班 级 ______力6_____

有限元法基础 桥梁设计竞赛报告

指导教师: 张雄教授

院 (系) 名 称: 航天航空学院

专业名称: 工程力学

学 生 姓 名: 毕恺峰 胡昌平 黄轩宇 易泽吉 张逸葑

Contents

1	摘要		2		
2	桥夠	梁的基本选择与设计思路	3		
	2.1		3		
	2.2	拱形桥 3	3		
	2.3	xx 桥 3	3		
	2.4	xx 桥 3	3		
3	桥夠	架的 Abaqus 实现	4		
	3.1	零件的设计	4		
	3.2	有限元单元类型的选择 4	4		
	3.3	有限元单元尺寸的选择 4	4		
	3.4	施加约束条件 4	4		
4	桥夠	桥梁的 cost 计算			
	4.1	Abaqus-Python 脚本读取过程	5		
	4.2	Cost 计算	5		
5	桥夠	梁的优化过程	6		
	5.1	算法的选择	6		
	5.2	程序设计思路 (6		
	5.3	优化实例 (6		
6	优化	上服务器	7		
	6.1	Abaqus 的 GPU 优化构架	7		
	6.2		7		
7	结论	· 仑	8		

1 摘要

2 桥梁的基本选择与设计思路

- 2.1 悬索斜拉桥
- 2.2 拱形桥
- 2.3 xx 桥
- 2.4 xx 桥

3 桥梁的 Abaqus 实现

- 3.1 零件的设计
- 3.2 有限元单元类型的选择
- 3.3 有限元单元尺寸的选择
- 3.4 施加约束条件

4 桥梁的 cost 计算

- 4.1 Abaqus-Python 脚本读取过程
- 4.2 Cost 计算

5 桥梁的优化过程

- 5.1 算法的选择
- 5.2 程序设计思路
- 5.3 优化实例

6 优化服务器

- 6.1 Abaqus 的 GPU 优化构架
- 6.2 服务器的 CPU-GPU 取舍

7 结论

最终我们选取的桥梁如下。。。Abaqus 相关文件见。。。。总体的 cost 为。。。。

Bibliography

- [1] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, Dec. 2008.
- [2] A. Bustamam, G. Ardaneswari, and D. Lestari. Implementation of cuda gpu-based parallel computing on smith-waterman algorithm to sequence database searches. In *International Conference on Advanced Computer Science Information Systems*, 2013.
- [3] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley. Design and implementation of the scalapack lu, qr, and cholesky factorization routines. *Concurrency Computation Practice Experience*, 12(15):1481–1493, 2015.
- [4] I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned conjugate gradients. *Bit Numerical Mathematics*, 29(4):635–657, 1989.
- [5] J. L. Greathouse and M. Daga. Efficient sparse matrix-vector multiplication on gpus using the csr storage format. In *International Conference for High Performance Computing, Networking, Storage Analysis*, 2014.
- [6] D. Guo and W. Gropp. Adaptive thread distributions for spmv on a gpu. In *Extreme Scaling Workshop*, 2012.
- [7] M. Heller and T. Oberhuber. Adaptive row-grouped csr format for storing of sparse matrices on gpu. *Computer Science*, 2015.
- [8] E. J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization framework for sparse matrix kernels. *International Journal of High Performance Computing Applications*, 18(1):135–158, 2004.
- [9] Z. Koza, M. Matyka, Łukasz Mirosław, and J. Poła. *Sparse Matrix-Vector Product*. 2014.
- [10] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann, and A. R. Bishop. Sparse matrix-vector multiplication on gpgpu clusters: A new storage format and a scalable implementation. In *Parallel Distributed Processing Symposium Workshops Phd Forum*, 2012.
- [11] J. L. Greathouse and M. Daga. Efficient sparse matrix-vector multiplication on gpus using the csr storage format. *International Conference for High Performance Computing*, *Networking*, *Storage and Analysis*, SC, 2015:769–780, 01 2015.
- [12] D. Langr and J. Trdlicka. Efficient converting of large sparse matrices to quadtree

- format. In *International Symposium on Symbolic Numeric Algorithms for Scientific Computing*, 2015.
- [13] S. Szkoda, Z. Koza, and M. Tykierko. Multi-gpgpu cellular automata simulations using openacc. 2014.
- [14] J. Zhang, E. Liu, J. Wan, Y. Ren, M. Yue, and J. Wang. Implementing sparse matrix-vector multiplication with qcsr on gpu. *Applied Mathematics Information Sciences*, 7(2):473–482, 2013.