# Recommendation Systems

## TYPES OF RECOMMENDATION SYSTEMS

**CONTENT** COLLABORATIVE **USER-BASED ITEM-BASED** 

#### Content-Based

| Movie 1 | 1999 | Action | Director 1 |
|---------|------|--------|------------|
| Movie 2 | 2017 | Comedy | Director 2 |
| Movie 3 | 2019 | Drama  | Director 3 |

- Makes recommendations based on product features
- Need to one-hot encode categorical features
- Likely to recommend sequels because they have similar features (cast, director, genre, ets)
- Other examples?

# Collaborative User-Based

|        | Movie 1 | Movie 2 | Movie 3 |
|--------|---------|---------|---------|
| User 1 | 5       | 1       | ??      |
| User 2 | 4       | 1       | 4       |
| User 2 | 1       | 5       | 1       |

- Makes recommendations based on users with similar ratings/purchases/etc.
- Who is similar to user 1?
  - Based on that, is User 1 likely to enjoy Movie 3?
- How might this look for purchases?
- Real-life applications might add weights to some features

# Collaborative **Item-Based**

|         | User 1 | User 2 | User 3 |
|---------|--------|--------|--------|
| Movie 1 | 4      | 5      | 2      |
| Movie 2 | 2      | 1      | 5      |
| Movie 3 | 5      | 4      | 2      |

- Makes recommendations based on products with similar ratings/purchases
- These tend to show up on item-pages (think amazon)
- If you like this product, here are other similar products
- Rabbit hole (we've all been there)
- What is the difference between this and a content-based recommender?

#### Let's Talk Linear Algebra

- Each Row of the data frame becomes a Vector:
- Using vector directions/magniture to understand which row-items are similar

|            | Harry Potter | Die Hard |
|------------|--------------|----------|
| Sydney (S) | 3            | 4        |
| Amber (A)  | 4            | 3        |

#### Let's Talk Linear Algebra

|            | Harry Potter | Die Hard |
|------------|--------------|----------|
| Sydney (S) | 3            | 4        |
| Amber (A)  | 4            | 3        |

Vector 1=

Vector 2 =

#### Let's Talk Linear Algebra

Die Hard



|            | Harry<br>Potter | Die Hard |
|------------|-----------------|----------|
| Sydney (S) | 3               | 4        |
| Amber (A)  | 4               | 3        |

Harry Potter

### **Cosine Similarity**

Quantifies the degree of similarity of two Vectors

#### Formula:

## Calculating Magnitude:





- Magnitude = length
- Pythagorean Theorem
- Dividing by the Magnitude normalizes each vector (length becomes 1)
  - Focusing on Direction
- Calculate for S vector and for A vector

### Calculating Dot Product

#### Interpreting Cosine Similarity (CS):

- CS = 1
  - Vectors are same direction
  - Exact same preferences
- CS = -1
  - Vectors are going in the exact opposite direction
  - Exact opposite preferences
- $\bullet$  CS = 0
  - Vectors are perpendicular
  - Can't infer anything about the preference relationship