Abstract Algebra Notes

John Darges

May 2019

1 Group Theory

1.1 Groups

Definition of a Group A group is a set G paired with a binary operation * that satisfies associativity, has an identity, and has inverses.

Properties

- $g_1h = g_2h$ implies $g_1 = g_2$
- Identity and inverses are unique
- $(gh)^{-1} = h^{-1}g^{-1}$
- $e^{-1} = e$

Example S_n = the set of permutations of $\{1, ..., n\}$.

Definition of abelian group An abelian group is one with a commutative operation.

Example $D_n = \text{symmetries of regular } n - \text{gon}$

Definition of Subgroup $H \subseteq G$ is a subgroup if it is closed under the operation * and under inverses. Notation: H < G.

Properties

- $\{e\} < G$
- *G* < *G*
- $H_{\alpha} < G$ for all α implies that $\cap_{\alpha} H_{\alpha} < G$ item H < G, K < H implies K < G

Proposition For any collection $\{x_{\alpha}\}_{{\alpha}\in A}\subseteq G$, there exists a subgroup $\langle\{x_{\alpha}\}\rangle < G$ satisfying

- $x_{\alpha} \in \langle \{x_{\alpha}\} \rangle$ for all α
- If $\{x_{\alpha}\}_{{\alpha} \in A} \subseteq H$, then $\langle \{x_{\alpha}\} \rangle < H$

Proof. Define
$$\langle \{x_{\alpha}\} \rangle = \bigcap_{H < G, \{x_{\alpha}\}_{\alpha \in A} \subseteq H} H$$

Fact: If $g \in G$, then $\langle g \rangle = \{g^n | n \in \mathbb{Z}\}.$

Definition of cyclic A group G is cyclic if $G = \langle g \rangle$ for some $g \in G$. G is finitely generated if $G = \langle g_1, ..., g_n \rangle$.

Definition For $g \in G$, the order of G is $|\langle g \rangle|$ (the cardinality). The order of G is |G|.

Definition of homomorphism A map $\phi: G \to H$ is a homomorphism if $\phi(g_1 * g_2) = \phi(g_1) * \phi(g_2)$ for all $g_1, g_2 \in G$. If ϕ is bijective then it is an isomorphism.

Proposition Let $\phi: G \to H$ be a homomorphism

- $Ker(\phi) < G$
- $Im(\phi) < H$
- ϕ is injective $\iff Ker(\phi) = \{e\}$
- ϕ is surjective $\iff Im(\phi) = H$

Definition of automorphism group

$$Aut(G) = \{\phi: G \to G | \phi \text{ is an isomorphism } \}$$

1.2 Cosets

Definition of Coset Given H < G, for $g \in G$, $gH = \{gh|h \in H\}$ is a left coset, while Hg is a right coset.

We can use this to partition G into cosets. G/H is the set of equivalence classes of left cosets of H. The cardinality of G/H, [G:H], is called the index of H in G.

Lagrange's Theorem If H < G, then [G : H]|H| = |G|. If $|G| < \infty$, then |H| divides |G|.

More generally, if K < H < G, then [G : K] = [G : H][H : K].

Proof. We will show a bijection $G/H \times H \to G$

1.3 Normal Subgroups

Definition of Normal Subgroup If gH = Hg for all $g \in G$, then this is a normal subgroup. Notation: $H \triangleleft G$

Fact The following statements are equivalent

- $H \triangleleft G$
- $gHg^{-1} = H$ for all $g \in G$
- $gHg^{-1} \subseteq H$ for all $g \in G$

Proof. $((3) \Rightarrow (2))$ Suppose $gHg^{-1} \subseteq H$ for all $g \in G$. This implies that $H = g^{-1}(gHg^{-1})g \subseteq g^{-1}Hg$ for all $g \in G$. So $H \subseteq gHg^{-1}$.

Lemma Let $\phi: G \to H$ be a homomorphism. Then $Ker(\phi) \triangleleft G$.

Proof. Let $h \in Ker(\phi)$. Fix $g \in G$ and consider $ghg^{-1} \in gKer(\phi)g^{-1}$. Then $\phi(ghginv) = \phi(g)\phi(h)\phi(h^{-1}) = \phi(g)\phi(g)^{-1} = e_H$. So $ghg^{-1} \in Ker(\phi)$. Then $gKer(\phi)g^{-1} \subseteq Ker(\phi)$. So $Ker(\phi) \triangleleft G$.

Note: All subgroups of abelian groups are normal.

Proposition If H < G is normal, then G/H admits a group structure given by $gH \cdot g'H = (g \cdot g')H$.

Proof. (Well-defined)

(Associativity)

(Identity)

(Inverse)

Fact

- (1) Let $N \triangleleft G$. Define $\pi : G \to G/N$ such that $g \mapsto gN$. Then π is a surjective homomorphism and $Ker(\pi) = \{g | gN = N\} = N$.
- (2) If $N \triangleleft G$ and H < G, then $N \cap H \triangleleft H$

Corollary: If $N \triangleleft G$, N < H < G, then $N \triangleleft H$. In this case, $H/N = \{gN | g \in H\} < G/N$.

Induced Homomorphism Let $\phi: G \to H$ be a homomorphism. Choose $N \triangleleft G$ such that $N < Ker(\phi)$. Then ϕ induces $\bar{\phi}: G/N \to H$ defined by $\bar{\phi}(gN) = \phi(g)$.

Note

(1)
$$Im(\bar{\phi}) = Im(\phi)$$

(2)
$$Ker(\bar{\phi}) = \{gN | \phi(g) = e\} = \{gN | g \in Ker(\phi)\} = Ker(\phi)/N.$$

First Isomorphism Theorem Let $\phi : G \to H$ be a homomorphism. Then ϕ induces $\bar{\phi} : G/Ker(\phi) \to Im(\phi)$ which is an isomorphism.

Proof.

Property Let $f: G \to H$ with $N \triangleleft G$ and $M \triangleleft H$. If $f(N) \subseteq M$, then f induces a homomorphism $\bar{f}: G/N \to G/M$ where $aN \mapsto f(a)M$.

Proof. (Well-defined)

(Homomorphism)

Second Isomorphism Theorem Let K < G, $N \triangleleft G$. Then $K/(N \cap K) \cong NK/N$ where $NK = \{nk | n \in N, k \in K\}$.

Third Isomorphism Theorem Let K < H and $K, H \triangleleft G$. Then $H/K \triangleleft G/K$ and $(G/K)/(H/K) \cong G/H$.

Proof. Define
$$\phi: G/K \to G/H$$
 by $gK \mapsto gH$.

Commutative Diagrams Let $\phi: G \to J$ be a homomorphism of groups. Then we saw there exists $\bar{\phi}: G/N \to J$ whenever $N \triangleleft G$ and $N \subseteq Ker(\phi)$.

By construction, $\bar{\phi} \circ \rho = \phi$ where $\rho : G \to G/N$ is the canonical projection. We illustrate this using a commutative diagram.

Proposition $\bar{\phi}$ is unique in the sense that if there exists $\psi: G/N \to J$ such that $\phi = \psi \circ \rho$, then $\psi = \bar{\phi}$

Proof. This is a general principle about commutative diagrams. \Box

1.4 Symmetric Groups

Definition $\sigma \in S_n$ is a k-cycle if there exist $i_1, ..., i_k$ such that

- $\sigma(i_j) = i_{j+1} \text{ for } 1 \le j \le k-1$
- $\sigma(i_k) = i_1$
- $\sigma(l) = l$ if $l \neq i_i$

We denote this by $(i_1...i_k)$.

If $\sigma = (i \ j)$, then σ is a transposition.

Proposition

- (1) Every $\sigma \in S_n$ is a product of disjoint cycles.
- (2) Every $\sigma \in S_n$ is a product of transpositions.

Proof.

Remark σ cannot be uniquely written as a product of disjoint cycles. However, the set of disjoint cycles is unique.

Definition A representation of a group G is a homomorphism $\rho: G \to GL_n(\mathbb{R})$ for some n. We define a homomorphism $\rho: S_n \to GL_n(\mathbb{R})$ by $\sigma \mapsto A_{\sigma}$ where A_{σ} is the permutation of the identity matrix by σ . ρ is an injective homomorphism.

Since every σ is the product of transpositions, each A_{σ} is the product of elementary permutation matrices that switch two columns.

Theorem σ can be expressed as a product of and odd number of cycles or an even number, but not both.

Proof.

1.5 Free Groups

Let $X \subseteq G$. $\langle \langle X \rangle \rangle$ is the normal subgroup generated by X.

Definition Let G_{α} be a collection of groups. A simplified word is a finite sequence $g_{\alpha_1}...g_{\alpha_n}$ where $g_{\alpha_i} \in G_{\alpha_i}$.

The collection of all simplified words, $*_{\alpha \in A}G_{\alpha}$ has a group structure. This is the free product on the G_{α_i} s.

Definition of free group A free group is one of the form $*_{\alpha \in A}\mathbb{Z}$.

Definition Consider F(A) on letters g_{α} for $\alpha \in A$. Let $\{r_{\beta}\}_{{\beta}\in B}$ be a collection of words in the g_{α} .

The group presentation $\langle \{g_{\alpha}\} | \{r_{\beta}\} \rangle$ represents $F(A)/\langle \langle \{r_{\beta}\} \rangle \rangle$.

Key observation Consider the free group $*_{\alpha \in A}\mathbb{Z}$ and let H be any group.

Any assignment $f: \mathbb{Z} \to H$ $g_{\alpha} \mapsto f(g_{\alpha}) \in H$ extends to a function $\bar{f}: *_{\alpha \in A}\mathbb{Z} \to H$ by $\bar{f}(*_{i=1}^n g_{\alpha_i}^{p_i}) = *_{i=1}^n \bar{f}(g_{\alpha_i})^{p_i}$.

This function is a homomorphism regardless of where f sends the generators g_{α} . More generally, given $f_{\alpha}: G_{\alpha} \to H$ for all α , there exists a unique homomorphism $f: *_{\alpha}G_{\alpha} \to H$ such that $f \circ \iota_{\alpha} = f_{\alpha}$ where ι_{α} is the inclusion map $G_{\alpha} \to *_{\alpha}G_{\alpha}$. If $f(r_{\beta}) = e$ for all $\beta \in B$, then f induces $\bar{f}: \langle g_{\alpha} | r_{\beta} \rangle \to G$.

Theorem

- (1) Every group is isomorphic to a quotient of a free group.
- (2) Every group admits a presentation.

Proof.

Remark: Not all groups admit a finite presentation

Theorem A subgroup of a free group is free (Proof in topology sequence). Here are some other constructions of groups.

Definition Let $\{G_n\}_{n=1}^k$ be a sequence of groups. The direct product $\prod_{n=1}^k G_n$ consists of all sequences $(g_n)_{n=1}^k$ where $g_n \in G_n$. This is a group under multiplication $(g_n)_{n=1}^k \cdot (h_n)_{n=1}^k = (g_n \cdot h_n)_{n=1}^k$.

 $(h_n)_{n=1}^k = (g_n \cdot h_n)_{n=1}^k$. The direct sum $\bigoplus_{n=1}^k G_n$ is the subgroup consisting of sequences for which at most finitely many elements are non-trivial.

Note: if $k < \infty$ then the direct product and direct sum are the same. We can define many homomorphisms through inclusion and projection maps.

Theorem Given a collection of homomorphisms and groups $\phi_n: H \to G_n$,

- (1) There exists a unique $\phi: H \to \prod_{n=1}^{\infty} G_n$ such that $\pi_n \circ \phi = \phi_n$ for all n.
- (2) If K is any other group with homomorphisms $\pi'_n: K \to G_n$ satisfying (1), then $K \cong \prod_{n=1}^{\infty} G_n$.

Question Given a group G, is $G \cong G_1 \oplus G_2$ with G_i nontrivial. If $G \cong G_1 \oplus G_2$ then

- (1) $\iota_1 \pi_1(x) + \iota_2 \pi_2(x) = x$ for all $x \in G$
- (2) $\pi_i \iota_i(x) = x \text{ for } i = 1, 2$
- (3) $\pi_i \iota_i(x) = 0$ for $i \neq j$

Theorem Suppose G is abelian, and there exists homomorphisms $\iota_i: G_i \to G$ and $\pi_i: G \to G_i$ satisfying (1) and (3). Then $G \cong G_1 \oplus G_2$ (A similar result applies to non-abelian groups)

Theorem Let N_1, N_2 be normal subgroups of G such that $G = \langle N_1 \cup N_2 \rangle$. If $N_1 \cap N_2 = \{e\}$, then $G \cong N_1 \times N_2$.

1.6 Category Theory

A category C is

- a collection of objections $Ob(\mathcal{C})$
- Sets Mor(X,Y) called set of morphisms for objects X,Y. Composition functions $\circ: Mor(X,Y) \times M(Y,Z) \to Mor(X,Z)$ with the properties that
 - For all objects X there exists a morphism $1_X \in Mor(X, X)$ such that $f \circ 1_X = f = 1_Y \circ f$ for any $f \in Mor(X, Y)$.
 - composition is associative.

Definition We say $A, B \in Ob(\mathcal{C})$ are equivalent if there exist morphisms $f: A \to B, g: B \to A$ such that $f \circ g = 1_B$ and $g \circ f = 1_A$.

Examples

- (1) In *Groups*, equivalence is isomorphisms
- (2) In Vect, V is equivalent to W if and only if dimV = dimW

Definition Let $\{X_{\alpha} | \alpha \in A\}$ be a collection of objects in \mathcal{C} . A product in \mathcal{C} of $\{X_{\alpha}\}$ is an object $\Pi_{\alpha}X_{\alpha}$ and morphisms $\pi_{\alpha}: \Pi_{\alpha}X_{\alpha} \to X_{\alpha}$ for all α such that if there exists $\phi_{\alpha}: B \to X_{\alpha}$ for all α then there exists a unique $\phi: B \to \Pi_{\alpha}X_{\alpha}$ such that $\pi_{\alpha} \circ \phi = \phi_{\alpha}$ for all α .

Theorem In any category, the product is unique up to equivalence.

Definition Let $\{X_{\alpha} | \alpha \in A\}$ be objects in \mathcal{C} . We say that S is a coproduct if there exist morphisms $\iota_{\alpha}: X_{\alpha} \to S$ such that, given $\rho_{\alpha}: X_{\alpha} \to H$, there exists a unique morphism $\rho: X \to H$ such that $\rho \circ \iota_{\alpha} = \rho_{\alpha}$.

Note: we can often think of objects living in different categories (a group is also a set). These constructions heavily depend on the category we are viewing our object in.

Let $\rho_{\alpha}: G_{\alpha} \to H$ be homomorphisms with G_{α}, H abelian groups. Then define $\rho: \bigoplus_{\alpha} G_{\alpha} \to H$ by $\rho(g) = \sum_{\alpha} \rho_{\alpha} \pi_{\alpha}(g)$.

Note that ρ is the only homomorphism that could satisfy $\rho \circ \iota_{\alpha} = \rho_{\alpha}$ since $\bigoplus_{\alpha} G_{\alpha}$ is generated by $Im(\iota_{\alpha})$'s. This implies $\bigoplus_{\alpha} G_{\alpha}$ is the coproduct in the category of abelian groups.

2 Structures of Groups

2.1 Structures of Abelian Groups

Definition A free abelian group is a direct sum of copies of \mathbb{Z} .

Note: A homomorphism $f: \mathbb{Z} \to H$ is simply governed by a choice of element in H. f(1) determines the homomorphism.

Corollary Every abelian group is the quotient of a free abelian group. Thus, they admit abelian group presentations. The proof is the same as for regular group presentations.

Definition Let G be a group. $g \in G$ is torsion if it has finite order. If G is abelian, $\{g \in G | g \text{ is torsion}\}$ forms a subgroup of G called the torsion subgroup.

Theorem Let G be a finitely generated abelian group. Then

- $(1) \ G \cong \mathbb{Z}^b \oplus (\mathbb{Z}_{p_1}^{n_1} \oplus \ldots \oplus (\mathbb{Z}_{p_k})^{n_k})$
- (2) This decomposition is unique up to reordering.

Example

- (1) Find all abelian groups of order 18, up to isomorphism.
- (2) Prove \mathbb{Q}/\mathbb{Z} is not finitely generated.

Definition A group G is decomposable if $G \cong G_1 \times G_2$ where both groups are nontrivial.

Question If $G \cong H_1 \times H_2$ and $G \cong K_1 \times K_2$, with H_i, K_i 's indecomposable, can we say that H_i, K_i 's must be isomorphic? Not true for infinite case, but true for finite groups. Under what conditions is this true for any group?

Definition

- G satisfies the ascending chain condition (ACC) if $H_1 < H_2 < ... < G$ implies $H_i = H_{i+1}$ for all $i \ge n$ for some n.
- G satisfies the descending chain condition (DCC) if $G > H_1 > ...$ implies $H_i = H_{i+1}$ for all $i \geq n$ for some n.

Krull-Schmidt Theorem Let G satisfy the ACC and DCC for normal subgroups. If $G \cong G_1 \times \cdots \times G_k \cong H_1 \times \cdots \times H_l$ with G_i, H_j 's indecomposable, then k = l and $G_i \cong H_i$ after reordering.

Theorem If G is nontrivial and satisfies ACC or DCC for normal subgroups, then $G \cong H_1, \times ... \times H_n$ where each $H_i < G$ is decomposable.

Proof. Suppose
$$\Box$$

Proposition If $G = \langle N_1, N_2 \rangle$ with $N_1, N_2 \triangleleft G$ and $N_1 \cap N_2 = \{e\}$, then $G \cong N_1 \times N_2$.

Proof. Define
$$\phi: N_1 \times N_2 \to G$$
 by $(n_1, n_2) \to n_1 * n_2$.

Definition of normal homomorphism $f: G \to G$ is normal if $af(b)a^{-1} = f(aba^{-1})$ for all $a, b \in G$.

Lemma If $f: G \to G$ is normal and G satisfies ACC and DCC on normal subgroups, then $G \cong Ker(f^n) \times Im(f^n)$ for some n.

Corollary If G satisfies the ACC and DCC, is indecomposable, and $f: G \to G$ is normal, then f is an isomorphism or is nilpotent.

Idea of Krull-Schmidt proof For simplicity, let $G = G_1 \times G_2 = H_1 \times H_2$ with G abelian. We'll show $G_1 \cong H_1$ or H_2 .

Proof. Let
$$\pi_1: G \to G_1$$
 be a projection.

2.2 Group Actions

Definition Let G be a group, X be a set. An action of G on X is a function $G \times X \to X$, $(g, x) \mapsto gx$, satisfying

(1)
$$e * x = x$$

(2)
$$(g_1 * g_2) * x = g_1(g_2 * x)$$

Definition Let $G \curvearrowright X$ and fix $x \in X$

- (1) The stabilizer of x is $G_x = \{g \in G | gx = x\}$
- (2) The orbit of x is $\mathcal{O}_x = \{gx \in X | g \in G\}$

We say that G acts

- freely on X if gx = hx implies g = h
- transitively if for all $x, y \in X$ there exists g such that gx = y (i.e., there is exactly one orbit)
- faithfully if for all $g \in G$, there exists $x \in X$ such that $gx \neq x$

 $Fix(G) = \{x | gx = x \text{ for all } g \in G\}$ Called fixed points.

Remark Let X be a set, Perm(X) the group of bijections $f: X \to X$. An action of G on X is the same as a homomorphism from G to Perm(X).

Examples

- (A) Left translation: $(g, x) \mapsto gx$. This action is free and transitive.
- (B) Conjugation: $(g, x) \mapsto gxg^{-1}$.

Proposition If $|G| < \infty$, then G is isomorphic to a subgroup of $S_{|G|}$.

Proof. Let G act on itself by left translation. This gives a homomorphism from G to $Perm(G) \cong S_{|G|}$.

Note $G_x = \{g \in G | gx = xg\}$ This is called the centralizer of $x : C_G(x)$.

Proposition Fix $x \in X$. $[G:G_x] = |\mathcal{O}_x|$.

Proof. Define a function $\phi: G/G_x \to \mathcal{O}_x$ by $gG_x \mapsto g \cdot x$

Example If $G \curvearrowright G$ by conjugation, then $|\mathcal{O}_g| = 1 \iff g \in Z(G)$. This implies $|G| = |Z(G)| + \sum_{|\mathcal{O}_{x_\alpha} \geq 2} [G : C_G(x_\alpha)]$ (Class Equation)

Corollary If $|G| = p^n$ for p prime, then Z(G) is nontrivial.

Proof. Note that if $[G:C_G(x_\alpha)]>1$, then

If $|G| = p^n$ and $G \curvearrowright X$, then $|X| = |Fix(X)| mod_p$

Corollary If $|X| \neq 0 mod_p$, then there exists a fixed point (so action is not free).

Theorem If $|G| = p^2$ with p prime. Then G is abelian. $(G \cong \mathbb{Z}_{p^2} \text{ or } \mathbb{Z}_p \oplus \mathbb{Z}_p)$

Proof. Z(G) is nontrivial. Therefore |Z(G)|=p or p^2 by Lagrange's Theorem.

2.3 Sylow Theorems

Goal is to study finite subgroups with order p^k with p prime. For finite groups, this will help us to classify. Throughout, p denotes a prime.

Definition A p-subgroup is a group such that every element has order of a power of p.

Cauchy's Theorem Let G be a finite group. If p divides |G| with p prime, then there exists an element of order p.

Proof. (Case 1) Suppose G is abelian.

(Case 2) Suppose G is not abelian.

Definition A Sylow p-subgroup of order p^n where $|G| = p^n m$ with gcd(p, m) = 1.

First Sylow Theorem Let $|G| = p^n m$ with gcd(p, m) = 1. Fix $1 \le i \le n$. Then there exists a subgroup H < G such that

- (1) $|H| = p^i$
- (2) If i < n, then H is normal in a subgroup of order p^{i+1} .

In particular, Sylow subgroups exist.

Proof. This proof assumes the case where $|G| = p^n$. We proceed by induction.

(i = 1)

(General)

Second Sylow Theorem If H < G with $|H| = p^k$ and P is a Sylow p-subgroup, then $H < xPx^{-1}$ for some $x \in G$. (Any two Sylow p-subgroups are conjugate).

Proof. Let S=G/P (not considered as a group, just set of cosets). $H \curvearrowright S$ by left multiplication.

Corollary If H is a normal Sylow p—subgroup, then it is the unique Sylow p—subgroup.

Third Sylow Theorem If $|G| < \infty$, then the number of Sylow p-subgroup divides |G| and is of the form kp + 1.

Proof. Let
$$s = \text{number of Sylow subgroups}$$
.

2.4 Solvability and Subnormal Series

Definition Let G be a group. A subnormal series is a sequence $G_n < G_{n-1} < ... < G_0 = G$ where $G_{i+1} \triangleleft G_i$ for $0 \le i \le n$.

A composition series is one of the form $\{e\} = G_n < ... < G_0 = G$ where G_i/G_{i+1} .

Proposition Any finite group admits a composition series.

Proof. If G is simple, then we are done. If not, choose $G_1 \triangleleft G$.

Jordan-Holder Theorem Suppose G has a composition. Any other composition series has the same set of nontrivial factors up to isomorphism. (Order of factors need not be preserved.)

Definition A solvable series is a subnormal series $G = G_0 > ... > G_n = \{e\}$ such that G_i/G_{i+1} is abelian. A group is solvable if it has a solvable series.

Proposition If H < G and G is solvable, so is H.

Proof. Let
$$\Box$$

Proposition Any finite group is solvable if and only if there exists a composition series whose factors are cyclic groups.

Proof. Let
$$G = G_0 > ... > G_n$$
 be a solvable series.

Proposition If G is solvable, $G > [G, G] = G' > [G', G'] = G'' > ... > \{e\}$ gives a solvable series.

3 Rings

3.1 Intro to Rings

Definition A ring is an abelian group R (group operation is addition) together with a binary operation $\cdot : R \times R \to R$ satisfying

- r(st) = (rs)t
- r(s+t) = rs + rt and (s+t)r = sr + tr

Definition $a \in R$ is a left (or right) zero divisor if $a \neq 0$ and there exists some $b \neq 0 \in R$ such that ab = 0 (or ba = 0). A zero divisor is a left and right zero divisor.

Proposition If R has no left zero divisors then $a \neq 0$ and ab = ac implies b = c.

Definition $\phi: R \to S$ is a homomorphism if $\phi(r+s) = \phi(r) + \phi(s)$ and $\phi(rs) = \phi(r)\phi(s)$.

Definition Let R have mult. identity.

- (1) If R has no zero divisors and is commutative, then it is a domain.
- (2) If every nonzero element of a ring R is a unit, then R is a division ring.
- (3) If a division ring R is commutative, then R is a field.

Proposition A division ring has no zero divisors.

Definition A subring of R is a subgroup that is closed under multiplication. Every ring is isomorphic to a subring of a ring with identity.

Definition R has characteristic n if n is the minimum positive integer such that nr = 0 for all $r \in R$. If no such n exists, then R has characteristic 0.

3.2 Ideals

Let $I \subseteq R$. I is a left (or right) ideal if

- (1) I < R
- (2) $x \in R$ and $s \in I$ implies $xs \in I$.

If R is commutative, then every ideal is two-sided.

Note An ideal is a subring, but not all subrings are ideals.

Proposition We can generate ideals. Let $\{I_{\alpha}\}_{{\alpha}\in A}$ be a collection of ideals in R. Then $\bigcap_{{\alpha}\in A}I_{\alpha}$ is an ideal.

Definition Let X be a subset of a ring R. $\langle X \rangle$ is the intersection of all ideals containing X, (i.e., the ideal generated by X).

Definition An ideal in R is principal if it is generated by one element.

Definition An ideal I is prime if for ideals A, B such that $A, B \subset I$, then either $A \subseteq I$ or $B \subseteq I$ and $I \neq R$.

Proposition Let $I \subset R$ be an ideal and $a, b \in R$. If $ab \in I$ implies $a \in I$ or $b \in I$, then I is prime.

Conversely, if R is commutative and I is prime, then $ab \in I$ implies $a \in I$ or $b \in I$.

3.3 Quotient Rings

Proposition Let $I \subseteq R$ be an ideal. Then R/I is a ring with addition coming from the quotient group and multiplication given by (a+I)(b+I) = ab+I.

Exercise

- Prove $\mathbb{Z}[x]/\langle x^2 \rangle$ is not ring isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$.
- Consider the ring $\mathbb{Z}[x]/\langle x^2-1\rangle$. Is there a zero divisor in this ring? Is there a unit other than +/-1?
- Consider the ring $\mathbb{Z}[x,y]$. Show $\mathbb{Z}[x,y]/\langle x-y\rangle \cong \mathbb{Z}[x]$.

Note The kernel of a ring homomorphism is an ideal. If I is an ideal containing $Ker(\phi)$ then $\psi: R/I \to S$ $r+I \mapsto \phi(r)$ is a well defined homomorphism. $Im(\phi)$ is not always an ideal, though it is always a subring.

First Isom Theorem for Rings Let $\phi : R \to S$ be a ring homomorphism and $Ker(\phi) \subseteq I \subseteq R$, then $\psi : R/I \to S$ is an isomorphism onto $Im(\phi)$.

Proof. We know $\psi: R/I \to Im(\phi)$ is a surjective ring homomorphism.

Proposition Let R be a commutative ring with $1_R \neq 0$. R/I is a domain if and only if I is prime.

Proof. (\iff) Let a+I,b+I be such that (a+I)(b+I)=0.

 (\Longrightarrow)

3.4 Maximal Ideals

Definition An ideal I is maximal if, for $I \subseteq J \subseteq R$, with J ideal, then J = I or J = R.

Proposition Let R be commutative. If $I \subset R$ is maximal, then I is prime.

Proof.

Theorem Let R be commutative with mult. identity. $I \subset R$ is maximal if and only if R/I is a field.

Proof. $(\Leftarrow =)$

 (\Longrightarrow)

Example In \mathbb{Z} every ideal is of the form $k\mathbb{Z}$. $k\mathbb{Z}$ is prime if and only if k is zero or prime. $k\mathbb{Z}$ is maximal if and only if $k\mathbb{Z}$ is prime.

Definition A principal ideal domain (PID) is a domain such that every ideal is principal (generated by a single element).

Proposition Maximal ideals always exist in rings with 1_R .

Proof. Requires Zorn's Lemma. If X is a partially ordered set such that every totally ordered subset an upper bounded, then there exists a maximal element. Let P be the set of proper ideals of R. A maximal element is necessarily a maximal ideal.

Chinese Remainder Theorem Let R be a ring with mult. identity. Let $I_1, ..., I_n$ be ideals in R such that $I_i + I_j = R$ for all $i \neq j$. If $r_1, ..., r_n \in R$, then there exists $r \in R$ such that

- $r + I_i = r_i + I_i$ for all i
- r is unique up to adding by elements in $I_1 \cap ... \cap I_n$

Proof.
$$(n = 2)$$
 Let $I_1 + I_2 = R$.

Corollary If $I_1 + I_2 = R$, where R has mult. identity, then $R/(I_1 \cap I_2) \cong R/I_1 \times R/I_2$. (More generally, $R/(I_1 \cap ... \cap I_n) \cong R/I_1 \times ... \times R/I_n$)

Proof. Define ϕ :

3.5 Divisibility in Rings

Assume all rings are commutative with mult. identity. It is important to note that in this setting, $\langle a \rangle = \{ra | r \in R\}$.

Definition Let $a, b \in R$ and suppose $a \neq 0$. We say a|b if there exists $r \in R$ such that ar = b.

Proposition a|b if and only if $(b) \subseteq (a)$.

Proof.

Proposition

- (1) u|r for all $r \in R$ if and only if u is a unit.
- (2) If a = ub with u a unit, then b|a.
- (3) Let R be a domain. If a|b and b|a, then ar = b implies r is a unit.

Definition

- An irreducible element of R is a nonzero nonunit $x \in R$ such that x = ab implies a or b is a unit.
- $x \in R$ is prime if x is a nonzero nonunit such that p|ab implies p|a or p|b.

Theorem Let R be a domain and $x \in R$ nonzero.

- x is prime implies (x) is a prime ideal.
- x is irreducible if and only if (x) is maximal among principal proper ideals
- x is prime implies x is irreducible (the converse holds if R is a PID).

Definition A unique factorization domain (UFD) is a domain satisfying

- If r is a nonzero nonunit element, then there exist $r_1, ..., r_k$ irreducible such that $r = r_1 \cdot ... \cdot r_k$
- This factorization is unique up to mult. by units.