1. Ejecuta la predicción de una muestra y observa que el resultado es una lista de

números.

2. ¿Por qué crees que es así y qué representan esos números?

Es la representación de características que definen una forma definida de un carácter en un array que representa el area de 28x28 pixeles.

3. Experimenta con diferentes valores para el número de neuronas en la capa oculta de la red neuronal

10:

Perdida en el conjunto de prueba: 0.18608200550079346

Precisión en el conjunto de prueba: 0.9451833367347717

90:

Perdida en el conjunto de prueba: 0.015796812251210213 Precisión en el conjunto de prueba: 0.9957333207130432

240:

Perdida en el conjunto de prueba: 0.007639619521796703 Precisión en el conjunto de prueba: 0.9976333379745483

128, 40:

Perdida en el conjunto de prueba: 0.013722683303058147 Precisión en el conjunto de prueba: 0.9956666827201843

128,80:

Perdida en el conjunto de prueba: 0.011161230504512787 Precisión en el conjunto de prueba: 0.9972000122070312

4. Cambia la función de activación de la capa oculta a "sigmoid" o "tanh" y observa cómo afecta el rendimiento del modelo.

Sigmoid

Perdida en el conjunto de prueba: 0.030255744233727455 Precisión en el conjunto de prueba: 0.9926833510398865

Tanh

Perdida en el conjunto de prueba: 0.011531858704984188 Precisión en el conjunto de prueba: 0.9976999759674072

5. ¿Qué sucedería si eliminas la capa Flatten()?

ValueError: `labels.shape` must equal `logits.shape` except for the last dimension. Received: labels.shape=(32,) and logits.shape=(896, 10)

No se aplana la entrada al vector necesario

7. Prueba diferentes optimizadores, como "sgd" o "rmsprop", y observa cómo afectan el rendimiento del modelo.

Sgd

Perdida en el conjunto de prueba: 0.15661783516407013 Precisión en el conjunto de prueba: 0.9562000036239624

rmsprop

Perdida en el conjunto de prueba: 0.020149284973740578 Precisión en el conjunto de prueba: 0.9939833283424377

8. Aumenta el número de épocas de entrenamiento y observa cómo afecta el rendimiento del modelo.

40:

Perdida en el conjunto de prueba: 0.006380090024322271 Precisión en el conjunto de prueba: 0.9976166486740112

9. Modifica la arquitectura de la red neuronal agregando capas adicionales o cambiando el número de neuronas en cada capa, y observa cómo afecta el rendimiento del modelo.

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(10, activation='softmax')
])
```

Perdida en el conjunto de prueba: 0.0344943068921566 Precisión en el conjunto de prueba: 0.9902999997138977

10. Elimina la normalización de los valores de píxeles y observa cómo afecta el rendimiento del modelo.

Perdida en el conjunto de prueba: 0.14308802783489227 Precisión en el conjunto de prueba: 0.9633166790008545

11. Considera las capas finales (de salida). ¿Por qué hay 10 de ellas? ¿Qué pasaría si tuvieras una cantidad diferente a 10?

Perdida en el conjunto de prueba: 0.01710028201341629 Precisión en el conjunto de prueba: 0.9945833086967468