Динамично оптимиране

ИТ Кариера

Учителски екип Обучение за ИТ кариера https://it-kariera.mon.bg/e-learning

Съдържание

- Методът "разделяй и владей". Динамично оптимиране - въведение
- Упражнения: задачи върху динамично оптимиране
- Двумерно динамично оптимиране
- Упражнения: по-сложни задачи върху динамично оптимиране

Методът "разделяй и владей". Динамично оптимиране – въведение

Методът "разделяй и владей"

- Един от най-важните и най-широко приложим метод за проектиране на ефективни алгоритми
- Метод на декомпозицията
- Разделя дадена задача с размер N на по-малки задачи,
- На основата на решенията на по-малките задачи се получава решението на първоначалната задача.

Динамично оптимиране

- Метод за решаване на задачи с припокриващи се подзадачи.
- Изграждане на рекурентни връзки, свързващи решението на задачата с решенията на по-малки подзадачи от същия тип.
- Решаване на всяка една от по-малките подзадачи само веднъж, записване на резултата в таблица, от която след това се получава решение на първоначалната задача.

Динамично решение

Защо динамичното решение е по-добро?

- Рекурсивното решение за големи стойности на N е твърде нерационално
- Налага се твърде много пъти да се пресмятат някои от стойностите на редицата.

```
void Fib(N) {
                                            void Fib(N-1) {
                                                                                            if (N==1 || N==2)
             if (N==1 || N==2)
return 1;
                                            return 1;
       else return fib(N-1)+fib(N-2)
                                                   else return fib(N-2)+fib(N-3)
                                            void Fib(N-2) {
                                                         if (N==1 || N==2)
                                                                                            return 1;
                                                   else return fib(N-3)+fib(N-4)
```

Защо динамичното решение е по-добро?

- Динамичното решение използва вече пресметнатите стойности за по-малки стойности на търсения аргумент, без да се пресмята наново.
- Използват се рекурсивни формули, но стойностите се вземат от някаква структура от данни, в която са били попълнени в момента на пресмятането си.
- Сложността на такива задачи е линейна, с изключение на задачите, които изискват поддържането на матрица за запазване на стойности, за които сложността е квадратна.

Да се напише програма, която извежда редицата на Фибоначи. На стандартния вход се въвежда едно цяло число n – до кой елемент да се отпечата редицата. На стандартния изход – редицата от числа, разделени с един интервал.

Примерен вход: 24

Примерен изход: 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368

- Означаваме първите два члена на редицата съответно с *а* и *b* и им даваме начална стойност 1.
- В променлива с име c ще натрупваме сумата, като в a ще помним последната стойност на b, а в b последната стойност на c, т.е. c = a + b; a = b; b = c;
- В масив с име arr се съхраняват текущите стойности на променливата c.

Задача за раницата

Задача за раницата

Дадени са N предмета с тегла w_1 , w_2 ..., w_N и съответните им цени v_1, v_2 ..., v_N , както и раница, която може да издържи тегло W. Необходимо е да се намери подмножество от предмети, които могат да бъдат поставени в раницата и които в същото време да имат максимална цена.

Дефинираме рекурентна целева функция:

$$F(0) = 0$$
; $F(i) = \max\{c_j + F(i-m_j), j = 1, 2, ..., N, m_j <= i\}, i > 0$

Методът на динамичното оптимиране изисква последователно пресмятане на стойностите на F(i), като за това пресмятане се използват вече пресметнатите стойности за помалки i.

Нека разполагаме с 8 предмета. Масивите m[i] и c[i] ще пазят съотвтно теглата и цените им.

```
N = 8;
index 0 1 2 3 4 5 6 7 8
m[MAXN] = {0, 3, 7, 6, 1, 2, 4, 5, 5};
c[MAXN] = {0, 5, 3, 9, 1, 1, 2, 5, 2}
M = 7;
```

Пресмятаме рекурентната целева функция за първите три предмета

```
Fn[0] = 0;

Fn[1] = max { c[4]+Fn[0] } = 1 /4/

Fn[2] = max { c[5]+Fn[0] } = 1 /5/

Fn[3] = max { c[1]+Fn[0], c[4]+Fn[2],

c[5]+Fn[1] } = max{5,3,2} = 5 /1/
```

Пресмятаме рекурентната целева функция за останалите предмети

```
Fn[4] = max \{ c[1] + Fn[1], c[4] + Fn[3], c[6] + Fn[0] \} = max\{6,6,2\} = 6
/1,4/
Fn[5] = max \{ c[1] + Fn[2], c[5] + Fn[3], c[6] + Fn[1], c[7] + Fn[0],
c[8]+Fn[0]  = max{6,6,3,5,2} = 6 /1,5/
Fn[6] = max \{ c[3] + Fn[0], c[4] + Fn[5], c[5] + Fn[4], c[6] + Fn[2],
c[7]+Fn[2], c[8]+Fn[1]  = max{9+0,1+5,1+6,2+1,5+1,2+1} = 9 /3/
Fn[7] = max \{ c[2] + Fn[0], c[3] + Fn[1], c[4] + Fn[6], c[6] + Fn[5],
c[7]+Fn[2], c[8]+Fn[5]  = {5+0,9+1,1+9,2+6,5+1,2+6} = 10 /3,4/
```


Упражнения

Задачи върху динамично оптимиране

Задача: От стандартния вход се въвежда цяло положително число N. На стандартния изход трябва да се отпечата колко на брой са редиците, с дължина N, съставени само от 0 и 1, в които няма две последователни 0.

X X X ... X

• Означаваме с B_k броя на редиците от разглеждания вид, които са с дължина k.

• Ако за последен елемент изберем 1, то предишните k-1 елемента са някаква редица от разглеждания вид.

• Ако за последен елемент изберем 0, то на предпоследното място с номер k-1 задължително трябва да има 1. Тогава предишните k-2 елемента са някаква редица от разглеждания вид.

• Броят на тези редици е: B_{k-2}

- В сила е следната рекурентната формула $B_k = B_{k-1} + B_{k-2}$
- При k=1 $B_k=2$
- При k=2 $B_k=3$

```
// с цикъл
b1=2;
b2=3;
for (i=3; i<=N; i++){
  b=b2+b1;
  b1=b2;
  b2=b;
}
cout<<br/>b;
```

```
// с рекурсия
intB(int k){
if(k==1) return 2;
if(k==2) return 3;
return B(k-1)+B(k-2);
}
```

- За пресмятане на големи стойности за N
- Вече веднъж пресметнатите стойности се помнят в масив v[i]

```
//c масив

intB(int k){
  if (v[k]==0) v[k]=B(k-1)+B(k-2);
    return v[k];
}
```

```
const Nmax=21;
int v[Nmax];
void main(){
v[1]=2;
v[2]=3;
for(int i=3; i<Nmax; i++)
   v[i]=0;
cout<<B(20);
}</pre>
```

Дължина на редицата	Редици от разглеждания вид
дыжина на редицата	тедици от разглежданим вид

1	0 1
2	0 1 1 0 1 1
3	1 1 0 0 1 1 1 1 1 1 0 1 0 1 0

4=1

Задача: Густаво знае да брои, но сега той се учи да пише числата. Като много добър ученик той е научил 1, 2, 3 и 4. Но той не осъзнава, че 4 е различно от 1. Въпреки това той се забавлява с една игра, в която съставя числа от тези цифри и смята сбора на цифрите. Например:

$$132 = 1 + 3 + 2 = 6$$

$$112314 = 1 + 1 + 2 + 3 + 1 + 1 = 9$$
(запомнете, че Густаво мисли, че 4 = 1)

4=1

Да се напише програма, която извежда броя на числата, чиято сума е равна на S. На стандартния вход се въвежда едно цяло число S.

4=1

Нека в масив b[] пазим броя на числата, чиято сума е равна на S.

Тогава
$$b[i] = 2*b[i-1] + b[i-2] + b[i-3];$$

Двумерно динамично оптимиране

• Основополагаща идея, на която е базиран методът на динамичното оптимиране - произволна част от оптимална траектория също е оптимална траектория.

Двумерно динамично оптимиране

Понятието оптимален - най-къс път, който може да се осъществи или минимален разход на гориво, ако движението се извършва с превозно средство.

Двумерно динамично оптимиране

Пешеходец трябва да започне движението си от т. А и да отиде до т. В, като спазва правилото, че от всяко кръстовище може да тръгне или на север или на изток. За преминаването на всяка отсечка от улица, заключена между две кръстовища, се заплаща определена такса. Какъв маршрут да се избере, така че общата платена сума да е минимална?

- Формулираме една фамилия от подзадачи
 - за всяко кръстовище (i, j) означаваме с v[i][j] оптималното решение на задачата за намиране на маршрут с минимална такса, тръгвайки от т. А и стигайки до кръстовището с координати (i, j).
 - v[0][0] = 0, тъй като цената за преминаване от т. А до същата точка е нула.
 - v[0][1] е равно на таксата за преминаване по отсечката от т. А до съседното й кръстовище с координати (0,1)
 - последователно пресмятаме стойностите на v[i][j] чрез запълването на този масив по редове. Първо зареждаме стойности в v[0][0], v[0][1], ..., v[0][N], след това в v[l][0], v[1][1], ..., v[l][N] и т. н.). Получаваме v[N][N].

- a[i][j] таксата за преминаване по вертикалната отсечка от кръстовище (i, j-1) до кръстовище (i, j),
- c b[i][j] таксата за преминаване по хоризонталната отсечка от (i-1 ,j) до (i, j).
- $v[i][j] = min\{v[i][j-1]+a[i][j], v[i-1][j] + b[i][j]\}$
- v[i][0] = v[i-1][0] + b[i][0] рекурентна зависимост за първия ред
- v[0][j] = v[0][j 1] + a[0][j] рекурентна зависимост за първия стълб

За да получим самия маршрут:

- при зареждането на всяка от стойностите на v[i][j], запомняме откъде е получена тази стойност; по-точно при кой от двата случая е бил достигнат минимумът: дали при идване "отдолу" или при идване "отляво" върху кръстовището (i, j).
- използваме допълнителен масив w[i][j], чиито елементи да зареждаме с 1, ако в точката (i,j) оптималният маршрут е дошъл "отляво" и с 0, ако в същата точка оптималният маршрут е дошъл "отдолу". Освен това за начална стойност присвояваме w[0] [0]=-1.

Обобщение

- Динамичното оптимиране
- решава подзадачи, които се припокриват
- избира оптималните решения на подзадачите
- комбинира оптималните решения на подзадачите и получава оптимално общо решение

Министерство на образованието и науката (МОН)

 Настоящият курс (презентации, примери, задачи, упражнения и др.) е разработен за нуждите на Национална програма "Обучение за ИТ кариера" на МОН за подготовка по професия "Приложен програмист"

Курсът се разпространява под свободен лиценз СС-ВҮ-NС-SA

