高中物理 物理學家人物年代表

發現年代	發現者	理論與貢獻	主要領域
公元2世紀	托勒密 (Ptolemaeus)	理論:地心說 內容:地球是宇宙的中心,而其他的 日月星辰都環繞著地球而運行。	天文學
西元 1543 年	哥白尼 (Copernicus)	理論:日心說 內容:認為太陽是宇宙的中心,而不 是地球,所有的星球都是繞日運行。	天文學
西元 1609 年	克卜勒	理論:行星運動第一定律(橢圓定律) 理論:行星運動第二定律(面積定律)	天文學
西元 1618 年	(Kepler)	理論:行星運動第三定律(週期定律)	天文學
西元 1621 年	司乃耳 (Snel)	理論:折射定律 內容:入射角的正弦值與折射角的正 弦值之比值為一定值。	光學
西元 1638 年	伽利略 (Galilei)	斜面思想實驗(慣性) 現代科學之父、實驗物理學之父	力學
西元 1676 年	虎克 (Hooke)	西元 1676 年:虎克定律 內容:在比例限度內,彈簧的彈力量 值F與彈簧的形變量(可能伸長或縮 短)Δl成正比。	力學
西元 1678 年	惠更斯 (Huygens)	理論:波動說 內容:主張光是一種像水波或聲波的 波動。 理論:惠更斯原理 內容:波前的每一點可以認為是產生 球面次波的點波源,而以後任何時 刻的波前則可看作是這些次波的包 絡。	光學
西元 1687 年	牛頓 (Newton)	理論:萬有引力定律 內容:具有質量的物體彼此之間存在 一吸引力,其量值與兩者質量乘積 成正比;與其距離平方成反比。 理論:三大運動定律 (1)牛頓第一運動定律(慣性定律) (2)牛頓第二運動定律(運動定律) (3)牛頓第三運動定律(作用力與反 作用力定律)	力學

		and the second of the second o	
西元 1773 年	庫侖 (Coulomb)	理論:庫侖定律 內容:兩點電荷之間的靜電力量值與 這兩點電荷所帶的電量乘積成正 比,與兩點電荷間的距離平方成反 比。	電磁學
西元 1797 年 西元 1798 年	卡文迪許 (Cavendish)	測量地球密度。 扭秤實驗,測得引力常數(G)為 6.67×10 ⁻¹¹ N·m ² /kg ²	力學
西元 1801 年	楊格 (Young)	雙狹縫干涉實驗 內容:把光束射向間距極小的雙狹 縫,穿過狹縫的光波會在後方遠處 屏幕上形成明暗相間的條紋圖案, 為支持光波動理論的有力證據。	光學
西元 1804 年	道耳頓 (Dalton)	理論:原子說 內容: (1)元素皆由不可分割的原子所組成。 (2)每一種元素的原子有各自特定之質量。 (3)化合物是由不同元素的原子所組成原子的個數一定是簡單整數比。 (4)化學反應只是原子間的重新排列,反應中沒有原子消失,也沒有原子被創造出來,故反應前後原子的種類與數目皆不變。	化學
西元 1820 年	厄斯特 (Ørsted)	理論:電流磁效應 內容:通了電流的導線可以使導線周 圍的磁針發生偏轉。	電磁學
西元 1826 年	安培 (Ampère)	理論:安培定律 內容:載流導線中的電流與其產生的 磁場之間的關係 (1)離長直導線愈遠,磁場愈弱。 (2)磁場強度會隨著電流的大小增加 而增強。	電磁學
西元 1827 年	布朗 (Brown)	理論:布朗運動 內容:懸浮水中之花粉微粒作不規則 的移動,為支持原子存在有力證據。	力學

西元 1831 年	法拉第 (Faraday)	理論:電磁感應 內容:當封閉線圈內的磁場隨時間發 生變化時,線圈上就會產生電流,這 種電流稱為應電流,此現象稱為電 磁感應。	電磁學
西元 1833 年	冷次 (Lenz)	理論:冷次定律 內容:當穿過封閉線圈內的磁力線數 對時間發生變化時,線圈上應電流 所生成的磁場總是抵抗外加磁場的 變化趨勢。 [註]冷次定律為能量守恆的必然結 果。	電磁學
西元 1842 年	都卜勒 (Doppler)	理論:都卜勒效應 內容:當觀測者與波源發生相對運動 時,所接收的波的頻率會發生變化。	聲學
西元 1845 年	焦耳 (Joule)	熱功當量實驗 內容:證實作功可以將力學能轉換成 物體增加的熱能(內能),所以熱是能 量的一種形式。 熱功當量: 「4.2 焦耳(J)的能量相當於 1 卡(cal) 的熱」。	熱學
西元 1848 年	克耳文 (Kelvin)	貢獻:絕對溫標 內容:建議採用絕對溫標(克氏溫標) 來描述溫度,爾後成為七個基本物 理量之一。	熱學
西元 1864 年	馬克士威 (Maxwell)	貢獻:馬克士威方程式 內容:馬克士威整理四條電磁學的方 程式,並定量描述所有電磁現象。	電磁學
西元 1865 年	(1.2011)	計算電磁波在真空中傳遞的速率為 光速,因此推論光為電磁波的一種。	
西元 1887 年	赫茲 (Hertz)	(1)火花實驗 (2)光電效應實驗 內容:以紫外光照射金屬電極時,電極之間會產生火花,爾後更多實驗 證實:以光線照射金屬表面,可使金 屬表面釋放出電子,此現象稱為光 電效應。	電磁學

西元 1897 年	湯姆森 (Thomson)	貢獻:陰極射線實驗、測量荷質比 內容:發現帶負電的電子,並提出葡萄乾布丁(帶正電的物質均勻地分布 在一球體內,帶負電的電子則均勻 散布於球體)原子模型。	粒子物理
西元 1900 年	普朗克 (Planck)	成亦然恐人, 展生 東京 京獻:提出能量量子化 內容:為了成功解釋熱輻射的問題, 放棄古典物理中能量連續變化的概 念,採用能量量子化的假設,最後得 到與實驗數據完全吻合的計算結 果。	量子力學
西元 1905 年	愛因斯坦 (Einstein)	貢獻:狹義相對論、質能互換公式、 解釋光電效應、以數學計算證實布 朗運動 內容:以光子的概念成功地解釋光電 效應之後,使得光同時具有波動性 與粒子性,稱為波粒二象性。	量子力學
西元 1909 年	密立坎 (Millikan)	油滴實驗 內容:發現油滴帶的電量都是基本電 荷的整數倍。	電磁學
西元 1911 年	拉塞福 (Rutherford)	金箔散射實驗 內容:絕大多數α粒子有大角度的偏轉,並發現原子核。	粒子物理
西元 1913 年	波耳 (Bohr)	貢獻:提出氫原子模型 內容:電子可在特定軌道上穩定存 在,而不輻射電磁波,其原因是該軌 道的圓周長恰好是電子物質波波長 的整數倍,即角動量量子化。	粒子物理
西元 1915 年	愛因斯坦 (Einstein)	貢獻:廣義相對論	量子力學
西元 1919 年	拉塞福 (Rutherford)	α粒子撞擊氮原子核 內容:發現原子核內帶正電的質子。	粒子物理
西元 1924 年	德布羅意 (de Broglie)	貢獻:提出物質波 內容:從自然界的對稱性出發,大膽 地提出假設:實物粒子也應具有波動 性,他將這種波動,稱為物質波	粒子物理
西元 1932 年	查兌克 (Chadwick)	α粒子撞擊鈹原子核 內容:發現原子核內不帶電的中子。	粒子物理

西元 1935 年	湯川秀樹	貢獻:提出強核力模型 內容:認為原子核內的粒子之間藉由 交換「介子」而產生強交互作用。	粒子物理
西元 1964 年	蓋爾曼 (Gell-Mann)	理論:夸克理論 內容:主張質子與中子都是由更小、 更基本的夸克所組成。	粒子物理