Final Exam — Review

Spring 2018

Compute the closed-loop gain and phase shift for the circuit in Fig. 10.33. Assume that $R_1 = R_2 = 10 \text{ k}\Omega$, $C_1 = 2 \mu\text{F}$, $C_2 = 1 \mu\text{F}$, and $\omega = 200 \text{ rad/s}$.

Calculate *i(t)*

Find the Thévenin equivalent circuit

Calculate node voltages

Find $i_{\rm o}$ and $v_{\rm o}$ if $v_{\rm s}$ = 1 V, R_1 = 10 Ω , R_2 = 50 Ω , R_3 = 20 Ω and R_4 = 80 Ω

Obtain the Norton equivalent circuit

Determine the steady-state voltage v(t) and current i(t) for the circuit below

