Redes LAN

Karima Velásquez karima.velasquez@ciens.ucv.ve

Agenda

- Spanning Tree
- VLANs (Virtual LANs)
- Redes de Area Local
 - IEEE 802.11
 - IEEE 802.5

Bridges y Switches de LAN

- Conectan LANs similares
- Idénticas capas físicas y protocolos de enlace
- Procesamiento mínimo
- Puentes más sofisticados pueden hacer un mapeo entre diferentes formatos MACs
- Razones para su uso:
 - Confiabilidad
 - Rendimiento
 - Seguridad
 - Geografía

Redes LAN – Spanning Tree

Bridges: Aspectos de Diseño

- No modifican el contenido de la trama o su formato
- No hacen encapsulamiento
 - Copia exacta bit a bit
- Mínimo buffer requerido para demandas picos
- Manejo direccionamiento y enrutamiento hasta cierto punto
- o Puede conectar más de una LAN
- Bridging es transparente a las estaciones

Bridges: Conexión de dos LANs

(a) Architecture

(b) Operation

Redes LAN - Spanning Tree

Bridges: LANs con Rutas Alternativas

Bridges: Enrutamiento Fijo

- LANs grandes necesitan rutas alternativas
- Los puentes deben decidir si envían la trama
- Los puentes deben decidir a qué LAN enviar la trama
- Se puede usar enrutamiento fijo por cada par fuente-destino de LANs

Puentes de Aprendizaje

- El puente automáticamente desarrolla tablas de enrutamiento
- Actualiza las tablas automáticamente en respuesta a cambios
- Implementa tres mecanismos:
 - Envío de tramas
 - Aprendizaje de la dirección
 - Resolución de loops

Puentes de Aprendizaje: Envío de Tramas

- Mantiene una base de datos de envío por cada puerto
- Para una trama que llega por un puerto X:
 - Busca en la base de datos (tabla CAM) para ver si la dirección MAC está listada para algún puerto excepto para X:
 - Si no está, enviar por todos los puertos excepto por X
 - Si la dirección está listada para el puerto Y, verificar si el puerto Y está bloqueado o en estado de envío
 - Si no bloqueado, transmitir la trama a través del puerto Y

Puentes de Aprendizaje: Aprendizaje de la Dirección

- Puede pre-cargarse una base de datos de envío
- Cuando una trama llega al puerto X, viene de la LAN conectada vía el puerto X
- Actualizar dirección fuente para actualizar la base de datos de envío para el puerto X para que incluya dicha dirección

Puentes de Aprendizaje: Aprendizaje de la Dirección

- Tener un timer para cada entrada en la tabla
- Si la entrada expira, removerla
- Así como cada trama llega, la dirección fuente se verifica contra la tabla:
 - Si está presente, el timer es reiniciado, y la dirección registrada
 - De lo contrario la entrada es creada y el timer es actualizado

Puentes de Aprendizaje

Address	Port
71:2B:13:45:61:41	1
71:2B:13:45:61:42	1
64:2B:13:45:61:12	2
64:2B:13:45:61:13	2

Bridge Table

Puentes de Aprendizaje

Puentes de Aprendizaje: Loops

- La red puede tener loops
- IEEE 802.1d tiene un algoritmo que organiza los puentes como un árbol expandido en un ambiente dinámico
 - Los árboles no tienen loops
- Los puentes que ejecutan IEEE 802.1d se llaman puentes transparentes

Bridges: Puentes de Aprendizaje -Loops

a. Station A sends a frame to station D

b. Both bridges forward the frame

c. Both bridges forward the frame

d. Both bridges forward the frame

Spanning Tree: Terminología

- Puente Raíz : El puente con el más bajo identificador es la raíz del árbol expandido
- Puerto Raíz: Cada puente tiene un puerto raíz que identifica el siguiente salto desde un puente a la raíz
- Costo de la ruta a la raíz: Por cada puente, el costo de la ruta de costo mínimo. Suponga que se mide en el número de saltos a la raíz

Spanning Tree: Terminología

- Puente Designado, Puerto Designado: puente en una LAN que proporciona la ruta de costo mínimo a la raíz de esta LAN:
 - Si dos puentes tienen el mismo costo, seleccione el que tiene mayor prioridad
 - Si el puente de mínimo costo tiene dos o más puertos a la LAN, seleccione el puerto con el menor identificador

- Los puentes intercambian mensajes de configuración (Configuration Bridge Protocol Data Unit, Configuration BPDUs)
- Elegir un solo puente como el puente raíz
- Calcular la distancia del camino más corto hacia el puente raíz

- Cada LAN puede determinar un puente designado, que es el puente más cercano a la raíz. El puente designado enviará paquetes hacia el puente raíz
- Cada puente puede determinar un puerto raíz, el puerto que da la mejor ruta a la raíz
- Seleccionar los puertos que se incluirán en el árbol expandido

Parte de la información contenida en un BPDU

• Se define un orden para dos BPDUs

Se dice que M1 anuncia un mejor camino que M2 ("M1<<M2") si (R1 < R2),

- Inicialmente, todos los puentes asumen que son el puente raíz
- Cada puente B envía un BPDU de esta forma a sus redes de área local por cada puerto P:

- Cada puente ve los BPDUs recibidos por todos sus puertos y su propio BPDU transmitido
- El puente raíz es el puente con el ID mas pequeño recibido hasta el momento

 Cada puente ve los BPDUs recibidos que son mejores que le suyo:

- Suponga que un puente con BPDU M1 recibe un BPDU M2 que es mejor, entonces lo actualiza a M3
- En cada puente, el puerto donde el "mejor BPDU" (a través de la relación "<<") se ha recibido es el puerto raíz del puente

- Cada uno de los puentes toma una decisión local sobre cuáles de sus puertos son parte del árbol expandido
- Ahora B puede decidir qué puertos están en el árbol expandido:
 - El puerto raíz de B es parte del árbol expandido
 - Todos los puertos designados son parte del árbol expandido
 - Todos los demás puertos no son parte del árbol expandido

- Puertos de B que están en el árbol expandido enviarán paquetes
 - Estado → Reenvío
- Puertos de B que no están en el árbol expandido no reenviarán paquetes
 - Estado → Bloqueo

Spanning Tree: Ejemplo

Spanning Tree: Ejemplo

STP: Determinar de la Raíz

STP: Determinar los Puertos Raíces

STP: Determinar los Puertos Designados

STP: Topología Final

Virtual LANs

Introducción

Introducción

Red Virtual

Propiedades de la VLAN

Broadcast y multicast solo a la VLAN correspondiente

Propiedades de la VLAN

 Los miembros de las VLANs son definidos por el administrador de la red

Características

o Independiente de la localización

Los usuarios se pueden mover, pero no

cambiar de LAN

Mayor seguridad

Tipos de VLAN

- Capa 1 VLAN: Grupo de Puertos Físicos
- Capa 2 VLAN: Grupo de Direcciones MAC
- Capa 3 VLAN: IP subnet

Tipos de VLAN

Switch VLAN
Port 1 2

A1 $\sqrt{}$ A2 $\sqrt{}$ A3 $\sqrt{}$ B1 $\sqrt{}$

VLAN1 VLAN2

A1B234565600 D34578923434 1345678903333 3438473450555 4387434304343 4780357056135 4153953470641 3473436374133 3403847333412 3483434343143 4343134134234

VLAN1

23.45.6

VLAN2

IPX

- Conocida como port switching
- Proporciona seguridad y aislamiento
- No permite movilidad del usuario
- Un usuario que se ha movido a una nueva subred debe tener una nueva dirección IP

- Proporciona movilidad de los usuarios
- Se requiere introducir muchas direcciones

- La dirección MAC puede cambiar
- Solución: usar el campo de tipo de protocolo MAC

Ethernet

Dest. Address Src. Address Protocol Type
--

802.3

- Conocida como subnet virtual
- Usa el campo de tipo de protocolo (nivel capa 2) y el campo de subred
- La configuración es aprendida por el switch
- Es orientada a paquetes

Dest. Addr | Src. Addr | Protocol Type

IP Dest. Addr

IP Source Addr

VLANs de Capas Altas

- Diferentes VLANs para diferentes aplicaciones:
 - FTP
 - Email
- VLANs basada en servicio: todas la estaciones usando el servidor de email están en la VLAN de email...
- Los miembros de una VLAN se definen por una combinación de puerto, dir MAC, subred, información de capas superiores, ...

VLAN Tagging (Etiquetado)

- El primer switch etiqueta con un VLAN ID todos los paquetes entrantes
- Los paquetes intermedios no recalculan el VI AN ID
- Último switch remueve etiquetas de los paquetes salientes
- La etiqueta no es cambiada a cada salto como los VC IDs o etiquetas

Dest. Addr Src. Addr VLAN Tag Prot. Type

Redes LAN - VLANs

Reflexión

¿Por qué el emisor no agrega la etiqueta?

VLAN Tagging (Etiquetado)

IEEE 802.1Q

- Permite hasta 4095 VLANs
- Soporta VLANs de capa 1, de capa 2, y de capas superiores
- Compatible con switch y concentradores que no soportan VLANs
- Soporta VLANs conmutadas y de medio compartido
- Permite mezcla de puentes tradicionales y puentes que soportan VLAN
- Mantiene la transparencia de puentes actuales

IEEE 802.1Q

- Extiende los mecanismos de prioridad (802.1P) a prioridad basada en miembros de una VLAN
- Permite prioridad basada en VLANs
- Puede enviar señalización de prioridad en LANs (CSMA/CD) que no soportan prioridad
- Opera con/o sin información del encabezado de VLAN en la trama

IEEE 802.1Q

- Soporta configuración dinámica y estática de cada VLAN
- Permite la mezcla de diferentes IEEE 802 MAC (802.3, 802.5) y FDDI
- Permite el envío de información de enrutamiento en redes CSMA/CD
- Cada VLAN es un subconjunto de un simple árbol expandido

IEEE 802.1Q: Reglas de Etiquetado

IEEE 802.10: Reglas de Etiquetado

- En un segmento de LAN, todas las tramas deberían ser implícitamente o explícitamente etiquetadas
- Diferentes VLANs sobre el mismo segmento pueden usar diferentes opciones
- Si sobre un enlace existen dispositivos que no soportan VLAN todos las tramas sobre ese enlace son no etiquetadas
- En enlaces mixtos:
 - Algunas tramas etiquetadas
 - Otras no etiquetadas

IEEE 802.1Q: Formato de las Tramas

□ Tag Header:

16b	3b	1b	12b
TPID	User Priority	CFI	VLAN Id

■ Ethernet Frame:

6B	6B	4B	2B	0-30B		4B
DA	SA	Tag	PT	[RIF]	Data	FCS

■ 802.3 Frame:

6B	6B	4B	2B	0-30E	}	12-1470E	<u> 4B</u>
DA	SA	Tag	Length	[RIF]	LLC	Data	FCS

IEEE 802.1Q: Formato de las Tramas

- TPID: Identificador del protocolo de VLAN
- CFID: Indicador de formato canónico
- VLAN ID: Indica a qué VLAN pertenece la trama

IEEE 802.1Q: Formato de las Tramas

□ Token Ring:

1B	6B	6B	0-30B	10B			4B
AC	DA	SA	[RIF]	Tag	[LLC]	Data	FCS

□ FDDI:

<u>1B</u>	6B	6B	0-30B	10B			4B
FC	DA	SA	[RIF]	Tag	[LLC]	Data	FCS

GARP

- Generic Attribute Registration Protocol
- Operation Define:
 - Método para declarar atributos a otros participantes GARP
 - Usa mensaje GARP
 - Establece reglas y tiempos para registrar y desregistrar atributos

- GARP VLAN Registration Protocol
- VLANs estáticas creadas y mantenidas vía administradores
- Las VLANs estáticas deben ser reconfiguradas cada vez que la topología cambia

- Crea VLANs dinámicas
- No se necesita configuración manual
- GVRP es mantenido por los dispositivos
- Ante cambio de topologías, GVRP recrea la VLAN automáticamente

- Permite la creación de VLANs con un VID específico y un puerto específico, basado en información de otros dispositivos GVRP
- Anuncia VLANs a otros dispositivos GVRP

- El método usado por GVRP consiste en enviar PDUs de forma similar a STP
- Un PDU GVRP puede contener los siguientes tipos de mensajes:
 - Join
 - Leave
 - Empty

Redes LAN – VLANs

Core switch with static VLANs (VID= 1, 2, & 3). Port 2 is a member of VIDs 1, 2, & 3. becomes a member of VIDs

- & 3.
- 2. Port 1 receives advertisement of VIDs 1, 2, & 3 AND 1, 2, & 3,
- & 3, but port 3 is NOT a member of VIDs 1, 2, & 3 at this point.
- 4. Port 4 receives advertisement of VIDs 1, 2, & 3 AND becomes a member of VIDs 1, 2, & 3,
- 1. Port 2 advertises VIDs 1, 2, 3. Port 3 advertises VIDs 1, 2, 5. Port 5 advertises VIDs 1, 2, & 3, but port 5 is NOT a member of VIDs 1, 2, & 3 at this point.

Port 6 is statically configured to be a member of VID 3.

- Port 2 receives advertisement of VID 3. (Port 2 is already statically configured for VID 3.)
- Port 3 receives advertisement of VID 3 AND becomes a member of VID 3. (Still not a member of VIDs 1 & 2.)
- 10. Port 1 advertises VID 3.
- 7. Port 5 receives advertise- 6. Port 6 advertises VID 3. ment of VID 3 AND becomes a member of VID 3. (Still not a member of VIDs 1 & 2.)
- Port 4 advertises VID 3.

IEEE 802.11

Introducción

- IEEE 802.11 desarrolla el Control de Acceso al Medio (MAC) y la capa física
- Proporcionar conectividad móvil entre estaciones fijas, portables, y móviles en una red de área local

- Conjunto de Servicios Básicos (BSS)
- El área cubierta por un BSS es el área de servicio básico (BSA)
 - Análogo una celda

- Sistema de Distribución (DS)
- Un conjunto de uno o más BSSs interconectados y LANs integradas se denomina conjunto de servicio extendido (ESS)
- Un ESS tiene la apariencia de un gran BSS ante el LLC de cada estación que lo conforma

- Para integrar una red 802.11 con una red LAN cableada se usa un portal
- Un portal es el punto lógico donde se integra un red 802.11 con una red no IEEE 802.11

Clasificación de las Redes 802.11

- Red Ad Hoc:
 - Consiste de un grupo de estaciones que se comunican dentro de un BSS sin una infraestructura de red
 - Formalmente llamadas BSS independiente (IBSS).
- Red con Infraestructura:
 - Las estaciones se comunican usando un punto de acceso (AP)
 - Un AP es una entidad que permite que las estaciones tengan acceso a los servicios de distribución vía el medio inalámbrico
 - Un AP define una extensión y un rango de servicios

Clasificación de las Redes 802.11

Red Ad Hoc

Red con Infraestructura

- SS. Los servicios provistos por la estación incluyen:
 - Autenticación
 - Des autenticación
 - Privacidad
 - Entrega de MSDU
- DSS. Los servicios provistos por el sistema de distribución incluyen:
 - Asociación
 - Desasociación
 - Distribución
 - Integración
 - Reasociación

- o Distribución:
 - Servicio que permite entregar MSDUs dentro de un DS
 - Ejemplo (<u>ver figura</u>):
 - Suponga que un mensaje es enviado desde Estación 1 a la Estación 4
 - El mensaje es entregado de la siguiente forma:
 - Estación 1 al AP A (AP de salida)
 - El AP se lo entrega al DS
 - El mensaje es distribuido al AP B (AP de entrada)
 - Este lo envía a Estación 4

- Integración:
 - Transfiere MSDUs entre un DS y una estación no IEEE 802.11 vía un portal

- Asociación:
 - Establece una asociación inicial entre una estación y un AP
 - Destinada a conocer la identidad y dirección de una estación
- Reasociación:
 - Una asociación establecida puede ser transferida de un AP a otro
 - Permite a una estación moverse de un BSS a otro
- Desasociación:
 - Una notificación de una estación o un AP que una asociación existente está terminada

- Autenticación:
 - Usado para establecer la identidad de las estaciones entre ellas
 - 802.11 soporta varios esquemas
 - Las estaciones deben autenticarse antes de establecer una asociación
- o Des autenticación:
 - Se invoca cada vez que una autenticación se termina
- Privacidad:
 - Previene que los mensajes sean leídos por otros los cuales no son el correspondiente destinatario
 - IEEE 802.11 usa WEP

Arquitectura de Protocolos

Capa MAC

- Cubre tres área funcionales:
 - Entrega de la data confiable
 - Control de acceso
 - Seguridad

- Campo de control de la trama:
 - Versión del protocolo: actualmente 0
 - o Tipo: identifica el tipo de trama
 - Subtipo: indica el subtipo de trama
 - Para DS: colocado en 1 en todas las tramas destinadas al DS
 - Del DS: colocado en 1 en las tramas que salen del DS

Valores de Para DS/Del DS	Significado
Para $DS = 0$ Del DS = 0	Tramas enviadas de una estación a otra dentro del mismo IBSS.
Para $DS = 1$ Del DS = 0	Tramas de datos destinadas a un DS.
Para $DS = 0$ Del DS = 1	Tramas de datos que salen de un DS.
Para DS = 1 Del DS = 1	Tramas de un sistema de DS inalámbrico distribuidas de un AP a otro.

- Campo de control de la trama (1/2):
 - Más fragmentos: indica si este es la trama de una MSDU fragmentada
 - Reintentar: si está en 1 indica si la trama es una retransmisión
 - Gestión de potencia: indica el estado en que se encuentra una estación después de una terminación de una secuencia de intercambio de trama exitosa
 - Es 1 si la estación está en el modo de powersave y en 0 si está en modo activo

- Campo de control de la trama (2/2):
 - Más data: indica si hay más MSDUs almacenados para la estación
 - Wired Equivalente Privacy (WEP): si está en 1 indica si el cuerpo de la trama fue procesado por el algoritmo WEP
 - Orden: si está en 1 indica que las tramas deben estar estrictamente ordenadas

- Duración de la Conexión:
 - Tiempo durante el cual el canal estará ocupado para lograr una transmisión exitosa de un MPDU (MAC PDU)
 - En algunas tramas de control contiene una asociación o identificador de la conexión

- o Dirección:
 - Hay cuatro campos de dirección en la trama MAC:
 - BSSID: identifica unívocamente un BSS
 - DA: identifica una dirección individual o multicast del recipiente de la trama
 - SA: contiene la dirección individual del emisor de la trama
 - TA: identifica la estación que ha transmitido la trama
 - RA: identifica la dirección de la próxima estación a la cual va dirigida el campo de contenido de la trama
 - Adicionalmente, las direcciones pueden ser: individuales, multicast o broadcast

- Control de secuencia: incluye un número de fragmento y un número de secuencia
- QoS (Quality-of-Service, Calidad de Servicio): Identifica la categoría de tráfico o flujo de tráfico al que pertenece la trama entre otros parámetros de calidad de servicio

- Campo del cuerpo de la trama: contienen la data que viaja en la trama y es de longitud variable
- Campo de CRC: contiene el FCS calculado sobre el encabezado y cuerpo de la trama

Tipos de Tramas

- Gestión
- Control
- Data

Tramas de Control

- Request To Send (RTS):
 - Alerta destino y otras estaciones sobre transmisión de trama al destino
- Clear To Send (CTS):
 - Enviado por el destino
 - Garantiza permiso para enviar trama de datos.
- Acknowledgment (ACK):
 - Reconocimiento a la data precedente, trama de gestión o trama PS-Poll
 - Indica que la trama fue recibida correctamente

Tramas de Control

- Power Save Poll (PS-Poll):
 - Requiere que el AP transmita una trama almacenada para una estación que estaba en modo power-save
- Contention-free (CF)-end:
 - Anuncia el fin de un período libre de contención
- OCF-end + CF-ack:
 - Reconocimiento de un CF-end
 - Libera a la estación de las restricciones asociadas a un período libre de contención

Tramas de Data

- o Data:
 - Contiene data del usuario
- o Data+CF-Ack:
 - Contiene data y reconoce una trama de data recibida previamente
- o Data+CF-Poll:
 - Usado por un punto de coordinación para enviar data a un usuario móvil y para requerirle que envíe data que puede estar disponible en su almacenamiento
- Data+Ack+CF-Poll:
 - Combina las funciones de las dos tramas anteriores

Tramas de Datos

- Las restantes tipos de tramas no transportan data
- Tres de estas tienen la misma funcionalidad que las anteriores pero no transportan data
- La restante es la trama Null Function que no tiene data, ni polls, ni acks
 - Solo transporta el bit de gestión de potencia para indicar que la estación está cambiando a un estado de operación en baja potencia

Tramas de Datos: Contenido de los Campos de Dirección

Table 4 —Address field contents

To DS	From DS	Address 1	Address 2	Address 3	Address 4
0	0	DA	SA	BSSID	N/A
0	1	DA	BSSID	SA	N/A
1	0	BSSID	SA	DA	N/A
1	1	RA	TA	DA	SA

- Requerimiento de asociación:
 - Enviado por una estación a un AP para requerir una asociación con este BSS
- Respuesta de la asociación:
 - Retornado por el AP a la estación para indicar la aceptación o no del requerimiento de asociación
- Requerimiento de reasociación:
 - Enviado por una estación cuando se mueve de un BSS a otro y requiere hacer una asociación con el AP en el nuevo BSS
- Respuesta de la reasociación:
 - Respuesta a un requerimiento de reasociación

- Requerimiento de Probe:
 - Usado para obtener información de otra estación o AP
 - Usado para localizar un BSS
- Respuesta del Probe:
 - Respuesta a un requerimiento de probe
- Beacon:
 - Se transmite periódicamente para permitir que las estaciones móviles localicen e identifiquen a un BSS

- Anuncio del mensaje de indicación de tráfico:
 - Permite a una estación móvil alertar a otra sobre la existencia de tramas almacenadas que están esperando para ser enviadas a ella
- o Desasociación:
 - Usado por una estación móvil para terminar un asociación

- Autenticación:
 - Se utilizan múltiples tramas para la autenticación de una estación a otra
- o Des autenticación:
 - Enviado por un estación a otra para indicar que se ha terminado una comunicación segura

Redes LAN - IEEE 802.11

Table 1—Valid type and subtype combinations

Type value b3 b2	Type description	Subtype value b7 b6 b5 b4	Subtype description	
00	Management	0000	Association request	
00	Management	0001	Association response	
00	Management	0010	Reassociation request	
00	Management	0011	Reassociation response	
00	Management	0100	Probe request	
00	Management	0101	Probe response	
00	Management	0110-0111	Reserved	
00	Management	1000	Beacon	
00	Management	1001	Announcement traffic indication message (ATIM)	
00	Management	1010	Disassociation	
00	Management	1011	Authentication	
00	Management	1100	Deauthentication	
00	Management	1101–1111	Reserved	

Redes LAN - IEEE 802.11

Type value b3 b2	Type description	Subtype value b7 b6 b5 b4	Subtype description
01	Control	0000-1001	Reserved
01	Control	1010	Power Save (PS)-Poll
01	Control	1011	Request To Send (RTS)
01	Control	1100	Clear To Send (CTS)
01	Control	1101	Acknowledgment (ACK)
01	Control	1110	Contention-Free (CF)-End
01	Control	1111	CF-End + CF-Ack
10	Data	0000	Data
10	Data	0001	Data + CF-Ack
10	Data	0010	Data + CF-Poll
10	Data	0011	Data + CF-Ack + CF-Poll
10	Data	0100	Null function (no data)
10	Data	0101	CF-Ack (no data)
10	Data	0110	CF-Poll (no data)
10	Data	0111	CF-Ack + CF-Poll (no data)
10	Data	1000-1111	Reserved
11	Reserved	0000-1111	Reserved

Tipos de MAC

- Función de coordinación distribuida (Distributed Coordination Function, DCF):
 - MAC fundamental de la especificación
 - Usado en todas las estaciones (incluyendo APs)
 - Basado en el CSMA/CA

Tipos de MAC

- Función de coordinación puntual (Point Coordination Function, PCF):
 - Método de acceso opcional
 - Solo es usado en redes con infraestructura
 - Usa un coordinador del punto (PC), localizado en el AP del BSS
 - El arbitra quién debe transmitir en un momento dado

DCF MAC

- DCF es adecuado para tráfico best effort
- Usa CSMA/CA (CSMA con Prevención de Colisión)
- La detección de colisión (CD) no es práctico en este tipo de redes

DCF MAC

- CSMA funciona de la siguiente manera:
 - Si una estación tiene una trama que transmitir, escucha el medio
 - Si el medio está libre, debe espera un tiempo IFS (es un gap mandatorio entre tramas) y si el medio permanece libre puede enviar
 - De lo contrario, espera hasta que la estación en curso termine

DCF MAC

- CSMA funciona de la siguiente manera (cont.):
 - Una vez que la transmisión finaliza debe esperar otro tiempo IFS. Si el medio permanece libre por dicho período la estación espera por cierto período aleatorio (exponential binary backoff) y entonces escucha el medio de nuevo
 - Si el medio aún está libre, la estación puede transmitir

DCF MAC: Espacio entre Tramas

- DCF usa ciertos retardos para priorizar la transmisión del tráfico
- Este tiempo se conoce como Espacio entre Tramas (IFS, Interframe Space)
- Existen tres valores para el IFS:
 - SIFS (short IFS): es el tiempo de espera más corto y es usado en acciones de respuesta inmediata
 - PIFS (Point Coordination Function IFS): un tiempo de retardo medio

DCF MAC: Espacio entre Tramas

 DIFS (Distributed Coordination Function IFS): el tiempo de espera más largo y es usado como el tiempo mínimo que las estaciones con tráfico asíncrono (best effort) deben esperar

DCF MAC con uso de IFS

- Cuando una estación nota que el medio está libre, espera por un tiempo DIFS
- Si el canal está aún libre, la estación transmite
- La estación receptora, después de recibir un paquete correcto, espera un tiempo SIFS y transmite un ACK
- Cuando el medio está ocupado, difiere la transmisión y usa el algoritmo de exponential binary backoff

DCF MAC con uso de IFS

DCF MAC con uso de IFS

- El campo de duración en una trama indica la cantidad de tiempo (en ms) que el canal utilizará para completar la transmisión de una trama
- Esta información es usada para ajustar el vector de reservación de la red (NAV)
 - El NAV indica la cantidad de tiempo que el canal estará ocupado en la transmisión en curso y el canal puede ser muestreado otra vez
- El campo de duración de la trama es usado entonces para que las estaciones (en el BSS) conozcan por cuánto tiempo el medio estará ocupado
- Las estaciones ajustarán su NAV basado en dicho campo

DCF MAC con uso RTS/CTS

- Se basa en el uso de dos tramas de control, RTS y CTS
- Ellas alivian los siguientes problemas que pueden ocurrir durante una transmisión:
 - Como una estación no puede escuchar sus propias transmisiones, si una colisión ocurre, la fuente continúa transmitiendo el MPDU
 - Si el MPDU es grande, hay un gran desperdicio del ancho de banda
 - También ayuda a combatir el problema del hidden terminal (nodo oculto)

DCF MAC - Problema del "Nodo Oculto"

- Las estaciones transmisoras compitiendo por el medio podrían no escucharse una a las otras
- Se debe esperar hasta que termine la transmisión del PDU completo antes de detectar la colisión

DCF MAC con uso RTS/CTS

- Las tramas RTS/CTS se usan para "Reservar el Medio" y minimizar la cantidad de ancho de banda desperdiciado cuando una colisión ocurre
- La trama RTS es transmitida por la estación fuente cuando obtiene acceso al medio
- Todas las estaciones escuchando el medio establecen su NAV de acuerdo al campo de duración de la trama RTS
- La estación destino responde con una trama CTS después de un SIFS
- Las estaciones escuchando dicha trama actualizan su NAV de acuerdo al campo de duración en la trama CTS
- Cuando la estación fuente recibe el CTS, el medio ha sido reservado para la transmisión del MPDU

DCF MAC con uso RTS/CTS

DCF MAC - Fragmentación

- Los MSDUs que vienen desde el LLC pueden requerir ser fragmentados en la MAC
- Si el tamaño del MPDU excede un Fragmentation_Threshold entonces es fragmentado hasta que llega a este tamaño
- Todos los fragmentos asociados a un MSDU son enviados secuencialmente

DCF MAC - Fragmentación

- El canal no es liberado hasta que no se transmiten todos los segmentos o la estación emisora no recibe un ACK
- Cuando una estación no recibe un ACK debe volver a competir por el canal e iniciar la transmisión desde el último fragmento no reconocido

DCF MAC - Fragmentación

SI	FS S	SIFS SIF	s s	IFS	SIFS	SIFS	SIFS
emisor		Fragmento 0		Fragmento	1	Fragmento	02
destinatario	CTS		ACK 0		ACK 1	1	ACK 2

otros	os NAV (RTS)		NAV (Fragmento 0)	NAV (Fragmento 1)	
		NAV (CTS)	NAV (ACK 0)	NAV (ACK 1)	

- Proporciona transferencia de tramas en un ambiente libre de contención (Contention Free)
- El Servicio Libre de Contención usa la Función de Coordinación del Puntual (PCF) soportada sobre el DCF
 - El PCF reside en el AP (punto de acceso)
 - El PCF es responsable por consultar (poll) a las estaciones con la finalidad de que ellas transmitan sin competir por el medio

- Se alterna la operación por Contención con la Libre de Contención (Contention Free Period, CFP)
- El período de repetición de CFP incluye una porción del tiempo dedicada al tráfico CF y el resto al tráfico que compite por el medio
- Adicionalmente, hay un período de longitud variable que determina la frecuencia con la cual el PCF ocurre por intervalo
- El intervalo de CFP se inicia con una señal de beacon usada para sincronismo y ajuste

 La figura muestra el intervalo de CFP e ilustra la coexistencia del PCF y DCF

NAV

NAV

- Al inicio de cada período, las estaciones actualizan NAV a la máxima duración del CFP
- Durante el CFP, las estaciones solo pueden responder a un poll del PC o un ACK
- Al inicio del CFP, el PC (es decir el AP) escucha el medio y si permanece desocupado por un tiempo PIFS, transmite una trama beacon
- El PC inicia la transmisión después de un tiempo SIFS transmitiendo un CF-Poll, Data, Data+CF-Poll

- El PC transmite tramas de poll
- Una estación responde al poll (no data) con una trama CF-ACK (no data) o Data+CF-ACK después de un tiempo SIFS
- Si el PC recibe un Data+CF-ACK puede responder con un Data+CF-ACK+CF-Poll para un estación diferente
- Si una estación que es consultada no tiene nada que enviar, entonces envía un trama Null Function (no data)
- Una trama de CF_End del AP finaliza la transmisión CF

- Frequency Hop Spread Spectrum (FHSS)
 - Transmisión en la banda de 2.4 GHz, 1 y 2 Mbps
 - Técnica de señalización: 2GFSK, 4GFSK
- Direct Sequence Spread Spectrum (DSSS)
 - o Transmisión en la banda de 2.4 GHz, 1 y 2 Mbps
 - DBPSK, DQPSK
 - 11 chip Barker sequence
- Infrarrojo
 - Omnidireccional
 - Rango de hasta 20 m
 - 1 y 2 Mbps transmisión, 16-PPM y 4-PPM

(a) Direct sequence spread spectrum (802.11, 802.11b)

Data rate	Chipping Code Length	Modulation	Symbol Rate	Bits/Symbol
1 Mbps	11 (Barker sequence)	DBPSK	1 Msps	1
2 Mbps	11 (Barker sequence)	DQPSK	1 Msps	2
5.5 Mbps	8 (CCK)	DQPSK	1.375 Msps	4
11 Mbps	8 (CCK)	DQPSK	1.375 Msps	8

(b) Frequency hopping spread spectrum (802.11)

Data rate	Modulation	Symbol Rate	Bits/Symbol
1 Mbps	Two-level GFSK	1 Msps	1
2 Mbps	Four-level GFSK	1 Msps	2

(c) Infrared (802.11)

Data rate	Modulation	Symbol Rate	Bits/Symbol
1 Mbps	16-PPM	4 Msps	0.25
2 Mbps	4-PPM	4 Msps	0.5

Especificaciones del Estándar 802.11

- 802.11 → 5 GHz, 54 Mbps, ratificado en 1999
- 802.11b → 11Mbps 2.4 GHz, ratificado en 1999
- 802.11c → Tablas de puenteo, ratificado en 2000
- o 802.11d → Dominios de regulación adicionales, 2000
- 802.11e → Calidad de Servicio (QoS) en MAC, 2004
- 802.11f → Inter-Access Point Protocol (IAPP), 2003
- 802.11g → 54 Mbps @ 2.4 GHz, 2003
- 802.11h → Mecanismos de selección dinámica de canal y control de potencia de Tx, 2003
- 802.11i → Autenticación y Seguridad, 2004
- 802.11n → 100 Mbps, 2009

Token Ring (IEEE 802.5)

TOKEN RING

- Propuesto en 1969
- Desarrollado por IBM en sus laboratorios de Zurich,
 Switzerland a principios 1980s
- IBM busco la aprobación de Token Ring por el 802.5 Working Group del Institute of Electrical and Electronic Engineers (IEEE)
- El primer adaptador es introducido por IBM en 1985, y operaba a 4 Mbps
- En 1989, IBM mejoró la velocidad a 16 Mbps, el estándar fue extendido para soportar dicha velocidad

TOKEN RING

- En 1994, se formó la Alliance for Strategic Token-Ring Advancement and Leadership (ASTRAL) para promover el uso de Token Ring
- Sus miembros iniciales fueron: 3Com, ACE/North Hills, Bay Networks (SynOptics and Wellfleet), Bytex, Cabletron, Centillion, Chipcom, Hewlett-Packard, IBM, Intel, Madge, Olicom, Proteon, Racore, SMC, Texas Instruments, Xircom, Xpoint, y UB Networks

TOKEN RING

- En 1997, se formó la High Speed Token-Ring Alliance (HSTRA) para desarrollar Token Ring a 100 Mbps y superiores
- En 1998, el draft 802.5t estuvo disponible para definir la operación de Token Ring a 100 Mbps
- Es una de las técnicas para controlar el acceso en un anillo, pero no la única

Token Ring (IEEE 802.5): Capa Física

- Topologías: anillo
- Medio de transmisión: par trenzado, fibra óptica

Tasa de Datos (Mbps)	4	16	100
Medio de Transmisión	UTP/STP/Fibra	UTP/STP/Fibra	UTP/STP/Fibra
Técnica de Señalización	Manchester Diferencial	Manchester Diferencial	MLT-3 o 4B5B- NRZI
Máximo Tamaño de la Trama (bytes)	4550	18200	18200

- La topología del Token Ring es conocida como star wired topology
- Los dispositivos en el anillo están conectados a un bucle (loop) simple unidireccional, cableado a un estrella física

- Cada dispositivo es conocido como Attaching Device
- Cada dispositivo es conectado a un Multistation Access Unit (MAU)
- El cable entre la estación y el MAU es llamado lobe

Capa MAC: Formato de la Trama

Capa MAC: Formato de la Trama

Formato de la trama MAC

- Delimitador de inicio (SD): indica el inicio de la trama
- Control de acceso (AC)
- Control de la trama (FC): indica si es una trama LLC de datos
- o Dirección de destino (DA)
- Dirección del emisor (SA)
- Data

Formato de la trama MAC

- Secuencia de verificación de trama (FCS)
- Delimitador de fin (ED): contiene el bit de error detectado (E), el cual indica si algún repetidor detectó un error, y el bit intermedio que es usado para indicar que esta no es la trama final
- Estado de la trama (FS): contiene los bits de dirección reconocida (A) y trama copiada (C)

MAC: Operación

- Se basa en el uso de un token que circula alrededor del anillo
- Una estación que desea transmitir debe obtener el token
- Cuando lo tiene, lo transforma en una trama de datos cambiando el bit de token en el campo AC a 1
- La estación que transmite se apodera del anillo, por lo cual ninguna otra estación puede transmitir
- La estación transmite hasta que no tiene más tramas o hasta que se vence el tiempo de retención del token
- Cada trama enviada debe dar la vuelta a todo el anillo y ser absorbida por la estación que la envió

MAC: Operación

- Una estación coloca el token en el anillo cuando:
 - Ha terminado la transmisión de la trama
 - El inicio de la trama ha retornado
- Luego que el token es colocado en el anillo, la próxima estación en la dirección contraria a las manillas del reloj puede enviar
- Cada estación puede verificar si hay una trama dañada y colocar el bit E en 1 si un error es detectado

MAC: Operación

- Si una estación detecta su dirección, coloca el bit A en uno y coloca el bit C en 1 si copia la trama
- Los siguientes pueden ser los resultados de un transmisión:
 - Estación de destino no existente o no activa (A=0, C=0)
 - Estación de destino existe pero la trama no se copió (A=1, C=0)
 - Trama recibida (A=1,C=1)

Redes LAN – Token Ring

Token Ring: Operación

MAC con Prioridad: Parámetros

P = priority the data / token frame

R = reservation the data / token frame

 \emph{P}_{f} :priority of the data frame waiting to be transmitted

MAC con Prioridad: Parámetros

 P_r = priority of the last received data / token frame

 R_r = reservation of the last received data / token frame

 P_s = priority of the send data / token frame

 $R_{\rm c}$ = reservation of the send data / token frame

 P_f : priority of the data frame waiting to be transmitted

MAC: Operación con Prioridad

- Una estación que desea transmitir debe esperar un token con Ps ≤ Pf
- Mientras la estación espera puede reservar un toquen futuro a un nivel de prioridad Pf, de la siguiente manera:
 - Si una trama pasa y Rs < Pf, Rs ← Pf
 - Si un token pasa, Rs < Pf y Pf < Ps, Rs ← Pf
 - Cuando una estación obtiene un token, coloca los bits de reservación 0 y los bit de prioridad se dejan como estaban en el token
- Después de transmitir, la estación genera un nuevo token y le asigna los valores apropiados a los bits de prioridad y reservación

MAC: Operación con Prioridad

- El efecto del algoritmo anterior es que se pueden incrementar los niveles de prioridad y se mantienen, impidiendo que otras estaciones con menor prioridad envíen
- Para resolver el problema, una estación que incrementa el valor de la prioridad más alto que el valor de la prioridad en el token recibido debe disminuirlo posteriormente
- Para ello se usan dos pilas: una con los nuevos valores de la prioridad del token (Sx) y otra con los valores viejos (Sr)
- Se utilizan pilas porque los valores de prioridad pueden ser incrementados por varias estaciones una o más veces

MAC con Prioridad: Token llega

MAC con Prioridad: Trama llega

MAC con Prioridad: estación tiene el token

- Si Pr ≥ MAX (Rr,Pf), Ps ← Pr, Rs ←MAX (Rr,Pf) (la prioridad de servicio se queda igual)
- De lo contrario Pr < MAX (Rr,Pf), Ps ← MAX (Rr,Pf), Rs ← 0
- Ya que la estación ha elevado el nivel de prioridad de servicios del anillo, la estación se convierte en una stacking station

MAC con Prioridad: Stacking Station

Una estación que incrementa el valor de la prioridad debe restaurarlo cuando no hayan más tramas con ese nivel de prioridad por ser enviadas

MAC con Prioridad: Manejo de la Pila

Se incrementa la prioridad de P₀ a P_H

- When increase priority station store
 - Po: to restore
 - P_H: to check whether to restore P_o or not
- When token arrive check
 Token Priority = P_H
 - Yes: restore P_o
 - No: unchanged

Redes LAN – Token Ring

Mantenimiento del Anillo

- Monitor Contention
- Ring Poll
- Claim Token
- Ring Purge

Rol de la Estaciones

- Monitor Activo (AM)
 - Inicializar el anillo (Ring Purge)
 - Manda un Token
 - Sincronización del anillo
 - Transmite tramas de Active Monitor Present
- Monitor en Espera (SM)
 - Verifica la existencia de tokens válidos en el anillo
 - Usa el contador del tiempo del token válido
 - Verifica la existencia de un monitor activo (recepción de tramas Active Monitor Present)

Monitor Contention

- Permite seleccionar un AM
 - No se detecta token o trama de datos
 - No se detecta un Active Monitor Present (AMP)
 - No se detecta un Standby Monitor Present (SMP)o Ring Purge (regeneración del token)
 - Pérdida de sincronismo en el anillo
 - Trama Beacon con MC (Monitor Count) encendido

Monitor Contention: Claim Token

- Las condiciones anteriores se reconocen porque los contadores (relojes) expiran
- Cuando un contador expira, la estación comienza a enviar tramas Claim Token
- Contención
 - Muchas tramas se pueden enviar al anillo
- La contención se resuelve:
 - Un estación que recibe una trama Claim Token, compara su dirección con la de la trama
 - Si es menor, para de enviar y repite la trama recibida
 - De lo contrario, genera una nueva trama Claim Token y no repite la recibida

Monitor Contention: Claim Token

- La estación con "mayor" dirección (más alta) eventualmente recibe la trama
 Claim Token con su dirección de vuelta
- Repite el proceso 3 veces
- Si es exitoso, se convierte en el nuevo AM

Monitor Contention: Claim Token

 El nuevo AM envía tramas de AMP (Active Monitor Present) para asegurar que todas las estaciones reciben información

Tramas Circulantes

- Cuando un trama pasa por el AM se enciende el bit MC del campo AC
- Si la trama vuelve a pasar por el AM es porque no fue retirada por la estación que la generó
- El AM la retira

Beacon

- Una estación detecta una falla grave en el anillo
- Se envía una trama Beacon para notificar a las otras estaciones
- La primera estación que detecta el Beacon cambia el MC a 1
- Cuando el anillo se recupere, la estación que colocó el MC a 1 inicia la recuperación usando Monitor Contention

Ring Purge

- Ocurre cuando:
 - Una estación se ha convertido en AM recientemente
 - Una trama ha circulado más de una vez con el bit MC = 1
 - El anillo está silencioso

Ring Purge

- El AM genera una trama de Ring Purge
- La estación que recibe un Ring Purge cancela sus contadores
- Si la trama Ring Purge circula por el todo el anillo, un nuevo token es generado
- o Si no, entrar al modo de contención

Ring Poll: Neighbor Notification

- El AM envía una trama AMP cada 7s
- La siguiente estación aprende su NAUN (Nearest Active Upstream Neighbor)
- Cuando el AM retira la trama AMP, las demás estaciones envían tramas SMP en orden
- Las tramas SMP permite que las estaciones conozcan su NAUN

Ring Poll: Neighbor Notification

Inserción de una Estación

- Fase 0, Lobe Test
- Fase 1, Verificación del Monitor
 - Espera por una trama AMP, SMP o Ring Purge
- Fase 2, Duplicación de Dirección:
 - Se envía una trama Duplicate Address Test (DAT)
 - La DAT debe regresar con bits A = C = 0
- Fase 3, Ring Poll
 - Participa en el Ring Poll, descrito anteriormente
 - Conoce su NAUN
- Fase 4, Request Initialization
 - Transmite una trama Request Initialization al Ring Parameter Server (RPS)

Eliminación de una Estación

- El MAU corta la señal
- El NAUN se da cuenta de la interferencia eléctrica
- Inicia un proceso de cambio de SUA (vecino inferior)
- Para ello, envía trama SUA_CHG
- Luego inicia Ring Poll para determinar NAUN
- A diferencia del proceso de inserción, en este proceso sólo una estación cambia su SUA