CM078: Introdução à Topologia (Prova 2)

Prof. Alberto Ramos Junho de 2018

	Q.	1		J	4	J	U	Total	
Nome:	P:	20	25	10	25	10	10	100	
	N:								

0. 1 2 3 4 5 6 Total

Orientações gerais 1) As soluções devem conter o desenvolvimento e ou justificativa. 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados. 3) Não é permitido a consulta nem a comunicação entre alunos. Seja X um espaço métrico sequencialmente compacto. Então, prove que (a) 10 X é totalmente limitado; (b) |10| X é completo. Seja $E \subset \mathbb{R}^m$ tal que toda função continua $f: E \to \mathbb{R}$ atinge seu mínimo. Mostre que (a) $10 \mid E$ é fechado; (b) |15| E é limitado. Seja $f:\mathbb{R}^n\to\mathbb{R}$ uma função continua tal que $||x||\leq \ell|f(x)|$, para todo $x\in\mathbb{R}$ e para algum $\ell>0$. Mostre que se $K \subset \mathbb{R}$ é compacto. Então, $f^{-1}(K)$ é um subconjunto compacto. Dizemos que $f:[0,1]\to\mathbb{R}$ é Holder continua com expoente $\alpha\in(0,1]$, se existe uma constante C>0tal que $|f(x)-f(y)| \le C|x-y|^{\alpha}$ para todo $x,y \in [0,1]$. Defina a norma $||f||_{\alpha} := \max\{|f(x)| + \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}: \text{ para todo } x, y \in [0, 1], x \neq y\}.$ Mostre que $\mathcal{B} := \{ f \in C[0,1] : ||f||_{\alpha} \leq 1 \}$ tem fecho compacto como subconjunto de C[0,1]. Seja f, g duas função contínuas definidas sobre um espaço métrico X. Se existe um subconjunto denso D tal que $f(x) = g(x), x \in D$. Mostre que as duas funções são iguais em X. Considere X um espaço métrico compacto. Seja $\{F_n\}$ uma família enumerável de fechados em X tal que $F_n \neq \emptyset$ e $F_{n+1} \subset F_n$, $\forall n \in \mathbb{N}$. Prove que $\cap_{n \in \mathbb{N}} F_n \neq \emptyset$.