

Projet Module de freinage

Yanis Halil, Aymeric Gammalame, Chloé Gabarren, Colin Perret, Nina Van

Le problème

Objectifs

- Alimentation du circuit logique à partir du rail d'alimentation
- Commande la puissance par transistor MOS (décharge sur résistance de puissance)
- Interface IHM:
 potentiomètre, Afficheur
 2x16 caractères, boutons, etc...

Contexte

Dans le cadre des TP de 3ème année, les élèves utilisent des MCC qui à partir d'une certaine vitesse abîment les condensateurs qui y sont reliés en se déchargeant.

D'où la nécessité de faire un module de freinage.

Contraintes

- Peu encombrant
- Budget de moins de 50 euros
- Alimentation unique (la MCC)
- Contrainte de temps

Mise en œuvre

- Introduction au projet
- Séance de réflexion

- Diagrammes de Gantt et d'architecture effectués
- Séparation des équipes
 Hardware et Software

- Fin de la schématique complète sur eagle (pin du μP inclus)
- Prise en main complète de l'afficheur

12/04/22

19/04/22

09/05/22

17/05/22

23/05/22

(Avec tous les membres du groupe)

- Premier schéma de solution
- Dimensionnement et calcul
- Cahier des charges et commande des composants

- Fichiers ".brd" des PCB unitaire réalisés (équipe Hardware)
- Concentration sur la programmation de l'afficheur (documentation notamment)

Diagramme d'architecture

Schéma de la solution retenue (côté hardware)

Schématique globale

CONNECTORS

DRIVER + MOSFET

FLASH

PCB unitaires: Driver + MOSFET

DRIVER + MOSFET

PCB unitaires: convertisseur Buck

Diagramme de fonctionnement du software

Configuration du microprocesseur sur STM32 CubeIDE

Programmation de l'afficheur Grove LCD 16x2

Compréhension

- Recherche sur la documentation
- Prise en main de l'12C
- Compréhension de la notice d'utilisation HITACHI
- Compréhension de librairies auxiliaires Arduino

Mise en place

- Initialisation de l'afficheur, test en UART
- Prise en main des contraintes de l'12C
- Ecriture sur l'afficheur, manipulation de fonctions utiles au projet

Résultat intermédiaire de l'afficheur

Analyse temporelle du projet

Fait

Projet global

Compréhension du problème

Partie Hardware

Recherche des composants

PCB Unitaire

Partie Software

Prise en main de l'afficheur

En cours

Partie Hardware

PCB complet

Partie Software

Afficheur complet

A faire

Partie Hardware

Test des PCBs

Partie Software

Programmation des boutons, du driver de MOSFET et d'un potentiomètre ou d'un encodeur rotatif

