# **OpenClassrooms**

**Projet P5:** 

### **Sommaire**

- Contexte
- Présentation des informations disponibles
- Étude du jeu de données, analyse
- Modélisation
- Conclusion et perspectives

- Contexte
- Présentation des informations disponibles
- Étude du jeu de données, analyse
- Modélisation
- Conclusion et perspectives

### Contexte

OLIST, solution de vente sur les places marchandes en ligne, a besoin d'une segmentation de sa clientèle pour ses campagnes de communication.

⇒ On souhaite définir une segmentation clientèle, sa logique sous-jacente éventuelle et une proposition de contrat de maintenance.



- Contexte
- Présentation des informations disponibles
- Étude du jeu de données, analyse
- Modélisation
- Conclusion et perspectives

### Présentation des informations disponibles

Huit fichiers au format 'csv' disponibles et joignables par une clé.

Ligne: article commandé

Colonne : caractéristique de la commande.

- > lieu de livraison,
- date de commande et livraison,
- prix,
- catégories de produits,
- satisfaction client etc.



Les informations disponibles OLIST

- Contexte
- Présentation des informations disponibles
- Étude du jeu de données, analyse
- Analyse
- Modélisation
- Conclusion et perspectives

### Étude du jeu de données

#### Création du jeu de donnée :

Fusion des fichiers en un seul jeu de donnée.

⇒ Après une première étude, on effectuera une sélection plus précise des données.



Les informations fusionnées, valeurs manquantes

### Étude du jeu de données

Le délai de livraison : Cette variable est crée à partir des dates de commandes et de livraisons (réelles et estimées).

- 10 jours de livraison en moyenne
- Moins de 16 jours de délai pour 75 % des commandes et moins de 60 jours pour 99,7 % des commandes
- Les délais de livraisons réels sont inférieurs à ceux annoncés.



### Étude du jeu de données

### Le prix par commande :

- La valeur la plus fréquente se situe autour de ~10 euros
- 80 % des commandes ont une valeur de moins de 100 euros, 99 % des commandes ont une valeur de moins de 600 euros.



### Étude du jeu de données

#### Les dates de commandes:

Le jeu de donnée est distribué sur une durée variant de début 2017 à mi-2018.

Un pic de vente est présent mi-novembre 2017.



### Étude du jeu de données

#### Caractéristiques complémentaires:

La fréquence client : 3 % des clients sont enregistrés comme ayant effectué plus de deux achats.

Le nombre d'article : 90% des commandes sont composées d'un seul article



### Étude du jeu de données

### <u>Imputation</u>:

Les dates de livraison non renseignées ont été remplacés par les dates de livraison estimées.

#### Valeurs extrêmes :

- Les commandes d'une valeur de plus de 600 euros ont été retiré.
- Les commandes avec un délai de livraison de plus de 60 jours ont été retiré.

#### Les variables sélectionnées:

Satisfaction client, délai de livraison, frais de transport, nombre d'article par commande, nombre de photos du produit, panier moyen, catégorie de produit.

⇒ Après traitement, le jeu de donnée comporte comporte 96 500 lignes et 7 colonnes.

- Contexte
- Présentation des informations disponibles
- Étude du jeu de données, analyse
- Modélisation
- Conclusion et perspectives

### Modélisation

Méthodes : réduction dimensionelle et algorithme de partition des données.

- Réduction dimensionelle : analyse en composante principale et factorisation de matrice non-negative
- Partition des données : Kmeans et clustering hiérarchique
- Indicateur statistique : silhouette et indice de Rand ajusté.

### Modélisation

### <u>Clustering hierarchique</u>:

Le clustering hiérarchique permet de réaliser un regroupement par récurrence, les résultats obtenus sont moins intéressant ici que dans le cas du kmeans.



### Modélisation

#### Réduction dimensionelle

- ACP: nombre de 3, 4 et 5 composantes
  - Augmentation de variance expliquée de plus de 10%.
  - Variance totale entre 60 et 85%
- Projection sur PC1 : la satisfaction client et le délai de livraison en sens contraire, influence importante des autres variables aussi.
  - ⇒ Réalisation d'une étude croisée avec le Kmeans pour choisir les paramètres



### Modélisation

### Réduction dimensionelle

La décomposition NMF permet de définir les variables latentes au modèle :

| review_score | order_delivery_delay | freight_value_order | order_item_id_number | monetary_value | product_category_name | product_photos_qty |
|--------------|----------------------|---------------------|----------------------|----------------|-----------------------|--------------------|
| 0.4          | 0.0                  | 1.2                 | 0.2                  | 1.2            | 0.1                   | 0.1                |
| 0.0          | 0.0                  | 0.0                 | 0.0                  | 3.6            | 0.0                   | 0.0                |
| 2.7          | 0.8                  | 0.0                 | 0.5                  | 0.0            | 53.2                  | 1.2                |
| 0.4          | 13.8                 | 0.0                 | 0.2                  | 1.1            | 0.0                   | 0.4                |

#### Variables latentes:

- prix et satisfaction, sans le délai de livraison
- prix
- produit, satisfaction, nombre de photos
- le délai de livraison

### Modélisation

#### Partition Kmeans:

Etude paramétrique en croisant :

- le nombre de composantes de la reduction ACP (3,4 et 5 composantes)
- le nombre de partitions de l'algorithme Kmeans. (2 à 5 partitions)

#### Silhouette:

⇒ Le choix final s'est porté sur trois composantes et trois segments



### Modélisation

#### La segmentation obtenue:

|       | review_score | order_delivery_delay | freight_value_order | order_item_id_number | monetary_value | product_category_name | product_photos_qty | proportion<br>(%) |
|-------|--------------|----------------------|---------------------|----------------------|----------------|-----------------------|--------------------|-------------------|
| label |              |                      |                     |                      |                |                       |                    |                   |
| 0     | 5.0          | 9.0                  | 3.0                 | 1.0                  | 20.0           | health_beauty         | 1                  | 75.0              |
| 1     | 4.0          | 13.0                 | 12.0                | 2.0                  | 103.0          | furniture_decor       | 1                  | 5.0               |
| 2     | 2.0          | 22.0                 | 4.0                 | 1.0                  | 24.0           | bed_bath_table        | 1                  | 20.0              |

Segment 0 : 75 % de la population, panier de ~20 euros, satisfaction elevée, délai de livraison court.

Segment 1 : 5% de la population, panier de ~100 euros, satisfaction raisonnable, valeur de produit élevée.

Segment 2 : 20% de la population, panier de ~20 euros, satisfaction à améliorer, délai de livraison long.

### Modélisation

#### Maintenabilité:

On s'interesse à une <u>évolution éventuelle du nombre de segments sur un semestre</u>, ici le premier semestre 2018.

Evaluation de la concordance des segmentations, la mesure de performance ARI :

- Le passage de 2 à 3 segments est plus stable que les autres.
- Les passages de 2 à 4 segments ou de 3 à 4 segments sont équivalents.

|                           | ARI  |
|---------------------------|------|
| Clusters evolution 2 -> 3 | 0.78 |
| 3 -> 4                    | 0.38 |
| 2 -> 4                    | 0.34 |

### Modélisation

- Utilisation de trois segments pour diversifier au mieux la clientèle, le modèle est entrainé sur le premier semestre 2018 à l'heure actuelle.
- Une maintenance de moins de 6 mois est conseillée pour actualiser les données.
- Entre ces périodes, il est aussi intéressant de prendre en compte les variables sous-jacentes pour renforcer la robustesse de la segmentation.

- Contexte
- Présentation des informations disponibles
- Étude du jeu de données
- Analyse
- Modélisation
- Conclusion et perspectives

### **Conclusion et perspectives**

- Algorithme Kmeans avec une réduction dimensionelle ACP
- Trois segments et une liste de variables latentes
- Période de maintenance de moins de six mois afin d'actualiser les données.



Merci de votre attention!