Домашнее задание 4

Андрей Зотов

Май 2023

Задача 1

Ответ:

- а) Максимальная длина ориентированного простого цикла в графе G равна 3. На графе G всего имеется 6 ориентированных простых циклов длины 3: A, B, C, A; B, C, A, B; C, A, B, C; A, D, C, A; D, C, A, D; <math>C, A, D, C.
- б) В графе G всего имеется 3 компоненты сильной связности: ABCDG, E и F.
- в) Достаточно добавить одно ориентированное ребро (F, D).

Решение. в) Как следует из пункта б) чтобы граф G стал сильно связным нужно чтобы существовали ориентированные пути, связывающие (в обе стороны) вершины E и F с компонентой ABCDG (пусть далее это будет компонента G_1). При этом вершины E и F тоже будут связаны (в обе стороны).

Действительно, если добавить ориентированное ребро $(F,\ D),$ то

- Из E в компоненту G_1 будет ориентированный путь E, F, D.
- Из G_1 в E будет ориентированный путь D, E.
- Из F в G_1 будет ориентированный путь F, D.
- Из G_1 в F будет ориентированный путь D, E, F.
- Из E в F будет ориентированный путь E,F.
- Из F в E будет ориентированный путь F, D, E.

Таким образом, после добавления ориентированного ребра (F, D) существуют ориентированные пути, связывающие любую вершину графа G с любой другой вершиной, т.е. граф G становится сильно связным.

Задача 2

Ответ: CABGFDE (отсортированная в топологическом порядке последовательность вершин графа H).

Задача 3

Ответ: все собрания получится провести в пятницу. Минимальное количество временных слотов будет 4.

Решение. Пусть рабочие группы будут вершинами некоторого графа G. При этом вершины графа G связаны ребром, если у соответствующих рабочих групп есть общие участники. Т.е. из условия получаем, что подграфы: $abcd \equiv K_4, \ gfd \equiv K_3, \ bde \equiv K_3$ и $ef \equiv K_2$. Кроме того понятно, что невозможно провести собрание двух рабочих групп в один и тот же слот, если соответствующие вершины графа G связаны ребром. Поэтому первый вопрос задачи равносилен существованию правильной раскраски графа G в 4 цвета. Такая раскраска существует (см. рисунок ниже).

Однако меньшим количеством цветов обойтись невозможно, т.к. граф G содержит подграф abcd, который эквивалентен K_4 , а для K_4 необходимо для правильной раскраски ровно 4 цвета. Т.е. 4 временных слота - это минимальное количество необходимое для планирования собраний.

Задача 4

Ответ: a) mk; б) n^2 .

Решение. а) В простом двудольном графе любую белую вершину можно соединить со всеми черными, тогда из каждой белой вершины будет выходить максимально возможное число ребер - по m штук (кратные ребра не рассматриваем). Т.к. всего белых вершин k штук, то всего ребер будет mk штук. (Симметрично можно было бы рассматривать m черных вершин, где

из каждой выходит максимальное число ребер - по k штук и получается тоже самое максимальное число ребер mk).

б) Т.к. рассматривается двудольный граф, то все его вершины можно разбить на два класса - черные и белые, при этом каждое ребро графа соединяет вершины из разных классов. Пусть белых вершин будет k штук, тогда черных будет 2n-k штук. Согласно пункту а) максимально возможное число ребер при заданном k будет $M_k = k(2n-k)$ штук.

Найдем k, при котором M_k достигает максимума. Заметим, что

$$M_k = n^2 - (n-k)^2$$

Как видно M_k достигает максимума n^2 , когда второе отрицательное слагаемое обращается в ноль, т.е. при k=n.

Таким образом, максимальное число ребер двудольного графа достигается, когда черных и белых вершин по n штук, а максимальное число ребер будет n^2 .

Задача 5

Ответ: а) слово *aaabbbabaa*; б) не существует.

Доказательство. а) Рассмотрим ориентированный граф G, в качестве вершин которого будут выступать трехбуквенные комбинации (всего 8 штук), а ориентированные ребра будут связывать начальную комбинацию $\alpha_1\alpha_2\alpha_3$ с конечной комбинацией $\beta_1\beta_2\beta_3$, если комбинацию $\alpha_1\alpha_2\alpha_3$ можно продолжить буквой α_4 , так что $\alpha_2\alpha_3\alpha_4 \equiv \beta_1\beta_2\beta_3$. Тогда существование слова по условию п. а) будет равносильно существованию *простого* ориентированного пути в графе G, который содержит все вершины графа G. Рассмотрим этот граф (рисунок ниже).

На рисунке вершины графа G обозначены большими латинскими буквами. И как видно существует простой ориентированный путь A, B, D, G, H, F, C, E,

который содержит все вершины графа. Слово, которое соответствует этому пути будет aaabbbabaa.

Решение. б) Слово, которое начиналось бы на abba и удовлетворяло бы условию п. а) не существует. Потому что иначе существовал бы простой ориентированный путь в графе G, содержащий все вершины графа, где первая вершина была бы D (комбинация abb), а вторая H (комбинация bba). Но это невозможно, т.к. этот путь обязан содержать кроме прочих вершину G (комбинация bbb), а в эту вершину можно попасть либо из нее самой, либо из вершины D. Т.е. искомый путь должен содержать 2 вершины D, а значит он не является простым.