Problem Set 1

Ellie Choe

population

```
ages <- c("Teens", "20s", "30s", "40s", "50s") p_pop <- c(0.15, 0.30, 0.25, 0.20, 0.10) names(p_pop) <- ages
```

sample sizes

```
n_{vals} < c(50, 100, 200, 500, 1000)
```

container

```
res <- data.frame(n = integer(), group = character(), age = character(), prop = numeric())
```

—- simulation —-

```
for (n in n_vals) {
```

sample traits

```
trait <- sample(ages, \, size = n, \, replace = TRUE, \, prob = p\_pop)
```

Treatment assignment

```
Z < -rbinom(n, 1, 0.5)
```

proportions for All / Treat / Control

```
\begin{aligned} &\text{prop\_all} <-\text{ as.numeric}(\text{table}(\text{trait})) \ / \ n \ \_\text{treat} <-\text{ sum}(Z ==1) \ n\_\text{ctrl} <-\text{ n - n\_treat} \ \text{prop\_t} <-\text{ as.numeric}(\text{table}(\text{factor}(\text{trait}[Z==1], \text{levels} = \text{ages}))) \ / \ n\_\text{treat} \ \text{prop\_c} <-\text{ as.numeric}(\text{table}(\text{factor}(\text{trait}[Z==0], \text{levels} = \text{ages}))) \ / \ n\_\text{ctrl} \end{aligned} \text{res} <-\text{ bind\_rows}(\text{ res, data.frame}(n = n, \text{group} = \text{``All''}, \text{ age} = \text{ages}, \text{ prop} = \text{prop\_all}), \text{ data.frame}(n = n, \text{group} = \text{``Control''}, \text{ age} = \text{ages}, \text{ prop} = \text{prop\_c}) \ ) \end{aligned}
```

join population props

res_full <- res %>% left_join(data.frame(age = ages, pop_prop = p_pop), by = "age") %>% mutate(imbalance = pop_prop - prop)

—- quick check table —-

 $\label{eq:condition} $$\operatorname{res_wide} < -\operatorname{res_full} \% > \% \ \operatorname{select}(-\operatorname{imbalance}) \% > \% \ \operatorname{pivot_wider}(\operatorname{names_from} = \operatorname{group}, \ \operatorname{values_from} = \operatorname{prop}) \% > \% \ \operatorname{rename}(\operatorname{population} = \operatorname{pop_prop}) \% > \% \ \operatorname{arrange}(\operatorname{n}, \operatorname{age})$

—- plot 1: convergence to population —-

```
pop_tbl <- tibble(age = ages, pop_prop = p_pop)
```

 $\begin{array}{l} print(\ ggplot(res,\ aes(x=n,\ y=prop,\ color=group)) + geom_point() + geom_line() + geom_hline(data=pop_tbl,\ aes(yintercept=pop_prop),\ linetype=2) + facet_wrap(\sim age,\ nrow=2) + labs(\ x="Sample size (n)",\ y="Proportion",\ title="Bigger Sample \rightarrow More Balance Across Age Groups",\ subtitle="Dashed Line=Population Proportion") + theme_minimal()) \\ \end{array}$

—- plot 2: imbalance measure —-

imbalance <- res %>% filter(group %in% c("Treat", "Control")) %>% select(n, age, group, prop) %>% pivot_wider(names_from = group, values_from = prop) %>% mutate(abs_diff = abs(Treat - Control)) %>% group_by(n) %>% summarise(max_abs_diff = max(abs_diff), $11_sum_diff = sum(abs_diff)$, .groups = "drop")

print(ggplot(imbalance, aes(x = n, y = max_abs_diff)) + geom_hline(yintercept = 0, linetype = 2) + geom_point(size = 2) + geom_line() + labs(x = "Sample size (n)", y = "Max | Treat - Control| across age groups", title = "Bigger Sample \rightarrow Smaller Worst-Case Imbalance") + theme_minimal())

—- data analysis —-

df <- read.csv("voting.csv")

1. Treatment variable

variable: message

type: discrete

data type: character

2. create a binary variable

dftreat < -ifelse(dfmessage == "yes", 1, 0)

3. Compute the average outcome for the treatement and control groups

avg_treat <- mean(dfvoted[dftreat == 1]) # average voting rate among treated voters avg_ctrl <- mean(dfvoted[dftreat == 0]) # average voting rate among control voters. If avg_treat > avg_ctrl, the message increased turnout.

4. Subset the data frame

treat_df <- df[dftreat == 1,] $ctrl_df$ < -df[dftreat == 0,]

5. Average birth year

 $mean(treat_dfbirth)mean(ctrl_dfbirth)$

6. Estimated Average Causal Effect

ate <- avg_treat - avg_treat - avg_treat = # it means treated voters were 8.1 percentage points more likely to vote.

7. Assumption for generalization

The sample must be representative of the US population, and the treatment effect must be homogeneous across subgroups.