

SISTEMA RESPIRATORIO:

ASMA

¿QUÉ ES EL ASMA?

El asma es una enfermedad crónica que afecta las vías respiratorias en los pulmones. Se caracteriza por una inflamación y estrechamiento de estas vías, lo que dificulta la respiración.

OBJETIVO

Modelar y analizar el comportamiento del sistema respiratorio en condiciones normales y asmáticas mediante una analogía eléctrica, para comprender los efectos del asma en la mecánica pulmonar.

DIAGRAMA ELÉCTRICO

Los componentes representan: resistencia de las vías aéreas (R), capacidad de los pulmones para expandirse (C), inercia del aire en movimiento(L).

INTEGRANTES:

VILLASEÑOR IOPEZ DIEGO DAVID 22210431

TORRES VELEZ

ARCHIVOS

TORRES VELEZ DIEGO RAUL 22210429

DIAGRAMA FISIOLÓGICOEl modelo muestra el sistema respiratorio normal

y con asma usando una analogía eléctrica. En el asma, la resistencia (Ra) aumenta y la capacidad de los pulmones para expandirse (Ca) disminuye, afectando el flujo de aire.

Diagrama fisiológico.

PARÁMETROS

Elemento eléctrico	Elemento eléctrico Pulmón sano		Descripción
Resistor 0 Ω		20 Ω R2	Oposición al flujo aéreo
Capacitor	0.2 F C1	0.07 F C2	Almacenamiento de aire
Inductor	0.04 H L	0.04 H	Inercia del aire

Tabla de parámetros.

CONCLUSIÓN

El analisis ha permitido ver los efectos del asma, particularmente cómo la resistencia de las vías aéreas y la capacidad de expansión pulmonar se ven alteradas, ofrece un marco útil para la experimentación in silico de terapias basadas en control automático, promoviendo así soluciones más personalizadas y eficaces para el manejo del asma.

ANÁLISIS MATEMÁTICO

$$I(t) = \left[L\frac{dI(t)}{dt} + \frac{1}{Cn}\int (I(t) - Ia(t)dt) - Ve(t)\right]\left[-\frac{1}{Rc}\right]$$

$$Ia(t) = \left[\frac{1}{Ca} \int Ia(t)dt - \frac{1}{Cn} \int (I(t) - Ia(t)dt)\right] \left[\frac{1}{Ra}\right]$$

$$Vs(t) = RaIa(t) + \frac{1}{Ca} \int Ia(t)dt$$

Modelo de ecuaciones integro-diferenciales.

 $\frac{RaCas+1}{(LCnCaRa)s^3+Ca(Cn\operatorname{Re}Ra+L)s^2+(Cn\operatorname{Re}+\operatorname{Re}Ca+RaCa)s+(1+LCn)}$

Función de transferencia.

$$\lim_{s\to 0} \left[1 - \frac{1}{1+LCn}\right]$$

Error estacionario.

Sistema	Raíz 1	Raíz 2	Raíz 3	Estado
Control	-49.7	-4.44	-1.04	Sobreamortiguado
Caso	-0.583	-2.44	-61.1	Sobreamortiguado

Respuesta del sistema.

EXPERIMENTACIÓN IN SILLICO

Respuesta del paciente asmatico, control, tratamiento generado en Python.

Docente:

Dr. Paul Antonio Valle Trujillo Modelo de sistemas fisiologicos