Árvore Geradora Mínima de Grafos Direcionados

Um vértice v em um grafo direcionado G é dito raiz de G se existe caminho direcionado de v para todo nó de G.

Um vértice v em um grafo direcionado G é dito raiz de G se existe caminho direcionado de v para todo nó de G.

Um digrafo D é dito **fortemente conexo**, se para todo par u,w ∈ V existe caminho direcionado de u para w e de w para u.

Digrafo Fortemente Conexo

Digrafo Conexo

Um digrafo D é dito quase-fortemente conexo, se para todo par $u,w \in V$ existe um vértice v tal que existe um caminho direcionado de v para u e de v para w.

Obs: *v* não é necessariamente diferente de u ou de w.

u	w	V
1	2	1
1	3	2
2	3	2

Se um grafo contém uma raiz, então ele é *quase*fortemente conexo.

Teorema. Um grafo direcionado G tem uma raiz se e somente se ele é quase fortemente conexo.

Um digrafo G é uma árvore se seu grafo subjacente é uma árvore.

Grafo subjacente

Um digrafo G é uma árvore direcionada ou arborescência se G é uma árvore e possui raiz.

Árvore Direcionada

Uma folha em uma arborescência é um vértice com grau de saída igual a 0.

Teorema de caracterização de arborescência

- 1. G é uma árvore direcionada
- 2. Existe um vértice *r* em *G* tal que existe exatamente um caminho direcionado de *r* para cada vértice de *G*.
- 3. G é quase fortemente conexo e perde tal propriedade se qualquer aresta for removida dele.
- 4. G é quase fortemente conexo e possui vértice r tal que d(r) = 0 e d(v) = 1, para todo $v \neq r$.
- 5. O grafo subjacente de G é acíclico e G possui um vértice r tal que que d(r) = 0 e d(v) = 1, para todo $v \neq r$.
- 6. G é quase fortemente conexo e seu grafo subjacente é acíclico.

Teorema. Um grafo direcionado *G* tem uma árvore geradora direcionada se e somente se *G* é quase-fortemente conexo.

No caso de grafos dirigidos, os algoritmos clássicos não podem ser empregados, dado que a decisão gulosa iterativa não mais é capaz de fornecer a solução ótima.

- Chu e Liu (1965) e Edmonds (1967) desenvolveram independentemente um algoritmo O(mn) para encontrar a árvore geradora mínima dirigida.
- Implementação de Tarjan (1977): $O(m\log n)$ para grafos esparsos e $O(n^2)$ para grafos densos.
- Implementação de Gabow et al. (1986): utiliza heap de Fibonacci, $O(n\log n + m)$.

Algoritmo

1. Descarte os arcos que entram na raiz, se houver; Para cada nó diferente da raiz, selecione o arco de entrada com o menor custo; Defina os *n*-1 arcos selecionados como o conjunto S.

Algoritmo

- 1. Descarte os arcos que entram na raiz, se houver; Para cada nó diferente da raiz, selecione o arco de entrada com o menor custo; Defina os *n*-1 arcos selecionados como o conjunto S.
- 2. Se nenhum ciclo for formado, G = (N, S) é uma árvore geradora mínima. Caso contrário, continue.

Algoritmo

- 1. Descarte os arcos que entram na raiz, se houver; Para cada nó diferente da raiz, selecione o arco de entrada com o menor custo; Defina os *n*-1 arcos selecionados como o conjunto S.
- 2. Se nenhum ciclo for formado, G = (N, S) é uma árvore geradora mínima. Caso contrário, continue.
- 3. Para cada ciclo formado, contraia os nós do ciclo em um pseudonó *k* e modifique o custo de cada arco (*i,j*) que chega a um nó *j* pertencente ao ciclo a partir de um nó *i* fora do ciclo de acordo com a seguinte equação.

$$c(i,k) = c(i,j) - [c(x(j), j) - min_{\{r\}}(c(x(r), r))]$$

onde $c(x(j),j)$ é o custo do arco que chega a j no ciclo.

Algoritmo

- 1. Descarte os arcos que entram na raiz, se houver; Para cada nó diferente da raiz, selecione o arco de entrada com o menor custo; Defina os *n*-1 arcos selecionados como o conjunto S.
- 2. Se nenhum ciclo for formado, G = (N, S) é uma árvore geradora mínima. Caso contrário, continue.
- 3. Para cada ciclo formado, contraia os nós do ciclo em um pseudo-nó *k* e modifique o custo de cada arco (*i,j*) que chega a um nó *j* pertencente ao ciclo a partir de um nó *i* fora do ciclo de acordo com a seguinte equação.

$$c(i,k) = c(i,j) - [c(x(j), j) - min_{r}(c(x(r), r))]$$

onde $c(x(j),j)$ é o custo do arco que chega a j no ciclo.

- 4. Para cada pseudo-nó, selecione o arco de entrada que tem o menor custo modificado; Substitua o arco que entra no mesmo nó *real* em S pelo novo arco selecionado.
- 5. Vá para o passo 2 com o grafo contraído.

- Algoritmo Chu-Liu/Edmonds
- Descarte os arcos que entram na raiz, se houver; Para cada nó diferente da raiz, selecione o arco de entrada com o menor custo; Defina os n-1 arcos selecionados como o conjunto S.
- 2. Se nenhum ciclo for formado, G = (N, S) é uma árvore geradora mínima. Caso contrário, continue.
- 3. Para cada ciclo formado, contraia os nós do ciclo em um pseudo-nó *k* e modifique o custo de cada arco (*i,j*) que chega a um nó *j* pertencente ao ciclo a partir de um nó *i* fora do ciclo de acordo com a seguinte equação.

$$c(i,k) = c(i,j) - [c(x(j), j) - min_{\{r\}}(c(x(r), r))]$$

onde c(x(j),j) é o custo do arco que chega a j no ciclo.

- 4. Para cada pseudo-nó, selecione o arco de entrada que tem o menor custo modificado; Substitua o arco que entra no mesmo nó *real* em S pelo novo arco selecionado.
- 5. Vá para o passo 2 com o grafo contraído.

Ideias do algoritmo de Chu-Liu/Edmonds

 Encontrar arcos substitutos que provocam menor custo extra e eliminam ciclos.

 A equação apresentada no algoritmo representa o cálculo do custo extra.

Exemplo:

1. Descarte os arcos que entram na raiz, se houver; Para cada nó diferente da raiz, selecione o arco de entrada com o menor custo; Defina os *n*-1 arcos selecionados como o conjunto S.

raiz

Grafo D

Exemplo:

2. Se nenhum ciclo for formado, G = (N, S) é uma árvore geradora mínima. Caso contrário, continue.

Grafo D

Exemplo:

raiz

Grafo D

3. Para cada ciclo formado, contraia os nós do ciclo em um pseudo-nó k e modifique o custo de cada arco (i,j) que chega a um nó j pertencente ao ciclo a partir de um nó i fora do ciclo de acordo com a seguinte equação.

$$c(i,k) = c(i,j) - [c(x(j), j) - min_{\{r\}}(c(x(r), r)]$$

onde $c(x(j),j)$ é o custo do arco que chega a j no ciclo.

Arco	Custo modificado
(1,3)	c(1,3) = c(1,3) - [c(4,3) - c(5,4)] = = 10 - [4-3] = 9
(2,3)	
(6,4)	
(6,5)	

Exemplo:

raiz

Grafo D

3. Para cada ciclo formado, contraia os nós do ciclo em um pseudo-nó k e modifique o custo de cada arco (i,j) que chega a um nó j pertencente ao ciclo a partir de um nó i fora do ciclo de acordo com a seguinte equação.

$$c(i,k) = c(i,j) - [c(x(j), j) - min_{\{r\}}(c(x(r), r))]$$

onde $c(x(j),j)$ é o custo do arco que chega a j no ciclo.

Arco	Custo modificado
(1,3)	9
(2,3)	c(2,3) = c(2,3) - [c(4,3) - c(5,4)] = = 8 - [4-3] = 7
(6,4)	
(6,5)	

Exemplo:

raiz

Grafo D

3. Para cada ciclo formado, contraia os nós do ciclo em um pseudo-nó k e modifique o custo de cada arco (i,j) que chega a um nó j pertencente ao ciclo a partir de um nó i fora do ciclo de acordo com a seguinte equação.

$$c(i,k) = c(i,j) - [c(x(j), j) - min_{\{r\}}(c(x(r), r))]$$

onde $c(x(j),j)$ é o custo do arco que chega a j no ciclo.

Arco	Custo modificado
(1,3)	9
(2,3)	7
(6,4)	c(6,4) = c(6,4) - [c(5,4) - c(5,4)] = = 9 - [3-3] = 9
(6,5)	

Exemplo:

raiz

Grafo D

3. Para cada ciclo formado, contraia os nós do ciclo em um pseudo-nó k e modifique o custo de cada arco (i,j) que chega a um nó j pertencente ao ciclo a partir de um nó i fora do ciclo de acordo com a seguinte equação.

$$c(i,k) = c(i,j) - [c(x(j), j) - min_{\{r\}}(c(x(r), r)]$$

onde $c(x(j),j)$ é o custo do arco que chega a j no ciclo.

Arco	Custo modificado
(1,3)	9
(2,3)	7
(6,4)	9
(6,5)	c(6,5) = c(6,5) - [c(3,5) - c(5,4)] = = 11 - [6-3] = 8

Exemplo:

Grafo D

3. Para cada ciclo formado, contraia os nós do ciclo em um pseudo-nó k e modifique o custo de cada arco (i,j) que chega a um nó j pertencente ao ciclo a partir de um nó i fora do ciclo de acordo com a seguinte equação.

$$c(i,k) = c(i,j) - [c(x(j), j) - min_{\{r\}}(c(x(r), r))]$$

onde $c(x(j),j)$ é o custo do arco que chega a j no ciclo.

Exemplo:

4. Para cada pseudo-nó, selecione o arco de entrada que tem o menor custo modificado; Substitua o arco que entra no mesmo nó *real* em S pelo novo arco selecionado.

Exemplo:

- 5. Vá para o passo 2 com o grafo contraído.
- 2. Se nenhum ciclo for formado, G = (N, S) é uma árvore geradora mínima. Caso contrário, continue.

Bibliografia e Referências

- CHU, Y.J.; LIU, T.H. On the shortest arborescence of a directed graph, *Science Sinica*, v.14, 1965, pp.1396-1400.
- EDMONDS, J. Optimum branchings, *J. Research of the National Bureau of Standards*, 71B, 1967, pp.233-240.
- GABOW, H.N., GALIL, Z., SPENCER, T., TARJAN, R.E. Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. *Combinatorica v.* 6, pp. 109-122.
- TARJAN, R.E. Finding Optimum Branchings, *Networks*, v.7, 1977, pp.25-35.