Compound Circular Curve

اجزاء قوس

طول مماس قوس اول $T_1t_1=t_1t=R_1 anrac{arDelta_1}{2}$ طول مماس قوس دوم $T_2t_2=t_2t=R_2 anrac{\Delta_2}{2}$

طول مماس مشتری $t_1t_2=t_1t+t_2t$

طول قوس اول
$$\Delta=\Delta_1+\Delta_2$$
 طول قوس اول $L_1=R_1 imes\Delta_1$ خاویه انحراف کل $L=L_1+L_2$ طول کل قوس $L_2=R_2 imes\Delta_2$

طول قوس اول
$$\Delta=\Delta_1+\Delta_2$$
 طول قوس اول $L_1=R_1 imes\Delta_1$ خاویه انحراف کا $L=L_1+L_2$ طول کل قوس دوم $L_2=R_2 imes\Delta_2$

$$L_2 = R_2$$
 طول قوس دوم $L_2 = L_1 + L_2$ طول گل قوس دوم $L_2 = R_2$ $L_2 = R_2$ $\frac{t_1 I}{\sin(\Delta_2)} = \frac{t_1 t_2}{\sin(\Delta_1)} = \frac{t_2 I}{\sin(\Delta_1)}$ \Rightarrow $t_2 I = t_1 t_2 \times \frac{\sin(\Delta_2)}{\sin(\Delta)}$ $t_2 I = t_1 t_2 \times \frac{\sin(\Delta_1)}{\sin(\Delta)}$ $t_2 I = T_1 t_1 + t_1 I$ طول مماس ورودی $T_2 I = T_2 t_2 + t_2 I$ طول مماس خروجی

اجزاء قوس

به تفکیک برای هر قوس داریم:

PI: Point of intersection

BC: Beginning of curve

EC: End of curve

 Δ =I: Intersection angle

R: Radius

L: Length of curve

LC: Long chord

T: Tangent

M: Middle ordinate

E: External distance

طول مماس
$$T1=T2=T=R an(rac{\Delta}{2})$$
 طول قوس $L=R.\Delta$ طول قوس $C=2\overline{T1M}=2R\sin(rac{\Delta}{2})$

طول خارجی
$$E=\overline{ES}=B.$$
 $D=R(\sec(\frac{\Delta}{2})-1)=T\tan(\frac{\Delta}{4})$ طول خارجی $\overline{EM}=M=R-\overline{OM}=R-R\cos(\frac{\Delta}{2})=R(1-\cos(\frac{\Delta}{2}))$

$$\delta = \left(\frac{l}{2R}\right)^{rad} = \left(\frac{l}{2R} \times \frac{180}{\pi}\right)^{\circ} = \left(\frac{l}{2R} \times \frac{200}{\pi}\right)^{g}$$

 $c = 2Rsin\delta$

پیاده سازی به روش مختصات قطبی:

♦ به طور کلی زاویه انحراف هر نقطه مانند i از رابطه زیر تعیین می شود.

$$\widehat{Ai} = L_i$$

$$L_i = R. (2\delta_i)$$

$$\delta_i = (\frac{L_i}{2R})_{rad}$$

$$\delta_i = \frac{L_i}{2R} \times (\frac{180^\circ}{\pi} \ \text{L} \frac{200^g}{\pi})$$

 \mathbf{L}_{i} محاسبه وتر نظير طول قوس کوتاه lacktriangle

$$Sin\left(\frac{2\delta_{i}}{2}\right) = \frac{\overline{Ai}/_{2}}{OA} = \frac{C_{i}/_{2}}{R} = \frac{C_{i}}{2R}$$

$$C_{i} = 2R. Sin \delta_{i}$$

ابه تعدادی طول کو قوس کوتاه L مطول قوس کوتاه -1

طول كل قوس
$$=L=L_1+L_c+L_c+L_2=L_1+2L_c+L_2$$

۲- تعیین زوایای انحراف جزء

زاویه انحراف جزء نقطه اول
$${
m d_1}={L_1\over 2R} imes{180^\circ\over\pi}$$
 واویه انحراف جزء نقاط میانی روی قوس ${
m D}={L_c\over 2R} imes{180^\circ\over\pi}$ زاویه انحراف جزء نقطه آخر ${
m d_2}={L_2\over 2R} imes{180^\circ\over\pi}$

وتر جزء طول قوس اول $c_1=2R.\sin\!d_1$ وتر جزء طول قوسهای میانی $c=2R.\sin\!D$ وتر جزء طول قوس آخر $c_2=2R.\sin\!d_2$

$$\begin{split} S\hat{A}1 &= \delta_1 = \mathrm{d}_1 \\ S\hat{A}2 &= \delta_2 = \mathrm{d}_1 + \mathrm{D} \\ S\hat{A}3 &= \delta_3 = \mathrm{d}_1 + \mathrm{D} + \mathrm{D} = \mathrm{d}_1 + 2\mathrm{D} \\ S\hat{A}B &= \delta_4 = \mathrm{d}_1 + \mathrm{D} + \mathrm{D} + \mathrm{d}_2 = \mathrm{d}_1 + 2\mathrm{D} + \mathrm{d}_2 = \frac{\Delta}{2} \end{split} \tag{كنترل محاسبات)}$$

$$KM_{1} = KM_{A} + L_{1}$$

$$KM_{2} = KM_{A} + L_{1} + L_{c} = KM_{1} + L_{c}$$

$$KM_{3} = KM_{A} + L_{1} + L_{c} + L_{c} = KM_{A} + L_{1} + 2L_{c} = KM_{2} + L_{c}$$

$$KM_{B} = KM_{A} + L_{1} + L_{c} + L_{c} + L_{2} = KM_{A} + L = KM_{3} + L_{2}$$