Curvas Elípticas

Nome: William Goulart Pacheco

soma

$$X3 = (L^2 - X1 - X2) \mod p$$

Y3= [L.(X1-X3) -Y1] mod p

Negação

primo=11

P(0,2)

-P = (0,(11-2))-P = (0,9)

Subtração

P-Q P+ (-Q) Multiplicação

3P=(P+P)+P

soma - lambda

$$P \neq Q$$
 $P=Q$
 $L = (Y2 - Y1)$ $L = (3. (X1)^2 + A)$
 $(X2-X1)$ $(2.Y1)$

Soma - ajuste lambda

$$P \neq Q$$
L= (Y2 -Y1) * ((X2-X1) modinverse p)

$$P=Q$$

L= (3. ((X1)² mod p) + A) * ((2.Y1) modinverse p)

modinverse - inverso modular

```
3*0 \equiv 0 \pmod{7}3*1 \equiv 3 \pmod{7}
```

 $Y^2 = X^3 + 4X + 4 \mod 11$

p=11

qtd_residuos_quadraticos = (11-1) / 2

qtd_residuos_quadraticos = 5

$Y' = (i)^2 \mod p$	$Y' = (p-i)^2 \mod p$	crivos
12 mod 11	10 ² mod 11	1
22 mod 11	92 mod 11	14
32 mod 11	82 mod 11	9
42 mod 11	72 mod 11	5
52 mod 11	62 mod 11	3

X	Crivo = X ³ +4X +4 mod 11	/Υ'	Υ"	PONTOS
0	$(0^3 + 4.0 + 4) \mod 11 = 4$	2	9	(0,2) (0,9)
1	$(1^3 + 4.1 + 4) \mod 11 = 9$	3	8	(1,3) (1,8)
2	$(2^3 + 4.2 + 4) \mod 11 = 9$	3	8	(2,3) (2,8)
3	$(3^3 + 4.3 + 4) \mod 11 = 10$			
4	$(4^3 + 4.4 + 4) \mod 11 = 7$			
5	$(5^3 + 4.5 + 4) \mod 11 = 6$			
6	$(6^3 + 4.6 + 4) \mod 11 = 2$			
7	$(7^3 + 4.7 + 4) \mod 11 = 1$	1	10	(7,1) (7,10)
8	$(8^3 + 4.8 + 4) \mod 11 = 9$	3	8	(8,3) (8,8)
9	$(9^3 + 4.9 + 4) \mod 11 = 10$			
10	$(10^3 + 4.10 + 4) \mod 11 = 10$			

 $E11=\{P\infty, (0,2), (0,9), (1,3), (1,8), (2,3), (2,8), (7,1), (7,10), (8,3), (8,8)\}$

^{3 * 2 ≡ 6 (}mod 7)

 $^{3*3 \}equiv 9 \equiv 2 \pmod{7}$

^{3 * 3 = 9 = 2 (}IIIOu 1)

 $^{3*4 \}equiv 12 \equiv 5 \pmod{7}$

^{3 * 5 ≡ 15 (}mod 7) ≡ 1 (mod 7) <----- RESTO 1, ENCONTROU O INVERSO!

 $^{3 * 6 \}equiv 18 \pmod{7} \equiv 4 \pmod{7}$

^{3 &}quot; 6 = 18 (mod 7) = 4 (mod 7)