ARTIFICIAL NEURAL NETWORKS

Neurons take in multiple inputs and give an output **activation**

- 1. Multiply each input by a weight
- 2. Add the weighted inputs with a bias term
- 3. Apply a non-linear activation function to the sum

$$y = f(x_1w_1 + x_2w_2 + x_3w_3 + b)$$

ARTIFICIAL NEURAL NETWORKS

Neurons in a **layer** take in the same inputs but can apply different weights and biases

If it is wide enough, a network with one hidden layer can approximate any function of the inputs

The ultimate in flexible models?

GRADIENT DESCENT

Need a way to optimize the weights and biases: stochastic gradient descent (SGD)

Gradient descent takes steps in the direction of the gradient of the loss function

SGD adds some stochasticity, avoiding local minima

BACKPROPAGATION

Calculating gradients can be done by traversing network backwards: backpropagation

$$\frac{\partial L}{\partial w_{12}} = \frac{\partial L}{\partial o_k} \cdot \frac{\partial o_k}{\partial a_2} \cdot \frac{\partial a_2}{\partial w_{12}} = \frac{\partial L}{\partial o_k} \cdot g' \cdot w_{2k} \cdot f' \cdot x_1$$

The ReLU activation function makes derivatives really easy ReLU(x) = max(0, x)

PHOTOMETRIC REDSHIFTS

features: *ugriz* photometry
target: spectroscopic redshift
loss function: mean squared error
model: neural network
optimization method: SGD

NEURAL NETWORK HYPERPARAMETERS

Number of layers and their widths

Activation functions

Optimizer and its hyperparameters

When to stop training

Random search – train many times, trying random values for the hyperparameters each time!

DEEP LEARNING

A deep neural network has more than one hidden layer

DEEP LEARNING

Each hidden layer extracts increasingly abstract information

Don't need to hand-craft features – the network will make its own

MANIFOLD HYPOTHESIS

GALAXY ZOO

THE NEURAL NETWORK ZOO

APPLICATIONS OF MACHINE LEARNING

Where a human does well, but rules are hard to codify

Datasets with complex correlations that are hard for humans to handle

In either case, lots of data is needed!