Alexander-SadikuFundamentals of Electric Circuits

Chapter 4 Circuit Theorems

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Circuit Theorems - Chapter 4

- 4.1 Motivation
- 4.2 Linearity Property
- 4.3 Superposition
- 4.4 Source Transformation
- 4.5 Thevenin's Theorem
- 4.6 Norton's Theorem
- 4.7 Maximum Power Transfer

4.1 Motivation (1)

If you are given the following circuit, are there any other alternative(s) to determine the voltage across 2Ω resistor?

What are they? And how?

Can you work it out by inspection?

4.2 Linearity Property (1)

It is the property of an element describing a linear relationship between cause and effect.

A linear circuit is one whose output is <u>linearly related</u> (or directly proportional) to its input.

Homogeneity (scaling) property: Liner Only

$$v = i R \longrightarrow k v = k i R$$

Additive property

$$v_1 = i_1 R$$
 and $v_2 = i_2 R$
 $\rightarrow v = (i_1 + i_2) R = v_1 + v_2$

4.2 Linearity Property (2)

Example 1

Find I_0 when Vs = 12 V and Vs = 24 V

4.2 Linearity Property (3)

Example 2

By assume $I_o = 1$ A, use linearity to find the actual value of Io in the circuit shown below.

4.2 Linearity Property (4)

Assume that $V_o = 1 \text{ V}$ and use linearity to calculate the actual value of V_o in the circuit of Fig. 4.5.

Figure 4.5

4.3 Superposition Theorem (1)

It states that the <u>voltage across</u> (or current through) an element in a linear circuit is the <u>algebraic sum</u> of the voltage across (or currents through) that element due to <u>EACH independent source acting alone</u>.

The principle of superposition helps us to analyze a linear circuit with more than one independent source by <u>calculating the contribution of each independent source separately</u>.

4.3 Superposition Theorem (2)

We consider the effects of 8A and 20V one by one, then add the two effects together for final v_0 .

4.3 Superposition Theorem (3)

Steps to apply superposition principle

- 1. Turn off all independent sources except one source. Find the output (voltage or current) due to that active source using nodal or mesh analysis.
- 2. Repeat step 1 for each of the other independent sources.
- 3. <u>Find</u> the total contribution by adding <u>algebraically</u> all the contributions due to the independent sources.

4.3 Superposition Theorem (4)

Two things have to be keep in mind:

- 1. When we say turn off all other independent sources:
 - ➤ Independent voltage sources are replaced by 0 V (short circuit) and → เอาเส็นต่อเพิ่ม
- 2. Dependent sources <u>are left</u> intact because they are controlled by circuit variables.

4.3 Superposition Theorem (5)

Example 3

Use the superposition theorem to find v in the circuit shown below.

*1. 9ú Turn - Off Independent 9úivão 1 m

2. ทำให้ครบ แล้วน่าค่ามารวมกัน

3A is discarded by open-circuit

*Refer to in-class illustration, text book, answer v = 10V

4.3 Superposition Theorem (6)

Using the superposition theorem, find v_o in the circuit of Fig. 4.8.

Figure 4.8

4.3 Superposition Theorem (7)

Example 4

Use superposition to find v_x in the circuit below.

2A is discarded by open-circuit

*Refer to in-class illustration, text book, answer Vx = 12.5V

4.3 Superposition Theorem (8)

4.3 Superposition Theorem (9-1)

Example 6 Find I by superposition

4.3 Superposition Theorem (9-2)

Example 6 Find i by superposition

4.4 Source Transformation (1)

วงจรสมบุรณ์ : มีคุณสมบัติที่ V, I เท่ากับวงจรเดิง

- An equivalent circuit is one whose *v-i* characteristics are identical with the original circuit.
- It is the process of replacing <u>a voltage</u> source v_S in series with a resistor R by a current source i_S in parallel with a resistor

R, or vice versa.

4.4 Source Transformation (2)

- The arrow of the current source is directed toward the positive terminal of the voltage source.
- $v_s \stackrel{= 0, \infty}{\longleftarrow} a$ $v_s \stackrel{= 0, \infty}{\longleftarrow} a$ $v_s \stackrel{= 0, \infty}{\longleftarrow} b$
 - (b) Dependent source transform

 The source transformation is not possible when R = 0 for voltage source and R = ∞ for current source.

4.4 Source Transformation (3)

Example 7

Find v_o in the circuit shown below using source transformation.

4.4 Source Transformation (4)

4.4 Source Transformation (5)

Example 8

Find i_o in the circuit shown below using source transformation.

4.4 Source Transformation (6)

Example 9

4.4 Source Transformation (7)

Example 9 Find Vx using source transformation.

4.5 Thevenin's Theorem (1)

It states that a linear two-terminal circuit (Fig. a) can be replaced by an equivalent circuit (Fig. b) consisting of a voltage source V_{TH} in series with a resistor R_{TH} ,

where

• *VTH* is the open-circuit voltage at the terminals.

(b)

 RTH is the input or equivalent resistance at the terminals when the independent sources are turned off.

R ระหว่างขั้ว a - b ที่ตัด R เ จากบวาไปร้าย

4.5 Thevenin's Theorem (2)

Example 10

Using Thevenin's theorem, find the current through $R_1 = 6,16$ and 36 Ohms

4.5 Thevenin's Theorem (2)

Example 10

Using Thevenin's theorem, find the current through $R_1 = 6,16$ and 36 Ohms

4.5 Thevenin's Theorem (3)

Example 11

Using Thevenin's theorem, find the equivalent circuit to the left of the terminals in the circuit shown below. Hence find i.

4.5 Thevenin's Theorem (4)

Find the Thevenin equivalent of the circuit in Fig. 4.31 at terminals *a-b*.

4.5 Thevenin's Theorem (4)

Find the Thevenin equivalent of the circuit in Fig. 4.31 at terminals *a-b*.

4.6 Norton's Theorem (1)

It states that a linear two-terminal circuit can be replaced by an equivalent circuit of a current source I_N in parallel with a resistor R_N ,

Where

- I_N is the short circuit current through the terminals.
- R_N is the input or equivalent resistance at the terminals when the independent sources are turned off.

Current : Open Circuits (mry บ้ามกัน)

The Thevenin's and Norton equivalent circuits are related by a source transformation.

4.6 Norton's Theorem (2)

4.6 Norton's Theorem (2)

Example 13

Find the Norton equivalent

4.6 Norton's Theorem (2)

Example 13

Find the Norton equivalent circuit of the circuit shown below.

4.6 Norton's Theorem (3)

Example 14 Find I_N and R_N

4.6 Norton's Theorem (4)

Example 15

Find the Norton equivalent circuit of the circuit shown below.

*Refer to in-class illustration, textbook, $R_N = 1\Omega$, $I_N = 10A$.

4.7 Maximum Power Transfer (1)

If the entire circuit is replaced by its <u>Thevenin equivalent</u> except for the load, the power delivered to the load is:

$$P = i^2 R_L = \left(\frac{V_{Th}}{R_{Th} + R_L}\right)^2 R_L$$

For maximum power dissipated in R_L , P_{max} , for a given R_{TH} , and V_{TH} ,

$$R_L = R_{TH}$$
 \Rightarrow $P_{\text{max}} = \frac{V_{Th}^2}{4R_L}$

The power transfer profile with different R_L 37

4.7 Maximum Power Transfer (2)

Example 8

Determine the value of R_L that will draw the maximum power from the rest of the circuit shown below. Calculate the maximum power.

*Refer to in-class illustration, textbook, $R_L = 4.22\Omega$, $P_m = 2.901$ W ³⁸