

Bus SystemsIntroduction

Prof. Dr. Reinhard Gotzhein, Dr. Thomas Kuhn

Learning goals of this section

- Bus systems overview
 - Relevance of bus systems
 - Application areas of bus systems
 - Types of bus systems
- Automotive and commercial vehicle bus systems
 - Evolution of automotive networks
 - Automotive network topologies
 - Bus systems in commercial vehicles
- Safe communication
 - Safe communication needs
 - Predictable communication

Adapted from: U. Weinmann: Anforderungen und Chancen automobilgerechter Softwareentwicklung, 3. EUROFORUM-Fachkonferenz, Stuttgart, Juli 2002

History of vehicular bus systems

- Bus systems until the end of the 80s
 - Electronic control units (ECUs) are isolated, non-networked
 - Dedicated cables connect sensors and actors
 - Costly, heavy, error prone
 - Considerably limits system architectures, e.g. ECU placement
- Starting with the 90s, digital Bus systems are more widely applied
 - CAN-Bus networks
 - Split into individual busses by criticality level of communication
 - Safety relevant communication
 - Comfort functions
 - Replace several specialized cables with one bus system
 - Also support debugging, firmware updates, and hardware in the loop testing

Vehicular bus systems and networks today

- Rising demands on bus systems
 - Networked functionality requires more than one control unit
 - Gateways between bus systems become necessary
 - High Speed CAN, Flexray, MOST, Real-time Ethernet, ISOBUS
 - Demands to bus systems are increasing
 - Hardware virtualization for testing (CCP, XCP)
 - Real time constraints
 - Multimedia content
 - Safety relevant content
 - ABS/ESP
 - Radar/Camera pictures for pedestrian detection
 - X-By-Wire
 - Remote controlled functions

Vehicular electronics and bus systems – growing importance

Vehicular architectures (today)

- Upper class vehicles carry 80 .. 100 networked Electronic Control Units (ECUs)
 - Traditionally: one function is processed by one ECU
 - One function (e.g. ABS) may consist of multiple tasks and runnables
 - Supports safety qualification of functions

Vehicular architectures (today)

Example for a current vehicular architecture

Vehicular architectures (today)

Schematic for a current vehicular architecture

Vehicular architectures (today)

Vehicular architectures (future)

Trends

- Distribution of functions among ECUs
- Consolidation of different functions on the same ECU
 - Current strategy: consolidate functions by used actuators
 - Requires bus systems that enable tight coupling of distributed functions
- Open Systems and wireless interfaces

Next generation bus systems

- Modern assistance systems are getting more and more networked
 - Bus systems are imperative for the realization of these functions
 - Bus systems are also imperative for system safety (and security!)
- Lets have a look on some examples
 - Early brakes: Hydraulic, was not dependent on bus systems
 - ABS: Depends on bus system, but does no any harm if bus system fails
 - Brake-By-Wire: Brake failure when bus communication fails...?
 - Remote controlled Brake By Wire: Additional safety and security concerns
- Future applications are impossible without modern bus systems
 - Most of them will require wireless communication as well

Next generation bus system applications – example

Next generation bus system applications – examples

- Open communication networks (Car-to-X communication)
 - Car to infrastructure communication
 - Car to car communication
- Wireless links become more important
 - Heterogeneous networks
- Todays challenges
 - Data integrity, timeliness
- Additional challenges
 - Fault detection
 - Self configuration
 - Programming interfaces
 - Security

Discussion

What is the main purpose of a communication system?

What is quality of service?

Which Quality of Service levels can you think of?

Which factors limit QoS?

Bus systems – Relevant components

- ISO/OSI Layered architecture brief introduction
 - Standardizes internal functions and structure of communication protocols
 - Supports with managing the complexity of bus systems and protocols
 - Helps us to understand relevant (logical) components of bus systems and their interfaces
- Rationale: Structuring into layers
 - Each layer specifies one common functionality
 - A layer only communicates with its direct neighbours
 - Structures communication systems and enables re-use of functionalities
 - For example:
 - Physical encoding decoding
 - Medium access control
 - Management of logical connections
 - Application level communication (e.g. XCP)

Communication System Architectures – Protocol stacks

- Implementation
 - Protocols do not need to use all layers
 - Communication protocols specify one or multiple layers
 - Depending on implemented functionality
 - In real protocols, we usually do not see a sharp 1:1 layer matching

Communication protocol stacks

Bus systems – Relevant components

- What are we are going to cover in this lecture?
 - Things you need to know for analyzing, selecting, and applying bus systems

Communication protocol stacks – framing principle

- Framing approach for Protocol Data Units (PDUs)
 - When transmitting, lower level layers add frames to PDUs from upper layers
 - When receiving, layers remove their frame before transmitting PDU up
 - PDUs from other layers are considered payload and not evaluated further
- This approach enables re-use of protocol layers for different protocols

Bus systems – non functional requirements

- Predictability
 - Ability to predict bus system performance
 - Message transmission times, message jitter, available bit rate
- Scalability
 - Ability to adapt to changing communication requirements
 - Ability to include additional devices or services
- Reliability
 - Ability to guarantee correct transmission, reception, and data integrity
 - Ability to detect transmission errors
- Robustness / Availability
 - Ability to provide potentially degraded functionality even in case of errors

Bus systems – non functional requirements

- Robustness / Availability
 - Ability to provide potentially degraded functionality even in case of errors
- Privacy
 - Ability to prevent unwanted reading of data
 - Ability to detect/prevent unauthorized data modification
 - Ability to detect/prevent unauthorized data transmission
 - Ability to detect/prevent spoofing of data / faking transmitter IDs

Bus systems are erelevant to most embedded systems

- Embedded Systems are often safety critical and need to communicate
 - We know about non functional properties that are relevant to bus systems
 - What happens when a bus system cannot fulfill these properties anymore?
 - When could a bus system fail or degrade?
 - Why could something like this happen?
 - How could one potentially work around this or reduce the impact?
 - Communication errors cannot be fully prevented, but must be manageable
 - Either by machine, or by operator
 - Not all of these errors are manageable at bus system level
 - Discussion: Can you give an Example?
 - Identification and management of potential communication errors in safety relevant systems is part of safety concept
 - Requires system level knowledge

Safety relevant bus systems

- Discussion: Why is Safety never a property of an individual bus system?
 - Safety is a system property
 - Requires consideration of application scenario, environment, user behavior, technical domain, functional behavior, and bus systems
 - Bus system properties affect safety and safety concepts for safety relevant systems
 - Definition of countermeasures to address bus system failures
 - Evidences (guarantees) provided by bus systems
 - Requires the understanding of bus systems, their concepts, physics, and protocols

Safety relevant bus systems

Safety

- The condition of being protected against consequences of failure, damage, error, accidents, harm or any other event which could be considered non-desirable.
- Control of recognized hazards to achieve an acceptable level of risk.
- Being protected from the event or from exposure to something that causes health or economical losses.

Safety concept

- Risk prevention and management strategy
- Based on identification and analysis of harzards, and on application of remedial controls
- Includes fail-safe and fail-operational measures

Safety relevant bus systems – Failures

- Not fulfilling the previously mentioned criteria could lead to system failure
- Failure
 - Undesired behavior of a given device under defined conditions
- Failure mode
 - Describes the way a failure occurs
 - Specific manner by which a failure occurs in the system
- Hazard
 - Individual threat that could cause a failure mode

Safety relevant bus systems – Failures

- Examples
 - Failure: Brake does not work anymore
 - Failure mode: Communication failure due to broken copper wire
 - Hazard: Braking of a copper wire
 - Failure: Brake does not operate reliably
 - Failure mode: Communication is delayed due to concurrent bus accesses
 - Hazard: Other nodes blocking the bus with low priority data

Can there be multiple failure modes for the same failure?

Safety relevant bus systems – Properties

- Ideal Bus systems from a safety perspective are:
 - Reliable
 - Transmission errors should not occur (but cannot be avoided)
 - Transmission errors should be detected (which methods can you think of?)
 - Transmission errors should be correctable in high risk areas
 - Acceptable error rate depends on application area
 - Predictable
 - Maximum bounds for communication delay and jitter must be guaranteed
 - Scalable
 - Quality of Service must be independent of the number of communicating nodes
 - Especially for wireless systems
 - Robust
 - Must not malfunction or fail completely in case of isolated errors

Safety relevant bus systems

- Example: Prototyping of an automotive remote control unit
- How do we need to extend the system
- Which hazards, failure modes and failures could you identify?
- Which countermeasures would you propose?

Safety relevant communication systems - Discussion

- Can you always guarantee that a failure does not occur?
 - System designs must handle possible failure modes in a satisfactory manner
 - New generations of bus systems introduce additional failures and failure modes
 - Systems evolve and system architectures are not always prepared for new bus systems
 - Could you think of an example?

- Failures may occur on many levels
 - Good understanding of bus systems and the responsibilities of their components is imperative
 - Sound system architectures ensure error and threat isolation