```
In[1809]:=
        (*
       Типовой расчет
         Воложинец Архип
         221703
         Вариант 3
        *)
In[1810]:=
               -0.5 0.535916
               -0.42 0.485126
               -0.34 0.437118
               -0.26 0.371678
               -0.18 0.301733
               -0.1 0.207338
               -0.02 0.073557
               0.06 0.155576
               0.14 0.283913
               0.22 0.390199
               0.3 0.497748
               0.38 0.592501
      data =
               0.46 0.69812
               0.54 0.789936
               0.62 0.898493
```

In[1811]:=

```
a = data[1, 1];

b = data[-1, 1];

h = Abs[a - data[2, 1]];

[абсолютное значение]

In[1814]:=

(*Аппроксимация функции*)

Q = Fit[data, \{1, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\}, x]

[cornacobatb

Out[1814]=

0.163054 + 0.123708 x + 3.90926 x^2 - 0.662538 x^3 -

10.456 x^4 + 7.54436 x^5 + 9.26695 x^6 - 12.0961 x^7 + 3.60054 x^8
```

0.7 0.990582 0.78 1.10445 0.86 1.19854 0.94 1.31926 1.02 1.4165 1.1 1.54526 1.18 1.64652 1.26 1.78436 1.34 1.89036 1.42 2.03825

```
In[1815]:=
```

```
(*График функции на отрезке [a=h,b+h]*)
 graph =
          Plot[Q, \{x, a-h, b+h\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow \{"Q_4(x)"\}, ImageSize \rightarrow Large, Algebra (Algebra) = \{(x, a-h, b+h), (x, a-h, b+h), (
                                                                                                      [стиль графика [чёрный [легенды графика
                                                                                                                                                                                                                                                                                  _размер изоб· · · _крупный
        _график функции
              _рамка __истина _пометка для обрамления
             обозначения на осях
                                                                                                                                                                                                                                                                                         [пометка графика
                   "График функции на отрезке [a-h,b+h] и значения исходной функции в узлах."];
 \texttt{dots} \; = \; \texttt{ListPlot[data, PlotStyle} \rightarrow \texttt{Red, PlotMarkers} \rightarrow \{\texttt{Automatic, 8}\},
                            PlotLegends \rightarrow PointLegend[{Red}, {"Touku (x_i, f(x_i))"}]];
             _ легенды графика _ поточечная лег… _ красный
 Show[graph, dots]
показать
```

Out[1817]=

График функции на отрезке (а–h h+h) и значения исхолной функции в узлах

In[1818]:=

(*Задание 1*)

In[1819]:=

(*Интерполяционный многочлен степени n = 25*)

```
In[1820]:=
                n_1 = 25;
                data_1 = \{\};
                Do[AppendTo[data1, data[i]], {i, n1}];
                L··· | добавить в конец к
                 int1 = InterpolatingPolynomial[data1, x]
                                 интерполяционный многочлен
Out[1823]=
                2.03825 +
                    (-1.42 + x) (0.782466 + (0.5 + x) (0.639066 + (-0.46 + x) (-0.743105 + (0.1 + x) (0.404103 + (0.404103 + x)))
                                                     (-1.1+x) (1.86527+(0.34+x)) (-1.82763+(-0.86+x))
                                                                        (1.82974 + (-1.34 + x) (1.53311 + (-0.14 + x) (-4.31511 +
                                                                                              (0.42 + x) (4.54101 + (-1.26 + x)) (1.83174 + (-0.62 + x))
                                                                                                                 (-17.29 + (0.26 + x) (-9.07332 + (-0.3 + x) (5.6817 +
                                                                                                                            (-1.02 + x) (-2140.77 + (0.02 + x) (2417.52 +
                                                                                                                            (-1.18 + x) (111.624 + (-0.7 + x)) (-10509.5 +
                                                                                                                            (31097.2 + (-40463.9 + (205603. + (360810. +
                                                                                                                            (223407. + 1.94734 \times 10^7 (-0.38 + x))
                                                                                                                            (-0.78 + x)) (-0.06 + x)) (-0.22 + x)) (-0.94 +
                                                                                                                            x)) (0.18 + x))))))))))))))))))))))
In[1824]:=
                    (*Интерполяционный многочлен степени n = 12*)
In[1825]:=
                n_2 = 12;
                data_2 = \{\};
                Do[AppendTo[data<sub>2</sub>, data[2*i+1]], {i, 0, n/2-1}];
                L··· | добавить в конец к
                 int2 = InterpolatingPolynomial[data2, x]
                                 интерполяционный многочлен
Out[1828]=
                 1.78436 +
                    (-1.26 + x) (0.709343 + (0.5 + x) (0.788597 + (-0.3 + x) (-0.491973 + (-0.78 + x) (-0.0519424 + (-0.78 + x))
                                                     (0.18 + x) (0.332408 + (-1.1 + x) (-1.20396 + (0.34 + x))
                                                                        (0.316969 + (-0.62 + x) (32.9727 + (-33.7292 + (130.352 - 
                                                                                                     211.257(-0.14+x))(-0.94+x))(0.02+x)))))))
In[1829]:=
                    (*Интерполяционный многочлен степени n = 8*)
In[1830]:=
                n_3 = 8;
                data_3 = \{\};
                Do[AppendTo[data3, data[3 * i]], {i, n / 3}];
                ... добавить в конец к
                 int3 = InterpolatingPolynomial[data3, x]
                                 _интерполяционный многочлен
Out[1833]=
                1.89036 +
                    (-1.34 + x) (0.865025 + (0.34 + x) (0.676266 + (-0.38 + x) (-0.408424 + (-0.86 + x) (0.853461 + (-0.408424 + (-0.86 + x) (-0.408424 + (-0.86 + x) (-0.865461 + (-0.86 + x) (-0.408424 + (-0.86 + x) (-0.408424 + (-0.86 + x) (-0.408424 + (-0.86 + x) (-0.864 + x) (-0.408424 + (-0.86 + x) (-0.408424 + (-0.86 + x) (-0.864 + x) (-0.408424 + (-0.86 + x) (-0.408444 + (-0.86 
                                                     (-0.635788 + (-2.29665 + 2.53175 (-0.14 + x)) (-1.1 + x)) (0.1 + x))))
```

```
In[1834]:=
```

```
(*Интерполяционный многочлен степени n = 5*)
```

```
In[1835]:=
```

```
n_4 = 5;
       data_4 = \{\};
       Do[AppendTo[data4, data[5 * i]], {i, n / 5}];
       L· .. ∟добавить в конец к
       int4 = InterpolatingPolynomial[data4, x]
               _интерполяционный многочлен
Out[1838]=
       2.03825 +
         (-1.42 + x) (1.08532 + (0.424216 + (-0.739788 + 0.820549 (-0.22 + x)) (-0.62 + x)) (0.18 + x))
```

```
In[1839]:=
                    graph1 = Plot[int1, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow {"P(x)"},
                                                график функции
                                                                                                               _стиль графика _чёрный _легенды графика
                               ImageSize \rightarrow Large, \ AxesLabel \rightarrow \{"x", "f(x)"\}, \ Frame \rightarrow True, \ FrameLabel \rightarrow \{"x", "f(x)"\}, 
                              PlotLabel → "График интерполяционного многочлена степени n = 25"];
                    PlotLegends \rightarrow PointLegend[{Red}, {"Touku (x_i, f(x_i))"}]];
                              graph2 = Plot[int2, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow {"P(x)"},
                                                график функции
                                                                                                              _стиль графика _чёрный _легенды графика
                              PlotLabel → "График интерполяционного многочлена степени n = 12"];
                              пометка графика
                     dots2 = ListPlot[data<sub>2</sub>, PlotStyle → Red, PlotMarkers → {Automatic, 8},
                                           PlotLegends \rightarrow PointLegend[{Red}, {"Touku (x_i, f(x_i))"}]];
                              _легенды графика _поточечная лег... _красный
                     graph3 = Plot[int3, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow {"P(x)"},
                                                                                                               PlotLabel → "График интерполяционного многочлена степени = 8"];
                              пометка графика
                     dots3 = ListPlot[data<sub>3</sub>, PlotStyle \rightarrow Red, PlotMarkers \rightarrow {Automatic, 8},
                                            PlotLegends \rightarrow PointLegend[{Red}, {"Touku (x_i, f(x_i))"}]];
                              graph4 = Plot[int4, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow {"P(x)"},
                                                                                                              [стиль графика [чёрный [легенды графика
                               ImageSize \rightarrow Large, \ AxesLabel \rightarrow \{"x", "f(x)"\}, \ Frame \rightarrow True, \ FrameLabel \rightarrow \{"x", "f(x)"\}, 
                              PlotLabel → "График интерполяционного многочлена степени n = 5"];
                              пометка графика
                     dots4 = ListPlot[data4, PlotStyle → Red, PlotMarkers → {Automatic, 8},
                                             PlotLegends \rightarrow PointLegend[{Red}, {"Touku (x_i, f(x_i))"}]];
                              graph = Plot[Q, \{x, a, b\}, PlotStyle \rightarrow Green, PlotLegends \rightarrow {"Q<sub>4</sub>(x)"},
                                                                                                ImageSize \rightarrow Large, AxesLabel \rightarrow {"x", "f(x)"}, Frame \rightarrow True,
                              _размер изоб··· _ ∟крупный ∟обозначения на осях
                                                                                                                                                                     _рамка _истина
                               FrameLabel → {"x", "f(x)"}, PlotLabel → "График аппроксимирующей функции
                              пометка для обрамления
                                                                                                               _пометка графика
                     на отрезке [a-h,b+h] и значения исходной функции в узлах."];
                     Show[graph1, dots1, graph]
                     Show[graph2, dots2, graph]
                     Show[graph3, dots3, graph]
                     Show[graph4, dots4, graph]
```

показать

Out[1848]=

Out[1849]=

Out[1850]=

Out[1851]=

In[1852]:=

(*Вывод: исходя из полученного результата с увеличением узлов интерполирования погрешность уменьшается*)

```
In[1853]:=
```

```
(*Задание 2*)
```

```
In[1854]:=
        Needs["Splines`"];
In[1855]:=
        n_1 = 5;
        data_1 = \{\};
        Do[AppendTo[data<sub>1</sub>, data[5*i]], {i, n / 5}];
       _... _добавить в конец к
        int1 = InterpolatingPolynomial[data1, x]
               _интерполяционный многочлен
Out[1858]=
        2.03825 +
         (-1.42 + x) (1.08532 + (0.424216 + (-0.739788 + 0.820549 (-0.22 + x)) (-0.62 + x)) (0.18 + x))
```

```
In[1859]:=
                         spl1 = Plot[Interpolation[data1, Method → "Spline"][x], {x, a, b},
                                                   <u>Гра</u>... <u>Гинтерполировать</u>
                                                                                                                                                    метод
                                      {\tt PlotStyle} \rightarrow {\tt Black}, {\tt PlotLegends} \rightarrow \{"Spline1"\}, {\tt ImageSize} \rightarrow {\tt Large},
                                     [стиль графика [чёрный [легенды графика
                                      AxesLabel \rightarrow {"x", "f(x)"}, Frame \rightarrow True, FrameLabel \rightarrow {"x", "f(x)"},
                                                                                                                                     обозначения на осях
                                      PlotLabel → "Сплайн, аппроксимирующий функцию по значениям в каждом 5 узле."];
                                     пометка графика
                          graph1 = Plot[int1, \{x, a, b\}, PlotStyle \rightarrow Green, PlotLegends \rightarrow {"P(x)"},
                                                                                                                                         _стиль графика _зелёный _легенды графика
                                                          график функции
                                      ImageSize \rightarrow Large, \ AxesLabel \rightarrow \{"x", "f(x)"\}, \ Frame \rightarrow True, \ FrameLabel \rightarrow \{"x", "f(x)"\}, 
                                                                                                                                                                                                          PlotLabel → "График интерполяционного многочлена 5 степени."];
                                     _пометка графика
                          Show[spl1, graph1]
                        показать
Out[1861]=
                                                                                              Сплайн, аппроксимирующий функцию по значениям в каждом 5 узле.
                                   2.0
                                   1.5
                                                                                                                                                                                                                                                                                                                                                             Sp
                          ž
                                                                                                                                                                                                                                                                                                                                                             P(
                                   1.0
                                  0.5
                                            -0.5
                                                                                                                     0.0
                                                                                                                                                                                             0.5
                                                                                                                                                                                                                                                                     1.0
                                                                                                                                                                                         Х
In[1862]:=
                               (∗График расходится в начале, в конце расхождение минимально∗)
In[1863]:=
                         n_2 = 8;
                         data_2 = \{\};
                         Do[AppendTo[data2, data[3 * i]], {i, n / 3}];
                        _... _добавить в конец к
                         int2 = InterpolatingPolynomial[data<sub>2</sub>, x]
                                                   интерполяционный многочлен
Out[1866]=
                         1.89036 +
```

(-1.34 + x) (0.865025 + (0.34 + x) (0.676266 + (-0.38 + x) (-0.408424 + (-0.86 + x) (0.853461 + (-0.408424 + (-0.86 + x) (-0.408424 + (-0.86 + x) (-0.865461 + (-0.86 + x) (-0.408424 + (-0.86 + x) (-0.408444 + (-0.86 + x) (-0.86 + x) (-0.408444 + (-0.86 + x) (-0.40844(-0.635788 + (-2.29665 + 2.53175 (-0.14 + x)) (-1.1 + x)) (0.1 + x))))

```
In[1867]:=
                                spl2 = Plot[Interpolation[data2, Method → "Spline"][x], {x, a, b},
                                                               _ Гра... _ интерполировать
                                                                                                                                                                                          метод
                                               PlotStyle → Black, PlotLegends → {"Spline2"}, ImageSize → Large,
                                               [стиль графика [чёрный [легенды графика
                                               AxesLabel \rightarrow {"x", "f(x)"}, Frame \rightarrow True, FrameLabel \rightarrow {"x", "f(x)"},
                                                                                                                                                                        обозначения на осях
                                               PlotLabel → "Сплайн, аппроксимирующий функцию по значениям в каждом 3 узле."];
                                               пометка графика
                                graph2 = Plot[int2, {x, a, b}, PlotStyle \rightarrow Green, PlotLegends \rightarrow {"P(x)"},
                                                                                                                                                                            [стиль графика [зелёный [легенды графика
                                                                          график функции
                                                ImageSize \rightarrow Large, \ AxesLabel \rightarrow \{"x", "f(x)"\}, \ Frame \rightarrow True, \ FrameLabel \rightarrow \{"x", "f(x)"\}, 
                                                                                                                                                                                                                                                            _рамка _истина _пометка для обрамления
                                               PlotLabel \rightarrow "График интерполяционного многочлена 8 степени."];
                                               _пометка графика
                                Show[spl2, graph2]
                               показать
```

Out[1869]=

In[1870]:=

(∗График расходится в начале, в конце расхождение минимально∗)

```
In[1871]:=
                       n_3 = 12;
                       data_3 = \{\};
                       Do[AppendTo[data<sub>3</sub>, data[2 * i + 1]], {i, 0, n/2 - 1}];
                      L··· | добавить в конец к
                        int3 = InterpolatingPolynomial[data3, x]
                                              _интерполяционный многочлен
Out[1874]=
                       1.78436 +
                            (-1.26+x) (0.709343+(0.5+x) (0.788597+(-0.3+x) (-0.491973+(-0.78+x) (-0.0519424+(-0.78+x)
                                                                          (0.18 + x) (0.332408 + (-1.1 + x) (-1.20396 + (0.34 + x))
                                                                                                     (0.316969 + (-0.62 + x) (32.9727 + (-33.7292 + (130.352 -
                                                                                                                                              211.257(-0.14+x))(-0.94+x))(0.02+x)))))))
In[1875]:=
                        spl3 = Plot[Interpolation[data<sub>3</sub>, Method \rightarrow "Spline"][x], {x, a, b},
                                              <u>Гра</u>... <u></u> _интерполировать
                                   PlotStyle → Black, PlotLegends → {"Spline3"}, ImageSize → Large,
                                                                                                                                                                                           Гразмер изоб⋯ Гкрупный
                                  AxesLabel \rightarrow {"x", "f(x)"}, Frame \rightarrow True, FrameLabel \rightarrow {"x", "f(x)"},
                                  обозначения на осях
                                                                                                                           PlotLabel → "Сплайн, аппроксимирующий функцию по значениям в каждом 2 узле."];
                                  пометка графика
                        graph3 = Plot[int3, \{x, a, b\}, PlotStyle \rightarrow Green, PlotLegends \rightarrow {"P(x)"},
                                                                                                                             _стиль графика _зелёный _легенды графика
                                   ImageSize \rightarrow Large, \ AxesLabel \rightarrow \{"x", "f(x)"\}, \ Frame \rightarrow True, \ FrameLabel \rightarrow \{"x", "f(x)"\}, 
                                  PlotLabel → "График интерполяционного многочлена 12 степени."];
                                  _пометка графика
                       Show[spl3, graph3]
                      показать
```

Out[1877]=

Сплайн, аппроксимирующий функцию по значениям в каждом 2 узле.


```
In[1878]:=
```

```
(*График расходится в начале и конце*)
```

```
In[1879]:=
       n_4 = 25;
        data_4 = \{\};
        Do[AppendTo[data4, data[i]], {i, n4}];
       L··· Lдобавить в конец к
        int4 = InterpolatingPolynomial[data4, x]
               _интерполяционный многочлен
Out[1882]=
        2.03825 +
         (-1.42 + x) (0.782466 + (0.5 + x)) (0.639066 + (-0.46 + x)) (-0.743105 + (0.1 + x)) (0.404103 + (0.1 + x))
                         (-1.1 + x) (1.86527 + (0.34 + x) (-1.82763 + (-0.86 + x)
                                  (1.82974 + (-1.34 + x) (1.53311 + (-0.14 + x) (-4.31511 +
                                            (0.42 + x) (4.54101 + (-1.26 + x) (1.83174 + (-0.62 + x)
                                                     (-17.29 + (0.26 + x) (-9.07332 + (-0.3 + x) (5.6817 +
                                                          (-1.02 + x) (-2140.77 + (0.02 + x) (2417.52 +
                                                          (-1.18 + x) (111.624 + (-0.7 + x) (-10509.5 +
                                                          (31097.2 + (-40463.9 + (205603. + (360810. +
                                                          (223407. + 1.94734 \times 10^7 (-0.38 + x))
                                                          (-0.78 + x)) (-0.06 + x)) (-0.22 + x)) (-0.94 +
                                                          x)) (0.18 + x))))))))))))))))))
```

```
In[1883]:=
       spl4 = Plot[Interpolation[data_4, Method \rightarrow "Spline"][x], \{x, a, b\},
               <u>Гра</u>... <u>Гинтерполировать</u>
                                             метод
           {\tt PlotStyle} \rightarrow {\tt Black}, \, {\tt PlotLegends} \rightarrow \{"{\tt Spline4"}\}, \, {\tt ImageSize} \rightarrow {\tt Large}, \,
           [стиль графика [чёрный [легенды графика
           AxesLabel \rightarrow {"x", "f(x)"}, Frame \rightarrow True, FrameLabel \rightarrow {"x", "f(x)"},
                                        обозначения на осях
           PlotLabel → "Сплайн, аппроксимирующий функцию по значениям в каждом узле."];
           _пометка графика
        graph4 = Plot[int4, \{x, a, b\}, PlotStyle \rightarrow Green, PlotLegends \rightarrow {"P(x)"},
                                          _ стиль графика _ зелёный _ легенды графика
                  график функции
           PlotLabel \rightarrow "График интерполяционного многочлена 25 степени."];
           _пометка графика
        Show[spl4, graph4]
       показать
Out[1885]=
                             Сплайн, аппроксимирующий функцию по значениям в каждом узле.
          2.0
          1.5
                                                                                                           Sp
        € 1.0
                                                                                                           P(
          0.5
          0.0
                                    0.0
                                                          0.5
                                                                                1.0
             -0.5
                                                        Х
In[1886]:=
         (*В середние график расходится минимально, в начале и конце сильные расхождения*)
In[1887]:=
         (*Вывод: с уменьшением узлов интерполяции
           достигается максимальное совпадение сплайна с графом*)
In[1888]:=
         (*Задание 3*)
```

(*Многочлен наилучшего среднеквадратичного приближения степени <math>n = 1*)

In[1889]:=

```
In[1890]:=
      int1 = Fit[data, \{1, x\}, x]
      s1 = \sum_{i=1}^{25} (int1 /. x \rightarrow data[i][1] - data[i][2])^{2}
      graph = Plot[int1, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow \{"int1(x)"\}, \\
                                   Істиль графика Ічёрный Ілегенды графика
          ImageSize \rightarrow Large, AxesLabel \rightarrow {"x", "f(x)"}, Frame \rightarrow True, FrameLabel \rightarrow {"x", "f(x)"},
          PlotLabel \rightarrow "Многочлен наилучшего среднеквадратичного приближения степени n = 1"];
         _пометка графика
      dots = ListPlot[data, PlotStyle → Red, PlotMarkers → {Automatic, 8},
             PlotLegends \rightarrow PointLegend[{Red}, {"TOYKW (x_i, f(x_i))"}]];
          Show[graph, dots]
      показать
Out[1890]=
      0.443208 + 0.919377 x
Out[1891]=
      1.32923
```

Многочлен наилучшего среднеквадратичного приближения степени n = 1

In[1895]:=

Out[1894]=

(*Многочлен наилучшего среднеквадратичного приближения степени n = 2*)

```
In[1896]:=
```

int2 = Fit[data,
$$\{1, x, x^2\}, x$$
]

$$s2 = s1 = \sum_{i=1}^{25} (int2 /. x \rightarrow data[i][1] - data[i][2])^{2}$$

graph =

 $Plot[int2, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow \{"int2(x)"\}, ImageSize \rightarrow Large, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow \{"int2(x)"\}, ImageSize \rightarrow Large, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow \{"int2(x)"\}, ImageSize \rightarrow Large, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow \{"int2(x)"\}, ImageSize \rightarrow Large, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow \{"int2(x)"\}, ImageSize \rightarrow Large, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow \{"int2(x)"\}, ImageSize \rightarrow Large, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow \{"int2(x)"\}, ImageSize \rightarrow Large, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow \{"int2(x)"\}, ImageSize \rightarrow Large, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow \{"int2(x)"\}, ImageSize \rightarrow Large, \{x, a, b\}, PlotStyle \rightarrow Black, PlotLegends \rightarrow Bla$ **_**размер изоб⋯ **_**крупный _график функции

обозначения на осях пометка графика

"Многочлена наилучшего среднеквадратичного приближения степени n = 2"];

 $\texttt{dots} = \texttt{ListPlot}[\texttt{data}, \texttt{PlotStyle} \rightarrow \texttt{Red}, \texttt{PlotMarkers} \rightarrow \{\texttt{Automatic}, \, 8\},$

PlotLegends \rightarrow PointLegend[{Red}, {"Touku $(x_i, f(x_i))"}]];$

Show[graph, dots]

Out[1896]=

 $0.358353 + 0.275264 \times + 0.700123 \times^{2}$

Out[1897]=

4.39428

Out[1900]=

In[1901]:=

(*Задание 4*)

```
In[1902]:=
          a = data[1, 1];
          b = data[-1, 1];
          n = 24;
          (*Метод левых прямоугольников*)
          leftRectangle = \frac{b-a}{n} * \sum_{i=1}^{n} data[i][2]
Out[1905]=
          1.56918
In[1906]:=
          (*Метод правых прямоугольников*)
          rightRectangle = \frac{b-a}{n} * \sum_{i=2}^{n+1} data[i][2]
Out[1906]=
          1.68937
In[1907]:=
           (*Метод средних прямоугольников*)
          middleRectangle = \frac{b-a}{n/2} * \sum_{i=1}^{n/2} data[2*i][2]
Out[1907]=
          1.62158
In[1908]:=
          (*Метод трапеций*)
          trapezoid = \frac{b-a}{n} * \left( \frac{data \llbracket 1 \rrbracket \llbracket 2 \rrbracket}{2} + \sum_{i=2}^{n} data \llbracket i \rrbracket \llbracket 2 \rrbracket + \frac{data \llbracket n+1 \rrbracket \llbracket 2 \rrbracket}{2} \right)
Out[1908]=
          1.62928
In[1909]:=
          (*Метод Симпсона*)
          h = \frac{b-a}{2n};
          simpson = \frac{h}{3} \sum_{i=1}^{n} (data[2 i - 1][2] + 4 data[2 i][2] + data[2 i + 1][2])
Out[1911]=
          1.62671
In[1912]:=
          (*Выведем значение интеграла апроксимированной функции для сравнения*)
          Q = Fit[data, \{1, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\}, x]
          Integrate[Q, {x, a, b}]
Out[1912]=
```

 $0.163054 + 0.123708 x + 3.90926 x^2 - 0.662538 x^3 -$

 $10.456 x^4 + 7.54436 x^5 + 9.26695 x^6 - 12.0961 x^7 + 3.60054 x^8$

1.62786

Out[1913]=

```
In[1914]:=
```

(**∗Вывод: максимально точными способами оказались методы Симпосна и трапеций**∗)

```
In[1915]:=
```

```
(*Задание 5*)
In[1916]:=
      n_4 = 5;
      data_4 = \{\};
      Do[AppendTo[data4, data[5 * i]], {i, n / 5}];
      _... _добавить в конец к
      int4 = InterpolatingPolynomial[data4, x]
            _интерполяционный многочлен
      n = 25;
      h = \frac{b-a}{n-1};
      secondPrecisionTableD1 =
        tableOfFirstDerivative = {};
      AppendTo[tableOfFirstDerivative, {"x", "f'(x) 1-го порядка точности",
      добавить в конец к
          "f'(x) 2-го порядка точности", "Функция D апроксимируемой функции"}];
                                                 _дифференциировать
      i = 1;
      While [i \le n, If [i > n-1, Append To [table Of First Derivative,]]
                  условный опера... добавить в конец к
            \{ data[i][1], "-", "-", D[int4, x] /. x \rightarrow data[i][1]] \} ], 
                                 дифференциировать
          AppendTo[tableOfFirstDerivative, {data[i][[1]], firstPrecisionTableD1[[i]],
         добавить в конец к
            secondPrecisionTableD1[[i]], \ D[Q, \ x] \ /. \ x \rightarrow \ data[[i][[1]]]]] \ ; \ i++];
                                      _дифференциировать
```

Grid[tableOfFirstDerivative, {Dividers → All, Spacings → 1.5 {1, 1}}] таблица **_**разделители **_**всё **_**размер зазора

Out[1919]=

0.390199 + 0.221165 (-0.22 + x)

Out[1928]=

х	f'(x) 1-го порядка точности	f'(x) 2-го порядка точности	Функция D апроксимируемой функции
-0.5	-0.634875	-	0.017553
-0.42	-0.6001	-0.617487	-0.496086
-0.34	-0.818	-0.70905	-1.01498
-0.26	-0.874313	-0.846156	-1.23052
-0.18	-1.17994	-1.02713	-1.07807
-0.1	-1.67226	-1.4261	-0.633067
-0.02	1.02524	-0.323513	-0.0331172
0.06	1.60421	1.31473	0.577157
0.14	1.32858	1.46639	1.08145
0.22	1.34436	1.33647	1.41038
0.3	1.18441	1.26439	1.54636
0.38	1.32024	1.25232	1.51789
0.46	1.1477	1.23397	1.38616
0.54	1.35696	1.25233	1.22711
0.62	1.15111	1.25404	1.11203
0.7	1.42335	1.28723	1.0896
0.78	1.17613	1.29974	1.17254
0.86	1.509	1.34256	1.33187
0.94	1.2155	1.36225	1.50186
1.02	1.6095	1.4125	1.59859
1.1	1.26575	1.43762	1.55536
1.18	1.723	1.49437	1.37783
1.26	1.325	1.524	1.22204
1.34	1.84863	1.58681	1.49826
1.42	-	-	0.221165

In[1929]:=

(*Вывод: формулы второго порядка точности оказались более приближенными*)

```
In[1930]:=
```

```
firstPrecisionTableD2 = Append
           firstPrecisionTableD1[i+1] - firstPrecisionTableD1[i], {i, 1, n-2}], "-"];
secondPrecisionTableD2 =
  Prepend Table data[i+1][2] - 2 data[i][2] + data[i-1][2], {i, 2, n-1}], "-"];
tableOfSecondDerivative = {};
AppendTo[tableOfSecondDerivative, {"x", "f''(x) 1-го порядка точности",
добавить в конец к
    "f''(x) 2-го порядка точности", "Функция D апроксимируемой функции"}];
                                                     _дифференциировать
i = 1;
{data[i][1], firstPrecisionTableD2[i], secondPrecisionTableD2[i],
      \label{eq:decondDerivative} $$D[Q, \{x, 2\}] \ /. \ x \to data[i][1]], AppendTo[tableOfSecondDerivative, ] $$
                                               добавить в конец к
     {data[i][1], "-", "-", D[int4, {x, 2}] /. x \rightarrow data[i][1]]]; i++];}
                                _дифференциировать
\label{eq:condDerivative} \textit{Grid}[\texttt{tableOfSecondDerivative}, \; \{\texttt{Dividers} \rightarrow \texttt{All}, \, \texttt{Spacings} \rightarrow \texttt{1.5} \; \{\texttt{1}, \, \texttt{1}\}\}]
                                     разделители Івсё Іразмер зазора
таблица
```

Out[1936]=

×	f''(x) 1-го порядка точности	f''(x) 2-го порядка точности	Функция D апроксимируемой функции
-0.5	0.434687	-	-4.02058
-0.42	-2.72375	0.434687	-7.42692
-0.34	-0.703906	-2.72375	-4.93003
-0.26	-3.82031	-0.703906	-0.345478
-0.18	-6.15406	-3.82031	3.98349
-0.1	33.7188	-6.15406	6.84351
-0.02	7.23719	33.7188	7.84667
0.06	-3.44547	7.23719	7.16411
0.14	0.197344	-3.44547	5.29776
0.22	-1.99937	0.197344	2.89007
0.3	1.69781	-1.99937	0.571767
0.38	-2.15672	1.69781	-1.1522
0.46	2.61578	-2.15672	-1.97883
0.54	-2.57313	2.61578	-1.84504
0.62	3.40297	-2.57313	-0.927657
0.7	-3.09031	3.40297	0.394647
0.78	4.16094	-3.09031	1.61753
0.86	-3.66875	4.16094	2.22515
0.94	4.925	-3.66875	1.84244
1.02	-4.29688	4.925	0.425394
1.1	5.71563	-4.29688	-1.51054
1.18	-4.975	5.71563	-2.62406
1.26	6.54531	-4.975	-0.443509
1.34	-	6.54531	8.97563
1.42	-	-	0.

In[1937]:=

(*Вывод: расхождения слишком велики, чтобы делать конкретный вывод*)