METALURJİ VE MALZEME MÜHENDİSLİĞİ ÖDEV SORULARI

- 1.) Pozitif yüklü R yarıçaplı bir katı küre içinde düzgün olmayan hacimsel yük yoğunluğu $\rho(r) = \rho_0 \left[1 \frac{R}{2r}\right]$ şeklindedir. Burada r küre merkezinden olan radyal uzaklıktır. r<R ve r>R için elektrik alanını verilenlerin fonksiyonu olarak hesaplayınız.
- 2.) Şekilde gösterilen devre birkaç dakikadan beri bağlıdır. Her sığanın plakalarındaki yükü bulunuz. Dirençler için $R_1=5~\Omega$, $R_2=5~\Omega$, $R_3=4~\Omega$, $R_4=6~\Omega$, $R_5=10~\Omega$, $R_6=0.5~\Omega$, $R_7=1~\Omega$ ve $R_8=0.5~\Omega$ değerlerini kullanınız.

3.) Plastik bir çembersel halkanın yarıçapı R'dir ve pozitif q yükü halkanın çevresine düzgün dağıtılmıştır. Halka kendi ekseni etrafında ω açısal hızı ile döndürülüyor. Eğer halka kendi düzlemine paralel düzgün bir manyetik alan içerisine konulursa üzerindeki manyetik torku yük, açısal frekans, yarıçap ve manyetik alan cinsinden hesaplayınız.

- **4.**) 22 *cm* çaplı ve 15 sarımlı bir dairesel bobin xy düzlemindedir. Bobinin herbir sargısındaki akım saat yönünde 7.6 A'dir ve $\vec{B} = (0.55\hat{\imath} + 0.60\hat{\jmath} 0.65\hat{k}) T'lık bir dış manyetik alan bobinden geçmektedir.$
 - a.) Bobinin manyetik momenti $\vec{\mu}$,
 - **b.**) Dış manyetik alandan dolayı bobine etkiyen torku
 - **c.**) Bobinin alan içindeki *U* potansiyel enerjisini bulunuz.
- **5.**) Yanda iki halkalı bir devre verilmiştir.
 - **a.**) Her iki halka için Kirchhoff'un çevrim ve kavşak kuralarını uygulayarak I_1 , I_2 ve I_3 akımlarını bulunuz.
 - **b.**) A ve B noktaları arasındaki potansiyel farkını $(V_A V_B)$ hesaplayınız.

