

NAÏVE BAYES

Matt Brems
Data Science Immersive, GA DC

DATA SCIENCE PROCESS

- 1. Define problem.
- 2. Gather data.
- 3. Explore data.
- 4. Model with data.
- 5. Evaluate model.
- 6. Answer problem.

LEARNING OBJECTIVES

- By the end of this lesson, students should be able to:
 - Intuitively explain how Bayes' Theorem can be used as a modeling tactic.
 - Implement Naive Bayes in scikit-learn.
 - **Discuss** assumptions, advantages, and disadvantages of Naive Bayes as a classifier.

CONDITIONAL PROBABILITY

- Recall that we use P(A) to refer to the probability that A occurs, where A is some event.

 **PofA"
- If we want to describe the probability that A occurs given that we know something else to be true, we use P(A|B).

Something else to be true, we use
$$P(A|B)$$
.

 $A = roll \ a \ Z$
 $P(A) = \%$
 $P(A) = \%$
 $P(A|B) = \%$

• Note that P(A|B) is usually not the same as P(B|A)!

BAYES' THEOREM

• Bayes' Theorem (Bayes' Rule) relates P(A|B) to P(B|A).

$$P(A \text{ and } B) = P(B \text{ and } A)$$

$$P(A|B) P(B) = P(B|A)P(A)$$

$$P(A|B) = P(B|A)P(A)$$

$$P(A|B) = P(B|A)P(A)$$

$$P(A|B) = P(B|A)P(A)$$

$$P(B)$$

$$P(B)$$

$$P(B)$$

BREAKING DOWN BAYES' THEOREM

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- P(A) is the probability that A occurs given no supplemental information. P(B|A) is the probability of B given that A is true.
- P(B) is the probability that B occurs given no supplemental information.
 - P(B) what we scale P(B|A)P(A) by to ensure we are only looking at A within the context of B occurring.

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Bayes' Theorem is really neatly set up as a classification model.
- We can estimate the probability -.predict_proba() that an observation falls into a specific class, then classify that observation -.predict() accordingly!

$$P(\text{spam}|\text{words in email}) = \frac{P(\text{words in email}|\text{spam})P(\text{spam})}{P(\text{words in email})}$$

$$V = 1 \text{ if spam}$$

$$V = 0 \text{ else}$$

given the words in my email, what is the prob. that my email is spam?

This gets **really** complicated. Can we simplify this?

This gets really complicated. Can we simplify this? Have to make an assumption.

$$P(W_{100}|W_{99} \cap W_{98} \cap W_{97} \cap --- W_{1})$$

NAÏVE BAYES

- The Naïve Bayes classification algorithm is a:
 - classification modeling technique
 - that relies on Bayes Theorem
 - that makes one simplifying assumption.

· We assume that our features are independent of one another.

$$P(\text{spam}|\text{words}) = \frac{P(w_1|\text{spam})P(w_2|w_1 \cap \text{spam})P(w_3|w_2 \cap w_1 \cap \text{spam}) \cdots P(\text{spam})}{P(w_1)P(w_2|w_1)P(w_3|w_2 \cap w_1) \cdots}$$

$$P(\text{spam}|\text{words}) = \frac{P(w_1|\text{spam})P(w_2|\text{spam})P(w_3|\text{spam})\cdots P(\text{spam})}{P(w_1)P(w_2)P(w_3)\cdots}$$

$$P(\omega_z | \omega_1) = P(\omega_z)$$

NAÏVE BAYES

- Advantages of making this assumption of feature independence:
 - Easier to calculate probabilities. -> model is faster
 - Empirically, our classifications are surprisingly accurate.

blc model performs well on test data, we're willing to make this assumption.

• Disadvantages of making this assumption of feature independence:

- - It's incredibly unrealistic, especially in the case of text data.
 - While our classifications are accurate, our predicted probabilities are usually quite bad.

use predict() predict-proba() is less reliable

PROCESS OF NAÏVE BAYES

- 1. Decide which Naïve Bayes model to use.
 - BernoulliNB
 - MultinomialNB
 - GaussianNB
- 2. Decide what your priors will be.
 - Based on your data. (default)
 - Manually set.
- 3. .fit(), .predict()!

WHICH NAÏVE BAYES MODEL SHOULD I USE?

BernoulliNB

La if columns of X are 1/0, use Bernoulli NB La Jummy Variables

• MultinomialNB

La Count Vectorizer, Likert scale Columns
aussianNB
La Columns of X are Integer counts, use Multinomial
aussianNB
La Columns of X are Normal

Greatistically - anything that isn't 1/0 or integer.

WHAT SHOULD MY PRIORS SHOULD BE?

 $P(\text{spam}|\text{words in email}) = \frac{P(\text{words in email}|\text{spam})P(\text{spam})}{P(\text{words in email})}$

Estimated from data.

default what you should do.

• Manually set.

only do this w/subject-matter expertise

PROCESS OF NAÏVE BAYES

- 1. Decide which Naïve Bayes model to use.
 - BernoulliNB
 - MultinomialNB
 - GaussianNB

- Based on your data. (default)
- Manually set.
- 3. .fit(), .predict()!

INTERVIEW QUESTION

