CMPE 322/327 - Theory of Computation Week 4: Pattern Matching & Regular Expressions

Burak Ekici

March 14-18, 2022

1/32

A Quick Recap

Pattern Matching

Regular Expressions

Homomorphisms

Outline

- 1 A Quick Recap
- 2 Pattern Matching
- 3 Regular Expressions
- 4 Homomorphisms

Definitions

• nondeterministic finite automaton (NFA) is quintuple $N = (Q, \Sigma, \Delta, s, F)$ with

finite set of states Σ : input alphabet $\triangle : Q \times \Sigma \rightarrow 2^Q :$ transition function

4 5 ⊆ *Q* : start state

⑤ $F \subseteq Q$: final (accept) states

3/32

A Quick Recap 000000

Pattern Matching 000000

Regular Expressions 0000000

Homomorphisms

Example

 $N = (Q, \Sigma, \Delta, S, F)$

①
$$Q := \{1, 2, 3\}$$

$$\Sigma := \{a, b\}$$

4
$$S := \{1\}$$

$$egin{array}{c|cccc} \Delta & {\sf a} & {\sf b} \\ \hline 1 & \{1,2\} & \{1\} \\ 2 & \{2\} & \{1,2\} \\ \end{array}$$

Definitions

• nondeterministic finite automaton (NFA) is quintuple $N=(Q,\Sigma,\Delta,s,F)$ with Q: finite set of states

 Σ : input alphabet $\Delta: Q \times \Sigma \to 2^Q$: transition function $S \subseteq Q$: set of start states $F \subseteq Q$: final (accept) states

• $\widehat{\Delta} : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}(A, \varepsilon) = A$$
 $\widehat{\Delta}(A, xa) = \bigcup_{q \in \widehat{\Delta}(A, x)} \Delta(q, a)$

• string $x \in \Sigma^*$ is accepted by N if $\widehat{\Delta}(S, x) \cap F \neq \emptyset$

5/32

A Quick Recap

Pattern Matching

Regular Expressions

Homomorphisms

Definitions

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - $\mathbf{1}$ $\mathbf{c} \neq \nabla$
 - Q $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N \colon 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A,\varepsilon) = C_{\varepsilon}(A) \qquad \widehat{\Delta}_N(A,xa) = \left\{ \left. \int \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \widehat{\Delta}_N(A,x) \right\} \right. \right\}$$

 $\{1, 2, 3\}$

{2,3}

Example

Theorem

every set accepted by NFA is regular

Theorem

every set accepted by NFA_{ε} is regular

Theorem

regular sets are effectively closed under concatenation

Theorem

regular sets are effectively closed under asterate

7/32

A Quick Recap

Pattern Matching

•00000

Regular Expressions

Homomorphisms

Outline

- 1 A Quick Recap
- 2 Pattern Matching
- 3 Regular Expressions
- 4 Homomorphisms

 A Quick Recap
 Pattern Matching
 Regular Expressions
 Homomorphisms

 ○○○○○
 ○●○○○○
 ○○○○○○
 ○○○○○○○

Pattern matching is important for

- · lexical analysis of programs
- scripting languages (Perl, Ruby)
- search engines (Google Code Search)
- DNA analysis

9/32

A Quick Recap

Pattern Matching 00●000

Regular Expressions

Homomorphisms

Applications of Regular expressions: grep

- grep foo file returns lines in file containing pattern foo
- basis for more powerful tools like awk, sed, perl

Some Patterns

matches beginning of line . matches any character matches end of line [abc] matches a or b or c matches character c [a-zA-Z] matches any letter

Example

grep "0" file returns lines containing 0
grep "0\$" file returns lines ending with 0

grep "b.g" file returns lines containing e.g. bag, big, bug, buggy

Pattern matching is important for

- lexical analysis of programs
- search engines (Google Code Search)
- scripting languages (Perl, Ruby)
- DNA analysis

Definitions

• pattern is string α that represents set of strings $L(\alpha) \subseteq \Sigma^*$

	atomic pattern $lpha$	$L(\alpha)$	C
	$\mathbf{a} \in \Sigma$	{a}	
	ε	$\{oldsymbol{arepsilon}\}$	μ
•	Ø	Ø	μ
	#	Σ	μ
	@	Σ^*	μ
			_

compound pattern $lpha$	$L(\alpha)$
$eta + \gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
βγ	$L(\beta)L(\gamma)$
β^*	$L(oldsymbol{eta})^*$
$oldsymbol{eta}^+$	$L(oldsymbol{eta})^+$
~ β	$\sim L(\beta) = \Sigma^* - L(\beta)$

• string $x \in \Sigma^*$ matches pattern α if $x \in L(\alpha)$

11/32

A Quick Recap

Pattern Matching 0000●0

Regular Expressions

Homomorphisms

Example		
pattern	matched string	
@a@a@a@	strings containing at least 3 occurrences of a	
@ a @ b @	strings containing a followed later by b	
#∩ ~ <mark>a</mark>	single letters except a	
(#∩ ~ a)*	strings without a	

Questions

- how difficult is pattern matching?
- is pattern equivalence $(L(\alpha) = L(\beta))$ decidable?
- which operators are redundant?

$$\begin{array}{lll} \boldsymbol{\varepsilon} & \equiv & \boldsymbol{\sim} (\#@) \equiv \boldsymbol{\varnothing}^* \\ @ & \equiv & \#^* \\ \alpha^+ & \equiv & \alpha\alpha^* \\ \# & \equiv & a_1 \dots a_n & \text{if } \Sigma = \{a_1 \dots a_n\} \\ \alpha \cap \beta & \equiv & \boldsymbol{\sim} (\boldsymbol{\sim} \alpha + \boldsymbol{\sim} \beta) \\ \boldsymbol{\sim} \alpha & \equiv & ? \end{array}$$

Notation

$$\alpha \equiv \beta$$
 if $L(\alpha) = L(\beta)$

13/32

A Quick Recap

Pattern Matching

Regular Expressions

Homomorphisms

Outline

- 1 A Quick Recap
- 2 Pattern Matching
- 3 Regular Expressions
- 4 Homomorphisms

15/32

A Quick Recap

Pattern Matching

Regular Expressions

Homomorphisms

Definition

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\mathbf{\varepsilon}$ $\mathbf{\emptyset}$ $\alpha + \beta$ α^* $\alpha\beta$

Theorem

finite automata, patterns, and regular expressions are equivalent:

 \iff 2 $A = L(\alpha)$ for some pattern α

 \iff 3 $A = L(\alpha)$ for some regular expression α

Proof.

2 \implies 1 induction on α (see slides #17 – 18)

Proof. ($2 \implies 1$)

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

1

atomic pattern $\Sigma = \{a_1, \ldots, a_n\}$

α	$L(\alpha)$	finite automaton
$\mathbf{a} \in \Sigma$	{a}	\longrightarrow a \longrightarrow
ε Ø	{ε} Ø	$\overset{\varepsilon}{\longrightarrow} \bigcirc$

17/32

A Quick Recap

Pattern Matching

Regular Expressions

Homomorphisms

Proof. ($2 \implies 1$)

statement: for any pattern α , $L(\alpha)$ is regular induction on pattern α

compound patterns

α	$L(\alpha)$
$\beta + \gamma$	$L(\beta) \cup L(\gamma)$
$\beta \cap \gamma$	$L(\beta) \cap L(\gamma)$
βγ	$L(\beta)L(\gamma)$

$$\begin{array}{ccc}
\alpha & L(\alpha) \\
\beta^* & L(\beta)^* \\
\beta^+ & L(\beta)^+ \\
\sim \beta & \sim L(\beta)
\end{array}$$

 $L(\beta)$ and $L(\gamma)$ are regular according to induction hypothesis hence $L(\alpha)$ is regular according to closure properties of regular sets

Proof. (1) \implies 3 – An idea)

given NFA $_{\varepsilon}$ $N_{\varepsilon} = (Q, \Sigma, \varepsilon, \overline{\Delta, S, F})$

 $\forall Y \subseteq Q \quad \forall u, v \in Q$ construct regular expression α_{uv}^{Y} such that

$$x \in L(\alpha_{uv}^{Y}) \iff$$

 \exists a path from \underline{u} to \underline{v} labeled x ($v \in \widehat{\Delta}(\{u\}, x)$) such that all intermediate states belong to Y

Definitions

$$\bullet \ \alpha_{uv}^{\varnothing} := \begin{cases} \mathbf{a_1} + \ldots + \mathbf{a_k} & \text{if } u \neq v \text{ and } k > 0 \\ \varnothing & \text{if } u \neq v \text{ and } k = 0 \\ \mathbf{a_1} + \ldots + \mathbf{a_k} + \boldsymbol{\varepsilon} & \text{if } u = v \text{ and } k > 0 \\ \varepsilon & \text{if } u = v \text{ and } k = 0 \end{cases}$$

$$\{a_1, \ldots, a_k\} := \{a \in \Sigma \cup \{\varepsilon\} \mid v \in \Delta(u, a)\}$$

$$\bullet \quad \alpha_{uv}^{\mathsf{Y}} := \alpha_{uv}^{\mathsf{Y} - \{q\}} + \alpha_{uq}^{\mathsf{Y} - \{q\}} (\alpha_{qq}^{\mathsf{Y} - \{q\}})^* \alpha_{qv}^{\mathsf{Y} - \{q\}} \quad \text{ for some fixed } q \in \mathsf{Y}$$

19/32

A Quick Recap

Pattern Matching

Regular Expressions 000000●

Homomorphisms

Example

$$\begin{split} &L(N) = L(\alpha) \text{ with } \\ &\alpha = \alpha_{12}^{\{1,2\}} = \alpha_{12}^{\{1\}} + \alpha_{12}^{\{1\}} (\alpha_{22}^{\{1\}})^* \alpha_{22}^{\{1\}} \quad (\mathsf{q} = 2) \\ &\alpha_{12}^{\{1\}} = \alpha_{12}^{\varnothing} + \alpha_{11}^{\varnothing} (\alpha_{11}^{\varnothing})^* \alpha_{12}^{\varnothing} = 0 + (1 + \pmb{\varepsilon})(1 + \pmb{\varepsilon})^* 0 \\ &\alpha_{12}^{\{1\}} = \alpha_{22}^{\varnothing} + \alpha_{21}^{\varnothing} (\alpha_{11}^{\varnothing})^* \alpha_{12}^{\varnothing} = (0 + \pmb{\varepsilon}) + 1(1 + \pmb{\varepsilon})^* 0 \\ &\alpha_{12}^{\varnothing} = 0 \quad \alpha_{11}^{\varnothing} = 1 + \pmb{\varepsilon} \quad \alpha_{22}^{\varnothing} = 0 + \pmb{\varepsilon} \quad \alpha_{21}^{\varnothing} = 1 \\ &\alpha = (0 + (1 + \pmb{\varepsilon})(1 + \pmb{\varepsilon})^* 0) + (0 + (1 + \pmb{\varepsilon})(1 + \pmb{\varepsilon})^* 0)((0 + \pmb{\varepsilon}) + 1(1 + \pmb{\varepsilon})^* 0)^* ((0 + \pmb{\varepsilon}) + 1(1 + \pmb{\varepsilon})^* 0) \\ &\equiv (0 + 1)^* 0 \end{split}$$

Outline

- 1 A Quick Recap

- Homomorphisms

21/32

A Quick Recap 000000

Pattern Matching 000000

Regular Expressions 0000000

Homomorphisms 0.0000000000

Theorem

regular sets are effectively closed under homomorphic image and preimage

Definitions

• homomorphism is mapping $h: \Sigma^* \to \Gamma^*$ such that

$$h(\varepsilon) = \varepsilon$$

$$h(xy) = h(x)h(y)$$

so homomorphism is completely determined by its effect on $\boldsymbol{\Sigma}$

if
$$A \subseteq \Sigma^*$$
 then

$$h(A) = \{h(x) \mid x \in A\} \subseteq \Gamma^*$$

"image of A under h"

if
$$B \subseteq \Gamma^*$$
 then $h^{-1}(B) =$

$$n^{-1}(B) = \{x \mid h(x) \in B\} \subseteq \Sigma^*$$

- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h^{-1}(h(A)) \supseteq A$
- $h(h^{-1}(B)) \subseteq B$

Example

$$\Sigma = \Gamma = \{0, 1\}$$
 $h(0) = 11$ $h(1) = 1$ $A = \{0\}\Sigma = \Gamma = \{0, 1\}$ $h(0) = 11$ $h(1) = 1$ $A = B = \{0\}$

- $h^{-1}(h(A)) = h^{-1}(\{11\}) = \{0, 11\} \supset A$
- $\bullet \ \ h(h^{-1}(B)) = h(\emptyset) = \emptyset \subset B$

23/32

A Quick Recap

Pattern Matching

Regular Expressions

Homomorphisms

Lemma

 $A \subseteq \{0,1\}^*$ is regular $\implies \{xy \mid x1y \in A\}$ is regular

Proof.

- $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, 2\}$
- define homomorphisms $h, i: \Gamma^* \to \Sigma^*$ by

$$h(0) = 0$$
 $h(1) = h(2) = 1$ $i(0) = 0$ $i(1) = 1$ $i(2) = \varepsilon$

- $h^{-1}(A) = \{x \mid h(x) \in A\}$
- $h^{-1}(A) \cap L((0+1)^*2(0+1)^*) = \{x2y \mid x1y \in A\}$
- $\{xy \mid x1y \in A\} = i(h^{-1}(A) \cap L((0+1)^*2(0+1)^*))$ is regular

Theorem

regular sets are effectively closed under homomorphic image and preimage

Proof.

- DFA $M = (Q, \Gamma, \delta, s, F)$
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h^{-1}(L(M)) = L(M')$ for DFA $M' = (Q, \Sigma, \delta', s, F)$ with $\delta'(q, a) := \widehat{\delta}(q, h(a))$
- claim: $\widehat{\delta'}(q, x) = \widehat{\delta}(q, h(x)) \quad \forall x \in \Sigma^* \ \forall q \in Q$ proof of claim: induction on |x| (see next slide)

25/32

A Quick Recap

Pattern Matching

Regular Expressions

Homomorphisms

proof of the claim

claim: $\widehat{\delta'}(q, x) = \widehat{\delta}(q, h(x)) \quad \forall x \in \Sigma^* \ \forall q \in Q$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta'}(q, \varepsilon) = q = \widehat{\delta}(q, h(\varepsilon))$$

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with IH: $\widehat{\delta'}(q, y) = \widehat{\delta}(q, h(y))$

$$\begin{array}{lll} \widehat{\delta'}(q,ya) & = & \delta'(\widehat{\delta'}(q,y),a) & \text{(by definition of }\widehat{\delta'}) \\ & = & \delta'(\widehat{\delta}(q,h(y)),a) & \text{(by induction hypothesis IH)} \\ & = & \widehat{\delta}(\widehat{\delta}(q,h(y)),h(a)) & \text{(by definition of }\delta') \\ & = & \widehat{\delta}(q,h(y)h(a)) & \text{(by distributivity of }\widehat{\delta}-\text{w3.pdf, slide 10}) \\ & = & \widehat{\delta}(q,h(ya)) & \text{(by definition of homomorphism)} \\ & = & \widehat{\delta}(q,h(x)) & \text{(by definition of homomorphism)} \end{array}$$

26/32

Proof. (closedness under complement homomorphic preimage)

statement: $L(M') = h^{-1}(L(M))$

 $\forall x \in \Sigma^*, x \in L(M') \iff \widehat{\delta'}(s, x) \in F$ (by definition of acceptance)

 \iff $\widehat{\delta}(s, h(x)) \in F$ (by claim proven in slide 26)

 \iff $h(x) \in L(M)$ (by definition of acceptance)

 \iff $x \in h^{-1}(L(M))$ (by definition of homomorphic preimage)

27/32

A Quick Recap

Pattern Matching

Regular Expressions

Homomorphisms

Example

This page has too many overlays. Please refer to the original slides (w4.pdf) to monitor the whole content.

 A Quick Recap
 Pattern Matching
 Regular Expressions
 Homomorphisms

 ○○○○○
 ○○○○○
 ○○○○○
 ○○○○○

Theorem

regular sets are effectively closed under homomorphic image and preimage

Proof.

- regular expression α over Σ
- homomorphism $h: \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

29/32

A Quick Recap

Pattern Matching

Regular Expressions

Homomorphisms

Definitions

- Hamming distance H(x, y) is number of places where bit strings x and y differ (if $|x| \neq |y|$ then $H(x, y) = \infty$)
- $N_k(A) := \{x \in \{0, 1\}^* \mid H(x, y) \le k \text{ for some } y \in A\}$

Lemma

 $A \subseteq \{0,1\}^*$ is regular $\implies \forall k \in \mathbb{N}, N_k(A)$ is regular

Proof.

 $D_k = \{x \in (\{0,1\} \times \{0,1\})^* \mid x \text{ contains at most } k \text{ pairs } (0,1) \text{ or } (1,0)\} \text{ is regular}$

 $= \{x \in (\{0,1\} \times \{0,1\})^* \mid H(fst(x), snd(x)) \le k\}$

 $N_k(A) = fst(snd^{-1}(A) \cap D_k)$

Example

This page has too many overlays. Please refer to the original slides (w4.pdf) to monitor the whole content.

31/32

A Quick Recap

Pattern Matching

Regular Expressions

Homomorphisms

Thanks! & Questions?