获得的答案

TM equality:

The TM equality is represented as follows:

$$EQ_{TM} = \{(\langle M \rangle, \langle N \rangle) \text{ where } M \text{ and } N \text{ are Turing machines and } L(M) = L(N)\}$$

$$EQ'_{TM} = \{(\langle M' \rangle, \langle N' \rangle) \text{ where } M' \text{ and } N' \text{ are Turing machines and } L(M') = L(N')\}$$

 $EQ_{TM}
sum_{m} EQ_{TM}$ means that EQ_{TM} is not mapping reducible to EQ_{TM} . This means that EQ_{TM} is not mapping reducible to its complement.

Proof:

In order prove that $EQ_{TM} \leq_m EQ_{TM}$, first prove that EQ_{TM} is not Turing-recognizable.

According to Theorem 5.28 and Corollary 5.29, $A \leq_m B$ only if both A and B are Turing recognizable or not Turing recognizable.

 $\overline{EQ_{TM}}$ is complement of EQ_{TM} . So, if EQ_{TM} is not Turing-recognizable then, $\overline{EQ_{TM}}$ is Turing-recognizable and vice-versa. This, result in not mapping reducibility between EQ_{TM} and $\overline{EQ_{TM}}$.

Example:

Assume A_{TM} is a Turing machine and is mapping is mapping reducible to $\overline{EQ_{TM}}$ that is $A_{TM} \leq_m \overline{EQ_{TM}}$

The function $f_2:A_{T\!M}\to \overline{EQ_{T\!M}}$ is defined as follows:

$$f_2:Oninput\langle M,w\rangle$$

Construct machine M₃: on any input, reject.

Construct machine M4: on any input x, run M on w.

If it accepts, accept x.

Output $\langle M_3, M_4 \rangle$

Explanation:

- The machine M_1 accepts nothing.
- ullet If ${\it M}$ accepts ${\it w}$, then ${\it M}_2$ accepts everything. Otherwise it accepts nothing.
- So, $\langle M, w \rangle \in A_{TM} \Leftrightarrow \langle M_3, M_4 \rangle \in \overline{EQ_{TM}}$ and f_2 is clearly computable. Thus, it is a reduction from A_{TM} to $\overline{EQ_{TM}}$
- So, EQ_{TM} is not Turing-recognizable.

Thus, if EQ_{TM} is not Turing-recognizable and $\overline{EQ_{TM}}$ is Turing-recognizable then EQ_{TM} is not mapping reducible to $\overline{EQ_{TM}}$. That is, $EQ_{TM} \not\searrow_m EQ_{TM}$

Hence, proved.