Wtorki 16:50 Grupa I3 Kierunek Informatyka Wydział Informatyki Politechnika Poznańska

Algorytmy i struktury danych Sprawozdanie z zadania w zespołach nr. 4 prowadząca: dr hab. inż. Małgorzata Sterna, prof PP

Algorytmy z powracaniem

autorzy:

Piotr Więtczak nr indeksu 132339 Tomasz Chudziak nr indeksu 136691

20 maja 2018

1 Opis implementacji

Do implementacji algorytmów poszukujących cyklu Eulera (E), pojedynczego cyklu Hamiltona (H1) i wszystkich cykli Hamiltona użyliśmy języka C++. Do pomiarów czasu wykorzystaliśmy klasę std::chrono::high_resolution_clock z biblioteki chrono. Do reprezentacji grafu zastosowaliśmy macierz sąsiedztwa, ze względu na TU MI SIE TŁUMACZ CZEMU MACIERZ SĄSIEDZ-TWA

2 Czasy działania algorytmów

Tabela przedstawiająca czasy działania algorytmów

Liczba	t _E dla		t _{H1} dla		t _{HA} dla	
wierzchołków	d = 0.6	[ms]	d = 0.6	[ms]	d = 0.6	[<i>ms</i>]

Wykres przedstawiający czasy działania algorytmów dla d = 0.6

Problemy znajdowania cyklu Eulera i cyklu Hamiltona dotyczą przeszukiwania grafu.

Znajdowanie cyklu Eulera należy do klasy problemów łatwych (P), czyli takich dla których potrafimy znaleźć algorytm rozwiązujący ten problem w czasie wielomianowym.

Znajdowanie cyklu Hamiltona należy do problemów NP-zupełnych, które są podklasą problemów trudnych (NP), dla problemów które należą do klasy NP nie znamy rozwiązań działających w czasie wielomianowym lub mniejszym, czyli są to zadania o o złożoności co najmniej wykładniczej. Do problemów NP-zupełnych transformują się wielomianowo wszystkie problem z klasy NP. Rozwiązując problem NP-zupełny rozwiązujemy wszystkie problemy z tej podklasy, dlatego znajdując rozwiązanie jednego takiego problemu w czasie wielomianowym, znajdziemy rozwiązanie wielomianowe dla wszystkich problemów NP-zupełnych.

Złożoność obliczeniowa algorytmu znajdowania cyklu Eulera wynosi O(m), gdzie m - liczba krawędzi, ponieważ podczas przeszukiwania grafu trzeba przejść po wszystkich krawędziach.

Złożoność obliczeniowa algorytmu znajdowania pojedynczego cyklu Hamiltona wynosi O(n!), gdzie n - liczba wierzchołków, ponieważ w najgorszym przypadku należy sprawdzić wszystkie możliwe permutacje, a dla wszystkich cykli $O(n \cdot n!)$.

3 Czasy poszukiwania cyklu Eulera dla różnych wartości d

Tabela przedstawiająca T_E dla różnych wartości d

Liczba	t_E dla	t_E dla
wierzchołków	d = 0.2 [ms]	d = 0.6 [ms]

Wykres przedstawiający T_E dla różnych wartości d

Liczba wierzchołków

Metoda poszukiwania cyklu Eulera oparta jest na algorytmie DFS (przeszukiwanie w głąb), z tą różnicą że przegląda krawędzi zamiast wierzchołków. Do przedstawienia grafu użyto macierzy sąsiedztwa TU MI SIE TŁUMACZ CZEMU MACIERZ SĄSIEDZ-TWA I CZY REPREZENTACJA MA WPŁYW NA ZŁOŻONOŚĆ OBLICZONIOWĄ METODY TUTAJ POPROSZĘ OPIS DZIAŁANIA ALGORYTMU ZGODZNIE Z IMPLEMENTAGORYTMU ZGODZNIE Z IMPLEMENTACIA (MOZESZ UDAWAĆ ŻE TAKA BYŁA

IMPLEMENTAJA) PRZYPOMNĘ TYLKO ŻE CHODZI O POSZUKIWANIE CYKLU EU-LERA, A NIE JAKIEGOŚ LOSOWEGO JAK OSTATNIO

Warunek konieczny i dostateczny istnienia cyklu Eulera w grafie:

- graf jest spójny,
- dla grafu nieskierowanego, wszystkie wierzchołki są stopnia parzystego,
- dla grafu skierowanego, taka sama liczba krawędzi wchodzących i wychodzących dla każdego wierzchołka. W testowanych grafach istniał cykl Eulera ponieważ zostały one wygenerowane odpowiednią metodą. Opierała e ona na tworzeniu klik o rozmiarze 3, po stworzeniu pierwszej wybierany był losowy należący do grafu wierz-

się ona na tworzeniu klik o rozmiarze 3, po stworzeniu pierwszej wybierany był losowy należący do grafu wierzchołek, oraz losowano dwa nie należące do grafu wierzchołki, z tych trzech wierzchołków do grafu dołączana była nowa klika. Dołączanie nowych klik trwało aż do osiągnięcia pożądanej gęstości.

zachowanie

4 Czasy poszukiwania pojedynczego i wszystkich cykli Hamiltona dla różnych wartości d

Tabela prezentująca t_{H1} i t_{HA} dla różnych wartości d

Liczba	d = 0.2				d = 0.6			
wierzchołków	t_{H1}	[<i>ms</i>]	t_{HA}	[ms]	t_{H1}	[ms]	t_{HA}	[ms]

Wykres przedstawiający t_{H1} dla różnych wartości d

Liczba wierzchołków

Tabela prezentująca $t_{H\!A}$ dla różnych wartości d

Tabela prezentująca liczbę cykli Hamiltona dla różnych wartości d

Liczba	Liczba cykli	Liczba cykli		
wierzchołków	Hamiltona dla $d = 0.2$	Hamiltona dla $d = 0.6$		

Spis treści

1	Opis implementacji	1
2	Czasy działania algorytmów	1
3	Czasy poszukiwania cyklu Eulera dla różnych wartości d	2
4	Czasy poszukiwania pojedynczego i wszystkich cykli Hamiltona dla różnych wartości d	3