Miejsce na identyfikację szkoły

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

POZIOM ROZSZERZONY

Czas pracy: 180 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1.–16.). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym.
- 3. W zadaniach zamkniętych (1.–4.) zaznacz jedną poprawną odpowiedź.
- 4. W zadaniu kodowanym (5.) wpisz w tabelę wyniku trzy cyfry wymagane w poleceniu.
- 5. W rozwiązaniach zadań otwartych (6.–16.) przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 6. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Zapisy w brudnopisie nie będą oceniane.
- 9. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 10. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów.

2021/2022

Życzymy powodzenia!

Wpisuje zdający przed rozpoczęciem pracy	
	KOD
PESEL ZDAJĄCEGO	ZDAJĄCEGO

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione.

N7700_PR_arkusz_1.indd 1 2021-10-05 15;28:50

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 4. wybierz poprawną odpowiedź.

Zadanie 1. (0–1)

Liczba
$$\sqrt{3-2\sqrt{2}} - \sqrt{9+4\sqrt{2}}$$
 jest równa:
A. $-(2-\sqrt{2})$ **B.** $-(2+\sqrt{2})$

A.
$$-(2-\sqrt{2})$$

B.
$$-(2+\sqrt{2})$$

a:
$$\mathbf{C} \cdot -(\sqrt{2} - 2)$$
 $\mathbf{D} \cdot 2 + \sqrt{2}$

D.
$$2 + \sqrt{2}$$

Zadanie 2. (0–1)

Wartość wyrażenia $\log_2 5 \cdot \log_5 81 \cdot \log_9 216$ wynosi:

Zadanie 3. (0–1)

Równanie $|x^2-2x-8|=m+1$ w zależności od parametru m, gdzie $m \in R$, ma maksymalną liczbę pierwiastków dla:

A.
$$m \in \langle 0, 9 \rangle$$

B.
$$m \in (-1,8)$$

B.
$$m \in (-1,8)$$
 C. $m \in (-9,0)$ **D.** $m \in (-1,8)$

D.
$$m \in (-1,8)$$

Zadanie 4. (0–1)

 $\mathrm{Ciag}\left(a_{n}\right)\mathrm{jest}\;\mathrm{określony}\;\mathrm{wzorem}\;a_{n}=\frac{\left(7n-n^{2}\right)\!\left(3n+1\right)}{4n^{3}+2n+6}\;\mathrm{dla}\;\mathrm{każdej}\;\mathrm{liczby}\;\mathrm{naturalnej}\;n\geq1.\;\mathrm{Grample 1}$ nica tego ciągu dla $n \rightarrow \infty$ jest równa:

A.
$$\frac{7}{4}$$

B.
$$-\frac{1}{2}$$

C.
$$-\frac{3}{4}$$
 D. $\frac{1}{2}$

D.
$$\frac{1}{2}$$

BRUDNOPIS (nie podlega ocenie)

ZADANIA OTWARTE

Rozwiązania zadań 5.–16. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 5. (0–2)

Rozwiąż nierówność
$$\frac{x-6}{36-x^2} \ge \frac{3x}{x^2-6x}$$
.

Wyznacz wszystkie liczby naturalne dodatnie spełniające tę nierówność i oblicz ich iloczyn. W poniższe kratki wpisz kolejno trzy pierwsze cyfry otrzymanego wyniku.

Zadanie 6. (0-3)

Z dwóch podobnych trójkątów prostokątnych o skali podobieństwa 2 zbudowano trapez *ABCD*. Oblicz miarę kąta ostrego tego trapezu.

Odpowiedź:

Zadanie 7. (0–3)

Wiesz, że a+b+c=0 i abc=2. Wykaż, że $a^3+b^3+c^3=6$.

Zadanie 8. (0-4)

Reszta z dzielenia wielomianu W(x) przez dwumian x-1 jest równa 2, a reszta z dzielenia wielomianu W(x) przez dwumian x-2 jest równa 5. Wyznacz wielomian R(x), który jest resztą z dzielenia wielomianu W(x) przez (x-1)(x-2).

Odpowiedź:

Zadanie 9. (0-4)

Dany jest czworokąt ABCD, w którym |AB|=12, $|BC|=6\sqrt{3}$, $|CD|=3\sqrt{3}$, |DA|=3 i przekątna AC ma długość 6. Oblicz długość przekątnej BD tego czworokąta.

Odpowiedź:

Zadanie 10. (0-2)

Dana jest funkcja f określona wzorem $f(x) = \frac{9-4x^2}{x^2+1}$. Oblicz wartość pochodnej tej funkcji dla argumentu -3.

Odnowiedź:

Zadanie 11. (0-3)

Wyznacz równania stycznych do okręgu $x^2 + y^2 - 2x - 8 = 0$ równoległych do prostej y = 2x + 5.

Odpowiedź:

10

N7700_PR_arkusz_1.indd 10 2021-10-05 15:28:51

Zadanie 12. (0-5)

N7700_PR_arkusz_1.indd 11

Rozwiąż równanie $2\sin^3 x - \sin x \cos x - \sin x = 0$ w przedziale $\langle 0, 2\pi \rangle$.

Odpowiedź:

2021-10-05 15:28:51

Zadanie 13. (0-4)

Wyznacz wszystkie wartości parametru m, dla których trójmian kwadratowy $f(x) = -x^2 + mx - m$ ma dwa różne pierwiastki rzeczywiste x_1 i x_2 , spełniające warunek $(x_1 + 3x_2)(x_2 + 3x_1) = -1$.

Odpowiedź:

12

N7700_PR_arkusz_1.indd 12 2021-10-05 15:28:51

Zadanie 14. (0-5)

Z urny zawierającej 6 kul białych i 4 kule czarne losujemy 2 kule i wkładamy je do drugiej, pustej urny. Następnie z obu urn losujemy po jednej kuli. Oblicz prawdopodobieństwo, że będą to dwie kule czarne.

Odpowiedź:

Zadanie 15. (0-4)

Między liczby 4 i 36 wstawiono trzy liczby tak, aby w utworzonym w ten sposób ciągu trzy pierwsze liczby tworzyły ciąg arytmetyczny, a trzy ostatnie – ciąg geometryczny i aby suma wszystkich pięciu liczb wynosiła 90. Wyznacz te liczby.

Odpowiedź:

Zadanie 16. (0-7)

Suma długości krawędzi graniastosłupa prawidłowego czworokątnego wynosi $12\sqrt{3}$. Wyznacz największą z możliwych objętość tego graniastosłupa. Wynik zapisz w najprostszej postaci.

Odpowiedź:

N7700_PR_arkusz_1.indd 15 2021-10-05 15;28:51

BRUDNOPIS (nie podlega ocenie)

16

N7700_PR_arkusz_1.indd 16 2021-10-05 15:28:51