深圳大学实验报告

课程名称:	果程名称:				
实验名称:电位差计					
学 院:	计算	工机与软件 :	学院		
指导教师 <u>:</u> _		王光辉			
报告人:	何泽锋	组号 : _	12	2	
学号 <u>202</u>	2150221	实验地.	点	210	
实验时间:	2023	年 <u>4</u>	月	20	_日
提交时间:	2023	年	月		_日

1

一、实验目的

- 1. 了解补偿法测量电动势的原理
- 2. 掌握使用电位差计测量电压的方法
- 3. 绘制毫安表的校准曲线

二、实验原理

1. 内部原理

①电势补偿原理

当 E=E, 检流计指零, 电路达到补偿, 电路如图二-1 所示

图二-1 补偿原理电路图

②电位差计的设计原理及调整电路图如图二-2 所示

图二-2 电位差计电路图

实验涉及公式:

$$I_0 = \frac{E_N}{R_S} \tag{1}$$

$${\bf E}_{\bf x} \! = \! {\bf I}_0 \! \cdot \! {\bf R}_{\bf x} \! = \! \frac{{\bf E}_{\bf N}}{{\bf R}_{\bf s}} {\bf R}_{\bf x} \qquad (2)$$

2. 内部原理图及外部连线图

图二-3 内部原理图及外部连线图

- ① K_2 接到"标准",调节工作电流,使 $I_F = E_N / R_N = 10.0000$ mA 此时: $U_{AB} = E_N$,检流计无电流通过。
- ②调节限流电阻箱, 使毫安表指示所需数值。
- ③ K_2 接到"未知",调节"补偿电压调节"使 $U_{EC} = U_{EF} = I_{Fe} R_{i}$ 时,检流计无电流通过。

三、实验仪器

主要实验仪器: UJ33a 型直流电位差计、直流稳压电源、标准电阻、毫安表、电阻箱、导线若干

图三-1 UJ33a 型直流电位差计

四、实验内容与步骤

(一) 用 UJ33a 型直流携带式电位差计校准毫安表

- 1、校准毫安表的意义:对于精度较低的毫安表,用比它精度高的标准表对其进行校准,可以考察它的精度级别,并做出它的校准曲线。
- 2. 电位差计校准毫安表的方法: 电位差计只能直接测量电压,在校准电流表时,需要将电流转化为电压来测量,方法是在电路中串人一个高精度的取样电阻。本实验用来取样的标准电阻误差为 $\triangle R/R=0.01\%$,其阻值为 $100\,\Omega$ 。测量电阻上的电压就可以知道电路中的电流。
- 3. 校准毫安表的具体要求:
- ①对毫安表的整刻度分上行和下行两个方向进行校对,并根据校对数据作出毫安表的校准曲线(\triangle I-I 曲线)。
- ②根据所测数据校验毫安表的等级

③分析用上述方法校准毫安表的误差

五、数据处理

表1 毫安表校准数据记录表

N. 10. NO. N. 1 - 24 14	校准值				
被校准刻度值 I/μA	上行	下行	平均值		Δ Ι/ μΑ
	电压 U/mV	电压 U/mV	电压 U/mV	电流 I/ μ A	
200	20.035	20.110	20.0725	200.725	0.72
400	40.072	40.060	40.066	400.66	0.66
600	60.130	60.148	60.139	601.39	1.39
800	80.059	80.079	80.069	800.69	0.69
1000	100.089	100.120	100.1045	1001.045	1.05
1200	120.084	120.190	120.137	1201.37	1.37
1400	140.122	140.186	140.154	1401.54	1.54
1600	160.251	160.241	160.246	1602.46	2.46
1800	180.443	180.46	180.4515	1804.515	4.52
1999	200.602	200.635	200.6185	2006.185	7.18

根据实验测得的上行和下行电压,计算得到平均电压,再根据标准电阻($100\,\Omega$)可以计算得电流,用被校准刻度值与评价电流计算得到 Δ I,数据如表 1 所示。用用被校准刻度值电流与 Δ I 可拟合出毫安表校准曲线如图五–1 所示

图五-1 毫安表校准曲线

观察图像可得,二者成正相关,但实验所得图像与标准图像有所不同,并不是成线性增长,可能时实验时 仪器误差导致,上下行并未能明显区分。

计算电表仪器的误差等级:

$$\frac{\Delta I}{I} = \frac{7.18}{1999} \times 100 \approx 0.36 < 0.5$$

由计算结果可知,微安表小于0.5级,可以正常使用。

六、结果陈述

本次实验学会了如何使用电位差计,并且通过电位差计测量了毫安表的标准偏差。知道了上行和下行的区别,电流大小的变化方向会影响测量的电压值。虽然实验结果与课本有所差别,但大致趋势是正确的,并目得到的误差等级也是满足要求,说明毫安表可以正常使用

七、思考题

- 1. 如何准确测量负载或电源的电压值?
- 使用补偿法测量,并根据补偿原理得到结果。
- 2. 电位差计有几个回路? 各是什么作用?
- 三个回路,工作电路、标准电路、测量电路。工作电路是主要的实验仪器所处的位置。标准电路是用于确保电位差计的准确性,以保证测量结果的精度。通过改变校准回路上的电阻、开关等参数,以使其产生特定的输入电压,然后检查电位差计读数是否正确。测量回路主要用于测量待测电路或元件的电压值。
- 3. 电位差计和理想电压表的区别?
- 电位差计是主动元件,需要由测量电路提供电流才能工作,而理想电压表则是被动元件,并且具有高阻抗。 电位差计的精度受内部电阻、效应等多种因素影响,相比之下,理想电压表具有更高的精度。
- 4. 如果检流计总是往一边偏转,可能什么原因?
- 没有机器调零,内部线圈出现故障,受到外部因素干扰。
- 5. 电位差计除了可以测量电动势,还可以测量电流、电阻吗?
- 通常只能测电动势,不能用于测量电流、电阻。

指导教师批阅意见

成绩评定

预习	操作及记录	数据处理与结果陈述	思考题	报告整体	总分
(20 分)	(40分)	(30分)	(10分)	印 象	

注:正文统一用5号字,标题可大一号,图表名可小一号;

原始数据记录表需单独起页 (表格自拟,作为预习报告评分的一部分),提交报告时附在最后;

原始数据记录表

组号	12	姓名	何泽锋	

表 1 毫安表校准数据记录表

		表 1 毫安表校作	上		
被校准刻度					
值 I/ μ A	上行	下行	平均值		Δ Ι/μΑ
	电压 U/mV	电压 U/mV	电压 U/mV	电流 I/ μ A	