

	Know from	Rodrigues	that det[e ^{ŵ0}]=1
	Also tence t function of	hat determ	irant is a	confinuous
	⇒ det [$e^{\hat{\omega} \circ \hat{j}} = +$	(, VO	o o
# Prop	2.4 Shows	that the	exponential	map:
		so(3) → So		
	ω	0> 12	•	
			1.0	- 1 .
Geome and ex	trically, ige	o represen	ts axis of	by
arrount	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			7
- Equi	ivalent axis	representation	n	,
	injective $O' = 2\pi$			
	w.O	J		
		7 .		
- Singula when	writy at $O=0$.	L because	<i>ω</i> 21 ω	brittary
	e smooth a	dependence	of was	s function
05	R C 50(3)	at R=I		
· Can sho	u that ex	p. map is	surjective	(onto)

Prop 2.5: Given $R \in SO(3)$, $\exists \omega \in \mathbb{R}^3$, $ \omega = 1$, and $\Theta \in \mathbb{R}$ s.t. $R = \exp(\hat{\omega} \cdot \Theta)$. "there exists"
i isy earstraction
Let $R = [r_{ij}]$, define $C_0 = \cos 0$ $S_0 = \sin 0$
$R = \exp(\hat{\omega}\Theta) = I + \hat{\omega} s_0 + \hat{\omega}^2 (1 - c_0)$ $\left[\omega_1^2 v_0 + c_0 \right] + \omega_1 \omega_2 v_0 - \omega_2 s_0 + \omega_2 s_0$
$= \begin{bmatrix} \omega_1 & v_0 + c_0 \\ \omega_1 & v_0 + \omega_2 \\ \omega_2 & v_0 + \omega_3 \\ \omega_1 & v_0 + c_0 \end{bmatrix} $ $= \begin{bmatrix} \omega_1 & \omega_2 & v_0 + c_0 \\ \omega_2 & v_0 + c_0 \\ \omega_2 & v_0 + c_0 \end{bmatrix} $ $= \begin{bmatrix} \omega_1 & \omega_2 & v_0 + c_0 \\ \omega_2 & v_0 + c_0 \\ \omega_3 & v_0 + c_0 \end{bmatrix} $ $= \begin{bmatrix} \omega_1 & \omega_2 & v_0 + c_0 \\ \omega_2 & v_0 + c_0 \\ \omega_3 & v_0 + c_0 \end{bmatrix} $
$[\omega_1\omega_3V_{\theta}-\omega_2S_{\theta}, \omega_2\omega_3V_{\theta}+\omega_1S_{\theta}, \omega_3^2V_{\theta}+C_{\theta}]$
Take the trace
$tr(R) = r_{11} + r_{22} + r_{33} = (\omega_1^2 + \omega_2^2 + \omega_3^2) v_0 + 3c_0$
$= 1 + 2 c_{\theta}$
$\Rightarrow \bigcirc = \cos^{-1}\left(\frac{r_{11}+r_{22}+r_{33}-1}{r_{11}+r_{22}+r_{33}-1}\right)$
2 / Dute cos' is only well
defined [1,1]. Turns out this is always satisfied.

- Can also have

$$\Theta' = \Theta \pm 2\pi k$$
 for $k \in \mathbb{Z}$

or

 $\Theta' = -\Theta \pm 2\pi k$

Now construct the axis ω :

- Use off-diagonal terms

 $\Gamma_{52} - \Gamma_{23} = 2\omega_1 s_0$
 $\Gamma_{21} - \Gamma_{72} = 2\omega_2 s_0$
 $\Gamma_{21} - \Gamma_{72} = 2\omega_3 s_0$

If $s_1 = s_0 = s_0$
 $r_2 - r_3 = s_0 = s_0$
 $r_3 - r_{31} = s_0 = s_0$
 $r_4 - r_5 = s_0 = s_0$

If $s_1 = s_0 = s_0$
 $s_2 - s_3 = s_0$
 $s_3 - s_4 = s_0$
 $s_4 = s_0 = s_0$
 $s_5 = s_0 = s_0$
 $s_6 = s_0 = s_0$