Вариант от 28 03 2025 № 1

1 (№ 1591) На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).

	П1	П2	ПЗ	П4	П5	П6	П7	П8
П1		5		20				7
П2	5		8					
П3		8				24		22
П4	20						12	
П5						13	16	9
П6			24		13			15
П7				12	16			
П8	7		22		9	15		

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину кратчайшего пути из пункта A в пункт Г.

2 (№ 5974) (А. Богданов) Логическая функция F задаётся выражением х → ((z → y) → w). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
	1	0	0	1
1		0		0
0			0	0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

(№ 4639) В файле 3-0.xls приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Таблица «Товар» содержит информацию об основных

характеристиках каждого товара. Таблица «Магазин» содержит информацию о местонахождении магазинов. На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите общую стоимость (в рублях) продуктов, поставленных за указанный период с Макаронной фабрики в магазины Заречного района.

- (№ 6436) Все заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: А 11, Б 000, В 100, Г 01, Д 101. Укажите возможный код минимальной длины для буквы Я. Если таких кодов несколько, укажите тот из них, который имеет максимальное числовое значение.
 (№ 5833) (Е. Усов) Исполнитель Сыщик получает на вход натуральное число N и строит новое число R следующим образом.
 - 1) Строится шестнадцатеричная запись числа N.
 - 2) Далее эта запись обрабатывается по следующему правилу:
 - а) Если число чётное, справа приписывается максимально возможная цифра, в противном случае справа приписывается 0.
 - б) Справа приписывается шестнадцатеричная цифра остаток от деления суммы цифр шестнадцатеричной записи на 16.
 - в) Пункт б выполняется ещё один раз.

Полученная таким образом запись является шестнадцатеричной записью искомого числа R.

Укажите минимальное число N, для которого максимальная цифра в полученной шестнадцатеричной записи встречается в пять раз реже, чем минимальная. В ответе это число запишите в десятичной системе счисления.

(№ 5856) (А. Горшенина) Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует три команды: Вперёд п (где п — целое число), вызывающая передвижение Черепахи на п единиц в том направлении, куда указывает её голова; Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m — целое число), вызывающая изменение направления движения на m градусов против часовой стрелки.

Запись

Повтори k [Команда1 Команда2 ... КомандаS]

означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм:

Направо 198

Повтори 5 [Вперёд 10 Налево 144]

- Определите, сколько различных треугольников содержит фигура, нарисованная Черепахой. (№ 198) Производилась двухканальная (стерео) звукозапись с частотой дискретизации 64 кГц и 24-битным разрешением. В результате был получен файл размером 120 Мбайт, сжатие данных не производилось. Определите приблизительно, сколько времени (в минутах) производилась запись. В качестве ответа укажите ближайшее к времени записи целое число, кратное 5.
- 8 (№ 7086) (Е. Джобс) Леонид составляет слова перестановкой букв в слове ПРОБНИК. Известно, что любое слово должна начинаться и заканчиваться согласной буквой и не должно содержать двух подряд идущих гласных букв. Сколько различных слов может составить Леонид?
- 9 (№ 4329) (А. Богданов) Откройте файл электронной таблицы 9-107.xls, содержащей в каждой строке три натуральных числа. Выясните, какое количество троек чисел могут являться величинами углов **прямоугольного** треугольника, выраженных в градусах. В ответе запишите только число.
- 10 (№ 3267) С помощью текстового редактора определите, сколько раз, не считая сносок, встречается имя «Марья» (в любом падеже) в тексте романа А.С. Пушкина «Капитанская дочка» (файл <u>10-34.docx</u>). В ответе укажите только число.

- (№ 5473) (Е. Джобс) При регистрации в компьютерной системе каждому объекту присваивается идентификатор, содержащий только десятичные цифры и символы из 1234-символьного специального алфавита. В базе данных для хранения каждого идентификатора отведено одинаковое и минимально возможное целое число байт. При этом используется посимвольное кодирование идентификаторов, все символы кодируются одинаковым и минимально возможным количеством бит. Известно, что для хранения 65 536 идентификаторов выделено 2050 Кбайт памяти. Укажите максимально допустимую длину идентификатора пользователя.
- 12 (№ 2117) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
 - 1. заменить (v, w)
 - 2. нашлось (v)

11

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (5555)
заменить (5555, 33)
заменить (333, 5)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 150 цифр 5?

13 (№ 7045) *(М. Ишимов) В терминологии сетей ТСР/IР маской сети называют двоичное число, которое показывает, какая часть IP-адреса узла сети относится к адресу сети, а какая - к адресу узла в этой сети. Адрес сети получается в результате применения поразрядной конъюнкции к заданному адресу узла и маске сети. Сеть, в которой содержится узел с IP-адресом 250.113.А.197, задана маской сети 255.255.255.192, где А — некоторое допустимое для записи IP-адреса число. Определите максимальное значение А, для которого для всех IP-адресов этой сети в двоичной записи IP-адреса суммарное

количество единиц в левых двух байтах не менее суммарного количества единиц в правых двух байтах.

14 (№ 6107) (А. Богданов) Дано арифметическое выражение: 12×4536 + 1×12345

В записи чисел переменной х обозначена неизвестная цифра из допустимого алфавита для указанных систем счисления. Определите наибольшее значение х, при котором значение данного арифметического выражения кратно 13. Для найденного значения х вычислите частное от деления значения арифметического выражения на 13 и укажите его в ответе в десятичной системе счисления.

15 (№ 4573) На числовой прямой даны два отрезка: P = [10, 15] и Q = [14, 40]. Найдите наименьшую возможную длину отрезка A, при котором формула

$$\neg (\neg (x \in P) \lor \neg (x \in Q)) \land \neg (x \in A)$$

тождественно ложна, то есть принимает значение 0 при любых х.

16 (№ 4192) (П. Волгин) Алгоритм вычисления значения функции F(n), где n — целое неотрицательное число, задан следующими соотношениями:

F(0) = 1

F(n) = F(n-1) + F(n-2), при чётном n > 0

F(n) = 1,5*F(n-1), при нечётном n > 0

Сколько различных цифр встречается в целой части значения функции F(15)?

- 17 (№ 4421) (П. Финкель) В файле 17-202.txt содержится последовательность целых чисел, которые принимают значения от -10000 до 10000 включительно. Тройка идущих подряд чисел последовательности называется уникальной, если только второе из них является положительным трёхзначным числом, заканчивающимся на 5. Определите количество уникальных троек чисел, а затем максимальную из всех сумм таких троек.
- (№ 6388) (А. Богданов) Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вниз или вправо. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз в соседнюю нижнюю. Квадрат ограничен внешними стенами. Между соседними клетками квадрата также могут быть внутренние стены. Сквозь стену Робот пройти не может. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клеткам маршрута Робота. Определите минимальную и максимальную денежные суммы, которые может собрать Робот, пройдя из левой верхней клетки в правую нижнюю.

Исходные данные записаны в файле <u>18-169.xls</u> в виде прямоугольной таблицы, каждая ячейка которой соответствует клетке поля. В ответе укажите два числа — сначала максимальную сумму, которую может собрать Робот, значение, затем минимальную. (№ 2425) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень или увеличить количество камней в куче в два раза. Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 61. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 61 или больше камней. В начальный момент в первой куче было 10 камней, во второй куче — S камней, 1 ≤ S ≤ 50. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Ответьте на следующие вопросы:

19 20

21

22

Bonpoc 1. Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Назовите минимальное значение S, при котором это возможно.

Вопрос 2. Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответе в порядке возрастания.

Вопрос 3. Сколько существует значений S, при которых у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

(№ 5568) (Л. Евич) В файле 22-1e.xls содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс В зависит от процесса А, если для выполнения процесса В необходимы результаты выполнения процесса А. В этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0. Определите минимальное время, через которое завершится выполнение всей

совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

ID процесса В	Время выполнения процесса В (мс)	ID процесса(ов) А	
1	4	0	
2	3	0	
3	1	1; 2	
4	7	3	

В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть, через 4 мс после старта. Он длится 1 мс и закончится через 4+1=5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть, через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5+7=12 мс.

- 23 (№ 6061) Исполнитель Калькулятор преобразует число, записанное на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавь 1
 - 2. Прибавь 7

Выполняя первую из них, исполнитель увеличивает число на экране на 1, выполняя вторую – увеличивает на 7. Программой для исполнителя называется последовательность команд.

Сколько существует программ, которые преобразуют исходное число 1 в число 61 так, что траектория вычисления не содержит чисел, в которых есть цифра 7?

- 24 № 4752) Текстовый файл <u>24-181.txt</u> содержит строку из заглавных латинских букв и точек, всего не более 10⁶ символов. Определите максимальное количество идущих подряд символов, среди которых нет точек, а количество гласных (букв A, E, I, O, U, Y) не превышает 7.
- 25 (№ 4117) (А. Кабанов) Обозначим через М разность максимального и минимального натуральных делителей целого числа, не считая единицы и самого числа. Если таких делителей у числа нет, то считаем значение М равным нулю. Напишите программу, которая перебирает целые числа, большие 350000, в порядке возрастания и ищет среди них такие, для которых значение М при делении на 23 даёт в остатке 9. Запишите первые 6

найденных чисел в порядке возрастания, справа от каждого числа запишите соответствующее значение М.

(№ 3768) (А. Кабанов) В текстовом файле записан набор натуральных чисел. Гарантируется, что все числа различны. Рассматриваются пары чисел из набора, между которыми в отсортированном массиве помещаются не более 100 чисел из того же набора. Определите количество пар с суммой кратной 10, а также наименьшее среднее арифметическое таких пар.

Входные данные представлены в файле $\underline{26\text{-}52.txt}$ следующим образом. Первая строка содержит целое число N — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число, не превышающее 10^9 .

В ответе запишите два целых числа: сначала количество пар, затем наименьшее среднее арифметическое.

Пример входного файла:

8

26

3

8

14

11

2

16

5

a

В примере рассмотрим пары, между которыми помещаются не более 3 чисел из набора. В данном случае есть три подходящие пары: 2 и 8, 9 и 11, 14 и 16. В ответе надо записать числа 3 и 5.

27 (№ 7655) Учёный решил провести кластеризацию некоторого множества звёзд по их расположению на карте звёздного неба. Кластер звёзд – это набор не менее чем из 30 соседних звёзд (точек) на графике. Каждая звезда обязательно принадлежит только одному из кластеров. Центр кластера, или центроид, – это одна из звёзд на графике, сумма расстояний от которой до всех остальных звёзд кластера минимальна. Расстояние между двумя точками А(х1, у1) и В(х2, у2) вычисляется по формуле:

$$d(A,B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Аномалиями назовём точки, находящиеся на расстоянии более одной условной единицы от точек кластеров. При расчётах аномалии учитывать не нужно. Даны два входных файла (файл А и файл Б). В файле А хранятся данные о звёздах двух кластеров. В каждой строке записана информация о расположении на карте одной звезды: сначала координата х, затем координата у (в условных единицах).

Известно, что количество звёзд не превышает 1000. В файле Б хранятся данные о звёздах трёх кластеров. Известно, что количество звёзд не превышает 10 000. Структура хранения информации о звездах в файле Б аналогична файлу А. Возможные данные одного из файлов иллюстрированы графиком.

Для каждого файла определите координаты центра каждого кластера, затем вычислите два числа: Px — среднее арифметическое абсцисс центров кластеров, и Py — среднее арифметическое ординат центров кластеров. В ответе запишите четыре числа: в первой строке сначала целую часть произведения $Px \times 100~000$, затем целую часть произведения $Py \times 100~000$ для файла A, во второй строке — аналогичные данные для файла B.

Вариант построен по материалам сайта kpolyakov.spb.ru.

© К. Поляков, 2025