3) (25 points) Two balls swinging in circles

Two balls, each of mass M, are tracing out horizontal circular paths. An ideal rope of length L connects the first ball to the top of a stationary pole, and the second ball is connected to the first ball by a second rope of length L, as shown in the diagram. The inner rope forms an angle of Θ_1 with the vertical, and the outer rope forms an angle of Θ_2 with the vertical.

- a) If it takes a time τ for the balls to make one complete revolution, what is the speed v_2 of the *outer* ball (the faster one) as a function of L, θ_1 , θ_2 , and τ ?
- b) What is the *magnitude and direction* of the acceleration a_2 of the outer ball as a function of L, Θ_1 , Θ_2 , and τ ?
- c) What is the tension T_2 in the *outer* rope as a function of M and Θ_2 ?
- d) What is the tension T_1 in the *inner* rope as a function of M and Θ_1 ?
- e) Find an expression for the tension T_2 in the *outer* rope as a function of v_2 . Your answer might also depend on L, M, Θ_1 , and Θ_2 .

