

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

REDES NEURAIS ARTIFICIAIS ATIVIDADES 1 e 3 - PARTE 2: Problema NãoLinearmente Separável e Aproximação Polinomial

Aluna: Priscila Aparecida Dias Nicácio

Professores: Prof. Antônio Braga e Prof. Frederico Gualberto.

Sumário

1.	INTRODUÇÃO	3
2.	FUNDAMENTAÇÃO TEÓRICA	3
3.	RESOLUÇÃO DA ATIVIDADE 1 - PARTE 2	5
3.1	CÓDIGO IMPLEMENTADO	6
3.2	ANÁLISE DOS RESULTADOS	7
3.3	RESOLUÇÃO DA ATIVIDADE 3 - PARTE 2	8
3.4	RESULTADOS	9
3.5	CÓDIGO IMPLEMENTADO PARA 100 AMOSTRAS	12
3.6	RESULTADOS	14
3.7 ANÁLISE DOS RESULTADOS		17
4.	CONCLUSÃO	17
5.	REFERÊNCIAS	18

1. INTRODUÇÃO

A classificação de padrões e a aproximação de funções são problemas centrais em aprendizado de máquina e modelagem matemática. Em muitos casos, os dados não são linearmente separáveis, não é possível traçar uma linha reta (ou hiperplano em dimensões superiores) que separe perfeitamente as classes.

Problemas não-linearmente separáveis exigem técnicas que transformem os dados em um espaço no qual se tornem linearmente separáveis (BISHOP, 2006; HASTIE; TIBSHIRANI; FRIEDMAN, 2009; DUDA; HART; STORK, 2001).

Neste estudo, há dois casos complementares: Classificação não-linearmente separável: pontos distribuídos em um padrão circular, com uma classe localizada dentro do círculo (classe 0) e outra fora dele (classe 1).

Aplicou-se projeção não-linear baseada na distância ao centro, $z = \sqrt{x^2 + y^2}$, transformando o problema original em um problema linearmente separável em uma dimensão, permitindo o uso de métodos lineares de classificação.

Na aproximação polinomial houve a modelagem de uma função geradora $f_g(x)$ a partir de amostras $D = \{(x_i, y_i)\}_{i=1}^N$.

Um polinômio de grau p é representado por: $p(x) = w_p x^p + w_{p-1} x^{p-1} + \dots + w_1 x + w_0$ onde x é a variável de entrada e w_1 os coeficientes do polinômio.

O objetivo é determinar w_1 de forma que $p(x) \approx y_i$ para todos os pontos de D, minimizando o erro quadrático: $E(\Omega) = \sum_{i=1}^{N} (y_i - p(x_i))^2$ ou, equivalentemente, resolvendo o sistema matricial: $H\Omega = y$ onde H é a matriz de Vandermonde, Ω o vetor de coeficientes e y o vetor de observações.

A solução que minimiza o erro quadrático é obtida usando a pseudoinversa H^+ : $\Omega = H^+$ y.

Apresentou-se o uso de projeção não-linear para linearizar um problema de classificação circular, bem como o ajuste polinomial de uma função quadrática com ruído gaussiano, variando o grau do polinômio de 1 a 8 e o número de amostras (20 e 100). Também foram analisados os fenômenos de underfitting e overfitting, relacionando-os ao grau do polinômio e à quantidade de dados.

2. FUNDAMENTAÇÃO TEÓRICA

Os classificadores lineares, como regressão logística ou perceptrons, funcionam bem quando os dados podem ser separados por uma linha ou hiperplano.

Quando as classes apresentam distribuições complexas, a separação linear direta não é possível, exigindo transformações não-lineares.

Para o problema circular, aplicamos a função: $z = \sqrt{x^2 + y^2}$ que mede a distância de cada ponto ao centro do círculo. Esta transformação projeta os dados em um espaço 1D, permitindo que a separação entre classes seja realizada por um simples limiar.

Técnicas como o kernel trick em SVMs utilizam o mesmo princípio, projetando dados em espaços de maior dimensão para torná-los linearmente separáveis.

A aplicação de funções não-lineares simples, como a distância ao centro de um círculo, permite que problemas complexos se tornem lineares (SCHÖLKOPF; SMOLA, 2002).

A projeção não-linear evidência claramente a separação das classes, demonstrando como funções simples podem resolver problemas complexos. Para o ajuste polinomial, a matriz H (Matriz de Vandermonde H) é construída com os termos x_i^j do polinômio até grau p, permitindo que o ajuste linear via mínimos quadrados encontre os coeficientes que melhor aproximam a função geradora.

A solução usando a pseudoinversa H^+ fornece a minimização do erro quadrático mesmo em sistemas sobredeterminados ou singulares (GOLUB; VAN LOAN, 2013; NOCEDAL; WRIGHT, 2006).

$$\mathbf{H} = \begin{bmatrix} x_1^p & x_1^{p-1} & \cdots & x_1 & 1 \\ x_2^p & x_2^{p-1} & \cdots & x_2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_N^p & x_N^{p-1} & \cdots & x_N & 1 \end{bmatrix}$$

Cada coluna representa uma dimensão do espaço polinomial, permitindo que o ajuste linear via mínimos quadrados encontre os coeficientes ω que melhor aproximam a função geradora.

A pseudoinversa H^+ fornece a solução de mínimos quadrados mesmo quando o sistema é sobredeterminado (N > p +1) ou singular: $\Theta = H^+$ y garantindo a minimização da soma dos erros quadráticos entre observações e previsões.

Underfitting ocorre quando o grau do polinômio é baixo, impedindo que ele capture a tendência da função. Overfitting ocorre quando o grau do polinômio é alto, fazendo-o seguir o ruído das amostras.

A quantidade de amostras influencia diretamente esses fenômenos, sendo que mais pontos reduzem a sensibilidade ao ruído (HASTIE; TIBSHIRANI; FRIEDMAN, 2009; MONTGOMERY; PECK; VINING, 2012). Bom ajuste: polinômio que representa corretamente a função subjacente sem seguir o ruído.

O número de amostras N influencia diretamente esses fenômenos: mais pontos reduzem a sensibilidade ao ruído, diminuindo o overfitting.

3. RESOLUÇÃO DA ATIVIDADE 1 - PARTE 2

A atividade consiste em entender e aplicar projeções não-lineares para transformar um problema de classificação não-linear em linearmente separável. Deve-se analisar um conjunto de pontos de duas classes (vermelha e preta) e escolher uma ou duas funções não-lineares (como funções radiais, circulares ou combinações de retas) que permitam separar claramente as duas classes. Em seguida, implementar essa projeção, gerar o gráfico da superfície de separação no espaço original e mostrar também os pontos projetados no novo espaço, destacando como a transformação torna o problema linearmente separável.

Figura 1 – Dados originais (não-linearmente separáveis), no espaço original os pontos em vermelho pertencem à classe positiva e pontos em preto pertencem à classe negativa.

```
x = seq(-1,1,by = 0.1)
y = seq(-1,1,by = 0.1)
create_grid <- expand.grid(x,y)

circle <- function(x,y) {
   return(sqrt(x^2+y^2))
}

raio = 0.6

classe = 1*(circle(create_grid$Var1,create_grid$Var2)>raio)
```

Figura 2 – Rotina que gerou os dados gerados em linguagem R.

Essa atividade contém um problema clássico de não-linearmente separável: os pontos pretos estão dentro de um círculo e os vermelhos fora. Para resolver, podemos criar uma projeção não-linear, por exemplo usando $z = \sqrt{x^2 + y^2}$, que transforma o problema circular em um problema linearmente separável em 1D.

3.1 CÓDIGO IMPLEMENTADO

```
import numpy as np
        import matplotlib.pyplot as plt
        # Criando os dados
        x = np.arange(-1, 1.1, 0.1)
        y = np.arange(-1, 1.1, 0.1)
        X, Y = np.meshgrid(x, y)
        X flat = X.ravel()
        Y flat = Y.ravel()
        # Função círculo
        def circle(x, y):
          return np.sqrt(x^{**}2 + y^{**}2)
        raio = 0.6
        classe = np.where(circle(X flat, Y flat) > raio, 1, 0) \# 1 = vermelho, 0 = preto
        # Visualizando os dados originais
        plt.figure(figsize=(6,6))
        plt.scatter(X flat[classe==1], Y flat[classe==1], color='red', label='Classe 1')
        plt.scatter(X flat[classe==0], Y flat[classe==0], color='black', label='Classe 0')
        plt.xlabel('X')
        plt.ylabel('Y')
        plt.title('Dados originais (não-linearmente separáveis)')
        plt.legend()
        plt.axis('equal')
        plt.show()
        # Projeção não-linear
        Z = circle(X flat, Y flat) # transf. os dados em 1D usando a distância ao centro
        # Visualizando os dados projetados
        plt.figure(figsize=(8,4))
        plt.scatter(Z[classe==1], np.zeros like(Z[classe==1]), color='red', label='Classe 1')
        plt.scatter(Z[classe==0], np.zeros like(Z[classe==0]), color='black', label='Classe 0')
        plt.axvline(x=raio, color='blue', linestyle='--', label='Frente de separação linear')
```

```
plt.xlabel('z = sqrt(x^2 + y^2)')
plt.title('Dados projetados (linearmente separáveis)')
plt.legend()
plt.show()
```

O código implementa a separação de um problema não-linearmente separável através de uma projeção simples. Primeiro, é criado um grid bidimensional para x e y, sobre o qual se define a função circular $z = \sqrt{x^2 + y^2}$, que mede a distância dos pontos ao centro. A partir disso, pontos dentro do círculo (z < 0.6) são classificados como classe 0 (pretos) e os fora como classe 1 (vermelhos). A transformação para o espaço unidimensional z torna o problema linearmente separável, já que a divisão das classes pode ser feita apenas com um limiar em z = 0.6. A visualização final mostra claramente a eficácia dessa projeção não-linear, revelando como uma fronteira circular no plano original se transforma em uma separação linear simples no espaço projetado.

3.2 ANÁLISE DOS RESULTADOS

O gráfico gerado mostra claramente a diferença entre os espaços antes e depois da projeção:

Figura 3 – Dados projetados (linearmente separáveis).

1. Espaço original (2D): os pontos da classe 0 (preto) estão agrupados no centro, enquanto os pontos da classe 1 (vermelho) estão distribuídos ao redor. Não existe uma linha reta que consiga separar as duas classes, caracterizando o problema como não-linearmente separável.

2. Espaço projetado (1D): após aplicar a projeção $z = \sqrt{x^2 + y^2}$, os dados foram transformados em uma dimensão, onde os pontos da classe 0 estão à esquerda do limiar z = 0.6 e os pontos da classe 1 estão à direita. Com isso, a separação linear se torna possível e visualmente evidente, demonstrando a eficácia da transformação.

Este resultado confirma que, para problemas com estrutura circular, a distância ao centro é uma característica discriminativa eficiente e pode ser utilizada para construir classificadores lineares simples, evitando complexidade desnecessária.

3.3 RESOLUÇÃO DA ATIVIDADE 3 - PARTE 2

A tarefa de aproximação polinomial consiste em gerar polinômios que estimem uma função geradora a partir de um conjunto de amostras ruidosas. Deve-se criar conjuntos de dados com no mínimo 10 amostras e depois ampliar para 100 amostras da função $fg(x) = 0.5x^2 + 3x + 10$ somada a ruído gaussiano, variando o grau do polinômio de 1 a 8. Para cada caso, é necessário calcular os coeficientes do polinômio usando a pseudoinversa da matriz de Vandermonde, plotar gráficos que mostrem a função original, as amostras e o polinômio ajustado, e analisar se ocorreu overfitting ou underfitting. Por fim, deve-se comparar como o número de amostras influencia a qualidade da aproximação.

3.3.1 CÓDIGO IMPLEMENTADO

```
import numpy as np
import matplotlib.pyplot as plt

# Configurações iniciais

np.random.seed(42) # para resultados reproduzíveis

N = 20 # número de amostras

x = np.linspace(-15, 10, N)

ruido = np.random.normal(0, 4, N) # ruído gaussiano (mean=0, sd=4)

y = 0.5*x**2 + 3*x + 10 + ruido # função geradora com ruído

# Para plotar suavemente os polinômios e função real

x_plot = np.linspace(-15, 10, 200)

y_real = 0.5*x_plot**2 + 3*x_plot + 10

# Ajuste polinomial

graus = range(1, 9) # polinômios do grau 1 ao 8

plt.figure(figsize=(20, 15))
```

```
for i, p in enumerate(graus, 1):
          # Ajuste polinomial
          coef = np.polyfit(x, y, p) # encontra os coeficientes w
          y poly = np.polyval(coef, x plot) # avalia o polinômio nos pontos para plot
          # Plotagem
          plt.subplot(3, 3, i)
          plt.scatter(x, y, color='red', label='Amostras')
          plt.plot(x plot, y real, color='black', label='Função geradora')
          plt.plot(x plot, y poly, color='blue', label=f'Polinômio grau {p}')
          # Anotação sobre underfitting/overfitting
          if p \le 2:
             nota = 'Underfitting'
          elif p \ge 6:
             nota = 'Overfitting'
          else:
             nota = 'Bom ajuste'
          plt.title(f'Grau {p} - {nota}')
          plt.xlabel('x')
          plt.ylabel('y')
          plt.legend()
          plt.tight layout()
          plt.show()
        # Observações
        print("Observações:")
        print("- Underfitting ocorre para grau 1 e 2: polinômio não consegue capturar a curva
quadrática.")
        print("- Bom ajuste ocorre para grau 3 a 5: segue bem a tendência da função geradora.")
        print("- Overfitting ocorre para grau 6 a 8: polinômio tenta passar exatamente por todos
os pontos, capturando o ruído.")
        3.4 RESULTADOS
```

Foram gerados os gráficos a seguir:

Figura 4 – Grau 1: Underfitting.

Figura 5 – Grau 2: Underfitting.

Figura 6 – Grau 3: Bom Ajuste.

Figura 7 – Grau 4: Bom Ajuste.

Figura 8 – Grau 5: Bom Ajuste.

Figura 9 – Grau 6: Overfitting.

Figura 10 – Grau 7: Overfitting.

Figura 11 – Grau 8: Overfitting.

O código gera 20 amostras da função $fg(x) = 0.5x^2 + 3x + 10$ com ruído gaussiano, ajusta polinômios de grau 1 a 8 usando least squares (np.polyfit); Plota cada polinômio, a função real e os pontos amostrados. Marca no título se o polinômio está em underfitting, bom ajuste ou overfitting e exibe observações sobre cada caso.

Figura 12 – Todos os casos gerados pelo código implementado.

- Underfitting ocorre para grau 1 e 2: polinômio não consegue capturar a curva quadrática.
- Bom ajuste ocorre para grau 3 a 5: segue bem a tendência da função geradora.
- Overfitting ocorre para grau 6 a 8: polinômio tenta passar exatamente por todos os pontos, capturando o ruído.

3.5 CÓDIGO IMPLEMENTADO PARA 100 AMOSTRAS

Na sequência, o processo para 100 amostras:

```
import numpy as np import matplotlib.pyplot as plt # Configurações iniciais np.random.seed(42) N = 100 \ \# \ n\'umero \ de \ amostras  x = np.linspace(-15, 10, N)  ruido = np.random.normal(0, 4, N)  y = 0.5*x**2 + 3*x + 10 + ruido \ \# \ função \ geradora \ com \ ruído
```

```
# Para plotar suavemente
x plot = np.linspace(-15, 10, 400)
y real = 0.5*x plot**2 + 3*x plot + 10
# Função para montar matriz H
def montar H(x, grau):
  """Constrói a matriz H para polinômio de dado grau"""
  H = np.vander(x, grau+1, increasing=True) # columns: x^0, x^1, ..., x^p
  return H
# Ajuste polinomial usando pseudoinversa
graus = range(1, 9)
plt.figure(figsize=(20, 15))
for i, p in enumerate(graus, 1):
  H = montar_H(x, p)
  w = np.linalg.pinv(H) @ y # pseudoinversa de H
  H plot = montar H(x plot, p)
  y poly = H plot @ w # avaliação do polinômio nos pontos para plot
  # Plotagem
  plt.subplot(3, 3, i)
  plt.scatter(x, y, color='red', label='Amostras')
  plt.plot(x_plot, y_real, color='black', label='Função geradora')
  plt.plot(x plot, y poly, color='blue', label=f'Polinômio grau {p}')
     # Anotação sobre underfitting/overfitting
  if p \le 2:
     nota = 'Underfitting'
  elif p \ge 7:
     nota = 'Overfitting'
  else:
     nota = 'Bom ajuste'
  plt.title(f'Grau {p} - {nota}')
  plt.xlabel('x')
  plt.ylabel('y')
  plt.legend()
plt.tight layout()
plt.show()
```

Observações

print("Observações com pseudoinversa:")

print("- Underfitting: grau 1 e 2.")

print("- Bom ajuste: grau 3 a 6.")

print("- Overfitting: grau 7 e 8, embora menos pronunciado devido ao maior número de amostras (100).")

3.6 RESULTADOS

Foram gerados os gráficos a seguir:

Figura 13 – Grau 1: Underfitting

Figura 14 – Grau 2: Underfitting.

Figura 15 – Grau 3: Bom Ajuste.

Figura 16 – Grau 4: Bom Ajuste.

Figura 17 – Grau 5: Bom Ajuste.

Figura 18 – Grau 6: Bom Ajuste.

Figura 19 – Grau 7: Overfitting.

Figura 20 – Grau 8: Overfitting.

Figura 21 – Todos os casos gerados pelo código implementado.

A matriz H é construída com np.vander(x, grau+1, increasing=True), de forma que cada coluna representa um termo do polinômio, desde o constante até o de grau p. A solução dos coeficientes é obtida pela pseudoinversa, np.linalg.pinv(H), que fornece H^+ e garante a minimização do erro quadrático. Para avaliar o polinômio ajustado em novos pontos, calcula-se $y_{polly} = H_{plot}@@$, onde H_{plot} é a matriz de Vandermonde construída para os pontos de visualização. Observa-se que, ao aumentar o número de amostras de 20 para 100, o overfitting é

reduzido: polinômios de grau elevado ainda apresentam oscilações, mas em menor intensidade, mostrando como a quantidade de dados suaviza o ajuste e melhora a generalização.

Abaixo as observações com pseudoinversa:

- Underfitting: grau 1 e 2.
- Bom ajuste: grau 3 a 6.
- Overfitting: grau 7 e 8, embora menos pronunciado devido ao maior número de amostras (100).

3.7 ANÁLISE DOS RESULTADOS

Amostras N = 20

- Grau 1-2: underfitting. Polinômio linear e quadrático simples não conseguem capturar a curvatura da função geradora $fg(x) = 0.5x^2 + 3x + 10$.
- Grau 3-5: bom ajuste. O polinômio segue bem a função quadrática e representa corretamente a tendência.
- Grau 6-8: overfitting. O polinômio oscila para passar por todos os pontos, capturando o ruído gaussiano das amostras.

O gráfico confirma a relação entre o grau do polinômio e o ajuste: graus intermediários são ideais para este número de amostras.

Amostras N = 100

- Grau 1-2: underfitting ainda presente, mas a tendência geral é mais visível devido ao maior número de pontos.
- Grau 3-6: bom ajuste. O polinômio consegue representar a função geradora com precisão, sem seguir o ruído.
- Grau 7-8: overfitting menos pronunciado. O aumento do número de amostras diminui a influência do ruído, suavizando as oscilações do polinômio de grau alto.

Esses resultados reforçam que mais amostras permitem polinômios mais complexos sem causar overfitting significativo.

4. CONCLUSÃO

O estudo do problema circular não-linearmente separável mostrou que a aplicação de uma projeção não-linear pode transformar dados complexos em um espaço linearmente separável. A função $z = \sqrt{x^2 + y^2}$ permitiu separar as classes de forma simples e intuitiva, evidenciando a importância de técnicas de transformação de dados em aprendizado de máquina. A principal contribuição deste trabalho é a demonstração de como problemas aparentemente difíceis podem ser simplificados com uma escolha adequada de características ou projeções, reforçando o papel da engenharia de características na construção de classificadores eficientes. O estudo mostrou que

a aproximação polinomial de uma função quadrática com ruído depende de dois fatores fundamentais:

- 1. Grau do polinômio p:
- o Baixo (p = 1,2) \rightarrow underfitting.
- o Médio (p = 3 − 5 ou p = 3 − 6) \rightarrow bom ajuste.
- o Alto $(p \ge 6) \rightarrow$ overfitting, mais evidente com poucas amostras.
- 2. Número de amostras N:
- o Poucas amostras amplificam o efeito do ruído, aumentando o overfitting.
- Muitas amostras reduzem a influência do ruído, permitindo que polinômios de grau alto ainda representem bem a função geradora.

O uso da matriz H e da pseudoinversa H^+ garante a solução ótima de mínimos quadrados para qualquer conjunto de amostras, tornando a técnica robusta e aplicável a diferentes situações de aproximação polinomial.

5. REFERÊNCIAS

- 1. BISHOP, C. M. Pattern Recognition and Machine Learning. New York: Springer, 2006.
- 2. HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction.* 2. ed. New York: Springer, 2009.
- 3. DUDA, R. O.; HART, P. E.; STORK, D. G. *Pattern Classification*. 2. ed. New York: Wiley, 2001.
- 4. SCHÖLKOPF, B.; SMOLA, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2002.
- 5. GOLUB, G. H.; VAN LOAN, C. F. *Matrix Computations*. 4. ed. Baltimore: Johns Hopkins University Press, 2013.
- 6. NOCEDAL, J.; WRIGHT, S. J. Numerical Optimization. 2. ed. New York: Springer, 2006.
- 7. MONTGOMERY, D. C.; PECK, E. A.; VINING, G. G. *Introduction to Linear Regression Analysis*. 5. ed. Hoboken: Wiley, 2012.