3.4.1 Root Mean Square Layer Normalization

The original Transformer implementation of Vaswani et al., 2017 uses layer normalization Ba et al., 2016 to normalize activations. Following Touvron et al. 2023, we will use root mean square layer normalization (RMSNorm; Zhang and Sennrich, 2019, equation 4) for layer normalization. Given a vector $a \in \mathbb{R}^{d_{\text{model}}}$ of activations, RMSNorm will rescale each activation a_i as follows:

$$RMSNorm(a_i) = \frac{a_i}{RMS(a)}g_i, \tag{1}$$

where RMS(a) = $\sqrt{\frac{1}{d_{\text{model}}} \sum_{i=1}^{d_{\text{model}}} a_i^2 + \varepsilon}$. Here, g_i is a learnable "gain" parameter (there are d_model such parameters total), typically initialized to 1 and ε is a hyperparameter that is often fixed at 1e-5.

Problem (rmsnorm): Root Mean Square Layer Normalization (1 point)

Deliverable: Implement RMSNorm as a torch.nn.Module. To test your implementation against our provided test, you will first need to implement the test adapter at [adapters.run_rmsnorm]. Then, run pytest -k test_rmsnorm to test your implementation.

3.4.2 Position-Wise Feed-Forward Network

As originally described in section 3.3 of Vaswani et al. [2017], the Transformer feed-forward network consists of two linear transformations with a ReLU activate between them. The dimensionality of the inner feed-forward layer is typically 4x the input dimensionality.

Following the GPT and GPT-2 architecture Radford et al. [2018], we will use the GELU activation function [Hendrycks and Gimpel, 2016] instead of the ReLU activation function:

$$GELU(x) = x \cdot \frac{1}{2} \left[1 + \operatorname{erf}(x/\sqrt{2}) \right]$$
 (2)

In addition, following recent models like PaLM [Chowdhery et al.], 2022 and LLaMA [Touvron et al.], 2023], we omit the biases in the feed-forward network linear transformations. Thus, our feed-forward network is defined as follows:

$$FFN(x) = GELU(xW_1)W_2, \tag{3}$$

where $x \in \mathbb{R}^{d_{\text{model}}}$, $W_1 \in \mathbb{R}^{d_{\text{model}} \times d_{\text{ff}}}$, and $W_2 \in \mathbb{R}^{d_{\text{ff}} \times d_{\text{model}}}$, with $d_{\text{ff}} = 4d_{\text{model}}$.

Problem (positionwise_feedforward): Implement the position-wise feed-forward network (2 points)

- (a) **Deliverable**: Implement the GELU activation function. To test your implementation against our provided tests, you will need to implement the test adapter at [adapters.run_gelu]. Then, run pytest -k test_gelu to test your implementation.
- (b) **Deliverable**: Implement the position-wise feed-forward network. To test your implementation, implement the test adapter at [adapters.run_positionwise_feedforward]. Then, run pytest -k test_positionwise_feedforward to test your implementation.