1. (7 points) Compute the following two improper integrals, or explain why they do not converge. Simplify your answer as much as possible.

(a)

$$\int_{e}^{\infty} \frac{1}{x(1+\ln x)^{2}} dx.$$

$$= \lim_{t \to \infty} \int_{e}^{t} \frac{1}{x(1+\ln x)^{2}} dx$$

$$= \lim_{t \to \infty} \left[\frac{-1}{1+\ln x} \right]_{e}^{t}$$

$$= \lim_{t \to \infty} \frac{-1}{1+\ln t} + \frac{1}{1+1}$$

$$= \lim_{t \to \infty} \frac{-1}{1+\ln t} + \lim_{t \to \infty} \frac{1}{1+\ln t}$$

$$= \lim_{t \to \infty} \frac{-1}{1+\ln t} + \lim_{t \to \infty} \frac{1}{1+\ln t}$$

$$= \lim_{t \to \infty} \frac{-1}{1+\ln t} + \lim_{t \to \infty} \frac{1}{1+\ln t}$$

(b)

$$\int_{\frac{1}{e}}^{1} \frac{1}{x(1+\ln x)^{2}} dx.$$
= $\lim_{t \to \frac{1}{e}^{+}} \int_{t}^{1} \frac{1}{x(1+\ln x)^{2}} dx$
= $\lim_{t \to \frac{1}{e}^{+}} \left[\frac{1}{1+\ln x} \right]_{t}^{1}$
= $\lim_{t \to \frac{1}{e}^{+}} \frac{1}{1+\ln x} + \frac{1}{1+\ln t}.$

as $t \to \frac{1}{e}^{+}$
In $t \to -1$

so $\lim_{t \to \infty} \frac{1}{1+\ln t} \to \infty$ so this integral diverges.

2. (14 points) Let C be the parametrised curve with equation

$$x = \frac{4}{3}t^3$$
, $y = t^4 - \frac{t^2}{2}$,

as shown in the diagram below.

(a) Find the point(s) where C has a horizontal tangent. Simplify your answer as much as possible.

$$\frac{dy}{dt} = 0$$
 when $4t^3 - t = 0$
 $4 + (t^2 - \frac{1}{4}) = 0$

$$t=0$$
 or $t=\frac{1}{2}$ or $t=-\frac{1}{2}$

When
$$t=0$$
: $\frac{dx}{dt} = 4t^2 = 0$ — $t=0$ corresponds to the point (0,0), and from the diagram we see there is no horizontal targent there.

When
$$t = \frac{1}{2}$$
: $\frac{dx}{dt} = 4(\frac{1}{2})^2 \neq 0$

When
$$t = \frac{1}{2}$$
: $\frac{dx}{dt} = 4(-\frac{1}{2})^2 \neq 0$

when $t = \frac{1}{2}$: $\frac{dx}{dt} = 4(\frac{1}{2})^2 \neq 0$: these do give boisontal tangents.

Corresponding (x,y) coordinates we:

: C has horizontal tangents at
$$(\frac{1}{6}, \frac{1}{16})$$
 and $(\frac{1}{6}, \frac{1}{16})$

(b) For your convenience, here again is the information about the parametrised curve C:

$$x = \frac{4}{3}t^3$$
, $y = t^4 - \frac{t^2}{2}$.

Find the length of the part of C with $-3 \le t \le -1$. Simplify your answer as much as possible.

$$ength = \int_{-3}^{-1} \sqrt{(\frac{1}{4}t^{2})^{2} + (\frac{1}{4}t^{3} - t)^{2}} dt$$

$$= \int_{-3}^{-1} \sqrt{(4t^{2})^{2} + (4t^{3} - t)^{2}} dt$$

$$= \int_{-3}^{-1} \sqrt{(6t^{4} + 16t^{6} - 8t^{4} + t^{2})} dt$$

$$= \int_{-3}^{-1} \sqrt{(6t^{4} + 8t^{4} + t^{2})} dt$$

$$= \int_{-3}^{-1} \sqrt{t^{2} (4t^{2} + 1)^{2}} dt$$

$$= \int_{-3}^{-1} |t| |4t^{2} + 1| dt \qquad 4t^{2} + 1 > 0 \text{ always,}$$

$$+ < 0 \text{ for } -3 < t < -1.$$

$$= \int_{-3}^{-1} -t (4t^{2} + 1) dt$$

$$= \left[-4 \frac{t^{4}}{4} - \frac{t^{2}}{2} \right]_{-3}^{-1} = \left(-1 - \frac{1}{2} \right) - \left(-81 - \frac{9}{2} \right) = 84$$