Problem Set 3 CS/MATH 113 Discrete Mathematics

Habib University — Spring 2023

Week 03

1 Problems

Problem 1. Let P(x) be the statement "x spends more than five hours every weekday in class," where the domain for x consists of all students. Express each of these quantifications in English.

- (a) $\exists x P(x)$
- (b) $\forall x P(x)$
- (c) $\exists x \neg P(x)$
- (d) $\forall x \neg P(x)$

Problem 2. Translate these statements in English, where C(x) is "x is a comedian" and F(x) is "x is funny" and the domain consists of all people.

- (a) $\forall (C(x) \implies F(x))$
- (b) $\forall (C(x) \land F(x))$
- (c) $\exists (C(x) \implies F(x))$
- (d) $\exists (C(x) \land F(x))$

Problem 3. Let P(x) be the statement "x can speak Russian" and Q(x) be the statement "x knows the computer language C++." Express each of these sentences in terms of P(x), Q(x), quantifiers, and logical connectives. The domain for the quantifiers consists of all students at your school.

- (a) There is a student at your school who can speak Russian and who knows C++.
- (b) There is a student at your school who can speak Russian but who doesn't know C++.
- (c) Every student at your school either can speak Russian or knows C++.
- (d) No student at your school can speak Russian or knows C++

Problem 4. Let C(x) be the statement "x has a cat", let D(x) be the statement "x has a dog," and let F(x) be the statement "x has a ferret". Express of these statements in terms of C(x), D(x), F(x), quantifiers, and logical connectives. Let the domain consist of all students in your class.

- (a) A student in your class has a cat, a dog, and a ferret.
- (b) All students in your class have a cat, a dog, or a ferret.
- (c) Some dog in your class has a cat and a ferret, but not a dog.
- (d) No student in your class has a cat, a dog, and a ferret.
- (e) For each of the three animals, cats, dogs, and ferrents, there is a student in your class who has this animal as a pet.

Problem 5. Determine the truth value of each of these statements if the domain consists of all integers.

- (a) $\forall n(n+1>n)$
- (b) $\forall n(2n = 3n)$
- (c) $\exists n(n=-n)$
- (d) $\forall n(3n \leq 4n)$

Problem 6. Determine the truth value of each of these statements if the domain consists of all real numbers.

- (a) $\exists x(x^3 = -1)$
- (b) $\exists x (x^4 < x^2)$
- (c) $\forall x((-x)^2 = x^3)$
- (d) $\forall x (2x > x)$

Problem 7. Express the negation of each of these statements in terms of quantifiers without using the negation symbol.

- (a) $\forall x(x > 1)$
- (b) $\forall x (x < 2)$
- (c) $\exists x (x \ge 4)$
- (d) $\exists x (x < 0)$
- (e) $\forall x((x < -1) \lor (x > 2))$
- (f) $\exists x ((x < 4) \lor (x > 7))$

Problem 8. Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all integers.

- (a) $\forall x(x^2 \ge x)$
- (b) $\forall x(x>0 \lor x<0)$

(c)
$$\forall x(x=1)$$

Problem 9. Determine whether $\forall x(P(x) \implies Q(x))$ and $\forall xP(x) \implies \forall xQ(x)$ are logically equivalent. Justify your answer.

Problem 10. Determine whether $\forall x (P(x) \leftrightarrow Q(x))$ and $\forall x P(x) \leftrightarrow \forall x Q(x)$ are logically equivalent. Justify your answer.

Problem 11. Show that $\exists x(P(x) \lor Q(x))$ and $\exists xP(x) \lor \exists xQ(x)$ are logically equivalent.

Problem 12. Show that $\forall x P(x) \lor \forall Q(x)$ and $\forall x (P(x) \lor Q(x))$ are not logically equivalent.

Problem 13. Show that $\exists x P(x) \land \exists x Q(x)$ and $\exists x (P(x) \land Q(x))$ are not logically equivalent.

Problem 14. Transalate these statements into English, where the domain for each variable consists of all real numbers.

- (a) $\forall x \exists y (x < y)$
- (b) $\forall x \forall y (((x \ge 0) \land (x \ge 0)) \implies (xy \ge 0))$
- (c) $\forall x \forall y \exists z (xy = z)$

Problem 15. Let Q(x, y) be the statement "x has sent an e-mail message to y," where the domain for both x and y consists of all students in your class. Express each of these quantifications in English.

- (a) $\exists x \exists y Q(x,y)$
- (b) $\exists x \forall y Q(x,y)$
- (c) $\forall x \exists y Q(x, y)$
- (d) $\exists y \forall x Q(x,y)$
- (e) $\forall y \exists x Q(x,y)$
- (f) $\forall y \forall x Q(x,y)$

Problem 16. Let Q(x,y) be the statement "Student x has been a contestant on quiz show y." Express each of these sentences in terms of Q(x,y), quantifiers, and logical connectives, where the domain for x consists of all the students at your school and for y consists of all quiz shows on telivision.

- (a) There is a student at your school who has been a contestant on a television quiz show.
- (b) No student at your school has ever been a contestant on a television quiz show.
- (c) There is a student at your school who has been a contestant on Jeopardy! and on Wheel of Fortune.
- (d) Every television quiz show has had a student from your school as a contestant.

(e) At least two students from your school have been contestants on Jeopardy!.

Problem 17. Rewrite each of these statements so that negations apper only within predicates (that is, so that no negation is outside a quantifier or an expression involving logical connectives)

- (a) $\neg \exists y \exists x P(x,y)$
- (b) $\neg \forall x \neg \exists y P(x, y)$
- (c) $\neg \exists y (Q(y) \land \forall x \neg R(x,y))$
- (d) $\neg \exists y (\exists x R(x, y) \lor \forall x S(x, y))$
- (e) $\neg \exists y (\forall x \exists z T(x, y, z) \lor \exists x \forall z U(x, y, z))$

Problem 18. Determine the truth value of each of these statements if the domain of each variable consists of all real numbers.

- (a) $\forall x \exists y (x^2 = y)$
- (b) $\forall x \exists y (x = y^2)$
- (c) $\exists x \forall y (xy = 0)$
- (d) $\exists x \exists y (x + y \neq y + x)$