Operation

- The structure is *similar* to an n^+pn^+ *BJT*
- However, *BJT action* is *not possible* due to *large channel length* (L)
- The way to make the device *conduct* is to form a *layer of electrons* between S and D
 - > Known as *Inversion Layer*
- Then, if a bias is applied between S and D, then inversion layer electrons will move towards the higher potential due to drift
 - > A *current* would result

- Consider $V_S = V_D = V_B = V_G = 0$
 - > Device is *off* and *no current flows*
- Note that the *structure* is similar to a *capacitor*
- Now, as V_G is made *positive*, initially it will repel holes from surface towards bulk, uncovering ionized acceptor atoms there
 - > Formation of a depletion layer
- There will be *depletion layers* around *SB* and *DB junctions* as well

- As V_G is kept on *increasing*, the *depletion* charge will keep on *increasing*
- At a certain value of $V_G (= V_{GS})$, a layer of electrons will appear at the surface
- This *particular value* of V_{GS} is known as the *threshold voltage* V_{TN}
- Still *no current* would flow, since $V_{DS} = 0$
- SB and DB junctions must remain either at zero bias or reverse bias all the time
 - $\gt V_{SB}$ and $V_{DB} \ge 0$