inter 3.4.-3: For $S \subseteq G$, (uS)v = u(Sv)

Proof: $(uS)v = \{hv : h \in uS\} = \{usv : s \in S\} = \{ui : i \in Sv\} = u(Sv)$

So writing uSv is unambiguous. Similarly for uvS and Suv. Same .

inter 3.4.-2: For $S, T \subseteq G, gS = gT \iff S = T \iff Sg = Tg$

Proof: The right/left action of g on G is a permutation, so this follows from the invertibility of bijections.

inter 3.4.-1: For $S \subseteq G$, $h^{-1}g \in S \iff g \in hS$

Proof: $h^{-1}g \in S \implies \exists s \in S : h^{-1}g = s \implies g = hs \implies g \in hS$ $g \in hS \implies \exists s \in S : g = hs \implies h^{-1}g = s \Rightarrow h^{-1}g \in S$

Similarly, $gh^{-1} \in S \iff g \in Sh$

prop 3.4: $N \leq G \implies \{gN : g \in G\}$ and $\{Ng : g \in G\}$ are both partitions of G

Proof: Let $g \sim h$ to mean $g \in hN$

Then $\exists n \in \mathbb{N} : g = hn \implies gn^{-1} = h \implies h \in g\mathbb{N} \implies h \sim g$

Let $g \sim h$ and $h \sim i$, then $\exists n, m \in N : g = hn, h = im \implies g = imn \Rightarrow g \in iN \Rightarrow g \sim i$

 $1 \in N \implies g \sim g$, so \sim is an equivalence relation partitioning G

inter 3.4.1: For $N \leq G$, $uN = vN \iff u \in vN \iff v \in uN$

Proof: Follows from prop 3.4 and $1 \in N$.

Note we can restate the equivalence relation in the proof for 3.4 as $g \sim h \iff gN = hN$ now.

Similarly, $Nu = Nv \iff u \in Nv \iff v \in Nu$

inter 3.4.2: For $N \leq G$, $\forall n \in N$, uN = unN

Proof: $1 \in nN \iff N = nN \implies uN = unN$

inter 3.4.3: $\{gN : g \in G\} = \{Ng : g \in G\} \iff N \subseteq G$

Proof: $\{gN: g \in G\} = \{Ng: g \in G\} \iff \forall g \in G, gN = Ng \text{ as } 1 \in N \text{ and from prop } 3.4.$

 $gN = Ng \iff \forall r \in gN \left(r \in Ng \iff rg^{-1} \in N \right) \iff gNg^{-1} = N$

(the outer \iff arrows hold due to $S \subseteq G$, $gS \leftrightarrow S' \leftrightarrow S'$ being bijections)

prop 3.5: multiplication $uN \cdot vN = uvN$ is well defined $\iff N \triangleleft G$

Proof: Let $uN \cdot bN = uvN$ be well defined, i.e. for $u, v \in uN$, $b, d \in bN$, we have ubN = vdN. Then, $\forall g \in G, \left(\forall n \in N, \left(1gN = ngN \iff ng \in gN \iff g^{-1}ng \in N \right) \iff gNg^{-1} = N \right) \iff N \subseteq G$

Conversely, $N \subseteq G \implies \forall n, m \in N, unN \cdot vmN = unvmN = unN \cdot vmV = uvN$.

Technically the first line suffices, but adding the extra variable makes it messy. And the converse is cool.

prop 3.13: For $H, K \leq G$, $|HK| = \frac{|H||K|}{|H \cap K|}$

Proof: $HK = \bigcup hK$, $K \leq G$ means any two hK's are either disjoint or identical.

 $h_1K = h_2K \iff h_2^{-1}h_1 \in K \iff h_2^{-1}h_1 \in H \cap K \iff h_1H \cap K = h_2H \cap K$ $\implies |HK| = \frac{|H|^2}{|H \cap K|} |K|$

prop 3.14: For $H, K \leq G$, $HK \leq G \iff HK = KH$

 $\begin{array}{l} \textbf{coll 3.15:} \ H,K \leq G \ \text{and} \ H \leq N_G(K) \iff HK \leq G \\ \text{Proof:} \ \forall h \in H, k \in K \left(hkh^{-1} \in K \implies hk \in Kh \in KH \right) \implies HK \subseteq KH \\ \text{Similarly,} \ kh = h(h^{-1}kh) \in hK \in HK \implies KH \subseteq HK, \ \text{so} \ KH = HK. \end{array}$