### Sécurité des Accès





### \* Technique/parade

- Filtrage
  - Réseau, Applicatif
- Translation d'adresse IP (NAT, PAT)
- Authentification
- Durcissement des configurations

#### **\*** Matériels

- Parefeu
- Proxy
- Détecteur d'intrusion
- Routeurs

## **Introduction (1)**

## Pour vivre heureux, vivons caché....

- Quelle information est confidentielle ?
  - Nécessité d'identifier les informations
    - Nom des machines, login utilisateur, informations techniques
    - Plan d'adressage IP
    - Configuration DNS, liens de secours,...
    - Utilisation Wifi,...
  - Nécessité d'informer les utilisateurs de la confidentialité
    - Tous les utilisateurs ayant accès à ses informations

(Attention aux personnes extérieures...)



### <u> Définition</u>:

Elle consiste à mettre en place plusieurs techniques de sécurité complémentaires afin de réduire l'impact lorsqu'un composant particulier de sécurité est compromise ou défaillant (ANSSI)

#### \* Objectif:

- *Prévenir* : éviter la présence ou l'apparition de failles de sécurité
- Bloquer: empêcher les attaques de parvenir jusqu'aux composants visés
- *Contenir* : limiter les conséquences de la compromission
- Détecter : pouvoir identifier les incidents et les compromissions
- *Réparer* : disposer de moyens pour remettre le système en fonctionnement

#### \* Durcir le travail de l'attaquant

- Gestion des disques durs
  - Montage des partitions en lecture seule
  - Isolation des partitions pouvant devenir saturés (log, spool, BD de serveur web,...)
  - Limité les droits sur une partition



- \* Durcir le travail de l'attaquant (suite)
  - Nommage des machines explicites à éviter
    - Router : ISIMA\_routeur
    - Parefeu : firewall1\_isima
  - Eviter les bannières d'accueil trop précise
    - Pas de « bienvenue sur le routeur »
    - Pas d'information sur l'équipement, ni l'OS
    - Pas d'information sur la société...
  - Mettre en place du filtrage
    - Filtre ICMP,....
  - Hygiène des machines
    - Mettre à jour l'OS, les logiciels, les antivirus...
    - Changer le mot de passe par défaut



- \* Niveau 2 (Switch)
  - Adresse Mac ou physique
    - Utilisation de VLAN (IEE802.1Q)
      - Mise en place de Private VLAN
        - Mode primaire (ou promiscuous), secondaire ( isolé ou communauté )
    - Vérification @Mac émetteur
    - Nombre maximum d'@MAC sur un port

- \* Niveau 3 (Parefeu et routeur avec ACL)
  - Adresse IP
    - Filtrage IP source (simple) ou Filtrage IP destination (compliqué)
    - Filtrage plus précis pour serveurs internes

# Filtrage (2)

- \* Niveau 4 (Parefeu)
  - TCP/UDP
    - Filtrage au niveau port
    - Filtrage au niveau TCP sur types de segment
    - Filtrage sur le sens des communications
- ★ Filtrage applicatif
  - De plus en plus précis
  - Reconnaissance par mot clef
  - Mise en place de proxy
    - Fonctionnement Black list/ white list
    - Load balancing des serveurs internes
    - Reverse proxy ou proxy

### Détection d'intrusion

- **\*** Utilisation de sondes IPS/IDS
  - IDS (Intrusion Detection Systems)
    - Passives
    - Alertent, mais n'empêchent pas l'attaque
  - IPS (Intrusion Prevention Systems)
    - En coupure au niveau réseau
    - Agissent si un trafic est considéré malveillant
    - Pb des faux positifs/ faux négatifs

Logiciel gratuit : snort.... ( avec des dérivés)

→ utilisation de règles de correspondance



- \* Aide aux personnels
  - XDR (eXtended Detection and Response)
    - Collecte les données des EDR
    - Corrélation de ses données + IA
    - Compte-rendu
  - SIEM (security information and event management)
    - Collecte des journaux et des logs de tous les équipements
    - Agrégation de ses données + IA
    - Recherche des menaces et compte-rendu
  - SOAR (Security Orchestration, Automation and Response)
    - Faire des actions automatiques suite à des menaces
    - Reçoit des infos du SIEM ou de l'XDR

## Authentification (1)

- **\*** Concept
  - Utilisation d'un équipement de sécurité
    - Blocage du flux si non authentifié
    - Une phase d'identification
    - Début de l'authentification
      - Refus ou acceptation
        - par l'équipement de sécurité
        - Par la décision d'un serveur tiers
- \* Utilisation par beaucoup de protocoles
  - Niveau 2
    - Pour P2P, soit PAP, soit CHAP, soit MS-CHAP2
    - Pour l'ADSL,....



- \* Utilisation par beaucoup de protocoles
  - Niveau 3
    - Pas nativement pour IPv4, (IPSec),
    - Mise en place pour Ipv6 plus naturel d'IPSec
  - Niveau 4 et plus ( ou moins)
    - Norme IEEE 802.1X
      - AAA (Authentication, Authorization, Accounting)
      - Autorise l'accès à un équipement après demande auprès d'un serveur
      - Mise en œuvre : Radius, **Diameter**, TACACS+,....



#### Remote Authentication Dial-In User Service

- Plusieurs entités communiquent en UDP:
  - Supplicant (client utilisateur)
  - NAS (Network Access Server) != Network Attached Storage (NAS)

    → client radius
  - Serveur radius ( ou proxy radius), basé sur LDAP, ...
- 4 Trames possibles vers le serveur radius
  - Access-request : demande d'autorisation
  - Challenge-request : serveur demande plus d'informations au client radius
  - Access-accept : OK + informations
  - Access-Reject : refus de l'accès





- **\*** EAP (Extensible Authentification Protocol)
  - Multitude de méthodes
    - EAP/MD5, EAP/TLS, EAP/TTLS, EAPOL, ...
  - Basé sur le niveau 2 pour le chiffrement
    - Avec ou sans certificat
  - Plusieurs sortes de paquets
    - EAP Request / Response : requête/réponse entre supplicant et client
    - EAP success/fail
    - EAPOL –start : début communication EAP over LAN
    - EAPOL-key: passage certificat
    - EAPOL-logout : fin connexion EAP



- \* Minimisation de la surface d'attaque (1)
  - Ne lancer que les services nécessaires et n'installer que les programmes nécessaires
    - Définir les services/programmes nécessaires pour un serveur donné
      - Ex : parefeu, DNS : inutile compilateur, Serveur X, zeroconf ...
      - Un pgme peut être installé, mais l'exécution désactivée
    - Mettre à jour régulièrement ces services/programmes, désinstaller les autres
    - Un serveur n'est jamais en DHCP
    - Vérification via la commande ss (socket statistics) ou netstat -lapute
  - Configurer les services si besoin
    - Attention à la configuration par défaut....



- \* Minimisation de la surface d'attaque (2)
  - Appliquer le principe de moindres privilèges
    - Pas toujours simple à mettre en place
    - Gestion des groupes plus fine (Windows)
    - Restriction des accès : LSM (Linux Security Module)
      - Selinux, Apparmor, seccomp...
  - Faire attention aux programmes lancés en tâche de fond
    - Crontab...
  - Sous Linux, recompiler si nécessaire le noyau en enlevant les modules inutiles
    - ipv6, bluetooth, ...



- \* Minimisation de la surface d'attaque (3)
  - Chaque service a un compte distinct (pas nobody)
    - Vérifier que c'est le cas
      - Compte postfix, compte www-data, rpcuser...
    - Interdire la connexion pour ces comptes
      - usermod –L compte
  - Utilisation du cloisonnement
    - Par conteneur
    - Par hyperviseur
    - Utilisation de la commande chroot (sous unix)
  - Restriction des droits d'exécution sous linux
    - Utilisation de la commande sudo

## Linux (1)

- **★** DAC/MAC
  - DAC : Discretionary Access Control (par défaut)
  - MAC : Mandatory Access Control
- \* DAC
  - Chaque utilisateur est maitre de son fichier
    - Il peut en faire ce qu'il veut et donner les droits qu'il veut
    - L'accès aux fichiers dépend de l'owner
    - Changement via chmod, chgrp, etc..
- **\*** MAC (exemple : APPARMOR et SELINUX)
  - Rajout des contraintes sur les fichiers
    - Contraintes ajoutées par l'administrateur
    - Même le root subit ces contraintes
    - Noyau interroge apparmor/selinux avant chaque appel système ( autorisation)
    - incompatibilité entre apparmor/selinux

### **Selinux**

- \* Restrictif, et difficile à mettre en œuvre
  - 3 modes : disabled, permissive, enforcing
  - Tous fichiers ou processus à :
    - Un *User* (unconfined\_u, system\_u, user\_u,...)
    - Un *Rôle* ( system\_r, object\_r, ...)
    - Un *Type* ( httpd\_t, user\_home\_dir\_t,..)
  - Un User doit avoir accès au Rôle qui doit pouvoir utiliser Type pour avoir l'autorisation.
  - Les droits sont définis au boot de la machine
    - Fichiers de configuration
    - Possibilité de changer ses droits en live

```
[patrice@testing www]$ ls -lZ
total 20
drwxr-xr-x. 2 root root system_u:object_r:httpd_sys_script_exec_t:s0 4096 Jan 4 2016 cgi-bin
drwxr-xr-x. 3 root root unconfined_u:object_r:httpd_sys_content_t:s0 4096 Jan 29 2018 example
drwxr-xrwx. 14 root root system_u:object_r:httpd_sys_content_t:s0 4096 Sep 23 16:24 html
```



- \* PCA (Plan de Continuité d'Activité)
  - Pour éviter l'interruption des services
    - Mise en place d'un mode dégradé
    - réseau de secours, etc...
- \* PRA (Plan de Reprise d'Activité)
  - En cas d'incident grave, comment remettre en route le système informatique le plus rapidement possible
    - Procédure à suivre
    - Où trouver les sauvegardes
    - Dans quel ordre remonter les systèmes, etc...



- \* Elément essentiel dans un réseau
  - Utilise des règles
  - Ne contrôle que ce qui passe par lui
  - N'est pas un antivirus
  - Décision binaire
    - Pare-feu sans état (plus ancien, routeur)
    - Pare-feu avec état (suivi de connexion).
  - Ne peut pas comprendre les flux chiffrés
    - Besoin de plusieurs pare-feux (un sur le réseau, un sur chaque poste)
  - Filtrage au niveau 3 et 4
    - Au-dessus, on parle de proxy ou pare-feu applicatif
    - Filtre @IP, n°port, protocoles, ...

## Netfilter (1)

- \* Utiliser par tous les pare-feux linux (iptables)
- \* Directement intégrer au kernel linux
- \* Flux des informations (très simplifié)

#### Plusieurs tables

- table filter
- table nat
- table raw
- table mangle



Filter n'existe pas au niveau pre/post routing

## Netfilter (2)

Packet flow in Netfilter and General Networking



(start)



- \* 3 tables couramment utilisées
  - Filter: input, forward, output
  - Nat : prerouting, input, output, postrouting
  - Mangle : tout, mais opération particulière
- \* Chaque chaine est indépendante, et ordonnée
- \* 4 états possibles : ACCEPT, DROP, REJECT, LOG
- \* Netfilter est un pare-feu avec état, certifié par l'ANSSI
- \* Différents logiciels l'utilisent :
  - Iptables, ip6tables, arptables,...
  - Nftables utilisent une partie

# Iptables (1)

\* Gestion d'une règle



Pour être complet, toutes ces informations....

Ex: iptables -A forward -i eth0 -o eth1 -s 195.10.15.0 -d 192.120.10.2 -p tcp --sport 1024: --dport 80 --syn -m state --state NEW -j ACCEPT

# Iptables (2)

- \* Quelques règles
  - -A : append : ajoute la règle
  - -D : delete : supprime une règle
  - -L : list
  - - F : flush vide toutes les règles d'une chaine
  - -N : créer une nouvelle chaine
  - -P : règle à appliquer par défaut
- \* Script par défaut (Attention, c'est un parefeu....)

```
iptables –P INPUT drop
```

- iptables –P OUTPUT drop
- iptables –P FORWARD drop
- Accès à l'interface 10
  - iptables –A input –i lo –j ACCEPT iptables –A output –o lo –j ACCEPT