Scilab Textbook Companion for Elements of Mechanical Engineering by R. K. Rajput¹

Created by
Vatsal Shah
B.TECH
Mechanical Engineering
Institute of Technology, Nirma University
College Teacher
None
Cross-Checked by
Bhavani Jalkrish

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elements of Mechanical Engineering

Author: R. K. Rajput

Publisher: Laxmi Publications, New Delhi.

Edition: 1

Year: 2009

ISBN: 978-81-318-0677-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	Fuels and Combustion	5
3	Properties of Gases	8
4	Properties of Steam	20
5	Heat Engines	48
6	Steam Boilers	77
7	Internal Combustion Engines	93
10	Air Compressors	112
13	Transmission of Motion and Power	120

List of Scilab Codes

Exa 2.1	Example 1	 	 	 				5
Exa 2.2	Example 2	 	 	 				6
Exa 3.1	Example 1	 	 	 				8
Exa 3.2	Example 2	 	 	 				8
Exa 3.3	Example 3	 	 	 				9
Exa 3.4	Example 4	 	 	 				10
Exa 3.5	Example 5	 	 	 				11
Exa 3.6	Example 6	 	 	 				11
Exa 3.8	Example 8	 	 	 				12
Exa 3.10	Example 10	 	 	 				14
Exa 3.11	Example 11	 	 	 				15
Exa 3.12	Example 12	 	 	 				17
Exa 3.13	Example 13	 	 	 				18
Exa 4.1	Example 1	 	 	 				20
Exa 4.2	Example 2	 	 	 				20
Exa 4.3	Example 3	 	 	 				21
Exa 4.4	Example 4	 	 	 				23
Exa 4.5	Example 5	 	 	 				24
Exa 4.6	Example 6	 	 	 				25
Exa 4.7	Example 7	 	 	 				26
Exa 4.8	Example 8	 	 	 				27
Exa 4.9	Example 9	 	 	 				27
Exa 4.10	Example 10	 	 	 				29
Exa 4.11	Example 11	 	 	 				31
Exa 4.12	Example 12	 	 	 				32
Exa 4.13	Example 13	 	 	 				33
Exa 4.14	Example 14	 	 	 				34
Exa 4.15	Example 15	 	 	 				35

Exa 4.16	Example 16	 ,											35
Exa 4.17	Example 17												36
Exa 4.18	Example 18	 ,											37
Exa 4.19	Example 19	 ,											38
Exa 4.20	Example 20	 ,											39
Exa 4.21	Example 21												40
Exa 4.22	Example 22												41
Exa 4.23	Example 23												42
Exa 4.24	Example 24												43
Exa 4.25	Example 25												44
Exa 4.26	Example 26												45
Exa 4.27	Example 27												46
Exa 5.1	Example 1												48
Exa 5.2	Example 2	 ,											50
Exa 5.3	Example 3												51
Exa 5.4	Example 4												52
Exa 5.5	Example 5												54
Exa 5.6	Example 6												55
Exa 5.7	Example 7												57
Exa 5.8	Example 8	 ,											58
Exa 5.9	Example 9												59
Exa 5.10	Example 10												60
Exa 5.11	Example 11	 ,											62
Exa 5.12	Example 12												63
Exa 5.13	Example 13	 ,											64
Exa 5.14	Example 14												65
Exa 5.15	Example 15												66
Exa 5.16	Example 16												67
Exa 5.17	Example 17												70
Exa 5.18	Example 18												71
Exa 5.19	Example 19	 ,											72
Exa 5.20	Example 20												73
Exa 5.21	Example 21	 ,											73
Exa 6.1	Example 1												77
Exa 6.2	Example 2												78
Exa 6.3	Example 3												79
Exa 6.4	Example 4												80
Exa 6.5	Example 5												81

Exa 6.6	Example 6																				82
Exa 6.7	Example 7																				83
Exa 6.8	Example 8																				85
Exa 6.9	Example 9																				86
Exa 6.10	Example 10																				87
Exa 6.11	Example 11																				88
Exa 6.12	Example 12																				89
Exa 6.13	Example 13																				91
Exa 6.14	Example 14																				92
Exa 7.1	Example 1																				93
Exa 7.2	Example 2																				94
Exa 7.3	Example 3																				94
Exa 7.4	Example 4																				95
Exa 7.5	Example 5																				95
Exa 7.6	Example 6																				96
Exa 7.7	Example 7																				98
Exa 7.8	Example 8																				99
Exa 7.9	Example 9																				100
Exa 7.10	Example 10																				101
Exa 7.11	Example 11																				102
Exa 7.12	Example 12																				104
Exa 7.13	Example 13																				105
Exa 7.14	Example 14																				106
Exa 7.15	Example 15																				107
Exa 7.16	Example 16																				108
Exa 7.17	Example 17																				110
Exa 10.1	Example 1																				112
Exa 10.2	Example 2																				113
Exa 10.3	Example 3																				114
Exa 10.4	Example 4																				115
Exa 10.5	Example 5																				116
Exa 10.6	Example 6																				118
Exa 13.1	Example 1																				120
Exa 13.2	Example 2																				121
Exa 13.3	Example 3																				121
Exa 13.4	Example 4																				122
Exa 13.5	Example 5																				123
Exa 13.6	Example 6	-	-	-	•	-	-	-	-	•		·	•	-	-	-	•	-	•	•	124

Exa 13.7	Example 7													125
Exa 13.8	Example 8													127
Exa 13.9	Example 9													128
Exa 13.10	Example 10													129
Exa 13.11	Example 11													130
Exa 13.12	Example 12													131
Exa 13.13	Example 13													132

Chapter 2

Fuels and Combustion

Scilab code Exa 2.1 Example 1

```
1 clc
2 clear
3 //DATA GIVEN
4 c = 88;
                              //\% of carbon in coal
5 h=4.2;
                               //\% of hydrogen in coal
6 \text{ Wf} = 0.848;
                              //weight of coal in g
7 Wfw=0.027;
                              //weight of fuse wire in
      calorimeter in g
                              //weight of water in
8 W = 1950;
      calorimeter in g
9 \text{ We} = 380;
                              //water equivalent of
      calorimeter
                               //observed temperature rise
10 Dt = 3.06;
      (t2-t1) in deg celsius
                              //cooling correction in deg
11 \text{ tc=0.017};
      celsius
                              //calorific value of fuse
12 cfw = 6700;
      wire in J/g
13
14 //CALCULATIONS
15 \text{ ctr}=(Dt)+tc;
                              //corrected temp. rise
```

```
//heat recieved by water in
16 Hw = (W + We) * 4.18 * [ctr];
       J
17 Hfw = Wfw * cfw;
                                 //heat given out by fuse
       wire in J
18 Hcf=Hw-Hfw;
                                 //heat produced due to
       combustion of fuel in J
                                 //higher calorific value of
19 HCV=Hcf/Wf;
       fuel in kJ/kg
20 \text{ Ms} = 9 * h / 100;
                                 //steam produced per kg of
       coal
21 \text{ LCV=HCV} - 2465*Ms;
                                 //lower calorific value of
       fuel in kJ/kg
22
23 printf ('The Higher calorific value of fuel, H.C.V.
       is: \%5.1 \, \text{f} \, \text{kJ/kg} \cdot \text{n', HCV};
24 printf(' The Lower calorific value of fuel, L.C.V.
       is: \%5.1 \, \text{f} \, \text{kJ/kg} \cdot \text{n',LCV};
```

Scilab code Exa 2.2 Example 2

```
1 clc
2 clear
3 //DATA GIVEN
4 V1 = 0.08;
                               //gas burnt in calorimeter
     in m<sup>3</sup>
                               //pressure of gas supply in
5 Pg=5.2;
      cm of water
6 Pb = 75.5;
                               //barometer reading in cm
     of Hg
                               //weight of water heated by
7 \ Ww = 28;
      gas in kg
8 \text{ Tg} = 13;
                               //temperature of gas in deg
      celsius
9 Twi = 10;
                               //temperature of water at
     inlet in deg celsius
```

```
//temperature of water at
10 Two=23.5;
      outlet in deg celsius
                                //steam condensed in kg
11 Ms = 0.06;
12
13 //CALCULATIONS
14 //by using general gas equation, reducing the volume
       to S.T.P.
15 / p1*V1/T1=p2*V2/T2
                                //in cm of Hg
16 p1=Pb+(Pg/13.6);
                                //in K
17 T1 = Tg + 273;
18 p2=76;
                                //in cm of Hg
19 T2=15+273;
                                //in K
20 V2=p1*V1*T2/T1/p2;
                                //in m<sup>3</sup>
21 Hw = Ww * 4.18 * (Two - Twi);
                                //heat recieved by water in
       kJ
                                //higher calorific value of
22 \text{ HCV=Hw/V1};
       fuel in kJ/m<sup>3</sup>
23 \text{ LCV=HCV} - 2465 * Ms / V1;
                                //lower calorific value of
      fuel in kJ/m^3
24
25 printf ('The Calorific values of fuel per m<sup>3</sup> of gas
       at 15 deg celsius and 76 cm of Hg pressure are:
      \n');
26 printf (' The Higher calorific value of fuel, H.C.V.
       is: \%5.1 \, \text{f kJ/m}^3. \n', HCV);
27 printf(' The Lower calorific value of fuel, L.C.V.
      is: \%5.1 \, \text{f kJ/m}^3. \n',LCV);
```

Chapter 3

Properties of Gases

Scilab code Exa 3.1 Example 1

```
1 clc
2 clear
3 //DATA GIVEN
4 Q = -50;
                                     //heat rejected to
      cooling water in kJ/kg
5 W = -100;
                                     //work input in kJ/
      kg
7 // using First Law of Thermodynamics, Q=(u2-u1)+W
8 Du = Q - W;
                                     //(u2-u1) change in
      internal energy in kJ/kg
9 //since Du is +ve, there is gain in internal energy
10
11 printf ('The GAIN in internal energy is: %2.0 f kJ/kg.
       \n', Du);
```

Scilab code Exa 3.2 Example 2

```
1 clc
2 clear
3 //DATA GIVEN
4 u1 = 450;
                                     //internal energy at
      beginning of the expansion in kJ/kg
5 u2=220;
                                     //internal energy
      after expansion in kJ/kg
                                     //work done by the
6 W = 120;
      air during expansion in kJ/kg
8 //using First Law of Thermodynamics, Q=(u2-u1)+W
9 Q = (u2 - u1) + W;
                                     //heat flow in kJ/kg
10 //since Q is -ve, there is rejection of heat
11
12 printf ('The heat REJECTED by air is: \%3.0 f kJ/kg. \n
      ',(-Q));
```

Scilab code Exa 3.3 Example 3

```
1 clc
2 clear
3 //DATA GIVEN
                                      //mass of nitrogen
4 m = 0.3;
     in kg
5 p1=0.1;
                                      //pressure in MPa
6 T1 = 40 + 273;
                                      //temperature before
       compression in K
7 p2=1;
                                      //pressure in MPa
8 T2=160+273;
                                      //temperature after
      compression in K
9 W = -30;
                                      //work done during
      the compression in kJ/kg
10 \text{ Cv} = 0.75
                                      //in kJ/kgK
11
12 //using First Law of Thermodynamics, Q=(u2-u1)+W
```

Scilab code Exa 3.4 Example 4

```
1 clc
2 clear
3 //DATA GIVEN
4 //initial state
5 p1=0.105;
                                     //pressure of gas in
      MPa
                                      //volume of gas in m
6 V1 = 0.4;
      ^3
7 //final state
8 p2=0.105;
                                     //pressure of gas in
      MPa
9 \quad V2 = 0.20;
                                      //volume of gas in m
      ^3
10
                                      //heat transferred
11 Q = -42.5;
      in kJ
12 p=p1;
13
14 //process used- ISOBARIC (Constant pressure)
15 W12=p*(V2-V1)*1000;
                                     //work in kJ
16 //using First Law of Thermodynamics, Q=(u2-u1)+W
17 Du = Q - W12;
                                     //(u2-u1) change in
      internal energy in kJ
18 //since Du is -ve, there is decrease in internal
      energy
```

Scilab code Exa 3.5 Example 5

```
1 clc
2 clear
3 //DATA GIVEN
4 / part -1
5 // pressure=p1, temperature=T1
6 / part - 2
7 //pressure=p2, temperature=T2
9 // Acc. First Law of Thermodynamics, Q=(u2-u1)+W
10 //when partition moved
11 DQ=0;
12 DW=0;
13 DU = DQ - DW;
14 / DU = 0
15
                CONCLUSION: \n');
16 printf('
17 printf('
                  Acc. to First Law of Thermodynamics, \
     n');
18 printf('
                 When partion moved, there is
      conservation of internal energy. \n');
```

Scilab code Exa 3.6 Example 6

```
1 clc
2 clear
3 //DATA GIVEN
4 //initial state
```

```
//initial pressure
5 p1=10<sup>5</sup>;
      of air in Pa
6 v1=1.8;
                                     //volume of air in m
      ^3/kg
7 T1 = 25 + 273;
                                     //initial
      temperature of air in K
8 //final state
9 p2=5*10^5;
                                     //final pressure of
      air in Pa
10 \quad T2 = 25 + 273;
                                     //final temperature
      of air in K
11
12 //process used- ISOTHERMAL (Constant temperature)
13 W12=[p1*v1*\log(p1/p2)]/1000; //work in kJ/kg
14 //since W is -ve, work is supplied to the air
15
16 //since temperature is constant
17 Du = 0;
                                     //(u2-u1) change in
      internal energy in kJ/kg
18
19 //using First Law of Thermodynamics, Q=(u2-u1)+W
20 Q = Du + W12;
21 //since Q is -ve, there is rejection of heat from
      system to surroundings
22
23 printf('(i) The Work done on the air is: %3.1f kJ/
      kg. \ n', (-W12));
24 printf('(ii) The change in internal energy is: %1.0
      f kJ/kg. \ n',(Du));
25 printf('(iii) The Heat REJECTED is: \%3.1 f kJ/kg. \n'
      ,(-Q));
```

Scilab code Exa 3.8 Example 8

1 clc

```
2 clear
3 //DATA GIVEN
                                         //initial pressure
4 p1=4*10^5;
      in N/m^2
5 V1 = 0.2;
                                         //initial volume in
      m^3
6 T1 = 130 + 273;
                                         //initial
      temperature in K
7 p2=1.02*10^5;
                                         //final pressure
      after adiabatic expansion in N/m<sup>2</sup>
8 \quad Q23=72.5;
                                         //increase in
      enthalpy during constant pressure process in kJ
9 \text{ Cp=1};
                                         //in kJ/kgK
                                         //in kJ/khK
10 Cv = 0.714;
11
12 //gamma for air, g
13 g=Cp/Cv;
14 R = (Cp - Cv) * 1000;
15
16 //for reversible adiabatic process 1-2
17 / p1 * (V1^g) = p2 * (V2^g)
18 V2=V1*(p1/p2)^(1/g);
                                         //final volume in m
19 //(T2/T1) = (p2/p1) ((g-1)/g);
20 T2=T1*(p2/p1)^((g-1)/g);;
                                         //final temp. T2 in
21
                                         //mass in kg
22 m = p1 * V1/R/T1;
23
\frac{24}{for} constant pressure process 2-3
25 / Q23 = m \cdot Cp \cdot (T3 - T2);
26 T3 = Q23/m/Cp+T2;
27 / V2/T2=V3/T3
28 V3 = V2/T2 * T3;
29
30 //Work done by the path 1-2-3, W123=W12+W23
31 W12 = (p1 * V1 - p2 * V2) / (g-1);
32 \quad W23 = p2 * (V3 - V2);
```

```
33 \quad W123 = W12 + W23;
34
35 //if the above processes are replaced by a single
     reversible polytropic process giving the same
     work between initial and final states,
36 / W13=W123=(p1V1-p3V3)/(n-1)
37 p3=p2;
38 n=1+(p1*V1-p3*V3)/W123; //index of expansion
39
40 printf('(i) The Total Work done is: \%5.0 f Nm or J.
     n', W123);
41 printf('(ii) The value of index of expansion, n is:
      42
43 //NOTE:
44 //there is slight variation in answers of the book
     due to rounding off of the values
```

Scilab code Exa 3.10 Example 10

```
1 clc
2 clear
3 //DATA GIVEN
4 //initial state
                                        //initial pressure
5 p1=10^5;
      of gas in Pa
6 V1 = 0.45;
                                        //initial volume of
      gas in m<sup>3</sup>
7 T1 = 80 + 273;
                                        //initial
      temperature of gas in K
8 //final state
9 p2=5*10^5;
                                        //final pressure of
      gas in Pa
10 \quad V2 = 0.13;
                                        //final volume of
```

```
gas in m<sup>3</sup>
11
12
  //gamma for air, g
13 g=1.4;
14 R=294.2
                                        //J/kgK
15
16 \text{ m=p1*V1/R/T1};
                                        //mass in kg
17
18 / p1 * (V1^n) = p2 * (V2^n)
                                        //index n
19 n = \log(p1/p2)/\log(V2/V1);
20
21 //In a polytropic process
22 / (T2/T1) = (V1/V2) (n-1);
                                        //temp. T2 in K
23 T2=T1*(V1/V2)^{(n-1)};
24
25 \text{ Cv=R/(g-1)};
26 Du=m*Cv*(T2-T1)/1000;
                                        //increase in
      internal energy in kJ
27
28 //using First Law of Thermodynamics, Q=(u2-u1)+W
29 /W12 = (p1*V1-p2*V2)/(n-1) = mR(T2-T1)/(n-1)
30 W12=m*R*(T1-T2)/(n-1)/1000;
31 Q = Du + W12;
32 //since Q is -ve, there is rejection of heat from
      system to surroundings
33
34 printf('(i) The Mass of the gas is: \%1.3\,\mathrm{f} kg. \n',(
      m));
35 printf('(ii) The index n is: \%1.3 f. \n',(n));
36 printf('(iii) The change in internal energy is: %2.1
      f kJ. \langle n', (Du) \rangle;
37 printf('(iv) The Heat REJECTED is: \%2.2 \text{ f kJ}. \n',(-
      Q));
```

Scilab code Exa 3.11 Example 11

```
1 clc
2 clear
3 //DATA GIVEN
4 //initial state
5 p1=1.02;
                                        //initial pressure
      of air in bar
6 V1 = 0.015;
                                        //initial volume of
      air in m<sup>3</sup>
7 T1 = 22 + 273;
                                        //initial
      temperature of air in K
8 //final state
                                        //final pressure of
9 p2=6.8;
      air in bar
10 //Law of adiabatic compression, pV^g=C
11
12 //gamma for air, g
13 g=1.4
14 R = 0.287;
15
16 //In a adiabatic process
17 //(T2/T1) = (p2/p1)^{(g-1)/g};
18 T2=T1*(p2/p1)^((g-1)/g);
                                       //final temp. T2 in
      K
19
20 / p1*(V1^g)=p2*(V2^g)
V2=V1*(p1/p2)^(1/g);
                                        //final volume in m
      ^3
22
23 \text{ m} = p1*10^5*V1/10^3/R/T1;
                                       //mass in kg
24
25 /W = (p1*V1-p2*V2)/(g-1) = mR(T2-T1)/(g-1)
26 \text{ W=m*R*}(T1-T2)/(g-1);
27 //since W is -ve, the work is done on the air
28
29 printf('(i) The Final temperature is: %3.2 f deg.
      celsius. \langle n', (T2-273) \rangle;
30 printf(' (ii) The Final Volume is: \%1.5 \,\mathrm{f} m<sup>3</sup>. \n', V2
      );
```

Scilab code Exa 3.12 Example 12

```
1 clc
2 clear
3 //DATA GIVEN
                                        //mass of air in kg
4 m = 0.44;
5 T1 = 180 + 273;
                                        //initial
      temperature of air in K
6 T2=15+273;
                                        //final temperature
      of air in K
7 W12=52.5;
                                        //work done during
      the process in kJ
  //V2/V1=3
                                        //volume ratio, Vr=
9 \text{ Vr} = 3;
      V2/V1
10
11 //Law of adiabatic expansion, pV^g=C
12
13 //In an adiabatic process
14 //(T2/T1) = (V1/V2) \hat{g}(g-1);
15 g=1+[(log(T2/T1)/log(1/Vr))];
                                                    //gamma
      for air, g=Cp/Cv
16
  //W12 = (p1*V1-p2*V2)/(n-1) = mR(T2-T1)/(g-1)
18 R=W12/m/(T1-T2)*(g-1);
19 / R = Cp - Cv
20
21 Cv=R/(g-1);
22 \quad Cp = g * Cv;
23
24 printf('(i) The value of Cv is: \%1.3 \, \text{f kJ/kgK}. \n',
      Cv);
```

Scilab code Exa 3.13 Example 13

```
1 clc
2 clear
3 //DATA GIVEN
                                       //mass of etahne gas
4 m = 1;
       in kg
                                       //molecular weight
5 M = 30;
      of ethane
                                       //initial pressure
6 p1=1.1;
      in bar
  T1 = 27 + 273;
                                       //initial
      temperature in K
8 p2=6.6;
                                       //final pressure in
      bar
9 Cp=1.75;
                                       //in kJ/kgK
10
11 //Law of compression, pV^1.3=C
12 n=1.3;
13
14 // Characteristic gas constant, R = Universal gas
      constant (Ro)/Molecular weight (M)
15 Ro=8314;
                                       //kJ/kgK
16 R = Ro/M/1000;
17
18 / R = Cp - Cv
19 Cv = Cp - R;
20 \text{ g=Cp/Cv};
                                       //gamma g
```

Chapter 4

Properties of Steam

Scilab code Exa 4.1 Example 1

Scilab code Exa 4.2 Example 2

1 clc

```
2 clear
3 //DATA GIVEN
                                         //volume of the
4 V = 0.6;
       vessel in m<sup>3</sup>
5 p=0.5;
                                         //pressure in bar
6 M = 3;
                                         //mass of liquid and
      water vapour in kg
7
8 v = V / M;
                                         //specific volume in
      m^3/kg
9 //At 5 bar, from steam tables
                                         //\mathrm{m}^3/\mathrm{kg}
10 \text{ vg} = 0.375;
11 vf=0.00109;
                                         //\text{m}^3/\text{kg}
12 \text{ vfg=vg-vf};
13 / v = vg - (1-x) vfg
14 x = (v - vg) / vfg + 1;
                                         //quality of the
      vapour
15
16 //mass and volume of liquid
17 Mliq = M*(1-x);
18 Vliq=Mliq*vf;
19
20 //mass and volume of vapour
21 Mvap=M*x;
22 \quad Vvap = Mvap * vg;
23
24 printf('(i) The Mass and Volume of liquid is: n');
                   Mliq. is: \%1.3 \, \text{f kg. } \setminus \text{n',Mliq};
25 printf('
26 printf('
                   Vliq. is: \%1.4 \text{ fm}^3. \n', Vliq);
27 printf('(ii) The Mass and Volume of vapour is: \n');
                   28 printf('
                   Vvap. is: \%1.4 \text{ f m}^3. \n', \text{Vvap};
29 printf('
```

Scilab code Exa 4.3 Example 3

```
1 clc
2 clear
3 //DATA GIVEN
4 V = 0.05;
                                          //volume of vessel in
       m^3
                                          //mass of liquid in
5 \text{ Mf} = 10;
      kg
                                          //temp. in deg
6 T = 245;
       celsius
8 //from steam tables, corresponding to 245 deg
       celsius
9 Psat=36.5;
                                          //bar
10 vf = 0.001239;
                                          //\text{m}^3/\text{kg}
                                          //m^3/kg
11 \text{ vg} = 0.0546;
12 hf=1061.4;
                                          //kJ/kg
                                          //kJ/kg
13 hfg=1740.2;
14 sf=2.7474;
                                          //kJ/kgK
15 \text{ sfg}=3.3585;
                                          //kJ/kgK
16
17 Vf = Mf * vf;
                                          //volume of liquid
                                          //volume of vapour
18 Vg=V-Vf;
                                          //mass of vapour
19 Mg = Vg / vg;
                                          //total mass of
20 \text{ m=Mf+Mg};
      mixture
21
                                         //quality of the
22 x = Mg/(Mg + Mf);
      mixture
23 \text{ vfg=vg-vf};
                                         //specific volume
24 \text{ v=vf+x*vfg};
25
                                          //specific enthalpy
26 h = hf + x * hfg;
27
                                          //specific entropy
28 \text{ s=sf+x*sfg};
29
                                          //specific internal
30 \quad u=h-Psat*10^5*v/10^3;
       energy
31
```

```
32
33 printf('(i) The Pressure is: %2.1f bar. \n',Psat);
34 printf('(ii) The mass m is: %2.3f kg. \n',m);
35 printf('(iii) The Specific volume v is: %1.6f m^3/kg. \n',v);
36 printf('(iv) The Specific enthalpy h is: %4.2f kJ/kg. \n',h);
37 printf('(v) The Specific entropy s is: %1.4f kJ/kgK. \n',s);
38 printf('(vi) The Specific internal energy u is: %4.2f kJ/kg. \n',u);
39
40 //NOTE:
41 //there is slight variation in answers of book due to rounding off of the values in the book
```

Scilab code Exa 4.4 Example 4

```
1 clc
2 clear
3 //DATA GIVEN
4 \text{ Mw} = 2;
                                      //mass of water to be
       converted to steam in kg
5 Tw = 25;
                                      //temp. of water in
      deg celsius
6 p=5;
                                      //pressure
                                       //dryness fraction
7 x = 0.9;
9 //At 5 bar, from steam tables
                                      //kJ/kg
10 hf = 640.1;
11 hfg=2107.4;
                                      //kJ/kg
12
                                      //specific enthalpy (
13 h = hf + x * hfg;
      above 0 deg celsius)
14 hs = 1*4.18*(Tw - 0);
                                      //sensible heat
```

```
associated with i kg of water

15 hnet=h-hs; //net quantity of
   heat to be supplied per kg of water

16 Htotal=Mw*hnet; //total amount of
   heat to be supplied

17

18 printf('The Total amount of heat to be supplied is:
   %4.2 f kJ.', Htotal);
```

Scilab code Exa 4.5 Example 5

```
1 clc
2 clear
3 //DATA GIVEN
4 m = 4.4;
                                    //mass of steam to be
       produced in kg
                                    //pressure of steam
5 p=6;
                                    //temp. of steam in
  Tsup=250;
     deg. celsius
  Tw = 30;
                                    //temp. of water in
     deg celsius
8 \text{ Cps} = 2.2;
                                    //specific heat of
      steam in kJ/kg
10 //At 6 bar, from steam tables
                                    //deg. celsius
11 Ts = 158.8;
12 hf=670.4;
                                    //kJ/kg
                                    //kJ/kg
13 hfg=2085;
14 //since the given temp. 250 deg celsius is greater
      than 158.8 deg celsius, steam is superheated
15
16 hsup=hf+hfg+Cps*(Tsup-Ts);
                                   //enthalpy of 1 kg
      supergeated steam reckoned from 0 deg. celsius
                                    //sensible heat
17 hs = 1*4.18*(Tw-0);
      associated with i kg of water
```

Scilab code Exa 4.6 Example 6

```
1 clc
2 clear
3 //DATA GIVEN
4 V = 0.15;
                                         //volume of wet steam
       in m^3
5 p=4;
                                         //pressure of wet
      steam in bar
6 x = 0.8;
                                         //dryness fraction
8 //At 4 bar, from steam tables
9 \text{ vg} = 0.462;
                                         //\text{m}^3/\text{kg}
                                         //kJ/kg
10 hf = 604.7;
11 hfg=2133;
                                         //kJ/kg
12
13 rho=1/(x*vg);
                                         //density in kg/m<sup>3</sup>
                                         //mass of 0.15 m<sup>3</sup> of
14 \text{ m=rho*V};
        steam
15
16 Htotal=(rho*1)*(hf+x*hfg); //total heat of 1 m^3
        of steam which has a mass of rho(2.7056) kg
17
18 printf('(i)The Mass of 0.15 m<sup>3</sup> of steam is: %1.4 f
      kg. \langle n', m \rangle;
19 printf('(ii)The Total heat of 1 m<sup>3</sup> of steam which
      has a mass of 2.7056 kg is: \%4.2 f kJ. \n', Htotal)
```

;

Scilab code Exa 4.7 Example 7

```
1 clc
2 clear
3 //DATA GIVEN
4 m = 1000;
                                      //mass of steam
      generated in kg/hr
5 p=16;
                                      //pressure of steam
      in bar
6 x = 0.9;
                                      //dryness fraction
7 Tsup=380+273;
                                      //temp. of
      superheated steam in K
  Tfw=30;
                                      //temp. of feed water
       in deg. celsius
                                      //specific heat of
9 Cps=2.2;
      steam in kJ/kg
10
11 //At 16 bar, from steam tables
12 Ts = 201.4 + 273;
                                      //in K
                                      //kJ/kg
13 hf=858.6;
14 hfg=1933.2;
                                      //kJ/kg
15
16 Hs=m*[(hf+x*hfg)-1*4.187*(Tfw-0)];
                                                //heat
      supplied to feed water per hr to produce wet
      steam
17 Ha=m*[(1-x)*hfg+Cps*(Tsup-Ts)];
                                                //heat
      absorbed by superheater per hour
18
19 printf('(i) The Heat supplied to feed water per hour
       to produce wet steam is: \%4.2 \, f*10^3 \, kJ. \, n, (Hs
      /1000));
20 printf('(ii) The Heat absorbed by superheater per
      hour is: \%3.2 \text{ f}*10^3 \text{ kJ}. \text{ } \text{n',(Ha/1000))};
```

Scilab code Exa 4.8 Example 8

```
1 clc
2 clear
4 //At 0.75 bar. From steam tables,
5 //At 100 deg celsius
6 T1 = 100;
                                //deg celsius
7 hsup1=2679.4;
                                //kJ/kg
8 //At 150 deg celsius
9 T2=150;
                                //deg celsius
10 hsup2=2778.2;
                                //kJ/kg
11 Cps1 = (hsup2 - hsup1) / (T2 - T1);
12
13 //At 0.5 bar. From steam tables,
14 //At 300 deg celsius
15 \quad T3 = 300;
                                //deg celsius
16 hsup3=3075.5;
                                //kJ/kg
17 //At 400 deg celsius
18 \quad T4 = 400;
                                //deg celsius
19 hsup4=3278.9;
                                //kJ/kg
20 Cps2 = (hsup4 - hsup3) / (T4 - T3);
21
22 printf('(i) The mean specific heat for superheated
                      (At 0.75 bar, between 100 and 150
      deg celsius) is: \%1.3 \,\mathrm{f.} \, \backslash \mathrm{n}, Cps1);
23 printf('(ii) The mean specific heat for superheated
                      (At 0.5 bar, between 300 and 400
       steam \n
      deg celsius) is: \%1.3 \, \text{f.} \, \text{n',Cps2};
```

Scilab code Exa 4.9 Example 9

```
1 clc
2 clear
3 //DATA GIVEN
                                       //mass of steam in
4 m = 1.5;
      cooker in kg
5 p1=5;
                                       //pressure of steam
      in bar
6 \times 1 = 1;
                                       //initial dryness
      fraction of steam
7 x2=0.6;
                                       //final dryness
      fraction of steam
9 //At 5 bar, from steam tables
10 Ts1=151.8+273;
                                        //in K
                                        //kJ/kg
11 hf1=640.1;
12 hfg1=2107.4;
                                        //kJ/kg
                                        //m^3/kg
13 vg1=0.375;
14
                                                        //
15 V1 = m * vg1;
      volume of pressure cooker in m<sup>3</sup>
16 u1=(hf1+hfg1)-(p1*10^5)*(vg1*10^-3);
      internal energy of steam per kg at initial point
      1
17 / V1 = V2
18 //V1 = m*[(1-x2)*vf2+x2*vg2]
                                                        //vf2
      is negligible
19 vg2=V1/x2/1.5;
20
21 //from steam tables coreesponding to vg2=0.625 \text{ m}^3/
      kg
22 p2=2.9;
23 \text{ Ts} 2 = 132.4 + 273;
                                        //in K
                                        //kJ/kg
24 hf2=556.5;
                                        //kJ/kg
25 hfg2=2166.6;
27 u2 = (hf2 + x2 * hfg2) - (p2 * 10^5) * x2 * (vg2 * 10^-3);
      internal energy of steam per kg at final point 2
28
```

Scilab code Exa 4.10 Example 10

```
1 clc
2 clear
3 //DATA GIVEN
4 V = 0.9;
                                        //capacity of
      spherical vessel in m<sup>3</sup>
5 p1=8;
                                        //pressure of steam
      in bar
6 \times 1 = 0.9;
                                        //dryness fraction
      of steam
7 p2=4;
                                        //pressure of steam
      after blow off in bar
8 p3=3;
                                        //final pressure of
      steam in bar
10 //At 8 bar, from steam tables
11 hf1=720.9;
                                        //kJ/kg
12 hfg1=2046.5;
                                        //kJ/kg
13 \text{ vg1} = 0.240;
                                        //m^3/kg
14
```

```
15 m1=V/(x1*vg1);
                                         //mass of steam in
      the vessel in kg
16
17 h1=hf1+x1*hfg1;
                                         //enthalpy of steam
      before blowing off (per kg)
18 //enthalpy of steam before blowing off (per kg) =
      enthalpy of steam after blowing off (per kg)
19 h2=h1;
20 / h2 = hf2 + x2 * hfg2
21 //At 4 bar, from steam tables
22 hf2=604.7;
                                         //kJ/kg
23 hfg2=2133;
                                         //kJ/kg
24 \text{ vg}2=0.462;
                                         //\text{m}^3/\text{kg}
25 	 x2 = (h2 - hf2) / hfg2;
                                         //dryness fraction
      at 2
26
27 \text{ m}2=V/(x2*vg2);
                                         //mass of steam in
      the vessel in kg
28 \text{ m} = \text{m} 1 - \text{m} 2;
                                         //mass of steam
      blown off in kg
29
30 //As it is constant volume cooling, x2*vg2(at 4 bar)
      =x3*vg3(at 3 bar)
31 //At 3 bar, from steam tables
32 hf3=561.4;
                                         //kJ/kg
33 hfg3=2163.2;
                                         //kJ/kg
34 \text{ vg}3=0.606;
                                         //\text{m}^3/\text{kg}
35
36 \text{ x3=x2*vg2/vg3};
37 h3=hf3+x3*hfg3;
38
39 //heat lost during cooling, Qlost=m(u3-u2)
40 u2=h2-p2*10^5*x2*vg2*10^-3;
41 u3=h3-p3*10^5*x3*vg3*10^-3;
42 Qlost=m*(u3-u2);
43
44 printf('(i) The Mass of of steam blown off is: %1.3
      f kg. \langle n', m \rangle;
```

```
45 printf('(ii) The Dryness fraction of steam in the
    vessel after cooling is: %1.4f. \n',x3);
46 printf('(iii) The Heat lost during cooling is: %3.2f
    kJ. \n',(-Qlost));
47
48 //NOTE:
49 //The answers of m1,x3 are INCORRECT in the book,
50 //thus, the answers of m, x3 and Qlost are INCORRECT
    in the book
51 //while, the values obtained her (in scilab) are
    CORRECT.
```

Scilab code Exa 4.11 Example 11

```
1 clc
2 clear
3 //DATA GIVEN
                                       //pressure of steam
4 p=8;
      in bar
                                       //dryness fraction
5 x = 0.8;
7 //At 8 bar, from steam tables
                                       //m^3/kg
8 \text{ vg} = 0.240;
9 \text{ hfg} = 2046.5;
                                       //kJ/kg
10
11 We=p*10^5*x*vg/1000;
                                       //external work done
      during evaporation in kJ
12 LHi=x*hfg-We;
                                       //Internal latent
      heat in kJ
13
14 printf('(i) The External work done during
      evaporation is: \%3.1 \, \text{f kJ. } \, \text{n',We};
15 printf('(ii) The Internal latent heat is: %4.1 f kJ.
       \n', LHi);
```

Scilab code Exa 4.12 Example 12

```
1 clc
2 clear
3 //DATA GIVEN
4 p=10;
                                       //pressure of steam,
      p1=p2 in bar
5 \text{ x1=0.85};
                                       //dryness fraction
6 V1 = 0.15;
                                       //volume of steam in
      m^3
  Tsup2=300+273;
                                       //temp. of steam in K
8 \text{ Cps} = 2.2;
                                       //specific heat of
      steam in kJ/kgK
9
10 //At 10 bar, from steam tables
11 \text{ vg1} = 0.194;
                                            //\text{m}^3/\text{kg}
12 hfg1=2013.6;
                                            //kJ/kg
                                            //in K
13 Ts1=179.9+273;
14 \text{ m=V1/(x1*vg1)};
                                            //mass of steam
      in kg
15 hnet=(1-x1)*hfg1+Cps*(Tsup2-Ts1);
                                            //heat supplied
      per kg of steam
16 Htotal=m*hnet;
                                            //total heat
      supplied
17
  //External work done during the process We=p*(vsup2-
      x*vg1)
19 // \sin ce p1 = p2 = p,
20 //vg1/Ts1=vsup2/Tsup2
21 vsup2=vg1*Tsup2/Ts1;
22 \text{ We=p*10^5*(vsup2-x1*vg1)*10^-3};
                                            //% of total
23 hp=We/hnet;
      heat supplied (per kg) which appears as external
      work
```

Scilab code Exa 4.13 Example 13

```
1 clc
2 clear
3 //DATA GIVEN
                                         //pressure of steam
4 p=18;
5 x = 0.85;
                                         //dryness fraction
7 //At 18 bar, from steam tables
8 hf=884.6;
                                         //kJ/kg
9 \text{ hfg} = 1910.3;
                                         //kJ/kg
10 \text{ vg=0.110};
                                         //\text{m}^3/\text{kg}
11 uf=883;
                                         //kJ/kg
12 ug=2598;
                                         //kJ/kg
13
                                         //specific volume of
14 \quad v = x * vg;
      wet steam
                                         //specific enthalpy
15 h = hf + x * hfg;
      of wet steam
16 u = (1-x) * uf + x * ug;
                                         //specific internal
      energy of wet steam
17
18 printf('(i) The Specific volume v is: %1.4 f m^3/kg.
        n', v;
19 printf('(ii) The Specific enthalpy h is: %4.2 f kJ/
      kg. \langle n', h \rangle;
20 printf('(iii) The Specific internal energy u is: %4
      .2 f kJ/kg. \langle n', u\rangle;
```

Scilab code Exa 4.14 Example 14

```
1 clc
2 clear
3 //DATA GIVEN
4 p=7;
                                       //pressure of steam
5 h = 2550;
                                       //enthalpy of steam
7 //At 7 bar, from steam tables
                                       //kJ/kg
8 \text{ hf} = 697.1;
9 \text{ hfg} = 2064.9;
                                       //kJ/kg
                                       //m^3/kg
10 \text{ vg} = 0.273;
11 uf =696;
                                       //kJ/kg
12 ug=2573;
                                       //kJ/kg
13
14 \text{ hg=hf+hfg};
15 //At 7 bar, hg=2762 kJ/kg, hence since actual
      enthalpy is given as 2550 kJ/kg, the steam must
      be in wet vapour state
16 // \text{specific enthalpy of wet steam}, h=hf+x*hfg
17 x=(h-hf)/hfg;
                                       //dryness fraction
                                       //specific volume of
18 \quad v = x * vg;
      wet steam
19 u = (1-x) * uf + x * ug;
                                       //specific internal
      energy of wet steam
20
21 printf('(i) The Dryness fraction x is: \%1.3 f. \n',x
22 printf('(ii) The Specific volume v is: %1.4 f m^3/kg
      (n',v);
23 printf('(iii) The Specific internal energy u is: %4
      .2 f kJ/kg. \langle n', u \rangle;
```

Scilab code Exa 4.15 Example 15

```
1 clc
2 clear
3 //DATA GIVEN
                                       //pressure of steam
4 p=120;
                                       //specific volume of
5 v = 0.01721;
      steam
7 //At 120 bar, from steam tables
8 \text{ vg} = 0.0143;
                                       //\text{m}^3/\text{kg}
9 //since vg<v, the steam is superheated
10 //so from superheat tables at 120 bar and v=0.01721
      m^3/kg
                                       //deg. celsius
11 T = 350;
                                      //specific enthalpy
12 h = 2847.7;
      of steam
13 u=h-p*10^5*v/10^3;
                                      //specific internal
      energy of steam
14
15 printf('(i) The Temperature is: %3.0 f deg celsius.
      n',T);
16 printf('(ii) The Specific enthalpy h is: %4.1f kJ/
      kg. \langle n', h \rangle;
17 printf('(iii) The Specific internal energy u is: %4
      .2 f kJ/kg. \langle n', u \rangle;
```

Scilab code Exa 4.16 Example 16

```
1 clc
2 clear
3 //DATA GIVEN
```

```
//pressure of steam
4 p = 140;
5 h=3001.9;
                                     //specific enthalpy
      of steam
7 //At 140 bar, from steam tables
8 \text{ hg} = 2642.4;
9 //since hg<h, the steam is superheated
10 //so from superheat tables at 140 bar and h=3001.9
      kJ/kg
11 T=400;
                                     //deg. celsius
12 v = 0.01722;
                                     //specific volume of
      steam
13 u=h-p*10^5*v/10^3;
                                     //specific internal
      energy of steam
14
15 printf('(i) The Temperature is: %3.0f deg celsius.
      n',T);
16 printf('(ii) The Specific volume v is: %1.5 f m^3/kg
      . \ \ n', v);
17 printf('(iii) The Specific internal energy u is: %4
      .2 f kJ/kg. \langle n', u\rangle;
```

Scilab code Exa 4.17 Example 17

```
of dry saturated steam
9 Ts = 179.9 + 273
                                             //temp. of steam
       in K
                                             //\text{m}^3/\text{kg}
10 \text{ vg} = 0.194;
11
12 //By vg/Ts = vsup/Tsup
13 vsup=vg*Tsup/Ts;
14 u1=hsup-p1*10^5*vsup/10^3;
15
16 p2=1.4;
                                             //new pressure
      in bar
17 	 x2=0.8;
                                             //dryness
      fraction
18 //At 1.4 bar, from steam tables
19 hf2=458.4;
                                             //kJ/kg
20 hfg2=2231.9;
                                             //kJ/kg
21 vg2=1.236;
                                             //m^3/kg
22 h2=hf2+x2*hfg2;
                                             //enthalpy of
      wet steam (after expansion)
23 u2=h2-p2*10^5*x2*vg2/10^3;
                                             //internal
      energy of this steam
24 \quad Du = u2 - u1;
                                             //change in
      internal energy per kg
25
26 printf('(i) The Internal energy of superheated
      steam at 10 bar is: \%4.1 \, \text{f kJ/kg. } \, \text{n',u1};
27 printf(' (ii) The Change in internal energy per kg
      is: \%2.1 f kJ. \langle n', Du \rangle;
28 printf('
                 (Negative sign indicates DECREASE in
      internal energy.)');
```

Scilab code Exa 4.18 Example 18

```
1 clc
2 clear
```

```
3 //DATA GIVEN
                                      //mass of steam in kg
4 m = 1;
5 p=20;
                                      //pressure of steam
      in bar
6 Tsup=400+273;
                                      //temp. of steam in K
7 x = 0.9;
                                      //dryness fraction
                                      //specific heat of
8 \text{ Cps} = 2.3;
      steam in kJ/kgK
10 //At 20 bar, from steam tables
11 Ts = 212.4 + 273;
                                            //in K
12 hf=908.6;
                                            //kJ/kg
13 hfg=1888.6;
                                            //kJ/kg
14 \text{ vg} = 0.0995;
                                            //\text{m}^3/\text{kg}
15 hsup=hf+hfg+Cps*(Tsup-Ts);
                                            //kJ/kg
16
17 //Assume superheated steam to behave as a perfect
      gas from the commencement of superheating and
      thus obey Charle's Law
18 //By vg/Ts=vsup/Tsup
19 vsup=vg*Tsup/Ts;
20 usup=hsup-p*10^5*vsup*10^-3;
                                            //internal
      energy of 1 kg of superheated steam in kJ/kg
21
22 h = hf + x * hfg;
u=h-p*10^5*x*vg*10^-3;
                                            //internal
      energy of 1 kg of wet steam in kJ/kg
24
25 printf('(i) The Internal energy of 1 kg of
      superheated steam at 400 deg celsius is: %4.2 f kJ
      / \text{kg. } / \text{n',usup});
26 printf('(ii) The Internal energy of 1 kg of wet
      steam with dryness fraction 0.9 is: %4.2 f kJ/kg.
      n', u;
```

Scilab code Exa 4.19 Example 19

```
1 clc
2 clear
3 //DATA GIVEN
4 p = 20;
                                    //pressure in the
      boilers and main is 20 bar
  Tbs = 350;
                                    //temperature of steam
      in boiler with superheater in deg. celsius
  Tm = 250;
                                    //temperature of steam
      in the main in deg. celsius
                                    //specific heat of
7 Cps = 2.25;
      steam in kJ/kg
9 //At 20 bar, from steam tables
10 Ts = 212.4;
                                             //deg. celsius
11 hf=908.6;
                                             //kJ/kg
                                             //kJ/kg
12 hg=2797.2;
                                             //kJ/kg
13 hfg=1888.6;
14
15 //Boiler B1-20 bar, 350 deg. celsius
16 h1=hg+Cps*(Tbs-Ts);
17
18 / \text{Main} - 20 \text{ bar}, 250 \text{ deg celsius}
19 hm = 2*[hg + Cps*(Tm - Ts)];
                                             //total heat of
       2 kg of steam in the steam main
20
21 //Boiler B2-20 bar,
22 / h2 = hf + x2 * hfg
23 / h2 = hm - h1
24 \times 2 = ((hm-h1)-hf)/hfg;
25
26 printf ('The Quality of steam in the Boiler without
      superheater is: \%1.3 f. \ n', x2);
```

Scilab code Exa 4.20 Example 20

```
1 clc
2 clear
3 //DATA GIVEN
4 m = 1;
                                           //mass of wet
      steam in kg
                                           //pressure of
5 p=6;
      steam in bar
6 x = 0.8;
                                           //dryness
      fraction
8 //At 6 bar, from steam tables
9 Ts=158.8+273;
                                           //in K
                                           //kJ/kg
10 hfg=2085;
11 swet=4.18*log(Ts/273)+x*hfg/Ts;
                                           //entropy of
      wet steam in kJ/kgK
12
13 printf('The Entropy of wet steam is: %1.4 f kJ/kgK.',
      swet);
14
15 //NOTE;
16 //the exact ans is 5.7794, while in TB it is given
      as 5.7865 \text{ kJ/kgK}
```

Scilab code Exa 4.21 Example 21

```
steam in bar
7 x2=0.9;
                                          //final dryness
       fraction of steam
9 //At 10 bar, from steam tables
10 hsup=3263.9;
                                          //kJ/kg
                                          //kJ/kgK
11 ssup = 7.465;
12 h1=hsup;
13 \text{ s1=ssup};
14
15 //At 0.2 bar, from steam tables
16 hf2=251.5;
                                           //kJ/kh
17 hfg2=2358.4;
                                           //kJ/kg
18 \text{ sf2=0.8321};
                                           //kJ/kgK
                                           //kJ/kgK
19 \text{ sg}2=7.9094;
20 h2=hf2+x2*hfg2;
21 \text{ sfg2=(sg2-sf2)};
22 	 s2 = sf2 + x2 * sfg2;
23
24 \quad Dh = h1 - h2;
                                          //drop in enthalpy
25 \text{ Ds} = \text{s1} - \text{s2};
                                          //change in entropy
26
27 printf('(i) The Drop in enthalpy is: \%3.1 \text{ f kJ/kg}.
      n', Dh);
28 printf('(ii) The change (DECREASE) in entropy is:
      \%1.4 \text{ f kJ/kgK.}', Ds);
```

Scilab code Exa 4.22 Example 22

```
6 Tsup = 250 + 273;
                                      //temp. of steam in K
7 Cps=2.1;
                                      //specific heat of
      steam in kJ/kg
8
9 //At 12 bar, from steam tables
10 Ts = 188 + 273;
                                             //in K
11 hfg=1984.3;
                                             //kJ/kg
12 ssup=4.18*log(Ts/273)+hfg/Ts+Cps*log(Tsup/Ts);
             //entropy of wet steam in kJ/kgK
13
14 printf(' The Entropy of 1 kg of superheated steam at
       12 bar and 250 deg celsius is: \%1.3 \, \text{f kJ/kg. } \, \text{n'},
      ssup);
```

Scilab code Exa 4.23 Example 23

```
1 clc
2 clear
3 //DATA GIVEN
4 p=5;
                                        //pressure of steam
      in bar
5 \text{ Mwt} = 50;
                                        //mass of water in
      the tank in kg
6 t1=20;
                                        //initial temp. in
      deg. celsius
7 \text{ Ms} = 3;
                                        //amount of steam
      condensed in kg
8 t2=40;
                                        //final temp. in deg.
       celsius
                                        //water equivalent of
9 \text{ We} = 1.5;
       tank in kg
10
11 //At 5 bar, from steam tables
12 \text{ hf} = 640.1;
                                        //in kJ/kg
13 hfg=2107.4;
                                        //in kJ/kg
```

Scilab code Exa 4.24 Example 24

```
1 clc
2 clear
3 //DATA GIVEN
4 p=1.1;
                                       //pressure of steam
      in bar
                                       //dryness fraction
5 x = 0.95;
                                       //mass of water in
6 \text{ Mwt} = 90;
      the tank in kg
7 t1=25;
                                       //initial temp. in
      deg. celsius
8 \text{ Mt} = 12.5;
                                       //mass of tank in kg
                                       //specific heat of
9 c = 0.42;
      metal in kJ/kgK
10 t2=40;
                                       //final temp. in deg.
       celsius
11
12 \text{ m1=Mwt};
                                       //water equivalent of
13 m2=Mt*c;
       vessel
14 M = m1 + m2;
                                       //total mass of water
       in kg
15 //At 1.1 bar, from steam tables
```

Scilab code Exa 4.25 Example 25

```
1 clc
2 clear
3 //DATA GIVEN
4 //condition of steam before throttling
5 p1=8;
                                //pressure in bar
6 //condition of steam after throttling
7 p2=1;
                                //pressure in bar
8 T2=115+273;
                                //temp. in deg. celsius
9 Tsup2=T2;
10 //At 1 bar,
11 Ts2=99.6+273;
                                //kJ/kgK
12 Cps=2.1;
13
14 //As throttling is a constant enthalpy process,
15 //h1=h2....hf1+x1*hgf1=hf2+hfg2+Cps(Tsup2-Ts2)
16
17 //At 8 bar, from steam tables,
18 hf1=720.9;
19 hfg1=2046.5;
20 //At 1 bar, from steam tables,
21 hf2=417.5;
22 hfg2=2257.9;
23
```

Scilab code Exa 4.26 Example 26

```
1 clc
2 clear
3 //DATA GIVEN
                                      //mass of water
4 Mw=2;
      separated out in kg
5 \text{ Ms} = 20.5;
                                      //amount of steam (
      condensate) discharged from throttling
      calorimeter in kg
6 Tsup3=110+273;
                                      //temp. of steam
      afetr throttling in K
7 p1=12;
                                      //initial pressure
      of steam in bar
8 p3 = (760+5)/1000*1.3366;
                                      //final pressure of
      steam in bar (1 mm of Hg=1.3366 bar)
                                      //kJ/kgK
9 \text{ Cps} = 2.1;
10
11 p2=p1;
12 //At p1=p2=12 bar, from steam tables
                                      //in kJ/kg
13 hf2=798.4;
14 hfg2=1984.3;
                                      //in kJ/kg
15
16 //At p3=1 bar, from steam tables
17 Ts3=99.6+273;
                                       //in K
                                      //in K
18 Tsup3=110+273;
                                      //in kJ/kg
19 hf3=417.5;
20 \text{ hfg3} = 2257.9;
                                      //in kJ/kg
21
```

Scilab code Exa 4.27 Example 27

```
1 clc
2 clear
3 //DATA GIVEN
4 p1=15;
                                     //pressure of steam
     sample in bar
                                     //pressure of steam
5 p3=1;
      at exit in bar
6 Tsup3=150+273;
                                     //temperature os
      steam at the exit in K
  Mw = 0.5;
                                     //discharge from
      separating calorimeter in kg/min
  Ms = 10;
                                     //discharge from
      throttling calorimeter in kg/min
9
10 p2=p1;
11 / At p1=p2=15 bar, from steam tables
12 hf2=844.7;
                                     //in kJ/kg
13 hfg2=1945.2;
                                     //in kJ/kg
14
15 //At p3=1 bar and 150 deg. celsius, from steam
      tables
16 \text{ hsup3} = 2776.4;
                                     //in kJ/kg
17
```

Chapter 5

Heat Engines

Scilab code Exa 5.1 Example 1

```
1 clc
2 clear
3 //DATA GIVEN
4 Ms = 10000/3600;
                      //rate of steam flow in kg/s
5 //inlet to turbine
6 p1=60;
                      //pressue in bar
7 T1 = 380;
                      //temp. in deg.celsius
9 //exit from turbine, inlet to condenser
10 p2=0.1;
                      //pressue in bar
11 \times 2 = 0.9;
                      //quality
                      //velocity in m/s
12 v2 = 200;
13
14 //exit from condenser, inlet to pump
15 p3=0.09;
                      //pressue in bar
16 //it is saturated
17
18 //exit from pump, inlet to boiler
19 p4=70;
                      //pressue in bar
20
21 //exit from boiler,
```

```
22 p5=65;
                       //pressue in bar
23 \text{ T5} = 400;
                       //temp. in deg.celsius
24
25 //for condenser,
26 t1=20;
                       //inlet temp. in deg. celsius
                       //exit temp. in deg. celsius
27 t2=30;
28
29 //At 60 bar and 380 deg. celsius, from steam tables
30 \text{ h1} = 3043.0 + (3177.2 - 3043.0) / (400 - 350) *30;
      interpolation
31
32 //At 0.1 bar, from steam tables
33 hf2=191.8;
                                         //in kJ/kg
                                         //in kJ/kg
34 \text{ hfg2}=2392.8;
35 \text{ h2=hf2+x2*hfg2};
36 \text{ Pt} = Ms * (h1 - h2)
                                         //power output of
      the turbine in kW
37
38 //At 70 bar, from steam tables
39 hf4=1267.4;
                                         //in kJ/kg
40 //At 60 bar and 380 deg. celsius, from steam tables
41 ha=(3177.2+3158.1)/2;
                                         //By interpolation
       between 60 and 70 deg celsius
42 Q1=Ms*3600*(ha-hf4);
                                         //heat transfer
      per hour in the boiler
43 //At 0.09 bar, from steam tables
44 hf3=183.3;
                                         //in kJ/kg
45 \quad Q2=Ms*3600*(h2-hf3);
                                         //heat transfer
      per hour in the condenser
46
  //heat lost by steam=heat gained by the cooling
      water
48 / Q2 = Mw * 4.18 * (t2-t1)
49 Mw = Q2/4.18/10;
                                         //mass of cooling
      water circuleted per hour in condenser
50
51 //(pi)/4*d^2=Ms*x2*vg2
52 //d=diameter of the pipe connecting turbine with
```

```
condenser
                                          //velocity of
53 C = 200;
      steam in m/s
                                          //specific volume
54 \text{ vg}2=14.67;
      at 0.1 bar
d = (Ms * x2 * vg2 / (\%pi/4) / C)^0.5;
56
57 printf('(i) The Power output of turbine is: %4.0 f
      kW. \setminus n', Pt);
58 printf(' (ii) The Heat transfer per hour in the
      Boiler is: \%3.2e \text{ kJ/h. } \text{n',Q1)};
                   The Heat transfer per hour in the
      Condenser is: \%3.2e \text{ kJ/h. } \text{n',Q2)};
60 printf('(iii) The Mass of cooling water circulated
      per hour in the condenser is: \%3.2e \text{ kg/hr}. \n', Mw
61 printf('(iv) The Diameter of the pipe connecting
      turbine with condenser is: %1.3 f m or %3.0 f mm. \
      n',d,(d*1000));
62
63 //NOTE:
64 // ans of Mw(1.116*10^7) is given incorrect in the
      book.
65 //the correct ans of Mw is = 5.17*10^5 kg/h.
```

Scilab code Exa 5.2 Example 2

```
8 //At 0.15 bar, from steam tables
9 T1=198.3+273;
                            //in K
                            //in kJ/kg
10 hg1=2789.9;
11 sg1=6.4406;
                            //in kJ/kgK
12 //At 0.4 bar, from steam tables
13 \quad T2 = 75.9 + 273;
                           //in K
14 hf2=317.7;
                            //in kJ/kg
                            //in kJ/kg
15 hfg2=2319.2;
                            //in kJ/kgK
16 sf2=1.0261;
17 \text{ sfg2=6.6448};
                            //in kJ/kgK
18
19 ETAcarnot=(T1-T2)/T1; //Carnot efficiency
20 //ETArankine=Adiabatic or isentropic heat drop/heat
      supplied
21 / \text{ETArankine} = (\text{hg1} - \text{h2}) / (\text{hg1} - \text{hf2})
\frac{22}{a} //as the steam expands isentropically, s1=s2
23 / sg1 = sf2 + x2 * sfg2
24 	 x2 = (sg1 - sf2) / sfg2;
25 h2=hf2+x2*hfg2;
26 ETArankine=(hg1-h2)/(hg1-hf2);
                                                //Rankine
      efficiency
27
28 printf(' (i) The Carnot efficiency is: \%1.4 f or \%2.2
      f percent. \n', ETAcarnot, (ETAcarnot*100));
29 printf('(ii) The Rankine efficiency is: %1.4f or %2
```

Scilab code Exa 5.3 Example 3

```
7
8 //At 20 bar and 360 deg. celsius, from steam tables
                              //in kJ/kg
9 h1=3159.3;
                              //in kJ/kgK
10 sg1=6.9917;
11
12 //At 0.08 bar, from steam tables
13 hf2=173.88;
                              //in kJ/kg
14 hf3=hf2;
15 sf2=0.5926;
                             //in kJ/kgK
16 \text{ s3=sf2};
17 hfg2=2403.1;
                              //in kJ/kg
                              //in kJ/kgK
18 sg2=8.2287;
                              //\text{m}^3/\text{kg}
19 vf2=0.001008;
                             //in kJ/kgK
20 \text{ sfg}2=7.6361;
21
\frac{22}{a} //as the steam expands isentropically, s1=s2
23 / sg1 = sf2 + x2 * sfg2
24 	 x2 = (sg1 - sf2) / sfg2;
25 h2=hf2+x2*hfg2;
26
27 //Wnet=Wturbine-Wpump
28 / \text{Wpump=} hf4 - hf3 = vf3 (p1-p2)
29 Wp=vf2*(p1-p2)*100;
30 \text{ hf4=Wp+hf3};
31 \text{ Wt} = h1 - h2;
32 \text{ Wnet=Wt-Wp};
                              //in kJ/kg
33 \quad Q1 = h1 - hf4;
34 ETAcycle=Wnet/Q1; //cycle efficiency
35
36 printf('(i) The Net work per kg of steam is: \%3.2 f
       kJ/kg. \n', Wnet);
37 printf('(ii) The Cycle efficiency is: %1.3f or %2.1
      f percent. \n', ETAcycle, (ETAcycle*100));
```

Scilab code Exa 5.4 Example 4

```
1 clc
2 clear
3 //given steam table extract
                                     //in bar
4 p1=80;
5 t1=295.1;
                                     //in deg. celsius
6 vf1=0.001385;
                                     //\text{m}^3/\text{kg}
7 \text{ vg1} = 0.0235;
                                     //\text{m}^3/\text{kg}
8 hf1=1317;
                                     //in kJ/kg
                                     //in kJ/kg
9 hfg1=1440.5;
10 hg1 = 2757.5;
                                     //in kJ/kg
                                     //in kJ/kgK
11 \text{ sf} 1=3.2073;
                                     //in kJ/kgK
12 \text{ sfg1}=2.5351;
13 \text{ sg1}=5.7424;
                                     //in kJ/kgK
14
15 p2=0.1;
                                     //in bar
16 t2=45.84;
                                     //in deg. celsius
17 vf2=0.0010103;
                                     //\text{m}^3/\text{kg}
                                     //\text{m}^3/\text{kg}
18 \text{ vg}2=14.68
                                     //in kJ/kg
19 hf2=191.9;
20 hf3=hf2;
21 hfg2=2392.3;
                                     //in kJ/kg
                                     //in kJ/kg
22 \text{ hg}2=2584.2;
                                     //in kJ/kgK
23 \text{ sf2=0.6488};
                                     //in kJ/kgK
24 \text{ sfg}2=7.5006;
                                     //in kJ/kgK
25 \text{ sg}2=8.1494;
26
27 \quad \text{ETAt} = 0.9;
                                     //steam turbine efficiency
28 \text{ ETAp=0.8};
                                     //condensate pump
       efficiency
29
30 \text{ P1=80};
                                     //in bar
31 \text{ T1=600};
                                     //in deg celsius
32 //At 80 bar and 600 deg celsius
33 \text{ v1} = 0.486;
                                     //\text{m}^3/\text{kg}
34 \text{ h1} = 3642;
                                     //kJ/kg
35 \text{ s1} = 7.0206;
                                     //kJ/kg/K
36
37 //as the steam expands isentropically, s1=s2
```

```
38 / sg1 = sf2 + x2 * sfg2
39 	 x2 = (s1 - sf2) / sfg2;
40 \text{ h2=hf2+x2*hfg2};
41 Wta=ETAt*(h1-h2);
                              //actual turbine work in kJ
42 Wp=vf2*(p1-p2)*10^5/10^3; //pump work in kJ/kg
                              //actual pump work in kJ/kg
43 Wpa=Wp/ETAp;
44 Wnet=Wta-Wpa;
                              //specific work in kJ/kg
45 //ETAthermal=Wnet/Q1
46 / Q1 = h1 - hf4
47 hf4=hf3+Wpa;
48 Q1=h1-hf4;
49 ETAth=Wnet/Q1;
50
51 printf('(i) The Specific work (Wnet) is: %4.2 f kJ/
      kg. \ n', Wnet);
52 printf('(ii) The Thermal efficiency is: %1.3 f or %2
      .1 f percent. \n', ETAth, (ETAth*100);
```

Scilab code Exa 5.5 Example 5

```
1 clc
2 clear
3 //DATA GIVEN
4 p1=28;
                             //pressure at 1 in bar
5 p2=0.06;
                             //pressure at 2 in bar
7 //At 28 bar, from steam tables
8 h1=2802;
                             //in kJ/kg
9 \text{ s1=6.2104};
                             //in kJ/kgK
10
11 //At 0.06 bar, from steam tables
12 hf2=151.5;
                            //in kJ/kg
13 hf3=hf2;
14 hfg2=2415.9;
                            //in kJ/kg
```

```
//in kJ/kgK
15 \text{ sf2=0.521};
16 sf3=sf2;
                              //in kJ/kgK
17 \text{ sfg}2=7.809;
                               //\text{m}^3/\text{kg}
18 \text{ vf} 2 = 0.001;
19
20
21 //as the steam expands isentropically, s1=s2
22 / sg1 = sf2 + x2 * sfg2
23 x2=(s1-sf2)/sfg2;
24 h2 = hf2 + x2 * hfg2;
25
26 //Wnet=Wturbine-Wpump
27 / \text{Wpump} = hf4 - hf3 = vf3 (p1-p2)
28 Wp=vf2*(p1-p2)*10^5/10^3;
29 hf4=Wp+hf2;
30 \text{ Wt}=h1-h2;
31 \text{ Wnet=Wt-Wp};
32 Q1=h1-hf4;
                              //in kJ/kg
33 ETAcycle=Wnet/Q1;
                             //cycle efficiency
                              //work ratio
34 wr=Wnet/Wt;
35 \text{ ssc}=3600/\text{Wnet};
                              //specific steam consumption
       in kg/kWh
36
37 printf('(i) The Cycle efficiency is: %1.4f or %2.2f
       38 printf('(ii) The Work ratio is: \%1.3 \text{ f kJ/kg}. \n',wr
      );
39 printf('(iii) The Specific steam consumption in kg/
      kWh is: \%1.3 \, \text{f} \, \text{kg/kWh}. \n',ssc);
```

Scilab code Exa 5.6 Example 6

```
1 clc
2 clear
3 //DATA GIVEN
```

```
4 p1=35;
                                //pressure at inlet to
      turbine in bar
5 \times 1 = 1;
6 p2=0.2;
                                //pressure at exhaust in bar
7 m = 9.5;
                                //flow rate in kg/s
9 //At 35 bar, from steam tables
                                //in kJ/kg
10 hg1=2802;
11 h1=hg1;
                                //in kJ/kgK
12 \text{ sg1}=6.1228;
13
14 //At 0.2 bar, from steam tables
15 hf2=251.5;
                                //in kJ/kg
16 hf3=hf2;
17 hfg2=2358.4;
                               //in kJ/kg
18 vf2=0.001017;
                                //\text{m}^3/\text{kg}
                               //in kJ/kgK
19 sf2=0.8321;
                                //in kJ/kgK
20 \text{ sfg}2=7.0773;
21
22 //Wnet=Wturbine-Wpump
23 / \text{Wpump} = hf4 - hf3 = vf3 (p1-p2)
24 Wp=vf2*(p1-p2)*10^5/10^3;
25 \text{ Wpnet=m*Wp};
26 \text{ hf4=Wp+hf3};
27
\frac{1}{28} //as the steam expands isentropically, s1=s2
29 / sg1 = sf2 + x2 * sfg2
30 	 x2 = (sg1 - sf2) / sfg2;
                                                   //dryness
      fraction
31 h2=hf2+x2*hfg2;
32 \text{ Wt} = h1 - h2;
33 Wtnet=m*Wt;
34 ETArankine=(h1-h2)/(h1-hf2);
                                                  //Rankine
       efficiency
                                                   //condenser
35 \text{ chf}=m*(h2-hf3);
      heat flow
36
37 printf('(i) The Pump Work is: \%2.2 \text{ f kW}. \n', \Wpnet);
```

Scilab code Exa 5.7 Example 7

```
1 clc
2 clear
3 //DATA GIVEN
4 h12=840;
                            //Adiabatic enthalpy drop, (
     h1-h2) in kJ/kg
                            //enthalpy of steam supplied
5 h1 = 2940;
      in kJ/kg
6 p2=0.1;
                            //back pressure in bar
8 //At 0.1 bar, from steam tables
9 hf=191.8;
                            //in kJ/kg
10 / ETArankine = (hg1-h2) / (hg1-hf2)
11 ETArankine=(h12)/(h1-hf);
                            //useful work done per kg of
12 Wuse=h12;
      steam in kJ/kg
13 ssc=1/Wuse*3600;
                            //specific steam consumption
14
15 printf('(i) The Rankine efficiency is: %1.4f or %2.2
```

```
f percent. \n',ETArankine,(ETArankine*100));
16 printf('(ii) The Specific steam consumption is: %1.3
    f kg/kWh. \n',ssc);
```

Scilab code Exa 5.8 Example 8

```
1 clc
2 clear
3 //DATA GIVEN
4 IP=35;
                              //power developed by the
      engine in kW
5 m = 284;
                              //flow rate in kg/h
6 p1=15;
                              //steam inlet pressure in
      bar
                              //condenser pressure in bar
7 p2=0.14;
9 //At 35 bar and 25 deg celsius from steam tables
10 h1=2923.3;
                               //in kJ/kg
11 	 s1=6.709;
                               //in kJ/kgK
12
13 //At 0.14 bar, from steam tables
14 hf2=220;
                              //in kJ/kg
15 \text{ hf3=hf2};
                             //in kJ/kg
16 \text{ hfg2} = 2376.6;
                              //in kJ/kgK
17 \text{ sf2=0.737};
                              //in kJ/kgK
18 \text{ sfg2=7.296};
19
20 //as the steam expands isentropically, s1=s2
21 / sg1 = sf2 + x2 * sfg2
22 	 x2 = (s1 - sf2) / sfg2;
                                             //dryness
      fraction
23 h2=hf2+x2*hfg2;
24
25 ETArankine=(h1-h2)/(h1-hf2);
                                       //Rankine
      efficiency
```

Scilab code Exa 5.9 Example 9

```
1 clc
2 clear
3 //DATA GIVEN
4 T1=400+273;
                                //temp. in K
5 T2=T1;
                                //temp. in K
6 \quad T3 = 40 + 273;
7 T4 = T3;
8 W = 130;
                                //work produced in kJ
                                //Engine thermal
10 ETAth = (T1-T3)/T1;
      efficiency
11
12 //ETAth=Work done/Heat added
13 Ha=W/ETAth;
                                //Heat added in kJ
14 Hr = Ha - W;
                                //Heat rejected in kJ
15 //Heat rejected=T3(S3-S4)
16 \text{ S34=Hr/T3};
                                //Entropy change during
      the heat rejection process
17
18 printf('(i) The Engine thermal efficiency is: %1.3 f
```

```
or %2.1 f percent. \n',ETAth,(ETAth*100));

19 printf('(ii)) The Heat added is: %3.0 f kJ. \n',Ha);

20 printf('(iii)) The Entropy change during the heat
rejection process is: %1.3 f kJ/K. \n',S34);
```

Scilab code Exa 5.10 Example 10

```
1 clc
2 clear
3 //DATA GIVEN
                                             //maximum
4 p1=18;
      pressure in bar
                                             //maximum
5 T1 = 410 + 273;
      temperature in K
6 T2 = T1;
                                             //ratio of
7 Rac=6;
      isentropic or adiabatic compression, V4/V1=6
8 \text{ Rie} = 1.5;
                                             //ratio of
      isothermal expansion, V2/V1=1.5
                                             //volume of air
9 V1 = 0.18;
      at beginning of isothermal expansion in m<sup>3</sup>
10 \text{ wc} = 210;
                                             //no. of cycles
      per s
11
12 //gamma for air = 1.4
13 g=1.4;
14
15 //for isentropic process 4-1
16 // \text{Also } (T1/T4) = (V4/V1) \hat{(g-1)}
17 / (V4/V1) = Rac
18 T4=T1/Rac^(g-1);
19 T3 = T4;
20 / p1 (V1^gamma) = p4 (V4^gamma)
21 / p4 = p1 * (V1/V4) \hat{g}
22 //where, (V4/V1)=Rac
```

```
23 p4=p1/(Rac^g);
24
\frac{25}{\text{for isothermal process } 1-2}
26 / p1V1 = p2V2
27 //V1/V2 = 1/Rie
28 p2=p1*(1/Rie);
29
30 //for isentropic process 2-3
31 / p2 (V2^gamma) = p3 (V3^gamma)
32 / V2/V3 = V1/V4 = 1/Rac
33 p3=p2*(1/Rac)^g;
34
35
  //change in entropy, DS=S2-S1=mRlog(V2/V1)=p1V1/T1*
       \log \left( V2/V1 \right)
36 \text{ DS} = p1*10^5*V1/10^3/T1*log(Rie);
37
\frac{38}{\text{Heat}} = \frac{\text{Supplied}}{\text{Supplied}}, \quad \text{Qs=p1*V1*log} = \frac{\text{V2/V1}}{\text{V1}}
39 //Qs=T1(S2-S1)
40 Qs=T1*DS;
                                                      //heat
41 //Qr = p4 * V4 * log (V3/V4)
       rejected in kJ
42 //Qr=T4(S3-S4), bcs increase in entropy during heat
       addition is equal to decrease in entropy during
       heat rejection
43 Qr = T4 * DS;
44
45 ETA = (Qs - Qr)/Qs;
                                                      //mean
       thermal efficiency of the cycle
46
47 //mean effective pressure of the cycle, Pm = work
       done per cycle/stroke volume
                                                      //ratio of
48 \text{ Rv31=Rac*Rie};
       volumes at 3 and 1, V3/V1=V3/V2*V2/V1
49 //stroke volume, Vs=V3-V1
50 Vs = V1 * (Rv31 - 1);
51 J = 1;
52 Pm = (Qs - Qr) *10^3/10^5 * J/Vs;
53
```

```
//power of
54 P = (Qs - Qr) * wc / 60;
      the engine in kW
55
56 printf('(i) The Pressure and Temperature at point 1
       are:\n');
57 printf('
                             p1:\%2.0 f bar.\n',p1);
58 printf('
                             T1:\%3.0 f K.\n',T1);
             The Pressure and Temperature at point
59 printf('
      2 are:\n');
60 printf('
                             p2:\%2.0 f bar.\n',p2);
61 printf('
                             T2:\%3.0 f K.\n',T2);
62 printf('
                  The Pressure and Temperature at point
      3 are:\n');
63 printf('
                             p3:\%1.2 f bar.\n',p3);
                             T3:\%3.1 f K.\n',T3);
64 printf('
                  The Pressure and Temperature at point
65 printf('
      4 are:\n');
66 printf('
                             p4:\%1.2 f bar.\n',p4);
67 printf('
                             T4:\%3.1 f K.\n',T4);
68 printf (' (ii) The Change in entropy during
      isothermal expansion is: \%1.3 \, \text{f kJ/K}. \n',DS);
69 printf('(iii) The Mean thermal efficiency of the
      cycle is: \%1.3 \, \text{f} or \%2.1 \, \text{f} percent. \n', ETA, (ETA
      *100));
70 printf(' (iv) The Mean effective pressure is: %1.3 f
      bar. \langle n', Pm \rangle;
71 printf(' (v) The Power of the engine working on
      this cycle is given by: %3.1 f kW.',P);
72
73 //NOTE:
74 //there is slight variation in answers of book due
      to rounding off of the values
```

Scilab code Exa 5.11 Example 11

```
1 clc
2 clear
3 //DATA GIVEN
4 //\text{CASE}-1
5 / (T1-T2)/T1=1/6
6 / SO, T1=1.2(T2)...
                                              Eqn (1)
  //\text{CASE}-2
9 //T2 REDUCED BY 70 DEG. CELSIUS
10 //\{T1-[T2-(70+273)]\}/T1 = 1/3...Eqn(2)
11 / 2T1 = 3T2 - 1029
12
13 //By Eqn (1) and (2)
14 T2=(70+273)*3/(3-2*1.2);
15 T1=1.2*T2;
16
17 printf('(i) The Temperature of the Source, T1 is: %4
      .0 f K or \%4.0 f deg. celsius. \n', T1, (T1-273));
18 printf('(ii) The Temperature of the Sink, T2 is: %4
      .0 f K or \%4.0 f deg. celsius. \n', T2, (T2-273));
```

Scilab code Exa 5.12 Example 12

```
9 ETAcarnot = (T1-T2)/T1;
10 // Also ETAth=work done/Heat supplied
11 ETAth=P/Qs;
12
13 printf ('The Efficiency of carnot cycle is: %1.3f or
      \%2.1 \, f percent. \n', ETAcarnot, (ETAcarnot*100));
14 printf(' The Thermal efficiency of engine claimed by
       inventor is: \%1.3 \, \text{f} or \%2.1 \, \text{f} percent. \n\n', ETAth
      ,(ETAth*100));
15
16 if (ETAth>ETAcarnot)
       printf(' Thus, The claim of the inventor is
17
          possible.');
18 else
       printf(' Thus, The claim of the inventor is NOT
19
          feasible, \n as no engine can be more
          efficient than that working on carnot cycle.'
          );
```

Scilab code Exa 5.13 Example 13

Scilab code Exa 5.14 Example 14

```
1 clc
2 clear
3 //DATA GIVEN
4 D=0.25;
                                           //bore of the
      engine in m
                                           //stroke of the
5 L=0.375;
      engine in m
6 \text{ Vc} = 0.00263;
                                           //clearance
      volume in m<sup>3</sup>
7 p1=1;
                                           //initial
      pressure in bar
8 T1 = 50 + 273;
                                           //initial
      temperature in K
9 p3=25;
                                           //maximum
      pressure in bar
10
11 Vs = (\%pi/4)*D^2*L;
                                           //swept volume
                                           //compression
12 r = (Vs + Vc) / Vc;
      ratio
13
14 //for air, gamma=1.4
15 g=1.4;
16 // Air standard efficiency of otto cycle ETAotto
      =1-1/(r)^{(g-1)}
17 ETAotto=1-1/(r)^{(g-1)};
18
19 //for adiabatic process 1-2
20 / p1 (V1^gamma) = p2 (V2^gamma)
21 / p2 = p1 * (V1/V2) \hat{g}
22 //where, (V1/V2)=r
23 p2=p1*(r^g);
                                                      //
      pressure at 2 in bar
```

```
24 rp=p3/p2;
    pressure ratio
25 Pm=p1*r*[(r^(g-1)-1)*(rp-1)]/[(g-1)*(r-1)]; //mean
    effective pressure in bar
26
27 printf('(i) The Air standard efficiency of otto
    cycle is: %1.3 f or %2.1 f percent. \n', ETAotto,(
    ETAotto*100));
28 printf('(ii) The Mean effective pressure is: %1.3 f
    bar. \n', Pm);
```

Scilab code Exa 5.15 Example 15

```
1 clc
2 clear
3 //DATA GIVEN
                                        //initial
4 T1=38+273;
      temperature in K
5 T3 = 1950 + 273;
                                        //maximum
      temperature K
6 \text{ rp} = 15;
                                        //pressure ratio
7 // for air, gamma=1.4
8 g=1.4;
10 // for adiabatic compression 1-2
11 / p1 (V1^gamma) = p2 (V2^gamma)
12 / (V1/V2) = r
13 r=(rp)^(1/g);
14
15 //Thermal efficiency ETAth=1-1/(r) (g-1)
16 ETAth=1-1/(r)^{(g-1)};
17
18 //for adiabatic compression 1-2
19 //(T2/T1) = (V1/V2) \hat{g} = (g-1)
20 / (V1/V2) = r
```

```
21 T2=T1*r^{(g-1)};
22
23 //for adiabatic expansion 3-4
24 / (T3/T4) = (V4/V3) (g-1)
25 / (V4/V3) = r
26 T4=T3/r^{(g-1)};
27
28 //heat supplied per kg of air, Qs=m*Cv*(T3-T2)
29 R = 0.287;
30 Cv=R/(g-1);
31 Qs = Cv * (T3 - T2);
32
33 //heat rejected per kg of air, Qr=m*Cv*(T4-T1)
34 \ Qr = Cv * (T4 - T1);
35
                                      //work done per kg
36 \text{ W=Qs-Qr};
      of air
37
38 printf('(i) The compression ratio is: \%1.1 f.\n',r);
39 printf ('(ii) The Thermal efficiency is: %1.3 f or %2
      .1 f percent. n', ETAth, (ETAth*100));
40 printf('(iii) The Work done is: %3.1 f kJ or %6.0 f Nm
      .',W,(W*1000));
41
42 //NOTE:
43 //there is slight variation in answers in the book
      because of rounding off of the values
```

Scilab code Exa 5.16 Example 16

```
in bar
6 T1 = 30 + 273;
                                        //initial
      temperature in K
7 p2=11;
                                        //pressure at the
      end of compression stroke in bar
8 \ Qs = 210;
                                        //heat addaed at
      constant volume in kJ
                                        //no. of working
9 \text{ wc} = 210;
      cycles/min
10
11 // for air, gamma=1.4
12 g=1.4;
13
14 // for adiabatic compression 1-2
15 / p1 (V1^gamma) = p2 (V2^gamma)
16 / (V1/V2) = r
17 r=(p2/p1)^(1/g);
18 // \text{Also } (T2/T1) = (V1/V2) \hat{} (g-1)
19 / (V1/V2) = r
20 T2=T1*r^{(g-1)};
21
22 //Applying gas laws to points 1 and 2
23 / p1V1/T1=p2V2/T2
24 V2=T2/T1*p1/p2*V1;
25
26 //heat supplied during process 2-3, Qs=mCv(T3-T2)
27 R = 287;
28 \text{ m=p1*10^5*V1/R/T1};
29 Cv=R/1000/(g-1);
30 \quad T3 = Qs/m/Cv+T2;
31
32 //for constant volume process 2-3
33 / p3/T3 = p2/T2
34 p3=p2/T2*T3;
35 V3 = V2;
36
37 // for adiabatic expansion 3-4
38 / p3 (V3^gamma) = p4 (V4^gamma)
```

```
39 / (V4/V3) = r
40 p4=p3*(1/r)^(g);
41 // \text{Also } T3/T4) = (V4/V3) \hat{} (g-1)
42 / (V4/V3) = r
43 T4=T3/r^{(g-1)};
44 \quad V4 = V1;
45
46 //percentage clearance, pc=Vc/Vs=V2/(V1-V2)
47 pc=V2/(V1-V2)*100;
48
49 //heat rejected per cycle, Qr=Cv*(T4-T1)
50 Qr = m * Cv * (T4 - T1);
51
52 //Air standard efficiency of otto cycle ETAotto=(Qs-
      Qr)/Qs
53 \quad \text{ETAotto} = (Qs - Qr)/Qs;
54 // Alternatively
55 / ETAotto = 1 - 1/(r) (g-1)
56 ETAotto=1-1/(r)^{(g-1)};
57
58 //mean effective pressure, Pm=W/Vs
59 W = Qs - Qr;
                                         //work done per kg
      of air
60 \text{ Vs} = \text{V1} - \text{V2};
61 Pm = W * 10^3 / 10^5 / Vs;
62
63 //power developed, P=work done per cycle*no. of
      cycles per s
64 P = W * (wc/60);
65
66 printf('(i) The Pressure, Temperature and Volumes
      at salient points in the cycle are:\n');
67 printf('
                    At point 1 are:\n');
68 printf('
                                p1:\%1.1 f bar.\n',p1);
                                V1:\%1.2 \text{ f m}^3.\n',V1);
69 printf('
70 printf('
                                T1:\%3.0 f K.\n',T1);
71 printf('
                    At point 2 are:\n');
72 printf('
                                p2:\%2.2 f bar.\n',p2);
```

```
73 printf('
                               V2:\%1.3 \text{ f m}^3.\n', V2);
74 printf('
                               T2:\%3.0 f K.\n',T2);
75 printf('
                   At point 3 are:\n');
76 printf('
                               p3:\%2.2 f bar.\n',p3);
77 printf('
                               V3:\%1.3 \text{ f m}^3.\n',V3);
78 printf('
                               T3:\%4.0 f K.\n',T3);
79 printf('
                   At point 4 are:\n');
                               p4:\%1.2 f bar.\n',p4);
80 printf('
                               V4:\%1.2 \text{ f m}^3.\n',V4);
81 printf('
                               T4:\%3.1 f K.\n',T4);
82 printf('
83 printf('(ii) The Percentage clearance is: %2.2 f
      percent. \n',pc);
84 printf('(iii) The Air standard efficiency of the
      cycle is: \%1.3 \, \mathrm{f} or \%2.1 \, \mathrm{f} percent. \n', ETAotto,(
      ETAotto*100));
85 printf(' (iv) The Mean effective pressure is: %1.3 f
      bar. \langle n', Pm \rangle;
86 printf(' (v) The Power developed is: %3.1 f kW.', P);
87
88 //NOTE:
89 //there is slight variation in answers in the book
      because of rounding off of the values
```

Scilab code Exa 5.17 Example 17

Scilab code Exa 5.18 Example 18

```
1 clc
2 clear
3 //DATA GIVEN
4 L=0.25;
                                             //stroke of the
      engine in m
5 D=0.15;
                                             //diameter of
      cylinder in m
6 V2 = 0.0004;
                                             //clearance
      volume in m<sup>3</sup>
7 Vs = (\%pi/4) * D^2 * L;
                                             //swept volume in
       m^3
8 Vt = Vs + V2;
                                             //total cylinder
      volume in m<sup>3</sup>
9 c=5;
                                             //fuel injection
      takes place at 'c' percent of stroke
10 V3 = V2 + c/100 * Vs;
                                             //volume at point
        of cut-off in m<sup>3</sup>
11 rho=V3/V2;
                                             //cut-off ratio
                                             //compression
12 r = (Vs + V2) / V2;
      ratio
13
14 // for air, gamma=1.4
```

Scilab code Exa 5.19 Example 19

```
1 clc
2 clear
3 //DATA GIVEN
                                  //compression ratio
4 r = 14;
5 //fuel cut-off is delayed from 5-8\%
6 // for air, gamma=1.4
7 g=1.4;
9 //when fuel is cut-off at 5%
10 c1=5;
11 rho1=c1/100*(r-1)+1;
12 // Efficiency of diesel engine ETAdiesel = 1 - [1/(r)^{(g)}]
      -1) [ ( rho \hat{g}-1) / (rho -1) ]
13 ETAdiesel1=1-[1/g/(r)^(g-1)]*[(rho1^g-1)/(rho1-1)];
14
15 //when fuel is cut-off at 8%
16 c2=8;
17 rho2=c2/100*(r-1)+1;
18 // Efficiency of diesel engine ETAdiesel = 1 - [1/(r)^{g}]
      -1) [ ( rho^g-1) / (rho-1) ]
19 ETAdiesel2=1-[1/g/(r)^(g-1)]*[(rho2^g-1)/(rho2-1)];
20
21 ETAloss=(ETAdiesel1-ETAdiesel2)*100;
22
```

```
23 printf(' The Percentage loss in efficiency due to
         delay in fuel cut-off is: %1.1f percent. \n',
         ETAloss);
```

Scilab code Exa 5.20 Example 20

```
1 clc
2 clear
3 //DATA GIVEN
4 Pm = 7.5;
                                   //mean effective
     pressure in bar
5 r=12.5;
                                   //compression ratio
6 p1=1;
                                   //initial pressure in
     bar
8 / for air, gamma=1.4
9 g=1.4;
10
11 //mean effective pressure, Pm=p1*r^g*[g*(rho-1)-r]
      (1-g)*(rho^g-1)]/[(g-1)*(r-1)]
12 / \text{we get}, 0.346 (\text{rho}) \hat{1}.4 - 1.4 (\text{rho}) + 2.04
13 //By trial and error method, we get
14 rho=2.24;
15
16 co=(rho-1)/(r-1)*100;
                                   //\% cut-off
17
18 printf(' The Percentage cut-off of the cycle is: %2
```

Scilab code Exa 5.21 Example 21

```
1 clc
2 clear
```

```
3 //DATA GIVEN
4 D=0.2;
                                             //bore of the
      engine in m
                                             //stroke of the
5 L=0.3;
      engine in m
6 p1=1;
                                             //initial
      pressure in bar
                                             //initial
7 T1 = 27 + 273;
      temperature in K
                                             //cut-off % of
8 c = 8;
      stroke volume
                                             //compression
9 r = 15;
      ratio
                                             //no. of cycles
10 \text{ wc} = 380;
      per s
11
12 Vs = (\%pi/4)*D^2*L;
                                             //swept volume in
       m^3
13 V1 = Vs * (1+1/(r-1));
                                             //in m<sup>3</sup>
14 //for air, gamma=1.4
15 g=1.4;
16
17 R = 287;
18 m=p1*10^5*V1/R/T1;
                                             //mass of air
       the cylinder in kg/cycle
19
20 // for adiabatic process 1-2
21 / p1 (V1^gamma) = p2 (V2^gamma)
22 / p2 = p1 * (V1/V2) \hat{g}
23 // where, (V1/V2)=r
                                                             //
24 p2=p1*(r^g);
      pressure at 2 in bar
25 // \text{Also } (T2/T1) = (V1/V2) \hat{(g-1)}
26 / (V1/V2) = r
27 T2=T1*r^{(g-1)};
28 \ V2 = Vs/(r-1);
29 \text{ Vc=V2};
30 p3=p2;
```

```
31
\frac{32}{\sqrt{\cot - off}} ratio, c = \frac{(rho - 1)}{(r - 1)}
33 rho=c/100*(r-1)+1;
34 \quad V3=rho*V2;
35 // alternatively
36 \quad V3 = c/100 * Vs + Vc;
37
\frac{38}{for} constant pressure process 2-3
39 / V3/T3=V2/T2
40 \quad T3 = T2 / V2 * V3;
41
42 //for isentropic process 3-4
43 / p3 (V3^gamma) = p4 (V4^gamma)
44 //(V4/V)=V4/V2*V2/V3=V1/V2*V2/V3=r/rho
45 p4=p3*((rho/r)^g);
46 // \text{Also } (T4/T3) = (V3/V4) (g-1)
47 / (V4/V) = V4/V2 * V2/V3 = V1/V2 * V2/V3 = r/rho
48 T4=T3*((rho/r)^(g-1));
49 \quad V4 = V1;
50
51 //Air standard efficiency of diesel cycle ETAdiesel
      =1-[1/(r)^{(g-1)}][(rho^{g-1})/(rho-1)]
52 ETAdiesel=1-[1/g/(r)^(g-1)]*[(rho^g-1)/(rho-1)];
53
54 //mean effective pressure, Pm=p1*r^g*[g*(rho-1)-r]
      (1-g)*(rho^g-1)]/[(g-1)*(r-1)];
55 Pm=p1*r^g*[g*(rho-1)-r^(1-g)*(rho^g-1)]/[(g-1)*(r-1)
      ];
56
                                                 //Power of
57 P=Pm*10^5*Vs/10^3*(wc/60);
      the engine in kW
58
59 printf('(i) The Pressure, Temperature and Volumes
      at salient points in the cycle are:\n');
                   At point 1 are:\n');
60 printf('
61 printf('
                               p1:\%1.1 f bar.\n',p1);
62 printf('
                               V1:\%1.4 \text{ f m}^3.\n',V1);
63 printf('
                               T1:\%3.0 f K.\n',T1);
```

```
64 printf('
                   At point 2 are:\n');
65 printf('
                              p2:\%2.2 f bar.\n',p2);
                              V2:\%1.7 \text{ f m}^3.\n', V2);
66 printf('
67 printf('
                              T2:\%3.1 f K.\n',T2);
68 printf('
                   At point 3 are:\n');
69 printf('
                              p3:\%2.2 f bar.\n',p3);
70 printf('
                              V3:\%1.6 \text{ f m}^3.\n',V3);
                              T3:\%4.1 f K.\n',T3);
71 printf('
                   At point 4 are:\n');
72 printf('
                              p4:\%1.3 f bar.\n',p4);
73 printf('
74 printf('
                              V4:\%1.4 \text{ f m}^3.\n', V4);
75 printf('
                              T4:\%3.2 f K.\n',T4);
76 printf('(ii) The Theoritical air standard
      efficiency of diesel cycle is: %1.3f or %2.1f
      percent. \n',ETAdiesel,(ETAdiesel*100));
77 printf('(iii) The Mean effective pressure is: %1.3f
      bar. \langle n', Pm \rangle;
78 printf('(iv) The Power developed is: %2.2 f kW.',P);
```

Chapter 6

Steam Boilers

Scilab code Exa 6.1 Example 1

```
1 clc
2 clear
3 //DATA GIVEN
4 LCV = 44700;
                             //LCV of fuel in kJ
5 \text{ afrn=20};
                              //air parts=20 in air fuel
      mixture
6 afrd=1;
                              //fuel parts=1 in air fuel
      mixture
                             //avg specific heat in kJ/
7 Cpg=1.08;
      kgK
8 T1 = 38 + 273;
                             //boiler room temp. in K
10 //heat of combustion=heat of gases
11 / 1*44700 = Mg*Cpg*(T2-T1)
12 T2=afrd*LCV/(afrn+afrd)/Cpg+T1;
13
14 printf ('The Maximum temp. T2 attained in the
      furnace of the boiler is:\n \%5.0 f Kelvin ',T2);
15 printf('or \%5.0 \, \text{f} degree celsius.\n',(T2-273));
```

Scilab code Exa 6.2 Example 2

```
1 clc
2 clear
3 //DATA GIVEN
4 \text{ Ms} = 5.4;
                            //mass of steam used in kg/
     kWh
                            //pressure of steam in bar
5 p=50;
6 Tsup=350;
                            //temp. of steam in deg
      celsius
                            //boiler efficiency in %
  eta=82;
  Tfw=150;
                            //feed water temp. in deg cel
     ; sius
                            //calorific value of coal in
9 C = 28100;
      kJ
                            //cost of coal/tonne in Rs
10 rate=500;
11
12 //boiler efficiency is given by, eta=Ms*(hsup-hf1)/(
     Mf*C
13 //from steam table, at 45 bar and 350deg celsius,
      hsup = 3068.4 \text{ kJ/kg}
14 h=3068.4;
                                           //enthalpy at
      45 bar and 350 deg celsius
15 hf1=4.18*(Tfw-0);
                                           // hf1 at 150
      deg celsius in kJ/kg
16
17 //subs. these in eq. of boiler efficiency
18 Mf = Ms * (h-hf1)/((eta/100) *C);
                                           //mass of coal
      required in kg/kWh
                                           //cost of coal
19 cost=(Mf/1000)*rate*100;
      in paisa/kWh
20
21 printf(' (i) The mass of coal required is: \%5.3 f kg
      /kWh. \ \ n', Mf);
```

Scilab code Exa 6.3 Example 3

```
1 clc
2 clear
3 //DATA GIVEN
4 \text{ Mc} = 1250;
                                 //quantity of coal in kg
      consumed in 24 hours
5 \text{ Mw} = 13000;
                                 //mass of water
      evaporated in kg
                                 //mean effective pressure
6 MEPs=7;
       of steam in bar
  Tfw=40;
                                 //feed water temp. in deg
       celsius
8 h = 2570.7;
                                 //enthalpy of steam at 7
      bar in kJ/kg
                                 //calorific value of coal
9 C = 30000;
       in kJ/kg
10
11 Ma=Mw/Mc;
                                 //mass of water actually
      evaporated per kg of fuel
12 hf1=4.18*(Tfw-0);
13 hfg=2257;
                                 //in kJ/kg
14 Me=Ma*(h-hf1)/hfg;
                                 //in kg
                                 //boiler efficiency
15 eta=Ma*(h-hf1)/C;
16
17 printf('(i) The equivalent evaporation per kg of
      coal, Me is: \%5.3 \, \text{f kg. } \setminus \text{n',Me};
18 printf('(ii) The efficiency of boiler, eta is: %1
```

Scilab code Exa 6.4 Example 4

```
1 clc
2 clear
3 //DATA GIVEN
4 p=12;
                               //mean steam pressure in
      bar
5 \text{ Ms} = 40000;
                               //mass of steam generated
      in kg
6 x = 0.85;
                               //mean dryness fraction
7 Tfw=30;
                               //mean feed water temp. in
       deg celsius
8 \text{ Mc} = 4000;
                               //mass of coal used in kg
9 C = 33400;
                               //calorific value of coal
      in kJ/kg
10
11 //from steam table, corresponding to 12 bar,
12 hf=798.4;
                               //in kJ/kg
13 hfg=1984.3;
                               //in kJ/kh
14 h = hf + x * hfg;
                               //in kj/kg
15 hf1=4.18*(Tfw-0);
                               //heat of feed water in kJ/
      kg
16
                               //factor of equivalent
17 Fe=(h-hf1)/2257;
      evaporation, Fe
18 Ma=Ms/Mc;
                               //per kg of fuel
19 Me=Ma*(h-hf1)/2257;
                               //(kg of steam)/(kg of fuel
                              //efficiency of boiler
20 eta=Ma*(h-hf1)/C;
21
22 printf(' (i) The Factor of equivalent temerature, Fe
       is: \%5.3 \text{ f} \setminus \text{n', Fe};
23 printf(' (ii) The Equivalent evaporation from and
```

```
at 100 deg celsius , Me is: %5.2f (kg of steam)/(
    kg of coal).\n',Me);
24 printf('(iii)) The Efficiency of boiler is: %5.4f',
    eta);
25 printf('or %5.2f percent. \n',eta*100);
```

Scilab code Exa 6.5 Example 5

```
1 clc
2 clear
3 //DATA GIVEN
                            //mass of steam generated in
4 M = 18000;
      kg/hr
5 p=12.5;
                            //steam pressure in bar
6 x = 0.97;
                            //quality of steam
                            //feed water temp. in deg
7 Tfw=105;
      celsius
                            //rate of coal firing in kg/
8 \text{ Mf} = 2040;
      hr
9 C = 27400;
                             //highrer calorific value (
     HCV) of coal in kJ/kg
10
11 //from steam table, corresponding to 12.5 bar,
                            //in kJ/kg
12 hf=806.7;
13 hfg=1977.4;
                            //in kJ/kg
14 h = hf + x * hfg;
                            //in kJ/kg
15 hf1=4.18*(Tfw-0);
                            //heat of feed water in kJ/
      kg
16
17 //heat rate of the boiler = heat supplied per hour
                            //heat rate of boiler
18 heatrate=M*(h-hf1)
19 Ma=M/Mf;
                            //in kg per kg of fuel
20 Me=Ma*(h-hf1)/2257;
                            //(kg of steam)/(kg of fuel)
21 eta=Ma*(h-hf1)/C;
                            //thermal efficiency
22
```

Scilab code Exa 6.6 Example 6

```
1 clc
2 clear
3 //DATA GIVEN
4 \text{ Mw} = 5940;
                         //mass of water evaporated kg/hr
                         //mass of coal burnt in kg/hr
5 \text{ Mc} = 675;
6 C = 31600;
                         //lower calorific value(LCV) of
      coal in kJ/kg
7 p1=14;
                         //pressure of steam at boiler
      stop valve in bar
                         //temp. of feed water entering
  Te1 = 32;
      economiser in deg celsius
9 \text{ Te}2=115;
                         //temp. of feed water leaving
      economiser in deg celsius
10 x = 0.96;
                         //dryness fraction of steam
      entering superheater
11 Tsup=260;
                         //temp. of steam leaving
      superheater in deg celsius
12 Cp = 2.3
                         //specific heat of superheated
      steam
13
14 hf1=4.18*(Te2-Te1);
                                                //heat
      utilised by 1 kg of feed water in economiser
15 //from steam table, corresponding to 14 bar,
16 \text{ Ts} = 195;
17 hf = 830.1;
```

```
18 hfg=1957.7;
19 hboiler=(hf+x*hfg)-hf1;
                                             //heat
      utilised by 1 kg of feed water in boiler
20 hsuperheater=(1-x)*hfg+Cp*(Tsup-Ts);
                                             //heat
      utilised by 1 kg of feed water in superheater
21 Ma=Mw/Mc;
                                             //in kg per
     kg of fuel
22 Pe=hf1/C*Ma*100;
                                             /\% of heat
      utilised in economiser
  Pb=hboiler/C*Ma*100;
                                             //\% of heat
      utilised in boiler
24 Ps=hsuperheater/C*Ma*100;
                                             //% of heat
      utilised in superheater
  htotal=hf1+hboiler+hsuperheater;
                                             //total heat
       absorbed in kg of water
                                             //overall
  eta=Ma*htotal/C;
      efficiency of boiler plant
27
28 printf('(i) The Percentage of heat utilised in
      Economiser is: %5.2 f percent.\n',Pe);
29 printf('
                 The Percentage of heat utilised in
      Boiler is: %5.2f percent.\n',Pb);
                 The Percentage of heat utilised in
30 printf('
     Superheater is: %5.2f percent.\n',Ps);
31 printf(' (ii) The Overall Efficiency of boiler plant
      is: \%5.4 \, f ', eta);
32 printf('or \%5.2 f percent. \n', eta*100);
```

Scilab code Exa 6.7 Example 7

```
//mass of feed water per kg of
5 \text{ Mw} = 9.1;
      dry coal in kg
6 \text{ Me} = 9.6;
                          //equivalent evaporation fraom
      and at 100 deg celsius per kg of dry coal in kg
  Te = 12;
                          //temp. of feed water to
      economiser in deg celsius
                          //temp. of feed water to boiler
8 \text{ Tb} = 105;
      in deg celsius
                          //temp. of air
9 \text{ Ta} = 13;
                          //temp. of flue gases entering
10 Tfg=370;
      economiser
11 Mfg=18.2;
                          //mass of flue gases entering
      economiser per kg of coal
12 \text{ Cp} = 1.046;
                          //mean specific heat of flue
      gases
13
14 hb=Me * 2257;
                                //heat supplied for steam
      generation in kJ
15 ETAb=hb/C;
                                //boiler efficiency
16 hflue=Mfg*Cp*(Tfg-Ta);
                                //heat in the flue gase
      per kg of dry coal entering economiser
17 he=Mw*4.184*(Tb-Te);
                                //heat utilised in
      economiser
18 ETAe=he/hflue;
                                //economiser efficiency
19 htotal=hb+he:
                                //total heat absorbed in
      kg of water
20 ETA=htotal/C;
                                //boiler plant efficiency
21
22 printf('(i) The Boiler efficiency is: %5.3f', ETAb)
23 printf('or \%2.1 \, \text{f} percent. \n', ETAb*100);
24 printf('(ii) The Economiser efficiency is: %5.3 f',
      ETAe);
25 printf('or \%2.2 \, \text{f} percent. \n', ETAe*100);
26 printf('(iii) The Overall Efficiency of boiler plant
       is: \%5.3 \, \mathrm{f} ', ETA);
27 printf('or \%2.1 \, \text{f} percent. \n', ETA*100);
```

Scilab code Exa 6.8 Example 8

```
1 clc
2 clear
3 //DATA GIVEN
4 Ms = 2000;
                         //rate of steam production in kg
      /hr
                         //quality of steam
5 x = 1;
                         //steam pressure in bar
6 p = 10;
7 Tfw=110;
                         //feed water temp. in deg
      celsius
8 \text{ Mf} = 225;
                         //rate of coal firing in kg/hr
9 C = 30100;
                         //calorific value of coal in kJ/
      kg
                         //% of unburnt coal
10 Puc=10;
11
12 //from steam table, corresponding to 10 bar,
13 h=2776.2;
                                  //in kJ/kg
14 hf1=4.18*(Tfw-0);
                                  //heat contained in 1kg
      of feed water before entering boiler in kJ/kg
15 htotal=h-hf1
                                  //total heat given to
      produce 1 kg of steam in boiler in kJ/kg
16 Mc = Mf * (100 - Puc) / 100;
                                  //mass of coal actually
      burnt in kg
17 Ma=Ms/Mc;
                                  //(kg \text{ of steam})/(kg \text{ of})
      fuel)
18 ETAb=Ma*(h-hf1)/C;
                                  //thermal efficiency of
      boiler
                                  //thermal efficiency of
19 ETAc=(Ms/Mf)*(h-hf1)/C;
      boiler and grate combined
20
21 printf('(i) The Thermal efficiency of the boiler is
      : \%5.3 \, f ', ETAb);
22 printf('or \%5.2 \, \text{f} percent. \n', ETAb*100);
```

```
23 printf('(ii) The Thermal efficiency of the boiler
      and grate combined is: %5.3f',ETAc);
24 printf('or %5.2f percent. \n',ETAc*100);
```

Scilab code Exa 6.9 Example 9

```
1 clc
2 clear
3 //DATA GIVEN
4 Ma=7.5;
                         //mass of steam generated per kg
       of coal
                         //steam pressure in bar
5 p=11;
6 Tfw=70;
                         //temp. of feed water temp. in
      deg celsius
7 eta=75;
                         //efficiency of boiler in %
                         //factor of evaporation
8 \text{ Fe} = 1.15;
                         //specific heat of steam in kJ/
9 Cps=2.3;
      kgK
10
11 //from steam table, corresponding to 11 bar,
12 hf=781.4;
                         //in kJ/kg
                         //in kJ/kg
13 hfg=1998.5;
                         //in K
14 Ts = 184.1 + 273;
15 hf1=4.18*(Tfw-0);
16
17 //Factor of evaporation, Fe = [\{hf + hfg + Cps * (Tsup - Ts)\} -
      hf1]/2257
18 Tsup = [Fe * 2257 + hf1 - hfg] / Cps + Ts;
                                                 //Tsup in K
                                                 //degree of
19 x = (Tsup - Ts);
       superheat in deg. celsius
20
21 //Boiler efficiency eta=Ma*(h-hf1)/C;
22 h = [hf + hfg + Cps * (Tsup - Ts)];
23 C=Ma*(h-hf1)/(eta/100);
                                                 //calorific
       value of coal in kJ/kg
```

Scilab code Exa 6.10 Example 10

```
1 clc
2 clear
3 //DATA GIVEN
4 p=13;
                                   //steam pressure in bar
5 \, ds = 77;
                                   //degree of superheat in
       deg. celsius
6 Tfw=85;
                                   //temp. of feed water in
       deg. celsius
7 \text{ Mw} = 3000;
                                   //mass of water
      evaporated in kg/hr
                                   //coal fired
8 \text{ Mc} = 410;
                                   //mass of ash in kg/hr
9 Mash=40;
10 Pca=9.6;
                                   //\% of combustible in
      ash
11 Pm = 4.5;
                                   //\% of moisture in coal
12 C = 30500;
                                   //calorific vaalue of
      dry coal per kg
13 Cps=2.1;
                                   //specific heat of
      superheated steam in kJ/kgK
14
15
```

```
16 //from steam table, corresponding to 13 bar,
17 hf=814.7;
                                //in kJ/kg
                                //in kJ/kg
18 hfg=1970.7;
                                //in deg. selsius
19 Ts=191.6;
20 h=hf+hfg+Cps*(ds);
21 hf1=4.18*(Tfw-0);
                                //total heat supplied to
22 htotal=h-hf1;
       produce 1 kg of steam
23
                                //mass of dry coal in kg
24 \text{ Mc1=Mc*(1-Pm/100)};
25 \text{ Ma=Mw/Mc1};
26 ETAb=Ma*(h-hf1)/C;
                                //efficiency of boiler
      plant including superheater
27
28 \text{ Mcom=Mash*Pca/100};
                               //Mass of combustible in
       ash per hr
29 //the combustible present in ash is practically
     carbon and its value may be taken as 338/60 kJ/kg
30 //heat actually supplied pr hr=heat of dry coal-heat
       of combustible in ash
31 Hsupp=Mc1*C-Mcom*33860;
                               //heat actually supplied
       pr hr
                                //heat usefully utilised
32 Huse=Mw*(h-hf1);
       in boiler pr hr
33
34 ETAc=Huse/Hsupp;
                                //efficiency of boiler
      and furnace combined
35
36 printf('(i) The Efficiency of boiler plant
      including superheater is: %5.3f or %2.1f percent.
      n', ETAb, (ETAb * 100));
37 printf('(ii) The Efficiency of the boiler and
      furnace combined is: %5.3f or %2.1f percent. \n',
     ETAc, (ETAc * 100));
```

Scilab code Exa 6.11 Example 11

```
1 clc
2 clear
3 //DATA GIVEN
4 Ms = 5000;
                             //mass of steam generated in
      kg/hr
                             //rate of coal firing in kg/
5 \text{ Mf} = 700;
      hr
6 C = 31402;
                             //higher calorific value (HCV
      ) of coal in kJ/kg
                             //quality of steam
7 x = 0.92;
8 p=12;
                             //steam pressure in bar
                             //feed water temp. in deg
9 Tfw=45;
      celsius
10
11 //from steam table, corresponding to 12 bar,
12 hf=798.4;
                             //in kJ/kg
13 hfg=1984.3;
                             //in kJ/kg
14 h = hf + x * hfg;
                             //in kJ/kg
15 hf1=4.18*(Tfw-0);
                             //heat of feed water in kJ/
      kg
16 Ma=Ms/Mf;
                             //in kg per kg of fuel
                             //(kg of steam)/(kg of fuel)
17 Me=Ma*(h-hf1)/2257;
18 eta=Ma*(h-hf1)/C;
                             //thermal efficiency
19
20 printf('(i) The Equivalent evaporation, Me is: %5.3
      f (kg of steam)/(kg of coal). n', Me);
21 printf(' (ii) The Boiler efficiency is: \%5.3\,\mathrm{f} or \%2
      .1 f percent. \n', eta, eta*100);
```

Scilab code Exa 6.12 Example 12

```
1 clc
2 clear
```

```
3 //DATA GIVEN
                                  //enthalpy of steam (at
4 hsup=3373.7;
      100 \text{ bar}, 500 \text{ deg}. \text{ celsius}) \text{ in } \text{kJ/kg}
                                  //enthalpy of feed water
5 hf1=677;
      (at inlet temp. 160 deg. celsius) in kJ/kg
6 hf = 1407.65;
                                  //ennthalpy of saturated
      liquid at 100 bar in kJ/kg
                                  //ennthalpy of saturated
7 hg = 2724.7;
      vapout at 100 bar in kJ/kg
                                  //rate of steam
  Ms = 100000;
      generation in kg/hr
                                  //efficiency of steam
   eta=88;
      generation
                                  //calorific value of fuel
10 C = 21000;
       in kJ/kg
11
12 //eta=(heat absorbed by steam per hr)/(heat added by
       fuel per hour)
13 m=Ms*(hsup-hf1)/(C*(eta/100));
                                            //fuel burning
      rate in kg/hr
14 htotal=hsup-hf1;
                                            //total heat
      supplied to steam formation
15 Pec=(hf-hf1)/htotal;
                                            //\% of heat
      absorbed in economiser
16 Pev=(hg-hf)/htotal;
                                            //\% of heat
      absorbed in evaporator
17 Ps=(hsup-hg)/htotal;
                                            //\% of heat
      absorbed in superheater
18
19 printf('(i) The Fuel burning rate, m is: \%5.1 f kJ/h
      \cdot \setminus n', m);
20 printf('(ii) The Percentage of heat absorbed in
      economiser is: \%5.4 \,\mathrm{f} or \%5.2 \,\mathrm{f} percent.\n',Pec,(
      Pec*100));
21 printf('
                   The Percentage of heat absorbed in
      evaporator is: \%5.4 \,\mathrm{f} or \%5.2 \,\mathrm{f} percent.\n',Pev,(
      Pev*100));
22 printf('
                   The Percentage of heat absorbed in
```

```
superheater is: \%5.4\,\mathrm{f} or \%5.2\,\mathrm{f} percent.\n',Ps,(Ps *100));
```

Scilab code Exa 6.13 Example 13

```
1 clc
2 clear
3 //DATA GIVEN
4 //BOILER
5 \text{ Mw} = 2060;
                         //mass of feed water
                         //mass of coal supplied in kg/hr
6 \text{ Mc} = 227;
                         //calorific value of coal in kJ/
7 C = 30000;
      kg
8 \text{ hs} = 2750;
                         //enthalpy of steam produced in
      kJ/kg
                         //enthalpy of feed water
9 hfw=398;
10 //ECONOMISER
                         //temp. of feed water entering
11 Twin=15;
      economiser in deg celsius
                         //temp. of feed water leaving
12 Twout = 95;
      economiser in deg celsius
                         //atmospheric temp.
13 Tgout = 18;
                         //temp. of entering flue gases
14 Tgin=370;
15 Mfg=4075;
                         //mass of flue gases
16 //assuming Cpw and Cpg,
17 Cpw = 4.187;
18 Cpg=1.01;
19
20 ETAb=Mw*(hs-hfw)/(Mc*C);
                                     //efficiency of
      boiler
21 ETAe=Mw*Cpw*(Twout-Twin)/(Mfg*Cpg*(Tgin-Tgout));
          //efficiency of economiser
22
23 printf(' (i) The Boiler efficiency is: \%5.4 f or \%2.2
```

```
f percent. \n',ETAb,(ETAb*100));
24 printf('(ii) The Economiser efficiency is: %5.3f or %2.1f percent. \n',ETAe,(ETAe*100));
```

Scilab code Exa 6.14 Example 14

```
1 clc
2 clear
3 //DATA GIVEN
4 Tfw=50;
                         //mean feed water temp. in deg
      celsius
                         //mean steam pressure in bar
5 p=5;
6 x = 0.95;
                         //dryness fraction of steam
                         //coal consumption kg/hr
7 \text{ Mc} = 600;
                         //calorific value of coal in kJ/
8 C = 30400;
      kg
9 \text{ Ms} = 4800;
                         //feed water supplied to boiler
      in kg/hr
10
11 //from steam table, corresponding to 12 bar,
12 hf=640.1;
                         //in kJ/kg
                         //in kJ/kh
13 hfg=2107.4;
14 h = hf + x * hfg;
                         //in kj/kg
15 hf1=4.18*(Tfw-0);
16
17 Ma=Ms/Mc;
                         //in kg per kg of fuel
18 Me=Ma*(h-hf1)/2257; //(kg \text{ of steam})/(kg \text{ of fuel})
19
20 printf ('The Equivalent evaporation from and at 100
      deg celsius, Me is: %5.3f (kg of steam)/(kg of
      coal).\n',Me);
```

Chapter 7

Internal Combustion Engines

Scilab code Exa 7.1 Example 1

```
1 clc
2 clear
3 //DATA GIVEN
                                   //mean effective
4 Pmi=6;
      pressure in bar
5 N = 1000;
                                   //engine speed in R.P.
     Μ.
                                   //diameter of piston
6 D=0.11;
      in m
7 L=0.14;
                                   //stroke length in m
                                   //no. of cylinders
8 n=1;
                                   //for 2-stroke
9 k=1;
      cylinder
10
11 //INDICTED POWER, I.P.=(n*PMI*I*A*N*k*10)/6 kW
12 A = (\%pi/4) * (D^2);
13 IP=(n*Pmi*L*A*N*k*10)/6;
14
15 printf('The Indicted Power developed is: %2.1 f kW.',
      IP);
```

Scilab code Exa 7.2 Example 2

```
1 clc
2 clear
3 //DATA GIVEN
4 / L = 1.5D
5 n=4;
                                       //no. of cylinders
                                       //power developed in
6 P = 14.7;
      kW
7 N = 1000;
                                       //engine speed in R.P.
      Μ.
8 \text{ Pmi} = 5.5;
                                       //mean effective
      pressure in bar
                                       //for 4-stroke
9 k=0.5;
       cylinder
10
11 //INDICTED POWER, I.P. = (n*PMI*I*A*N*k*10)/6 kW
12 //A = (pi/4) *D^2,
13 / L = 1.5D
14 D=((6*P)/(10*k*N*n*Pmi*1.5*(%pi/4)))^(1/3);
                                                             //
       bore diameter in m
                                                             //
15 L=1.5*D;
      length of stroke in m
16
17 printf('The Bore diameter is: \%5.2 \text{ f mm.} \setminus \text{n'}, (D*1000))
18 printf(' The Stoke length is: \%5.2 \text{ f mm.} \setminus \text{n',(L*1000)})
```

Scilab code Exa 7.3 Example 3

1 clc

```
2 clear
3 //DATA GIVEN
                                     //diameter of brake
4 Db = 0.6;
      wheel in m
5 d=0.026;
                                     //diameter of rope in
     \mathbf{m}
6 W = 200;
                                     //dead load on the
      brake in N
7 S = 30;
                                     //spring balance
      reading in N
8 N = 450;
                                     //engine speed in R.P.
     Μ.
9
10 //Brake Power, B.P.=(W-S)(pi)(Db+d)N/(60*1000) kW
11 BP = (W-S) * (\%pi) * (Db+d) * N / (60*1000);
12
13 printf('The Brake Power, B.P. is: %2.1 f kW.\n',BP);
```

Scilab code Exa 7.4 Example 4

Scilab code Exa 7.5 Example 5

```
1 clc
2 clear
3 //DATA GIVEN
                                   //bore of engine
4 D=0.3;
      cylinder in m
5 L=0.45;
                                   //stroke length in m
6 N = 300;
                                   //engine speed in R.P.
     Μ.
7 Pmi=6;
                                   //mean effective
      pressure in bar
                                   //Net brake load (W-S)
8 NBL=1.5;
      in kN
9 Db=1.8;
                                   //diameter of brake
     drum
10 d=0.02;
                                   //brake rope diameter
                                    //no. of cylinders
11 n=1;
12 k = 0.5;
                                    //for 4-stroke
      cylinder
13
14 //INDICTED POWER, I.P. = (n*PMI*I*A*N*k*10)/6 kW
15 A = (\%pi/4) * (D^2);
16 IP = (n*Pmi*L*A*N*k*10)/6;
17 BP=NBL*(\%pi)*(Db+d)*N/(60);
                                   //mechanical
18 eta=BP/IP;
      efficiency
19
20 printf('(i) The Indicted Power, I.P. is: \%5.2 f kW.
      \n', IP);
21 printf('(ii) The Brake Power, B.P. is: \%5.2 f kW. \n
      ',BP);
22 printf('(iii) Mechanical efficiency is: %5.4f or %5
      .2 f percent. \ n', eta, (eta*100));
```

Scilab code Exa 7.6 Example 6

```
1 clc
2 clear
3 //DATA GIVEN
                                     //diameter of engine
4 D=0.2;
      cylinder in m
5 L=0.350;
                                     //length of stroke in
     \mathbf{m}
                                     //mean effective
6 Pmico=6.5;
      pressure on cover side in bar
                                     //mean effective
  Pmicr=7;
      pressure on crank side in bar
                                     //engine speed in R.P.
8 N = 420;
     Μ.
                                     //diameter of piston
9 Drod=0.02;
      rod in m
10 W = 1370;
                                     //dead load on the
      brake in N
                                     //spring balance
11 S = 145;
      reading in N
                                     //diameter of brake
12 Db=1.2;
      wheel in m
                                     //diameter of rope in
13 d=0.02;
     \mathbf{m}
                                     //no. of cylinders
14 n=1;
                                     // for 4-stroke
15 \text{ k=0.5};
      cylinder
16
17 //INDICTED POWER, I.P.=(n*Pmi*l*A*N*k*10)/6 kW
18 Aco=(\%pi/4)*(D^2);
                                          //area of
      cylinder om cover end in m<sup>2</sup>
19 Acr = (\%pi/4) * (D^2 - Drod^2);
                                          //area of
      cylinder om crank end in m^2
20 IPco=(n*Pmico*L*Aco*N*k*10)/6;
                                          //IP on cover end
       side in kW
  IPcr = (n*Pmicr*L*Acr*N*k*10)/6;
                                          //IP on crank end
       side in kW
22   IPtotal=IPco+IPcr;
                                          //IP total in kW
23
```

Scilab code Exa 7.7 Example 7

```
1 clc
2 clear
3 //DATA GIVEN
                                  //indicted power in kW
4 IP=30;
                                  //Brake Power in kW
5 BP=26;
6 N = 1000;
                                  //engine speed in R.P.M
7 F = 0.35;
                                  //fuel per brake power
      hour in kg/BP/h
8 C=43900;
                                  //calorific value of
      fuel used in kJ/kg
10 Fc = F * BP;
                                  //fuel consumption per
     hour
11 Mf = Fc/3600;
12 ETAti=IP/(Mf*C);
                                 //Indicted thermal
      eficiency
13 ETAtb=BP/(Mf*C);
                                 //Brake thermal
      efficiency
                                 // Mechanical efficiency
14 ETAm=BP/IP;
15
16 printf('(i) The Indicted thermal eficiency is: %5.3
      f or \%2.1 \, \text{f} percent. \n', ETAti, (ETAti*100));
17 printf('(ii) The Brake thermal efficiency is: %5.3 f
```

```
or %2.1 f percent. \n', ETAtb, (ETAtb*100));

18 printf('(iii) Mechanical efficiency is: %5.3 f or %2
.1 f percent. \n', ETAm, (ETAm*100));
```

Scilab code Exa 7.8 Example 8

```
1 clc
2 clear
3 //DATA GIVEN
4 Db = 0.75;
                                     //diameter of brake
      pulley in m
                                     //diameter of rope in
5 d=0.05;
      \mathbf{m}
                                     //dead load on the
6 W = 400;
      brake in N
                                     //spring balance
7 S = 50;
      reading in N
8 \text{ Fc} = 4.2;
                                     //fuel consumption in
       kg/hr
9 N = 1000;
                                     //rated engine speed
      in R.P.M.
                                     //calorific value of
10 C = 43900;
      fuel used in kJ/kg
11 n=1;
                                     //no. of cylinders
                                     //for 4-stroke
12 k=0.5;
      cylinder
13
14
15 //Brake Power, B.P.=(W-S)(pi)(Db+d)N/(60*1000) kW
16 BP=(W-S)*(%pi)*(Db+d)*N/(60*1000);
17 sfc=Fc/BP;
                                                 //brake
      specific fuel consumption in kg/kWhr
18 Mf = Fc/3600;
19 ETAtb=BP/(Mf*C);
                                                 //Brake
      thermal efficiency
```

```
20
21 printf('(i) The Brake specific fuel consumption, s.
    f.c (brake) is: %5.3 f kg/kWh. \n',sfc);
22 printf('(ii) The Brake thermal efficiency is: %5.3 f
    or %2.1 f percent. \n',ETAtb,(ETAtb*100));
```

Scilab code Exa 7.9 Example 9

```
1 clc
2 clear
3 //DATA GIVEN
4 n=6;
                                    //no. of cylinders
                                    //bore of each
5 D=0.09;
      cylinder in m
6 L=0.1;
                                    //length of stroke in
     \mathbf{m}
7 r = 7;
                                    //compression ratio
8 ETArel = 0.55;
                                    //relative efficiency
                                    //indicated specific
9 Fsc=0.3;
      fuel consumption in kg/kWh
10 Pmi=8.6;
                                    //indicated mean
      effective pressure in bar
                                    //engine speed in R.P.
11 N = 2500;
     Μ.
                                    //for 4-stroke
12 k=0.5;
      cylinder
13
14 //Air standard efficiency, ETAair=1-1/(r^{(gamma-1)})
                                    //gamma of air = 1.4
15 g=1.4;
16 ETAair=1-1/(r^{(g-1)});
17 //Indicated thermal efficiency, ETArel=ETAthi/ETAair
18 ETAthi=ETArel*ETAair;
19 //Indicted thermal eficiency, ETAthi=IP/(Mf*C)
20 \text{ Mf} = Fsc/3600;
```

```
21 / taking IP=1,
22 C=1/(ETAthi*Mf);
                                   //calorific value in
      kJ/kg
23 //INDICTED POWER, I.P. = (n*Pmi*l*A*N*k*10)/6 kW
24 A = (\%pi/4) * (D^2);
25 IP=(n*Pmi*L*A*N*k*10)/6;
                                   //total fuel
26 Fc=Fsc*IP;
      consumption in kg/hr
27
28 printf('(i) The Calorific value of coal, C is: \%5.0
      f kJ/kg. \langle n',C\rangle;
  printf('(ii) The Fuel consumption is: %5.2 f kg/h. \
     n',Fc);
30
31 //NOTE:
32 //ans of calorific value here is exact, while in TB
      its rounded off value
```

Scilab code Exa 7.10 Example 10

```
1 clc
2 clear
3 //DATA GIVEN
4 n = 4;
                                     //no. of cylinders
5 BP=30;
                                     //Brake Power in kW
                                     //engine speed in R.P.
6 N = 2500;
     Μ.
7 Pmi=8;
                                     //mean effective
      pressure in bar
                                     //mechanical
8 \quad \text{ETAm} = 0.8;
      efficiency
9 ETAthb=0.28;
                                     //brake thermal
      efficiency
10 C = 43900;
                                     //calorific value of
      fuel used in kJ/kg
```

```
//for 2-stroke
11 k=1;
      cylinder
12
13 //mechanical efficiency, ETAm=BP/IP
14 IP=BP/ETAm;
15 //INDICTED POWER, I.P.=(n*PMI*I*A*N*k*10)/6 kW
16 / L = 1.5D
17 D=((6*IP)/(10*k*N*n*Pmi*1.5*(%pi/4)))^(1/3);
                                                           //
      bore diameter in m
18 L=1.5*D;
      length of stroke in m
19 //Brake thermal efficiency, ETAtb=BP/(Mf*C)
20 Mf = BP / (ETAthb * C);
                                                           //
      fuel consumption in kg/hr
21
22 printf('(i) The Bore diameter is: \%5.3 \,\mathrm{f} m or \%2.0 \,\mathrm{f}
      mm. \ n', D, (D*1000));
23 printf('
                   The Stoke length is: %2.0 f mm.\n',(L
      *1000));
24 printf(' (ii) The Fuel consumption is: \%5.5 f kg/s or
       \%3.2 \, f \, kg/hr. \, n', Mf, (Mf*3600));
```

Scilab code Exa 7.11 Example 11

```
1 clc
2 clear
3 //DATA GIVEN
4 n=6;
                                      //no. of cylinders
5 Pdisp=700;
                                      //piston disp per
      cylinder in cm<sup>3</sup>
                                      //power developed in
6 P = 78;
     kW
7 N = 3200;
                                      //engine speed in R.P.
     Μ.
8 \text{ Mf} = 27;
                                      //mass of fuel used in
```

```
kg/hr
9 C = 44000;
                                   //calorific value of
      fuel used in kJ/kg
10 afr=12;
                                   //air fuel ratio
11 Pa=0.9;
                                   //intake air pressure
      in bar
12 Ta=32+273;
                                   //intake air
      tempertaure in K
                                   //gas constant for air
13 R = 0.287;
      in kJ/kgK
                                   //for 4-stroke
14 k=0.5;
      cylinder
15
                                              //mass of
16 Ma=afr*Mf;
      air
17 //by eq. pa*Va=Ma*R*Ta
18 Va=Ma*R*Ta/Pa/100;
                                              //volume of
      intake air in m<sup>3</sup>/hr
19 Vswept = (Pdisp/10^6)*n*(N/2)*60;
                                              //volume
      swept in m<sup>3</sup>/hr
20 ETAvol=Va/Vswept;
                                              //volumetric
       efficiency
21
  //Brake thermal efficiency , ETAbt=brake work/heat
      supplied by the fuel
23 ETAbt=P/(Mf*C/3600);
24 //Brake Power, BP = (2*pi)N*Tb/(60*1000) kW
                                              //brake
25 \text{ Tb=P*60/(2*\%pi*N)};
      torque in kNm
26
  printf('
             (i) The Volumetric efficiency is: %5.3f or
      28 printf(' (ii) The Brake thermal efficiency is: %5.4
      f or \%5.2 \, \text{f} percent. \n', ETAbt, (ETAbt*100));
29 printf(' (iii) The Brake Torque is: \%5.4 \,\mathrm{f} kNm. \n',
      Tb);
```

Scilab code Exa 7.12 Example 12

```
1 clc
2 clear
3 //DATA GIVEN
4 / L = 1.5D
                                    //no. of cylinders
5 n=6;
                                    //stroke volume in
6 Vs = 1.75;
      litres
  IP=26.3;
                                    //power developed in
     kW
8 \text{ Ne} = 504;
                                    //engine speed in R.P.
     Μ.
9 Pmi=6;
                                    //mean effective
      pressure in bar
                                    //for 4-stroke
10 \text{ k=0.5};
      cylinder
11
12 //INDICTED POWER, I.P.=(n*PMI*I*A*N*k*10)/6 kW
13 / L*A=Vs
14 Na=IP*6/(n*Pmi*(Vs/10^3)*k*10);
                                           //actual speed
      in R.P.M
15 Fa=Na*n*k;
                                           //actual no. of
       fires in one minute
16 Fe=Ne*n/2;
                                           //expected no.
      of fires in one minute
17 Fm=Fe-Fa;
                                           //misfires per
      minute
18 Fmavg=Fm/n;
                                           //avg. no. of
      times each cylinder misfires in one minute
19
20 printf ('The Average no. of times each cylinder
      misfires in one minute is: %1.0 f.\n', Fmavg);
```

Scilab code Exa 7.13 Example 13

```
1 clc
2 clear
3 //DATA GIVEN
4 D=0.075;
                                    //bore in m
5 L=0.09;
                                    //stroke length in m
6 n = 4;
                                    //no. of cylinders
7 \text{ erar} = 39/8;
                                    //engine to rear axle
      ratio = 39:8
8 \text{ Dw} = 0.65;
                                    //wheel diameter with
      tyre fully inflated in m
9 Fc = 0.227;
                                    //petrol consumption
      for a distance of 3.2 km at a speed of 48 km/hr
10 Pmi=5.625;
                                    //mean effective
      pressure in bar
11 C=43470;
                                    //calorific value of
      fuel used in kJ/kg
12 k=0.5;
                                    //for 4-stroke
      cylinder
13
14 s = 48 * 1000/60;
                                    //speed of car in m/
      min
15 //if Nt rev are made by tyre per minute, speed=pi*Dw
      *Nt
16 Nt=s/(\%pi*Dw);
                                    //R.P.M.
17 //as engine to rear axle ratio is 39:8
18 Ne=erar*Nt;
                                    //speed of enfine
      shaft in R.P.M.
19 //INDICTED POWER, I.P. = (n*PMI*I*A*N*k*10)/6 kW
20 A = (\%pi/4) * (D^2);
21 IP=(n*Pmi*L*A*Ne*k*10)/6;
22
23 \text{ s=s/1000};
                                    //speed of car in km/
```

```
min
24 t=3.2/s;
                                       //time in min for
       covering 3.2 km
25 //petrol consumption for a distance of 3.2 km aat a
      speed of 48 km/hr is 0.227 kg
26 \text{ Mf} = \text{Fc}/(\text{t}*60);
                                       //fuel consumed per
      sec
                                       //Indicated fuel
27 ETAthi=IP/(Mf*C);
       efficiency
28
29 printf('(i) The Indicated Power developed is: %5.2 f
       kW. \setminus n', IP);
30 printf('(ii) The Indicated thermal efficiency is:
      \%1.3 \, \mathrm{f} or \%2.1 \, \mathrm{f} percent. \n', ETAthi, (ETAthi*100));
```

Scilab code Exa 7.14 Example 14

```
1 clc
2 clear
3 //DATA GIVEN
4 D=0.25;
                                    //cylinder diameter in
      \mathbf{m}
                                    //stroke length in m
5 L=0.4;
                                    //Gross mean effective
6 Pmg=7;
       pressure in bar
7 Pmp = 0.5;
                                    //Pumping mean
      effective pressure in bar
8 N = 250;
                                    //engine speed in R.P.
     Μ.
9 NBL=1080;
                                    //net load on the
      brake (W-S) in N
10 Db=1.5;
                                    //effective diameter
      of the brake in m
11 Fc = 10;
                                    //fuel used per hr in
     kg
```

```
//calorific value of
12 C = 44300;
      fuel used in kJ/kg
                                     //no. of cylinders
13 n=1;
                                     //for 4-stroke
14 k = 0.5;
      cylinder
15
16 //INDICTED POWER, I.P. = (n*PMI*I*A*N*k*10)/6 kW
17 Pm = Pmg - Pmp;
18 A = (\%pi/4) * (D^2);
19 IP=(n*Pm*L*A*N*k*10)/6;
20 BP=NBL*(\%pi)*(Db)*N/(60*1000);
21 ETAm=BP/IP;
                                      //mechanical
      efficiency
22 \text{ Mf} = \text{Fc} / 3600;
23 ETAthi=IP/(Mf*C);
                                      //Indicated thermal
      efficiency
24
25 printf('(i) The Indicated Power, I.P. is: %5.2 f kW.
       \n', IP);
26 printf('(ii) The Brake Power, B.P. is: %2.1 f kW. \n
      ',BP);
27 printf('(iii) Mechanical efficiency is: \%5.3 f or \%2
      .1 f percent. \n', ETAm, (ETAm*100));
28 printf(' (iv) Indicated thermal efficiency is: %5.3 f
       or \%2.1 \, \text{f} percent. \n', ETAthi, (ETAthi*100));
```

Scilab code Exa 7.15 Example 15

```
//calorific value of
6 C=41800;
      fuel used in kJ/kg
8 //Brake thermal efficiency, ETAthb=work produced/
     heat supplied
9 work=(ETAthb/100)*C;
                                  //work produced per kg
      of fuel
10 //STP conditions refer to 1.0132 bar and 15 deg
      celsius
11 m=afr;
                                  //mass of air per kg
      of fuel
12 R = 287;
13 V=m*R*(15+273)/(1.0132*10^5); //volume of air used
14 //Brake mean effective pressure, Pmb=work done/
      cylinder volume
15 Pmb=(work*1000)/(V*10^5);
16
17 printf ('The Brake mean effective pressure, Pmb is:
     \%2.2 f bar. \ n', Pmb);
```

Scilab code Exa 7.16 Example 16

```
1 clc
2 clear
3 //DATA GIVEN
4 V1=0.216;
                                     //gas consumption in m
      ^3/\min
5 P1=75:
                                     //gas temperature in
     mm of water
6 T1 = 17 + 273;
                                     //gas tempertaure in K
7 m = 2.84;
                                     //air consumption in
     kg/min
                                     //air tempertaure in K
8 \text{ Ta}=17+273;
9 \text{ br} = 745;
                                     //barometer reading in
      mm of Hg
```

```
//bore of engine
10 D=0.25;
      cylinder in m
11 L=0.475;
                                      //stroke length in m
                                      //engine speed in R.P.
12 N = 240;
      Μ.
13 R = 287;
                                      //gas constant for air
      in J/kgK
14 n = 1;
                                      //no. of cylinders
                                      //for 2-stroke
15 k=1;
      cylinder
16
                                      //pressure of the gas
17 P1=br+P1/13.6;
18 // at NTP
19 P2 = 760;
                                      //mm of Hg
20 T2 = 0 + 273;
                                      //in K
21 / P1*V1/T1=P2*V2/T2
22 V2 = P1 * V1 * T2 / (P2 * T1);
                                      //volume of gas used
      at NTP in m<sup>3</sup>
23 Vg = V2/(N/2);
                                      //gas used per stroke
      in m<sup>3</sup>
24
25 //PV=mRT
26 P2=1.0132*10^5;
                                      //volume occupied by
27 V = m * R * T2/P2;
      air in m<sup>3</sup>/min
28 \text{ Va=V/(N/2)};
                                      //air used per stroke
      in m
29
                                      //mixture of gas and
30 Vmix = Vg + Va;
      air in m<sup>3</sup>
31
32 //ETAvol=(actual volume of mixture drawn per stroke
      at NTP)/(swept volume of system)
33 ETAvol=Vmix/((\%pi/4)*D^2*L);
35 printf ('The Volumetric efficiency is: \%3.3 f or \%3.1
      f percent. \n', ETAvol, (ETAvol*100));
```

Scilab code Exa 7.17 Example 17

```
1 clc
2 clear
3 //DATA GIVEN
4 t=1;
                                      //duration of trial in
       hr
5 N = 14000;
                                      //revolutions
6 \text{ mc} = 500;
                                      //no. of missed cycles
7 \text{ NBL} = 1470;
                                      //Net brake load (W-S)
       in N
8 \text{ Pmi} = 7.5;
                                      //mean effective
      pressure in bar
9 Vg = 20000/3600;
                                      //gas consumption in
      litres/s
                                      //LCV of gas at sipply
10 C = 21;
       conditions in kJ/litre
                                      //cylinder diameter in
11 D=0.25;
12 L=0.4;
                                      //stroke length in m
13 Cb = 4;
                                      //effective brake
      circumference in m
14 r=6.5;
                                      //compression ratio
                                      //no. of cylinders
15 n=1;
16 \text{ k=0.5};
                                      //for 4-stroke
      cylinder
17
18 //gamma for air, g=1.4
19 g=1.4;
20
21 //INDICTED POWER, I.P. = (n*PMI*I*A*N*k*10)/6 kW
22 Nk = (N*k-mc)/60;
                                      //(N*k)-working cycles
      /min
23 A = (\%pi/4) * (D^2);
```

```
24 IP = (n*Pmi*L*A*Nk*10)/6;
25 N=N/60;
26 BP=NBL*(Cb)*N/(60*1000);
27 \text{ eta=BP/IP};
                                      //mechanical
      efficiency
28 ETAthi=IP/(Vg*C);
                                      //Indicated thermal
      efficiency
29
30 //relative efficiency, ETArel=ETAthi/ETAas
31 / ETAas = 1 - 1/(r^{(g-1)})
                                     //air-standard
32 ETAas=1-1/(r^{(g-1)});
      efficiency
33 ETArel=ETAthi/ETAas;
                                      //relative efficiency
34
35 printf(' (i) The Indicated Power, I.P. is: %5.2 f kW
      \cdot \setminus n', IP);
36 printf(' (ii) The Brake Power, B.P. is: \%5.2 f kW. \
      n', BP);
37 printf(' (iii) Mechanical efficiency is: \%5.3\,\mathrm{f} or \%2
      .1 f percent. \ n', eta, (eta*100));
38 printf(' (iv) The Indicated thermal efficiency is:
      \%2.2\,\mathrm{f} or \%2.0\,\mathrm{f} percent. \n', ETAthi, (ETAthi*100));
39 printf(' (v) The Relative efficiency is: %2.3 f or
      \%2.1 \, \text{f percent} \cdot \text{n',ETArel,(ETArel*100))};
```

Chapter 10

Air Compressors

Scilab code Exa 10.1 Example 1

```
1 clc
2 clear
3 //DATA GIVEN
                                     //volume of air
4 V1=1;
      taken in m<sup>3</sup>/mim
                                      //intake pressure in
5 p1=1.013;
      bar
6 T1=15+273;
                                      //intake temperature
       in K
7 p2=7;
                                      //delivery pressure
      in bar
8 t=1*60;
                                      //time in seconds
9 //law of compression, pV^1.35=C
10 n=1.35;
11 R = 287;
12
                                      //mass of air
13 m=p1*10^5*V1/R/T1;
      delivered in kg/min
14
15 //(T2/T1) = (p2/p1)^{(n-1)/n};
16 T2=T1*(p2/p1)^((n-1)/n);
                                    //delivery temp. T2
```

Scilab code Exa 10.2 Example 2

```
1 clc
2 clear
3 //continued from Example 1
4 //DATA GIVEN
                                       //volume dealt with
5 V = 1;
      per min at inlet in m<sup>3</sup>/mim
6 Vc = 1/300;
                                       //volume drawn in
      per cycle, in m<sup>3</sup>/cycle
7 r=1.5;
                                       //stroke to bore
      ratio
8 \text{ ETAc} = 0.85;
                                       //mechanical
      efficiency of the compressor
  ETAmt = 0.90;
                                       //mechanical
      efficiency of the motor transmission
10
11 //cylinder volume, Vc=(pi/4)D^2*L
12 D = [(Vc*4/\%pi)/r]^(1/3);
                                       //bore in m
13
14 //from example 1
15 Pi=4.23/ETAc;
                                       //power input to the
       compressor in kW
16 MP=Pi/ETAmt;
                                       //motor power in kW
```

Scilab code Exa 10.3 Example 3

```
1 clc
2 clear
3 //DATA GIVEN
4 T1=20+273;
                                     //temperature in K
                                     //pressure in bar
5 p1=1;
                                     //pressure in bar
6 p2=10;
7 Cv = 0.718;
                                     //in kJ/kgK
9 //law of compression, pV^1.2=C
10 n=1.2;
                                     //in kJ/kgK
11 R = 0.287;
12
13 //(T2/T1) = (p2/p1)^{(n-1)/n};
14 T2=T1*(p2/p1)^((n-1)/n);
                                     //temp. T2 in K
15 \text{ m} = 1;
16 W=(n)/(n-1)*m*R*T1*[(p2/p1)^((n-1)/n)-1];
      work done per kg of air (kJ/kg of air)
17
18 //By the First Law of Thermodynamics
19 //heat transferred during compression, Q=W+DU
20 /Q = (p1V1-p2V2) / (n-1)+Cv(T2-T1)
21 / Q = (T2-T1) * [Cv-R/(n-1)]
22 Q = (T2-T1) * [Cv-R/(n-1)];
23
24 printf('(i) The Temperature at the end of
      compression is: %3.0 f K or %3.0 f deg. celsius. \n
      ',T2,(T2-273));
25 printf(' (ii) The Work done during compression per
```

```
kg of air is: %3.2 f kJ/kg of air. \n',W);
26 printf(' The Heat transferred during
    compression per kg of air is: %2.2 f kJ/kg of air.
    \n',Q);
27 printf(' (Negative sign indicates heat
    REJECTION.) \n');
```

Scilab code Exa 10.4 Example 4

```
1 clc
2 clear
3 //DATA GIVEN
4 p1=1;
                                        //suction pressure
      in bar
                                        //suction
5 T1 = 20 + 273;
      temperature in K
6 p2=6;
                                        //discharge pressure
       in bar
  T2=180+273;
                                        //discharge
      temperature in K
8 N = 1200;
                                        //speed of
      compressor in R.P.M.
                                        //shaft power in kW
9 Pshaft=6.25;
                                        //mass of air
10 Ma=1.7;
      delivered in kg/min
11 D=0.14;
                                        //diameter in m
                                        //stroke in m
12 L=0.1;
13 R = 287;
                                        //in kJ/kgK
14
15 Vd = (\%pi/4) * D^2 * L * N;
                                        //displacement
      volume for single acting compressor in m<sup>3</sup>/min
16 FAD=Ma*R*T1/p1/10<sup>5</sup>;
                                        //\text{m}^3/\text{min}
17 ETAvol=FAD/Vd*100;
                                        //actual volumetric
      efficiency
18
```

```
19 //(T2/T1) = (p2/p1) ((n-1)/n);
20 n=1/[1-(log(T2/T1)/log(p2/p1))]; //index of
     compression, n
21
22 IP=(n)/(n-1)*Ma/60*R/1000*T1*[(p2/p1)^((n-1)/n)-1];
           //indicated power in kW
23
24 Piso=Ma/60*R/1000*T1*\log(p2/p1);
                              //isothermal power
25 ETAiso=Piso/IP*100;
                                            //isothermal
       efficiency
26
27 ETAmech=IP/Pshaft*100;
                                        //mechanical
      efficiency
28
29 ETAovr_iso=Piso/Pshaft*100;
                                   //overall isothermal
      eddiciency
30
31 printf('(i) The actual Volumetric efficiency is: %2
     32 printf('(ii) The Indicated Power, IP is: %1.3 f KW.
     n', IP);
33 printf('(iii) The Isothermal efficiency is: %2.2 f
     percent.\n',ETAiso);
34 printf('(iv) The Mechanical efficiency is: %2.1 f
     percent. \ n', ETAmech);
35 printf(' (v) The Overall isothermal efficiency is:
     \%2.1 \, \text{f percent.} \, \text{n',ETAovr_iso};
```

Scilab code Exa 10.5 Example 5

```
1 / 5(b) is as follows:
```

```
2 clc
3 clear
4 //DATA GIVEN
5 m=6.75;
                             //mass of air in kg/min
6 p1=1;
                             //pressure in bar
7 T1 = 21 + 273;
                             //temp. in K
8 p2=1.35;
                             //pressure in bar
9 T2=43+273;
                             //temp. in K
10 DTcw=3.3;
                             //temp. rise of cooling
      water in deg. celsius
                             //Cp for air in kJ/kgK
11 Cp=1.003;
12 //gamma for air=1.4
13 g=1.4;
14
15 W=m*Cp*(T2-T1);
                             //work in kJ/min
16 // If the compression would have been isotropic,
17 / T_2 = T1 * (rp) ^ [(g-1)/g]
18 rp=p2/p1;
19 T_2=T1*(rp)^[(g-1)/g];
                             //heat rejected to cooling
20 Qr = m * Cp * (T_2 - T_2);
      water
21
22 Mw=Qr/[4.18*(DTcw)]; //mass of cooling water in
      kg/min
23
24 printf('(i) The Work is: \%3.2 \, \text{f kJ/min.} \, \text{n',W};
25 printf('(ii) The Mass of cooling water is: %1.2 f kg
      /\min. \langle n', Mw \rangle;
26
27 //NOTE:
28 //in the question compression process is mentioned
      and p2 is given as 0.35 bar (p2 < p1)
29 //which is wrong and further p2 is given as 1.35 bar
       which is allowable
30 //so here value of p2 is taken as 1.35 bar.
```

Scilab code Exa 10.6 Example 6

```
1 clc
2 clear
3 //DATA GIVEN
4 V1 = 14;
                                        //quantity of air to
       be delivered, in m<sup>3</sup>/mim
                                        //intake pressure in
5 p1=1.013;
       bar
6 T1=15+273;
                                        //intake temperature
       in K
7 p2=7;
                                        //delivery pressure
      in bar
8 N = 300;
                                        //speed of
      compressor in R.P.M.
                                        //compression and
9 n=1.3;
      expansion index
10 R = 0.287;
11
12 //clearance volume, Vc = 0.05 Vs ,Vs=swept volume
13 //swept volume Vs=V1-V3=V1-Vc=V1-0.05Vs
14 / V1 = 1.05 Vs
15 Vpc=V1/N/2;
                                                          //(
      V1-V4) volume induced per cycle in m<sup>3</sup>
16 /V4/V3 = (p2/p1)^(1/n)
17 c=(p2/p1)^(1/n);
18 / V4 = c * V3 = c * 0.05 Vs
19 / V1 - V4 = 1.05 Vs - c * 0.05 Vs
20 \text{ Vs=Vpc/(1.05)/(1.05-c*0.05)};
                                      //volume swept in m<sup>3</sup>
21
22 //using relation (T2/T1) = (p2/p1)^{(n-1)/n};
23 T2=T1*(p2/p1)^((n-1)/n);
```

```
//delivery temp.
     T2 in K
24
25 IP=(n)/(n-1)*p1*10^5*Vpc/100*[(p2/p1)^((n-1)/n)-1];
         //indicated power in kW
26
27 printf('(i) The Swept volume of the cylinder, Vs is
     28 printf('(ii) The delivery temperature, Ts is: %3.0 f
      29 printf('(iii) The Indicated power, IP is: %2.2 f kW.
     \n', IP);
30
31 //NOTE:
32 //there is slight variation in answers in textbook
     due to rounding off of values in book
```

Chapter 13

Transmission of Motion and Power

Scilab code Exa 13.1 Example 1

```
1 clc
2 clear
3 //DATA GIVEN
                                 //speed of the engine
4 N1 = 240;
      shaft in R.P.M.
                                 //diameter of pulley on
5 d1=1.5;
      engine shaft in m
                                 //diameter of pulley on
6 d2=0.75;
      machine shaft in m
                                 //thickness of the belt
7 t=0.005;
     in m
9 //with no slip
10 / (N2/N1) = (d1+t) / (d2+t)
                                 //speed of the machine
11 N2=(d1+t)/(d2+t)*N1;
      shaft in R.P.M.
12
13 //with slip of 2\%
14 S=2;
                                 //slip in %
```

```
15 //(N2/N1)=(d1+t)/(d2+t)*((100-S)/100)
16 N2s=(d1+t)/(d2+t)*N1*((100-S)/100);
17
18 printf('(i) The Speed of machine shaft, N2 with no slip is: %4.1 f R.P.M. \n',N2);
19 printf('(ii) The Speed of machine shaft, N2 with slip of 2 percent is: %4.1 f R.P.M. \n',N2s);
```

Scilab code Exa 13.2 Example 2

```
1 clc
2 clear
3 //DATA GIVEN
                                  //radius of larger
4 r1 = 900/2000;
      pulley in m
5 \text{ r2} = 300/2000;
                                  //radius of smaller
      pulley in m
6 d=6;
                                  //distance between the
      centres of pulley in m
8 //Length of cross belt, Lcross=(pi)(r1+r2)+(r1+r2)
      ^2/d+2d;
9 Lcross=(\%pi)*(r1+r2)+(r1+r2)^2/d+2d;
10 //Length of open belt, Lopen=(pi)(r1+r2)+(r2-r1)^2/d
      +2d;
11 Lopen=(\%pi)*(r1+r2)+(r2-r1)^2/d+2d;
12
13 Lred=Lcross-Lopen;
                                 //length to be reduced
14 printf(' The Length of the belt to be reduced, \n (
      to change the direction of rotation of the
      follower pulleys) is: \%2.0 \, \text{f} \, \text{mm}. \n', (Lred*1000));
```

Scilab code Exa 13.3 Example 3

```
1 clc
2 clear
3 //DATA GIVEN
                                 //tension on the tight
4 T1 = 1500;
      side in N
5 T2 = 1200;
                                 //tension on the slack
      side in N
                                 //speed of the belt in m
6 v = 80;
     /s
8 P = (T1 - T2) * v;
                                 //power transmitted by
      the belt in watts
9
10 printf(' The Power transmitted by the belt is: \%2.0\,\mathrm{f}
```

Scilab code Exa 13.4 Example 4

```
1 clc
2 clear
3 //DATA GIVEN
4 v = 500;
                                  //speed of the belt in m
      /min
                                  //coefficient of
5 \text{ mu} = 0.3;
      friction
6 \text{ theta=160};
                                  //angle of contact in
      degrees
                                  //maximum tension in the
7 T1 = 700;
       belt in N
9 //(T1/T2)=e^{(mu*theta)}
10 theta=theta*(\%pi)/180;
                                  //theta converted into
      radians
11 T2=T1/(%e^(mu*theta));
                                  //tension on the slack
      side in N
```

Scilab code Exa 13.5 Example 5

```
1 clc
2 clear
3 //DATA GIVEN
4 r1 = 750/2000;
                                 //radius of larger
      pulley in m
                                 //radius of smaller
5 r2=300/2000;
      pulley in m
                                 //distance between the
6 d=1.5;
      centres of pulley in m
                                 //maximum safe tension
  Tms=14;
      in N/mm
8 b=150;
                                 //width of the belt in
     mm
                                 //speed of the belt in m
9 v = 540;
     /min
                                 //coefficient of
10 \text{ mu} = 0.25;
      friction
11
12 T1 = Tms * b;
                                 //maximum tension in the
       belt in N
                                 //speed of the belt
13 v = v / 60;
      converted into m/s
14 //(i) for open belt
15 ALPHAo=asin ((r1-r2)/d)*180/(%pi);
                                             //alpha in
      degrees
```

```
//angle of
16 THETAo = 180 - 2 * ALPHAo;
      lap or contact in deg
  T2o=T1/(%e^(mu*(THETAo*%pi/180)));
                                              //tension on
      the slack side in N
18 Po = (T1 - T2o) *v;
                                              //power
      transmitted by the belt in watts
19
20 //(ii) for cross belt
21 ALPHAc=asin ((r1+r2)/d)*180/(%pi);
                                              //alpha in
      degrees
                                              //angle of
22 THETAc=180+2*ALPHAc;
      lap or contact in deg
  T2c=T1/(%e^(mu*(THETAc*%pi/180)));
                                              //tension on
      the slack side in N
24 \text{ Pc} = (T1 - T2c) *v;
                                              //power
      transmitted by the belt in watts
25
26 printf('(i) The Maximum Power transmitted by the
      open belt is: \%2.3 \, f \, kW. \, n', (Po/1000);
27 printf('(ii) The Maximum Power transmitted by the
      cross belt is: \%2.3 \, f \, kW. \, n', (Pc/1000));
```

Scilab code Exa 13.6 Example 6

```
1 clc
2 clear
3 //DATA GIVEN
4 b=0.25;
                                  //width of the belt in m
5 t=0.006;
                                  //thickness of the belt
     in m
                                  //radius of the pulley
6 r = 900/2000;
     in m
                                  //density of the
7 rho=1100;
     material in kg/m<sup>3</sup>
8 \text{ Tp=2};
                                  //permissible tension of
```

```
the belt in MN/m<sup>2</sup>
9 ratio=2;
                                  // \text{ratio of } T1/T2=2
10 N = 200;
                                  //speed of the pulley in
       R. P.M.
11
12 Tmax=Tp*10^6*b*t;
                                 //maximum safe tension
      of the belt
13 //centrifugal tension, Tc=m*v^2
14 \text{ m=(b*t)*1*rho};
                                 //mass of the belt per
      unit metre length
15 v=2*(\%pi)*(r+t/2)*N/60;
16 Tc=m*v^2;
17
                                 //tension in the tight
18 T1 = Tmax - Tc;
      side in N
19 T2=T1/ratio;
                                  //tension in the slack
      side in N
20 P = (T1 - T2) * v;
                                  //power transmitted by
      the belt in watts
21
22
23 printf('(i) The Centrifugal tension Tc is: \%3.1\,\mathrm{f} N.
       \n', Tc);
24 printf('(ii) The Power transmitted by the belt is:
```

Scilab code Exa 13.7 Example 7

```
//speed of the pulley in
6 N = 300;
      R. P.M.
7 theta=11/24*2*\%pi;
                                 //angle of contact in
      radians
8 \text{ mu} = 0.3;
                                 //coefficient of
      friction
9 t=0.0095;
                                 //thickness of the belt
      in m
                                 //density of the
10 rho=1100;
      material in kg/m<sup>3</sup>
11 sigma=2.5;
                                 //permissible stress in
     MN/m^2
12
13 \text{ v=\%pi*d*N/60};
                                 //speed of the belt in m
14 //P = (T2-T1) *v, so (T2-T1) = P/v \dots (1)
15 c=\%e^(mu*theta);
                                 // so , T2/T1=c ....(2)
16 //By equation (1) and (2),
17 T2=(P/v*1000)/(c-1);
                                 //tension in the slack
      side in N
  T1=c*T2;
                                 //tension in the tight
18
      side in N
19
20 //maximum tension, Tmax=sigma*b*t=0.2375*b*10^6 N
  //centrifugal tension, Tc=m*v^2=5800.5*b N
                 (4)
  //T1=Tmax-c
                                                  (5)
23 / By eqn. (3), (4) and (5)
24 b=T1/((sigma*10^6*t)-(t*1*rho*v^2));
                                                //width of
       the belt in m
25
26 printf(' The Width of the belt is: %3.0 f mm (say 150
      mm). n', (b*1000);
```

Scilab code Exa 13.8 Example 8

```
1 clc
2 clear
3 //DATA GIVEN
4 b=0.2;
                                  //width of the belt in m
5 t=0.01;
                                  //thickness of the belt
      in m
                                  //permissible tension of
6 Tp=2;
       the belt in MN/m<sup>2</sup>
7 ratio=1.8;
                                  // \text{ratio of } T1/T2=1.8
8 rho=1100;
                                  //density of the
      material in kg/m<sup>3</sup>
10 Tmax=Tp*10^6*b*t;
                                  //maximum safe tension
      of the belt
11 //we know centrifugal tension, Tc=Tmax/3
12 Tc=Tmax/3;
13 //centrifugal tension, Tc=m*v^2
14 \text{ m=(b*t)*1*rho};
                                  //mass of the belt per
      unit metre length
15 v = (Tc/m)^0.5;
16
                                  //tension in the tight
17 T1 = Tmax - Tc;
      side in N
18 T2=T1/ratio;
                                  //tension in the slack
      side in N
19 P = (T1 - T2) * v;
                                  //power transmitted by
      the belt in watts
20
21 printf('(i) The Velocity of the belt is: %3.1f m/s.
       n', v;
22 printf(' (ii) The Maximum power transmitted by the
      belt is: \%2.2 \text{ f kW}. \n',(P/1000));
```

Scilab code Exa 13.9 Example 9

```
1 clc
2 clear
3 //DATA GIVEN
4 To=1000;
                                 //initial tension in the
       belt in N
                                 //angle of embrace in
  theta=150;
      degrees
6 \text{ mu} = 0.25;
                                 //coefficient of
      friction
7 v = 500;
                                 //speed of the belt in m
      /min
8
9 //Initial tension, To=(T1+T2)/2
10 / so, (T1+T2) = 2000...
                             //theta converted into
11 theta=theta*(%pi)/180;
      radians
12 c = %e^(mu*theta);
                                 // so , T2/T1=c .... (2)
13 //By equation (1) and (2),
                                 //tension in the slack
14 T2=(To*2)/(c+1);
      side in N
15 T1=c*T2;
                                 //tension in the tight
      side in N
16
17 v = v/60;
                                 //speed of the belt
      converted into m/s
18 P = (T1 - T2) * v;
                                 //power transmitted by
      the belt in watts
19
20 printf('(i) The Tension in the tight side T1 is: %4
      .0 f N. \ n', T1);
21 printf('
                  The Tension in the slack side T2 is:
      \%3.1 \text{ f N. } \n, \text{T2};
```

```
22 printf('(ii) The Power transmitted by the belt is: \%2.2 \, f \, kW. \, \n', (P/1000);
```

Scilab code Exa 13.10 Example 10

```
1 clc
2 clear
3 //DATA GIVEN
                                 //maximum value of force
4 P = 400;
       that can be developed in N
                                 //coefficient of
5 \text{ mu} = 0.25;
      friction
6 d=0.6;
                                 //diameter of drum in m
7 //Refer the figure
8 \text{ theta} = 180 + 45;
                                 //angle of contact in
      degrees
9 theta=theta*(%pi)/180;
                                //theta converted into
      radians
10
11 //moments about A, Ma=0,
12 T1 = P * 1/0.5;
13
14 //(i)Drum is rotating anticlockwise
15 / T1 > T2
                                 (T1/T2)=e^{(mu*theta)}
16 T2=T1/(%e^(mu*theta));
17 Mcac = (T1-T2)*(d/2);
                                 //maximum braking
      torquethat can be developed in N
18
19 //(i)Drum is rotating clockwise
20 //T2 > T1
                                 (T2/T1)=e^{(mu*theta)}
21 T2=T1*(%e^(mu*theta));
22 Mcc = (T2-T1)*(d/2);
                                 //maximum braking
      torquethat can be developed in N
23
24 printf('(i) The Maximum braking torque that can be
```

```
developed in anticlockwise direction is: %3.0 f Nm
. \n', Mcac);
25 printf(' (ii) The Maximum braking torque that can be
    developed in clockwise direction is: %3.1 f Nm. \
    n', Mcc);
```

Scilab code Exa 13.11 Example 11

```
1 clc
2 clear
3 //DATA GIVEN
4 Pt=80;
                                   //power to be
      transmitted by the rope in kW
                                   //diameter of pulley in
5 d=1.5;
      \mathbf{m}
                                   //speed of the pulley in
6 N = 200;
       R. P.M.
7 alpha=45/2;
                                   //semi angle of groove
      in degrees
8 theta=160;
                                   //angle of contact in
      degrees
                                   //coefficient of
9 \text{ mu} = 0.3;
      friction
                                   //mass of each rope per
10 \, \text{m} = 0.6;
      unit metre length
                                   //safe pull in N
11 Ts = 800;
12
13 // centrifugal tension, Tc=m*v^2
14 v = (\%pi)*d*N/60;
                                                 //velocity
      of the rope in m/s
15 Tc=m*v^2;
16
                                                 //tension in
17
  T1=Ts-Tc;
       the tight side in N
18 / (T1/T2) = e^{(mu*theta)}
```

```
19 theta=theta*(%pi)/180;
                                              //theta
      converted into radians
20 alpha=alpha*(%pi)/180;
                                              //alpha
      converted into radians
21 T2=T1/(%e^(mu*theta/sin(alpha)));
                                              //tension on
       the slack side in N
22 p = (T1 - T2) * v;
                                              //power
      transmitted by the belt in watts
23
24 //no. of ropes required, n=Total power transmitted/
      Power transmitted by each rope
25 n=Pt/(p/1000);
26
27 //Initial tension in rope, To=(T1+T2+2Tc)/2
28 To = (T1+T2+2*Tc)/2;
29
30 printf('(i) The Number of ropes required for the
      drives is: \%1.1 f say \%1.0 f. \n',n,n);
31 printf('(ii) The Initial tension in the rope, To is
      : \%3.2 \, f \, N. \, n', To);
```

Scilab code Exa 13.12 Example 12

Scilab code Exa 13.13 Example 13

```
1 clc
2 clear
3 //DATA GIVEN
4 Ta=40;
                                   //number of teeth of
      gear A
                                   //number of teeth of
5 \text{ Tb} = 100;
      gear B
                                   //number of teeth of
  Tc=50;
      gear C
  Td = 150;
                                   //number of teeth of
      gear D
  Te = 52;
                                   //number of teeth of
      gear E
                                   //number of teeth of
  Tf = 130;
      gear F
                                   //speed of the motor
10 Na=1000;
      shaft in R.P.M.
11
12 / (Nf/Na) = (Ta/Tb) * (Tc/Td) * (Te/Tf)
                                            //Speed of the
13 Nf = (Ta/Tb) * (Tc/Td) * (Te/Tf) * Na;
      output shaft in R.P.M.
14
15 printf(' The Speed of the output shaft, Nf is: %3.2f
       R.P.M. \setminus n', Nf);
```