Assignment 6 Report

Saurabh Daptardar, Srikanth Kuthuru

November 28, 2017

1 Problem 1:

Notation: X denote the random variable, x and $\neg x$ denote True and False respectively. Utility function:

$$U(P,B) = \begin{cases} 0 & \neg p, \neg b \\ -100 & \neg p, b \\ 2000 & p, \neg b \\ 1900 & p, b \end{cases}$$

Figure 1: Decision Network

•

• Expected utility of buying the book:

$$U(b) = \mathbf{E}_{P|b}[\ U(P,b)\]$$

$$= \sum_{P} U(P,b) \Pr(P|b)$$

$$= U(p,b) \Pr(p|b) + U(\neg p,b) \Pr(\neg p|b)$$

$$\Pr(P|b) = \sum_{M} \Pr(P|b,M) \Pr(M|b)$$

$$= \langle 0.9, 0.1 \rangle 0.9 + \langle 0.5, 0.5 \rangle 0.1$$

$$= \langle 0.86, 0.14 \rangle$$

$$\implies U(b) = 1900 \times 0.86 + (-100) \times 0.14$$

$$= \mathbf{1620}$$

Similarly calculating expected utility of not buying the book:

$$U(\neg b) = \mathbf{E}_{P|\neg b}[\ U(P, \neg b)\]$$

$$= \sum_{P} U(P, \neg b) \Pr(P|\neg b)$$

$$= U(p, \neg b) \Pr(p|\neg b) + U(\neg p, \neg b) \Pr(\neg p|\neg b)$$

$$\Pr(P|\neg b) = \sum_{M} \Pr(P|\neg b, M) \Pr(M|\neg b)$$

$$= \langle 0.8, 0.2 \rangle 0.7 + \langle 0.3, 0.7 \rangle 0.3$$

$$= \langle 0.65, 0.35 \rangle$$

$$\implies U(\neg b) = 2000 \times 0.65 + 0 \times 0.35$$

$$= \mathbf{1300}$$

• From above values it is clear that the optimal decision for Sam would be to **buy** the book

2 Problem 2:

- Required code is provided in the folder ner.
- For Problem 2.3: Gibbs sampling for linear chain CRFs Using chain rule we get:

$$P(y_t/y_{-t}, x_s, \theta) = \frac{P(y_t, y_{-t}/x_s, \theta)}{\sum_{y_t} P(y_{-t}/x_s, \theta)} = \frac{G(y_{t-1}, y_t, x_s, \theta)G(y_t, y_{t+1}, x_s, \theta)}{\sum_{y_t} G(y_{t-1}, y_t, x_s, \theta)G(y_t, y_{t+1}, x_s, \theta)}$$
(1)

3 Problem 3:

3.1 Spam Classification

3.1.1 Rule based system

	k = 10000	k = 20000	k = 30000
n=1	0.158255	0.105919	0.471028
n=2	0.205607	0.096573	0.457321
n=3	0.256075	0.110903	0.432399

Table 1: Dev error rate

3.1.2 Linear Classifiers

Code attached

3.1.3 Learning

no. examples	dev error rate
500	0.094081
1000	0.057321
1500	0.043614
2000	0.040498
2500	0.043614
3000	0.036760
3500	0.034268
4000	0.044860
4500	0.031776
5000	0.024922

Table 2: Varying number of examples

3.2 Sentiment Classification

	training error rate	dev error rate
Unigram	0.026764	0.247191
Bigram	0.00	0.224719

Table 3: Varying number of examples

For rest of the parts find code attached.

4 Problem 4:

Code is provided the image classification folder.

5 Problem 5:

- C															
V															
9999			Weig	ints											
		yles					1	-							
7	Sam	Mp -	W,	Wz	W3	N4	ط		= or	100	iha.	+			
*			.0	0	0	0	-0.5								
19		1.	72	1 .		1									
19			0	\	0		0.5					-			
1			0	1	-1	1	-0.5								
79			-1	1	-1	0	-1.5		ten	may !					
			-1	2	10	0	-0.5	mes 1							
			-1	2	0	0	-0.5	lerris (
D D			-1	2			-0.5								
9	1			2	0	1			41			4			
	-	3+ 6	0	15-0	0	6	0.5	314 8	N	-49	John	8			
-			0	2	-1	-1	-0.5	/							
3			1	2	0	-17	0.5							-	
-						. 0	,	dies							
9		V			١,			(,	• •		7				
9	153							1,							
3			this.	set δ	k wer	ghts	7L	sult	mi	_2	eno-t	vaini	nge	voi	•
3		Sojun	nless K	e ho	ainine	g dat	la C	hang	2,th	est	weet	ghts	wit	l mo	t
9		char		11	4	2501					-	-			
9				4 4	5 1	-2			3						
9	7		Elve			~	1								
9	b) -			,	4	ocome	144	ALA!							
			disca	don	الم و منا	£50K	7	sok .	1	of full	043	100	1[[
					BS	4	3	0	4				•	12 mg10	= 0.29
	17 C		75.0		MS	0		2	2_					11	Cone
•				- 60	hD	2		2_	4					in	
5				1,	1		-	<u>.</u>					11	To	sh
					(4) Vic	6	0)-	4 11-1						0-6	17
)	•		Entro	pyh	(0) 1	6 +	0(.	2)+	. 008	(1)	(4)			-	
				-	0-4		4	p. 0 . (V	4				
			i da			-	۸ ـ ۸	Cos o-	6	196	1000	1			
			Witte	m km	moka		7, 0		-0.	t los	0.4	= 0.	97		
									Vo.						

	Test !	Set	predictions				
	(i) (i	Ph D	male	عں	っ	7 50 K	
	O p	h D	male	mm US	-)	< 50K	
	B 1	15	Semale	non U	S -	-) 756K	
c)	Neura	d Ned	works +			Relu ac	faction f ⁿ .
	Same	encod	ing as the b	erceptron	3m Q.	max_ife	rations = 250 o
	•	n-hod	den layers	CV. Trainin	g-evror	Test	fredition
			2	0.56973	(69-655) • 0.49	de	101
			3		0.127		101
			4	235			
			5	le l		Sa Derives Ce	10) me (101
							on tyt set
						as Deci	sin Tree.
•	Francel	freds	- tomos	m of	hem for	set.	Some
				on the	Test	set.	
	·						
No.							
	-						