0.1 W_n (Räder)

Der vorletzte Stop auf unserer Reise sind die sogenannten Wheel-Graphen. Hier wird zu einem zyklischen Graphen C_n mit Knoten $\{v_1,...,v_n\}$, $n \ge 3$ ein weiterer Knoten z hinzugefügt, der mit allen anderen Knoten benachbart ist, sodass der Wheel-Graph W_n entsteht (Achtung: W_n hat n+1 Knoten).

Satz 0.1 Für die Anzahl der Spannbäume in einem Rad gilt:

$$k(W_n) = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3+\sqrt{5}}{2}\right)^n - 2\tag{1}$$

Beweis:

Um die Formel für die Berechnung der Anzahl der Spannbäume eines solchen Graphen herzuleiten, lassen wir von [?] inspirieren. Wir beobachten, dass wir den Fan-Graphen F_n bekommen, wenn wir die Kante v_1v_n aus W_n entfernen. Die Anzahl der Spannbäume von F_n kennen wir bereits von oben. Um die Anzahl der Spannbäume von Rädern zu berechnen, zeigen wir zuerst die rekursive Beziehung

$$k(W_{n+1}) = k(F_{n+1}) + k(F_n) + k(W_n)$$
(2)

Um das zu tun, werden die Spannbäume von W_{n+1} in drei verschiedene Klassen einteilen, wie man auch in den Abbildungen unten sehen kann:

1) Alle Spannbäume, die die Kante $v_{n+1}v_1$, aber nicht die Kante $v_{n+1}z$ enthalten; das sind genau so viele, wie die Spannbäume von W_n .

Grafik dazu

2)Alle Spannbäume, die die Kante $v_{n+1}v_1$ nicht enthalten; das sind genau so viele, wie die Spannbäume von F_{n+1} .

Grafik dazu

3) Alle Spannbäume, die die Kante $v_{n+1}v_1$ und die Kante $v_{n+1}z$ enthalten; jetzt beweisen wir, dass das so viele sind, wie die Spannbäume von F_n . Dafür werden wir zeigen, dass für die Anzahl der Spannbäume in Klasse 3 den gleichen rekursiven Formeln genügen wie die von F

Beweis und grafische Veranschaulichung davon

Da jeder Spannbaum von W_{n+1} in genau einer dieser Klassen ist, gilt die rekursive Beziehung

$$k(W_{n+1}) = k(F_{n+1}) + k(F_n) + k(W_n)$$
(3)

Wir werden nun den Beweis per Induktion über $n \in \mathbb{N}$, $n \geq 3$ vervollständigen, wobei uns natürlich zu Gute kommt, dass uns die Anzahl der Spannbäume von Fan-Graphen schon bekannt ist. Für unseren Induktionsanfang sehen wir -zum Beispiel durch Anwendung von Krichhoffs Matrix-Tree-Theorem- leicht, dass

$$k(W_3) = 16 = \left(\frac{3+\sqrt{5}}{2}\right)^3 + \left(\frac{3+\sqrt{5}}{2}\right)^3 - 2.$$
 (4)

Wir nehmen nun an, dass für ein $n \in \mathbb{N}$ die Formel

$$k(W_n) = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3+\sqrt{5}}{2}\right)^n - 2 \tag{5}$$

gilt.

Damit bleibt noch zu zeigen, dass

$$k(W_{n+1}) = \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} - 2.$$
(6)

Das werden wir nun einfach ausrechnen. Nachdem wir im vorherigen Kapitel herausgefunden haben, wieviele Spannbäume Fan-Graphen haben, setzen wir das und unsere Induktionsannahme in die Gleichung (3) ein, und erhalten:

$$k(W_{n+1}) = \frac{(3+\sqrt{5})^{n+1} - (3-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}} + \frac{(3+\sqrt{5})^n - (3-\sqrt{5})^n}{2^n\sqrt{5}} + (\frac{3+\sqrt{5}}{2})^n + (\frac{3-\sqrt{5}}{2})^n - 2$$

$$(7)$$

Wir bringen fast alles auf einen Nenner, sortieren die Terme und bekommen

$$k(W_{n+1}) = \frac{(3+\sqrt{5}+2+2\sqrt{5})(3+\sqrt{5})^n}{2^{n+1}\sqrt{5}} - \frac{(3+\sqrt{5}+2-2\sqrt{5})(3-\sqrt{5})^n}{2^{n+1}\sqrt{5}} - 2$$
(8)

zusammengehörige Terme farbig markieren

Ausrechnen führt uns zu

$$k(W_{n+1}) = \frac{3+\sqrt{5}}{2})^{n+1} + (\frac{3+\sqrt{5}}{2})^{n+1} - 2$$
(9)

Damit ist unser Induktionsbeweis abgeschlossen und wir haben gezeigt, dass unser Satz 1 über die Anzahl der Spannbäume in einem Rad gilt.

Rechnungen evtl. in equations packen