Lecture 16 More Rotations Meshes

Last Time

- 3D review
- Rotations

Today

- Rotations
- Meshes

How to represent rotations?

- 1. 3x3 Matrix (or 4x4) (9 numbers)
- 2. Euler Angles (3 numbers)
- 3. Axis Angle (4 numbers: vector + angle)
- 4. Unit Quaternion (4 numbers: magnitude 1)

How do choose?

Understanding Euler Angles

- 1. Single Axis Rotations
- 2. Ordered Rotations
- 3. Local vs. Global
- 4. Different Sets of Euler Angles

Composition

One rotation after another...

how to get the combined rotation?

Composing Rotations

In a single axis (like in 2D):

$$R_z(a)\circ R_z(b)=R_z(a+b)$$

With different axes, this does not hold!

$$R_x(a)\circ R_y(b)=R_?(?)$$

And things in between cause problems

$$R_x(a)\circ R_y(b)\circ R_x(c)
eq R_x(a+c)R_y(b)$$

Getting Stuck

Rotate about X then Y

Rotate about Z is the same as the first rotate about X

Gimbal Lock

No matter what X is, Y=90 aligns Z with it

- There is no way to get the Y axis out of the X=0 plane
- We lost a degree of freedom

(demo EulerToy3)

Axis Angle (Euler's other theorem)

Demo: et-axisangle

Downsides:

- hard to figure out what axis
- hard to compose

Rotation Matrices

- hard to interpret
- easy to "drift"
- hard to insure it's a rotation
 - Gramm Schmidt Orthonomalization

Unit Quaternions

4 numbers:

- Axis angle: θ , $\hat{\mathbf{n}}$
- Unit quaternion: $\cos(\frac{\theta}{2}), \sin(\frac{\theta}{2})\mathbf{\hat{n}}$
- Will have magnitude 1

Why?

What is a Quaternion anyway?

4-dimensional complex number

Consider 2D complex numbers (a + bi)

- we can do arithmetic on them
- multiplication is meaningful

4D Complex Numbers?

Don't worry... you can look up:

- formulas to multiply
- formulas to convert to Matrix form
- formulas to interpolate (and preserve unit-ness)

but you should know...

- these formulas exist
- multiplication preserves unit-ness
- multiplication composes transformations

Why is this better? (or is it?)

- No Gimbal Lock (but antipodes)
- Represents orientations
- Close things are close (except for sign flips)

But Really:

- Easy to compose
- Easy to interpolate (not linear interpolation)
- Other nice math (interpolation)
- 3x3 rotation matrices are a pain
- Easy to fix drift

Convert to Quaternions

(Other direction is MUCH harder)

Axis angle
$$(\theta, \hat{\mathbf{v}}) \rightarrow (\cos(\frac{\theta}{2}), \sin(\frac{\theta}{2})\hat{\mathbf{v}})$$

Euler Angles XYZ (x,y,z)

- make a quaterion for each $(\cos(\frac{x}{2}), sin(\frac{x}{2}[1,0,0]))$
- multiply the quaternions together

THREE.js and rotations

Internally, stores quaternions

- it provides all conversions
- it does conversions automatically (beware errors!)
- it provides good quaternion functions
- it gives you operations using other forms
 - axis angle, euler angle, matrix,

You never **need** to see the quaternions... unless you want to

THREE and Rotations

State (variables / orientation)

matrix (normalMatrix, ...)

position

scale

quaternion

rotation

Transforms (motions / rotations)

applyMatrix4

translate (x,y,z, onAxis, ...)

applyQuaternion

rotate (x,y,z, onAxis, ...)

lookAt, setFrom are special (a method that sets) an absolute orientation

Internally...

The quaternion is used for everything

If you do something else, it is converted to the quaternion

If you apply a matrix it must be **decomposed** into rotate, translate, scale

```
applyMatrix: function ( matrix ) {
          this.matrix.multiplyMatrices( matrix, this.matrix );
          this.matrix.decompose( this.position, this.quaternion, this.scale );
}, // in Object3D.js
```

Internally

```
translateX: function () {
        var v1 = new Vector3( 1, 0, 0 );
        return function translateX( distance ) {
                return this.translateOnAxis( v1, distance );
        };
}(),
translateOnAxis: function () {
        // translate object by distance along axis in object space
        // axis is assumed to be normalized
        var v1 = new Vector3();
        return function translateOnAxis( axis, distance ) {
                v1.copy( axis ).applyQuaternion( this.quaternion );
                this.position.add( v1.multiplyScalar( distance ) );
                return this;
        };
}(),
                              18
```

Old School JavaScript hidden constant

```
translateX: function () {
    var v1 = new Vector3( 1, 0, 0 );
    return function translateX( distance ) {
        return this.translateOnAxis( v1, distance );
    };
}(),
```

A Special Rotation: LookAt

Point the Z axis towards a point

- Useful for cameras
- Useful for other objects

Note this is not unique

Only specifies 2 dergees of freedom

Up Vector!

Lookfrom / Lookat / Up

- In Three
 - position of object center
 - lookat method
 - up vector (object property)

Internally, it will convert to quaternion

Geometric Derivation

- 1. Point z at target normalize(at from) (at from)
- 2. Find x (right) as $\widehat{up} imes z$
- 3. Find y (local up) as $z \times x$

Notice: we have built a rotation matrix!

It has all the right properties

We never figured out angles

Rotations Summary: What you need to know

- 1. Basic facts (rigid, orthonormal, composition, ...)
- 2. Single Axis Rotations
- 3. Euler Angles be able to think about them
 - local vs. global
 - how things compose (and complexities)
- 4. Axis Angle forms understand what they are
- 5. Quaternions
 - basic facts and know they are inside THREE
- 6. Lookfrom/Lookat/VUp
- 7. Use in THREE (including centers)

Meshes

Collections of Triangless

- Vertex Sharing
- Vertex Re-Use
- Index Set Representations

Good Meshes

- Consistency of Handedness
- Avoid Cracking
- Avoid T-Junctions

Why Not Polygon Soup?

- more efficient
- easier to maintain
- easier to check for problems

Mesh Properties (in THREE)

Information about Meshes (the whole object)

Information about Faces

not supported anymore - just which vertices

Information about Vertices

positions, normals, colors, ...

Why vertex normals?

Normals (in math) are a property of a surface (not a point)!

A triangle has a normal

Normals in graphics... might be fake

Fake Normals

Fake Normals

Why vertex normals?

Normals (in math) are a property of a surface (not a point)!

Normals in graphics often are associated with vertices

- Fake smooth surfaces (normals in between faces)
- it's the way hardware works

But what if we really want triangles (not smooth)?

Vertex Splitting

Position is the same - what about other properties?

Underlying hardware: a vertex has the same properties

What if each triangle is a different color?

Good Triangles

- not too small
- not too elongated

Mesh Operations / Representation

Efficient Display and Storage

- Compact
- Maps well to hardware
 - strips / fans
 - caches
 - format issues

Efficient Manipulation (Fancy Data Structures)

not in class

In THREE

- BufferGeometry
 - similar content
 - efficient representations (typed arrays)
 - o designed for easy transmission to hardware
 - Need to understand buffers first

Buffers?

Blocks of memory

Organize for efficient transmission and use

- fixed data type (not dynamic types)
- fixed layout

Attribute Buffers

- fixed data type (e.g., Float32)
- fixed item length (e.g., 3 for 3D point)
- THREE calls them BufferAttributes

```
const mem = new Float32Array([1, 2, 3, 4, 5, 6, 7, 8, 9]);
const buf = new T.BufferAttribute(mem, 3);
```

Note:

- Float32Array type
- 3 values per vertex

Interleaved vs. Non-Interleaved Buffers

Buffer Geometry

- Used to make a mesh
- Attach buffers

```
const mem = new Float32Array([1, 2, 3, 4, 5, 6, 7, 8, 9]);
const buf = new T.BufferAttribute(mem,3);

const geom = new T.BufferGeometry();
geom.setAttribute("position",buf);
```

Whatever attributes the material will want/need

```
const geom = new T.BufferGeometry();
const mem = new Float32Array([/* 4 \text{ verts } * 3 \text{ vals/vert } = 12 \text{ numbers*/}]);
const buf = new T.BufferAttribute(mem,3);
geom.setAttribute("position", buf);
const cmem = new Float32Array([ /* 12 numbers */]);
geom.setAttribute("color", new T.BufferAttribute(cmem,3));
const nmem = ... /** set up array of normals */;
geom.setAttribute("normal", new T.BufferAttribute(nmem,3));
// and so on...
                                       40
```

Triangles from vertices

1. Triangle soup (v0,v1,v2), (v3, v4, v5), ...

2. Indexed

setIndex - takes a list of vertex numbers (integers)technically its a buffer (3 verts/triangle, 1 integer per vertex)

How are colors combined?

- The material can have a color(s)
- The face can have a color
- The vertices can have colors
- The texture can provide a color (next week)

In THREE:

- material chooses face colors or a single color or vertex colors
- multiply colors together component-wise

Aside... Colors in THREE

Everything is class Color

Internally...

• it stores RGB

Externally

- get / set any way you like
- .setRGB (three numbers 0-1), .setStyle (CSS string)

Vertex Colors

```
let material =
  new T.MeshStandardMaterial({vertexColors:T.VertexColors});
```

Barycentric Interpolation

Barycentric interpolation (over a triangle)

$$\mathbf{p} = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C}$$

where
$$\alpha + \beta + \gamma = 1$$

Gives a coordinate system

- ullet for the triangle ($lpha,eta,\gamma\in 0-1$)
- for the plane

Interpolating Colors (and other Vertex Properties)

Barycentric interpolation

$$\mathbf{p} = \alpha \mathbf{A}_{\mathbf{pos}} + \beta \mathbf{B}_{\mathbf{pos}} + \gamma \mathbf{C}_{\mathbf{pos}}$$

SO...

$$\mathbf{color} = \alpha \mathbf{A_{color}} + \beta \mathbf{B_{color}} + \gamma \mathbf{C_{color}}$$

Barycentric Color Interpolation

About those normals...

Triangles have an outward facing normal vector

We can compute this by the cross product

if the vertices are ordered correctly

Why Specify Normals?

- specify outward direction if it isn't obvious
- fake normal directions (pretend a triangle is something else)

Normals

Triangles should have an **outward** facing normal

• cross product if the vertices are ordered correctly

We can compute them (THREE can do it for us!)

- requires correctly ordered triangles
- sometimes we "fake" the normals

Outward Normals?

Assumes there is an inside and outside

front and back of a triangle

By default, THREE only draws the front of a triangle

need to tell the materials otherwise

Three's Compute Normals

• compute normals averages the triangles around the vertex

Transforming Normals

If we transform the **points of a triangle** what happens to its **normal**?

It is a **different** transformation!

- only the 3x3 matrix part (normals are vectors, translations don't matter)
- adjoint of the 3x3 part of the transform

The adjoint is the **inverse transpose**

For a rotation, the inverse transpose is the matrix itself

this is only true for rotations!

Uses of Normals

1. Backface Culling

THREE.js does backface culling by default

use side: THREE.DoubleSide with your materials for planes

warning: doesn't use normals - uses triangle winding direction

2. Lighting

Mesh Summary

- Good Meshes
 - avoid cracks and T-Junctions
 - avoid bad triangles
 - consistent normals
- Data Structures for Efficient Sharing
- Vertex Properties / Vertex Splitting
- Basic Data Structures
- Buffers, AttributeBuffers and BufferGeometry
- Normals