CH 107 Tutorial 3

Solve these problems BEFORE the tutorial session

- 1. The Schrödinger equation for a particle of mass m constrained to move on a circle of radius a is given by $-\frac{\hbar^2}{2I}\frac{d^2\psi(\theta)}{d^2\theta}=E_n\psi(\theta)$, where $I=ma^2$ is the moment of inertia and θ is the angle that describes the position of the particle on the circular ring.
 - (a) Suggest an acceptable solution
 - (b) Using appropriate boundary conditions, obtain the expression for energies $E_{\rm n}$
 - (c) What are the permissible values of quantum number (n)?
- 2. Evaluate the normalization constant *A* for 3D rigid rotor wavefunction $Y_1^0 = ACos\theta$
- 3. Check whether the normalized 3D rigid rotor wavefunction: Y_1^0 (in Q2) is an eigenfunction of L^2 (square of total angular momentum) operator. If so, what is the eigenvalue? Given, $L^2 = -\hbar^2 \left[\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\varphi^2} \right]$
- 4. a) Why is it necessary to use spherical polar coordinates to solve the time-independent Schrödinger equation for hydrogen atom?
 - b) Both the rigid rotor and the H-atom are 3D systems (spatial coordinates). However, we require three quantum numbers to describe the eigenstates of H-atom, while only two are necessary to specify the states of rigid rotor. *Justify!*
- 5. Express the Laplacian operator of H-atom in spherical polar coordinates ($\nabla^2_{r\theta\phi}$ in relative coordinates) in terms of the square of the total angular momentum operator (L^2) of 3D rigid rotor, and other terms which do not involve angular coordinates.

Additional Question for students to practice (not to be done during tutorial 3):

- 6. Derive the formula for the volume element in spherical polar coordinates
- 7. Verify whether the normalized 3D rigid rotor wavefunctions: $Y_1^{\pm 1} = \sqrt{3/8\pi} \cdot Sin\theta \cdot \exp(\pm i\varphi)$ and $Y_2^0 = \sqrt{5/16\pi} \left(3\cos^2\theta 1\right)$ are eigenfunctions of L^2 and L_z . What are the eigenvalues?
- 8. Can (orbital) angular momentum for the electron in H-atom be oriented exactly along the z-axis? Why or why not.