

CG2023 Tutorial 7

Dr Feng LIN

Review of Bode Diagrams

 $10^{-1} \ 0.1 \omega_{n} \ 10^{0} \ \omega_{n} \ 10^{1} \ 10 \omega_{n} \ 10^{2}$ Frequency (rad/s)

- a) When $\zeta > 1$ (*over-damped 2nd-order systems*), treat the system as two cascaded pole factors.
- b) When $\zeta = 1$ (*critically-damped 2nd-order systems*), treat as two repeated pole factors.
- When $0 \le \zeta < 1$ (underdamped and undamped 2^{nd} -order systems), approximate the system as $\zeta = 1$.

Over-damped 2nd –order System

$$\widetilde{H}(s) = \frac{100}{s^2 + 101s + 100}$$
$$= \frac{1}{s+1} \times \frac{1}{\frac{s}{100} + 1}$$

The real bode plot

Asymptotic bode plot using two pole factors

Asymptotic bode plot using criticallydamped 2nd-order system

Bode Plots of Basic Systems

Frequency Response of Cascaded Systems

Cascaded Systems

Let $\widetilde{H}(s) = \widetilde{H}_1(s) \widetilde{H}_2(s)$ be a cascade of two systems. The frequency response is given by

$$\begin{split} \widetilde{H}(j\omega) &= \widetilde{H}_{1}(j\omega) \, \widetilde{H}_{2}(j\omega) \\ |\widetilde{H}(j\omega)| e^{j \angle \widetilde{H}(s)} &= |\widetilde{H}_{1}(j\omega)| e^{j \angle \widetilde{H}_{1}(s)} |\widetilde{H}_{2}(j\omega)| e^{j \angle \widetilde{H}_{2}(s)} \\ &= |\widetilde{H}_{1}(j\omega)| |\widetilde{H}_{2}(j\omega)| e^{j[\angle \widetilde{H}_{1}(j\omega) + \angle \widetilde{H}_{2}(j\omega)]} \end{split}$$

Phase:
$$\angle \widetilde{H}(s) = \angle \widetilde{H}_1(s) + \angle \widetilde{H}_2(s)$$

Magnitude:
$$\frac{20 \log_{10} |\widetilde{H}(j\omega)|}{|\widetilde{H}(j\omega)|_{dB}} = \frac{20 \log_{10} |\widetilde{H}_1(j\omega)|}{|\widetilde{H}_1(j\omega)|_{dB}} + \frac{20 \log_{10} |\widetilde{H}_2(j\omega)|}{|\widetilde{H}_2(j\omega)|_{dB}}$$

Asymptotic Frequency Response Tables

ASYMPTOTIC VALUE OF PHASE RESPONSE

•	Asymptotic <u>PHASE</u> of Phase Plot	$igl[igl \mathcal{ ilde{H}} igl(oldsymbol{j} oldsymbol{\omega} igr) igr]$	
---	---------------------------------------	---	--

High frequency:

$$\lim_{\omega \to \infty} \angle \tilde{H}(j\omega) = \left[N^{\circ} \text{ of Poles} - N^{\circ} \text{ of Zeros} \right] \times \left(-90^{\circ} \right)$$

Low frequency:

$$\lim_{\omega \to 0} \angle \tilde{H} \left(j \omega \right) = \left[\mathsf{N}^{\mathsf{Q}} \text{ of } \int dt - \mathsf{N}^{\mathsf{Q}} \text{ of } \frac{d}{dt} \right] \times \left(-90^{\circ} \right)$$

• Asymptotic <u>SLOPE</u> of Magnitude Plot $\left[\left| ilde{H}\left(j\omega
ight)\!\right|_{dB}
ight]$

High frequency:

$$\lim_{\omega \to \infty} \left[slope \ of \ \left| \tilde{H} \left(j \omega \right) \right|_{dB} \right] = \left[\mathbb{N}^{\underline{o}} \ of \ \mathsf{Poles} - \mathbb{N}^{\underline{o}} \ of \ \mathsf{Zeros} \right] \times \left(-20 \ dB/decade \right)$$

Low frequency:

$$\lim_{\omega \to 0} \left[slope \ of \ \left| \tilde{H} \left(j \omega \right) \right|_{dB} \right] = \left\lceil \mathsf{N}^{\mathsf{Q}} \ \mathsf{of} \ \int dt \ - \ \mathsf{N}^{\mathsf{Q}} \ \mathsf{of} \ \frac{d}{dt} \right] \times \left(-20 \ dB/decade \right)$$

Component	Low Frequency	High Frequency	No. of Zero	No. of Pole
Integrator	–90°	–90°	0	1
Differentiator	+90°	+90°	1	0
Pole factor	0°	–90°	0	1
Zero factor	0°	+90°	1	0
2nd-order factor	0°	–180°	0	2

ASYMPTOTIC SLOPE OF MAGNITUDE RESPONSE

Component	Low Frequency	High Frequency	No. of Zero	No. of Pole
	(dB/decade)	(dB/decade)		
Integrator	-20	-20	0	1
Differentiator	+20	+20	1	0
Pole factor	0	-20	0	1
Zero factor	0	+20	1	0
2nd-order factor	0	-40	0	2

Deriving System Transfer Function from Bode Magnitude Plot

Step 1: Examine the **slope of the low-frequency asymptote** of the Bode magnitude plot:

 $+20L~{
m dB/decade}$ o Existence of a cascade of L identical differentiators, $\left(K_d s\right)^L$. Equation of low frequency asymptote:

$$\left| \tilde{H} \left(j \omega \right) \right|_{dB} = 20 L \log_{10} \left(K_d \right) + 20 L \log_{10} \left(\omega \right)$$

which cuts the coordinates $\left(1\!/K_d\,,\;0\right)$ and $\left(1,\;20L\log_{10}\left(K_d\,\right)\right)\!.$

 $-20L \ \mathrm{dB/decade} \ o \ \mathrm{Existence}$ of a cascade of L identical integrators, $\left(K_i/s\right)^L$. Equation of low frequency asymptote:

$$\left| \tilde{H}(j\omega) \right|_{dB} = 20L \log_{10}(K_i) - 20L \log_{10}(\omega)$$

which cuts the coordinates $(K_i,\ 0)$ and $(1,\ 20L\log_{10}(K_i)).$

 $0~{
m dB/decade}
ightarrow {
m DC}$ gain, K_{dc} (without differentiator or integrator). Equation of low frequency asymptote:

$$\left| \tilde{H}(j\omega) \right|_{dB} = 20 \log_{10} (K_{dc}).$$

 $\left|\widetilde{H}(j\omega)\right|_{\mathrm{dB}}$

Deriving System Transfer Function from Bode Magnitude Plot

 $\left(\frac{1}{s/\omega_o+1}\right)^p \left(\frac{\omega_o^2}{s^2+2\zeta\omega_o s+\omega^2}\right)^q$, where p+2q=L.

Step 2: Check for slope change while proceeding from low-frequency to high-frequency along the Bode magnitude plot:

$$\begin{array}{l} +20L \;\; \mathrm{dB/decade} \;\; \mathrm{slope} \\ \mathrm{change} \;\; \mathrm{at} \;\; \omega = \omega_o \end{array} \\ \end{array} \\ \rightarrow \begin{cases} \mathrm{Existence} \;\; \mathrm{of} \;\; \mathrm{acsscade} \;\; \mathrm{of} \;\; L \;\; \mathrm{identical} \;\; \mathrm{zero} \;\; \mathrm{factors,} \left(s/\omega_o + 1 \right)^L, \\ \mathrm{assuming} \;\; \mathrm{that} \;\; \mathrm{all} \;\; \mathrm{the} \;\; \mathrm{zeros} \;\; \mathrm{of} \;\; \tilde{H}\left(s\right) \;\; \mathrm{are} \;\; \mathrm{real}. \end{cases}$$

Definitions

DC Gain =
$$\widetilde{H}(j\omega)\Big|_{\omega=0} = \widetilde{H}(0)$$

ii. Bode plots for Differentiator: $\tilde{\boldsymbol{H}}(s) = \boldsymbol{K_d}s$

Frequency Response :
$$\tilde{H}(j\omega) = K_d j\omega = K_d \omega \underbrace{e^{j90^\circ}}_{j}$$

$$\begin{array}{l} \text{Magnitude } : \begin{cases} \left| \tilde{H} \left(j \omega \right) \right| = K_d \omega \\ \left| \tilde{H} \left(j \omega \right) \right|_{dB} = 20 \log_{10} \left(K_d \right) \\ & \underbrace{ + 20 \log_{10} \left(\omega \right) \text{ dB} }_{20 \text{ dB/decade slope}} \end{cases} \end{array}$$

20 dB/decade slope

Increase ω by a factor of 10 (i.e. 1 decade) will cause to $\left|\widetilde{H}(j\omega)\right|_{dB}$ change by:

$$\begin{aligned} & |\widetilde{H}(j10\omega)|_{dB} - |\widetilde{H}(j\omega)|_{dB} \\ &= 20 \log_{10}(K_d) + 20 \log_{10}(10\omega) - 20 \log_{10}(K_d) - 20 \log_{10}(\omega) \\ &= 20 \log_{10}(10) + 20 \log_{10}(\omega) - 20 \log_{10}(\omega) \\ &= 20 \log_{10}(10) = 20 dB \end{aligned}$$

Q1

Consider the LTI system:
$$\tilde{H}(s) = \frac{3s(2s+1)(0.6s+3)^2}{(4s^2+10s+4)(2s^2+8s+12.5)(2s+3)^2}$$

- (a) Express $\tilde{H}(s)$ as a cascade of basic systems such as dc-gain, integrator, differentiator, zero-factor, pole-factor and/or 2^{nd} -order factor.
- (b) How many zeros and poles are present in $\tilde{H}(s)$?
- (c) Determine the low-frequency and high-frequency asymptotic slopes (in dB/decade) of its magnitude response.
- (d) Determine the low-frequency and high-frequency asymptotic phases (in degrees) of its phase response.

(a)

First check the bracketted 2nd-order terms in the denominator to see if they have real or complex roots. Factorize those with real roots.

$$\tilde{H}(s) = \frac{3s(2s+1)(0.6s+3)^2}{\underbrace{(4s^2+10s+4)}_{\text{factorize this because this has real roots}} \underbrace{\frac{(2s^2+8s+12.5)(2s+3)^2}{(2s+3)^2} = \frac{3s(2s+1)(0.6s+3)^2}{4(s+2)(s+0.5)(2s^2+8s+12.5)(2s+3)^2}$$

Rewrite to make the constant term in the bracketted 1st-order terms equal to 1 and the coefficient of s^2 in the bracketted 2nd-order term equal to 1.

$$= \frac{3s \cdot (2s+1) \cdot 9\left(\frac{0.6}{3}s + \frac{3}{3}\right)^{2}}{4 \cdot 2\left(\frac{s}{2} + \frac{2}{2}\right) \cdot 0.5\left(\frac{s}{0.5} + \frac{0.5}{0.5}\right) \cdot 2\left(\frac{2}{2}s^{2} + \frac{8}{2}s + \frac{12.5}{2}\right) \cdot 9\left(\frac{2}{3}s + \frac{3}{3}\right)^{2}}$$

$$= 0.375s \cdot \left(\frac{s}{0.5} + 1\right) \cdot \left(\frac{s}{5} + 1\right)^{2} \cdot \left(\frac{1}{\frac{s}{2} + 1}\right) \cdot \left(\frac{1}{\frac{s}{2} + 4s + 6.25}\right) \cdot \left(\frac{1}{\frac{s}{1.5} + 1}\right)^{2}$$

..... Next, multiply the numerator and denominator of $\tilde{H}(s)$ with the constant term of the bracketted 2nd-order term.

$$=\underbrace{0.06s}_{\text{diff}} \cdot \cdot \underbrace{\left(\frac{s}{5} + 1\right)^{2}}_{\text{double}} \cdot \underbrace{\left(\frac{1}{\frac{s}{2} + 1}\right)}_{\text{pole}} \cdot \underbrace{\left(\frac{6.25}{s^{2} + 4s + 6.25}\right)}_{\text{2nd-order}} \cdot \underbrace{\left(\frac{1}{\frac{s}{1.5} + 1}\right)^{2}}_{\text{double}}$$

(b)

$$\underbrace{\frac{0.06s}{\text{diff}} \cdot \left(\frac{s}{5} + 1\right)^{2}}_{\text{double}} \cdot \underbrace{\left(\frac{1}{\frac{s}{2} + 1}\right) \cdot \left(\frac{6.25}{s^{2} + 4s + 6.25}\right) \cdot \left(\frac{1}{\frac{s}{1.5} + 1}\right)^{2}}_{\text{2nd-order factor}} \cdot \underbrace{\left(\frac{1}{\frac{s}{1.5} + 1}\right)^{2}}_{\text{double pole factor}}$$

There are 3 zeros and 5 poles present in $\tilde{H}(s)$.

(c)

$$\underbrace{\frac{0.06s}{\text{diff}} \cdot \left(\frac{s}{5} + 1\right)^{2}}_{\text{double}} \cdot \underbrace{\left(\frac{1}{\frac{s}{2} + 1}\right) \cdot \left(\frac{6.25}{s^{2} + 4s + 6.25}\right) \cdot \left(\frac{1}{\frac{s}{1.5} + 1}\right)^{2}}_{\text{2nd-order factor}} \cdot \underbrace{\left(\frac{1}{\frac{s}{1.5} + 1}\right)^{2}}_{\text{double factor}}$$

Asymptotic slope of magnitude response:

@ Low-frequency =
$$\left(N_{\circ} \text{ of } \int s - N_{\circ} \text{ of } \frac{d}{dt} \right) \times (-20) = (0-1) \times (-20) = 20 \text{ db/decade}$$

@ High-frequency =
$$(N_0 \text{ of poles} - N_0 \text{ of zeros}) \times (-20) = (5 - 3) \times (-20) = -40 \text{ db/decade}$$

(d)

$$\underbrace{\frac{0.06s}{\text{diff}} \cdot \left(\frac{s}{5} + 1\right)^{2}}_{\text{double}} \cdot \underbrace{\left(\frac{1}{\frac{s}{2} + 1}\right) \cdot \left(\frac{6.25}{s^{2} + 4s + 6.25}\right) \cdot \left(\frac{1}{\frac{s}{1.5} + 1}\right)^{2}}_{\text{2nd-order factor}} \cdot \underbrace{\left(\frac{1}{\frac{s}{1.5} + 1}\right)^{2}}_{\text{double pole factor}}$$

Asymptotic phase of phase response:

@ Low-frequency =
$$\left(N_{\circ} \text{ of } \int s - N_{\circ} \text{ of } \frac{d}{dt} \right) \times (-90) = (0-1) \times (-90) = 90^{\circ}$$

@ High-frequency =
$$(N_{\odot} \text{ of poles} - N_{\odot} \text{ of zeros}) \times (-90) = (5 - 3) \times (-90) = -180^{\circ}$$

Q2

Draw the Bode magnitude and phase plots for the system $\widetilde{H}_1(s) = \frac{10s}{s+100}$ and $\widetilde{H}_2(s) = \frac{s+100}{10s}$ using the semilog-x grid provided below

$$\widetilde{H}_1(s) = \frac{10s}{s+100} = 0.1s \left(\frac{1}{\frac{S}{100}+1}\right) = K_d s \left(\frac{1}{\frac{S}{p_1}+1}\right)$$
where $K_d = 0.1$ and $p_1 = 10^2$

$$\widetilde{H}_2(s) = \frac{s+100}{10s} = \frac{10}{s} \left(\frac{s}{100} + 1 \right) = \frac{K_i}{s} \left(\frac{s}{z_1} + 1 \right)$$
where $K_i = 10$ and $z_1 = 10^2$

-30 10^{-2}

Integrator

Frequency (rad/s)

Zero Factor

Frequency (rad/s)

Frequency (rad/s)

 10^{1}

Magnitude (dB)

 $(K_i,0)$ and $(1,\,20\log_{10}K_i)^{^{ ext{ghts Rese}}}$

Q3

The transfer function of a 2nd-order system is given by $\tilde{H}(s) = \frac{s+50}{0.2s^2+1.2s+5}$.

- (a) Determine the DC gain (in dB), the damping ratio, ζ , and the natural frequency, ω_n , of the system.
- (b) Is the system overdamped, critically damped, underdamped or undamped, and why?
- (c) Draw the Bode magnitude and phase plots for the system using the semilog-x grid provided below.

(a)

DC gain =
$$\tilde{H}(s)\Big|_{s=0} = \frac{s+50}{0.2s^2 + 1.2s + 5}\Big|_{s=0} = 10$$

= $20\log_{10}(10) = 20 \text{ dB}$

To determine ζ and ω_n , first rewrite the denominator of $\tilde{H}(s)$ as $0.2(s^2+6s+25)$ so that the coefficient of s^2 is equal to 1. Then compare the bracketted term $s^2+6s+25$ with $s^2+2\zeta\omega_n s+\omega_n^2$. This results in

$$\begin{array}{c} 2\zeta\omega_n = 6 \\ \omega_n^2 = 25 \end{array} \} \text{ solving} \rightarrow \omega_n = 5 \text{ and } \zeta = 0.6$$

(b)

$$\frac{2\zeta\omega_n = 6}{\omega_n^2 = 25}$$
 solving $\rightarrow \omega_n = 5$ and $\zeta = 0.6$

The system UNDERDAMPED because $0 < \zeta < 1$.

Rewrite
$$\tilde{H}(s) = \frac{s + 50}{0.2s^2 + 1.2s + 5}$$
 as

Rewrite
$$\tilde{H}(s) = \frac{s+50}{0.2s^2 + 1.2s + 5}$$
 as
$$\tilde{H}(s) = \frac{50}{0.2} \cdot \frac{\frac{s}{50} + 1}{s^2 + 6s + 25} = 250 \cdot \left(\frac{s}{50} + 1\right) \cdot \left(\frac{1}{s^2 + 6s + 25}\right) = \underbrace{\frac{10}{30} \cdot \left(\frac{s}{50} + 1\right)}_{\text{Zero}} \cdot \underbrace{\left(\frac{25}{50} + 1\right)}_{\text{2nd-order factor}} \cdot \underbrace{\left(\frac{25}{50} + 1\right)}_{\text{2nd-order factor}}$$

2nd-order Factor

Frequency (rad/s)

Q4

The straight-line Bode magnitude plot for a LTI system, $\tilde{H}(s)$, which consists of real poles and zeros, is shown below. Identify $\tilde{H}(s)$.

$$\begin{split} \left| \left| \tilde{H} \left(j \omega \right) \right| &= K_{dc} \\ \left| \left| \tilde{H} \left(j \omega \right) \right|_{dP} &= 20 \log_{10} \left(K_{dc} \right) \; \mathrm{dB} \end{split} \right|^{\text{1-Rights Reserved.}} \end{split}$$

Therefore,

$$\tilde{H}(s) = 0.01 \cdot \frac{1}{\frac{s}{0.3} + 1} \cdot \left(\frac{s}{6} + 1\right)^2 \cdot \frac{1}{\frac{s}{50} + 1} \cdot \left(\frac{1}{\frac{s}{200} + 1}\right)^2$$

$$= \frac{0.01}{36} \left(\frac{0.3}{s + 0.3}\right) (s + 6)^2 \left(\frac{50}{s + 50}\right) \left(\frac{200}{s + 200}\right)^2 = \frac{500}{3} \frac{(s + 6)^2}{3(s + 0.3)(s + 50)(s + 200)^2}$$

Q5

(a) Identify the system $\tilde{H}_a(s)$ from its Bode magnitude plot shown below. Describe the behavior of the system at very low frequency ($\omega << 0.8 \text{ rad/s}$) and at very high frequency ($\omega >> 50 \text{ rad/s}$).

The low frequency asymptote is a line with slope -20 dB/decade, which indicates the presence of an integrator

$$\frac{K_I}{S} = \frac{4}{S}$$

© Copyright National University of Singapore. All Rights Reserved

A slope change of +20 dB/decade occurs at 0.8 rad/s, which indicates the presence of a zero factor

$$\frac{s}{0.8} + 1$$

A slope change of -20 dB/decade occurs at 8 rad/s, which indicates the presence of a pole factor

$$\frac{1}{\frac{s}{8}+1}$$

A slope change of -20 dB/decade occurs at 50 rad/s, which indicates the presence of a pole factor

$$\frac{\frac{1}{s}}{50} + 1$$

Therefore,

$$\tilde{H}_{a}(s) = \frac{4}{s} \cdot \left(\frac{s}{0.8} + 1\right) \cdot \left(\frac{1}{\frac{s}{8} + 1}\right) \cdot \left(\frac{1}{\frac{s}{50} + 1}\right) = \frac{4}{s} \cdot \frac{1}{0.8}(s + 0.8) \cdot 8\left(\frac{1}{s + 8}\right) \cdot 50\left(\frac{1}{s + 50}\right)$$

$$= \frac{2000}{s} \cdot \frac{s + 0.8}{(s + 0.8)(s + 50)}$$

At
$$\omega \ll 0.8 \text{ rad/s}$$
: $\tilde{H}_a(s) \cong \frac{2000}{s} \cdot \frac{s + 0.8}{\left(s + 8\right)\left(s + 50\right)} = \frac{4}{s} \leftarrow (\text{Integrator of gain 4}).$

At
$$\omega >> 50 \text{ rad/s}$$
: $\tilde{H}_a(s) \cong \frac{2000}{s} \cdot \frac{s + 0.8}{(s + 8)(s + 50)} = \frac{2000}{s^2} \leftarrow \text{ (double integrator of combined gain 2000)}$.

(b) The Bode magnitude plot for the system $\tilde{H}_b(s) = K \frac{(s+a)(s+b)(s+c)}{(s+d)(s^2+2\zeta\omega_n s+\omega_n^2)}$ is shown below.

Find the values of K, a, b, c, d and ω_n .

©

The low frequency asymptote is a line with slope +20 dB/decade, which indicates the presence of a differentiator

 $K_D s = 0.5s$

© Copyright National University of Singapore, All Rights Reserved

factor

A slope change of -20 dB/decade occurs at 4 rad/s, which indicates the presence of a pole

$$\frac{1}{\frac{S}{4}+1}$$

A slope change of -40 dB/decade occurs at 30 rad/s, which indicates the presence of a 2nd-order factor due to the existence of a resonant peak 30^{2}

 $s^2 + 60\zeta s + 30^2$

factor

A slope change of +40

dB/decade occurs at 200

rad/s, which indicates the

presence of a double zero

Therefore,

$$\tilde{H}_b(s) = 0.5s \cdot \left(\frac{1}{\frac{s}{4}+1}\right) \cdot \left(\frac{900}{s^2 + 60\zeta s + 900}\right) \cdot \left(\frac{s}{200} + 1\right)^2$$

$$= 0.5s \cdot 4\left(\frac{1}{s+4}\right) \cdot 900\left(\frac{1}{s^2 + 60\zeta s + 900}\right) \left(\frac{1}{s+30}\right)^2 \cdot \frac{1}{200^2} (s+200)^2$$

$$= 0.045 \frac{s(s+200)^2}{(s+4)(s^2 + 60\zeta s + 900)} = K \frac{(s+a)(s+b)(s+c)}{(s+d)(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

which results in K = 0.045, a = 0, b = c = 200, d = 4 and $\omega_n = 30$.

Thanks!