Deep learning methods for ocean observation

Théo Archambault

Intro

Theory

- Satellite observation
- Inverse Problem
- Deep Learning and Data assimilation
- Real-world scenario

Application

- Sea Surface Height and Temperature
- Downscaling or interpolation?
- RESAC method
- Along tracks interpolation

Ocean Remote sensing with satellites

Ocean Observation

- Ocean plays an important role in climate regulation
- Heat stockage
- Oceanic fields are observed with satellites
- Sea Surface Temperature (SST)
- Sea Surface Height (SSH)
- Salinity

Sea Surface Height

- An altimetry measure
- Useful to measure geostrophic currents
- Low resolution
 - Missing small structures

Sea Surface Height

Sea Surface Height

- Measured along satellite tracks
 - Nadir (working)
 - Swot (Still to launch)
- Linear Optimal Interpolation
 - Mapping at res 1/4°

- A small percentage of coverage
- 10 days of return time
- Smaller eddies have a short life expectancy
- Ol is biased

Sea Surface Temperature

- Infra red measure
- High resolution (1/25°)
- Measure daily everywhere on earth
- Cloud issues
 - Wait a few days for the cloud to getaway

Inverse Problem

Inverse Problem

$$y = d(X)$$

$$X \in \mathbb{R}^n \quad y \in \mathbb{R}^m$$

- d is the decimation operator
- X is the system state vector
- Y is the observation vector

Downscaling / Super-Resolution

• d is a average off pixels

Interpolation / Inpainting

d is a mask along the satellite tracks

In both problems: how to find a pseudo inverse of the decimation operator d?

III-posed problem Downscaling

III-posed problem Downscaling

Interpolation

III-posed problem

HR?

1.0 0.5 0.0 (E) HSS -0.5

Easy: d

Interpolation

III-posed problem

How to constrain our solution?

- Contextual information :
 - Data base
 - Other measured fields
- Physic :
 - Physic based model using measured data: data assimilation

Deep learning methods

Two ways to constrain the problem

Statistics:

Physics

Machine learning

Data Assimilation

Data assimilation:

- Physic model of evolution of the system M such as $X_{t+1} = M(X_t)$ + error
- Observation model of the system H such as $Y_t = H(X_t)$ +error

We have access to observations on a time window:

$$Y_{t}$$
, Y_{t+1} , Y_{t+2} , ..., Y_{t+W}

And we try to recover the hidden state of the system by minimizing a distance between the observations and a trajectory

Data assimilation:

Issues:

- Gridded models
- Rely on a physic model
- Very computationally intensive

Deep learning

- Feeds on large datasets to determine statistical links
- Well suited for image applications
- In a supervised framework needs to have access to a ground truth
- We use simulated data (natl60)

Case study: downscaling SSH with DL and High resolution SST

How to increase the resolution of a coarse SSH?

Case study: downscaling SSH with DL and High resolution SST

- How to increase the resolution of a coarse SSH?
- SST : contextual information to constrain the problem

RESAC method

 A CNN that performs a very high upsampling

SST information

Multi-resolution control

RESAC method

RESAC method

Residual network: $SSH_{l+1} = SSH_l + f_{\theta}^l(SSH_l)$

- Stack more layer
- Brings stability during learning

<u>Subpixel convolution</u>: subspcace

Adapted Batch Normalization

RESAC method

<u>Subpixel convolution:</u>

- Convolution in a subspace
- Pixel shuffle operator P
- Higher perceptive field
- Less training time

Adapted Batch Normalization

- Normalization by channels
- Neighbors pixels normalized with different values

RESAC results

RESAC results

Checkerboard artifacts

RESAC results

Geostrophic reconstruction

$$f_0 V = \frac{\partial SSH}{\partial x}$$

$$f_0 U = -\frac{\partial SSH}{\partial y}$$

Real-world scenario

OSSE (Observing system simulation experiment)

State of the art: OI

Optimal linear interpolation:

- Misses a lot of small scales structures
- Can't use SST

Noise:

- Along the tracks
- Clouds in the sst

A deep learning network could be trained to replace this linear interpolation.

GAN

