

HU : MGSDVRDLNALLPAVPSLGGGGCALPVSGAAQWAPVLDFAPPASAYGSL
MO : MGSDVRDLNALLPAVSSLGGGGCGLPVSGAAQWAPVLDFAPPASAYGSL

HU : GGPAPPAPPAPPAPPAPPAPPHSPIKQEP SWGGAEPHEEQCLSAFTVHFSGQFTGTAG
MO : GGPAPPAPPAPPAPPAPPAPPHSPIKQEP SWGGAEPHEEQCLSAFTLHFSGQFTGTAG

HU : ACRYGPFGPPPSQASSGQARMFPNAPYLPSCLESQPAIRNQGYSTVTFDGTPS
MO : ACRYGPFGPPPSQASSGQARMFPNAPYLPSCLESQPTIRNQGYSTVTFDGAPS

HU : YGHTPSHAAQFPNHSFKEDPMGQQ GSLGEQQYSVPPPVGCHTPTDSC TG
MO : YGHTPSHAAQFPNHSFKEDPMGQQ GSLGEQQYSVPPPVGCHTPTDSC TG

HU : SQALLLRTPYSSDNLYQM TSQLECM TWNQMNLGATLKGVAGSSSVKWTE
MO : SQALLLRTPYSSDNLYQM TSQLECM TWNQMNLGATLGMAAGSSSVKWTE

HU : GQSNHSTGYESDNHTPILCGAQYRIHTHGVFRGIQDVRRVPGVAPTLVRSAS
MO : GQSNHGIGYESDNHTPILCGAQYRIHTHGVFRGIQDVRRVSGVAPTLVRSAS

HU : ETSEKRPFMCAYPGCNKRYFKLSHLQMHSRKHTGEKPYQCDFKDCERRFSR
MO : ETSEKRPFMCAYPGCNKRYFKLSHLQMHSRKHTGEKPYQCDFKDCERRFSR

HU : SDQLKRHQRRHTGVKP FQCKTCQRKF SRSDHLKTHTRTHTGKTSEKPFSCR
MO : SDQLKRHQRRHTGVKP FQCKTCQRKF SRSDHLKTHTRTHTGKTSEKPFSCR

HU : WPSCQKKFARSDELVRH EENMHQRNMTKLQLAL
MO : WHSCQKKFARSDELVREENMHQRNMTKLQLAL

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5A-5C

A

Vaccine A stimulated line

B

Vaccine B stimulated line

FIG. 6A and 6B

FIG. 7A-7D

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
MGSDVRDLNALLPAVPSLGGGGCALPVSGAAQWAPVLDFAAPPGASAYGSLGGPAPPSSSSSSHSFIKQE
.....AAAAAAA.....AAAAA.....AAAAAAA.....
.....RRRR.....

80 85 90 95 100 105 110 115 120 125 130 135 140 145 150
PSWGGAEPHEEQCLSAFTVHFSGQFTGTAGACRYGPFGPPPSQASSQARMFPNAPYLPSCLESQPAIRNQGYS
.....AAA.....AAAA.....AAA.....AAAAA.....
.....RRRR.....RRRRR.....
.....DDDDDDDD.....

155 160 165 170 175 180 185 190 195 200 205 210 215 220 225
TVTFDGTPSYGHTPSHAAQFPNHSFKHEDPMGQQGSLGEQQYSVPpPVYGCHTPTDSTGSQALLLRTPYSSDN
.....AAAAA.....AAAAA.....AA.....
.....RRRR.....
.....DDDDDDDDDDDDDD.....

230 235 240 245 250 255 260 265 270 275 280 285 290 295 300
LYQMTSQLECMTNQMNLGATLKGVAAAGSSSVKNTTEGQSNHSTGYESDNHTTPILCGAQYRIHTHGVFRGIQDV
AAAAAAA.....AAA.AAA.....AAAAAAA.....
.....RRRRRRRRR.....RRRR.....RRRR.....
DDDDDD.....DDDDDDDDDD.....ddddd.....

305 310 315 320 325 330 335 340 345 350 355 360 365 370 375
RRVPGVAPTLVRSASETSEKRPFMCAYPGCNKRYFKLSHQMQHSRKHTGEKPYQCDFKDCERRFSRSRSDLQLKRHQR
AAAAA..AAAAAAA.....AAAAA.....AAAAA.....AAAAA.....
.....RRRR.....RRRR.....
.....DDDDDD.....

380 385 390 395 400 405 410 415 420 425 430 435 440 445 450
RHTGVKPFQCKTCQRKFSRSDHLKTHTRTHTGKTSEKPFSCRWPSCQKKFARSDELVRHHNMQRNMTKLQLAL
.....AAAAA.....AA.....AAAA.....AAA.....AAAAAAA.....AAA.....
.....RRRR.....RRRR.....
.....ddddd.....

FIG. 8A

卷之三

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
MGSDVRDLNALLPAVSSLGGGGCGLPVSGAACWAPVLDFAAPPGASAYGSLGGPAPPPAPPPPPPHSFIKQE
.....AAAAAAA.....AAAAA.....AAAAAAA.....
.....RRRR.....

80 85 90 95 100 105 110 115 120 125 130 135 140 145 150
PSWGGAEPHEEQCLSAFTLHFSGQFTGTAGACRYGPFGPPPSQASSQARMFPNAPYLPSCLESQPTIRNQGY
.....AAAA.....AAA.....AAAAA.....
.....RRRR.....RRRR.....
.....DDDDDDDD.....

155 160 165 170 175 180 185 190 195 200 205 210 215 220 225
TVTFDGAPSÝGHTPSHAAQFPNHSFKHEDPMGQQGSÍGEQQYSVPPPVGCHTPDSCTGSQALLRTPYSSDN
.....AAAAA.....AAAAA.....AA
.....RRRR.....
.....DDDDDDDDDDDDDD.....

230 235 240 245 250 255 260 265 270 275 280 285 290 295 300
LYQMTSQLECMTNQMNLGATLKGMAGSSSSVKNTEGQSNNIGIGYESDNHTA2ILCGAQYRINTHGVFRCIQDV
.....AAAAA.....AAA.....AAA.....AAAAAAA.....
.....RRRRRRRRR.....RRRP.....RRR.....
.....DDDDDDDDDDDD.....
.....ddddd.....

305 310 315 320 325 330 335 340 345 350 355 360 365 370 375
RRVSGVAPTLVRSASETSEKRPFMCAYPGCNKRYFKLSHLQMHSRKHTGEKPYQCDFKDCERRFSRSRSDQLKRHQ
.....AAAAA.....AAAAA.....AAAAA.....AAAAA.....AAAAA.....AAAAA.....
.....RRRR.....RRRP.....
.....DDDDDDDDDDDD.....

380 385 390 395 400 405 410 415 420 425 430 435 440 445 450
RHTGVKPFQCKTCQRKFARSRSRSDHLKTHTRHTGKTSEKPFSCRWHSCQKKFARSDELVRHHNMQRNMTKLHVAL
.....AAAA.....AA.....AAAA.....AA.....AAAA.....AAAA.....
.....RRRR.....RRRR.....
.....ddddd.....

FIG. 8B

A

B

FIG. 9A and 9B

FIG. 10A

FIG. 10B

FIG. 10C

FIG. 10D

A

B

FIG. 11A and 11B

A

B

FIG. 12A and 12B

A

B

C

FIG. 13A-13C

Fig. 14

© 2002 Blackwell Science Ltd, *Journal of Internal Medicine* 252; 69–76

Fig. 15

Fig. 16

Fig. 17

TABLE 1: Characteristics of Recombinant WT1 Proteins Used for Serological Analysis

Name	Recombinant Protein	WT1 Amino Acid Position	Molecular Weight
WT1/full-length	Rα12-WT1 full length fusion protein	aa 1-449	85kDa
WT1/N-terminus	TRX-WT1 N-terminus fusion protein	aa 1-249	60kDa
WT1/C-terminus	WT1 C-terminus protein	aa 267-449	50kDa

Fig. 18

TABLE 2: WT1 Specific Serum Antibodies in Patients with AML and CML.

	<u>WT1/full-length</u>	<u>WT1/N-terminus</u>	<u>WT1/C-terminus</u>
Normal Individuals (n=96)	2/96 (2%)	1/96 (1%)	1/96 (1%)
AML Patients (n=63)	14/63 (22%)	16/63 (25%)	2/63 (3%)
CML Patients (n=81)	15/81 (19%)	12/81 (15%)	3/81 (3%)

Fig. 19

2/5