FYS2130 - Oblig 3

Aleksander Hansen

24. februar 2013

## Oppgave 1

Eulers metode kan tenkes på som en Runge-Kutta metode av første orden. Eulers metode bruker bare ett punkt for å avansere langs løsningen, mens RK4 bruker et vektet gjennomsnitt av fire punkter. Dette reduserer feilene akkumulert ved hvert seg og gjør RK4 mer presis og stabil enn Eulers metoed.

## Oppgave 11

I fra de øverste figurene ser vi at bevegelsen er tilnærmet harmonisk, pga. ellipseformen til faserom-kurven og at dalene og toppene til konfigurasjonsrom-kurven er veldig nærme å være parabler. Vi ser også at systemet taper energi over tid

Den nederste figuren

## Oppgave C

a) Programmet i sitt fulle er vedlagt på slutten av dokumentet. Resultatet finnes i figur 1.



Figur 1: Resultater fra kjøring med forskjellig tidssteg.

b) For overkritisk demping må  $b>2\sqrt(km)$ . Lar vi k=10 og m=0.1 medfører det at b>2. b=2.5 ble brukt i koden. For kritisk demping er  $\gamma=\omega$ . Lar vi nå b=0.1 og m=0.1, kan vi løse for k slik at vi oppnår kritisk demping.

$$\frac{b}{2m} = \sqrt{\frac{k}{m}} \implies k = \frac{b^2}{4m} = \frac{0.1}{0.4} = 0.025$$

For underkritisk demping er  $\gamma < \omega$ .  $b=0.1, \, k=10$  og m=0.1 ble brukt. Resultatene kan sees i figur 2.



Figur 2: Under-, over- og kritisk demping.

c) En påtrykt frekvens på  $\omega=2\pi f_r es=\sqrt{\frac{k}{m}}=\sqrt{\frac{10}{0.1}}=10$  ble brukt. Resultatet kan finnes i figur 3.



Figur 3: Tvungene svingninger med forskjellig påtrykt frekvens.

d) Fra figur 4 kan det se ut som halverdibredden er ca. 2.2. Resonansfrekvensen var 10. Kvalitetsfaktoren er da:  $Q=\frac{f_0}{\Delta f}=\frac{10}{2.2}\approx 4.5$ 



Figur 4: Maks energien til fjærpendel som funksjon av påtrykt frekvens.

e) Alt vi trenger å gjøre for å implementere ikke-lineære friksjonsledd, er å legge det aktuelle leddet til diff. likningen. F.eks kan vi legge til leddet:

```
-sign(v)*D*v**2
```

Samnt kanskje oppdatere noen av variabler osv.

## Program til oppgave C

```
# -*- coding: utf-8 -*-
from numpy import zeros, cos, sin, sqrt, pi
from pylab import *
class SpringPendulum:
    ,,,
```

```
Denne klassen implementerer Runge-Kuttas metode av 4. orden for å løse
en 2. ordens ODE på formen: x''(t) + (b/m)*x'(t) + (k/m)*x(t) = 0
,,,
def __init__(self, x0, v0, t0, dt, T, b=0.1, k=10, m=0.1, F=0, W=0):
    self.b, self.k, self.m, self.dt, self.F, self.W = b, k, m, dt, F, W
    self.n = int((T-t0)/dt)
    n = self.n
    self.x = zeros(n+1)
    self.v = zeros(n+1)
    self.t = zeros(n+1)
    x, v, t = self.x, self.v, self.t
    x[0], v[0], t[0] = x0, v0, t0
# Løser diff. likningen:
def solve(self):
    for i in xrange(self.n):
        self.x[i+1], self.v[i+1], self.t[i+1] = self.advance(i)
    return self.x, self.v, self.t
# RK4 maskineriet:
def advance(self, i):
    x1, v1, t, dt = self.x[i], self.v[i], self.t[i], self.dt
    a1 = self.f(x1, v1, t)
    x2 = x1 + v1*(dt/2.0)
    v2 = v1 + a1*(dt/2.0)
    a2 = self.f(x2, v2, t + dt/2.0)
    x3 = x1 + v2*(dt/2.0)
    v3 = v1 + a2*(dt/2.0)
    a3 = self.f(x3, v3, t + dt/2.0)
    x4 = x1 + v3*dt
    v4 = v1 + a3*dt
    a4 = self.f(x4, v4, t + dt)
    A = (1/6.0) * (a1 + 2*a2 + 2*a3 + a4)
    V = (1/6.0) * (v1 + 2*v2 + 2*v3 + v4)
    new x = x1 + V*dt
    new_v = v1 + A*dt
    new_t = t + dt
    return new_x, new_v, new_t
# Bevegelseslikningen til en dempet fjærpendel:
def f(self, x, v, t):
    return -(self.b/self.m)*v - (self.k/self.m)*x + self.F*cos(self.W*t)
```

```
#### Oppgave C.a ####
# Numerisk løsninger med forskjellig dt:
z0 = 0.1
v0 = 0.0
t0 = 0.0
T = 10
DT = linspace(0.2, 0.002, 4)
num = []
for i in xrange(len(DT)):
    num.append(SpringPendulum(z0, v0, t0, DT[i], T, 0.1, 10, 0.1))
    num[i].solve()
# Eksakt løsning:
c1 = 0.005
c2 = 0.1
omega = sqrt(399)/2
t = linspace(t0, T, 1000)
x_exact = zeros(len(t))
for i in xrange(len(t)):
    x_{exact[i]} = (e^{**(-t[i]/2)})^*(c1*sin(omega*t[i]) + c2*cos(omega*t[i]))
# Plot:
figure(1)
plot(t, x_exact, label='eksakt')
hold('on')
for i in xrange(len(num)):
    plot(num[i].t, num[i].x, label='dt='+str(DT[i]))
hold('off')
xlim([t0,T])
ylim([-z0, z0])
xlabel('tid [s]')
ylabel('utslag [m]')
title('Test av forskjellige tidssteg')
grid('on')
legend()
savefig('fig1.png')
```

```
#### Oppgave C.b ####
dt = 0.002
overkritisk = SpringPendulum(z0, v0, t0, dt, T, 2.5, 10, 0.1)
overkritisk.solve()
kritisk = SpringPendulum(z0, v0, t0, dt, T, 0.1, 0.025, 0.1)
kritisk.solve()
underkritisk = SpringPendulum(z0, v0, t0, dt, T, 0.1, 10, 0.1)
underkritisk.solve()
figure(2)
plot(overkritisk.t, overkritisk.x, label='overkritisk')
hold('on')
plot(kritisk.t, kritisk.x, label='kritisk')
plot(underkritisk.t, underkritisk.x, label='underkritisk')
hold('off')
xlim([t0,T])
ylim([-z0, z0])
xlabel('tid [s]')
vlabel('utslag [m]')
title('Under-, over- og kritisk dempet svingninger')
grid('on')
legend()
savefig('fig2.png')
#### Oppgave C.c ####
w_f = 10
W = [0.9*w_f, w_f, 1.09*w_f]
tvungen = []
T = 30
for i in xrange(len(W)):
    tvungen.append(SpringPendulum(0, 0, 0, 0.002, T, 0.04, 10, 0.1, 0.1, W[i]))
    tvungen[i].solve()
figure(3)
for i in xrange(len(W)):
    subplot(3, 1, i+1)
    plot(tvungen[i].t, tvungen[i].x, label='W='+str(W[i]))
    xlim([0,T])
    xlabel('tid [s]')
    ylabel('utslag [m]')
    grid('on')
```

```
legend()
savefig('fig3.png')
####Oppgave C.d ####
W = linspace(0.5*w_f, 1.5*w_f, 50)
E = zeros(len(W))
k = 10
# Finner E_max for w_f[i]:
for i in xrange(len(W)):
   m = SpringPendulum(0, 0, 0, 0.002, T, 0.04, k, 0.1, 0.1, W[i])
   m.solve()
   E[i] = 0.5*k*abs(m.x[0])
    for j in xrange(m.n):
        if m.x[j+1] > E[i]:
            E[i] = 0.5*k*m.x[j+1]
figure(4)
plot(W,E)
xlabel('Frekvens')
ylabel('Energi')
title('Frekvensrespons kurve som kan brukes til aa angi Q')
grid('on')
savefig('fig4.png')
```