Towards Practical First-Order Model Counting

Ananth K. Kidambi¹ Guramrit Singh¹ **Paulius Dilkas**^{2,3} Kuldeep S. Meel^{4,2}

¹IIT Bombay, India

²University of Toronto, Canada

³Vector Institute, Canada

⁴Georgia Tech, USA

SAT 2025

Motivation

Example Setting

- ▶ Let \triangle be a set of cardinality *n*
- Suppose we want to count all $P \subseteq \Delta^2$ (as a function of n) that are:
 - functions,
 - bijections,
 - partial orders,
 - symmetric,
 - transitive,
 - etc.

Motivation

Example Setting

- ▶ Let \triangle be a set of cardinality n
- Suppose we want to count all $P \subseteq \Delta^2$ (as a function of n) that are:
 - functions,
 - bijections,
 - partial orders,
 - symmetric,
 - transitive,
 - etc.
- Propositional model counting (#SAT) is #P-complete
- But many of these counting problems have efficient solutions
- And we can find them using first-order model counting
 - i.e., reasoning about sets, subsets, and arbitrary elements without grounding them

Example Input Sentence

$$\forall x \in \Gamma. \ \forall y, z \in \Delta. \ P(x, y) \land P(x, z) \Rightarrow y = z$$

Example Input Sentence

$$\forall x \in \Gamma$$
. $\forall y, z \in \Delta$. $P(x, y) \land P(x, z) \Rightarrow y = z$

Example Input Sentence

$$\forall x \in \Gamma. \ \forall y, z \in \Delta. \ P(x, y) \land P(x, z) \Rightarrow y = z$$

Example Input Sentence

$$\forall x \in \Gamma. \ \forall y, z \in \Delta. \ P(x, y) \land P(x, z) \Rightarrow y = z$$

Example Input Sentence

$$\forall x \in \Gamma. \ \forall y, z \in \Delta. \ P(x, y) \land P(x, z) \Rightarrow y = z$$

Many-Sorted Function-Free First-Order Logic with Equality

Any number of variables and constants

Example Input Sentence

$$\forall x \in \Gamma. \ \forall y, z \in \Delta. \ P(x, y) \land P(x, z) \Rightarrow y = z$$

- Any number of variables and constants
- → ∃ and ∀ quantifiers can be nested arbitrarily deeply
- ► All domains are finite
 - Solutions are functions that take domain sizes as input

Example Input Sentence

$$\forall x \in \Gamma. \ \forall y, z \in \Delta. \ P(x, y) \land P(x, z) \Rightarrow y = z$$

Many-Sorted Function-Free First-Order Logic with Equality

- Any number of variables and constants
- → ∃ and ∀ quantifiers can be nested arbitrarily deeply
- All domains are finite
 - Solutions are functions that take domain sizes as input

First-Order Model Counting (FOMC)

- ► Each predicate acts like a subset
 - of a domain or product of domains
- Goal: count combinations of subsets that satisfy the sentence

Previous Work: Crane (Dilkas and Belle 2023)

- A knowledge compilation approach:
 - ightharpoonup Sentences ightharpoonup labelled digraphs ightharpoonup function-defining equations
- Capable of constructing recursive solutions
- ► Two variants: greedy search and breadth-first search (BFS)

Previous Work: Crane (Dilkas and Belle 2023)

- A knowledge compilation approach:
 - ightharpoonup Sentences ightharpoonup labelled digraphs ightharpoonup function-defining equations
- Capable of constructing recursive solutions
- Two variants: greedy search and breadth-first search (BFS)

An Example Solution for Counting Bijections

$$f(m, n) = \sum_{l=0}^{n} {n \choose l} (-1)^{n-l} g(l, m),$$

$$g(l, m) = g(l-1, m) + mg(l-1, m-1)$$

Previous Work: Crane (Dilkas and Belle 2023)

- A knowledge compilation approach:
 - ightharpoonup Sentences ightharpoonup labelled digraphs ightharpoonup function-defining equations
- Capable of constructing recursive solutions
- Two variants: greedy search and breadth-first search (BFS)

An Example Solution for Counting Bijections

$$f(m,n) = \sum_{l=0}^{n} {n \choose l} (-1)^{n-l} g(l,m),$$

$$g(l,m) = g(l-1,m) + mg(l-1,m-1)$$

Issues We Are Going to Address

Completeness: recursive functions (like g) have no base cases Usability: how do I compute, e.g., f(7,7)?

1. Use Crane to compile ϕ into a set of equations ${\cal E}$

- 1. Use Crane to compile ϕ into a set of equations $\mathcal E$
- 2. Simplify them, e.g.,

$$g(l,m) = \sum_{k=0}^{m} [0 \le k \le 1] {m \choose k} g(l-1, m-k)$$

becomes

$$g(l, m) = g(l-1, m) + mg(l-1, m-1)$$

- 1. Use Crane to compile ϕ into a set of equations $\mathcal E$
- 2. Simplify them, e.g.,

$$g(l, m) = \sum_{k=0}^{m} [0 \le k \le 1] {m \choose k} g(l-1, m-k)$$

becomes

$$g(l, m) = g(l-1, m) + mg(l-1, m-1)$$

3. (\Rightarrow) Identify a sufficient set of base cases

• e.g.,
$$\{g(0, m), g(l, 0)\}$$

4. For each base case:

g(0,m) g(l,0)

4. For each base case:

Finding (a Sufficient Set of) Base Cases

Outline

- 1. For every function call:
 - 1.1 For every argument of the form var const:
 - 1.1.1 Replace the signature parameter with 0, 1, ..., const 1
 - 1.2 For every argument of the form *const*:
 - 1.2.1 Replace the corresponding signature parameter with const

Example

The signature of g is g(l, m).

Function calls: g(l-1,m) g(l-1,m-1)Base cases: g(0,m) g(l,0)

Theorem

The maximum recursion depth of the compilation algorithm is upper bounded by the number of domains.

Theorem

The maximum recursion depth of the compilation algorithm is upper bounded by the number of domains.

Proof (hint).

Each recursive call eliminates a domain.

Theorem

The maximum recursion depth of the compilation algorithm is upper bounded by the number of domains.

Proof (hint).

Each recursive call eliminates a domain.

Theorem

The evaluation of a recursive function always terminates.

Theorem

The maximum recursion depth of the compilation algorithm is upper bounded by the number of domains.

Proof (hint).

Each recursive call eliminates a domain.

Theorem

The evaluation of a recursive function always terminates.

Proof (hints).

- There exists a topological ordering of functions
- ▶ All function calls follow the structure from the previous slide
- Some common-sense assumptions about the evaluation order and previous work

From Previous Work (Dilkas and Belle 2023)

- ► Crane associates each function f with a sentence ϕ such that $Crane(\phi)$ produces the definition of f
- ▶ There is a bijection between the parameters of f and the domains of ϕ

Example

▶ Base case: g(0, m)

From Previous Work (Dilkas and Belle 2023)

- ► Crane associates each function f with a sentence ϕ such that $Crane(\phi)$ produces the definition of f
- ▶ There is a bijection between the parameters of f and the domains of ϕ

Example

► Base case: g(0, m)

From Previous Work (Dilkas and Belle 2023)

- ► Crane associates each function f with a sentence ϕ such that $Crane(\phi)$ produces the definition of f
- ▶ There is a bijection between the parameters of f and the domains of ϕ

Example

- ► Base case: g(0, m)
- ▶ Part of the sentence of *g*:

$$\forall x \in \Gamma. \ \forall y \in \Delta. \ S(y) \lor \neg P(x, y) \tag{1}$$

From Previous Work (Dilkas and Belle 2023)

- ► Crane associates each function f with a sentence ϕ such that $Crane(\phi)$ produces the definition of f
- ▶ There is a bijection between the parameters of f and the domains of ϕ

Example

- ► Base case: g(0, m)
- ▶ Part of the sentence of *g*:

$$\forall x \in \Gamma. \ \forall y \in \Delta. \ S(y) \lor \neg P(x, y) \tag{1}$$

• g(0,...) means we need to simplify (1) by assuming $|\Gamma| = 0$

From Previous Work (Dilkas and Belle 2023)

- ► Crane associates each function f with a sentence ϕ such that $Crane(\phi)$ produces the definition of f
- ▶ There is a bijection between the parameters of f and the domains of ϕ

Example

- ► Base case: g(0, m)
- ► Part of the sentence of *g*:

$$\forall x \in \Gamma. \ \forall y \in \Delta. \ S(y) \lor \neg P(x, y) \tag{1}$$

- g(0,...) means we need to simplify (1) by assuming $|\Gamma| = 0$
- ► Result: $\forall y \in \Delta$. $S(y) \vee \neg S(y)$ (Smoothing)

Benchmarks

Friends & Smokers

$$(\forall x, y \in \Delta. \ S(x) \land F(x, y) \rightarrow S(y)) \land (\forall x \in \Delta. \ S(x) \rightarrow C(x))$$

Benchmarks

Friends & Smokers

$$(\forall x, y \in \Delta. \ S(x) \land F(x, y) \rightarrow S(y)) \land (\forall x \in \Delta. \ S(x) \rightarrow C(x))$$

Functions

$$(\forall x \in \Gamma. \exists y \in \Delta. P(x, y)) \land (\forall x \in \Gamma. \forall y, z \in \Delta. P(x, y) \land P(x, z) \rightarrow y = z)$$

Benchmarks

Friends & Smokers

$$(\forall x, y \in \Delta. \ S(x) \land F(x, y) \rightarrow S(y)) \land (\forall x \in \Delta. \ S(x) \rightarrow C(x))$$

Functions

$$(\forall x \in \Gamma. \exists y \in \Delta. P(x, y)) \land (\forall x \in \Gamma. \forall y, z \in \Delta. P(x, y) \land P(x, z) \rightarrow y = z)$$

Bijections

$$(\forall x \in \Gamma. \exists y \in \Delta. P(x, y)) \land (\forall y \in \Delta. \exists x \in \Gamma. P(x, y)) \land (\forall x \in \Gamma. \forall y, z \in \Delta. P(x, y) \land P(x, z) \rightarrow y = z) \land (\forall x, z \in \Gamma. \forall y \in \Delta. P(x, y) \land P(z, y) \rightarrow x = z)$$

Friends & Smokers

Bijections

Functions

Summary & Future Work

Contributions

Completeness: recursive solutions now come with base cases

Usability: compilation to C++ programs

Scalability compared to other FOMC algorithms

▶ 8 to 500,000 times higher domain sizes

Summary & Future Work

Contributions

Completeness: recursive solutions now come with base cases

Usability: compilation to C++ programs

Scalability compared to other FOMC algorithms

▶ 8 to 500,000 times higher domain sizes

Future Work

- Support for weighted counting (trivial)
- Experiments on a large set of benchmarks
- Completeness for fragments of first-order logic
- Fine-grained complexity