Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

Розрахунково-графічна робота

з дисципліни: «Вакуумна та плазмова електроніки»

варіант №3

Виконав: Студент 3-го курсу	(підпис)	Кузьмінський О.Р
Перевірив:		Бевза О.М.
1 1	(підпис)	

Зміст

Завдання	3
Перша частина завдання	5
1. Частота червоної границі фотоефекту	Ę
2. Напруга запирання	6
3. Залежність напруги запирання від частоти	8
4. Визначення роботи виходу	(
5. Визначення кінетичної швидкості електрона	1(
6. Аналіз результатів та перевірка закону Ейнштейна	11
Друга частина завдання	13
Третя частина завлання	1.5

Завдання↑

- 1) Поглянути на графіки побудовані для п.3 лабораторної роботи:
 - ⊳ Визначити частоту червоної границі фотоефекту.
 - ▶ Визначити напругу запирання для кожного елементу при інтенсивності 50% та 100%. Пояснити, чому напруги запирання відрізняються при різній інтенсивності.
 - ▶ Побудувати графіки залежностей напруги запирання від частоти (довжини хвиль перерахувати в частоту) для випадку інтенсивності 50% та 100% для власних 3-х матеріалів.
 - Визначити з побудованих графіків роботу виходу в будь-якій точці (шукана точка має знаходитись посередині графіку) для власних 3-х матеріалів за інтенсивності 50% та 100%. Порівняти отримані значення роботи виходу при двох різних інтенсивностей для кожного матеріалу та зробити висновки.
 - ▶ Розрахувати кінетичну швидкість електронів для точки А для всіх трьох матеріалів.
 - ▶ Порівняти отримане із розрахунку значення роботи виходу з відомими значеннями роботи виходу (довідкові дані, вказати джерело) та розрахувати абсолютну та відносну помилки для власних 3-х матеріалів.
 - ▶ Отримані результати звести до таблиці, де повинен бути вказаний кожен з трьох матеріалів та розраховані для нього значення: частота червоної границі фотоефекту, напруга запирання (для двох інтенсивностей), робота виходу в точці А (дві інтенсивності), кінетична швидкість електронів в точці А (для двох інтенсивностей 50% та 100%).
 - ⊳ Зробити перевірку правильності виконання розрахунків за формулою Ейнштейна для фотоефекту.

- 2) Взяти графіки зроблені до пункту 4, де було побудовано залежності струму від інтенсивності, маючи три довжини хвилі та обраний один матеріал. Виконати:
 - ▶ Побудувати графік в інших координатах, де вісь х- довжина хвилі, вісь у-струм. Обрати значення струму для Інтенсивності 50%.
 - ▶ Побудуйте за власним припущенням іншим кольором залежність, якщо інтенсивність буде складати 30%. Пояснити чому струм змінився саме так.
- 3) Поглянути на графіки, побудовані для пункта 5 (залежність енергії від частоти). Визначити енергію (значення по осі у). Визначити, чи це повна енергія фотону/робота виходу/кінетична енергія електрона чи щось інше? Відповідь аргументовано пояснити.

Перша частина завдання↑

1. Частота червоної границі фотоефекту↑

Рис. 1: Сімейство кривих залежності Енергія (частота)

В якості вихідних матеріалів були обрані наступні: натрій, цинк, магній. З рисунку частота червоної границі фотоефекта:

- ullet для натрію складає $f_{min,Na} = 0.5 \cdot 10^{15} \; \Gamma$ ц $\lambda_{max,Na} = 600 \; \mathrm{нм}.$
- ullet для цинку складає $f_{min,Zn}=1\cdot 10^{15}~\Gamma$ ц $\lambda_{max,Zn}=300~{
 m HM}.$
- ullet для магнію складає $f_{min,Mg}=1{,}042\cdot 10^{15}$ Гц $\lambda_{max,Zn}=287$ нм.

Порівняємо отримані результати з теорією:

- теоретичне $\lambda_{max,Na} = 540$ нм.
- теоретичне $\lambda_{max,Zn}=290$ нм.
- теоретичне $\lambda_{max,Mg}=330$ нм.

Відносні похибки складають: $\delta_{Na}=11\%,\ \delta_{Zn}=3,45\%,\ \delta_{Mg}=13\%.$

2. Напруга запирання↑

Рис. 2: Сімейство кривих для натрію $_{\rm Puc.}$ 3: Сімейство кривих для натрію $_{\rm (50\%\ intercubhocti)}$ $_{\rm (100\%\ intercubhocti)}$

Рис. 6: Сімейство кривих для магнію (50% інтенсивності)

Рис. 7: Сімейство кривих для магнію (100% інтенсивності)

Табл. 1: Напруга запирання для натрію при інтенсивностях 50%, 100%

Na							
20	0нм	400нм		440нм		470нм	
50%	100%	50%	100%	50%	100%	50%	100%
-4.8	-4.4	-0.8	-0.6	-0.6	-0.4	-0.4	-0.2

Табл. 2: Напруга запирання для цинку при інтенсивностях 50%, 100%

Zn							
20	Онм	400нм		440нм		470нм	
50%	100%	50%	100%	50%	100%	50%	100%
-1.8	-2.4	0	0	0	0	0	0

Табл. 3: Напруга запирання для магнію при інтенсивностях 50%, 100%

Mg							
20	Онм	400нм		440нм		470нм	
50%	100%	50%	100%	50%	100%	50%	100%
-2.6	-2.5	0	0	0	0	0	0

Отже, ми бачимо, що при збільшенні інтенсивності напруга запирання теж збільшується, оскільки ми збільшуємо емісію електронів з катоду, які можуть з більшою ймовірністю досягти аноду, тому потрібно прикласти більш позитивну напругу, аби пригальмувати електрони.

3. Залежність напруги запирання від частоти

Сконвертуємо довжини хвиль в частоти:

$$200 \; \text{нм} \to 1,5 \cdot 10^{15} \; \Gamma$$
ц

 $200 \ \text{hm} \to 1.5 \cdot 10^{15} \ \Gamma$ ц $400 \ \text{hm} \to 0.75 \cdot 10^{15} \ \Gamma$ ц.

$$440 \ \text{нм} \rightarrow 0.68 \cdot 10^{15} \ \Gamma$$
ц
$$470 \ \text{нм} \rightarrow 0.64 \cdot 10^{15} \ \Gamma$$
ц.

Будуємо графік по наступній залежності.

Табл. 4: $U_3(f)$ для Nа

Na			
$f \cdot 10^{15}$, Гц	U_3 , B		
$J \cdot 10^{10}$, 1 H	50%	100%	
0.64	-0.4	-0.2	
0.68	-0.6	-0.4	
0.75	-0.8	-0.6	
1.5	-4.8	-4.4	

Табл. 5: $U_3(f)$ для Zn

Zn				
$f \cdot 10^{15}$, Гц	U_3 , B			
$J \cdot 10^{\circ}$, $I \downarrow 1$	50%	100%		
0.64	0	0		
0.68	0	0		
0.75	0	0		
1.5	-1.8	-2.4		

Табл.	6:	U_{3}	(f)	ДЛЯ	Mg
	٠.	\sim 3	\ .J /	70111	-'-C

Mg				
$f \cdot 10^{15}$, Гц	U_3 , B			
ј 10 , гц	50%	100%		
0.64	0	0		
0.68	0	0		
0.75	0	0		
1.5	-2.6	-2.5		

Рис. 8: $U_3(f)$ для Na

Рис. 9: $U_3(f)$ для Zn

Рис. 10: $U_3(f)$ для Mg

4. Визначення роботи виходу↑

Роботу виходу можна було б визначити з графіків, але зважаючи на невелику точність вимірювання, краще уникнути адитивних похибок, скориставшись розрахунковим способом. Тому роботу виходу знаходимо з наступного виразу:

$$A = h \cdot f_{min}. \tag{1}$$

Цей вираз характеризує той факт, що для того щоб фотоефект спостерігався, енергії фотона повинно вистачити як мінімум для того, щоб вирвати електрон з тіла, а це- ніщо інше як робота виходу. В свою чергу ця мінімальна енергія фотона спостерігається на частоті червої границі фотоефекту, тобто f_{min} , яку ми визначали раніше. Знайдемо роботи виходу наших обраних матеріалів:

$$A_{Na} = 4{,}135 \cdot 10^{-15} \times 0{,}5 \cdot 10^{15} = 2{,}067 \text{ eB}.$$

$$A_{Zn} = 4{,}135 \cdot 10^{-15} \times 1 \cdot 10^{15} = 4{,}135 \text{ eB}.$$

$$A_{Mg} = 4{,}135 \cdot 10^{-15} \times 1{,}042 \cdot 10^{15} = 4{,}309 \text{ eB}.$$

Порівняємо результати з теорією.

$$A_{Na,\text{Teop}} = 2,28 \text{ eB}.$$

 $A_{Zn,\text{Teop}} = 4,22 \text{ eB}.$
 $A_{Ma,\text{Teop}} = 3,76 \text{ eB}.$

Похибки при цьому склали:

N	a	\mathbf{Z}_{1}	Zn		Mg	
Δ	δ , %	Δ	δ , %	Δ	δ , %	
0,213	9,34	0,085	2	-0,549	-14,6	

5. Визначення кінетичної швидкості електрона↑

Кінетичну швидкість електрона можна знайти, знаючи запираючу напругу- напругу котра здатна погасити до нуля кінетичну енергію найшвидших електронів, емітованих з катоду, тобто справедливе таке твердження:

$$\frac{mv_{max}^2}{2} = e \cdot U_3,\tag{2}$$

з якого можна отримати вираз для кінетичної швидкості електрона:

$$v_{max} = \sqrt{\frac{2eU_3}{m}}. (3)$$

Наведемо детально один раз чисельний розрахунок кінетичної швидкості електрону для натрію, освітленим хвилею, довжина якої 200 нм, та інтенсивність 50%:

$$v_{max,Na,200nm,50\%} = \sqrt{\frac{2 \times \left(-1,6 \cdot 10^{-19}\right) \times \left(-4,8\right)}{9,1 \cdot 10^{-31}}} = 1,3 \cdot 10^6 \text{ m/c}.$$

Табл. 7: v_{max} для Nа

Na			
λ , HM	$v_{max} \cdot 10^6$, м/с		
λ , HM	50%	100%	
200	1.3	1.244	
400	0.53	0.46	
440	0.46	0.38	
470	0.38	0.27	

Табл. 8: v_{max} для Zn — Табл. 9: v_{max} для Mg

Zn			
λ , HM	v_{max}	\cdot 10^6 , м/с	
λ , HM	50%	100%	
200	0.8	0.9	
400	0	0	
440	0	0	
470	0	0	

	λ , нм	$v_{max}\cdot 10^6$, м/с		
		50%	100%	
	200	0.95	0.94	
	400	0	0	
	440	0	0	
	470	0	0	

6. Аналіз результатів та перевірка закону Ейнштейна

Табл. 10: Експериментально визначені параметри для Na

Na					
\	50%		100%		
λ , HM	U_3 , B	$v_{max} \cdot 10^6$, м/с	U_3 , B	$v_{max} \cdot 10^6$, м/с	
200	-4.8	1.3	-4.4	1.244	
400	-0.8	0.53	-0.6	0.46	
440	-0.6 0.46 -0.4 (0.38		
470	-0.4	0.38	-0.2	0.27	
A=2.067 eB					
$f_{min}=0.5\cdot 10^{15}\ \Gamma$ ц					

Табл. 11: Експериментально визначені параметри для Zn

Zn						
\ , ,,,,	50%		100%			
λ , HM	U_3 , B	$v_{max} \cdot 10^6$, м/с	U_3 , B	$v_{max} \cdot 10^6$, м/с		
200	-1.8	0.8	-2.4	0.9		
400	0	0	0	0		
440	0 0		0	0		
470	0	0	0	0		
A = 4.135 eB						
$f_{min}=1\cdot 10^{15}$ Гц						

Табл. 12: Експериментально визначені параметри для Мд

Mg						
) 11M	50%		100%			
λ , HM	U_3 , B	$v_{max} \cdot 10^6$, м/с	U_3 , B	$v_{max} \cdot 10^6$, м/с		
200	-2.6	0.95	-2.5	0.94		
400	0	0	0	0		
440	0 0		0	0		
470	0	0	0	0		
A = 4.309 eB						
$f_{min} = 1.042 \cdot 10^{15} \ \Gamma$ ц						

Отже ми бачимо, що максимальна швидкість електронів з підвищенням інтенсивності вдвічі, практично не змінюється, а також зі збільшенням довжини хвилі зменшується. Тобто ми еспериментально підтвердили другий з-н Столетова, який каже, що максимальна кінетична енергія фотоелектронів не залежить від інтенсивності світла і лінійно зростає з підвищенням частоти. Що ми бачимо і в нашому випадку: максимальна швидкість, яка власне харктеризує максимальну кінетичну енергію практично не змінилась, і лінійно зменшується з ростом довжини хвилі, тобто спадає із спаданням частоти, або ж навпаки- збільшується зі збільшенням частоти.

Перевіримо, чи виконується формула Ейнштейна для фотоефекту, взявши в якості матеріалу натрій, який будемо засвічувати хвилею, довжина якої 200 нм.

$$\underbrace{hf}_{E_1} = \underbrace{A}_{E_2} + \underbrace{\frac{mv^2}{2}}_{E_3} \tag{4}$$

Знайдемо енергію фотона E_1 :

$$E_1 = hf = \left| 200 \text{ нм} \rightarrow 1.5 \cdot 10^{15} \text{ } \Gamma \text{ц} \right| = 4.135 \cdot 10^{-15} \times 1.5 \cdot 10^{15} = 6.203 \text{ eB}.$$

 E_3 має дорівнювати E_1-E_2 , тобто $E_3=4{,}136$ eB. Перевіримо це:

$$E_3 = \frac{mv^2}{2} = \frac{9.1 \cdot 10^{-31} \times (1.25 \cdot 10^6)^2}{2} = 7.1 \cdot 10^{-19}$$
Дж = 4,4375 eB.

Результати практично збігаються, отже формула Ейнштейна виконується.

Друга частина завдання↑

Рис. 11: Залежність струм(інтенсивність світла) для натрію

Побудуємо графік в інших координатах, де вісь х- довжина хвилі, вісь у-струм. Беремо значення інтенсивності 50% та 30%. Для підвищення точності, за експериментальними точками проведемо інтерполяцію, та знайдемо значення інтенсивності при 50% та 30%:

Рис. 12: Результат інтерполяції

x, HM	200	400	440
y_1 , A	0.846	0.071	0.033
y_2 , A	0.51	0.042	0.012

Будуємо графіки:

Рис. 13: Залежність $I(\lambda)$ при 50% та 30%.

Проаналізуємо графік. Ми бачимо, що зі збільшенням довжини хвилі фотострум падає- це можна пояснити тим, що він наближається до своєї червоної межі фотоефекту, якому відповідає мінімальна частота, або ж в нашому випадкумаксимальна довжина хвилі. Також ми бачимо, що фотострум зі зменшенням інтенсивності теж зменшується- це витікає з першого з-ну Столетова, який каже, що фотострум прямо пропорційний інтенсивності.

Третя частина завдання↑

Поглянемо ще раз на залежність енергії від частоти:

Рис. 14: Сімейство кривих залежності Енергія (частота)

По осі ігрек у нас- максимальна кінетична енергія електронів. Як ми пам'ятаємо з дргугого з-ну Столетова, максимальна кінетична енергія електрона не залежить від інтенсивності світла і лінійно збільшується з ростом частоти. На графіку ми і бачимо цю лінійну залежність. До речі експериментально ця залежність в мене трохи некоректна у тому плані, що нахил кривих різний, але взагалі він має бути однаковим для будь-якого матеріалу фотокатода.