Kenny Ta CECS451 Assignment 5 Feb 17 2021

- 1. a.) h(n) = 0 is an admissible heuristic for the 8-queens problem.

 True
 - b.) Assume that a rook can move on a chessboard one square at a time in vertically or horizontally, but cannot jump over other pieces. Manhattan distance is an admissible heuristic for the problem of moving the rook from square A to square B in the smallest number of moves.

False

2. The heuristic path algorithm is a best-first search in which the evaluation function is f(n) = (2 - w)g(n) + wh(n). What kind of search does this perform for w = 0, w = 1, and w = 2?

$$f(n) = (2 - w)g(n) + wh(n)$$
If $w = 0$: $f(n) = 2g(n)$
Iterative-Deepening Search
If $w = 1$: $f(n) = g(n) + h(n)$
A* search
If $w = 2$: $f(n) = 2h(n)$
Greedy Search

- 3. Give the name of the algorithm that results from each of the following cases:
 - a.) Hill-climbing
 - b.) Depth-first
- 4. Imagine that, one of the friends wants to avoid the other. The problem then becomes a two-player pursuit—evasion game. We assume now that the players take turns moving. The game ends only when the players are on the same node; the terminal payoff to the pursuer is minus the total move taken. An example is shown in Figure 1.
 - a.) -4
 - b.) BE and BD
 - c.) Terminal payoff would be at most 3, so no.
 - d.) Node (6) could have a shorter path, so yes
- 5. True or False? You don't need to explain your answers.
 - a.) True
 - b.) True
 - c.) False
 - d.) True

6

ā	β	у	_β ^ y	<u>a</u> □(_β ^y)
Т	Т	Т	Т	Т

Т	Т	F	N/A	N/A
Т	F	Т	N/A	N/A
Т	F	F	N/A	N/A
F	Т	Т	Т	Т
F	Т	F	F	Т
F	F	Т	F	Т
F	F	F	F	Т

Therefore, the statement, ${\underline{\circ}}\Box({}_{\beta}{}^{\Lambda}y)$ is true.