# DAFTAR ISI

| DAFTAR ISI                                                    | i  |
|---------------------------------------------------------------|----|
| BAB 1. PENDAHULUAN                                            | 1  |
| 1.1 Latar Belakang                                            | 1  |
| 1.2 Rumusan Masalah                                           | 2  |
| 1.3 Tujuan Program                                            | 2  |
| 1.4 Manfaat                                                   | 2  |
| BAB 2. GAGASAN                                                | 3  |
| 2.1 Pemicu Gagasan                                            | 3  |
| 2.2 Tawaran Solusi                                            | 4  |
| 2.3 Pihak yang Membantu Pengimplementasian                    | 8  |
| 2.4 Langkah-langkah Strategis Implementasi                    | 9  |
| BAB 3. KESIMPULAN                                             | 12 |
| 3.1 Gagasan yang Diajukan                                     | 12 |
| 3.2 Cara Merealisasikan dan Waktu yang Diperlukan             | 12 |
| 3.3 Prediksi Dampak Bagi Masyarakat dan Bangsa                | 12 |
| DAFTAR PUSTAKA                                                |    |
| LAMPIRAN                                                      | 14 |
| Lampiran 1. Biodata Ketua dan Anggota, serta Dosen Pendamping | 14 |
| Lampiran 2. Kontribusi Ketua, Anggota, dan Dosen Pendamping   |    |
| Lampiran 3. Laporan Pernyataan Ketua Pelaksana                |    |

#### **BAB 1. PENDAHULUAN**

## 1.1 Latar Belakang

Indonesia adalah negara yang terletak pada garis khatulistiwa sehingga Indonesia memiliki iklim tropis. Kondisi tersebut mengakibatkan Indonesia mengalami panas sepanjang tahun dengan suhu yang relatif tinggi. Sementara itu, wilayah Indonesia yang berbentuk kepulauan mengakibatkan Indonesia memiliki kelembaban udara yang cukup tinggi. Oleh karena itu salah satu masalah yang sering terjadi yaitu perubahan iklim.

Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) akhir Desember 2021 lalu baru saja meluncurkan *Climate Outlook* 2022 yang memprediksi bahwa curah hujan tahunan pada 2022 sedikit lebih tinggi jika dibandingkan dengan normalnya. Kondisi normal adalah rata-rata kondisi iklim dalam periode referensi pada 1981-2010. Tren suhu 2022 juga diprediksi lebih tinggi jika dibandingkan dengan rata-rata normalnya sebesar 26,6 °C. Tren kenaikan suhu juga terjadi secara terus-menerus di Indonesia.

Berdasarkan konsep *thermal unit* yang menentukan koleksi biomassa dan hasil panen, perubahan iklim akan menurunkan produksi semua tanaman pangan utama jika tidak ada adaptasi perubahan iklim. Diperkirakan produksi produksi jagung akan menurun sebesar 13,6%, produksi kedelai akan menurun 12,4%, dan produksi tebu akan menurun 7,6%.

Selain sektor pertanian, perubahan iklim juga memberi dampak negatif pada sektor peternakan. Organisasi Kesehatan Hewan Dunia (OIE) dalam sidang tahunannya yang ke-77 tahun 2009 menyatakan akibat dari perubahan iklim, dunia menghadapi munculnya penyakit-penyakit hewan yang baru muncul dan yang muncul kembali (*emerging and re-emerging animal diseases*).

Oleh karena itu, kami memberikan sebuah gagasan yang merupakan solusi dari masalah memperkuat kapasitas ketahanan dan adaptasi terhadap bahaya terkait iklim dan bencana alam di semua negara (Target SDGs 13.1), pada tahun 2030, mencapai pengelolaan berkelanjutan dan pemanfaatan sumber daya alam secara efisien (Target SDGs 12.2), pada tahun 2030, secara substansial mengurangi produksi limbah melalui pencegahan, pengurangan, daur ulang, dan penggunaan kembali (Target SDGs 12.5).

Solusi kami adalah kami akan membuat suatu inovasi yang berjudul "Future Farm House: Pembudidayaan Tanaman Pangan dan Peternakan Berkelanjutan Sebagai Solusi Perubahan Iklim Menggunakan Artificial Intelligence dan Internet of Things". Dengan berlandaskan masalah perubahan iklim yang tak menentu yang mengakibatkan hasil panen yang tidak stabil, kami ingin membuat lingkungan yang dapat mengatur segala kebutuhan tumbuhan pangan dan ternak agar bisa

berkembang dengan baik tanpa harus mengkhawatirkan adanya perubahan iklim sehingga mampu memenuhi dan menyuplai kebutuhan manusia untuk kedepannya.

#### 1.2 Rumusan Masalah

- 1. Bagaimana cara mengatasi pertumbuhan tanaman pangan yang tidak optimal akibat perubahan iklim menggunakan teknologi *Artificial Intelligence* dan *Internet of Things*?
- 2. Bagaimana cara mengatasi hasil sektor peternakan yang tidak optimal akibat perubahan iklim menggunakan teknologi *Artificial Intelligence* dan *Internet of Things*?
- 3. Bagaimana cara memenuhi kebutuhan sektor pertanian dan peternakan guna mengurangi dampak perubahan kedepannya menggunakan teknologi *Artificial Intelligence* dan *Internet of Things*?

## 1.3 Tujuan Program

- 1. Untuk mengetahui cara mengatasi pertumbuhan tanaman pangan yang tidak optimal akibat perubahan iklim menggunakan teknologi *Artificial Intelligence* dan *Internet of Things*
- 2. Untuk mengetahui cara mengatasi hasil sektor peternakan yang tidak optimal akibat perubahan iklim menggunakan teknologi *Artificial Intelligence* dan *Internet of Things*
- 3. Untuk mengetahui cara memenuhi kebutuhan sektor pertanian dan peternakan guna mengurangi dampak perubahan kedepannya menggunakan teknologi *Artificial Intelligence* dan *Internet of Things*

#### 1.4 Manfaat

Adapun manfaat dari inovasi ini adalah untuk meningkatkan kualitas hasil panen tanaman pangan dan hasil ternak, memenuhi kebutuhan masyarakat kedepannya, serta membuat sebuah lingkungan pembudidayaan tanaman pangan dan peternakan yang berkelanjutan.

#### BAB 2. GAGASAN

## 2.1 Pemicu Gagasan

Perubahan iklim yang terjadi tidak menentu ini memberikan dampak yang sangat merugikan di berbagai bidang salah satunya di bidang pertanian. Pertumbuhan dan hasil tanaman dapat ditentukan oleh tiga faktor utama, ketiga faktor tersebut adalah tanah, iklim/cuaca dan tanaman. Untuk mencapai hasil yang optimum, maka ketiga faktor tersebut harus dalam keadaan seimbang. Iklim merupakan salah satu faktor yang mempengaruhi pertumbuhan dan produktivitas tanaman. Faktor-faktor iklim yang sangat mempengaruhi pertumbuhan tanaman adalah curah hujan, terutama untuk pertanian lahan kering, suhu maksimum dan minimum serta radiasi. Dengan mengetahui faktor-faktor cuaca tersebut pertumbuhan tanaman, tingkat fotosintesis dan respirasi yang berkembang secara dinamis dapat disimulasi (Setiawan, 2009). Intensitas cahaya dan suhu udara merupakan komponen iklim yang dapat diamati. Pada skala kecil, iklim mikro sangat mudah untuk diamati karena lingkupnya yang tidak terlalu luas. Iklim mikro adalah faktor-faktor kondisi iklim setempat yang memberikan pengaruh langsung terhadap fisik pada suatu lingkungan. Iklim mikro merupakan iklim di lapisan udara terdekat permukaan bumi dengan ketinggian +2 meter (Bunyamin, 2010).

Pada Sensus Penduduk 2020, BPS mencatat jumlah penduduk Indonesia saat ini adalah sebesar 270,2 juta jiwa. Sementara pada Sensus Penduduk 2010, jumlah penduduk Indonesia tercatat sebanyak 237,63 juta jiwa. Hal ini menunjukkan bahwa Indonesia mengalami peningkatan yang cukup signifikan dalam 10 tahun terakhir. Dengan melihat data tersebut, kenaikan populasi tentu akan diiringi dengan peningkatan jumlah kebutuhan pangan. Hal ini tentu saja akan menjadi suatu tantangan bagi Indonesia dalam sektor ketahanan pangan di masa depan, mengingat perubahan iklim yang mengakibatkan produktivitas hasil tanaman pangan menurun.

Selain itu, meningkatnya jumlah populasi di Indonesia tentu akan mengakibatkan kurangnya lahan pertanian. Diperkirakan ada sekitar 150 ribu hektar lahan pertanian berkurang tiap tahunnya, sehingga semakin mempersempit lahan. Sempitnya lahan pertanian itu sangat berdampak pada produktivitas pangan juga yang ikut menurun akibat perubahan iklim. Menurut data Kementerian Agraria dan Tata Ruang/Badan Pertahanan Nasional (ATR/BPN), luas baku lahan sawah nasional pada tahun 2019 nyatanya menyusut sebesar 287 ribu hektar di banding tahun 2013.

Dengan melihat pertumbuhan populasi di Indonesia, kebutuhan akan sumber energi juga semakin meningkat. Namun saat ini, masyarakat di Indonesia masih sangat bergantung pada sumber energi yang tak terbarukan. Misalnya pada penggunaan gas LPG. Menteri Energi dan Sumber Daya Mineral (ESDM) Arifin

Tasrif menyebutkan, cadangan minyak bumi akan habis dalam kurun waktu 9,5 tahun lagi.

Tak hanya itu, perkembangan teknologi yang kian pesat, menyebabkan perubahan minat masyarakat yang juga mengikuti perkembangan ke dunia yang lebih modern seperti halnya dalam dunia pekerjaan contohnya di bidang pertanian. Saat ini, salah satu faktor keengganan anak-anak muda untuk bertani sesungguhnya dipengaruhi oleh subkultur baru yang berkembang di era digital seperti sekarang. Krisis petani muda di sektor pertanian dan dominannya petani tua memiliki konsekuensi terhadap pembangunan sektor pertanian berkelanjutan, khususnya terhadap produktivitas pertanian, daya saing pasar, kapasitas ekonomi perdesaan, dan lebih lanjut hal itu akan mengancam ketahanan pangan serta keberlanjutan di sektor pertanian.

#### 2.2 Tawaran Solusi

Berdasarkan permasalahan-permasalahan di atas, kami memberikan suatu gagasan untuk mengatasi keprihatinan masyarakat terhadap dampak dari perubahan iklim yang terjadi di Indonesia, yaitu "Future Farm House: Pembudidayaan Tanaman Pangan dan Peternakan Berkelanjutan Sebagai Solusi Perubahan Iklim Menggunakan Artificial Intelligence dan Internet of Things". Gagasan yang kami ajukan ini sangat berpotensi untuk diterapkan dan efektif di masa yang akan datang, terkhusus dalam bidang pertanian dan peternakan sehingga mampu mengatasi permasalahan-permasalahan yang telah dibahas sebelumnya.



Sumber: https://id.pinterest.com/minacris/

Future Farm House menawarkan sebuah solusi berupa lingkungan yang menyediakan tempat pembudidayaan tanaman pangan dan peternakan yang

berkelanjutan guna memenuhi kebutuhan-kebutuhan masyarakat tanpa perlu khawatir akan dampak negatif yang disebabkan oleh perubahan iklim.



Sumber: https://www.deviantart.com/odysseusart



Sumber: https://id.pinterest.com/sebastiaoand17/

Future Farm House menyediakan berbagai fasilitas menggunakan teknologi Artificial Intelligence dan Internet of Things yang dapat menunjang produktivitas pada sektor pertanian dan peternakan, yaitu:

#### 1. Sektor Pertanian

Dalam pertanian konvensional, pemantauan terhadap pertumbuhan tanaman tidak dapat dilakukan pada setiap saat. Dengan adanya CCTV yang dilengkapi dengan teknologi *Artificial Intelligence*, pemantauan dapat dilakukan selama 24 jam, sehingga pertumbuhan tanaman dapat lebih terkendali. CCTV ini juga berfungsi untuk untuk mendeteksi tingkat kematangan buah.

Untuk mengukur kesuburan tanah, petani konvensional biasanya melakukan cara manual, yaitu dengan melihat secara langsung warna tanah tanpa mengetahui

kelembaban dan unsur hara yang terdapat dalam tanah. Namun pada *Future Farm House*, pengukuran kesuburan tanah dapat dilakukan dengan menggunakan teknologi *Internet of Things*. Sensor pengukur suhu dan kelembaban ruangan juga akan digunakan dalam *Future Farm House* ini. Dengan teknologi *Internet of Things*, alat ini secara otomatis dapat menyesuaikan kebutuhan suhu dan kelembaban yang ideal dari masing-masing jenis tanaman tertentu.

Selanjutnya, untuk memenuhi kebutuhan air pada tanaman pangan pada *Future Farm House*, akan diterapkan sistem pengairan dan penyiraman secara otomatis. Teknologi *Artificial Intelligence* dapat diterapkan untuk mendeteksi waktu penyiraman tanaman pangan. Selanjutnya diterapkan sistem pengairan secara otomatis. Sistem ini akan menggunakan teknologi *Internet of Things*. Pada teknologi ini, akan dikembangkan sistem sensor yang akan membaca kondisi lahan berupa kondisi kadar air tanah. Dengan begitu, kebutuhan air pada tanaman pangan akan selalu tercukupi.

Pencahayaan juga merupakan hal yang perlu diperhatikan pada tanaman pangan. Dengan adanya perubahan iklim, tanaman seringkali mendapatkan cahaya yang kurang dari matahari. Karena *Future Farm House* mengusung pembudidayaan tanaman didalam ruangan, maka pencahayaan dapat dilakukan dengan menggunakan lampu LED yang dapat dikontrol secara otomatis menggunakan teknologi *Internet of Things*.



Sumber: https://id.pinterest.com/ghostt1711/

Future Farm House juga akan menggunakan robot untuk memanen hasil tanaman pangan. Dengan menggunakan robot yang dilengkapi sensor Artificial Intelligence, sensor ini dapat bermanfaat pada saat memanen buah tertentu seperti tomat. Robot tersebut akan memanen buah berdasarkan warna buahnya. Dengan begitu, aktivitas panen dapat dilakukan dengan lebih cepat dan dapat menghemat tenaga manusia.



Sumber: https://id.pinterest.com/anolytics/

Adapun sampah bekas panen akan dikumpulkan pada suatu tempat, yang kemudian akan diolah menjadi pupuk organik yang hasilnya dapat digunakan kembali untuk memupuk tanaman pangan di *Future Farm House*. Selain diolah sebagai pupuk, sisa hasil panen juga akan diolah menjadi energi biomassa. Energi ini kemudian dapat digunakan sebagai energi alternatif yang dapat didistribusikan kepada masyarakat.

#### 2. Sektor Peternakan

Pada sektor peternakan, CCTV dapat digunakan untuk memantau aktivitas hewan ternak. Jika terdapat perubahan perilaku, maka akan mudah untuk diketahui sehingga diberi penanganan dengan cepat. Dengan adanya teknologi *Artificial Intelligence* dan pengenal wajah pada CCTV, maka akan semakin meningkatkan manfaat dari penggunaan alat tersebut. Misalnya pada ternak sapi, di mana algoritma akan menandai setiap perubahan perilaku setiap sapi mulai dari penurunan nafsu makan atau minum, pergerakan yang lamban atau naik turunnya bobot sapi. *Artificial Intelligence* akan mendeteksi lebih dini kemungkinan masalah kesehatan pada sapi, sehingga peternak bisa melakukan tindakan awal dan mengatur jadwal makan ternak mereka.



Sumber: https://www.progressivedairycanada.com/

Pada setiap ruangan peternakan, akan dilengkapi sensor pengukur suhu dan kelembapan ruangan. Secara otomatis ruangan tersebut bisa diatur suhu dan menyesuaikan kebutuhan peternakan. Apabila suhu ruangan terlalu panas, maka *fan* otomatis akan menyala untuk mengurangi panas ruangan. Hal ini bertujuan agar membuat hewan ternak tetap sehat dan produktif. Pemberian pakan secara manual akan kurang efektif karena memakan waktu dan tenaga yang banyak. Oleh karena itu, pemberian pakan pada hewan ternak dalam *Future Farm House* akan diberikan secara otomatis menggunakan sistem *Internet of Things*.

Mengingat hewan ternak juga menghasilkan kotoran, tentu saja diperlukan cara yang efektif untuk membersihkannya. *Future Farm House* akan menyediakan robot yang menggunakan teknologi *Artificial Intelligence*. Robot ini juga akan dilengkapi sensor untuk mengenali bau. Sehingga jika robot tersebut mendeteksi aroma yang tidak sedap dari kotoran hewan ternak, maka robot akan otomatis menyedot dan membersihkannya. Untuk memanfaatkan kotoran hewan tersebut. Hasil dari penyedotan kotoran yang dihasilkan hewan ternak kemudian akan ditampung di suatu tempat kemudian diolah menjadi biogas. Energi juga dapat digunakan sebagai energi alternatif yang dapat didistribusikan kepada masyarakat.

Dengan adanya inovasi ini, pertumbuhan tanaman pangan tidak akan mengalami penurunan dari segi produktivitas maupun kualitasnya. *Future Farm House* mampu menjadi suatu tempat pembudidayaan tanaman pangan yang dapat melindungi tanaman pangan tersebut dari dampak perubahan iklim.

## 2.3 Pihak yang Membantu Pengimplementasian

Agar merealisasikan gagasan kami, perlu adanya pihak-pihak yang memiliki peran aktif dalam langkah-langkah pengimplementasian. Adapun pihakpihak tersebut dengan fungsinya masing-masing adalah sebagai berikut:

#### 1. Pemerintah

Pemerintah berperan sebagai pihak yang memberikan izin untuk melaksanakan gagasan kami, dimana izin membangun rumah sebagai tempatnya dan izin untuk meneliti.

#### 2. Pengembang (*Developer*)

Pengembang berperan penting dalam membangun lingkungan yang akan diciptakan. Pengembang menciptakan *Artificial Intelligence* dan *Internet of Things* yang nantinya paling akan digunakan dalam mencapai tujuan dari inovasi ini.

## 3. Peneliti (*Scientist*)

Peneliti bisa membantu mengumpulkan data dan menganalisis data, sesuai data yang dikumpulkan oleh fasilitas *Future Farm House*. Kemudian bersama dengan pengembang (*Developer*), bersama membuat kecerdasan buatan untuk diberikan kepada robot agar robot bertingkah seperti peneliti dan bisa memeriksa, mengumpulkan data, dan menganalisis secara langsung.

#### 4. Petani dan Peternak

Pengetahuan petani dan peternak mengenai cara melakukan aktivitas tani dan ternak dapat membantu peneliti dan pengembang.

#### 5. Arsitek

Arsitek merancang seperti apa bentuk bangunan yang diharapkan bisa menopang lingkungan yang akan diciptakan. Bangunan tersebut tentu harus bersifat ramah lingkungan. Kita tidak ingin menyelesaikan masalah perubahan iklim dengan melahirkan masalah perubahan iklim yang baru.

#### 6. Menteri Pertanian

Menteri Pertanian berperan dalam sumbangsih dana serta pengetahuan yang dapat membantu inovasi kami.

## 2.4 Langkah-langkah Strategis Implementasi

Agar inovasi ini dapat dilaksanakan dengan baik, maka dibutuhkan langkahlangkah strategis khusus dalam upaya pengimplementasikannya. Langkah-langkah tersebut di antara lain:

- 1. Bekerjasama dengan *stakeholder* terkait yakni pemerintah, swasta, dan ilmuwan.
- 2. Memulai pengembangan teknologi *Artificial Intelligence* dan *Internet of Things* bersama para *developer*.
- 3. Pembangunan tahap pertama yang berfokus pada pembangunan area tanaman pangan dengan memanfaatkan *Internet of Things* seperti dalam hal sistem irigasi, kesuburan tanah. Kemudian *Artificial Intelligence* seperti dalam hal pemantauan suhu, penyiraman, pemupukan, dan pemanenan oleh robot.
- 4. Memulai produksi hasil tanaman pangan menuju pasar-pasar lokal.

- 5. Limbah dari hasil tanaman pangan akan diolah kembali menjadi energi terbarukan.
- 6. Pembangunan tahap kedua yang berfokus pada pembangunan area pemeliharaan hewan ternak dengan memanfaatkan *Internet of Things* dan *Artificial Intelligence* seperti dalam hal pemantauan suhu, *face recognition* dalam mengamati sapi, pemberian pakan, dan lain-lain.
- 7. Memulai produksi hasil hewan ternak menuju pasar-pasar lokal.
- 8. Limbah dari hewan ternak akan dikumpul dan kemudian dijadikan menjadi gas alternatif dan pupuk yang akan digunakan kembali.
- 9. Bekerja sama dengan investor terkait segala manajemen pendanaan

Tabel 2. 1 *Timeline* dalam merealisasikan gagasan

| No. | Lonis Vagioton          |   |   |   |   | Tal | hun |   |   |   |    |
|-----|-------------------------|---|---|---|---|-----|-----|---|---|---|----|
| NO. | Jenis Kegiatan          | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 |
| 1.  | Identifikasi Masalah    |   |   |   |   |     |     |   |   |   |    |
| 2.  | Studi Masalah           |   |   |   |   |     |     |   |   |   |    |
| 3.  | Analisis Kebutuhan      |   |   |   |   |     |     |   |   |   |    |
| ٥.  | Alat dan Bahan          |   |   |   |   |     |     |   |   |   |    |
|     | Membuat Teknologi       |   |   |   |   |     |     |   |   |   |    |
|     | Internet of Things dan  |   |   |   |   |     |     |   |   |   |    |
|     | Artificial Intelligence |   |   |   |   |     |     |   |   |   |    |
|     | yang bertujuan          |   |   |   |   |     |     |   |   |   |    |
|     | membantu dalam sektor   |   |   |   |   |     |     |   |   |   |    |
|     | pertanian dan sektor    |   |   |   |   |     |     |   |   |   |    |
|     | peternakan dalam        |   |   |   |   |     |     |   |   |   |    |
|     | Future Farm House       |   |   |   |   |     |     |   |   |   |    |
|     | Penyiapan Alat dan      |   |   |   |   |     |     |   |   |   |    |
| 4.  | Bahan Pembuatan         |   |   |   |   |     |     |   |   |   |    |
|     | Future Farm House       |   |   |   |   |     |     |   |   |   |    |
|     | Pembuatan Prototype     |   |   |   |   |     |     |   |   |   |    |
| 5.  | Skala Kecil Future      |   |   |   |   |     |     |   |   |   |    |
|     | Farm House              |   |   |   |   |     |     |   |   |   |    |
|     | Memulai Penanaman       |   |   |   |   |     |     |   |   |   |    |
| 6.  | Bibit dan Pemeliharaan  |   |   |   |   |     |     |   |   |   |    |
|     | Hewan Ternak            |   |   |   |   |     |     |   |   |   |    |
|     | Pembangunan             |   |   |   |   |     |     |   |   |   |    |
| 7.  | Bangunan Future Farm    |   |   |   |   |     |     |   |   |   |    |
|     | House                   |   |   |   |   |     |     |   |   |   |    |
| 8.  | Perpindahan Tanaman     |   |   |   |   |     |     |   |   |   |    |
| 0.  | Pangan dan Hewan        |   |   |   |   |     |     |   |   |   |    |

|     | Ternak Ke Tempat      |  |  |  |  |  |
|-----|-----------------------|--|--|--|--|--|
|     | Utama                 |  |  |  |  |  |
|     | Menambah Jumlah       |  |  |  |  |  |
| 9.  | Tanaman Pangan dan    |  |  |  |  |  |
|     | Hewan Ternak          |  |  |  |  |  |
|     | Memulai Produksi dari |  |  |  |  |  |
| 10. | Hasil Tanaman Pangan  |  |  |  |  |  |
|     | dan Hasil Ternak      |  |  |  |  |  |

Adapun dampak sistemik dari langkah-langkah strategis kami adalah sebagai berikut ini:

- 1. Seluruh *stakeholder* mampu bekerja sama untuk mewujudkan *Future Farm House* sebagai bentuk pembangunan kota berkelanjutan.
- 2. Kinerja teknologi *Artificial Intelligence* dan *Internet of Things* yang optimal dengan bantuan para *developer*.
- 3. Dapat memulai pembudidayaan tanaman pangan dengan memanfaatkan *Internet of Things* dan *Artificial Intelligence*.
- 4. Memulai penyebaran hasil panen menuju pasar-pasar lokal.
- 5. Memproduksi energi alternatif berupa biomassa dan biogas.
- 6. Dapat memulai pembudidayaan hewan ternak dengan memanfaatkan *Internet of Things* dan *Artificial Intelligence*.
- 7. Memulai penyebaran hasil hewan ternak menuju pasar-pasar lokal.
- 8. Memproduksi energi alternatif berupa biogas, selain itu dapat memproduksi pupuk kompos.
- 9. Hasil panen tetap stabil cenderung meningkat walau lahan pertanian semakin menyusut.

#### **BAB 3. KESIMPULAN**

## 3.1 Gagasan yang Diajukan

Dengan melihat dampak yang diakibatkan oleh perubahan iklim yang terjadi di Indonesia, kami menawarkan sebuah gagasan yaitu "Future Farm House: Pembudidayaan Tanaman Pangan dan Peternakan Berkelanjutan Sebagai Solusi Perubahan Iklim Menggunakan Artificial Intelligence dan Internet of Things" yang memaksimalkan penggunaan teknologi untuk mengurangi dampak perubahan iklim terutama di sektor pertanian dan sektor peternakan.

## 3.2 Cara Merealisasikan dan Waktu yang Diperlukan

Cara merealisasikan gagasan kami adalah dengan menghubungi para stakeholder yang terkait dan kemudian kami akan bekerja sama dengan para developer untuk mengembangkan teknologi yang akan digunakan seperti halnya Internet of Things dan Artificial Intelligence. Mengenai waktu yang diperlukan, menurut kami akan membutuhkan waktu selama 10 tahun agar gagasan ini berhasil direalisasikan.

## 3.3 Prediksi Dampak Bagi Masyarakat dan Bangsa

Sesuai dengan perkembangan zaman, kami merasa gagasan ini akan diterima dan akan berdampak terhadap sektor pertanian dan sektor peternakan dikarenakan metode yang kami berikan akan meningkatkan hasil dan kualitas dari hasil pertanian dan hasil peternakan tanpa terganggu akan perubahan iklim karena kami membuat sebuah lingkungan menggunakan teknologi seperti *Internet of Things dan Artificial Intelligence* untuk menyediakan segala kebutuhan yang diperlukan.

#### DAFTAR PUSTAKA

- Asnawi, R. 2015. PERUBAHAN IKLIM DAN KEDAULATAN PANGAN DI INDONESIA.TINJAUAN PRODUKSI DAN KEMISKINAN. *Sosio Informa*. 1 (3): 293-309.
- Idris, M. 2021. *Dalam 10 Tahun, Jumlah Penduduk Indonesia Bertambah 32,5 Juta Jiwa*. URL: https://money.kompas.com/read/2021/01/22/160830626/dalam-10-tahun-jumlah-penduduk-indonesia-bertambah-325-juta-jiwa?page=all. Diakses tanggal 16 Maret 2022.
- Indrawan, R. R., Suryanto, A. dan Soeslistyono, R. 2017. KAJIAN IKLIM MIKRO TERHADAP BERBAGAI SISTEM TANAM DAN POPULASI TANAMAN JAGUNG MANIS (Zea mays saccharata sturt.). *Jurnal Produksi Tanaman.* 5 (1): 92-99.
- Media Indonesia. 2022. *Selamat Datang 2022*, *Apa Kabar Iklim Indonesia?*. URL: https://mediaindonesia.com/opini/462563/selamat-datang-2022-apa-kabar-iklim-indonesia. Diakses tanggal 16 Maret 2022.
- Nahdi, F., Dhika, H. 2021. Analisis Dampak *Internet of Things* (IoT) Pada Perkembangan Teknologi di Masa Yang Akan Datang. *Journal of Information Technology*. 6 (1): 33-42.
- Pertiwi, Wahyunanda K. 2018. *Teknologi Pengenal Wajah untuk Sapi Mulai Diperkenalkan*. URL: https://tekno.kompas.com/read/2018/02/03/08250057/teknologi-pengenal-wajah-untuk-sapi-mulai-diperkenalkan. Diakses tanggal 17 Maret 2022.
- Ray, 2022. *BMKG Prediksi Suhu di Tahun 2022 Meningkat*. URL: https://asumsi.co/post/9198/bmkg-prediksi-suhu-di-tahun-2022-meningkat. Diakses tanggal 16 Maret 2022.
- Redaksi. 2020. *Tiap Tahun 150 Ribu Hektar Lahan Pertanian Berkurang, Kenapa?*. URL: https://www.beritabersatu.com/2020/03/02/tiap-tahun-150-ribu-hektar-lahan-pertanian-berkurang-kenapa/. Diakses tanggal 17 Maret 2022.
- Setiany, A.P., Noviyanto, D., Irfansyahfalah, M., Aisah, S., Yulianti, Y. Kustadi, I. 2021. Implementasi Kecerdasan Buatan untuk Memantau Lahan Pertanian. *Jurnal Teknologi Sistem Informasi dan Aplikasi*. 4 (3): 187-192.
- Susilowati, Sri H. 2016. FENOMENA PENUAAN PETANI DAN BERKURANGNYA TENAGA KERJA MUDA SERTA IMPLIKASINYA BAGI KEBIJAKAN PEMBANGUNAN PERTANIAN. Forum Penelitian Agro Ekonomi. 34 (1): 35-55

#### **LAMPIRAN**

## Lampiran 1. Biodata Ketua dan Anggota, serta Dosen Pendamping

1. Ketua Pelaksana Kegiatan

#### A. Identitas Diri

| 1 | Nama Lengkap             | Muhammad Nabil Afkar   |
|---|--------------------------|------------------------|
| 2 | Jenis Kelamin            | Laki-laki              |
| 3 | Program Studi            | Teknik Informatika     |
| 4 | NIM                      | E1E121005              |
| 5 | Tempat dan Tanggal Lahir | Wawotobi, 04 Juli 2003 |
| 6 | Alamat E-mail            | nabilafkar47@gmail.com |
| 7 | Nomor Telepon/HP         | 081244176491           |

## B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

| No | Jenis Kegiatan | Status dalam<br>Kegiatan | Waktu dan Tempat |
|----|----------------|--------------------------|------------------|
| 1  | -              | -                        | -                |

## C. Penghargaan Yang Pernah Diterima

| No | Jenis Penghargaan  | Pihak Pemberi Penghargaan  | Tahun |
|----|--------------------|----------------------------|-------|
| 1  | OSK Kimia SMA 2019 | Dinas Pendidikan Kabupaten | 2019  |
|    | OSK Kimia SMA 2019 | Konawe                     | 2019  |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-GFT.

Kendari, 18 Maret 2022

Ketua Tim

(Muhammad Nabil Afkar)

#### A. Identitas Diri

| 1 | Nama Lengkap             | Ahmad Fadli Ramadhan         |
|---|--------------------------|------------------------------|
| 2 | Jenis Kelamin            | Laki-laki                    |
| 3 | Program Studi            | Teknik Informatika           |
| 4 | NIM                      | E1E121019                    |
| 5 | Tempat dan Tanggal Lahir | Kendari, 11 November 2003    |
| 6 | Alamat E-mail            | ahmadfadlyramadhan@gmail.com |
| 7 | Nomor Telepon/HP         | 085967073803                 |

## B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

| No | Jenis Kegiatan | Status dalam<br>Kegiatan | Waktu dan Tempat |
|----|----------------|--------------------------|------------------|
| 1  | <u> </u>       | •                        | -                |

## C. Penghargaan Yang Pernah Diterima

| No | Jenis Penghargaan                                                 | Pihak Pemberi Penghargaan                     | Tahun |
|----|-------------------------------------------------------------------|-----------------------------------------------|-------|
| 1  | Juara 1 Pra-Olimpiade<br>Matematika Tingkat SMA<br>PAMER 2019     | HMJ FKIP UHO                                  | 2019  |
| 2  | Medali Emas Kompetisi<br>Sains Indonesia (KSI) POSI<br>Tahun 2021 | POSI (Pelatihan Olimpiade<br>Sains Indonesia) | 2021  |
| 3  | Peserta OSK Matematika<br>SMA 2018                                | Dinas Pendidikan Kota<br>Kendari              | 2018  |
| 4  | Peserta KSN-K Matematika<br>SMA 2019                              | Dinas Pendidikan Kota<br>Kendari              | 2019  |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-GFT.

Kendari, 18 Maret 2022

Anggota Tim

(Ahmad Fadli Ramadhan)

#### A. Identitas Diri

| 1 | Nama Lengkap             | Nur Ilmi Fadilah        |
|---|--------------------------|-------------------------|
| 2 | Jenis Kelamin            | Perempuan               |
| 3 | Program Studi            | Teknik Informatika      |
| 4 | NIM                      | E1E121008               |
| 5 | Tempat dan Tanggal Lahir | Kendari, 5 Maret 2003   |
| 6 | Alamat E-mail            | nurilmifdlh03@gmail.com |
| 7 | Nomor Telepon/HP         | 082187084830            |

## B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

| No | Jenis Kegiatan | Status dalam<br>Kegiatan | Waktu dan Tempat |
|----|----------------|--------------------------|------------------|
| 1  | <u>u</u> n     | -                        | =                |

## C. Penghargaan Yang Pernah Diterima

| No                                 | Jenis Penghargaan         | Pihak Pemberi Penghargaan                       | Tahun |  |
|------------------------------------|---------------------------|-------------------------------------------------|-------|--|
| Pelatihan Fasilitator Pendamping 1 |                           | Pimpinan Daerah Ikatan<br>Pelajar Muhammadiyah  | 2019  |  |
| 2 .                                | Pelatihan Taruna Melati 3 | Pimpinan Wilayah Ikatan<br>Pelajar Muhammadiyah | 2021  |  |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-GFT.

Kendari, 18 Maret 2022

Anggota Tim

(Nur Ilmi Fadilah)

#### A. Identitas Diri

| 1 | Nama Lengkap             | Rafi Iyad Madani Chaidir  |
|---|--------------------------|---------------------------|
| 2 | Jenis Kelamin            | Laki-laki                 |
| 3 | Program Studi            | Teknik Informatika        |
| 4 | NIM                      | E1E121038                 |
| 5 | Tempat dan Tanggal Lahir | Kendari, 10 Februari 2004 |
| 6 | Alamat E-mail            | rafiiyad2004@gmail.com    |
| 7 | Nomor Telepon/HP         | 081241777870              |

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

| No | Jenis Kegiatan | Status dalam<br>Kegiatan | Waktu dan Tempat |
|----|----------------|--------------------------|------------------|
| 1  |                | -                        | -                |

C. Penghargaan Yang Pernah Diterima

| No  | Jenis Perhargaan                                                                                     | Pihak Pemberi<br>Penghargaan                        | Tahun |
|-----|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------|
| 1 . | Juara 1 Festival Lomba Seni<br>Siswa Nasional (FLS2N)<br>Bidang Film Pendek Tingkat<br>Provinsi 2020 | Kementrian Pendidikan<br>dan Kebudayaan             | 2020  |
| 2   | Juara 1 Lomba Video Kreatif<br>2021                                                                  | AMBATARO AUDIO<br>VISUAL                            | 2021  |
| 3   | Juara 1 Lomba Videografi<br>Dies Natalis Teknik<br>Informatika UHO ke XIV                            | Himpunan Mahasiswa<br>Teknik Informatika FT-<br>UHO | 2021  |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-GFT.

Kendari, 18 Maret 2022 Anggota Tim

(Rafi Iyad Madani Chaidir)

## A. Identitas Diri

| 1 | Nama Lengkap             | Hadikul Jabil          |
|---|--------------------------|------------------------|
| 2 | Jenis Kelamin            | Laki-laki              |
| 3 | Program Studi            | Teknik Informatika     |
| 4 | NIM                      | E1E120009              |
| 5 | Tempat dan Tanggal Lahir | Raha, 14 Maret 2002    |
| 6 | Alamat E-mail            | hadikuljabil@gmail.com |
| 7 | Nomor Telepon/HP         | 082271423253           |

## B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

| No | Jenis Kegiatan | Status dalam<br>Kegiatan | Waktu dan Tempat |
|----|----------------|--------------------------|------------------|
| 1  | -              | -                        | -                |

C. Penghargaan Yang Pernah Diterima

| No | Jenis Penghargaan                                   | Pihak Pemberi Penghargaan           | Tahun   |
|----|-----------------------------------------------------|-------------------------------------|---------|
| 1  | Jambore Nasional X 2016                             | Kwartir Nasional Gerakan<br>Pramuka | 2019    |
| 2  | Lomba Tingkat II Regu<br>Pramuka Penggalang Kwartir | Kwartir Cabang Muna                 | 2021    |
|    | Ranting Katobu                                      |                                     |         |
| 3  | Jambore Daerah Sultra                               | Kwartir Daerah Sulawesi             | si 2015 |
| 3  | Janibole Daeran Sultra                              | Tenggara                            | 2015    |
| 4  | Jambore Cabang Muna                                 | Kwartir Cabang Muna                 | 2015    |
| -  |                                                     |                                     |         |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-GFT.

Kendari, 18 Maret 2022 Anggota Tim

(Hadikul Jabil)

# **Biodata Dosen Pendamping**

# A. Identitas Diri

| 1 | Nama Lengkap       | Rizal Adi Saputra, ST., M.Kom      |
|---|--------------------|------------------------------------|
| 2 | Jenis Kelamin      | Laki-Laki                          |
| 3 | Program Studi      | Teknik Informatika                 |
| 4 | NIP / NIDN         | 19910406 201903 1 021 / 0006049104 |
| 5 | Tempat dan Tanggal | Kendari, 6 April 1991              |
| 3 | lahir              |                                    |
| 6 | Alamat e-mail      | rizaladisaputra@uho.ac.id          |
| 7 | Nomor Telepon/HP   | 085241792695                       |

# B. Riwayat Pendidikan

| No | Jenjang       | Bidang Ilmu                        | Institusi                              | Tahun<br>Lulus |
|----|---------------|------------------------------------|----------------------------------------|----------------|
| 1  | Sarjana (S1)  | Kecerdasan Buatan<br>(Biometrika)  | Universitas Halu Oleo                  | 2012           |
| 2  | Magister (S2) | Komputer Cerdas<br>dan Visualisasi | Institut Teknologi<br>Sepuluh Nopember | 2015           |

# C. Rekam Jejak Tridharma PT

# Pendidikan / Pengajaran

| No             | Nama Mata Kuliah               | Wajib / Pilihan | SKS |
|----------------|--------------------------------|-----------------|-----|
| Sem            | ester Gasal                    |                 |     |
| 1              | Pengolahan Citra Digital       | Wajib Minat     | 3   |
| 2              | Komputer Visi                  | Wajib Minat     | 3   |
| 3              | Interaksi Manusia dan Komputer | Wajib           | 3   |
| 4              | Kewirausahaan                  | Wajib           | 2   |
| 5              | Praktikum Aplikasi Komputer    | Wajib           | 1   |
| 6              | Teknologi Informasi            | Wajib           | 2   |
| Semester Genap |                                |                 |     |
| 1              | Kecerdasan Buatan              | Wajib           | 3   |
| 2              | Praktikum Kecerdasan Buatan    | Wajib           | 1   |
| 3              | Logika Fuzzy                   | Pilihan Minat   | 3   |
| 4              | Pengenalan Pola                | Wajib Minat     | 3   |
| 5              | Sistem Digital                 | Wajib           | 3   |

# Penelitian

| No. | Judul Penelitian                          | Penyandang<br>Dana | Tahun |
|-----|-------------------------------------------|--------------------|-------|
| 1   | Pengembangan Aplikasi Pelaporan Status    | DIPA BLU           | 2021  |
|     | Gizi Balita Pada Tingkat Kader Di         | UHO                |       |
|     | Puskesmas Nambo Kota Kendari Berbasis     |                    |       |
|     | Website Single Page Application           |                    |       |
| 2   | Fuzzy Analysis to Determine Potential     | Mandiri            | 2020  |
|     | Catching Areas of Skipjack Tuna on        |                    |       |
|     | Southeast Sulawesi Waters                 |                    |       |
| 3   | Fuzzy Logic Methods to Identify Potential | Mandiri            | 2020  |
|     | Area Mapping for Mangrove Forests in      |                    |       |
|     | Kendari using Landsat Image               |                    |       |
| 4   | Decision Suport System to Increase        | Mandiri            | 2019  |
|     | Salary of Bank Sultra's Teller Employee   |                    |       |
|     | with Performance Assessment Parameters    |                    |       |
|     | Using Fuzzy Tahani Method and Simple      |                    |       |
|     | Adaptive Weighting                        |                    |       |
| 5   | Strategi Penerapan Teknologi Informasi    | Pemda Kota         | 2018  |
|     | Untuk Meningkatkan Pelayanan Publik di    | Kendari            |       |
|     | Kota Kendari                              |                    |       |

# Pengabdian Kepada Masyarakat

| No | Judul Pengabdian                         | Penyandang<br>Dana | Tahun |
|----|------------------------------------------|--------------------|-------|
| 1  | Artificial Intelligence dan Kedudukannya | Mandiri            | 2022  |
|    | Dalam Hukum                              |                    |       |
|    | Pelatihan Pemanfaatan Media Sosial Dan   |                    |       |
|    | Marketplace Sebagai Media Promosi        |                    |       |
|    | Olahan UMKM Untuk Meningkatkan           | UHO                | 2021  |
| 2  | Penghasilan Pada Era New Normal Pada     |                    |       |
|    | Daerah Lingkar Tambang (Studi Kasus      |                    |       |
|    | Desa Torokeku Kecamatan Tinanggea        |                    |       |
|    | Kabupaten Konawe Selatan)                |                    |       |
|    | Penerapan Sistem Informasi Peminjaman    |                    |       |
| 3  | Buku Sebagai Peningkatan Literasi Anak   | UHO                | 2021  |
|    |                                          |                    |       |

|   | Pesisir Di Taman Baca Rumah Inspirasi Di                                                                                                                                                             |                       |      |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|
|   | Kota Kendari                                                                                                                                                                                         |                       |      |
| 4 | Pelatihan Penggunaan Spada E-Green<br>UHO Pada Mahasiswa Program Studi<br>Ilmu Pemerintahan, FISIP Universitas<br>Halu Oleo                                                                          | Mandiri               | 2021 |
| 5 | Penyusunan Dokumen Rencana<br>Kontijensi Gempa di Kota Kendari                                                                                                                                       | Pemda Kota<br>Kendari | 2020 |
| 6 | Sosialisasi Teknologi Informasi dan<br>Perlindungan Kekayaan Intelektual                                                                                                                             | Mandiri               | 2020 |
| 7 | Pengenalan Artificial Intellegence (AI);<br>Konsep dan Penerapannya pada Industri<br>Pertambangan                                                                                                    | Mandiri               | 2020 |
| 8 | Sosialisasi Penggunaan Permainan "Ular<br>Tangga Matematika dan Sistem Tata<br>Surya" Sebagai Media Penunjang Belajar<br>Berbasi Animasi Flash Untuk Anak-Anak<br>Keluarahan Bungkutoko Kota Kendari | Mandiri               | 2019 |

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-GFT

Kendari, 17 Maret 2022

Dosen Pembimbing

Rizal Adi Saputra, ST., M. Kom NIP. 19910406 201903 1 021

Lampiran 2. Kontribusi Ketua, Anggota, dan Dosen Pendamping

| No | Nama             | Posisi Penulis | Bidang Ilmu   | Kontribusi               |
|----|------------------|----------------|---------------|--------------------------|
| 1  | Muhammad Nabil   | Penulis        | Artificial    | Melakukan                |
|    | Afkar            | Pertama        | Intelligence  | pengumpulan              |
|    |                  |                |               | data mengenai            |
|    |                  |                |               | teknologi                |
|    |                  |                |               | Artificial               |
|    |                  |                |               | <i>Intelligence</i> pada |
|    |                  |                |               | sektor pertanian         |
|    |                  |                |               | dan peternakan           |
| 2  | Ahmad Fadli      | Penulis Kedua  | Internet of   | Melakukan                |
|    | Ramadhan         |                | Things        | pengumpulan              |
|    |                  |                |               | data pustaka             |
| 3  | Nur Ilmi Fadilah | Penulis Ketiga | Artificial    | Melakukan                |
|    |                  |                | Intelligence  | pengumpulan              |
|    |                  |                |               | data-data                |
|    |                  |                |               | perubahan iklim          |
| 4  | Rafi Iyad Madani | Penulis        | Internet of   | Melakukan                |
|    | Chaidir          | Keempat        | Things        | pengumpulan              |
|    |                  |                |               | data mengenai            |
|    |                  |                |               | teknologi                |
|    |                  |                |               | Internet of              |
|    |                  |                |               | Things pada              |
|    |                  |                |               | sektor pertanian         |
|    |                  |                |               | dan peternakan           |
| 5  | Hadikul Jabil    | Penulis        | Robotic       | Melakukan riset          |
|    |                  | Kelima         |               | mengenai robot           |
|    |                  |                |               | pada sektor              |
|    |                  |                |               | pertanian dan            |
|    |                  |                |               | peternakan               |
| 6  | Rizal Adi        | Pembimbing     | Artificial    | Pengarah dan             |
|    | Saputra, S.T.,   |                | Intelligence, | membimbing               |
|    | M.Kom.           |                | Machine       | kegiatan                 |
|    |                  |                | Learning      |                          |

#### Lampiran 3. Laporan Pernyataan Ketua Pelaksana

#### SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama Ketua Tim

: Muhammad Nabil Afkar

Nomor Induk Mahasiswa

: E1E121005

Program Studi

: Teknik Informatika

Nama Dosen Pendamping

: Rizal Adi Saputra, S.T., M.Kom.

Perguruan Tinggi

: Universitas Halu Oleo

Dengan ini menyatakan bahwa proposal PKM-GFT saya dengan judul *Future Farm House*: Pembudidayaan Tanaman Pangan dan Peternakan Berkelanjutan Sebagai Solusi Perubahan Iklim Menggunakan *Artificial Intelligence* dan *Internet of Things* yang diusulkan untuk tahun anggaran 2022 adalah hasil karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

> Kendari, 18 Maret 2022 Yang menyatakan,

GEDB<mark>1AJX735369890</mark> Muhammad Nabil Afkar

E1E121005