7

phases; and

AMENDMENT OF THE CLAIMS

The listing of claims below replaces all prior versions, and listings, of claims:

1	1.	(Cancelled)
1	2.	(Currently Amended) The method of claim [[1]] 7, wherein receiving a
2	data transact	ion request comprises receiving a request for loading data into the database.
1	3.	(Currently Amended) The method of claim [[1]] 7, wherein receiving a
2	data transact	ion request comprises receiving a request to perform a data transformation
3	operation upon the data in the database.	
1	4.	(Original) The method of claim 3, wherein receiving a request to perform
2	the data trans	sformation operation comprises receiving a request to perform one of a data
3	selection ope	eration, a data validation operation, a data cleansing operation, and a data
4	query operat	ion.
1	5.	(Cancelled)
1	6.	(Currently Amended) The method of claim [[5]] 7, comprising executing a
2	first parallel	task in a first number of phases and a second parallel task in a second,
3	different nun	nber of phases.
1	7.	(Currently Amended) The method of claim 5, further comprising A
2	method of pe	erforming parallel data operations upon data in a database, comprising:
3		receiving a data transaction request in a client system;
4		executing a plurality of multi-phase parallel tasks in response to the
5	request to pe	rform the data operations upon the data in the database, wherein executing
6	the multi-ph	ase parallel tasks comprises executing each of the parallel tasks in plural

comprises creating a job script.

2

8		each parallel task providing a code to indicate if the task is to be re-
9	invoked in th	ne next phase.
1	8.	(Original) The method of claim 7, wherein providing the code comprises
2	providing the	e code to a task coordinator.
1	9.	(Original) The method of claim 8, wherein the code comprises a first code
2	to indicate th	at the task coordinator is to invoke a component in the next phase.
1	10.	(Original) The method of claim 8, wherein the code comprises a second
2	code to indic	ate that the task is not to invoke a component in the next phase.
1	11.	(Currently Amended) The method of claim 1, further comprising: A
2	method of pe	erforming parallel data operations upon data in a database, comprising:
3		receiving a data transaction request in a client system;
4		executing a plurality of multi-phase parallel tasks in response to the
5	request to pe	rform the data operations upon the data in the database;
6		analyzing the transaction request;
7		creating a task plan in response to the transaction request;
8		implementing the task plan in a multi-phase organization;
9		executing a plurality of tasks in parallel to implement the task plan[[,]];
10		determining whether an additional phase is required to execute the tasks
11	based on cod	es returned by the tasks; and
12		scheduling an additional phase in response to the determination that an
13	additional ph	ase is required.
1	12.	(Original) The method of claim 11, wherein implementing the task plan

1	13.	(Previously Presented) The method of claim 11, wherein implementing the	
2	task plan comprises:		
3		translating the task plan;	
4		selecting a plurality of software components to implement the translated	
5	task plan;		
6		assigning a plurality of processes corresponding to the software	
7	components;	and	
8		creating a communications channel to allow for communications between	
9	the processes		
1	14.	(Previously Presented) The method of claim 13, wherein selecting the	
2		oftware components to implement the translated task plan comprises	
	•	plurality of software components to perform at least one of a data extraction	
3			
4	operation, a d	ata transformation operation, and a data loading operation.	
1	15.	(Currently Amended) An apparatus, comprising:	
2		a user interface;	
3		a processor coupled with the user interface, wherein the processor receives	
4	a data transac	tion request from the user interface; and	
5		a controller coupled with the processor, wherein the controller performs a	
6	plurality of ta	sks in parallel based upon instructions received from the processor, each	
7	task performe	ed in a plurality of phases,	
8		each task to provide a code to indicate whether the task is to be re-invoked	
9	in a next phas	<u>se</u> .	
1	16.	(Original) The apparatus of claim 15, wherein the processor generates a	
2	task plan in re	esponse to the data transaction request.	
1	17.	(Original) The apparatus of claim 16, wherein the controller comprises a	
2	task coordina	tor to execute the task plan.	

- 1 18. (Original) The apparatus of claim 16, wherein the controller further 2 comprises a plurality of components to implement the task plan in parallel.
- 1 19. (Original) The apparatus of claim 18, further comprising a communications interface for enabling communications between the components.
- 1 20. (Original) The apparatus of claim 18, wherein the controller further comprises a storage unit for storing methods and functions to execute the task plan.
- 1 21. (Previously Presented) The apparatus of claim 15, wherein the controller 2 is coupled with the processor, wherein the controller performs a number of tasks in 3 parallel based upon instructions received from the processor, each task performed in a 4 plurality of phases further comprises the controller performing the tasks in a sequence of 5 multiple process steps.
- 1 22. (Previously Presented) A system, comprising:
- a database system;
- a network; and

4

5

6

7

1

- a client system separate from the database system and coupled to the database system over the network, the client system to establish plural sessions with the database system to implement a plurality of data operations upon the database system in parallel.
 - 23. (Cancelled)
- 1 24. (Previously Presented) The system of claim 22, wherein the database 2 system is a parallel database system.

I	25.	(Currently Amended) The system of claim 22, wherein the chefit system
2	comprises:	
3		a processor to receive a data transaction request;
4		a plurality of operators to perform parallel data operations in response to
5	the data trans	action request;
6		an operator interface coupled to the operators, wherein the operator
7	interface allo	ws communications between the operators.
8		
1	26.	(Cancelled)
1	27.	(Cancelled)
1	28.	(Currently Amended) An article comprising at least one storage medium
2	containing in	structions that when executed cause a client system to:
3		receive a data transaction request; and
4		establish plural sessions with a database system over the network
5	connection in	response to the request; and
6		execute a plurality of parallel tasks in response to the request in the plura
7	sessions to pe	erform data operations upon the data in [[a]] the database system over a
8	network conn	nection, wherein the client system is separate from the database system.
1	29.	(Previously Presented) The article of claim 28, wherein the instructions
2	when execute	ed cause the client system to execute each of the parallel tasks in plural
3	phases.	
1	30.	(Previously Presented) The article of claim 29, wherein the instructions
2	when execute	ed cause the client system to execute a first parallel task in a first number of
3	phases and a	second parallel task in a second, different number of phases.

- (Original) The article of claim 29, wherein the instructions when executed 1 31. cause each parallel task to provide a code to indicate if the task is to be re-invoked in the 2 3 next phase. 1 32. (Original) The article of claim 31, wherein the instructions when executed cause the parallel task to provide the code to a task coordinator. 2 (Original) The article of claim 32, wherein the code comprises a first code 1 33. to indicate that the task coordinator is to invoke a component in the next phase. 2 1 (Original) The article of claim 32, wherein the code comprises a second 34. 2 code to indicate that the task is not to invoke the component in the next phase. 1 35. (Cancelled) 1 36. (Cancelled) 37. (Currently Amended) The method of claim [[36]] 38, comprising 1 2 executing a first parallel task in a first number of phases and a second parallel task in a 3 second, different number of phases. 38. (Currently Amended) The method of claim 36, further comprising A 1 method of performing parallel data operations upon data in a database, comprising: 2 3 receiving a data transaction request; and executing a plurality of synchronized multi-phase parallel tasks in 4
- response to the request to perform the data operations upon the data in the database,

 wherein executing the multi-phase parallel tasks comprises executing each

 of the parallel tasks in phases; and
- 8 each parallel task providing a code to indicate if the task is to be re-9 invoked in the next phase.

1	39.	(Original) The method of claim 38, wherein providing the code comprises	
2	providing the	code to a task coordinator.	
1	40.	(Original) The method of claim 39, wherein the code comprises a first	
2		ate that the task coordinator is to invoke a component in the next phase.	
1	41.	(Original) The method of claim 39, wherein the code comprises a second	
2	code to indica	ate that the task is not to invoke a component in the next phase.	
1	42.	(Previously Presented) The method of claim 39, wherein the code	
2	synchronizes the operation of one or more components.		
1	43.	(Currently Amended) The method of claim [[1]] 7, wherein executing the	
2	plurality of multi-phase parallel tasks comprises:		
3		executing at least first and second software components in parallel;	
4		each of the first and second software components performing one or more	
5	operations in	a first phase;	
6		waiting for a message comprising the code from each of the first and	
7	second software components prior to proceeding to a second phase; and		
8		each of the first and second software components performing one or more	
9	operations in	the second phase.	
1	44.	(Previously Presented) The method of claim 43, further comprising:	
2		waiting for another message from each of the first and second software	
3	components p	prior to proceeding to a third phase;	
4		the first software component performing one or more operations in the	
5	third phase; a	nd	
6		the second software component being idle in the third phase.	

1	45.	(Previously Presented) The method of claim 44, further comprising:
2		receiving a first message from the first software component indicating that
3	the first softw	vare component is to be re-invoked in the third phase; and
4		receiving a second message from the second software component
5	indicating tha	at the second component is not to be re-invoked in the third phase.
1	46.	(Previously Presented) The apparatus of claim 15, wherein the controller
2	comprises at	least first and second software components executable in parallel to perform
3	the plurality of	of tasks;
4		wherein each of the first and second software components is executable to
5	perform one or more operations in a first phase;	
6		the controller to wait for a message comprising the code from each of the
7	first and seco	nd software components prior to proceeding to a second phase; and
8		wherein each of the first and second software components is executable to
9	perform one	or more operations in the second phase.
1	47.	(Previously Presented) The apparatus of claim 46, wherein the controller
2	is adapted to	further wait for another message from each of the first and second
3	software com	ponents prior to proceeding to a third phase;
4		wherein the first software component is executable to perform one or more
5	operations in	the third phase, and the second software component is idle in the third
6	phase.	
1	48.	(Previously Presented) The apparatus of claim 47, wherein the controller
2	is adapted to	further:
3		receive a first message from the first software component indicating that
4	the first softw	vare component is to be re-invoked in the third phase; and
5		receive a second message from the second software component indicating
6	that the secor	nd component is not to be re-invoked in the third phase.

1	49.	(Previously Presented) The system of claim 22, wherein the client system
2	is adapted to e	execute plural tasks in parallel, each of the plural tasks executable in plural
3	phases.	
1	50.	(Previously Presented) The article of claim 29, wherein executing each of
2		sks in plural phases comprises:
3	the paramer tas	executing at least first and second software components in parallel;
4		each of the first and second software components performing one or more
5	operations in a	-
6		waiting for a message from each of the first and second software
7	components p	rior to proceeding to a second phase; and
8		each of the first and second software components performing one or more
9	operations in t	the second phase.
1	51.	(Currently Amended) The article of claim [[51]] 50, wherein the
2	instructions w	hen executed cause the client system to further:
3		wait for another message from each of the first and second software
4	components p	rior to proceeding to a third phase;
5		cause the first software component to perform one or more operations in
6	the third phase	e; and
7		cause the second software component to be idle in the third phase.
1	52.	(Previously Presented) The article of claim 51, wherein the instructions
2	when executed	d cause the client system to further:
3		receive a first message from the first software component indicating that
4	the first softwa	are component is to be re-invoked in the third phase; and
5		receive a second message from the second software component indicating
6	that the second	d component is not to be re-invoked in the third phase.
-		r · · · · · · · · · · · · · · · · · · ·