Classification: Nearest Neighbor and Bayes Methods

Morteza H. Chehreghani morteza.chehreghani@chalmers.se

Chalmers University of Technology

January 30, 2024

Reference

The content and the slides are adapted from

S. Rogers and M. Girolami, A First Course in Machine Learning (FCML), 2nd edition, Chapman & Hall/CRC 2016, ISBN: 9781498738484

Introduction

- Supervised learning
 - Regression ——

- > target: any number, want.
- Minimised loss (least squares)
- Maximised likelihood
- Bayesian approach
- Classification ———
- > dis. number/group indices.
- Unsupervised learning
 - Clustering
 - Projection

Classification

- \triangleright A set of N objects with attributes (usually vector) \mathbf{x}_n .
- **Each** object has an associated response (or label) t_n .
- ▶ Binary classification: $t_n = \{0, 1\}$ or $t_n = \{-1, 1\}$, • (depends on algorithm).
- ▶ Multi-class classification: $t_n = \{1, 2, ..., K\}$.

Classification syllabus

- ▶ 4 classification algorithms.
- Of which:
 - 2 are probabilistic.
 - Bayes classifier.
 - Logistic regression.
 - 2 are non-probabilistic.
 - K-nearest neighbours.
 - Support Vector Machines.
- There are many others!

Classifier is trained on $\mathbf{x}_1, \dots, \mathbf{x}_N$ and t_1, \dots, t_N and then used to classify \mathbf{x}_{new} .

- Probabilistic classifiers produce a probability of class membership $P(t_{new} = k | \mathbf{x}_{new}, \mathbf{X}, \mathbf{t})$
 - e.g. binary classification: $P(t_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{t})$ and $P(t_{\text{new}} = 0 | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{t})$.

Classifier is trained on $\mathbf{x}_1, \dots, \mathbf{x}_N$ and t_1, \dots, t_N and then used to classify \mathbf{x}_{new} .

- Probabilistic classifiers produce a probability of class membership $P(t_{new} = k | \mathbf{x}_{new}, \mathbf{X}, \mathbf{t})$
 - e.g. binary classification: $P(t_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{t})$ and $P(t_{\text{new}} = 0 | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{t})$.
- Non-probabilistic classifiers produce a hard assignment
 - ightharpoonup e.g. $t_{\text{new}} = 1$ or $t_{\text{new}} = 0$.

Classifier is trained on $\mathbf{x}_1, \dots, \mathbf{x}_N$ and t_1, \dots, t_N and then used to classify \mathbf{x}_{new} .

- Probabilistic classifiers produce a probability of class membership $P(t_{new} = k | \mathbf{x}_{new}, \mathbf{X}, \mathbf{t})$
 - e.g. binary classification: $P(t_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{t})$ and $P(t_{\text{new}} = 0 | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{t})$.
- Non-probabilistic classifiers produce a hard assignment
 - ightharpoonup e.g. $t_{\text{new}} = 1$ or $t_{\text{new}} = 0$.
- ▶ Which to choose depends on application....

- Probabilities provide us with more information $P(t_{new} = 1) = 0.6$ is more useful than $t_{new} = 1$.
 - ► Tells us how **sure** the algorithm is.

- Probabilities provide us with more information $P(t_{\text{new}} = 1) = 0.6$ is more useful than $t_{\text{new}} = 1$.
 - ► Tells us how **sure** the algorithm is.
- Particularly important where cost of misclassification is high and imbalanced.
 - e.g. Diagnosis: telling a diseased person they are healthy is much worse than telling a healthy person they are diseased.

- Probabilities provide us with more information $P(t_{new} = 1) = 0.6$ is more useful than $t_{new} = 1$.
 - ► Tells us how **sure** the algorithm is.
- Particularly important where cost of misclassification is high and imbalanced.
 - e.g. Diagnosis: telling a diseased person they are healthy is much worse than telling a healthy person they are diseased.
- Extra information (probability) often comes at a cost.
- For large datasets, might have to go with non-probabilistic.

Algorithm 1: K-Nearest Neighbours

- ▶ Non-probabilistic.
- ► Can do binary or multi-class.
- ▶ No 'training' phase.

Algorithm 1: K-Nearest Neighbours

- Non-probabilistic.
- Can do binary or multi-class.
- ▶ No 'training' phase.
- ► How it works:
 - ► Choose *K*
 - For a test object **x**_{new}:
 - Find the K closest points from the training set.
 - Find majority class of these *K* neighbours.
 - (Assign randomly in case of a tie)

Training data from 3 classes.

Find K = 6 nearest neighbours.

Class one has most votes – classify \mathbf{x}_{new} as belonging to class 1.

Second example – class 2 has most votes.

▶ Binary labels.

- ► 1-Nearest Neighbour.
- Line shows decision boundary.
- ► Too complex should the islands exist?

- ► 2-Nearest Neighbour.
- ▶ What's going on?

- ► 2-Nearest Neighbour.
- ► What's going on?
- ► Lots of ties random guessing.

- ► 5-Nearest Neighbour.
- ► Much smoother.

- ▶ 19-Nearest Neighbour.
- Very smooth.

► Binary labels.

► Non-smooth – too complex again?

► Random effects again...

Getting smoother.

Smoother still.

Problems with KNN

- Class imbalance
 - ► As K increases, small classes will disappear!
 - ► Imagine we had only 5 training objects for class 1 and 100 for class 2.
 - For $K \ge 11$, class 2 will **always** win!

Problems with KNN

- Class imbalance
 - As K increases, small classes will disappear!
 - Imagine we had only 5 training objects for class 1 and 100 for class 2.
 - For $K \ge 11$, class 2 will **always** win!
- ▶ How do we choose K?
 - Right value of K will depend on data.
 - Cross-validation!

Cross-validation for classification

- ► E.g. to find *K* in KNN:
- Exactly the same as we have seen before.
- Split the (training) data up use some to train, some to validation.
- ▶ Need a measure of 'goodness'.
- Use number of mis-classifications.....
-and use K that minimises it!

Remember...

Average number of misclassifications over the C folds.

Example – 5 classes

- ▶ 5 classes.
- ► Smallest has 20 instances, biggest 120.

Example – 5 classes

- Curve shows average misclassification error for 10-fold CV.
- ▶ Minimum at approximately K = 30.

Example – 5 classes

- ► As *K* increases, classes 'disappear'
- Causes the 'steps' in error.

KNN – summary

- ▶ Non-probabilistic.
- Fast.
- \triangleright Only one parameter to tune (K).
- ► Important to tune it well....
- ...can use CV.

KNN – summary

- ► Non-probabilistic.
- Fast.
- \triangleright Only one parameter to tune (K).
- ▶ Important to tune it well....
- ...can use CV.
- There is a probabilistic version.
 - Not covered in this course.

$$P'(t_{Ne-5} B) = \frac{dI}{dI + d2 \times d3}$$

$$P_{I}(t_{NeW} SX) = \frac{de + d3}{dI + d2 + d3}$$

KNN – summary

- ► Non-probabilistic.
- ► Fast.
- ightharpoonup Only one parameter to tune (K).
- Important to tune it well....
- ...can use CV.
- ► There is a probabilistic version.
 - Not covered in this course.
- Now onto a (different) probabilistic classifier...

Bayes classifier

training data , feat. for test data

Our first probabilistic classifier is based on Bayes rule:

$$P(t_{\text{new}} = k | \mathbf{X}, \mathbf{t}, \mathbf{x}_{\text{new}})$$

$$= \frac{P(\mathbf{x}_{\text{new}} | t_{\text{new}} = k, \mathbf{X}, \mathbf{t}) P(t_{\text{new}} = k)}{\sum_{j} p(\mathbf{x}_{\text{new}} | t_{\text{new}} = j, \mathbf{X}, \mathbf{t}) P(t_{\text{new}} = j)}$$

We need to define a likelihood and a prior and we're done!

where
$$p(x_1, x_2) = p(x_1, x_2)$$

$$p(x_1, x_2) = p(x_1, x_2)$$

$$p(x_1, x_2) = p(x_1, x_2)$$

Bayes classifier - likelihood

$$p(\mathbf{x}_{\text{new}}|t_{\text{new}}=k,\mathbf{X},\mathbf{t})$$

► How likely is \mathbf{x}_{new} if it is in class k? (not necessarily a probability...)

Bayes classifier - likelihood

$$p(\mathbf{x}_{\text{new}}|t_{\text{new}}=k,\mathbf{X},\mathbf{t})$$

- How likely is x_{new} if it is in class k? (not necessarily a probability...)
- We are free to define this class-conditional distribution as we like.
- ▶ Will depend on type of data.
- ► e.g.
 - Data are D-dimensional vectors of real values Gaussian likelihood.
 - ▶ Data are number of heads in N coin tosses Binomial likelihood.

Bayes classifier - likelihood

$$p(\mathbf{x}_{\mathsf{new}}|t_{\mathsf{new}}=k,\mathbf{X},\mathbf{t})$$
:

- ► How likely is x_{new} if it is in class k? (not necessarily a probability...)
- We are free to define this class-conditional distribution as we like.
- ▶ Will depend on type of data.
- e.g.
 - Data are D-dimensional vectors of real values Gaussian likelihood.
 - ▶ Data are number of heads in N coin tosses Binomial likelihood.
- In both cases, training data with t = k used to determine parameters of likelihood for class k (e.g. Gaussian mean and covariance).

Bayes classifier – prior

$$P(t_{\text{new}} = k)$$

- **x**_{new} not present.
- ▶ Used to specify prior probabilities for different classes.
- e.g.
 - There are far fewer instances of class 0 than class 1: $P(t_{new} = 1) > P(t_{new} = 0)$.
 - No prior preference: $P(t_{new} = 0) = P(t_{new} = 1)$.
 - ► Class 0 is very rare: $P(t_{\text{new}} = 0) \ll P(t_{\text{new}} = 1)$.

- Naive-Bayes makes the following additional likelihood assumption: 15 diagonal for crowsen dist.
- \triangleright The components of \mathbf{x}_{new} are independent for a particular class:

$$p(\mathbf{x}_{\mathsf{new}}|t_{\mathsf{new}} = k, \mathbf{X}, \mathbf{t}) = \prod_{d=1}^{D} p(x_d^{\mathsf{new}}|t_{\mathsf{new}} = k, \mathbf{X}, \mathbf{t})$$

- ▶ Where D is the number of dimensions and x_d^{new} is the value of the dth one.
- ▶ Often used when *D* is high:
 - Fitting *D* uni-variate distributions is easier than fitting one *D*-dimensional one.

Bayes classifier, example 1

- **Each** object has two attributes: $\mathbf{x} = [x_1, x_2]^T$.
- K=3 classes.
- ▶ We'll use Gaussian class-conditional distributions (with Naive-Bayes assumption).
- ▶ $P(t_{\text{new}} = k) = 1/K$ uniform prior.

Step 1: fitting the class-conditional densities

$$p(\mathbf{x}|t=k,\mathbf{X},\mathbf{t}) = \prod_{d=1}^{2} \mathcal{N}(\mu_{kd}, \sigma_{kd}^{2})$$

 $\mu_{kd} = \frac{1}{N_k} \sum_{n:t_n = k} x_{nd} \qquad \sigma_{kd}^2 = \frac{1}{N_k} \sum_{n:t_n = k} (x_{nd} - \mu_{kd})^2$

Step 1: fitting the class-conditional densities

$$p(\mathbf{x}|t=k,\mathbf{X},\mathbf{t}) = \prod_{d=1}^{2} \mathcal{N}(\mu_{kd}, \sigma_{kd}^{2})$$

 $\mu_{kd} = \frac{1}{N_k} \sum_{n:t_n = k} x_{nd} \qquad \sigma_{kd}^2 = \frac{1}{N_k} \sum_{n:t_n = k} (x_{nd} - \mu_{kd})^2$

Step 1: fitting the class-conditional densities

$$p(\mathbf{x}|t=k,\mathbf{X},\mathbf{t}) = \prod_{d=1}^{2} \mathcal{N}(\mu_{kd}, \sigma_{kd}^{2})$$
1 2 1 2 1

 $\mu_{kd} = \frac{1}{N_k} \sum_{n:t_n = k} x_{nd} \qquad \sigma_{kd}^2 = \frac{1}{N_k} \sum_{n:t_n = k} (x_{nd} - \mu_{kd})^2$

Step 2: Evaluate densities at test point

$$p(\mathbf{x}_{\mathsf{new}}|t_{\mathsf{new}} = k, \mathbf{X}, \mathbf{t}) = \prod_{d=1}^{D} \mathcal{N}(\mu_{kd}, \sigma_{kd}^2)$$

▶ Remember that we assumed $P(t_{new} = k) = 1/K$.

$$P(t_{\mathsf{new}} = k | \mathbf{x}_{\mathsf{new}}, \mathbf{X}, \mathbf{t}) = \frac{p(\mathbf{x}_{\mathsf{new}} | t_{\mathsf{new}} = k, \mathbf{X}, \mathbf{t}) p(t_{\mathsf{new}} = k)}{\sum_{j} p(\mathbf{x}_{\mathsf{new}} | t_{\mathsf{new}} = j, \mathbf{X}, \mathbf{t}) P(t_{\mathsf{new}} = j)}$$

▶ Remember that we assumed $P(t_{new} = k) = 1/K$.

$$P(t_{\text{new}} = k | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{t}) = \frac{p(\mathbf{x}_{\text{new}} | t_{\text{new}} = k, \mathbf{X}, \mathbf{t}) p(t_{\text{new}} = k)}{\sum_{j} p(\mathbf{x}_{\text{new}} | t_{\text{new}} = j, \mathbf{X}, \mathbf{t}) P(t_{\text{new}} = j)}$$

▶ Remember that we assumed $P(t_{new} = k) = 1/K$.

$$P(t_{\text{new}} = k | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{t}) = \frac{p(\mathbf{x}_{\text{new}} | t_{\text{new}} = k, \mathbf{X}, \mathbf{t}) P(t_{\text{new}} = k)}{\sum_{j} p(\mathbf{x}_{\text{new}} | t_{\text{new}} = j, \mathbf{X}, \mathbf{t}) P(t_{\text{new}} = j)}$$

Bayes classifier, example 2

- ▶ Data are number of heads in 20 tosses (repeated 50 times for each) from one of two coins:
 - Coin 1 $(t_n = 0)$: $x_n = 4$, 7, 7, 7, 4,...
 - Coin 2 $(t_n = 1)$: $x_n = 18, 16, 18, 14, 17, ...$
- Use binomial class conditional densities:

$$P(x_n|r_k) = \begin{pmatrix} 20 \\ x_n \end{pmatrix} r_k^{x_n} (1-r_k)^{20-x_n}$$

- Where r_k is the probability that coin k lands heads on any particular toss.
- ▶ Problem predict the coin, t_{new} given a new count, x_{new} .
- ▶ (Again assume $P(t_{new} = k) = 1/K$)

Fit the class conditionals...

 \triangleright Fitting is just finding r_k :

$$r_k = \frac{1}{20N_k} \sum_{n:t_n = k} x_n \quad \longrightarrow \quad$$

 $ightharpoonup r_0 = 0.287, r_1 = 0.706.$

Fit the class conditionals...

 \triangleright Fitting is just finding r_k :

$$r_k = \frac{1}{20N_k} \sum_{n:t_n = k} x_n$$

 $ightharpoonup r_0 = 0.287, r_1 = 0.706.$

Y2

$$P(t_{\text{new}} = k | x_{\text{new}}, \mathbf{X}, \mathbf{t}) = \frac{p(x_{\text{new}} | t_{\text{new}} = k, \mathbf{X}, \mathbf{t}) P(t_{\text{new}} = k)}{\sum_{j} p(x_{\text{new}} | t_{\text{new}} = j, \mathbf{X}, \mathbf{t}) P(t_{\text{new}} = j)}$$

Bayes classifier – summary

- Decision rule based on Bayes rule.
- Choose and fit class conditional densities.
- Decide on prior.
- Compute predictive probabilities.
- ► Naive-Bayes:
 - Assume that the dimensions of **x** are independent within a particular class.
 - Our Gaussian used the Naive Bayes assumption (could have written $p(\mathbf{x}|t=k,...)$ as product of two independent Gaussians).