Longitudinal mapping of transportation infrastructure with spatio-temporal generative modeling

Ayush Singla, James Zheng, Spencer Paul

Jeremy Irvin
Professor Andrew Ng

Meiqing Li, Tianyuan Huang

Professor Daniel Rodriguez, Professor Ram Rajagopal

Transportation Infrastructure & Climate Change

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2020

Improve road safety

More walking & public transit

Reduce global emissions!

Better transportation design can save lives

annual transportationrelated deaths

Our lab's previous work

Li et al. (2021) identified changes in intersection-level marked crosswalks in the US over a 14-year period.

Can we extend this approach to map other infrastructure at an even larger scale?

We have some labels for bike lanes and sidewalks!

Previous work mapping sidewalks with high resolution imagery

Ning et al. (2021) used aerial imagery and street view imagery to map sidewalks.

Limited to 4 counties.

NAIP is longitudinal imagery available throughout the U.S. but...

Spatial resolution is too low (1m) to see transportation infrastructure

However, we have...

DVRPC

Very high resolution imagery in 9 U.S. counties where infrastructure is much more clear

Google

A single snapshot of very high resolution imagery everywhere in the U.S.

Spatio-Temporal Super-Resolution Model

NAIP

(low spatial resolution, high temporal resolution)

DVRPC

(high spatial resolution, low temporal resolution)

We made the largest ever super-resolution dataset of remotely sensed imagery at sub-meter resolution

180k DVRPC/NAIP Triplets

Segmentation dataset of 160k pairs to test super-resolved images

Baseline Results for Segmentation Model

Imagery	loU	F1
DVRPC (Ning et al.)	-	0.635
DVRPC (Ours)	.588	.612
NAIP (Ours)	.448	.506

Input

Target Mask

Prediction

Preliminary Spatio-Temporal Model Results

lmagery	SSIM
Texas Housing (He et al.)	.533
DVRPC + NAIP (Ours)	.653

Acknowledgements

Meiqing Li

Tianyuan Huang

Stanford ENGINEERING
Civil and Environmental Engineering

Thank you!