Tutorial 1

Q1: Calculate the CFSE for the following complexes.

a) $[Fe(CN)_6]^{3-}$

Fe:
$$\{Ar\}\ 3d^6, 4s^2$$

Fe³⁺: $\{Ar\}\ 3d^5$

For octahedral geometry the d orbitals will split as t_{2g} and e_g . Filling electrons for a strong field ligand;

So the CFSE will be $5(-2/5) \Delta_o$

b) $[Fe(H_2O)_6]^{3+}$

Fe:
$$\{Ar\}\ 3d^6, 4s^2$$

Fe³⁺: $\{Ar\}\ 3d^5$

For octahedral geometry the d orbitals will split as t_{2g} and e_{g} . Filling electrons for a weak field ligand;

So the CFSE will be 3(-2/5) $\Delta_o + 2(3/5) \Delta_o = 0$

c) $[CoF_6]^{3-}$

Co:
$$\{Ar\}\ 3d^7, 4s^2$$

Co³⁺: $\{Ar\}\ 3d^6$

For octahedral geometry the d orbitals will split as t_{2g} and e_{g} . Filling electrons for a weak field ligand;

d) $\left[\text{CoCl}_4\right]^{2-}$

Co:
$$\{Ar\}\ 3d^7, 4s^2$$

Co²⁺: $\{Ar\}\ 3d^7$

For tetrahedral geometry the d orbitals will split as e and t₂. The tetrahedral geometry will result in a high spin complex. Though Cl⁻ is a weak ligand, the tetrahedral geometry is the more relevant factor. Filling electrons;

So the CFSE will be 4(-3/5) $\Delta_t + 3(2/5) \Delta_t = -6/5 \Delta_t$

e) $[Cr(H_2O)_6]^{2+}$

Cr:
$$\{Ar\}\ 3d^5, 4s^1$$

Cr³⁺: $\{Ar\}\ 3d^4$

For octahedral geometry the d orbitals will split as t_{2g} and e_{g} . Filling electrons for a weak field ligand;

So the CFSE will be $3(-2/5) \Delta_o + 1(3/5) \Delta_o = -3/5 \Delta_o$

Q2: Which of the following are structural isomers?

- I. coordination isomers
- II. linkage isomers
- III. geometric isomers
- IV. optical isomers
 - A) I, III
 - B) II, IV
 - C) I, III, IV
 - D) II, III
 - E) I, II

Answer: E

Q3: Which of the following complexes shows geometric isomerism?

- A) [Co(NH₃)₅Cl]SO₄
- B) $[Co(NH_3)_6]Cl_3$
- C) $[Co(NH_3)_5Cl]Cl_2$
- D) $K[Co(NH_3)_2Cl_4]$
- E) Na₃[CoCl₆]

Answer: D (MA₆ and MA₅B cases do not exhibit geometric isomerism)

Q4. How many of the following compounds exhibit geometric isomers?

- I. $Pt(H_2O)_2Cl_2$ (square planar)
- II. $[Co(H_2O)_6]Br_3$
- III. $[Ni(H_2O)_4(NO_2)_2]$
- IV. $K_2[CoCl_4]$
- A) 0
- B) 1
- C) 2
- D) 3
- E) 4

Answer: C (complexes 1 and III)

Q5. Give the number of geometric isomers for the octahedral compound [MA₂B₂C₂], where A, B, and C represent ligands.

- A) 1
- B) 2
- C) 3
- D) 5
- E) none of these

- Q6. For the process $[Co(NH_3)_5Cl]^{2+} + Cl^- \rightarrow [Co(NH_3)_4Cl_2]^+ + NH_3$, what would be the ratio of *cis* to *trans* isomers in the product?
 - A) 1:1
 - B) 1:2
 - C) 1:4
 - D) 4:1
 - E) 2:1

Answer: D

- Q7. Which of the following statements about the complex ion $[Co(en)_2Cl_2]^+$ is true? (en = ethylenediamine, $NH_2CH_2CH_2NH_2$)
 - A) The complex ion contains Co(I).
 - B) The complex ion exhibits *cis* and *trans* geometric isomers, but no optical isomers.
 - C) The complex ion exhibits two geometric isomers (*cis* and *trans*) and two optical isomers.
 - D) The geometric isomers of the complex ion have identical chemical properties.

Answer: C

Geometric isomers:

The *cis*- form is an enantiomeric pair:

Non-superimposable mirror images

Q8. Calculate the oxidation state of the metal and the number of d electrons in the following coordination complexes:

a)
$$[CoCl_4]^{2}$$
; b) $[Fe(bpy)_3]^{3+}$; c) $[Cu(ox)_2]^{2}$; d) $[Cr(CO)_6]$

Answer:

a) Each Cl ligand has a charge of -1, so $4 \times -1 = -4$ Overall charge on the complex is -2, so the oxidation state of Co = +2. Ground state configuration for Co = [Ar] $3d^7 4s^2$ On loss of 2e-, Co²⁺ has configuration [Ar] $3d^7$, so seven d electrons.

- b) bpy (2,2'-Bipirydyl) is uncharged = neutral Oxidation state of Fe = +3. Ground state configuration for Fe = [Ar] $3d^6$ 4s² On loss of 3e- Fe³⁺ has configuration [Ar] 3d⁵, so five d electrons.
- c) ox (oxalate, $C_2O_4^{2-}$) has charge -2 per oxalate, so total = 2 x -2 = -4 Overall charge on complex = -2, so the oxidation state of Cu = +2. Ground state configuration for $Cu = [Ar] 3d^{10}4s^{1}$ On loss of 2e-, Cu^{2+} has configuration [Ar] $3d^{9}$, so nine d electrons.
- d) CO is uncharged = neutral. Oxidation state of Cr = 0. In this case, all electrons are in 3d orbitals which are now of lower energy (because filled) than 4s orbitals. Ground state configuration for $Cr = [Ar] 3d^5 4s^1$. Configuration for $Cr^0 =$ [Ar] 3d⁶, so six d electrons.
- Q9. Which of the following complexes will have larger crystal field splitting (Δ) in the given series? Give brief explanation for your choice.
 - (i)
 - $[Co(en)_3]^{3+}$, $[Ir(en)_3]^{3+}$, $[Rh(en)_3]^{3+}$ $[Cr(H_2O)_6]^{3+}$, $[Cr(H_2O)_6]^{2+}$, $[Cr(NH_3)_6]^{3+}$, $[Cr(CN)_6]^{3-}$
 - $[\text{CoF}_6]^{3-}$, $[\text{Co}(\text{H}_2\text{O})_6]^{3+}$, $[\text{Co}(\text{NH}_3)_6]^{3+}$ (iii)
 - $[Fe(H_2O)_6]^{2+}$, $[Fe(CN)_6]^{4-}$, $[FeCl_4]^{2-}$ (iv)

Answers:

- $[Co(en)_3]^{3+}$, $[Ir(en)_3]^{3+}$, $[Rh(en)_3]^{3+}$: Ir3+ having larger size 5d-orbitals and thus stronger interaction along with being larger metal ion, ligands experience less steric crowding and hence Δ is greater.
- $[Cr(H_2O)_6]^{3+}$, $[Cr(H_2O)_6]^{2+}$, $[Cr(NH_3)_6]^{3+}$, $[Cr(CN)_6]^{3-}$: CN^- is strong-field ligand (pi-acceptor) compared to NH_3 (ii) or H₂O (sigma-donors).
- $[CoF_6]^{3-}$, $[Co(H_2O)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$: Order of ligand strength: $F_- < H_2O < NH_3$ (F is a pi-donor ligand whereas H₂O and NH₃ are sigma-donors)
- $[Fe(H_2O)_6]^{2+}$, $[Fe(CN)_6]^{4-}$, $[FeCl_4]^{2-}$: CN is strong-field ligand (pi-acceptor) compared to NH₃ (sigma-donor) or Cl⁻ (pi-donor).