From Calculus to Mayer–Vietoris in de Rham Cohomology of S^2

Lecture Notes

Contents

L	Calculus Preliminaries	1
	.1 Fundamental Theorem of Calculus	1
	.2 Fundamental Theorem for Gradients (Line Integrals)	
	.3 Surface Integrals (Flux) – Stokes' Theorem	2
2	Differential Forms on \mathbb{R}^n	2
3	le Rham Cohomology of the 2-Sphere S^2	2
	.1 Mayer–Vietoris Sequence in de Rham Theory	2
	.2 Computations	

1 Calculus Preliminaries

1.1 Fundamental Theorem of Calculus

For any $a, b \in \mathbb{R}$,

$$\int_{a}^{b} \cos t \, dt = \sin b - \sin a,$$

since $\frac{d}{dt}(\sin t) = \cos t$. Equivalently,

$$d(\sin t) = \cos t \, dt, \quad d(-\cos t) = \sin t \, dt,$$

SO

$$\int_a^b \cos t \, dt = \int_a^b d(\sin t) = \sin b - \sin a, \quad \int_a^b \sin t \, dt = -\cos b + \cos a.$$

1.2 Fundamental Theorem for Gradients (Line Integrals)

Let

$$\mathbf{F}(x,y) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right),$$

and let C be the unit circle $x^2+y^2=1$ oriented counterclockwise. Then

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_C \left(-\frac{y}{r^2}, \, \frac{x}{r^2} \right) \cdot (dx, dy) = 2\pi.$$

Although **F** is not a gradient globally, one computes via parameterization $\mathbf{r}(t) = (\cos t, \sin t)$, $t \in [0, 2\pi]$:

$$dx = -\sin t \, dt$$
, $dy = \cos t \, dt$, $r^2 = 1$,

SO

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \left(-\sin t, \cos t \right) \cdot \left(-\sin t, \cos t \right) dt = \int_0^{2\pi} (\sin^2 t + \cos^2 t) dt = 2\pi.$$

1.3 Surface Integrals (Flux) – Stokes' Theorem

Let $D = [0, 1]^2$ in the uv-plane, and parameterize a surface S by $\mathbf{T}(u, v)$. Suppose

$$\mathbf{F}(u, v) = (27 \, u \, v, 0, 0),$$

so that the 2-form is $\beta = 27 u v du \wedge dv$. Then

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} 27 \, u \, v \, du \, dv = 27 \int_{0}^{1} \int_{0}^{1} u \, v \, du \, dv = 27 \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = \frac{27}{4}.$$

2 Differential Forms on \mathbb{R}^n

Definition. The space of *smooth functions* is

$$C^{\infty}(\mathbb{R}^n) = \{ f : \mathbb{R}^n \to \mathbb{R} \mid f \text{ has continuous derivatives of all orders} \}.$$

A smooth 1-form on \mathbb{R}^n is

$$\omega = f_1(x) dx^1 + \dots + f_n(x) dx^n, \quad f_i \in C^{\infty}(\mathbb{R}^n),$$

and the collection of all of them is denoted $\Omega^1(\mathbb{R}^n)$.

The exterior derivative $d: C^{\infty}(\mathbb{R}^n) \to \Omega^1(\mathbb{R}^n)$ is

$$d(f(x)) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} dx^{i}.$$

3 de Rham Cohomology of the 2–Sphere S^2

Cover $S^2 \subset \mathbb{R}^3$ by two charts:

$$U = S^2 \setminus \{\text{north pole}\}, \quad V = S^2 \setminus \{\text{south pole}\}.$$

Each of U and V is diffeomorphic to \mathbb{R}^2 . Their intersection $U \cap V$ is diffeomorphic to $\mathbb{R} \times S^1$.

3.1 Mayer-Vietoris Sequence in de Rham Theory

For the cover $\{U,V\}$ of S^2 , the Mayer-Vietoris sequence in de Rham cohomology begins

$$0 \longrightarrow \Omega^0(S^2) \xrightarrow{\phi} \Omega^0(U) \oplus \Omega^0(V) \xrightarrow{\psi} \Omega^0(U \cap V) \xrightarrow{\delta} \Omega^1(S^2) \xrightarrow{\phi'} \Omega^1(U) \oplus \Omega^1(V) \to \cdots$$

where

$$\phi(f) = (f|_{U}, f|_{V}), \quad \psi(g_{U}, g_{V}) = g_{U}|_{U \cap V} - g_{V}|_{U \cap V}.$$

3.2 Computations

Degree 0.

$$\Omega^0(S^2) = C^{\infty}(S^2), \quad \Omega^0(U) \cong C^{\infty}(\mathbb{R}^2), \quad \Omega^0(U \cap V) \cong C^{\infty}(\mathbb{R} \times S^1).$$

Exactness at $\Omega^0(S^2)$ and $\Omega^0(U) \oplus \Omega^0(V)$ shows

$$H^0_{\mathrm{dR}}(S^2) \cong \mathbb{R}$$

(smooth functions constant on connected S^2).

Connecting Map δ . Given $h \in \Omega^0(U \cap V)$, one constructs a 1-form on S^2 whose difference of restrictions equals dh. Explicitly this uses a partition of unity, but on first-year level one may think of $\delta(h)$ as "gluing data" producing a closed 1-form on S^2 .

Degree 1. Exactness at $\Omega^1(S^2)$ and $\Omega^1(U) \oplus \Omega^1(V)$ shows

$$H^1_{dR}(S^2) = 0,$$

since every closed 1-form on S^2 is exact (no "holes" in S^2).

Conclusion

We have built step by step from standard calculus—FTC, line integrals, surface integrals—to the language of differential forms, and used the Mayer–Vietoris sequence to compute

$$H^0_{\rm dR}(S^2)\cong \mathbb{R},\quad H^1_{\rm dR}(S^2)=0.$$