Übungen zur Mathematik für Naturwissenschaftler I (WS 07/08)

PD Dr. Uwe Riedel, Dr. W. Bessler

Aufgabe 1:

Beweisen Sie die Äquivalenz der folgenden logischen Aussagen mit Hilfe einer Wahrheitstabelle:

$$.NOT.[(.NOT.A).AND.B] \iff A.OR.(.NOT.B)$$

Aufgabe 2:

Untersuchen Sie folgende reelle Funktionen innerhalb ihrer Definitionsbereiche auf Symmetrien (zur Ordinate, zum Ursprung):

a)
$$g(x) = \frac{x^2}{1+x^2}$$

b)
$$h(x) = \sqrt{7x + 5}$$

c)
$$k(x) = x + \tan x$$

d)
$$m(x) = \sqrt{\beta^2 - x^2 + 5}$$

e)
$$n(x) = \frac{2x^3 + 8x^2 + 8x}{(x+2)^2}$$

Aufgabe 3:

Zeichnen Sie die Schaubilder der Funktionen:

a)

$$y = |x + 1|$$

b)

$$y = 3x^2 - 14$$
 für $x < 2$,
 $y = 2x^3 - 8x - 3$ für $x > 2$.

c)

$$y = 3x^{2} - 14$$
 für $x \le 2$,
 $y = 2x^{3} - 8x - 3$ für $x > 2$.

d)

$$y = x/4 - 2 \qquad \text{für } x < 2,$$

$$y = 1 \qquad \text{für } x = 2,$$

$$y = -3x/4 + 5 \qquad \text{für } x > 2.$$

Geben Sie für die Funktionen a-d Bereiche der Stetigkeit und Punkte der Unstetigkeit an. Betrachten Sie dazu die Funktionen auf ihrem Definitionsbereich.

Aufgabe 4:

- a) Bestimmen Sie die Nullstellen der Funktion $f(x) = x^2 + 6x + 5$.
- b) Bestimmen Sie die Koeffizienten c,d $\epsilon \mathbb{R}$ der Funktion $g(x)=c+dx+x^2$ so, dass g Nullstellen bei 2 und -2 besitzt.