Boston University Department of Electrical and Computer Engineering

ENG EC 414 Introduction to Machine Learning

HW 1 Solution

© 2015 – 2020 Prakash Ishwar © 2020 Francesco Orabona

Important: Before you proceed, please read the documents pertaining to *Homework formatting and submission guidelines* in the Homeworks section of Blackboard.

Note: Problem difficulty = number of coffee cups **...**

Problem 1.1 (*Linear Algebra*) [22pts] Let $\mathbf{v}_1 = [1, 1, 0]^{\mathsf{T}}$, $\mathbf{v}_2 = [0, 1, 1]^{\mathsf{T}}$, and $\mathbf{v}_3 = [1, 1, 1]^{\mathsf{T}}$, be three column vectors. Note: $^{\mathsf{T}}$ means transpose.

(a) [1pt] The dimension d of the Euclidean space \mathbb{R}^d containing \mathbf{v}_1 is:

Solution: 3

(b) [1pt] The length, i.e., norm $\|\mathbf{v}_1\|$, of \mathbf{v}_1 is:

Solution: $\sqrt{1^2 + 1^2 + 0^2} = \sqrt{2}$.

(c) [1pt] The dot product, i.e., inner product $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \mathbf{v}_2^{\mathsf{T}} \mathbf{v}_1$, of \mathbf{v}_1 and \mathbf{v}_2 is:

Solution: $1 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 = 1$.

(d) [1pt] Are \mathbf{v}_1 and \mathbf{v}_2 perpendicular (orthogonal)? Yes/No, Why?

Solution:

No, because their inner product is not zero.

(e) [1pt] Are \mathbf{v}_1 and \mathbf{v}_2 linearly independent? Yes/No, Why?

Solution:

Yes: Let $V = [\mathbf{v}_1, \mathbf{v}_2]$ and $\mathbf{a} = [a_1, a_2]^{\mathsf{T}}$. The only solution to the equation $V\mathbf{a} = 0$, which tests the linear dependence of \mathbf{v}_1 and \mathbf{v}_2 , is $\mathbf{a} = (V^{\mathsf{T}}V)^{-1}\mathbf{0} = \mathbf{0}$. Note: $(V^{\mathsf{T}}V)$ is an invertible matrix (its determinant is not zero).

(f) [5pts] \clubsuit If $\operatorname{Proj}_{\mathcal{S}}(\mathbf{v}_3) = a_1\mathbf{v}_1 + a_2\mathbf{v}_2$, where a_1, a_2 are scalars, denotes the orthogonal projection of \mathbf{v}_3 onto the subspace \mathcal{S} spanned by \mathbf{v}_1 and \mathbf{v}_2 , then $\mathbf{a} = (a_1, a_2)^{\mathsf{T}} =$

Solution: $(2/3, 2/3)^{T}$:

Let $V = [\mathbf{v}_1, \mathbf{v}_2]$. Then $\operatorname{Proj}_{\mathcal{S}}(\mathbf{v}_3) = V\mathbf{a}$. According to the orthogonality principle, $\mathbf{v}_3 - \operatorname{Proj}_{\mathcal{S}}(\mathbf{v}_3)$ is orthogonal to all vectors in \mathcal{S} , in particular, both \mathbf{v}_1 and \mathbf{v}_2 . Thus, $V^{\mathsf{T}}(\mathbf{v}_3 - V\mathbf{a}) = 0$. Solving, we get $\mathbf{a} = (V^{\mathsf{T}}V)^{-1}V^{\mathsf{T}}\mathbf{v}_3 = (2/3, 2/3)^{\mathsf{T}}$, and $\operatorname{Proj}_{\mathcal{S}}(\mathbf{v}_3) = (2/3, 4/3, 2/3)^{\mathsf{T}}$.

1

(g) [5pts] Consider the following subset of \mathbb{R}^3 : $S := \{\mathbf{x} : \mathbf{v}_3^\top \mathbf{x} - 3 = 0\}$. Compute the Euclidean distance of \mathbf{v}_1 from S and the point in S which is closest to \mathbf{v}_1 .

Solution:

The point

$$\mathbf{v} := \mathbf{v}_1 - (\mathbf{v}_3^{\mathsf{T}} \mathbf{v}_1 - 3) \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|^2} = (1^{1/3}, 1^{1/3}, 1/3)^{\mathsf{T}}$$

lies in S since $\mathbf{v}_3^{\mathsf{T}}\mathbf{v} - 3 = 0$. If \mathbf{u} is any other point in S, then we have $\mathbf{v}_3^{\mathsf{T}}\mathbf{u} - 3 = 0$ and therefore $\mathbf{v}_3^{\mathsf{T}}(\mathbf{v} - \mathbf{u}) = 0$. Thus,

$$\|\mathbf{v}_{1} - \mathbf{u}\|^{2} = \|(\mathbf{v}_{1} - \mathbf{v}) + (\mathbf{v} - \mathbf{u})\|^{2} = \|\mathbf{v}_{1} - \mathbf{v}\|^{2} + \|\mathbf{v} - \mathbf{u}\|^{2} + 2\underbrace{(\mathbf{v}_{1} - \mathbf{v})^{\mathsf{T}}(\mathbf{v} - \mathbf{u})}^{0} \ge \|\mathbf{v}_{1} - \mathbf{v}\|^{2}.$$

This shows that \mathbf{v} is the point in S that is closest to \mathbf{v}_1 . The minimum distance is equal to $\|\mathbf{v}_1 - \mathbf{v}\| = \|\mathbf{v}_3^\top \mathbf{v}_1 - 3\| \|\mathbf{v}_3\| = 1/\sqrt{3}$.

(h) [4pts] Let $B = \begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix}$. Compute: (i) its eigenvalues and (ii) a set of orthonormal eigenvectors.

Solution:

- (i) Eigenvalues: $\lambda = 1,7$ obtained as the solutions to the quadratic equation $\det(B \lambda I) = 0$ where I is the 2×2 identity matrix. (ii) One set of orthonormal eigenvectors (not unique): $\mathbf{u}_1 = \frac{1}{\sqrt{2}}(1,1)^{\top}$ and $\mathbf{u}_2 = \frac{1}{\sqrt{2}}(1,-1)^{\top}$. Note: orthonormal means, mutually orthogonal (zero inner product) and unit norm (length).
- (i) [3pts] The trace tr(D) of a square matrix D is the sum of all its elements along the main diagonal. Let D = ABC, where the dimensions of A, B, and C are, respectively, $p \times q$, $q \times r$, and $r \times p$. What is the relationship between: tr(ABC), tr(BCA), and tr(CAB)? Explain.

Solution:

They are all equal! Proof: $tr(D) = \sum_i D_{ii}$. Also, $D_{ij} = \sum_{k,l} A_{ik} B_{kl} C_{lj}$. Thus, $tr(D) = \sum_{i,k,l} A_{ik} B_{kl} C_{li}$ which is symmetric with respect to circular re-orderings of A - B - C (in that order).

Problem 1.2 (Multivariate Calculus) [9pts] Let A be a $d \times d$ matrix and $\mathbf{b}, \mathbf{x} \in \mathbb{R}^d$ be two $d \times 1$ column vectors. Let $f(\mathbf{x})$ denote a real-valued function of d variables (d components of \mathbf{x}).

(a) [2pts] Compute the gradient vector $\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_d}(\mathbf{x})\right)^{\top}$ when $f(\mathbf{x}) = \mathbf{b}^{\top} \mathbf{x}$. Solution:

$$f(\mathbf{x}) = \sum_{i} b_{i} x_{i} \Rightarrow \frac{\partial f}{\partial x_{i}}(\mathbf{x}) = b_{i} \Rightarrow \nabla f(\mathbf{x}) = \mathbf{b}.$$

(b) [3pts] Compute the gradient vector $\nabla f(\mathbf{x})$ when $f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} A \mathbf{x}$.

Solution:

Let $f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{b}$ where $\mathbf{b} = A\mathbf{x}$ is a function of \mathbf{x} . Then $f(\mathbf{x}) = \sum_{i} x_{i} b_{i}$. By the chain rule,

$$\frac{\partial f}{\partial x_i} = \sum_i \left[b_j \frac{\partial x_j}{\partial x_i} + x_j \frac{\partial b_j}{\partial x_i} \right] = b_i + \sum_i x_j A_{ji} = \sum_i (A_{ij} + A_{ji}) x_j = \sum_i (A + A^\top)_{ij} x_j.$$

Hence, $\nabla f(\mathbf{x}) = (A + A^{\mathsf{T}})\mathbf{x}$.

(c) [4pts] \clubsuit Let A be symmetric and invertible. If $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} + \mathbf{b}^{\top}\mathbf{x}$, then find \mathbf{x} 's for which $f(\mathbf{x})$ is minimum or maximum.

Solution:

 $f(\mathbf{x})$ is differentiable everywhere and is therefore minimized or maximized when $\nabla f(\mathbf{x}) = 0$ or at infinity. Using parts (a) and (b) and the fact that $A = A^{\top}$ (symmetric matrix) we get $\nabla f(\mathbf{x}) = A\mathbf{x} + \mathbf{b} = 0 \Rightarrow \mathbf{x} = -A^{-1}\mathbf{b}$ is the unique solution (since A is invertible). Thus $f(\mathbf{x})$ is minimum or maximum at $\mathbf{x} = -A^{-1}\mathbf{b}$ or at infinity. If A was positive definite, then $f(\mathbf{x})$ would be minimum at $\mathbf{x} = -A^{-1}\mathbf{b}$ and maximum (in fact, $+\infty$) at infinity. If A was negative definite, then $f(\mathbf{x})$ would be maximum at $\mathbf{x} = -A^{-1}\mathbf{b}$ and minimum (in fact, $-\infty$) at infinity. If A was neither positive nor negative definite, then the maximum is $+\infty$ and the minimum is $-\infty$ and both occur at infinity (along different directions).

Problem 1.3 (*Probability*) [21pts] Let W = Y + U, where label Y and additive noise U are independent random variables, $P(Y = +1) = \frac{3}{4}$, $P(Y = -1) = \frac{1}{4}$, and U is continuous with $U \sim \text{Uniform}[-3, 3]$.

Let observation (feature) $X = 2 \times 1(W > 0) - 1$. where 1(event) is the indicator function of the *event* and equals one if the *event* is true and equals zero if the *event* is false.

(a) [2pts] Sketch the graph of p(w|Y = +1). Proper labeling of axes and key points is needed to receive full credit.

Solution: The graph of p(w|Y = +1) is piecewise constant. It is equal to the constant 1/6 from w = -2 to w = 4 and the constant 0 for all other values of w. Key break points to indicate: w = -2, 4. Key values to indicate 1/6. Label w for horizontal axis.

(b) [2pts] Compute the joint pmf p(x, y) = P(X = x, Y = y) for all $x, y \in \{-1, +1\}$.

Solution: Note: $2 \times 1(W > 0) - 1 = \text{sign}(W)$. Thus both X and Y are discrete and take only the two values: ± 1 with nonzero probability. $P(X = +1, Y = +1) = P(W > 0, Y = +1) = P(W > 0|Y = +1) \times P(Y = +1) = \frac{4}{6} \times \frac{3}{4} = \frac{1}{2}$. Similarly, for other x, y:

$$p(x,y) = \begin{vmatrix} x = -1 & x = +1 \\ y = +1 & \frac{1}{4} & \frac{1}{2} \\ y = -1 & \frac{1}{6} & \frac{1}{12} \end{vmatrix}$$

(c) [1pt] Compute the marginal pmf p(x) = P(X = x), for x = -1, 1.

Solution: $P(X = -1) = P(X = -1, Y = +1) + P(X = -1, Y = -1) = \frac{1}{4} + \frac{1}{6} = \frac{5}{12}$. Also, $P(X = +1) = 1 - P(X = -1) = \frac{7}{12}$

(d) [2pts] Compute the mean/expectation: $\mu_X = E[X]$ and $\mu_Y = E[Y]$.

Solution: We have, $\mu_X = E[X] = -1 \times \frac{5}{12} + 1 \times \frac{7}{12} = \frac{1}{6}$. Similarly, $\mu_Y = E[Y] = -1 \times \frac{1}{4} + 1 \times \frac{3}{4} = \frac{1}{2}$.

(e) [2pts] Compute the variance: $\sigma_X^2 = \text{var}(X)$.

Solution:

We have
$$\sigma_X^2 = \text{var}(X) = E[X^2] - (E[X])^2 = 1 - (1/6)^2 = 35/36$$
.

(f) [2pts] Compute the correlation E[XY]. Are X and Y orthogonal? Explanation is needed to receive credit.

Solution:

 $E[XY] = 1 \times P(X = 1, Y = 1) + 1 \times P(X = -1, Y = -1) - 1 \times P(X = -1, Y = +1) - 1 \times P(X = +1, Y = -1) = \frac{1}{2} + \frac{1}{6} - \frac{1}{4} - \frac{1}{12} = \frac{1}{3}$. No, X and Y are not orthogonal because their correlation is not equal to zero.

(g) [2pts] Compute the covariance: $cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$. Are *X* and *Y* uncorrelated? Explanation is needed to receive credit.

Solution: $cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y = 1/3 - 1/6 \times 1/2 = 1/4 \neq 0$. No, X and Y are not uncorrelated because $cov(X, Y) \neq 0$.

(h) [2pts] Compute the conditional pmf p(x|y) = P(X = x|Y = y) for all $x, y \in \{-1, +1\}$.

Solution: *Note:* both *X* and *Y* are discrete and take only the two values: ± 1 with nonzero probability. $P(X = +1|Y = +1) = P(W > 0|Y = +1) = \frac{4}{6} = \frac{2}{3}$. Similarly, for other *x*, *y*:

		x = -1	x = +1
p(x y) =	y = +1	1/3	2/3
	y = -1	2/3	1/3

(i) [2pts] Are X and Y independent? Explanation is needed to receive credit.

Solution: X, Y not independent: $P(X = +1|Y = +1) = \frac{2}{3} \neq P(X = +1|Y = -1) = \frac{1}{3}$.

(j) [4pts] Compute the conditional expectation/mean E[Y|X=x] as a function of x.

Solution: $E[Y|X=x] = 1 \cdot P(Y=+1|X=x) - 1 \cdot P(Y=-1|X=x) = 2P(Y=1|X=x) - 1 = 2P(X=x|Y=1) \cdot P(Y=1)/P(X=x) - 1 = \begin{cases} 2 \cdot \frac{2/3 \cdot 3/4}{2/3 \cdot 3/4 + 1/3 \cdot 1/4} - 1 = 5/7 & \text{if } x = +1, \\ 2 \cdot \frac{1/3 \cdot 3/4}{1/3 \cdot 3/4 + 2/3 \cdot 1/4} - 1 = 1/5 & \text{if } x = -1. \end{cases}$

Problem 1.4 (Random Vectors) [10pts] Let Z_1, Z_2 be i.i.d. (scalar) standard Gaussians (normals) $\mathcal{N}(0, 1)$, i.e., independent and identically Gaussians with zero mean and unit variance. Let

$$\underbrace{\begin{bmatrix} X \\ Y \end{bmatrix}}_{\mathbf{U}} = \underbrace{\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix}}_{\mathbf{Z}} + \underbrace{\begin{bmatrix} -3 \\ 2 \end{bmatrix}}_{\mathbf{v}}$$

- (a) [2pts] Compute the 2×1 mean vector $E[\mathbf{U}]$.
- (b) [4pts] Compute the 2×2 (auto- or self-) covariance matrix Cov(U) of the random vector $\mathbf{U} = (X, Y)^{\mathsf{T}}$.
- (c) [4pts] Compute the 2×2 cross-covariance matrix $Cov(\mathbf{U}, \mathbf{Z})$ of the random vector \mathbf{U} and the random vector $\mathbf{Z} = (Z_1, Z_2)^{\mathsf{T}}$.

Solution:

- (a) [2pts] Since Z_1 and Z_2 have zero means, we have $E[\mathbf{U}] = A E[\mathbf{Z}] + \mathbf{v} = \mathbf{v} = (-3, 2)^{\mathsf{T}}$.
- (b) [4pts] Since Z_1 and Z_2 have zero means, are independent (therefore uncorrelated), and have and unit variances, $Cov(\mathbf{Z}) = I_2$, the 2×2 identity matrix. Thus, $Cov(\mathbf{U}) = A \cdot Cov(\mathbf{Z}) \cdot A^{\top} = A \cdot I_2 \cdot A^{\top} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$.
- (c) [4pts] $Cov(\mathbf{U}, \mathbf{Z}) = Cov(A\mathbf{Z} + \mathbf{v}, \mathbf{Z}) = A \cdot Cov(\mathbf{Z}) = A \cdot I_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$.