Fusion invariant character of p-groups

Benjamin Sambale*

January 28, 2024

Abstract

We consider complex characters of a p-group P, which are invariant under a fusion system \mathcal{F} on P. Extending a theorem of Bárcenas–Cantarero to non-saturated fusion systems, we show that the number of indecomposable \mathcal{F} -invariant characters of P is greater or equal than the number of \mathcal{F} -conjugacy classes of P. We further prove that these two quantities coincide whenever \mathcal{F} is realized by a p-solvable group. On the other hand, we observe that this is false for constrained fusion systems in general. Finally, we construct a saturated fusion system with an indecomposable \mathcal{F} -invariant character, which is not a summand of the regular character of P. This disproves a recent conjecture of Cantarero–Combariza.

Keywords: Fusion systems, invariant characters

AMS classification: 20C15, 20D20

1 Introduction

Let \mathcal{F} be a fusion system (not necessarily saturated) on a finite p-group P (we refer the reader to [1] for terminology). Elements $x, y \in P$ are called \mathcal{F} -conjugate if there exists a morphism $f : \langle x \rangle \to P$ in \mathcal{F} such that f(x) = y. We denote the number of \mathcal{F} -conjugacy classes of P by $k(\mathcal{F})$. A complex class function χ of P is called \mathcal{F} -invariant if χ is constant on the \mathcal{F} -conjugacy classes of P. These characters can often be used to construct new characters of finite groups via the Broué–Puig *-construction introduced in [3]. Further motivation and background can be found in the recent paper of Cantarero–Combariza [4].

We call an \mathcal{F} -invariant character of P indecomposable if it is not the sum of two (non-zero) \mathcal{F} -invariant characters (this is unrelated to the characters of indecomposable modules). Let $\operatorname{Ind}_{\mathcal{F}}(P)$ be the set of indecomposable \mathcal{F} -invariant characters of P. The following lemma is well-known among experts in lattice theory (it follows from $\operatorname{Gordan's\ lemma}$), but perhaps less known among representation theorists.

Lemma 1. There are only finitely many indecomposable \mathcal{F} -invariant characters of P.

^{*}Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany, sambale@math.uni-hannover.de

Proof. Let $\operatorname{Irr}(P) = \{\chi_1, \dots, \chi_k\}$. For $\psi \in \operatorname{Ind}_{\mathcal{F}}(P)$ let $c(\psi) = ([\psi, \chi_i] : i = 1, \dots, k) \in \mathbb{N}_0^k$. We define a partial order on \mathbb{N}_0^k by $a \leq b :\iff b - a \in \mathbb{N}_0^k$. It is easy to see that the set $\{c(\psi) : \psi \in \operatorname{Ind}_{\mathcal{F}}(P)\}$ is an antichain in \mathbb{N}_0^k with respect to \leq , i. e. no two distinct elements are comparable. Therefore, it is enough to show that every antichain in \mathbb{N}_0^k is finite.

By way of contradiction, suppose that $c^{(1)}, c^{(2)}, \ldots$ is an infinite antichain in \mathbb{N}_0^k . We may replace this sequence by an infinite subsequence such that $c_1^{(1)} \leq c_1^{(2)} \leq \ldots$. This sequence can in turn be replaced by a subsequence such that $c_2^{(1)} \leq c_2^{(2)} \leq \ldots$. Repeating this process k times yields an infinite sequence $c^{(1)} \leq c^{(2)} \leq \ldots$. But this is impossible since the original sequence was an antichain.

In the theory of lattices, the set $\operatorname{Ind}_{\mathcal{F}}(P)$ is sometimes called the *Hilbert basis* of the semigroup of \mathcal{F} -invariant characters. Since for every $k \geq 2$, the poset \mathbb{N}_0^k contains antichains of arbitrary finite lengths (e.g. $(n, 1, *, \ldots, *), (n-1, 2, *, \ldots, *), \ldots$ for any $n \in \mathbb{N}$), it is not easy to give an upper bound on $|\operatorname{Ind}_{\mathcal{F}}(P)|$. In the last section of this paper we construct examples with $|\operatorname{Ind}_{\mathcal{F}}(P)| > |P|$. However, since there are only finitely many fusion systems on a given p-group P, it is clear that $|\operatorname{Ind}_{\mathcal{F}}(P)|$ can be bounded by a function in |P|. A related question for quasi-projective characters has been raised by Willems–Zalesski [13, Question 4.2].

2 The number of indecomposable \mathcal{F} -invariant characters

The following result was shown for saturated fusion systems by Bárcenas-Cantarero [2, Lemma 2.1] using some advanced category theory. Our proof applies to arbitrary fusion systems.

Theorem 2. The space of \mathcal{F} -invariant class functions of P is spanned by $\operatorname{Ind}_{\mathcal{F}}(P)$. In particular, $|\operatorname{Ind}_{\mathcal{F}}(P)| \geq k(\mathcal{F})$.

Proof. By a theorem of Park [9], there exists a finite group G such that $P \leq G$ and the morphisms of \mathcal{F} are induced by conjugation in G. In particular, $k(\mathcal{F})$ is the number of G-conjugacy classes, which intersect P. Let T be the part of the character table of G, whose columns belong to elements in P. Since the character table is invertible, T has full rank. Hence, the (G-invariant) restrictions χ_P for $\chi \in \operatorname{Irr}(G)$ span the space of G-invariant class functions on P. Since each χ_P can be decomposed into G-invariant indecomposable characters, the claim follows.

Since Park's result, which we used in the proof, relies on computations in the Burnside ring, we like to offer a conceptually simpler proof for saturated fusion systems:

Proof of Theorem 2 for saturated fusion systems. Let

$$\zeta = \sum_{\chi \in \operatorname{Irr}(P)} a_{\chi} \chi$$

be \mathcal{F} -invariant where $a_{\chi} \in \mathbb{C}$ for $\chi \in \operatorname{Irr}(P)$. We define an equivalence relation on $\operatorname{Irr}(P)$ by $\chi \sim \psi$ if and only if there exist positive integers s, t such that $sa_{\chi} = ta_{\psi}$. For an equivalence class $T \subseteq \operatorname{Irr}(P)$ let $\zeta^{(T)} := \sum_{\chi \in T} a_{\chi} \chi$. There exists a some $z \in \mathbb{C}$ such that $z\zeta^{(T)}$ is a character of P. Since $\zeta = \sum_{T} \zeta^{(T)}$, it suffices to show that $\zeta^{(T)}$ is \mathcal{F} -invariant.

Recall that by Alperin's fusion theorem, every morphism in \mathcal{F} is a composition of automorphisms of some subgroups of P (see [1, Theorem I.3.5]). For every $Q \leq P$, the restricted class function ζ_Q is

invariant under $\operatorname{Aut}_{\mathcal{F}}(Q)$. Let $\chi, \psi \in \operatorname{Irr}(P)$ such that $\chi \not\sim \psi$. Then, by the definition of \sim , we have $[a_{\chi}\chi_{Q}, \tau] \neq [a_{\psi}\psi_{Q}, \tau]$ for every $\tau \in \operatorname{Irr}(Q)$. It follows that each $(\zeta^{(T)})_{Q}$ is $\operatorname{Aut}_{\mathcal{F}}(Q)$ -invariant. Again by Alperin's fusion theorem, $\zeta^{(T)}$ is \mathcal{F} -invariant.

The argument (Alperin's fusion theorem) in our second proof does not work for arbitrary fusion systems. For instance, $P \cong C_4 \rtimes C_4$ can be embedded (regularly) into the symmetric group S_{16} such that all elements of order 4 in P are conjugate. However, if we choose $x, y \in P$ of order 4 such that $P = \langle x, y \rangle$, then the conjugation of x to y cannot be realized by a composition of automorphisms of subgroups of P. As a matter of fact, the only saturated fusion system on P is the trivial system (see [11, Theorem 1]).

Now we restrict ourselves further to non-exotic saturated fusion systems. Here we can prove a stronger theorem, which resembles the fact that Brauer characters are restrictions of generalized characters (see [8, Corollary 2.16]).

Theorem 3. Let G be a finite group with Sylow p-subgroup P. Then every G-invariant character ζ of P is the restriction of a generalized character of G.

Proof. We extend ζ to a class function $\hat{\zeta}$ of G in the following way: Every $g \in G$ is conjugate to an element of the form xy = yx where $x \in P$ and y is a p'-element. We define $\hat{\zeta}(g) := \zeta(x)$ (this is well-defined since ζ is G-invariant). Now we use Brauer's induction theorem to show that $\hat{\zeta}$ is a generalized character of G. To this end, let $N \leq G$ be a nilpotent subgroup with Sylow p-subgroup $Q \subseteq N$. After conjugation, we may assume that $Q \subseteq P$. Then $\hat{\zeta}_Q = \zeta_Q$ is a character of $Q \cong N/\mathcal{O}_{p'}(N)$ and $\hat{\zeta}_N$ is the inflation of ζ_Q to N. In particular, $\hat{\zeta}_N$ is a (generalized) character of N. Hence, $\hat{\zeta}$ is a generalized character of G, which restricts to ζ .

Obviously, every G-invariant character of P is a summand of a restriction of a character of G. However, an indecomposable character is not necessarily a summand of a restriction of an irreducible character of G. A counterexample will be given in the last section of the paper.

The following lemma of Cantarero-Combariza [4, Corollary 2.9] characterizes equality in Theorem 2.

Lemma 4. For every fusion system \mathcal{F} on P we have $|\operatorname{Ind}_{\mathcal{F}}(P)| = k(\mathcal{F})$ if and only if every \mathcal{F} -invariant character of P can be decomposed uniquely into indecomposable characters.

Proof. If $|\operatorname{Ind}_{\mathcal{F}}(P)| = k(\mathcal{F})$, then $\operatorname{Ind}_{\mathcal{F}}(P)$ is a basis of the space of \mathcal{F} -invariant class functions and the result follows. Now assume that $|\operatorname{Ind}_{\mathcal{F}}(P)| > k(\mathcal{F})$. Since the dimension of the \mathbb{Q} -vectorspace spanned by $\operatorname{Ind}_{\mathcal{F}}(P)$ is bounded by $k(\mathcal{F})$, the set $\operatorname{Ind}_{\mathcal{F}}(P)$ is linearly dependent over \mathbb{Q} . Hence, there exist integers $c_{\psi} \in \mathbb{Z}$ (not all zero) such that

$$\sum_{\psi \in \operatorname{Ind}_{\mathcal{F}}(P)} c_{\psi} \psi = 0.$$

Since the degree of each character is positive, not all c_{ψ} can have the same sign. If we bring the negative coefficients to the right hand side, we end up with two distinct decompositions of an \mathcal{F} -invariant character.

Cantarero and Combariza [4, Lemma 2.17] have proven that $|\operatorname{Ind}_{\mathcal{F}}(P)| = k(\mathcal{F})$ holds for controlled fusion systems (among other cases). A controlled fusion system is realized by a group of the form $P \rtimes H$ for some p'-group H. Our main theorem generalizes this result to the larger class of p-solvable groups.

Theorem 5. Let \mathcal{F} be the (saturated) fusion system on a Sylow p-subgroup P of a p-solvable group G. Then $|\operatorname{Ind}_{\mathcal{F}}(P)| = k(\mathcal{F})$.

Proof. We apply Isaacs' theory of π -partial characters, where $\pi = \{p\}$ (see [7, p. 71]). Every indecomposable \mathcal{F} -invariant character χ of P extends uniquely to a class function $\hat{\chi}$ on the set of p-elements of G. By [7, Corollary 3.5], $\hat{\chi}$ is an irreducible p-partial character of G. The number of those characters is exactly $k(\mathcal{F})$ by [7, Theorem 3.3].

We remark that every fusion system of a *p*-solvable group is constrained. Conversely, by the model theorem [1, Theorem I.4.9], every constrained fusion system is realized by a *p*-constrained group. However, Theorem 5 does not hold for constrained fusion systems in general as we are about to see.

3 Counterexamples

In [4, table on p. 5206] and [5], the authors list some fusion systems \mathcal{F} where $|\operatorname{Ind}_{\mathcal{F}}(P)| > k(\mathcal{F})$, including the system on $P \cong D_{16}$ of the group $\operatorname{PSL}(2,17)$. This fusion system has two conjugacy classes of essential subgroups. The authors seem to have overlooked the "smaller" fusion system of $\operatorname{PGL}(2,7)$ with only one class of essential subgroups (still on D_{16}). With the notation

$$P = \langle x, y \mid x^8 = y^2 = 1, \ x^y = x^{-1} \rangle$$

the character table of P is:

	1	x	x^3	x^2	x^4	y	xy
χ_1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	-1
χ_3	1	-1	-1	1	1	-1	1
χ_4	1	1	1	1	1	-1	-1
χ_5	2	0	0	-2	2	0	0
χ_6	2	$\sqrt{2}$	$-\sqrt{2}$	0	-2	0	0
χ_7	2	$-\sqrt{2}$	$\sqrt{2}$	0	-2	0	0

We may assume that x^4 and y are \mathcal{F} -conjugate, but the other classes of P are not fused. The \mathcal{F} -invariant characters of P must agree on the fifth and sixth column of the character table. Hence, we are looking for non-negative integral vectors orthogonal to (0,0,1,1,1,-1,-1). Now it is easy to see that

$$\operatorname{Ind}_{\mathcal{F}}(P) = \{ \chi_1, \ \chi_2, \ \chi_3 + \chi_6, \ \chi_3 + \chi_7, \ \chi_4 + \chi_6, \ \chi_4 + \chi_7, \ \chi_5 + \chi_6, \ \chi_5 + \chi_7 \}.$$

In particular, $|\operatorname{Ind}_{\mathcal{F}}(P)| = 8 > 6 = k(\mathcal{F}).$

To turn this into a constrained fusion system, we set G := PGL(2,7) and choose an irreducible faithful \mathbb{F}_2G -module V of dimension 6. Then

$$\hat{G} := V \times G = \text{PrimitiveGroup}(64, 64) = \text{TransitiveGroup}(16, 1802)$$

(notation from GAP [6]) is a 2-constrained group with Sylow 2-subgroup $\hat{P} := V \times P$. Let $\hat{\mathcal{F}}$ be the corresponding constrained fusion system. The inflations of the eight G-invariant indecomposable characters of P are $\hat{\mathcal{F}}$ -indecomposable. According to the proof of Theorem 2, there must be at least $k(\mathcal{F})$ -6 other indecomposable character arsing as summands of $\chi_{\hat{P}}$, where $\chi \in \operatorname{Irr}(\hat{G})$ with $V \nsubseteq \operatorname{Ker}(\chi)$. In particular, $|\operatorname{Ind}_{\mathcal{F}}(\hat{P})| > k(\hat{\mathcal{F}})$.

In [4, Conjecture 2.19], the authors have conjectured that every indecomposable \mathcal{F} -invariant character of P is a summand of the regular character. As a consequence of Theorem 5, we obtain this for p-solvable groups.

Theorem 6. Let \mathcal{F} be the (saturated) fusion system on a Sylow p-subgroup P of a p-solvable group. Then every indecomposable \mathcal{F} -invariant character of P is a summand of the regular character of P.

Proof. This follows from Theorem 5 and [4, Remark 2.18]. For the convenience of the reader we repeat the short proof of the latter result: Let ψ be an indecomposable \mathcal{F} -invariant character of P. Let

$$m := \max\{[\psi, \chi] : \chi \in \operatorname{Irr}(P)\}.$$

Then ψ is a summand of $m\rho$, where ρ is the regular character of P. By the hypothesis and Lemma 4, $m\rho$ has a unique decomposition into indecomposable \mathcal{F} -invariant characters. Since ρ itself is \mathcal{F} -invariant (remember that $\rho(x) = 0$ for all $x \in P \setminus \{1\}$), ψ must appear as a summand of ρ .

On the other hand, we provide a counterexample to [4, Conjecture 2.19]. Let \mathcal{F} be the fusion system on a Sylow 2-subgroup P of the automorphism group of the Mathieu group $G = \operatorname{Aut}(M_{22}) \cong M_{22} \rtimes C_2$. Then $|P| = 2^8$. Let $\operatorname{Irr}(G) = \{\chi_1, \dots, \chi_{21}\}$ and $\operatorname{Irr}(P) = \{\lambda_1, \dots, \lambda_{34}\}$. Let

$$A := ([(\chi_i)_P, \lambda_j])_{i,j} \in \mathbb{Z}^{34 \times 21}.$$

By Theorem 3, $\operatorname{Ind}_{\mathcal{F}}(P)$ is in one-to-one correspondence to the Hilbert basis of the semigroup

$$\{x \in \mathbb{Z}^{21} : Ax \ge 0\}.$$

Using the nconvex-package [10] in GAP, we compute $k(\mathcal{F}) = 10$ and $|\operatorname{Ind}_{\mathcal{F}}(P)| = 25$. Moreover, 14 indecomposable \mathcal{F} -invariant characters are not summands of the regular character of P and six are not summands of restrictions of irreducible characters of G. The source code is available at [12]. The symmetric group $G = S_{12}$ is a counterexample for p = 2, 3. As promised in the introduction, $G = S_{10}$ for p = 2 provides an example where $|\operatorname{Ind}_{\mathcal{F}}(P)| = 266 > 256 = |P|$.

Acknowledgment

I thank Gabriel Navarro for providing the idea for the proof of Theorem 5. I became aware of the relevance of lattice theory (Hilbert bases) in representation theory by a talk of Wolfgang Willems in Jena, 2015.

References

- [1] M. Aschbacher, R. Kessar and B. Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, Vol. 391, Cambridge University Press, Cambridge, 2011.
- [2] N. Bárcenas and J. Cantarero, A completion theorem for fusion systems, Israel J. Math. 236 (2020), 501–531.
- [3] M. Broué and L. Puig, Characters and local structure in G-algebras, J. Algebra 63 (1980), 306–317.

- [4] J. Cantarero and G. Combariza, *Uniqueness of factorization for fusion-invariant representations*, Comm. Algebra **51** (2023), 5187–5208.
- [5] J. Cantarero and J. Gaspar, Fusion-invariant representations for symmetric groups, to appear in Bull. Iran. Math. Soc., arXiv: 2305.17587v1.
- [6] The GAP Group, GAP Groups, Algorithms, and Programming, $Version\ 4.12.2$; 2022, (http://www.gap-system.org).
- [7] I. M. Isaacs, *Characters of solvable groups*, Graduate Studies in Mathematics, Vol. 189, American Mathematical Society, Providence, RI, 2018.
- [8] G. Navarro, *Characters and blocks of finite groups*, London Mathematical Society Lecture Note Series, Vol. 250, Cambridge University Press, Cambridge, 1998.
- [9] S. Park, Realizing fusion systems inside finite groups, Proc. Amer. Math. Soc. 144 (2016), 3291–3294.
- [10] K. Saleh and S. Gutsche, NConvex, A Gap package to perform polyhedral computations, Version 2022.09-01, https://homalg-project.github.io/pkg/NConvex.
- [11] B. Sambale, Fusion systems on metacyclic 2-groups, Osaka J. Math. 49 (2012), 325–329.
- [12] B. Sambale, GAP code to compute indecomposable F-invariant characters, https://github.com/BrauerSuzuki/GAP-codes/.
- [13] W. Willems and A. E. Zalesski, *Quasi-projective and quasi-liftable characters*, J. Algebra **442** (2015), 548–559.