Econ 240A, Fall 2018 Problem Set 4

Due date: Wednesday, Oct. 3

Review of hypothesis testing, Neyman-Pearson lemma, UMP test, p-value, interval estimation. Note: Problems start with a star, *, are optional and don't count for grade. Of course, feel free to write them up if you want.

1. Normal testing: one-sided

Suppose $X_i \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2)$, i = 1, 2, ..., n, where $\theta \ge 0$ is unknown and σ^2 is known. Consider the problem of testing $H_0: \theta = 0$ vs. $H_1: \theta > 0$. Let $\alpha \in (0, 1)$.

- (a) Find the level- α UMP test. Write down the rejection region.
- (b) Express the power function of this test, $\beta_n(\theta)$, using standard normal cdf Φ . How does $\beta_n(\theta)$ depend on n and σ^2 ?
- (c) Find the limit $\gamma(\theta) = \lim_{n \to \infty} \beta_n(\theta)$ and plot it. Is it desirable?
- (d) Suppose the sample size n can be picked by the researcher. Find the smallest n, called n^* , such that the level-0.05 UMP test has $\beta_n(1) \ge 0.95$. How does n^* depend on σ^2 ?
- (e) Find a 1- α confidence interval of θ by inverting a family of level- α test of $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ with test functions $\varphi_{\theta_0}(X) = \mathbf{1}(\frac{(\bar{X} \theta_0)}{\sigma/\sqrt{n}} > \Phi^{-1}(1 \alpha))$.

2. * Normal testing: two-sided

Suppose $X_i \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2)$, i = 1, 2, ..., n, where $\theta \in \mathbb{R}$ is unknown and σ^2 is known. Consider the problem of testing $H_0: \theta = 0$ vs. $H_1: \theta \neq 0$. Let $\alpha \in (0, 1)$.

- (a) Find the level- α UMPU (unbiased) test (example 8.3.20 in Casella and Berger). Write down the rejection region.
- (b) Express the power function of this test, $\beta_n(\theta)$, using standard normal cdf Φ . How does $\beta_n(\theta)$ depend on n and σ^2 ?
- (c) Find the limit $\gamma(\theta) = \lim_{n \to \infty} \beta_n(\theta)$ and plot it. Is it desirable?
- (d) Suppose the sample size n can be picked by the researcher. Find the smallest n, called n^* , such that the level-0.05 UMPU test has $\beta_n(1) \geq 0.95$. How does n^* depend on σ^2 ?
- (e) Find a 1- α confidence interval of θ by inverting a family of level- α UMPU test for $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0, \ \theta_0 \in \mathbb{R}$.

3. Normal Testing: nuisance parameter

Suppose $X_i \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2)$, i = 1, 2, ..., n, where $\theta \in \mathbb{R}$ and $\sigma^2 \in (0, \infty)$ are both unknown. Consider the problem of testing $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$, where θ_0 is a constant.

(a) Show that the test that rejects H_0 when $\frac{|\bar{X}-\theta_0|}{\sqrt{S^2/\sqrt{n}}} > t_{n-1,\frac{\alpha}{2}}$ is a level- α test. Here $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$, and $t_{n-1,\frac{\alpha}{2}}$ is the $1 - \frac{\alpha}{2}$ quantile of t distribution with degree of freedom n-1.

(b) * Show that this test can be derived as a (generalized) likelihood ratio test.

4. Likelihood ratio test

- (a) Consider testing for the model with exponential distributions $\mathcal{P} = \{p_{\theta}(x) = \theta e^{-\theta x} \mathbf{1}(x > 0), \theta \in [1, \infty)\}$. Let $\alpha \in (0, 1)$. Derive the level- α likelihood ratio test for $H_0: \theta = 1$ versus $H_1: \theta > 1$.
- (b) * Consider testing for Cauchy location model $\mathcal{P} = \left\{ p_{\theta}(x) = \frac{1}{\pi \left(1 + (x \theta)^2\right)}, \theta \in \{0, 1\} \right\}$. Let $\alpha = 0.05$. Numerically compute the rejection region of the likelihood ratio test for $H_0: \theta = 0$ versus $H_1: \theta = 1$. Does the test reject when X is extremely large?

5. * p-value

Suppose \mathcal{P} is a family with monotone likelihood ratio in T(X), and the distribution of T(X) is continuous with common support for all θ . Let φ_{α} denote the UMP level- α test of $H_0: \theta \leq \theta_0$ vs. $\theta > \theta_0$ that rejects when T(X) is large. Let p(X) denote the resulting p-value, defined as $p(X) = \inf\{\alpha: \varphi_{\alpha}(X) = 1\}$.

- (a) Show that these test φ_{α} are "nested" in the sense that φ_{α} is nondecreasing as a function of α . The *p*-value defined as $p(X) = \inf\{\alpha : \varphi_{\alpha}(X) = 1\}$ is therefore the "attained significance" for the observed data X.
- (b) Show that if X = x is observed, the p-value $p(x) = P_{\theta_0}(T(X) > T(x))$.
- (c) Show that $p(X) \sim U[0,1]$ if $\theta = \theta_0$, has non-increasing density on [0,1] if $\theta > \theta_0$, and has non-decreasing density on [0,1] if $\theta < \theta_0$.