Modelagem de Software

Prof. Dr. Ronaldo Castro de Oliveira ronaldo.co@ufu.br

www.facom.ufu.br/~ronaldooliveira FACOM - 2018

Paradigmas e Processo de Software

- Engenharia de Software possui 3 elementos fundamentais:
 - métodos: "como fazer"
 - ferramentas: apoio automatizado aos métodos.
 - Procedimentos: elo de ligação entre os métodos e os procedimentos
- Existem diversos Paradigmas de Engenharia de Software:
 - abordagens que envolvem estes métodos, ferramentas e procedimentos

Paradigmas da Engenharia de Software

- Existem diversos paradigmas de software, dentre eles:
 - Desemvolvimento Caótico
 - Modelo Clássico
 - Modelo de Prototipação
 - Modelo Espiral
 - Técnicas de 4a Geração
 - Modelo de Entrega Evolutiva

Ciclo de Vida Caótico

Ciclo de Vida Clássico (I)

Ciclo de Vida Clássico (II)

Problemas:

- projetos reais não seguem um fluxo seqüencial: dificuldade de acomodar mudanças depois de iniciado.
- Dificuldade de declaração de todas as exigências pelo cliente.
- Paciência!

Modelo de Prototipação (I)

Modelo de Prototipação (II)

Problemas:

- o cliente pega em mãos um produto inacabado e sem qualidade e exige ótimo funcionamento
- devido a rapidez com que o protótipo é implementado o programador pode fazer concessões que futuramente podem ser esquecidas, piorando assim a qualidade do produto

Modelo Espiral (I)

Modelo Espiral (II)

- 1. Planejamento → determinação dos objetivos, alternativas e restrições;
- 2. Análise de Riscos → análise de alternativas e identificação e resolução dos riscos;
- 3. Engenharia → desenvolvimento do produto no "nível seguinte";
- 4. Avaliação feita pelo cliente → avaliação dos resultados da engenharia do produto

Técnicas de 4a Geração (I)

Técnicas de 4a Geração (II)

Abrange um amplo conjunto de ferramentas de software que têm uma coisa em comum: cada uma delas possibilita que o desenvolvedor de software especifique algumas características num software num nível elevado. A ferramenta gera então, automaticamente, o código fonte, tendo como base a especificação do desenvolvedor.

Técnicas de 4a Geração (III)

- Inclui as seguintes ferramentas:
 - linguagens não procedimentais para consultas de bancos de dados;
 - geração de relatórios;
 - manipulação de dados;
 - interação e definição de todos;
 - geração de código;
 - capacidade gráfica de alto nível;
 - capacidade de planilhas eletrônicas.

Técnicas de 4a Geração (IV)

- Resumo da abordagem 4GT
 - Com raras exceções as 4GT limitam-se a aplicações comerciais, especificamente, análise de informações e relatórios ligados a grandes bancos de dados.
 - Os dados coletados com o uso de 4GT parecem indicar que o tempo exigido para se produzir software é reduzido para aplicações pequenas e médias.
 - O uso das 4GT para grandes sistemas exige tanto ou mais análise, planejamento e testes para conseguir as significativas economias de tempo que podem ser obtidas por meio da eliminação da atividade de codificação.

Entrega Evolutiva (I)

Entrega Evolutiva (II)

- Combinação dos modelos de Cascata e Prototipagem em Espiral.
- Permite, em pontos bem definidos, que os usuários possam avaliar partes do produto e fornecer realimentação quanto às decisões tomadas.
- Facilita o acompanhamento do processo de cada projeto, tanto pelos gerentes como dos clientes.

Conceitos de Gestão em Software

- O que está envolvido quando recebemos a incumbência de desenvolver um software?
 - Produto
 - Processo
 - Construção
 - Pessoal

- O produto
 - Qual é o problema do cliente?
 - O que o cliente deseja?
 - O software está alinhado com o negócio do cliente?
 - Quais são as funcionalidades e as restrições do software?

- O produto
 - O que mais precisamos descobrir a respeito do produto?
 - Qual é o prazo de entrega?
 - Qual é o custo?
 - Qual é a diferença entre custo e preço?

- O processo
 - Quais são as etapas para a produção do produto e como estas se relacionam?
 - Que tarefas estão relacionadas a cada etapa?
 - O processo está adequado às necessidades do produto/cliente?

- A construção
 - Quais são os riscos do produto?
 - Afeta prazos e custo.
 - A equipe tem a aptidão necessária?
 - A equipe está motivada?
 - Qual será a intensidade dos testes e inspeções?

- O pessoal: Que pessoas estão envolvidas no desenvovimento de um software?
- Cliente
 - Usuários Pessoal Operativo;
 - Gerentes;
 - Diretoria;

- Fornecedor
 - Analista de Negócios
 - Gerente de Projetos
 - Analistas de Sistemas;
 - Projetistas de Sistemas;
 - Programadores;
 - Testadores;
 - Pessoal de implantação e treinamento
 - Pessoal de Suporte Manutenção
 - Auditores, pessoal de controle e qualidade

- Pessoal
 - Quais devem ser as preocupações com o pessoal?
 - Comunicação
 - Confiança
 - Distribuição de aptidões
 - Coesão
 - "Trabalhar com pessoas é difícil, mas não impossível." (Peter Drucker)

- Pessoal
 - Como se organiza uma equipe?
 - Paradigma Fechado: Hierarquia tradicional de autoridade.
 - **Paradigma Aleatório**: Iniciativa individual de seus membros (caos).
 - Paradigma Aberto: Mescla (Fechado + Aleatório);
 Decisões em consenso.
 - Paradigma Síncrono: Organizada em torno da decomposição do problema. Pouca interação.

- Considerações Finais
 - Não perca o foco:
 - Por que o software está sendo desenvolvido?
 - O que vai ser feito?
 - Quando vai ser feito?
 - Quem vai fazer?
 - Onde eles estão?
 - Como o trabalho será conduzido?
 - Quanto recurso será dispendido?

- O que se espera da ESOF?
 - Processo de construção de software
 - Modelos, ferramentas, padrões, qualidade, prazos e custos estimados.
- O que é um processo de software?
 - Sequência de atividades (e resultados associados) que levam à produção de um software de qualidade.

- Atributos de qualidade de um software
 - Manutenabilidade
 - Robustez
 - confiabilidade
 - proteção
 - segurança
 - Eficiência
 - Usabilidade

- Custos associados ao software
 - Desenvolvimento

- Custos associados ao software
 - Evolução

- Alguns desafios para a ESOF
 - Sistemas Legados
 - Heterogenidade dos ambientes
 - Entrega
 - no prazo especificado
 - dentro do custo estimado
 - sem erro

- Ética na ESOF
 - Aspectos relacionados a
 - confidencialidade
 - competência
 - propriedade intelectual
 - mal uso do computador

Cronograma de Projeto a ser Desenvolvido

Cronograma de Projeto

- O curso de Modelagem de Software desenvolve um projeto completo de um sistema usando os métodos apresentados em aula:
 - Grupos de no máximo 5 alunos
 - O sistema a ser desenvolvido será escolhido pelos alunos.
 - É necessário um cliente real com necessidades reais.

Cronograma de Projeto

- Cronograma:
 - Etapa 1 (22/03) 5 pontos Definição das equipes e do sistema a ser desenvolvido
 - Etapa 2 (05/04) 5 pontos Identificação das necessidades, coleta inicial de dados com estudo de viabilidade do sistema
 - Template 1 Documento de Modelagem de Negócio
 - Etapa 3 (22/04) 5 pontos Análise Estruturada de Sistemas (Lista de eventos, diagrama de contexto, diagrama de fluxo de dados completo e modelo de entidade e relacionamento notação Chen)
 - Template 2 Documento de Análise Estruturada
 - Etapa 4 (20/05) 5 pontos Análise, especificação e validação dos requisitos (diagrama de caso de uso com especificação dos completa dos cenários)
 - Template 3 Documento de Requisitos de Projeto
 - Etapa 5 (17/16) 5 pontos Análise de Sistemas (modelo conceitual de objetos, diagrama de estado de objetos e diagramas de sequência, diagrama de entidade e relacionamentos – DER, protótipos das interfaces, diagrama de implantação)
 - Template 4 Documento de Análise e Projeto do Sistema
 - Etapa 6 (08/07) 5 pontos Avaliação final de todos os templates