

3D Visualization and Prediction of Spine Fractures

Progress Report #2 Jing Liu, Jiayuan Shi, Su Yang, Qianyun Zou

Background

- Client:
- Professor Elise Morgan
- Focus:
- Study on failure of human vertebra
- Prior studies:
- Numerical simulations to provide predictions
- Their achievement:
- Method of measuring the deformations throughout a human vertebra during compression to failure
- Their Goal:
- Perform assessment on simulations by comparing them to measurement.

Background

Factors:

- Types:
- l. Crushable Foam
- 2. von Mises
 - Methods:
- 1. Experimentally Matched FE
- 2. Idealized FE
- 3. IVD-Generic FE
- 4. IVD-Specific FE

Experimental

What are the questions?

- How similar is each of simulation results to experimental results?
- Are some of the eight simulations more similar than others to the experimental measurement?

Datasets

- Union (14 specimens)
- -- Only compression
- Flexion (14 specimens)
- -- Combination of flexion and compression

Datasets

Blue -- Grid point number (ID)
Pink -- Experimental data

Purple -- Simulation data

Volume: 2 x 14 x 8 x 3

-4	A	В	C	D	E	F	G
1	513						
2	CFisoKop_Flex			CFisoKop_Step			(
3	2	0.3973	0.8273	2	0.3973	0.5762	2
4	3	0.4058	0.8322	3	0.4058	0.5504	3
5	6	0.5779	0.7852	6	0.5779	0.6516	6
6	7	0.5399	0.7719	7	0.5399	0.6465	7
7	9	0.2495	0.5297	9	0.2495	0.5853	9
8	10	0.2818	0.4894	10	0.2818	0.5514	10
9	11	0.2776	0.6317	11	0.2776	0.6049	11
10	12	0.1264	0.6982	12	0.1264	0.6134	12
11	13	0.0022	0.4779	13	0.0022	0.5626	13
12	14	0.0627	0.4244	14	0.0627	0.523	14
13	15	0.0799	0.5188	15	0.0799	0.5412	15
14	16	0.1082	0.4091	16	0.1082	0.439	16
15	17	-0.0247	0.4511	17	-0.0247	0.5403	17

Visualization (Flexion)

- Histogram & Boxplot: Difference between Experimental and Simulated
- For Flexion group:

diff513

diff513

Visualization (Union)

- Histogram & Boxplot: Difference between Experimental and Simulated
- For Union group:

Two-Way ANOVA

- Purpose: Examine the influence of type and method on mean difference and MSE between the experimental and simulation results.
- Group: Flexion, Union
- 14 specimens
- Type: Crushable Foam, von Mises
- Method: Experimentally Matched FE, IVD-Generic FE, Idealized FE, IVD-Specific FE
- Mean difference:
- Mean standard er $\frac{1}{n} * \sum (Experimental Simulation)$
- Assess the main effect of typ $\sum (Experimental Simulation)^2$ ions.

Two-Way ANOVA Results

	Flexion			Union			
	Type	Method	Interaction	Туре	Method	Interaction	
Mean Difference	Significant	Significant	Non-significant	Non-significant	Non-significant	Non-significant	
MSE	Significant	Non-significant	Non-significant	Non-significant	Non-significant	Non-significant	

```
fit2 <- aov(uni.m ~ type.uni*method.uni)
fit1 <- aov(flexion.m ~ type.flexion*method.flexion)</pre>
                                                        summary(fit2)
summary(fit1)
                                                        #Df Sum Sq Mean Sq F value Pr(>F)
#Df Sum Sa Mean Sa F value Pr(>F)
                                                        #type.uni
                                                                          1 0.003 0.00306
                                                                                         0.094 0.760
#type.flexion
                        1 0.0639 0.06391 10.684 0.00147 **
                                                        #method.uni
                                                                          3 0.015 0.00505
# method.flexion
                                                                                          0.156 0.926
                          3 0.0573 0.01912 3.196 0.02657 *
                                                        #type.uni:method.uni
                                                                          3 0.023 0.00779
# type.flexion:method.flexion 3 0.0067 0.00223
                                         0.373 0.77284
                                                                                          0.240 0.868
                                                                         104 3.378 0.03248
                                                        #Residuals
#Residuals
                       104 0.6221 0.00598
                                                        fit22 <- aov(uni.mse ~ type.uni*method.uni)
fit12 <- aov(flexion.mse ~ type.flexion*method.flexion)</pre>
                                                        summary(fit22)
summary(fit12)
                                                        #Df Sum Sq Mean Sq F value Pr(>F)
#Df Sum Sq Mean Sq F value Pr(>F)
                                                        #type.uni
                                                                              9964
                                                                                     9964
                                                                                          0.263 0.609
#type.flexion
                                        5.108 0.0259 *
                            75975
                                  75975
                                                        #method.uni
                                                                          3 141505
                                                                                    47168
                                                                                          1.243 0.298
# method.flexion
                             18659
                                    6220
                                          0.418 0.7403
                                                        #type.uni:method.uni
                                                                          3 159942
                                                                                          1,405 0,245
#type.flexion:method.flexion 3
                                                                                    53314
                           11397
                                   3799
                                        0.255 0.8573
                                                        #Residuals
                                                                         104 3945671
                                                                                    37939
#Residuals
                       104 1546770
                                  14873
```

Tukey HSD Test

- ANOVA's post-hoc pairwise test.
- Purpose: Determine which type/methods in the group differ.
- Question: Which method in Flexion group differ significantly?
- Group: Flexion
- Object: 4 methods Experimentally Matched FE, IVD-Generic FE, Idealized FE, IVD-Specific FE.

Tukey HSD Test Results

- ■For methods, significant results are:
- 1. The mean difference of Experimental has higher value than the mean difference of other three methods.
- 2. No significant results show up for MSE.
 - ■Conclusion: Generic/Idealized/Specific simulation methods are closer to experiment results than Experimental simulation method.

\$method.flexion				
	diff	lwr	upr	p adj
Generic-Experimental			-0.001191766	
Idealized-Experimental	-0.048569144	-0.10253973	0.005401445	0.0935717
Specific-Experimental	-0.052206779	-0.10617737	0.001763811	0.0617960
Idealized-Generic	0.006593212	-0.04737738	0.060563801	0.9887094
Specific-Generic	0.002955577	-0.05101501	0.056926167	0.9989507
Specific-Idealized	-0.003637634	-0.05760822	0.050332955	0.9980516

- Because the grids are highly dependent and correlated to each other, we conduct analyses using mean difference and MSE, instead of the whole dataset.
- We compare the differences between simulations, but not yet give a firm conclusion about which is the best.
- Our current analyses are ignoring the 3-D structures, and spatial comparison may be the next step.

+ QUESTIONS?

