Logical Time in Distributed Systems

Sistemi di Calcolo (II semestre) – Roberto Baldoni

Logical clock

- Physical clock synchronization algorithms try to coordinate distributed clocks to reach a common value
 - based on the estimation of transmission times
 - it can be hard to find a good estimation.
 - In several applications it is not important when things happened but in which order they happened
- Reliable way of ordering events is required!

Notes:

- 1. Two events occurred at some process p_i happened in the same order as p_i observes them
- 2. When p_i sends a message to p_j the *send* event happens before the *receive* event

- Lamport introduces the happened-before relation that captures the causal dependencies between events (causal order relation)
 - \square We note with \rightarrow_i the ordering relation between events in a process p_i
 - □ We note with → the happened-before between any pair of events

Happened-Before Relation: Definition

- Two events e and e' are related by happened-before relation (e →
 e') if:
 - $-\exists p_i \mid e \rightarrow_i e'$
 - ∀ message m send(m) → receive(m)
 - send(m) is the event of sending a message m
 - receive(m) is the event of receipt of the same message m
 - ∃ e, e', e" | (e → e") ∧ (e" → e') (happened-before relation is transitive)

Happened-Before Relation

 Using the three rules is possible to define a causal ordered sequence of events e₁, e₂, ..., e_n

Notes:

- The sequence e₁, e₂, ..., e_n may not be unique
- It may exists a pair of events <e₁,e₂> such that e₁ and e₂ are not in happened-before relation
- If e₁ and e₂ are not in happened-before relation then they are concurrent (e₁||e₂)
- For any two events e₁ and e₂ in a distributed system, either e₁
 → e₂, e₂ → e₁ or e₁||e₂

happened-before: example

e^j_i is j-th event of process p_i

$$S_1 = \langle e_1^1, e_2^1, e_2^2, e_3^2, e_3^3, e_1^3, e_1^4, e_1^5, e_2^4 \rangle$$

 $S_2 = \langle e_3^1, e_1^2, e_1^3, e_1^4, e_3^5 \rangle$

Note:

 e_{3}^{1} and e_{2}^{1} are concurrent

Logical Clock

- The Logical Clock, introduced by Lamport, is a software counting register monotonically increasing its value
 - Logical clock is not related to physical clock
- Each process p_i employs its logical clock L_i to apply a timestamp to events
- L_i(e) is the "logical" timestamp assigned, using the logical clock, by a process p_i to events e.

Property:

- If $e \rightarrow e'$ then L(e) < L(e')

Observation:

 The ordering relation obtained through logical timestamps is only a partial order. Consequently timestamps could not be sufficient to relate two events

Scalar Logical Clock: an implementation

- Each process p_i initializes its logical clock $L_i=0$ ($\forall i=1...N$)
- p_i increases L_i of 1 when it generates an event (either send or receive)
 - $L_i = L_i + 1$
- When p_i sends a message m
 - creates an event send(m)
 - increases L_i
 - timestamps m with t=L_i
- When p_i receives a message m with timestamp t
 - Updates its logical clock L_i = max(t, L_i)
 - Produces an event receive(m)
 - Increases L_i

Scalar Logical Clock: example

- e^{j} is j-th event of process pi
- L_i is the logical clock of p_i
- Note:
- $e_1^1 \rightarrow e_1^2$ and timestamps reflect this property
- $e_1^1 \parallel e_3^1$ and respective timestamps have the same value
- $e_2^1 \parallel e_3^1$ but respective timestamps have different values

Limits of Scalar Logical Clock

- Scalar logical clock can guarantee the following property
 - IF $e \rightarrow e'$ then L(e) < L(e')
- But it is not possible to guarantee
 - IF L(e) < L(e') then e \rightarrow e'
- Consequently:
 - It is not possible to determine, analysing only scalar clocks, if two events are concurrent or correlated by the happened-before relation.
- Mattern [1989] and Fridge [1991] proposed an improved version of logical clock where events are time-stamped with local logical clock and node identifier
 - Vector Clock

Vector Clock: definition

- Vector Clock for a set of N processes is composed by an array of N integer counters
- Each process p_i maintains a Vector Clock V_i and timestamps events by mean of its Vector Clock
- Similarly to scalar clock, Vector Clock is attached to message m (in this case we attach an array of integer)
- Vector Clock allows nodes to order events in happens-before order based on timestamps
 - Scalar clocks: e → e' implies L(e) < L(e')
 - Vector clocks: e → e' iff L(e) < L(e')

Vector Clock : a possible implementation

- Each process p_i initializes its Vector Clock V_i
 - $V_{i}[j] = 0 \forall j = 1 ... N$
- p_i increases V_i[i] by1 when it generates an event
 - $V_i[i] = V_i[i] + 1$
- When p_i sends a message m
 - Creates an event send(m)
 - Increases V_i
 - timestamps m with t=V_i
- When p_i receives a message m containing timestamp t
 - Updates it logical clock V_i[j] = max(t[j], V_i[j]) ∀ j = 1... N
 - Generates an event receive(m)
 - Increases V_i

Vector Clock: an example

Vector Clock: properties

- A Vector Clock V_i
 - V_i[i] represents the number of events produced by p_i
 - V_i[j] with i ≠ j represents the number of events generated by p_j that p_i can known
- V = V' if and only if
 - $-V[j]=V'[j] \forall j=1...N$
- V ≤ V' if and only if
 - $-V[j] \leq V'[j] \forall j = 1...N$
- V < V' therefore the event associated to V happened before the event associated to V' if and only if
 - $\bigvee \leq \bigvee' \land \bigvee \neq \bigvee'$
 - ∀ i = 1...N V [i] ≤ V' [i]
 - ∃ i ∈ {1 ... N} | V [i] < V' [i]

A comparison of Vector Clocks

Differently from Scalar Clock, Vector Clock allows to determine if two events are concurrent or related by an happened-before relation

Logical Time and Ricart-Agrawal Mutual Exclusion Algorithm

Logical clock in distributed algorithms

- We have seen two mechanisms to represent logical time
 - Scalar Clock
 - Vector Clock
- Each mechanism can be used to solve different problems, depending on the problem specification
 - Scalar Timestamp → Lamport's Mutual Exclusion
 - Vector Timestamp → Causal Broadcast

Ricart-Agrawala's algorithm: implementation (see also lecture notes)

- Local variables
 - #replies (initially 0)
 - State ∈ {Requesting, CS, NCS} (initially NCS)
 - Q pending requests queue (initially empty)
 - Last Req
 - Num
- Algorithm

begin

- State=Requesting
- 2. Num=num+1; Last Reg=num
- 3. ∀ i=1...N send REQUEST to pi
- Wait until #replies=n-1
- State=CS
- 6. CS
- 7. \forall r \in Q send REPLY to r
- 8. Q= ∅; State=NCS; #replies=0

Upon receipt REQUEST(t) from pj

- 1. Num=max(t,num)
- 2. If State=CS or (State=Requesting and {Last Req,i}<{t,j})
- 3. Then insert in Q{t, j}
- 4. Else send REPLY to pj

Upon receipt of REPLY from pj

1. #replies=#replies+1

Causal Order among broadcast events

- When p_i issues a broadcast it sends a message m to each other process in the system
- An event e=broadcast(m) causally precedes another event e'=broadcast(m')
 if at least one of following condition is true
 - e and e' has been produced by the same process and broadcast(m) happens before broadcast(m')
 - e and e' was been produced by different processes but e' was produced only after the deliver of m
 - ∃ m" | broadcast(m) → broadcast(m") ∧ broadcast(m") → broadcast(m')

Causal Broadcast

 Causal broadcast was introduced by Birman and Joseph in order to reduce the asymmetry of communication channels as it was perceived by processes.

Specification:

- Let m and m' be two broadcast messages such that broadcast(m) → broadcast(m') then each process must deliver m before m'
- Let m and m' two broadcast messages such that $broadcast(m) \mid\mid broadcast(m')$ then m and m' can be delivered in a different order by different processes

Causal Broadcast: an example

- In this scenario
 - \square m₁ \rightarrow m₃ \Rightarrow every process must deliver m₁ before m₃
 - \square m₁ || m₂ \Rightarrow m₁ and m₂ can be delivered in any order
 - \square m₁ \rightarrow m₄ \Rightarrow every process must deliver m₁ before m₄

Causal broadcast: an implementation

- Asynchronous system without failures
- Idea:
 - A process p_i delays the deliver of a message m until every message that causally comes before m is delivered
- Each process p_i maintains a Vector Clock V_i containing the knowledge of p_i about the number of message sent by each process
- V_i [j] represents the number of messages sent by p_i, and delivered by p_i
- Each broadcast message contains a vectorial timestamp m.VC
- When p_i receives a broadcast message m, delays the delivery of m until every message that causally precedes m is delivered
 - $\forall k \in \{1 \dots N\} \text{ m.VC}[k] \leq V_i[k]$

Causal Broadcast: pseudo-code

- Each process p_i implements the following rules to manage the casual broadcast
- Procedure broadcast (m)
 - m.VC = V_i // message timestamp
 - for all j ∈ {1 ... N}
 - Send(m) to p_i // message broadcast
 - endFor
 - $V_i = V_i + 1 //updating local clock$
- Upon receive m from p_i
 - delay the delivery until $\forall k \in \{1 ... N\}$ m.VC[k] $\leq V_i$ [k]
 - if $i \neq j$
 - then $V_i[j] = V_i[j] + 1$ //updating local clock
 - deliver m to the upper layer //deliver event

Causal Broadcast: an example

Causal Broadcast: Safety

Property:

- Let two broadcast messages m and m' such that $broadcast(m) \rightarrow broadcast(m')$ then each process have to <u>deliver</u> m before m'

Observation:

- if m is the k-th message sent by p_i then m.Vc[i]= k-1
- Safety property can be proved by induction using the causal ordering relation among broadcast messages

Definition:

- Let two broadcast events b and b' with b → b'. These events have a causal distance k if ∃ a sequence of k broadcast events b₁ ... b_k such that
 - $\forall I \in \{1... k\} b_i \rightarrow b_{i+1} \land (\neg \exists) m^* \mid b_i \rightarrow m^* \rightarrow b_{i+1}$
 - $b \rightarrow b_1$
 - $b_k \rightarrow b'$

Proof – basic case (K=0)

- Given two messages m, m' such that
 - 1. broadcast(m) → broadcast(m')
 - There does not exists broadcast(m") such that broadcast(m) → broadcast(m") ∧ broadcast(m") → broadcast(m").
- We can have two distinct cases
 - 1. m and m' have been issued by the same process
 - 2. m and m' have been issued by distinct processes

Case 1 – brodacast produced by the same process

- 1. p_i is the receiver
- 2. For line 3 in broadcast procedure
 - m'.VC[i]:= m.VC[i]+1.
 if m is the h-th message sent by p_i, m.VC[i]=h-1 and m'.VC[i]=h.
- 3. A process p_i that receives m' verifies the following delivery condition:
 - 1. $\forall x \in \{1,...,n\}$ m'. $VC[x] \le V_j[x]$ and m'. $VC[i] \le V_j[i]$
- 4. $V_i[x]$ is equals to h if and only if the h-th message sent by p_x was delivered by p_i . (line 3 receive thread).
- 5. Consequently from 2,3,4, m' can be delivered only after the deliver of m.

Case 1 – brodacast produced by distinct processes

- m and m' was been sent by distinct processes, respectively p_i e p_j. P_k is the receiver.
- broadcast(m) → broadcast(m'), m' was broadcasted by p_j after the deliver of m.
 - Without loss of generality m.VC[i]=h-1
 - For line 3 of reception thread e for assumption of k=0 we have m'.VC[i]=h.
- The receiver process p_k respects the following delivery condition:
 - \forall x ∈ {1,...,n} m'.VC[x] ≤ $V_k[x]$ and m'.VC[i] ≤ $V_k[i]$
- To deliver the message, m'.VC[i] ≤ V_k[i], that is V_k[i] ≥ h
- $V_k[i]$ is equals to h if and only if the h-th message sent by p_i has been delivered by p_k . (line 3 of reception thread thread).
- For 2,3,4, p_k can deliver m' only after the deliver of m

Proof – Inductive step(k>0)

- ∃ a sequence of k broadcast events b₁, b₂ ... b_k such that
 b → b₁ → b₂ → ... → b_k → b'
- Inductive hypothesis: m has been delivered before m_k
- We have to prove that m_k has been delivered before m'.
 - It follows from the basic case.
- m has been delivered before m'.

Causal Broadcast: Liveness

- Property:
 - Eventually each message will be delivered
- Liveness is guaranteed by the following assumptions:
 - The number of broadcast events that precedes a certain event is finite
 - Channels are reliable