1	First law: conservation of Energy
	V 5
	dU = 89 + 8w (i) State function path function (8)
2	Second law: many forms concerning entropy
	In a spontaneous process, the entropy of the universe increases
0-	The fotal entropy of an isolated system can never decrease.
2.1	Using Clausius inequality, this says that
	Using Clausius inequality, this says that $dS \geq \frac{Sq}{T} \qquad \qquad$
	equality for reversible processes (to infinitesimally small T diff. It reversible process is infinitesimally slow and does not produce entropy in the system, \Rightarrow dS = entropy supplied to system = $\frac{Sq}{T}$ thus defines entropy change, $dS_{\text{HE}} = \frac{Sq}{T}$
3	inequality for irreversible changes (rreversible processes cause finite change in the system increase in entropy to to internal interesible changes entropy is created in the system entropy change in system is greater than entropy supplied (more entropy must be extracted to return
	system to original state)

Classical Thermodynamics

entropy supply production

$$dS = SS^{(r)} + SS^{(i)}$$
 (3)

where $SS^{(i)} = SO$ reversible process

where $SS^{(i)} = SO$ reversible process

Entropy supply/production are not; depend on particular processes that the state has changed > Ssir, Ssir

For an isolated system,
$$Sq = 0$$
, thus Eq. (2) becomes $dS \ge 0$ (4)

i.e. entropy change of an isolated system remains the same or increases.

Write Eq. (1) as
$$dU = Sq + Sw_p + Sw_e$$

= $Sq - pdV + Sw_e \le TdS - pdV + Sw_e$

3.1 Other/State fauction

$$\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial S}{\partial V}\right)_T - P\left(\frac{\partial V}{\partial V}\right)_T = T\left(\frac{\partial S}{\partial V}\right)_T - P$$

$$=) dU = T\left(\frac{\partial S}{\partial T}\right)_{V} dT + \left[T\left(\frac{\partial S}{\partial V}\right)_{T} - P\right] dV$$

Heat Capacies -

$$Cp = \left(\frac{\partial H}{\partial T}\right)_p$$
 and $Cv = \left(\frac{\partial V}{\partial T}\right)_p$

From T.S.,

$$dH = Vdp + TdS$$
 $dU = TdS - pdV$

$$1H = TdS$$
 $1 dU = TdS$

$$dH = TdS$$
 $QH = TdS$
 $QH = TdS$
 $QH = TdS$
 $QH = TdS$

$$dS = \frac{G}{T}dT \qquad | \qquad dS = \frac{Gv}{T}dT$$

$$dS = \frac{Gv}{T}dT \qquad | \qquad \int_{T_{1}}^{T_{2}}dS = \int_{T_{1}}^{Gv}dT$$

$$\int_{T_{1}}^{T_{2}} dS = \int_{T_{1}}^{T_{2}} \frac{CP}{T} dT \qquad \int_{T_{1}}^{T_{2}} dS = \int_{T_{1}}^{T_{2}} \frac{CV}{T} dT$$

$$S(T_{2}) - S(T_{1}) = \int_{T_{1}}^{T_{2}} \frac{CP(T)}{T} dT \qquad S(T_{2}) - S(T_{1}) = \int_{T_{1}}^{T_{2}} \frac{CV}{T} dT$$

If
$$T_r \ni T_r$$
 includes T_r at which phase transition occurs, then, at T_{pc} $\Delta S_{pc} = \frac{\Delta H_{pc}}{T_{pc}}$

At constant T,
$$dT=0$$
, $V=(\frac{2G}{2P})_T$

$$\int_{P_I}^{P_2} dQ = \int_{P_I}^{P_2} Vdp$$

$$G(P_2, T) - G(P_I, T) = \int_{P_I}^{P_2} V(P, T) dP$$

For ideal gas,
$$V = \frac{RT}{P}$$
 per mole,

$$G(P_2,T)-G(P_1,T) = \int_{P_1}^{P_2} \frac{RT}{P} dp$$

$$= RT \ln \frac{P_2}{P_1}$$

$$G(P_1,T)-G(P_1,T)=RTh\frac{P_2}{P_1}=RTh\frac{V_2}{V_2}$$

$$\left(\frac{\partial G}{\partial T}\right)_{p} = -S$$

(onsider
$$\left(\frac{2G}{T}\right)_{p} = \frac{TQGJ-GQI}{T^{2}}_{p}$$

$$\frac{1}{\sqrt{T}} = \frac{T^2}{-ST - G} = \frac{G + TS}{T^2} = \frac{H}{T^2}$$
Gibbs Helm Holtz equ)

At equilibrium
$$\Delta_{\Gamma}G^{\circ} = -R T \ln K$$

$$\Rightarrow \left(\frac{\partial}{\partial T} \left(-R \ln K\right)\right)_{p} = -\frac{\Delta_{\Gamma}H^{\circ}}{T^{2}}$$

$$\left(\frac{\partial \ln K}{\partial T}\right)_{p} = -\frac{\Delta_{\Gamma}H^{\circ}}{T^{2}}$$

$$\left(\frac{\partial \ln K}{\partial T}\right)_{p} = \frac{\Delta_{\Gamma}H^{\circ}}{RT^{2}}$$

$$\int_{T_{I}}^{T_{2}} d\ln K = \int_{T_{I}}^{T_{2}} \frac{\Delta_{\Gamma}H^{\circ}}{RT^{2}} dT \quad \text{at constant } p$$

$$\ln K(T_{2}) = \ln K(T_{1}) + \int_{T_{I}}^{T_{2}} \frac{\Delta_{\Gamma}H^{\circ}}{RT^{2}} dT$$

$$\ln K(T_{2}) = \ln K(T_{1}) + \int_{\Gamma} \frac{\Delta_{\Gamma}H^{\circ}}{RT^{2}} dT$$

$$\ln K(T_{2}) = \ln K(T_{1}) + \int_{\Gamma} \frac{\Delta_{\Gamma}H^{\circ}}{R} \left[\frac{1}{T_{2}} - \frac{1}{T_{1}}\right]$$

$$\ln K(T_{2}) = \ln K(T_{1}) + \int_{\Gamma} \frac{\Delta_{\Gamma}H^{\circ}}{R} \left[\frac{1}{T_{2}} - \frac{1}{T_{1}}\right]$$

$$\int d\ln K = \int_{\Gamma} \frac{\Delta_{\Gamma}H^{\circ}}{RT^{2}} dT$$

$$\ln K(T) = -\frac{\Delta_{\Gamma}H^{\circ}}{RT} + \ln H + \ln H + \frac{1}{2} \sin \theta = 35 \sin \theta + \frac{1}{2} \sin \theta = \frac{1}$$

Alt. Set DrG° = -RTINK = U, H°-Tors°

plet (uK(T) against =

Int = - STHO + OFS

6. Phase equilibria For 2 phases at equilibrium, Gm, 1 = Gm, 2 Since dG = Vdp - SdT, we have, dGm, 1 = dGm, 2 Vidp - SmidT = Vm, 2 dp - Sm, 2 dT (Vm, -Vm,2) dp = (Sin, -Sin, 2)dT Clapeyron Eqn. dp = SS slope of ptp-T Phase boundary At phase quilibroum, DG = DH-TDS = D > 4S = 4 $\Rightarrow \frac{dp}{dT} = \frac{\Delta H}{T\Delta V}$ (P2,T2) For Sublimation and vapourization, assume $\Delta V \approx V_g = \frac{RT}{P}$ (i.e. negligible condensed phase volumn), then, $\frac{dp}{dT} = \frac{\Delta H}{TK} = \frac{P\Delta H}{RT^2}$ (P., T.) STZ OH AT $\ln\left(\frac{P_{\perp}}{P_{\parallel}}\right) = \int_{T_{\parallel}}^{T_{2}} \frac{dH}{R^{2}} dT \approx \frac{dH}{R} \left[-\frac{1}{T}\right]_{T_{\parallel}}^{T_{2}} = -\frac{dH}{R} \left[\frac{1}{T_{2}}\right]_{T_{\parallel}}^{T_{2}}$ assume