OneNet: A Channel-Wise 1D Convolutional U-Net

VisionXP

Sanghyun Byun, Kayvan Shah, Ayushi Gang, Christopher Apton

Motivation

2D CNN→ expensive in U-Net

MobileNet \rightarrow does not capture spatio-channel relations

Channel-Wise 1D → Captures all relations with pixel-unshuffle

Figure 3. Comparison of Convolutional Block (a) Traditional 2D convolutional block with max pooling. (b) MobileNet [12] block with max pooling. (c) OneNet implementation with pixel-unshuffle downscaling followed by 1D convolution.

Method - Architecture

Max Pooling → Pixel-Unshuffle Downscaling
Upsampling → Pixel-Shuffle Upscaling
2D Convolution → 1D Channel-Wise Convolution

Method - Pixel-Shuffle / 1D Convolution

Encoder - pixel-unshuffle \rightarrow flatten \rightarrow 2X channel-wise 1D convolution \rightarrow restore dimensions Decoder - pixel-shuffle \rightarrow flatten \rightarrow 2X channel-wise 1D convolution \rightarrow restore dimensions

Optimization - pixel-unshuffle in 1D (skip flatten/restore)

Algorithm 1 1D pixel-unshuffle downscaling

 $\begin{array}{ll} \textbf{Input:} & X \text{ in shape } (B,C,H\times W), \text{ height H, width W} \\ \textbf{Output:} & \text{pixel-unshuffled } X \text{ in shape } (B,H\times W\times C) \\ & I\leftarrow [] \\ \textbf{for } i\leftarrow 0 \text{ to } \frac{W}{2} \textbf{ do} \\ & \text{ for } j\leftarrow 0 \text{ to } \frac{H}{2} \textbf{ do} \\ & t\leftarrow 2i+2j \\ & I\leftarrow [t,t+1,t+w,t+w+1] \\ & X\leftarrow X[:,:,I].reshape(B,C,-1,4) \\ & X\leftarrow X.transpose(0,2,1,3).flatten(dim=1) \end{array}$

Results - Accuracy

Missed accuracy with high mask count, scene-wise receptive field scenarios

PASCAL VOC, Oxford PET - Full

Preserved accuracy in low mask count, local receptive field scenarios

- Oxford PET - Small, MSD

Method	VOC [9]			PET _F [20]			PET _S [20]			MSD Heart [1]			MSD Brain [1]			MSD Lung [1]		
	\mathcal{L}_{CE}	$mAP_{0.5}$	mIOU	\mathcal{L}_{CE}	$mAP_{0.5}$	mIOU	\mathcal{L}_{CE}	$mAP_{0.5}$	mIOU	\mathcal{L}_{CE}	$mAP_{0.5}$	mIOU	\mathcal{L}_{CE}	$mAP_{0.5}$	mIOU	\mathcal{L}_{CE}	$mAP_{0.5}$	mIOU
U-Net ₄ [23]	1.985	0.0541	0.182	2.206	0.0329	0.316	0.243	0.7717	0.713	0.0223	0.4305	0.063	0.0455	0.2450	0.001	0.0010	0.5542	0.009
ResNet ₃₄ [11]	1.321	0.0806	0.332	0.648	0.0503	0.597	0.179	0.9098	0.801	0.0087	0.4375	0.065	0.1305	0.4188	0.079	0.0010	0.5529	0.009
ResNet ₅₀ [11]	1.079	0.0921	0.372	1.027	0.0512	0.599	0.189	0.9303	0.815	0.0086	0.4368	0.065	0.0496	0.5419	0.010	0.0007	0.5566	0.009
MobileNet [12]	2.007	0.0480	0.166	2.386	0.0329	0.252	0.262	0.6091	0.664	0.0288	0.3265	0.047	0.0351	0.5764	0.011	0.0010	0.5787	0.008
$OneNet_{e,4}$	2.144	0.0485	0.160	2.713	0.0279	0.216	0.309	0.5176	0.636	0.0041	0.4396	0.066	0.0363	0.5789	0.105	0.0007	0.5531	0.009
OneNet _{ed} ,4	2.553	0.0363	0.149	3.080	0.0227	0.172	0.437	0.2179	0.535	0.0076	0.4187	0.062	0.0455	0.5415	0.099	0.0009	0.5510	0.008

Results - Reduction

Encoder Replacement

47% reduction in model size, accuracy preserved

Encoder/Decoder Replacement

71% reduction in model size, accuracy drop 5%~13%

Method	# Param (M)	Param (MB)	FLOPS (GB)	Memory (MB)		
U-Net ₄ [23]	31.04	124.03	104.72	509.61		
U-Net ₅ [23]	124.42	497.41	130.80	524.29		
ResNet ₃₄ [11]	25.05	98.07	29.40	241.17		
ResNet ₅₀ [11]	74.07	287.83	84.98	450.36		
MobileNet [12]	14.40	57.47	83.96	671.09		
$OneNet_{e,4}$	16.39	65.42	78.42	639.63		
$OneNet_{e,5}$	65.73	262.63	98.82	656.41		
$OneNet_{ed,4}$	9.08	36.30	22.92	799.01		
OneNet $_{ed,5}$	36.38	145.47	39.00	885.00		

Thank You

