iTÜComputer Security

User Authentication and Access Control

Dr. Şerif Bahtiyar

bahtiyars@itu.edu.tr

Fall 2015

Before Starting

JP Morgan sees 76 million customer accounts hacked

http://www.bbc.com/news/business-29470381

Before Starting

Sony Pictures Entertainment hack

https://en.wikipedia.org/wiki/Sony_Pictures_Entertainment_hack

Outline

• User Authentication (chapter 3)

Access Control (chapter 4)

- Basics of Authentication
- Password-Based Authentication
- Token-Based Authentication
- Biometric Authentication
- Remote User Authentication
- Some Attacks on Authentication Systems

 Authentication is the binding of an identity to a principal.

- Message authentication is a procedure that allows communicating parties to verify that received or stored messages are authentic.
- User authentication is the process of verifying an identity claimed by or for a system entity. (RFC2828)
- User authentication is the fundamental building block and the primary line of defense.

Steps of an authentication process:

Identification: specify identifier

Verification: bind the entity and the identifier

- Four means of user authentication based on individual:
 - Knows: password, PIN
 - Possesses (token): electronic keycards, smart cards, physical keys
 - Is (static biometrics): fingerprint, retina, face
 - Does (dynamic biometrics): voice pattern, handwriting characteristic
 - Location

Each of these methods has problems.

- Widely used user authentication method
 - User provides name and password
 - System compares name and password

- Authenticate identifier (ID) of user logging
 - User is authorized to access system
 - Determines user's privileges

Vulnerabilities of passwords and counter measures-1

- Offline dictionary attack prevent unauthorized access to the password file, IDS measures
- Specific account attack account lockout mechanism

- Popular password attack policies, scanning IP address and cookies
- Password guessing against single user training and enforcement of policies

Vulnerabilities of passwords and countermeasures-2

- Workstation hijacking IDS
- Exploiting user mistakes training, IDS, combined with other means
- Exploiting multiple password use policy
- Electronic monitoring encrypted links

Hash based authentication: Loading a new password

(a) Loading a new password

Salt and Its Benefits

Salt: A fixed-length value.

- Prevent duplicate password in the password file
- Increase the difficulty of offline dictionary attack
- Nearly impossible to find out the same password in many systems for a specific user

Hash based authentication: Verifying a password

(b) Verifying a password

Password cracking

- Dictionary attacks: try each word then obvious variants in large dictionary against hash in password file
- Rainbow table attacks
 - Pre-compute tables of hash values
 - a table of hash values, hash chains
 - e.g. 1.4GB table cracks 99.9% of alphanumeric Windows
 - passwords in 13.8 secs
 - not feasible if larger salt values used

Password selection strategies

- User education
- Computer generated passwords
- Reactive password checking: system periodically runs its password cracker to find guessable passwords.
- Proactive password checking: a user is allowed to select password if the password complies with system requirements at the time of selection.

User Authentication (Token Based)

Objects that a user possesses for the purpose of user authentication are called tokens.

User Authentication (Token Based)

Some cards used as tokens

Memory

- Memory cards can store but not process data.
- Store only a simple security code.

Smart Card

- Electronic memory and processor inside
- Authentication protocol

- Static
- Dynamic password generator
- Challenge-response

User Authentication (Biometric Based)

- Authenticates an individual based on one of its physical characteristic.
- Based on pattern recognition
- Technically complex and expensive

User Authentication (Biometric Based)

User Authentication (Biometric Based)

Accuracy

- never get identical templates
- problems of false match / false non-match

User Authentication (Remote User Authentication)

- Authentication over a network or communication link.
- Problems: complex, eavesdropping, replay
- Challenge-response protocol
- 1. User sends identity
- 2. Host responds with a random number
- 3. User computes f(r, h(P)) and sends back
- 4. Host compares values from user with own computed value, if mach user authenticated

(a) Protocol for a password

← yes/no

f(r, h(P(U))) then yes else no

User Authentication (Some Attacks)

Client attacks

- Password guessing, exhaustive search for tokens,...
- Limited attempts, large entropy,...

Host attacks

- Plaintext theft, passcode theft, template theft,...
- Hashing, large entropy, protection of password database, OTP,...

Eavesdropping

- Shoulder surfing, theft, Copying (spoofing) biometric,...
- Multifactor authentication, tamper resistant token, ...
- Replay, Trojan Horse, Denial-of-service, ...

Access Control

- Definition of Access Control
- Access Control Functions, Policies, and Requirements
- Elements of Access Control

- Discretionary Access Control
- Role-Based Access Control

Access Control

 Access Control: The prevention of unauthorized use of a resource, including the prevention of use of a resource in an unauthorized manner.

- Central element of computer security
- We consider user groups, not networked environment.
- All systems need access control.
- Access control mechanisms mediate between a user and system resources.

Access Control (Access control principles)

Authentication, Authorization, Audit

Access Control (Access control policies)

Discretionary Access Control (DAC):

- Access based on the identity of the requestor and on access rules
- An entity may enable another entity to access resources
- Mandatory Access Control (MAC):
 - Access based on comparing security labels
 - An entity cannot enable another entity to access resources
- Role-Based Access Control (RBAC):
 - Access based on roles of users

Access Control (Access control requirements)

- Reliable input (authentication)
- Fine and coarse specifications
- Least privilege
- Separation of duty
- Open and closed policies
- Policy combinations, conflict resolution
- Administrative policies
- Dual control

Access Control (Access control elements)

Subject: is an entity capable of accessing objects.

- A process representing user or application
- Often have three classes: owner, group, world

Access Control (Access control elements)

Object: a resource to which access is controlled.

- Files, records, directories, programs, ...
- Number and type depend on environment

Access Control (Access control elements)

Access right: describes the way in which a subject may access an object.

Read, write, execute, delete, search, create

Access Control (Discretionary Access Control)

Generally provided with access control matrix

- lists subjects in one dimension (rows)
- lists objects in the other dimension (columns)
- each entry specifies access rights of the specified subject to object

is often sparse

		OBJECTS						
		File 1	File 2	File 3	File 4			
	User A	Own Read Write		Own Read Write				
SUBJECTS	User B	Read	Own Read Write	Write	Read			
	User C	Read Write	Read		Own Read Write			

ORIFCTS

Access Control (Discretionary Access Control)

Access control list (ACL)

- Matrix decomposition by columns
- Convenient from subject side
- Inconvenient for determining access rights to a specific user

Access Control (Discretionary Access Control)

Capability tickets

- Matrix decomposition by rows
- Appropriate for use in distributed environment
- Convenient and inconvenient aspects are opposite of ACL

Access Control (Protection Domain)

- Set of objects with associated rights
- In access matrix view, each row is a protection domain
 - But not necessarily just a user
 - May a limited subset of user's access rights
 - Applied to a more restricted process
- May be static or dynamic

Access Control (UNIX File Access Control)

Access Control (Role-Based Access Control)

- Based on the roles that users assume in a system rather than the user's identity.
- Define a role as a job function within an organization.

Access Control (Role-Based Access Control)

- Assign access rights to roles instead of individual users.
- Users are assigned to different roles, either statically or dynamically, according to their responsibilities.

		OBJECTS										
		$\mathbf{R_1}$	R ₂	\mathbf{R}_n	$\mathbf{F_1}$	$\mathbf{F_1}$	$\mathbf{P_1}$	P_2	$\mathbf{D_1}$	$\mathbf{D_2}$		
ROLES	\mathbf{R}_1	control	owner	owner control	read *	read owner	wakeup	wakeup	seek	owner		
	$\mathbf{R_2}$		control		write *	execute			owner	seek *		
	:											
	R _n			control		write	stop					

Access Control (Role-Based Access Control)

The many-to-many relationships between users and roles and between roles and permissions provide a flexibility and granularity of assignment not found in conventional DAC schemes.

(a) Relationship among RBAC models

(b) RBAC models

Summary

- Introduce user authentication
 - Password, Token, Biometrics
 - Remote user authentication
 - Security issues
- Introduce access control
 - Principles, policies, requirements
 - Elements: subject, object, access rights
 - DAC, MAC, RBAC