

Topic 5: Binemial Exponsion (a+n) = (4+x)' = Variables (0+x)2 = (a+x) " (a+n) = (a+x)' = a+x 9'8 9'x' 9'8' 92" 45 (8+x) = a2 +2 ax + n2 Some Pattern (a+x) = $a^{5} + 3a^{2}\alpha + 3\alpha x^{2} + x^{6}$ (4+x)" = 04 +40 2x +603x3+40x3+ N4 (a+n) = (4+x)5 = 05+59"x+100"x3+100"x3+59x4+x5 (4+x)' = loefficients (A+x)2 = (a+x) == $(q+x)^{q}$ (4+x)5 = 1 (5) 10 BINOMIAL THEOREM $(a+\chi)^{n} = \left(\begin{matrix} n \\ r \end{matrix}\right) a^{n-r} \chi^{r} = \left(\begin{matrix} n \\ r \end{matrix}\right) a^{n-r} \chi^{r} = \left(\begin{matrix} n \\ r \end{matrix}\right) a^{n} \chi^{o} + \left(\begin{matrix} n \\ r \end{matrix}\right) a^{n-r} \chi^{r}$ $(n)^n = 1 + nx + \underline{h(n-1)} u^2 + \underline{h(n-1)(n-2)} u^3 + \dots$ r^{th} term, $T_r = \begin{pmatrix} n \\ r_{-1} \end{pmatrix} a^{n-(r-1)} x^{r-1}$

: Differentiation

Product rule =
$$f(n) \cdot g(n)$$

= $f(n) g'(n) + g(n) f'(n)$
quotient rule = $\frac{f(n)}{g(n)}$

$$\frac{E \times ponent}{y = 2e^{\sqrt{R}}} \qquad \text{We pe, differentials proof } dy = 2e^{\sqrt{R}} \cdot 1 x^{-\frac{1}{2}}$$

$$\frac{dy - f(n)}{dx}$$

$$\frac{\int pecial (ase)}{d\mu} (a^{fa}) = a^{fan} |na \cdot f^{i}(n)|$$

Trigonometry function

b)
$$\frac{d}{dx}$$
 ((or n) = - (in n) e) $\frac{d}{dx}$ (see n) = year form

()
$$\frac{d}{dx}$$
 (fang) = 180 ²84 f) $\frac{d}{dx}$ (lonca) =- 10140 9401 m

Power chain rule

$$\frac{d}{dx} ((an^{3}3\pi) = 3 \tan^{2} 3\pi \cdot \frac{d}{dx} + \tan 3\pi$$

$$\frac{d}{dx} = 3 \tan^{2} 5\pi \cdot 4c_{1}^{2} 3\pi \cdot 3$$

= 9 fon2 3x sec2 3x

Parametric Equation

$$\frac{dy}{dn} = \frac{d^{4}/dt}{dn/dt}$$

$$\frac{d^{2}q}{dt} = \frac{\frac{d\xi}{d\xi} \left(\frac{d\eta}{d\eta} \right)}{\frac{d\xi}{d\eta}}$$

