CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cs3102

Computability

- A Decider's "behavior" is the set of strings it accepts
- A set of strings is computable by Java if we can find a program which accepts exactly those strings

Computations as Sets of Strings

- Things a computer can do:
 - Plays a movie
 - All strings representing color, pixel, frame triples for the movie.
 - Searches the web
 - All strings representing url, score pairs for the query
 - Removes an appendix
 - All strings representing safe places to cut with the laser
 - Finds digits of pi
 - All strings representing a prefix of the decimal expansion of π

Languages

- Natural
 - English
 - Vocabulary and grammar
- Programming
 - Java
 - Commands and Syntax
- Formal
 - A set of strings
 - Strings only, no rules for assembly

Example languages

- Language of names of members of The Beatles
 - {John, Paul, George, Ringo}
- Language of all bit strings representing odd integers
 - {1,01,11,001,011,101,111, ...}
- Language of all prefixes of π
 - $-\{3,3.1,3.14,3.141,3.1415,3.14159,3.141592,...\}$

Strings

- A language is a set of strings
 - May be infinite
- What is a string?
 - A finite sequence of characters
- Alphabet:
 - The set of characters available
 - Must be finite

Alphabet examples

- {*a*, *b*, *c*, *d*, *e*, *f*, *g*, *h*, ...}
 - Sesame Street alphabet
- {0,1}
 - Binary Alphabet
- {0,1,...,9}
 - Decimal alphabet
- Most alphabets we will talk about in this class are small
 - $-\{0,1\},\{a,b\},\{a\},\{a,b,c\}$

Operations on Strings

Length

- -|s| = Number of characters in the string s
- |Ringo| = 5

Concatenation

- $-s \cdot t = st = string$ which has all of the characters from s followed by all of the characters from t
- $John \cdot Paul = JohnPaul$
- $-|s \cdot t| = |s| + |t|$

Exponentiation

- $-s^k$ =The string created by concatenation s with itself k times
- $(George)^5 = GeorgeGeorgeGeorgeGeorge$
- $|s^k| = |s| \cdot k$

Empty String ("")

- Notation for this class: ε
 - \varepsilon in Latex
- $|\varepsilon| = 0$
- $s \cdot \varepsilon = s$
- $\varepsilon^k = \varepsilon$

Operations on Languages

- Any operation on Sets
 - Union
 - Intersection
 - Complementation
- Concatenation

Set review

- Listing out the elements of a set works well for sets that are small and finite. What about larger sets?
- Set Builder Notation!

$$S = \{x \in A | x \text{ is blue}\}$$

The set of all x in A

Vertical Bar is read "such that"

Property (or properties) of x that must be met in order to be an element of S

Examples

- List the members of these sets
 - $\{x | x \text{ is a real number such that } x^2 = 4\}$
 - $\{x | x \text{ is the square of an integer and } x < 100\}$
 - $\{x | x \text{ is the integer such that } x^2 = 2\}$
- Use set builder notation to give a description of each of these sets
 - $-\{0,3,6,9,12,...\}$
 - $-\{2,3,5,7,11,13,...\}$

Set Operations

- · |S|
 - Cardinality (size) of S
 - May be finite
 - $|\{x | x \text{ is a real number such that } x^2 = 4\}| = 2$
 - $|\{x | x \text{ is prime}\}| = \infty \text{ (more on this later)}$
 - $|\emptyset| = 0$
- $S \subseteq T$
 - − S is a subset of T
 - Everything in S is also in T
 - $|\{x | x \text{ is a real number such that } x^2 = 4\}| \subseteq \mathbb{Z}$
 - $\emptyset \subseteq T$ for any set T
 - $-S \subseteq T \rightarrow |S| \leq |T|$
 - \subseteq in Latex

Set Operations

- $S \subset T$
 - S is a proper subset of T
 - Everything in S is also in T, and there's at least one thing in T missing from S
 - $|\{x|x \text{ is a real number such that } x^2 = 4\}| \subset \mathbb{Z}$
 - Ø ⊂ T for any set T except for Ø
 - $S \subset T \rightarrow |S| \leq |T| \text{ (why?)}$
 - \subset in Latex
- 2^{S}
 - Powerset of S
 - The set of all subsets of S
 - $2^{\{0,1\}} = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}\$
 - $|2^S| = 2^{|S|}$ when S is finite
 - Complicated when infinite

Set Operations Cont.

- S^c or \bar{S}
 - Complement of S
 - Everything in the "Universe" U that's not in S
 - For languages, the Universe is all strings over a given alphabet
 - What is $\{x | x \text{ is prime}\}^c$?
 - $|\bar{S}| = |U| S$
- $S \cup T$
 - S union T
 - Everything that's in S or T (inclusive)
 - $\{00,01\} \cup \{00,11\} = \{00,01,11\}$
 - $|S \cup T| \le |S| + |T|$
 - \cup in Latex

Set Operations Cont.

- $S \cap T$
 - S intersect T
 - Everything that's in both of S and T
 - $\{00,01\} \cap \{00,11\} = \{00\}$
 - $|S \cap T| = |S| + |T| |S \cup T|$
 - \cap in Latex
- S-T
 - S minus T
 - Everying in S that's not in T
 - $S T = S \cap \overline{T}$
- $S \times T$
 - S cross product T
 - Ordered pairs of something from S with something from T
 - $\{a,b\} \times \{a,c\} = \{(a,a),(a,c),(b,a),(b,c)\}$
 - $|S \times T| = |S| \cdot |T|$
 - \times in Latex

Functions

- Denoted $f: S \to T$
 - $-s \in S, f(s) \in T$
 - -S is the domain of f
 - -T is the co-domain of f
 - Everything in S "maps to" exactly one thing in T
- Partial: Some things from S don't map to anything

Properties of Functions

- $f:D\to C$
- One-to-one (1-1), Injective:
 - Every element in the codomain is mapped to by at most one element in the domain
 - Nothing has 2 incoming arrows
 - $\forall x, y \in D, x \neq y \rightarrow f(x) \neq f(y)$
- Onto, Surjective:
 - Every element in the codomain is mapped to by at least one element in the domain
 - Everything in Codomain has at least 1 incoming arrow
 - $\quad \forall y \in C, \exists x \in D, f(x) = y$
- 1-1 Correspondence, Bijective:
 - Both injective and surjective
 - Every element in the codomain pairs with exactly one element in the domain
 - Everything in the domain has one outgoing arrow, everything in codomain has one incoming arrow

Functions and Set Cardinalities

- Consider sets S and T and function $f: S \to T$
- If f is 1-1, then $|S| \le |T|$
 - Everything in T has at most one incoming arrow, but some may have none
- If f is onto, then $|S| \ge |T|$
 - Everything in T has at lease one incoming arrow, but some may have multiple
- If f is bijective, then |S| = |T|
 - Everything in T has exactly one incoming arrow, and everything in S has exactly on outgoing arrow
 - -s and f(s) are "monogamously paired"

Set Cardinalities

- How can I show that two sets are the same size?
- How Can I show that two sets are different sizes?
- What if the sets are infinite?

Brain Teaser

- Sets can contain other sets
- Maybe a set can contain itself?
- Let S be the set of all sets that do not contain themselves

$$-S = \{T | T \notin T\}$$

• Is $S \in S$?

HW1

- Due Monday (2/4)
- Programming portion:
 - Write Java code for deciders
 - Use those deciders to produce the sets of strings they compute
- Written portion:
 - Proofs
 - Sets and functions (next time)