Practical Application 2 Machine Learning

Jan Cerezo Pomykol j.cerezo@alumnos.upm.es

Universidad Politécnica de Madrid ETSIINF

November 22, 2022

Problem Description

Dry Bean Dataset:

- 13611 instances
- 16 variables
- 7 classes
- Source

- Area
- Perimeter
- Major axis length
- Minor axis length
- Aspect ratio
- Eccentricity
- Convex area
- Equivalent diameter
- Extent
- Solidity
- Roundness
- Compactness
- ShapeFactor1
- ShapeFactor2
- ShapeFactor3
- ShapeFactor4

- Seker
- Barbunya
- Bombay
- Cali
- Dermosan
- Horoz
- Sira

Methodology

- Software: Weka
- Classification algorithms:
 - Logistic Regression
 - Naive Bayes
 - Tree Augmented Naive Bayes
 - Linear Discriminant Analysis
 - Fusion
 - Stacking
 - Bagging
 - Random Forest
 - Boosting
 - Naive Bayes Tree
 - Logistic Model Tress
- Feature Subset Selection
 - No ESS
 - Univariant Filter
 - Multivariant Filter
 - Wrapper Approach

Algorithm	Weka Function
Logistic Regression	functions.Logistic
Naive Bayes	bayes.NaiveBayes
Tree Augmented Naive Bayes	bayes.BayesNet
Linear Discriminant Analysis	functions.LDA
Fusion	meta.Vote
Stacking	meta.Stacking
Bagging	meta.Bagging
Random Forest	trees.RandomForest
Boosting	meta.AdaBoostM1
Naive Bayes Tree	trees.NBTree
Logistic Model Trees	trees.LMT

FSS algorithm	Weka Function
No FSS	-
Univariant Filter Multivariant Filter	attributeSelection.InfoGainAttributeEval attributeSelection.CfsSubsetEval
Wrapper Approach	attribute Selection. Wrapper Subset Eval

Selected Attributes

Attribute	No FSS	Univariant	Multivariant	Wrapper (Logistic)	Wrapper (Naive Bayes)	Wrapper (TAN)	Wrapper (LDA)	Wrapper (Fusion)	Wrapper (Stacking)	Wrapper (Bagging)	Wrapper (Random Forest)	Wrapper (Boosting)	Wrapper (NBTree)	Wrapper (LMT)
Area		•					•			•	<u>≤</u>	•		•
Perimeter	•	•	•	•	•	•	•	•	•	•		•	•	• ∥
MajorAxisLength	•	•	•	•					•		•			•
MinorAxisLength	•	•	•	•		•		•					•	
AspectRatio	•		•			•			•					
Eccentricity	•								•					
ConvexArea	•	•	•	•			•		•					•
EquivDiameter	•	•		•					•					•
Extent	•		•	•		•	•	•	•	•	•	•		
Solidity	•			•				•		•	•		•	• ∥
Roundness	•		•	•	•	•		•	•	•	•		•	•
Compactness	•		•		•	•	•	•		•	•		•	
ShapeFactor1	•	•	•	•	•	•				•	•			
ShapeFactor2	•	•	•	•					•	•				•
ShapeFactor3	•										•	•		
ShapeFactor4	•		•	•	•	•	•	•	•	•	•		•	•
N attributes	16	8	11	11	5	8	6	7	10	9	9	4	6	9

Classifier scores

Dataset	Logistic	Naive Bayes	TAN	LDA	Fusion	Stacking	Bagging	Random Forest	Boosting	NBTree	LMT
Original	92.60	89.71	91.47	90.18	91.26	91.28	89.72	92.52	89.71	89.57	92.49
Uni. Filter	92.14	84.09	89.90	89.22	90.00	90.29	84.03	91.04	84.09	87.67	91.94
Mult. Filter	92.57	90.20	91.24	90.05	91.58	91.74	90.31	92.47	90.20	90.63	92.41
Wr. (Logistic)	92.70	89.01	91.47	90.03	91.47	91.53	89.08	92.53	89.01	89.66	89.01
Wr. (N. Bayes)	92.09	91.23	91.54	89.84	89.01	91.77	91.21	92.16	91.23	91.55	92.16
Wr. (TAN)	92.36	90.76	91.60	89.83	91.72	91.62	90.80	92.33	90.76	90.69	92.27
Wr. (LDA)	92.30	88.23	90.42	91.17	91.35	91.56	88.34	91.74	88.23	89.57	92.35
Wr. (Fusion)	92.39	91.05	91.29	90.58	91.91	91.24	91.05	92.68	91.05	90.88	92.44
Wr. (Stacking)	92.55	89.42	91.66	89.86	91.38	92.20	89.45	92.46	89.42	89.97	92.41
Wr. (Bagging)	92.53	90.77	91.44	89.45	91.58	91.78	90.75	92.70	90.77	90.90	92.54
Wr. (R. Forest)	92.38	90.66	91.27	89.72	91.58	91.53	90.65	92.84	90.66	90.33	92.56
Wr. (Boosting)	91.12	80.83	89.60	88.85	89.39	89.69	80.89	91.11	80.83	89.48	91.42
Wr. (NBTree)	92.21	91.22	91.24	90.56	91.89	91.17	91.22	92.46	91.22	91.27	92.27
Wr. (LMT)	92.45	84.75	91.02	90.32	91.22	91.30	84.80	92.28	84.75	89.82	92.52

Training time

Dataset	Logistic	Naive Bayes	TAN	LDA	Fusion	Stacking	Bagging	Random Forest	Boosting	NBTree	LMT
Original	57.5	0.02	0.14	0.02	0.17	1.67	0.19	3.99	1.17	11.51	14.38
Uni. Filter	2.39	0.01	0.06	0.01	0.07	0.7	0.09	3.1	0.61	5.83	10.58
Mult. Filter	3.89	0.01	0.09	0.01	0.11	1.06	0.15	3.18	0.84	7.17	11.41
Wr. (Logistic)	5.81	0.01	0.09	0.01	0.11	1.06	0.13	3.21	1.14	10.54	12.27
Wr. (N. Bayes)	1.37	0.01	0.03	0.01	0.04	0.45	0.08	2.38	0.46	1.92	8.39
Wr. (TAN)	2.18	0.01	0.06	0.01	0.07	0.74	0.1	3.14	0.51	6.52	9.58
Wr. (LDA)	1.99	0.01	0.04	0.01	0.07	0.53	0.08	2.48	0.39	2.9	13
Wr. (Fusion)	1.97	0.01	0.05	0.01	0.06	0.63	0.09	2.46	0.58	5.23	9.86
Wr. (Stacking)	2.69	0.01	0.07	0.01	0.09	0.92	0.12	3.21	0.99	8.71	10.74
Wr. (Bagging)	2.44	0.01	0.07	0.01	0.09	0.82	0.12	3.17	0.67	5.63	10.57
Wr. (R. Forest)	2.51	0.01	0.07	0.01	0.09	0.82	0.11	3.21	0.87	8.61	10.33
Wr. (Boosting)	0.97	0.01	0.03	0.01	0.03	0.36	0.06	2.18	0.46	1.43	8.26
Wr. (NBTree)	0.96	0.01	0.04	0.01	0.06	0.53	0.09	2.44	0.45	3.96	9.05
Wr. (LMT)	7.95	0.01	0.06	0.01	0.08	0.83	0.11	3.28	0.56	8.26	16.41

Logistic Regression

Coefficients						
Variable	Class SEKER	BARBUNYA	BOMBAY	CALI	HOROZ	SIRA
Perimeter	122.6821	83.2646	722.999	57.7438	147.5876	-96.0632
roundness	5.1908	-17.4808	358.6025	16.7366	16.8368	-23.7141
Compactness	47.5217	10.6809	195.6578	-36.1733	-13.6638	-38.3752
ShapeFactor1	14.7379	-59.4434	348.0428	-95.3347	47.0252	-106.6375
ShapeFactor4	29.8703	8.9363	-134.3783	-16.5178	-17.6388	-10.7245
Intercept	-86.6715	11.6021	-642.3413	50.4722	-45.2959	121.7997
Odds Ratios						
	Class					
Variable	SEKER	BARBUNYA	BOMBAY	CALI	HOROZ	SIRA
Perimeter	1.9060785863351933E53	1.4499412945562452E36	Infinity	1.1961829114581766E25	1.2487633551787505E64	0
roundness	179.6034	0	5.483927383541303E155	18561985.0514	20518650.4473	0
Compactness	4.349342686745699E20	43517.6216	9.399751905032624E84	0	0	0
ShapeFactor1	2515213.6001	0	1.422496489365307E151	0	2.6471799061105616E20	0
ShapeFactor4	9.386358439569479E12	7602.8993	0	0	0	0

Naive Bayes

Attribute			Class SEKER BARBUNYA		YA I	BOMBAY	CALI	HOROZ	SIRA D	ERMASON	
			(0.3	15)	(0.3	1)	(0.04)	(0.12)	(0.14)	(0.19)	(0.26)
Perim	===== eter						======	======	=======	=======	======
mean			0.3	1389	0.3	569	0.7263	0.3648	0.2705	0.186	0.0962
round			0.7	2070	0.6	100	0.740	0.7111	0.6003	0.7004	0.0353
Compa			0.3	9078	0.63	198	0.748	0.7111	0.6083	0.7884	0.8352
mea			0.7	7391	0.4	742	0.4385	0.3349	0.1739	0.4521	0.5149
Shapel		1									
mea			0.4	4635	0.3	362	0.0865	0.3494	0.5511	0.5137	0.6486
Shapel		4	0.0	9741	0.93	233	0.8484	0.8242	0.85	0.9165	0.9458
=== C		on Ma		===							
а	b	C	d	e	f	g		lassifie	d as		
1922	27	0	0	1	55			= SEKER			
5	1161	1	106	12	37	0	b	= BARBUN	YΑ		
0	0	522	0	0	0	0	c	= BOMBAY			
2	90	0	1488	39	11	0	d	= CALI			
0	6	0	28	1851	29	14	e	= HOROZ			
47	7	0	10	67	2307	198	f	= SIRA			
87	4	0	0	23	265	3167	l g	= DERMASO	NC		

Tree Augmented Naive Bayes

Practical Application 2 Machine Learning

Jan Cerezo Pomykol j.cerezo@alumnos.upm.es

Universidad Politécnica de Madrid ETSIINF

November 22, 2022