UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA

VICERRECTORADO ACADÉMICO

FACULTAD DE INGENIERÍA DE PRODUCCIÓN Y SERVICIOS DEPARTAMENTO ACADÉMICO DE INGENIERIA DE SISTEMAS E INFORMATICA

SÍLABO 2024 - B ASIGNATURA: SISTEMAS OPERATIVOS

1. INFORMACIÓN ACADÉMICA

Periodo académico:	2024 - B		
Escuela Profesional:	CIENCIA DE LA COMPUTACIÓN		
Código de la asignatura:	1703239		
Nombre de la asignatura:	SISTEMAS OPERATIVOS		
Semestre:	VI (sexto)		
Duración:	17 semanas		
Número de horas (Semestral)	Teóricas:	2.00	
	Prácticas:	2.00	
	Seminarios:	0.00	
	Laboratorio:	2.00	
	Teórico-prácticas:	0.00	
Número de créditos:	4		
Prerrequisitos:	ARQUITECTURA DE COMPUTADORES (1702117)		

2. INFORMACIÓN DEL DOCENTE, INSTRUCTOR, COORDINADOR

DOCENTE	GRADO ACADÉMICO	DPTO. ACADÉMICO	HORAS	HORARIO
YARI RAMOS, YESSENIA DEYSI	Dra.	INGENIERIA DE SISTEMAS E INFORMATICA	6	Lun: 10:40-12:20
TAKI KAWIOS, TESSENIA DETSI	INIA DE 131 DIa. INGENIERIA DE 3131	INGENIERIA DE SISTEMAS E INI ORMATICA		Mar: 10:40-12:20
YARI RAMOS, YESSENIA DEYSI	Dra.	INGENIERIA DE SISTEMAS E INFORMATICA	6	Lun: 12:20-14:00
TARI RAINOS, TESSENIA DETSI	BLIVIA DE 131 DIa. INGENIERIA DE 313 I EMAS E INFORM	INGENIERIA DE SISTEMAS E INFORMATICA		Mar: 12:20-14:00

3. INFORMACIÓN ESPECIFICA DEL CURSO (FUNDAMENTACIÓN, JUSTIFICACIÓN)

El objetivo de este curso es proporcionar una visión general sobre el diseño, estructura y funciones de los diferentes módulos que conforman un sistema operativo, de forma que le permita al estudiante identificar aspectos de como se administran los recursos software y hardware del computador y pueda aplicar su pensamiento crítico, creativo e innovador para la solución de problemas.

4. COMPETENCIAS/OBJETIVOS DE LA ASIGNATURA

- a) Analiza problemas y definir los requerimientos computacionales apropiados para su solución.
- b) La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática.
- c) Capacidad para diseñar y poner en práctica las unidades estructurales mayores que utilizan algoritmos y estructuras de datos y las interfaces a través del cual estas unidades se comunican.
- d) Aplica los conocimientos de administración de hardware y software para el desarrollo de aplicaciones eficientes sobre los diferentes sistemas operativos.

5. CONTENIDO TEMATICO

PRIMERA UNIDAD

Capítulo I: Visión General de los SO

Tema 01: Introdución a los SO Tema 02: Estructura de un SO

Capítulo II: Procesos

Tema 03: Concepto y Estados de un Proceso

Tema 04: Planificador de un Proceso Tema 05: Comunicación de Procesos Tema 06: Pipes, FIFO, Cola de mensajes

Capítulo III: Threads

Tema 07: Concepto de Threads
Tema 08: Modelo de Threads

Tema 09: Programación multicore

SEGUNDA UNIDAD

Capítulo IV: Sincronización y planificación de procesos

Tema 10: Planificadores I
Tema 11: Planificadores II

Tema 12: El problema de la sección crítica, mutex

Tema 13: Monitores, semáforos

Capítulo V: Administración de Memoria

Tema 14: Manejo de Memoria

Tema 15: Memoria Virtual

Tema 16: Paginación de memoria

Tema 17: Memoria Caché

TERCERA UNIDAD

Capítulo VI: Administración de DispositivosTema 18: Sistemas de almacenamientoTema 19: Sistemas de entrada y salida

Capítulo VII: Sistemas de Archivos

Tema 20: Métodos de acceso: secuencial, directo, otros

Tema 21: Estructura de directorios

Tema 22: Recuperación de archivos

Tema 23: Examen Final y presentación de trabajos

6. ESTRATEGIAS DE ENSEÑANZA APRENDIZAJE

6.1. Métodos

Expositivo en las clases teóricas

Estudio de casos.

6.2. Medios

Pizarra, plumones, cañon multimedia, classroom

6.3. Formas de organización

Teóricas: Clase magistral.

Prácticas: Trabajo en grupo o de manera individual.

Laboratorio: Desarrollo de ejercicios.

6.4. Programación de actividades de investigación formativa y responsabilidad social

Investigación Formativa: Investigar sobre las tendencias actuales de los SO.

Responsabilidad Social: Difundir el pensamiento computacional.

7. CRONOGRAMA ACADÉMICO

SEMANA	TEMA	DOCENTE	%	ACUM.
	Introdución a los SO	Y. Yari	4	4.00
	Estructura de un SO	Y. Yari	5	9.00
	Concepto y Estados de un Proceso	Y. Yari	4	13.00
	Planificador de un Proceso	Y. Yari	5	18.00
	Comunicación de Procesos	Y. Yari	4	22.00
	Pipes, FIFO, Cola de mensajes	Y. Yari	5	27.00
	Concepto de Threads	Y. Yari	4	31.00
	Modelo de Threads	Y. Yari	4	35.00
	Programación multicore	Y. Yari	5	40.00
	Planificadores I	Y. Yari	5	45.00
	Planificadores II	Y. Yari	4	49.00
	El problema de la sección crítica, mutex	Y. Yari	4	53.00
	Monitores, semáforos	Y. Yari	4	57.00
	Manejo de Memoria	Y. Yari	4	61.00
	Memoria Virtual	Y. Yari	5	66.00
	Paginación de memoria	Y. Yari	4	70.00
	Memoria Caché	Y. Yari	4	74.00
	Sistemas de almacenamiento	Y. Yari	5	79.00
	Sistemas de entrada y salida	Y. Yari	4	83.00
	Métodos de acceso: secuencial, directo, otros	Y. Yari	5	88.00
	Estructura de directorios	Y. Yari	4	92.00
	Recuperación de archivos	Y. Yari	4	96.00

Examen Final y presentación de trabajos Y. Yari 4 100

8. ESTRATEGIAS DE EVALUACIÓN

8.1. Evaluación del aprendizaje

Para la Nota Continua:

- Serán propuestos ejercicios y prácticas de laboratorio semanales de acuerdo con el contenido enseñado en clase.
- Los ejercicios serán resueltos por los alumnos en horario de clase y también de forma asíncrona.

8.2. Cronograma de evaluación

EVALUACIÓN	FECHA DE EVALUACIÓN	EXAMEN TEORÍA	EVAL. CONTINUA	TOTAL (%)
Primera Evaluación Parcial	30-09-2024	15%	15%	30%
Segunda Evaluación Parcial	12-11-2024	15%	15%	30%
Tercera Evaluación Parcial	16-12-2024	20%	20%	40%
	•		TOTAL	100%

9. REQUISITOS DE APROBACIÓN DE LA ASIGNATURA

- El redondeo se efectuará en el cálculo de cada nota continua o examen que será ingresado al sistema académico, no se redondearan individualmente las notas parciales.
- La nota mínima aprobatoria es Once (11).
- El estudiante que no tenga alguna de sus evaluaciones se le considerará como ABANDONO, a menos que presente la debida justificación, además se debe tener en cuenta el porcentaje de asistencia a las clases.

10. BIBLIOGRAFIA: AUTOR, TÍTULO, AÑO, EDITORIAL

10.1. Bibliografía básica obligatoria

- Abraham Silberschatz, Greg Gagne, Peter B. Galvin (2018) Operating System Concepts, 10th Edition, John Wiley & Sons.
- Tanenbaum, Andrew S.; Bos, Herbert (2014) Modern Operating Systems, 4th Edition, Pearson

10.2. Bibliografía de consulta

- Mateu, L. (1999). Apuntes de Sistemas Operativos. Universidad de Chile.
- Stallings, W. (2005). Operating Systems: Internals and Design Principles, 5/E. Prentice Hall.

Arequipa, 16 de Setiembre del 2024

YARI RAMOS, YESSENIA DEYSI