =
$$\sum_{ALL SUBSYS} MSN REPAIR TIME$$
 (24)

Scheduled maintenance time may then be added to obtain a total vehicle maintenance time:

TOT VEH TASK TIME = VEH REPAIR TIME +
$$\underline{SCH MHRS}$$
 (25)
AVG CREW SIZE

Mission time must be included in order to obtain a vehicle turn-around time. Therefore, vehicle turn-around time in working days is:

$$VEH TURNAROUND = MSN TIME/24 + TOT VEH TASK TIME/8$$
 (26)

Equation (26) assumes a single 8-hour maintenance shift per day. Dividing the vehicle turnaround time into the number of working days per month gives an estimate of the number of missions per month per vehicle:

$$MSN/MO/VEH = WORKING DA/MO$$

$$VEH TURNAROUND$$
(27)

Dividing the required number of mission per month by the number of missions per month per vehicle provides an estimate of the required fleet size:

$$FLEET SIZE = \frac{RQD \ MSN/MO}{MSN/MO/VEH} \quad (rounded \ up)$$
 (28)

Chapter IV

Analysis and Results

A. Preliminaries

Both Navy and Air Force aircraft were initially selected for deriving the parametric equations. However, Air Force subsystem data was utilized primarily in the current model because it was more comprehensive and consistent. In many cases, there was a significant difference in failure times between Navy and Air Force systems due, in part, to the more stressful environment found on carrier based aircraft. The first set of R&M equations also contained variables such as mission length and maximum ceiling which could not accurately be extrapolated to values representative of space vehicles. Finally, these equation were not weight based making them difficult to use in those cases where vehicle design had not progressed much beyond the determination of subsystem weights. Nevertheless, many of these equations resulted in a good fit to the data (e.g. high R-squared values) and are presented in Attachment 3. The remainder of this chapter is based primarily upon the Air Force data base presented in Chapter II.

Table 4 identifies the subsystems by military aircraft work unit code (WUC) and shows the mapping of WUC's to NASA's Work Breakdown Structure (WBS) for space vehicle subsystems. The mapping in some cases is only approximate. For example, WUC 14XXX, flight controls, includes control surfaces whereas WBS 1.12, actuators, does not. Miscellaneous utilities (WUC 49XXX) and Personal Equipment (WUC 96XXX) may include oxygen masks, communications, goggles, maintenance crane, fire protection and warning devices, water systems, flashlights, ladder, cooler, toilets, etc., while WBS 1.15 personnel provisions includes food, water, waste management and seats.

Similarly, WBS 1.16, recovery and auxiliary systems, includes parachutes, escape systems, separation systems, docking system and manipulator system, which, in turn, is mapped to emergency equipment (survival kit, emergency oxygen system, emergency lights, search and rescue systems, parachute system, life raft, life vest, evacuation system, escape slide), drag chute, explosive devices (ejection seats devices, escape initiating systems, and canopy removal system). During implementation of the equations, adjustments can be made to the parameters to account for the approximate nature of the match between the WBS and WUC structure. To develop a complete match would involve developing equations at a much lower level of both the WBS and WUC structures.

Table 4
WUC to WBS Conversions

WBS		wuc	
1.1	Wing Group	11XXX	Airframe
1.2	Tail Group	12XXX	Crew Compartment
1.3	Body Group		
1.4	Thermal Protection System		
1.5	Landing Gear	13XXX	Landing Gear
1.6	Propulsion		
1.7	Propulsion, RCS	23XXX	Propulsion System
1.8	Propulsion, OMS		.,,
1.9	Prime Power	24XXX	Aux Power Units-APU
1.10	Electrical	42XXX	Electrical
		44XXX	Lighting System
1.11	Hydraulics/Pneumatics	45XXX	Hydr/Pneumatics
1.12	Actuators	14XXX	Flight Controls
1.13	Avionics	51XXX	Instruments
		52XXX	Autopilot
		55XXX	Malfunc Anal Rec
		61XXX	HF Comm
	·	62XXX	VHF Comm
		63XXX	UHF Comm
		64XXX	Interphone
		66XXX	Emergency Comm
		71XXX	Radio Navigation
		72XXX	Radar Navigation
1.14	Environmental Control	41XXX	Environ Control
		47XXX	Oxygen System
1.15	Personnel Provisions	49XXX	Misc Utilities
		96XXX	Personnel Equipment
1.16	Recovery & Auxiliary Sys	91XXX	Emerg Equipment
		93XXX	Drag Chute Eqpt
		97XXX	Explosive Devices

WUC 11XXX (airframe) was mapped into WBS's 1.1 (wing group), 1.2 (tail group), 1.3 (body group), and 1.4 (TPS). The distribution of failures was based, in part, upon the breakdown of aircraft maintenance actions of WUC 11XXX to the wing, tail, and body using the data in Table 5. WUC 12XXX (crew compartment) was also mapped into the body group. The allocation of failures and manhours to the thermal protection system (TPS) was proportional to its weight to the total weight of WBS 1.1, 1.2, 1.3 and 1.4.

Table 5
WUC 11XXX Maintenance Actions

AIRCRAFT	TAIL	WING	BODY	TOTAL
B-52	417	7417	22,501	30,335
KC-10A	37	212	1,427	1676
F-15E	-	203	2,388	2591
F-4E	32	1225	5,575	6832
F-16C	787	2430	8,809	12,026
F-16A	272	2109	13,116	15,497
TOTAL	945	13,393	52,028	66,366
PERCENT	.014	.202	.784	1.000

In many cases, work unit codes were combined into a single WBS using Table 4 before deriving a regression equation. WUC's 42XXX (electrical) and 44XXX (lighting) were combined under WBS 1.10 (electrical distribution). WUC's 41XXX (environmental) and WUC's 47XXX (oxygen systems) were combined under WBS 1.14 (environmental control system). All avionics WUC's were combined under WBS 1.13 (avionics). WUC 23XXX (propulsion system) was computed separately for WBS 1.6 (propulsion), 1.7 (RCS), and 1.8 (OMS) using their corresponding weights.

B. Regression Analysis

Multiple linear regression procedures were used to develop each of the parametric equations. A "best fit" was defined as the simplest mathematical model having a significant F-value, a large R-squared value, and a small standard error. Generally, only independent variables which were significant (based upon a t-test) were included in the final model. Several models were marginally significant but retained nevertheless. A secondary criterion for model selection was

the practical test that the model would provide reasonable results over the anticipated range of independent variable values. Because of the difference between aircraft and space vehicle parameters, extrapolations outside the domain of the input data were expected. Nonlinear transformations of the independent variables were also included in the model if they significantly contributed to the prediction power of the equation. Generally these transformations consisted of squaring, taking logarithms or square roots of the variables.

An investigation of the residuals would, on occasion, identify one or more data points as outliers (two or more standard deviations from the mean). At times these outliers were deleted from the data base. This was based upon the strong possibility that the AFALDP 800-4 data was incomplete. This is particularly true for the Vol VI data which contains a warning to this effect. In processing AFM 66-1, the monthly tapes from the bases may not contain all of the failures logged for that month. On the other hand, the monthly flying hours and sorties reported through a different data system is almost always complete. The net result is an overstatement of the MTBF. This was normally the case when outliers were observed.

C. Analysis of Weights and Secondary Variables

Several variables were identified as primary or "driver" variables. These include (1) vehicle dry weight in pounds, (2) the sum of the vehicle length and wing span in feet, (3) crew size, and (4) number of passengers. Values for these independent variables were based upon references [8] and [13] and are found in Appendix G. Using these four driver variables, regression equations were derived to estimate subsystem weights and secondary variables. Table 6 displays the weight equations and Table 7 displays the secondary variable equations. As a conceptual vehicle becomes better defined, it is expected values for these variables will be obtained from the design specifications and will need not be estimated from the "driver" variables. With the exception of Prime Power (WBS 1.9) and Avionics (1.13), there are excellent least-squares fits to the data. The number of aircraft in the data base having an APU weight is quite small and its weight is not as dependent with vehicle size as are other subsystems. The engine weight equation was not used since aircraft engines are not comparable to spacecraft engines. Instead, a percentage of dry weight was allocated to each propulsion system and the TPS. Avionics weight is not as highly correlated with vehicle size as are the remaining subsystems. Observe that the secondary variable equations must be evaluated in a particular order since several of these equations require values derived from the previous secondary variable equations. Correlation of these equations vary from under 60 percent to over 99 percent.

Table 6 Subsystem Weight Equations²

WBS	SUBSYSTEM	EQUATION	×
1.1	WING	-4485026.7 + 1351022 log(DRY WT) - 135432[log(DRY WT)] ² +4522.4[log(DRY WT)] ³	086
1.2	TAIL	$-290909.9 + 91929.4 \log(DRY\ WT)$ $-9709.9 [\log(DRY\ WT)]^2 + 343.5 [\log(DRY\ WT)]^3$	096'
1.3	ВОDY	$3.971E8 + 1.4180E6 \log(DRY\ WT) - 4.047E7/\sqrt{\log(DRY\ WT)} - 12993808.8\sqrt{\log(DRY\ WT)}$	986.
1.5	LANDING GEAR	$-49535 + 0.28256$ (DRY WT) $+6873.7\log$ (DRY WT) $-160.1\sqrt{DRY WT}$	686
1.6-1.8	ENGINES	-7141.9 +89.1√ <u>DRY WT</u>	.958
1.9	APU (PRIME PWR)	$-910.4 + 100.2 \log(DRY WT) + 1.3835 \sqrt{DRY WT}$.785
1.10	BLECTRICAL	-757.97 +11.22√ DRY WT	.872
1.11	HYDRAULICS	$575.3 + .02222 (DRY WT) - 5.061 \sqrt{DRY WT}$.982
1.12	FLIGHT CONTROLS	$-9849.51 + 0.045967 (DRY WT) + 1364.8 \log(DRY WT) - 26.25 \sqrt{DRY WT}$.984
1.13	AVIONIÇS	-10901.5 + 1261.5 log (DRY WT)	.748
1.14	ENVIRONMENTAL	$-719.2 + 5.56(LEN + WING) + 56.88\sqrt{LEN + WING}$.904
1.15	PERSONNEL PROV	66255.6 - 14720.4log(DRY WT) +818.2(log(DRY WT)) ²	.902

² NOTE: LOG is the natural logarithm.

Table 7
Secondary Variable Equations

Variable	Equation	R
FUSELAGE AREA	$-8833 + .0829(DRYWT) + 1275\log(DRYWT) - 32.46\sqrt{DRYWT}$	086:
FUSELAGE VOLUME	$-47619 + 22144 \log (LEN + WING) - 5743 \sqrt{LEN + WING} + .4262 (LEN + WING)^2$.893
WETTED AREA	486.03 + .1510(<i>LEN</i> + WING) ²	766.
NBR WHEELS	2.1896+6.6630(DRYWT)-1.3872(DRYWT) ²	.912
NBR ACTUATORS	$-40.991001425 (DRYWT) + 2.0752E - 9 (DRYWT)^2 + .007467 (WETAREA) \\ -1.03767 \sqrt{WETAREA} + .4828 \sqrt{DRYWT} + 14.967 \sqrt{CONT/S}01781 (CONTR)^2$.978
NBR CONTROL SURFACES	3.5887 + .000528 (DRYWT) + .09493 (LEN + WING)00517 (WETAREA)	.932
KVA MAX	-214.812 + .001098(DRYWT) +25.157 log (DRYWT)	.940
NBR HYDR SUBSYS	$13.485685(LEN + WING) + .002409(WETAREA) + .4333\sqrt{DRYWT}$.857
NBR FUEL TANKS	-13.2236 + 1.8517710g (DRYWT)	.569
TOT NBR AVIONICS SUBSYS	-40.42-1.879(DRYWT)+6.1928log(DRYWT)	.614
NBR DIFF AVIONICS SUBSYS	9.674-1.85799log(DRYWT)+.87684(TOTSUBS)+1.45574log(AVWT)	.950
BTU COOLING	$-1114.5 - 12.0177 (LEN + WING) + 9.40511 (LEN + WING)^2 + 230.872 \sqrt{LEN + WING}$	677.

Because the weight equations are generated from aircraft data, they may not reflect the distribution of the subsystem weights in a space vehicle. Therefore, an alternative estimator for subsystem weights is based upon the weight distribution given in Table 8. These percentages are an average obtained from data pertaining to several different proposed space vehicles (see Appendix I). These percentages are then applied to the primary driver variable - vehicle dry weight to obtain the subsystem weights.

Table 8
Weight Distribution

WBS	SUBSYSTEM	AVERAGE
1.1	WING	.091
1.2	TAIL	.003
1.3	BODY	.140
1.4	TPS	.099
1.5	LANDING GEAR	.053
1.6	PROPULSION	.019
1.7	PROPULSION, RCS	.029
1.8	PROPULSION, OMS	.017
1.9	APU (PRIME POWER)	.151
1.10	ELECTRICAL	.059
1.11	HYDRAULICS/PNEU	.021
1.12	ACTUATORS	.007
1.13	AVIONICS	.061
1.14	ECS	.083
1.15	PERSONNEL PROV	.070
1.16	RECOVERY & AUX	.097
	AVE VEHICLE	1.00

D. MTBM Equations

Based upon the "driver" variables, subsystem weights, and the secondary variables, regression equations were derived to estimate MTBM. These equations are summarized in the following table with the regression analysis provided in Appendix J. The estimated MTBM represents an unadjusted number and reflects aircraft reliability as captured in the data base. With the exception of Propulsion (WBS 1.6-1.8), acceptable correlations were obtained with the regression models. Aircraft engine failures were estimated exclusively from engine weight in order to utilize the equation for each Propulsion WBS and to provide a reasonable approach for extrapolating aircraft engine results to space vehicle propulsion systems. It is expected that this equation will be replaced as data on space propulsion systems becomes available.

Table 93 MTBM Equations

WBS	SUBSYSTEM	EQUATION	R
	WING, TAIL, BODY	$15.231 + .006057 (TAIL WT)137575 \sqrt{DRY WT}000723 (WET AREA)$.944
	BODY (CREW COMP)	3428.50142(DRY WT) - 423.96 \log (DRY WT) + 11.050 \sqrt{DRY} WT + 111.57(CREW) - 360.72 \sqrt{CREW} + .01865(BODY WT) - 4.8357 \sqrt{BODY} WT25785(CREW + PASS)	.891
	LANDING GEAR	72.411 + 14.568 (WHEELS) + .0994 (WINGLEN) - 12.410 log (DRYWT) - 65.6 \(\sqrt{WHEELS}\)00568 (WHEELS WT) + 18.598 log (WHEELS WT)	.914
	PROPULSION⁴	$34.104 + .0009853 (ENG WT)31223 \sqrt{ENG WT}$.509
	APU (PRIME POWER)	4996.5 – 1.9061 (KVAMAX) + 46.350 \sqrt{KVAMAX} – 2.735 (APUWT) + 284.5 \sqrt{APUWT} – 1643 \log (APUWT)	988.
	ELECTRICAL	1193 – .0755(ELECT WT) + 6.7588 $\sqrt{\text{ELECT WT}}$ – .7156(WINGLEN) – 167.2 $\log(DRYWT)$ + 2.2308 \sqrt{DRYWT} + 29.1 $\log(KVA)$ – .00127(KVA) ²	.955
	HYDRAULICS	$396.300622 (WET AREA) + 35.635 (SUBSYS) - 779.8 \sqrt{SUBSYS} + 975.6 \log (SUBSYS) + 8.813 \sqrt{HYD} \overline{WT} - 105.7 \log (HYD WT)$.855
	ACTUATORS	$26.29 - 1.114 \sqrt{ACTWT} + .9516 (ACT) - 1.899 (CONTS) + .3505 (WINGLEN)00357 (WETAREA)$.913
	AVIONICS	-36.92 -4.496 (TOT SUBS) $+45.756\sqrt{TOT}$ SUBS 1231 (AVE WT/S) $+.02360$ (AVWT) $-2.453\sqrt{AVWT}$.884
	ENVIRONMENT	454.4000547 (DRY WT) + .8210 (LEN + WING) - 107.5 log (LEN + WING)	.840
	ECS-OXYGEN	6613-1.485(WINGLEN)-1358.31og(DRY WT)+73.581og(DRY WT) ² 7259((DRYWT)/(LEN+WING)	.720
	PERSONNEL PROV	17952.8 + .005793 (DRY WT) + 169.96 (CREW) - 10.136 (WINGLEN) + 21.15 (CREW + PASS) - $461.3\sqrt{CREW + PASS} - 1.893 (SUBS WT) + 421.8\sqrt{SUBS WT} - 4054.110g (SUBS WT)$.961
	REC & AUX SYS	7549.10165(DRY WT) + 4.002(WINGLEN) - 999.8 $\log(DRY WT)$ + 16.85 $\sqrt{DRY WT}$ - 4.225(CREW + PASS)	.925

³Variable names are defined in Appendix F.

⁴ Used to compute small weight engines.

The estimated MTBM is adjusted for technological change. In deriving the adjustment factor, a learning curve of the form given by Equation (2) is determined by using least-squares. These curves are summarized by subsystem in Table 10. Three separate equations were derived using historical data from the F-16B, B-1, and F-15A. Appendix Q summarizes the results of the regression analysis and Table 10 depicts the average growth rate (b parameter) for each subsystem. Only statistically significant growth rates from among the three aircraft were averaged. A separate analysis was performed for the overall aircraft.

Table 10. Learning Curve Results

WBS	SUBSYSTEM	AVE GROWTH RATE (b)
1.1	WING	.1534
1.2	TAIL	.1534
1.3	BODY	.1534
1.4	TPS	
1.5	LANDING GEAR	.1480
1.6-1.8	PROPULSION	.2305
1.9	APU (PRIME POWER)	.1927
1.10	ELECTRICAL	.1333
1.11	HYDRAULICS/PNEU	.1703
1.12	ACTUATORS	.1608
1.13	AVIONICS	.2427
1.14	ECS	.1555
1.15	PERSONNEL PROV	.0683
1.16	RECOVERY & AUX	.3592
	VEHICLE	.1370

Using the methodology discussed in the previous chapter, technology adjustment factors were then derived. These factors, displayed in Table 11, represent an average annual growth rate based upon a compound growth curve derived from the pairwise comparisons shown in Appendix R. One subsystem, electrical, resulted in a negative growth rate which was set equal to zero. A combined avionics growth rate of .42 appeared to be excessive and was replaced with an adjusted rate obtained by deleting the F-4E - F-16A comparison which had a 0.978

annual growth rate. The rates shown in Table 11 represent the default values used in the implementation phase. In implementation, the TPS subsystem defaulted to the structural subsystems (WBS 1.1, 1.2, 1.3) growth rates. The APU growth rate was not computed because of insufficient data. The aircraft rate was used as a default value.

Table 11
Technology Growth Rates

WBS	SUBSYSTEM	AVERAGE
1.1	WING	.08184
1.2	TAIL	.08184
1.3	BODY	.08184
1.4	TPS	
1.5	LANDING GEAR	.03352
1.6-1.8	PROPULSION	.01116
1.9	APU (PRIME POWER)	.0557
1.10	ELECTRICAL	-0.02090
1.11	HYDRAULICS/PNEU	.09222
1.12	ACTUATORS	.05622
1.13	AVIONICS	.41915 (.22)
1.14	ECS	.00617
1.15	PERSONNEL PROV	.03571
1.16	RECOVERY & AUX	.08358
	AVE TOTAL	.0557

Regression equations for subsystem critical failure rates were derived from MODAS obtained aircraft air/ground abort rates found in Appendix N and displayed in Table 12. For WUC's 24XXX, 49/96XXX, and 91/93/97XXX, averages were used since the number of data points were insufficient to properly fit a regression curve. Regression results may also be found in Appendix N. Because of the processing time required to obtain the abort rates, these equations are based upon a smaller sample size consisting of 13 aircraft. Each subsystem and each aircraft data point had to be retrieved separately from the MODAS ABORT SUMMARY REPORT. In general, there is a high correlation between vehicle size as measured by DRY WEIGHT or LENGTH plus WING SPAN and abort rates.

Table 12 Critical Failure Rate Equations

WBS	Equation	R
1.1 WING 1.2 TAIL 1.3 BODY	$3.1213E-2+1.956E-7$ (DRY WT) $-1.546E-4\sqrt{DRY}$ WT	.802
1.3 BODY (CREW COMPARTMENT)	$.04232 + 3.8775E - 7 (DRY WT) - 2.5188E - 4\sqrt{DRY WT}$.914
1.5 LANDING GEAR	$-2.4321 + 5.9112E - 3(LEN + WING) + 1.1457 \log(LEN + WING)33925 \sqrt{LEN + WING}$.794
1.6-1.8 PROPULSION	$(4.8164E-2)-(1.2681E-4)\times(WINGLEN)$	LLL.
1.9 PRIME PWR (APU)	AVERAGE = .064	-
1.10 ELECTRICAL	$-39.96 + 11.09 \log(DRY\ WT) - 1.0178(\log(DRY\ WT))^2 + .030908(\log(DRY\ WT))^3$.833
1.11 HYDRAULICS	$\frac{7578.2}{\sqrt{\log(DRYWT)}} - 453.6\log(DRYWT) + 24.6(\log(DRYWT))^{2}$	026.
	$-0.5276(\log(DRYWT))^3$	
1.12 ACTUATORS (FLIGHT CONTROLS)	.7119518814 $\log(LEN + WING) + 2.0988E - 2\sqrt{LEN + WING}$	926.
1.13 AVIONICS	$5.0275E-2+2.605E-7(DRY\ WT)-2.2882E-4\sqrt{DRY\ WT}$	606
1.14 ECS	$8.2199E-2+5.007E-7(DRY\ WT)-4.0613E-4\sqrt{DRY\ WT}$.888
1.15 PERSONNEL PROV	AVERAGE = .0185	
1.16 REC AUX SYS	AVERAGE = .004678	-

E. MH/MA Equations

٦.

Predicted maintenance manhours per maintenance action were obtained from regression equations using primary, secondary and subsystem weight variables. These equations are presented in Table 13. Appendix K contains the regression analysis.

Marginal correlations were obtained for several subsystems including electrical, and oxygen subsystems. For those subsystems average manhours per maintenance action remains somewhat constant across aircraft. However, except for landing gear and oxygen, the fitted equations were significant at the 10 percent level and therefore partly explain the variation found in this parameter. In order to separate the on and off vehicle work being performed, the percent of off-equipment (POFF) manhours was also estimated from regression equations. These equations are identified in Table 14.

Table 13. MH/MA Equations

WBS	Equation	R
1.1 - 1.3 WING,TAIL,BODY	16.573512(FUSDENS)7546log(DRYWT)	.6672
1.3 BODY (CREW COMPARTMENT)	$7.0855 - \frac{1.6666}{\sqrt{CREW + PASS}} + .09878 (CREW + PASS)^{2}$.7414
1.5 LANDING GEAR	$-156.95 + 55.98 \log(L.GEARWT) - 6.0952 (\log(L.GEARWT))^2 + .2128 (\log(L.GEARWT))^3$.5243
1.6-1.8 PROPULSION	$52.632 + 9.12212E - 4 (ENGWT)3936 \sqrt{ENGWT}$	9059.
1.9 PRIME PWR (APU)	$-451.4 + .09054(KVAMAX) - 2.9654\sqrt{KVAMAX} + .26570(APUWT) - 26.0995\sqrt{APUWT} + 150.510g(APUWT)$.8585
1.10 ELECTRICAL	$-95.161 + 20.316\log(DRYWT)9836(\log(DRYWT))^{2}$.4704
1.10 ELECTRICAL-LIGHTING	$2300.0 + 474.1 \log(DRYWT) - 452.3 \log(LEN + WING) - \frac{14629(DRYWT)}{LEN + WING} - 2769.9 \sqrt{\log(DRYWT)} + 1788.39 \sqrt{\log(LEN + WING)}$.6084
1.11 HYDRAULICS	2.4124log(DRYWT)16307(log(DRYWT)) ²	.9527
1.12 ACTUATORS (FLIGHT CONTROLS)	$26.238 - 1.1067(ACT) - 1.66585(CONTS)00328(WETAREA) + .0006018(DRYWT) - 6.282710g(ACTWT) + 14.2891\sqrt{ACT}$.7857
1.13 AVIONICS	$131.3954 + 1.0394(AVS) - 9.0352\sqrt{TSUB}0154(AVWT) + 2.8641\sqrt{AVWT} - 26.1932310g(AVWT)$.8016
1.14 ECS	.6886774 log (DRY WT)	.9419
1.14 ECS-OXYGEN	$5.7432 + .018525 \log{(DRYWT)}003366 \sqrt{DRYWT}$.2523
1.15 PERSONNEL PROV	9.5132 + .03508 (WING LEN) $-$.000721 (WT) $-4.52\sqrt{CREW}$.7061
1.16 REC AUX SYS	$-57.9008 + 1.4639E - 4(DRYWT) + 8.23731$ 0g $(DRYWT)15144\sqrt{DRYWT}$.6412

Table 14.
Percent Off Equipment Equations

WBS	Equation	×
1.1 - 1.3 WING, TAIL, BODY	MEDIAN = .0835	
1.3 BODY (CREW COMPARTMENT)	MEDIAN = .088	
1.4 LANDING GEAR	$.02774 - 4.07E - 6(DRYWT)00194(WINGLEN) + .19316\sqrt{WHEEL} + .007156\sqrt{L.GEARWT}$.8146
1.6 - 1.8 PROPULSION	1.14633 + 4.5721E−5(ENGWT)011456√ENGWT	.6551
1.9 PRIME POWER(APU)	$-109.83021645\log(DRYWT) + .1427(KVAMAX) - 6.1518\sqrt{KVAMAX} + 15.75\log(KVAMAX) + .06602(APUWT) - 5.6832\sqrt{APUWT} + 29.0715\log(APUWT)$.9974
1.10 ELECTRICAL	$-26.565400271 (KVAMAX) + .005143 (ELECWT)74878 \sqrt{ELECWT} + 6.62114 \log(ELECWT)$.9274
1.10 LIGHTING	3.0610 + 1.178E - 5(DRYWT) - 1.27E - 4(WETAREA) 42392log(DRYWT) + .13468 $\sqrt{LENWING}$.7817
1.11 HYDRAULICS	.0761400181 (LENGTH + WING) + .001543 \(\subseteq DRY \) WT	.5836
1.12 ACTUATORS (FLIGHT CONTROL)		.8034
1.13 AVIONICS	$7.166202 + .0209(AVS)00128(AVWT) + .177379\sqrt{AVWT} - 1.734\log(AVWT) + \frac{.0067(AVWT)}{AVS}$.8705
1.14 ECS	AVERAGE = .0932	
1.14 ECS - OXYGEN	23.8519800902(LENGTH + WING) - 5.24701910g(DRYWT)	.8483
	$+.300955(\log(DRYWT))^2 - \frac{.00212(DRYWT)}{LENGTH + WING}$	7 4
1.15 PERSONNEL PROV (MISC. UTILITIES)	.198886 + 4.938E-6(DRYWT)00205√ <u>DRY WT</u> + 4.877E-4(KVAMAX)	.6620
1.15 PERSONNEL PROV (EQPT)	-5.46864 + .168358 (WINGLEN)00448 (WETAREA) + .365211 (CREW + PASS) -4.152794 \(\text{CREW + PASS} + .17797 \(\subseteq \text{SUBWT} \)	.9869
1.16 REC AUX SYS (EMERGENCY EQUIP)	4.653976 - $.457186\log{(DRY\ WT)}$ + $.002421\sqrt{DRY\ WT}$.6285
1.16 DRAG CHUTE	AVERAGE = .287	
1.16 EXPLOSIVES	AVERAGE = .01	
F Scheduled Main	Maintenance	-

F. Scheduled Maintenance

Limited data is maintained on military aircraft pertaining to scheduled maintenance. These tasks fall into two categories: preflight/postflight inspections and periodic maintenance. For AF aircraft, total maintenance manhours expended in both areas are recorded in AFALDP 800-4. Using this data pertaining to 27 different data points, a regression analysis was performed with the results summarized in Table 15. Scheduled maintenance manhours is predicted as a percent of the unscheduled maintenance manhours. Once total unscheduled maintenance is computed, then the predicted percentage is applied to obtain the total scheduled maintenance.

Table 15. Scheduled Maintenance Manhours

G. Removal Rates

Removal rates were based on data pertaining to six aircraft: C-5A, C-130E, C-141B, F-15D, F-111A, and T-38A. Since it was not possible to obtain adequate least-square fits for WBS's 1.11 and 1.15, mean values were used. Results are depicted in Table 16 with the data and regression analysis found in Appendix M.

Table 16. Removal Rate Equations

WBS	Equation	R
1.1 - 1.3 WING, TAIL, BODY	.193413 - 6.308859 <i>E-7 (BODYWT)</i>	.9233
1.3 BODY (CREW COMPARTMENT)	.202678 +5.880527E-4(BTUCOOL)	.6574
1.5 LANDING GEAR	.863902 - 2.962998 <i>E</i> -2√ <i>WINGLEN</i>	.8404
1.6 - 1.8 PROPULSION	$.6211067 - 2.487229E - 3\sqrt{ENGWGT}$.9112
1.9 PRIME POWER (APU)	.578976 – 7.511937E–4√DRYWT	.9016
1.10 ELECTRICAL	385331 - 1.006106E-3(LENGTH+WING)+.177148log(LENGTH+WING)	.7894
1.10 ELECT-LIGHTING	2.365084 + 2.014026E-3(LENGTH + WING)41152110g(LENGTH + WING)	.8649
1.11 HYDRAULICS	AVERAGE = .368	
1.12 ACTUATORS (FLIGHT CONTROLS)	.453906 - 6.676835E-4 (WINGLEN)	.9154
1.13 AVIONICS	$.397347 - 4.265886E - 7(DRYWT) + 2.163533E - 4\sqrt{DRYWT}$.8705
1.14 ECS	.529437 – 8.913525E-5 (ECSWT)	.7484
1.14 ECS-OXYGEN	.602614 – 6.758594E-4\DRY WT	.9309
1.15 PERSONNEL PROV (MISC UTII.)	AVERAGE = .274	
1.16 REC & AUX SYS (EMERGENCY EQUIPMENT)	2.348928 – .358519(WINGLEN)	.9103
1.16 REC & AUX SYS (EXPLOSIVE)	2.532197 – .228368log(WETAREA)	.8207

H. Crew Sizes

Average (mean) crew sizes for performing unscheduled maintenance are predicted from derived regression equations. The input data for this analysis was obtained from the MODAS maintenance summary reports which provided by aircraft and by subsystem total maintenance manhours and total elapsed time. The crew size analysis may be found in Appendix O and is summarized in Table 17. By dividing the maintenance manhours by elapsed time, an average crew size was obtained. For this analysis, crew sizes were estimated at the one digit (or higher) level. Because of the difficulty and time in extracting this data from MODAS, the data was obtained at the higher level. The resulting equations are in Table 18. No significant fit could be obtained for WUC's 2XXXX and avionics (5XXXX, 6XXXX and 7XXXX). Therefore the mean value was used. Neither propulsion repair crew size nor avionics repair crew size seem to be related to aircraft size.

Table 17
Repair Crew Size Data
(by WUC)

AIRCRAFT	1 XXXX	2XXXX	4XXXX	AVIONICS	9XXXX
A7D	1.66	2.44	1.58	2.01	1.76
F111E	2.66	2.85	2.73	2.42	2.87
F4E	1.80	2.37	2.04	2.28	1.88
F15C	2.03	2.26	2.18	2.21	2.00
F16A	1.90	2.37	2.02	2.21	2.17
C130E	2.12	2.00	2.21	1.98	2.02
KC135	1.90	2.53	2.39	2.42	2.03
C141B	2.30	2.99	2.26	1.98	2.12
C5B	2.09	2.11	2.22	2.10	2.42

Table 18
Crew Size Regression Equations

WUC	WBS	EQUATION	R
1XXXX	1.1-1.5, 1.12	$1.5 - 3.1988E - 5(WET\ AREA) + 9.1722E - 3\sqrt{WET\ AREA}$.737
2XXXX	1.6-1.9	AVE = 2.44	
4XXXX	1.10, 1.11, 1.14	-1.48 -2.833E-3(LEN+WING) +.81466LOG(LEN+WING)	.774
AVIONICS	1.13	AVE = 2.18	
9XXXX	1.15, 1.16	$1.78933 + 9.8722E - 4\sqrt{DRY WT}$.759

An empirical crew size distribution was obtained from the MODAS Detail Maintenance Data report which identifies the start and stop time of each maintenance activity along with the assigned crew size. The crew size distribution and average (mean) crew size were found (Table 19). Since this distribution was based on over 130 individual maintenance tasks, it is assumed to be representative of the crew size requirements for this particular component (AC power system) on B-1B.

Table 19 Crew Size Probability Distribution

WORK		S CODE IS URE IS	B-1B 42B** AC POWER SYSTEM
CREW SIZE 1.00 2.00 3.00 4.00 5.00	PROB 0.11 0.52 0.33 0.03 0.01	0.11 0.63	
6.00 7.00 8.00	0.01 0.00 0.00	1.00 1.00 1.00	

AVERAGE CREW SIZE IS 2.326485

I. Repair Distribution

Using August 1990 data from the B1-B bomber, MODAS provided start and stop maintenance times for each failure record in the system (see Table 20). Using the repair times computed from these values, a Chi-square goodness of fit test was conducted to determine a suitable distribution. Because of the tendency to report times in whole hours (or 30 minute periods), the data had to be aggregated into four intervals. A significant fit was obtained using either the Weibull or lognormal distributions (see Tables 21). Follow-on research will attempt to analyze repair distributions more fully.

Table 20 Repair Time⁵ Data

Repair Time Observations

	NASA B1-B WUC 42	B TIME-TO-1	repair	
	ORDERED ARR	AY OF OBSER	YATIONS	
5	3	3	5	5
, S	5	10	10	15
20	20	20	20	20
25	25	30	30	30
30	30	30	30	30
30	30	30	20	20
30	30	30	30	30
30 30	30	30	30	30
40	30 55	30 60	30 60	30 60
60	60	60	80	60
60	60	60	60	60
60	60	60	60	60
40	* 60	60	60	60
60	60	60	60	60
60	60	80	60	80
60	60	60	60	60
60	80	60	60	60 -
60	60	60	60	60
60	60	30	30	90
10	90	90	90	10
10	10	90	118	118
115	120	120	120	120
120 120	120 120	120 120	120	120
120	120	120	120	120
120	120	120	120 120	120 120
120	120	120	120	180
150	150	150	178	178
180	180	180	180	180
180	180	180	120	240
240	240	240	240	240
240	240	240	240	240
240	240	270	270	288
100	300	300	300	300
300	330	360	398	420
420	450	480	480	480
	DESCRI	PTIVE STATIS	TICS	
SAME	PLE SIZE		188	
MEAD	C .		112.2432	
	rox sos conf inter	Val	100.2027	125.6778
Actor		60		
VARIANCE STANDARD DEVIATION VARIANCE/MEAN RATIO COEFFICIENT OF VARIATION RAMGE			10870.57	
			102.8138	*
			13.34486	
			.9078022	
	ae NY 233-(81)		478	
	mess-(bi) Critical Values P(3P 81=0	1. 608345 198348 2	
	CRITICAL VALUES FO	JR 91-V	5.298713	.2882482
	CRIT VALUES FOR B	2#3 (NORMAL)		1 1004
	AIMI IUDADA LAU B	1.1 07.22 /	*******	3.332497

⁵Time is in minutes.

Table 21 Goodness of Fit Tests

Repair Time Distributions

CHI-SQUARE COMPUTATION

WEIBULL WITH SCALE PARAMETER = 120 AND SHAPE PARAMETER = 1.17

CELL	LOWER	UPPER	083	EXP	(0-E)^2/E
1.00	0.00	41.37	46.00	46.25	0.00
2.00	41.37	37.73	51.00	46.25	0.49
3.00	87.73	158.64	46.00	46.25	0.80
4.00	158.64	9988.00	42.00	46.25	0.38

CHI-SQUARE STATISTIC= .8810811 DEGREES OF FREEDOM= 1 95% CRITICAL VALUE= 3.84 90% CRITICAL VALUE= 2.71 CAMMOT REJECT AT 10% LEVEL

MEAN OF LOCHORMAL= 121.8989 WITH STND. DEY= .9832414

CELL	LOWER	UPPER	083	EXP	(0-E)-2/E
1.00 -	998.00	3.88	45.00	48.25	0.83
2.00	3.56	4.32	5 2.8 0	46.25	0.71
3.00	4.32	4.08	42.00	46.25	0.22
4.00	4.88 9	999.60	46.00	46.25	0.00

CHI-SQUARE STATISTIC= 1.140841 DEGREES OF FREEDOM= 1 95% CRITICAL VALUE= 3.84 90% CRITICAL VALUE= 2.71 CANNOT REJECT AT 10% LEVEL An attempt to derive a failure time distribution from the MODAS data was more difficult. MODAS provides the Julian date and time (although time does not appear to be very accurate) of each failure. However flying hours (and sorties) are reported monthly. Therefore it is impossible to determine from this data set the actual flying hours between failures. However, it may be possible to show in some cases that the number of failures per flying hour is Poisson by taking failures per month and converting to failures per flying hour. Therefore the time (flying hours) between failures would be exponential. This approach will be investigated in the follow-on effort.

CHAPTER V

Implementation

I. INTRODUCTION

This chapter describes the PC based model for evaluating the reliability and maintainability equations derived in the previous chapter. Because of the large number of equations to be evaluated and the large number of additional calculations, the only practical way to implement the results of this research is on a computer. This PC based model is completely menu driven with all parameters computed at the subsystem (WBS) level and then rolled up to reflect overall vehicle performance.

Flying hours between maintenance actions, maintenance manhours per maintenance action, critical failure (abort) rates, percent on/off vehicle hours, removal rates, and crew sizes are estimated using the multiple regression models derived from aircraft data. Lower bounds (and in some cases upper bounds) are set if the equations predict values outside the limits of the input data. In addition to predicting failures and repair manhours, estimates of mission reliability, spares support, manpower requirements, and fleet size are also made.

The computer model is design to evaluate all 16 major subsystems as defined by the NASA work breakdown structure (WBS). Upon execution of the model, the user may elect to delete any number of these subsystems from the analysis.

II. Modes of Operation

The model operates in one of three modes: PRECONCEPTUAL, WEIGHT DRIVEN, & WEIGHT/VARIABLE DRIVEN. In mode 1, PRECONCEPTUAL, the user must specify 4 driver variables and 10 system parameters. The driver variables are used to estimate subsystem weights and secondary variable values from the multiple regression models derived for this purpose. These 4 variables and the 10 system parameters are listed below as they appear on the first menu. When operating in Mode 1, the user will bypass the weight and secondary variable menus shown below. However, changes to the primary variables will result in both weights and secondary variables being recomputed. The user has the option of having weights computed by the regression (aircraft) equations or by the weight distribution presented in Table 8. The user must specify the average crew size for scheduled maintenance activity. However, the model will compute crew sizes for unscheduled maintenance based upon the regression equations in Table 18. The default value for the technology growth factor is the estimated factor (see Table 11) for the overall vehicle. The user may elect to replace a subsystem growth factor with this value on a subsequent menu. The Weibull shape parameter default value is based upon a previous study [11] and is used in determining the MTBM adjusted for the time in orbit. The launch factor applies to the booster phase of the mission. Available hours per month is the average number of working hours a month, and the percent indirect work refers to all work accomplished by the individual which is not accounted for in the maintenance manhour equations.

Figure 4
Driver & System Variables

NBR	INPUT MODULE - PRIMARY INDEP VARIABLE VEHICLE DRIVER VARIABLES	VARIABLES CURRENT VALUE
1 2 3 4	DRY WGT (LBS) LENGTH+WING SPAN (FT) CREW SIZE NBR PASSENGERS SYSTEM PARAMETER VALUES	9000 100 2 8
12	PERCENT INDIRECT WORK SPARE FILL RATE OBJ AVG CREW SIZE-SCHD MAINT PLANNED MISSIONS/MONTH	.28 20 144 .15 .95

B. In Mode 2, WEIGHT DRIVEN, the user may input/change subsystem weights. This should result in more accurate estimates. Secondary variables may be recomputed from these weights, however, the secondary menu will not be displayed and the user cannot update it. As subsystem weights are updated, the total weight is recomputed. The overall vehicle dry-weight is set equal to this new total weight regardless of the initial value on the first menu. The subsystem weight menu is shown below:

Figure 5 Weight Menu

	SUBSYSTEM WEIGHTS	
NBR	SUBSYSTEM	WEIGHT IN LBS
1.	1.1 WING GROUP	1846.976
2	1.2 TAIL GROUP	3 64. 95 9 6
3	1.3 BODY GROUP	2319.57
4	1.4 TPS	8 49. 76 62
5	1.5 LANDING GEAR	347.2477
6	1.6 PROPULSION	77.25148
7	1.7 PROPULSION-RCS	3 09. 00 5 9
8	1.8 PROPULSION-OMS	154.503
9	1.9 PRIME POWER	114.4622
10	1.10 ELECTRIC CONV/DISTR	263.2065
11	1.11 HYDRAULICS/PNEUMATICS	253. 30 27
12	1.12 ACTUATORS	429.6665
13	1.13 AVIONICS	501.8043
14	1.14 ENVIRONMENTAL CONTROL	348.4342
15	1.15 PERSONNEL PROVISIONS	47.32994
16	1.16 RECOVERY & AUX SYSTEMS	772.5147
OTAL	WGT	9000

C. Mode 3, WEIGHT/VARIABLE DRIVEN, allows the user to specify and change both subsystem weights and 12 secondary variables. These secondary variables provide for more accurate regression equations as measured by the R value (Multiple

Correlation coefficient) and the standard error of the estimate (a measure of the variability of the estimated value. This mode, therefore, should result in the most accurate assessments. However, the vehicle must be sufficiently defined to enable the

user to assign values to these variables. Definitions of these variables may be found in Appendix F. Default values are computed values from the regression equations. These are the same values which would be used in Modes 1 and 2. The user may run the model in Mode 3, and by not changing the weight or secondary variable values, generate the same results as Mode 1.

Figure 6
Secondary Variable Menu

5	SECONDARY INDEP VARIABLES	
NBR	VARIABLE	CURRENT VALUE
1	FUSELAGE AREA	478
2	FUSELAGE VOLUME	1185.183
3	WETTED AREA	1996.191
4	NBR WHEELS	3
5	NBR ACTUATORS	5
6	NBR CONTR SURFACES	7
7	KVA MAX	24.12491
8	NBR HYDR SUBSYS	8
9	NBR FUEL TANKS (INTERNAL)	4
10	TOT NBR AVIONICS SUBSYS	16
11	NBR DIFF AVIONICS SUBSYS	16
12	BTU COOLING	86.46997

III. Additional Input Parameters

A. Subsystem Calibration

To provide sufficient flexibility to transition from the aircraft system to the space vehicle system, a calibration factor is included. This factor is used in modifying the aircraft computed MTBM AND MH/MA where CALIBRATED MTBM = CAL FACTOR x AIRCRAFT MTBM and CALIBRATED MH/MA = CAL FACTOR x MH/MA. The default value is one. With these two factors, the R&M parameters may be calibrated by subsystem based upon non-aircraft

data (e.g. Shuttle data) in order to account for those differences between aircraft and space vehicles which are not accounted for by the variables in the aircraft generated equations.

Figure 7
Calibration Menu - MTBM

	SUBSYSTEM MTBM CALIBRATION FACTOR	
	SPACE VEH-MTBM = CAL FAC x ACFT-MTBM	
NBR	SUBSYSTEM CAL FACTOR	
1	1.1 WING GROUP 1	
2	1.2 TAIL GROUP 1	
3	1.3 BODY GROUP 1	
4	1.4 TPS 1	
5	1.5 LANDING GEAR 1	
6	1.6 PROPULSION 1	
7	1.7 PROPULSION-RCS 1	
8	1.8 PROPULSION-OMS 1	
9	1.9 PRIME POWER 1	
10	1.10 ELECTRIC CONV/DISTR 1	
11	1.11 HYDRAULICS/PNEUMATICS 1	
12	1.12 ACTUATORS 1	
13	1.13 AVIONICS 1	
14	1.14 ENVIRONMENTAL CONTROL 1	
15		
16	1.16 RECOVERY & AUX SYSTEMS 1	
		i

Figure 8
Calibration Menu - MH/MA

		and the second of the second o
	SUBSYSTEM MH/MA	CALIBRATION FACTOR
	CAL MH/MA = CAL 1	FAC x COMPUTED-MH/MA
NBR	SUBSYSTEM	CAL FACTOR
1	1.1 WING GROUP	1
2	1.2 TAIL GROUP	1
3	1.3 BODY GROUP	1
4	1.4 TPS	1
5	1.5 LANDING GEAR	1
6	1.6 PROPULSION	ī
7	1.7 PROPULSION-RCS	ī
8	1.8 PROPULSION-OMS	ī
9	1.9 PRIME POWER	ī
10	1.10 ELECTRIC CONV/DISTR	ī
l ii	·	<u></u>
12		ī
13		ī
14		<u>-</u>
15		ī
16		<u>. </u>
10	Tito Macinti a non cicami	•

B. Mission Profile and Subsystem Operating Hours

In order to adjust for the time spent in space and to account for ground operating times, the following mission profile menu is provided (see Figure 4):

Figure 9 Mission Profile Menu

	MISSION PROFILE	
NBR	TIME	IN HOURS
1	GROUND TIME PRIOR TO LAUNCH	2
LAUNCH TIME AT T=0		
2 3 4 5	BOOSTER COMPLETION TIME ORBIT INSERTION TIME ORBIT COMPLETION TIME GROUND RECOVERY TIME	.14 1 71 72

From the selected profile, subsystem operating times are determined and displayed in the following manner:

Figure 10
Subsystem Operating Times

	SUBSYSTEM OPERATING TIMES	CDOD	nm m#1##			
NBR	L MISSION TIME 70 HRS MAX SUBSYSTEM GROU		IND TIME B OOSTER R		RS	~=
	TIM			O-ORBIT	TIME	RECOVE TIME
						TIME
1	1.1 WING GROUP	2	.14	.86	70	1
2	1.2 TAIL GROUP	2	.14	. 86	70	ī
3	1.3 BODY GROUP	2 2 2 2 2 2 2	.14	.86	70	ī
4	1.4 TPS	2	.14	.86	70	ī
5	1.5 LANDING GEAR	2	.14	.86	70	ī
6	1.6 PROPULSION	2	.14	.86	70	ī
7	1.7 PROPULSION-RCS	2	.14	.86	70	ī
8	1.8 PROPULSION-OMS	2	.14	.86	70	ī
9	1.9 PRIME POWER		.14	.86	70	ī
10	1.10 ELECTRIC CONV/DISTR	2	.14	.86	70	ĩ
11	1.11 HYDRAULICS/PNEUMATICS	2 2	.14	.86	70	ī
12	1.12 ACTUATORS	2	.14	.86	70	ī
13	1.13 AVIONICS	2	.14	.86	70	ī
14	1.14 ENVIRONMENTAL CONTROL	2	.14	.86	70	ī
15	1.15 PERSONNEL PROVISIONS	2	.14	.86	70	ī
16	1.16 RECOVERY & AUX SYSTEMS	2	.14	.86	70	ī

The user may then uniquely adjust each subsystem based upon its mission profile. In computing space adjusted MTBM's, the ground segment, non-booster time to orbit, and recovery segments have constant failure rates based upon the calibrated MTBM as adjusted for technology and the steady-state ground/air/space environment. During the launch (booster) segment, the failure rate is increased by the launch factor (system parameter number 8). During the orbit segment, the failure rate is assumed to be decreasing based upon the Weibull shape parameter (system parameter number 7).

C. Technology Factor

The default technology factors used by the model are those presented in Table 11. The user may replace any one of these with the system value displayed on the first menu.

Figure 11
Technology Factor Display Menu

	OPTION TO USE DE	FAULT RATE
	FOR ANNUAL RELIABILITY	TY GROWTH FACTOR
NBR	SUBSYSTEM	ANNUAL GROWTH RATE
1	1.1 WING GROUP	.082
2	1.2 TAIL GROUP	.082
3	1.3 BODY GROUP	.082
4	1.4 TPS	.082
5	1.5 LANDING GEAR	.033
6	1.6 PROPULSION	.011
7	1.7 PROPULSION-RCS	.011
8	1.8 PROPULSION-OMS	.011
9	1.9 PRIME POWER	.054
10	1.10 ELECTRIC CONV/DISTR	0
11	1.11 HYDRAULICS/PNEUMATICS	.092
12	1.12 ACTUATORS	.056
13	1.13 AVIONICS	.22
14	1.14 ENVIRONMENTAL CONTROL	.0062
15	1.15 PERSONNEL PROVISIONS	.036
16	1.16 RECOVERY & AUX SYSTEMS	.083

IV. Computations

A. MTBM (mean operating hours between maintenance actions)

An aircraft MTBM is first computed by evaluating the regression equations. Then the calibration factor is applied to obtain the calibrated MTBM. A technology adjustment to account for increases in reliability in obtained by:

ADJ MTBM = (1+TECH GROWTH FAC)(tech yr-86) x CAL MTBM

where 86 reflects the baseline year of the input data.

The primary MTBM used in subsequent calculations is based upon the adjustment for operating in the launch and space environment (SS MTBM). This adjustment uses the subsystem mission profiles as previously discussed. As a result of the decreasing failure rate, a numerical integration must be performed for each subsystem. Therefore, this process may take several seconds to a minute to complete.

A critical MTBM is based upon a critical failure or abort rate and is found from:

CRIT MTBM = SS MTBM / ABORT RATE

Corresponding to and computed from the subsystem critical MTBM is a subsystem mission reliability. This reliability may be interpreted as the probability the subsystem will complete the mission without a critical failure. This reliability also depends upon the subsystem mission profiles (operating times). A vehicle mission reliability is obtained by multiplying the subsystem reliabilities.

B. Maintainability Parameters

The initial calculation is the determination of the subsystem maintenance manhour per maintenance action (MH/MA) obtained by evaluating the corresponding regression equations. This value is then adjusted by the maintainability calibration factor. Total maintenance actions per mission (TOT MA) is found by

TOT MA = TOT OPER HRS / SS MTBM

Then total manhours per mission (MH) is calculated by:

 $TOT MH = MH/MA \times TOT MA$

These manhours are then split into on-vehicle and off-vehicle manhours using the regression estimated percent of off/on-vehicle manhours. Scheduled maintenance manhours per mission is based upon a regression estimated percent of unscheduled maintenance applied to the total unscheduled maintenance manhours. Scheduled maintenance is also broken down into on and off-vehicle work.

To convert total manhours into manpower requirements, the following calculations are performed:

 $MANHRS/MO = TOT MH \times MISSIONS/MO$

Then

NBR PERSONNEL = MANHRS/MO / {AVAIL MANHRS/MO x (1-% INDIRECT)}

and NBR PERSONNEL is rounded up to the nearest integer if the fraction portion exceeds .001. This is done by subsystem.

C. Spares

Spares levels for each subsystem are determined using a single mission fill rate goal specified on the first menu. Fill rate refers to the percent of time a spare will be available when a demand (failure) is generated. The average number of demands (MFAIL) are determined from an estimated removal rate (RR) as follows:

$$MFAIL = RR \times TOT MA$$

This becomes the mean of a Poisson probability distribution. The spares level is iteratively increased by one unit until the probability of demands not exceeding the spares level reaches or exceeds the fill rate objective (system variable number 11). The achieved fill rate and computed spares level are then retained for display.

D. Vehicle Turn Time

For each subsystem, an average task time is found from:

$$AVG TASK TIME = MH/MA / AVG CREW SIZE$$

Average hours (clock time) on-vehicle time per mission becomes:

The subsystem on-vehicle times are summed together in order to obtain a maximum vehicle turn time. This assumes each task must be accomplished sequentially. Since this is probably not the case, it provides an upper bound on vehicle turn time. On-vehicle scheduled maintenance is also added to this sum to obtain a total turn time. By adding the mission time (including ground processing time) to this total, a complete vehicle turnaround time is obtained. This is converted to days under the assumption that the mission time will occur on a 24 hour/day basis but the scheduled and unscheduled work would occur on a 8 hour/day basis. For a given vehicle, the number of missions per month is found by

The fleet size is computed from:

$$FLEET SIZE = (MSN/MO) / (MSN/MO/VEH)$$

rounded up to the nearest integer.

V. Output Reports

The following figures are examples of the output displays resulting from running the model. Separate screen displays are found for the reliability calculations, maintainability calculations, spares levels, and vehicle turn time analysis.

Figure 12 Reliability Report

	RELIABILITY REPORT		
VEHICLE IS TEST VEH	DATE: 06-11	-1992	TIME: 16:25:32
WBS	CALIBRATED MTBM	TECH ADJ	SPACE ADJ
1.1 WING GROUP 1.2 TAIL GROUP 1.3 BODY GROUP 1.4 TPS 1.5 LANDING GEAR 1.6 PROPULSION 1.7 PROPULSION—RCS 1.8 PROPULSION—OMS 1.9 PRIME POWER 1.10 ELECTRIC CONV/DISTR 1.11 HYDRAULICS/PNEUMATI 1.12 ACTUATORS 1.13 AVIONICS 1.14 ENVIRONMENTAL CONTR 1.15 PERSONNEL PROVISION	CS 46.95026 22.58846 27.13062 28.5382	65.22554 941.1113 8.709212 70.26064 8.110579 34.3067 31.56063 33.14908 184.716 5.15 94.93341 34.92995 133.1492 29.98478 4325.19	333.5887 5072.357 30.29372 360.7854 27.23173 166.8098 152.0331 160.5794 979.6754 12.77312 494.1188 170.1649 700.7554 143.5583
1.16 RECOVERY & AUX SYST		480.311	2 3383.4 9 2 578. 978
VEHICLE	1.140834	1.558437	5.248452

RELIABILITY VEHICLE IS TEST VEH WBS	REFORT - page 2 DATE: 06-11- CRITICAL FAIL RATE		TIME: 16:25:43 SUBSYS MSN RELIABILITY
1.1 WING GROUP 1.2 TAIL GROUP 1.3 BODY GROUP 1.4 TPS 1.5 LANDING GEAR 1.6 PROPULSION 1.7 PROPULSION-RCS 1.8 PROPULSION-OMS 1.9 PRIME POWER 1.10 ELECTRIC CONV/DISTR 1.11 HYDRAULICS/PNEUMATICS 1.12 ACTUATORS 1.13 AVIONICS 1.14 ENVIRONMENTAL CONTROL 1.15 PERSONNEL PROVISIONS 1.16 RECOVERY & AUX SYSTEMS	1.831055E-02 1.831055E-02 1.895309E-02 1.831055E-02 4.266358E-02 .035484 .035484 .064 .00248 .00084 5.542377E-02 .02376 4.817755E-02 .0185 .004678	18218.39 277018.3 1598.353 19703.69 638.2898 4700.988 4284.554 4525.404 15307.43 5150.451 588236.6 3070.251 29493.07 2979.776 1263973 551299.3	.9992496 .9999506 .9914805 .9993061 .9788026 .9970951 .9968133 .9969826 .999107 .9973483 .9999768 .995556 .995556 .995364 .9954211 .9999891
VEHICLE		254.6037	.9477038

Figure 13 Maintainability Report

MAINT	AINABILTY REPORT	•	
VEHICLE IS TEST VEH	DATE: 06-11	-1992 TIME TOT MA	: 16:2 6:08
WBS	MANDER/MA	TOT MA	TOT MANHRS
1.1 WING GROUP	9.097628	. 2218301	2.018128
	9.097628	1.458888E-02	.1327242
1.3 BODY GROUP	9.097628 1 2.1892 9. 097628	2.442751	29.77517
1.4 TPS	9.097628	.2051081	1.865997
1.5 LANDING GEAR	4.576832	2.717419	12.43717
1.6 PROPULSION	49.24341	. 443619	21.84531
1.7 PROPULSION-RCS	45.99536	. 4867361	22.3876
1.8 PROPULSION-OMS	47.88092	. 4608312	22.06502
1.9 PRIME POWER	5.2 4.495022	7.553523E-02 5.793417	
1.10 ELECTRIC CONV/DISTR 1.11 HYDRAULICS/PNEUMATICS	8.446617	.1497616	26.04154 1.264979
1.12 ACTUATORS	2.1	. 4348724	.9132319
1.13 AVIONICS	5.440491	.1056003	.5745176
	6.123659	.5154701	3.156563
1.14 ENVIRONMENTAL CONTROL 1.15 PERSONNEL PROVISIONS	6.5948	3.164626E-03	
1.16 RECOVERY & AUX SYSTEMS	4.051671	2.8693548-02	.1162568
			77 10440
SCHEDULED	14.35193 (AVG	14.0994	77.19669
TOTALS	14.33133 (14.4		222.2046
MAIN	PAINABILTY REPOR	T - page 2	
VEHICLE IS TEST VEH		1-1992 TIM	E: 16:26:35
WBS	on-veh MH	OFF-VEH MH PER	CENT ON-VEH
	1 040614	.1685136	
1.1 WING GROUP	1.849614 .1216417	1.108247E-02	.9165
1.2 TAIL GROUP 1.3 BODY GROUP	27.22195	2.553221	.91 65 .91 425
1.4 TPS	1.710186	.1558107	.9165
1.5 LANDING GEAR	8.805834	3.631335	.7080256
1.6 PROPULSION	6.00746	15.83785	. 275
1.7 PROPULSION-RCS	6.156589	16.23101	. 275
1.8 PROPULSION-OMS	6.06788	15.99714	. 275
1.9 PROPULSION—CORS 1.9 PRIME POWER 1.10 ELECTRIC CONV/DISTR 1.11 HYDRAULICS/PNEUMATICS	. 3809997	.0117835	. 97
1.10 ELECTRIC CONV/DISTR	20.12333	5.918207	.7727397
1.11 HYDRAULICS/PNEUMATICS	.6963355	5.252423E-02 .2168965	
1.12 ACTUATORS 1.13 AVIONICS	.4251539	.1493637	.7624958 .740019
1.14 ENVIRONMENTAL CONTROL	2.912391	.2441722	.9226462
1.15 PERSONNEL PROVISIONS	1.783757E-02		
1.16 RECOVERY & AUX SYSTEMS			
	** '*		
SCHEDULED	75.65276	1.543934	
TOTALS	159.4392	62.76532	.7399081 (AVG)
W3.77	TAINABILTY REPO	MP 02-552 3	
VERICLE IS TEST VEH	DATE: 06-		E: 16:27:26
WAS	MANTERS /MSN		PERSONNEL
·			
1.1 WING GROUP	2.018128	2.018128 1	
1.2 TAIL GROUP	.1327242	.1327242 1	
1.3 BODY GROUP	29.77517	29.77517	
	1.865997	1.865997 1	
1.5 LANDING GEAR 1.6 PROPULSION	12.43717 21.84531	12.43717 1 21.84531 1	
1.7 PROPULSION-RCS	22.3876	22.3876	
1.8 PROPULSION-OMS	22.06502	22.06502	
1.9 PRIME POWER	. 1927832	.3927832	
1.10 ELECTRIC CONV/DISTR	26.04154	26.04154	
1.11 HYDRAULICS/PNEUMATICS	1.264979	1.264979 1	
1.12 ACTUATORS	.9132319	.9132319 1	
1.13 AVIONICS	.5745176	.5745176 1	
1.14 ENVIRONMENTAL CONTROL	3.156563	3.156563 1	
1.15 PERSONNEL PROVISIONS 1.16 RECOVERY & AUX SYSTEMS	2.087008E-02 .1162568	2.087008E-02 0 .1162568 0	
1.40 RECOVERI & AUA SISTEMS	. 7700000		
SCHEDULED	77.19669	77.19669 1	
TOTAL		145.0079 15	

Figure 14 Subsystem Spares Report

VEHICLE IS TEST VEH	DATE: 0	REPORT 06-11-1992 DEMAND SPARES	TIME:	16:27:37 FILL RATE
1.1 WING GROUP	.1919366	4.257731E-02	0	0
1.2 TAIL GROUP	.1919366	2.800139E-03	Ō	ŏ
1.3 BODY GROUP	. 2227305	.5440751	2	.9820489
1.4 TPS	.194	3.979097E-02	ō	.9820489
1.5 LANDING GEAR	. 22	.5978321	2	.9770984
1.6 PROPULSION	.5992393	. 2658339	2	.9703458
1.7 PROPULSION-RCS	.5773786	. 281031	1	.9671848
1.8 PROPULSION-OMS	.5901843	. 2719754	1	.9690837
1.9 PRIME POWER	.5077349	3. 835187E-0 2	0	.9690837
1.10 ELECTRIC CONV/DISTR	.5007281	2 .900927	6	.9712413
1.11 HYDRAULICS/PNEUMATIC	CS .368	5.511226E-02	1	.9985361
1.12 ACTUATORS	.38593	.1678303	1	.9873974
1.13 AVIONICS	.4140355	4.372229E-02	0	.9873974
1.14 ENVIRONMENTAL CONTRO	L .5070317	. 2613596	1	.9712519
1.15 PERSONNEL PROVISIONS	. 274	8.671074E-04	0	.9712519
1.16 RECOVERY & AUX SYSTE	MS .747236	2.144084E-02	0	.9712519
TOTALS	.4057564 (AVG)	5 .535527	L6	

Figure 15 Vehicle Turn Time Report

VEHICLE TURN TIME REPORT VEHICLE IS TEST VEH DATE: 06-11-1992 TIME: 16:28:03				
WBS AVG CRE	w size AVG (ON) TASK TI	ME (HRS) AVG ON-VEH CLOCK HRS		
1.1 WING GROUP 1.2 TAIL GROUP 1.3 BODY GROUP 1.4 TPS 1.5 LANDING GEAR 1.6 PROPULSION 1.7 PROPULSION-RCS 1.8 PROPULSION-OMS 1.9 PRIME POWER 1.10 ELECTRIC CONV/DISTR 1.11 HYDRAULICS/PNEUMATICS 1.12 ACTUATORS 1.13 AVIONICS	1.845915	1.002004 6.589777E-02 14.74713 .9264705 4.770443 2.472206 2.533576 2.49707 .15679 10.12072 .6097854 .3772304		
1.14 ENVIRONMENTAL CONTROL 1.15 PERSONNEL PROVISIONS 1.16 RECOVERY & AUX SYSTEMS	1.98833 2.841566 1.935642 2.91198 1.882954 1.421622	1.464742 9.215327E-03 4.079137E-02		

VEHICLE TURN TIME REPORT - page 2 DATE: 06-11-1992

VEHICLE IS TEST VEH

TIME: 16:28:36

MAX TURN TIMES

AVG VEH TASK TIME
SCHD MAINT MSN TASK TIME
MAX TURN TIME NO SCH MAINT
MAX TURN TIME WITH SCH MAINT
MISSION TIME -INC GRND TIME
TOT VEHICLE TURNAROUND TIME
TOT VEHICLE TURNAROUND TIME
MISSIONS/MONTH/VEHICLE
FLEET SIZE

3.457753 HRS 42.02931 HRS 41.9891 HRS 84.0184 HRS 74 HRS 116.0293 HRS 8.336997 DAYS 2.518893

VI. Validation

Some model validation was accomplished by running the computer model for different aircraft having known R&M parameters. The R&M parameters were obtained from AFALDP 800-4 Volume VI, and therefore, were not part of the input data to the model. Since the average date of the data in Volume IV is 1988, this date was used for the technology year. The space adjusted feature of the model was not utilized since it obviously does not apply to aircraft. Mission profiles reflected the average mission of the aircraft.

The model was run in all three modes. Table 22 and 23 compare the results of the computed MTBM values in each model with reported values from Volume VI for the F-16A and C-141B respectively.

Table 22 Model Validation - F16

SUBSYSTEM	MODE 1	MODE 2	MODE 3	OCT 87 MAR 88	APR 88 SEP 88
STRUCTURAL	6.2	7.8	7.8	7.4	7.5
LANDING GEAR	14.0	14.2	14.2	11.4	10.1
PROPULSION	20.7	19.2	19.2	20.2	17.8
APU	22.8	37.0	50.4	23.4	21.5
ELECTRICAL	19.9	17.3	21.5	16.6	14.4
HYDRAULICS	96.8	84.9	100.3	58.7	64.8
ACTUATORS	17.4	14.1	13.3	13.7	15.2
AVIONICS	19.9	16.1	14.7	16.4	15.6
ECS	29.7	29.7	29.7	36.0	33.5
PERSON PROV	784	1539	1539	493	476
REC & AUX SYS	88.5	88.5	88.5	117	224
AIRCRAFT	1.8	1.9	1.9	1.8	1.7

Table 23 Model Validation - C141B

SUBSYSTEM	MODE 1	MODE 2	MODE 3	OCT 87 MAR 88	APR 88 SEP 88
STRUCTURAL	3.6	1.3	1.7	2.7	2.3
LANDING GEAR	1.5	3.6	7.8	6.8	6.3
PROPULSION	9.6	9.6	9.6	3.3	2.6
APU	147	60.7	54.1	41.5	32.0
ELECTRICAL	37.3	46.1	39.1	8.9	7.6
HYDRAULICS	5.6	5.6	5.6	15.6	14
ACTUATORS	11.1	3.1	5.0	4.9	4.5
AVIONICS	1.7	1.8	1.7	4.0	3.2
ECS	16.6	16.6	16.6	10.7	9.9
PERSON PROV	210	50.1	50.1	30.8	23.3
REC & AUX SYS	120.7	120.8	120.8	96.7	87.0
AIRCRAFT	.50	.43	.52	.57	48

VII. User Options

At the conclusion of a run, the user has the option of repeating the analysis after changing one or more of the input parameters. Regardless of the mode, the primary variable screen will be displayed for update. If in mode 2 or 3, the subsystem weight menu will be available for update, and if in mode 3, the secondary variable menu will also appear. The calibration and mission/subsystem profile menu and technology growth rates will also be available for update.

The user may also save all of the current input menus for use at a later time. The calculated MTBMs (both space adjusted and critical operating hours between failures) may also be saved for a more detailed reliability calculation.

Chapter VI

Conclusion

This report describes the data, methodology, and results of a one year research effort to develop a model for predicting R&M parameters for conceptual space transportation systems for use in determining operational capabilities and support costs. While the model appears to work reasonable well when applied to aircraft systems, its accuracy when used for space systems has not as yet been demonstrated.

The model is dynamic and should be updated as new data becomes available. It is particularly important to integrate the current aircraft data base with data obtained from the Shuttle and other space systems. Subsystems unique to a space vehicle such as the TPS, propulsion systems, and docking systems require data not available from aircraft. Although this study has included these subsystems in a rationale way using comparability with aircraft subsystems, their uniqueness requires the use of R&M parameters obtained from similar subsystems in order to insure a higher degree of accuracy. As the model is used over time, those features which seem to work should be retained while those which do not provide reasonable results should be replaced. The model is modularized in the sense that any regression equation may be easily replaced without affecting other areas of the model.

Finally, this research addressed only the major subsystems on the vehicle. The space transportation system includes booster rockets, launch and recovery facilities, software, and expendable fuels, oxygen, etc. Therefore, follow-on research efforts should focus on these aspects of the system. Much work remains as well in refining the subsystem analysis. Better accuracy may be achieved by analyzing component (rather than subsystem) failures and repair. Subsystems may then be defined in terms of their individual components. This would also permit a more explicit determination of redundancy and its effect on mission reliability.

BIBLIOGRAPHY

- 1. Aircraft Historical Reliability and Maintainability Data, Vols. V & VI, J. Osmanski, ed. Air Force Acquisition Logistics Center, Pamphlet 800-4. Dayton: Department of the Air Force, 1988, 1990.
- 2. Aviation 3-M Information Reports, NAVSEALOGCEN INSTR 4790.1. Mechanicsburg: Department of the Navy, 1988.
- 3. Aviation Week and Space Technology, Vol. 134, No. 11. March 18, 1991.
- 4. Barnard, R. A. and T. D. Matteson. "Military Aircraft Maintenance A New Concept." *Proceedings 1975 Annual Reliability and Maintainability Symposium* pp. 596-600. New York: Institute of Electrical and Electronic Engineers, 1975.
- 5. Bloomquist, C. and W. Graham. Analysis of Spacecraft On-orbit Anomalies and Lifetimes. For Goddard Space Flight Center Contract No. NAS 5-27279. Los Angeles: PRC Systems Service, 1983.
- 6. Brussell, E. R., K. R. Pope, and K. M. Tasugi. "Cost of Ownership Industry Viewpoint: Parametric Analysis of Operating and Support Costs." *Proceedings 1975 Annual Reliability and Maintainability Symposium* pp. 217-220. New York: Institute of Electrical and Electronic Engineers, 1975.
- 7. Earles, D. R. "LCC Commercial Application: Ten Years of Life Cycle Costing." Proceedings 1975 Annual Reliability and Maintainability Symposium pp. 74-85. New York: Institute of Electrical and Electronic Engineers, 1975.
- 8. Green, W. and G. Swanborough. *Observer's Directory of Military Aircraft*. New York: Arco Publishing, Inc., 1982.
- 9. Harmon, D. F., P. A. Pates, and D. Gregor. "Maintainability Estimating Relationships." *Proceedings 1975 Annual Reliability and Maintainability Symposium*, pp. 18-25. New York: Institute of Electrical and Electronic Engineers, 1975.
- 10. Hecht, H. and E. Florentino. "Reliability Assessment of Spacecraft Electronics." 1987 Proceedings Annual Reliability and Maintainability Symposium pp. 341-345. New York: Institute of Electrical and Electronic Engineers, 1987.
- 11. Hecht, H. and M. Hecht. *Reliability Prediction for Spacecraft*. Rome Air Development Center Final Technical Report No. 85-229, 1985.

- 12. Hintle, Jerry. "Number Cruncher Statistical System, Version 5.03." Kaysville, UT, September 1991.
- 13. Jane's All the World's Aircraft, J. W. R. Taylor, ed. New York: McGraw-Hill Book Company, 1971-1990.
- 14. Kern, G. A. and T. M. Drnas. Operational Influences on Reliability. For Rome Air Development Center Contract No. RADC-TR-76-366. Culver City: Hughes Aircraft Company, 1975.
- 15. "Modular Life Cycle Cost Model for Advanced Aircraft Systems, Phase III", Grumman Aerospace Corp., Bethpage, NY. Contract No. AFF DC-DC-TR-78-40, Vol. IV, Rev. 3, September 1986.
- 16. Norris, H. P. and A. R. Timmins. "Failure Rate Analysis of Goddard Space Flight Center: Spacecraft Performance During Orbital Life." *Proceedings 1976 Annual Reliability and Maintainability Symposium* pp. 120-125. New York: Institute of Electrical and Electronic Engineers, 1976.
- 17. Ostrofsy, B. "Development of I.L.S. Models from R and M Data." *Proceedings 1975 Annual Reliability and Maintainability Symposium* pp. 130-138. New York: Institute of Electrical and Electronic Engineers, 1975.
- 18. Peacore, E. J. "Reliability Developments AWACS." *Proceedings 1975 Annual Reliability and Maintainability Symposium* pp. 383-389. New York: Institute of Electrical and Electronic Engineers, 1975.
- 19. Personnel Launch System Advanced Manned Launch System (AMLS): PLS Reliability/Maintainability Analysis, Ehrlich, Jr., C. F., ed. For Langley Research Center Contract No. NAS1-18975. Los Angeles: Rockwell International Space Systems Division, 1990.
- 20. Personnel Launch System (PLS) Advanced Manned Launch System Study (PLS/AMLS): Final Oral Review. For Langley Research Center Contract No. NAS1-18975. Los Angeles: Rockwell International Space Systems Division, 1990.
- 21. Report on the Development of a Spacecraft Supportability Assessment Model. Los Angeles: Rockwell International Space Systems Division, n.d.
- 22. "USAir Reliability Assurance Program Monthly Report," prepared by The Reliability and Maintenance Programs Department, Pittsburgh, PA, May 1991.

APPENDIX A AFALDP 800-4 Format

	AFAL	CP 800-4		۷a	lu	n e	7		Á	\ !!	ac		en :	t 3	3		2	0	Αţ) I	il	. 1	L9	88	
	٠.	AL	° =	630	1669	124	7	99		-			8			ō (0			179			.	6285
		ON 60	9965 2464	6457	4358	4474	1084	2280	2816	7.3	2570	2 4 5	996	100	79	236	7 5 6	100	196	•	603	479	Đ.	-	55148
	14402	MANHOURS DEFECT	o o	7;	1249	50	g 0	•	0 0	0	00	0	<u> </u>	0	0	0	o c	0	7	0	<u>.</u>	0 ;	*	5	. 448
	••	20	o o	188	787	1124	276	142	70.	223	9 9	6	374	7 7	10	C:	2 ;	7	103	5	7	10	= '	0	9511
96	LAND INGS	F MAINTENANCE EDNO OFF EQ ON E	o o	8	6 43 8 43 8 43	~	2 C	2	0 (10	0 6	0	0.0	00	0	0	0 0	0	0	0	₹	0	0	•	787
30 SEP	5 6	-NUMBER OF M		1485	1016 1016	807	50 50 50 50	342	= =	3	9		700	2 CT	0	0	-	90	•	~	2	9 7	9	-	8252
86 TO	10726	: 2	o o	268	8 T S	16	<u>-</u>	5	362	o ~	0 [0	<u>.</u>	- 0	•	ō.	0 r	۰ ٥	•	0	60	221	•	0	1953
1 APR	SORTIES	INHERENT ON EQ OFF	o o	3946	1509 3092	2745	142	1196	2534	456	1610	=	207	537	8	212	8 6	6 2	16	20	507	354	2	0	24489
PERIOD:		t t t t																							
REPORT P	13126	NCE TOTAL	98	9.141	13.81	17.40	22.788 73.742	27.232	100.969	74. 158	64.980	211.767	67.313	51.074	596.636	179.808	184.073	278.277	312.524	378.029	98.439	j,	5	3126.000	1. 495
	.;	ENANCE	000.	œ (75.01 7.616 93.09 (3.618	0	267.88 73.742	2	375.03 100.969	76.	172.71 64.990	2	57	110.33 51.074		1016.14 179.808		2	60			1.85 138.	656	.00 13126.000	7.72 1.495
COO9A REPORT	FLYING HOURS:	ENANCE		97.96	. 5	66.20		.24 09.29	.03	297.37	172.71 64	937.57 210	120.42 61		00 4375.33	1076.14		423.42	437.53	6983.00	729.22	504.85 136.	1675.14 656.	1312	•
REPORT	: 17 FLYING HOURS:	ENANCE	88	70 20.01 97.96 9.	75.01	63.06	63 267.88	111.24 09.20	# 656.30 375.03 100.	345.42 257.37 74	172.71 64	656.30 837.57 216	820.38 120.42 61	226.01	.00 4378.33	.00 (875.14	13126.00 2625.20	423.42	13126.00 437.53	4378.33 6563.00	1458.44 729.22	4376.33 504.85 136.	4375.23 1675.14 656.	.00 13128	7.72
COO9A REPORT	17 FLYING HOURS:	N-TIME-BETWEEN-MAINTENANCE INDUCED NO DEFECT	88. 88.	AIRFRAME 20.70 20.01 97.96 9.	42.66 46.01 4.	FLIGHT CONTROLS 33.15 63.06 66.29	TURGO FAN PER PLANT 195.00 68.01 69.19 AUXILIARY PER PLANT 195.32 437.63 267.85	AIR COND, PRESSICE 60.49 111.24 89.29	ELECTL PUR SUPPLY 177.38 656.30 375.03 100.	HYD & PNEU PR SUPLY 148.16 345.42 257.37 74	570.70 172.71 64	MISC UTILITIES 525.04 656.30 937.57 216	1 INSTRUMENTS 190.23 820.39 120.42 61	AUL WEATHER LND SYS 99.44 937.57 119.33	1 HF COMMUNICATIONS 729.22 .00 4318.33	VHF COMMUNICAT 'DNS 201.94 .00 (875.14	3 UTF COMMUNICA: CONS 201.94 13126.00 2625.20	TOURS OF THE COME TO ANY STRAIGHT OF THE COME TH	6 ENERGENCY COMMUN 1193.27 13126.00 437.53	9 MISC COMM EQUIP 437.53 4375.33 6963.00	•RADIO MAVIGATION 125.01 1458.44 729.22	2 RADAR NAVIGATION 195.91 4375.33 504.85 135.	EMERGENCY EQUIP 1312.60 4376.33 1675.14 656.	13126.00 .00 13126	4.82 7.72

AIRCRAFT SYSTEM RELIABILITY AND MAINTAINABILITY SUMMARY

APPENDIX B MODAS Report Format

Operational Summary

Date Range = January, 1990 TO December, 1991 , Base Code = ****

MDS/CMD = F004E /***

MDS/CMI	77.4.5.5	/***			3	D +		
— • •	Flight	Poss.			Avg.	Percnt	Percnt	Percnt
Date	Hours	Hours	Sorties	Landings	Inv.	FMC	PMC	NMC
1 90	4832	164606	4039	4704	220	64.76	6.68	28:56
2 90	4607	179401	3 757	4336	266	68.59	6.97	24.45
3 90	5185	139978	4153	4483	190	64.92	7.35	27.72
4 90	4974	186269	3 927	4534	258	69.08	6.88	24.04
5 90	4995	194349	3986	4368	261	68.83	7.85	23.32
6 90	4932	167411	3 950	4255	232	66.10	9.97	23.94
7 90	4459	249048	3 617	4105	335	79.18	3.34	17.48
8 90	5434	246912	4481	4763	332	83.59	3.57	12.84
9 90	3392	237120	2 92 5	3121	330	81.05	4.72	14.23
10 90	4429	243360	3 737	4398	325	82.89	4.19	12.92
11 90	3968	234000	3 399	3584	3 2 5	80.04	5.05	14.91
12 90	3003	241800	2586	2710	325	86.26	3.17	10.56
1 91	2702	241080	2365	2732	323	88.23	2.38	9.39
2 91	2777	217728	2342	2507	324	84.38	2.41	13.21
3 91	3374	238920	2561	2696	320	85.97	2.03	12.00
4 91	3381	227580	2384	2725	316	86.62	1.40	11.97
5 91	2658	229728	2095	2254	311	90.80	0.73	8.47
6 91	2096	221304	1720	1802	307	92.52	0.33	7.15
7 91	1930	226776	1507	1798	305	91.91	0.27	7.82
8:91	1674	211698	1205	1338	284	92.99	0.38	6.63
9 91	982	198336	739	792	276	95.98	0.16	3.86
10 91	1175	196536	847	1076	264	96.41	0.29	3.30
11 91	816	180888	607	724	252	97.24	0.23	2.53
12 91	619	181536	521	640	244	98.04	0.25	1.71
TOTAL	78394	5056364	63450	70445				

Summary Maintenance Data - Manhours

Date Range = January, 1990 TO December, 1991 , Base Code = ****
MDS/WUC = F004E /11***

Flight Hours

	Flight	t Hours		Maintenanc	e Manhour	S	On - El-	
Date	Мо	Cum	On-Eq	Off-Eq	Sup	Total	On-Eq Events	MMHTR
1 90	4832	4832	8905	259	0	9164	2203.	3.56
2 90	4607	9439	5358	259	0.	5 61 7	1216	3.79
3 90	5185	14624	8248	509	0	8 7 57	1827	4.22
4 90	4974	19598	8046	716	0.	8762	1693	4.34
5 90	4995	24593	6444	5 50	0 .	6994	1521	3.86
6 90	4932	29525	4548	218	0	4766	1103	3.70
7 90	4459	33984	5332	340	0	5672	1131	4.28
8 9 0	5434	39418	4323	19	0	4342	938	3.70
9 90	3392	42810	4255	86	0	4341	985	4.03
10 90	4429	47239	5443	6 6	0 .	5 509	971	4.94
1 1 90	3968	51207	7135	209	0	7344	1290	4.95
12 90	3003	54210	4906	229	0.	5135	838	4.89
1 91	2702	56912	593 3	177	0	6110	928	5.66
2 91	2777	59689	1961	63 .	0.	2024	319	5.09
3 91	3374	63063	3082	17	0	3 09 9	399	5.07
4 91	3381	66444	2903	90	0.	2993	633	4.10
5 91	2658	69102	664	24	0 .	688	246	2.62
6 91	2096	71198	1127	17	0 .	1144	212	4.95
7 91	1930	73128	2525	133	0	2658	314	6.81
8 91	1674	74802	944	18	0	962	247	3.51
9 91	982	75784	1028	11	0	1039	254	3.72
10 91	1175	76959	1154	95	0	1249	342	3.44
11 91	816	77775	422	5	0	427	124	3.02
12 91	619	78394	550	17	0.	567	141	3.64
TOTAL	78394		95236	4127	0	99363	19875	

Abort Summary - ON Equipment

Date Range = January, 1990 TO December, 1991 , Base Code = ****

MDS/WUC = F016A /11***

11557 1155	Flight	Hours		Abort C	Count		Sor	ties
Date	Мо	Cum	Air	Ground	Total	Cum	Мо	Cum
1 90	11801	11801	1	8	9	9	8618	8618
2 90	10932	22733	0	3	3	12	7684	16302
3 90	12327	35060	0	7	7	19	8910	25212
4 90	11936	46996	0	5	5	24	8953	34165
5 90	11681	58677	0	3	3	27	8618	42783
6 90	12466	71143	1	8	9	36	9222	52005
7 90	10915	82058	4	17	21	57	7 87 5	59880
8 90	12765	94823	1	4	5	62	9486	69366
9 90	10033	104856	2	2	4	66	7473	76839
10 90	11958	116814	1	5	6	72	8726	85565
11 90	10761	127575	0	5	5	7 7	7885	93450
12 90	9011	136586	2	7	9	86	6477	99927
1 91	9696	146282	1	10	11	97	6 81 7	106744
2 91	12238	158520	1	4	5	102	8590	115334
3 91	11504	170024	0	0	0	102	8088	123422
4 91	11796	181820	4	5	9	111	7804	131226
5 91	11696	193516	0	2	2	113	8012	139238
6 91	9787	203303	2	3	5	118	7326	146564
7 91	9300	212603	4	5	9	127	7180	153744
8 91	10302	222905	1	4	5	132	7 97 9	161723
9 91	9818	232723	1	3	4	136	7 31 5	169038
10 91	10936	243659	0	3	3	139	8089	177127
11 91	8869	252528	0	5	5	144	6 67 9	183806
12 91	7693	260221	2	8	10	154	5902	189708

TOTAL

TOTAL

	te Rang S/WUC =	F004E	nuary, 1990		ber, 1991		e Code =	***
Dat	te	Мо	Cum	T1	T2	T6 .	Total	Removals
1	90	4832	4832	610	113	167	890	558
2	90	4607	9439	375	60	114	549	302
3	90	5185	14624	492	68	128	688	414
4	90	4974	19598	489	45	120	654	370
5	90	4995	24593	292	67	132	491	183
6	90	4932	29525	255	24	160	439	144
7	90	4459	33984	179	34	187	400	. 7 7
8	90	5434	39418	281	40	95	416	149
9	90	3392	42810	197	20	87	304	90
10	90	4429	47239	67	21	124	212	30
11	90	3968	51207	538	72	106	716	310
12	90	3003	54210	3 07	31	79	417	128
1	91	2702	56912	416	5 6	47	519	215
2	91	2 7 77	59689	40	12	29	81	11.
3	.91	3374	63063	80	11	66	157	47
4	91	3381	66444	185	21	63	269	83
5	91	2658	69102	83	19	18	120	48
6	.91	2096	71198	50	6	18	74	31
7	91	1930	73128	44	15	23	82 .	, 22
8	91	1674	74802	102	10	12	124	50
9	91	982	75784	58	13	19	90	23
10	91	1175	76959	53	3	14	70	20
11	91	816	77775	21	1	9	31 .	7
12	91	619	78394	41	4	3	48	10

System Summary - Reliability

Date Range = July, 1991 TO July, 1991 , Base Code = ****
MDS/WUC = F015A /*****

			1	Failur	e Coun	t		MT	BM	
System	Removal	MTBR	T1	T2	Т6	Total	Т1	Т2	T6.	Total
2 = POWER PLAN	865	7	682	45	1317	2044	9	141	4	3
)3=LOOK PH SC	0	0	0	0	0	0	0	0	0 :	0
04=SPECIAL IN	0	0	0	0	0	0	0	0	0 1	0.
11=AIRFRAME	37	171	215	20	247	482	29	317	25	13
12=CKPT & FUS	46	137	43	3 :	96	142	147	2114	66 -	44-
13=LANDING GE	302	21	3 06	17	119	442	20	3 73	53	14
14=FLIGHT CON	81	78	118	10	120	248	53	634	52=	25.
32=NOT DEFINE	0	0	0	0.1	8	8 -	0	0	792 -	792
11=AIR COND P	38	166	5 3	3	99	155	119	2114	64 ~	40
12=ELECTRICAL	36	176	30	1	60	91	211	6343	105	69
13=NOT DEFINE	0	0	0	0	5	5	0	0	1268	1268
44=LIGHTING S	31	204	38	1	25	64	166	6 3 4 3	253	99
15=HYD AN PNE	6 6	96	88	1	73	162	72.	6343	86	39
16=FUEL SYSTE	85	74	7 7	3	147	227	82	2114	43	27
17=OXYGEN SYS	13	487	14	1	9	24	453	6343	704	284
19=MISC UTILI	19	333	11	1	36	48	5 76	6343	176	132 .
51=INSTRUMENT	149	42	150	3	162	315	42	2114	39 -	20
52=AUTOPILOT	39	162	39	0.	59	98	162	0	107	64
53=NOT DEFINE	0	0	0	0:	1	1	0 -	0:	6 343	6 34 3
54=NOT DEFINE	1	6343	1	0	0	1	6343	0	. 0:	6343
55=MALF ANAL	17	373	19	0	12	3.1	3 33	0	5 28	204
57=INTER GUID	18	352	66	4	31	1.01	96	1585	204	62
32=NOT DEFINE	0	0	1	0	0	1	6343	0	0.7	6 34 3
33=UHF COMMUN	89	71	169	5	90	264	37	1268	70	24
5 5=IFF	89	71	174	8.	91	273	36	792	69	23
71=RADIO NAVI	112	56	113	1	120	234	56	6 343	.52	27
74=FIRE CONTR	415	15	447	5	560	1012	14	1268	11	6
75=WPN DLVRY	91	69	90	2	37 3	465	70	3171	17.	13
76=TAC ELEC W	116	54	163	0	116	279	38	0	54 -	22
31=EMERG EQUI	19	333	1	0.		21	6343	0 -	317	302
32=TOW TARGET	0	0	. 0	Ö	0	0	0	0	0 :	
37=EXPLOSIVE	123	51	3	1	124	128	2114	6343	51	49
TOTAL	2897		3111	135	4120	7366				

System Summary - Maintainability

Date Range = August. 1989 TO July, 1991 , Base Code = ****

MDS/WUC = F015B /**** F015A /****

Maintenance Manhours On Equip.

	Ma	intenanc	e Manhou	ITS	On Eq	uip.	Off Eq	uip.
System	On-eq	Off-eq	Supp	Total	MH/FH	MMHTR	MHTR	MHTC
01=NOT DEFINE	0	0	549874	549874	3.464	0.000	0	0
2 = POWER PLAN	59 9911	2 89764	173219	1062894	6 .697	9.334	40376	0
03=LOOK PH SC	0	0	721345	721345	1.545	0.000	0	Ō
04=SPECIAL IN	Ō	Ō	544554	54 455 4	3.431	0.000	0 -	Ŏ
05=NOT DEFINE	Ō	Ŏ	447	447	0.003	0.000	0 4	ŏ
06=NOT DEFINE	0	0	7 7327	77327	0.487	0.000	0 😁	Ŏ
7=NOT DEFINE	ō	Ō	44412	44412	0.280	0.000	0 🖘	, , o
8=NOT DEFINE	ō	ŏ	1034	1034	0.007	0.000	0 ***	. •
9=NOT DEFINE	ŏ	4	195225	195229	1.230	0.000	0 ≥	ŏ
O=NOT DEFINE	6	0	0	6	0.000	0.600	0 \$.	•
11=AIRFRAME		_	0	_	1.734	3.846		Ų
	268809	6427	-	2 7523 6			3817	
2=CKPT & FUS	5 0057	4522	0	54579	0.344	5.778	3 389 "	4
3=LANDING GE	70593	41831	0	112424	0.708	5.094	19236	0
4=FLIGHT CON	81141	9 679	0	90820	0.572	6.670	5 387	1
5=NOT DEFINE	53	2 2 .	0	75	0.000	4.417	112	. 0
6=NOT DEFINE	25	60	0	85	0.001	1.333	6 0	. 0
7=NOT DEFINE	9	21	0	30	0 .000	2.250	0 :	0
8=NOT DEFINE	6	0	0	6	0.000	2.000	0 =	_ 0
1=NOT DEFINE	76	0	0	76	0.000	3.455	0 7	0
2=NOT DEFINE	192	2	0	194	0.001	3.176	0王	
3=NOT DEFINE	3 3	4	0	37	0.000	5.200	0.7	
4=NOT DEFINE	33	18	0	51	0.000	4.833	8 3	ā
6=NOT DEFINE	5		Ŏ	5	0.000	5.000	0 3.	" o
9=NOT DEFINE	21	Ŏ	Ŏ	21 .		2.000	0 =	Ō
0=NOT DEFINE	3	ŏ	ŏ	3	0.000	0.000	0 %	Ŏ
1=AIR COND P	46537	8391	ŏ	5 4928	0.346	5.945	6787	ă
2=ELECTRICAL	3 1397	2 5912	ŏ	57309	0.361	6.465	2 2499	Ö
3=NOT DEFINE	335	1	ŏ	3 36	0.002	2.629	0 -	- 0
4=LIGHTING S	3 3792	5 519	0	3 931 1	0.248	3.126	4080	. 0
5=HYD AN PNE	5 3546	5 62 7	Ö		0.373	5.961	3510	
6=FUEL SYSTE	138550		0	59173	0.919	13.417		. 0
7=OXYGEN SYS	6246	7347	_	145897			1660	0
		1316	0	7562	0.048	3.739	528	. 0
8=NOT DEFINE	1033	700	0	1033	0.007	13.800	0	. 0
9=MISC UTILI	13409	790	0	14199	0.089	8.214	317 "	9
0=NOT DEFINE	5 28	0	0	5 28	0.003	1.000	0	9
1=INSTRUMENT	43838	14741	0	5 857 9	0.369	4.678	4711	. 0
2=AUTOPILOT	19660	11820	0	31480	0.198	7.998	7613	9
3=NOT DEFINE	4334	22	0	4356	0.027	6.414	7	C
4=NOT DEFINE	152	1	0	153	0.001	5.500	0	(
5=MALF ANAL	7908	5 097	0	13005	0.082	4.224	2858	(
6=NOT DEFINE	2	0	0	2	0.000	0.000	0 -	· · · · (
7=INTER GUID	8441	5 091	0	13532	0.085	3.471	3147	. (
9=NOT DEFINE	1	0	0	1	0.000	1.000	0 :	(
1=NOT DEFINE	2	" 16 [°]	0	18	0.000	0.000	13	
2=NOT DEFINE	6	19	0	25	0.000	2.000	12_	(
3=UHF COMMUN	2 9126	2 5204	Ŏ	54330	0.342	3.316	16979	
4=NOT DEFINE	7 7	43	Ŏ	120	0.001	4.714	41	Ò
5=IFF	26519	40602	ŏ	67121	0.423	3.140	3 2205	Ò
6=NOT DEFINE	13	33	ŏ	46	0.000	2.000	27	ì
9=NOT DEFINE	11	0			0.000	0.000	ő	
0=NOT DEFINE	11	0	0	11	0.000	1.000	ŏ	
		11	(1)				u	

Marcon Industries Record Type: A

*** MODAS II *** Detail Maintenance Data Report

MDS: B001B

Summary Report AUG 90

Cum. Total Units Total Crew Total Time Size Man-hours Produced

214.8 247 101 520.8

Hit <RETURN> to continue, or "\$" to end output: Marcon Industries

MODAS II *** Page: 1

Record Type: A Detail Maintenance Data Report

MDS: B001B

Summary Report SEP 90

Cum. Total Units Total Crew Total Time Size Man-hours Produced

162.0 88 306.8 180

Hit <RETURN> to continue, or "\$" to end output:

Marcon Industries *** MODAS II

Record Type: A Detail Maintenance Data Report

MDS: B001B

Summary Report OCT 90

Cum. Total Total Crew Units Total Time Size Man-hours Produced

295.9 349 757.6 141

"\$" to end output: Hit (RETURN) to continue, or

Failures selected are All Failures

Reliability - MTBM (by type)

Date Range = August, 1989 TO July, 1991 , Base Code = ****

MDS/WUC = F015A /74F** F015B /74F**

Flight Hours Mean Time Between Maint.

		Flight	Hours	D-41	Mean Tir	ne Between	Maint.
Da	te	Mo	Cum	Failure Count	Monthly	3mo avg	Cum
8	89	7782	7782	949	8.20	8.20	8.20
9	89	5327	13109	615	8.66	8.38	8.38
10	89	7402	20511	845	8.76	8.51	8.51
11	89	6066	26577	750	8.09	8.50	8.41
12	89	5394	31971	589	9.16	8.64	8.53
1	90	6587	38558	1112	5.92	7.36	7.93
2	90	6100	44658	625	9.76	7.77	8.14
3	90	7133	51791	919	7.76	7.46	8.09
4	90	7369	59160	553	13.33	9.82	8.50
5	90	6908	66068	897	7.70	9.04	8.41
6	90	6861	72929	794	8.64	9.42	8.43
7	90	5 732	78661	1163	4.93	6.83	8.02
8	90	7428	86089	741	10.02	7.42	8.16
9	90	5127	91216	961	5.34	6.38	7.92
10	90	7004	98220	1092	6.41	7.00	7.79
11	90	6821	105041	703	9.70	6.88	7.89
12	90	5449	110490	726	7.51	7.65	7.87
1	91	6182	116672	955	6.47	7.74	7.78
2	91	6135	122807	792	7.75	7.18	7.78
3	91	7043	129850	830	8.49	7.51	7.82
4	91	6757	136607	936	7.22	7.79	7.79
5	91	7768	144375	916	8.48	8.04	7.82
6	91	6895	151270	691	9.98	8.42	7.90
7	91	7449	158719	707	10.54	9.56	7.99
TO	ral	158719		19861			

		AFALCE	8	00-4			70	ol	u	te	Í	Ī	-		A	tt	8	ف		e C	E	3	1		i	20	4	Αp	r	il	. 1	19	88		
				OFF EQ	0	Ξ	630	1669	1132	124	=	7	T)	700	Ť	_	~	7	=		2	0	•		O 1	37	0	58	0	178	224	:	0	6285	
			-10141	o No	8968	2464	6457	4159	4244	4474	4360	100	2280	2815	77.0	713	2878	9 0 9	343	0	2701	1051	7.0	236	217	366	90	198	=	603	847	.	•	55149	
		03	CT	OFF EQ	0	0	<u>*</u>	99	1249	•	36	0	0	0	•	0	0	c	•	<u>:</u>	0	0	0	0	0	0	0	Ī	0	<u>.</u>	0 ;	*	0	1448	
		S: 14402	ENANCE MANJOURS	ON EQ	0	0	887	707	152	1124	=	278	712	2	132	113	930	•	20	314	205	436	•	<u>-</u>	9	=	÷	03	8	7.4	20	=	0	9511	
	1 0	L AND INGS:	MAINTEN		0	0	8 17	139	848	~	50	~	2	0	cı	0	0	n	0	0	٥	0	0	0	0	0	0	0	0	▼ :	0	0	0	787	
WMARY	30 SEP 86	; •	-number of maintenance markours ImbucedMD Defect	ON EQ	0	0	1485	1070	980	201	00	21	342	=	.	ž	<u>.</u>	=	11	28	2035	Ç	0	0	-	2	0	•	~	22	2	2	-	8252	
ILITY SU	01 98	: 10726	١.,	•	9	0	266	•	252	16	<u>0</u>	-	5	362	•	~	0	<u>.</u>	0	=	0	0	₹	<u>.</u>	0	1	0	•	0	e 0	221	0	•	1953	
INIAINAB	1 APR	SORTIES	INSTERENT	ON EQ O	0	0	3946	1508	1092	2746	2121	7 7 7	1.06	2534	973	726	6 50	271	===	201	186	637	9	212	8	336	62	=	90	507	707	•	0	24489	
AND MA	ER 10D:		: :	•																															
1ABILITY	REPORT PERIOD:	13126		TOTAL	8	8	9.141	7.01	13.818	17.400	22.700	13.142	27.132	100 . 161	20. 161	74. 158	64.980	71.727	211.717	17.313	11.684	81.074	596.636	178.808	114.173	98.883	270.277	312.524	376.028	99.439	130.729	656.300	13126.000	1.495	
RCRAFT SYSTEM RELIABILITY AND MAINTAINABILITY SUMMARY	C009A	FLYING HOURS:	-BETWEEN-MAINTENANCE	DEFECT	8	8	97.96	78.01	80.8	11.20	19.29	267.18	19.20	376.03	336.86	197.37	172.71	164.08	937.87	120.42	226.31	110.33	1378.33	1076.14	1625.20	1450.44	123.42	437.53	6563.00	729.22	504.83	1875.14	- 8	7.72	
-	FT			DUCED NO DEFECT	8	8	20.01	12.06	64.03	93.06	69.01								36.30	20.38	17.67	37.67		8	8.8	7.		8.8	6.33	: :	76.33	16.33	36 .00	4.83	
<	AIRCRA	RY: 87	MEAN- T IME	ZENT IND	8	8	20.70	27.29	21.14	33.15	99.08 0.08	_	_	_	_	140.16	_	_	•	-	7	99.44	720.22	•	- -	11.11 148	120.31	_	•	_		312.60 431	.00	3.08	
		AVG. INVENTORY:		INHERENT	I		×						ĕ	121			2	7	97	=	Ì						9	1193.2	7	<u>.</u>	Ï	1311		.,	
		YAG.		SYSTEM NOUN	SCHED INSP LOAK PH	SPECIAL BNSP	ASSESSE	COCKPIT & FUS COMPI	LANDING BEAR SYS	FLIGHT CONTROLS	TURBO FAN PWR PLANT	AUXILIARY PUR PLANT	AIR COND. PRESSICE	ELECTL PAR SUPPLY	LIGHTING SYSTEM	HYD & PNEW PR SUPLY	FUEL SYSTEM	DXVGEN	MISC UTILITIES	INSTRUMENTS .	AUTOPILOT	ALL WEATHER LND SYS	HE COMMUNICATIONS		UH COMMINICA: 1048	INTERPHONE 6610 11	IFF/ATG APX 64	EMERGENCY COMMIN	AISC COMB EQUIP	** ANDIO MAVIGATION	RADAR MAYIGATION	EMERBENCY ROUIP	•EXP DEV & COAP	TOTAL SYSTEMS	
			.,	v	•	ě	•	ű.	آ ت	<u> </u>	= :	₹	₹ (<u>.</u>	. ئ	I		8	=	Ã	₹	₹	I	5	5	=	_	₩	•	ě	Œ	ũ	•		

Detail Maintenance Data Report

narcon inquerries Record Types A MDS: 80018

APPENDIX C

Navy 3-M Report Format

I JANUARY 1988

CATALOG

OF

3-M AVIATION INFORMATION REPORTS

REPORI IIILE - RELIABILITY AND MAINTAINABILITY SUMMARY

NAMSO 4790.A7142-01

FREQUENCY OF DISTRIBUTION QUARTERLY

BY TYCOM/TOTAL NAVY HIGHLIGHIS OF REPORT - AIRCRAFT: BY TYPE/MODEL/SERTES

- DEPICTS RELIABILITY AND MAINTAINABILITY STATISTICS BASED ON AIRFRAME FLIGHT HOURS. - TOTAL MAINTENANCE ACTIONS AND FAILURES. - MEAN FLIGHT HOURS BETWEEN MAINTENANCE ACTIONS (MFHBMA). - MEAN FLIGHT HOURS BETWEEN FAILURES (MFHBF).
- - MANHOUR EXPENDITURES.
- PRODUCED QUARTERLY ON THREE MONTH DATA BASE. ASSEMBLY AND SYSTEM SUMMARIES.

Published by

NAVY MAINTENANCE SUPPORT OFFICE

Naval Sea Logistics Center Mechanicsburg, PA 17055-0795

PERIOD DATE) - JAN 87 THROUGH MAR 87 - 21 may 87	RE	NAVY REL. I ABIL I TY AND MAINTAINABIL I TY SUMMARY	NAVY AND HAIN SUMMARY	NTAINABI! Y	X11				NAMSO 4790. A7142-01 PAGE 580 ACFI - F/A-18A	790. A7142-0 PAGE 5/ F/A-18A	142-01 560 16A
AIRCRAFI	FT 1/A 18A .		IOTAL	TOTAL		Ĭ			MAINT	HNSCH MAINT		FHI
MUC	NOMENCLATURE	COMMAND	FL IGHT	MAINT ACTIONS	MFHBMA	REPAIR FATLURE	TOTAL FAILURE	MF118F	HOURS	MAN HRS PER F/H	ACT	ACT TO
754CD	BRU32/A AIRCRAFT BOMB EJECTOR RACK	CNA1. FMFI ANT	4 . 845 895	164	29.5	æ C	32	151.4	302	062	∞ m	- 40
		CNAP	2,853	<u>-</u> 28	142.7	***		230	223	030	4	- 7
		NASC NAVRES TOTAL	601 601 16.296	3 7 7	2 60 4	004	7 5	170.3	654	0.00	7 17 17	
754CE	BRU33/A AIRCRAFT BOMB EJECTOR RACK	CNA!. CNAP FMFPAC TOTAL	4. B	2 8 4 4 6 6	201.00 201.00 201.00 201.00	თ ე ტ თ	- 5 7	4.413.0 356.6 776.0	39 21 66 154	000	7.00	- 76
	TOTAL 754CO EJECTOR ASSEMBLIES/BOMB	CNAL FHFLANT CNAP FMFPAC NASC NAVRES	4.4.4.4.6.3 6.4.4.6.6.4.4.6.4.6.4.4.4.4.6.4.4.4.4.4	194 132 144 145 145 145 145 145 145 145 145 145		F00400	4 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	24 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	362 2885 12862 1063 1063	0037 0037 0057 0057 0057 0058	0000-07	
75E50	AIRCRAFT PYLONS	CNAL CNAP TOTAL	4.845	9 5 5 9 5 5	242 2000, 6 2966, 6		0 0 0	1,615.0 339.5 857.7	G ₹ 6	010	- 21 - 8 0 8	. 0.0
75£51	SUUG3/A AIRCRAFT PYLON	CNAL CNAP FMFPAC NASC TOTAL	4 . 845 4 . 413 2 . 853 570 16 . 296	154 11 16 22 24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8	, n e e	242.3 882.6 870.0 525.7	300 130 130 130 130 130 130 130 130 130	062 032 015 116	- 4 4 6 4	<u></u>
	Y	8	ن	9	-		9	E		X		=

	The work unit code and its	<u>u</u>	Hean flight hours between
-	corresponding nomenclature.	•	maintenance actions.
<	Data for work unit codes are	-	Number of failures repaired at
÷	summarized at the system (2nd)		the organizational level.
	and assembly/set (4th) levels.		Number of maintenance actions
6	The major command or Navy-wide		confirmed as failures by the
	total	٤	action taken code (B,C,2 or
٩	Number of flight hours) ·	1 thru 9) and a malfunction
د	reported for the period.		code other than a conditional
٤	Number of unscheduled mainte-		malfunction.
2	hance actions initiated: ''''		

Number of unscheduled maintenance manhours reported on the VIDS/NAF source document. Maintenance manhours per Maintenance manhours per maintenance action. Elapsed maintenance time per maintenance action.	Mean Illgnt nours between failures.
Maintenance manhours reported VIDS/NAF source documen filtenance manhours per Maintenance manhours per maintenance action.	ed mainte-
Maintenance manhours per filight hour Maintenance manhours per maintenance manhours per maintenance time maintenance action.	orted on the
Maintenance manhours per flight hour. Maintenance manhours per maintenance action. Maintenance action.	ument.
Maintenance manhours per maintenance maintenance action. Elapsed maintenance time	s per
Maintenance manhours per maintenance time maintenance action.	
M Elapsed maintenance time maintenance action.	s per
Elapsed maintenance time	
maintenance action.	time per

1 JANUARY 1988

CATALOG

OF.

3-M AVIATION INFORMATION REPORTS

REPORT HILE - WORK UNIT CODE SYSTEM RELIABILITY AND MAINTAINABILITY SUMMARY

IEPORI No. - NAMSO 4790. A7142-02

FREQUENCY OF DISTRIBUTION QUARTERLY

HIGHLIGHTS OF REPORT

- COMPARES SYSTEM PERFORMANCE FOR AN AIRCRAFT.
- SUMMARIZES RELIABILITY AND MAINTAINABILITY DATA BY MAJOR COMMAND, SPECIFIED WORK UNIT CODE AND AIRCRAFT.
- PROVIDES WORK UNIT CODE PERCENT OF TOTAL AIRCHAFT ACTIONS.

Published by

NAVY MAINTENANCE SUPPORT OFFICE

Naval Sea Logistics Center Mechanicsburg, PA 17055-0795

PERIOD - DATE -		APR 87 THROUGH JUN 87 21 aug 87		KEI LABI	NAVY WORK UNIT CODE SYSTEM RELIABILITY AND MAINTAINABILITY SUMMARY	NAVY T CODE SYSTEM AINTAINABILIT	IEM ITY SUMMAK	*				NAMSO	NAMSO 4790.A7142-02 PAGE 281	1142-02
	10141	10141		ž			UNSCH	MAINI	H/W	EMI	MUC	5	ΑI	<u>.</u>
AIRCRAFT	FL 1 GHT HOURS	MAINT	MFHBMA	REPAIN FAILURE	TOTAL FAILURE	MFHBF	MAN	PER F/H	MAINI	MAINI	MAINT	ML 1 FA31.	TOT FAIL	MAN
A wuc	65000	NOMENCI. A TURE	· IFF SYSIE	EMS										
KA-6D A-6E	1.521	. 39	39.0	- 6	18 296	84.5 80.5	201	. 132	Ω Φ	0.0 7.0	r	~ .	33 GB	
TA - 7C	2 670	5.7	9	σ	Ş	9	• 69	950	•	ď	d	U		
A-76	14.784		4.2	9 9 6	158	9.69	2.113	4.0		. O		i rui e	96.	n en e
C-2A	169	5 -	4.64		, 6	230.3	56	080	. 4	. e	- 9	P	9 6	, ,
10-40	797	50	9.66	7	~	398.5	12	.021	2.1			. s.	. e.	-
KC-130F EC-1300	2.742	97	28.3	۰,0	. 65 4	49.9 6.010	2.149	784	22.2	0.8	4.6	ų c	- 0 to	6. e
KC-130T	274	<u>.</u>	22.8	, –		91.3	23	. 265	•	4	2.7		<u>.</u>	=
E-2C	3, 163	120	26.4	15	47	67.3	862	.272	7.2	4	1.5	φ _.	. 3	<u></u>
F/A-18A F/A-18B	3,304	272	157.4	37	· @	314.1	951	.045	G. 4.	2 7 0 9	r. v.	ຄຸ ຕຸ	ù ≠	7.7.
F-45	2,794	164	17.0	30	90	31.0	1,356	. 485	8.3	8.9	9.	J. 5	2.0	<u> </u>
F - 14A	21,582	1, 109	19.5	213	546	39.5	7.585	. 351	8 .	4.0	1.3	0.1	1.6	5.1
2	٥	۵	144		9	=		7		Σ		=		
Sys	em level	unit	code		Number of r	act.	ions		K Main	tenanc	Maintenance manhours	•	divided	
The	identification	n of	the	12	izational level.	ב ב	1		福	Manhours P		maintenance	e	T
S air	aircraft.			2		maintenance	e actions	Lis	action	OJ.		1		1
70t	Total flight reporting per		for the		confirmed as Mean flight	fallu hours	res. between		M Elah	Elapsed man maintenance	اه څ	nce time on:	ne per	
D	Total system level	level main	maintenance	E:	failures.	required for				Percentage	- e	ته	performed o that	pa
Mea	Mean flight hours between	ours betwee	sen			maintenance	nce.		expe	expended on	the			
	maintenance actions	ctions.							\neg	alrerare.				7

1 JANUARY 1988

CATALOG

OF O

3-M AVIATION INFORMATION REPORTS

REPORT HILE . RELIABILITY AND MAINTAINABILITY SUMMARY FOR SELECTED WORK UNIT CODES

REPORT No. - NAMSO 4790. A7142-03

FREQUENCY OF DISTRIBUTION - QUARTERLY

HIGHLIGHTS OF REPORT

- PERMITS COMPARATIVE ANALYSIS OF ENGINES AND AVIONICS EQUIPMENT PERFORMANCE

WITHIN VARIOUS AIRCRAFT.

- PORTRAYS THE FOLLOWING INFORMATION FOR WORK UNIT CODES LISTED IN THIS REPORT:
 - AIRCRAFT APPLICATION.
- RELIABILITY AND MAINTAINABILITY STATISTICS.
- WUC PERCENT OF TOTAL AIRCRAFT MAINTENANCE ACTIONS, FAILURES AND
- EXCLUDES WORK UNIT CODES HAVING SIX OR LESS MAINTENANCE ACTIONS.

 Published by

NAVY MAINTENANCE SUPPORT OFFICE

Mayal Sea Logistics Center Mechanicsburg, PA 17055-0795

PERIOD .	- 21 AUG 87	HROUGH JUN 87 87		KILIAB	BELECTE	NAVY RELETED MANTAINABILITY SUMMARE FOR SELECTED WORK UNIT CUDES	TY SUMMAKE					HAMSU (1707-7-11) PAGE	47 to 17 to 18 to	
AIRCRAFI	FLIGHT FLIGHT FHOURS	TOTAL. MAINT ACTIONS	MFHBMA	MI 1 REPAIR FAILURE	TOTAL FAILURE	MFHBF	UNSCH MAINI MAN HDURS	MAIN3 M/H PER F/H	M/H PER MAIN! ACT	LMI PER MAINI ACT	WUC ,	# UF 101 # 1	10141 ACEL	MAD FIOUR
MUC -	- 72360 NO	NOMENCLATURE	- AN/APN141	ILV) ELECTI	(V) ELECTRONIC ALTIMETER SE	IETER SET								
EA-68 KA-60	5,164	2. 4 c	215.2	5 6	<u>5</u> 6	430.3	56	100	2.3	2 -		7.		
A-6E	17.634	7.	138.3	36	4	9 .00 7	210	012		9	 ,	7		ب .
TA - 7C A - 7E	2.670	134	19.9 3 79.1	6	55 69	48.5 7 78.1	634 279	2.38	7.7	ບ 4. ຕິພິ	2.0	9	6.1 1.	<u>:</u> -
C-2A	169	0	69.1	-	4	172.8	314	454	31.4	5. 1	4.	-	٩.	9 -
P-38 TOTAL	7,691	2,079	1,098.7 35.8	235	947	1,922.8 78.6	31	. 163	4.8 8.5	2.6 3.6	0.0	- 4	-0	00
MUC	- 72380 NDI	NOMENCLATURE	- AN/APN153		(V) DOPPLER RADAR NAV	IV SET								
ERA-38	455	81	25.3	-	7	65.0	268	อดร	4. D	7.6	7.	7	- -	5 -
A-4E	2,235	27	82.8	L					- 6					
A-4F	1.146		B .	<u>a F</u>	Please refe	Please refer to NAMSO R The difference between	eport this r	: 4/90.A/142-U2 report (NAMSO	7	tor to	format de (A7142-03)	rinit	tons.	
EA - 6A EA - 6B	831 5, 16 4	60 163	31.7	ā	preceding ((NAMSO 4790. A7142-02) is	~			်	ven	the		
A-6E	17,634	921	- 6	<u>ساح</u>	irst four 790. A7142-	first four positions of 4790. A7142-02, the data	- :	the work unit		code. In NA by the first	2.	150 Report two positions	s u	•
A - 7E TC - 4C	14.784	C C C	24.2	0 1	f the work	work unit code.	_	Additionally,		this report		tricte	D D	2.3
? .		; ;	9	4							•			-
P-34 101AL	7.691	213	9 - 9 9 - 9 9 - 9	324 324	130	559 56 58	2.598	338	9.8	6 9 •	. 4 gi	ر د ر	7.7	2.3
MUC	- 72390 NDI	NOMENCLATURE	- AN/APN154	1()(V) RAI)(V) RADAR BEACON	SET								
A-4M	3.616	Ξ	328.7	C	ហ	723.2	18	.021	7.0	6	-	7.	-	r ę
EA-68	5, 164	75	123.0	ō a	61	271.8	437	.085	4.04	4 7 6 8	4 4	üü	η σ	4 17
A-6E	17.634	192		6	8	201.8	1.291	.073	8.7		7	ů.	ü	7
TA-7C A-7E	2,670	233	116.1	31	27	267.0 352.0	99 2 43	.037	3.0	2.0	u 4			7 -
F - 14A	21.582	205	105.3	52 153	8 5 93	253.9	918	.043	4 ณ സ സ	3.3	. 		7 7	7; 7
1		•		2			•							

CATALOG

OF

3-M AVIATION INFORMATION REPORTS

REPORT INIL RELIABILITY AND MAINTAINABILITY TREND ANALYSIS SUMMARY

IEPORI No. NAMSO 4790. A7142-04

FREQUENCY OF DISTRIBUTION QUARTERLY

HIGHLIGHTS OF REPORT

- DEPICTS RELIABILITY AND MAINTAINABILITY STATISTICS FOR A 4-DIGIT WIIC.
- PROVIDES FOR MILITIPLE TIME FRAMES FOR TREND ANALYSIS.
- INDICATES COMPARATIVE FAILURE RANKING OF THE WIIC IN RELATION TO ALL WUCS FOR THE AIRCRAFT.

Published by

NAVY MAINTENANCE SUPPORT OFFICE

Mechanicsburg, PA 17055-0795

PERIOD - APR B7 IHROUGH JUN B7 DATE - 21 AUG B7	=	LAI IVE DIGIT WORK UI MAINIAINABILITY		Z		LIIV AND Summary			ž	AMSO 47	NAMSO 4790.A7142-05 PAGE 242 ACFT - A-6E	42 - 05 2 42
WUC NOMENCLATURE	PERIOD	IDTAL FLIGHT HOURS	IOTAL MAINT ACTIONS	HFHBMA	ML.I REPAIR FAILURE	TOTAL	MFHBF	UNSCH MAINT MAN HOURS	UNSCH MAINT M/H PER F/H	M/H PER MAIN!	PER MAINI ACT	FAIL
736G1 C9535/ASQ155 COMPUTER CONTR.	APR87 - JUN87 JAN87 - MAR87 OCT86 - DEC86 JUL86 - SEP86 APR86 - JUN86 OCT85 - DEC85 JUL85 - SEP85	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	222 222 222 222 222 232 232 233 233 233		9 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 1 2 2 3 3 4 4 5 5 4 4 5 5 4 4 5 5 6 6 6 6 6 6 6 6	0 8 8 8 8 8 8 8 8 8 8 8 9 8 9 8 9 8 9 8	0.000 0.000 0.000 0.000 0.000	22.236 2.236 2.236 2.236 2.236	27777888 77777888	C 4 6 4 4 6 6 C 0 0 0 - 7 6 4	222222
736G2 CV3163/ASU155 A·D/D·A CDNVE	APR87 - JUN87 JAN81 - HAR81 OCT86 - DEC86 JUL96 - SEP86 APR86 - JUN86 JAN88 - MAR86 OCT85 - DEC85 JUL98 - SEP85	5.768 6.340 7.016 8.934 8.034 8.036 8.182 8.182 8.182	20000000000000000000000000000000000000	2	21 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	117 110 118 118 113 113 108	6.08 6.08 6.08 6.08 6.08 6.09 6.00 6.00 6.00 6.00 6.00 6.00 6.00	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	269 269 269 269 269 269 269 269 269	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3 55
736G3 CV3163/ASU155 A-D/D-A CDNV	APRB7 - JUNB7 JANB7 - JUNB87 - JUNB8 - JUNB8 - JUNB8 JANB8 - JUNB8 JANB8 - JUNB8 GOTB8 - DECBS JUNB8 - DECBS JULB8 - SEPBS	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 3 7 7 8 8 7 7 8 8 8 7 8 8 8 7 8 8 8 8		0-00000	100 100 100 100 100 100 100 100 100 100	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2006 2006 1559 768 20 20 20 20 20 20 20 20 20 20 20 20 20	.007 .029 .029 .023 .013 .000		0 44000 0 44000	262 181 101 171 171 171 171 167
V	60					اد						Ī
The first five positions of the work unit code and its corresponding nomenclature. The reporting period selected for the report. Multiple time periods may be included in the report.	tied the chi	Please 4790.A for fo	refer 7142-01 rmat de	to NAMSO or 4790 finition	Report . A7142- s.	[2	The compranting for the compared codes fo	of spe	e fa wor all	lure unit criod ork u	code ass nit	

CATALOG

OF

3-M AVIATION INFORMATION REPORTS

REPORT THE - FIVE DIGIT WUC RELIABILITY AND MAINTAINABILITY TREND ANALYSIS SUMMARY

REPORT No. - NAMSO 4790.A7142-05

FREQUENCY OF DISTRIBUTION QUARTERLY

HIGHLIGHTS OF REPORT

- DEPICTS RELIABILITY AND MAINTAINABILITY STATISTICS FOR A 5-DIGIT WIC.
- PROVIDES FOR MULTIPLE TIME FRAMES FOR TREND ANALYSIS.
- INDICATES COMPARATIVE FAILURE RANKING OF THE WUC IN RELATION TO ALL WUCS FOR THE AIRCRAFT.

Published by

NAVY MAINTENANCE SUPPORT OFFICE Naval Sea Logistics Center Mechanicsburg, PA 17955-9795

PERIOD - A DATE - 2	,, APR 87 THROUGH JUN 87 21 AUG 87		RELI	RELIABILITY A	NAVY ABILITY AND MAINTAINAB TREND ANALYSIS SUMMARY	NAVY AND MAINTAINABII IIY VALYSIS SUMMARY	<u>~</u>			Z	NAMSO 4	4790. A7 142 PAGE 1 - S-3A	142-04 1376 A
MUC	NOME NCL A TURE	PER10D	TOTAL FLIGHT HOURS	10TAL MAÍNT ACTIONS	MFHBMA	MI I REPAIR Failure	TOTAL FATLURE	MFHBF	UNSCH MAINT MAN HOURS	UNSCH MAINT M/H PER F/H	M/II PER MAIN	PER MAINT ACT	FAIL
727H AN/APS	727H AN/APS116() RADAR SE1	OCTRG-DECRG LUCGG-SEPRG APRGG-LUNBG LANGG-MARRG OCTRG-DECRG	14.253 13.828 15.008 15.428 16.428	7 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19.9 17.7 20.6 18.6 19.6	129 1646 1772 1733 1733 1733 1733 1733 1733 1733	4 4 4 6 4 4 6 4 4 6 4 6 4 6 4 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8,455 7,684 9,980 10,415 6,031	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 3 6 - 5 6	0,0000	9:2:::
729D AN/APh	729D AN/APN202 RADAR BEACON SET	APRB7 - JUNB7 JANB7 - MARB1 OCT86-DECB6 JUL86 - SEPB6 APRB6 - JUNB6 DARB6 - MARB6 OCT85 - DEC65 JUL85 - SEPB5	- 8 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7820 787 787 787 787 787	23.4.5 1889.7 1889.7 1990.7 197.8 260.8	77-8-7-8-7-8-7-8-7-8-7-8-7-8-7-8-7-8-7-		0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 0 0 0 10 4 10 0	0.000000000000000000000000000000000000	122222 122222 122222 122222 122222 1222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 1222 1222 1222 12222 122 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 122
729F 0U78(729F DU78()/AP CONV CONT GROUP I	R APR87-JUN87 DAN87-MAR81 DCT86-DEC86 JUL86-SEP86 APR86-JUN86 JAN86-WAR86 DCT88-DEC85 JUL88-SEP85		2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	44444488		1004000 100400 1008000 10080000	@ @ & L & @ @ - 4 @ @ L 4 4 4 4 4 0 4 @ © 8 4 4 4 4	2.618 4.7462 4.7463 4.7463 4.139 4.507	2338	10001100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		6					د						H
The first correspond to the report.	t unit code and conding nomenclate orting period sereport. Multip may be included	in the	Please 4790.A for fo	ease refer 90.A7142-01 r format de	to N	AMSO Report 4790.A7142- tions.	20 5:	The components of the components of the components of the codes for the	para of Spu	tive the w th al	uni uni crio ork	t code d as unit	~~~~

CATALOG

3-M AVIATION INFORMATION REPORTS

REPORT INIE - RELIABILITY AND MAINTAINABILITY SUMMARY FOR SELECTED EQUIPMENTS

PORT No. - NAMSO 4790.A7298-01

FREQUENCY OF DISTRIBUTION ON DEMAND

HIGHLIGHTS OF REPORT -

- ALLOWS RELIABILITY AND MAINTAINABILITY COMPARISON BY ACTIVITY, WORK UNIT CODE, AIRCRAFT OR OTHER VARIABLE PARAMETERS AS REQUESTED.
- CUSTOMER SELECTS AIRCRAFT, WORK UNIT CODES AND DATE RANGE.
- PROVIDES WIC ASSEMBLY AND SYSTEM SUMMARIES.

Published by NAVY MAINTENANCE SUPPORT OFFICE

Mechanicsburg, PA 17055-0795

DATE - 17 0C		A CONTRACTOR	A TOP			Y DWM						
	DATE - 17 OCT 87			SELECTED EQUIPMENTS						ACF 1	SH-608	909
AIRCHAFT . SI	S11-60B								UNSCH	MAINI	M/E	EMI
			TOTAL	10141		- ₹			MAINT	H/H	PE∺	PER
			FLIGHT	MAINT		REPAIR	TOTAL		ZYM	PER	MAIN	MAIN
WIJC	NOMENCL A TURE	ACTIVITY	HOURS	ACTIONS	MFHBMA	FAILURE	FAILURE	MFHBF	HOURS	F/H	ACT	ACT
74191 C10486(74191 C10486()/ASQ164 CONTROL INDIC HSL-4	NDIC HSL-41	2,136	· č	142.4	0	4	534.0	52	024	3	2 3
		HSL-43 DET 5	198	-	298.0	0	-	298.0	9	021	6	3.3
		HSL-43 DET 8	101	~	353.5	-	-	707.0	-	8	57	•
		HSL - 45	5 18	C	172.7	7	7	259.0	5	610	3.3	
		NATC ROTARY WIN	176	-	176.0	-	-	176.0	-	8 00.	-	-
		TOTAL	6, 468	22	294.0	•	5	718.7	7.1	10.	3.2	2.0
74192 C10487(74192 C10487()/ASQ164 CONTROL INDIC HSL-4	NDIC HSL-40	502	4	125.5	0	-	502.0	20	.040	5.1	7.6
		HSL - 41	2, 136	•	534.0	0	0		7	.003	·9.	_
		HSL-43 DET 11	387	~	193.5	-	~	193.5	56 6	144	27.9	14.5
		e	245	-	245.0	0	-	245.0	=	.045	=	3.1
		•	298	~	149.0	0	0	<u>:</u>	~	900	€	•
		HSL - 43 DET 0	707	-	107.0	-	-	107.0	0	000	۳.	
		æ	176		58.7	0	0	;	▼	.020	~	<u>-</u>
		TOTAL	6,468	1.	380.5	7	S.	1,293.6	6 6	.015	8. 8.	. .
101 7419	TOT 74190 AN/ASQ164() CONTROL HSL-4	IROL HSL-40	503	•	125.5	0	-	502.0	20	.040	5.	7.
		4544	276	-	276.0	0	0	;	-	.004	0.	-
		MSL - 41	2.136	6	112.4	0	•	534.0	29	.027	-	
		HSL-43 DET 11	387	~	193.5	-	7	193.5	56	. 144	27.9	14.5
		•	245	-	245.0	0	-	249.0	=	.043	=	•
		HSL-43 DET 5	296	•	99.3	0	-	298.0	•	.028	1.1	_
		•	101	•	176.8	8	7	353.5	~	600 .	s.	•
		HSL - 45	518	•	172.7	~	~	259.0	ō	.019	67	-
		NATC ROTARY WIN	176	•	0.4	_	-	176.0	S)	.028	- 7	-
		TOTAL	6.468	7	157.8	•	=	462.0	172	.027	4.7	7.

|--|

by user. Can include activity, BU/SER, time Irame, constants,

Number of flight hours reported.

etc.

Data for work unit codes are summarized at the system (2nd) and assembly/set (4th) levels. Variable data field as desired

Aircraft and work unit codes as specified by the user.

	Number of unscheduled mainte-
3	nance manhours reported on the
	VIDS/MAF source document.
-	Maintenance manhours per
7	flight hour.
>	Maintenance manhours per
4	maintenance action.
_	Elapsed naintenance time per
-	maintenance action.

9

APPENDIX D R&M Data Sources

Government:

FAA
Operations Systems Branch, AVN-120
PO Box 25082
Oklahoma City, Oklahoma 73125

US Air Force:

Rome Laboratory/ERSR (MIL HNDBK-217) Griffiss AFB, NY 13441-5700

Aeronautical Systems Division/ENACR (System Reliability) Wright-Patterson AFB, OH 45433

HQ Air Force Logistics Command/ENIS (MODAS & REMIS) WPAFB, OH 45433

Acquisition Logistics Division (ALD Pamphlet 800-4) WPAFB, OH 45433

Aeronautical Systems Division/ENSSC (LCOM) WPAFB, OH 45433

Reliability Analysis Center (RAC) PO Box 4700 Rome, NY 13440-8200

Naval Air Systems Command (AIR-4114) Washington, DC 20361

Naval Maintenance Support Office Naval Sea Logistics Center, Code 61 5450 Carlisle Pike PO Box 2060 Mechanicsburg, PA 17055-0795

Commercial:

Airbus Industrie of North America 593 Herndon Parkway Herndon, VA 22070

American Institute of Aeronautics and Astronautics (AIAA)
37 L'Enfant Promenade SW
Washington, DC 20024

Commercial (continued)

Boeing Commercial Air Planes PO Box 3707 Seattle, WA 98124

Boeing Computer Services 7990 Boeing Court Vienna, VA 22182-3999

Douglas Aircraft Company 3855 Lakewood Blvd. Long Beach, CA 90846

E-Systems PO Box 1056 Greenville, TX 75401

Harris Corporation 4141 Col. Glenn Dayton, OH 45431

Harris Corporation
Government Aerospace Systems Division
PO Box 9400
Melbourne, FL 32902

Hughes Aircraft Company Radar Systems Group PO Box 92426 Los Angeles, CA 90009

Society of Automotive Engineers (SAE), Inc. 400 Commonwealth Dr. Warrendale, PA 15096-0001

United Airlines
San Francisco International Airport (MOC/SF Airport)
San Francisco, CA 91428

US Air 173 Industry Dr. Pittsburgh, PA 15275

APPENDIX E

Data Generation Programs (BASIC)

Basic Program for Data Analysis

AFALDP 800-4

```
10 'PROGRAM COMBINES 6 MONTH DATA FROM ALDP 800-4
20 'COMPUTES R&M STATS FOR VARIOUS 2-DIGIT WILC'S
30 KEY OFF: CLS: COLOR 3
40 PRINT TAB(20) "CALCULATION OF AIRCRAFT R&OOM PARAMETERS"
50 PRINT: PRINT
60 DIM MTBM(10.10), MMH(10.10), WUC$(10)
70 FOR J=1 TO 5
80 RRAD WUC$(J)
90 NEXT J
100 INPUT "ENTER AIRCRAFT"; AC$
110 INPUT "ENTER NUMBER OF 6-MONTH INTERVALS": NUM
120 FOR I=1 TO NUM
130 PRINT "ENTER FLYING HOURS FOR "; I: "6-MONTH PERIOD"
140 INPUT FH(I)
150 PRINT "ENTER SORTIES FOR "; I; "6-MONTH PERIOD"
160 INPUT S(I)
170 PRINT "ENTER LANDINGS FOR ";I;"6-MONTH PERIOD"
180 INPUT L(I)
190 FOR J=1 TO 5
200 PRINT "ENTER MTBM FOR"; WUC$(J)
210 INPUT MTBM(I.J)
220 PRINT "ENTER ON-EQUIP MMH FOR"; WUCS(J)
230 INPUT MMH(I,J)
240 PRINT "ENTER OFF-EQUIP MMH FOR"; WUCS(J)
250 INPUT OMMH(I.J)
260 PRINT
270 NEXT J
280 NEXT I
290 CLS:COLOR 2
300 PRINT TAB(20) "OUTPUT RESULTS FOR ": ACS
310 LPRINT TAB(20) "OUTPUT RESULTS FOR ": AC$
320 PRINT
330 LPRINT
340 FOR I=1 TO NUM
350 TFH=TFH+FH(I)
360 TS=TS+S(I)
370 TL=TL+L(I)
375 NEXT I
380 PRINT TAB(10) "TOT FLYING-HRS"; TAB(40) TFH
390 LPRINT TAB(10) "TOT FLYING-HRS"; TAB(40) TFH
400 PRINT TAB(10) "TOT SORTIES"; TAB(40) TS
410 LPRINT TAB(10) "TOT SORTIES"; TAB(40) TS
420 PRINT TAB(10) "TOT LANDINGS"; TAB(40) TL
430 LPRINT TAB(10) "TOT LANDINGS"; TAB(40) TL
440 PRINT: LPRINT
450 FOR J=1 TO 5
```

460 FOR I=1 TO NUM

```
470 TMAINT(J)=TMAINT(J)+(1/MTBM(I.J))*FH(I)
480 TMMH(J) = TMMH(J) + MMH(I,J)
490 TOMMH(J)=TOMMH(J)+OMMH(I,J)
500 NEXT I
510 TOTMH(J)=TMMH(J)+TOMMH(J)
520 MFHBM(J)=TFH/TMAINT(J)
530 MSBM(J)=TS/TMAINT(J)
540 MLBM(J)=TL/TMAINT(J)
550 MHFH(J)=TOTMH(J)/TFH
560 \text{ MHS}(J) = \text{TOTMH}(J)/\text{TS}
570 PRINT: PRINT
580 LPRINT: LPRINT
590 PRINT TAB(10) "WUC "; WUC$(J): PRINT
600 LPRINT TAB(10) "WUC "; WUC$(J): LPRINT
510 PRINT TAB(15) "TOTAL MAINTENANCE EVENTS"; TAB(50) TMAINT(J)
620 LPRINT TAB(15) "TOTAL MAINTENANCE EVENTS"; TAB(50) TMAINT(J)
530 PRINT TAB(15) "TOTAL MAINTENANCE MANHOURS"; TAB(50) TOTMH(J)
640 LPRINT TAB(15) "TOTAL MAINTENANCE MANHOURS": TAB(50) TOTMH(J)
550 PRINT TAB(20) "TOTAL ON-EQUIP MAINT"; TAB(50) TMMH(J)
560 LPRINT TAB(20) "TOTAL ON-EQUIP MAINT"; TAB(50) TMMH(J)
670 PRINT TAB(20) "TOTAL OFF-EQUIP MAINT"; TAB(50) TOMMH(J)
580 LPRINT TAB(20) "TOTAL OFF-EQUIP MAINT"; TAB(50) TOMMH(J)
690 PRINT: COLOR 12
700 LPRINT
700 LPRINT
710 PRINT TAB(15) "MEAN FLYING HR BTWN MAINT"; TAB(50) MFHBM(J)
720 LPRINT TAB(15) "MEAN FLYING HR BTWN MAINT"; TAB(50) MFHBM(J)
730 PRINT TAB(15) "MEAN SORTIES BTWN MAINT"; TAB(50) MSBM(J)
740 LPRINT TAB(15) "MEAN SORTIES BTWN MAINT"; TAB(50) MSBM(J)
750 PRINT TAB(15) "MEAN LANDINGS BTWN MAINT"; TAB(50) MLBM(J)
760 LPRINT TAB(15) "MEAN LANDINGS BTWN MAINT"; TAB(50) MLBM(J)
770 PRINT TAB(15) "MAN-HOURS PER FLY-HR"; TAB(50) MHFH(J)
780 LPRINT TAB(15) "MAN-HOURS PER FLY-HR"; TAB(50) MHFH(J)
790 PRINT TAB(15) "MAN-HOURS PER SORTIE"; TAB(50) MHS(J)
790 PRINT TAB(15) "MAN-HOURS PER SORTIE"; TAB(50) MHS(J)
300 LPRINT TAB(15) "MAN-HOURS PER SORTIE"; TAB(50) MHS(J)
310 PRINT: LPRINT
320 MHPF(J)=TOTMH(J)/TMAINT(J)
830 MHPFON(J)=TMMH(J)/TMAINT(J)
840 OMHPF(J)=TOMMH(J)/TMAINT(J)
850 PRINT TAB(15) "MAN-HOURS PER MAINT ACTION"; TAB(50) MHPF(J)
860 LPRINT TAB(15) "MAN-HOURS PER MAINT ACTION"; TAB(50) MHPF(J)
870 PRINT TAB(20) "ON-EQUIP MAN-HRS/MAINT ACTION"; TAB(50) MHPFON(J)
880 LPRINT TAB(20) "ON-EQUIP MAN-HRS/MAINT ACTION"; TAB(50) MHPFON(J)
890 PRINT TAB(20) "OFF-EQUIP MAN-HRS/MAINT ACTION"; TAB(50) OMHPF(J)
900 LPRINT TAB(20) "OFF-EQUIP MAN-HRS/MAINT ACTION"; TAB(50) OMHPF(J)
910 PRINT
915 LPRINT: LPRINT
920 NEXT J
930 COLOR 3
935 GOSUB 1000
```

940 END

```
10 'PROGRAM COMBINES 4 QUARTERS OF DATA FROM NAVY 3M SYSTEM
20 "COMPUTES R&M STATS FOR A PARTICULAR 2-DIGIT WUC
 30 KEY OFF:CLS:COLOR 3
 40 PRINT TAB(20) "CALCULATION OF AIRCRAFT R&M PARAMETERS"
 50 PRINT: PRINT
 60 DIM MTBM(10), MMH(10), ACFT$(10)
 70 FOR I=1 TO 9
 80 READ ACFT$(I)
 90 NEXT I
 100 INPUT "ENTER WUC"; WUC$
 105 LPRINT TAB(10) "NAVY 3M DATA SYSTEM - R&M SUMMARY REPORT COMPOSITE"
 106 LPRINT:LPRINT
 110 LPRINT TAB(10) "WUC "; WUC$:LPRINT
 120 NUM=4
 130 FOR J=1 TO 9
 135 TFH=0:TMA=0:TMMH=0:TET=0:TFAIL=0
 140 PRINT TAB(5) "FOR AIRCRAFT "; ACFT$(J)
 145 LPRINT: PRINT
 150 FOR I=1 TO NUM
 160 PRINT "ENTER DATA FOR QTR"; I
 170 READ FH(I)
 180 INPUT "ENTER MAINT ACTIONS FOR QTR"; MA(I)
 190 INPUT "ENTER UNSCH MAINT MAN-HRS - QTR"; MMH(I)
 210 INPUT "ENTER ELASPSED MAINT TIME"; EMT(I)
 220 PRINT
 230 NEXT I
 240 CLS:COLOR 2
 250 PRINT TAB(20) "OUTPUT RESULTS FOR ":ACFT$(J)
 260 LPRINT TAB(20) "OUTPUT RESULTS FOR "; ACFT$(J)
 270 PRINT
 280 LPRINT
 290 FOR I=1 TO NUM
 300 TFH=TFH+FH(I)
 310 TMA=TMA+MA(I)
 320 TMMH=TMMH+MMH(I)
 330 TET=TET+MA(I)*EMT(I)
 350 NEXT I
 360 PRINT TAB(10) "TOT FLYING-HRS"; TAB(40) TFH
 370 LPRINT TAB(10) "TOT FLYING-HRS"; TAB(40) TFH
 380 PRINT TAB(10) "TOT MAINT ACTIONS"; TAB(40) TMA
 390 LPRINT TAB(10) "TOT MAINT ACTIONS"; TAB(40) TMA
 400 PRINT TAB(10) "TOT MAN-HRS"; TAB(40) TMMH
 410 LPRINT TAB(10) "TOT MAN-HRS"; TAB(40) TMMH
 440 PRINT TAB(10) "TOT ELAPSED TIME"; TAB(40) TET
 450 LPRINT TAB(10) "TOT ELAPSED TIME"; TAB(40) TET
 460 PRINT:LPRINT
 470 MFHBMA=TFH/TMA
 480 MMHFH=TMMH/TFH
 490 AVEMT=TET/TMA
 500 AVCREW=TMMH/TET
 520 PRINT: PRINT
 540 PRINT: COLOR 12
 550 LPRINT
 560 PRINT TAB(15) "MEAN FLYING HR BTWN MAINT"; TAB(50) MFHBMA
 570 LPRINT TAB(15) "MEAN FLYING HR BTWN MAINT"; TAB(50) MFHBMA
 580 PRINT TAB(15) "MAN-HOURS PER FLY-HR"; TAB(50) MMHFH
 590 LPRINT TAB(15) "MAN-HOURS PER FLY-HR"; TAB(50) MMHFH
 600 PRINT TAB(15) "AVG ELAPSED MAIN TIME"; TAB(50) AVEMT
 610 LPRINT TAB(15) "AVG ELAPSED MAIN TIME"; TAB(50) AVEMT
 620 PRINT TAB(15) "AVG CREW SIZE"; TAB(50) AVCREW
 630 LPRINT TAB(15) "AVG CREW SIZE"; TAB(50) AVCREW
```

- 660 PRINT TAB(15) "MAN-HOURS PER MAINT ACTION"; TAB(50) TMMH/TMA 670 LPRINT TAB(15) "MAN-HOURS PER MAINT ACTION": TAB(50) TMMH/TMA 680 PRINT 690 LPRINT: LPRINT 691 SUM1=SUM1+TET:SUM2=SUM2+TMMH:SUM3=SUM3+TMA 695 NEXT J 700 COLOR 3 710 LPRINT: LPRINT TAB(10) "SUMMARY STATS FOR "; WUC\$ 711 LPRINT: LPRINT TAB(20) "AVG TASK TIME"; TAB(40) SUM1/SUM3 712 LPRINT TAB(20) "AVG CREW SIZE"; TAB(40) SUM2/SUM1 720 END 1000 DATA "A4-E", "A-4F", "EA-6B", "A-6E", "A-7E", "C-2A", "E-2C", "F-18A", "F-14A" 1010 DATA 1579, 1598, 1770, 1398 1020 DATA 2335,2384,2625,2527 1030 DATA 7444,6080,8517,5982 1040 DATA 17022.14906.16840.15328
- 1040 DATA 17022,14906,16840,15328 1050 DATA 4624,5404,4989,556 1060 DATA 2751,3794,3871,1777 1070 DATA 7341,9143,9738,6036 1080 DATA 17856,15592,17214,15184 1090 DATA 21649,19976,30652,19734

```
10 'PROGRAM COMBINES 6 MONTH DATA FROM ALDP 800-4
20 'COMPUTES SCHEDULED MAINT AS A PERCENT OF TOTAL MAINT
30 KEY OFF: CLS: COLOR 3
40 PRINT TAB(20) "CALCULATION OF AIRCRAFT SCHEDULED MAINT"
50 PRINT: PRINT
60 INPUT "ENTER AIRCRAFT TYPE"; AC$
70 INPUT "ENTER TIME PERIOD"; TIM$
80 INPUT "ENTER NUMBER OF TIME PERIODS"; NUM
90 FOR I=1 TO NUM
100 PRINT
110 PRINT "FOR TIME PERIOD"; I
112 INPUT "ENTER TOT FLY HRS"; FLY(I)
113 INPUT "ENTER TOT SORTIES"; SORT(I)
120 INPUT "ENTER SCHED INSP-03 HRS"; SCH3(I)
130 INPUT "ENTER SCHED INSP-03 HRS OFF"; OSCH3(I)
140 INPUT "ENTER SCHED INSP-04 HRS ON"; SCH4(I)
150 INPUT "ENTER SCHED INSP-04 OFF HRS"; OSCH4(I)
160 INPUT "ENTER TOT ON EQ MHRS"; TOTON(I)
170 INPUT "ENTER TOT OFF EQ MHRS"; TOTOFF(I)
180 SUM1=SUM1+SCH3(I)+OSCH3(I)+SCH4(I)+OSCH4(I)
190 SUM2=SUM2+TOTON(I)+TOTOFF(I)
200 SUM3=SUM3+SCH3(I)+SCH4(I)
210 SUM4=SUM4+OSCH3(I)+OSCH4(I)
220 SUM5=SUM5+TOTON(I)
230 SUM6=SUM6+TOTOFF(I)
231 TFLY=TFLY+FLY(I)
232 TSORT=TSORT+SORT(I)
240 NEXT I
250 PERSCH=SUM1/SUM2
260 PERON=SUM3/SUM5
270 PEROFF=SUM4/SUM6
280 CLS:COLOR 3
290 LOCATE 5,10:PRINT TAB(20) "AIRCRAFT TYPE": TAB(45) AC$
300 PRINT TAB(20) "TIME PERIOD IS"; TAB(45) TIMS
310 PRINT
320 PRINT TAB(10) "SCHEDULED MAINTENANCE PERCENTS"
                  "OF TOTAL MAINTENANCE"; TAB(40) PERSCH
330 PRINT TAB(10)
340 PRINT TAB(10) "OF ON-EQ MAINTENANCE"; TAB(40) PERON
350 PRINT TAB(10) "OF OFF-EQ MAINTENANCE"; TAB(40) PEROFF
360 PRINT
370 PRINT TAB(10) "AS A PERCENT OF UNSCHEDULED MAINTENANCE"
380 PRINT
390 PRINT TAB(10)
                  "TOTAL"; TAB(40) SUM1/(SUM2-SUM1)
                  "ON-EQ"; TAB(40) SUM3/(SUM5-SUM3)
400 PRINT TAB(10)
                  "OFF-EQ"; TAB(40) SUM4/(SUM6-SUM4)
410 PRINT TAB(10)
420 PRINT
                  "SCH MAINT HRS PER FLY HR"; TAB(40) SUM1/TFLY
430 PRINT TAB(10)
440 PRINT TAB(10) "SCH MAINT HRS PER SORTIE"; TAB(40) SUM1/TSORT
450 PRINT TAB(10) "% SCHED ON-EQUIP"; TAB(40) SUM3/SUM1
                  "% SCHED OFF-EQUIP"; TAB(40) SUM4/SUM1
460 PRINT TAB(10)
```

500 END

APPENDIX F Variable Definitions

INDEPENDENT VARIABLE

Variable Name Definition

ACT Total number of actuators to operate all vehicle movable

flight surfaces.

ACT WT Weight of the actuator subsystem in pounds.

AV INSTA Weight in pounds of brackets, shelves, wiring and plugs

used on avionics equipment.

AV WT Weight in pounds of avionics equipment uninstalled (does

not include wiring, shelves, ducts, fasteners, etc.).

AVS Total number of avionics (AN nomenclature) subsystems.

BODY WT Weight of the body (fuselage) in pounds.

BTU COOL Total cooling capacity of air conditioning equipment used

for personnel and equipment cooling. Measured in

BTU/HR/1000.

CONTS Total number of control surfaces - ailerons, rudders,

elevator tabs, flaps, spoilers and slats.

CREW Total number of crew members (repair or flying

depending upon context).

DIF SUBS

Total number of different avionics subsystems (two or

more identical units count as one).

DRY WT Empty weight (without fuel) of vehicle in pounds.

ECS WT Total weight of the environmental control system

including heating, cooling and anti-icing equipment in

pounds.

ELECT WT Weight of electrical subsystems in pounds.

ENG

Number of primary engines.

ENG WT

Weight of the engine in pounds.

FUEL TK

Number of separate internal fuel cells, bladders and

tanks.

FUS AREA

External area of fuselage including canopy in square feet.

FUS DENS

Fuselage density (weight/volume).

FUS VOL

Total volume of fuselage, excluding any engine inlet duct

volume, in cubic feet.

HYD WT

Weight of Hydraulic subsystems in pounds.

KVA MAX

Total electrical power of engines, motors, and APU

driven generators/alternators in kVA (thousands of volt

amps).

L.GEAR WT

Landing gear weight in pounds.

LEN+WING

Aircraft length plus wing span in feet.

MSN LEN

Mission length in hours. May be adjusted by/for

subsystem utilization.

PASS

Maximum number of passengers.

SUB WT

Total subsystem weight in pounds.

SUBS

Total number of aircraft subsystems requiring use of

hydraulic or pneumatic power.

WET AREA

Total external surface area of vehicle in square feet.

WHEELS

Total number of wheels.

WING LEN

Length of the wing in feet.

APPENDIX G

Design/Performance/Weight Values

4.0		•		
	DRY_WGT	LEN_WING	WETAREA	FUS VOL
A-4E	9624	69	1072	571
A-4F	10169	6 9	1094	581
A-6E	25558	108	2180	1231
A-7D	17792	8 5	1703	813
A-7E	18546	85	1703	813
A-10A	20822	111	2600	793
B-52G	152293	344	17645	12447
FB-111A	47480	144	3164	1889
F-106A	24000	108	2230	1321
F-111A	43032	137	3117	1889
F-111D	44341	137	3117	1889
F-111F	44341	137	3101	1889
F-4C	28545	97	1989	1270
F-4D	28702	97	1989	1270
F-4E	29663	101	1989	1270
F-5E	9459	75	947	660
F-14A	39037	126	3105	1822
F-15A	26768	107	2632	1495
F-15C	27425	107	2643	1716
F-16A	14447	80	1385	596
F-16B	14447	8 2	1398	596
F-18A	23050	94	2050	964
C-130B	67100	231	8 89 9	9060
C-130E	71990	231	8 89 9	9060
C-130H	73962	232	8 89 9	9060
KC-135A	97030	267	10954	11550
C-140A	21450	114	2734	1710
C-141B	140882	328	15350	19678
C-2A	31369	138	3729	2712
C-5A	320083	471	33712	86610
C-9A	61790	212	6 24 8	7647
KC-10A	240613	347	21101	413 00
E-2C	37498	138	3150	1346
EA-6B	32162	112	2295	1361
T-38A	6673	72	971	806
E-3A	188000	299		

	FUS AREA	CREWSIZE	PASSENGR	ENGINES
A-4E	478	1		1.00
A-4F	498	1		1.00
A-6E	8 98	2		2.00
A-7D	749	1		1.00
A-7E	749	1		1.00
A-10A	711	1		2.00
B-52G	4942	6		8.00
FB-111A	958	2 1 2 2 2 2 2		2.00
F-106A	9 85	1		1.00
F-111A	961	2		2.00
F-111D	961	2.		2.00
F-111F	961	2		2.00
F-4C	1000	2		2.00
F-4D	1000	2		2.00
F-4E	961	2		2.00
F-5E	583	1		2.00
F-14A	1647	2		2.00
F-15A	1405	1		2.00
F-15C	1468	1		2.00
F-16A	735	1		1.00
F-16B	551	2		1.00
F-18A	890	1		2.00
C-130B	3460	4	92	4.00
C-130E	3460	4	92	4.00
C-130H	3460	4	92	4.00
KC-135A	4420	4	80	4.00
C-140A	1050	4	0	4.00
C-141B	6683	5	209	4.00
C-2A	1336	3	28	2.00
C-5A	16646	5	360	4.00
C-9A	3221	3	40	2.00
KC-10A	9115	4	75	3.00
E-2C	1043	5	0	2.00
EA-6B	1017	4		2.00
T-38A	533	2		2.00
E-3A		23	0	

	MSN LEN	WHEELS	ACTUATOR	CONT SUR
A-4E	2.50	3	14.00	13.00
A-4F	2.50	3	14.00	13.00
A-6E	4.10	4	23.00	19.00
A-7D	1.50	4	26.00	12.00
A-7E	4.00	4	26.00	12.00
A-10A	1.70	3	23.00	14.00
B-52G	6.70	8	42.00	32.00
FB-111A	3.20	4	31.00	28.00
F-106A	1.50	4	9.00	6.00
F-111A	2.20	4	31.00	28.00
F-111D	2.30	4	31.00	28.00
F-111F	2.40	4	31.00	28.00
F-4C	1.20	4	24.00	17.00
F-4D	1.30	4	27.00	17.00
F-4E	1.20	4	27.00	17.00
F-5E	0.90	3	19.00	12.00
F-14A	3.70	4	41.00	23.00
F-15A	1.30	3	9.00	9.00
F-15C	1.30	3	9.00	8.00
F-16A	1.30	3	14.00	11.00
F-16B	1.30	3	14.00	11.00
F-18A	2.40	4	12.00	11.00
C-130B	2.40	6	15.00	14.00
C-130E	2.40	6	15.00	14.00
C-130H	2.80	6	15.00	14.00
KC-135A	3.00	10	29.00	24.00
C-140A	1.90	6		16.00
C-141B	3.30	10	29.00	
C-2A		4	25.00	18.00
C-5A	3.90	28	115.00	43.00
C-9A	1.20	6	24.00	20.00
KC-10A	4.40	10	39.00	52.00
E-2C	5.10	4	25.00	18.00
EA-6B	3.10	4	24.00	19.00
T-38A	1.20	3	0.00	
E-3A	8.20			

	ECSWT	KVA MAX	SUBSYS	FUEL TK	AV WGT
A-4E	63.00	11.00	17.00	2.00	
A-4F	63.00	11.00	17.00	2.00	
A-6E	420.00	65.00	34.00	6.00	
A-7D	263.00	27.50	38.00	7.00	1178.00
A-7E	263.00	27.50	38.00	7.00	11/0100
A-10A	210.00	60.00	20.00		1153.00
B-52G	670.00	160.00	76.00		8823.00
FB-111A	631.00	130.00	38.00	4.00	0020.00
F-106A	407.00	28.30	25.00	7.00	
F-111A	631.00	130.00	38.00	4.00	
F-111D	631.00	62.40	22.00	6.00	
F-111F	631.00	57.40	35.00	4.00	
F-4C	392.00	63.00	39.00	9.00	
F-4D	397.00	63.00	33.00	9.00	2135.00
F-4E	403.00	63.00	33.00	9.00	2200.00
F-5E	143.00	55.00	16.00	3.00	303.00
F-14A	1048.00	126.50	45.00	•	
F-15A	6 69. 00	50. 00	28.00	5.00	1910.00
F-15C	6 69. 00	130.00	30. 00	5.00	1938.00
F-16A	230.00	50.00	20.00	7.00	1103.00
F-16B	23.00	50.00	20.00	4.00	1103.00
F-18A		8 0. 00	14.00	8.00	
C-130B	1526.00	1 90. 00	2 0. 00	6.00	
C-130E	1836.00	190.00	2 0. 00	6.00	3249.00
C-130H	1836.00	1 90. 00	2 0. 00	6.00	3249.00
KC-135A	1473.00	120.00	12.00	10.00	
C-140A	608.00	28.00	8.00	6:00	2323.00
C-141B	2648.00	252.00	33.00	12.00	4240.00
C-2A	656.00	123.00	31.00	2.00	
C-5A	3636.00	484.00	72.00	12.00	4015.00
C-9A	1538.00	112.00	12.00	•	2143.00
KC-10A	2186.00	360.00	30.00	15.00	4181.00
E-2C	510.00	123.00	27.00	_	
EA-6B	585.00	92.00	34.00	6.00	
T-38A	325.00	16.00	14.00	4.00	493.00
E-3A				:	2353.00

A-4E	TOTSUBS	AV INSTA 203.00	DIF SUBS 14.00	BTU COOL 25.00
A-4F	15.00	70.00	15.00	25.00
A-6E	27.00	663.00	21.00	130.00
A-7D	31.00	523.00	31.00	75.00
A-7E	37.00	506.00	37.00	75.00
A-10A	16.00	203.00	16.00	15.80
B-52G	19.00	2949.00	19.00	180.00
FB-111A	26.00	1080.00	22.00	127.40
F-106A	16.00	801.00	14.00	95.00
F-111A	26.00	874.00	24.00	95.50
F-111D	28.00	1089.00	23.00	142.20
F-111F	25.00	992.00	25.00	95.50
F-4C	14.00	434.00	14.00	40.00
F-4D	27.00	496.00	27.00	40.00
F-4E	28.00	626.00	28.00	40.00
F-5E	10.00	207.00	10.00	35.00
F-14A	33.00	619.00	31.00	174.00
F-15A	25.00	393.00	25.00	153.00
F-15C	25.00	364.00	25.00	155.00
F-16A	18.00	250.00	18.00	40.00
F-16B	18.00	3 36. 00	18.00	40.00
F-18A	16.00	329.00	14.00	106.00
C-130B	23.00	658. 00	22.00	78.00
C-130E	27.00	851.00	25.00	105.00
C-130H	30.00	8 00. 00	25.00	78.00
KC-135A	22.00	654.00	22.00	130.00
C-140A	20.00	556. 00	20.00	34.00
C-141B	25.00	1241.00	18.00	118.00
C-2A	18.00	425.00	17.00	50. 00
C-5A	33.00	1377.00	25.00	318.00
C-9A	18.00	800.00	15.00	200.00
KC-10A	36.00	1389.00	25.00	145.00
E-2C	29.00	965.00	27.00	195.00
EA-6B	26.00		23.00	130.00
T-38A	9.00	59.00	5.00	
E-3A				

	WGT WING	WGT TAIL	WGT BODY
A-4E			
A-4F			
A-6E	2002		
A-7D	3269	832	3302
A-7E A-10A	5107	0.67	4747
B-52G	37369	9 67 6 03 0	4745
FB-111A	37309	0030	26731
F-106A			
F-111A			,
F-111D			
F-111F			
F-4C	4688	913	4801
F-4D	4688	913	4801
F-4E	4688	913	4801
F-5E	1349	328	2617
F-14A			
F-15A	3399	1098	6160
F-15C	3642	1104	6245
F-16A	1808	719	3118
F-16B F-18A			
C-130B	11626	2410	14000
C-130E	11626	3410 3410	14338 14338
C-130H	11626	3410	14338
KC-135A	25305	5 56 5	20732
C-140A	2954	880	3736
C-141B	35092	5907	36822
C-2A			
C-5A	100012	12719	121259
C-9A	11392	2791	11822
KC-10A	59202	14636	46987
E-2C			
EA-6B	500	* * * *	
T-38A	795	302	2140
E-3A	32654	6310	35193

	//Cm10	· .		
4 4 77	WGT13	WGT14	ENG WGT	WGT24
A-4E				
A-4F				
A-6E				
A-7D	1267	1196.00	4497	
A-7E				
A-10A	1486	836.00	4283	157.00
B-52G	12992	2591.00	36554	
FB-111A				
F-106A				
F-111A				
F-111D				
F-111F				
F-4C	1962	1001.00	9 96 8	
F-4D	1962	1001.00	9968	
F-4E	1962	1001.00	9 96 8	
F-5E	768	422.00	2247	
F-14A	. • •	722.00	2211	
F-15A	1305	800.00	6049	491.00
F-15C	1343	810.00	6091	481.00
F-16A	924	718.00	3671	482.00
F-16B	1067	718.00	2011	164.00
F-18A	1001	/18.00		170.40
C-130B	4873	1602 00		
C-130E	4873	1693.00	10000	451.00
C-130E	4873	1693.00	16696	460.00
KC-135A	11023	1693.00	16696	460.00
C-140A		2287.00	23386	945.00
	1081	939.00	3804	
C-141B	10850	3701.00	25471	535.00
C-2A	00000			367.00
C-5A	38282	7263.00	39091	1080.00
C-9A	4295	1639.00	10535	832.00
KC-10A	2 621 1	5773.00	43162	1486.00
E-2C				
EA-6B	_			
T-38A	5 27	394.00	1767	
E-3A	13330	3214.00	23321	500.00

A-4E A-4F A-6E A-7D A-7E A-10A B-52G A-10A F-111A F-106A F-111B F-111B F-111F F-4C 536.00 F-4B 536.00 F-5E 310.00 159.00 303.00 F-14A F-15A F-15A F-15A F-16A F-16B A41.00 F-16B A41.00 F-16B A41.00 F-18A C-130B C-130B C-130B C-140A C-135A A152.00 B-66.00 C-141B C-2A C-5A A046.00 A75.00 A73.00 A73.00 A73.00 A73.00 A73.00 A73.00 B-166.00 A73.00 A74.00 A75.00 A		WGT42	WGT45	WGT51/72
A-6E A-7D A-7E A-10A A-7E A-10A B-52G G-047.00 B-52G G-047.00 B-52G FB-111A F-106A F-111D F-111F F-4C F-4D F-4D F-536.00 F-4E F-536.00 F-5E B-10A F-15A F-15A F-15A F-16A F-16A F-16A F-16B F-16B F-16A F-16A F-16A F-15A F-15C F-16A F-15C F-16A F-16A F-16A F-16A F-16A F-16A F-16A F-16A F-15C F-16A F-16A F-16A F-16A F-16A F-16A F-16A F-16A F-16B F-16A C-130B C-130B C-130B C-140A C-130B C-140A C-130B C-140A C-130B C-140A C-140A C-140A C-140A C-140A C-140A C-140A C-140A C-2A C-5A C-9A C-5A C-9A C-9A C-1AC C-2C C-2C C-2C C-2C C-2C C-2A-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	A-4E			
A-7D A-7E A-10A A-7E A-10A B-52G B-111A F-106A F-111B F-111D F-111F F-4C B-4C B-4C B-4C B-5A B-5E B-10A B-15C B-14A B-15A B-15C B-16A B-16B B-16B B-16A B-16B B-18A C-130B C-130B C-130B C-130B C-130B C-130B C-130B C-140A B-15C B-16A B-16B B-1738A B-1766.00 B-17	A-4F			
A-7E A-10A A-70B A-10A B-52G A-10A B-52G A-10B B-52G A-10B B-111A F-106A F-111A F-111D F-111F F-4C F-4D F-4D F-5E F-4E F-536.00 F-4E F-15A F-15A F-15A F-15C A-10A F-16A F-16B A-10A B-16B	A-6E			
A-10A 732.00 373.00 1153.00 B-52G 6047.00 1915.00 8823.00 FB-111A F-106A F-111A F-111D F-111F F-4C 536.00 601.00 F-4E 536.00 601.00 F-5E 310.00 159.00 303.00 F-14A F-15A 583.00 431.00 1910.00 F-15C 607.00 433.00 1938.00 F-16A 441.00 309.00 1103.00 F-16B 441.00 309.00 1103.00 F-18A C-130B 2299.00 666.00 C-130E 2299.00 666.00 C-130H 2299.00 666.00 3249.00 C-140A 1937.00 338.00 C-140B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 493.00	A-7D	1094.00	210.00	1178.00
B-52G 6047.00 1915.00 8823.00 FB-111A F-106A F-111A F-111D F-111F F-4C 536.00 601.00 2135.00 F-4E 536.00 601.00 F-5E 310.00 159.00 303.00 F-14A F-15A 583.00 431.00 1910.00 F-15C 607.00 433.00 1938.00 F-16A 441.00 309.00 1103.00 F-16B 441.00 309.00 1103.00 F-18A C-130B 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00	A-7E			
FB-111A F-106A F-111A F-111D F-111F F-4C			373.00	
F-106A F-111A F-111D F-111F F-4C 536.00 F-4D 536.00 601.00 F-5E 310.00 159.00 303.00 F-14A F-15A 583.00 431.00 1910.00 F-15C 607.00 433.00 1938.00 F-16A 441.00 309.00 1103.00 F-18A C-130B 2299.00 666.00 C-130E 2299.00 666.00 C-130H 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00		6047.00	1915.00	8823.00
F-111A F-111D F-111F F-4C				
F-111D F-111F F-4C				
F-111F F-4C 536.00 F-4D 536.00 601.00 2135.00 F-4E 536.00 601.00 F-5E 310.00 159.00 303.00 F-14A F-15A 583.00 431.00 1910.00 F-16A 441.00 309.00 1103.00 F-16B 441.00 309.00 1103.00 F-18A C-130B 2299.00 666.00 C-130E 2299.00 666.00 C-130H 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 C-140A 1937.00 380.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 E-2C EA-6B T-38A 327.00 147.00 493.00				•
F-4C 536.00 F-4D 536.00 601.00 2135.00 F-4E 536.00 601.00 F-5E 310.00 159.00 303.00 F-14A F-15A 583.00 431.00 1910.00 F-15C 607.00 433.00 1938.00 F-16A 441.00 309.00 1103.00 F-18B 2299.00 666.00 C-130B 2299.00 666.00 C-130H 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 KC-135A 4152.00 880.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00				
F-4D 536.00 601.00 2135.00 F-4E 536.00 601.00 F-5E 310.00 159.00 303.00 F-14A F-15A 583.00 431.00 1910.00 F-15C 607.00 433.00 1938.00 F-16A 441.00 309.00 1103.00 F-16B 441.00 309.00 1103.00 F-18A C-130B 2299.00 666.00 C-130E 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 KC-135A 4152.00 880.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00				
F-4E 536.00 601.00 F-5E 310.00 159.00 303.00 F-14A F-15A 583.00 431.00 1910.00 F-15C 607.00 433.00 1938.00 F-16A 441.00 309.00 1103.00 F-16B 441.00 309.00 1103.00 F-18A C-130B 2299.00 666.00 C-130E 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 KC-135A 4152.00 880.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00				
F-5E 310.00 159.00 303.00 F-14A F-15A 583.00 431.00 1910.00 F-15C 607.00 433.00 1938.00 F-16A 441.00 309.00 1103.00 F-16B 441.00 309.00 1103.00 F-18A C-130B 2299.00 666.00 C-130E 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 KC-135A 4152.00 880.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00				2135.00
F-14A F-15A 583.00 431.00 1910.00 F-15C 607.00 433.00 1938.00 F-16A 441.00 309.00 1103.00 F-16B 441.00 309.00 1103.00 F-18A C-130B 2299.00 666.00 C-130E 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 KC-135A 4152.00 880.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00				
F-15A 583.00 431.00 1910.00 F-15C 607.00 433.00 1938.00 F-16A 441.00 309.00 1103.00 F-16B 441.00 309.00 1103.00 F-18A C-130B 2299.00 666.00 C-130E 2299.00 666.00 3249.00 KC-135A 4152.00 880.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00		310.00	159.00	303.00
F-15C 607.00 433.00 1938.00 F-16A 441.00 309.00 1103.00 F-16B 441.00 309.00 1103.00 F-18A C-130B 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 KC-135A 4152.00 880.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00		500.00		
F-16A				
F-16B				
F-18A C-130B 2299.00 666.00 C-130E 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 KC-135A 4152.00 880.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00				
C-130B 2299.00 666.00 3249.00 C-130E 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 KC-135A 4152.00 880.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00		441.00	309.00	1103.00
C-130E 2299.00 666.00 3249.00 C-130H 2299.00 666.00 3249.00 KC-135A 4152.00 880.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00		2200 00	666 00	
C-130H 2299.00 666.00 3249.00 KC-135A 4152.00 880.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00				2240 00
KC-135A 4152.00 880.00 C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00				
C-140A 1937.00 338.00 2323.00 C-141B 2823.00 1605.00 4240.00 C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00				3249.00
C-141B 2823.00 1605.00 4240.00 C-2A				2323 00
C-2A C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00				
C-5A 4046.00 4484.00 4015.00 C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00		2020.00	1003.00	7240.00
C-9A 1766.00 756.00 2143.00 KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00		4046.00	4484.00	4015.00
KC-10A 4862.00 4170.00 4181.00 E-2C EA-6B T-38A 327.00 147.00 493.00				
E-2C EA-6B T-38A 327.00 147.00 493.00				
T-38A 327.00 147.00 493.00				· · ·
	EA-6B			
E-3A 2353.00	T-38A	327.00	147.00	493.00
	E-3A			2353.00

APPENDIX H Dependent Variable Values

	FHBMA11	MH/MA11
A-4E		
A-4F		
A-6E		
A-7D	10.00	5.80
A-7E		
A-10A	11.30	5.20
B-52G	3.00	6.90
FB-111A	1.10	3.90
F-106A	10.10	7.40
F-111A	2.90	4.30
F-111D	2.50	4.40
F-111F	2.30	4.30
F-4C	5.10	6.20
F-4D	3.60	5.40
F-4E	4.20	6.70
F-5E	7.90	7.60
F-14A		
F-15A	3.00	5.70
F-15C	2.68	9.00
F-16A	8.32	5.20
F-16B	6.50	4.10
F-18A		
C-130B	3.40	5.70
C-130E	5.30	8.10
C-130H	4.70	9.80
KC-135A	4.00	6.00
C-140A	9.40	9.20
C-141B	3.63	6.30
C-2A		
C-5A	1.37	5.40
C-9A	10.30	4.40
KC-10A	41.90	5.10
E-2C		0,10
EA-6B		
T-38A	6.20	7.70
E-3A	4.80	2.90
F-04	,	2.50

	%OFF12	FHBMA12	MH/MA12
A-4E			
A-4F			
A-6E			
A-7D	0.06	46.00	7.60
A-7E			
A-10A	0.07	2 2. 80	4.50
B-52G	0.04	15.30	4.20
FB-111A	0.06	9.10	4.00
F-106A	0.00	41.30	3.20
F-111A	0.04	11.00	5.00
F-111D	0.04	18.40	5.30
F-111F	0.01	28.10	6.00
F-4C	0.13	5.60	5.40
F-4D	0.09	6.20	5.20
F-4E	0.07	6.20	4.70
F-5E	0.05	32.50	3.80
F-14A			
F-15A	0.10	18.50	8.50
F-15C	0.05	26.40	10.00
F-16A	0.10	28.80	7.00
F-16B	0.11	14.90	6.50
F-18A			
C-130B	0.18	13.60	6.40
C-130E	0.30	14.70	8.80
C-130H	0.09	21.40	11.90
KC-135A	0.27	24.90	10.20
C-140A	0.44	20.80	7.30
C-141B	0.39	10.00	10.40
C-2A			
C-5A	0.18	1.90	7.70
C-9A	0.29	8.90	5.00
KC-10A	0.05		7.70
E-2C			
EA-6B			
T-38A	0.16	29.40	4.60
E-3A		8.90	7.90

	FHBMA13	MH/MA13	%OFF EQP
A-4E			·
A-4F			
A-6E			
A - 7D	14.40	9.90	0.34
A-7E			
A-10A	18.50	8.50	0.39
B-52G		6.20	0.14
FB-111A		6.40	0.34
F-106A	11.20	6.80	0.26
F-111A	8.70	10.10	0.34
F-111D	10.70	11.50	0.30
F-111F		9.60	0.27
F-4C	11.30	11.50	0.54
F-4D	8.40	7.30	0.31
F-4E	12.00	10.60	0.41
F-5E	18.00	11.90	0.50
F-14A			
F-15A	13.00	9.50	0.29
F-15C	15.30	13.60	0.28
F-16A	12.40	6.00	0.45
F-16B	10.30	4.30	0.29
F-18A			0.20
C-130B	12.80	10.90	0.32
C-130E	13.30	9.40	0.23
C-130H	12.30	11.70	0.13
KC-135A	6.20	9.10	0.49
C-140A	10.60	10.90	0.47
C-141B	7.50	6.60	0.19
C-2A			0.10
C-5A	1.40	5.90	0.23
C-9A	15.70	5.90	0.31
KC-10A	10110	4.80	0.01
E-2C		1.00	
EA-6B			
T-38A	12.70	6.60	0.33
E-3A	12.10	7.90	0.00
_ VA		1.30	

	FHBMA14	MH/MA14	%OFF EQP
A-4E	3.93		
A-4F	2.76		
A-6E	4.28		
A-7D	14.56	10.60	0.15
A-7E	7.28		
A-10A	17.14	6.00	0.13
B-52G	7.08	5.70	0.18
FB-111A	4.36	6.00	
F-106A	22.49	9.70	0.08
F-111A	6.02	9.90	0.16
F-111D	7.21	9.30	0.14
F-111F	9.61	9.60	0.07
F-4C	9.35	11.30	0.04
F-4D	9.80	9.80	0.06
F-4E	9.65	11.90	0.13
F-5E	21.70	11.40	0.22
F-14A	4.48		
F-15A	12.95	10.90	0.08
F-15C	14.35	15.10	0.08
F-16A	15.53	7.30	0.20
F-16B	14.34	5.80	0.16
F-18A	7.47		
C-130B	14.38	6.60	
C-130E	18.94	7.30	0.04
C-130H	18.32	9.40	0.03
KC-135A	6.60	6.30	0.19
C-140A	11.80	7.70	0.12
C-141B	6.80	6.50	0.06
C-2A	8.57		
C-5A	3.80	6.30	0.09
C-9A	21.98	3.90	0.09
KC-10A		6.10	0.05
E-2C	6.70		
EA-6B	4.24		
T-38A	17.53	8.90	0.29
E-3A	4.78	2.10	0.07

	FHBMA23	MHMA23	%OFF EQP
A-4E			
A-4F			
A-6E			
A-7D	21.70	22.60	0.54
A-7E			•
A-10A	20.40	29.80	0.73
B-52G	4.60	13.70	0.62
FB-111A	6.20	19.30	0.66
F-106A	13.20	24.20	0.45
F-111A	5.70	17.20	0.43
F-111D	5.20	13.70	0.36
F-111F	9.30	24.70	0.63
F-4C	16.50	25.50	0.45
F-4D	20.50	31.50	0.52
F-4E	16.50	41.90	0.63
F-5E	22.10	58.80	0.82
F-14A			
F-15A	11.20	36.00	0.62
F-15C	11.00	31.50	0.56
F-16A	22.00	3 2.9 0	0.69
F-16B	20.50	11.70	0.21
F-18A			
C-130B	7.60	10.20	0.24
C-130E	6.80	12.80	0.42
C-130H	6.40	13.90	0.20
KC-135A	5.00	14.10	0.58
C-140A	7.10	12.20	0.34
C-141B	4.40	14.20	0.55
C-2A			
C-5A	1.40	11.40	0.64
C-9A	26.20	6.40	
KC-10A	28.40	10.70	
E-2C			
EA-6B			
T-38A	20.20	25.00	0.68
E-3A	8.60	4.10	0.00

	FMA41/47	MHMA4147	%OFF EQP-41	%OFF EQP-47
A-4E				
A-4F				
A-6E				
A-7D	29.20	6.50	0.22	0.12
A-7E \				
A-10A	17.50	4.50	0.17	0.08
B-52G	18.30	6.20	0.04	
FB-111A	5.90	5.20		
F-106A	22.10	7.20	0.12	0.05
F-111A	8.80	6.50	0.26	0.33
F-111D	9.90	10.40	0.31	0.23
F-111F	10.00	10.80	0.24	0.32
F-4C	16.60	6.90	0.03	0.10
F-4D	19.90	9.20	0.03	0.17
F-4E	19.40	9.20	0.04	0.20
F-5E	35.80	6.70	0.47	
F-14A				
F-15A	17.70	8.60	0.19	0.15
F-15C	19.40	12.50	0.25	
F-16A	28.60	4.90	0.16	
F-16B	21.10	4.40	0.16	0.13
F-18A				
C-130B	11.00	6.10	0.07	0.05
C-130E	12.80	6.60	0.06	0.05
C-130H	11.10		0.07	0.02
KC-135A	28.50	8.20	0.15	0.07
C-140A	19.80	7.00	0.19	0.06
C-141B	9.30	5.30	0.14	0.11
C-2A				
C-5A	4.20	5.90	0.10	0.02
C-9A		5.00		0:04
KC-10A	38.70	5.20		
E-2C				
EA-6B				
T-38A	41.60	7.30	0.34	0.12.

	FMA42/44	MHMA4244	%OFF EQP - 42	%OFF EQP - 44
A-4E				
A-4F				
A-6E				
A-7D	26.30	6.40	0.38	0.22
A-7E				
A-10A	24.40	6.50	0.48	0.17
B-52G	9.00	6.10	0.30	0.04
FB-111A	9.00	7.30	0.31	
F-106A	18.80	4.60	0.20	0.12
F-111A	7.90	6.80	0.15	0.26
F-111D	9.40	9.90	0.16	0.31
F-111F	17.90	5.20	0.30	0.24
F-4C	16.00	9.40	0.33	0.03
F-4D	15.70	6.70	0.35	0.03
F-4E	16.30	8.20	0.31	0.04
F-5E	36.30	7.90		0.47
F-14A				
F-15A	12.60	6.10	0.23	0.19
F-15C	14.90		0.16	0.25
F-16A	14.50	5.70	0.52	0.16
F-16B	13.20	4.90	0.53	0.16
F-18A				
C-130B	12.80	4.50	0.11	0.07
C-130E	14.40	5.80	0.15	0.06
C-130H	12.40	8.30	0.05	0.07
KC-135A	10.00	7.30	0.36	0.15
C-140A	20.20	5.70	0.25	0.19
C-141B	39.80		0.28	0.14
C-2A				
C-5A	2.50	4.10	0.29	0.10
C-9A	20.70	4.40	0.19	
KC-10A	81.70	4.70		
E-2C				
EA-6B				
T-38A	31.20	6.60	0.47	0.34
E-3A	8.50	4.60		•••

	FHBMA45	MH/MA45	%OFFEQP
A-4E			
A-4F			•
A-6E			
A-7D	44.40	9.10	0.13
A-7E		•	
A-10A	95.80	9.80	0.18
B-52G	9.60	4.60	0.08
FB-111A	12.30	6.00	0.29
F-106A	35.20	8.30	0.12
F-111A	20.50	8.20	0.11
F-111D	18.50	8.60	0.13
F-111F	28.20	7.10	0.14
F-4C	30.40	8.70	0.07
F-4D	26.30	8.30	0.09
F-4E	44.70	11.90	0.19
F-5E	183.00	9.50	0.11
F-14A			
F-15A	19.70	8.90	0.08
F-15C	25.40		0.09
F-16A	75.70	4.50	0.10
F-16B	62.70	4.00	0.17
F-18A			
C-130B	17.00	5.40	0.07
C-130E	18.70	5.80	0.05
C-130H	19.40	9.00	0.03
KC-135A	14.30	6.20	0.11
C-140A	27.30	4.50	0.04
C-141B	16.00	5.00	0.04
C-2A			
C-5A	4.70	4.90	0.05
C-9A	73.80	4.10	0.01
KC-10A	6 0. 50	5.70	0.33
E-2C			
EA-6B			
T-38A	91.60	5.90	0.18
E-3A	17.60	2.40	0.17
E-3A			

, 1	=1440406			
	FMA49/96	MHMA4996	%OFF EQP-96	SOFF EQP-49
A-4E				
A-4F				
A-6E	004 00	2.52	2 22	
A-7D	234.00	8.50	0.98	0.09
A-7E				
A-10A	235.00	7.60	0.98	0.06
B-52G	55.50	7.60		0.08
FB-111A	40.10	3.60	0.47	0.01
F-106A	60.30	13.80		0.08
F-111A	9 5. 00	5.30		0.05
F-111D	108.40	10.50		0.00
F-111F	121.80	5.70		0.05
F-4C	2 36. 60	5.00	•	0.02
F-4D	2 36. 80	4.90		0.00
F-4E	262. 10			0.00
F-5E	610.80	6.40		0.00
F-14A				
F-15A	83.60	7.20		0.03
F-15C	131.10	13.20		0.02
F-16A	5 61. 10	7.70	0.96	0.15
F-16B	492.70	4.00	0.24	• • • • • • • • • • • • • • • • • • • •
F-18A				
C-130B	34.70	4.00	0.23	0.05
C-130E	48.80	7.10	0.57	0.08
C-130H	34.20	6.60	0.72	0.04
KC-135A	46.70	3.40	0.31	0.13
C-140A	70.50	4.10		0.05
C-141B	34.60	8.70		0.45
C-2A.				0.43
C-5A	10.00	6.40		
C-9A	201.40	5.70		0.03
KC-10A	175.90	4.30		0.03
E-2C				
EA-6B				
T-38A	331.50	4.50	0.69	0.00
E-3A	45.30	2.20	0.14	0.13
LUA	.0.00	2.20	V • 1 T	0.13

AVIONICS

	FHBMA	MH/MA	%OFF EQP
A-4E			
A-4F			
A-6E			
A-7D	13.80	7.30	0.40
A-7E			
A-10A	11.70	7.80	0.31
B-52G	3.60	6.80	0.29
FB-111A	3.20	10.20	0.52
F-106A	5.30	5.70	0.28
F-111A	5.70	13.80	0.36
F-111D	4.50	13.00	0.41
F-111F	6.50	11.20	0.48
F-4C	4.60	8.70	0.38
F-4D	3.00	9.00	0.43
F-4E	2.30	8.80	0.36
F-5E	13.40	8.20	0.35
F-14A			
F-15A	7.20	12.60	0.40
F-15C	6.80	13.60	0.46
F-16A	17.10	4.70	0.29
F-16B	10.90	4.90	0.19
F-18A			
C-130B	4.70	8.70	0.41
C-130E	4.40	9.60	0.44
C-130H	3.20	11.00	0.23
KC-135A	2.60	8.00	0.35
C-140A	11.30	11.80	0.53
C-141B	4.40	7.00	0.31
C-2A			
C-5A	1.50	8.00	0.29
C-9A		5.00	
KC-10A	9.60	5.30	
E-2C			
EA-6B			
T-38A	14.40	4.60	0.23
E-3A	4.80	8.50	0.29

NASA - WBS SUBSYSTEM ROLL-UP

	FLY HRS	ME42	MH42	ME44	MH44	FHBMA	MH/MA	ME41
A-7D	150,924	2,490	21,328	3 ,252	15,301	26.3	6.4	4,212
A-10	442,398	11,115	92,786	7,023	24,573	24.4	6.5	17,156
B-52G	136,040	8,357	62,352	6,788	30,305	9.0	6.1	5,070
FB-111A	40,127	2,005	12,677	2,474	19,837	9.0	7.3	5,950
F-106A	21,836	519	3,616	644	1,772	18.8	4.6	536
F-111A	16,149	629	4,220	1,413	9,641	7.9	6.8	1,578
F-111D	40,114	1,952	18,390	2,301	23,849	9.4		3,487
F-111F	31,048	607	4,508	1,127	4,553	17.9	5.2	2,666
F-4C	30,998	920	13,427	1,014	4,672	16.0	9.4	1,144
F-4D	153,424	3,717	39,744	6,067	26,083	15.7	6.7	4,785
F-4E	204,993	4,795	62,772	7,789	40,977	16.3	8.2	7,009
F-5E	47,034	633	5,893	662	4,336	36.3	7.9	1,093
F-15A	172,258	4,606	41,376	9,078	42,654		6.1	8,239
F-15C	103,690	2,157	37,844	4,780	46,705	14.9	12.2	4,632
F-16A	350,102	13,672	112,957	10,501	25,724	14.5	5.7	8,614
F-16B	67,002	2,627	18,909	2,454	5,900	13.2	4.9	2,123
C-130B	88,133	3,732	18,797	3,138	12,052	12.8	4.5	6,379
C-130E	514,595	17,216	118,821	18,643	90,800	14.4	5.8	32,261
C-130E	42,802	1,707	19,013	1,731	9,476	12.4	8.3	2,711
KC-135A	278,012	13,331	128,443	14,335	73,488	10.0	7.3	2,711
	5,783	119	930	167	689	20.2	5.7	237
C-140A C-141B	572,817	13,382	100,299	1,014	157,424	39.8	17.9	48,923
	109,290	17,043	91,017	27,203	88,938	2.5	4.1	-
C-5A	40,070	352	4,632	1,583	3,804	20.7	4.4	19,972
C-9A	67,738	829	3,869	1,303	3,004	81.7	4.7	1,132 983
KC-10A		6,757	50,917	8,003	46,256	31.2	6.6	
T-38	460,850	2,165	13,129	1,672	4,614	8.5	4.6	8,028
E-3A	32,693	2,103	13,123	1,072	4,014	0.5	4.0	4 _. ,389
NAVY A/C								
A4-E	6,345	1,141	5 ,655	1,040	2,722	2.9	3.8	312
A-4F	9,871	9,871	5,582	834	2,636	0.9	0.8	123
EA-6B	28,023	7,548	46,800	4,195	10,042	2.4	4.8	2,213
A-6E	64,096	28,550	163,801	13,474	36,832	1.5	4.8	5,539
	15,573	-		1,552	4,867	5.2	4.5	769
A-7E	13,373	1,432	0,401	1,332	4,007	J. Z	4.5	, 709
C-2A	12,193	1,246	8,315	1,997	4,277	3.8	2.0	1 076
E-2C	32,258	4,374	21,301	5,483	9,247	3.3	3.9	1,076
F-18A	65,846	3,270	26,994	2,742	11,929	11.0	3.1	4,956
F-14A	92,011	13,954	96,743	•	40,522		6.5	4,510
	72,011	,,,,,,	20,743	,210	70,522	3.3	4.9	9,695

	MH41	ME47	MH47	FH BMA	MH/MA	ME49	MH49	ME96	MH96	FHBMA	MH/MA
A-7D	28,254	9 51	5 ,265	2 9.2	6.5	628	3,940	17	1,549	234.0	8.5
A-10	83,967		30,982	17.5	4.5	1,841	9,675	42	4,631	234.9	7.6
B-52G	34,123	2.376	12,170	18.3	6.2	2,452	18,576			55.5	7.6
FB-111A	33,600	_	2,080	5.9	5.2	9 87	3,611	14	40	40.1	3.6
F-106A	5,594	450	1,460	22.1	7.2	160	909	2 02	4,078	60.3	13.8
F-111A	10,554	266	1,395	8.8	6.5	170	839		63	95.0	5.3
F-111D	38,546		3,553	9 .9	10.4	359	3 ,838	11	34	108.4	10.5
F-111F	30,908	440	2,497	10.0	10.8	255	1,373		77	121.8	5 .7
F-4C	9,977	725	2,934	16.6	6 .9	131	623		30	236.6	5.0
F-4D	53,379		17,204	19.9	9.2	648	3 ,029		159	236.8	4.9
F-4E	66,431		30,872	19.4	9.2	782	6 ,267		2,661	2 62.1	11.4
F-5E	7,143	2 19	1,594	3 5.8	6.7	77	482		10	610.8	6.4
F-15A	76,389		7,119	17.7	8.6	2,060	14,870			83.6	7.2
F-15C	61,708	722	5 ,255	19.4	12.5	791	10,422			131.1	13.2
F-16A	44,539	3,6 18	15,535	28.6	4.9	578	2,642	46	2,154	5 61.1	7 .7
F-16B	10,883	1,051	3,080	21.1	4.4	115	450	21	96	492.7	4.0
C-130B	38,827	1,645	9,833	11.0	6.1	2,534	10,095	8	39	34.7	4.0
C-130E	218,207	8,070	46,153	12.8		10,427	73,915	128	713	48.8	7.1
C-130H	112,940		8,699	11.1	31.6	1,217	7,820	35	487	34.2	6 .6
KC-135A	48,834	7,051	31,158	28.5	8.2	5,917	20,440	40	70	46.7	3.4
C-140A	1,728	55	3 07	19.8	7.0	82	3 39			70.5	4.1
C-141B	264,346	12,809	61,812	9.3			144,805			34.6	8.7
C-5A	125,125	6,143	29,388	4.2		11,047	71,029			9.9	6.4
C-9A	5,901	453	2,085	25.3	5.0	199	1,129			201.4	5.7
KC-10A	6,143	769	2,939	38.7	5.2	385	1,637			175.9	4.3
T-38	59,693		20,774	41.6	7.3		6,199	13	78	3 31.5	4.5
E-3A	16,598	5 69	1,507	6 .6	3.7	631	1,492	91	118	45.3	2.2
NAVY A/C	2										
A4-E		450	1 000								
A-4F	1,772	460	1,006	8.2	3.6						
EA-6B	406	148	476	36.4	3.3						
A-6E	8,156 18,818	1,720 2,478	5, 263 8, 259	7.1 8.0	3.4 3.4						
A-7E	2,979	262	1,180	15.1	4.0						
	2,373	202	1,180	15.1	4.0						
C-2A	5,429	6 49	2 ,528	7.1	4.6						
E-2C	20,960	1,484	5,628	5.0	4.1						
F-18A	24,310	736	2,439	12.6	5.1						
F-14A	52,846	2,108	7,914	7.8	5.1						

NASA - AVIONICS SUBSYSTEM ROLL-UP

	FLY I	HRS	MES	51	MH	51	OM	H51	ME	52	MH	52	OM	H5 2	ME55	
A-7D	150,9	924	2,9	901	14	, 231	. 12	,130								
A-10	442,		16.6	536			97	,617	2.	759	31	,026	20	,634	2 100	
B-52G	136,0					,032		,309		976		,136		,842	2,108 8 97	
FB-111/			3,8			,184		,193		506		,979		,586	5 56	
F-106A	21,8		•	329		, 264		,771		886		,110	_	,890	3 91	
F-111A	16,			38		,008		,503		779		,999		,047	98	
F-111D	40,		2,3			,548		,062		848		,300		,019	88	
F-111F	31,0		1,3			,650		,552		489		,900		,403	00	
F-4C	30,9		1,5		_	,110		, 224	•	604		,176		,699	125	
F-4D	153,4		7,6		_	,919		,052		125		218		,015	1,560	
F-4E	204,9							,896		159		104		,584	4,087	
F-5E	47,0		1,5			, 423		, 239	-	404		925		,309	141	
F-15A	172,		5,9			,543		,310		380		959		,312	141	
F-15C	103,6		2,6			,119		,647		132		917		,875	1,238	
F-16A	350,1		5,5			,894		630	-,.		,			,0,5		
F-16B	67,0		1,6			, 366		,978							1,763 231	
C-130B	88,1		2,8			,689		,071	2.	412	19.	299	14	,000	120	
C-130E	514,5					,149			14.			807		,100	918	
C-130H	42,8		1,3			,944		,113		494		797		,390	85	
KC-135A														,870	0.5	
C-140A	5,7		.,,	84		428		393	,	78	,	406	,,	324		
C-141B	572,8	117	31.3		189				20.		160.		113		4,800	
C-5A	109,2		9,8			,871					116.				25,744	
C-9A	40,0			170		875		698		368		823		,805	23,144	
KC-10A	67,7			358		014		,000		497	•	520		,520		
T-38	460,8					,463		897		576		710		,636	154	
E-3A	32,6		1,3			374		255		458		903		,903	86	
2 0	,	,,,,	-,-		- 1	,		,			-,			,,,,,	30	
MH55	OMH55	м	E 61	1	M61	0	MH61	M	E62	MI	162	омн	52	ME6:	3 MH63	омн63
MH55	OMH55	М	E 61	1	/H61	o	MH61									
			E 61	1	/H61	o	MH61	1	,410	13,	, 928	5,3	349	1,9	71 15,137	9,277
16,058	10,215	5						1 5	,410	13,		5,3	349	1,97 5,44	71 15,137 42 39,039	9,277 21,329
16,058 2,787	10, 21 5	5 L 1	,027	, ;	12,0	26	8,019	1 5	,410	13,	, 928	5,3	349	1,9; 5,44 3,8;	71 15,137 42 39,039 71 30,589	9,277 21,329 14,837
16,058 2,787 2,923	10,215 2,551 1,518	5 L 1 B		, ;		26		1 5	,410	13,	, 928	5,3	349	1,9; 5,4; 3,8; 2,9;	71 15,137 42 39,039 71 30,589 22 25,120	9,277 21,329 14,837 9,943
16,058 2,787 2,923 1,807	10,215 2,551 1,518 1,672	5 1 1 3	,027 867	, ;	12,02 12,16	26 51	8,019 3,870	1 5 9	,410	13,	, 928	5,3	349	1,93 5,44 3,83 2,93	71 15,137 42 39,039 71 30,589 22 25,120 05 2,084	9,277 21,329 14,837 9,943 1,584
16,058 2,787 2,923 1,807 920	10,215 2,551 1,518 1,672 857	5 1 1 3	,027 867 274	, 1 , 3	12,02 12,16 4,02	26 51 26	8,019 3,870 2,039	1 5 9	,410	13,	, 928	5,3	349	1,93 5,44 3,83 2,93	71 15,137 42 39,039 71 30,589 22 25,120 05 2,084 48 1,752	9,277 21,329 14,837 9,943 1,584 1,329
16,058 2,787 2,923 1,807 920 380	10,215 2,551 1,518 1,672 857	5 1 1 3 2 7 1	,027 867 274 ,321	, 1 , 1	12,02 12,16 4,02	26 51 26 53	8,019 3,870 2,039 7,794	1 5 9	,410	13,	, 928	5,3	349	1,93 5,44 3,83 2,93 50 24 1,01	71 15,137 42 39,039 71 30,589 22 25,120 05 2,084 48 1,752 L1 9,058	9,277 21,329 14,837 9,943 1,584 1,329 6,236
16,058 2,787 2,923 1,807 920 380 678	10,215 2,551 1,518 1,672 857 357	i 1 i 1 i 1	,027 867 274	, 1 , 1	12,02 12,16 4,02	26 51 26 53	8,019 3,870 2,039	1 5 9	,410	13,	, 928	5,3	349	1,93 5,44 3,83 2,93 50 24 1,03	71 15,137 42 39,039 71 30,589 22 25,120 05 2,084 48 1,752 11 9,058 34 4,157	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,990
16,058 2,787 2,923 1,807 920 380 678 447	10,215 2,551 1,518 1,672 857 357 508	5 1 1 3 2 7 1	,027 867 274 ,321	, 1 , 1	12,02 12,16 4,02	26 51 26 53	8,019 3,870 2,039 7,794	1 5 9	,410	13,	, 928	5,3	349	1,93 5,44 3,83 2,93 50 24 1,03	71 15,137 42 39,039 71 30,589 22 25,120 05 2,084 48 1,752 11 9,058 34 4,157 29 5,713	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,990 3,487
16,058 2,787 2,923 1,807 920 380 678 447 10,566	10,215 2,551 1,518 1,672 857 357 508 385 9,004	5 1 1 3 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,027 867 274 ,321	, 1 , 1	12,02 12,16 4,02	26 51 26 53	8,019 3,870 2,039 7,794	1 5 9	,410	13,	, 928	5,3	349 071	1,97 5,44 3,87 2,92 50 24 1,01 63 87,03	71 15,137 42 39,039 71 30,589 22 25,120 05 2,084 48 1,752 11 9,058 34 4,157 29 5,713 23 37,631	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,990 3,487 25,045
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765	10,215 2,551 1,518 1,672 857 357 508 385 9,004	i 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,027 867 274 ,321	, 1 , 1	12,02 12,16 4,02	26 51 26 53	8,019 3,870 2,039 7,794	1 5 9	,410 ,770	13,	,928 ,925	5,: 27,0	349 071	1,93 5,44 3,83 2,93 50 24 1,03 63 7,03	71 15,137 42 39,039 71 30,589 22 25,120 05 2,084 48 1,752 11 9,058 34 4,157 29 5,713 23 37,631 45 73,916	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,990 3,487 25,045 54,727
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888	10,215 2,551 1,518 1,672 857 357 385 9,004 14,259	5 1 3 2 7 7 1 1 3 3 4	,027 867 274 ,321	, 1 , 1	12,02 12,16 4,02	26 51 26 53	8,019 3,870 2,039 7,794	1 5 9	,410	13,	, 928	5,: 27,0	349 071	1,93 5,44 3,83 2,93 50 24 1,03 63 7,03	71 15,137 12 39,039 71 30,589 22 25,120 05 2,084 1,752 11 9,058 34 4,157 29 5,713 23 37,631 45 73,916 24 4,833	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,990 3,487 25,045 54,727 2,945
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867	10,215 2,551 1,518 1,672 857 357 385 9,004 14,259 729 11,570	5 1 1 3 2 7 1 1 1 1 1	,027 867 274 ,321	, 1 , 1	12,02 12,16 4,02	26 51 26 53	8,019 3,870 2,039 7,794	1 5 9	,410 ,770	13,	,928 ,925	5,: 27,0	349 071	1,9: 5,44 3,8: 2,9: 50 2,0: 6: 8: 7,0: 10,66	71 15,137 12 39,039 71 30,589 22 25,120 05 2,084 1,752 11 9,058 34 4,157 29 5,713 23 37,631 45 73,916 23 4,833 15 63,649	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,990 3,487 25,045 54,727 2,945 36,555
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818	10,215 2,551 1,518 1,672 857 357 508 385 9,004 14,259 11,570	5 1 3 2 2 7 7 1 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	,027 867 274 ,321	, 1 , 1	12,02 12,16 4,02	26 51 26 53	8,019 3,870 2,039 7,794	1 5 9 9 1 7	,410 ,770	13, 42,	,928 ,925	5,3 27,0	349 071 78	1,9: 5,44 3,8: 2,9: 5(2,4) 1,0: 6: 8: 7,0: 10,64	71 15,137 42 39,039 71 30,589 22 25,120 05 2,084 48 1,752 11 9,058 34 4,157 29 5,713 23 37,631 43 4,833 15 63,649 19 48,262	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,990 3,487 25,045 54,727 2,945 36,555 27,053
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818 3,314	10,215 2,551 1,518 1,672 857 357 508 9,004 14,259 11,570 11,907 3,193	1 1 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	,027 867 274 ,321	, 1 , 1	12,02 12,16 4,02	26 51 26 53	8,019 3,870 2,039 7,794	1 5 9 9 1 7	,410 ,770 17	13,42,	,928 ,925	5,3 27,0	78 157	1,91 5,44 3,81 2,91 50 24 1,01 6,81 10,66 6,81 4,21 6,28	71 15,137 42 39,039 71 30,589 22 25,120 05 2,084 1,752 11 9,058 34 4,157 29 5,713 23 37,631 45 73,631 45 73,916 23 4,833 15 63,649 19 48,262 36 28,966	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,990 3,487 25,045 54,727 2,945 36,555 27,053 19,238
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818 3,314 407	10,215 2,551 1,518 1,672 857 357 508 9,004 14,259 11,570 11,907 3,193	5 1 1 3 2 7 1 3 5 4 7	,027 867 274 ,321 641	7 3	12,02 12,16 4,02 21,05 8,76	26 51 26 53 59	8,019 3,870 2,039 7,794 3,369	1 5 5 1 7	,410 ,770	16,	,928 ,925	5,3 27,0	78 157	1,9: 5,44 3,8: 2,9: 50 24 1,0: 6: 7,0: 10,6: 6,8: 4,2: 6,2: 1,0:	71 15,137 42 39,039 71 30,589 22 25,120 2,084 1,752 1 9,058 34 4,157 29 5,713 23 37,631 43 7,631 43 4,833 15 63,649 19 48,262 36 28,966 30 6,160	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,990 3,487 25,045 54,727 2,945 36,555 27,053 19,238 3,559
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818 3,314 407 766	10,215 2,551 1,518 1,672 857 357 508 9,004 14,259 11,570 11,907 3,193 391 690	5 1 3 2 7 7 1 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	,027 867 274 ,321 641	, 1 1 1 1	12,02 12,16 4,02 21,09 8,76	26 51 26 53 59	8,019 3,870 2,039 7,799 3,369	1 5 5 5 5 1 7 7 3 7	,410 ,770 17 ,622 998 441	13,42, 16,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	,928 ,925 ,519 ,010	5,3 27,0	78 157 906 185	1,95 5,44 3,85 2,95 2,4 1,05 6,25 6,25 1,05	71 15,137 42 39,039 71 30,589 22 25,120 2,084 1,752 1 9,058 34 4,157 29 5,713 23 37,631 43 7,631 43 4,833 15 63,649 19 48,262 36 28,966 30 6,160 33,966	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,990 3,487 25,045 54,727 2,945 54,727 2,945 36,555 27,053 19,238 3,559 2,428
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818 3,314 407 766 4,813	10,215 2,551 1,518 1,672 857 357 508 9,004 14,259 11,570 11,907 3,193 391 690 4,583	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,027 867 274 ,321 641		12,02 12,16 4,02 21,09 8,76	26 51 26 53 59	8,019 3,870 2,039 7,794 3,369	1 5 5 5 1 7 7 3 3 7 2	,410 ,770 17 ,622 998 441	13, 42, 16, 4, 18,	,928 ,925 122 ,519 ,010	11,3 27,0 11,3 2,3 2,1	78 157 906 185	1,95 5,44 3,83 2,93 1,03 1,06 6,83 4,23 6,70 6,83 1,04 5,16	71 15,137 42 39,039 71 30,589 22 25,120 2,084 1,752 1 9,058 34 4,157 29 5,713 23 37,631 43 7,631 43 4,833 15 63,649 19 48,262 36 28,966 30 6,160	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,990 3,487 25,045 54,727 2,945 54,727 2,945 36,555 27,053 19,238 3,559 2,428
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818 3,314 407 766	10,215 2,551 1,518 1,672 857 357 508 9,004 14,259 11,570 11,907 3,193 391 690	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,027 867 274 ,321 641 ,350 ,332		12,02 12,16 4,02 21,05 8,76	26 51 26 53 59 60 20 274	8,019 3,870 2,039 7,799 3,360 6,960 8,334 4,550	1 5 5 5 1 7 7 3 3 7 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,410 ,770 17 ,622 998 441	13, 42, 16, 4, 18, 4,	,928 ,925 ,519 ,010 ,141 ,712	11,3 2,3 11,0 3,3	78 157 906 185 058	1,95 5,44 3,85 2,95 1,05 1,06 6,85 4,25 6,85 1,08 5,16	71 15,137 42 39,039 71 30,589 22 25,120 20,084 48 1,752 41 9,058 44,157 29 5,713 23 37,631 45 73,916 48,262 48,262 636 28,266 60 3,966 61 27,885	9,277 21,329 14,837 9,943 1,584 6,236 1,329 6,236 1,329 25,045 54,727 2,945 36,555 27,053 19,238 3,559 2,428 16,507 1,454
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818 3,314 407 766 4,813	10,215 2,551 1,518 1,672 857 357 508 9,004 14,259 11,570 11,907 3,193 391 690 4,583	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,027 867 274 ,321 641		12,02 12,16 4,02 21,05 8,76 56,10 9,27	26 51 26 53 59 60 20 274	8,019 3,870 2,039 7,799 3,369	1 5 5 5 5 1 7 7 3 3 7 2 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	,410 ,770 17 ,622 998 441 ,378 ,533	13, 42, 16, 4, 18, 4,	,928 ,925 ,519 ,010 ,141 ,712 ,083	11,3 27,0 11,3 2,3 11,0	78 157 906 185 058 302	1,95 5,44 3,85 2,95 1,05 1,06 6,85 4,25 6,28 5,16 5,16	71 15,137 42 39,039 71 30,589 22 25,120 2,084 4,157 29 5,713 23 37,631 45 73,916 23 4,833 15 63,649 19 48,262 36 48,262 36 6,160 3,966 3,966 3,966 3,966 3,966 3,966	9,277 21,329 14,837 9,943 1,584 6,236 1,329 6,236 1,329 25,045 54,727 2,945 36,555 27,053 19,238 3,559 2,428 16,507 1,454
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818 3,314 407 766 4,813 854	10,215 2,551 1,518 1,672 857 3508 385 9,004 14,259 11,570 11,907 3,193 391 4,583 825	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,027 867 274 ,321 641 ,350 ,377 ,811 34		12,02 12,16 4,02 21,05 8,76 66,10 66,20 33,87	226 53 55 55 55 60 74 75 1	8,019 3,870 2,039 3,360 6,960 6,960 4,550 9,610	1 5 5 5 1 7 7 3 3 7 2 1 7 5 5 5 1 7 7 5 5 1 1 7 5 5 1 1 7 5 5 1 1 7 5 1 1 1 1	,410 ,770 17 ,622 998 441 ,378 ,533 382	13,42, 16,4,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	,928 ,925 ,519 ,010 ,141 ,712 ,083 ,411	11,3 27,0 11,3 2,3 11,3	78 157 157 162 135	1,95 5,44 3,85 2,95 1,05 6,85 7,05 6,85 4,25 1,08 5,16 5,16 5,45	71 15,137 42 39,039 71 30,589 22 25,120 2,084 48 1,752 4,157 29 5,713 23 37,631 45 73,916 23 4,833 45 63,649 48,262 66,160 68 3,966 61 27,885 43 1,977 69 58,092	9,277 21,329 14,837 9,943 1,584 6,236 1,329 6,236 1,329 2,487 25,045 54,727 2,945 36,555 27,053 19,238 3,559 2,428 16,523 174
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818 3,314 407 766 4,813 854	10,215 2,551 1,518 1,672 857 357 508 385 9,004 14,259 11,570 11,907 3,193 391 4,583 825	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,027 867 274 ,321 641 ,350 ,377 ,811 34		12,02 12,16 4,02 21,05 8,76 66,10 9,27 33,87	226 53 53 559 600 74 75 1 33 51 51 55	8,019 3,870 2,039 7,799 3,360 6,960 8,334 4,550 9,610	1 5 5 5 1 7 7 3 7 2 1 7 5 6 6 6	,410 ,770 17 ,622 998 441 ,378 ,533 382 22	13, 42, 16, 4, 18, 1,	,928 ,925 ,519 ,010 ,141 ,083 ,411 ,421	11,3 27,0 11,3 2,3 11,3 29,3	78 157 157 162 135	1,95 5,44 3,85 2,95 1,05 6,85 7,05 6,85 4,25 1,08 5,16 5,16 5,45	71 15,137 42 39,039 71 30,589 22 25,120 2,084 1,752 11 9,058 34 4,157 29 5,713 23 37,631 45 73,916 23 4,833 15 63,649 19 48,262 28,966 6,160 86 28,966 87,968 51 1,977 59 58,092 27 293 12 28,173	9,277 21,329 14,837 9,943 1,584 6,236 1,329 6,236 1,329 2,487 25,045 54,727 2,945 36,555 27,053 19,238 3,559 2,428 16,523 174
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818 3,314 407 766 4,813 854	10,215 2,551 1,518 1,672 857 357 508 385 9,004 14,259 11,570 11,907 3,193 391 4,583 825	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,027 867 274 ,321 641 ,350 ,777 ,811 ,362		12,02 12,16 4,02 21,05 8,76 66,10 9,27 33,87	226 51 226 53 559 60 74 75 1 33 51 57 9 2	8,019 3,870 2,039 3,360 6,960 8,930 4,550 9,610 1,049	1 5 5 5 1 7 7 3 7 2 1 7 7 5 6 9 6 9 9	,410 ,770 17 ,622 998 4418 ,333 382 22 ,493	13, 42, 16, 4, 18, 1,	,928 ,925 ,519 ,010 ,141 ,083 ,411 ,421	11,1 2,5 2,1 11,0 3,3	78 157 906 185 185 185 185 185 185 185 185 185 185	1,95 5,44 3,85 2,95 1,05 1,06 6,83 4,23 1,08 5,12 5,45 5,45	71 15,137 42 39,039 71 30,589 22 25,120 2,084 1,752 11 9,058 34 4,157 29 5,713 23 37,631 45 73,916 23 4,833 15 63,649 19 48,262 36 28,966 3,968 3,968 513 1,977 59 58,092 27 293 12 28,173 7,076	9,277 21,329 14,837 9,943 1,584 6,236 1,329 6,236 1,329 25,045 54,727 2,945 36,555 27,053 19,238 3,558 2,428 16,523 174 17,850
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818 3,314 407 766 4,813 854	10,215 2,551 1,518 1,672 857 357 508 385 9,004 14,259 11,570 11,907 3,193 391 4,583 825	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,027 867 274 ,321 641 ,350 ,377 ,811 ,362 ,097		12,02 12,16 4,02 21,05 8,76 6,10 33,87 78 16,66	226 51 226 53 53 55 75 1 33 51 52 79 2	8,019 3,870 2,039 7,794 3,360 6,960 4,550 9,610 1,049 2,939	1 5 5 5 1 7 7 3 7 2 1 7 5 6 9 7 7	,410 ,770 17 ,622 998 441 ,378 23 382 22 ,493 523	13, 42, 16, 4, 18, 1,	,928 ,925 ,519 ,010 ,141 ,712 ,083 ,411 ,421 ,731	11,1 2,5 11,0 3,3 29,7	78 157 906 185 185 302 762 135 717	1,95 5,44 3,85 2,95 1,05 1,06 6,85 1,08 4,25 1,08 5,45 5,45 5,45 1,06	71 15,137 42 39,039 71 30,589 22 25,120 2,084 1,752 11 9,058 34 4,157 29 5,713 23 37,631 45 73,916 23 4,833 15 63,649 19 48,262 36 28,966 3,968 3,968 513 1,977 59 58,092 27 293 12 28,173 7,076	9,277 21,329 14,837 9,943 1,584 6,236 1,329 6,236 1,329 25,045 54,727 2,945 36,555 27,053 19,238 3,558 26,555 27,053 19,238 3,558 16,555 27,053 19,238 16,555 27,053
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818 3,314 407 766 4,813 854	10,215 2,551 1,518 1,672 857 357 5385 9,004 14,259 11,570 11,907 3,193 391 4,583 825	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,027 867 274 ,321 641 ,350 ,377 ,811 ,362 ,097 87		12,02 12,16 4,02 21,05 8,76 6,10 33,87 16,66	226 51 226 53 53 55 75 1 33 51 52 79 2	8,019 3,870 2,039 7,799 3,360 4,530 4,530 9,610 2,939 2,939 2,939	1 5 5 5 1 7 7 3 7 2 1 7 5 6 9 7 7	,410 ,770 17 ,622 998 441 ,378 382 22 ,493 523 187	13, 42, 16, 4, 18, 1,	,928 ,925 ,519 ,010 ,141 ,712 ,083 ,411 ,421 ,731 ,285 ,611	11,1 2,5 11,0 3,3 29,7	78 157 906 185 302 762 135 717 570	1,95 5,44 3,85 2,95 1,05 1,06 6,85 1,06 6,25 1,06 5,16 5,16 5,16 5,45 1,06	71 15,137 42 39,039 71 30,589 22 25,120 05 2,084 48 1,752 11 9,058 34 4,157 29 5,713 23 37,631 45 73,916 23 4,833 15 63,649 19 48,262 28,966 60,160 3,966 51 3,966 51 1,977 59 58,092 27 293 12 28,173 7,076 73 434	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,329 25,045 54,727 2,945 36,555 27,053 19,238 3,559 2,428 16,507 26,523 17,850 4,759 434 2,069
16,058 2,787 2,923 1,807 920 380 678 447 10,566 25,765 888 17,867 15,818 3,314 407 766 4,813 854	10,215 2,551 1,518 1,672 857 357 508 385 9,004 14,259 11,570 11,907 3,193 391 4,583 825	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,027 867 274 ,321 641 ,350 ,377 ,811 ,362 ,097 87		12,02 12,16 4,02 21,05 8,76 6,10 33,87 16,66	26 51 26 53 53 59 26 75 1 33 51 52 79 2	8,019 3,870 2,039 7,799 3,360 4,530 4,530 9,610 2,939 2,939 2,939	1 5 5 5 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	17 ,622 998 441 ,378 382 22 ,493 523 187	13, 42, 16, 4, 18, 4, 1, 1, 3,	,928 ,925 ,519 ,010 ,141 ,731 ,421 ,731 ,285 ,611 ,452	11,3 27,0 11,0 3,3 29,5 2,5	78 157 157 1685 185 1762 135 717 1767 177 177 177 177 177 177 177 17	1,95 5,44 3,85 2,95 1,05 6,85 7,66 6,85 1,06 6,25 5,45 5,45 5,45 5,45 5,45 5,45 5,45 5	71 15,137 42 39,039 71 30,589 22 25,120 05 2,084 1,752 11 9,058 34 4,175 29 5,713 23 37,631 45 73,916 23 4,833 15 63,649 19 48,262 36 28,966 30 6,160 3,966 513 1,977 59 58,092 27 293 12 28,173 7,076 73 434 99 2,069	9,277 21,329 14,837 9,943 1,584 1,329 6,236 1,329 25,045 54,727 2,945 36,555 27,053 19,238 3,559 2,428 16,507 26,523 17,850 4,759 434 2,069

NASA - AVIONICS SUBSYSTEM ROLL-UP

1,

ME64	MH64	OMH64	ME66	MH66	OMH66	ME71	MH71	OMH71	ME72	MH72
706	= C4E	4,258				2,415	18,200	10.107	1,552	13.125
726	5,645	4,258				3,755	30,730	20,688	109	276
1,257	7,380 41,505	25,619				2,490	19,864	10,955	1,341	14,745
1,309	9,636	7,286				617	5,929	2,369	122	831
1,000	3,000	,,				1,472	8,194	5,062		
303	2,300	1,626				201	2 ,327	1,843		
710	5,479	5,073				576	6 ,848	5 ,107		
466	1,903	1,433				198	1,889	904		
						3,470	22,413	15,995	215	5 ,677
							290,204		1,779	24,165
							468,872		3 ,505	32,417
201	1,218	1,218				571 9 813	5,365 134,911	3,084 69,530		
						6,088	86,665	38,737		
917	4,795	4,464				2,314	10,700	7,004		
477	2,457	2,365				1,695	7,886	7,252		
	13,036		288	9 53	867	2,772	27,985	15,595	5 ,879	63,358
	68,764		1,317				253,857	•		503,196
1.431	16,403	14,716	166	6 97	6 26	1,985	22,039	16,027	4,228	58,478
	66,147					3,641	44,472	23,258	28,430	280,361
62	653	370				110	1,513	720	94	1,555
18,658		65,856	1,729				161,366			98 ,934
5,556	35,931			23,704		2,464	29,045	16,450	8,594	96,180
384	1,119	1,001	165	674	5 56	347	1,680	1,326	246	1,525
1,333	5,138	5,133	27	117	117	2,177		13,876	458	2,198
	11,025		101	1 201	063	4,408		16,232	450	2 500
1,337	9,714	5,804	101	1,281	853	1,377	12,192	8,156	450	3 ,508
OMH72	TOT ME			HMO TOT	FHBMA	MH/MA	toff Eq			
6,705	10,97	5 80	,266	47,826	13.8	7.3	0.404	0.53		
6,705 262	10,97 37,83	5 80 6 294	,266 ,534	47,826 202,188	13.8 11.7	7.3	0.404 0.314	0.53		
6,705 262 7,947	10,97 37,83 37,44	5 80 6 294 1 253	,266 ,534 ,684	47,826 202,188 180,079	13.8 11.7 3.6	7.3 7.8 6.8	0.404 0.314 0.290	0.53 0.67 1.86		
6,705 262	10,97 37,83 37,44 12,72	5 80 6 294 1 253 4 129	,266 ,534 ,684 ,763	47,826 202,188 180,079 62,364	13.8 11.7 3.6 3.2	7.3 7.8 6.8	0.404 0.314 0.290 0.519	0.53 0.67 1.86 3.23		
6,705 262 7,947	10,97 37,83 37,44	5 80 6 294 1 253 4 129 3 23	0,266 1,534 1,684 1,763	47,826 202,188 180,079	13.8 11.7 3.6 3.2 5.3	7.3 7.8 6.8 10.2	0.404 0.314 0.290 0.519	0.53 0.67 1.86 3.23 1.07		
6,705 262 7,947	10,97 37,83 37,44 12,72 4,08	5 80 6 294 1 253 4 129 3 23 1 39	,266 ,534 ,684 ,763	47,826 202,188 180,079 62,364 16,979	13.8 11.7 3.6 3.2 5.3	7.3 7.8 6.8 10.2 5.7	0.404 0.314 0.290 0.519 0.276	0.53 0.67 1.86 3.23 1.07		
6,705 262 7,947 599	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,80	5 80 6 294 1 253 4 129 3 23 1 39 8 115 0 53	0,266 1,534 1,684 1,763 1,459	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,157	13.8 11.7 3.6 3.2 5.3 5.7 4.5	7.3 7.8 6.8 10.2 5.7 13.8 13.0	0.404 0.314 0.290 0.519 0.276 0.358 0.415	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74		
6,705 262 7,947 599 715	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,80	5 80 6 294 1 253 4 129 3 23 1 39 8 115 0 53 3 58	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,946	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,157 36,505	13.8 11.7 3.6 3.2 5.3 5.7 4.5	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.2	0.404 0.314 0.290 0.519 0.358 0.415 0.478	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74		
6,705 262 7,947 599 715 8,619	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,80 6,75 51,83	5 80 6 294 1 253 4 129 3 23 1 39 8 115 0 53 3 58 0 467	7,266 1,534 1,684 1,763 1,459 1,332 1,666 1,946 1,536	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,157 36,505 264,769	13.8 11.7 3.6 3.2 5.3 5.7 4.5 4.6	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.2 8.7 9.0	0.404 0.314 0.290 0.519 0.358 0.415 0.478 0.376	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89		
6,705 262 7,947 599 715	10,97 37,83 37,44 12,72 4,08 2,84 8,89 6,75 51,83	5 80 6 294 1 253 4 129 3 23 1 39 8 115 0 53 3 58 0 467 4 786	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,703	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,157 36,505 264,769 503,205	13.8 11.7 3.6 3.2 5.3 5.7 4.5 4.6 3.0	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.2 8.7 9.0	0.404 0.314 0.290 0.519 0.276 0.358 0.415 0.478 0.376	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84		
6,705 262 7,947 599 715 8,619	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,80 6,75 51,83 89,31 3,50	5 80 6 294 1 253 4 129 3 23 1 39 8 115 0 53 3 58 0 467 4 786 1 28	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,703 ,741	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,157 36,505 264,769 503,205 18,602	13.8 11.7 3.6 3.2 5.3 5.7 4.5 4.6 3.0 2.3	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.0 8.7 9.0 8.8	0.404 0.314 0.290 0.519 0.276 0.358 0.475 0.376 0.3360 0.354	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84 0.61		
6,705 262 7,947 599 715 8,619	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,80 6,75 51,83 89,31 3,50 23,92	5 80 6 294 1 253 4 129 3 23 1 39 8 115 0 53 3 58 0 467 4 786 1 28 2 300	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,703 ,741	47,826 202,188 180,079 62,364 16,979 25,240 67,648 26,505 264,769 503,205 18,602 179,277	13.8 11.7 3.6 3.2 5.3 5.7 4.5 6.6 3.0 2.3 13.4	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.2 8.7 9.0 8.8 8.2	0.404 0.314 0.290 0.519 0.276 0.358 0.415 0.476 0.376 0.376 0.354	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84 0.61 1.75		
6,705 262 7,947 599 715 8,619	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,05 51,83 89,31 3,50 23,92 15,29	5 80 6 294 1 253 4 129 3 23 1 39 8 115 0 53 3 58 0 467 4 786 1 28 2 300 6 208	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,741 ,774 ,929	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,1505 264,769 503,205 18,602 179,277 112,219	13.8 11.7 3.6 3.2 5.3 5.7 4.5 6.5 4.6 2.3 13.4 7.2	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.2 8.7 9.0 8.8 8.2 12.6	0.404 0.314 0.290 0.519 0.276 0.358 0.415 0.476 0.376 0.376 0.354	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84 0.61 1.75 2.01		
6,705 262 7,947 599 715 8,619	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,05 51,83 89,31 3,50 23,92 15,29 20,41	5 80 6 294 1 253 4 129 3 23 1 39 8 115 0 53 3 58 0 467 4 786 1 28 2 300 6 208 7 95	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,741 ,774 ,929 ,781	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,505 264,769 503,205 18,602 179,277 112,219 67,686	13.8 11.7 3.6 3.2 5.3 5.7 4.5 6.5 4.6 2.3 13.4 7.2 6.8	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.2 8.7 9.0 8.8 8.2 12.6 13.6	0.404 0.314 0.290 0.519 0.276 0.358 0.415 0.476 0.376 0.360 0.354 0.404	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84 0.61 1.75 2.01		
6,705 262 7,947 599 715 8,619 17,397	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,80 6,75 51,83 89,31 3,50 23,92 15,29 20,41 6,13	5 80 6 294 1 253 4 129 3 23 1 39 8 115 0 53 3 58 0 467 4 786 1 28 2 300 6 208 7 95 3 30	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,741 ,774 ,929 ,781	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,1505 264,769 503,205 18,602 179,277 112,219 67,686 24,451	13.8 11.7 3.6 3.2 5.3 5.7 4.5 6.5 4.6 2.3 13.4 7.2	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.2 8.7 9.0 8.8 8.2 12.6 13.6	0.404 0.314 0.290 0.519 0.276 0.358 0.415 0.476 0.376 0.360 0.354 0.404 0.463 0.289	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84 0.61 1.75 2.01 0.27		
6,705 262 7,947 599 715 8,619 17,397	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,80 6,75 51,83 3,50 23,92 15,29 20,41 6,13 18,86	5 80 6 294 1 253 4 129 3 23 1 39 8 115 0 53 3 58 0 467 4 786 1 28 2 300 6 208 7 95 3 30 9 163	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,741 ,774 ,929 ,781 ,188	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,505 264,769 503,205 18,602 179,277 112,219 67,686	13.8 11.7 3.6 3.2 5.3 5.7 4.5 6.5 4.6 2.3 13.4 7.2 6.8 17.1	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.2 8.7 9.0 8.2 12.6 13.6 4.7 4.9	0.404 0.314 0.290 0.519 0.276 0.358 0.415 0.478 0.376 0.376 0.360 0.354 0.404 0.289 0.193	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84 0.61 1.75 2.01 0.27 0.45 1.85		
6,705 262 7,947 599 715 8,619 17,397 31,958 277,554 41,376	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,80 6,75 51,83 89,31 3,50 23,92 15,29 20,41 6,13 18,86 116,82	5 80 6 294 1 253 4 129 3 23 1 39 8 115 0 467 4 786 1 28 2 300 6 208 7 95 3 163 8 1,124 5 146	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,741 ,774 ,929 ,781 ,188	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,1505 264,769 503,205 18,602 179,277 112,219 67,686 24,451 97,124	13.8 11.7 3.6 3.2 5.3 5.7 4.5 6.5 4.6 3.0 2.3 13.4 7.2 6.8 17.1	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.2 8.7 9.0 8.8 12.6 13.6 13.6 13.6	0.404 0.314 0.290 0.519 0.276 0.358 0.415 0.478 0.376 0.434 0.360 0.354 0.404 0.463 0.203	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84 0.61 1.75 2.01 0.45 1.85 2.18		
6,705 262 7,947 599 715 8,619 17,397 31,958 277,554 41,376 152,334	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,80 6,75 51,83 89,31 3,50 23,92 15,29 20,41 6,13 18,86 116,82 13,29 106,82	5 80 6 294 1 253 4 129 3 23 1 39 8 115 3 30 6 467 4 786 1 28 2 20 8 1,124 5 850	,266 ,534 ,684 ,763 ,332 ,666 ,536 ,774 ,774 ,781 ,188 ,253 ,251 ,546 ,505	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,157 36,505 264,769 503,205 18,602 179,277 112,219 67,686 24,451 97,124 634,604 112,380 554,120	13.8 11.7 3.6 3.2 5.3 5.7 4.6 3.0 2.3 13.4 7.2 6.8 17.1 10.9 4.7 4.4 3.2	7.3 7.8 6.8 10.2 5.7 13.8 11.2 8.7 9.0 8.8 8.2 12.6 13.6 4.7 9.6	0.404 0.314 0.290 0.519 0.276 0.358 0.415 0.478 0.376 0.434 0.360 0.354 0.404 0.463 0.293 0.493	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84 0.61 1.75 2.01 0.27 0.45 1.85 2.18 3.42 3.06		
6,705 262 7,947 599 715 8,619 17,397 31,958 277,554 41,376 152,334 443	10,97 37,83 37,44 12,72 4,08 2,84 8,89 6,75 51,83 89,31 3,50 23,92 15,29 20,41 6,13 18,82 13,29 106,82	5 80 6 294 1 253 4 129 3 23 8 115 0 58 0 467 4 786 1 28 2 300 6 208 7 35 9 163 8 1,124 5 850 1 66	,266 ,534 ,763 ,459 ,332 ,666 ,536 ,774 ,774 ,781 ,781 ,286 ,261 ,546 ,505 ,505	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,157 36,505 264,769 503,205 18,602 179,277 112,219 67,686 24,451 97,124 634,604 112,380 554,120 2,835	13.8 11.7 3.6 3.2 5.3 5.7 4.5 4.6 3.0 2.3 13.4 7.2 6.8 17.1 10.9 4.4 3.2 2.6	7.3 7.8 6.8 10.2 5.7 13.8 11.0 8.7 9.0 8.8 8.2 12.6 13.6 4.7 4.9 9.0 8.0 11.0	0.404 0.314 0.290 0.519 0.276 0.358 0.415 0.478 0.376 0.434 0.360 0.354 0.404 0.463 0.289 0.193 0.404 0.233	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84 0.61 1.75 2.01 0.27 0.45 1.85 2.18 3.42 3.06 1.05		
6,705 262 7,947 599 715 8,619 17,397 31,958 277,554 41,376 152,334 443 65,541	10,97 37,83 37,44 12,72 4,08 2,84 8,89 6,75 51,83 89,31 3,50 23,92 15,29 20,41 6,13 18,86 116,82 13,29 106,82	5 80 6 294 1 253 4 129 3 23 8 115 3 58 0 467 7 86 1 28 2 20 6 20 8 1,124 5 146 5 850 1 897	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,774 ,774 ,929 ,781 ,788 ,286 ,253 ,546 ,505 ,505 ,052	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,157 36,505 264,769 503,205 18,602 179,277 112,219 67,686 24,451 97,124 634,604 112,380 554,120 2,835 623,284	13.8 11.7 3.6 3.2 5.3 5.7 4.5 4.6 3.0 2.3 13.4 7.2 6.8 17.1 10.9 4.7 4.4	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.2 8.7 9.0 8.8 8.2 12.6 13.6 13.6 4.7 4.9 8.7 9.0 11.8	0.404 0.314 0.290 0.519 0.276 0.358 0.415 0.478 0.376 0.434 0.360 0.354 0.404 0.463 0.289 0.193 0.405 0.233 0.348 0.532	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84 0.61 1.75 2.01 0.27 0.45 1.85 2.18 3.42 3.06 1.05 1.57		
6,705 262 7,947 599 715 8,619 17,397 31,958 277,554 41,376 152,334 443 65,541 46,843	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,89 6,75 51,83 89,31 3,50 23,92 15,29 20,41 6,13 18,86 116,82 106,82 13,29 106,82 128,87 71,80	5 80 6 294 1 253 3 1 29 3 1 39 8 115 0 467 7 86 1 2 300 6 208 7 3 30 163 8 1,124 6 1 2 85 1 1 8 97 1 576	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,703 ,741 ,774 ,929 ,781 ,188 ,251 ,546 ,555 ,052 ,663 ,062	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,157 36,505 264,769 503,205 18,602 179,277 112,219 67,686 24,451 97,124 634,602 112,380 554,120 2,835 623,284 411,673	13.8 11.7 3.6 3.2 5.3 5.7 4.5 4.6 3.0 2.3 13.4 7.2 6.8 17.1 10.9 4.7 4.4 2.6 11.3	7.3 7.8 6.8 10.2 5.7 13.8 13.0 8.7 9.0 8.8 8.2 12.6 13.6 4.7 4.9 8.7 9.6 11.8 7.0 8.0	0.404 0.314 0.290 0.519 0.276 0.358 0.478 0.376 0.434 0.360 0.354 0.404 0.463 0.289 0.193 0.405 0.434 0.233 0.436 0.235	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84 0.61 1.75 2.01 0.27 0.45 1.85 2.18 3.06 1.05 1.57 5.27		
6,705 262 7,947 599 715 8,619 17,397 31,958 277,554 41,376 152,334 443 65,541 46,843 1,253	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,89 6,75 51,83 89,31 3,50 23,92 15,29 20,41 6,13 18,86 116,82 106,82 13,29 106,82 128,87 71,80 2,42	5 80 6 294 1 253 3 129 3 23 8 115 0 467 7 86 1 28 2 300 6 208 7 30 8 1,124 6 124 6 850 1 897 1 576 7 12	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,774 ,774 ,781 ,188 ,253 ,251 ,505 ,505 ,663 ,062 ,017	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,157 36,505 18,602 179,277 112,219 67,686 24,451 97,124 634,604 112,380 554,120 2,835 623,284 411,673 10,916	13.8 11.7 3.6 3.2 5.3 5.7 4.5 4.6 3.0 2.3 13.4 7.2 6.8 17.1 10.9 4.7 4.4 2.6 11.3	7.3 7.8 6.8 10.2 5.7 13.8 13.0 13.0 8.7 9.0 8.8 8.2 12.6 13.6 13.6 4.7 9.6 11.0 8.7 9.6 11.8	0.404 0.314 0.290 0.519 0.276 0.358 0.478 0.376 0.434 0.360 0.354 0.404 0.463 0.289 0.193 0.405 0.233 0.348 0.348 0.348	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.89 3.05 3.84 0.61 1.75 2.01 0.27 0.45 1.85 2.18 3.42 3.06 1.57 5.27 0.30		
6,705 262 7,947 599 715 8,619 17,397 31,958 277,554 41,376 152,334 443 65,541 46,843	10,97 37,83 37,44 12,72 4,08 8,89 4,75 51,83 89,31 3,50 23,92 15,29 20,41 6,13 18,86 116,82 13,82 106,82 13,82 13,82 13,82 14,82 7,02	5 80 6 294 1 253 3 129 3 1 39 8 115 0 53 0 467 7 86 1 28 2 300 6 208 7 30 163 8 1,124 6 1 24 6 5 30 6 1 1 2 4 6 5 30 7 3 30 8 1,124 6 1 2 8 7 3 9 1 1 2 4 7 1 2 8 7 7 1 2 8 7 7 1 3 7	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,774 ,774 ,781 ,188 ,253 ,254 ,505 ,505 ,663 ,062 ,017	47,826 202,188 180,079 62,364 16,979 25,240 67,646 28,157 36,505 264,769 503,205 18,602 179,277 112,219 67,686 24,451 97,124 634,604 112,380 554,120 2,835 623,284 411,673 10,916 37,208	13.8 11.7 3.6 3.2 5.3 5.7 4.5 4.6 3.0 2.3 13.4 7.2 6.8 17.1 10.9 4.7 4.4 2.6 11.3 16.5 16.5	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.0 8.7 9.0 8.8 8.2 12.6 13.6 13.6 4.7 9.6 11.0 8.7 9.6 11.0 8.7	0.404 0.314 0.290 0.519 0.276 0.358 0.475 0.376 0.376 0.434 0.360 0.354 0.404 0.463 0.289 0.193 0.405 0.233 0.348 0.348 0.348 0.358	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.89 3.05 3.84 0.61 1.75 2.01 0.27 0.45 1.85 2.18 3.42 3.06 1.57 5.27 0.30 0.55		
6,705 262 7,947 599 715 8,619 17,397 31,958 277,554 41,376 152,334 443 65,541 46,843 1,253	10,97 37,83 37,44 12,72 4,08 2,84 8,89 4,89 6,75 51,83 89,31 3,50 23,92 15,29 20,41 6,13 18,86 116,82 106,82 13,29 106,82 128,87 71,80 2,42	5 80 6 294 1 253 1 129 3 1 39 8 115 0 53 0 467 7 86 1 28 2 208 7 30 6 208 7 30 163 8 1,124 5 85 6 1 85 6 1 85 7 124 6 1 85 7 1 2 8 7 1 8 7	,266 ,534 ,684 ,763 ,459 ,332 ,666 ,536 ,774 ,774 ,781 ,188 ,253 ,251 ,505 ,505 ,663 ,062 ,017	47,826 202,188 180,079 62,364 16,979 25,240 67,648 28,157 36,505 18,602 179,277 112,219 67,686 24,451 97,124 634,604 112,380 554,120 2,835 623,284 411,673 10,916	13.8 11.7 3.6 3.2 5.3 5.7 4.5 4.6 3.0 2.3 13.4 7.2 6.8 17.1 10.9 4.7 4.4 2.6 11.3	7.3 7.8 6.8 10.2 5.7 13.8 13.0 11.8 7.0 8.8 8.2 12.6 13.6 11.0 8.7 9.6 11.0 8.7 9.6 11.0 8.0 11.0 8.7	0.404 0.314 0.290 0.519 0.276 0.358 0.415 0.376 0.376 0.434 0.360 0.354 0.404 0.463 0.289 0.193 0.405 0.234 0.348 0.348 0.348 0.336 0.336 0.336 0.285 0.326 0.336	0.53 0.67 1.86 3.23 1.07 2.44 2.88 1.74 1.89 3.05 3.84 0.61 1.75 2.01 0.27 0.45 1.85 2.18 3.42 3.06 1.05 1.57 5.27 0.30 0.55 0.32		

APPENDIX I Subsystem Weight Percentage

WEIGHT DISTRIBUTION ANALYSIS

	PLS	%	AMLS	%	AVG
WING	1,869	0.096	1,739	0.100	0.098
TAIL	69	0.004	62	0.004	0.004
BODY	2,238	0.115	2,907	0.168	0.141
TPS	2,124	0.109	1,555	0.090	0.100
LANDING	1,161	0.060	829	0.048	0.054
PROP 6,7,8	1.366	0.070	1,138	0.066	0.068
PRIME PWR	2,872	0.148	2,720	0.157	0.152
ELECTRIC	1,216	0.063	999	0.058	0.060
ACTUATORS	173	0.009	123	0.007	0.008
AVIONICS	1.337	0.069	956	0.055	0.062
ECS	1,599	0.082	1,478	0.085	0.084
PERS ACCOM	1,434	0.074	1,195	0.069	0.071
RECOV & AUX	1,961	0.101	1,634	0.094	0.098
TOTAL	19,419	1.000	17,335	1.00	1.00

APPENDIX J MTBM Regression Analysis

------Multiple Regression-----

Date/Time 04-01-1992 15:05:42

Data Base Name C:\NASA\WUC11

Description Backup of NASAMSTR created 12-18-1991

Multiple Regression Report

Dependent Variable: FHBMA11

Dopontario Carlos							
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sgr
Intercept	15.23085	0.0000	3.994154	3.81	0.0015	•-	•
WGT TAIL	.6057E-02	2.8217	.5551E-03	10.91	0.0000	0.2439	0.2439
SQR TW	1375748	-1.7464	.5844E-01		0.0317		0.0446
WETAREA	723E-03	-0.7205	.6747E-03	-1.07	0.2997	0.8914	0.0343

Analysis of Variance Report

Dependent Variable: FHBMA11

Source	d f	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant	1	1114.525	1114.525		
Model	3	1254.958	418.3195	43.77	0.000
Error	16	15 2.9258	9.557861		
Total	19	1407.884	74.09917		
Root Mean	Squa	re Error	3.091579		
	-	ent Variable	7.465		
		Variation	.4141432		
R Squared			0.8914		
Adjusted		ared	0.8710		

Date/Time 04-01-1992 15:06:00

Data Base Name C:\NASA\WUC11

Description Backup of NASAMSTR created 12-18-1991

Residual Analysis

Row	Actual Y	Predicted Value	Std Err of Pred	Lower95% Mean	Upper95% Mean	Residual
1	•		•			
2		•	•	•	•	•
3			•	•	•	• -
4	10	7.201859	.8609902	5.376893	9.026825	2.798142
5 6	11.3	4.898123	8 71 5137	3.050851	6.745395	6.401877
7	3	2.562452	1.713773	-1.070084	6.194987	
8	1.1	4.502452	1.713773	-1.010004	0.134301	.4375482
9	10.1	•	•	•	•	•
10	2.9	•	•	•	•	•
		•	•	•	•	•
11	2.5	•	•	•	•	•
12	2.3	5.291407	1.027527	3.113447	7.469368	1014070
13	5.1		1.027527	3.113447		1914072
14	3.6	5.291407			7.469368	-1.691407
15	4.2	5.291407	1.027527	3.113447	7.469368	-1.091407
16	7.9	7.517668	1.150616	5.078806	9.95653	.3823323
17	•					•
18	3	5.776029	.836188	4.003634	7.548424	-2.776029
19	2.68	5.583581	.8619595	3.75656	7.410602	-2.903581
20	8.32	8.247961	1.022725	6.08018	10.41574	.7204E-01
21	6 .5	•	•	•	• •	•
22	•	•	•	•	•	•
2 3	3.4	5.871576	.8064643	4.162183	7.580968	-2.471576
24	5 . 3	5.871576	.8064 643	4.162183	7.580968	5715756
25	4.7	5.871576	.8064643	4.162183	7.580968	-1.171576
26	4	9.766043	1.391922	6.815705	12.71638	-5.766043
27	9.4	6.614183	1.103623	4.27493	8.953437	2.785816
28	3. 63	1.53145	1.63013	-1.923795	4.986695	2.09855
29	•	•	•	•	•	•
3 0	1.37	1.344041	2.476408	-3.904985	6.593067	.0259589
31	10.3	5.43271	1.149304	2.99663	7.868791	4.86729
32	41.9	40.8043	3.042678	34.355	47.2536	1.095703
3 3	•	•	•	•	•	•
34	•	•	•	•	•	•
35	6.2	8.530637	1.529309	5.289094	11.77218	-2.330637
		Statistic 1.2				2123001

-----Multiple Regression------

Date/Time 04-02-1992 14:43:23

Data Base Name C:\NASA\WUC12A

Description Merge of WUC11 and WUC12 created 04-01-1992

Multiple Regression Report

Dependent Variable	: FHBMA12						
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sgr
Intercept	3 428. 487	0.0000	889.042	3.86	0.0027	- 4-	
DRY_WGT	142E-01	-99.4395	.4057E-02	-3.50	0.0050	0.2665	0.2665
LN DRYWT	-423.9594	-49.6111	112.3514	-3.77	0.0031	0.3194	0.3123
SQR WGT	11.05028	125.8885	3.053272	3.62	0.0040	0.3395	0.3178
CREWSIZE	111.5669	48.0205	29.20304	3.82	0.0028	0.3689	0.1151
SQR CREW	-360.7212	-28.1205	91.78398	-3.93	0.0024	0.5711	0.1975
WGT BODY	.1865E-01	44.7105	.5 565E- 02	3.35	0.0065	0.5852	0.2126
SQRWTBOD	-4.835661	-31.1615	1.462995	-3.31	0.0070	0.7243	0.2711
CREW+TRP	2578509	-2.1322	.1338993	-1.93	0.0804	0.7938	0.1739

Analysis of Variance Report

Dependent Variable: FHBMA12

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant	1	6581.192	6581.192		
Model	8	1873.412	234.1765	5.29	0.007
Error	11	486.516	44.22873		
Total	19	2359.928	124.2067		
Root Mean	Squa	re Error	6.650468		
	-	ent Variable	18.14		
		Variation	.366619		
R Squared			0.7938		
Adjusted		ared	0.6439		

Date/Time 04-02-1992 14:43:48

Data Base Name C:\NASA\WUC12A

Description Merge of WUC11 and WUC12 created 04-01-1992

Residual Analysis

Row	Actual Y	Predicted Value	Std Err of Pred	Lower95% Mean	Upper95% Mean	Residual
1	•	•	•	•	•	•
2	•	•	•	•	•	•
3	•	•	•	•	•	•
4	46	35.40208	4.578885	25.33262	45.47154	10.59792
5	•	•	•	•	•	•
6	22.8	18.02934	3.334961	10.6954	25.36328	4.77066
7	15.3	14.40029	6.470281	.1714525	28.62913	.8997078
8	9.1	•	•	•	•	•
9	41.3	•	•	•	•	•
10	11	•	•	•	•	•
11	18.4	•	•	•	•	•
12	28.1			•		•
13	5. 6	8.198369	3.428157	.6594849	15.73725	-2.598369
14	6 . 2	8.774358	3.362468	1.379931	16.16879	-2.574358
15	6.2	12.26911	3.176613	5.283397	19.25482	-6.069109
16	3 2.5	39.88201	3.990315	31.10688	48.65714	-7.382008
17	10.5		1 000040			
18	18.5	20.57762	3.828342	12.15869	28.99656	-2.077622
19	26.4	22.01048	3.785872	13.68494	30.33601	4.389523
20	28.8	29.78044	3.131097	22.89483	36.66606	9804421
21	14.9	•	•	•	•	•
22	10 6	16.12783	3.214599	9.058584	2 3. 19708	
23	13.6 14.7	19.4407	3.221416	12.35646	26.52493	-2.52783 -4.740697
24	21.4	20.35781	3.556437	12.53683	2 8. 1788	1.042189
25 26	24.9	20.19248	3.847112	11.73227	28.65269	4.70752
26 27	20.8	10.50898	4.839775	1342001	21.15216	10.29102
28	10	7.176239	6.234165	-6.533356	20.88583	2.823762
28 29	10	1110200	0.204100	-0.00000	20.0000	2.023102
30	1.9	2.424153	6.641927	-12.18216	17.03046	5241526
31	8 .9	15.85721	2.948073	9.374085	22.34034	-6.957213
3 2	0.0	-282,9091	89.58411	-479.9141	-85.90405	-0.001213
33	•			- 1/0/0141	-00150400	•
34	•	•	•	•	•	•
35	29.4	31.935	5.370606	20.12446	43.74554	-2.535002
36	8.9	9.461346	6.644016	-5.149556	24.07225	5613461
	n - Watson	Statistic .58				

Date: fime 04-12-1992 19:23:26

Data Base Name B:WUC13

Description Backup of WUC13 created 03-27-1992

Multiple Regression Report

Depend	tent	Variabl	le: f	-HBMA13

CCCCITCOTT							
Independent	Parameter	Stndized	St and ard	t-value	Prob.	S eq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sar
Intercept	72.41159	0.0000	17.39141	4.16	0.0013		
WHEELS	14.5682	20.6183	4.177294	3.49	0.0045	0.5762	0.5762
LEN_WING	.9942E-01	2.6360	.26 70E- 01	3.72	0.0029	0.5780	0.4303
LN DRYWT	-12.41028	-2.9632	4.370507	-2.84	0.0149	0.6106	0.3896
SORWHEEL	-65. 6	-13.8090	16.95416	-3.87	0.0022	0.6747	0.6015
WGT13	- .568E- 02	-12.0906	.16 61E- 02	-3.42	0.0051	0.7200	0.5508
LOGWGT13	18.59791	5.0203	6.412072	2.90	0.0133	0.8354	0.4365

Analysis of Variance Report

Dependent Variable: FHBMA13

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant	1	2 690.5 9	269 0.59		
Model	6	248.1326	41.35543	10.15	0.000
Error	12	48.88739	4.073949		
Total	18	2 97.02	16.50111		
	epende	re Error ent Variable Variation	2.018403 11.9		
R Squared Adjusted F	R Squa	ared	0.8354 0.7531		

-----multiple Regression-----

Date/Time 04-12-1992 19:23:27

Data Base Name 8:WUC13

Description Backup of WUC13 created 03-27-1992

Residual Analysis

Row	Actual Y	Predicted Value	Std Err of Pred	Lower95% Mean	Upper95%	Residual
,	Ť	value	Of Fred	riean	Mean	
Ţ	•	•	•	•	•	•
2	•	•	-	•	•	
3	•				•	•
4	14.4	12.13839	.8063493	10.38218	13.89459	2.261614
5		11.62329	.7845961	9.914456	13.33212	• .
6	18.5	17.50248	1.167702	14.95926	20.04571	.9 97 5166
7	•	-8.098694	6.455153	-22.15785	5.960466	•
8	•	-	•	•	•	10
9	11.2	•	-	•	-	•
10	৪.7	-	•	•	•	ы.
11	10.7	•	•	•	•	•
12	-	•	•	•	-	•
13	11.3	11.63141	.9716528	9.515175	13.74764	3314095
14	8.4	11.56334	.9720188	9.446307	13.68037	-3.163341
15	12.	11.62189	.8982 958	9:665422	13.57835	.3781118
16	18	15.52705	1.127848	13.07063	17.98348	2.472947
17	•	•	•	•	•	
18	13	12.5797	1.230238	9:90027	15.25912	.4203033
19	15.3	12.5968	1.223564	9-931908	15.26169	2.7032
20	12.4	13.28172	.7411884	11.66743	14.89601	8817177
21	10.3	13.56009	.7361409	11.95679	15.16339	-3.260091
22	•	-	•		-	
23	12.8	14.376	.9899314	12.21995	16.53204	-1.575998
24	13.3	13.50301	.8845586	11.57647	15.42956	2030125
25	12.3	13.32671	.8913186	11.38544	15.26798	-1.026712
26	6.2	5.20037	1.642939	1.622091	8.77865	.9996295
27	10.6	10.49421	1.90281	6.349935	14.63848	.105792
28	7.5	7.232115	1.476327	4.016712	10.44752	.2678852
2 9		_		-		_
30	1.4	1.537934	2.015474	-2.851719	5.927587	137934
31	15.7	14.52365	1.049495	12.23788	16.80943	1.176345
32	~~ ·	-68.25033	22.92037	-118.1703	-18.33034	
33	•				10.0004	•
34	•	• -	-	-	•	•
3 5	12.7	13.90354	1.488036	10.66263	17.14444	-1.203537
-	.i. de = 1			10.00200	_/ ¬¬¬¬¬	*-*-

Durbin - Watson Statistic 1.1842

.----Sum of Functions Regression-----

Date/Time 05-18-1992 15:20:40

Data Base Name C:\NASA\WUC23

Description Merge of WUC11 and WUC51 created 04-27-1992

Estimation Summary Report

Y: FHBMA23 X: ENG WGT Model: A+B*(X)+C*(SQR(X))

Term	Coefficient Estimate	Std. Error	T-Value	Prob(;t;>T)	R-Squared
A	34.10401387922342	10.23731	3.3	0.0040	0.25947618
В	9.853047097031215D-04	7.461445E-04	1.3	0.2042	
C	3122318101760727	.1872512	-1.7	0.1137	

Source	$\mathtt{d}\mathbf{f}$	Sum-Sqr	Mean Square	SQR(M.S.)	F-Ratio	Prob(f>F)
Model	2	338.017	169.0085	1 3. 00033	3.0	0.0778
Error	17	964.673	56.74547	7.532959		
Total	19	1302.69	68.56263	8.280255		

-----Sum of Functions Regression-----

Date/Time 05-18-1992 15:20:49

Data Base Name C:\NASA\WUC23

Description Merge of WUC11 and WUC51 created 04-27-1992

	Actual	Actual	Predicted	Lower95%	Upper95%	
Row	X	Y	Y	Value	Value	Residual
1	•	•	•	•	•	•
2	•	•	•	•	•	•
		•	•	•	•	•
3 4	4497	21.7	17.59677	.9 983463	34.19518	4.103235
5	•		•	•	•	•
6	4283	20.4	17.89018	1.253127	34.52723	2.509822
7	36554	4.6	10.42493	-7.081947	27.9318	-5.824929
8	•	6.2	•	•	•	•
9		13.2	•	•	•	•
10		5.7	•	•	•	•
11		5.2	•	•	•	•
12	•	9.3		•	•	•
	9968	16.5	12.75235	-3.882895	29.38759	3.747653
	9968	20.5	12.75235	-3.882895		7.747653
	9968	16.5	12.75235	-3.882895		3.747653
	2247	22.1	21.51742	3.922633	39.1122	. 582585
17	441			•	•	
18		11.2	15.78019	6974329	32.25782	-4.580194
	6091	11	15.73742	7396602		-4.737417
20		22	18.80332	2.009699	35.59695	3.196676
21		20.5				
22	•		•		•	•
23	•	7.6	•		•	•
24	16 6 96	6.8	10.21025	-6.638539	27.05904	-3.410251
	16696	6.4	10.21025	-6.638539		-3.810252
	23386	5	9.398357	-7.390118		-4.398357
	3804	7.1	18.59472	1.841787	35.34766	-11.49472
	25471	4.4	9.369648	-7.407126		-4.969648
29			3,000010		20111012	-41000040
		1.4	10.88782	-7.082106	28.85 7 75	-9.487823
	39091	26.2	12.43668	-4.230335		13.76332
	10535	28.4	11.76412	-7.23429	30.76253	16.63588
	43162	40.4	11110712			10.0000
3 3	•	•	•	•	•	•
34		20.2	22.72017	4.610004	40.83033	-2.520164
	1767		9.400715	-7.388428		
36	23321	8.6	3.400/13	-1.305448	40.10300	8007144

Residual Plot

------Multiple Regression------

Date/Time 04-02-1992 17:08:31

Data Base Name A: WUC24

Description Backup of WUC24 created 03-13-1992

Multiple Regression Report

Dependent	Variable:	FHBMA24
-----------	-----------	---------

	_		-				
Independent	Parameter	Stnaizea	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sqr	R-Sqr
Intercept	4996.525	0.0000	1764.139	2.83	0.0253		•
KVA MAX	-1.906061	-4.2720	. 5 96856 7	-3.19	0.0152	0.0151	0.0151
SOR KVA	46.34963	3.7415	17.27203	2.68	0.0314	0.1201	0.0041
WGT24	-2.735048	-18.4110	1.063313	-2.57	0.0369	0.5197	0.1360
SQR WT24	284.5488	38.6879	102.2125	2.78	0.0271	0.5338	0.1340
LOG WT24	-1642.986	-20.2179	57 5. 15 5	-2.86	0.0245	0.7847	0.1154

Analysis of Variance Report

Dependent Variable: FHBMA24

Source	df	Sums of Squares	Mean Square	F-Ratio	Prob. Level
		(Sequential)			
Constant	1	54639.37	54639.37		
Model	5	3 2075. 44	6415.087	5.10	0.027
Error	7	8798.53	1 256. 933		
Total	12	40873.97	3406.164		
Root Mean	Squa	re Error	35.45325		
Mean of D	epend	ent Variable	64.83077		
		Variation	. 5468584		
R Squared	1		0.7847		
Adjusted	R Sau	ared	0.6310		

Date/Time 04-02-1992 17:08:41

Data Base Name A: WUC24

Description Backup of WUC24 created 03-13-1992

Residual Analysis

Row	Actual	Predicted	Std Err	Lower95%	Upper95%	Resigual
	Υ	Value	of Prea	Mean	Mean	
1	•	•	•	•	•	•
2	•	•	•	•	•	•
3	•	•	•	•	•	•
4		•	•	•	•	•
5		•		•	•	•
6	100	69.82757	22.92636	15.78379	123.8713	30.17243
7	•	•	•		•	•
8		•	•	•	•	•
9		•	•	•	•	•
10	•	•	•	•	•	•
11	•	•	•	•	•	•
12	•	-		•		•
13	•	•	•	•	•	•
14	•	•	•	•	•	•
15	•	•	•	•	•	•
16	•	•	•	•	•	•
17	ē	•	•	•	•	•
18	27.1	7.185519	33.36948	-71.47559	85.84663	19.91448
19	31.6	5 5. 76 3 1	14.63838	21.2564	90.26981	-24.1631
20	22.6	4 5. 40957	20.49519	-2:903259	93.72239	-22.80956
21	24	35.4301	19.86587	-11.39926	82.25946	-11.4301
22	•	•		: ••		•
23	52.5	41.59393	17.04385	1.416855	81.77101	10.90607
24	49.6	44.51074	16.72573	5.083572	8 3. 93791	5.089256
25	44.1	44.51074	16.72573	5.083572	83.93791	4107437
26	2 33	1 81. 78 57	26.3202	119.7417	243.8297	51.21433
27	9 8	•	•	•	•	
28	53.2	48.68216	18.10141	6.012123	91.35219	4.517845
29	•	21.10454	19.34587	-24.49903	66.70811	•
30	14.5	15.26921	34.75413	-66.65589	97.19431	7692118
31	9 9. 7	1 58. 48 5 5	23.50973	103.0666	213.9044	-58.78552
32	9 0.9	94.35203	35.24929	11.25969	177.4444	-3.452026
33	•	•	•	•	•	
34		•	•	•	•	•
35	•	•	•	•	•	•

Durbin - Watson Statistic 1.276503

Date/Time 04-07-1992 14:35:52

Data Base Name A: WUC42

Description Backup of WUC42 created 03-27-1992

Multiple Regression Report

Dependent Variable	: FMA42/44						
Independent	Parameter	Stndized	Standard	t-value	Prob.	Sea.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sqr	R-Sqr
Intercept	1193.127	0.0000	117.0389	10.19	0.0000		
WGT42	7 55E- 01	-7.6982	.91 80E- 02	-8.22	0.0000	0.0233	0.0233
SQR WT42	6.758773	7.6694	. 8 034786	8.41	0.0000	0.0363	0.0170
LEN WING	7155964	-5.0081	.8 059E- 01	-8.88	0.0000	0.0384	0.0094
LN DRYWT	-167.2401	-10.6606	16.50279	-10.13	0.0000	0.0391	0.0091
SOR WGT	2.2308	17.6804	.2085312	10.70	0.0000	0.3664	0.0320
LOG KVA	29.10236	1.5538	4.96025	5.87	0.0001	0.4321	0.0100
KVA SQD	127E-02	-4.2703	.1504E-03	-8.46	0.0000	0.9126	0.0290

Analysis of Variance Report

Dependent Variable: FMA42/44

Source	₫₹	Sums of Squares	mean Square	F-Ratio	Prob. Level
•		(Sequential)			
Constant	1	9425.524	9 425. 524		•
Model	7	5013.717	716.2453	19.40	0.000
Error	13	4 80. 04 86	36.92682		
Total	20	5 493. 76 6	274.6883		
Root Mear	n Squa	re Error	6.076744	- •	
		ent Variable	21.18571		
		Variation	.2868321		
R Squared	i		0.9126		
Adjusted		ared	0.8656		

------Multiple Regression------

Date/Time 04-07-1992 14:36:04

Data Base Name A: WUC42

Description Backup of WUC42 created 03-27-1992

Row	Actual Y	Predicted Value	Std Err of Prea	Lower95% Mean	Upper95% Mean	Residual
1	•	•	•	•	•	•
2	•	•	•	•	•	•
3	-	•	•	•	•	•
4	26.3	29.8017	3 .4889 53	22.26824	37.33516	-3.501701
5		•	•	•	•	•
6	24.4	14.95013	1.740427	11.19215	18.70812	9.449867
7	9	6.211584	5.541101	-5. 75 29 43	18.17611	2.788416
8	9	•	•	•	•	•
9	18.8	•	•	•	•	•
10	7.9	•	•	•	•	•
11	9.4	-	•	•	•	•
12	17.9	•		•	·	•
13	16	16.70531	2.848549	10.55463	22.85599	705307
14	15.7	16.82314	2.872824	10.62004	23.02623	-1.123136
15	16.3	14.22686	2.972956	7.807555	20.64616	2.07314
16	36.3	33.83958	4.143581	24.89262	42.78654	2.460419
17			. 077040			
18	12.6	6.691128	2.937948	.3474145	13.03484	5.908873
19	14.9	18.09532	3.458087	10.6285	25.56213	-3.195318
20	14.5	21.83239	2.183244	17.11826	2 6. 54652	-7.332394
21	13.2	19.82873	2.184684	15.11149	24.54597	-6.628732
22		4.73493	3.232978	-2 245001	11 71540	
23	12.8	4.73493 1 3. 65659	2.758887	-2.245821 7.699511	11.71568	8.065071
24 25	14.4 12.4	16.13459	2.651955	10.4084	19.61367	.7434092
25 26	10.4	19.80948	2.971453	13.39343	21.86078 26.22554	-3.734589 -9.809485
25 27	20.2	17.44753	4.498868	7.733433	27.16164	2.752466
28	39.8	39.02169	4.757357	28.74945	49.29393	.7783089
29	J7.0	39.02109	4.737337	20.74743	47.27373	. //63069
30	2.5	5.14978 5	5.9 5 6206	-7.71105	18.01062	-2.649785
31	20.7	22.96551	3.21715	16.01893	29.91208	-2.265505
32	81.7	77.70444	5.775562	65.23366	90.17522	3.99556
3 3		,,,,,			, , , , , , , , , , , , , , , , , , , ,	J. //JJU
34	•	• •	•	-	•	•
35	31.2	29.27219	4.585095	19.37191	39.17248	1.927809

-----Multiple Regression------

Date/Time 04-03-1992 14:10:20

Data Base Name A: WUC45

Description Backup of WUC45 created 03-13-1992

Multiple Regression Report

Dependent Variable	: FHBMA45						
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Er ror	(b=0)	Level	R-Sar	R-Sqr.
Intercept	396.2586	0.0000	158.0882	2.51	0.0263		
WETAREA	622E-02	-1.2534	.2 952E- 02	-2.11	0.0552	0.1895	0.1895
SUBSYS	35.63519	14.9205	13.60 83 8	2.62	0.0212	0.2126	0.1606
SQR SUBS	-7 79 .8318	-27.5569	293.7664	-2.65	0.0198	0.2190	0.1578
LOG SUBS	9 75 .5665	12.8481	372.1557	2.62	0.0211	0.3287	0.1377
SQR WT45	8.812898	3.1624	2.214499	3.98	0.0016	0.3724	0.1646
LOG WT45	-105.7279	-2.3344	25.46246	-4.15	0.0011	0.7302	0.2943

Analysis of Variance Report

Dependent Variable: FHBMA45

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant	1	43300.82	43300.82		
Model	6	2 5232. 66	4205.443	5.86	0.004
Error	13	9 321.665	717.0512		
Total	19	3 4554.32	1818.648		
	epend	re Error ent Variable Variation	26.77781 46.53 .5 7 54956		
R Squared Adjusted	R Squ	ared	0.7302 0.6057		

-----inultiple Regression------

Date/Time 04-03-1992 14:10:30

Durbin - Watson Statistic .7553009

Data Base Name A: WUC45

Description Backup of WUC45 created 03-13-1992

Residual Analysis

Row	Actual Y	Predicted	S td Err of Pred	Lower95%	Upper95%	Residual
	T	Value	or Pred	Mean	Mean	
1	•	•	•	•	•	•
2	•	•	•	•	•	•
3				0.4744.04		·
4	44.4	43.68098	18.99137	2:674194	84.68777	.7190208
5	·	•	•	•	•	•
6	95.8	71.94819	9.017187	52.47798	91.4184	23.85181
7	9.6	7.946936	23.73618	-43.30499	5 9. 19886	1.653065
8	12.3	•	•	•	•	•
9	35.2	•	•	•	•	•
10	20.5	•	•	•	•	•
11	18.5	•	•	•	•	•
12	28.2	•	•	•	•	•
13	30.4	•	•	•	•	•
14	26.3	30.67701	13.32979	1.894903	59. 45912	-4.377014
15	44.7	30.67701	13.32979	1.894903	59.45912	14.02299
16	18 3	121.2529	15.21319	88.40407	154.1017	61.74712
17	•	•	•	•	•	•
18	19.7	43.58819	8.864145	24.44844	62.72794	-23.88819
19	25.4	37.19875	9.746329	16.15415	58.24334	-11.79875
20	7 5.7	84.11586	9.813308	62.92664	105.3051	-8.415863
21	62.7	84.03505	9.798325	62.87819	105.1919	-21.33505
2 2	•	•	•		•	•
23	17	28.79477	11.82984	3:251391	54.33815	-11.79477
24	18.7	28.71986	11.83429	3.166882	54.27284	-10.01986
25	19.4	28.71986	11.83429	3.166882	54.27284	-9.319861
26	14.3	23.15324	14.23642	-71586506	53.89299	-8.853242
27	27.3	33.6419	24.34888	-18.93301	86.21681	-6.3419
28	16	-19.23709	16.0961	-53.99232	15.51813	35.23709
29						-
20	4.7	8,607842	22.39445	-39. 74698	56.96266	-3.907842
31	7 3. 8	49.35373	14.39855	18.26391	80.44355	24.44627
32	60.5	68.67876	24.75348	15.23025	122.1273	-8.178764
33						
34	•		-	•	•	•
35	91.6	125.0493	16.28075	8 9. 89542	160.2033	- 33 .44935

J-14

------nultiple Regression-----------

Date/Time 04-02-1992 16:26:05

Data Base Name A: WUC14

Description Backup of WUC14 created 03-27-1992

Multiple Regression Report

Dependent Varia	ble: F	HBMA14
-----------------	--------	--------

Depondent for Labre							
Independent	Parameter	Stndized	Standard	t-value	Prob.	Sea.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sar
Intercept	26.29027	0.0000	5.516686	4.77	0.0006	, ,	•
SQR WT14	-1.11361	-3.1267	. 2 82332 2	-3.94	0.0023	0.3119	0.3119
ACTUATOR	.9516068	4.4096	.2070737	4.60	0.0008	0.3665	0.3635
CONT SUR	-1.899484	-3.2112	.3542125	-5.36	0.0002	0.4257	0.4177
LEN_WING	.3505284	7.4989	.0697234	5.03	0.0004	0.5870	0.1962
WETAREA	357E- 02	-5.6737	.8 842E- 03	-4.04	0.0019	0.8338	0.2781

Analysis of Variance Report

Dependent Variable: FHBMA14

Source	at	Sums of Squares	mean Square	F-Ratio	Prob. Level
Constant	1	(Sequential) 3124.495	3124.495		
Model	5	368.186	73.63719	11.04	0.001
Error	11	73.38562	6.67142		
Total	16	441.5716	27.59822		
Root Mean	Squa	re Error	2.582909		
Mean of D	epend	ent Variable	13.55706		
Coefficie	nt of	Variation	.1905213		
R Squared			0.8338		
Adjusted	R Squ	ared	0.7583		

Date/Time 04-02-1992 15:26:14

Data Base Name A: WUC14

Description Backup of WUC14 created 03-27-1992

Residual Analysis

Row	Actual	Predicted	S td Err	Lower95%	Upper95%	Residual
	Y	Value	of Prea	Mean	Mean	
1	3.93	•	•	•	•	
2	2.76	•			•	
3	4.28	•	•	•	•	•
4	14.56	13.36487	1.540009	9.978226	16.75151	1.19513
5	7.28	•	•	•	•	•
6	17.14	18.93295	1.272004	16.13568	21.73022	-1.792948
7	7.08	6.314134	2.212739	1.448084	11.18018	.7658658
8	4.36	•	•	•	•	
9	22.49	•	•	•	•	•
10	6.02	•	•		•	•
11	7.21	•	•	•	•	•
12	9.61	•	•	•	•	•
13	9.35	8.357595	1.360307	5.366136	11.34906	. 9924049
14	9 .8	11.21242	1.154889	8.672692	13.75214	-1.412416
15	9.65	12.8599	1.145179	10.34153	15.37827	-3.209903
16	21.7	21.57082	2.105001	16.9417	26.19994	.129179
17	4.48	•	•	•	•	•
18	12.95	14.22219	1.201421	11.58014	16.86425	-1.272195
19	14.35	15.88612	1.210335	13.22446	18.54778	-1.536119
20	15.53	11.79617	1.177666	9.206356	14.38598	3.733831
21	14.34	12.73119	1.058403	10.40365	15.05873	17.608809
22	7 .47	•	•	•	•	
23	14.38	17.14578	1.270408	14.35202	19.93954	-2.765779
24	18.94	17.14578	1.270408	14.35202	19.93954	1.794222
25	18.32	17.70663	1.29922	14.8495	20.56375	.6133728
26	6 .6	9.488832	1.438714	6.324945	12.65272	-2.888832
27	11.8	•	•	•	•	•
28	૯ .8	•	•	•	•	•
29	8 .57	•	•	•	•	•
30	3 .8	3.590492	2.552406	-2.022521	9.203505	.2095082
31	21.98	18.14413	1.81661	14.14921	22.13905	3.835873
32	•	-73.75688	15.50723	-107.8589	-39.65482	•
33	6.7	•	•	•	•	•
34	4.24	•	•	•	•	•

Durbin - Watson Statistic 1.453594

Date/fime 04-05-1992 14:10:02

Data Base Name B:AVIONICS

Description Sackup of AVIONICS created 03-27-1992

Multiple Regression Report

Dependent Variable: FHBMA

Independent Variable	Parameter Estimate	Stndized Estimate		t-value (b=0)	Prob. Level	3 ea. R−Sar	Simple R-Sar
Intercept	-36.91729	0.0000	27.71737	-1.33	0.2124		
TOTSUBS	-4.496016	-7.2132	1.798985	-2.50	0.0315	0.3061	0.3061
SOR TSUB	45.75636	8.1287	18.14795	2.52	0.0303	0.3499	0.3269
AVG WT/S	1230886	-2.2612	-43 87E- 01	-2.81	0.0186	0.5039	0.1876
WGT51/72	.2360E-01		.7 750E- 02	3.05	0.0124	0.5524	0.4244
SQR51/72	-2.453409	-9.6786	.75 827 01	-3.24	0.0089	0.7813	0.5377

Analysis of Variance Report

Dependent Variable: FHBMA

Source	df	Sums of Squares (Sequential)	M ean Square	F-Ratio	Prob. Level
Constant	1	1161.106	1161.106		
Model	5	277.7397	5 5. 54793	7.15	0.004
Error	10	7 7.7247	777247		
Total	15	355.4644	23.69763		
Root Mean	Squa	re Error	2.787915		
Mean of D	epend	ent Variable	8.51875		
Coefficie	nt of	Variation	.3272681		
R Squared			0.7813		
Adjusted	R Squ	ared	0.6720		

Oate/Time 04-05-1992 14:10:02

Data Base Name B:AVIONICS

Description Backup of AVIONICS created 03-27-1992

Row	Actual Y	Predicted Value	Std Err of Pred	Lower95% Mean	Upper95% Mean	Residual
.1.	•	-	-	•	•	•
2	•	•	•	•	•	
3	•	-	•	•	•	•
4	13.8	11.47413	2.163948	6.654596	16.29367	2.325869
5	-	•	•	•	•	•
6	11.7	13.2958	1.391816	10.19595	16.39564	-1.595797
7	3.6	3.321389	2.734361	-2.768568	9.411346	.2786114
. 8	3.2		•	•	•	•
9	5 .3	•	-	-	•	•
10	5.7	•	-	•	-	
11	4.5	•	•	•	•	•
12	ა .5	•	•	•	-	**
13	4.6	•	•	-	•	•
14	3	3 .3 47025	1.895034	8735862	7.567636	3470249
15	2.3	•	•	-	•	-
16	13.4	14.37355	2.05159	9.804258	18.94284	9735508
17	•	•	•	•	•	•
18	7.2	9.215006	.9 86 718 1	7.017392	11.41262	-2.015006
19	6 .8	8.969621	.9 69 2566	6.810897	11.12834	-2.169621
20	17.1	13.69418	1.421032	10.52927	16.8591	3.405816
21	10.9	12.69238	1.256933	91892949	15.49182	-1.792384
22	•	•	-	•	•	•
23	4.7	•	•		•	•
24	4.4	4.35442	1.118757	1.862731	6.846109	.4558E-01
25	3 .2	6.210011	1.03621	31902168	8.517853	-3.010011
26	2.6	•			•	•
27	11.3	5.770187	1.547329	2.323983	9.216392	5.529813
28	4.4	5.542498	1.320705	2.601031	8.483965	-1.142498
29	•	•			•	•
30	1.5	2.12689	1.636726	-1.51842	5.772199	626889 5
31	-	3224168	3.293402	-7.657466	7.012632	•
32	9.6	7.683124	2.278235	2.609049	12.7572	1.916876
3 3	•	•	•	•	•	•
34	-				•	
35	14.4	14.22974 Statistic 1 4	2.211951 86022	9.303292	19.15619	.1702614

-----Multiple Regression-----

Date/Time 03-17-1992 15:46:03

Data Base Name C:\NASA\PRECON

Description Merge of WUC12 and WUC11 created 03-17-1992

Multiple Regression Report

Dependent Variable: ECS FHMA

bepondent variable.	. 200						
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sgr
Intercept	454.3876	0.0000	73.06644	6.22	0.0000		•
DRY_WGT	547E-03	-2.7 882	.1174E-03	-4.66	0.0001	0.2268	0.2268
LEN_WING	.8210209	6.3884	.1587219	5.17	0.0000		0.2399
LN LENTH	-107.5185	-4.3668	18.67703	-5.76	0.0000	0.7057	0.3295

Analysis of Variance Report

Dependent Variable: ECS FHMA

Source	đĩ	(Sequential)	mean Square	F-Ratio	Prob. Level
Constant	1	1 587 6	15876		
Model	3	2 878. 971	959.6572	16.78	0.000
Error	21	1200.849	57.18326		
Total	24	4079.82	169.9925		
Root Mean Square Error Mean of Dependent Variable Coefficient of Variation		ent Variable	7.561962 25.2 .3000779		
R Squared	l		0.7057		
Adinated		ared	0.6636		

-----Multiple Regression-----

Date/Time 03-17-1992 15:46:20

Data Base Name C:\NASA\PRECON

Description Merge of WUC12 and WUC11 created 03-17-1992

Row	Actual	Predicted	Std Err	Lower95%	Upper95%	Residual
	Y	Value	of Pred	Mean	Mean	
1	•	50.7493	4.118218	42.1861	59.31249	•
2	•	50.45108	4.085465	41.95599	58.94617	
3	•	25.69216	1.828852	21.88935	29.49497	
4	35.8	36.86065	2.3857	31.89995	41.82134	-1.060646
5	•	36.44805	2.36965	31.52073	41.37537	
6	25.8	27.79544	1.74072	24.17588	31.41499	-1.995438
7	26.8	25.50905	3.895484	17.40899	33.6091	1.290951
8	6.7	12.25799	2.913207	6.20043	18.31556	-5.557993
9	40.7	26.45771	1.779617	22.75727	30.15815	14.24229
10	10.2	14.31453	2.695768	8.709101	19.91996	-4.114533
11	11.5	13.59828	2.802119	7.771712	19.42486	-2.098285
12	11.6	13.59828	2.802119	7.771712	19.42486	-1.998284
13	27.1	26.65697	2.11557	22.25797	31.05597	.4430351
14	3 2.1	26.57109	2.123911	22.15475	30.98743	5.52891
15	2 9.2	24.79607	2.100431	20.42855	29.16359	4.403929
16	43	46.63979	3.487054	39.389	53.89058	-3.639786
17	•	16.48271	2.533746	11.21418	21.75124	•
18	20.9	25.24841	1.886233	21.32628	29.17054	-4.34841
19	2 2.4	24.88891	1.916442	20.90397	28.87386	-2.488913
20	40.6	41.27864	2.843852	35.36529	47.19199	6786423
21	31.6	39.85584	2.647759	34.35024	45.36145	-8.255842
2 2	•	30.62558	1.996451	26.47427	34.77689	•
23	13.8	21.98905	2.961403	15.83127	28.14683	-8.189052
24	15.9	19.31327	2.714297	13.66931	24.95723	-3.413271
25	15.8	18.80413	2.682354	13.22659	24.38167	-3:004132
26	34.1	19.77402	2.826684	13.89637	25.65167	14.32598
27	24.4	26.99358	1.749175	23.35644	30.63072	-2.593578
28	11.7	23.88553	3.557813	16.48761	31.28345	-12.18553
29	•	20.73655	2.040279	16.49411	24.97899	•
30	5 .5	3.885876	7.251264	-11.192	18.96375	1.614124
31	3 5.4	18.79546	2.621801	13.34383	24.24709	16.60454
32	•	-21.289	8.379209	-38.71227	-3.865732	•
3 3	•	17.40764	2.290914	12.64404	22.17124	•
34	•	21.40354	2.152125	16.92853	25.87855	•
35	5 7.4	50.23156	3.978719	41.95843	58.50468	7.168446
Durbi	n - Watson	Statistic 1.5	64765			

Resid

-----Multiple Regression-----

Date/Time 03-18-1992 16:24:35

Data Base Name C:\NASA\PRECON

Description Merge of WUC12 and WUC11 created 03-17-1992

Multiple Regression Report

Dependent Variable: FHBMA47

Dependent variab	TC. IIIDIIATI						
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sgr
Intercept	6613.119	0.0000	2618.338	2.53	0.0186		
LEN_WING	-1.484938	-3.7671	.824043	-1.80	0.0841	0.1844	0.1844
LN DRY	-1358.298	-31.4055	574.8234	-2.36	0.0266	0.3888	0.3131
LDRY SQD	73.58044	36.8273	32.95623	2.23	0.0352	0.4523	0.2908
WGT/LEN	7258523	-2.5758	.3997296	-1.82	0.0819	0.5185	0.2127

Analysis of Variance Report

Dependent Variable: FHBMA47

$\mathtt{d}\mathbf{f}$	Sums of Squares	Mean Square	F-Ratio	Prob. Level
	(Sequential)			
1	157445.3	157445.3		
4	24456.88	6114.22	6.46	0.001
		946.4675		
28	47172.1	1684.718		
Saua	re Error	30.76471		
		73.68276		
		.4175293		
		0.5185		
R Squ	ared	0.4382		
	1 4 24 28 Squa epend	(Sequential) 1 157445.3 4 24456.88 24 22715.22	(Sequential) 1 157445.3 157445.3 4 24456.88 6114.22 24 22715.22 946.4675 28 47172.1 1684.718 Square Error 30.76471 ependent Variable 73.68276 nt of Variation .4175293 0.5185	(Sequential) 1 157445.3 157445.3 4 24456.88 6114.22 6.46 24 22715.22 946.4675 28 47172.1 1684.718 Square Error 30.76471 ependent Variable 73.68276 nt of Variation .4175293 0.5185

-----Multiple Regression-----

Date/Time 03-18-1992 16:24:54

Data Base Name C:\NASA\PRECON

Description Merge of WUC12 and WUC11 created 03-17-1992

Row	Actual	Predicted	Std Err	Lower95%	Upper95%	Residual
	Y	Value	of Pred	Mean	Mean	
1	•	141.1113	14.8278	110.5091	171.7135	•
2	•	135.1058	13.73957	106.7495	163.4621	•
3	•	74.50274	7.388289	59.25449	89.75098	•
4		89.13271	8.856916	70.85345	107.412	•
5	59.4	86.20551	8.97948	67.67329	104.7377	-26.8055
6	54	81.1097	9.006599	62.52152	99.69788	-27.1097
7	57.3	50.2059	13.07486	23.22149	77.19032	7.094097
8	45.8	65.38286	9.373751	46.03693	84.72878	-19.58286
9	48.5	76.77922	7.535839	61.22646	92.33199	-28.27922
10	60.7	65.54992	8.589679	47.8222	83.27764	-4.849918
11	71.8	65.01151	8.994681	46.44792	83.57509	6.788498
12	70.6	65.01151	8.994681	46.44792	83.57509	5.588493
13	42.8	64.57682	10.69242	42.50937	86.64427	-2177682
14	52.8		10.80014	41.93341	86.51292	-11.42317
15	57.5	65.46734	9.715715	45.41566	85.51902	-7.967339
16	215	142.0901	15.25339	110.6095	173.5706	72.90994
17	43.6	65.17923	8.394764	47.85378	82.50468	-21.57923
18	116.4	72.50864	7.562007	5 6. 90186	88.11541	43.89137
19	143.6	71.52433	7.679718	5 5. 67462	8 7. 37404	72.07568
20	96.8	103.5267	9.627464	8 3. 65718	1 23. 3963	-6.726723
21	63.8	103.8566	9.612676	84.01761	123.6957	-40 .05664
2 2	8 9. 5	75.70082	8.69736	5 7. 75086	9 3. 65078	13.79918
23	53.6	52.13289	11.7856	27.80928	76.4565	1:46711
24	6 3. 8	56.5951	11.05877	33.77158	79.41863	7.204895
25	37.5	57.45002	11.07085	34.60156	80.29848	-19.95002
26	3 9.4	57.72341	11.89523	33.17355	8 2. 27326	-18.32341
27	105	79.31601	9.222612	60.28201	98.35001	25.68399
28	44.7	52.84816	12.59733	26.84928	78.84703	-8.148155
29	•	67.65247	8.162927	50.8055	84.49945	•
3 0	17.8	26.02779	27.49129	-30.70984	82.76541	-8.227787
31	8 8.5	56.84679	10.56459	35.04317	78.65041	31.65321
3 2	88.1	61.15994	19.6937	20.51528	101.8046	26.94006
3 3	•	67.13113	7.37101	51.91855	82.34372	•
34	•	66.90881	8.17968	50.02726	83.79037	•
3 5	1 51	183.7776	24.31625	133.5927	233.9624	-32.77757
3 6	5 7.5	69.05804	19.9642	27.85511	110.261	-11.55804
Durbi	n - Watson	Statistic 1.7	76327		•	

------Multiple Regression--

Date/Time 04-06-1992 11:25:48

Data Base Name C:\NASA\WUC96

Description Merge of WUC47 and WUC12 created 02-11-1992

Multiple Regression Report

Dependent Variable:	: FMA49/96						
Independent	Parameter	Stndized	Standard	t-value	Prob.	S eq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sqr	R-Sqr
Intercept	1 7952. 78	0.0000	2610.109	6.88	0.0000		
DRY WGT	.5 793E- 02	2.6703	.10 51 E-02	5.51	0.0002	0.2448	0.2448
CREWSIZE	1 69. 962	1.5299	34.79 977	4.88	0.0005	0.4510	0.4508
LEN WING	-10.13568	-6.6007	1.493222	-6.79	0.0000	0.5271	0.4064
PERSONS	21.14998	10.7670	3.980229	5.31	0.0002	0.5287	0.2572
SQR PER	-461.3385	-13.7798	86.43541	-5.34	0.0002	0.5324	0.3662
WGT49/96	-1.892708	-37.9819	.3154611	-6.00	0.0001	0.5328	0.3246
SQRWT49/	421.931	71.9834	68.4356	6.16	0.0001	0.6250	0.4239
LOGWT49/	-4054.064	-29.7305	615.4006	-6.59	0.0000	0.9242	0.5188

Analysis of Variance Report

Dependent Variable: FMA49/96

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant	1	770752.3	770752.3		
Model	8	584015.3	73001.91	1 6. 76	0.000
Error	11	4 79 19.77	4356.342		
Total	19	631935	3 325 9.74		
Root Mean	Squa	re Error	66.00259		
		ent Variable	196.31		
		Variation	.3362162		
R Squared			0.9242		
Adjusted		ared	0.8690		

------Multiple Regression-------

Date/Time 04-06-1992 11:26:00

Data Base Name C:\NASA\WUC96

Description Merge of WUC47 and WUC12 created 02-11-1992

Row	Actual Y	Predicted Value	Std Err of Pred	Lower95% Mean	Upper95% Mean	Residual
1	•	•	•	•	•	•
2	•	•	•		•	•
3	•	•	•	•	•	•
4	234	296.2767	23.31404	245.0067	347.5468	-62.27673
5	-	•	•	•	•	•
6	235	213.7676	36.67631	133.1125	294.4228	21.23238
7	55.5	47.42839	65.27004	-96.10739	190.9642	8.07161
8	40.1	•	•	•	•	•
9	60.3	•	•	•	•	•
10	9 5	•	•	•	•	•
11	108.4	•	•	•	•	•
12	121.8	•	•	•	•	•
13	236.6	258.4744	36.76332	177.628	3 39 .3209	-21.87442
14	236.8	259.3846	36.80959	178.4363	340.3328	-22.58458
15	2 62. 1	217.3143	34.72522	140.9498	293.6787	44.78574
16	610.8	454.2334	28.79348	390. 9134	517.5533	156.5666
17	•	•	•	•	•	•
18	83.6	129.978	36.885 62	48.86253	211.0934	-46.37795
19	131.1	132.4468	36.62774	51.8985	212.9951	-1.346802
20	561.1	630.444	46.66964	527.8124	733.0755	-69.34399
21	492.7	452.9334	40.21066	364.5058	541.3609	391.76666
22	•	•	•	•	•	•
23	34.7	. 3676592	32.37596	-70.83053	71.56585	34.33234
24	48.8	26.36375	31.55152	-43.0214	95.74891	22.43625
2 5	34.2	21.57078	31.59287	-47.90533	91.0469	12.62922
26	46.7	7 3.3337 8	63.0208	-65.2557	211.9232	-26.63378
27	70.5	78.93259	53.74566	-39.25987	197.125	-8.432587
28	34.6	84.06072	49.07781	-23.86664	191.9881	-49.46072
29	•	•	•	•	•	. •
30	10	-7.931614	64.03231	-148.7455	132.8823	17.93161
31	201.4	•	•	•	•	•
32	175.9	179.8266	65.26067	36.31137	323.3418	-3.926575
33	•	•	•	•	•	•
34	•	•	•	•	•	•
35	3 31.5	376.9937	33.91124	302.4193	451.5682	-45.49371
Duchi	n - Watson	Statistic 82	55058			

_____Multiple Regression------

Date/Time 04-20-1992 12:59:29

Data Base Name B:WUC97

Description Backup of WUC97 created 03-13-1992

Multiple Regression Report

Dependent Variabl	e: FMA91397						
Independent	Parameter	Stndized	Standard	t-value	Prob.	S eq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sar
Intercept	7 549. 095	0.0000	2040.461	3.70	0.0021	•	
DRY_WGT	165E-01	-4.8461	.7514E-02	-2.20	0.0442	0.1183	0.1183
LEN_WING	4.00187	2.6090	1.085099	3.69	0.0022	0.2945	0.1860
LN DRYWT	-9 99. 7649	-6.7243	276.4095	-3.62	0.0025	0.3054	0.0831
SQR WGT	16.8468	10.9600	6.396186	2.63	0.0188	0.6256	0.1214
PERSONS	-4.224915	-2.1475	.862487	-4.90	0.0002	0.8560	0.0506

Analysis of Variance Report

Dependent Variable: FMA91397

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant	1	603369.1	603369.1		
Model	5	205508.5	41101.7	17.83	0.000
Error	15	3 4579.43	2305.295		
Total	20	2 40087. 9	12004.4		
Root Mean	Squa	re Error	48.01349		
Mean of D	epend	ent Variable	169.5048		
Coefficie	nt of	Variation	. 2832575		
R Squared			0.8560		
Adjusted	R Squ	ared	0.8080		

------Multiple Regression-----

Date/Time 04-20-1992 12:59:29

Data Base Name B:WUC97

Description Backup of WUC97 created 03-13-1992

Residual Analysis

Row	Actual	Predicted	Std Err	Lower95%	Upper95%	Residual
	Y	Value	of Pred	Mean	Mean	
1	•	143.8382	25.82817	88.8058	198.8705	•
2	•	125.925	24.46182	73.80399	178.0461	
3	•	97.26936	16.04484	63.08246	131.4563	•
4	104	53.57728	18.02652	15.16798	91.98658	50.42272
5	•	46.76052	17.89455	8.632401	84.88863	_
6	122.4	134.2292	26.72573	77.28436	191.174	-11.82916
7	•	1031.059	205.2035	5 93. 8298	1468.288	-
8	249.2	237.2138	21.50652	191.3896	283.038	11.98621
9	41	108.7047	18.68796	68.88611	148.5234	-67.70474
10	146.8	204.3625	17.87317	166.2799	242.4451	-57.5625
11	175.2	205.5599	19.5112	163.9872	247.1326	-30.35989
12	19 9	205.5599	19.5112	163.9872	247.1326	-6.559891
13	72.1	45.68945	20.27456	2.490231	88.88867	26.41055
14	74.8	45.43245	20.51974	1.710815	89.15409	29.36755
15	96.9	62.84465	18.44202	23.55004	102.1393	34.05535
16	125.4	174.4325	25.88182	119.2859	229.5792	-49.03252
17	•	159.9037	16.51369	124.7178	195.0896	•
18	5 8	93.49603	14.80389	61.95322	125.0388	-35.49603
19	109.5	92.03338	14.53774	61.05767	123.0091	17.46662
20		73.55019	19.23756	32.56052	114.5399	•
21		80.53036	19.6367	38.69023	122.3705	
22	•	53.35607	16.50855	18.18113	88.53101	
23	1 89. 9	211.3269	29.46412	148.5473	274.1064	-21.42686
24	281.2	212.3031	26.63475	155.5521	269.054	68.89696
25	140.8	220.6398	25.46201	166.387 6	274.892	-79 .83978
26	4 52. 8	425.0218	35.31642	349.7728	500.2709	27.77817
27	128.5	93.45365	25.04482	40.09039	146.8169	35.04635
28	9 6	104.5069	46.28212	5.893059	203.1207	-8.506867
29		88.02855	22.05599	41.03361	135.0235	•
30	•	-533.9526	436.0255	-1462.997	395.0914	•
31	3 85.3	339.3272	2 5.874 59	284.1959	394.4584	45.97281
32	•	505.0987	327.4009	-192.498	1202.695	
3 3	-	194.9878	15.92005	161.0668	228.9089	•
74		95.26366	15.42128	62.40537	128.1219	-
/	•	289. 9013	41.4184	201.6507	378.152	20.89865

Durbin - Watson Statistic 1.804476

APPENDIX K MHMA Regression Analysis

-----Multiple REgsédaion-----

Date/Time 04-01-1992 15:46:03

Data Base Name C:\NASA\WUC11

Description Backup of NASAMSTR created 12-18-1991

Multiple Regression Report

Dependent Variable: MH/MA11

Debendence . gramm							
Independent	Parameter	Stndized	Standard	t-value	Prob.	S eq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sqr	R-Sqr
Intercept	16.57323	0.0000	3.446548	4.81	0.0001	-	
FUS DENS	3511567	-0.7189	.8 338E- 01	-4.21	0.0003	0.2926	0.2926
LN DRYWT	7455627	-0.4292	.2965363	-2.51	0.0194	0.4451	0.0172

Analysis of Variance Report

Dependent Variable: MH/MA11

Source	d f	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant	1	982.1554	982.1554		
Model	2	30.41182	15.20591	9.22	0.001
Error	23	3 7.9128	1.648383		
Total	25	68.32462	2.732985		
Root Mean	Squa	re Error	1.283894		
Mean of D	epend	ent Variable	6.146154		
		Variation	.2088938		
R Squared			0.4451		
Adjusted		ared	0.3969		

-----Multiple Regression-----

Date/Time 04-01-1992 15:46:19

Data Base Name C:\NASA\WUC11

Description Backup of NASAMSTR created 12-18-1991

Row	Actual	Predicted	Std_Err	Lower95%	Upper95%	Residual
	Y	Value	of Pred	Mean	Mean	
1	•	7.568937	.530663	6.471285	8.666588	•
2	•	7.565148	.5209367	6.487615	8.642681	•
3	•	5.972121	.2885803	5.375207	6.569036	•
4	5.8	6.118094	.339687	5.415467	6.82072	3180933
5	•	6.087148	.3332928	5.397748	6.776549	•
6	5. 2	4.110045	.6046	2.859458	5.360631	1.089955
7	6.9	5.151078	.4670056	4.185099	6.117057	1.748922
8	3.9	4.251517	.5098779	3.196859	5.306176	3515172
9	7.4	6.81138	.3165508	6.15661	7.46615	.5886202
10	4.3	4.630466	.4368744	3.726812	5.53412	3304658
11	4.4	4.608125	.4402585	3.697471	5.518779	2081251
12	4.3	4.608125	.4402585	3.697471	5.518779	308125
13	6 . 2	6.016082	.2735671	5.450222	6.581943	.1839175
14	5.4	6.001486	.2736548	5.435444	6.567528	6014857
15	6.7	5.918314	.2748418	5.349816	6.486811	.7816863
16	7.6	7.37484	.5128313	6.314073	8.435608	.2251596
17	•	5.097078	.3557626	4.361199	5.832956	•
18	5 .7	6.46717	.280771	5.886409	7.047932	7671704
19	9	6.771715	.3012482	6.148597	7.394833	2.228285
20	5 . 2	5.764346	.40291	4:930945	6.597746	5643458
21	4.1	5.764346	.40291	4.930945	6.597746	-1.664346
2 2	•	5.805303	.3146783	5.154405	6.4562	•
23	5.7	7.168776	.393468	6.354906	7.982646	-1.468776
24	8.1	7.142027	.3987096	6.317315	7.96674	.957973
25	9.8	7.121879	.3993941	6.295751	7.948007	2.678121
26	6	6.415567	.3622405	5.66629	7.164845	4155674
27	9.2	7.362902	.397073	6.541575	8.184229	1.837098
28	6 .3	6.25459	.4301723	5.364799	7.144382	.4541E-01
29	•	6.744976	.290952	6.143156	7.346797	•
30	5.4	6.251603	.6268806	4.954929	7.548276	8516026
31	4.4	7.008264	.3578876	6.26799	7.748538	-2.608264
32	5.1	6.011143	.5460897	4.881582	7.140704	9111433
3 3	•	5.594174	.2865999	5.001356	6.186993	•
34	•	5.358382	.3272913	4.681395	6.035368	•
3 5	7 . 7	8.696106	.7472628	7.150428	10.24178	9961062
Durbi	n - Watson	Statistic 1.59	91353			•

J----Sum of Functions Regression-----

Date/Time 04-02-1992 15:39:30

Data Base Name C:\NASA\WUC12A

Description Merge of WUC11 and WUC12 created 04-01-1992

Estimation Summary Report

Y: MH/MA12 X: LOG PERS
Model: A+B*(1/SQR(X))+C*(X*X)

A 7 B -1	.0855 .6666	cient Estimate 47889120501 0693023797 84700042235	Std. Erro 2.554192 2.257151 7.1855521		T-Value 2.8 -0.7 1.4	Prob(t >T) 0.0130 0.4704 0.1871	R-Squared 0.54960626
Source Model Error Total	df 2 17 19	Sum-Sqr 52.45333 42.98468 95.438	Mean Square 26.22666 2.52851 5.023053	SQR(M.: 5.1211: 1.5901: 2.2412	98 [°] 29	F-Ratio 10.4	Prob(f>F) 0.0011

Date/Time 04-02-1992 15:39:39

Data Base Name C:\NASA\WUC12A

Description Merge of WUC11 and WUC12 created 04-01-1992

	Actual	Actual	Predicted		Upper95%	.
Row	X	Y	Y	Value	Value	Residual
1	0	•	•	•	•	•
2	0	•				•
3	.6931472		5.131208	1.596899	8.665516	ě
4	0	7.6	•	•	•	•
5	0		•	•	•	•
6	0	4.5	•	•	•	•
7	1.791759	4.2	6.157598	2.453058	9.862137	-1.957598
8	.6931472	4	5.131208	1.596899	8.665516	-1.131207
9	0	3.2	•	•	•	•
10	.6931472	5	5.131208	1.596899	8.665516	1312074
11	.6931472	5. 3	5.131208	1.596899	8.665516	.1687928
12	.6931472	6	5.131208	1.596899	8.665516	.8687926
13	.6931472	5.4	5.131208	1.596899	8.665516	.2687927
14	.6931472	5 .2	5.131208	1.596899	8.665516	.0687924
15	.6931472	4.7	5.131208	1.596899	8.665516	4312076
16	0	3.8	•	•	•	•
17	.6931472	•	5.131208	1.596899	8.665516	•
18	0	8.5	•	•	•	•
19	0	10	•	•	•	•
20		7	•	•	•	•
21	.6931472	6.5	5.131208	1.596899	8.665516	1.368793
22	0	•	•	•	•	•
23	4.564348	6.4	8.363339	4.840035	11.88664	-1.963338
24	4.564348	8.8	8.363339	4.840035	11.88664	.4366619
25	4.564348	11.9	8.363339	4.840035	11.88664	3.536661
	4.430817	10.2	8.233025	4.714607	11.75144	1.966975
27	2.397895	7.3	6.577252	2.839643	10.31486	.7227482
28	5.365976	10.4	9.210281	5.483817	12.93675	1.189718
29	3.433987	•	7.351009	3.732269	10.96975	•
30	5.899898	7.7	9.837771	5.766802	13.90874	-2.137771
31	3.7612	5	7.62358	4.054166	11.19299	-2.62358
3 2	4.369448	7.7	8.174137	4.655851	11.69242	4741375
3 3	1.609438	•	6.027713	2.355306	9.70012	•
	1.386294	•	5.859896	2.240462	9.47933	•
35	.6931472	4.6	5.131208	1.596899	8.665516	5312075
3 6	3.135494	7.9	7.115475	3.450584	10.78037	.7845255

Residual P

Date/Time 04-02-1992 16:08:13

Data Base Name C:\NASA\WUC13 :

Description Backup of NASAMSTR created 12-20-1991

Estimation Summary Report

Y: MH/MA X: LOGWGT13

Model: $A+B*(X)+C*(X*X)+D*(X^3)$

A -15 B 55 C -6	56.94 5.984 .0951	cient Estimate 62781443671 11332035852 57233287962 74813014896	Std. Erro 175.3195 63.68528 7.631809 .3017441	T-Value -0.9 0.9 -0.8 0.7	Prob(t >T) 0.3825 0.3909 0.4349 0.4897	R-Squared 0.27491117
Source Model Error	df 3 18 21	Sum-Sqr 39.06438 103.0338	Mean Square 13.02146 5.7241 6.76658	SQR(M.S.) 3.608526 2.392509 2.601265	F-Ratio 2.3	Prob(f>F) 0.1146

Date/Time 04-02-1992 16:08:18

Data Base Name C:\NASA\WUC13

Description Backup of NASAMSTR created 12-20-1991

Row	Actual X	Actual Y	Predicted Y	Lower95% Value	Up pe r95% Value	Residual
1					•	
2		•	•	•	•	
3		_	•	_	-	
4 5	7.144407	9.9	9.522524	4.266597	14.77845	. 3774756
6	7.303843	8.5	9.720329	4.451412	14.98925	-1.220329
7	9.472089	6.2	7.340721	1.897937	12.78351	-1.140721
8	7.472007	6.4	7.040721	1.077707	12.70001	1.140/21
9	•	6.8	•	•	•	•
10	•		•	•	•	•
	•	10.1 11.5	•	•	•	•
11	•		•	•	•	•
12		9.6	0.004107	4 (05707	. 10047	
	7.58172	11.5	9.894126	4.605783	15.18247	1.605874
	7.58172	7.3	9.894126	4.605783	15.18247	-2.594126
	7.58172	10.6	9.894126	4.605783	15.18247	. 7058744
	6.64379	11.9	8.370622	2.906784	13.83446	3 .529378
17						•
	7.173958	9.5	9.56492	4.307173	14.82267	6 49E- 01
	7.202661		9.603564	4.34368	14.86345	3 .996436
	6.828712			3.592491	14.19912	-2.895804
	6.972606	4.3	9.221945	3.961608	14.48228	-4.921945
22	-	•	•	•	•	•
_	8.491465			3 .950193	14.55563	1.647089
	8.491465			3.950193	14.55563	.1470894
25	8.491465			3 .950193	14.55563	2.44709
26	9.307739	9.1	7.700285	2 .269283	13.13129	1.399715
27	6.985642	10.9	9.248073	3 .989399	14.50675	1.651927
28	9.291921	6 .6	7.734547	2.305128	13.16397	-1.134547
29		•	•	•	•	
30	10.55274	5 .9	5.174696	-1.452819	11.80221	.7253048
31	8.365207	5.9	9.43036	4.138935	14.72179	-3.53036
	10.17393	4.8	5.845793	.1736933	11.51789	-1.045793
33	•	•	•	•	•	•
34		•	•	•	•	•
	6.267201	6 .6	6.900555	. 404545	13.39656	3005549
	9.497772			1.840164	12.72815	.6158446

Date/Time 05-18-1992 15:22:42

Data Base Name C:\NASA\WUC23
Description Merge of WUC11 and WUC51 created 04-27-1992

Estimation Summary Report

Y: MHMA23 X: ENG WGT Model: A+B*(X)+C*(SQR(X))

Term	Coefficient Estimate	Std. Error	T-Value Pr	rob(;t;>T)	R-Squared
Α	52.6323670458033	14.94758	3.5	0.0026	0.42330867
В	9.122120994236714D-04	1.089452E-03	0.8	0.4140	
C	393600323202448	.273407	-1.4	0.1681	
		•			

			·			
Source	df	Sum-Sqr	Mean Square	SQR(M.S.)	F-Ratio	Prob(f>F)
Model	2	1509.608	754.8038	27.47369		0.0093
Error	17	2056.602	120.9766	10.99894		
Total	19	3 566. 21	187.6953	13.70019		

-----Sum of Functions Regression-----

Date/Time 05-18-1992 15:22:51

Data Base Name C:\NASA\WUC23

Description Merge of WUC11 and WUC51 created 04-27-1992

	Actual	Actual	Predicted	Lower95%	Upper95%	
Row	X	Y	Y	Value	Value	Residual
1		•	•	•	•	•
2	•	•	•	•	•	•
3	•	•	•	•	•	•
4	4497	22.6	30.33987	6.104384	54.57537	-7.739875
5	•	•	•	•	•	•
6	4283	29.8	30.78034	6.488446	55.07224	9803435
7	_	13.7	10.72453	-14.83741	36.28647	2.975473
8	•	19.3	•	•	•	•
9	•	24.2	•	•	•	•
10	•	17.2	•	•	•	•
11	•	13.7	•	•	•	•
12	•	24.7	•	•	•	•
	9968	25.5	22.42829	-1.860969	46.71755	3.071708
	9968	31.5	22.42829	-1.860969	46.71755	9.071709
	9968	41.9	22.42829	-1.860969	46.71755	19.47171
	2247	5 8. 8	36.02446	10.33417	61.71475	22.77554
17		•	•	•	•	•
	6049	36	27.53795	3.478826	51.59707	8.462052
	6091	31.5	27.47017	3.41185	51.52849	4.029831
	3671	32.9	32.13334	7.612824	56.65385	.7666664
21	•	11.7	•	•	•	•
22		•	•	•	•	•
23		10.2	•	•	•	•
24		12.8	17.00438	-7.596682	41.60544	-4.204381
25		13.9	17.00438	-7.596682	41.60544	-3.104381
		14.1	13.7741	-10.73889	38.2871	.325899
	3804	12.2	31.8265	7.365395	56.28761	-19.6265
		14.2	13.05014	-11.44577	37.54605	1.14986
29		•	•	•	•	•
	39091	11.4	10.47118	-15.76686	36.70923	.9288171
	10535	6.4	21.84333	-2.492323	46.17897	-15.44333
32		10.7	10.23296	-17.50677	37.9727	.4670366
33		•	•	•	•	ě
34		•	•	•	•	•
		25	37.69898	11.25618	64.14178	-12.69898
	23321	4.1	13.79851	-10.71545	38.31248	-9.698515

Residual Plot

-----Multiple Regression-----

Date/Time 04-02-1992 17:09:45

Data Base Name A:WUC24

Description Backup of WUC24 created 03-13-1992

Multiple Regression Report

Dependent Variab	le: MH/MA24						
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sgr	R-Sqr
Intercept	-451.3954	0.0000	118.7124	-3.80	0.0089	•	-
KVA MAX	.9054E-01	3.4559	.4055E-01	2.23	0.0670	0.0072	0.0072
SQR KVA	-2.965429	-4.0027	1.175478	-2.52	0.0451	0.0166	0.0101
WGT24	.265695	30.0350	.7173E-01	3.70	0.0100	0.0412	0.0025
SQR WT24	-26.09953	-58.2119	6.889591	-3.79	0.0091	0.0749	0.0043
LOG WT24	150.5043	29.6631	38.72723	3.89	0.0081	0.7370	0.0098

Analysis of Variance Report

Dependent Variable: MH/MA24

Source	df	Sums of Squares	Mean Square	F-Ratio	Prob. Level
		(Sequential)			
Constant	1	1164.27	1164.27		
Model	5	95.68211	19.13642	3.36	0.086
Error	6	34.1479	5.691316		
Total	11	129.83	11.80273		
Root Mean	Saua	re Error	2.385648		
		ent Variable	9.85		
Coefficient of Variation			.2421977		
R Squared			0.7370		
Adjusted F	R Squ	ared	0.5178		
•	-				

Date/Time 04-02-1992 17:10:05

Data Base Name A:WUC24

Description Backup of WUC24 created 03-13-1992

Residual Analysis

Row	Actual Y	Predicted Value	Std Err of Pred	Lower95% Mean	Upper95% Mean	Residual
1	•	•	•	•	•	•
2	•	•	•	•	•	
3	•	•	•	•	•	•
4	•	•	•	•	•	•
5	•	•	•	•	•	•
6	8.7	6.741755	1.770797	2.411969	11.07154	1.958245
7	•	•	•	•	•	•
8	•	•	•	•	•	•
9	•	•	•	•	•	•
10	•	•	•	•	•	•
11	•	•	•	•	•	•
12	•	•	•	•	•	•
13	•	•	•	•	•	•
14	•	•	•	•	•	•
15	•	•	•	•	•	•
16	•	•	•	•	•	•
17	•	•	•	•	•	•
18	17.2	17.04953	2.276696	11.48277	22.61629	.1504726
19	13.8	11.43404	.9869653	9.020807	13.84727	2.365959
20	7	9.051776	1.656509	5.001438	13.10211	-2.051776
21	•	10.05459	1.613951	6.108312	14.00087	-21001110
22			•		14.00007	•
23	7.9	10.29294	1.146999	7.488411	13.09748	-2.392944
24	7.5	10.15497	1.125487	7.403035	12.9069	-2.654969
25	12.7	10.15497	1.125487	7.403035	12.9069	2.545031
26	7	6.877838	1.776137	2.534996	11.22068	.1221623
27	12				11.22000	.1221023
28	9	8.317269	1.221766	5.329924	11.30462	.6827307
29	J	13.1504	1.322275	9.9173	16.3835	.0021301
30	7 .7	7.649233	2.33862	1.931061	13.3674	.5077E-01
31	6.7	7.560628	1.585665	3.68351	11.43775	8606281
32	13	12.91464	2.372941	7.112551	18.71673	.8536E-01
3 3	1.0			1.112001	10.11019	.0000E-01
34	•	•	•	•	•	•
3 4 35	•	•	•	•	•	•
_	•	· · · · · · · · · · · · · · · · · · ·	01501	•	•	•

Durbin - Watson Statistic 1.731521

g----Sum of Functions Regression-----

Date/Time 03-20-1992 16:11:05

Data Base Name C:\NASA\PRECON2

Description Merge of WUC12 and PRECON created 03-19-1992

Estimation Summary Report

Y: MH/MA42 X: LN DRY Model: A+B*(X)+C*(X*X)

A -95 B 20	.160 .315	cient Estimate 97482423832 84606137617 5860822489	Std. Error 57.21129 10.63598 .4916664	T-Value -1.7 1.9 -2.0		R-Squared 0.22130247
Source Model Error Total	df 2 24 26	Sum-Sqr 52.37164 184.2802 236.6519	Mean Square 26.18582 7.678342 9.101995	SQR(M.S.) 5.117208 2.770982 3.016951	F-Ratio 3.4	Prob(f>F) 0.0497

Date/Time 03-20-1992 16:11:14

Data Base Name C:\NASA\PRECON2

Description Merge of WUC12 and PRECON created 03-19-1992

	Actual	Actual	Predicted	Lower95%	Upper95%	
Row	X	Y	Y	Value	Value	Residual
1	9.172015	•	8.432947	2.118108	14.74779	•
2	9.227099	•	8.555184	2.304271	14.8061	•
3	10.14871	•	9.714996	3.837769	15.59222	•
4	9.786504	8.6	9.458464	3.547251	15.36968	8584635
5	9.82801	•	9.500953	3.598363	15.40354	•
6	9.943766	8.3	9.601545	3.715425	15.48767	-1.301545
7	11.93356	7.5	7.209922	1.198005	13.22184	.2900778
8	10.76806	6 .3	9.555716	3. 653239	15.45819	-3.255715
9	10.08581	7	9.688965	3.811125	15.5668	-2.688964
10	10.6697	6.7	9.631414	3.732719	15.53011	-2.931413
	10.69967	9.4	9.610364	3.710418	15.51031	2103646
12	10.69967	7.4	9.610364	3.710418	15.51031	-2.210364
13	10.25924	14.6	9.741886	3. 862651	15.62112	4.858114
14	10.26472	10.7	9.742595	3.863181	15.62201	.9574055
	10.29766	13.1	9.745605	3.865008	15.6262	3.354396
	9.154722	9.3	8.393341	2.057032	14.72965	.9066593
	10.57227	•	9.687634	3.793509	15.58176	•
	10.19496	9	9.729173	3.851511	15.60683	7291723
19	10.21921	17.5	9.734923	3.856787	15.61306	7.765077
	9.578242	8.3	9.194108	3.211594	15.17662	8941078
21	9.578242	7.2	9.194108	3.211594	15.17662	-1.994108
	10.04542	•	9.668145	3.789035	15.54726	•
23	11.11394	5	9.138396	3.229833	15.04696	-4.138396
24	11.18428	6.9	9.024733	3.115607	14.93386	-2.124732
25	11.21131	11.1	8.978465	3.069075	14.88786	2.121535
2 6	11.48278	9.6	8.434091	2.515919	14.35226	1.16591
27	9.97348	7.8	9.623115	3.739674	15.50656	-1.823115
28	11.85568	7.5	7.449983	1.466471	13.43349	.5002E-01
29	10.35358	•	9.745828	3.862843	15.62881	•
	12.67634	5 . 3	4.320797	-2.464639	11.10623	.9792036
	11.0315	13.2	9.259225	3.351353	15.1671	3.940775
	12.39095	4.7	5.559242	7975169	11.916	8592423
	10.53204	•	9.705401	3.813326	15.59747	•
	10.37854	• _	9.743942	3.859775	15.62811	•
	8.805825	7.5	7.468602	.5409592	14.39624	.3140E-01
36	12.1442	6.1	6.500862	.3732426	12.62848	4008624

-----Multiple Regression-----

Date/Time 06-08-1992 12:05:32

Data Base Name C:\NASA\PRECON2

Description Merge of WUC12 and PRECON created 03-19-1992

Multiple Regression Report

Dependent Variable	: MH/MA44						
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sqr	R-Sqr
Intercept	2300.043	0.0000	900.3793	2.55	0.0185	-	
LN DRY	474.1092	231.8082	165.1477	2.87	0.0091	0.0274	0.0274
LN LENTH	-452.2954	%-125.26	45				
			148.6725	-3.04	0.0062	0.0588	0.0418
WGT/LEN	1462855	-11.0183	.5235E-01	-2.79	0.0109	0.0979	0.0312
SQRLGDRY	-2769.85	%-206.6015					
			966.0448	-2.87	0.0092	0.0983	0.0253
SQRLGLEN	1788.391	109.4917	593.9519	3.01	0.0067	0.3702	0.0393

Analysis of Variance Report

Dependent Variable: MH/MA44

Source	df	Sums of Squares	Mean Square	F-Ratio	Prob. Level
		(Sequential)			
Constant	1	6 30. 75	630. 75		
Model	5	38.57628	7.715257	2.47	0.066
Error	21	65.62372	3.124939		
Total	26	104.2	4.007692		
Root Mean	Squa	re Error	1.76775		
		ent Variable	4.833334		
Coefficient of Variation			.3657413		
R Squared			0.3702		
Adjusted		ared	0.2203		

------Multiple Regression-----

Date/Time 06-08-1992 12:05:53

Data Base Name C:\NASA\PRECON2

Description Merge of WUC12 and PRECON created 03-19-1992

Row	Actual	Predicted	Std Err	Lower95%	Upper95%	Residual
	Y	Value	of Pred	Mean	Mean	
1	•	4.476142	1.033574	2.326984	6.6253	•
2	•	4.279973		2.072538	6.487408	•
3	, , ,	5.161638	.4341575	4.258875	6.064402	
4	4.7	4.367497	.7106825	2.889743	5.845252	.3325024
5		4.389714	.749886	2.830442	5.948986	•
6	3.5	3.653058	.8042564	1.980731	5.325384	1530578
7	4.5	5.035193	.9830074	2.991182	7.079205	5351934
8	8	6.920512	.7419165	5.377812	8.463213	1.079488
9	2.8	4.812259	.4654595	3.844408	5.78011	-2.012259
10	6.8	6.681951	.6717756	5.285097	8.078804	.1180496
11	10.3	6.787664	.7033455	5.325166	8.250161	3.512337
12	4	6.787664	.7033455	5.325166	8.250161	-2.787664
13	1.6	5.106588	.7295298	3.589644	6.623532	506588
14	4.3	5.099264	.7355821	3.569735	6.628793	7992635
15	5 . 3	5.446658	.6352148	4.125827	6.767489	1466579
16	6 .5	4.505446	.8628373	2.711309	6.299583	1.994554
17	•	6.476019	.6235349	5.179475	7.772564	•
18	4.7	5.392233	.4540576	4.448091	6.336375	6922331
19	9.8	5.474997	.469175	4:49942	6.450573	4.325004
20	2.4	4.134334	.7652015	2.543216	5.725452	-1.734334
21	3 . 3	4.150309	.6651328	2:767269	5.53335	8503091
2 2	•	4.92256	.6141115	3.64561	6.19951	•
23	3 .8	3.376757	.8575392	1.593637	5.159877	.4232426
24	4.9	4.448046	.656988	3.081942	5.814151	.4519539
25	5 . 5	4.667245	.6337518	3.349456	5.985034	.8327551
26	5.1	5.186151	.6777176	3.776942	6.59536	862E-01
27	4.1	3.481111	.8803259	1.65061	5.311612	.6188891
28	1.4	5.179641	.9178398	3.271135	7.088146	7796407
29	•	4.21546	.747825	2.660474	5.770447	•
30	3 . 3	1.861427	1.275647	7910823	4.513937	1.438573
31	2.4	4.157676	.7184562	2.663758	5.651594	-1.757676
32	3 . 3	2.849757	1.251661	.2471228	5.452392	.4502428
3 3	•	5.78718	.5418295	4.660529	6.91383	•
34	•	5.928824	.5377628	4.81063	7.047019	•
35	5.4	6.106457	1.519221	2.947473	9.265441	7064567
36	2.8	4.827341	1.041613	2.661469	6.993213	-2.027341
Durbi		Statistic 2.4			3.00020	

Date/Time 03-18-1992 20:48:06 Data Base Name C:\NCSS\FILES\precon

Description Backup of PRECON created 03-18-1992

Multiple Regression Report

Dependent Variable: MH/MA45

Independent Variable		Stndized Estimate	Standard Error	t-value (b=0)	Prob. Level	Seq. R-Sqr	Simpl∈ R-Sqr
Intercept	0					-	_
LN DRY	2.412351	3.4617	. 4730937	5.10	0.0000	0.8557	0.8557
LDRY SOD	1630653	-2.5469	.0434658	-3.75	0.0009	0.9077	0.8116

Analysis of Variance Report

Dependent Variable: MH/MA45

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant Model Error	0 2 25	0 1365.137 138.883	0 682.5685 5.555321	122.87	0.000
	epend	1504.02 re Error ent Variable Variation	55.70445 2.356973 7.022222 .3356449		
R Squared		ared	0.9077		

-----Multiple Regression------

Date/Time 03-18-1992 20:48:06
Data Base Name C:\NCSS\FILES\precon

Description Backup of PRECON created 03-18-1992

Residual Analysis

Row	Actual	Predicted		Lower95%	Upper95%	Residual
	Y	Value	of Pred	Mean	Mean	
1	•	8.408112	.7703225	6.821725	9:994497	•
2	•	8.375729	.7559537	6.818934	9.932524	•
3	•	7.687117	.5271578	6.601499	8.772736	•
4	9.1	7.990798	.6106086	6.733323	9.248272	1.109203
5 6	•	7.958168	.6002989	6.721925	9.194411	•
6	9.8	7.864206	.5723715	6.685476	9.042936	1.935794
7	4.6	5.565836	.7595165	4.001703	7.129969	9658361
8	6	7.068747	.4573211	6.126949	8.010544	-1.068747
9	8.3	7.742929	.5403237	6.630198	8.85566	.5570712
10	8.2	7.175302	. 4587896	6.23048	8.120123	1.024698
11	8 .6	7.143155	. 4578761	6.200214	8.086095	1.456846
12	7.1	7.143155	. 4578761	6.200214	8.086095	432E-01
13	8.7	7.585934	.5059632	6.543963	8.627904	1.114066
14	8 .3	7.580823	. 5049864	6.540865	8.620782	.7191773
15	11.9	7.549824	. 4992655	6.521647	8:578001	4.350176
16	9.5	8.418076	.7748201	6:822427	10.01372	1.081924
17	•	7.277736	.4644312	6.321296	8.234176	•
18	8 .9	7.645278	. 5179666	6.578588	8.711968	1.254722
19	13.2	7.623048	.5133272	6.565912	8:680183	57576952
20	4.5	8.14603	.6638971	6.778813	9.513246	-3.64603
21	4	8.14603	.6638971	6.778813	9.513246	-4.14603
22	•	7.778087	.5491371	6.647205	8.908968	
23	5.4	6.668953	.4888824	5.662159	7.675748	-1.268953
24	5.8	6.582885	. 5022931	5.548473	7.617297	 7828851
25	9	6.549364	.5080413	5.503115	7.595614	2.450636
26	6.2	6.199637	. 5824589	5.000133	7.399141	.3 629E- 03
27	4.5	7.839382	.5654381	6.674931	9.003834	-3.339382
28	5	5.680065	.7250962	4.186817	7.173313	6800647
29	•	7.496412	. 4902212	6.486861	8.505963	•
30	4.9	4.376877	1.14514	2.018599	6.735155	.5231233
31	4.1	6.767777	.4761021	5.787303	7.748252	-2.667778
32	5.7	4.854976	. 986229	2.823956	6.885995	.8450241
33	•	7.319152	.4678913	6.355587	8.282718	•
34	•	7.472254	. 4864747	6.470419	8.474091	•
3 5	5.9	8.598242	.8634986	6.819971	10.37651	-2.698242
36	2.4	5.246937	.8591117	3.477701	7.016174	-2.846937

Durbin - Watson Statistic 1.444019

------Multiple Regression------

Date/Time 04-02-1992 16:29:08

Data Base Name A: WUC14

Description Backup of WUC14 created 03-27-1992

Multiple Regression Report

Dependent Variable	: MH/MA14						
Independent	Parameter	Stndized	Standard	t-value	Prob.	S eq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sqr	R-Sqr
Intercept	26.23825	0.0000	16.15215	1.62	0.1326	-	_
ACTUATOR	-1.106748	-8.9169	.5413623	-2.04	0.0656	0.0925	0.0925
CONT SUR	-1.66585	-6.7252	.6519315	-2.56	0.0267	0.2150	0.2121
WETAREA	328E-02	-9.7412	.1091E-02	-3.01	0.0119	0.2555	0.2139
DRY_WGT	.6018E-03	17.3149	.21 59E- 03	2.79	0.0177	0.4589	0.1855
LOG WG14	-6.282692	-1.5498	3.4 293 73	-1.83	0.0941	0.4688	0.2522
SQR ACT	14.28908	8.4616	6.916294	2.07	0.0632	0.6173	0.1272

Analysis of Variance Report

Dependent Variable: MH/MA14

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant	1	1278.494	1278.494		
Model	6	91.62071	15.27012	2.96	0.057
Error	11	56.7954	5.163218		
Total	17	148.4161	8.730359		
Root Mean	Squa	re Error	2.272272		
		ent Variable	8.427778		
		Variation	.2696169		
R Squared			0.6173		
Adjusted		ared	0.4086		

-----Multiple Regression------

Date/Time 04-02-1992 16:29:30

Data Base Name A: WUC14

Description Backup of WUC14 created 03-27-1992

Residual Analysis

Row	Actual Y	Predicted Value	Std Err of Pred	Lower95% Mean	Upper95% Mean	Residual
1	•	•	•	•	•	•
2	•	•	•	•	•	•
3		• • • • • • • • • • • • • • • • • • • •		•	•	•
4	10.6	10.92807	1.527894	7.568065	14.28807	3280668
5 6	•			•	•	•
6	6	7.714234	.937169	5.653299	9.775168	-1.714234
7	5.7	3.419895	1.746283	420368	7.260158	2.280105
8	6	•	•	•	•	•
9	9.7	•	•	•	•	•
10	9 .9	•	•	•	•	•
11	9.3	•	•	•	•	•
12	9.6			•	•	•
13	11.3	8.60483	.966235	6.479976	10.72968	2.69517
14	9.8	9.625388	1.013047	7.397589	11.85319	.174612
15	11.9	10.20372	1.063192	7.865646	12.54179	1.69628
16	11.4	12.11051	1.982511	7.750756	16.47026	7105103
17				•	•	•
18	10.9	9.627027	1.331217	6.699538	12.55452	1.272973
19	15.1	11.57412	1.263872	8.794729	14.35351	3.525882
20	7.3	8.715774	1.00266	6.510818	10.92073	-1.415773
21	5.8	8.673118	1.009739	6.452595	10.89364	-2.873117
2 2	•			•	•	•
23	6 . 6	6.128696	1.222941	3.439318	8.818075	.4713035
24	7.3	9.071507	1.236983	6.351249	11.79176	-1.771506
25	9.4	10.25826	1.474821	7.014971	13.50155	8582592
26	6 .3	4.962518	1.105857	2.53062	7.394416	1.337482
27	7 . 7	•	•	• •	•	•
28	6 .5	•	•	•	•	•
29	•	•		•	•	•
30	6 . 3	6.709926	2.263569	1.732096	11.68776	4099255
31	3.9	6.540598	1.002121	4.336826	8.744371	-2.640598
3 2	6.1	6.831707	2.216654	1.957047	11.70637	7317071
3 3	•	•	•	•	•	•
34	•	•	•	•	•	•

Date/fime 04-05-1992 14:14:45

Data Base Name B:AVIONICS

Description Backup of AVIONICS created 03-27-1992

Multiple Regression Report

Dependent Variable: MH/MA

Independent	Parameter		Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sar
Intercept	1 31. 3954	0.0000	45.66148	2.88	0.0150	.,.	·
DIF SUBS	1.039403	2.3979	.2646763	3.93	0.0024	0.2156	0.2156
SQR TSUB	-9.035161	-2.6722	2.627782	-3.44	0.0055	0.3066	0.0918
WGT51/72	154E-01	-10.9945	.4954E-02	-3.11	0.0099	0.3066	0.0000
SQR51/72	2.864137	18.6286	. 7554125	3.00	0.0121	0.4087	0.0079
L0G5172	-26.19323	-7.6260	9.767558	-2.68	0.0213	0.6425	0.0289

Analysis of Variance Report

Dependent Variable: MH/MA

Source	df	Sums of Squares (Sequential)	M ean Sq uare	F-Ratio	Prob. Level
Constant	Ţ	1107.285	1107.285		
Model	5	84.03074	16.80615	3.95	0.027
Error	11	46.76455	4 = 251323		
Total	16	130.7953	8.174706		
Root Mean Square Error		2.061874			
Mean of D	epend	ent Variable	8.070588		
Coefficient of Variation			. 25548		
R Squared		,	0.6425		
Adjusted	R Squ	ared	0.4799		

-----Multiple Regression------

Oate/fime 04-05-1992 14:14:45

Data Base Name B:AVIONICS

Description Backup of AVIONIC3 created 03-27-1992

Residual Analysis

Row	Actual Y	Predicted Value	Std Err of Pred	Lower95% Mean	Upper95% Mean	Residual
.1.		_	_			
	-	-		• • • • • • • • • • • • • • • • • • •	•	•
2 3	•	-	-	•	•	14
4	7.3	8.218063	1.581274	4.740672	11.69545	9180632
5	•	•	•			. / 20000
6	7.8	6.690749	.9269202	4.652352	8.729146	1.109251
7	6.8	6.7421	2.056123	2.220465	11.26373	.5790E-01
8	10.2	•		_		_
9	5.7	_	-	_	•	_
10	13.8	•	-	_	•	_
11	13	•	-	•	•	_
12	11.2	-				•
13	3.7	•	•	•		
14	9	11.1196	.8945798	9.152324	13.08688	-2.1196
15	8.8	•	•	•		•
16	8.2	8.73908	1.940782	4.471093	13.00707	5390806
17	•	•	•	•		-
18	12.6	10.03277	.7545902	8.373344	11.69219	2.567232
19	13.6	10.13388	.7 599 139	8.462744	11.80501	3.466125
20	4.7	6.377603	.8949887	4.409427	8.345779	-1.677603
21	4.9	6.377603	.8949887	4.409427	8.345779	-1.477602
22	-	•	-		•	•
23	8.7	•	-	-		
24	9.6	11.77641	1.044804	9.478772	14.07404	-2.176407
25	1 1	9.236857	.7690271	7.545684	10.92803	1.763144
26	8	•	•		•	•
27	11.8	10.97905	1.104018	8.551194	13.4069	.8209524
28	7	7.258468	1.111545	4.814061	9.702875	2584677
29	•	-	•	•		•
30	8	7 .6897 09	1.030331	5.4239	9.955519	.3102908
31	5	7.288274	1.084899	4.902466	9.674082	-2.288274
32	5.3	5.474031	1.464335	2.253802	8.694262	1740313
3 3	-	•	-	-	•	•
34		•		•	•	16
35	4.6	3.066015	1.443832	1091256	6.241155	1.533985

Durbin - Watson Statistic 1.204315

-----Multiple Regression-----

Date/Time 03-20-1992 15:55:14

Data Base Name C:\NASA\PRECON2

Description Merge of WUC12 and PRECON created 03-19-1992

Multiple Regression Report

Dependent Variable: MH/MA41

Independent Parameter Stndized Standard t-value Prob. Seq. Simple Variable Estimate Estimate Error (b=0)Level R-Sqr R-Sqr Intercept 0 LN DRY .6886774 0.9419 .4914E-01 14.01 0.0000 0.8871 0.8871

Analysis of Variance Report

Dependent Variable: MH/MA41

Source	d f	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level		
Constant	0	0	0				
Model	1	1409.219	1409.219	196.41	0.000		
Error	25	179.3709	7.174834				
Total	26	1588.59	61.09961				
Root Mean	Squa	re Error	2.678588				
Mean of D	epend	ent Variable	7.442308				
Coefficie	nt of	Variation	.3599137				
R Squared			0.8871				
Adjusted	R Squ	ared	0.8871				

-----Multiple Regression-----

Date/Time 03-20-1992 15:55:28

Data Base Name C:\NASA\PRECON2

Description Merge of WUC12 and PRECON created 03-19-1992

Residual Analysis

Row	Actual	Predicted		Lower95%	Upper95%	Residual
	Y	Value	of Pred	Mean	Mean	
1	•	6.31656	.4507101	5.388377	7.244743	•
2	•	6.354496	.4534169	5.420738	7.288253	•
3	•	6.989185	.4987044	5.962163	8.016207	•
4	6.7	6.739745	.4809059	5.749377	7.730113	397E-01
5	•	6.768329	.4829455	5.773761	7.762897	•
6	4.5	6.848047	.4886337	5.841765	7.85433	-2.348047
7	6.7	8.218374	.5864117	7.01073	9.426019	-1.518374
8	5 .6	7.415723	.5291395	6.326024	8.505422	-1.815723
9	10.4	6.945869	.4956136	5.925212	7.966526	3.454131
10	6 .7	7.347982	.5243059	6.268237	8.427726	6479816
11	11	7.368618	.5257784	6.285841	8.451395	3.631382
12	11.6	7.368618	.5257784	6.285841	8.451395	4.231382
13	8.7	7.065305	.5041359	6.027098	8.103512	1.634695
14	11.1	7.069083	.5044054	6.030321	8.107844	4.030918
15	9.5	7.091764	.5060238	6.049669	8.133859	2.408237
16	6 .5	6.304651	.4498603	5.378218	7.231084	.1953492
17	•	7.280881	.519518	6.210996	8.350765	•
18	9.3	7.021041	.5009774	5:989338	8.052744	2.278959
19	13.3	7.03774	.502169	6.003584	8.071897	6.26226
20	5 .2	6.59632	.470672	5.627028	7.565612	-1.39632
21	5.1	6.59632	.470672	5.627028	7.565612	-1.49632
22	•	6.918055	.493629	5.901485	7.934624	•
23	6.1	7.65392	.5461357	6.529219	8.778621	-1.55392
24	6.7	7.702363	.5495923	6.570544	8.834182	-1.002363
25	•	7.720974	.5509203	6.58642	8.855528	•
26	7.2	7.907929	.5642602	6.745903	9.069955	7079291
27	7. 3	6.868511	.4900939	5.859222	7.877801	.431489
28	5 . 4	8.164738	.5825845	6.964975	9.3645	-2.764738
29	•	7.130274	.5087717	6.082521	8.178028	•
30	6 . 3	8.729906	.6229114	7.447095	10.01272	-2.429906
31	5 .2	7.597143	.5420845	6.480785	8.713501	-2.397143
3 2	6 . 2	8.533365	.6088874	7.279435	9.787295	-2.333365
3 3	•	7.253181	.5175415	6.187367	8.318995	•
34	•	7.147467	.5099984	6.097187	8.197747	
35	7.4	6.064374	.4327157	5.173248	6.955499	1.335627
36	3 .8	8.363435	.5967622	7.134475	9.592395	-4.563435

-----Sum of Functions Regression----

Date/Time 03-20-1992 16:45:57

Data Base Name C:\NASA\PRECON2

Description Merge of WUC12 and PRECON created 03-19-1992

Estimation Summary Report

Y: MH/MA47 X: DRY_WGT

Model: A+B*(LOG(X))+C*(SQR(X))

Term	Coefficient Estimate	Std. Error	T-Value	Prob(;t;>T)	R-Squared
Α	5.743205009617056	10.81172	0.5	0.6002	0.06366295
В	1.852806289238006D-02	1.216017	0.0	0.9880	
C	-3.36575286114062D-03	9.676912E-03	-0.3	0 7310	

Source	d f	Sum-Sqr	Mean Square	SQR(M.S.)	F-Ratio	Prob(f>F)
Model	2	4.087586	2.043793	1.429613	0.8	0.4541
Error	24	60.11908	2.504962	1.582707		
Total	26	64.20667	2.469487	1.57146		

-----Sum of Functions Regression-----

Date/Time 03-20-1992 16:46:06

Data Base Name C:\NASA\PRECON2

Description Merge of WUC12 and PRECON created 03-19-1992

Residual Analysis

	Actual	Actual	Predicted	Lower95%	Upper95%	
Row	X	Y	Y	Value	Value	Residual
1	9624	•	5.582958	1.995398	9.170517	•
2	10169	•	5.574758	2.016322	9.133193	•
3	25558	•	5.393162	2.042842	8.743483	•
4	17792	5.5	5.475584	2.096881	8.854286	.2442E-01
5	18546	•	5.466939	2.094282	8.839595	•
6	20822	3.8	5.441772	2.081785	8.801758	-1.641771
7	152293	5.1	4.650835	1.222065	8.079604	.4491653
8	47480	2.4	5.209322	1.836588	8.582056	-2.809322
9	24000	3.2	5.408655	2.05687	8.760441	-2.208655
10	43032	5.2	5.242697	1.875322	8.610072	427E-01
11	44341	6.4	5.232712	1.863689	8.601735	1.167288
12	44341	5.7	5.232712	1.863689	8.601735	.4672875
13	28545	4	5.364636	2.014288	8.714984	-1.364636
14	28702	5.9	5.363176	2.012752	8.7136	.5368242
15	29663	8.7	5.354319	2.003306	8.705331	3.345681
16	9459	7.3	5.58548	1.988315	9.182645	1.71452
17	39037	•	5.27409	1.912002	8.636179	•
18	26768	4.8	5.38143	2.031468	8.731391	5814293
19	27425	7.3	5.375162	2.025169	8.725155	1.924838
20	14447	4.3	5.516122	2.093327	8.938917	-1.216122
21	14447	2.9	5.516122	2.093327	8.938917	-2.616122
2 2	23050	•	5.418331	2.064947	8.771715	•
23	67100	6	5.077272	1.689793	8.464749	.9227287
24	71990	5.7	5.047365	1.658048	8.436682	.6526353
25	73962	7.6	5.03558	1.645656	8.425504	2.56442
26	97030	4.4	4.907539	1.513019	8.302058	5075386
27	21450	5.6	5.435052	2.077402	8.792703	.1649477
28	140882	4.8	4.699558	1.283092	8.116023	.1004426
29	31369	•	5.338918	1.986443	8.691394	•
30	320083	4.8	4.073869	.8264E-01	8.065102	.7261315
31	61790	4.6	5.110952	1.726151	8.495752	5109522
32	240613	3.8	4.321806	.6805212	7.96309	5218055
	37498	•	5.286585	1.926579	8.646591	•
34	32162	• _	5.331893	1.978597	8.685188	•
35	6673	6.8	5.631417	1.792076	9.470758	1.168583
36	188000	2.6	4.508858	1.019374	7.998342	-1.908858

-----Multiple Regression------

Date/Time 04-06-1992 12:01:58

Data Base Name O:\NASA\WUC96

Description Merge of WUC47 and WUC12 preated 02-11-1992

Multiple Regression Report

Dependent Variable: MHMA4996

Dependent variation	710. THURST						
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sqr
Intercept	9.513174	0.0000	1.6 865 7	5.64	0.0000		
LEN WING	.3 508E- 01	1.7971	.1022E-01	3.43	0.0037	0.0031	0.0031
WGT49/96	721E-03	-1.1406	.26 65E- 03	-2.70	0.0163	0.2029	0.0600
SQR CREW	-4.520094	-0.9904	1.519629	-2.97	0.0095	0.4986	0.1043

Analysis of Variance Report

Dependent Variable: MHMA4996

	Source	df	Sums of Squares	Mean Square	F-Ratio	Prob. Level
			(Sequential)			
	Constant	1	773.1284	773.1284		
	Model	3	49.7196	16.5732	4.97	0.014
	Error	15	49.99197	3 .332798		
	Total	18	99.71158	5.539532		
	Root Mean	Squa	re Error	1.825595		
			ent Variable	6.378947		
Coefficient of Variation				.2861907		
				0.4986		
	R Squared					
	Adjusted	K 2dn	ared	0.3984		

Date/Time 04-06-1992 12:02:07

Data Base Name C:\NASA\WUC96

Description Merge of WUC47 and WUC12 created 02-11-1992

Residual Analysis

Row	Actual Y	Predicted Value	Std Err of Pred	Lower95% Mean	Upper95% Mean	Residual
1	•	•	•	4	•	
2	•	•	•	•	•	•
3						•
4	8 .5	7 .669 556	. 6735326	6:234453	9.104659	. 8304439
5	· .					•
6 7	7.6	8.643637	. 7730332	6.996527	10.29075	-1.043637
	7.6 3.6	8.664033	1.549436	5.362634	11.96543	-1.064033
8 9	13.8	•	•	•	•	•
10	5.3	•	•	•	•	•
11	10.5	•	•	•	•	•
12	5.7	•	•	•	•	•
13	5	5.843669	. 55 03315	4.671073	7.016266	8436694
14	4.9	5.843669	.5503315	4-671073	7.016266	~.9436693
15		6.008549	.5307801	4.87761	7.139488	9436673
16	5.4	7.366797	.6628822	5.954387	8.779207	9667969
17		7.000777	.0020022	3.754567	0.779207	960/909
18	7.2	8.435759	7450752	6.848219	10.0233	~1.235759
19	13.2	8.435038	7449992	6.84766	10.0233	4.764962
20	7.7	7.57732	.667131	6.155857	8.998783	.1226802
21	4	5.767948	.604834	4.479221	7.056674	-1.767948
22	•	3.707743		747722	7.030074	-1.707744
23	4	5.031277	.5793074	3.796941	6.265614	-1.031277
24	7.1	5.031277	.5793074	3.796941	6.265614	2.068723
25	6.6	5.087407	.5731291	3.866234	6.308579	1.512593
26	3.4	3.177409	1.143138	.7417119	5.613105	.2225916
27	4.1	3.383024	1.089339	1.061958	5.704089	.7169764
28	3.7	6.748656	.7755465	5.096191	8.401121	1.951344
29		•	•			
30	6.4	6.771239	1.310955	3.977974	9.564504	3712387
31	5.7	•	•	•	•	ē
32	4.3	6.378088	.8124059	4.647086	8.10909	-2.078087
3 3	•	•	• '	•	•	•
34		•	•		•	•
3 5	4.5	5.344202	.6632126	3.931088	6.757316	8442016
	n - Watson	Statistic 1.4	90154			

Residual P

Date/ fime 04-20-1992 13:05:05

Data Base Name B:WUC97

Description Backup of WUC97 created 03-13-1992

Estimation Summary Report

Y: MHMA9137 X: DRY_WGT

Model: A+B*(X)+C*(LOG(X))+D*(SQR(X))

Term A B C D	Coefficient Estimate -57.900849445138 1.463880679514509D-04 8.237320943745208 1514356975659418	Std. Error 20.62665 4.060194E-05 2.634379 4.433468E-02	T-Value -2.8 3.6 3.1 -3.4	Prob(t >T) 0.0109 0.0018 0.0053 0.0027	R-Squared 0.41108948
--------------------------	--	--	---------------------------------------	---	-------------------------

Source Model Error Total	df 3 20 23		Mean Square 6.221154 1.336827 1.973913	SQR(M.S.) 2.494224 1.156212 1.40496		Prob(f>F) 0.0126
-----------------------------------	---------------------	--	---	--	--	---------------------

-----Sum of Functions Regression------

Date/Time 04-20-1992 13:05:06

Data Base Name B:WUC97

Description Backup of WUC97 created 03-13-1992

Residual Analysis

	Actual	Actual	Predicted	Lower95%	Upper95%	
Row	X	Y	Y	Value	Value	Residual
	9624	•	4.20468	1.479104	6.930256	
	10169	•	4.323351	1.631893	7.014809	- -
	25558	•	5.228855	2.714802	7.742908	-
	17792	6.4	5.118762	2.587104	7.650419	1.281238
	18546		5.147458	2.619209	7.675707	
	20822	5	5.205316	2.683981	7.726651	2053158
_	152293	4.8	3.596225	.9631841	6.229265	1.203776
	47480	4.4	4.751958	2.25468	7.249236	3519578
	24000	2.7	5.232194	2.716236	7.74815	-2.532193
	43032	3.9	4.874202	2.37556	7.372845	9742023
	44341	5.1	4.838446	2.340366	7.336525	.2615545
	44341	4.1	4.838446	2.340366	7.336525	7384455
	28545	•	5.200963	2.690131	7.711795	-
	28702	6.8	5.198863	2.688194	7.709533	1.601137
	29663	5.7	5.184861	2.675177	7.694546	.5151388
	9459	4	4.165978	1.428768	6.903187	1659774
	39037		4.980506	2.479411	7.481602	•
	26768	5.2	5.220557	2.70785	7.733264	206E-01
	27425	5.2	5.214257	2.702254	7.72626	143E-01
	14447		4.911157	2.350274	7.47204	•
	14447		4.911157	2.350274	7.47204	•
	23050		5.229442	2.71216	7.746725	16
23	67100	5.6	4.243475	1.733176	6.753775	1.356525
24	71990	5.5	4.134512	1.616941	6.652083	1.365488
25	73962	4.7	4.093051	1.572236	6.613867	. 6069483
26	97030	1.7	3.718819	1.153953	6 .283685	-2.018819
27	21450	5.3	5.214932	2.694923	7.734942	.8 507E- 01
	140882	4.5	3.541364	.9148228		. 9586363
	31369	•	5.155697	2.647732	7.663662	•
	320083	8	7.698452	4.475865	10.92104	.3015485
	61790	3.6	4.371178	1.867238	6.875117	7711777
	240613	5	5.107493	2.418397	7.796589	107493
	37498	-	5.019613	2.517318	7.521908	-
	32162		5.140531	2.633351	7.64771	n
-	6673	3.3	3.241859	.1636122	6.320105	.5814E-01
36	18 80 00	2.3	3.994804	1.35635	6.633258	-1.694804

APPENDIX L

POFF Regression Analysis

```
Date/Time 02-06-1992 16:47:28
```

Data Base Name C:\NASA\WUC11

Description Backup of NASAMSTR created 12-18-1991

Detail Report

Variable: %OFF EQU			
Mean - Average	8.916666E-02	No. observations	35
Lower 95% c.i.limit	.068566	No. missing values	11
Upper 95% c.i.limit	.1097673	Sum of frequencies	24
Adj sum of squares	5.475333E-02	Sum of observations	2.14
Standard deviation	4.879119E-02	Std.error of mean	9.959459E-03
Variance	2.38058E-03	T-value for mean=0	8.952963
Coef. of variation	.5471909	T prob level	0.0000
Skewness	1.064671	Kurtosis	1.951067
Normality Test Value	1.178617	Reject if > 1.182(10%)	1.289(5%)
K.S. Normality Test	0.11352	Reject if > 0.162(10%)	0.178(5%)
		b2 4.33 Kurt-Z 1.7	
D'Agostino-Pearson Om	nibus K/ Normali	ty Test 7.9	Pr 0.0189
100-%tile (Maximum)	. 235	90-%tile	.14
		10-%tile	
50-%tile (Median)	.0835	Range	.222
25-%tile	.052	75th-25th %tile	.0725
0-%tile (Minimum)	.013	C.L. Median(95%) .053,	.124
		t / Box Plot	235
1 1 12 1111 1	1 2 1 11 1	2 2 11	1

Distribution & Histogram

Var	iable: %OFF	E QU						•			٠.
Bin	Lower	Upper	Count	Prent	Total	Prent	Histogram			71. 48	·
1	.013	3.318E-02	1	4.2	1	4.2	: *				*
2	3.318E-02	5.336E-02	6	25.0	7	29.2	:*****		• * .		
3	5.336E-02	7.354E-02	4	16.7	11	45.8	:***				
4	7.354E-02	9.372E-02	3	12.5	14	58.3	:***			•	
5	9.372E-02	.1139091	3	12.5	17	70.8	:***			•	
6	.1139091	.1340909	3	12.5	20	83.3	:***				
7	.1340909	.1542727	3	12.5	23.	95.8	;***				
8	.1542727	.1744545	0	0.0	23	95.8	• • •			•	
9	.1744545	.1946364	0	0.0	23	95.8	•			:	
10	.1946364	.2148182	0	0.0	23.	95.8	•	ı			
11	.2148182	. 235	1	4.2	24	100.0	: *		•		

Date/Time 02-06-1992 17:03:16

Data Base Name C:\NASA\WUC12

Description Data base created at 16:18:28 on 12-19-1991

Detail Report

Variable: %OFF EQP			
Mean - Average	.1287692	No. observations	35
Lower 95% c.i.limit	8.176091E-02	No. missing values	9
Upper 95% c.i.limit	.1757775	Sum of frequencies	26
Adj sum of squares	.3386806	Sum of observations	3.348
		Std.error of mean	
Variance	1.354722E-02	T-value for mean=0	5.641227
Coef. of variation	.9038848	T prob level	0.0000
Skewness	1.39201	Kurtosis	1.175161
Normality Test Value	2.053402	Reject if > 1.169(10%)	1.265(5%)
K.S. Normality Test	0.21790	Reject if > 0.156(10%)	0.171(5%)
(b1 1.31 Skew-Z	2.79 Pr 0.0052	b2 3.74 Kurt-Z 1.3	3 Pr 0.1835
D'Agostino-Pearson Om	nibus K/ Normali	ty Test 9.6	Pr 0.0083
100-%tile (Maximum)	. 438	90-%tile	.298
75-%tile	.178	10-%tile	.037
50-%tile (Median)	.088	Range	.436
		75th-25th %tile	
0-%tile (Minimum)	.002	C.L. Median(95%) .05,	.16
.002	Line Plo	t / Box Plot	438
1 1 12212 11 11111	1 1 11.	1 1 1	1 1

Distribution & Histogram

Variable: %OFF	EQP			
Bin Lower	Upper	Count Prent	Total Prent	Histogram
1 .002	4.163E-02	3 11.5	3: 11.5	:***
2 4.163E-02	8.127E-02	9 - 34.6	12: 46.2	:*******
3 8.127E-02	.1209091	5 19.2	17 65.4	:****
4 .1209091	.1605455	2 7.7	19 73.1	:**
5 .1605455	.2001818	2 7.7	21 80.8	:**
6 .2001818	.2398182	0.0.0	21 80.8	:
7 .2398182	.2794545	1 3.8	22 84.6	; *
8 .2794545	.3190909	2.7.7	24 92.3	:**
9 .3190909	.3587273	0 . 0 . 0	24 92.3	:
10 .3587273	.3983636	1 3.8	25 96.2	:*
11 .3983636	. 438	1 3.8	26 100.0	:*

Date/Time 04-16-1992 12:01:35

Data Base Name C:\NASA\WUC13

Description Backup of NASAMSTR created 12-20-1991

Multiple Regression Report

Dependent Variable	: %OFF EQP					•	
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sar
Intercept	.2774E-01	0.0000	. 1396931	0.20	0.8453	•	•
DRY WGT	407E-05	-2.5518	.1497E-05	-2.72	0.0159	0.2263	0.2263
LEN_WING	194E-02	-1.8514	.6 558E- 03	-2.96	0.0097	0.3259	0.3037
SQRWHEEL	.1931569	13771	.8535E-01	2.26	0.0389	0.5679	0.1079
SOPWIX	7156F-02	2 5413	3463F-02	2.07	0.0565	0 6636	0 1937

Analysis of Variance Report

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant	1	2.203816	2.203816		
Model	4	.1751109	4.377772E-02	7.40	0.002
Error	15	8.875405E-02	5.916937E-03		
Total	19	. 263865	1.388763E-02		
Root Mean Square Error Mean of Dependent Variable Coefficient of Variation			7.692163E-02 .33195 .2317265		
R Squared Adjusted		ared	0. 663 6 0.57 3 9	·	

Date/Time 04-27-1992 13:42:16

Data Base Name C:\NASA\WUC23

Description Merge of WUC11 and WUC51 created 04-27-1992

Estimation Summary Report

Y: %OFF EQP X: ENG WGT Model: A+B*(X)+C*(SQR(X))

Term	Coefficient Estimate	Std. Error	T-Value	Prob(t >T)	R-Squared
Α	1.146330127496948	.1905965	6.0	0.0000	0.42921925
В	4.572100568624601D-05	1.54087E-05	3.0	0.0109	
C	-1 145581687278943D-02	3 70415E-03	-3.1	0 0084	

Source	df	Sum-Sqr	Mean Square	SQR(M.S.)	F-Ratio	Prob(f>F)
Model	2	.1518611	7. 593055E- 02	. 275555	4.9	0.0261
Error	13	.2019466	1.553436E-02	. 1246369		
Total	15	.3538078	2.358718E-02	.1535812		

Date/Time 04-16-1992 12:38:01

Data Base Name A: WUC24

Description Backup of WUC24 created 03-13-1992

Multiple Regression Report

Dependent Variable	: %OFF EQP		•				
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sqr	R-Sqr
Intercept	-109.8302	0.0000	24.7688	-4.43	0.0473		
LN DRYWT	1645163	-1.0364	.4 566E- 01	-3.60	0.0691	0.1403	0.1403
KVA MAX	.1426994	80.9389	.2812E-01	5.07	0.0367	0.4907	0.3695
SQR KVA	-6.151774	%-159.26	71				
			1.26376	-4.87	0.0397	0.5106	0.3729
LOG KVA	15.75077	78.4592	3.377648	4.66	0.0430	0.5125	0.3674
WGT24	.6602E-01	118.1754	.1467E-01	4.50	0.0460	0.9286	0.0362
SQR WT24	-5.683191	%-247.646	50				
			1.273395	-4.46	0.0467	0.9439	0.0200
LOG WT24	29.07148	133.8745	6.480136	4.49	0.0463	0.9949	0.0089

Analysis of Variance Report

Source	df	Sums of Squares (Sequential)	mean Square	r-Ratio	Prob. Level	
Constant	1	.2614689	.2614689			
Model	7	.154171	2.202443E-02	56.11	0.018	
Error	2	7.851048E-04	3.925524E-04			
Total	9	.1549561	1.721735E-02			
	epend	re Error ent Variable Variation	1.981294E-02 .1617 .122529			
R Squared Adjusted R	R Sau	ared	0. 994 9 0.9772			
-	- •					

------Multiple Regression-----

Date/Time

04-16-1992 13:06:22

Data Base Name C:\NASA\WUC42

Description Merge of WUC41 and WUC13 created 12-27-1991

Multiple Regression Report

Dependent	Variable:	%OFF	FQP

Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sar
Intercept	-26.56543	0.0000	5.705455	-4.66	0.0016	•	•
KVA MAX	271E-02	-2.1024	.1020E-02	-2.66	0.0288	0.1454	0.1454
WGT42	.5143E-02	36.0501	.8676E-03	5.93	0.0004	0.2036	0.1952
SOR WT42	7487788	-64.7482	.1349785	-5.55	0.0005	0.4231	0.2289
LOG WT42	6.621144	30.6361	1.325087	5.00	0.0011	0.8600	0.2395

Analysis of Variance Report

Source	df.	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant	1	1.055355	1.055355		
Model	4	. 2494558	6.236395E-02	12.29	0.002
Error	8	4.060512E-02	5.07564E-03		
Total	12	. 2900609	2.417175E-02		
	epend	re Error ent Variable Variation	7.124353E-02 .2849231 .2500448		_ v * * *
R Squared Adjusted		ared	0.8600 0.7900		

Residual Flot

-----Multiple Regression------

Date/Time 04-16-1992 13:10:12

Data Base Name A: WUC44

Description Backup of WUC44 created 03-13-1992

Multiple Regression Report

Dependent Variable	: %OFF EQP						
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sqr
Intercept	3.061047	0.0000	.6213115	4.93	0.0001	•	
DRY_WGT	.1178E-04	7.3057	.3256E-05	3.62	0.0020	0.1100	0.1100
WETAREA	127E-03	-8.7046	.3581E-04	-3.56	0.0023	0.1460	0.1241
LN DRYWT	4239174	-3 .526 0	.0959754	-4.42	0.0003	0.3359	0.2655
SQR WING	.1346839	4.4295	.3769E-01	3.57	0.0022	0.6115	0.1742

Analysis of Variance Report

Source	df	Sums of Squares	Mean Square	F-Ratio	Prob. Level		
		(Sequential)					
Constant	1	.6311348	.6311348				~
Model	4	.1681584	4.203959E-02	7.08	0.001		-
Error	18	.1068569	5.936492E-03				
Total	22	.2750152	1.250069E-02			1.37	
							1. 3 %.
Root Mean	n Squa	re Error	7.704864E-02			0.00	** **
		ent Variable	.1656522				
		Variation	.465123			- ^-	
						3.	
R Squared	d	•	0.6115				
Adjusted		ared	0.5251				

-----Multiple Regression------

Date/Time 04-16-1992 13:17:33

Data Base Name A: WUC45

Description Backup of WUC45 created 03-13-1992

Multiple Regression Report

Dependent Variable: %OFFEQP

Independent Variable	Parameter Estimate		Standard Error			Seq. R-Sar	Simple R-Sar
Intercept	.7614E-01			•	0.0130	1. 04,	54.
LEN_WING	181E-02	-2.6037	.51 5 1E-03	-3.52	0.0018	0.0119	0.0119
SOR WGT	.1543E-02	2.5598	.4460E-03	3.46	0.0020	0.3406	0.0005

Analysis of Variance Report

Source	ат	(Sequential)	mean Square	F-Ratio	Prob. Level	
Constant	1	.3719467	.3719467			
Model	2	4.866481E-02	.0243324	6.20	0.007	
Error	24	9. 420949E- 02	3.925395E-03			
Total	26	.1428743	5.495166E-03		÷	
	_	_			•	
Root Mear	•		6.265298E-02		**	
	•	ent Variable	-1173704			
Coefficie	ent of	Variation	.5338057		V	
			and the second		16.	
R Squared	d E		0.3406			
Adjusted	R Squ	ared	0.2857			

Residual Plot

------Multiple Regression-----

Date/Time 04-16-1992 12:33:56

Data Base Name A: WUC14

Description Backup of WUC14 created 03-27-1992

Multiple Regression Report

Dependent Variabl	le: %OFF EQP		<i>:</i> .				
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sar
Intercept	5.512466	0.0000	1.372817	4.02	0.0013		•
ACTUATOR	.2663E-02	0.8745	.1111E-02	2.40	0.0311	0.0293	0 .029 3
WGT14	566E-03	-14.4189	.1722E-03	-3.29	0.0054	0.1397	0.1041
LOG WG14	-1.193089	-13.1531	.3157466	-3.78	0.0020	0.3424	0.2322
SQR WT14	.1055595	25.9373	.3051E-01	3.46	0.0038	0.6455	0.1545

Analysis of Variance Report

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level	
Constant Model Error	1 4 14	.2719226 6.115096E-02 3.358546E-02	.2719226 1.528774E-02. 2.398961E-03	6.37	0.004	
Total	18	9. 473642E- 02	5.263134E-03		* * * * * * * * * * * * * * * * * * *	
	epend	re Error ent Variable Variation	4.897919E-02. .1196316 .4094169		e en	
R Squared		ared	0.6455		· 😅	

CLS Ok

-----Multiple Regression------

Date/Time 04-16-1992 11:34:54

Data Base Name A: AVIONICS

Description Backup of AVIONICS created 03-27-1992

Multiple Regression Report

Dependent Variable	: %OFF EQP						
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sqr	R-Sqr
Intercept	7.166202	0.0000	1.777114	4.03	0.0030		-
DIF SUBS	.2090E-01		.4766E-02		0.0018	0.1874	0.1874
WGT51/72	128E-02	-28.0442	.2910E-03	-4.40	0.0017	0.2205	0.0064
SQR51/72	.1773785	3 5 .2005	.4246E-01	4.18	0.0024	0.2212	0.0000
LOG5172	-1.734067	-15.3826	. 4300031	-4.03	0.0030	0.2358	0.0091
WGT/TSUR	6700F-02	7.2109	.1521E-02	4.40	0.0017	0.7578	0.0131

Analysis of Variance Report

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant	1	1.782616	1.782616 2.006001E-02	5.63	0.013
Model Error	5 9	3.204889E-02.	3.560988E-03	3.65	0.013
Total	14	.1323489	9.453496E-03		
	epend	re Error ent Variable Variation	5.967401E-02 .3447333 .1731019		* • • • • • • • • • • • • • • • • • • •
R Squared Adjusted	R Squ	ared	0.7578 0.6233		

Date/Time 02-10-1992 12:35:07 Data Pase Name C:\NASA\WUC41

Description Merge of WUC42 and WUC11 created 02-05-1992

Detail Report

Variable: %OFF EQP			
Mean - Average	.0932	No. observations	35
Lower 95% c.i.limit	6.419662E-02	No. missing values	10
Upper 95% c.i.limit	.1222034	Sum of frequencies	25
Adj sum of squares	.118494	Sum of observations	2.33
Standard deviation	7.026557E-02	Std.error of mean	1.405311E-02
Variance	4.93725E-03	T-value for mean=0	6.631982
Coef. of variation	.7539224	T prob level	0.0000
Skewness	1.07983	Kurtosis	.4710465
Normality Test Value	1.124025	Reject if > 1.176(10%)	1.276(5%)
K.S. Normality Test	0.19816	Reject if > 0.159(10%)	0.174(5%)
		b2 3.15 Kurt-Z 0.7	
		ty Test 5.6	
100-%tile (Maximum)	. 27	90-%tile	. 2
75-%tile	.13	10-%tile	.026
50-%tile (Median)	.08	Range 75th-25th %tile	.255
25-%tile	.03	75th-25th %tile	9.9 99999E -02
		C.L. Median(95%) .035,	
		t / Box Plot	27
1 11131 1 1 4	12 1 2	1 2	1 1

Distribution & Histogram

Var	iable: %OFF	EQP			. .		
Bin	Lower	Upper	Count	Prcnt	Total	Prent	Histogram
1	.015	3.818E-02	8	32.0	. 8	32.0	:******
2	3.818E-02	6.136E-02	1	4.0	` 9	36.0	:*
3	6.136E-02	8.454E-02	5	20.0	14	5 6.0	:****
4	8.454E-02	. 1077273	3	12.0	17	68.0	:***
5	.1077273	.1309091	3	12.0	20	80.0	:***
6	.1309091	.1540909	1	4.0	21	84.0	:*
7	.1540909	.1772727	0	0.0	21	84.0	:
8	.1772727	.2004546	2	8.0	23	92.0	:**
9	.2004546	. 2236364	0	0.0	23	92.0	:
10	.2236364	.2468182	1	1.0	24	96.0	:*
11	.2468182	. 27	1	4.0	25	100.0	:*

Residual Plot

-----Multiple Regression-----

Date/Time 04-16-1992 12:59:43

Data Base Name C:\NASA\WUC47B

Description Merge of WUC47 and WUC47 created 04-16-1992

Multiple Regression Report

Dependent Variable	: %OFF EQP					_	•
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sqr
Intercept	23.85198	0.0000	6.95 95 01	3.43	0.0037		
LEN WING	902E-02	-10.1204	.2212E-02	-4.08	0.0010	0.1748	0.1748
LN DRYWT	-5.247019	-50.4282	1.523853	-3.44	0.0036	0.3474	0.0560
LDWGTSQD	.3009554	62.2695	.8677E-01	3.47	0.0034	0.6096	0.0637
WGT/LEN	212E-02	-2.7734	.8730E-03	-2.42	0.0284	0.7196	0.0097

Analysis of Variance Report

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level	
Constant	1	.2930621	.2930621			
Model	4	.1118034	2.795085E-02	9.62	0.000	
Error	15	4.357554E-02	2:905036E-03			•
Total	19	. 155379	8.177839E-03			
	epend	re Error ent Variable Variation	5.389838E-02 .12105 .4452572		•	
R Squared			0.7196			
Adjusted	R Squ	ared	0.6448			

Residual Plot

Date/Time 04-16-1992 14:07:39

Data Base Name C:\NASA\WUC49

Description Merge of WUC24 and WUC13 created 02-12-1992

Multiple Regression Report

Dependent Variable: %OFF EQP

Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sar
Intercept	.1988856	0.0000	.114326	1.74	0.0981	•	
DRY_WGT	.4938E-05	2.0439	.21 31E- 05	2.32	0.0318	0.3304	0.3304
SQR WGT	205E-02	-1.7743	.1098E-02	-1.87	0.0771	0.4032	0.2606
KVA MAX	.4877E-03	0.3383	.4481E-03	109	0.2900	0.4382	0.2504

Analysis of Variance Report

4.94 0.011	
N. a	
2)	
·	

Residual !

-----Multiple Regression------

Date/Time 04-16-1992 14:11:10

Data Base Name C:\NASA\WUC96

Description Merge of WUC47 and WUC12 created 02-11-1992

Multiple Regression Report

Dependent Variab	le: %OFF EQP						
Independent	Parameter	Stndized	Standard	t-value	Prob.	Seq.	Simple
Variable	Estimate	Estimate	Error	(b=0)	Level	R-Sar	R-Sar
Intercept	-5.46864	0.0000	1.728256	-3.16	0.0507	1.	
LEN_WING	.1683579	44.4755	.3631E-01	4.64	0.0189	0.2583	0.2583
WETAREA	448E-02	-59.8242	.9 387 E-03	-4.77	0.0175	0.2815	0.2633
PERSONS	.3652105	56.9495	.4935E-01	7.40	0.0051	0.2901	0.2636
SQR PER	-4.152794	-59.6224	.5515564	-7.53	0.0049	0 .7208	0.2901
SQRWT49/	.1779732	1779140	.3293E-01	5.40	0.0124	0.9740	0.3109

Analysis of Variance Report

Source	df	Sums of Squares	Mean Square	F-Ratio	Prob. Level	• •
Constant		(Sequential) 3.584711	3.584711			· · · · · · · · · · · · · · · · · · ·
Model	5	. 7633067	.1526613	22.47	0.014	
Error	3		6.794081E-03			· · · · · · · · · · · · · · · · · · ·
Total	8	. 7836889	9.796111E-02			
Root Mea	n Squa	re Error	8.242621E-02.			
Mean of 1	Depend	ent Variable	.6311111		·	141.
Coeffici	ent of	Variation	.1306049			
R Square	a		0.9740			
Adjusted	R Sau	ared	0.9306			

Data Base Name C:\NASA\WUC91

Description Backup of WUC49 created 02-13-1992

Multiple Regression Report

Dependent Variable: %OFF EQP

Independent Variable	Estimate	Estimate		(b=0)	Prob. Level	Seq. R-Sqr	Simple R-Sqr
Intercept LN DRYWT	4.653976 4571863		2.156753 .2379916		0.0476	0.3140	0 2140
SQR WGT			.1709E-02			0.3140	

Analysis of Variance Report

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level	
Constant Model Error Total	1 2 15 17	1.664096 .3243408 .4968562 .821197	1.664096 .1621704 3.312375E-02 4.830571E-02	4.90	0.023	4
Root Mean	n Squa Depend		.1819993 .3040555 .5985725		· • .	
R Square Adjusted		ared	0.3950 0.3143			ndawaaaaan namaaaaaaa

Date/Time 02-14-1992 14:38:09
Data Base Name C:\NASA\WUC93
Description Data base created at 17:14:42 on 02-13-1992

Detail Report

Variable: %OFF EQP			
Mean - Average	.28 7 7375	No. observations	8
Lower 95% c.i.limit	.1127736	No. missing values	
Upper 95% c.i.limit	. 4627014	Sum of frequencies	
Adj sum of squares	.3085063	Sum of observations	2.3019
Standard deviation	.2099341	Std.error of mean	7.422291E-02
Variance	4.407232E-02	T-value for mean=0	3.876667
Coef. of variation			0.0061
Skewness	.5445296	Kurtosis	7486194
		Reject if > 1.548(10%)	
K.S. Normality Test	0.18167	Reject if > 0.264(10%)	0.288(5%)
		b2 1.98 Kurt-Z -0.	
		ty Test 0.7	
		90-%tile	
		10-%tile	
50-%tile (Median)		Range	
25-%tile	.10075	75th-25th %tile	.33925
0-%tile (Minimum)	.0464	C.L. Median(95%) .046	4, .644
		t / Box Plot	644
1 1 1	1 1	1 1	1
(XXXXXXXXXXXXXXXX	${\tt XXXXXXXmXaXXXXX}$	XXXXXXXXXXXX	~

Distribution & Histogram

Var:	iable: %OFF	EQP					
Bin	Lower	Upper	Count	Prent	Total	Prent	Histogram
1	.0464	.1317714	3	37.5	3	37.5	:***
2	.1317714	.2171429	0	0.0	3	37.5	;
3	.2171429	.3025143	2	25.0	5	62.5	:**
4	.3025143	.3878857	0	0.0	5	62.5	:
5	.3878857	.4732572	1	12.5	6	75.0	:*
6	. 4732572	.5586286	1	12.5	7	87.5	:*
	.5586286	.644	1	12.5	8	100.0	:*

Date/Time 02-14-1992 15:16:51
Data Zase Name C:\NASA\WUC97

Description Backup of WUC91 created 02-14-1992

Detail Report

Variable: %OFF EQP			
Mean - Average		No. observations	3 6
	-9.861112E-04	No. missing values	9
Upper 95% c.i.limit	2.106019E-02	Sum of frequencies	27
Adj sum of squares	.0201892	Sum of observations	. 271
Standard deviation			5.362793E-03
Variance	7.765078E-04	T-value for mean=0	1.871606
Coef. of variation	2.776306	T prob level	0.0726
Skewness	4.268697	Kurtosis	19.66771
		Reject if > 1.164(10%)	1.254(5%)
K.S. Normality Test	0.35238	Reject if > 0.153(10%)	0.168(5%)
		b2 19.00 Kurt-Z 4.8	
D'Agostino-Pearson Om	nibus K/ Normali	ty Test 55.8	Pr 0.0000
100-%tile (Maximum)	. 14	90-%tile	.033
75-%tile		10-%tile	0
50-%tile (Median)		Range	
25-%tile		75th-25th %tile	.0048
0-%tile (Minimum)		C.L. Median(95%) 0, .0	047
0	Line Plo	t / Box Plot	15
D422 11 1 1	1		•

Distribution & Histogram

Vari	lable: %OFF	EQP					
Bin	Lower	Upper	Count	Prcnt	Total	Prent	Histogram
1	0	1.272E-02	2 3	85.2	23	85.2	:*************
2	1.272E-02	2.545E-02	1	3.7	24	88.9	: *
3	2.545E-02	3.818E-02	1	3.7	25	92.6	: *
4	3.818E-02	5.090E-02	1	3.7	26	96.3	:*
5	5.090E-02	6.363E-02	0	0.0	26	96.3	:
6	6.363E-02	7.636E-02	0	0.0	26	96.3	:
7	7.636E-02	8.909E-02	0	0.0	26	9 6.3	:
8	8.909E-02	.1018182	0	0.0	26	9 6.3	:
9	.1018182	.1145455	0	0.0	26	96.3	:
10	.1145455	.1272727	0	0.0	26	96.3	:
11	.1272727	. 14	1	3 .7	27 .	100.0	: *

APPENDIX M Removal Rate Data & Regression

REMOVAL RATE

ANALYSIS SUMMARY								
WUC		MEAN	C-5A	C-130E	C-141B	F-15D	F-111A	T-38A
 11	1	0.194	0.116	0.168	0.177	0.207	0.309	0.185
 12	2	0.319	0.398	0.105	0.362	0.235	0.000	0.183
 13	3	0.442	0.220	0.314	0.344	0.663	0.620	0.490
 14	4	0.304	0.131	0.247	0.263	0.390	0.429	0.363
 24	5	0.321	0.187	0.306	0.269	0.521	0.000	0.000
 41	6.	0.385	0.168	0.313	0.378	0.345	0.636	0.468
 42	7	0.344	0.230	0.305	0.332	0.381	0.539	0.275
 44	8	0.716	0.767	0.530	0.696	0.694	0.872	0.734
 45	9	0.368	0.234	0.257	0.308	0.593	0.515	0.303
 46	10	0.272	0.178	0.199	0.164	0.366	0.389	0.359
 47	11	0.415	0.237	0.133	0.313	0.514	0.535	0.517
 49	12	0.473	0.150	0.313	0.389	0.368	0.333	0.288
 51	13	0.507	0.453	0.414	0.445	0.510	0.726	0.494
 52.	14	0.458	0.375	0.483	0.514	0.345	0.708	0.322
 61	15	0.499	0.317	0.307	0.539	0.000	0.330	0.000
 62	16	0.245	0.275	0.327	0.388	0.000	0.000	0.000
 63	17	0.243	0.299	0.306	0.275	0.405	0.546	0.375
 64	18	0.456	0.518	0.443	0.521	0.000	0.507	0.292
 65	19	0.472	0.382	0.551	0.445	0.350	0.422	0.680
 66	20	0.396	0.309	0.557	0.322	0.000	0.000	0.000
 69	21.	0.455	0.000	0.295	0.419	0.000	0.652	0.000
 71~	22:	0.442	0.395	0.255	0.419	0.426	0.433	0.560
 72	23	0.475	0.395	0.542	0.424	0.000	0.000	
 								0.000
 91~	24	0.461	0.179	0.189	0.392	0.658	0.000	0.887
 97	25	0.555	0.192	0.707	0.128	0.911	0.421	0.968

REMOVAL RATE

WUC	MEAN	MEDIAN	STO DEV	VARIANCE	VARVMEAN RATIO	COEFF VAR
11	0.194	0.181	6.407E-2	4.105E-3	2.119E-2	. 0.3308
12	0.319	0.362	.0826818	6.836E-3	2.14E-2	0.25887
13	0.442	0.417	.1778206	3.162E-2	7.1 566E- 2	0.40246
14.	0.304	0.313	.1107797	1.227E-2	4.0391E-2	. 0.3646
24	0.321	- 0.2875	.1424603	2.03E-2	6. 32 7E-2	0.44415
41	0.385	0.3615	.1573603	2.476E-2	6. 4373 E-2	0.40908
42	0.344	0.3185	.1084576	1.176E-2	3.4228E-2	0.31559
44 -	0.716	0.715	.1120169	1.255E-2	1.7 537E -2	0.1566
45	0.368	0.3055	.1485499	2.207E-2	5.991E-2	0.4033
46	0.272	0.279	.101439	1.029E-2	3. 7784E -2	0.37248
47	0.415	0.4445	.1251341	1.566E-2	3.77163E-2	0.3014
49	0.274	0.3005	.1073773	1.153E-2	4. 2029 E-2	0.39141
51	0.507	0.4735	.1127367	1.271E-2	2.5068E-2	······ 0.22236 ··
52	0.458	0.429	.1445094	2.088E-2	4.56126E-2	0.315638
61	0.299	0.317	.1925806	3. 709 E-2	0.1242	9 0.64495
62	0.245	0.275	.1484907	.02205	8. 9998E -2	0.60606
63	0.368	0.3405	.1003549	.01007	2. 73 919E-2	0.27295
64 .	0.456	0.507	9.713E-2	9.434E-3	2.0679E-2	0.2129
65	0.472	0.4335	.1230586	1.514E-2	3.2106E-2	0.2609
66 ·	0.396	0.322.	.1395815	1.948E-2	4.91995E-2	0.35248
69	0.455	0.419	.1812522	3.285E-2	7.215E-2	0.398
71	0.442	0.425	5.959E-2	3.551E-3	8.04246E-3	0.13497
72	0.475	0.455	5.997E-2	3.596E-3	7.57649E-3	0.12634
91	0.461	0.392	.3076337	9.464E-2	0.2052895	0.66732
97	0.555	0.564	.3612372	.13049	0.23533	0.65147

REMOVAL RATE ANALYSIS - WUC 23

	REMOVALS	MISSIONS ACCOMPLISHED	PERCENT
F-4E	1,988	5,921	0.3358
F-15C	8,653	16,891	0.5123
F-16C	16,978	39,635	0.4284
C-5A	6,845	43,508	0.1573
C-130E	12,205	36,836	0.3313
KC-135	1,787	10,354	0.1726
TOTALS	48,456	153,145	0.3164

-----Sum of Functions Regression-----

Date/Time 06-04-1992 15:34:59

Data Base Name C:\nasa\WUC11

Description Backup of NASAMSTR created 12-18-1991

Estimation Summary Report

Y: REMRAT11 X: WGT BODY

Model: A+B*(X)

Term Coefficient Estimate Std. Error T-Value Prob(\t\:>T) R-Squared A .1934133385777032 8.649185E-03 22.4 0.0002 0.85260957 B -6.308858923946157D-07 1.514432E-07 -4.2 0.0252

Source df Sum-Sqr Mean Square SQR(M.S.) F-Ratio Prob(f>F)
Model 1 3.888923E-03 3.888923E-03 6.236123E-02 17.4 0.0252
E-mor 3 6.722772E-04 2.240924E-04 1.496972E-02

Error 3 6.722772E-04 2.240924E-04 1.496972E-02 Total 4 .0045612 .0011403 3.376833E-02

Date/Time 06-04-1992 15:13:20

Data Base Name C:\nasa\WUC11

Description Backup of NASAMSTR created 12-18-1991

Estimation Summary Report

Y: REMRAT13 X: LEN_WING

Model: A+B*(SQR(X))

Term Coefficient Estimate A .8639022023186406 .1440472 6.0 0.0039 0.70322806 B -2.962998410898014D-02 9.624203E-03 -3.1 0.0370

Source df Sum-Sqr Mean Square SQR(M.S.) F-Ratio Prob(f>F) Model 1 .1111809 .1111809 .3334381 9.5 0.0370 Error 4.691989E-02 1.172997E-02 .108305

Total 5 .1581008 3.162017E-02 .1778206

_____Sum of Functions Regression-----Date/Time 06-04-1992 15:17:11

Data Base Name C:\nasa\WUC11

Description Backup of NASAMSTR created 12-18-1991

Estimation Summary Report

Y: REMRAT14 X: LEN_WING

Model: A+B*(X)

Coefficient Estimate Std. Error T-Value Prob(\t\to T) R-Squared 0.453905563751608 3.872833E-02 11.7 0.0003 0.83791083 -6.676834926788542D-04 1.468313E-04 -4.5 0.0104 Term Coefficient Estimate 11.7 0.0003 0.83791083 A В.

df Sum-Sqr Mean Square SQR(M.S.)
1 5.185439E-02 5.185439E-02 .2277156
4 1.003094E-02 2.507735E-03 5.007729E-02
5 6.188534E-02 1.237707E-02 .1112523 Source df Sum-Sqr F-Ratio Prob(f>F) 20.7 0.0104 Model Error <u>ا ج</u> - ن Total

Data (William) OC 04 1000 1000 Tunctions Regression-----Date/Time 06-04-1992 15:23:55

Data Base Name C:\nasa\WUC11

Description Backup of NASAMSTR created 12-18-1991

Estimation Summary Report

17.58

Y: REMRAT24 X: DRY_WGT

Model: A+B*(SQR(X))

Std. Error T-Value Prob(|t|>T) R-Squared 9.536927E-02 6.1 0.0261 0.0261 Term Coefficient Estimate 2.547987E-04 -2.0 (;t;>T) .5789757975531332 Α 0.81294072 -7.51193706208044D-04

Source df Sum-Sqr Mean Square SQR(M.S.) F-Ratio Prob(f>F) 8.7 0.0984 1 4.949569E-02 4.949569E-02 .2224763 Model 2 1.138906E-02 5.694529E-03 .0754621 Error

Total 3 6.088475E-02 2.029492E-02 .1424602 Date/Time 04-27-1992 14:28:07

Data Base Name C:\NASA\WUC23

Description Merge of WUC11 and WUC51 created 04-27-1992

Estimation Summary Report

Y: REM RATE X: ENG WGT

Model: A+B*(SQR(X))

Std. Error T-Value Prob(|t|>T) R-Squared Term Coefficient Estimate 7.217704E-02 .6211067449067929 Α 8.6 0.0010 0.83032542

-2.487228698927137D-03 5.62173E-04 -4.4 0.0115

Mean Square SQR(M.S.) Source df Sum-Sar F-Ratio Prob(f>F) 7.983025E-02 .2825425 19.6 0.0115 Model 1 7.983025E-02

Error 4 1.631308E-02 4.07827E-03 6.386133E-02

Total 5 9.614334E-02 1.922867E-02 .1386675

-----Sum of Functions Regression-----Date/Time 06-04-1992 16:03:23

Data Base Name C:\nasa\WUC41

Description Merge of WUC42 and WUC11 created 02-05-1992

Estimation Summary Report

Y: REMRAT12 X: BTU COOL

Model: A+B*(X)

Term Coefficient Estimate Std. Error T-Value Prob(|t|>T) R-Squared .2026788301027799 Α 9.232288E-02 2.2 0.1593 0.43220529 1.2 В 5.880527005587363D-04 4.765976E-04 0.3426

SQR(M.S.) Source df Sum-Sqr Mean Square F-Ratio Prob(f>F) .0100263 1 .0100263 Model .1001314 1.5 0.3426

. . .

2 .0131717 6.585851E-03 8.115325E-02 Error Total 3 .023198 7.732667E-03 8.793558E-02

Date/Time 06-04-1992 16:06:33

Data Base Name C:\nasa\WUC41

Description Merge of WUC42 and WUC11 created 02-05-1992

Estimation Summary Report

Y: REMRAT41 X: ECSWT

Model: A+B*(X)

Std. Error T-Value Prob(;t;>T) R-Squared Term Coefficient Estimate .529437162022918 7.991302E-02 6.6 0.0027 0.56002885 A . B

-8.913524598640413D-05 3.950266E-05 -2.3 0.0870

df Sum-Sgr Mean Square Source SQR(M.S.) F-Ratio Prob(f>F) 1 6.933792E-02 6.933792E-02 .263321 Model **5.1** 0.0870

1.361835E-02 .1166977 4 5.447341E-02 Error Total 5 .1238113 2.476227E-02 .1573603

-----Sum of Functions Regression-----

Date/Time 05-03-1992 11:11:02

Data Base Name C:\NCSS\REMAV

Description Data base created at 10:48:48 on 05-03-1992

Estimation Summary Report

Y: REM42 X: LEN+WING

Model: A+B*(X)+C*(LOG(X))

Filter: REM42

Std. Error Term Coefficient Estimate T-Value Prob(|t|>T) R-Squared -.3853306486485544 .5520891 Α -0.7 0.5574 0.62316144 -1.006105783537246D-03 6.318003E-04 В -1.6 0.2523 .1326407 С .1771478107273882 1.3 0.3134

Source df Sum-Sqr Mean Square SQR(M.S.) F-Ratio Prob(f>F 2 8.119295E-03 4.059648E-03 6.371536E-02 Model 1.7 0.3768

2 4.909905E-03 Error 2.454952E-03 4.954748E-02

5.707276E-02 Total 4 .0130292 .0032573

Date/Time 05-03-1992 11:12:43

Data Base Name C:\NCSS\REMAV

Data base created at 10:48:48 on 05-03-1992 Description

Estimation Summary Report

Y: REM44 X: LEN+WING Model: A+B*(X)+C*(LOG(X))

-.4115210829205226

Filter: REM42

С

T-Value Prob(|t|>T) R-Squared Term Coefficient Estimate Std. Error 0.0819 0.74813032 3.3 2.365083753788492 .7221055 2-014026317131226D-03 8-263639E-04 2.4 0.1351 В 0.1411

-2.4

11.1

-5.0

F-Ratio Prob(f>F) Mean Square SQR(M.S.) df Sum-Sar Source 310 0.2519

1734875

2 2.494925E-02 1.247462E-02 .1116899 Model 2 8.399552E-03 4.199776E-03 6.480568E-02 Error

4 .0333488 .0083372 9-130827E-02 Total

-----Sum of Functions Regression----

Date/Time 06-04-1992 16:16:45

Data Base Name C:\nasa\WUC47

Description Merge of WUC45 and WUC42 created 01-03-1992

Estimation Summary Report

Y: REMRAT47 X: DRY WGT

Model: A+B*(SQR(X))

. -Term . Coefficient Estimate Std. Error T-Value Prob(|t|>T) R-Squared 14.2 A .6026214260605686 4.229213E-02 0.0001 0.86652279 -6.758594018545932D-04 1.326294E-04 -5.1 0.0070

df Source Sum-Sar Mean Square SQR(M.S.) F-Ratio Prob(f>F) Model 1 6.784252E-02 6.784252E-02 . 260466 26.0 0.0070

2.612577E-03 Error 1.045031E-02 5.111338E-02

Total 5 7.829283E-02 1.565857E-02 .1251342

Date/Time 06-04-1992 16:23:15

Data Base Name C:\nasa\AVIONICS

Description Merge of WUC71 and WUC61 created 03-25-1992

Estimation Summary Report

Y: REMRAT91 X: LEN_WING

Model: A+B*(LOG(X))

Term Coefficient Estimate Std. Error T-Value Prob(|t|>T) R-Squared 2.348927831791845 .4999144 4.7 0.0182 0.82869887 9.410941E-02 -.3585188334562223 В -3.8 0.0318

Source df Sum-Sqr Mean Square SQR(M.S.) F-Ratio Prob(f)F) 1 .3137073 .3137073 Model .5600958 14.5 0.0318

3 6.484672E-02 2.161557E-02 Error .1470224 4 .378554 .0946385 .3076337 Total

-----Sum of Functions Regression-----Date/Time 06-04-1992 16:31:52

Data Base Name C:\nasa\WUC42

Description Merge of WUC41 and WUC13 created 12-27-1991

Estimation Summary Report

X: WETAREA Y: REMRAT97

Model: A+B*(LOG(X))

Term Coefficient Estimate Std. Error T-Value Prob(|t|>T) R-Squared 2.532197071458078 .6949638 Α 3.6 0.0219 0.67346829 -.2283679845742844 7.950773E-02 В -2.90.0454

Source df Sum-Sar Mean Square SQR(M.S.) F-Ratio Prob(f>F) 1 .4394121 .4394121 Model 8.2 0.0454 .6628817 .2130494 5.326235E-02

Error 4 .2307864 5 .6**52461**5 .1304923 Total .3612372

Date/Time 05-03-1992 11:00:51

Data Base Name C:\NCSS\REMAV

Description Data base created at 10:48:48 on 05-03-1992

Estimation Summary Report

Y: REMAY X: DRY WGT Model: A+B*(X)+C*(SQR(X))

Filter: REMAV

Term Coefficient Estimate Std. Error T-Value Prob(|t|>T) R-Squared .3973471291561014 .0219378 18.1 0.0030 0.75776649

-4.265886102584761D-07 2.39473E-07 В -1.8 0:2168 2.163532620527512D-04 1.603619E-04 С 1.3 0.3097

Source df Sum-Sqr Mean Square SQR(M.S.) F-Ratio Prob(f>F) 3.1 0.2422 2 1.121494E-03 Model 5.607472E-04 .0236801

1.792528E-04 1.338853E-02 2 3.585056E-04 Error 4 .00148 Total

APPENDIX N Abort Rate Data & Regression

ABORT RATES - ABORTS PER MAINTENANCE ACTION

	F-4D-A	F-4D-F	F-4D	B-52G-A	B-52G-F	B-62G	B-52H-A	B-52H-F
WUC11	16	775	0.02065	39	30.437	0.00128	23	20,234
WUC12	11	1.154		22	•	0.00376	4.	•
WUC13	17	•	0.02243	48	•	0.00192	12	15,326
WUC14	24	405		13	•	0.00063	10	13.144
WUC41	4	207		7	•	0.00213	7	•
WUC42	16	217	0.07373	16	6,620	0.00242	8	6,023
WUC44	6	218	0.02752	6	•	0.00267	3 .	1,507
WUC45	23	281		18		0.00084	2,	•
WUC47	1	102	0.00980	4	•	0.00233	0.	
WUC51	10	388		22.		0.00195	23	•
WUC52	12	144	0.08333	4-	··· 1. ,681	0.00238	0	1,054
WUC61			• . •			•		
WUC62		2	0.00000	0	. 22	0.00000	. 0	. 3
WUC63	13	233	0.05579	1.	2,428	0.00041	4	1,787
WUC64				4.	2,024	0.00198	2.	1,991
WUC71	6	971	0.00618	0	2,251	0.00000	0	1,720
WUC72	0	54	0.00000	0	712	0.00000	0	645

KC-10	A-A	KC-10A-F	KC-10	C-130A-A	C-130A-F	C-130B-A	C-130B-F	C-130B	C-130E-A
WUC11	5 .	1.695	0.00295	7	1,329	27	11,395	0.00237	77
WUC12	Ŏ	•	0.00000	1	169	5	2,663	0.00188	28
WUC13	19	•	0.00316	17	746	50	5,087	0.00983	154
WUC14	10	•	0.00486	6		29	3,394	0.00854	. 62
WUC41	3	•	0.00234	10	282	30	1,718	0.01746	86
WUC42	5	•	0.00495	14	379	58	1,397	0.04152	101
WUC44	7 -	,	0.00225	ō	132			0.01034	10
WUC45	17		0.00996	3		28		0.01176	60
WUC47	3	•	0.00339	ŏ		2	•	0.00524	9
WUC51	6		0.00533	1	262			0.00582	44
WUC52	3		0.00151	1	228	12	•	0.00666	
	3	1,550	0.00151	♣.			-,		
WUC61	^	. 100	0.0000		43	3	421	0.00713	8
WUC62	0		0.00000	Ξ.		_		0.00784	3
WUC63	0					-		0.09524	_
WUC64	1	1,231	0.00081	3			-		
WUC71	2	2.509	0.00080	3	226		•	0.00177	
WUC72	2	•	0.00378	2	477	5	2,244	0.00223	80

legend:

A - aborts

F - maintenance actions

ABORT RATES - ABORTS PER MAINTENANCE ACTION

C-130E-F	C-130E	C-130H-A	C-130H-F	C-130H	F-4D-A	F-4D-F	F-4D	F-4G-A	F-4G-F
40.515	0.00190	40	14,504	0.00276	94	7,841	0.01199	40	2,563
	0.00229	13	6,167	0.00211	78	7,917	0.00985	69	3 ,396
	0.00823	85	9,350	0.00909	196	5,115	0.03832	120	1,239
	0.00516	51	6,734	0.00757	363	4,727	0.07679	142	1,776
•	0.00823	41	4,008	0.01023	5 6	2,127	0.02633	23	956
	0.01632	84		0.02750	206	1,164	0.17698	100	492
	0.00209	6	1,884	0.00318	48	1,176	0.04082	31	456
	0.00557	45	4,990	0.00902	431	3,570	0.12073	23 3	1,309
	0.00406	6	1,247	0.00481	18	732	0.02459	14	292
•	0.00474	12		0.00398	50	3,033	0.01649	41	1,514
•	0.00499	29	3,715	0.00781	134	1,449	0.09248	61	645
2.399	0.00333	4	1.938	0.00206	0	. 1	0.00000	· · · · · ·	
	0.00141	2		0.00153	106	2,571	0.04123	48	1,730
	0.00665	6		0.00295	0	0	•	1	0
•	0.00151	2		0.00076	96	10,965	0.00876	24	5, 681
•	0.00415	25		0.00345	1	78 7	0.00127	2	485

F-16A-A	F-16A-F	F-16A	F-16C-A	F-16C-F		F-15A-A	F-15A-F	F-15A	F-15B-A
154	15,844	0.00972	162	11,841	0.01368	203	13,088	0.01551	22
125	9,856	0.01268	153	7,754	0.01973	52		0.01252	31
737	23,831	0.03093	1,060	26,310	0.04029	243		0.02986	62
1,200	17,654	0.06797	1,051	12,930	0.08128	236		0.03535	79
191	5,719	0.03340	486	7,572	0.06418	215	-	0.05034	41
884	11.654	0.07585	919	10,511	0.08743	289	•	0.10720	42
108	5,168	0.02090	149	6,143	0.02426	95	•	0.02936	19
375	4,300	0.08721	386	3,146	0.12270	560	•	0.13044	115
28	1.907	0.01468	51	2,712	0.01881	6	•	0.00649	3
173	5,297	0.03266	255	6,996	0.03645	196		0.02757	35
0	5	0.00000	0	. 9	0.00000	158	•	0.07057	19
		•					•	.∙ñ	
26	2,368	0.01098	14	2,099	0.00667	0	2	0.00000	
134	5,557	0.02411	178	9,895	0.01799	51		0.00786	1.3
30	896	0.03348	42	891	0.04714	0	•	0.00000	0
12	2.301	0.00522	22	3,568	0.00617	53	_	0.00822	11
0	4	0.00000	1	18	0.05556	0	-,	•••	0

ABORT RATES - ABORTS PER MAINTENANCE ACTION

F-15B-F	F-15C-A	F-15C-F	F-15C	F-15D-A	F-15D-F	F-15E-A	F-15E-F	F-111E-A
2,810	142	15,325	0.00927	21	2,773	32	2,397	29
1,346	74	4,238	0.01746	16	1,017	20	1,257	7
1,331	270	7,283	0.03707	56	1,363	90	2,355	60
1,271	274	7,518	0.03645	39	1,174	115	1,528	147
761	210	6,343	0.03311	31	1,087	111	1,622	59
361	279	3,251	0.08582	3 6	558	64	795	59
803	96	4,948	0.01940	21	750	12	976	15
641	521	4,950	0.10525	67	851	64	421	74
253	15	1,424	0.01053	2	288	3	5 65	2
1,760	336	7,661	0.04386	3 2	1,674	69	2,305	62
419	150	2,594	0.05783	19	385	162	2,053	98
			•					0
				0				0
1,516	40	8,506	0.00470	11	1,478	21	2,072	8
			•					10
1,359	63	7,636	0.00825	7	1,217	7	1,303	0
						0	185	

ABORT RATES - ABORTS PER MAINTENANCE ACTION

F-111E-F	F-111E	KC-135A-A	KC-135A-F	KC-135A	KC-135R-A	KC-135R-F
5,557	0.00522	41		0.00136	34	
1.173	0.00597	5	4,657	0.00107	7	5,780
	0.07979	41	22,160	0.00185	30	33,012
	0.04239	32	21,413	0.00149	· · · 33	24,694
	0.02234	6	4,238	0.00142	15	4,859
	0.04387	57	8,464	0.00673		4,438
	0.01320	13	3,849	0.00338		3,801
	0.04061	25	11,361	0.00220	9	9.490
	0.00220	4	2,326	0.00172	3	2,546
	0.02221	37		0.00217	51	15,263
	0.04367	4	6,911	0.00058	. 8	
	0.00000	. 0		0.00000	1	707
	0.00000	1	207	0.00483	2	405
	0.00714	2	2,013	0.00099	. 4	
	0.01645	7~		0.00301	3	2,068
411				0.00000	1	1,153
		17		0.00160	15	10,140

C-130E-A

C-1308-A C-1308-F

C-130A-F

C-130A-A

KC-10

KC-10A-F

B-52H-F

B-52H-A

B-52G

B-52G-F

B-52G-A

F-4D

F-4D-F

-.i

4

F-111E-F F-111E KC-135A-A KC-135A-F KC-135A

.

F-15B-F F-15C-A F-15C-F F-15C F-15D-A F-15D-F F-15E-A F-15E-F F-111E-A

8,464 0.00673 3,849 0.00338 12,313 0.00569					
7110		, ~ 0	ca :	~ o ;	68
1,345 0.04387 1,136 0.01320 2,481 0.02983					
	- 00 00 - 00	8 O (5 & Ç	•	178
195	565	2,053	2,072	1,303	7,918
12 12 18	, e e	162	21	~ 0	. 25 25 25
558 750 1,308	288 1,674	386	1,478	1,217	4,754
8 4 5 6	. 20 20	61	° ::	1	69
3,251 0.08582 4,948 0.01940 8,199 0.14197	1,424 0.01059 7,661 0.04386	2,594 0.05783	8,506 0.00470	7,636 0.00825	26,397 0.02231
279 96 375	336	150	0	- 8	686

ABORTS & MAINTENANCE ACTION DATA

TOT RATE	3 C C	1000	200	110	333 0 0100		10	σ		en	856 0 0035		ıc	367 0 0196	0.10.0				761	7,488 0.0641
TC	-	4 0	20		¥		i	-	1										_	27,
F-15C																			781	5,854
KC-135R F-15C				8	1.032		al	267	•				0	142) •	С	737	•	12	5,235
F-16C	812	39.635	-		631	, .)	1	43)				4	72		0	1.888	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	949	10,828
KC-10A C-130E				48	2.732	1) 	-	741					0	138)) * }	0	575	-	15	4,514
KC-10A	23	3.926		ო	570	1	က	342	 							-	227		4	1,057
C-5B																				
B-52G	47	36,181	•	4	1,738		-	500		7	580						1,306	- 4		
F-4E	323	5,921	•	62	261		0	30		83	276		-	15	* -	0	902			
	WUC 23 ABORTS	MA	WUC 49	ABORTS	MA	WUC 91	ABORTS	MA	WUC 93	ABORTS	MA	WUC 96	ABORTS	MA	WUC 97	ABORTS	MA	WUC 24	ABORTS	MA

-----Regression------Sum of Functions Regression--------

Date/Time 03-21-1992 13:18:31

Data Base Name C:\NCSS\FILES\ABORT

Description Data base created at 12:22:06 on 03-21-1992

Estimation Summary Report

Y: AWUC11 X: DRY WT Model: A+B*(X)+C*(SQR(X))

Term	Coefficient Estimate	Std. Error	T-Value Pr	ob(t >T)	R-Squared
A	3.121295405497931D-02	7.319232E-03	4.3	0.0017	0.6424076
В	1.956010750103666D-07	9.48912E-08	2.1	0.0662	
С	-1-545583903781419D-04	5.629948E-05	-2.7	0.0206	

Source Model		Sum-Sqr 3.120985E-04	Mean Square 1.560493E-04	SQR(M.S.) 1.249197E-02	Prob(f>F 0.0058
Error	10	1.737278E-04	1.737278E-05	4.168066E-03	
Total	12	4.858263E-04	4.048552E-05	6.362824E-03	

------Sum of Functions Regression-----

Date/Time 03-21-1992 13:23:44

Data Base Name C:\NCSS\FILES\ABORT

Description Data base created at 12:22:06 on 03-21-1992

Estimation Summary Report

Y: AWUC12 X: DRY WT Model: A+B*(X)+C*(SQR(X))

Filter: AWUC12

. .

	CI. NACCAL				
Term	Coefficient Estimate	Std. Error	T-Value Pro	b(t >T)	R-Squared
Α	.0423204002592303	7.036862E-03	6.0	0.0002	0.8357789
В	3.877491472986547D-07	1.259424E-07	3.1	0.0132	
C	-2.518829377924677D-04	6.22464E-05	-4.0	0.0029	

					•	; : * * *
Source	df	Sum-Sqr	Mean Square	SQR(M.S.)	F-Ratio	Prob(f>F
Model	2	3.755805E-04	1.877903E-04	1.370366E-02	22.9	0.0003
Error	9	7.379731E-05	8-199701E-06	2.863512E-03	• •	
Total	11.	4.493778E-04	4.085253E-05	6.391598E-03		

Date/Time 03-21-1992 13:31:13 Data Base Name C:\NCSS\FILES\ABORT

Description Data base created at 12:22:06 on 03-21-1992

Estimation Summary Report

Y: AWUC13 X: LEN+WING

Model: A+B*(X)+C*(LOG(X))+D*(SQR(X))

Term	Coefficient Estimate	Std. Error	T-Value	Prob(t >T)	R-Squarec
A	-2.432076284094683	1.385685	-1.8	0.1131	0.6300213
В	5.911218731680826D-03	3.564697E-03	1.7	0.1316	
C	1.145696021259627	.6458694	1.8	071098	
D	3392548733540112	.1946242	-1.7	0.1153	** .

Source	df	Sum-Sqr	Mean Square	SQR(M.S.)	F-Ratio	Prob(f>F
Model	3	3.731493E-03	1.243831E-03	3.526799E-02	5.1	0.0246
Error	9	2.191311E-03	2.43479E-04	1.560381E-02		• •
Total	12	5.922804E-03	4.93567E-04	2.221637E-02		

Date/Time 05-06-1992 15:15:57

Data Base Name C:\NASA\WUC23

Description Merge of WUC11 and WUC51 created 04-27-1992

Estimation Summary Report

Y: ABTRATE X: LEN_WING

Model: A+B*(X)

Term	Coefficient Estimate	Std. Error	T-Value Prob	(t >T)	R-Squared
A	4.816425031610672D-02	1.836541E-02	2.6	0.1198	0.60345060
В	-1.268146378348553D-04	7.269126E-05	-1.7~	0.2232	

Source	df	Sum-Sqr	Mean Square	SQR(M.S.)	F-Ratio	Prob(f>F)
Model	1	1.050443E-03	1.050443E-03	3.241054E-02	3:0	0.2232
Error	2	6.902844E-04	3.451422E-04	.018578		
Total	ं द	1 740727E-03	5""8024255-04	2 4000225-02	•	

151.5%

N-8

Date/Time 03-22-1992 10:27:44

Data Base Name C:\NCSS\FILES\ABORT

Description Data base created at 12:22:06 on 03-21-1992

Estimation Summary Report

Y: AWBS10 X: LN DRY

Model: $A+B*(X)+C*(X*X)+D*(X^3)$

Term	Coefficient Estimate	Std. Error	T-Value	Prob(t >T)	R-Squared
Α	-39.95984549060828	17.15776	-2.3	0.0448	0.6941617
В	11.09214143900919	4.735571	2.3	0.0439	
С	-1.017822607855107	.4341715	-2.3	0.0437	•
D	3.090758729469949D-02	1.322297E-02	2.3	0.0442	
					, and .

Source	df	Sum-Sqr	Mean Square	SOR(M.S.)		Prob(f>F
Model	3	1.531093E-02	5.103644E-03	.0714398	6.8	0.0108
Error	9	6.74579E-03	7:495322E-04	2.737758E-02	•	
Total	12	2-205672F-02	1_83806E-03	.0428726		

-----Sum of Functions Regression------

Date/Time 03-21-1992 13:44:33

Data Base Name C:\NCSS\FILES\ABORT

Description Data base created at 12:22:06 on 03-21-1992

Estimation Summary Report

المائد المسافد المسافد

1988 - 1272 - 273**4**

Y: AWUC45 X: LN DRY

Model: $A+B*(1/SQR(X))+C*(X)+D*(X*X)+B*(X^3)$

Filter: AwuC45				
Term Coefficient Estimate	Std. Error	T-Value Pr	ob(t >T)	R-Squared
A 5000.25349948818	2535.252	2.0	0.0892	0.94124711
B -7578.183026428647	3806.867	-2.0	0.0868	-
C -453.6120878012779	234.4657	-1.9	0.0943	•
D 24.60056275019885	12.97183	1.9	0.0997	
B'5276227079707911	. 2839331	-1.9	0.1055	
		,		5.4365

•				The second secon		
Source	đf	Sum-Sqr	Mean Square	SQR(M.S.)	F-Ratio	Prob(f>F)
Model	4.	.0281919	7.047974B-03	8:395221B-02	28. 0	0.0002
Brror	7	1.759745E-03	2.513922B-04	1.585535E-02		
Total	11	2.995164E-02	2.722876B-03	5.218119E-02		

Date/Time 03-21-1992 13:37:30
Data Base Name C:\NCSS\FILES\ABORT

Description Data base created at 12:22:06 on 03-21-1992

Estimation Summary Report

Y: AWUC14 X: LEN+WING

Model: A+B*(LOG(X))+C*(SQR(X))

Term	Coefficient Estimate	Std. Error	T-Value	Prob(t >T)	R-Squared
\mathbf{A}	.7119536461928977	. 1846638	3.9		0.91304427
В	1881388279494333	5.986314E-02	-3.1	0.0105	***************************************
C	2.098824012629048D-02	9.148882E-03	2.3	0.0447	

Source Model Error	2	Sum-sqr 1.015222E-02 9.66868E-04	Mean Square 5.076109E-03 9.66868E-05	SQR(M.S.) 7.124681E-02 9.832945E-03	·	Prob(f>F) 0.0000
PLIOL	10	9.008085-04	9.668688-05	9.832945E-03		• •
Total	12	1.111908K-02	9.265904R-04	3.043995R-02		

-----Sum of Functions Regression-----

Date/Time 03-22-1992 10:24:15
Data Base Name C:\NCS\FILES\ABORT

Description Data base created at 12:22:06 on 03-21-1992

Estimation Summary Report

Y: AWUCAV X: DRY WT Model: A+B*(X)+C*(SQR(X))

Term	Coefficient Estimate	Std. Error	T-Value	Prob(t >T)	R-Squared
Α-	5.027494869365081D-02	7.988421E-03	6.3	0.0001	0.82669318
В	2.605132300912917D-07	1.03567E-07	2.5	0.0306	
С	-2.288197493912551D-04	6.144687E-05	-3.7	0.0039	
	·			44 · *	

Source Model		Sum-Sqr 9.871627E-04	Mean Square 4.935814E-04	SQR(M.S.) 2.221669E-02	F-Ratio Prob(f>F 23.9 0.0002
Error	10	2.069475E-04	2.069475E-05	4.549148E-03	
Total	12	1.19411E-03.	9.950918E-05	9.975429E-03	

Date/Time 03-22-1992 10:45:38
Data Base Name C:\NCSS\FILES\ABORT

Description Data base created at 12:22:06 on 03-21-1992

Estimation Summary Report

Y: AWBS14 X: DRY WT Model: A+B*(X)+C*(SQR(X))

	3084546D-02 L814113D-07	Std. Error 1.398155E-02 1.812657E-07 1.07546E-04	T-Value 5.9 2.8 -3.8	Prob(t >T) 0.0002 0.0200 0.0036	R-Squared 0.78927535
--	----------------------------	---	-------------------------------	---	-------------------------

Source	df	Sum-Sqr	Mean Square	SQR(M.S.)	F-Ratio	Prob(f>F
Model	2	2.374444E-03	1.187222E-03	3.445609E-02	18.7	0.0004
Error	10	6.339409E-04	6.339409E-05	7.962041E-03		
Total	12	3.008385E-03	2.506987E-04	1.583347E-02		

APPENDIX O

Crew Size Data & Regression

```
Descriptive Statistics----
 Date/Time 05-03-1992 08:56:17
 Data Base Name C:\NCSS\CREW
 Description Data base created at 07:48:02 on 05-03-1992
                                                                                                                   Detail Report
 Variable: CREW1
Mean - Average
                                                                     2.051111
                                                                                                                                No. observations
Lower 95% c.i.limit 1.823704 No. missing values
Upper 95% c.i.limit 2.278518 Sum of frequencies
Adj sum of squares .7010889 Sum of observations
Standard deviation .296034 Std.error of mean
Variance 8.763611E-02 T-value for mean=0
Coef. of variation .1443286 T prob level
Skewness .984818 Kurtosis
                                                                                                                                                                                                                     0
                                                                                                                                                                                                                    18.46
                                                                                                                                                                                                                        9.867799E-02
                                                                                                                                                                                                                     20.7859
Coef. of variation .1443286 | problem | 1.348314 | Skewness | .984818 | Kurtosis | 1.348314 | Normality Test Value | 1.187607 | Reject if > 1.482(10%) | 2.151(5%) | K.S. Normality Test | 0.18577 | Reject if > 0.252(10%) | 0.275(5%) | O.81 Skew-Z | 1.39 Pr | 0.1653 | b2 | 3.11 Kurt-Z | 1.05 Pr | 0.2948 | O.81 Skew-Z | 0.81 Skew-Z | 1.39 Pr | 0.1653 | b2 | 3.11 Kurt-Z | 1.05 Pr | 0.2207 | Omnibus K} | Normality Test | 3.0 | Pr | 0.2207 | Omnibus K} | Omnibus K | Normality Test | 3.0 | Omnibus K | Omnibus K | Normality Test | 3.0 | Omnibus K |
 100-%tile (Maximum) 2.66 90-%tile 75-%tile 2.12 10-%tile
                                                                                                                                                                                                                        2.48
                                                                                                                                10-%tile
    75-%tile
                                                                      2.12
                                                                                                                                                                                                                       1.66
    50-%tile (Median) 2.03 Range 1
25-%tile 1.9 75th-25th %tile .219999
0-%tile (Minimum) 1.66 C.L. Median(95%) 1.8, 2.3
                                                                                                                                                                                                                       .2199999
 1.66-----Line Plot / Box Plot-----
                                       1 1 1 1
                                                        ---[XXXXXXXXmXaXXXX]------
                                                                                                                Detail Report
Variable: CREWZ

Mean - Average 2.435556

Lower 95% c.i.limit 2.681975

Upper 95% c.i.limit 2.681975
                                                                                                                           No. observations 9
No. missing values 0
Sum of frequencies 9
                                                                                                                                                                                                                    21.92
 Adj sum of squares .8232222
Standard deviation .3207846
                                                                                                                          Sum of observations
Std.error of mean
                                                                                                                                                                                                                           .1069282
```

-----Descriptive Statistics-----

Date/Time 05-03-1992 08:56:18

Data Base Name C:\NCSS\CREW

Description Data base created at 07:48:02 on 05-03-1992

Detail Report

	[XXXXX	XXXXaXmXX]	
1	11.	12. 1. 1.	ر پورې د مانسخت د مانسخت د د مانسخت د د د مانسخت د د د مانسخت د د د د مانسخت د د د د د د د مانسخت د د د د د د د
1.58	Line Plo	t / Box Plot	2.70
0-%tile (Minimum)	1.58	C.L. Median(95%) 2.02,	2 .39
		75th-25th %tile	
50-%tile (Median)	2.21	Range	1.15
75-%tile	2.26	10-%tile Range	1.58
100-%tile (Maximum)			2.56
D'Agostino-Pearson Om	nnibus K] Normali	ty Test 2.1	Pr 0.3427
{b1 -0.22 Skew-Z	-0.39 Pr 0.6998	b2 3.49 Kurt-Z 1.4	1 Pr 0.1580
		Reject if > 0.252(10%)	
Normality Test Value	1.244826	Reject if > 1.482(10%)	2.151(5%)
Skewness	2693298	Kurtosis	2075035
		T prob level	
		T-value for mean=0	
		Std.error of mean	
Adj sum of squares			19.63
Upper 95% c.i.limit			9
Lower 95% c.i.limit		No. missing values	
Mean - Average			
Variable: CREW4			

Detail Report

```
Variable: CREW567
Mean - Average
                   2.178889
                                 No. observations
                                                       9..
Lower 95% c.i.limit
                                 No. missing values
                   2.045203
                                                       0
Upper 95% c.i.limit
                   2.312574
                                 Sum of frequencies
                                                       9
Adj sum of squares
                   .2422889
                                 Sum of observations
                                                       19.61
Standard deviation
                   .1740291
                                 Std.error of mean
                                                       5.800968E-02
Variance
                   3.028611E-02
                                 T-value for mean=0
                                                       37.56078
Coef. of variation
                   7.987055E-02
                                 T prob level
                                                       0.0000
                   .2465188
                                 Kurtosis
Skewness
                                                       -1.403731
                                 Reject if > 1.482(10%) 2.151(5%)
Reject if > 0.252(10%) 0.275(5%)
Normality Test Value 1.071084
K.S. Normality Test 0.16743
{b1 0.20 Skew-Z
                   0.35 Pr 0.7241 b2. 1.66 Kurt-Z -1.14 Pr 0.2528
D'Agostino-Pearson Omnibus K} Normality Test
                                                        Pr 0.4886
                                             1.4
100-%tile (Maximum) 2.42
                                 90-%tile
                                                       2.42
                   2.28
75-%tile
                                 10-%tile
                                                       1.98
                                                       .4400001
50-%tile (Median)
                   2.21
                                 Range
                                                       .27
                   2.01
                                 75th-25th %tile
25-%tile
 O-%tile (Minimum)
                   1.98
                                 C.L. Median(95%) 1.98, 2.42
1.98-----Line Plot / Box Plot------
                  1
                                    2 . •
                                              1.
```

```
-----Descriptive Statistics-----
Date/Time 05-03-1992 08:56:18
```

Data Base Name C:\NCSS\CREW

Description Data base created at 07:48:02 on 05-03-1992

Detail Report

Variable: CREW9			
Mean - Average	2.141111	No. observations	9
Lower 95% c.i.limit	1.887686	No. missing values	O
Upper 95% c.i.limit	2.394536	Sum of frequencies	9
Adj sum of squares	.8706889	Sum of observations	19.27
Standard deviation	. 329 90 3 2	Std.error of mean	.1099677
Variance	.1088361	T-value for mean=0	19.47036
Coef. of variation	.1540804	T prob level	0.0000
Skewness		Kurtosis	
Normality Test Value	1.967954	Reject if > 1.482(10%)	2.151(5%)
K.S. Normality Test	0.24289	Reject if > 0.252(10%)	0.275(5%)
		b2 3.74 Kurt-Z 1.6	
D'Agostino-Pearson Om	nibus K/Normali	ty Test 6.8	Pr 0.0336
•		90-%tile	2.645
75-%tile		10-%tile	1.76
50-%tile (M e dian)		Range	1.11
		75th-25th %tile	
		C.L. Median(95%) 1.88,	
1.76	Line Plo	ot / Box Plot	2.87
1 1 111		1	1
[XmX	XXXXXAX]	ہے سے بہتے ہیں ہیں ہیں ہے۔ سے جنت الب کی ہے۔ بھی سال بہت سب کا نکا آئے باہم جبہ آئیں سک جاتا کے د	-

Date/Time 05-03-1992 08:23:49

Data Base Name C:\NCSS\CREW

Description Data base created at 07:48:02 on 05-03-1992

Estimation Summary Report

Y: CREW1 X: WET AREA Model: A+B*(X)+C*(SQR(X))

Filter: CREW1

Term Coefficient Estimate Std. Error T=Value Prob(|t|>T) R-Squared .2436676 6.2 0.0016 0.5434855 1.500658209569604 -3.198838553665343D-05 2.614986E-05 -1.20.2757 9.172174012957018D-03 5.589843E-03 1.6 0.1617 C

Source df Sum-Sqr Mean Square SQR(M.S.) F-Ratio Prob(f>F Model 2 .1543499 7.717495E-02 .2778038 3.0 0.1408 Error 5 .1296501 2.593002E-02 .161028 7 .284 4.057143E-02 .2014235

Residual Analysis

Row 1	Actual X 1703	Actual Y. 1.66	Predicted Y 1.824694	Lower95% Value 1.359004	Upper95% Value 2.290384	Residual 164694
2	•	•	•	•	•	•
3	1989	1.8	1.846096	1.387503	2.304689	461E-01
4	2643	2.03	1.887655	1.437904	2.337406	.1423445
5	1385	1.9	1.797702	1.320582	2.274822	.1022978
_	8899	2.12	2.081246	1.608878	2.553614	.3875E-01
_	10954	1.9	2.11023	1.632421	2.588038	2102297
-	15350	2.3	2.146024	1.666436	2.625612	.1539759
_	33712	2:09	2.106353	1.525632	2.687073	- 164R-01

Date/Time 05-03-1992 08:32:04

Data Base Name C:\NCSS\CREW

Description Data base created at 07:48:02 on 05-03-1992

Estimation Summary Report

Y: CREW4 X: LEN+WING

Model: A+B*(X)+C*(LOG(X))

Filter: CREW4

Tern	Coefficient Estimate	Std. Error	T-Value	Prob(t >T)	R-Squared
A	-1.48042021491415	1.898606	-0.8		0.59914410
В	-2.832923203920881D-03	2.211458E-03	-1.3	0.2564	
C	. 8146558480412586	4565359	1 🛭	0 1244	

Source Model	df	Sum-Sqr .252689	Mean Square .1263445	SQR(M.S.) .3554497	F-Ratio	Prob(f>F 0.1017
Error	5		.0338122	.1838809	3.7	0.1017
Total	7	. 42175	.06025	. 2454588		••

Residual Analysis

Row	Actual X	Actual Y	Predicted Y	Lower95% Value	Upper95% Value	Residual
1	85	1.58	1.898013	1358883	2.437143	3180131
2		•	•	•-	• • • • • • • • • • • • • • • • • • •	•
3	101	2.04	1.993189	1.474824	2.511555	.0468105
4	107	2.18	2:023204	1.506564	2.539845	.1567957
5	80	2.02	1.86279	1.309979	2:4156	.1572104
6	231	2.21	2.298872	1.745391	2.852353	0888719
7	267	2.39	2.314874	1.769078	2.86067	.7513E-01
-	328	2.26	2.309693	1.776217	2.843169	0496934
_	471	2.22	2.199364	1.547251	2.851477	.2064E-01

Date/Time 05-03-1992 08:52:24

Data Base Name C:\NCSS\CREW

Description Data base created at 07:48:02 on 05-03-1992

Estimation Summary Report

Y: CREW9 X: DRY WGT

Model: A+B*(SQR(X))

Filter: CREW9

Term Coefficient Estimate Std. Error T-Value Prob(|t|>T) R-Squared 1.789334628455685 .1035151 17.3 0.0000 0.5768083. B 9.872173912348861D-04 3.452152E-04 2.9 0.0288

đf Mean Square Source Sum-Sqr SQR(M.S.) F-Ratio Prob(f>F .1574687 1: .1574687 Model .3968232 8.2 0.0288 6 .1155313 7 .273 Error 1:925522E-02 .1387632 .039 Total .1974842

Residual Analysis

Row 1	Actual X 17792	Actual Y 1.76	Predicted Y 1.921016	Lower95% Value 1.544625	Upper95% Value 2.297407	Residual 1610163
2	. •	•	• ** *	•	••	•
3	29663	1.88	1.959363	1.591241	2.327484	794E-01
4	27425	2 _	1.952823	1.583483	2.322162	.4718E-01
_	14447	2717	1.907994	1.528191	2.287797	.2620062
_	71990	2.02	2.054215	1694324	2.414105	342E-01
_	97030	2.03	2.096849	1.734755	2.458944	668E-01
	140882	2.12	2.159879	1787946	2:531812	0398794
_	320083	2.42	2.347862	1.90699	2.788734	.7214B-01

APPENDIX P Scheduled Maintenance Data

SCHEDULED MAINTENANCE DATA BASE REGRESSION FUNCTION & ANOVA FOR % OF UNSCH

% OF UNSCH = 0.844224 + 0.002638 LGTH+WING

+ 3.379129E-05 WET AREA

- 0.005231 SQR DRY WT

= 0.849869 R-Squared Adjusted R-Squared = 0.830287

Standard error of estimate = 0.048856

Number of cases used = 27

Analysis of Variance

Source	 SS	df	MS	F Value	Sig Prob
Regression Residual	0.31077	3 23	0.10359 0.00239	43.39986	0.000000
Total	0.36567	26	,		

SCHEDULED MAINTENANCE DATA BASE REGRESSION COEFFICIENTS FOR % OF UNSCH

Coefficient	Std Error	t Value	Two-Sided Sig Prob
0.84422	0.04774	17.68267	0.00000
0.00264	5.41478E-04	4.87191	0.000064
3:37913E-05	4.82356E-06	7.00547	0.000000
-0.00523	5.44648E-04	-9.60423	0.00000
	0.84422 0.00264 3:37913E-05	0.84422 0.04774 0.00264 5.41478E-04 3.37913E-05 4.82356E-06	0.84422 0.04774 17.68267 0.00264 5.41478E-04 4.87191 3.37913E-05 4.82356E-06 7.00547

Standard error of estimate = 0.048856 Durbin-Watson statistic = 2.325117

SCHEDULED MAINTENANCE DATA BASE STANDARDIZED RESIDUALS TABLE FOR % OF UNSCH

		Actual	Predicted			Std
Case	*	OF UNSCH	% OF UNSCH	Residual	Std Dev	Residual
		0.4040	0 4077	0:05/7	0.0440	1 01/0
A-7D		0.4840	0.4277	•••	0.0462	1.2168
A-10A		0.4660		-3.562E-03		-7.641E-02
8-52G		0.2590		-4.760E-02	0.0459	-1.037
B-52G-2		0.3300	0.3066	0.0234	0.0459	
FB-111A		0.1700		-2.015E-02	0.0442	-0.456
F-106A		0.4880	0.3949	0.0931	0.0472	1.9708
F-111A		0.2360	0.2245	0.0115	0.0452	0.2536
F-111D		0.2520	0.2082	0.0438	0.0446	0.9826
F-111F		0.1810	0.2076	-2.661E-02	0.0446	-0.597
F-4E		0.2580	0.2777	-1.975E-02	0.0452	-0.437
F-5E		0.6320	0.5651	0.0669	0.0438	1.5287
F-15A		0.2790	0.3585	-7.955E-02	0.0468	-1.701
F-15C		0.3490	0.3485	5.1859E-04	0.0466	0.0111
F-16A		0.4720	0.4720	-1.384E-05	0.0458	-3.020E-04
C-130B		0.3840	0.3980	-1.400E-02	0.0464	-0.302
C-130B-2		0.4700	0.3980	0.0720	0.0464	1.5514
C-130E		0.3210	0.3495	-2.849E-02	0.0471	-0.605
C-130H		0.2880	0.3346	-4.662E-02	0.0471	-0 .989
C-130H-2		0.4020	0.3346	0.0674	0.0471	1.4295
KC-135A		0.2960	0.2893	6.6864E-03	0.0465	0.1437
C-140A-2		0.3910	0.4718	-8.076E-02	0.0466	-1.733
C-141B		0.2510	0.2656	-1.460E-02	0.0455	-0.321
C-141B-2		0.3030	0.2656	0.0374	0.0455	0.8221
C-5A		0.2570	0.2651	-8.147E-03	0.0356	-0.229
C05A-2		0.2720		6.8484E-03	0.0356	0.1926
C-9A		0.2730		-4.212E-02		
T-38A		0.5850		-5.388E-02		-1.333

Durbin-Watson statistic = 2.325117 PRESS statistic = 0.07127

```
Date/Time 03-23-1992 13:50:42
Data Base Name C:\NASA\MAINT
```

Description Merge of WUC51 and WUC11 created 02-21-1992

Detail Report

Variable: %UNSCH			
Mean - Average	.3731923	No. observations	35
Lower 95% c.i.limit		No. missing values	9
Upper 95% c.i.limit	.4270691	Sum of frequencies	
Adj sum of squares	.444882	Sum of observations	9.703
Standard deviation	.133399	Std.error of mean	2.616169E-02
Variance	1.779528E-02	T-value for mean=0	14.26484
Coef. of variation	.3574537	T prob level	0.0000
Skewness	.5 88 8664	Kurtosis	3560498
Normality Test Value	1.015485	Reject if > 1.169(10%)	1.265(5%)
K.S. Normality Test	0.12370	Reject if > 0.156(10%)	0.171(5%)
(b1 0.55 Skew-Z	1.33 Pr 0.1846	b2 2.49 Kurt-Z -0.2	5 Pr 0.8000
D'Agostino-Pearson Om	nibus K/ Normali	ty Test 1.8	Pr 0.4016
100-%tile (Maximum)	.665	90-%tile	.585
75-%tile	.472	10-%tile	.236
50-4tile (Medien)	. 3515	Range	. 495
25-%tile	.272	75th-25th %tile C.L. Median(95%) .273,	. 2
0-%tile (Minimum)	. 17	C.L. Median(95%) .273,	. 466
.17	Line Plo	t / Box Plot	665
1 1 1 1 2 2 1 1	1 1 11 11	1 1 1111 1	1 1 1

Distribution & Histogram

Var:	iable:	%UNSCH					
Bin	Lower	Upper	Count	Prent	Total	Prent	Histogram
1	.17	.215	2	7.7	2	7.7	:**
2	.215	.26	4	15.4	6	23.1	:****
3	. 26	.305	5	19.2	11	42.3	:****
4	.305	.35	2	. 7.7	13	50.0	:**
5	. 35	.395	3	11.5	16	61.5	:***
6	. 395	. 44	2	7.7	18	69.2	:**
7	. 44	.485	. 3	11.5	21	80.8	:***
8	.485	.53	2	7.7	23	88.5	:**
9	.53	.5750001	0	0.0	23	88.5	:
10	.57500		1	3.8	24	92.3	:*
11	62	665	2	7.7	26	100.0	***

APPENDIX Q

Learning Curve Data & Regression

-----Multiple Regression-----

Date/Time 01-08-1992 16:07:40

Data Base Name C:\NASA\learn

Description Data base created at 15:46:10 on 01-08-1992

Aircraft: F-16B

Multiple Regression Report

Dependent Variable: LOG MTBM

Independent Parameter Stndized Standard t-value Prob. Seq. Simple Variable Estimate Estimate Error (b=0) Level R-Sqr R-Sqr Intercept -1.826819 0.0000 .2906916 -6.28 0.0000

LOG CUM .1441237 0.7799 .2726E-01 5.29 0.0001 0.6082 0.6081

Analysis of Variance Report

Dependent Variable: LOG MTBM

Sums of Squares Mean Square F-Ratio Prob. Level df Source (Sequential) 1.973916 1 1.973916 Constant 27.95 1 1.468497 1.468497 0.000 Model 5.254585E-02 18 .9458253 Error 2.414322 .1270696 Total 19

Root Mean Square Error .2292288
Mean of Dependent Variable -.3141589
Coefficient of Variation -.7296589

R Squared 0.6082 Adjusted R Squared 0.5865

R	OW	MTBM	FLY HRS	LOG MTBM	CUM	LOG CUM
				•		
1		.315	106	-1.155183	106	4.663439
2		. 459	1387	7787051	1493	7.308543
3		.587	2984	5327305	4477	8.406709
4		.651	4735	4292457	9212	9.128263
5		.801	5428	2218943	14640	9.591513
6		.679	6133	3871342	20773	9:941409
7		. 953	8907	-4.81E-02	29680	10.29823
8		.724	9831	3229639	39511	10.58433
9		.48	9369	7339692	48880	10.79712
	0	.574	10044	5551259	· .	10.984
	1	.63	12787	4620355	71711	11.1804
	2	.687	15531	375421	87242	11.37644
	3	.633	15775	4572849		11.54265
	4	.825	16248		119265	11.6891
	5	.779	15975	2497442	135240	11.81481
		.939	16424		151664	11.92942
	6		17726	.1587117	169390	12.03996
	7	1.172		.1061602	186267	12.13494
	8	1.112	16877			
	9	1.41	16481	.3435897	202748	12.21972
2	: O	1.076	12657	7.325E-02	21 540 5	12.28028

Date/Time 01-08-1992 16:14:52

Data Base Name C:\NASA\learn

Description Data base created at 15:46:10 on 01-08-1992

Multiple Regression Report

Aircraft: B-1

Dependent Variable: LOG MTBM

Independent Parameter Stndized Standard t-value Prob. Seq. Simple Variable Estimate Estimate Error (b=0) Level R-Sqr R-Sqr

Intercept -2.229546 0.0000 .2569398 -8.68 0.0003

LOG CUM .1271822 0.8949 .2836E-01 4.49 0.0065 0.8009 0.800°

Analysis of Variance Report

Dependent Variable: LOG MTBM

Source	df.	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level	2 35
Constant Model Error Total	1 1 5 6	8.42 7293 .3213427	8.427293 .3213427 .015974 6.686879E-02	20.12	0.006	1.5.7 TV.
	epend	re Error ent Variable Variation	.1263883 -1.097223 1151892			্ । ১ - ২ - উ পিয়াই (⊒) ১১১
R Squared Adjusted		ared	0.8009 0.7611			266 (12.1) 27.12 (12.1)

Row	MTBM	FLY HRS	LOG MTBM	CUM	LOG CUM
1	.236	367	-1.443923	367	5.905362
2	. 266	1167	-1.324259	1534	7.335634
3	.288	2786	-1.244795	4320	8:371011
4	. 396	6515	9263411.	10835	9:290537
5	.339	8304	-1.081755	19139	9:859484
6	.238	11000	• •	30139	10.31358
7	. 498	12427	6971552	42566	10.65881
R	. 382	11676	- 9693347	54242	10 90121

-----Multiple Regression-----

Date/Time 01-08-1992 16:25:06

Data Base Name C:\NASA\learn

Description Data base created at 15:46:10 on 01-08=1992 Aircraft: F-15A

Multiple Regression Report

Dependent Variable: LOG MTBM

 Independent
 Parameter
 Stndized
 Standard
 t-value
 Prob.
 Seq.
 Simple

 Variable
 Estimate
 Estimate
 Error
 (b=0)
 Level
 R-Sqr
 R-Sqr

 Intercept
 -2.517107
 0.0000
 .2322152
 -10.84
 0.0000

 LOG CUM
 .1403061
 0.8265
 .1912E-01
 7.34
 0.0000
 0.6830
 0.6830

Analysis of Variance Report

Dependent Variable: LOG MTBM

24

25

26

27

28

29

.687

.704

.74

.582

1.073

Source	df	Sums of Squares (Sequential)	Mean Square	F-Ratio	Prob. Level
Constant Model Error Total	1 1 25 26	18.84179 2.070925 .9610558 3.031981	18.84179 2.070925 3.844223E-02 .1166146	53.87	0.000
	-	re Error ent Variable	.1960669 8353705		

Coefficient of Variation -.2347065

R Squared 0.6830

R Squared				0.0830			
	Adjusted R Squ	ared	0.	6703			
	Row	MTBM	FLY HRS	LOG MTBM	CUM	LOG CUM	
	1	.23	422	-1.469676	422	6.045005	
	2 .	.186	1579	-1.682009	2001	7.601402	
	3.	.242	3610	-1.418818	5611	8.632484	
	4 -	. 343	8974	-1.070025	14585	9.587749	
	5 °-	.217	8317	-1.527858	22902	10.03898	
	6	. 484	20886	7256704	43788	10.68711	
	7	. 43	26762	8439701	70 550	11.16408	
	8	.521	36022	6520053	106572.	11.57658	
	9	. 491	40281	7113112	146853	11.89719	
	10	.482	48396	7298112	195249	12.18203	
	11	. 499	45993	6951492	241242	12.39356	
	12	.5	40349	6931472	281591	12.54821	
	13	. 483	42101	7277386	32 3 692	12.68755	
	14	. 449	40427	8007324	364119	12.80524	
	15	. 424	39126	8580218	403245	12.9073	
	16	. 475	41960	7444405	445205	13.00629	
	17	. 423	42960	8603831	488165	13.09841	
	18	. 38	41694	967584	5 2985 9	13.18037	
	19	. 438	42925	8255364	57 278 4	13.25826	
	20	. 496	44157	7011793	616941	13.33253	
	21	. 404	40778	9063404	657719	13.39653	
	22 .	. 492	40198	7092766	697917	13.45586	
	23	.514	40089	665532	738006	13.51171	
	· = · ·						

45671

42284

44214

38817

37366

42941

-.375421 <u>783677</u>

-.3509769 825961

-.3011051 870175

-:5412849 946358

908992

989299

13.57175

13.6243

13.67645 13.72009

13.76038

13.80475

Learning Curve

SUMMARY OF REGRESSION ANALYSIS OF WUC FOR F15A

WUC	R-SQUARED	F-RATIO	PROB(f>F)	A	В
11	. 4986	26.8	.0000	-1.91537	. 207678
12	.2419	8.6	.0067	2.058404	6.85051D-2
13	.6682	54.4	.0000	126513	.198581
14	.0051	0.1	.7135	2.320406	1.35424D-2
23		168.0	.0000	-1.15716	.260454
23 24	.1733	5.7	.0247	2.083529	7.37557D-2
41	.3939	17.5	.0003	1.475740	.111258
42	.5006	27.1	.0000	1.628790	.132691
44	.0571	1.6	.2209	3.469018	-3.5174D-2
	.5544	32.2	.0000	.7148762	.158111
45	.0484	1.3	.2604	2.035695	4.59528D-2
46		10.4	.0034	3.169316	.114194
47	. 2858	3.7	.0660	3.582417	6.83186D-2
49	.1241		.0000		.217907
51	.7441	75.6		.4074346	
52	.5637	33.6	.0000	.8766071	.246037
55		108.3	.0000	.4810699	.304793
57	.5747	35.1	.0000	1.836396	. 186201
63	.6388	46.0	.0000	5.783D-2	.218141
65	.0588	1.6	.2139	2.294958	3.60766D-2
71	.7474	76.9	.0000	280821	. 227016
74	. 6896	57.8	.0000	-1.37103	. 221936
7 5	.0001	0.0	.9573	2.010836	-2.5339
76	.0347	0.9	.3424	3.701741	-4.7932D-2
91	.0043	0.1	.7405	6.556656	-3.1327D-2
97	.0849	2.4	.1325	1.856478	.186038

Learning Curve

SUMMARY OF REGRESSION ANALYSIS OF WUC FOR F16B

WUC	R-SQUARED	F-RATIO	PROB(f>F)	A	В
11	.1059	2.3	. 15	1.06010	6.46444D-02
12	.36829	11.1	.0035	.895870	.165848
13	.32299	9.1	.0072	1.18406	9.746065D-2
14	.52673	21.1	.0002	.68128	.160767
23	.60731	29.4	.0000	.52739	.200457
24	.61054	29.8	.0000	.143243	.244629
41	.51493	20.2	.0003	1.096176	.205497
42	.142337	3.2	.0918	2.352841	6.748413D-2
44	.000168	0.0	.9555	3.301224	-3.30773D-2
45	.596262	28.1	.0000	1.905543	.182393
46	.383556	11.8	.0028	1.116509	.145248
47	.006646	0.1	.7254	4.080491	1.689806D-2
49	.003831	0.1	.7955	6.461357	-2.79783D-2
51	.006221	0.1	.7340	3.417607	1.448673D-2
55	.152934	3.2	.0882	7.750761	182029
62	.295669	7.6	.0132	7.048922	242943
6 3	.391082	12.2	.0024	2.140883	.1653402
64	.694946	41.0	.0000	1.189182	.3180727
65	.009315	0.2	.6773	4.475461	-2.87638D-2
71	.380828	11.7	.0029	2.109804	.133664
74	.733988	5 2.4	.0000	-1.15588	.280784
75	.705648	45.5	.0000	348929	.258164
76	.249363	6.3	.0212	2.196688	.101590
91	.167479	3.6	.0732	4.336979	.293534
93	.861299	31.0	.0026	4.379366	.424908
96	.012051	0.2	.6450	7.112811	6.728099D-2
97	.007545	0.1	.7081	4.651410	3.790276

Learning Curve

SUMMARY OF REGRESSION ANALYSIS OF WUC FOR B1B

WUC	R-SQUARED	F-RATIO	PROB(f>F)	\mathbf{A} .	В
11	. 3889	3.8	.0985	481398	.107564
12	.5187	6.5	.0439	1.339757	.218297
13	.0437	0.3	.6194	1.627507	3.24288D-2
14	.0128	0.1	.7895	1.856759	-1.8648D-2
16	.5717	8.0	.0300	-1.28814	.533732
19	.2123	1.3	.2981	2.964628	.159060
23	.2637	2.1	.1931	.514386	7.03474D-2
24	.7642	19.4	.0045	.702416	. 259668
27	.0458	0.3	.6109	3.885255	07045
39	. 1926	1.4	. 2767	2.423009	.158599
41	.2466	2.0	.2106	1.040726	8.32289D-2
42	.3047	2.6	.1560	.986220	8.57397D-2
43	.1248	0.9	.3907	3.072291	.104326
44	.6880	13.2	.0109	.597645	.199826
45 .	.0114	0.1	.8012	1.887197	.016278
46	.1802	1.3	. 2945	2.817722	09968
47	.4963	5.9	.0511	1.859626	.191071
48	.2795	2.3	.1780	2.679096	.142582
49	.6084	9.3	.0224	5.960521	20272
51	.5936	8.8	.0253	1.015608	.415428
52	.3803	3.7	.1035	4.465351	10694
5 5	.6044	9.2	.0232	1.255066	. 177114
59	.2483	2.0	.2089	1.752438	8.51324
73 .	.6457	10.9	.0163	609565	.169980
75	.1214	0.8	.3977	1.739776	.082262
76	.2454	2.0	.2119	1.127913	7.49415
97	.3654	3.5	.1124	7.623481	22974

AVERAGE SLOPE FROM SUMMARY OF REGRESSION ANALYSIS OF WUC

PLANES USED:

F15A F16B

B1B

WUCs	AVERAGE S	SLOPE	NUMBER	OF	VALUES	AVERAGED
11 & 12	.153578		5			
13	.148021		2			
14	.160767		1			
23	.230456		2			
41 & 47	.155505		4			
42 & 44	.133334		3			
45	.170252		2			
49 & 96	.068319		1			
51 - 72*	.242701		8			
91, 93, & 97	.359221		2			

51 - 72 IS COMPOSED OF 51, 52, 61, 62, 63, 64, 69, 71, & 72

APPENDIX R Technology Growth Data

TECHNOLOGY ADJUSTMENT FACTOR DATA

ATD MIEM CALCULATIONS

	10/85-3/86	4/86-9/86	10/86-3/87	4/37-9/87	10/85-9/87
FLY HOURS	4,200	10,164	36.027	10.533	120,924
NUC 11	7.678	8.535	12.936	12.584	10.7404
WUC 12	38.82	40.488	50.247	58.405	48.1541
WUC 13	11.867	13.774	16.302	16.181	15.1443
WUC 14	11.032	12.939	17.523	19.227	15.8115
WUC 23	11.032 17.962 29.765	19.098	27.355	24.791	22.8638
WUC 41	29.765	29.253	44.478	46.060	37.7405
WUC 12	43.019	58.293	73.375	78.705	67.4562
WUC 14	36	48.566	46.971	57.250	49.9961
WUC 45	34.721	44.936	46.188	54.774	47.7059
	1.36.225	168.050	164.507	167.492	165.4609
WUC 19	1.95.429	218.283	259.187	311.792	254.8499
WUC 51	39.265	52.571	60.754	60.227	56.5869
WUC 52				•	
WUC 61					
	83.824		133.929		
	65.019				80.1036
WUC 64	156.381 3,109.091	193.096	251.937	258.172	
	3,109.091	2,868.857	1,896.158	2,533.313	2.401.6267
WUC 71	51.429	60.671 96.317 161.952	65.743	75.061	66.0188
WUC 72	83.824	96.317	103.229	107.230	101.2675
WUC 91	152.679	161.952	232. 432	268.43	66.0188 101.2675 207.9488
WUC 93			•	,	
WUC 96					
WUC 97"				•	236.7149
GROUPED WUCs	0 5045				72
11 & 12	8.7817		•	- 3	· ·
13	15.1443				
1.4	15.8115				
23	22.3638				
11 & 47	30.7310				
42 & 44	28.7142				
÷5	47.7059			•	•
49	254.8499	1377C= 21 /	20 00 01		7.0
51 - 72 *	14.5524	WUUS DI.	02, 63, 54,	69, 11, &	12
91 & 97	110.7007				

A10A MIEM CALCULATIONS

	10/85-3/86	1/86-9/86	10/86-3/87	4/87-9/87	10/85-9/87
FLY HOURS	106,021	113,267	104,537	118,573	442,298
WUC 11	8.475	6.965	6.489	3.185	7.4517
WUC 12	24.882	20.122	20.275	27.467	22.3478
WUC 13	20.338	16.366	15.829	22.860	18.4911
WUC 14	18.594	15.501	14.709	20.802	17.1365
WUC 23	25.029	18.496	17.745	21.661	20.3636
WUC 41	29.167	22.994	22.124	30.639	25.7869
WUC 42	45.897	37.907	33.303	44.277	39.8021
WUC 11	65.083	60.441	51.931	78.681	62.9925
WUC 45	113.879	94.468	77.723	103.648	95.7781
WUC 47	58.285	47.792	43.179	75.332	54.0563
WUC 19	285.771	230.686	188.695	278.995	240.3030
WUC 51	28.960	23.876	24.054	30.521	26.5931
WUC 52	220.418	143.014	138.276	162.429	160.3472
WUC 61	20 170	04 005	C 1 000	00 007	56 6500
WUC 62	96.470	64.835	64.890	90.307	76.6722
WUC 03	91.793	69.660	70.112	101.344	81.2932
WUC 61	391.221	337.104	313.925	374.047 513.303	351.9473 857.3603
WUC 69	2,255.766 153.210	845.276 1 06. 354	1,005.163 95.468	131.310	117.8159
WUC 71		3,146.306			
WUC 72	302.054	207.069	244.245	334.008	263.1751
WUC 91 WUC 93	302.034	201.009	244.243	334.000	203.17.31
WUC 96	10 602 100	7 079 188	17.422.833	11.857.300	10,533.2860
WUC 97	199.663		234.915	296.433	228.9848
WOC 57	133.000	200.710	2011010	2001100	
GROUPED WUCs					
11 & 12	5.6191				
13	18.4911				
14	17.1365				
23	20.3636				
11 & 47	17.4585				
42 & 44	24.3907				
45	95.7781				
49 & 96	234.9431				
51 - 72 *	12.2062	WUCs 51,	5 2, 6 2, 63	64, 69, 7	71, & 72
91 & 97	122.4462				

54E MTBM CALCULATIONS

	10/85-3/36	4/86-9/86	10/86-3/87	4/87-9/87	10/85-9/87
FLY HOURS MTBM/PERIOD	51,567	54,718	19,583	491,240	647,108
WUC 11	3.316	2.676	3.364	3.187	3.1585
WUC 12	6.962	5.859	6.021	6.208	6.2155
WUC 13	11.459	11.687	12.578	12.253	12.1601
WUC 14	10.338	8.457	10.102	10.083	9.9423
WUC 23	17.924	15.598	15.558		16.9256
WUC 41	33.792	2 5. 653	31.968	27.306	27.8923
WUC 12.	45.878		41.488	43.357	43.0824
WUC 44	25.290	26.434	25.585	28.200	27.5754
WUC 45	47.440	42.916	44.629	43.979	44.1927
WUC 17	59.069	57.841	51.703	62.499	60.8301
WUC 49	334. 851	279.173	245.460	213.583	226.8965
WUC 51			17.086		
WUC 52	51.006	46.808	49.533	50.229	49.9273
WUC 51					
WUC 62					
WUC 63	23.145	16.032	18.412	21.257	20.5800
WUC 64					
WUC 69					
WUC 71		3.374			4.0254
WUC 72					68.3182
WUC 91	991.673	816.687	708.329		1,028.7890
WUC 93	170.188		190.413	156.446	
WUC 96	2,242.043	2,379.043	270 406		CALCULATED
WUC 97	537.156	353.019	378.496	201.298	286.0779
GROUPED WUCs					
11 & 12	2.0943				
13	12.1601				
14	9.9423				
23	16.9256				
11 & 47	19.1236				
12 & 14	16.8136				
45	44.1927				
49	226.8965				
51 - 72 *	2.5775	WUCs 51, 5	52, 63, 71,	& 72	
91, 93, & 97	92.0627				

F15A MTEM CALCULATIONS

	10/85-3/86	1/86-9/86	10/86-3/87	1/87-9/87	10/85-9/87
FLY HOURS	10,089	45,671	12,284	14,214	172,258
WUC 11	1.916	2.659	2.736	3.097	2.5395
NUC 12	12.575	20.262	22.697	22.263	18.5404
NUC 13	9.276	13.707	14.368	16.831	13.0265
WUC 14	9.802	14.048	14.170	14.832	12.9459
WUC 23	9.833	10.897	11.818	12.381	11.1731
WUC 41	15.934	20.226	23.768	26.224	20.9076
WUC 42	29.917	42.643	36.483	42.678	37.3985
WUC 44	15.162	20.128	19.459	22.196	18.9753
WUC 45	15.593	24.984	20.506	19.350	19.6957
WUC 47	39.476	135.926	120.467	113.369	
WUC 49	59.216	83. 494	107.048	100.032	83.5801
WUC 51	25.024	31.849	27.245	33.344	29.1272
WUC 52	120.387	153.774	126.599	73.081	109.7883
WUC 61					
WUC 62					
WUC 63	20.633	28.349	25. 094	28.055	25.2764
WUC 64					
WUC 69	_				
WUC 71	15.077	23.713	16.263	16.824	17.5541
WUC 72					
	331. 314	496.424	671.175	5 66. 846	486.6045
WUC 93				• •	
WUC 96	44.004	04 100	105 516	5°0 : 100	05 - 0500
WUC 97	41.934	84.420	127.746	56:180	65.8729
GROUPED WUCs					
11 & 12	2.2336				•
13	13.0265				
14	12.9459				
23	11.1731				
41 & 47	17.7238				
42 & 44	12.5882				
45	19.6957				
49	83.5801				•
51 - 71 *	7.1444	WUCs 51,	5 2 ₹ 63, 69	, & 71	
91 & 97	5 8. 0187				

F16A MTBM CALCULATIONS

	10/85-3/86	4/86-9/86	10/86-3/87	4/87-9/87	10/85-9/37
FLY HOURS	83,341	85,027	89.041	92,693	350,102
WUC 11	6.883	8.350	9.250	8.655	8.3255
WUC 12	25.699	26.521	34.459	29.690	28.8032
WUC 13	12.757	11.210	13.489	12.248	12.4037
WUC 14	14.362	15.766	18.010	14.470	15.5285
WUC 23	21.309	25.008	23.432	19.315	22.0051
WUC 41	38.637	35.019	51.469	40.319	40.6432
WUC 42	22.124	22.943	30.619	28.166	25.6072
WUC 44	30.833	34.410	37.085	31.679	33.3399
WUC ÷5	75.014	74.324	79.359	74.333	
WUC 47	80.757	90.551	102.938	118.533	96.7670
WUC 19	641.085	488.661	706.675	626.304	605.7130
WUC 51	50.571	64.610	76.627	66.734	63.4818
WUC 52					
WUC 61					
WUC 62	85.742	78.511	38.422	73.449	80.9672
WUC 63	52.219		61.535	58.224	55.6955
WUC 64	324.284	397.322	418.033	397.324	381.7905
WUC 69					
WUC 71	150.707	140.773	170.250	146.203	151.2970
WUC 72					
WUC 91	2,604.406			648.203	1,296.6742
WUC 93	7,576.455	28,342.333	22,260.250	92,693.000	18,426.4217
WUC 96	11,905.857	5, 314.188	8,094.636	7,724.417	7,610.9133
WUC 97	213.695	2 28. 567	57.483	50. 159	84.1798
GROUPED WUCs					
11 & 12	6.4587				
13	12.4037				
14	15.5285				
23	22.0051				
41 & 47	28.6218				
12 & 14	14.4832				
45	75.7139				
49 & 96	561.0610			•	
51 - 72 *		WUCs 51, 62	. 63. 64. A	71	•
91, 93, & 97	78.7103		,,,		
,,					

F4C MTBM CALCULATIONS

10/85-3/86 4/86-9/86 10/86-3/87 1/87-9/87 10/85-9/87 18,421 12.577 9.944 40.942 FLY HOURS MTBM/PERIOD 4.557 6.395 5.3343 5.4820 WUC 11 9.489 5.6130 5.483 6.1812 **WUC 12** 10.695 15.489 12.0668 11.6960 **WUC** 13 8.777 12.477 9.9545 9.7830 WUC 14 19.652 17.0720 15.624 17.1305 WUC 23 25.6560 38.996 29.523 29.2650 WUC 41 50.222 33.4320 34.084 36.6208 WUC 42 WUC 44 29.6160 32.084 43.614 32.9646 27:341 31.974 33.0130 30.8066 WUC 45 38.462 54.339 46.2840 45.0905 WUC 47 224.6460 256.673 621.500 WUC 49 278.5166 28.991 21.7490 18.970 22.0952 WUC 51 51.126 60.634 51.4550 53.3097 WUC 52 WUC 61 WUC 62 39.959 34.177 44.995 38.9925 WUC 53 WUC 64 **WUC** 69 8.536 9.586 12.864 9.6492 WUC 71 139.553 151.530 284.114 163.7679· WUC 72 483.731 904.000 877.190 705.8966 WUC 91 320.774 214.198 196.516 226.1992 **WUC 93** 708.500 **WUC 96** 228.673 261.684 151.0777 **WUC 97** 103.489 GROUPED WUCS 11 & 12 2.8633 12.0668 13 9.9545 14 17.1305 23 17.7468 41 & 47 42 & 44 17.3483 30.8066 45 278.5166 49

WUCs 51, 52, 63, 71, & 72

51 - 72 *

91, 93, & 97

5.0149 80.2785

B52G MTBM CALCULATIONS

	10/85-3/86	4/86-9/86	10/86-3/87	1/87-9/87	10/85-9/87
FLY HOURS	32,742	34,536	33,863	34,899	136,040
WUC 11	3.327	2.377	2.872	3.074	3.0238
WUC 12	14.137	16.260		19.795	16.1893
WUC 13	5.243	5.025	4.107	4.742	4.7364
WUC 14	7.171	7.322	6.636	7.231	7.0817
WUC 23	3.588	4.851	5.132	5.148	4.5925
WUC 41	23.969	25.357	28.266		
WUC 42	14.016	17.285	17.242	16.949	16.2783
WUC 44	19.606	21.504	17.555	22.046	20.0412
WUC 45	9.210	21.504 9.956 56.990	8.968	10.449	9.6210
WUC 47	5 5. 30 7	5 6. 990	50.542	68.699	57.2559
WUC 49	59.639	51.623	54.972	56.471	55.4810
WUC 51	7.920	8.619	8.517 22.819	8.846	8.4696
WUC 52	19.443	22.543	22.819	27.350	22.7644
WUC 61	134.741	124.679	132.277	139.040	132.4636
WUC 62					
WUC 63	39.401	36.088	30.729 22.234	35.575	35.1436
WUC 64	24.674	25.227	22.234	22.400	23.5485
WUC 69				50 151	•• •••
WUC 71	40.125			56.471	
WUC 72	83.739		109.235		
WUC 91	696.638	986.743	891.132	1,125.774	900.9271
WUC 93	84.170	100.104	103.874	192.812	109.6212
WUC 96	05 510	E4 004	150 721	5:1 000	71 0050
WUC 97	85.712	54.994	, 159.731	51.933	71.8270
GROUPED WUCs					
11 & 12	2.5479			Ĵ.	
13	4.7364				
14	7.0817			• •	
23	4.5925				
41 & 47	18.3095				
12 & 44	8.9824				
45	9.6210				
49	55.4810			.1.	
51 - 72 *	3.7226	WUCs 51,	52, 61, 63,	64, 71, &	7 2
91, 93, & 97		·		•	

BIB MTBM CALCULATIONS

	10/87-3/88	4/88-9/88	10/88-3/89	4/89-9/89	10/87-9/89
FLY HOURS	8,304	11,001	12,427	11,676	43,408
MTBM/PERIOD WUC 11 WUC 12 WUC 13 WUC 14 WUC 23 WUC 41 WUC 42 WUC 44 WUC 45 WUC 47 WUC 49 WUC 51 WUC 51 WUC 52 WUC 61 WUC 62 WUC 63 WUC 64 WUC 69 WUC 71	1.905 23.794 6.452 5.607 3.007 6.101 5.085 12.194 7.152 35.038 51.900 159.692 43.937	1.235 21.571 4.584 3.459 2.475 4.094 4.367 8.893 4.779 22.871 28.426 60.445 22.314	2.428 69.425 11.056 7.610 4.672 8.312 9.372 19.883 11.318 68.280 46.894 225.945 34.329	1.900 51.893 7.965 5.894 3.429 6.876 7.330 17.479 8.681 69.089 43.567 353.818 19.299	1.7696 34.3693 6.9156 5.2454 3.2708 5.9945 6.1388 13.5184 7.3498 40.6061 40.1923 134.8073 26.3237
WUC 72 WUC 91 WUC 93 WUC 96				. ·	
WUC 97	296.571	139.253	203.721	93.408	148.1501
GROUPED WUCs 11 & 12 13 14 23 41 & 47 42 & 44 45 49 51 & 52 97	1.6829 6.9156 5.2454 3.2708 5.2234 4.2217 7.3498 40.1923 22.0232 148.1501				

Technology Growth Factors

	•	A7D-A10A	F4E-F15A	F4E-F16A	F4C-F16A	B526-B1B	AVERAGE
WUCE						-	
~	12	-0.0837	0.0235				00100
<i>1</i> 0		0.0668	0.0242	0.0131	0.0120	0.0515	0.03352
4.		0.0321					0.05622
м . М :		-0.0141	-0.0583	0.0636	0.0448	0.0198	0.01116
٠ •	47	-0.1023					0.00617
4 い	44	-0.0004					-0.02090
42	-	0.2739					0.09222
49	96	-0.0155					0.03571
51 1	72	-0.0271					0.41915
91		0.0527	-0.0593	0.0012			0.08358
51 - 72	72	-0.0271	0.3970	0.3970 DELETED	0.2931	0.4549	0.22357

TECHNOLOGY ADJUSTMENT FACTOR Overall Aircraft

Perform pairwise comparison between similar aircraft developed at different times (i.e. different technologies).

Determine the annual growth rate in reliability (FHBMA).

Average annual growth rate over several comparisons.

Model: Compound Growth Curve

ADJ FHBMA = FHBMA \times (1+ADJ FAC) yr - 861

ACFT	FHBMA	DEV YR	DISCOUNTED FHBMA2	ADJ FAC3
A-7D	1.27	68	1.27	
A-10A	1.34	72	1.387	.0220
F-4E	.507	67	.507	
F-15A	.652	72	.680	.0604
F-4E	.507	67	•	
F-16A	1.110	74	1.182	.128
F-4C	.656	63 [.]		
F-16A	1.110	74	1.224	.058
B-52G	. 406	58		
B-1	.338	85	. 534	.0102
			AVERAGE =	.0557

Notes:

- 1. 86 represents the baseline year of the data
- 2. Discounted FHBMA₂ = A x $(86-yr_1+yr_2)^B$ where B = .137 and A = FHBMA₂ $/(86-yR_2)^B$ (based upon reliability growth curve)
- 3. ADJ FAC = (DISC FHBMA2/FHBMA1) 1/(yr2-yr1) -1

 (by solving for the ADJ FAC in the compound growth curve)

APPENDIX S

R & M Model - BASIC Program Listing

```
10 'NASA, LANGLEY RESEARCH CENTER
20 'MTBM COMPUTATIONAL MODEL - NASA RESEARCH GRANT -
30 'DEVELOPED BY C. EBELING, UNIV OF DAYTON 2/10/92
35 ' ******* COMBINED PRE/CONCEPTUAL MODEL *********
40 '
50 'SAVE AS "MTB3.BAS"
                                  Mean Time Between Maintenance - MODIFIED
70 DIM WBS$(25),X(100),NAM$(100),THRS(20),MHMA(20),MH(20),MP(20),OMH(20),FMH(20)
72 DIM GOH(20),LOH(20),TOH(20),OOH(20),ROH(20),R(20),TSKT(20)
73 DIM V(15), SNAM$(15), FMAT(20), FMAC(20), FMAS(20), S(20)
74 DIM MW(20),C(20),CM(20),OP$(20),TG(20),PWTS(20)
75 DIM FMA(20),PF(20),PA(25),Z(500),Y(500),RR(20),W(20),NR(20),FR(20)
76 RFLG=0 'REPEAT FLAG
85 GOSUB 1000 'OPENING BANNER
87 INPUT "DO YOU WISH TO INPUT FROM A FILE-(Y/N)": ANS$
88 IF ANS$="Y" OR ANS$="y" THEN GOSUB 1700:GOTO 100
90 GOSUB 500 'INITIALIZATION
95 GOSUB 12300 'OPTION TO DELETE SUBSYSTEMS
100 GOSUB 1050 'INPUT MODULE
102 IF RFLG=0 OR MODE=0 THEN GOSUB 1500 ELSE GOSUB 1400 'SUBSYS WGTS
103 IF RFLG=0 OR MODE=0 OR MODE=1 THEN GOSUB 11120 ELSE GOSUB 11000 'SECONDARY VARIABLES
104 GOSUB 1200 'ESTABLISH SUBSYSTEM MTBM CALIBRATION FACTORS
105 GOSUB 1600 'DETERMINE MISSION PROFILE
110 GOSUB 1300 'DETERMINE SUBSYSTEM HRS
111 GOSUB 12400 'ESTABLISH TECH GROWTH FACTORS
112 CLS:LOCATE 10,20:PRINT "COMPUTING MTBM'S ....."
113 P1 = .202:P2 = .014:P3 = .784
114 \text{ 'ADD} = W(1) + W(2) + W(3):P1 = W(1)/ADD:P2 = W(2)/ADD:P3 = W(3)/ADD
115 GOSUB 3000 'EVALUATE REGRESSION EQS; DETERMINE UNADJUSTED MTBM & MH/MA
120 GOSUB 2500 'PERFORM TECHNOLOGY ADJUSTMENT
130 GOSUB 2000 'DETERMINE SPACE ADJUSTMENT
140 GOSUB 2700 'DETERMINE CRITICAL FAILURES-MTBM
145 GOSUB 2800 'DETERMINE CRIT FAIL RELIABILITY
150 GOSUB 9000 'DISPLAY RELIABILITY PARAMETERS
160 GOSUB 7000 'COMPUTE MANPOWER REQUIREMENTS
170 GOSUB 7500 'DISPLAY MAINTAINABILITY PARAMETERS
175 CLS:LOCATE 10,20:PRINT "COMPUTING SPARES ....
180 GOSUB 8000 'COMPUTE SPARES REQUIREMENTS
190 GOSUB 8500 'DISPLAY SPARES REQUIREMENTS
200 GOSUB 9700 'DISPLAY VEHICLE TURN-TIME
310 'FMA12 = 2257.4-687.44*LOG(W(3))+70.118*LOG(W(3))^2-2.38*LOG(W(3))^3
400 CLS
405 LOCATE 10,20:INPUT "DO YOU WISH ANOTHER ANALYSIS-(Y/N)";ANS$
408 IF ANS$="Y" OR ANS$="y" THEN RFLG=1:GOTO 100
410 LOCATE 10,10:INPUT "DO YOU WISH TO SAVE FHBMA'S FOR RELIABILITY ANALYSIS - (Y/N)";ANS$
420 IF ANS$="Y" OR ANS$="y" THEN GOSUB 9500
430 CLS
435 LOCATE 10,10:INPUT "DO YOU WISH TO SAVE INPUT FOR LATER USE - (Y/N)";ANS$
440 IF ANS$="Y" OR ANS$="y" THEN GOSUB 9600
470 LOCATE 15,25:PRINT "HAVE A NICE DAY"
                                                                                       1.
480 COLOR 3
490 END
500 ' INITIALIZATION MODULE
520 FOR I=1 TO 16
525 \text{ MW(T)} = 1
526 \text{ CM}(T) = 1
```

527 OP\$(I) = "COMPUTE"

```
530 READ WBS$(I)
540 NEXT I
580 FOR I=1 TO 14
590 READ NAM$(I)
600 NEXT I
610 FOR I=1 TO 12
620 READ SNAM$(T)
630 NEXT I
640 FOR I=1 TO 16:READ TG(I):NEXT I TECH GROWTH RATES
650 FOR I=1 TO 16:READ PWTS(I):NEXT I WGT DISTR PERCENTS
             **** DEFAULT VALUES *****
690'
700 X(1)=9000! 'DRY WEIGHT - LBS
710 X(2) = 100 'LENGTH + WING SPAN - FT
720 X(3)=2 'CREW SIZE
730 X(4)=8 'NBR PASSENGERS
750 X(5)=1994 TECHNOLOGY YR
760 X(6)=.0557 'DEFAULT TECH GROWI'H FACTOR
770 X(7) = .28 WEIBULL SHAPE PARAMETER
780 X(8)=20 'LAUNCH FAILURE RATE FACTOR
790 X(9) = 144 'AVAIL HRS PER MONTH
800 X(10)=.15 'PERCENT INDIRECT WORK
810 X(11)=.95 'SPARES FILL RATE GOAL
815 X(12)=1.8 'AVG CREW SIZE
816 X(13)=1 'PLANNED MSN PER MONTH
817 X(14)=1 WGHT INDICATOR
820 T(0) = 2:T(1) = .14:T(2) = 1:T(3) = 71:T(4) = 72
830 'P1=.39:P2=.01:P3=.6 'PRORATION FACTORS FOR WUC11 (WBS 1,2,3)
900 'INITIALIZE SUBSYSTEM MSN PROFILES
910 FOR I=1 TO 16
920 GOH(T) = T(0):LOH(T) = T(1):TOH(T) = T(2)-T(1):OOH(T) = T(3)-T(2):ROH(T) = T(4)-T(3)
921 NEXT I
922 'FOR I=1 TO 3:OOH(I)=0:NEXT I
923 'GOH(5)=0:OOH(5)=0
924 'OOH(12)=0
999 1
1000 INPUT MODULE
1010 KEY OFF:CLS:COLOR 11
1015 IF RFLG$ = "YES" THEN GOTO 1050
1020 LOCATE 6.15:PRINT "VEHICLE RELIABILITY/MAINTAINABILITY MODEL"
1030 PRINT:PRINT TAB(20) "NASA - LANGLEY RESEARCH CENTER"
1040 LOCATE 14,20:INPUT "ENTER VEHICLE NAME"; VNAM$
1042 PRINT:PRINT TAB(20) "ANALYSIS MODE"
1043 PRINT:PRINT TAB(20) *PRECONCEPTUAL.....
1044 PRINT TAB(20) "SUBSYSTEM WEIGHT DRIVEN....2"
1045 PRINT TAB(20) "WEIGHT/VARIABLE DRIVEN.....3"
1046 PRINT:INPUT "ENTER CHOICE":MODE
1049 'PRIMARY MENU
1050 CLS:PRINT TAB(5) "INPUT MODULE - PRIMARY INDEP VARIABLES"
1060 PRINT TAB(1) "NBR";TAB(10) "VARIABLE";TAB(35) "CURRENT VALUE"
1065 PRINT:PRINT TAB(5) "VEHICLE DRIVER VARIABLES":PRINT
1070 FOR I=1 TO 14
1075 IF I=5 THEN PRINT:PRINT TAB(5) "SYSTEM PARAMETER VALUES":PRINT
1080 PRINT TAB(1) I;TAB(7) NAM$(I);TAB(35) X(I)
1090 NEXT I
1100 PRINT:INPUT "ENTER NBR OF VARIABLE TO BE CHANGED - 0 IF NONE";NBR
1110 IF NBR=0 THEN GOTO 1135
1120 INPUT "ENTER NEW VALUE";X(NBR)
1130 GOTO 1050
```

1135 YR = X(5):B = X(7):LF = X(8):X1 = X(1):X2 = X(2)

```
1200 'MODULE TO INPUT MOD FACTOR
 1205 CLS:PRINT TAB(20) "SUBSYSTEM MTBM CALIBRATION FACTOR"
 1206 PRINT TAB(20) "SPACE VEH-MTBM = CAL FAC x ACFT-MTBM"
 1210 PRINT TAB(3) "NBR SUBSYSTEM"; TAB(45) "CAL FACTOR"
 1230 FOR I=1 TO 16
 1235 IF OP$(I) = "DELETE" THEN GOTO 1250
1240 PRINT TAB(3) I;TAB(10) WBS$(I) TAB(45) MW(I)
1260 PRINT:INPUT "ENTER NBR OF SUBSYSTEM TO BE CHANGED - 0 IF NONE";NBR
1265 IF NBR>16 THEN GOTO 1205
 1270 IF NBR=0 THEN GOTO 1295
1280 INPUT "ENTER NEW FACTOR"; MW(NBR)
1290 GOTO 1205
1295 GOSUB 12200 'ESTABLISH CAL FACTOR FOR MAINT
1300 'DISPLAY SUBSYSTEM OPERATING TIMES
1301 CLS:PRINT:PRINT TAB(5) "SUBSYSTEM OPERATING TIMES"
1305 PRINT TAB(1) "TOTAL MISSION TIME";TAB(20) T(4);" HRS";TAB(30) "MAX GROUND TIME";TAB(50) T(0);" HRS"
1306 PRINT TAB(1) "NBR SUBSYSTEM";TAB(30) "GROUND";TAB(38) "BOOSTER";TAB(46) "REM TIME";TAB(55)
 "ORBIT";TAB(65) "RECOVERY"
1310 PRINT TAB(31) "TIME";TAB(40) "TIME";TAB(46) "TO-ORBIT";TAB(56) "TIME";TAB(65) "TIME"
1320 PRINT
1330 FOR I=1 TO 16
1335 IF OP$(I) = "DELETE" THEN GOTO 1350
1340 PRINT TAB(1) I;TAB(7) WBS$(I) TAB(35) GOH(I);TAB(42) LOH(I);TAB(50) TOH(I);TAB(58) OOH(I);TAB(65) ROH(I)
1350 NEXT I
1360 PRINT:INPUT "ENTER NBR OF SUBSYSTEM TO BE CHANGED - 0 IF NONE";NBR
1365 IF NBR>16 THEN GOTO 1301
1370 IF NBR=0 THEN GOTO 1395
1380 INPUT "ENTER NEW VALUES SEPARATED BY COMMAS"; GOH(NBR), LOH(NBR), TOH(NBR), OOH(NBR), ROH(NBR)
1390 GOTO 1300
1400 WEIGHT MENU MODULE
1402 IF MODE=1 THEN RETURN
1405 CLS:PRINT TAB(20) "SUBSYSTEM WEIGHTS"
1410 PRINT TAB(3) "NBR SUBSYSTEM"; TAB(45) "WEIGHT IN LBS"
1420 PRINT
1430 FOR I=1 TO 16
1435 IF OP$(I)="DELETE" THEN GOTO 1450
1440 PRINT TAB(3) I;TAB(10) WBSS(I) TAB(45) W(I)
1450 NEXT I
1455 PRINT:PRINT TAB(3) "TOTAL WGT";TAB(45) ADD:PRINT
1460 PRINT:INPUT "ENTER NBR OF SUBSYSTEM TO BE CHANGED - 0 IF NONE"; NBR
1465 IF NBR>16 THEN GOTO 1405
1470 IF NBR=0 THEN GOTO 1495
1480 INPUT "ENTER NEW WEIGHT"; W(NBR)
1484 ADD=0
1485 FOR I=1 TO 16:ADD=ADD+W(I):NEXT I
1486 X1 = ADD:X(1) = ADD
1490 GOTO 1405
1500 ' MODULE TO COMPUTE SUBSYSTEM WEIGHTS
1505 IF X(14)=O THEN GOTO 1567
1510 W(1) = -4485026.7# + 1351022.5#*LOG(X1)-135432!*(LOG(X1))^2 + 4522.4*(LOG(X1))^3
1511 IF W(1) < =0 THEN W(1) = 795
1515 W(2) = -290909.9 + 91929.4 *LOG(X1)-9709.901 *(LOG(X1))^2 + 343.5 *(LOG(X1))^3
1516 IF W(2) < = 0 THEN W(2) = 302
1520 W(3)=39713145.2#+1417950.4#*LOG(X1)-40472209#/SQR(LOG(X1))-12993808.8#*SQR(LOG(X1))
1523 IF W(3) < =0 THEN W(3) = 2140
1525 W(5) = -49535! + .282563*X1+6873.7*LOG(X1)-160.1*SQR(X1)
```

1137'

```
1526 IF W(5) < =0 THEN W(5) = 527
1530 W(12) = -9849.5 + .0459666*X1 + 1364.8*LOG(X1)-26.248*SQR(X1)
1531 IF W(12) <= 0 THEN W(12) = 100
1535 W(9) = -910.4 + 100.22*LOG(X1) + 1.3835*SQR(X1)
1536 IF W(9) < =0 THEN W(9) = 157
1540 W(14)=-719.15+5.56265*X2+56.882*SQR(X2)
1541 IF W(14) < = 0 THEN W(14) = 63
1545 W(10)=-757.97+11.222*SQR(X1)
1546 IF W(10) < =0 THEN W(10) = 310
1550 W(11)=575.27+.022216*X1-5.0608*SQR(X1)
1551 IF W(11) < = 0 THEN W(11) = 147
1555 W(15)=66255.6-14720.4*LOG(X1)+818.19*(LOG(X1))^2
1556 IF W(15) <= 0 THEN W(15) = 284
1560 W(13)=-10901.5+1261.52*LOG(X1)
1561 IF W(13) < = 0 THEN W(13) = 303
1563 W(4)=.11*X1:W(6)=.01*X1:W(7)=.04*X1:W(8)=.02*X1:W(16)=.1*X1
1564 WENG=-7141.92+89.1053*SQR(X1)
1565 W(6)=WENG
1567 FOR I=1 TO 16
1568 IF OP$(I)="DELETE" THEN W(I)=1
1569 NEXT I
1570 WEIGHT RECONCILIATION
1572 ADD = 0
1575 FOR I=1 TO 16:ADD = ADD + W(I):NEXT I
1580 PCT = X1/ADD
1586 TX1 = X1
1587 SM1=0
1588 FOR I=1 TO 16
1589 IF OP$(T) = "DELETE" THEN GOTO 1592
1590 IF X(14)=1 THEN W(I)=PCT*W(I) ELSE W(I)=PWTS(I)*TX1
1591 \text{ SM1} = \text{SM1} + \text{W(I)}
1592 NEXT I
1593 DIF=X1-SM1
1594 IF DIF>1 AND X(14)=0 THEN TX1=TX1+DIF:GOTO 1587
1595 ADD = SM1
1596 GOSUB 1400
1600 'MODULE TO ESTABLISH MISSION PROFILE
1615 CLS:COLOR 10:KEY OFF
1630 NBR=0
1635 LOCATE 3,25:PRINT "MISSION PROFILE"
1640 LOCATE 7,10:PRINT "NBR";TAB(50) "TIME IN HOURS"
1645 LOCATE 9,10:PRINT "1" ;TAB(25) "GROUND TIME PRIOR TO LAUNCH";TAB(55) T(0)
1650 LOCATE 11,5:PRINT "LAUNCH TIME AT T=0"
1655 LOCATE 13,10:PRINT "2" ;TAB(25) "BOOSTER COMPLETION TIME";TAB(55) T(1)
1660 LOCATE 14,10:PRINT "3" ;TAB(25) "ORBIT INSERTION TIME";TAB(55) T(2)
1665 LOCATE 15,10: PRINT "4" ;TAB(25) "ORBIT COMPLETION TIME";TAB(55) T(3)
1670 LOCATE 16,10:PRINT "5" ;TAB(25) "GROUND RECOVERY TIME";TAB(55) T(4)
1675 PRINT:PRINT
1680 INPUT "ENTER NUMBER TO BE CHANGED OR 0 IF NONE"; NBR
1685 IF NBR>16 THEN GOTO 1615
1690 IF NBR>0 THEN NBR=NBR-1:INPUT "ENTER NEW TIME";T(NBR):GOTO 1615
1694 IF RFLG=O THEN GOSUB 900
1699'
1700 'MODULE TO READ FROM A FILE
1705 INPUT "ENTER FILE NAME": DNAMS
1707 LOCATE 5,10:PRINT "INPUT DATA WILL BE READ FROM AN FILE"
1708 PRINT
1710 OPEN DNAM$ FOR INPUT AS #3
1720 FOR I=1 TO 16
```

```
1725 INPUT #3,WBS$(I),W(I),MW(I),CM(I)
1730 INPUT #3,GOH(I),LOH(I),TOH(I),OOH(I),ROH(I)
1731 INPUT #3,OP$(I)
1735 NEXT I
1740 FOR I=1 TO 13
1745 INPUT #3,NAM$(I),X(I),SNAM$(I),V(I)
1750 NEXT I
1755 FOR I=0 TO 4
1760 INPUT #3,T(I)
1765 NEXT I
1770 CLOSE #3
1780 LOCATE 15.10:PRINT "DATA SUCCESSFULLY READ"
1785 RFLG=1
2000 'MODULE TO DETERMINE SPACE ADJ MTBM
2010 YZ=0:YX=1
2020 FOR J=1 TO 16
2030 T0=GOH(J):T1=T0+LOH(J):T2=T1+TOH(J)
2040 T3=T2+OOH(J):T4=T3+ROH(J)
2050 IF OP$(J) = "DELETE" THEN GOTO 2100
2060 L1=1/FMAT(J):L2=LF*L1
2070 GOSUB 2200
2080 FMAS(J)=MEAN
2090 YZ=YZ+1/MEAN
2095 YX=YX*RT4
2100 NEXT J
2110 SVFMA=1/YZ:VR=YX
2200 'MODULE TO COMPUTE SPACE ADJUSTED MTBM
2210 A = (B*T(2)^(B-1)/L1)^(1/B)
2220 A1 = (1-EXP(-L1*T0))/L1
2230 A2=EXP(-L1*T0)*(1-EXP(-L2*(T1-T0)))/L2
2240 A3=EXP(-L2*(T1-T0))*(EXP(-L2*T0)/L2-EXP(-L2*(T2+T0-T1))/L2)
2255 GOSUB 2320 'FIND A4 USING SIMPSON'S RULE
2260 A4=EXP(-L1*(T2+T0-T1)-L2*(T1-T0)+(T2/A)^B)*AREA
2270 \text{ A5} = \text{EXP}(-\text{L1}^{*}(\text{T2}+\text{T0}-\text{T1})-\text{L2}^{*}(\text{T1}-\text{T0})-(\text{T3/A})^{B}+(\text{T2/A})^{B})^{*}(1-\text{EXP}(-\text{L1}^{*}(\text{T4}-\text{T3})))/\text{L1}
2280 MEAN=A1+A2+A3+A4+A5
2290 RT4 = EXP(-L1*(T2+T0-T1)-L2*(T1-T0)-(T3/A)^B+(T2/A)^B-L1*(T4-T3))
2300 MEAN = MEAN/(1-RT4)
2320 N = INT((T3-T2)/.5)
2330 IF N=0 THEN AREA=0
2340 DX=(T3-T2)/N
2350 FX=4
2360 Z(0) = T2:Y(0) = EXP(-(Z(0)/A)^B):SUM = Y(0)
2370 FOR I=1 TO N
2380 Z(I) = Z(I-1) + DX
2390 Y(I) = EXP(-(Z(I)/A)^B)
2400 IF I=N THEN FX=1
2410 SUM = SUM + FX*Y(I)
2420 IF FX=4 THEN FX=2 ELSE FX=4
2430 NEXT I
2440 AREA = DX*SUM/3
2500 TECHNOLOGY ADJUSTMENT MODULE
2510 Y=0
2520 FOR I=1 TO 16
2530 IF OP$(I) = "DELETE" THEN GOTO 2560
2540 FMAT(I) = FMA(I)^{*}(1+TG(I))^{(YR-1986)}
2550 Y = Y + 1/FMAT(I)
```

```
2560 NEXT I
 2570 TVFMA=1/Y
 2700 'DETERMINE CRITICAL FMA
 2710 YY=0
 2720 FOR I=1 TO 16
 2730 IF OP$(I) = "DELETE" THEN GOTO 2760
 2740 FMAC(I) = FMAS(I)/PA(I)
 2750 YY = YY + 1/FMAC(I)
 2760 NEXT I
 2770 CVFMA=1/YY
 2800 'MODULE TO DETERMINE RELIABILITIES - CRITICAL FAILURES ONLY
 2820 FOR J=1 TO 16
 2830 T0 = GOH(J):T1 = T0 + LOH(J):T2 = T1 + TOH(J)
 2840 T3=T2+OOH(J):T4=T3+ROH(J)
 2850 IF OP$(J)="DELETE" THEN R(J)=1:GOTO 2900
 2860 L1=1/FMAC(J):L2=LF*L1
 2870 A = (B^*T(2)^(B-1)/L1)^(1/B)
 2880 R(J)=EXP(-L1*(T2+T0-T1)-L2*(T1-T0)-(T3/A)^B+(T2/A)^B-L1*(T4-T3))
2890 VR=VR*R(J)
2900 NEXT J
3000 'MTBM CALCULATIONS BY WUC
3005 PROR = W(4)/(W(1) + W(2) + W(3) + W(4)): PP = 1-PROR
3010 WBS 1,2 & 3 AIRFRAME
3020 FMA11 = 15.231 + .006057*W(2)-.137575*SQR(W(1) + W(2) + W(3) + W(4))-.000723*V(3)
3022 IF FMA11<1.4 THEN FMA11=1.4
3025 \text{ FMA}(1) = \text{FMA}11/(PP^*P1): \text{FMA}(2) = \text{FMA}11/(PP^*P2)
3030 MH11=16.5732-.3511567*W(3)/V(2)-.74556*LOG(X1)
3031 IF MH11<3.9 THEN MH=3.9
3032 \text{ MHMA}(1) = \text{MH11:MHMA}(2) = \text{MH11}
3040 AB11 = .031213 + 1.956E-07*X1-1.5456E-04*SQR(X1)
3041 IF AB11 < = 0 THEN AB11 = .00128
3042 IF AB11 > .02065 THEN AB11 = .02065
3045 PA(1)=AB11:PA(2)=AB11
3050 PF(1) = .0835:PF(2) = .0835:PF(3) = (.0835 + .088)/2
3054 R11=.1934-6.309E-07*W(3)
3055 R12=.20268+.000588*V(12)
3060 RR(1) = R11:RR(2) = R11:RR(3) = (R11 + R12)/2
3100 WUC12 AIRCREW COMPARTMENT
                                                                                                                                                                                                           n
FMA12 = 3428.49 - .0142 * X1 - 423.96 * LOG(X1) + 11.05 * SQR(X1) + 111.567 * X(3) - 360.72 * SQR(X(3)) + .01865 * W(3) - 4.83566 * SQR(W(3)) - .25 * M(3) + .01865 * W(3) +
785*(X(3)+X(4))
3112 IF FMA12 < 5.6 THEN FMA12 = 5.6 '25TH PERCENTILE RANGE
3115 TP=P3*PP/FMA11+1/FMA12:FMA(3)=1/TP 'CHECK LINE 3715 FOR FMA(3)
3120 MH12=7.0855-1.6667/SQR(X(3)+X(4))+.098778*(X(2)+X(4))
3121 IF MH12<3.2 THEN MH12=3.2
3123 \text{ MHMA}(3) = ((1/\text{FMA}11) \cdot \text{MH}11 + (1/\text{FMA}12) \cdot \text{MH}12)/(1/\text{FMA}11 + 1/\text{FMA}12)
3130 \text{ AB}12 = .04232 + 3.8775E-07^*X1-2.51883E-04^*SQR(X1)
3131 IF AB12>.02 THEN AB12=.02
3135 PA(3) = (AB11/FMA11 + AB12/FMA12)/(1/FMA11 + 1/FMA12)
3210 SMA13=22.2723-.00313*V(3)+.19511*X2-5.47476*SQR(V(4))+.003161*W(5)-.5171441*SQR(W(5))
3211 \text{ 'FMA}(5) = SMA13*(GOH(5) + LOH(5) + TOH(5) + OOH(5) + ROH(5))
3212 'IF SMA12 < .4 THEN SMA12 = .4
3213 FMA(5) = 72.4 + 14.568*V(4) + .0994*X2-12.41*LOG(X1)-65.6*SQR(V(4))-.00568*W(5) + 18.598*LOG(W(5))
3214 IF FMA(5) < 1.4 THEN FMA(5) = 1.4
3215 'FMA(5)=SMA13*(GOH(5)+LOH(5)+TOH(5)+OOH(5)+ROH(5))
3220 MHMA(5) = -156.95 + 55.984 LOG(W(5))-6.095 (LOG(W(5)))^2 + .212817 (LOG(W(5)))^3
3221 IF MHMA(5) < 1.9 THEN MHMA(5) = 1.9
```

```
3230 \text{ AB13} = -2.4321 + .0059112 \times X2 + 1.1457 \times LOG(X2) - .33925 \times SQR(X2)
 3231 IF AB13<0 THEN PA(5)=.00185 ELSE PA(5)=AB13
 3232 IF PA(5) > .08 THEN PA(5) = .08
 3250 \text{ PF}(5) = .02774 - 4.07E - 06 \times 1 - .00194 \times 2 + .19316 \times QR(V(4)) + .007156 \times QR(W(13))
 3251 IF PF(5) < .134 THEN PF(5) = .134
 3252 IF PF(5) > .54 THEN PF(5) = .54
 3260 RR(5) = .8639-.02963*X2
 3261 IF RR(5) < .22 THEN RR(5) = .22
 3300 WUC14 WBS 12 FLIGHT CONTROLS
 3310 \text{ FMA}(12) = 26.29 - 1.1136 * \text{SQR}(W(12)) + .9516 * V(5) - 1.9 * V(6) + .3505 * X2 - .00357 * V(3)
 3312 IF FMA(12) < 2.8 THEN FMA(12) = 2.8
3320 MHMA(12) = 26.238-1.1067*V(5)-1.6658*V(6)-.00328*V(3)+.0006018*X2-6.2827*LOG(W(12))+14.289*SQR(V(5))
3321 IF MHMA(12) < 2.1 THEN MHMA(12) = 2.1
3330 AB14=.711953-.1881388*LOG(X2)+.0209882*SQR(X2)
3331 IF AB14<0 THEN PA(12)=6.000001E-04 ELSE PA(12)=AB14
 3332 IF PA(12)>.08128 THEN PA(12)=.08128
 3350 PF(12)=5.51246+.002663*V(5)-.000566*W(12)-1.193*LOG(W(12))+.10556*SQR(W(12))
3351 IF PF(12) < .04 THEN PF(12) = .04
3352 IF PF(12) > .29 THEN PF(12) = .29
3360 RR(12) = .4527-.0006677*X2
3361 IF RR(12) < 0 THEN RR(12) = .07
3400 WUC24 APU
3410 FMA(9)=4996.525-1.906*V(7)+46.35*SQR(V(7))-2.735*W(9)+284.549*SQR(W(9))-1642.99*LOG(W(9))
3411 IF FMA(9)<14.5 THEN FMA(9)=14.5
3420 \text{ MHMA}(9) = -451.4 + .09054 * V(7) - 2.9654 * SQR(V(7)) + .2657 * W(9) - 26.1 * SQR(W(9)) + 150.5 * LOG(W(9))
3421 IF MHMA(9) < 5.2 THEN MHMA(9) = 5.2
3440 PA(9) = .064
PF(9) = -109.83 - .1645 * LOG(X1) + .1427 * V(7) - 6.1517 * SQR(V(7)) + 15.751 * LOG(V(7)) + .066 * W(9) - 5.6832 * SQR(W(9)) + 29.071 * LOG(W(9)) + .066 * W(9) - 5.6832 * SQR(W(9)) + .066 * W(9) - .066 
3451 IF PF(9) < .03 THEN PF(9) = .03
3452 IF PF(9) > .29 THEN PF(9) = .29
3460 RR(9) = .579 - .0007512*SQR(X1)
3461 IF RR(9) < 0 THEN RR(9) = .01
3510 'FMA(14)=34.08071-.42487*W(14)^2
3511 FH41=454.387-.000547*X1+.821*X2-107.5185*LOG(X2)
3512 FH47=6613.12-1.485*X2-1358.3*LOG(X1)+73.58*(LOG(X1))^2-.725852*X1/X2
3513 Z=1/FH41+1/FH47:FMA(14)=1/Z
3515 IF FMA(14) < 7.68 THEN FMA(14) = 7.68
3520 MH41 = .6886774*LOG(X1)
3521 MH47=5.7432+.018525*LOG(X1)-3.36575E-03*SQR(X1)
3522 \text{ MHMA}(14) = (\text{MH41/FH41} + \text{MH47/FH47})/(1/\text{FH41} + 1/\text{FH47})
3523 IF MHMA(14)<1! THEN MHMA(14)=1!
3530 PA(14) = .082199 + 5.0072E - 07*X1 - 4.0612E - 04*SQR(X1)
3531 IF PA(14)<0 THEN PA(14)=.00152
3532 IF PA(14)>.05222 THEN PA(14)=.05222
3550 PF47=23.852-.00902*X2-5.247*LOG(X1)+.301*LOG(X1)^2-.00212*X1/X2
3551 IF PF47<.02 THEN PF47=.02
3552 IF PF47>.33 THEN PF47=.33
3553 PF(14)=(.0932/FH41+PF47/FH47)/(1/FH41+1/FH47)
3555 R41 = .5294-8.914E-05*W(14)
3556 IF R41<0 THEN R41=.168
3557 R47=.6026-.0006758*SQR(X1)
3560 RR(14) = (R41/FH41 + R47/FH47)/(1/FH41 + 1/FH47)
3600 WUC 42/44 WBS 10 *** ELECTRICAL SYS ******
FMA(10) = 1193.13 - .0755*W(10) + 6.758773*SQR(W(10)) - .715596*X2 - 167.24*LOG(X1) + 2.2308*SQR(X1) + 29.10236*LOG(V(7)) - .00127*V(10) + 0.00127*V(10) + 0
V(7)~2
3611 FH44=1
3613 FH42=1
3614 IF FMA(10) < 5.15 THEN FMA(10) = 5.15
3620 'MHMA(10)=-18392.3+1694.6*LOG(X1)-92.8412*(LOG(X1))^2+27629/SQR(LOG(X1))+2*LOG(X1)^3
```

```
3621 MH42=-95.161+20.3158*LOG(X1)-.98356*(LOG(X1))^2
  3622 MH44=2300.04+474.11*LOG(X1)-452.295*LOG(X2)-.146285*X1/X2-2769.85*SQR(LOG(X1))+1788.4*SQR(LOG(X2))
  3623 \text{ MHMA}(10) = (\text{MH42} + \text{MH44})/2
  3624 IF MHMA(10)<1! THEN MHMA(10)=4.1
  3630 PA(10)=-39.95984+11.09214*LOG(X1)-1.0178226#*LOG(X1)^2+.0309075*LOG(X1)^3
  3631 IF PA(10) < =0 THEN PA(10) = .00248
  3632 IF PA(10)>.142 THEN PA(10)=.142
  3650 PF42 = -26.565 - .00271 V(7) + .005143 W(10) - .74878 SQR(W(10)) + 6.621 LOG(W(10))
  3651 IF PF42<.054 THEN PF42=.054
  3652 IF PF42>.53 THEN PF42=.53
 3653 PF44 = 3.061 + 1.178E-05*X1-.000127*V(3)-.42392*LOG(X1) + .13468*SQR(X2)
  3654 IF PF44<.03 THEN PF44=.03
  3655 IF PF44>.47 THEN PF44 = .47
 3656 PF(10)=(PF42/FH42+PF44/FH44)/(1/FH42+1/FH44)
 3660 RR42=-.38533-.001*X2+.17715*LOG(X2)
 3661 IF RR42<.23 THEN RR42=.23:IF RR42>.539 THEN RR42=.539
 3662 RR44=2.3651+.00201*X2-.41152*LOG(X2)
 3663 IF RR44 < .53 THEN RR44 = .53:IF RR44 > .872 THEN RR44 = .872
 3665 RR(10)=(RR42/FH42+RR44/FH44)/(1/FH42+1/FH44)
 3700 *****WBS 4 THERMAL PROTECTION SYSTEM ********
 3710 FMA(4)=FMA11/PROR
 3720 MHMA(4) = MH11
 3730 PA(4) = AB11:PF(4) = .0835:RR(4) = .194
 3800 WUC45 WBS11 HYDRAULICS SYS
 3810\text{FMA}(11) = 396.258 - .00622*V(3) + 35.635*V(8) - 779.83*SQR(V(8)) + 975.56*LOG(V(8)) + 8.812899*SQR(W(11)) - 105.728*LOG(W(11)) + 975.56*LOG(V(8)) + 975.56*LOG(V(8)) + 975.56*LOG(W(11)) + 975.56*LOG
 3812 IF FMA(11) < 4.7 THEN FMA(11) = 4.7
 3820 MH45=2.41235*LOG(X1)-.16306*LOG(X1)^2
 3821 MHMA(11)=MH45
 3822 IF MHMA(11)<2.4 THEN MHMA(11)=2.4
 3830 PA(11) = 5000.2535#-7578.183/SQR(LOG(X1))-453.612*LOG(X1) + 24.6005*LOG(X1)^2-5276227*LOG(X1)^3
 3831 IF PA(11) < =0 THEN PA(11) = .00084
 3832 IF PA(11)>.1304 THEN PA(11)=.1304
 3850 PF(11) = .07614 - .00181 \times X2 + .001543 \times QR(X1)
 3851 IF PF(11)<.014 THEN PF(11)=.014
3852 IF PF(11)>.33 THEN PF(11)=.33
3860 RR(11)=.368
 3910 FMA(13)=-36.917-4.5*V(10)+45.756*SQR(V(10))-.123088*W(13)/V(10)+.0236*W(13)-2.4534*SQR(W(13))
 3912 IF FMA(13)<1.5 THEN FMA(13)=1.5
3920 MHMA(13) = 131.395 + 1.0394*V(11)-9.035*SQR(V(10))-.0154*W(13) + 2.864*SQR(W(13))-26.193*LOG(W(13))
3921 IF MHMA(13)<4.6 THEN MHMA(13)=4.6
3930 PA(13) = .0502749 + 2.605132E-07*X1-2.288197E-04*SQR(X1)
3931 IF PA(13) < 0 THEN PA(13) = .00152
3932 IF PA(13) > .02376 THEN PA(13) = .02376
3950 PF(13) = 7.1662+.0209*V(11)-.00128*W(13)+.1774*SQR(W(13))-1.734*LOG(W(13))+.0067*W(13)/V(10)
3951 IF PF(13)<.193 THEN PF(13)=.193
3952 IF PF(13) > 532 THEN PF(13) = 532
3960 RR(13) = .39735-4.2659E-07*X1+2.1635E-04*SQR(X1)
3961 IF RR(13)<0 THEN RR(13)=.235
3962 IF RR(13)>.726 THEN RR(13)=.726
4000 WUC49 MISC UTILITIES
FMA(15) = 17952.8 + .00579 * X1 + 170 * X(3) - 10.136 * X2 + 21.15 * (X(3) + X(4)) - 461.34 * SQR(X(3) + X(4)) - 1.893 * W(15) + 421.8 * SQR(W(15)) - 4.893 * W(15) + 421.8 * SQR(W(15)) + 4.893 * W(15) * W
054*LOG(W(15))
4021 'FH49=58226.97+.0168*X1-42.358*X2-27480.6*LOG(X2)+79.598*LOG(X1)^2+3131.24*LOG(X2)^2-8.6965*X1/X2
4023 IF FMA(15)<46.7 THEN FMA(15)=46.7
4030 \text{ MHMA}(15) = 9.51317 + .03508*X2-.000721*W(15)-4.52*SQR(X(3))
4031 'MH49=.0831*LOG(X1)^2-.0116*X1/X2
4033 IF MHMA(15)<2.2 THEN MHMA(15)=2.2
4040 PA(15)=.0185
4050 PF49=.19888+4.938E-06*X1-.00205*SQR(X1)+.0004877*V(7)
```

```
4051 IF PF49<.002 THEN PF49=.002
4052 IF PF49>.45 THEN PF49=.45
4053 PF96=-5.4686+.16835*X2-.00448*V(3)+.36521*X(4)-4.1528*SQR(X(4))+.178*SQR(W(15))
4054 IF PF96<.23 THEN PF96=.23
4055 IF PF96>.98 THEN PF96=.98
4057 PF(15)=(PF49+PF96)/2
4060 RR(15)=.274
4100 '******WUC23 PROPULSION SYSTEM **** WBS 6, 7 & 8 *******
4160 FOR I=6 TO 8
4161 RR(I) = .6211 - .0024872 * SQR(W(I))
4162 IF RR(I) < .157 THEN RR(I) = .157
4163 'IF RR(I) > 5120001 THEN RR(I) = 5120001
4165 PF(I) = 1.14633 + 4.572E-05*W(I)-.011456*SQR(W(I))
4166 IF PF(I) < .2 THEN PF(I) = .2
4167 IF PF(I)>.725 THEN PF(I)=.725
4170 \text{ FMA}(I) = 34.1 + 9.853001E-04*W(I)-.312232*SQR(W(I))
4171 IF FMA(I) < 1.4 THEN FMA(I) = 1.4
4175 MHMA(T)=52.6324+.0009122*W(T)-.3936*SQR(W(T))
4176 IF MHMA(I)<4.1 THEN MHMA(I)=4.1
4178 \text{ PA(I)} = .048164 - .0001268 \times X2
4179 IF PA(I) < .0013 THEN PA(I) = .0013
4180 NEXT I
4200 ' WUC91/93/97 WBS 16 ***** RECOVERY & AUX SYS ********
4210 \text{ FMA}(16) = 7549.1 - .0165 \times X1 + 4 \times X2 - 999.76 \times LOG(X1) + 16.847 \times SQR(X1) - 4.225 \times (X(3) + X(4))
4211 IF FMA(16)<17.9 THEN FMA(16)=17.9
4220 MHMA(16)=-57.9+1.4639E-04*X1+8.23732*LOG(X1)-.151436*SQR(X1)
4221 IF MHMA(16)<1.7 THEN MHMA(16)=1.7
4230 PA(16) = .004678
4253 PF91 = 4.654-.45718*LOG(X1)+.00242*SQR(X1)
4254 IF PF91 < .011 THEN PF91 = .011
4255 IF PF91 > .84 THEN PF91 = .84
4256 R97=2.532-.22837*LOG(V(3))
4257 PF(16) = (PF91 + .287 + .01)/3
4258 IF R97<0 THEN R97=.128
4260 R91=2.3489-.35852*LOG(X(2))
4261 IF R91<0 THEN R91=.461
                                'SET EOUAL TO MEAN VALUE
4262 IF R91>1 THEN R91=.461
4263 IF R97>1 THEN R97=.968
4265 RR(16) = (R91 + R97)/2
4300 'APPLY MTBM & MHMA CALIBRATION FACTORS
4310 FOR I=1 TO 16
4320 \text{ FMA(I)} = \text{MW(I)} \cdot \text{FMA(I)}
4325 \text{ MHMA}(I) = \text{CM}(I) \cdot \text{MHMA}(I)
4330 NEXT I
5500 'SCHEDULED MAINTENANCE MODULE
5540 SCHP=-3.861213-.0449*X2+3.2794*LOG(X1)+.02297*SQR(X1)-.0176*LOG(X1)^3-7.289*LOG(X2)+2.36973*SQR(X2)
5550 IF SCHP < .17 THEN SCHP = .17
5560 IF SCHP > .665 THEN SCHP = .665
5569'
5570 VEHICLE ROLL-UP - UNADJUSTED MTBM
5575 Y=0
5580 FOR I=1 TO 16
5590 IF OP$(I) = "DELETE" THEN GOTO 5610
5600 Y = Y + 1/FMA(I)
5610 NEXT I
5620 VFMA=1/Y
6999 '
7000 'MANPOWER COMPUTATION MODULE ******
7005 TMA=0:VMH=0:AMHMA=0:KK=0:TOMH=0:TFMH=0:APF=0:TMP=0
7010 MANF=(4.348*5*8)/(X(9)*(1-X(10))) 'HRLY AVAIL FACTOR
7020 FOR I=1 TO 16
```

```
7030 IF OP$(I) = "DELETE" THEN GOTO 7140
7035 KK=KK+1
7040 THRS(I) = GOH(I) + LOH(I) + TOH(I) + OOH(I) + ROH(I)
7045 MA=THRS(I)/FMAS(I)
7046 TMA=TMA+MA
7050 MH(I) = MA*MHMA(I)
7055 AMHMA=AMHMA+MHMA(I)
7060 VMH = VMH + MH(I)
7070 MEN=(MH(I)*X(13))/(X(9)*(1-X(10)))
7080 \text{ MP(I)} = INT(MEN + .999)
7085 \text{ TMP} = \text{TMP} + \text{MP(I)}
7090 \text{ OMH(I)} = (1-PF(I))*MH(I)
7100 FMH(I) = PF(I) * MH(I)
7110 TOMH=TOMH+OMH(I)
7120 TFMH=TFMH+FMH(I)
7130 APF=APF+1-PF(I)
7135 VMOH=VMOH+MH(I)*X(13)
7140 NEXT I
7150 APF=APF/KK
7160 AMHMA=AMHMA/KK
7170 SMP = (SCHP*VMH*X(13))/(X(9)*(1-X(10)))
7180 \text{ SMP} = \text{INT}(\text{SMP} + .99)
7190 TMP=TMP+SMP
7499 '
7500 ' DISPLAY MODULE FOR MAINTAINABILITY REPORT
7510 CLS:COLOR 14
7520 PRINT TAB(25) "MAINTAINABILTY REPORT"
7530 PRINT TAB(1) "VEHICLE IS "; VNAMS; TAB(3S) "DATE: "; DATE$; TAB(60) "TIME: "; TIME$
7548 COLOR 7
7550 PRINT TAB(1) "WBS";TAB(32) "MANHR/MA";TAB(50) "TOT MA";TAB(65) "TOT MANHRS"
7555 PRINT
7570 FOR I=1 TO 16
7580 IF OP$(T) = "DELETE" THEN GOTO 7592
7590 PRINT TAB(1) WBS$(I);TAB(32) MHMA(I);TAB(50) THRS(I)/FMAS(I);TAB(65) MH(I)
7592 NEXT I
7593 PRINT:COLOR 11
7594 PRINT TAB(5) "SCHEDULED"; TAB(65) SCHP*VMH
7595 COLOR 15
7600 PRINT TAB(5) "TOTALS";TAB(32) AMHMA;"(AVG)";TAB(50) TMA;TAB(65) VMH+SCHP*VMH
7610 COLOR 14
7620 INPUT "ENTER RETURN TO CONTINUE..."; RET
7640 CLS:COLOR 14
7650 PRINT TAB(25) "MAINTAINABILTY REPORT - page 2"
7660 PRINT TAB(1) "VEHICLE IS "; VNAM$; TAB(35) "DATE: "; DATE$; TAB(60) "TIME: "; TIME$
7680 COLOR 7
7690 PRINT TAB(1) "WBS";TAB(32) "ON-VEH MH";TAB(47) "OFF-VEH MH";TAB(60) "PERCENT ON-VEH"
7700 PRINT
7710 FOR I=1 TO 16
7720 IF OP$(I) = "DELETE" THEN GOTO 7740
7730 PRINT TAB(1) WBS$(I);TAB(32) OMH(I);TAB(50) FMH(I);TAB(65) 1-PF(I)
7740 NEXT I
7750 PRINT: COLOR 7
7755 PRINT TAB(5) "SCHEDULED";TAB(32) .98*SCHP*VMH;TAB(50) .02*SCHP*VMH
7760 COLOR 15
7770 PRINT TAB(5) "TOTALS";TAB(32) TOMH+.98*SCHP*VMH;TAB(50) TFMH+.02*SCHP*VMH;TAB(65) APF;"(AVG)"
7780 COLOR 14
7790 INPUT "ENTER RETURN TO CONTINUE..."; RET
7800 CLS:COLOR 14
7810 PRINT TAB(25) "MAINTAINABILTY REPORT - page 3"
7820 PRINT TAB(1) "VEHICLE IS "; VNAM$; TAB(35) "DATE: "; DATE$, TAB(60) "TIME: "; TIME$
```

7830 'PRINT TAB(1) "MNHR ADJ FAC";MANF

```
7840 COLOR 7
7850 PRINT TAB(1) "WBS";TAB(30) "MANHRS/MSN";TAB(45) "MANHRS/MO";TAB(60) "NBR PERSONNEL"
7860 PRINT
7870 FOR I=1 TO 16
7880 IF OP$(I)="DELETE" THEN GOTO 7900
7890 PRINT TAB(1) WBS$(I);TAB(30) MH(I);TAB(45) X(13)*MH(I);TAB(60) MP(I)
7900 NEXT I
7910 PRINT:COLOR 11
7915 PRINT TAB(5) "SCHEDULED";TAB(30) SCHP*VMH;TAB(45) X(13)*SCHP*VMH;TAB(60) SMP
7920 COLOR 15
7930 PRINT TAB(5) "TOTAL";TAB(45) VMOH;TAB(60) TMP:COLOR 14
7932 'PRINT TAB(5) "AVAIL HRS/MO=";X(9);TAB(40) "INDIRECT WORK=";X(10)
7940 COLOR 14
7950 INPUT "ENTER RETURN TO CONTINUE..."; RET
7999 '
8000 'SPARES CALCULATIONS
8010 ARR=0:TS=0:KK=0:TNR=0
8020 FOR I=1 TO 16
8030 IF OP$(I)="DELETE" THEN GOTO 8180
8040 NR(I)=RR(I)*(THRS(I)/FMAS(I)) 'MEAN NBR REMOVALS
8045 MN=NR(I)
8050 GOSUB 8300 'COMPUTE FILL RATE ROMT - POISSON DISTR
8055 S(I) = STK:FR(I) = F
8060 TNR=TNR+NR(T)
8150 ARR = ARR + RR(I)
8160 TS = TS + S(I)
8170 KK=KK+1
8180 NEXT I
8190 ARR=ARR/KK
8300 ' COMPUTE SPARES USING POISSON DIST
8310 P=EXP(-MN)
8320 IF P> = X(11) THEN JD = 1:GOTO 8370
8330 JD=1:F=P
8340 P=P*MN/JD
8350 JD=JD+1:F=F+P
8360 IF F<X(11) THEN GOTO 8340
8370 STK=JD-1
8499 '
8500 ' DISPLAY SPARES RESULTS
8510 CLS:COLOR 14
8520 PRINT TAB(25) "SUBSYSTEM SPARES REPORT"
8530 PRINT TAB(1) "VEHICLE IS "; VNAMS; TAB(35) "DATE: "; DATES; TAB(60) "TIME: "; TIMES
8545 COLOR 7
8550 PRINT TAB(1) "WBS";TAB(25) "REM RATE";TAB(38) "AVG DEMAND";TAB(50) "SPARES RQMT";TAB(65) "FILL RATE"
8555 PRINT
8570 FOR I=1 TO 16
8580 IF OP$(T) = "DELETE" THEN GOTO 8600
8590 PRINT TAB(1) WBS$(I);TAB(30) RR(I);TAB(41) NR(I);TAB(56) S(I);TAB(65) FR(I)
8600 NEXT I
8610 PRINT
8620 COLOR 15
8630 PRINT TAB(5) "TOTALS"; TAB(27) ARR; "(AVG)"; TAB(43) TNR; TAB(55) TS
8640 INPUT "ENTER RETURN TO CONTINUE..."; RET
8999 '
9000 ***** DISPLAY MODULE FOR RELIABILITY REPORT ******
9010 CLS:COLOR 14
9020 PRINT TAB(25) "RELIABILITY REPORT"
9030 PRINT TAB(1) "VEHICLE IS "; VNAM$; TAB(35) "DATE: "; DATE$; TAB(60) "TIME: "; TIME$
```

```
9048 COLOR 7
 9050 PRINT:PRINT TAB(1) "WBS";TAB(25) "CALIBRATED MTBM";TAB(48) "TECH ADJ";TAB(61) "SPACE ADJ"
9055 PRINT
9070 FOR I=1 TO 16
9080 IF OP$(I) = "DELETE" THEN GOTO 9092
9090 PRINT TAB(1) WBS$(I);TAB(35) FMA(I);TAB(48) FMAT(I);TAB(61) FMAS(I)
9092 NEXT I
9093 PRINT
9095 COLOR 15
9100 PRINT TAB(5) "VEHICLE"; TAB(35) VFMA; TAB(48) TVFMA; TAB(61) SVFMA
9105 COLOR 14
9110 INPUT "ENTER RETURN TO CONTINUE..."; RET
9120 CLS:COLOR 14
9130 PRINT TAB(20) "RELIABILITY REPORT - page 2"
9140 PRINT TAB(1) "VEHICLE IS "; VNAM$; TAB(35) "DATE: "; DATE$; TAB(60) "TIME: "; TIME$
9160 COLOR 7
9170 PRINT TAB(1) "WBS":TAB(33) "CRITICAL":TAB(48) "CRITICAL":TAB(65) "SUBSYS"
9171 PRINT TAB(33) "FAIL RATE";TAB(48) "MTBM";TAB(65) "MSN RELIABILITY"
9180 PRINT
9190 FOR I=1 TO 16
                                                                                                   3.
9200 IF OP$(I)="DELETE" THEN GOTO 9220
                                                                                                 1-21
9210 PRINT TAB(1) WBS$(I);TAB(33) PA(I);TAB(48) FMAC(I);TAB(65) R(I)
9220 NEXT I
9230 PRINT
9240 COLOR 15
9250 PRINT TAB(5) "VEHICLE"; TAB(48) CVFMA; TAB(65) VR
9260 COLOR 14
9270 INPUT "ENTER RETURN TO CONTINUE..."; RET
9500 'MODULE TO WRITE FHBMA TO A FILE
9520 INPUT "ENTER FILE NAME": DNAMS
9530 OPEN DNAMS FOR OUTPUT AS #1
9540 FOR I=1 TO 16
9550 WRITE #1,FMAT(I),FMAS(I),FMAC(I)
9560 NEXT I
9570 CLOSE #1
9600 'MODULE TO WRITE INPUT DATA TO A FILE
9605 INPUT "ENTER FILE NAME":DNAM$
                                                                                                  . - . .
9610 OPEN DNAMS FOR OUTPUT AS #2
9615 FOR I=1 TO 16
9620 WRITE #2,WBS$(I),W(I),MW(I),CM(I)
9621 WRITE #2,GOH(I),LOH(I),TOH(I),OOH(I),ROH(I)
9622 WRITE #2,OP$(I)
9625 NEXT I
9630 FOR I=1 TO 13
9635 WRITE #2,NAM$(I),X(I),SNAM$(I),V(I)
9640 NEXT I
9645 FOR I=0 TO 4
9650 WRITE #2,T(I)
9655 NEXT I
9690 CLOSE #2
9700 'MODULE TO DISPLAY VEHICLE TURN TIME
9703 GOSUB 12000 'COMPUTE CREW SIZES
9705 TT=0
9706 SUM = 0:CΓ=0
9710 FOR I=1 TO 16
9715 IF OP$(I) = "DELETE" THEN GOTO 9735
9716 CT=CT+1
9720 TSKT(I)=(1-PF(I))*MHMA(I)/C(I) 'ON-EQUIP TASK TIME
9730 TT = TT + (THRS(I)/FMAS(I)) TSKT(I)
```

```
9733 SUM=SUM+TSKT(I)
9735 NEXT I
9740 SCHT=.98*SCHP*VMH/X(12)
9750 GTT=TT+SCHT:ATSK=SUM/CT
9800 ' DISPLAY VEHICLE TURN TIME
9810 CLS:COLOR 14
9820 PRINT TAB(25) "VEHICLE TURN TIME REPORT"
9830 PRINT TAB(1) "VEHICLE IS "; VNAMS; TAB(35) "DATE: "; DATES; TAB(60) "TIME: "; TIMES
9840 PRINT
9845 COLOR 7
9850 PRINT TAB(1) "WBS"; TAB(22) "AVG CREW SIZE"; TAB(40) "AVG (ON) TASK TIME (HRS)"; TAB(57) "AVG ON-VEH CLOCK
9855 PRINT
9870 FOR I=1 TO 16
9880 IF OP$(I) = "DELETE" THEN GOTO 9900
9885 TEMP = (THRS(I)/FMAS(I))*TSKT(I)
9890 PRINT TAB(1) WBS$(I);TAB(30) C(I);TAB(45) TSKT(I);TAB(59) TEMP
9900 NEXT I
9910 PRINT:INPUT "ENTER RETURN....."; RET
9920 CLS:COLOR 14
9921 PRINT TAB(25) "VEHICLE TURN TIME REPORT - page 2"
9922 PRINT TAB(1) "VEHICLE IS "; VNAMS; TAB(35) "DATE: "; DATE$; TAB(60) "TIME: "; TIME$
9924 COLOR 15:PRINT:PRINT TAB(52) "MAX TURN TIMES":PRINT
9925 PRINT TAB(5) "AVG VEH TASK TIME"; TAB(55) ATSK; "HRS"
9930 PRINT TAB(5) "SCHD MAINT MSN TASK TIME"; TAB(55) SCHT; "HRS"
9931 PRINT TAB(5) "MAX TURN TIME NO SCH MAINI"; TAB(55) TT; "HRS"
9932 PRINT TAB(5) "MAX TURN TIME WITH SCH MAINT"; TAB(55) TT+SCHT; "HRS"
9940 PRINT TAB(5) "MISSION TIME -INC GRND TIME";TAB(55) T(0)+T(4);"HRS"
9945 VTT=T(0)+T(4)+OTT+SCHT
9946 DVTT=(T(0)+T(4))/24+(OTT+SCHT)/8
9950 PRINT TAB(5) "TOT VEHICLE TURNAROUND TIME";TAB(55) VTT;"HRS"
9951 PRINT TAB(5) "TOT VEHICLE TURNAROUND TIME", TAB(55) DVIT; "DAYS"
9955 PRINT TAB(5) "MISSIONS/MONTH/VEHICLE"; TAB(55) 21/DVTT
9960 PRINT TAB(5) "FLEET SIZE ";TAB(55) INT(X(13)/(21/DVTT)+.99)
9985 LOCATE 21,10:INPUT "ENTER RETURN TO CONTINUE..."; RET
10000 'INPUT DATA
10005 DATA 1.1 WING GROUP,1.2 TAIL GROUP,1.3 BODY GROUP,1.4 TPS
10010 DATA 1.5 LANDING GEAR, 1.6 PROPULSION, 1.7 PROPULSION-RCS
10020 DATA 1.8 PROPULSION-OMS,1.9 PRIME POWER,1.10 ELECTRIC CONV/DISTR
10030 DATA 1.11 HYDRAULICS/PNEUMATICS,1.12 ACTUATORS,1.13 AVIONICS
10040 DATA 1.14 ENVIRONMENTAL CONTROL,1.15 PERSONNEL PROVISIONS
10050 DATA 1.16 RECOVERY & AUX SYSTEMS
10150 DATA DRY WGT (LBS), LENGTH+WING SPAN (FT), CREW SIZE, NBR PASSENGERS
10152 DATA TECHNOLOGY YR
10155 DATA DEFAULT TECH GROWTH FACTOR, WIEBULL SHAPE PARAMETER
10160 DATA LAUNCH FACTOR, AVAIL MANHRS/MONTH, PERCENT INDIRECT WORK
10170 DATA SPARE FILL RATE OBLAVG CREW SIZE-SCHD MAINT, PLANNED MISSIONS/MONTH
10180 DATA WGT IND 0-PCT/1-EQS
11000 CLS:PRINT:PRINT TAB(5) "SECONDARY INDEP VARIABLES":PRINT
11005 IF MODE=1 OR MODE=2 THEN RETURN
11010 PRINT TAB(1) "NBR";TAB(10) "VARIABLE";TAB(35) "CURRENT VALUE"
11020 PRINT
11040 FOR I=1 TO 12
11050 PRINT TAB(1) L'TAB(7) SNAM$(I);TAB(35) V(I)
11070 PRINT:INPUT "ENTER NBR OF VARIABLE TO BE CHANGED - 0 IF NONE":NBR
11075 IF NBR>16 THEN GOTO 11000
11080 IF NBR=0 THEN RETURN
11090 INPUT "ENTER NEW VALUE"; V(NBR)
11100 GOTO 11000
```

```
11110'
  11120 'SUBROUTINE TO COMPUTE SECONDARY VARIABLES
  11122 WEITED AREA
  11123 \text{ V}(3) = 486.026 + .1510165 * X(2)^2
  11130 'NBR WHEELS
  11140 \text{ V}(4) = 2.189572 + 6.66297\text{E}-05^{*}X(1)-1.38718\text{E}-10^{*}X(1)^{2}
  11150 V(4) = CINT(V(4))
  11160 IF V(4) < 3 THEN V(4) = 3
  11170 'NBR CONTROL SURFACES
 11180 \text{ V}(6) = 3.588737 + .0005281 * X(1) + .09493 * X(2) - .00517 * V(3)
 11190 IF V(6) < 6 THEN V(6) = 6
 11200 \text{ V(6)} = \text{INT(V(6))}
 11210 'NBR ACTUATORS
 11220 \ V(5) = -41 - .001425 * X1 + 2.0752 E - 09 * X1^2 + .007467 * V(3) - 1.0377 * SQR(V(3)) + .4828 * SQR(X1) + 14.97 * SQR(V(6)) - .017811 * V(6)^2 + .007467 * V(3) + .00
 11230 IF V(5) < 5 THEN V(5) = 5
 11240 V(5) = INT(V(5))
 11280 'KVA MAX
 11290 \text{ V}(7) = -214.812 + .001098 \times X(1) + 25.1571 \times LOG(X(1))
 11300 IF V(7)<11 THEN V(7)=11
 11340 'NBR AVIONICS SYSTEMS (TOTSUBS)
 11350 V(10) = -40.4242 - 1.879E - 05*X(1) + 6.192823*LOG(X(1))
 11360 IF V(10)<9 THEN V(10)=9
 11370 V(10) = CINT(V(10))
 11420 'NBR DIFFERENT AVIONICS SUBSYSTEMS
 11430 V(11) = 9.674 - 1.858 * LOG(X(1)) + .87684 * V(10) + 1.4557 * LOG(W(13))
 11440 IF V(11) < 5 THEN V(11) = 5:IF V(11) > V(10) THEN V(11) = V(10)
 11450 V(11) = CINT(V(11))
 11460 'BTU COOLING
 11470 \text{ V}(12) = -1114.52 - 12.0178 \times X2 + .009405 \times X2^2 + 230.872 \times SOR(X2)
 11480 IF V(12)<25 THEN V(12)=25
 11490 'MAX PERSONS = CREW + PASSENGERS
 11500 X(62) = X(7) + X(8)
 11510 'NBR HYDRAULICS SUBSYSTEMS
                                                                                                                                                                                                                      1435
 11520 V(8) = 13.48 - .56854 \times X2 + .002409 \times V(3) + .433276 \times SQR(X1)
11530 IF V(8) < 8 THEN V(8) = 8
11540 V(8) = CINT(V(8))
11550 'NBR INTERNAL FUEL TANKS
11560 V(9) = -13.2236 + 1.851772*LOG(X(1))
 11570 IF V(9)<2 THEN V(9)=2
11580 IF V(9) > 12 THEN V(9) = 12
11590 V(9)=CINT(V(9))
11620 'FUSELAGE AREA
11630 \text{ V}(1) = -8832.74 + .082862 \times X(1) + 1274.76 \times LOG(X(1)) - 32.456 \times SQR(X(1))
11640 IF V(1)<478 THEN V(1)=478
11650 'FUSELAGE VOLUME
11660 \text{ V}(2) = -47618.5 + 22143 \text{ LOG}(X(2)) - 5743.09 \text{ SQR}(X(2)) + .42623 \text{ X}(2)^2
11670 IF V(2)<571 THEN V(2)=571
11680 GOSUB 11000 'DISPLAY MENU
11700 DATA FUSELAGE AREA, FUSELAGE VOLUME, WETTED AREA
11710 DATA NBR WHEELS,NBR ACTUATORS,NBR CONTR SURFACES,KVA MAX
11720 DATA NBR HYDR SUBSYS,NBR FUEL TANKS (INTERNAL)
11730 DATA TOT NBR AVIONICS SUBSYS
11740 DATA NBR DIFF AVIONICS SUBSYS,BTU COOLING
11750 TECH GROWTH RATES
11760 DATA .082,.082,.082,.082,.033,.011,.011,.011,.054,0,.092,.056
11770 DATA .22,.0062,.036,.083
11780 WGT DISTRIBUTION PERCENTAGES
11790 DATA .091,.003,.140,.099,.053,.019,.029,.017,.151,.059
11800 DATA .021,.007,.061,.083,.070,.097
12000 'CREW SIZE CALCULATIONS
12110 C(1) = 1.5 - .000032 V(3) + .009172 SQR(V(3))
```

```
12120 C(2) = C(1):C(3) = C(1):C(4) = C(1)
12130 C(12) = C(1):C(5) = C(1)
12140 C(6) = 2.43:C(7) = 2.43:C(8) = 2.43
12150 C(9) = 2.43
12160 C(10) = -1.48 - .002833 * X2 + .814656 * LOG(X2)
12170 C(11) = C(10):C(14) = C(10)
12180 C(13)=2.18
12190 C(16) = 1.7893 + 9.871999E-04*SQR(X1)
12195 C(15) = (C(10) + C(16))/2
12199
12200 'MODULE TO INPUT MOD FACTOR FOR MAINTENANCE
12202 COLOR 9
12205 CLS:PRINT TAB(20) "SUBSYSTEM MH/MA CALIBRATION FACTOR"
12206 PRINT TAB(20) "CAL MH/MA = CAL FAC x COMPUTED-MH/MA"
12210 PRINT TAB(3) "NBR SUBSYSTEM": TAB(45) "CAL FACTOR"
12220 PRINT
12230 FOR I=1 TO 16
12235 IF OP$(n="DELETE" THEN GOTO 12250
12240 PRINT TAB(3) I;TAB(10) WBS$(I) TAB(45) CM(I)
12250 NEXT I
12260 PRINT: INPUT "ENTER NBR OF SUBSYSTEM TO BE CHANGED - 0 IF NONE": NBR
12270 IF NBR=0 THEN GOTO 12295
12280 INPUT "ENTER NEW FACTOR"; CM(NBR)
12290 GOTO 12205
12300 ' MENU TO DELETE A SUBSYSTEM
12305 CLS:PRINT TAB(20) "OPTION TO DELETE A SUBSYSTEM":PRINT
12310 PRINT TAB(3) "NBR SUBSYSTEM"; TAB(45) "OPTION"
12320 PRINT
12330 FOR I=1 TO 16
12335 IF OP$(I) = "DELETE" THEN COLOR 4 ELSE COLOR 3
12340 PRINT TAB(3) I;TAB(10) WBS$(I) TAB(45) OP$(I)
12350 NEXT I
12360 PRINT: INPUT "ENTER NBR OF SUBSYSTEM TO BE DELETED - 0 IF NONE":NBR
12365 IF NBR>16 THEN GOTO 12305
12370 IF NBR=0 THEN GOTO 12395
12380 OP$(NBR)="DELETE"
12390 GOTO 12305
12400 ' MENU TO DEFAULT ON TECH GROWTH FACTOR
12403 COLOR 13
12405 CLS:PRINT TAB(25) "OPTION TO USE DEFAULT RATE"
12406 PRINT TAB(20) "FOR ANNUAL RELIABILITY GROWTH FACTOR":PRINT
12410 PRINT TAB(3) "NBR SUBSYSTEM"; TAB(45) "ANNUAL GROWTH RATE"
12420 PRINT
12430 FOR I=1 TO 16
12435 IF OP$(I) = "DELETE" THEN GOTO 12450
12440 PRINT TAB(3) I;TAB(10) WBS$(I) TAB(45) TG(I)
12450 NEXT I
12460 PRINT:INPUT "ENTER NBR OF SUBSYSTEM TO BE CHANGED - 0 IF NONE":NBR
12465 IF NBR>16 THEN GOTO 12405
12470 IF NBR=0 THEN GOTO 12495
12480 \text{ TG(NBR)} = X(6)
12490 GOTO 12405
```