ECE5554 - Computer Vision Lecture 8b - Active Contours

Creed Jones, PhD

Today's Objectives

- Active Contours (gray-scale images)
 - Concept
 - Internal and external energy
 - Optimization
 - Uses

also called Deformable Models or "Snakes"

ACTIVE CONTOURS

[Kass, Witkin, & Terzopoulos, "Snakes: Active contour models," ICCV 1987]

- Goal: Fit a curve to an object's boundary (of arbitrary shape) in an image
- The image need not be binary!
- Given: An initial curve (model) near the desired object
- Procedure: Iteratively modify the curve, based on
 - 1) pixel values in the image, and
 - 2) the curve's shape

- Given: An initial curve (model) near the desired object
- Goal: Fit a curve to an object's boundary (of arbitrary shape) in an image

- Given: An initial curve (model) near the desired object
- Goal: Fit a curve to an object's boundary (of arbitrary shape) in an image

Main idea: An elastic band is iteratively adjusted so as to

- be near image locations of interest (usually with high gradient magnitudes), and
- satisfy shape "preferences", such as to prefer low curvature

- Given: An initial curve (model) near the desired object
- Goal: Fit a curve to an object's boundary (of arbitrary shape) in an image

Main idea: An elastic band is iteratively adjusted so as to

- be near image locations of interest (usually with high gradient magnitudes), and
- satisfy shape "preferences", such as to prefer low curvature

- Given: An initial curve (model) near the desired object
- Goal: Fit a curve to an object's boundary (of arbitrary shape) in an image

Main idea: An elastic band is iteratively adjusted so as to

- be near image locations of interest (usually with high gradient magnitudes), and
- satisfy shape "preferences", such as to prefer low curvature

Active contours: intuition

Another example

Image from: https://raw.github.com/pmneila/morphsnakes/master/examples/starfish.gif

Tracking heart ventricles (multiple frames)

Why do we want to fit deformable shapes? Non-rigid, deformable objects can change their shapes over time

Figure from Kass et al. 1987

Why do we want to fit deformable shapes?

• Non-rigid, deformable objects can change their shapes over time.

ECE5554 SU22 8b - Active Contours

Figure credit: Jomier

Aspects we need to consider

- Representation of the contours
- Formulation as a problem of energy minimization
- Defining the energy functions
 - External
 - Internal
- Minimizing the energy function
- Extensions:
 - Tracking
 - Interactive segmentation

Representation

 Consider a discrete representation of the contour, consisting of a list of 2D point positions ("vertices")

$$V_i = (x_i, y_i),$$

for
$$i = 0, 1, ..., n-1$$

 At each iteration, we'll have the option to move each vertex to another nearby location ("state")

Fitting deformable contours

How should we adjust the current contour to form the new contour at each iteration?

- Define a cost function ("energy" function) that says how good a candidate configuration is
- "Greedy" search: Select the next configuration that gives the best improvement in cost

Energy function

The total energy (cost) of the current snake is often defined as:

$$E_{total} = E_{internal} + E_{external}$$

Internal energy: encourage shape preferences: e.g., smoothness, elasticity, similarity to a particular known shape

External energy ("image" energy): encourage contour to fit on places where image structures exist (e.g., edges)

The idea is to find a balance between our prior preferences (such as low curvature) and what is actually observed (such as image edges)

External image energy

• Gradient images $G_x(x,y)$ and $G_y(x,y)$

• External energy at a point on the curve is:

$$E_{external}(v) = -(|G_x(v)|^2 + |G_y(v)|^2)$$

External image energy

• Gradient images $G_{x}(x,y)$ and $G_{y}(x,y)$

External energy at a point on the curve is:

$$E_{external}(v) = -(|G_x(v)|^2 + |G_y(v)|^2)$$

External energy for the whole curve:

$$E_{external} = -\sum_{i=0}^{n-1} |G_x(x_i, y_i)|^2 + |G_y(x_i, y_i)|^2$$

Internal energy: intuition

What underlying shape should be detected here?

Internal energy: intuition

What underlying shape should be detected here?

Internal energy: intuition

What underlying shape should be detected here?

Internal energy

For a *continuous* curve, a common internal energy term is the "bending energy".

At some point v(s) on the curve, this is:

$$E_{internal}(v(s)) = \alpha \left| \frac{dv}{ds} \right|^{2} + \beta \left| \frac{d^{2}v}{d^{2}s} \right|^{2}$$
Tension, Elasticity Stiffness, Curvature

Internal energy

For our discrete representation,

$$v_i = (x_i, y_i)$$
 $i = 0 \dots n-1$

$$\frac{dv}{ds} \approx v_{i+1} - v_i \qquad \frac{d^2v}{ds^2} \approx (v_{i+1} - v_i) - (v_i - v_{i-1}) = v_{i+1} - 2v_i + v_{i-1}$$

Note that these are derivatives relative to position on the curve --- not gradients of image intensity

Internal energy

For our discrete representation,

$$v_i = (x_i, y_i)$$
 $i = 0 \dots n-1$

$$\frac{dv}{ds} \approx v_{i+1} - v_i \qquad \frac{d^2v}{ds^2} \approx (v_{i+1} - v_i) - (v_i - v_{i-1}) = v_{i+1} - 2v_i + v_{i-1}$$

Internal energy for the whole curve:

$$E_{internal} = \sum_{i=0}^{n-1} \alpha \| v_{i+1} - v_i \|^2 + \beta \| v_{i+1} - 2v_i + v_{i-1} \|^2$$

Why do these reflect tension and curvature?

Example: compare curvature

$$E_{curvature}(v_i) = \|v_{i+1} - 2v_i + v_{i-1}\|^2$$

$$= (x_{i+1} - 2x_i + x_{i-1})^2 + (y_{i+1} - 2y_i + y_{i-1})^2$$
(2,5)

$$(3-2(2)+1)^2 + (1-2(5)+1)^2$$
$$= (-8)^2 = 64$$

$$(3-2(2)+1)^2 + (1-2(2)+1)^2$$

= $(-2)^2 = 4$

(2,2)

Penalizing elasticity

 Current elastic energy definition uses a discrete estimate of the derivative:

$$E_{elastic} = \sum_{i=0}^{n-1} \alpha \| v_{i+1} - v_i \|^2$$

$$= \alpha \cdot \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2$$

What is the possible problem with this definition?

Penalizing elasticity

 Current elastic energy definition uses a discrete estimate of the derivative:

$$E_{elastic} = \sum_{i=0}^{n-1} \alpha \| v_{i+1} - v_i \|^2$$

Instead:

$$= \alpha \cdot \sum_{i=0}^{n-1} \left((x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2 - \overline{d} \right)^2$$

where *d* is the average distance between pairs of points – updated at each iteration.

• The preferences for low-curvature, smoothness help deal with missing data:

Illusory contours found!

Extending the internal energy: capture shape prior

 If object is some smooth variation on a known shape, we can use a term that will penalize deviation from that shape:

$$E_{internal} += \alpha \cdot \sum_{i=0}^{n-1} (\nu_i - \hat{\nu}_i)^2$$

where $\{\hat{\mathcal{V}}_i\}$ are the points of the known shape

Fig from Y. Boykov

Total energy depends on choice of weights

$$E_{total} = E_{internal} + \gamma E_{external}$$

$$E_{external} = -\sum_{i=0}^{n-1} |G_x(x_i, y_i)|^2 + |G_y(x_i, y_i)|^2$$

$$E_{internal} = \sum_{i=0}^{n-1} \left(\alpha \right) \left(\overline{d} - \| \nu_{i+1} - \nu_i \| \right)^2 + \beta \| \nu_{i+1} - 2\nu_i + \nu_{i-1} \|^2$$

Total energy depends on choice of weights

• e.g., α controls the penalty for internal elasticity

medium α

small lpha

Recap

- A simple elastic snake is defined by:
 - A set of n points
 - An internal energy term (tension, bending, plus optional shape prior)
 - An external energy term (gradient-based)
- To use to segment an object:
 - Initialize in the vicinity of the object
 - Modify the points to minimize the total energy

Recap

- A simple elastic snake is defined by:
 - A set of n points
 - An internal energy term (tension, bending, plus optional shape prior)
 - An external energy term (gradient-based)
- To use to segment an object:
 - Initialize in the vicinity of the object
 - Modify the points to minimize the total energy

Active contours: pros and cons

Pros:

- Useful to track and fit non-rigid shapes
- Contour remains connected
- Possible to fill in "subjective" contours
- Flexibility in how energy function is defined, weighted

Cons:

- May get stuck in local minima!
- Must have decent initialization near true boundary
- Parameters of energy function must be set well based on prior information

Summary

- Deformable shapes and active contours are useful for
 - Segmentation: fit or "snap" to boundary in image
 - Tracking: previous frame's estimate serves to initialize the next
- Fitting active contours:
 - Define terms to encourage certain shapes, smoothness, low curvature, push/pulls, ...
 - Use weights to control relative influence of each component cost
 - Can optimize 2D snakes with Viterbi algorithm.
- Image structure (esp. gradients) can act as attraction force for interactive segmentation methods.

Today's Objectives

- Active Contours
 - Concept
 - Internal and external energy
 - Optimization
 - Uses

