(युक्त्य स्पर्वेत्याक) tzmi 0/2420 १५४४१ ५७१ ७

भिता किंद्र भिता किंद्रा भिता भित्र के स्ट्रिक्ट द्र्य के किंद्र के स्ट्रिक्ट के स्ट्रिक के

보험료의 산출

7=12 40.1.
7=11-12-1

보험계리실무

<u>목차</u>

र्धित लाभ न पद्गाम्य धार्मा

1. 보험료 계산의 기초 : આ 내내 기초

સૃબસરખલ પ૧૫૫૪...

- 2. 생명보험의 일시납 순보험료
- 3. 연납순보험료
 - 4. 영업보험료
 - 5. 현금흐름방식의 보험료 산출

1. 보험료 계산의 기초

구 분

보험료계산의 3요소

내 용

● 생명보험의 보험료 계산에는 통상 예정사망률, 예정이율, 예정사업비율로 구성

가. 예정사망율 : 떼정위성%의 약공

- 생명보험의 보험료는 계약 당시에 정해지므로 합리적인 보험료 계산을 하기 위해서는 피보험자가 어느 정도 비율로 생존하여 보험료를 납입하고, 또한 어느 정도 비율로 사망하여 보험금을 지급받 는가를 아는 것이 필요
- ☞ 사망발생의 확률을 가정하여 사망 또는 생존을 지급사유로 하는 계약에서 생명표가 나타내는 사망률을 예정사망률
 - 예정사망률이 낮아지면 사망보험의 보험료는 낮아지게 되고, 생존보험의 보험료는 생존자수가 증가하기 때문에 보험료는 높아짐

나. 예정이율) 성재사시고계산하기 위항 → 학인원

- ☞ 보험료의 대부분은 장래의 보험금 지급에 대비하기 위하여 보험회사에 적립하게 되는데 보험회사 는 이를 운용하여 운용수익을 예정하고 미리 일정한 비율로 할인하여 산출한다.
 - 일반적으로 예정이율이 낮아지면 보험료가 높아지고,예정이율이 높아지면 보험료는 낮아지게 됨

다. 예정사업비율

- ☞ 보험회사가 보험사업을 영위하기 위해서는 모집비용, 계약유지관리비용, 수금비용 등의 여러 가지 비용을 사전에 고려하여야 한다. 이러한 보험사업에 필요한 경비를 예정사업비율이라 한다.
 - 예정사업비율이 높아지면 보험료는 높아진다

1. 보험료 계산의 기초

구 분

내 용

수지상등 원칙

०१ त्रिक्षक मुक्त विकास मिल्य के त्राम् १ ५५ के

ल्पभार माग्य १२ गणी कार्य मिन द ग्रिक्ष

사망보험금의 보험수리적 현가 = 일시납 순보험료

= 분할납 순보험료의 보험수리적 현가

물 보험료를 계산할 때에는 사망의 발생, 이자 및 사업비의 지출이 미리 예정된 계산기초대로 발생하는 것으로 하고, 장래의 전 보험기간에 걸쳐 수입의 현가와 지출의 현가가 같도록 하여 산출한다. 이를 수지상등의 원칙이라고 한다.

자연보험료와 평준보험료

natural premium level premium

자연보<mark>험료(</mark>natural premium)

☞ <mark>보험기간이 1년인 정기보험의</mark> 경우 연령 이 증가해감에 따라 예정사망률이 변하 므로 매 연령별 보험료는 매년 달라지게 되는데 이와 같은 1년 만기 정기보험에 대한 연령별 보험료

<mark>평준보험료(le</mark>vel premium)

전 보험기간에 걸쳐 총괄적으로 수지상 등이 되도록 하여 산출한 보험료를 사용 하는 것이 편리하다. 이와 같이 자연보 험료가 전 보험기간에 걸쳐 평준화된 보 험료

평준보험료는 연령의 증가에 관계없이 매년 보험료가 일정(평준)하며, 계약의 초기에는 자연보험료보다 A만큼 더 많이 납입하고 계 약의 후기에는 B만큼 덜 납입한다. 더 많이 징수한A는 계약후기의 B를 충당(책임준비금)

· p= vn <u>latn</u> 건국 · la

2. 생명보험의 일시납 순보험료

구 분

गमाष्ट्रयम्स **५०५६८** च्हरेट्ट

피보험자 연령 x세 보험기간 n년 보험금 1원 일시납순보험료 A_{æ: 위}

मिनिक्त भिष्ठभण्ट मंत्राक्षायः

→ 마시아 시생 현사이는 거에의 변형 등 부러가능.. 육니나라이시오 커트어 x

िल्लिस्याय निकार विद्या ।

● 피보험자가 계약 시부터 일정기간이 경과한 뒤 생존해 있을 경우에 일정액의 보험금이 지급되는 보험이다. 보험기간 중에는 어떠한 보험금도 지급되지 않는 순수생존보험에 대해서만 고려

 $^{**}D_{\alpha}N_{\alpha}S_{\alpha}$ 를 생존함수의 계산기수라 함

구 분

제5회경험생명표 남자 배당사망율 예정이율 5.0% 적용

한 금이 [원인때

$$\phi = \frac{b n + \lambda}{b \lambda} \rightarrow \frac{b \lambda \tau}{b \lambda 0} = \frac{b \lambda$$

10000th 224121

以近れたかれるを与からすない。 りかいは、一切をなりとる。 780とはいきれいまれ、

내 용

[계산기수표(생존계열)]

				[7]	ゼンファエくざさ	기일기		
zoł . W	x x	l_{ω}	q_{α}	d_{ω}	v^{μ}	D_{α}	N_{α}	S_{α}
4	30	100,000	0.00075	75	1.00000000	100000.0	868783.2	4782724.6
	31	99,925	0.00076	76	0.95238095	95166.7	768783.2	3913941.4
	32	99,849	0.00078	78	0.90702948	90566.0	673616.5	3145158.2
	33	99,771	0.00082	82	0.86383760	86185.9	583050.5	2471541.7
	34	99,689	0.00088	88	0.82270247	82014.4	496864.6	1888491.2
	35	99,602	0.00095	95	0.78352617	78040.8	414850.2	1391626.6
	36	99,507	0.00105	104	0.74621540	74253.7	336809.4	976776.4
	37	99,403	0.00115	114	0.71068133	70643.9	262555.7	639967.0
	38	99,288	0.00128	127	0.67683936	67202.0	191911.8	377411.3
	39	99,161	0.00142	141	0.64460892	63920.1	124709.8	185499.5
	40	99,020	0.00158	156	0.61391325	60789.7	60789.7	60789.7

(예제) 피보험자 30세, 남자, 5년 만기, 보험금 1,000만원인 생존보험의 일시납 순보험료를 구하시오.

[수입보험료의 현가($= D_{30} \cdot (NSP)$) = 지출의 현가($= 10,000,000 \cdot D_{35}$)]

(풀이)수지상등의 원칙에 따라

$$D_{30} \cdot (NSP) = 10,000,000 \cdot D_{3E}$$
 따라서 $NSP = 10,000,000 \cdot \frac{D_{35}}{D_{30}}$ 이므로

$$=10,000,000 \cdot \frac{78,040.8}{100,000.0}$$

따라서 7,804,080원

구 분

사망보험

04141464Ai

변지사면 의보험자 보험기간 보험금연5

피보험자 연령 (30세) 보험기간 3년_

보험금연말급 1원 일시납순보험료 $A_{\mathtt{a0:a}}^{\mathtt{1}}$

내 용

● 피보험자가 사망한 경우에 보험금을 지급하는 보험을 말하며, 생존보험에 대비되는 개념 사망보험은 정기보험과 종신보험으로 구분

가. 정기보험(term insurance)

☞ 정기보험이란 피보험자가 일정기간 내에 사망하였을 경우에 사망보험금을 지급하는 보험

예를 들어

♠ 수입보험료의 현가 > NoM마입, 지원사 시 제곱보험금의 현가

$$\begin{split} &= l_{30} \, \bullet \, A_{30:\,\overline{3}|}^1 \\ &= (100,000) \, \bullet \, A_{30:\,\overline{3}|}^1 \end{split}$$

1년도말 = $(d_{30} \times 1) \cdot v = 75 \times 0.95238095 = 71.458571$

3년도말= $(d_{32} \times 1) \cdot v^3 = 78 \times 0.86383760 = 67.379333$

● 수지상등의 원칙에 따라

$$A_{30:3|}^{1} = \frac{71.428571 + 68.934240 + 67.379333}{100,000}$$

= 0.002077 > Haltout

सम्बद्धाः मित्रहेश्री स्ट्रिस्ट्रिक

구 분

피보험자 연령 x세 보험기간 n년 보험금연말급 1원 일시납순보험료 $A^1_{*,\pi}$

내 용

일반화

- 수입보험료의 현가
 - $l_x \cdot A_{x:\overline{n}}^1$

● 지급보험금의 현가

$$v \cdot d_x + v^2 \cdot d_{x+1} + v^3 \cdot d_{x+2} + \cdots + d_{x+n-1}$$

● 수지상등의 원칙에 따라

$$\begin{split} A_{x:\,\overline{n}}^1 &= \frac{v \, \cdot \, d_x + v^2 \, \cdot \, d_{x+1} + v^3 \, \cdot \, d_{x+2} + \, \cdots \, + v^n \, \cdot \, d_{x+n-1}}{l_x} \\ A_{x:\,\overline{n}}^1 &= \frac{v^{x+1} \, \cdot \, d_x + v^{x+2} \, \cdot \, d_{x+1} + v^{x+3} \, \cdot \, d_{x+2} + \, \cdots \, + v^{x+n} \, \cdot \, d_{x+n-1}}{v^x \, \cdot \, l_x} \end{split}$$
 ①식, 분자, 분모에 v^x 를 곱하면

사망자현가는

$$C_x = v^{x+1} \cdot d_x, C_{x+1} = v^{x+2} \cdot d_{x+1}, C_{x+2} = v^{x+3} \cdot d_{x+2}, \cdots$$

사망자연가의 합은

$$\begin{split} M_{z} &= C_{z} + C_{z+1} + C_{z+2} + \cdots + C_{w-1} \\ M_{z+1} &= C_{z+1} + C_{z+2} + C_{z+3} + \cdots + C_{w-1} \\ M_{z+2} &= C_{z+2} + C_{z+3} + C_{z+4} + \cdots + C_{w-1} \\ &\vdots \end{split}$$

①식을 계산기수로 나타내면

$$A_{x:n}^{1} = \frac{C_{x} + C_{x+1} + C_{x+2} + \dots + C_{x+n-1}}{D_{x}}$$

따라서 일시납순보험료는

$$A_{x:\overline{n}}^{1} = \frac{M_{x} - M_{x+n}}{D_{x}}$$

사망자연가의 합의 총합(누계)

$$\begin{array}{lll} M_x = C_x + C_{x+1} + C_{x+2} + \cdots + C_{w-1} & R_x = M_x + M_{x+1} + M_{x+2} + \cdots + M_{w-1} \\ M_{x+1} = C_{x+1} + C_{x+2} + C_{x+3} + \cdots + C_{w-1} & R_{x+1} = M_{x+1} + M_{x+2} + M_{x+3} + \cdots + M_{w-1} \\ M_{x+2} = C_{x+2} + C_{x+3} + C_{x+4} + \cdots + C_{w-1} & R_{x+2} = M_{x+2} + M_{x+3} + M_{x+4} + \cdots + M_{w-1} \\ & \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{array}$$

그런데 분자를 사망자현가의 합으로 표현하면

$$C_x + C_{x+1} + C_{x+2} + \cdots + C_{x+n-1} = M_x - M_{x+n}$$

$$\left(A_{x:\overline{1}}^{1} = \frac{M_{x} - M_{x+1}}{D_{x}} = \frac{C_{x}}{D_{x}} = v \cdot q_{x}\right)$$

 $X \sim C_{x}, M_{x}, R_{x}$ 를 사망계열 계산기수라 함

구 분

제5회경험생명표 남자 배당사망율 예정이율 5.0% 적용

				내 용		न विक्रामिक	29	
[계산기수표(사망계열)]								
æ	l_{α}	q_{α}	d_{ω}	v^{μ}	$C_{\!\scriptscriptstyle Z}$	M_z	R_x	
30	100,000	0.00075	75	0.95238095	71.4	825.9	5193.2	
31	99,925	0.00076	76	0.90702948	68.9	754.5	4367.1	
32	99,849	0.00078	78	0.86383760	67.4	685.6	3612.6	
33	99,771	0.00082	82	0.82270247	67.5	618.2	2927.0	
34	99,689	0.00088	88	0.78352617	69.0	550.7	2308.8	
35	99,602	0.00095	95	0.74621540	70.9	481.7	1758.1	
36	99,507	0.00105	104	0.71068133	73.9	410.8	1276.4	
37	99,403	0.00115	114	0.67683936	77.2	336.9	865.6	
38	99,288	0.00128	127	0.64460892	81.9	259.3	528.7	
39	99,161	0.00142	141	0.61391325	86.6	177.8	269.0	
(예제)	피보험자 3	30세, 남자,	5년 만기	기, 보험금 1,00	00만원인 정기	기보험의 일시님	소보험료를	
	구하시오.							
	[수입보험료의 현가(=D30 · $A^1_{30:\overline{51}}$) =							
지출의 현가(= $10,000,000 \cdot (C_{30} + C_{31} + C_{32} + C_{33} + C_{34})$)]								
(풀이	(풀이)수지상등의 원칙에 따라							
$A_{30:\overline{5} }^1 = \frac{10,000,000 \cdot (M_{30} - M_{35})}{D_{22}}$ 이므로 $= \frac{10,000,000 \cdot (825.9 - 481.7)}{100,000.0}$								
	$A_{30:\overline{5} } = {D_{30}} = {D_{30}}$							
	따라서 일시납 순보험료는 = 34,420							

구 분

내 용

사망보험

 피보험자 연령 x세

 보험기간 종신

 보험금연말급
 1원

 일시납순보험료
 A*

나. 종신보험(whole life insurance)

☞ 정기보험에서 보험기간 이 무한대 인 경우 즉, 사망보험에 대하여 종신토록 보장하는 보험

- 우입보험료의 현가 $l_z \cdot A_z \qquad v \cdot d_z + v^2 \cdot d_{z+1} + v^3 \cdot d_{z+2} + \cdots + v^{w-x} d_{w-1}$ 주지상등의 원칙에 따라 $A_z = \frac{v \cdot d_z + v^2 \cdot d_{z+1} + v^3 \cdot d_{z+2} + \cdots + v^{w-x} \cdot d_{w-1}}{l_x}$ 분자, 분모에 v^x 를 곱하면 $= \frac{C_z + C_{z+1} + C_{z+2} + \cdots + C_{w-1}}{D_z}$ 받자, 반모에 v^x 를 곱하면 $= \frac{M_z}{D_z}$ 일시납순보험료는
- (예제) 피보험자 30세, 남자,보험금 1,000만원인 종신보험의 일시납 순보험료를 구하시오 [수입보험료의 현가($=A_{30} \cdot D_{30}$) = 지출의 현가($=10,000,000 \cdot (C_{30} + C_{31} + C_{32} + \cdots)$)]
- (풀이) 수지상등의 원칙에 따라

$$A_{30} = \frac{10,000,000 \cdot M_{30}}{D_{30}}$$
 이므로 $= \frac{10,000,000 \cdot 825.9}{100,000.0}$

따라서 일시납 순보험료는 = 82,590

구 분

다. 거치정기보험

사망보험

피보험자 연령 \times 세 기치기간 m년 보험기간 n년 보험금연말급 1원 일시납순보험 $\pm m|A_{x:n}^{1}|$

☞ 정해진 거치기간에는 보험금을 지급하지 않고 거치기간이 경과한 후 일정기간 내에 사망하였을 경 우 보험금을 지급하는 보험

ठ

내

● 보험가입시 부터 피보험자 사망의 사망보험금을 지급한다고 하면

$$_{m}|A_{x\,:\,\overline{n}|}^{\,1}=A_{x\,:\,\overline{m+n}|}^{\,1}-A_{x\,:\,\overline{m}|}^{\,1}$$

이를 계산기수로 표현을 하면

$$\underbrace{ \begin{bmatrix} A_{x}^{1} & - M_{x+m+n} \\ M_{x+m} & - M_{x+m+n} \\ D_{x} \end{bmatrix} - \frac{M_{x}^{2} - M_{x+m}^{2}}{D_{x}} }_{ D_{x} }$$

(事) 또하

$$\begin{aligned} & \frac{1}{m|A_{x:n}^{1}|} = \frac{M_{x+m} - M_{x+m+n}}{D_{x}} \\ & = \frac{D_{x+m}}{D_{x}} \cdot \frac{M_{x+m} - M_{x+m+n}}{D_{x+m}} \\ & = \frac{D_{x+m}}{D_{x}} \cdot A_{x+m:n}^{1} \\ & = A_{x:m} \cdot A_{x+m:n}^{1} \end{aligned}$$

이 되므로

$$\begin{split} A_{z:\overline{m+n}}^{1} &= A_{z:\overline{m}}^{1} + {}_{m} |A_{z:\overline{n}}^{1}| \\ &= A_{z:\overline{m}}^{1} + {}_{m} E_{z} \cdot A_{z+m:\overline{n}}^{1}| \\ &= A_{z:\overline{m}}^{1} + A_{z:\overline{m}}^{1} \cdot A_{z+m:\overline{n}}^{1} \end{split}$$

으로 나타낼수 있다

구 분

피보험자 연령 x세 보험기간 n년 보험금 1원 일시납순보험료 $A_{\alpha: \overline{n}}$

내 용

- 보험자가 보험기간 내에 사망하거나 또는 보험기간이 끝나는 시점에 생존하고 있는 경우에 일정액의 보험금을 지급하는 보험
- 정기보험과 생존보험을 결합시킨 보험
- endowment insurance

일시납순보험료를 계산기수로 표현하면

$$A_{z:\overline{n}} = A_{z:\overline{n}}^{1} + A_{z:\overline{n}}^{1}$$

$$= \underbrace{M_{z} - M_{z+|\mathbf{N}|}}_{D_{z}} + \underbrace{D_{z+|\mathbf{N}|}}_{D_{z}}$$

$$= \underbrace{M_{z} - M_{z+|\mathbf{N}|} + D_{z+|\mathbf{N}|}}_{D_{z}}$$

(예제) 피보험자 30세, 남자, 5년 만기, 보험금 1,000만원인 생사혼합보험 일시납순보험료를 구하시오 [수입보험료의 현가(= $D_{30} \cdot A_{30:\overline{51}}$) = 지출의 현가(= $10,000,000 \cdot (M_{30} - M_{35} + D_{35})$)]

(풀이) 수지상등의 원칙에 따라

$$A_{30:\overline{5}}=10,000,000$$
 • $\frac{M_{30}-M_{35}+D_{35}}{D_{30}}$ 이므로 $=10,000,000$ • $\frac{825.9-481.7+78,040.8}{100,000.0}$ 따라서 일시납 순보험료는 $=7,838,500$

구 분

피보험자 연령 x세 보험기간 종신 연금연액 기말급1원 일시납순보험료 a_x

Theret

내 용

- 피보험자가 생존하였을 경우에만 연금지급이 이루어지는 연금
- 생명연금의 일시납순보험료도 수지상등에 의해 산출

생명연금의 보험수리적 현가(APV) = 일시납 순보험료

가. 종신연금(whole life annuity)

☞ 피보험자가 생존하는 한 일정금액의 연금액을 지급하는 것

분 ヲ

내 용

Palolohury-

(예제) 피보험자 30세에 대하여 즉시연금으로 30세부터 연금연액 1,000원씩 지급하는 종신연금의 일시 납순보험료를 구하시오.(단 예정이율은 5%)

(풀이) 수지상등의 원칙에 따라 일시납순보험료 =
$$1,000 \cdot \ddot{a}_{30}$$
 = $1,000 \cdot \frac{N_{30}}{D_{30}}$ = $1,000 \cdot \frac{868,783.2}{100,000.0}$ 따라서 = $8,687.8$

Tobbe 111k

나. 유기생명연금(temporary life annuity, 또는 정기생명연금)

☞ 연금을 지급하는 기간이 종신이 아니고 미리 정해진 일정한 기간일 경우

피보험자 연령 x세 보험기간 n년 연금연액 1원

$$\overset{\cdot \cdot \cdot}{a}_{x: \, \overrightarrow{n}} = \underbrace{ 0E_{x}}_{1} + {}_{1}E_{x} + {}_{2}E_{x} + \cdots + \underbrace{ 0E_{x}}_{n-1}E_{x} = \underbrace{ D_{x} + D_{x+1} + D_{x+2} + \cdots + D_{x+n-1}}_{D_{x}} = \underbrace{ N_{x} - N_{x+n} \choose D_{x}}_{1} = \underbrace{ N_{x} - N_{x+n}$$

기말급 유기생명연금의 일시납 순보험료는

$$a_{z: \, \overline{n}} = \underbrace{1E_z} + 2E_z + 3E_z + \cdots + \underbrace{nE_z} = \underbrace{D_{z+1} + D_{z+2} + D_{z+3} + \cdots + D_{z+n}}_{D_z} = \underbrace{N_{z+1} - N_{z+n+1}}_{D_z}$$

구 분

내 용

(예제) 피보험자 (30), 매년 초에 연금연액 1,000원씩 20년간 지급하는 종신생명연금의 일시납 순보험료를 구하시오. (단, 예정이율은 5%)

(풀이) 수지상등의 원칙에 따라 일시납순보험료 =
$$1,000 \cdot a_{30:\overline{10}} = 1,000 \cdot \frac{D_{30} + D_{31} + D_{32} + \cdots + D_{39}}{D_{30}} = 1,000 \cdot \frac{N_{30} - N_{40}}{D_{30}}$$
 따라서
$$= 1,000 \cdot \frac{868,783\cdot2 - 60,789\cdot7}{100,000\cdot0} = 8,079.9$$

다. 보증기간부 생명연금 시키기에

☞ 연금지급이 개시된 후 일정기간을 생사에 관계없이 지급하고 그 이후에는 살아있는 경우에 한 해 연 금을 지급하는 생명연금

피보험자 연령 x세 보증기간 h년 연금지급기간 n년 연금연액 1원

유기생명연금의 현가

$$a_{\overline{h}|} + a_{\underline{x}} \cdot \overline{n}$$

보증기간이 h년이고 그 이후 생명연금의 지급기간이 종신인 경우

$$a_{\overline{h}|} + a_{\overline{h}|}a_{x}$$

구 분

내 용

라. 거치생명연금

☞ 생명연금 가입 후 일정기간 동안에는 연금을 지급하지 않고 일정기간 경과 후부터 지급하는 생명연금

피보험자 연령 x세 거치기간 n년 연금지급기간 종신 연금연액기말급 1원 일시납순보험료 🗝 🗷

피보험자 연령 x세 거치기간 n년 연금지급기간 m년 연금연액기시급 1원 일시납순보험료 nla = nla =

● 거치기간이 n년이고 연금연액 1원, m년 동안 생명연금을 기시급으로 지급하는 경우

$$x x+1 \cdots x+n-1 x+n x+n+1 x+n+m$$

$$x^{-n}a_{x:n} = {}_{n}E_{x} + {}_{n+1}E_{x} + {}_{n+2}E_{x} + \cdots + {}_{n+m-1}E_{x} + {}_{n+m-1}E_$$

구 분

개요

내 용

- 일시납으로 납입하는 것은 많은 부담이 되기 때문에 실제로는 분할하여 납입
- 매년 1회 납입하는 것을 연납보험료, 매월 납입하는 것을 월납보험료라고 함
- 연납보험료는 매 보험연도 초에 납입하고, 그 납입기간이 전 보험기간에 걸친 경우를 전기납(全期納), 보험기간 중 일정연수에 한정한 경우(보험기간>납입기간)를 단기납(短期納)이라고 함

연납평준순보험료의 보험수리적 현가 = 보험금의 보험수리적 현가(일시납 순보험료)

☞ 연납순보험료를 P라 할 때 매년 P씩 지급되는 생명연금현가는 일시납순보험료와 같음

생존보험

피보험자 연령 x세 보험기간 n년 생존보험금 1원 연납순보험료 $P_{x:n}$ 수지상등의 원칙에 따라

 $P_{z:n}$ • $(N_z - N_{z+n}) = D_{z+n}$ 따라서 $P_{z:n} = \frac{D_{z+n}}{N_z - N_{z+n}}$ 양변을 D_x 로 나누면 $P_{z:n}$ • $\ddot{a}_{z:n} = A_{z:n}$ 따라서 연납평준순보험료는

$$P_{z:n}^{1} = \frac{A_{z:n}^{1}}{a_{z:n}} = \frac{D_{z+n}}{N_{z} - N_{z+n}}$$

납입기간이 h년인 단기납의 경우 연납평준순보험료

수지상등의 원칙에 따라 $1(생존) \qquad {}_{h}P_{\varkappa:\frac{1}{n}} \bullet \stackrel{\cdot}{a}_{\varkappa:\frac{1}{n}} = A_{\varkappa:\frac{1}{n}}$ 때라서

구 분

정기보험

피보험자 연령 30세 보험기간 5년 사망보험금 1원 연납순보험료 P

내 용

예를 들어

[계산기수표에서 연령별 생존자수 , 사망자수는 다음과 같다,5회경험사망율]

구 분	30세	31세	32세	33세	34세	35세
생존자수	100,000	99,925	99,849	99,771	99,689	99,602
사망자수	75	76	78	82	88	95
		,	1	1	1	
	30	31	32	33	34	35

● 수입보험료의 현가

1년도 =
$$l_{30} \cdot P = 100,000 \cdot P$$

2년도 = $l_{31} \cdot P \cdot v = 95,166.66643 \cdot P$
3년도 = $l_{32} \cdot P \cdot v^2 = 90,565.98655 \cdot P$
4년도 = $l_{33} \cdot P \cdot v^3 = 86,185.94119 \cdot P$
5년도 = $l_{34} \cdot P \cdot v^4 = 82,014.38653 \cdot P$
합계 = $453,932.98070 \cdot P$

🦲 지급보험금의 현가

1년도 =
$$l_{30} \cdot P = 100,000 \cdot P$$

2년도 = $l_{31} \cdot P \cdot v = 95,166.66643 \cdot P$
3년도 = $l_{32} \cdot P \cdot v^2 = 90,565.98655 \cdot P$
4년도 = $l_{33} \cdot P \cdot v^3 = 86,185.94119 \cdot P$
5년도 = $l_{34} \cdot P \cdot v^4 = 82,014.38653 \cdot P$
합계 = $453,932.98070 \cdot P$
1년도 = $l_{30} \cdot v = 75 \times 0.95238095 = 71.42857$
2년도 = $l_{30} \cdot v = 76 \times 0.90702948 = 68.93424$
3년도 = $l_{31} \cdot v^3 = 78 \times 0.86383760 = 67.37933$
4년도 = $l_{32} \cdot v^3 = 78 \times 0.86383760 = 67.37933$
5년도 = $l_{34} \cdot P \cdot v^4 = 82,014.38653 \cdot P$
5년도 = $l_{34} \cdot v^5 = 88 \times 0.78352617 = 68.05030$
합계 = 343.25404

● 수지상등의 원칙에 따라

453,932.98070 • P= 343.25404

따라서

P = 0.00076

구 분

피보험자 연령 x세 보험기간 n년 사망보험금 1원 연납순보험료 $P_{z:n}^{1}$

내 용

일반화

- 두지상등의 원칙에 따라 $P_{z:\overline{n}}^{1} \bullet a_{z:\overline{n}} = A_{z:\overline{n}}^{1}$ 따라서 $P_{z:\overline{n}}^{1} = \frac{A_{z:\overline{n}}^{1}}{a_{z:\overline{n}}} = \frac{M_{z} M_{z+n}}{N_{z} N_{z+n}}$
- 동일한 조건하에서 납입기간이 h년인 단기납의 경우

$$_{h}P_{x:\overline{n}|}^{1}$$
 • $\overset{\cdot \cdot \cdot}{a_{x:\overline{h}|}} = A_{x:\overline{n}|}^{1}$ 따라서 $_{h}P_{x:\overline{n}|}^{1} = \frac{A_{x:\overline{n}|}^{1}}{\overset{\cdot \cdot \cdot}{a_{x:\overline{h}|}}} = \frac{M_{x}-M_{x+n}}{N_{x}-N_{x+h}}$

● 특히 n=1인 경우인 정기보험의 보험료는 매 연령별로 산출하게 됨(자연보험료, natural premium)

$$A_{x\,:\,\overline{1}|}^{\,1} = P_{x\,:\,\overline{1}|}^{\,1} \qquad = \frac{M_x - M_{x\,+\,1}}{N_x - N_{x\,+\,1}} = \frac{C_x}{D_x} = v \,\, \bullet \,\, q_x$$

- (예제) 피보험자 30세, 보험금연말급, 보험금 1,000원인 10년만기 정기보험의 연납순보험료를 구하시오 (단, 예정이율은 5%이고 제5회 경험생명표를 이용)
- (풀이) 수지상등의 원칙에 따라

$$\begin{array}{ll} P \bullet \overset{\cdot \cdot \cdot}{a_{30:\overline{10}|}} = 1,000 \bullet \overset{A_{30:\overline{10}|}}{A_{30:\overline{10}|}} \quad \text{따라서} \quad P = 1,000 \bullet \frac{\overset{A_{30:\overline{10}|}}{a_{30:\overline{10}|}}}{\overset{\cdot \cdot \cdot}{a_{30:\overline{10}|}}} = 1,000 \bullet \frac{M_{30} - M_{40}}{N_{30} - N_{40}} \quad \text{이므로} \\ = 1,000 \bullet \frac{825.9 - 91.2}{868,783.2 - 60,789.7} = 0.90929 원 임$$

구 분

종신보험

피보험자 연령 x세 보험기간 종신 사망보험금 1원 연납순보험료 P_x 주지상등의 원칙에 따라 $P_x \cdot a_x = A_x$

따라서

$$P_x = \frac{A_x}{\ddot{a}_x} = \frac{M_x}{N_x}$$

동일한 조건하에서 납입기간이 h년인 단기납의 경우

$$_{h}P_{x}$$
 • $\overset{\cdot \cdot \cdot}{a}_{x}$: $_{\overline{h}|}=A_{x}$ 이므로

$$_{h}P_{x} = \frac{A_{x}}{\ddot{a}_{x:\overline{h}|}} = \frac{M_{x}}{N_{x} - N_{x+h}}$$

(예제) 피보험자 30세, 보험금연말급, 보험금 1,000원인 10년납입 종신보험의 연납평준순보험료를 구하시오

내 용

(단, 예정이율은 5%이고 제5회 경험생명표를 이용)

(풀이) 수지상등의 원칙에 따라

$$P \cdot \ddot{a}_{30:\overline{10}} = 1,000 \cdot A_{30}$$
 따라서 $P = 1,000 \cdot \frac{A_{30}}{\ddot{a}_{30:\overline{10}}} = 1,000 \cdot \frac{M_{30}}{N_{30} - N_{40}}$ 이므로 $= 1,000 \cdot \frac{825.9}{868,783.2 - 60,789.7} = 1.02216 원 임$

구 분

생사혼합보험

피보험자 연령 \times 세 보험기간 n년 사망보험금 1원 생존보험금 1원 연납순보험료 $P_{\alpha: \pi}$

내 용

● 수지상등의 원칙에 따라

$$P_{z:\overline{n}|} \cdot \ddot{a}_{z:\overline{n}|} = A_{z:\overline{n}|}$$
 이 성립하므로 $P_{z:\overline{n}|} = \frac{A_{z:\overline{n}|}}{\ddot{a}_{z:\overline{n}|}} = \frac{M_z - M_{z+n} + D_{z+n}}{N_z - N_{z+n}}$

생사혼합보험은 사망보험과 생존보험의 합과 같으므로

$$P_{\alpha:\overline{n}|} = P_{\alpha:\overline{n}|}^1 + P_{\alpha:\overline{n}|}^1$$

● 동일한 조건하에서 납입기간이 h년인 단기납의 경우

$$_{h}P_{x:\overline{n}|}$$
 • $\overset{\cdot \cdot \cdot}{a}_{x:\overline{h}|}=A_{x:\overline{n}|}$ 이므로

$$_{h}P_{\alpha:\overline{n}|} = \frac{A_{\alpha:\overline{n}|}}{\overset{\cdots}{a}_{\alpha:\overline{h}|}} \quad = \frac{M_{\alpha}-M_{\alpha+n}+D_{\alpha+n}}{N_{\alpha}-N_{\alpha+h}}$$

- (예제) 피보험자 30세, 보험금연말급, 보험금 1,000원인 10년 전기납입 생사혼합보험의 연납순보험료를 구하시오.(단, 예정이율은 5%이고 제5회 경험생명표를 이용)
- (풀이) 수지상등의 원칙에 따라

$$P \cdot a_{30:\overline{10}|} = 1,000 \cdot A_{30:\overline{10}|}$$
 따라서 $P = 1,000 \cdot \frac{A_{30:\overline{10}|}}{a_{30:\overline{10}|}} = 1,000 \cdot \frac{M_{30} - M_{40} + D_{40}}{N_{30} - N_{40}}$ 이므로

$$=1,000 \cdot \frac{825.9 - 91.2 + 60,789.7}{868,783.2 - 60,789.7} = 76.145$$

구 분

생명연금

피보험자 연령 x세 납입기간 m년 연금수령기간 $m \sim n$ 년 보험금 기시급 연금연액 1원 연납순보험료 $P(m^{\bar{a}}_{a:\bar{n}})$

내 용

- ☞ 연금지급 개시 전까지 연납순보험료를 납입하고 연급지급 개시 후부터는 생명연금을 지급하는 보험
- 수지상등의 원칙에 따라
 P(m@*: 의 ()는 m년 거치식 n년 기시급 유기생명연금의 현가
- 주지상등의 원칙에 따라 $P(\frac{a}{m|a_{x:\overline{n}}|}) \cdot \frac{a_{x:\overline{m}}}{a_{x:\overline{m}}} = \frac{a}{m|a_{x:\overline{n}}|} \circ \text{ 성립하므로}$

$$\begin{split} P(_{m}|\overset{\cdot \cdot \cdot}{a_{z}:\overline{n}|}) &= \frac{\overset{m|a_{z}:\overline{n}|}{\cdots}}{\overset{\cdot \cdot \cdot \cdot}{a_{z}:\overline{m}|}} \\ &= \frac{\overset{\bullet \cdot \cdot \cdot \cdot \cdot}{M_{z+m}} - \overset{\bullet \cdot \cdot \cdot \cdot}{M_{z+m+n}}}{N_{z} - N_{z+m}} \end{split}$$

동일한 조건하에서 연금지급기간이 종신인 경우 수지상등의 원칙에 따라

$$P({}_{m}|\overset{..}{a}{}_{x})$$
 • $\overset{..}{a}{}_{x}:\overline{m}|={}_{m}|\overset{..}{a}{}_{x}$ 이므로

$$\begin{split} P(_{m}|\overset{\cdot \cdot \cdot}{a}_{z}) &= \frac{_{m}|a_{z}}{\overset{\cdot \cdot \cdot}{a}_{z}:\overline{_{m}}|} \\ &= \frac{N_{z+m}}{N_{z}-N_{z+m}} \end{split}$$

구 분

내 용

의의

- 순보험료는 보험금지급에 충당되는 것으로 예정
- 부가보험료는 경영상의 제반비용을 부담
- 생명보험 사업에 필요한 경비의 재원인 예정사업비는 신계약비, 유지비, 수금비로 구성

부가보험료

© 신계약의 모집 및 체결에 필요한 제 비용을 지급하기 위한 신계약비와 전 보험기간에 걸쳐 계약을 유지. 관리하는데 필요한 비용을 지급하기 위한 유지비, 그리고 수금수당.수수료 등 보험료의 수금에 필요한 비용을 지급하기 위한 수금비로 구성

예정신계약비(α)	예정유지비(β)	예정수금비(γ)
• 보험모집자(설계사, 대리점등)에게 지급하는 모집.유지수당, 성과수당 등과 점포운영비, 광고선전비, 교육훈련비 등	 계약을 유지.관리하기 위해 보 험회사 종업원의 급료와 임금, 상여금, 복리후생비, 여비교통 비, 조사연구비, 세금과 공과, 전산비 등 	• 수금수당, 수금사무비, 통신비, 기타비용 등
 초년도 보험가입금액 또는 영 업보험료에 비례하여 일정율을 부가 초년도 보험가입금액 대비 α = 30/1,000(1원대비 0.030) 초년도 영업보험료의 100% 	 매년 보험가입금액 또는 영업 보험료에 비례하여 일정율을 부가 보험료 납입기간 중 β = 4/1,000 보험료 납입완료 후 β' = 1/1,000 	 영업보험료에 비례하여 일정율을 부가 보험료 납입시 영업보험료 대비 γ = 3%(보험료1원대비 0.03)
※ 2012.4월부터 저축성보험의 신계약 비를 α1,α2(70:30)구분		

구 분

영업보험료의 계산 내 용

1) 연납순보험료 = 일시납순보험료 / 생명연금의 현가

계약체결시 일시에 필요한 신계약비

2) 연납영업보험료 산출식

매년납입되는 것을 그년도에 사용하는 것이므로 예정유지비를 연납순보험료에 부가(예정수금비 동일)

3) 이 식을 정리하면

(1-예정수금비율) × 연납영업보험료 = 연납순보험료 + 예정신계약비/생명연금의 현가 + 예정유지비율

4) 보험금 연말급, 보험금 1원의 생사혼합보험의 전기납입 연납영업보험료

연납영업보험료 =
$$\frac{1}{(1-q)(1-q)} \times (9$$
 답순보험료+예정신계약비/생명연금현가+예정유지비율)

5) 따라서

부가보험료 = 영업보험료 - 순보험료

구 분

피보험자 연령 x세 보험기간 n년 보험금연말급 1원 연납영업보험료 $P'_{x:\overline{\eta}}$

내 용

영업보험료의 현가 = 순보험료의 현가 + 예정사업비의 현가

- 영업보험료의 현가순보험료의 현가
 - $=P_{\underline{x}:\overline{n}} \cdot a_{\underline{x}:\overline{n}} = P_{\underline{x}:\overline{n}} \cdot a_{\underline{x}:\overline{n}}$

• 예정사업비의 현가 신계약비의 현가 $= \alpha$... 유지비의 현가 $= \beta \cdot a_{\underline{x}:\overline{n}}$ 수금비의 현가 $= \gamma \cdot P_{\underline{x}:\overline{n}} \cdot a_{\underline{x}:\overline{n}}$

● 수지상등의 워칙에 의해

$$P_{x:\overline{n}|}^{'} \bullet \overset{\circ}{a}_{x:\overline{n}|} = P_{x:\overline{n}|} \bullet \overset{\circ}{a}_{x:\overline{n}|} + \alpha + \beta \bullet \overset{\circ}{a}_{x:\overline{n}|} + \gamma \bullet P_{x:\overline{n}|}^{'} \bullet \overset{\circ}{a}_{x:\overline{n}|} \quad \text{양변을 } \overset{\circ}{a}_{x:\overline{n}|} \neq \text{ 나누어서 정리하면}$$

$$P_{x:\overline{n}|}^{'} = \frac{1}{1-\gamma} \left(P_{x:\overline{n}|} + \frac{\alpha}{\overset{\circ}{a}_{x:\overline{n}|}} + \beta \right)$$

- $^{\bullet}$ 같은 방법으로 양로보험의 일시납보험료를 $A'_{\star, \neg}$ 라하고 완납후유지비 (β') 를 반영, 수지상등 의원칙에 따라 $A'_{z:\overline{n}} = A_{z:\overline{n}} + \alpha + \beta' \cdot a_{z:\overline{n}} + \gamma \cdot A'_{z:\overline{n}}$ 따라서 $A'_{\alpha:\overline{n}} = \frac{1}{1-\gamma} \left(A_{\alpha:\overline{n}} + \alpha + \beta' \cdot \ddot{a}_{\alpha:\overline{n}} \right)$
- (예제) 피보험자 30세, 보험금연말급, 보험금 1원인 10년만기 생사혼합보험의 영업보험료를 구하시오 (단, α =30/1,000, β =4/1,000, γ =3%, i=5%, 제5회 경험생명표를 이용)

= 0.08645워

(풀이) 먼저 연납순보험료 산출
$$P_{30:\overline{10}} \bullet a_{30:\overline{10}} = A_{30:\overline{10}} \text{ 따라서} \\ P_{30:\overline{10}} = \frac{A_{30:\overline{10}}}{a_{30:\overline{10}}} = \frac{M_{30} - M_{40} + D_{40}}{N_{30} - N_{40}} \text{ 이므로} \\ = \frac{825.9 - 91.2 + 60,789.7}{868,783.2 - 60,789.7} = 0.07614 원 이고
$$= \frac{1}{1 - 0.03} \left(0.07614 + \frac{0.03 \bullet (100,000.0)}{868,783.2 - 60,789.7} + 0.004 \right)$$$$

구 분

분할납 영업보험료 내 용

- ☞ 보험료의 납입은 연납이 원칙이지만 계약자의 편의를 위해 보험료 납입주기를 월납, 2개월납, 3개 월납, 6개월납을 허용
- ☞ 현재는 분할납 순보험료를 구한 다음 분할납 영업보험료를 산출

	198	8.3.31	이선		
사	출 후	분할납	영업보	험료	산결

1988.3.31 이후

- 연납보험료 산출 월납 $=\frac{1}{12}\left(1+\frac{14}{25}\times0.08\right)\cdot P'=0.08706\cdot P'$ 3개월납 $=\frac{1}{4}\left(1+\frac{11}{25}\times0.08\right) \cdot P' = 0.2588 \cdot P'$ 6개월납 $=\frac{1}{2}\left(1+\frac{7}{25}\times0.08\right) \cdot P' = 0.5112 \cdot P'$ $\frac{14}{25}, \frac{11}{25}, \frac{7}{25}$ 분할납 할증율, 0.08은 예정이율
- 월납영업보험료 산출 후 비월납 영업보험료산출

월납 =
$$2.97 P'^{(12)}$$

3개월납 = $5.87 P'^{(12)}$
6개월납 = $11.48 P'^{(12)}$

※. $P'^{(12)}$ 은 월납영업보험료

[납입주기별 보험료 배수 산출]

납입주기	월납보험료 기준	연납보험료 기준
월납	$P'^{(12)}$	$\frac{P'}{12} \cdot \left(1 + \frac{14}{25} \cdot i\right)$
2개월납	$\frac{2(1+12.5/25 \cdot i)}{(1+14/25 \cdot i)} \cdot P^{'(12)}$	$\frac{P'}{6} \cdot \left(1 + \frac{12 \cdot 5}{25} \cdot i\right)$
3개월납	$\frac{3(1+11/25 \cdot i)}{(1+14/25 \cdot i)} \cdot P^{\prime(12)}$	$\frac{P'}{4} \cdot \left(1 + \frac{11}{25} \cdot i\right)$
6개월납	$\frac{6(1+7/25 \cdot i)}{(1+14/25 \cdot i)} \cdot P^{\prime(12)}$	$\frac{P'}{2} \cdot \left(1 + \frac{7}{25} \cdot i\right)$
연납	$\frac{12}{(1+14/25 \cdot i)} \cdot P'^{(12)}$	P' 20 7

%. P':연납영업보험료 $P'^{(12)}$:월납영업보험료 $P'^{(12)}$: 원납영업보험료 $P'^{(12)}$:예정이율 / 산출된 배수는 소수 5자리 이하 절사

मधाकिह. ४१६४४६२३ ख्रिष्ठा अ

tormula

5. 현금흐름방식의 보험료 산출(Cash-Flow Pricing, CFP)

0124 701849847872414F 1260481841872414F

+ 2018 10 } 76/27 ૭ ઇસ્માર્ટ સ્વિક્ષિયા એક કે કે _{દા} સામાતા હતા લાગ છે. સામાર સ 분 भेरारमध्यम्। क्षाप्तर् . १४१२ न् १५११ ना ヲ (14 कुरामिका मिन्नाम प्राप्त • 현행체계의 한계점 노출 → 합리적인 보험가격 산출체계의 도입 필요성 대두 개요 배경 및 목적 • IT기술의 발달로 다양한 변수를 반영한 미래현금흐름의 산출 가능 もいりえいいなっている → best estimitionを見れ! 个小社会的好! 好想到是我吃了 • Cash Flow Pricing의 과정: 해박사수×해약활감→ 원비늄배울대 CFP정의 1. 가정의 적용→ 2. 현금흐름산출→ 3. 민감도테스트→ 4. 보험가격의 결정 भारता ४ भारता १ 및 절차 • 민감도 분석의 실시로 최적가정이 수익성에 미치는 영향을 분석하고, 보험가격의 최종적 확정 **CFP** • 기존 3이원 방식 : 위험율, 이자율, 사업비율의 적용으로 보수적, 안정적인 보험료의 보험료 म्ग्रीक्षेत्रम् भागिता । (CEP मिल्ली) 산출, 기대이익이 예정기초율에 내재 산출방식 너무 아들아니 .. 0 4882441 비교 • 현금흐름 방식 : 3가지 예정기초율 외에 다양한 가정요소의 적용하며 마진 분리 @ युक्षप्रद्विपा। ५ १८६०। १५ देवा ० ६१ म्हला? > Moonopaxicantalogicol े. प्रश्विष राज्य प्रमाण क्षेत्रण हा है! • 보험소비자 측면 : 소비자의 Needs에 부합하는 다양한 보장과 가격요소가 반영된 Post ostimition ozzykstoj dini photok 선진 금융상품의 등장, 가격경쟁의 촉진으로 보다 저렴해진 보험료 • 보험회사 측면 : 회사별 경험률이 반영된 최적가정을 가격에 반영, 다양한 시나리오와 ३ श्वी भिर्म के अपने का के प्राची के प्र 기대효과 가정의 변동에 따른 손익분석이 가능, 회사별 수익성 지표에 의한 가격의 적정성 판단

가능

• 국내 보험시장의 실질적 가격 자유화 달성

5. 연금흐름방식의 보험료 산출

한계

가. 원가개념의 예정기초율만을 고려하여 보험료를 산출

- -. 해약률, 판매규모, 유지율 등의 다양한 변수를 반영하기 어려울 뿐만 아니라 예정기초율과 실제경험치 사이에 상당한 편차가 발생하여 보험가격의 적정성을 판단하기가 곤란
- 나. 단순한 원가개념의 보험가격 결정으로 목표이익 및 시장경쟁에 의한 합리적인 손익관리가 곤란
- -. 보험가격에 목표이익에 의한 회사별 수익성 지표가 반영되지 않아 보험계약의 적정가치 평가가 곤란
- 다. 국제회계기준 도입에 따른 부채의 공정가치 평가 등 국제적 정합성을 확보하기가 곤란
- 라. 계리업무의 비효율성을 초래
- -. 경험생명표 및 표준이율의 변경 등 상품개발관련 규정개정시 제반가정 등을 변경하는 불필요 개정업무 증가

5. 현금흐름방식의 보험료 산출

•시장모니터 •판매들량 •목표마진 달성도 •가정 vs 실제 비교분석

추진일정

구 분	추진시기	추 진 내 용		
제1단계	~ 2007.9	회사별 인프라구축 및 제도도입을 위한 기반조성		
제2단계	2007.10~2009.3	보험회사의 역량강화를 위한 제도의 시범적 운영		
제3단계	2009.4~2010.3	일부 신상품에 대한 제도의 부분적 시행		
제4단계	2010.4~2013.3	감독규정개정(CFP),현금흐름방식시행 병행, 2012.8(pilot 상품제출)		
제5단계	2013.4~	CFP 전격시행(BMP의 허용, 3이원보험료를 밴치마크)		

5. 현금흐름방식의 보험료 산출

구 분

3인원방식과 CFP방식 비교

내 용

구 분		3이원방식	현금흐름방식	
이론	적 배경	수지상등원칙	현금흐름(Cash - Flow)	
계	산방식	Formula식(기수표 사용)	실제 현금흐름(기수표 미사용)	
	이율(할인율)	예정이율(주로 표준이율 사용)	투자수익률 + Risk Premium	
	사업비율	신계약비/유지비/수금비로 구분(규정에 의해)	실제 목적에 따라 구분 회사 실제시업비 집행구조에 따라 부가	
	위험률	표준(자사)위험률	회사별 실제위험률 + 계리적 판단	
	투자이익률	-	자산운용전략 / 시장상황 반영	
	유지율	-	회사별 실제유지율 + 계리적 판단	
가격 변수	가입속성	가입조건별(성, 연령 등) 수익성 상이	가입조건과 상관없이 동일 수익성도 가능	
	재보험	-	보험가격에 반영	
	판매규모	-	필요시 반영	
	수익성지표	가격 산출 후 사후분석	보험가격 결정의 판단지표	
	보증Risk	3이원의 보수적 설정으로 Cover	합리적 산출을 통해 보험가격에 반영가능	
	기타가정	고려할 수 없음	상품/채널별 특이성에 대한 검증 후 가격에 반영이 가능	
	책임준비금	기수표식으로 산출	Cash - Flow에서 평가	
제도 측면	해약환급금	책임준비금 – 해약공제액	최저해약환급금 규정 내에서 자유롭게 설정 가능(급부개념)	
국건	이원분석	규정상 분석 및 보고	경영상 필요에 따라 분석	
	계약자배당	이원별 배당	자산할당방식으로 자율결정(통합배당)	