Predicting Terror Attacks A Data Story

Nicolas Bollier, Enea Figini, Elias Le Boudec, Axel Nilsson Team 29

January 23, 2019

Introduction

Exploring the Data

Terrorist Relationships as a Social Network

Predicting Terror Attacks

Exploring The Data: Terrorist Relations I

- Each node is a relation between two terrorists
- Nodes are connected if they share one individual
- Relation type and binary vector of features for each node
- Line graph

Figure: Graph of the terrorist relations dataset

Exploring The Data: What Is a Line Graph?

Exploring The Data: Terrorist Attacks I

- Each node is an attack
- ▶ Nodes are connected if the attacks were in same location
- ► Location, date, organisation and binary vector of features for each node

Figure: Graph of the terrorist attacks dataset

Exploring The Data: Terrorist Attacks II

- ► A lot of isolated nodes
- ► Full connectivity in sub-components

Are terrorist relationships similar to social networks?

If we find that relationships networks are similar to social networks then we could eventually understand how they form and how people join terrorist organisations.

The relationships line graph is built from a graph and we can only get partial information about this original graph.

The *transitivity* and *homophily* particularities of social networks gives us guidelines for building a graph with similar proprieties as social structures. In social networks, it is more likely to connect components between themselves rather than extending chains.

We found that some social networks are scale-free. We can only use one connected component, so we use the largest one of the dataset.

Making a comparable line graph

We build the line graph from a scale free graph that has a node number n.

Figure: Difference of degree distribution between the dataset and the generated line graph

Preliminary conclusion: The relationship network cannot be modeled by the line graph of a scale free network

- ► This could be because the relations of terrorist are not similar to social ties
- ► Possibly because the size of the largest component is too small, making an unrealistically small number of

A First Unsuccessful Attempt: Setup

- \mathcal{G}_t = graph of terror attacks at time t
- \blacktriangleright Let **attach**^t be a vector such that

$$\mathbf{attach}_t(i) = \begin{cases} 1 & \text{if node added at } t+1 \text{ links to node } i \\ 0 & \text{otherwise} \end{cases}$$

(1)

► Idea: $attach_t$ smooth \Rightarrow terror attack location can be explained by graph topology

A First Unsuccessful Attempt: Result

- Graph nodes: terror attack locations (1293 nodes)
- Graph edges: weight based on proximity of features vector (835'278 edges)
- Complete graph

Figure: GFT of attach $_{t=1282}$

Predicting Terror Attack Locations: Setup

- 1. From the dataset, select the 10 biggest connected components
- 2. Sort the dataset by date of terror attack.
- 3. Hence component ⇔ location
- 4. For each node, select lead node *l* that maximises sum of weights to other nodes
- 5. Find the lead node *l** that is the most strongly linked to the new node (i.e. the next terror attack).
- **6.** Prediction: next location is location of l^*

Predicting Terror Attack Locations: Results

Accuracy slightly over 50%

