Complexity Analysis of Discrete Fourier Transform Algorithms

Final Project Presentation
Data Structures and Algorithms (ECE 573)

Yilin Yang Peeyush Tambe Siddharth Rupavatharam

Table of Contents

- Introduction
- Algorithms
 - Discrete Fourier Transform
 - Fast Fourier Transform
- Experiment
- Results
- Conclusion

Introduction

 Fourier Transform developed by French mathematician Jean-Baptiste Joseph Fourier in late 1700's

 Fourier Transform quantifies / measures the frequency content in a signal

 Any continuous function or signal can be decomposed as sum of infinite sines and cosines or complex exponentials

Introduction

- Applications of Fourier Transform:
 - Spectrum Visualization
 - Simplifying complex operations like convolutions
 - Design and Implementation of Filters
 - Modern Communication Systems (OFDM)

 Discrete Fourier Transform was developed as the digital counterpart to the original Fourier Transform

- The Discrete Fourier Transform not feasible for real time implementations
 - \circ Complexity $O(N^2)$

- The Fast Fourier Transform is a smarter implementation of the DFT
 - Complexity of O(N log(N)) 100x faster than DFT

Algorithms: Discrete Fourier Transform

The Discrete Fourier Transform is defined as follows:

$$X_k=\sum_{n=0}^{N-1}x_ne^{-rac{2\pi i}{N}nk}$$

• Input \rightarrow x(n), DFT \rightarrow X(k) both length N

• N^2 number of complex multiplications and N(N-1) complex additions (O(N^2) complexity)

Algorithms: Radix-2 Fast Fourier Transform

$$X_k=\sum_{n=0}^{N-1}x_ne^{-rac{2\pi i}{N}nk}$$

Input -> x(n), FFT -> X(k) both length N

$$X_k = \sum_{m=0}^{\frac{N}{2}-1} x(2.m).W_{\frac{N}{2}}^{m.k} \ + \ W_N^k.\sum_{m=0}^{\frac{N}{2}-1} x(2.m+1).W_{\frac{N}{2}}^{m.k}$$

• Split input into even, odd halves and multiply twiddle factor with odd seq

$$X_k = X_{k(even)} \; + \; W_N^k.X_{k(odd)}, \; k = 0 \; ... \; \frac{N}{2} - 1 \label{eq:Xk}$$

• $(N/2)^2$ number of complex multiplications reduces to $(O(N \log(N)))$ complexity

Algorithms: Radix-2 Fast Fourier Transform

Decimation in time

Algorithms: Radix-2 Fast Fourier Transform

Decimation in time

Experiment

Procedure

- DFT and FFT implemented using Python
- 4 Datasets generated for input
 - o Zeros
 - Ones
 - o -1 to 1
 - Cosine
- Problem sizes range from 256 (2^8) up to 32K
 (2^15)
- Performance evaluated by 2 criteria
 - Execution time
 - Number of operations

Hardware

- Experiments run on 2 machines
 - 64-bit Ubuntu platform running Linux OS
 - 64-bit Windows platform running virtual machine of Linux OS

Simulations

- 128 simulations performed
 - 2 Algorithms
 - 4 Datasets
 - o 8 Problem Sizes
 - o 2 Machines

Dataset: Ones

Problem Size

2^8

2^9

2^10

2^11

2^12

2^13

2^14

2^15

256

512

1k

2k

4k

8k

16k

32k

DFT (Ubuntu VM)

0.12363

0.29977

1.0552

4.10548

15.2145

89.88514

395.60079

1265.86637

2^13 2^14 2^15

0.05373

0.18792

0.70518

2.81096

11.1803

50.29091

224.86547

846.19161

DFT (Ubuntu)

2^8

2^9

2^10

2^11

2^12

Problem Size

256

512

1k

2k

4k

8k

16k

32k

DFT (Ubuntu VM)

0.11174

0.29339

1.12745

3.75467

14.83544

97.58259

359.97122

1160.80973

FFT (Ubuntu VM)

0.0025

0.0086

0.0204

0.0503

0.1013

0.1536

0.33671

0.7582

DFT (Ubuntu)

0.04728

0.72603

2.85524

11.36227

52.01844

230.09249

855.50801

FFT (Ubuntu)

0.0067

0.0125

0.013

0.0207

0.0371

0.0703

0.14658

0.309

0.181

FFT (Ubuntu VM)

0.00218

0.00849

0.02346

0.04848

0.09605

0.17482

0.2375

0.4751

Dataset: Zeros

FFT (Ubuntu)

0.0063

0.001

0.016

0.0234

0.0379

0.0708

0.1477

0.3079

Dataset: -1 to 1

	Р	roblem Size	DFT (Ubuntu VM)	DFT (Ubuntu)	FFT (Ubuntu VM)	FFT (Ubuntu)
ts [256	2^8	0.1307	0.05571	0.00241	0.0054
	512	2^9	0.29633	0.17978	0.00841	0.009
	1k	2^10	0.96175	0.70308	0.026	0.017
1	2k	2^11	5.03086	2.77729	0.0589	0.0203
	4k	2^12	22.94392	11.08887	0.09496	0.0407
	8k	2^13	88.62576	52.68572	0.1955	0.0719
	16k	2^14	356.47654	221.95255	0.2547	0.1522
	32k	2^15	1204.3287	879.47403	0.4598	0.3054
			.1			

			8k	2^13		88.62576		52.68572		0.1955		0.0719
		1	16k	2^14		356.47654		221.95255		0.2547		0.1522
		3	32k	2^15		1204.3287		879.47403		0.4598		0.3054
Р	Problem Size	DFT (Ubuntu VM)	VM) DFT (Ubuntu)		tu)	FFT (Ubuntu VM)		FFT (Ubu	ıntu)			
256	2^8	0.10748	3	0.0563	34	0.0	022	0.0	062			
512	2^9	0.28475	5	0.182	65	0.0	053	0.0	0038			
1k	2^10	1.06186	5	0.7022	21	0.00	949	0.0)158			
2k	2^11	4.9707	7	2	2.8	0.03	841	0.0)226	Dataset: Cos	sine	
4k	2^12	16.20032	2	11.153	36	0.09	208	0.0	397			
8k	2^13	82.95861	1	50.317	15	0.15	306	0.0	734			

2^14 225.3965 0.2559 16k 353.26238 0.1484 2^15 0.10748 0.05634 0.0022 0.0062 32k

Number of Operations Performed

	Problem Size	DFT	FFT
256	2^8	65536	2048
512	2^9	262144	4608
1k	2^10	1048576	10240
2k	2^11	4194304	22528
4k	2^12	16777216	49152
8k	2^13	67108864	106496
16k	2^14	268435456	229376
32k	2^15	1073741824	491520

Execution Time: Zeros

Logarithmic Scale

Logarithmic Scale

Execution Time: Alternating -1 to 1

Execution Time: Alternating -1 to 1

Logarithmic Scale

Execution Time: Cosine

Execution Time: Cosine

Logarithmic Scale

Problem Size vs. Number of Operations

Problem Size vs. Number of Operations

Logarithmic Scale

Conclusions

- 10x to <1000x reduction in number of operations
- 10x to >1000x increase in speed

- DFT (of length N) calculated by a summation of input sequence (length N) elementwise
 - $\circ \rightarrow O(N^2)$ complexity

- Radix-2 FFT recursively halves input sequence(length N)to compute DFT on halved sequence
 - $\circ \to O(N \log(N))$ complexity

QUESTIONS?