

BITS Pilani

Prof.Aruna Malapati Professor Department of CSIS

Dimension Reduction using PCA

Today's Agenda

- Curse of Dimensionality
- Introduction to Dimension Reduction
- Motivation for PCA
- PCA

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

Dimensionality Reduction

Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principle Component Analysis
- Singular Value Decomposition
- Others: supervised and non-linear techniques

Dimensionality Reduction: PCA

 Goal is to find a projection that captures the largest amount of variation in data

PCA

- Reduce High Dimensional data into something that can be explained in fewer dimensions.
- We need PCA since we suspect that in our interesting data set not all measures are independent i.e there exist correlations. x_2

Assume the data set represent height and weight of people in a region.

Principal Component Analysis (PCA)

- Reduce higher dimension data into something that can be explained in fewer dimensions and gain an understanding of the data.
- We need PCA since we suspect that in our data set not all measures are independent and there exist correlations or structures or patterns.

Motivation for PCA

PC, is the direction of the data, so that if we transform the data by projection.

1PC2 ---->PC1

lead

Projection (Contd..)

Principal Component Analysis

PCA helps us in identifying the best projection.

The goal is to find a lower dimensional surface on which to project such that the sum of squares errors are minimal.

Principal Component Analysis (Contd..)

But Which is the best Suitable Veelvi for projection?

Salient features of PCA

- Directions are in the order of % of variance explained.
- Every PC is orthogonal.

- PCA can be solved using
- Maximum Variance
- Minimum Error

PCA formulation

Steps for PCA

- 1. Mean center the date
- 2. Compute covariance matrix

', '

- 3. Compute the eigen value de comprosition of Covariance matrix.
- 4. Find the best eigen veutor by using eigen values.

Example

Suppose you have a 20 mahre Compute XIX covariane mahre 2x2 eigen de composition deigen values deigen veelves

PCA formulation

Suppose our M=1 and let U, be a unit vechu so that U'U=1 So that we are intrested in direction of U, not magnitule. Each rin is Properted on VI by taking dot product v. 2n

PCA formulation (Contd..)

Mean of projected dala will be

$$V_i^T \cdot \chi$$
 where χ is the set mean

 $\chi = \frac{1}{N} \sum_{n=1}^{\infty} \chi_n$
 $\chi = \frac{1}{N} \sum_{i=1}^{\infty} \chi_i$
 $\chi = \frac{1}{N} \sum_{i=1}^{\infty} \chi_i$

innovate achieve

lead

PCA formulation (Contd..)

$$\sigma^{2} = \frac{1}{N} \sum_{n=1}^{N} (V_{1}(x_{n}-\overline{x}))(V_{1}(x_{n}-\overline{x}))$$

$$= \frac{1}{N} \sum_{n=1}^{N} (V_{1}(x_{n}-\overline{x}))(V_{1}(x_{n}-\overline{x}))$$

$$= \frac{1}{N} \sum_{n=1}^{N} (V_{1}(x_{n}-\overline{x}))(V_{1}(x_{n}-\overline{x}))$$
Since $V_{1} \propto V_{1}^{T}$ has nothing to do with dala points
$$= V_{1}^{T} \left(\frac{1}{N} \sum_{n=1}^{N} (x_{n}-\overline{x})(x_{n}-\overline{x})\right) V_{1}$$

PCA formulation (Contd..)

=
$$U_1^T S U_1$$
 — 1
where S is the Covarian a make
 $S = \frac{1}{N} \sum_{n=1}^{N} (2n-\overline{x})(2n-\overline{x})^T - 2$

lead

$$\chi_{n} = \begin{bmatrix} \chi_{n1} \\ \chi_{n2} \end{bmatrix} \text{ and } \chi = \begin{bmatrix} \chi_{1} \\ \chi_{2} \\ \chi_{n} \end{bmatrix} \text{ me an } \chi \text{ ist feature}$$

$$\chi_{n} = \begin{bmatrix} \chi_{n_{1}} - \chi_{1} \\ \chi_{n_{2}} - \chi_{2} \\ \vdots \\ \chi_{n_{2}} - \chi_{2} \end{bmatrix} \left(\chi_{n} - \chi_{1} \right)^{T} = \begin{bmatrix} \chi_{n} \\ \chi_{n} \\ \chi_{n} \end{bmatrix} \left(\chi_{n} - \chi_{1} \right)^{T} = \begin{bmatrix} \chi_{n} \\ \chi_{n} \\ \chi_{n} \end{bmatrix} \left(\chi_{n} - \chi_{1} \right)^{T} = \begin{bmatrix} \chi_{n} \\ \chi_{n} \\ \chi_{n} \end{bmatrix} \left(\chi_{n} - \chi_{1} \right)^{T} = \begin{bmatrix} \chi_{n} \\ \chi_{n} \\ \chi_{n} \end{bmatrix} \left(\chi_{n} - \chi_{1} \right)^{T} = \begin{bmatrix} \chi_{n} \\ \chi_{n} \end{bmatrix} \left(\chi_{n} - \chi_{1} \right)^{T} = \begin{bmatrix} \chi_{n} \\ \chi_{n} \end{bmatrix} \left(\chi_{n} - \chi_{1} \right)^{T} = \begin{bmatrix} \chi_{n} \\ \chi_{n} \end{bmatrix} \left(\chi_{n} - \chi_{1} \right)^{T} = \begin{bmatrix} \chi_{n} \\ \chi_{n} \end{bmatrix} \left(\chi_{n} - \chi_{1} \right) \left(\chi_{n} - \chi_{1} \right)^{T} = \begin{bmatrix} \chi_{n} \\ \chi_{n} \end{bmatrix} \left(\chi_{n} - \chi_{1} \right) \left(\chi_{n} - \chi_{1} \right)^{T} = \begin{bmatrix} \chi_{n} \\ \chi_{n} \end{bmatrix} \left(\chi_{n} - \chi_{1} \right) \left(\chi_{1} - \chi_{1}$$

$$\begin{array}{l} (\chi_{n}-\overline{\chi})(\chi_{n}-\overline{\chi})^{T} = \\ (\chi_{n}-\overline{\chi})($$

$$= \frac{1}{N} \sum_{n=1}^{N} (\chi_{n_1} - \bar{\chi}_1)^2 (\chi_{n_2} - \bar{\chi}_2)^2 (\chi_{n_2} - \bar{\chi}_2)^2 (\chi_{n_2} - \bar{\chi}_1)^2 \frac{1}{N} \sum_{n=1}^{N} (\chi_{n_1} - \bar{\chi}_1)^2 \chi_{n_2} = \frac{1}{N} \sum_{n=1}^{N} \chi_{n_2} = \frac{1$$

```
The result is a co-varance matrix
  Vas Xn, Co-vau(Xn, 2n2).- Cov(2n, Xnn)
```

PCA overview

Once Co-variance matrin à denired

PCA Limitations

- Covariance is extremely sensitive to large values
 - Multiply some dimension by 1000
 - Dominates covariance
 - Becomes principal component
- Normalize each dimension to zero mean and unit variance.

X'=(X-mean)/standard-deviation

PCA Limitations

- PCA assumes underlying subspace is linear.
- 1D –line
- 2D plane

PCA and classification

- PCA is unsupervised
- Maximize overall variance of the data along a small set of directions
- Does not known anything about class labels
- Can pick direction that makes it hard to separate classes

Take home message

- As the number of dimensions increases, the complexity and computational power required to build the model also increases.
- Dimension reduction methods are employed to find the best representation of data.
- PCA finds the best vectors on which the maximum variance in the data can be preserved.