HW/SW Co-Design **Framework FNAS** [DAC'19*] [TCAD'20*]

Application

Medical Imaging

NAS for Medical 3D Cardiac Image Seg. MRI Seg. [MICCAI'20] [ICCAD'20]

NLP (Transformer)

FPGA [ICCD'20] Mobile [DAC'21] **GPU [GLSVLSI'21]**

Graph-Based

Social Net [GLSVLSI'21] **Drug Discovery [doing]**

Algorithm NAS Acc.

HotNAS [CODES+ISSS'20] **Model Compression**

NAS for Quan. [ICCAD'19] Compre.-Compilation [IJCAl'21] **Secure Infernece**

NASS [ECAl'20] **BUNET [MICCAI'20]**

FPGA

XFER [CODES+ISSS'19*] **ASIC**

NANDS [ASP-DAC'20*] **ASICNAS [DAC'20]**

Computing-in-Memory

Device-Circuit-Arch. [IEEE TC'20]

* Best Paper Nomination

Hardware

HW/SW
Co-Design
Framework
FNAS
[DAC'19*]

[TCAD'20*]

First HW/SW Co-Design Framework

FNAS:

- Neural Architecture Search
- RNN-based RL Framework
- HW/SW Co-Design
- FPGA Optimization

Application

wedical Imaging

IMAS for Medical 3D Cardiac Image Seg. MRI Seg. [ICCAD'20]

NLP (Transformer)

FPGA [ICCD'20] Mobile [DAC'21] GPU [GLSVLSI'21]

Graph-Based

Social Net [GLSVLSI'21]
Drug Discovery [doing]

Application

wedical Imaging

Image Seg. MRI Seg. [ICCAD'20]

NLP (Transformer)

FPGA [ICCD'20] Mobile [DAC'21] GPU [GLSVLSI'21]

Graph-Based

Social Net [GLSVLSI'21]
Drug Discovery [doing]

Application

Medical Imaging

NAS for Medical 3D Cardiac Image Seg. MRI Seg. [MICCAI'20]

NLP (Transformer)

FPGA [ICCD'20]
Mobile [DAC'21]
SPU [GLSVLSI'21]

Graph-Based

Social Net [GLSVLSI'21]
Drug Discovery [doing]

HW/SW Co-Design Framework

> FNAS [DAC'19*] [TCAD'20*]

Mobile:

- Patten Pruning
- RL-Based NAS
- DVFS
- Reconfigurable

Dataset/Task		WikiText-2 (T: 94ms)		
Models		Transformer		
		M1	M2	M3
Sparsity		70.80%	80.61%	87.32%
Latency (ms)		93.55	86.78	70.72
LID	Accuracy	97.27%	96.29%	93.03%
UB	Interrupt	51.82 seconds		
	Accuracy	95.40%	95.37%	90.04%
RT^3	Interrupt	8.75 milliseconds		
Accuracy gap		1.87%	0.92%	2.99%
-				

WildFort 2 (T. 04mg)

Application

Medical Imaging

NAS for Medical 3D Cardiac Image Seg. MRI Seg. [MICCAI'20] [ICCAD'20]

NLP (Transformer)

FPGA [ICCD'20]
Mobile [DAC'21]
GPU [GLSVLSI'21]

Graph-Based

Social Net [GLSVLSI'21]
Orug Discovery [doing]

HW/SW
Co-Design
Framework
FNAS
[DAC'19*]
[TCAD'20*]

Drug Discovery [Conducting Project]:

- Graph Neural Network
- Generative Model

NAS Acc.

HotNAS

CODES+ISSS'20'

Model Compression

NAS for Quan. [ICCAD'19] Compre.-Compilation [IJCAI'21] **Secure Infernece**

NASS [ECAl'20] BUNET [MICCAl'20]

NAS Acc. **HotNAS** CODES+ISSS'20

Model Compression

NAS for Quan. [ICCAD'19] **Compre.-Compilation [IJCAI'21]**

Secure Infernece

NASS [ECAl'20] **BUNET [MICCAI'20]**

HW/SW Co-Design **Framework FNAS** [DAC'19*]

[TCAD'20*]

NAS Acc.

HotNAS [CODES+ISSS'20]

Model Compression

NAS for Quan. [ICCAD'19]
Compre.-Compilation [IJCAl'21]

Secure Infernece

NASS [ECAl'20] BUNET [MICCAl'20]

HW/SW
Co-Design
Framework
FNAS
[DAC'19*]
[TCAD'20*]

7.8× speedup compared with TensorFlow-Lite with only minor accuracy loss.

NAS Acc.

HotNAS [CODES+ISSS'20] **Model Compression**

NAS for Quan. [ICCAD'19] Compre.-Compilation [IJCAI'21] Secure Infernece

NASS [ECAl'20]
SUNET [MICCAl'20]

HW/SW
Co-Design
Framework
FNAS
[DAC'19*]
[TCAD'20*]

XFER:

- Neural Network Partition
- Performance Model
- Multiple FPGA
- Load Balance

<u>FPGA</u>

XFER [CODES+ISSS'19*]

ASIC

NANDS [ASP-DAC'20*] ASICNAS [DAC'20]

Computing-in-Memory

Device-Circuit-Arch. [IEEE TC'20]

HW/SW
Co-Design
Framework
FNAS
[DAC'19*]
[TCAD'20*]

First HW/SW Co-Design
For ASICs with Huge
HW Design Space

ASINAS:

- Multi-Tasks
- Template-Based NAS
- Heterogenous ASICs

FPGA

XFER [CODES+ISSS'19*]

ASIC

NANDS [ASP-DAC'20*] ASICNAS [DAC'201

Computing-in-Memory

Device-Circuit-Arch. [IEEE TC'20]

HW/SW
Co-Design
Framework
FNAS
[DAC'19*]
[TCAD'20*]

First HW/SW Co-Design
For Computing-in-Memory
Accelerators with
Device Variation

NACIM:

- Cross-layer Optimization
- Multi-Object Optimization
- CiM Accelerator
- Device Variation

FPGA

XFER [CODES+ISSS'19*]

ASIC

NANDS [ASP-DAC'20*] ASICNAS [DAC'20]

Computing-in-Memory

Device-Circuit-Arch. [IEEE TC'20]

References

- [GLSVLSI'21] D. Manu, S. Huang, C. Ding, L. Yang, Co-Exploration of Graph Neural Network and Network-on-Chip Design using AutoML
- [IJCAl'21 Demonstration Track] W. Niu, Z. Kong, G. Yuan, W. Jiang, B. Ren, and Y. Wang, A Compression-Compilation Framework for On-mobile Real-time BERT Applications
- [DAC'21] Y. Song, W. Jiang, B. Li, P. Qi, Q. Zhuge, E. H.-M. Sha, S. Dasgupta, Y. Shi, and C. Ding, Dancing along Battery: Enabling Transformer with Run-time Reconfigurability on Mobile Devices
- [NCOMM'21] W. Jiang, J. Xiong, and Y. Shi, A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage
- [ASP-DAC'21] W. Jiang, J. Xiong, and Y. Shi, When Machine Learning Meets Quantum Computers: A Case Study
- [ICCD'20] X. Zhang, W. Jiang, J. Hu, Achieving Full Parallelism in LSTM via a Unified Accelerator Design
- [CODES+ISSS'20 & TCAD'20] W. Jiang, L. Yang, S. Dasgupta, J. Hu and Y. Shi, Standing on the Shoulders of Giants: Hardware and Neural Architecture Co-Search with Hot Start
- [IEEE TC'20] W. Jiang, Q. Lou, Z. Yan, L. Yang, J. Hu, X. S. Hu and Y. Shi, Device-Circuit-Architecture Co-Exploration for Computing-in-Memory Neural Accelerators
- [IEEE TCAD'20] W. Jiang, L. Yang, E. H.-M. Sha, Q. Zhuge, S. Gu, S. Dasgupta, Y. Shi and J. Hu, Hardware/Software Co-Exploration of Neural Architectures (Best Paper Nomination)
- [DAC'20] L. Yang, Z. Yan, M. Li, H. Kwon, L. Lai, T. Krishana, V. Chandra, W. Jiang, and Y. Shi, Co-Exploration of Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple Tasks
- [ECAl'20] B. Song, W. Jiang, Q. Lu, Y. Shi and T. Sato, NASS: Optimizing Secure Inference via Neural Architecture Search
- [ASP-DAC'20] L. Yang, W. Jiang, W. Liu, E. H.-M. Sha, Y. Shi and J. Hu, Co-Exploring Neural Architecture and Network-on-Chip Design for Real-Time Artificial Intelligence (Best Paper Nomination)
- [CODES+ISSS'19 & AMC TECS] W. Jiang, E. H.-M. Sha, X. Zhang, L. Yang, Q. Zhuge, Y. Shi and J. Hu, Achieving Super-Linear Speedup across Multi-FPGA for Real-Time DNN Inference (Best Paper Nomination)
- [DAC'19] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu, Accuracy vs. Efficiency: Achieving Both through FPGA-Implementation Aware Neural