

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ
КАФЕДРА

Информатика и системы управления

Программное обеспечение ЭВМ и информационные технологии

КУРСОВАЯ РАБОТА

HA TEMY:

Визуализация ландшафтной сцены с облаками											
Студент	ИУ7-54Б		Т. А. Асадуллин								
•	(группа)	(подпись, дата)	(И.О. Фамилия)								
Руководитель курсового											
проекта			К. А. Кивва								
		(подпись, дата)	(И.О. Фамилия)								

СОДЕРЖАНИЕ

B	ВЕД	ЕНИЕ							4
1	Ана	алитичес	ская часть			•			5
	1.1	Формал	изация задачи и объектов					•	5
	1.2	Алгорит	мы генерации облаков				•		6
		1.2.1 X	Кидкостная симуляция						6
		1.2.2 T	Іовоксельная генерация						7
		1.2.3 Γ	енерация на основе обратной трассировки	лу	че	Й			7
	1.3	Алгорит	тм генерации ландшафта	•					8
		1.3.1 V	Іспользование шумов						8
		1.3.2 A	ппроксимация примитивами	•					8
	1.4	Модели	освещения						8
		1.4.1 3	акон Бугера — Ламберта — Бера						8
		1.4.2	акон Ламберта						S
	1.5	Алгорит	м построения теней облаков	•			•		S
2	Кон	иструкто	рская часть						11
3	Tex	нологич	еская часть						12
4	Исс	ледоват	ельская часть						13
За	клю	чение .							1 4
\mathbf{C}	ПИС	ОК ИС	ПОЛЬЗОВАННЫХ ИСТОЧНИКОВ						15

ВВЕДЕНИЕ

Компьютерная графика – совокупность методов и средств преобразования в графическую форму и из графической формы с помощью ЭВМ [1]. Конечным продуктом компьютерной графики является изображение [2]. Ключевые моменты, которые компьютерная графика рассматривает – как [2]

- изображения представляются в компьютерной графике;
- изображения готовятся для визуализации;
- предварительно подготовленные изображения рисуются;
- осуществляется взаимодействие с изображением.

Цель работы – разработка программного обеспечения для визуалации динамической ландшафтной сцены с облаками.

для достижения поставленной цели требуется решить следующие задачи:

- изучить предметную область;
- спроектировать программное обеспечение;
- выбрать средства реализации программного обеспечения и создать его:
- провести исследование разработанного программного обеспечения.

1 Аналитическая часть

В аналитической части будут формализованы задачи и объекты сцены, определены геометрические и оптические характеристики объектов сцены. Также будут проанализированы и описаны алгоритмы, используемые для визуализации ландшафтной сцены с облаками. Будут установлены допустимые диапазоны и ограничения, накладываемые на входные данные.

1.1 Формализация задачи и объектов

Объектами сцены являются:

1) Облака (облачный пейзаж)

- Высота, на которой находятся облака;
- Скорость движения облаков по горизонту;
- Кучность: степень сжатия и плотности облаков, что влияет на их внешний вид и отбрасываемую тень.
- Плотность: определяет, сколько солнечного света облака могут заблокировать, что влияет на освещение ландшафта.

2) Ландшафт (ландшафтный пейзаж) –

- Рельеф: плоский равнинный.
- Материалы и текстуры: характеристики поверхности, такие как цвет и отражательная способность.
- Освещение от солнца и теней: ландшафт получает освещение, которое зависит от плотности облаков и положения солнца, а также отбрасываемых теней.

3) Бесконечно удаленный источник света (солнце) -

- Расположение: определяется положением на небесной сфере. Положение солнца влияет на длину и направление теней.
- Интенсивность: определяет, насколько ярко освещен ландшафт, также зависит от плотности облаков.

4) Наблюдатель (камера) –

- Расположение: координаты и угол обзора камеры, позволяющие наблюдать сцену с разных ракурсов.
- Поле зрения: угол обзора, влияющий на широту сцены.

Определение диапазонов и ограничений:

- **Высота облаков:** от 1000 до 3000 метров.
- Скорость облаков: от 0 до 50 км/ч.
- **Плотность облаков:** значение от 0 (полностью прозрачные) до 1 (непрозрачные).
- **Положение солнца:** угол наклона от 0° до 90° над горизонтом и азимутальный угол от 0° до 180° .
- **Пространственное перемещение** осущствляется только для таких объектов, как камера и солнце.

1.2 Алгоритмы генерации облаков

Существует несколько подходов к реализации облаков [3]:

- **Геометрический:** облака представляют собой, например, набор треугольников, сфер или прямоугольников. Геометрический подход к созданию облаков имеет смысл в оперделенной стилистике изображения.
- Двумерная текстура: простой и малозатратный подход, но такая статичная картинка имеет смысл только как дальнеплановые статичные изображения, через которые, например, нельзя пролететь сквозь. К тому же такие облака не могут производить тени.
- **Объемные** (volumetric): динамические облака, с которыми можно взаимодействовать и которые способны производить тени. Именно поэтому такие облака будут реализованы в данной работе.

Заключим требования к алгоритму:

- Облака должны быть объемные;
- Облака должны генерироваться процедурно;
- Должен быть быстродействующим.

1.2.1 Жидкостная симуляция

Использование жидкостной симуляции для создания объемных облаков: создать простые объекты (сферы, шары), вокселизировать их и рассматривать их как жидкость, получая похожие на объемные облака фигуру [4].

Недостатки:

- Алгоритм медленный;
- Сложность контроля генерации;
- Сложность реализации.

1.2.2 Повоксельная генерация

Алгоритм заключается в генерации ограничивающего параллелепипеда (bounding box), состоящего из вокселей, хранящих информацию о цвете. [4]. Преимущества:

- Хорошо сочетается с алгоритмом построением теней Недостатки:
 - Высокие затраты памяти;
 - Сложность обработки большого количества вокселей в реальном времени;
 - Необходимость оптимизаций для обработки больших объемов.

1.2.3 Генерация на основе обратной трассировки лучей

Из точки наблюдателя для каждого пикселя грани высчитывается его итоговый цвет [5]. Алгоритм также опирается на ограничивающий параллеленинед, но вместо этого визуализируются лишь видимые грани параллелипипеда. Вместо вычисления каждого вокселя, алгоритм ориентируется на пиксели, видимые пользователю, и рассчитывает итоговые цвета только для них.

- Также хорошо сочетается с алгоритмом построением теней;
- Меньшие затраты памяти;
- Сниженные вычислительные затраты благодаря обработке только видимых пикселей.

Обратная трассировка лучей показывает преимущество перед повоксельной и жидкостной генерациях, так как обрабатывает только видимые пиксели, что снижает вычислительные затраты и экономит память, что необходимо при формировании динамического изображения.

1.3 Алгоритм генерации ландшафта

Одним из основных методов генерации ландшафта является использование шумов и аппроксимация примитивами.

1.3.1 Использование шумов

Шумы служат основой для создания естественных и органически выглядящих ландшафтов. Эти алгоритмы генерируют псевдослучайные значения, которые могут быть использованы для создания разнообразных элементов ландшафта, таких как высота, текстуры и цвет.

Один из наиболее распространенных способов использования шумов в генерации ландшафта заключается в создании высотной карты. Высотная карта — это двумерный массив значений, где каждое значение соответствует высоте точки на поверхности. Используя шумы с низкой амплитудой и частотой можно получить равнинный ландшафт, который и необходимо реализовать по техническому заданию.

1.3.2 Аппроксимация примитивами

Для представления сгенерированного ландшафта используются примитивы, и наиболее распространенным вариантом являются треугольники.

Основные шаги в использовании треугольников для аппроксимации ландшафта включают:

- Создание сетки: формирование сетки, состоящей из вершин, соединенных ребрами. Каждая вершина соответствует точке в высотной карте, а ребра образуют треугольники.
- Обработка вершин: применение значений высоты из высотной карты к вершинам сетки для создания рельефа.

1.4 Модели освещения

1.4.1 Закон Бугера — Ламберта — Бера

Для облаков некоторая часть света рассеивается от направления распространения, а еще большее количество поглощается каплями воды и моле-

кулами озона, но остается часть, которая продолжает движение без изменений.

Закон Бугера—Ламберта—Бера определяет ослабление пучка света при поглощении средой.

$$I_l = I_o e^{-k_\lambda l},\tag{1.1}$$

где I_0 — интенсивность света на входе в вещество, k_λ — показатель поглощения.

1.4.2 Закон Ламберта

Матовые поверхности обладают свойством диффузного отражения, т. е. равномерного по всем направлениям рассеивания света, благодаря чему поверхности визуально имеют одинаковую яркость независимо от угла обзора [2]

Закон Ламберта определяет интенсивность диффузного отражения света:

$$I_d = I_p K_d \cos(\theta), \tag{1.2}$$

где I_0 — интенсивность света на входе в вещество, θ — угол между направлением точечного источника светаа интенсивности I_p и нормалью \vec{N} к поверхности.

1.5 Алгоритм построения теней облаков

Тени от облаков зависят только от положения на поверхности, что делает их независимыми от точки зрения [2]. Для объемных облаков при построении их теней аналогично используется обратная трассировка лучей: при движении луча от поверхности к облакам определяется суммарная плотность облаков по пути, чтобы вычислить, сколько света блокируется [6].

Таким образом, учитывая закон Бугера—Ламберта—Бера и закон Ламберта, можем записать итоговую формулу для расчета интенсивности света на поверхности:

$$I_s = I_0 K_d \cos(\theta) e^{-k_{\lambda} l}. \tag{1.3}$$

где I_s — итоговая интенсивность света на поверхности, I_0 — интенсивность света от источника, K_d — коэффициент диффузного отражения, θ — угол

между направлением света и нормалью к поверхности, k_{λ} — показатель поглощения, l — расстояние, пройденное светом через облака.

Вывод

В аналитической части формализованы задачи и объекты сцены, определены геометрические и оптические характеристики объектов сцены. Также проанализированы и описаны алгоритмы, используемые для визуализации ландшафтной сцены с облаками. Установлены допустимые диапазоны и ограничения, накладываемые на входные данные. Был выбран алгоритм использующий обратную трассировку лучей для генерации объемных облаков, а также алгоритм для построения ландшафта с помощью аппроксимацией примитивами.

2 Конструкторская часть

В конструкторской части будет спроектировано разрабатываемое программное обеспечение и формально описаны используемые алгоритмы.

Вывод

3 Технологическая часть

В технологической части будет выбраны и описаны средства реализации программного обеспечения и представлены детали его реализации.

Вывод

4 Исследовательская часть

В исследовательской части будет проведено исследование разработанного программного обеспечения.

Вывод

Заключение

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. А.В. Куров. Конспект лекций по дисциплине «Компьютерная графика». 2024 год.
- 2. Роджерс Д. Алгоритмические основы машинной графики. Москва: Мир, 1989.
- 3. Муравский Иван. Лекции UNIGINE Open Air 2022. 2022. Дата доступа: 2024-10-07. URL: https://www.youtube.com/watch?v=FkYx0gSB1cU.
- Cloudscapes 4. Guerrilla Games. The Real-Time Volumetric Horizon ofZero Dawn. 2023. 2024-Дата доступа: https://www.guerrilla-games.com/read/ 10-07.URL: $the \verb|-real-time-volumetric-cloudscapes-of-horizon-zero-dawn.$
- 5. Real-time Volumetric Rendering: Master's thesis. 2013. http://patapom.com/topics/Revision2013/Revision%202013%20-%20Real-time% 20Volumetric%20Rendering%20Course%20Notes.pdf.
- 6. Efficient Cloud-Based Rendering of Real-Time Volumetric Clouds: Master's thesis. 2013.