PROJECT : DIABETES PREDICTION SYSTEM SUBMITTED BY : RAMYA A

Mail ID: arumugammohana300@gmail.com Phase-03

Loading and Pre-Processing the Dataset

ABOUT THIS PHASE:

In this phase we need to do loading and pre-processing the datasets. Here I explain about what are the process to do this phase.

Step 1:

Import the dependencies

In this step we import the library files which are required to run this program code, like modules (numpy, pandas, sklearn, matpltlib, seaborn)

Step 2:

Impoting the dataset

In this step I import PIMA diabetes dataset form the sklearn module it is used to fetch the data and the data is used as the input of this project.

Step 3:

Statical measure of data

In this step I want know some statics about my dataset like mean, count, avg etc,.. and this is the important step in data preprocessing

Step4:

Data standardization:

In this step I standardized my dataset with the help of scaler function

Import the dependencies

import numpy as np import pandas as pd from
sklearn.preprocessing import StandardScaler from
sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score

Data collection and analysis

PIMA Diabetes Dataset

loading the dataset to the pandas dataframe
diabetes_dataset = pd.read_csv('/content/diabetes.csv')

pd.read_csv?

printing the first 5 rows of the dataset
diabetes_dataset.head()

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome

0	6	148	72	35	0	33.6	0.627	50	1	
1	1	85	66	29	0	26.6	0.351	31	0	
2	8	183	64	0	0	23.3	0.672	32	1	
3	1	89	66	23	94	28.1	0.167	21	0	
4	0	137	40	35	168	43.1	2.288	33	1	

number of rows and column in this dataset
diabetes_dataset.shape

(768, 9)

getting the statistical measures of the data
diabetes_dataset.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI D
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000
4						•

diabetes_dataset['Outcome'].value_counts()

0 5001 268

Name: Outcome, dtype: int64

0--> Non-Diabetic 1-->

Diabetic

```
diabetes_dataset.groupby('Outcome').mean()
                             Glucose BloodPressure SkinThickness
                                                                                  BMI
                                                                    Insulin
              Pregnancies
\# seperating the data and labels ^{\mathbf{Outcome}}
X = diabetes_dataset.drop(columns = 'Outcome', axis=1)
                3.298000 109.980000
                                        68.184000
                                                       19.664000 68.792000 30.304200
        0
Y = diabetes_dataset['Outcome']
        1 4.865672 141.257463 70.824627 22.164179 100.335821 35.142537
print(X)
         Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \
     0
                  6
                         148
                                         72
                                                       35
     1
                         183
     2
                   8
                                         64
                                                        0
                                                                 0
                                                                   23.3
     3
                          89
                                        66
                                                       23
                                                                94 28.1
                  1
     4
                  0
                         137
                                                               168 43.1
                                        40
                                                       35
     763
                  10
                         101
                                         76
                                                       48
                                                               180 32.9
     764
                   2
                         122
                                         70
                                                       27
                                                                0
                                                                   36.8
     765
                   5
                          121
                                        72
                                                       23
                                                               112 26.2
     766
                   1
                          126
                                         60
                                                        0
                                                                 0
                                                                   30.1
    767
                                         70
                                                       31
                                                                 0 30.4
         DiabetesPedigreeFunction Age
    0
                           0.627
                           0.351
    1
                                   31
     2
                           0.672
                                   32
     3
                           0.167
                                   21
     4
                           2.288
                                   33
     763
                           0.171
                                   63
     764
                            0.340
                                   27
                            0.245
     766
                           0.349
                                   47
                            0.315
    767
                                   23
    [768 rows x 8 columns]
print(Y)
           0
    1
    2
           1
    3
    4
           1
    763
           0
    764
    765
           0
    766
           1
    Name: Outcome, Length: 768, dtype: int64
Data Standardization
scaler = StandardScaler()
scaler.fit(X)
     ▼StandardScaler
     StandardScaler()
standardized_data = scaler.transform(X)
print(standardized_data)
    [[ \ 0.63994726 \ \ 0.84832379 \ \ 0.14964075 \ \dots \ \ 0.20401277 \ \ 0.46849198
       1.4259954 ] [-0.84488505 -1.12339636 -0.16054575 ... -
     0.68442195 -0.36506078
      -0.19067191]
     -0.10558415]
     [ \ 0.3429808 \quad 0.00330087 \quad 0.14964075 \ \dots \ -0.73518964 \ -0.68519336
     [-0.84488505 0.1597866 -0.47073225 ... -0.24020459 -0.37110101
```

```
1.17073215] [-0.84488505 -0.8730192 0.04624525 ...
    0.20212881 -0.47378505
      -0.87137393]]
X = standardized_data Y =
diabetes_dataset['Outcome']
print(X)
print(Y)
    [[\ 0.63994726\ \ 0.84832379\ \ 0.14964075\ \dots\ \ 0.20401277\ \ 0.46849198
       1.4259954 ] [-0.84488505 -1.12339636 -0.16054575 ... -
    0.68442195 -0.36506078
      -0.19067191]
     [ 1.23388019 1.94372388 -0.26394125 ... -1.10325546 0.60439732
      -0.10558415]
     -0.27575966]
     [-0.84488505 \quad 0.1597866 \quad -0.47073225 \ \dots \ -0.24020459 \ -0.37110101
       1.17073215] [-0.84488505 -0.8730192 0.04624525 ... -
    0.20212881 -0.47378505
      -0.87137393]]
          1
          0
    1
    2
          1
    3
           0
    4
          1
    763
          0
    764
           0
    765
          0
    766
          1
    767
    Name: Outcome, Length: 768, dtype: int64
```