

CS2022 Functional Design

- Functional design is based on:
 - ▶ Requirement specification
- Target implementation influences the design flow
 - ► CPU
 - ► ASIC (Application Specific Integrated Circuits)
 - ► FPGA (Field Programmable Gate Arrays)
- ► Requirements:
 - ▶ Operation, Performance, Interface, Cost, Size, Power dissipation...
- Functional design may be verified through simulation

Register Transfer Level Design (RTL)

- This step in the design flow transforms the high-level functional design into a description at the register level.
- The Register Transfer Level Design describes the design at the following level of abstraction:
 - ► Registers
 - ► Memory
 - ► Arithmetic Units
 - ▶ State Machines
- RTL designs are validated through simulation

Logic Design

- At this stage in the design flow the register level transfer design is compiled into logic design.
- Again the design may be verified through simulation.
- ▶ Please note:
 - ► Simulation may be used to guaranty that the design meets the specification.
 - ► The simulation in every step in the design flow allows for the interception of errors early in the design.

Circuit Design

- At this stage in the design flow the logic design is compiled into circuit design.
- ► The step is strongly influenced by the target implementation.
- Again the design may be verified through simulation specifically through:
 - ▶ Timing simulation
 - Circuit analysis.

CS2022 Physical Design

- ► In the final step in the design flow the circuit design determines the physical chip
- Physical properties may be verified:
 - ► Chip area

layout.

- ▶ Power dissipation
- ► Clock frequency

Hardware Description Languages

- Hardware Description Languages are used to:
 - ► Describe digital systems
 - Model digital systems
 - ► Design digital systems
- Hardware Description Languages:
 - ► VHDL, Verilog and more
- **VHDL**
 - ▶ VHSIC Hardware Description Language
 - ▶ VHSIC
 - ► Very High Speed Integrated Circuit Language

