Première partie

Mesures

1 Définitions générales

Définition:

Soit E un ensemble. On appelle tribu de parties de E toute famille B de parties de E vérifiant :

- 1. \emptyset et $E \in B$
- 2. B est stable par union dénombrable : $\forall (A_n)_n \subset B$, suite de parties de $B, \bigcup_n A_n \in B$
- 3. B est stable par complémentaire : $A \in B \Rightarrow A^c \in B$

Définition:

Soit ε une famille des parties de E. On note $\sigma(\varepsilon)$ plus petite tribu des parties de E qui contient ε , ie

- 1. $\sigma(\varepsilon)$ est une tribu
- 2. $\varepsilon \subset \sigma(\varepsilon); \forall A \in \varepsilon, A \in \sigma(\varepsilon)$
- 3. $\forall \mathcal{B}$, tribu des parties de E, $\varepsilon \subset \mathcal{B} \Rightarrow \sigma(\varepsilon) \subset \mathcal{B}$

On dit que $\sigma(\varepsilon)$ est la tribu engendrée par ε On démontre par ailleurs que $\mathcal{B}_{\mathbb{R}} \neq P(\mathbb{R})$ (l'ensemble des parties de \mathbb{R}).

Propriété 1.1:

Une tribu est stable par intersection dénombrable

Démonstration:

Soit $(A_n)_n \in B$.

$$\bigcap_{n} A_n = \left(\bigcup_{n} A_n^c\right)^c$$

Et comme une tribu est stable par union et complémentaire, on a le résultat attendu.

Théorème 1.1:

$$\sigma(\varepsilon) = \sigma(F) \Leftrightarrow \begin{array}{ll} \varepsilon \subset \sigma(F) \\ F \subset \sigma(\varepsilon) \end{array}$$

Définition:

On appelle tribu borelienne de E (notée \mathcal{B}_E) la tribu engendrée par la famille des ouverts de E.

 $\mathcal{B}_{\mathbb{R}}$ est la tribu engendrée par la famille des ouverts de \mathbb{R} .

Propriété 1.2:

On suppose que $\mathcal{B} = \sigma(\varepsilon)$ et que ε vérifie :

- ε est stable par intersection finie
- $-\exists (\varepsilon_n)_n \subset \varepsilon; \varepsilon = \bigcup_n \varepsilon_n$

On a alors : si $\forall A \in \varepsilon, \mu(A) = \nu(A) < +\infty$ alors $\mu = \nu$

Définition:

On appelle espace mesurable tout couple (E,B) où E est un ensemble et B une tribu des parties de E. Les éléments de B s'appellent les parties mesurables de E.

2 Mesure et proriétés

Définition:

Soit (E,B) un espace mesurable. On appelle mesure sur (E,B) toute application $\mu: B \to [0, +\infty]$ vérifiant :

- 1. $\mu(\emptyset) = 0$
- 2. La σ -additivité : $\forall (A_n)_n$, famille dénombrable $\subset B$ tel que $\forall n \neq m, A_n \cap A_m = \emptyset$, on a

$$\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$$

Définition:

On appelle espace mesuré tout triplet (E,B,μ) où (E,B) est un espace mesurable et μ une mesure sur (E,B)

Définition:

On appelle mesure de Lebesgue :

$$\lambda_n ([a_1, b_1] \times ... \times [a_n, b_n]) = \prod_{k=1}^n (b_k - a_k)$$

Théorème 2.1:

Soit $F : \mathbb{R} \to \mathbb{R}$ croissante et continue à droite.

$$\exists ! \mu_F; \mu_F([a, b]) = F(b) - F(a)$$

F est la fonction de répartition de μ

Propriété 2.1:

Il existe plusieurs propriétés pour les mesures. Entre autres :

- 1. Si $\mu(A \cap B) < +\infty$, alors $\mu(A \cup B) = \mu(A) + \mu(A) \mu(A \cap B)$
- 2. Si $A \subset B$, alors $\mu(A) \leq \mu(B)$
- 3. De plus, si $\mu(A) < +\infty$, alors $\mu(B \setminus A) = \mu(B) \mu(A)$
- 4. Si $(A_n)_n$ suite croissante, alors $\mu(\bigcup_n A_n) = \lim_{n \to +\infty} \mu(A_n) = \sup_n \mu(A_n)$
- 5. Si $(A_n)_n$ suite décroissante et $\exists n; \mu(B_n) < +\infty$, alors $\mu(\bigcap_n A_n) = \lim_{n \to +\infty} \mu(A_n) = \inf_n \mu(A_n)$

3 Applications mesurables

Soient (E,\mathcal{B}) et (F,\mathcal{C}) deux espaces mesurables et $f:E\to F$ une application.

Définition:

On dit que f est mesurable ssi $\forall C \in \mathcal{C}, f^{-1}(C) \in \mathcal{B}$

Théorème 3.1:

Supposons que $C = \sigma(\varepsilon)$ (ε famille quelconque des parties de F). On a équivalence entre :

- f est mesurable
- $\forall C \in \varepsilon, f^{-1}(C) \in B$

Corollaire 3.1:

E et F sont des espaces métriques munis de leur tribu bolérienne. Si f continue, alors f mesurable.

Démonstration:

 $\varepsilon = O_F$

f continu $\Leftrightarrow \forall C \in O_F, f^{-1}(C) \in \mathcal{B}_E$

Propriété 3.1:

La composée de 2 applications mesurables est mesurable.

4 Cas des applications à valeurs réelles

On entend par là les applications à valeur dans $\bar{\mathbb{R}}$

Corollaire 4.1:

Soit $f:(E,\mathcal{B})\to (\bar{\mathbb{R}},B_{\bar{\mathbb{R}}})$. f est mesurable ssi $\forall [c,d],f^{-1}([c,d])\in\mathcal{B}$

Corollaire 4.2:

$$f \ est \ mesurable \quad \Leftrightarrow \quad \forall a \in \mathbb{R}, \{x|f(x) \le a\} \in \mathcal{B}$$

$$\Leftrightarrow \quad \forall a \in \mathbb{R}, \{x|f(x) \ge a\} \in \mathcal{B}$$

$$\Leftrightarrow \quad \forall a \le b, \{x|a < f(x) \le b\} \in \mathcal{B}$$

Théorème fondamental:

Soit $(f_n)_n$ une suite d'application mesurables à valeurs réelles.

- $-\sup_n f_n$ et $\inf_n f_n$ sont mesurables
- Si $f_n \xrightarrow{CS} f$ alors f est mesurable

 $\overline{\lim x_n} = \lim_k (\sup_{n \ge k} x_n) = \inf_k (\sup_{n \ge k} x_n)$ $\underline{\lim x_n} = \lim_k (\inf_{n \ge k} x_n) = \sup_k (\inf_{n \ge k} x_n)$

Fonctions simples:

Soit (E,B) un espace mesurable. On appelle fonction simple (sous-entendu mesurable) tout application mesurable à valeurs réelles ne prenant qu'un nombre fini de valeurs.

Fonction indicatrice

Elles ne prennent que 2 valeurs : 0 ou 1 Si $A = \{x | f(x) = 1\}, f(x) = \begin{cases} 1 \text{ si } x \in A \\ 0 \text{ sinon} \end{cases}$ 1_A mesurable \Leftrightarrow A mesurable.

Ecriture canonique d'une fonction simple

Soit f une fonction simple. Soient $x_1,...,x_n$ les valeurs qu'elle peut prendre. Soit $A_i = \{x | f(x) = x_i\}$ qu'on note $\{f = x_i\}$ — $A_i = f^{-1}(\{x_i\}) \in \mathcal{B}$ — Les $(A_i)_{i=1..n}$ forment une partition de E — $f = \sum_{i=1}^n x_i 1_{\{f = x_i\}}$ s'appelle l'écriture canonique

Théorème 4.1

Tout fonction mesurable (à valeur dans $[0, +\infty]$) est limite simple d'une suite croissante de fonctions simples positives.

Deuxième partie

Intégration

1 Intégrations de fonctions simples positives

Rappel:

Soit ϕ une telle fonction. $\phi: E \to [0, +\infty]$.

Soient $X_1, ..., X_n$ les valeurs distinctes qu'elle peut prendre.

$$\phi = \sum_{k=1}^{n} X_k 1_{\{\phi = X_k\}}$$

Sachant que $\{\phi = X_k\} = \{x \in E | \phi(x) = X_k\} = \phi^{-1}(X_k)$

Définition:

On appelle intégrale de ϕ par rapport à μ le nombre positif (fini ou non) noté $\int \phi d\mu$ égal à

$$\int \phi d\mu = \sum_{k=1}^{n} X_k \mu(\{\phi = X_k\})$$

Propriété 1.1:

- 1. $\int \phi d\mu \geq 0$
- 2. $\int \alpha \phi d\mu = \alpha \int \phi d\mu$
- 3. $\int (\phi + \psi) d\mu = \int \phi d\mu + \int \psi d\mu$
- 4. $\phi \leq \psi \Rightarrow \int \phi d\mu \leq \int \psi d\mu$

Démonstration (du 3 et du 4):

3) Si ψ prend les valeurs $y_1, ..., y_m$, alors $\phi + \psi$ prend les valeurs $(X_k + y_l)_{\substack{k=1...n \ l=1..m}}$

$$\phi + \psi = \sum_{k,l} (X_k + y_l) 1_{\{\phi = X_k, \psi = y_l\}}$$

$$\int (\phi + \psi)d\mu = \sum_{k,l} (X_k + y_l)\mu(\phi = X_k, \psi = y_l)
= \sum_{k=1}^n X_k \left(\sum_{l=1}^m \mu(\phi = X_k, \psi = y_l) \right) + \sum_{l=1}^m y_l \left(\sum_{k=1}^n \mu(\phi = X_k, \psi = y_l) \right)
= \sum_{k=1}^n X_k \mu(\phi = X_k) + \sum_{l=1}^m y_l \mu(\psi = y_l)
= \int \phi d\mu + \int \psi d\mu$$

Remarque : Cela permet de donner une autre définition de l'intégrale : Si $\phi=\sum_{i=1}^n X_i 1_{A_i} \ (A_i\in\mathcal{B})$ alors $\int \phi d\mu=\sum_{i=1}^n X_i \mu(A_i)$

$$\int \phi d\mu = \sum_{i=1}^{n} X_{i} \int 1_{A_{i}} d\mu = \sum_{i=1}^{n} X_{i} \mu(A_{i})$$

$$4) \psi = \phi + (\psi - \phi)$$

$$\int \psi d\mu = \int \psi d\mu + \int (\psi - \phi) d\mu \ge \int \psi d\mu$$

Définition:

Si $B \in \mathcal{B}$ on pose

$$\int_{B} \phi d\mu = \int \phi 1_{B} d\mu$$

Théorème 1.1:

L'application $\nu: B \in \mathcal{B} \to \nu(B) \in [0, +\infty]$ définie par $\nu(B) = \int_B \phi d\mu$ est une mesure.

2 Intégrations des fonctions mesurables positives

Soit $f: E \to [0, +\infty]$ mesurable.

Définition:

On pose

$$\int f d\mu = \sup_{\substack{\phi \text{ simple positive} \\ \phi \le f}} \int \phi d\mu$$

Propriété 2.1 :
$$-0 \le f \le g \Rightarrow \int f d\mu \le \int g d\mu$$
 $-\forall c \ge 0, \ \int c \ f d\mu = c \int f d\mu$

Théorème fondamental, ou théorème de la convergence monotone de Lebesgue, ou de Beppo-Levi

Soit $(f_n)_n$ une suite croissante de fonctions mesurables positives et f sa limite. Alors f est mesurable et

$$\int f_n d\mu \xrightarrow[n \to +\infty]{} \int f d\mu$$

Corollaire de B-L

Si $(f_n)_n$ est une suite de fonctions mesurables positives, alors :

$$\int \sum_{n} f_n d\mu = \sum_{n} \int f_n d\mu$$

Corollaire 2.1:

Soit f mesurable positive. L'application

$$\begin{array}{ccc} \nu: \mathcal{B} & \to & [0,+\infty] \\ B & \mapsto & \int_B f d\mu = \int f 1_B d\mu \end{array}$$

est une mesure. On l'appelle la mesure de densité f
 par rapport à μ

Démonstration:

$$\nu(B) \ge 0
\nu(\emptyset) = \int f 1_{\emptyset} d\mu = 0$$

Si $B = \bigcup_n B_n$ avec $\forall n, B_n \in \mathcal{B}$ et $\forall n \neq m, B_n \cap B_m = \emptyset$, alors $1_B = \sum_n 1_{B_n}$.

$$\nu(B) = \int f(\sum_{n} 1_{B_{n}}) d\mu$$

$$= \int \sum_{n} f 1_{B_{n}} d\mu$$

$$= \sum_{n} \int f 1_{B_{n}} d\mu$$

$$= \sum_{n} \nu(B_{n})$$

Théorème de Fatou

Soit $(f_n)_n$ une suite (quelconque) de fonctions mesurables positives. Alors :

$$\int \lim_{n} \inf f_{n} d\mu \le \lim_{n} \inf \int f_{n} d\mu$$

Propriété vraie μ -preque partout

Soit P(x) une propriété relative aux éléments $x \in E$. On dit qu'elle est vraie μ -pp ssi

$$\mu(\{x \in E/P(x) \ est \ fausse\}) = 0$$

Théorème 2.1:

S $\mu(B)=0$, alors $\forall f$ mesurable,

$$\int_{B} f d\mu = 0$$

Conséquence : On peut remplacer le théorème de B-L par :

Si $0 \le f_n \nearrow f$ μ -pp alors

$$\int f_n d\mu \nearrow \int f d\mu$$

3 Extension aux fonctions à valeurs réelles ou complexes :

Définition:

Soit f une fonction mesurable à valeurs réelles ou complexes. On dit que f est μ -intégrable si

$$\int |f|d\mu < +\infty$$

On note $\mathcal{L}^1(\mu)$ l'ensemble des fonctions μ -mesurable. C'est un espace vectoriel sur \mathbb{C} . Si $f,g \in \mathcal{L}^1(\mu)$,

$$\int |f+g|d\mu \leq \int |f|+|g|d\mu < +\infty$$

$$\forall \lambda \in \mathbb{C}, \ \int |\lambda f|d\mu = |\lambda| \int |f|d\mu < +\infty$$

Intégration de fonctions intégrables :

Soit $f \in \mathcal{L}^1(\mu)$. Si f réelle, on a f= f^+ – f^- avec f^+ = sup(f,0) et f^- = – inf(f,0). $|f| = f^+ + f^-$. On pose

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

De même, si f
 complexe, f=Re(f) +i Im(f), on a $|\text{Re}(f)| \le |f|$ et $|\text{Im}(f)| \le |f|$ et

$$\int f d\mu = \int Re(f) d\mu + i \int Im(f) d\mu$$

On voit facilement que l'application

$$\begin{array}{ccc} \mathcal{L}^1(\mu) & \to & \mathbb{C} \\ & f & \mapsto & \int f d\mu \end{array}$$

est linéaire.

Théorème 3.1:

Si $f \in \mathcal{L}^1(\mu)$,

$$\left| \int f d\mu \right| \le \int |f| d\mu$$

Démonstration:

$$\int f d\mu = e^{i\theta} \left| \int f d\mu \right|$$

$$\begin{split} \left| \int f d\mu \right| &= e^{-i\theta} \int f d\mu \\ &= \int e^{-i\theta} f d\mu \in \mathbb{R}^+ \\ &= \int Re(e^{-i\theta} f) d\mu + i \int \underbrace{Im(e^{-i\theta} f)}_{=0} d\mu \\ &\leq \int |e^{-i\theta} f| d\mu \\ &\leq \int |f| d\mu \end{split}$$

Théorème 3.2 (de la convergence dominée de Lebesgue) :

Soit $(f_n)_n$ une suite de fonctions mesurables à valeurs réelles ou complexes. Si

$$\begin{array}{ccc}
 & \xrightarrow{\mu pp} & f \\
 & \exists g \in \mathcal{L}^1(\mu); \forall n, |f_n| \leq g \ \mu pp \\
 & \text{alors } f_n \text{ et } f \in \mathcal{L}^1(\mu) \text{ et}
\end{array}$$

$$\int f_n d\mu \xrightarrow[n \to +\infty]{} \int f d\mu$$

Corollaire 3.1 (pour les séries):

Soit $(f_n)_n$ une suite de fonctions mesurables à valeurs réelles ou complexes, tel que $\sum_n f_n(x)$ converge

pour μ -presque tout x.

S'il existe $g \in \mathcal{L}^1(\mu)$ tel que $\forall n, |\sum_{k \leq n} f_n| \leq g \ \mu pp$, alors on a $\sum_n f_n \in \mathcal{L}^1(\mu)$ et

$$\int \sum_{n} f_n d\mu = \sum_{n} \int f_n d\mu$$

Démonstration:

$$h_n = \sum_{k \le n} f_k$$

$$|h_n| \le g \ \mu pp, h_n \to h = \sum f_n \ \mu pp$$

donc $h \in \mathcal{L}^1(\mu)$ et :

$$\int f_n d\mu \to \int h d\mu = \int \sum_n f_n d\mu$$

Mais

$$\int h_n d\mu = \sum_{k < n} \int f_k d\mu \to \sum_n \int f_n d\mu$$

D'où le corollaire.

Lemme:

Soit $f \geq 0$ mesurable. Si $\int f d\mu < +\infty$ alors $f(x) < +\infty$ μpp

Démonstration:

$$\begin{split} +\infty\mu(\{f=+\infty\}) &= \int_{\{f=+\infty\}} +\infty d\mu \\ &= \int_{\{f=+\infty\}} f d\mu \\ &< \int f d\mu \\ &< +\infty \end{split}$$

Donc $\mu(\{f=+\infty\})=0$

Corollaire 3.2:

Soit $(f_n)_n$ une suite de fonctions mesurables à valeurs réelles ou complexes. Si $\sum_n \int |f_n| d\mu < +\infty$ alors

1. $\sum_{n} f_n(x)$ est absoluement convergente pour μ -presque tout x

2.

$$\sum f_n \in \mathcal{L}^1(\mu)$$

3.

$$\int \sum_{n} f_n d\mu = \sum_{n} \int f_n d\mu$$

4 L'espace L^p

On remarque bien vite que pour des fonctions égales μ pp, leurs intégrales sont toujours égales. On appelle $L^1(\mu)$ l'ensemble $\mathcal{L}^1(\mu)$ mais dans lequel on identifie deux fonctions égales μ pp.

 $L^{1}(\mu)$ est un espace vectoriel, il admet une mesure :

$$||f||_1 = \int |f| d\mu$$

$$f_n \xrightarrow{L_1} f \Leftrightarrow ||f_n - f||_1 \to 0 \text{ is } \int |f_n - f| d\mu \to 0$$

 $\forall 1 \leq p < +\infty$

On définit $L^p(\mu)$ par l'ensemble des fonctions mesurables (à valeurs dans \mathbb{C}) tel que $\int |f|^p d\mu < +\infty$ (dans lequel on identifie 2 fonctions égales μpp).

On a une norme sur L^p tel que

$$||f||_p = \left(\int |f|^p d\mu\right)^{\frac{1}{p}}$$

Espace $L^{\infty}(\mu)$

C'est l'ensemble des fonctions mesurables μpp bornées dans lequel on identifie 2 fonctions égales μpp .

$$\exists c < +\infty \ tq \ \mu(\{|f| > c\}) = 0$$

On définit

$$||f||_{\infty} = \inf\{c|\mu(\{|f| > c\}) = 0\}$$

qui est une norme sur L^{∞}

Théorème 4.1 (Inégalité de Hölder) :

Soient p et $q \ge 1$ avec $\frac{1}{p} + \frac{1}{q} = 1$ (q est l'exposant conjugué de p). On a alors $\forall f, g$ mesurables à valeurs réelles ou complexes.

$$\int |fg|d\mu < ||f||_p ||g||_q$$

Corollaire 4.1:

Si $f \in L^p(\mu)$ et $g \in L^q(\mu)$ $\left(\frac{1}{p} + \frac{1}{q} = 1\right)$ alors fg est intégrable $(\in L^1(\mu))$

Si
$$f,g\in L^2(\mu)$$

$$< f,g> = \int f \bar{g} d\mu \left(= \int_{E} f(x) \overline{g(x)} d\mu(x) \right)$$

Propriétés

- 1. $f \rightarrow \langle f, g \rangle$ est linéaire $\forall g$
- 2. < q, f > = < f, q >
- 3. $\forall f, < f, f > \ge 0$
- 4. $\langle f, f \rangle = 0 \Rightarrow f = 0 \mu pp \Rightarrow f = 0 \text{ dans } L^2(\mu)$

La norme associée à ce produit scalaire

$$||f|| = \sqrt{\langle f, f \rangle} = \left(\int |f| d\mu \right)^{\frac{1}{2}}$$

est la norme de $L^2(\mu)$

Troisième partie

Intégrale dépendant d'un paramètre

Soit (E, \mathcal{B}, μ) un espace mesuré. Soit Y un ensemble de paramètres. Soit $f: E \times Y \to \mathbb{C}$ telle que :

$$\forall y \in Y, x \to f(x, y)$$

soit μ -intégrable.

On peut donc définir pour tout $y \in Y$

$$F(y) = \int_{E} f(x, y) d\mu(x)$$

On dit que c'est une intégrale dépendant du paramètre $y \in Y$

Théorème 0.2 (de continuité):

Supposons que Y est un espace métrique. Si

- 1. Si pour μ presque tout $x, y \to f(x, y)$ est continue au point $y_0 \in Y$
- 2. $\exists V$ ouvert de Y; $y_0 \in V$ et une fonction $g \in L^1(\mu)$ tel que

$$\forall y \in V, |f(x,y)| \le g(x)\mu pp$$

alors F est continue au point y_0

Démonstration:

Soit $y_n \to y_0$ et à partir d'un certain rang $n_0, y_n \in V$

- $-f(x,y_n) \rightarrow f(x,y_0) \mu pp$
- $-|f(x,y_n)| \leq g(x) \mu pp.$

On applique le TCD, on trouve le résultat.

Corollaire 0.2:

Si:

- 1. Si pour μ presque tout x, $y \to f(x,y)$ est continue.
- 2. $\forall y \in Y, \exists V$ ouvert de Y; $y \in V$ et une fonction $g \in L^1(\mu)$ tel que

$$\forall y \in V, |f(x,y)| \le g(x)\mu pp$$

alors F est continue en y

Théorème 0.3 (de dérivabilité):

Supposons que Y est un espace ouvert de \mathbb{R} . Si

- 1. Si pour μ presque tout x, $\frac{\partial f(x,y_0)}{\partial y}$ existe
- 2. $\exists V$ ouvert de Y; $y_0 \in V$ et une fonction $g \in L^1(\mu)$ tel que

$$\forall y \in V, y \neq y_0, \left| \frac{f(x,y) - f(x,y_0)}{y - y_0} \right| \leq g(x)\mu pp$$

alors F est dérivable au point y_0 et

$$F'(y_0) = \int \frac{\partial f}{\partial y}(x, y_0) d\mu(x)$$

Démonstration:

Montrons que si $h_n\to 0$, $\frac{F(y_0+h_n)-F(y_0)}{h_n}$ converge vers la limite décrite. Pour n assez grand, $y_0+h_n\in V$

$$\frac{F(y_0 + h_n) - F(y_0)}{h_n} = \int \frac{f(y_0 + h_n) - f(y_0)}{h_n} d\mu(x)$$

1.
$$\frac{f(y_0 + h_n) - f(y_0)}{h_n} \xrightarrow{\mu pp} \frac{\partial f}{\partial y}(x, y_0)$$
2.
$$\left| \frac{f(x, y) - f(x, y_0)}{y - y_0} \right| \le g(x) \mu pp$$

$$2. \left| \frac{f(x,y) - f(x,y_0)}{y - y_0} \right| \le g(x) \mu pp$$

Conclusion vient du TCP.

1. Si pour μ presque tout x, $\frac{\partial f(x,y)}{\partial y}$ existe Corollaire 0.3:

2. Si $\forall y \in Y, \exists V$ ouvert de Y; $y_0 \in V$ et une fonction $g \in L^1(\mu)$ tel que

$$\forall z \in V, \left| \frac{\partial f}{\partial y}(x, z) \right| \leq g(x) \mu pp$$

alors F est dérivable et

$$F'(y) = \int \frac{\partial f}{\partial y}(x, y) d\mu(x)$$

Quatrième partie

Mesures ayant une densité

Soit (E, \mathcal{B}, μ) un espace mesuré.

Définition:

Soit ν une mesure sur (E, \mathcal{B}) et f mesurable ≥ 0 . On dit que ν admet la densité f par rapport à μ ssi:

$$\forall B \in \mathcal{B}, \nu(B) = \int_{B} f d\mu$$

Rappel:

On dit qu'une mesure est σ -finie ssi $\exists (B_n)_n$ de parties mesurables tel que

1.
$$\forall n, \mu(B_n) < +\infty$$

2.
$$E = \bigcup_n B_n$$

Théorème 0.4 (d'unicité de la densité):

Supposons μ σ -finie.

1. Soient f et g deux fonctions mesurables réelles, intégrables ou positives, alors

$$\forall B \in \mathcal{B}, \int_{B} f d\mu \leq \int_{b} g d\mu \Leftrightarrow f \leq g \ \mu pp$$

2. Si ν admet une densité par rapport à μ (σ -finie) alors celle-ci est unique à une égalité μ pp près.

Démonstration:

$$\forall B \in \mathcal{B}n \int_B f d\mu \le \int_B g d\mu$$

Soit $(A_n)_n \subset \mathcal{B}$ tel que $\mu(A_n) < +\infty$ et $A_n \nearrow E = \bigcap_n A_n$ Soit $C_n = A_n \cap (g \le n) \cap (f > g)$

$$C_n \nearrow E \cap (g \le n) \cap (f > g) = (f > g)$$

On a

$$\int_{C_n} f d\mu \le \int_{C_n} g d\mu \le n\mu(C_n) < +\infty$$

On donc soustraire :

$$\int_{C_n} (f - g) d\mu \le 0$$

Or, sur C_n , f-g>0, donc $\int_{C_n} (f-g) d\mu = 0$ et f-g>0 sur C_n .

Donc $\mu(C_n) = 0 \ \forall n$.

$$C_n \xrightarrow[n \to +\infty]{} (f < g) \text{ donc } \mu(f > g) = \lim \mu(C_n) = 0$$

2. Si ν admet pour densité f et g alors

$$\forall B \in \mathcal{B}, \int_{B} f d\mu = \nu(B) = \int_{B} g d\mu$$

Donc $f \leq g \mu pp$ et $g \leq f \mu pp$

Théorème 0.5 (de Radon Nikodynn (admis)):

Supposons μ σ -finie. Soit ν une mesure sur (E,\mathcal{B}) . On a équivalence entre les deux propositions :

1. ν admet une densité à μ

2.
$$\forall B \in \mathcal{B}, \mu(B) = 0 \Rightarrow \nu(B) = 0$$

On dit alors que ν est absolument continue par rapport à μ . On note $\nu << \mu$ On dit que ν équivaut à μ (et on note $\nu \sim \mu$) ssi $\mu << \nu$ et $\nu << \mu$.

Théorème 0.6 (d'intégration par rapport à une mesure ayant une densité) : Si ν admet la densité f par rapport à μ alors :

- 1. $\forall g \text{ mesurable } >0, \int d\nu = \int gfd\mu$
- 2. $\forall g$ mesurable à valeurs réelles ou complexes : g est ν intégrable \Leftrightarrow gf est μ intégrable et alors

$$\int g d\nu = \int g f d\mu$$

Démonstration :

A FAIRE

Cinquième partie

Mesures image et théorème de transfert

Soient (E,\mathcal{B},μ) un espace mesuré, (F,\mathcal{C}) un espace mesurable et $\phi:E\to F$ mesurable.

Définition:

On appelle mesure image de μ par ϕ et on note μ_{ϕ} la mesure sur (F,C) définie par :

$$\forall C \in \mathcal{C}, \mu_{\phi}(C) = \mu(\phi^{-1}(C))$$

On vérifie aisément que μ_{ϕ} est une mesure.

$$-\mu(\emptyset) = \mu(\phi^{-1}(\emptyset)) = 0$$

– Si
$$C = \bigcap_n C_n$$
 disjoints 2 à 2, $\phi^{-1}(C) = \bigcap_n \phi^{-1}(C_n)$ disjoints 2 à 2.

$$\mu_{\phi}(C) = \mu(\bigcap_{n} \phi^{-1}(C_n)) = \sum_{n} \mu(\phi^{-1}(C_n)) = \sum_{n} \mu_{\phi}(C_n)$$

En théorie des probabilités, on utilise constamment cette notion, avec les notations et définitions suivantes :

Soit (Ω, a, \mathbb{P}) un espace probabilisé.

Soit (Υ, \mathcal{B}) un espace mesurable.

Soit $X: \Omega \to \Upsilon$ une v.a. (ie une appl. mesurable).

La mesure image sur \mathbb{P} par X, \mathbb{P}_X , s'appelle la loi de probabilité de X. Elle est définie sur (Υ, \mathcal{B}) .

$$\begin{array}{lll} \forall B \in \mathcal{B}, \mathbb{P}(B) & = & "Probabilit\'e \ que \ X \ appartienne \`a \ B" \\ & = & \mathbb{P}(X \in B) \\ & = & \mathbb{P}(\{\omega \in \Omega | X(\omega) \in B\}) \\ & = & \mathbb{P}(X^{-1}(B)) \end{array}$$

Théorème 0.7 (de transfert : intégration par rapport à une mesure image) :

Soit $\phi: E \to F$ mesurable, et μ_{ϕ} la mesure image de μ par rapport à ϕ . Soit $g: F \to \mathbb{C}$ mesurable.

1. Si g est positive:

$$\int_{F} g d\mu_{\phi} = \int_{E} g \circ \phi d\mu$$

2. Si g est quelconque : g est μ_{ϕ} èintégrable \Leftrightarrow go ϕ est μ -intégrable et alors

$$\int_{F} g d\mu_{\phi} = \int_{E} g \circ \phi d\mu$$

Sixième partie

Espace mesuré produit - Théorème de Fubini

Soient $(E_1, \mathcal{B}_1, \mu_1), ..., (E_n, \mathcal{B}_n, \mu_n)$ n espaces mesurés.

1 Espace mesurable produit

- 1. $E = \prod_{i=1}^{n} E_i = \{(x_1, ..., x_n) | x_i \in E_i, i \in \{1, ..., n\} \}$
- 2. La tribu produit, notée $\mathcal{B} = \bigotimes_{i=1}^n \mathcal{B}_i$ est définie ainsi : On appelle pavé mesurable toute partie B de E de la forme $B = B_1 \times ... \times B_n$, $B_i \in \mathcal{B}_i$

On appelle ε l'ensemble des pavés mesurables.

- $-\varepsilon$ est stable par \cap_f
- $E \in \varepsilon$

La tr
bu produit $\mathcal{B} = \bigotimes_{i=1}^n \mathcal{B}_i$ est la tribu engendrée par ε :

$$\mathcal{B} = \sigma(\varepsilon)$$

3. La mesure produit :

Théorème 1.1 (admis):

Il existe sur $(\prod_{i=1}^n E_i, \bigotimes_{i=1}^n \mathcal{B}_i)$ une et une seule mesure μ qui vérifie :

$$\forall B = B_1 \times ... \times B_n \in \varepsilon, \mu(B) = \mu_1(B_1) \times ... \times \mu_n(B_n)$$

On dit que μ est la mesure produit des mesures μ_i et on a note

$$\mu = \bigotimes_{i=1}^{n} \mu_i$$

Théorème 1.2 (de Fubini):

Considérons l'espace produit $(E, \mathbb{B}, \mu) = (\prod_{i=1}^n E_i, \bigotimes_{i=1}^n \mathcal{B}_i, \bigotimes_{i=1}^n \mu_i)$. Soit $f: E \to \mathbb{C}$ mesurable.

1. Si f est positive:

$$\int f d\mu = \int_{E_n} \left[\int_{E_n n-1} \left[\dots \left[\int_{E_1} f(x_1, ..., x_n) d\mu_1(x_1) \right] \dots \right] d\mu_{n-1}(x_{n-1}) \right] d\mu_n(x_n)$$

et de plus, l'ordre d'untégration n'intervient pas, i.e. on peut remplacer dans la formule i par $\sigma(i)$ où σ est n'importe quelle bijection de $\{1,...,n\}$ dans $\{1,...,n\}$

2. Si f est quelconque, alors la formule et la remarque précédentes sont encore vraies dès que f est μ -intégrable, qui se calcule grace à 1).