Sistemas de Inteligencia Artificial

TPE 2 - Redes Neuronales

Objetivos

- Crear una red neuronal capaz de estimar el valor de una función f de dominio e imagen reales
- $f(x) = \sin(x) * x^3 + x/2$, con $x \in [10, 45]$
- Implementar y comparar mejoras a la red neuronal:
 - η Adaptativo
 - Momentum
- Encontrar la arquitectura óptima para el problema.
- Encontrar alguna combinación que aproxime la función con un E(W) < 0.0001

funcionaba bien ¿por qué?

La entrega anterior no

No se realizaba un feed forward de la red antes de realizar el cálculo del error y graficar la función

Una vez que se solucionó el problema, se procedió a probar la red. Esto no funcionó...

Primera prueba


```
\begin{split} \eta &= 0.001 \\ \beta &= 1 \\ arq &= 1\text{-}35\text{-}10\text{-}1 \\ g &= tanh \\ g &= salida = lineal \\ \acute{E}pocas &= 5000 \end{split}
```

¿Por qué no funcionó?

Los patrones eran muy grandes lo que causaba que la suma pesada de los pesos por los patrones de muy grande. Esto a su vez causaba una saturación en las neuronas.

¿Solución?

Normalizar

- Se llevó al intervalo [-1,1]
- Al normalizar se trabajó con números más pequeños evitando la saturación de neuronas
- Trabajar en el intervalo [-1,1] funciona mejor con la función tangencial

Entonces...

Prueba


```
\begin{split} \eta &= 0.001 \\ \beta &= 1 \\ arq &= 1\text{-}35\text{-}10\text{-}1 \\ g &= tanh \\ g &= salida = lineal \\ \acute{E}pocas &= 5000 \end{split}
```

¿No funcionó?

Veamos otra prueba...

Prueba


```
\begin{split} \eta &= 0.001 \\ \beta &= 3 \\ arq &= 1\text{-}35\text{-}10\text{-}1 \\ g &= tanh \\ g &= salida = lineal \\ \acute{E}pocas &= 5000 \end{split}
```

Otra prueba

$$\begin{split} \eta &= 0.001 \\ \beta &= 3 \\ arq &= 1\text{-}35\text{-}10\text{-}1 \\ g &= tanh \\ g &= tanh \\ \text{Épocas} &= 5000 \end{split}$$

Prueba de diferentes arquitecturas

N	Arqitectura	β	η	g(x)	$g_{salida}(x)$	Épocas	E(W)
1	1-35-10-1	3	0,001	tanh	lineal	5000	0,025206
2	1-35-10-1	3	0,001	tanh	tanh	5000	0,001234
3	1-35-10-1	3	0,001	exp	lineal	5000	0,018987
4	1-35-10-1	3	0,001	exp	tanh	5000	0,008321
5	1-35-15-1	3	0,001	tanh	lineal	5000	0,000201
6	1-35-15-1	3	0,001	tanh	tanh	5000	0,000769
7	1-35-15-1	3	0,001	exp	lineal	5000	0,010085
8	1-35-15-1	3	0,001	exp	tanh	5000	0,001339
9	1-35-20-1	3	0,001	tanh	lineal	5000	0,000126
10	1-35-20-1	3	0,001	tanh	tanh	5000	0,000631
11	1-35-20-1	3	0,001	exp	lineal	5000	0,012053
12	1-35-20-1	3	0,001	exp	tanh	5000	0,00163
13	1-35-1	3	0,001	tanh	tanh	5000	0,059742

Tabla 1: Pruebas de las diferentes arquitecturas.

Elección de la arquitectura

- Se eligió la arquitectura 1-35-15-1
- E(W) de un orden de magnitud menor que la arquitectura 1-35-10-1
- En comparación con 1-35-20-1 en algunas pruebas ganaba una y en otras la otra pero la arquitectura elegida tenía una menor cantidad de neuronas por lo que requiere menos procesamiento
- Tener más neuronas en la segunda capa le permite distinguir mejor los patrones

Arquitectura elegida

Variaciones de η

N	Arqitectura	β	η	g(x)	$g_{salida}(x)$	Épocas	E(W)
1	1-35-15-1	3	0,005	tanh	lineal	4467	0,000093
2	1-35-15-1	3	0,001	tanh	lineal	5000	0,000201
3	1-35-15-1	3	0,0005	tanh	lineal	5000	0,000412

Tabla 2: Pruebas de diferentes valores de η .

Mejor η


```
\eta = 0.005

\beta = 3

arq = 1-35-15-1

g = tanh

g salida = lineal

E(W) = 0.00093

Épocas = 4467
```

Variaciones de \(\beta \)

N	Arqitectura	β	η	g(x)	$g_{salida}(x)$	Épocas	E(W)
1	1,35,15,1	2	0,005	tanh	lineal	5000	0,001108
2	1,35,15,1	3,5	0,005	tanh	line al	4594	0,000099
3	1,35,15,1	4	0,005	tanh	line al	5000	0,0003

Tabla 3: Pruebas de diferentes valores de β .

Momentum

N	Arqitectura	β	α	g(x)	$g_{salida}(x)$	Épocas	E(W)
1	1-35-15-1	3	0,2	tanh	lineal	3944	0,000096
2	1-35-15-1	3	0,3	tanh	lineal	3700	0,000096
3	1-35-15-1	3	0,5	tanh	lineal	5000	0.000306
4	1-35-15-1	3	0,7	tanh	lineal	5000	0,000793
5	1-35-15-1	3	0,9	tanh	lineal	5000	0,05111

Tabla 4: Pruebas de momentum variando α .

Peor momentum

 $\eta = 0.005$ $\beta = 3$ arq = 1-35-15-1 g = tanh g salida = lineal $\alpha = 0.9$ E(W) = 0.05111

En un *plateau* η efectivo = $\eta/(1 - \alpha)$

Mejor momentum


```
\eta = 0.005

\beta = 3

arq = 1-35-10-1

g = tanh

g salida = lineal

\alpha = 0.9

E(W) = 0.00093

Épocas = 3700
```

η adaptativo

N	Arquitectura	β	η_{final}	g(x)	$g_{salida}(x)$	a	b	k	Épocas	E(W)
1	1,35,15,1	3	0,000242	tanh	line al	0,0005	0,1	3	5000	0,000479
2	1,35,15,1	3	0,000329	tanh	lineal	0,0001	0,01	3	5000	0,00041
3	1,35,15,1	3	0,000311	tanh	lineal	0,001	0,05	3	5000	0,000422
4	1,35,15,1	3	0,000387	tanh	lineal	0,001	0,01	3	5000	0,000354
5	1,35,15,1	3	0,000333	tanh	lineal	0,0005	0,01	3	5000	0,000363

Tabla 5: Pruebas de η adaptativo variando los distintos parámetros. η_{final} es el valor de η al finalizar la prueba.

Mejor η adaptativo


```
\beta = 3

arq = 1-35-15-1

g = tanh

g salida = lineal

E(W) = 0.000354

a = 0.001

b = 0.01

k = 3

Épocas = 5000
```

Momentum + η adaptativo

N	Arquitectura	β	g(x)	$g_{salida}(x)$	α	a	b	k	Épocas	E(W)
1	1,35,15,1	3	tanh	lineal	0,3	0,001	0,01	3	5000	0,000612
2	1,35,15,1	3	tanh	lineal	0,3	0,0005	0,01	3	5000	0,000592
3	1,35,15,1	3	tanh	lineal	0,3	0,0001	0,01	3	5000	0,00064

Tabla 6: Pruebas de η adaptativo con momentum.

En resumen, la mejor combinación fue:

$$\eta = 0.005$$

 $\beta = 3$
 $arq = 1-35-10-1$
 $g = tanh$
 $g salida = lineal$
 $\alpha = 0.9$
 $E(W) = 0.00093$
 $\acute{E}pocas = 3700$

Generalización (inc = 0.1)

Generalización (inc = 0.01)

Generalización (inc = 0.001)

Conclusiones

- Se logró obtener una buena aproximación y una buena generalización del problema planteado
- Hay problemas que no se pueden solucionar con una única capa oculta
- La representación interna de los patrones es muy importante. Puede cambiar la dificultad del problema
- Si los patrones son muy grandes, normalizar es muy efectivo
- Momentum resultó ser la mejor mejora y superior a η adaptativo
- Más neuronas ≠ mejor