Optimization in Machine Learning

Mathematical Concepts: Differentiation and Derivatives

Learning goals

- Definition of smoothness
- Uni- & multivariate differentiation
- Gradient, partial derivatives
- Jacobi-Matrix
- Hessian Matrix

UNIVARIATE DIFFERENTIABILITY

Definition: A function $f: \mathcal{S} \subseteq \mathbb{R} \to \mathbb{R}$ is said to be differentiable for each inner point $x \in \mathcal{S}$ if the following limit exists:

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Intuitively: f can be approxed locally by a lin. fun. with slope m = f'(x).

Left: Function is differentiable everywhere. Right: Not differentiable at the red point.

SMOOTH VS. NON-SMOOTH

- **Smoothness** of a function $f: \mathcal{S} \to \mathbb{R}$ is measured by the number of its continuous derivatives
- k-times continuously diff. means: $f^{(k)}$ exists + is continuous for every $\mathbf{x} \in \mathcal{S}$ ($f \in \mathcal{C}^k$ class of continuously differentiable functions)
- In this lecture, we call f "smooth", if at least $f \in C^1$

 f_1 is smooth, f_2 is continuous but not differentiable, and f_3 is non-continuous.

MULTIVARIATE DIFFERENTIABILITY

Definition: $f: \mathcal{S} \subseteq \mathbb{R}^d \to \mathbb{R}$ is differentiable in $\mathbf{x} \in \mathcal{S}$ if there exists a (continuous) linear map $\nabla f(\mathbf{x}): \mathcal{S} \subseteq \mathbb{R}^d \to \mathbb{R}^d$ with

$$\lim_{\boldsymbol{h}\to 0}\frac{f(\boldsymbol{x}+\boldsymbol{h})-f(\boldsymbol{x})-\nabla f(\boldsymbol{x})\cdot\boldsymbol{h}}{||\boldsymbol{h}||}=0$$

Geometrically: The function can be locally approximated by a tangent hyperplane.

Source: https://github.com/jermwatt/machine_learning_refined.

GRADIENT

This linear approximation is given by the **gradient**:

$$\nabla f = \frac{\partial f}{\partial x_1} \boldsymbol{e}_1 + \dots + \frac{\partial f}{\partial x_n} \boldsymbol{e}_n = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)^{\top}.$$

The elements of the gradient are called partial derivatives.

To compute a partial derivative in x_j , we treat the function as univariate in x_j (and everything else as constant), then compute the derivative in x_j .

GRADIENT

Consider
$$f(\mathbf{x}) = 0.5x_1^2 + x_2^2 + x_1x_2$$
. The gradient is

$$\nabla f(\mathbf{x}) = (x_1 + x_2, 2x_2 + x_1)^{\top}.$$

DIRECTIONAL DERIVATIVE

The directional derivative tells how fast $f: S \to \mathbb{R}$ is changing w.r.t. an arbitrary direction \mathbf{v} :

$$D_{\mathbf{v}}f(\mathbf{x}) := \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h} = \nabla f(\mathbf{x})^{\top} \cdot \mathbf{v}.$$

Example: The directional derivative for $\mathbf{v} = (1, 1)$ is:

$$D_{v}f(\mathbf{x}) = \nabla f(\mathbf{x})^{\top} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{\partial f}{\partial x_{1}} + \frac{\partial f}{\partial x_{2}}$$

NB: Some people require that $||\mathbf{v}|| = 1$. Then, we can identify $D_{\mathbf{v}}f(\mathbf{x})$ with the instantaneous rate of change in direction \mathbf{v} – and in our example we would have to divide by $\sqrt{2}$.

PROPERTIES OF THE GRADIENT

- Orthogonal to level curves/surfaces of a function
- Points in direction of greatest increase of f

Proof: Let \mathbf{v} be a vector of length 1. Let θ the angle between \mathbf{v} and $\nabla f(\mathbf{x})$.

$$D_{\mathbf{v}}f(\mathbf{x}) = \nabla f(\mathbf{x})^{\top}\mathbf{v} = \|\nabla f(\mathbf{x})\| \|\mathbf{v}\| \cos(\theta) = \|\nabla f(\mathbf{x})\| \cos(\theta)$$

using the cosine formula for dot products and because $\|v\|=1$ by assumption. $\cos(\theta)$ is maximal if $\theta=0$, which is if \mathbf{v} and $\nabla f(\mathbf{x})$ point in the same direction. (Alternative proof: Apply Cauchy-Schwarz to $\nabla f(\mathbf{x})^{\top}\mathbf{v}$ and show for which \mathbf{v} the inequality holds with equality.)

PROPERTIES OF THE GRADIENT

• Negative gradient $-\nabla f(\mathbf{x})$ points in direction of greatest decrease **Mod. Branin function with neg. grads.**

JACOBI MATRIX

Let $f: S \to \mathbb{R}^m$ be vector-valued with components $f_1, f_2, ..., f_m$. **Jacobian** generalizes the gradient by placing the ∇f_i in its rows:

$$J_f = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

 $f:\mathbb{R}^2 \to \mathbb{R}^2$ sends a small square (left, red) originating from a given input point to a distorted parallelogram (right, red) . Jacobian gives best linear approximation of distorted parallelogram near that point. Source: Wikipedia.

DEFINITION HESSIAN MATRIX

The 2nd derivative of a multivariate function $f \in C^2(\mathcal{S}, \mathbb{R})$, $\mathcal{S} \subseteq \mathbb{R}^d$ (if it exists) is defined by the **Hessian** matrix

$$H(\mathbf{x}) = \nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}\right)_{i,j=1...d}$$

Example: Let $f(x_1, x_2) = sin(x_1) \cdot cos(2x_2)$. Then:

$$H(\mathbf{x}) = \begin{pmatrix} -\cos(2x_2) \cdot \sin(x_1) & -2\cos(x_1) \cdot \sin(2x_2) \\ -2\cos(x_1) \cdot \sin(2x_2) & -4\cos(2x_2) \cdot \sin(x_1) \end{pmatrix}$$

- If all 2nd partial derivatives are continuous, H will be symmetric
- Many local properties, w.r.t. geometry, convexity, critical points, are encoded by the Hessian and its Eigenspectrum (→ later).

HESSIAN DESCRIBES LOCAL CURVATURE

Let w.l.o.g. $A(\mathbf{x}) = \{\lambda_{1,\mathbf{x}},...,\lambda_{d,\mathbf{x}}\}$ be Eigenspectrum with $\lambda_{1,\mathbf{x}} \leq \lambda_{2,\mathbf{x}} \leq ... \leq \lambda_{d,\mathbf{x}}$ of $H(\mathbf{x})$; let $\mathbf{v}_{i,\mathbf{x}}$ define the respective Eigenvectors. We can read off it:

• v_d/v_1 points in the direction of largest/smallest curvature

Example (continued):
$$H(\mathbf{x}) = \begin{pmatrix} -\cos(2x_2) \cdot \sin(x_1) & -2\cos(x_1) \cdot \sin(2x_2) \\ -2\cos(x_1) \cdot \sin(2x_2) & -4\cos(2x_2) \cdot \sin(x_1) \end{pmatrix}$$
.

•
$$H(a)$$
, $a = (\frac{-\pi}{2}, 0)$: $\lambda_{1,a} = 1, \lambda_{2,a} = 4$; $v_{1,a} = (1,0)^{\top}, v_{2,a} = (0,1)^{\top}$

