Operating System Installation

René Serral-Gracià¹

¹Universitat Politècnica de Catalunya (UPC)

February 18, 2022

Lectures

- System administration introduction
- Operating System installation
- User management
- Application management
- System monitoring
- Filesystem Maintenance
- Local services
- Network services
- Security and Protection
- Virtualization

Partitioning

Outline

- Introduction
- **Equipment Life-cycle**
- System installation
- Disk Partitioning and filesystems
- System Init/Shutdown

Outline

- Introduction Goals

Goals

Abilities

- Installation scheduling
 - Disk Partitioning
 - File System creation
 - Swap area dimensioning
- Basic configuration
 - System Startup and Shutdown

Configuration Commands and files

- fdisk, mkfs, mkswap, mount, swapon
- shutdown, halt, reboot, poweroff
- systemd, /etc/systemd, /etc/fstab

Outline

- **Equipment Life-cycle**

- Sysadmin goals:
 - Understand the existence of the states and their transitions
 - Maximize the amount of time in the "Configured" state

¹Rémy Evard. "An analysis of UNIX system configuration". 11th Systems Administration Conference (LISA 97)

States

- New: new equipment
- Clean: equipment with the installed OS but without any maintenance task
- Configured: configured equipment according to the environment requirements
- Unknown: unconfigured or outdated equipment
- Off: discarded equipment due to its age or hardware failure

Transitions

- Install: OS installation
- Initialize: Initial set of required changes to have the equipment configured in the work environment
- Update: Insert new functionalities, apply patches and security updates
- Entropy: Gradual degradation process leaving the equipment in unknown state
- Fix: take the necessary actions to set the equipment back to configured state
- Reinstall: massive update of the OS. Usually forced by an attack, goal shift in the equipment, or configuration errors
- Retire: final retirement of the equipment

Outline

- System installation
 - Previous tasks
 - Installation

Init/Shutdown

System installation

•00000

System installation

- Goals
- ② Dimensioning
- HW Acquisition
- Oisk preparation
- Protected network setup
- Install / OS & Software update
- Service configuration / adaptation
- Security policy enforcement
- Final location network setup
- Label / Document the followed steps
- Monitor... goto 5

11

Previous tasks

Goals

Which is the purpose of the new equipment?

- Desktop
 - Document editing?
 - Compiling?
- Server
 - E-mail? Web? Proxy? DNS? Files?
 - Primary? Secondary?
- Amount of expected users
- Security requirements

- ② Dimensioning
 - CPU
 - Memory
 - Disk
 - Redundancy
- Buy HW
 - OS Compatibility (drivers!)
 - List of features
 - IRQs, DMA, and/or ports...

Installation

- Oisk preparation
 - Partitioning
 - Swap area preparation
 - Format and prepare the filesystems
- Connect the equipment into a secure network
 - So during the installation the machine is protected
- Install / Update OS & Software
 - Choose OS / Distribution
 - Select the package update list

Installation

- Service configuration
 - Adapt them to the work environment
- Implement security policies
 - Offer only the necessary services
- Connect to the network
 - To the final location
- Label / Document the followed steps
 - In case it is necessary to repeat them, to apply them on other machines. . . .
- Monitoring... goto 6

Outline

- Disk Partitioning and filesystems
 - Filesystem preparation/format
 - Swap area

- Up to 4 "primary" partitions in the Master Boot Record
 - Or 3 primary and 1 extended
- Primary partition

- May contain a filesystem
- Extended partition
 - Can only contain logical partitions
- Logical partitions
 - May contain a filesystem

Types of partitions – GUID Partition Table (GPT)

- Up to 128 partitions with the default size of GPT
- There is no disctintion of primary and extended partitions anymore, now it is identified by UUID
 - The partition type is determined by the Operating System, which assigns its own IDs

Divide one disk into several independent disks

- Each partition is completely isolated from the others
 - Error isolation
 - More security
- Backup management different for each partition
 - Faster
 - More convenient
 - Read-only or not much changed partitions
- Information reuse among OS

Problem: hard disk fragmentation

Filesystem structure in UNIX

- * Can be mounted filesystems
- ** Must be mounted filesystems

Filesystem structure in UNIX

- /bin and /sbin
 - Executables needed during boot time
 - ifconfig, mount, ls, cat, ...
- /usr/bin and /usr/sbin
 - Operating system applications
 - man, apropos, ...
 - adduser, deluser, ...
- /usr/local/bin and /usr/local/sbin (or /opt)
 - Specific applications
- \$HOME/bin
 - End-user applications

/var

Introduction

- Dynamic content
 - Accounting
 - Information about end-user activity
 - Spool
 - Mail
 - Cron/at
 - cups
 - Run
 - Pid's of running daemons
 - Log
 - System logs

22

- mkfs -t tipus [opcions] dispositiu
 - type: ext3, ext4, reiserfs, vfat, brtfs,...
 - options (filesystem dependent)
 - block size
 - number of inode
 - number of blocks (usually autodetected)
 - ...
- tune2fs [-l][-j]...
 - Filesystem ext[234] parameter configuration
 - Filesystem check interval
 - Journal creation
 -

Exercise – En grup

Introduction

 If we put all the directories labelled with * and ** in their own partition. Determine a correct size for each partition

 Why the rest of the directoris cannot be on a partition by themselves

24

Exercise – En grup

- If we put all the directories labelled with * and ** in their own partition. Determine a correct size for each partition
 - Such size normally depends of the particular needs for that installation. Usually a regular Linux installation needs around 15GB
- Why the rest of the directoris cannot be on a partition by themselves
 - The content is necessary during the boot process.
 Potentially before mounting the filesystems

Mount

Introduction

- mount [options] device directory
 - -t <filesystem type>
 - Indicate the type of the filesystem
 - -a
 - mount all the filesystems in /etc/fstab
 - -o <FS options>
 - ro = read-only
 - remount
 - noexec, nodev, nosuid
 - user

25

Indicates how to mount the filesystems

Device	M. point	FS	Options	D	F
/dev/sda1	/boot		defaults	0	2
/dev/sda2	/	btrfs	defaults	0	1
/dev/sda5	/var	ext4	defaults	0	2
/dev/sda7	/home	ext4	defaults	0	2
/dev/sda3	swap	swap	defaults	0	0

Installation

Exercise – In group

Introduction

 We have a server with 100 users, with a disk quota of 5Gb per user. The system has a 1TB harddisk. Indicate how can you partition it and the size of each partition.

- We have a server with 100 users, with a disk quota of 5Gb per user. The system has a 1TB harddisk. Indicate how can you partition it and the size of each partition.
 - The users need a total of $\sim 500GB$. $\sim 5GB$ for the base system², then lacking more information we leave a total of ~ 10 GB for applications.

Then we will have 3 different partitions, the root partition /dev/sda1 with 6GB, the user's partition /dev/sda2 using 600 Gb, 12 Gb for applications / dev/sda5, and finally 8GB for the swap partition/dev/sda6. We leave the rest of the disk unpartitioned

For safety we leave a threshold of 10 – 20% in terms of space for each partition

Installation

Exercise – In group

Introduction

 List the required commands in order to be able to mount the filesystems indicated in the previous exercise, knowing that the application partition must be read-only.

28

Exercise – In group

- List the required commands in order to be able to mount the filesystems indicated in the previous exercise, knowing that the application partition must be read-only.
 - \bullet /dev/sda1 \rightarrow it must be mounted from /etc/fstab
 - dev/sda2 → mount /dev/sda2 /home
 - $/\text{dev/sda5} \rightarrow \text{mount}$ -o ro /dev/sda5 /usr

Exercise - In group

- List the required commands in order to be able to mount the filesystems indicated in the previous exercise, knowing that the application partition must be read-only.
 - dev/sda1 → it must be mounted from /etc/fstab
 - /dev/sda2 → mount /dev/sda2 /home
 - dev/sda5 → mount -o ro /dev/sda5 /usr
- Can you devise any situation where more partitions could be necessary?

- List the required commands in order to be able to mount the filesystems indicated in the previous exercise, knowing that the application partition must be read-only.
 - dev/sda1 → it must be mounted from /etc/fstab
 - dev/sda2 → mount /dev/sda2 /home
 - dev/sda5 → mount -o ro /dev/sda5 /usr
- Can you devise any situation where more partitions could be necessary?
 - If the server had some specific requirements, for example a very large web page, we could be interested in having /var/www in a different partition

- Rule of thumb
 - Swap = 2 * physical memory
- Realment
 - Foresee memory requirements and choose it accordingly

- As a disk partition
 - Better if divided into multiple devices
- Special file

- Pre-created and completely reserved... it cannot have any "holes"
 - Holes??? in a file???
 dd if=/dev/zero of=swapfile bs=1024 count=65536
- Be careful!
 - File protections
 - The is sensible information from the swapped out processes

30

Swap area Creation/Preparation

- mkswap device | file
 - Creates a swap area is equivalent to swap area "format"
- swapon [options] [device | file]
 - p priority
 - The swap with more priority is used before
 - Round-Robin if equal priority
 - -a
- Activates all the swaps defined in /etc/fstab
- swapoff [options] [device | file]
 - Disables a given swap area
 - -a
- Disables all the ones defined into /etc/fstab.

Outline

- System Init/Shutdown
 - System initialization
 - System shutdown

System initialization

- ROM
 - Hardware initialization
 - CPUs....
- kernel
 - Hardware detection
 - Kernel mode configuration
- initrd
 - Device configuration
- init
 - User space configurations

System-V (Linux Deprecated)

Legacy UNIX

- Sequential and synchronous system boot
- Based on bash scripts
- Driven by the OS distribution itself
- Very easy to configure
- Default on most BSD and Slackware
- Unused nowadays by most Linux distributions

systemd

- Only available for Linux
- Built-in hardware management through udev
- Boot based on dependencies and targets
- Tight control over service state:
 - active
 - inactive
 - activating
 - deactivating
 - failed
 - not-found
 - dead

systemd - target based execution

systemd - the services

Introduction

systemctl: service handling

- systemct1: List all services and their state
- systemctl [start|stop|restart] <services>:
 Starts/Stops/Restarts the <service>
- systemctl reload <services>: Reread service configuration without stopping
- systemctl [enable|disable] <services>: Enables/Disables the service to be started on boot
- systemctl status <services>: Service status
- systemctl [mask|unmask] <serveis>:
 Masks/unmasks the service execution
- systemctl daemon-reload: Self-reload of the service

System shutdown

Introduction

Actions to perform

- Stop all services Network + locals
- Stop all the processes
- Sync all buffer caches
- Umount all the filesystem
- Stop/reboot the system

Commands

- shutdown: allows shutdown/reboot at a given time
- reboot, halt, poweroff,...
 - Currently all optiosn use ACPI extensions
- systemctl reboot, systemctl poweroff

Personal work

- Privileges and protection
 - Owners and groups
 - Privileges (r, w, x)
 - Umask
 - Setuid, setgid
- User management related commands
 - chmod, chown, id, newgrp
 - useradd/adduser, userdel
 - chfn, chsh, passwd
 - groupadd, groupdel

