## 計算機科学実験及演習3 ハードウェア SIMPLEアーキテクチャの プロセッサの実装

京都大学 工学部情報学科 計算機科学コース 計算機科学実験及演習 3 ハードウェア担当

## 実験3ハードウェアの内容と目的

#### • 内容

- マイクロプロセッサの方式設計、論理設計
- FPGA上で応用プログラムを動作

#### 目的

- プロセッサの動作原理を理解する
- 回路設計、最適化、動作テストの方法を習得する
- プロセッサの種々の拡張方式や最適化技術を実践的に学ぶ

#### • 参考文献

- 富田眞治、中島浩: コンピュータハードウェア
- D.A.パターソン、J.L.ヘネシー著、成田光彰訳:コンピュータの構成と設計(上),(下) など, , ,

## SIMPLEプロセッサアーキテクチャ

### SIMPLEの概要

- SIxteen-bit MicroProcessor for Laboratory Experiment
  - ≌簡単な命令セット
  - ◎基本機能は1通り備えられている

#### • 特徴

- 16bit固定長命令
- ・8本の汎用レジスタ
- 16bit×64K語の主記憶
- ロード/ストアアーキテクチャ
- 2オペランド形式の命令セット(Rd op Rs -> Rd)

### アーキテクチャの説明

- アーキテクチャ
  - コンピュータ全体の構成
    - プロセッサ、メモリ、I/Oなど
  - 主記憶とレジスタの構成ここに含む
- 命令セットアーキテクチャ
  - 命令の構成
  - 前述のロード/ストアアーキテクチャは 命令セットの形式の1つ
- マイクロアーキテクチャ
  - アーキテクチャの回路レベルでの実装

### 主記憶とレジスタ

#### コンピュータの状態を表すもの

- 1. 主記憶
  - 16bit×64K語 (語アドレス方式)
  - ただし、実験で使用するFPGAで確保できる最大サイズは約33K語
- 2. 汎用レジスタ
  - 16bit×8語
- 3. プログラムカウンタ (PC)
  - 16bit
- 4. 条件コード
  - S サイン
  - Z ゼロ
  - C ++リー
  - V オーバーフロー

## 命令セット

#### コンピュータの状態を変えるもの

- 1. 演算命令
  - 算術論理演算命令
  - シフト命令
- 2. ロード/ストア命令
- 3. 分岐命令
  - 無条件分岐命令
  - 条件分岐命令
- 4. その他
  - 入出力命令
  - 停止命令

## 演算命令

- 算術論理演算命令
  - r[Rd] = r[Rd] op3 r[Rs]
- シフト命令
  - $r[Rd] = shift_op3(r[Rd], d)$
- 注:実行後に条件コードをセットする

| 11 | Rs | Rd | op3 | d |   |
|----|----|----|-----|---|---|
| 15 | 13 | 10 | 7   | 3 | 0 |

## ロード/ストア命令(1)

- □一ド命令 (op1:00)
  r[Ra] = \*(r[Rb] + sign\_ext(d))
- ストア命令 (op1:01)
  - $*(r[Rb] + sign\_ext(d)) = r[Ra]$

| op1 | Ra | Rb | d |   |
|-----|----|----|---|---|
| 15  | 13 | 10 | 7 | 0 |

## ロード/ストア命令(2)

- •即值ロード命令
  - r[Rb] = sign\_ext(d)
  - 即値ロード命令 2 つとシフト命令で任意の 1 6 bitの値を レジスタ格納できる

| 10 | 001 | Rb | d |  |   |
|----|-----|----|---|--|---|
| 15 | 13  | 10 | 7 |  | 0 |

## 分岐命令(1)

- •無条件分岐命令(B: Branch)
  - $PC = PC + 1 + sign_ext(d)$

| 10 | 100 |    | d |  |   |
|----|-----|----|---|--|---|
| 15 | 13  | 10 | 7 |  | 0 |

## 分岐命令(2)

- 条件分岐命令
  - if (cond)  $PC = PC + 1 + sign_ext(d)$
  - ・ 条件コードの値に従って分岐
    - 条件コードは演算命令の実行時にセットされる

| 10 | 111 | cond |   | d |   |
|----|-----|------|---|---|---|
| 15 | 13  | 10   | 7 |   | 0 |

### その他の命令

- ·停止命令(op3: 1111)
- ·入力命令(op3: 1100)
  - r[Rd] = input
  - 入力先はボード上のスイッチ など
- · 出力命令(op3: 1101)
  - output = r[Rs]
  - 出力先はボードのLED/7SEG LED など

| 11 | Rs | Rd | op3 | d |   |
|----|----|----|-----|---|---|
| 15 | 13 | 10 | 7   | 3 | 0 |

## 基本的な実装 SIMPLE/B

- ・次スライドに示すように演算器/レジスタ/データパスを配置
- 5つのフェーズを逐次活性化: 実験2の順序回路と同じ
  - P1 命令フェッチ
  - P2 命令デコード、レジスタ読み出し
  - P3 演算
  - P4 主記憶アクセス
  - P5 レジスタ書き込み/PC更新
- ・フェーズの活性化:制御部が担当
  - (フェーズへ入力されるデータを保持するレジスタを更新)
  - フェーズ内のセレクタを適切に切り替える
  - フェーズから出力されるデータを保持するレジスタを更新



## 実行のサンプルの命令

- ロード命令: プログラムカウンタ100
  - LD R0, 10(R1)

略記 001 10

| 00 | Ra<br>(000) | Rb<br>(001) | d<br>(00001010) |   |
|----|-------------|-------------|-----------------|---|
| 15 | 13          | 10          | 7               | 0 |

- 加算命令: プログラムカウンタ101
  - ADD R0, R2

略記 3200 -

| 11 | Rs<br>(010) | Rd<br>(000) | op3<br>(0000) | d |   |
|----|-------------|-------------|---------------|---|---|
| 15 | 13          | 10          | 7             | 3 | 0 |

## 実行のサンプルの命令

無条件分岐命令: プログラムカウンタ102

• B -5



































# 設計のヒント

### モジュール構成

- 全体をサブデザインに分割
  - どの論理を1つの単位にするか
  - Verilog HDLのモジュール単位?機能のブロック単位?
  - 各レジスタはどの単位に属するか
- 分担
  - 制御系とデータパス系?
  - サブデザインとトップデザイン&インタフェース?
  - 基本機能と拡張機能?
  - 同じ機能ブロックの違うバージョンをそれぞれ設計?

## 検証環境

- ・シミュレーションテストベンチ
  - シミュレーション毎の手作業が減るように自動化
  - ・早い段階で自動化すること
- 実機検証
  - ボードのスイッチやLEDを利用して内部信号をプローブ
  - プロセッサ本体の外側にテスト用回路(プローブやスイッチ、表示系ドライバ)を構成
  - ・早い段階で検証環境を構築すること

### 工程管理とスケジュール

- トップダウン?ボトムアップ?
  - 部品から作るか、トップデザイン(部品はダミー)を まず用意するか
- プロトタイピング、マイルストーン、線表
  - ・中間レポート時点「何らかの命令が動作」の実現時期と機能をどう設定するか(検証に掛かる時間も考慮する)
  - 最も単純な機能や構成から始めるか、機能拡張に備えた 構成をまず考えるか
  - 最終成果物の仕様をいつ決めるか、いつ見直すか

## 課題とデモンストレーション

## 課題:機能拡張と性能評価

- 何らかの拡張を行って、拡張前と比較評価する
  - プログラムの実行がどれだけ高速化したか?
    - 最高クロック周波数、実行命令数、実行サイクル数
  - 追加で必要となったハードウェアは?
    - ゲート数 (LUT数)
- ・拡張の例 (SIMPLE設計資料の4章も参照)
  - 命令セットアーキテクチャの改良:命令の強化、新命令の追加、割り込みのサポート
  - マイクロアーキテクチャの改良:フェーズの並列実行(パイプライン化)、命令の並列実行(スーパースカラ)

#### コンテスト

- 「俺のプロセッサはすごいぜ!」ということを 証明したい/歴史に名前を残したいあなたに…
- データをソートする時間を競うコンテスト(改定予定?)
  - データ
    - 16bitの符号付整数1024個
    - ランダム、昇順ソート済み、降順ソート済みの3種類
  - 時間の定義:完了までのサイクル数×クロック周波数
  - 3種類のデータ各々の処理時間の平均値
- ぜひ参加して、これまでの記録を破ってください <a href="http://isle3hw.kuis.kyoto-u.ac.jp/contest/index.html">http://isle3hw.kuis.kyoto-u.ac.jp/contest/index.html</a>