The Three - Stop Taxi

by Austin Pesina

1. The Process

A taxi alternates among three different locations, cleverly labeled 1, 2, and 3. Whenever it reaches location i, it stops and spends a random amount of time having mean t_i before obtaining another passenger. A passenger entering the cab at location i will want to go to location j with probability P_{ij} . The time to travel from i to j is a random variable with mean m_{ij} .

2. Questions

Suppose that:

$$t_1 = 1$$
 $t_2 = 2$ $t_3 = 4$ $P_{12} = 1$ $P_{23} = 1$ $P_{31} = 2 / 3 = 1 - P_{32}$ $m_{12} = 10$ $m_{23} = 20$ $m_{31} = 15$ $m_{32} = 25$

Define an appropriate semi-Markov model and determine:

$$In[1]:= \mathcal{T} = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/3 & 0 & 2/3 \\ 1 & 0 & 0 \end{pmatrix};$$

 $ln[2]:= S = DiscreteMarkovProcess[{1/3, 1/3, 1/3}, T];$

1) the proportion of time the tax is waiting at location i

 $\label{eq:ln[6]:=} \textbf{StationaryDistribution[}\mathcal{S}\textbf{]}$

Out[6]= ProbabilityDistribution
$$\left[\frac{3}{7} \text{ Boole}\left[x=1\right] + \frac{3}{14} \text{ Boole}\left[x=2\right] + \frac{5}{14} \text{ Boole}\left[x=3\right], \{x, 1, 3, 1\}\right]$$

 $ln[7] = \pi s = Table[PDF[StationaryDistribution[S], i], \{i, 1, 3\}]$

Out[7]=
$$\left\{ \frac{3}{7}, \frac{3}{14}, \frac{5}{14} \right\}$$

2) the proportion of time the taxi is on the road for i to j, i,j=1,2,3.

$$ln[8]:= \mu = {\mu 1, \mu 2, \mu 3}$$
Out[8]= { $\mu 1, \mu 2, \mu 3$ }

In[9]:= P = Simplify
$$\left[\text{Table} \left[\frac{\pi s [i] \times \mu [i]}{\pi s \cdot \mu}, \{i, 1, 3\} \right] \right]$$

Out[9]=
$$\left\{ \frac{6\,\mu\mathbf{1}}{6\,\mu\mathbf{1} + 3\,\mu\mathbf{2} + 5\,\mu\mathbf{3}}, \frac{3\,\mu\mathbf{2}}{6\,\mu\mathbf{1} + 3\,\mu\mathbf{2} + 5\,\mu\mathbf{3}}, \frac{5\,\mu\mathbf{3}}{6\,\mu\mathbf{1} + 3\,\mu\mathbf{2} + 5\,\mu\mathbf{3}} \right\}$$

If μ_1 =6, μ_2 =3, and μ_3 =5, then the proportion of times in each state would be:

$$ln[10]:= P /. \{\mu 1 \rightarrow 6, \mu 2 \rightarrow 3, \mu 3 \rightarrow 5\}$$

Out[10]=
$$\left\{\frac{18}{35}, \frac{9}{70}, \frac{5}{14}\right\}$$