The Large Scale Hierarchical Text Classification PASCAL Challenge

A. Kosmopoulos^{†,}, E. Gaussier*, G. Paliouras[†], S. Aseervatham*

March 28, 2010

Outline

Introduction

Presentation of the Challenge

Datasets and Data Preparation

Tasks

Evaluation Measures

Results

Quick Overview of Approaches Results per Tasks

Scalability Tests

Conclusion and Perspectives

Large scale hierarchical text classification (1)

Situation

- Problem has been addressed in the past
 - Seminal work of Yang et. al. [5] (ca. 14,000 categories) in 2003
 - ► Followed by extensions in 2005 ([2, 3]) to more than 100,000 categories
- Comparison of different classifiers in different settings: flat vs hierarchical
- ► Continuous interest in the problem (under different forms) and continuous flow of new ideas and approaches work by Xue et al. in 2008 [4]

Large scale hierarchical text classification (2)

Comments

- ► The dichotomy introduced in early works between flat and hierarchical approaches blurred in more recent works
- ▶ Different classifiers can be used differently (e.g. feature selection or document smapling/filtering can be used in flat approaches to speed up the process); experimental space is indeed large
- Recent challenges on large scale classification on large numbers of high-dimensional exmaples, but very few categories
- ⇒ All these elements led us to propose a challenge on large scale hierarchical classification

Description of the Problem

- ► Hierarchy of categories is provided (flat vs hierarchical)
- Reasonable, large numbers of categories (12,000) and examples (160,000) - don't scare potential participants with large numbers!
- ➤ Simple hierarchical problem: documents at the leaves only
- Simple multiclass, single label problem: each document belongs to only one category

Data preparation

- ▶ Pre-processing:
 - stemming/lemmatization
 - stop-word removal
- ▶ Two type of vectors:

Content data

The Movies Net Top 20 brings you the pick of the most popular and highest-rating sites for movies on the Net today. It gives you access to the world's best movies sites, all from a single page.

Movies.com features the latest movie news, reviews, trailers and a wide variety of general movie information.

Description data

Movies Top 20 - Lists links to several film sites, with brief descriptions of each.

Datasets

- ► Large dataset (12294 categories) Used for system evaluation.
- ► Small dataset (1139 categories) Used for system tuning.
- Each dataset is split into:
 - ▶ a training set (93805/4463 vectors)
 - a validation set (34905/1860 vectors)
 - a test set (34880/1858 vectors)

Tasks of the Challenge

Task Name	Content		Description	
Task Ivallie	Train	Test	Train	Test
Task 1: Basic	✓	✓	-	-
Task 2: Cheap	-	✓	✓	-
Task 3: Expensive	\checkmark	✓	✓	-
Task 4: Full	\checkmark	✓	✓	✓

Tasks of the Challenge

Task Name	Train	Validation	Test
Task 1: Basic	347255	191224	194024
Task 2: Cheap	71322	39070	194024
Task 3: Expensive	368113	201487	194024
Task 4: Full	368113	201487	204288

Task Vocabulary

Evaluation Measures (1)

$$\textit{Accuracy} = \frac{\mathsf{Correct\ Classifications}}{\textit{D}}$$

- ▶ *D* is the number of testing documents
- c_d the category in which the document was classified
- ▶ t_d the true category of the document

Evaluation Measures (2)

Macro-average precision, recall and F_1 -measure

$$\begin{aligned} \text{Macro precision} &= \frac{\sum_{i=1}^{M} precision_i}{M}, \ precision = \frac{TP}{TP + FP} \\ \text{Macro recall} &= \frac{\sum_{i=1}^{M} recall_i}{M}, \ recall = \frac{TP}{TP + FN} \\ \text{Macro precision} &\cdot \text{Macro recall} \\ \text{Macro precision} &+ \text{Macro recall} \\ M \text{ is the number of categories.} \end{aligned}$$

Significance Tests (1)

Comparing proportions(p-test)[6] for Accuracy

$$p = \frac{p_a + p_b}{2}$$

$$Z = \frac{p_a - p_b}{\sqrt{2p(1-p)/n}}$$

- p_a accuracy of the first system
- p_b accuracy of the second system
- n the number of trials (number of testing vectors)
- ► Significant different if P-value < 0.05

Significance Tests (2)

Macro sign test (S-test)[6] for Macro-average F_1 -measure

$$Z = \frac{k - 0.5n}{0.5\sqrt{n}}$$
, since $n > 12$

- ▶ *n* is the number of times that *a_i* and *b_i* differ
- \triangleright k is he number of times that a_i is larger than b_i
- ▶ $a_i \in [0,1]$ is the F_1 score of system A on the ith category (i= 1, 2, ..., M)
- ▶ $b_i \in [0,1]$ is the F_1 score of system B on the ith category (i= 1, 2, ..., M)
- ▶ *M* is the number of categories
- ► Significant different if P-value < 0.05

Standard Approaches

Two main approaches[4]:

Big-bang Directly categorize documents to the leaves.

Top-down Hierarchy is exploited in order to divide the problem into smaller ones.

Big-bang approaches are usually more accurate while Top-down approaches are usually faster.

Approaches used in the Challenge (1)

- Most participants either used a big-bang approach or exploited only a small part of the hierarchy.
- Feature selection was tried but did not always help.
- Regarding the classifiers:
 - ► Lazy learners were used, which are very fast at training but slower at classification. (i.e. kNN)
 - ► Eager learners were also used and were faster at classification. (i.e. Naïve Bayes, SVMs)

Approaches used in the Challenge (2)

- arthur_general- two-level hierarchy, multi-class SVM.
- logicators subset of the hierarchy, hierarchical SVMs.
- ▶ **Turing** knn for a subset and then Naïve Bayes classifier.
- XipengQiu centroid for each class and IDF of terms.
- ▶ **jhuang** flat hierarchy, two online algorithms (OOZ and PA).
- NakaCristo flat hierarchy, kNN with three variants.
- Brouard IDF feature selection, linking terms to categories.
- ▶ alpaca classifier combination, 2-degree polynomial SVMs.

Highest Scores per Task

	Task 1	Task 2	Task 3	Task 4
Accuracy	0.467632	0.380619	0.467861	0.504759
Macro F-measure	0.35494	0.317133	0.359557	0.386195
Tree Induced Error	3.07858	3.80803	3.2621	2.82101

Variation of Highest Scores

Task 1: Basic

Task 1: Basic

Task 1: Basic

Task 2: Cheap

Task 3: Expensive

Task 4: Full

F₁-measure per Category Size

Scalability Tests - Time

Categories	XipengQiu	logicators	Turing	NakaCristo
12294	1m 12.5s	67m 1.4s	0m 13s	18.8s
	94m 8.2s	296m 45s	1258m 2s	42m 5s
10000	0m 58s	41m 20.7s	0m 8s	4m 11.5s
	60m 3s	153m 20s	779m 35s	27m 6s
1000	0m 7.6s	0m 35s	0m 0.7s	0m 24.2s
	0m 42s	1m 28s	9m 36s	0m 30.2s
100	0m 4.7s	0m 0.2s	0m 13s	0m 2.5s
	0m 1.2s	0m 3.7s	0m 22.6s	0m 1.9s

First line = train Second line = classify

Scalability Tests - Memory

Categories	XipengQiu	logicators	Turing	NakaCristo
12294	2920 Mb	5700 Mb	200 Mb	921 Mb
	1382 Mb	3900 Mb	6000 Mb	996 Mb
10000	2400 Mb	4600 Mb	76 Mb	828 Mb
	1050 Mb	2950 Mb	5800 Mb	762 Mb
1000	170 Mb	444 Mb	< 50 Mb	110Mb
	149 Mb	434 Mb	1320 Mb	79 Mb

First line = train Second line = classify

Conclusion and Perspectives

- All the approaches we are aware of on large scale classification tried by participants; we thus believe the results obtained represent the state-of-the-art on this collection
- No complete hierarchical approaches, a la pachinko; rather approaches with a limited use of the hierarchy
- Best results are provided by both hierarchical and flat methods; hierarchical methods seem faster
- ► Useful benchmark for future use; oracle will be available for a while at the challenge site
- ► LSHTC-2 What should be different? Multilabel? Original text? Other data?

Ofer Dekel, Joseph Keshet, and Yoram Singer.

Large margin hierarchical classification.

In ICML '04: Proceedings of the twenty-first international conference on Machine learning, page 27, New York, NY, USA. 2004. ACM.

Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng, Zheng Chen, and Wei-Ying Ma.

Support vector machines classification with a very large-scale taxonomy.

SIGKDD Explorations, 7(1):36–43, 2005.

Tie-Yan Liu, Yiming Yang, Hao Wan, Qian Zhou, Bin Gao, Hua-Jun Zeng, Zheng Chen, and Wei-Ying Ma.

An experimental study on large-scale web categorization.

In Allan Ellis and Tatsuya Hagino, editors, WWW (Special interest tracks and posters), pages 1106–1107. ACM, 2005.

Gui-Rong Xue, Dikan Xing, Qiang Yang, and Yong Yu. Deep classification in large-scale text hierarchies. In SIGIR '08: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pages 619–626, New York, NY, USA,

B. Kisiel Y. Yang, J. Zhang.
A scalability analysis of classifiers in text.

In ACM SIGIR Conference. ACM, 2003.

Yiming Yang and Xin Liu.

2008. ACM.

A re-examination of text categorization methods.

pages 42-49. ACM Press, 1999.