import pandas as pd

df = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/titanic.csv")
df.head()

	PassengerId	Name	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	ı
0	1	Braund, Mr. Owen Harris	3	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	Cumings, Mrs. John Bradley (Florence Briggs	1	female	38.0	1	0	PC 17599	71.2833	C85	

df.drop(['PassengerId','Name','SibSp','Parch','Ticket','Cabin','Embarked'],axis='columns',inp
df.head()

	Pclass	Sex	Age	Fare	Survived
0	3	male	22.0	7.2500	0
1	1	female	38.0	71.2833	1
2	3	female	26.0	7.9250	1
3	1	female	35.0	53.1000	1
4	3	male	35.0	8.0500	0

inputs = df.drop('Survived',axis='columns')
target = df.Survived

inputs.Sex = inputs.Sex.map({'male': 1, 'female': 2})

inputs.Age[:10]

- 0 22.0
- 1 38.0
- 2 26.0
- 3 35.0
- 4 35.0
- 5 NaN
- 6 54.0
- 7 2.0

```
8 27.09 14.0
```

Name: Age, dtype: float64

inputs.Age = inputs.Age.fillna(inputs.Age.mean())

inputs.head()

	Pclass	Sex	Age	Fare
0	3	1	22.0	7.2500
1	1	2	38.0	71.2833
2	3	2	26.0	7.9250
3	1	2	35.0	53.1000
4	3	1	35.0	8.0500

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(inputs, target, test_size=0.2)

len(X_train)

712

len(X test)

179

from sklearn import tree
model = tree.DecisionTreeClassifier()

model.fit(X_train,y_train)

model.score(X_test,y_test)

0.7988826815642458

✓ 0s completed at 10:40

×