

Analysis of Launch Vehicle Liftoff Debris: Historical Perspective from Space Shuttle and Application to Artemis I

Brandon R. Williams, Liftoff Debris Lead
Peter A. Liever
Travis A. Rivord
John E. Soto
NASA Marshall Space Flight Center

AIAA SciTech Forum and Exposition January 8-12, 2024

Launch Vehicle Debris

10.9.8.7.6.5.4.3.2.1.

- Exploration-class launch vehicles inherently prone to debris due to extreme environments
 - Pre-launch Operations
 - Ignition and Liftoff
 - Ascent Aerodynamics
 - Cryogenic Propellants
- Debris is risk to vehicle and mission success
 - Concerns are crew safety and vehicle performance
 - Programs may accept risk if likelihood and/or consequence of debris strike fits within risk posture
- Columbia accident changed the way NASA views and assesses debris risk
 - Bipod Ramp foam liberation was an accepted flight risk despite previous damage
 - Shuttle Return to Flight effort initiated formal process for debris transport, damage, and risk assessments with greater weight in program and flight decisions

Saturn V Ice Debris

Types of Debris

10..9..8..7..6..5..4..3..2..1..

Ice

Umbilicals, vents, uninsulated surfaces

Foam

- Cryo thermal protection system (TPS)
- Throat plug

RTV/Cork

- Coatings, closeouts
- Aerothermal insulation (base heat shield)

Rust/Metals

- Steel launch platform structure
- Frangible hardware (capture failure)

Unexpected Debris

- Generated by a failure in system design/manufacture/operation
- FOD accidental debris left by personnel

Debris Assessment & Mitigation

10..9..8..7..6..5..4..3..2..1..

 After Columbia accident, NASA Engineering instituted a more rigorous program for launch debris assessment and mitigation to support independent risk assessments by Safety & Mission Assurance (S&MA)

Debris Regimes

10..9..8..7..6..5..4..3..2..1..

Ascent Debris

- Time: Tower Clear through Separation
- Typically ice and TPS foam sources
- Debris accelerated by vehicle aerodynamics
- Fore-to-aft debris trajectories
- Very high impact speeds possible, >1000 ft/s

Liftoff Debris

- Time: Pre-Launch through Tower Clear
- Ice, foam, metal/rust, and other materials
- Gravity, wind, entrainment, and plume impingement all generate debris transport
- Debris trajectories may be in downward, lateral, or forward directions
- Lower impact speeds, generally <500 fps

Contrasts in transport mechanisms and impact characteristics require different approach for Liftoff DTA

10..9..8..7..6..5..4..3..2..1..

Debris Source Definition

Model Choices

Debris
Trajectory
Calculation

Extract Debris Impacts

Report Impact Characteristics

Hardware owner supplies all information needed to model debris:

- Location
- Release time
- Release velocity
- Material
- Shape
- Dimensions
- Mass
- Density

10..9..8..7..6..5..4..3..2..1..

Debris
Source
Definition

Debris
Trajectory
Calculation

Extract
Debris
Impacts
Characteristics

Analyst makes decisions on appropriate modeling choices based on knowledge of system and historical observations of liftoff debris

- Possible transport mechanisms
- Required model fidelity (engineering model vs. 3D CFD)
- Parametrics for size/shape variation
 - DTA tools use idealized shapes
 - High/low drag shapes capture crossrange behavior

10..9..8..7..6..5..4..3..2..1..

Simple engineering models may be used for rapid/early assessments

Most DTA is performed with 3-DoF trajectory simulation coupled to high fidelity CFD

- Thousands of trajectories in single simulation
- Pre-computed CFD database for liftoff DTA covers variation of wind speed/direction, and transient effects of ignition and liftoff
- One-way coupling of debris motion to CFD includes aerodynamic drag and gravity (or other frame of reference)

10..9..8..7..6..5..4..3..2..1..

Debris Source Definition

Debris Trajectory Calculation

Debris Impacts

Report Impact Characteristics

Impact detection tool traces debris trajectories and records impact characteristics at every possible surface collision

- Not restricted to rebounds in trajectory uses size of debris + specified buffer to capture physical envelope and avoid "near misses"
- Debris velocity and angle-to-surface used to calculate impact energy, normal momentum, and other metrics

10..9..8..7..6..5..4..3..2..1..

Post-process impact data to provide to hardware owners for impact/damage tolerance assessments

- Decompose model surface into components of interest
- Filter and report maximum impact per component

Approach uses deterministic analysis to assess "worst case" impact

 Likelihood requires probabilistic analysis, much larger effort and not straightforward

Liftoff Debris Transport Mechanisms

10.9.8.7.6.5.4.3.2.1.

Gravity, Wind, Plume Entrainment (GWPE) Transport

- Gravity provides primary fore-to-aft acceleration
- Wind expands debris trajectory cloud through lateral motion
- Air entrainment from plumes accelerates debris near aft end of vehicle
- Generally low speeds, <100 ft/s

SLS CFD Database for GWPE DTA

- Vehicle at hold-down position
- No plumes or all engine/motor plumes at full power
- Winds: 0-24 kt profiles, every 45° on compass
- Captures variation of flowfield with wind direction, speed, and elevation

Liftoff Debris Transport Mechanisms

10.9.8.7.6.5.4.3.2.1.

Plume-Driven (PD) Transport

- Debris directly accelerated by plume, very high speeds possible
- Booster ignition creates strong transient flow near aft end of vehicle
- Plume impingement on deck may recirculate toward vehicle during liftoff
- Upward trajectories able to impact hardware that is shielded from GWPE

SLS CFD Database for PD DTA

- Ignition Transient
 - Time accurate simulations capture ignition overpressure, plume-water interaction
- Liftoff

 Quasi-steady simulations at multiple altitudes where plume impingement and recirculation expected

SLS Differences from Shuttle

10..9..8..7..6..5..4..3..2..1..

Shuttle

- Taller SLS vehicle gives debris more time to accelerate
- Crew capsule located at top of vehicle, above most debris sources

SLS

Pre-Artemis I Analysis

10..9..8..7..6..5..4..3..2..1..

- Prior to Artemis I, liftoff DTA team analyzed >50 debris sources (GWPE and PD)
 - Variations in debris location & size, wind speed & direction result in **thousands** of DTA cases
- All GWPE impacts to vehicle and ground systems were cleared deterministically
- Impacts on RS-25 engine nozzles from Booster throat plug debris could <u>not</u> be cleared
 - Established cross-program Issue Resolution Team (IRT)
 - Substantial effort examining transport characteristics, potential mitigation solutions, nozzle impact testing
 - S&MA constructed probabilistic risk assessment (PRA) to quantify likelihood of critical impact
- SLS Program accepted Booster throat plug debris risk for Artemis I, pursuant to gathering launch imagery to better inform future assessments

Artemis I Liftoff Debris Observations

10..9..8..7..6..5..4..3..2..1..

- Thorough review of launch imagery identified many pieces of ice and other debris
 - Imagery quality presented challenges due to night launch, camera exposure, obscuration
 - No launch imagery observations resulted in confirmed liftoff debris exceedances
- Most significant items selected for further analysis and validation of DTA models
 - Includes Core Stage GOx vent ice and Booster nozzle throat plug on following slides
- Unexpected debris resulted in in-flight anomalies (IFA) to be addressed prior to Artemis II
 - Ice release from ground side umbilicals, debris recovered in post-flight walkdowns

Artemis I: Core Stage GOx Vent Ice

10..9..8..7..6..5..4..3..2..1.

- Ice/frost forms where cold gaseous oxygen (GOx) is vented from cryo tank
- Artemis I imagery shows:
 - Debris releases after engine ignition
 - Southerly wind pushes debris toward RH Booster as it falls
 - Ice impacts the Booster nose cone prior to TO
- Pre-launch imagery shows effect of wind on GOx vapor, CFD captures flow patterns

Artemis I: Core Stage GOx Vent Ice

10..9..8..7..6..5..4..3..2..1..

- Debris characteristics approximated from development testing, bounding launch imagery measurements, and more detailed pre-launch measurements
 - Analyzed range of sizes due to uncertainty
- Pre-launch size estimate trajectories closest to observed trajectory, impact Booster nose cone in same location
- Predicted debris speeds bound the Artemis I estimates from imagery
- Results are consistent with Shuttle validation of similar debris

GWPE DTA model is validated through comparison of DTA results and Artemis I photogrammetry speed/trajectory estimates

Artemis I: Throat Plug Debris

10.9.8.7.6.5.4.3.2.1.

- Booster nozzle throat plug
 - Protective barrier for solid rocket propellant
 - Breaks up at ignition and expelled from nozzle ahead of plume, but quickly overtaken
- Throat plug debris was observed on <u>every</u> Shuttle launch
 - No direct observation of transport mechanism possible
- Analysis and empirical evidence leads to conclusion that plume/water/debris interactions and IOP are driving forces

Artemis I: Throat Plug Debris

10.9.8.7.6.5.4.3.2.1.

- Multiple observations of potential throat plug debris near RH Booster
 - Difficult to estimate sizes, speeds, trajectories with smoke/water obscuration
- Debris driven at high speeds from region between nozzle and suppression water during Booster ignition transient
 - Primarily upward/outward trajectories, some are pulled back into plume hole by entrainment
- CFD predicts plume-water interaction and water spray transport consistent with Artemis I

Artemis I imagery confirms throat plug debris transport via plume-water interaction predicted by CFD & DTA

Artemis I: Throat Plug Debris

10..9..8..7..6..5..4..3..2..1..

- Selected pieces with higher quality imagery data near the nozzle for analysis
 - Representative range of size/mass
 - Example at right observed on outboard side of RH Booster
- Due to range of potential release conditions and locations in nozzle, DTA predicts trajectories in all directions
 - Isolated DTA trajectories near estimated debris path and at time of observation for comparison with imagery
- Model predictions envelope Artemis I trajectory and speed estimates
 - Photogrammetry limited to 2D estimates

Partial validation of throat plug DTA model is achieved through comparison of DTA results and Artemis I photogrammetry speed/trajectory estimates

Preparation for Artemis II & Beyond

10..9..8..7..6..5..4..3..2..1

- Debris assessment process and liftoff DTA methodology developed during the Shuttle Program have been adapted for the Artemis Program
 - Integrated pre-launch debris assessments resolved all issues and contributed to successful Artemis I launch
 - Artemis I post-flight analysis confirmed liftoff DTA methodology and results are accurate and bounding
- Results of Artemis I IFA assessments and review of launch data are being used to update the expected debris sources for Artemis II
 - DTA of new/updated sources has been completed, expect only minor additional changes
- Probabilistic risk assessment of Booster throat plug debris to be updated to reflect Artemis I observations
- Improving imagery capabilities to gather better data on system performance and inform future missions