Modelo de otimização mutiobjetivo para adequação de embarcações de alta velocidade

Apresentação Parcial PAIC 2017/2018

Luiz Eduardo Fernandes Bentes, Renata da Encarnação Onety

Universidade do Estado do Amazonas Escola Superior de Tecnologia – EST Manaus - Amazonas - Brasil

{lefb.eng,ronety} @uea.edu.br

28 de fevereiro de 2018

Overview

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
 - Curvas B-spline
 - Geração Paramétrica de Cascos de Planeio
 - Python + OpenGL
- Resultados Parciais
 - Vista Lateral
 - Vista Superior
- Trabalhos Futuros
- Cronograma
- 8 Bibliografia

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- Bibliografia

Introdução

- Para prestar socorro à população em atendimentos de urgência e emergência em saúde, as regiões sem acesso terrestre contam com o serviço de SAMU Fluvial.
- Atendimento similar às ambulâncias terrestres.

Figura: Ambulâncias Fluviais Fonte: FotoSaúde

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- Bibliografia

- Atributos em relação à integridade estrutural devem ser atendidos
- Modelo atual representa um projeto desenvolvido para navegação marítima.
- Propor modelo que possa atender a população da melhor maneira possível

- Atributos em relação à integridade estrutural devem ser atendidos
 - Estrutura suporte as cargas
 - ► Ergonomia e bem-estar da tripulação
- Modelo atual representa um projeto desenvolvido para navegação marítima.
- Propor modelo que possa atender a população da melhor maneira possível

- Atributos em relação à integridade estrutural devem ser atendidos
- Modelo atual representa um projeto desenvolvido para navegação marítima
 - Distancia-se da realidade Fluvial do Amazonas
 - ▶ Diferença da via e variações da água contribuem no desconforto
- Propor modelo que possa atender a população da melhor maneira possível

- Atributos em relação à integridade estrutural devem ser atendidos
- Modelo atual representa um projeto desenvolvido para navegação marítima
- Propor modelo que possa atender a população da melhor maneira possível

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- Bibliografia

Objetivos

Objetivo Geral

Propor um modelo de otimização multiobjetivo baseado em Algoritmos Evolutivos para auxiliar no projeto de embarcações de alta velocidade, como as ambulanchas.

Objetivos

Objetivo Geral

Propor um modelo de otimização multiobjetivo baseado em Algoritmos Evolutivos para auxiliar no projeto de embarcações de alta velocidade, como as ambulanchas.

Objetivos Específicos

- Identificar métodos de construção de embarcações;
- Desenhar o casco da embarcação através dos parâmetros de construção;
- Propor algoritmo evolutivo para a otimização de variáveis do projeto
- Implementar uma ferramenta computacional com interface amigável para auxiliar os projetistas desse tipo de embarcação.
- Sugerir modelos de embarcações otimizadas.

Objetivos

Objetivo Geral

Propor um modelo de otimização multiobjetivo baseado em Algoritmos Evolutivos para auxiliar no projeto de embarcações de alta velocidade, como as ambulanchas.

Objetivos Específicos

- Identificar métodos de construção de embarcações;
- Desenhar o casco da embarcação através dos parâmetros de construção;
- Propor algoritmo evolutivo para a otimização de variáveis do projeto
- Implementar uma ferramenta computacional com interface amigável para auxiliar os projetistas desse tipo de embarcação.
- Sugerir modelos de embarcações otimizadas.

Figura: Modelo proposto para otimização da embarcação

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
 - Curvas B-spline
 - Geração Paramétrica de Cascos de Planeio
 - Python + OpenGL
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- Ribliografia

Curvas B-spline

- Comumente usada na Engenharia Naval
- Trata-se de uma curva formada por partes polinomiais chamadas
 Partes de Bézier
- Polígono de Controle e Algoritmo de Interpolação (Algoritmo de De Boor)

Definição

$$S(u) = \sum_{j=0}^{n} P_j B_j^n(u) = \sum_{j=0}^{n} X_j B_j^n(u), Y_j B_j^n(u)$$
 (1)

Figura: Exemplo de Curva B-spline

Geração Paramétrica de Cascos de Planeio

- Artigo de F. Pérez-Arribas.
- Método para desenvolver a curva apenas utilizando os parâmetros de construção do barco.
- Dado os Parâmetros da Embarcação, as Restrições das Curvas e Equação da Curva de B-spline pode-se determinar os pontos de controle.

Figura: Exemplo das vistas geradas utilizando o método de F.Pérez-Arribas

Python + OpenGL

- OpenGL é uma API livre utilizada na computação gráfica
- GLUT Interface para desenho das curvas.

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
 - Vista Lateral
 - Vista Superior
- Trabalhos Futuros
- Cronograma
- 8 Bibliografia

Vista Lateral

- Formada por 3 curvas principais:
 - ► Linha Central
 - ▶ Linha Sheer
 - ► Linha *Chine*

Figura: Exemplo de Curva B-spline

Linha Central

$$c(u) = B_0^3 K_0 + B_1^3 P_1 + B_2^3 P_2 + B_3^3 K_2$$
 (2)

- Restrições:
 - $c_{z}'(0) = 0$
 - 2 $c'_{z}(1) = tg(a_{k})$
 - 3 $c(u*) = K_1$
- Tal que $u* = \frac{Dist(K_0, K_1)^k}{Dist(K_0, K_1)^k + Dist(K_1, K_2)^k}$
- Com as restrições acima podemos montar a matriz:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -tg(a_k) & 1 \\ B_1^3(u*) & 0 & B_2^3(u*) & 0 \\ 0 & B_1^3(u*) & 0 & B_2^3(u*) \end{bmatrix} \begin{bmatrix} XP_1 \\ ZP_1 \\ XP_2 \\ ZP_2 \end{bmatrix} = \begin{bmatrix} 0 \\ H_s - tg(a_k).L_s \\ L_c - B_0^3(u*)L_0 \\ H_c - B_3^3(u*).H_s \end{bmatrix}$$

Vista Lateral - Sheer

Linha Sheer

$$s_L(u) = B_0^2 S_0' + B_1^2 P_1 + B_2^2 S_2'$$
 (3)

- Restrições:
 - $\mathbf{0} \ s_L(0) = S_0'$
 - 2 $s_L(1) = S_2'$
 - $s_{1}'(0) = tg(B_{s}')$
 - $s'_{1}(1) = tg(a'_{s})$
- Com as restrições acima podemos montar a matriz:

$$\begin{bmatrix} \mathsf{tg}(\mathsf{B'}_s) & -1 \\ -\mathsf{tg}(\mathsf{a'}_s) & 1 \end{bmatrix} \begin{bmatrix} \mathsf{XP}_1 \\ \mathsf{ZP}_1 \end{bmatrix} = \begin{bmatrix} -\mathsf{h}_s \\ \mathsf{H}_s - tg(a_s').L_s \end{bmatrix}$$

Vista Lateral - Sheer

Vista Lateral - Sheer

Vista Lateral - Chine

Linha Chine

$$c_L(u) = B_0^3 C_0' + B_1^3 P_1 + B_2^3 P_2 + B_3^3 C_2'$$
 (4)

- Restrições:
 - $c'_{L}(0) = tg(B'_{c})$
 - $c'_L(1) = tg(a_c)$
 - $c_L(u*) = C_1$
- Tal que $u* = \frac{Dist(K_0, K_1)^k}{Dist(K_0, K_1)^k + Dist(K_1, K_2)^k}$
- Com as restrições acima podemos montar a matriz:

$$\begin{bmatrix} -\operatorname{tg}(\mathsf{B'}_c) & 1 & 0 & 0 \\ 0 & 0 & -\operatorname{tg}(\mathsf{a'}_c) & 1 \\ \mathsf{B}_1^3(u*) & 0 & \mathsf{B}_2^3(u*) & 0 \\ 0 & \mathsf{B}_1^3(u*) & 0 & \mathsf{B}_2^3(u*) \end{bmatrix} \begin{bmatrix} \mathsf{XP}_1 \\ \mathsf{ZP}_1 \\ \mathsf{XP}_2 \\ \mathsf{ZP}_2 \end{bmatrix} = \begin{bmatrix} \mathsf{h}_c \\ \mathsf{H}_c - \operatorname{tg}(\mathsf{a}_c') . L_c \\ \mathsf{Xc}1 - \mathsf{B}_3^3(u*) L_c \\ \mathsf{Zc}1 - \mathsf{B}_0^3(u*) . H_c \end{bmatrix}$$

Vista Lateral - Completa

Vista Superior

- Formada por 2 curvas principais:
 - ▶ Linha Sheer
 - ► Linha *Chine*

Figura: Exemplo Vista Superior

Vista Superior - Sheer

Linha Sheer

$$s_P(u) = B_0^3 S_0 + B_1^3 P_1 + B_2^3 P_2 + B_3^3 S_2$$
 (5)

- Restrições:
 - \bullet $s_P(0) = S_0$
 - $s_P(1) = S_2$
 - **3** $s_P(u*) = S_X$
 - $s_P'(1) = tg(a_s)$
- Com as restrições acima podemos montar a matriz:

$$\begin{bmatrix} 0 & \mathsf{B'}_1^3(u*) & 0 & \mathsf{B'}_2^3(u*) \\ 0 & 0 & -\mathsf{tg}(\mathsf{a}_s) & 1 \\ \mathsf{B}_1^3(u*) & 0 & \mathsf{B}_2^3(u*) & 0 \\ 0 & \mathsf{B}_1^3(u*) & 0 & \mathsf{B}_2^3(u*) \end{bmatrix} \begin{bmatrix} \mathsf{XP}_1 \\ \mathsf{ZP}_1 \\ \mathsf{XP}_2 \\ \mathsf{ZP}_2 \end{bmatrix} = \begin{bmatrix} -\mathsf{B'}_0^3(u*).B_s \\ -\mathsf{tg}(\mathsf{a}_s).L_s \\ \mathsf{Lx-} \ \mathsf{B}_3^3(u*)L_s \\ \mathsf{Bx-} \ \mathsf{B}_3^3(u*).B_s \end{bmatrix}$$

Vista Superior - Sheer

Vista Superior - Sheer

Vista Superior - Chine

Linha Chine

$$c_p(u) = B_0^3 C_0 + B_1^3 P_1 + B_2^3 P_2 + B_3^3 C_2$$
 (6)

- Restrições:
 - $c_{I}'(0) = tg(B_{c})$
 - $c'_L(1) = tg(a_c)$
 - **3** $c_L(u*) = C_1$
- Tal que $u* = \frac{Dist(K_0, K_1)^k}{Dist(K_0, K_1)^k + Dist(K_1, K_2)^k}$
- Com as restrições acima podemos montar a matriz:

$$\begin{bmatrix} -\operatorname{tg}(\mathsf{B}_c) & 1 & 0 & 0 \\ 0 & 0 & -\operatorname{tg}(\mathsf{a}_c) & 1 \\ \mathsf{B}_1^3(u*) & 0 & \mathsf{B}_2^3(u*) & 0 \\ 0 & \mathsf{B}_1^3(u*) & 0 & \mathsf{B}_2^3(u*) \end{bmatrix} \begin{bmatrix} \mathsf{X}\mathsf{P}_1 \\ \mathsf{Z}\mathsf{P}_1 \\ \mathsf{X}\mathsf{P}_2 \\ \mathsf{Z}\mathsf{P}_2 \end{bmatrix} = \begin{bmatrix} \mathsf{L}_c \\ \mathsf{B}_c - \operatorname{tg}(\mathsf{a}_c).\mathsf{L}_c \\ \mathsf{B}_3^3(u*)\mathsf{B}_c \\ \mathsf{B}_0^3(u*).\mathsf{L}_c \end{bmatrix}$$

Vista Superior - Chine

Vista Superior - Chine

Vista Superior - Completa

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
- **6** Trabalhos Futuros
- Cronograma
- Bibliografia

Trabalhos Futuros

- Propor algoritmo evolutivo para a otimização de variáveis do projeto
- Implementar uma ferramenta computacional com interface amigável para auxiliar os projetistas desse tipo de embarcação.
- Sugerir modelos de embarcações otimizadas.

Cronograma

Mês	Atividades
Março	Desenvolvimento do casco 3D
	Estudo dos parâmetros a serem otimizados
	Implementação do Algoritmo Genético
Abril	Implementar novos Operadores
	Desenvolver Componentes Híbridos
Maio	Desenvolvimento de Artigo
	Desenvolvimento do software para <i>plotagem</i>
	e otimização dos parâmetros
Junho	Aperfeiçoar AGMO
Julho	Apresentação Final

Referencial Bibliográfico

- Pérez-Arribas, F. "Parametric generation of planing hulls." Ocean Engineering 81 (2014): 89-104.
- Pérez-Arribas, F., J. A. Suárez-Suárez, and L. Fernández-Jambrina.
 "Automatic surface modelling of a ship hull." Computer-Aided Design 38.6 (2006): 584-594.
- Woo, Mason, et al. OpenGL programming guide. Vol. 3. Reading: Addison-wesley, 1999.

Modelo de otimização mutiobjetivo para adequação de embarcações de alta velocidade

Apresentação Parcial PAIC 2017/2018

Luiz Eduardo Fernandes Bentes, Renata da Encarnação Onety

Universidade do Estado do Amazonas Escola Superior de Tecnologia – EST Manaus - Amazonas - Brasil

{lefb.eng,ronety} @uea.edu.br

28 de fevereiro de 2018