Mall Customer Segmentation report

Subhajit Karmakar

2023-12-26

The data given to us contains information on customers in a particular supermarket. There are 5 variables in total. Our goal is to group the similar customers using Kmeans algorithm, based on the their purchase behavior.

Data source: https://www.kaggle.com/datasets/vjchoudhary7/customer-segmentation-tutorial-in-python

```
Necessary libraries & data importation
```

```
library(tidyverse)
library(factoextra)
library(kableExtra)
df <- read_csv('D:/Internships/Prodigy/Task 2 (Clustering)/Data2.csv',</pre>
               show\_col\_types = F)
 Glimpse at the data
```

```
## Rows: 200
## Columns: 5
## $ CustomerID
                          <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14...
## $ Gender
```

	## \$ Gender	<pre><cnr> "male", "male", "female", "female",</cnr></pre>					
	## \$ Age	<dbl> 19, 21, 20, 23, 31, 22, 35, 23, 64, 30, 67, 3</dbl>					
	## \$ `Annual Income (k\$)`	<dbl> 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 19, 1</dbl>					
	## \$ `Spending Score (1-100)`	<dbl> 39, 81, 6, 77, 40, 76, 6, 94, 3, 72, 14, 99,</dbl>					
Comment: There are 200 rows and 5 columns in the data.							
Checking for missing value							

Checking for missing value				
	df %>% is.na() %>% sum()			
	## [1] 0			

... There is no missing value in the data.

Summary statistics Age CustomerID Gender Annual Income (k\$) ## Min. : 1.00 Length:200 Min. :18.00 Min. : 15.00 ## 1st Qu.: 50.75 Class :character 1st Qu.:28.75 1st Qu.: 41.50

Median :100.50 Mode :character Median :36.00 Median : 61.50 Mean :38.85 Mean : 60.56 3rd Qu.:49.00 3rd Qu.: 78.00 Max. :70.00 Max. :137.00 ## Mean :100.50 ## 3rd Qu.:150.25 ## Max. :200.00 ## Spending Score (1-100) ## Min. : 1.00 ## 1st Qu.:34.75 ## Median :50.00 ## Mean :50.20 ## 3rd Qu.:73.00 ## Max. :99.00

Here our task is to perform cluster analysis and we have two variables, first one is CustomerID, second one is Gender - IDs of customers is not useful in kmeans and

gender is categorical variable, which we can not use in kmeans. So, we will ignore the CustomerID variable and will not analyze Gender variable too much.

Plots to be used: • Categorical: Count-Plot Variables: Gender • Continuous/Numerical: Histogram Variables: Annual Income (k\$), Age, Spending Score (1-100)

Distribution of Gender

Univariate Analysis

0.010

50

Spending Score (1-100)

25

100

Bivariate Analysis

Plot to be used: Scatter-Plot and Contour-Plot.

Plot 1: Distribution of Age and Annual Income

Annual Income (k\$) 2e-04 1e-04 50

75

Here we are using contour plot to get an idea about the presence of clusters or peaks in the bivariate distributions of variables taking two at a time from the 3.

100

level

4e-04

3e-04

Plot 3: Distribution of Spending Score and Annual Income

40

Age

Comment: This plot is more clear than the previous one, two peaks are clear in the joint distribution.

50

60

70

level

4e-04

3e-04

2e-04

1e-04

30

20

100

50

Annual Income (k\$)

ggplot(NULL, aes(x = centers, y = r)) +geom_line(colour = 'red') + geom_point() + geom_vline(xintercept = 6, lty = 2, colour = 'blue') + theme_minimal() +

 $labs(x = '\nNumber of centroids', y = 'SS(within)/SS(total)\n') +$

• Consider the following code for the implementation of the above task

Optimum number of Clusters

for(i in 1:length(centers)){

k <- kmeans(df_active, centers[i])</pre> r[i] <- k\$tot.withinss/k\$totss</pre>

scale_x_continuous(n.breaks = 10)

centers <- 1:10

set.seed(42)

1.00

0.75

0.50

0.25

Final Grouping

set.seed(42)

SS(within)/SS(total)

r <- 0

Number of centroids

-0.9735839

1.2515802

0.2211606

0.4777583

Comment: So the optimum number of clusters we consider is 6. So, finally we go with 6 clusters and here

Now, we have to find the optimum number of clusters which suits the data. We will consider different number of clusters and for that number of clusters after which the

within sum of squares of the clusters will not decrease significantly, will be considered as the optimum number of clusters.

K <- kmeans(df_active, centers = 6)</pre> df %>% mutate('Clusters' = K\$cluster) -> df The **centroids** of the clusters are listed below: Cluster centroids Age Annual Income (k\$) Spending Score (1-100)

	-0.4408110	0.9891010	1.2364001	
	-0.8709130	-0.1135003	-0.0933461	
Cluster Visualization				
The clusters along with the customer ID	s are shown below, from this or	ne can get an idea about tl	he status of the customers l	pelonging to different groups/clusters.
fviz_cluster(K, data = df_active	e,			
pointsize = 1, labe	elsize = 8,			
ellipse.alpha = 0.3	1) +			
theme_minimal()				
Cluster plot				
3		199		

-1.3221791

-0.2396117

1.0805138

-1.3049552

 $\frac{\text{Between Sum of Square}}{\text{Total Sum of Square}}$

1.0345865

-0.0438876

-1.2868231

-1.1934487

