"Relations Chapter J
Topic: 9.1
"Relation 4 Their Properties"
what is relation?
A realation b/w two sets is a collection
of ordered pairs containing one object from
each set. It the object n is from the sel one
4 objet y is from second set, then the object
are said to be related if the ordered pair
(ny) is in the relation. A junction is a type of
relation.
What is Binary relation?
A binary relation over set x 4 4 is a
subset of The Cartesian product Xx4; That
is, It is a set of ordered pairs (my) consisting
of elements x in X 4 y in Y.
Binary retation of X 4 4 is a subset of
X.Y

what is meant by relation on set? Relations from a set A to interf and of the interest. eg: 108 A. 9,234 AXA = 20 AXA R= 7(1,0), (1,2), (1,3), (1,4), (2,3), (2,2), (2,3), (3,3), (3,3) Ru (4,4)} = 1 (41) P (2/3) (3/3) R1 = 4 (a, b) 1a = b] = 4 (1,1), (42), (13), (14), (1 R2 = 7/40) / a = b 3 = 9(1,10, (2,2), (3,3), (4,4) R3 = 7 (a,b) 1a = b } = ((1,2), (1,3), (1,4), (4,3), (3) Ry = 4(a,b)/ a+1 = b } Revalion? Describe Properties of 1. Refrenire relation: called reflexion A relation R on a set A is if (a,a) eR for every element at A

eg: R=AxA=(41),(42),(43),(44),(23),(24),(22),(3,3),(34) rest relation is reflexive if a relation azb pair eng 2 from above (41), (2,2), (3,3), (4,4) Ry = 4(11,2),(1,1),(1,3)} X R2 = "((1,1), (1,2), (2,2), (2,3), (3,3), (4,4)] 2. Symmetric relation: if (b,a) eR whenever (a,b) eR, for all a,b & mean (a, b) ER 1 (69a) ER Ri 11 not symmetric bcz (1,3)
(3,1) is not ER, Rz is also not symple

n-any Relations & Their Application" what is n-any relation? Remainship among elements is carred from more than two vets it carred many relation. e-93 let A. Az. ... An be sett. An m-any relation on these vets is a vebret of AIXAZXA3.... An. The set ALAz, An are easted domain 4 n. is called degree R= Y(a1, a2), (a3, a4), 7 CAXA Rn = ((a, a, 2, 2, a, 3 - - a, a,) x (a), a, 2, - - a, a) - - what is extension 4 intension? n-any is care The corrent collection of extension 4 the permanent part of database including name 4 altribute, is eatted intendion Domain of many is caused primary key The cartesian product of the the vawes cauck composite key. set of domain is

Representing Retations" How to represent retation using metric? A relation blow pinite sets can be represented using sero-one matrices. Suppose, R is a relation from A = 4 as, as, am? to B = 4 bs, bs, bm?. The relation R can be represented by the metrix MR = [mij], where mij = (1 if(as, bj) & R O if (ai, bj) & R e-g; A = 4 1, 2, 3 } & B = 41, 2 } = 4(111)(112)[(211), (2, 2)], (3,1)(11)	Topic: 9.3
A relation blew finite sett can be represented evering kern-one matrices. Suppose, R is a relation from A = $\frac{1}{4}a_1, a_2, \dots a_m$ } to B = $\frac{1}{4}b_1, b_2, \dots b_m$ }. The relation R can be represented by the metric MR = $\frac{1}{4}m_1^2$, where $m_1^2 = \frac{1}{4}(1)(a_1b_1^2) \in R$ O if $(a_1^2, b_1^2) \notin R$ 2-g; A = $\frac{1}{4}(a_1b_1^2) \in R$ O if $(a_1^2, b_1^2) \notin R$ Let R be the relation from A to B containing (a_1b) , if a_1e_1 , $a_2=2$, $a_3=3$ 4 $b_1=1$, $b_2=2$? And = $\frac{1}{4}(a_1b_1^2)(a_1b_$	
exting kero-one matrices. Suppose, R is a relation from A= {a_1,a_2,a_n} to B= {b_1,b_2,b_m}. The relation R can be represented by the metric $M_R = \{m_i, 7\}$ where $m_i, j = \{1, \frac{1}{7}(a_i, b_i) \in R\}$ O if $\{a_i, b_i\} \notin R$ e.g. A= {1,2,3} & B= {1,2} = {(1,1)(1,2)}(2,1),(2,2),(3,1)(0)} let R be the relation from A to B containg (a ₁ b), if a ₁ A=A, b\in B & a>b, in matrix, R if $a_1=1$, $a_2=2$, $a_3=3$ & $a_1=1$, $a_2=2$? Ans= R= {(2,1),(3,1),(3,2)} the matrix for R is $M_R= \{0,0\}$	How to represent relation using metric?
Suppose, R is a retalion from A = $\{a_1, a_2, \dots a_m\}$ to B = $\{b_1, b_2, \dots b_m\}$. The retalion R can be represented by the metrix $M_R = \{m_i\}$, where $m_ij = \{1, i\}(a_ib_j) \in R$ $0 : \{(a_i,b_j) \notin R\}$ e.g., A = $\{(a_i,b_j) \notin R\}$ let R be the retalion from A to B containg (a_ib) , i j $a \in A$, $b \in B$ j $a \neq b$, in matrix, R i j $a \in A$, $b \in B$ j $a \neq b$, in matrix, R i j	A relation blev finite son can be represented
B. $(b_1, b_2, \dots b_m)^2$. The relation R can be represented by the metrix $M_R = (m_1, 7, where m_1)^2 = (1, 7, 4, 6) \in R$ O $(a_1, b_1)^2 \notin R$ e.g., A. $(a_1, b_1)^2 \notin R$ let R be the relation from A to B containg (a,b), $(a_1, b_1)^2 \oplus (a_2, b_1)^2 \oplus (a_1, b_2)^2 \oplus (a_2, b_1)^2 \oplus (a_2, b_1)^2 \oplus (a_1, b_2)^2 \oplus (a_2, b_1)^2 \oplus (a_1, b_2)^2 \oplus (a_2, b_1)^2 \oplus (a_2, b_1)^2 \oplus (a_1, b_2)^2 \oplus (a_2, b_1)^2 \oplus (a_$	creing kero-one matrices.
B. $(b_1, b_2, \dots b_m)^2$. The relation R can be represented by the metrix $M_R = (m_1, 7, where m_1)^2 = (1, 7, 4, 6) \in R$ O $(a_1, b_1)^2 \notin R$ e.g., A. $(a_1, b_1)^2 \notin R$ let R be the relation from A to B containg (a,b), $(a_1, b_1)^2 \oplus (a_2, b_1)^2 \oplus (a_1, b_2)^2 \oplus (a_2, b_1)^2 \oplus (a_2, b_1)^2 \oplus (a_1, b_2)^2 \oplus (a_2, b_1)^2 \oplus (a_1, b_2)^2 \oplus (a_2, b_1)^2 \oplus (a_2, b_1)^2 \oplus (a_1, b_2)^2 \oplus (a_2, b_1)^2 \oplus (a_$	
by the metrix $M_R = \{m_i, 7, where \}$ $m_i, j = \{1, 1, 2, 6, 0\} \notin R$ $0 \in \{1, 2, 3\} \notin R$ $A = \{1, 2, 3\} \notin R = \{1, 2\} = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (6)\}$ let R be the relation from A to B containg (a_1b) , $i_1 = a_1 = 1$, $a_2 = 2$, $a_3 = 3$ $a_1 = 1$, $b_2 = 2$? $A_{1,1} = R = \{(2, 1), (3, 1), (3, 2)\}$ the matrix for R is $M_R = \{0, 0\}$	B. 4 bi, b2, bm?. The relation R can be represented
$mij = \begin{cases} 1 & if(a_i,b_i) \in R \\ 0 & if(a_i,b_i) \notin R \end{cases}$ $e \cdot g;$ $A = \{(1,2,3)\} \{4\} B = \{(1,2)\} = \{(1,1)(1,2) \mid (2,1),(2,2)\}, (3,1)(0) \}$ let R be the relation from A to B containg $(a_ib), if(a_i,b_i) \notin R$ $(a_ib), if(a_i,b_i) \notin R$ $(a_ib), if(a_i,b_i) \notin R$ $(a_ib), if(a_i,b_i) \notin R$ $(a_ib) \notin R = \{(1,2,3)\} (a_ib), (a_ib)$	
e-g: A = $4(1,2,3)$ & B = $4(1,2)$ = $\frac{4(1,1)(1,2)(2,1)}{(2,1),(2,2)}$, $\frac{13}{(3,1)(1)}$ let R be The relation from A to B containg (a,b), $\frac{1}{1}$ a \in A, b \in B 4 a > b, in matrix, R $\frac{1}{1}$ a=1, a2 = 2, 4 a3 = 3 4 b1 = 1, b2 = 2? Ans = $\frac{4}{(2,1)}$, $\frac{13}{(1)}$, $\frac{13}{(2,2)}$ The matrix for R is MR = $\frac{1}{1}$ 0 0	$m_i^2 = 1 + i + (a_i b_i) \in \mathbb{R}$
A = $91,2,3$ 94 B = $91,2$	0 i7 (ai, bj) & R
A = $91,2,3$ 94 B = $91,2$ 7 = $91,2$ 100	e-g; "
let R be The relation from A to B containg (a,b), if $a \in A$, $b \in B$ 4 $a > b$, in matrix, R if $a_1 = 1$, $a_2 = 2$, 4 $a_3 = 3$ 4 $b_1 = 1$, $b_2 = 2$? Ans = R = $\binom{a_1}{2} \binom{a_2}{1} \binom{a_3}{1} \binom{a_3}$	A= 41,2,39 4 B= 41,27 = 4(1,1)(1,2)(2,1),(2,2),(3,1)(1)
(a,b), $\frac{1}{4}$ a $\in A$, $b \in B$ 4 a > b, in matrix, R if $a_1 = 1$, $a_2 = 2$, $a_3 = 3$ 4 $b_1 = 1$, $b_2 = 2$? Ans = $R = \frac{9}{2}(2_1)(13_1)(1$	
$A_{N3} = R = {9 \choose (2_{1}), (3_{1}), (3_{1}2)}$ The matrix for R is $MR = {0 \choose 1}$	
MR = 0 0 1 0	
MR = 0 0 1 0	Ans= R = 9(2,1), (3,1), (3,2) ? The matrix for R is
	MR = [0 0]
	1 0

How to represent relation using diagraphs a directed graph or direct graph, comsist of a set V of vertices together with a vet E of ordered pair of elements of V called edges The vertex a is caued initial vertex of the edge (a, b), 4 vertex b is called the terminal verte Pictoria representation of a graph is called diagraphs or directed graphs. Directed graph with vertice a,b,c, 4 d 4 edges (a,b), (a,d), (b,b), (b,d), (c,a), (c,b), (d,b) . Graph (b,b) (a,b) 06 (db) 69. 3de in case 41,2,3,4 Then R = ((1,2), (1,4), (2,2), (2,1), (3,2), (3,4), (4,4), (4,1)

Topie 9.4 "Closures of Relations"

Fransitive closure: Relation: let Ray & is a relation, where & containg R soch that I is a subset of every transitive relation containing R. S is The smallest relation that contain R. This relation is caused let R = 4(1/1), (1/2), (2/1), (3/2) AB (1/2/3) we have to add (so(2/2)) to make it transitive bez it is not in R, by adding This new relation in R it becomes transitive clasure of R. of It become reflexive by adding (2,2) by (3,3) into R > It become symmetric closure by adding (213) into R. warshall's Algorithm: An efficient method of finding The adjacency matrix of the transitive closure of relation R on finite let 5 from adjacency matrix of R.

matrix of the transitive closure of relation is on finite set 5 from adjacency matrix of R. let set 5 have = "(a, b, c? or "(1,2,3)? $R = {}^{4}(1,1), (1,2), (2,1), (3,2)$ imaginary relation.

