PROBLEM STATEMENT

"Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement ??? a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways."

What should be submitted.

The goal of your project is to predict the manner in which they did the exercise. This is the "classe" variable in the training set. You may use any of the other variables to predict with. You should create a report describing how you built your model, how you used cross validation, what you think the expected out of sample error is, and why you made the choices you did. You will also use your prediction model to predict 20 different test cases.

Data

The training data for this project are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv

The test data are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv

SOLUTION

Open the R tool and install the following packages by typing

Install.packages("caret")

Install.packages("randomForest")

```
Install.packages("e1071")
```

Load the Give Libraries using the following command.

Library(caret)

library(randomForest)

Library(e1071)

The training and Testing data set is available as links online. You can store the CSV Files as per the following command.

```
Urltrain = "http://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"

training = read.csv(url(Urltrain), na.strings=c("NA","#DIV/0!",""))

Urltest = "http://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"

testing11 <- read.csv(url(Urltest), na.strings=c("NA","#DIV/0!",""))
```

Addtionally, you can manually download the CSV Files from the given link by using the:-

Getwd()

And setting to the Location where you have stored the .CSV Files.

There are many Columns which show high Variance, We get rid of them first by using the command:-

```
training.first <- training[ , colSums(is.na(training)) == 0]

remove = c('X', 'user_name', 'raw_timestamp_part_1', 'raw_timestamp_part_2', 'cvtd_timestamp', 'new_window', 'num_window')

training.second <- training.first[, -which(names(training.first) %in% remove)]

We check the dimensions of the first and second row:-

> nrow(training.first)

[1] 19622
```

[1] 19622

> nrow(training.second)

There are many Columns which show high Variance, We get rid of them first by using the command:-

```
> zV= nearZeroVar(training.dere[sapply(training.second, is.numeric)], saveMetrics =
TRUE)
> training.nonzerovar = training.second[,zeroVar[, 'nzv']==0]
> dim(training.nonzerovar)
[1] 19622     53
> cM <- cor(na.omit(training.nonzerovar[sapply(training.nonzerovar, is.numeric)]]))
> dim(cM)
[1] 52 52
cDF <- expand.grid(row = 1:52, col = 1:52)
cDF$correlation <- as.vector(cM)
> cDF <- expand.grid(row = 1:52, col = 1:52)
> cDF$correlation <- as.vector(cM)</pre>
```

levelplot(correlation ~ row+ col, cDF)

> rcor = findCorrelation(corrMatrix, cutoff = .87, verbose = TRUE)

Compare row 10 and column 1 with corr 0.992

Means: 0.27 vs 0.168 so flagging column 10

Compare row 1 and column 9 with corr 0.925

Means: 0.25 vs 0.164 so flagging column 1

Compare row 9 and column 4 with corr 0.928

Means: 0.233 vs 0.161 so flagging column 9

Compare row 8 and column 2 with corr 0.966

Means: 0.245 vs 0.157 so flagging column 8

Compare row 2 and column 11 with corr 0.884

```
Means: 0.228 vs 0.154 so flagging column 2
Compare row 19 and column 18 with corr 0.918
 Means: 0.09 vs 0.154 so flagging column 18
Compare row 46 and column 31 with corr 0.914
 Means: 0.101 vs 0.158 so flagging column 31
Compare row 46 and column 33 with corr 0.933
 Means: 0.082 vs 0.161 so flagging column 33
All correlations <= 0.87
> training.decor = training.nonzerovar[,-rcor]
> dim(training.decor)
[1] 19622 45
We now split our Training Data into 2 Sets with a 65% split to our modified training set
and the remaining 35% which stays in the testing set.
> inTrain <- createDataPartition(y=training.decor$classe, p=0.65, list=FALSE)
> train <- training.decor[inTrain,];</pre>
> test <- training.decor[-inTrain,]</pre>
> dim(training);
[1] 13737 46
> dim(testing)
[1] 5885 46
set.seed(999)
rf.training=randomForest(classe~.,data=train,ntree=100, importance=TRUE)
rf.training
y=varImpPlot(rf.training,)
> y=varImpPlot(rf.training,)
> y
            MeanDecreaseAccuracy MeanDecreaseGini
```

724.83447

255.56995

32.029426

12.604981

yaw_belt

total_accel_belt

gyro	os_belt_x	15.593406	86.91657	
gyro	os_belt_y	8.756169	101.48180	
gyro	os_belt_z	19.055566	340.55547	
mag	gnet_belt_x	17.916008	215.04822	
mag	gnet_belt_y	16.679845	408.57591	
mag	gnet_belt_z	15.244762	328.98098	
roll_	arm	20.024840	236.10620	
pitc	h_arm	10.497100	144.78818	
yaw	_arm	15.096575	204.52550	
tota	l_accel_arm	11.077107	80.05923	
gyro	os_arm_y	20.526429	123.59521	
gyro	os_arm_z	15.786235	61.49579	
acc	el_arm_x	10.504261	184.80547	
acc	el_arm_y	13.453446	135.70542	
acc	el_arm_z	13.766164	109.37582	
mag	gnet_arm_x	8.604656	188.95669	
mag	gnet_arm_y	9.299032	168.88421	
mag	gnet_arm_z	15.245923	147.37576	
roll_	_dumbbell	15.598563	326.60878	
pitc	h_dumbbell	8.315829	135.90273	
yaw	_dumbbell	13.627680	194.76769	
tota	l_accel_dumbbell	12.94853	39 205.95248	
gyro	os_dumbbell_y	13.82808	4 223.95488	
acc	el_dumbbell_x	13.03980	6 189.44484	
acc	el_dumbbell_y	17.225338	8 286.71295	
acc	el_dumbbell_z	16.20983	7 244.10784	
mag	gnet_dumbbell_x	14.9243	24 337.38854	
mag	gnet_dumbbell_y	20.2570	29 493.11831	
mag	gnet_dumbbell_z	28.6862	35 572.07015	
roll_	forearm	14.688614	425.69150	
pitc	h_forearm	19.962761	566.22108	

yaw_forearm	14.481442	142.72084
total_accel_forearm	14.186970	88.99483
gyros_forearm_x	15.437910	70.97954
gyros_forearm_y	20.587655	115.92990
gyros_forearm_z	17.605637	77.98011
accel_forearm_x	15.020910	226.22867
accel_forearm_y	12.898990	119.38238
accel_forearm_z	17.083710	211.92138
magnet_forearm_x	10.898452	164.74667
magnet_forearm_y	13.269938	189.39069
magnet_forearm_z	23.045708	227.39173

tree.pred=predict(rf.training,test,type="class")

predMatrix = with(testing,table(tree.pred,classe))

> confusionMatrix(tree.pred,test\$classe)

Confusion Matrix and Statistics

Reference

Prediction A B C D E

A 1949 5 0 0 0

B 41317 10 0 0

C 0 61186 18 0

D 0 0 11104 2

E 0 0 0 3 1260

Overall Statistics

Accuracy: 0.9929

95% CI: (0.9906, 0.9947)

No Information Rate: 0.2845

P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.991

Mcnemar's Test P-Value: NA

Statistics by Class:

Class: A Class: B Class: C Class: D Class: E

Sensitivity 0.9980 0.9917 0.9908 0.9813 0.9984

Specificity 0.9990 0.9975 0.9958 0.9995 0.9995

Pos Pred Value 0.9974 0.9895 0.9802 0.9973 0.9976

Neg Pred Value 0.9992 0.9980 0.9981 0.9964 0.9996

Prevalence 0.2845 0.1934 0.1744 0.1639 0.1838

Detection Rate 0.2839 0.1918 0.1728 0.1608 0.1835

Detection Prevalence 0.2846 0.1939 0.1763 0.1613 0.1840

Balanced Accuracy 0.9985 0.9946 0.9933 0.9904 0.9989

Random Forests give us Highly Accurate results. Hence, we go in for this for testing our Test Data.

Now, we use our Random Forest Model to test our Test set predictors.

TESTING DATA PREDICTIONS

> Testsetpredictors <- predict(rf.training, testing11)
> Testsetpredictors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 B A B A A E D B A A B C B A E E A B B B

Levels: A B C D E