COGS 118A - Final Project

THE FIFA TRANSFERMARKET PREDICTION NOTEBOOK

Group members

- Khalid Ade
- Pablo Moreno
- Sujay Srinivasan
- Daniel Vega Lojo
- Jared Chen

Abstract

Association Football (or soccer) is a worldwide sport played by over 250 million players in over 250 countries^[1]. In fact, football is the world's sport, and the most popular across the globe in terms of fans as well. Football has a huge transfer market in which players are transferred across teams for up to hundreds of millions of euros. To put the amount of money that circulates in the global football market into perspective, squad values of top teams like Manchester United surpass billions of euros $^{[2]}$. The market value of a player accounts for a huge role in how teams conduct their business in regards to transfers. Our goal is to help these clubs make the right investments in players they want to obtain, especially when spending huge amounts of money. More specifically, we want to accurately predict the market value of players so that clubs aren't overpaying, or underselling their valued players. Plenty of factors play a role in determining the market value of a player. The most important factors include age, performance for club and national team (measured in stats such as goals, assists, tackles etc.) for a player in that position, experience (measured by number of seasons in top leagues), marketing value (measured by social media presence), and injury vulnerability^[2].

Background

The global football transfer market involves the circulation of billions of euros. Many top European clubs have spent hundreds of millions of dollars to bolster their

respective teams. For example teams like Manchester United, Manchester City, and PSG have spent almost billions of euros to sign players to help their teams' success in their respective leagues and on the European stage^[6]. There is no doubt that decisions involving huge sums of such money should be carefully analyzed so that clubs can maximize success in both the business side as well as the performance side of their respective clubs. Transfermarkt is an online platform for transfers, market values, rumors, and stats. The business model consists of, in addition to sports journalistic reporting, the profiles of the players and discussion forums on the performance and market values of individual soccer players, teams and leagues [4]. Frequently being discussed in sports science and sports economics literature over the past few years, the so-called "market values" ("Marktwerte") have s to become the center of media attentioMultipleous studies have shown positive correlations between the predicted market values on Transfermarkt and the actual player income.'It's reportedly known that players who are in contract negotiations would sometimes refer to Transfermarkt values as baselines for their salary expectations^[4]. The "market values" can also be used as a measure of marketability; a higher marketability helps a player secure partnerships through sponsorship contracts. The age and performance statistics on Transfermarkt are also particularly useful in that player observers can identify young players and predict the development opportunities^[4].

The open forums of Transfermarkt allow users to discuss and predict individual players' market values and performance. Previous studies on collective intelligence^[2] have used OLS regression models to evaluate the accuracy of predictions. It is shown that "forecasts of international soccer results based on the crowd's valuations are more accurate than those based on standard predictors."^[3] This reveals a potential possibility that distributed intelligence is a contributing factor to the accuracy of predictions. We want to know if supervised machine learning algorithms, as another form of distributed intelligence, can make accurate predictions just as humans do. More particularly, we want to use machine learning models like OLS to predict market value of players across the football world.

Problem Statement

Given the considerable number of players in football across the globe, it can get tedious to know which players have potential and are worth investing in. Do they have high performance for a player in their position? Are they playing for a renowned club or in a renowned league? Is their behavior respectable and are they marketable?

These are the kinds of questions top clubs use when considering paying the big bucks for players. The problem we are trying to tackle is predicting the market value of players (in euros) using stats that are important when investing in a player such as goals, assists, and marketability.

Data

The dataset^[7] is composed of 7 different subsets, we will be using 4 of the datasets. Since each feature resides in different sets.

- Appearances.csv
 - Player ID, Game ID, Appearance ID, Competition ID, Player club ID, Assist, Minutes Played, Yellow cards, Red Cards
- Clubs.csv
 - Club ID, Name, Pretty_name, Domestic_competition_id, Total_market_value, Squad_size, Average_age, Foreigners_numbers, Foreigners_percentage, National_team_players, Stadium_name, Stadium_seats, Net_transfer_record, Coach_name, URL
- Competitions.csv
 - Competition_id, Name, type, country_id, country_name, domestic_league_code, confederation, URL.
- Games.csv
 - Game_id, Competition_code, Season, Round, Date, Home_club_id,
 Away_club_id, Home_club_goals, away_club_goals, Home_club_postions,
 Away_club_postion, Stadium, Attendance, Referee, URL
- Leagues.csv
 - League_id, name, Confederation
- Player_valuations.csv
 - Player_id, Date, Market_value
- Players.csv
 - Player_id, Last_season, Current_club_id, Name, Pretty_name, country_of_birth, Country_of_citizenship, Date_of_birth, Position, Sub_position, Foot, Height_in_cm, Market_value_in_gbp, Highest_market_value_in_gbp, URL

- What an observation consists of: We are trying to use the variables we assume to be the most important and independent from each other. We decided on
 - Club, Nationality, Minutes, Goals, Assist, Age, Conduct, Years Played, Position, Physicality.
- What some critical variables are, how they are represented: We want variables
 which have the highest co-variance with each other. The metric should handle
 most features as unique features.
- Any special handling, transformations, cleaning, etc will be needed: There will be club names, and probably inferences in our data. Such as Media Presence or Potential, these are metrics which can be objective to the person. How popular is the player that we are analyzing?

We are still going to be in search of more databases that might have different descriptive data that we might like to see how organizations search for talent. We can use what they might describe as their most sought out characteristics.

For simplicity we can also assume that all players have no contracts for their evaluation and are based solely on performance and the other variables mentioned.

```
import sys
```

```
import re
    r = re.escape

def _re_replace(s : str, to_replace : dict):
    for p, r in to_replace.items():
        s = re.compile(p).sub(r, s)
    return s
```

```
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_formats = ['svg']
```

```
!{sys.executable} -m pip install --quiet pandas
import pandas as pd
```

'c:\Users\DanDan' is not recognized as an internal or external command,
operable program or batch file.

```
!{sys.executable} -m pip install --quiet seaborn
import seaborn as sns
```

'c:\Users\DanDan' is not recognized as an internal or external command, operable program or batch file.

```
# OLS using statsmodels
!{sys.executable} -m pip install --quiet statsmodels numpy
import statsmodels.api as sm
import numpy as np
```

'c:\Users\DanDan' is not recognized as an internal or external command, operable program or batch file.

```
!{sys.executable} -m pip install --quiet sklearn
!{sys.executable} -m pip install --quiet patsy
import sklearn as skl
import sklearn.linear model
from sklearn.compose import ColumnTransformer
from sklearn.datasets import fetch openml
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split, GridSearchCV
from sklearn.metrics import mean squared error
from sklearn.linear model import Lasso
from sklearn.linear model import ElasticNet
from sklearn.model selection import KFold
import scipy.stats as stats
import patsy
```

'c:\Users\DanDan' is not recognized as an internal or external command,
operable program or batch file.
'c:\Users\DanDan' is not recognized as an internal or external command,
operable program or batch file.

```
data = {
   name: pd.read csv(
       file,
        engine = 'c',
        low memory = True,
       memory map = False, # set `False` to load into memory
    ) for name, file, kwargs in [
        ('appearances', 'data/appearances.csv', {
            'dtype': {
                'player id': 'object',
                'game id': 'object',
                'appearance_id': 'object',
                'competition id': 'object',
                'player club id': 'object'
            }
        }),
        ('clubs', 'data/clubs.csv', {
            'dtype': {
```

```
'club id': 'object'
            }
        }),
        #('competitions', 'data/competitions.csv', {}),
        ('games', 'data/games.csv', {
            'dtype': {
                'game id': 'object'
        }),
        #('leagues', 'data/leagues.csv', {}),
        ('players', 'data/players.csv', {
            'parse_dates': ['date_of_birth'],
            'dtype': {
                'player_id': 'object',
                'country of birth': 'category',
                'country of citizenship': 'category',
                'position': 'category',
                'sub_position': 'category'
            }
        }),
        ('player_valuations', 'data/player_valuations.csv', {
            'parse_dates': ['date'],
            'dtype': {
                'player id': 'object'
        })
   ]
}
```

```
data = {}
```

club_name

club_id	
1032	Fc Reading
2323	Orduspor
1387	Acn Siena 1904
3592	Kryvbas Kryvyi Rig
1071	Wigan Athletic
•••	
1269	Pec Zwolle
200	Fc Utrecht
317	Fc Twente Enschede
3948	Royale Union Saint Gilloise
1304	Heracles Almelo

801 rows × 1 columns

season

game_id	
2244388	2012
2219794	2011
2244389	2012
2271112	2012
2229332	2012
•••	•••
3646190	2021
3646188	2021
3655616	2021
3655629	2021

56028 rows × 1 columns

```
# appearances
data['appearances'] = _data_['appearances'].copy()
data['appearances'] = data['appearances'].loc[
    :, -data['appearances'].columns.isin([
        'appearance_id',
        'competition id'
    ])
data['appearances'].rename(
   columns = {'player_club_id': 'club_id'},
    inplace = True
data['appearances'] = (
   data['appearances']
        .merge(
            data['games'],
            on = 'game_id',
            copy = False
        ).drop(columns = 'game_id')
        .merge(
            data['clubs'],
            on = 'club_id',
            copy = False
        ).drop(columns = 'club_id')
```

```
data['appearances'] = (
   data['appearances']
        .groupby(['player_id', 'season'])
        .agg({
            **{
                c: 'sum' for c in [
                    'goals',
                    'assists',
                    'minutes_played',
                    'yellow_cards',
                    'red_cards'
                ]
            },
            'club_name': 'last'
        })
        .reset_index('season')
data['appearances']
```

		season	goals	assists	minutes_played	yellow_cards	red_cards	club_name
р	layer_id							
	10	2014	32	18	4578	12	0	Lazio Rom
	10	2015	16	14	3428	6	0	Lazio Rom
	100009	2014	0	0	5576	8	0	Kuban Krasnodar
	100009	2015	2	2	4512	12	0	Kuban Krasnodar
	100009	2016	0	0	1260	6	0	Anzhi Makhachkala
	•••	•••		•••				
	99923	2014	0	2	832	4	0	Cagliari Calcio
	99924	2016	0	2	1824	6	0	Ca Osasuna
	99977	2014	0	0	194	0	0	Rcd Mallorca
	99977	2015	10	6	3046	2	0	Royal Excel Mouscron
	99977	2019	0	0	716	0	0	Caykur Rizespor

54216 rows × 7 columns

```
data['player_valuations'] = _data_['player_valuations'].copy()

data['player_valuations']['season'] = (
    pd.DatetimeIndex(data['player_valuations']['date']).year
)
data['player_valuations'].drop(columns = 'date', inplace = True)

data['player_valuations'] = (
    data['player_valuations']
        .groupby(['player_id', 'season'])
        .agg({'market_value': 'mean'})
        .reset_index('season')
)
data['player_valuations'].rename(
    columns = {'market_value_in_gbp': 'market_value'},
    inplace = True
)

data['player_valuations']
```

season market_value

player_id

10	2004	6300000.0
10	2005	10800000.0
10	2006	22500000.0
10	2007	20700000.0
10	2008	18000000.0
•••	•••	
99977	2018	990000.0
99977	2019	720000.0
99977	2020	562500.0
99977	2021	495000.0
99977	2022	540000.0

181182 rows × 2 columns

```
'current club id',
        'market_value_in_gbp',
        'highest_market_value_in_gbp',
        'country_of_birth',
        'url',
        'foot'
   ])
data['players'].rename(
   columns = {
        'pretty_name': 'name',
        'height_in_cm': 'height',
        'country_of_citizenship': 'nationality'
   },
   inplace = True
data['players']['sub_position'] = (
   data['players']['sub position'].cat
        .rename_categories(
            lambda s: (
                _re_replace(s, {
                   fr'''^(.*){_r(' - ')}(.*)$''': r'\2'
                })
                .title()
            )
        )
data['players'].set_index('player_id', inplace = True)
data['players']
```

	name	nationality	date_of_birth	position	sub_position	height
player_id						
254016	Arthur Delalande	France	1992-05-18	Midfield	Central Midfield	186
51053	Daniel Davari	Iran	1988-01-06	Goalkeeper	Goalkeeper	192
31451	Torsten Oehrl	Germany	1986-01-07	Attack	Centre- Forward	192
44622	Vladimir Kisenkov Russia		1981-10-08	Defender	Right-Back	182
30802	0802 Oscar Diaz Spain		1984-04-24	Attack	Centre- Forward	183
•••						•••
462285	Fabian De Keijzer	Netherlands	2000-05-10	Goalkeeper	Goalkeeper	193
368612	Merveille Bokadi	DR Congo	1996-05-21	Defender	Centre-Back	186
408574	408574 Joey Veerman Netherlands		1998-11-19	Midfield	Central Midfield	185
364245	Jordan Teze	Netherlands	1999-09-30	Defender	Centre-Back	183
575367	Richard Ledezma	United States	2000-09-06	Attack	Attacking Midfield	174

23682 rows × 6 columns

```
# final dataset
data['all'] = data['players'].merge(
   data['player_valuations'].merge(
       data['appearances'],
       on = ['player_id', 'season'],
       copy = False
    ),
   on = 'player_id',
   copy = False
data['all']['age'] = (
   pd.to_datetime(data['all']['season'], format = '%Y', utc = True)
       - pd.to_datetime(data['all']['date_of_birth'], utc = True)
).astype('timedelta64[Y]')
data['all'].drop(columns = 'date_of_birth', inplace = True)
data['all'].dropna(axis = 'index', inplace = True)
data['all']
```

	name	nationality	position	sub_position	height	season	market_value
player_id							
9800	Artem Milevskyi	Ukraine	Attack	Centre- Forward	189	2020	90000.0
43084	Gaetano Berardi	Switzerland	Defender	Right-Back	179	2020	360000.0
230826	Gennaro Acampora	Italy	Midfield	Central Midfield	174	2020	360000.0
198087	Matteo Ricci	Italy	Midfield	Defensive Midfield	176	2020	1530000.(
110689	Deniz Mehmet	Turkey	Goalkeeper	Goalkeeper	192	2020	68000.0
•••	•••	•••		•••			
364245	Jordan Teze	Netherlands	Defender	Centre-Back	183	2019	420000.0
364245	Jordan Teze	Netherlands	Defender	Centre-Back	183	2020	1102500.(
364245	Jordan Teze	Netherlands	Defender	Centre-Back	183	2021	5400000.(
575367	Richard Ledezma	United States	Attack	Attacking Midfield	174	2020	658250.(
575367	Richard Ledezma	United States	Attack	Attacking Midfield	174	2021	765000.0

50781 rows × 14 columns

Evaluation

```
data['all'][data['all'].isna().any(axis = 1)]
```

name nationality position sub_position height season market_value goals player_id

```
data['all'].dtypes
```

name	object
nationality	category
position	category
sub_position	category
height	int64
season	int64
market_value	float64
goals	int64
assists	int64
minutes_played	int64
yellow_cards	int64
red_cards	int64
club_name	object
age	float64
dtype: object	

data['all'].describe()

	height	season	market_value	goals	assists	minutes
count	50781.000000	50781.000000	5.078100e+04	50781.000000	50781.000000	50781
mean	180.794628	2017.380063	3.630890e+06	3.880546	2.949883	2805
std	17.703409	2.318805	8.274637e+06	7.352176	4.793814	2103
min	0.000000	2013.000000	9.000000e+03	0.000000	0.000000	2
25%	178.000000	2015.000000	3.600000e+05	0.000000	0.000000	884
50%	182.000000	2017.000000	9.000000e+05	0.000000	2.000000	2566
75%	187.000000	2019.000000	3.150000e+06	4.000000	4.000000	4410
max	206.000000	2021.000000	1.800000e+08	122.000000	62.000000	10122

```
pd.DataFrame(data['all']['sub_position'].unique())
```

```
0
      Centre-Forward
 1
           Right-Back
2
      Central Midfield
3 Defensive Midfield
4
          Goalkeeper
5
         Centre-Back
    Attacking Midfield
6
7
         Right Winger
8
          Left Winger
9
            Left-Back
10
         Left Midfield
11
              Midfield
12
        Second Striker
        Right Midfield
13
14
               Attack
15
             Defender
```

```
data['all'][data['all']['name'] == 'Cristiano Ronaldo']
```

name nationality position sub_position height season market_value go

Forward

Centre-

Forward

Centre-

Forward

187

187

187

2019

2020

2021

74250000.0

54000000.0

39000000.0

8198	Cristiano Ronaldo	Portugal	Attack	Centre- Forward	187	2014	96000000.0
8198	Cristiano Ronaldo	Portugal	Attack	Centre- Forward	187	2015	105000000.0
8198	Cristiano Ronaldo	Portugal	Attack	Centre- Forward	187	2016	99000000.0
8198	Cristiano Ronaldo	Portugal	Attack	Centre- Forward	187	2017	90000000.0
8198	Cristiano Ronaldo	Portugal	Attack	Centre- Forward	187	2018	96000000.0
2102	Cristiano	Portugal	Attack	Centre-	187	2010	7/250000 0

Attack

Attack

Attack

Portugal

Portugal

Portugal

One hot encoding

Ronaldo

Cristiano

Ronaldo

Cristiano

Ronaldo

8198

8198

8198

player_id

```
# one hot encode categorical features
data['all_onehot'] = pd.get_dummies(data['all'], columns = [
    'position',
    'sub_position',
    'nationality',
    'club name'
])
data['all_onehot']
```

name height season market_value goals assists minutes_played yello

player_id							
9800	Artem Milevskyi	189	2020	90000.0	0	0	720
43084	Gaetano Berardi	179	2020	360000.0	0	0	228
230826	Gennaro Acampora	174	2020	360000.0	2	4	1248
198087	Matteo Ricci	176	2020	1530000.0	0	6	4880
110689	Deniz Mehmet	192	2020	68000.0	0	0	1080
•••		•••	•••		•••		
364245	Jordan Teze	183	2019	420000.0	0	0	360
364245	Jordan Teze	183	2020	1102500.0	0	2	7494
364245	Jordan Teze	183	2021	5400000.0	2	8	5260
575367	Richard Ledezma	174	2020	658250.0	0	2	234
575367	Richard Ledezma	174	2021	765000.0	2	0	88

50781 rows × 588 columns

```
data['all onehot'].dtypes
                                  object
name
                                   int64
height
season
                                   int64
market_value
                                 float64
goals
                                   int64
club_name_Yeni Malatyaspor
                                   uint8
club_name_Zenit St Petersburg
                                  uint8
club_name_Zirka Kropyvnytskyi
                                   uint8
club_name_Zorya Lugansk
                                   uint8
club name Zska Moskau
                                   uint8
Length: 588, dtype: object
data['all_onehot'].describe()
```

	height	season	market_value	goals	assists	minutes
count	50781.000000	50781.000000	5.078100e+04	50781.000000	50781.000000	50781
mean	180.794628	2017.380063	3.630890e+06	3.880546	2.949883	2805
std	17.703409	2.318805	8.274637e+06	7.352176	4.793814	2103
min	0.000000	2013.000000	9.000000e+03	0.000000	0.000000	2
25%	178.000000	2015.000000	3.600000e+05	0.000000	0.000000	884
50%	182.000000	2017.000000	9.000000e+05	0.000000	2.000000	2566
75%	187.000000	2019.000000	3.150000e+06	4.000000	4.000000	4410
max	206.000000	2021.000000	1.800000e+08	122.000000	62.000000	10122

8 rows × 587 columns

data['all_onehot'][data['all_onehot']['name'] == 'Lionel Messi']

	name	height	season	market_value	goals	assists	minutes_played	yellow_c
player_id								
28003	Lionel Messi	169	2014	108000000.0	116	62	10122	
28003	Lionel Messi	169	2015	108000000.0	82	48	8458	
28003	Lionel Messi	169	2016	108000000.0	108	40	8904	
28003	Lionel Messi	169	2017	108000000.0	90	40	8936	
28003	Lionel Messi	169	2018	156000000.0	102	44	8048	
28003	Lionel Messi	169	2019	130500000.0	60	50	7262	
28003	Lionel Messi	169	2020	95400000.0	78	30	8746	
28003	Lionel Messi	169	2021	66000000.0	22	26	5384	

8 rows × 588 columns

Exploratory Data Analysis

```
data['all eda'] = data['all'].copy()
data['all eda']['log market value'] = np.log(data['all eda']['market value
df highest market value players = data['all eda'].nlargest(n = 1, columns
df highest market value players
           name nationality position sub_position height season market_value go
player_id
           Kylian
                                           Centre-
 342229
                                                     178
                                                            2019
                                                                  180000000.0
                     France
                              Attack
         Mbappe
                                          Forward
df highest market value = data['all eda'].loc[data['all eda']['name'].isi
df highest market value
           name nationality position sub_position height season market_value go
player_id
           Kylian
                                           Centre-
 342229
                                                     178
                                                            2015
                                                                       45000.0
                     France
                              Attack
         Mbappe
                                          Forward
           Kylian
                                           Centre-
 342229
                                                                     1518750.0
                                                     178
                                                            2016
                     France
                              Attack
         Mbappe
                                          Forward
           Kylian
                                          Centre-
 342229
                                                     178
                                                                    40500000.0
                     France
                              Attack
                                                            2017
         Mbappe
                                          Forward
                                          Centre-
           Kylian
 342229
                     France
                              Attack
                                                     178
                                                            2018
                                                                   138600000.0
         Mbappe
                                          Forward
                                          Centre-
           Kylian
 342229
                     France
                              Attack
                                                     178
                                                            2019
                                                                   180000000.0
         Mbappe
                                          Forward
           Kylian
                                           Centre-
 342229
                     France
                              Attack
                                                     178
                                                            2020
                                                                   162000000.0
         Mbappe
                                          Forward
                                          Centre-
           Kylian
 342229
                     France
                                                     178
                                                            2021
                                                                   144000000.0
                              Attack
         Mbappe
                                          Forward
_ = sns.barplot(
    data = df highest_market_value,
    x = 'season', y = 'market value'
).set(title = 'Player Market Value Over the Years')
plt.xticks(rotation = 45, ha = 'right', rotation_mode = 'anchor')
```

```
plt.show()
```



```
_ = sns.displot(
    data = data['all_eda'].reset_index(),
    x = 'market_value',
    bins = 50
).set(title = 'Distribution of Market Values')

plt.show()
```



```
_ = sns.boxplot(data = data['all_eda'][[
    'goals',
    'assists',
    'yellow_cards',
    'red_cards'
]]).set(title = '')
```



```
_ = sns.histplot(
   data = data['all_eda'].reset_index(), x = 'height',
   bins = 100
).set(title = 'Distribution of Height')
```


Proposed Solution

Packages:

- sklearn (scikit-learn)
- StatsModel
- Seaborn
- Ordinary Least square regression: statsmodels.api

We believe that we can take the characteristics football clubs may regard to be the most important in the dataset and use those features to evaluate players. Those can be our core information in order to use regression analysis. If able to determine a certain cluster for the data set depending on the position and attributes. We can compare the players in the data set with the new data. We will be using OLS (Ordinary Least Squares).

We have to start with the most important step which is data cleaning and EDA analysis in order to get more accurate results, Matrix transformation with the numpy library. In order to increase covariance with variables, we can use dimension reduction techniques. Next we can normalize the data sets in order to not get skewed by one particular feature. Dealing with values missing or if we need to have numeric values for non-numeric data (i.e popularity, health, position).

Our comparison of errors will be coming from the Transfermrket.com website as it is updated everyday to evaluate different players. We can get the player's information to get a percent error or a total error for our evaluations. If we can, we will use the RMSE (Root mean square error) or Mean Absolute Values of our model prediction.

Evaluation Metrics

We will be using an OLS regression model and the evaluation techniques we are considering are RMSE and Euclidean distance. A possible evaluation metric we will use is RMSE or Mean Absolute Value of Errors. It is derived by calculating the difference between the estimated and actual value, square those results, then calculate the mean of those results. The formula for RMSE is

```
\ \text{RMSE} = \sqrt{\frac{\sum_{i = 1}^{N}\left(\text{Yredicted}_{i} - \text{Actual}_{i}\right)^{2}}{N}} $$
```

Results

Subsection 1

We wanted to start by analyzing which data variables are important and correlate with each other using a heat map. The heat map will allow us to determine which are important to keep and also the pair plot will show the correlation between the variables.


```
_ = sns.pairplot(data['all'][:1500].reset_index())
```

