

The Count-Min Sketch

Last Time: Membership Queries

► You've collected 1 billion tweets.¹

- ► **Goal**: given the text of a new tweet, is it already in the data set?
- Data set is too large to fit into memory.
- Our solution: Bloom filters.

¹This is about two days of activity.

Today: Frequencies

You've collected 1 billion tweets.

▶ Goal: given the text of a tweet, how many times have we seen it?

- Data set is too large to fit into memory.
- ► Today's solution: the **Count-Min Sketch**.

Frequency Counts

- ► **Given:** a collection $X = \{x_1, x_2, ..., x_n\}$.
- Support:
 - .count(x): Number of times x appears.
 - .increment(x): Increment count of x

Simple Solution

Use hash tables: dictionary of counts.

```
class SetCounts:
   def __init__(self):
        self.counts = {}
   def increment(self. x):
        if x not in self.counts:
            self.counts[x] = 1
        else:
            self.counts[x] += 1
   def count(self, x):
        try:
            return self.counts[x]
        except KeyError:
            return o
```

Problem: Memory Usage

- Requires storing the keys.
- Example: store approximately 1 billion tweets (100 GB).
- Can't fit the dictionary in memory.

A Fix

- Why do we store all of the keys?
- ► To resolve collisions.

What if we ignore collisions?

Hashing Into Counters

0	1	2	3	4	5	6	7	8	9

S	hash(s)
"surf"	3
"sand"	8
"data"	5
"sun"	1
"beach"	5

```
"data"
"surf"
"surf"
"surf"
"beach"
"data"
"beach"
"surf"
"surf"
"surf"
```

Use a size c ($c \ll n$) array of integers (counts).

```
.increment(x):
arr[hash(x)] += 1
```

- .count(x):
 return arr[hash(x)]
- Can be wrong!

Biased Estimate

- ► The count returned from this approach is **biased high**.
- Can we do better?

- ▶ **Idea**: multiple hashing. Perform previous *k* times.
- ► This is the **count-min sketch**.

Count-Min Sketch

"data"

0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
							l		

			uata
S	hash_1(s)	hash_2(s)	"surf" "sand"
"surf"	3	7	"surf"
"sand"	8	7	"surf"
"data"	5	4	"beach"
"sun"	1	9	"data"
"beach"	5	6	"beach"
			"surf"
			"sun"

- Use k arrays of counts, each with own independent hash functions.
- .increment(x): Set
 arr_1[hash_1(x)] += 1,
 arr_2[hash_2(x)] += 1,
 ...,
 arr_k[hash_k(x)] += 1.
- .count(x): Return the
 minimum of
 arr_1[hash_1(x)],
 arr_2[hash_2(x)], ...,
 arr k[hash k(x)].

Returning the Minimum Count

- The count is still biased high.
- ▶ But by returning the minimum, bias is reduced.

Memory Usage

Each counter cell stores an integer (64 bits).

► Total size:

$$64 \times c \cdot k$$
 bits

c and k should be chosen to match prescribed level of error.

Designing a Count-Min Sketch

Error Rate

- Count-min sketch is a probabilistic data structure.
 - Returns the wrong answer sometimes.
- How wrong is it, probably?
- And how does this depend on c and k?

Notation

► We see *n* items, record frequencies in count-min sketch.

- For any item x, let f_x be its true frequency.
- ▶ $\hat{f}_{x}^{(i)} = \text{arr_i[hash_i(x)]}$ is estimated frequency of x according to row i. \hat{f}_{x} is aggregate estimate: $\hat{f}_{x} = \min_{i} \hat{f}_{x}^{(i)}.$
- ► Note: $\hat{f}_X^{(i)} \ge f_X$

Absolute and Relative Error

- Absolute error: $\hat{f}_x f_x$
 - ► This will grow as collection size $n \to \infty$.
- Relative error: $(\hat{f}_x f_x)/f_x$
 - ▶ We're more interested in this. Want it to be small.
 - ► If $f_{\nu} = \Theta(n)$, we want:

$$(\hat{f}_x - f_x)/n < \varepsilon \implies \hat{f}_x - f_x < \varepsilon n$$

Analyses

- We'll first look at the expected value of the estimate in a single row.
- Then, we'll compute the probability that the aggregate estimate is much larger than the true value.

Expected Value

Fix an object, x, and a row i.

$$\mathbb{E}[\hat{f}_{x}^{(i)}]$$
 = expected count in x's bin

=
$$f_x$$
 + $\mathbb{E}[\text{tot. frequency of colliding items } y \neq x]$

=
$$f_x + \sum_{y} f_y \cdot \mathbb{P}(\text{hash}(y) == \text{hash}(x))$$

$$= f_x + \frac{1}{c} \sum_{y \neq x} f_y \le f_x + \frac{n}{c}$$

Expected Value

- We found: $\mathbb{E}[\hat{f}_x^{(i)}] \le f_x + \frac{n}{c}$.
- ► Is this good or bad?
 - Suppose $f_x = p_x n$, where $p_x \in [0, 1]$.
 - ightharpoonup Absolute error is $\Theta(n)$.
 - ▶ But **relative** error is $\frac{1}{pc}$.
 - ► Independent of *n*!

Extreme Values

- ightharpoonup Goal: show unlikely for $\hat{f}_{x}^{(i)}$ to be much larger than f_{x}
- Let's find α s.t. $\mathbb{P}(\hat{f}_x^{(i)} f_x > \alpha) < 1/2$. Then:

$$\mathbb{E}[\hat{f}_{x}^{(i)}] \ge f_{x} + \alpha \cdot P(\hat{f}_{x}^{(i)} - f_{x} > \alpha)$$

$$= f_{x} + \alpha/2$$

We know $\mathbb{E}[\hat{f}_{x}^{(i)}] \le f_{x} + \frac{n}{c}$, so $\alpha < 2n/c$.

Extreme Values

- We've shown that $\mathbb{P}(\hat{f}_x^{(i)} f_x > 2n/c) < 1/2$.
- ► This is just for the *i*th row.
- Minimum is > 2n/c only if every row is > 2n/c.
- Probability of this happening:

$$\prod_{i=1}^{k} \mathbb{P}(\hat{f}_{x}^{(i)} - f_{x} > 2n/c) \leq \left(\frac{1}{2}\right)^{k}$$

Extreme Values

Let $\hat{f}_{\mathbf{y}}$ be the aggregate estimate. We have shown:

$$\mathbb{P}(\hat{f}_x - f_x > 2n/c) < \left(\frac{1}{2}\right)^k$$

- ▶ Want $\hat{f}_x f_x < \varepsilon$. Set $c = 2/\varepsilon$.
- ► To ensure that an over-estimate larger than ε occurs with probability δ , set

$$\left(\frac{1}{2}\right)^k = \delta \implies k = \log_2 \frac{1}{\delta}$$

Designing a Count-Min Sketch

- Pick your ε and δ : "I want overestimates to be smaller than εn at least 1δ percent of the time."
- ► Set number of buckets to $c = 2/\varepsilon$
- ► Set number of rows/hash functions to $k = \log_2 1/\delta$.

Example

- We have 1 billion tweets, want to count number of occurrences for each.
- Assume each tweet requires 800 bits.
- dict: around 100 gigabytes, assuming ≈ 1 billion unique

Example

Instead, use a count-min sketch. Say, ε = .001 and δ = .01.

$$rac{1}{\epsilon} c = 2/\epsilon = 2000$$

$$k = \log_2 1/\delta \approx 7.$$

Memory: 7 × 2000 × 64 bits = 112kilobytes

Example

Now supposed you have 42 quadrillion tweets.

dict: 4.2 exabytes

count-min sketch: 112 kilobytes

How?

- The relative error ε of a count-min sketch does not depend on n!
- ▶ The *n* is "hidden" inside the relative error:

$$\hat{f}_x - f_x < \varepsilon n$$

Count-Min Sketch and Bloom Filters

- ► The Count-Min Sketch and Bloom Filters are both probabilistic data structures.
- Both make use of multiple hashing.
- Why does CMS take much less memory?

Less Memory

- Why does a CMS use less memory than a Bloom filter?
- The problem it is solving is easier.
- Bloom filter: big difference between seeing an element once and never seeing it.
- Count-Min sketch: essentially no difference.