Roots of Quadratic Equations.

 $f(x) = ax^2 + bx + e$ is a quadratic (degree two) function, for $a \neq 0$. If x_0 is a root of f(x), then plugging $f(x_0)$ gives zero. The quadratic formula below describes roots x_0 of f(x).

$$2c_0 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Not convinced?

$$2ax_{0} = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}$$

$$4 \quad 2ax_{0} + b = \pm \sqrt{b^{2}-4ac}$$

$$4 \quad (2ax_{0} + b)^{2} = (\pm \sqrt{b^{2}-4ac})^{2}$$

$$4 \quad (2ax_{0} + b)^{2} = (\pm \sqrt{b^{2}-4ac})^{2}$$

$$4 \quad (2ax_{0} + b)^{2} = (\pm \sqrt{b^{2}-4ac})^{2}$$

Good. We can apply this in an example.

Example. Find the roots of fox= x2+3x+4.

$$\mathbf{x_0} = \frac{-b \pm \sqrt{b^2 - 4aC}}{2a}$$

A quadratic equation looks like this...

A root exists when the graph intersects the x-axis, where the height fox = 0. This gives us three cases,

Examples

we can (and Should!) link this to $x_0 = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$. Notice that there is an interesting object, that is $\pm \sqrt{b^2-4ac}$. Maybe more examples will help.

Example. The roots x_0 of $f(x) = x^2 + 4x + 4$ are

$$\mathcal{L}_0 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Its vertex (probably) lies on the x-axis...

