Problem Set: Dynamic Programming Discrete Time

1 Problem 1

Consider a firm facing deterministic demand $\{D_t\}_{t=0}^{T-1}$ over a finite horizon T. Let i_t be the inventory at the start of period t and y_t the production decision in period t. Inventory evolves as

$$i_{t+1} = i_t + y_t - D_t$$
, i_0 given, $i_T = 0$.

The firm can produce any nonnegative amount $y_t \geq 0$ in each period with a production cost:

$$C_t(y_t) = \frac{c_2}{2}y_t^2 + c_1y_t$$

where $c_2 > 0$ and $c_1 \ge 0$. Holding inventory incurs a cost:

$$H_t(i_t) = \frac{h}{2}i_t^2$$

where h > 0. The firm discounts future costs by a factor $\beta \in (0, 1]$.

- a. Formulate the firm's problem as a dynamic program. Clearly define the state and action variables, the transition equation, the per-period cost function, and the Bellman equation.
- b. Derive the first-order condition for the firm's optimization problem in period t given state i_t . What is the optimal production decision y_t^* as a function of the value function $V_{t+1}(i_{t+1})$?
- c. What happens to the optimal production decision y_t^* as the inventory holding cost h increases? Provide an economic intuition for this result.

2 Problem 2

A firm supplies a homogeneous material to a deterministic market over horizon T (finite or infinite). The firm controls:

- extraction of primary material $x_t \geq 0$ from an exhaustible ore stock s_t
- processing of recyclable scrap $u_t \ge 0$ collected from past sales

Let total sales be $y_t = x_t + q_t$, where $q_t = \eta u_t$ is secondary output from recycling with yield $\eta \in (0, 1]$.

Technology and stocks

• Ore stock dynamics:

$$s_{t+1} = s_t - x_t, \quad s_0 > 0, \quad s_t \ge 0.$$

• Scrap availability: A fraction $\theta \in [0,1]$ of last period's sales becomes recoverable scrap at the start of period t. Let a_t denote available scrap in period t. u_t is the amount of scrap used in production in period t. The stock of recycled input evolves as,

$$a_{t+1} = a_t - u_t + \theta y_t, \qquad a_0 \ge 0$$

Demand and prices

• Inverse demand is linear:

$$P(y_t) = \alpha - \beta y_t \qquad \alpha > 0, \beta > 0.$$

Costs

• Primary extraction cost (convex):

$$C_p(x_t) = \kappa_p x_t + \frac{\gamma_p}{2} x_t^2, \qquad \gamma_p > 0, \ \kappa_p \ge 0.$$

• Recycling cost (convex and strictly higher marginal intercept):

$$C_r(u_t) = \kappa_r u_t + \frac{\gamma_r}{2} u_t^2, \qquad \gamma_r > 0, \ \kappa_r > \kappa_p. \label{eq:cross}$$

Thus, recycling is technologically feasible but (weakly) more expensive than using raw ore at the margin.

- The firm discounts with factor $\beta \in (0,1]$.
- 1. Formulate the dynamic program including:
 - State variables, control variables, transition equations.
 - One-period profit $\pi_t(\cdot)$ and the Bellman equation.
 - Specify natural nonnegativity and capacity constraints (e.g., $x_t \leq s_t$, $u_t \leq a_t$).
- 2. Derive first-order (KKT) conditions for x_t and u_t in period t (assume interior solution).
 - Express the conditions using the shadow values $V_{t+1}^{(s)}$ and $V_{t+1}^{(a)}$ of the ore and scrap states. Provide the pricing rules equating marginal revenue to marginal costs plus shadow values.
- 3. Interpretation.
 - Explain when the firm will substitute toward recycling (high ore shadow value, large θ , high η) despite higher direct processing cost.
 - Discuss how increasing $h \equiv 0$ here (no inventory cost) vs. introducing storage costs for scrap (set $\delta < 1$ or add a holding cost on a_t) would affect the recycling decision.
- 4. Numerical solution (finite horizon).
 - Implement a numerical solution of the dynamic program for T=10 periods using value function iteration.
 - Use parameter values:
 - $-\alpha = 100,$
 - $-\beta = 0.95,$
 - $-\kappa_p = 10,$
 - $-\kappa_r = 20,$
 - $\begin{array}{l} -\ \gamma_p = 1, \\ -\ \gamma_r = 2, \end{array}$

 - $-\eta = 0.8,$
 - $-\theta = 0.5,$
 - $-s_0 = 100,$ $-a_0=0.$
 - Plot optimal paths of x_t, u_t, y_t, s_t, a_t over time.
- 5. Steady state (infinite horizon, optional).
 - Assume $\delta = 1$ (one-period scrap lag, $u_t \leq \theta y_{t-1}$) and consider a stationary policy with constant y, x, u.
 - Derive conditions under which a mixed supply steady state (x > 0, u > 0) is optimal vs. corner solutions (x > 0, u = 0 or x = 0, u > 0).
 - Characterize how the steady state shifts with $\theta, \eta, \kappa_r \kappa_p$, and β .

Hints

• Write one-period profit as

$$\pi_t = P(y_t) y_t - C_p(x_t) - C_r(u_t), \quad y_t = x_t + \eta u_t.$$

- With state $X_t = (s_t, a_t),$ your Bellman equation (finite horizon) is

$$V_t(X_t) = \max_{x,u \geq 0} \left\{ \pi_t + \beta V_{t+1}(s_t - x, a_t - u_t + \theta y_t) \right\}$$

subject to $x \leq s_t$, $u \leq a_t$.

- In the FOCs, note $\partial y_t/\partial x_t=1$ and $\partial y_t/\partial u_t=\eta$. Marginal revenue is $MR_t(y_t)=P(y_t)+P'(y_t)y_t=\alpha-2\beta y_t$ for the linear demand given.
- The ore stock's shadow value acts like an opportunity cost added to extraction's direct marginal cost; similarly for scrap.