Deep RL Arm Manipulation

Jaeyoung Lee

Abstract—Deep RL

Index Terms—Robot, IEEEtran, Udacity, Localization.

1 Introduction

DEEP reinforcement learning is the most dominant ML method for robot control AL these days [1]. This project shows one of the deep reinforcement learning examples with varying goals and tuning interim rewards. This document includes images of test environments and rewawrd formula and hyper-parameters table of accuracies of each test environments.

Fig. 1. Robot-Arm Touch Test Environment

2 REWARD FUNCTIONS

2.1 Choice of Joint Control

This test used Position-Control, not Velocity-Control. Position-Control is enough for these simple test. For the challenging test Velocity-Control might be needed.

2.2 Base Reward Design

- -1000 After 100 frames
- -1000 When touching the ground plane
- +1000 When touching the target with the gripper

2.2.1 Robot Arm Touch Test

• +1000 When touching the target with the robot arm

2.2.2 Gripper-Only Touch Test

• -1000 When touching the target with the robot arm

2.3 Interim Rewards

It was very hard to designing good interim reward policy because naive approach result in awkward joint movements and failures. After several trials and errors and survey on on-line articles and Slack threads one important strategy is not giving a positive rewards on the agent. Because the all episode should be finished after touching the target positive interim rewards can lead the agent greedy to short-sighted small rewards not chasing the final goal. Instead of it putting negative rewards only leads the reasonable joint movements and final goal.

Final interim rewards are designed as follows. avgGoalDelta means average distance difference between the gripper and the target. distGoal means distance difference between the gripper and the target.

$$\mathbf{avgGoalDelta}_t = \mathbf{avgGoalDelta}_{t-1} \times 0.8 + (1-0.8) \times \mathbf{distGoal} \tag{1}$$

$$R_t = \begin{cases} -100 \times (1 - \exp(-\text{distGoal})), & \text{if avgGoalDelta} < 0.001 \\ 0, & \text{otherwise} \end{cases}$$

 $(1 - \exp(-\text{distGoal}))$ means bounded penalty from 0.0 to 1.0. The reason why the threshold 0.001 is not zero is for penalizing non-movement.

3 HYPERPARAMETERS

The hyper-parameters used in the tests are described in the following subsections.

3.1 Input Image Dimensions

Raw input images from Gazebo is 64x64(Refer to gazeboarm.world). Larger dimension are useless for RL Networks.

- INPUT_WIDTH := 64
- INPUT HEIGHT := 64

3.2 Optimizer

Adam Optimizer converges faster than RMSprop.

- OPTIMIZER := Adam
- LEARNING RATE := 0.001f
- REPLAY_MEMORY := 20000

3.3 Neural Network

- BATCH_SIZE := 16
- USE_LSTM := true
- LSTM_SIZE := 128

4 RESULTS

4.1 Robot Arm Touch Test

After 200 trials the system got 94% successes. This test was very easy even with more naive interim reward design (without final interim reward described in Sec 2).

The captured video clip is uploaded here:

Current Accuracy:	0.9375		of 160)	(reward=+1000.00	
Current Accuracy:	0.9379		of 161)	(reward=+1000.00	WIN)
Current Accuracy:	0.9383			∐]∭@ ar ∮⊫@@ 0.00	WIN)
Current Accuracy:	0.9387		of (163)	(r∰ard=+1000.00	
Current Accuracy:	0.9329		of 164)	(reward=-1000.00	LOSS
Current Accuracy:	0.9333	(154	of 165)	(reward=+1000.00	WIN)
Current Accuracy:	0.9337		of 166)	(reward=+1000.00	
Current Accuracy:	0.9341	(156	of 167)	(reward=+1000.00	
Current Accuracy:	0.9345		of 168)	(reward=+1000.00	
Current Accuracy:	0.9349	(158	of 169)	(reward=+1000.00	
Current Accuracy:	0.9353	·	of 170)	(reward=+1000.00	
Current Accuracy:	0.9357	·	of 171)	(reward=+1000.00	
Current Accuracy:	0.9360	(161	of 172)	(reward=+1000.00	
Current Accuracy:	0.9364	·	of 173)	(reward=+1000.00	
Current Accuracy:	0.9368		of 174)	(reward=+1000.00	
Current Accuracy:	0.9371	·	of 175)	(reward=+1000.00	
Current Accuracy:	0.9375	·	of 176)	(reward=+1000.00	
Current Accuracy:	0.9379	·	of 177)	(reward=+1000.00	
Current Accuracy:	0.9382		of 178)	(reward=+1000.00	
Current Accuracy:	0.9385		of 179)	(reward=+1000.00	
Current Accuracy:	0.9389	·	of 180)	(reward=+1000.00	
Current Accuracy:	0.9392	\	of 181)	(reward=+1000.00	
Current Accuracy:	0.9396		of 182)	(reward=+1000.00	
Current Accuracy:	0.9399	·	of 183)	(reward=+1000.00	
Current Accuracy:	0.9402		of 184)	(reward=+1000.00	
Current Accuracy:	0.9405		of 185)	(reward=+1000.00	
Current Accuracy:	0.9409	·	of 186)	(reward=+1000.00	
Current Accuracy:	0.9412	·	of 187)	(reward=+1000.00	
Current Accuracy:	0.9415		of 188)	(reward=+1000.00	
Current Accuracy:	0.9418		of 189)	(reward=+1000.00	
Current Accuracy:	0.9421		of 190)	(reward=+1000.00	
Current Accuracy:	0.9424	·	of 191)	(reward=+1000.00	
Current Accuracy:	0.9427		of 192)	(reward=+1000.00	WIN)
Current Accuracy:	0.9430	·	of 193)	(reward=+1000.00	
Current Accuracy:	0.9433		of 194)	(reward=+1000.00	
Current Accuracy:	0.9436		of 195)	(reward=+1000.00	
Current Accuracy:	0.9439	·	of 196)	(reward=+1000.00	
Current Accuracy:	0.9442	·	of 197)	(reward=+1000.00	
Current Accuracy:	0.9444	·	of 198)	(reward=+1000.00	MIN)
Current Accuracy:	0.9447	·	of 199)	(reward=+1000.00	WIN)
Current Accuracy:	0.9450		of 200)	(reward=+1000.00	
Current Accuracy:	0.9453		of 201)	(reward=+1000.00	
Current Accuracy:	0.9455	(191	of 202)	(reward=+1000.00	WTN)

Fig. 2. Accuracy of Robot-Arm Touch Test

https://youtu.be/lHX6xdx9ag4

4.2 Gripper-Only Touch Test

After 200 trials the system got 92% successes. This test was succeeded after setting up the final interim reward policy described in Sec 2. But in some cases it failed to have 80% accuracy after 200 trials, for example when its first 10 trials all fail and when the joints vibrate too much by random noise. If the first few random trial succeed fast enough, it succeed to have 90% accuracy even before 200 trials. This kinds of tolerance looks reasonable in reinforcement learning.

The captured video clip is uploaded here: https://youtu.be/TkqwtaXrgfc

Current Accuracy:	0.9036	(150	of	166)	(reward=+1000.00 WIN)
Current Accuracy:	0.9042	(151			(SOME STORY OF SOME N)
Current Accuracy:	0.9048	(152	σø	atey	QUILLE 10 La CEWIN)
Current Accuracy:	0.9053	(153	of	169)	(reward=+1000.00 WIN)
Current Accuracy:	0.9059	(154	of	170)	(reward=+1000.00 WIN)
Current Accuracy:	0.9064	(155	of	171)	(reward=+1000.00 WIN)
Current Accuracy:	0.9070	(156	of	172)	(reward=+1000.00 WIN)
Current Accuracy:	0.9075	(157	of	173)	(reward=+1000.00 WIN)
Current Accuracy:	0.9080	(158	of	174)	(reward=+1000.00 WIN)
Current Accuracy:	0.9086	(159	of	175)	(reward=+1000.00 WIN)
Current Accuracy:	0.9091	(160	of	176)	(reward=+1000.00 WIN)
Current Accuracy:	0.9096	(161	of	177)	(reward=+1000.00 WIN)
Current Accuracy:	0.9101	(162	of	178)	(reward=+1000.00 WIN)
Current Accuracy:	0.9106	(163	of	179)	(reward=+1000.00 WIN)
Current Accuracy:	0.9111	(164	of	180)	(reward=+1000.00 WIN)
Current Accuracy:	0.9116	(165	of	181)	(reward=+1000.00 WIN)
Current Accuracy:	0.9121	(166	of	182)	(reward=+1000.00 WIN)
Current Accuracy:	0.9126	(167	of	183)	(reward=+1000.00 WIN)
Current Accuracy:	0.9130	(168	of	184)	(reward=+1000.00 WIN)
Current Accuracy:	0.9135	(169	of	185)	(reward=+1000.00 WIN)
Current Accuracy:	0.9140	(170	of	186)	(reward=+1000.00 WIN)
Current Accuracy:	0.9144	(171	of	187)	(reward=+1000.00 WIN)
Current Accuracy:	0.9149	(172	of	188)	(reward=+1000.00 WIN)
Current Accuracy:	0.9153	(173	of	189)	(reward=+1000.00 WIN)
Current Accuracy:	0.9158	(174	of	190)	(reward=+1000.00 WIN)
Current Accuracy:	0.9162	(175	of	191)	(reward=+1000.00 WIN)
Current Accuracy:	0.9167	(176	of	192)	(reward=+1000.00 WIN)
Current Accuracy:	0.9171	(177	of	193)	(reward=+1000.00 WIN)
Current Accuracy:	0.9175	(178	of	194)	(reward=+1000.00 WIN)
Current Accuracy:	0.9179	(179	of	195)	(reward=+1000.00 WIN)
Current Accuracy:	0.9184	(180	of of	196)	(reward=+1000.00 WIN)
Current Accuracy:	0.9188	(181	of	197) 198)	(reward=+1000.00 WIN)
Current Accuracy:	0.9192	(183	of	198)	(reward=+1000.00 WIN) (reward=+1000.00 WIN)
Current Accuracy: Current Accuracy:	0.9200	(184	of	200)	(reward=+1000.00 WIN)
Current Accuracy:	0.9200	(185	of	201)	(reward=+1000.00 WIN)
Current Accuracy:	0.9204	(186		201)	(reward=+1000.00 WIN)
Current Accuracy:	0.9208	(100	UI	202)	(TEWard=+1000.00 WIN)

Fig. 3. Accuracy of Gripper-Only Test

5 FUTURE WORK

All tests are done using interim rewards based on the distance between the gripper and the target. But it is very hard to get this distance information in the real environment. Even though it is succeeded using various sensors, the sensor data include noise. RL without the interim reward or simulating more realistic sensor data will be challenging as a future work. Student should discuss on what approaches they could take to improve their results.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, "Human-level control through deep reinforcement learning," *Nature*, vol. 518, pp. 529–533, Feb. 2015.