

UNIDAD I: LENGUAJES Y GRAMATICAS ING. SANDRA RODRÍGUEZ AVILA

Resultado de aprendizaje 1 (RA-1): Describe aspectos fundamentales de la teoría de lenguajes formales y compiladores teniendo en cuenta los antecedentes históricos, conceptos básicos y principales aplicaciones.

Resultado de aprendizaje 2 (RA-2): Desarrolla problemas de determinación de lenguajes y diseño de gramáticas formales basados en la jerarquía de Chomsky y algoritmos de simplificación de gramáticas.

CONTENIDO

- LENGUAJES Y GRAMATICAS
 - LENGUAJES: DEFINICIONES BASICAS
 - ❖ OPERACIONES CON PALABRAS
 - OPERACIONES CON LENGUAJES

- ❖ GRAMATICA FORMAL DEFINICIONES PREVIAS
- ❖ EJEMPLO LENGUAJE NATURAL Y GRAMATICA
- ❖ EJEMPLO LENGUAJE DE PROGRAMACION
- ❖ NOCIÓN DE GRAMÁTICA
- ❖ NOCIÓN DE GRAMÁTICA EJEMPLOS
- ❖ JERARQUIA DE LAS GRAMATICAS
- GRAMATICA DE TIPO 2 O CONTEXTO LIBRE

INTRODUCCION

Tenemos experiencia con:

- Lenguajes naturales y gramáticas.
- > Lenguajes de programación.

Sabemos que:

- Las palabras de un lenguaje se forman con los símbolos de un alfabeto
- Las gramáticas define la estructura de las frases y las palabras.

LENGUAJES Y GRAMATICAS

Noam Chomsky:

- Teoría de lenguajes formales (1950)
- Herramienta para los lenguajes naturales y los lenguajes de computadoras (1963)

TEORIA DE AUTOMATAS Y LENGUAJES FORMALES

LENGUAJES: DEFINICIONES BASICAS

- Alfabeto: conjunto no vacío y finito de símbolos. Ejemplos:
 - ❖ Alfabeto castellano

Alfabeto para números en base 10

$$V = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Ejemplos: caja, universidad, curso, 3, 2020, etc.

hello!

LENGUAJES: DEFINICIONES BASICAS

- Palabra o tira mínima o nula: λ
- Longitud de una palabra: Número de letras Ejemplos

si x=caja entonces
$$|x| = |caja| = 4$$

 $|\lambda| = 0$

Lenguaje Universal: conjunto infinito de todas las palabras sobre un alfabeto

Ejemplo: si V={a}

Lenguaje universal = $V^*=\{\lambda, a, aa, aaa, ...\}$

OPERACIONES CON PALABRAS

> Concatenación:

Ejemplo: x=caja $y=marca \Rightarrow xy = cajamarca$

Propiedades:

Operación cerrada

❖ Asociativa: (xy)z=x(yz)

Elemento neutro: λ

$$x\lambda = \lambda x = x$$

$$\Rightarrow$$
 $|xy| = |x| + |y|$

Conmutativa: No se cumple

OPERACIONES CON PALABRAS

Potencia i-ésima: x i

Ejemplo: si x=ab \Rightarrow x³ = ababab

- $x^{i+j} = x^i x^j$
- ❖ | xⁱ| = i | x |
- $x^0 = \lambda$

OPERACIONES CON PALABRAS

➤ Inversa de una palabra: x⁻¹

Ejemplo: si x=ab
$$\Rightarrow$$
 x⁻¹ = ba

Si y=010
$$\Rightarrow$$
 y⁻¹ = 010

$$|x| = |x^{-1}|$$

Lenguaje: subconjunto del lenguaje universal definido sobre un alfabeto

Sea
$$V=\{0,1\} \Rightarrow L1=\{x/|x|=2\}=\{00,01,10,11\}$$

- > Lenguaje vacío: $L_{\emptyset} = \emptyset = \{ \}$
- \triangleright Lenguaje λ : L= $\{\lambda\}$

> Unión: definido sobre un mismo Alfabeto

$$L=L1\cup L2=L1+L2=\{x/x\in L1 \lor x\in L2\}$$

Propiedades:

Operación cerrada

❖ Asociativa: (L1+L2)+L3=L1+(L2+L3)

❖ Conmutativa: L1+L2=L2+L1

❖ Elemento neutro: Ø

$$(L1 + \emptyset) = L1$$

❖ Idempotencia: (L+L)=L

Concatenación: definido sobre un mismo Alfabeto

L=L1L2=
$$\{xy / x \in L1 \land y \in L2\}$$

- Operación cerrada
- ❖ Asociativa: (L1L2)L3=L1(L2L3)
- Conmutativa: No cumple
- ❖ Elemento neutro: $(L_{\lambda} = {\lambda})$

$$L_{\lambda}L=LL_{\lambda}=L$$

Potencia i-ésima: Li

$$L^0 = L_{\lambda} = {\lambda}$$

Cierre o clausura: L*

$$L^*=L^0UL^1...L^{\infty}$$

Clausura positiva: L⁺

$$L^+=L^1UL^2...L^{\infty}$$

- $L^*=L^+\cup\{\lambda\}$
- **♦** L+=L*L=LL*
- ❖ Lenguaje universal=V*

> Inversa de un lenguaje: L^{-1} $L^{-1}=\{x^{-1}/x \in L\}$

GRAMATICA FORMAL

- > Gramática:
 - ❖ Describe la estructura de las frases y palabras de un lenguaje a través de reglas.
 - Lenguajes naturales

El estudiante juega fútbol

Lenguajes artificiales para computadora

If (a>b) c=0 else c=1;

GRAMATICA FORMAL – DEFINICIONES PREVIAS

- P: conjunto de reglas de producción definidas sobre un Alfabeto.

GRAMATICA FORMAL – DEFINICIONES PREVIAS

20

Derivación directa: Sea un conjunto de reglas P definidas sobre un alfabeto.

P: conjunto de reglas

$$S \rightarrow xAz$$

$$A \rightarrow y$$

$$S \Rightarrow xAz \Rightarrow xyz$$

TEORIA DE AUTOMATAS Y LENGUAJES FORMALES

EJEMPLO LENGUAJE NATURAL Y GRAMATICA

- Reglas gramaticales (P):
 - 1. <oración> := <sujeto>
 - 2. <sujeto> := <articulo> <sustantivo>

 - 4.
 - 5. <articulo> := el | la
 - 6. <sustantivo> := estudiante | asignatura
 - 7. <verbo> := juega | es
 - 8. <complemento>:= fútbol | interesante

EJEMPLO LENGUAJE NATURAL Y GRAMATICA

Yo hablo Español

EJEMPLO LENGUAJE DE PROGRAMACION

- > Reglas gramaticales (P):
 - 1. $\langle \text{sent IF} \rangle \rightarrow \text{if } \langle \text{condicion} \rangle \langle \text{sent} \rangle = \text{else } \langle \text{sent} \rangle$;
 - 2. $\langle condicion \rangle \rightarrow (a > b)$
 - 3. $\langle \text{sent} \rangle \rightarrow \text{c=0}$
 - 4. $\langle \text{sent} \rangle \rightarrow \text{c=1}$

EJEMPLO LENGUAJE DE PROGRAMACIÓN

Árbol sintáctico:

NOCIÓN DE GRAMÁTICA

- Chomsky, 1959.
- Definición formal

$$G = (N, T, P, S)$$

N: Vocabulario No terminal

T: Vocabulario Terminal (tira o palabra terminal)

P: conjunto de reglas de derivación

 $tira1 \rightarrow tira2$

tira1 := tira2

tira1 se define como tira2

S: símbolo inicial o axioma

NOCIÓN DE GRAMÁTICA

- $N \cap T = \{\emptyset\}$
- NUT=V
- Las reglas P se aplican desde el símbolo inicial S para obtener las cadenas, palabras o tiras del lenguaje.

NOCIÓN DE GRAMÁTICA-EJEMPLOS Ejemplos:

• G1=(N, T, P, S)

donde: $N={S}$ $T={a, b}$

P: $S \rightarrow ab$ $S \rightarrow aSb$

• G2=(N, T, P, S)

donde: $N=\{S, A, B\}$ $T=\{a, b, c, d\}$

P: $S \rightarrow ASB$ $A \rightarrow b$

 $A \rightarrow aaBB$ $S \rightarrow d$

 $A \rightarrow aA$ $B \rightarrow dcd$

NOCIÓN DE GRAMÁTICA-EJEMPLOS

• G3=(N, T, P, S)

donde: N={<numero>, <digito>}

T={0,1,2,3,4,5,6,7,8,9}

P: <numero>:= <digito><numero>

<numero>:= <digito>

<digito>:= 0|1|2|3|4|5|6|7|8|9

S ={<numero>}

Chomsky definió cuatro tipos de gramáticas

A. Gramática de tipo 0 o con estructura de frase:

Las reglas P tienen la forma:

$$\alpha \rightarrow \beta$$

siendo $\alpha \epsilon (N U T)^+ y \beta \epsilon (N U T)^*$

Ejemplos de reglas:

$$S \rightarrow \lambda$$

AXb→YdE

 $X \rightarrow ZYE$

B. Gramática de tipo 1 o sensibles al contexto:

Las reglas P tienen la forma:

$$\alpha A\beta \rightarrow \alpha \gamma \beta$$

siendo A ϵ N, α y β ϵ (N U T)* y γ ϵ (N U T)+

Ejemplos de reglas:

$$\lambda S \lambda \rightarrow \lambda X \lambda$$

$$\lambda S \lambda \rightarrow \lambda X \lambda$$
 $Y \rightarrow d dEF \rightarrow deF$
 $eE \rightarrow ee$

c. Gramática de tipo 2 o con de contexto libre: Las reglas P tienen la forma:

 $A \rightarrow \alpha$

siendo A ε N, $\alpha \varepsilon$ (N U T)*

Ejemplos de reglas:

 $S \rightarrow \lambda$ $S \rightarrow bA$ $A \rightarrow a$ $A \rightarrow aS$ $A \rightarrow bAA$ $B \rightarrow b$ $B \rightarrow bS$ $B \rightarrow aBB$

- D. Gramática de tipo 3 o regulares:
 - > Gramática lineal por la derecha
 - Las reglas P tienen la forma:

 $A \rightarrow aB$ ó $A \rightarrow a$

siendo A, B ε N, a ε T

- Gramática lineal por la izquierda
 - Las reglas P tienen la forma:

 $A \rightarrow Ba$ ó $A \rightarrow a$ siendo A, B ϵ N, a ϵ T

- A. Derivación directa o inmediata
- La tira α produce o deriva directamente la tira β

$$\alpha \Rightarrow \beta$$
 si $\alpha = \delta A \mu$ y $\beta = \delta \gamma \mu$ y existe una regla de P, que sea: $A \rightarrow \gamma$

- Se puede aplicar repetidamente la noción de derivación directa: α⇒+β
- •Si se incluye el caso de identidad, se escribe:

$$\alpha \Rightarrow^* \beta$$

B. Definición formal del lenguaje Sentencias L(G):

$$L(G) = \{ x | (S \Rightarrow^* x) \text{ and } (x \in T^*) \}$$

• Ejemplo:

(1)
$$S \Rightarrow ab$$
(2) (1)
$$S \Rightarrow aSb \Rightarrow aabb$$
(2) (2) (1)
$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$$

$$L(G) = \{ ab, aabb, aaabbb, \}$$

Ejemplo:

•Sea la gramática: G1=(N, T, P, S)

donde: $N={S}$ $T={a, b}$

$$T=\{a, b\}$$

P:
$$S \rightarrow ab$$
 (1) $S \rightarrow aSb$ (2)

$$S \rightarrow aSb (2)$$

(1)

$$S \Rightarrow ab$$

$$S \Rightarrow aSb \Rightarrow aabb$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$$

TEORIA DE AUTOMATAS Y LENGUAJES FORMALES

Formas Sentenciales D(G):

 Conjunto de tiras de símbolos terminales o no terminales.

$$D(G) = {\alpha \mid (S \Rightarrow^* \alpha) \text{ and } \alpha \in (N \cup T)^*}$$

•En el ejemplo anterior:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$

Las 4 tiras S, aSb, aaSbb y aaabbb, cumplen con las dos condiciones, por lo tanto son formas sentenciales de G1.

C. Derivación izquierda

- Derivación del símbolo no terminal "más hacia la izquierda" por algunas de sus partes derechas que la definen (reglas P).
- Análogamente, se define la derivación derecha.
- Sean las reglas P de una gramática:

D. Árboles sintácticos

- Representación gráfica del proceso de reconocimiento o "parsing" de una sentencia o tira terminal.
- Ejemplo:

Tira: aabb

F. Recursividad

- Mecanismo amplificador que nos permitirá definir formas complicadas de un lenguaje con reglas sucintas.
- Se requieren de dos tipos de reglas:
 - ➤ Una regla (no recursiva)
 - ➤ Una o mas reglas recursivas
- •La recursividad define un lenguaje de programación de infinitas tiras o sentencias con un numero limitado de reglas.

- Ejemplos de Recursividad
 - Tren
 - <tren> → <locomotora>
 - <tren> → <tren> <vagón>
 - Entero sin signo:
 - <entero> → <digito>
 - <entero> → <entero> <digito>
 - > Identificador:
 - <identificador> → <letra>
 - <identificador> → <identificador> <letra>
 - <identificador> → <identificador> <digito>

H. Ambigüedad

El perro de mi tío.

- Una gramática es ambigua si el lenguaje definido tiene alguna sentencia que tenga más de un árbol sintáctico.
- No existe ninguna algoritmo que acepte una gramática y determine con certeza y en un tiempo finito si la gramática es ambigua o no.

ACTIVIDAD PRACTICA

- Resolver los ejercicios de la Actividad Practica (ver SIA):
- Operaciones con palabras y lenguajes
- > Reconocimiento de tipos de gramáticas
- Gramáticas de contexto libre: reconocimiento de palabras usando arboles sintácticos, determinación del lenguaje definido por una gramática, diseño de una gramática, determinación de ambigüedad y recursividad.

CONCLUSIONES

- Las operaciones que se pueden efectuar con palabras son similares a las operaciones que se pueden realizar con los lenguajes.
- Noam Chomsky definió la *Teoría de lenguajes formales* y la *noción de Gramática formal: G* =(N, T, P, S), clasificándolas en cuatro tipos.
- Las reglas de sintaxis de los lenguajes de Programacion están basadas en la Gramática del tipo 2 o de contexto libre.

BIBLIOGRAFIA

 ALFONSECA Enrique, ALFONSECA Manuel y MORIYON Roberto. *Teoría de Autómatas y Lenguajes Formales*.
 2007. Madrid. Editorial Mc Graw Hill.

 http://dehesa.unex.es/bitstream/10662/2367/1/978-84-691-6345-0.pdf

RECURSOS GRAFICOS

- Pixabay
- Pexels
- Icon-Icons

