Class Tes	st No. 03	Monday 19 th	August 2019	Duration: 10 Minutes	Closed notes
Name:			_	Roll No	
Choose on	ıly one op	tion which is th	e most approp	oriate for questions 1 - 5.	
	•	unit step respons	se of a first ord	ler system, time constant is	the time at which
output rea					
` '		the final value			
` '		the final value			
		the final value			
(d)	~99% of	the final value			
2. Rise tim	e in step i	esponse of 2 nd o	rder system is	defined as time instant who	en output is
		50% of the final		3	1
<u>(b)</u>	same as the	ne final value for	the first time		
	a maximu				
(d)	95% of th	e final value for	the first time		
(a) (b)	$2t^2$	t signal is descri	ibed in time do	main as	
is suppose	_	ving the principl	_	ame time delay as the time	e delay in input, i
	time inva	•			
	superposi				
	linearity				
5. In the g (a)	eneral des d ⁿ⁻¹ y/dt ⁿ⁻¹	scription of n th o	rder dynamica	l system, the coefficient a_n .	. _I multiplies
	du/dt				
(c)	$d^{n-1}u/dt^{n-1}$				
<u>(d)</u>	dy/dt				
Give shor	t (1 - 2 lin	es) answer to th	e questions 6-	10.	
<i>(0</i>) <i>1</i>	•	e •,• •,•	1 1.4.		

6. Give the expression for unit initial condition response of the following system.

$$T\dot{c}(t) + c(t) = 0$$

$$c(t) = e^{-t/T}$$
..... 2 (PTO)

7. Why is the system response generation important for the design of control systems?

System response generation is important as it establishes the deficiency in the behaviour of the dynamical system which drives the design of control system.

8. What are the main reasons for employing the test signals the context of control analysis and design?

- (1) Normally, inputs are not fully known ahead of time and are also uncertain.
- (2) Test signals are simpler and are able to extract the relevant features.

9. Why are the responses of 1^{st} and 2^{nd} order systems important?

1st and 2nd order system responses have simple description and help us to synthesis the response of higher order systems through application of superposition.

10. Define the order for an LTI system.

Order of an LTI system is the highest degree of derivative of the output.