More Combinatorics &

probabilities for finite outcome spaces with uniform distributions.

More about n choose k = C(n,k)

The Combinatorial function C(n,r): The number of ways to choose a subset of size r from a set of size n.

$$C(n,r) = {n \choose r} = \frac{n!}{r!(n-r)!}$$

Boundry conditions

$$n \ge 0, \ 0 \le r \le n,$$

$$\left(\begin{array}{c} n \\ 0 \end{array} \right) = \left(\begin{array}{c} n \\ n \end{array} \right) = 1$$

Binomial Expansion

$$(a+b)^{2} = (a+b)(a+b) = aa + ab + ba + bb$$

$$= a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = (a+b)(a+b)(a+b) = aaa + aab + aba + abb + baa + bab + bab + bab + bba + bbb = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{100} = ?$$

$$(a + b)^{100} = ?$$

Binomial Expansion using the combination function

$$(a + b)^3 = (a + b)(a + b)(a + b) =$$

= $aaa + aab + aba + abb + baa + bab + bba + bbb =$
= $a^3 + 3a^2b + 3ab^2 + b^3$

$$(a+b)^3 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} a^3 + \begin{pmatrix} 3 \\ 1 \end{pmatrix} a^2 b + \begin{pmatrix} 3 \\ 2 \end{pmatrix} ab^2 + \begin{pmatrix} 3 \\ 3 \end{pmatrix} b^3$$

$$(a+b)^n = \sum_{i=0}^n \begin{pmatrix} n \\ i \end{pmatrix} a^{n-i}b^i$$

$$C \times p \text{ and } \text{ by}$$

Inductive computation of C(n,r)

number of different patterns of placing r red balls and n-r blue balls in n bins

Genral Formula: C(n,r)=C(n-1,r)+C(n-1,r-1)

Pascal Triangle

Calculating the binomial coefficients using the recursion

$$c(n,r)=c(n-1,r)+c(n-1,r-1)$$

and the boundary conditions
 $c(n,0)=c(n,n)=1$

C(0,0)

The Pigeon Hole Principle

Pigeon-Hole principle

9 holes

10 pigeons

The Pigeon-Hole Principle / Variation

There are 3 colors of marbles. How many marbles do we need in order to guarantee that there is at least one color for which we have at least 6 marbles?

Find out what is the maximal number of marbles you can have without having 6 marbles of the same color

The birthday paradox or

What is the chance that at least two people in a room with n people have the same birthday

The Birthday Paradox

How many people do you need in the room so that at least two of them have the same birthday?

For sure?

With probability at least 1/2?
Assume all days have the same probability (1/365)

K = the number of people in the room.

We want to calculate P(A) for the event A={K birthdays such that at least two are the same}

$$P(A) = \frac{|A|}{|\Omega|}$$
 $\Omega = \{1,...,365\}^K$ $|\Omega| = 365^K$

•			

The Birthday Paradox

How many people do you need in the room so that at least two of them have the same birthday?

For sure?
$$365+1=366$$

With probability at least 1/2?

Assume all days have the same probability (1/365)

K = the number of people in the room.

We want to calculate P(A) for the event A={K birthdays such that at least two are the same}

$$P(A) = \frac{|A|}{|\Omega|} \qquad \Omega = \{1, ..., 365\}^K \qquad |\Omega| = 365^K$$

How many people do you need in the room so that at least two of them have the same birthday?

$$A = \left\{ (i_1, i_2, \dots, i_K), 1 \le i_j \le 365 \middle| \exists 1 \le j_1 < j_2 \le K, i_{j_1} = i_{j_2} \right\}$$

Consider the complement,

No two people have the same birthday

$$\underbrace{A^{c} \doteq \{x \in \Omega, \ x \notin A\}}_{A^{c} = \Omega - A}$$

$$A^{c} = \left\{ (i_{1}, i_{2}, ..., i_{K}), 1 \le i_{j} \le 365 \middle| \forall 1 \le j_{1} < j_{2} \le K, i_{j_{1}} \ne i_{j_{2}} \right\}$$

A sequence of K birthdates and no 2 have the same birthday -> choosing for each of K people a different birthday. Order is important.

important.
$$|A^c| = P(365, K) = \frac{365!}{265 \cdot 10^{-10}}$$

$$|\Omega| = 365^{K} \qquad |A^{c}| = P(365, K) = \frac{365!}{(365 - K)!}$$

$$P(A) = \frac{|A|}{|\Omega|} = \frac{|\Omega| - |A^{c}|}{|\Omega|} = 1 - \frac{|A^{c}|}{|\Omega|} = 1 - P(A^{c})$$

$$= 1 - \frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \dots \times \frac{365 - K + 1}{365}$$

This is the time to take out the computer !!

num: probability

<u> IIIIII .</u>		рговавшу
1	:	0.0000000
2	:	0.00273973
3	:	0.00820417
4	:	0.01635591
5	:	0.02713557
6	:	0.04046248
7	:	0.05623570
8	:	0.07433529
9	:	0.09462383
10	:	0.11694818
11	:	0.14114138
12	:	0.16702479
13	:	0.19441028
14	:	0.22310251
15	:	0.25290132
16	:	0.28360401
17	:	0.31500767
18	:	0.34691142
19	:	0.37911853
20	:	0.41143838
21	:	0.44368834
22	:	0.47569531

: 0.50729723 : 0.53834426 : 0.97037358

100 : 0.99999969

Number of people in the room

A few excercises

How many strings contain 3 letters and two digits?

(digits and letters can repeat and there is no restrictions on their order)

Number of ways to combine 3 letters and 2 digits: C(5,2)

Set of possible 3 letter tuples = $\{A,...,Z\}^3$ The size of this set is $26*26*26 = 26^3$

Set of 2 digits, size of this set is 10*10=100

Putting it all together: (5,2)×2

$$C(5,2) \times 26 \times 10^{2}$$

What is the number of strings that start with a digit followed by 4 letters, followed by 2 digits?

Answer: this is a product set:

10*26*26*26*26*10*10 = 26^4*10^3

What is the probability that a random word of length 4 with distinct letters has the letters in increasing alphabetical order?

Outcome space

 $\Omega=$ the set of words with 4 distinct letters

$$|\Omega| = 26 \times 25 \times 24 \times 23 = P(26,4)$$

Event

A=the set of words with 4 distinct letters <u>in increasing order</u>

$$|A| = \frac{P(26,4)}{4!} = C(26,4)$$

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\left(\frac{P(26,4)}{4!}\right)}{P(26,4)} = \frac{1}{4!}$$

How many ways to sit 3 out of 7 kids on a marry-go-round with three identical seats?

Number of ways of choosing 3 out of 7 kids when the order matters

P(7,3)

The marry-go-round can be rotated to 3 indistinguishable positions:

P(7,3)/3

How many ways to divide 10 cookies among three children? (the cookies are identical and cannot be broken)

We have one fewer vertical line than children C(10+3-1,3-1) = C(10+3-1,10)

$$C(10+3-1,3-1) = C(10+3-1,10)$$

How many ways to split 10 cookies among 3 kids if each kid has to get at least 2 cookies?

First, give each kid 2 cookies, 4 cookies are left.

Second, divide the remaining cookies among the 3 kids.

$$C(4+3-1,3-1) = C(4+3-1,4)$$

You have a shelf with 24 books on it. You can pick any 3 books but no two picked books can be right next to each other. How many choices do you have?

Red rectangle: chosen book Cyan rectangle: "buffer" book

Equivalent to choosing 3 out of 24-2=22 books: If we care about order of chosen books: P(24-2,3) If we don't care about order of chosen books: C(24-2,3)

If you choose 3 out of 24 books at random, what is the probability that at least 2 would be next to each other?

Size of sample space (Omega): number of way to choose 3 out of 24 books: If we care about order of chosen books: P(24,3) If we don't care about order of chosen books: C(24,3)

$$P(A) = 1 - \frac{|A|}{|\Omega|} = 1 - \frac{P(22,3)}{P(24,3)} = 1 - \frac{C(22,3)}{C(24,3)}$$

For Thursday:

- 1. Review class (slides will be on web site in 1 hour)
- 2. Read chapter 4 up to (and not including) 4.5
- 3. You should now be able to finish the HW.

Next time: Poker and non-uniform distributions.