Homework 5

Adam Niedziałkowski

26 December 2016

1 Problem

Projektowanie szerokopasmowej sieci dostępowej można przedstawić następujaco (zapis jest celowo nadmiarowy): w pewnej lokalizacji miedzy cen- trala a grupa klientów instaluje sie wezeł pośredniczacy, do którego od cen- trali doprowadza sie kabel światłowodowy, a potem od niego rozprowadza sygnał za pomoca kabli miedzianych do klientów (np. z użyciem techniki xDSL). Wezeł pośredniczacy dokonuje konwersji optyczno-elektrycznej i pracuje jako koncentrator. Użycie jak najkrótszego segmentu złożonego z kabli miedzianych byłoby korzystne dla klienta, ponieważ im krótszy taki segment, tym wieksza przepływność, ale z punktu widzenia operatora sensowne jest użycie jak nadłuższych odcinków już dawno położonej in- frastruktury miedzianej (w zwiazku z użyciem istniejacej infrastruktury pomijamy tutaj koszty położenia kabli). Przy założonej przepływności, która ma uzyskać każdy klient, długość okablowania miedzianego łacza- cego wezeł pośredniczacy z klientem nie może być dłuższa niż R km. Z punktu widzenia topologii fizycznej sieć złożona z wierzchołków reprezen- tujacych centrale, wezeł pośredniczacy (wezły pośredniczace) oraz klien- tów jest drzewem. Problem polega na znalezieniu takiego umiejscowienia wezłów pośredniczacych obsługujących wszystkich klientów, że pojedyn-czy wezeł pośredniczacy może obsłużyć wszystkich przyłaczonych klientów.

1.1 Oznaczenia

Oznaczenia:

S – zbiór klientów,

J– zbiór potencjalnych lokalizacji wezłów pośredniczacych,

 $J_s\subseteq J-$ zbi
ór lokalizacji, które znajduja sie nie dalej niż Rk
m od klienta s,

 T_j- zbi
ór typów urzadzeń dostepnych w weźle pośredniczacym, gdyby go ulokowano w lokalizacji,
 j

 q_{it} – liczba klientów, których urzadzenie może obsłużyć; c_{it} – koszt urzadzenia.

1.2 Funkcja celu

$$\min \sum_{j \in J} \sum_{t \in T_j} c_{jt} y_{jt} \tag{1}$$

1.3 Ograniczenia

$$\forall_{s \in S} : \sum_{j \in J_s} x_{sj} = 1 \tag{2}$$

$$\forall_{j \in J} : \sum_{s \in S: j \in J_s} x_{sj} \le \sum_{t \in T_j} q_{jt} y_{jt} \tag{3}$$

$$\forall_{j \in J} : \sum_{t \in T_j} y_{jt} \le 1 \tag{4}$$

 $\forall_{s \in S} \forall_{j \in J_s} : x_{sj} \in 0, 1; \forall_{j \in J} \forall_{t \in T_j} : y_{jt} \in Z$

1.4 Zadanie

1.4.1 Znaczenie zmiennych

- y_{jt} zmienna całkowita określajaca liczbe wykorzystanych urzadzeń typu t w lokalizacji j (z (4) wynika, że jest binarna).
- \bullet $x_{sj}-$ zmienna całkowita określajaca do której lokalizacji przypisany jest klient.

1.4.2 Interpretacja równań

- 1. Funkcja celu (1) to minimalizacja całkowitego kosztu potrzebnych urzadzeń. Tzn sprawdzamy z których urzadzeń korzystamy (y) i sumujemy ich koszt (c).
- 2. Równanie (2) to ograniczenie, mówiace o tym, że każdy klient korzysta z dokładnie jednej lokalizacji.
- 3. Ograniczenie (3) zostało dodane w celu upewnienia sie, że liczba przpisanych klientów nie przekracza możliwości obsługi urzadzenia $(x \leq q)$
- 4. Ostatnie ograniczenie (4) mówi o tym, że w danej lokalizacji montowane jest co najwyżej jedno urzadzenie nadawcze.

1.4.3 Metoda

1.4.4 Wpływ relaksacji

W przypadku relaksacji równania (4) możemy instalować wiecej niż jedno urzadzenie w danej lokalizacji. Biorac od uwage, że funkcja celu opiera sie wyłacznie na cenie, potencjalnie bedziemy mogli użyć najtańszych urzadzeń w całości systemu, czyli wartość funckji celu dla zrelaksowanego problemu bedzie nie gorsza (może być lepsza tj. mniejsza) niż w przypadku wyjściowym.

1.4.5 Dualizacja

1.4.6 Liście w topologi

Tak, jeżeli żaden z klientów nie bedzie przypisany do danego wezła pośredniczacego, czyli:

$$\exists_{j \in J} \sum_{s \in S} x_{sj} = 0 \tag{5}$$

Stopień takiego wezła, zgodnie z defnicja to 1 : $\deg j = 1$

1.4.7 Korzeń topologi

Centrala bedzie korzeniem takiej topologi. Przy czym, zależy to od interpretacji, potencja za korzeń można by uznać dowolny wierzchołek grafu.

1.4.8 Dane sprzeczne

Aby sfromuowany problem był sprzeczny (nie miał rozwiazań) najłatwiej jest złamać ograniczenie (3), to znaczy by liczba klientów przekraczała sumaryczne możliwości obsługi wszystkich urzadzeń np.:

$$|S| = 2 \tag{6}$$

oraz

$$\sum_{j \in J} \sum_{tinT} q_{jt} = 1 \tag{7}$$

Z(6) wynika, że liczba klientów to 2, a z (7), że jesteśmy w stanie obsłużyć tylko jednego klienta. Q.E.D.