FORMULE ZA MEĐUISPIT IZ KOLEGIJA NUKLEARNI GORIVNI CIKLUS I REAKTORSKI MATERIJALI

Potrošnja nuklearnog goriva

Masa goriva koje se raspadne fisijom izražena u gramima

$$m_{fis}(g) = 1.05 \cdot P(MW) \cdot t(dan)$$

gdje je P termička snaga reaktora izražena u MW, t vrijeme rada reaktora u danima

Masa goriva koje se utroši izražena u gramima

$$m_{\text{utroš}}(g) = 1.05 \cdot (1+\alpha) \cdot P(MW) \cdot t(dan)$$

gdje je P termička snaga reaktora izražena u MW, t vrijeme rada reaktora u danima, a α srednji omjer makroskopskih udarnih presjeka za radijativni uhvat i fisiju.

Definicija odgora

Odgor BU definiran je kao omjer količine toplinske energije Q koju je dao reaktor izražene u MWd i početne mase goriva m_{gorpoč} izražene u tonama.

$$BU = Q/m_{gorpo\check{c}} MWd/t$$

Obogaćivanje nuklearnog goriva

Relacija za masu početnog urana:

$$F = P(x_{kon} - x_{rez})/(x_{poč} - x_{rez})$$
, gdje je:

P – masa konačnog (obogaćenog) urana

F – masa početnog urana

x_{kon} –obogaćenje (maseni udio ²³⁵U) konačnog urana

x_{rez} –rezidualno obogaćenje (maseni udio ²³⁵U osiromašenog urana)

 $x_{poč}$ – obogaćenje (maseni udio ^{235}U) početnog urana

Relacija za količinu separacijskog rada SWU koji je potrebno uložiti da bi se iz mase početnog urana F obogaćenja $x_{poč}$ dobila masa konačnog urana P obogaćenja x_{kon} . Separacijski rad SWU dan je relacijom:

$$SWU = P \cdot (V(x_{kon}) - V(x_{rez})) - F \cdot (V(x_{noc}) - V(x_{rez})).$$

V(x) označava vrijednosnu funkcija danu jednadžbom.

$$V(x) = (2x-1) \cdot \ln(\frac{x}{1-x})$$

Cijene pojedinih faza pripreme nuklearnog goriva

<u>Cijena prirodnog urana C_{prir} </u> se dobiva množenjem mase početnog urana F i cijene jedinice mase prirodnog urana C_{1prir} .

$$C_{prir} = F \cdot C_{1prir}$$

<u>Cijena obogaćivanja C_{obog} </u> se dobiva množenjem količine separacijskog rada SWU i cijene jedinice separacijskog rada C_{1sep} .

$$C_{obog} = SWU \cdot C_{1sep}$$

<u>Cijena konverzije C_{konv} </u> iz UF6 u UO2 se dobiva množenjem mase konačnog (obogaćenog) urana P i cijene konverzije jedinice mase obogaćenog urana C_{1konv} .

$$C_{konv} = P \cdot C_{1konv}$$

<u>Cijena proizvodnje gorivnih elemenata C_{gorel} </u> se dobiva množenjem mase konačnog (obogaćenog) urana P i cijene proizvodnje gorivnog elementa po jedinici mase obogaćenog urana C_{lgorel} .

$$C_{gorel} = P \cdot C_{1gorel}$$

<u>Cijena goriva C_{goriva}</u> jednaka je zbroju cijene prirodnog urana C_{prir} , cijene obogaćivanja C_{obog} , cijene konverzije C_{konv} i cijene proizvodnje gorivnih elemenata C_{gorel} .

$$C_{goriva} = C_{prir} + C_{obog} + C_{konv} + C_{gorel} \label{eq:convergence}$$

Stvaranje fisibilnih izotopa

Nastajanje novih fisibilnih nuklida u reaktoru se kvantitativno opisuje pomoću fizikalne veličine koja se naziva faktor konverzije i označava se s C. Faktor konverzije C definiran je kao omjer broja atoma novostvorenih fisibilnih nuklida i broja atoma utrošenih fisibilnih nuklida

$$C = N_{\text{styor}} / N_{\text{utr}}$$

Ako se troši fisibilni nuklid masenog broja M_{utr} i stvara fisibilni nuklid masenog broja M_{stvor} tada vrijedi

$$C = (m_{stvor}/m_{utr}) \cdot (M_{utr}/M_{stvor})$$

Kod termičkih reaktora faktor konverzije manji je od 1 i iznosi između 0,5 i 0,7. Kod oplodnih reaktora je broj stvorenih jezgri fisibilnih izotopa veći od broja utrošenih jezgri fisibilnog izotopa pa je u tom slučaju faktor konverzije C veći od 1. To znači da je po svakom utrošenom fisibilnom atomu proizveden višak od (C-1) fisibilnog atoma. Parametar(C-1) naziva se faktor dobitka i označava se s G, G = (C-1).

Oplodnja se kvantitativno opisuje vremenom udvostručenja. Vrijeme udvostručenja definirano je kao hipotetski vremenski interval u kom se količina fisibilnog materijala u reaktoru udvostručuje.

Ako se gorivo ne vadi iz reaktora tada će se ukupna količina goriva povećavati linearno s vremenom. Linearno vrijeme udvostručenja je definirano kao vrijeme t_{DL} za koje će se količina goriva u reaktoru udvostručiti.

Linearno vrijeme udvostručenja dano je relacijom:

$$t_{DL} = m_0 \cdot M_{utrf} / (G \cdot w \cdot P_0 \cdot M_{stvorf})$$

gdje je: P_0 termičku snagu reaktora u MW, m_0 početna masa fisibilnog nuklida, w brzina utroška goriva po jedinici snage (w=1,05·(1+ α) g/MWd), G faktor dobitka, M_{utrf} maseni broj fisibilnog nuklida koji se troši, a M_{stvorf} maseni broj fisibilnog nuklida koji se stvara. U slučaju da se novostvoreno gorivo vadi iz reaktora i koristi u drugim reaktorima dolazi do povećanja snage dobivene iz čitavog goriva, tako da masa goriva raste eksponencijalno s vremenom, tj.

$$m = m_0 \cdot \exp(G \cdot w \cdot P_0 \cdot M_{stvorf} \cdot t / m_0 \cdot M_{utrf})$$

Iz uvjeta m=2m₀ dobivamo eksponencijalno vrijeme udvostručenja t_{DE}.

$$t_{DE} = m_0 \cdot M_{utrf} \cdot \ln 2/(G \cdot w \cdot P_0 \cdot M_{stvorf}) = \ln 2 \cdot t_{DL}$$