- For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.
 - Given historical weather records, predict if tomorrow's weather will be sunny or rainy.

Un-selected is correct

Correct

K-means can cluster the articles and then we can inspect them or use other methods to infer what topic each cluster represents

From the user usage patterns on a website, figure out what different groups of users exist.

Correct

We can cluster the users with K-means to find different, distinct groups.

Given many emails, you want to determine if they are Spam or Non-Spam emails.

Un-selected is correct

- 2. Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$. Furthermore, we have a training example $x^{(i)}=\begin{bmatrix}-2\\1\end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?
 - $c^{(i)}$ is not assigned
 - $c^{(i)} = 2$

Correct

 $x^{(i)}$ is closest to μ_2 , so $c^{(i)}=2$

The answer is ambiguous, and there is no good way of choosing.	
For each of the clusterings, compute $\frac{1}{m}\sum_{i=1}^m x^{(i)}-\mu_{c(i)} ^2$, and pick the one that minimizes this.	
Correct This function is the distortion function. Since a lower value for the distortion function implies a better clustering, you should choose the clustering with the smallest value for the distortion function.	
Which of the following statements are true? Select all that apply.	
For some datasets, the "right" or "correct" value of K (the number of clusters) can be ambiguous, and hard even for a human expert looking carefully at the data to decide.	
Correct In many datasets, different choices of K will give different clusterings which appear quite reasonable. With no labels on the data, we cannot say one is better than the other.	
The standard way of initializing K-means is setting $\mu_1=\cdots=\mu_k$ to be equal to a vector of zeros.	
Un-selected is correct	
If we are worried about K-means getting stuck in bad local optima, one way to ameliorate (reduce) this problem is if we try using multiple random initializations.	
Correct Since each run of K-means is independent, multiple runs can find different optima, and some should avoid bad local optima.	
Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number of clusters as is computationally feasible.	
Un-selected is correct	

5.