MDA IZ Zadania III cz 2.

Zadanie 3.

Wykonaj mnożenie poniższych trzech wielomianów:

$$[(x + x^3 + x^5 + x^7)(1 + x^2 + x^4)](1 + x^2)$$

Zadanie 4.

X = <7*a, 4*b, 2*c>; rozważ takie podzbiory, w których element a występuje nieparzystą liczbę razy, zaś elementy b i c występują parzystą liczbę razy. Skonstruuj funkcję tworzącą dla ciągu liczb podzbiorów k-elementowych, spełniających podany warunek. Ile takich podzbiorów zawiera więcej niż 5 elementów?

Zadanie 5.

Ile jest całkowitoliczbowych nieujemnych rozwiązań równania $x_1 + x_2 + x_3 + x_4 + a + b = 12$ takich, że a = 2 lub b = 5?

Zadanie 5'.

Ile jest rozwiązań równania $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = 20$ gdzie x_1 , x_2 , x_3 są dodatnie, x_4 , x_5 , x_6 , x_7 są nieujemne.

Zadanie5".

(Zmienne są całkowitoliczbowe.)

Île rozwiązań ma równanie $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = 40$ gdzie x_1 , x_2 , x_3 są dodatnie, $x_4 \ge 5$, $x_5 > 3$, $x_6 = 2$, $x_7 > 4$.

Zadanie 6.

Ile (wszystkich) rozwiązań ma nierówność $x_1+x_2+x_3 \leq 6$, gdzie x_1 , x_2 , x_3 są liczbami całkowitymi, nieujemnymi?

Zadanie 6'.

Ile (wszystkich) rozwiązań ma ta nierówność zadania 6., jeśli dodatkowo muszą być spełnione warunki:

 x_1 – nieparzysta, $x_2 < 5$, $x_3 = 0$, 3, 5 ? (Tu też zakładamy, że x_1 , x_2 , x_3 są liczbami całkowitymi, nieujemnymi).