单元10.4 平面哈密顿图

第二编图论 第十一章平面图

11.6 平面哈密顿图

内容提要

- 平面图与哈密顿图
 - Tait猜想的反例
 - 平面哈密顿图的充分条件
 - 平面哈密顿图的必要条件

Tait猜想

• Tait猜想(1880):

3连通3正则平面图都是哈密顿图

• 4, 6, 12面体图验证;解决四色猜想

Tait猜想的反例

- Tutte图(1946): 46阶反例(左图)
- Lederberg图(1967): 38阶反例(右图)

平面哈密顿图充分条件

• 定理(Tutte,1956):

4连通平面图是哈密顿图.#

平面哈密顿图必要条件

• 定理11.23(Grinberg,1968):

n阶简单平面哈密顿图,哈密顿回路内(外)部次数为i的面数为 $r_i'(r_i'') \Rightarrow$ $\Sigma^n_{i=3}(i-2)(r_i'-r_i'')=0.$

定理11.23证明

- $\Sigma_{i=3}^{n}(i-2)(r_{i}'-r_{i}'')=0.$
- 证: 设哈密顿回路C内有m₁条边,则

$$\sum_{i=3}^{n} r_i' = m_1 + 1.$$

$$\Sigma$$
_{内部面}deg(R_j) = Σ ⁿ_{i=3}ir_i' = 2m₁+n,

所以,
$$\Sigma_{i=3}^{n}(i-2)r_{i}'=n-2$$
.

同理
$$\Sigma_{i=3}^{n}(i-2)r_{i}^{"}=n-2.$$
 #

• 下图中不存在过边(a,b)的哈密顿回路. (由此可证Tutte图和Lederberg图不是哈密顿图.)
#

- $\Sigma_{i=3}^{n}$ (i-2)(r_{i} '- r_{i} ")=0 (定理11.23)
- $(r_3'-r_3'')+2(r_4'-r_4'')+3(r_5'-r_5'')+6(r_8'-r_8'')=0$

- $(r_3'-r_3'')+2(r_4'-r_4'')+3(r_5'-r_5'')+6(r_8'-r_8'')=0$
- (1-0)+2(r_4' - r_4'')+3(r_5' - r_5'')+6(0-1)=0
- $2(r_4'-r_4'')+3(r_5'-r_5'')=5$

•
$$2(r_4'-r_4'')+3(r_5'-r_5'')=5$$

•
$$2(1-1)+3(r_5'-r_5'')=5$$
, 即 $3(r_5'-r_5'')=5$

- 3(r₅'-r₅") = 5 或 1
- · 上式不可能成立, 因为(r5'-r5")是整数. #

Gadget 设计

- · 有没有更小的gadget(小配件)?
- 注意是3-正则平面图

总结

• 平面哈密顿图

- Tait猜想的反例
- 平面哈密顿图的充分条件
- 平面哈密顿图的必要条件

