Smoking was an exclusion criterion for controls, whereas 4 of the 21 cases were regular smokers of 2 to 10 cigarettes per day. Mean urinary excretion rates of 8-iso-PGF $_{2\alpha}$ were similar in the 4 smokers (404 pg/mg of creatinine) and in the 21 cases considered as a whole (482 pg/mg of creatinine). Urine albumin excretion rates were not tested. There was only a small glucose variability between each day (day 1 mean amplitude of glycemic excursions [MAGE], 74 mg/dL; day 2 MAGE, 76 mg/dL), and MAGE values on day 1 and day 2 were highly correlated (r=0.87; P<.001).

Finally, conflicting observations in the study by O'Byrne et al⁺ could have resulted from the use of different methods in different groups of patients at different ages: enzyme immunoassay in our study (21 patients with type 2 diabetes; mean age of 64 years) vs stable isotope dilution mass spectrometry assay in O'Byrne et al (13 patients with type 1 diabetes; mean age of 36 years).

Louis Monnier, MD l-monnier@chu-montpellier.fr Department of Metabolic Diseases Lapeyronie Hospital Emilie Mas, PhD University Institute of Clinical Research University of Montpellier Christine Ginet, MD Department of Metabolic Diseases Lapeyronie Hospital Françoise Michel, MD University Institute of Clinical Research University of Montpellier Laetitia Villon, MD Department of Metabolic Diseases Lapeyronie Hospital Jean-Paul Cristol, MD Claude Colette, PhD University Institute of Clinical Research University of Montpellier Montpellier, France

Financial Disclosures: None reported.

- 1. Buckingham B, Block J, Wilson DM. Continuous glucose monitoring. *Curr Opin Endocrinol Diabetes*. 2005;12:273-279.
- 2. Roberts LJ, Morrows JD. Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. *Free Radic Biol Med*. 2000;28:505-513.
- **3.** Brownlee M, Hirsch IB. Glycemic variability: a hemoglobin A_{1c}-independent risk factor for diabetic complications. *JAMA*. 2006;295:1707-1708.
- **4.** O'Byrne S, Forte P, Roberts J, et al. Nitric oxide synthesis and isoprostane production in subjects with type 1 diabetes and normal urinary albumin excretion. *Diabetes*. 2000;49:857-862.

RESEARCH LETTER

Translation of Research Evidence From Animals to Humans

To the Editor: Most medical therapies in use today were initially developed and tested in animals, 1 yet animal experiments often fail to replicate when tested in rigorous human trials. 2.3 We conducted a systematic review to determine

©2006 American Medical Association. All rights reserved.

Figure 1. Methodological Quality of Animal Trials (n=76)

how often highly cited animal studies translate into successful human research.

Methods. The 7 leading scientific journals by citation impact factor (Journal Citation Reports, Thomson Scientific, Philadelphia, Pa, 2004) that regularly publish original animal studies were searched: Science, Nature, Cell, Nature Medicine, Nature Genetics, Nature Immunology, and Nature Biotechnology. Articles with more than 500 citations were retrieved under the assumption that such prominent findings would more likely be tested in subsequent human trials.4 A total of 2000 articles published between 1980 and 2000 were screened, reflecting advances in molecular biology and recombinant genetics. Articles were included if they investigated a preventive or therapeutic intervention in an in vivo animal model. When there were multiple animal studies of the same intervention, the most cited study was retained. Power calculations ($\alpha = 0.05$, $\beta = 0.05$) estimated that 49 articles were needed to exclude a translation rate below 5%.

For each included study, a literature search identified human studies that translated the animal evidence. Successful translation was defined as replication in a randomized trial yielding results that were statistically positive according to primary outcome. Interventions and diseases analogous to those studied in the animal study were allowed.

MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews, the National Institutes of Health Clinical Trials Database, BIOSIS Previews, and the International Pharmaceutical Abstracts Database were searched from their inception through May 2006. Bibliographies of topic-specific review articles were manually searched for additional studies and experts were contacted if the search was negative.

The quality of the studies was assessed based on adapted standards for the conduct of animal research (FIGURE 1).⁵ Good quality was defined as a global methodology score of 50% or higher. Multivariable logistic regression was used to assess predictors of translation. The Pearson correlation test was used to determine if methodological quality of ani-

(Reprinted) JAMA, October 11, 2006—Vol 296, No. 14 1731

Figure 2. Search Flow and Article Retrieval

mal studies improved over time. Significance level was set at 2-sided *P*<.05. Analyses were conducted using SAS version 9.0 (SAS Institute Inc, Cary, NC).

Results. Seventy-six animal studies fulfilling inclusion criteria were identified (FIGURE 2; details of studies available in online eTable, available at http://www.jama.com). No animal study was negative. The median citation count was 889 (range, 639-2233). The median publication year was 1992, yielding a median of 14 years for potential translation. Of the animal studies, 37 (49%) were rated as having good methodological quality. Most studies included dose-response gradients, clinically relevant outcomes, and long-term end points (Figure 1). Few studies included random allocation of animals, adjustment for multiple hypothesis testing, or blinded assessment of outcomes. Methodological quality did not improve during the study interval (r=-0.08, P=.47).

Of the animal studies, 28 (37%; 95% confidence interval [CI], 26%-48%) were replicated in human randomized trials, 14 (18%) were contradicted by randomized trials, and 34 (45%) remain untested. Median time to replication was 7 years (range, 1-15 years). Global methodology score did not predict translation in unadjusted analyses (odds ratio [OR], 1.28 per 10% higher score; 95% CI, 0.97-1.69) or in analyses adjusted for citation rate and length of time available for human replication (OR, 1.27; 95% CI, 0.96-1.69). Animal studies incorporating dose-response gradients were more likely to translate to humans (OR, 3.3; 95% CI, 1.1-10.1). Other quality criteria, type of therapy, type of disease, species, journal, citation rate, length of follow-up, and year of publication did not predict subsequent translation. Eight replicated interventions were subsequently approved for use in patients.

Comment. Only about a third of highly cited animal research translated at the level of human randomized trials. This rate of translation is lower than the recently estimated 44% replication rate for highly cited human studies. Limitations of this review include a focus on highly cited animal studies published in leading journals, which by their positive and highly visible nature may have been more likely to translate than less frequently cited research. In addition, this study had limited power to discern individual predictors of translation.

Nevertheless, we believe these findings have important implications. First, patients and physicians should remain cautious about extrapolating the findings of prominent animal research to the care of human disease. Second, major opportunities for improving study design and methodological quality are available for preclinical research. Finally, poor replication of even high-quality animal studies should be expected by those who conduct clinical research.

Daniel G. Hackam, MD
Daniel.Hackam@ices.on.ca
Donald A. Redelmeier, MD, MSHSR
Department of Medicine
University of Toronto
Toronto, Ontario

Author Contributions: Dr Hackam had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. *Study concept and design:* Hackam, Redelmeier.

Acquisition of data: Hackam.

Analysis and interpretation of data: Hackam, Redelmeier.

Drafting of the manuscript: Hackam, Redelmeier.

Critical revision of the manuscript for important intellectual content: Hackam, Redelmeier.

Statistical analysis: Hackam, Redelmeier.

Obtained funding: Redelmeier.

Administrative, technical, or material support: Redelmeier.

Study supervision: Redelmeier. Literature retrieval: Hackam.

Financial Disclosures: None reported.

Funding/Support: Dr Hackam was supported by a Canadian Institutes of Health Research Fellowship Award, the Chisholm Memorial Fellowship, and the Clinician-Scientist Training Program of the University of Toronto. Dr Redelmeier was supported by the Canada Research Chair in Medical Decision Sciences, the Error Management Unit of Sunnybrook Health Sciences Centre, the National Institutes of Health Resuscitation Outcomes Consortium, and the Canadian Institutes of Health

Role of the Sponsors: The funding sources had no role in the design and conduct of the study; in the collection, management, analysis, and interpretation of the data; or in the preparation, review, or approval of the manuscript.

Additional Information: The eTable is available at http://www.jama.com.

Acknowledgment: We are grateful to Mark Crowther, MD, MSc, Gideon Koren, MD, Philippe Poussier, MD, Joel Ray, MD, MSc, William Sibbald, MD, MBA, and Matthew Stanbrook, MD, PhD, for comments on a previous draft of the manuscript. No individual received compensation for their assistance.

- 1. Guidance for Industry: Nonclinical Safety Evaluation of Drugs or Biologic Combinations. Rockville, Md: US Dept of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research; 2006.
- 2. Kaste M. Use of animal models has not contributed to development of acute stroke therapies: pro. *Stroke*. 2005;36:2323-2324.
- 3. Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I. Where is the evidence that animal research benefits humans? *BMJ*. 2004;328:514-517.
- **4.** Ioannidis JPA. Contradicted and initially stronger effects in highly cited clinical research. *JAMA*. 2005;294:218-228.
- Stroke Therapy Academic Industry Roundtable. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999:30:2752-2758.

1732 JAMA, October 11, 2006—Vol 296, No. 14 (Reprinted)

©2006 American Medical Association. All rights reserved.

Source	Journal	No. of Citations	Intervention	Disease
Pelleymounter et al, 1995	Science	2233	Leptin	Obesity
Beutler et al, 1985	Science	1958	TNF Ab	Sepsis
O'Reilly et al, 1997	Cell	1792	Endostatin	Malignancy
O'Reilly et al, 1994	Cell	1784	Angiostatin	Malignancy
Kim et al, 1993	Nature	1626	VEGF Ab	Malignancy
Trauth et al, 1989	Science	1440	Anti-APO-1 Ab	Malignancy
Groux et al, 1997	Nature	1390	CD4 ⁺ T-cell clones	Inflammatory bowel diseas
Simon et al, 1984	Science	1388	2-amino-7-phosphonoheptanoic acid	Cerebral ischemia
Ulmer et al, 1993	Science	1358	DNA vaccine	Influenza
Oshima et al, 1996	Cell	1264	MF-tricyclic	Colorectal polyposis
Kuchroo et al, 1995	Cell	1259	B7-1 and B7-2 Ab	EAE
Culver et al, 1992	Science	1254	Retroviral vector with thymidine kinase	Malignancy
Brooks et al, 1994	Cell	1248	Integrin α(v)β3 antagonist	Malignancy
Brooks et al, 1994	Science	1202	Integrin α(v)β3 Ab	Malignancy
Hotamisligil et al, 1993	Science	1187	TNF-α receptor IgG chimera	Insulin resistance
Simonet et al, 1997	Cell	1180	Osteoprotegerin	Bone-resorptive diseases
Okamura et al. 1995	Nature	1138	Anti-IL-18 Ab	Sepsis
Sakurai et al, 1998	Cell	1106	Orexin-A and -B	Feeding behavior
Cuttitta et al, 1985	Nature	1101	Bombesin-like peptide Ab	Malignancy
Hunkeler et al, 1981	Nature	1076	Flumazenil	Decreased arousal
Rosenberg et al, 1986	Science	1070	Adoptive immunotherapy	Malignancy
Asahara et al, 1997	Science	1058	Endothelial cell progenitors	Tissue ischemia
Jang et al, 1997	Science	1050	Resveratrol	
Chen et al, 1994	Science	1040	Oral tolerance/T-cell clones	Malignancy EAE
	Cell			
Pfeffer et al, 1993		1025	TNF receptor gene targeting	Sepsis
Powell et al, 1989	Science	1006	Cilazapril	Postangioplasty restenosis
Sheardown et al, 1990	Science	1004	NBQX	Cerebral ischemia
Kestler et al, 1991	Cell	1002	Nef gene deletion	AIDS
Koch et al, 1992	Science	984	IL-8 Ab/antisense	Neovascularization
Townsend and Allison, 1993	Science	975	Costimulatory ligand B7	Malignancy
Acha-Orbea et al, 1988	Cell	963	Anti-Vβ8 Ab	EAE
Fearon et al, 1990	Cell	944	IL-2 gene therapy	Malignancy
Schinkel et al, 1994	Cell	943	P-glycoprotein gene targeting	Drug resistance
Ferrari et al, 1998	Science	934	Bone marrow transplantation	Muscular dystrophies
Druker et al, 1996	Nat Med	927	Imatinib	Malignancy
Uehata et al, 1997	Nature	922	Y-27632	Hypertension
Huang et al, 1994	Science	914	Neuronal nitric oxide synthase disruption	Acute ischemic stroke
Cobbold et al, 1984	Nature	899	lgG2b Ab	Graft rejection
Lenschow et al, 1992	Science	879	CD28 and B7 targeting	Graft rejection
Schenk et al, 1999	Nature	867	Amyloid-β immunization	Alzheimer disease
Molkentin et al, 1998	Cell	866	Cyclosporine A	Left ventricular hypertrophy
Bellgrau et al, 1995	Nature	855	CD95 ligand	Graft rejection
Chen et al, 1992	Cell	848	B7-mediated gene therapy	Malignancy
Millauer et al, 1994	Nature	848	Flk-1/VEGF receptor-directed therapy	Malignancy
Ingber et al, 1990	Nature	842	AGM-1470	Malignancy
Border et al, 1990	Nature	841	TGF β-1 Ab	Glomerulonephritis
MacMicking et al, 1995	Cell	825	iNOS targeting	Sepsis
Jilka et al, 1992	Science	810	IL-6 Ab	Bone-resorptive disease
Faden et al, 1989	Science	808	N-methyl-D-aspartate antagonists	Traumatic brain injury
Rosenfeld et al, 1992	Cell	807	CFTR gene therapy	Cystic fibrosis
Fan et al, 1997	Nature	804	MTII, NDP-MSH	Obesity/hyperphagia
Lagasse et al, 2000	Nat Med	803	Hematopoietic stem cells	Tyrosinemia type I

(continued)

 $\hbox{@2006 American Medical Association. All rights reserved.}$

eTable. Details of Animal Studies (cont)						
Source	Journal	No. of Citations	Intervention	Disease		
Ferns et al, 1991	Science	781	Platelet-derived growth factor Ab	Postangioplasty restenosis		
Bergman et al, 1990	Science	771	Subthalamic nucleus-directed therapy	Parkinsonism		
Huang et al, 1988	Science	769	Retinoblastoma gene therapy	Malignancy		
Mosier et al, 1988	Nature	764	Leukocyte transfer	SCID		
Schnell and Schwab, 1990	Nature	758	IN-1 Ab	Spinal cord injury		
Wegner et al, 1990	Science	757	ICAM-1 Ab	Asthma		
Tepper et al, 1989	Cell	756	IL-4 gene therapy	Malignancy		
Bischoff et al, 1996	Science	755	Adenovirus mutant	Malignancy		
Walczak et al, 1999	Nat Med	745	TRAIL	Malignancy		
Larsen et al, 1996	Nature	741	CD40 and CD28 targeting	Graft rejection		
Gussoni et al, 1999	Nature	738	Hematopoietic or myologic stem cells	Muscular dystrophy		
Mayordomo et al, 1995	Nat Med	728	Tumor peptide-pulsed dendritic cells	Malignancy		
Li et al, 1995	Cell	721	IL-1b-converting enzyme gene targeting	Sepsis		
Kromer, 1987	Science	711	Nerve growth factor	Acute brain injury		
Isobe et al, 1992	Science	695	ICAM-1 and LFA-1 Ab	Graft rejection		
Brownlee et al, 1986	Science	687	Aminoguanidine	Diabetic vasculopathy		
Henderson et al, 1994	Science	678	Glial cell line-derived neurotrophic factor	Motor neuronopathy		
Yednock et al, 1992	Nature	669	Integrin α-4-β-1 Ab	EAE		
Trujillo and Akil, 1991	Science	668	NMDA receptor antagonist	Opiate-related disorders		
Ohlsson et al, 1990	Nature	667	IL-1 receptor antagonist	Sepsis		
Border et al, 1992	Nature	665	Decorin	Glomerulonephritis		
Sendtner et al, 1990	Nature	663	Ciliary neurotrophic factor	Motor neuronopathy		
Weisman et al, 1990	Science	641	Soluble hcr type-1	Ischemia reperfusion injury		
Mustoe et al, 1987	Science	639	TGF-β	Wound healing		

Abbreviations: Ab, antibody; CFTR, cystic fibrosis transmembrane conductance regulator; EAE, experimental autoimmune encephalomyelitis; hcr., human-complement receptor; ICAM-1, intercellular adhesion molecule-1; IgG, immunoglobulin G; IL, interleukin; iNOS, inducible nitric oxide synthase; LFA-1, leukocyte function-associated antigen-1; NBQX, 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline; NMDA, N-Methyl-D-Aspartate; SCID, severe combined immunodeficiency; TGF, transforming growth factor; TNF, tumor necrosis factor; TRAIL, tumor necrosis factor related apoptosis-inducing ligand; VEGF, vascular endothelial growth factor.