Reasoning, Games, Action and Rationality

Lecture 3

ESSLLI'08, Hamburg

Eric Pacuit

Olivier Roy

Stanford University Univai.stanford.edu/~epacuit

University of Groningen

philos.rug.nl/~oroy

August 13, 2008

Plan for Today

- ► Hard knowledge and Nash equilibrium.
- ▶ Prior beliefs, mixed strategies and equilibrium of beliefs.

Yesterday: Under rationality and common beliefs of rationality the players will choose strategies which survive iterative elimination of strictly dominated strategies.

- Yesterday: Under rationality and common beliefs of rationality the players will choose strategies which survive iterative elimination of strictly dominated strategies.
- ► Common beliefs of rationality is a *generic* kind of expectation: Independent of the game structure.

- Yesterday: Under rationality and common beliefs of rationality the players will choose strategies which survive iterative elimination of strictly dominated strategies.
- ► Common beliefs of rationality is a *generic* kind of expectation: Independent of the game structure.
- In many games these expectations do not exclude any strategy.

- Yesterday: Under rationality and common beliefs of rationality the players will choose strategies which survive iterative elimination of strictly dominated strategies.
- ► Common beliefs of rationality is a *generic* kind of expectation: Independent of the game structure.
- In many games these expectations do not exclude any strategy.
- ▶ What about more specific expectations?

▶ The other side of the spectrum:

- ▶ The other side of the spectrum:
- ▶ What happens if the players have *correct beliefs* about each others' choices?

	Α	В
а	1, 1	0, 0
b	0, 0	1, 1

	Α	В
а	1, 1	0, 0
b	0, 0	1, 1

▶ If Ann believes that Bob plays **A**, the only rational choice for her is **a**.

	Α	В
а	1, 1	0, 0
b	0, 0	1, 1

- ► If Ann believes that Bob plays A, the only rational choice for her is a.
- ▶ The same hold for Bob.

	Α	В
а	1, 1	0, 0
b	0, 0	1, 1

- ► If Ann believes that Bob plays A, the only rational choice for her is a.
- The same hold for Bob.
- ▶ If, furthermore, these beliefs are *true*, then **aA** is played.

	Α	В
а	1, 1	0, 0
b	0, 0	1, 1

▶ The profile **aA** is a *Nash equilibrium* of that game.

	Α	В
а	1, 1	0, 0
b	0, 0	1, 1

▶ The profile **aA** is a Nash equilibrium of that game.

Definition

A strategy profile σ is a Nash equilibrium iff for all i and all $s'_i \neq \sigma_i$:

$$v_i(\sigma) \geq v_i(s_i, \sigma_{-i})$$

	Α	В
а	1, 1	0, 0
b	0, 0	1, 1

Definition

A strategy profile σ is a *Nash equilibrium* iff for all i and all $s'_i \neq \sigma_i$:

$$v_i(\sigma) \geq v_i(s_i', \sigma_{-i})$$

		Α	В
а	ı	1, 1	0, 0
b)	0, 0	1, 1

Definition

A strategy profile σ is a *Nash equilibrium* iff for all i and all $s'_i \neq \sigma_i$:

$$v_i(\sigma) \geq v_i(s_i', \sigma_{-i})$$

- ▶ Intuitions behind Nash equilibrium:
 - Best response given the choices of others.
 - No regret.

	Α	В
а	1, 1	0, 0
b	0, 0	1, 1

▶ If Ann and Bob are rational and have correct beliefs about each others' strategy choices, then **aA** is played.

	Α	В
а	1, 1	0, 0
b	0, 0	1, 1

- ▶ If Ann and Bob are rational and have correct beliefs about each others' strategy choices, then **aA** is played.
- ► In general:

Theorem

(Aumann and Brandenburger, 1995) For any two-players strategic game and model for that game, if at state w both players are rational and "know" the other's strategy choice, then $\sigma(w)$ is a Nash equilibrium.

Theorem

(Aumann and Brandenburger, 1995) For any two-players strategic game and model for that game, if at state w both players are rational and know other's strategy choice, then $\sigma(w)$ is a Nash equilibrium.

Remarks:

Theorem

(Aumann and Brandenburger, 1995) For any two-players strategic game and model for that game, if at state w both players are rational and know other's strategy choice, then $\sigma(w)$ is a Nash equilibrium.

- Remarks:
 - Close to the intuitive explanation: Best response *given* the choices of others, or no regret.

Theorem

(Aumann and Brandenburger, 1995) For any two-players strategic game and model for that game, if at state w both players are rational and know other's strategy choice, then $\sigma(w)$ is a Nash equilibrium.

- Remarks:
 - Close to the intuitive explanation: Best response *given* the choices of others, or no regret.
 - No higher-order information needed!

Theorem

(Aumann and Brandenburger, 1995) For any two-players strategic game and model for that game, if at state w both players are rational and know other's strategy choice, then $\sigma(w)$ is a Nash equilibrium.

- Remarks:
 - Close to the intuitive explanation: Best response *given* the choices of others, or no regret.
 - No higher-order information needed!
 - 2 players (more on this in the notes).

Theorem

(Aumann and Brandenburger, 1995) For any two-players strategic game and model for that game, if at state w both players are rational and know other's strategy choice, then $\sigma(w)$ is a Nash equilibrium.

Remarks:

- Close to the intuitive explanation: Best response *given* the choices of others, or no regret.
- No higher-order information needed!
- 2 players (more on this in the notes).
- Hard knowledge, or even correct beliefs, are very *specific*: Ann knows that Bob is playing **A**.

Theorem

(Aumann and Brandenburger, 1995) For any two-players strategic game and model for that game, if at state w both players are rational and know other's strategy choice, then $\sigma(w)$ is a Nash equilibrium.

Remarks:

- Close to the intuitive explanation: Best response *given* the choices of others, or no regret.
- No higher-order information needed!
- 2 players (more on this in the notes).
- Hard knowledge, or even correct beliefs, are very *specific*: Ann knows that Bob is playing **A**. How can the agents have such information? Is it something we can expect to happen?

Dynamic take on Nash Equilibrium

► How to create mutual knowledge of strategies without trivializing the situation?

Dynamic take on Nash Equilibrium

- How to create mutual knowledge of strategies without trivializing the situation?
- "Test" announcements.

Theorem

For any two-players strategic game and full model for that game, if at state w:

- 1. Player 2 remains rational after the announcement of player 1's choice.
- 2. Vice-versa for player 2.

then $\sigma(w)$ is a Nash equilibrium.

Dynamic take on Nash Equilibrium

- How to create mutual knowledge of strategies without trivializing the situation?
- "Test" announcements.

Theorem

For any two-players strategic game and full model for that game, if at state w:

- 1. Player 2 remains rational after the announcement of player 1's choice.
- 2. Vice-versa for player 2.

then $\sigma(w)$ is a Nash equilibrium.

What remains to be said when they have so much information?

break

Equilibrium play

- ▶ Question: can we understand equilibrium play as resulting from more *generic* information or expectations?
 - Yes: as equilibrium of posterior beliefs given common prior beliefs and common knowledge of rationality.

► Three stages of information disclosure: ex ante, ex interim, ex post.

- ► Three stages of information disclosure: ex ante, ex interim, ex post.
- ► At the ex ante stage the players do not have any specific information about which profile will be played. In particular, they didn't make up their mind.

- ► Three stages of information disclosure: ex ante, ex interim, ex post.
- ► At the ex ante stage the players do not have any specific information about which profile will be played. In particular, they didn't make up their mind.
- At the *ex interim* stage they know more, *at least* they know what they have chosen.

- ► Three stages of information disclosure: ex ante, ex interim, ex post.
- ▶ At the *ex ante* stage the players do not have any specific information about which profile will be played. In particular, they didn't make up their mind. *Prior beliefs*.
- ▶ At the *ex interim* stage they know more, *at least* they know what they have chosen. *Posterior beliefs*.

Definition

A *prior* probability distribution p_i for player i in type space \mathbb{T} is a probability distribution on the set of states (σ, t) .

Definition

A *prior* probability distribution p_i for player i in type space \mathbb{T} is a probability distribution on the set of states (σ, t) .

Definition

A type space \mathbb{T} is *generated* by the set of priors $\{p_i\}_{i\in I}$ whenever, for every state (σ, t) and set of states E:

$$\lambda_i(t_i)(E_i) = \frac{p_i(E \cap (t_i \cap \sigma_i))}{p_i(t_i \cap \sigma_i)}$$

Definition

A *prior* probability distribution p_i for player i in type space \mathbb{T} is a probability distribution on the set of states (σ, t) .

Definition

A type space \mathbb{T} is *generated* by the set of priors $\{p_i\}_{i\in I}$ whenever, for every state (σ, t) and set of states E:

$$\lambda_i(t_i)(E_i) = \frac{p_i(E \cap (t_i \cap \sigma_i))}{p_i(t_i \cap \sigma_i)}$$

Where E_i is defined as the set of pairs (σ'_{-i}, t'_{-i}) such that $(\sigma', t') \in E$.

Prior and posterior beliefs

Definition

A *prior* probability distribution p_i for player i in type space \mathbb{T} is a probability distribution on the set of states (σ, t) .

Definition

A type space \mathbb{T} is *generated* by the set of priors $\{p_i\}_{i\in I}$ whenever, for every state (σ, t) and set of states E:

$$\lambda_i(t_i)(E_i) = \frac{p_i(E \cap (t_i \cap \sigma_i))}{p_i(t_i \cap \sigma_i)}$$

Intuition: each player's beliefs at a state (σ, t) are generated by conditioning the prior on him choosing σ_i and being of type t_i .

▶ A widespread opinion in economic theory that differences in posterior beliefs should be seen as coming from different specific information,

▶ A widespread opinion in economic theory that differences in posterior beliefs should be seen as coming from different specific information, and not as coming from different prior beliefs.

- ► A widespread opinion in economic theory that differences in posterior beliefs should be seen as coming from different specific information, and not as coming from different prior beliefs.
- ► Think of a card game.

- ▶ Differences in posterior beliefs should be seen as coming from different specific information.
- ► Harsanyi doctrine

- Differences in posterior beliefs should be seen as coming from different specific information.
- ▶ Harsanyi doctrine to justify common prior assumption.

J.C. Harsanyi. *Games with incomplete informations played by bayesian players. Management Science* 14:159182, 320334, 486502, 1967-68.

- ▶ Differences in posterior beliefs should be seen as coming from different specific information.
- ▶ Harsanyi doctrine to justify common prior assumption.
- J.C. Harsanyi. *Games with incomplete informations played by bayesian players. Management Science* 14:159182, 320334, 486502, 1967-68.
 - ► Common but not uncontroversial assumption.
- S. Morris. The Common Prior Assumption in Economic Theory. Economics and Philosophy, 11(2):227253, 1995.

► Common prior does not mean same posteriors!

► Common prior does not mean same posteriors!

	Α	В
а	1/4	1/4
b	1/4	1/4

► Common prior does not mean same posteriors!

	Α	В
а	1/4	1/4
b	1/4	1/4

• Assume that $\mathbb{T}_{Ann} = \{t_{Ann}\}$ and $\mathbb{T}_{Bob} = \{t_{Bob}\}$.

Common prior does not mean same posteriors!

	Α	В
а	1/4	1/4
b	1/4	1/4

- Assume that $\mathbb{T}_{Ann} = \{t_{Ann}\}$ and $\mathbb{T}_{Bob} = \{t_{Bob}\}.$
- At state (aA, t_{Bob}t_{Ann}) Bob is certain about his strategy choice:

$$\lambda_{Bob}(t_{Bob})(A_{Bob}) = \frac{p(A)}{p(A)} = 1$$

but Ann is not certain about Bob's choice:

$$\lambda_{Ann}(t_{Ann})(A_{Ann}) = \frac{p(A)}{p(a)} = 1/2$$

▶ A mixed strategy ρ_i is a probability distribution over i's strategy set S_i .

- ▶ A mixed strategy ρ_i is a probability distribution over i's strategy set S_i .
- ▶ Mixed strategies are central to mainstream game theory. E.g. to show the existence of Nash equilibria.

- ▶ A mixed strategy ρ_i is a probability distribution over i's strategy set S_i .
- ▶ Mixed strategies are central to mainstream game theory. E.g. to show the existence of Nash equilibria.
- Various interpretation (Osborne and Rubinstein, 1994 p.37-44).

- ▶ A mixed strategy ρ_i is a probability distribution over i's strategy set S_i .
- ▶ Mixed strategies are central to mainstream game theory. E.g. to show the existence of Nash equilibria.
- Various interpretation (Osborne and Rubinstein, 1994 p.37-44).
 - As objects of choice.

- A mixed strategy ρ_i is a probability distribution over i's strategy set S_i .
- ▶ Mixed strategies are central to mainstream game theory. E.g. to show the existence of Nash equilibria.
- Various interpretation (Osborne and Rubinstein, 1994 p.37-44).
 - As objects of choice.
 - As beliefs of the others about what one will choose.

- ▶ A mixed strategy ρ_i is a probability distribution over i's strategy set S_i .
- ▶ Mixed strategies are central to mainstream game theory. E.g. to show the existence of Nash equilibria.
- Various interpretation (Osborne and Rubinstein, 1994 p.37-44).
 - As objects of choice.
 - As beliefs of the others about what one will choose.
 - In particular, in two-players games, first-order beliefs can be naturally read as mixed strategies.

	Α	В
а	1/4	1/4
b	1/4	1/4

	Α	В
а	1/4	1/4
b	1/4	1/4

▶ At state $(aA, t_{Bob}t_{Ann})$ Bob's beliefs about Ann are :

$$\lambda_{Bob}(t_{Bob})(a) = \lambda_{Bob}(t_{Bob})(b) = 1/2$$

	Α	В
а	1/4	1/4
b	1/4	1/4

 \blacktriangleright At state $(aA, t_{Bob}t_{Ann})$ Bob's beliefs about Ann are :

$$\lambda_{Bob}(t_{Bob})(a) = \lambda_{Bob}(t_{Bob})(b) = 1/2$$

which corresponds to the mixed strategy $\rho_{Ann} = (1/2 \, a, 1/2 \, b)$

▶ Vice-versa for the mixed strategy ρ_{Bob} .

	Α	В
а	1/4	1/4
b	1/4	1/4

► At state (aA, t_{Bob}t_{Ann}) Bob's beliefs about Ann are :

$$\lambda_{Bob}(t_{Bob})(a) = \lambda_{Bob}(t_{Bob})(b) = 1/2$$

which corresponds to the mixed strategy $\rho_{Ann} = (1/2 a, 1/2 b)$

▶ Rationality is common knowledge at that state, and the profile (ρ_{Ann}, ρ_{Bob}) is a mixed strategy Nash equilibrium.

▶ Rationality is common knowledge at that state, and the profile (ρ_{Ann}, ρ_{Bob}) is a mixed strategy Nash equilibrium.

▶ Rationality is common knowledge at that state, and the profile (ρ_{Ann}, ρ_{Bob}) is a mixed strategy Nash equilibrium. In general:

Theorem

- Remarks:
 - Non-correlated common prior.

▶ Rationality is common knowledge at that state, and the profile (ρ_{Ann}, ρ_{Bob}) is a mixed strategy Nash equilibrium. In general:

Theorem

- Remarks:
 - Non-correlated common prior.
 - General result: arbitrary common prior leads to "correlated" equilibrium. More about this in the notes, important for the generalization of Aumann and Brandenburger's result.

▶ Rationality is common knowledge at that state, and the profile (ρ_{Ann}, ρ_{Bob}) is a mixed strategy Nash equilibrium. In general:

Theorem

- Remarks:
 - Non-correlated common prior.
 - General result: arbitrary common prior leads to "correlated" equilibrium. More about this in the notes, important for the generalization of Aumann and Brandenburger's result.
 - Equilibrium play as equilibrium of beliefs.

▶ Rationality is common knowledge at that state, and the profile (ρ_{Ann}, ρ_{Bob}) is a mixed strategy Nash equilibrium. In general:

Theorem

- Remarks:
 - Non-correlated common prior.
 - General result: arbitrary common prior leads to "correlated" equilibrium. More about this in the notes, important for the generalization of Aumann and Brandenburger's result.
 - · Equilibrium play as equilibrium of beliefs.
 - For Aumann, CPA and CKR are inherent to the notion of interactive rationality.

Tomorrow

▶ Not excluding any eventualities and "admissible" strategies.