III Combinatorics

Ishan Nath, Michaelmas 2024

Based on Lectures by Prof. Imre Leader

October 17, 2024

Page 1 CONTENTS

Contents

0	Intr	oduction	2
1		Systems Shadows	3
	1.2	Total Orders	9
	1.3	Compression	0
In	dex	1	1

0 Introduction

We have the following list of things.

- 1: Set systems.
- 2: Isoperimetric inequalities.
- 3: Intersection families.

Books include 'Combinatorics' by Bollobás, and 'Combinatorics of Finite Sets', by Anderson.

1 Set Systems

Let X be a set. A set system on X, also called a family of subsets of X, is a family $A \subseteq \mathcal{P}(X)$. For example,

$$X^{(r)} = \{ A \subseteq X \mid |A| = r \}.$$

Usually, $X = [n] = \{1, 2, ..., n\}$, so $|X^{(r)}| = \binom{n}{r}$. Thus,

$$[4]^{(2)} = \{12, 13, 14, 23, 24, 34\}.$$

We make $\mathcal{P}(X)$ into a graph by joining A and B if $|A\triangle B| = 1$. This is the discrete cube Q_n .

Literally just a cube.

Alternatively, can view Q_n as an n-dimensional unit cube $\{0,1\}^n$, by identifying e.g. $\{1,3\}$ with the binary string $101000\cdots$.

Say $\mathcal{A} \subseteq \mathcal{P}(X)$ is a *chain* if, for all $A, B \in \mathcal{A}$, $A \subseteq B$ or $B \subseteq A$. For example,

$$\mathcal{A} = \{23, 12357, 1235, 123567\}$$

is a chain.

Say \mathcal{A} is an *antichain* if, for all $A, B \in \mathcal{A}$ and $A \neq B$, we have $A \nsubseteq B$. For example, $\mathcal{A} = \{23, 137\}$ is an antichain.

How large can a chain be? We can achieve |A| = n + 1 by taking

$$\mathcal{A} = \{\emptyset, 1, 12, 123, \dots, [n]\}$$

Cannot beat this as each $0 \le r \le n$, \mathcal{A} can contain at most one r-set (a member of $X^{(r)}$).

How large can an antichain be? We can achieve $|\mathcal{A}| = n$, e.g. $\mathcal{A} = \{1, 2, ..., n\}$. More generally, we can take $\mathcal{A} = X^{(r)}$, and the best is when $r = \lfloor n/2 \rfloor$.

Theorem 1.1 (Sperner's Lemma). Let $A \subseteq \mathcal{P}(X)$ be an antichain. Then,

$$|\mathcal{A}| \le \binom{n}{\lfloor n/2 \rfloor}.$$

The idea is follows: we know that a chain meets a layer in at most one point, since a layer is an antichain. If we decompose the cube into chains, we have at most one element of an antichain in each chain.

Proof: We will decompose $\mathcal{P}(X)$ into $\binom{n}{\lfloor n/2 \rfloor}$ chains, then we are done. To achieve this, it is sufficient to find:

- (i) For each r < n/2, a matching from $X^{(r)}$ to $X^{(r+1)}$.
- (ii) For each $r \ge n/2$, a matching from $X^{(r)}$ to $X^{(r-1)}$.

Then we put these together to form our chains; each passing through $X^{(\lfloor n/2 \rfloor)}$.

By taking complements, it is enough to prove (i).

Let G be the bipartite subgraph of Q_n spanned by $X^{(r)} \cup X^{(r+1)}$: we seek a matching from $X^{(r)}$ to $X^{(r+1)}$.

For any $S \subseteq X^{(r)}$, the number of edges from S to $\Gamma(S)$ is |S|(n-r), since each edge in S has n-r edges.

Moreover there are at most $|\Gamma(S)|(r+1)$ edges, counting from $\Gamma(S)$. Therefore,

$$|\Gamma(S)| \ge \frac{|S|(n-r)}{r+1} \ge |S|.$$

So we are done, by Hall's matching theorem.

Page 5 1 SET SYSTEMS

When do we have equality in Sperner's? The above proof tells us nothing.

Our aim is to prove the following: if A is an antichain, then

$$\sum_{r=0}^{n} \frac{|\mathcal{A} \cap X^{(r)}|}{\binom{n}{r}} \le 1.$$

In other words, the percentages of each layer occupied add up to at most 1. This trivially implies Sperner's.

1.1 Shadows

For $\mathcal{A} \subseteq X^{(r)}$, the shadow of \mathcal{A} is $\partial \mathcal{A} = \partial^{-} \mathcal{A} \subseteq X^{(r-1)}$ defined by

$$\partial \mathcal{A} = \{ B \in X^{(r-1)} \mid B \subseteq A \text{ for some } A \in \mathcal{A} \}.$$

For example, if $A = \{123, 124, 134, 137\}$, then

$$\partial \mathcal{A} = \{12, 13, 23, 14, 24, 34, 17, 37\}.$$

Proposition 1.1 (Local LYM). Let $A \subseteq X^{(r)}$. Then,

$$\frac{|\partial \mathcal{A}|}{\binom{n}{r-1}} \ge \frac{|\mathcal{A}|}{\binom{n}{r}}.$$

So, the fraction of the local occupancy by ∂A , is at least the occupancy by A.

Remark. LYM = Lubell, Meshalkin, Yamamoto.

Proof: We look at the number of \mathcal{A} to $\partial \mathcal{A}$ edges in the bipartite graph Q_n ; counting from above, there are exactly $|\mathcal{A}|r$.

However counting from below, it is at most $|\partial \mathcal{A}|(n-r+1)$. So,

$$\frac{|\partial \mathcal{A}|}{|\mathcal{A}|} \ge \frac{r}{n-r+1} = \frac{\binom{n}{r-1}}{\binom{n}{r}}.$$

So we are done.

Remark. When do we have equality? We lose equality if an element in $\partial \mathcal{A}$ is connected to an element not in \mathcal{A} , so for this not to occur, we need that for all $A \in \mathcal{A}$, and $i \in A$, $j \notin \mathcal{A}$, that $A - \{i\} \cup \{j\} \in \mathcal{A}$.

But this is very strong, and in fact either $\mathcal{A} = \emptyset$ or $X^{(r)}$.

Theorem 1.2 (LYM Inequality). Let $A \subseteq \mathcal{P}(X)$ be an antichain. Then,

$$\sum_{r=0}^{n} \frac{|\mathcal{A} \cap X^{(r)}|}{\binom{n}{r}} \le 1.$$

As a bit of notation, we write A_r for $A \cap X^{(r)}$.

We will look at two proofs. The first idea is to bubble down with local LYM.

Proof: Obviously

$$\frac{|\mathcal{A}_n|}{\binom{n}{n}} \le 1.$$

Now, ∂A_n and A_{n-1} are disjoint, as A is an antichain. So,

$$\frac{|\partial \mathcal{A}_n|}{\binom{n}{n-1}} + \frac{|\mathcal{A}_{n-1}|}{\binom{n}{n-1}} = \frac{|\partial \mathcal{A}_n \cup \mathcal{A}_{n-1}|}{\binom{n}{n-1}} \le 1,$$

whence we get

$$\frac{|\mathcal{A}_n|}{\binom{n}{n}} + \frac{|\mathcal{A}_{n-1}|}{\binom{n}{n-1}} \le 1,$$

by local LYM. We now continue again. Notice $\partial(\partial \mathcal{A}_n \cup \mathcal{A}_{n-1})$ is disjoint from \mathcal{A}_{n-2} , we find

$$\frac{\left|\partial(\partial\mathcal{A}_n\cup\mathcal{A}_{n-1})\right|}{\binom{n}{n-2}}+\frac{\left|\mathcal{A}_{n-2}\right|}{\binom{n}{n-2}}\leq 1,$$

whence

$$\frac{\left|\partial \mathcal{A}_n \cup \mathcal{A}_{n-1}\right|}{\binom{n}{n-1}} + \frac{\left|\mathcal{A}_{n-2}\right|}{\binom{n}{n-2}} \le 1.$$

We can now continue inductively.

When do we have equality? We must have had equality in each use of local LYM. Hence equality in LYM needs that the maximum r with $A_r \neq \emptyset$, then $A_r = X^{(r)}$.

Hence equality in Sperner needs either $\mathcal{A} = X^{(n/2)}$, if n is even, or $\mathcal{A} = X^{(\lfloor n/2 \rfloor)}$ or $X^{(\lceil n/2 \rceil)}$, for n odd.

Now time for another proof.

Page 8 1 SET SYSTEMS

Proof: Choose uniformly at random a maximal chain C. For any r-set A, note that

$$\mathbb{P}(A \in \mathcal{C}) = \frac{1}{\binom{n}{r}}.$$

So for our antichain \mathcal{A} ,

$$\mathbb{P}(\mathcal{C} \text{ meets } \mathcal{A}_r) = \frac{|\mathcal{A}_r|}{\binom{n}{r}},$$

as these events are disjoint. Hence, since \mathcal{C} can meet \mathcal{A} at one point at most,

$$\mathbb{P}(\mathcal{C} \text{ meets } \mathcal{A}) = \sum_{r=0}^{n} \frac{|\mathcal{A}_r|}{\binom{n}{r}},$$

from which we get

$$\sum_{r=0}^{n} \frac{|\mathcal{A}_r|}{\binom{n}{r}} \le 1.$$

Equivalently, the number of maximal chains is n!, and the number through any fixed r-set is r!(n-r)!, so

$$\sum_{r} |\mathcal{A}_r| r! (n-r)! \le n!.$$

We now return to shadows. For $\mathcal{A} \subseteq X^{(r)}$, we have

$$|\partial \mathcal{A}| \ge |\mathcal{A}| \frac{r}{n-r+1}.$$

We know that equality is rare: it only happens for $\mathcal{A} = \emptyset$, or $X^{(r)}$. What happens in between?

In other words, given $|\mathcal{A}|$, how should we choose $\mathcal{A} \subseteq X^{(r)}$ to minimise $|\partial \mathcal{A}|$?

It is believable that if $|\mathcal{A}| = \binom{k}{r}$, then we should take $\mathcal{A} = [k]^{(r)}$. In between adjacent binomials, it is believable that we should take $[k]^{(r)}$, plus some r-sets in $[k+1]^{(r)}$.

Example 1.1.

For $\mathcal{A} \subseteq X^{(3)}$ with

$$|\mathcal{A}| = \binom{8}{3} + \binom{4}{2},$$

we could take

$$\mathcal{A} = [8]^3 \cup \{9 \cup B \mid B \in [4]^{(2)}\}.$$

In some ways our set A should be of minimal 'order', under some ordering on $X^{(r)}$.

1.2 Total Orders

Let A, B be distinct r-sets, and say $A = a_1 \dots a_r, B = b_1 \dots b_r$, where $a_1 < \dots < a_r, b_1 < \dots < a_r$.

We say that A < B in the *lexographic* or *lex* ordering if for some j we have $a_i = b_i$ for all i < j, and $a_j < b_j$. So lex cares about small elements.

Example 1.2.

Lex on $[4]^{(2)}$ orders the elements as 12, 13, 14, 23, 24, 34.

Lex on $[6]^{(3)}$ orders the elements as

$$123,124,125,126,134,135,136,145,146,156,$$
 $234,235,236,245,246,256,345,346,356,456.$

We say that A < B in the *colexographic* or *colex* ordering if for some j, we have $a_i = b_i$ for all i > j, and $a_j < b_j$. So colex cares about big elements.

Example 1.3.

Colex on $[4]^{(2)}$ orders the elements as 12, 13, 23, 14, 24, 34.

Colex on $[6]^{(3)}$ orders the elements as

$$123,124,134,234,125,135,235,145,245,345,$$
 $126,136,236,146,246,346,156,256,356,456.$

Note that in colex, $[n-1]^{(r)}$ is an initial segment of $[n]^{(r)}$. This is not true in lex. This allows us to view colex as an enumeration of $\mathbb{N}^{(r)}$. Remark. A < B in colex $\iff A^c < B^c$ in lex, with ground set ordering ordering reversed.

Colex in particular may be the ordering we want to solve the above problem, minimizing $|\partial \mathcal{A}|$. Our aim will then be to show that initial segments of colex are the best for ∂ , i.e. if $\mathcal{A} \subseteq X^{(r)}$ and $\mathcal{C} \subseteq X^{(r)}$ is the initial segment of colex with $|\mathcal{C}| = |\mathcal{A}|$, then

$$|\partial \mathcal{C}| \leq |\partial \mathcal{A}|.$$

In particular,

$$|\mathcal{A}| = \binom{k}{r} \implies |\partial \mathcal{A}| = \binom{k}{r-1}.$$

1.3 Compression

The idea is to try to transform $\mathcal{A} \subseteq X^{(r)}$ into some $\mathcal{A} \subseteq X^{(r)}$ such that:

- (i) $|\mathcal{A}'| = |\mathcal{A}|$.
- (ii) $|\partial \mathcal{A}'| \leq |\partial \mathcal{A}|$.
- (iii) \mathcal{A}' looks more like \mathcal{C} than \mathcal{A} did.

Ideally, we would like a family of such 'compressions'

$$\mathcal{A} \to \mathcal{A}' \to \cdots \to \mathcal{B}$$
,

such that either $\mathcal{B} = \mathcal{C}$, or \mathcal{B} is so similar to \mathcal{C} that we can directly check that

$$|\partial \mathcal{B}| \geq |\partial \mathcal{C}|$$
.

Index

antichain, 4lexographic ordering, 9

chain, 3 colexographic ordering, 9

set system, 3discrete cube, 3shadow, 6