Full Name: Grade:/100

SID :.....

Assume for all the problems: VDD=1.2V, $|Vth_{n,p}|$ =0.3V, $\mu_n C_{ox} = \frac{0.5mA}{V^2}$, $\mu_n = 2\mu_p$, $\lambda_p = \lambda_n = 0.1V^{-1}$, $\gamma = 0$ for both NMOS and PMOS devices.

Useful Equations:

$$I_{D} = \frac{1}{2} \mu_{n,p} C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{TH})^{2}$$

$$g_{m} = \mu_{n,p} C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) = \sqrt{2\mu_{n,p} C_{ox} \frac{W}{L} I_{D}} = \frac{2I_{D}}{V_{GS} - V_{TH}}$$

$$r_{o} = \frac{1}{\lambda I_{D}}$$

1. (40 pts) If $I_1 = 1mA$ (ideal current source), and C_1 is an AC-coupling capacitor (will be shorted in small-signal models and open for DC/bias analysis) answer following questions assuming $\lambda = 0$ for this problem. Notice that input voltage source has an impedance of $R_S = 50\Omega$.

- a) Find $(W/L)_1$ such that the input impedance (R_{in}) will be 50Ω .
- b) Write down the small-signal gain equation in terms of small-signal parameters and $R_{\rm D}$.
- c) Find R_D such that V_{out} bias point will be $V_{DD}/2$.
- d) Find small-signal gain using R_D from part c.
- e) If we realize I₁ current-source with a single NMOS device at a fixed gate bias of 0.5V, what would be the W/L for that device?

- f) What can be minimum V_b to make sure all transistors are in saturation?
- g) Assuming $V_{in} = 0.5 + 0.01 sin(\omega t) V$, what is the overall (bias and small-signal) V_{out} ? (C1 will be shorted at all frequencies)
- h) What's the output voltage swing range (peak-to-peak)?

(1)
$$Rin = \frac{1}{g_m} \Rightarrow \frac{1}{g_m} = \frac{1}{s_0} = \frac{2 \text{ m S}}{1 \text{ m A}}$$

$$\Rightarrow \frac{2 \text{ To}}{V_{op}} = 20 \text{ m S} \Rightarrow \frac{V_{op}}{V_{op}} = 0.10$$

$$I_{D} = \frac{1}{2} M_{N} C_{OR} \frac{W}{V_{op}} V_{op}^{T} \Rightarrow \frac{W}{L} = 400$$

- 2. (25 pts) For the Cascode amplifier shown in figure below all transistors are biased to have a V_{OD} (V_{GS} - V_{th}) of 0.2V with the drain current of current $I_1 = 1mA$ and $g_m r_o \gg 1$.
 - a) Find R_{out} and R_{in} values for this amplifier.
 - b) What is the gain of this amplifier?
 - c) Calculate optimal V_{b1} to maximize the output swing.
 - d) What's the output swing range (peak-to-peak)?

$$V_{b2}$$
 M_3
 V_{DD}
 V_{out}
 V_{b1}
 M_2
 V_{in}
 M_1

$$= \frac{2 \Sigma_{1}}{V_{ob}} \times \frac{1}{3 \Sigma_{1}} \times \frac{1}{3 \Sigma_{1}} \qquad || \frac{1}{3 \Sigma_{1}}$$

$$= \frac{2\Gamma_{1}}{V_{ob}} \times \frac{1}{A\Gamma_{1}} \times \frac{1}{A\Gamma_{1}} \parallel \frac{1}{A\Gamma_{1}}$$

$$= R_{out} \times V_{os} = \frac{1}{A\Gamma_{1}} = \frac{1}{o.1 \times lmA} = Lokal$$

d) { V.u+, Mux = Vpp - Vopz = 1.2 - 0.2.110 V.u+, M.u = Vop, + Vepz = 0.7 + 0.7 u = 0.410 Vsu, pp = 1 - 0.9 = a612 **3.** (35 pts) For the differential amplifier shown below:

- a) Assuming the target over-drive voltage (V_{od}) for <u>all the transistors</u> is 0.2V, find the V_{b1} , V_{b2} values.
- b) Find $(W/L)_{1,2}$, $(W/L)_{3,4}$, & $(W/L)_5$ such that current tail will be 8mA.
- c) Draw the differential-mode half circuit and calculate the differential gain $(\frac{v_{out}}{v_{in1}-v_{in2}})$ in terms of small-signal parameters $(g_m, r_o, \text{ and } R_1)$?
- d) Draw the common-mode half circuit and calculate single ended common-mode gain $(\frac{v_{out1/2}}{v_{in,cm}})$ in terms of small-signal parameters $(g_m, r_o, and R_1)$?
- e) For a differential gain of -10, what should be the value of R_1 ?
- f) Find differential output peak-to-peak swing.
- g) Find minimum input common-mode ($V_{in,cm}$) for this amplifier.

C) D.M

$$V_{amo}R_{1/2}$$
 $V_{amo}R_{1/2}$
 $V_$

g) Vin, cm ≥ Vas, + Van, => Vin, cm 20.74