0 Homotopy and CW Complexes

Definition 0.1 (Homotopy of Paths)

 $f,g:X\to Y$ are homotopic if there exists some $F:X\times I\to Y$, so that f(x)=F(x,0) and g(x)=F(x,1). This induces an equivalence relation on the set of maps $X\to Y$.

Proof: Consider the following maps:

1. $F: X \times I \rightarrow Y$, defined by

$$F(x, t) = f(x)$$
.

2. Suppose f, g are homotopic by some F, define $\overline{F}: X \times I \to Y$ by

$$\bar{F}(x,t) = F(x,1-t).$$

3. Suppose $f \sim^{F_1} g \sim^{F_2} h$.

Definition 0.2 (Homotopy Equivalence)

 $f: X \to Y$ is a Homotopy equivalence if $\exists g: Y \to X$:

- 1. fg is homotopic to 1_Y
- 2. gf is homotopic to $\mathbb{1}_Y$.

Definition 0.3

 $\iota: X \to Y$ is an inclusion of retraction if $\exists r: Y \to X$, so that $\iota r = id_X$

Definition 0.4

X is a Hausdorff space if $\forall p \neq q \in X$, there exist disjoint open U, V containing p, q

Definition 0.5

X is compact, if for every open cover $\bigcup_{\alpha \in A} G_{\alpha}$ of X, there exists some finite subcover $\bigcup_{i=1}^{n} G_{\alpha_{i}}$.

Theorem 0.1

Recall the following:

- 1. If $A \subseteq X$ is a closed subset of a compact space, then A is compact.
- 2. If X is Hausdorff and $A \subseteq X$ is compact then A is closed
- 3. The image of a compact set under a continuous map is compact.

Definition 0.6

Let X a space and \sim and equivalence relation on X. Define a topology on the set of equivalence classes X/ \sim , by considering π the projection map. Say $\pi^{-1}(U)$ open exactly when U is open.

For a subspace $A \subseteq X$ we may define X/A by using the relation \sim_A , by $\alpha \sim b$ if $\alpha = b$ or both $\alpha, b \in A$.

Lemma 0.2

Suppose X has a n equivalence relation \sim , and $f: X \to Y$ a continuous map.

- 1. The map $f/\sim: X/\sim Y$ is continuous
- 2. If X is compact and Hausdorff, and f/\sim is bijective, then f/\sim is a homeomorphism.

Example 0.1

Take the compact Hausdorff space, space D^n , and identify the subspace S^{n-1} . Define $a \sim b$ if a = b or $a, b \in S^{n-1}$.

Then define *f* :

Lemma 0.3

Let X be Hausdorff and $A \subseteq X$ compact. Then X/A is Hausdorff.

Lemma 0.4

Let X be Hausdorff, $f: S^{n-1} \to X$ be continuous. Define $Y = X \cup_f D^n = X \sqcup D^n/S^{n-1}$. Y is then Hausdorff.

Next we discuss a couple of methods of constructing spaces which are simple to work with.

Definition 0.7

A Finite CW complex (cell complex) is defined inductively: $X^0 \subseteq X^1 \subseteq \cdots \subseteq X^n$

1. X_0 is a discrete set.

2.
$$X^1 = X^0 \sqcup D^1/f_\alpha : S^0_\alpha = \partial D^1_\alpha \to X^0$$

Theorem 0.5

Finite cell complexes are compact and Hausdorff.

Note: Many geomoetric spaces (compact manifolds) are homotopy equivalent to finite CW complexes.

Definition 0.8

Let X, p be a topological space with chosen basepoint p. We define a wedge product $(X,p) \lor (Y,q) = (X \sqcup Y)/p \sim q$

Definition 0.9

The smash product is defined:

$$(X, p) \wedge (Y, q) = (X \times Y)/X \vee Y.$$

Definition 0.10

We define the join $X * Y = X \times Y \times I / \sim$ where \sim identifies:

- 1. $(X, 0, y) \sim (x', 0, y)$
- 2. $(x, 1, y) \sim (x, 1, y')$

Definition 0.11

If X is a cell complex, a subcomplex of X is a closed union of cells.

0.1 Projective Space

Definition 0.12

Real Projective Space $\mathbb{R}P^n = S^n/\alpha \sim -\alpha$

- 1 The Fundamental Group
- 2 Homology Groups
- **3 Homotopy Groups**