Rajshahi University of Engineering & Technology

CSE 2202: Sessional Based on CSE 2201

Lab Report 02

Date: November 13, 2018

Submitted to

Biprodip Pal

Instructor, CSE 2101 & CSE 2202 Assistant Professor, Dept. of CSE

Submitted by

Fuad Al Abir

Roll: 1603021

Section: A

Dept. of CSE

Sessional – Cycle 1 – Problem A

Efficiency consideration in terms of computation time for Bubble Sort and Merge Sort.

Machine Configuration:

Processor: Intel® Core™ i5-7299U CPU @ 2.50GHz 2.71 GHz

RAM: 4.00 GB (3.90 GB usable)

System Type: 64-bit Operating System, x64-based processor

Theoritical Complexity:

(i) Bubble Sort: O(n²)

(ii) Merge Sort: O(n logn)

Bubble Sort:

$$\sum_{i=0}^{n-1} \sum_{j=i+1}^{n} 1 = \sum_{i=0}^{n-1} (n - (i+1) - 1) = \sum_{i=0}^{n-1} n - i = \sum_{i=0}^{n-1} n - \sum_{i=0}^{n-1} i = n^2 - \frac{n(n+1)}{2}$$
$$= \frac{2n^2 - n^2 - n}{2} = \frac{n^2 - n}{2} \equiv O(n^2)$$

Merge Sort:

$$T(n) = \begin{cases} 1 & n = 1\\ 2T(\frac{n}{2}) + cn & n > 1 \end{cases}$$

$$\begin{split} T(n) &= 2T(\frac{n}{2}) + cn = 2\{2T(\frac{n}{4}) + c\frac{n}{2}\} + cn = 2^2T(\frac{n}{2^2}) + 2cn \\ &= 2^2\{2T(\frac{n}{8}) + c\frac{n}{4}\} + 2cn = 2^3T(\frac{n}{2^3}) + 3cn \\ &= 2^kT(\frac{n}{2^k}) + kcn \qquad \text{\{After k^{th} iteration\}} \end{split}$$

Let $k = log_2 n$,

$$T(n) = nT(\frac{n}{n}) + \log_2 n * cn = nT(1) + \log_2 n * cn = n + \log_2 n * cn \equiv O(n\log_2 n)$$

Input Size - N	Bubble Sort	Merge Sort	
	(in seconds)	(in seconds)	
10000	0.287	0.002	
50000	7.544	0.014	
100000	24.579	0.021	
250000	116.206	0.049	

Table: Experimental Result (Time Requirement for Bubble and Merge Sort)

Sessional - Cycle 2 - Problem A

Efficiency consideration in terms of comparisons for maximum and minimum finding from a set of elements using brute force technique and divide conquer approach.

Machine Configuration:

Processor: Intel® Core™ i5-7299U CPU @ 2.50GHz 2.71 GHz

RAM: 4.00 GB (3.90 GB usable)

System Type: 64-bit Operating System, x64-based processor

Theoritical Complexity:

(i) Brute force: O(n)

(ii) Divide and Conquer with Single Node Base: O(n)

(iii) Divide and Conquer with Single and Double Node Base: O(n)

Brute Force:

$$\sum_{i=1}^{n} 2 = 2n - 2 \equiv O(n)$$

Divide and Conquer with Single Node Base:

$$T(n) = \begin{cases} 0, & n = 1\\ 2T(\frac{n}{2}) + c, & n > 1 \end{cases}$$

$$T(n) = 2T(\frac{n}{2}) + c = 2\{2T(\frac{n}{4}) + c\} + c = 2^2T(\frac{n}{2^2}) + 3c = 2^2T(\frac{n}{2^2}) + (2^2 - 1)c$$

$$= 2^2\{2T(\frac{n}{2^3}) + (2^3 - 1)c\}$$

After k^{th} iteration,

$$T(n) = 2^k T(\frac{n}{2^k}) + (2^k - 1)c \tag{1}$$

Let,
$$\frac{n}{2^k} = 1 \implies 2^k = n$$
 and $c = 2$
 $T(n) = nT(1) + (n-1)2 = n \cdot 0 + 2n - 2 = 2n - 2 \equiv O(n)$

Divide and Conquer with Single and Double Node Base:

$$T(n) = \begin{cases} 0, & n = 1\\ 1, & n = 2\\ 2T(\frac{n}{2}) + c, & n > 1 \end{cases}$$

Using equation (1),

Let,
$$\frac{n}{2^k} = 2 \implies 2^k = \frac{n}{2}$$
 and $c = 2$

$$T(n) = \frac{n}{2}T(2) + (\frac{n}{2} - 1)2 = \frac{n}{2} + \frac{2n}{2} - 2 = \frac{3n}{2} - 2 \equiv O(n)$$

K	Brute force	Divide and	Divide and
	(2K – 2)	Conquer (Case 1)	Conquer (Case 2)
10000	19998	19998	15902
50000	99998	99998	82766
100000	199998	199998	165534
250000	499998	499998	381070

Table: Experimental Result (Comparisons)