Assignment 4 – Part 1 P378 Set 6.1: 12, 16, Set 6.2: 4, 10, 14, Set 6.3: 12, 37, 42

Set 6.1: 12, 16

12.a)
$$[-3, 2)$$

12.b)
$$(-1,0]$$

12.c)
$$(-∞, -3)$$
 ∪ $(0, ∞)$

12.d)
$$[-3,0] \cup (6,8]$$

12.f)
$$(-\infty, -1) \cup (2, \infty)$$

12.g)
$$(-∞, -3)$$
 ∪ $(2, ∞)$

12.h)
$$(-∞, -1)$$
 ∪ $(0, ∞)$

12.i)
$$(-∞, -1]$$
 ∪ $(0, ∞)$

12.j)
$$(-∞, -3)$$
 ∪ $[2, ∞)$

16.a) A
$$\cup$$
 (B \cap C) = {a, b, c}, (A \cup B) \cap C = {b, c}, (A \cup B) \cap (A \cup C) = {a, b, c} A \cup (B \cap C) and (A \cup B) \cap (A \cup C) are equal

16.b)
$$A \cap (B \cup C) = \{b, c\},$$
 $(A \cap B) \cup C = \{b, c, e\},$ $(A \cap B) \cup (A \cap C) = \{b, c\}$
 $A \cap (B \cup C) = \{b, c\}$ and $(A \cap B) \cup (A \cap C)$ are equal

16.c)
$$(A - B) - C = \{a\},$$
 $A - (B - C) = \{a, b, c\}$

These sets are not equal.

Set 6.2: 4, 10, 14

4. The following is a proof that for all sets A and B, if $A \subseteq B$, then $A \cup B \subseteq B$. Fill in the blanks.

Proof: Suppose A and B are any sets and $A \subseteq B$. [We must show that $\underline{(a)}$.] Let $x \in \underline{(b)}$. [We must show that $\underline{(c)}$.] By definition of union, $x \in \underline{(d)}$ $\underline{(e)}$ $x \in \underline{(f)}$. In case $x \in \underline{(g)}$, then since $A \subseteq B$, $x \in \underline{(h)}$. In case $x \in B$, then clearly $x \in B$. So in either case, $x \in \underline{(i)}$ [as was to be shown].

- 4.a) $A \cup B \subseteq B$
- 4.b) *A* ∪ *B*
- 4.c) $x \in B$
- 4.d) A
- 4.e) or
- 4.f) B
- 4.g) A
- 4.h) *B*
- 4.i) B
 - 10. For all sets A, B, and C,

$$(A - B) \cap (C - B) = (A \cap C) - B.$$

10.) Proof that $(A - B) \cap (C - B) \subseteq (A \cap C) - B$:

Suppose $x \in (A-B) \cap (C-B)$. By definition of intersection, $x \in (A-B)$ and $x \in (C-B)$. Since $x \in (A-B)$, then $x \in A$ and $x \notin B$. Since $x \in (C-B)$, then $x \in C$ and $x \notin B$. Hence, $x \in A$ and $x \in C$, which means $x \in (A \cap C)$ by definition of intersection. Since $x \notin B$, $(A-B) \cap (C-B) \subseteq (A \cap C) - B$ [what we needed to show.]

Proof that $(A \cap C) - B \subseteq (A - B) \cap (C - B)$:

Suppose $x \in (A \cap C) - B$. It follows that $x \in A \cap C$ and $x \notin B$.

By definition of intersection, if $x \in A \cap C$, then $x \in A$ and $x \in C$. Hence, $x \in A$, $x \in C$, and $x \notin B$.

For $x \in (A - B)$, $x \in A$ and $x \notin B$, which we've proven to be the case.

For $x \in (C - B)$, $x \in C$ and $x \notin B$, which we've proven to be the case.

By definition of intersection, $x \in (A - B) \cap (C - B)$

Thus, $(A \cap C) - B \subseteq (A - B) \cap (C - B)$ [what we needed to show.]

- 14. For all sets A, B, and C, if $A \subseteq B$ then $A \cup C \subseteq B \cup C$.
- 14.) **Proof:**

Suppose A and B are sets with $A \subseteq B$. [We must show that $A \cup C \subseteq B \cup C$.] Let $x \in A$. $x \in A \cup C$ by definition of union. If $x \in A$ then $x \in B$ by definition of subsets. Because $x \in B$, $x \in B \cup C$ by definition of union. Therefore, because $x \in A \cup C$ and $x \in B \cup C$, $x \in B \cup C$ [what we needed to show.]

P400 Set 6.3: 12, 37, 42

H 12. For all sets A, B, and C,

$$A \cap (B - C) = (A \cap B) - (A \cap C).$$

12.) Proof that $A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$:

Suppose $x \in A \cap (B - C)$. Then $x \in A$ and $x \in B$ and $x \notin C$. So it is true that $x \in A$ and $x \in B$ and that $x \in A$ and $x \notin C$. Thus, $A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$ [what we needed to show.]

Proof that $(A \cap B) - (A \cap C) \subseteq A \cap (B - C)$: Suppose $x \in (A \cap B) - (A \cap C)$. Then $x \in A$ and $x \in B$, but $x \notin (A \cap C)$, and so $x \notin C$. Thus, $(A \cap B) - (A \cap C) \subseteq A \cap (B - C)$ [what we needed to show.]

- 37. For all sets A and B, $(B^c \cup (B^c A))^c = B$.
- 37.) $(B^C \cup (B^C A))^C = (B^C)^C \cap (B^C A)^C \qquad \text{by De Morgan's Laws}$ $= B \cap (B^C A)^C \qquad \text{by Double Complement Law}$ $= B \cap (B^C \cap A^C)^C \qquad \text{by Set Difference Law}$ $= B \cap ((B^C)^C \cup (A^C)^C) \qquad \text{by De Morgan's Laws}$ $= B \cap (B \cup A) \qquad \text{by Double Complement Law}$ $= B \qquad \text{by Absorption Laws}$

42.
$$(A - (A \cap B)) \cap (B - (A \cap B))$$

42.)

$$\big(A-(A\cap B)\big)\cap \big(B-(A\cap B)\big)$$

 $= (A \cap (A \cap B)^{c}) \cap (B \cap (A \cap B)^{c})$ by Set Difference Laws $= (A \cap (A^{c} \cup B^{c})) \cap (B \cap (A^{c} \cup B^{c}))$ by De Morgan's Laws $= ((A \cap A^{c}) \cup (A \cap B^{c})) \cap ((B \cap A^{c}) \cup (B \cap B^{c}))$ by Distributive Laws $= (\emptyset \cup (A \cap B^{c})) \cap ((B \cap A^{c}) \cup \emptyset)$ by Complement Laws $= (\emptyset \cup (A \cap B^{c})) \cap (\emptyset \cup (B \cap A^{c}))$ by Commutative Laws $= ((\emptyset \cup A) \cap (\emptyset \cup B^{c})) \cap ((\emptyset \cup B) \cap (\emptyset \cup A^{c}))$ by Distributive Laws

 $= ((\emptyset \cup A) \cap (\emptyset \cup B^c)) \cap ((\emptyset \cup B) \cap (\emptyset \cup A^c))$ by Commutative Laws $= ((A \cup \emptyset) \cap (B^c \cup \emptyset)) \cap ((B \cup \emptyset) \cap (A^c \cup \emptyset))$ by Identity Laws

 $= (A \cap A^C) \cap (B \cap B^C)$ by Commutative & Associative Laws $= \emptyset \cap \emptyset$ by Complement Laws

 $= \emptyset$ by Idempotent Laws