Inferring Transients

Carl Boettiger
Dept of Environmental Science, Policy, & Management
University of California, Berkeley
@cboettig

29 March 2019

How do we answer

"is my system in a transient?"

Yes

(Provided N > 0)

Everything is transient?

Everything is transient?

• Any finite population is guaranteed to go extinct

Approximately stationary?

- Approximately stationary?
- Deterministic model

- Approximately stationary?
- Deterministic model
- Continuous state model, environmental noise

- Approximately stationary?
- Deterministic model
- Continuous state model, environmental noise
- Quasi-stationary distribution

Identifying transient dynamics in actual data can be challenging!

Is this transient behavior?

Eastern Atlantic Bluefin Tuna population dynamics, Bjørnstad et al. (2004).

Simulations from proposed model

Simulations from deterministic skeleton

Proposed model: Quasi-cycles

$$\begin{aligned} x_{t+1} &= x_t + x_t r \left(1 - \frac{x_t}{K}\right) - b x_t y_t + \xi_{x,t} \\ y_{t+1} &= y_t + c x_t y_t - d y_t + \xi_{y,t} \end{aligned}$$

Nisbet & Gurney Nature (1976)

So what do quasi-cycles have to do with inferring transients?

 Transient behavior in the deterministic skeleton reveals / drives the stationary behavior of the full stochastic model.

Is this a transient?

Prevalence of rubella in Copenhagen, Keeling et al 2001.

Model dynamics

Model

$$X_{t+1} = X_t + \underbrace{X_t r \left(1 - \frac{X_t}{K}\right)}_{\text{growth, } g(X_t)} - \underbrace{\frac{a X_t^Q}{X_t^Q + H^Q}}_{\text{consumption, } c(X_t)} + \xi_t,$$

May (1977) Nature

Stochastic Switching

Stochastic Switching

• Are these transitions transient dynamics?

- Are these transitions transient dynamics?
- Asymptotic behavior may tell us very little not even what attractor we are in

- Are these transitions transient dynamics?
- Asymptotic behavior may tell us very little not even what attractor we are in
- Short-term behavior may be more informative

- Are these transitions transient dynamics?
- Asymptotic behavior may tell us very little not even what attractor we are in
- Short-term behavior may be more informative
- Stochastic transition across saddle point is rapid (large deviation theory)

Is this a transient?

Model simulation

Vertical red dashed line indicates tipping point location

EWS - transient detection?

Signatures of CSD?

EWS - transient detection?

When will we actually observe critical slowing down?

Boettiger & Hastings (2012)

Statistical power for detection

Statistical power for detection

Boettiger & Hastings (2012)

EWS - transient detection?

Different transient paths

Different transient paths

Critical speeding up?

$$dX_t = X_t \frac{r}{\beta} \left(\frac{X_t}{\beta A} - 1 \right) \left(1 - \frac{X_t}{\beta C} \right) dt + \sigma dB_t$$

ullet Carrying capacity C, Allee threshold A

Titus et al (2019)

Critical speeding up?

$$dX_t = X_t \frac{r}{\beta} \left(\frac{X_t}{\beta A} - 1 \right) \left(1 - \frac{X_t}{\beta C} \right) dt + \sigma dB_t$$

- \bullet Carrying capacity C, Allee threshold A
- available territory β

Titus et al (2019)

 External driver: slowly changing parameter, drives transient behavior

- External driver: slowly changing parameter, drives transient behavior
- System that appears approx stationary experiences dramatic change *due to this transient shift*

- External driver: slowly changing parameter, drives transient behavior
- System that appears approx stationary experiences dramatic change due to this transient shift
- System dynamics, e.g. bifurcation point, suggest a mechanism to detect this slow transient

- External driver: slowly changing parameter, drives transient behavior
- System that appears approx stationary experiences dramatic change due to this transient shift
- System dynamics, e.g. bifurcation point, suggest a mechanism to detect this slow transient
- As before, transient detection is predicated on knowing the right model structure / mechanisms

- External driver: slowly changing parameter, drives transient behavior
- System that appears approx stationary experiences dramatic change due to this transient shift
- System dynamics, e.g. bifurcation point, suggest a mechanism to detect this slow transient
- As before, transient detection is predicated on knowing the right model structure / mechanisms
- (Ironically we often assume ergodicity in computing EWS)

- External driver: slowly changing parameter, drives transient behavior
- System that appears approx stationary experiences dramatic change due to this transient shift
- System dynamics, e.g. bifurcation point, suggest a mechanism to detect this slow transient
- As before, transient detection is predicated on knowing the right model structure / mechanisms
- (Ironically we often assume ergodicity in computing EWS)
- Endogonize parameter change as a state variable, can recover stationary oscillator dynamics

Transient signatures in fluctuation dynamics

Markov process

Linear Noise Approximation

Fundamental Equations

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = \alpha_{1,0}(\phi) + \alpha''_{1,0}(\phi)\sigma^2 \tag{1}$$

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = \alpha_{1,0}(\phi) + \alpha''_{1,0}(\phi)\sigma^2 \qquad (1)$$

$$\frac{\mathrm{d}\sigma^2}{\mathrm{d}t} = 2\alpha'_{1,0}(\phi)\sigma^2 + \alpha_{2,0}(\phi) \qquad (2)$$

$$\alpha_{1,0}(\phi)=b(\phi)-d(\phi),\quad \alpha_{2,0}=b(\phi)+d(\phi)$$

Distinct Fluctuation Regimes

Distinct Fluctuation Regimes

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \underbrace{c\frac{n}{N}\left(1 - \frac{n}{N}\right)}_{b_n} - \underbrace{e\frac{n}{N}}_{d_n}$$

$$\frac{\mathrm{d}\sigma^2}{\mathrm{d}t} = 2\alpha_{1,0}'(\phi)\sigma^2 + \alpha_{2,0}(\phi)$$

Distinct Fluctuation Regimes

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \underbrace{c\frac{n}{N}\left(1 - \frac{n}{N}\right)}_{b_n} - \underbrace{e\frac{n}{N}}_{d_n}$$

$$\frac{\mathrm{d}\sigma^2}{\mathrm{d}t} = 2\alpha_{1,0}'(\phi)\sigma^2 + \alpha_{2,0}(\phi)$$

$$\begin{array}{c} \hat{\sigma}^2 = \\ \frac{b(n) + d(n)}{2[d'(n) - b'(n)]} \end{array}$$

$$\hat{\sigma}^2 = rac{b(n) + d(n)}{2[d'(n) - b'(n)]}$$

•
$$N = 1000$$
, $e = 0.2$, $c = 1$

$$\hat{\sigma}^2 = rac{b(n) + d(n)}{2[d'(n) - b'(n)]}$$

- N = 1000, e = 0.2, c = 1
- $\hat{n} = N \left[1 \frac{e}{c} \right] = 800$

$$\hat{\sigma}^2 = rac{b(n)+d(n)}{2[d'(n)-b'(n)]}$$

- N = 1000, e = 0.2, c = 1
- $\hat{n} = N \left[1 \frac{e}{c} \right] = 800$
- $\hat{\sigma}^2 = N \frac{e}{c} = 200$

$$\hat{\sigma}^2 = rac{b(n)+d(n)}{2[d'(n)-b'(n)]}$$

- N = 1000, e = 0.2, c = 1
- $\hat{n} = N \left[1 \frac{e}{c} \right] = 800$
- $\hat{\sigma}^2 = N \frac{e}{c} = 200$
- Dots are simulation averages, lines are theoretical prediction

$$\begin{array}{c} \hat{\sigma}^2 = \\ \frac{b(n) + d(n)}{2[d'(n) - b'(n)]} \end{array}$$

- N = 1000, e = 0.2, c = 1
- $\hat{n} = N \left[1 \frac{e}{c} \right] = 800$
- $\hat{\sigma}^2 = N \frac{e}{a} = 200$
- Dots are simulation averages, lines are theoretical prediction

Fluctuation Enhancement

With an initial condition starting deep in the enhancement regime, fluctuations grow exponentially. At N=400, dissipation takes over and fluctuations return to the same equilibrium as before.

• Inference of transients depends on the model

- Inference of transients depends on the model
- Testing if system meets assumptions of the model may matter more than statistical inferences conditional on the model(s)

- Inference of transients depends on the model
- Testing if system meets assumptions of the model may matter more than statistical inferences conditional on the model(s)
- Stochasticity matters can change how transients behave, or even change our definition of transient behavior.

- Inference of transients depends on the model
- Testing if system meets assumptions of the model may matter more than statistical inferences conditional on the model(s)
- Stochasticity matters can change how transients behave, or even change our definition of transient behavior.
- Stochasticity + transient dynamics can be a rich source of information in a complex and nonlinear world