Disciplinas:

MAP 5706 - Introdução à Análise Real (DINTER)

MAP 0216 - Introdução à Análise Real

MAT 0206 - Análise Real

Semestre: 2020/2

Professor: Rodrigo Bissacot - Sala 147A - IME-USP

mail: rodrigo.bissacot@gmail.com

Listas de exercícios e informações sobre o curso em:

https://sites.google.com/site/matbissacot/Home/teaching/analise2020

Monitores:

João Maia - mail: joao.vitor.maia@usp.br Rafael Severiano - mail: rafaelseveriano@usp.br Thiago Alexandre - mail: thiago2.alexandre@usp.br Thiago Raszeja - mail: tcraszeja@gmail.com

Monitorias:

João Maia - Segundas 14h-15h - Link: FÓRUM DE DISCUSSÃO Thiago Alexandre - Terças 17h-18h - Link: FÓRUM DE DISCUSSÃO Rafael Severiano - Quintas 14h-15h - Link: FÓRUM DE DISCUSSÃO Thiago Raszeja - Sexta 19h-20h - Link: FÓRUM DE DISCUSSÃO.

Lista 3: Anéis e Corpos Ordenados. Subconjuntos densos da reta. Desigualdade triangular e de Bernoulli. Supremo.

ENTREGA: DIA 13 DE OUTUBRO - TERÇA ÀS 23:59.

MODO DE ENVIAR A LISTA: Envie sua lista para o endereço prova.analise.2020@gmail.com, com o seguinte assunto (título) da mensagem, em maiúsculo:

LISTA 3 - NOME - NUSP - SIGLA DA DISCIPLINA

Exercício 1. Indução a partir de um natural qualquer

Prove o seguinte resultado que é muito útil para quando queremos provar que alguma propriedade é válida a partir de algum natural não necessariamente 0 ou 1. Aqui $\mathbb N$ contém o zero.

Seja $X \subseteq \mathbb{N}$ tal que

(i) $a \in X$

(ii) $n \in X \Rightarrow n+1 \in X$.

Mostre que $\{a, a + 1, a + 2, ...\} = \{a + m; m \in \mathbb{N}\} \subseteq X$.

Dica: Indução em m.

Exercício 2.

(a) Seja $X \subset \mathbb{Z}$ um conjunto limitado superiormente.

Mostre que X tem máximo.

Dica: Use o princípio da boa ordenação em \mathbb{Z} .

Exercício 3.

(a) Mostre que a função $f: \mathbb{R} \to (0,1)$ definida abaixo é uma bijeção.

$$f(x) = \frac{1}{2} \left(1 + \frac{x}{1 + |x|} \right),$$

- (b) Dados a < b em \mathbb{R} . Mostre que existe uma bijeção entre \mathbb{R} e o intervalo aberto (a,b). **Dica:** use o item anterior.
- (c) Dados a < b e c < d quaiquer em \mathbb{R} . Mostre que existe uma bijeção entre (a,b) e (c,d).

Exercício 4. Esse exercício requer apenas uma manipulação algébrica de desigualdades. A partir de agora vamos nos dedicar a exercícios que utilizam manipulações cada vez mais sofisticadas.

Sejam A, B, C e D números reais não negativos tais que:

 $i)A \leq C;$

ii)B < C;

 $iii)A.B \leq C.D;$

Mostre que $A + B \leq D + C$.

Obs: Acreditem ou não, esse exercício é parte importante de um famoso teorema em Mecânica Estatística.

2

Exercício 5.

- (a) Mostre que se $X \subset \mathbb{R}$ é enumerável então $X^c = \mathbb{R} X$ é denso \mathbb{R} .
- (b) Mostre que se $S \subset \mathbb{R}$ é um conjunto denso em \mathbb{R} e c é um número real não-nulo então $c.S = \{c.x : x \in S\}$ é denso em \mathbb{R} .
- (c) Seja $S \subset \mathbb{R}$ é um subconjunto denso de \mathbb{R} . Seja $s_1 \in S$, mostre que $S \{s_1\}$ é denso em \mathbb{R} .
- (d) Seja $S \subset \mathbb{R}$ é um subconjunto denso de \mathbb{R} . Seja $\{s_1, s_2, ..., s_k\} \subset S$ um subconjunto finito de S. Mostre que $S - \{s_1, s_2, ..., s_k\}$ é denso em \mathbb{R} . **Dica:** Indução.

Nomenclatura: Neste curso *anel ordenado* significa que estamos falando de um anel comutativo, com unidade e ordenado.

Exercício 6.

Sejam x, y e z elementos de um anel ordenado.

Mostre que:

(b)
$$|x| = |-x|$$

(b)
$$|x.y| = |x|.|y|$$

- (c) Se $0 < y \le 1$ então $0 < y^n \le 1$ para todo n natural.
- (d) Se $0 \le x \le 1$ e $0 \le y \le 1$ então $|x^2 y^2| \le 2.|x y|$.

Exercício 7.

Seja \mathbb{Z} o anel dos inteiros.

- (a) Mostre que se $0 < y \le 1$ e $y \in \mathbb{Z}$ então y = 1.
- (b) Mostre que se $n \in \mathbb{Z}$ e $n < y \le n+1$ e $y \in \mathbb{Z}$ então y = n+1.

Exercício 8. Seja $(0, \frac{1}{n}) = \{x \in \mathbb{R} : 0 < x < \frac{1}{n}\}$, para cada $n \in \mathbb{N}$.

Mostre que
$$\bigcap_{n=1}^{\infty} \left(0, \frac{1}{n}\right) = \emptyset.$$

Exercício 9. Seja $x \neq 0$ num corpo ordenado K e $n \in \mathbb{N}$ qualquer. Prove que $(1+x)^{2n} > 1+2nx$.

Exercício 10. Seja K um corpo ordenado. Sejam, $a, b \in K$ tais que $a \neq b$ e $\varepsilon = \frac{|b-a|}{2}$. Mostre que $(a-\varepsilon, a+\varepsilon) \cap (b-\varepsilon, b+\varepsilon) = \emptyset$.

3

Exercício 11.

(a) Mostre que o conjunto $K_{\sqrt{2}} = \{a + b\sqrt{2}; a \in \mathbb{Q} \text{ e } b \in \mathbb{Q}\} \subset \mathbb{R}$, forma um corpo quando munido das operações induzidas do conjunto dos reais.

Dica: Basta conferir que este conjunto satisfaz todas as condições para um conjunto ser chamado de corpo. Neste caso dizemos que $K_{\sqrt{2}}$ é um subcorpo de \mathbb{R} .

(b) Uma maneira bastante usual de mostrar que $\mathbb Q$ não é um corpo completo é mostrar que o conjunto $A=\{x\in\mathbb Q; 0\leq x \ e \ x^2<2\}$ é limitado superiormente mas não possui um supremo dentro do póprio corpo $\mathbb Q$. O supremo de A é $\sqrt{2}$, e $\sqrt{2}$ é elemento de $K_{\sqrt{2}}$. Desta forma existe sup A em $K_{\sqrt{2}}$. Sendo assim, será que $K_{\sqrt{2}}$ é completo? Justifique sua resposta (prove).

Exercício 12.

Seja $(A_i)_{i \in J}$ uma coleção de intervalos abertos limitados e não vazios, ou seja, $A_i = (a_i, b_i)$ com $a_i < b_i$, $\forall i \in J$. Suponha que esses intervalos são disjuntos dois a dois. Isto é, se $i \neq i$, então $A_i \cap A_j = \emptyset$. Prove que o conjunto de índices J é enumerável.

Dica: \mathbb{Q} é denso em \mathbb{R} .

Definição. Dizemos que um subconjunto X de \mathbb{R} é discreto quando para cada $x \in X$ existe $\varepsilon_x > 0$ tal que $(x - \varepsilon_x, x + \varepsilon_x) \cap X = \{x\}$. Exemplo de subconjunto discreto de \mathbb{R} : \mathbb{Z} (inteiros). Pra ver que \mathbb{Z} é discreto, basta tomar $\varepsilon_x = \frac{1}{2}$ para todo $x \in \mathbb{Z}$.

Exercício 13. Seja X um subconjunto discreto de \mathbb{R} . Mostre que X é enumerável.

Exercício 14. Seja $f: X \to X$ uma função. Definimos como *órbita de x* o conjunto:

$$\mathcal{O}(x) = \{x, f(x), f(f(x)), f(f(f(x))), ..., f^{(n)}(x), ...\} = \{f^{(n)}(x); n \in \mathbb{N}\}$$

Definindo a relação \backsim por: $x \backsim y$ quando $\mathcal{O}(x) \cap \mathcal{O}(y) \neq \emptyset$. Mostre que \backsim é uma relação de equivalência.

Exercício 15. Seja X um subconjunto limitado superiormente de \mathbb{R} . Mostre que se sup $X \notin X$ então X é infinito.