Machine Learning Worksheet 2

Decision Trees and Nearest Neighbours

1 Learning by doing

You are free to do these completely by hand or use a computer to help speed things up (python, MAT-LAB, R, Excel, ...). You should, however, show the basic steps of your work and implement your own "helpers" instead of blindly using code. Using a machine learning toolbox and copying the result will not help you understand.

The table below gives you a feature matrix X together with the output z_i for every row i of the feature matrix. This data is also available in Piazza as homework-02.csv.

$x_{i,1}$	$x_{i,2}$	$x_{i,3}$	z
5.5	0.5	4.5	2
7.4	1.1	3.6	0
5.9	0.2	3.4	2
9.9	0.1	0.8	0
6.9	-0.1	0.6	2
6.8	-0.3	5.1	2
4.1	0.3	5.1	1
1.3	-0.2	1.8	1
4.5	0.4	2.0	0
0.5	0.0	2.3	1
5.9	-0.1	4.4	0
9.3	-0.2	3.2	0
1.0	0.1	2.8	1
0.4	0.1	4.3	1
2.7	-0.5	4.2	1

Problem 1: Build a decision tree *T* for your data. Consider all possible feature tests and use the Gini index to build your tree. Build the tree only to a depth of two! Provide at least the value of the final Gini index at each node and the distribution of classes at each leaf.

Problem 2: Use the tree from the previous problem to classify the vectors $\mathbf{x}_a = (4.1, -0.1, 2.2)$ and $\mathbf{x}_b = (6.1, 0.4, 1.3)$. Provide both your classification \hat{z}_a and \hat{z}_b and their respective probabilities $p(c = \hat{z}_a \mid \mathbf{x}_a, T)$ and $p(c = \hat{z}_b \mid \mathbf{x}_b, T)$

Problem 3: Classify the two vectors given in Problem 2 with the K-nearest neighbors algorithm. Use K=3 and Euclidean distance.

Problem 4: Now, consider z_i to be real-valued labels rather than classes. Perform 3-NN regression to label the vectors from Problem 2.

Problem 5: Look at the data. Which problem do you see wrt. building a Euclidean-distance-based KNN model on X? How can you compensate for this problem? Does this problem also arise when training a decision tree?

2 Probabilistic kNN

Assume that you have two classes. Let N_0 be the number of exemplars in class 0, N_1 the number of exemplars in class 1 (this implies that $p(c=0) = \frac{N_0}{N_0 + N_1}$ and $p(c=1) = \frac{N_1}{N_0 + N_1}$.

Problem 6: Consider the ratio $\frac{p(c=0|\mathbf{x}^*)}{p(c=1|\mathbf{x}^*)}$. If σ^2 is very small, both numerator and denominator will be dominated by the closest data points (denoted by \mathbf{x}_0 and \mathbf{x}_1 respectively). Show that the following approximation holds:

$$\frac{p(c=0 \mid \boldsymbol{x}*)}{p(c=1 \mid \boldsymbol{x}*)} \approx \frac{\exp\left((-\|\boldsymbol{x}*-\boldsymbol{x}_0\|^2)/(2\sigma^2)\right)}{\exp\left((-\|\boldsymbol{x}*-\boldsymbol{x}_1\|^2)/(2\sigma^2)\right)}$$
(1)

with respect to

Problem 7: Show that in the limit case $(\sigma \to 0)$ this approximation classifies \boldsymbol{x}^* as class 0 if it is closer to \boldsymbol{x}_0 than to \boldsymbol{x}_1 .

Problem 8: How does σ relate to K?

3 Neighbourhood Component Analysis

Problem 9: Compute the gradient of the NCA objective as given in the slides. This may be a very difficult excercise if you don't have much practice with math \rightarrow don't spend too much time on it! The following matrix identity¹ is helpful:

$$\frac{\partial tr(A^T A B)}{\partial A} = A(B + B^T)$$

tr is the trace of a matrix. You may also want to use the shorthand $x_{ij} = (x_i - x_j)$.

¹for more of these things: K. B. Petersen and M. S. Pedersen. 2008. The Matrix Cookbook. Technical Report.