Теория Вероятностей

Автор конспекта Федоров И.И. По лекциям Савинова Е.А.

25 июня 2015 г.

Содержание

1 Вероятностное пространство

1

1 Вероятностное пространство

Определение 1. Теория вероятностей — раздел математики, изучающий случайные события. Теория вероятностей занимается явлениями, которые могут произойти некоторое число раз и обладают свойством статистической устойчивости.

Определение 2. *Случайное событие* – событие, которое при осуществлении некоторых условий может произойти или не произойти.

Определение 3. Событие называется *достоверным*, если в результате испытаний оно обязательно происходит.

Определение 4. Событие называется невозможным, если в результате испытаний оно произойти не может.

Определение 5. События называются *несовместными*, если в результате испытания они не могут произойти вместе.

Определение 6. Совокупность $\mathfrak A$ подмножеств множества Ω называется *алгеброй множеств*, если выполняются условия:

- 1. $\Omega \in \mathfrak{A}$
- 2. $\forall A, B \in \mathfrak{A} \Rightarrow A \cup B \in \mathfrak{A}, \bar{A} \in \mathfrak{A}$

Определение 7. Алгебра $\mathfrak A$ подмножеств Ω называется σ -алгеброй множеств, если для любого счетного набора множеств $\{A_i\}_{i\in\mathbb N}\in\mathfrak A:\bigcup_{i\in\mathbb N}A_i\in\mathfrak A$.

Определение 8. Пусть $\{\mathfrak{A}_i\}_{i\in I}$ — набор алгебр подмножеств множества Ω , тогда их пересечение это множество $\{A\subset\Omega:A\in\mathfrak{A}_i, \forall i\in I\}$.

Утверждение 1. Пересечение σ -алгебр является σ -алгеброй.

Определение 9. Пусть $\mathfrak A$ — некоторая совокупность подмножеств Ω , пересечение всех σ -алгебр содержащих $\mathfrak A$ называется наименьшой σ -алгеброй содержащей $\mathfrak A$ или σ -алгеброй порожденной $\mathfrak A$, и обозначается $\sigma(A)$.

Определение 10. Неотрицательная функции $\mu: \mathfrak{A} \to \mathbb{R}_+$ называется конечно-аддитивной мерой, если $\forall: A, B \in \mathfrak{A}, A \cap B = \emptyset: \mu(A+B) = \mu(A) + \mu(B)$.

Определение 11. Конечно-аддитивная мера $\mu:\mathfrak{A}\to\mathbb{R}_+$ называется счетно-аддитивной, если $\forall A_1,\ldots,A_n,\ldots\in\mathfrak{A},A_i,A_j=\emptyset,i\neq j:\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\sum_{i=1}^\infty\mu(A_i).$

Определение 12. Вероятностным пространством называется тройка $(\Omega, \mathfrak{F}, \mathbb{P})$, где Ω – пространство элементарных событий, $\mathfrak{F} - \sigma$ -алгебра подмножеств Ω ,