Master of Computer Applications

CAPOL403R01: Computer Organization & Architecture

Unit III: Lecture 1
Memory System Overview

Dr. D. MURALIDHARAN
School of Computing
SASTRA Deemed to be University

Characteristics of memory

- Location
- Capacity
- Unit of transfer
- Access method
- Performance
- Physical type
- Physical characteristics
- Organization

Location

Internal

- Internal memory has a direct communication with the processor
- Usually, they are always attached to the processor
- Example: processor register, cache memory and internal (primary) memory

External

- External memories are communicated with the processor through IO controller.
- These are slow, high capacity memories.
- Usually they are attached to the computer when needed and detached from it when not needed.
- Eg Optical disks, pen drives

Capacity

- Words
 - Internal memory capacity is expressed in terms of words (1, 2 or 4 bytes)

- Bytes
 - The capacity of peripheral devices is expressed in terms of bytes

Unit of transfer

Word

 The communication between processor and internal memory is in terms of words (bytes/words)

Block

• The communication between processor and external memory is in terms of blocks (blocks of bytes)

Accessing method

Sequential access

- The read/write head is moved from current location to the desired location in order and reject the addresses (or records) in between.
- The accessing time will vary depends on the 'distance' between the current location of the header and the desired location
- Eg: Tape units

Direct access

- Individual blocks or records have a unique address based on physical location
- Access is accomplished by direct access to reach a general vicinity plus sequential searching, counting, or waiting to reach the final location
- Access time is variable
- Eg: Disk units

Accessing method...

Random access

- Each addressable location in memory has a unique, physically wired-in addressing mechanism
- Same, constant amount of time is needed to access all locations
- Eg: Main memory

Associative access

- This is a special kind of random access
- It enables one to make a comparison of desired bit locations within a word for a specified match
- This comparison will be done for all words simultaneously
- Thus, a word is retrieved based on a portion of its contents rather than its address
- Eg: Cache memory

Accessing method...

Random access

- Each addressable location in memory has a unique, physically wired-in addressing mechanism
- Same, constant amount of time is needed to access all locations
- Eg: Main memory

Associative access

- This is a special kind of random access
- It enables one to make a comparison of desired bit locations within a word for a specified match
- This comparison will be done for all words simultaneously
- Thus, a word is retrieved based on a portion of its contents rather than its address
- Eg: Cache memory

Performance

Access time (Latency)

- This is the time from the instant that an address is presented to the memory to the instant that data have been stored or made available for use
- For non-random-access memory, access time is the time it takes to position the read—write mechanism at the desired location

Memory cycle time

- This time is the sum of access time and an additional time
- The additional time is needed to die-out the previous signals from bus
- Memory cycle time is concerned with the system bus, not the processor
- In random access memories, this is the minimum expected time between two successive memory accesses

Performance...

• Transfer rate:

- This is the rate at which data can be transferred into or out of a memory unit
- It is equal to 1/cycle time for random access memories
- For non-random-access memories, it is calculated using the formula:

```
T_n = T_A + (n/R)

where,

T_n = Average time to read or write n bits

T_A = Average access time

n = Number of bits

R = Transfer rate, in bits per second (bps)
```

Physical type

Semiconductor memories

Magnetic surface (disks & tapes)

Optical disks

Magneto-optical disks

Physical Characteristics

Volatile

- Information is lost after the power is off due to leakage
- Usually refresh units are necessary to keep the information

Non-volatile

No electrical power is needed to keep the information

Erasable

- The memory content can be erased using UV rays or by applying electrical pulses
- The memory can be re-written

Non-erasable

They are only one time written and then used to read

Characteristics of Memory systems

Location Performance Internal (e.g., processor registers, cache, main Access time Cycle time memory) External (e.g., optical disks, magnetic Transfer rate disks, tapes) **Physical Type** Semiconductor Capacity Number of words Magnetic Optical Number of bytes Magneto-optical **Unit of Transfer Physical Characteristics** Word Volatile/nonvolatile Block Access Method Erasable/nonerasable Sequential **Organization** Memory modules Direct Random Associative

Memory Hierarchy

- Design constraints
 - Capacity
 - Performance
 - Cost
- Relationship
 - Faster access time expensive storage (cost per bit is high)
 - Greater capacity cheaper storage (cost per bit is low)
 - Greater capacity low performance (slow access time)

Memory Hierarchy

- Hierarchy (top to bottom)
 - Decreasing cost per bit
 - Increasing capacity
 - Increasing access time
 - Decreasing frequency of access of the memory by the processor
 - locality of reference

A "toy" example

- The processor has access to two levels of memory
- L1 has 1000 words with access time of 0.01 microsecond
- L2 contains 100,000 words with access time of 0.1 microsecond
- If the word is in L1, it is accessed directly by the processor
- If the word is in L2, it is transferred to L1 and is accessed from L1
- Ignore the time to determine whether a word is in L1 or in L2
- Hit (H): Fraction of all memory accesses that are found in L1
- When H=95%, then average time to access memory is (0.95*0.01)+(0.05*0.11)=0.0095+0.0055=0.015 microsecond
- The average time is closer to L1 access time than L2 access time

Performance of access

- T1 is the access time of faster memory
- T2 is the access time of slower memory

Thank you