Random Fact 7.1

An Early Internet Worm

In November 1988, a graduate student at Cornell University launched a virus program that infected about 6,000 computers connected to the Internet across the United States. Tens of thousands of computer users were unable to read their e-mail or otherwise use their computers. All major universities and many high-tech companies were affected. (The Internet was much smaller then than it is now.)

The particular kind of virus used in this attack is called a worm. The virus program crawled from one computer on the Internet to the next. The entire program is quite complex; however, one of the methods used in the attack is of interest here. The worm would attempt to connect to finger, a program in the UNIX operating system for finding information on a user who has an account on a particular computer on the network. Like many programs in UNIX, finger was written in the C language. C does not have array lists, only arrays, and when you construct an array in C, as in Java, you have to make up your mind how many elements you need. To store the user name to be looked up (say, walters@cs.sjsu.edu), the finger program allocated an array of 512 characters, under the assumption that nobody would ever provide such a long input. Unfortunately, C, unlike Java, does not check that an array index is less than the length of the array. If you write into an array, using an index that is too large, you simply overwrite memory locations that belong to some other objects.

In some versions of the finger program, the programmer had been lazy and had not checked whether the array holding the input characters was large enough to hold the input. So the worm program purposefully filled the 512-character array with 536 bytes. The excess 24 bytes would overwrite a return address, which the attacker knew was stored just after the line buffer. When that function was finished, it didn't return to its caller but to code supplied by the worm (see the figure). That code ran under the same super-user privileges as finger, allowing the worm to gain entry into the remote system.

Had the programmer who wrote finger been more conscientious, this particular attack would not have been possible. In C++ and C, all programmers must be especially careful to protect array boundaries. In Java, the virtual machine takes care of this protection automatically.

One may well speculate what would possess the virus author to spend many weeks to plan the antisocial act of breaking into thousands of computers and disabling them. It appears that the break-in was fully intended by the author, but the disabling of the computers was a bug, caused by continuous reinfection. The author was sentenced to 3 years probation, 400 hours of community service, and a \$10,000 fine.

In recent years, computer attacks have intensified and the motives have become more sinister. Instead of disabling computers, viruses often steal financial data or use the attacked computers for sending spam e-mail. Sadly, many of these attacks continue to be possible because of poorly written programs that are susceptible to buffer overrun errors.

