Name: Udandarao Sai Sandeep Roll Number: 180123063

**Dept.:** Mathematics and Computing

# Q1.

# The Number of Values Generated is : 10 0.0000041 1 0.2177886 2177 0.0195922 195 0.5000653 5001 0.8155864 8155 0.7027810 7027 0.5525957 5525 0.7065942 0.6421427 6421 0.7131508 7131

#### Case1:

10 values were generated from the Discrete Distribution.

Firstly, 10 values were generated (within the range [0,1)) using Linear Congruence Generator. The parameters for the LCG are as follows: a = 1597, b = 51749, m = 244944,  $x_0 = 1$ 

From the given discrete distribution, the array q (Cumulative Distribute for the Discrete RV) and the array c (Probability Mass Function) were created. For each random float number (let it be denoted by **U**) generated within the range [0,1), the value of **k** was obtained such that q(k-1) < U <= q(k). Then, c(k) was chosen to be the required X value.

**Case2:** 100 values were generated from the Discrete Distribution.

| LCG       | Χ    | 0.5805572 | 5805 | 0.8201916 | 8201 | 0.2879597 | 2879         | 0.3850758 | 3851         | 0.8042491 | 8043 |
|-----------|------|-----------|------|-----------|------|-----------|--------------|-----------|--------------|-----------|------|
| 0.0000041 | 1    | 0.3610989 | 3611 | 0.0571804 | 571  | 0.0829047 | 829          | 0.1772773 | 1773<br>3231 |           |      |
| 0.2177886 | 2177 | 0.8861536 | 8861 | 0.5283942 | 5283 | 0.6100170 | 6101         | 0.1145609 | 1145         | 0.5971365 | 5971 |
| 0.0195922 | 195  | 0.3985197 | 3985 | 0.0568783 | 569  | 0.4083913 | 4083<br>4121 | 0.1649928 | 1649         | 0.8382406 | 8383 |
| 0.5000653 | 5001 | 0.6471683 | 6471 | 0.0459248 | 459  | 0.4691317 | 4691         | 0.7047937 | 7047         | 0.8814709 | 8815 |
|           |      | 0.7390955 | 7391 | 0.5531468 | 5531 | 0.4146254 |              | 0.7668855 | 7669<br>9273 |           |      |
| 0.8155864 | 8155 | 0.5467290 | 5467 | 0.5867749 | 5867 | 0.3680066 | 3681         | 0.2686410 | 2687         | 0.9202430 | 9203 |
| 0.7027810 | 7027 | 0.3407230 | 3375 | 0.2908420 | 2909 | 0.9177526 | 9177         | 0.2309385 | 2309         | 0.8393306 | 8393 |
| 0.5525957 | 5525 |           |      | 0.6859241 | 6859 | 0.8622175 | 8623         | 0.0200536 | 201          | 0.6222728 | 6223 |
| 0.7065942 | 7065 | 0.2926546 | 2927 |           |      | 0.1725946 | 1725         | 0.2368092 | 2369         |           |      |
| 0.6421427 | 6421 | 0.5807409 | 5807 | 0.6321037 | 6321 | 0.8447686 | 8447         | 0.3956088 | 3957<br>9985 | 0.9810038 | 9811 |
| 0.7131508 | 7131 | 0.6544925 | 6545 | 0.6808209 | 6809 | 0.3067232 |              | 0.8315207 | 8315         | 0.8743713 | 8743 |
| 0.1130340 | 1131 | 0.4357200 | 4357 | 0.4822817 | 4823 | 0.0481702 | 481          | 0.1497853 | 1497         | 0.5822106 | 5823 |
| 0.7265661 | 7265 | 0.0561108 | 561  | 0.4150867 | 4151 | 0.1390685 | 1391<br>3037 | 0.4183242 | 4183         |           |      |
|           |      | 0.8201916 | 8201 | 0.1047505 | 1047 | 0.2169557 | 2169         | 0.2749976 | 2749<br>3823 | 0.0016412 | 17   |
| 0.5372861 | 5373 | 0.0571804 | 571  | 0.4977750 | 4977 | 0.6895413 | 6895         | 0.8350521 | 8351         | 0.8322515 | 8323 |
| 0.2571282 | 2571 | 0.5283942 | 5283 | 0.1579463 | 1579 | 0.4086975 | 4087         | 0.7894621 | 7895         | 0.3168398 | 3169 |
| 0.8449401 | 8449 | 0.0568783 | 569  | 0.4515195 | 4515 | 0.9011733 | 9011         | 0.9822123 | 9823         | 0.3100390 | 3109 |



The table above shows the generated values of X (right) and the corresponding value generated by LCG (left). Same Procedure was followed as Case-1.

Case3: 10000 values of X were generated. A histogram to the left depicts that the generated distribution is mimicking uniformity (i.e. the probability of each value from the discrete distribution being chosen is approximately same).

probability density function of U[0,1]. So, g(x) = 1, for all x within the range [0,1]. Now, we are required to find the minimum value of c such that the inequality f(x)< cg(x) is satisfied for all x within the range [0,1]. So, we are to find the maximum value that f(x)/g(x) attains within the range [0,1]. Upon differentiating, we see that f(x)/g(x) attains its max value at  $x = \frac{1}{2}$ . [0 <= x <= 1]. And, the maximum value of f(x)turns out be 2.109375. So, minimum possible value of c is **2.109375**.

```
generated Iterations Reqd.
.4819215
.3019922
4803007
5676850
3256589
. 3330060
he Averge Value obtained for Nummber of iterations is 1.9
```

(b) Keeping c = 2.109375, random variables were generated from f(x) using the acceptance-rejection method. The following table to the left shows 10 generated values of f(x) (and the number of iterations required in each case). Using python inbuilt distribution builder, a set of coordinates  $(x_i, y_i)$  were obtained using the generated X values (similar procedure followed as the Frequency histograms in the previous assignments).

```
The value of c chosen is: 2.109375
The number of values taken is 10
The Averge Value obtained for Nummber of iterations is 1.9
The error value is 3.8649059449206113

The number of values taken is 100
The Averge Value obtained for Nummber of iterations is 1.73
The error value is 0.4233404294398935

The number of values taken is 1000
The Averge Value obtained for Nummber of iterations is 2.03
The error value is 0.05767565635325676

The number of values taken is 10000
The Averge Value obtained for Nummber of iterations is 2.093
The error value is 0.02208315717230523

The number of values taken is 100000
The Averge Value obtained for Nummber of iterations is 2.10838
The error value is 0.021290921155687044
```

Using the coordinates and the given function f(x), the error was calculated (in a similar fashion to regression) using the formula:  $error = \frac{1}{m} \sum_{k=1}^{m} (f(x_i) - y_i)^2$ . As shown in the screenshots, the error value diminishes to 0 as the number of values generated increases. Hence, the distribution formed by the sample X values converges to the distribution of f(x).

(c) The experimented was repeated for different number of total values generated. The outcomes can be seen in the screenshots. It can be seen that as the number of generated values increases, the avg. number of iterations converges to c. The outcome of this experiment signifies that the expected number of iterations

required for a generated value to be accepted is c. This is true, because, it can be proved that the Acceptance probability (Probability that a certain value is accepted) is 1/c. (So, the expected value of the iterations required is c).

(d) The above experiment was repeated with 2 higher values of c (5 and 10). In both these cases, the average number of iterations converge to their respective values of c (supporting the fact that the acceptance probability is 1/c as mentioned above). Since, it takes longer times to generate the values of X when values of are higher, it is always more practical to ensure that value of c is closer to the minimum possible value. Larger values of c decrease the acceptance probability, and hence lead to larger run times. Also, as number of generated values increases, less the is the error between the sample distribution and f(x).

```
The value of c chosen is: 5
                                                                  The value of c chosen is: 10
The number of values taken is 10
                                                                  The number of values taken is 10
The Averge Value obtained for Nummber of iterations is 7.2
                                                                  The Averge Value obtained for Nummber of iterations is 6.6
The error value is 9.80851581608693
                                                                  The error value is 6.480300106865036
The number of values taken is 100
                                                                  The number of values taken is 100
The Averge Value obtained for Nummber of iterations is 4.85
                                                                  The Averge Value obtained for Nummber of iterations is 10.89
The error value is 0.37986993273738373
                                                                  The error value is 0.12195885344770299
The number of values taken is 1000
                                                                  The number of values taken is 1000
The Averge Value obtained for Nummber of iterations is 4.854
                                                                  The Averge Value obtained for Nummber of iterations is 9.637
The error value is 0.020266620296368963
                                                                  The error value is 0.04169592911840443
The number of values taken is 10000
                                                                  The number of values taken is 10000
The Averge Value obtained for Nummber of iterations is 4.9024
                                                                  The Averge Value obtained for Nummber of iterations is 10.0782
The error value is 0.021364165075157482
                                                                  The error value is 0.028506292726774435
The number of values taken is 100000
                                                                  The number of values taken is 100000
The Averge Value obtained for Nummber of iterations is 4.99773
                                                                  The Averge Value obtained for Nummber of iterations is 9.99132
The error value is 0.02295345335572417
                                                                  The error value is 0.021686855945622058
```

### Q3.

The values of c chosen for are: c = 2, and c = 3. These values are possible (all values of c >= 1.2 are possible). For each value of c, the experiment is conducted for 10,100 and 1000 values (number of values generated using acceptance rejection method).

**Note:** During performing acceptance and rejection method, Random values for U [0,1] have been obtained though random module of python. For generating the values of distribution g, the technique for generating values for Discrete distributions was employed.

After generating the values, a frequency table was also generated.

The first observation is that higher values of c implies higher Avg. Acceptance Iterations.

The second observation is that as the number of generated values increases, the avg. value of acceptance iterations converges to the value of c.

Also, from the frequency tables, as the number of generated values reaches larger values, the generated values seem to follow the distribution followed by f(x). (i.e. (frequency of certain value)/ (number of values) is approximately equal to f (certain value) where f is the probability mass function of X).

The outcome of the experiments is as follows:

```
The value of c chosen is: 2
The number of values taken is 10
8 7 3 7 3 1 5 2 1 3
The Frequency Table is as follows:
Value Count
 1
        1
        3
       0
 4
        1
 6
        0
        2
 8
        1
 9
        0
        0
 10
Áverage iterations taken 1.2
The number of values taken is 100
10 1 9 9 4 10 7 5 4 5 10 3 4 4 10 8 5 7 5 4 6 7 6 4 9 6 5 7 9 8 3 3 5 7 7 7 1 8 10 6 2 8 4 6 6 1 7 7 4 1
0 7 9 2 2 9 1 9 8 3 8 9 2 7 1 6 5 2 6 10 9 6 5 2 4 6 5 3 9 9 3 3 2 7 8 2 10 2 9 6 3 7 3 3 3 2 4 5 2 7 9
The Frequency Table is as follows:
Value Count
 1
        11
        11
 4
        10
        10
 6
        11
        14
 8
 9
        13
 10
        8
Áverage iterations taken 1.97
The number of values taken is 1000
4 10 3 5 9 2 7 10 9 8 3 3 10 1 8 8 2 3 1 9 2 5 10 4 2 8 6 9 6 10 3 7 4 4 9 2 3 1 10 4 10 1 8 6 2 6 10 10
3 2 10 7 8 10 1 1 5 3 7 3 8 2 7 6 2 2 8 10 7 8 5 7 8 7 1 10 1 2 8 7 1 7 2 7 7 4 10 9 4 4 2 8 1 10 7 1 7
4 5 4 10 2 8 10 8 4 1 5 1 7 6 3 1 5 6 3 1 7 5 4 9 2 6 9 1 1 5 2 1 6 9 2 8 5 1 10 8 5 7 2 1 8 6 5 9 7 10
  1 6 5 9 5 8 1 8 1 9 1 2 6 5 1 6 1 5 9 4 5 6 7 8 7 8 2 3 6 10 9 8 6 10 3 10 6 10 6 9 3 8 1 1 2 4 6 8 2
          2 4 8 4 6 9 1 1 9 9 8 9 2 7 3 2 7
                                             7 6 2 6 6 5 10 5 2 3 8 4 9 6 5 5 6 5 4 10 3 9 5 7 5 5 2
   7 6 9 5 6 3 4 10 8 5 1 4 9 10 1 10 4 7 10 7 1 4 2 5 3 9 2 8 2 8 8 7 1 6 9 2 5 5 10 6 6 8 3 1 2 8 7 1
6 3 5 8 1 8 8 1 8 10 8 6 8 5 10 9 10 2 9 7 10 6 4 2 5 3 10 6 10 3 10 2 8 7 2 3 6 9 9 5 6 3 5 8 1 8 4 5 3
4 8 7 1 10 2 5 5 1 8 1 9 9 5 5 9 7 10 8 5 8 9 6 10 7 7 10 2 1 9 5 6 7 1 2 9 9 3 1 4 9 9 1 6 6 8 2 5 4 4
1 9 8 5 7 9 7 3 10 4 9 9 4 5 3 2 10 8 9 9 5 9 4 3 6 3 3 5 5 10 7 6 2 8 1 8 9 4 1 8 7 9 1 4 10 5 3 6 6 9
1 10 4 6 10 5 10 5 10 8 4 7 1 10 6 3 2 6 10 8 3 3 8 9 9 3 9 10 5 10 8 4 3 4 10 4 8 7 3 6 6 8 4 7 1 4 9
 8 1 7 8 6 3 8 5 2 9 9 2 4 7 5 6 1 5 2 3 1 3 1 2 10 5 2 7 8 10 4 2 3 4 10 3 9 4 8 9 2 5 6 7 9 8 5 9 7 1
0 4 9 10 1 5 6 9 3 9 6 5 5 3 1 4 3 2 9 2 1 8 10 6 2 1 2 1 8 1 10 4 6 7 1 7 10 2 8 9 9 4 2 10 6 9 4 10 5
 2 4 10 2 1 8 5 8 1 8 8 3 4 10 5 8 6 8 6 5 3 10 9 10 3 4 4 7 1 5 7 10 9 9 10 6 3 1 4 8 7 6 5 1 5 10 8 3
2 3 1 7 9 1 10 6 2 2 10 1 2 1 8 9 10 4 7 3 6 9 7 1 6 9 3 8 10 3 1 2 9 9 9
                                                                            7 8 6 2 6 1 7 10 4 6
 7 8 8 3 7 4 5 5 10 9 5 8 8 6 7 3 10 9 1 1 1 1 2 3 1 3 6 2 5 1 9 10 5 9 5 1 3 10 5 6 1 1 6 5 1
   1 6 9 1 1 4 6 5 9 8 4 6 9 8 4 9 7 9 6 9 10 5 1 2 7 1 9 9 5 5 5 10 10 10 1 4 4 8 6 3 1 1 4 4 8
1 2 6 4 6 3 10 2 6 4 4 1 9 9 1 3 1 6 1 5 10 8 10 10 1 5 9 2 3 1 7 5 2 2 2 2 4 7 2 10 8 6 8 10 5 3 7
4 8 9 2 5 6 6 2 9 10 9 4 4 6 4 5 1 7 1 2 1 1 1 8 8 5 10 2 9 8 4 8 5 7 9 4 3 5 6 5 8 6 1 2 9 5 5 9 5 10 4
1 5 4 5 6 1 8 6 9 1 2 9 2 5 9 4 6 5 7 7 9 5 1 10 8 1 3 1 2 6 5 4 1 7 5 5 3 1 4 6 6 5 10 2 7 10 8 6 4 1
6 9 7 7 9 8 2 10 7 5 9 1 7 8 10 4 3 1 5 3 6 10 5 2 6 1 5 5 1 5 4 5 4 9 1 2 2 6 10 5 2 7 8 1 7 9 6 5 6 1
2 9 4 2 7 9 2 4 9 2
The Frequency Table is as follows:
Value Count
        128
        103
        72
        89
        115
 6
        99
  7
        82
 8
        102
 9
        110
  10
         100
Áverage iterations taken 2.046
```

# The value of c is 3

```
The value of c chosen is: 3
The number of values taken is 10
3 2 5 4 10 4 3 1 1 10
The Frequency Table is as follows:
Value Count
 1
 2
        1
        2
        2
        1
       0
       0
 8
        0
 9
        0
 10
        2
Áverage iterations taken 3.3
The number of values taken is 100
8 4 8 8 1 1 5 4 6 8 7 6 1 3 10 8 10 8 6 6 3 2 2 6 1 1 9 10 10 9 4 9 5 2 9 6 9 8 7 2 6 7 7 1 9 5 7 1 1 1
9 10 3 3 10 5 8 8 4 6 7 8 4 1 8 10 3 7 6 10 6 10 7 8 6 6 6 2 8 8 8 6 5 5 1 10 5 5 2 5 2 2 4 4 1 7 6 5 7
The Frequency Table is as follows:
Value Count
        12
       8
       6
        10
        15
 7
        10
 8
        15
 9
 10
        10
Áverage iterations taken 3.05
The number of values taken is 1000
10 5 6 3 1 6 1 5 6 6 2 10 6 2 10 7 8 9 2 8 10 8 3 7 6 10 7 2 6 2 9 2 5 4 10 8 1 5 6 3 1 5 6 10 6 2 7 9 7
5 6 2 2 3 3 2 8 5 5 4 3 9 3 5 2 8 5 1 5 9 7 3 4 3 6 4 1 9 10 9 8 6 3 8 7 1 2 3 8 9 1 3 9 10 7 2 4 10 8
4 8 3 9 5 7 10 7 10 1 8 7 5 9 1 5 6 7 5 7 1 10 7 9 6 4 10 1 10 3 2 7 9 1 10 6 3 4 4 9 1 4 9 10 6 9 2 4 8
10 8 8 9 5 9 8 9 3 1 9 9 2 7 5 9 10 2 2 6 2 5 4 1 4 1 8 3 1 7 9 8 9 9 8 2 8 1 1 1 5 9 10 10 8 5 10 2 4
 9 10 3 8 9 8 8 1 5 10 6 7 3 6 5 3 6 5 5 2 6 4 10 2 5 2 8 4 9 1 5 10 4 10 10 7 1 5 1 8 1 2 2 3 10 2 4 1
 7 4 5 6 4 3 10 1 5 7 8 6 8 3 1 6 10 6 10 10 1 4 10 7 3 7 2 3 1 10 10 10 10 5 4 2 10 2 7 9 1 4 8 7 2 2
 8 10 3 2 4 2 3 2 10 8 10 2 7 10 9 1 9 6 8 5 6 5 2 3 2 2 6 1 5 9 1 3 6 8 8 7 8 4 7 10 1 8 6 5 7 3 2 2 8
6 1 1 3 2 7
            7 1 5 5 2 8 1 8 3 3 6 9 6 4 9 6 2 9 8 2 2 1 8 8 2 6 7 2 1 5 9 1 9 6 10 6 6 10 6 1 3
        1 2 1 8 2 6 5 10 8 4 9 7 5 2 10 7 7 3 6 7 4 3 2 9 9 10 3 8 2 9 5 8 8 8 10 2 7 8 9 9
                         1 1 1 5
                                 6 5 3 2 9 9 1 7 8 10 2 1 8 7 9 2 3 1 1 2 9 10 4 6 1 4 8 10
      2 4 8 2 4 9 2 10 9
                                                                                              10 1 9 3
5 5 2 2 1 1 5 5 4 5 6 7 9 7 2 7 9 8 1 7 6 2 1 1 1 1 5 9 6 5 7 10 2 9 1 9 5 7 3 8 7 1 5 8 5 2 9 10 2 6 8
10 2 2 7 7 7 5 9 2 5 10 3 2 1 9 3 2 1 5 10 6 2 1 9 7 9 7 1 4 10 3 9 9 5 6 6 3 5 9 3 1 2 7 9 1 10 9 3 3 3
  2 5 3 5 5 5 10 1 9 5 9 8 5 9 3 8 6 9 2 5 10 5 9 3 5 6 5 1 10 6 7 4 10 6 6 7 9 3 8 3 7 7 5 9 1 2 7
  3 8 6 6 1 1 6 4 6 10 9 2 2 10 4 5 6 6 10 5 2 1 9 5 7 7 4 10 10 10 5 1 6 4 5 8 5 9 2 9 10 10 5 10 2 10
  2 10 6 3 2 1 8 6 7 7 6 4 9 8 3 9 2 7 1 10 1 7 10 4 1 2 7 8 8 4 7 10 4 6 10 2 9 3 1 6 6 8 5 10 4 1 5 6
281106786742889174921935937210557672553531037697105961
1 7 5 4 2 8 4 8 2 8 7 9 10 2 1 5 6 6 2 4 4 10 1 5 8 5 7 9 5 8 10 9 3 6 10 10 2 1 2 5 2 1 2 9 3 5 8 2 7
 9 1 8 1 3 2 4 5 5 3 9 4 9 4 2 4 9 10 7 9 2 9 3 5 5 4 9 2 9 8 10 3 2 1 7 6 8 3 7 5 8 6 2 7 6 7
 10 9 4 9 3 4 7 2 3 5 9 10 3 9 6 4 3 7 9 1 3 1 10 10 2 8 3 7 2 1 8 2 10 4 3 6 9 8 2 5 2 1 4 4 4 5 9 7 1
 5 4 4 8 9 2 9 2 4 9 1 5 6 2 1 8 3 9 7 8 9 2 5 6 4 2 4 1 8 5 3 1 8 1 4 8 6 8 6 2 1 8 5 3 7 6 3 2 1 2 5
a
48687109713
The Frequency Table is as follows:
Value Count
       111
        127
       86
        69
        111
       90
       97
       96
 9
        112
 10
        101
Áverage iterations taken 2.905
```