(1) Linear discriminant analysis (LDA):

Suppose we have two-classes and assume we have m-dimensional samples $\{\mathbf{x^1, x^2, \cdots, x^{N_i}}\}$ belong to class ω_i , where $i \in \{1, 2\}$.

The aim is to obtain a transformation of ${f x}$ to ${f y}$ through projecting the samples in ${f x}$ onto a line with a scalar ${f y}$:

$$y = \mathbf{w^T} \mathbf{x}$$

where **w** is a projection vector.

(a) Show that an objective function to maximize for LDA can be represented as follows:

$$J(w) riangleq rac{| ilde{\mu}_1 - ilde{\mu}_2|^2}{ ilde{s}_1^2 + ilde{s}_2^2} = rac{w^T S_B w}{w^T S_W w},$$

$$\frac{1}{5i} = \frac{1}{46} w_i \left(y - w_i \right)^2 = \frac{1}{26} \left(w^T x - w^T w_i \right)^2$$

$$= \frac{1}{26} w_i \left(x - w_i \right) \left(x - w_i \right)^T w = w^T \left(\frac{1}{26} w_i \left(x - w_i \right) \left(x - w_i \right)^T \right) w = w^T \zeta_i w$$

$$\Rightarrow \frac{1}{27} = w^T \zeta_i w$$

40, Le nominator term $51^2 t 52^2 = w^T f_1 w + w^T f_2 w = w^T (f_1 t f_2) w$ $= W^T f_2 w w - \dots$

Numerator term
$$|\vec{v}_1 - \vec{v}_2|^2 = (\vec{u}_1 - \vec{u}_2)^2 = (\vec{v}_1 \vec{u}_1 - \vec{v}_1 \vec{v}_2)^2$$

$$= \vec{v}_1((\vec{v}_1 - \vec{v}_2)(\vec{v}_1 - \vec{v}_2)^{\dagger}) \vec{v} = \vec{v}_1 + \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_2 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_2 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_2 \vec{v}_1 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_1 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_1 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec{v}_1 \vec{v}_1 \vec{v}_1 \vec{v}_1 \vec{v}_2 \vec{v}_1 \vec$$

(b) Show that the solution of the LDA can be given as the eigenvector of the following term:

$$\mathbf{S}_{\mathbf{X}} = \mathbf{S}_{\mathbf{W}}^{-1} \mathbf{S}_{\mathbf{B}}$$

Foliation of the LDA > maximize
$$J(w)$$
 To find maximum of $J(w)$, the $J(w) = \frac{1}{2} \left(\frac{w^{T}(BW)}{w^{T}(W)} \right) = 0$

$$= \int (w^{T}(W) + \frac{1}{2} \left(w^{T}(BW) + \frac{1}{2} \left(w^{T}(BW)$$

(2) Kernel principal component analysis (KPCA):

Suppose that the mean of the d-dimensional data in the kernal feature space is:

$$\mu = \frac{1}{n}\sum_{i=1}^n \phi(x_i) = 0$$

And, the covariance is:

$$C = rac{1}{n} \sum_{i=1}^n \phi(x_i) \phi(x_i)^T$$

Thus, eigen-decomposition is as follows:

$$C\nu = \lambda \nu$$

(a) Show that the j^{th} eigenvector can be expressed as a linear combination of features:

$$u_j = \sum_{i=1}^n lpha_{ji} \phi(x_i),$$

where α_{ii} is a coefficient.

$$(N = \frac{1}{N} \stackrel{?}{=} \phi(x_i) \phi(x_i)^T N = \chi N$$

$$\Rightarrow N = \frac{1}{\chi n} \stackrel{?}{=} \phi(x_i) \phi(x_i)^T N = \frac{1}{\chi n} \stackrel{?}{=} (\phi(x_i) \cdot N) \phi(x_i)^T$$

$$\therefore N = \frac{1}{\chi n} \stackrel{?}{=} \phi(x_i) \phi(x_i)^T N = \frac{1}{\chi n} \stackrel{?}{=} (\phi(x_i) \cdot N) \phi(x_i)^T$$

$$\therefore N = \frac{1}{\chi n} \stackrel{?}{=} \phi(x_i) \phi(x_i)^T N = \frac{1}{\chi n} \stackrel{?}{=} (\phi(x_i) \cdot N) \phi(x_i)^T$$

$$\therefore N = \frac{1}{\chi n} \stackrel{?}{=} \phi(x_i) \phi(x_i)^T N = \frac{1}{\chi n} \stackrel{?}{=} (\phi(x_i) \cdot N) \phi(x_i)^T$$

$$\therefore N = \frac{1}{\chi n} \stackrel{?}{=} \phi(x_i) \phi(x_i)^T N = \frac{1}{\chi n} \stackrel{?}{=} (\phi(x_i) \cdot N) \phi(x_i)^T$$

$$\therefore N = \frac{1}{\chi n} \stackrel{?}{=} \phi(x_i) \phi(x_i)^T N = \frac{1}{\chi n} \stackrel{?}{=} (\phi(x_i) \cdot N) \phi(x_i)^T$$

$$\therefore N = \frac{1}{\chi n} \stackrel{?}{=} \phi(x_i) \phi(x_i)^T N = \frac{1}{\chi n} \stackrel{?}{=} \phi(x_i) \stackrel{?}{=} \phi(x_i)^T N = \frac{1}{\chi n} \stackrel{?}{=} \phi(x_i)^T$$

(b) Show that the coefficient $lpha_{ji}$ is obtained from the eigenvector of the kernel matrix:

$$K\alpha_{i}=n\lambda_{i}\alpha_{i}$$

where
$$K_{ij} = K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$

By Substituing
$$V = \frac{1}{2}$$
 air $\phi(x_i)$ to
$$\frac{1}{1} \stackrel{\text{def}}{=} \phi(x_i) \phi(x_i)^T w = \chi w$$

$$\frac{1}{N} \stackrel{\stackrel{\sim}{\stackrel{\sim}}}{=} \Phi(x_i) \Phi(x_i)^{T} \left(\stackrel{\stackrel{\sim}{\stackrel{\sim}}}{=} \Phi_{i}(\varphi_{i}(x_i)) \right) = \lambda_i \stackrel{\stackrel{\sim}{\stackrel{\sim}}}{=} \Phi_{i}(x_i) \Phi(x_i)$$

$$\Rightarrow \frac{1}{N} \stackrel{\stackrel{\sim}{\stackrel{\sim}}}{=} \Phi(x_i) \left(\stackrel{\sim}{\stackrel{\sim}}_{x_i} \Phi_{i}(x_i) \times K(x_i, x_i) \right) = \lambda_i \stackrel{\stackrel{\sim}{\stackrel{\sim}}}{=} \Phi_{i}(x_i)$$

$$\Rightarrow \frac{1}{N} \stackrel{\stackrel{\sim}{\stackrel{\sim}}}{=} \Phi(x_i)^{T} \Phi(x_i) \left(\stackrel{\sim}{\stackrel{\sim}}{=} \Phi_{i}(x_i, x_i) \right) = \lambda_i \stackrel{\sim}{\stackrel{\sim}}{=} \Phi_{i}(x_i)^{T} \Phi(x_i)^{T} \Phi(x_i)$$

$$\Rightarrow \frac{1}{N} \stackrel{\stackrel{\sim}{\stackrel{\sim}}{=} \Phi_{i}(x_i)^{T} \Phi(x_i) \left(\stackrel{\sim}{\stackrel{\sim}}{=} \Phi_{i}(x_i, x_i) \right) = \lambda_i \stackrel{\sim}{\stackrel{\sim}}{=} \Phi_{i}(x_i)^{T} \Phi(x_i)^{T} \Phi(x_$$

(c) Show that the zero-meaned kernel matrix is represented as follows:

$$\tilde{K} = K - 21_{1/n}K + 1_{1/n}K1_{1/n}$$

where $\mathbf{1}_{1/n}$ is a matrix with all elements 1/n.

$$\begin{split} & \left[\left(\chi_{i}, \chi_{i} \right) \right] = \left[\left(\varphi_{i}(\chi_{i}) \right) - \frac{1}{\eta} \sum_{k=1}^{\infty} \varphi_{i}(\chi_{k}) \right]^{T} \left(\varphi_{i}(\chi_{i}) - \frac{1}{\eta} \sum_{k=1}^{\infty} \varphi_{i}(\chi_{k}) \right) \\ & = \left[\left(\chi_{i}, \chi_{i} \right) - \frac{1}{\eta} \sum_{k=1}^{\infty} \left[\left(\chi_{i}, \chi_{k} \right) - \frac{1}{\eta} \sum_{k=1}^{\infty} \left[\left(\chi_{i}, \chi_{k} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) \right] \right] \\ & = \left[\left(\chi_{i}, \chi_{i} \right) - \frac{1}{\eta} \sum_{k=1}^{\infty} \left[\left(\chi_{i}, \chi_{k} \right) - \frac{1}{\eta} \sum_{k=1}^{\infty} \left[\left(\chi_{i}, \chi_{k} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) \right] \right] \\ & = \left[\left(\chi_{i}, \chi_{i} \right) - \frac{1}{\eta} \sum_{k=1}^{\infty} \left[\left(\chi_{i}, \chi_{k} \right) - \frac{1}{\eta} \sum_{k=1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right) + \frac{1}{\eta^{2}} \sum_{l, \alpha = 1}^{\infty} \left[\left(\chi_{i}, \chi_{c} \right$$

(d) Show that any data point, $oldsymbol{x}$ can be represented as:

$$y_j = \sum_{i=1}^n lpha_{ji} K(x,x_i), j=1,\cdots,d$$