《计算机实践》—数据结构 上机实验题和要求

南京航空航天大学 自动化学院 2022 年 10 月

实验 1. 线性表的实验 (实验学时: 4 学时)

实验目的:

掌握线性表的顺序存储结构和链式存储结构的相关操作实现。

实验 1.1 顺序表的相关运算

1、实验内容

顺序表的定义、创建、插入和删除操作实现。

2、实验要求

- (1) 初始化顺序表,并创建顺序表的初始序列;
- (2) 在指定位置实现顺序表的插入操作,并输出插入操作后的序列;
- (3) 在指定位置实现顺序表的删除操作,并输出删除操作后的序列。

3、输入输出要求

- (1)输入数据:建立输入处理,输入顺序表里的数据(逻辑顺序预先确定,数据类型为字符型或整型,数据值自行设置),插入和删除的位置要求从键盘输入。
 - (2)输出形式:分别输出顺序表的初始序列以及进行插入、删除操作以后的正确序列。

实验 1.2 单链表的相关运算

1、实验内容

单链表的定义、创建及相关操作实现。

2、实验问题描述

求先后输入的两个集合 A、B 的差集(A-B)和并集(A+B)。

说明:已知两个集合 A 和 B (每个集合内部元素各不相同),两个集合的差集(A-B)中包含所有属于集合 A 而不属于集合 B 的元素;两个集合的并集(A+B)中包含所有属于集合 A 和属于集合 B 的元素,且相同数据只存储一个。

3、实验要求

- (1) 集合 A、B 采用单链表的存储结构;
- (2) 输出 A、B 原始序列、差集和并集。

4、输入输出要求

- (1)输入数据:建立输入处理,输入单链表 A 和 B 里的数据(逻辑顺序预先确定,数据类型为字符型或整型,数据值自行设置)。
- (2)输出形式:分别输出单链表 A 和 B 的原始序列、差集(A-B)和并集(A+B)。 **5、提示:** 求差(A-B):

步骤: 1) 首先创建 A 和 B 两个单链表;

- 2) 然后对集合 B 中的每个元素 x, 在 A 中查找, 若存在和 x 相同的元素,则从 A 链表中删除;
 - 3)输出 A-B, 进行验证。

6、测试用例

序号	输	〕入	输出			
	集合A	集合 B	差(A-B)	并(A+B)		
1	1 2 3 4 5 6 7	1 3 5 7 9 11	2 4 6	1 2 3 4 5 6 7 9 11		
2	1 3 5 7 9 11	1 2 3 4 5 6 7	9 11	1 2 3 4 5 6 7 9 11		

实验 1.3 线性表元素的区间删除 (选做)

1. 实验内容

创建一个线性表,然后设计一个函数删除所有值大于 minD 并且小于 maxD 的数据元素。删除后表中剩余数据元素保持原有存储结构,并且相对位置保持不变。

2. 实验要求

(1) 函数接口说明:

Delete(线性表类型名 *L, ElementType minD, ElementType maxD), 其中线性表数据元素设定为整数。

- (2) 使用顺序存储实现实验内容:
- (3) 使用链式存储实现实验内容。

3. 测试用例

序号	输入			输出		说明	
	元素 个数 n	L	minD	maxD	元素 个数 m	L	
1	10	4 -8 2 12 1 5 9 3 3 10	0	4	6	4 -8 12 5 9 10	删除中间 元素
2	6	23 21 46 9 90 12	9	46	3	46 9 90	删除头尾
3	6	1 2 3 4 5 6	0	100	0	空	全部删除
4	1	256	10	200	1	256	无删除

4. 输入输出要求

输入数据:通过合适的方式输入元素个数 n 和元素的值,创建线性表;然后输入 minD

和 maxD 的值 (minD<=maxD);

输出数据: 首先输出线性表元素个数 n, 然后输出初始序列; 换行后输出区间删除操作以后的元素个数 m 和正确序列。

5. 选作内容

尝试分析两种存储结构中,区间删除操作的时间复杂度和空间复杂度。

实验 1.4 约瑟夫斯问题求解 (选做)

1. 问题描述

约瑟夫斯(Josephus)问题的一种描述是:编号为1,2,...,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。一开始任选一个正整数作为报数上限值 m,从第一个人开始按顺时针方向自 1 开始报数,报到 m 时停止报数。报 m 的人出列,将他的密码作为新的 m 值,从他在顺时针方向下一个人开始重新从 1 报数,如此下去,直至所有的人全部出列为止。试设计一个程序,按出列顺序印出各人编号。

2. 基本要求

利用单向循环链表存储结构模拟此过程,按照出列的顺序印出各人的编号。

3. 测试数据

n=7,7个人的密码依次为:3,1,7,2,4,8,4。m 初值为6(正确的出列顺序应为6,1,4,7,2,3,5)。

4. 提示

程序运行后,首先要求用户指定初始报数上限 m,然后读取个人的密码。可设 n≤30。 注意链表中空表和非空表的界限。

5. 输入输出

输入数据:建立输入处理,输入n输入以及每个人的密码; m的初值。输出形式:建立一个输出函数,输出正确的序列。

6. 选作内容

添加采用顺序存储结构实现问题求解的模块。