LinearRegression_Part1

January 2, 2022

0.0.1 Regresión lineal simple

```
[1]: # Importamos las librerías a emplear
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     # Temas de Jupyter para fondo negro
     #from jupyterthemes import jtplot
     #jtplot.style(theme='onedork')
     # Por si no se nos autocompleta el código
     %config IPCompleter.greedy=True
[2]: # Cargamos el archivo .csv
     data = pd.read_csv(r"D:
     →\Curso-Jupyter-Notebook\GitHub\python-ml-course\datasets\ads\Advertising.
     data.head() # Visualizamos los primeros 5 datos
[2]:
          TV Radio Newspaper Sales
     0 230.1
               37.8
                          69.2
                                 22.1
               39.3
                          45.1
                                  10.4
       44.5
     1
               45.9
     2 17.2
                          69.3
                                9.3
     3 151.5
               41.3
                          58.5
                                 18.5
     4 180.8
              10.8
                          58.4
                                 12.9
[3]: # Creamos un modelo lineal
     import statsmodels.formula.api as smf
[4]: # Creamos el modelo lineal
     lm = smf.ols(formula = "Sales~TV", data = data).fit()
[5]: lm.params # Parámetros de nuestro modelo
     # Se concluye lo siquiente:
     # Un incremento en 100 unidades de publicidad en TV implica una 4.7 ventasu
     \rightarrow adicionales
```

[5]: Intercept 7.032594 TV 0.047537

dtype: float64

Modelo predictivo: 7.032594 + 0.047537xTV

[6]: # Hallamos los p-valores (F-statistic)
lm.pvalues

Si el p-valor es menor que el nivel de significación, rechazamos la hipótesis u

y aceptamos que existe una relación lineal entre nuestras variables

[6]: Intercept 1.406300e-35 TV 1.467390e-42

dtype: float64

- [7]: # Hallamos el R^2 (suma de los cuadrados totales) eficacia del modelo lm.rsquared
- [7]: 0.611875050850071
- [8]: # Hallamos el R^2 ajustado lm.rsquared_adj
- [8]: 0.6099148238341623
- [9]: # Visión general del modelo lineal creado lm.summary()
- [9]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: Sales R-squared: 0.612 Model: OLS Adj. R-squared: 0.610 Method: Least Squares F-statistic: 312.1 Sun, 02 Jan 2022 Prob (F-statistic): Date: 1.47e-42 Time: 01:13:05 Log-Likelihood: -519.05 200 AIC: 1042. No. Observations: Df Residuals: 198 BIC: 1049.

Df Model: 1
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept TV	7.0326 0.0475	0.458 0.003	15.360 17.668	0.000	6.130 0.042	7.935 0.053
=========	========	=========	========	========	=========	=======

```
1.935
Omnibus:
                                 0.531
                                         Durbin-Watson:
Prob(Omnibus):
                                0.767
                                         Jarque-Bera (JB):
                                                                           0.669
Skew:
                                -0.089
                                         Prob(JB):
                                                                           0.716
                                 2.779
                                         Cond. No.
                                                                            338.
Kurtosis:
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[10]: # Generamos un dataframe con una columna del dataframe anterior
sales_pred = lm.predict(pd.DataFrame(data["TV"]))
sales_pred # Valores predictivos

```
[10]: 0
             17.970775
      1
              9.147974
      2
              7.850224
      3
             14.234395
             15.627218
      195
             8.848493
      196
             11.510545
      197
             15.446579
      198
             20.513985
      199
             18.065848
     Length: 200, dtype: float64
```

```
[11]: # Evaluación de nuestro modelo predictivo
%matplotlib inline
data.plot(kind = "scatter", x = "TV", y = "Sales") # scatter -> nube de puntos
plt.plot(pd.DataFrame(data["TV"]), sales_pred, c = "red", linewidth = 2)
```

[11]: [<matplotlib.lines.Line2D at 0x1f107e2db08>]


```
data["sales_pred"] = 7.032594 + 0.047537*data["TV"]
[13]: # RSE -> Error estándar residual
      data["RSE"] = (data["Sales"] - data["sales_pred"])**2
      # Suma de los cuadrados de la diferencia
      SSD = sum(data["RSE"])
      # Error estándar residual
      RSE = np.sqrt(SSD/(len(data) - 2))
      RSE
[13]: 3.258656369238098
[14]: # Promedio de ventas
      sales_m = np.mean(data["Sales"])
      sales_m
[14]: 14.0225
[15]: # Error promedio
      error = RSE/sales_m
      error
```

[12]: # Modelo de regresión lineal

[15]: 0.23238768901680143

```
[16]: # Histograma de la distribución de errores respecto al modelo # Observamos una distribución normal, aproximadamente plt.hist((data["Sales"] - data["sales_pred"]))
```


0.0.2 Regresión lineal múltiple

```
[17]: # Añadimos el Newspaper al modelo existente

lm2 = smf.ols(formula = "Sales~TV+Newspaper", data = data).fit()
```

[18]: # Parámetros de nuestro segundo modelo lineal lm2.params

[18]: Intercept 5.774948
TV 0.046901
Newspaper 0.044219
dtype: float64

Modelo predictivo: 5.774948 + 0.046901xTV + 0.044219xNewspaper

```
[19]: # Hallamos los p-valores
      lm2.pvalues
[19]: Intercept
                   3.145860e-22
                   5.507584e-44
      Newspaper
                   2.217084e-05
      dtype: float64
[20]: # Hallamos el R^2
      # Notamos que R^2 a aumentado, eso es bueno
      lm2.rsquared
[20]: 0.6458354938293271
[21]: # Hallamos el R^2 ajustado
      lm2.rsquared_adj
[21]: 0.6422399150864777
[22]: # Predicciones del modelo creado: ventas respecto a TV y Newspaper
      sales_pred = lm2.predict(data[["TV", "Newspaper"]])
      sales_pred
[22]: 0
             19.626901
              9.856348
      1
              9.646055
      2
      3
             15.467318
             16.837102
      195
             8.176802
      196
             10.551220
      197
             14.359467
      198
             22.003458
             17.045429
      199
      Length: 200, dtype: float64
[23]: # Desviación estándar de los residuos
      SSD = sum((data["Sales"] - sales_pred)**2)
      SSD
[23]: 1918.5618118968275
[24]: # Error estándar residual
      RSE = np.sqrt(SSD/(len(data) - 2 - 1))
      RSE
```

[24]: 3.1207198602528856

```
[25]: # Errorpromedio
error = RSE/sales_m
error
```

[25]: 0.22255089037282122

[26]: # Visión general del modelo lineal creado
lm2.summary()

[26]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: Sales R-squared: 0.646

Model: OLS Adj. R-squared: 0.642 Least Squares F-statistic: Method: 179.6 Date: Sun, 02 Jan 2022 Prob (F-statistic): 3.95e-45 Time: 01:13:08 Log-Likelihood: -509.89 No. Observations: 200 AIC: 1026. Df Residuals: 197 BIC: 1036.

Df Model: 2
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept TV Newspaper	5.7749 0.0469 0.0442	0.525 0.003 0.010	10.993 18.173 4.346	0.000	4.739 0.042 0.024	6.811 0.052 0.064
Omnibus: Prob(Omnibus): Skew: Kurtosis:	:	0	.720 Jar .093 Pro	bin-Watson: que-Bera (JEb(JB): d. No.	3):	1.969 0.415 0.813 410.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[27]: # Ahora probamos añandiendo la radio al modelo existente
lm3 = smf.ols(formula = "Sales~TV+Radio", data = data).fit()

[28]: # Visión general del modelo lineal creado lm3.summary()

[28]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	Sales	R-squared:	0.897
Model:	OLS	Adj. R-squared:	0.896
Method:	Least Squares	F-statistic:	859.6
Date:	Sun, 02 Jan 2022	<pre>Prob (F-statistic):</pre>	4.83e-98
Time:	01:13:09	Log-Likelihood:	-386.20
No. Observations:	200	AIC:	778.4
Df Residuals:	197	BIC:	788.3

Df Model: 2
Covariance Type: nonrobust

	coef	std err		t	P> t	[0.025	0.975]
Intercept TV Radio	2.9211 0.0458 0.1880	0.294 0.001 0.008	32	.919 .909 .382	0.000 0.000 0.000	2.340 0.043 0.172	3.502 0.048 0.204
Omnibus:		60	0.022	Durb:	======== in-Watson:		2.081
Prob(Omnibus) Skew:):		0.000 1.323	-	ue-Bera (JB): (JB):		148.679 5.19e-33
Kurtosis:			3.292		. No.		425.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[29]: # Predicciones del modelo creado: ventas respecto a TV y Radio
sales_pred = lm3.predict(data[["TV", "Radio"]])

# Desviación estándar de los residuos
SSD = sum((data["Sales"] - sales_pred)**2)

# Error estándar residual
RSE = np.sqrt(SSD/(len(data) - 2 - 1))
RSE
```

[29]: 1.6813609125080007

```
[30]: # Error promedio
error = RSE/sales_m
error
```

[30]: 0.11990450436855059

```
[31]: # Finalmente evaluamos un modelo lineal múltiple que incluya todos los factores lm4 = smf.ols(formula = "Sales~TV+Radio+Newspaper", data = data).fit()
```

```
[32]: # Visión general del modelo lineal creado lm4.summary()
```

[32]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

______ Dep. Variable: Sales R-squared: 0.897 Adj. R-squared: Model: OLS 0.896 Method: Least Squares F-statistic: 570.3 Date: Sun, 02 Jan 2022 Prob (F-statistic): 1.58e-96 Time: 01:13:09 Log-Likelihood: -386.18 No. Observations: 200 AIC: 780.4 Df Residuals: BIC: 793.6 196

Df Model: 3
Covariance Type: nonrobust

______ coef std err P>|t| [0.025 Intercept 2.9389 0.312 9.422 0.000 2.324 3.554 TV 0.001 32.809 0.000 0.043 0.049 0.0458 Radio 0.1885 0.009 21.893 0.000 0.172 0.206 Newspaper -0.0010 0.006 -0.1770.860 -0.013 0.011 _____ Omnibus: 60.414 Durbin-Watson: 2.084 Prob(Omnibus): 0.000 Jarque-Bera (JB): 151.241 Skew: -1.327Prob(JB): 1.44e-33 Kurtosis: 6.332 Cond. No. 454. ______

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[33]: # Predicciones del modelo creado: ventas respecto a TV, Radio y Newspaper
sales_pred = lm4.predict(data[["TV", "Radio", "Newspaper"]])

# Desviación estándar de los residuos
SSD = sum((data["Sales"] - sales_pred)**2)

# Error estándar residual
```

```
RSE = np.sqrt(SSD/(len(data) - 3 - 1))
RSE
```

[33]: 1.6855103734147439

```
[34]: # Error promedio
error = RSE/sales_m
error
```

[34]: 0.12020041885646238

0.0.3 Multicolinealidad

Factor inflación de la varianza - VIF = 1: Las variables no están correlacionadas - VIF < 5: Las variables tienen una correlación moderada y pueden quedarse en el modelo - VIF > 5: Las variables están altísimamente correlacionadas y deben desaparecer del modelo

```
[35]: # Newspaper ~ TV + Radio -> R^2 / VIF = 1/(1-R^2)
lm_n = smf.ols(formula = "Newspaper~TV+Radio", data = data).fit()
rsquared_n = lm_n.rsquared
VIF = 1/(1 - rsquared_n)
VIF
```

[35]: 1.1451873787239286

```
[36]: # TV ~ Newspaper + Radio -> R^2 / VIF = 1/(1-R^2)

lm_n = smf.ols(formula = "TV~Newspaper+Radio", data = data).fit()

rsquared_n = lm_n.rsquared

VIF = 1/(1 - rsquared_n)

VIF

# Conclusión: TV no está correlacionada con los demás factores
```

[36]: 1.00461078493965

```
[37]: # Radio ~ TV + Newspaper -> R^2 | VIF = 1/(1-R^2)

lm_n = smf.ols(formula = "Radio~TV+Newspaper", data = data).fit()

rsquared_n = lm_n.rsquared

VIF = 1/(1 - rsquared_n)

VIF

# Podemos observar que Radio y Newspaper tienen prácticamente el mismo VIF

# significa que ambas están correlacionadas, sin incluir la TV

# Sin embargo el modelo realizado con TV y Radio es superior a los demás modelos

# El modelo con las 3 variables predictorias no mejora
```

[37]: 1.1449519171055353

```
[38]: lm3.summary()
```

[38]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=========				=====		========	=======	========
Dep. Variable:	:		S	ales	R-sq	uared:		0.897
Model:				OLS	Adj.	R-squared:		0.896
Method:		Leas	st Squ	ares	F-st	atistic:		859.6
Date:		Sun, O	2 Jan	2022	Prob	(F-statistic)	:	4.83e-98
Time:			01:1	3:11	Log-	Likelihood:		-386.20
No. Observations:				200	AIC:			778.4
Df Residuals:				197	BIC:			788.3
Df Model:				2				
Covariance Typ	oe:		nonro	bust				
=========				=====				
	coei	f sto	d err		t	P> t	[0.025	0.975]
Intercept	2.921	1 ().294	9	9.919	0.000	2.340	3.502
TV	0.0458	3 (0.001	32	2.909	0.000	0.043	0.048
Radio	0.1880) (800.0	23	3.382	0.000	0.172	0.204
Omnibus:		=====	 60	.022	===== Durb	======== in-Watson:	=======	2.081
Prob(Omnibus):	•		0	.000	Jarq	ue-Bera (JB):		148.679
Skew:			-1	.323	Prob	(JB):		5.19e-33
Kurtosis:			6	.292	Cond	. No.		425.

Notes:

" " "

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.