Uniqueness of Equilibria in Interactive Networks

Chien-Hsiang Yeh

Supervisor John Stachurski

Research School of Economics, Australian National University

April 19, 2022

Motivation

- Network models are broadly used in research.
 - Eisenberg and Noe (2001): cascade of default in an interbank lending network.
 - Acemoglu et al. (2012): network origin of aggregate fluctuations.
- Important to determine uniqueness of equilibrium.
 - Multiple equilibria of a financial credit network make the probability of default indeterminate (Roukny et al., 2018).
 - Multiple equilibria lead to a self-fulfilling cascade of default due to a credit freeze (Jackson and Pernoud, 2020).
 - Comparative statics may fail if multiplicity exists.

Motivation

- Can we check uniqueness easily and quickly?
- Acemoglu et al. (2016) (hereafter, AOT) propose a unified framework, nesting production networks, network game models, and financial networks.
- Some network models are not embodied in AOT.
 - e.g., Financial networks: Eisenberg and Noe (2001), Acemoglu et al. (2015a), Liu et al. (2020)
- Generic uniqueness of equilibrium in AOT is confusing in some cases:
 - generic uniqueness holds, but multiple equilibria exist with arbitrary high probability.

Contribution

- 1. Provide conditions for existence and (almost surely) uniqueness of equilibrium in a generalized framework.
 - Embody more network models.
 - Easy to check uniqueness for future research.
 - Computation method for equilibrium.

- 2. The result shows that the interbank lending network of Liu et al. (2020) has almost surely unique clearing payments.
 - Liu et al. (2020) simulate the U.S. interbank lending network and show that contagion effect of default has been reduced after the 2007-09 financial crisis.
 - Liu et al. (2020) only show existence of equilibrium.

Contribution

- 3. As an application of unique equilibrium, we provide a measure for identifying key players.
 - Key players: once removed, create the highest reduction in aggregate economic states (Ballester et al., 2006; Zenou, 2016).
 - Capture either too-big-to-fail or too-interconnected-to-fail agents.
 - Evaluate both "sender" and "receiver" effects.

Model

Consider an economy with $n \geqslant 2$ agents, indexed by $N := \{1, \ldots, n\}$. Each agent's economic state is $x_i \in \mathbb{R}$. Agent j's state depends on the other agents' states:

$$x_j = f_j \left(\sum_i x_i w_{ij} + \varepsilon_j \right) \tag{1}$$

- $f_j : \mathbb{R} \to \mathbb{R}$: interaction function
- w_{ij} : sensitivity extent of interaction between i and j.
- $\varepsilon_j \in \mathbb{R}$: shocks.

Model

In vector form

$$x = f(xW + \varepsilon)$$

where $x := (x_1, \dots, x_n)$, $\varepsilon := (\varepsilon_1, \dots, \varepsilon_n)$, $f(t) := (f_1(t_1), \dots, f_n(t_n))$ for $t \in \mathbb{R}^n$, and $W := (w_{ij}) \in \mathbb{R}^{n \times n}$ is sensitivity matrix.

• (f, W, ε) : a network.

Examples: Financial Networks

Eisenberg and Noe (2001), Cifuentes et al. (2005), and Glasserman and Young (2015) consider an interbank lending network:

- There are n risk-neutral banks.
- Total liability obligation: \bar{p}_i .
- Define relative liability

$$w_{ij} = \begin{cases} rac{i' \text{s liability to } j}{\bar{p}_i} & \text{if } \bar{p}_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

- $\sum_{i} w_{ij} = 1$ for all i.
- Exogenous cash flow $\varepsilon_j \geqslant 0$.

Examples: Financial Networks

Assume: proportional repayments of liabilities, limited liability, and absolute priority of debt over equity.

Clearing payment x_i in equilibrium solves

$$x_j = \min\left\{\sum_i x_i w_{ij} + \varepsilon_j, \bar{p}_j\right\}$$
 (2)

for all j. Interaction functions are

$$egin{aligned} f_j(t) &= \min\{t, ar{p}_j\} \ &= t \, \mathbbm{1}_{\{t < ar{p}_j\}}(t) + ar{p}_j \, \mathbbm{1}_{\{t \geqslant ar{p}_j\}}(t) \end{aligned}$$

Network Graph Example: Interbank Lending

Which banks default $(x_j < \bar{p}_j)$?

$$\begin{aligned} x_1 &= \min\{x_2 w_{21} + \varepsilon_1, \bar{p}_1\} \\ x_2 &= \min\{x_1 w_{12} + x_4 w_{42} + \varepsilon_2, \bar{p}_2\} \\ x_3 &= \min\{x_2 w_{23} + x_4 w_{43} + \varepsilon_3, \bar{p}_3\} \\ x_4 &= \min\{x_2 w_{24} + x_3 w_{34} + \varepsilon_4, \bar{p}_4\} \end{aligned}$$

Examples: Production Network

Carvalho (2008), Acemoglu et al. (2012), Acemoglu et al. (2017), Carvalho and Tahbaz-Salehi (2019) and Acemoglu and Azar (2020) consider a production network.

There are n sectors. Each sector's output y_j is:

$$y_j = z_j^{\alpha} \ell_j^{\alpha} \prod_{i=1}^n y_{ij}^{(1-\alpha)w_{ij}}$$

where y_{ij} is intermediate input from sector i to j. Representative household has Cobb-Douglas preferences:

$$u(c_1,\ldots,c_n)=A\prod_{j=1}^n c_j^{1/n}$$

Examples: Production Networks

Producers' and household's optimal problems give

$$\log y_j = \mu_j + \alpha \log z_j + (1 - \alpha) \sum_i (\log y_i) w_{ij}$$

where μ_j is some constant.

Let $x_j = \log y_j$ and $\varepsilon_j = (\mu_j + \alpha \log z_j)/(1 - \alpha)$:

$$x_{j} = (1 - \alpha) \left(\sum_{i} x_{i} w_{ij} + \varepsilon_{j} \right)$$
 (3)

Model

AOT assume

- (1) $f_j \equiv f$ for all j
- (2) W is column stochastic.

Some models do not satisfy AOT.

- Eisenberg and Noe (2001): f_j is heterogeneous, and W is row stochastic.
- Ballester et al. (2006): W is not necessarily stochastic, w_{ij} could be negative.

Equilibrium

$$x_j = f_j \left(\sum_i x_i w_{ij} + \varepsilon_j \right) \qquad \forall j \tag{1}$$

Definition 1

Given realization of the shocks $(\varepsilon_1, \ldots, \varepsilon_n)$, an *equilibrium* is a collection of states (x_1, \ldots, x_n) such that equation (1) holds for all agents simultaneously.

Definition 2

Let $E \subset \mathbb{R}^n$ be the set of ε and

 $M := \{ \varepsilon \in E : \text{Equation (1) has multiple equilibria} \}.$

A network has almost surely unique equilibrium if the equilibrium exists for $\varepsilon \in E \setminus M$ and $Prob(\varepsilon \in M) = 0$.

Eventually Contracting

Assumption 1 (Eventually Contracting)

- $f = (f_i)$ and W satisfy
 - (i) f_i is Lipschitz continuous with Lipschitz constant β_i for all $i \in \mathbb{N}$, and
- (ii) $r(|W|\operatorname{diag}(\beta)) < 1$, where $\beta = (\beta_i)$ and $r(\cdot)$ is the spectral radius.

• $r(A) := \{ \max |\lambda| : \lambda \text{ is an eigenvalue of } A \}$

Uniqueness of Equilibrium: Eventually Contracting

Proposition 1

If Assumption 1 holds , then the equilibrium exists and is unique for any $\varepsilon \in \mathbb{R}^n$.

- If $r(|W|\operatorname{diag}(\beta)) < 1$, the equilibrium is always unique.
- Let $T: x \mapsto f(xW + \varepsilon)$. The equilibrium is $x^* = \lim_{m \to \infty} T^m x$ for any $x \in \mathbb{R}^n$.
- Unlike AOT, the uniqueness of equilibrium depends on either f
 or W.
- Assumption 2 is necessary in some cases.
 e.g., input-output analysis.

Uniqueness of Equilibrium: Eventually Contracting

Many network models have $f_i(a) - f_i(b) = \beta_i(a - b)$ for all i.

Corollary 3

If for all $i \in N$ there is $\beta_i > 0$ such that $f_i(a) - f_i(b) = \beta_i(a - b)$ for all $a, b \in \mathbb{R}$, then for $W \in \mathbb{R}^{n \times n}$ the condition $r(W \operatorname{diag}(\beta)) < 1$ implies the uniqueness of equilibrium for any $\varepsilon \in \mathbb{R}^n$.

• e.g., Ballester et al. (2006) suppose that $r(\beta W) < 1$ for uniqueness of equilibrium.

Non-contracting Case

Assumption 2 (Non-contracting)

- $f = (f_i)$ and W satisfy
 - (i) f_i is increasing, non-expansive and bounded for all i, and
- (ii) W is non-negative and r(W) = 1.

- $r(|W|\operatorname{diag}(\beta)) = 1$
- row/column stochastic $\Rightarrow r(W) = 1$.

Non-contracting: Multiple Equilibria

$$W = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}, \quad f_i(t) = egin{cases} t & |t| < M \ M & t \geqslant M \ -M & t \leqslant M \end{cases}$$

Consider the i.i.d. shock $arepsilon_i \in \{1,-1\}$ with

$$\mathsf{Prob}(\{\varepsilon_i=1\})=\mathsf{Prob}(\{\varepsilon_i=-1\})=1/2.$$

If the realization is $\varepsilon = (\varepsilon_1, \varepsilon_2) = (1, -1)$, the solutions are $x_1 = y + 1$ and $x_2 = y$ with -M < y < M - 1.

The probability of multiple equilibria is 1/2.

Almost Surely Uniqueness of Equilibrium

Assume that shocks (ε_i) are i.i.d. and absolutely continuous.

Proposition 2

If Assumption 2 holds, and the shock variables (ε_i) are i.i.d and absolutely continuous, then the equilibrium exists and is unique almost surely.

- If $f_j(t) \leqslant u_j$ for all $t \in \mathbb{R}$ and all j, then $x^* = \lim_{m \to \infty} T^m u$, where $u = (u_j)$.
- Unlike AOT, Proposition 2 allows the sensitivity matrix to be either row or column stochastic and not necessarily strongly connected.

Almost Surely Uniqueness of Equilibrium: Example

Liu et al. (2020):

- banks are exposed to lending and borrowing with different maturities
- ε_j could be negative
- $W \geqslant 0$ and $\sum_{i} w_{ij} \leqslant 1$ for all i
- Payment in equilibrium satisfies:

$$x_{j} = \min \left\{ \left[\sum_{i} x_{i} w_{ij} + \varepsilon_{j} \right]^{+}, \left[\sum_{i} x_{i} w_{ij} + \varepsilon_{j} + B_{j} \right]^{+}, \ \bar{p}_{j} \right\}$$
 (4)

where B_i is remaining and other assets, and $[z]^+ := \max\{z, 0\}$.

Almost Surely Uniqueness of Equilibrium: Example

Interaction functions are

$$f_j(t) = \min\{[t]^+, [t+B_j]^+, \bar{p}_j\}$$
 (5)

for all j.

 f_i is increasing, bounded and non-expansive for all j.

- If W is stochastic and shock is absolutely continuous, clearing payment is almost surely unique by Proposition 2.
- If r(W) < 1, clearing payment is unique by Proposition 1.

Comparative Statics

Lemma 4

Let (f,W,ε) and (f',W',ε') be two networks satisfying Assumption 1, and denote their corresponding equilibrium as \hat{x} and \hat{x}' , respectively. If f_i and f_i' are increasing functions for all $i\in N$, $f_i(t)\leqslant f_i'(t)$ for all $t\in\mathbb{R}$ and all $i,W\leqslant W'$, and $\varepsilon\leqslant \varepsilon'$, then $\hat{x}\leqslant \hat{x}'$.

Lemma 5

Let (f, W, ε) and (f', W', ε') be two networks satisfying Assumption 2 such that they have unique equilibrium, denoted by \hat{x} and \hat{x}' , respectively. Suppose that for all i we have $f_i(t) \leqslant u_i$ and $f_i'(t) \leqslant u_i'$ for all $t \in \mathbb{R}$ such that $u_i \leqslant u_i'$. If $f_i(t) \leqslant f_i'(t)$ for all $t \in \mathbb{R}$ and all i, $W \leqslant W'$, and $\varepsilon \leqslant \varepsilon'$, then $\hat{x} \leqslant \hat{x}'$.

Boundedness Condition

Consider a linear system:

$$x = xW + \varepsilon \tag{6}$$

Lemma 6

If W is non-negative and r(W) = 1, and the shocks (ε_i) are i.i.d. and absolutely continuous, then the solution of linear system (6) does not exist almost surely.

 The boundedness condition in Assumption 2 is essential to pin down the existence and uniqueness of equilibrium.

Boundedness Condition

$$f_{j}(t) = \min \left\{ \max \left\{ t, \ell_{j} \right\}, u_{j} \right\}$$

$$f(x) = \min \left\{ \max \left\{ xW + \varepsilon, \ell \right\}, u \right\}$$
(7)

Lemma 7

Let u, ℓ be such that $u \gg \ell$, f be defined as (7), and $W \geqslant 0$ be row/column stochastic. Given ε , if the equilibrium x^* is unique, then there is $j \in N$ such that either $x_j^* = u_j$ or $x_j^* = \ell_j$.

• For any strongly connected subgraph G_s , there is j in subgraph G_s s.t. either $x_i^* = u_j$ or $x_i^* = \ell_j$.

Examples: Financial Networks

Acemoglu et al. (2015a) and Acemoglu et al. (2015b) consider Eisenberg-Noe model with senior liability such that $\varepsilon_i \in \mathbb{R}$ for all i, and

$$x_{j} = \min \left\{ \max \left\{ \sum_{i} x_{i} w_{ij} + \varepsilon_{j}, \ 0 \right\}, \bar{p}_{j} \right\}$$

Lemma 7 implies

- there must be some banks repay in full or nothing,
- we can compute equilibrium in finite steps.

Algorithm 1:

- 1. $t \leftarrow 0$.
- 2. Guess $B = \{j \in \mathbb{N} : x_i^* = \ell_i\}$ from the power set of $B(\ell) := \{ j \in \mathbb{N} : \sum_{i} \ell_{i} w_{ii} + \varepsilon_{i} \leq \ell_{i} \}.$
- 3. Let $x^{(t)}$ be $x_i^{(t)} = \ell_i$ if $j \in B$ otherwise $x_i^{(t)} = u_i$. Let $A_t := \{ j \in \mathbb{N} : \sum_i x_i^{(t)} w_{ii} + \varepsilon_i \geqslant u_i \}.$
- 4. $t \leftarrow t + 1$. Try to set $x^{(t)}$

$$x_{j}^{(t)} = \begin{cases} u_{j} & \forall j \in A_{t-1} \\ \ell_{j} & \forall j \in B \end{cases}$$

$$\sum_{i \in A_{t-1}} u_{i} w_{ij} + \sum_{i \in B} \ell_{i} w_{ij} + \sum_{i \in N \setminus (A_{t-1} \cup B)} x_{i}^{(t)} w_{ij} + \varepsilon_{j} \quad \text{otherwise.}$$
If there is singular matrix error, then go back to step 2 and do another guess.

If there is singular matrix error, then go back to step 2 and do another guess.

- 5. If $A_t = A_{t-1}$, then go to step 6. Otherwise, go back to step 4.
- 6. If $f(x^{(t)}W + \varepsilon) = x^{(t)}$, terminate. Otherwise, go back to step 2 and do another guess.

An Algorithm to Compute Equilibrium, for Bounded Identity Maps

Lemma 8

Let f follow (7), $W \ge 0$ be column/row stochastic, and ε be such that the equilibrium is unique. Algorithm 1 returns the equilibrium $x^{(t)}$ in at most $n2^{n-1}$ iterations.

Key players: once removed, they generate the greatest aggregate loss to other agents (Ballester et al., 2006; Zenou, 2016).

There are many measures or centralities that evaluate the importance scores for agents in a network.

- The output multiplier in input-output analysis (Miller and Blair, 2009).
- The intercentrality in Ballester et al. (2006).

Sharkey (2017) casts a Katz centrality to the steady state of a continuous-time dynamics.

Following Sharkey (2017), equilibrium can be interpreted as steady state of a continuous-time dynamics:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(xW + \varepsilon) - x \tag{8}$$

Lemma 9

Suppose that f_i is increasing and continuously differentiable for all i, and $r(|W|\operatorname{diag}\beta) < 1$. Then the dynamic system (8) is asymptotically stable.

Define an alternative continuous-time dynamics as

$$\frac{\mathrm{d}x}{\mathrm{d}t} = F(x,s) := f(xW + \varepsilon) - s \circ x \tag{9}$$

where $s \in \mathbb{R}^n$ and $s \circ x := [s_1x_1, \dots, s_nx_n]$. Coefficients s specify small shocks to the agents.

Suppose $x = x^*$ before the removal of agent i.

Holding other things constant, remove agent i from the dynamics (9).

Equivalent shock to the removal of agent i:

$$\frac{\partial s_i}{\partial x_i^*} x_i^*$$

Impact to other agent j's steady state:

$$C_{ij} = \frac{\mathrm{d}x_j^*}{\mathrm{d}s_i} \frac{\partial s_i}{\partial x_i^*} x_i^*$$

Total impact of the removal of i is equal to $\sigma_i := \sum_i C_{ij}$.

Lemma 10

If f_i is differentiable for all i and $r(|W|\operatorname{diag}(\beta)) < 1$, then the total impact is $\sigma = 1 \left[I - \operatorname{diag}\left(f'(x^*W + \varepsilon)\right)W^\top\right]^{-1}\operatorname{diag}\left(x^*\right)$.

• Measure σ captures either too-big-to-fail or too-interconnected-to-fail agents.

Key Player Example: Network Games

Ballester et al. (2006) consider a network game:

Let $G = (g_{ij})$ be the adjacency matrix:

$$g_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are connected} \\ 0 & \text{otherwise} \end{cases}$$

Each agent j determines action x_j (e.g. crime effort) to maximize the payoff:

$$u_{j}(x_{1},...,x_{n}) = \alpha_{j}x_{j} - \frac{1}{2}(\eta - \gamma)x_{j}^{2} - \gamma \sum_{i=1}^{n} x_{i}x_{j} + \varphi \sum_{i=1}^{n} g_{ij}x_{i}x_{j}$$

$$\underbrace{\sum_{i=1}^{n} g_{ij}x_{i}x_{j}}_{\text{local influence complementarity}}$$

where $\alpha_i > 0$ for all j, $\eta, \varphi > 0$, $\gamma \geqslant 0$.

Key Player Example: Network Games

Best-reply function for j:

$$x_{j} = \frac{\alpha_{j}}{\eta} - \frac{\gamma}{\eta} \sum_{i=1}^{n} x_{i} + \frac{\varphi}{\eta} \sum_{i=1}^{n} x_{i} g_{ij} = \frac{\varphi}{\eta} \left(\sum_{i=1}^{n} x_{i} w_{ij} + \varepsilon_{j} \right)$$
(10)

where $w_{ij} = g_{ij} - \gamma/\varphi$ and $\varepsilon_j = \alpha_j/\varphi$.

Example 11

The network game (10) has equilibrium

$$x^* = (\varphi/\eta) \varepsilon [I - (\varphi/\eta)W]^{-1}.$$

The key player measure is

$$\sigma = \underbrace{\left(\mathbf{1}[I - (\varphi/\eta)^2 W^\top]^{-1}\right)}_{\text{sender effect}} \circ \underbrace{\left((\varphi/\eta)\varepsilon[I - (\varphi/\eta)W]^{-1}\right)}_{\text{receiver effect}}$$

- "sender" effect: agents pass on shocks and influence others.
- "receiver" effect: agents are affected by others

Recap

- Uniqueness of equilibrium depends on both interaction functions and sensitivity matrix, $r(|W|\operatorname{diag}(\beta)) < 1$.
- If a network is non-contracting but bounded, equilibrium is almost surely unique.
- As an example, we show that the clearing payment in Liu et al.
 (2020) is almost surely unique.
- Boundedness condition is essential when a network is non-contracting.
- Provide a measure to identify key players for policymakers.
 - Identify too-big-to-fail and too-interconnected-to-fail agents and capture sender and receiver effects.

References I

- Acemoglu, D. and P. D. Azar (2020): "Endogenous production networks," *Econometrica*, 88, 33–82.
- Acemoglu, D., V. M. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi (2012): "The network origins of aggregate fluctuations," *Econometrica*, 80, 1977–2016.
- Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2015a): "Systemic risk and stability in financial networks," American Economic Review, 105, 564–608.
- ——— (2015b): "Systemic risk in endogenous financial networks," Columbia business school research paper.
- ——— (2016): "Networks, Shocks, and Systemic Risk," in *The Oxford Handbook of the Economics of Networks*, ed. by Y. Bramoullé, A. Galeotti, and B. W. Rogers, Oxford University Press.
- ——— (2017): "Microeconomic origins of macroeconomic tail risks," *American Economic Review*, 107, 54–108.
- Ballester, C., A. Calvó-Armengol, and Y. Zenou (2006): "Who's who in networks. Wanted: The key player," *Econometrica*, 74, 1403–1417.
- Carvalho, V. M. (2008): Aggregate fluctuations and the network structure of intersectoral trade, The University of Chicago.

References II

- Carvalho, V. M. and A. Tahbaz-Salehi (2019): "Production networks: A primer," Annual Review of Economics, 11, 635–663.
- Cifuentes, R., G. Ferrucci, and H. S. Shin (2005): "Liquidity risk and contagion," Journal of the European Economic Association, 3, 556–566.
- Eisenberg, L. and T. H. Noe (2001): "Systemic risk in financial systems," *Management Science*, 47, 236–249.
- Glasserman, P. and H. P. Young (2015): "How likely is contagion in financial networks?" *Journal of Banking & Finance*, 50, 383–399.
- Jackson, M. O. and A. Pernoud (2020): "Credit freezes, equilibrium multiplicity, and optimal bailouts in financial networks," arXiv preprint arXiv:2012.12861.
- Liu, A., M. Paddrik, S. Y. Yang, and X. Zhang (2020): "Interbank contagion: An agent-based model approach to endogenously formed networks," *Journal of Banking & Finance*, 112, 105191.
- Miller, R. E. and P. D. Blair (2009): *Input-output analysis: foundations and extensions*, Cambridge university press.
- Roukny, T., S. Battiston, and J. E. Stiglitz (2018): "Interconnectedness as a source of uncertainty in systemic risk," *Journal of Financial Stability*, 35, 93–106.

References III

Sharkey, K. J. (2017): "A control analysis perspective on Katz centrality," *Scientific reports*, 7, 1–8.

Zenou, Y. (2016): "Key players," Oxford Handbook on the Economics of Networks, 244–274.