

Stoichiometry-1

SAP-4

$$W_{\text{Urea}} = 10 \text{ gm} \qquad \left(NH_{2}\text{CO}NH_{2}\right)$$

$$W_{\text{H}_{2}0} = 90 \text{ gm}$$

$$V_{\text{Sol}}^{\gamma} = \frac{100}{1\cdot 2} = \frac{1000}{12} = \frac{250}{3} \text{ ml}$$

$$\left(\frac{7}{V}\right)_{\text{Urea}} = \frac{10}{250} \times 3 \times 100 = 12^{-7}.$$

If $\omega_{soi}^n = 100 \text{ gm}$, $d_{soi}^n = 1.2 \text{ g/ml}$

Shortcut
$$\Rightarrow$$
 $(\frac{\sqrt{\omega}}{v})_{\text{solute}} = (\frac{\sqrt{\omega}}{\omega})_{\text{solute}} \times \frac{d_{\text{sol}}}{d_{\text{sol}}} \times \frac{d_{\text{sol}}}{d_{$

(i)
$$(\frac{1}{W})_{glucose}$$

(ii) $(\frac{1}{W})_{glucose}$

(iv) $\times_{glucose}$
 $(\frac{1}{W})_{glucose}$
 2 M Sol^{m}
 $2 \text{ mol glucose} \Rightarrow 360 \text{ gm glucose}$
 $1 \text{ lith Sol}^{m}, d_{sol}^{m} = 1.1 \text{ gm/me}$
 $W_{sol}^{m} = 1.1 \times (1000) = 1100 \text{ gm}$
 $W_{H_{20}} = 1100 - 360 = 740 \text{ gm}$
 $(\frac{1}{W})_{glucose} = \frac{360}{1100} \times 100 = 32.73 \text{ f.}$
 $(\frac{1}{W})_{glucose} = \frac{360}{1000} \times 100 = 36 \text{ f.}$
 $(\frac{1}{W})_{glucose} = \frac{360}{1000} \times 100 = 36 \text{ f.}$

 $\chi_{\text{glucose}} = \frac{2}{2 + \frac{740}{18}} = \frac{36}{776}$

110. If 100 mL of
$$H_2SO_4$$
 and 100 mL H_2O are mixed, the mass percent of H_2SO_4 in the resulting solution in $(d_{H_2SO_4} = 0.9 \text{ gmL}^{-1}, d_{H_2O} = 1.0 \text{ gmL}^{-1})$

(A) 90 (B) 47.36 (C) 50 (D) 60

($\frac{\omega}{W} = \frac{\omega}{W} = \frac{(160 \times 0.4)}{(100 \times 0.4) + (100 \times 1)} \times 100$
 $= \frac{90}{190} \times 100 = 47.36 \text{ //}.$

21. The amount of sugar $(C_{12}H_{22}O_{11})$ required to prepare 2 L of its 0.1 M aqueous solution is: (2019)

(A) 34.2 g (B) 17.1 g (C) 136.8 g (D) 68.4 g

x = 68.4 gm

Ex. MgO (oxide of Mg)

24gm 16gm

12gm 8gm

Equivalent mass of Mg

Alcl3 (chloride of Al) ソ 106·5 gm 27 gm 35.5 gm 9 gm) -> Equivalent mass of Al Equivalent mass = molar mass n-factor or valency factor Calculation of n-factor nf. = valency of atom (1) For atom -> $0 \longrightarrow 2$ $Na \longrightarrow 1$ $H \longrightarrow 1$ Mg -> 2 CI -> 1 $ca \longrightarrow 2$ nf. = charge on ion (2) For ion \longrightarrow

CaHz (Hydrolith, Hydride of ca)

Equivalent mass of ca

) 2 gm

20 gm

1 gm

EX.

Ex.

 $50_u^2 \longrightarrow$

cı[−] →

2A13+ 3504-

 $3 < a^{2+} 2 Po_{4}^{3-}$

 $ca_3(Po_4)_2 \longrightarrow 6$

<u>Ex</u>.

(4) For acids
$$\longrightarrow$$
 $n-factor = basicity$
 or
 or

AICI₃
$$nf = 3$$

AICI₃ $+ 3H_2O \longrightarrow AI(OH)_3 + 3H + 3CI$

(5) For Bases \longrightarrow
 $n-\text{factor} = no. of furnishable OH^- ions

Per molecule of base

or

 $no. of gained H^+$ ions

Per molecule of base

EX. NaOH $\longrightarrow 4$
 $KOH \longrightarrow 1$
 $Ca(OH)_2 \longrightarrow 2$$

$$\begin{array}{cccc}
\mathsf{KOH} & \longrightarrow & 1 \\
\mathsf{Ca(OH)_2} & \longrightarrow & 2 \\
\mathsf{Mg(OH)_2} & \longrightarrow & 2 \\
\mathsf{NH_4OH} & \longrightarrow & 1
\end{array}$$

Fe(OH)2

Nazo →2Na++20HT Mgo

Cao

 $NH_3 + H_2O \xrightarrow{NH_3} NH_4^+ + \xrightarrow{OH}$ $NAHCO_3$

KHC02 Ca (HCO3)2 Cacoz Mgcoz A12(C03)2 calculation of no. of equivalents or no. of gram equivalents Mass in grams No. of eq. = Equivalent mass - no of moles x n-factor No. of eq. of solute Normality (N) =volof soin in litre $N = M \times (n - factor)$ solute If 200 gm NaoH is dissolved in 900 gm H20 to make a soin of density 1.28/me then find (i) No. of mmoles of NaOH

No of eq. of NaOH = $5 \times 1 = 5$ molality = $\frac{5}{0.9}$ = 5.56 mol/kg dsoln = 1.2 gm/me W_{Soi}n = 200 + 900 = 1100 gm $V_{Sol}n = \frac{1100}{1.2} \text{ mL}$ $M = \frac{5 \times 1.2 \times 1000}{100} = 5.45 \frac{mol}{lit}$ N = Mx n-factor = 5.45 ×1 = 5.45 eq/lit.

(ii) No of equivalents of NaOH

200 gm Na0H

(iv) Normality (v) molality

No. of moles of NaOH = $\frac{200}{40}$ = 5 mole

No. of mmoles of NaOH = 5000 mmole

(iii) Molarity

 501^n

Sampling and dilution of soin ____ (1) Sampling -> 10 m 1 501h 10 me (1 Sample soln) 1 M 1000 ml 0.01 mol solute "Stock Sol" $M = \frac{0.01}{10} \times 1000$ 1 mol solute no of moles of solute, no. During Sampling will change but molarity, of eq. of solute not change. Normality will addition of 4,0 (2) Dilution \rightarrow 900ml H20 1000 me 100 Me

 $M = \frac{0 \cdot 1}{1} = 0 \cdot 1$

O.1 mol solute

$$M_{1}V_{1} = M_{2}V_{2}$$
 $o_{1}V_{1} = N_{2}V_{2}$
 $N_{1}V_{1} = N_{2}V_{2}$

on dilution no. of moles of solute, no. of eq. of solute will not change but molarity, Normality will change.

(a) Concentrated acid
$$H_2SO_4$$
 has a density of 1.8 g/ml and contains 49% acid by weight. Compute molarity of the solution. Also calculate the number of gmeq of H_2SO_4 contained in 1 L solution.

(b) What is the normality of a solution which is prepared by dissolving 100 ml of conc. H_2SO_4 in part (a) in sufficient water to make 500 ml of solution?

(c) If we take 50 ml sample of above solution [in part (b)], find number of milli moles and milli equivalents in

the sample.

$$d_{SON} = 1.8 \, 3m/me$$

$$(\% \frac{\omega}{\omega})_{142SO_{4}} = 49\%$$

$$M = 49 \times 1.8 \times \frac{10}{92} = 9 \, \frac{mol}{eit}$$

1 lit. soi^N ---> q mol H_2SO_4 No. of eq. of H_2SO_4 in 1 lit. soi^N = 9x2 = 18 eq.

(b)
$$M_1V_1 = M_2V_2$$
 $q \times 100 = M_2 \times 500$
 $M_2 = 1.8 \times 2 = 3.6 \text{ N}$
 $N_2 = 1.8 \times 2 = 3.6 \text{ N}$

(c) $50 \text{ m1 } 50^{\text{N}} \longrightarrow 1.8 \text{ M}$
 $No. \text{ of moles of solute} = 1.8 \times 50$
 $= 90 \text{ mmoles}$
 $No. \text{ of meq. of solute} = 90 \times 2$
 $= 180 \text{ meq.}$

Mixing of $50^{\text{N}} \longrightarrow 1.8 \text{ M}$
 $M_1, V_1 \longrightarrow M_2, V_2 \longrightarrow M_1, V_1 \longrightarrow M_2, V_2 \longrightarrow M_2, V_2 \longrightarrow M_1, V_1 \longrightarrow M_2, V_2 \longrightarrow M_2, V_2 \longrightarrow M_1, V_1 \longrightarrow M_2, V_2 \longrightarrow M_2, V_2 \longrightarrow M_2, V_3$

(11) Molarity of cat in new soin (iii) molarity of CI ions in new son. $\underline{\text{Sol}} \rightarrow (2 \times 300) + (3 \times 500) = M_f \times 800$ Mr = 2.625 mol/eit. $Cacl_{5} \longrightarrow ca^{2+} + 2c\bar{l}$ 1M 2M 1 M 2.625 M 2.625 M 5.25 M Homework Workbook-DTS-1 to 11: Q.16,22,23,48,63,65,75,80,89,94,109,115,117,127,134,

Q.1,2,3,6,7,13,15,21,22,26,30,32,35,36,38,40,41,43,44

Q. If 2M, 300ml Cacl2(ag) solm is mixed with

3M, 500ml Cacl2 (92) Solh.

(i) molarity of new soin

then find

138,139,140

JEE MAIN archive: