On n-Weak Cotorsion Modules

C. Selvaraj^{1,*} and P. Prabakaran^{1,**}

(Submitted by E. K. Lipachev)

¹Department of Mathematics, Periyar University, Salem — 636 011, Tamil Nadu, India Received April 29, 2016

Abstract—Let R be a ring and n a fixed non-negative integer. In this paper, n-weak cotorsion modules are introduced and studied. A right R-module N is called n-weak cotorsion module if $Ext^1_R(F,N)=0$ for any right R-module F with weak flat dimension at most n. Also some characterizations of rings with finite super finitely presented dimensions are given.

2010 Mathematical Subject Classification: 16D10, 16E30, 16D50

Keywords and phrases: weak injective module; weak flat module; n-weak cotorsion module; super finitely presented dimension

1. INTRODUCTION

Throughout this paper, R denotes an associative ring with identity and all modules are unitary. Denote by R-Mod the category of left R-modules and by Mod-R the category of right R-modules. As usual, $pd_R(M)$, $id_R(M)$, and $fd_R(M)$ will denote the projective, injective and flat dimensions of an R-module M, respectively. We use \mathcal{F}_n to stand for the class of all right R-modules with flat dimension at most n and w.gl.dim(R) to stand for the weak global dimension of a ring R. For unexplained concepts and notations, we refer the reader to [1, 5, 13, 16].

We first recall some known notions and facts needed in the sequel. Given a class $\mathcal C$ of right R-modules, we write

$$\mathcal{C}^{\perp} = \left\{ M \in Mod\text{-}R \mid Ext_R^1(C, M) = 0, \ \forall \ C \in \mathcal{C} \right\};$$

$${}^{\perp}\mathcal{C} = \left\{ M \in Mod\text{-}R \mid Ext_R^1(M, C) = 0, \ \forall \ C \in \mathcal{C} \right\}.$$

Let $\mathcal C$ be a class of right R-modules and M a right R-module. Following [5], we say that a map $f \in Hom_R(C,M)$ with $C \in \mathcal C$ is a $\mathcal C$ -precover of M, if the group homomorphism $Hom_R(C',f): Hom_R(C',C) \to Hom_R(C',M)$ is surjective for each $C' \in \mathcal C$. A $\mathcal C$ -precover $f \in Hom_R(C,M)$ of M is called a $\mathcal C$ -cover of M if f is right minimal, that is, if fg = f implies that g is an automorphism for each $g \in End_R(C)$. Dually, we have the definition of $\mathcal C$ -preenvelope ($\mathcal C$ -envelope).

A \mathcal{C} -envelope $\phi: M \to C$ is said to have the *unique mapping property* [3] if for every any homomorphism $f: M \to C'$ with $C' \in \mathcal{C}$, there is a unique homomorphism $g: C \to C'$ such that $g\phi = f$. Dually, we have the definition of \mathcal{C} -cover with unique mapping property.

Following [5], a monomorphism $\alpha: M \to C$ with $C \in \mathcal{C}$ is said to be a *special C-preenvelope* of M if $coker(\alpha) \in {}^{\perp}\mathcal{C}$. Dually, we have the definition of a special \mathcal{C} -precover. Special \mathcal{C} -preenvelopes (resp., special \mathcal{C} -precovers) are obviously \mathcal{C} -preenvelopes (resp., \mathcal{C} -precovers). In general, \mathcal{C} -covers (\mathcal{C} -envelopes) may not exist, if exists, they are unique up to isomorphism.

A pair $(\mathcal{F}, \mathcal{C})$ of classes of right R-modules is called a *cotorsion theory* [5] if $\mathcal{F}^{\perp} = \mathcal{C}$ and $^{\perp}\mathcal{C} = \mathcal{F}$. A cotorsion theory $(\mathcal{F}, \mathcal{C})$ is called *complete* [15] if every right R-module has a special \mathcal{C} -preenvelope

^{*} E-mail: selvavlr@yahoo.com

^{**} E-mail: prabakaranpvkr@gmail.com

and a special \mathcal{F} -precover. A cotorsion theory $(\mathcal{F},\mathcal{C})$ is called *perfect* [6] if every right R-module has a \mathcal{C} -envelope and an \mathcal{F} -cover. A cotorsion theory $(\mathcal{F},\mathcal{C})$ is called *hereditary* [6] if whenever $0 \to L' \to L \to L'' \to 0$ is exact with $L, L'' \in \mathcal{F}$, then L' is also in \mathcal{F} . By [6, Proposition 1.2] $(\mathcal{F},\mathcal{C})$ is hereditary if and only if whenever $0 \to C' \to C \to C'' \to 0$ is exact with $C, C' \in \mathcal{C}$, then C'' is also in \mathcal{C} .

A right R-module M is called FP-injective [14] if $Ext^1_R(F,M)=0$ for all finitely presented right R-modules F. Accordingly, the FP-injective dimension of M, denoted by FP-id(M), is defined to be the smallest $n \geq 0$ such that $Ext^{n+1}_R(F,M)=0$ for all finitely presented right R-modules F(if no such n exists, set FP- $id(M)=\infty$). We use \mathcal{FP}_n to stand for the class of all right R-modules with FP-injective dimension at most n.

A left R-module M is called $super finitely presented [8] if there exists an exact sequence <math>\cdots \to F_1 \to F_0 \to M \to 0$, where each F_i is finitely generated and projective. Following this, Gao and Wang in [9] gave the definitions of weak injective and weak flat modules in terms of super finitely presented modules. A left R-module M is called weak injective if $Ext^1_R(F,M)=0$ for any super finitely presented left R-module F. A right R-module F is called weak flat if $Tor^R_1(N,F)=0$ for any super finitely presented left R-module F.

Accordingly, the weak injective dimension of a left R-module M, denoted by $wid_R(M)$, is defined to be the smallest $n \geq 0$ such that $Ext_R^{n+1}(F,M) = 0$ for all super finitely presented left R-modules F. If no such n exists, set $wid_R(M) = \infty$. The weak flat dimension of a right R-module N, denoted by $wfd_R(N)$, is defined to be the smallest $n \geq 0$ such that $Tor_{n+1}^R(N,F) = 0$ for all super finitely presented left R-modules F. If no such n exists, set $wfd_R(N) = \infty$. The left super finitely presented dimension, denoted by l.sp.gldim(R), of a ring R is defined as

 $l.sp.gldim(R) = sup \{pd_R(M)|M \text{ is a super finitely presented left } R\text{-module}\}.$

Let n be a fixed non-negative integer. In what follows, the symbol $\mathcal{WI}_n(\mathcal{WF}_n)$ denotes the class of all left (right) R-modules with weak injective (weak flat) dimension less than or equal to n.

In [12], Mao and Ding proved that $(\mathcal{F}_n, \mathcal{F}_n^{\perp})$ is a perfect hereditary cotorsion theory and introduced the notion of n-cotorsion modules. Recently, Zhao proved $(\mathcal{WF}_n, \mathcal{WF}_n^{\perp})$ is a perfect hereditary cotorsion theory in [17, Proposition 4.18]. Inspired by [12, 17], in this paper, we will introduce and study the notion of n-weak cotorsion modules.

In Section 2, n-weak cotorsion modules are defined and studied. A right R-module N is called an n-weak cotorsion module if $N \in \mathcal{WF}_n^{\perp}$. For a ring with $wid(R) \leq n$, we prove that a right R-module M is n-weak cotorsion if and only if M is a kernel of a \mathcal{WF}_n -precover $f: A \to B$ with A injective if and only if M is a direct sum of an injective right R-module and a reduced n-weak cotorsion right R-module.

In Section 3, we characterize rings with finite super finitely presented dimension in terms of, among others, n-weak cotorsion modules. It is proven that $l.sp.gldim(R) \le n$ if and only if every n-weak cotorsion right R-module is injective if and only if every n-weak cotorsion right R-module belongs to \mathcal{WF}_n . It is also shown that if every n-weak cotorsion right R-module has a \mathcal{WF}_n -envelope with the unique mapping property, then $l.sp.gldim(R) \le n + 2$.

2. n-WEAK COTORSION MODULES

For any ring R and a fixed non-negative integer n, it is known that $(\mathcal{WF}_n, \mathcal{WF}_n^{\perp})$ is a perfect hereditary cotorsion theory by [17, Proposition 4.18]. In this section, n-weak cotorsion modules are defined to be the modules in the class \mathcal{WF}_n^{\perp} . We start with the following

Definition 1. Let R be a ring and n a fixed non-negative integer. A right R-module N is called n-weak cotorsion module if $Ext^1_R(F,N)=0$ for any right R-module $F\in \mathcal{WF}_n$.

In what follows, WC_n stands for the class of all n-weak cotorsion right R-modules. By Definition 1, we have the following proposition.

Proposition 1. *The following assertions hold:*

- 1. Let C_i be a family of right R-modules. Then $\prod_i C_i$ is n-weak cotorsion if and only if each C_i is n-weak cotorsion.
- 2. WC_n is closed under extensions and direct summands.
- 3. If $m \ge n$, then every m-weak cotorsion modules is n-weak cotorsion.

Recall that, a right R-module C is called cotorsion [4] provided that $Ext_R^1(F,C)=0$ for any flat right R module F. For a fixed non-negative integer n, a right R-module M is called n-cotorsion [12] if $Ext_R^1(N,M)=0$ for any $N\in\mathcal{F}_n$. 0-cotorsion modules are preciously cotorsion modules.

Remark 1.

- 1. For any non-negative integer n, we have the following implications: injective modules \Rightarrow n-weak cotorsion modules \Rightarrow n-cotorsion modules;
- 2. If R is a coherent ring, then n-weak cotorsion modules coincide with n-cotorsion modules since l.sp.gldim(R) = w.gl.dim(R).

The following theorem is due to Zhao [17, Proposition 4.17 and Proposition 4.18].

Theorem 1. Let n be a fixed non-negative integer. Then following hold:

- 1. For a ring R with $wid_R(R) \leq n$, $(\mathcal{WI}_n, \mathcal{WI}_n^{\perp})$ is a perfect cotorsion theory.
- 2. For any ring R, $(W\mathcal{F}_n, W\mathcal{C}_n)$ is a perfect hereditary cotorsion theory.

Proposition 2. Let R be a ring, m and n two non-negative integers.

- 1. If C is an n-weak cotorsion right R-module, then $Ext_R^{i+1}(C,M)=0$ for any integer $i\geq m$ and any $M\in \mathcal{WF}_{m+n}$.
- 2. The mth cosyzygy of any n-weak cotorsion right R-module is (m+n)-weak cotorsion.

Proof. (1) For any $M \in \mathcal{WF}_{m+n}$, we have an exact sequence

$$0 \to K_m \to P_{m-1} \to P_{m-2} \to \cdots \to P_1 \to P_0 \to M \to 0$$

with each P_i is projective. It is clear that $K_m \in \mathcal{WF}_n$. Therefore, $Ext_R^{m+1}(M,C) \cong Ext_R^1(K_m,C) = 0$ since C is n-weak cotorsion, and the result follows by induction.

(2) Let C be any n-weak cotorsion right R-module and L^m the mth cosyzygy of C. Note that $Ext^1_R(F,L^m)\cong Ext^{m+1}_R(F,C)=0$ for any $F\in \mathcal{WF}_{m+n}$ by (1). Thus L^m is (m+n)-weak cotorsion.

Proposition 3. Let R be a ring and N a right R-module. Then, the following are equivalent:

- 1. N is n-weak cotorsion;
- 2. N is injective with respect to every exact sequence $0 \to K \to M \to L \to 0$, where $L \in \mathcal{WF}_n$;

 Moreover if $wid_R(R) \le n$ then, the above conditions are also equivalent to:
- 3. For every exact sequence $0 \to N \to E \to L \to 0$, where E is injective, $E \to L$ is a \mathcal{WF}_n -precover of L;
- 4. N is a kernel of a $W\mathcal{F}_n$ -precover, $E \to L$ with E injective.

LOBACHEVSKII JOURNAL OF MATHEMATICS

Proof. $(1) \Rightarrow (2)$ is obvious.

 $(2) \Rightarrow (1)$. For every right R-module $L \in \mathcal{WF}_n$, there is a short exact sequence $0 \to K \to P \to L \to 0$ with P projective, which induces an exact sequence

$$Hom(P,N) \to Hom(K,N) \to Ext^1_R(L,N) \to 0.$$

Since $Hom(F, N) \to Hom(K, N) \to 0$ is exact by (2), $Ext_R^1(L, N) = 0$. So (1) follows.

 $(1)\Rightarrow (3)$. Let $0\to N\to E\to L\to 0$ be an exact sequence with E injective. Then $E\in \mathcal{WF}_n$ is by [17, Proposition 4.11]. For any right R-module $F\in \mathcal{WF}_n$, the exact sequence $0\to N\to E\to L\to 0$ induces the exact sequence

$$0 \to Hom(F, N) \to Hom(F, E) \to Hom(F, L) \to Ext^1_R(F, N) = 0.$$

So $E \to L$ is a \mathcal{WF}_n -precover of L.

- $(3) \Rightarrow (4)$. It follows from the exact sequence $0 \to N \to E(N) \to L \to 0$ and (3).
- $(4)\Rightarrow (1)$. Let N be a kernel of a \mathcal{WF}_n -precover $E\to L$ with E injective. Then we have an exact sequence $0\to N\to E\to L\to 0$. So, we have the exact sequence $Hom(M,E)\to Hom(M,L)\to Ext^1_R(M,N)\to 0$ for each right R-module $M\in \mathcal{WF}_n$. Note that $Hom(M,E)\to Hom(M,L)\to 0$ is exact by (4). Hence, $Ext^1_R(M,N)=0$, as desired.

The following example shows that \mathcal{WF}_0^{\perp} (the class of all 0-weak cotorsion modules) is a proper subclass of \mathcal{F}_0^{\perp} (class of all cotorsion modules) and \mathcal{WF}_1^{\perp} (the class of all 1-weak cotorsion modules) is a proper subclass of \mathcal{F}_1^{\perp} (class of all 1-cotorsion modules).

Example 1. As Gao mentioned in [9, Remark 3.11(2)], we have a ring R with l.sp.gldim(R) = 0 but $w.gl.dim(R) \neq 0$ by [11, Theorem 3.4] and from [2] we have a ring R with l.sp.gldim(R) = 1 but $w.gl.dim(R) \neq 1$. Then \mathcal{F}_0 (resp., \mathcal{F}_1) is a proper subclass of \mathcal{WF}_0 (resp., \mathcal{WF}_1). Note that for any non-negative integer n, $(\mathcal{F}_n, \mathcal{F}_n^{\perp})$ and $(\mathcal{WF}_n, \mathcal{WF}_n^{\perp})$ are cotorsion theories by [12, Theorem 3.4(2)] and [17, Proposition 4.18] respectively, so \mathcal{WF}_0^{\perp} (resp., \mathcal{WF}_1^{\perp}) is a proper subclass of \mathcal{F}_0^{\perp} (resp., \mathcal{F}_1^{\perp}).

Recall that an R-module M is said to be reduced [5] if M has no non zero injective submodules.

Proposition 4. Let R be a ring with $wid_R(R) \le n$. Then the following are equivalent for a right R-module M:

- 1. M is a reduced n-weak cotorsion right R-module;
- 2. *M* is a kernel of a WF_n -cover $f: A \to B$ with A injective.
- *Proof.* $(1) \Rightarrow (2)$. Consider an exact sequence $0 \to M \to E(M) \to E(M)/M \to 0$. By Proposition 3, the natural map $\alpha \colon E(M) \to E(M)/M$ is a \mathcal{WF}_n -precover. Thus E(M) has no non zero direct summand K contained in M since M is reduced. Note that E(M)/M has a \mathcal{WF}_n -cover by Theorem 1(2). It follows that $\alpha \colon E(M) \to E(M)/M$ is a \mathcal{WF}_n -cover by [16, Corollary 1.2.8] and hence (2) follows.
- $(2)\Rightarrow (1)$. Let M be a kernel of a \mathcal{WF}_n -cover $f\colon A\to B$ with A injective. By Proposition 3, M is n-weak cotorsion. Now let K be an injective submodule of M. Suppose $A=K\oplus L$, $p\colon A\to L$ is the projection and $i\colon L\to A$ is the inclusion. It is easy to see that f(K)=0, and f(ip)=f. This implies that ip is an isomorphism. Thus i is an epimorphism, and hence A=L, K=0. So M is reduced. \square

Theorem 2. Let R be a ring with $wid(R) \le n$. Then a right R-module M is n-weak cotorsion if and only if M is a direct sum of an injective right R-module and a reduced n-weak cotorsion right R-module.

 \Box

Proof. \Leftarrow is clear.

 \Rightarrow . let M be an n-weak cotorsion right R-module. Consider an exact sequence $0 \to M \to E(M) \to E(M)/M \to 0$. By Proposition 3, $E(M) \to E(M)/M$ is a \mathcal{WF}_n -precover of E(M)/M. But E(M)/M has a \mathcal{WF}_n -cover $L \to E(M)/M$ by Theorem 1(2), so we have the commutative diagram with exact rows:

$$0 \longrightarrow K \xrightarrow{f} L \longrightarrow E(M)/M \longrightarrow 0$$

$$\downarrow^{\phi} \qquad \downarrow^{\gamma} \qquad \qquad \parallel$$

$$0 \longrightarrow M \xrightarrow{\alpha} E(M) \longrightarrow E(M)/M \longrightarrow 0$$

$$\downarrow^{\sigma} \qquad \downarrow^{\beta} \qquad \qquad \parallel$$

$$0 \longrightarrow K \xrightarrow{f} L \longrightarrow E(M)/M \longrightarrow 0$$

Note that $\beta\gamma$ is an isomorphism, and so $E(M)=\ker\beta\oplus im\gamma$. Since $im\gamma\cong L$, thus L and $\ker\beta$ are injective. Therefore K is a reduced n-weak cotorsion module by Proposition 4. By the Five lemma, $\sigma\phi$ is an isomorphism. Hence we have $M=im\phi\oplus\ker\sigma$, where $im\phi\cong K$. In addition, we get the following commutative diagram:

Hence $\ker \sigma \cong \ker \beta$. This completes the proof.

Theorem 3. Let R be a ring. Then the following are equivalent:

- 1. Every right R-module is n-weak cotorsion;
- 2. Every right R-module in WF_n is projective;
- 3. Every right R-module in WF_n is n-weak cotorsion;
- 4. $Ext_R^1(M, N) = 0$ for all right R-modules $M, N \in \mathcal{WF}_n$;
- 5. $Ext_R^i(M, N) = 0$ for all $i \ge 1$ and all right R-modules $M, N \in \mathcal{WF}_n$;
- 6. Every right R-module M has a WC_n -envelope with the unique mapping property.

Proof. (1) \Leftrightarrow (2). It follows from Theorem 1(2).

- $(1) \Rightarrow (4) \Rightarrow (3), (4) \Leftrightarrow (5) \text{ and } (1) \Rightarrow (6) \text{ are trivial.}$
- $(6) \Rightarrow (3)$. Let $M \in \mathcal{MF}_n$. Then we have the following commutative diagram:

LOBACHEVSKII JOURNAL OF MATHEMATICS

where $L \in \mathcal{MF}_n$ by Wakamatsu's Lemma [16, Lemma 2.1.2]. Note that $\sigma_L \gamma \sigma_M = 0 = 0 \sigma_M$, so $\sigma_L \gamma = 0$ by (6). Therefore, $L = im(\gamma) \subseteq ker(\sigma_L) = 0$, and hence M is n-weak cotorsion. Thus (3) follows.

 $(3) \Rightarrow (1)$. Let M be a right R-module. By Theorem 1(2), M has a special \mathcal{WF}_n -precover, and hence there exists a short exact sequence $0 \to K \to N \to M \to 0$, where $K \in \mathcal{WF}_n$ and $N \in \mathcal{WC}_n$. Since N is n-weak cotorsion by (3), M is n-weak cotorsion by Theorem 1(2). So (1) follows.

In general $l.sp.gldim(R) \neq w.gl.dim(R)$ (see [9, Remark 3.7(3)]). Here we have the following

Theorem 4. The following are equivalent for a ring R:

- 1. l.sp.gldim(R) = w.gl.dim(R);
- 2. $WF_n = F_n$ for any $n \ge 0$;
- 3. Every n-cotorsion module is n-weak cotorsion for any $n \geq 0$.

Proof. $(1) \Leftrightarrow (2) \Rightarrow (3)$ is trivial.

 $(3) \Rightarrow (2)$. Since $(\mathcal{WF}_n, \mathcal{WF}_n^{\perp})$ and $(\mathcal{F}_n, \mathcal{F}_n^{\perp})$ are cotorsion theories for any integer $n \geq 0$ so the assertion hold.

3. APPLICATIONS

In this section, we characterize rings with finite super finitely presented dimension in terms, among others, of n-weak cotorsion modules. We start with the following

Lemma 1. Let R be a ring with $wid({}_RR) \le n$ and $n \ge 1$. If $M \in \mathcal{WI}_{n-1}^{\perp}$, then there is an exact sequence $0 \to K \to E \to M \to 0$ such that E is injective and $K \in \mathcal{WI}_n^{\perp}$.

Proof. Let $M \in \mathcal{WI}_{n-1}^{\perp}$ and $0 \to N \to P \to M \to 0$ an exact sequence of left R-modules, where P is projective. Consider the following pushout diagram:

LOBACHEVSKII JOURNAL OF MATHEMATICS

where P is projective and $P \to E(P)$ is an injective envelope. Note that $wid_R(P) \le n$ by [17, Proposition 4.11], it follows that $wid_R(L) \le n-1$ by [9, Proposition 3.3]. Then $Ext_R^1(L,M)=0$ since $M \in \mathcal{WI}_{n-1}^\perp$. Thus the exact sequence $0 \to M \to D \to L \to 0$ is split, and so M is a quotient of E(P).

Now let $f: E \to M$ be a weak injective cover of M with E injective, then f is epic. So we have the exact sequence $0 \to K \to E \to M \to 0$. Note that $K \in \mathcal{WI}_0^{\perp}$. We claim that $K \in \mathcal{WI}_n^{\perp}$. Let $F \in \mathcal{WI}_n$ and consider the exact sequence $0 \to E(F) \to G \to 0$. Then $G \in \mathcal{WI}_{n-1}$ by [9, Proposition 3.3]. So we have the exact sequence

$$0 = Ext_R^1(G, M) \to Ext_R^2(G, K) \to Ext_R^2(G, E) = 0.$$

Thus $Ext_R^2(G,K)=0$. On the other hand, the exactness of the sequence $0\to F\to E(F)\to G\to 0$ induces the exact sequence

$$0=Ext^1_R(E(F),K)\to Ext^1_R(F,K)\to Ext^2_R(G,K)=0.$$

Therefore, $Ext_R^1(F, K) = 0$ and so $K \in \mathcal{WI}_n^{\perp}$.

The following theorem extends the result of Zhao [17, Proposition 4.12].

Theorem 5. The following are equivalent for a ring R and a fixed non-negative integer n:

- 1. l.sp.qldim(R) < n;
- 2. Every n-weak cotorsion right R module is injective;
- 3. Every n-weak cotorsion right R-module is in WF_n ;
- 4. $Ext_R^1(M,N) = 0$ for all n-weak cotorsion right R-modules M, N;
- 5. $Ext_R^i(M,N) = 0$ for all $i \ge 1$ and all n-weak cotorsion right R-modules M,N;
- 6. Every right R-module M has a WF_n -cover with the unique mapping property.

If $n \ge 1$, then the above conditions are also equivalent to:

- 7. Every left R-module has weak injective dimension at most n;
- 8. Every right R-module has weak flat dimension at most n;
- 9. Every left R-module has a monic WI_{n-1} -cover;
- 10. Every right R-module has an epic WF_{n-1} -envelope;
- 11. Every quotient of any weak injective left R-module is in WI_{n-1} ;
- 12. Every submodule of any weak flat right R-module is in $W\mathcal{F}_{n-1}$;
- 13. The kernel of any WI_{n-1} -precover of any left R-module is in WI_{n-1} ;
- 14. The cokernel of any $W\mathcal{F}_{n-1}$ -preenvelope of any right R-module is in $W\mathcal{F}_{n-1}$.

Proof. The equivalence of (7)–(14) with (1) follows from [17, Proposition 4.12].

- $(1) \Leftrightarrow (2)$. It follows from Theorem 1(2).
- $(1) \Rightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$, and $(1) \Rightarrow (6)$ are trivial.
- $(6)\Rightarrow (3)$. Let M be any n-weak cotorsion right R-module. Then we have the following commutative diagram

Note that $\epsilon_M \alpha \epsilon_K = 0 = \epsilon_M 0$, so $\alpha \epsilon_K = 0$ by (8). Therefore $K = im(\epsilon_K) \subseteq ker(\alpha) = 0$, and so $M \in \mathcal{WF}_n$, as required.

 $(3)\Rightarrow (1)$. Let M be any right R-module. By Theorem 1(2), there exists a shot exact sequence $0\to M\to C\to L\to 0$ with $C\in \mathcal{WC}_n$ and $L\in \mathcal{WF}_n$. Then $C\in \mathcal{WF}_n$ by (3), and hence $M\in \mathcal{WF}_n$. Thus $l.sp.gldim(R)\leq n$.

Remark 2. Note that if R is a coherent ring, then Theorem 5 gives some of the equivalent conditions proved in [12, Theorem 6.4].

Theorem 6. Let R be a ring with $wid_R(R) \le n$ for a fixed $n \ge 1$, then the following are equivalent:

- 1. $l.sp.gldim(R) < \infty$;
- 2. $l.sp.gldim(R) \leq n$;
- 3. Every left R-module in WI_{n-1}^{\perp} is injective;
- 4. Every left R-module in WI_{n-1}^{\perp} is weak injective;
- 5. Every left R-module in WI_n^{\perp} is weak injective;
- 6. Every left R-module in WI_n^{\perp} is injective;
- 7. Every left R-module in WI_n^{\perp} belongs to WI_n .

Proof. (2) \Rightarrow (1), (3) \Rightarrow (4) \Rightarrow (5), and (6) \Rightarrow (5) are trivial.

- $(1) \Rightarrow (2)$. By [10, Proposition 4.2], $l.sp.gldim(R) = wid(R) \leq n$.
- $(1) \Rightarrow (7)$ follows from Theorem 1(1).
- $(7) \Leftarrow (1)$. Let M be a left R-module. Then by Theorem 1(1), there is a short exact sequence $0 \to K \to F \to M \to 0$ with $K \in \mathcal{WI}_n^{\perp}$ and $F \in \mathcal{WI}_n$. Then $K \in \mathcal{WI}_n$ by (8), and hence $M \in \mathcal{WI}_n$ as desired.
- $(4) \Rightarrow (3)$. Let M be any left R-module in $\mathcal{WI}_{n-1}^{\perp}$. There exists an exact sequence $0 \to M \to E \to L \to 0$ with E injective. Note that L is weak injective by (4) and [9, Proposition 3.3], and so the sequence is split since $Ext_R^1(L,M) = 0$. Therefore, M is injective.
 - $(5) \Rightarrow (4)$ follows from Lemma 1.
 - $(5) \Rightarrow (6)$. Similar to the proof $(4) \Rightarrow (3)$.

Recall that a ring R is called n-FC ring if it is a left and right coherent ring with left and right self FP-injective dimension is n. From Theorem 6 we get the following equivalent conditions proved by Gao in [7, Theorem 3.6].

Corollary 1. Let R be a n-FC ring with $n \ge 1$. Then the following are equivalent:

1. $w.gl.dim(R) < \infty$;

- 2. $w.gl.dim(R) \leq n$;
- 3. Every left R-module in $\mathcal{FP}_{n-1}^{\perp}$ is injective;
- 4. Every left R-module in $\mathcal{FP}_{n-1}^{\perp}$ is FP-injective;
- 5. Every left R-module in \mathcal{FP}_n^{\perp} is FP-injective;
- 6. Every left R-module in \mathcal{FP}_n^{\perp} is injective;
- 7. Every left R-module in \mathcal{FP}_n^{\perp} belongs to \mathcal{FP}_n .

Proposition 5. The following are equivalent for a ring R and a fixed integer $n \geq 0$.

- 1. R is a semisimple Artinian ring;
- 2. Every n-weak cotorsion right R-module is projective.

Proof. $(1) \Rightarrow (2)$ is trivial.

 $(2)\Rightarrow (1)$. Since every injective right R-module is projective so R is a QF ring. Then every n-cotorsion right R-module is n-weak cotorsion, by Remark 1(2) and hence R is semisimple Artinian by [12, Corollary 6.5].

Theorem 7. Assume a ring R satisfies one of the following conditions:

- 1. Every n-weak cotorsion right R-module has a WF_n -envelope with the unique mapping property.
- 2. Every finitely presented right R-module has a WF_n -envelope with the unique mapping property.

Then $l.sp.gldim(R) \leq n+2$.

Proof. Assume (1). Let M be any right R-module. Then we have the exact sequences

$$0 \longrightarrow C \xrightarrow{i} F_0 \xrightarrow{\alpha} M \longrightarrow 0 \text{ and } 0 \longrightarrow F_2 \xrightarrow{\psi} F_1 \xrightarrow{\beta} C \longrightarrow 0$$

by Theorem 1(2), where $\alpha: F_0 \to M$ and $\beta: F_1 \to C$ are \mathcal{WF}_n -covers, C and F_2 are n-weak cotorsion. Thus we get an exact sequence

$$0 \longrightarrow F_2 \xrightarrow{\psi} F_1 \xrightarrow{\phi = i\beta} F_0 \xrightarrow{\alpha} M \longrightarrow 0.$$

Let $\theta: F_2 \to H$ be an \mathcal{WF}_n -envelope with the unique mapping property. Then there exists $\delta: H \to F_1$ such that $\psi = \delta\theta$. Thus $\phi\delta\theta = \phi\psi = 0$, and hence $\phi\delta = 0$, which implies that $im(\delta) \subseteq ker(\phi) = im(\psi)$. So there exists $\gamma: H \to F_2$ such that $\psi\gamma = \delta$, and hence we get the following commutative diagram:

Note that $\psi \gamma \theta = \psi$, and so $\gamma \theta = 1_{F_2}$ since ψ is monic. Thus F_2 is isomorphic to a direct summand of H, and hence $F_2 \in \mathcal{WF}_n$. Therefore, $wfdM \leq n+2$, and so $l.sp.gldim(R) \leq n+2$.

Assume (2). By [3, Lemma 3.2], every right R-module has a \mathcal{WF}_n -envelope with the unique mapping property since \mathcal{WF}_n is closed under direct limits. So the result follows since the condition (1) is satisfied.

REFERENCES

- 1. F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules* (Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York, 1992).
- 2. D. L. Costa, Parameterizing families of non-noetherian rings, Comm. Algebra 22, 3997–4011 (1994).
- 3. N. Q. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (4), 1459–1470 (1996).
- 4. E. E. Enochs, *Injective and flat covers, envelopes and resolvents*, Israel J. Math. 39, 189–209 (1981).
- 5. E. E. Enochs and O. M. G. Jenda, *Relative Homological Algebra* (de Gruyter Expositions in Mathematics, 30, Walter de Gruyter, Berlin, 2000).
- 6. E. E. Enochs, O. M. G. Jenda, J. A. Lopez-Ramos, *The existence of Gorenstein flat covers*, Math. Scand. **94**, 46–62 (2004).
- 7. Z. H. Gao, On n-FI-injective and n-FI-flat modules, Comm. Algebra 40, 2757–2770 (2012).
- 8. Z. H. Gao and F. G. Wang, *All Gorenstein hereditary rings are coherent*, J. Algebra Appl. **13**(4), 135–140 (2014).
- 9. Z. H. Gao and F. G. Wang, Weak injective and weak flat modules, Comm. Algebra 43, 3857–3868 (2015).
- 10. Z. H. Gao and Z. Y. Huang, Weak injective covers and dimension of modules, Acta Math. Hungar. 147 (1), 135–157 (2015).
- 11. N. Mahdou, On Costas conjecture, Comm. Algebra 29, 2775–2785 (2001).
- 12. L. X. Mao and N. Q. Ding, *Envelopes and covers by modules of finite FP-injective and flat dimensions*, Comm. Algebra **35**, 833–849 (2007).
- 13. J. J. Rotman, An Introduction to Homological Algebra (Academic Press, New York, 1979).
- 14. B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2, 323–329 (1970).
- 15. J. Trlifaj, *Covers, Envelopes, and Cotorsion Theories* (Lecture notes for the workshop, "Homological Methods in Module Theory", Cortona, September 10–16, 2000).
- 16. J. Xu, Flat covers of modules (Lecture Notes in Mathematics, 1634, Springer-Verlag, Berlin, 1996).
- 17. T. Zhao, Homological properties of modules with finite weak injective and weak flat dimensions, Bull. Malays. Math. Sci. Soc. 41(2), 779–805 (2018).