0.1 Espacios Metricos

Problema 1 (Abierto si y solo si Sequencialmente Abierto). Sea (X, d) un espacio metrico, un conjunto $A \subset X$ se dice sequencialmente abierto si para toda sucesion $\{x_n\}_{n\in\mathbb{N}}$ que converge a un elemento de A se tiene que

$$\exists n \in \mathbb{N}, k > n \implies x_k \in A$$

Demuestre que la nocion de abierto y secuencialmente abierto es la misma en espacios metricos.

Solucion. (\Longrightarrow) , Sea A un conjunto abierto y $\{x_n\}_{n\in\mathbb{N}}$ una sucesion tal que

$$\lim_{n \to \infty} x_n = \overline{x} \in A$$

Dado que A es abierto existe $\varepsilon > 0$ tal que

$$B_{\varepsilon}(\overline{x}) \subset A \tag{1}$$

Por la convergencia tenemos que existe $N \in \mathbb{N}$ tal que si $n > N \implies x_n \in B_{\varepsilon}(\overline{x})$ pero tenemos por (1) que $x_n \in B_{\varepsilon}(\overline{x}) \implies x_n \in A$. Por lo tanto A es secuencialmente abierto.

 (\Leftarrow) Procederemos pro contradiccion, Supongamos que A es secuencialemente abierto pero no abierto. Por lo tanto tenemos que $\exists x_0 \in A$, tal que

$$\forall \varepsilon > 0, B_{\varepsilon}(x_0) \cap A^c \neq \emptyset \tag{2}$$

Consideremos la siguiente sucesion, tomemos $x_n \in B_{\frac{1}{n}}(x_0) \cap A^c$, esta sucesion esta bien definida por (2). Se puede ver facilmente que $x_n \to x_0$. Pero he aqui la contradiccion pues $x_n \notin A, \forall n \in \mathbb{N}$ pero al suponer que A es secuencialmente abierto, tenemos que existe $N \in \mathbb{N}$ tal que si $n > N \implies x_n \in A$, en particular $x_{N+1} \in A \land x_{N+1} \notin A$. Lo cual es una contradiccion.

Problema 2 (Continuidad topologica es equivalente a continuidad). Una de las definiciones mas importantes de continuidad es la siguiente. $f: X \to Y$ se dice continua si para todo conjunto abierto V de Y se tiene que $f^{-1}(V)$ es un conjunto abierto en X.

Demostrar que la nocion de continuidad en espacios metricos es equivalente a la definida arriba.

Solucion. (\Longrightarrow) Supongamos que $f: X \to Y$ es continua en el sentido de espacios metricos. Sea V un abierto en Y, sea $x \in f^{-1}(V)$, luego tenemos que $f(x) \in V$. Dado que V es abierto existe una vecindad de radio ε tal que $B_{\varepsilon}(f(x)) \subset V$, por la continuidad de f tenemos que existe $\delta > 0$ tal que si $d_X(x,y) < \delta \Longrightarrow d_Y(f(x),f(y)) < \varepsilon$, pero de esto ultimo tenemos que $f(y) \in B_{\varepsilon}(f(x)) \subset V$, por lo tanto $B_{\delta}(x) \subset f^{-1}(V)$, con lo que tenemos que $f^{-1}(V)$ es abierto.

(\Leftarrow) Supongamos que $f: X \to Y$ es continua en el sentido topologico. Sea $x \in X$ y $\varepsilon > 0$, luego tenemos que $B_{\varepsilon}(f(x))$ es un conjunto abierto en Y por lo que $f^{-1}(B_{\varepsilon}(f(x)))$ es un conjunto abierto tal que x esta contendio en el. Por lo tanto existe $\delta > 0$ tal que $B_{\delta}(x) \subset f^{-1}(B_{\varepsilon}(f(x)))$, lo que significa que

$$y \in B_{\delta}(x) \implies f(y) \in B_{\varepsilon}(f(x)) \iff d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \varepsilon$$

Dado que x y ε fueron arbitrarios, se tiene que f es continua en el sentido de espacios metricos. \Box

0.2 Espacios de Banach

Problema 1. Demostrar que $(X, ||\cdot||)$ es una espacio de Banach si y solo si

$$\sum_{n=1}^{\infty} ||x_n|| < \infty \implies \sum_{n=1}^{\infty} x_n = x \in X$$

Solucion. (\Longrightarrow) Sea X un Banach. Supongamos que

$$\sum_{n=1}^{\infty} ||x_n|| < \infty$$

Dado que esto es una serie convergente de numeros reales, esta es cauchy. Veamos que

$$\sum_{n=1}^{\infty} x_n$$

es cauchy. Sin perdida de generalidad supongamos que $m \geq n$ luego

$$\lim_{n,m\to\infty} ||\sum_{k=1}^{n} x_k - \sum_{k=1}^{m} x_k|| = \lim_{n,m\to\infty} ||\sum_{k=n+1}^{m} x_k|| \le \lim_{n,m\to\infty} \sum_{k=n+1}^{m} ||x_k|| = 0$$

La ultima igualdad viene de que la series de las normas es cauchy

0.3 Topologia

Problema 1. De un ejemplo de un espacio topologico donde un conjunto abierto no sea secuencialmente abierto.

Solucion.
$$\Box$$

Problema 2. Sea (X, \mathcal{T}) un espacio topologico tal que $B \subset X$ sea un subconjunto denso en X. Si A es un conjunto denso en (B, \mathcal{T}_B) , donde \mathcal{T}_B es la topologia inducida de X en B, demostrar que A es denso en (X, \mathcal{T})

Solucion. Sea $\theta \in \mathcal{T}, \theta \neq \emptyset$, dado que B es denso en X tenemos que

$$\theta \cap B \neq \emptyset \tag{3}$$

Pero sabemos que $\theta \cap B \in \mathcal{T}_B$ y de (3) sabemos que es no vacio, por lo tanto dado que A es denso en (B, \mathcal{T}_B) tenemos que

$$(\theta\cap B)\cap A\neq\emptyset$$

Pero $\theta \cap B \cap A \subset \theta \cap A$, por lo tanto $\theta \cap A \neq \emptyset$. Lo que significa que A es denso en (X, \mathcal{T})

Problema 3. Demostrar que si $f: X \to Y$ es una funcion continua y $\{x_n\}_{n \in \mathbb{N}}$ es una sucesion convergente en X entonces

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$$

.

Solucion. Sea $x = \lim_{n \to \infty} x_n$. Sea ν una vecindad de f(x), dado que f es continua tenemos que el conjunto $f^{-1}(\nu)$ es abierto en X, dado que ν es vecindad de f(x) tenemos que $x \in f^{-1}(\nu)$. Dado que $f^{-1}(\nu)$ es abierto, este es vecindad de todos sus puntos por lo que $f^{-1}(\nu)$ es vecindad de x, dado que $x_n \to x$ tenemos que existe $N \in \mathbb{N}$ tal que si $n > N \implies x_n \in f^{-1}(\nu)$ pero esto implica que

$$n > N \implies f(x_n) \in \nu$$

Dado que ν fue arbitrario tenemos que

$$\lim_{n \to \infty} f(x_n) = f(x)$$

Que es justo lo que queriamos demostrar.

Problema 4. Supongamos que X satisface el primer axioma de contabilidad y que se tiene que para toda sucesion convergente en X entonces la funcion $f: X \to Y$ cumple lo siguiente

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$$

Demostrar que f es continua.

Solucion. Procedamos por contradiccion, por lo tanto f no es continua en un punto x. Sea V una vecindad de f(x)

Problema 5. De un ejemplo donde se tiene que para toda sucesion convergente en X se tiene que la funcion $f: X \to Y$ cumple que

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$$

pero f no sea continua