

DIGITAL TALENT SCHOLARSHIP 2019

Program Fresh Graduate Academy Digital Talent Scholarship 2019 | Machine Learning

Classification: Logistic Regression

M. Ramli & M. Soleh

Bagian Pertama

Pendahuluan Mengenai Logistic Regression

Apa itu Logistic Regression

- Logistic Regression merupakan salah satu teknik machine learning untuk melakukan klasifikasi record dari dataset.
- Sebagai contoh, kita memiliki dataset telekomunikasi sebagai berikut.

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	Yes
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	Yes
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	No
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	No
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	?

Pemahaman Data

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	Yes
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	Yes
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	No
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	No
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	?

- Bayangkan Anda adalah seorang analis di perusahaan ini dan Anda harus mencari tahu pelanggan siapa yang pergi (tidak berlangganan) dan mengapa ?
- Anda harus menggunakan dataset untuk membangun model berdasarkan catatan-catatan sebelumnya dan menggunakannya untuk memprediksi "churn" di masa depan.
 - Churn = Apakah pelanggan meninggalkan perusahaan atau tidak bulan lalu.

Pemahaman Data

Independent Variable

Dependent Variable

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	Yes
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	Yes
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	No
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	No
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	?

- Indepentent Variable = Variable / Fitur yang merupakan input dan akan dipakai untuk memprediksi sebuah output, churn.
- **Dependent Variable** = Nilainya bergantung pada nilai-nilai input
 - Pelanggan akan berhenti atau tidak bergantung dari data pelanggan tsb.

Linear vs. Logistic Regression

Linear Regression

Melakukan Prediksi

- Prediksi nilai kontinyu dari sebuah variable, seperti:
 - Harga rumah berdasarkan ciri
 - Tekanan darah berdasarkan symptom
 - Konsumsi bensin berdasarkan kondisi mobil

Logistic Regression

Melakukan Klasifikasi

- Klasifikasi nilai biner, seperti:
 - Kelompok A atau B
 - Sukses atau tidak sukses
 - Tetap berlangganan atau tidak.

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	Yes
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	Yes
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	No
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	No
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	?

Catatan Khusus Logistic Regression

Inde	pendent	Variab	6
HILL	penaent	variab	

Dependent Variable

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	Yes
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	Yes
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	No
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	No
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	?

Numeric and Continous Value

- Logistic Regression mewajibkan seluruh data dalam bentuk numerik
- Jika berkategori (Pria/Wanita, Ya/Tidak) harus diubah dalam bentuk angka.

Bagian Dua

Aplikasi Logistic Regression

Beberapa Contoh Aplikasi

- Memprediksi probabilitas seseorang mengalami serangan jantung dalam satu periode tertentu
 - Berdasarkan: umur, sex, berat badan.
- Memprediksi apakah pasien memiliki penyakit yang dicurigai (seperti diabetes)
 - Berdasarkan: berat, tinggi, tekanan darah, dan beragam test darah lainnya.
- Memprediksi kemungkinan pelanggan akan membeli sebuah produk, atau berlangganan sebuah layanan (seperti contoh kita sebelumnya)
 - Berdasarkan: umur, sex, pekerjaan, lingkungan hidup.

Beberapa Contoh Aplikasi

- Memprediksi probabilitas kegagalan sebuah produk untuk menghindari kekecewaan pelanggan.
 - Berdasarkan: tingkat ketahanan produk, durabilitas, dll.
- Memprediksi apakah nasabah dapat menyanggupi pembayaran kredit.
 - Berdasarkan: umur, sex, pekerjaan, jumlah anak, gaji, dll.

Berdasarkan beberapa contoh diatas, dapat disimpulkan bahwa:
 Logistic Regression digunakan untuk menghitung probabilitas sebuah data terkategorisasi ke salah satu kelompok yang tersedia.

Kapan kita gunakan Logistic Regression?

- Pada dasarnya, ada beragam teknik machine learning yang dapat digunakan untuk melakukan kategorisasi suatu data.
- Pertanyaan mendasar muncul: <u>Kapan kita harus menggunakan Logistic</u> <u>Regression?</u>

Kapan kita gunakan Logistic Regression?

- Jika data berupa binary, seperti:
 - Kelompok A atau B
 - Lulus atau Tidak
 - Berlangganan atau Tidak
- Jika kita membutuhkan pengelompokkan dalam bentuk probabilitas
- Data bersifat "linearly separable"

Kapan kita gunakan Logistic Regression?

- Linearly Separable
- Dapat dipisahkan secara linear
 - Jika data 2D, dipisahkan garis
 - Jika data 3D, dipisahkan plane
 - Jika data >3D, dipisahkan hyperplane.
- Secara teori, Logistic Regression sebenarnya juga dapat digunakan untuk data yang bersifat "non-linearly separable"
 - Namun diluar dari pembahasan ini.

Memodelkan Logistic Regression

X

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	Yes
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	Yes
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	No
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	No
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	?

Memodelkan Logistic Regression

x

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1.0
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	1.0 0.0 0.0 1.0	1.0
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0.0
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0.0
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	?

Data berkategori menjadi data numerik

$$\mathbf{x} \in \mathbb{R}^{m \times n}$$

$$y \in \{0,1\}$$

$$\hat{y} = P(y = 1|x)$$

Bagian Satu

Mengingat Kembali Formulasi

Meninjau Kembali Data

					X					y	
					<u> </u>						<
	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn	
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	Yes	
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	Yes	
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	No	
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	No	
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	?	

- Tujuan dari Logistic Regression adalah untuk <u>membangun sebuah model</u> yang akan melakukan klasifikasi class setiap pelanggan.
 - Menentukan probabilitas pelanggan apakah masuk dalam kategori berlangganan atau tidak.

Meninjau Kembali Formulasi

Membuat sebuah model

Yang dapat mengestimasi probabilitas classnya , \hat{y}

apakah masuk dalam class 1

jika diberikan observasi data *x*

Meninjau Kembali Formulasi

X 3

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	Yes
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	Yes
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	No
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	No
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	?

$$\widehat{y} = P(y = 1|x)$$

 \hat{y} , nilai yang diprediksi

y, nilai yang sebenarnya

Bagian Dua

Mencoba Menyelesaikan Permasalahan Kategorisasi dengan Linear Regression

Prediksi Income Berdasarkan Age

					/ /					
	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0

- Kita lupakan sejenak mengenai prediksi kategori churn, dan asumsikan tujuan kita adalah melakukan prediksi pendapatannya pelanggan.
- Untuk simplisitas, kita hanya ambil age (umur) sebagai variable yang akan mempengaruhi income
- Independent variable (x) = Age
- Dependent variable (y) = Income.

Prediksi Income Berdasarkan Age

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0

- Untuk memahami data, kita bisa lakukan plotting terlebih dahulu.
- Age, independent variable, sebagai sumbu x
- Income, dependent variable, sebagai sumbu y

Prediksi Income Berdasarkan Age

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0

- Dengan Linear Regression kita dapat menyesuaikan sebuah garis yang merepresentasikan tren data.
- Kita dapat menemukan garis ini melalui training, atau menghitungnya secara matematis.
- Garis dapat diexpresikan dengan $a + bx_1$

			1						\	
	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0

- Sekarang mari kita ganti permasalahannya.
- Dengan teknik yang sama (linear regression), apakah kita bisa memprediksi kategori dari "churn"?
- Independent variable (x) = Age
- Dependent variable (y) = Churn.
- Mari kita diskusi bersama.

			1							
	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0

- Untuk memahami data, kita bisa lakukan plotting terlebih dahulu.
- Age, independent variable, sebagai sumbu x
- Churn, dependent variable, sebagai sumbu y

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0

- Dapat kita lihat ada perbedaan mencolok dari plot yang kita buat.
- Sumbu *y*, *churn*, merupakan data berkategori.
 - Ya dan Tidak.
- Data tidak menjadi kontinyu

			1							
	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0

- Demi mengunggah rasa penasaran kita, mari kita coba (secara paksa) untuk melakukan estimasi persamaan garis.
- Kita dapat melihat bahwa persamaan garis menjadi tidak relevan.

Linear Regression Menjadi Tidak Relevan

Linear Regression Menjadi Tidak Relevan

- Dari percobaan sebelumnya, kita memahami bahwa meskipun kita memaksakan diri melakukan linear regression pada permasalahan kategorisasi, hasil yang didapat akan menjadi tidak relevan.
- Linear Regresion hanya untuk memprediksi! Bukan melakukan kategorisasi.
- Logistic Regresion sebaliknya, ditujukan untuk melakukan kategorisasi!

Bagian Tiga

Linear Regression menuju Logistic Regression

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0

- Faktanya, untuk
 mengimplementasikan Logistic
 Regression, kita hanya perlu
 menambahkan beberapa tahap
 tambahan.
- Untuk itu, mari kita notasikan secara formal beberapa variable yang kita butuhkan.

Persamaan Garis

$$y = ax + c$$

$$ax + by + c = 0$$

$$w_1 x_1 + w_2 x_2 + b = 0$$

$$w_1 x_1 + w_2 x_2 + w_3 1 = 0$$

$$\boldsymbol{W}^{\mathrm{T}}\boldsymbol{x}=0$$

dimana:
$$\boldsymbol{W} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

$$\mathbf{W}^{\mathrm{T}} \mathbf{x} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = w_1 x_1 + w_2 x_2 + w_3 1$$

Contoh, diketahui parameter garis:

$$W^{T} = [0.1 \ -1 \ -1]$$

$$W^{\mathrm{T}}x = 0.1x_1 - 1x_2 - 1$$

Untuk mempermudah pemahaman

$$x_2 = 0.1x_1 - 1$$

$$y = 0.1x - 1$$

Sekarang, kita bisa menggunakan persamaan garis linear regression tersebut untuk melakukan kategorisasi churn berdasarkan umur.

$$y = 0.1x - 1$$

Sebagai contoh, ada pelanggan berumur 13 tahun, maka:

$$y = 0.1(13) - 1$$

$$y = 0.3$$

Sekarang, mari kita buat sebuah aturan – thresholding:

$$\hat{y} = \begin{cases} 1, & Wx \ge 0.5 \\ 0, & Wx < 0.5 \end{cases}$$

Karena

$$y = 0.3$$
, dan $y < 0.5$

Maka, \hat{y} terkategorisasi ke class 0, tidak berlangganan.

$$\hat{y} = 0$$

Menuju Logistic Regression

$$\hat{y} = \begin{cases} 1, & \mathbf{W}^{\mathrm{T}} \mathbf{x} \ge 0.5 \\ 0, & \mathbf{W}^{\mathrm{T}} \mathbf{x} < 0.5 \end{cases}$$

- Terdapat satu permasalahan yang masih belum disinggung.
- Rangkaian tahap ini tidak memberikan output berupa probabilitas.
- Berapa probabilitas pelanggan berumur 13 tahun berhenti berlangganan?

Yang telah kita lakukan sejauh ini

$$\mathbf{W}^{\mathrm{T}}\mathbf{x} = w_1 x_1 + w_2 x_2 + w_3 1$$
 $\hat{y} = \begin{cases} 1, & \mathbf{W}^{\mathrm{T}}\mathbf{x} \ge 0.5 \\ 0, & \mathbf{W}^{\mathrm{T}}\mathbf{x} < 0.5 \end{cases}$

$$\hat{y} = \begin{cases} 1 \\ 0 \end{cases}$$

$$W^{\mathrm{T}}x \ge 0.5$$
$$W^{\mathrm{T}}x < 0.5$$

Gunakan persamaan garis linear regression untuk mengkalkulasi score

Angka ini bisa saja diluar dari nilai yang diperbolehkan oleh dependent variable

Contoh:

Churn, hanya memiliki nilai 0 dan 1, namun hasil score bisa saja diluar dari angka ini

Setelah score didapatkan, lakukan thresholding untuk hasil score tersebut.

Contoh:

Threshold yang dipakai adalah 0.5, sehingga, jika score berada dibawah 0.5, maka data tersebut terkategorisasi dalam class 0,

Jika >= 0.5, maka data tersebut terkategorisasi dalam class 1.

Proses thresholding tersebut merupakan Step Function.

Step Function dillustrasikan dalam grafik diatas.

Menuju Logistic Regression

 Agar mengeluarkan output berupa probabilitas, Step Function harus diganti dengan sebuah fungsi yang lain, yang disebut dengan <u>Logistic Function</u>

Step Function

$$\hat{y} = \begin{cases} 1, & \mathbf{W}^{\mathrm{T}} \mathbf{x} \ge \text{Threshold} \\ 0, & \mathbf{W}^{\mathrm{T}} \mathbf{x} < \text{Threshold} \end{cases}$$

Logistic Function

$$\hat{y} = \sigma(W^{\mathrm{T}} \mathbf{x})$$

Logistic Function

- Logistic Function juga umum disebut dengan Sigmoid Function.
- Didefinisikan sebagai

$$\sigma(\hat{y}) = \frac{1}{1 + e^{-\hat{y}}}$$

 \hat{y} bernilai besar, $e^{-\hat{y}}$ mendekati 0 $\sigma(\hat{y})\cong 1$

 \hat{y} bernilai kecil, $e^{-\hat{y}}$ mendekati ∞ $\sigma(\hat{y})\cong 0$

Dimana

$$\hat{y} = W^{T}x$$

= $w_1x_1 + w_2x_2 + w_31$

Logistic Function

Output dari Contoh Kasus

Persamaan garis

$$\hat{y} = 0.1x - 1$$

Pelanggan berumur 13 Tahun

$$\hat{y} = 0.1(13) - 1 = 0.3$$

• Probabilitas menggunakan Logistic/Sigmoid Function

$$\sigma(y = 1|x) = \sigma(\hat{y}) = \sigma(0.3) = \frac{1}{1 + e^{-0.3}} = 0.57$$

Output dari Contoh Kasus

- Sepertinya ada yang tidak benar.
- Jika kita ingat percobaan kita saat menggunakan Step Function, pelanggan berumur 13 tahun tersebut terkategorisasi tidak berlangganan.

Mengingat Kembali

Alasan Dibaliknya

Persamaan garis yang kita miliki hanya berdasarkan asumsi

Pemilihan persamaan garis hanyalah contoh, <u>educated guess</u> yang bukan merepresentasikan kategori data yang sebenarnya.

Lalu bagaimana caranya kita menemukan persamaan garis yang merepresentasikan kategori data pelanggan terhadap *churn* yang lebih akurat?

Bagian Empat

Training Logistic Regression

Training Logistic Regression

- Berdasarkan pengamatan yang kita lakukan, kita melihat bahwa, diperlukan persamaan garis yang tepat agar kategorisasi data menjadi lebih akurat.
- Untuk menemukan persamaan garis yang tepat, sebuah <u>proses yang disebut</u> <u>training</u>, harus dilakukan!
- Training dilakukan untuk meminimalisasi error yang dibuat oleh persamaan garis.

Training Logistic Regression

- 1. Inisialisasi W^{T} secara acak untuk menentukan persamaan garis.
- 2. Hitung score, $\hat{y} = \mathbf{W}^{\mathrm{T}} \mathbf{x}$
- 3. Bandingkan hasil \hat{y} dengan nilai label (dependent variable) yang sebenarnya, y
- 4. Hitung besar error (kesalahan) yang dilakukan oleh persamaan garis tersebut.
- 5. Ubah $\boldsymbol{W}^{\mathrm{T}}$ sedemikian rupa untuk mereduksi cost.
- 6. Kembali ke langkah 2.

Logistic Regression di 2D

Decision Boundary

Logistic Function in Action

Bagian Lima

Praktikum Lab

ML0101EN-Clas-Logistic-Reg-churn-py-v1.ipynb

IKUTI KAMI

- digitalent.kominfo
- digitalent.kominfo
- DTS_kominfo
- Digital Talent Scholarship 2019

Pusat Pengembangan Profesi dan Sertifikasi Badan Penelitian dan Pengembangan SDM Kementerian Komunikasi dan Informatika Jl. Medan Merdeka Barat No. 9 (Gd. Belakang Lt. 4 - 5) Jakarta Pusat, 10110

