

Week 11.1: PageRank

DS-GA 1004: Big Data

This week

- PageRank
 - [Page, Brin, Motwani, Winograd, 1999]
- Extensions to PageRank

Web search

 Early search engines relied on matching text in query to text in web page

- Pages were crawled (spidered) at regular intervals and added to an index
- We've already seen some tools for indexing and searching
- What can go wrong with this approach?

Spam attacks

- Imagine that you want to get lots of traffic to your website
- You know that it is indexed regularly by search engines
- Idea: fill up your page with all the most popular search terms
- End result: \$\$\$ selling dinosaur memorabilia

PageRank: use the network!

- Key insight: the structure of the web has information content!
- Publishers are more likely to link to pages that they trust
- It's **easy** to make a spammy page
- It's hard to get other people to link to it

The random surfer model

- Imagine the web as a directed graph
 - Nodes = pages
 - Edges = links
- Model a user's activity as a random walk
 - **P**[Going to page $v \mid \text{Currently at page } u] = [u \rightarrow v] / \text{out-degree}(u)$

Markov chains

- Let M[v, u] = P[v | u]
 - Columns (u) = current states (N pages)Rows (v) = next states (N pages)
- M is a stochastic matrix: non-negative, each column sums to 1

Markov chains

- Let M[v, u] = P[v | u]
 - Columns (u) = current states (N pages)
 Rows (v) = next states (N pages)
- M is a stochastic matrix: non-negative, each column sums to 1
- Let p be a non-negative vector in R^N that sums to 1
 - \circ (Mp)[v] marginalizes over u to compute probability of state v

Markov chains

- Let M[v, u] = P[v | u]
 - Columns (u) = current states (N pages)
 Rows (v) = next states (N pages)
- M is a stochastic matrix: non-negative, each column sums to 1
- Let p be a non-negative vector in R^N that sums to 1
 - \circ (Mp)[v] marginalizes over u to compute probability of state v
- One step maps

$$p[v] \rightarrow (Mp)[v] = \sum_{u} P[v \mid u] * p[u] = p'[v]$$

Steady-state distributions

- A steady-state distribution satisfies p = Mp
- Such a p exists if there is a path connecting every pair u → v
 - We say that M is irreducible or strongly connected
 - (This is a sufficient, but not necessary condition!)

Steady-state distributions

- A steady-state distribution satisfies p = Mp
- Such a p exists if there is a path connecting every pair u → v
 - We say that M is irreducible or strongly connected
 - (This is a sufficient, but not necessary condition!)
- p ∞ eigenvector of M with eigenvalue 1
 - The largest possible for a stochastic matrix!
- PageRank(u) = p[u] = probability of random surfer being at node u

Markov chain Eigenvectors

- Standard eigenvector solvers do not scale to the web
 - \circ $O(N^3)$ cost to solve in general, can be smaller if sparse, but N can still be huge!
- Instead, use power iteration
 - Initialize p₀[u] ← 1/N
 - \circ For $i = 1, 2, ..., T_{\text{max}}$

(uniform distribution)

$$(\mathbf{p}_i = \mathbf{M}^i \, \mathbf{p}_0)$$

← Parallelize here over rows of M

- This will eventually converge to the stationary distribution
 - (If such a distribution exists...)

- Initialize $p_0[u] \leftarrow 1/N$ For $i = 1, 2, ..., T_{max}$ $p_i \leftarrow Mp_{i-1}$

- Initialize $p_0[u] \leftarrow 1/N$ For $i = 1, 2, ..., T_{max}$ $p_i \leftarrow Mp_{i-1}$

p ₂
67/108
4/108
37/108

		Α	В	С
/	4	1/2	1/3	1
I	3	0	1/3	0
(3	1/2	1/3	0

p ₁
11/18
2/18
5/18

- Initialize $p_0[u] \leftarrow 1/N$ For $i = 1, 2, ..., T_{max}$ $p_i \leftarrow Mp_{i-1}$

p ³
431/648
8/648
209/648

p ₂
67/108
4/108
37/108

- Initialize $p_0[u] \leftarrow 1/N$ For $i = 1, 2, ..., T_{max}$ $p_i \leftarrow Mp_{i-1}$

- Initialize $p_0[u] \leftarrow 1/N$ For $i = 1, 2, ..., T_{max}$ $p_i \leftarrow Mp_{i-1}$

Checking your work in Python

- M[v, u] = P[v | u] (probability of going to v from u)
 - Each column is a probability distribution
 - $\circ \Rightarrow M.sum(axis=0)$ should be all ones
- evals, evecs = np.linalg.eig(M) is almost, but not quite, what we want

Checking your work in Python

- M[v, u] = P[v | u] (probability of going to v from u)
 - Each column is a probability distribution
 - ⇒ M.sum(axis=0) should be all ones
- evals, evecs = np.linalg.eig(M) is almost, but not quite, what we want
- Remember:

```
Eigenvectors have unit Euclidean (L_2) norm: \mathbf{v} = \mathbf{v} / \|\mathbf{v}\|_2
Distributions have unit L_1 norm: \mathbf{p} = \mathbf{v} / \|\mathbf{v}\|_1 \neq \mathbf{v}
```

Checking your work in Python

- M[v, u] = P[v | u] (probability of going to v from u)
 - Each column is a probability distribution
 - ⇒ M.sum(axis=0) should be all ones
- evals, evecs = np.linalg.eig(M) is almost, but not quite, what we want
- Remember:

```
Eigenvectors have unit Euclidean (L_2) norm: \mathbf{v} = \mathbf{v} / \|\mathbf{v}\|_2
Distributions have unit L_1 norm: \mathbf{p} = \mathbf{v} / \|\mathbf{v}\|_1 \neq \mathbf{v}
```

- Re-normalize each column:
 - o evecs /= np.abs(evecs).sum(axis=0, keepdims=True)

You may also have to flip the sign of *v*.

If v is an eigenvector, so is -v!

What about sinks?

- If you have a vertex with no outgoing edges, its column in M is all zeros.
 - This is not a valid probability distribution!
- Common fix: add a self-loop to any nodes with out-degree 0
 - Nodes with outgoing edges do not need to be modified
- Result is a well-formed transition matrix

Spider traps

Node c is a sink in this graph, also known as a spider trap

A random surfer landing at c can never leave!

	а	b	С
а	1/3	1/2	0
b	1/3	1/2	0
С	1/3	0	1

Power iteration 0

Traps are easy to create!

All it takes is one link from a well-connected vertex to cause serious damage!

Teleportation / random restart

- The web is decidedly not strongly connected
- Not all pages have outward links (column sum = 0)

Teleportation / random restart

- The web is decidedly not strongly connected
- Not all pages have outward links (column sum = 0)
- Solution: teleportation!

$$M[v, u] \rightarrow a * M[v, u] + (1 - a) * 1/N$$

With probability a, follow the links
 With probability 1-a, jump uniformly at random

Using PageRank in search

- PageRank scores each vertex (page) according to network topology
 - o $p[v] > p[u] \Rightarrow v$ is "better connected" than u
 - o It does not use content! But still a reasonable measure of importance
- Basic search implementation:
 - Use **text search** (LSH, etc) to find candidate items
 - Use pagerank (and other cues) to order results
- Can we do better?