Logic: Introduction

- LOGIC is the study of reasoning and whether or not that reasoning is correct.
- LOGIC is used in
- scientific investigation
- mathematics
- programming
- algorithm analysis

Slide 1

Logic: Introduction

- Three Main Areas in Logic
 - Propositional Logic
 - relationships of statements
 - literals and terms
 - use of conjunctions
 - Predicate Logic
 - content of statements
 - use of quantifiers
 - Fuzzy Logic

Slide 2

Propositional Logic

OUTLINE

- Propositions and Logical Connectives
- Syntax and Semantics of Propositional Logic
- Rules of Inference
- Laws of Equivalence
- Method of Proof

Slide 3

Propositional Logic

Basic Terms and Concepts

DEFN: A **proposition** is a *declarative* sentence of which the *truth value is definitely known* or can be *validly determined*.

- Examples:
 - 1. Hello.
 - 2. When is our next exam?
 - 3. Dr. Albacea is the current ICS director.
 - 4.2 + 3 > 5
 - 5. x+1 is an even number.
 - 6. He is a CMSC 56 student.
 - 7. I will pass this course.

Slide 4

Slide 6

Propositional Logic

Assumptions:

Law of Excluded Middle

For every proposition P, either P is true or P is false.

Law of Contradiction

For every proposition P, it is not the case that P is both true and false.

Propositional Logic

Notation:

truth values: **T** =true; **F**= false propositions: **P**, **Q**, **R**, etc. compound propositions: **E**, **F**, **G**, **H**, etc.

• Examples:

P: Today is a sunny day.

Q: CMSC 56 is a prerequisite to CMSC 57.

Slide 5

- LOGICAL CONNECTIVES are used to modify or combine two or more propositions to form compound propositions (or sentences).
- **NOT** (~)
- **AND** (∧)
- OR (∨)
- **IF-THEN** (→)
- IF-AND-ONLY-IF (↔)

Slide 7

Propositional Logic

• NOT (~)

~P means "not P"

means "the opposite or negation of P"

Example:

P: The printer is working today.

~P:

Rule:

The proposition \sim P is true iff P is false.

The proposition ~P is false iff P is true.

Truth table:

P ~P ⊤ F

Slide 8

Propositional Logic

NOTE:

As a convention, propositional variables unmodified by a NOT connective should represent English statements expressing the *affirmative*, that is, they do not include words that express negation such as "not", "no" or "none".

Example:

"Sabrina is *not* a student." is preferably represented by **S**. (that is, **S** represents "Sabrina is a student.")

Slide 9

Propositional Logic

●AND (∧)

 $P \wedge Q$ means "both P and Q"

Example:

P: It is raining right now. Q: It is cold right now.

 $P \wedge Q$:

Rule:

The **conjunction** $P \wedge Q$ is true iff both P and Q are true.

Truth table: P O

P Q P∧**Q** T T T F F T F F

Slide 10

Propositional Logic

● **OR** (∨)

 $P \vee Q$ means "P or Q", "at least one of P and Q"

Fxample

P: $\dot{\textit{Michael}}$ is late for class. Q: $\dot{\textit{M}}$ P \vee Q:

Q: Michael is sick today.

Rule:

The **disjunction** $P \lor Q$ is true iff at least one of P or Q is true. **Truth table**:

Р	Q	$P \vee Q$
T	Τ	
Τ	F	
F	Т	
F	F	

Slide 11

Propositional Logic

• IF-THEN (\rightarrow)

 $P \rightarrow Q$ means "if P then Q", "P implies Q", "Q if P"

- In P → Q, P is called the premise and Q is called the conclusion.
- If P → Q is an implication then:
 - Its **inverse** is $\sim P \rightarrow \sim Q$
 - Its converse is O → P
 - Its **contrapositive** is $\sim Q \rightarrow \sim P$

Example:

P: I become UP president. Q: I will reduce tuition fees. $P \rightarrow O$:

Slide 12

• IF-THEN (\rightarrow)

Rule:

The **implication** or **conditional** $P \rightarrow Q$ is true iff P is false or O is true.

Truth table:

Р	Q	$P \rightarrow Q$
Т	Т	
T	F	
F	T	
F	F	

Slide 13

Propositional Logic

● IF-AND-ONLY-IF (↔)

 $P \mathop{\longleftrightarrow} Q \mathop{\text{means}} ``P \mathop{\text{iff}} Q", ``if P \mathop{\text{then}} Q \mathop{\text{and}} \mathop{\text{if}} Q \mathop{\text{then}} P"$

Example:

P: Jude has a fever. Q: Jude's temperature is at least 38C $P\leftrightarrow Q$:

Rule:

The **biconditional** or **equivalence** $P \leftrightarrow Q$ is true iff both P and Q have the same truth values.

Truth table:

Р	Q	$P \leftrightarrow Q$
Т	Т	
Τ	F	
F	Т	
F	F	

Slide 14

Propositional Logic

• Additional examples:

- Given:
 - V: Mia is watching tv.
 - **S**: Mia is studying in her room.
 - E: Mia is eating out with her friends.
- V ∨ S → ~E
- E ↔ ~S

Slide 15

Propositional Logic

• Additional examples:

- Jonna will watch a movie if she has no exam tomorrow.
- Let **W**: Jonna will watch a movie.
 - E: Jonna has an exam tomorrow.
- Harry is taking neither Arithmancy nor Divination classes.

Let A: Harry is taking Arithmancy classes.

D: Harry is taking Divination classes..

Slide 16

Propositional Logic

Other terms:

- A literal is a single propositional variable or its negation (e.g. P, ~Q).
- A term is a group of two or more literals combined by a connective (e.g. P ∧ Q, P → ~R).

Propositional Logic

OUTLINE

- Propositions and Logical Connectives
- Syntax and Semantics of Propositional Logic
- Rules of Inference
- Laws of Equivalence
- Method of Proof

Slide 17 Slide 18

- SYNTAX & SEMANTICS of Propositional Logic
- Syntax
 - T and F are valid propositions.
 - If P and Q are valid propositions, then the following are also valid propositions:

~P,
$$P \wedge Q$$
, $P \vee Q$, $P \rightarrow Q$, and $P \leftrightarrow Q$.

 All propositions generated from a finite number of the above are valid propositions.

Slide 19

Propositional Logic

- SYNTAX & SEMANTICS of Propositional Logic
 - Syntax

Remarks on **grouping symbols**

Used to reduce ambiguity.

Example:

 $[\sim\!\!P \land (Q \lor S)] \to (R \leftrightarrow Q)$

is very much different from

 $\sim (P \land Q) \lor [S \rightarrow (R \leftrightarrow Q)].$

 Without grouping symbols, the connectives must be evaluated in the following order:

 $\sim \land \lor \rightarrow \leftrightarrow$

Slide 20

Propositional Logic

- SYNTAX & SEMANTICS of Propositional Logic
- Syntax
- Example:

The proposition $P \land \neg Q \lor R \to S \leftrightarrow U \lor W$ may be evaluated in the following order:

- a
- b)
- c)
- d)

and therefore can be rewritten, with grouping symbols, as $[((P \land (\sim Q)) \lor R) \to S] \leftrightarrow (U \lor W)$

Slide 21

Propositional Logic

- SYNTAX & SEMANTICS of Propositional Logic
 - Syntax
 - Similar connectives may be evaluated from left to right.

Example:

For the proposition $P \wedge R \wedge S$

P \(\bar{R} \) can be evaluated first followed by \(\Lambda \) S

 Some grouping symbols may be omitted. Example:

The proposition $\{\sim [P \land (\sim Q)]\}$ may be rewritten simply as $\sim (P \land \sim Q)$.

Slide 22

Propositional Logic

- SYNTAX & SEMANTICS of Propositional Logic
- Semantics
 - ◆ To determine truth value of (compound) proposition:
 - assign truth values to each component propositional variable
 - use the rules of each connective for determining the truth value of the proposition.

Propositional Logic

- SYNTAX & SEMANTICS of Propositional Logic
- Semantics

Examples:

Suppose P=F(alse), Q=F(alse) and R=T(rue). What are the resulting truth values of the following sentences?

- 1. **P** \vee **Q**
- 2. ~**P** ∧ **R**
- 3. $(P \lor Q) \rightarrow \sim R$

Slide 23 Slide 24

- Kinds of Propositional Statements
 - A tautology or valid sentence is a sentence that is true for all possible values of its propositional variables. Example:
 - A contradiction or absurdity is a sentence that is false for all possible values of its propositional variables. Example:

Slide 25

Propositional Logic

- Kinds of Propositional Statements
 - A contingency is a sentence that is either true or false depending on the truth values of its propositional variables.

Example:

Can you give other examples of (simple) tautologies, contradictions and contingencies?

Slide 26

Propositional Logic

- Kinds of Propositional Statements
 - How to Create Truth Tables
 - **Step 1**: Label the first n columns of the table with the n component propositional variables. Other columns are labeled by combinations of statements culminating with the entire given statement.
 - **Step 2**: List down all possible 2ⁿ n-tuples of truth values for all n component propositional variables.
 - **Step 3**: Determine the truth values for the remaining columns in the table.

Slide 27

Propositional Logic

• Examples:

Tautology, contradiction or contingency???

1) *F*: ~**Q** → ~**P**

2) $F: (P \rightarrow Q) \leftrightarrow (\sim Q \rightarrow \sim P)$

3) $F: (P \land Q) \land \sim P$

4) $F: [(P \rightarrow Q) \land P] \land \sim Q$

5) $F: \mathbf{P} \rightarrow \sim (\mathbf{Q} \wedge \mathbf{R})$

Slide 28

Propositional Logic

- Properties of Propositional Statements
 - A statement is satisfiable if there is some assignment of truth values to its propositional variables such that the statement is true.

Which of tautology, contradiction and contingency is/are satisfiable?

Example

Determine if the following proposition is satisfiable:

$$P \wedge R \rightarrow \sim P$$

Propositional Logic

Properties of Propositional Statements

- Two propositional statements are equivalent if they have the same truth value under every interpretation.
 - Use truth tables.
 - Use laws of equivalence (discussed later).

Example:

Check if the statements

$$P \rightarrow Q$$
 and $(P \land \sim Q) \rightarrow (R \land \sim R)$ are logically equivalent.

Slide 29

Slide 30