Epreuve écrite

Examen de fin d'études secondaires 2009

Section: BC

Branche: physique

Numéro d'ordre du candidat

1. Satellites

(4+2+2+2+2=12 points)

Un satellite de masse m effectue un mouvement circulaire sans frottement autour d'une planète homogène de masse M. La distance entre le satellite et le centre de la planète vaut r.

- a. Montrer que la vitesse du satellite est uniforme et s'écrit $v = \sqrt{K \frac{M}{r}}$
- b. Vérifier que l'unité de $\sqrt{K\frac{M}{r}}$ est bien celle d'une vitesse.
- c. À partir de la relation établie en (a), établir l'expression de la 3ème loi de Kepler.
- d. Sachant que la Lune tourne autour de la Terre sur une orbite quasi-circulaire et que sa période de révolution vaut 27,32 jours, trouver la distance moyenne Terre-Lune.
- e. Commentez l'affirmation suivante : « Pour les satellites en orbite circulaire autour d'une planète, le carré de la vitesse angulaire est inversement proportionnel au cube du rayon de l'orbite ».

2. Oscillateurs électriques

(3+3+3+3=12 points)

- a. Décrire à l'aide d'une figure, une expérience montrant qu'une bobine parcourue par un courant emmagasine de l'énergie magnétique.
- b. Établir l'expression de l'énergie magnétique emmagasinée dans une bobine d'inductance *L* parcourue par un courant d'intensité *I*.
- c. Établir l'équation différentielle d'un circuit LC à partir d'une considération énergétique.
- d. On considère maintenant un circuit RLC. Représenter schématiquement l'intensité en fonction du temps pour différentes valeurs de la résistance *R* : résistance nulle, résistance faible, résistance élevée .

3. Relativité restreinte

(2+3+1+2+2+2=12 points)

- a. Commenter l'affirmation suivante : « La théorie de la relativité restreinte montre que tout ce que l'on peut mesurer dépend de l'observateur : tout est relatif »
- b. Établir l'expression entre l'énergie totale et la quantité de mouvement d'une particule relativiste. Un proton initialement au repos est accéléré par une tension de 202 MV.
- c. Calculer son énergie cinétique en MeV.
- d. Calculer l'énergie totale du proton, en MeV et en J.
- e. Calculer sa quantité de mouvement.
- f. Quelle est la vitesse du proton?

page 1/2

Epreuve écrite

Examen de fin d'études secondaires 2009

Section: BC

Branche: physique

Numéro d'ordre du candidat

4. Effet photoélectrique

(3+2+2+3=10 points)

- a. Expliquer pourquoi les résultats de l'expérience de Hertz sont en contradiction avec la théorie ondulatoire de la lumière.
- b. Commenter l'affirmation suivante : « La vitesse maximale des électrons émis lors de l'effet photoélectrique est proportionnelle à la fréquence de la lumière incidente. »

Une plaque de tungstène est éclairée par de la lumière monochromatique. Le travail d'extraction du tungstène vaut 4,57 eV.

- c. Une lumière jaune de longueur d'onde 589 nm peut-elle produire un effet photoélectrique ?
- d. Quelle est la vitesse maximale des électrons émis, lorsque la plaque est éclairée par de la lumière ultraviolette ayant une longueur d'onde de 236 nm?

5. Physique nucléaire

(5+1+3+3+2=14 points)

a. Établir la loi de la décroissance radioactive.

L'isotope du thorium $^{227}_{90}$ Th est radioactif émetteur α . Sa période radioactive vaut 18.3 jours, et sa masse molaire vaut 227,0277 g/mol. À l'instant t = 0, on dispose d'un échantillon de masse 1 mg.

- b. Écrire l'équation bilan de la désintégration du thorium 227.
- c. Calculer, en unité de masse atomique, la masse du noyau-fils, sachant que la masse du noyau de thorium vaut 226.978 u et que l'énergie libérée lors d'une désintégration vaut 9.83·10⁻¹³ J.
- d. Calculer l'activité initiale A₀ de l'échantillon de thorium.
- e. Calculer la masse de thorium 227 qui a disparu au bout de 36 heures.

Relevé des principales constantes physiques

Grandeur physique	Symbole usuel	Valeur numérique	Unité
Constante d'Avogadro	N _A (ou L)	$6,022 \cdot 10^{23}$	mol ⁻¹
Constante molaire des gaz parfaits	R	8,314	J K ⁻¹ mol ⁻¹
Constante de gravitation	K (ou G)	6,673·10 ⁻¹¹	N m ² kg ⁻²
Constante électrique pour le vide	$k = \frac{1}{4\pi\varepsilon_0}$	8,988·10 ⁹	N m ² C ⁻²
Célérité de la lumière dans le vide	c	2,998·10 ⁸	m s ⁻¹
Perméabilité du vide	μο	$4\pi \cdot 10^{-7}$	H m ⁻¹
Permittivité du vide	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$	8,854·10 ⁻¹²	F m ⁻¹
Charge élémentaire	e	1,602·10 ⁻¹⁹	С
Masse au repos de l'électron	m _e	9,1094-10 ⁻³¹	kg
		5,4858·10 ⁻⁴ 0,5110	u MeV/c ²
Masse au repos du proton	m _p	1,6726·10 ⁻²⁷ 1,0073	kg u
		938,27	MeV/c ²
Masse au repos du neutron	m _n	1,6749-10 ⁻²⁷	kg
		1,0087	u
		939,57	MeV/c ²
Masse au repos d'une particule α	m_{α}	6,6447·10 ⁻²⁷	kg
		4,0015	u
		3727,4	MeV/c ²
Constante de Planck	h	6,626·10 ⁻³⁴	Js
Constante de Rydberg de l'atome d'hydrogène	R _H	$1,097 \cdot 10^7$	m ⁻¹
Rayon de Bohr	r ₁ (ou a ₀)	5,292·10 ⁻¹¹	m
Energie de l'atome d'hydrogène dans l'état fondamental	E ₁	-13,59	eV.

Grandeurs liées à la Terre et au Soleil (elles peuvent dépendre du lieu ou du temps)			tilisée sauf n contraire
Composante horizontale du champ magnétique terrestre	B _h	2.10-5	T
Accélération de la pesanteur à la surface terrestre	g	9,81	m s ⁻²
Rayon moyen de la Terre	R	6370	km
Jour sidéral	T	86164	S
Masse de la Terre	M _T	5,98·10 ²⁴	kg
Masse du Soleil	Ms	$1,99 \cdot 10^{30}$	kg

Conversion d'unités en usage avec le SI

 $\begin{array}{lll} 1 \text{ angstr\"om} & = 1 \stackrel{\circ}{A} = 10^{-10} \text{ m} \\ 1 \text{ électronvolt} & = 1 \text{ eV} = 1,602 \cdot 10^{-19} \text{ J} \\ 1 \text{ unit\'e de masse atomique} & = 1 \text{ u} = 1,6605 \cdot 10^{-27} \text{ kg} = 931,49 \text{ MeV/c}^2 \end{array}$

TABLEAU PERIODIQUE DES ELEMENTS

groupe	groupes principaux	XUS											grou	groupes principaux	ncipaux		
	=											=	2	>			
1,0																	4,0
I																	He
_																	2
6,9	0,6											10,8	12,0	14,0	16,0	19,0	20,2
=	Be											8	O	z	0	ш	Ne
e	4											2	9	7	8	6	10
23,0	24,3					groupes secondaires	second	laires				27,0	28,1	31,0	32,1	35,5	39,9
Na	Mg											A	Si	۵	S	ਹ	Ar
17	12	≡	2	>	5	II/				_	=	13	14	15	16	17	18
39,1	40,1	45,0	47,9	6'09	52,0	54,9	55,8	58,9	58,7	63,5	65,4	2,69	72,6	74,9	0,67	6'62	83,8
×	Ca	Sc	F	>	ò	Mn	Fe	ဝိ	Z	C	Zn	Ga	Ge	As	Se	Br	X
19	20	21	22		24	25	26	27	28	29	30	31	32	33	34	35	36
85,5	9,78	88,9	91,2	92,9	95,9	(97)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
Rb	Sr	>	Zr	qN	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	н	Xe
37	38	39	40		42	43	44	45	46	47	48	49	20	51	52	53	54
132,9	137,3	175,0	178,5	180,9	183,9	186,2	190,2	192,2	165,1	197,0	200'6	204,4	207,2	209,0	(209)	(210)	(222)
S	Ba	Lu	H	Ta	3	Re	Os	i	Pt	Au	Hg	F	Pb	Bi	Po	At	Ru
55	56	71	72		74	75	92	77	78	79	80	81	82	83	84	85	98
(223)	226,0	(260)	(261)	(262)	(566)	(264)	(569)	(268)									
Ŧ	Ra	Ļ	Rf	Dp	Sg	Bh	Hs	Mt									
87	88	103	104	105	106	107	108	109									

		140,1	140,9	144,2	(145)	150,4			158,9	162,5	164,9	167,3	168,9	173,0
lanthanides	La	Ce	Pr	Nd	Pm	Sm			Tb	Dy	Н	프	Tm	Yb
		58	59	09	61	62			65	99	29	89	69	70
		232,0	231,0	238,0	237,0	(244)		(247)	(247)	(251)	(254)	(257)	(258)	(259)
actinides		Th	Pa	ר	dN	Pu	Am	Cm	BK	Ç	Es	Fm	Md	No.
	88	90	91	92	93	94		96	26	98	66	100	101	102