Numerical Approximation of Non-Linear Equations Using Adams-Bashforth Method

A. M. Makau¹ S. Opiyo² M. Luseno³

¹SCT211-0469/2021

²SCT211-0509/2021

 3 SCT211-0588/2021

March 28, 2023

Introduction

- Non-linear equations are difficult to solve analytically.
- Numerical methods are often used to approximate the solutions.
- One such method is the Adams-Bashforth method.
- The Adams-Bashforth method is a predictor-corrector method that uses past values of the function to approximate future values.
- The predictor step uses previous function evaluations to predict the next value.
- The corrector step uses a weighted average of function evaluations to correct the prediction.
- Let's consider an example to illustrate the method.

Adams-Bashforth Method: Example

Consider the initial value problem

$$y'(t) = -2ty(t)^2,$$

 $y(0) = 1,$

with solution $y(t) = \frac{1}{1+t^2}$.

Suppose we want to approximate y at t=1 using the Adams-Bashforth method.

Adams-Bashforth Method: Example (cont'd)

- We start by computing the values of y and t for t=0 and t=0.5, using the fourth-order Runge-Kutta method or any other method.
- Let $w_0 = y(0)$ and $w_1 = y(0.5)$ be the initial values.
- The Adams-Bashforth method is a predictor-corrector method that uses the formula

$$w_{i+1} = w_i + \frac{h}{2} (3f(t_i, w_i) - f(t_{i-1}, w_{i-1})), \quad i = 1, 2, ...,$$

to compute the next approximations.

Adams-Bashforth Method: Example (cont'd)

Using h = 0.5, we have

- $w_0 = 1$, $w_1 = 0.8$ (using fourth-order Runge-Kutta)
- $w_2 = w_1 + \frac{h}{2} (3f(t_1, w_1) f(t_0, w_0))$
- $w_2 = 0.6396$
- The exact solution is $y(1) = \frac{1}{2}$.
- The error is $|w_2 y(1)| \approx 0.1396$.

Non-Linear Population Equation

• A non-linear population equation is given by:

$$\frac{dy}{dt} = 0.2y - 0.01y^2$$

- This equation describes how a population y changes over time t.
- The equation is non-linear due to the quadratic term y^2 .

Numerical Approximation

- We will use the Adams-Bashforth method to approximate the solution to the non-linear population equation.
- This method is a multi-step method that uses a predictor-corrector scheme.
- The Taylor method is used to compute the first step.

Python Code (Part 1)

```
# Python code for numerical approximation
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Define the function f(y, t)
def f(y, t):
    return 0.2 * y - 0.01 * y**2
# Set the initial conditions
v0 = 6
t.0 = 2000
t.f = 2020
h = 1
```

Python Code (Part 2)

```
# Compute the number of steps
N = int((tf - t0) / h)
# Create arrays to store the solution
t = np.zeros(N+1)
y = np.zeros(N+1)
t[0] = t0
y[0] = y0
# Use the Taylor method to compute the first
   step
y[1] = y[0] + h * f(y[0], t[0]) + h**2 / 2 * (f
   (y[0], t[0]) - 0.2 * y[0])
t[1] = t[0] + h
```

Python Code (Part 3)

```
# Use the Adams-Bashforth method to compute the
      remaining steps
for i in range(2, N+1):
  # Predictor step
  y_pred = y[i-1] + h * (3/2 * f(y[i-1], t[i-1])
    -1/2 * f(v[i-2], t[i-2]))
 t_pred = t[i-1] + h
  # Corrector step
  y[i] = y[i-1] + h * (5/12 * f(y_pred, t_pred) +
     2/3 * f(y[i-1], t[i-1]) - 1/12 * f(y[i-2],
    t[i-2]))
 t[i] = t[i-1] + h
```

Python Code (Part 4)

```
# Create a table of the numerical approximation
data = {'time_t_i': t, 'Adams_approx_of_non-
   linear ... y ': y }
df = pd.DataFrame(data)
print(df)
# Plot the solution
plt.plot(t, y, label='Adams-Bashforth Method')
plt.title('Non_Linear_Population_Equation')
plt.legend(loc='best')
plt.xlabel('time,(yrs)')
plt.ylabel('Population<sub>□</sub>in<sub>□</sub>billions')
plt.show()
```

Results

- The numerical approximation of the non-linear population equation is stored in arrays t and y.
- A table of the numerical approximation is created using the pandas library.
- A plot of the solution is created using the matplotlib library.

Table of Numerical Approximation

	time t_i	Adams	approx	of	non-linear y
0	2000.0				6.000000
1	2001.0				6.660000
2	2002.0				7.574413
3	2003.0				8.535628
4	2004.0				9.525326
5	2005.0				10.524428
6	2006.0				11.513138
7	2007.0				12.472473
8	2008.0				13.385680
9	2009.0				14.239297
10	2010.0				15.023742
11	2011.0				15.733421
12	2012.0				16.366419
13	2013.0				16.923915
14	2014.0				17.409460
15	2015.0				17.828239
16	2016.0				18.186405
17	2017.0				18.490531
18	2018.0				18.747191
19	2019.0				18.962674
20	2020.0				19.142801

Plot of The Solution

