Physically-based Modelling

Dynamics and Numerical Integration

Young-Min Kang Tongmyong University

Dynamics

- * Dynamics
 - force-based understanding of motions
- * Important formula
 - * f = ma
- Rigid body

$$au = \mathbf{I}\dot{\omega}$$

Integration of Equations of Motion

- * Newton's 2nd law of motion
 - * f = ma
- * In other words,

$$\mathbf{f} = m \frac{d\mathbf{v}}{dt}$$

* dv = ?

$$\frac{\mathbf{f}dt}{m} = d\mathbf{v}$$

$$\int_{t_1}^{t_2} \frac{\mathbf{f} dt}{m} = \int_{\mathbf{v}_1}^{\mathbf{v}_2} d\mathbf{v}$$

if force is constant

$$\frac{\mathbf{f}}{m}(t_2 - t_1) = \mathbf{v}_2 - \mathbf{v}_1$$

$$\frac{\mathbf{f}}{m}\Delta t = \Delta \mathbf{v}$$

Initial Condition Problem

- * Initial conditions
 - * x(t), v(t)
 - location and velocity at current time t
- * Problem
 - * predict x(t+dt) and v(t+dt)
 - predict the location and velocity after a small time step dt
- * Repeat with Initial conditions = x(t+dt), v(t+dt)

Velocity update

- Initial condition of velocity
 - $v1 = v(t) \leftarrow$
- Velocity to be found
 - v2 = v(t+dt)

- $\frac{\mathbf{f}}{m}(t_2 t_1) = \mathbf{v}_2 \mathbf{v}_1$
- $\frac{\mathbf{f}}{m}\Delta t = \Delta \mathbf{v}$

Velocity at the next frame

$$\mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \frac{\mathbf{f}(t)}{m} \Delta t$$

* or $\mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \mathbf{a}(t)\Delta t$

Position Update

Velocity and Position

$$\mathbf{v} = d\mathbf{s}/dt$$
 $\mathbf{v}dt = d\mathbf{s}$

* Numerical Integration

$$\mathbf{v}(t + \Delta t)\Delta t = \Delta \mathbf{s}$$

- * If force (or acceleration) is known at time *t*
 - * We can "approximately" predict velocity and location at time *t*+*dt*

Realtime Simulation

- * compute force: f
- * compute acceleration: a = f/m
- * predict the velocity after time step
 - * Euler integration

$$\mathbf{v}(t + \Delta t) = \mathbf{a}\Delta t$$

- predict the location after time step
 - Euler integration

$$\mathbf{x}(t + \Delta t) = \mathbf{v}(t + \Delta t)\Delta t$$

Simulation Code - main.cpp

```
void keyboardFunction(unsigned char key, int x, int y) {
   if (\text{key} == 27) \text{ exit}(0);
    switch (key) {
        case 's':
            if(!myWatch.bRunning()) { Simulator->start(); myWatch.start(); }
            else { myWatch.stop(); Simulator->stop(); }
            break;
        case 'p':
            myWatch.pause(); Simulator->pause();
            break;
        case 'r':
            myWatch.resume(); Simulator->resume();
        default:
            break;
void displayFunction(void) {
    // check DT (in microsecond) from StopWatch and store it to "deltaTime" (in seconds)
   deltaTime = myWatch.checkAndComputeDT() / 1000000.0;
   currentTime = myWatch.getTotalElapsedTime() / 1000000.0;
   Simulator->actions(deltaTime, currentTime);
   glutSwapBuffers();
```

Simulation Code - Simulator.cpp

```
#include "Simulator.h"
#include <stdlib.h>
#include <stdio.h>
// Constructor
CSimulator::CSimulator(): bRunning(false) { }
CSimulator::~CSimulator() { }
void CSimulator::actions(double dt, double currentTime) {
    if(bRunning) {
        doBeforeSimulation(dt, currentTime);
        doSimulation(dt, currentTime);
        doAfterSimulation(dt, currentTime);
    visualize();
// Control Event Handlers
void CSimulator::start() {
    this->init();
    bRunning = true;
void CSimulator::stop() {
    bRunning = false;
    this->clean();
void CSimulator::pause() {}
void CSimulator::resume() {}
```

Simulation Code - DynamicSimulator.cpp

```
#include "DynamicSimulator.h"
CDynamicSimulator::CDynamicSimulator() : CSimulator() {}
void CDynamicSimulator::init() {
   for(int i=0;i<NUMPARTS;i++)particle[i].randomInit();</pre>
}
void CDynamicSimulator::clean() {}
void CDynamicSimulator::doBeforeSimulation(double dt, double currentTime) {}
void CDynamicSimulator::doSimulation(double dt, double currentTime) {
    for(int i=0;i<NUMPARTS;i++)</pre>
        particle[i].simulate(dt, currentTime);
void CDynamicSimulator::doAfterSimulation(double dt, double currentTime) {}
void CDynamicSimulator::visualize(void) {
    for(int i=0;i<NUMPARTS;i++) {</pre>
        particle[i].drawWithGL(POINT DRAW);
```

Simulation Code - Particle.cpp

```
void CParticle::simulate(double dt, double et) {
    // Update velocity: Euler Integration of acceleration
    vel = vel + dt*gravity;
    // Update position: Euler Integration of velocity
    loc = loc + dt*vel;

    // collision handling
    if(loc[1]<0) {
        loc.set(loc[0], -0.9*loc[1], loc[2]);
        if(vel[1]<0) vel.set(vel[0], -0.9*vel[1], vel[2]);
    }
    setPosition(loc[0], loc[1], loc[2]);
}</pre>
```

Result

Forces

- * Forces
 - * cause motion
 - very important in dynamics
- Various force models

Concepts

- * Force field: example gravitational force
- Friction: a contact force that resists motion
- * Fluid dynamic drag: resistance to objects moving in fluid
- * Pressure: force per area
- Buoyancy: force pushing objects "upwards" when immersed in a fluid
- * Springs and dampers: elastically ties objects
- * Force applies torque to an object, and make it "rotate."

Force field

- * Force field
 - * a vector field indicating the force exerted by on object

on another

- Very good example
 - gravitational force field
 - electromagnetic force field

Gravitational force field

- * universal gravitational force $|\mathbf{f}_u| = Gm_1m_2/r^2$
 - * G: gravitation constance $6.673 \times 10^{-11} (N \cdot m^2)/kg^2$
 - * r: distance between masses
 - * m_{1,2}: mass of each objects
- gravity on Earth
 - * mass of Earth: $5.98 \times 10^{24} kg$
 - * radius of Earth: $6.38 \times 10^6 m$
 - * gravitational acceleration

$$\frac{Gm_{earth}}{r^2} \simeq (\frac{6.673 \times 5.98}{6.38^2}) \times 10m/s^2 \simeq 9.8034m/s^2$$

friction

- * resistance force due to the contacting surfaces
 - * contact force
 - * normal force: N is important

- * two friction
 - * static friction: maximum friction

$$|\mathbf{f}_{max}| = \mu_s \mathbf{N}$$

* kinetic friction

$$|\mathbf{f}_k| = \mu_k \mathbf{N}$$

Coefficients of friction

* Well known surfaces

Surface condition	M _s	M _u	% difference
Dry glass on glass	0.94	0.4	54%
Dry iron on iron	1.1	0.15	86%
Dry rubber on pavement	0.55	0.4	27%
Dry steel on steel	0.78	0.42	46%
Dry Teflon on Teflon	0.04	0.04	_
Dry wood on wood	0.38	0.2	47%
Ice on ice	0.1	0.03	70%
Oiled steel on steel	0.10	0.08	20%

Fluid dynamic drag

- * similar to friction
 - friction is also important component of drag
 - but, it's not the only one
- viscous drag for "slow-moving" objects (laminar)
 - * f = -C v
- for "fast-moving" objects (turbulence)
 - * $f = -C v^2$

Pressure

- * Pressure is not force
 - * pressure = force per unit area
 - * F = PA (force = pressure x area)
 - P = F/A
- Pressure is important in simulating
 - * boats, hovercrafts,...

Buoyancy

- Different pressure in fluid
- * Horizontal net force = 0
- * Vertical net force = bottom force top force
- * F = PA
- Pressures: function(density, gravity)
 - * on top surface

$$\mathbf{P}_t = \rho \mathbf{g} h_t$$

* on bottom surface

$$\mathbf{P}_b = \rho \mathbf{g} h_b$$

Buoyancy

* forces
$$\mathbf{f}_t = \mathbf{P}_t A_t = \rho \mathbf{g} h_t s^2$$

 $\mathbf{f}_b = \mathbf{P}_b A_b = \rho \mathbf{g} h_b s^2$

* difference

$$\mathbf{f}_b - \mathbf{f}_t = \rho \mathbf{g} h_b s^2 - \rho \mathbf{g} h_t s^2$$

$$= \rho \mathbf{g} (h_b - h_t) s^2$$

$$= -\rho \mathbf{g} s^3$$

$$= -\rho \mathbf{g} V \quad (V : volume)$$

Spring force

- * Hooke's law
 - force needed to extend or compress a spring by a distance x is proportional to that distance
 - * f = -k x
 - * k: spring constant
- rest length of spring:
- * current length of spring:
 - * force magnitude: $|\mathbf{f}| = k_s(L-r)$
 - * force direction: obj1 and obj2 are linked and located at x1 and x2.

Damper

- * Springs do not oscillate forever
 - energy dissipation
 - * simple model
 - * damping force

$$\mathbf{f}_d = k_d(\mathbf{v}_1 - \mathbf{v}_2)$$

Spring and Damper

$$\mathbf{f}_1 = -(k_s(L - r) + k_d(\mathbf{v}_1 - \mathbf{v}_2) \cdot \frac{\mathbf{L}}{L}) \frac{\mathbf{L}}{L}$$

$$\mathbf{f}_2 = -\mathbf{f}_1$$

Force and Torque

Force and Torque

- * Force
 - * causes linear acceleration
- * Torque
 - * causes angular acceleration
- * Torque: au
 - * a vector
 - magnitude
 - how quickly the angular velocity is changed
 - * |rxf|
 - * direction
 - * rotational axis = (rxf)/|rxf|

$$\tau = \mathbf{r} \times \mathbf{f}$$

