Box #____ (Name on Back)
Math 65 Section ___
Homework 3
11/6/18

Problems for Section 6.4: Linear Transformations

C1: (Poole, p. 480) Section 6.4 #18.

Let $T \colon M_{22} \to \mathbb{R}$ be a linear transformation for which

$$\begin{split} T \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} &= 1, \quad T \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} &= 2, \\ T \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} &= 3, \quad T \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} &= 4 \end{split}$$

Find
$$T \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$
 and $T \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

C2: (Poole, p. 480) Section 6.4 #22.

Let $\{\vec{v}_1,\ldots,\vec{v}_n\}$ be a basis for a vector space V and let $T\colon V\to V$ be a linear transformation. Prove that if $T(\vec{v}_1)=\vec{v}_1,T(\vec{v}_2)=\vec{v}_2,\ldots,T(\vec{v}_n)=\vec{v}_n$, then T is the identity transformation on V.

 $\textbf{C3} : \mbox{ Consider the linear transform T defined on polynomials, $p(x)$, of degree n where $n=1,2,3\cdots$,}$

$$T: \mathcal{P}_n \to \mathcal{P}_{n-1}$$
 defined by $T(p) = \frac{dp}{dx}$.

Is T invertible? If so, find its inverse. If not, explain why not.

Problems for Section 6.5: Kernel, Range & Rank Theorem

C4: Let $T: M_{22} \to \mathbb{R}$ be defined by $T(A) = \operatorname{tr}(A)$.

- (a) Which, if any, of the following matrices are in ker(T)?
 - (i) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- (ii) $\begin{bmatrix} 3 & -2 \\ 2 & 1 \end{bmatrix}$
- (iii) $\begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}$
- (b) Which, if any, of the following scalars are in $\operatorname{range}(T)$?
 - (i) 0
- (ii) 5
- (iii) $-\sqrt{2}$
- (c) Describe ker(T) and range(T).

Box	#

C5: Find bases for the kernel and range of the linear transformation T in Exercise C5. State the nullity and rank of T and verify the Rank Theorem.

C6: (Poole, p. 495) Section 6.5 #14.

Find either the nullity or the rank of T and then use the Rank Theorem to find the other.

$$T \colon M_{33} \to M_{33}$$
 defined by $T(A) = A - A^T$