```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from \ sklearn.tree \ import \ Decision Tree Classifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split,cross_val_score,KFold,GridSearchCV
from \ sklearn.metrics \ import \ confusion\_matrix, classification\_report, accuracy\_score
# import scikitplot as skplt
dataset=pd.read_csv("/content/adult.csv")
print(dataset.isnull().sum())
print(dataset.dtypes)
     age
     workclass
                       0
     fnlwgt
                       0
     education
     education.num
     marital.status
                       0
     occupation
     relationship
     race
                       0
                       0
     sex
     capital.gain
                       0
     capital.loss
     hours.per.week
                       0
     native.country
                       0
     income
     dtype: int64
     age
                        int64
     workclass
                       object
     fnlwgt
                        int64
     education
                       object
     education.num
                        int64
     marital.status
                       object
     occupation
                       obiect
     relationship
                       object
     race
                       object
                       object
     sex
     capital.gain
                        int64
     capital.loss
                        int64
     hours.per.week
                        int64
     native.country
                       obiect
```

dataset.head()

income

dtype: object

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex	capital.gain	capital.loss
0	90	?	77053	HS-grad	9	Widowed	?	Not-in-family	White	Female	0	4356
1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-family	White	Female	0	4356
2	66	?	186061	Some- college	10	Widowed	?	Unmarried	Black	Female	0	4356
3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried	White	Female	0	3900
4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	White	Female	0	3900

```
#removing '?' containing rows
dataset = dataset[(dataset != '?').all(axis=1)]
#label the income objects as 0 and 1
dataset['income']=dataset['income'].map({'<=50K': 0, '>50K': 1})
```

object

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-c dataset['income']=dataset['income'].map({'<=50K': 0, '>50K': 1})

sns.catplot(x='education.num',y='income',data=dataset,kind='bar',height=6)
plt.show()

#explore which country do most people belong
plt.figure(figsize=(38,14))
sns.countplot(x='native.country',data=dataset)
plt.show()

if dataset.dtypes[column]==np.object:
 dataset[column]=enc.fit_transform(dataset[column])

<ipython-input-10-5d7d7fe4d7c0>:3: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warn_
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
if dataset.dtypes[column]==np.object:

<ipython-input-10-5d7d7fe4d7c0>:3: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warn
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
if dataset.dtypes[column]==np.object:

<ipython-input-10-5d7d7fe4d7c0>:3: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warn

Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations if dataset.dtypes[column]==np.object:

<ipython-input-10-5d7d7fe4d7c0>:3: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warn
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
 if dataset.dtypes[column]==np.object:

<ipython-input-10-5d7d7fe4d7c0>:3: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warn
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
if dataset.dtypes[column]==np.object:

<ipython-input-10-5d7d7fe4d7c0>:3: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warn
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
if dataset.dtypes[column]==np.object:

<ipython-input-10-5d7d7fe4d7c0>:3: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warn
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
if dataset.dtypes[column]==np.object:

<ipython-input-10-5d7d7fe4d7c0>:3: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warn
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
if dataset.dtypes[column]==np.object:

<ipython-input-10-5d7d7fe4d7c0>:3: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warn
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
if dataset.dtypes[column]==np.object:

plt.figure(figsize=(14,10))
sns.heatmap(dataset.corr(),annot=True,fmt='.2f')
plt.show()

age -	1.00	0.08	-0.08	-0.00	0.04	-0.28	-0.01	-0.25	0.02	0.08	0.08	0.06	0.10	-0.00	0.24
workclass -	0.08	1.00	-0.03	0.02	0.04	-0.03	0.02	-0.07	0.04	0.07	0.04	0.01	0.05	0.01	0.02
fnlwgt -	-0.08	-0.03	1.00	-0.03	-0.04	0.03	0.00	0.01	-0.02	0.03	0.00	-0.01	-0.02	-0.07	-0.01
education -	-0.00	0.02	-0.03	1.00	0.35	-0.04	-0.04	-0.01	0.01	-0.03	0.03	0.02	0.06	0.08	0.08
education.num -	0.04	0.04	-0.04	0.35	1.00	-0.06	0.09	-0.09	0.03	0.01	0.12	0.08	0.15	0.09	0.34
marital.status -	-0.28	-0.03	0.03	-0.04	-0.06	1.00	0.02	0.18	-0.07	-0.12	-0.04	-0.04	-0.19	-0.03	-0.19
occupation -	-0.01	0.02	0.00	-0.04	0.09	0.02	1.00	-0.05	0.00	0.06	0.02	0.01	0.02	-0.00	0.05
relationship -	-0.25	-0.07	0.01	-0.01	-0.09	0.18	-0.05	1.00	-0.12	-0.58	-0.06	-0.06	-0.26	-0.01	-0.25
race -	0.02	0.04	-0.02	0.01	0.03	-0.07	0.00	-0.12	1.00	0.09	0.01	0.02	0.05	0.12	0.07
sex -	0.08	0.07	0.03	-0.03	0.01	-0.12	0.06	-0.58	0.09	1.00	0.05	0.05	0.23	0.00	0.22
capital.gain -	0.08	0.04	0.00	0.03	0.12	-0.04	0.02	-0.06	0.01	0.05	1.00	-0.03	0.08	0.01	0.22
capital.loss -	0.06	0.01	-0.01	0.02	0.08	-0.04	0.01	-0.06	0.02	0.05	-0.03	1.00	0.05	0.01	0.15
hours.per.week -	0.10	0.05	-0.02	0.06	0.15	-0.19	0.02	-0.26	0.05	0.23	0.08	0.05	1.00	0.01	0.23
native country -	-0.00	0.01	-0.07	0.08	0.09	-0.03	-0.00	-0.01	0.12	0.00	0.01	0.01	0.01	1.00	0.02

 ${\tt dataset=dataset.drop(['occupation', 'fnlwgt', 'native.country'], axis=1)}$

print(dataset.head())

	age	workclass	education.num	marital.status	race	sex	capital.gain	\
1	82	2	9	6	4	0	0	
3	54	2	4	0	4	0	0	
4	41	2	10	5	4	0	0	
5	34	2	9	0	4	0	0	
6	38	2	6	5	4	1	0	

	capital.loss	hours.per.week	income
1	4356	18	0
3	3900	40	0

```
4
                3900
                                   40
                                            0
                3770
     5
                                  45
                                            0
     6
                3770
                                   40
                                            0
X=dataset.iloc[:,0:-1]
y=dataset.iloc[:,-1]
print(X.head())
print(y.head())
x\_train, x\_test, y\_train, y\_test=train\_test\_split(X,y,test\_size=0.33, shuffle=False)
        age workclass education.num marital.status race
                                                              sex
                                                                    capital.gain \
     1
                     2
                                     9
                                                     6
     3
         54
                     2
                                     4
                                                     0
                                                           4
                                                                0
                                                                               0
     4
         41
                     2
                                    10
                                                     5
                                                           4
                                                                0
                                                                               0
     5
         34
                     2
                                     9
                                                     0
                                                           4
                                                                0
                                                                               0
     6
         38
                                     6
                                                                1
                                                                               0
        capital.loss hours.per.week
     1
     3
                3900
                                   40
     4
                3900
                                   40
     5
                3770
                                   45
     6
                3770
                                   40
          0
     1
     3
          0
     4
          0
     5
          0
     6
          0
     Name: income, dtype: int64
import xgboost as xgb
xgb.__version__
     '2.0.0"
dmat=xgb.DMatrix(x_train,y_train)
test_dmat=xgb.DMatrix(x_test)
from skopt import BayesSearchCV
import warnings
warnings.filterwarnings('ignore', message='The objective has been evaluated at this point before.')
params={'min_child_weight': (0, 10),
        'max_depth': (0, 30),
        'subsample': (0.5, 1.0, 'uniform'),
        'colsample_bytree': (0.5, 1.0, 'uniform'),
        'n_estimators':(50,100),
        'reg_lambda':(1,100,'log-uniform'),
bayes=BayesSearchCV(estimator=xgb.XGBClassifier(objective='binary:logistic',eval_metric='error',eta=0.1),search_spaces=params,n_iter=50,scori
res=bayes.fit(x_train,y_train)
print(res.best_params_)
print(res.best_score_)
('colsample_bytree': 1.0, 'max_depth': 30, 'min_child_weight': 0, 'n_estimators': 50, 'reg_lambda': 100.0, 'subsample': 0.5} 0.7750395882818686
final_clf=xgb.train(params=final_p,dtrain=dmat,num_boost_round=837)
pred=final_clf.predict(test_dmat)
print(pred)
pred[pred > 0.5] = 1
pred[pred <= 0.5] = 0
print(pred)
print(accuracy_score(y_test,pred)*100)
```

[8.5713279e-01 7.6487666e-01 5.4465812e-01 ... 2.9337847e-01 3.4949776e-02 5.5424345e-04] [1. 1. 1. ... 0. 0. 0. 0.] 85.01105083383564