1914. Cyclically Rotating a Grid

Description

You are given an [m x n] integer matrix [grid], where [m] and [n] are both even integers, and an integer [k].

The matrix is composed of several layers, which is shown in the below image, where each color is its own layer:

1	1	1	1
1	2	2	1
1	2	2	1
1	2	2	1
1	2	2	1
1	1	1	1

A cyclic rotation of the matrix is done by cyclically rotating each layer in the matrix. To cyclically rotate a layer once, each element in the layer will take the place of the adjacent element in the counter-clockwise direction. An example rotation is shown below:

Return the matrix after applying k cyclic rotations to it.

Example 1:

40	10
30	20

10	20
40	30

Before Any Rotations

After One Rotation

Input: grid = [[40,10],[30,20]], k = 1

Output: [[10,20],[40,30]]

Explanation: The figures above represent the grid at every state.

Example 2:

1	2	3	4	2	3	4	8	3	4	8	12
5	6	7	8	1	7	11	12	2	11	10	16
9	10	11	12	5	6	10	16	1	7	6	15
13	14	15	16	9	13	14	15	5	9	13	14

Before Any Rotations

After One Rotation

After Two Rotations

Input: grid = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]], k = 2
Output: [[3,4,8,12],[2,11,10,16],[1,7,6,15],[5,9,13,14]]
Explanation: The figures above represent the grid at every state.

Constraints:

- m == grid.length
- n == grid[i].length
- 2 <= m, n <= 50
- Both m and n are even integers.
- 1 <= grid[i][j] <= 5000
- 1 <= k <= 10 ⁹