CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

IO Organization

Lecture No.-01

Topic Floating-Point Numbers

Topic

Biased Exponent

Topic

Number Range

Topic

IEEE-754 Floating Point Representation

Topic

Denormalized Number

Topics to be Covered

#Q. How to represent +1 and -1 in IEEE-754 single precision floating point number?

$$(1.0)_{10} = (1.0)_{2}$$

$$Implied normalizat^{7}$$

$$1.0 * 2^{0}$$

$$P = 000.-0$$

$$e = 0$$

$$E = 0 + 127 = (127)_{10} = (0111111)_{2}$$

#Q. How to represent +0.0000101 in IEEE-754 single precision floating point number?

5	E	M
0	011110	010000

$$m = 0100...0$$
 $e = -5$
 $E = -5 + 127 = 122 = (01111010)_{2}$

#Q. The value of a float type variable is represented using the single- precision 32-bit floating point format IEEE-754 standard that uses 1bit for sign, 8 bits for biased exponent and 23 bits for mantissa. A float type variable X is assigned the decimal value of -14.25. The representation of X in hexadecimal notation is S=1

A C1640000H

В

416C0000H

$$(14.25)_{10} = (1110.01)_{2}$$

= $|.11001 \pm 2^{3}$

41640000H

D

C16C0000H

$$M = 110010...0$$
 $E = 3$
 $E = 3+127 = 130$
 $= (10000010)_2$

#Q. Consider a 6-words instruction, which is of the following type:

					Cha
Opcode	Mode1	Mode2	Address1	Address2	men.
					· 4").

The first operand (destination) uses register indirect mode and second operand uses indirect mode. Assume each operand is of size 2 words, each address is of 2 words and main memory takes 50ns for 1 byte access. Further assume that the opcode denotes addition operation which copies result of addition of 2 operands. One word size is 4 bytes. Total time required in:

- 1. Fetch cycle of instruction = 1200nS
- 2. Execution cycle of instruction 1600 ns
- 3. Instruction cycle of instruction =) 1200+1600 = 2800 ns

Input/output device (I/o device)

All devices which are connected to CPU externally apart from main memory.

```
Types:-

1:- Input devices

2:- output devices

3:- Storage devices
```


Topic: CPU Connected to IO Directly?

versions of I/o interfaces operath Interfacing I/O interface Interfacing + DMA transfer DMA Controller Interfacing + DMA transfer I/O processor + I/O instruction

Execution

Topic: Need For Interface

- Peripherals are electromechanical or electromagnetic devices; and their manner of operation is different from the operation of the CPU and memory. Which are electronic devices. So conversion of signal required.
- The data transfer rate of peripherals is usually slow. So synchronization is required.
- Data codes and format in peripherals differ from the word format in the CPU and memory. So conversion of formats is required.
- The operating modes of peripherals are different from each other and each must be controlled so a peripheral does not disturb the operation of other peripherals.

Topic: IO vs Memory Buses

There are 3 way to connect (PV with memory & Ito

Topic: 1. Separate Buses for Both

Disadv:-

Topic: 2. Common Data, Address Bus

Isolated I/o

Part-mapped I/o

I/o-mapped I/o

Topic: 3. Common Address, Data & Control Bus

Topic: 3. Common Address, Data & Control Bus

ex:- There is a byte addressable mem. of size = 8 bytes and 2 I/O devices d1 and d2

2 addresses are allocated to devices from mem.

assume	allocated	add.
di	101	
02	010	

Topic: Memory Mapped IO vs IO Mapped IO

Memory Mapped IO	IO Mapped IO
1. some part of mem. wastage	1. No mem. wastage
2. I/o devices do not have their own address space.	2. I/o devices have their
their own address space.	own address space
3. All mem access inst ^{ns} can be used to access I/o also.	3. I/o access inst ^{ns} and mem. access inst ^{ns} are different-different
4. More no. of inst ^{ns} and modes to access I/O.	4. Lesser no. of inst ^{ns} and addressing modes to access I/o devices.

Topic: Memory Mapped IO vs IO Mapped IO

Memory Mapped IO	IO Mapped IO	
5. More no. of I/o devices can be connected.		

Topic: Asynchronous Data Transfer

serial

-> when there is no any data transfer than receiver always detects '1' on the line.

-> As soon as receiver get 'o' (start bit), it will be ready to receive data.

Effective transmission rate = efficiency * Actual transfer rate

#Q. How many 8-bit characters can be transmitted per second over 9600 bits/sec serial communication link using a parity synchronous mode of transmission with 1 start bit, 8 data bits, 2 stop bits and 1 parity bit?

for 1 char no. of bits =
$$1+8+2+1 = 12$$
 bits
no. of char/sec = $\frac{9600}{12} = 800$ char/sec.

Efficiency =
$$\frac{8}{12}$$

#Q. An asynchronous serial communication is employing 8 character bits, 1 parity bit, 2 start bits and 1 stop bit. To maintain a rate of 700 char/sec. The minimum transfer rate should be required is 8400 bits/sec?

- #Q. 8-bit characters can be transmitted using a parity synchronous mode of transmission with 1 start bit, 8 data bits, 2 stop bits and 1 parity bit.
- 1. What is the efficiency of the transmission line? $\frac{2}{3} = 0.66 = 66.67 \%$
- 2. If the transfer rate of the line is 3000 bits per second, then effective transfer rate is? $= 2000 \, \text{lits/sec}$.

1. Efficiency =
$$\frac{8}{1+8+2+1} = \frac{8}{12} = \frac{2}{3} = 0.66 = 66.67\%$$

2 mins Summary

Topic

Peripheral Device

Topic

10 vs Memory Buses

Topic

Memory Mapped IO vs IO Mapped IO

Topic

Asynchronous Data Transfer

Happy Learning THANK - YOU