The Network Layer

lec 20-3 The Distance-Vector Routing

School of Software Engineering
South China University of Technology
Dr. Chunhua Chen

chunhuachen@scut.edu.cn
2020 Spring

The Distance-Vector (DV) Routing Algorithm

- Distributed
- each node receives some information from one or more of its directly attached neighbors, performs a calculation, and then distributes the results of its calculation back to its neighbors
- Iterative
 - this process continues on until no more information is exchanged between neighbors
- Asynchronous
 - it does not require all of the nodes to operate in lockstep with each other.

Bellman-Ford equation

 $d_{x}(y)$ be the cost of the least-cost path from node x to node y.

$$d_x(y) = \min_{v} \{ c(x, v) + d_v(y) \}$$

where the min_{ν} in the equation is taken over all of x's neighbors

$$d_{\upsilon}(z)$$
: (u, x) (x, y) (y, z) = 4
Neighbor of u: v, w and x

- 1. $c(u,v) + d_v(z)$
- 2. $c(u,w) + d_w(z)$
- 3. $\frac{c(u,x)}{c(z)} + d_x(z)$

The DV Algorithm

- Each node x begins with $D_x(y)$, an estimate of the cost of the least-cost path from x to node y, for all nodes in N.
- $D_x = [D_x(y): y \text{ in } N]$ be node x's distance vector, which is the vector of cost estimates from x to all other nodes, y, in N.

$$D_z = [D_z(x), D_z(y), D_z(z)]$$

= [7, 1, 0]

The DV Algorithm

- With the DV algorithm, each node x maintains the following routing information:
- For each neighbor v, the cost c(x,v) from x to directly attached neighbor, v
- Node x's distance vector, that is, $\mathbf{D}_x = [D_x(y): y \text{ in } N]$, containing x's estimate of its cost to all destinations, y, in N
- The distance vectors of each of its neighbors, that is, $\mathbf{D}_v = [D_v(y): y \text{ in } N]$ for each neighbor v of x

The DV Algorithm run by node x

```
Initialization:
       for all destinations y in N:
          D_x(y) = c(x,y) /* if y is not a neighbor then c(x,y) = \infty */
       for each neighbor w
          D_{w}(y) = ? for all destinations y in N
6
       for each neighbor w
           send distance vector \mathbf{D}_{\mathbf{x}} = [D_{\mathbf{x}}(\mathbf{y}): \mathbf{y} \ in \ N] to w
9
   loop
10
       wait (until I see a link cost change to some neighbor w or
11
              until I receive a distance vector from some neighbor w)
12
13
       for each y in N:
14
          D_{x}(y) = \min_{v} \{c(x,v) + D_{v}(y)\}
15
16
       if D<sub>v</sub>(y) changed for any destination y
           send distance vector D_{v} = [D_{v}(y): y \text{ in N}] to all neighbors
17
18
19 forever
```

The DV algorithm is decentralized and does not use such global information. Indeed, the only information a node will have is the costs of the links to its directly attached

neighbors and information it

receives from these neighbors.

Node x table

		C	ost	to				C	ost	to		
4		Х	у	Z	3	32		X	у	Z	20	
-	х	0	2	7			х	0	2	3	9	
ron	у	∞	∞	∞	V	ron	у	2	0	1		
Ŧ	Z	∞	∞	∞	Λ	4	Z	7	1	0	١	•
		To:			III.	- 14	•	10		7	A A	

		cost to					
100		Х	у	Z			
	х	0	2	3			
Om	у	2	0	1			
Ŧ	Z	3	1	0			
- 0							

Node y table

	C	cost to				C	to	
	Х	у	Z			Х	У	Z
_ x	00	00	00		х	0	2	7
o y	2	0	1	on	у	2	0	1
∓ z	00	00	00	\ +	z	7	1	0

X.	cost to					
 	Х	У	Z			
_ X	0	2	3			
LLO Y	2	0	1			
± z	3	1	0			

Node z table

cost to		Λ	cost to			L		cost to					
á		x y z	/\	ł	Х	у	Z		1		Х	у	Z
122.7	Х	∞ ∞ ∞		х	0	2	7		_	Х	0	2	3
mo.	У	∞ ∞ ∞	Š	5 y	2	0	1		ron	у	2	0	1
fr	Z	7 1 0	4	z	3	1	0)	4	Z	3	1	0
		t.			ł.					- 13			

At node x, after receiving updates

Node x table

	cost to	cost to	cost to			
	x y z	x y z	x y z			
_ X	0 2 7	x 0 2 3 x	0 2 3			
o y	∞ ∞ ∞	р y 2 0 1 р y	2 0 1			
Ψ z	∞ ∞ ∞	← z 7 1 0 ← z	3 1 0			

$$D_{\mathbf{r}}(x) = 0$$

$$D_x(y) = \min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\} = \min\{2 + 0, 7 + 1\} = 2$$

$$D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\} = \min\{2 + 1, 7 + 0\} = 3$$