This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTU,

Method for producing undecane-1,11-bicarboxylic acid by microorganism fermenting synchronously

Patent Number: CN1162644

International patents classification: C12P-007/44 C12N-001/14

CN1162644 A NOVELTY - A synchronous microbe fermentation process for producing undecane 1,11-dicarboxylic acid (DC13) with high output

from n-tridecane (nC13), is new.

DETAILED DESCRIPTION - A synchronous microbe fermentation process for producing undecane 1,11-dicarboxylic acid (DC13) with high output from n-tridecane (nC13) features that after the mutational strain resultant from Candidatropicalis is inoculated to culture medium whose matrix is different normal alkanes containing C11-C18, its main action is to grow thallus within 28 hrs, generating a certain quantity of biatomic acid by controlling pH value under 6.8, then to generate acid while growing a certain amount of thallus in 28-60 hrs by controlling pH value under 7.3, and finally to quickly generate different biatomic acids after 60 hrs by controlling pH value to 7.5-7. 8. When the process is used to produce DC13 by fermentation in 2.5 cu.m fermentator, the DC13 content is high up to 205 g/l in 161 hrs, the transform rate is 94% and the purity of DC13 is 96-97%. (Dwg.0/0)

• Publication data:

Patent Family: CN1162644 A 19971022 DW2003-58 C12P-

007/44 * AP: 1997CN-0103876 19970404 Priority nº: 1997CN-0103876 19970404

Covered countries: 1 Publications count: 1

· Accession codes:

Accession Nº : 2003-608538 [58] Sec. Acc. n° CPI: C2003-165961

• <u>Derwent codes</u>: <u>Manual code</u>: CPI: D05-A04 D05-C09

E10-C02D2 E11-M

Derwent Classes: D16 E17

· Patentee & Inventor(s):

Patent assignee: (MICR-) MICROORGAN INST CHINESE

Inventor(s): CHEN Y; HAO X; PANG Y

Update codes:

Basic update code: 2003-58

Others:

API Access. Nbr

API P200320466

2003-09

.

[51]Int.Cl⁶

C12P 7/44

C12N 1/14 C12P 7/44

//Cl2R 1:74

[12] 发明专利申请公开说明书

[21] 申请号 97103876.7

[43]公开日 1997年10月22日

[11] 公开号 CN 1162644A

[22]申请日 97.4.4

|71|申请人 中国科学院微生物研究所

地址 100080北京市中国科学院微生物研究所

[72]发明人 陈远童 庞月川 郝秀珍

权利要求书 1 页 说明书 5 页 附图页数 0 页

|54|发明名称 微生物同步发酵正十三烷生产十一烷 1,11 二羧酸方法

[57]摘要

本发明公开了一种利用微生物同步发酵正十三烷(nC₁₃)高产十一烷 l, 11 一二羧酸(DC₁₃)的方法。 所用微生物为一株热带假丝酵母(Candidatropicalis) 优良生产突变株 P-12—242。其特点是: 在微生物菌种接入含有 C₁₁—C₁₈ 各种正烷烃为基质的培养基后, 28 小时内, pH 控制在 6.8 以下,以菌体生长为主,产生一定数量二元酸; 28—60 小时, pH 控制在 7.3,以下,以产酸为主,增长一定量菌体;60 小时以后 pH 控制在 7.5—7.8,迅速生产各种二元酸。当本方法用于 nC₁₃ 发酵生产 DC₁₃ 时,在 2.5m³ 发酵罐内,161 小时,DC₁₃ 高达205g/L,转化率达到 94%,DC₁₃ 的纯度达到 96—97%。

权利要求书

- 1. 一种利用微生物同步发酵正烷烃生产 C₁₁—C₁₈各种长链 α,ω—二元酸的方法,其特征在于以正十三烷(nC₁₃)为基质的培养基中,用热带假丝酵母 (Candida tropicalis) P-12-242,即 CGMCC NO. ο 297 发酵,然后回收 所形成的二元酸。
- 2. 热带假丝酵母 (Candida tropicalis) P-12-242 即 CGMCC NO. 0297 菌 V株。

微生物同步发酵正十三烷生产十一烷 1,11 一二羧酸方法

本发明涉及微生物同步发酵正烷烃生产长链 α,ω 一二元酸的方法,尤其是发酵正十三烷(nC₁₁)高产十一烷 1,11 一二羧酸(DC₁₁)的方法。

C₁₀以上的长链二元酸是化工上合成高级香料,高级尼龙工程塑料,高档 服装用尼龙热熔胶,高温电介质,高级涂料,润滑油添加剂和耐寒性增塑剂等 的重要原料,尤其是十三碳二元酸(DC₁₁)和十五碳二元酸(DC₁₅),它们分别是 合成日用香料麝香 T 和名贵香料麝香酮的重要原料。

C1。以上的长链二元酸,在自然界中不单独存在,只有少数几种二元酸可从植物油中裂介制取,例如癸二酸 (DC1。) 可从蓖麻籽油裂介制取;DC1.1可从菜籽油中抽提出甘油芥酸酯再用臭氧氧化方法生产;DC1.5可从蒜头果油中的脑神经酸裂介制取。但它们都受农田和气候的限制,远不能满足需要。化工上三今也还没有经济可行的合成路线和方法。微生物学家应用生物工程技术,利用微生物发酵石油中的正构烧烃生产相应链长的二元酸,弥补了化工上的不足,开辟了长链二元酸的新来源。

七十年代以前,各国科学家对微生物发酵生产二元酸的研究,只处于理论研究阶段,所产生和积累的二元酸也都是十个碳以下的短链二元酸,七十年代以后,进入应用研究阶段,通过大量的窗种诱变筛选,培育出一批新奕奕菌标,能从十个碳以上的正烷烃产生和积累与基质链长相同的长链二元酸,并通过不断的培育和代谢调控研究,使每升发酵液中二元酸的积累从开始时的几克,十几克,几十克提高到目前的一百多克和二百克左右。

八十年代以来,二元酸的研究进入小规模工业生产阶段,并出现了几个有实际生产价值的专利文献。中国专利87105445.0,CN 1046757A,CN1092108A和CN 1130685A分别提出生产长锭 α , ω 一二元酸的方法,特别是分别高产DC₁₆,DC₁₇,DC₁₈和DC₁₂的方法。在16升自动控制罐中,发酵5天,DC₁₆为123g/L,发酵6天,DC₁₇为133g/L,在2.5m³ 通用式发酵罐中,发酵6天,DC₁₈为178g/L,在3m³ 发酵罐中,发酵5天,DC₁₂为145g/L。

对 DC11的研究,日本矿业株式会社率先工业放大,1984 年建成年产 200

吨的DC₁₃的工业发酵装置,并投入生产。中国专利 CN 1071951A 提出一种微生物异步发酵生产长链 α , ω —二元酸的方法,尤其是生产DC₁₃的方法。其方法是分两步进行,根据实验例 4,第一步是把培养好的 600 升菌种液接入装有正十三烷(nC₁₃)125 升和培养基 1775 升的 $3m^3$ 发酵罐内(即装液量为 83%),控制 PH 在4.5±0.1,繁殖培养菌体,24 小时,菌体浓度达到 8.7%(湿菌重);第二步,补加 20%(V/V)的nC₁₃,调 PH 至7.8±0.1,转入发酵产酸阶段,发酵 72 小时,DC₁₃达到 98.2 g/L,继续发酵 72 小时,产酸达到 166.3g/L (从接种开始到发酵结束,共 168 小时),转化率为 84%。

本发明的目的是提出另一种利用微生物同步发酵正烷烃生产 C_{11} - C_{18} 长链 α , ω —二元酸的方法,尤其是高产 DC_{13} 的方法。

本发明所用的菌株为热带假丝酵母(Candida tropicalis) P -12-242,是以一株氧化正烷烃生产混合二羧酸的热带假丝酵母(参见《微生物学报》20(1):88—93,1980)为出发菌株,通过亚硝酸和紫外线的多次反复诱变筛选培育出来的,能从C₁₁-C₁₈的各种单一正烷烃和混合正烷烃,尤其是正十三烷,高产出地生产相应链长的二羧酸。热带假丝酵母 P-12-242(以下简称 P-12-242)保藏在中国微生物菌种保藏管理委员会普通微生物中心,保藏号为:CGMCC NO.

P-12-242 的生理特性如下:

- 一、糖类的发酵:葡萄糖十,半乳糖十,蔗糖十,麦芽糖十,乳糖一。
- 二、同 化: 葡萄糖+, 半乳糖+, 山梨糖-, 蔗糖+, 麦芽糖+, 纤维二糖+,海藻糖+,乳糖-,密二糖-,棉子糖-,松三糖+, 菊芋糖-,可溶性淀粉+,木糖+,L-阿戊糖+,D-阿戊糖-,核糖-,鼠李糖-,α-甲基葡萄糖苷+,甘油+,乙醇+,赤藓醇-,甘露醇+, 肌醇-, 核糠醇+, 半乳糖醇-, 葡萄糖醇+,柠檬酸钠-,丁二酸钠+,乳酸钙-。
- 三、生长素的需要:生物素++,维生素 B_1 ++,维生素 B_2 +,维生素 B_6 +,维生素 B_{12} +,叶酸+,烟酸+,泛酸+,肌醇+,对氨基苯甲酸+。

四、其它:硝酸盐一, 冻化牛奶一, 熊果酸分解一, 凝固牛奶一, 油脂酶一。形态特征:奶油白色, 皱褶型, 菌落为蛋糕状和桃酥状。

培养特征:

在麦芽汁液体培养基中培养时,假菌丝多而长;在烷烃种子培养基中

培养时,有一定数量的短假菌丝;而在发酵培养基中发酵时,大部分是单个椭园细胞。

本发明的种子培养基:

- (1)、10个巴林糖度的麦芽汁加2%琼脂制成的固体斜面;
- (2)、10个巴林的麦芽汁液体培养基;
- (3)、烷烃种子培养基包含: KH₂PO, 6—12g/L, 玉米浆 3—8g/L, 酵母膏 3—8g/L, 蔗糖 3—8g/L, 尿素3—6g/L, 重蜡 40—70ml/L, 自来水配制, 自然 PH。

培养种子的过程为:取一接种环 P—12—242 酵母菌体,涂布在麦芽汁固体斜面上 $(15\times180$ 试管,每支装 6-7mL培养基,放成斜面),于 28-30 °C 培养 40 小时。取一支上述培养好的 P—12—242 菌种分部刮入装有 25ml 烷烃种子培养基的 250mL三角瓶中,于 28-30 °C 220 转/分的旋转摇床上培养 40-48 小时,作为摇瓶发酵种子或者取两支上述培养好的 P—12—242 菌种全部刮入装有 500mL培养基的 5000ml 三角瓶中,于 180 转/分旋转摇床上 28-30°C培养 44-48 小时,作为一级种子罐的种子。

用本发明的 P-12-242 菌株生产长链二羧酸,特别是十三碳二羧酸的具 体方法是: 把发酵的种子接入 PH5.5-9.0, 最好为 6.5-7.5 的含有 15-45%(V/V)的C11-C18的正烷烃和85-55%(V/V)发酵培养基的混合液中。 发酵培养基的组成为: 碱金属磷酸盐 6-14g/L, 最好为 7-10g/L, 氯化钠 0.5-2.0g/L、酵母育 1-6g/L, 最好为 3-5g/L, 玉米浆 0.5-2g/L, 尿素 0.5-2.5g/L最好为 1.0-2.0g/L, 硝酸盐 5-15g/L, 最好为 6-12g/L, 蔗 糖 10-30g/L, 最好为 10-20g/L, 消泡刘 400-1200ppm以及一些其他公知 的营养源,在 PH5.8-7.5 之间将上述混合物在 25-30 ℃, 最好在 27-31 ℃ 通气发酵 48-170 小时。28 小时内, PH 控制在 6.8 以下,以菌体生长为主, 产酸为付,此时菌株生长光密度 OD 达到 0.6 左右,产酸达到 20-30g/L,在 28-60 小时, PH 控制在 7.3 以下,产酸为主,菌体生长为付,此时 OD 达至 0.9 左右, 产酸达到 75-85g/L, 从 60 小时以后, 每隔 6-8 小时用 N.OH 溶 液调一次 PH 至 7.5—8.0, 菌体量不再增加, 而产酸量继续迅速增加, 然后. 将产生的二羧酸从发酵液中分离出来。在发酵开始时,混合液中正烷烃含量为 10-20% (V/V),以后在适当时间补加正烷烃,使发酵液中正烷烃浓度始终 >5% (V/V)为准。碱金属磷酸盐可从 KH,PO,, N,H,PO, K,HPO,和 N.2HPO4中选一种。硝酸盐可从钾或钠盐中选一种。

发酵结束后,加入适量的水,加碱至 PH10—12,加热至 85—90°C,进行破乳分层,上层为残油,回收再用,放出中间清液,下层菌体层再处理一次或压滤或离心,合并清液,加入适量活性炭,在 85—90°C,脱色 30 分钟,除去活性炭后,脱色液加热至 60—70°C,加 HCI 或 H_2SO ,至 PH4—5 进行酸化结晶,冷却至 30°C°后,压滤,用空气吹干,60°C烘干,得白色十三碳二羧酸结晶。

用本发明的 P—12—242 菌株和发酵方法,可生产C₁₁—C₁₈的各种单一和混合二羧酸。其中在 2.5 吨罐上,从正十三烷发酵生产十三碳二羧酸,发酵 6天,产酸量高达 180—200g/L,后处理总收率达到 80%,纯度达到 96%以上。

实例一

- (1)、取一接种环 P—12—242 菌种,涂布在 15×180 大试管麦芽汁固体斜面上,30 ℃培养两天。
- (2)、取上述菌种一支,接入装有 25ml 烷烃种子培养基的 250ml 三角瓶中于 30 °C在 220 转/分的旋转摇床上培养 48 小时。烷烃种子培养基中 KH₂PO₄ 8g/L,酵母膏 5g/L,玉米浆 3g/L,蔗糖 5g/L,尿素 3g/L,重 蜡 50ml/L,自来水配制,PH5.0。
- (3)、在装有 15ml 发酵培养基的 500ml 三角瓶中,接入 3.5ml 上述种子液,在 200 转/分旋转摇床上发酵 4 天,每 24 小时用 N₂OH 调一次 PH 至 7.5一 8.0。发酵培养基含 KH₂PO₄8g/L,酵母育2g/L,玉米浆1g/L,氯化钠 1.5g/L,尿素1g/L,正十三烷200ml/L,泡敌 500ppm,KNO₃7g/L,自 来水配制,PH7.5,在110℃下灭菌 30 分钟。发酵结束后用 HCl 调 PH 至 3,用100ml 乙醚提取,除去乙醚,得白色结晶,用标准 N₂OH 溶液滴定,计算二羧酸含量。结果DC₁₂产量为85.2g/L,经气相色谱分析,DC₁₂纯度为 97.46%。

实例2

按照实例 1 的方法,只是正烷烃用 nC_{1s} ,结果 DC_{1s} 的产量为53.6g/L,纯度为 96.81%。

实例3

按照实例1的方法,只是正烷烃用 nC;,,结果DC;,的产量为52.0 g/L,纯

度为 97.2%。

实例4 ·

种子培养基和培养方法同实例 1,发酵培养基为 KH_2PO_4 8g/L, N_4Cl 1g/L, 酵母膏2g/L, 玉米浆 1g/L, KNO_37g/L , 蔗糖15g/L, 泡敌 600ppm, 尿素1. 8g/L, 正十三烷200ml/L, 自来水配制, PH7. 5,发酵 4 天, DC_{13} 产量为86. 06g/L, DC_{13} 纯度 93. 3%。

实例5

种子培养基和培养方法同实例一,发酵培养基同实例 4。把培养两天,经镜检无杂菌的 400LP—12—242 种液接入装有 1500L 发酵培养基,其中 nC₁₃ 300L 经121°C灭菌 40 分钟的 2500L 发酵罐中,29°C,200 转/分,罐压 0.8Kg/cm²,通气量1:0.8,28 小时以前,PH 控制在 6.8 以下,28—60 小时,PH 控制在 7.3 以下,60 小时后每隔 8—6 小时,用N₂OH溶液调一次 PH 至 7.5,从第三天开始,每天补加正十三烷 120L,共 3 次,发酵 6 天多(161 小时),发酵清液中十三碳二羧酸含量为205g/L。发酵结束后,加入300L自来水,加热至80°C,加碱调 PH 至 11,冷却降温至50°C,放入分层罐中静置分层一天,放出上层残油,回收使用,下层菌层通过压滤,除去菌体,滤清液与中层清液合并,加入 0.7%活性炭,90°C脱色 15 分钟,压滤除去活性炭,脱色滤清液打入酸化罐中,加水至DC₁₃浓度为 4%,加热至 70°C,加入浓 HCl 酸化至 PH3,冷却降温至30°C左右,板框压滤,空气吹干,固形物在60°C烘干,得白色 DC₁₃249 Kg,转化率 94.0%,纯度为 96.7%。

THIS PAGE BLANK (USPTO)