

FIGURE 1

FIGURE 2 2/6

FIGURE 3

FIGURE 4

FIGURE 5 5/6

Proton near spectrum (270)Afriz; CDCl3)

 $\delta(ppm)$

6.5(1H, dd, H₁₁, J_{11,16}=1 1Hz, J_{11,17}=15.2Hz), 6.9(1H, t, H₁₉, J_{10,9}=J_{10,11}=1 1Hz), 5.7(1H, dd, H₁₂, J_{12,11}=15.2Hz, J_{12,13}=6.8Hz), 5.4(1H, dt, H₂, J_{9,2}=7.7Hz, J_{9,16}=10.8Hz), 4.1(1H,m,H₁₉), 2.4(2H, t, H₂, H₃, H₄, J₂₂=7.3Hz), 2.2(2H, m, H₃), 1.6(4H, m, H₃, H₄), 1.3(14H, m, H₁₉, H₁₆, H₁₆, H₁₆, H₁₇, H₄, H

Carbon-13 nor spectrum (67.8MHz, CDCl)

δ(ppm)

179.3(C1), 135.6(C12), 132.6(C4), 127.8(C14), 125.8(C14), 72.9(C13), 37.1-22.4(C17.C14. C15. C14. C4. C5. C4. C5. C4. C5. C2) and 13.9(C14).

Infrared spectrum

3500-2500cm⁻¹ (broad O-H stretch) and 1709cm⁻¹(C=O stretch)

Ultraviolet spectrum (ethanolic solution)

1 (ex25,000 mol'day'cm')

Soluble in

ethanol, dichloromethano.

Insoluble in begane, water.