6-lead MULTILED® Enhanced optical Power LED (ThinFilm® / ThinGaN®) Lead (Pb) Free Product - RoHS Compliant

LRTB G6TG

Vorläufige Daten / Preliminary Data

Besondere Merkmale

- Gehäusetyp: weißes P-LCC-6 Gehäuse, Kontrasterhöhung durch schwarze Oberfläche (RGB-Displays) und diffuses Harz
- Besonderheit des Bauteils: additive
 Farbmischung durch unabhängige Ansteuerung
 aller Chips
- Wellenlänge: 625 nm (red), 528 nm (true green), 470 nm (blau)
- Abstrahlwinkel: Lambertscher Strahler (120°)
- Technologie: ThinFilm (rot), ThinGaN[®] (true grün, blau)
- optischer Wirkungsgrad: 43 lm/W (rot), 36 lm/W (true grün), 11 lm/W (blau)
- **Gruppierungsparameter:** Lichtstärke, Wellenlänge
- Verarbeitungsmethode: für alle SMT-Bestücktechniken geeignet
- Lötmethode: IR Reflow Löten
- · Vorbehandlung: nach JEDEC Level 4
- Gurtung: 12 mm Gurt mit 1000/Rolle, ø180 mm oder 4000/Rolle, ø330 mm
- ESD-Festigkeit: ESD-sensitives Bauteil

Anwendungen

- Anzeigen im Innen- und Außenbereich (z.B. im Verkehrsbereich; Laufschriftanzeigen)
- Getrennte Anteuerung der Leuchtdiodenchips zur Darstellung verschiedener Farben inclusive weiß
- · Vollfarbdisplays bzw. RGB-Displays
- Blitzlicht im Handy
- Hinterleuchtung (LCD, Schalter, Tasten, Werbebeleuchtung, Allgemeinbeleuchtung)
- · Einkopplung in Lichtleiter

Features

- package: white P-LCC-6 package, higher contrast by a black surface (RGB-Displays) and diffused resin
- feature of the device: additive mixture of color stimuli by independent driving of each chip
- wavelength: 625 nm (red), 528 nm (true green), 470 nm (blue)
- viewing angle: Lambertian Emitter (120°)
- technology: ThinFilm (red), ThinGaN[®] (true green, blue)
- ThinGaN® (true green, blue)
- optical efficiency: 43 lm/W (red), 36 lm/W (true green), 11 lm/W (blue)
- grouping parameter: luminous intensity, wavelength
- assembly methods: suitable for all SMT assembly methods
- · soldering methods: IR reflow soldering
- preconditioning: acc. to JEDEC Level 4
- taping: 12 mm tape with 1000/reel, Ø180 mm or 4000/reel, Ø330 mm
- ESD-withstand voltage: ESD sensitive device

Applications

1

- indoor and outdoor displays (e.g. displays for traffic; light writing displays)
- LED chips can be controlled seperately to display various colors including white
- full color displays, RGB-Displays
- strobe light for cellular phones
- backlighting (LCD, switches, keys, illuminated advertising, general lighting)
- · coupling into light guides

2005-07-01

Bestellinformation Ordering Information

Тур	Emissionsfarbe	Lichtstärke ^{1) Seite 22}				
Туре	Color of Emission	Luminous Intensity ^{1) page 22} $I_{\rm F}$ = 20 mA $I_{\rm V}$ (mcd)				
		red	true green	blue		
LRTB G6TG	red true green blue	280 900	4501400	180560		

Bestellinformation Ordering Information

Typ	Bestellnummer
Type	Ordering Code
LRTB G6TG-TU7-1+UV7-25+ST7-68	Q65110A3474

 Δnm

Die oben genannten Typbezeichnungen umfassen die bestellbaren Selektionen. Diese bestehen aus wenigen Helligkeitsgruppen (siehe **Seite 6** für nähere Informationen). Es wird nur eine einzige Helligkeitsgruppe pro Gurt geliefert. Z.B.: LRTB G6TG-TU7-1+UV7-25+ST7-68 bedeutet, dass auf dem Gurt nur eine der Helligkeitsgruppen T, T5, T7; T9, U, U5, oder U7 enthalten ist.

Um die Liefersicherheit zu gewährleisten, können einzelne Helligkeitsgruppen nicht bestellt werden.

Gleiches gilt für die Farben, bei denen Wellenlängengruppen gemessen und gruppiert werden. Pro Gurt wird nur eine Wellenlängengruppe geliefert. Z.B.: LRTB G6TG-TU7-1+UV7-25+ST7-68 bedeutet, dass auf dem Gurt nur eine der Wellenlängengruppen -2, -3, -4, oder -5 enthalten ist (siehe Seite 7 für nähere Information). Z.B.: LRTB G6TG-TU7-1+UV7-25+ST7-69 bedeutet, dass das Bauteil innerhalb der auf Seite 4 spezifizierten Grenzen geliefert wird.

Um die Liefersicherheit zu gewährleisten, können einzelne Wellenlängengruppen nicht bestellt werden.

Note:

The above Type Numbers represent the order groups which include only a few brightness groups (see **page 6** for explanation). Only one group will be shipped on each reel (there will be no mixing of two groups on each reel). E.g. LRTB G6TG-TU7-1+UV7-25+ST7-68 means that only one group T, T5, T7; T9, U, U5, or U7 will be shippable for any one reel.

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one reel. E.g. LRTB G6TG-TU7-1+UV7-25+ST7-68 means that only 1 wavelength group -2, -3, -4, or -5 will be shippable (see **page 7** for explanation). E.g. LRTB G6TG-TU7-1+UV7-25+ST7-69 means that the device will be shiped within the specified limits as stated on **page 4**.

2

In order to ensure availability, single wavelength groups will not be orderable.

OSRAM

Grenzwerte Maximum Ratings

Bezeichnung Parameter	Symbol Symbol		Werte Values	Einheit Unit	
		red	true green	blue	
Betriebstemperatur Operating temperature range	$T_{\sf op}$	-	40 + 1	110	°C
Lagertemperatur Storage temperature range	$T_{ m stg}$	-	40 + 1	110	°C
Sperrschichttemperatur Junction temperature	T_{j}		+ 125		°C
Durchlassstrom Forward current $(T_A=25^{\circ}C)$	I_{F}	70		50	mA
Stoßstrom Surge current $t_{\rm p}$ = 10 μ s, D = 0.005, $T_{\rm A}$ =25°C	I_{FM}	100	300	300	mA
Sperrspannung ^{2) Soite 22} Reverse voltage ^{2) page 22} (T _A =25°C)	V_{R}	12		5	V
Leistungsaufnahme Power consumption $(T_A=25^{\circ}\text{C})$	P_{tot}	195	2	10	mW
Wärmewiderstand Thermal resistance Sperrschicht/Umgebung ^{3) Seite 22} Junction/ambient ^{3) page 22} 3 chips on Sperrschicht/Lötpad Junction/solder point	III JA	340 600 180	340 600 180	340 600 180	K/W K/W K/W

3

2005-07-01

Kennwerte Characteristics

 $(T_{A} = 25 \, {}^{\circ}\text{C})$

Bezeichnung Parameter		Symbol Symbol		Werte Values		
			red	true green	blue	
Wellenlänge des emittierten Lichtes Wavelength at peak emission $I_{\rm F}$ = 20 mA	(typ.)	λ_{peak}	632	523	465	nm
Dominantwellenlänge ^{4) Seite 22} Dominant wavelength ^{4) page 22} $I_{\rm F}$ = 20 mA	(min.) (typ.) (max.)	λ_{dom}	620 625 629	518.5 528 536.5	463.5 470 476.5	nm nm nm
Spektrale Bandbreite bei 50 % $I_{\rm rel\ max}$ Spectral bandwidth at 50 % $I_{\rm rel\ max}$ $I_{\rm F}$ = 20 mA	(typ.)	Δλ	18	33	25	nm
Abstrahlwinkel bei 50 % ${ m I_V}$ (Vollwinkel) Viewing angle at 50 % ${ m I_V}$	(typ.)	2φ	120	120	120	Grad deg.
Durchlassspannung ^{5) Seite 22} Forward voltage ^{5) page 22} I _F = 20 mA	(min.) (typ.) (max.)	V_{F} V_{F} V_{F}	1.9 2.1 2.5	2.9 3.2 3.7	2.9 3.2 3.7	V V V
Sperrstrom Reverse current $V_R = 5 \text{ V (blue / true green); } 12 \text{ V (red)}$	(typ.) (max.)	I_{R} I_{R}	0.02 10	0.01 10	0.01 10	μA μA
Temperaturkoeffizient von $\lambda_{\rm peak}$ Temperature coefficient of $\lambda_{\rm peak}$ $I_{\rm F} = 20~{\rm mA;} -10^{\circ}{\rm C} \leq T \leq 100^{\circ}{\rm C}$	(typ.)	$TC_{\lambda m peak}$	0.14	0.04	0.04	nm/K
Temperaturkoeffizient von λ_{dom} Temperature coefficient of λ_{dom} $I_{\mathrm{F}} = 20 \mathrm{\ mA}; -10^{\circ}\mathrm{C} \leq T \leq 100^{\circ}\mathrm{C}$	(typ.)	$TC_{\lambda ext{dom}}$	0.07	0.03	0.02	nm/K
Temperaturkoeffizient von $V_{\rm F}$ Temperature coefficient of $V_{\rm F}$ $I_{\rm F}$ = 20 mA; -10°C \leq T \leq 100°C	(typ.)	TC_{V}	- 4.7	- 3.6	- 4.0	mV/K
Optischer Wirkungsgrad Optical efficiency _F = 20 mA	(typ.)	η_{opt}	43	36	11	lm/W

^{*} Einzelgruppen siehe Seite 7 Individual groups on page 7

OSRAM

Farbortgruppen^{6) 7) Seite 22}

Chromaticity Coordinate Groups 6) 7) page 22

	U	0.1 0.2 0.3 0.4	0.5 0.6 0.7	0.8 0.9	
Gruppe Group	Сх	Су	Gruppe Group	Сх	Су
2	0.130	0.644	6	0.139	0.038
	0.163	0.678		0.152	0.057
	0.128	0.749		0.147	0.071
	0.088	0.709		0.132	0.050
3	0.112	0.741	7	0.132	0.050
	0.150	0.672		0.147	0.071
	0.182	0.689		0.141	0.087
	0.153	0.757		0.124	0.065
4	0.137	0.756	8	0.130	0.054
	0.169	0.686		0.145	0.075
	0.205	0.692		0.139	0.097
	0.181	0.757		0.121	0.075
5	0.164	0.760	9	0.121	0.075
	0.190	0.693		0.139	0.097
	0.230	0.686		0.131	0.126
	0.212	0.747		0.110	0.104
			red	0.692	0.308
				0.681	0.309
				0.695	0.295
-				0.707	0.293

Anm.: Die Farbkoordinaten des Mischlichtes können innerhalb des gekennzeichneten Bereichs des Farbdreiecks erwartet werden. Note:

The color coordinates of the mixed light can be expected within the marked area of the color triangle

2005-07-01

OSRAM Opto Semiconductors

Floating Bins

Floating Bins

Floating Bins

Wellenlängengruppen (Dominantwellenlänge)^{4) Seite 22} **Wavelength Groups** (Dominant Wavelength)^{4) page 22}

Gruppe	true	green	Einheit	
Group	min.	max.	Unit	
3	518.5	526.5	nm	
4	523.5	531.5	nm	
5	528.5	536.5	nm	

Gruppe	bl	Einheit	
Group	min.	max.	Unit
6	463.5	467.5	nm
7	467.5	471.0	nm
8	468.5	472.5	nm
9	472.5	476.5	nm

Gruppenbezeichnung auf Etikett Group Name on Label

Beispiel: T7-1+U7-4+R7-7 Example: T7-1+U7-4+R7-7

Helligkeits- gruppe	Wellenlänge (keine	Helligkeits- gruppe	Wellenlänge	Helligkeits- gruppe	Wellenlänge
Brightness Group	Gruppierung) Wavelength (no grouping)	Brightness Group	Wavelength	Brightness Group	Wavelength
(red)	(red)	(true green)	(true green)	(blue)	(blue)
T7	1	U7	4	R7	7

Anm.: In einer Verpackungseinheit / Gurt ist immer nur eine Helligkeitsgruppe pro Farbe enthalten.

7

Note: No packing unit / tape ever contains more than one brightness group per color.

Relative spektrale Emission^{6) Seite 22} Relative Spectral Emission^{6) page 22}

 $V(\lambda)$ = spektrale Augenempfindlichkeit / Standard eye response curve

 $I_{rel} = f(\lambda), T_A = 25 \, ^{\circ}\text{C}, I_F = 20 \, \text{mA}$

Abstrahlcharakteristik^{6) Seite 22} Radiation Characteristic^{6) page 22}

$$I_{rel} = f(\varphi); T_A = 25 \text{ °C}$$

Durchlassstrom^{6) Seite 22} Forward Current^{6) page 22}

 $I_{\rm F} = f(V_{\rm F}); T_{\rm A} = 25 \, {\rm ^{\circ}C}; \, {\rm red}$

Durchlassstrom^{6) Seite 22} Forward Current^{6) page 22}

 $I_{\rm F}$ = $f(V_{\rm F})$; $T_{\rm A}$ = 25 °C; blue, true green

Relative Lichtstärke^{6) 7) Seite 22}

Relative Luminous Intensity^{6) 7) page 22}

 $I_{V}/I_{V(20 \text{ mA})} = f(I_{F}); T_{A} = 25 \text{ °C}$

Relative Lichtstärke^{6) Seite 22}

Relative Luminous Intensity^{6) page 22}

$$I_{V}/I_{V(25 \text{ °C})} = f(T_{A}); I_{F} = 20 \text{ mA}$$

2005-07-01

Dominante Wellenlänge $^{6)}$ Seite 22 Dominant Wavelength $^{6)}$ page 22 blue, $\lambda_{\text{dom}} = f(I_{\text{F}})$; $T_{\text{A}} = 25$ °C

Dominante Wellenlänge^{6) Seite 22} Dominant Wavelength^{6) page 22}

true green, $\lambda_{dom} = f(I_F)$; $T_A = 25 \, ^{\circ}\text{C}$

Maximal zulässiger Durchlassstrom rot Max. Permissible Forward Current red

 $I_{\rm F} = f(T)$; 1 chip on

Maximal zulässiger Durchlassstrom true grün Max. Permissible Forward Current true green

Maximal zulässiger Durchlassstrom rot Max. Permissible Forward Current red

 $I_{\rm F} = f(T)$; 3 chips on

Maximal zulässiger Durchlassstrom true grün Max. Permissible Forward Current true green

 $I_{\rm F} = f(T)$; 3 chips on

2005-07-01

Maximal zulässiger Durchlassstrom blau Max. Permissible Forward Current blue

 $I_{\mathsf{F}} = f(T)$; 1 chip on

Maximal zulässiger Durchlassstrom blau Max. Permissible Forward Current blue

 $I_{\rm F} = f(T)$; 3 chips on

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 °C $I_F = f(t_D)$; red (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 °C $I_F = f(t_D)$; red (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, $T_{\rm A}$ = 85 °C

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C $I_F = f(t_p)$; red (3 Chips on)

2005-07-01

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 °C $I_F = f(t_D)$; true green (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 °C I_F = $f(t_p)$; true green (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C $I_F = f(t_p)$; true green (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, $T_{\rm A}$ = 85 °C $I_{\rm F}$ = $f(t_{\rm p})$; true green (3 Chips on)

2005-07-01

OSRAM

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 °C $I_F = f(t_D)$; blue (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 25 °C $I_F = f(t_D)$; blue (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C $I_F = f(t_p)$; blue (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_A = 85 °C $I_F = f(t_p)$; blue (3 Chips on)

2005-07-01

Maßzeichnung^{8) Seite 22} Package Outlines^{8) page 22}

Gewicht / Approx. weight:

40 mg

Gurtung / Polarität und Lage^{8) Seite 22}

Verpackungseinheit 1000/Rolle, ø180 mm oder 4000/Rolle, ø330 mm

Method of Taping / Polarity and Orientation^{8) page 22}

Packing unit 1000/reel, ø180 mm or 4000/reel, ø330 mm

Empfohlenes Lötpaddesign^{8) 9) Seite 22} Recommended Solder Pad^{8) 9) page 22}

IR Reflow Löten IR Reflow Soldering

Empfohlenes Platinendesign für cluster mit 6-lead TOPLED® in Serienschaltung Recommended PCB-Design for cluster with 6-lead TOPLED® in Series Connection

Lötbedingungen Soldering Conditions IR-Reflow Lötprofil für bleifreies Löten IR Reflow Soldering Profile for lead free soldering Vorbehandlung nach JEDEC Level 4 Preconditioning acc. to JEDEC Level 4 (nach J-STD-020B) (acc. to J-STD-020B)

Wellenlöten (TTW) TTW Soldering (nach CECC 00802) (acc. to CECC 00802)

Barcode-Produkt-Etikett (BPL) Barcode-Product-Label (BPL)

Gurtverpackung

Tape and Reel

Tape dimensions in mm (inch)

W	P_0	P_1	P_2	D_0	E	F
12 ⁺ 0.3 - 0.1	4 ± 0.1 (0.157 ± 0.004)	8 ± 0.1 (0.315 ± 0.004)				5.5 ± 0.05 (0.217 ± 0.002)

Reel dimensions in mm (inch)

A	W	N_{min}	W_1	$W_{2 \; { m max}}$
180 (7)	12 (0.472)	60 (2.362)	12.4 + 2 (0.488 + 0.079)	18.4 (0.724)
330 (13)	12 (0.472)	60 (2.362)	12.4 + 2 (0.488 + 0.079)	18.4 (0.724)

Trockenverpackung und Materialien Dry Packing Process and Materials

Anm.: Feuchteempfindliche Produkte sind verpackt in einem Trockenbeutel zusammen mit einem Trockenmittel und einer Feuchteindikatorkarte

Bezüglich Trockenverpackung finden Sie weitere Hinweise im Internet und in unserem Short Form Catalog im Kapitel "Gurtung und Verpackung" unter dem Punkt "Trockenverpackung". Hier sind Normenbezüge, unter anderem ein Auszug der JEDEC-Norm, enthalten.

Note: Moisture-senisitve product is packed in a dry bag containing desiccant and a humidity card.

Regarding dry pack you will find further information in the internet and in the Short Form Catalog in chapter

"Tape and Reel" under the topic "Dry Pack". Here you will also find the normative references like JEDEC.

Kartonverpackung und Materialien

Transportation Packing and Materials

Revision History: 2005-07-01

Previous Version: -

Page	Subjects (major changes since last revision)	Date of change
-		

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization. If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ⁽¹⁾ page 22 may only be used in life-support devices or systems ⁽¹⁾ page 22 with the express written approval of OSRAM OS.

Fußnoten:

- Helligkeitswerte werden mit einer Stromeinprägedauer von 25 ms und einer Genauigkeit von ± 11% ermittelt.
- 2) Die LED kann kurzzeitig in Sperrichtung betrieben werden.
- ³⁾ R_{thJA} ergibt sich bei Montage auf PC-Board FR 4 (Padgröße ≥ 16 mm² je Pad)
- Wellenlängen werden mit einer Stromeinprägedauer von 25 ms und einer Genauigkeit von ±1 nm ermittelt.
 Spannungswerte werden mit einer
- Stromeinprägedauer von 1 ms und einer Genauigkeit von ±0,1 V ermittelt.
- Wegen der besonderen Prozessbedingungen bei der Herstellung von LED können typische oder abgeleitete technische Parameter nur aufgrund statistischer Werte wiedergegeben werden. Diese stimmen nicht notwendigerweise mit den Werten jedes einzelnen Produktes überein, dessen Werte sich von typischen und abgeleiteten Werten oder typischen Kennlinien unterscheiden können. Falls erforderlich, z.B. aufgrund technischer Verbesserungen, werden diese typischen Werte ohne weitere Ankündigung geändert.
- 7) Im gestrichelten Bereich der Kennlinien muss mit erhöhten Helligkeitsunterschieden zwischen Leuchtdioden innerhalb einer Verpackungseinheit gerechnet werden.
 - Dimmverhältnis im Gleichstrom-Betrieb max. 5:1 für red
- 8) Maße werden wie folgt angegeben: mm (inch)
- 9) Gehäuse hält TTW-Löthitze aus nach CECC 00802
- ¹⁰⁾ Ein kritisches Bauteil ist ein Bauteil, das in lebenserhaltenden Apparaten oder Systemen eingesetzt wird und dessen Defekt voraussichtlich zu einer Fehlfunktion dieses lebenserhaltenden Apparates oder Systems führen wird oder die Sicherheit oder Effektivität dieses Apparates oder Systems beeinträchtigt.
- 11) Lebenserhaltende Apparate oder Systeme sind für (a) die Implantierung in den menschlichen Körper oder
 - (b) für die Lebenserhaltung bestimmt.
 - Falls sie versagen, kann davon ausgegangen werden, dass die Gesundheit und das Leben des Patienten in Gefahr ist.

Remarks:

- Brightness groups are tested at a current pulse duration of 25 ms and a tolerance of ± 11%.
- 2) Driving the LED in reverse direction is suitable for short term application.
- 3) R_{thJA} results from mounting on PC board FR 4 (pad size ≥ 16 mm² per pad)
- Wavelengths are tested at a current pulse duration of 25 ms and a tolerance of ±1 nm.
- 5) Forward voltages are tested at a current pulse duration of 1 ms and a tolerance of ±0.1 V.
- ⁶⁾ Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- 7) In the range where the line of the graph is broken, you must expect higher brightness differences between single LEDs within one packing unit. Dimming range for direct current mode max. 5:1 for
- 8) Dimensions are specified as follows: mm (inch)
- Package able to withstand TTW-soldering heat acc. to CECC 00802
- 10) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- 11) Life support devices or systems are intended (a) to be implanted in the human body,
 - (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Published by
OSRAM Opto Semiconductors GmbH
Wernerwerkstrasse 2, D-93049 Regensburg
www.osram-os.com
© All Rights Reserved.

2005-07-01