Introduction to Probabilistic Graphical Models and Deep Generative Models

P. Latouche

PR UCA

Ecole Polytechnique / ENS Paris Saclay

pierre.latouche@math.cnrs.fr

thtps://lmbp.uca.fr/~latouche/
thtps://lmbp.uca.fr/~latouche/mva/
IntroductiontoProbabilisticGraphicalModelsMVA.html

ENS Paris Saclay, Master MVA

Part I

Lecture 2: K-means EM
Gaussian mixtures

Outline Part 1

Clustering

Gaussian mixture models

EM algorithm

Model selection

Introduction to clustering

- we are provided with a data set $(x_i)_i = (x_1, \dots, x_n)$ (sample of size n) with $x_i \in \mathbb{R}^d$
- goal : retrieve groups = clusters = classes of individuals where :
 - ▶ 2 individuals within a group must be as similar as possible
 - 2 individuals of different groups must be as different as possible
- unsupervised learning setting : no target variable
- we aim at uncovering (learning) what is hidden in the data set

Types of clusters:

- disjoint
- hierarchical
- overlapping

Def

A partition of a data set $(x_i)_i$ into K clusters

$$\mathcal{P} = (C_k)_k = (C_1, \dots, C_K)$$
 verifies :

1.
$$\bigcup_{k=1}^{K} C_k = (x_i)_i$$

2.
$$C_k \cap C_l = \emptyset, \forall k \neq l$$

So each observation is clustered into a unique cluster

Def

The nth Bell number B_n counts the number of different ways to partition a set that has exactly n elements

Theorem

The Bell numbers satisfy the following recurrence relation:

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$$

 $ex: B_{18} = 682\,076\,806\,159$

Dobinski's formula

$$B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}$$

- so exact clustering is a combinatorial problem (NP-hard)
- two most famous heuristics : kmeans and hierarchical clustering
- the statistical point of view: mixture models and expectation maximisation

Inertia

Def

The total inertia of a data cloud of points in \mathbb{R}^d (sample of observations) is :

$$S = \frac{1}{n} \sum_{i=1}^{n} ||x_i - \bar{x}||^2, > \bigcirc$$

where $\bar{x}=(1/n)\sum_{i=1}^n x_i$ is the barycentre of the data cloud (= empirical mean of the sample)

Remark

The total inertia can be written:

$$S = \sum_{j=1}^{d} \hat{\sigma}_j^2,$$

where $\hat{\sigma}_j^2=(1/n)\sum_{i=1}^n(x_{ij}-\bar{x}_j)^2$ is the empirical (biased) variance of variable j

The intra class inertia of a data cloud of points in \mathbb{R}^d (sample of observations), for a partition $\mathcal{P}=(C_k)_k$ with K clusters, is :

$$W = \frac{1}{n} \sum_{k=1}^{K} \sum_{x_i \in C_k} ||x_i - \mu_k||^2, \ \ \nearrow \ \ \bigcirc$$

where $\mu_k = (1/n_k) \sum_{x_i \in C_k} x_i$ is the empirical mean of the observations in cluster C_k and n_k is the number of observations in C_k

Def

Def

The inter class inertia of a data cloud of points in \mathbb{R}^d (sample of observations), for a partition $\mathcal{P}=(C_k)_k$ with K clusters, is :

$$B = \frac{1}{n} \sum_{k=1}^{K} n_k ||\mu_k - \bar{x}||^2, \ge \bigcirc$$

Huygens theorem

$$S = W + B$$

Remarks

- lacktriangleright S does not depend on the partition ${\mathcal P}$ contrary to W and B
- so, when W decreases, B increases, and vice versa

A clustering task

Find \mathcal{P} which minimises W (maximises B) with K < n

Remark

When K=n (each observation is in its own cluster), $W=0 \rightarrow$ useless in practice

Inertia and Huygens theorem

- ▶ again : combinatorial problem (NP hard) (if K < n)
- heuristics

kmeans

The kmeans algorithm focuses directly on the optimisation of \boldsymbol{W} , \boldsymbol{K} being fixed

- ▶ init : initialise all the (bary)centres μ_k (at random in \mathbb{R}^d or on random observations)
- 1. each observation is clustered in the cluster with the closest centre
- 2. recompute the centres
- 3. if the μ_k have moved (no eps convergence) back to 1.

Pros and cons

kmeans:

- + fast. Complexity : $\mathcal{O}(nK)$
- +- dependent on the initialisation
 - + easy to parallelise
 - fixed K

Outline Part 1

Clustering

Gaussian mixture models

EM algorithm

Model selection

Gaussian mixture models

Let us first consider a random sample (X_1, \ldots, X_n) where $X_i \sim \mathcal{N}(\mu, \Sigma)$ (assumed mulvariate Gaussian).

Property

The MLE for μ and Σ are :

- $\hat{\mu} = \bar{x}$ (empirical mean)
- $\hat{\Sigma} = (1/n) \sum_{i=1}^{n} (x_i \hat{\mu}) (x_i \hat{\mu})^{\mathsf{T}}$ (empirical variance-covariance matrix)

Multivariate Gaussian density (d = 2)

Mixture of densities

Figure: Analysis of the swiss data set with Mclust

 $f(x) \ge 0, \forall x$ f(x) dx = 1

A Gaussian mixture model with K components is defined through the density:

Def

$$p(x|\mathbf{\pi}, \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x; \mu_k, \Sigma_k).$$

where $\theta = (\mu_k, \Sigma_k)_k$ and $\pi = (\pi_1, \dots, \pi_K)^{\mathsf{T}}$ the vector of mixing weights lies in the standard K-simplex:

- $\pi_k \in]0,1[, \forall k \in \{1,\ldots,K\}$
- $\sum_{k=1}^{K} \pi_k = 1$

 $\mathcal{N}(x; \mu_k, \Sigma_k)$ denotes here the multivariate Gaussian density with parameters μ_k and Σ_k evaluated at $x \in \mathbb{R}^d$

Starting point

- as usual, we are provided with a random sample (X_1, \ldots, X_n) but now $X_i \stackrel{\text{ind}}{\sim} \sum_{k=1}^K \pi_k \mathcal{N}(\mu_k, \Sigma_k)$
- \blacktriangleright we aim at estimating π and the component parameters θ

Property

The log-likelihood of a Gaussian mixture model is given by:

$$L_{(x_1,\dots,x_n)}(\boldsymbol{\pi},\boldsymbol{\theta}) = \sum_{i=1}^n \log p(x_i|\boldsymbol{\pi},\boldsymbol{\theta})$$
$$= \sum_{i=1}^n \log \left(\sum_{k=1}^K \pi_k \mathcal{N}(x_i;\mu_k,\Sigma_k)\right)$$

Property

- the optimisation task is not trivial
- \blacktriangleright no analytical expression for the estimators of π and θ
- can rely on numerical algorithms for optimisation (conjugate gradient descent for instance) but ...

Another point of view

The Gaussian mixture model can be rewritten by introducing auxiliary variables:

1. $Z_i \sim \mathcal{M}(1, \pi), \forall i \in \{1, \dots, n\}$ iid

multinomial law

2. $X_i|Z_{ik}=1 \sim \mathcal{N}(\mu_k, \Sigma_k)$

So

- $ightharpoonup Z_i \in \{0,1\}^K$ such that $\sum_{k=1}^K Z_{ik} = 1$
- $ightharpoonup Z_{ik} = 1$ encodes the fact that observation i is from component k
- **b** by definition of the multinomial law : $\mathbb{P}(Z_{ik}=1)=\pi_k$
- the observations are now sampled conditionally on their components

Outline Part 1

Clustering

Gaussian mixture models

EM algorithm

Model selection

Def

Considering the (complete) random sample of couples $((X_1,Z_1)\dots,(X_n,Z_n))$, the complete data log-likelihood is given by :

$$\begin{split} L_{(x_i,z_i)_i}(\pi,\theta) &= \log p((x_i,z_i)_i|\pi,\theta) \\ &= \sum_{i=1}^n \sum_{k=1}^K z_{ik} \log \left(\pi_k \mathcal{N}(x_i;\mu_k,\Sigma_k)\right) \\ &= \sum_{k=1}^\infty \sum_{\mathbf{x}_i \in \mathcal{C}_k} \int_{\mathcal{C}_k} \left(\pi_k \mathcal{N}\left(\mathbf{x}_i;\mu_k,\Sigma_k\right)\right) \end{split}$$

Property

The estimators of π and θ maximising the complete data log-likelihood are :

$$\hat{\pi}_k = (1/n) \sum_{i=1}^n z_{ik}$$

$$\hat{\mu}_{k} = (1/n_{k}) \sum_{i=1}^{n} z_{ik} x_{i} = \frac{1}{n_{k}} \sum_{k=0}^{\infty} x_{i} \in C_{k}$$

$$\hat{\Sigma}_{k} = (1/n_{k}) \sum_{i=1}^{n} z_{ik} (x_{i} - \hat{\mu}_{k}) (x_{i} - \hat{\mu}_{k})^{\mathsf{T}} = \frac{1}{n_{k}} \sum_{k=1}^{k} (n_{k} - n_{k})^{\mathsf{T}}$$

However:

- \blacktriangleright the z_i are unknown in practice
- this is the clustering information we are looking for
- how estimating the parameters without knowing the clusters?
- → the expectation maximisation (EM) algorithm (DLR77)

Remark

Link with the kmeans algorithm : $\pi_k = 1/K$ and

$$\Sigma_k = I_d, \forall k \in \{1, \dots, K\}$$

The EM algorithm relies on two fondamental properties:

Property

Given the observations (and the parameters), all the \mathcal{Z}_i are independent :

$$p((z_i)_i|(x_i)_i, \pi, \theta) = \prod_{i=1}^n p(z_i|x_i, \pi, \theta)$$

Recall that Z_i is discrete so $p(z_i|x_i,\pi,\theta)$ translates into $\mathbb{P}(Z_i=z_i|x_i,\pi,\theta)$

Property

The probabilities $p(z_i|x_i,\pi,\theta)$ have analytical forms :

$$p(z_i|x_i,\pi,\theta) = \mathcal{M}(z_i;1,\tau_i)$$
 where $\tau_i = (\tau_{i1},\dots,\tau_{iK})^{\mathsf{T}}$ Tik: Probability that observation is from that k

Property

 au_{ik} is given by :

$$\tau_{ik} = \frac{\pi_k \mathcal{N}(x_i; \mu_k, \Sigma_k)}{\sum_{l=1}^K \pi_l \mathcal{N}(x_i; \mu_l, \Sigma_l)}$$

 $ightharpoonup au_{ik}$ is the probability for observation i to be in cluster k, given x_i and the (current) value of the parameters

Remark

The Z_i being unknown, they are treated as random vectors in the complete data log-likelihood :

$$L_{(x_i,Z_i)_i}(\pi,\theta)$$

Remark

The \mathcal{Z}_i being unknown, the expectation of the complete data log-likelihood is computed

Property

The expectation of the complete data log-likelihood is given by :

$$\mathbb{E}_{(Z_i)_i}[L_{(x_i, Z_i)_i}(\pi, \theta)] = \sum_{i=1}^n \sum_{k=1}^K \tau_{ik} \log (\pi_k \mathcal{N}(x_i; \mu_k, \Sigma_k)),$$

where the expectation is taken with respect to the random variables $Z_i \sim \mathcal{M}(1; \tau_i)$

Property

The estimators of π and θ maximising the expected complete data log-likelihood are :

- $\hat{\pi}_k = (1/n) \sum_{i=1}^n \tau_{ik}$
- $\hat{\mu}_k = (1/n_k) \sum_{i=1}^n \tau_{ik} x_i$
- $\hat{\Sigma}_k = (1/n_k) \sum_{i=1}^n \tau_{ik} (x_i \hat{\mu}_k) (x_i \hat{\mu}_k)^{\mathsf{T}}$

EM algorithm for Gaussian mixture models

- ▶ init: initialise the clusters (with kmeans for instance)
- M compute $\hat{\pi}$ and $\hat{\theta}$ with respect to the τ_i
- E compute the τ_i with respect to π and θ
- ▶ if the log-likelihood has changed (or the parameters) (no eps convergence) back to M.

Remarks

The parameters can also be initialised (instead of the clusters) through a sampling. In that case, the algorithm starts with the E step

Property

- lacktriangle the EM iteration does increase the log-likelihood $L_{(x_i)_i}(\pi,\theta)$
- in general, no guarantee to converge to the global maximum

Outline Part 1

Clustering

Gaussian mixture models

EM algorithm

Model selection

Model selection

In order to estimate the number K of components from the data, the EM algorithm is run for various values of K and the one maximising a criterion is chosen :

- ▶ M_K denoting the total number of (free) parameters in the model with K components
- ▶ Bayesian information criterion : $BIC(K) = L_{(x_i)_i}(\hat{\pi}, \hat{\theta}) (M_K/2) \log n$
- ▶ Akaike's information criterion : $AIC(K) = L_{(x_i)_i}(\hat{\pi}, \hat{\theta}) M_K$

Figure: Analysis of the swiss data set with Mclust

References I

A.P. Dempster, N.M. Laird, and D.B. Rubin, *Maximum likelihood for incomplete data via the em algorithm*, Journal of the Royal Statistical Society **B39** (1977), 1–38.