

Vec2UAge: Enhancing Underage Age Estimation Performance through Facial Embeddings

By:

Felix Anda, Edward Dixon, Elias Bou-Harb, Nhien-An Le-Khac and Mark Scanlon

From the proceedings of

The Digital Forensic Research Conference

DFRWS EU 2021

March 29 - April 1, 2021

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

https://dfrws.org

Vec2UAge: Enhancing underage age estimation performance through facial embeddings

FELIX ANDA, EDWARD DIXON, ELIAS BOU-HARB, NHIEN-AN LE-KHAC, MARK SCANLON

UCD Forensics and Security Research Group

Background

Challenges for Age Estimation Models

Proposed Solution

- Facial Embeddings
 - Facial Recognition
 - Euclidean distance
 - FaceNet
 - Vector representation of 512 points
- Proposed Dataset
 - VisAGe
 - Selfie-FV
- Facial Image Pre-processing
 - Dlib HOG
 - Dlib CNN
- Data augmentation
 - Flip, Rotation, Zoom, Distortion, Colour, Contrast, Erasure
- Neural Network
 - ► 4L NN
- Optimisers
 - ADAM, ADAGRAD, SGD, SWA
- Experiments
 - D1 (Fixed LR), E1 (Initial LR Finder)

Facial Embeddings

```
*19 *20 *21 *22 *23 *24 *25 *28 *27

*18 *38 *39 *29 *29 *43 *44 *45 *45 *47 *46

*1 *29 *31 *16

*2 *31 *16

*32 *33 34 35 38 *31 *41

*4 *49 51 *52 *53 *4 *41

*4 *49 51 *68 *67 *66 *56

*5 *68 *67 *66 *56 *13

*4 *49 51 *58 *57 *66 *56 *13

*5 *69 *53 *57 *11
```

```
3.16731818e-02, 4.08499762e-02, -1.07115060e-02,
array([ 1.07725732e-01,
       -2.28198152e-02, 5.57706365e-03, 9.75179765e-03, -5.36692515e-03,
      -1.83711771e-03, 4.57513779e-02, 4.33594622e-02, -5.81207611e-02,
      -4.79136780e-02, 4.68462817e-02, -7.73332566e-02, -2.13857740e-02,
       -1.40897382e-05, -2.62422096e-02, 2.23129615e-02, 1.30732255e-02,
      -8.95220116e-02, 5.93802631e-02, -1.43265515e-03, -1.23955412e-02,
      -2.54089199e-02, -1.01764537e-02, -5.63222275e-04, 2.59382073e-02,
       5.60861342e-02, -7.53680170e-02, -2.06493735e-02, 1.93569844e-03,
      -9.14568547e-03, 2.52238307e-02, 4.63761799e-02, 4.53585312e-02,
       2.17659567e-02, 3.04010827e-02, -6.05291091e-02, -1.58773060e-03,
       5.79611920e-02, -2.31141243e-02, -4.07206855e-04, 1.27771208e-02,
       3.00279595e-02, 1.83317810e-02, 1.00539085e-02, -6.57471735e-03,
        5.60290320e-03, -1.01998821e-02, -1.03056151e-02, -3.28540318e-02,
      -5.97769171e-02, 2.61105653e-02, 4.17980477e-02, 4.40444099e-03,
        2.04454679e-02, -6.01841230e-03, 2.84538660e-02, -8.39831904e-02,
      -2.42075697e-02, -1.02294264e-02, 5.55154718e-02, -7.41940066e-02,
       7.96858221e-02, -5.80874942e-02, -1.19266091e-02, -1.93555057e-02,
        6.20435067e-02, 3.60363885e-03, 2.44962275e-02, 9.92874056e-03,
       -5.46858311e-02, 3.86504829e-02, -3.05651929e-02, 2.09042095e-02,
```

68 facial landmarks (DLIB)

512 facial vector representations (FaceNet)

Proposed Dataset

- https://www.forensicsandsecurity.com/visage
- https://github.com/EdwardDixon/selfie-fv

Data Augmentation

Augmontation	Casina Similarity	Sattings		
Augmentation	Cosine Similarity	senings		
Flip	0.8599	Horizontal		
Brightness	0.6845	Factor: 2		
Rotation	0.6656	Angle: 25		
Random Zoom	0.7856	Factor: 2		
		Grid width: 10		
		Grid height: 10		
Random Distortion	0.8728	Magnitude: 8		
Random Colour	0.5609	Factor: 2		
Random Contrast	0.3341	Factor: 5		
Random Erasure	0.9837	Rectangle: 0.2		

Neural Network

Results

Fixed Initial LR (D1)

optimiser	mae			val_mae			test_mae		
	min	mean	std	min	mean	std	min	mean	std
ADAGRAD	2.56	3.19	0.31	3.12	3.20	0.05	3.13	3.19	0.05
ADAM	1.59	2.07	0.20	2.45	2.49	0.02	2.46	2.49	0.02
SGD	1.94	2.62	0.32	2.51	2.56	0.03	2.49	2.55	0.03
SWA	1.68	2.09	0.28	2.43	2.57	0.09	2.39	2.48	0.04

Initial LR Finder (E1)

optimiser	mae			val_mae			test_mae		
	min	mean	std	min	mean	std	min	mean	std
ADAGRAD	1.81	2.28	0.35	2.48	2.60	0.09	2.46	2.61	0.12
ADAM	1.26	2.24	1.23	2.54	3.11	0.93	2.52	3.09	0.92
SGD	1.42	1.89	0.25	2.36	2.43	0.03	2.36	2.43	0.05
SWA	1.64	2.04	0.24	2.41	2.55	0.09	2.38	2.46	0.05

(a) Experiment D1 – SWA fixed initial *Ir* approach

(b) Experiment E1 – SGD *Ir* finder approach

Results

- CPU 2.8 GHz
- Quad-Core Intel Core i7
- 16GB Ram
- Intel Iris Pro 1536
 Graphics card

Conclusion

- AE is still challenging
- Underage AE for DF performance has improved
- Simpler challenge is addressed, better performance
- Distribution of evaluation model metric, choose model more confidence
- Dataset and Optimal Learning Rates key influence on performance
- Tracking and visualizing metrics is paramount for researchers

THANK YOU

felix.andabasabe@ucdconnect.ie

www.ForensicsAndSecurity.com

@ForSecResearch

UCD Forensics and Security Research Group

https://github.com/4ND4/Vec2UAge

https://ui.neptune.ai/4nd4/Vec2UAge/

