Airbnb Analysis

- based on Central Area, Seattle

AD 699 Data Mining for Business Analytics

Instructor: Greg Page

Presented by: Farah Eid

Kaming Yip

Xinran Chen

Date: August 7, 2019

Fengnian Zhao

Shangze Li

Agenda

Naive Bayes

Classification Tree

Project Overview Data Preparation & Exploration - Neighborhood Introduction - Project Goal and Objectives - Summary Statistics - Visualization Classification Clustering Conclusion - K- nearest neighbors - K-mean Analysis - Overview

Outlook

Project Overview

Neighborhood Introduction

"The **Central Area** is a mostly residential district in Seattle located east of First Hill (12th Avenue and Rainier Avenue); west of Madrona, Leschi and Mt. Baker; south of Capitol Hill, and north of Rainier Valley. Historically, the Central District has been one of Seattle's most racially and ethnically diverse neighborhoods,^[2] and was once the center of Seattle's black community and a major hub of African-American businesses.^[3]"

Main Objectives

- Understand the nature of Airbnb listings and hosts in Central Area
 Neighborhood
- 2. Help potential renters have a better renting experience by using our models and findings!

4

1

Data Preparation & Exploration

Missing Values

Method 1: Delete the inefficient column(s)

```
> # square_feet
> summary(CentralArea$square_feet)
   Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
        1 850 1200 1050 1300 2100 360
> CentralArea <- select(CentralArea, -(square_feet))</pre>
```

In the case of a particular column named "square_feet", we find out that, among 369 rows, only 9 of them provide this information, which is far too inefficient to extract reliable information.

Method 2: Imputation

In most of the cases in this project, imputation, instead of deleting whether a specific column or several rows, is one of the most prevailing methods to handle the missing values

Summary Statistics

- Q1. How is the price of Airbnb located in Central Area, Seattle?
- Q2. How many levels exist for host performance metrics?
- Q3. Among the overall Airbnb hosts in this neighborhood, how many of them are superhosts?
- Q4. How is the number and the price of each property type in the neighborhood?
- Q5. What is the trend of the host number in this neighborhood when time went by?

Visualization

Review Scores Rating

Visualization

Plot 4: Boxplot

\$

Visualization

Prediction

Prediction

- Multiple Linear Regression

Selecting Significant Predictors

Final Predictors

coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-50.29524	78.54209	-0.640	0.523	
room_typePrivate room	-33.25416	6.62462	-5.020	1.09e-06	**
room_typeShared room	-38.82395	29.54296	-1.314	0.190	
bathrooms	28.09801	5.91363	4.751	3.71e-06	ŔŔ
bedrooms	22.90252	4.80911	4.762	3.54e-06	**
cleaning_fee	0.44361	0.08285	5.355	2.21e-07	**
review_scores_communication	14.14865	8.61663	1.642	0.102	
review_scores_value	-4.38679	5.45119	-0.805	0.422	
Signif. codes: 0 '***' 0.00	01 '**' 0.0	01 '*' 0.05	'.' 0.1	''1	
-					
Decidual standard organi 41	04 on 212	deaness of	fusadam		

Residual standard error: 41.04 on 213 degrees of freedom Multiple R-squared: 0.7318, Adjusted R-squared: 0.723 F-statistic: 83.02 on 7 and 213 DF, p-value: < 2.2e-16

Accuracy

> accuracy(Prediction_TrainPre, Prediction_Train\$price)

ME RMSE MAE MPE MAPE Test set -3.537555e-13 40.29146 28.09696 -7.015867 23.31265 Classification

- k-nearest Neighbors

K-nearest neighbors

- 1. <u>Identify significant predictors:</u>
- 2. Normalization and Data Prep
- 3. Choose Optimal K:
- 4. Create Test Neighborhood:
- 5. <u>Test Neighborhood:</u>

- k-nearest Neighbors

Predict Cancellation policy

- Question for audience:
 - Which predictors do you think are important?
- o Predictors: cleaning fee, total host listings, security deposit

Low Model Accuracy

- Numerical predictors did not have
 a high impact on cancellation
 policy
- o 57.04%

↓ □ Æ ▼ Filter				
‡	k [‡]	accuracy		
11	11	0.5704698		
8	8	0.5637584		
13	13	0.5637584		
12	12	0.5570470		
10	10	0.5503356		
7	7	0.5436242		
14	14	0.5436242		
9	9	0.5369128		
5	5	0.5033557		
1	1	0.4966443		
4	4	0.4899329		
6	6	0.4765101		
3	3	0.4429530		

<pre>> varImp(model,scale=TRUE)</pre>	
	overall
accommodates	13.1707995
availability_365	7.5315762
availability_60	15.6889960
availability_90	11.3105452
beds	14.5663217
cleaning_fee	51.3329311
extra_people	14.0081812
guests_included	13.1783735
host_total_listings_count	31.3834072
maximum_nights	15.8105985
minimum_nights	5.7309754
price	17.7757519
review_scores_accuracy	1.7270597
review_scores_location	0.8813474
review_scores_rating	8.3272604
reviews_per_month	28.2368118
security_deposit	30.9291199
weekly_price	6.9776698

- k-nearest Neighbors

Create Test Neighborhood

O Test<-data.frame(cleaning_fee=195,host_total_listings_count=6,security_deposit=995)

Test Neighborhood

```
l> nn2
 [1] strict
attr(,"nn.index")
      [,1] [,2] [,3] [,4] [,5] [,6] [,7]
 [1,] 158
            6 160 184
 attr(,"nn.dist")
      [,1] [,2]
                     [,3]
                                        [,5]
                                                 [,6]
              0 2.108818 2.695255 3.134691 3.194627 3.24229
 \lceil 1, \rceil
                    [,9]
          [,8]
                            [,10]
 [1,] 3.333298 3.376756 3.376756 3.443967
Levels: strict
> View(Test.norm)
```


ClassificationNaive Bayes

> summary(Bayse\$price)

Min. 1st Qu. Median Mean 3rd Qu. Max. 35.0 75.0 100.0 128.3 155.0 500.0

> summary(Bayse\$extra_people)

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0 0.0 0.0 11.7 20.0 75.0

> summary(Bayse\$number_of_reviews)

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00 2.00 10.00 22.88 30.00 270.00

> summary(Bayse\$review_scores_rating)

Min. 1st Qu. Median Mean 3rd Qu. Max. 60.00 95.00 97.00 96.14 100.00 100.00

> summary(Bayse\$review_scores_accuracy)

Min. 1st Qu. Median Mean 3rd Qu. Max. 6.000 10.000 10.000 9.794 10.000 10.000

> summary(Bayse\$review_scores_location)

Min. 1st Qu. Median Mean 3rd Qu. Max. 6.000 9.000 10.000 9.558 10.000 10.000

This is our non-factorial data, which turns these data into factors

```
'data.frame': 369 obs. of 15 variables:
$ host_is_superhost
                                   : Factor w/ 3 levels "", "f", "t": 2 2 2 2 2 2 2 2 3 2 ...
$ host has profile pic
                                   : Factor w/ 3 levels "", "f", "t": 3 3 3 3 3 3 3 3 3 3 ...
                                   : Factor w/ 3 levels "", "f", "t": 3 3 3 3 3 3 3 3 3 3 ...
$ host_identity_verified
$ is_location_exact
                                   : Factor w/ 2 levels "f", "t": 1 2 2 2 2 2 2 2 2 2 ...
$ price
                                   : num 90 88 125 145 275 60 95 140 250 225 ...
$ extra_people
                                         0 0 20 25 0 15 50 0 25 25 ...
$ has_availability
                                   : Factor w/ 1 level "t": 1 1 1 1 1 1 1 1 1 1 ...
$ number_of_reviews
                                   : int 0 8 132 3 2 7 93 24 7 11 ...
$ review_scores_rating
                                   : int 97 98 95 93 100 94 94 88 97 95 ...
$ review_scores_accuracy
                                   : int 10 10 10 8 9 9 10 10 9 9 ...
$ review_scores_location
                                   : int 10 10 9 10 9 9 9 9 10 9 ...
$ instant bookable
                                   : Factor w/ 2 levels "f", "t": 1 2 1 1 1 1 1 1 1 1 ...
$ cancellation_policy
                                   : Factor w/ 3 levels "flexible", "moderate", ...: 3 2 2 3 1
                                  : Factor w/ 2 levels "f", "t": 1 1 1 1 2 1 1 1 1 1 ...
$ require_quest_profile_picture
$ require_guest_phone_verification: Factor w/ 2 levels "f","t": 1 1 1 1 2 1 1 1 1 1 1 . . .
```


Classification - Naive Bayes

```
extra_people
> Bayse_T
                                                       Y Small Medium Large
                                                                                              require_guest_phone_verification
                                                         f 0.2065217 0.3043478 0.4891304
Naive Bayes Classifier for Discrete Predictors
                                                         t 0.4375000 0.2500000 0.3125000
                                                                                             f 0.93846154 0.06153846
                                                         has_availability
naiveBayes.default(x = X, y = Y, laplace = laplace)
                                                                                             t 0.88461538 0.11538462
A-priori probabilities:
                                                         f 1
0.8823529 0.1176471
                                                          number_of_reviews
                                                       Y Especially Less
                                                                            Less Abundant
Conditional probabilities:
                                                                0.5641026 0.2307692 0.2051282
  host_is_superhost
                                                                0.3846154 0.3076923 0.3076923
  f 0.0000000 0.7743590 0.2256410
                                                          review_scores_rating
  t 0.0000000 0.7307692 0.2692308
                                                       Y Negative Comment Ordinary Comment Positive Comment
                                                                 0.2974359
                                                                               0.2461538
  host_has_profile_pic
                                                                 0.5384615
                                                                               0.1538462
Y ft
  f 0 0 1
                                                          review_scores_accuracy
 t 0 0 1
                                                       Y Negative Comment Ordinary Comment Positive Comment
                                                                0.02051282
                                                                              0.18461538
                                                                                             0.79487179
  host_identity_verified
                                                                0.00000000
                                                                              0.34615385
                                                                                             0.65384615
                     f
  f 0.0000000 0.1897436 0.8102564
                                                          review_scores_location
  t 0.0000000 0.2692308 0.7307692
                                                       Y Negative Comment Ordinary Comment Positive Comment
                                                                0.05641026
                                                                              0.31282051
   is_location_exact
         f
                                                                0.11538462
                                                                              0.46153846
                                                                                             0.42307692
  f 0.07692308 0.92307692
  t 0.00000000 1.00000000
                                                          cancellation_policy
                                                       Y flexible moderate strict
                                                         f 0.3487179 0.2923077 0.3589744
  price
Y Low Price Favorable Price High Price
                                                         t 0.1538462 0.5384615 0.3076923
  f 0.5076923
                     0.2564103 0.2358974
                     0.2307692 0.1923077
  t 0.5769231
                                                          require_guest_profile_picture
                                                               f t
```

f 0.94358974 0.05641026 t 0.88461538 0.11538462

Naive Bayes Model

Classification **Naive Bayes**

> confusionMatrix(Bayse_Train\$instant_bookable,Bayse_T_PC) > confusionMatrix(Bayse_Valid\$instant_bookable,Bayse_V_PC)

Confusion Matrix and Statistics

Reference

Prediction

f 187 t 19

Accuracy : 0.8778

95% CI: (0.8272, 0.9179)

No Information Rate: 0.9321 P-Value $\lceil Acc > NIR \rceil : 0.99887$

Kappa: 0.2794

Mcnemar's Test P-Value: 0.05429

Sensitivity: 0.9078

Specificity: 0.4667

Pos Pred Value: 0.9590 Neg Pred Value: 0.2692

Prevalence: 0.9321

Detection Rate: 0.8462

Detection Prevalence: 0.8824

Balanced Accuracy: 0.6872

'Positive' Class : f

Confusion Matrix and Statistics

Reference

Prediction f

f 122

t 18 2

Accuracy : 0.8378

95% CI: (0.7684, 0.8933)

No Information Rate: 0.9459 P-Value $\lceil Acc > NIR \rceil$: 1.00000

Kappa: 0.0711

Mcnemar's Test P-Value: 0.02474

Sensitivity: 0.8714

Specificity: 0.2500

Pos Pred Value: 0.9531 Neg Pred Value: 0.1000

Prevalence: 0.9459

Detection Rate: 0.8243

Detection Prevalence: 0.8649

Balanced Accuracy: 0.5607

'Positive' Class : f

Our model prediction accuracy reaches 87.78%

The accuracy of the verification set is 83.78%, which is close to 87.78%. The difference between our validation set and the training set is 4%. Prove that our model is very accurate.

Classification - Naive Bayes

host_is_superhost † hos		ost_has_profile_pic		host_identity_verified		\$
t	t	t		t		
is_location_exact	price [‡]	extra_people [‡]	has_availa	bility [‡]	number_of_reviews	\$
t	High Price	Medium	f		Abundant	

review_scores_rating †	review_scores_accuracy +	review_scores_location ‡		instant_bookable	\$
Positive Comment	Positive Comment	Ordinary	Comment	t	
cancellation_policy	require_guest_profile_pict	ture ‡	require_guest_pl	hone_verification	÷

In the end, the probability of getting an instant bookable is 47.4%. The probability of not getting instant bookable is 52.6%.

> New_Bayse2

f t [1,] 0.5256182 0.4743818

- Classification Tree

Variable: property type, room type

accommodates, guests included

bathrooms, bedrooms, beds

price, extra people

review scores rating, review scores of

cleanliness

ClassificationClassification Tree

369 records -> 319 records

```
> map(Tree, ~sum(is.na(.)))
$property_type
[1] 0
$room_type
[1] 0
$accommodates
[1] 0
$bathrooms
[1] 0
$bedrooms
[1] 0
$beds
[1] 0
$price
[1] 0
$cleaning_fee
[1] 0
$guests_included
[1] 0
$extra_people
[1] 0
$review_scores_rating
[1] 50
$review_scores_cleanliness
[1] 50
```


- Classification Tree

> table(Tree2\$cleaning_fee)

```
No Fee Low High
73 144 102
```

3 groups: No Fee (0)
Low (1-50,cheap, acceptable)
High (51-250, expensive, unacceptable)

Classification - Classification Tree

ClassificationClassification Tree

```
> printcp(cv.ct)
classification tree:
rpart(formula = cleaning_fee ~ ., data = Tree.train, method = "class",
    cp = 1e-05, minsplit = 5, xval = 191)
Variables actually used in tree construction:
[1] accommodates
                              bathrooms
                                                       beds
[5] guests_included
                              price
                                                       property_type
[9] review_scores_rating
Root node error: 104/191 = 0.5445
n= 191
         CP nsplit rel error xerror
1 0.2980769
                    1.00000 1.00000 0.066180
2 0.0576923
                    0.70192 0.74038 0.065185
3 0.0288462
                2 0.64423 0.69231 0.064401
4 0.0192308
                    0.55769 0.59615 0.062222
5 0.0153846
                    0.51923 0.66346 0.063834
6 0.0128205
               12 0.44231 0.75000 0.065319
7 0.0096154
               15 0.40385 0.81731 0.066041
8 0.0064103
                22 0.33654 0.85577 0.066290
9 0.0000100
                34 0.25000 0.90385 0.066435
```

extra_people review_scores_cleanliness

cp=0.0192308

Classification - Classification Tree

Classification - Classification Tree

> confusionMatrix(Tree.pruned.train.ct.pred,Tree.train\$cleaning_fee)
Confusion Matrix and Statistics

Reference

Overall Statistics

Accuracy: 0.6963

95% CI: (0.6258, 0.7606)

No Information Rate : 0.4555 P-Value [Acc > NIR] : 1.520e-11

Kappa: 0.4947

Mcnemar's Test P-Value: 3.793e-05

Statistics by class:

	class: No Fee	class: Low	class: ніді
Sensitivity	0.24390	0.8621	0.7619
Specificity	0.97333	0.5865	0.9143
Pos Pred Value	0.71429	0.6356	0.8136
Neg Pred Value	0.82486	0.8356	0.8864
Prevalence	0.21466	0.4555	0.3298
Detection Rate	0.05236	0.3927	0.2513
Detection Prevalence	0.07330	0.6178	0.3089
Balanced Accuracy	0.60862	0.7243	0.8380

> confusionMatrix(Tree.pruned.valid.ct.pred,Tree.valid\$cleaning_fee)
Confusion Matrix and Statistics

Reference

Prediction No Fee Low High
No Fee 2 4 0
Low 28 48 8
High 2 5 31

Overall Statistics

Accuracy: 0.6328

95% CI : (0.5431, 0.7162)

No Information Rate : 0.4453 P-Value [Acc > NIR] : 1.517e-05

Kappa: 0.3937

Mcnemar's Test P-Value : 0.000122

Statistics by class:

	Class: No Fee	Class: Low	Class: High
Sensitivity	0.06250	0.8421	0.7949
Specificity	0.95833	0.4930	0.9213
Pos Pred Value	0.33333	0.5714	0.8158
Neg Pred Value	0.75410	0.7955	0.9111
Prevalence	0.25000	0.4453	0.3047
Detection Rate	0.01562	0.3750	0.2422
Detection Prevalence	0.04688	0.6562	0.2969
Balanced Accuracy	0.51042	0.6675	0.8581

4

Clustering

Choose variables

First, we chose "accommodates", "bathrooms", "bedrooms", "beds", "price" and "review_scores_rating" as the variables which are meaningful to our clustering step.

Normalize the data

Second, we name the "id" as the row in the frame and normalized the data for the later clustering.

_	accommodates	bathrooms [‡]	bedrooms [‡]	beds [‡]	price [‡]	review_scores_rating
10035644	-0.7141233	-0.5657699	-0.4588410	-0.6423402	-0.477678628	0.17886778
8293287	-0.7141233	-0.5657699	-0.4588410	-0.6423402	-0.502597468	0.38773553
910784	0.7051487	-0.5657699	0.5927883	0.1451134	-0.041598931	-0.23886773
7071222	0.7051487	0.8740170	0.5927883	0.1451134	0.207589468	-0.65660323
8687716	1.1782393	3.0336973	1.6444176	0.9325670	1.827314060	0.80547103
7430679	-1.1872139	-0.5657699	-0.4588410	-0.6423402	-0.851461226	-0.44773548

Determine the number of clusters

Third, we choose k-mean clustering and determined the optimal number of 3 the clusters by "fviz_nbcluster" function. The figure shows there tends to be stable when the number of clusters is larger than 3.

K-means analysis

We labeled the three cluster as "Party Preferred", "Family Preferred" and "Couple or Business".

```
> km$centers
```

```
      accommodates
      bathrooms
      bedrooms
      beds
      price review_scores_rating

      1
      2.0497221
      2.27591471
      2.1702322
      2.1344698
      2.1424062
      0.15138518

      2
      0.6773198
      0.09483819
      0.6422768
      0.5434723
      0.4538462
      0.04126079

      3
      -0.5506570
      -0.38433335
      -0.5571640
      -0.5175000
      -0.4877576
      -0.03764148
```

> dist(km\$centers)

1 2

2 3.790761

3 5.938351 2.279188

Conclusion

Conclusion

- 1. Importance of Data Cleaning
- 2. Insight from summary statistics and visualization
- 3. How our work can benefit future renters :)

