Generalized Linear Models

Luca Fontana, Sanzio Monti

08.10.2018

- Introduction
- Logistic Regression
- Multiclass Logistic Regression
- Poisson GLM
- Cox Proportional Hazard Models
- Support Vector Machines

In **linear regression:** continuous response $Y \in \mathbb{R}$ with $\hat{y} = f(x) = \beta_0 + \beta^\top x \in \mathbb{R}^n$, Gaussian error.

Idea: Apply linear regression on "smartly" transformed variable of interest.

In this way we can work with, for example, binary or counts responses.

General Setting GLM

The **link function** g is a strictly monotonic transformation of the conditional mean of Y given X:

$$\mu(x) = \mathbb{E}[Y \mid X = x]$$
$$g[\mu(x)] = \beta_0 + \beta^{\top} x$$

$$Y \in \{0, 1\},$$

$$\mu(x) = \mathbb{E}[Y|X = x] = 1 \cdot \mathbb{P}(Y = 1 \mid X = x) + 0 \cdot \mathbb{P}(Y = 0 \mid X = x) = \mathbb{P}(Y = 1 \mid X = x)$$

Take
$$g(\mu) = \operatorname{logit}(\mu) = \log\left(\frac{\mu}{1-\mu}\right)$$

$$\beta_0 + \beta^\top x = g[\mu(x)] = \log\left[\frac{\mathbb{P}(Y=1\mid X=x)}{\mathbb{P}(Y=0\mid X=x)}\right]$$

$$\mu(x) = \mathbb{P}(Y=1\mid X=x) = \frac{e^{\beta_0+\beta^\top x}}{1+e^{\beta_0+\beta^\top x}}$$

Effect of Medication vs. Dose

Source: Marcel Dettling, lecture notes of Applied Statistical Regression lecture, Fall Semester 2017, page 39.

$$Y\in\mathbb{N}\subset[0,+\infty[$$
 , Assume that $(Y\mid X=x)\sim Poi(\lambda(x)).$
$$\mu(x)=\mathbb{E}[Y|X=x]=\lambda(x)$$
 Take $g(\mu)=\log(\mu)$
$$\beta_0+\beta^\top x=g[\mu(x)]=\log(\mu(x))=\log(\lambda(x))$$

$$\lambda(x)=e^{\beta_0+\beta^\top x}$$

Problem in chapter: Minimize negative log-likelihood with a penalty.

$$\underset{\beta_{0},\beta}{\operatorname{minimize}} \left\{ -\frac{1}{N} \mathcal{L}(\beta_{0},\beta;\boldsymbol{y},\boldsymbol{X}) + \lambda \|\beta\| \right\}$$

Were the type of norm is specified in the problem.

LR is an example of GLM

We now show that linear regression is an example of GLM.

Assume $(Y \mid X = x) \sim \mathcal{N}(\mu(x), \sigma^2)$. Then we have:

$$\tilde{\mathcal{L}}(\beta_0, \beta; \boldsymbol{y}, \boldsymbol{X}) \propto \prod_{i=1}^N e^{-\frac{(y_i - \beta_0 - \beta x_i)^2}{2\sigma^2}}$$

$$\mathcal{L}(\beta_0, \beta; \boldsymbol{y}, \boldsymbol{X}) = -\sum_{i=1}^{N} \frac{(y_i - \beta_0 - \beta x_i)^2}{2\sigma^2} + c = -\frac{\|\boldsymbol{y} - \beta_0 - \beta \boldsymbol{X}\|_2^2}{2\sigma^2} + c$$

Binary $Y \in \{0,1\}$: assume Bernoulli distributed with parameter $\mu(x) = P(Y=1 \mid X=x)$; Corresponding likelihood:

$$\tilde{\mathcal{L}}(\beta_0, \beta; \boldsymbol{x}) = \prod_{i=1}^{N} \underbrace{\mathbb{P}(Y = 1 \mid X = x_i)^{y_i}}_{p(x_i)} \mathbb{P}(Y = 0 \mid X = x_i)^{1-y_i}$$

$$\mathcal{L}(\beta_0, \beta; \boldsymbol{y}, \boldsymbol{X}) = \sum_{i=1}^{N} y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i))$$

$$\underset{\beta_0, \beta}{\text{minimize}} \left\{ -\frac{1}{N} \mathcal{L}(\beta_0, \beta; \boldsymbol{y}, \boldsymbol{X}) + \lambda \|\beta\| \right\}$$

Binary $Y \in \{0,1\}$: assume Bernoulli distributed with parameter $\mu(x) = P(Y=1 \mid X=x)$; Corresponding likelihood:

$$\widetilde{\mathcal{L}}(\beta_0, \beta; \boldsymbol{x}) = \prod_{i=1}^{N} \underbrace{\mathbb{P}(Y = 1 \mid X = x_i)^{y_i}}_{p(x_i)} \mathbb{P}(Y = 0 \mid X = x_i)^{1-y_i}$$

$$\mathcal{L}(\beta_0, \beta; \boldsymbol{y}, \boldsymbol{X}) = \sum_{i=1}^{N} y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i))$$

minimize
$$\left\{ -\frac{1}{N} \sum_{i=1}^{N} y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i)) + \lambda \|\beta\| \right\}$$

Using the Ansatz
$$p(x)=\mathbb{P}(Y=1\mid X=x)=\frac{e^{\beta_0+\beta^\top x}}{1+e^{\beta_0+\beta^\top x}}$$
 we get:

$$-\frac{1}{N} \sum_{i=1}^{N} y_{i} (\beta_{0} + \beta^{\top} x_{i}) - \log \left(1 + e^{\beta_{0} + \beta^{\top} x_{i}} \right) + \lambda \|\beta\|$$

minimize

Sometimes we take $Y \in \{-1,1\}$, which simplifies the minimization problem to:

$$\frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{-y_i(\beta_0 + \beta^{\top} x_i)} \right) + \lambda \|\beta\|$$

or more generally:

$$\frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{-y_i f(x_i, \beta_0, \beta)} \right) + \lambda \|\beta\|$$

Problem: We have N=11'314 documents that we want to classify into two different Groups $(Y \in \{-1,+1\})$. The features are defined as the set of **trigrams** [with some restrictions]. Trigrams are a sequence of three consecutive characters (for example AAA, azA,...). Each document contains an average of 425 nonzero features.

$$p = 777'811 \cong 92^3$$

We want to perform ℓ_1 -regularized logistic regression.

Dec	Н	Oct	Cha	10	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Ch	nr_
0	0	000	NUL	(null)	32	20	040	a#32;	Space	64	40	100	a#64;	0	96	60	140	a#96;	
1	1	001	SOH	(start of heading)	33	21	041	@#33;	1	65	41	101	«#65;	A				6#97;	
2	2	002	STX	(start of text)	34	22	042	6#34;	rr	66	42	102	«#66;	В	98	62	142	a#98;	b
3	3	003	ETX	(end of text)	35	23	043	@#35;	#	67	43	103	«#67;	C				6#99;	
4				(end of transmission)				«#36;					«#68;					d	
5				(enquiry)				6#37;					«#69;					6#101;	
6				(acknowledge)				6#38;					6#70;					@#102;	
7				(bell)				6#39;					6#71;					6#103;	
8		010		(backspace)				«#40;					6#72;					@#104;	
9		011		(horizontal tab))					6#73;					a#105;	
10		012		(NL line feed, new line)				«#42;					6#74;					@#106;	
11		013		(vertical tab)				6#43;					6#75;					@#107;	
12		014		(NP form feed, new page)				a#44;					6#76;					@#108;	
13		015		(carriage return)				&# 4 5;					6#77;					@#109;	
14		016		(shift out)				«#46;					4#78;					6#110;	
15		017		(shift in)				6#47;					6#79;					o	
				(data link escape)				«#48;					%#80;					6#112;	
				(device control 1)				6#49;					Q					6#113;	
				(device control 2)				2					%#82 ;					6#114;	
				(device control 3)				3					%#83;					a#115;	
				(device control 4)				4					«#84;					t	
				(negative acknowledge)				6#53;					%#85 ;					u	
				(synchronous idle)				«#54;					4#86 ;					@#118;	
				(end of trans. block)				7					6#87;					@#119;	
				(cancel)				«#56;					%#88 ;					@#120;	
		031		(end of medium)				¢#57;					%#89 ;					6#121;	
				(substitute)				%#58;					%#90 ;					6#122;	
27	1B	033	ESC	(escape)	59	3В	073	@#59;	;				@#91;		123	7B	173	6#123;	-{
28	10	034	FS	(file separator)	60	30	074	@#60;	<	92	5C	134	@#92;	1				@#124;	
29	1D	035	GS	(group separator)	61	3D	075	=	=	93	5D	135	6#93;]				@#125;	
30	1E	036	RS	(record separator)	62	3E	076	>	>				¢#94;					@#126;	
31	1F	037	US	(unit separator)	63	3F	077	%#63;	2	95	5F	137	a#95;	_	127	7F	177	6#127;	DEL

95 5F 137 6#95; _ |12/ /r 1// %#12/, 50

Doc	Llv i	Oct Ch	24	IDoo	Шч	Oct	Html	Ch	. 1	Doc	Llv	Oct	Literal	Chrl	Doo	Llv	Ont	Html C	hr
														4 4					-
0			(null)				6#32;		ace				4#64.					6#96;	Λ
1			(start of heading)				6#33;						a#65.					6#97;	
2			(start of text)				6#34;						4#66 .					6#98;	
3			(end of text)				4#35;						4#67.					6#99;	
4			(end of transmission)				4#36;						a#68.					6#100	
5			(enquiry)				6#37;						6#69					6#101	e f
6			(acknowledge)				6#38	6					6#70	F				6#102	_ 8
7			(bell)				6#39						6#71	G				6#103	
8		010 BS	(backspace)				6#40						6#72	H				6#104	
9			(horizontal tab)				6#41						6#73					6#105	
10		012 LF	(NL line feed, new line)				6#42		Α.				6#74					4#106	
11		013 VT	(vertical tab)				6#41						6#75					4#107	
12		014 FF	(NP form feed, new page)				6#4						€#7€					6#108	
13		015 CR	(carriage return)				6#4.						6#77					6#10 <u>9</u>	
14		016 50	(shift out)				6#4						6#78					6#11C	
15		017 SI	(shift in)				6#4;						6#79					6#111	
		020 DLE					6#4						6#8Q					6#11 2	
			(device control 1)				6#4 ;						6#81					6#113	
			(device control 2)				6#5 ;						6#8Z					6#114	
19	13 0	023 DC3	(device control 3)	51	33	063	6#5 ;	3		83	53	123	6#8 3					6#11 5	
20	14 0	024 DC4	(device control 4)				6#5 ;			84	54	124	6#84	T	16	74	164	6#11 6	t t
21	15 0	025 NAF	(negative acknowledge)	53	35	065	6#5 	5		85	55	125	6#85					6#117	
22	16 0	26 SYI	(synchronous idle)				6#5 4 ;			86	56	126	e#86	V	18	76	166	6#118	v
23	17 0	27 ETE	(end of trans. block)	55	37	067	6#5. ;	7		87	57	127	6#87	W				6#119	
24	18 0	30 CAI	(cancel)				6#5 6 ;			88	58	130	6#88	X	.20	78	170	6#120	х
25	19 0	031 EM	(end of medium)	57	39	071	6#5 %	9	,	89	59	131	6#89					6#121	
26	1A 0	32 SUE	(substitute)				a#58			90	5A	132	6#90	Z	122	7A	172	6#122	Z
27	1B 0	33 ESC	(escape)	59	3B	073	a#59	,		91	5B	133	6#91.	[123	7B	173	6#123	{
28	10 0	34 FS	(file separator)	60	30	074	a#60	<		92	5C	134	¢#92.	1	124	70	174	6#124.	417
29	1D 0	35 GS	(group separator)	61	3D	075	a#61	-		93	5D	135	6 #9 3,]	125	7D	175	}.	1)
30	1E 0	36 RS	(record separator)	62	ЗΕ	076	a#62	>		94	5E	136	¢#94.	٨	126	7E	176	a#126.	1-1
31	1F 0	37 US	(unit separator)	63	ЗF	077	a#63;	2		95	5F	137	a#95.	:U	127	7F	177	.	: VEL
								v						·Wc	e: 4	AVAV.	Look	upTable	s.com
								_					_						

The **fraction deviance explained** (D_{λ}^2) is then defined by:

$$\begin{aligned} \mathsf{D}_{\lambda}^2 &= \frac{\mathsf{Dev}_{\mathsf{null}} - \mathsf{Dev}_{\lambda}}{\mathsf{Dev}_{\mathsf{null}}} \\ \mathsf{R}^2 &= \frac{\mathsf{SS}_{\mathsf{tot}} - \mathsf{SS}_{\mathsf{res}}}{\mathsf{SS}_{\mathsf{tot}}} \end{aligned}$$

Deviance: (Dev_λ) Minus twice the difference in log-likelihood of a saturated model with a model fit with parameter λ .

Goodness to fit statistic that generalizes the residual sum of square for cases where model fitting is achieved by MLE.

Example: Document classification

Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015, page 33.

Example: Document classification

Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015, page 34.

In order to calculate the coefficients, the package glmnet approximates the log-likelihood:

$$\frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{-y_i(\beta_0 + \beta^\top x_i)} \right)$$

in each step by a quadratic function, in order to reuse the method created to solve the "usual" ridge and lasso regression. More on that will be covered in future presentations.

Setting: $Y \in \{1, ..., K\}$ for K > 2 classes. 2 ways for reduction to binary classification in general:

- OvO [One versus One]: all $\binom{K}{2}$ pairs of classes samples are used to fit $\binom{K}{2}$ binary classifiers, then the predicted class is the one which is predicted the most.
- OvA [One versus All]: treat all other classes as a single negative class.

Drawbacks:

- OvO: computationally exhaustive and cases where same amount of votes for more classes.
- OvA: imbalance amounts *positive* and *negative* observations.

Multiclass Logistic Regression approach:

$$\mathbb{P}(Y = k \mid X = x; \beta_0, \beta) = \frac{e^{\beta_{0k} + \beta_k^{\top} x}}{\sum_{l=1}^{K} e^{\beta_{0l} + \beta_l^{\top} x}}$$

Interesting property: invariance of this conditional probability under addition of $\gamma_0 + \gamma^T x$ in all the exponents.

$$\log \mathbb{P}(Y = k \mid X = x; \beta_0, \beta) = \beta_{0k} + \beta_k^{\mathsf{T}} x - \log \left[\sum_{l=1}^K e^{\beta_{0l} + \beta_l^{\mathsf{T}} x} \right]$$

The log-likelihood is given by

$$\mathcal{L}(\beta_0, \beta; \boldsymbol{y}, \boldsymbol{X}) = \frac{1}{N} \sum_{i=1}^{N} \log \mathbb{P}(Y = y_i \mid X = x_i; \beta_0, \beta)$$

Define Indicator response $R = (r_{ik}) = (\mathbb{I}_{\{y_i = k\}}) \in \mathbb{R}^{N \times K}$.

Then we can rewrite log-likelihood as

$$\frac{1}{N} \sum_{i=1}^{N} \mathbf{w_i} \left[\sum_{k=1}^{K} r_{ik} (\beta_{0k} + \beta_k^{\top} x_i) - \log \left\{ \sum_{k=1}^{K} e^{\beta_{0k} + \beta_k^{\top} x_i} \right\} \right]$$

with resulting ℓ_1 -penalized negative log-likelihood

$$-\frac{1}{N} \sum_{i=1}^{N} w_i \left[\sum_{k=1}^{K} r_{ik} (\beta_{0k} + \beta_k^{\top} x_i) - \log \left\{ \sum_{k=1}^{K} e^{\beta_{0k} + \beta_k^{\top} x_i} \right\} \right] + \lambda \sum_{k=1}^{K} \|\beta_k\|_1$$

Recall invariance under addition of linear term in exponents: $\{\tilde{\beta}_{kj}\}_{k=1}^K$ and $\{\tilde{\beta}_{kj}+c_j\}_{k=1}^K$ produce same probabilities, $c_j\in\mathbb{R}$.

Use penalty $\sum_{k=1}^K \|\tilde{\beta}_k\|_1 = \sum_{k=1}^K \sum_{j=1}^p |\tilde{\beta}_{kj}| = \sum_{j=1}^p \sum_{k=1}^K |\tilde{\beta}_{kj}|$ to choose $\{c_j\}_{j=1}^p$.

For all candidates $\{\tilde{eta}_{kj}\}_{k=1}^K$, optimal $c_j \in \mathbb{R}$ satisfies

$$c_j = \operatorname*{arg\,min}_{c \in \mathbb{R}} \sum_{k=1}^K |\tilde{\beta}_{kj} - c|, \quad j \in \{1, \dots, p\}$$

Solution: $c_j = \text{median}\{\tilde{\beta}_{1j}, \dots, \tilde{\beta}_{Kj}\}$, for $j \in \{1, \dots, p\}$.

Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015, page 38.

Problem: We have N=7'921 gray-scale images of p=256 pixels representing **handwritten digits** from 0 to 9 $(Y \in \{0,\ldots,9\})$.

Each one of the p features represents the intensity in a [0,1]-scale of the corresponding pixel (0 black, 1 white).

We can fit a 10-classes lasso multinomial model.

We can introduce sparsity via grouped-lasso penalty: consider the vector of class-coefficients for feature j

$$\beta_j = (\underbrace{\beta_{0j}}_{\text{digit }0}, \dots, \underbrace{\beta_{9j}}_{\text{digit }9}) \quad j \in \{1, \dots, p\}$$

Replace standard multinomial criterion with grouped-lasso one:

$$-\frac{1}{N} \sum_{i=1}^{N} \log \mathbb{P}(Y = y_i \mid X = x_i; \{\beta_j\}_{j=1}^p) + \lambda \sum_{j=1}^p \|\beta_j\|_2$$

Consequence: all coefficients of a particular feature are in or out of the model, i.e. the feature is in or out of the model.

Setting: Y non-negative and represents a count.

Approach: Poisson likelihood and log-linear model for mean

$$\log \mu(x) = \beta_0 + \beta^{\top} x$$

with resulting ℓ_1 -penalized negative log-likelihood

$$-\frac{1}{N} \sum_{i=1}^{N} \left\{ y_i (\beta_0 + \beta^{\top} x_i) - e^{\beta_0 + \beta^{\top} x_i} \right\} + \lambda \|\beta\|_1$$

we aim to minimize.

Typical situation: model rates [e.g. death rate] via Poisson model. If observation windows have different lengths T_i , then

$$\mathbb{E}[y_i \mid X_i = x_i] = T_i \mu(x_i)$$

where $\mu(x_i)$ rate per unit time interval.

Example: 6 months vs yearly visit to doctor has T = 1/2.

New model form:

$$\log \mathbb{E}[Y \mid X = x, T] = \underbrace{\log T}_{\text{"offset"}} + \beta_0 + \beta^\top x$$

Problem: N count variables $\{y_k\}_{k=1}^N$ coming from a N-cell multinomial distribution.

$$\boldsymbol{r} = \{r_k\}_{k=1}^N = \{y_k/\sum_{k=1}^N y_k\}_{k=1}^N$$
 vector of proportions.

Issue: r could be sparse. Want to regularize it toward a more stable distribution $u=\{u_k\}_{k=1}^N$.

$$\underset{\boldsymbol{q} \in \mathbb{R}^N, \, q_k \geq 0}{\operatorname{minimize}} \quad \underbrace{\sum_{k=1}^N q_k \log \left(\frac{q_k}{u_k}\right)}_{\text{Kullback-Leibler divergence}} \quad \text{such that } \|\boldsymbol{q} - \boldsymbol{r}\|_{\infty} \leq \delta, \, \sum_{k=1}^N q_k = 1$$

We want a distribution q which is approximately equal to our observed proportions but at the same time as close as possible to a nominal distribution u.

Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015, page 41.

Why this problems falls in Poisson model framework? The previous minimization problem

$$\min_{\boldsymbol{q} \in \mathbb{R}^N, \, q_k \geq 0} \sum_{k=1}^N q_k \log \left(\frac{q_k}{u_k} \right) \text{ such that } \|\boldsymbol{q} - \boldsymbol{r}\|_{\infty} \leq \delta, \, \sum_{k=1}^N q_k = 1$$

has Lagrange dual

$$\underset{\beta_{0}, \boldsymbol{\alpha}}{\text{maximize}} \left\{ \sum_{k=1}^{N} r_{k} \left[\log u_{k} + \beta_{0} + \alpha_{k} - u_{k} e^{\beta_{0} + \alpha_{k}} \right] - \delta \|\boldsymbol{\alpha}\|_{1} \right\}$$

This is equivalent to fitting a Poisson model with offset $\log u_k$, individual parameter α_k and design matrix $X = \mathbb{I}_{N \times N}$.

Setting: Medical studies interested in time to death T of sick patients, usually characterized by the survivor function $S(t) := \mathbb{P}(T > t)$, the probability of surviving beyond a certain time t.

Some patients drop out the study or die because of unrelated causes: we call this situation a *censoring* time C.

 $Y:=\min(C,T)$ is the observed variable, together with an indicator $\delta:=\mathbb{I}_{\{Y=T\}}$ of whether the patient died *correctly* (because of the studied illness).

Hazard function: Instantaneous probability of death at time t, given survival up till t.

$$h(t) = \lim_{\delta \to 0} \frac{\mathbb{P}(Y \in \{t, t + \delta\} \mid Y \ge t)}{\delta} = \frac{f(t)}{S(t)}$$

where f(t) density of T.

Cox's model treats special cases of hazard functions:

$$h(t;x) = h_0(t)e^{\beta^{\top}x}$$

where x represents e.g. gene expressions and $h_0(t)$ is **baseline** hazard: hazard for one individual with x=0.

$$h(t;x) = h_0(t)e^{\beta^{\top}x}$$

Denote by $R_i := \{j \mid y_j \geq y_i\}$ the **risk set** of subject i (individuals which are still in the study when subject i dies), then the partial likelihood of subject i is given by

$$\mathbb{P}(Y_i = y_i) = \frac{h(y_i; x_i)}{\sum_{j \in R_i} h(y_j; x_j)} = \frac{e^{\beta^{\top} x_i}}{\sum_{j \in R_i} e^{\beta^{\top} x_j}}$$

Note that baseline hazard h_0 has no effect here.

The log-Likelihood is

$$\mathcal{L}(\beta; \boldsymbol{x}, \boldsymbol{\delta}) = \sum_{\substack{i : \delta_i = 1 \\ \text{died "correctly"}}} \log \left[\frac{e^{\beta^\top x_i}}{\sum_{j \in R_i} e^{\beta^\top x_j}} \right]$$

with corresponding ℓ_1 -penalized CPH problem:

$$\underset{\beta}{\text{minimize}} \left\{ -\sum_{i:\delta_i=1} \log \left[\frac{e^{\beta^\top x_i}}{\sum_{j\in R_i} e^{\beta^\top x_j}} \right] + \lambda \|\beta\|_1 \right\}$$

Problem: We want to estimate the survivor function S for N=240 Lymphoma patients with p=7399 variables measuring gene expressions. 102 of these samples are *right censored*, i.e. $Y=\min(T,C)=C$.

We select λ_{\min} via CV using the deviance.

Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015, page 45.

We use the ℓ_1 -penalized CPH problem to find $\hat{eta}(\lambda_{\min})$

Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015, page 44.

We use the **Kaplan-Meier estimator** of survivor function S(t): let $\hat{\eta}(x) := \hat{\beta}(\lambda_{\min})^{\top} x$, then

$$\widehat{S}(t) = \prod_{i:y_i \le t} \left(1 - \frac{e^{\widehat{\eta}(x_i)}}{\sum_{j \in R_i} e^{\widehat{\eta}(x_j)}} \right)$$

is an estimate of S(t). We use these in the following plot.

Example: Lymphoma

We create two groups $\{i: \hat{\eta}(x_i) > 0\}$ and $\{i: \hat{\eta}(x_i) \leq 0\}$, then we compute the estimate using them and the overall set, resulting in three curves.

Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015, page 42.

Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015, page 47.

$$\xi_i \ge 0 \ \forall i, \sum_{i=1}^{N} \xi_i \le C, \|\beta\|_2 = 1$$

Clear separation, no need for tolerance

Clear separation, no need for tolerance

Outlier Case, still separable

Outlier Case, C small

Outlier Case, C Big

The constraint can be seen as:

$$\begin{cases} f(x_i, \beta_0, \beta) \geq +1, & \text{when } y_i = +1 \\ f(x_i, \beta_0, \beta) \leq -1, & \text{when } y_i = -1 \end{cases}$$

This can be rewritten as $y_i f(x_i, \beta_0, \beta) \ge 1$ or

$$0 \ge 1 - y_i f(x_i, \beta_0, \beta)$$

By writing the Lagrangian equivalent of the original minimization problem (SVM), we get:

minimize
$$\left\{ \frac{1}{N} \sum_{i=1}^{N} [1 - y_i f(x; \beta_0, \beta)]_+ + \lambda \|\beta\|_2^2 \right\}$$

Decreasing λ corresponds to decreasing C.

We now want to compare ridge penalized logistic regression:

$$\underset{\beta_{0},\beta}{\operatorname{minimize}}\left\{\frac{1}{N}\sum_{i=1}^{N}\underbrace{\log(1+e^{-y_{i}f(x_{i},\beta_{0},\beta)})}_{\text{logistic loss}}+\lambda\left\|\beta\right\|_{2}^{2}\right\}$$

with the SVM problem:

$$\underset{\beta_{0},\beta}{\operatorname{minimize}}\left\{\frac{1}{N}\sum_{i=1}^{N}\underbrace{\left[1-y_{i}f(x;\beta_{0},\beta)\right]_{+}}_{\operatorname{hinge loss}}+\lambda\left\Vert \beta\right\Vert _{2}^{2}\right\}$$

Data is **separable**: there exists a hyperplane that separates the two cases. In this cases logistic regression has a problem:

$$\mathbb{P}(Y = 1 \mid X = x) = \frac{e^{\beta_0 + \beta^{\top} x}}{1 + e^{\beta_0 + \beta^{\top} x}}$$

Problem: When p >> N, the points are almost always separable.

Support Vector Machines vs Logistic Regression

Support Vector Machines vs Logistic Regression

Source: Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015, page 33.

From logistic regression we can construct a **linear classifier** in order to compare it with SVM:

If $\mathbb{P}(Y = -1 \mid X = x_{\text{observed}}) > 0.5$ then $y_{\text{predicted}} = -1$ and vice versa.

This is linear, because:

$$\mathbb{P}(Y = -1 \mid X = x) = \frac{1}{1 + e^{\beta_0 + \beta^\top x}} = \frac{1}{2} \iff e^{\beta_0 + \beta^\top x} = 1$$
$$\beta_0 + \beta^\top x = \log(1) = 0$$

Consider the Boundary $B = \{x \in \mathbb{R}^p | f(x) = 0\}$, where

$$f(x) = \beta_0 + \beta^{\top} x$$

Then the distance between the boundary and the point x_0 is

$$\operatorname{dist}(x_0, B) = \inf_{z \in B} \|z - x_0\|_2 = \frac{|f(x_0)|}{\|\beta\|_2}$$

So we find that the optimal separating plane $f^*(x) = 0$ has margin

$$M_{2}^{*} = \max_{\beta_{0},\beta} \left\{ \min_{i \in \{1,\dots,n\}} \frac{y_{i}f(x_{i},\beta_{0},\beta)}{\|\beta\|_{2}} \right\}$$

Consider the problem

$$\underset{\beta_{0},\beta}{\operatorname{minimize}}\left\{\frac{1}{N}\sum_{i=1}^{N}\log(1+e^{-y_{i}f(x_{i},\beta_{0},\beta)})+\lambda\left\|\beta\right\|_{2}^{2}\right\}$$

Let $(\tilde{\beta_0}(\lambda), \tilde{\beta}(\lambda))$ be the solution, then

$$M_2^* = \lim_{\lambda \to 0} \left\{ \min_{i \in \{1, \dots, N\}} \frac{y_i f(x_i, \tilde{\beta}_0(\lambda), \tilde{\beta}(\lambda))}{\left\| \tilde{\beta}(\lambda) \right\|_2} \right\}$$

So for $\lambda \to 0$ we have that the ℓ_2 -regularized logistic regression corresponds to the SVM solution.

In particular, if $(\breve{\beta}_0,\breve{\beta})$ solve the SVM problem for C=0, then we have that:

$$\lim_{\lambda \to 0} \frac{\tilde{\beta}(\lambda)}{\left\|\tilde{\beta}(\lambda)\right\|_2} = \breve{\beta}$$

Note that the division by the ℓ_2 norm of $\tilde{\beta}(\lambda)$ makes sure that the solution on the SVM problem does not blow up.

To summarize:

- As $\lambda \to 0$, logistic regression and SVM solutions coincide.
- SVM leads to a more stable numerical method for computing the solution in this region.
- Logistic regression is more useful in the sparser part of the solution path.

- Marcel Dettling, Applied Statistical Regression, Fall Semester 2017.
- Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the Lasso and generalizations. CRC Press, 2015, Chapter 3.