

기계학습 (Machine Learning) 이론 및 실습

6. Artificial Neural Network

Biological Neurons and Neural network

What is Neural network in Computer Science domain?

- A computer modeling approach to computation that is loosely based upon the architecture of the brain.
- Many different models, but all include:
 - Multiple, individual "nodes" or "units" that operate at the same time (in parallel)
 - A network that connects the nodes together
 - Information is stored in a distributed fashion among the links that connect the nodes
 - Learning can occur with gradual changes in connection strength

Applications

Autonomous vehicle

Image source: https://www.sciencetimes.co.kr/news/

Game.

Image Processing.

https://www.analyticsinsight.net/deep-learning-to-analyse-human-activities-recorded-on-videos/

Image Generation.

Deep fake

Image source: twitter.com/bornmiserable

Comparison of Brains and Traditional Computers

- 200 billion neurons (G), 32 trillion (T) synapses
- Element size: 10⁻⁶ m
- Energy use: 25W
- Processing speed: 100 Hz
- Parallel, Distributed
- Fault Tolerant
- Learns: Yes
- Intelligent/Conscious: Usually

- 16~256 billion bytes (GB) RAM but trillions of bytes (TB) on disk
- Element size: 10⁻⁹ m
- Energy watt: 30-90W (CPU)
- Processing speed: 10⁹ Hz (GHz)
- Serial, Centralized
- Generally not Fault Tolerant
- Learns: Some
- Intelligent/Conscious: Generally No

This page is based on Lecture note of Prof. Kenrick Mock.

http://www.math.uaa.alaska.edu/~afkjm

Applications

Autonomous vehicle

Image source: https://www.sciencetimes.co.kr/news/

Game.

Image Processing.

https://www.analyticsinsight.net/deep-learning-to-analyse-human-activities-recorded-on-videos/

Image Generation.

Deep fake

Image source: <u>twitter.com/bornmiserable</u>

Why neural network?

Artificial Intelligence:

- Elaine Rich
- Artificial Intelligence is the study of how to make computers do things at which, at the moment, people are better. (1983, Elaine Rich)
- 인공지능이란 컴퓨터에게 "현 시점(연구가 이루어지는 시점)에서" 컴퓨터보다 인간이 더 잘한다고 생각되는 일을 시키는 방법을 연구하는 것이다.

Idea: To make the computer more robust, intelligent, and learn, ...

Let's model our computer software (and/or hardware) after the brain.

뇌 구조

전두엽: 기억력·사고력 등의 고등행동을 관장하며 다른 연합영역 으로부터의 정보를 조정하고 행동을 조절.

두정엽: 기관에 운동명령을 내리는 운동중추. 체감각 피질과 감각연합영역이 있어 촉각, 압각, 통증등의 체감각의 처리에 관여하며 피부, 근골격계, 내장, 미뢰로부터의 감각신호를 담당한다.

축두엽: 청각정보의 처리. 일차시각 피질에서 유래한 정보가 도달해 색, 모양등이 인지. 내측두엽 부분은 해마와 함께 기억형성에 주요한 역할을 수행.

후두엽: 시각정보의 처리. 눈으로 들어온 시각정보가 시각피질에 도착하면 사물의 위치, 모양, 운동 상태를 분석.

Neuron (cont'd)

Although heterogeneous, at a low level the brain is composed of neurons.

Figure 2.3: Illustration of a biological neuron with the components discussed in this text.

출처: A Brief introduction to Neural Networks.

http://www.dkriesel.com/en/science/neural_networks

(출처/ 한글 위키피디아, '신경세포')

Neuron (cont'd)

- A neuron receives input from other neurons (generally thousands) from its synapses
- Inputs are approximately summed.
- When the input <u>exceeds a threshold</u> the <u>neuron sends an electrical spike</u> that travels from the body, down the axon, to the next neuron(s)

https://www.youtube.com/watch?v=A9Xru1ReRwc

Figure 2.3: Illustration of a biological neuron with the components discussed in this text.

출처: A Brief introduction to Neural Networks.
http://www.dkriesel.com/en/science/neural_networks

Neuron Activation

출처: A Brief introduction to Neural Networks.

http://www.dkriesel.com/en/science/neural_networks

Figure 2.4: Initiation of action potential over time.

Learning in Brain

Brains learn

- · 뉴런 사이의 연결 강도 변화
- 뉴런 사이의 새 연결 생성/기존 연결 삭제

Hebb's Postulate (Hebbian Learning)

- 뉴런A의 축삭이 뉴런B를 흥분시키기(Exicited)에 충분히 가깝고
- 반복적으로 또는 지속적으로 B를 발화(Firing)시키면
- B를 발화시키는 뉴런 중 하나로서 A의 효율이 향상되도록 세포 연결구조가 변한다. (연결 강도 변화)
 - 한쪽 또는 양쪽 뉴런에서 성장과정 또는 대사변화가 일어난다.

Long Term Potentiation (LTP)

- 자극의 결과, 2개의 신경 세포 사이의 연결 강도 강화/약화된 상태가 장기간 유지되는 것.
- 학습 및 기억을 위한 세포 기반.

Learning in Brain: 예

· 뉴런 사이의 연결 강도 변화

초기: 뉴런 A와 C가 다음 뉴런 B와 같은 강도로 연결되어 있다. A가 Firing 하여 B가 Firing 하는 일이 C가 Firing하여 B가 Firing하는 일보다 훨씬 많이 반복되면,

후기: 뉴런 A와 뉴런 B 연결 강도가 커져 A가 Firing하는 즉시 B가 Firing하도록 변경된다.

Long Term Potentiation

Summary

- A network that connects the nodes (Neuron) together
- Information is stored in a distributed fashion among the links that connect the nodes
- Learning can occur with gradual changes in connection strength.

Neuron in Artificial Neural Network, Network Connection

Node (Artificial Neuron)

Inputs

 $x_1, x_2, ..., x_n$: 입력 값. 다른 Node 1, 2, ..., n의 출력 값.

 $w_1, w_2, ..., w_n$: 입력 값에 대한 weight. (연결 강도)

b: bias.

f : activation function,

Node (Artificial Neuron) VS. Biological Neuron

Node (Artificial Neuron) VS. Biological Neuron (cont'd)

Figure 2.4: Initiation of action potential over time.

- Inputs (Stimulus) are approximately summed.
- When the input <u>exceeds a threshold</u> the <u>neuron sends an electrical spike</u> that travels from the body, down the axon, to the next neuron(s)

Activation Function: Logistic Function (Sigmoid)

$$\sigma(x) = rac{1}{1+e^{-x}}$$

Imager source: Wikipedia

Activate Function: Hyperbolic Tangent (tanh)

$$anh(x) = rac{e^x - e^{-x}}{e^x + e^{-x}}$$

Rectified Linear Unit

$$ext{ReLU}(\mathbf{x}) = egin{cases} 0 & ext{if } x \leq 0 \ x & ext{if } x > 0 \end{cases}$$
 $= \max\{0, x\} = x \mathbf{1}_{x > 0}$

Network Connection – Connection Example

Figure 3.3: A feedforward network with three layers: two input neurons, three hidden neurons and two output neurons.

Figure 3.4: A feedforward network with shortcut connections, which are represented by solid lines.

출처: A Brief introduction to Neural Networks. http://www.dkriesel.com/en/science/neural_networks

Network Connection – Connection Example

Figure 3.5: A network similar to a feedforward network with directly recurrent neurons. The direct recurrences are represented by solid lines.

Feedforward Network (Fully Connected Network)

Feedforward Network

Network가 여러 개의 Layer로 구성된다.

하나의 Layer는 여러 개의 node로 구성된다.

- 제일처음 Layer(Input Layer)를 제외한 모든 Layer의 각 node는 이전 Layer에 속하는 모든 node의 output을 input으로 받는다.
- Input Layer에 속하는 하나의 node가 feature vector 하나의 element(dimension)를 input으로 받는다.
- 같은 Layer에 속하는 node 사이, 혹은 node 자신에게는 연결하지 않는다.

3 Layer로 이루어진 Neural network

출처: A Brief introduction to Neural Networks. http://www.dkriesel.com/en/science/neural networks

Feedforward Network (Fully Connected Network) (Cont'd)

3 Layer로 이루어진 Neural network

Input Layer : Data 입력을 받기 위한 Layer.

- Network의 첫 Layer.
- Input Layer에 속하는 하나의 node가 feature vector 하나의 element(dimension)를 input으로 받는다.

Output Layer : 최종 결과를 출력하는 Layer.

- Network의 제일 마지막 Layer.
- Output layer의 모든 node의 output을 모아 output vector로 활용한다.

Hidden Layer: Input Layer와 Output Layer사이의 Layer.

- Layer가 여러 개(층) 존재할 수 있다.
- Hidden Layer 층 수가 많아지면 Deep이란 수식어가 붙는다.

출처: A Brief introduction to Neural Networks.

http://www.dkriesel.com/en/science/neural_networks

Feedforward Network : Input, Output 예1 (사과 분류)

Table 8.1 Training data for the apple sorting agent

Fig. 8.2 BayWa company apple sorting equipment in Kressbronn and some apples classified into merchandise classes A and B in feature space (Photo: BayWa)

Class가 0이냐? 1 이냐?

Feedforward Network : Input, Output 예2 (사과 분류)

Table 8.1 Training data for the apple sorting agent

Fig. 8.2 BayWa company apple sorting equipment in Kressbronn and some apples classified into merchandise classes A and B in feature space (Photo: BayWa)

Class가B일 확률

SLP(Single Layer Perceptron), MLP (Multi-Layer Perceptron)

Sigmoid와 같은 함수로 Activation함수를 변경함으로써 생기는 이점

- GD(Gradient Descent)를 사용하여 Objective Function 최적화 가능
 - 미분 가능하기 때문에
- Non-linearly separable problem도 풀 수 있는 가능성이 생김.
 - Sigmoid, Tanh, ReLU 모두 Non-linear function

Sigmoid

tanh

ReLU

Imager source: wikipedia

Imager source: https://mathworld.wolfram.com/HyperbolicTangent.html **Imager source:** https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7

Single Layer Perceptron

Single Layer Perceptron:

Node 하나를 하나의 Perceptron이라 볼 수 있으므로, 왼쪽 그림의 Network는 하나의 Perceptron 층(Output Layer)으로 이루어진 네트워크이다.

질문:

왼쪽 그림에서는 Input Network가 있는데 Single Layer?

Input Layer

- Neural Network에서 Input Layer는
 - · Input을 다음 Layer로 전달하기 위한 특수 목적의 Layer라 볼 수 있다.
 - Input을 다음 Layer로 전달하는 것이 목적이므로 **학습에는 기여하지 않는다**.
 - Weight vector가 update 되지 않는다.
 - Input Layer의 node는 아래와 같은 특수 Node라 생각할 수 있다.
 - Input 이 x_1 하나만 존재
 - Weight $w_1 = 1$ 이며 변하지 않는다.
 - Bias b = 0 이다.
 - Activation Function 이 Identity Function 이다.
 - f(x) = x

Single Layer Perceptron: Linear Problem Solver

- Activation Function이 non-linear 임에도 불구하고, Single layer perceptron은 Non-linear 한 문제를 풀기 어렵다.
 - 왜? Perceptron이 1 층이라서.

Multi Layer Perceptron

Multi Layer Perceptron (MLP):

Hidden Layer을 Input layer와 Output layer 사이에 최소 1 Layer 끼워 넣으면 (Hidden Layer 1층 + Output Layer 1층 = Multi) Multi Layer Perceptron이 된다.

Multi Layer Perceptron (Cont'd)

- Universal Function Approximator

- Pros
 - Very powerful can <u>learn any function (물론 non-linear function</u>도), given enough hidden units!
 - With enough hidden units, we can generate any function.
 - Inherently parallel algorithm, ideal for multiprocessor hardware.
- Cons
 - Have the same problems of Generalization vs. Memorization.
 - With too many units, we will tend to memorize the input and not generalize well.
 - Some schemes exist to "prune" the neural network.
- Despite the cons, a very powerful algorithm that has seen widespread successful deployment.

O₃ Universal Function Approximator

Multi-Layer Perceptron : Concept

Figure 5.10: We know that an SLP represents a straight line. With 2 trainable weight layers, several straight lines can be combined to form convex polygons (left). By using 3 trainable weight layers several polygons can be formed into arbitrary sets (right).

*1 Layer Perceptron은 선 1개

출처: A Brief introduction to Neural Networks.
http://www.dkriesel.com/en/science/neural_networks

Back Propagation

Back Propagation : MLP를 어떻게 Training 할 것인가? (Cont'd)

오차 전파 방향: Inference(추론)과 반대 방향으로 전파

Inference 방향 : 입력에 대해 Hidden Layer 1부터 시작하여 점차적으로 아래로 내려가며 최종적으로 Output Layer에서 결과가 계산됨. (Feed Forward)

오차 전파 방향: Inference(추론)과 반대 방향으로 전파 (Cont'd)

Train (오차 교정)방향: 오차를 사용하여 model parameter를 보정하는 과정을 출력에 가까운 Output Layer 부터 시작해 점차적으로 위 Layer로 올라가 최종적으로 Hidden Layer 1이 보정됨. (Back Propagate)

39

• 따라서 Back Propagation 계산은 Output Layer에서 부터 시작하여 순차적으로 위 Layer로 올라간다.

Back Propagation

- Node가 존재하는 층에 관계 없이 (Hidden Layer나 Output Layer나 관계 없이) Gradient Descent를 사용하여 model parameter (w_i, b) 를 학습하는 방법
 - 자세한 설명은 수업 범위 밖이므로 생략.