ME720 2S2019

ME720 - Modelos Lineares Generalizados

Profa. Larissa Avila Matos

Atividade

1. Em sala de aula, nós criamos a nossa propria função do glm para estimar os parâmetros de um modelo de Poisson com função de ligação log. Além disso, calculamos os erros estimados, criamos intervalos de confiança e fizemos testes de hipóteses simples. Usando a mesma função das notas de aula:

```
newton <-function(y,X,init,eps=1e-6,maxiter=50){</pre>
  beta <- init
  n < -dim(X)[1]
  out <- matrix(NA, nrow=maxiter+1,ncol=length(t(beta)))
  out[1,] <- t(init)
  i <- 1
  continue <- T
  while (continue) {
    i <- i+1
    beta.o <- beta
    W<-diag(n)
    diag(W)<-exp(X%*%beta.o)</pre>
    mu<-exp(X%*%beta.o)</pre>
    beta <- beta.o + solve(t(X)%*%W%*%X)%*%t(X)%*%(y-mu)
      if(sum(is.na(beta))>0){stop("NA nas estimativas")}
    out[i,] <- t(beta)
    continue <- (abs(beta-beta.o) > eps) && (i <= maxiter)
  }
  if (i > maxiter) {
    warning("Máximo número de iterações atingido")
  out <- out[!is.na(out[,1]),]
  saida<-list(out=out,est=out[i,],iter=i)</pre>
  return(saida)
}
```

- (a) Atualize a função para que ela retorne os erros estimados, os ICs e os testes de hipóteses simples.
- (b) Acrescente na função o cálculo da fução desvio e do AIC.
- (c) Gere dados para um modelo poisson com função de ligação log, considerando:
 - duas variáveis preditoras de tamanho 100, onde $x_{1i} = 1$ e $x_{2i} \sim U(0,2)$ $(x_i = (1, x_{2i}))$; e
 - $\beta = (1,3)$.

Ajuste um modelo Poisson log linear aos seus dados simulados usando a sua função e a função glm. Os coeficientes estimados são semelhantes aos verdadeiros que você usou para a geração dos dados?

(d) Estudo de simulação.

Repita N=1000 o item (c), para cada amostra (repetição) calcule o viés absoluto V dos parâmetros, ou seja,

$$V_{\beta_i} = |\beta_i - \widehat{\beta_i}|,$$

em que $\hat{\beta_j}$ é a estimativa de β_j e β_j é o valor real. Calcule também o AIC e o desvio de cada amostra. Compare os resulatdos obtidos através da sua função e da função glm.

(e) Repita os itens (c) e (d) considerando agora a amostra com tamanho 300. Quais suas conclusões?

ME720 2S2019

- 2. Análise o conjunto de dados House Selling Price Data do livro texto. Escreva um relatório técnico para essa análise.
- 3. Gere dados para uma regressão logística.
 - Considere duas variáveis preditoras de comprimento 100, elas podem ser aleatórias na sua distribuição favorita.
 - Considere beta <- c(-1,2) e gere a resposta com rbinom(n = 100, size = 1, prob = exp(x%*%beta)/(1+exp(x%*%beta))).
- (a) Por que esse é o modelo implícito na regressão logística?
- (b) Ajuste uma regressão logística aos seus dados simulados usando a função glm.
- (c) Os coeficientes estimados são semelhantes aos verdadeiros que você usou para a geração dos dados?
- (d) Estudo de simulação:
 - 1. Gere dados para uma regressão logística, ou seja, gere a resposta com rbinom(n = n, size = 1, prob = exp(x%*%beta)/(1+exp(x%*%beta))), considerando:
 - duas variáveis preditoras de tamanho n, onde $x_{1i} \sim N(10,2)$ e $x_{2i} \sim N(5,1)$ $(x_i = (x_{1i}, x_{2i}))$;
 - beta<-c(-1,2);
 - n = 100 (tamanho amostral).
 - 2. Ajuste uma regressão logística aos seus dados simulados usando a função glm.
 - 3. Repita N=1000 o procedimento acima, para cada amostra (repetição) calcule o viés absoluto V dos parâmetros.
 - 4. Repita os passos 1-3 trocando o tamanho ama
ostral, considere n=300 e n=500.

Qual o comportamento das estimativas?

Nota: Para cada questão explique e justique tudo o que foi feito! Reporte tudo o que você achar necessário. Nos estudos de simulações, reporte os resultados em gráficos e tabelas.