Lecture 2: Calculus and Linear Algebra

Piotr Zwiernik

Mathematics Brush-up

Chapter 4: Integration

Often a function f is given and we are looking for F whose derivative is f.

Example: the marginal cost function C'(x) is known (how cost changes with production x). We want the cost C(x) itself.

Idea: integration reverses differentiation: it accumulates small changes.

Read Chapter 5 of Werner-Sotskov Exercises 5.1(a)-(b), 5.2(a)-(b), 5.3(c)

Indefinite integrals

A differentiable F is an antiderivative of f if F'(x) = f(x) on a common domain.

Fact: all antiderivatives differ by a constant: if F'(x) = f(x), then any $\tilde{F}(x) = F(x) + c$ also satisfies $\tilde{F}'(x) = f(x)$.

Definition: the indefinite integral is

$$\int f(x) dx = F(x) + c.$$

Linearity:

1.
$$\int (f+g) dx = \int f dx + \int g dx$$

2.
$$\int c f dx = c \int f dx$$

Indefinite integrals you should know

Templates:

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c, \ n \neq -1$$

$$2. \int \frac{1}{x} dx = \log|x| + c$$

$$3. \int e^x dx = e^x + c$$

$$4. \int \sin x \, dx = -\cos x + c$$

$$5. \int \cos x \, dx = \sin x + c$$

6.
$$\int a^x dx = \frac{a^x}{\log a} + c \quad (a > 0, a \neq 1)$$

Always check by differentiating the right-hand side.

Integration by substitution

Theorem (Substitution)

If t = g(x) and F is an antiderivative of f, then

$$\int f(g(x)) g'(x) dx = \int f(t) dt = F(t) + c = F(g(x)) + c.$$

Examples:

1.
$$\int (ax+b)^n dx = \frac{1}{a} \int t^n dt = \frac{(ax+b)^{n+1}}{a(n+1)} + c.$$

(t = ax + b, so dt = a dx.)

2.
$$\int \frac{e^x}{\sqrt[3]{1+e^x}} dx = \int t^{-1/3} dt = \frac{3}{2}t^{2/3} + c = \frac{3}{2}(1+e^x)^{2/3} + c.$$

 $(t=1+e^{x}, so dt=e^{x} dx.)$

Integration by parts

Theorem (Integration by parts)

For differentiable u, v,

$$\int u(x)v'(x)\,dx=u(x)v(x)-\int u'(x)v(x)\,dx.$$

Proof: Differentiate u(x)v(x) and integrate.

Example: with $u = \log x$, v' = 1,

$$\int \log x \, dx = x \log x - \int 1 \, dx = x(\log x - 1) + c.$$

A combo: substitution then parts

Compute $\int \sin \sqrt{x} \, dx$.

Substitute $t = \sqrt{x}$, so $x = t^2$ and dx = 2t dt:

$$\int \sin \sqrt{x} \, dx = 2 \int t \sin t \, dt.$$

Now parts with u = t, $v' = \sin t$:

$$2\int t\sin t\,dt = 2\Big(-t\cos t + \int\cos t\,dt\Big) = 2(-t\cos t + \sin t) + c.$$

Back-substitute $t = \sqrt{x}$:

$$\int \sin \sqrt{x} \, dx = 2 \left(-\sqrt{x} \cos \sqrt{x} + \sin \sqrt{x} \right) + c \quad .$$

Definite integral as area and accumulation

For continuous $f:[a,b] \to \mathbb{R}$ with $f \ge 0$, the definite integral

$$\int_{a}^{b} f(x) dx$$

is the area under f between a and b. More generally it accumulates signed change.

Properties:

- 1. $\int_{b}^{a} f = \int_{a}^{b} f$
 - $2. \int_a^b cf = c \int_a^b f$
 - 3. If $c \in [a, b]$, then $\int_a^b f = \int_a^c f + \int_c^b f$
 - $4. \left| \int_a^b f \right| \le \int_a^b |f|$
- 5. If $f \leq g$ on [a, b], then $\int_a^b f \leq \int_a^b g$

Some uses: cumulative revenue from a known marginal revenue curve, energy used by a device with power draw P(t), or probability mass from a density.

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus

x = 400 is

If f is continuous on [a, b] and F is an antiderivative of f, then

$$\int_a^b f(x) dx = F(b) - F(a).$$

Moreover, $G(t) = \int_a^t f(x) dx$ is differentiable and G'(t) = f(t).

Marginal to total: If C'(x) is marginal cost, then the change in total cost from x=300 to

$$C(400) - C(300) = \int_{300}^{400} C'(x) dx.$$

Example:
$$C'(x) = 6 - \frac{60}{x+1}$$
 for $x \in [0, 1000]$:
$$\int_{300}^{400} \left(6 - \frac{60}{x+1}\right) dx = \left(6x - 60 \log|x+1|\right)_{300}^{400} \approx 582.79.$$

Application: proving $e= {\sf lim}_{n o\infty} (1+rac{1}{n})^n$ via integrals

Define $\log x = \int_{-t}^{x} \frac{1}{t} dt$. Let e^{x} be the inverse of $\log x$; then $1 = \int_{1}^{e} \frac{1}{t} dt$.

For
$$t \in [1, 1 + \frac{1}{n}]$$
,

$$\frac{1}{n+1} = \int_{1}^{1+\frac{1}{n}} \frac{1}{1+\frac{1}{2}} dt \leq \int_{1}^{1+\frac{1}{n}} \frac{1}{t} dt \leq \int_{1}^{1+\frac{1}{n}} 1 dt = \frac{1}{n}.$$

$$\frac{1}{n+1} \le \log\left(1 + \frac{1}{n}\right) \le \frac{1}{n}.$$

Exponentiate and rearrange to obtain

$$\frac{e}{1+\frac{1}{n}} \le \left(1+\frac{1}{n}\right)^n \le e,$$

and let $n \to \infty$.

Application: Taylor with integral remainder (up to n = 2)

Apply FTC repeatedly:

$$f(x) = f(x_0) + \int_{x_0}^{x} f'(t_1) dt_1$$

$$= f(x_0) + f'(x_0)(x - x_0) + \int_{x_0}^{x} \int_{x_0}^{t_1} f''(t_2) dt_2 dt_1$$

$$= f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \int_{x_0}^{x} \int_{x_0}^{t_1} \int_{x_0}^{t_2} f^{(3)}(t_3) dt_3 dt_2 dt_1.$$

By the intermediate value theorem there is y between x_0 and x with

$$\iiint f^{(3)}(t_3) dt_3 dt_2 dt_1 = \frac{f^{(3)}(y)}{3!} (x - x_0)^3.$$

Chapter 5: Vectors

A vector is an ordered *n*-tuple of real numbers: $\mathbf{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$.

Why care in econ/data:

- a bundle of *n* goods (quantities),
- a user's features or a product's attributes,
- a portfolio's weights across *n* assets,
- a document's word counts or an embedding.

Read Chapter 6 of Werner-Sotskov; Simon-Blume Chs. 10-11.

Exercises 6.2, 6.3, 6.4, 6.6, 6.7, 6.8

Definition and notation

A vector \mathbf{v} is an ordered *n*-tuple (v_1, \dots, v_n) of real numbers called coordinates.

Notation: $\mathbf{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$.

The zero vector is $\mathbf{0} = (0, \dots, 0)$.

The *i*-th unit vector is e_i (a 1 in position *i*, zeros elsewhere).

Operations:

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, \dots, u_n + v_n), \quad \lambda \mathbf{v} = (\lambda v_1, \dots, \lambda v_n).$$

These satisfy the usual commutative, associative, and distributive laws.

Sum and difference of two vectors

Note $\boldsymbol{u} - \boldsymbol{v} = \boldsymbol{u} + (-1)\boldsymbol{v}$.

Inner product and norm

The inner product (dot product) of $u, v \in \mathbb{R}^n$ is

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \sum_{i=1}^n u_i v_i.$$

The Euclidean norm is $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.

Properties:

- 1. $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \langle \boldsymbol{v}, \boldsymbol{u} \rangle$
 - 2. $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$
 - 3. Cauchy-Schwarz: $|\langle \boldsymbol{u}, \boldsymbol{v} \rangle| < ||\boldsymbol{u}|| ||\boldsymbol{v}||$
 - 4. Triangle inequality: $\|\boldsymbol{u} + \boldsymbol{v}\| \le \|\boldsymbol{u}\| + \|\boldsymbol{v}\|$

Example (platform revenue): hours watched per genre $\mathbf{u} = (500, 200, 50)$ and euro-per-hour rates $\mathbf{v} = (2, 3, 5)$ yield total revenue $\langle \mathbf{u}, \mathbf{v} \rangle = 2150$.

The Law of Cosines and angles

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\| \|\mathbf{v}\| \cos(\angle(\mathbf{u}, \mathbf{v})).$$

Equivalently,

$$\cos(\angle(u,v)) = \frac{\langle u,v\rangle}{\|u\|\|v\|}.$$

We prove that
$$c^2 = a^2 + b^2 - 2ab\cos(C)$$
:

By Pythagoras, $x^2 + y^2 = b^2$ and $(a-x)^2 + y^2 = c^2$. Subtract to eliminate y^2 to get $c^2 = a^2 + b^2 - 2ax$. Use $\cos C = x/b$.

Orthogonality

Definition: $\mathbf{u} \perp \mathbf{v}$ if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Angle example: For u = (2, -1, 3) and v = (5, -4, -1),

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 11, \quad \cos \angle (\boldsymbol{u}, \boldsymbol{v}) = \frac{11}{\sqrt{14}\sqrt{42}} \approx 0.4537,$$

so the angle is about 63° .

Geometric test: $\mathbf{u} \perp \mathbf{v}$ iff $\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Cauchy-Schwarz via completing the square

Assume nonzero $\boldsymbol{u}, \boldsymbol{v}$. For any real t,

$$0 \leq \|\boldsymbol{u} - t\boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 - 2t\langle \boldsymbol{u}, \boldsymbol{v}\rangle + t^2 \|\boldsymbol{v}\|^2.$$

Complete the square in t:

$$\|\boldsymbol{u}\|^2 - 2t \langle \boldsymbol{u}, \boldsymbol{v} \rangle + t^2 \|\boldsymbol{v}\|^2 = \|\boldsymbol{v}\|^2 \left(t - \frac{\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\|\boldsymbol{v}\|^2}\right)^2 + \left(\|\boldsymbol{u}\|^2 - \frac{\langle \boldsymbol{u}, \boldsymbol{v} \rangle^2}{\|\boldsymbol{v}\|^2}\right).$$

Since the left side is ≥ 0 for all t, the second term must be ≥ 0 :

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle^2 \leq \|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2.$$

Equality condition: equality holds iff $\|\boldsymbol{u} - t\boldsymbol{v}\|^2 = 0$ for $t = \frac{\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\|\boldsymbol{v}\|^2}$, i.e., $\boldsymbol{u} = t \, \boldsymbol{v}$ (collinear vectors).

Linear dependence, independence, and bases

Linear combination: $\mathbf{u} = \sum_{i=1}^{m} \lambda_i \mathbf{v}_i$.

Linear independence: $\{v_1, \dots, v_m\}$ is linearly independent if

$$\sum_{i=1}^m \lambda_i \mathbf{v}_i = \mathbf{0} \quad \Rightarrow \quad \lambda_1 = \cdots = \lambda_m = 0.$$

Basis: Any n linearly independent vectors in \mathbb{R}^n form a basis. Then every $\mathbf{u} \in \mathbb{R}^n$ has a unique representation $\mathbf{u} = \sum_{i=1}^n \lambda_i \mathbf{v}_i$.

Standard basis: $\{e_1, \ldots, e_n\}$.

Subspaces, span, and dimension

For $E = \{ \mathbf{v}_1, \dots, \mathbf{v}_k \}$, the span is

$$\operatorname{span}(E) = \Big\{ \sum_{i=1}^k \lambda_i \mathbf{v}_i : \ \lambda_i \in \mathbb{R} \Big\}.$$

A subspace $V \subset \mathbb{R}^n$ is any span. A basis of V is a linearly independent set that spans V. The dimension of V is the size of any basis.

Exercise: Basis of $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}.$

Orthogonal complement and projection

Orthogonal complement

For a subspace $V \subset \mathbb{R}^n$,

$$V^{\perp} = \{ \boldsymbol{x} : \langle \boldsymbol{x}, \boldsymbol{v} \rangle = 0 \ \forall \boldsymbol{v} \in V \}.$$

Projection theorem

For any $\mathbf{y} \in \mathbb{R}^n$ and subspace V, there is a unique $\hat{\mathbf{y}} \in V$ with $\mathbf{y} - \hat{\mathbf{y}} \in V^{\perp}$. We call $\hat{\mathbf{y}}$ the orthogonal projection of \mathbf{y} onto V.

Least squares view: With design matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and response \mathbf{y} , the LS fit $\hat{\mathbf{y}}$ is the projection of \mathbf{y} onto the column space of \mathbf{X} .

$$\hat{\mathbf{y}} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

RENEW GIVE A GIFT

Smithsonian.com

ARTS & CULTURE GAMES

INNOVATION

ARTS & CULTURE

TRAVEL

¿Fin de carrera para Alonso? tillama.com

no podía imaginar la razón por la que dejó de competir

SMARTNEWS Keeping you current

This Guy Learned Linear Algebra in Ten Days, And You Can Too

At MIT you can take a ton of science classes online. And, in true MIT fashion, someone just did them all at an extraordinary speed

By Rose Eveleth

SMITHSONIAN COM OCTOBER 26, 2012

Sta inno indus

Chapter 6: Matrices and determinants

A matrix $A \in \mathbb{R}^{m \times n}$ is a table with m rows, n columns. The (i, j) entry is a_{ij} .

We recall basic facts about matrices.

Why care: matrices express linear maps, data tables, network flows, input-output models, regressions, transformations, and more.

Read Werner-Sotskov Ch. 7; Simon-Blume Chs. 8-9.

Exercises 7.6, 7.9(b,c,d), 7.12, 7.14(a), 7.16, 7.18

Matrices

A table of numbers with m rows and n columns: $A \in \mathbb{R}^{m \times n}$. The (i,j)-th entry is denoted by a_{ij} .

Special matrices:

- zero matrix: $\mathbf{0}_{m \times n} \in \mathbb{R}^{m \times n}$
- identity matrix: $\mathbb{I}_n \in \mathbb{R}^{n \times n}$.
- transposition: $A^T \in \mathbb{R}^{n \times m}$, $(A^T)_{ij} = a_{ji}$.
- square matrix: m = n.
- symmetric matrix: square matrix such that $A = A^T$.
- diagonal matrix: $a_{ij} = 0$ if $i \neq j$.
- lower (upper) trianglar: $a_{ij} = 0$ if i < j (i > j).
- $\mathbf{v} \in \mathbb{R}^n$ is treated as $n \times 1$ matrix, $\mathbb{R}^n \simeq \mathbb{R}^{n \times 1}$.

Basic matrix operations

Addition and scalar multiplication are entrywise:

$$(A+B)_{ij}=a_{ij}+b_{ij}, \qquad (\lambda A)_{ij}=\lambda a_{ij}.$$

They satisfy the usual commutative, associative, and distributive laws.

Matrix product: If $A \in \mathbb{R}^{m \times p}$ and $B \in \mathbb{R}^{p \times n}$, then $C = AB \in \mathbb{R}^{m \times n}$ with

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}.$$

Example:

$$\begin{pmatrix} 2 & 3 & 4 & 1 \\ 7 & -1 & 0 & 4 \end{pmatrix} \begin{pmatrix} 2 & 7 \\ 3 & -1 \\ 4 & 0 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 30 & 15 \\ 15 & 66 \end{pmatrix}.$$

Algebraic properties

Facts:

- 1. (AB)C = A(BC)
- 2. A(B+C) = AB + AC and (A+B)C = AC + BC
- 3. Generally **not** commutative: $AB \neq BA$
- 4. $AI_n = I_m A = A$ (dimensions must match)
- 5. $(A^T)^T = A$, $(A + B)^T = A^T + B^T$, $(\lambda A)^T = \lambda A^T$, $(AB)^T = B^T A^T$

Remark: AA^T is always symmetric.

Matrix times vector

We treat \mathbb{R}^n as column vectors $\mathbb{R}^{n\times 1}$. If $A\in\mathbb{R}^{m\times n}$ and $\mathbf{x}\in\mathbb{R}^n$ then $A\mathbf{x}\in\mathbb{R}^m$ is a linear combination of the columns of A with coefficients x_i :

$$A\mathbf{x} = x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n.$$

e.g. Another look at the LS method: $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\mathbf{y} \in \mathbb{R}^n$

$$\text{minimize}_{\beta \in \mathbb{R}^d} \quad \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|^2$$

Finds the closest point to y in the space spanned by the columns of X.

Orthogonal projection

Theorem: Given a vector $\mathbf{y} \in \mathbb{R}^n$ and a subspace $V \subset \mathbb{R}^n$ there exists a unique $\hat{\mathbf{y}} \in V$ such that $\mathbf{y} - \hat{\mathbf{y}} \in V^{\perp}$. Let $\mathbf{x}_1, \dots, \mathbf{x}_d$ be a basis of $V \subset \mathbb{R}^n$.

$$\boldsymbol{X} \in \mathbb{R}^{n \times d}$$
 with columns $\boldsymbol{x}_1, \dots, \boldsymbol{x}_d$.

$$\hat{\pmb{y}} \in V$$
 means $\hat{\pmb{y}} = \pmb{X} \pmb{\lambda}$ for some $\pmb{\lambda} = (\lambda_1, \dots, \lambda_d)$.

$$oldsymbol{y} - \hat{oldsymbol{y}} \in V^{\perp}$$
 means $oldsymbol{X}^{ op}(oldsymbol{y} - \hat{oldsymbol{y}}) = oldsymbol{0}.$

The unique solution: $\lambda = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$.

Matrix inverse

A square matrix A is invertible if there exists a matrix A^{-1} such that

$$AA^{-1} = A^{-1}A = I$$
.

We want to show:

$$A \in \mathbb{R}^{n \times n}$$
 is invertible \iff $A\mathbf{x} = \mathbf{0}_n$ only for $\mathbf{x} = \mathbf{0}_n$.

Two observations:

- 1. Ax = 0 only for x = 0 iff columns of A are lin. independent.
- 2. n independent vectors in \mathbb{R}^n form a basis and so $\forall i=1,\ldots,n\;\exists \boldsymbol{b}_i$ such that $A\boldsymbol{b}_i=\boldsymbol{e}_i$.
- 3. This gives $B \in \mathbb{R}^{n \times n}$ such that $AB = \mathbb{I}_n$.

This is enough to show that the matrix $\mathbf{X}^{\top}\mathbf{X}$ on slide 29 is invertible.

Note: If $(X^{\top}X)x = 0$ then $x^{\top}(X^{\top}X)x = 0$ but this only possible if x = 0.

Important spaces and rank

For $A \in \mathbb{R}^{m \times n}$:

- Column space (image) $\operatorname{Im}(A) = \{Ax : x \in \mathbb{R}^n\} \subset \mathbb{R}^m$
- Row space $\operatorname{Im}(A^T) \subset \mathbb{R}^n$
- Kernel (null space) $\ker(A) = \{x : Ax = 0\} \subset \mathbb{R}^n$
- Rank $rank(A) = dim Im(A) = dim Im(A^T)$

Orthogonality: Row space is orthogonal to ker(A).

Rank-nullity: rank(A) + dim ker(A) = n.

Try:
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$
.

Orthogonal matrices

An $n \times n$ matrix A is called orthogonal if $AA^{\top} = I_n$.

Remark: If A is orthogonal, its row vectors (and also its column vectors) are pairwise orthogonal unit vectors.

Proof: Let \mathbf{r}_i and \mathbf{r}_j be the i-th and j-th rows of A. The (i,j) entry of AA^{\top} is the scalar product $\mathbf{r}_i^{\top}\mathbf{r}_j$. If $AA^{\top}=I$, then $\mathbf{r}_i^{\top}\mathbf{r}_j=0$ for $i\neq j$ (orthogonality) and $\mathbf{r}_i^{\top}\mathbf{r}_i=\|\mathbf{r}_i\|^2=1$ (unit length). The same holds for columns using $A^{\top}A=I_n$.

Example:

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Elementary matrix operations

Column or row operations:

- 1. Swap two columns (or rows)
- 2. Scale a column (or row) by $\lambda \neq 0$
- 3. Add a multiple of one column (or row) to another

Each is implemented by multiplying by a suitable elementary matrix on the right (for column ops) or left (for row ops). Useful for Gaussian elimination and determinant computation.

Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 and multiply from the right by $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} \lambda & 0 \\ 0 & 1 \end{bmatrix}$, or $\begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix}$.

Determinants: definition

For $A \in \mathbb{R}^{n \times n}$, let A_{ij} be the submatrix with row i and column j removed. Define recursively

$$\det(A) = \sum_{i=1}^{n} (-1)^{1+j} a_{1j} \det(A_{1j}), \quad \det([a_{11}]) = a_{11}.$$

For
$$n = 2$$
: $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$.

For n = 3:

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}.$$

A memory aid for n=3

Cofactor expansion and properties

Cofactor expansion: expand by any row i or any column j:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij}) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij}).$$

Properties:

- 1. $det(A) = det(A^T)$
- 2. If A is triangular, det(A) is the product of diagonal entries
- 3. det(AB) = det(A) det(B)
- 4. Swapping two rows (or columns) flips the sign of det
- 5. Scaling a row (or column) by λ scales det by λ
- 6. Adding a multiple of one row to another leaves det unchanged
- 7. det(A) = 0 iff rows (or columns) are linearly dependent

Determinants by elimination

Use row operations (keeping track of determinant changes) to reach triangular form.

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix} \rightarrow \begin{vmatrix} 1 & 2 & 0 \\ 0 & -6 & 1 \\ 1 & 2 & 3 \end{vmatrix} \rightarrow \begin{vmatrix} 1 & 2 & 0 \\ 0 & -6 & 1 \\ 0 & 0 & 3 \end{vmatrix} = (-6) \cdot 3 = -18.$$

First: $r_2 \leftarrow r_2 - 3r_1$. Then: $r_3 \leftarrow r_3 - r_1$.

Geometric meaning: $|\det(A)|$ is the area/volume scaling of the linear map $x \mapsto Ax$ (and its sign encodes orientation).

Linear systems and Cramer's rule

A system $A\mathbf{x} = \mathbf{b}$ with $A \in \mathbb{R}^{n \times n}$, unknown $\mathbf{x} \in \mathbb{R}^n$, and data \mathbf{b} . If A is nonsingular (det $A \neq 0$), the solution is unique.

Cramer's rule: Let $A_i(\mathbf{b})$ be A with column j replaced by \mathbf{b} . Then

$$x_j = \frac{\det A_j(\boldsymbol{b})}{\det A}, \quad j = 1, \dots, n.$$

Note: Great for theory, not used for large-scale computation.

Example:

$$A = \begin{pmatrix} 2 & 3 & 5 \\ 1 & 0 & 2 \\ -1 & -4 & 2 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 7 \\ 4 \end{pmatrix} \implies \mathbf{x} = \left(\frac{75}{8}, -\frac{63}{16}, -\frac{19}{16}\right).$$

Linear mappings

A mapping $A: \mathbb{R}^n \to \mathbb{R}^m$ is linear if

$$A(\mathbf{x}_1 + \mathbf{x}_2) = A(\mathbf{x}_1) + A(\mathbf{x}_2), \qquad A(\lambda \mathbf{x}) = \lambda A(\mathbf{x}).$$

Then there exists an $m \times n$ matrix (also denoted A) with A(x) = Ax.

Columns as images: $A(e_i) = a_i$ (the *i*-th column), and $A(x) = \sum_i x_i A(e_i)$.

Examples: scalings, rotations, reflections, projections, feature maps in ML, Leontief input-output in economics.

Two simple linear maps

1. Reflection across the y-axis:

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}.$$

2. Rotation by 45° counterclockwise:

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Check the images of e_1 and e_2 to see the action.

Inverse matrix and properties

A square A is invertible if A^{-1} exists with $AA^{-1} = A^{-1}A = I_n$.

Properties:

- 1. $(A^{-1})^{-1} = A$
- 2. $(AB)^{-1} = B^{-1}A^{-1}$
- 3. $(A^T)^{-1} = (A^{-1})^T$
- 4. $(\lambda A)^{-1} = \lambda^{-1} A^{-1}$ for $\lambda \neq 0$
- 5. $\det(A^{-1}) = 1/\det(A)$

Solve $A\mathbf{x} = \mathbf{b}$ by $\mathbf{x} = A^{-1}\mathbf{b}$ when A is invertible.

Computing inverses

Cofactor formula: If A is nonsingular,

$$A^{-1} = \frac{1}{\det A} C(A)^T, \quad C(A)_{ij} = (-1)^{i+j} \det(A_{ij}).$$

For 2×2 :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

For larger n, numerical methods use elimination (LU), not cofactors.

Example: Input-output model

Let a_{ij} be units of good i needed to produce 1 unit of good j. Put $A = (a_{ij})$. Let x be total output and y the vector of final demand.

Accounting identity: output = internal demand + final demand

$$\mathbf{x} = A\mathbf{x} + \mathbf{y} \Leftrightarrow (I_n - A)\mathbf{x} = \mathbf{y} \Rightarrow \mathbf{x} = (I_n - A)^{-1}\mathbf{y}$$

provided $I_n - A$ is invertible.

Interpretation: $(I - A)^{-1} = I + A + A^2 + \cdots$ accumulates direct, indirect, and higher-order input needs when it converges.

A triangular example

Theorem: If A is strictly upper triangular (zeros on and below diagonal), then $A^n = 0$ and

$$(I_n - A)^{-1} = I_n + A + A^2 + \cdots + A^{n-1}.$$

Check $(I - A)(I + A + \cdots + A^{n-1}) = I - A^n = I$.

Example:

$$A = \begin{pmatrix} 0 & 3 & 5 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 1 \\ 7 \\ 4 \end{pmatrix} \implies \mathbf{x} = (66, 15, 4).$$