Verification for neural network

Guangin Zhang

Faulty of Engineering and IT University Technology Sydney

June 6, 2022

Today's Talk

1. Sharing content:

- Paper: Verifying Neural Networks Against Backdoor Attacks [1]
- Year: CAV 2022
- Link: https://arxiv.org/pdf/2205.06992.pdf

2. Procedures:

- Background information : Program vs Neural network
- Problem definition: Verifying backdoor absence
- Method: Constraint solving
- Summary: shortcomings, innovated idea, future work, etc.

ML & NNs burgeoning

Safety-Critical issue matters

Perturbations on a sign, created by shining crafted light on it, distorts how it is interpreted in a machine learning system. Source: https://arxiv.org/pdf/2108.06247.pdf

Example issue: The stop sign is recognized as a "speed 30"

Al problems are program problems

Software problem	Al problem
Software may generate wrong results.	Al systems may generate wrong results.

Al problems are program problems

Software problem	Al problem
Software may generate wrong results.	Al systems may generate wrong results.
Software may have backdoors.	Malicious neurons may be embedded to trig-
	ger malicious behavior.

Al problems are program problems

Software problem	Al problem
Software may generate wrong results.	Al systems may generate wrong results.
Software may have backdoors.	Malicious neurons may be embedded to trig-
	ger malicious behavior.
Software may leak personal data.	An attacker can steal AI models or training
	dataset easily.
Software must be tested, verified or	So do AI systems.
even certified.	

Verifying Backdoor Absence

- ▶ **Definition:** Backdoor attacks on neural networks are very very easy more hidden than backdoor in programs
 - 1. Poison the training set (add a trigger to some selected pictures, and change their labels to the target)
 - 2. Network limitations (not interpreted)

Verifying Backdoor Absence

- **Definition:** Backdoor attacks on neural networks are very very easy more hidden than backdoor in programs
 - 1. Poison the training set (add a trigger to some selected pictures, and change their labels to the target)
 - 2. Network limitations (not interpreted)

Example:

How do we Verify?

Problem definition

Problem: Given a neural network N, a set of images X, a target T, and a trigger shape (i.e., a set of pixels), the problem is to show that there does not exist a backdoor trigger trg such that N(x + trg) = Trump for all x in X

Neural network

Inputs

Numerical encoding

Learning representation (features/weights/...)

representation outputs

Outputs

Neural network (figure 1)

A (feedforward) neural network is a function: $f_n(f_{n-1}(f_{n-2}(...(f_1([x_0, x_1, ..., x_k])))))$ where $f_i, i \in [1, n]$ is either a weighted sum or **ReLU**, **SigMod**, or **Tanh**.

Problem definition

Problem: Given a neural network N, a set of images X, a target T, and a trigger shape (i.e., a set of pixels), the problem is to show that there does not exist a backdoor trigger trg such that N(x + trg) = Trump for all x in X

Simplify the problem

Constraint solve:

Verify program (function):

Verify
$$Add(x, y) = x + y$$

$$Add(1,3) == 4$$

$$Add(3,5) == 8$$

...

Simplify the problem

Constraint solve:

. . .

Verify program (function):

Verify
$$Add(x, y) = x + y$$

 $Add(1, 3) == 4$
 $Add(3, 5) == 8$

Verify NN:

X has two pictures, each with two pixels. [3, 5], [1, 10]

There are two labels 0,1. The target is 1. Trigger (trg) is a value for the first pixel.

Problem

$$0 <= trg <= 255$$

 $N([trg, 5]) == 1$
 $N([trg, 10]) == 1$

Abstract Interpretation

Abstract each function using a simpler one (such as a linear one). $ReLu(x) = if(x >= 0) \{x\} \ else \{0\}$

Results

Dataset MINST FFNN Neural Networks ReLU $3*10, 3*20, \ldots, 5*50$ Sigmod $3*10, 3*20, \ldots, 5*50$ Tanh $3*10, 3*20, \ldots, 5*50$ ReLU 3*1024 Sigmod 3*1024 Tanh 3*1024

510 verification tasks

future work

Robustness

Adversarial Inputs

Training

User Code

Foundation

Input is not been attacked, but model fails

Malicious inputs, trick the learner and modeler

Mid-training parts e.g., biased training, attack

Faults/ Anomalies in Users' Tensorflow

Faults/ Anomalies in Tensorflow