РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № $\underline{2}$

дисциплина:	Архитект	ура компьюте	ра

Студент: Бережной Иван Александрович

Группа: НКАбд-01-#

МОСКВА

20<u>23</u> г.

Оглавление

1 Цель работы	3
2 Задания	4
3 Теоретическое введение	5
4 Выполнение лабораторной работы	5
5 Выводы	11
Список литературы	12

1 Цель работы

Целью работы является изучить идеологию и применение средств контроля версий. Приобрести практические навыки по работе с системой git.

2 Задания

- 1. Настройка github
- 2. Базовая настройка github
- 3. Создание SHH ключа
- 4. Создание рабочего пространства и репозитория курса на основе шаблона
- 5. Создание репозитория курса на основе шаблона
- 6. Настройка каталога курса
- 7. Задание для самостоятельной работы

3 Теоретическое введение

4 Выполнение лабораторной работы

4.1 Настройка GitHub

Перейдём на сайт https://github.com/. Справа вверху нажмём кнопку «sign up» и пройдём регистрацию (рис.4.1.1).

рис. 4.1.1: кнопка регистрации GitHub

4.2 Базовая настройка git

Откроем терминал и укажем имя и email владельца репозитория с помощью команд, отображённых на рис. 4.2.1.

```
[iaberezhnoy@fedora ~]$ git config --global user.name "<Ivan Berezhnoy>"
[iaberezhnoy@fedora ~]$ git config --global user.email "<darkgxd@vk.com>"
[iaberezhnoy@fedora ~]$
```

рис. 4.2.1: имя и email пользователя

Далее настроим utf-8 в выводе сообщений git для корректного отображения символов, а также зададим имя начальной ветки (master) и параметры autocrlf и safecrlf (рис. 4.2.2).

```
[iaberezhnoy@fedora ~]$ git config --global core.quotepath false
[iaberezhnoy@fedora ~]$ git config --global init.defaultBranch master
[iaberezhnoy@fedora ~]$ git config --global core.autocrlf input
[iaberezhnoy@fedora ~]$ git config --global core.safecrlf warn
[iaberezhnoy@fedora ~]$
```

рис. 4.2.2: продолжение настройки git

4.3 Создание SSH ключа

Сгенерируем пару ключей (приватный и открытый). Для этого введём команду ssh-keygen -C "Ivan Berezhnoy <darkgxd@vk.com>". Ключи автоматически сохранятся в каталоге ~/.ssh/.

```
[iaberezhnoy@fedora ~]$ ssh-keygen -C "Ivan Berezhnoy <darkgxd@vk.com>"
Generating public/private rsa key pair.
Enter file in which to save the key (/home/iaberezhnoy/.ssh/id_rsa):
Created directory '/home/iaberezhnoy/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/iaberezhnoy/.ssh/id_rsa
Your public key has been saved in /home/iaberezhnoy/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:hwAWjH0wk5wkjHdgQ/RntFlap3hHub8h9xQK7SaUxs0 Ivan Berezhnoy <darkgxd@vk.com>
The key's randomart image is:
+---[RSA 3072]----+
=BBO=. o o.
 ..+=B=.B +.
  . ...0 o..*
      o o oB E .
         So.+ . .
          .o B .
  ---[SHA256]----+
[iaberezhnoy@fedora ~]$
```

рис. 4.3.1: генерация SHH ключа

Скопируем сгенерированный открытый ключ с помощью команды саt и

[iaberezhnoy@fedora ~]\$ cat ~/.ssh/id_rsa.pub | xclip -sel clip

рис. 4.3.2: копирование открытого ключа

Зайдём на сайт GitHub под своей учётной записью, перейдём в настройки, далее в меню «SSH and GPG keys», нажмём на кнопку «New SSH key». Теперь можем вставить скопированный ключ в соответствующую строку, также укажем имя ключа (рис. 4.3.3).

Title iaberezhnoy18 Key type Authentication Key \$ Key Ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQCrsIgNtQcNJKBTXyvxTmDE5Umx82batLwhDmMUUx2ggHMfpWiKnFKAiygd V6dpJ5jYA9P4Z4yYEjGn45mk6NvreYTTgT4ys14oQCb0MwYHGj7RbVXlLrsoiPoHWtKkREYwAQtyH4BFuvFis60C5/w139Z SXsyGFVRyy24Xtk/aQJGjJllsKONsY+svUzVSMI+TnWMai43rK3XFMTRPXaLsyXK/0LDxqO1kPYo0GvbswZN8wbAaEHU1sl oIZ+T40MaMqpWntbmPm26nNskhaNkoBjFUQdgwtkypXGsQEWnXZVjcHQThrYvdp6ztCc5KvgT6cRzyr/ZBvKwE1Cm1x aTQojZzXpP/9vkGzzKMKRltQ4KynjOPa+xlTmEziawG6jKq2HigyO9zHxE6exH6UBk/LlfMynBWv+VK8OaJTVFnY32/gwgRj c3jfNYpAc1qennA/D2XVaABUiAdaq0K5h9Ew5yja9la8x4EhRC1mK2waSBIQcgDbkrGCb0GFgb63wc= Ivan Berezhnoy darkgxd@vk.com>

рис. 4.3.3: загрузка SSH ключа

4.4 Создание рабочего пространства и репозитория курса на основе шаблона

Будем придерживаться структуре рабочего пространства. Для этого перейдём в терминал и создадим иерархию каталогов для предмета «Архитектура компьютера» командой mkdir с ключом -p (рис.4.4.1).

[iaberezhnoy@fedora ~]\$ mkdir -p ~/work/study/2023-2024/"Архитектура компьютера"

рис. 4.4.1: создание каталога «Архитектура компьютеров»

4.5 Создание репозитория курса на основе шаблона

Снова откроем браузер и перейдём к репозиторию с шаблоном курса по

адресу https://github.com/yamadharma/course-directory-student-template и нажмём кнопку«Use this template» (рис. 4.5.1).

рис. 4.5.1: шаблон курса

Далее создадим новый репозиторий, нажав кнопку «Create repository», предварительно задав ему имя «study_2023-2024_arhpc» (рис. 4.5.2).

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere? Import a repository.

Required fields are marked with an asterisk (*).

Owner * Repository name *

Study_2023-2024_arhpc

study_2023-2024_arhpc is available.

Great repository names are short and memorable. Need inspiration? How about reimagined-parakeet?

Description (optional)

Public

Anyone on the internet can see this repository. You choose who can commit.

Private

You choose who can see and commit to this repository.

Create repository

рис. 4.5.2: создание репозитория

Теперь мы можем клонировать созданный репозиторий. Для этого воспользуемся командой git clone –recursive, добавив SSH ссылку на сам репозиторий.

```
[iaberezhnoy@fedora ~]$ cd
[iaberezhnoy@fedora ~]$ cd ~/work/study/2023-2024/"Архитектура компьютера"
[iaberezhnoy@fedora Архитектура компьютера]$ git clone --recursive git@github.com:NoisyCake/study_2023-2024_arhpc.git arch.pc
Клонирование в «arch.pc»...
remote: Enumerating objects: 27, done.
remote: Counting objects: 100% (27/27), done.
```

рис. 4.5.3: клонирование репозитория

4.6 Настройка каталога курса

Переходим в каталог курса с помощью команды cd и удаляем ненужные файлы командой rm (рис. 4.6.1).

```
[iaberezhnoy@fedora ~]$ cd ~/work/study/2023-2024/"Архитектура компьютера"/arch-pc
[iaberezhnoy@fedora arch-pc]$ rm package.json
```

рис. 4.6.1: удаление файлов

Теперь создадим необходимые каталоги (рис. 4.6.2) и отправим файлы на сервер (рис. 4.6.3).

```
[iaberezhnoy@fedora arch-pc]$ echo arch-pc > COURSE
[iaberezhnoy@fedora arch-pc]$ make
```

рис. 4.6.2: создание каталогов

рис. 4.6.3: отправление каталогов на сервер

Проверим, все ли папки и файлы созданы. Сначала откроем файловый менеджер Fedora (рис. 4.6.4), затем проверим GitHub (рис. 4.6.5). Всё получилось.

рис. 4.6.4: проверка файлового менеджера

рис. 4.6.6: проверка на GitHub

5 Задание для самостоятельной работы

1. Для начала создадим отчёт по лабораторной работе №2. Откроем LibreOffice Writer внутри Fedora, создадим и сохраним пустой файл с именем «Lab2 report» в папке Документы (рис. 5.1.1).

рис. 5.1.1: создание файла для отчёта

После написания отчёта переместим его в нужную нам папку через терминал командой mv (рис. 5.1.2).

[iaberezhnoy@fedora ~]\$ mv ~/Документы/Lab2_report.odt ~/work/study/2023-2024/"Архитекту ра компьютера"/arch-pc/l<u>a</u>bs/lab02/report

рис. 5.1.2: перемещение отчёта

2. Вторым шагом скопируем отчёт предыдущей лабораторной работы в соответствующую папку командой ср (5.1.3).

```
[iaberezhnoy@fedora ~]$ ср ~/Документы/Lab1_report.odt ~/work/study/2023-2024/"Архитекту
ра компьютера"/arch-pc/labs/lab01/report
```

рис. 5.1.3: копирование старого отчёта

3. Теперь загрузим файлы на GitHub. С помощью утилиты сd перейдём в папку каждого отчёта, а командой git add добавим файлы отчётов в коммит. Затем сохраним внесённые изменения командой git commit с ключом -am и отправим их в центральный репозиторий (рис. 5.1.4).

```
[iaberezhnoy@fedora report]$ cd ~/work/study/2023-2024/"Архитектура компьютера"/arch-pc/labs/lab01/report
iaberezhnoy@fedora report]$ git add Lab1_report.odt
[iaberezhnoy@fedora report]$ cd ~/work/study/2023-2024/"Архитектура компьютера"/arch-pc/labs/lab02/report
[iaberezhnoy@fedora report]$ git add Lab2_report.odt
[iaberezhnoy@fedora report]$ git commit -am "Lab files were added"
[master 43e3c61] Lab files were added
2 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 labs/lab01/report/Lab1_report.odt
create mode 100644 labs/lab02/report/Lab2_report.odt
[iaberezhnoy@fedora report]$ git push
Теречисление объектов: 15, готово.
Подсчет объектов: 100% (13/13), готово.
При сжатии изменений используется до 5 потоков
Сжатие объектов: 100% (9/9), готово.
Запись объектов: 100% (9/9), 10.00 КиБ | 5.00 МиБ/с, готово.
Всего 9 (изменений 4), повторно использовано 0 (изменений 0), повторно использовано пакетов 0
remote: Resolving deltas: 100% (4/4), completed with 3 local objects.
To github.com:NoisyCake/study_2023-2024_arhpc.git
  db2ceb0..43e3c61 master -> master
iaberezhnoy@fedora report]$
```

рис. 5.1.4: загрузка отчётов на GitHub

Проверим верность выполнения команд. Откроем репозиторий в GitHub. В папке lab01/report видим наш файл Lab1_report.pdf (рис.5.1.5), а в папке lab01/report файл Lab2_report.pdf (рис. 5.1.6). Всё верно.

6 Выводы

