ON-DEMAND ANTENNA POSITIONING SYSTEM

HUMPHREY SHIKUNZI

AUDREY NZILANI

Supervisor: Eng. Louie Okeyo

Problem Statement

☐ Companies are more focused on 5G, yet about 95% of customers are still using 4G and below, which have their Antennas supported by RET

☐ Currently only Vertical tilt is done remotely while azimuth is set once manually and remains fixed making optimization limited.

Objectives

To build a low cost and efficient On-Demand Antenna Positioning System

To develop a clustering machine learning algorithm

To develop a localization algorithm for distance and bearing calculation

To use the developed clustering and localization algorithms, a microcontroller and motor to vary antenna bearing

Justification

Big Tech Companies Spend Billions of dollars on 5G Beam forming research, we can achieve same goal with a smaller investment and currently available local materials

Safaricom can sell our tech to other Telecom companies in East and Central Africa, making even more profift

Efficient network usage for on-site customers, happy customers rate the company highly, hence improved company net promoter score

Reduced cost by
Automation of Antenna
Positioning, currently
manual costs are incurred

Reduced number of Antennas per BTS, a few can be used in remote areas unlike current method of sectoring in less populated areas

Roll-Out Cost

Section	Requirements	Cost in US dollars
Software	Digital Ocean (Cloud Server)	\$50 per month
Hardware	 Control System Raspberry pi Microprocessor controller Arduino Mega 	\$50 \$30
	 Drive System Encoded Motor Motor driver Power Supply Power transmission-gears and bearings 	\$1000 \$200 \$150 \$2000
	Enclosure and mountingCasing for electronicsMounting brackets and screwsPole adjustment fitting	\$500 \$2000 \$500
TOTAL		= \$6530

METHODOLOGY

ML CLUSTERING ALGORITHM - KMEANS

GitHub: KMeans Algorithm

DESIGN OF ACTUAL ANTENNA

Prospective design for the field antenna model: Kathrein 80010504V01

Lab Setup & Demo

Network user clusters

Motor
(Mechanically
Connected to
Antenna and moves
it)

Motor
Driver(Controls
Motor)

Project Code : Odap

Antenna (Points to bigger cluster)

Arduino (Reads Jetson output(Bearing), Controls Motor Driver)

Jetson AGX Xavier (Runs ML Algorithm and Compute Bearing, Send result to Arduino)

Challenges

- Figuring out the existing antenna technologies used by Telcom Companies
- Making sure that our project was economically viable regarding the existing 5G beam forming technology

Q&A

On-Demand Antenna Positioning

This lets EUs in a BTS's reach regularly give their status about RSSI and location to enable proper antenna positioning for azimuth and elevation angles for improved network coverage and user experience.

Thank You

