Show that for d, the true-distance¹ to the true-nearest¹ food and n, the number of remaining food,

$$h(d,n) = \begin{cases} d+n-1 & n \ge 1\\ 0 & n = 0 \end{cases}$$

is a valid heuristic for all $n \in \mathbb{Z}^+$ and $d \in \mathbb{Z}^+$.

Proof. We will show that:

- 1. h never overestimates the cost of reaching the goal.
- 2. The consistency inequality where d' and n' are d and n after taking one action²:

$$h(d, n) < 1 + h(d', n')$$

is always satisfied.

Lemma 1 shows admissibility and Lemma 2 shows consistency.

Lemma 1: h is admissible. Pac-man must always travel d or more to the true-nearest food dot. After that, it must travel at least n-1 farther for each food.

 \therefore h never overestimates the cost of reaching the goal.

Lemma 2: h is consistent.

Base Case: h is consistent when d = 1 (Pac-man is right next to the food).

If Pac-man moves towards the true-nearest food and n = 1, then n' = 0 and h returns 0. The consistency inequality is:

$$h(d, n) \le 1 + h(d', n')$$

 $1 + 1 - 1 \le 1 + 0$
 $1 \le 1$

If Pac-man moves towards the true-nearest food and $n \geq 2$, then n' = n - 1 and $d' \in \mathbb{Z}^+$. The consistency inequality is:

$$h(d, n) \le 1 + h(d', n')$$

 $1 + n - 1 \le 1 + d' + n' - 1$
 $n \le d' + n - 1$
 $1 \le d'$

If Pac-man moves away from the true-nearest food, then n'=n and $d'\geq d$. The consistency inequality is:

$$h(d,n) \le 1 + h(d',n')$$

^{1&}quot;True-" refers to manhattan distance and accounting for walls.

²One move up, down, left, or right

$$1 + n - 1 \le 1 + d' + n' - 1$$
$$n \le d' + n$$
$$0 \le d'$$

The consistency inequality is satisfied.

Inductive Hypothesis: If h is consistent when $d = k, k \in \mathbb{Z}^+$, then h is consistent when d = k + 1.

Inductive Step: [I must show that $h(d_{k+1}, n) \leq 1 + h(d'_{k+1}, n)$]

If Pac-man moves towards the true-nearest food, then $d'_{k+1} = d_{k+1} - 1$ and n' = n. The consistency inequality is:

$$h(d_{k+1}, n) \le 1 + h(d'_{k+1}, n')$$
$$d_{k+1} + n - 1 \le 1 + d_{k+1} - 1 + n - 1$$
$$0 \le 0$$

If Pac-man moves away from the true-nearest food, then $d'_{k+1} \ge d_{k+1}$ and n' = n. The consistency inequality is:

$$h(d_{k+1}, n) \le 1 + h(d'_{k+1}, n')$$

$$d_{k+1} + n - 1 \le 1 + d'_{k+1} + n' - 1$$

$$d_{k+1} \le 1 + d'_{k+1}$$

$$d_{k+1} \le d'_{k+1} \le 1 + d'_{k+1}$$

 \therefore By the principle of induction, h remains consistent for all $d \in \mathbb{Z}^+$ and all $n \in \mathbb{Z}^+$