Understanding the Curse of Singularities in Machine Learning

Shaowei Lin (UC Berkeley) shaowei@math.berkeley.edu

19 September 2012UC Berkeley Statistics

Sparsity Penalties • Linear Regression Param Estimation • Laplace Approx • Curse of Singularities Singular Model Learning Coefficient Faithfulness Higher Order Singular Learning **Sparsity Penalties** Integral Asymptotics

Linear Regression

Sparsity Penalties

- Linear Regression
- Param Estimation
- Laplace Approx
- Curse of Singularities
- Singular Model
- Learning Coefficient
- Faithfulness
- Higher Order

Singular Learning

Integral Asymptotics

Random variables $Y \in \mathbb{R}, X \in \mathbb{R}^d$ satisfy

$$Y = \omega \cdot X + \varepsilon$$

Parameters $\omega \in \mathbb{R}^d$; noise $\varepsilon \in \mathcal{N}(0,1)$; data $(Y_i, X_i), i = 1...N$.

Commonly computed quantities

MLE
$$\underset{i=1}{\operatorname{argmin}} \sum_{i=1}^N |Y_i - \omega \cdot X_i|^2$$
 Penalized MLE $\underset{i=1}{\operatorname{argmin}} \sum_{i=1}^N |Y_i - \omega \cdot X_i|^2 + \pi(\omega)$

Commonly used penalties

LASSO
$$\pi(\omega) = |\omega|_1 \cdot \beta$$
 Bayesian Info Criterion (BIC)
$$\pi(\omega) = |\omega|_0 \cdot \log N$$
 Akaike Info Criterion (AIC)
$$\pi(\omega) = |\omega|_0 \cdot 2$$

Common applications

Parameter estimation

Model selection (e.g. which entries in ω are nonzero?)

Parameter Estimation

Sparsity Penalties

- Linear Regression
- Param Estimation
- Laplace Approx
- Curse of Singularities
- Singular Model
- Learning Coefficient
- Faithfulness
- Higher Order

Singular Learning

Integral Asymptotics

- Parameter estimation is a form of model selection! For each parameter u, we define a model and compute its likelihood.
- MLE: assume data generated by true parameter $u \in \mathbb{R}^d$.

$$L(u) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2} \sum_{i=1}^{N} |Y_i - u \cdot X_i|^2)$$

• LASSO: assume data generated by true parameter $u \in \mathbb{R}^d$ which is chosen via a Laplacian prior.

$$L(u) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2} \sum_{i=1}^{N} |Y_i - u \cdot X_i|^2) \exp(-\frac{1}{2}\beta |u|_1)$$

• Integrated likelihood: each sample is generated by independent parameters chosen via prior $\varphi(\omega)$ on small nbhd Ω_u of $u \in \mathbb{R}^d$.

$$Z(u) = \int_{\Omega_u} \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2} \sum_{i=1}^N |Y_i - \omega \cdot X_i|^2) \varphi(\omega) d\omega$$

Laplace Approximation

Sparsity Penalties

- Linear Regression
- Param Estimation
- Laplace Approx
- Curse of Singularities
- Singular Model
- Learning Coefficient
- Faithfulness
- Higher Order

Singular Learning

Integral Asymptotics

- Let $f(\omega)=\frac{1}{2N}\sum_{i=1}^N|Y_i-\omega\cdot X_i|^2$ so we can write $Z(u)=\frac{1}{\sqrt{2\pi}}\int_{\Omega}e^{-Nf(\omega)}\,\varphi(\omega)d\omega.$
- Laplace approximation: If $f(\omega)$ is uniquely minimized at u and the Hessian $\partial^2 f(u)$ is full rank, then asymptotically

$$-\log Z(u) \approx Nf(u) + \frac{\dim \Omega_u}{2} \log N + O(1)$$

as sample size $N \to \infty$. This approximation gives us the BIC.

Graphs of $e^{-Nf(\omega)}$ for different N. Integral = Volume under graph.

Curse of Singularities

Sparsity Penalties

- Linear Regression
- Param Estimation
- Laplace Approx
- Curse of Singularities
- Singular Model
- Learning Coefficient
- Faithfulness
- Higher Order

Singular Learning

Integral Asymptotics

- The AIC, where the idea is to minimize the *Kullback-Leibler* distance, can also be derived using integral asymptotics.
- For smooth models i.e. $\partial^2 f(u)$ is full rank, Laplace approx works well even if parameter space \mathbb{R}^d has high dimension.
- But many models in machine learning are singular,
 e.g. mixtures, neural networks, hidden variables.
- How do we study the asymptotics of integrals with singularities?

Example: Singular Model

Sparsity Penalties

- Linear Regression
- Param Estimation
- Laplace Approx
- Curse of Singularities
- Singular Model
- Learning Coefficient
- Faithfulness
- Higher Order

Singular Learning

Integral Asymptotics

• MLE: $\operatorname{argmin}_{\omega} |\omega^2 - \bar{X}|^2 + |\omega^3 - \bar{Y}|^2$ BIC performs poorly when MLE is close to 0.

• Put prior $\varphi(\omega)$ on small nbhd Ω_u of true parameter $u \in \mathbb{R}$.

$$Z(u) = \frac{1}{2\pi} \int_{\Omega_u} \exp(-\frac{1}{2} \sum_{i=1}^{N} |\omega^2 - X_i|^2 + |\omega^3 - Y_i|^2) \varphi(\omega) d\omega$$

According to Singular Learning Theory, asymptotically

$$-\log Z(u) \approx \frac{1}{2} \sum_{i=1}^{N} (u^2 - X_i)^2 + (u^3 - Y_i)^2 + \pi(u) + O_p(1)$$

where $\pi(u) = \frac{1}{4} \log N$ if u = 0; otherwise $\pi(u) = \frac{1}{2} \log N$.

Learning Coefficients

Sparsity Penalties

- Linear Regression
- Param Estimation
- Laplace Approx
- Curse of Singularities
- Singular Model
- Learning Coefficient
- Faithfulness
- Higher Order

Singular Learning

Integral Asymptotics

• Given $u \in \Omega$, there exist a small nbhd Ω_u of u and *learning* coefficients (λ_u, θ_u) such that for all smaller nbhds U,

$$\int_{U} e^{-Nf(\omega)} \varphi(\omega) d\omega \approx CN^{-\lambda_{u}} (\log N)^{\theta_{u}-1}.$$

Sparsity penalty for MLE: Given the log likelihood

$$\ell(u) = -\sum_{i=1}^{N} \log p(X_i|u),$$

for large samples we have the asymptotic approximation

$$-\log Z(u) \approx \operatorname{argmin}_{u \in \Omega} \ell(u) + \pi(u)$$
 where $\pi(u) = \lambda_u \log N - (\theta_u - 1) \log \log N$.

This is a generalization of the BIC to singular models.

Faithfulness

Sparsity Penalties

- Linear Regression
- Param Estimation
- Laplace Approx
- Curse of Singularities
- Singular Model
- Learning Coefficient
- Faithfulness
- Higher Order

Singular Learning

Integral Asymptotics

- The partial correlation (PC) algorithm constructs directed Gaussian graphical models by inferring conditional independence statements $i \perp \!\!\! \perp j \mid S$ from the data.
- A distribution $p(\cdot|\omega)$ is t-strong-faithful to a graph G if $|\mathrm{corr}_{i,j|S}(\omega)| \leq t \iff i$ is d-separated from j given S.
- Using singular learning theory, we can approximate the volume of unfaithful parameters as t goes to zero.

$$\int_{|f(\omega)| \le t} d\omega \approx Ct^{\lambda} (-\log t)^{\theta - 1}$$

Here (λ, θ) is the learning coefficient of $f(\omega) = \operatorname{corr}_{i,j|S}(\omega)$. Determines performance of the PC algorithm for large samples.

 $\bullet \quad \text{e.g. } (\lambda,\theta) = \left\{ \begin{array}{ll} (1,1) & \text{for all star trees,} \\ (1,p-1) & \text{for a chain with p nodes.} \end{array} \right.$

Faithfulness

Sparsity Penalties

- Linear Regression
- Param Estimation
- Laplace Approx
- Curse of Singularities
- Singular Model
- Learning Coefficient
- Faithfulness
- Higher Order

Singular Learning

Integral Asymptotics

Tubes $|f(x,y)| \le t$ for various polynomials in two variables.

Higher Order Asymptotics

Sparsity Penalties

- Linear Regression
- Param Estimation
- Laplace Approx
- Curse of Singularities
- Singular Model
- Learning Coefficient
- Faithfulness
- Higher Order

Singular Learning

Integral Asymptotics

Higher order terms in the asymptotics of the integral can also be derived by resolving the singularities, generalizing the results of Shun and McCullagh (1995) for smooth models. For example,

$$Z(N) = \int_{[0,1]^2} (1 - x^2 y^2)^{N/2} \, dx \, dy \approx$$

$$\sqrt{\frac{\pi}{8}} N^{-\frac{1}{2}} \log N \qquad -\sqrt{\frac{\pi}{8}} \left(\frac{1}{\log 2} - 2 \log 2 - \gamma \right) N^{-\frac{1}{2}} \\
-\frac{1}{4} N^{-1} \log N \qquad +\frac{1}{4} \left(\frac{1}{\log 2} + 1 - \gamma \right) N^{-1} \\
-\frac{\sqrt{2\pi}}{128} N^{-\frac{3}{2}} \log N \qquad +\frac{\sqrt{2\pi}}{128} \left(\frac{1}{\log 2} - 2 \log 2 - \frac{10}{3} - \gamma \right) N^{-\frac{3}{2}} \\
-\frac{1}{24} N^{-2} + \cdots$$

Euler-Mascheroni constant

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right) \approx 0.5772156649.$$

Sparsity Penalties Singular Learning Sumio Watanabe Bayesian Statistics Geometry Likelihood Ratio • Integrated Likelihood **Integral Asymptotics Singular Learning Theory**

Sumio Watanabe

Sparsity Penalties

Singular Learning

- Sumio Watanabe
- Bayesian Statistics
- Geometry
- Likelihood Ratio
- Integrated Likelihood

Integral Asymptotics

Sumio Watanabe

Heisuke Hironaka

In 1998, Sumio Watanabe discovered how to study the asymptotic behavior of singular models. His insight was to use a deep result in algebraic geometry known as *Hironaka's Resolution of Singularities*.

Heisuke Hironaka proved this celebrated result in 1964. His accomplishment won him the Field's Medal in 1970.

Bayesian Statistics

Sparsity Penalties

Singular Learning

- Sumio Watanabe
- Bayesian Statistics
- Geometry
- Likelihood Ratio
- Integrated Likelihood

Integral Asymptotics

X random variable with state space \mathcal{X} (e.g. $\{1,2,\ldots,k\}$, \mathbb{R}^k)

 Δ space of probability distributions on ${\mathcal X}$

 $\mathcal{M} \subset \Delta$ statistical model, image of $p: \Omega \to \Delta$

 Ω parameter space

 $p(x|\omega)dx$ distribution at $\omega \in \Omega$

 $\varphi(\omega)d\omega$ prior distribution on Ω

Suppose samples X_1, \ldots, X_N drawn from *true distribution* $q \in \mathcal{M}$.

Integrated likelihood
$$Z_N = \int_{\Omega} \prod_{i=1}^N p(X_i|\omega) \, \varphi(\omega) d\omega.$$

Kullback-Leibler function
$$K(\omega) = \int_{\mathcal{X}}^{i=1} q(x) \log \frac{q(x)}{p(x|\omega)} dx$$
.

Geometry of Singular Models

Sparsity Penalties

Singular Learning

- Sumio Watanabe
- Bayesian Statistics
- Geometry
- Likelihood Ratio
- Integrated Likelihood

Integral Asymptotics

Standard Form of Log Likelihood Ratio

Sparsity Penalties

Singular Learning

- Sumio Watanabe
- Bayesian Statistics
- Geometry
- Likelihood Ratio
- Integrated Likelihood

Integral Asymptotics

Define *log likelihood ratio*. Note that its expectation is $K(\omega)$.

$$K_N(\omega) = \frac{1}{N} \sum_{i=1}^N \log \frac{q(X_i)}{p(X_i|\omega)}.$$

Standard Form of Log Likelihood Ratio (Watanabe)

If $\rho:U\to\Omega$ desingularizes $K(\omega)$, then on each patch U_i ,

$$K_N \circ \rho(\mu) = \mu^{2\kappa} - \frac{1}{\sqrt{N}} \mu^{\kappa} \xi_N(\mu)$$

where $\xi_N(\mu)$ converges in law to a Gaussian process on U.

For regular models, this is a Central Limit Theorem.

The integrated likelihood Z_N can be written in terms of K_N :

$$Z_N = \int_{\Omega} e^{-NK_N(\omega)} \varphi(\omega) d\omega$$

Asymptotics of Integrated Likelihood

Sparsity Penalties

Singular Learning

- Sumio Watanabe
- Bayesian Statistics
- Geometry
- Likelihood Ratio
- Integrated Likelihood

Integral Asymptotics

Define empirical entropy $S_N = -\frac{1}{N} \sum_{i=1}^N \log q(X_i)$.

Convergence of stochastic complexity (Watanabe)

The stochastic complexity has the asymptotic expansion

$$-\log Z_N = NS_N + \lambda_q \log N - (\theta_q - 1) \log \log N + O_p(1)$$

where λ_q, θ_q describe the asymptotics of the deterministic integral

$$Z(N) = \int_{\Omega} e^{-NK(\omega)} \varphi(\omega) d\omega \approx CN^{-\lambda_q} (\log N)^{\theta_q - 1}.$$

For regular models, this is the Bayesian Information Criterion.

Various names for (λ_q, θ_q) :

statistics - *learning coefficient* of the model $\mathcal M$ at q algebraic geometry - *real log canonical threshold* of $K(\omega)$

Sparsity Penalties Singular Learning Integral Asymptotics Estimation • RLCT Geometry Desingularization Algorithm Open Problems **Integral Asymptotics**

Estimating Integrals

Sparsity Penalties

Singular Learning

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm
- Open Problems

Generally, there are three ways to estimate statistical integrals.

1. Exact methods

Compute a closed form formula for the integral, e.g. Baldoni·Berline·De Loera·Köppe·Vergne, 2008; Lin·Sturmfels·Xu, 2009.

2. Numerical methods

Approximate using Markov Chain Monte Carlo (MCMC) and other sampling techniques.

3. Asymptotic methods

Analyze how the integral behaves for large samples.

$$Z(N) = \int_{\Omega} e^{-Nf(\omega)} \varphi(\omega) d\omega$$

Real Log Canonical Threshold

Sparsity Penalties

Singular Learning

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm
- Open Problems

Asymptotic theory (Arnol'd·Guseĭn-Zade·Varchenko, 1985) states that for a Laplace integral,

$$Z(N) = \int_{\Omega} e^{-Nf(\omega)} \varphi(\omega) d\omega \approx e^{-Nf^*} \cdot CN^{-\lambda} (\log N)^{\theta - 1}$$

asymptotically as $N \to \infty$ for some positive constants C, λ, θ and where $f^* = \min_{\omega \in \Omega} f(\omega)$.

The pair (λ, θ) is the *real log canonical threshold* of $f(\omega)$ with respect to the measure $\varphi(\omega)d\omega$.

Geometry of the Integral

Sparsity Penalties

Singular Learning

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm
- Open Problems

$$Z(N) = \int_{\Omega} e^{-Nf(\omega)} \varphi(\omega) d\omega \approx e^{-Nf^*} \cdot CN^{-\lambda} (\log N)^{\theta - 1}$$

Integral asymptotics depend on *minimum locus* of exponent $f(\omega)$.

$$f(x,y) = x^2 + y^2$$
$$(\lambda, \theta) = (1,1)$$

$$f(x,y) = (xy)^2$$
$$(\lambda, \theta) = (\frac{1}{2}, 2)$$

$$f(x,y) = (y^{2} - x^{3})^{2}$$
$$(\lambda, \theta) = (\frac{5}{12}, 1)$$

Graphs of integrand $e^{-Nf(x,y)}$ for N=1 and N=10

Desingularizations

Sparsity Penalties

Singular Learning

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm
- Open Problems

Desingularizations

Sparsity Penalties

Singular Learning

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm
- Open Problems

Let $\Omega \subset \mathbb{R}^d$ and $f:\Omega \to \mathbb{R}$ real analytic function.

- We say $\rho:U o\Omega$ desingularizes f if
 - 1. U is a d-dimensional real analytic manifold covered by coordinate patches U_1, \ldots, U_s (\simeq subsets of \mathbb{R}^d).
 - 2. ρ is a proper real analytic map that is an isomorphism onto the subset $\{\omega \in \Omega: f(\omega) \neq 0\}$.
 - 3. For each restriction $\rho:U_i\to\Omega$, $f\circ\rho(\mu)=a(\mu)\mu^\kappa,\quad \det\partial\rho(\mu)=b(\mu)\mu^\tau$ where $a(\mu)$ and $b(\mu)$ are nonzero on U_i .
- Hironaka (1964) proved that desingularizations always exist.

Algorithm for Computing RLCTs

Sparsity Penalties

Singular Learning

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm
- Open Problems

We know how to find RLCTs of monomial functions (AGV, 1985).

$$\int_{\Omega} e^{-Na(\mu)\mu^{\kappa}} b(\mu)\mu^{\tau} d\mu \approx CN^{-\lambda} (\log N)^{\theta-1}$$

where
$$\lambda = \min_i \frac{\tau_i + 1}{\kappa_i}$$
, $\theta = |\{i : \frac{\tau_i + 1}{\kappa_i} = \lambda\}|$.

- To compute the RLCT of any function $f(\omega)$:
 - 1. Find minimum f^* of f over Ω .
 - 2. Find a desingularization ρ for $f f^*$.
 - 3. Use AGV Theorem to find (λ_i, θ_i) on each patch U_i .
 - 4. $\lambda = \min\{\lambda_i\}, \ \theta = \max\{\theta_i : \lambda_i = \lambda\}.$
- The difficult part is finding a desingularization,
 e.g (Bravo·Encinas·Villamayor, 2005).

Open Problems

Sparsity Penalties

Singular Learning

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm
- Open Problems

How do we generalize LASSO to singular models?

$$\pi(\omega) = |\omega|_1 \cdot \beta$$

Bayesian Info Criterion (BIC)

$$\pi(\omega) = |\omega|_0 \cdot \log N$$

(Parameter space partitioned into regions with different weights.)

- How do we understand sparsity in any given statistical model?
 Occam's razor? Minimum message length? Shannon capacity?
- How do we use RLCTs to improve MCMC techniques?

Sparsity Penalties

Singular Learning

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm
- Open Problems

Thank you!

"Algebraic Methods for Evaluating Integrals in Bayesian Statistics"

http://math.berkeley.edu/~shaowei/swthesis.pdf

(PhD dissertation, May 2011)

References

Sparsity Penalties

Singular Learning

Integral Asymptotics

- Estimation
- RLCT
- Geometry
- Desingularization
- Algorithm
- Open Problems

- 1. V. I. ARNOL'D, S. M. GUSEĬN-ZADE AND A. N. VARCHENKO: Singularities of Differentiable Maps, Vol. II, Birkhäuser, Boston, 1985.
- 2. A. Bravo, S. Encinas and O. Villamayor: A simplified proof of desingularisation and applications, *Rev. Math. Iberoamericana* **21** (2005) 349–458.
- 3. H. HIRONAKA: Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, *Ann. of Math.* (2) **79** (1964) 109–203.
- 4. S. LIN, B. STURMFELS AND Z. XU: Marginal likelihood integrals for mixtures of independence models, *J. Mach. Learn. Res.* **10** (2009) 1611–1631.
- 5. S. LIN: Algebraic methods for evaluating integrals in Bayesian statistics, PhD dissertation, Dept. Mathematics, UC Berkeley (2011).
- 6. Z. Shun and P. McCullagh: Laplace approximation of high dimensional integrals, *Journal of the Royal Statistical Society* **B57** (1995) N4:749–760.
- 7. S. WATANABE: *Algebraic Geometry and Statistical Learning Theory*, Cambridge Monographs on Applied and Computational Mathematics **25**, Cambridge University Press, Cambridge, 2009.