Substantiate the answers

Exercises

- 1. For each one of the following classes of languages, provide two languages in the class.
 - (a) $\mathscr{L} = \{ L \subseteq \Sigma^* : \Sigma^2 \subseteq L \}$
 - (b) $\mathcal{L} = \{ L \subseteq \Sigma^* : \forall n \ge 0, |L \cap \Sigma^n| \le 1 \}$
 - (c) $\mathscr{L} = \{L \subseteq \Sigma^* : x \in L \Leftrightarrow x^r \in L\}$
 - (d) $\mathcal{L} = \{ L \subseteq \Sigma^* : L \cap (\Sigma \Sigma)^* = \emptyset \}$
- 2. Given $L = \{x \in \{a,b\}^* : ab \notin Suf(x)\}$ and the following automaton:

obtain a DFA for the following languages:

- (a) $L \cap L(A)$
- (b) $L \cap L(A)^r$
- (c) $\overline{L} \cup L(A)$
- (d) $\overline{L} \cup \overline{L(A)^r}$
- (e) $L \cup \overline{L(A)}$
- 3. Given $L = \{axb : x \in \{a,b\}^*\}$, the following automaton:

and the homomorphism:

$$\begin{cases} h(0) = ba \\ h(1) = ab \end{cases}$$

obtain a DFA for the following languages:

- (a) $(aab)^{-1}L$
- (b) $(aba)^{-1}L(A)$
- (c) $(aba)^{-1}\overline{L}$
- (d) $h^{-1}(L(A))$
- (e) $\overline{h^{-1}(L)}$
- (f) $h^{-1}(L) \cap h^{-1}(\overline{L(A)})$
- (g) $\overline{L(A)^r}$
- 4. Given the following automata:

and the homomorphism:

 A_2

$$\begin{cases} h(0) = ba \\ h(1) = ab \end{cases}$$

obtain a DFA for the language $\overline{h^{-1}(L(A_1))} \cap L(A_2)$

5. Let consider the following classes of languages:

$$\mathcal{L}_p = \{ L \subseteq \Sigma^* : \Sigma^2 \subseteq L \}$$

$$\mathcal{L}_t = \{ L \subseteq \Sigma^* : \forall n \ge 0, |L \cap \Sigma^n| \le 1 \}$$

$$\mathcal{L}_r = \{ L \subset \Sigma^* : x \in L \Leftrightarrow x^r \in L \}$$

- (a) Is \mathcal{L}_p closed under union operation?
- (b) Is \mathcal{L}_p closed under intersection?
- (c) Is reverse a closed operation in \mathcal{L}_p ?
- (d) Is the class \mathcal{L}_t closed with respect to the union operation?
- (e) Is intersection a closed operation in the class \mathcal{L}_t ?
- (f) Is complementary a closed operation in the class \mathcal{L}_t ?
- (g) Is reverse a closed operation in the class \mathcal{L}_r ?
- (h) Is product (concatenation) a closed operation in the class \mathcal{L}_r ?

6. Let n be a positive integer. We define the class of languages \mathcal{L}_n as follows:

$$\mathcal{L}_n = \{ \Sigma^* - D : card(D) > n \}$$

Is \mathscr{L}_r closed with respect to the boolean operations (union, intersection and complement)?

7. Obtain the minimum DFA equivalent to the following automata.

(a)

(e)

(f)

- 8. Decide whether the following statement is true or not. Let A be a DFA such that all its states are final. Then, $L(A) = \Sigma^*$.
- 9. Given the following automata:

 A_2 A_2 A_3 A_4 A_5

Decide algorithmically whether $L(A_1) \subseteq L(A_2)$.

- 10. Provide a regular expression for each one of the following languages:
 - (a) $L = \{x \in \{a,b\}^* : |x| \mod 2 = 0\}$
 - (b) $L = \{x \in \{a,b\}^* : ab \not\in Seg(x)\}$
 - (c) $L = \{x \in \{a,b\}^* : ab \not\in Seg(x) \land ba \in Seg(x)\}$
- 11. Enumerate the first ten words in canonical order of the following languages:
 - (a) $bb^*a^* + a^*$
 - (b) $(bab + a)^*$
 - (c) $a(b+ba)^* + b(a+ab)^*$
- 12. Obtain the position automaton from each one of the following regular expressions.

- (a) $(ab^*a)^*$
- (b) $a(b + ba)^*$
- (c) $(ba)^* + (aa + bb)^*$
- (d) $(a + b(ca)^*)^*$
- (e) $(a+bb)^*a(b+aa)^*$
- (f) $b(bb)^*a^*(cc)^* + \lambda$
- (g) $ab^*a + b(aa)^*b$
- 13. Obtain the follow automaton from each one of the following regular expressions.
 - (a) $(ab^*a)^*$
 - (b) $b(a + ab)^*$
 - (c) $(ab)^* + (bb + aa)^*$
 - (d) $(a + b(ca)^*)^*$
 - (e) $(a+bb)^*a(b+aa)^*$
 - (f) $b(bb)^*a^*(cc)^* + \lambda$
 - (g) $ab^*a + b(aa)^*b$
 - (h) $(bb^*a + (aa)^*)^*$
- 14. Given the expression $\alpha = a^*ba^* + b^*ab^*$ and the homomorphism:

$$\begin{cases} h(0) = ba \\ h(1) = ab \end{cases}$$

obtain the minimum DFA of the language $h^{-1}(L(\alpha))$

15. Obtain a regular expression to represent the languages accepted by each one of the following automata:

(a)

(b)

(c)

(d)

(e)

(f)

