

Year 12 Methods TEST 3 7 June 2019

TIME: 45 minutes working

Calculator Assumed 44 Marks 6 Questions

Name:	Teacher	:						
Note: All բ	Note: All part questions worth more than 2 marks require working to obtain full marks.							
Question 1	1	(5 marks						
(a) Diffe	ferentiate $x \sin x$	(2 marks)						
	Solution							
$\frac{d}{dx}$	$\frac{d}{dx}(x\sin x) = \sin x + x\cos x$							
	Specific behavio	ours						
√	uses product rule							
✓	obtains derivative							

(b) Hence find $\int_{0}^{\frac{\pi}{2}} x \cos x \, dx$ using the result in(a) above. (3 marks)

Solution
$$\frac{d}{dx}(x\sin x) = \sin x + x\cos x$$

$$\int \frac{d}{dx}(x\sin x)dx = -\cos x + \int x\cos x dx$$

$$x\sin x + \cos x + c = \int x\cos x dx$$

$$\int_{0}^{\frac{\pi}{2}} x\cos x dx = \left[x\sin x + \cos x\right]_{0}^{\frac{\pi}{2}} = \left(\frac{\pi}{2}\right) - (1)$$

Specific behaviours ✓ integrates equation in (a) ✓ uses fundamental theorem ✓ uses limits correctly to obtain exact result

Question 2 (3 marks)

Determine the *x*-coordinates of all points on the graph of $f(x) = 2\cos(x) + x$ for $-\pi \le x \le \pi$ where the tangent line is horizontal. (Justify your answers)

Question 3 (7 marks)

A survey conducted by a local bank shows that 75% of its customers use an ATM at least once a month.

(a) Find the probability that in a random sample of 8 customers, **at least 75%** of them use an ATM machine at least once a month. (2 marks)

(b) If the random variable X follows a binomial distribution with n=12 and p=0.75, what is the mean of this distribution and what is P¿X≥mean¿? (3 marks)

√ states probability

(c) If the sample size became very large what would you expect $P(X \ge \text{mean})$ to approach? Briefly explain your answer. (2 marks)

Solution

As sample size becomes larger, the distribution becomes more symmetrical about the mean, approaching a probability of 0.5.

Specific behaviours

- ✓ states approaching 0.5
- √ describes the ideal shape of distribution as sample size becomes very large.

Question 4 (10 marks)

The discrete random variable X can only take the values 2, 3 or 4. For these values the cumulative distribution function is defined by

$$P(X \le x) = \frac{(x+k)^2}{25}$$

for $x=2,3 \land 4$, where *k* is a positive constant integer.

(a) Find the value for k. (3 marks)

(b) Complete the following table for X.

 $\int P(x \le 4) = 1$

(3 marks)

Solution							
	_						
X		2	3	4			
$P(X \leq x)$	9		16	1			
	25		$\overline{25}$				
P(X=x)	9		7	9			
	<u>25</u>		25	25			
Specific behaviours							
		•					

- ✓ sum of second row equals one
- ✓ all entries correct
 - (c) Hence find E(X) and SD(X). marks)

(2

(d) Calculate Var(3-2X) giving your answer to two decimal places. (2 marks)

Solution
$$Var(3-2X) = 2^{2}Var(X) = 4 \times (0.8485)^{2} = 2.8798 \approx 2.88$$

Specific behaviours

- ✓ multiplies old variance by positive 4
- ✓ rounds to 2 decimal places (only pay this if working is shown for new variance)

Question 5 (8 marks)

Consider the function $f(x) = \frac{1 - \cos x}{x}$ where x is in radians.

a) Sketch f(x) on the axes below for $-20 \le x \le 20$ on the axes below. Clearly label undefined points (if any).

(3 marks)

b)

c)

✓ shape
✓ open hole at origin or stated undefined at origin
✓ accuracy with intercepts (within 0.1)
As $^\chi$ approaches zero from the positive side, state the value that $^{f}(^\chi)$ approaches. (1 mark)
Solution
Approaches zero
Specific behaviours
✓ states approaching zero
As X approaches zero from the negative side, state the value that $f^{(x)}$ approaches. (1 mark)
Solution
Approaches zero
Specific behaviours
✓ states approaching zero

d) Use the above to define a value for f(x) as x approaches zero, that is the following limit $\lim_{x\to 0} \frac{1-\cos x}{x}$. (1 mark)

Solution

equals zero

Specific behaviours

✓ states equals zero

It can be shown that $\frac{d}{dx}(\cos x) = -\cos x \lim_{h \to 0} \frac{1 - \cosh}{h} - \sin x \lim_{h \to 0} \frac{\sinh}{h}$.

e) Using the fact that $\lim_{h\to 0} \frac{\sinh}{h} = 1$ and the above results, show that $\frac{d}{dx}(\cos x) = -\sin x$ (2 marks)

Solution $\frac{d}{dx}(\cos x) = -\cos x \lim_{h \to 0} \frac{1 - \cosh}{h} - \sin x \lim_{h \to 0} \frac{\sinh}{h}$ = - \cos x(0) - \sin x(1) = - \sin x Specific behaviours

Question 6 (11 marks)

A game is played by throwing two standard six-sided dice into the air once. The sum of the uppermost numbers are added together and if the sum is greater than 8 the player wins \$5.

Determine:

a) the probability of winning \$5 in one game.

✓ shows that derivative simplifies to required result

(2 marks)

Solution									
	1	2	3	4	5	6			
1	2	2 3	4	5	6	7			
2	3	4	5	6	7	8			
3	4	5	6	7	8	9			
4	5	6	7	8	9	10			
5	5	7	8	9	10	11			
6	7	8	9	10	11	12			
$P(sum > 8) = \frac{10}{36} = \frac{5}{18}$									
Specific behaviours									
✓ recognises that there are 36 outcomes									
✓ states prob (no need to simplify)									

b) the probability of winning exactly \$15 in 5 games.

(3 marks)

✓ uses parameters

√ states prob

c) the probability of winning at least \$15 in at most 5 games.

(3 marks)

$$P(n=3) = \frac{1}{3} = P(n=4) = P(n=5)$$

Solution

$$P(n=3) P(x=3) + P(n=4) P(x \ge 3) + P(n=5) P(x \ge 3)$$

$$\frac{1}{3}$$
0.02143347051+ $\frac{1}{3}$ 0.06787265661+ $\frac{1}{3}$ 0.134951481 0.07475253604

Specific behaviours

✓ examines 3 games with correct parmeters binomialCDf

- ✓ examines 4 and 5 games and cumulative values
- ✓ states final prob

d) the minimum number of games to be played so that the probability of winning at least \$15 is greater than 0.47. (Justify) (3 marks)

- ✓ uses cumulative Binomial with correct parameters
- ✓ shows at least 3 sets of trials
- ✓ demonstrates that 9 games is the minimum