Implementation of Naïve Bayes Classification Model

Ex No: 5

Date 15/9/22

AIM:

The aim of the experiment was to implement Navie Bayes Classification Model in weka, java using weka and in python using machine learning libraries

DOWNLOADING DATASET:

- 1. Go to Kaggle (www.kaggle.com) sign in or register new account.
- 2. After that download the data set you like.

3. Click download button to download the dataset.

NAÏVE BAYES IN WEKA:

- 1. Open weka and click explore.
- 2. In preprocessing tab click open file button.
- 3. Select the dateset file you going to perform decision tree.
- 4. Then click classify tab.
- 5. Select the classifer by clicking the choose button.
- 6. Select the NaïveBayes which is present under Bayes.
- 7. Finally click start. Then it automatically built the model

NAIVEBAYES USING JAVA

Code:

```
package Javatree;
import weka.core.Instances;
import weka.classifiers.bayes.NaiveBayes;
import weka.core.converters.CSVLoader;
import java.io.File;
import weka.classifiers.evaluation.Evaluation;
import java.util.Random;
public class Main {
         public static void main(String[] argv) {
                try {
                        CSVLoader loader = new CSVLoader();
                        String name = "C:\\Users\\kaush\\Desktop\\drug200.csv";
                        loader.setSource(new File(name));
//
                        BufferedReader <u>dataset</u> = new BufferedReader(new
FileReader(name));
                        Instances drug = loader.getDataSet();
                        System.out.println(drug);
                        NaiveBayes tree = new NaiveBayes();
                        drug.setClassIndex(
                                        drug.numAttributes() - 1);
                        tree.buildClassifier(drug);
                        System.out.println(tree);
                        Evaluation evaluation= new Evaluation(drug);
                        evaluation.crossValidateModel(tree, drug, 10, new Random(1));
                        System. out. println(evaluation.toSummaryString("\nResults", false));
                        System.out.println(evaluation.toMatrixString());
                catch(Exception e) {}
         }
}
```

Output:

ribute		drugC (0.08)	drugX (0.27)	drugA (0.12)	drugB (0.08)
ge					
mean	43.7637	42.6696	44.0159	35.913	62.4241
std. dev.	16.9209	16.2024	16.2836	9.5704	6.9338
weight sum	91	16	54	23	16
precision	1.0536	1.0536	1.0536	1.0536	1.0536
Sex					
F	48.0	8.0	28.0	10.0	7.0
M	45.0	10.0	28.0	15.0	11.0
[total]	93.0	18.0	56.0	25.0	18.0
BP					
HIGH	39.0	1.0	1.0	24.0	17.0
LOW	31.0		19.0		
NORMAL	24.0		37.0		
[total]	94.0	19.0	57.0	26.0	19.0
Cholesterol					
HIGH	48.0		21.0		
NORMAL	45.0		35.0	12.0	
[total]	93.0	18.0	56.0	25.0	18.0

Result and Confusion Matrix

NAÏVE BAYES USING PYTHON

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from matplotlib import pyplot as plt
from sklearn.naive_bayes import GaussianNB
# https://www.kaggle.com/datasets/pablomgomez21/drugs-a-b-c-x-y-for-decision-trees
drug = pd.read_csv("drug200.csv")
columnName = drug.columns.tolist()
columnName.pop(0)
columnName.pop(-1)
columnName.pop(-1)
inverseLe = {}
for i in columnName:
  le = preprocessing.LabelEncoder()
  le.fit(drug[i].values)
  a = le.transform(drug[i].values)
  drug[i] = a
  inverseLe[i] = le
x = drug.values[:, 0:5]
y = drug.values[:, 5]
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2, random_state=100)
gnb = GaussianNB()
gnb.fit(x_train, y_train)
y pred = gnb.predict(x test)
print("accuracy = ", accuracy_score(y_test, y_pred)*100)
confusion_matrix(y_test, y_pred)
```

Output:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug							
0	23	F	HIGH	HIGH	25.355	drugY	{}						
1	47	М	LOW	HIGH	13.093	drugC		Age	Sex	BP	Cholesterol	Na_to_K	Drug
2	47	М	LOW	HIGH	10.114	drugC	0	23	0	0	0	25.355	drugY
3	28	F	NORMAL	HIGH	7.798	drugX	1	47	1	1	0	13.093	drugC
_						_	2	47	1	1	0	10.114	drugC
4	61	F	LOW	HIGH	18.043	drugY	3	28	0	2	0	7.798	drugX
							4	61	0	1	0	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC							
196	16	М	LOW	HIGH	12.006	drugC	195	56	0	1	0	11.567	drugC
197	52	М	NORMAL	HIGH	9.894	drugX	196	16	1	1	0	12.006	drugC
198	23	М	NORMAL	NORMAL	14.020	drugX	197	52	1	2	0	9.894	drugX
							198	23	1	2	1	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX	199	40	0	1	1	11.349	drugX
[200	rows	x 6	columns	5]			[200) rows	x 6	colu	ımns]		

Before preprocessing

After preprocessing

Confusion Matrix

RESULT:

Successfully we implemented Naïve Bayes classification algorithm in weka gui, java with weka library and using python.