Homeworks Heaps 1

Plasencia Palacios Milton Nicolas

Exercises 1. and 2. are implemented in the code "binheap.c" in the "src" directory.

3. I've used the file "test_delete_min.c" to test the time differences in removing the minimum in a heap or in an array, those are the results (in seconds):

As we can see the heap implementation is faster than an array one.

4. To show that the leave nodes are indexed using $\lfloor \frac{n}{2} \rfloor + 1, \lfloor \frac{n}{2} \rfloor + 2 \ldots, n$ we must prove that those nodes does not have a left or right child, so, given an index i such that $i \in \lfloor \lfloor \frac{n}{2} \rfloor + 1, \lfloor \frac{n}{2} \rfloor + 2 \ldots, n \rfloor$, by taking $i = \lfloor \frac{n}{2} \rfloor + 1$, we can write its left child as $2i = 2\lfloor \frac{n}{2} \rfloor + 2 \geq n$, but it cannot be because our heap is made up by at most n nodes. So the other values in the interval, which are greater than $\lfloor \frac{n}{2} \rfloor + 1$, cannot have a left child (and also a right child), then those are leave nodes.

- 5. Considering a max-heap in which the elements $i \in \{1, 2, \dots 100\}$, we have the heap built such that i=1 is the root, so the values of the other nodes are $\leq (\geq)$ with respect to the root. We may apply heapify at every level of the heap in this case (worst case), which will have a complexity of $\Omega(\log_2 n)$ with $\log_2 n$ the height of the heap.
- 6. Given a n nodes Binary-Heap we can show that the leave nodes are $\lceil \frac{n}{2^{h+1}} \rceil$. We can prove this by induction.

In the base case we have h=0 so the leave nodes are $\lceil \frac{n}{2} \rceil$.

In the inductive step we assume that in the h-1-th level we have $\lceil \frac{n}{2^n} \rceil$ nodes. Knowing that we are considering a binary heap, so every node can have at most 2 children, we can write the upper bound for the number of nodes at height h in the following way:

$$h-1$$
 level has $\left\lceil \frac{n}{2^h} \right\rceil$ nodes $\to h$ level $\left\lceil \frac{n}{2*2^h} \right\rceil = \left\lceil \frac{n}{2^{h+1}} \right\rceil$

in this way thesis has been proven.