Pumping Lemma

(O Lema del Bombeo para los amigos)

Sea L un lenguaje regular. Existe entonces una constante n (que depende de L) tal que para toda cadena w perteneciente a L con $|w| \ge n$, podemos descomponer w en tres cadenas, w = xyz, tales que:

- 1. $|y| > \emptyset$.
- 2. $|xy| \le n$.
- 3. Para todo $k \ge 0$, la cadena xy^kz también pertenece a L.

Es decir, siempre podemos hallar una cadena no vacía y no demasiado alejada del principio de w que pueda "bombearse"; es decir, si se repite y cualquier número de veces, o se borra (el caso en que k=0), la cadena resultante también pertenece al lenguaje L.

Ejercicio 1

Determine si el lenguaje $\{a^nb^m|n=2m\}$ es regular

Supongamos que el lenguaje es regular, entonces $\exists n \mid \forall w \in L$ se cumple que w = xyz con $|xy| \le n$ y |y| > 0.

Tomemos la cadena $w=a^{2n}b^n\in L$, luego por el **Lema del Bombeo** se cumple que w=xyz donde $|xy|\leq n \implies xy\subseteq a^n$, por lo que y está compuesto solo por a y no es vacío, luego, siendo |y|=m, como $xz\in L$ por el **Lema del Bombeo** resulta que la cadena $a^{2n-m}b^n\in L$ con $m>0\implies$ esta cadena no pertence al lenguaje, lo cual es una contradicción, por tanto el lenguaje L no es regular.

2. $\{x \in \{a, b, c\}^* \mid x \text{ es un palíndromo, } x = rev(x)\}$

Supongamos que el lenguaje es regular, entonces por el **Lema del Bombeo** $\exists n \mid \forall w \in L$ se cumple que w = xyz con $|xy| \le n$ y |y| > 0.

Tomemos la cadena $w=0^n110^n$, de la cual, dado que $|xy| \le n \implies xy \subseteq 0^n$, por lo que, según el lema la cadena $xy^2z \in L$, lo cual genera una contradicción porque,

dado que $|y| > 0 \implies xy^2z = 0^p110^n$ donde $p > n \implies$ no pertenece a L, contradición, por lo que L no es regular.

Ejercicio 10

* Determine si el lenguaje $\{0^n | n \text{ es un cubo perfecto } \}$ es regular.

Supongamos que el lenguaje es regular, entonces por el **Lema del Bombeo** $\exists n | \forall w \in L$ se cumple que w = xyz con $|xy| \le n$ y $|y| > \emptyset$.

Sea la cadena $w = 0^{(n+1)^3} = 0^{n^3} 0^{3n^2} 0^{3n} 0 = 0^n 0^{n^3} 0^{3n^2} 0^{2n} 0$. Como $|xy| \le n \implies xy \subseteq 0^n$.

Según el lema, la cadena $w^{'}=xy^kz\in L\ \ \forall k\in \mathbb{Z}$, por lo que, haciendo k=0 se cumple que $xz\in L$, y suponiendo que $x=0^q$ donde q< n (porque |y|>0) $\implies 0^{n^3}0^{3n^2}0^{2n}0^q0\in L$, cumpliéndose que $n^3< n^3+3n^2+2n+q+1<(n+1)^3\implies n^3+3n^2+2n+q+1$ no es un cubo perfecto, por lo que la cadena $w^{'}\in L$, lo cual es una contradicción, y por tanto L no es regular

Ejercicio 17

** Determine si el lenguaje del conjunto de cadenas de la forma $0^i 1^j$ tal que mcd(i,j)=1 es regular.

Supongamos que el lenguaje es regular, entonces por el **Lema del Bombeo** $\exists n \mid \forall w \in L$ se cumple que w = xyz con $|xy| \le n$ y |y| > 0.

Tomemos la cadena $w=0^n1^p$ con p el mayor primo más cercano a n. Si w=xyz entonces siendo n=m+r y q>0 se cumple que:

- $x = 0^{m-q}$
- $y = 0^q$
- $z = 0^r 1^p$

Luego, si existe i tal que al bombear i veces la subcadena y se cumple que $w=0^{n+q(i-1)}1^p$ no pertenece al lenguaje entonces el lenguaje L no es regular, por lo que debe cumplirse que $n+q(i-1)\equiv 0 \ mod(p) \implies q(i-1)\equiv -n \ mod(p)$.

Recordemos que una ecuación de congruencia lineal $ax \equiv b \mod(n)$ tiene solución $\iff mcd(a,n)|b$. Como n < p y $q < n \implies q < p \implies mcd(q,p) = 1$ por lo que existe i tal que se cumple que $n+q(i-1)\equiv 0 \mod(p)$ por lo que la cadena no pertenece al lenguaje $\implies L$ no es regular.