2	45		
2	2 2	1	
2	1-1	o	
2	5	ı	
2	2	1	
2	1	٥	
	٥	1	

Soldy (13 810); 8

$$1101$$

AND 1010
 $1000 \rightarrow 8$

$$a >> N = a \mid 2^N$$

Some applications of dest shift

TC: 0(1)

boolean check bit (int n, int i)

Il check whether ith indexed bit in n is on or not

if
$$((n + (1 < < i))) = = 0)$$
?

return Jalse;

else ?

return true;

 $n = 19$
 $n = 19$

i = 1

1261:

00010

00010

n | (122i) -> set the ith indexed bit in n.

int Set bit (int n, int i)
$$\frac{3}{2}$$

[I set ith bit in n

 $n=n$ | (1<n=n | (1<n=n | (1
 $n=n$ | (1 > 0) | 1 = 0

3

$$N = 45$$

$$1 < 23$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

$$1 < 0$$

int
$$y_{1ipbi+}$$
 (int n, inti) $\frac{1}{2}$

|| in n y_{1ip} bit at ith index

| n= n^(1<

Q-1 Liven an integer n and i, unset the ith indexed bit in n number.

 $Ng(1<2i) \rightarrow check bit at ith index in n$ $NI(1<2i) \rightarrow set bit at ith index in n$ $N^{(1<2i)} \rightarrow Jlip bit at ith index in n$

Q.2 biven a no. n, count total no. of set bits.

bits which

Are 1

η	ans	
10 (1010)	2	TC: 0(1)
0 (0000)	0	int: 4 bytes (1 byte = 8 bits)
17 (10001)	2	int: 32 bit
13 (1101)	3	

idea: go on every bit from i=0 to i=31,

then checkbit (n,i)== true i=0 to i=31, i=0 to i=31,

Dealing with negative numbers

max tre value

$$2^{0} + 2^{1} + 2^{2} + 2^{3} + \dots + 2^{30}$$

$$0 = 1$$

$$S_{t} = \alpha \left(3^{t} - 1 \right)$$

$$= 1 \left(2^{31} - 1 \right) = 2^{31}$$

$$= 1 \left(2^{31} - 1 \right) = 2^{-1}$$

How to convert -ve int no. to binary:

- i) convert positive equivalent of the no. to binary.
- ii) glip au bits
- iii) add a 1.

Note: Let's understand the concept in 8 bits form rather than 32 bits (Jugic is absolutely same)

min int value

Do W= 43

int: 32 bit

max int va

$$2^{\circ} + 2^{1} + 2^{2} + 2^{3} + \dots + 2$$

$$0 = 1$$

$$0 = 2$$

$$1 \left(2^{31} - 1 \right) = 2 - 1$$

$$2 = 1$$

min int val

$$-2$$
 to 2^{31}