

UE3-2 - Physiologie - Physiologie Respiratoire

Chapitre 9 Contrôle de la respiration

Dr. Sandrine LAUNOIS
Dr. Sam BAYAT

- Activité respiratoire rythmique, automatique et permanente
- Prend naissance dans des réseaux neuronaux du tronc cérébral
- Modifiée par de multiples facteurs pour adapter le fonctionnement de l'appareil respiratoire aux besoins

- Centre apneustique (APN)
 - Excitateur des centres bulbaires, rôle mal connu
- Centre pneumotaxique (PNX)
 - situé dans la partie supérieure du pont
 - module de l'activité des centres bulbaires en fonction d'informations centrales et périphériques

Centres bulbaires

- 2 amas de neurones respiratoires
 - Groupe Respiratoire Dorsal (dans le noyau du tractus solitaire)
 (GRD)
 - intégration des infos périphériques
 - efférences vers motoneurones phréniques et le GRV
 - neurones inspiratoires
 - Groupe Respiratoire Ventral (GRV)
 - neurones inspiratoires et expiratoires
 - contient le complexe Pré-Botzinger (genérateur durythme respiratoire?)

- Automatisme respiratoire assuré par les centres bulbaires → alternance inspiration/expiration
 - Inspiration
 - activation des neurones inspiratoires du TC → contraction des muscles inspiratoires
 - Expiration
 - Interruption de la stimulation par les neurones inspiratoires
 - ± stimulation des neurones expiratoires → contraction des muscles expiratoires
- Plusieurs hypothèses de fonctionnement des centres bulbaires

- Ventilation du sujet normal adaptée
 - aux modifications des besoins métaboliques
 - à l'utilisation du système respiratoire pour des activités non liées aux échanges gazeux
 - aux modifications de la composition ou des pressions partielles de l'air ambiant
- Face à un processus pathologique, maintien des PO₂ et PCO₂

- → Effet direct
- → Boucles de rétrocontrôle (feedback) négatif

- PaO₂ et PaCO₂ doivent rester constantes
- Le système respiratoire réagit de telle manière que
 - si PaO₂ ↓ ou PaCO₂ ↑ → Hyperventilation
 - si PaO₂ ↑ ou PaCO₂ ↓ → Hypoventilation
 - si pH ↓ → Hyperventilation
 - si pH ↑ → Hypoventilation

Ventilation = fréquence respiratoire x volume courant

Régulation chimique

- Récepteurs carotidiens et centraux sensibles aux variations de PaO₂ et PaCO₂
- Importance++ pendant le sommeil

Régulation mécanique

- Récepteurs pulmonaires et pharyngés sensibles à l'étirement
- Importance ++ pour moduler la fin de l'inspiration (R. pulm) et pour maintenir le calibre pharyngé (R. phar)

Régulation comportementale

- Influences suprabulbaires et informations périphériques
- Importance ++ pour les activités non ventilatoires de l'appareil respiratoire

Chémorécepteurs

- Chémorécepteurs périphériques
 - Situés dans les corpuscules carotidiens
 - Sensibles surtout aux variations de PaO₂ (mais aussi, à un moindre degré, aux variations de pH et à l'augmentation de la PaCO₂)
 - Influx transite par le IX, arrive aux centres bulbaires

Chémorécepteurs

Réponse à l'hypoxémie artérielle systémique

Chémorécepteurs

Chémorécepteurs centraux

- Situés à la surface ventrale du bulbe
- Stimulés par les ions H⁺
 (PCO₂) présent dans le
 LCR
- Ne sont pas sensibles à la PO₂
- Stimulent les neurones inspiratoires

Mécanorécepteurs

- Mécanorécepteurs pulmonaires
 - situés dans le parenchyme et les voies aériennes
 - sensibles à l'étirement
 - influx transite par le X, arrive aux centres bulbaires
 - information sur le niveau d'inflation pulmonaire → interruption de l'inspiration

Activation des mécanorécepteurs au cours du cycle respiratoire

Mécanorécepteurs

- Mécanorécepteurs pharyngés
 - situés dans la paroi pharyngée
 - sensibles à l'étirement
 - réflexe dilatateur du pharynx: activation réflexe des muscles pharyngés dilatateurs en réponse à une pression intraluminale négative

Réflexes somatiques et viscéraux

^{*} Pression artérielle dans l'a. fémorale

Opiacés

Conclusions

- Contrôle de la respiration
 - assure l'automatisme respiratoire
 - adapte la ventilation aux besoins

Physiologie

- Homéostasie
 (sommeil, exercice, comportement)
- Acclimatation et adaptation aux conditions extrêmes

Pathologie

- Sommeil et respiration
- Affections neurologiques
- Effets des drogues et des médicaments

Références iconographiques

LIVRES				
n° référence	titre de l'ouvrage	auteur	éditeur	année
1	Manuel d'anatomie et de physiologie	SH N'Guyen	Lamarre	1999
2	Atlas d'anatomie humaine	FH Netter	Maloine	1997
3	L'essentiel en physiologie respiratoire	Ch Préfaut	Sauramps Médical	1986
4	Précis de physiolgie médicale	AC Guyton	Piccin	1991
5	Pulmonary physiology	MG Lewitsky	McGrawHill	2003
6	Pulmonary physiology and pathophysiology	JB West	Lippincott Williams & Wilkins	2001
7	Physiologie de la respiration	JH Comroe	Masson	1978
8	Physiologie humaine	DU Silverthorn	Pearson Education France	2007

SITES WEB

n° référence	url	dernière visite
web1	http://depts.washington.edu/envh/lung.html	10 2010
web2	http://www.meddean.luc.edu/lumen/MedEd/Histo/frames/h_fram15.html	102010
web3	https://casweb.ou.edu/pbell/histology/Outline/lung.html	10 2010
web4	http://w3.ouhsc.edu/histology/	10 2010

Mentions légales

L'ensemble de ce document relève des législations française et internationale sur le droit d'auteur et la propriété intellectuelle. Tous les droits de reproduction de tout ou partie sont réservés pour les textes ainsi que pour l'ensemble des documents iconographiques, photographiques, vidéos et sonores.

Ce document est interdit à la vente ou à la location. Sa diffusion, duplication, mise à disposition du public (sous quelque forme ou support que ce soit), mise en réseau, partielles ou totales, sont strictement réservées à l'Université Grenoble Alpes (UGA).

L'utilisation de ce document est strictement réservée à l'usage privé des étudiants inscrits en Première Année Commune aux Etudes de Santé (PACES) à l'Université Grenoble Alpes, et non destinée à une utilisation collective, gratuite ou payante.

