CAHIERS MATHÉMATIQUES MONTPELLIER 1979

GROUPOÏDE FONDAMENTAL ET THÉORÈME DE VAN KAMPEN EN THÉORIE DES TOPOS Oliver LEROY

UNIVERSITÉ DES SCIENCES
ET TECHNIQUES
DU LANGUEDOC
U. E. R. DE MATHÉMATIQUES
Place Eugène Bataillon
34060 MONTPELLIER CEDEX

Ce travail m'a été suggéré par C. CONTOU-CARRÈRE et A. GROTHENDIECK. Mes résultats ont été exposés lors de séances de géométrie algébrique faites avec D. ALIBERT et C. CONTOU-CARRÈRE. Ce texte a été transcrit par Mateo Carmona

TABLE ANALYTIQUE

Le titre suffit à délimiter le sujet ; j'ai mis les explications indispensables dans la table des matières, formant ainsi une table analytique.

1. Objets connexes dans un topos

Bref exposé des notions nécessaires pour définir un topos localement connexe.

2. Objets localement constants et objets galoisiens

- **2.1.** Les objets localement constants d'un topos correspondent aux revêtements d'un espace topologique ou d'un schéma, regardés comme des faisceaux.
- 2.2. On démontre pour les objets localement constants d'un topos localement connexe les principales propriétés des revêtements d'un espace localement connexe.
- **2.3.** Les objets galoisiens correspondent aux revêtements galoisiens. La "théorie de Galois" classe les objets localement constants trivialisés par un objet galoisien donné d'un topos connexe. (Dans le topos étale du spectre d'un corps k, les objets galoisiens sont les extensions galoisiennes de k; on retrouve ainsi la théorie de Galois classique).
- **2.4.** Topos engendré par les objets localement constants d'un topos localement connexe donné E: les résultats du chapitre suivant permettront de regarder ce topos, qui est formé des sommes directes d'objets localement constants de E, comme le groupoïde fondamental de E.

3. Topos localement galoisiens et groupoïde fondamental

La notion de topos localement galoisien nous tiendra lien d'une fastidieuse théorie des "progroupoïdes"; et elle permet de définir le groupoïde fondamental d'un topos par une propriété universelle.

4. Limites inductives de topos et théorème de Van Kampen

On définit un système inductif de topos à l'aide d'une catégorie fibrée en topos au-dessus d'une catégorie d'indices. Les sections cartésiennes de cette catégorie fibrée sont les objets du topos limite inductive du système. Ainsi les objets d'une limite inductive de topos apparaissent comme des objets de la somme directe munis d'une certaine donnée de descente. Le théorème 4.5. sert à décrire le groupoïde fondamental d'une limite inductive de topos localement connexes connaissant leurs groupoïdes fondamentaux. L'énoncé et le démonstration de ce théorème font intervenir un topos auxiliaire, sorte de recollement intermédiaire entre la somme directe et la limite inductive, qui est décrit en (4.3.) et (4.4.). Je l'ai éliminé dans le corollaire de la proposition 4.6.2., qui décrit directement les objets localement constants de la limite inductive. L'avantage de la forme (4.5.) est de permettre des calculs explicites, qui sont développées dans les poins 4.6.3. à 4.6.7.

A. Appendice

Catégories fibrées en topos

5. Compléments

- 5.1. Groupe fondamental d'un topos localement connexe en un point.
 - **5.2.** Groupoïde fondamental profini.

CONVENTIONS AND NOTATIONS

1) *Univers*: Dans tout le texte on fixe un univers \underline{U}

- 2) Morphismes de topos
 - a) Étant donné un morphisme de topos $E \xrightarrow{u} F$, on note u^{-1} le foncteur image inverse ;
 - b) Étant donnés deux morphismes de topos $E \xrightarrow[v]{u} F$, on prend comme morphismes de morphismes de topos $u \longrightarrow v$ les morphismes fonctoriels $v^{-1} \longrightarrow u^{-1}$
- 3) Objets constants: Pour tout \underline{U} -topos T, on note e_T l'objet final de T. Pour tout ensemble \underline{U} -petit I, on note I_T l'objet constant de T correspondant. Pour tout objet X de T, on désigne alors par I_X l'objet $I_{T/X} = X \times I_T$.

§ I. — OBJETS CONNEXES DANS UN TOPOS

Tous les topos considérés sont des <u>U</u>-topos

1.1. Définitions

- a) Un objet d'un topos est connexe s'il n'est pas somme directe de deux objets non-vides.
- b) Soit X un objet d'un topos. On appelle *composante connexe* de X tout sous-objet connexe et non-vide C de X tel que X soit somme directe de C et d'un autre objet.
- c) Un topos est connexe si son objet final est connexe.
- d) Un topos est localement connexe s'il est engendré par ses objets connexes.
- **1.2.** Soir C un objet d'un topos E. Les propriétés suivantes sont équivalentes :
- a) C est connexe et non-vide.
- b) Le foncteur

$$Hom_F(C,-): E \longrightarrow Ens$$

commute aux sommes directes.

c) Pour tout ensemble I, l'application naturelle $I \longrightarrow Hom(C, I_E)$ est bijective (c'est immédiat).

- **1.3.** Soit $(U_i \xrightarrow{f_i} V)_{i \in I}$ une famille épimorphique d'un topos E. Considérons les propriétés:
- (a) V est connexe et non-vide.
- (b) Le graphe $R \subset I \times I$ de la relation

"
$$U_i \times_V U_j$$
 n'est pas vide"

est connexe (en tant que graphe ayant I pour ensemble de sommets). On a

- (i) si les U_i sont non-vides, (a) entraı̂ne (b).
- (ii) si les U_i sont connexes, et non-vides, (b) entraı̂ne (a).

C'est trivial si $I = \emptyset$. On suppose donc $I \neq \emptyset$.

 $a\Rightarrow b$ (U_i non-vides). Soit (I_1,I_2) une partition de I telle que [pour] tout $i\in I_1$ et tout $j\in I_2$, $U_i\times_V U_j$ soit vide. Si on désigne par V_1 et V_2 respectivement les images des morphismes

$$\coprod_{i\in I_1} U_i \longrightarrow V, \quad \coprod_{i\in I_2} U_i \longrightarrow V$$

alors V est somme de V_1 et V_2 . Donc V_1 ou V_2 est vide. [] U_i n'est vide, I_1 ou I_2 est vide.

 $b\Rightarrow a$ (U_i connexes et non-vides). Soit $(Y_\alpha)_{\alpha\in A}$ une famille d'objets de E, et considérons un morphisme

$$V \longrightarrow Y = \coprod_{\alpha} Y_{\alpha}.$$

Pour chaque $\alpha \in A$, soit I_{α} l'ensemble des $i \in I$ tels que le composé

$$U_i \longrightarrow V \longrightarrow Y$$

se factorise par Y_{α} . Puisque les U_i sont connexes et non-vides, I est réunion disjointe des I_{α} . Soient α et β deux indices distincts. Si $i \in I_{\alpha}$ et $j \longrightarrow I_{\beta}$, $U_i \times_V U_j$ est vide puisque c'est un sous-objet de $U_i \times_V U_j$. Appliquant (b), on voit que $I = I_{\alpha_0}$ pour un []. Donc V est connexe et non-vide par (1.2).

1.4. Tout objet d'un topos localement connexe est somme directe d'objets connexes (donc somme directe de ses composantes connexes).

Soit E un topos localement connexe. Soient Y un objet de E et $(U_i \longrightarrow Y)_{i \in I}$ une famille épimorphique de E, où les U_i sont connexes et non-vides. Soit R le graphe de la relation " $U_i \times U_j$ n'est pas vide". Pour chaque composante connexe r de R, soit C_r l'image dans Y de la somme des U_i , i parcourant l'ensemble des $i \in I$ qui sont sommets de r. Y est somme directe des C_Y , qui sont connexes et non-vides d'après (1.3).

1.5. Pour qu'un topos E soit localement connexe, il faut et il suffit que le foncteur

$$I \longrightarrow I_E$$

Ens
$$\longrightarrow E$$

admette un adjoint à gauche

$$c: E \longrightarrow \operatorname{Ens}$$
.

Dans ce cas, étant donné un objet X de E, les produits fibrés

$$X_{Y} \longrightarrow e_{E}$$

$$\downarrow \qquad \qquad \downarrow^{\gamma}$$

$$X \longrightarrow c(X)_{E}$$

(γ parcourant c(X)) sont les composantes de X.

(i) Supposons E localement connexe. Pour tout objet X de E, désignons par c(X) l'ensemble des classes de X-isomorphisme de composantes connexes de X (cet ensemble est bien sûr <u>U</u>-petit). Soit f : X → Y un morphisme de E ; étant donnée une composante connexe C de X, il existe une composante connexe D de Y, unique à Y-isomorphisme près, telle que f_C se factorise par D. D'où une application

$$c(X) \longrightarrow c(Y)$$
.

On a ainsi obtenu un foncteur covariant

$$c: E \longrightarrow \operatorname{Ens}$$
.

Le foncteur c est adjoint à gauche de $I \longrightarrow I_E$: en effet, étant donnés un objet X de E et un ensemble I, on définit une application :

$$App(c(X),I) \longrightarrow Hom(X,I_E)$$

en associant à l'application

$$a: c(X) \longrightarrow I$$

le morphisme $X \longrightarrow I_E$ dont la restriction à chaque composante connexe C de X est la section de I_E au-dessus de C définie par $a(C) \in I$; cette application est bijective par (1.2), et celle est fonctorielle en X et I.

(ii) Inversement, supposons qu'on ait un adjoint à gauche $c: E \longrightarrow \text{Ens}$ du foncteur $I \longrightarrow I_E$.

Soit X un objet de E. Avec les notations de l'énoncé, X est somme directe des X_{γ} , $\gamma \in c(X)$. Il suffit donc de prouver que les X_{γ} sont connexes et non-vides. Or, pour tout ensemble I, les applications naturelles

$$I \longrightarrow Hom(X_{\gamma}, I_{E})$$

fournissant une application

$$I^{c(X)} \longrightarrow \prod_{\gamma} Hom(X_{\gamma}, I_{E})$$

qui rend commutatif le diagramme [] donc chacune des applications

$$I \longrightarrow Hom(X_{\gamma}, I_{E})$$

est bijective; on conclut par (1.2).

$\$ II. — OBJETS LOCALEMENT CONSTANTS ET OBJETS GALOISIENS

§ III. — TOPOS LOCALEMENT GALOISIENS ET GROUPOÏDE FONDAMENTAL

§ IV. — LIMITES INDUCTIVES DE TOPOS ET THÉORÈME DE VAN KAMPEN

APPENDICE: CATÉGORIES FIBRÉES EN TOPOS

Soit I une catégorie \underline{U} -petite.

A.1. J'appelle catégorie fibrée en \underline{U} -topos au dessus de I toute catégorie fibrée [] qui vérifie les axiomes suivantes :

- 1) Pour tout $i \in Ob(I)$, la fibre F_i est un \underline{U} -topos.
- 2) Pour toute flèche $u: i \longrightarrow j$ de I, le foncteur changement de base $F_j \longrightarrow F_i$ définit un morphisme de topos $F_i \longrightarrow F_j$.
- **A.2.** Définissons maintenant la 2-catégorie Fibtop(I) des catégories fibrées en \underline{U} -topos au-dessus de I: étant données deux catégories fibrées en topos F, G au-dessus de I, nous prenons comme catégorie des morphismes de F dan G

$$Cartop_I(F, G)$$

la sous-catégorie pleine de

$$\operatorname{Cart}_I(G,F)^\circ$$

(catégorie opposée de la catégorie des I-foncteurs cartésiens $G \longrightarrow F$) définie comme voici : un I-foncteur cartésien $\varphi: G \longrightarrow F$ définit un morphisme de catégories fibrées en topos $F \longrightarrow G$ si pour tout $i \in Ob(I)$ le foncteur $G_i \longrightarrow F_i$ déduit de φ par restriction définit un morphisme de topos $F_i \longrightarrow G_i$.

- **A.3.** La 2-catégorie Fibtop(I) est équivalente à la 2-catégorie des 2-foncteurs de I dans la catégorie des \underline{U} -topos: les catégories fibrées de la forme $I \times E$ (E un \underline{U} -topos) correspondant aux 2-foncteurs constants ; d'où une définition des 2-limites inductives et projectives de topos:
- **A.4.** Soit F une catégorie fibrée en \underline{U} -topos au-dessus de I. Nous appellerons 2-limite inductive de F le 2-foncteur covariant

$$E \longrightarrow \operatorname{Cartop}_{I}(F, I \times E)$$

$$\underline{U}$$
-topos $\longrightarrow \underline{U}$ -catégories

et 2-limite projective de F le 2-foncteur contravariant

$$E \longrightarrow \operatorname{Cartop}_{I}(I \times E, F)$$

La 2-limite inductive (resp. projective) de F se représente donc, quand c'est possible, par un \underline{U} -topos L muni d'un morphisme de catégories fibrées en topos

$$F \longrightarrow I \times L$$

(resp.
$$I \times L \longrightarrow F$$
).

§ V. – COMPLÉMENTS

REFERENCES

- [1] P. GABRIEL ET P. ZISMAN Calculus of fractions and homotopy theory
- [2] J. GIRAUD Cohomologie non abélienne (pour les catégories fibrées)
- [3] A. GROTHENDIECK ET J. L. VERDIER Exposés I à IV du séminaire de géométrie algébrique SGA 4
- [4] A. GROTHENDIECK Exposés V et IX du séminaire SGA 1