

Aula 5.1

Realce no Espaço

Realce é o processamento que melhora uma imagem de acordo com alguma finalidade específica

Nem sempre, deseja-se torná-la mais bonita visualmente

Isto depende da finalidade do processamento:

- Análise visual → melhora visual
- Análise computacional -> realce de feições a serem extraídas

O processamento pode ser feito operando, diretamente e individualmente, com a informação de luminância dos pixels ou, para cada pixel a ser processado, considera-se a sua vizinhança

- 1) Operação pontual
- 2) Operação baseada em vizinhança

Operações pontuais

$$G(x,y) = T[f(x,y)]$$

Com *T*operando localmente, podendo ser baseada na vizinhança

Exemplos de transformações T

FIGURE 3.3 Some basic gray-level transformation functions used for image enhancement.

Realce de Imagens

Imagens Negativas – são obtidas invertendo os valores de nível de cinza, conforme a função *Negative* na figura.

Algumas funções de transformação T

Imagens Negativas

São úteis em várias áreas:

- Exibição de imagens médicas
- Construção de slides a partir de negativos de filmes fotográficos
- Imagens negativas podem evidenciar características não percebidas na imagem positiva

Mamografia → original e negativa

Não há uma melhor que a outra

Alguns detalhes ficam melhores em uma delas

Compressão da escala dinâmica

utilizam transformações logarítmicas, que conseguem mapear a faixa de valores na imagem em valores em uma faixa mais adequada para ser visualizada. A função usada é $S = c \log (1+r)$

Espectro de Fourier original Com c=1 e r = tom original

Na original, valores muito pequenos foram arredodados para zero e não são visíveis. Após a ampliação, se tornam visíveis

Funções potências

$$S = cr^{\gamma}$$

onde c e γ são constantes positivas Ainda pode se fazer

$$S = c (r + \varepsilon)^{\gamma}$$

Onde ε é um offset

O uso destas funções se justifica porque vários dispositivos de captura, impressão e visualização operam com respostas são lineares (potências)

$$S = cr^{\gamma}$$
$$c = 1.0$$
$$\gamma = 0.4$$

$$S = cr^{\gamma}$$

$$c = 1.0$$

$$\gamma = 0.3$$

Imagem original

Pode-se agir iterativamente, até encontrar um resultado visualmente satisfatório

$$S = cr^{\gamma}$$

$$c = 1.0$$

$$\gamma = 0.4$$

$$S = cr^{\gamma}$$

$$c = 1.0$$

$$\gamma = 0.5$$

Função de transformação linear por partes

O usuário interage para determinar a função de transformação

Fatiamento de tons de cinza

Parte dos tons de cinza é transformada linearmente e uma outra parte é maximizada ou minimizada

Tons entre A
e B recebem
valor d e os
demais
recebem o
valor c

Tons entre A
e B recebem
valor e e os
demais
permanecem
como estão

Fatiamento de planos de bits

Processamento de histograma – estatística da imagem

© 2002 R. C. Gonzalez & R. E. Woods

FIGURE 3.16 A

gray-level transformation function that is both single valued and monotonically increasing.

Equalização de histogramas

Procura, estatisticamente, obter uma melhor distribuição

dos níveis de cinza da imagem

Imagem Original

Histograma

Equalização de histogramas

máximo[0,round(255*1)/(8*8)-1] = 3 máximo[0,round(255*2)/(8*8)-1] = 7 máximo[0,round(255*3)/(8*8)-1] = 11

Equalização de histogramas

região equalizada

Histograma

Prática - implementar a equalização de imagens