Human Visual System

Learning Objectives

- What are the stages of human visual systems?
- What are the key principles of Gestalt for visualisations?

Human Visual Information Processing stages

Human Perception

Interpretation of Sensory Inputs

- visual
- auditory
- tactile
- olfactory
- taste

Visualization ... just "Visual Sensory Inputs?"

Human visual information processing model by Colin Ware

Stage 1: Parallel Processing to Extract Low-Level Properties

of the Visual Scene

Stage 2: Pattern Perception

Stage 3: Visual Cognition

Basic visual information processing sequences

- C.W. Eriksen and J. Hoffman, "The Extent Of Processing Noise Elements During Selective Encoding From Displays", Perception and Psychophysics, vol. 14, pp. 155-160, 1973.
- A. Treisman and G. Gelade, "A Feature Integration Theory Of Visual Attention", Cognitive Psychology, vol. 12, pp. 97-136, 1980.
- R.J. Allen, A.D. Baddeley and G.J. Hitch, "Is The Binding Of Visual Features In Working Memory Resource Demanding?" Journal of Experimental Psychology, vol. 135, pp. 298-313, 2006.
- L. Ungerleider and M. Mishkin, "Two cortical visual systems", Analysis of Visual Behaviour, D.J. Ingle, M.A. Goodale and R.J.W. Mansfield, eds., Cambridge: MIT Press, pp. 549-586, 1982.
- M.A. Goodale and A.D. Milner, "Separate Visual Pathways For Perception And Action", Trends Neuroscience, vol.15, pp. 20-25, 1992.
- M.J. Webster and L.G. Ungerleider, "Neuroanatomy of visual attention", The Attentive Brain, R.Parasuraman, ed., Cambridge: MIT Press, pp. 19-34, 2000

Variables vs Brain Areas

					ыаш	Aucas				
Potential Ordered Variables	Vl	V2	V3	V4	LOC	MT	MST	ITC	PPC	PFC
size			X							
texture				x						
value		X								
contour (width)	X	X		X						
resolution (blur)	x									
crispness (blur)	x									
transparency (blur)	x									
colour saturation			X			X				
colour hue		X	X	X						
orientation			x	x		x				
shape		x		x	x			x		
flicker (motion)		x								
velocity (motion)						x	x			
direction (motion)			×			x	x			
rotation (motion)							x			
radial flow (motion)							x			
contraction (motion)							x			
implied motion		x					x			
High-Level Functions										
configures spatial relations						x			x	
shifts attention									x	
omits visual distractors								x	x	
filters information								X	X	
initiates visual motor tasks									x	
represents salient cues				x				X	X	
tunes contour features				x						
orientates angles, curves				x						
distinguishes between objects				x				x		
segregates figure from ground	X	X		X				-	X	
recognises patterns			x					x		
recognises shapes				x				x		
recognises objects				x				x		
updates information in WM				-				x		x
stores information in WM								x		x
selects information from WM								_		X
monitors motor-output in WM										X

Data-driven vs Concept-driven stages

Data-driven

- "template" scheme
 - from given data, try to find a known template

perron up

Concept-driven

- conceptually driven process
 - start with a given concept
 - try to make sense of data based on the concept

top down

Competing Organisation: Data-driven to concept-driven, Example I

Competing Organisation: Data-driven to concept-driven, Example II

My Wife and My Mother-in-Law (1915) by William Ely Hill

Competing Organisation: Data-driven to concept-driven, Example III

Slave Market with the Disappearing Bust of Voltaire (1940) by Salvador Dalí

Data-driven: No meaning attached, Example I

"Tlinko, C.1955" Serigraph by Victor Vasarely

Data-driven: No meaning attached, Example II

Tremor (1962) by Bridget Riley

Concept-driven: Spatial Awareness, Example I

Baroque Experiment - Fred Maddox (1962/63) by Jeffrey Steele

Concept-driven:

Spatial Awareness, Example II

The Perception of the Visual World (1950)

James J. Gibson

Concept-driven: Spatial Awareness, Example III

The Perception of the Visual World (1950)
James J. Gibson

Influence of context

Context-induced Optical Illusion, Example I

Context-induced Optical Illusion, Example II

Perceptual size can be controlled with context

Context-induced Optical Illusion, Example III

Context-induced Optical Illusion, Example IV

Feature Analyses Lateral interaction

Grid illusion (1870) by Ludimar Herman

Simultaneous contrast

Gage, J. (1993). Colours of the Mind in Colour and Culture: Practice and Meaning from Antiquity to Abstraction (pp.191-212). New York: Thames and Hudson

Perception for Design: The Basic of **Gestalt Principles**

Gestalt Laws

- From Gestalt Psychology
- · Laws of how human
 - · Group similar entities
 - Recognise patterns
 - · Simplify complex entities
- They are in the mind, not the eye

Key principles for Visualisation

- Similarity
- Proximity
- Common Region
- Closure
- Continuity
- Connection

Similarity

 Entities which have similar visual attributes (such as shape and colour) are perceived as same cluster or group and have similar functions.

Proximity

- Entities which are close to each other can be seen as they belong to the same group
- powerful overrides similarity of color, shape, and other factors that might differentiate a group of objects

Common Region

 Entities which are surrounded by a same closed region can be seen as they belong to the same group despite the differences in visual attributes.

Common Region, cont.

A map metaphor visualization (left) seems more appealing than a plain graph layout (right), and clusters seem easier to identify.

Gansner, E. R., Hu, Y., & North, S. C. (2013). Interactive Visualization of Streaming Text Data with Dynamic Maps. *J. Graph Algorithms Appl.*, 17(4), 515-540.

Closure

 An entity, which looks like its part is missing, can be mentally filled in.

Continuity

 Entities that are arranged on a line or curve are perceived to be more related than elements not on the line or curve

Connection / Connectedness

- Connected entities are perceived as a group or a chunk.
- Powerful stronger than proximity and similarity.

Summary

- What are the stages of human visual systems?
 - Visual Information Processing stages
 - Data-driven vs Concept-driven stages
- What are the key principles of Gestalt for visualisations?
 - Similarity
 - Proximity
 - Common Region
 - Closure
 - Continuity
 - Connection

THE UNIVERSITY OF SYDNEY