It is customary to rename each column vector a_i^{\top} as x_i (where $x_i \in \mathbb{R}^n$) and to rename the input data matrix A as X, so that the row vector x_i^{\top} are the rows of the $m \times n$ matrix X

$$X = \begin{pmatrix} x_1^\top \\ \vdots \\ x_m^\top \end{pmatrix}.$$

Our optimization problem, called *ridge regression*, is

Program (RR1):

minimize
$$\|y - Xw\|^2 + K \|w\|^2$$
,

which by introducing the new variable $\xi = y - Xw$ can be rewritten as

Program (RR2):

minimize
$$\xi^{\top} \xi + K w^{\top} w$$

subject to $y - X w = \xi$,

where K > 0 is some constant determining the influence of the regularizing term $w^{\top}w$, and we minimize over ξ and w.

The objective function of the first version of our minimization problem can be expressed as

$$J(w) = \|y - Xw\|^{2} + K \|w\|^{2}$$

$$= (y - Xw)^{\top} (y - Xw) + Kw^{\top} w$$

$$= y^{\top} y - 2w^{\top} X^{\top} y + w^{\top} X^{\top} Xw + Kw^{\top} w$$

$$= w^{\top} (X^{\top} X + KI_{n}) w - 2w^{\top} X^{\top} y + y^{\top} y.$$

The matrix $X^{\top}X$ is symmetric positive semidefinite and K > 0, so the matrix $X^{\top}X + KI_n$ is positive definite. It follows that

$$J(w) = w^{\top} (X^{\top} X + K I_n) w - 2 w^{\top} X^{\top} y + y^{\top} y$$

is strictly convex, so by Theorem 40.13(2)-(4), it has a unique minimum iff $\nabla J_w = 0$. Since

$$\nabla J_w = 2(X^{\top}X + KI_n)w - 2X^{\top}y,$$

we deduce that

$$w = (X^{\top}X + KI_n)^{-1}X^{\top}y. \tag{*_{wp}}$$

There is an interesting connection between the matrix $(X^{\top}X + KI_n)^{-1}X^{\top}$ and the pseudo-inverse X^+ of X.