5 The simplified diagram below shows how the entropy of ammonia varies with temperature at a pressure of 100 kPa. In this diagram, ammonia is a solid at point **A** and a gas at point **F**.

5 (a) State why the entropy value for ammonia is equal to zero at 0 K.

(1 mark)

(b) Explain, in terms of the movement of particles, why the entropy value increases between points **A** and **B** on the diagram.

(1 mark)

5 (c) Temperature *T* is marked on the diagram. What does the value of this temperature represent?

(1 mark

 ${\bf 5}$ (d) Explain why there is a large entropy change between points ${\bf D}$ and ${\bf E}$ on the diagram.

(2 marks)

5 (e) An equation for the reaction in the Haber Process is shown below, together with some entropy data.

$$\frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \Longrightarrow NH_3(g) \qquad \Delta H^{\Theta} = -46.2 \text{ kJ mol}^{-1}$$

	$N_2(g)$	H ₂ (g)	NH ₃ (g)
S^{\ominus} / J K ⁻¹ mol ⁻¹	192	131	193

J	(c)	(1)	ammonia.

(2 marks)

5 (e) (ii) Give the equation that relates free-energy change, ΔG^{\ominus} , to enthalpy change, ΔH^{\ominus} , and entropy change, ΔS^{\ominus} .

Use this equation to calculate the temperature at which the value of $\Delta G^{\Theta} = 0$ for the formation of ammonia in the Haber Process.

(If you have been unable to calculate an answer to part (e) (i), you may assume that $\Delta S^{\circ} = -81.4 \text{ J K mol}^{-1}$ but this is not the correct value.)

Equation

Calculation

.....

(Extra space)(4 marks)

5 (e) (iii) What can you deduce about the formation of ammonia if the reaction mixture is heated to a temperature above the value that you have calculated in part (e) (ii)?

(1 mark)

Turn over ▶

