Polarizations of abelian varieties over finite fields via canonical liftings

Stefano Marseglia

Utrecht University

AGCCT 2021 - 1 June 2021 joint work with Jonas Bergström and Valentijn Karemaker.

Stefano Marseglia 1 June 2021 1/12

Canonical Liftings

• Let A_0 be an abelian variety over \mathbb{F}_q of dim g.

Definition

A **canonical lifting** of A_0 is an abelian scheme over a normal local domain \mathscr{R} of characteristic zero with residue field \mathbb{F}_q with:

- \bigcirc special fiber A_0 , and
- ② general fiber \mathcal{A}_{can} satisfying $End(\mathcal{A}_{can}) = End(\mathcal{A}_0)$.
 - Example: ordinary abelian variety; almost-ordinary abelian variety.
- Non-example: supersingular EC (quaternions).

Stefano Marseglia 1 June 2021 2 / 12

Complex Uniformization

- Assume that A_0 admits a canonical lifting \mathscr{A}_{can} .
- Fix $\mathscr{R} \hookrightarrow \mathbb{C}$ and put $A_{\operatorname{can}} := \mathscr{A}_{\operatorname{can}} \otimes \mathbb{C}$.
- ullet A_{can} has morphisms F and V reducing to Frobenius and Verschiebung.
- By complex uniformization:

$$A_{\operatorname{can}}(\mathbb{C}) \simeq \mathbb{C}^g /_{\Phi(I)}$$
 - I : a fractional $\mathbb{Z}[F, V]$ -ideal in $L := \mathbb{Q}[F]$, - Φ : a CM-type of L .

- Define $\mathcal{H}(A_{\operatorname{can}}) := I$.
- By the same construction:

$$\mathsf{char.0}: \qquad \mathscr{A}_{\mathsf{can}}^{\vee} \xrightarrow{\otimes \mathbb{C}} A_{\mathsf{can}}^{\vee} \xrightarrow{\mathscr{H}} \overline{I}^t = \{ \overline{x} : \mathsf{Tr}_{L/\mathbb{Q}}(xI) \subseteq \mathbb{Z} \}$$

$$\mathbb{F}_q : A_0^{\vee}$$

• In particular: $\mathcal{H}(\mathsf{Hom}(A_{\operatorname{can}},A_{\operatorname{can}}^{\vee})) = (\overline{I}^t:I) = \left\{x \in L: xI \subseteq \overline{I}^t\right\}.$

Stefano Marseglia 1 June 2021 3 / 12

Complex Uniformization : Polarizations

• We have:

$$A_{\operatorname{can}}(\mathbb{C}) \simeq \mathbb{C}^{g}/_{\Phi(I)}, \quad A_{\operatorname{can}}^{\vee}(\mathbb{C}) \simeq \mathbb{C}^{g}/_{\Phi(\overline{I}^{t})},$$

$$\mathscr{H}(\operatorname{Hom}(A_{\operatorname{can}}, A_{\operatorname{can}}^{\vee})) = (\overline{I}^{t} : I).$$

- What about **polarizations**? We understand them over C!
- Let $\mu: A_{\operatorname{can}} \to A_{\operatorname{can}}^{\vee}$ an isogeny. Then μ is a polarization if and only if $\lambda:=\mathscr{H}(\mu)\in (\overline{I}^t:I)$ satisfies

 - ② for every $\varphi \in \Phi$ we have $Im(\varphi(\lambda)) > 0$ (Φ -positive).

Stefano Marseglia 1 June 2021 4 / 12

The Centeleghe-Stix equivalence

Theorem (Centeleghe-Stix)

Let $AV_h(p)$ be the isogeny class over the **prime field** \mathbb{F}_p determined by a **squarefree** characteristic polynomial of Frobenius h.

Let $L = \mathbb{Q}[x]/h = \mathbb{Q}[F]$ be the endomorphism algebra, and put V = p/F. There is an equivalence of categories:

$$AV_h(p) \xrightarrow{\mathscr{G}} \{ fractional \ \mathbb{Z}[F,V] \text{-ideals in } L \}.$$

- Let A_h be an AV in $AV_h(p)$ with $End(A_h) = \mathbb{Z}[F, V]$.
- The functor $\mathcal{G}(-) := \text{Hom}(-, A_h)$ induces the equivalence.
- We can **choose** A_h so that for every $B_0 \in AV_h(p)$:

$$\mathscr{G}(B_0^{\vee}) = \overline{\mathscr{G}(B_0)}^t$$
 and $\mathscr{G}(f^{\vee}) = \overline{\mathscr{G}(f)}$, for any $f: B_0 \to B_0'$ in $AV_h(p)$.

• In particular: $\mathscr{G}(\mathsf{Hom}(B_0,B_0^{\vee})) = (\mathscr{G}(B_0):\overline{\mathscr{G}(B_0)}^t).$

Stefano Marseglia 1 June 2021 5/12

Comparison

- ullet Assume that A_0 admits a canonical lifting $A_{
 m can}$.
- We have two description using fractional ideals. Let's compare them.
- Let $f: A_0 \to B_0$ be an isogeny.

- f^* sends polarizations to polarizations.
- $\mathcal{G}(f^*) = \mathcal{G}(f)\mathcal{G}(f)$ is a totally positive element: it sends totally imaginary elements to totally imaginary elements and Φ -positive elements to Φ -positive elements.

Stefano Marseglia 1 June 2021 6/12

Comparison : Polarizations

By chasing the diagram, we get:

Let
$$\mu: B_0 \to B_0^{\vee}$$
 be an isogeny. Then

 μ is a polarization $\iff \alpha^{-1}\mathcal{G}(\mu)$ is totally imaginary and Φ -positive

Stefano Marseglia 1 June 2021 7/12

Principal Polarizations up to isomorphism

- Let $B_0 \in AV_h(p)$. Put $T = End(B_0)$ and $\mathscr{G}(B_0) = J$.
- Assume that $B_0 \simeq B_0^{\vee}$, i.e. $J = i_0 \overline{J}^t$ for some $i_0 \in L^*$.
- If μ and μ' are principal polarizations of B_0 then $(B_0, \mu) \simeq (B_0, \mu')$ (as PPAVs) if and only if there is $v \in T^*$ such that $\mathscr{G}(\mu) = v\overline{v}\mathscr{G}(\mu')$.
- Let \mathcal{T} be a transversal of $T^*/< v\overline{v}: v \in T^*>$.
- Then

$$\mathscr{P}^{\alpha}_{\Phi}(J) := \{i_0 \cdot u : u \in \mathscr{T} \text{ s.t. } \alpha^{-1}i_0u \text{ is tot. imaginary and } \Phi\text{-positive}\}$$

is a set or representatives of the PPs of B_0 up to isomorphism.

• It depends on α !

Stefano Marseglia 1 June 2021 8 / 12

Effective Results : when can we ignore α ?

Assume A_0 admits a canonical lifting. Put $S := \operatorname{End}(A_0)$ Let B_0 be isogenous to A_0 . Put $T = \operatorname{End}(B_0)$.

Theorem (1)

Denote by $S_{\mathbb{R}}^*$ (resp. $T_{\mathbb{R}}^*$) the group of totally real units of S (resp. T). If $S_{\mathbb{R}}^* \subseteq T_{\mathbb{R}}^*$, then the set

$$\mathscr{P}^{\alpha}_{\Phi}(J) := \{i_0 \cdot u : u \in \mathscr{T} \text{ s.t. } \alpha^{-1}i_0u \text{ is tot. imaginary and } \Phi\text{-positive}\}$$

is in bijection with the set (which does not depend on α !)

$$\mathscr{P}^1_{\Phi}(J) = \{i_0 \cdot u : u \in \mathscr{T} \text{ such that } i_0 u \text{ is totally imaginary and } \Phi\text{-positive} \}.$$

Corollary

If $S = \mathbb{Z}[F, V]$ (eg. $AV_h(p)$ is ordinary or almost-ordinary) then we can ignore α . We recover Deligne+Howe and Oswal-Shankar

Stefano Marseglia 1 June 2021 9 / 12

When can we lift up to isogeny?

Theorem (Chai-Conrad-Oort)

Assume that (L,Φ) satisfies the Residual Reflex Condition w.r.t. F, that is,

- lacktriangledown Φ satisfies the Shimura-Taniyama formula for F, and
- ② the reflex field E has residue field $k_E \subseteq \mathbb{F}_q$.

Then we can canonically lift an abelian variety A_0 with $\mathcal{O}_L = \operatorname{End}(A_0)$.

• If there is a separable isogeny $A_0 \rightarrow A_0'$ then A_0' admits a canonical lifting (useful in combination with Thm 1).

Stefano Marseglia 1 June 2021 10 / 12

We have run computations over all squarefree isogeny classes over small prime fields of dim 2,3 and 4.

squarefree dimension 4			p = 2	p = 3
total			1431	10453
ordinary			656	6742
almost ordinary			392	2506
<i>p</i> -rank 2	no RRC		0	0
	yes RRC	Thm 1 yes	149	500
		Thm 1 no	49	312
<i>p</i> -rank 1	no RRC		6	36
	yes RRC	Thm 1 yes	80	184
		Thm 1 no	14	40
<i>p</i> -rank 0	no RRC		3	6
	yes RRC	Thm 1 yes	73	88
		Thm 1 no	9	39

Thm 1 $(S_{\mathbb{R}}^* \subseteq T_{\mathbb{R}}^*)$ doesn't handle $72/\mathbb{F}_2$ and $391/\mathbb{F}_3$. Out of these, we have **other methods** for $20/\mathbb{F}_2$ and $214/\mathbb{F}_3$. For the remaining $52/\mathbb{F}_2$ and $171/\mathbb{F}_3$ we can only get information about certain endomorphism rings (723 out of 946 and 3481 out of 4636, respectively). Also there are $9/\mathbb{F}_3$ for which the computations of the isomorphism classes of unpolarized abelian varieties is not over yet.

Thank you!

Stefano Marseglia 1 June 2021 12 / 12

Effective Results II

Theorem (2)

Assume that there are r isomorphism classes of abelian varieties in $AV_h(p)$ with endomorphism ring T, represented under $\mathscr G$ by the fractional ideals I_1, \ldots, I_r . For any CM-type Φ' , we put

 $\mathscr{P}^1_{\Phi'}(I_i) = \{i_0 \cdot u : u \in \mathscr{T} \text{ such that } i_0 u \text{ is totally imaginary and } \Phi' \text{-positive } \}.$

If there exists a non-negative integer N such that for every CM-type Φ' we have

$$|\mathcal{P}_{\Phi'}^1\big(I_1\big)|+\ldots+|\mathcal{P}_{\Phi'}^1\big(I_r\big)|=N$$

then there are exactly N isomorphism classes of principally polarized abelian varieties with endomorphism ring T.

Stefano Marseglia 1 June 2021 12/12

Proof.

- Consider the association $\Phi' \mapsto b$ where $b \in L^*$ is tot. imaginary and Φ' -positive.
- We can go back: for every b tot. imaginary there exists a unique CM-type Φ_b s.t. b is Φ_b -positive.
- ullet Hence the totally real elements of L^* acts on the set of CM-types.
- If $\Phi = \Phi_b$ is the CM-type for which we have a canonical lift (as before) then $\mathscr{P}_{\Phi_b}^{\alpha}(I_i) \longleftrightarrow \mathscr{P}_{\Phi_{ab}}^{1}(I_i)$.
- If the we get the 'same sum' (over the Ii's) for every CM-type we know that the result must be the correct one!

Note: even if the sum is not the same for all Φ' 's then we know that one of the outputs is the correct one!

Stefano Marseglia 1 June 2021 12/12