	TP1 Multi - Lothmann Vincent	Pt		A B C D Note
1	Préparation du travail			
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α	:
2	Quel est le nom de la grandeur réglée ?	1	Α	0,
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	D	0,02
4	Quelle est la grandeur réglante ?	1	Α	0,
5	Donner une grandeur perturbatrice.	1	Α	0,
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.	1	Α	
II.	Etude du procédé			
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	Α	:
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	Α	
4	En déduire le sens d'action à régler sur le régulateur.	1	Α	
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	Α	:
III.	Etude du régulateur			
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	D	0,07
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	Χ	
IV.	Performances et optimisation			
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Χ	
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	X	•
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	Χ	(
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	Χ	
			Note	sur : 20 11,

I-Preparation du travail

1)Schéma TI

- 2) grandeur réglée :température en sortie
- 3) principe utilisé pour la grandeur réglé : différence de température entre le circuit d'eau chaude et d'eau froide
- 4) grandeur réglante : Débit d'eau chaude dans circuit chaude
- 5) grandeur perturbatrice: débit d'eau froide en entrée du circuit.

6) Schéma de cablâge

II-étude du procédé

1)entrée :

TagName	01M01_02		LIN Name	01M01_02	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>02	
			Sitello	1	
PV	51.1	%	Channel	1	
HR	100.0	%	InType	mΑ	
LR	0.0	%	HR_in	20.00	mA
			LR_in	4.00	mA
HiHi	100.0	%	AI	12.18	mA
Hi	100.0	%	Res	0.000	Ohr
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	Deg
			LeadRes	0.000	Ohn
Filter	0.000	Secs	Emissiv	1.000	
Char	Linear		Delay	0.000	Sec
UserChar					
			SBreak	Up	
PVoffset	0.000	%	PVErrAct	Up	
Alm0nTim	0.000	Secs	Options	>0000	
Alm0fTim	0.000	Secs	Status	>0000	

sortie:

TagName	02P01_02		LIN Name	02P01_02	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>02	
			Sitello	2	
OP OP	49.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	
			LR_out	4.00	
Out	49.0	%	AO	11.83	
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

PV (X)	OP (Y)
41	30
50	60
53	100

3) gain statique =
$$\Delta X / \Delta Y$$

= $(50 - 41) / (60 - 30)$
 $\Delta = 0.3$

4) quand on augmente la commande Y la mesure augmente aussi , Le procédé est direct donc le régulateur est réglée en sens inverse.

5) Broïda

gain statique :
$$K = \Delta X / \Delta Y$$

=18 /40 = 0,45
retard : $T = 2.8(t1-t0) - 1.8(t2-t0)$
=2.8*1,5 - 1,8*1,75
=1,05 min
constate de temps = 5,5 *0,2
= 1,1 min

III- Étude du régulateur

1) Le PID utilisé par Lintools est mixte comme tout les PID de la salle de TP.