TEMPLATE: MATH 3113, HOMEWORK 2

AUTHOR = YOU

(1)		e following questions concern finding formula and utilizing induction. For g and h in a group G , prove that $(gh)^n = g(hg)^{n-1}h$ for all $n > 0$.	
		Proof.	
	(b)	For g and h in a group G , prove that $(gh)^n = e$ if and only if $(hg)^n = e$. Deforce $gh = hg$?	oes this
		Proof.	

(2) What is the cycle decomposition of

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 7 & 8 & 3 & 1 & 2 & 6 & 4 \end{pmatrix}.$$

Proof.

TEMPLATE:	MATH	3113,	HOMEWORK	2

(3)	Suppose G is a cyclic group of order 144. How many elements are in the subgroup $\langle g^2 \rangle$ How many subgroups contain this subgroup?	$ 6\rangle$?
	Proof.	

- (4) Which of the following subsets are subgroups of $GL_2(\mathbf{R})$?

 (a) $\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, c \neq 0 \right\}$.

 (b) $\left\{ \begin{pmatrix} a & b \\ 1/b & 1/a \end{pmatrix} : a, b \neq 0 \right\}$.

 (c) $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad bc = 1 \right\}$.

 (d) $\left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \neq 0 \right\}$.

Proof.

(5)		$G = (\mathbf{Z}/7\mathbf{Z})^{\times}$ and $g = a \mod 7$ with $(a,7) = 1$. Consider the function $\varphi_a \colon G \to \mathrm{ned}$ by $\varphi(x \mod 7) \mapsto 2x \mod 7$.	G
		Show that φ_a is a bijection.	
		Proof.	
	(b)	Prove that $\varphi_a \circ \varphi_b = \varphi_{ab}$.	
		Proof.	
	(c)	Show that the ordered set $\{\varphi_a(1 \mod 7), \ldots, \varphi_a(6 \mod 7)\}$ is a permutation of t standard representatives modulo 7.	he
		Proof.	
	(d)	What is the cycle decomposition of the permutation corresponding to φ_3 ?	
		Proof.	
	(e)	Is every permutation in S_6 realized this way?	

Proof.