Name: Brian Kabugih Njau

Institution: Moringa School

Project: Dsc-Phase-3-Project

Date: 25th May 2023

Introduction

Tanzania, as a developing country, struggles with providing clean water to its population of over 57,000,000. There are many water points already established in the country, but some are in need of repair while others have failed altogether.

The purpose of this project is to build a classifier that can predict the condition of a water well, given information about the sort of pump, when it was installed, etc. Our audience is the Government of Tanzania which is looking to find patterns in non-functional wells in order to influence how new wells are built.

Note that this is a ternary classification problem by default, but can be engineered to be binary.

Lets get started

Importing Libraries

```
In [1]:  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  from sklearn.impute import SimpleImputer
  from sklearn.preprocessing import OrdinalEncoder
```

Tuning Pandas

```
In [2]: pd.options.mode.chained_assignment = None
pd.set_option('display.max_columns', None)
```

Data Undertsanding

The data for this project comes from the Taarifa waterpoints dashboard, which aggregates data from the Tanzanian Ministry of Water.

Learn More here https://taarifa.org/)

Out[3]:

	id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude	wpt_name	num_private	basin	
0	69572	6000.0	2011-03-14	Roman	1390	Roman	34.938093	-9.856322	none	0	Lake Nyasa	
1	8776	0.0	2013-03-06	Grumeti	1399	GRUMETI	34.698766	-2.147466	Zahanati	0	Lake Victoria	
2	34310	25.0	2013-02-25	Lottery Club	686	World vision	37.460664	-3.821329	Kwa Mahundi	0	Pangani	
3	67743	0.0	2013-01-28	Unicef	263	UNICEF	38.486161	-11.155298	Zahanati Ya Nanyumbu	0	Ruvuma / Southern Coast	М
4	19728	0.0	2011-07-13	Action In A	0	Artisan	31.130847	-1.825359	Shuleni	0	Lake Victoria	K
4											1	

We are provided the following set of information about the waterpoints:

```
amount_tsh - Total static head (amount water available to waterpoint)

date_recorded - The date the row was entered

funder - Who funded the well

gps_height - Altitude of the well

installer - Organization that installed the well
```

```
longitude - GPS coordinate
latitude - GPS coordinate
wpt name - Name of the waterpoint if there is one
num_private -
basin - Geographic water basin
subvillage - Geographic location
region - Geographic location
region code - Geographic location (coded)
district code - Geographic location (coded)
lga - Geographic location
ward - Geographic location
population - Population around the well
public meeting - True/False
recorded by - Group entering this row of data
scheme_management - Who operates the waterpoint
scheme name - Who operates the waterpoint
permit - If the waterpoint is permitted
construction_year - Year the waterpoint was constructed
extraction type - The kind of extraction the waterpoint uses
extraction_type_group - The kind of extraction the waterpoint uses
extraction type class - The kind of extraction the waterpoint uses
```

```
management - How the waterpoint is managed
management_group - How the waterpoint is managed
payment - What the water costs
payment_type - What the water costs
water quality - The quality of the water
quality_group - The quality of the water
quantity - The quantity of water
quantity group - The quantity of water
source - The source of the water
source type - The source of the water
source class - The source of the water
waterpoint_type - The kind of waterpoint
waterpoint type group - The kind of waterpoint
```

Exploratory Data Analysis

```
In [4]: 
#(Number of rows, number of columns)
df.shape
Out[4]: (59400, 41)
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 59400 entries, 0 to 59399
Data columns (total 41 columns):

	COTUMNIS (COCAT 41 COTU		
#	Column	Non-Null Count	Dtype
		F0400 pag gull	
0	id	59400 non-null	int64 float64
1 2	amount_tsh	59400 non-null	
	date_recorded	59400 non-null	object
3	funder	55765 non-null	object
4	<pre>gps_height installer</pre>	59400 non-null	int64
5	installer	55745 non-null	object
6	longitude latitude	59400 non-null	float64 float64
7 8		59400 non-null	
	wpt_name	59400 non-null	object
9	num_private	59400 non-null	int64
10	basin	59400 non-null	object
11	subvillage	59029 non-null	object
12	region	59400 non-null	object
13	region_code	59400 non-null	int64
14	district_code	59400 non-null	int64
15 16	lga	59400 non-null	object
16	ward	59400 non-null	object
17	population	59400 non-null	int64
18	<pre>public_meeting</pre>	56066 non-null	object
19	recorded_by	59400 non-null	object
20	scheme_management	55523 non-null	object
21	scheme_name	31234 non-null	object
22	permit	56344 non-null	object
23	construction_year	59400 non-null	int64
24	extraction_type	59400 non-null	object
25	extraction_type_group	59400 non-null	object
26	extraction_type_class	59400 non-null	object
27	management	59400 non-null	object
28	management_group	59400 non-null	object
29	payment	59400 non-null	object
30	payment_type	59400 non-null	object
31	water_quality	59400 non-null	object
32	quality_group	59400 non-null	object
33	quantity	59400 non-null	object
34	quantity_group	59400 non-null	object
35	source	59400 non-null	object
36	source_type	59400 non-null	object
37	source_class	59400 non-null	object

38waterpoint_type59400 non-null object39waterpoint_type_group59400 non-null object40status_group59400 non-null object

dtypes: float64(3), int64(7), object(31)

memory usage: 19.0+ MB

In [6]: ▶ #Basic Data Statistics

df.describe()

Out[6]:

	id	amount_tsh	gps_height	longitude	latitude	num_private	region_code	district_code	pop
count	59400.000000	59400.000000	59400.000000	59400.000000	5.940000e+04	59400.000000	59400.000000	59400.000000	59400.
mean	37115.131768	317.650385	668.297239	34.077427	-5.706033e+00	0.474141	15.297003	5.629747	179.
std	21453.128371	2997.574558	693.116350	6.567432	2.946019e+00	12.236230	17.587406	9.633649	471.
min	0.000000	0.000000	-90.000000	0.000000	-1.164944e+01	0.000000	1.000000	0.000000	0.
25%	18519.750000	0.000000	0.000000	33.090347	-8.540621e+00	0.000000	5.000000	2.000000	0.
50%	37061.500000	0.000000	369.000000	34.908743	-5.021597e+00	0.000000	12.000000	3.000000	25.
75%	55656.500000	20.000000	1319.250000	37.178387	-3.326156e+00	0.000000	17.000000	5.000000	215.
max	74247.000000	350000.000000	2770.000000	40.345193	-2.000000e-08	1776.000000	99.000000	80.000000	30500.

In [7]: ► #Unique Target Variables

df['status_group'].value_counts(normalize=True)

Out[7]: functional 0.543081 non functional 0.384242

functional needs repair 0.072677

Name: status_group, dtype: float64

```
In [8]: ► #Null Values
    df.isnull().sum()
```

Out[8]:	id	0
ouclo].	amount_tsh	0
	date_recorded	0
	funder	3635
	gps_height	0
	installer	3655
	longitude	0
	latitude	0
	wpt_name	0
	num_private	0
	basin	0
	subvillage	371
	region	0
	region_code	0
	district_code	0
	lga	0
	ward	0
	population	0
	<pre>public_meeting</pre>	3334
	recorded_by	0
	scheme_management	3877
	scheme_name	28166
	permit	3056
	construction_year	0
	extraction_type	0
	extraction_type_group	0
	extraction_type_class	0
	management	0
	management_group	0
	payment	0
	payment_type	0
	water_quality	0
	quality_group	0
	quantity	0
	quantity_group	0
	source	0
	source_type	0
	source_class	0
	waterpoint_type	0
	waterpoint_type_group	0
	status_group	0
	dtype: int64	

Preprocessing

Encoding and Imputing All Categorical Features

```
In [9]:
           encoder = OrdinalEncoder()
           #Extracting Categorical Data
           categorical_data=df.select_dtypes('object')
           categorical columns=categorical data.columns
           #Defining Encoder Function
           def encode_data(col_data):
               #function to encode non-null data and replace it in the original data
               non_nulls=np.array(col_data.dropna())
               #reshaping the data for encoding
               reshaped data=non nulls.reshape(-1,1)
               #encoding
               encoded data=encoder.fit transform(reshaped data)
               #replace data
               col data.loc[col data.notnull()]=np.squeeze(encoded data)
               return col data
           #Defining Imputer Function
           def impute data(col data):
               col data.fillna(col data.value counts().index[0], inplace=True)
               return col data
           #Transforming Data
           for column in categorical columns:
               encode data(categorical data[column])
               impute data(categorical data[column])
           categorical data
```

Out[9]:

	date_recorded	funder	installer	wpt_name	basin	subvillage	region	lga	ward	public_meeting	recorded_by	scheme_
0	47.0	1369.0	1518.0	37399.0	1.0	11807.0	3.0	51.0	1426.0	1.0	0.0	_
1	309.0	469.0	545.0	37195.0	4.0	15838.0	9.0	103.0	1576.0	1.0	0.0	
2	300.0	825.0	2048.0	14572.0	5.0	9074.0	8.0	108.0	1624.0	1.0	0.0	
3	272.0	1741.0	1852.0	37285.0	7.0	8982.0	12.0	87.0	1571.0	1.0	0.0	
4	104.0	20.0	119.0	35529.0	4.0	7698.0	4.0	26.0	1687.0	1.0	0.0	
59395	338.0	436.0	201.0	513.0	5.0	5681.0	6.0	16.0	1090.0	1.0	0.0	
59396	90.0	177.0	265.0	24074.0	6.0	2980.0	3.0	91.0	353.0	1.0	0.0	
59397	75.0	456.0	390.0	27926.0	6.0	8784.0	10.0	59.0	177.0	1.0	0.0	
59398	41.0	884.0	1213.0	29693.0	6.0	14012.0	2.0	11.0	1449.0	1.0	0.0	
59399	56.0	1865.0	2040.0	18700.0	8.0	5892.0	11.0	71.0	1610.0	1.0	0.0	

59400 rows × 31 columns

wpt name 0 basin 0 subvillage 0 region 0 lga 0 0 ward public_meeting 0 recorded_by 0 scheme_management 0 scheme_name 0 permit 0 extraction type extraction_type_group 0 extraction_type_class 0 management 0 management_group 0 0 payment payment_type 0 water_quality quality_group 0 quantity quantity_group 0 source 0 source_type source_class 0 waterpoint_type 0 waterpoint_type_group status_group dtype: int64

Checking Numeric Features and Updating DataFrame

```
In [11]:
          ▶ #Extracting numeric data
             numeric_data=df.select_dtypes(['float64','int64'])
             #Checking null values
             numeric_data.isnull().sum()
   Out[11]: id
                                  0
             amount_tsh
             gps_height
                                  0
             longitude
                                  0
             latitude
             num_private
                                  0
             region_code
             district code
                                  0
             population
                                  0
             construction_year
             dtype: int64
In [12]:
          ▶ #Updating DataFrame
             df[categorical_columns]=categorical_data
             df.head()
   Out[12]:
```

	id	amount_tsh	date_recorded	funder	gps_height	installer	Iongitude	latitude	wpt_name	num_private	basin	subvilla
0	69572	6000.0	47.0	1369.0	1390	1518.0	34.938093	-9.856322	37399.0	0	1.0	1180
1	8776	0.0	309.0	469.0	1399	545.0	34.698766	-2.147466	37195.0	0	4.0	1583
2	34310	25.0	300.0	825.0	686	2048.0	37.460664	-3.821329	14572.0	0	5.0	907
3	67743	0.0	272.0	1741.0	263	1852.0	38.486161	-11.155298	37285.0	0	7.0	898
4	19728	0.0	104.0	20.0	0	119.0	31.130847	-1.825359	35529.0	0	4.0	769

Standardizing Features

```
In [13]:
            ▶ #Importing Function
               from sklearn.preprocessing import StandardScaler
               #Scaling data
               scaler=StandardScaler()
               df=pd.DataFrame(scaler.fit_transform(df),columns=df.columns)
               df.head()
    Out[13]:
                         id amount_tsh date_recorded
                                                          funder gps_height
                                                                              installer
                                                                                       longitude
                                                                                                   latitude
                                                                                                          wpt name num private
                                                                                                                                      basi⊦
                0 1.512933
                                1.895665
                                             -1.218793
                                                        0.988022
                                                                    1.041252
                                                                             1.430269
                                                                                       0.131052 -1.408791
                                                                                                            1.356556
                                                                                                                         -0.038749 -1.24427
                  -1.320990
                               -0.105970
                                              1.188774 -0.607329
                                                                   1.054237 -0.316377
                                                                                       0.094610
                                                                                                 1.207934
                                                                                                            1.339574
                                                                                                                         -0.038749 -0.03120
                2 -0.130757
                                                                              2.381679
                                                                                       0.515158
                                                                                                  0.639751
                               -0.097630
                                              1.106072
                                                        0.023721
                                                                    0.025541
                                                                                                            -0.543605
                                                                                                                         -0.038749
                                                                                                                                   0.37315
                  1.427676
                                                       1.647433
                               -0.105970
                                              0.848774
                                                                   -0.584751
                                                                              2.029837
                                                                                       0.671308 -1.849720
                                                                                                            1.347066
                                                                                                                         -0.038749
                                                                                                                                  1.18186
                  -0.810478
                                             -0.695009 -1.403231
                                                                   -0.964200 -1.081096
                                                                                       -0.448669
                                                                                                            1.200893
                                                                                                                         -0.038749 -0.03120
                               -0.105970
                                                                                                 1.317271
```

Dropping id Column in preparation for modeling

Building, Tuning and Evaluating Models

```
In [15]: #Performing a train-test split
    from sklearn.model_selection import train_test_split
    X=df.drop('status_group',axis=1)
    y=df['status_group'].astype(int)
    X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=42,test_size=0.4)
```

We will be using GridSearchCV as our hyperparameter tuning method and accuracy score as our evaluation metric

```
In [16]:  # Importing Tools
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV
rs=11
```

```
In [17]:
          # Function for fitting and testing
             def fit and test(model):
                 model.fit(X train,y train)
                 #Making Predictions
                 train predictions=model.predict(X train)
                 test predictions=model.predict(X test)
                 #Computing Accuracy
                 train_accuracy=accuracy_score(y_train,train_predictions)
                 test_accuracy=accuracy_score(y_test,test_predictions)
                 print(f'{str(model)} Results: \
                 \n Train Accuracy: {train accuracy}\
                 \n Test Accuracy: {test accuracy}')
             # Function for hyperparameter tuning
             def find params(model,param grid):
                 model cv=GridSearchCV(model,param grid,cv=5)
                 model_cv.fit(X_train,y_train)
                 params=model cv.best params
                 values=list(params.values())
                 return (values[i] for i in range(len(values)))
```

MultiClass Logistic Regressor

Decision Tree Classifier

Test Accuracy: 0.8183080808080808

Vanilla

```
In [20]: #Importing functions
    from sklearn.tree import DecisionTreeClassifier
    #Initializing Model
    decision_tree_model=DecisionTreeClassifier(max_depth=14)
    #Fitting and Testing Model
    fit_and_test(decision_tree_model)

DecisionTreeClassifier(max_depth=14) Results:
    Train Accuracy: 0.8712682379349046
```

Tuned

K-Nearest Neighbors

Vanilla

KNeighborsClassifier() Results:
 Train Accuracy: 0.8656285072951739
 Test Accuracy: 0.8058080808080809

Tuned

Random Forest

```
In [24]:
          #Importing Function
             from sklearn.ensemble import RandomForestClassifier
             #Initializing Model
             forest model=RandomForestClassifier()
             #Fitting and Testing Model
             fit and test(forest model)
             RandomForestClassifier() Results:
              Train Accuracy: 1.0
              Test Accuracy: 0.8602693602693603
          Tuned
In [25]:
          # rf param grid = {
                   'n estimators': [50, 100],
                   'max depth' : [40,80]
             # n,mf,md,c=find_params(forest_model,rf_param_grid)
             # #Building Tuned Model
             # tuned forest model = RandomForestClassifier(n estimators=n,max features=mf,max depth=md,criterion=c)
             # #Fitting and Testing Model
             # fit and test(tuned forest model)
```

Bayesian Classifier

Vanilla

```
In [26]:
         ⋈ #Importing module
            from sklearn.naive_bayes import GaussianNB
            #Initializing model
            bayes_model=GaussianNB()
            #Fitting and Testing Model
            fit_and_test(bayes_model)
            GaussianNB() Results:
             Train Accuracy: 0.6661335578002244
             Test Accuracy: 0.6731481481481482
         Tuned
'var smoothing': np.logspace(0,-9, num=100)
            # var=find params(bayes model,bayes param grid)
            # #Building Tuned Model
            # tuned bayes model=GaussianNB(var smoothing=var)
            # #Fitting and Testing Model
            # fit_and_test(tuned_bayes_model)
```

Adaptive Boosting Classifier

```
In [28]:
          ▶ #Importing module
             from sklearn.ensemble import AdaBoostClassifier
             #Initializing model
             adaboost_model=AdaBoostClassifier()
             #Fitting and Testing Model
             fit_and_test(adaboost_model)
             AdaBoostClassifier() Results:
              Train Accuracy: 0.7926206509539843
              Test Accuracy: 0.7922138047138048
          Tuned
In [29]:
          # ab param grid = {
                   'base estimator': [DecisionTreeClassifier(max depth=1), DecisionTreeClassifier(max depth=2)],
                   'n estimators': [50, 100, 200],
                   'learning rate': [0.01, 0.1, 1],
             # b,n,l=find params(adaboost model,ab param grid)
             # #Building tuned model
             # tuned adaboost model=AdaBoostClassifier(base estimator=b,n estimators=n,learning rate=l)
             # #Fitting and testing Model
             # fit and test(tuned adaboost model)
```

Extra Trees Classifier

```
In [30]:
          ▶ #Importing Module
             from sklearn.ensemble import ExtraTreesClassifier
             #Initializing model
             extra_trees_model=ExtraTreesClassifier()
             #Fitting and Testing Model
             fit_and_test(extra_trees_model)
             ExtraTreesClassifier() Results:
              Train Accuracy: 1.0
              Test Accuracy: 0.8518518518519
          Tuned
In [31]:
          ₦ # et param grid = {
                   'n estimators': [50, 100, 200],
                   'max_depth': [1, 2, 3],
                   'min_samples_split': [2, 4],
                   'min samples leaf': [1, 2],
             # }
             # n,md,ms,ml=find params(extra trees model,et param grid)
             # #Building Tuned Model
             # tuned extra trees model=ExtraTreesClassifier(n estimators=n,max depth=md,min samples split=ms,min sampl
             # #Fitting and Testing Model
             # fit and test(tuned extra trees model)
```

Gradient Boosting Classifier

```
In [32]:
          ⋈ #Importing module
             from sklearn.ensemble import GradientBoostingClassifier
             #Initializing model
             gradient_boost_model=GradientBoostingClassifier()
             #Fitting Model
             fit_and_test(gradient_boost_model)
             GradientBoostingClassifier() Results:
              Train Accuracy: 0.8087822671156004
              Test Accuracy: 0.8058922558922559
          Tuned
In [33]:
          ₩ # gb param grid = {
                   'n estimators': [50, 100, 200],
                   'max_depth': [1, 2, 3],
                   'min_samples_split': [2, 4],
                   'min samples leaf': [1, 2],
             # }
             # n,md,ms,ml=find params(gradient boost model,qb param grid)
             # #Building Tuned Model
             # tuned gradient boost model=GradientBoostClassifier(n estimators=n,max depth=md,min samples split=ms,min
             # #Fitting and Testing model
             # fit and test(tuned gradient boost model)
```

XG Boost Classifier

```
In [34]:
          #Importing Module
             from xgboost import XGBClassifier
             #Initializing model
             xg boost model=XGBClassifier(booster=RandomForestClassifier)
             #Fitting Modelb
             fit_and_test(xg_boost_model)
             XGBClassifier(base_score=None,
                           booster=<class 'sklearn.ensemble._forest.RandomForestClassifier'>,
                           callbacks=None, colsample bylevel=None, colsample bynode=None,
                           colsample bytree=None, early stopping rounds=None,
                           enable categorical=False, eval metric=None, feature types=None,
                           gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
                           interaction_constraints=None, learning_rate=None, max_bin=None,
                           max cat threshold=None, max cat to onehot=None,
                           max_delta_step=None, max_depth=None, max_leaves=None,
                           min_child_weight=None, missing=nan, monotone_constraints=None,
                           n_estimators=100, n_jobs=None, num_parallel_tree=None,
                           predictor=None, random state=None, ...) Results:
              Train Accuracy: 0.9010381593714927
              Test Accuracy: 0.8472643097643098
          Tuned
          ₩ # xg param grid = {
In [35]:
                   'max depth': [3, 4, 5],
```

Model Selection

ROC and AUC

(Receiver Operating Characteristics)

```
#Importing Module
In [36]:
             import sklearn.metrics as metrics
             #Listina models
             models = [
                 { 'label': 'Logistic Regression', 'model': logistic model},
                 { 'label': 'Decision Tree', 'model': decision_tree_model},
                 { 'label': 'K-Neighbors', 'model': decision_tree_model},
                 { 'label': 'Random Forest', 'model': forest_model},
                 { 'label': 'Gaussian Bayes', 'model': bayes_model},
                 { 'label': 'Adaptive Boosting', 'model': adaboost_model},
                 { 'label': 'Extra Trees', 'model': extra trees model},
                 { 'label': 'Gradient Boosting', 'model': gradient_boost_model},
                 { 'label': 'XG Boost', 'model': xg boost model}
             #Plotting ROC
             plt.figure()
             for m in models:
                 model = m['model'] # select the model
                 y pred=model.predict(X test) # predict the test data
             # Compute False postive rate, and True positive rate
                 fpr, tpr, thresholds = metrics.roc curve(y test, model.predict proba(X test)[:,1])
             # Calculate Area under the curve to display on the plot
                 auc = metrics.roc auc score(y test,y pred)
             # Now, plotting the computed values
                 plt.plot(fpr, tpr, label='%s ROC (area = %0.2f)' % (m['label'], auc))
             # Custom settings for the plot
             plt.plot([0, 1], [0, 1], 'r--')
            plt.xlim([0.0, 1.0])
             plt.ylim([0.0, 1.05])
             plt.xlabel('1-Specificity(False Positive Rate)')
             plt.ylabel('Sensitivity(True Positive Rate)')
             plt.title('Receiver Operating Characteristic')
             plt.legend(loc="lower right")
             plt.show() # Display
```


The **Random Forests** model has the highest AUC (0.84) as well as the highest accuracy score (86%). We shall therefore be selecting it as our final and best model. **Our model of choice**

Pickling the model

```
In [37]: | import pickle
import joblib

# Save the model as a pickle in a file
joblib.dump(forest_model, 'random_forest_model.pkl')
Out[37]: ['random forest model.pkl']
```

Testing Pickled Model

Recommendation

With such predictive power, the Government of Tanzania can now forecast and infer the condition of a water well. We therefore recommend the utilization of this algorithm to improve operational efficiency

Conclusion

More and more businesses are leveraging on the use of data and machine learning to drive decision making. It has been an honor working with the Tanzanian Government. When we work together we grow together

```
In [ ]: ▶
```