

12032189 Yuxi Liu

Examine the dependency of the result S on the order of edges in which edges are selected to increase p_e . That is, create an example of the vertex cover problem where different results are obtained depending on the order of edges.

Orders =
$$\{e_1, e_3, e_2\}$$

Orders =
$$\{e_3, e_2, e_1\}$$

Total weight
$$= 9$$

Create an example of the vertex cover problem where a good solution is not obtained by the pricing method (i.e., the obtained solution w(S) is close to $2w(S^*)$.

Total weight = 16

Total weight = 8

Create an example of the vertex cover problem where better results are always obtained (independent of the order) by the greedy set cover algorithm than the pricing method.

Pricing Method:

Total weight = 14

Total weight = 7

$$w(S_P) \approx 3.69 \le 2 * w(S^*) = 4.04 < w(S_G) = 4.36$$

Examine the dependency of the result S on the order of edges in which edges are selected to increase p_e . That is, create an example of the vertex cover problem where different results are obtained depending on the order of edges.

Create an example of the vertex cover problem where a good solution is not obtained by the pricing method (i.e., the obtained solution w(S) is close to $2w(S^*)$.

