Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 522–534, November 16–20, 2020. © 2020 Association for Computational Linguistics

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks

Trapit Bansal ♦ and Rishikesh Jha† and Tsendsuren Munkhdalai‡ and Andrew McCallum University of Massachusetts, Amherst

†Code for Science and Society

†Microsoft Research, Montréal, Canada

目录 Contents

- 1 问题与方案
- 2 算法介绍
- 3 实验设置与分析

问题设定

自监督的预训练语言模型,可以提供一个好的模型参数初始化点,使得到了下游任 务微调时,可以有不错的泛化性和效果。

chanllenge 1

微调的数据利用比较低,即在Few-Shot的场景下,利用少量的样本进行微调效果 得到不充分的体现。所以这篇文章关注点就在于,如果提高预训练的语言模型在 Few-Shot场景下进行分类任务时的泛化能力。

提高模型的泛化能力,可以采用Meta-Learning方式来解决。

任务构建,需要大量的训练任务,以提高泛化性。且对于不同的任务,需要构建不 同的模型框架。

利用类似cloze-style的方式,通过Self-Supervised从数据本身来获得标签,构建受 监督的元学习任务。通过学习特定任务的Support set来生成任务特定的参数,以支 持训练能够适应不同类任务的元学习模型[1]。

原因分析—challenge 1

虽然自监督的预训练是有效的,但是它对数据的利用率会比较低,而且微调时也需要大量的数据才能在目标任务上有好的效果[1][2]。

这就是Few-Shot Learning问题,模型只给出几个新任务的例子,并期望在该任务中表现良好。本文重点关注Few-Shot的问题,并开发了能够更好地对新任务进行Few-Shot 泛化的模型。

- 1. 此外,对预训练的模型进行微调通常会引入新的随机参数,如Softmax层和重要的超参数(如learning-rate),这些参数很难从少数示例中有效地评估。
- 2. 大规模的预训练会遭受训练测试不匹配的困扰,因为模型没有经过优化就去学习一个初始点,而该初始点经过少量样本微调后性能较低。

因此,本文提出要消除这种训练测试不匹配,并通过联合学习模型的初始点和超参数,从而允许数据高效微调,即作为一个元学习问题[1][3]。

^[2] Dani Yogatama, Cyprien de Masson d'Autume, Jerome Connor, Tom´as Kocisk´y, Mike Chrzanowski, Ling peng Kong, Angeliki ₄ Lazaridou, Wang Ling, Lei Yu, Chris Dyer, and Phil Blunsom. 2019. Learning and evaluating general linguistic intelligence.
[3] Sebastian Thrun and Lorien Pratt. 2012. Learning to learn. Springer Science & Business Media.

1. 大规模的预训练会遭受训练测试失配的困扰,因为模型没有经过优化就去学习一个初始点, 而该初始点经过少量样本微调后性能较低。

MAML

Loss Function:

$$L(\phi) = \sum_{n=1}^{N} l^{n} (\hat{\theta}^{n})$$

 $\hat{\theta}^n$: model learned from task n

 θ^n depends on ϕ

 $L(\phi) = \sum_{n=1}^{\infty} l^n(\hat{\theta}^n)$ $l^n(\hat{\theta}^n)$: loss of task n on the testing set of task n

How to minimize $L(\phi)$? Gradient Descent

$$\theta_i' \leftarrow \boldsymbol{\phi} - \alpha \nabla_{\!\!\boldsymbol{\phi}} \mathcal{L}_i(\mathcal{D}^{tr}, \boldsymbol{\phi})$$

Model Pre-training

Widely used in transfer learning

$$L(\phi) = \sum_{n=1}^{N} l^n(\phi)$$

Model Pre-training

Pre-training Model

MAML

MAML

原因分析—challenge 2

Meta-Learning的任务构建,需要大量的训练任务,以提高泛化性。 元学习在相同的任务下,在新的标签下泛化性不错,但是对于不同的任务,需要构建不同的 模型框架,使得在不同任务下泛化性较差[4]。

- 1. 对于不同的任务, 需要构建不同的模型框架。
- 2. Meta Over-Fitting,对于任务的分布过拟合了[4]。

1. Meta-Learning的任务构建,需要大量的训练任务,以提高泛化性。 Subset Masked Language Modeling Tasks (SMLMT)

Subset:	{Democratic,	Capital)
	1	

Sentence				
A member of the [m] Party, he was the first African American to be elected to the presidency.	1			
The [m] Party is one of the two major contemporary political parties in the United States, along with its rival, the Republican Party.	1			
Honolulu is the [m] and largest city of the U.S. state of Hawaii.	2			
Washington, D.C., formally the District of Columbia and commonly referred to as Washington or D.C., is the [m] of the United States.	2			

Query: New Delhi is an urban district of Delhi which serves as the [m] of India

Correct Prediction: 2

Support set

2. Meta Over-Fitting,对于任务的分布过拟合了[4][5]。

$$-\frac{1}{N}\sum_{i}\mathbb{E}_{q(\theta|M)q(\phi|D_{i}^{train},\theta)}[\frac{1}{K}\sum_{(x^{*},y^{*})\in D_{i}^{test}}logq(\hat{y}^{*}=y^{*}|x^{*},\theta,\phi)]\;,$$

[4] Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn. 2020. Meta learning without memorization. In International Conference on Learning Representations. ¹² [5] Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein. 2019. Learning unsupervised learning rules. In International Conference on Learning Representations.

3. 对于不同的任务, 需要构建不同的模型框架[6]。

$$w_t^n, b_t^n = g_{\psi}(\{f_{\pi}(X_{1n}), \dots, f_{\pi}(X_{kn})\})$$
 (3)

$$p(y|X) = softmax \left\{ \mathbf{W}_t \ h_{\phi}(f_{\pi}(X)) + \mathbf{b}_t \right\}$$
 (4)

where $\mathbf{W}_t = [w_t^1; \dots; w_t^N] \in \mathcal{R}^{N \times d}$, $\mathbf{b}_t = [b_t^1; \dots; b_t^N] \in \mathcal{R}^d$ are the concatenation of the per-class vectors in (3), and h_{ϕ} is a MLP with parameters ϕ and output dimension d.

本文工作

- 1. 提出了Subset Masked Language Modeling Tasks (SMLMT),通过自监督的方式创建元学习的任务。并且通过SMLMT创建的任务分布取得了SOTA的结果。
- 2. 证明了自监督SMLMT也可以与受监督任务的数据相结合,以实现更好的特征学习,同时通过使用SMLMT避免Meta Over-Fitting以保证模型泛化的泛化性。
- 3. 研究了参数数对Few-Shot Learning的影响,发现规模更大的预训练或元学习模型比小模型泛化性更好,即使对于小模型,元学习也能获得不错的效果。

目录 Contents

- 1 问题与方案
- 2 相关方法
- 3 实验设置与分析

Hybrid SMLMT

来自SMLMT的任务也可以与受监督的任务相结合,以鼓励更好的特征学习[6],并增加元学习任务的多样性。

使用采样比 $\lambda \in (0,1)$,在每个episode中以 λ 的概率选择SMLMT任务或以($1 - \lambda$)的概率选择监督任务。SMLMT与受监督任务的联合使用可以改善Meta Over-Fitting。

元训练算法流程

Algorithm 1 Meta-Training

Require: SMLMT task distribution \mathcal{T} and supervised tasks \mathcal{S} , model parameters $\{\pi^w, \pi, \phi, \psi, \alpha\}$, adaptation steps G, learning-rate β , sampling ratio λ Initialize θ with pre-trained BERT-base;

 π^{ω} 是warp layers的参数

- π 是Transformer除πψ外的参数
- φ 是MLP的参数
- ψ 是类别编码器参数
- α 是学习率

the parameters are meta-trained using the MAML algorithm (Finn et al., 2017). Concretely, set $\theta := \{\pi, \phi, \mathbf{W}_t, \mathbf{b}_t\}$ for the task-specific inner loop gradient updates in (1) and set $\Theta := \{\pi, \psi, \alpha\}$ for the outer-loop updates in (2). Note that we do multiple steps of gradient descent in the inner loop.

```
1: while not converged do
           for task_batchsize times do
 2:
                t \sim Bernoulli(\lambda)
 3:
               T \sim t \cdot \mathcal{T} + (1 - t) \cdot \mathcal{S}
 4:
               \mathcal{D}^{tr} = \{(x_i, y_i)\} \sim T
 5:
              C^n \leftarrow \{x_i | y_i = n\}; \quad N \leftarrow |C^n|
             w^n, b^n \leftarrow \frac{1}{|C^n|} \sum_{x_i \in C^n} g_{\psi}(f_{\pi}(\mathcal{D}^{tr}))
               \mathbf{W} \leftarrow [w^1; \dots; w^N]; \quad \mathbf{b} \leftarrow [b^1; \dots; b^N]
 8:
                \theta \leftarrow \{\pi, \phi, \mathbf{W}, \mathbf{b}\}; \quad \theta^{(0)} \leftarrow \theta
 9:
                \Theta \leftarrow \{\pi^w, \pi, \psi, \alpha\}
10:
                \mathcal{D}^{val} \sim T
11:
12:
               q_T \leftarrow 0
                for s := 0 G - 1 do
13:
                   \mathcal{D}_s^{tr} \sim T
14:
                    \theta^{(s+1)} \leftarrow
15:
                    \alpha \nabla_{\theta} \mathcal{L}_T(\{\Theta, \theta^{(s)}\}, \mathcal{D}_s^{tr})
                    q_T \leftarrow q_T + \nabla_{\Theta} \mathcal{L}_T(\{\Theta, \theta^{(s+1)}\}, \mathcal{D}^{val})
16:
                end for
17:
           end for
18:
          \Theta \leftarrow \Theta - \beta \cdot \sum_{T} \frac{q_T}{C}
19:
20: end while
```

目录 Contents

- 1 问题与方案
- 2 相关方法
- 3 实验设置与分析

数据集统计

Dataset	Labels	Train	Validation	Test	
CoLA	2	8551	1042	_	
MRPC	2	3669	409		
QNLI	2	104744	5464	_	
QQP	2	363847	40431	100	
RTE	2	2491	278	396	
SNLI	3	549368	9843	77	
SST-2	2	67350	873		
MNLI (m/mm)	3	392703	19649	_	
Scitail	2	23,596	1,304	2,126	
Amazon Sentiment Domains	2	800	200	1000	
Airline	3	7320	-	7320	
Disaster	2	4887	5 5	4887	
Political Bias	2	2500		2500	
Political Audience	2	2500	_	2500	
Political Message	9	2500	5 <u></u> 22	2500	
Emotion	13	20000	-	20000	
CoNLL	4	23499	5942	5648	
MIT-Restaurant	8	12474	_	2591	

k-shot accuracy on novel tasks not seen in training.

Task	N	k	BERT	SMLMT	MT-BERT _{softmax}	MT-BERT	LEOPARD	Hybrid-SMLMT
CoNLL	4	4 8 16 32	50.44 ± 08.57 50.06 ± 11.30 74.47 ± 03.10 83.27 ± 02.14	46.81 ± 4.77 61.72 ± 3.11 75.82 ± 4.04 84.01 ± 1.73	52.28 ± 4.06 65.34 ± 7.12 71.67 ± 3.03 73.09 ± 2.42	55.63 ± 4.99 58.32 ± 3.77 71.29 ± 3.30 79.94 ± 2.45	54.16 ± 6.32 67.38 ± 4.33 76.37 ± 3.08 83.61 ± 2.40	57.60 ± 7.11 70.20 ± 3.00 80.61 ± 2.77 85.51 ± 1.73
MITR	8	4 8 16 32	49.37 ± 4.28 49.38 ± 7.76 69.24 ± 3.68 78.81 ± 1.95	$46.23 \pm 3,90$ 61.15 ± 1.91 69.22 ± 2.78 78.82 ± 1.30	45.52 ± 5.90 58.19 ± 2.65 66.09 ± 2.24 69.35 ± 0.98	50.49 ± 4.40 58.01 ± 3.54 66.16 ± 3.46 76.39 ± 1.17	49.84 ± 3.31 62.99 ± 3.28 70.44 ± 2.89 78.37 ± 1.97	52.29 ± 4.32 65.21 ± 2.32 73.37 ± 1.88 79.96 ± 1.48
Airline	3	4 8 16 32	42.76 ± 13.50 38.00 ± 17.06 58.01 ± 08.23 63.70 ± 4.40	42.83 ± 6.12 51.48 ± 7.35 58.42 ± 3.44 65.33 ± 3.83	43.73 ± 7.86 52.39 ± 3.97 58.79 ± 2.97 61.06 ± 3.89	46.29 ± 12.26 49.81 ± 10.86 57.25 ± 09.90 62.49 ± 4.48	54.95 ± 11.81 61.44 ± 03.90 62.15 ± 05.56 67.44 ± 01.22	56.46 ± 10.67 63.05 ± 8.25 69.33 ± 2.24 71.21 ± 3.28
Disaster	2	4 8 16 32	55.73 ± 10.29 56.31 ± 09.57 64.52 ± 08.93 73.60 ± 01.78	62.26 ± 9.16 67.89 ± 6.83 72.86 ± 1.70 73.69 ± 2.32	52.87 ± 6.16 56.08 ± 7.48 65.83 ± 4.19 67.13 ± 3.11	50.61 ± 8.33 54.93 ± 7.88 60.70 ± 6.05 72.52 ± 2.28	51.45 ± 4.25 55.96 ± 3.58 61.32 ± 2.83 63.77 ± 2.34	55.26 ± 8.32 63.62 ± 6.84 70.56 ± 2.23 71.80 ± 1.85

k-shot domain transfer accuracy

Task	k	BERT _{base}	SMLMT	MT-BERT _{softmax}	MT-BERT	MT-BERT _{reuse}	LEOPARD	Hybrid-SMLMT
Scitail	4 8 16 32	58.53 ± 09.74 57.93 ± 10.70 65.66 ± 06.82 68.77 ± 6.27	50.68 ± 4.30 55.60 ± 2.40 56.51 ± 3.78 62.38 ± 3.22	74.35 ± 5.86 79.11 ± 3.11 79.60 ± 2.31 82.23 ± 1.12	63.97 ± 14.36 68.24 ± 10.33 75.35 ± 04.80 74.87 ± 3.62	76.65 ± 2.45 76.86 ± 2.09 79.53 ± 2.17 81.77 ± 1.13	69.50 ± 9.56 75.00 ± 2.42 77.03 ± 1.82 79.44 ± 1.99	76.75 ± 3.36 79.10 ± 1.14 80.37 ± 1.44 82.20 ± 1.34
Amazon Books	4 8 16 32	54.81 ± 3.75 53.54 ± 5.17 65.56 ± 4.12 73.54 ± 3.44	55.68 ± 2.56 60.23 ± 5.28 62.92 ± 4.39 71.49 ± 4.74	68.69 ± 5.21 74.86 ± 2.17 74.88 ± 4.34 77.51 ± 1.14	64.93 ± 8.65 67.38 ± 9.78 69.65 ± 8.94 78.91 ± 1.66	74.79 ± 6.91 78.21 ± 3.49 78.87 ± 3.32 82.23 ± 1.10	82.54 ± 1.33 83.03 ± 1.28 83.33 ± 0.79 83.55 ± 0.74	84.70 ± 0.42 84.85 ± 0.52 85.13 ± 0.66 85.27 ± 0.36
Amazon DVD	4 8 16 32	54.98 ± 3.96 55.63 ± 4.34 58.69 ± 6.08 66.21 ± 5.41	52.95 ± 2.51 54.28 ± 4.20 57.87 ± 2.69 65.09 ± 4.37	63.68 ± 5.03 67.54 ± 4.06 70.21 ± 1.94 70.19 ± 2.08	66.36 ± 7.46 68.37 ± 6.51 70.29 ± 7.40 73.45 ± 4.37	71.74 ± 8.54 75.36 ± 4.86 76.20 ± 2.90 79.17 ± 1.71	80.32 ± 1.02 80.85 ± 1.23 81.25 ± 1.41 81.54 ± 1.33	83.28 ± 1.85 83.91 ± 1.14 83.71 ± 1.04 84.15 ± 0.94

k-shot performance with number of parameters on Amazon DVD (left), and CoNLL(right)

Larger models generalize better and Hybrid-SMLMT provides accuracy gains for all parameter sizes

元训练中的学习率轨迹

LEOPARD学习率在许多层都趋向于0,这表明元拟合过度

Transformer每层的CCA相似度

左图:对相同模型进行微调之前和之后的相似性。

右图: 微调后不同模型对之间的相似性。