Práctica 10: integración numérica (II - Cuadratura de Clenshaw-Curtis y potencial gravitatorio).

Introducción: utilizaremos la cuadratura de Clenshaw-Curtis para determinar el potencial gravitatorio creado por un anillo de masa uniformemente distribuida. Primero comprobaremos que la cuadratura funciona correctamente calculando V en el eje del anillo (para el cual conocemos la expresión exacta). Posteriomente extenderemos el cálculo a puntos en un plano de simetría perpendicular al plano del anillo y que pasa por el centro del mismo. Opcionalmente, determinaremos de forma cualitativa las curvas equipotenciales $V={\rm ct.}$ sobre dicho plano de simetría.

1. Potencial en el eje: el anillo es de radio a=1, tiene una densidad lineal de masa $\lambda=1$ y se encuentra sobre el plano z=0 con su centro en el origen de coordenadas. El diferencial de potencial $\mathrm{d}V$ creado por un elemento de anillo $\mathrm{d}\ell=a\,\mathrm{d}\theta$ situado en $(a\cos\theta,a\sin\theta,0)$ en un punto arbitrario del plano x=0 con coordenadas (0,y,z) es (por simplicidad tomamos origen de potencial en el infinito y normalizamos la constante gravitacional; G=1):

$$dV = -\frac{\lambda a d\theta}{\sqrt{a^2 \cos^2 \theta + (y - a \sin \theta)^2 + z^2}}$$

De modo que el potencial es la resultante de integrar para todos los elementos diferenciales del anillo (tomamos $a=1, \lambda=1$):

$$V(0, y, z) = -\int_0^{2\pi} \frac{d\theta}{\sqrt{\cos^2 \theta + (y - \sin \theta)^2 + z^2}}.$$

Programar una función para la cual, dados dos valores cualquiera de z e y, con $(y, z) \neq (1, 0)$, aproxime la integral anterior mediante Clenshaw-Curtis con N = 20. Particularizar para y = 0 y comparar con el potencial sobre el eje que se obtiene analíticamente.

- 2. Potencial en el plano x=0: para $y=0.25,\,0.75,\,1.5,\,$ representar el potencial en función de z (explorar el rango $z\in[-5,5]$).
- 3. Curvas equipotenciales sobre el plano x=0: tomad un punto inicial, por ejemplo $(y_0,z_0)=(0.25,0)$, y calcular en ese punto el campo gravitatorio aproximadamente mediante diferencias finitas centradas con h=0.01:

$$F_y \approx -\frac{V(0,y_0+h,z_0)-V(0,y_0-h,z_0)}{2h}, \quad F_z \approx -\frac{V(0,y_0,z_0+h)-V(0,y_0,z_0-h)}{2h}.$$

Al movemos perpendicularmente a (F_y, F_z) mantenemos el potencial constante. Otro punto (y_1, z_1) de (aproximadamente) mismo potencial lo podemos localizar con esta traslación:

$$(y_1, z_1) = (y_0, z_0) + \varepsilon \hat{\mathbf{f}}, \text{ con } \varepsilon = 0.001 \text{ y } \hat{\mathbf{f}} = \frac{(-F_z, F_y)}{\sqrt{F_y^2 + F_z^2}}.$$

Ahora reevaluamos (F_y, F_z) en (y_1, z_1) y repetimos la operación. Representando el conjunto de puntos $\{(y_0, z_0), (y_1, z_1), (y_2, z_2), \ldots\}$ podemos visualizar cualitativamente una curva equipotencial. El proceso se ha de repetir empezando de nuevo desde otro punto cualquiera inicial.