NCBI Entrez Utilities (EUtilities) and Direct(EDirect): Genomic Data Retrieval

Entrez is NCBI's primary text search and retrieval system

Entrez Programming Utilities (E-utilities)

The E-utilities are the public application programming interface (API) to the NCBI Entrez system and allow access to all Entrez databases including PubMed, PMC, Gene, Nuccore and Protein. The E-utilities are a suite of several **server-side programs** that accept a fixed URL syntax for search, link and retrieval operations.

The E-utilities base

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/eutil.fcgi?

FastCGI is a binary protocol for interfacing interactive programs with a web server.

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed
 &term=

Entrez database and Unique record IDentifiers (UIDs)

Entrez Database	UID common name	E-utility Database Name
BioProject	BioProject ID	bioproject
BioSample	BioSample ID	biosample
Biosystems	BSID	biosystems
Books	Book ID	books
Conserved Domains	PSSM-ID	cdd
dbGaP	dbGaP ID	gap
dbVar	dbVar ID	dbvar
Epigenomics	Epigenomics ID	epigenomics
EST	GI number	nucest
Gene	Gene ID	gene
Genome	Genome ID	genome
GEO Datasets	GDS ID	gds
GEO Profiles	GEO ID	geoprofiles
GSS	GI number	nucgss
HomoloGene	HomoloGene ID	homologene
MeSH	MeSH ID	mesh
NCBI C++ Toolkit	Toolkit ID	toolkit
NCBI Web Site	Web Site ID	ncbisearch
NLM Catalog	NLM Catalog ID	nlmcatalog

Nucleotide	GI number	nuccore
OMIA	OMIA ID	omia
PopSet	PopSet ID	popset
Probe	Probe ID	probe
Protein	GI number	protein
Protein Clusters	Protein Cluster ID	proteinclusters
PubChem BioAssay	AID	pcassay
PubChem Compound	CID	pccompound
PubChem Substance	SID	pcsubstance
PubMed	PMID	pubmed
PubMed Central	PMCID	pmc
SNP	rs number	snp
SRA	SRA ID	sra
Structure	MMDB-ID	structure
Taxonomy	TaxID	taxonomy
UniGene	UniGene Cluster ID	unigene
UniSTS	STS ID	unists

What do the E-utilities do?

Web Equivalents

Web action	E-utility equivalent
PubMed search (maelstrom AND piRNA)	ESearch → ESummary
Click on title in search results	EFetch
Click to full text	ELink
Gene search	ESearch (→ ESummary/EFetch)
Find all RefSeq proteins for the gene	ELink

The Basics: Esearch, Esummary and Efetch

PubMed Search

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=maelstrom[All Fields] AND ("rna, small interfering"[MeSH Terms] OR ("rna"[All Fields] AND "small"[All Fields] AND "interfering"[All Fields]) OR "small interfering rna"[All Fields] OR "pirna"[All Fields])

PubMed ESummary

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&id=25303775,25295037 &version=2.0

PubMed EFetch

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=25303775,25295037&rettype=abstract&retmode=text

Protein EFetch

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccore&id=25303775,25295037&rettype=fasta&retmode=text

Entrez Programming Utilities Help

https://www.ncbi.nlm.nih.gov/books/NBK25501/

Entrez Direct

- Command-line version of the NCBI Entrez API E-utilities
- A set of Perl scripts designed to be used as UNIX/Linux executables
- Each script outputs XML that can be piped directly into another script
- Requirements
 - UNIX, LINUX, Mac OSX
 - Perl with LWP::Simple
- Package contents
 - esearch
 - esummary
 - efetch
 - elink
 - epost
 - efilter (performs an esearch after an elink or esearch)
 - xtract (powerful XML parser)

Why use EDirect?

- Allows construction of custom pipelines for processing data
- Generates highly flexible custom output reports
- Built in batch access

Goal: to learn the basics of using the EDirect programs to extract custom reports from the NLM/NCBI Literature and molecular databases

Installing EDirect

```
cd ~
  perl -MNet::FTP -e \
    '$ftp = new Net::FTP("ftp.ncbi.nlm.nih.gov", Passive => 1);
    $ftp->login; $ftp->binary;
    $ftp->get("/entrez/entrezdirect/edirect.zip");'
  unzip -u -q edirect.zip
  rm edirect.zip
  export PATH=$PATH:$HOME/edirect
    ./edirect/setup.sh
```

- Installs EDirect in your home directory and appends it to your PATH.
- Don't do it for this class! EDirect is already installed in /usr/bin and is on everyone's path on the instance.

EDirect workflows

einfo

Provides information about the available databases

- Available indexed fields
- Available links
- Produces XML (or text output with –fields, -links)

```
einfo -dbs
einfo -db dbname
einfo -db dbname -fields
einfo -db dbname -links
```

einfo –db gene

```
zhangd3@lmem21:~> einfo -db gene
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE eInfoResult PUBLIC "-//NLM//DTD einfo 20130322//EN" "https://eutils.ncbi.nlm.nih.gov/eutils/dtd/201303</pre>
22/einfo.dtd">
<eInfoResult>
        <DbInfo>
        <DbName>gene</DbName>
        <MenuName>Gene</MenuName>
        <Description>Gene database/Description>
        <DbBuild>Build170821-0225m.1/DbBuild>
        <Count>29372491</Count>
        <LastUpdate>2017/08/21 09:38</LastUpdate>
        <FieldList>
                <Field>
                        <Name>ALL</Name>
                        <FullName>All Fields</FullName>
                        <Description>All terms from all searchable fields/Description>
                        <TermCount>459318739</TermCount>
                        <IsDate>N</IsDate>
                        <IsNumerical>N</IsNumerical>
                        <SingleToken>N</SingleToken>
                        <Hierarchy>N</Hierarchy>
                        <IsHidden>N</IsHidden>
                        <IsTruncatable>Y</IsTruncatable>
                        <IsRangable>N</IsRangable>
                </Field>
                <Field>
                        <Name>UID</Name>
                        <FullName>UID</FullName>
                        <Description>Unique number assigned to a gene record/Description>
                        <TermCount>0</TermCount>
                        <IsDate>N</IsDate>
                        <IsNumerical>Y</IsNumerical>
                        <SingleToken>Y</SingleToken>
                        <Hierarchy>N</Hierarchy>
                        <IsHidden>Y</IsHidden>
                        <IsTruncatable>N</IsTruncatable>
                        <IsRangable>Y</IsRangable>
```

esearch

- Uses standard web Entrez queries
 - try searches on web interface first
- Results stored in web environment
 - Pipe output to efetch, elink

elink

- Returns related records in the same (-related) or different (-target) database
- Use link name from einfo to get the most precise results (-name linkname)
- Pipe into efetch
- Use with –cmd neighbor to get a table of linked identifiers (elink XML)

```
esearch -db pubmed -query "maelstrom AND piRNA" | \
elink -related |\
elink -target protein
esearch -db pubmed -query "maelstrom AND piRNA" | elink -related | elink -target protein
<ENTREZ DIRECT>
 <Db>protein</Db>
 <WebEnv>NCID 1 59576797 130.14.18.34 9001 1503366669 1979365779 0MetA0 S MegaStore F 1</WebEnv>
 <QueryKey>5</QueryKey>
 <Count>17171</Count>
<Step>3</Step>
</ENTREZ DIRECT>
```

elink -target structure

efilter

uses the History server to filter or restrict the results of a previous query

```
-query
          Query string
                                                         -feature gene, mrna, cds, mat peptide, ...
                                                         -location mitochondrion, chloroplast, plasmid, plastid
Document Order
                                                         -molecule genomic, mrna, trna, rrna, ncrna
           Result presentation order
 -sort
                                                         -organism animals, archaea, bacteria, eukaryotes, fungi,
                                                               human, insects, mammals, plants, prokaryotes,
Date Constraint
                                                               protists, rodents, viruses
           Number of days in the past
 -days
                                                         -source
                                                                  genbank, insd, pdb, pir, refseq, swissprot, tpa
 -datetype Date field abbreviation
 -mindate Start of date range
                                                        Gene Filters
 -maxdate End of date range
                                                         -status
                                                                  alive
                                                                 coding, pseudo
                                                         -type
Publication Filters
-pub
       abstract, clinical, english, free, historical,
                                                        Miscellaneous Arguments
       journal, last week, last month, last year,
                                                         -label
                                                                 Alias for query step
       preprint, review, structured
 esearch -db pubmed -query "maelstrom AND piRNA" | elink -target protein
    efilter -organism insect
 <ENTREZ DIRECT>
   <Db>protein</Db>
   <WebEnv>NCID 1 59868754 130.14.18.34 9001 1503368022 325189468 0MetA0 S MegaStore F 1/WebEnv>
   <QueryKey>4</QueryKey>
   <Count>9</Count>
   <Step>3</Step>
 </ENTREZ DIRECT>
```

Sequence Filters

Query Specification

efetch/esummary

- Produces full XML records and Summaries (Docsums) for many databases
- Also specialized output for PubMed, sequence databases, Gene and others
- In many cases Docsums contain enough information (efetch –format docsum == esummary)
 - Parsing values from full XML can be more challenging
- efetch –help for supported return format

Efetch fully supported databases

- Literature databases
 - pubmed: biomedical abstracts
 - pmc: full text journal articles
 - mesh: MeSH ontology
 - nlmcatalog: NLM holdings
- Sequence databases
 - nuccore: DNA, RNA sequences
 - nucest: expressed sequence tags
 - protein: protein sequences
 - popset: population studies
 - sra: sequence read archive (next gen)
 - taxonomy: organisms

- Gene, variation, expression
 - gene: gene loci
 - homologene: homologous genes
 - snp: small variations
 - gds: expression databases
 - Biosamples: samples in other datasets
 - Biosystems: biological pathways

esearch -db pubmed -query "maelstrom AND piRNA" |\ efetch -format abstract

1. Oncotarget. 2017 Jan 17;8(3):5026-5037. doi: 10.18632/oncotarget.13756.

Mael is essential for cancer cell survival and tumorigenesis through protection of genetic integrity.

Kim SH(1), Park ER(1), Cho E(1), Jung WH(1), Jeon JY(1), Joo HY(1), Lee KH(1), Shin HJ(1).

Author information:

(1) Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea.

Germ line-specific genes are activated in somatic cells during tumorigenesis, and are accordingly referred to as cancer germline genes. Such genes that act on piRNA (Piwi-interacting RNA) processing play an important role in the progression of cancer cells. Here, we show that the spermatogenic transposon silencer maelstrom (Mael), a piRNA-processing factor, is required for malignant transformation and survival of cancer cells. A specific Mael isoform was distinctively overexpressed in diverse human cancer cell lines and its depletion resulted in cancer-specific cell death, characterized by apoptosis and senescence, accompanied by an increase in reactive oxygen-species and DNA damage. These biochemical changes and death phenotypes induced by Mael depletion were dependent on ATM. Interestingly Mael was essential for Myc/Ras-induced transformation, and its overexpression inhibited Ras-induced senescence. In addition, Mael repressed retrotransposon activity in cancer cells. These results suggest that Mael depletion induces ATM-dependent DNA damage, consequently leading to cell death specifically in cancer cells. Moreover, Mael possesses oncogenic potential that can protect against genetic instability.

DOI: 10.18632/oncotarget.13756

PMCID: PMC5354889 PMID: 27926513 esearch -db pubmed -query "maelstrom AND piRNA" | elink -target protein
| efetch -format fasta

>sp|Q9VF26.1|SPNE DROME RecName: Full=Probable ATP-dependent RNA helicase spindle-E; AltName: Full=Homeless MDQEVMDFFDFSKELKRVAAAPQGYISSDPRLMATKFKSSEVPNRELIGTDYVSKIVAKEKCLLNGTLLN EOPOGKRIRTLDDLDTDDEGEETEIRRDDEYYKKFRFNLNRDKNLSIYAKREEILAAINAHPVVIIKGET GCGKTTQVPQYILDEAYKSGKYCNIVVTQPRRIAAISIANRVCQEREWQQNTVCSFQVGLHRPNSLEDTR LLYCTTGVLLNNLINNKTLTHYTHIVLDEVHERDONMDFLLIVVRRLLATNSRHVKIILMSATIDAKELS DYFTTTNSIPPVITTNHRRKHSIEKFYRDOLGSIIWNEEDVGHOOVPEINKHGYRAAVKIIVIIDNMERK AAIOSROSYDEALRYGAVLIFLPGIYEIDTMAENLTCMLENDPNIKVSIVRCFSLMTPENORDVFNPPPP GFRKIILTTNIAESSITVPDVSYVIDFCLAKVKVTDTASSFSSLRLTWASKANCRQRAGRVGRLRSGRVY RMVNKHFYQREMPEFGIPEMLRLPLQNSVLKAKVLNMGSPVEILALALSPPNLSDIHNTILLLKEVGALY LTVDGIYDPLDGDLTYWGTIMSRLPLDTROSRLIILGYIFNMLEEAIIIAAGLSTPGLFAHEGGRSOLGD SFWMHYIFSDGSGSDLVAIWRVYLTYLNIVENGHDOESAIRWAKRFHVSLRSLKEIHLLVOELRVRCTHL GLIPFPVNPNOMMDDREKAIMLKVIIAGAFYPNYFTRSKESCADTDRNIYOTISGHDPCRTVYFTNFKPA YMGELYTRRIKELFQEVRIPPENMDVTFQEGSQKVFVTFKQDDWIEGSSKYVPVSGRVQSEVYKAVMMRQ NRVERPIHIMNPSAFMSYVOORGIGDVIEGRWIPPTKPLNVELLALPSVFDKTISGSITCIVNCGKFFFO POSFEECIRNMSEIFNAPOOLRNYVTNASAIAKGMMVLAKRDSYFORATVIRPENOSNROPMFYVRFIDY GNCTLLPMQLMRLMPRELTEQYGDLPPRVFECRLAMVQPSSVVSGNNRWSTAANDMLKTVAQCGLIDIEV YSLFNNVAAVLIHMRDGIINDKLVELMLCRRSDEDYMSRKDHDFRLRRQESARNLSTAQRQQINEEYLRS CQLPQDHDLPPPPLEKCKTVVMLKGPNSPLECTMRSITRVGLSKRVNIDHLSVNALLLDADPQDHHDHLI VAHEIAESRNGQTLTARGTTLMPNVQGFGALMVMLFSPTMQLKCNKEGTSYVSVLGGLGCDPDTNEPYFA EHDVLINLDVNILEDDVILINOIRYYIDSVFFNFKEENNPAVSVNERVSIYTOLRSLINRLLCKDRRYIE RNMSNADFEWETNPELPLPNEPFGKRAIFPMHSLTELQEEDTGRLVQLRENCSMLHKWRNFEGTLPHMTC KLCNQLLESVPOLRLHLLTILHRDREKQIDYCNQ

>sp|Q14BI7.3|TDRD9_MOUSE RecName: Full=Putative ATP-dependent RNA helicase TDRD9; AltName: Full=Tudor domain-containing protein 9

Sequence Database Formats

-format	-mode	Report Type
acc		Accession Number
est		EST Report
fasta		FASTA
fasta	xml	TinySeq XML
fasta_cds_aa		FASTA of CDS Products (Proteins)
fasta_cds_na		FASTA of Coding Regions
ft		Feature Table
gb		GenBank Flatfile
gb	xml	GBSet XML
gbc	xml	INSDSet XML
gbwithparts		GenBank with Contig Sequences
gene_fasta		FASTA of Gene

-format	-mode	Report Type
gp		GenPept Flatfile
gp	xml	GBSet XML
gpc	xml	INSDSet XML
gss		GSS Report
ipg		Identical Protein Report
ipg	xml	IPGReportSet XML
native	text	Seq-entry ASN.1
native	xml	Bioseq-set XML
seqid		Seq-id ASN.1

Structured Data--- XML format

- A makeup language:
 - HTML (hypertext markup language)
 - XML (extensible markup language): a tree-based or hierarchical structure of the data
- Advantage of XML is that many pieces of information are in specific locations in a well-defined data hierarchy
- Accessing individual units of data (value) that are fielded by name (descriptor), such as

```
<PubData>2013</PubData>
<Source>PLoS</Source>
<Volume>8</Volume>
<lssue>3</lssue>
<Pages>e58144</Pages>
```

xtract

- General Full-featured XML parser
- Produces tab delimited output
- Loops over XML structure using exploration options
- Prints out selected items (elements) from XML
- Conditional execution
- Flexible output formats

```
esearch -db pubmed -query "maelstrom AND piRNA" | efilter -query
"structure [TIAB]" | efetch -format docsum
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE DocumentSummarySet PUBLIC "-//NLM//DTD esummary pubmed 20160808//EN"</pre>
"https://eutils.ncbi.nlm.nih.gov/eutils/dtd/20160808/esummary pubmed.dtd">
<DocumentSummarySet status="OK">
<DbBuild>Build170819-2207m.6/DbBuild>
<DocumentSummary><Id>25865890</Id>
       <PubDate>2015 Apr 21</PubDate>
       <EPubDate>2015 Apr 9</EPubDate>
       <Source>Cell Rep</Source>
       <Authors>
              <Author>
                      <Name>Matsumoto N</Name>
                      <AuthType>Author</AuthType>
                      <ClusterID></ClusterID>
              </Author>
              <Author>
                      <Name>Sato K</Name>
                      <AuthType>Author</AuthType>
                      <ClusterID></ClusterID>
              </Author>
              <Author>
                      <Name>Nishimasu H</Name>
                      <AuthType>Author</AuthType>
                      <ClusterID></ClusterID>
              </Author>
              <Author>
                      <Name>Namba Y</Name>
                      <AuthType>Author</AuthType>
                      <ClusterID></ClusterID>
              </Author>
```

```
esearch -db pubmed -query "maelstrom AND piRNA" | efilter -query
"structure [TIAB]" | efetch -format docsum | xtract -outline
DbBuild
DocumentSummary
 Ιd
 PubDate
 EPubDate
 Source
 Authors
   Author
    Name
    AuthType
    ClusterID
   Author
    Name
    AuthType
    ClusterID
   Aut.hor
    Name
    AuthType
    ClusterID
 LastAuthor
 Title
 SortTitle
 Volume
 Issue
 Pages
 Lang
   string
 NlmUniqueID
 ISSN
```

The outline view presents a clear, uncluttered picture of the XML hierarchy that is useful in designing the appropriate command for data extraction.

How xtract parses XML

• -pattern places the data from individual records into separate rows.

• -element extracts values from specified fields into separate columns.

• -group, -block, and -subset limit element exploration to selected XML subregions.

Exploration options

esearch -db pubmed -query "maelstrom AND piRNA" | efilter -query
"structure [TIAB]" | efetch -format docsum | xtract -pattern
DocumentSummary -element Id SortFirstAuthor Title

25865890	Matsumoto N Crystal Structure and Activity of the Endoribonuclease Domain of the piRNA Pathway
25778731	Chen KM Metazoan Maelstrom is an RNA-binding protein that has evolved from an ancient nuclease active
23136393	Pek JW Polo-mediated phosphorylation of Maelstrom regulates oocyte determination during oogenesis in
20362446	Patil VS Repression of retroelements in Drosophila germline via piRNA pathway by the Tudor
17428915	Lim AK Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila

Sequence records

esearch -db pubmed -query "conotoxin" | elink -target protein |efilter -query "mat_peptide[FKEY]" | efetch -format gpc | xtract -outline

INSDSeq

INSDSeq locus

INSDSeq_length

INSDSeq_moltype

INSDSeq_topology

INSDSeq division

INSDSeq update-date

INSDSeq create-date

INSDSeq definition

INSDSeq_primary-accession

INSDSeq_accession-version

INSDSeq_other-seqids

INSDSeqid

INSDSeqid

INSDSeq secondary-accessions

INSDSecondary-accn

Those are the major elements.

efetch -db protein -id NP_001103824 -format gpc | xtract -insd complete mat_peptide "%peptide" product peptide

```
<INSDFeature>
  <INSDFeature key>mat peptide</INSDFeature key>
  <INSDFeature location>23..424</INSDFeature location>
  <INSDFeature intervals>
   <INSDInterval>
    <INSDInterval from>23</INSDInterval from>
    <INSDInterval to>424</INSDInterval to>
    <INSDInterval accession>NP 001103824.1</INSDInterval accession>
   </INSDInterval>
  </INSDFeature intervals>
  <INSDFeature quals>
                                                          Qualifier name
   <INSDQualifier>
    <INSDQualifier name>product</INSDQualifier name>
    <INSDQualifier value>zona pellucida sperm-binding protein 3 isoform 1
   </INSDQualifier>
                                                           Qualifier value
   <INSDQualifier>
    <INSDQualifier name>calculated_mol_wt</INSDQualifier name>
    <INSDQualifier_value>44386</INSDQualifier_value>
   </INSDQualifier>
   <INSDQualifier>
    <INSDQualifier name>peptide</INSDQualifier name>
```

<INSDQualifier_value>QPLWLLQGGASHPETSVQPVLVECQEATLMVMVSKDLFGTGKLIRAADLTLGPEACEPLVSMDTEDVVRFEVGLHECGNSMQVTDDALVYSTFLLHDPRPVGNLSIVR TNRAEIPIECRYPRQGNVSSQAILPTWLPFRTTVFSEEKLTFSLRLMEENWNAEKRSPTFHLGDAAHLQAEIHTGSHVPLRLFVDHCVATPTPDQNASPYHTIVDFHGCLVDGLTDASSAFKVPRPG PDTLQFTVDVFHFANDSRNMIYITCHLKVTLAEQDPDELNKACSFSKPSNSWFPVEGSADICQCCNKGDCGTPSHSRRQPHVMSQWSRSASRNRRHVTEEADVTVGPLIFLDRRGDHEVEQWA LPSDTSVVLLGVGLAVVVSLTLTAVILVLTRRCRTASHPVSASE</INSDQualifier value> esearch -db pubmed -query "conotoxin" | elink -target protein |efilter -query
"mat_peptide[FKEY]" | efetch -format gpc | xtract -insd complete
mat_peptide "%peptide" product peptide

esearch -db pubmed -query "conotoxin" | elink -target protein | efilter -query "mat_peptide[FKEY]" | efetch -format gpc | xtract -insd source organism strain

```
NP 001103824.1 Homo sapiens -
                               Sprague-Dawley
NP_036964.3 Rattus norvegicus
NP 683746.1 Mus musculus C57BL/6
NP 775304.1 Mus musculus C57BL/6
NP 000713.2 Homo sapiens -
NP 065135.2 Homo sapiens -
NP 113955.1 Rattus norvegicus
NP 067344.2 Mus musculus -
NP 072108.1 Rattus norvegicus
                               Sprague-Dawley
NP_062170.1 Rattus norvegicus
NP 075219.1 Rattus norvegicus
                               Sprague-Dawley
NP 072161.1 Rattus norvegicus
                               Sprague-Dawley
NP 434692.2 Rattus norvegicus
                               Sprague-Dawley
```

Get protein sequences from nucleotide accessions

cat accs_file | epost -db nuccore -format acc | elink -target protein | efetch -format fasta

Finding genes on chromosome Y

esearch -db gene -query "Homo Sapiens [ORGN] AND Y[CHR]" | efilter -query "alive [PROP]" | esummary | xtract -pattern DocumentSummary -NAME Name -block GenomicInfoType -match "ChrLoc:Y" -tab "\n" -element "&NAME", ChrAccVer,ChrStart,ChrStop

SRY	NC_000024.10	2787740	2786854
SHOX	NC_000024.10	624343	659410
CD99	NC_000024.10	2691132	2741308
IL3RA	NC_000024.10	1336574	1382688
CSF2RA	NC_000024.10	1268799	1325096
TSPY1	NC_000024.10	9466954	9469755
DAZ1	NC_000024.10	23199116	23129354
CRLF2	NC_000024.10	1212761	1190436
VAMP7	NC_000024.10	57067799	57130288
IL9R	NC_000024.10	57184100	57199536
SLC25A6	NC_000024.10	1392145	1386151
ASMT	NC_000024.10	1595454	1643080
DDX3Y	NC_000024.10	12903998	12920477
RBMY1A1	NC_000024.10	21534878	21559682
PCDH11Y	NC_000024.10	5000043	5742227
KDM5D	NC_000024.10	19745346	19692494
DAZ2	NC_000024.10	23219456	23291355
USP9Y	NC_000024.10	12701230	12860843
ZFY	NC_000024.10	2934401	2982507

- EDirect Example 1: ESearch (gene) ELink (gene to protein) EFetch (protein FASTA)
- __
- esearch -db gene -query "foxp2[gene] AND human[orgn] AND alive[prop]" | \
- elink -target protein -name gene_protein_refseq | \
- efetch -format fasta
- __
- EDirect Example 2: ESearch (gene) ELink (gene to protein); each output line includes the gene ID in column 1 followed by the protein GI's linked to that gene
- __
- esearch -db gene -query "foxp2[gene] AND human[orgn] AND alive[prop]" | \
- elink -target protein -name gene_protein_refseq -cmd neighbor | \
- xtract -pattern LinkSet -block IdList -element Id -block LinkSetDb -element Id
- __

- EDirect Example 3: ESearch (gene) ELink (gene to protein) ESummary (protein); uses xtract to write a table including the accession (caption), sequence length (Slen) and title (Title)
- __
- esearch -db gene -query "foxp2[gene] AND human[orgn] AND alive[prop]" | \
- elink -target protein -name gene_protein_refseq | \
- esummary | \
- xtract -pattern DocumentSummary -element Caption Slen Title
- __
- EDirect Example 4: Same as example 3 except that the output is piped to UNIX sort to sort the output by decreasing sequence length
- --
- esearch -db gene -query "foxp2[gene] AND human[orgn] AND alive[prop]" | \
- elink -target protein -name gene_protein_refseq | \
- esummary | \
- xtract -pattern DocumentSummary -element Caption Slen Title | \
- sort -t \$'\t' -k 2,2nr

Entrez Programming Utilities Help

https://www.ncbi.nlm.nih.gov/books/NBK25501/