Definition. A CFG, $G = (N, \Sigma, P, S)$, is in Chomsky Normal Form if all productions are of the form

$$A \rightarrow BC$$
 or $A \rightarrow a$

where $A, B, C \in N$ and $a \in \Sigma$.

Theorem. For any CFG G, there is a CFG G' in CNF such that $L(G') = L(G) - \{\epsilon\}$.

Definition. A production is an ϵ -production, if it is of the form $V \to \epsilon$ where V is a non-terminal. A production is a unit production, if it is of the form $U \to V$ where U, V are non-terminals.

Converting a CFG to Chomsky Normal Form

Given a CFG, $G = (N, \Sigma, P, S)$, construct a new grammar, $\hat{G} = (N, \Sigma, \hat{P}, S)$ by recursively adding productions to P to form \hat{P} , the smallest set of productions containing P that is closed under the following rules:

- 1. If $A \to \alpha B \beta$ and $B \to \epsilon$ are in \hat{P} , then $A \to \alpha \beta$ is in \hat{P} .
- 2. If $A \to B$ and $B \to \gamma$ are in \hat{P} , then $A \to \gamma$ is in \hat{P} .

After \hat{P} has had enough productions added to be closed under the above rules, remove all ϵ -productions and all unit productions.

Next for each terminal $a \in \Sigma$, that occurs as part (not all) of a string on the righthand side of a production, add a new non-terminal V_a and a new production $V_a \to a$. Then replace all 'a's in those productions with V_a .

Now all productions are of the form:

$$A \to a$$
 or $A \to B_1 B_2 B_3 \dots B_k$

where the B_i are all non-terminals and $k \geq 2$.

Finally do the following until all productions have righthand sides of length 2 or less. Replace productions of the form $A \to B_1B_2B_3 \dots B_k$ with two new productions, namely, $A \to B_1A_1$ and $A_1 \to B_2B_3 \dots B_k$ where A_1 is a new non-terminal.

Example 2.10 in Sipser (2ed).

$$S \to ASA|aB \qquad (1)$$

$$A \to B|S \qquad (2)$$

$$B \to b|\epsilon \qquad (3)$$

$$A \to B \text{ and } B \to b, \text{ so add } A \to b.$$

$$S \to ASA|aB \qquad (4)$$

$$A \to B|S|b \qquad (5)$$

$$B \to b|\epsilon \qquad (6)$$

$$A \to S \text{ and } S \to ASA, \text{ so add } A \to ASA.$$

$$S \to ASA|aB \qquad (7)$$

$$A \to B|S|b|ASA \qquad (8)$$

$$B \to b|\epsilon \qquad (9)$$

$$A \to S \text{ and } S \to aB, \text{ so add } A \to aB.$$

$$S \to ASA|aB \qquad (10)$$

$$A \to B|S|b|ASA|aB \qquad (11)$$

$$B \to b|\epsilon \qquad (12)$$

$$A \to B \text{ and } B \to \epsilon, \text{ so add } A \to \epsilon.$$

$$S \to ASA|aB \qquad (13)$$

$$A \to B|S|b|ASA|aB|\epsilon \qquad (14)$$

$$B \to b|\epsilon \qquad (15)$$

$$S \to ASA \text{ and } A \to \epsilon, \text{ so add } S \to AS|SA.$$

$$S \to ASA|aB|aB|\epsilon \qquad (16)$$

$$A \to B|S|b|ASA|aB|\epsilon \qquad (17)$$

$$B \to b|\epsilon \qquad (18)$$

$$S \to ASA|aB|aB|\epsilon \qquad (17)$$

$$B \to b|\epsilon \qquad (18)$$

$$S \to ASA|aB|aB|\epsilon \qquad (17)$$

$$B \to b|\epsilon \qquad (18)$$

(21)

 $B \to b | \epsilon$

 $A \to ASA$ and $A \to \epsilon$, so add $A \to AS|SA$.

$$S \to ASA|aB|AS|SA|a$$
 (22)
 $A \to B|S|b|ASA|aB|\epsilon|AS|SA$ (23)

$$B \to b|\epsilon$$
 (24)

 $A \to aB$ and $B \to \epsilon$, so add $A \to a$.

$$S \to ASA|aB|AS|SA|a \tag{25}$$

$$A \to B|S|b|ASA|aB|\epsilon|AA|SA|a$$
 (26)

$$B \to b|\epsilon$$
 (27)

Now closed so drop all ϵ and unit productions.

$$S \to ASA|aB|AS|SA|a \tag{28}$$

$$A \rightarrow b|ASA|aB|AS|SA|a$$
 (29)

$$B \to b$$
 (30)

Add variables for terminals in strings of two or more symbols.

$$S \to ASA|V_aB|AS|SA|a \tag{31}$$

$$A \to b|ASA|V_aB|AS|SA|a \tag{32}$$

$$B \to b$$
 (33)

$$V_a \to a$$
 (34)

Reduce remaining productions to no more than two variables each.

$$S \to AC|V_aB|AS|SA|a \tag{35}$$

$$A \to b|AC|V_aB|AS|SA|a \tag{36}$$

$$B \to b$$
 (37)

$$V_a \to a$$
 (38)

$$C \to SA$$
 (39)