

Statistical Characterisation of Porous Media at the Pore Scale Progress Report 3

Student:

Lukas Mosser

Supervisors:

Professor Olivier Dubrule

Professor Martin Blunt

Report Outline

- Current Status
- Next Steps
- Meeting Summaries

Current Status

- Parametric Models
 - Regular spaced ellipsoids now automated
 - » Computed Minkowski tensors as a function of second axis length
 - » Original model contained misplaced mesh elements leading to large anisotropy
 - » New models show strong anisotropy change as function of deviation from sphericity
 - » Key aspect of work: Sensitivity of the Minkowski Tensors to changes in geometry
 - E.g. Could indicate selective or directional cementation in samples
 - Requires mathematical understanding of how these anisotropies arise
- Evaluation of Micro-CT Images:
 - Computed Minkowski Tensors as function of expanding window (for 4 images, 500^3, Bentheimer results this week)
 - Results for 1st Translation Invariant Minkowski Tensor:
 - » Show strong anisotropy in Ketton when compared to Beadpack
 - » Possibly due to selective or directional cementation in Ketton
 - Results for 2nd Translation Invariant Minkowski Tensor:
 - » More expected order of anisotropy
 - Beadpack -> Ketton -> Estaillades -> Doddington
 - Doddington Angular -> Ketton/Beadpack Smooth surfaces i.e. constant curvature
 - 2nd Tensor interpretation as surface texture (preliminary)
- Evaluation of possible links to permeability
 - Micro-CT Images available where permeability in x,y,z has been computed
 - Computation of Minkowski Tensors on these images (next steps)
- Comparison of Minkowski Tensors to other "classical" measures
 - Covariance

Next Steps

- Computation of Covariance on available images
 - 1D, 2D Radial Profile Plot?, 3D (FFT method)
- Compute regular spaced ellipsoid model for range of radii
- Computation of Minkowski tensor for more complex parametric models
 - Preferential cementation model
 - » Change deviation from sphericity as function of sample height
 - Should induce anisotropy in 1 preferential direction
 - Revisit ellipsoid model
- Investigate mathematical cause of strong anisotropy change
- Computation of Minkowski tensors on images with precomputed permeability
- Acquire computational resources to compute permeability on 1000^3 images
- Next Meeting:
 - TBA
 - Professor Olivier Dubrule away July, August
 - Dr. Branko Bijeljic at Imperial in July

Meeting 6:

- Date: 24/06/2016
- Attendants: Prof. Martin Blunt, Prof. Olivier Dubrule, Lukas Mosser
- Discussed Topics:
 - Need for physical interpretation of Minkowski Tensors
 - » Translation Invariant Minkowski Tensors 1 and 2
 - Discussion of results based on parametric models:
 - » Bundle of tubes, regular spaced spheres, regular spaced ellipsoids
 - » Why are the eigenvalues for the cylindrical parametric model not the same?
 - Minkowski Tensors computed for 500³ voxel images
 - » Ketton shows strongest anisotropy
 - » Beadpack as expected shows near isotropic behavior
 - Normalization necessary to better understand tensors

Meeting 7:

- Date: 30/06/2016
- Attendants: Prof. Martin Blunt, Prof. Olivier Dubrule, Lukas Mosser
- Discussed Topics:
 - Physical Interpretation of Minkowski Tensors
 - » MT1: Second order moment (variance) of surface orientation
 - » MT2: Second order moment (variance) of surface orientation and curvatures
 - Normalization:
 - » Normalize by scalar Minkowski functionals of same order
 - » Normalization by surface area gives equivalent radius of curvature from MT2
 - Thesis structure:
 - » Classical Measures: What do they tell us? Compute
 - » Minkowski Tensors: What information do they contribute?
 - » Permeability: Evaluate permeability on 1000^3 images
 - » High Sensitivity to anisotropy possibly key feature of Minkowski tensors
 - » Requires mathematical treatment and modeling rather than computation
 - Computation of covariance on images

Meeting 8:

Date: 01/07/2016

Attendants: Dr. Ali Raeini, Lukas Mosser

Discussed Topics:

- Available Permeability tensor data
- For individual images permeability in x, y and z available
- Possible to compute 1000^3 images but takes ~ 1 day per direction + 50 GB RAM

Meeting 9:

- Date: 04/07/2016
- Attendants: Dr. Branko Bijeljic, Lukas Mosser
- Discussed Topics:
 - Discussion of previous work up to now
 - Selective cementation a possible reason for ketton deviation from isotropic behavior
 - Computational resources available for permeability and tensor computation
 - Branko will check with Ali Raeini which images need to be computed