MATEMÁTICA DISCRETA

Ano Letivo 2022/23 (Versão: 9 de Março de 2023)

Departamento de Matemática, Universidade de Aveiro https://elearning.ua.pt/

CAPÍTULO 2 PRINCÍPIOS DE ENUMERAÇÃO

COMBINATÓRIA

• Quantos sequências binárias de comprimento *n* existem?

- Quantos sequências binárias de comprimento *n* existem?
- Quantos números de 4 algarismos (divisíveis por 5) se podem escrever com os dígitos 1,..., 9?

- Quantos sequências binárias de comprimento n existem?
- Quantos números de 4 algarismos (divisíveis por 5) se podem escrever com os dígitos 1,..., 9?
- Quantas maneiras existem de colocar k bolas em n caixas?

- Quantos sequências binárias de comprimento n existem?
- Quantos números de 4 algarismos (divisíveis por 5) se podem escrever com os dígitos 1,..., 9?
- Quantas maneiras existem de colocar k bolas em n caixas?
- Quantas sequências binárias com k uns e n − 1 zeros existem?

- Quantos sequências binárias de comprimento n existem?
- Quantos números de 4 algarismos (divisíveis por 5) se podem escrever com os dígitos 1,..., 9?
- Quantas maneiras existem de colocar k bolas em n caixas?
- Quantas sequências binárias com k uns e n-1 zeros existem?
- Sejam $k, n \in \mathbb{N}$. A equação $x_1 + \cdots + x_n = k$ tem quantas soluções com $x_i \in \mathbb{N}$?

- Quantos sequências binárias de comprimento n existem?
- Quantos números de 4 algarismos (divisíveis por 5) se podem escrever com os dígitos 1,..., 9?
- Quantas maneiras existem de colocar k bolas em n caixas?
- Quantas sequências binárias com k uns e n-1 zeros existem?
- Sejam $k, n \in \mathbb{N}$. A equação $x_1 + \cdots + x_n = k$ tem quantas soluções com $x_i \in \mathbb{N}$?
- Sejam 50 pessoas numa sala de 7 m \times 7 m. Então, há duas pessoas que estão a uma distância inferior a 1.5 metros entre elas?

• ...

Seja $f: A \longrightarrow B$ uma função. Então, f diz-se

- injetiva quando, para todos os $x, y \in A$: $f(x) = f(y) \implies x = y$.
- sobrejetiva quando todo o $y \in B$ é imagem de algum $x \in A$; isto é, para todo o $y \in B$ existe um $x \in A$ com f(x) = y.
- bijetiva quando f é injetiva e sobrejetiva.

Seja $f: A \longrightarrow B$ uma função. Então, f diz-se

- injetiva quando, para todos os $x, y \in A$: $f(x) = f(y) \implies x = y$.
- sobrejetiva quando todo o $y \in B$ é imagem de algum $x \in A$; isto é, para todo o $y \in B$ existe um $x \in A$ com f(x) = y.
- **bijetiva** quando *f* é injetiva e sobrejetiva.

Definição

Uma função $f: A \longrightarrow B$ diz-se **invertível** quando existe uma função $g: B \longrightarrow A$ com $g \circ f = \mathrm{id}_A$ e $f \circ g = \mathrm{id}_B$.

Seja $f: A \longrightarrow B$ uma função. Então, f diz-se

- injetiva quando, para todos os $x, y \in A$: $f(x) = f(y) \implies x = y$.
- sobrejetiva quando todo o $y \in B$ é imagem de algum $x \in A$; isto é, para todo o $y \in B$ existe um $x \in A$ com f(x) = y.
- bijetiva quando f é injetiva e sobrejetiva.

Definição

Uma função $f: A \longrightarrow B$ diz-se **invertível** quando existe uma função $g: B \longrightarrow A \text{ com } g \circ f = \text{id}_A \text{ e } f \circ g = \text{id}_B.$

Teorema

 $f: A \longrightarrow B$ é invertível se e somente se f é bijetiva.

Seja $f: A \longrightarrow B$ uma função. Então, f diz-se

- injetiva quando, para todos os $x, y \in A$: $f(x) = f(y) \implies x = y$.
- sobrejetiva quando todo o $y \in B$ é imagem de algum $x \in A$; isto é, para todo o $y \in B$ existe um $x \in A$ com f(x) = y.
- bijetiva quando f é injetiva e sobrejetiva.

Definição

Uma função $f: A \longrightarrow B$ diz-se **invertível** quando existe uma função $g: B \longrightarrow A$ com $g \circ f = \mathrm{id}_A$ e $f \circ g = \mathrm{id}_B$.

Teorema

 $f: A \longrightarrow B$ é invertível se e somente se f é bijetiva.

Nota

Para um conjunto finito A, denota-se por |A| o número de elementos de A.

ÍNDICE (6)

- 1. O princípio da gaiola dos pombos
- 2. O princípio da bijeção

- 3. Os princípios da adição e da multiplicação
- 4. Generalizações
- 5. O princípio da bijeção (outra vez)

1. O PRINCÍPIO DA GAIOLA DOS POMBOS

n pombos voam para m gaiolas. Se n > m, então pelo menos uma gaiola irá ter mais de um pombo.

Também conhecido como «o princípio das gavetas de Dirichlet». Johann Peter Gustav Lejeune Dirichlet (1805 – 1859), matemático alemão.

n bolas devem ser postos em m caixas. Se n > m, então pelo menos uma caixa irá conter mais de uma bola.

Também conhecido como «o princípio das gavetas de Dirichlet». Johann Peter Gustav Lejeune Dirichlet (1805 – 1859), matemático alemão.

O PRINCÍPIO DA GAIOLA DOS POMBOS

A ideia

n bolas devem ser postos em m caixas. Se n > m, então pelo menos uma caixa irá conter mais de uma bola.

Também conhecido como «o princípio das gavetas de Dirichlet». Johann Peter Gustav Lejeune Dirichlet (1805 – 1859), matemático alemão.

Mais formal

Sejam A um conjunto e (A_1, \ldots, A_m) uma sequência de subconjuntos de A dois a dois disjunta com

$$A = A_1 \cup \cdots \cup A_m$$
.

Se |A| > m, então $|A_i| > 1$ para algum $1 \le i \le m$.

n bolas devem ser postos em m caixas. Se n > m, então pelo menos uma caixa irá conter mais de uma bola.

Também conhecido como «o princípio das gavetas de Dirichlet». Johann Peter Gustav Lejeune Dirichlet (1805 – 1859), matemático alemão.

Mais formal

Sejam A um conjunto e (A_1,\ldots,A_m) uma sequência de subconjuntos de A dois a dois disjunta com

$$A = A_1 \cup \cdots \cup A_m$$
.

Se |A| > m, então $|A_i| > 1$ para algum $1 \le i \le m$.

Formulação alternativa

Sejam A e B conjuntos finitos e f: $A \longrightarrow B$ uma função. Se |A| > |B|,

n bolas devem ser postos em m caixas. Se n > m, então pelo menos uma caixa irá conter mais de uma bola.

Também conhecido como «o princípio das gavetas de Dirichlet». Johann Peter Gustav Lejeune Dirichlet (1805 – 1859), matemático alemão.

Mais formal

Sejam A um conjunto e (A_1,\ldots,A_m) uma sequência de subconjuntos de A dois a dois disjunta com

$$A = A_1 \cup \cdots \cup A_m$$
.

Se |A| > m, então $|A_i| > 1$ para algum $1 \le i \le m$.

Formulação alternativa

Sejam A e B conjuntos finitos e $f:A\longrightarrow B$ uma função. Se |A|>|B|, então f não é injetiva.

n bolas devem ser postos em m caixas. Se n > m, então pelo menos uma caixa irá conter mais de uma bola.

Também conhecido como «o princípio das gavetas de Dirichlet». Johann Peter Gustav Lejeune Dirichlet (1805 – 1859), matemático alemão.

Mais formal

Sejam A um conjunto e (A_1, \ldots, A_m) uma sequência de subconjuntos de A dois a dois disjunta com

$$A = A_1 \cup \cdots \cup A_m$$
.

Se |A| > m, então $|A_i| > 1$ para algum 1 < i < m.

Formulação alternativa

Sejam A e B conjuntos finitos e $f:A\longrightarrow B$ uma função. Se |A|>|B|, então f não é injetiva.

A contraposição é «mais óbvia»: Se $f: A \longrightarrow B$ é injetiva, então $|A| \le |B|$.

Há duas pessoas aqui na sala que fazem anos no mesmo mês.

Há duas pessoas aqui na sala que fazem anos no mesmo mês.

Consideremos a função

$$f \colon \{ \text{pessoas na sala} \} \longrightarrow \{ \text{janeiro, } ..., \text{dezembro} \},$$
 $p \longmapsto \text{o m\^{e}s do nascimento de } p$

com

$$|\{\text{janeiro, }..., \text{dezembro}\}| = 12$$

е

$$|\{\text{pessoas na sala}\}| > 12$$
 (espero).

Logo, f não é injetiva.

Exemplo

Sejam 50 pessoas numa sala de 7 m \times 7 m. Então, há duas pessoas que estão a uma distância inferior a 1.5 metros entre elas.

Exemplo

Sejam 50 pessoas numa sala de 7 m \times 7 m. Então, há duas pessoas que estão a uma distância inferior a 1.5 metros entre elas.

Dividimos a sala em quadrados «unitários» e consideremos a função

 $f \colon \{ ext{as pessoas na sala}\} \longrightarrow \{ ext{os quadrados}\}$ $p \longmapsto ext{o quadrado onde } p ext{ está}$

Exemplo

Sejam 50 pessoas numa sala de 7 m \times 7 m. Então, há duas pessoas que estão a uma distância inferior a 1.5 metros entre elas.

Dividimos a sala em quadrados «unitários» e consideremos a função

 $f \colon \{ ext{as pessoas na sala} \} \longrightarrow \{ ext{os quadrados} \}$ $p \longmapsto ext{o quadrado onde } p ext{ está}$

(se *p* está na fronteira, escolhemos um dos quadrados).

Exemplo

Sejam 50 pessoas numa sala de 7 m \times 7 m. Então, há duas pessoas que estão a uma distância inferior a 1.5 metros entre elas.

Dividimos a sala em quadrados «unitários» e consideremos a função

$$f \colon \{ ext{as pessoas na sala} \} \longrightarrow \{ ext{os quadrados} \}$$
 $p \longmapsto ext{o quadrado onde } p ext{ está}$

(se p está na fronteira, escolhemos um dos quadrados). Como

```
|\{\text{as pessoas na sala}\}| = 50 \quad \text{e} \quad |\{\text{os quadrados}\}| = 49,
```

há duas pessoas p e q no mesmo quadrado (f não é injetiva).

Exemplo

Sejam 50 pessoas numa sala de 7 m \times 7 m. Então, há duas pessoas que estão a uma distância inferior a 1.5 metros entre elas.

Dividimos a sala em quadrados «unitários» e consideremos a função

$$f \colon \{ ext{as pessoas na sala}\} \longrightarrow \{ ext{os quadrados}\}$$
 $p \longmapsto ext{o quadrado onde } p ext{ está}$

(se p está na fronteira, escolhemos um dos quadrados). Como

$$|\{\text{as pessoas na sala}\}| = \text{50} \quad \text{e} \quad |\{\text{os quadrados}\}| = \text{49},$$

há duas pessoas p e q no mesmo quadrado (f não é injetiva). Logo:

«a distância entre p e q» \leq o comprimento do diagonal do quadrado $=\sqrt{2}<$ 1.5.

Para todos os $\alpha \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 1$, existem números inteiros p e q com $q \in \{1, \ldots, n\}$ tal que $|q\alpha - p| < \frac{1}{n}$.

Nota

Logo,
$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{qn} \le \frac{1}{n}$$
.

Para todos os $\alpha \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 1$, existem números inteiros p e q com $q \in \{1, \ldots, n\}$ tal que $|q\alpha - p| < \frac{1}{n}$.

Nota

Logo,
$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{qn} \le \frac{1}{n}$$
.

Notação

Para $x \in \mathbb{R}$, denota-se por [x] o maior número inteiro $a \text{ com } a \leq x$.

Para todos os $\alpha \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 1$, existem números inteiros p e q com $q \in \{1, \ldots, n\}$ tal que $|q\alpha - p| < \frac{1}{n}$.

Demonstração.

• Para cada $k \in \{0, 1, ..., n\}$, consideremos $r_k = k\alpha - \lfloor k\alpha \rfloor \in [0, 1[$.

Para todos os $\alpha \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 1$, existem números inteiros p e q com $q \in \{1, \dots, n\}$ tal que $|q\alpha - p| < \frac{1}{n}$.

Demonstração.

- Para cada $k \in \{0, 1, ..., n\}$, consideremos $r_k = k\alpha |k\alpha| \in [0, 1]$.
- · Consideremos a função

$$f: \{0,1,\ldots,n\} \longrightarrow \left\{ \left[0,\frac{1}{n}\right[,\left[\frac{1}{n},\frac{2}{n}\right[,\ldots,\left[\frac{n-1}{n},1\right[\right]\right]\right\}$$

 $k \longmapsto \mathsf{o} \; \mathsf{intervalo} \; \mathcal{I} \; \mathsf{com} \; r_k \in \mathcal{I}$

Para todos os $\alpha \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 1$, existem números inteiros p e q com $q \in \{1, \ldots, n\}$ tal que $|q\alpha - p| < \frac{1}{n}$.

Demonstração.

- Para cada $k \in \{0, 1, ..., n\}$, consideremos $r_k = k\alpha |k\alpha| \in [0, 1]$.
- · Consideremos a função

$$f: \{0,1,\ldots,n\} \longrightarrow \left\{ \left[0,\frac{1}{n}\right[,\left[\frac{1}{n},\frac{2}{n}\right[,\ldots,\left[\frac{n-1}{n},1\right[\right]\right]\right\}$$

$$k \longmapsto$$
 o intervalo \mathcal{I} com $r_k \in \mathcal{I}$

• Pelo princípio da gaiola dos pombos, existem números l e k em $\{0,1,\ldots,n\}$ (digamos l< k) tal que $|r_l-r_k|<\frac{1}{n}$.

O TEOREMA DE APROXIMAÇÃO DE DIRICHLET

Teorema

Para todos os $\alpha \in \mathbb{R}$ e $n \in \mathbb{N}$, $n \ge 1$, existem números inteiros p e q com $q \in \{1, \dots, n\}$ tal que $|q\alpha - p| < \frac{1}{n}$.

Demonstração.

- Para cada $k \in \{0, 1, ..., n\}$, consideremos $r_k = k\alpha |k\alpha| \in [0, 1]$.
- Consideremos a função

$$f: \{0,1,\ldots,n\} \longrightarrow \left\{ \left[0,\frac{1}{n}\right[,\left[\frac{1}{n},\frac{2}{n}\right[,\ldots,\left[\frac{n-1}{n},1\right[\right]\right]\right\}$$

$$k \longmapsto \mathsf{o} \; \mathsf{intervalo} \; \mathcal{I} \; \mathsf{com} \; r_k \in \mathcal{I}$$

- Pelo princípio da gaiola dos pombos, existem números l e k em $\{0,1,\ldots,n\}$ (digamos l < k) tal que $|r_l r_k| < \frac{1}{n}$.
- Portanto,

$$\frac{1}{n} > |k\alpha - \lfloor k\alpha \rfloor - l\alpha + \lfloor l\alpha \rfloor| = |(k - l)\alpha - (\lfloor k\alpha \rfloor - \lfloor l\alpha \rfloor)|$$

e escolhemos $q = k - l \in \{1, \dots n\}$ e $p = \lfloor k\alpha \rfloor - \lfloor l\alpha \rfloor$.

Num torneio em que participam $n \geq 2$ equipas de futebol, todas as equipas jogam uma vez umas com as outras. Mostre que em cada jornada pelo menos duas equipas realizaram o mesmo número de jogos até esta jornada.

Num torneio em que participam $n \geq 2$ equipas de futebol, todas as equipas jogam uma vez umas com as outras. Mostre que em cada jornada pelo menos duas equipas realizaram o mesmo número de jogos até esta jornada.

Fixamos uma jornada, e consideremos

 $N: \{ \text{as } n \text{ equipas} \} \longrightarrow \{ 0, 1, \dots, n-2, n-1 \}.$ $e \longmapsto \text{o número total de jogos de } e$

Num torneio em que participam $n \geq 2$ equipas de futebol, todas as equipas jogam uma vez umas com as outras. Mostre que em cada jornada pelo menos duas equipas realizaram o mesmo número de jogos até esta jornada.

Fixamos uma jornada, e consideremos

$$N \colon \{ \text{as } n \text{ equipas} \} \longrightarrow \{ \text{o}, \text{1}, \dots, n-2, n-1 \}.$$
 $e \longmapsto \text{o número total de jogos de } e$

Caso 1: Cada equipa realizou pelo menos um jogo.

Num torneio em que participam $n \geq 2$ equipas de futebol, todas as equipas jogam uma vez umas com as outras. Mostre que em cada jornada pelo menos duas equipas realizaram o mesmo número de jogos até esta jornada.

Fixamos uma jornada, e consideremos

$$N \colon \{ ext{as } n ext{ equipas} \} \longrightarrow \{ 1, \ldots, n-2, n-1 \}.$$
 $e \longmapsto ext{o número total de jogos de } e$

Caso 1: Cada equipa realizou pelo menos um jogo. Então, podemos considerar acima o conjunto de chegada $\{1, \dots, n-1\}$; pelo princípio da gaiola dos pombos, N não é injetiva.

Num torneio em que participam $n \geq 2$ equipas de futebol, todas as equipas jogam uma vez umas com as outras. Mostre que em cada jornada pelo menos duas equipas realizaram o mesmo número de jogos até esta jornada.

Fixamos uma jornada, e consideremos

$$N \colon \{ \text{as } n \text{ equipas} \} \longrightarrow \{ \text{o}, \text{1}, \dots, n-2, n-1 \}.$$
 $e \longmapsto \text{o número total de jogos de } e$

- Caso 1: Cada equipa realizou pelo menos um jogo. Então, podemos considerar acima o conjunto de chegada $\{1, \ldots, n-1\}$; pelo princípio da gaiola dos pombos, N não é injetiva.
- Caso 2: Pelo menos uma equipa não realizou nenhum jogo.

Num torneio em que participam $n \geq 2$ equipas de futebol, todas as equipas jogam uma vez umas com as outras. Mostre que em cada jornada pelo menos duas equipas realizaram o mesmo número de jogos até esta jornada.

Fixamos uma jornada, e consideremos

$$N \colon \{ ext{as } n \text{ equipas} \} \longrightarrow \{ ext{o}, ext{1}, \dots, n-2, n-1 \}.$$
 $e \longmapsto ext{o número total de jogos de } e$

- Caso 1: Cada equipa realizou pelo menos um jogo. Então, podemos considerar acima o conjunto de chegada $\{1, \ldots, n-1\}$; pelo princípio da gaiola dos pombos, N não é injetiva.
- Caso 2: Pelo menos uma equipa não realizou nenhum jogo. Logo, nenhuma equipa realizou n-1 jogos e por isso

Num torneio em que participam $n \geq 2$ equipas de futebol, todas as equipas jogam uma vez umas com as outras. Mostre que em cada jornada pelo menos duas equipas realizaram o mesmo número de jogos até esta jornada.

Fixamos uma jornada, e consideremos

$$N: \{ as \ n \ equipas \} \longrightarrow \{ 0, 1, \dots, n-2 \}.$$

 $e \longmapsto$ o número total de jogos de e

- **Caso 1:** Cada equipa realizou pelo menos um jogo. Então, podemos considerar acima o conjunto de chegada $\{1, \ldots, n-1\}$; pelo princípio da gaiola dos pombos, N não é injetiva.
- Caso 2: Pelo menos uma equipa não realizou nenhum jogo. Logo, nenhuma equipa realizou n-1 jogos e por isso (ver acima), pelo princípio da gaiola dos pombos, N não é injetiva.

Suponhamos que temos m caixas. Se em cada caixa há no máximo k bolas, então temos no máximo mk bolas.

Suponhamos que temos m caixas. Se em cada caixa há no máximo k bolas, então temos no máximo mk bolas.

Contraposição:

Suponhamos que temos m caixas. Se em cada caixa há no máximo k bolas, então temos no máximo mk bolas.

Contraposição: Se temos mais do que mk bolas, então uma caixa tem mais do que k bolas.

Suponhamos que temos m caixas. Se em cada caixa há no máximo k bolas, então temos no máximo mk bolas.

Contraposição: Se temos mais do que *mk* bolas, então uma caixa tem mais do que *k* bolas.

Mais formal

Sejam A um conjunto e (A_1,\ldots,A_m) uma sequência de subconjuntos de A dois a dois disjunta com

$$A = A_1 \cup \cdots \cup A_m$$
.

Se km < |A|, então, $|A_i| > k$ para algum $1 \le i \le m$.

Suponhamos que temos m caixas. Se em cada caixa há no máximo k bolas, então temos no máximo mk bolas.

Contraposição: Se temos mais do que *mk* bolas, então uma caixa tem mais do que *k* bolas.

Mais formal

Sejam A um conjunto e (A_1,\ldots,A_m) uma sequência de subconjuntos de A dois a dois disjunta com

$$A = A_1 \cup \cdots \cup A_m$$
.

Se km < |A|, então, $|A_i| > k$ para algum 1 < i < m.

Formulação alternativa

Sejam A e B conjuntos finitos e $f: A \longrightarrow B$ uma função.

Se k|B| < |A|, então existe um $b \in B$ com $|\{x \in A \mid f(x) = b\}| > k$.

UM EXEMPLO (13)

Exemplo

Na área metropolitana de Lisboa, há pelo menos 15 pessoas com o mesmo número de fios de cabelo na cabeça.

(Cada pessoa tem no máximo 200000 fios de cabelo na cabeça e na área metropolitana de Lisboa residem 2,870,208 pessoas^a.)

afonte: Wikipédia.

UM EXEMPLO (13)

Exemplo

Na área metropolitana de Lisboa, há pelo menos 15 pessoas com o mesmo número de fios de cabelo na cabeça.

(Cada pessoa tem no máximo 200000 fios de cabelo na cabeça e na área metropolitana de Lisboa residem 2,870,208 pessoas^a.)

Agora consideremos a função «número de fios de cabelo na cabeça»:

 $f: \{Lisboetas\} \longrightarrow \{0, 1, \dots, 200000\}.$

^afonte: Wikipédia.

Na área metropolitana de Lisboa, há pelo menos 15 pessoas com o mesmo número de fios de cabelo na cabeça.

(Cada pessoa tem no máximo 200000 fios de cabelo na cabeça e na área metropolitana de Lisboa residem 2,870,208 pessoas^a.)

Agora consideremos a função «número de fios de cabelo na cabeça»:

$$f: \{Lisboetas\} \longrightarrow \{0, 1, \dots, 200000\}.$$

Como 14 · 200001 < 2870208, existe um $n \in \{0, 1, \dots, 200000\}$ com

$$|f^{-1}(n)| > 14;$$
 (Nota: $f^{-1}(n) = \{p \mid f(p) = n\}$)

isto é, há pelo menos 15 pessoas com n fios de cabelo na cabeça.

^afonte: Wikipédia.

O princípio da bijecção

Sejam A e B conjuntos (finitos). Se existe uma função bijetiva $f: A \longrightarrow B$ entre A e B, então A e B têm o mesmo número de elementos.

Nota

Tipicamente utilizamos este princípio quando é mais fácil contar os elementos de um destes conjuntos.

TRANSPORTAR PROBLEMAS (DESCONHECIDO → CONHECIDO)

O princípio da bijecção

Sejam A e B conjuntos (finitos). Se existe uma função bijetiva $f: A \longrightarrow B$ entre A e B, então A e B têm o mesmo número de elementos.

Nota

Tipicamente utilizamos este princípio quando é mais fácil contar os elementos de um destes conjuntos.

Exemplo

Existe uma bijeção entre o conjunto C dos números naturais de 4 algarismos em $A = \{1, 2, \dots, 9\}$ e o conjunto A^4 .

O princípio da bijecção

Sejam A e B conjuntos (finitos). Se existe uma função bijetiva $f:A\longrightarrow B$ entre A e B, então A e B têm o mesmo número de elementos.

Nota

Tipicamente utilizamos este princípio quando é mais fácil contar os elementos de um destes conjuntos.

Exemplo

Existe uma bijeção entre o conjunto C dos números naturais de 4 algarismos em A = $\{1,2,\ldots,9\}$ e o conjunto A⁴.

De facto, a função

$$f: A^4 \longrightarrow C, \quad (a_1, a_2, a_3, a_4) \longmapsto a_1 10^3 + a_2 10^2 + a_3 10 + a_4$$

é bijetiva.

Transportar problemas (desconhecido → conhecido)

O princípio da bijecção

Sejam A e B conjuntos (finitos). Se existe uma função bijetiva $f: A \longrightarrow B$ entre A e B, então A e B têm o mesmo número de elementos.

Nota

Tipicamente utilizamos este princípio quando é mais fácil contar os elementos de um destes conjuntos.

Exemplo

Determinamos o número de subconjuntos de $X = \{1, \dots, n\}$.

TRANSPORTAR PROBLEMAS (DESCONHECIDO → CONHECIDO)

O princípio da bijecção

Sejam A e B conjuntos (finitos). Se existe uma função bijetiva $f: A \longrightarrow B$ entre A e B, então A e B têm o mesmo número de elementos.

Nota

Tipicamente utilizamos este princípio quando é mais fácil contar os elementos de um destes conjuntos.

Exemplo

Determinamos o número de subconjuntos de $X = \{1, ..., n\}$.

A função

$$P(X) \longrightarrow \{$$
as sequências binárias de comprimento $n\}$

$$A \longmapsto a_1 a_2 \dots a_n$$
 onde $a_i = \begin{cases} 1 & i \in A, \\ 0 & i \notin A \end{cases}$

é bijetiva (porque é invertível).

Falta determinar o número de tais sequências ...

3. OS PRINCÍPIOS DA ADIÇÃO E DA MULTIPLICAÇÃO

O príncipio da adição

Sejam $A_1, A_2, ..., A_n$ conjuntos finitos dois a dois disjuntos (isto é, tais que $A_i \cap A_j = \emptyset$, para $i \neq j$). Então

$$\left|\bigcup_{i=1}^n A_i\right| = \sum_{i=1}^n |A_i|$$

Ilustração

O príncipio da adição

Sejam $A_1, A_2, ..., A_n$ conjuntos finitos dois a dois disjuntos (isto é, tais que $A_i \cap A_i = \emptyset$, para $i \neq j$). Então

$$\left|\bigcup_{i=1}^n A_i\right| = \sum_{i=1}^n |A_i|.$$

O princípio da multiplicação

Sejam $A_1, A_2, ..., A_n$ conjuntos finitos. Então

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \cdot |A_2| \cdot \cdots \cdot |A_n|.$$

Ilustração

• O número de sequências binárias de comprimento n é

n vezes

Exemplo

• O número de sequências binárias de comprimento $n \in 2^n$. Contamos os elementos de $\{0,1\} \times \cdots \times \{0,1\}$.

• O número de sequências binárias de comprimento $n \in 2^n$. Contamos os elementos de $\{0,1\} \times \cdots \times \{0,1\}$.

```
n vezes
```

• Logo, para um conjunto X com n elements: $|P(X)| = 2^n$.

• O número de sequências binárias de comprimento $n \in 2^n$.

```
Contamos os elementos de \underbrace{\{0,1\} \times \cdots \times \{0,1\}}_{n \text{ vezes}}.
```

- Logo, para um conjunto X com n elements: $|P(X)| = 2^n$.
- Qual é o número de números naturais com 4 algarismos que se pode escrever com os dígitos 1,...,9?

• O número de sequências binárias de comprimento n é 2^n .

Contamos os elementos de
$$\underbrace{\{0,1\} \times \cdots \times \{0,1\}}_{\textit{n vezes}}$$
.

- Logo, para um conjunto X com n elements: $|P(X)| = 2^n$.
- Qual é o número de números naturais com 4 algarismos que se pode escrever com os dígitos 1,...,9?

Determinamos o tamanho do conjunto

$$\{1,\ldots,9\}^4;$$

ou seja, existem $9^4 = 6561$ tais números.

• O número de sequências binárias de comprimento n é 2^n .

Contamos os elementos de
$$\underbrace{\{0,1\} \times \cdots \times \{0,1\}}_{\textit{n vezes}}$$
.

- Logo, para um conjunto X com n elements: $|P(X)| = 2^n$.
- Qual é o número de números naturais com 4 algarismos que se pode escrever com os dígitos 1,...,9?

Determinamos o tamanho do conjunto

$$\{1,\ldots,9\}^4;$$

ou seja, existem $9^4 = 6561$ tais números.

 Qual é o número de números naturais com 4 algarismos que se pode escrever com os dígitos 0,..., 9 e que são divisíveis por 5?

• O número de sequências binárias de comprimento n é 2^n .

Contamos os elementos de
$$\underbrace{\{0,1\} \times \cdots \times \{0,1\}}_{\textit{n vezes}}$$
.

- Logo, para um conjunto X com n elements: $|P(X)| = 2^n$.
- Qual é o número de números naturais com 4 algarismos que se pode escrever com os dígitos 1,..., 9?

Determinamos o tamanho do conjunto

$$\{1,\dots,9\}^4;$$

ou seja, existem $9^4 = 6561$ tais números.

 Qual é o número de números naturais com 4 algarismos que se pode escrever com os dígitos 0,..., 9 e que são divisíveis por 5?
 O conjunto

$$\{1, \ldots 9\} \times \{0, 1, \ldots, 9\}^2 \times \{0, 5\}$$

tem 1800 elementos.

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos «a», «b», «c», «(», «)» de modo que

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos «a», «b», «c», «(», «)» de modo que

o número de «(» é igual ao número de «)»,

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos «a», «b», «c», «(», «)» de modo que

- o número de «(» é igual ao número de «)»,
- em cada parte inicial da palavra, o número de «(» é maior ou igual ao número de «)»,

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos «a», «b», «c», «(», «)» de modo que

- o número de «(» é igual ao número de «)»,
- em cada parte inicial da palavra, o número de «(» é maior ou igual ao número de «)»,
- entre os símbolos «(» e «)» está pelo menos um dos símbolos «a,b,c».

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos «a», «b», «c», «(», «)» de modo que

- o número de «(» é igual ao número de «)»,
- em cada parte inicial da palavra, o número de «(» é maior ou igual ao número de «)»,
- entre os símbolos «(» e «)» está pelo menos um dos símbolos «a,b,c».

Seja S o conjunto destas palavras, e consideremos

logo $S = S_0 \cup S_1 \cup S_2$ (dois a dois disjunto),

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos «a», «b», «c», «(», «)» de modo que

- o número de «(» é igual ao número de «)»,
- em cada parte inicial da palavra, o número de «(» é maior ou igual ao número de «)»,
- entre os símbolos «(» e «)» está pelo menos um dos símbolos «a,b,c».

Seja S o conjunto destas palavras, e consideremos

• $S_0 = \{p \in S \mid p \text{ n\~ao tem nenhuma parêntese}\}$,

logo $S = S_0 \cup S_1 \cup S_2$ (dois a dois disjunto),

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos «a», «b», «c», «(», «)» de modo que

- o número de «(» é igual ao número de «)»,
- em cada parte inicial da palavra, o número de «(» é maior ou igual ao número de «)»,
- entre os símbolos «(» e «)» está pelo menos um dos símbolos «a,b,c».

Seja S o conjunto destas palavras, e consideremos

- $S_0 = \{p \in S \mid p \text{ n\~ao tem nenhuma parêntese}\}$,
- $S_1 = \{ p \in S \mid p \text{ tem uma vez o símbolo } (x) \}$

logo $S = S_0 \cup S_1 \cup S_2$ (dois a dois disjunto),

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos «a», «b», «c», «(», «)» de modo que

- o número de «(» é igual ao número de «)»,
- em cada parte inicial da palavra, o número de «(» é maior ou igual ao número de «)»,
- entre os símbolos «(» e «)» está pelo menos um dos símbolos «a,b,c».

Seja S o conjunto destas palavras, e consideremos

- $S_0 = \{ p \in S \mid p \text{ não tem nenhuma parêntese} \}$,
- $S_1 = \{ p \in S \mid p \text{ tem uma vez o símbolo } (x) \}$
- $S_2 = \{ p \in S \mid p \text{ tem duas vezes o símbolo } (\infty) \}$

logo $S = S_0 \cup S_1 \cup S_2$ (dois a dois disjunto),

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos «a», «b», «c», «(», «)» de modo que

- o número de «(» é igual ao número de «)»,
- em cada parte inicial da palavra, o número de «(» é maior ou igual ao número de «)»,
- entre os símbolos «(» e «)» está pelo menos um dos símbolos «a,b,c».

Seja S o conjunto destas palavras, e consideremos

- $S_0 = \{ p \in S \mid p \text{ não tem nenhuma parêntese} \}$,
- $S_1 = \{ p \in S \mid p \text{ tem uma vez o símbolo } (x),$
- $S_2 = \{ p \in S \mid p \text{ tem duas vezes o símbolo } (n) \}$

logo $S = S_0 \cup S_1 \cup S_2$ (dois a dois disjunto), e por isso

$$|S| = |S_0| + |S_1| + |S_2|.$$

•
$$|S_0| = 3^5 = 243$$
.

- $|S_0| = 3^5 = 243$.
- S₁ =

- $|S_0| = 3^5 = 243$.
- S₁ =S₁³³ ∪ S₁³⁴ ∪ S₁⁵⁵ ∪ S₂⁴⁵⁴ ∪ S₁⁵⁵ ∪ S₃⁵⁵
 (dois a dois disjunto).
 Aqui o primeiro número indica a posição de «(», o segundo número indica a posição de «)».

Temos:

- $|S_0| = 3^5 = 243$.
- $S_1 = S_1^{1,3} \cup S_1^{1,4} \cup S_1^{1,5} \cup S_1^{2,4} \cup S_1^{2,5} \cup S_1^{3,5}$ (dois a dois disjunto).

Aqui o primeiro número indica a posição de «(», o segundo número indica a posição de «)».

Portanto: $|S_1^{i,j}| =$

Temos:

- $|S_0| = 3^5 = 243$.
- $S_1 = S_1^{1,3} \cup S_1^{1,4} \cup S_1^{1,5} \cup S_1^{2,4} \cup S_1^{2,5} \cup S_1^{3,5}$ (dois a dois disjunto).

Aqui o primeiro número indica a posição de «(», o segundo número indica a posição de «)».

Portanto: $|S_1^{i,j}| = 3^3 = 27$, $\log_1 |S_1| = 6 \cdot 27 = 162$.

Temos:

- $|S_0| = 3^5 = 243$.
- $S_1 = S_1^{1,3} \cup S_1^{1,4} \cup S_1^{1,5} \cup S_1^{2,4} \cup S_1^{2,5} \cup S_1^{3,5}$ (dois a dois disjunto).

Aqui o primeiro número indica a posição de «(», o segundo número indica a posição de «)».

Portanto: $|S_1^{i,j}| = 3^3 = 27$, $\log_1 |S_1| = 6 \cdot 27 = 162$.

S₂ =

Temos:

- $|S_0| = 3^5 = 243$.
- $S_1 = S_1^{1,3} \cup S_1^{1,4} \cup S_1^{1,5} \cup S_1^{2,4} \cup S_1^{2,5} \cup S_1^{3,5}$ (dois a dois disjunto).

Aqui o primeiro número indica a posição de «(», o segundo número indica a posição de «)».

Portanto: $|S_1^{i,j}| = 3^3 = 27$, $\log_1 |S_1| = 6 \cdot 27 = 162$.

• $S_2 = {\langle ((a)) \rangle, \langle ((b)) \rangle, \langle ((c)) \rangle}, \log_2 |S_2| = 3.$

Temos:

- $|S_0| = 3^5 = 243$.
- $S_1 = S_1^{1,3} \cup S_1^{1,4} \cup S_1^{1,5} \cup S_1^{2,4} \cup S_1^{2,5} \cup S_1^{3,5}$ (dois a dois disjunto).

Aqui o primeiro número indica a posição de «(», o segundo número indica a posição de «)».

Portanto: $|S_1^{i,j}| = 3^3 = 27$, logo $|S_1| = 6 \cdot 27 = 162$.

• $S_2 = { (((a))}, (((b))), (((c)))}, \log_2 |S_2| = 3.$

Conclusão: |S| = 243 + 162 + 3 = 408.

Suponhamos que temos um procedimento com n escolhas onde há

Suponhamos que temos um procedimento com n escolhas onde há

• r_1 possibilidades para a primeira escolha,

Suponhamos que temos um procedimento com n escolhas onde há

- \cdot r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),

Suponhamos que temos um procedimento com n escolhas onde há

- r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Suponhamos que temos um procedimento com n escolhas onde há

- r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Suponhamos que temos um procedimento com n escolhas onde há

- r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Exemplo

• $|\{\text{os números com 4 algarismos distintos}\}| =$

Suponhamos que temos um procedimento com n escolhas onde há

- r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Exemplo

• $|\{\text{os números com 4 algarismos distintos}\}| = 9$

Suponhamos que temos um procedimento com n escolhas onde há

- r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Exemplo

• $|\{\text{os números com 4 algarismos distintos}\}| = 9.9.$

Suponhamos que temos um procedimento com n escolhas onde há

- r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Exemplo

• $|\{\text{os números com 4 algarismos distintos}\}| = 9.9.8.$

Suponhamos que temos um procedimento com n escolhas onde há

- r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Exemplo

• |{os números com 4 algarismos distintos}| = 9.9.8.7

Suponhamos que temos um procedimento com n escolhas onde há

- r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Exemplo

• $|\{\text{os números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$

Suponhamos que temos um procedimento com n escolhas onde há

- \cdot r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

- $|\{\text{os números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$
- Para A = {os números com 4 algarismos distintos em 1,...,9, um deles igual a 5},

Suponhamos que temos um procedimento com n escolhas onde há

- \cdot r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

- $|\{\text{os números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$
- Para A = {os números com 4 algarismos distintos em 1,...,9, um deles igual a 5},

$$|A| = 4.$$

Suponhamos que temos um procedimento com n escolhas onde há

- r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

- $|\{\text{os números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$
- Para A = {os números com 4 algarismos distintos em 1,...,9, um deles igual a 5},

$$|A| = 4 \cdot 8 \cdot$$

Suponhamos que temos um procedimento com n escolhas onde há

- r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

- $|\{\text{os números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$
- Para A = {os números com 4 algarismos distintos em 1,...,9, um deles igual a 5},

$$|A| = 4 \cdot 8 \cdot 7$$

Suponhamos que temos um procedimento com n escolhas onde há

- \cdot r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

- $|\{\text{os números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$
- Para A = {os números com 4 algarismos distintos em 1,...,9, um deles igual a 5},

$$|A| = 4 \cdot 8 \cdot 7 \cdot 6$$

Suponhamos que temos um procedimento com n escolhas onde há

- r_1 possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (o número de escolhas é independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (o número de escolhas é independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

- $|\{\text{os números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$
- Para A = {os números com 4 algarismos distintos em 1,...,9, um deles igual a 5},

$$|A| = 4 \cdot 8 \cdot 7 \cdot 6 = 1344.$$

O princípio da adição é apenas válido quando os conjuntos A_1, \ldots, A_n são dois a dois disjuntos. Mais geral, temos:

O princípio da adição é apenas válido quando os conjuntos A_1, \ldots, A_n são dois a dois disjuntos. Mais geral, temos:

O princípio de inclusão-exclusão

• Para os conjuntos finitos A₁ e A₂:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

O princípio da adição é apenas válido quando os conjuntos A_1, \ldots, A_n são dois a dois disjuntos. Mais geral, temos:

O princípio de inclusão-exclusão

• Para os conjuntos finitos A₁ e A₂:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

$$|A_1\cup\ A_2\cup A_3\ |=$$

O princípio da adição é apenas válido quando os conjuntos A_1, \ldots, A_n são dois a dois disjuntos. Mais geral, temos:

O princípio de inclusão-exclusão

• Para os conjuntos finitos A₁ e A₂:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

$$|A_1 \cup (A_2 \cup A_3)| =$$

O princípio da adição é apenas válido quando os conjuntos A_1, \ldots, A_n são dois a dois disjuntos. Mais geral, temos:

O princípio de inclusão-exclusão

• Para os conjuntos finitos A₁ e A₂:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

$$|A_1 \cup (A_2 \cup A_3)| = |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)|$$

O princípio da adição é apenas válido quando os conjuntos A_1, \ldots, A_n são dois a dois disjuntos. Mais geral, temos:

O princípio de inclusão-exclusão

• Para os conjuntos finitos A₁ e A₂:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

$$\begin{aligned} |A_1 \cup (A_2 \cup A_3)| &= |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)| \\ &= |A_1| + |A_2 \cup A_3| - |(A_1 \cap A_2) \cup (A_1 \cap A_3)| \end{aligned}$$

O princípio da adição é apenas válido quando os conjuntos A_1, \ldots, A_n são dois a dois disjuntos. Mais geral, temos:

O princípio de inclusão-exclusão

• Para os conjuntos finitos A₁ e A₂:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

$$\begin{aligned} |A_1 \cup (A_2 \cup A_3)| &= |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)| \\ &= |A_1| + |A_2 \cup A_3| - |(A_1 \cap A_2) \cup (A_1 \cap A_3)| \\ &= |A_1| + \end{aligned}$$

Nota

O princípio da adição é apenas válido quando os conjuntos A_1, \ldots, A_n são dois a dois disjuntos. Mais geral, temos:

O princípio de inclusão-exclusão

• Para os conjuntos finitos A₁ e A₂:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

• Para os conjuntos finitos A₁, A₂ e A₃:

$$\begin{aligned} |A_1 \cup (A_2 \cup A_3)| &= |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)| \\ &= |A_1| + |A_2 \cup A_3| - |(A_1 \cap A_2) \cup (A_1 \cap A_3)| \\ &= |A_1| + |A_2| + |A_3| - |A_2 \cap A_3| - \end{aligned}$$

Nota

O princípio da adição é apenas válido quando os conjuntos A_1, \ldots, A_n são dois a dois disjuntos. Mais geral, temos:

O princípio de inclusão-exclusão

• Para os conjuntos finitos A₁ e A₂:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

• Para os conjuntos finitos A₁, A₂ e A₃:

$$\begin{aligned} |A_1 \cup (A_2 \cup A_3)| &= |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)| \\ &= |A_1| + |A_2 \cup A_3| - |(A_1 \cap A_2) \cup (A_1 \cap A_3)| \\ &= |A_1| + |A_2| + |A_3| - |A_2 \cap A_3| - \\ &\qquad (|A_1 \cap A_2| + |A_1 \cap A_3| - |A_1 \cap A_2 \cap A_3|) \end{aligned}$$

Nota

O princípio da adição é apenas válido quando os conjuntos A_1, \ldots, A_n são dois a dois disjuntos. Mais geral, temos:

O princípio de inclusão-exclusão

• Para os conjuntos finitos A₁ e A₂:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

• Para os conjuntos finitos A₁, A₂ e A₃:

$$\begin{aligned} |A_1 \cup A_2 \cup A_3| &= |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)| \\ &= |A_1| + |A_2 \cup A_3| - |(A_1 \cap A_2) \cup (A_1 \cap A_3)| \\ &= |A_1| + |A_2| + |A_3| - |A_2 \cap A_3| - \\ &\qquad (|A_1 \cap A_2| + |A_1 \cap A_3| - |A_1 \cap A_2 \cap A_3|) \\ &= |A_1| + |A_2| + |A_3| \\ &\qquad - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| \\ &\qquad + |A_1 \cap A_2 \cap A_3|. \end{aligned}$$

O PRINCÍPIO DE INCLUSÃO-EXCLUSÃO

Teorema

Em geral, para os conjuntos finitos $A_1, A_2, ..., A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \left(\sum_{1 \leq i_1 < \cdots < i_k \leq n} |A_{i_1} \cap \cdots \cap A_{i_k}| \right).$$

Abraham de Moivre (1718), Daniel da Silva (1854), James Joseph Sylvester (1883), ...

Isto é:

$$|A_{1} \cup \cdots \cup A_{n}| = |A_{1}| + \cdots + |A_{n}|$$

$$- |A_{1} \cap A_{2}| - \cdots - |A_{n-1} \cap A_{n}|$$

$$+ |A_{1} \cap A_{2} \cap A_{3}| + \cdots + |A_{n-2} \cap A_{n-1} \cap A_{n}|$$

$$- \cdots \cdots$$

$$+ (-1)^{n+1} |A_{1} \cap \cdots \cap A_{n}|.$$

Em geral, para os conjuntos finitos $A_1, A_2, ..., A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \left(\sum_{1 \leq i_1 < \cdots < i_k \leq n} |A_{i_1} \cap \cdots \cap A_{i_k}| \right).$$

Abraham de Moivre (1718), Daniel da Silva (1854), James Joseph Sylvester (1883), ...

Exemplo

Em geral, para os conjuntos finitos $A_1, A_2, ..., A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \left(\sum_{1 \leq i_1 < \cdots < i_k \leq n} |A_{i_1} \cap \cdots \cap A_{i_k}| \right).$$

Abraham de Moivre (1718), Daniel da Silva (1854), James Joseph Sylvester (1883), ...

Exemplo

Determinarmos o número de números entre 1 e 1000 que são divisíveis por 3 ou por 5.

• Seja $A_k = \{n \in \{1, ..., 1000\} \mid k \text{ divide } n\}$ (k = 1, 2, ...).

Em geral, para os conjuntos finitos $A_1, A_2, ..., A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \left(\sum_{1 \leq i_1 < \cdots < i_k \leq n} |A_{i_1} \cap \cdots \cap A_{i_k}| \right).$$

Abraham de Moivre (1718), Daniel da Silva (1854), James Joseph Sylvester (1883), ...

Exemplo

- Seja $A_k = \{n \in \{1, ..., 1000\} \mid k \text{ divide } n\} \quad (k = 1, 2, ...).$
- Assim,

$$|A_3\cup A_5\>$$

Em geral, para os conjuntos finitos $A_1, A_2, ..., A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \left(\sum_{1 \leq i_1 < \cdots < i_k \leq n} |A_{i_1} \cap \cdots \cap A_{i_k}| \right).$$

Abraham de Moivre (1718), Daniel da Silva (1854), James Joseph Sylvester (1883), ...

Exemplo

- Seja $A_k = \{n \in \{1, ..., 1000\} \mid k \text{ divide } n\} \quad (k = 1, 2, ...).$
- · Assim,

$$|A_3 \cup A_5| = |A_3| + |A_5| - |A_3 \cap A_5|$$

Em geral, para os conjuntos finitos $A_1, A_2, ..., A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \left(\sum_{1 \leq i_1 < \cdots < i_k \leq n} |A_{i_1} \cap \cdots \cap A_{i_k}| \right).$$

Abraham de Moivre (1718), Daniel da Silva (1854), James Joseph Sylvester (1883), ...

Exemplo

- Seja $A_k = \{n \in \{1, ..., 1000\} \mid k \text{ divide } n\} \quad (k = 1, 2, ...).$
- · Assim,

$$\begin{aligned} |A_3 \cup A_5| &= |A_3| + |A_5| - |A_3 \cap A_5| \\ &= \lfloor \frac{1000}{3} \rfloor + \lfloor \frac{1000}{5} \rfloor - \lfloor \frac{1000}{15} \rfloor \end{aligned}$$

Em geral, para os conjuntos finitos $A_1, A_2, ..., A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \left(\sum_{1 \leq i_1 < \cdots < i_k \leq n} |A_{i_1} \cap \cdots \cap A_{i_k}| \right).$$

Abraham de Moivre (1718), Daniel da Silva (1854), James Joseph Sylvester (1883), ...

Exemplo

- Seja $A_k = \{n \in \{1, ..., 1000\} \mid k \text{ divide } n\} \quad (k = 1, 2, ...).$
- Assim,

$$\begin{aligned} |A_3 \cup A_5| &= |A_3| + |A_5| - |A_3 \cap A_5| \\ &= \lfloor \frac{1000}{3} \rfloor + \lfloor \frac{1000}{5} \rfloor - \lfloor \frac{1000}{15} \rfloor \\ &= 333 + 200 - 66 = 467. \end{aligned}$$

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais («a,e,i,o,u»)?

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais («a,e,i,o,u»)?

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais («a,e,i,o,u»)?

•
$$|A_a| = \cdots = |A_u| =$$

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais («a,e,i,o,u»)?

•
$$|A_a| = \cdots = |A_u| = 22^{10}$$
.

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais («a,e,i,o,u»)?

- $|A_a| = \cdots = |A_u| = 22^{10}$.
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| =$

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais («a,e,i,o,u»)?

- $|A_a| = \cdots = |A_u| = 22^{10}$.
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| = 21^{10}$.

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais («a,e,i,o,u»)?

- $|A_a| = \cdots = |A_u| = 22^{10}$.
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| = 21^{10}$.
- $|A_a \cap A_e \cap A_i| = \cdots = |A_i \cap A_o \cap A_u| = 20^{10}$.

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais («a,e,i,o,u»)?

- $|A_a| = \cdots = |A_u| = 22^{10}$.
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| = 21^{10}$.
- $|A_a \cap A_e \cap A_i| = \cdots = |A_i \cap A_o \cap A_u| = 20^{10}$.
- $|A_a \cap A_e \cap A_i \cap A_o| = \cdots = |A_e \cap A_i \cap A_o \cap A_u| = 19^{10}$.

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais («a,e,i,o,u»)?

- $|A_a| = \cdots = |A_u| = 22^{10}$.
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| = 21^{10}$.
- $|A_a \cap A_e \cap A_i| = \cdots = |A_i \cap A_o \cap A_u| = 20^{10}$.
- $|A_a \cap A_e \cap A_i \cap A_o| = \cdots = |A_e \cap A_i \cap A_o \cap A_u| = 19^{10}$.
- $|A_a \cap A_e \cap A_i \cap A_o \cap A_u| = 18^{10}$.

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais («a,e,i,o,u»)?

Sejam $A_a, ..., A_u$ os conjuntos das palavras de comprimento 10 sem «a», ..., «u», respetivamente. Então, procuramos $|A_a \cup \cdots \cup A_u|$.

- $|A_a| = \cdots = |A_u| = 22^{10}$.
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| = 21^{10}$.
- $|A_a \cap A_e \cap A_i| = \cdots = |A_i \cap A_o \cap A_u| = 20^{10}$.
- $|A_a \cap A_e \cap A_i \cap A_o| = \cdots = |A_e \cap A_i \cap A_o \cap A_u| = 19^{10}$.
- $|A_a \cap A_e \cap A_i \cap A_o \cap A_u| = 18^{10}$.

Há 10 intersecções de 2 conjuntos, 10 intersecções de 3 conjuntos e 5 intersecções de 4 conjuntos.

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais («a,e,i,o,u»)?

Sejam $A_a, ..., A_u$ os conjuntos das palavras de comprimento 10 sem «a», ..., «u», respetivamente. Então, procuramos $|A_a \cup \cdots \cup A_u|$.

- $|A_a| = \cdots = |A_u| = 22^{10}$.
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| = 21^{10}$.
- $|A_a \cap A_e \cap A_i| = \cdots = |A_i \cap A_o \cap A_u| = 20^{10}$.
- $|A_a \cap A_e \cap A_i \cap A_o| = \cdots = |A_e \cap A_i \cap A_o \cap A_u| = 19^{10}$.
- $|A_a \cap A_e \cap A_i \cap A_o \cap A_u| = 18^{10}$.

Há 10 intersecções de 2 conjuntos, 10 intersecções de 3 conjuntos e 5 intersecções de 4 conjuntos. Logo,

$$|A_a \cup \cdots \cup A_u| = 5 \cdot 22^{10} - 10 \cdot 21^{10} + 10 \cdot 20^{10} - 5 \cdot 19^{10} + 18^{10}.$$

Sejam X um conjunto finito, p_1, \ldots, p_n propriedades aplicável aos elementos de X e $N(i_1, i_2, \ldots, i_k)$ o número de elementos de X que têm pelo menos as propriedades p_{i_1}, p_{i_2}, \ldots e p_{i_k} .

Sejam X um conjunto finito, p_1, \ldots, p_n propriedades aplicável aos elementos de X e $N(i_1, i_2, \ldots, i_k)$ o número de elementos de X que têm pelo menos as propriedades p_{i_1}, p_{i_2}, \ldots e p_{i_k} .

O número de elementos de X que têm pelo menos uma das propriedades p_1, \dots, p_n e dado por

$$N(1) + \cdots + N(n)$$

 $-N(1,2) - \cdots - N(n-1,n)$
 $+N(1,2,3) + \cdots + N(n-2,n-1,n)$
 $-\cdots + (-1)^{n+1}N(1,\dots,n).$

Sejam X um conjunto finito, p_1, \ldots, p_n propriedades aplicável aos elementos de X e $N(i_1, i_2, \ldots, i_k)$ o número de elementos de X que têm pelo menos as propriedades p_{i_1}, p_{i_2}, \ldots e p_{i_k} .

O número de elementos de X que têm pelo menos uma das propriedades p_1,\ldots,p_n e dado por

$$|A| = N(1) + \cdots + N(n)$$

$$- N(1, 2) - \cdots - N(n - 1, n)$$

$$+ N(1, 2, 3) + \cdots + N(n - 2, n - 1, n)$$

$$- \cdots \cdots$$

$$+ (-1)^{n+1}N(1, \dots, n).$$

Nota: Sendo $A_i = \{x \in X \mid p_i(x)\}$,

$$A = A_1 \cup \cdots \cup A_n$$
, $|A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}| = N(i_1, i_2, \dots, i_k)$.

Sejam X um conjunto finito, p_1, \ldots, p_n propriedades aplicável aos elementos de X e $N(i_1, i_2, \ldots, i_k)$ o número de elementos de X que têm pelo menos as propriedades p_{i_1}, p_{i_2}, \ldots e p_{i_k} .

O número de elementos de X que têm nenhuma das propriedades p_1,\ldots,p_n e dado por

$$|X \setminus A| = |X| - N(1) - \dots - N(n) + N(1,2) + \dots + N(n-1,n) - N(1,2,3) - \dots - N(n-2,n-1,n) + \dots + \dots + (-1)^n N(1,\dots,n).$$

Nota: Sendo $A_i = \{x \in X \mid p_i(x)\}$,

$$A = A_1 \cup \cdots \cup A_n$$
, $|A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}| = N(i_1, i_2, \dots, i_k)$.

5. O PRINCÍPIO DA BIJEÇÃO (OUTRA VEZ)

O número das soluções da equação $x_1+\cdots+x_n=k$ (com $x_i,k,n\in\mathbb{N}$)

MAIS EXEMPLOS (24)

Exemplo

O número das soluções da equação $x_1 + \cdots + x_n = k$ (com $x_i, k, n \in \mathbb{N}$) coincide com o número de maneiras de colocar k bolas indistinguíveis em n caixas numeradas.

O número das soluções da equação $x_1 + \cdots + x_n = k$ (com $x_i, k, n \in \mathbb{N}$) coincide com o número de maneiras de colocar k bolas indistinguíveis em n caixas numeradas.

Exemplo

O número de maneiras de colocar k bolas indistinguíveis em n caixas numeradas coincide com o número de sequências binárias com k uns e n-1 zeros.

O número das soluções da equação $x_1 + \cdots + x_n = k$ (com $x_i, k, n \in \mathbb{N}$) coincide com o número de maneiras de colocar k bolas indistinguíveis em n caixas numeradas.

Exemplo

O número de maneiras de colocar k bolas indistinguíveis em n caixas numeradas coincide com o número de sequências binárias com k uns e n-1 zeros.

Exemplo

O número de sequências binárias com k uns e m zero coincide com o número de subconjuntos de k elementos de um conjunto de k+m elementos.

EXEMPLO (25)

Exemplo

O número de sequências binárias com k uns e m zeros coincide com o número de subconjuntos de k elementos de um conjunto de k+m elementos.

O número de sequências binárias com k uns e m zeros coincide com o número de subconjuntos de k elementos de um conjunto de k+m elementos.

De facto, com $X = \{1, \dots, k + m\}$, a função

$${A \subseteq X \mid |A| = k} \longrightarrow {\text{sequências binárias com } k \text{ uns e } m \text{ zero}}$$

$$A \longmapsto a_1 a_2 \dots a_{k+m} \quad \text{onde } a_i = \begin{cases} 1 & i \in A, \\ 0 & i \notin A \end{cases}$$

tem a função inversa

{sequências binárias com
$$k$$
 uns e m zero} \longrightarrow { $A \subseteq X \mid |A| = k$ } $a_1 a_2 \dots a_{k+m} \longmapsto \{i \in X \mid a_i = 1\}.$

Voltaremos a estas questões no

Capítulo 3: Agrupamentos e Identidades Combinatórias.