2022.10.18 Group meeting

Reading Phys. Rev. Lett. 129, 152501 (2022)

Quenching of Single-Particle Strength in A=15 Nuclei

Junzhe Liu

Three questions

What is the quenching?

How can we factorize the theoretical s.p. cross section?

What is the new discovery of this paper?

What is quenching?

$$R = \frac{\sigma_{exp}}{\sigma_{th}} < 1$$

 σ_{exp} : Experimental cross section

 σ_{th} : Theoretical prediction

$$\sigma_{th} = C^2 S \sigma_{sp}$$

sp: single particle state

FIG. 1. (a) Degree of quenching R, as a function of ΔS deduced from (e,e'p) reactions [3] (black squares) and from knockout reactions on ${}^9\text{Be}$ and ${}^{12}\text{C}$ targets (gray circles)—data and shaded band from Ref. [5], compared with (b) results from the current measurement (red triangles) and previous neutron- and proton-removing transfer reaction study of Ref. [7] (blue squares) and the (p,2p) study [8] (blue circles). The shaded band, R=0.6(1), in (b) is to guide the eye. The (e,e'p) and (p,2p) measurements are compared to the independent single-particle model and the rest, including the present Letter, to the shell model.

Theoretical prediction

Overlap integration

$$\psi_{AB}^{l,j}(r) = \int d\xi \ \Psi_B^*(\xi,r) \Psi_A(\xi)$$

Spectroscopic factor

$$\int d^3r |\psi_{AB}^{l,j}(r)|^2 = S_{AB}^{l,j}$$

Theoretical prediction

$$g = \begin{cases} 2j + 1 \text{ when adding} \\ 1 \text{ when removing} \end{cases}$$

Sum rule

Total degeneracy

$$n_{vac} + n_{occ} = 2j + 1$$

For adding and removing data

$$(2j+1)N_j = \sum (2j+1)C^2S_j^+ + \sum C^2S_j^-$$

For only adding/removing data

$$N_j = \frac{1}{2j+1} \sum (2j+1)gC^2 S_j$$

Some results

Fig. 29. Observed *s.p.* strength compared to that of the independent-particle shell-model (IPSM) limit as a function of mass *A*. The (e, e'p) data in Panel (a) are from Refs. [237]. The gray band represents the mean $\pm 2\sigma$ of the (e, e'p) data to guide the eye. The data in Panels (b), (c), and (d), are from the analysis presented in Ref. [238]. Solid symbols are from adding and removing reactions while the empty ones are from just adding or just removing.

compared with independent-particle shell-model

Some results

Fig. 30. (a) Average of the quenching factor for different ℓ transfer. The error bars shown represent the rms spread in values. Figure reprinted with permission from Ref. [238]©2013 by the American Physical Society. (b) The sum of the $3/2^-$ strength below 12 C as probed via the $(d, ^3$ He) and (t, α) proton-removal reactions, 9 Be-induced knockout, proton-induced (p, 2p) knockout in both 'normal' and inverse kinematics, and lepton-induced (e, e'p) proton knockout, as a fraction of the simple shell-model sum rule limit of 4—that is to say, the quenching factor. The average, 0.53(10) (excluding the 9 Be-induced knockout as the excited state is missing), is indicated by the horizontal dashed line.

Q-value spectrum

Fitting for different state

Fitting for different state

Fitting for different state

Questions about the fitting

How to fit?

$$\frac{d\sigma}{d\Omega} = g_0 S_0 \frac{d\sigma}{d\Omega} \bigg|_{I=0} + g_2 S_2 \frac{d\sigma}{d\Omega} \bigg|_{I=2}$$

Quenching factor

$$R = \frac{SF_{exp}}{SF_{SM}}$$

TABLE I. Values of ΔS , DWBA (SF), and shell-model (SF_{SM}) spectroscopic factors, and R for the $1s_{1/2}$ and $0d_{5/2}$ strength in 15 C and 15 N.

AX	nlj	ΔS (MeV)	SF	SF_{SM}	R
¹⁵ C	$1s_{1/2}$	-19.86	0.51(12)	0.80	0.64(15)
	$0d_{5/2}$	-19.12	0.41(7)	0.78	0.53(9)
¹⁵ N	$1s_{1/2}$	+8.08	0.41(11)	0.80	0.51(14)
	$0d_{5/2}$	+8.29	0.61(12)	0.84	0.73(14)

Another way? couple $\sqrt{S_0}\psi_{sp}^{l=0}(r)$ and $\sqrt{S_2}\psi_{sp}^{l=2}(r)$ with CG

Are there any overlap between these two states when doing numerical calculation?

Consider coupled channel (CC) calculation?