Insper

Projeto Mecatrônico

Lista de requisitos do usuário e especificações técnicas

Prof. Fábio Ferraz

Avy Pinto

Gabriel Vaz

Luca Facciolo

Pedro Casella

Nicolas Fonteyne

Raphael Bomeisel

Rodolfo Bennini

São Paulo 08 de março de 2017

Sumário

1.	List	a de Requisitos - Usuário	. 4
	1.1.	Atributos da Interface Homem ⇔ Máquina (IHM)	. 4
	1.1.1.	Interface Máquina ⇔ Usuário	4
	1.1.2.	Interface Máquina ⇔ Técnico de Manutenção	4
	1.2.	Manuseabilidade e Condições de Operação	4
2.	List	a de Requisitos – Técnicos	. 4
	2.1.	Especificação dos sensores do projeto	. 4

Data da criação	Data da versão	Razão da modificação	Modificado por	Versão
02/03/2017	02/03/2017	Criação	Luca Facciolo	1.0

Descrição do documento:

Este documento tem como objetivo especificar todos os requisitos do usuário, ou seja ações que o usuário deve conseguir controlar, observar ou escolher dentro do projeto especificado. Além disso, visa também detalhar os sensores que serão utilizados no projeto.

1. Lista de Requisitos - Usuário

1.1. Atributos da Interface Homem ⇔ Máquina (IHM)

1.1.1. Interface Máquina ⇔ Usuário

- Seleção do modo de operação do robô (manual ou rotina);
- Setup das cores desejadas/rejeitadas;
- Setup da tolerância do parâmetro de seleção;
- Setup da origem virtual do eixo de coordenadas;
- Display de coordenadas x,y,z (reais e virtuais);
- Display de medição;
- LED "Ready" (quando aceso, indica que a máquina está pronta para operar segundo a rotina de trabalho);
- LED "Operating" (quando aceso, indica que a máquina está em operação);
- Chave geral;
- Botão "Start" (deve ser pressionado para que a máquina comece a operar segundo a rotina de trabalho);
- Botão para parada de emergência;

1.1.2. Interface Máquina ⇔ Técnico de Manutenção

- Conexão para restaurar às configurações de fábrica;
- Conexão para reprogramação manual do computador central;
- Conexão para calibração do instrumento de medição;
- Conexão para programação da rotina de trabalho;

1.2. Manuseabilidade e Condições de Operação

- O cabeçote deve ser livre para movimentação manual quando a máquina estiver desligada ou em modo manual;
- Todo o conjunto deve ter um peso limite máximo, tal que uma única pessoa consiga movimentá-lo sem grandes esforços;
- O cabeçote deve se movimentar a uma velocidade limite que não ofereça riscos ao usuário do dispositivo;
- O computador central só deve permitir que as conexões para manutenção funcionem caso a chave geral esteja em posição OFF;
- Memória da origem real do eixo de coordenadas

2. Lista de Requisitos Técnicos

2.1. Especificação dos sensores do projeto

Precisaremos de sensores de posição, distância e força. Os sensores de posição serão responsáveis por localizar absoluta e relativamente a ferramenta na mesa.

Também com estes sensores é possível determinar posições relativas para que o usuário consiga manejar com maior facilidade a ferramenta sobre a peça a ser tratada. Por fim, por ser o caso de um robô PICK & PLACE, a posição absoluta será importante para definir para onde a ferramenta irá se locomover.

O sensor de distância possibilitará identificar os extremos da mesa (posição absoluta), evitando possíveis colisões.

O sensor de força será responsável por determinar até onde a garra da máquina irá fechar. Deveremos determinar uma força capaz de segurar a peça ao mesmo tempo em que a garra não pode danifica-la.

Por fim, usaremos lasers para determinar o diâmetro do objeto alvo. Um par de lasers serão acoplados nas garras e antes dela agarrar o objeto.

Estes lasers serão responsáveis por escanear o objeto e estimar o seu diâmetro.

Usaremos encoders incrementais para as posições relativas e encoders absolutos para posições absolutas.

Características técnicas dos sensores:

Sensores	Fonte
	http://www.meter.hu/adatlap/fordulatjelado/pdf/ri64.pdf
Incremental Encoder RI 64	
Encoder Absoluto E6C3	http://www.webddigital.com/fabricantes/omron/pdf/encoders/E6C3.pdf
Sensor ultrassonico Hc-cr04	http://www.micropik.com/PDF/HCSR04.pdf
U9C force transducer	www.midebien.com/LiteratureRetrieve.aspx?ID=190204

2.2. Princípios de funcionamento

Encoder incremental - funciona a base de pulsos de onda quadrada. Cada vez que o encoder se mexe, este gera pulsos proporcionais ao quanto foi movimentado. Quanto mais movimentado, mais pulsos.

Encoder Absoluto - Este encoder tem ranhuras ao decorrer de todo o seu disco permitindo que ele leia a posicao exata que está mesmo após ser desligado. Ele gera um sinal digital em bits que podem ser lidos pelo nosso microcontrolador.

U9C force transducer – O princípio de funcionamento de um transdutor de força consiste na medição da deformação do objeto alvo. Sabendo esta deformação conseguimos calcular a força aplicada pela garra.

Sensor ultrassônico hc-cr04- Este sensor emite ondas ultrassônicas e capta o tempo de chegada destas. Temos todos os parâmetros necessários para medir a distância entre o objeto refletor da onda e o sensor.

Par de lasers- Um dos lasers emitem um feixe de luz extenso em direção ao outro enquanto o outro capta a luz resultante da diferença entre a emitida e barrada pelo objeto. Assim é possível ter uma estimativa da área que ocupa este objeto no espaço. Também é possível medir volume a partir do uso de um arranjo mais de lasers.