Homework 2

Math 25b

Due February 15, 2018

Topics covered: sequences, limits, continuity, open/closed sets Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Most problems from this assignment come from Spivak's *Calculus* or Spivak's *Calculus* on manifolds or Munkres' Analysis on manifolds. I've indicated this next to the problems (e.g. Spivak, CoM 1-2 means problem 2 of chapter 1 from Calculus on Manifolds).

1 For Laura Z.

Problem 1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map.

- (a) Show that there is a number M such that $|Th| \leq M|h|$ for $h \in \mathbb{R}^n$. Hint: Estimate |Th| in terms of |h| and the entries in the matrix of T.
- (b) Show that T is continuous.

 \Box

Problem 2. Let (x_n) be a sequence in \mathbb{R}^n . Prove that the following statements are equivalent

- (a) The sequence (x_n) converges to a.
- (b) Every subsequence of (x_n) has a further subsequence that converges to a.

Solution. \Box

Problem 3. In this problem you prove the "Squeeze Theorem." Suppose that $f(x) \leq g(x) \leq h(x)$ and $\lim_{x\to a} f(x) = \lim_{x\to a} h(x)$. Prove that $\lim_{x\to a} g(x)$ exists and

$$\lim_{x \to a} g(x) = \lim_{x \to a} f(x) = \lim_{x \to a} h(x).$$

2 For Beckham M.

Problem 4. In each case, find δ such that $|f(x) - \ell| < \epsilon$ for all x satisfying $0 < |x - a| < \delta$.

- (a) $f(x) = \frac{1}{x}$; a = 1, $\ell = 1$.
- (b) $f(x) = \sqrt{|x|}$; a = 0, $\ell = 0$.
- (c) $f(x) = \sqrt{x}$; a = 1, $\ell = 1$.

Solution. \Box

Problem 5.

- (a) Show that if $f : \mathbb{R} \to \mathbb{R}$ is continuous and f = 0 for all x in a dense set A, then f(x) = 0 for all x.
- (b) Prove that if $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(x+y) = f(x) + f(y) for all x, y then f is linear, i.e. there exists c so that f(x) = cx for all x.

 \Box

Problem 6. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function. Prove that the following statements are equivalent:

- (a) For each $x \in \mathbb{R}^n$ and $\epsilon > 0$, there exists $\delta > 0$ so that $|t x| < \delta$ implies $|f(t) f(x)| < \epsilon$.
- (b) For every $U \subset \mathbb{R}^m$ open, the set $f^{-1}(U)$ is open.

¹There exist functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy f(x+y) = f(x) + f(y) for all x, y, but are not continuous, but they are not easy to construct.

3 For Davis L.

Problem 7 (Pugh 1.42). A function defined on [a,b] or (a,b) is uniformly continuous if for each $\epsilon > 0$ there exists $\delta > 0$ so that $|x-a| < \delta$ implies $|f(x)-f(a)| < \epsilon$. Note that this δ cannot depend on a, it can only depend on ϵ . With ordinary continuity, δ can depend on both a and ϵ .

- (a) Show that any uniformly continuous function is continuous. Give an example of a function $f:(0,1)\to\mathbb{R}$ that is continuity but not uniformly continuous.
- (b) Is the function 2x uniformly continuous on $(-\infty,\infty)$? What about x^2 ? Give proof.

 \Box

Problem 8 (Pugh 1.43). In this exercise you prove that a continuous function $f:[a,b] \to \mathbb{R}$ is uniformly continuous. Fix $\epsilon > 0$. Consider the sets

$$A(\delta) = \{u \in [a, b] : if x, t \in [a, u] \text{ and } |x - t| < \delta, \text{ then } |f(x) - f(t)| < \epsilon\}$$

and

$$A = \bigcup_{\delta > 0} A(\delta).$$

Use the least upper bound property to prove that $b \in A$. Infer that f is uniformly continuous.²

Solution. \Box

Problem 9. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function with coordinate functions $f = (f_1, \dots, f_m)$. Show that $\lim_{x \to a} f(x) = b$ if and only if $\lim_{x \to a} f_i(x) \to b_i$ for each $i = 1, \dots, m$.

 $^{^{2}}$ According to Pugh, the fact that a continuity on [a,b] implies uniform continuity is one of the important, fundamental principles of continuous function.

4 For Joey F.

Problem 10. Let $GL_n(\mathbb{R}) \subset M_n(\mathbb{R})$ denote the subset of invertible matrices.³ In this problem you'll show that $GL_n(\mathbb{R})$ is an open subset of $M_n(\mathbb{R})$.

- (a) Show that the determinant det : $M_n(\mathbb{R}) \to \mathbb{R}$ is a continuous function. Hint: recall the formula for the determinant from Math 25a.⁴
- (b) Conclude that $GL_n(\mathbb{R})$ is open. Hint: recall the open set characterization of continuity.

- (a) Show that f satisfies the conclusion of the Intermediate Value Theorem (i.e. for any a < b in $[-\frac{2}{\pi}, \frac{2}{\pi}]$ and d with f(a) < d < f(b), there exists $c \in [a, b]$ with f(c) = d). Does f satisfy the hypothesis of IVT? Hint: you can easily treat the case [a, b] does not contain 0.
- (b) Suppose that $f:[a,b] \to \mathbb{R}$ satisfies the conclusion of IVT and that f takes on each value only once (i.e. f is injective). Prove that f is continuous. Hint: It might help to show that f is either increasing or decreasing (recall that f is increasing if x < y implies f(x) < f(y)).

 \Box

Problem 12. Prove that there does not exist a continuous function on \mathbb{R} that takes on every value exactly twice. Is the same statement true if we replace twice by thrice?

³In fact the set of invertible matrices forms a group, known as the general linear group.

⁴If you weren't here, ask someone.