Equations:

$$|e| = 1.6 \times 10^{-19} \,\mathrm{C}$$

$$F_{e} = k_{e} \frac{\left| q_{1} \right| \left| q_{2} \right|}{r^{2}}$$

 $k_e = 8.9876 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 = 1/(4\pi\varepsilon_0)$

 ε_0 = 8.8542 x 10⁻¹² C² / N·m²

$$\vec{\mathbf{E}} \equiv \frac{\vec{\mathbf{F}}}{q_o}$$

$$\vec{\mathbf{E}} = \frac{\vec{\mathbf{F}}_e}{q_o} = k_e \frac{q}{r^2} \hat{\mathbf{r}}$$

 $\rho \equiv Q / V$ with units C/m³

 $\sigma \equiv Q / A$ with units C/m²

 $\lambda \equiv Q / \ell$ with units C/m

$$\vec{\mathbf{a}} = \frac{q\vec{\mathbf{E}}}{m}$$

$$\Phi_E = EA$$

$$\Phi_E = EA \cos \vartheta$$

$$\Phi_{E} = \lim_{\Delta A_{i} \to 0} \sum_{i} E_{i} \cdot \Delta A_{i}$$

$$\Phi_{\it E} = \int\limits_{\rm out one} \vec{\bf E} \cdot d\vec{\bf A}$$

$$E = k_e q / r^2$$

$$\Phi_E = \frac{q}{\epsilon_0}$$

$$\Phi_E = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q_{\text{in}}}{\epsilon_0}$$

$$E = \frac{Q}{4\pi\epsilon_0 r^2} = k_{\epsilon} \frac{Q}{r^2} \quad (\text{for } r > a)$$

$$E = \frac{Q/\frac{4}{3}\pi a^3}{3(1/4\pi k_e)} r = k_e \frac{Q}{a^3} r \text{ (for } r < a)$$

$$E = \frac{\lambda}{2\pi\epsilon_0 r} = 2k_e \frac{\lambda}{r}$$

$$E = \frac{\sigma}{2\epsilon_0}$$

$$E = \frac{\sigma}{\epsilon_0}$$

$$W_{\rm int} = \overrightarrow{\mathbf{F}}_e \cdot d\overrightarrow{\mathbf{s}} = q \overrightarrow{\mathbf{E}} \cdot d\overrightarrow{\mathbf{s}}$$

$$\Delta U = -q \int_{\mathbf{a}}^{\mathbf{B}} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}}$$

$$V = \frac{U}{a_a}$$

$$W = \Delta U = q \Delta V$$

$$\Delta V = -E \int_{\mathbf{@}}^{\mathbf{@}} ds$$

$$\Delta V = -Ed$$

$$\Delta U = q \Delta V = -q \vec{\mathbf{E}} \cdot \vec{\mathbf{s}}$$

$$V_B - V_A = k_e q \left[\frac{1}{r_B} - \frac{1}{r_A} \right]$$

$$V = k_e \frac{q}{r}$$

$$U = k_e \frac{q_1 q_2}{r_{12}}$$

$$E_x = -\frac{dV}{dx}$$

$$C \equiv \frac{Q}{\Lambda V}$$

$$C = \frac{Q}{\Delta V} = \frac{Q}{k_e Q / a} = \frac{a}{k_e} = 4\pi \epsilon_0 a$$

$$C = \frac{Q}{\Delta V} = \frac{Q}{Qd/\epsilon_0 A}$$

$$C = \frac{\epsilon_0 A}{d}$$

$$E = \frac{\lambda}{2\pi\epsilon_0 r} = 2k_e \frac{\lambda}{r}$$

$$E = \frac{Q}{4\pi\epsilon_0 r^2} = k_e \frac{Q}{r^2} \quad \text{(for } r > a\text{)}$$

$$C_{\text{eq}} = C_1 + C_2 + C_3 + ...$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

$$U_E = \frac{Q^2}{2C} = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$$

$$u_E = \frac{1}{2} \, \epsilon_0 E^2$$

$$U_0 = \frac{{Q_0}^2}{2C_0}$$

$$U = \frac{{Q_0}^2}{2C}$$

$$U = \frac{{Q_0}^2}{2\kappa C_0} = \frac{U_0}{\kappa}$$

$$U_{\!E}=-\overrightarrow{\mathbf{p}}\cdot\overrightarrow{\mathbf{E}}$$

$$I_{\rm avg} = \frac{\Delta Q}{\Delta t} = nqv_d A$$

$$J \equiv I / A = nq \mathbf{v}_d$$

$$R = \rho \frac{\ell}{A}$$

$$\rho = \rho_0 [1 + \alpha (T - T_0)]$$

$$R = R_0[1 + \alpha(T - T_0)]$$

$$\frac{dU}{dt} = \frac{d}{dt} (Q \Delta V) = \frac{dQ}{dt} \Delta V = I \Delta V$$

 $Q_{\text{max}} = C \mathcal{E}$ (maximum charge)

$$q(t) = C\mathbf{E}(1 - e^{-t/RC}) = Q_{\text{max}}(1 - e^{-t/RC})$$

$$i(t) = \frac{\mathcal{E}}{R} e^{-t/RC}$$

$$au = RC$$

$$q(t) = Q_i e^{-t/RC}$$

$$i(t) = -\frac{Q_i}{RC} e^{-t/RC}$$

TABLE 23.1 Charge and Mass of the Electron, Proton, and Neutron

Particle	Charge (C)	Mass (kg)
Electron (e)	$-1.602\ 176\ 5 \times 10^{-19}$	$9.109 \ 4 \times 10^{-31}$
Proton (p)	$+1.602\ 176\ 5 \times 10^{-19}$	$1.672 62 \times 10^{-27}$
Neutron (n)	0	$1.674 \ 93 \times 10^{-27}$

TABLE 26.1 Approximate Dielectric Constants and Dielectric Strengths of Various Materials at Room Temperature

Material	Dielectric Constant κ	Dielectric Strength a (10 6 V/m)
Air (dry)	1.000 59	3
Bakelite	4.9	24
Fused quartz	3.78	8
Mylar	3.2	7
Neoprene rubber	6.7	12
Nylon	3.4	14
Paper	3.7	16
Paraffin-impregnated paper	3.5	11
Polystyrene	2.56	24
Polyvinyl chloride	3.4	40
Porcelain	6	12
Pyrex glass	5.6	14
Silicone oil	2.5	15
Strontium titanate	233	8
Teflon	2.1	60
Vacuum	$1.000\ 00$	_
Water	80	_

^aThe dielectric strength equals the maximum electric field that can exist in a dielectric without electrical breakdown. These values depend strongly on the presence of impurities and flaws in the materials.

TABLE 27.2 Resistivities and Temperature Coefficients of Resistivity for Various Materials

Material	Resistivity $^{a}\left(\Omega\cdot m\right)$	Temperature Coefficient ^b $\alpha[(^{\circ}C)^{-1}]$
Silver	1.59×10^{-8}	3.8×10^{-3}
Copper	1.7×10^{-8}	3.9×10^{-3}
Gold	2.44×10^{-8}	3.4×10^{-3}
Aluminum	2.82×10^{-8}	3.9×10^{-3}
Tungsten	5.6×10^{-8}	4.5×10^{-3}
Iron	10×10^{-8}	5.0×10^{-3}
Platinum	11×10^{-8}	3.92×10^{-3}
Lead	22×10^{-8}	3.9×10^{-3}
Nichrome ^c	1.00×10^{-6}	0.4×10^{-3}
Carbon	3.5×10^{-5}	-0.5×10^{-3}
Germanium	0.46	-48×10^{-3}
Silicon ^d	2.3×10^{3}	-75×10^{-3}
Glass	10^{10} to 10^{14}	
Hard rubber	$\sim 10^{13}$	
Sulfur	10^{15}	
Quartz (fused)	75×10^{16}	

^a All values at 20°C. All elements in this table are assumed to be free of impurities.

^b See Section 27.4.

 $[^]c$ A nickel–chromium alloy commonly used in heating elements. The resistivity of Nichrome varies with composition and ranges between 1.00 \times 10 $^{-6}$ and 1.50 \times 10 $^{-6}$ Ω \cdot m.

^d The resistivity of silicon is very sensitive to purity. The value can be changed by several orders of magnitude when it is doped with other atoms.