Dustin Ginos: A01233669 Chandler Kinch: A01662772Jeff Wasden: A01657029

March 13, 2017

Homework 4

Chapter 4.1

4.1.3 Construct a matrix with the required property or say why that is impossible:

construct a matrix with the required property or say why that is impose (a) Column space contains
$$\begin{bmatrix} 1\\2\\-3 \end{bmatrix}$$
 and $\begin{bmatrix} 2\\-3\\5 \end{bmatrix}$, nullspace contains $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ (b) Row space contains $\begin{bmatrix} 1\\2\\-3\\5 \end{bmatrix}$, nullspace contains $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ (c) $Ax = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ has a solution and $A^T \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$

- (d) Every row is orthogonal to every column (\bar{A} is not the zero matrix)
- (e) Columns add up to a column of zeros, rows add to a row of 1's.

(a)
$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & -3 & 1 \\ -3 & 5 & -2 \end{bmatrix} .$$

- $\begin{bmatrix} -3 & 5 & -2 \end{bmatrix}$ (b) The matrix is impossible to construct because $\begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix}$ is not perpendicular to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- (c) Can't construct a matrix with $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ in the column space of A and with $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ nullspace of A because the two vectors aren't orthogonal.

$$(d) \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}.$$

(e) The vector (1,1,1) would have to exist in both the nullspace and the row space which is impossible.

4.1.11 (Recommended) Draw Figure 4.2 to show each subspace correctly for

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}.$$

4.1.16 Prove that every y in $N(A^T)$ is perpendicular to every Ax in the column space, using the matrix shorthand of equation (2). Start from $A^Ty = 0$.

$$A^T y = 0 \qquad Ax = b$$

$$A^T y = 0 \rightarrow (Ax)^T y = 0 \rightarrow x^T A^T y = 0 \rightarrow y \perp Ax$$

4.1.17 If S is the subspace of R^3 containing only the zero vector, what is S^{\perp} ? If S is spanned by (1, 1, 1), what is S^{\perp} ? If S is spanned by (1, 1, 1) and (1, 1, -1), what is a basis for S^{\perp} ?

 S^{\perp} is every vector in \mathbb{R}^3 .

$$IF S = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\} \text{ then } S^{\perp} = \left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}.$$

$$IF S = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \right\} \text{ then } S^{\perp} = \left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\}.$$

4.1.18 Suppose S only contains two vectors (1,5,1) and (2,2,2) (not a subspace), Then S^{\perp} is the nullspace of the matrix $A = \underline{\hspace{1cm}}$. S^{\perp} is a subspace even if S is not.

$$S^{\perp} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \qquad A = \begin{bmatrix} 1&5&1\\2&2&2 \end{bmatrix}$$

4.1.21 Suppose S is spanned by the vectors (1,2,2,3) and (1,3,3,2). Find two vectors that span S^{\perp} , This is the same as solving Ax = 0 for which A?

$$S^{\perp} = \left\{ \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right\} \qquad A = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 1 & 3 & 3 & 2 \end{bmatrix}$$

4.1.22 If P is the plane of vectors in R^4 satisfying $x_1 + x_2 + x_3 + x_4 = 0$, write a basis for P^{\perp} . Construct a matrix that has P as its nullspace.

$$P^{\perp} = \left\{ \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \right\} \qquad \quad A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \text{ has } P \text{ as its nullspace.}$$

4.1.24 Suppose an n by n matrix is invertible: $AA^{-1} = I$. Then the first column of A^{-1} is orthogonal to the space spanned by which rows of A?

The first column of A^{-1} is orthogonal to every row of A except for row 1.

4.1.25 Find A^TA if the columns of A are unit vectors, all mutually perpendicular.

If the columns of A are unit vectors and mutually perpendicular then $A^T A = I$.

- 4.1.28 Why is each of these statements false?
 - (a) (1, 1, 1) is perpendicular to (1,1, 2) so the planes x+y+z=0 and x+y-2z=0 are orthogonal subspaces.
 - (b) The subspace spanned by (1,1,0,0,0) and (0,0,0,1,1) is the orthogonal complement of the subspace spanned by (1,-1,0,0,0) and (2,-2,3,4,-4).
 - (c) Two subspaces that meet only in the zero vector are orthogonal.
 - (a) The planes intersect at a line, so the planes can't be orthogonal.
 - (b) Three vectors are needed to span the whole orthogonal complement.
 - (c) Lines don't have to be orthogonal to meet at the zero vector.
- 4.1.33 Suppose I give you eight vectors $r_1, r_2, n_l, n_2, c_1, c_2, l_1, l_2$ in \mathbb{R}^4 .
 - (a) What are the conditions for those pairs to be bases for the four fundamental subspaces of a 4 by 4 matrix?
 - (b) What is one possible matrix A?
 - (a) The r's need to be orthogonal to the n's and the c's orthogonal to the L's.
 - (b) $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

Chapter 4.2

4.2.2 Draw the projection of b onto a and also compute it from $p = \hat{x}a$:

(a)
$$b = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 and $a = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (b) $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $a = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(a)
$$P = \hat{x}a \qquad \hat{x} = \frac{\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}}{\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}} = \frac{\cos \theta}{1} \qquad P = \begin{bmatrix} \cos \theta \\ 0 \end{bmatrix}.$$

(b)
$$P = \hat{x}a \qquad \hat{x} = \frac{\begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}}{\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}} = \frac{0}{2} \qquad P = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

4.2.13 (Quick and Recommended) Suppose A is the 4 by 4 identity matrix with its last column removed. A is 4 by 3. Project b = (1, 2, 3, 4) onto the column space of A. What shape is the projection matrix P and what is P?

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \to P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
so $p = P \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}$

4.2.16 What linear combination of (1,2,-1) and (1,0,1) is closest to b=(2,1,1)?

$$\begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \qquad P = x_1 a_1 + x_2 a_2$$

To find x_1 and x_2 we time both sides of Ax = b by A^T .

$$\begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} \rightarrow x_1 = \frac{1}{2} \quad x_2 = \frac{3}{2}$$

$$P = \frac{1}{2} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

4.2.17 (Important) If $P^2 = P$ show that $(I - P)^2 = I - P$. When P projects onto the column space of A, I - P projects onto the _____.

$$(I-P)^2 = (I-P)(I-P) = I^2 - PI - IP + P^2 = I - P$$

 $I-P$ projects onto the left nullspace.

- 4.2.18 (a) If P is the 2 by 2 projection matrix onto the line through (1,1), then I-P is the projection matrix onto _____.
 - (b) If P is the 3 by 3 projection matrix onto the line through (1,1,1), then I-P is the projection matrix onto _____.

(a)
$$I - P$$
 projects onto $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$
(b) $I - P$ projects onto $\left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \right\}$

4.2.19 To find the projection matrix onto the plane x - y - 2z = 0, choose two vectors in that plane and make them the columns of A. The plane should be the column space. Then compute $P = A(A^TA)^{-l}A^T$.

$$A^{T} = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$A(A^{T}A)^{-1}A^{T} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 5/6 & 1/6 & 1/3 \\ 1/6 & 5/6 & -1/3 \\ 1/3 & -1/3 & 1/3 \end{bmatrix}$$

4.2.26 If an m by m matrix has $A^2 = A$ and its rank is m, prove that A = I.

The matrix is a full rank matrix therefore
$$A^{-1}$$
 exists. $A^2 = A \rightarrow A^{-1}(AA) = A^{-1}A \rightarrow A = I$

4.2.27 The important fact that ends the section is this: If $A^T A x = 0$ then A x = 0. New Proof: The vector A x is in the nullspace of _____. A x is always in the column space of _____. To be in both of those perpendicular spaces, A x must be zero.

The vector Ax is in the nullspace of A^T . Ax is always in the column space of A^T . So A and A^TA have the same nullspace.

4.2.29 If B has rank m (full row rank, independent rows) show that BB^T is invertible.

 $A = B^T$ has independent columns, then A^TA must be invertible. From that we can deduce that since $A = B^T$ then $A^T = B$ and therefore $A^TA = BB^T$ meaning that BB^T must be invertible.

4.2.30 (a) Find the projection matrix P_c onto the column space of A (after looking closely at the matrix!)

$$A = \begin{bmatrix} 3 & 6 & 6 \\ 4 & 8 & 8 \end{bmatrix}$$

(b) Find the 3 by 3 projection matrix P_R onto the row space of A. Multiply $B = P_C A P_R$. Your answer B should be a little surprising-can you explain it?

(a)
$$A = \begin{bmatrix} 3 & 6 & 6 \\ 4 & 8 & 8 \end{bmatrix}$$
 $A^T = \begin{bmatrix} 3 & 4 \\ 6 & 8 \\ 6 & 8 \end{bmatrix}$ $C(A) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$

$$P_C = \frac{\begin{bmatrix} 3\\4 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix}}{\begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} 3\\4 \end{bmatrix}} = \frac{1}{25} \begin{bmatrix} 9 & 12\\12 & 25 \end{bmatrix}$$

(b)
$$C(A^T) = \begin{bmatrix} 1\\2\\2 \end{bmatrix}$$
 $P_R = \frac{\begin{bmatrix} 1\\2\\2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}}{\begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1\\2\\2 \end{bmatrix}} = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2\\2 & 4 & 4\\2 & 4 & 4 \end{bmatrix}$

$$B = P_C A P_R = \begin{bmatrix} 3 & 6 & 6 \\ 4 & 8 & 8 \end{bmatrix}$$

This is because the columns of A projected onto themselves will just be A and by similar logic AP_R will just be A as well. Therefore $P_CAP_R = A$.

Chapter 4.3

4.3.6 Project $\boldsymbol{b}=(0,8,8,20)$ onto the line through $\boldsymbol{a}=(1,1,1,1)$. Find $\hat{x}=\boldsymbol{a}^T\boldsymbol{b}/\boldsymbol{a}^T\boldsymbol{a}$ and the projection $\boldsymbol{p}=\hat{x}\boldsymbol{a}$. Check that $\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}$ is perpendicular to \boldsymbol{a} , and find the shortest distance $\|\boldsymbol{e}\|$ from \boldsymbol{b} to the line through \boldsymbol{a}

$$a = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}$$

$$\hat{x} = \frac{a^T b}{a^T a} = \frac{\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}}{\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}} = \frac{36}{4} = 9 \quad p = \hat{x}a = \begin{bmatrix} 9 \\ 9 \\ 9 \end{bmatrix}$$

$$b - p = e \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix} - \begin{bmatrix} -9 \\ -1 \\ -1 \\ 11 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = 0 \checkmark$$

$$\|e\| = \sqrt{204}$$

4.3.9 For the closest parabola $b = C + Dt + Et^2$ to the same four points, write down the unsolvable equations Ax = b in three unknowns x = (C, D, E). Set up the three normal equations $A^T A \hat{x} = A^T b$ (solution not required). In Figure 4.9a you are now fitting a parabola to 4 points - what is happening in Figure 4.9b?

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 4 \\ 0 & 1 & 9 & 16 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 4 \\ 0 & 1 & 9 & 16 \end{bmatrix} \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 8 & 26 \\ 8 & 26 & 92 \\ 26 & 92 & 338 \end{bmatrix} \begin{bmatrix} C & D & E \end{bmatrix} = \begin{bmatrix} 36 \\ 112 \\ 400 \end{bmatrix}$$

- 4.3.12 (Recommended) This problem projects $\boldsymbol{b}=(b_1,...,b_m)$ onto the line through a=(1,...,1). We solve m equations ax=b in 1 unknown (by least squares).
 - (a) Solve $a^T a \hat{x} = a^T b$ to show that \hat{x} is the mean (the average) of the b's.

$$\begin{bmatrix} 1 \\ 1 \\ \vdots \\ \vdots \\ 1 \\ 1 \end{bmatrix} \hat{x} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ b_m \end{bmatrix}$$

= (number of components in a) $\hat{x} = \sum_{i=1}^{m} b_i \rightarrow \frac{\hat{x} = \sum_{i=1}^{m} b_i}{number\ of\ components} = average$

(b) Find $e = b - a\hat{x}$ and the variance $||e||^2$ and the standard deviation ||e||.

$$e = \begin{bmatrix} b_1 \\ \cdot \\ \cdot \\ \cdot \\ b_m \end{bmatrix} - \begin{bmatrix} \hat{x} \\ \cdot \\ \cdot \\ \cdot \\ \hat{x} \end{bmatrix} = \begin{bmatrix} b_1 - \hat{x} \\ \cdot \\ \cdot \\ \cdot \\ b_m - \hat{x} \end{bmatrix}$$

 $||e||^2 = \sum_{i=1}^{m} (b_i - \hat{x})^2 = \text{variance}$

(c) The horizontal line $\hat{b}=3$ is closest to b=(1,2,6). Check that p=(3,3,3) is perpendicular to e and find the 3 by 3 projection matrix P.

$$e = b - p = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} = -6 - 3 + 9 = 0 \quad \checkmark$$

$$P = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

4.3.22 Find the best line C + Dt to fit b = 4, 2, -1, 0, 0 at times t = -2, -1, 0, 1, 2.

$$\begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ -1 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ -1 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 5 & 0 & 1 & D & 1 \\ 0 & 0 & 1 & D \end{bmatrix}$$

$$\begin{bmatrix} 5 & 0 \\ 0 & 10 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 5 \\ -10 \end{bmatrix} \quad C = 1 \quad D = -1$$

4.3.26 Find the plane that gives the best fit to the 4 values b = (0, 1, 3, 4) at the corners (1, 0) and (0, 1) and (-1, 0)and(0, -1) of a square. The equations C + Dx + Ey = b at those 4 points are Ax = b with 3 unknowns x = (C, D, E). What is A? At the center (0, 0) of the square, show that C + Dx + Ey = average of the b's.

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 3 \\ 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 3 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 8 \\ -3 \\ -3 \end{bmatrix} \quad C = 2 \quad D = \frac{-3}{2} = E$$

$$p = 2 - \frac{3}{2}x - \frac{3}{2}y$$

at x = y = 0 p = 2, which is the average of the square

Chapter 4.4

- 4.4.1 Are these pairs of vectors orthonormal or only orthogonal or only independent?
 - (a) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ (b) $\begin{bmatrix} .6 \\ .8 \end{bmatrix}$ and $\begin{bmatrix} .4 \\ -.3 \end{bmatrix}$ (c) $\begin{bmatrix} cos\theta \\ sin\theta \end{bmatrix}$ and $\begin{bmatrix} -sin\theta \\ cos\theta \end{bmatrix}$

Change the second vector when necessary to produce orthonormal vectors.

- (a) independent, the second vector would be $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to be orthonormal
- (b) orthogonal, the second vector would be $\begin{bmatrix} .8 \\ -.6 \end{bmatrix}$ to be orthonoraml and independent
- (c) orthonormal and independent
- 4.4.4 Give an example of each of the following:
 - (a) A matrix Q that has orthonormal columns but $QQ^T \neq I$.

$$Q = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} Q Q^T = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \neq I$$

- (b) Two orthogonal vectors that are not linearly independent.
- $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- (c) An orthonormal basis for \mathbb{R}^3 , including the vector $q_1 = (1,1,1)/\sqrt{3}$.

$$\begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

- 4.4.10 Orthonormal vectors are automatically linearly independent.
 - (a) Vector proof: When $c_1q_1 + c_2 + q_2 + c_3q_3 = 0$, what dot product leads to $c_1 = 0$? Similarly $c_2 = 0$ and $c_3 = 0$. Thus the q's are independent.

If all the q's are orthonormal then the dot product of q_1 with $c_1q_1 + c_2q_2 + c_3q_3 = 0$ gives $c_1 = 0$. Similarly $c_2 = c_3 = 0$.

(b) Matrix proof: Show that Qx = 0 leads to x = 0. Since Q may be rectangular, you can use Q^T but not Q^{-1} .

$$Qx = 0 \to Q^TQx = 0 \to x = 0$$

4.4.11 (a) Gram-Shmidt: Find orthonormal vectors q_1 and q_2 in the plane spanned by a=(1,3,4,5,7) and b=(-6,6,8,0,8).

$$\frac{1}{10}(1,3,4,5,7)$$
 $\frac{1}{10}(-7,3,4,-5,1)$

(b) Which vector in this plane is closest to (1, 0, 0, 0, 0)?

$$\frac{1}{10}\begin{bmatrix}1 & -7\\3 & 3\\4 & 4\\5 & -5\\7 & 1\end{bmatrix}\frac{1}{10}\begin{bmatrix}1 & 3 & 4 & 5 & 7\\-7 & 3 & 4 & -5 & 1\end{bmatrix} = \frac{1}{100}\begin{bmatrix}50 & -18 & -24 & 40 & 0\\-18 & 18 & 24 & 0 & 24\\-24 & 24 & 32 & 0 & 32\\40 & 0 & 0 & 50 & 30\\0 & 24 & 32 & 30 & 50\end{bmatrix}\begin{bmatrix}1\\0\\0\\0\\0\end{bmatrix} = \frac{1}{100}\begin{bmatrix}50\\-18\\-24\\40\\0\end{bmatrix} = \begin{bmatrix}.5\\-.18\\-.24\\40\\0\end{bmatrix}$$

4.4.15 (a) Find orthonormal vectors q_1, q_2, q_3 such that q_1, q_2 span the column space of

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}$$

$$q_1 = \frac{1}{3}(1,2,-2) \quad q_2 = \frac{1}{3}(2,1,2) \quad q_3 = \frac{1}{3}(2,2,-1)$$

(b) Which of the four fundamental subspaces contains q_3 ?

the left nullspace

(c) Solve Ax = (1, 2, 7) by least squares.

$$\hat{x} = (A^T A)^{-1} A^T \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 2 & -2 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 1 & 2 & -2 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix} \rightarrow \begin{bmatrix} 9 & -9 \\ -9 & 18 \end{bmatrix}^{-1} \begin{bmatrix} -9 \\ 27 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -9 \\ 27 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 9 \\ 18 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

4.4.23 Find q_1, q_2, q_3 (orthonormal) as combinations of a, b, c (independent columns). Then write A as QR:

$$c = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{bmatrix}.$$

A is an invertible matrix so the vectors $q_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $q_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $q_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ are in the column space and are orthonormal.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{bmatrix}$$

4.4.24 (a) Find a basis for the subspace S in \mathbb{R}^4 spanned by all solutions of

$$x_1 + x_2 + x_3 - x_4 = 0$$

$$S = \left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix} \right\}$$

(b) Find a basis for the orthogonal comblement S^{\perp} .

Since all vectors and all their linear combinations contained in S are orthogonal to the orginal matrix $\begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}, S^{\perp}$ is the original matrix $\begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}$

(c) Find b_1 in S and b_2 in S^{\perp} so that $b_1 + b_2 = b = (1, 1, 1, 1)$.

$$b_1 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2})$$
 $b_2 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{-1}{2})$

- 4.4.34 $Q = I 2uu^T$ is a reflection matrix when $u^T u = 1$. Two reflections give $Q^2 = I$. (a) Show that Qu = -u. The mirror is perpendicular to u.

$$Q = I - 2uu^T \rightarrow Qu = Iu - 2uu^Tu$$
 Since $u^Tu = 1 \rightarrow Qu = -u$

(b) Find Qv when $u^Tv=0$. The mirror contains v. It reflects to itself.

$$Q = I - 2uu^T \rightarrow Qv = Iv - 2uu^Tv$$
 since $u^Tv = 0 \rightarrow Qv = v$