APRENDIZAJE REFORZADO

Guía 4: Métodos Monte Carlo

Ejercicio 1

Considere un proceso de decisión de Markov (MDP) con dos estados: uno terminal y otro no-terminal. Existe sólo una acción que lleva del estado no-terminal al estado terminal con probabilidad $1-\rho$ y del estado no-terminal a si mismo con probabilidad ρ . La recompensa es +1 en todas las transiciones y el factor de descuento es $\gamma=1$. Suponga que observa un episodio con 10 iteraciones y un retorno de 10.

- a) ¿Cuáles son las estimaciones Monte Carlo de primer-visita y de cada-visita del valor del estado no-terminal basadas en ese episodio?
- b) Compare los valores de estado obtenidos con el teórico si $\rho = 0.9$. Saque conclusiones.

Ejercicio 2

Demostrar que la política ϵ —Greedy, definida de la siguiente manera

$$\pi(a|s) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|A(s)|} & si \quad a = a^*, \\ \frac{\epsilon}{|A(s)|} & si \quad a \neq a^*, \end{cases}$$

es una distribución de probabilidad válida, donde |A(s)| es el número de acciones para el estado $s, \epsilon < 1$ es un número positivo pequeño, y a^* es la acción óptima (decisión greedy) para el estado s. ¿Hay que pedir alguna condición sobre ϵ ?

Ejercicio 3

Se dice que una política π es ϵ – soft si $\pi(a|s) \geq \frac{\epsilon}{|A(s)|} \quad \forall \ a \neq a^* \ y \ \forall \ s$. Demostrar que la política ϵ – Greedy $\pi'(a|s) \geq \frac{\epsilon}{|A(s)|}$ (definida en el Ejercicio 1) es igual o mejor que cualquier política ϵ – soft, es decir $v_{\pi \prime}(s) \geq v_{\pi}(s) \ \forall \ s$.

Ejercicio 4

Dada una trayectoria de acciones y estados $A_t, S_{t+1}, A_{t+1}, \ldots, S_T$ en un proceso de decisión Markoviano (MDP) bajo la política $\pi(a|s)$, demostrar que la probabilidad conjunta de esa trayectoria se puede escribir como:

$$P[S_t, A_t, S_{t+1}, A_{t+1}, \dots, S_T] = \prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1} | S_k, A_k)$$

Nota: considere $P[S_t] = 1$

Ejercicio 5

Usando el resultado del Ejercicio 4, demostrar que el *importance-sampling ratio* correspondiente a la aplicación del método *off-policy* es:

$$\rho_{t:T-1} = \prod_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{b(A_k|S_k)}$$

APRENDIZAJE REFORZADO

Ejercicio 6

Demostrar la fórmula de la implementación incremental de un promedio ponderado. Es decir, el promedio ponderado

$$V_n = \frac{\sum_{k=1}^{n-1} W_k G_k}{\sum_{k=1}^{n-1} W_k},$$

puede calcularse incrementalmente con la fórmula:

$$V_{n+1} = V_n + \frac{W_n}{C_n} [G_n - V_n],$$

$$\operatorname{con} C_{n+1} = C_n + W_{n+1}.$$