

BỘ GIÁO DỰC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP. HCM

ĐỒ ÁN THỰC HÀNH TRÍ TUỆ NHÂN TẠO

CÂY QUYẾT ĐỊNH - I3

Ngành: CÔNG NGHỆ THÔNG TIN

Giảng viên hướng dẫn: Th.S Nguyễn Mạnh Hùng

Thành viên nhóm :

 Bùi Phú Khuyên
 MSSV: 1611061839
 Lớp: 16DTHA3

 Phạm Quốc Sơn
 MSSV: 1611061362
 Lớp: 16DTHA3

 Võ Nhị Anh
 MSSV: 1611060551
 Lớp: 16DTHA

TP. Hồ Chí Minh, 2018

PHÀN 1: CHẠY TAY CÂY QUYẾT ĐỊNH

STT	Sepal length	Sepal width	Petal length	Petal width	Class
1	5.5	4.2	1.4	0.2	Iris-Setosa
2	4.9	3.1	1.5	0.1	Iris-Setosa
3	5.0	3.2	1.2	0.2	Iris-Setosa
4	5.5	3.5	1.3	0.2	Iris-Setosa
5	6.8	2.8	4.8	1.4	Iris-Versicolor
6	6.7	3.0	5.0	1.7	Iris-Versicolor
7	6.0	2.9	4.5	1.5	Iris-Versicolor
8	5.7	2.6	3.5	1.0	Iris-Versicolor
9	6.4	2.7	5.3	1.9	Iris-Virginica
10	6.8	3.0	5.5	2.1	Iris-Virginica
11	5.7	2.5	5.0	2.0	Iris-Virginica
12	5.8	2.8	5.1	2.4	Iris-Virginica
13	6.4	3.2	5.3	2.3	Iris-Virginica
14	6.5	3.0	5.5	1.8	Iris-Virginica
15	7.7	3.8	6.7	2.2	Iris-Virginica
16	7.7	2.6	6.9	2.3	Iris-Virginica
17	6.0	2.2	5.0	1.5	Iris-Virginica
18	6.9	3.2	5.7	2.3	Iris-Virginica
19	5.6	2.8	4.9	2.0	Iris-Virginica
20	7.7	2.8	6.7	2.0	Iris-Virginica

Bảng dữ liệu

Chuẩn hoá thuộc tính liên tục thành dữ liệu rời rạc:

Giá trị thuộc tính (Sepal length)	Setosa	Versicolor	Virginica
$(-\infty, 5.6]$	4	0	1
(5.6, 6.3]	0	2	3
(6.3, 7]	0	2	5
$(7, +\infty)$	0	0	3

Giá trị thuộc tính (Sepal width)	Setosa	Versicolor	Virginica
$(-\infty, 2.7]$	0	1	4
(2.7, 3.2]	2	3	7
(3.2, 3.7]	1	0	0
$(3.7, +\infty)$	1	0	1

Giá trị thuộc Tính (Petal length)	Setosa	Versicolor	Virginica
(-∞, 2.625]	4	0	0
(2.625, 4.05]	0	1	0
(4.05, 5.475]	0	3	6
$(5.475, +\infty)$	0	0	6

Giá trị thuộc tính (Petal width)	Setosa	Versicolor	Virginica
$(-\infty, 0.675]$	4	0	0
(0.675, 1.25]	0	1	0
(1.25, 1.825]	0	3	2
$(1.825, +\infty)$	0	0	10

Gọi tập
$$S = [Se, Ve, Vi]$$

Entropy (S) =
$$-P_{Se}log_2P_{Se} - P_{Ve}log_2P_{Ve} - P_{Vi}log_2P_{Vi}$$

$$= -\frac{4}{20}\log_2\frac{4}{20} - \frac{4}{20}\log_2\frac{4}{20} - \frac{12}{20}\log_2\frac{12}{20} = 1.37$$

ĐỘ ĐO (INFORMATION GAIN):

Công thức chung:
$$Gain(S,A) = Entropy(s) - \sum_{v \in Value(A)} \frac{|s_v|}{|s|} EntropyS_v$$

♦ Gain(S, Sepal length):

S _{Sepal length} =	Entropy	
$(-\infty, 5.6]$	[4, 0, 1]	0.72
(5.6, 6.3]	[0, 2, 3]	0.97
(6.3, 7]	[0, 2, 5]	0.86
$(7, +\infty)$	[0, 0, 3]	0

→ Gain(S, Sepal length): 1.37
$$-\frac{5}{20} * 0.72 - \frac{5}{20} * 0.97 - \frac{7}{20} * 0.88 = 0.64$$

♦ Gain(S, Sepal width):

S _{Sepal width} =	Entropy	
$(-\infty, 2.7]$	[0, 1, 4]	0.72
(2.7, 3.2]	[2, 3, 7]	1.38
(3.2, 3.7]	[1, 0, 0]	0
$(3.7, +\infty)$	[1, 0, 1]	1

→ Gain(S, Sepal length): 1.37
$$-\frac{5}{20} * 0.72 - \frac{12}{20} * 1.38 - \frac{2}{20} * 1 = 0.26$$

♦ Gain(S, Petal length):

S _{Petal length} =	Entropy	
(-∞, 2.625]	[4, 0, 0]	0
(2.625, 4.05]	[0, 1, 0]	0
(4.05, 5.475]	[0, 3, 6]	0.92
$(5.475, +\infty)$	[0, 0, 6]	0

→ Gain(S, Sepal length):
$$1.37 - \frac{9}{20} * 0.92 = 0.96$$

♦ Gain(S, Petal width):

S _{Petal width} =	Entropy	
$(-\infty, 0.675]$	[4, 0, 0]	0
(0.675, 1.25]	[0, 1, 0]	0
(1.25, 1.825]	[0, 3, 2]	0.97
$(1.825, +\infty)$	[0, 0, 10]	0

→ Gain(S, Sepal width): 1.37
$$-\frac{5}{20} * 0.97 = 1.13$$

Ta có:

Gain(S, Sepal length) = 0.64

Gain(S, Sepal width) = 0.26

Gain(S, Petal length) = 0.96

Gain(S, Petal width) = 1.13

Nhận xét: Từ đây ta thấy độ đo của S đối với thuộc tính "Petal width" là lớn nhất trong 4 thuộc tính. Như vậy ta quyết định chọn "Petal width" làm thuộc tính đầu tiên để khai triển cây.

Hình 1: Khai triển cây theo thuộc tính "Petal width"

Tương tự như vậy, ta có thể tiến hành triển khai các nút ở bước tiếp theo:

■ Petal width $(S_{(-\infty, 0.675]})$ S = [4, 0, 0] Entropy = 0

STT	Sepal length	Sepal width	Petal length	Petal width	Class
1	5.5	4.2	1.4	0.2	Iris-Setosa
2	4.9	3.1	1.5	<mark>0.1</mark>	Iris-Setosa
3	5.0	3.2	1.2	0.2	Iris-Setosa
4	5.5	3.5	1.3	0.2	Iris-Setosa

S _{Sepal length} =	Entropy	
$(-\infty, 5.6]$	[4 , 0, 0]	0
(5.6, 6.3]	[0, 0, 0]	0
(6.3, 7]	[0, 0, 0]	0
$(7, +\infty)$	[0, 0, 0]	0

S _{Sepal width} =	Entropy	
$(-\infty, 2.7]$	[0, 0, 0]	0
(2.7, 3.2]	[2 , 0, 0]	0
(3.2, 3.7]	[1, 0, 0]	0
$(3.7, +\infty)$	[1, 0, 0]	0

S _{Petal length} =	Entropy	
(-∞, 2.625]	[4 , 0, 0]	0
(2.625, 4.05]	[0, 0, 0]	0
(4.05, 5.475]	[0, 0, 0]	0
$(5.475, +\infty)$	[0, 0, 0]	0

<u>Nhận xét:</u> Vì các thuộc tính **Sepal length, Sepal width và Petal length** đều nhận duy nhất Class **Iris-Setosa** trong quá trình khai triển nên với **Petal width** $(S_{(-\infty, \ 0.675]})$ nhận kết quả trả về là **Iris-Setosa**

Hình 2: Khai triển cây theo thuộc tính "Petal width" nhận kết quả: Iris-Setosa (S_{(-∞, 0.675]})

■ **Petal width** $(S_{(0.675, 1.25]})$ S = [0, 1, 0] **Entropy = 0**

STT	Sepal length	Sepal width	Petal length	Petal width	Class
8	5.7	2.6	3.5	1.0	Iris-Versicolor

$ m S_{Sepal\ length} =$	Entropy	
(-∞, 5.6]	[0, 0, 0]	0
(5.6, 6.3]	[0, 1, 0]	0
(6.3, 7]	[0, 0, 0]	0
$(7, +\infty)$	[0, 0, 0]	0

S _{Sepal width} =	Entropy	
(-∞, 2.7]	[0, 1, 0]	0
(2.7, 3.2]	[0, 0, 0]	0
(3.2, 3.7]	[0, 0, 0]	0
$(3.7, +\infty)$	[0, 0, 0]	0

S _{Petal length} =	Entropy	
$(-\infty, 2.625]$	[0, 0, 0]	0
(2.625, 4.05]	[0, 1, 0]	0
(4.05, 5.475]	[0, 0, 0]	0
$(5.475, +\infty)$	[0, 0, 0]	0

<u>Nhận xét:</u> Vì các thuộc tính **Sepal length, Sepal width và Petal length** đều nhận duy nhất Class **Iris-Versicolor** trong quá trình khai triển nên với **Petal width** $(S_{(0.675,\ 1.25]})$ nhận kết quả trả về là **Iris-Versicolor**

Hình 3: Khai triển cây theo thuộc tính "Petal width" nhận kết quả: Iris-Versicolor (S_{(0.675, 1.25]})

• **Petal width:** $(S_{(1.25, 1.825]})$

S = [0, 3, 2]

Entropy = 0.97

STT	Sepal length	Sepal width	Petal length	Petal width	Class
5	6.8	2.8	4.8	<mark>1.4</mark>	Iris-Versicolor
6	6.7	3.0	5.0	<mark>1.7</mark>	Iris-Versicolor
7	6.0	2.9	4.5	1.5	Iris-Versicolor
14	6.5	3.0	5.5	1.8	Iris-Virginica
17	6.0	2.2	5.0	1.5	Iris-Virginica

 \Diamond Gain(S_(1.25, 1.825), Sepal length):

S _{Sepal length} =	Entropy	
(-∞, 5.6]	[0, 0, 0]	0
(5.6, 6.3]	[0, 1, 1]	1
(6.3, 7]	[0, 2, 1]	0.92
$(7, +\infty)$	[0, 0, 0]	0

→ Gain(S_{(1.25, 1.825]}, Sepal length):
$$0.97 - \frac{2}{5} - \frac{3}{5} * 0.92 = 0.018$$

 \Diamond Gain(S_{(1.25, 1.825]}, Sepal width):

S _{Sepal width} =	Entropy	
$(-\infty, 2.7]$	[0, 0, 1]	0
(2.7, 3.2]	[0, 3, 1]	0.81
(3.2, 3.7]	[0, 0, 0]	0
$(3.7, +\infty)$	[0, 0, 0]	0

→ Gain(S_{(1.25, 1.825]}, Sepal width): $0.97 - \frac{4}{5} * 0.81 = 0.32$

 \Diamond Gain(S_{(1.25, 1.825]}, Petal length):

S _{Petal length} =	Entropy	
$(-\infty, 2.625]$	[0, 0, 0]	0
(2.625, 4.05]	[0, 0, 0]	0
(4.05, 5.475]	[0, 3, 1]	0.81
$(5.475, +\infty)$	[0, 0, 1]	0

→ Gain(S_{(1.25, 1.825]}, Petal length):
$$0.97 - \frac{4}{5} * 0.81 = 0.32$$

Ta có:

 $Gain(S_{(1.25, 1.825]}, Sepal length) = 0.018$

 $Gain(S_{(1.25, 1.825]}, Sepal width) = 0.32$

 $Gain(S_{(1.25, 1.825]}, Petal length) = 0.32$

Nhân xét: Từ đây ta thấy độ đo của $S_{(1.25, 1.825]}$ đối với thuộc tính "Sepal width" và "Petal length" là lớn nhất. Như vậy ta có thể quyết định chọn "Sepal width" làm thuộc tính tiếp theo để khai triển cây.

Hình 4: Khai triển cây theo thuộc tính "Sepal width"

Tương tự như vậy, trước khi ta qua các thuộc tính cuối cùng của "Pental length" $(S_{(1.825, +\infty)})$. Ta có thể tiến hành triển khai các nút của "Sepal width" trước:

• Sepal width: $(S_{(-\infty, 2.7]})$

S = [0, 0, 1]

Entropy = 0

STT	Sepal length	Sepal width	Petal length	Petal width	Class
17	6.0	2.2	5.0	1.5	Iris-Virginica

S _{Sepal length} =	Entropy	
$(-\infty, 5.6]$	[0, 0, 0]	0
(5.6, 6.3]	[0, 0, 1]	0
(6.3, 7]	[0, 0, 0]	0
$(7, +\infty)$	[0, 0, 0]	0

S _{Petal length} =	Entropy	
(-∞, 2.625]	[0, 0, 0]	0
(2.625, 4.05]	[0, 0, 0]	0
(4.05, 5.475]	[0, 0, 1]	0
$(5.475, +\infty)$	[0, 0, 0]	0

Nhận xét: Vì các thuộc tính Sepal length và Petal length đều nhận duy nhất Class Iris-Virginica trong quá trình khai triển nên với Petal width $(S_{(-\infty,\,2.7]})$ nhận kết quả trả về là Iris-Virginica

Hình 5: Khai triển cây theo thuộc tính "Sepal width" nhận kết quả: Iris-Virginica (S_{(-∞, 2.7]})

• **Sepal width:** $(S_{(2.7, 3.2]})$

S = [0, 3, 1]

Entropy = 0.81

STT	Sepal length	Sepal width	Petal length	Petal width	Class
5	6.8	2.8	4.8	1.4	Iris-Versicolor
6	6.7	3.0	5.0	1.7	Iris-Versicolor
7	6.0	2.9	4.5	1.5	Iris-Versicolor
14	6.5	3.0	5.5	1.8	Iris-Virginica

 \Diamond Gain(S_{(2.7, 3.2]}, Sepal length):

$S_{Sepal\ length} = [Se, Ve, Vi]$ Entropy
--

(-∞, 5.6]	[0, 0, 0]	0
(5.6, 6.3]	[0, 1, 0]	0
(6.3, 7]	[0, 2, 1]	0.92
$(7, +\infty)$	[0, 0, 0]	0

$$\rightarrow$$
 Gain(S_{(2.7, 3.2]}, Sepal length): $0.81 - \frac{3}{4} * 0.92 = 0.12$

\Diamond Gain(S_{(2.7, 3.2]}, Petal length):

S _{Petal length} =	Entropy	
$(-\infty, 2.625]$	[0, 0, 0]	0
(2.625, 4.05]	[0, 0, 0]	0
(4.05, 5.475]	[0, 3, 0]	0
$(5.475, +\infty)$	[0, 0, 1]	0

 \rightarrow Gain(S_{(2.7, 3.2]}, Petal length) = 0.81

Ta có:

$$Gain(S_{(2.7, 3.2]}, Sepal length) = 0.12$$

 $Gain(S_{(2.7, 3.2]}, Petal length) = 0.81$

Nhân xét: Từ đây ta thấy độ đo của $S_{(2.7,\,3.2]}$ đối với thuộc tính "Petal length" là lớn nhất. Như vậy ta có thể quyết định chọn "Petal length" làm thuộc tính tiếp theo để khai triển cây.

Hình 6: Khai triển cây theo thuộc tính "Petal length"

■ **Petal lengh:** $(S_{(4.05, 5.475]})$ S = [0, 3, 0] **Entropy = 0**

STT	Sepal length	Sepal width	Petal length	Petal width	Class
5	6.8	2.8	4.8	1.4	Iris-Versicolor
6	6.7	3.0	5.0	1.7	Iris-Versicolor
7	6.0	2.9	<mark>4.5</mark>	1.5	Iris-Versicolor

<u>Nhận xét:</u> Vì các thuộc tính **Sepal length** nhận duy nhất Class **Iris-Versicolor** trong quá trình khai triển nên với **Petal lenght** (S_{(4.05, 5.475]}) nhận kết quả trả về là **Iris-Versicolor**

Hình 7: Khai triển cây theo thuộc tính "Petal length" nhận kết quả: Iris-Versicolor (S_{(4.05, 5.475]})

• **Petal lengh:** $(S_{(5.475, +\infty)})$ S = [0, 0, 1] **Entropy = 0**

ST	Γ Sepal length	Sepal width	Petal length	Petal width	Class
14	6.5	3.0	5.5	1.8	Iris-Virginica

<u>Nhân xét:</u> Vì các thuộc tính **Sepal length** nhận duy nhất Class **Iris-Vinginica** trong quá trình khai triển nên với **Petal lenght** $(S_{(5.475, +\infty)})$ nhận kết quả trả về là **Iris-Vinginica**

 $\emph{Hình 8: Khai triển cây theo thuộc tính "Petal length" nhận kết quả: Iris-Viginica (S_{(5.475,+\infty)})}$

Nhận thấy, để hoàn thành cây ID3 vẫn còn thuộc tính Pental width $S_{(1.825,\,+\infty)}$ chưa được khai triển nên ta tiến hành khai triển:

•	Petal width	$(S_{(1.825, +\infty)})$	S = [0, 0, 10]	Entropy = 0
---	-------------	--------------------------	----------------	-------------

STT	Sepal length	Sepal width	Petal length	Petal width	Class
9	6.4	2.7	5.3	1.9	Iris-Virginica
10	6.8	3.0	5.5	2.1	Iris-Virginica
11	5.7	2.5	5.0	2.0	Iris-Virginica
12	5.8	2.8	5.1	2.4	Iris-Virginica
13	6.4	3.2	5.3	2.3	Iris-Virginica
15	7.7	3.8	6.7	2.2	Iris-Virginica
16	7.7	2.6	6.9	2.3	Iris-Virginica
18	6.9	3.2	5.7	2.3	Iris-Virginica
19	5.6	2.8	4.9	2.0	Iris-Virginica
20	7.7	2.8	6.7	2.0	Iris-Virginica

S _{Sepal length} =	Entropy	
$(-\infty, 5.6]$	[0, 0, 1]	0
(5.6, 6.3]	[0, 0, 2]	0

(6.3, 7]	[0, 0, 4]	0
$(7, +\infty)$	[0, 0, 3]	0

S _{Sepal width} =	Entropy	
$(-\infty, 2.7]$	[0, 0, 3]	0
(2.7, 3.2]	[0, 0, 6]	0
(3.2, 3.7]	[0, 0, 0]	0
$(3.7, +\infty)$	[0, 0, 1]	0

S _{Petal length} =	[Se, Ve, Vi]	Entropy
$(-\infty, 2.625]$	[0, 0, 0]	0
(2.625, 4.05]	[0, 0, 0]	0
(4.05, 5.475]	[0, 0, 5]	0
$(5.475, +\infty)$	[0, 0, 5]	0

Nhận xét: Vì các thuộc tính Sepal length, Sepal width và Petal length đều nhận duy nhất Class Iris-Virginica trong quá trình khai triển nên với Petal width $(S_{(1.825, +\infty)})$ nhận kết quả trả về là Iris-Virginica

Hình 9: Khai triển cây theo thuộc tính "Petal width" nhận kết quả: Iris-Viginica (S_(1.825, +\infty))

PHẦN 2: CHẠY CÂY QUYẾT ĐỊNH TRÊN WEKA

1. Nội dung File *arff:

```
@Relation IRIS
@Attribute Sepallength real
aAttribute Sepalwidth real
@Attribute Petallength real
@Attribute Petalwidth real
(a) Attribute Class {Iris-Setosa, Iris-Versicolor, Iris-Virginica}
@Data
        5.5, 4.2, 1.4, 0.2, Iris-Setosa
        4.9, 3.1, 1.5, 0.1, Iris-Setosa
        5.0, 3.2, 1.2, 0.2, Iris-Setosa
        5.5, 3.5, 1.3, 0.2, Iris-Setosa
        6.8, 2.8, 4.8, 1.4, Iris-Versicolor
        6.7, 3.0, 5.0, 1.7, Iris-Versicolor
        6.0, 2.9, 4.5, 1.5, Iris-Versicolor
        5.7, 2.6, 3.5, 1.0, Iris-Versicolor
        6.4, 2.7, 5.3, 1.9, Iris-Virginica
        6.8, 3.0, 5.5, 2.1, Iris-Virginica
        5.7, 2.5, 5.0, 2.0, Iris-Virginica
        5.8, 2.8, 5.1, 2.4, Iris-Virginica
        6.4, 3.2, 5.3, 2.3, Iris-Virginica
        6.5, 3.0, 5.5, 1.8, Iris-Virginica
        7.7, 3.8, 6.7, 2.2, Iris-Virginica
        7.7, 2.6, 6.9, 2.3, Iris-Virginica
        6.0, 2.2, 5.0, 1.5, Iris-Virginica
        6.9, 3.2, 5.7, 2.3, Iris-Virginica
        5.6, 2.8, 4.9, 2.0, Iris-Virginica
        7.7, 2.8, 6.7, 2.0, Iris-Virginica
```

2. Thực nghiệm cây quyết định: Chọn thuật toán ID3, Vẽ lại cây quyết định:

a. Kết quả chạy thuật toán ID3 trên Weka:

```
=== Classifier model (full training set) ===
Id3
                                                    //Cây bắt đầu từ Petalwidth và có 3 nhánh
Petalwidth = '(-inf-0.675]': Iris-Setosa
                                                    //Là nhánh 1 - Khi Petalwidth = (-inf-0.675] là hoa Setosa
Petalwidth = '(0.675-1.25]': Iris-Versicolor //Là nhánh 2 - Khi Petalwidth = (0.675-1.25] là hoa Vericolor
Petalwidth = (1.25-1.825)
                                                    //Là nhánh 3:
  Sepalwidth = '(-inf-2.7]': Iris-Virginica
                                                        // 3.1: Khi Sepalwidth = (-inf-2.7] là hoa Virginica
  Sepalwidth = (2.7-3.2)
                                                        // 3.2: Khi Sepalwidth = (2.7-3.2]:
  | Petallength = '(-inf-2.625]': null
                                                           //3.2.1: Không có nhánh Petallength = (-inf-2.625]
   Petallength = (2.625-4.05)': null
                                                           //3.2.2: Không có nhánh Petallength = (2.625-4.05]
    Petallength = '(4.05-5.475]': Iris-Versicolor
                                                           //3.2.3 Khi Petallength = (4.05-5.475] là hoa Versicolor
   Petallength = '(5.475-inf)': Iris-Virginica
                                                           //3.2.4 Khi Petallength = (5.475-inf) là hoa Virginica
  Sepalwidth = (3.2-3.7]': null
                                                        //3.3: Không có nhánh Sepalwidth = (3.2-3.7]
  Sepalwidth = (3.7-inf)': null
                                                        //3.4: Không có nhánh Sepalwidth = (3.7-inf)
Petalwidth = '(1.825-inf)': Iris-Virginica
                                                    //Là nhánh 4: Khi Petalwidth = (1.825-inf) là hoa Virginica
```

b. Vẽ cây quyết định:

Hình 10: Khai triển cây theo kết quả chạy Weka

3. Test cây đã tạo sử dụng cross-validation (=20). Hãy cho biết tỉ lệ chính xác của bộ phân lớp, số mẫu phân lớp đúng/ sai/ không phân lớp được. Diễn giải lại phân bố dữ liệu thông tin từ Confusion Matrix. (Chụp ảnh màn hình)

=== Stratified === Summary ===		lidation ==	=				
Correctly Classified Instances Incorrectly Classified Instances Kappa statistic Mean absolute error Root mean squared error Relative absolute error Root relative squared error			16 3 0.7164 0.1053 0.3244 28.7081 % 76.3182 %		80 15	% %	
UnClassified Instances Total Number of Instances		1 20		5	%		
=== Detailed Ac	curacy By	/ Class ===	Precision	Recall	F-Measure	ROC Area	Class
	1 0.667	0 0.125	1 0.5	1 0.667	1 0.571	1 0.688	
Weighted Avg.	0.833 0.842	0.143 0.11	0.909 0.864	0.833 0.842	0.87 0.85	0.854 0.859	Iris-Virginica
=== Confusion M	atrix ===	:					
4 0 0 a 0 2 1 b	classif: = Iris-Se = Iris-Ve = Iris-V	etosa ersicolor					

Trong đó:

Correctly Classified Instances	1	6	80 %	// Là	tỷ lệ % độ chín	nh xác của Phân lớp					
Incorrectly Classified Instance		3	15 %	// Là	// Là tỷ lệ % độ không chính xác của Phân lớp						
Kappa statistic	(0.7164									
Mean absolute error	(0.1053		// Là	// Là tỷ lệ % lỗi tuyệt đối của Phân lớp						
Root mean squared error	(0.3244									
Relative absolute error	2	28.7081 %		// Lỗi	// Lỗi tương đối tuyệt đối						
Root relative squared error	7	76.3182 %									
UnClassified Instances	1		5 %	// Là tỷ lệ % không Phân lớp được							
Total Number of Instances	2	20 //:		// Tổi	Tổng số thuộc tính đã được phân lớp						
TP Rate FP Rate Precision Recall F-Measure ROC Area Class											
1	0	1	1	1	1	Iris-Setosa					
0.667	0.125	0.5	0.667	0.571	0.688	Iris-Versicolor					
0.833	0.143	0.909		0.87	0.854	Iris-Virginica					
Weighted Avg. 0.842	0.11	0.864	0.842	0.85	0.859						
=== Confusion Matrix === a b c < classified as 4 0 0 a = Iris-Setosa 0 2 1 b = Iris-Versicolor 0 2 10 c = Iris-Virginica											

 $\underline{\acute{Y}\,nghĩa:}$ Tổng cộng có 20 trường hợp phân lớp được trong đó có 16 phân lớp $\emph{dúng}$ và 3 phân lớp \emph{sai} và 1 trường hợp $\emph{không phân lớp}$ được.

- Trong 16 trường hợp phân lớp đúng thì:
 - + Có 4 trường là hợp hoa Iris Setosa
 - + Có 2 trường họp là hoa Iris Versicolor
 - + Có 10 trường hợp là hoa Iris Virginica
- Trong 3 trường hợp phân lớp sai thì:
 - + Có 1 trường hợp là hoa Iris Versicolor (mà Weka trả lời là hoa Iris Virginica)
 - + Có 2 trường hợp là hoa Iris Virginica (mà Weka trả lời là hoa Iris Vericolor)
- Còn 1 trường hợp không phân lớp được là của hoa Iris Versicolor