VG4142SxxxNOS1 无线模块 硬件规格书

V1.0

目录

	概述	
	技术参数	
三、	引脚位置图	4
四、	引脚说明	5
五、	硬件设计指导与注意事项	6
	5.1、硬件连接示意图	6
	5.2、电源设计与相关注意事项	
	5.3、天线设计与指导	
六、	编程开发注意事项	9
	回流焊曲线图	
	静电损坏警示	
	封装信息1	
	机械尺寸(unit:mm)	
十、	版本更新说明1	1
	一、采购选型表1	
+=	二、声明1	2
十三	E、联系我们1	2

一: 概述

VG4142SxxxN0S1 系列无线模块,基于 PANCHIP 的 PAN3031 高性能无线收发芯片设计,是一款体积小巧、低功耗、远距离的双向无线收发模块。PAN3031 是一款采用 Chirp-IOT 调制解调技术的低功耗远距离无线收发芯片,支持半双工无线通信,工作频段为 400~510MHz/768~1020MHz,该芯片具有高抗干扰性、高灵敏度、低功耗和超远距离等特性。

该系列模块集成了所有射频相关功能和器件,用户不需要对射频电路设计深入了解,就可以使用模块轻易地开发出性能稳定、可靠性高的无线方案与无线物联网设备。

产品主要特点:

- Chirp-IOT 调制
- 最大链路预算可达 149dB
- 最大发射功率 20dBm, 可编程配置
- 高接收灵敏度: -129 dBm
- 宽工作电压范围: 1.8~3.6V
- 支持带宽 125KHz、250KHz、500KHz
- 支持扩频因子 SF: 7~9

应用:

- 智能电表
- 供应链和物流
- 楼宇自动化
- 农业传感器
- 智慧城市
- 零售店传感器
- 资产跟踪
- 安防系统
- 远程控制应用程序

二: 技术参数

技术指标	参数	备注
电压范围	1.8∼3.6V	一般 3. 3V
频段范围	433MHz、490MHz、868MHz、915MHz	适用频段由模块型号决定
晶振频率	32MHz	无源晶振
输出功率	-7dBm to +20dBm	可编程配置,步进值 1dBm
无线速率	1.04kbps~20.4kbps	可编程配置
调制方式	Chirp-IOT	
接收灵敏度	-129dBm	SF=9,BW=125kHz
接收带宽	125KHz、250KHz、500KHz	可编程配置
发射电流	110mA	发射功率 = 20dBm
接收电流	18mA	非 DC-DC 模式
休眠电流	<1uA	
驱动接口	SPI	
天线阻抗	50 欧姆	
天线连接方式	侧边邮票孔	
存储温度	-55°C∼+125°C	
工作温度	-40°C ~+85°C	工业级
尺寸大小	13. 5x12. 0mm	

三、引脚位置图

图 3-1 俯视图

四、引脚说明

序号	引脚	类型	描述	
1	IRQ	0	中断信号脚	
2	DI05	I/0	数字 I0,软件可配置,直连芯片 GPI05	
3	DI08	I/0	数字 I0,软件可配置,直连芯片 GPI08	
4	DI011	I/0	数字 IO, 软件可配置, 直连芯片 GPIO11	
5	NC		模块内部悬空	
6	NC		模块内部悬空	
7	VCC	电源	电源正极	
8	GND	电源	地	
9	GND	电源	地	
10	NSS	I	SPI 接口片选输入	
11	MOSI	I	SPI 接口 MOSI 数据输入	
12	MISO	0	SPI 接口 MISO 数据输出	
13	SCK	I	SPI 接口时钟输入	
14	NC		模块内部悬空	
15	GND	电源	地	
16	ANT	I/0	RF 信号输入/输出,接 50 Ω 天线	

五、硬件设计指导与注意事项

5.1、硬件连接示意图

图 5-1 编程开发硬件连接

5.2、电源设计与相关注意事项

- 1、请注意电源正负极的正确接法,并确保电源电压在推荐供电电压范围,如若超出模块最大允许供电范围,会造成模块永久损坏:模块电源脚的滤波电容尽量靠近模块电源引脚。
- 2、模块供电系统中,过大的纹波可能通过导线或者地平面耦合到容易受到干扰的线路上,例如天线、馈线、时钟线等敏感信号线上,容易引起模块的射频性能变差,所以我们推荐使用 LDO 作为无线模块的供电电源。
- 3、选取 LDO 稳压芯片时,需要注意电源的散热以及 LDO 稳定输出电流的驱动能力;考虑整机的长期稳定工作,推荐预留 50%以上电流输出余量。
- 4、最好给模块单独使用一颗 LDO 稳压供电;如果采用 DC-DC 电源芯片,后面一定加一个 LDO 作为模块电源的隔离,防止开关电源芯片的噪声干扰射频的工作性能。
 - 5、MCU 与模块之间的通信线若使用 5V 电平,必须串联 1K-5.1K 电阻(不推荐,仍有损坏风险)。
 - 6、射频模块尽量远离高压器件,因为高压器件的电磁波也会对射频信号产生一定的影响。
- 7、高频数字走线、高频模拟走线、大电流电源走线尽量避开模块下方,若不得已必须经过模块下方,需走线在摆放模块的 PCB 底板另一层,并保证模块下面铺铜良好接地。

5.3、天线设计与指导

5.3.1 邮票孔接口 RF 设计

选择模块射频输出接口为邮票孔形式时,在设计时用 50ohm 特征阻抗的走线来连接底板 PCB 板上的天线。考虑到高频信号的衰减,需要注意底板 PCB 射频走线长度需尽量短,建议最长走线长度不超过 20mm,并且走线宽度需要保持连续性;在需要转弯时尽量不要走锐角、直角,推荐走圆弧线。

为尽量保证底板射频走线阻抗为50欧姆,可以根据不同板厚,按照如下参数进行调整。以下仿真值,仅供参考。

	板厚为 1.0mm 时,接地铺铜与走线间距为 5.3mil
射频走线采用 20mil 线宽	板厚为 1.2mm 时,接地铺铜与走线间距为 5.1mil
别 <i>则</i> 足线术用 20mm 线见	板厚为 1.6mm 时,接地铺铜与走线间距为 5mil
	板厚为 1.0mm 时,接地铺铜与走线间距为 6.3mil
射频走线采用 25mil 线宽	板厚为 1.2mm 时,接地铺铜与走线间距为 6mil
别	板厚为 1.6mm 时,接地铺铜与走线间距为 5.7mil
	板厚为 1.0mm 时,接地铺铜与走线间距为 7.6mil
射频走线采用 30mil 线宽	板厚为 1.2mm 时,接地铺铜与走线间距为 7.1mil
对沙外是这个用 5011111 线见	板厚为 1.6mm 时,接地铺铜与走线间距为 6.6mil

5.3.2 内置天线

内置天线是指焊接在 PCB 底板上放置在产品外壳内部的天线,具体包括贴片陶瓷天线、弹簧天线等。在使用内置天线时,产品的结构与天线的安装位置对射频性能有较大影响,在产品外壳结构空间足够的前提下,弹簧天线尽量垂直向上放置;天线摆放位置的底板周围不能铺铜,或者可以将天线下方的电路板挖空,因为金属对射频信号的吸收和屏蔽能力非常强,会严重影响通讯距离,另外天线尽量安放在底板的边缘。

5.3.3 外置天线

外置天线是指模块通过 IPEX 延长线, SMA 等标准射频接口安装在产品外壳外面的天线, 具体包括棒状天线、吸盘天线、玻璃钢天线等。外置天线基本是标准品, 为更好的选择一款适用于模块的天线, 在天线选型的过程中对天线的参数选择, 应注意如下:

- 1、天线的工作频率和相应模块的工作频率应一致。
- 2、天线的输入特征阻抗应为 50ohm。
- 3、天线的接口尺寸与该模块的天线接口尺寸应匹配。
- 4、天线的驻波比(VSWR)建议小于2,且天线应具备合适的频率带宽(覆盖具体产品实际应用中所用到的频点)。

5.3.4 天线的匹配

天线对射频模块的传输距离至关重要。在实际应用中,为方便用户后期天线匹配调整。建议用户在设计原理图时在天线和模块 ANT 脚输出之间预留一个简单的 π 型匹配电路。如果天线已经是标准的 $50\,\Omega$,元器件 L1 贴 0R 电阻,器件 C1, C2 不需焊接,否则需要使用网络分析仪测量天线实际阻抗并进行匹配来确定 C1,L1,C2 的取值情况。模块 ANT 脚到天线端的走线要尽量短,建议最长走线长度不超过 $20\,\mathrm{mm}$ 。

5-2 π型匹配电路

六、编程开发注意事项

一般来看,射频芯片的接收灵敏度在其晶振的整数倍工作频点处相对比较差,建议用户在选用工作频点时注意要避开 其模块晶振的镜像频点,即晶振频率的整数倍频点,本模块的晶振频率为32MHz。

七、回流焊曲线图

升温区 - 温度: 25~150°C 时间: 60~90s 升温斜率: 1~3°C/s

预热恒温区 — 温度: 150~200℃ 时间: 60~120s

回流焊接区 - 温度: >217°C 时间: 60~90s; 峰值温度: 235~250°C 时间: 30~70s

冷却区 - 温度: 峰值温度~180°C 降温斜率-1~-5°C/s

焊料 - 锡银铜合金无铅焊料 (SAC305)

八、静电损坏警示

射频模块为高压静电敏感器件, 为防止静电对模块的损坏

- 1、严格遵循防静电措施,生产过程中禁止裸手触碰模块。
- 2、 模块应该放置在能够预防静电的放置区。
- 3、在产品设计时应该考虑高压输入处的防静电保护电路。

九、封装信息

机械尺寸(unit:mm)

编号	尺寸(mm)	误差
A	13. 5	±0.5mm
В	12.0	±0.5mm
С	0.9	±0.1mm
D	1.45	±0.1mm
E	1.0	±0.1mm
F	0.6	±0.1mm
G	0.8	±0.1mm
Н	2. 2	±0.2mm

十、版本更新说明

版本	更新内容	更新日期	负责人
V1.0	初始发布版本	2020年12月3日	Dyming

十一、采购选型表

序号	型号	说明
1	VG4142S433NOS1-B\D	433MHz 频段,编带包装\托盘包装
2	VG4142S490N0S1-B\D	490MHz 频段,编带包装\托盘包装
3	VG4142S868NOS1-B\D	868MHz 频段,编带包装\托盘包装
4	VG4142S915N0S1-B\D	915MHz 频段,编带包装\托盘包装

十二、声明

- 1、由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文中的所有陈述、信息和建议不构成任何明示或暗示的担保。
- 2、本公司保留所配备全部资料的最终解释和修改权,如有更改恕不另行通知。

十三、联系我们

公司: 深圳市沃进科技有限公司

地址:深圳市龙华区大浪街道高峰社区三合路 1 号智慧云谷 C 栋 205-208

电话: 0755-23040053

传真: 0755-21031236

官方网址: www.vollgo.com

商务合作: sales@vollgo.com

