Opgaven week 3 – Fysische Chemie A1 voor Technische Natuurkunde

Opdracht 1

- (a) Geef het Moleculaire Orbitaal energie schema van NO (teken alleen de valentie elektron levels). **Gegeven**: volgorde in energieën: $2\sigma_u$, $1\pi_g$, $2\sigma_g$
- (b) Geef de valentie elektronenconfiguratie voor NO
- (c) Is het NO molecuul para- of diamagnetisch? En een NO ion? En een NO ion?
- (d) Wat is de bindingsorde van het NO molecuul? Wat zegt dit over het molecuul?
- (e) Leg uit of dit molecuul reactief is.
- (f) Gegeven in de bijlage is het periodieke systeem met elektron negativiteit. Is NO polair?

Opdracht 2

Hieronder staan de kracht constanten voor een aantal diatomaire moleculen. Is de volgorde wat je verwacht en leg dit uit.

Molecuul	K (Nm ⁻¹)
B ₂	350
C ₂	930
N ₂	2260
O ₂	1140
F ₂	450

Opdracht 3

- (a) Zet de volgende moleculen op volgorde van bindingslengte: O2+, O2, O2-, O22-
- (b) Teken het moleculaire orbitaal energie diagram voor O₂⁴⁻. Beoordeel op basis van dit diagram of de covalente binding van dit ion stabiel is (leg uit).

Opdracht 4 - Polariteit en dipoolmoment

- (a) Als een covalente binding polair is, betekent dat dan dat een molecuul met deze covalente binding een dipool is?
- (b) Geef de elektronconfiguraties van C en O, en schets hoe in CO2 de orbitalen overlappen om de structuur te achterhalen. Teken de structuurformule van CO2.
- (c) is de CO binding polair? Is het CO2 molecuul een dipool?

Opdracht 5

- (a) Wat is het verschil tussen een gelocaliseerde of een gedelocaliseerde π bond?
- (b) Is de π bond in NO2+ gelocaliseerd of gedelocaliseerd? Leg uit of laat zien.

*Opdracht 6 - H₂+ ion (3pt)

- (a) Schets de bonding en antibonding MO van het H₂+ ion en teken het energie level diagram. (½pt)
- (b) Geef de elektronconfiguratie van de molecuul orbitalen van H₂⁺. Wat is de Bond order? (1pt)
- (c) Stel dat het ion geëxciteerd wordt met licht zodat het elektron van een lager energie naar een hoger energie molecuul orbitaal gepromoot wordt. Verwacht je dat het H₂+ ion in de geëxciteerde staat stabiel is of uiteen valt? Leg uit. (1pt)
- (d) Welk(e) van de volgende statements over de situatie in vraag c is/zijn correct: (½pt)
 - (i) Het licht exciteert het elektron van een bonding naar een antibonding orbitaal.
 - (ii) Het licht exciteert het elektron van een antibonding naar een bonding orbitaal.
 - (iii) In de geëxciteerde staat zijn er meer bonding elektronen dan antibonding elektronen.

Opdracht 7

- (a) Teken het energie diagram van de MO elektronconfiguratie voor B₂+, Li₂+, N₂+.
- (b) Geef voor alle bovenstaande gevallen aan of de bond order toeneemt of afneemt bij het toevoegen van een elektron.
- (c) gebaseerd op de molecuul orbitaal elektronconfiguratie, heeft C_2 of B_2 een hogere bond dissociatie energie?

*Opdracht 8 - vereenvoudiging van een molecuul orbitaal tot particle in a box (7pt)

In de "Free Electron Molecular Orbital" (FEMO) theorie worden gedelocaliseerde π -elektronen in een molecuul vereenvoudigd tot individuele deeltjes in een box (particle in a box) van lengte L.

- (a) Hoeveel pi elektronen zitten er in Butadiene (C₄H₆)? Leg uit. (1pt)
- (b) Schets de eerste 3 oplossingen van de particle in a box (In de FEMO theorie zijn dit dus de 3 molecuul π -orbitalen met de laagste energie). (1pt)
- (c) Welke van de orbitalen in (b) zijn gevuld met pi-elektronen in butadiene? (1pt)
- (d) Hoeveel energie kost het om in dit systeem een electron van de HOMO naar de LUMO te exciteren? (tip: zoek de energie eigenwaarden van particle in a box op. Butadiene heeft een lengte L) (1pt)

Het molecuul tetraene: CH2=CHCH=CHCH=CH2 kan worden beschouwd als een box van lengte 8R (R=140 pm, de C-C bondlengte).

(e) Schets de HOMO en LUMO voor dit molecuul, en bereken de minimale excitatie energie. Welke kleur licht absorbeert dit materiaal? (3pt totaal)

H 2.1		Pauling Electronegativity Values													He		
Li 1.0	Ве 1.б											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	Ne
Na 0.9	Mg 1.3										Al 1.5	Si 1.9	P 2.2	S 2.6	C1 3.0	Ar	
K 0.8	Ca 1.0	Sc 1.4	Ti 1.5				Fe 1.8				Zn 1.6		Ge 2.0	As 2.2	Se 2.6	Br 2.8	Kr
Rb 0.8	Sr 0.9	Y 1.2	Zr 1.3			T c 1.9	Ru 2.2		Pd 2.2	_	Cd 1.7	In 1.8	Sn 2.0	Sb 2.1	Te 2.1	I 2.5	Xe

Charles E. Sundin, University of Wisconsin-Platteville