Chapter 5. The Vector Space \mathbb{R}^n

Subspace and Spanning

Independence and Dimension

Orthogonality

Rank of a Matrix

5.1 Subspace and Spanning

$$\mathbb{R}^n = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, x_i \in \mathbb{R} \right\}$$

We consider \mathbb{R}^n as a set of all matrices of size $n \times 1$ that has two operations: addition and scalar multiplication. Denote

$$m{e}_1 = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix}, m{e}_2 = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix}, \cdots, m{e}_n = egin{bmatrix} 0 \ 0 \ dots \ 1 \end{bmatrix}$$

is the standard basis of \mathbb{R}^n . For any vector $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$ can be expressed via the standard basis: $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \cdots + x_n \mathbf{e}_n$.

A set U of vectors in \mathbb{R}^n is called a subspace of \mathbb{R}^n if it satisfies the following properties:

- (i) If $x, y \in U$ then $x + y \in U$.
- (ii) If $x \in U$ then $ax \in U$, for any $a \in \mathbb{R}$.

A set U of vectors in \mathbb{R}^n is called a subspace of \mathbb{R}^n if it satisfies the following properties:

- (i) If $x, y \in U$ then $x + y \in U$.
- (ii) If $x \in U$ then $ax \in U$, for any $a \in \mathbb{R}$.

A set U of vectors in \mathbb{R}^n is called a subspace of \mathbb{R}^n if it satisfies the following properties:

- (i) If $x, y \in U$ then $x + y \in U$.
- (ii) If $x \in U$ then $ax \in U$, for any $a \in \mathbb{R}$.

Note.

• If U is a subspace then the zero vector $\mathbf{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}^T \in U$.

A set U of vectors in \mathbb{R}^n is called a subspace of \mathbb{R}^n if it satisfies the following properties:

- (i) If $x, y \in U$ then $x + y \in U$.
- (ii) If $x \in U$ then $ax \in U$, for any $a \in \mathbb{R}$.

- If U is a subspace then the zero vector $\mathbf{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}^T \in U$.
- In \mathbb{R}^2 , all subspaces of \mathbb{R}^2 is either zero vector, or lines pass the origin, or \mathbb{R}^2 .

A set U of vectors in \mathbb{R}^n is called a subspace of \mathbb{R}^n if it satisfies the following properties:

- (i) If $x, y \in U$ then $x + y \in U$.
- (ii) If $x \in U$ then $ax \in U$, for any $a \in \mathbb{R}$.

- If U is a subspace then the zero vector $\mathbf{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}^T \in U$.
- In \mathbb{R}^2 , all subspaces of \mathbb{R}^2 is either zero vector, or lines pass the origin, or \mathbb{R}^2 .
- In \mathbb{R}^3 , all subspaces of \mathbb{R}^3 is either zero vector, or lines pass the origin, or planes containing the origin, or \mathbb{R}^3 .

A set U of vectors in \mathbb{R}^n is called a subspace of \mathbb{R}^n if it satisfies the following properties:

- (i) If $x, y \in U$ then $x + y \in U$.
- (ii) If $x \in U$ then $ax \in U$, for any $a \in \mathbb{R}$.

- If U is a subspace then the zero vector $\mathbf{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}^T \in U$.
- In \mathbb{R}^2 , all subspaces of \mathbb{R}^2 is either zero vector, or lines pass the origin, or \mathbb{R}^2 .
- In \mathbb{R}^3 , all subspaces of \mathbb{R}^3 is either zero vector, or lines pass the origin, or planes containing the origin, or \mathbb{R}^3 .

A set U of vectors in \mathbb{R}^n is called a subspace of \mathbb{R}^n if it satisfies the following properties:

- (i) If $x, y \in U$ then $x + y \in U$.
- (ii) If $x \in U$ then $ax \in U$, for any $a \in \mathbb{R}$.

- If U is a subspace then the zero vector $\mathbf{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}^T \in U$.
- In \mathbb{R}^2 , all subspaces of \mathbb{R}^2 is either zero vector, or lines pass the origin, or \mathbb{R}^2 .
- In \mathbb{R}^3 , all subspaces of \mathbb{R}^3 is either zero vector, or lines pass the origin, or planes containing the origin, or \mathbb{R}^3 .
- •

Which of the following are subspaces of \mathbb{R}^3 ?

(i)
$$U = \{(x, y, z) | z = 2x + 3y + 2\}$$

(ii)
$$V = \{(x, y, z)|x^2 + y^2 = 2z^2\}$$

Answer:

Which of the following are subspaces of \mathbb{R}^3 ?

(i)
$$U = \{(x, y, z) | z = 2x + 3y + 2\}$$

(ii)
$$V = \{(x, y, z)|x^2 + y^2 = 2z^2\}$$

Answer:

(i) Since $\mathbf{0} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ is not in U. Hence U is not a subspace. (U is a plane which does not pass through the origin in \mathbb{R}^3)

Which of the following are subspaces of \mathbb{R}^3 ?

(i)
$$U = \{(x, y, z) | z = 2x + 3y + 2\}$$

(ii)
$$V = \{(x, y, z)|x^2 + y^2 = 2z^2\}$$

Answer:

- (i) Since $\mathbf{0} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ is not in U. Hence U is not a subspace. (U is a plane which does not pass through the origin in \mathbb{R}^3)
- (ii) V is not closed under addition (although V is closed under scalar multiplication as well as $\mathbf{0} \in V$). Indeed, we can see that

$$\mathbf{v}_1 = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}^T, \mathbf{v}_2 = \begin{bmatrix} 2 & 2 & -2 \end{bmatrix}^T \in V$$

but $\mathbf{v}_1 + \mathbf{v}_2 = \begin{bmatrix} 4 & 4 & 0 \end{bmatrix}^T \notin V$. Hence V is not a subspace. (V is a cone in the space \mathbb{R}^3)

Which of the following are subspaces of \mathbb{R}^3 ?

(i)
$$U = \{(x, y, z) | z = 2x + 3y + 2\}$$

(ii)
$$V = \{(x, y, z)|x^2 + y^2 = 2z^2\}$$

Answer:

- (i) Since $\mathbf{0} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ is not in U. Hence U is not a subspace. (U is a plane which does not pass through the origin in \mathbb{R}^3)
- (ii) V is not closed under addition (although V is closed under scalar multiplication as well as $\mathbf{0} \in V$). Indeed, we can see that

$$\mathbf{v}_1 = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}^T, \mathbf{v}_2 = \begin{bmatrix} 2 & 2 & -2 \end{bmatrix}^T \in V$$

but $\mathbf{v}_1 + \mathbf{v}_2 = \begin{bmatrix} 4 & 4 & 0 \end{bmatrix}^T \notin V$. Hence V is not a subspace. (V is a cone in the space \mathbb{R}^3)

- (i) $U_1 = \{(x, y) : 2x + 5y = 0\}$
- (ii) $U_2 = \{(x, y) : x = 0\}$

(i)
$$U_1 = \{(x, y) : 2x + 5y = 0\}$$

(ii)
$$U_2 = \{(x, y) : x = 0\}$$

- (i) $U_1 = \{(x, y) : 2x + 5y = 0\}$
- (ii) $U_2 = \{(x, y) : x = 0\}$
- (i) U_1 is the line through the origin with normal vector $\begin{bmatrix} 2 & 5 \end{bmatrix}'$ in the plane \mathbb{R}^2 . Hence U_1 is a subspace of \mathbb{R}^2 .

Which of the following are subspaces of \mathbb{R}^2 ?

- (i) $U_1 = \{(x, y) : 2x + 5y = 0\}$
- (ii) $U_2 = \{(x, y) : x = 0\}$
- (i) U_1 is the line through the origin with normal vector $\begin{bmatrix} 2 & 5 \end{bmatrix}^T$ in the plane \mathbb{R}^2 . Hence U_1 is a subspace of \mathbb{R}^2 .

You can check by definition. For any $\mathbf{u} = (x_1, y_1)$, $\mathbf{v} = (x_2, y_2)$ in U_1 and $a \in \mathbb{R}$, then we have $2x_1 + 5y_1 = 0$ and $2x_2 + 5y_2 = 0$. Hence

- (i) $U_1 = \{(x, y) : 2x + 5y = 0\}$
- (ii) $U_2 = \{(x, y) : x = 0\}$
- (i) U_1 is the line through the origin with normal vector $\begin{bmatrix} 2 & 5 \end{bmatrix}'$ in the plane \mathbb{R}^2 . Hence U_1 is a subspace of \mathbb{R}^2 . You can check by definition. For any $\mathbf{u}=(x_1,y_1), \mathbf{v}=(x_2,y_2)$ in U_1 and $a \in \mathbb{R}$, then we have $2x_1+5y_1=0$ and $2x_2+5y_2=0$. Hence

$$\mathbf{u} + \mathbf{v} = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \in U_1$$

- (i) $U_1 = \{(x, y) : 2x + 5y = 0\}$
- (ii) $U_2 = \{(x, y) : x = 0\}$
- (i) U_1 is the line through the origin with normal vector $\begin{bmatrix} 2 & 5 \end{bmatrix}^I$ in the plane \mathbb{R}^2 . Hence U_1 is a subspace of \mathbb{R}^2 . You can check by definition. For any $\mathbf{u}=(x_1,y_1), \mathbf{v}=(x_2,y_2)$ in U_1 and $a\in\mathbb{R}$, then we have $2x_1+5y_1=0$ and $2x_2+5y_2=0$. Hence

$$\mathbf{u} + \mathbf{v} = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \in U_1$$

since $2(x_1 + x_2) + 5(y_1 + y_2) = (2x_1 + 5y_1) + (2x_2 + 5y_2) = 0$. And $a\mathbf{u} = (ax_1, ay_1) \in U_1$

Which of the following are subspaces of \mathbb{R}^2 ?

- (i) $U_1 = \{(x, y) : 2x + 5y = 0\}$
- (ii) $U_2 = \{(x, y) : x = 0\}$
- (i) U_1 is the line through the origin with normal vector $\begin{bmatrix} 2 & 5 \end{bmatrix}^T$ in the plane \mathbb{R}^2 . Hence U_1 is a subspace of \mathbb{R}^2 .

You can check by definition. For any $\mathbf{u}=(x_1,y_1), \mathbf{v}=(x_2,y_2)$ in U_1 and $a\in\mathbb{R}$, then we have $2x_1+5y_1=0$ and $2x_2+5y_2=0$. Hence

$$\mathbf{u} + \mathbf{v} = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \in U_1$$

since
$$2(x_1 + x_2) + 5(y_1 + y_2) = (2x_1 + 5y_1) + (2x_2 + 5y_2) = 0$$
. And

$$a\mathbf{u}=(ax_1,ay_1)\in U_1$$

since
$$2ax_1 + 5ay_1 = a(2x_1 + 5y_1) = 0$$
.

Which of the following are subspaces of \mathbb{R}^2 ?

- (i) $U_1 = \{(x, y) : 2x + 5y = 0\}$
- (ii) $U_2 = \{(x, y) : x = 0\}$
- (i) U_1 is the line through the origin with normal vector $\begin{bmatrix} 2 & 5 \end{bmatrix}^T$ in the plane \mathbb{R}^2 . Hence U_1 is a subspace of \mathbb{R}^2 .

You can check by definition. For any $\mathbf{u}=(x_1,y_1), \mathbf{v}=(x_2,y_2)$ in U_1 and $a \in \mathbb{R}$, then we have $2x_1+5y_1=0$ and $2x_2+5y_2=0$. Hence

$$\mathbf{u} + \mathbf{v} = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \in U_1$$

since
$$2(x_1 + x_2) + 5(y_1 + y_2) = (2x_1 + 5y_1) + (2x_2 + 5y_2) = 0$$
. And

$$a\mathbf{u} = (ax_1, ay_1) \in U_1$$

since
$$2ax_1 + 5ay_1 = a(2x_1 + 5y_1) = 0$$
.

(ii) U_2 is the y-axis (a line pass through the origin). Hence it is a subspace of \mathbb{R}^2 .

Which of the following are subspaces of \mathbb{R}^2 ?

- (i) $U_1 = \{(x, y) : 2x + 5y = 0\}$
- (ii) $U_2 = \{(x, y) : x = 0\}$
- (i) U_1 is the line through the origin with normal vector $\begin{bmatrix} 2 & 5 \end{bmatrix}^T$ in the plane \mathbb{R}^2 . Hence U_1 is a subspace of \mathbb{R}^2 .

You can check by definition. For any $\mathbf{u}=(x_1,y_1), \mathbf{v}=(x_2,y_2)$ in U_1 and $a \in \mathbb{R}$, then we have $2x_1+5y_1=0$ and $2x_2+5y_2=0$. Hence

$$\mathbf{u} + \mathbf{v} = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \in U_1$$

since
$$2(x_1 + x_2) + 5(y_1 + y_2) = (2x_1 + 5y_1) + (2x_2 + 5y_2) = 0$$
. And

$$a\mathbf{u}=(ax_1,ay_1)\in U_1$$

since
$$2ax_1 + 5ay_1 = a(2x_1 + 5y_1) = 0$$
.

(ii) U_2 is the y-axis (a line pass through the origin). Hence it is a subspace of \mathbb{R}^2 .

Which of the following are subspaces of \mathbb{R}^2 ?

- (i) $U_1 = \{(x, y) : 2x + 5y = 0\}$
- (ii) $U_2 = \{(x, y) : x = 0\}$
- (i) U_1 is the line through the origin with normal vector $\begin{bmatrix} 2 & 5 \end{bmatrix}^T$ in the plane \mathbb{R}^2 . Hence U_1 is a subspace of \mathbb{R}^2 .

You can check by definition. For any $\mathbf{u}=(x_1,y_1), \mathbf{v}=(x_2,y_2)$ in U_1 and $a \in \mathbb{R}$, then we have $2x_1+5y_1=0$ and $2x_2+5y_2=0$. Hence

$$\mathbf{u} + \mathbf{v} = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \in U_1$$

since
$$2(x_1 + x_2) + 5(y_1 + y_2) = (2x_1 + 5y_1) + (2x_2 + 5y_2) = 0$$
. And

$$a\mathbf{u}=(ax_1,ay_1)\in U_1$$

since
$$2ax_1 + 5ay_1 = a(2x_1 + 5y_1) = 0$$
.

(ii) U_2 is the y-axis (a line pass through the origin). Hence it is a subspace of \mathbb{R}^2 .

$$\mathbb{R}^n \xrightarrow{A} \mathbb{R}^m$$
 $\mathbf{x} \mapsto A\mathbf{x}$

Definition

• Null space of A:

$$\mathbb{R}^n \xrightarrow{A} \mathbb{R}^m$$
 $\mathbf{x} \mapsto A\mathbf{x}$

Definition

• Null space of A:

$$\operatorname{null}(A) = \left\{ \mathbf{x} = \begin{bmatrix} x_1 & x_2 \cdots x_n \end{bmatrix}^T \in \mathbb{R}^n | A\mathbf{x} = \mathbf{0} \right\} \subseteq \mathbb{R}^n$$

$$\mathbb{R}^n \xrightarrow{A} \mathbb{R}^m$$
 $\mathbf{x} \mapsto A\mathbf{x}$

Definition

• Null space of A:

$$\operatorname{\mathsf{null}}(A) = \left\{ oldsymbol{x} = egin{bmatrix} x_1 & x_2 \cdots x_n \end{bmatrix}^\mathsf{T} \in \mathbb{R}^n | A oldsymbol{x} = oldsymbol{0} \end{bmatrix} \subseteq \mathbb{R}^n$$

the set of all solutions of homogeneous system Ax = 0.

Chapter 5. The Vector Space \mathbb{R}^n

$$\mathbb{R}^n \xrightarrow{A} \mathbb{R}^m$$
 $\mathbf{x} \mapsto A\mathbf{x}$

Definition |

• Null space of A:

$$\operatorname{\mathsf{null}}(A) = \left\{ oldsymbol{x} = egin{bmatrix} x_1 & x_2 \cdots x_n \end{bmatrix}^\mathsf{T} \in \mathbb{R}^n | A oldsymbol{x} = oldsymbol{0} \end{bmatrix} \subseteq \mathbb{R}^n$$

the set of all solutions of homogeneous system Ax = 0.

• Image space of A:

◆ロト ◆個ト ◆重ト ◆重ト 重 める()

$$\mathbb{R}^n \xrightarrow{A} \mathbb{R}^m$$
 $\mathbf{x} \mapsto A\mathbf{x}$

Definition

• Null space of A:

$$\operatorname{\mathsf{null}}(A) = \left\{ oldsymbol{x} = egin{bmatrix} x_1 & x_2 \cdots x_n \end{bmatrix}^\mathsf{T} \in \mathbb{R}^n | A oldsymbol{x} = oldsymbol{0} \right\} \subseteq \mathbb{R}^n$$

the set of all solutions of homogeneous system Ax = 0.

• Image space of A:

$$im(A) = \{Ax | x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

(ロト 4 🗗 ト 4 호 ト 4 호 ト - 호 - 쒸 Q C

$$\mathbf{R}^n \xrightarrow{A} \mathbf{R}^m$$
 $\mathbf{x} \mapsto A\mathbf{x}$

Definition

• Null space of A:

$$\operatorname{\mathsf{null}}(A) = \left\{ oldsymbol{x} = egin{bmatrix} x_1 & x_2 \cdots x_n \end{bmatrix}^\mathsf{T} \in \mathbb{R}^n | A oldsymbol{x} = oldsymbol{0} \right\} \subseteq \mathbb{R}^n$$

the set of all solutions of homogeneous system Ax = 0.

• Image space of A:

$$\operatorname{im}(A) = \{A\mathbf{x} | \mathbf{x} \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

is the set of all $\boldsymbol{b} \in \mathbb{R}^m$ such that the system $A\boldsymbol{x} = \boldsymbol{b}$ has at least one solution.

401491471471 700

$$\mathbf{R}^n \xrightarrow{A} \mathbf{R}^m$$
 $\mathbf{x} \mapsto A\mathbf{x}$

Definition

• Null space of A:

$$\operatorname{\mathsf{null}}(A) = \left\{ \boldsymbol{x} = \begin{bmatrix} x_1 & x_2 \cdots x_n \end{bmatrix}^\mathsf{T} \in \mathbb{R}^n | A \boldsymbol{x} = \boldsymbol{0} \right\} \subseteq \mathbb{R}^n$$

the set of all solutions of homogeneous system Ax = 0.

• Image space of A:

$$im(A) = \{Ax | x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

is the set of all $\boldsymbol{b} \in \mathbb{R}^m$ such that the system $A\boldsymbol{x} = \boldsymbol{b}$ has at least one solution.

(十四十十國) 十三十十三十二月

$$\mathbf{R}^n \xrightarrow{A} \mathbf{R}^m$$
 $\mathbf{x} \mapsto A\mathbf{x}$

Definition

• Null space of A:

$$\operatorname{\mathsf{null}}(A) = \left\{ \boldsymbol{x} = \begin{bmatrix} x_1 & x_2 \cdots x_n \end{bmatrix}^\mathsf{T} \in \mathbb{R}^n | A \boldsymbol{x} = \boldsymbol{0} \right\} \subseteq \mathbb{R}^n$$

the set of all solutions of homogeneous system Ax = 0.

• Image space of A:

$$im(A) = \{Ax | x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

is the set of all $\boldsymbol{b} \in \mathbb{R}^m$ such that the system $A\boldsymbol{x} = \boldsymbol{b}$ has at least one solution.

(十四十十國) 十三十十三十二月

Given
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 0 & 2 \end{bmatrix}$$
. We have

$$\operatorname{null}(A) = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| \begin{cases} x - y = 0 \\ 2x + 3y = 0 \\ 2y = 0 \end{cases} \right\} = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

$$\operatorname{im}(A) = \left\{ A \begin{bmatrix} x \\ y \end{bmatrix} \middle| \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^3 \right\} = \left\{ \begin{bmatrix} x - y \\ 2x + 3y \\ 2y \end{bmatrix} \middle| x, y \in \mathbb{R} \right\}$$

Given
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 0 & 2 \end{bmatrix}$$
. We have

$$\operatorname{null}(A) = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| \begin{cases} x - y = 0 \\ 2x + 3y = 0 \\ 2y = 0 \end{cases} \right\} = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

$$\operatorname{im}(A) = \left\{ A \begin{bmatrix} x \\ y \end{bmatrix} \middle| \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^3 \right\} = \left\{ \begin{bmatrix} x - y \\ 2x + 3y \\ 2y \end{bmatrix} \middle| x, y \in \mathbb{R} \right\}$$

Given
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 0 & 2 \end{bmatrix}$$
. We have

$$\operatorname{null}(A) = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| \begin{cases} x - y = 0 \\ 2x + 3y = 0 \\ 2y = 0 \end{cases} \right\} = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

$$\operatorname{im}(A) = \left\{ A \begin{bmatrix} x \\ y \end{bmatrix} \middle| \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^3 \right\} = \left\{ \begin{bmatrix} x - y \\ 2x + 3y \\ 2y \end{bmatrix} \middle| x, y \in \mathbb{R} \right\}$$

Theorem

For any matrix A of size $m \times n$,

• null(A) is a subspace of \mathbb{R}^n .

For any matrix A of size $m \times n$,

- null(A) is a subspace of \mathbb{R}^n .
- im(A) is a subspace of \mathbb{R}^m .

For any matrix A of size $m \times n$,

- null(A) is a subspace of \mathbb{R}^n .
- im(A) is a subspace of \mathbb{R}^m .

Example

The set

$$U = \{ \begin{bmatrix} x & y & z \end{bmatrix}^T \in \mathbb{R}^3 | 2x + y - z = 0 \text{ and } 3x - y + 5z = 0 \}$$

For any matrix A of size $m \times n$,

- null(A) is a subspace of \mathbb{R}^n .
- im(A) is a subspace of \mathbb{R}^m .

Example

The set

$$U = \{ \begin{bmatrix} x & y & z \end{bmatrix}^T \in \mathbb{R}^3 | 2x + y - z = 0 \text{ and } 3x - y + 5z = 0 \}$$

is a subspace of \mathbb{R}^3 . In fact, U = null(A), for $A = \begin{bmatrix} 2 & 1 & -1 \\ 3 & -1 & 5 \end{bmatrix}$.

For any matrix A of size $m \times n$,

- null(A) is a subspace of \mathbb{R}^n .
- im(A) is a subspace of \mathbb{R}^m .

Example

The set

$$U = \{ \begin{bmatrix} x & y & z \end{bmatrix}^T \in \mathbb{R}^3 | 2x + y - z = 0 \text{ and } 3x - y + 5z = 0 \}$$

is a subspace of
$$\mathbb{R}^3$$
. In fact, $U = \text{null}(A)$, for $A = \begin{bmatrix} 2 & 1 & -1 \\ 3 & -1 & 5 \end{bmatrix}$.

$$V = \left\{ \begin{bmatrix} 2x - y + z + t & y - 3z - t \end{bmatrix}^T \middle| x, y, z, t \text{ are real numbers} \right\}$$

For any matrix A of size $m \times n$,

- null(A) is a subspace of \mathbb{R}^n .
- im(A) is a subspace of \mathbb{R}^m .

Example

The set

$$U = \{ \begin{bmatrix} x & y & z \end{bmatrix}^T \in \mathbb{R}^3 | 2x + y - z = 0 \text{ and } 3x - y + 5z = 0 \}$$

is a subspace of
$$\mathbb{R}^3$$
. In fact, $U = \text{null}(A)$, for $A = \begin{bmatrix} 2 & 1 & -1 \\ 3 & -1 & 5 \end{bmatrix}$.

The set

$$V = \left\{ \begin{bmatrix} 2x - y + z + t & y - 3z - t \end{bmatrix}^T \middle| x, y, z, t \text{ are real numbers} \right\} \text{ is a}$$

subspace of \mathbb{R}^2

For any matrix A of size $m \times n$,

- null(A) is a subspace of \mathbb{R}^n .
- im(A) is a subspace of \mathbb{R}^m .

Example

The set

$$U = \{ \begin{bmatrix} x & y & z \end{bmatrix}^T \in \mathbb{R}^3 | 2x + y - z = 0 \text{ and } 3x - y + 5z = 0 \}$$

is a subspace of
$$\mathbb{R}^3$$
. In fact, $U = \text{null}(A)$, for $A = \begin{bmatrix} 2 & 1 & -1 \\ 3 & -1 & 5 \end{bmatrix}$.

The set

$$V = \left\{ \begin{bmatrix} 2x - y + z + t & y - 3z - t \end{bmatrix}^T \middle| x, y, z, t \text{ are real numbers} \right\} \text{ is a}$$
 subspace of \mathbb{R}^2 . In fact, $V = \operatorname{im}(B)$ with $B = \begin{bmatrix} 2 & -1 & 1 & 1 \\ 0 & 1 & -3 & -1 \end{bmatrix}$.

For any matrix A of size $m \times n$,

- null(A) is a subspace of \mathbb{R}^n .
- im(A) is a subspace of \mathbb{R}^m .

Example

The set

$$U = \{ \begin{bmatrix} x & y & z \end{bmatrix}^T \in \mathbb{R}^3 | 2x + y - z = 0 \text{ and } 3x - y + 5z = 0 \}$$

is a subspace of
$$\mathbb{R}^3$$
. In fact, $U = \text{null}(A)$, for $A = \begin{bmatrix} 2 & 1 & -1 \\ 3 & -1 & 5 \end{bmatrix}$.

The set

V =
$$\left\{ \begin{bmatrix} 2x - y + z + t & y - 3z - t \end{bmatrix}^T \middle| x, y, z, t \text{ are real numbers} \right\}$$
 is a subspace of \mathbb{R}^2 . In fact, $V = \operatorname{im}(B)$ with $B = \begin{bmatrix} 2 & -1 & 1 & 1 \\ 0 & 1 & -3 & -1 \end{bmatrix}$.

4日 > 4目 > 4目 > 4目 > 目 める(*)

Spanning sets

Given vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ in \mathbb{R}^n .

Definition

A vector of the form

$$t_1\mathbf{x}_1+t_2\mathbf{x}_2+\cdots+t_k\mathbf{x}_k$$

where the $t_i \in \mathbb{R}$ are scalars is called a linear combination of the x_i , and t_i is called the coefficient of x_i in the linear combination.

Spanning sets

Given vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ in \mathbb{R}^n .

Definition

A vector of the form

$$t_1\mathbf{x}_1 + t_2\mathbf{x}_2 + \cdots + t_k\mathbf{x}_k$$

where the $t_i \in \mathbb{R}$ are scalars is called a linear combination of the x_i , and t_i is called the coefficient of x_i in the linear combination. • The set of all such linear combinations is called the span of the x_i and is denoted

$$\operatorname{span}\{\boldsymbol{x}_1,\boldsymbol{x}_2,\ldots,\boldsymbol{x}_k\} = \left\{t_1\boldsymbol{x}_1 + t_2\boldsymbol{x}_2 + \cdots + t_k\boldsymbol{x}_k \middle| t_i \in \mathbb{R}\right\}$$

If $V = \text{span}\{x_1, x_2, \dots, x_k\}$, we say that V is spanned by the vectors $\{x_1, x_2, \dots, x_k\}$.

Spanning sets

Given vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ in \mathbb{R}^n .

Definition

A vector of the form

$$t_1 \mathbf{x}_1 + t_2 \mathbf{x}_2 + \cdots + t_k \mathbf{x}_k$$

where the $t_i \in \mathbb{R}$ are scalars is called a linear combination of the x_i , and t_i is called the coefficient of x_i in the linear combination. • The set of all such linear combinations is called the span of the x_i and is denoted

$$\mathsf{span}\{\pmb{x}_1,\pmb{x}_2,\ldots,\pmb{x}_k\} = \left\{t_1\pmb{x}_1 + t_2\pmb{x}_2 + \cdots + t_k\pmb{x}_k \middle| t_i \in \mathbb{R}\right\}$$

If $V = \text{span}\{x_1, x_2, \dots, x_k\}$, we say that V is spanned by the vectors $\{x_1, x_2, \dots, x_k\}$.

Let
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbb{R}^2$$
. Then

$$\mathsf{span}\{x\} = \{tx|t \in \mathbb{R}\} = \left\{ \begin{bmatrix} t \\ 2t \end{bmatrix} \mid t \in \mathbb{R} \right\}$$

Let
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbb{R}^2$$
. Then

$$\mathsf{span}\{oldsymbol{x}\} = \{toldsymbol{x}|t\in\mathbb{R}\} = \left\{egin{bmatrix}t\\2t\end{bmatrix}\Big|\ t\in\mathbb{R}
ight\}$$

is the line through the origin with direction vector $\begin{bmatrix} 1 & 2 \end{bmatrix}^T$ in the plane $\mathbb{R}^2.$

Let
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbb{R}^2$$
. Then

$$\mathsf{span}\{oldsymbol{x}\} = \{toldsymbol{x}|t\in\mathbb{R}\} = \left\{egin{bmatrix}t\\2t\end{bmatrix}\Big|\ t\in\mathbb{R}
ight\}$$

is the line through the origin with direction vector $\begin{bmatrix} 1 & 2 \end{bmatrix}'$ in the plane \mathbb{R}^2 .

Example

Given two vectors
$$\mathbf{\textit{u}} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^T$$
 and $\mathbf{\textit{v}} = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}^T$ in \mathbb{R}^3 .

Chapter 5. The Vector Space \mathbb{R}^n

Let
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbb{R}^2$$
. Then

$$\mathsf{span}\{oldsymbol{x}\} = \{toldsymbol{x}|t\in\mathbb{R}\} = \left\{egin{bmatrix}t\\2t\end{bmatrix}\Big|\ t\in\mathbb{R}
ight\}$$

is the line through the origin with direction vector $\begin{bmatrix} 1 & 2 \end{bmatrix}^I$ in the plane $\mathbb{R}^2.$

Example

Given two vectors $\mathbf{u} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^T$ and $\mathbf{v} = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}^T$ in \mathbb{R}^3 . Then

$$\operatorname{span}\{\boldsymbol{u},\boldsymbol{v}\} = \{\boldsymbol{a}\boldsymbol{u} + \boldsymbol{b}\boldsymbol{v}|\ \boldsymbol{a},\boldsymbol{b} \in \mathbb{R}\} = \left\{ \begin{bmatrix} -\boldsymbol{a} + 2\boldsymbol{b} \\ \boldsymbol{b} \\ \boldsymbol{a} + 3\boldsymbol{b} \end{bmatrix} \middle|\ \boldsymbol{a},\boldsymbol{b} \in \mathbb{R} \right\}$$

Let
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbb{R}^2$$
. Then

$$\mathsf{span}\{\pmb{x}\} = \{t\pmb{x}|t \in \mathbb{R}\} = \left\{ egin{bmatrix} t \ 2t \end{bmatrix} \Big| \ t \in \mathbb{R} \right\}$$

is the line through the origin with direction vector $\begin{bmatrix} 1 & 2 \end{bmatrix}^T$ in the plane \mathbb{R}^2 .

Example

Given two vectors $\mathbf{u} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^T$ and $\mathbf{v} = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}^T$ in \mathbb{R}^3 . Then

$$\mathsf{span}\{oldsymbol{u},oldsymbol{v}\}=\{oldsymbol{a}oldsymbol{u}+boldsymbol{v}|\ a,b\in\mathbb{R}\}=\left\{egin{bmatrix} -a+2b\ b\ a+3b \end{bmatrix}\Big|\ a,b\in\mathbb{R}
ight\}$$

is a plane through the origin with a normal vector $m{u} imes m{v} = egin{bmatrix} -1 & 5 & -1 \end{bmatrix}^T$.

Let $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbb{R}^2$. Then

$$\mathsf{span}\{oldsymbol{x}\} = \{toldsymbol{x}|t\in\mathbb{R}\} = \left\{egin{bmatrix}t\\2t\end{bmatrix}\Big|\ t\in\mathbb{R}
ight\}$$

is the line through the origin with direction vector $\begin{bmatrix} 1 & 2 \end{bmatrix}^T$ in the plane \mathbb{R}^2 .

Example

Given two vectors $\mathbf{\textit{u}} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^T$ and $\mathbf{\textit{v}} = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}^T$ in \mathbb{R}^3 . Then

$$\mathsf{span}\{oldsymbol{u},oldsymbol{v}\}=\{oldsymbol{a}oldsymbol{b}oldsymbol{v}|\ oldsymbol{a},b\in\mathbb{R}\}=\left\{egin{bmatrix}-a+2b\\b\\a+3b\end{bmatrix}\Big|\ oldsymbol{a},b\in\mathbb{R}
ight\}$$

is a plane through the origin with a normal vector $m{u} imes m{v} = egin{bmatrix} -1 & 5 & -1 \end{bmatrix}^T$.

Find all values of a so that the vector $\begin{bmatrix} 5 & 3 & a \end{bmatrix}^T$ is in span{ $\begin{bmatrix} 3 & 2 & 0 \end{bmatrix}^T$, $\begin{bmatrix} 1 & 0 & 3 \end{bmatrix}^T$ }.

Answer:

Find all values of a so that the vector $\begin{bmatrix} 5 & 3 & a \end{bmatrix}^T$ is in span{ $\begin{bmatrix} 3 & 2 & 0 \end{bmatrix}^T$, $\begin{bmatrix} 1 & 0 & 3 \end{bmatrix}^T$ }.

Answer: The vector $\begin{bmatrix} 5 & 3 & a \end{bmatrix}^T$ is in span $\{ \begin{bmatrix} 3 & 2 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 3 \end{bmatrix}^T \}$ if and only if the linear system

$$[5 \ 3 \ a]^T = s[3 \ 2 \ 0]^T + t[1 \ 0 \ 3]^T$$

has at least one solution s, t.

Find all values of a so that the vector $\begin{bmatrix} 5 & 3 & a \end{bmatrix}^T$ is in span{ $\begin{bmatrix} 3 & 2 & 0 \end{bmatrix}^T$, $\begin{bmatrix} 1 & 0 & 3 \end{bmatrix}^T$ }.

Answer: The vector $\begin{bmatrix} 5 & 3 & a \end{bmatrix}^T$ is in span $\{\begin{bmatrix} 3 & 2 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 3 \end{bmatrix}^T \}$ if and only if the linear system

$$[5 \ 3 \ a]^T = s[3 \ 2 \ 0]^T + t[1 \ 0 \ 3]^T$$

has at least one solution s, t. The above system is

$$5 = 3s + t$$
, $3 = 2s$, $a = 3t$.

Find all values of a so that the vector $\begin{bmatrix} 5 & 3 & a \end{bmatrix}^T$ is in span{ $\begin{bmatrix} 3 & 2 & 0 \end{bmatrix}^T$, $\begin{bmatrix} 1 & 0 & 3 \end{bmatrix}^T$ }.

Answer: The vector $\begin{bmatrix} 5 & 3 & a \end{bmatrix}^T$ is in span $\{\begin{bmatrix} 3 & 2 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 3 \end{bmatrix}^T \}$ if and only if the linear system

$$[5 \ 3 \ a]^T = s[3 \ 2 \ 0]^T + t[1 \ 0 \ 3]^T$$

has at least one solution s, t. The above system is

$$5 = 3s + t$$
, $3 = 2s$, $a = 3t$.

We find s = 3/2, t = 1/2 and a = 3/2.

Find all values of a so that the vector $\begin{bmatrix} 5 & 3 & a \end{bmatrix}^T$ is in span{ $\begin{bmatrix} 3 & 2 & 0 \end{bmatrix}^T$, $\begin{bmatrix} 1 & 0 & 3 \end{bmatrix}^T$ }.

Answer: The vector $\begin{bmatrix} 5 & 3 & a \end{bmatrix}^T$ is in span $\{\begin{bmatrix} 3 & 2 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 3 \end{bmatrix}^T \}$ if and only if the linear system

$$[5 \ 3 \ a]^T = s[3 \ 2 \ 0]^T + t[1 \ 0 \ 3]^T$$

has at least one solution s, t. The above system is

$$5 = 3s + t$$
, $3 = 2s$, $a = 3t$.

We find s = 3/2, t = 1/2 and a = 3/2.

$$U = \left\{ \begin{bmatrix} x + y - 3z & 2x - 3y + z & -x + 2y + 4z \end{bmatrix}^T \middle| x, y, z \text{ are real} \right\}$$

$$= \operatorname{im} \left(\begin{bmatrix} 1 & 1 & -3 \\ 2 & -3 & 1 \\ -1 & 2 & 4 \end{bmatrix} \right)$$

$$= \left\{ x \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + y \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} + z \begin{bmatrix} -3 \\ 1 \\ 4 \end{bmatrix} \middle| x, y, z \text{ are real} \right\}$$

$$= \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 1 \\ 4 \end{bmatrix} \right\}$$

Let $\mathbf{x} = (2, -1, 1, 1)$ and $\mathbf{y} = (1, 1, 3, 4)$ in \mathbb{R}^4 . Determine whether $\mathbf{p} = (0, -2, 4, 5)$ or $\mathbf{q} = (7, -5, 1, 0)$ are in $U = \text{span}\{\mathbf{x}, \mathbf{y}\}$.

Answer:

Let
$$\mathbf{x} = (2, -1, 1, 1)$$
 and $\mathbf{y} = (1, 1, 3, 4)$ in \mathbb{R}^4 . Determine whether $\mathbf{p} = (0, -2, 4, 5)$ or $\mathbf{q} = (7, -5, 1, 0)$ are in $U = \text{span}\{\mathbf{x}, \mathbf{y}\}$.

Answer:

• The vector \mathbf{p} is in U if and only if $\mathbf{p} = s\mathbf{x} + t\mathbf{y}$ for scalars s and t. Equating components gives equations

$$2s + t = 0$$
, $-s + t = -2$, $s + 3t = 4$, $s + 4t = 5$

This system has no solution, hence $p \notin U$.

Let
$$\mathbf{x} = (2, -1, 1, 1)$$
 and $\mathbf{y} = (1, 1, 3, 4)$ in \mathbb{R}^4 . Determine whether $\mathbf{p} = (0, -2, 4, 5)$ or $\mathbf{q} = (7, -5, 1, 0)$ are in $U = \text{span}\{\mathbf{x}, \mathbf{y}\}$.

Answer:

• The vector \boldsymbol{p} is in U if and only if $\boldsymbol{p} = s\boldsymbol{x} + t\boldsymbol{y}$ for scalars s and t. Equating components gives equations

$$2s + t = 0$$
, $-s + t = -2$, $s + 3t = 4$, $s + 4t = 5$

This system has no solution, hence $p \notin U$.

• The vector \mathbf{q} is in U if and only if $\mathbf{q} = a\mathbf{x} + b\mathbf{y}$ for scalars a and b. This gives equations

$$2a + b = 7$$
, $-a + b = -5$, $a + 3b = 1$, $a + 4b = 0$

This system has solution a = 4, b = -1, hence $q \in U$.

Let
$$\mathbf{x} = (2, -1, 1, 1)$$
 and $\mathbf{y} = (1, 1, 3, 4)$ in \mathbb{R}^4 . Determine whether $\mathbf{p} = (0, -2, 4, 5)$ or $\mathbf{q} = (7, -5, 1, 0)$ are in $U = \text{span}\{\mathbf{x}, \mathbf{y}\}$.

Answer:

• The vector \mathbf{p} is in U if and only if $\mathbf{p} = s\mathbf{x} + t\mathbf{y}$ for scalars s and t. Equating components gives equations

$$2s + t = 0$$
, $-s + t = -2$, $s + 3t = 4$, $s + 4t = 5$

This system has no solution, hence $p \notin U$.

• The vector \mathbf{q} is in U if and only if $\mathbf{q} = a\mathbf{x} + b\mathbf{y}$ for scalars a and b. This gives equations

$$2a + b = 7$$
, $-a + b = -5$, $a + 3b = 1$, $a + 4b = 0$

This system has solution a = 4, b = -1, hence $\mathbf{q} \in U$.

Let $U = span\{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n . Then:

1. *U* is a subspace of \mathbb{R}^n containing each \mathbf{x}_i .

Let $U = span\{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n . Then:

- 1. *U* is a subspace of \mathbb{R}^n containing each \mathbf{x}_i .
- 2. If W is a subspace of \mathbb{R}^n and each $\mathbf{x}_i \in W$, then $U \subseteq W$.

Example

If $U = \text{span}\{x, y\}$ in \mathbb{R}^n , show that $U = \text{span}\{x + y, x - y\}$.

Let $U = span\{x_1, x_2, ..., x_k\}$ in \mathbb{R}^n . Then:

- 1. *U* is a subspace of \mathbb{R}^n containing each \mathbf{x}_i .
- 2. If W is a subspace of \mathbb{R}^n and each $x_i \in W$, then $U \subseteq W$.

Example

If $U = \text{span}\{x, y\}$ in \mathbb{R}^n , show that $U = \text{span}\{x + y, x - y\}$.

Answer:

Let $U = span\{x_1, x_2, ..., x_k\}$ in \mathbb{R}^n . Then:

- 1. *U* is a subspace of \mathbb{R}^n containing each x_i .
- 2. If W is a subspace of \mathbb{R}^n and each $x_i \in W$, then $U \subseteq W$.

Example

If $U = \operatorname{span}\{x, y\}$ in \mathbb{R}^n , show that $U = \operatorname{span}\{x + y, x - y\}$.

Answer: Since x + y and x - y are in span $\{x, y\}$, thus span $\{x + y, x - y\} \subseteq U$.

Let $U = span\{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n . Then:

- 1. *U* is a subspace of \mathbb{R}^n containing each \mathbf{x}_i .
- 2. If W is a subspace of \mathbb{R}^n and each $x_i \in W$, then $U \subseteq W$.

Example

If $U = \operatorname{span}\{x, y\}$ in \mathbb{R}^n , show that $U = \operatorname{span}\{x + y, x - y\}$.

Answer: Since x + y and x - y are in span $\{x, y\}$, thus span $\{x + y, x - y\} \subseteq U$.

Moreover, we have

$$x = \frac{1}{2}(x+y) + \frac{1}{2}(x-y)$$
$$y = \frac{1}{2}(x+y) - \frac{1}{2}(x-y).$$

Let $U = span\{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n . Then:

- 1. *U* is a subspace of \mathbb{R}^n containing each \mathbf{x}_i .
- 2. If W is a subspace of \mathbb{R}^n and each $x_i \in W$, then $U \subseteq W$.

Example

If $U = \operatorname{span}\{x, y\}$ in \mathbb{R}^n , show that $U = \operatorname{span}\{x + y, x - y\}$.

Answer: Since x + y and x - y are in span $\{x, y\}$, thus span $\{x + y, x - y\} \subseteq U$.

Moreover, we have

$$x = \frac{1}{2}(x + y) + \frac{1}{2}(x - y)$$

 $y = \frac{1}{2}(x + y) - \frac{1}{2}(x - y).$

These show that $x, y \in \text{span}\{x + y, x - y\}$. Hence $U \subseteq \text{span}\{x + y, x - y\}$.

Let $U = span\{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n . Then:

- 1. *U* is a subspace of \mathbb{R}^n containing each \mathbf{x}_i .
- 2. If W is a subspace of \mathbb{R}^n and each $x_i \in W$, then $U \subseteq W$.

Example

If $U = \operatorname{span}\{x, y\}$ in \mathbb{R}^n , show that $U = \operatorname{span}\{x + y, x - y\}$.

Answer: Since x + y and x - y are in span $\{x, y\}$, thus span $\{x + y, x - y\} \subseteq U$.

Moreover, we have

$$x = \frac{1}{2}(x + y) + \frac{1}{2}(x - y)$$

 $y = \frac{1}{2}(x + y) - \frac{1}{2}(x - y).$

These show that $x, y \in \text{span}\{x + y, x - y\}$. Hence $U \subseteq \text{span}\{x + y, x - y\}$.

It is easy to see that $\mathbb{R}^n = \text{span}\{\boldsymbol{e}_1, \boldsymbol{e}_2, \cdots, \boldsymbol{e}_n\}$. For example

$$\mathbb{R}^2 = \operatorname{span} \left\{ \boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
. Indeed, for any vector $\boldsymbol{u} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$ can be written as $\boldsymbol{u} = x \boldsymbol{e}_1 + y \boldsymbol{e}_2$.

Example

Show that
$$\mathbb{R}^2 = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \right\}$$
.

It is easy to see that $\mathbb{R}^n = \operatorname{span}\{\boldsymbol{e}_1, \boldsymbol{e}_2, \cdots, \boldsymbol{e}_n\}$. For example

$$\mathbb{R}^2 = \operatorname{span} \left\{ \boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
. Indeed, for any vector $\boldsymbol{u} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$ can be written as $\boldsymbol{u} = x \boldsymbol{e}_1 + y \boldsymbol{e}_2$.

Example

Show that
$$\mathbb{R}^2 = \operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2 \end{bmatrix} \right\}$$
.

Answer:

It is easy to see that $\mathbb{R}^n = \operatorname{span}\{e_1, e_2, \cdots, e_n\}$. For example

$$\mathbb{R}^2 = \operatorname{span} \left\{ \boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}. \text{ Indeed, for any vector } \boldsymbol{u} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$$
 can be written as $\boldsymbol{u} = x\boldsymbol{e}_1 + y\boldsymbol{e}_2$.

Example

Show that
$$\mathbb{R}^2 = \operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2 \end{bmatrix} \right\}$$
.

Answer: Any vector $\mathbf{u} = \begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2 can be written as

$$\boldsymbol{u} = \begin{bmatrix} x \\ y \end{bmatrix} = s \begin{bmatrix} 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \frac{2x + y}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{-x + y}{3} \begin{bmatrix} -1 \\ 2 \end{bmatrix},$$

It is easy to see that $\mathbb{R}^n = \operatorname{span}\{\boldsymbol{e}_1, \boldsymbol{e}_2, \cdots, \boldsymbol{e}_n\}$. For example

$$\mathbb{R}^2 = \operatorname{span} \left\{ \boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
. Indeed, for any vector $\boldsymbol{u} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$ can be written as $\boldsymbol{u} = x \boldsymbol{e}_1 + y \boldsymbol{e}_2$.

Example

Show that
$$\mathbb{R}^2 = \operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2 \end{bmatrix} \right\}$$
.

Answer: Any vector $\mathbf{u} = \begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2 can be written as

$$\boldsymbol{u} = \begin{bmatrix} x \\ y \end{bmatrix} = s \begin{bmatrix} 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \frac{2x + y}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{-x + y}{3} \begin{bmatrix} -1 \\ 2 \end{bmatrix},$$

this shows that $\mathbf{u} \in \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \right\}$.

It is easy to see that $\mathbb{R}^n = \operatorname{span}\{\boldsymbol{e}_1, \boldsymbol{e}_2, \cdots, \boldsymbol{e}_n\}$. For example

$$\mathbb{R}^2 = \operatorname{span} \left\{ \boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
. Indeed, for any vector $\boldsymbol{u} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$ can be written as $\boldsymbol{u} = x \boldsymbol{e}_1 + y \boldsymbol{e}_2$.

Example

Show that
$$\mathbb{R}^2 = \operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2 \end{bmatrix} \right\}$$
.

Answer: Any vector $\mathbf{u} = \begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2 can be written as

$$\boldsymbol{u} = \begin{bmatrix} x \\ y \end{bmatrix} = s \begin{bmatrix} 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \frac{2x + y}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{-x + y}{3} \begin{bmatrix} -1 \\ 2 \end{bmatrix},$$

this shows that $\boldsymbol{u} \in \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \right\}$.

Definition

A set $\{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n is linearly independent if the following holds:

"If
$$t_1 x_1 + t_2 x_2 + \cdots + t_k x_k = 0$$
 then $t_1 = t_2 = \cdots = t_k = 0$ ".

Definition

A set $\{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n is linearly independent if the following holds:

"If
$$t_1 x_1 + t_2 x_2 + \cdots + t_k x_k = 0$$
 then $t_1 = t_2 = \cdots = t_k = 0$ ".

Otherwise, we say $\{x_1, x_2, \dots, x_k\}$ is linearly dependent.

Definition

A set $\{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n is linearly independent if the following holds:

"If
$$t_1 x_1 + t_2 x_2 + \cdots + t_k x_k = \mathbf{0}$$
 then $t_1 = t_2 = \cdots = t_k = \mathbf{0}$ ".

Otherwise, we say $\{x_1, x_2, \dots, x_k\}$ is linearly dependent.

Example

The set
$$\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$$
 is linear independent

Definition

A set $\{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n is linearly independent if the following holds:

"If
$$t_1 x_1 + t_2 x_2 + \cdots + t_k x_k = \mathbf{0}$$
 then $t_1 = t_2 = \cdots = t_k = \mathbf{0}$ ".

Otherwise, we say $\{x_1, x_2, \dots, x_k\}$ is linearly dependent.

Example

The set $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$ is linear independent since the homogeneous system

$$s \begin{bmatrix} 2 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} 2s - t = 0 \\ s + t = 0 \end{cases}$$

Definition

A set $\{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n is linearly independent if the following holds:

"If
$$t_1 x_1 + t_2 x_2 + \cdots + t_k x_k = \mathbf{0}$$
 then $t_1 = t_2 = \cdots = t_k = \mathbf{0}$ ".

Otherwise, we say $\{x_1, x_2, \dots, x_k\}$ is linearly dependent.

Example

The set $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$ is linear independent since the homogeneous system

$$s \begin{bmatrix} 2 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} 2s - t = 0 \\ s + t = 0 \end{cases}$$

has only trivial solution s = t = 0.

Definition

A set $\{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n is linearly independent if the following holds:

"If
$$t_1 x_1 + t_2 x_2 + \cdots + t_k x_k = \mathbf{0}$$
 then $t_1 = t_2 = \cdots = t_k = \mathbf{0}$ ".

Otherwise, we say $\{x_1, x_2, \dots, x_k\}$ is linearly dependent.

Example

The set $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$ is linear independent since the homogeneous system

$$s \begin{bmatrix} 2 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} 2s - t = 0 \\ s + t = 0 \end{cases}$$

has only trivial solution s = t = 0.

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}, \boldsymbol{w} = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix} \right\}$$
 is linearly dependent.

Answer:

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}, \boldsymbol{w} = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix} \right\}$$
 is linearly dependent.

Answer:

 1^{st} way: We can see that w = 2u - v or

$$2u-v-w=0.$$

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}, \boldsymbol{w} = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix} \right\}$$
 is linearly dependent.

Answer:

 1^{st} way: We can see that $\mathbf{w} = 2\mathbf{u} - \mathbf{v}$ or

$$2u - v - w = 0.$$

Hence $\{u, v, w\}$ is linearly dependent.

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}, \boldsymbol{w} = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix} \right\}$$
 is linearly dependent.

Answer:

 1^{st} way: We can see that $\mathbf{w} = 2\mathbf{u} - \mathbf{v}$ or

$$2u-v-w=0.$$

Hence $\{u, v, w\}$ is linearly dependent.

 2^{nd} way: The system $t_1 \mathbf{u} + t_2 \mathbf{v} + t_3 \mathbf{w} = \mathbf{0}$

$$t_1 + 2t_3 = 0$$
, $-t_1 + 2t_2 - 4t_3 = 0$, $2t_1 + 3t_2 + t_3 = 0$

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}, \boldsymbol{w} = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix} \right\}$$
 is linearly dependent.

Answer:

 1^{st} way: We can see that $\mathbf{w} = 2\mathbf{u} - \mathbf{v}$ or

$$2u-v-w=0.$$

Hence $\{u, v, w\}$ is linearly dependent.

 2^{nd} way: The system $t_1 \mathbf{u} + t_2 \mathbf{v} + t_3 \mathbf{w} = \mathbf{0}$

$$t_1 + 2t_3 = 0$$
, $-t_1 + 2t_2 - 4t_3 = 0$, $2t_1 + 3t_2 + t_3 = 0$

has nontrivial solutions since rank
$$\begin{bmatrix} 1 & 0 & 2 \\ -1 & 2 & -4 \\ 2 & 3 & 1 \end{bmatrix} = 2.$$

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}, \boldsymbol{w} = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix} \right\}$$
 is linearly dependent.

Answer:

 1^{st} way: We can see that $\mathbf{w} = 2\mathbf{u} - \mathbf{v}$ or

$$2u-v-w=0.$$

Hence $\{u, v, w\}$ is linearly dependent.

 2^{nd} way: The system $t_1 u + t_2 v + t_3 w = 0$

$$t_1 + 2t_3 = 0$$
, $-t_1 + 2t_2 - 4t_3 = 0$, $2t_1 + 3t_2 + t_3 = 0$

has nontrivial solutions since rank $\begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & -4 \\ 2 & 3 & 1 \end{vmatrix} = 2$. Hence $\{u, v, w\}$ is

linearly dependent.

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}, \boldsymbol{w} = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix} \right\}$$
 is linearly dependent.

Answer:

 1^{st} way: We can see that $\mathbf{w} = 2\mathbf{u} - \mathbf{v}$ or

$$2u-v-w=0.$$

Hence $\{u, v, w\}$ is linearly dependent.

 2^{nd} way: The system $t_1 \mathbf{u} + t_2 \mathbf{v} + t_3 \mathbf{w} = \mathbf{0}$

$$t_1 + 2t_3 = 0$$
, $-t_1 + 2t_2 - 4t_3 = 0$, $2t_1 + 3t_2 + t_3 = 0$

has nontrivial solutions since rank $\begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & -4 \\ 2 & 3 & 1 \end{vmatrix} = 2$. Hence $\{\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\}$ is

linearly dependent.

ullet $\{x_1,x_2,\ldots,x_k\}$ is linearly independent if and only if

$$rank \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_k \end{bmatrix} = k$$
.

ullet $\{x_1, x_2, \dots, x_k\}$ is linearly dependent if and only if

$$rank \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_k \end{bmatrix} = m < k$$
.

ullet $\{x_1, x_2, \dots, x_k\}$ is linearly independent if and only if

$$rank \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_k \end{bmatrix} = k$$
.

• $\{x_1, x_2, \dots, x_k\}$ is linearly dependent if and only if

$$rank \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_k \end{bmatrix} = m < k$$
.

And we only can take at most m linearly independent vectors from k vectors $\{x_1, x_2, \dots, x_k\}$.

• $\{x_1, x_2, \dots, x_k\}$ is linearly independent if and only if

$$rank \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_k \end{bmatrix} = k$$
.

• $\{x_1, x_2, \dots, x_k\}$ is linearly dependent if and only if

$$rank \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_k \end{bmatrix} = m < k$$
.

And we only can take at most m linearly independent vectors from k vectors $\{x_1, x_2, ..., x_k\}$.

For what values of a is the set $\{[1,1,1],[1,0,2],[1,a,1]\}$ is linearly dependent?

Answer:

For what values of a is the set $\{[1,1,1],[1,0,2],[1,a,1]\}$ is linearly dependent?

Answer: The set $\{[1,1,1],[1,0,2],[1,a,1]\}$ is linearly dependent if and only if

$$\begin{aligned} & \operatorname{rank} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & a \\ 1 & 2 & 1 \end{bmatrix} \overset{-R_1 + R_2}{\underset{-R_1 + R_3}{=}} \operatorname{rank} \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 0 \end{bmatrix} \\ & R_2 \overset{\leftrightarrow}{=} R_3 \operatorname{rank} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & a - 1 \end{bmatrix} \overset{R_2 + R_3}{\underset{-}{=}} \operatorname{rank} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & a - 1 \end{bmatrix} < 3. \end{aligned}$$

Last inequality holds if a - 1 = 0 or a = 1.

For what values of a is the set $\{[1,1,1],[1,0,2],[1,a,1]\}$ is linearly dependent?

Answer: The set $\{[1,1,1],[1,0,2],[1,a,1]\}$ is linearly dependent if and only if

$$\begin{aligned} & \operatorname{rank} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & a \\ 1 & 2 & 1 \end{bmatrix} \overset{-R_1 + R_2}{\underset{-R_1 + R_3}{=}} \operatorname{rank} \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 0 \end{bmatrix} \\ & \overset{R_2 \leftrightarrow R_3}{=} \operatorname{rank} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & a - 1 \end{bmatrix} \overset{R_2 + R_3}{\underset{-R_3}{=}} \operatorname{rank} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & a - 1 \end{bmatrix} < 3. \end{aligned}$$

Last inequality holds if a - 1 = 0 or a = 1.

Definition

If U is a subspace of \mathbb{R}^n , a set $\{x_1, x_2, \dots, x_m\}$ of vectors in U is called a basis of U if it satisfies the following two conditions:

1. $\{x_1, x_2, \dots, x_m\}$ is linearly independent.

Definition

If U is a subspace of \mathbb{R}^n , a set $\{x_1, x_2, \dots, x_m\}$ of vectors in U is called a basis of U if it satisfies the following two conditions:

- 1. $\{x_1, x_2, \dots, x_m\}$ is linearly independent.
- 2. $U = \text{span}\{x_1, x_2, \dots, x_m\}.$

Definition

If U is a subspace of \mathbb{R}^n , a set $\{x_1, x_2, \dots, x_m\}$ of vectors in U is called a basis of U if it satisfies the following two conditions:

- 1. $\{x_1, x_2, \dots, x_m\}$ is linearly independent.
- 2. $U = \text{span}\{x_1, x_2, \dots, x_m\}$.

Theorem

If $\{x_1, x_2, \dots, x_m\}$ and $\{y_1, y_2, \dots, y_k\}$ are basis of U then m = k.

Definition

If U is a subspace of \mathbb{R}^n , a set $\{x_1, x_2, \dots, x_m\}$ of vectors in U is called a basis of U if it satisfies the following two conditions:

- 1. $\{x_1, x_2, \dots, x_m\}$ is linearly independent.
- 2. $U = \text{span}\{x_1, x_2, \dots, x_m\}$.

Theorem

If $\{x_1, x_2, \dots, x_m\}$ and $\{y_1, y_2, \dots, y_k\}$ are basis of U then m = k.

Definition

If U is a subspace of \mathbb{R}^n and $\{x_1, x_2, \ldots, x_m\}$ is a basis of U, then the number m is called the dimension of U, denoted $\dim(U) = m$.

Definition

If U is a subspace of \mathbb{R}^n , a set $\{x_1, x_2, \dots, x_m\}$ of vectors in U is called a basis of U if it satisfies the following two conditions:

- 1. $\{x_1, x_2, \dots, x_m\}$ is linearly independent.
- 2. $U = \text{span}\{x_1, x_2, \dots, x_m\}$.

Theorem,

If $\{x_1, x_2, \dots, x_m\}$ and $\{y_1, y_2, \dots, y_k\}$ are basis of U then m = k.

Definition

If U is a subspace of \mathbb{R}^n and $\{x_1, x_2, \dots, x_m\}$ is a basis of U, then the number m is called the dimension of U, denoted $\dim(U) = m$.

Definition

If U is a subspace of \mathbb{R}^n , a set $\{x_1, x_2, \dots, x_m\}$ of vectors in U is called a basis of U if it satisfies the following two conditions:

- 1. $\{x_1, x_2, \dots, x_m\}$ is linearly independent.
- 2. $U = \text{span}\{x_1, x_2, \dots, x_m\}$.

Theorem,

If $\{x_1, x_2, \dots, x_m\}$ and $\{y_1, y_2, \dots, y_k\}$ are basis of U then m = k.

Definition

If U is a subspace of \mathbb{R}^n and $\{x_1, x_2, \dots, x_m\}$ is a basis of U, then the number m is called the dimension of U, denoted $\dim(U) = m$.

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^2 .

Answer:

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^2 .

Answer: Since rank $\begin{bmatrix} u & v \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = 2$, the set $\{u, v\}$ is linearly independent.

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^2 .

Answer: Since rank $\begin{bmatrix} \boldsymbol{u} & \boldsymbol{v} \end{bmatrix} = \operatorname{rank} \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = 2$, the set $\{\boldsymbol{u}, \boldsymbol{v}\}$ is linearly independent.

Any vector $\begin{bmatrix} x & y \end{bmatrix}^T$ is a linear combination of $\boldsymbol{u}, \boldsymbol{v}$ since

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^2 .

Answer: Since rank $\begin{bmatrix} \boldsymbol{u} & \boldsymbol{v} \end{bmatrix} = \operatorname{rank} \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = 2$, the set $\{\boldsymbol{u}, \boldsymbol{v}\}$ is linearly independent.

Any vector $\begin{bmatrix} x & y \end{bmatrix}^T$ is a linear combination of $\boldsymbol{u}, \boldsymbol{v}$ since

$$\begin{bmatrix} x & y \end{bmatrix}^T = \frac{3x + y}{5} u + \frac{y - 2x}{5} v.$$

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^2 .

Answer: Since rank $\begin{bmatrix} \boldsymbol{u} & \boldsymbol{v} \end{bmatrix} = \operatorname{rank} \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = 2$, the set $\{\boldsymbol{u}, \boldsymbol{v}\}$ is linearly independent.

Any vector $\begin{bmatrix} x & y \end{bmatrix}^T$ is a linear combination of $\boldsymbol{u}, \boldsymbol{v}$ since

$$\begin{bmatrix} x & y \end{bmatrix}^T = \frac{3x + y}{5} \boldsymbol{u} + \frac{y - 2x}{5} \boldsymbol{v}.$$

Thus, $\mathbb{R}^2 = \operatorname{span}\{\boldsymbol{u}, \boldsymbol{v}\}.$

We have showed that $\{u, v\}$ is a basis of \mathbb{R}^2 .

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^2 .

Answer: Since rank $\begin{bmatrix} \boldsymbol{u} & \boldsymbol{v} \end{bmatrix} = \operatorname{rank} \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = 2$, the set $\{\boldsymbol{u}, \boldsymbol{v}\}$ is linearly independent.

Any vector $\begin{bmatrix} x & y \end{bmatrix}^T$ is a linear combination of $\boldsymbol{u}, \boldsymbol{v}$ since

$$\begin{bmatrix} x & y \end{bmatrix}^T = \frac{3x + y}{5} \boldsymbol{u} + \frac{y - 2x}{5} \boldsymbol{v}.$$

Thus, $\mathbb{R}^2 = \text{span}\{\boldsymbol{u}, \boldsymbol{v}\}.$

We have showed that $\{u, v\}$ is a basis of \mathbb{R}^2 .

Example

We can see that $\dim(\mathbb{R}^n) = n$ and $\{e_1, e_2, \dots, e_n\}$ is a basis of \mathbb{R}^n .

Show that
$$\left\{ \boldsymbol{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^2 .

Answer: Since rank $\begin{bmatrix} \boldsymbol{u} & \boldsymbol{v} \end{bmatrix} = \operatorname{rank} \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = 2$, the set $\{\boldsymbol{u}, \boldsymbol{v}\}$ is linearly independent.

Any vector $\begin{bmatrix} x & y \end{bmatrix}^T$ is a linear combination of $\boldsymbol{u}, \boldsymbol{v}$ since

$$\begin{bmatrix} x & y \end{bmatrix}^T = \frac{3x + y}{5} \boldsymbol{u} + \frac{y - 2x}{5} \boldsymbol{v}.$$

Thus, $\mathbb{R}^2 = \text{span}\{\boldsymbol{u}, \boldsymbol{v}\}.$

We have showed that $\{u, v\}$ is a basis of \mathbb{R}^2 .

Example

We can see that $\dim(\mathbb{R}^n) = n$ and $\{e_1, e_2, \dots, e_n\}$ is a basis of \mathbb{R}^n .

Suppose that $U = span\{x_1, x_2, \dots, x_k\}$. Then

$$dim(U) = rank \begin{bmatrix} x_1 & x_2 & \cdots & x_k \end{bmatrix} = m \leq k$$

And we can choose m vectors among k vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ to get a basis of U.

Example

Find the dimension of the subspace $U = \text{span}\{[1,2],[2,-1],[0,3],[1,4]\}.$

Suppose that $U = span\{x_1, x_2, \dots, x_k\}$. Then

$$dim(U) = rank \begin{bmatrix} x_1 & x_2 & \cdots & x_k \end{bmatrix} = m \leq k$$

And we can choose m vectors among k vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ to get a basis of U.

Example

Find the dimension of the subspace $U = \text{span}\{[1,2],[2,-1],[0,3],[1,4]\}.$

Answer:

Suppose that $U = span\{x_1, x_2, \dots, x_k\}$. Then

$$dim(U) = rank \begin{bmatrix} x_1 & x_2 & \cdots & x_k \end{bmatrix} = m \le k$$

And we can choose m vectors among k vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ to get a basis of U.

Example

Find the dimension of the subspace $U=\operatorname{span}\{[1,2],[2,-1],[0,3],[1,4]\}.$

Answer: We have

$$\operatorname{rank}\begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & -1 & 3 & 4 \end{bmatrix} \stackrel{-2R_1+R_2}{=} \operatorname{rank}\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & -5 & 3 & 2 \end{bmatrix} = 2 \ .$$

Suppose that $U = span\{x_1, x_2, \dots, x_k\}$. Then

$$dim(U) = rank \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_k \end{bmatrix} = m \leq k$$

And we can choose m vectors among k vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ to get a basis of U.

Example

Find the dimension of the subspace $U = \text{span}\{[1, 2], [2, -1], [0, 3], [1, 4]\}.$

Answer: We have

$${\rm rank}\begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & -1 & 3 & 4 \end{bmatrix} \stackrel{-2R_1+R_2}{=} {\rm rank}\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & -5 & 3 & 2 \end{bmatrix} = 2 \; .$$

Hence $\dim(U) = 2$. We can choose basis $\{[1,2],[2,-1]\}$ for U. In fact, $U = \mathbb{D}^2$

4□ > 4□ > 4 = > 4 = > = 990

Suppose that $U = span\{x_1, x_2, \dots, x_k\}$. Then

$$dim(U) = rank \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_k \end{bmatrix} = m \leq k$$

And we can choose m vectors among k vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ to get a basis of U.

Example

Find the dimension of the subspace $U = \text{span}\{[1, 2], [2, -1], [0, 3], [1, 4]\}.$

Answer: We have

$${\rm rank}\begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & -1 & 3 & 4 \end{bmatrix} \stackrel{-2R_1+R_2}{=} {\rm rank}\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & -5 & 3 & 2 \end{bmatrix} = 2 \; .$$

Hence $\dim(U)=2$. We can choose basis $\{[1,2],[2,-1]\}$ for U. In fact, $U=\mathbb{R}^2$.

Find the dimension of the subspace

$$U = \{[a+c, b+c, a+2c+b]| a, b, c \text{ in } \mathbb{R}\}.$$

Answer:

Find the dimension of the subspace

$$U = \{[a+c, b+c, a+2c+b]| a, b, c \text{ in } \mathbb{R}\}.$$

Answer: We can see that

$$\begin{bmatrix} a+c \\ b+c \\ a+2c+b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Find the dimension of the subspace

$$U = \{[a+c, b+c, a+2c+b]| a, b, c \text{ in } \mathbb{R}\}.$$

Answer: We can see that

$$\begin{bmatrix} a+c \\ b+c \\ a+2c+b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Hence
$$U = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T, \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T \right\}.$$

Find the dimension of the subspace

$$U = \{[a+c, b+c, a+2c+b]| a, b, c \text{ in } \mathbb{R}\}.$$

Answer: We can see that

$$\begin{bmatrix} a+c \\ b+c \\ a+2c+b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Hence $U = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T, \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T \right\}.$

$$\operatorname{rank} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \stackrel{-R_1 + R_3}{=} \operatorname{rank} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \stackrel{-R_2 + R_3}{=} \operatorname{rank} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = 2.$$

Find the dimension of the subspace

$$U = \{ [a+c, b+c, a+2c+b] | a, b, c \text{ in } \mathbb{R} \}.$$

Answer: We can see that

$$\begin{bmatrix} a+c \\ b+c \\ a+2c+b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Hence $U = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T, \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T \right\}$. Moreover.

$$\operatorname{rank}\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \stackrel{-R_1 + R_3}{=} \operatorname{rank}\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \stackrel{-R_2 + R_3}{=} \operatorname{rank}\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = 2.$$

Find the dimension of the subspace

$$U = \{ [a + c, b + c, a + 2c + b] | a, b, c \text{ in } \mathbb{R} \}.$$

Answer: We can see that

$$\begin{bmatrix} a+c \\ b+c \\ a+2c+b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Hence $U = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T, \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}^T \right\}$. Moreover.

$$\operatorname{rank}\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \xrightarrow{-R_1 + R_3} \operatorname{rank}\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{-R_2 + R_3} \operatorname{rank}\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = 2.$$

Find the dimension of the subspace

$$V = \{[a+2b+2d, c+d, 2a+4b+2d, -c+d]| \ a, b, c, d \ \text{in} \ \mathbb{R}\}.$$

Answer:

Find the dimension of the subspace

$$V = \{ [a+2b+2d, c+d, 2a+4b+2d, -c+d] | a, b, c, d \text{ in } \mathbb{R} \}.$$

Answer: We can see that V is

$$\mathsf{span} \left\{ \begin{bmatrix} 1 & 0 & 2 & 0 \end{bmatrix}^\mathsf{T}, \begin{bmatrix} 2 & 0 & 4 & 0 \end{bmatrix}^\mathsf{T}, \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix}^\mathsf{T}, \begin{bmatrix} 2 & 1 & 2 & 1 \end{bmatrix}^\mathsf{T} \right\}.$$

Find the dimension of the subspace

$$V = \{ [a+2b+2d, c+d, 2a+4b+2d, -c+d] | a, b, c, d \text{ in } \mathbb{R} \}.$$

Answer: We can see that V is

$$\operatorname{span}\left\{ \begin{bmatrix} 1 & 0 & 2 & 0 \end{bmatrix}^T, \begin{bmatrix} 2 & 0 & 4 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix}^T, \begin{bmatrix} 2 & 1 & 2 & 1 \end{bmatrix}^T \right\}.$$

Moreover,

$$\operatorname{rank}\begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 2 & 4 & 0 & 2 \\ 0 & 0 & -1 & 1 \end{bmatrix} \xrightarrow{-2R_1+R_3} \operatorname{rank} \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

Find the dimension of the subspace

$$V = \{ [a+2b+2d, c+d, 2a+4b+2d, -c+d] | a, b, c, d \text{ in } \mathbb{R} \}.$$

Answer: We can see that V is

$$\operatorname{span}\left\{ \begin{bmatrix} 1 & 0 & 2 & 0 \end{bmatrix}^T, \begin{bmatrix} 2 & 0 & 4 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix}^T, \begin{bmatrix} 2 & 1 & 2 & 1 \end{bmatrix}^T \right\}.$$

Moreover,

$$\operatorname{rank}\begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 2 & 4 & 0 & 2 \\ 0 & 0 & -1 & 1 \end{bmatrix} \xrightarrow{-2R_1 + R_3} \operatorname{rank} \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$R_{2} \stackrel{+}{=} R_{4} \text{ rank} \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Any set consist of n linearly independent vectors in \mathbb{R}^n is a basis of \mathbb{R}^n .

Example

Which of the following sets are bases of \mathbb{R}^3 ?

- (i) $\{(1,2,1),(-1,0,3)\}$
- (ii) $\{(-1,4,3),(1,0,2),(0,1,-5)\}$

Any set consist of n linearly independent vectors in \mathbb{R}^n is a basis of \mathbb{R}^n .

Example

Which of the following sets are bases of \mathbb{R}^3 ?

- (i) $\{(1,2,1),(-1,0,3)\}$
- (ii) $\{(-1,4,3),(1,0,2),(0,1,-5)\}$

Answer:

Any set consist of n linearly independent vectors in \mathbb{R}^n is a basis of \mathbb{R}^n .

Example

Which of the following sets are bases of \mathbb{R}^3 ?

- (i) $\{(1,2,1),(-1,0,3)\}$
- (ii) $\{(-1,4,3),(1,0,2),(0,1,-5)\}$

Answer:

(i) No, since any basis of \mathbb{R}^3 must have exactly three vectors.

Any set consist of n linearly independent vectors in \mathbb{R}^n is a basis of \mathbb{R}^n .

Example

Which of the following sets are bases of \mathbb{R}^3 ?

- (i) $\{(1,2,1),(-1,0,3)\}$
- (ii) $\{(-1,4,3),(1,0,2),(0,1,-5)\}$

Answer:

- (i) No, since any basis of \mathbb{R}^3 must have exactly three vectors.
- (ii) Yes. We have

Any set consist of n linearly independent vectors in \mathbb{R}^n is a basis of \mathbb{R}^n .

Example

Which of the following sets are bases of \mathbb{R}^3 ?

- (i) $\{(1,2,1),(-1,0,3)\}$
- (ii) $\{(-1,4,3),(1,0,2),(0,1,-5)\}$

Answer:

- (i) No, since any basis of \mathbb{R}^3 must have exactly three vectors.
- (ii) Yes. We have

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 4 & 0 & 1 \\ 3 & 2 & -5 \end{bmatrix} \xrightarrow{3R_1 + R_3} \begin{bmatrix} -1 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 5 & -5 \end{bmatrix} \xrightarrow{-5/4R_2 + R_3} \begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & 1/4 \\ 0 & 0 & -25/4 \end{bmatrix}$$

See that rank(A) = 3.

Any set consist of n linearly independent vectors in \mathbb{R}^n is a basis of \mathbb{R}^n .

Example

Which of the following sets are bases of \mathbb{R}^3 ?

- (i) $\{(1,2,1),(-1,0,3)\}$
- (ii) $\{(-1,4,3),(1,0,2),(0,1,-5)\}$

Answer:

- (i) No, since any basis of \mathbb{R}^3 must have exactly three vectors.
- (ii) Yes. We have

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 4 & 0 & 1 \\ 3 & 2 & -5 \end{bmatrix} \xrightarrow{3R_1 + R_3} \begin{bmatrix} -1 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 5 & -5 \end{bmatrix} \xrightarrow{-5/4R_2 + R_3} \begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & 1/4 \\ 0 & 0 & -25/4 \end{bmatrix}$$

See that rank(A) = 3. Hence $\{(-1, 4, 3), (1, 0, 2), (0, 1, -5)\}$ is linearly independent.

Any set consist of n linearly independent vectors in \mathbb{R}^n is a basis of \mathbb{R}^n .

Example

Which of the following sets are bases of \mathbb{R}^3 ?

- (i) $\{(1,2,1),(-1,0,3)\}$
- (ii) $\{(-1,4,3),(1,0,2),(0,1,-5)\}$

Answer:

- (i) No, since any basis of \mathbb{R}^3 must have exactly three vectors.
- (ii) Yes. We have

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 4 & 0 & 1 \\ 3 & 2 & -5 \end{bmatrix} \xrightarrow{3R_1 + R_3} \begin{bmatrix} -1 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 5 & -5 \end{bmatrix} \xrightarrow{-5/4R_2 + R_3} \begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & 1/4 \\ 0 & 0 & -25/4 \end{bmatrix}$$

See that rank(A) = 3. Hence $\{(-1, 4, 3), (1, 0, 2), (0, 1, -5)\}$ is linearly independent.

Given $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ are two *n*-tuples (vectors) in \mathbb{R}^n .

Definition

• The dot product of x and y is defined as follows:

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n .$$

Given $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ are two *n*-tuples (vectors) in \mathbb{R}^n .

Definition

• The dot product of **x** and **y** is defined as follows:

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n .$$

• The length of x is

$$\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
.

Given $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ are two *n*-tuples (vectors) in \mathbb{R}^n .

Definition

• The dot product of **x** and **y** is defined as follows:

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n .$$

• The length of x is

$$\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
.

A vector of length 1 is called a unit vector.

Given $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ are two *n*-tuples (vectors) in \mathbb{R}^n .

Definition

• The dot product of **x** and **y** is defined as follows:

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n .$$

The length of x is

$$\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
.

• A vector of length 1 is called a unit vector.

Given $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ are two *n*-tuples (vectors) in \mathbb{R}^n .

Definition

• The dot product of **x** and **y** is defined as follows:

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n .$$

The length of x is

$$\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
.

• A vector of length 1 is called a unit vector.

If $\boldsymbol{u}=(1,1,-1,2)$ and $\boldsymbol{v}=(2,0,3,1)$ in \mathbb{R}^4 then

$$\mathbf{u} \cdot \mathbf{v} = 1 \quad \|\mathbf{u}\| = \sqrt{1^2 + 1^2 + (-1)^2 + 2^2} = \sqrt{7}$$

Theorem

1.
$$u \cdot v = v \cdot u$$

If
$$\boldsymbol{u}=(1,1,-1,2)$$
 and $\boldsymbol{v}=(2,0,3,1)$ in \mathbb{R}^4 then

$$\mathbf{u} \cdot \mathbf{v} = 1 \quad \|\mathbf{u}\| = \sqrt{1^2 + 1^2 + (-1)^2 + 2^2} = \sqrt{7}$$

Theorem

Let u, v and w be vectors in \mathbb{R}^n .

- 1. $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{u}$
- 2. $u \cdot 0 = 0 \cdot u = 0$

If
$$\boldsymbol{u}=(1,1,-1,2)$$
 and $\boldsymbol{v}=(2,0,3,1)$ in \mathbb{R}^4 then

$$\mathbf{u} \cdot \mathbf{v} = 1$$
 $\|\mathbf{u}\| = \sqrt{1^2 + 1^2 + (-1)^2 + 2^2} = \sqrt{7}$

Theorem

Let u, v and w be vectors in \mathbb{R}^n .

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $\boldsymbol{u} \cdot \boldsymbol{0} = \boldsymbol{0} \cdot \boldsymbol{u} = 0$
- 3. $u \cdot u = ||u||^2$

If
$$\boldsymbol{u}=(1,1,-1,2)$$
 and $\boldsymbol{v}=(2,0,3,1)$ in \mathbb{R}^4 then

$$\mathbf{u} \cdot \mathbf{v} = 1$$
 $\|\mathbf{u}\| = \sqrt{1^2 + 1^2 + (-1)^2 + 2^2} = \sqrt{7}$

Theorem

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $u \cdot 0 = 0 \cdot u = 0$
- 3. $\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2$
- 4. $(au) \cdot v = a(u \cdot v) = u \cdot (av)$ for any scalar a.

If
$$\boldsymbol{u}=(1,1,-1,2)$$
 and $\boldsymbol{v}=(2,0,3,1)$ in \mathbb{R}^4 then

$$\mathbf{u} \cdot \mathbf{v} = 1 \quad \|\mathbf{u}\| = \sqrt{1^2 + 1^2 + (-1)^2 + 2^2} = \sqrt{7}$$

Theorem

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $u \cdot 0 = 0 \cdot u = 0$
- 3. $u \cdot u = ||u||^2$
- 4. $(a\mathbf{u}) \cdot \mathbf{v} = a(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (a\mathbf{v})$ for any scalar a.
- 5. $\mathbf{u} \cdot (\mathbf{v} \pm \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} \pm \mathbf{u} \cdot \mathbf{w}$.

If
$$\boldsymbol{u}=(1,1,-1,2)$$
 and $\boldsymbol{v}=(2,0,3,1)$ in \mathbb{R}^4 then

$$\mathbf{u} \cdot \mathbf{v} = 1$$
 $\|\mathbf{u}\| = \sqrt{1^2 + 1^2 + (-1)^2 + 2^2} = \sqrt{7}$

Theorem

- 1. $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{u}$
- 2. $u \cdot 0 = 0 \cdot u = 0$
- 3. $u \cdot u = ||u||^2$
- 4. $(a\mathbf{u}) \cdot \mathbf{v} = a(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (a\mathbf{v})$ for any scalar a.
- 5. $\mathbf{u} \cdot (\mathbf{v} \pm \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} \pm \mathbf{u} \cdot \mathbf{w}$.
- 6. $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \, ||\mathbf{v}||$ (Cauchy inequality)

If
$$u = (1, 1, -1, 2)$$
 and $v = (2, 0, 3, 1)$ in \mathbb{R}^4 then

$$\mathbf{u} \cdot \mathbf{v} = 1 \quad \|\mathbf{u}\| = \sqrt{1^2 + 1^2 + (-1)^2 + 2^2} = \sqrt{7}$$

Theorem

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $u \cdot 0 = 0 \cdot u = 0$
- 3. $\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2$
- 4. $(a\mathbf{u}) \cdot \mathbf{v} = a(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (a\mathbf{v})$ for any scalar a.
- 5. $\mathbf{u} \cdot (\mathbf{v} \pm \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} \pm \mathbf{u} \cdot \mathbf{w}$.
- 6. $|\mathbf{u} \cdot \mathbf{v}| \leq ||\mathbf{u}|| \, ||\mathbf{v}||$ (Cauchy inequality)
- 7. $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (Triangle inequality)

If
$$\boldsymbol{u}=(1,1,-1,2)$$
 and $\boldsymbol{v}=(2,0,3,1)$ in \mathbb{R}^4 then

$$\mathbf{u} \cdot \mathbf{v} = 1 \quad \|\mathbf{u}\| = \sqrt{1^2 + 1^2 + (-1)^2 + 2^2} = \sqrt{7}$$

Theorem

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $u \cdot 0 = 0 \cdot u = 0$
- 3. $u \cdot u = ||u||^2$
- 4. $(a\mathbf{u}) \cdot \mathbf{v} = a(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (a\mathbf{v})$ for any scalar a.
- 5. $\mathbf{u} \cdot (\mathbf{v} \pm \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} \pm \mathbf{u} \cdot \mathbf{w}$.
- 6. $|\mathbf{u} \cdot \mathbf{v}| \leq ||\mathbf{u}|| \, ||\mathbf{v}||$ (Cauchy inequality)
- 7. $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (Triangle inequality)

If
$$\boldsymbol{u}=(1,1,-1,2)$$
 and $\boldsymbol{v}=(2,0,3,1)$ in \mathbb{R}^4 then

$$\mathbf{u} \cdot \mathbf{v} = 1 \quad \|\mathbf{u}\| = \sqrt{1^2 + 1^2 + (-1)^2 + 2^2} = \sqrt{7}$$

Theorem

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $u \cdot 0 = 0 \cdot u = 0$
- 3. $u \cdot u = ||u||^2$
- 4. $(a\mathbf{u}) \cdot \mathbf{v} = a(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (a\mathbf{v})$ for any scalar a.
- 5. $\mathbf{u} \cdot (\mathbf{v} \pm \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} \pm \mathbf{u} \cdot \mathbf{w}$.
- 6. $|\mathbf{u} \cdot \mathbf{v}| \leq ||\mathbf{u}|| \, ||\mathbf{v}||$ (Cauchy inequality)
- 7. $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (Triangle inequality)

Orthogonal Sets

Definition

- Two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n are orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$.
- A set $\{x_1, x_2, \dots, x_k\}$ of vectors in \mathbb{R}^n is called an orthogonal set if

Orthogonal Sets

Definition

- Two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n are orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$.
- ullet A set $\{x_1, x_2, \dots, x_k\}$ of vectors in \mathbb{R}^n is called an orthogonal set if

 $\mathbf{x}_i \cdot \mathbf{x}_j = 0$ for all $i \neq j$ and $\mathbf{x}_i \neq \mathbf{0}$ for all i.

Definition

- Two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n are orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$.
- ullet A set $\{m{x}_1, m{x}_2, \dots, m{x}_k\}$ of vectors in \mathbb{R}^n is called an orthogonal set if

$$\mathbf{x}_i \cdot \mathbf{x}_j = 0$$
 for all $i \neq j$ and $\mathbf{x}_i \neq \mathbf{0}$ for all i .

• A set $\{x_1, x_2, \dots, x_k\}$ of vectors in \mathbb{R}^n is called an orthonormal if it is orthogonal and each x_i is a unit vector $||x_i|| = 1$.

Definition

- Two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n are orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$.
- A set $\{x_1, x_2, \dots, x_k\}$ of vectors in \mathbb{R}^n is called an orthogonal set if

$$\mathbf{x}_i \cdot \mathbf{x}_j = 0$$
 for all $i \neq j$ and $\mathbf{x}_i \neq \mathbf{0}$ for all i .

• A set $\{x_1, x_2, \dots, x_k\}$ of vectors in \mathbb{R}^n is called an orthonormal if it is orthogonal and each x_i is a unit vector $||x_i|| = 1$.

Definition

- Two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n are orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$.
- ullet A set $\{x_1,x_2,\ldots,x_k\}$ of vectors in \mathbb{R}^n is called an orthogonal set if

$$\mathbf{x}_i \cdot \mathbf{x}_j = 0$$
 for all $i \neq j$ and $\mathbf{x}_i \neq \mathbf{0}$ for all i .

• A set $\{x_1, x_2, ..., x_k\}$ of vectors in \mathbb{R}^n is called an orthonormal if it is orthogonal and each x_i is a unit vector $||x_i|| = 1$.

Example

The standard basis $\{e_1, e_2, \cdots, e_n\}$ is an orthonormal set in \mathbb{R}^n .

Definition

- Two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n are orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$.
- ullet A set $\{x_1, x_2, \dots, x_k\}$ of vectors in \mathbb{R}^n is called an orthogonal set if

$$\mathbf{x}_i \cdot \mathbf{x}_j = 0$$
 for all $i \neq j$ and $\mathbf{x}_i \neq \mathbf{0}$ for all i .

• A set $\{x_1, x_2, ..., x_k\}$ of vectors in \mathbb{R}^n is called an orthonormal if it is orthogonal and each x_i is a unit vector $||x_i|| = 1$.

Example

The standard basis $\{e_1, e_2, \cdots, e_n\}$ is an orthonormal set in \mathbb{R}^n .

Example

The set
$$\left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$$
 is orthogonal in \mathbb{R}^2 ,

Definition

- Two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n are orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$.
- ullet A set $\{x_1, x_2, \ldots, x_k\}$ of vectors in \mathbb{R}^n is called an orthogonal set if

$${m x}_i\cdot{m x}_j=0$$
 for all $i
eq j$ and ${m x}_i
eq {m 0}$ for all i .

• A set $\{x_1, x_2, \dots, x_k\}$ of vectors in \mathbb{R}^n is called an orthonormal if it is orthogonal and each x_i is a unit vector $||x_i|| = 1$.

Example

The standard basis $\{e_1, e_2, \cdots, e_n\}$ is an orthonormal set in \mathbb{R}^n .

Example

The set $\left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ is orthogonal in \mathbb{R}^2 , but not orthonormal.

Definition

- Two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n are orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$.
- ullet A set $\{x_1, x_2, \ldots, x_k\}$ of vectors in \mathbb{R}^n is called an orthogonal set if

$${m x}_i\cdot{m x}_j=0$$
 for all $i
eq j$ and ${m x}_i
eq {m 0}$ for all i .

• A set $\{x_1, x_2, \dots, x_k\}$ of vectors in \mathbb{R}^n is called an orthonormal if it is orthogonal and each x_i is a unit vector $||x_i|| = 1$.

Example

The standard basis $\{e_1, e_2, \cdots, e_n\}$ is an orthonormal set in \mathbb{R}^n .

Example

The set $\left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ is orthogonal in \mathbb{R}^2 , but not orthonormal.

Find the number
$$c$$
 such that the set
$$\left\{ \boldsymbol{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \boldsymbol{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 3 \end{bmatrix}, \boldsymbol{u}_3 = \begin{bmatrix} 2 \\ -1 \\ 0 \\ -1 \end{bmatrix}, \boldsymbol{u}_4 = \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} \right\} \text{ is orthogonal.}$$

Find the number
$$c$$
 such that the set
$$\left\{ \boldsymbol{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \boldsymbol{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 3 \end{bmatrix}, \boldsymbol{u}_3 = \begin{bmatrix} 2 \\ -1 \\ 0 \\ -1 \end{bmatrix}, \boldsymbol{u}_4 = \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} \right\}$$
 is orthogonal.

Answer: Solve the system

$$u_1 \cdot u_4 = a + 2b + c = 0$$

 $u_2 \cdot u_4 = a - b + c + 3 = 0$
 $u_3 \cdot u_4 = 2a - b - 1 = 0$

$$\left\{ \boldsymbol{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \boldsymbol{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 3 \end{bmatrix}, \boldsymbol{u}_3 = \begin{bmatrix} 2 \\ -1 \\ 0 \\ -1 \end{bmatrix}, \boldsymbol{u}_4 = \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} \right\} \text{ is orthogonal.}$$

Answer: Solve the system

$$\begin{cases} \mathbf{u}_1 \cdot \mathbf{u}_4 = a + 2b + c = 0 \\ \mathbf{u}_2 \cdot \mathbf{u}_4 = a - b + c + 3 = 0 \\ \mathbf{u}_3 \cdot \mathbf{u}_4 = 2a - b - 1 = 0 \end{cases}$$

we get a = 1, b = 1, c = -3.

Find the number c such that the set

$$\left\{ \mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 3 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 2 \\ -1 \\ 0 \\ -1 \end{bmatrix}, \mathbf{u}_4 = \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} \right\} \text{ is orthogonal.}$$

Answer: Solve the system

$$\begin{cases} \mathbf{u}_1 \cdot \mathbf{u}_4 = a + 2b + c = 0 \\ \mathbf{u}_2 \cdot \mathbf{u}_4 = a - b + c + 3 = 0 \\ \mathbf{u}_3 \cdot \mathbf{u}_4 = 2a - b - 1 = 0 \end{cases}$$

we get a = 1, b = 1, c = -3.

Find b so that $B = \left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), (a, b, c) \right\}$ is an orthonormal set.

Find *b* so that $B = \left\{ (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (a, b, c) \right\}$ is an orthonormal set.

Answer: To B is an orthonormal set,

$$\begin{cases} \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \cdot (a, b, c) = \frac{1}{\sqrt{3}}(a + b + c) = 0\\ \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) \cdot (a, b, c) = \frac{-1}{\sqrt{2}}(a - b) = 0\\ \|(a, b, c)\| = \sqrt{a^2 + b^2 + c^2} = 1 \end{cases}$$

Find b so that $B = \left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), (a, b, c) \right\}$ is an orthonormal set.

Answer: To B is an orthonormal set,

$$\begin{cases} & (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \cdot (a, b, c) = \frac{1}{\sqrt{3}}(a + b + c) = 0 \\ & (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) \cdot (a, b, c) = \frac{-1}{\sqrt{2}}(a - b) = 0 \\ & \|(a, b, c)\| = \sqrt{a^2 + b^2 + c^2} = 1 \end{cases}$$

Substitute a by b, c by -2b into third equation we get

$$b^2 + b^2 + (-2b)^2 = 6b^2 = 1$$

Find *b* so that $B = \left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), (a, b, c) \right\}$ is an orthonormal set.

Answer: To B is an orthonormal set,

$$\begin{cases} & (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \cdot (a, b, c) = \frac{1}{\sqrt{3}}(a + b + c) = 0 \\ & (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) \cdot (a, b, c) = \frac{-1}{\sqrt{2}}(a - b) = 0 \\ & \|(a, b, c)\| = \sqrt{a^2 + b^2 + c^2} = 1 \end{cases}$$

Substitute a by b, c by -2b into third equation we get

$$b^2 + b^2 + (-2b)^2 = 6b^2 = 1$$

Hence $b = 1/\sqrt{6}$ or $b = -1/\sqrt{6}$.

Find *b* so that $B = \left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), (a, b, c) \right\}$ is an orthonormal set.

Answer: To B is an orthonormal set,

$$\begin{cases} & (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \cdot (a, b, c) = \frac{1}{\sqrt{3}}(a + b + c) = 0 \\ & (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) \cdot (a, b, c) = \frac{-1}{\sqrt{2}}(a - b) = 0 \\ & \|(a, b, c)\| = \sqrt{a^2 + b^2 + c^2} = 1 \end{cases}$$

Substitute a by b, c by -2b into third equation we get

$$b^2 + b^2 + (-2b)^2 = 6b^2 = 1$$

Hence $b = 1/\sqrt{6}$ or $b = -1/\sqrt{6}$.

If $\{x_1, x_2, \dots, x_k\}$ is an orthogonal set, then

$$\|\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_k\|^2 = \|\mathbf{x}_1\|^2 + \|\mathbf{x}_2\|^2 + \dots + \|\mathbf{x}_k\|^2$$
.

Theorem

Every orthogonal set in \mathbb{R}^n is linearly independent.

If $\{x_1, x_2, \dots, x_k\}$ is an orthogonal set, then

$$\|\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_k\|^2 = \|\mathbf{x}_1\|^2 + \|\mathbf{x}_2\|^2 + \dots + \|\mathbf{x}_k\|^2$$
.

Theorem

Every orthogonal set in \mathbb{R}^n is linearly independent.

Example

Suppose that $\{u, v\}$ is an orthogonal set and their length are 4 and 5 respectively. What is the length of u - 3v.

If $\{x_1, x_2, \dots, x_k\}$ is an orthogonal set, then

$$\|\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_k\|^2 = \|\mathbf{x}_1\|^2 + \|\mathbf{x}_2\|^2 + \dots + \|\mathbf{x}_k\|^2$$
.

Theorem

Every orthogonal set in \mathbb{R}^n is linearly independent.

Example

Suppose that $\{u, v\}$ is an orthogonal set and their length are 4 and 5 respectively. What is the length of u - 3v.

If $\{x_1, x_2, \dots, x_k\}$ is an orthogonal set, then

$$\|\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_k\|^2 = \|\mathbf{x}_1\|^2 + \|\mathbf{x}_2\|^2 + \dots + \|\mathbf{x}_k\|^2$$
.

Theorem

Every orthogonal set in \mathbb{R}^n is linearly independent.

Example

Suppose that $\{u, v\}$ is an orthogonal set and their length are 4 and 5 respectively. What is the length of u - 3v.

Answer: By Pythagoras Theorem:

$$\|\mathbf{u} - 3\mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|-3\mathbf{v}\|^2 = \|\mathbf{u}\|^2 + 9\|\mathbf{v}\|^2 = 4^2 + 9 * 5^2 = 241$$
.

If $\{x_1, x_2, \dots, x_k\}$ is an orthogonal set, then

$$\|\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_k\|^2 = \|\mathbf{x}_1\|^2 + \|\mathbf{x}_2\|^2 + \dots + \|\mathbf{x}_k\|^2$$
.

Theorem

Every orthogonal set in \mathbb{R}^n is linearly independent.

Example

Suppose that $\{u, v\}$ is an orthogonal set and their length are 4 and 5 respectively. What is the length of u - 3v.

Answer: By Pythagoras Theorem:

$$\|\mathbf{u} - 3\mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|-3\mathbf{v}\|^2 = \|\mathbf{u}\|^2 + 9\|\mathbf{v}\|^2 = 4^2 + 9*5^2 = 241$$
.

Hence $\|u - 3v\| = \sqrt{241}$.

If $\{x_1, x_2, \dots, x_k\}$ is an orthogonal set, then

$$\|\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_k\|^2 = \|\mathbf{x}_1\|^2 + \|\mathbf{x}_2\|^2 + \dots + \|\mathbf{x}_k\|^2$$
.

Theorem

Every orthogonal set in \mathbb{R}^n is linearly independent.

Example

Suppose that $\{u, v\}$ is an orthogonal set and their length are 4 and 5 respectively. What is the length of u - 3v.

Answer: By Pythagoras Theorem:

$$\|\mathbf{u} - 3\mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|-3\mathbf{v}\|^2 = \|\mathbf{u}\|^2 + 9\|\mathbf{v}\|^2 = 4^2 + 9*5^2 = 241$$
.

Hence $\| u - 3v \| = \sqrt{241}$.

Which of the following statements are true?

- (i) if $\{u, v\}$ is orthogonal in \mathbb{R}^n then $\{u, u + v\}$ is also orthogonal.
- (ii) if $\{u, v\}$ and $\{w, z\}$ are both orthogonal then $\{u, v, w, z\}$ is also orthogonal.
- (iii) if $\{u, v\}$ is orthonormal then $\{u + v, u v\}$ is orthogonal.

Which of the following statements are true?

- (i) if $\{u, v\}$ is orthogonal in \mathbb{R}^n then $\{u, u + v\}$ is also orthogonal.
- (ii) if $\{\pmb{u}, \pmb{v}\}$ and $\{\pmb{w}, \pmb{z}\}$ are both orthogonal then $\{\pmb{u}, \pmb{v}, \pmb{w}, \pmb{z}\}$ is also orthogonal.
- (iii) if $\{u, v\}$ is orthonormal then $\{u + v, u v\}$ is orthogonal.

Answer:

(i) False. Since if $\{u, v\}$ then $u \cdot (u + v) = ||u||^2 \neq 0$, for any $u \neq 0$.

Which of the following statements are true?

- (i) if $\{u, v\}$ is orthogonal in \mathbb{R}^n then $\{u, u + v\}$ is also orthogonal.
- (ii) if $\{u, v\}$ and $\{w, z\}$ are both orthogonal then $\{u, v, w, z\}$ is also orthogonal.
- (iii) if $\{u, v\}$ is orthonormal then $\{u + v, u v\}$ is orthogonal.

- (i) False. Since if $\{u, v\}$ then $u \cdot (u + v) = ||u||^2 \neq 0$, for any $u \neq 0$.
- (ii) False. For example $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{z} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Then $\{\mathbf{u}, \mathbf{v}\}$ and $\{\mathbf{w}, \mathbf{z}\}$ are both orthogonal

Which of the following statements are true?

- (i) if $\{u, v\}$ is orthogonal in \mathbb{R}^n then $\{u, u + v\}$ is also orthogonal.
- (ii) if $\{u, v\}$ and $\{w, z\}$ are both orthogonal then $\{u, v, w, z\}$ is also orthogonal.
- (iii) if $\{u, v\}$ is orthonormal then $\{u + v, u v\}$ is orthogonal.

- (i) False. Since if $\{u, v\}$ then $u \cdot (u + v) = ||u||^2 \neq 0$, for any $u \neq 0$.
- (ii) False. For example $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{z} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Then $\{\mathbf{u}, \mathbf{v}\}$ and $\{\mathbf{w}, \mathbf{z}\}$ are both orthogonal but $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}\}$ is not orthogonal.

Which of the following statements are true?

- (i) if $\{u,v\}$ is orthogonal in \mathbb{R}^n then $\{u,u+v\}$ is also orthogonal.
- (ii) if $\{u, v\}$ and $\{w, z\}$ are both orthogonal then $\{u, v, w, z\}$ is also orthogonal.
- (iii) if $\{u, v\}$ is orthonormal then $\{u + v, u v\}$ is orthogonal.

- (i) False. Since if $\{u, v\}$ then $u \cdot (u + v) = ||u||^2 \neq 0$, for any $u \neq 0$.
- (ii) False. For example $\boldsymbol{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\boldsymbol{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\boldsymbol{z} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Then $\{\boldsymbol{u}, \boldsymbol{v}\}$ and $\{\boldsymbol{w}, \boldsymbol{z}\}$ are both orthogonal but $\{\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{z}\}$ is not orthogonal.
- (iii) True. If $\{u, v\}$ is orthonormal then $u \cdot v = 0$ and $\|u\| = \|v\| = 1$.

Which of the following statements are true?

- (i) if $\{u, v\}$ is orthogonal in \mathbb{R}^n then $\{u, u + v\}$ is also orthogonal.
- (ii) if $\{u, v\}$ and $\{w, z\}$ are both orthogonal then $\{u, v, w, z\}$ is also orthogonal.
- (iii) if $\{u, v\}$ is orthonormal then $\{u + v, u v\}$ is orthogonal.

- (i) False. Since if $\{u, v\}$ then $u \cdot (u + v) = ||u||^2 \neq 0$, for any $u \neq 0$.
- (ii) False. For example $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{z} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Then $\{\mathbf{u}, \mathbf{v}\}$ and $\{\mathbf{w}, \mathbf{z}\}$ are both orthogonal but $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}\}$ is not orthogonal.
- (iii) True. If $\{ {\pmb u}, {\pmb v} \}$ is orthonormal then ${\pmb u} \cdot {\pmb v} = 0$ and $\| {\pmb u} \| = \| {\pmb v} \| = 1$. Hence

$$(u + v) \cdot (u - v) = u \cdot u - u \cdot v + v \cdot u - v \cdot v = ||u||^2 - ||v||^2 = 0.$$

Which of the following statements are true?

- (i) if $\{u,v\}$ is orthogonal in \mathbb{R}^n then $\{u,u+v\}$ is also orthogonal.
- (ii) if $\{u, v\}$ and $\{w, z\}$ are both orthogonal then $\{u, v, w, z\}$ is also orthogonal.
- (iii) if $\{u, v\}$ is orthonormal then $\{u + v, u v\}$ is orthogonal.

- (i) False. Since if $\{u, v\}$ then $u \cdot (u + v) = ||u||^2 \neq 0$, for any $u \neq 0$.
- (ii) False. For example $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{z} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Then $\{\mathbf{u}, \mathbf{v}\}$ and $\{\mathbf{w}, \mathbf{z}\}$ are both orthogonal but $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}\}$ is not orthogonal.
- (iii) True. If $\{ {\pmb u}, {\pmb v} \}$ is orthonormal then ${\pmb u} \cdot {\pmb v} = 0$ and $\| {\pmb u} \| = \| {\pmb v} \| = 1$. Hence

$$(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} - \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{u} - \mathbf{v} \cdot \mathbf{v} = \|\mathbf{u}\|^2 - \|\mathbf{v}\|^2 = 0.$$

Let $\{x_1, x_2, \dots, x_m\}$ be an orthogonal basis of U. Then any $\mathbf{u} \in U$:

$$u = \frac{u \cdot x_1}{\|x_1\|^2} x_1 + \frac{u \cdot x_2}{\|x_2\|^2} x_2 + \cdots + \frac{u \cdot x_m}{\|x_m\|^2} x_m$$

Let $\{x_1, x_2, \dots, x_m\}$ be an orthogonal basis of U. Then any $u \in U$:

$$u = \frac{u \cdot x_1}{\|x_1\|^2} x_1 + \frac{u \cdot x_2}{\|x_2\|^2} x_2 + \cdots + \frac{u \cdot x_m}{\|x_m\|^2} x_m$$

Example

Let $\mathbf{x} = [a, b, c]$. Let U be the subspace spanned by the orthogonal basis $\{\mathbf{u} = [1, 1, 1], \ \mathbf{v} = [1, -1, 0], \ \mathbf{w} = [1, 1, -2]\}$.

Find the coefficient of v when expressing x as a linear combination of $\{u, v, w\}$.

Let $\{x_1, x_2, \dots, x_m\}$ be an orthogonal basis of U. Then any $u \in U$:

$$u = \frac{u \cdot x_1}{\|x_1\|^2} x_1 + \frac{u \cdot x_2}{\|x_2\|^2} x_2 + \cdots + \frac{u \cdot x_m}{\|x_m\|^2} x_m$$

Example

Let $\mathbf{x} = [a, b, c]$. Let U be the subspace spanned by the orthogonal basis $\{\mathbf{u} = [1, 1, 1], \ \mathbf{v} = [1, -1, 0], \ \mathbf{w} = [1, 1, -2]\}.$

Find the coefficient of v when expressing x as a linear combination of $\{u, v, w\}$.

Let $\{x_1, x_2, \dots, x_m\}$ be an orthogonal basis of U. Then any $u \in U$:

$$u = \frac{u \cdot x_1}{\|x_1\|^2} x_1 + \frac{u \cdot x_2}{\|x_2\|^2} x_2 + \cdots + \frac{u \cdot x_m}{\|x_m\|^2} x_m$$

Example

Let $\mathbf{x} = [a, b, c]$. Let U be the subspace spanned by the orthogonal basis $\{\mathbf{u} = [1, 1, 1], \ \mathbf{v} = [1, -1, 0], \ \mathbf{w} = [1, 1, -2]\}.$

Find the coefficient of v when expressing x as a linear combination of $\{u, v, w\}$.

Answer: We can see $\{u, v, w\}$ is an orthogonal basis of U. Hence the coefficient of v when expressing x as a linear combination of $\{u, v, w\}$ is

$$\frac{\mathbf{x} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} = \frac{a - b}{2}$$

Let $\{x_1, x_2, \dots, x_m\}$ be an orthogonal basis of U. Then any $u \in U$:

$$u = \frac{u \cdot x_1}{\|x_1\|^2} x_1 + \frac{u \cdot x_2}{\|x_2\|^2} x_2 + \cdots + \frac{u \cdot x_m}{\|x_m\|^2} x_m$$

Example

Let $\mathbf{x} = [a, b, c]$. Let U be the subspace spanned by the orthogonal basis $\{\mathbf{u} = [1, 1, 1], \ \mathbf{v} = [1, -1, 0], \ \mathbf{w} = [1, 1, -2]\}$.

Find the coefficient of v when expressing x as a linear combination of $\{u, v, w\}$.

Answer: We can see $\{u, v, w\}$ is an orthogonal basis of U. Hence the coefficient of v when expressing x as a linear combination of $\{u, v, w\}$ is

$$\frac{\mathbf{x} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} = \frac{a - b}{2}$$

(The question is: Write $\mathbf{x} = t_1 \mathbf{u} + t_2 \mathbf{v} + t_3 \mathbf{w}$, find t_2 .)

Let $\{x_1, x_2, \dots, x_m\}$ be an orthogonal basis of U. Then any $\mathbf{u} \in U$:

$$u = \frac{u \cdot x_1}{\|x_1\|^2} x_1 + \frac{u \cdot x_2}{\|x_2\|^2} x_2 + \cdots + \frac{u \cdot x_m}{\|x_m\|^2} x_m$$

Example

Let $\mathbf{x} = [a, b, c]$. Let U be the subspace spanned by the orthogonal basis $\{\mathbf{u} = [1, 1, 1], \ \mathbf{v} = [1, -1, 0], \ \mathbf{w} = [1, 1, -2]\}$.

Find the coefficient of \mathbf{v} when expressing \mathbf{x} as a linear combination of $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.

Answer: We can see $\{u, v, w\}$ is an orthogonal basis of U. Hence the coefficient of v when expressing x as a linear combination of $\{u, v, w\}$ is

$$\frac{\boldsymbol{x} \cdot \boldsymbol{v}}{\|\boldsymbol{v}\|^2} = \frac{a - b}{2}$$

(The question is: Write $\mathbf{x} = t_1 \mathbf{u} + t_2 \mathbf{v} + t_3 \mathbf{w}$, find t_2 .)

Express $\mathbf{X} = \begin{bmatrix} -3 & 2 & 2 & 7 \end{bmatrix}^T$ as a linear combination of the orthogonal basis of the subspace

$$U = \operatorname{span} \left\{ \boldsymbol{u} = \begin{bmatrix} -1 & 2 & 0 & 3 \end{bmatrix}^T, \boldsymbol{v} = \begin{bmatrix} 1 & 2 & -2 & -1 \end{bmatrix}^T \right\}.$$

Express $\mathbf{X} = \begin{bmatrix} -3 & 2 & 2 & 7 \end{bmatrix}^T$ as a linear combination of the orthogonal basis of the subspace

$$U = \operatorname{span} \left\{ \boldsymbol{u} = \begin{bmatrix} -1 & 2 & 0 & 3 \end{bmatrix}^T, \boldsymbol{v} = \begin{bmatrix} 1 & 2 & -2 & -1 \end{bmatrix}^T \right\}.$$

Answer: We have

$$X = \frac{X \cdot u}{\|u\|^2} u + \frac{X \cdot v}{\|v\|^2} v$$
$$= \frac{28}{14} u + \frac{-10}{10} v$$
$$= 2u - v$$

Express $\mathbf{X} = \begin{bmatrix} -3 & 2 & 2 & 7 \end{bmatrix}^T$ as a linear combination of the orthogonal basis of the subspace

$$U = \operatorname{span} \left\{ \boldsymbol{u} = \begin{bmatrix} -1 & 2 & 0 & 3 \end{bmatrix}^T, \boldsymbol{v} = \begin{bmatrix} 1 & 2 & -2 & -1 \end{bmatrix}^T \right\}.$$

Answer: We have

$$X = \frac{X \cdot u}{\|u\|^2} u + \frac{X \cdot v}{\|v\|^2} v$$
$$= \frac{28}{14} u + \frac{-10}{10} v$$
$$= 2u - v$$

Let A be $m \times n$ matrix.

Definition

• The column space, col(A), of A is the subspace of \mathbb{R}^m spanned by the columns of A.

Let A be $m \times n$ matrix.

Definition

- The column space, col(A), of A is the subspace of \mathbb{R}^m spanned by the columns of A.
- The row space, row(A), of A is the subspace of \mathbb{R}^n spanned by the rows of A.

Let A be $m \times n$ matrix.

Definition

- The column space, col(A), of A is the subspace of \mathbb{R}^m spanned by the columns of A.
- The row space, row(A), of A is the subspace of \mathbb{R}^n spanned by the rows of A.

Let A be $m \times n$ matrix.

Definition

- The column space, col(A), of A is the subspace of \mathbb{R}^m spanned by the columns of A.
- The row space, row(A), of A is the subspace of \mathbb{R}^n spanned by the rows of A.

If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 0 & 5 \end{bmatrix}$$
 then

$$\operatorname{col}(A) = \operatorname{span}\left\{\begin{bmatrix}1\\-2\end{bmatrix},\begin{bmatrix}2\\0\end{bmatrix},\begin{bmatrix}3\\5\end{bmatrix}\right\}$$
 is a subspace of \mathbb{R}^2

$$= \left\{ x \begin{bmatrix} 1 \\ -2 \end{bmatrix} + y \begin{bmatrix} 2 \\ 0 \end{bmatrix} + z \begin{bmatrix} 3 \\ 5 \end{bmatrix} \middle| x, y, z \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} x + 2y + 3z \\ -2x + 5z \end{bmatrix} \middle| x, y, z \in \mathbb{R} \right\}$$

$$\operatorname{row}(A) = \operatorname{span} \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -2\\0\\5 \end{bmatrix} \right\} \text{ is a subspace of } \mathbb{R}^3$$

$$= \left\{ x \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix} \middle| x, y \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} x - 2y \\ 2x \\ 3x + 5y \end{bmatrix} \middle| x, y \in \mathbb{R} \right\}$$

If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 0 & 5 \end{bmatrix}$$
 then

$$col(A) = span \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 5 \end{bmatrix} \right\}$$
 is a subspace of \mathbb{R}^2

$$= \left\{ x \begin{bmatrix} 1 \\ -2 \end{bmatrix} + y \begin{bmatrix} 2 \\ 0 \end{bmatrix} + z \begin{bmatrix} 3 \\ 5 \end{bmatrix} \middle| x, y, z \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} x + 2y + 3z \\ -2x + 5z \end{bmatrix} \middle| x, y, z \in \mathbb{R} \right\}$$

$$\mathsf{row}(A) = \mathsf{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix} \right\} \quad \mathsf{is a subspace of } \mathbb{R}^3$$

$$= \left\{ x \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix} \middle| x, y \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} x - 2y \\ 2x \\ 3x + 5y \end{bmatrix} \middle| x, y \in \mathbb{R} \right\}$$

Let A and B denote $m \times n$ matrices.

- 1. If $A \rightarrow B$ by elementary row operations, then row(A) = row(B).
- 2. If $A \rightarrow B$ by elementary column operations, then col(A) = col(B).

Let A and B denote $m \times n$ matrices.

- 1. If $A \rightarrow B$ by elementary row operations, then row(A) = row(B).
- 2. If $A \rightarrow B$ by elementary column operations, then col(A) = col(B).

Let A and B denote $m \times n$ matrices.

- 1. If $A \to B$ by elementary row operations, then row(A) = row(B).
- 2. If $A \rightarrow B$ by elementary column operations, then col(A) = col(B).

Theorem

If matrix R is a row-echelon form of A, then

1. The nonzero rows of R are a basis of row(A).

Let A and B denote $m \times n$ matrices.

- 1. If $A \to B$ by elementary row operations, then row(A) = row(B).
- 2. If $A \rightarrow B$ by elementary column operations, then col(A) = col(B).

Theorem

If matrix R is a row-echelon form of A, then

- 1. The nonzero rows of R are a basis of row(A).
- 2. The columns of A corresponding to the columns of R that contain the leading 1 are a basis of col(A).

Let A and B denote $m \times n$ matrices.

- 1. If $A \to B$ by elementary row operations, then row(A) = row(B).
- 2. If $A \rightarrow B$ by elementary column operations, then col(A) = col(B).

Theorem

If matrix R is a row-echelon form of A, then

- 1. The nonzero rows of R are a basis of row(A).
- 2. The columns of A corresponding to the columns of R that contain the leading 1 are a basis of col(A).

Let A and B denote $m \times n$ matrices.

- 1. If $A \to B$ by elementary row operations, then row(A) = row(B).
- 2. If $A \rightarrow B$ by elementary column operations, then col(A) = col(B).

Theorem

If matrix R is a row-echelon form of A, then

- 1. The nonzero rows of R are a basis of row(A).
- 2. The columns of A corresponding to the columns of R that contain the leading 1 are a basis of col(A).

Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 3 & 0 & 3 \end{bmatrix}$$
. Find basis for row(A) and col(A).

Answer:

Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 3 & 0 & 3 \end{bmatrix}$$
. Find basis for $row(A)$ and $col(A)$.

Answer:

$$A \xrightarrow{-2R_1 + R_2} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 3 & 0 \\ 0 & 3 & 0 \end{bmatrix} \xrightarrow{-R_2 + R_3} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 3 & 0 & 3 \end{bmatrix}$$
. Find basis for row(A) and col(A).

Answer:

$$A \xrightarrow{-2R_1 + R_2} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 3 & 0 \\ 0 & 3 & 0 \end{bmatrix} \xrightarrow{-R_2 + R_3} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

A basis of row(A) is $\{(1, -1, 1), (0, 1, 0)\}.$

Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 3 & 0 & 3 \end{bmatrix}$$
. Find basis for row(A) and col(A).

Answer:

$$A \xrightarrow{-2R_1 + R_2} \xrightarrow{A} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 3 & 0 \\ 0 & 3 & 0 \end{bmatrix} \xrightarrow{-R_2 + R_3} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

A basis of row(A) is $\{(1,-1,1),(0,1,0)\}.$

A basis of col(A) is $\{(1,2,3)^T, (-1,1,0)^T\}$.

Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 3 & 0 & 3 \end{bmatrix}$$
. Find basis for row(A) and col(A).

Answer:

$$A \xrightarrow{-2R_1 + R_2} \xrightarrow{A} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 3 & 0 \\ 0 & 3 & 0 \end{bmatrix} \xrightarrow{-R_2 + R_3} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

A basis of row(A) is $\{(1,-1,1),(0,1,0)\}$.

A basis of col(A) is $\{(1,2,3)^T, (-1,1,0)^T\}$.

- $rank(A) \leq min\{m, n\}$.
- \circ col(A) = im(A).

- $rank(A) \leq min\{m, n\}$.
- col(A) = im(A).
- dim(row(A)) = dim(col(A)) = dim(im(A)) = rank(A).

- $rank(A) \leq min\{m, n\}$.
- col(A) = im(A).
- dim(row(A)) = dim(col(A)) = dim(im(A)) = rank(A).
- dim(null(A)) = n rank(A) = the number of parameters (of the basic solutions) of the homogeneous system <math>AX = 0.

- $rank(A) \leq min\{m, n\}$.
- col(A) = im(A).
- dim(row(A)) = dim(col(A)) = dim(im(A)) = rank(A).
- dim(null(A)) = n rank(A) = the number of parameters (of the basic solutions) of the homogeneous system <math>AX = 0.

- $rank(A) \leq min\{m, n\}$.
- col(A) = im(A).
- dim(row(A)) = dim(col(A)) = dim(im(A)) = rank(A).
- dim(null(A)) = n rank(A) = the number of parameters (of the basic solutions) of the homogeneous system <math>AX = 0.

Find the dimensions of the null space and the column space of the given matrix.

$$A = \begin{bmatrix} -1 & 2 & 1 & 3 \\ 2 & -3 & -2 & 1 \\ 3 & -5 & -3 & -2 \end{bmatrix}$$

Answer:

Find the dimensions of the null space and the column space of the given matrix.

$$A = \begin{bmatrix} -1 & 2 & 1 & 3 \\ 2 & -3 & -2 & 1 \\ 3 & -5 & -3 & -2 \end{bmatrix}$$

Answer: We have

$$A \xrightarrow{2R_1 + R_2}_{3R_1 + R_3} \begin{bmatrix} -1 & 2 & 1 & 3 \\ 0 & 1 & 0 & 7 \\ 0 & 1 & 0 & 7 \end{bmatrix} \xrightarrow{-R_2 + R_3}_{-R_1} \begin{bmatrix} 1 & -2 & -1 & -3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Find the dimensions of the null space and the column space of the given matrix.

$$A = \begin{bmatrix} -1 & 2 & 1 & 3 \\ 2 & -3 & -2 & 1 \\ 3 & -5 & -3 & -2 \end{bmatrix}$$

Answer: We have

$$A \xrightarrow{2R_1 + R_2}_{3R_1 + R_3} \begin{bmatrix} -1 & 2 & 1 & 3 \\ 0 & 1 & 0 & 7 \\ 0 & 1 & 0 & 7 \end{bmatrix} \xrightarrow{-R_2 + R_3}_{-R_1} \begin{bmatrix} 1 & -2 & -1 & -3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Hence rank(A) = 2, and

$$dim(null(A)) = 4 - rank(A) = 2$$
, $dim(col(A)) = rank(A) = 2$.

Find the dimensions of the null space and the column space of the given matrix.

$$A = \begin{bmatrix} -1 & 2 & 1 & 3 \\ 2 & -3 & -2 & 1 \\ 3 & -5 & -3 & -2 \end{bmatrix}$$

Answer: We have

Hence rank(A) = 2, and

$$dim(null(A)) = 4 - rank(A) = 2$$
, $dim(col(A)) = rank(A) = 2$.

Find the dimension of the subspace

$$U = \{[x, y, z, w] \mid x - 2y + 3z + w = 0, 3x - 5y + z + 8w = 0\}$$

Answer:

Find the dimension of the subspace

$$U = \{[x, y, z, w] | x - 2y + 3z + w = 0, 3x - 5y + z + 8w = 0\}$$

Answer: See that
$$U = \text{null} \left(\begin{vmatrix} 1 & -2 & 3 & 1 \\ 3 & -5 & 1 & 8 \end{vmatrix} \right)$$
.

Find the dimension of the subspace

$$U = \{[x, y, z, w] \mid x - 2y + 3z + w = 0, 3x - 5y + z + 8w = 0\}$$

Answer: See that $U = \text{null} \left(\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -5 & 1 & 8 \end{bmatrix} \right)$. We have

$$\operatorname{rank}\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -5 & 1 & 8 \end{bmatrix} \xrightarrow{-3R_1+R_2} \operatorname{rank}\begin{bmatrix} 1 & -2 & 3 & 1 \\ 0 & 1 & -8 & 5 \end{bmatrix} = 2.$$

Find the dimension of the subspace

$$U = \{ [x, y, z, w] | x - 2y + 3z + w = 0, 3x - 5y + z + 8w = 0 \}$$

Answer: See that $U = \text{null} \left(\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -5 & 1 & 8 \end{bmatrix} \right)$. We have

$$\operatorname{rank}\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -5 & 1 & 8 \end{bmatrix} \stackrel{-3R_1+R_2}{=} \operatorname{rank}\begin{bmatrix} 1 & -2 & 3 & 1 \\ 0 & 1 & -8 & 5 \end{bmatrix} = 2.$$

Hence dim(
$$U$$
) = 4 - rank $\begin{vmatrix} 1 & -2 & 3 & 1 \\ 3 & -5 & 1 & 8 \end{vmatrix} = 4 - 2 = 2$.

Find the dimension of the subspace

$$U = \{ [x, y, z, w] | x - 2y + 3z + w = 0, 3x - 5y + z + 8w = 0 \}$$

Answer: See that $U = \text{null} \left(\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -5 & 1 & 8 \end{bmatrix} \right)$. We have

$$\operatorname{rank}\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -5 & 1 & 8 \end{bmatrix} \overset{-3R_1+R_2}{=} \operatorname{rank}\begin{bmatrix} 1 & -2 & 3 & 1 \\ 0 & 1 & -8 & 5 \end{bmatrix} = 2.$$

Hence dim(
$$U$$
) = 4 - rank $\begin{vmatrix} 1 & -2 & 3 & 1 \\ 3 & -5 & 1 & 8 \end{vmatrix} = 4 - 2 = 2$.

Find the dimension of

$$U = \left\{ (x + y, x - 2y, 3x) \mid x, y \in \mathbb{R} \right\}$$

Answer:

Find the dimension of

$$U = \left\{ (x + y, x - 2y, 3x) \mid x, y \in \mathbb{R} \right\}$$

Answer: See that $U = \operatorname{im} \left(\begin{bmatrix} 1 & 1 \\ 1 & -2 \\ 3 & 0 \end{bmatrix} \right) = \operatorname{col} \left(\begin{bmatrix} 1 & 1 \\ 1 & -2 \\ 3 & 0 \end{bmatrix} \right).$

Find the dimension of

$$U = \left\{ (x + y, x - 2y, 3x) \mid x, y \in \mathbb{R} \right\}$$

Answer: See that $U = \operatorname{im} \begin{pmatrix} \begin{vmatrix} 1 & 1 \\ 1 & -2 \\ 3 & 0 \end{vmatrix} \right) = \operatorname{col} \begin{pmatrix} \begin{vmatrix} 1 & 1 \\ 1 & -2 \\ 3 & 0 \end{vmatrix} \right)$. We have

$$\dim(U) = \operatorname{rank} \begin{bmatrix} 1 & 1 \\ 1 & -2 \\ 3 & 0 \end{bmatrix} \xrightarrow{-R_1 + R_2}_{==-3R_1 + R_3} \operatorname{rank} \begin{bmatrix} 1 & 1 \\ 0 & -3 \\ 0 & -3 \end{bmatrix} \xrightarrow{-1/3R_2}_{==-R_2 + R_3} \operatorname{rank} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = 2.$$

Find the dimension of

$$U = \left\{ (x + y, x - 2y, 3x) \mid x, y \in \mathbb{R} \right\}$$

Answer: See that $U = \operatorname{im} \left(\begin{bmatrix} 1 & 1 \\ 1 & -2 \\ 3 & 0 \end{bmatrix} \right) = \operatorname{col} \left(\begin{bmatrix} 1 & 1 \\ 1 & -2 \\ 3 & 0 \end{bmatrix} \right)$. We have

$$\dim(U) = \operatorname{rank} \begin{bmatrix} 1 & 1 \\ 1 & -2 \\ 3 & 0 \end{bmatrix} \xrightarrow{\begin{array}{c} -R_1 + R_2 \\ = \\ -3R_1 + R_3 \end{array}} \operatorname{rank} \begin{bmatrix} 1 & 1 \\ 0 & -3 \\ 0 & -3 \end{bmatrix} \xrightarrow{\begin{array}{c} -1/3R_2 \\ = \\ -R_2 + R_3 \end{array}} \operatorname{rank} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = 2.$$

Let A be a 3×6 matrix and let dim(null(A)) = 2. Which of the following statements are true?

- (i) All bases of the col(A) have four vectors.
- (ii) $\dim(\operatorname{row}(A)) = 1$.

Let A be a 3×6 matrix and let dim(null(A)) = 2. Which of the following statements are true?

- (i) All bases of the col(A) have four vectors.
- (ii) $\dim(\operatorname{row}(A)) = 1$.

Answer:

Let A be a 3×6 matrix and let dim(null(A)) = 2. Which of the following statements are true?

- (i) All bases of the col(A) have four vectors.
- (ii) $\dim(\text{row}(A)) = 1$.

Answer: We have $\dim(\operatorname{null}(A)) = 6 - \operatorname{rank}(A) = 2$. Hence $\operatorname{rank}(A) = 4$.

(i) True. Since dim(col(A)) = rank(A) = 4. Hence all bases of the col(A) have four vectors.

Let A be a 3×6 matrix and let dim(null(A)) = 2. Which of the following statements are true?

- (i) All bases of the col(A) have four vectors.
- (ii) $\dim(\text{row}(A)) = 1$.

Answer: We have $\dim(\operatorname{null}(A)) = 6 - \operatorname{rank}(A) = 2$. Hence $\operatorname{rank}(A) = 4$.

- (i) True. Since dim(col(A)) = rank(A) = 4. Hence all bases of the col(A) have four vectors.
- (ii) False. Since dim(row(A)) = rank(A) = 4.

Let A be a 3×6 matrix and let dim(null(A)) = 2. Which of the following statements are true?

- (i) All bases of the col(A) have four vectors.
- (ii) dim(row(A)) = 1.

Answer: We have $\dim(\operatorname{null}(A)) = 6 - \operatorname{rank}(A) = 2$. Hence $\operatorname{rank}(A) = 4$.

- (i) True. Since dim(col(A)) = rank(A) = 4. Hence all bases of the col(A) have four vectors.
- (ii) False. Since dim(row(A)) = rank(A) = 4.

Let A is a 100x350 matrix. Which of the following statements are true?

- (i) dim(Null(A)) must be at least 250.
- (ii) $\dim(\text{row}(A)) + \dim(\text{col}(A)) = 450$.

Answer:

Let A is a 100×350 matrix. Which of the following statements are true?

- (i) dim(Null(A)) must be at least 250.
- (ii) $\dim(\operatorname{row}(A)) + \dim(\operatorname{col}(A)) = 450.$

Answer:

(i) True. Since $\dim(\text{Null}(A)) = 350 - \text{rank}(A) = 4$. Moreover, $\text{rank}(A) \leq \min\{100, 350\} = 100$. Thus,

$$\dim(\operatorname{Null}(A)) = 350 - \operatorname{rank}(A) \ge 250.$$

Let A is a 100×350 matrix. Which of the following statements are true?

- (i) dim(Null(A)) must be at least 250.
- (ii) $\dim(\text{row}(A)) + \dim(\text{col}(A)) = 450$.

Answer:

(i) True. Since dim(Null(A)) = 350 - rank(A) = 4. Moreover, $rank(A) \le min\{100, 350\} = 100$. Thus,

$$\dim(\mathsf{Null}(A)) = 350 - \mathsf{rank}(A) \ge 250 \ .$$

(ii) False. Since $\dim(\text{row}(A)) + \dim(\text{col}(A)) \leq 200$.

Let A is a 100×350 matrix. Which of the following statements are true?

- (i) dim(Null(A)) must be at least 250.
- (ii) $\dim(\text{row}(A)) + \dim(\text{col}(A)) = 450$.

Answer:

(i) True. Since dim(Null(A)) = 350 - rank(A) = 4. Moreover, $rank(A) \le min\{100, 350\} = 100$. Thus,

$$\dim(\mathsf{Null}(A)) = 350 - \mathsf{rank}(A) \ge 250 .$$

(ii) False. Since $\dim(\text{row}(A)) + \dim(\text{col}(A)) \leq 200$.

Exercises

Section 5.1: 1, 2, 3, 4 (page 267-268)

Section 5.2: 1, 2, 3, 4, 6, 7abcfg (page 278)

Section 5.3: 1, 2, 3, 4,5, 6, 7, 12 (page 286-287)

Section 5.4: 1, 2, 3, 7 (page 294-295)