San Jose State University Department of Computer Engineering

CMPE 140 Lab Report

Lab 6 Report

Title Processor Design (2): Processor Hardware Validation

Semester Fall Date 03/17/2020

by

Name Thien Hoang SID 012555873
(typed) (typed)

Name Phat Le SID 012067866
(typed) (typed)

Lab Checkup Record

Week	Performed	Checked	Tasks	Tasks	Tasks Failed
	By	By	Successfully	Partially	or Not
	(signature)	(signature)	Completed*	Completed*	Performed*
1	# T#				

^{*} Detailed descriptions must be given in the report.

I. Introduction

The purpose of this lab is to get familiar with the processor validation using FPGA devices. Specifically, the primary task is to perform hardware validation of the 32-bit single-cycle MIPS processor from the previous lab by drawing the diagram of the FPGA environment setup as well as filling up the test log table of the sample code.

II. Design Methodology

Given the source code of the FPGA environment setup, the first task is to draw the top-level design diagram as shown in *Figure 1* below. According to the diagram, most of the outputs of the MIPS processor are connected through a multiplexer which is selected by actual switches to display in the 7-segments LEDs.

Figure 1: Top-level mips FPGA diagram

Another task is to record the log table from the same ASM source code from Assignment 2 and 5. Unlike the table from Assignment 2, the PC address value begins at 0 instead of 3000. Furthermore, the machine code at the address 18 and 20 are different from the previous

assignment as shown in *Table 1* below. Since the given FPGA environment does not design to directly read the data from the data memory, the test log table for this assignment will not include the memory content columns.

III. FPGA Validation

For the FPGA validation, the observation of the constraint file was necessary to navigate and label the input switches and buttons as well as the output LEDs. Specifically, according to *Figure 2*, the center button was used as the manual clock (clk), and the left button as the reset signal (rst). Switches 0 to 4 were used to select the read address from the register file. Switches 5 to 8 were used as a select signal of the multiplexer to decide the type output display to the LEDs. The selection is decoded in the way that switch 5 would decide the display of the lower higher half word of value. Switches 6 to 8 would respectively decide the output of signals such as disp_data, alu_out, instr, wd_dm, and pc_current. Since the system design was not able to display the value at a specific address from data memory, we could only view the value when the write signal was enabled (we_dm = 1), which is when the LED0 was lit. Overall, the FPGA validation process was successful as outputs matched the expected values from the simulation waveforms.

Figure 2: Digilent Basys 3 FPGA Board environment setup

IV. Conclusion

In sum, We are getting a lot of knowledge in this lab such as displaying multiple values on the 7-segment LEDs using Basys 3 FPGA switches as well as implementing a toggle using a switch so that it can display both lower and higher output values. This lab also helps understand the hierarchical design, and it also gives us a lot of valuable information to work in the next lab.

V. Successful Task

- We were able to create a block diagram that illustrates the environment validation setup.
- We were able to create a validation record table that verifies the execution of each instruction and compares it with the log file in Assignment 2.

VI. APPENDIX

mipstest.asm										
# mipst	est.a	sm								
# Test	the f	ollo	wing MIE	S instr	actions.					
# add,	sub,	and,	or, slt	, addi,	lw, sw, beq, j					
#	Assen	nbly		De		Address	Machine			
		ddi \$2, \$0, 5 # init:								
	addi	\$3,	\$0, 12	#	initialize \$3 =	12	3004	2003000c		
	addi	\$7,	\$3, -9	#	initialize \$7 =	3	3008	2067fff7		
	or	\$4,	\$7, \$2	#	\$4 <= 3 or 5 = 7	,	300c	00e22025		
	and	\$5,	\$3, \$4	#	\$5 <= 12 and 7 =	: 4	3010	00642824		
	add	\$5,	\$5, \$4	#	\$5 = 4 + 7 = 11		3014	00a42820		
	beq	\$5,	\$7, end	#	shouldn't be tak	en	3018	10a7000a		
	slt	\$4,	\$3, \$4	#	\$4 = 12 < 7 = 0		301c	0064202a		
	beq	\$4,	\$0, aro	und #	should be taken		3020	10800001		
	addi	\$5,	\$0, 0 #	shouldn	't execute	3024	200	50000		
around:	slt	\$4,	\$7, \$2	#	\$4 = 3 < 5 = 1		3028	00e2202a		
	add	\$7,	\$4, \$5	#	\$7 = 1 + 11 = 12	:	302c	00853820		
	sub	\$7,	\$7, \$2	#	\$7 = 12 - 5 = 7		3030	00e23822		
	sw	\$7,	68 (\$3)	#	[80] = 7		3034	ac670044		
	lw	\$2,	80(\$0)	#	\$2 = [80] = 7		3038	8c020050		
	j	end		#	should be taken		303c	08000c11		
	addi	\$2,	\$0, 1 #	shouldn	't execute	3040	200	20001		
end:	sw	\$2,	84(\$0)	#	write adr $84 = 7$,	3044	ac020054		
	j	j main		#	go back to begin	ning	3048	08000c00		

Table 1. Validation Record Table MIPS Processor

Adr	Expected	Actual	PC	Register					
	Machine Code	Machine Code		\$v0(\$2)	\$v1(\$3)	\$a0(\$4)	\$a1(\$5)	\$a3(\$7)	
00	2002005	0x2002005	00004	00000005	0	0	0	0	
04	2003000c	0x2003000c	00008	00000005	0000000c	0	0	0	
08	2067fff7	0x2067fff7	0000c	00000005	0000000c	0	0	00000003	
0c	00e22025	0x00e22025	00010	00000005	0000000c	00000007	0	00000003	
10	00642824	0x00642824	00014	00000005	0000000c	00000007	00000004	00000003	
14	00a42820	0x00a42820	00018	00000005	0000000c	00000007	0000000ь	00000003	
18	10a7000a	0x10e5000a	0001c	00000005	0000000c	00000007	0000000ь	00000003	
1c	0064202a	0x0064202a	00020	00000005	0000000c	00000000	0000000Ь	00000003	
20	10800001	0x10040001	00028	00000005	0000000c	00000000	0000000Ь	00000003	

24	20050000	0x20050000	SKIP/ NO EXECUTION						
28	00e2202a	0x00e2202a	0002c	00000005	0000000c	00000001	0000000Ь	00000003	
2c	00853820	0x00853820	00030	00000005	0000000c	00000001	0000000Ь	0000000c	
30	00e23822	0x00e23822	00034	00000005	0000000c	00000001	0000000Ь	00000007	
34	ac670044	0xac670044	00038	00000005	0000000c	00000001	0000000Ь	00000007	
38	8c020050	0x8c020050	0003c	00000007	0000000c	00000001	0000000Ь	00000007	
3c	08000c11	0x08000c11	00034	00000007	0000000c	00000001	0000000Ь	00000007	
40	20020001	0x20020001	SKIP/ NO EXECUTION						
44	ac020054	0xac020054	00048	0000007	0000000c	00000001	0000000Ь	00000007	
48	08000c00	0x08000c00	00000	0000007	0000000c	00000001	0000000Ь	0000007	