## Linked Representation of Graph

#### Why Linked Representation?

- In sequential representation, there are two major drawbacks:
- 1. Adding new nodes or deleting existing nodes is a difficult task, as the size of the matrix needs to be changed and existing nodes may have to be reordered.
- 2. Graphs which have small-to-moderate number of edges are called sparse. Representing these types of graphs by adjacency matrix will contain many zeros; hence a great deal of space will be wasted.
- Linked Representation have a great advantage over these limitations.

### **Linked Representation Continue...**

In linked representation, each node in G is followed by its adjacency list, which is its list of adjacent nodes, also called its neighbors.



| Node | Adjacency List |
|------|----------------|
| Α    | В, С           |
| В    | C, D           |
| С    | D              |
| D    | А, В           |

For a directed graph, the sum of the lengths of all adjacency lists is equal to the number of edges in G.



| Node | Adjacency List |
|------|----------------|
| Α    | B, D           |
| В    | A, C, D        |
| С    | В, Е           |
| D    | A, B, E        |
| Е    | C, D           |

For an undirected graph, the sum of the lengths of all adjacency lists is equal to twice the number of edges in G.

#### Figure of G and Adjacency List







### Linked Representation Continue...

- Linked representation will contain two list:
  - 1. NODE list
  - 2. EDGE list
- Node List: Each element in the list NODE will correspond to a node in G and will be a record of the form.

| NODE | NEXT | ADJ |  |
|------|------|-----|--|
|------|------|-----|--|

- Where
  - NODE will be the name or key value of the node.
  - NEXT will be a pointer to the next node.
  - ADJ will be a pointer to the first element in the adjacency list of the node, which is maintained in the list EDGE.
  - The shaded area indicates that there might be other information in the record, such as the INDEG of the node, the OUTDEG of the node.

# Linked Representation Continue...

• Edge list: Each element in the list EDGE will correspond to an edge of G and will be a record of the form.



#### Where

- DEST will point to the location in the list NODE of the destination or terminal node of the edge.
- LINK will link together the edges with the same initial node, that is, the nodes in the same adjacency list.
- The shaded area indicates other fields if any(such as edge weight)