Projekt- und Qualitätsmanagement

Definition

Projekte sind einmalige, komplexe und zeitlich begrenzte Vorhaben, zu dessen Realisierung unterschiedliche Ressourcen herangezogen werden müssen.

⇒ Ressourcen sind z.B. Personen, Arbeitsgruppen, etc.

Projektgrösse

Die Projektgrösse wird im Normalfall anhand der Kosten, der Zeitspanne und den Arbeitsstunden gemessen.

Akademisch auch in Form von Function Points.

Projekterfolg

Der Projekterfolg hängt dabei direkt mit der Grösse des Projekts zusammen.

⇒ Grosse Projekte sind i.d.R. nicht Erfolgreich!

Make or Buy

Es ist nicht immer sinnvoll, ein Projekt selbst durchzuführen. Je nach Kosten und Aufwand kann sich auch eine «schlechtere» Standardlösung Johnen.

⇒ Wir nennen das den «Make or Buy» Entscheid ⇒ z.B. CMR oder eigene Webseite?

OTOBOS

Wir können den Stand eines Projekts mittels OTOBOS beurteilen. Wir stellen uns also die Frage: Ist das Projekt...

- on Time (OT)
- on Budget (OB)
- on Specification / Scope (OS)

Konflikte

Die 3 Aspekte von OTOBOS stehen immer miteinander im Konflikt. Ändern wir einen Aspekt, so beeinflussen wir auch

⇔ Ein neues Feature (Scope) braucht mehr Zeit (Time).
 ⇔ Ein besserer Mitarbeiter (Budget) arbeitet schneller (Time).

Projektantrag

Bevor wir ein Proiekt starten können. müssen wir meistens zuerst einen Projektantrag schreiben. Dieser beinhaltet:

- 1. Ausgangslage: Was ist die aktuelle Situation?
- 2. Ziele: Was wollen wir erreichen?
- 3. Motivation: Warum wollen wir es erreichen?
- 4. Ressourcen: Welche Ressourcen stehen uns zur Verfügung?
- 5. Termine: Welche Zeitvorgaben, Meilensteine, etc. haben wir?
- 6. Risiken: Welche Risiken hat das Projekt?
- ⇒ Denke dabei an KISS: «Keep it short and simple.»

Innovation

Wir bezeichnen ein Proiekt als innovativ. wenn es Fortschritte in der Technologie und der Organisation erzielt.

Projektkontrolle

Definition

Unter «Controlling» in einem Projekt verstehen wir mehrere Tätigkeiten:

- 1. Planung
- 2. Kontrolle & Abweichungsanalyse
- 3. Informierung & Berichtswesen
- 4. Steuerung & Koordination

Grundsätzlich geht es darum, den Projektstand zu ermitteln, diesen zu kommunizieren und allfällige Änderungen am Proiekt vorzunehmen.

. ⇒ «Controlling» ist also mehr als nur «kontrollieren».

Wer kontrolliert die Projekte?

Schlussendlich dient das «Controlling» besonders den Entscheidungsträgern in einem Proiekt. Diese sind:

- Der Lenkungsausschuss, also die Auftraggeberund Kunden (Soll).
- Die internen Mitarbeiter wie Proiekt-Controller, Audit und Portfolio- und Programm-Manager (Kann).

Einschub: Portfolio & Programm

In den meisten Unternehmen gehören Projekte immer einem Programm und darüber einem Portfolio an.

⇒ Portfolio: Alle Proiekte, die ein Unternehmen ausmachen. Programm: Zusammenhängende Projekte, die eine Teilmenge des Portfolios bilden.

Kontrolle & Abweichungsanalyse

Ausgangslage

In einem ersten Schritt müssen wir den aktuellen Proiektstand ermitteln. Das bedeutet, wir müssen den Projektfortschritt irgendwie messen.

Methoden

Leider ist es faktisch kaum möglich, den exakten Projektfortschritt zu ermitteln. Wir können aber:

- Das Produkt betrachten und dessen Fertigungsgrad bestimmen.
- Die Entwickler fragen, wie viel Zeit sie noch benötigen.
- Unschärfe ist dabei vorprogrammiert.

Messwerte

Um nun den Projektfortschritt bestimmen zu können, messen wir in bestimmten Abständen verschiedene Werte.

⇒ Wir können so den Projektstand als Trend abbilden.

1. Zeit, Kosten, Leistung

Gemäss OTOBOS messen wir mindestens die verbrauchte Zeit, die aktuellen Kosten sowie die erbrachte Leistung.

2. Earned-Value-Analyse (EVA)

Die EVA ist die bekannteste Messgrösse für den Projektfortschritt. Sie bestimmt den Fertiastellunaswert eines Projekts. woraus dann die Kosteneffizienz abgeleitet werden kann. Die EVA beinhaltet:

- Planned Cost (PC)
- Actual Cost (AC)
- Earned Value (EV)
- Cost Variance (CV)
- Cost Performance Index (CPI)

$$CV = EV - AC$$
 $CPI = \frac{E}{A}$

⇒ Wobei EV = Fertigstellungswert, CPI = Kosteneffizienz ⇒ Kosteneffizienz: Verhältnis der Kosten zur erbrachten Leistung ⇒ Wir streben immer eine Kosteneffizienz > 1 an.

Es gibt 3 Berechnungsmethoden:

1. Strikt: Alle vollständig abgeschlossenen Komponenten werden beachtet.

$$EV = K_1 + K_2 + K_3 + \dots$$

2. Zwischenresultate: Alle brauchbaren Komponenten werden beachtet.

 $EV = K_{1.1} + K_{1.3} + K_{2.2} + \dots$ 3. Restaufwand: Die Berechnung erfolgt über

die Schätzung des Restaufwands.

$$EV = rac{PC}{AC + Rest} \cdot AC$$

- ⇒ «Zwischenresultate» sind z.B. Module einer Software ⇒ Bei «Strikt» muss die gesamte Software fertig sein.
- 3. Meilenstein-Trend-Analyse (MTA)

Bei der MTA werden die Deadlines der Projektmeilensteine rückwirkend analysiert. Somit zeigt diese Analyse die Verschiebungen der Meilensteine über das Projekt hinweg auf.

⇒ Optimal sind keine Verschiebungen (horizontale Linien).

Weiteres

Im Zusammenhang mit dem Projektstand beachtet man auch oft:

- Risiken und Chancen
- Aktuelle Issues
- Restaufwandschätzung
- Kommentare
- Meistens hestimmt das Unternehmen den Inhalt

Informierung & Berichtswesen

Ausgangslage

Die meisten Projekte scheitern aufgrund ungenügender Kommunikation. Um das zu verhindern, benötigen wir im «Controlling» ein robustes Berichtswesen.

Kommunikationsvarianten

Die beste Methode für das Erreichen einer guten Kommunikation ist das Umwandeln der ermittelten Werte über den Projektstand in «einfache» Metriken.

⇒ Dies vereinfacht insbesondere die Kundenkommunikation.

1. Definition of Done

Die einfachste Variante ist die Einteilung des Arbeitsfortschritts in einfache Kategorien. Wann etwas «fertig» ist, bestimmen wir dabei selbst.

⇒ z.B. 0% nicht begonnen, 30% in Arbeit, 80% fertig.

2. Ampel-Prinzip

Beim Ampel-Prinzip drücken wir den Projektstand in Form einer Ampel aus. Dies hilft, die aktuelle Situation transparent und klar zu kommunizieren.

Rot: Abweichung grösser 5% -> Eskalation

Gelb: Abweichung 0-5% -> Beobachtung

Grün: Alles läuft nach Plan

 Jedes Unternehmen hat dabei eine eigene Farbdefinition. ⇒ Der Projektleiter muss somit klare Stellung nehmen

3. Aggregiertes Ampel-Prinzip

In Bezug auf OTOBOS können wir auch mehrere Ampeln anhand des maximum Prinzips aggregieren.

Maximum Prinzip: Ist etwas Orange, ist alles Orange

4. Cockpit

Ein Projekt Cockpit ist eine Sammlung von verschiedenen Messwerten und Analysen. Es erlaubt uns, den Projektstand schnell zu ermitteln und zu beeinflussen.

Steuerung & Koordination

Change Management

Kein Projekt wird so durchgeführt, wie es ursprünglich geplant wurde. Um mit Änderungen umzugehen, brauchen wir ein klares «Change Management».

⇒ Projektplanung bedeutet nicht, die Zukunft vorherzusagen. ⇒ Bei agilen Projekten ist dieses Thema nicht relevant.

Vorgehen bei Abweichungen

Bei klassischen Proiektmethoden müssen wir bei Abweichungen vom Plan irgendwie handeln. Wir können z.B.:

- Die Vorgehensweise ändern
- Überzeiten anordnen
- Coaching & Unterstützung anfordern

Wenn diese Massnahmen keine Verbesserungen bringen, müssen wir einen «Change Request» beantragen.

⇒ Die Vorgehensweise ändern heisst z.B. serielle Tätigkeiten in

Change Requests

Ein «Change Request» ist eine Anfrage beim Kunden, gewisse Aspekte des Projekts abzuändern. Change Requests müssen immer begründet sein.

⇒ Meistens ändern wir Aspekte in Bezug auf OTOBOS. ⇒ z.B.: Weniger Inhalt, damit das Geld reicht (Scope) ⇒ Oftmals ist mehr Budget besser als weniger Scope

Kategorien

Streng genommen gibt es genau 3 Kategorien von Change Requests: Scope, Budget und Time. In der Praxis sind aber auch weitere Kategorien anzutreffen:

Legal Terms: z.B. Vertragsort

Ressourcen: z.B. Hersteller

Voraussetzungen

Um einen Change Reguest zu stellen. müssen zuerst einige Voraussetzungen erfüllt sein:

1. Ein Change-Prozess ist definiert (Wie und an wen muss ich den Request stellen).

2. Die Änderung ist fassbar und allen bewusst.

- 3. Die technischen und organisatorischen Voraussetzungen sind erfüllt, wie z.B.:
 - · Der Change ist machbar
 - Die Ressourcen sind vorhanden
 - Die Termine sind realistisch
- o etc

Beschreibung eines Changes

In einem Change Request muss sinngemäss die gewünschte Änderung beschrieben sein. Die Beschreibung soll dabei:

- Kurz und prägnant sein.
- Sich an die Zielgruppe orientieren.
- Keinen Entscheid erpressen.
- Wahlfreiheit suggerieren.
- Die eingetroffenen Risiken erwähnen.
- Wörter verwenden wie: «Ermöglichen, ausserordentlich, neue Rahmenbedingungen»
- Wörter vermeiden wie: «muss, darf nicht sein, keine Ahnung, aus heiterem Himmel»

Auswirkungen und Risiken

Die Auswirkungen und Risiken eines Changes sollten in einem separaten Kapitel beschrieben werden. Dabei sollten u.a. auch diese Punkte erwähnt werden:

- Auswirkungen bei einer Ablehnung
- Neue Risiken bei einer Änderung

Quantifizierung

Mit einem Change Request will man oftmals mehr Budget oder Zeit für ein Projekt anfordern. Diese Werte müssen im Request sinnvoll quantifiziert sein.

- ⇒ z.B. «Wir benötigen 3 Monate mehr, damit wir...».
- ⇒ Quantifiziere so hoch wie möglich und so tief wie nötig.
 ⇒ Bei neuen Anforderungen immer Budget und Zeit erhöhen

Vorgehen

Projektmanagement (Klassisch)

Vorgehensmodelle

Vorgehensmodelle beschreiben die Art und Weise, wie ein Projekt realisiert wird. Wir unterscheiden zwischen agilen und klassischen Modellen.

⇒ Das Modell wird zu Beginn des Projekts festgelegt. ⇒ Änderungen daran sind mit grossem Aufwand verbunden

Agile Modelle

Agile Modelle basieren auf iterativen Arbeitsschritten und schlanken Prozessen. Sie benötigen insbesondere ein gutes Team Management.

⇒ Grundsätzlich geringer administrativen Aufwand.

Klassische Modelle

Klassische Modelle sind formeller und strikter, wodurch sie klare Aussagen zum Fortschritt und Inhalt eines Projekts zulassen. Sie benötigen ein gutes Change Management.

⇒ Grundsätzlich hoher administrativen Aufwand.

Wasserfallmodell

Beim Wasserfallmodell werden sequenziell mehrere sogenannten Phasen durchlaufen. Das Vorgehensmodell hat dabei folgende Eigenschaften:

- Phasen sind aufbauend, d.h. der Output einer Phase ist Input der nächsten
- Phasen müssen immer vollständig abgeschlossen werden.
- Das Zurückkehren in eine abgeschlossene Phase ist nicht erlaubt.
- Die Parallelisierung der Phasen soll vermieden werden.

Das Wasserfallmodell erlaubt eine klare und transparente Aussage über den Projektfortschritt.

⇒ Das Modell ist aber enorm statisch. ⇒ Daher gilt: Je später eine Änderung, desto teurer

Definition von «Phase»

Eine Phase beschreibt eine Sammlung von mehreren Arbeitspaketen, welche zeitlich und inhaltlich zusammenhängen. Phasen werden mit Meilensteinen terminiert und sollen ein Projekt in logische Abschnitte unterteilen.

⇒ Die Arbeitspakete sind dabei alle Aufgaben / Tasks.

Konzeption Entwicklung Einführung

⇒ Phasenübergänge werden z.T. auch «Gates» genannt. ⇒ Eine Parallelisierung von Phasen ist nicht vorgeseher

Rational Unified Process (RUP)

Beim RUP-Modell werden sequenziell 4 Phasen durchlaufen. Anders als beim Wasserfallmodell können fachliche Arbeiten (sogenannte «Disciplines») auch über mehrere Phasen verteilt sein.

Phasen vom RUP-Modell

Die 4 Phasen vom RUP-Modell sind:

- 1. Inception: Konzeption & Planung
- 2. Elaboration: Design & Prototyp
- 3. Construction: Entwicklung & Tests
- 4. Transition: Übergabe & Auslieferung
- ⇒ RUP endet immer mit dem «Product Release Milestone».

HFRMFS

HERMES ist ein strikt definiertes Vorgehensmodell des Bundes. Das Modell besteht aus exakt 4 Phasen:

- 1. Initialisierung
- 2. Konzept
- 3. Realisierung
- 4. Einführung

Alle Phasenübergänge müssen dabei zwingend vom Lenkungsausschuss freigegeben werden.

⇒ Unabhängiges Arbeiten also nur innerhalb einer Phase. ⇒ HERMES: «Handbuch der Elektronischen Rechenzentren des Bundes, eine Methode zur Entwicklung von Systemen».

Szenarien & Module

Bei HERMES gibt es 8 Standardszenarien für Projekte. Ein Szenario besteht dabei aus mehreren Modulen, welche wiederum aus Aufgaben, Rollen und Ergebnissen bestehen.

Partner & Hierarchien

Weiter werden bei HERMES alle «Rollen» in eine Hierarchie und eine oder mehrere Partner unterteilt. Es gibt genau 3 Hierarchien und 3 Partner.

- ⇒ z.B. Entwickler: Hierarchie «Ausführung», Partner «Ersteller» ⇒ z.B. Kunde: Hierarchie «Steuerung», Partner «Anwender
- ⇒ Alle Rollen sind dabei strikt definiert.
- Vor- und Nachteile

Vorteile:

- Hohe Standardisierung
- Viele Tools und Vorlagen
- Zertifizierung möglich
- Einbettung von Scrum möglich Passt für öffentliche Ausschreiben

Nachteile:

- Sehr starke Vorgaben
- Vier Phasen sind etwas knapp
- In der Privatwirtschaft kaum relevant
- Im Ausland gar nicht relevant
- Kann Projekte verkomplizieren

CYNEFIN Framework

Das CYNEFIN Framework soll bei der Wahl eines Vorgehensmodells (agil vs. klassisch) helfen. Dazu unterteilt es Proiekte in 4 Kategorien:

- 1. Simple: Die Lösung ist offensichtlich.
- 2. Complicated: Die Lösung benötigt eine Fachanalyse (stabile Herausforderungen).
- 3. Complex: Die Lösung muss neu erarbeitet werden (dynamische Herausforderungen).
- 4. Chaotic: Das Problem hat keine Lösung.

Simple und Complicated sollen dabei klassisch und Complex agil gelöst werden. Chaotic lässt sich nicht lösen.

⇒ Stabil: Ich kenne die Herausforderungen zu Beginn. ⇒ Dynamisch: Die Herausforderungen sind noch unbekannt

Einordnung

⇒ Griin: Standards Rot: Vorgehensmodelle

<u>Finanzen</u>

Gewinne & Kosten

Der Gewinn G eines Projektes berechnet sich aus Projektertrag und Kosten.

$$G_{\mathrm{Projekt}} = \mathrm{Ertrag} - \mathrm{Kosten}$$

Weiter lässt sich der Gesamtgewinn eines Unternehmens mittels der Summe der einzelnen Projektgewinne bestimmen:

$$G_{\mathrm{Gesamt}} = G_1 + G_2 + G_3 + \dots$$

⇒ Das Ziel ist meistens ein Gewinn von 10% des Ertrags.
⇒ Dazu kommen 10% Projektreserve, also insgesamt 20%

Wir unterscheiden 2 Kostenarten:

- 1. Variable Kosten V: Entstehen während eines Projektes (z.B. Spesen, Material, ...)
- 2. Fixe Kosten : Entstehen fortlaufend, unabhängig davon, ob Projekte laufen oder nicht (z.B. Lohnkosten, Miete, ...)

Deckungsbeitrag

Die Kosten eines Projekts stammen aus vielen verschiedenen Ouellen:

- 1. Projektspesen V: Reisen, Übernachtungen
- 2. Lohnkosten V 🖪: Gehälter, AHV
- 3. Indirekte Kosten : Telefonie, Lizenzen
- 4. Verwaltungskosten : Miete, Reinigung
- 5. Auslastung und Gewinn : Abschreibungen. Zinsen. Steuern

Oftmals wird anhand dieser Punkte eine Deckungsbeitragsrechnung erstellt. Diese soll aufzeigen, wie sich die Kosten auf den Gewinn auswirken.

⇒ Die Kosten können sich ie nach Land stark unterscheiden.

- 2.B. Silla die Edilikostell ill del Sellw	CIZ SCIII HOCH.	
Ertrag	\$100,000.00	
Projektspesen	-\$10,000.00	
Deckungsbeitrag 1	\$90,000.00	90%
Lohnkosten	-\$30,000.00	
Deckungsbeitrag 2	\$60,000.00	60%
Indirekte Kosten	-\$5,000.00	
Deckungsbeitrag 3	\$55,000.00	55%
Verwaltungskosten	-\$15,000.00	
Deckungsbeitrag 4	\$40,000.00	40%
Auslastung	-\$20,000.00	
Deckungsbeitrag 5 / Gewinn	\$20,000.00	20%

Da Gewinn ≥ 20% war das Projekt erfolgreich

Als Faustregel gilt: Ertrag = 2.5 · Lohnkoster

Erfolgsfaktoren

Wichtig für den finanzellen Erfolg sind:

- Effektivität: Das Richtige tun
- Effizienz: Es richtig tun

Nutzen

Nutzbetrachtung

Jedes Proiekt braucht einen Nutzen, welcher zu Beginn des Projektes auch festgelegt und akzeptiert wurde. Wir unterscheiden zwischen:

- Quantitativer Nutzen Quan (materiell)
- Qualitativer Nutzen Qual (immateriell)

Nutzelemente

Es gibt 4 Nutzelemente:

- 1. Finanzen Quan: Mehr Einnahmen, weniger Ausgaben
- 2. Compliance Qual: Erfüllung von Gesetzen, Einhaltung von Normen
- 3. Agilität Qual: Schnellere Prozesse, flexiblere Strukturen
- 4. Qualität Qual: Image, Zuverlässigkeit, Datenhygiene

Return on Investment (ROI)

Beim ROI geht es um die Frage, wann eine Investition wieder zurückgeholt werden kann. Man unterscheidet dabei bei den Proiektarten zwischen:

- Neuanschaffung: Einmalige Kosten mit jährlichen Betriebskosten (zukünftiger Nutzen relevant).
- Ersatzinvestition: Einmalige Kosten mit neuen/alten Betriebskosten (Unterschied der neuen/alten Nutzen relevant).

Weiter unterscheidet man die Finanzierung von einem Projekt:

- Fremdfinanzierung: Betrachtung der Zinsund Rückzahlungskosten
- Eigenfinanzierung: Betrachtung der Diskontierung (Zins & Risiko)
- ⇒ Der ROI ist vor allem für den Auftraggeber relevant.

Berechnung

Beim ROI werden die Kosten und Erträge eines Projekts über die Zeit hinweg ausgerechnet. Das Resultat ist die Zeit, die es dauert, bis wir einen Gewinn erzielen.

Beispiel: Neuanschaffung

		1. Jahr	2. Jahr
Entwicklungskosten		\$80'000.00	
Betriebskosten		\$0.00	\$10'000.00
Zinskosten für Kapital	6.0%	\$0.00	\$4'800.00
Total Kosten		\$80'000.00	\$14'800.00
Kumuliert		\$80'000.00	\$94'800.00
Produktertrag		\$0.00	\$40'000.00
Total Ertrag		\$0.00	\$40'000.00
Kumuliert		\$0.00	\$40'000.00
Kontostand CH Bank		\$0.00	\$25'200.00
Zins	0.50%	\$0.00	\$126.00
Gewinn/ Verlust		-\$80'000.00	-\$54'674.00

Beispiel: Ersatzinvestition

		1. Jahr	2. Jahr
Entwicklungskosten		CHF 29'000.00	
Betriebskosten		CHF 1'250.00	CHF 1'000.00
Zinskosten für Kapital	4.3%	CHF 1'247.00	CHF 1'247.00
Total Kosten		CHF 31'497.00	CHF 2'247.00
Kumuliert		CHF 31'497.00	CHF 33'744.00
Produktertrag		CHF 12'000.00	CHF 12'000.00
Total Ertrag		CHF 12'000.00	CHF 12'000.00
Kumuliert		CHF 12'000.00	CHF 24'000.00
Gewinn/ Verlust		CHF -19'497.00	CHF -9'744.00

Diskontierung

Der Diskontierungssatz beschreibt einen internen Zinssatz in Kombination mit einem Risikozuschlag. Das soll miteinbeziehen, dass Gewinne in der Zukunft weniger Wert haben wie Gewinne heute.

 $G_{ ext{Mit Disk.}} = G_i \cdot (1 - ext{Diskontierung})^i$

 \Rightarrow Wobei i das aktuelle Betrachtungsjahr darstellt. \Rightarrow Wird meistens bei Eigenfinanzierungen verwende

Beispiel: Diskontierung

		1. Jahr	2. Jahr
Entwicklungskosten		CHF 945'000.00	
Betriebskosten		CHF 350'000.00	CHF 200'000.00
Total Kosten		CHF 1'295'000.00	CHF 200'000.00
Gewinnsteigerung		CHF 300'000.00	CHF 600'000.00
Total Ertrag		CHF 300'000.00	CHF 600'000.00
Jahresrechnung (FCF)		CHF -995'000.00	CHF 400'000.00
Diskontierungsfaktor	4.50%	1	0.955
Diskont (DCF)		CHF -995'000.00	CHF 382'000.00
Gewinn/Verlust (CCF)		CHF -995'000.00	CHF -613'000.00

Business Case

In einem Business Case werden mehrere Geschäftsfälle und Varianten (Best Case, Worst Case, etc.) miteinander verglichen. Ein Business Case beinhaltet:

- Management Summary
- Abarenzungen
- Kosten pro Case
- Nutzen (Quant. und Qual.) pro Case
- ROI-Berechnung pro Case
- Risiken und Chancen
- Empfehlungen
- Anschliessend wird eine Variante umgesetzt.
- ⇒ Der Business Case dient als Entscheidungsgrundlage.

Finanzierung & Liquidität

Finanzierung

Jedes Projekt muss finanziert werden, d.h. die finanzellen Mittel müssen zur richten Zeit am richtigen Ort vorhanden sein. Wir unterscheiden bei der Finanzieruna zwischen:

- Interne Mittel des Unternehmens
- Externe Mittel in Form des Marktertrags (z.B. Teilzahlung durch Kunden)

Projekte, die mittels externen Mitteln finanziert werden, sind Hochrisiko-Projekte (Konkursrisiko).

⇒ D.h.: Diese Proiekte unterliegen einer schärferen Kontrolle ⇒ Das Risiko hängt von der Liquidität des Unternehmens ab.

Risikomanagement

Ausgangslage

Risiken und Chancen sind Unsicherheitsfaktoren in einem Projekt, welche sich positiv oder negativ auf das Ergebnis auswirken können. Die Risikoanalyse ist ein wichtiger Bestandteil des Projektmanagements.

⇒ Die Chancenanalyse ist seltener, aber hilfreich. ⇒ Ein eingetretenes Risiko nennt man auch «Issue».

Bestandteile von Risiken

Ein Risiko besteht aus 2 Faktoren:

- Eintrittswahrscheinlichkeit
- Schadensausmass
- ⇒ Diese Faktoren dienen u.a. der Priorisierung von Risiken.

Risikomanagement

Das Risikomanagement selbst kann in 5 Schritte aufgeteilt werden.

1. Identifizieren

Für die Risikoidentifikation werden in der Praxis meistens diese 4 Analysen angewendet:

- Impact Analyse
- Bedrohungsanalyse
- Schwachstellenanalyse
- Beliebige Kombinationen

Die Kombination von allen 3 Methoden entspricht einer vollständigen Analyse.

Impact Analyse

Bei der Impact Analyse werden die kritischen Geschäftsprozesse und Infrastrukturen eines Projekts analysiert und deren Störungen als Risiko formuliert.

Bedrohungsanalyse

Bei der Bedrohungsanalyse werden möglichen Bedrohungen aus einem Bedrohungskatalog analysiert und die davon relevanten als Risiko formuliert.

Schwachstellenanalyse

Bei der Schwachstellenanalyse werden anhand **ähnlicher Projekte** die grössten Schwachstellen identifiziert und dann als Risiko formuliert.

2. Einschätzen

Jedes Risiko muss entweder **qualitativ** (Hoch, Mittel, Tief) oder quantitativ (Zeit, Kosten) eingeschätzt werden. Es gibt 3 Arten, um dies zu tun:

- Schätzung der maximalen Werte
- Schätzung der mittleren Werte
- Schätzung via statistischer Verteilfunktion

Im Normalfall wird zuerst die Eintrittswahrscheinlichkeit und dann das Schadensausmass geschätzt.

- ⇒ Dies kann «Bottom-Up» oder «Top-Down» gemacht werden.
- Bottom-Up: Zuerst Detailanalyse, dann Übersicht. ⇒ Top-Down: Zuerst Übersicht, dann Detailanalyse.

Beispiel «Serverausfall»

Ein	rittswahrscheinlichkeit	Ø in Monate
R1	Ausfall Harddisk	36
R2	Ausfall Stromversorgung	36
R3	Unbeabsichtigtes Herunterfahren	36
R1-	R3: Serverausfall alle 12 Monate.	
Bere	chnung: In 36 Monaten können 3 Ausfälle auftretten.	D.h. Ø 12 = 36 / 3

Sch	adensausmass	CHF	
R1	Ausfall Harddisk	5000	
R2	Ausfall Stromversorgung	2000	
R3	Unbeabsichtigtes Herunterfahren	500	
R1-R3: Ein Ausfall kostet 2'500 CHF.			
Berei	chnung: Durchschnittsrechnung der Werte.		

⇒ Wir verwenden meist den MTBF (Mean Time between Failure).

3. Bewertung

Bei der Risikobewertung werden Risiken in einen Kontext gebracht und wenn möglich terminlich fixiert oder priorisiert. Man verwendet dazu 2 Methoden.

1. Risikoliste

Die Risikoliste ist eine Sammlung von allen identifizierten Risiken. Sie beinhaltet meistens:

- Risiko (mit ID)
- Massnahmen
- Kosten der Massnahmen
- Schadensausmass (Kosten)
- Eintrittswahrscheinlichkeit
- Gewichteter Schaden
- Priorität / Termin

Dies ist wie eine «Lebensversicherung»

2. Risikograph / Risikomatrix

Anhand der Risikoliste können die Risiken nun in einen Risikograph eingetragen werden. Die meisten Unternehmen definieren dabei eine sogenannte Akzeptanzlinie, unter welcher alle Risiken liegen müssen.

⇒ Risiken darüber müssen entsprechend reduziert werden

Beispiele von Risiken

Bekannte Risiken sind:

- Personelle Defizite (Quantität & Qualität)
 - Unrealistische Termine und Kosten
 - Entwicklung von falschen Funktionen
- Entwicklung der falschen Schnittstellen Vergolden vom Projekt
- Ständige Anforderungsänderungen
- Defizite bei externen Komponenten
- Defizite bei externen Aufgaben
- Defizite in der Echtzeitleistung
- Überfordern der Softwaretechnik
- ⇒ In den Vorlesungsunterlagen finden sich noch mehr. ⇒ Die «20 Fehler nach Lindecker» sind sehr ähnlich.

4. Bewältigung

Um ein Risiko zu bewältigen, können wir eine oder mehrere der folgenden 4 Methoden anwenden:

- 1. Vermeiden: z.B. eine risikoreiche Methodik durch eine andere ersetzen.
- 2. Vermindern: z.B. Schulungen in einem bestimmten Bereich durchführen.
- 3. Überwälzen: z.B. eine entsprechende Versicherung abschliessen.
- 4. Selbst tragen: z.B. den Schaden beim Eintritt akzeptieren und abzahlen.
- ⇒ Überwälzen bedeutet, das Risiko auf andere zu übertragen. ⇒ Merke: Es bleibt immer ein Restrisiko vorhanden!

5. Massnahmen

Grundsätzlich gilt: Eine Massnahme soll nicht teurer sein, als das Risiko selbst. Wenige aber griffige Massnahmen sind dabei vom Vorteil. Einige Taktiken sind:

- Risiken mit hoher Eintrittswahrscheinlichkeit vermeiden.
- Risiken mit hohem Schadensausmass vermindern.
- Seltene Risiken überwälzen.
- Für alle anderen Risiken eine zeitliche / finanzielle Projektreserve bereitstellen.

⇒ Risiken ohne gute Massnahmen sollen akzeptiert werden. ⇒ Es lassen sich auch Eintrittsmassnahmen definieren.

Beispiele von Massnahmen

Einige Massnahmen sind:

- Gegen Personalausfall: Jeder Projektmitarbeitende hat einen Stellvertreter und informiert diesen wöchentlich über den aktuellen Stand.
- Gegen schlechte Datenqualität: Zusätzliche Tests überprüfen systematisch die Inhalte der Datenbank.
- Gegen unklare Anforderungen: Zusätzliche Meetings mit dem Kunden werden ange-

Chancen

Chancen sind das Gegenteil von Risiken. Es lohnt sich, mögliche Chancen zu identifizieren und deren Eintrittswahrscheinlichkeit und Nutzen zu bestimmen. Typische Chancen sind:

- Neue Hardware-Generationen machen Tuning überflüssig.
- Bestimmte Klassen werden auch von anderen Kunden benötigt.
- Benötigte Hardware trifft früher ein.
- Man kann dies auch in eine SWOT-Analyse verpacken.

Qualitätsmanagement

Ausgangslage

Der Begriff «Qualität» hat selbst keine Wertung: Qualität kann entweder gut oder schlecht sein. In einem Projekt streben wir selbstverständlich immer gute Qualität an.

⇒ Der Begriff stammt aus dem Lateinischen: «qualitas».

Softwarequalität

Im Bereich der Softwaresysteme streben wir 6 Qualitätsmerkmale an:

- 1. Funktionalität
- 2. Zuverlässigkeit
- 3. Benutzbarkeit
- 4. Effizienz
- 5. Änderbarkeit
- 6. Übertragbarkeit

Wir sprechen bei diesen Themen auch von nicht-funktionalen Anforderungen.

Qualitätsmerkmale von Softwaresystemen (ISO 9126) Funktionalität Zuverlässigkeit Benutzbarkeit Verständlichkeit Fehlertoleranz Richtiakeit Erlembarkeit Interoperabilität Wiederherstellbarkei Ordnungsmäßigkeit in allen Kriteriengruppen: + Konformität Verbrauchsverhalten Analyciarharkait Annassbarkeit Zeitverhalter vlodifizierbarkeit Installierbarkeit Stabilität Austauschbarkeit Effizienz Änderbarkeit Übertragbarkeit

Beispiele von Softwarequalität

Wir können uns bei der Softwarequalität z.B. diese Frage stellen:

- Funktionalität: Ist der Code sinnvoll strukturiert und getestet?
- Änderbarkeit: Ist der Code dokumentiert und modularisiert?
 Zuverlässigkeit: Werden Fehler im Code ab-
- Zuverlässigkeit: Werden Fehler im Code al gefangen und geloggt?
- Übertragbarkeit: Kann der Code auf anderen Systemen ausgeführt werden?

Informationssicherheit

Ungemein wichtig für Softwaresysteme sind auch die 4 Themen im Bereich der Informationssicherheit:

- Vertraulichkeit: Informationen sind nur für erlaubte Personen sichtbar.
- 2. Integrität: Informationen sind vor unerlaubten Änderungen geschützt.
- 3. Verfügbarkeit: Systeme sind verfügbar, wenn sie gebraucht werden.
- Vertrauenswürdigkeit: Transaktionen passieren nur zwischen vertrauten Parteien.

Datengualität

Daten sind die wertvollsten Bestandteile von Softwaresystemen. Bei Daten gilt aber «Garbage in - Garbage out»: Nur mit hoher Datenqualität lassen sich gute Ergebnisse erzielen.

Dimensionen

Die Qualität von Daten lassen sich an 5 Faktoren messen:

- 1. Konsistenz
- 2. Gültigkeit
- 3. Vollständigkeit
- 4. Korrektheit
- 5. Aktualität

Die Datenqualität gibt an, wie gut sich die Daten für einen bestimmten Anwendungszweck eignen.

⇒ Diese Aspekte müssen regelmässig geprüft werden. ⇒ z.B. Beim Speichern oder Auswerten der Daten

Massnahmen zur Verbesserung

Diese 5 Massnahmen können die Datenqualität verbessern:

- 1. Definieren der Datenqualität
- 2. Ständiges Messen der Datenqualität
- Stakeholder und Spezialisten einbeziehen: Diese können am besten Bestimmen, ob die Datengualität stimmt.
- «First Time Right» Ansatz befolgen: Das Nachbessern von Datensätzen ist ineffizient und aufwendig.
- 5. Daten silos vermeiden: Alle Daten sollten einmalig und zentral abgelegt sein.

Qualitätssicherung im Projekt

Unter Qualitätssicherung versteht man die strukturierte Prüfung der Qualität in einem Projekt. Dies wird mittels **präventiven** (konstruktiven) und **detektiven** (analytischen) Massnahmen erreicht.

⇔ Wir wollen also Qualitätsfehler finden und vermeiden.
 ⇔ Es gilt: Je früher die Fehlerbehebung, desto günstiger

Software-Qualitätssicherung (QS) Analytische QS (Tehler inder) Audits (Prozesse) Audits (Prozesse) Reviews (Dokumente) Normen, &hulungen,...

Qualität im Projektmanagement

Das zentrale Mass für die Projektqualität sind die Erwartungen des Kunden an die erarbeiteten Ergebnissen. Ein Projektmanager muss immer folgende Punkte beachten:

Kundenzufriedenheit: Ohne Kundenzufriedenheit keine Qualität. Ist der Kunde unzufrieden, spielen Qualitätsmerkmale keine Rolle.

- 2. Kosten: Wie viel kostet das Erreichen eines Qualitätsmerkmals und wie viel kostet der Schaden beim Nicht-Erreichen?
- 3. Verbesserungen: Wie k\u00f6nnen die Prozesse und Arbeiten kontinuierlich verbessert werden?

Bei 2.: Die Kosten der Konformität und Nicht-Konformität.

Verfahren zur Qualitätsverbesserung

Für die Qualitätsverbesserung können verschiedene Verfahren angewandt werden. Dazu gehören u.a.:

1. Audits und Reviews

Bei diesem Verfahren werden alle Lieferergebnisse von einer weiteren Person auf Spezifikation und Codequalität überprüft.

⇒ Dies verbessert neben der Qualität auch die Wartbarkeit.
 ⇒ Kann bis ins Extreme praktiziert werden (Pair-Programming)

2. Continuous Delivery

Bei diesem Verfahren wird die Software fortlaufend kompiliert, getestet, verpackt und in die Produktion gestellt.

⇒ Kleine Schritte reduzieren das Schadenmass von Fehlem.
⇒ Dies benötigt ein sinnvolles Versionssystem wie Git.

3. Ad absurdum und Negativtests

Bei diesem Verfahren werden bewusst alle Anforderungen und Ergebnisse angezweifelt und hinterfragt.

⇒ Ist diese Anforderungen wichtig? Oder ist sie unnötig? ⇒ Erstellte Testfälle sollen bewusst Fehler auslösen.

OM-Handbuch

Ein gutes QM-Handbuch («How-To») kann dabei helfen, die Qualitätssicherung in einem Projekt sauber durchzuführen. Oft stossen solche Handbücher aber auf diese Probleme:

- Die Ziele sind nichts aussagend
- Die Ziele sind unspezifisch
- Die Ziele sind unvollständig
- Die Ziele sind unkonkret
- ⇒ Es ailt: Lieber kein Handbuch als ein schlechtes.

Qualitätssicherung im Unternehmen

SixSiama

SixSigma ist ein mathematisches Modell zur Messung und Optimierung von Geschäftsprozessen. Es basiert auf dem DMAIC-Prinzip

⇒ SixSigma ist unabhängig von Prozess und Branche. ⇒ Die Anwendung der Methodiken ist dabei frei.

Define

Bei Define wollen wir das Betrachtungsfeld eingrenzen. Wir können z.B. ein Prozess mittels SIPOC definieren.

⇒ SIPOC: Suppliers, Inputs, Process, Outputs, Customers ⇒ s. Beispiel «Teezubereitung»

⇒ s. Beispiel «Teezubereitung»

Measure

Nun werden die Werte gemessen. Wir können z.B. die Teetrinker (Customers) fragen, ob Sie den Tee gut finden oder nicht. Wir streben dabei einen positiven Wert von 99.99966% (6σ) an!

⇒ Wir haben also einen definierten Input und Output.
⇒ Dies ist unsere «Formel» mit einem Erwartungswert.

Klassisch vs. SixSigma

Klassisch sind 99% (3.8o) aut:

- 20'000 verlorene Briefe pro Stunde.
- 5'000 falsche chirurgische Eingriffe pro Woche in Europa.
- Landungen ausserhalb der Rollbahn auf den grössten Flughäfen täglich.

Bei SixSigma sind 99.99966% (6σ) gut:

- 7 verlorene Briefe pro Stunde.
- 1.7 falsche chirurgische Eingriffe pro Woche in Europa.
- 0.0007 Landungen ausserhalb der Rollbahn auf den grössten Flughäfen.

⇒ Bei SixSigma passieren nur 3.4 Fehler auf eine Million.

Improve

In diesem Schritt werden mit neuem Wissen, Werkzeuge und Verhalten die Aktionen des Unternehmens so angepasst, dass die neuen Messwerte genau in diesem 60-Bereich liegen.

⇒ z.B. andere Zubereitungsart des Tees.