

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2016 - 2nd Year Examination - Semester 4

IT4105 – Programming II

Part 1 - Multiple Choice Question Paper

1th October, 2016

(ONE HOUR)

Important Instructions:

- The duration of the paper is 1 (one) hour.
- The medium of instruction and guestions is English.
- The paper has **25 questions** and **08 pages**.
- All questions are of the MCQ (Multiple Choice Questions) type.
- All questions should be answered.
- Each guestion will have 5 (five) choices with **one or more** correct answers.
- All guestions will carry equal marks.
- There will be a penalty for incorrect responses to discourage guessing.
- The mark given for a question will vary from 0 (All the incorrect choices are marked & no correct choices are marked) to +1 (All the correct choices are marked & no incorrect choices are marked).
- Answers should be marked on the special answer sheet provided.
- Note that questions appear on both sides of the paper. If a page is not printed, please inform the supervisor immediately.
- Mark the correct choices on the question paper first and then transfer them to the given answer sheet which will be machine marked. Please completely read and follow the instructions given on the other side of the answer sheet before you shade your correct choices.

1)	Suppose one sorts an array of ten integers using quicksort, and if he/she has just finished the
	first partitioning as follows.
	12, 8,13,45,89,72,55,72,67,85

Which statement(s) is/are correct?

- (a) The pivot could be 45, but it is not 55
- (b) Only possible pivot value is 13
- (c) The pivot value could be the 13, but it is not 8
- (d) Only possible pivot value is 45
- (e) The pivot value could be either 12 or the 45
- What are the worst-case, average case and best case running times respectively for Bubble Sort algorithm to sort an array of n elements?

```
(a) O(n^{3/2}), O(n^2), O(n^2)
```

(b) n Log (n),O(n), $O(n^2)$

(c) O(n Log n), $O(n^2)$, O(n)

(d) $O(n^2)$, $O(n^2)$, $O(n^2)$

(e) O(n),O(n),O(n)

A Binary Search Tree (BST) is generated by inserting following integers in order: 50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24

The total number of nodes in the left sub-tree and the right sub-tree, respectively are:

(a)	(4,7)	
(1)	(2.0)	

(b) (7,4)

(c) (8,3)

(d) (3,8)

(e) (5,6)

- Suppose we have numbers between 1 and 1000 in a binary search tree and want to search for the number 363. Which of the following sequence **could not** be the sequence of the node examined?
 - (a) 2, 252, 401, 398, 330, 344, 397, 363
 - (b) 924, 220, 911, 244, 898, 258, 362, 363
 - (c) 925, 202, 911, 240, 912, 245, 258, 363
 - (d) 2,399, 387, 219, 266, 382, 381, 278, 363
 - (e) 2, 252, 401, 398, 331, 345, 397, 363
- 5) Which type of traversal of Binary Search Tree outputs the value in sorted order?
 - (a) Pre-order
- (b) In-order

(c) Post-order

- (d) Breadth First Search
- (e) None of the above

((a) Finding factorial	(b) Tower	of Hanoi
((c) Multiples of Three	(d) Infix t	o postfix conversion
((e) Finding the most common d	ivisor	
	n AVL tree, the balance facto e A, then	or of a node A was 0 and a n	ode was inserted to the left of the
((a) it is required to balance N	ode A	
((b) it is required to balance Pa	arent of node A	
((c) it is required to balance Right child of A		
	(d) Balancing may or may no	=	
		- ft -1-:1 d - f A	
Cons 4+3°		ression. Ithm to convert the expressi	=
Cons 4+3° If on what	sider the following infix expression *(6*3-12) ne uses the usual Stack algori	ression. Ithm to convert the expressi	=
Cons 4+3* If on what conv	*(6*3-12) ne uses the usual Stack algorities the maximum number of	ression. Ithm to convert the expressi	=
Constant 4+3° If on what conv	*(6*3-12) ne uses the usual Stack algorith is the maximum number oversion of this expression?	ression. Ithm to convert the expression tokens that will appear of	on from infix to postfix notation on the stack at a time during the
Constant 4+3° If on what converted to the stant	*(6*3-12) ne uses the usual Stack algoriate is the maximum number oversion of this expression? (a) 1 (d) 4 opose we have an array impose we have an array impose we have an array impose.	ression. of the expression of tokens that will appear of tokens that will appear of the stack of tokens that [13]. The maximum of the stack ough data [13].	(c) 3 (c) 3 (c) 3 (c) at a time during the during th
Constant 4+3° If on what converted to the stant	*(6*3-12) ne uses the usual Stack algorities the maximum number oversion of this expression? (a) 1 (d) 4 opose we have an array imstack stored at data [0] thr	ression. of the expression of tokens that will appear of tokens that will appear of the stack of tokens that [13]. The maximum of the stack ough data [13].	(c) 3 (c) 3 (c) 3 (c) at a time during the during th

The height of a Binary Search Tree (BST) is given as h. Consider the height of the tree as the number of edges in the longest path from root to the leaf. What is the maximum possible

(c) $2^h + 1$

(b) $2^{h+1} - 1$

(e) 2log(h+1)

number of nodes in the tree?

(a) 2^{h-1} -1

(d) $2^{h-1}+1$

11) {47, 12, 9, 10, 4, 95, 36, 57} is a set of integers.

If the binary search tree is created using the above set of integers and if one wants to delete number 12 from the resulting tree, what would one choose as /(a) replacing node(s) for the deletion?

(a) 36	(b) 4	(c) 10
(d) 9	(e) 57	

- 12) The time factor when determining the efficiency of algorithm is measured by
 - (a) Counting the execution time using milliseconds
 - (b) Counting the number of statements in the algorithm
 - (c) Counting the number of key operations in the algorithm
 - (d) Counting the kilobytes used in the algorithm
 - (e) Counting the reserved words used in the algorithm
- 13) Consider the following diagram.

If one visit the nodes of this tree using a preorder traversal, in what order will the nodes be visited?

(a) 1 2 3 4 5 6 7 8 9	(b) 1 2 4 9 6 3 8 5 7	(c) 492853761
(d) 4 2 9 1 8 3 5 6 7 10	(e) 1 2 6 4 9 3 7 8 5	

A list of 7 numbers are rearranged in ascending order using a bubble sort algorithm. Maximum number of swaps were used. What can be deduced about the original list of numbers?

(a)original data set is unordered
(b) original data set is in ascending order
(c)original data set is in descending order
(d) original data set is in random order
(e) original data set is multiples of 5 in ascending order

15) Hand execute (dry run) the following pseudo code segment.

```
stack=[]
for i = 0 to 20
  if i%4 <> 0 then
    stack.append(i)
  endif
next i
```

What would be the final content of stack after the execution completes?

```
(a) 4,8,12,16,20

(b) 0,4,8,12,16.20

(c) 0,4,8,12,16

(d) 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

(e) 1,2,3,5,6,7,9,10,11,13,14,15,17,18,19
```

Hand execute (dry run) the following pseudo code segment and show the contents of the resulting queue.

```
queue=[] #queue is an array
for i =0 to 20 #20 inclusive
  if i%3!= 0 then
    queue.push(i) # push element i
  else if i % 4!=0 then
    queue.pop() # pop the element
    endif
  endif
```

```
(a) 10,11,13.14.16.17,19,20

(b) 1,4,7,10,13,16,19,20

(c) 1,2,4,5,7,8,10,11,13,16,19,20

(d) 10,11,13.14.16.17,20,19

(e) 1,4,7,10,12,16,19,20
```

(17) | Singly and doubly linked lists are best suited for

- (a) relatively permanent collections of data.
- (b) the size of the structure and the data in the structure are constantly changing
- (c) dynamic expanding situations of data
- (d) store in random numbers
- (e) storing integer values only

(a) 10 1,4,7 1,2,4

10,11 1,4,7,10

18)	rai	one evaluates the followinge of the outcome? Expression: 9 3 7 6 + - *	ng postfix expression, what	would be the existence
		(a) Between -15 to -100	(b) Between -5 and -15	(c) Between -5 and +5
		(d) Between +5 and +15	(e) Between 15 and 100	
19)	ba Su an	lanced or not. spose that you run the a d 3 right parentheses (m for determining whether a lgorithm on a sequence that in some order). What is the continued	contains 2 left parentheses the minimum number of

(a) 1	(b) 2	(c) 3
(d) 0	(e) No sufficient data are provided	

Which of the following operations is performed more efficiently by doubly linked list than by singly linked list?

- (a) Deleting a node whose location in given
- (b) Searching an item from a given unsorted list
- (c) Inverting a node after the node with given location
- (d) Traversing a list to process each node
- (e) Inserting a node whose insertion location is given

21) One wants to add 412 and 3917 using stacks.

If he/she uses three (03) stacks and a variable to perform the above addition, what would be the top element in the resulting stack at each intermediate step during the addition?

Hint: When performing the addition, a variable has to be used to store the tenth's position value and one's position value needs to be pushed to the resulting stack (e.g. the tenth's position value of number 16 is 1 and one's position is 6)

(a) 4,3,2,9	(b) 7,0,4,7	(c) 9,2,3,4
(d) 9,2,13,3	(e) 3,13,2,9	

22) Consider the following circular queue.

One wants delete a node from the above circular queue. What are the parameter values (front, back and count) after the deletion?

- (a) front=2,back=5,count=4
- (b) front=0,back=5,count=5
- (c) front=1,back=4,count=4

- (d) front=2,back=5,count=5
- (e) front=1,back=5, count=4

23) Which of the following sorting algorithm(s) is/are of priority queue sorting type?

- (a) Bubble sort
- (b) Insertion sort
- (c) Merge sort

- (d) Selection sort
- (e) Heap sort

Which of the following sorting algorithm(s) is/are of divide and conquer type?

- (a) Bubble sort
- (b) Merge sort

(c) Radix Sort

(d) Heap sort

(e) Quick sort

What are the maximum and the minimum heights of an AVL tree when the total number of nodes is equal to 7, 8, 9 and 11 respectively?

No. of Nodes	Maximum Height	Minimum Height
7	3	2
8	3	3
9	3	3
11	4	3
(b)		
No. of Nodes	Maximum Height	Minimum Height
7	2	2
8	3	3
9	4	3
11	4	3
(c)		
No. of Nodes	Maximum Height	Minimum Height
7	3	2
8	3	3
9	3	3
11	4	3
(d)		
No. of Nodes	Maximum Height	Minimum Height
7	3	2
8	4	3
9	4	3
11	4	4
	•	
(e)	Manitana II i 17	Minimum II 1 1
No. of Nodes	Maximum Height	Minimum Height
7	3	2
8	3	3 3
9	3	3
11	4	3
