Classificazione di immagini istopatologiche con tecniche di apprendimento miste

UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE

Corso di Laurea Triennale in Informatica

Relatore

Dott. Andrea Loddo

Prof.ssa Cecilia di Ruberto

Studente

Marco Usai

60/61/65762

Anno accademico: 2021-2022

Problema

Il tumore gastrico è il quinto tumore più diffuso al mondo, nonché il quarto più letale.

I medici, dato l'ingente carico di lavoro, potrebbero diagnosticare in modo errato la patologia, perciò necessitano di un supporto che riduca al minimo tale possibilità di errore.

La tecnologia informatica si è evoluta a tal punto da poterli assistere mediante tecniche automatiche di apprendimento e classificazione.

L'obiettivo è quello di ottimizzare tali tecniche per ottenere dei risultati più soddisfacenti possibile.

Immagini normali: non contenenti aree cancerogene.

Immagini anormali: contenenti più del 50% di aree cancerogene.

Dataset: GasHisSDB

- Suddiviso in tre sottocartelle in base alla risoluzione delle immagini: 160, 120, 80.
- Si affrontano due diversi task:
 - Task 1: Classificazione di immagini 160x160
 - Task 2: Sperimentazione cross-dataset

Feature estratte

Handcrafted:

Texture:

- LBP18
- GLCM

Colore:

- Feature di Haar
- Istogramma del colore
- Auto-correlogram

Momenti invarianti:

- Momenti di Zernike
- Momenti di Chebishev di prima specie
- Momenti di Chebishev di seconda specie
- Momenti di Legendre

Deep:

- DenseNet 201
- EfficientNet-b0
- AlexNet
- DarkNet 53, 19
- GoogleNet
- Inception-v3
- Inception-ResNet-v2
- ResNet 101, 50, 18
- VGG
- Xception

Migliori risultati ottenuti

Top feature handcrafted

Features	Classificators	Accuracy	Precision	Recall	Specificity	F-Score	MCC	BACC
	kNN	65.24%	71.84%	70.09%	57.79%	70.95%	27.71%	63.94%
	SVM	72.51%	71.57%	90.60%	44.72%	79.97%	40.82%	67.66%
CHd6	Random Forest	78.11%	79.66%	85.76%	66.36%	82.60%	53.48%	76.06%
	Fine Tree	70.47%	75.94%	75.00%	63.50%	75.47%	38.38%	69.25%
	Ensemble	80.14%	81.88%	86.31%	70.67%	84.04%	57.95%	78.49%

Top 2 feature deep

Features	Classificators	Accuracy	Precision	Recall	Specificity	F-Score	MCC	BACC
	Ensemble	40.14%	61.14%	3.20%	96.88%	6.08%	0.21%	50.04%
	Fine Tree	84.92%	87.51%	87.60%	80.80%	87.56%	68.42%	84.20%
DenseNet 201	kNN	88.21%	89.04%	91.84%	82.63%	90.42%	75.16%	87.23%
	Random Forest	91.93%	92.61%	94.20%	88.46%	93.40%	83.05%	91.33%
	SVM	94.43%	95.41%	95.39%	92.95%	95.40%	88.33%	94.17%
	Ensemble	41.87%	84.62%	4.91%	98.63%	9.28%	9.39%	51.77%
	Fine Tree	78.79%	82.62%	82.29%	73.41%	82.46%	55.64%	77.85%
EfficientNet-b0	kNN	87.53%	89.01%	90.60%	82.82%	89.80%	73.79%	86.71%
	Random Forest	89.89%	89.96%	93.77%	83.92%	91.83%	78.71%	88.85%
	SVM	93.84%	94.69%	95.16%	91.81%	94.93%	87.09%	93.49%

Un affinamento: combinazione tra feature

Sperimentazione cross-dataset

- Si decide di verificare l'efficienza dei modelli 160x160 su dataset con immagini di risoluzione differente.
- Utilizzo degli stessi modelli creati per le immagini da 160x160, per immagini da 120x120 e 80x80.
- Risultati notevoli e soddisfacenti per entrambi i dataset di immagini.

Conclusioni

- Il classificatore più efficiente è stato il Random Forest.
- Task 1:
 - Handcrafted: CH, CH2, LM (> 80%);
 - Deep: DarkNet 53, DenseNet 201, EfficientNet-b0, Inception-ResNet-v2 (> 90%);
 - Combinazioni: CHd6-DenseNet 201-EfficientNet-b0 (> 95%)
- Task 2:
 - 80x80: > 80%;
 - 120x120: > 90%.
- Soluzione proposta: Random Forest + CHd6-DenseNet 201-EfficientNet-b0

Conclusioni

- La combinazione tra feature ha:
 - migliorato i risultati complessivi;
 - permesso di stabilire una pipeline adatta ai task studiati.
- Il modello proposto è affidabile per la classificazione di immagini istopatologiche anche in un ambiente clinico con immagini a risoluzione differente.
- Si è migliorato lo stato dell'arte nel contesto del dataset studiato.

Sviluppi futuri

- I lavori futuri che possono essere svolti a partire da questo lavoro sono molteplici.
- In particolare, si estenderà la classificazione su ulteriori feature e classificatori, andando a includere Vision Transformer di nuova generazione.
- Sviluppi addizionali riguardanti la problematica cross-dataset saranno realizzati per mezzo di test ed eventuali raffinamenti su nuovi dataset e differenti tipologie di colorazione.

