A2 Multivariate Normal Distribution

- 1. Show that $g(z) = \frac{1}{\sqrt{2\pi}}e^{z^2/2}$ is a density.
- 2. For a bivariate normal distribution $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ with means μ_1 and μ_2 and with $\sigma_1=\sqrt{\sigma_{11}},\ \sigma_2=\sqrt{\sigma_{22}},$ and $\sigma_{12}=\rho\sigma_1\sigma_2,$ where ρ is correlation, form the standardised variables

$$z_1 = \frac{y_1 - \mu_1}{\sigma_1} \qquad z_2 = \frac{y_2 - \mu_2}{\sigma_2}$$

show that the mean squared difference between the two standardised variables is $2(1-\rho)$.

- 3. If \bar{y} is the mean of a random sample y_1,\ldots,y_n from $N(\mu,\sigma^2)$, then show that $E(\bar{y})=\mu$
- 4. The sample variance of a random sample y_1, \ldots, y_n from $N(\mu, \sigma^2)$ is $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i \bar{y})^2.$
 - (a) Express s^2 in the quadratic form $\mathbf{y'Hy}$ where $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ and \mathbf{H} is the idempotent matrix $\mathbf{H} = \mathbf{I} \mathbf{J} / n$.
 - (b) Show that $E\left(s^2\right)=\sigma^2$ using the the formula for the expectation of quadratic form (see Assignment 1)

- 5. If $\bar{\bf y}$ is the mean of a random sample ${\bf y_1},...,{\bf y_n}$ from $N_p(\mu,{\bf \Sigma})$, then show that $E(\bar{\bf y})=\mu$
- 6. The sample variance \mathbf{S} of a random sample $\mathbf{y_1}, \dots, \mathbf{y_n}$ from $N_p(\mu, \mathbf{\Sigma})$, is $\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^n (\mathbf{y}_i \bar{\mathbf{y}}) (\mathbf{y}_i \bar{\mathbf{y}})'. \text{ Show that } E(\mathbf{S}) = \mathbf{\Sigma}.$
- 7. Consider a bivariate random vector $\begin{bmatrix} x \\ y \end{bmatrix}$ and let σ_{xy} denote the population covariance. For a sample $(x_1, y_1), \ldots, (x_n, y_n)$, let s_{xy} denote the sample covariance. Using the result $E(\mathbf{x}'\mathbf{A}\mathbf{y}) = \operatorname{tr}\left(\mathbf{A}\mathbf{\Sigma}_{\mathbf{y}\mathbf{x}}\right) + \mu_{\mathbf{x}}'\mathbf{A}\mu_{\mathbf{y}}$, prove that $E\left(s_{xy}\right) = \sigma_{xy}$
- 8. Prove that if $\bar{\mathbf{y}}$ and \mathbf{S} are based on a random sample $\mathbf{y}_1, ..., \mathbf{y}_n$ from $N_p(\mu, \Sigma)$, then $\bar{\mathbf{y}}$ and \mathbf{S} are independent.
- 9. A standardised vector z is obtained as

$$\mathbf{z} = (\mathbf{T}')^{-1}(\mathbf{y} - \mu)$$

where $\Sigma = \mathbf{T}'\mathbf{T}$ is factored using the Cholesky procedure. Show that $E(\mathbf{z}) = \mathbf{0}$ and $\text{cov}(\mathbf{z}) = \mathbf{I}$.

10. Suppose **y** is $N_3(\mu, \Sigma)$, where

$$\mu = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} 6 & 1 & -2 \\ 1 & 13 & 4 \\ -2 & 4 & 4 \end{bmatrix}$$

(a) Find the distribution of $z = 2y_1 - y_2 + 3y_3$.

- (b) Find the joint distribution of $z_1 = y_1 + y_2 + y_3$ and $z_2 = y_1 y_2 + 2y_3$.
- (c) Find the distribution of y_2 .
- (d) Find the joint distribution of y_1 and y_3 .
- (e) Find the joint distribution of y_1, y_3 , and $\frac{1}{2}(y_1 + y_2)$
- 11. Suppose \mathbf{y} is $N_3(\mu, \Sigma)$, with

$$\mu = \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 4 & -3 & 0 \\ -3 & 6 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Which of the following random variables are independent?

- (a) y_1 and y_2
- (b) y_1 and y_3
- (c) y_2 and y_3
- (d) (y_1, y_2) and y_3
- (e) (y_1, y_3) and y_2
- 12. Suppose \mathbf{y} and \mathbf{x} are subvectors, such that \mathbf{y} is 2×1 and \mathbf{x} is 3×1 , with μ and Σ partitioned accordingly:

$$\mu = \begin{bmatrix} 3 \\ -2 \\ 4 \\ -3 \\ 5 \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} 14 & -8 & 15 & 0 & 3 \\ -8 & 18 & 8 & 6 & -2 \\ 15 & 8 & 50 & 8 & 5 \\ 0 & 6 & 8 & 4 & 0 \\ 3 & -2 & 5 & 0 & 1 \end{bmatrix}$$

Assume that $\begin{bmatrix} \mathbf{y} \\ \mathbf{x} \end{bmatrix}$ is distributed as $N_5(\mu, \Sigma)$.

(a) Find $E(\mathbf{y} | \mathbf{x})$

(b) Find $cov(y \mid x)$