Resumo calculo I

unday, August 28, 2022

Derivadas parte 1

Coeficiente angular da reta tangente

Reta normal

Coeficiente reta normal

• Coeficiente Angular da Reta Tangente(m_t): seja y=f(x) uma função com alguma curva no ponto $P=\left(x_{1},y_{1}\right)$, seu coeficiente

angular da curva é dado por... $m_t = \lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}$...desde que seu limite exista.

Reta Normal ...uma reta perpendicular a reta tangente, em um certo ponto P de uma curva.

Reta Normal

• Coeficiente Angular da Reta Normal: se duas retas não verticais t e n são perpendiculares, seus coeficientes angulares $m_t\ e\ m_n$ satisfazem...

$$m_t \cdot m_n = -1 \leftrightarrow m_t = -\frac{1}{m_n} \leftrightarrow m_n = -\frac{1}{m_t}$$

Definição derivadas

Derivadas laterais

tow) = 1

Derivada

...uma função y=f(x) é derivável ou diferenciável se houver a derivada em todos os pontos de seu domínio e dada por: $\underline{y'=f'(x)}=\lim_{\Delta x\to 0}\frac{f(x_1+\Delta x)-f(x_1)}{\Delta x}$

$$y' = f'(x) = \lim_{\Delta x \to 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}$$

- $y' = f'(x) = \lim_{\Delta x \to 0} \frac{f(x_1) f(x_1)}{\Delta x}$ Toda função derivável num ponto $x = x_1$ é contínua nesse ponto. Se uma função é constante, então sua derivada é 0.
- Outras notações: Dxf(x), DxY, $\frac{dy}{dx}$

Derivadas Laterais

• Teorema: uma função será derivável em um ponto se existirem derivadas laterais nesse ponto e se essas derivadas laterais forem

$$f'(x) \leftrightarrow f'_+(x) = f'_-(x)$$

Regras de derivação

Regras 1

Regras de Derivação (Retorno 10:10)

- ...facilitam o cálculo das derivadas.
- Considerando $f \ e \ g$ como funções contínuas no ponto x, algumas regras podem ser utilizadas para simplificar o cálculo das derivadas que são:
 - Potência: $(x^n)' = n \cdot x^{n-1}$

 - Soma/Subtração: $(f \pm g)' = f' \pm g'$ Produto por constante: $(Cf)' = C \cdot f'$
 - Produto: $(fg)' = f' \cdot g + f \cdot g'$
 - Quociente: $\left(\frac{f}{g}\right)' = \frac{f'.g f.g'}{g^2}$
 - Exponencial: $(e^x)' = e^x$

Regras trigonométricas de derivação

- Regra derivação logarítmica neperiana
- Derivada das funções trigonométricas:

$$I. \quad (sen \, x)' = \cos x$$

II.
$$(\cos x)' = -\sin x$$

III.
$$(tg x)' = sec^2 x$$

IV.
$$(\cot g x)' = -\csc^2 x$$

$$V. (sec^2x)' = \sec x. tg x$$

VI.
$$(cossec x)' = -cossec x. cot g x$$

• Derivada da Função Logaritmo Neperiano.

$$I. \quad (\ln u)' = \frac{1}{u} \cdot \frac{du}{dx} \quad (para \ \underline{u} > 0)$$

II.
$$(\ln |x|)' = \frac{1}{x}$$
 $(para x \neq 0)$

- Regra derivação potencial
- Derivada da $a^u e \, \log_a u$
 - Regra: se a>0 e "u" é uma função derivável de x, então a^u é uma função derivável de x e:

$$I. \quad (a^u)' = a^u \cdot \ln a \cdot \frac{du}{dx}$$

II.
$$(\log_a u)' = \frac{1}{u \cdot \ln a} \cdot \frac{du}{dx}$$
 (para $a > 0$ e $a \ne 1$)