Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2016-17

Ψηφιακή Λογική και Σχεδίαση

(σχεδίαση συνδυαστικών κυκλωμάτων)

http://mixstef.github.io/courses/comparch/

Μ. Στεφανιδάκης

Το τρανζίστορ MOS(FET)

• Ηλεκτρονικά κυκλώματα

Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS.

Λειτουργία του τρανζίστορ MOS(FET)

• Ηλεκτρονικά κυκλώματα

9Τι συμβαίνει στο τρανζίστορ PMOS;

Τρανζίστορ NMOS και PMOS

• Ηλεκτρονικά κυκλώματα

Η πλειοψηφία των σημερινών κυκλωμάτων χρησιμοποιεί και τα δύο είδη τρανζίστορ (τεχνολογία CMOS)

NMOS: άγει όταν στην πύλη εφαρμόζεται '1' Περνά ισχυρό '0'

σύμβολα

PMOS: άγει όταν στην πύλη εφαρμόζεται '0' Περνά ισχυρό '1'

Ψηφιακά Ηλεκτρονικά: Ιεραρχία σχεδίασης

• Ηλεκτρονικά κυκλώματα

Ψηφιακά Ηλεκτρονικά και Δυαδική λογική

• Ηλεκτρονικά κυκλώματα

- 2 καταστάσεις: ON-OFF, 1-0
- Ψηφιακά ηλεκτρονικά (2 στάθμες)
- Δυαδική άλγεβρα Boole
 - Λογική άλγεβρα
 - Συσχέτιση με διακοπτικά κυκλώματα
 - Η εργασία του Shannon (1938)

Άλγεβρα Boole: επανάληψη

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- A + B (A OR B)
- A B (ή απλά AB, A AND B)
- $\bullet \overline{A}$ (NOT A)

•
$$A + 0 = A$$
 $\kappa \alpha \iota$ $A • 1 = A$

•
$$A + 1 = 1$$
 $\kappa \alpha \iota$ $A \bullet 0 = 0$

•
$$A + \overline{A} = 1$$
 $\kappa \alpha \iota$ $A \bullet \overline{A} = 0$

•
$$A + B = B + A$$
 kat $A \bullet B = B \bullet A$

•
$$A+(B+C)=(A+B)+C \kappa \alpha \iota$$

$$-A(BC)=(AB)C$$

Άλγεβρα Boole: επανάληψη

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole

$$A(B+C) = (AB)+(AC) \kappa \alpha \iota$$

-
$$A+(BC) = (A+B)(A+C)$$

•
$$\overline{(A+B)} = \overline{A} \cdot \overline{B} \kappa \alpha \iota$$

•
$$(\overline{A \cdot B}) = \overline{A} + \overline{B}$$
 (DeMorgan)

Απλές λογικές πύλες

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες

- Στατική τεχνολογία CMOS
 - Αναστρέφουσες συναρτήσεις
 - NOT, NAND, NOR ...
 - Αξιόπιστη λειτουργία, εύκολη σχεδίαση
 - Οχι πάντα η αποδοτικότερη λύση

Η πύλη ΝΟΤ

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες

σύμβολο πύλης ΝΟΤ

Η πύλη NAND

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες

Η πύλη NOR

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

Άλλες λογικές πύλες

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες

- Ως συνδυασμός των βασικών πυλών
 - NOT, NAND, NOR
- Υπάρχουν και εναλλακτικές μέθοδοι σχεδίασης!

Συνδυαστική Λογική

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες
- Συνδυαστική Λογική

- Μπλοκ λογικών συναρτήσεων
 - Οι έξοδοι εξαρτώνται αποκλειστικά από την τρέχουσα τιμή των εισόδων
 - Δεν υπάρχει μνήμη προηγούμενων καταστάσεων
 - Αλλαγή των εισόδων θα επηρεάσει τις εξόδους μετά από χρονικό διάστημα (καθυστέρηση διάδοσης)
 - Η συνάρτηση που υλοποιεί το μπλοκ μπορεί να εκφραστεί με έναν πίνακα αλήθειας

Υλοποίηση συναρτήσεων

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες
- Συνδυαστική Λογική

Πάντοτε προσπαθούμε να απλοποιήσουμε τις συναρτήσεις (πίνακες Karnaugh ή άλλες υπολογιστικές μέθοδοι)

A	В	C	Y	Ελαχιστόροι	Μεγιστόροι
0	0	0	1	a'b'c'	a+b+c
0	0	1	0	a'b'c	a+b+c'
0	1	0	0	a'bc'	a+b'+c
0	1	1	1	a'bc	a+b'+c'
1	0	0	0	ab'c'	a'+b+c
1	0	1	0	ab'c	a'+b+c'
1	1	0	1	abc'	a'+b'+c
1	1	1	1	abc	a'+b'+c'

- Y = a'b'c' + a'bc + abc' + abc
- Y = (a+b+c')(a+b'+c)(a'+b+c)(a'+b+c')

Βασικά συνδυαστικά τμήματα

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες
- Συνδυαστική Λογική
- Βασικά Συνδυαστικά Τμήματα

- Αποκωδικοποιητής (decoder)
 - Ν είσοδοι ενεργοποιούν 1 από 2^N εξόδους
- Πολυπλέκτης (multiplexer)
 - Ν είσοδοι επιλέγουν 1 από 2^N εισόδους
- Αθροιστής (adder)
 - Αριθμητική πρόσθεση δυαδικών ψηφίων

Αποκωδικοποιητής (decoder)

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες
- Συνδυαστική Λογική
- Βασικά Συνδυαστικά Τμήματα

• •

Πώς υλοποιείται ένας αποκωδικοποιητής;

A	В	\mathbf{Y}_{0}	\mathbf{Y}_1	\mathbf{Y}_{2}	\mathbf{Y}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- Αποκωδικοποιητής Ν-σε-2^N
 - Ν είσοδοι ενεργοποιούν μία από 2^N εξόδους

Πολυπλέκτης (multiplexer)

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες
- Συνδυαστική Λογική
- Βασικά Συνδυαστικά Τμήματα

Πώς υλοποιείται ένας πολυπλέκτης;

S_1	S_0	Y
0	0	A
0	1	В
1	0	C
1	1	D

- Πολυπλέκτης 2^N γραμμών σε 1
 - Επιλογή μίας από 2^N εισόδους με τη βοήθεια Ν
 σημάτων ελέγχου

Ημιαθροιστής (half-adder)

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες
- Συνδυαστική Λογική
- Βασικά Συνδυαστικά Τμήματα

•

Αν απαιτείται πρόσθεση αριθμών με περισσότερα bits;

A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Πλήρης αθροιστής (full-adder)

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες
- Συνδυαστική Λογική
- Βασικά Συνδυαστικά Τμήματα

Πώς υλοποιείται ένας πλήρης αθροιστής;

- Πολλαπλά τμήματα πλήρη αθροιστή
 - Όμως: πόσο γρήγορα διαδίδεται το κρατούμενο; (ripple carry)
 - Τεχνικές πρόβλεψης κρατουμένου (carry look-ahead)

Πέρα από τη συνδυαστική λογική...

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες
- Συνδυαστική Λογική
- Βασικά Συνδυαστικά Τμήματα

- Στο επόμενο μάθημα...
 - Πώς εισάγω την έννοια της κατάστασης ενός λογικού τμήματος;
 - Που φυλάσσεται η κατάσταση;
 - Πότε ενημερώνεται;
 - Πώς συγχρονίζονται τα διάφορα τμήματα λογικής;