408 3385 29

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-008942

(43) Date of publication of application: 11.01.2002

(51)Int.CI.

4/33 H01G H01G 2/06

HO1G 4/12

(21)Application number: 2000-181958

(71)Applicant: FUJITSU LTD

(22)Date of filing:

16.06.2000

(72)Inventor: KARASAWA KAZUAKI

SHIOGA KENJI

IMANAKA YOSHIHIKO

(54) CAPACITOR DEVICE, METHOD OF MANUFACTURING THE SAME, AND MODULE MOUNTED WITH THE DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a capacitor device which can be mounted on a circuit board, using a small mounting area and has a large capacitance. SOLUTION: The capacitor device has a substrate 10. which has a first through-hole 12a filled with a conductor and is composed of simple silicon, a siliconcontaining insulating film, or sapphire and a capacitor which is formed by successively laminating a first electrode 14, a capacitor insulating film 16, and a second electrode 18 upon each other in this order. The capacitor is formed on the substrate 10, and the first electrode 14 of the capacitor is connected to the conductor packed in the through-hole 12a.

: 支持体 : 下部電極(第1の電極) **会通常体院**

12a:**グ**1:カスルーホール 125:葛2のスルーホール

21a: 電福パッド(第1の接触を配) 21a: 電福バッド(第3の接触電信) 24a 74h. **富**伊的文书

28a: バンプ客様(第2の接続名様) 28b: バンプ音棒(第4の対象名様)

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

408338529

(19) 日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2002-8942 (P2002-8942A)(43)公開日 平成14年1月11日(2002.1.11)

(51) Int. Cl. 7	識別記号		FΙ		·	テーマコード(参考)
H01G	4/33		H01G	4/12	3 9 4	5E001
	2/06				400	5E082
	4/12 3 9 4			4/06	102	•
	400	·		1/035	(C ·
	審査請求 未請求 請求項の数 5		OL	(全12頁)		
(21)出願番号	特願2000-181958(P2000-181958)		(71)出願人	000005223		
•		•			株式会社	
(22) 出願日	平成12年6月16日(2000.6.16)			神奈川県川崎市中原区上小田中4丁目1番1		
				号		
			(72)発明者			•
						原区上小田中4丁目1番
				号 富	士通株式会社	土内
	•		(72)発明者	塩賀	建司	
				神奈川	県川崎市中原	原区上小田中4丁目1番
				号 富	士通株式会社	生内
			(74)代理人	1000916	672	
				弁理士	岡本 啓	Ξ.
						最終頁に続く

(54) 【発明の名称】コンデンサ装置、コンデンサ装置の製造方法及びコンデンサ装置が実装されたモジュール

(57)【要約】

【課題】 回路基板への実装面積が小さく、かつコンデ ンサ容量が大きいコンデンサ装置を提供する。

【解決手段】 第1のスルーホール12aを有し、第1 のスルーホール12a内に導電体が充填された、シリコ ン単体或いはシリコン含有絶縁膜からなる基板10、も しくはサファイアからなる基板10と、第1の電極14 と容量絶縁膜16と第2の電極18とがこの順に積層さ れてなるコンデンサとを有し、コンデンサが基板10上 に形成され、コンデンサの第1の電極14が第1のスル ーホール12a内の導電体に接続されていることを特徴 とする。

10:基板

11:支持体 14:下部電程(第1の電程)

16:高磷酸体膜 18:上部電極(第2の電極)

20.22: 保護師 12a:第1のスルーホール

126: 第2のスルーホール

218:電程パッド(第1の接続電極) 21b:電枢パッド(第3の接続電極) 24a,24b:電極パッド

28a:パンプ電極(第2の接続電極) 28b:パンプ電極(第4の接続電極)

20

【特許請求の範囲】

【請求項1】 シリコン単体或いはシリコン含有絶縁膜からなる基板、又はサファイアからなる基板に第1のスルーホールを形成する工程と、

前記第1のスルーホール内に導電体を充填する工程と、 前記基板上に前記第1のスルーホール内の前記導電体に 接続された第1の電極を形成する工程と、

前記第1の電極上に容量絶縁膜を形成する工程と、 前記容量絶縁膜上に第2の電極を形成する工程とを有す ることを特徴とするコンデンサ装置の製造方法。

【請求項2】 前記基板に第2のスルーホールを形成する工程と、

前記第2のスルーホール内に導電体を充填する工程と、 前記第2の電極を前記第2のスルーホール内に充填され た導電体に接続する工程とを有することを特徴とする請 求項1に記載のコンデンサ装置の製造方法。

【請求項3】 第1のスルーホールを有し、前記第1の スルーホール内に導電体が充填された、シリコン単体或 いはシリコン含有絶縁膜からなる基板、又はサファイア からなる基板と、

第1の電極と、容量絶縁膜と、第2の電極とがこの順に 積層されてなるコンデンサとを有し、

前記コンデンサが前記基板上に形成され、前記コンデン サの第1の電極が前記第1のスルーホール内の導電体に 接続されていることを特徴とするコンデンサ装置。

【請求項4】 前記基板に導電体が充填された第2のスルーホールが形成され、前記第2の電極が該第2のスルーホール内の導電体に接続された請求項3のコンデンサ装置が、複数積層されてなり、各々の前記コンデンサ装置の表面と裏面にそれぞれ前記第1のスルーホールの導電体と接続する第1の接続電極と第2の接続電極とが設けられ、各々の前記コンデンサ装置の表面と裏面にそれぞれ前記第2のスルーホールの導電体と接続する第3の接続電極と第4の接続電極とが設けられ、前記コンデンサ装置相互で前記第1の接続電極と前記第2の接続電極とが接続され、前記第3の接続電極と第4の接続電極とが接続されていることを特徴とする請求項3に記載のコンデンサ装置。

【請求項5】 請求項4記載のコンデンサ装置と半導体 装置とが積層されてなり、前記半導体装置が前記第1及 40 び第3の接続電極を通して前記コンデンサ装置と電気的 に接続されていることを特徴とするコンデンサ装置が実 装されたモジュール。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はコンデンサ装置、コンデンサ装置の製造方法及びコンデンサ装置が実装されたモジュールに関し、さらに詳しくは、電源ラインとグランドラインの間に接続されるデカップリングコンデンサの機能を有するコンデンサ装置、コンデンサ装置の製 50

造方法及びコンデンサ装置が実装されたモジュールに関する。

[0002]

【従来の技術】近年、マイクロプロセッサをはじめとするデジタルLSI半導体装置は、演算速度の高速化及び低消費電力化による電源電圧の低減が進めらている。このため、LSIのインピーダンスが急激に変動したときなどにLSIの動作電源電圧が不安定になりやすい。この電源電圧を安定させ、かつ高周波ノイズを低減させる10 ため、LSIの電圧電源ラインとグランドラインとの間にデカップリングコンデンサを配置している。また、高速動作デジタルLSIはさらなる高周波(GHz)領域での安定した動作が要求されており、高周波ノイズによるLSIの誤動作防止が必要となる。

【0003】従来のデカップリングコンデンサはマザーボードである回路基板上にチップコンデンサをLSIチップ近傍に設けて実装している。この場合、チップコンデンサとLSIチップとの間で配線の引き回しが必要であり、これらのリード間では比較的大きなインダクタンスが存在する。従って、チップコンデンサを設けても高速動作のLSIに対しての電源電圧変動の抑制及び高周波ノイスの低減の効果は少なくなってしまう。

【0004】デカップリングコンデンサに要求されることは基板回路の等価直列抵抗(ESR)及び等価直列インダクタンス(ESL)を低減することである。特に、デカップリングコンデンサとLSIとの間の配線の引き回しによるインダクタンスの増加はデカップリングコンデンサの高周波特性を妨げている。そこで、LSIとデカップリングコンデンサを配置することにより、LSIとデカップリングコンデンサとの配線距離を最短にしてインダクタンスを低減させることが提案されている。特開平4-211191にはマザーボードであるセラミック回路基板にコンデンサを内臓して形成し、この上にLSIを実装することにより、LSIとコンデンサとの配線距離を短くしてインダクタンスを低減させることが開示されている。

【0005】また、セラミック回路基板に多数のコンデンサやコンデンサを多層構造にして内臓させることにより、コンデンサの容量を大きくしている。さらに、LSIなどを実装するセラミックス回路基板とは別にコンデンサを内臓したセラミックス基板を作成して、LSIとコンデンサを内臓したセラミックス基板とをマザーボードである回路基板に実装する方法が提案されている。この場合、セラミックス基板はグリーンシート法で製造される。

【0006】グリーンシート法では、アルミナなどのセラミックス粉末を粘結剤などでシート状にしたグリーンシート上に銅などの導電ペーストで配線パターンを形成し、スルーホールにペーストを充填して、複数枚重ねてプレスし、焼成して回路基板を作成する。

[0007]

【発明が解決しようとする課題】しかしながら、上記コンデンサ内臓のセラミックス回路基板では容量絶縁膜の材料である高誘電体の焼成温度が700℃であるため、回路基板、製造工程及び材料が限定されてしまう。そして、コンデンサの容量をさらに増やそうとすると電極やグリーンシートを介して強誘電体を積層する必要があり、製造が極端に難しくなる。

【0008】さらに、従来例のコンデンサ内臓のセラミックス回路基板では一部のコンデンサがショートすると回路基板全体が不良となるため、回路基板の歩留りを上げるのが困難であった。ところで、マイクロプロセッサを始めとするデジタルLSIのGHz帯での高速動作、低消費電力化及びチップの大面積化によりLSIパッケージのピン数が増加し、ピン間のピッチが微細化されてくる。これに対応して、マザーボードである回路基板の配線ピッチを小さくする必要がある。

【0009】しかしながら、上記グリーンシートのスルーホールの加工は、通常、ドリルで行われるので、加工できるスルーホールのピッチは100μmから200μm程度が限界であった。また、LSIへの高周波電流の給電においては、通常、デカップリングコンデンサが高周波バイパスとして用いられる。デカップリングコンデンサを高周波領域で用いるには、コンデンサ容量を大きくし、かつデカップリングコンデンサの実装領域を小さくして給電経路を短くし、寄生インダクタンスを減少させる必要がある。従って、デカップリングコンデンサの製造にはさらなる、微細加工が要求されている。

【0010】しかしながら、前述のグリーンシート法では微細加工に限界があるため、高速デジタルLSIに対応したデカップリングコンデンサを製造することは困難である。このように、従来技術では、高周波領域に対応するための、回路基板への実装面積が小さく、かつ大きな容量をもつコンデンサ装置を製造できないという問題点がある。

【0011】本発明は上述の問題点を鑑みて創作されたものであり、大きな容量を容易に得ることができ、かつ 微細加工が可能で、回路基板への実装面積を小さくすることができるコンデンサ装置、コンデンサ装置の製造方法及びコンデンサ装置が実装されたモジュールを提供す 40 ることを目的とする。

[0012]

【課題を解決するための手段】上記した課題は、シリコン単体或いはシリコン含有絶縁膜からなる基板、又はサファイアからなる基板に第1のスルーホールを形成する工程と、前記第1のスルーホール内に導電体を充填する工程と、前記基板上に前記第1のスルーホール内の前記導電体に接続された第1の電極を形成する工程と、前記容量絶縁膜と形成する工程と、前記容量絶縁膜上に第2の電極を形成する工程とを有することを50

特徴とするコンデンサ装置の製造方法により解決される。

【0013】この発明によれば、シリコン単体或いはシリコン含有絶縁膜からなる基板、又はサファイアからなる基板に表面から裏側まで貫通したスルーホールを形成している。シリコン単体或いはシリコン含有絶縁膜からなる基板を用いた場合、微細加工が可能なドライエッチング技術を用いてスルーホールを形成することができる。また、サファイアからなる基板を用いた場合、レーザーを用いた加工技術で微細なスルーホールを形成することができる。これにより、実装面積の小さいコンデンサ装置を製造することができる。

【0014】上記した課題は、第1のスルーホールを有し、前記第1のスルーホール内に導電体が充填された、シリコン単体或いはシリコン含有絶縁膜からなる基板、又はサファイアからなる基板と、第1の電極と、容量絶縁膜と、第2の電極とがこの順に積層されてなるコンデンサとを有し、前記コンデンサが前記基板上に形成され、前記コンデンサの第1の電極が前記第1のスルーホール内の導電体に接続されていることを特徴とするコンデンサ装置により解決する。

【0015】シリコン単体或いはシリコン含有絶縁膜からなる基板、又はサファイアからなる基板を用いているので、上記したようにドライエッチング技術やレーザーを用いた加工技術などによる微細加工が容易であり、これにより、実装面積の小さいコンデンサ装置を製造することができる。また、容量絶縁膜中に第1及び第2の電極と対向して、少なくとも1つの中間電極を介在させている。この中間電極が電気的に浮いた状態にある場合、第1の電極及び第2の電極の間には複数のコンデンサが直列に形成されることになる。これにより、直列接続されたコンデンサのうち一部のコンデンサの電極同士がショートしても一部のコンデンサはコンデンサとしての機能を保持しているので、コンデンサ装置自体は不良にならない。従って、コンデンサ装置の歩留りおよび信頼性を向上させることができる。

【0016】特に、歪みが発生し易く、そのためショートし易い基板両端等に配置されるコンデンサにこの構造を採用すると有効である。また、コンデンサの第1の電極と接続する導電体の充填された第1のスルーホールの他に、第2の電極と接続する導電体の充填された第2のスルーホールを設けている。そして、コンデンサ装置の表裏に第1のスルーホールと接続する第1及び第2の接続電極を設け、第2のスルーホールと接続する第3及び第4の接続電極を設け、第1の接続電極と第2の接続電極同士が接続し、第3の接続電極と第4の接続電極同士が接続し、第3の接続電極と第4の接続電極同士が接続するようにコンデンサ装置を積層している。

【0017】これにより、第1の電極と高誘電体膜と第2の電極からなるコンデンサを並列に接続することができるので、大きな容量をもったコンデンサ装置を容易に

4

製造することができる。また、マザーボードである回路 基板に半導体装置とコンデンサ装置とを積層して相互接 続し、モジュール化している。即ち、コンデンサ装置の 第1及び第3の接続電極に対応する位置に半導体装置の 接続電極を形成し、コンデンサ装置の第2及び第4の接 続電極に対応する位置に回路基板の接続電極を形成した 上で、それらの接続電極同士が対応するように、半導体

【0018】これにより、最短距離で半導体装置、コンデンサ装置及び回路基板間の相互接続が可能となり、こ 10のため、半導体装置及び回路基板とコンデンサ装置との配線距離を短くすることができる。これにより、回路のインダクタンスを低減することができ、従って、高周波数領域での回路動作の性能向上を図ることができる。

装置、コンデンサ装置及び回路基板を積層する。

[0019]

【発明の実施の形態】以下に、本発明の実施の形態について図を参照しながら説明する。

(第1の実施の形態) 図1は、本発明の第1の実施の形態のコンデンサ装置の概略を示す断面図である。

【0020】図1に示すように、シリコン単体からなる 基板10に第1のスルーホール12a及び第2のスルホール12bが形成され、この中に導電体が充填されて、デカップリングコンデンサ(コンデンサ装置)の支持体11が構成されている。コンデンサの支持体11の表面に、第1の電極である下部電極14と、容量絶縁膜である高誘電体膜16と、第2の電極18とがこの順に積層されて、一個のコンデンサを構成している。

【0021】下部電極14は第1のスルーホール12a 内の導電体と接続し、さらに電極パッド(第1の接続電 極)21aと接続している。また、第1のスルーホール 30 12a内の導電体は、支持体11の裏面で電極パッド2 1dを介して第2の接続電極であるパンプ電極28cと 接続している。なお、電極パッド21aはLSIの電源 ラインに接続され、バンプ電極28cはマザーボードで ある回路基板の電源ラインに接続される。

【0022】上部電極18は第2のスルーホール12b内の導電体と接続し、さらに電極パッド(第3の接続電極)21bと接続している。第2のスルーホール12b内の導電体は、支持体11の裏面で電極パッド21eを介し第4の接続電極であるバンプ電極28dに接続され 40ている。なお、電極パッド21bはLSIのグランドラインに接続され、バンプ電極28dはマザーボードである回路基板のグランドラインに接続される。

【0023】なお、本実施の形態のコンデンサ装置の基板10はシリコン単体からなるが、その代わりに酸化シリコン (シリコン含有絶縁膜) やサファイアをコンデンサ装置の支持体11の基板材料にしてもよい。デカップリングコンデンサを、上記のように、LSIの電源ラインとグランドラインとの間に接続することにより、電源電圧の変動を低減させ、或いはマザーボードである回路 50

基板内の髙周波ノイズを低減させることができる。

【0024】この発明の実施の形態のデカップリングコンデンサによれば、基板材料としてシリコン、酸化シリコン、又はサファイアを用いているので、半導体プロセスでのドライエッチング技術やレーザーを用いた加工技術により形成することができる。すなわち、スルーホールがドリルを使って形成されるセラミックス基板を用いたコンデンサ装置と比較して、スルーホール間のピッチを縮小することができる。従って、コンデンサ装置の微細化が可能であるので、デカップリングコンデンサの高周波特性を向上させることができる。

【0025】次に、本発明の第1の実施の形態のコンデンサ装置の製造方法を図2乃至図4を参照して説明する。図2(a)乃至(d)、図3(a)乃至(c)、図4(a)乃至(b)は本発明の第1の実施のコンデンサ装置の製造方法を示す断面図である。図2(a)に示すように、まず、厚さが300 μ mのシリコン基板10上の所定の領域にレジストパターン(図示せず)を形成し、CF $_{4}$ などを用いたドライエッチングにより、直径Bが60 μ m、ピッチAが150 μ mのスルーホール12a、12b、12cを形成する。その後、スルホル12a、12b、12c内にCVD法で導電体を充填してコンデンサの支持体11とする。

【0026】図2(a)では5つのスルーホールを形成しているが、そのうち両端の2つが第1のスルーホール12aであり、その内側の2つが第2のスルーホール12bであり、中央部の1つが半導体装置及び回路基板の信号ラインを相互接続するスルーホール12cである。次に、図2(b)に示すように、下から順に、膜厚約0.1μmのTi(チタン)膜14aを、膜厚約0.2μmのPt(白金)膜14bをそれぞれスパッタリングにて成膜する。続いて、フォトリソグラフィーによりレジスト膜(図示せず)をパターニングして開口部を形成した後、このレジスト膜をマスクにして、Pt膜14bとTi膜14aとをエッチングして、第1の電極である下部電極14を形成する。

【0027】次に、図2(c)に示すように、高誘電体材料である $BaSrTiO_3$ (バリウムストロンチュームチタン酸化膜、以下、BSTという)膜をスパッタリングにより成膜する。そして、BST膜上にレジスト膜(図示せず)を形成した後、フォトリソグラフィーによりレジスト膜をパターニングして開口部を形成し、その後、このレジスト膜をマスクにして、バッファードフッ酸($NH_aF:HF=6:1$)をエッチング液に用いて、BSTをエッチングし、容量絶縁膜となる高誘電体膜16を形成する。このとき、下部電極14上の一部、第2のスルーホール12 c 上にも開口部が形成される。

【0028】次に、図2(d)に示すように、スパッタリング法により膜厚約 0.2μ mのPt膜を成膜した

50

後、その上にレジスト膜を形成する。続いて、フォトリ ソグラフィーにより、レジスト膜(図示せず)をパター ニングして開口部を形成した後、このレジスト膜をマス クにして、Pt膜をエッチングし、第2のスルーホール 12 b の導電体と接続した上部電極(第2の電極) 18 を形成する。これにより、BST膜からなる髙誘電体層 16が下部電極14と上部電極18により挟まれたコン デンサが形成される。

【0029】また、このとき、同時に高誘電体膜16の 開口部を通して下部電極14と接続した導電膜と、同じ 10 く信号ラインのスルーホール内の導電体と接続した導電 膜とを形成する。次に、図3(a)に示すように、感光 性のポリイミド膜を塗布し、パターニングして開口部を 形成する。開口部は、上部電極18上と、高誘電体膜1 6の開口部を通して下部電極14と接続した導電膜上 と、信号ラインのスルーホール12c内の導電体と接続 した導電膜上とに形成される。残るポリイミド膜が保護 膜20となる。

【0030】次いで、保護膜20上に下から順にCr (クロム) 膜、Ni(ニッケル)膜、Au(金)膜をそ れぞれ成膜する。続いて、レジスト膜(図示せず)を形 成した後、フォトリソグラフィーによりレジスト膜をパ ターニングして開口部を形成する。その後、このレジス ト膜をマスクにして、Au膜、Ni膜およびCr膜をエ ッチングし、5つの電極パッド21a、21b、21c を形成する。表面の5つの電極パッド21a、21b、 21 c のうち、両端の2つが第1のスルーホール12 a 内の導電体と接続した第1の接続電極21aであり、そ の内側の2つが第2のスルーホール12b内の導電体と 接続した第3の接続電極21bであり、中央部の1つは 30 信号ラインの接続電極21cである。

【0031】次に、図3(c)に示すように、支持基板 11の裏面に感光性のポリイミド膜を塗布した後、露光 し、現像することによりスルーホール12a、12b、 12 cの領域に開口部を有する保護膜22を形成する。 次に、支持体11の裏面の保護膜22上に下から順に、 Cr膜、Ni膜、Au膜を成膜する。続いて、レジスト 膜(図示せず)を形成した後、フォトリソグラフィーに よりレジスト膜をパターニングして開口部を形成する。 その後、このレジスト膜をマスクにして、Au膜、Ni 膜およびCr膜をエッチングして、スルーホール12 a、12b、12cの導電体と接続する5つの電極パッ ド24a、24b、24cを形成する。

【0032】次に、図4 (a) 及び図4 (b) に示すよ うに、電極パッド24a、24b、r24c上にPb (鉛) -5wt%Sn(錫) からなるはんだをメタルマ スクを通じて蒸着してはんだ膜26を形成する。そし て、はんだ膜26の表面の酸化を防止するためのフラッ クスを塗布し、350℃で加熱、溶融して回路基板と接 続するための5つのバンプ電極28a、28b、28c 50 フォトリソグラフィーによりレジスト膜をパターニング

を形成する。裏面の5つのバンプ電極28a、28b、 28cのうち、両端の2つが第1のスルーホール12a 内の導電体と接続した第2の接続電極28aであり、そ の内側の2つが第2のスルーホール12b内の導電体と 接続した第4の接続電極28bであり、中央部の1つは 信号ラインの接続電極28cである。

【0033】以上により、第1の実施の形態のコンデン サ装置30が完成する。以上のように、第1の実施の形 態のコンデンサ装置30の製造方法によれば、シリコン 単体の基板10を用いているため、ドライエッチングな どの半導体製造プロセスを採用することができる。従っ て、微細ピッチのスルーホール12a、12b、12c を形成することができ、実装面積を小さくすることがで きる。すなわち、マザーボードである回路基板に実装す る場合、LSIとの配線距離を短くすることができるの で、回路のインダクタンスが減少し、デカップリングコ ンデンサの髙周波特性を向上させることができる。

【0034】また、微細加工技術により多数のコンデン サを基板10上に搭載できるので、実装面積を増やさず に大きな容量のデカップリングコンデンサを製造するこ とができる。なお、本実施の形態では、コンデンサ装置 30の基板材料としてシリコンを用いているが、酸化シ リコン(シリコン含有絶縁膜)やサファイアなども用い ることができる。この場合、酸化シリコンはシリコンと 同様にCF₄ などを用いたドライエッチングにより、ま た、サファイアはレーザーを用いた加工技術により、そ れぞれ微細ピッチのスルーホールを形成することができ る。

【0035】また、本実施の形態では、高誘電体膜16 の材料としてBSTを用いているが、PbZrx Ti 1-x O3(PZT) 及びBiSr2 Ta2 O9(Y1と呼 ぶ) などを用いてもよい。これらはスパッタリングやソ ル・ゲル法により成膜することができる。

(第2の実施の形態) 第2の実施の形態において、第1 の実施の形態と異なるところは、図2における基板10 の材料としてガラス基板を用いている点、高誘電体膜層 16の材料としてPbMgNbOa (以下、PMNと称 する。)を使用している点である。

【0036】さらに、異なる点は髙誘電体膜層16のエ ッチング方法であり、その他の工程は第1の実施例と同 一である。以下に、第2の実施の形態の製造方法につい て上記異なる点を中心に説明する。図2乃至図4を流用 する。第1の実施例と同様な方法で厚さが300 µ mの ガラス基板10にスルーホール12a、12b、12c を形成し、スルーホール12a、12b、12c内に導 電体を充填してコンデンサ装置の支持体11とする。

【0037】次いで、下部電極14を形成した後に、P MNをパルスレーザーデポジション (PLD) 法で成膜 する。続いて、レジスト膜(図示せず)を形成した後、

10

20

ある。

し、その後、このレジスト膜をマスクにして、イオンミリング法でPMNをエッチングして、高誘電体層18を形成する。なお、PMNの形成方法として、通常のスパッタリング又はPMNの原料を含む液体をスピンコートで塗布し、溶剤を乾燥させ、焼成させて成膜するゾル・ゲル法を用いてもよい。

【0038】次の工程の上部電極18の成膜からバンプ電極28a、28b、28c形成までの工程は第1の実施の形態と同一な製造方法により形成する。以上の方法により、スルーホール12a、12b、12cを有するガラス基板10上に、高誘電体であるPMNを容量絶縁膜としたコンデンサが形成されたコンデンサ装置30を製造することができる。

【0039】第2の実施の形態においては、基板10と してガラス基板を用いているので、第1の実施の形態と 同様に、微細加工が可能であり、第1の実施の形態と同 様な効果を有する。

(第3の実施の形態) 図5は、第3の実施の形態のコンデンサ装置30aの構造を示す断面図である。

【0040】第3の実施の形態のコンデンサ装置30aにおいて、第1及び第2の実施の形態と異なるところは、図5に示すように、下部電極(第1の電極)14と上部電極(第2の電極)18との間の高誘電体膜(容量絶縁膜)16a、16b中に中間電極19が介在し、かつこの中間電極19は電気的に浮いた状態となっていることである。即ち、LSIの電源ラインとグランドラインとの間で複数のコンデンサが電気的に直列に接続されていることである。

【0041】また、図5では、図4(b)と異なり、3つのスルーホール12a、12b、12cが形成されて 30いる。そのうち、一端のスルーホールは、電源ラインと接続される導電体が充填された第1のスルーホール12aであり、他端のスルーホールはグランドラインと接続される導電体が充填された第2のスルーホール12bであり、中央部のスルーホールは導電体が充填された信号ラインのスルーホール12cである。

【0042】下部電極14は第1のスルーホール12a 内の導電体と接続し、かつ表面で電極パッド(第1の接 続電極)21aと接続し、裏面でバンプ電極(第2の接 続電極)28aと接続している。上部電極18は第2の 40 スルーホール12b内の導電体と接続し、かつ表面で電 極パッド(第3の接続電極)21bと接続し、裏面でバ ンプ電極(第4の接続電極)28bと接続している。信 号ラインの表面の電極パッド21c及び裏面のバンプ電 極(接続電極) 28cは信号ラインのスルーホール12 c内の導電体と接続している。

デンサとしての機能を保持しているので、コンデンサ装置30a自体が不良になることはない。従って、このような構造のコンデンサは、特に、歪みが発生し易く、そのためショートし易い基板両端等に配置されると有効で

【0044】なお、この実施の形態では、容量絶縁膜16a、16b中に中間電極19を1つ介在させて2個のキャパシタを電気的に直列に接続したコンデンサ装置を用いているが、容量絶縁膜中に中間電極を2つ以上形成して3個以上のキャパシタを電気的に直列に接続したコンデンサ装置を用いてもよい。次に、図5を参照して第3の実施の形態のコンデンサ装置30aの製造方法を説明する。

【0045】第3の実施の形態において、第1の実施の形態の製造方法と異なるところは、容量絶縁膜16a、16bの材料であるBSTの成膜方法が異なる点、及び電源ラインに接続される下部電極14とグランドラインに接続される上部電極18との間で複数のコンデンサが直列接続されるように複数のコンデンサを形成している点である。その他の工程は第1の実施例と同一であるので説明を省略する。

【0046】まず、第1の実施の形態と同一の工程で下部電極14まで形成する。この下部電極14は第1のスルーホール12a内の導電体と接続されるように形成する。続いて、上記したゾル・ゲル法を用いてBST膜を成膜する。次いで、BST膜上にレジスト膜(図示せず)を形成した後、フォトリソグラフィー技術を用いてレジスト膜をパターニングし、開口部を形成する。次いで、このレジスト膜をマスクにして、バッファードフッ酸にてBST膜をエッチングして第1の高誘電体層16aを形成する。

【0047】次に、膜厚約0.2μmのPt膜をスパッタリングで成膜する。続いて、Pt膜の上にレジスト膜(図示せず)を形成した後、フォトリソグラフィーにてレジスト膜をパターニングし、開口部を形成する。これをマスクにして、Pt膜をエッチングして、中間電極19を形成する。中間電極19は下部電極14及び上部電極18に接続せずに、電気的に浮いた状態になるように形成する。

【0048】次に、再度、BST膜を前記と同じ方法で成膜した後、パターニングして中間電極19上に第2の高誘電体層16bを形成する。次に、膜厚約0.2μmのPt膜をスパッタリングで成膜し、中間電極19の形成方法と同じ方法で、上部電極18を形成する。上部電極18は第2のスルーホール12b内の導電体に接続されるように形成する。以上により、下部電極14と上部電極18との間に、下部電極14と第1の高誘電体層16aと中間電極19とで構成されるコンデンサと、上部電極18と第2の高誘電体層16bと中間電極19とで構成されるコンデンサとが形成される

【0049】次に、第1の実施の形態と同様に、感光性 のポリイミド膜からなる保護層20と電極パッド21 a、21b、21cとを形成する。次に、支持体11の 裏側にも保護層22と電極パッド24a、24b、24 cを形成し、さらに各電極パッド24a、24b、24 c 上にバンプ電極(図示ぜす)を形成する。

【0050】以上の方法により、下部電極14と上部電 極18との間に中間電極19を共通の電極とする2つの コンデンサが形成される。このとき、中間電極19が電 気的に浮いた状態となっているため、下部電極14が電 源ラインに接続され、上部電極18がグランドラインに 接続されると、電源ラインとグランドラインとの間に2 つのコンデンサが電気的に直列に接続されることにな る。

【0051】 (第4の実施の形態) 図6は第4の実施の 形態のコンデンサ装置30bの構造を示す断面図であ る。第4の実施の形態のコンデンサ装置30bにおい て、他の実施例と異なるところは、電源ラインとグラン ドラインとの間に電気的に直列接続したコンデンサと、 電気的に並列接続したコンデンサが混在して形成されて 20 いる点である。

【0052】図6に示すように、シリコン基板10にス ルーホール12a、12b、12cが形成され、その中 に導電体が充填されて支持体11が形成されている。支 持体11上にはスルーホール12a、12b、12cの 導電体の領域が開口されるようにポリイミド膜からなる 保護膜20が形成されている。まず、C部の構造を説明 する。C部にはTi膜とPt膜とからなる下部電極14 が形成され、電源ラインに接続される。下部電極14の 上にはBST膜からなる第1の高誘電体層16aとPt 膜からなる中間電極19とが形成され、中間電極19は グランドラインに接続されている。中間電極19の上に はBST膜からなる第2の高誘電体層16bとPt膜か らなる上部電極18が形成され、上部電極18は電源ラ インに接続されている。

【0053】以上のように、C部では、ともに電源ライ ンに接続されている下部電極14と上部電極18の間に 中間電極19が介在し、中間電極19はグランドライン に接続されている。すなわち、C部では2個のコンデン サがLSIの電源ラインとグランドラインとの間で並列 40 に配置されている。次にD部の構造の説明をする。D部 にはTi膜とPt膜とからなる下部電極14が形成さ れ、電源ラインに接続されている。下部電極14の上に はBST膜からなる第1の高誘電体層16aとPt膜か らなる中間電極19とが形成され、中間電極19は電気 的に浮いた状態になっている。中間電極19の上にはB ST膜からなる第2の高誘電体層16bとPt膜からな る上部電極18とが形成され、上部電極18はグランド ラインに接続されている。

上部電極18の間に中間電極19が介在し、中間電極1 9は電気的に浮いた状態になっている。すなわち、D部 では2個のコンデンサがLSIの電源ラインとグランド ラインとの間で直列に接続されている。以上のように、 電源ラインとグランドラインとの間で、C部では2個の コンデンサが並列に接続され、D部では2個のコンデン サが直列に接続されている。

【0055】コンデンサを直列に接続すると1個のコン デンサがショートしてもコンデンサ装置全体は不良にな らない。すなわち、コンデンサ装置は冗長回路を備えて いることになる。一方では、コンデンサを並列にすると 容量値を増加させることができる。従って、特に、故障 率の高いD部では直列接続のコンデンサを配置し、故障 率の低いC部では並列接続のコンデンサを配置すること により、コンデンサ装置30bの信頼性を向上させつ つ、コンデンサ装置30bのコンデンサ容量を大きくし て性能向上を図ることができる。

【0056】次に、本実施の形態の複数のコンデンサが 直列と並列に混在するコンデンサ装置の製造方法につい て説明する。第1の実施の形態と異なるところは、高誘 電体層16のBST膜の成膜方法が異なる点、及び複数 のコンデンサが設けられ電源ラインとグランドラインと の間でコンデンサが直列及び並列に配置されるように形 成する点である。その他の工程は第1の実施例と同一で あるので、説明を省略する。

【0057】まず、第1の実施の同一の工程で下部電極 14を形成する。C部及びD部の下部電極14は共に電 源ラインに接続されるようにパターニングする。その 後、前記したゾル・ゲル法を用いてBST膜を成膜す る。続いて、BST膜上にレジスト膜を (図示せず) を 形成した後、フォトリソグラフィーにより、レジスト膜 をパターニングする。その後、このレジスト膜をマスク にしてBST膜をバッファードフッ酸にてエッチング し、第1の高誘電体層16aを形成する。

【0058】次に、膜厚約0. 2μmのP t 膜をスパッ タリングで成膜する。そして、Pt膜をパターニングし て、中間電極19を形成する。ここで、C部の中間電極 19はグランドラインに接続されるように、D部の中間 電極19は電気的に浮いた状態になるように、それぞれ をパターニングする。次に、再度、前記と同じ方法でB ST膜を成膜し、パターニングして第2の高誘電体層1 6 b を形成する。

【0059】次に、膜厚0. 2μmのP t 膜をスパッタ リングで成膜し、中間電極19と同じ方法で上部電極1 8を形成する。ここで、C部の上部電極18は電源ライ ンに接続されるようにパターニングし、D部の上部電極 18はグランドラインに接続されるようにパターニング する。次に、第1の実施の形態と同様に、感光性のポリ イミド膜からなる保護層20と電極パッド21a、21 【0054】以上のように、D部では、下部電極14と 50 b、21cとを形成する。電極パッド21a、21b、

21 c はそれぞれ第1のスルーホール12 a 内の導電 体、第2のスルーホール12b内の導電体、信号ライン のスルーホール12 c 内の導電体と接続されるように形 成する。

【0060】次に、支持体11の裏面にも保護層22と 電極パッド24a、24b、24cとを形成し、さらに それらの上にそれぞれバンプ電極(図示ぜす)を形成す る。電極パッド24a、24b、24cはそれぞれ第1 のスルーホール12a内の導電体、第2のスルーホール 12 b内の導電体、信号ラインのスルーホール12 c内 10 の導電体と接続している。

【0061】以上により、電源ラインとグランドライン との間に直列接続されたコンデンサと並列接続されたコ ンデンサとが混在するコンデンサ装置30bを製造する ことができる。

(第5の実施の形態) 次に、上記コンデンサ装置30を 搭載した、第5の実施の形態のマルチチップモジュール (以下、MCMという)について説明する。

【0062】図7(a)、(b)及び図8はこの実施の 形態のコンデンサ装置30が実装されたMCMの断面図 である。また、図9は図7(b)の部分拡大断面図であ る。図7(a)に示すこの実施の形態のMCMにおいて は、回路基板46上に複数のLSI44が載置され、各 々のLSI44の近傍にコンデンサ装置30が2個積層 されている。そして、LSI44とコンデンサ装置30 とは回路基板46上の配線を介して接続されている。

【0063】このコンデンサ装置30自体は半導体プロ セスの微細加工技術であるドライエッチングを用いて製 造することができる。従って、コンデンサ装置30自体 が小さいので、MCMにおけるコンデンサの実装面積を 30 小さくすることができる。このため、LSI44との配 線の引き回しが少なくなり、回路の寄生インダクタンス を低減することができ、これによりLSI44の動作を 安定させることができる。

【0064】図7(b)に示すこの実施の形態のMCM においては、回路基板46上に複数のLSI44が搭載 され、各々のLSI44と回路基板46との間にそれぞ れコンデンサ装置30が2個ずつ積層されている。図7 (b) に示すMCMの構造をさらに詳細に説明すると、 図9に示すように、コンデンサ装置42は、2つのコン 40 デンサ装置30相互間で、電極パッド (第1の接続電 極) 21 a とバンプ電極 (第2の接続電極) 28 a 同 士、電極パッド(第3の接続電極)21bとバンプ電極 (第4の接続電極) 28 b 同士、及び信号ラインの電極 パッド21cとバンプ電極28c同士を接続させて積層 したものである。

【0065】また、コンデンサ装置42上にLSI44 を積層することにより、LSI44の5つの電極パッド 38a、38b、38c及びパンプ電極34a、34 b、34cを介してLSI44がコンデンサ装置42に 50 の層数が1~2層である例を説明したが、さらに多層構

接続されている。LSI44の5つの電極パッド38 a、38b、38cのうち両端の電極パッド38aが電 源ラインと接続され、その内側の電極パッド38bがグ ランドラインと接続され、中央部の電極パッド38cが 信号ラインと接続されている。

【0066】また、コンデンサ装置42上に回路基板4 6を積層することにより、回路基板46の5つの電極パ ッド36a、36b、36cを介して回路基板46がコ ンデンサ装置42に接続されている。回路基板46の5 つの電極パッド36a、36b、36cのうち両端の電 極パッド36aが電源ラインと接続され、その内側の電 極パッド36bがグランドラインと接続され、中央部の 電極パッド36cが信号ラインと接続されている。

【0067】以上のように、図7 (b) のMCMによれ ば、コンデンサ装置42とLSI44と回路基板46と を積層することにより直に相互接続を行なうことができ るので、MCMの構成要素間の配線距離を短くすること ができる。このため、回路のインダクタンスを低減させ ることができる。また、図7(a)と同様に、コンデン サ装置30を積層することにより、実装面積を増やさず に容量値を容易に大きくすることができる。従って、デ カップリングコンコンデンサの髙周波数特性を向上させ ることができるので、LSI44の動作を安定させるこ とができる。

【0068】図8に示すこの実施の形態のMCMにおい ては、回路基板46の表面に複数のLSI44が搭載さ れるとともに、裏面にもLSI44が搭載されている。 そして、各々のLSI44と回路基板46の間にそれぞ れコンデンサ装置30が3個ずつ積層されている。一つ のコンデンサ装置はコンデンサ装置30が3個積層され てなるので、実装面積を増やさずに図7(b)の形態よ りさらにデカップリングコンデンサの容量を大きくする ことができる。このため、寄生インダクタンスを低減し てMCMに実装されたLSI44の高周波領域での動作 を安定させつつ、回路動作の高速化を図ることができ る。

【0069】また、回路基板46の裏面にもコンデンサ 装置30とLSI44が実装されているので、コンデン サ装置とLSIとを含むMCMの集積度を向上させるこ とができる。なお、上記では、コンデンサ装置として、 第1及び第2の実施の形態のコンデンサ装置30を用い ているが、第3及び第4の実施の形態のコンデンサ装置 30a、30bを用いてもよい。

【0070】本発明は、その精神また主要な特徴から逸 脱することなく、他のいろいろな形で実施することがで きる。そのため、前述の実施の形態はあらゆる点で単な る例示にすぎず、限定的に解釈してはならない。本発明 の範囲は、特許請求範囲によって示すものであって、実 施の形態には、なんら拘束されない。例えば、高誘電体 造として容量を増やしてもよい。

(付記)

(付記1) シリコン単体或いはシリコン含有絶縁膜からなる基板、又はサファイアからなる基板に第1のスルーホールを形成する工程と、前記第1のスルーホール内に導電体を充填する工程と、前記基板上に前記第1のスルーホール内の前記導電体に接続された第1の電極を形成する工程と、前記第1の電極上に容量絶縁膜を形成する工程と、前記高誘電体膜上に第2の電極を形成する工程とを有することを特徴とするコンデンサ装置の製造方 10 法。

【0071】(付記2) 前記基板に第2のスルーホールを形成する工程と、前記第2のスルーホール内に導電体を充填する工程と、前記第2の電極を前記第2のスルーホール内に充填された導電体に接続する工程とを有することを特徴とする付記1に記載のコンデンサ装置の製造方法。

(付記3) 第1のスルーホールを有し、前記第1のスルーホール内に導電体が充填された、シリコン単体或いはシリコン含有絶縁膜からなる基板、又はサファイアか 20 らなる基板と、第1の電極と、容量絶縁膜と、第2の電極とがこの順に積層されてなるコンデンサとを有し、前記コンデンサが前記基板上に形成され、前記コンデンサの第1の電極が前記第1のスルーホール内の導電体に接続されていることを特徴とするコンデンサ装置。

【0072】(付記4) 前記コンデンサは、前記容量 絶縁膜中に前記第1の電極及び前記第2の電極と対向し て、少なくとも1つの中間電極が介在していることを特 徴とする付記3記載のコンデンサ装置。

(付記5) 前記中間電極は電気的に浮いた状態にある 30 ことを特徴とする付記4に記載のコンデンサ装置。

【0073】(付記6) 導電体が充填された第2のスルーホールが前記基板に形成され、前記第2の電極が該第2のスルーホール内の導電体に接続されていることを特徴とする付記3万至5の何れかーに記載のコンデンサ装置。

(付記7) 前記コンデンサ装置が複数積層されてなり、各々の前記コンデンサ装置の表面と裏面にそれぞれ前記第1のスルーホールの導電体と接続する第1の接続電極と第2の接続電極とが設けられ、各々の前記コンデ 40ンサ装置の表面と裏面にそれぞれ前記第2のスルーホールの導電体と接続する第3の接続電極と第4の接続電極とが設けられ、前記コンデンサ装置相互で前記第1の接続電極と前記第2の接続電極とが接続され、前記第3の接続電極と第4の接続電極とが接続されていることを特徴とする付記6に記載のコンデンサ装置。

【0074】(付記8) 付記7に記載のコンデンサ装置と半導体装置とが積層されてなり、前記半導体装置が前記第1及び第3の接続電極を通して前記コンデンサ装置と電気的に接続されていることを特徴とするコンデン 50

サ装置が実装されたモジュール。

(付記9) 前記コンデンサ装置の裏面にさらに回路基板が積層されてなり、前記回路基板が前記第2の接続電極及び前記第4の接続電極を通して前記コンデンサ装置と接続されていることを特徴とする付記8に記載のコンデンサ装置が実装されたモジュール。

. 16

【0075】(付記10) 前記半導体装置及び前記回路基板はそれぞれ電源端子と接地端子とを有し、前記コンデンサ装置の前記第1の接続電極及び前記第2の接続電極はそれぞれ前記半導体装置及び前記回路基板の前記電源端子に接続され、前記コンデンサ装置の前記第3の接続電極及び前記第4の接続電極はそれぞれ前記半導体装置及び前記回路基板の前記接地端子に接続されていることを特徴とする付記9に記載のコンデンサ装置が実装されたモジュール。

【0076】(付記11) 前記中間電極が電気的に浮いた状態にあるコンデンサが、前記基板の端部に配置されていることを特徴とする付記5に記載のコンデンサ装置。

20 [0077]

【発明の効果】以上説明したように、本発明によれば、シリコン単体或いはシリコン含有絶縁膜からなる基板、もしくはサファイアからなる基板にスルーホールを形成している。単体或いはシリコン含有絶縁膜からなる基板、或いはサファイアからなる基板を用いることにより、ドライエッチング技術やレーザーでの加工技術を用いて微細加工することができる。従って、微細ピッチのスルーホールを容易に形成することができ、セラミックス基板を用いた場合に比べて、実装面積の小さいコンデンサ装置を製造することが可能となる。

【0078】さらに、コンデンサ装置を多層に積層することにより、実装面積を増やすことなく容易に大きな容量を有するコンデンサ装置を得ることが可能となる。また、マザーボードである回路基板に半導体装置とコンデンサ装置とを積層することにより直に相互接続することができるので、回路基板、半導体装置及びコンデンサ装置相互間の配線距離を短くすることが可能となる。

【0079】以上により、回路のインダクタンスを低減することができ、これにより、高周波数領域でのコンデンサ装置の性能を向上させることが可能となる。

【図面の簡単な説明】

【図1】第1の実施の形態のコンデンサ装置を示す断面 図である。

【図2】(a)~(d)は第1及び第2の実施の形態のコンデンサ装置の製造方法を工程順に示す断面図(その1)である。

【図3】(a)~(c)は第1及び第2の実施の形態のコンデンサ装置の製造方法を工程順に示す断面図(その2)である。

【図4】(a)及び(b)は第1及び第2の実施の形態

のコンデンサ装置の製造方法を工程順に示す断面図(そ の3)である。

【図5】第3の実施の形態である複数のコンデンサが電 気的に直列に接続されているコンデンサ装置を示す断面 図である。

【図6】第4の実施の形態である複数のコンデンサが電 気的に直列及び並列に接続されているコンデンサ装置を 示す断面図である。

【図7】 (a) 及び (b) は第5の実施の形態の半導体 装置とコンデンサ装置とが実装されたマルチチップモジ 10 ュールを示す断面図(その1)である。

【図8】第5の実施の形態の半導体装置とコンデンサ装 置とが実装されたマルチチップモジュールを示す断面図 (その2) である。

【図9】同じく図7 (b) の部分拡大断面図である。 【符号の説明】

- 10 シリコン基板(基板)、
- 11 支持体、
- 12a 第1のスルーホール、
- 12b 第2のスルーホール、

【図1】

10:基板 11:支持体

16:高頭電体膜 18:上部電極(第2の電極)

20.22:保護職 129:第1のスルーホール 12b:第2のスルーホール

21a:電極パッド(第1の接続電極) 21b:電極パッド(第3の接続電極) 24a,24b:電視パッド

28a: パンプ電径(第2の接触電板) 28b: バンプ電極(第4の接続電極) 12c 信号ラインのスルーホール、

下部電極 (第1の電極)、

高誘電体膜、

- 16 a 第1の高誘電体膜、
- 第2の髙誘館体膜、
- 上部電極 (第2の電極)、
- 中間電極、 19
- 20,22 保護膜、
- 電極パッド (第1の接続電極)、 2 1 a
- 21b 電極パッド (第2の接続電極)、
 - 21 c 電極パッド(信号ラインの接続電極)、
- 28 a バンプ電極(第3の接続電極)、
- 28b パンプ電極(第4の接続電極)、
- 信号ラインのバンプ電極(信号ラインの接続電 極)、

18

- 30, 30a, 30b, 42 コンデンサ装置、
- 40 I/Oピン、
- 44 LSI,
- 46 回路基板。

20

【図2】

【図3】 【図4】 (b) (c) 24b 【図6】 【図5】 12a 【図8】

フロントページの続き

(72)発明者 今中 佳彦 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 F ターム(参考) 5E001 AB01 AC04 AC10 AE01 AE03 AF02 AH03 AJ01 AJ02 AJ03 5E082 AA01 AB01 BB02 BB05 BC39 CC02 EE05 EE11 EE23 EE37 FF05 FG03 FG26 FG42 GG01 GG10 GG11 GG21 JJ02 JJ15 JJ21 LL13