

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

Curso: Matemáticas discretas

AYUDANTES: FRANCISCA CAPRILE, CATALINA ORTEGA, MATÍAS FERNÁNDEZ E

Ignacio Vergara

Ayudantía 14

1 de diciembre de 2023

 $2^{\rm o}$ semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado
- B. Barías

Ejercicio 1 | Lógica

Un conjunto de fórmulas proposicionales \sum es redundante si existe una fórmula α tal que $\sum \setminus \{\alpha\} \models \alpha$, es decir, si existe α tal que al extraerla del conjunto \sum , es consecuencia lógica del conjunto resultante. Además, decimos que \sum es redundante de a pares si existen α y $\beta \in \sum$ con $\alpha \neq \beta$ tales que $\{\alpha\} \models \beta$, .

- a) Demuestre que si existen α y $\beta \in \sum$ con $\alpha \neq \beta$ y con $\alpha \equiv \beta$, entonces el conjunto es redundante.
- b) ¿Es cierta la siguiente afirmación? Demuestre.

Si \sum es redundante, entonces es redundante de a pares.

Solución:

a) Sea \sum un conjunto de fórmulas proposicionales cualquiera y sean α y $\beta \in \sum$ con $\alpha \neq \beta$ tales que $\{\alpha\} \equiv \beta$. Mostraremos que $\sum \setminus \{\alpha\} \models \alpha$.

Sea una ϕ valuación cualquiera tal que $\phi(\sum \setminus \{\alpha\}) = 1$. Como $\beta \in \sum$, sabemos que $\phi(\beta) = 1$. Como $\alpha \equiv \beta$ sabemos que $\phi(\alpha) = 1$. Por lo tanto $\sum \setminus \{\alpha\} \models \alpha$., y concluimos que el conjunto \sum es redundante.

b) Proporcionamos un contraejemplo para argumentar que la afirmación es falsa. Definimos $\sum = \{p,q,p\leftrightarrow p\}$

q}. Probaremos que este conjunto es redundante pero no es redundante de a pares, para lo cual consideramos la tabla de verdad de las fórmulas involucradas:

$$\begin{array}{cccc} p & q & \leftrightarrow \\ \hline 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

Para mostrar que es redundante, consideramos $\alpha = p \leftrightarrow q$. Vemos de la cuarta línea de la tabla que la única valuación que satisface $\sum \{\alpha\}$ también satisface α . Por ende, es redundante.

Para mostrar que no es redundante de a pares, debemos comprobar tomando fórmulas $\alpha, \beta \in \Sigma$ que no hay consecuencias lógicas de $\{\alpha\} \models \beta$:

 $p \models p \leftrightarrow q$ no se cumple (línea 2) $p \models q$ no se cumple (línea 2) $p \leftrightarrow q \models p$ no se cumple (línea 1) $p \leftrightarrow q \models q$ no se cumple (línea 1) $q \models p$ no se cumple (línea 3) $q \models p \leftrightarrow q$ no se cumple (línea 3)

Ejercicio 2 | Teoría de Conjuntos

Diremos que un conjunto $A \subseteq \mathbb{R}$ es abierto si

$$\forall x \in A \exists r > 0 \text{ tal que } B_r(x) \subseteq A \text{ donde } B_r(x) := \{ y \in X : |x - y| < r \}$$

Demuestre que para todo r > 0, $x \in \mathbb{R}$ el conjunto $B_r(x)$ es abierto.

Hint: Utilizar que $|x-y| \le |x-z| + |z-y|$ para todo $x, y, z \in \mathbb{R}$.

Solución:

Dados r > 0, $x \in \mathbb{R}$ se puede ver que $B_r(x)$ es no vacío pues $x \in B_r(x)$. Luego, sea $y \in B_r(x)$ entonces, |x - y| < r por lo tanto se puede definir δ tal que $\delta := r - |x - y|$. Ahora, por la definición de un conjunto abierto, buscamos demostrar que $B_{\delta}(y) \subseteq B_r(x)$, i.e, dado $z \in B_{\delta}(y)$ entonces $z \in B_r(x)$.

Supongamos que tenemos $z \in B_{\delta}(y)$. Luego, buscamos demostrar que |x-z| < r, utilizando la hint, tenemos que

$$|x - z| \le |x - y| + |y - z|$$

Luego, como $z \in B_{\delta}(y)$ tenemos que $|y-z| < \delta$, por lo cual por la expresión anterior tenemos que,

$$|x - z| \le |x - y| + |y - z| < \delta + |x - y|$$

 $|x - z| < \delta + |x - y|$

reemplazando $\delta = r - |x - y|$,

$$|x-z| < \delta + |x-y| = r - |x-y| + |x-y|$$
$$|x-z| < r - |x-y| + |x-y|$$
$$|x-z| < r$$

obteniendo así, por definición de $B_r(x)$ que $z \in B_r(x)$. Demostrando así que $B_r(x)$ es abierto.

Ejercicio 3 | Algoritmos

Considere el siguiente algoritmo A para analizar en esta pregunta:

Algorithm 1: ExistsPath

```
Data: Un grafo dirigido G = (V, E) y nodos u, v \in V.
```

Result: 1 si existe un camino entre u y v, 0 en caso contrario.

```
\begin{array}{lll} \mathbf{1} & i = 1; \\ \mathbf{2} & M = E; \\ \mathbf{3} & \mathbf{while} \ i \leq |V| \ \mathbf{do} \\ \mathbf{4} & \quad \mathbf{if} \ (u,v) \in M \ \mathbf{then} \\ \mathbf{5} & \quad \mathbf{return} \ return \ 1; \\ \mathbf{6} & \quad \mathbf{else} \\ \mathbf{7} & \quad \mathbf{M} = M \circ E; \\ \mathbf{8} & \quad \mathbf{i} = i + 1; \\ \mathbf{9} & \mathbf{return} \ 0; \end{array}
```

Utilice la función de tamaño de input |((V, E), u, v)| = |V| = n. Además, considere que el costo computacional para la línea 7 (esto es, computar $M \circ E$) es $\Theta(n^3)$ y para todas las demás lineas el costo es constante. Encuentre una función f tal que peor-caso $f(n) \in \Theta(f(n))$ y una función f tal que mejor-caso $f(n) \in \Theta(f(n))$. Demuestre ambos resultados.

Solución:

El mejor-caso ocurre si $(u, v) \in E$. Si esta condición se cumple, entonces entraría en el while y retorna 1 en la fila 5 en la primera iteración que se realice.

Sea C el tiempo que demoran las líneas 1 a la 5, entonces;

$$5 \cdot C \in \Theta(1)$$

Por lo tanto, el mejor-caso $\in \Theta(1)$

El peor-caso ocurre si no existe un camino de u a v. Si esto ocurre entonces el algoritmo realizará n iteraciones del while. Al entrar, cada iteración ejecutará la línea 7.

Sea C_1 tal que Tiempo de $M \circ E \geq C_1 \cdot n^3$. Entonces tenemos que,

Tiempo_A(G)
$$\geq C_1 \cdot n^3 \cdot n = C_1 \cdot n^4$$

Sea C' el tiempo que toman las líneas constantes $\left(\sum_{i=1}^7 C_i = C'\right)$ y C_2 es tal que Tiempo línea $7 \leq C_2 \cdot n^3$

$$\text{Tiempo}_A(G) \le n \cdot C' + n \cdot n^3 \cdot C_2$$

Notamos que,

$$\operatorname{Tiempo}_{A}(G) \leq n^{4} (C_{2} + C_{1})$$

Por lo tanto, $T_A(G) \in \Theta(n^4)$ y también que peor-caso $\in \Theta(n^4)$.

Ejercicio 4 | Grafos

Sea G un grafo. Definimos el diámetro de G como el más largo de los caminos más cortos entre dos vértices de G.

Demuestre que no puede ser que G y \bar{G} tengan ambos diámetro mayor que 3.

Solución:

Denotaremos como D(G) al diámetro del grafo G.

Si $D(G) \leq 3$, entonces el resultado se cumple. Supongamos entonces que $D(G) \geq 4$, y debemos mostrar que $D(\bar{G}) \leq 3$; es decir, que dos vértices cualquiera en \bar{G} están conectados por un camino de longitud ≤ 3 . Dividiremos la demostración en dos casos:

Caso 1: G no es conexo.

En este caso, entre todos los vértices que están en componentes conexas distintas en G habrá una arista en \bar{G} (y por lo tanto un camino de largo 1), mientras que los vértices que están en la misma componente conexa en G estarán ambos conectados en \bar{G} a través de un vértice de otra componente conexa (y por lo tanto habrá un camino de longitud 2 entre ellos). Luego, se cumple que $D(\bar{G}) \leq 3$, y más aún, se cumple que $D(\bar{G}) \leq 2$.

Caso 2: G es conexo. Si G es conexo y $D(G) \ge 4$, entonces existen dos vértices u y v en G conectados por un camino de longitud ≥ 4 , y tales que no existe un camino de longitud < 4 entre ellos. Luego, es claro que en \bar{G} habrá una arista entre u y v. Por otro lado, cualquier vértice distinto a u y v en G será adyacente a al menos uno de ellos en \bar{G} , pues no existe un camino de longitud 2 entre u y v en G. Sean x e y dos vértices cualesquiera de G distintos de u y v. Si en \bar{G} ellos comparten a u o v como vecino, entonces xuy o xvy será un camino entre ellos en \bar{G} (de longitud 2). Si no, xuvy o xvuy será un camino entre ellos en \bar{G} (de longitud 3). En cualquier caso, dos vértices cualesquiera de \bar{G} están conectados por un camino de longitud a lo más 3.