山东省 2020 年专升本真题试卷

高等数学(一)

一、单项选择题

1 .	当 x	:→0时,	以下函数是无穷小量的是

 $A \cdot e^x$

B . $\ln(x+2)$ C . $\sin x$

D . cosx

2. 平面
$$2x - 3y + 4z = 8$$
 与与直线 $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z}{4}$ 的位置关系是

A.平行

B . 垂直

C. 相交但不垂直 D. 直线在平面上

3. 微分方程
$$y'' + 7y' - 8y = 0$$
 的通解为

A . $y = C_1 e^{-x} + C_2 e^{8x}$

B . $y = C_1 e^{-x} + C_2 e^{-8x}$

C. $y = C_1 e^x + C_2 e^{8x}$

D . $y = C_1 e^x + C_2 e^{-8x}$

4. 曲线
$$y = 2x^3 + 3x^2 - 1$$
 的拐点是

A. $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ B. $\left(-\frac{1}{2}, \frac{1}{2}\right)$

C . (-1,0)

D.(0,-1)

5. 以下级数收敛的为

A . $\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^3 + 2n^2}$ B . $\sum_{n=1}^{\infty} \sin \frac{n\pi}{3}$

二、填空题

6. 函数 $f(x) = \sqrt{\frac{x}{3} - 1}$ 的定义域为__

7. 曲线 $y = \frac{1}{x} + 2 \ln x$ 在点(1,1)点处的切线方程为_____

8 . 若 $\int_a^b f(x)dx = 1$, $\int_a^b [2f(x) + 3g(x)]dx = 8$, 则 $\int_a^b g(x)dx =$ ______.

9. 已知两点 A(-1,2,0)和 $B(2,-3,\sqrt{2})$,则与向量 AB 同方向的单位向量为 _

10 . 已知函数 f(x,y)在 R^2 上连续,设 $I = \int_0^1 dx \int_0^{\sqrt{x}} f(x,y) dy + \int_1^2 dx \int_0^{2-x} f(x,y) dy$,则交换 积分顺序后 $I = _$

三、解答题

11. 求极限 $\lim_{x\to\infty} \frac{x^3+3x^2}{x^2+x+2} - x$

12. 求极限 $\lim_{x\to 0} \frac{\int_0^x \sin t^2 dt}{x^3}$

13 . 求不定积分 $\int \frac{\sqrt{x} + \ln x}{x} dx$

14. 求过点(1, -2, 2)且与两平面 x + 2y - z = 1 和 2x + y + 3z = 2 都垂直的平面方程.

15 . 已知函数 $z = x \sin \frac{y}{x}$,求 $\frac{\partial^2 z}{\partial x \partial y}$.

16. 计算二重积分 $\iint_D \cos(x^2+y^2) dx dy$, 其中 D 是由直线 $y=\frac{\sqrt{3}}{3}x$, $y=\sqrt{3}x$ 与圆 $x^2+y^2=\frac{\pi}{2}$ 所围成的第一象限的闭区域.

17. 求微分方程 $y' + y = e^x + x$ 的通解.

18. 求幂级数 $\sum_{n=0}^{\infty} \frac{x^{n+2}}{n+1}$ 的收敛域及和函数.

19. 求曲线 $y = -x^2 + 4$ 与直线 y = -2x + 4 所围成图形的面积.

20. 证明: 当x > 1时, $x + \ln x > 4\sqrt{x} - 3$.

21. 设函数 f(x)在[0,1]上连续,且 f(1)=1,证明:对于任意 $\lambda \in (0,1)$,存在 $\xi \in (0,1)$,使 $\{f(\xi) = \frac{\lambda}{\xi^2} . \}$

添加小学士微信(xueshi008) 查看高数答案详解