Introducción a Automatas y Lenguajes

Pablo Castro Programación Avanzada, 2011

Autómatas Finitos Deterministicos

Los AFD son formalizaciones de computadoras con muy poca memoria. Por ejemplo:

Sensor de Entrada

Sensor de Salida Pensemos en una puerta automática.

- I. Si una persona se para en la entrada se abre.
- 2. Si no se detecta nada se cierra.
- 3. Si una persona está parada en la salida, si está abierta, se mantiene abierta, sino cerrada.

AFD (cont)

- Tenemos dos estados: Abierta y Cerrada.
- Tenemos los siguientes cambios de estados: Alguien en la entrada, nadie en ningún lado.

AFD (Cont)

Cada secuencia de eventos, produce una secuencia de transiciones de estados. Por ejemplo:

Entrada, Atrás, Ninguno, Entrada, Ambas, Ninguna, Atrás, Ninguna

Determina la siguiente secuencia de estados:

Abierta, Abierta, Cerrada, Abierta, Abierta, Cerrada, Cerrada,

Cerrada

AFD (cont)

Los AFD son abstracciones de estos mecanismos. Un AFD es una tupla: $\langle Q, \Sigma, \delta, q_0, F \rangle$

- Q es un conjunto finito de estados.
- Σ es un conjunto finito, llamado alfabeto.
- $\delta: Q \times \Sigma \to Q$ es una función de transición.
- $q_0 \in Q$ es un estado de inicio.
- $F \subseteq Q$ es el conjunto de estados finales.

AFD (cont.)

Generalmente la función de transición se describe usando una tabla:

$$\delta =$$

	Atrás	Entrada	Ambas	Ninguna
Cerrada	Cerrada	Abierta	Cerrada	Cerrada
Abierta	Cerrada	Abierta	Abierta	Abierta

AFD

En general, los AFD se usan para capturar lenguajes.

Un lenguaje es un conjunto de secuencias de símbolos

- En computación consideramos lenguajes solo con 0 y l's.
- Estos alcanzan para describir cualquier lenguaje con más símbolos (finitos).
- Por ejemplo: $\{0^k \mid k \ge 1\}$ es el lenguaje 0,00,000,000,000, 0000,

AFD

Los AFD pueden reconocer una colección simple de lenguajes, llamados regulares:

Definición formal de Aceptación

 $\textbf{Definimos:}\, \delta^*: Q \times [Bin] \to Q$

$$\delta^*(q, []) = 1$$

$$\delta^*(q, x : xs) = \delta^*(\delta(q, x), xs)$$

Por ejemplo:

$$\delta^*(q_0, 100) = \delta^*(q_1, 00) = \delta^*(q_2, 0) = \delta^*(q_1, 0)$$

En este caso decimos que A acepta el leng.

Usando Inv. para construir AFD

Supongamos que queremos reconocer:

$$L = \{\{0, 1\}^k \mid k \ge 0 \text{ y la cant. de 1's es impar}\}$$

Podemos hacerlo con invariantes:

- Un invariante por cada estado,
- q0: Hasta aquí tenemos una cantidad par de l's.
- ql: Hasta aquí tenemos una cantidad impar de l's.

AFD

Obtenemos el siguiente autómata:

Ejercicios

- Todas las cadenas con 001.
- Las cadenas que tienen al menos 3 l's y al menos 2 0's
- Las cadenas que tienen una cantidad par de 0's y una cantidad impar de l's

AFND

Los autómatas finitos no determinísticos permiten introducir no determinismo.

En este ejemplo en el estado q_0 tenemos dos posibilidades. Podemos pensar la ejecución como un árbol

AFND

Veamos las posibles ejecuciones de 0011010:

$$q_0 \xrightarrow{0} q_0 \xrightarrow{0} q_0$$

$$\uparrow q_0 \xrightarrow{1} q_0 \xrightarrow{q_1 \xrightarrow{q_1 \xrightarrow{q_2 \xrightarrow{q_3 \xrightarrow{q_3 \xrightarrow{q_3 \xrightarrow{q_1 x}}}}}}}}}}}}}}}}}}}}}}}}}}} q_1$$

Veamos las posibles ejecuciones de 0011010:

AFND con transiciones lambda

Las transiciones lambda son transiciones que no consumen símbolos

Cadenas conteniendo 101 ó 11

Operaciones sobre autómatas

- Unión de autómatas, si tenemos A_0 y A_1 podemos construir $A_0 \cup A_1$
- Concatenación de autómatas, dado A_0 y A_1 podemos construir $A_0 \circ A_1$
- Iteración, dado A podemos construir A^* .

Estas operaciones se llaman operaciones regulares, y los lenguajes construidos con ellas se llaman leng. regulares

Equivalencia de Autómatas

Todos estos formalismos son equivalentes, es decir, capturan el mismo lenguaje:

 $AFD = AFND = AFND + \epsilon$

Los lenguajes regulares se utilizan para buscar en textos, para construir parsers y para diferentes operaciones sobre lenguajes.

Gramáticas y Lenguajes

Algunas definiciones básicas:

Alfabeto: Es una colección de símbolos. Por ejemplo

$$\Sigma = \{0,1\}$$

Cadena: Es una secuencia de símbolos de algún alfabeto:

$$001 \quad 101 \quad 0 \quad \epsilon <$$
 Secuencia vacía

Lenguaje: Es un conjunto de cadenas:

$$L = \{1, 11, 111, 1111, \dots\} \overset{\text{Conjunto de cadenas con}}{\text{todos unos}}$$

Ejemplos

- El lenguaje castellano puede ser definido como el conjunto de aquellos textos que están bien escritos.
- El lenguaje de Haskell viene dado por el conjunto de todos los programas bien formados de Haskell.
- $L = \{10, 11, 101, \dots\}$, el lenguaje de todos los números primos en binario.

Gramáticas

Una gramática es un conjunto de reglas que nos permiten definir lenguajes, por ejemplo:

$$EXP \to EXP + EXP \mid EXP * EXP \mid EXP - EXP \\ \mid EXP \mid EXP \mid (EXP) \mid NUM \\ NUM \to CONS \mid CONS \mid NUM \\ CONS \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

Define las expresiones numéricas:

$$15*5$$
 $10/(3*3)$ 1252 $((3+5)/20)*100$

Gramáticas (cont.)

Formalmente una gramática consta de:

EXP, NUM, CONS en el ejemplo anterior

Conjuntos de símbolos terminales (símbolos del

alfabeto).

1,2,3,4,5,6,7,8,9,0 en el ejemplo anterior

- Conjuntos de símbolos <u>no-terminales</u>, sirven para definir estructuras sintácticas validas.
- Conjunto de <u>reglas</u>, o producciones.

Introducidas con flechas en el ejemplo dado

Derivaciones

Una <u>derivación</u> es una secuencia de aplicaciones de reglas, que producen una secuencia de terminales:

$$EXP \rightarrow EXP + EXP \rightarrow EXP + (EXP) \rightarrow EXP + (EXP*EXP) \rightarrow NUM + (EXP*EXP) \rightarrow CONS + (EXP*EXP) \rightarrow 5 + (EXP*EXP) \rightarrow 5 + (NUM + EXP) \rightarrow 5 + (CONS*EXP) \rightarrow 5 + (10*EXP) \rightarrow 5 + (10*NUM) \rightarrow 5 + (10*3)$$

Es decir, con esta derivación generamos la cadena:

$$5 + (10 * 3)$$

El lenguaje viene dado por todas las cadenas que podemos generar con la gramática.

BNF

BNF es un lenguaje generalmente para describir gramáticas de los lenguajes de programación:

```
<vardecl> ::= var <vardecllist>;
<vardecllist> ::= <varandtype> { ; <varandtype> }
<varandtype> ::= <ident> { , <ident> } : <typespec>
<ident> ::= <letter> { <idchar> }
<idchar> ::= <letter> | <digit>
```

Define declaraciones de variables:

```
var v: int;
var b:boolean;
```

Jerarquias de Lenguajes

La jerarquía de Chomsky califica las gramáticas según la expresividad de los lenguajes que generan:

- Gramáticas tipo 0: Incluye todas las gramáticas de aquellos lenguajes reconocibles por una computadora.
- Gramáticas tipo I: Gramática dependientes de contexto.
- Gramáticas tipo 2: Gramáticas libres o independiente de contexto.
- Gramáticas tipo 3: Gramáticas que pueden ser reconocidas por autómatas.

Gramáticas Dependientes de Contexto

Son aquellos con producciones del estilo:

$$\alpha A\beta \to \alpha \gamma \beta$$

Donde, α y β son cadenas de terminales o no terminales, y γ es una cadena no vacía de símbolos, terminales o no terminales.

Algunos lenguajes naturales son descritos con gramáticas dependientes de contexto.

Gramáticas Libres de Contexto

Intuitivamente, son aquellas en el que contexto no importa. Reglas del tipo:

$$N \to w$$

Donde, N es un no-terminal, y w una cadena de terminales y no terminales.

Muchos lenguajes de programación pueden ser descritos con gramáticas libres de contexto.

Gramáticas Regulares

Son las gramáticas más simples de todas, generan aquellos lenguajes reconocidos por autómatas.

Producciones del tipo:

Utiles para definir lenguajes simples que pueden ser reconocidos de una forma eficiente.

Bibliografía

- Introduction to the Theory of Computation. Michael Sipser (Cap. 1 y 2).
- Introduction to Automata Theory,
 Languages and Computation. Hopcroft,
 Motwani, Ullman. (Biblioteca)