Евклидова задача коммивояжёра

Вадим Плахтинский

Ноябрь 2017

1 Постановка задачи

TSP:

Дан граф G=(V,E) с неотрицательными весами ребер. В этом графе нужно найти Гамильтонов цикл(цикл графа, проходящий по всем вершинам) минимального веса.

Euclidean TSP:

 $V\subset\mathbb{R}^k,$ а E-это множество всех пар евклидовых расстояний между вершинами графа.

Так как мы будем решать TSP для k=2, то нам надо найти минимальный по весу гамильтонов цикл у n точек на плоскости. Расстояние мы будем понимать, как евклидову метрику: $d(x,y) = ||x-y||_2$

Рис. 1: Стоимость минимального пути составляет $6 + \sqrt{(2)}$.

2 Приближенное решение

Th. (Aurora, 1996): Для euclidean TSP существует PTAS. Теорема утверждает, что для $\forall \epsilon>0$ существует полиномиальный алгоритм, зависящий от n, который вычисляет гамильтонов цикл веса $\leq OPT(1+\epsilon)$

Докозательство:

1. Изменение координат:

Поместим "решетку"на нашу плоскость с точками. Каждую точку переместим в ближайшую точку решетки. Наименьший квадрат, который содержит все наши точки имеет сторону $n^2\sqrt{2}$. Под действием нашего преобразования каждая вершина переместилась на расстояние $\leq \frac{\sqrt{2}}{2}$. Значит, каждое ребро изменилось не более чем в $\sqrt{2}$ раз. Построим по нему новое оптимальное решение OPT'.

$$h: G \longrightarrow G'$$

Посмотрим как изменилось оптимальное решение для нового графа:

$$|OPT'| \le h(OPT) \le |OPT| + n\sqrt{2}$$

$$|h^{-1}(OPT')| \leq |OPT'| + n\sqrt{2} \leq |h(OPT)| + n\sqrt{2} \leq |OPT| + 2n\sqrt{2} \leq |OPT|(1 + \frac{1}{\epsilon})$$

Значит, $h^{-1}(OPT')(1-\epsilon)$ аппроксимирует OPT при $n\geq \frac{1}{\epsilon}.$

2. Разбиение на квадраты:

Начнем разбивать минимальный квадрат, который охватывает наш граф таким образом, чтобы на каждом уровне предыдущий квадрат разбивался на 4 равных. Таких разбиений сделаем k штук, где k находится из $2^{k-1} \le n^2 \sqrt{2} \le 2^k$.

Размер $O(n^4)$

3. Порталы:

 $m:=\frac{\log(n)}{\epsilon}$. Заметим, что в разбитом квадрате линии можно пересечь только в в определенных точках, назовем их порталами. Всего их 2^im , а также по одному порталу на каждом узле решетки. На уровне i каждая линия инцидентна 2^i парам квадратов, не считая узлов решетки. Граница каждого квадрата состоит из линий, поэтому учитывая еще и

углы квадратов, получаем, что на каждый квадрат приходится 4m+4 порталов.

4. Поиск пути:

TODO

3 Алгоритм:

Так как алгоритм Ароры имеет больше теоретическое приложение, чем прикладное, то реализуем муравьиный алгоритм. Реализуем все на питоне, чтобы потом можно было визуализировать.

4 Запуски:

- 1. Сгенерируем набор из 100 случайных точек и посмотрим на время работы.
- 2. Интересно было бы увеличивать кол-во данных и посмотреть в какой момент мы не получим оптимальное решение. Так же Для небольшого кол-ва точек можно найти оптимальный вес с помощью точных алгоритмов и сравнить с нашим ответом.
- 3. Воспользуемся данным с сайта. Это коорлинаты городов USA. Данных в датасете слишком много, поэтому сначала уменьшим их кол-во и посмотрим на результат. В зависимости от времени решим, сможем ли мы запустить на полном наборе.
- 4. Возможно, что-то еще.

Список литературы

- [1] Sanjeev Arora: Journal of the ACM, 1998
- [2] Sanjeev Arora: Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other Geometric Problems, 1996