

Winning Space Race with Data Science

Maor Assa March 15th 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies used

- Data Collection through API
- Data Collection with Web Scraping
- Data Wrangling
- Exploratory Data Analysis with SQL
- Exploratory Data Analysis with Data Visualization
- Interactive Visual Analytics with Folium
- Machine Learning Prediction

Summary of the results

Success rate is dependent on booster maturity (especially since 2016)

Orbit matters: Some orbits are showing very high success rate

Launch site matters: East coast launch sites are showing greater success rate

Payload matters: some payload ranges show very high success rate while others show very low rate

Introduction: spaceX commercial launches

- spaceX is the largest commercial space launches provider
- space X began commercial launches in 2013
- spaceX unique commercial advantage is based on the ability to re-use the first stage Booster
- space X launch cost is 40% lower than traditional methods due to the above capability
- space X is operating from 4 sites and launch various payloads to various orbits

The questions we are researching in this report:

- What parameters impact a successful landing of the 1st stage Booster
- How can this knowledge be leveraged for commercial launch companies

Methodology

Executive Summary

1

Data collection

spaceX open database: obtained via spaceX API

Wikipedia data: obtained via web scrapping

Data Processing

Missing values were identified

Data types were validated

Clear launch outcome label was added

Feature analysis and one-hot encoding was performed to allow application of prediction models

Data Analysis

Perform exploratory data analysis (EDA) using visualization and SQL

Perform interactive visual analytics using Folium and Plotly Dash

Perform predictive analysis using classification models

How to build, tune, evaluate classification models

Data Collection

2 methods were used to collect the data for analysis:

Data Collection – SpaceX API

• GitHub URL of the completed SpaceX API calls notebook https://github.com/maorassa/Finalcapstonetest/blob/master/Final%20capstone%20API%20data%20collection.ipynb

Data Collection - Scraping

Wikipedia data via web scraping

extract data as HTML tables

```
| a Use the find_all function in the BeautifulSoup object, with element type "table"
| a Assign the result to a list called 'html_tobles' |
| html_tobles = soup.find_all("table") |
| print(html_tables = soup.find_all("table") |
| fitable class="multicol" role="presentation" style="border-collapse; collapse; padding: 0; border: 0; background:transparent; width:100%;">
| (table class="multicol" role="presentation" style="border-collapse; collapse; padding: 0; border: 0; background:transparent; width:100%;">
| (table class="multicol" role="presentation" style="border-collapse; collapse; padding: 0; border: 0; background:transparent; width:100%;">
| (table class="multicol" role="presentation" style="border-collapse; collapse; padding: 0; border: 0; background:transparent; width:100%;">
| (table class="multicol" role="presentation" style="pointion:relative; min-height:20px;">
| (div style="pointion:plantive; min-height:20px; min-width:20px; man-width:20px; max-width:20px; max-widt
```


GitHub URL of the completed SpaceX API calls notebook

2 major tasks were done at this stage:

Analyze training labels Launch sites: In [5]: # Apply value_counts() on column LaunchSite df['LaunchSite'].value_counts() Out[5]: CCAFS SLC 40 KSC LC 39A VAFB SLC 4E 13 Name: LaunchSite, dtype: int64 **Orbits:** ES-L1 **Outcome Label:** # landing class = 0 if bad outcome # landing class = 1 otherwise landing class= [] for row in df['Outcome']: if row in bad_outcomes: landing class.append(0) else: landing_class.append(1)

GitHub URL of the completed SpaceX data wrangling notebook

EDA with Data Visualization

We have plotted few charts in order to decide on the most relevant features for explaining the variables of a successful 1st stage re-landing:

Variables analyzed	Chart type
FlightNumber vs. PayloadMass	Scatter plot
FlightNumber vs LaunchSite	Scatter plot
launch Vs payload mass.	Scatter plot
success rate of each orbit type	Bar chart
FlightNumber and Orbit type	Scatter plot
Payload and Orbit type	Scatter plot
launch success yearly trend	Line chart

EDA with SQL

We applied EDA with SQLite to get insight from the data. We wrote queries to find out for instance:

- Unique launch sites
- Sum of payload mass launched by NASA (CRS)
- Avg. payload mass carried by F9 v1.1 booster
- · The total number of successful and failure mission outcomes
- Boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- Booster versions which have carried the maximum payload mass

```
In [4]: !pip install sqlalchemy==1.3.9

Requirement already satisfied: sqlalchemy
In [5]: !pip3 install ipython-sql
```

Build an Interactive Map with Folium

We used few geographical analysis tools based on Folium map analysis:

Folium object	Purpose
folium.Circle	Highlight launch sites
folium.Marker	Mark the launch sites
MarkerCluster	Mark multiple launches outcomes per site
MousePosition	Mark specific relevant points of interest
PolyLine	Calculate distance (line of site vector)

Build a Dashboard with Plotly Dash

We have used an interactive dashboard to analyze the follwoing:

Chart	Analysis		
Success rate per sites selected	Analyze the difference between sites		
Outcome per payload mass	Analyze the payload impact on outcomes		
Payload slider	Analyze the payload impact for specific weight ranges		
Site drop down list	Analyze specific sites		

Predictive Analysis (Classification)

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Higher orbits have a higher prevalence of high success rate

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

Booster maturity

- Since 2017 the launching system is showing maturity trend
- Success mean rate for the mature system is approx. 80% (compared with 66% general success rate)

All Launch Site Names

Launch Site Names Begin with 'CCA'

LIKE command query the launch sites with specific names

* sqlite:///my_data1.db Done.									
Landin _Outcom	Mission_Outcome	Customer	Orbit	PAYLOAD_MASS_KG_	Payload	Launch_Site	Booster_Version	Time (UTC)	Date
Failu (parachut	Success	SpaceX	LEO	0	Dragon Spacecraft Qualification Unit	CCAFS LC- 40	F9 v1.0 B0003	18:45:00	04-06- 2010
Failu (parachut	Success	NASA (COTS) NRO	LEO (ISS)	0	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	CCAFS LC- 40	F9 v1.0 B0004	15:43:00	08-12- 2010
No attem	Success	NASA (COTS)	LEO (ISS)	525	Dragon demo flight C2	CCAFS LC- 40	F9 v1.0 B0005	07:44:00	22-05- 2012
No attem	Success	NASA (CRS)	LEO (ISS)	500	SpaceX CRS-1	CCAFS LC- 40	F9 v1.0 B0006	00:35:00	08-10- 2012
No attem	Success	NASA (CRS)	LEO (ISS)	677	SpaceX CRS-2	CCAFS LC-	F9 v1.0 B0007	15:10:00	01-03- 2013

Total Payload Mass

SUM command totals the payload values

```
Display the total payload mass carried by boosters launched by NASA (CRS)

** sqlite://my_data1.db
Done.

Out[25]: sum(PAYLOAD_MASS__KG_)

45596
```

Average Payload Mass by F9 v1.1

```
AVG command clacs the avg for payload values

In [27]:  %sql select avg(PAYLOAD_MASS__KG_) from SPACEXTBL where Booster_Version='F9 v1.1'

* sqlite://my_data1.db
Done.

Out[27]: avg(PAYLOAD_MASS__KG_)

2928.4
```

First Successful Ground Landing Date

```
MIN command clacs the min date

In [58]:  %sql select min(date) from SPACEXTBL where 'LANDING_OUTCOME' = 'Success (ground pad)'

* sqlite:///my_data1.db
Done.
Out[58]: min(date)

None
```

Successful Drone Ship Landing with Payload between 4000 and 6000

AND command for a query with several conditions

```
In [48]:  %sql SELECT * FROM SPACEXTBL WHERE 'Landing _Outcome' = 'Success (drone ship)' AND PAYLOAD_MASS__KG_ BETWEEN 4000 AND 6000

* sqlite:///my_data1.db
Done.

Out[48]: Date Time (UTC) Booster_Version Launch_Site Payload PAYLOAD_MASS__KG_ Orbit Customer Mission_Outcome Landing_Outcome
```

boosterversion 0 F9 FT B1022 1 F9 FT B1026 2 F9 FT B1021.2 3 F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

Sub query to define the max payload and use it as a criteria

```
%sql select distinct BOOSTER_VERSION,PAYLOAD_MASS__KG_ from SPACEXTBL where PAYLOAD_MASS__KG_ = (select MAX(PAYLOAD_MASS__KG_) FROM SPACEXTBL)
 * sqlite:///my_data1.db
Booster_Version PAYLOAD_MASS__KG_
  F9 B5 B1048.4
                              15600
  F9 B5 B1049.4
                              15600
  F9 B5 B1051.3
                              15600
  F9 B5 B1056.4
                              15600
   F9 B5 B1048.5
                              15600
  F9 B5 B1051.4
                              15600
   F9 B5 B1049.5
                              15600
  F9 B5 B1060.2
                              15600
  F9 B5 B1058.3
                              15600
  F9 B5 B1051.6
                              15600
  F9 B5 B1060.3
                              15600
   F9 B5 B1049.7
                              15600
```

2015 Launch Records

Out[18]:		boosterversion	launchsite	landingoutcome
	0	F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
	1	F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

In [77]:
%sql select 'Landing _Outcome', count(*) as count, Date from SPACEXTBL where date between '04-06-2010' and '20-03-2017' GROUP BY 'Landing _Outcome'
ORDERBY count DESC

Out[19]:		landingoutcome	count	
	0	No attempt	10	
	1	Success (drone ship)	6	
	2	Failure (drone ship)	5	
	3	Success (ground pad)	5	
4		Controlled (ocean)	3	
		Uncontrolled (ocean)	2	
	6	Precluded (drone ship)	1	
	7	Failure (parachute)	1	

Launch sites locations

There are 2 areas of launching.

- 1 in west coat
- 1 in the east coast
- The east coast sites are closer to the equator

Variation between east coast sites

Zoom on 3 east coast sites:

KSC LXC 39A

CCA FS LC 40

CAFS SLC 40

<Folium Map Screenshot 3>

Which site has the highest success rate

< Dashboard Screenshot 2>

High & Low success per payload (kg) ranges

Classification Accuracy

Confusion Matrix

Conclusions

- Success rate is dependent on booster maturity (especially since 2016)
- Orbit matters: Some orbits are showing very high success rate
- Launch site matters: East coast launch sites are showing greater success rate
- Payload matters: some payload ranges show very high success rate while others show very low rate

Profile of exemplary successful launch					
Launch date	2020 and onwards				
Launch site	KSC LC-39A				
Payload (kg)	3K – 4K				
Orbit	ES-L1, GEO, HEO, SSO, VLEO				

