Kildall's algorithm for over-approximate JOP

Deepak D'Souza and K.V. Raghavan

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

Why over-approximation of JOP in abstract lattice is useful

Kildall's algorithm to compute over-approximation of JOP

Input: An instance (P, d_0) of a monotone data-flow framework $((D, \leq), F)$.

Output: For each program point N in P, a data-value d_N such that $\mathrm{JOP}_N^{d_0} \leq d_N$.

- Initialize data value at each program point to \perp , entry point to d_0 .
- Mark all points.
- Repeat while there is a marked point:
 - Choose a marked point M with value d_M , unmark it, and "propagate" it to successor points (i.e. for each successor N, replace value at N by $f_{MN}(d_M) \sqcup d_N$).
 - Mark successor point if old value was marked, or new value strictly dominates than old value.
- Return data values at each point as over-approx of JOP.

Underlying lattice

Values computed coincide with JOP values.

Constant propagation example

Kildall's algo vs Actual Constant data

ProgPt	Actual JOP values	Kildall's data
A	Ø	Ø
В	$\{(x,1)\}$	$\{(x,1)\}$
C	Ø	Ø
D	$\{(y,1)\}$	Ø
E	$\{(x,-1),(y,1)\}$	$\{(x,-1)\}$

Note that Kildall's values are \geq the actual JOP values at all points.

What Kildall's algo computes

- Always terminates if lattice has no infinite ascending chains.
- In general, computes the least solution to a system of equations induced by the given instance of the analysis.
- This value is always an over-approximation of the JOP for the given instance.

Termination of Kildall's algo

- Let \overline{d}_i be the vector of values after the *i*-th step of algo.
- At step i+1 either \overline{d}_{i+1} strictly dominates \overline{d}_i , or $\overline{d}_{i+1}=\overline{d}_i$. In the latter case number of marks decreases.
- The maximum length of any contiguous non-"climbing" sequence is equal to the number of program points.
- Moreover, the maximum number of "climbing" steps in algorithm is at most the length of any chain in the lattice \overline{D} .
- Therefore, the algorithm is guaranteed to terminate on finite-height lattices.

Induced Equations

The program induces a set of data-flow equations:

$$x_I = d_0$$
 for entry point I
 $x_N = f_{MN}(x_M)$ for an assignment or conditional node n with with incoming point M and outgoing point N
 $x_N = x_L \sqcup x_M$ for a junction node with incoming points L,M and outgoing N .
... etc.

Induced Equations

The program induces a set of data-flow equations:

$$x_I = d_0$$
 for entry point I
 $x_N = f_{MN}(x_M)$ for an assignment or conditional node n with with incoming point M and outgoing point N
 $x_N = x_L \sqcup x_M$ for a junction node with incoming points L,M and outgoing N .
... etc.

Note: The collecting semantics is a solution to the above equations.

Example equations

$$x_{I} = d_{0}$$

 $x_{B} = f_{1}(x_{I})$
 $x_{C} = x_{B} \sqcup x_{E}$
 $x_{D} = f_{3}(x_{C})$
 $x_{E} = f_{4}(x_{D}).$

Equations can have multiple solutions

Exercise: Give two solutions to equations induced for this program

- Use lattice of subsets of concrete stores, with integer values for x.
- Write down induced equations.
- Give two different solutions to the equations. Let $d_0 = State$.

Equations can have multiple solutions

Exercise: Give two solutions to equations induced for this program

- Use lattice of subsets of concrete stores, with integer values for x.
- Write down induced equations.
- Give two different solutions to the equations. Let $d_0 = State$.

Note: collecting semantics of any program is the least solution to its data-flow equations using the concrete lattice (to be shown).

Function \overline{f} induced by equations

Equations:

$$x_{I} = d_{0}$$

$$x_{B} = f_{1}(x_{I})$$

$$x_{C} = x_{B} \sqcup x_{E}$$

$$x_{D} = f_{3}(x_{C})$$

$$x_{E} = f_{4}(x_{D}).$$

Corresponding \overline{f} function:

$$\overline{f}(d_I, d_B, d_C, d_D, d_E) = (d_0, f_1(d_I), d_B \sqcup d_E, f_3(d_C), f_4(d_D)).$$

Natural ordering on solutions to Eq

- Consider "vectorised" lattice $\overline{D} = (D^k, \leq)$, where D is the underlying lattice.
- Each solution to the equations is a point in this vectorised lattice.
- The solutions are precisely the fix-points of the function \overline{f} : $\overline{D} \to \overline{D}$.
- If D is a complete lattice and f_i 's are monotone, then \overline{D} is complete and \overline{f} is monotone.
 - Note: Concrete analysis satisfies these properties. So do many abstract interpretations.
- Therefore, Knaster-Tarski theorem applies. Therefore, there exists a least solution to \overline{f} .
- Kildall's algorithm computes this Ifp (if it terminates).
 - So does the Kleene iteration $\perp_{\overline{D}}, \overline{f}(\perp_{\overline{D}}), \overline{f}^2(\perp_{\overline{D}}), \ldots$ if it reaches a stable value.

Correctness

Kildall's algo always computes LFP of \overline{f} .

Monotonicity, distributivity, and continuity

1. $JOP \leq LFP$ for monotone framework

- Let \overline{c} be any FP of \overline{f} . Consider any program point N. Let $c_N \equiv \overline{c}[N]$.
- Claim: For any path p, if N is the point at the end of p, c_N dominates $d \equiv f_p(d_0)$ reaching N.

The argument is by induction on length of path p.

- Base case |p| = 0: Then N = I, and $d = c_N = d_0$.
- Let path p be of length i+1. Let M be the program that p passes through just before reaching N. Let d' be $f_p^M(d_0)$, where f_p^M is the path transfer function of the prefix of path p that ends at point M. The inductive hypothesis is that $d' \sqsubseteq c_M$.

The rest of the proof is in two cases.

1. $JOP \leq LFP$ for monotone framework

Case (node between M and N is not a join node): Since \overline{c} is a solution to the equations, and since the equation for x_N is $x_N = f_{MN}(x_M)$, we have $c_N = f_{MN}(c_M)$.

Now, since $d = f_{MN}(d')$, by monotinicity of f_{MN} , and from the hypothesis $d' \sqsubseteq c_M$, it follows that $d \sqsubseteq c_N$.

1. JOP ≤ LFP for monotone framework

Case (node between M and N is a join node): Let P be the other predecessor of the join node.

- d = d' (because join nodes have identity transfer function)
- ② The dataflow equation for x_N is $x_N = x_M \sqcup x_P$. Since \overline{c} is a solution to the equations, $c_N = c_M \sqcup c_P$. That is, $C_M \sqsubseteq C_N$.
- **3** By inductive hypothesis, $d' \sqsubseteq c_M$.

The observations above imply that $d \sqsubseteq c_N$.

1. $JOP \leq LFP$ for monotone framework

- That is, for every path p that reaches a point N, $f_p(d_0) \sqsubseteq c_N$.
- Therefore, JOP d_N at N is $\sqsubseteq c_N$

Proof: Enough to show that the JOP \overline{d} is a fixpoint of \overline{f} . We denote $\overline{d}[M]$ as d_M , $\overline{d}[N]$ as d_N , etc.

Proof: Enough to show that the JOP \overline{d} is a fixpoint of \overline{f} . We denote $\overline{d}[M]$ as d_M , $\overline{d}[N]$ as d_N , etc.

Let N be any program point.

Case (the node before N is not a join node):

- Let S_M (resp. S_N) be the set of all facts that reach M (resp. N) along all paths.
- It is clear that $S_N = \{f_{MN}(s) | s \in S_M\}$.
- It is clear that the JOP d_M at M is equal to $\sqcup S_M$, and the JOP d_N at N is equal to $\sqcup S_N$.
- Therefore, by the previous two observations, and due to infinite distributivity, it follows that $d_N = f_{MN}(d_M)$.
- Therefore, \overline{d} satisfies N's equation, which is $x_N = f_{MN}(x_M)$.

Case (the node before N is a join node):

- Say S_M (resp. S_P resp. S_N) is the set of lattice values reaching M along all paths (resp. reaching P resp. reaching N).
- Clearly, d_M (resp. d_P resp. d_N) is equal to $\sqcup S_M$ (resp. $\sqcup S_P$ resp. $\sqcup S_N$).
- It is clear that $S_N = S_M \cup S_P$. Therefore, $d_N = d_M \sqcup d_P$.
- Therefore, \overline{d} satisfies N's equation, which is $x_N = x_M \sqcup x_P$.

- Since the argument in the previous two slides applies at all points N, we have shown that the vector \overline{d} satisfies all the equations, and is hence a fix-point of \overline{f} .
- Note: Lattice is finite, and functions are pairwise distributive, and $f_i(\bot) = \bot$ implies framework is infinitely distributive.

Back to Constant Propagation

- f_n^{CP} is monotonic
- f_n^{CP} is not distributive.
 - Consider node n with statement y := x * x. Show two CP values P_1 and P_2 such that $f_n(P_1 \sqcup P_2) \sqsupset f_n(P_1) \sqcup f_n(P_2)$.
- The *nstate* functions are all distributive.

- Let \overline{d} be values computed by Kildall's algo upon termination, and \overline{l} be LFP of \overline{f} . Let l_N denote $\overline{l}[N]$, l_M denote $\overline{l}[M]$, etc.
- Intermediate vector \overline{d}^i after any step i is bounded above by \overline{l} . We prove this using induction on number of steps.
- Let N by any program point whose value gets updated in Step i+1.

Case (the node before N is a non-join node):

Explanation:

• $d_M^i \sqsubseteq I_M$ and $d_N^i \sqsubseteq I_N$ by inductive hypothesis.

Case (the node before N is a non-join node):

Explanation:

- $d_M^i \sqsubseteq I_M$ and $d_N^i \sqsubseteq I_N$ by inductive hypothesis.
- $I_N = f_{MN}(I_M)$, because \bar{I} is a solution to the equations and because we have the equation $x_N = f_{MN}(x_M)$.

Case (the node before N is a non-join node):

Explanation:

- $d_M^i \sqsubseteq I_M$ and $d_N^i \sqsubseteq I_N$ by inductive hypothesis.
- $I_N = f_{MN}(I_M)$, because \bar{I} is a solution to the equations and because we have the equation $x_N = f_{MN}(x_M)$.
- Therefore, due to monotonicity of f_{MN} , $f_{MN}(d_M^i) \sqsubseteq I_N$.

Case (the node before N is a non-join node):

Explanation:

- $d_M^i \sqsubseteq I_M$ and $d_N^i \sqsubseteq I_N$ by inductive hypothesis.
- $I_N = f_{MN}(I_M)$, because \bar{I} is a solution to the equations and because we have the equation $x_N = f_{MN}(x_M)$.
- Therefore, due to monotonicity of f_{MN} , $f_{MN}(d_M^i) \sqsubseteq I_N$.
- Since $d_N^{i+1} = d_N^i \sqcup f_{MN}(d_M^i)$, we derive $d_N^{i+1} \sqsubseteq I_N$.

Case (the node before N is a join node):

• Let M and P be the points that precede the join node. Let d_M^i, d_P^i, d_N^i be the data values at the respective program points after Step i.

Case (the node before N is a join node):

- Let M and P be the points that precede the join node. Let d_M^i, d_P^i, d_N^i be the data values at the respective program points after Step i.
- Say propagation happens from M to N in Step i (argument is similar if propagation happened from P to N).

Case (the node before N is a join node):

- Let M and P be the points that precede the join node. Let d_M^i, d_P^i, d_N^i be the data values at the respective program points after Step i.
- Say propagation happens from M to N in Step i (argument is similar if propagation happened from P to N).
- Since \bar{I} is a solution to the equations, and since we have the equation $x_N = x_M \sqcup x_P$, it follows that $I_N = I_M \sqcup I_P$. In other words, $I_M \sqsubseteq I_N$. In conjunction with $d_M^i \sqsubseteq I_M$ (inductive hypothesis), we get $d_M^i \sqsubseteq I_N$.

Case (the node before N is a join node):

- Let M and P be the points that precede the join node. Let d_M^i, d_P^i, d_N^i be the data values at the respective program points after Step i.
- Say propagation happens from M to N in Step i (argument is similar if propagation happened from P to N).
- Since \bar{I} is a solution to the equations, and since we have the equation $x_N = x_M \sqcup x_P$, it follows that $I_N = I_M \sqcup I_P$. In other words, $I_M \sqsubseteq I_N$. In conjunction with $d_M^i \sqsubseteq I_M$ (inductive hypothesis), we get $d_M^i \sqsubseteq I_N$.
- By inductive hypothesis, $d_N^i \sqsubseteq I_N$. Therefore, $(d_N^{i+1} = (d_M^i \sqcup d_N^i)) \sqsubseteq I_N$.

Thus it follows that $\frac{N}{d} < \overline{l}$.

Let \overline{d} be the vector computed by the algorithm upon termination.

We now show that $\overline{d} \geq \overline{f}(\overline{d})$ (i.e. \overline{d} is a postfixpoint of \overline{f})

Let N be any program point.

Case (the node before N is a non-join node):

- Let M be the point that precedes this node. By definition of \overline{f} , $(\overline{f}(\overline{d}))[N]$ is equal to $f_{MN}(d_M)$.
- Since all points are unmarked, value d_M must have been propagated to N. That is, d_N must dominate $f_{MN}(d_M)$. That is, d_N dominates $(\overline{f}(\overline{d}))[N]$.

Let \overline{d} be the vector computed by the algorithm upon termination.

We now show that $\overline{d} \geq \overline{f}(\overline{d})$ (i.e. \overline{d} is a postfixpoint of \overline{f})

Let N be any program point. Case (the node before N is a non-join node):

- Let M be the point that precedes this node. By definition of \overline{f} , $(\overline{f}(\overline{d}))[N]$ is equal to $f_{MN}(d_M)$.
- Since all points are unmarked, value d_M must have been propagated to N. That is, d_N must dominate $f_{MN}(d_M)$. That is, d_N dominates $(\overline{f}(\overline{d}))[N]$.

Case (the node before N is a join node):

- Let M and P be the points that precede the join node. By definition of \overline{f} , $(\overline{f}(\overline{d}))[N]$ is equal to $d_M \sqcup d_P$.
- Since all points are unmarked, value d_M and d_P must have been propagated to N. That is, d_N must dominate both d_M and d_P . That is, d_N dominates $d_M \sqcup d_P$. Hence, d_N dominates $(\overline{f}(\overline{d}))[N]$.

• Therefore, by Knaster-Tarski theorem, $\bar{l} = glb(Post)$, and hence $\bar{d} \geq \bar{l}$.

• We have earlier proved that $\overline{d} \leq \overline{l}$. Therefore, it follows that $\overline{d} = \overline{l}$.

Correctness

Kildall's algo always computes LFP.

Overview of correctness

- Every program induces a set of equations on variables whose domain is lattice D. The equations, in turn, induce a function $\overline{f}: \overline{D} \to \overline{D}$.
- If each f_i is monotone and D is a complete lattice then f has a least fix-point LFP(\overline{f}).
 - If each f_i is infinitely distributive, then JOP = LFP(f).
 - Otherwise, if each f_i is only monotonic, $JOP \leq LFP(\overline{f})$.

Overview of correctness

- If each f_i is monotone and D is a complete lattice then \overline{f} has a least fix-point LFP(\overline{f}).
 - If each f_i is infinitely distributive, then $JOP = LFP(\overline{f})$.
 - Otherwise, if each f_i is only monotonic, $JOP \leq LFP(\overline{f})$.
- Kildall's algorithm, for monotone frameworks:
 - Solution at any point during its execution is $\leq \mathsf{LFP}(\overline{f})$
 - If and when it terminates, solution is equal to LFP(\overline{f})
 - Note this is a stronger claim than "Kildall's algo computes JOP for distributive frameworks" [Killdall, 'POPL 73].
 - Kildall's algorithm is not only for program analysis. It can be used to find least solution to *any* set of simultaneous equations, as long as (a) domain of variables' values is a complete lattice, (b) each variable occurs in the lhs of a unique equation, and (c) all operators occurring in rhs's are monotone.

Summary of sufficient conditions

	Termination	LFP ≥ JOP	LFP = JOP	Kild computes LFP
				upon termination
f _{MN} 's monotonic No inf. asc. chains	√ √	V		V
Inf. distributive				

- Each column is a property, and each row is a sufficient condition
- For a property to hold, each sufficient condition mentioned in its column needs to hold