- raw (3) (FreeBSD man: Библиотечные вызовы)
- <u>raw</u> (4) (Linux man: Специальные файлы /dev/*)
- >> <u>raw</u> (7) (Русские man: Макропакеты и соглашения)
- <u>raw</u> (7) (Linux man: Макропакеты и соглашения)
- <u>raw</u> (8) (Linux man: Команды системного администрирования)
- Ключ raw обнаружен в базе ключевых слов.

НАЗВАНИЕ

raw, SOCK_RAW - raw-сокеты для Linux IPv4

СИНТАКСИС

```
#include <<u>sys/socket.h</u>>
#include <<u>netinet/in.h</u>>
raw_socket = socket(PF_INET, SOCK_RAW, int protocol);
```

ОПИСАНИЕ

Raw-сокеты позволяют реализовать новые протоколы IPv4 в пространстве пользователя. Raw-сокет получает и посылает необработанные датаграммы, не включающие в себя заголовки уровня соединения.

Уровень IPv4 генерирует заголовок IP при посылке пакета, если только сокету не задана опция **IP_HDRINCL**. Если она задана, то пакет должен содержать заголовок IP. Принимаемые пакеты всегда содержат заголовок IP.

Открывать raw-сокеты могут только процессы с идентификатором эффективного пользователя, равным нулю, или имеющие возможность **CAP_NET_RAW**.

Все пакеты или ошибки, совпадающие с номером протокола *protocol*, указанным raw-сокету, передаются этому сокету. Список возможных протоколов и назначенных им номеров указан в RFC1700 и в **getprotobyname**(3).

Протокол **IPPROTO_RAW** подразумевает разрешенный **IP_HDRINCL** и принимает все протоколы IP. Передача протоколов в этом случае не разрешена.

Поля заголовка IP, изменяемые IP_HDRINCL при передаче	
IP Checksum	Всегда заполняется.
Source Address	Заполняется, если значение равно нулю.
Packet Id	Заполняется, если значение равно нулю.
Total Length	Всегда заполняется.

Если указано **IP_HDRINCL** и заголовок IP имеет ненулевой адрес назначения, то для маршрутизации пакета используется адрес назначения сокета. Если указано значение **MSG_DONTROUTE**, то адрес назначения должен ссылаться на локальный интерфейс, иначе

в любом случае будет производится поиск в таблице маршрутизации, хотя маршруты через шлюзы будут игнорироваться. Если значение **IP_HDRINCL** не установлено, то опции заголовка IP в raw-сокетах могут быть установлены с помощью **setsockopt**(2); более подробная информация приведена в **ip**(7).

В Linux 2.2 все поля заголовка IP и опции могут быть заданы с помощью опций сокета IP. Это означает, что raw-сокеты, как правило, необходимы лишь для новых протоколов или протоколов без интерфейса пользователя (таких, как ICMP).

Принятый пакет передается всем подключенным (bound) к этому протоколу сокетам до того, как он будет передан другим обработчикам протокола (например, протокольным модулям ядра).

ФОРМАТЫ АДРЕСОВ

Raw-сокеты используют стандартную адресную структуру **sockaddr_in**, определенную в **ip**(7). Поле **sin_port** может быть использовано для указания номера протокола IP, но оно игнорируется в Linux 2.2 и всегда должно быть равно нулю (см. ЗАМЕЧАНИЯ). Для входящих пакетов **sin_port** принимает значение протокола пакета. Возможные протоколы IP описаны в файле <<u>netinet/in.h</u>>.

ОПЦИИ СОКЕТОВ

Опции raw-сокета могут быть установлены $\underline{\mathbf{setsockopt}}(2)$ и прочитаны $\underline{\mathbf{getsockopt}}(2)$. Для этого должен быть передан флаг семейства SOL_RAW .

ICMP_FILTER

Запускает специальный фильтр для raw-сокетов, подключенных к протоколу **IPPROTO_ICMP**. Значение является набором битов для каждого типа сообщений ICMP, который должен быть отфильтрован. По умолчанию сообщения ICMP не фильтруются.

Кроме того, поддерживаются все датаграммные опции сокетов $SOL_IP_{ip}(7)$.

ЗАМЕЧАНИЯ

Raw-сокеты фрагментируют пакеты, если его общая длина превосходит MTU интерфейса (см. BUGS). Более удобной и быстрой альтернативой является реализация path MTU discovery, описанная в разделе **IP_PMTU_DISCOVER ip**(7).

Raw-сокет может быть подключен к определенному локальному адресу с помощью вызова **bind**(2). Если он не подключен, принимаются все пакеты указанного протокола IP. Кроме того, RAW-сокет может быть подключен к определенному сетевому устройству с помощью **SO_BINDTODEVICE**; см. **socket**(7).

Сокет **IPPROTO_RAW** предназначен только для передачи (посылки) пакетов. Если Вы хотите получать все пакеты IP, используйте пакетный сокет (**packet**(7)) с протоколом **ETH_P_IP**. Обратите внимание, что пакетные сокеты в отличие от raw-сокетов не собирают фрагменты IP.

Если Вы хотите получать все пакеты ICMP для датаграммного сокета, то лучше использовать $IP_RECVERR$; см. ip(7).

Raw-сокеты могут "перехватывать" в Linux все протоколы, даже имеющие протокольный модуль в ядре (такие, как ICMP или TCP). В этом случае пакеты передаются как модулю ядра, так и raw-сокету(-ам). Это не должно быть отражено в переносимых программах, так как многие другие реализации BSD-сокетов имеют определенные ограничения.

Linux никогда не изменяет заголовки, полученные от пользователя (за исключением заполнения некоторых обнуленных полей, как описано в случае с **IP_HDRINCL**). Такое поведение отличается от поведения многих других реализаций raw-сокетов.

RAW-сокеты, в общем случае, не являются переносимыми, поэтому следует избегать их использования в переносимых программах.

Передача через raw-сокет должна освуществляться с помощью протокола IP из **sin_port**; эта возможность исчезла в Linux 2.2. Избежать этого можно, используя **IP_HDRINCL**.

ОБРАБОТКА ОШИБОК

Ошибки, возникающие в сети, передаются пользователю, только если сокет подключен или установлен флаг **IP_RECVERR**. В целях совместимости в подключенные сокеты передаются только **EMSGSIZE** и **EPROTO**. С **IP_RECVERR** все сетеые ошибки сохраняются в очереди ошибок.

найденные ошибки

EMSGSIZE

Размер пакета слишком велик, либо включен Path MTU Discovery (флаг сокета **IP_PMTU_DISCOVER**), либо размер пакета превышает максимально разрешенный для IPv4 размер, равный 64Кб.

EACCES

Пользователь попытался передать пакет по широковещательному адресу при сброшенном флаге широковещательной передачи.

EPROTO

Пришла ошибка ІСМР, сообщающая о проблеме с параметрами.

EFAULT

Был передан неправильный адрес памяти.

EOPNOTSUPP

Сокетному вызову был передан неверный флаг (например, MSG_OOB).

EINVAL

Неверный аргумент.

EPERM

Пользователь не имеет прав на открытие raw-сокета. Это могут делать только процессы с идентификатором эффективного пользователя, равным нулю, или имеющие атрибут **CAP_NET_RAW**.

ВЕРСИИ

IP_RECVERR и **ICMP_FILTER** появились в Linux 2.2. Они являются расширениями Linux и не должны использоваться в переносимых программах.

Коды raw-сокетов в версии Linux 2.0 при установленном флаге SO_BSDCOMPAT были специально сделаны "совместимыми" с BSD по существующим ошибкам. Из Linux 2.2 это было удалено.

найденные ошибки

Расширения "прозрачного" прокси не описаны.

Если установлена опция **IP_HDRINCL**, датаграммы не будут фрагментированы и их размер будет ограничен MTU интерфейсом. Это ограничение Linux 2.2.

B Linux 2.2 отсутствует настройка протокола IP для отправки его в **sin_port**, и всегда используется тот протокол, к которому был подключен сокет или который был упомянут при первом вызове **socket**(2).

АВТОРЫ

Эта страница руководства была написана Энди Клином (Andi Kleen).

СМ. ТАКЖЕ

<u>ip</u>(7), <u>socket</u>(7), <u>recvmsg</u>(2), <u>sendmsg</u>(2) **RFC1191** для path MTU discovery. **RFC791** и файл < <u>linux/ip.h</u>> для протокола IP.