Numerical Analysis

Daniel Mao

Contents

1	Error			
	1.1	Error	1	
	1.2	Condition of a Mathematical Problem	1	
2	2 Floating Point Arithmetic			
	2.1	Floating Point Operations	4	

ii CONTENTS

Chapter 1

Error

1.1 Error

Definition (Absolute Error). Let x be a result. Let \tilde{x} be an approximation of the result x. We define the **absolute error**, denoted by Δx . to be a number given by

$$\Delta x = |x - \tilde{x}|.$$

Definition (Relative Error). Let x be a result. Let \tilde{x} be an approximation of the result x. We define the **relative error**, denoted by δx . to be a number given by

$$\delta x = \left| \frac{x - \tilde{x}}{x} \right|,$$

assuming $x \neq 0$.

1.2 Condition of a Mathematical Problem

Definition (Absolute Condition Number). Let P be a problem with input \vec{x} and output \vec{z} . We define the **absolute condition number** of P, denoted by κ_A , to be a number given by

$$\kappa_A := \frac{\|\Delta \vec{z}\|}{\|\Delta \vec{x}\|}.$$

Definition (Relative Condition Number). Let P be a problem with input \vec{x} and output \vec{z} . We define the **relative condition number** of P, denoted by κ_R , to

be a number given by

$$\kappa_R := \frac{|\delta z|}{|\delta x|} = \frac{\|\Delta \vec{z}\|/\|\vec{z}\|}{\|\Delta \vec{x}\|/\|\vec{x}\|}.$$

Definition (Well-Conditioned). Let P be a problem with input \vec{x} and output \vec{z} . We say that P is **well-conditioned** if small changes in the input \vec{x} result in small changes in the output \vec{z} . i.e., if κ_A and κ_R are small.

Definition (Ill-Conditioned). Let P be a problem with input \vec{x} and output \vec{z} . We say that P is **ill-conditioned** if small changes in the input \vec{x} result in large changes in the output \vec{z} . i.e., if κ_A and κ_R are large.

Chapter 2

Floating Point Arithmetic

Definition (Floating Point Representation).

exponent

mantissa

Definition (Rounding). Given a number x, its binary representation $(1_{a_1a_2...a_na_{n+1}})_2$, and n spaces mantissa;

(1) Chopping: $fl(x) = 1.a_1a_2...a_n \times 2^e$

(2) Rounding:
$$fl(x) = \begin{cases} 1.a_1 a_2 ... a_n \times 2^e, & \text{if } a_{n+1} = 0\\ 1.a_1 a_2 ... (a_n + 1) \times 2^e, & \text{otherwise.} \end{cases}$$

Definition (Machine Epsilon). We define the machine epsilon ε_{mach} to be the distance between 1 and the next larger number.

Proposition 2.0.1. The machine epsilon is

$$\varepsilon_{mach} = b^{1-m}$$

where m is the number of spaces available for the mantissa.

Definition (Unit Roundoff). We define the unit roundoff, denoted by μ , to be the smallest positive number such that $fl(1 + \mu) > 1$.

Proposition 2.0.2. The unit roundoff is

$$\mu = \begin{cases} \varepsilon_{mach}, & \text{if chopping is used} \\ \varepsilon_{mach}/2, & \text{if rounding is used.} \end{cases}$$

Theorem 1. Let x be a number. For any floating point system,

$$|\delta x| = \left| \frac{x - fl(x)}{x} \right| \le \mu.$$

Proposition 2.0.3. For any floating point system F under chopping,

$$fl(x) = x(1+\eta)$$

for some $\eta \in \mathbb{R}$ such that $|\eta| \leq \varepsilon_{mach}$.

Remark. • Chopping error is always positive.

• Rounding error can be positive or negative.

2.1 Floating Point Operations

Definition (Floating Point Operations). We define

(1) **floating point addition**, denoted by \oplus , as

$$\forall x, y \in \mathbb{R}, x \oplus y = fl(fl(x) + fl(y)),$$

(2) **floating point subtraction**, denoted by \ominus , as

$$\forall x, y \in \mathbb{R}, x \ominus y = fl(fl(x) - fl(y)),$$

(3) **floating point multiplication**, denoted by \otimes , as

$$\forall x, y \in \mathbb{R}, x \otimes y = fl(fl(x) \times fl(y)),$$

(4) **floating point division**, denoted by \oplus , as

$$\forall x, y \in \mathbb{R}, x \oplus y = fl(fl(x)/fl(y)).$$

Proposition 2.1.1. For any floating point system F and any $a, b \in \mathbb{R}$,

$$a \oplus b = (fl(a) + fl(b))(1 + \eta)$$

for some $\eta \in \mathbb{R}$ such that $|\eta| \leq \mu$, where μ is the unit roundoff; and

$$a \oplus b = (a(1 + \eta_1) + b(1 + \eta_2))(1 + \eta)$$

for some $\eta, \eta_1, \eta_2 \in \mathbb{R}$ such that $|\eta|, |\eta_1|, |\eta_2| \leq \mu$, where μ is the unit roundoff.

Remark. Floating point addition is not necessarily associative. i.e., $\exists a, b, c \in \mathbb{R}, (a \oplus b) \oplus c \neq a \oplus (b \oplus c).$

Remark. Floating point multiplication is not necessarily distributive over floating point addition.

Definition (Underflow). If the result of a computation is less than the smallest positive normal number in the floating point system, then it is rounded down to zero.

Definition (Overflow). If the result of a computation is larger (smaller) than the largest positive (smallest negative) number in the floating point system, then Inf (-Inf) is returned as the result.