Московский физико-технический институт (национальный исследовательский университет) Факультет общей и прикладной физики

Вопрос по выбору в 6 семестре (Основы современной физики)

Эффект Мессбауэра

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2019 год

1. Введение

В данной работе будет обсуждаться вопросы испускания и поглощения атомами твердого тела фотонов (которые возникают при переходе между возбужденными состояниями) и связанный с этим процессом **эффект Мессбауэра**, заключающийся в бесфононном снятии возбуждения или резонансном поглощении γ -квантов.

Для сравнения сначала будет кратко описан процесс взаимодействия γ -квантов и свободных атомов, а затем уже подробно для атомов, закреплённых в кристаллических решетке твердого тела. Будут приведены выкладки для рассчета эффекта Мессбауэра. В завершение работы будет проиллюстрирован эффект резонансного поглощения γ -лучей на примере возбужденных ядер олова ¹¹⁹ Sn в соединении BaSnO₃ при комнатной температуре. Экспериментальные результаты были получены автором в ходе выполнения лабораторной работы № 5.6.1 в 5 семестре.

2. Испускание и поглощение в свободных атомах

Рис. 1: Возбужденное состояние ядра (а), и сдвиг линий испускания/поглощения из-за отдачи(б) не перекрываются (рис. 1б).

Рис. 2: Перекрытие линий в силу доплеровского уширения

Известно, что атомы могут находится в возбужденных состояниях на определенных (дискретных уровнях), и при переходе из одного состояния в другое они испускают или принимают квант энергии (или же фотон, он же γ -квант), равный разности энергий между уровнями. При этом в силу принципа неопределённости возбужденные уровни имеют конечную ширину $\Gamma \simeq \hbar \tau$.

При испускании (поглощении) фотона с импульсом $p_{\gamma}=E_{\gamma}/c$ ядро приобретает в силу ЗСИ импульс $p_{\pi}=p_{\gamma}$ и энергию отдачи R

$$R = \frac{P_{\rm g}^2}{2M_{\rm g}} = \frac{E_{\gamma}^2}{2M_{\rm g}c^2} \tag{1}$$

В силу того, что обычно E_{γ} порядка десятков-сотен кэВ, а масса ядер измеряется в ГэВ, энергия отдачи оказывается порядков мэВ. Однако в силу малости Γ сдвинутые линии

При перекрытии же происходит как раз резонансное поглощение: проходя через невозбужденные атомы, γ -излучение соответствующей частоты переводит атомы в возбужденное состояние, которое затем испускает фотоны той же частоты. Однако сдвиг энергии отдачи не позволяет этому происходить.

В случае движении испускающих и поглощающих атомов со скоростью $v=c\cdot 2R/E_{\gamma}$ происходит доплеровское уширение линии $D=E\gamma\cdot v/c$ (рис. 2). Приведем численные оценки для ядра олова ¹¹⁹ Sn:

$$E_0 \approx E_\gamma = 23.8 \text{ кэВ}, \quad R \approx 2.5 \cdot 10^{-3} \text{ эВ}, \quad v \simeq 60 \text{ м/c}, \quad D \approx 1.5 \cdot 10^{-2} \text{эВ}, \quad \Gamma \simeq 3 \cdot 10^{-8} \text{ эВ}$$

Таким образом, фотоны с энергией, попадающей в область перекрытия линий, могут создавать резонансное поглощение в свободных атомах.

3. Испускание и поглощение в твердых телах

3.1 Качественное объяснение

В случае взаимодействия фотонов с атомами, закреплёнными в кристаллической решетке, при поглощении или испускании фотонов импульс отдачи передается всему твердому телу как целому (считая, что энергия отдачи много меньше энергии связи). В силу этого возникают колебания решетки и рождение квантов этих колебаний — фононов.

Эффект Мессбауэра состоит в том, что при низких температурах и не очень больших энергиях возможно поглощение (испускание) фотонов без рождения фотонов. В таком случае энергия отдачи передается всему кристаллу, и в силу обратной пропорциональности массе мы получаем несмещенные линии испускания/поглощения.

В 2000 году в журнале Hyperfine Interactions[3] Мессбауэр привёл такую наглядную интерпретацию эффекта:

Ситуация . . . напоминает человека, прицельно бросающего камень из лодки. Большую часть энергии согласно закону сохранения импульса получает лёгкий камень, но небольшая часть энергии броска переходит в кинетическую энергию получающей отдачу лодки. Летом лодка просто приобретёт некоторое количество движения, соответствующее отдаче, и отплывёт в направлении, противоположном направлению броска. Однако зимой, когда озеро замерзнет, лодку будет удерживать лёд, и практически вся энергия броска будет передана камню, лодке (вместе с замерзшим озером и его берегами) достанется ничтожная доля энергии броска. Таким образом, отдача будет передаваться не одной только лодке, а целому озеру, и бросок будет производиться «без отдачи».

3.2 Вычисление вероятности эффекта

Рассмотрим, как это происходит. В модели твердого тела Эйнштейна будем считать, что каждый атом колеблется независимо, подобно гармоническому осциллятору в потенциальной яме, образованной силой взаимодействия с соседями по решетке. В таком случае спектр возбуждений кристалла — уровни $E_n=(n+1/2)E_{\rm Д}$, т.е. эти колебания распостраняются квантамифононами с дебаевской энергией

$$E_{\mathrm{A}} = \hbar \omega_{\mathrm{A}} = \pi \hbar s / a = k_{\mathrm{B}} \Theta$$

где параметры кристалла: s — скорость звука, $a=\lambda_{\rm Д}/2$ — расстояние между атомами, $\Theta=\hbar s k_{\rm Д}$ — температура Дебая. Процесс взаимодействия с γ -квантом можно интерпретировать

как случаный, в ходе которого вероятность случайной величины (переданной энергии в размере n фононов) распределена по Пуассону в силу независимости событий:

$$P(n) = \frac{\mu^n}{n!} e^{-\mu}$$

Параметр μ — среднее число событий за заданный период времени — в нашем случае равен среднему числу квантов колебаний с энергией $\hbar\omega_{\rm Д}$, возбужденных энергией отдачи R, т.е. $\mu=\frac{R}{\hbar\omega_{\rm П}}$. Нас интересует вероятность события, в котором родилось n=0 фононов, т.е.

$$f = P(0) = \exp\left(-\frac{R}{\hbar\omega_{\perp}}\right) \tag{2}$$

Преобразуем это выражение в следующий вид. Для частицы с массой M, колеблющейся с частотой ω , потенциальная энергия

$$\langle U \rangle = \frac{1}{2} M \omega^2 \langle u^2 \rangle = \langle K \rangle = \frac{1}{2} E_0 = \frac{1}{4} \hbar \omega \implies \langle u^2 \rangle = \frac{\hbar}{2M\omega}$$

Здесь $\langle u^2 \rangle$ — среднеквадратичное смещение, а для равенства U=K=E/2 была использована теорема вириала. Подставив (1) вместо R в формулу (2) и заменив $\lambda=2\pi\hbar c/E_{\gamma}$, мы получаем

$$\frac{R}{\hbar\omega_{\Pi}} = \frac{E_{\gamma}^{2}}{2Mc^{2}\hbar\omega_{\Pi}} = \frac{E_{\gamma}^{2}}{\hbar^{2}c^{2}} \frac{\hbar}{2M\omega_{\Pi}} = 4\pi^{2} \frac{\langle u^{2} \rangle}{\lambda^{2}} \implies f = \exp\left(-4\pi^{2} \frac{\langle u^{2} \rangle}{\lambda^{2}}\right)$$
(3)

Из этого выражения следует, что вероятность излучения кванта без потери на возбуждение колебаний решетки (рождения фононов) велика тогда, когда амплитуда колебаний атома в решетке мала по сравнению с длиной волны излучаемого ядром γ -кванта. Понятно, что амплитуда колебаний пропорциональна температуре, а длина волны γ -кванта обратна его энергии. Этим и обусловлены условия, при котором вероятность эффекта Мессбауэра f велика: низкие температуры и не слишком большие энергии фотонов.

3.3 Рассмотрение зависимости от температуры

Попробуем получить более явную зависимость от температуры в общем случае. В самом деле, запишем теорему вириала в виде

$$E_n = \hbar\omega(k)\left(n(k) + \frac{1}{2}\right) = 2\langle U \rangle = M\omega^2\langle u^2 \rangle$$

С учетом того, что фононы — бозоны с тремя поляризациями (одна продольная и две поперечных), в модели $\omega = sk$ мы получаем

$$\langle u^2 \rangle = 3V_{\text{\tiny H}} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{\hbar}{skM} \left(\frac{1}{\exp(\frac{\hbar\omega}{k_{\text{\tiny B}}T}) - 1} + \frac{1}{2} \right) = 3V_{\text{\tiny H}} \int_{0}^{k_{\text{\tiny H}}} \frac{k^2 dk}{2\pi^2} \frac{\hbar}{sMk} \left(\frac{1}{\exp(\frac{\hbar sk}{k_{\text{\tiny B}}T}) - 1} + \frac{1}{2} \right)$$

Сделав в первом члене замену $x=\frac{\hbar sk}{k_{\mathrm{B}}T},$ мы получаем

$$\langle u^2 \rangle = \frac{3V_{\rm s}}{2\pi^2 sM} \left(\frac{k_{\rm B}^3 T^3}{\hbar^2 s^3} \int_{0}^{\frac{\hbar s k_{\perp}}{k_{\rm B} T}} \frac{x \, dx}{e^x - 1} + \frac{\hbar k_{\perp}^2}{4} \right)$$

Таким образом, мы видим, что действительно амплитуда колебаний пропорциональная температуре в силу первого члена, и при низких температурах мы можем получить (пользуясь $\frac{(2\pi)^3}{V} = \frac{4}{3}\pi k_{\rm Д}^3)$

$$\langle u^2 \rangle \xrightarrow{T \longrightarrow 0} \frac{3 \cdot 6\pi^2 \hbar k_{\text{A}}^2}{8\pi^2 s M k_{\text{A}}^3} = \frac{9\hbar^2}{4M k_{\text{B}} \Theta}$$

Подставляя это в наше выражение для эффекта Мэссбауэра (3) и возвращаясь к энергии E_{γ} , мы получаем

$$f = \exp\left(-\frac{3}{4} \frac{E_{\gamma}^2}{Mc^2 k_{\rm B}\Theta}\right)$$

В задании была задача Т.5 для кристалла ¹⁹³ Іг с энергией γ -кванта $E_{\gamma}=129$ кэВ, $\Theta=430$ К. Можно получить максимальную вероятность эффекта $f\approx15\%$.

Если же не пользоваться приближение низких температур и оценить средную амлитуду колебаний просто из теплового движения

$$\langle u^2 \rangle \simeq \frac{k_{\rm B}T}{M\omega_{\rm H}} \Rightarrow f = \exp\left(-\frac{E_{\gamma}^2}{Mc^2}\frac{T}{k_{\rm B}\Theta^2}\right)$$

4. Экспериментальное наблюдение эффекта

4.1 Описание работы

В лабораторной работе № 5.6.1. изучается эффект Мессбауэра следующим образом. γ -излучение возбужденных ядер ¹¹⁹ Sn соединения BaSnO $_3$ пропускается через резонансный поглотитель со стабильными ядрами ¹¹⁹ Sn. Пройдя через него, излучение регистрируется сцинтилляционным спектрометром.

Наблюдение резонансного поглощения основано на методе доплеровского сдвига линий испускания и поглощения. Для этого поглотителю придается небольшая скорость $v=c\cdot 2\Gamma/E_{\gamma}$. Мессбауэровская линия очень узка, и для наблюдения резонанса хватает скорости порядка миллиметра в секунду.

Вообще говоря, при идентичных кристаллических решетках, линия испускания полностью перекрывается с линией поглощения, и максимальное поглощение наблюдается при нулевой скорости (рис. 3). Однако в химических сплавах (как наш BaSnO₃) из-за влияния электростатических сил происходит смещение максимума поглощения, и его можно «поймать» при

Рис. 3: Спектр упругого резонансного поглощения γ -квантов. Источник и поглотитель находятся в идентичных кристаллических решетках. Неупругое поглощение обусловлено главным образом взаимодействием γ -лучей с атомными электронами

отличной от нуля скорости. Такое смещение называется **химическим сдвигом**. Его можно рассчитать по формуле

$$v_p = \frac{\Delta E}{E_0} c \tag{4}$$

Для подсчета «амплитуды» эффекта Мессбауэра определяется безразмерная величина

$$\varepsilon(v) = \frac{N(\infty) - N(v)}{N(\infty) - N_{\Phi}} \tag{5}$$

где N(v) — скорость счета квантов, прошедших через поглотитель при некоторой скорости $v,\ N(\infty)$ — скорость счета квантов при достаточно большой скорости, когда резонансное поглощение отсутствует, N_{Φ} — скорость счета радиоактивного фона.

Измеряемая на опыте ширина резонансной линии $\Gamma_{\rm экс}$ — результат наложения линий источника и поглотителя. При тонких поглотителях и источниках и при отсутствии вибраций ширина линии равна удвоенной естественной ширине 2Γ (см. рис. 3).

На рис. 3 кривая задается формулой Брейта-Вигнера (лоренцева кривая):

$$\sigma(E) \propto \frac{(\Gamma/2)^2}{(E - E_0)^2 + (\Gamma/2)^2}$$

4.2 Экспериментальные результаты для разных поглотителей

Быри проведены измерения резонансного поглощения на 4-ех образцах: №1, №2, №3 — это олово разной толщины, а №4 — SnO_2 . Экспериментальные точки и их фиты приведены на графиках. Результаты всех 4-ех фитов сведем в таблицу 1.

Рис. 4: Резонансное поглощение на 1-ом поглотителе

Рис. 5: Резонансное поглощение на 2-ом поглотителе

Рис. 6: Резонансное поглощение на 3-ом поглотителе

Рис. 7: Резонансное поглощение на 4-ом поглотителе

В полученных параметрах фита: b — величина фона, из которого мы «вычитаем» мэсбауэровский пик, 2c — ширина резонансной линии $\Gamma_{\rm экc}$, а X — величина химического сдвига. Под χ^2_{ν} имеется ввиду критерий χ^2 , отнесенный к числу степеней свободны.

 566 ± 31

 1580 ± 5

4

 χ^2_{ν} $N_{\overline{0}}$ $b, c^{-1},$ ac, MM/cX, MM/c 0.43 ± 0.04 1,68 1 103 ± 6 990 ± 4 $2,41 \pm 0,03$ 2 114 ± 5 620 ± 3 0.49 ± 0.04 $2,48 \pm 0,02$ 1,59 41 ± 3 163 ± 1 0.58 ± 0.06 $2,46 \pm 0,03$ 3 1,43

 0.78 ± 0.05

 -0.156 ± 0.015

2,63

Таблица 1: Результаты фитирования кривой резонансного поглощения

На основе полученных результатов фитов мы можем вычислить амплитуды поглощения по формуле (5).

С учетом того, что $N(\infty)=b,\ N(v)=y(X)$, мы можем подсчитать искомую величину. По формуле $\Gamma_{\text{экс}}=E_{\gamma}\cdot v/c$ мы можем оценить ширину уширения линии $\Gamma_{\text{экс}}$ в эВ, подставляя как $v=2c, E_{\gamma}=23.8$ кэВ (c- параметр фита). Также из (4) мы можем подсчитать химический сдвиг ΔE в эВ, подставляя в качестве $v_r=X$. Вычисление параметров для всех поглотителей сведено в таблицу.

Таблица 2: Результаты работы

Nº	$arepsilon_i,\%$	$\Gamma_{\text{экс}}, \text{мм/c}$	$\Gamma_{\rm skc}, 10^{-8} \cdot {\rm sB}$	$v_{ m p},{ m mm/c}$	$\Delta E, 10^{-7}\cdot, \text{ 9B}$
1	$10,6 \pm 0,9$	0.86 ± 0.08	7.3 ± 0.6	$2,41 \pm 0,03$	$1,91 \pm 0,02$
2	$18,9 \pm 1,5$	0.98 ± 0.09	7.8 ± 0.7	$2,48 \pm 0,02$	$1,97 \pm 0,01$
3	$28,1 \pm 0,9$	$1,116 \pm 0,12$	$9,2 \pm 0,8$	$2,46 \pm 0,03$	$1,95 \pm 0,02$
4	$36,1 \pm 3,2$	$1,56 \pm 0,11$	$12,3 \pm 1,3$	-0.156 ± 0.015	-0.123 ± 0.006

Полученные результаты соотносятся с теоретическими расчетами. Уширение резонансной кривой по сравнению с $2\Gamma = 6 \cdot 10^{-8}$ эВ происходит при увеличении ширины поглотителя.

Использованная литература

- [1] Лабораторный практикум по общей физике: учеб. пособие. В трёх томах. Т. 2. Оптика / А.В. Максимычев, Д.А. Александров, Н.С. Берюлёва и др.; под ред. А.В. Максимычева. М.: МФТИ, 2014. 446 с.
- [2] Ципенюк Ю.М. Квантовая микро- и макрофизика. М.: Физматкнига, 2006.-640 с.
- [3] Rudolf L. Mössbauer. The discovery of the Mössbauer effect (англ.) // Hyperfine Interactions. 2010. Vol. 126. P. 1—12. DOI:10.1023/A:1012620106837.