Taller teórico-práctico 1: señales y sistemas 2021-2

Profesor: Andrés Marino Álvarez Meza, Ph.D.

Departamento de ingeniería eléctrica, electrónica y computación
Universidad Nacional de Colombia - sede Manizales

1. Instrucciones

- El taller debe ser enviado al correo electrónico amalvarezme@unal.edu.co desde su correo institucional (no se aceptarán envios desde correos diferentes a @unal.edu.co) incluyendo desarrollos matemáticos y conceptuales (en pdf o sobre celdas de texto en latex de Colaboratory), y códigos en Python (celdas de código comentadas y discutidas sobre Colaboratory), referente a los ejercicios propuestos.
- El taller puede realizarse en grupos hasta de tres (3) personas.
- Fecha máxima de entrega: 25 de noviembre de 2021.
- Para el primer parcial se realizará asesoría presencial el día 9 de noviembre de 2021, en el Campus La Nubia (salones por confirmar).
- El parcial se realizará el día 25 de noviembre de 2021 en el Campus La Nubia (salones por confirmar).

2. Conceptos básicos de señales

- Consultar y realizar los ejercicios propuestos en el cuaderno de Colab IntroNumpy SyS
- Consultar y realizar los ejercicios propuestos en el cuaderno de Colab Señales estandar
- Consultar y realizar los ejercicios propuestos en el cuaderno de Colab Operaciones señales continuas
- Evaluar la expresión: $\int_{-\infty}^{\infty} t^4 e^{-\cos(t)} \cos(-2t) \delta(2t-5\pi) dt.$ Nota: Consultar las propiedas de selectividad y escala en el tiempo de la función impulso unitario. Comprobar el resultado en simulación con la librería SymPy.
- Sea $x(t)=u(t-t_o)-u(t-nt_o)-3k\delta(t-mt_o).$ Determine el valor de k para el cual $\int_{-\infty}^{\infty}x(t)dt=A$, con $A\in\mathbb{R}.$ Comprobar el resultado en simulación con la librería SymPy.
- Consultar y realizar los ejercicios propuestos en el cuaderno de Colab Señales periódicas aperiódicas
- Consulte en qué consisten las señales cuasiperiódicas.
 Luego, demuestre la periodicidad o no de las siguientes señales :

```
 \begin{split} \circ \ & x(t) = 3\cos(\omega t). \\ \circ \ & x(t) = 2\sin(\omega t + \pi). \\ \circ \ & x(t) = 3\sin(\sqrt{3}t) + 3\sin(5t) - 2\cos(t/\sqrt{3}). \\ \circ \ & x(t) = 3\sin(4t) - 2\cos(50t) + 2\cos(10t). \\ \circ \ & x(t) = e^{j\omega t}. \end{split}
```

Grafique cada una de las señales anteriores en Python utilizando arreglos de numpy (dibuje tres periodos si es el caso).

3. Señales de energía y potencia

- Consultar y realizar los ejercicios propuestos en el cuaderno de Colab Señales Energía Potencia
- Clasifique según su tipo (energía o potencia):

```
 \begin{array}{l} \circ \ x(t) = 3t+2; \forall t \in [0,5]. \\ \circ \ x(t) = A\cos(\omega t) + B\sin(\omega t); A, B, \omega \in \mathbb{R}^+. \\ \circ \ x(t) = ate^{-tk} \left( u(t) - u(t-t_o) \right); \ a, k \in \mathbb{R}; \ t_o > 0. \\ \circ \ x[n] = nu[n]; \ n \in \{0, \pm 1, \pm 2, \ldots, \pm N\}. \\ \circ \ x[n] = |n|; \ n \in \{0, \pm 1, \pm 2, \ldots, \pm N\}. \\ \circ \ x[n] = A\cos[n\pi]u[n-n_o]; \ A \in \mathbb{R}^+ \ y \ n \in \{0 \pm 1, \pm 2, \ldots, \pm N\}; \ 0 < n_o < N. \end{array}
```

Grafique cada una de las señales anteriores en Python (considere simulaciones tipo sympy para tiempo continuo y numpy para tiempo discreto).

 Consulte los procedimientos básicos para el análisis de circuitos mediante el manejo de impedancias y fasores.
 Ver cuaderno Potencia Circutios

4. Discretización de señales cosenoidales

- Se pretende muestrear la señal $x(t)=10\cos(\Omega t)$, con $t\in[0,T],\ \Omega=2\pi F,\ F=1/T\ y\ F=50$ Hz. Se emplea un sistema de discretización con frecuencia de muestreo $F_s=80$ Hz. Demuestre si el sistema utilizado es apropiado para la señal x(t) y estime la señal capturada. Realice una simulación en Python del proceso de discretización.

- Se tiene un microprocesador de 4 bits con entrada análoga entre -3.3 y 3.3 [v]. Describa las condiciones necesarias para que el microprocesador pueda digitalizar la señal $x(t) = 30\cos(100\pi t)$. Presente una simulación en Python de dicho proceso para tres ciclos de la señal x(t). Ver cuaderno IntroNumpy SyS.
- Se tiene un sistema de discretización con frecuencia de muestreo $F_s=40$ Hz, aplicado a las señales $x_1(t)=\cos(20\pi t)$ y $x_2(t)=\cos(100\pi t)$. Las versiones discretizadas de las señales son distinguibles entre si?. Implemente una simulación en Python del proceso de discretización.
- Cuál es la frecuencia de muestreo límite apropiada para discretizar la señal $x(t)=3\cos(1000\pi t)+5\sin(6000\pi t)+10\cos(14000\pi t)$?. Si se utiliza una frecuencia de muestreo de 5kHz, cuál es la señal discreta obtenida?
- Demuestre que funciones cosenoidales con frecuencia de oscilación $F_k = F_o + kF_s$; con $k \in \mathbb{Z}$, no son distinguibles de la función $\cos(2\pi F_o t)$ al utilizar un sistema de discretización con frecuencia de muestreo F_s . Realice simulaciones para $k \in \{0, \pm 1, \pm, 2, \pm 3\}$.

5. Sistemas lineales e invariantes con el tiempo (SLIT)

- Consultar y realizar los ejercicios propuestos en el cuaderno de Colab Convolución
- Consultar y realizar los ejercicios propuestos en el cuaderno de Colab Respuesta impulso
- Demuestre si los siguientes sistemas de la forma $y=\mathcal{H}\{x\}$, son sistemas lineales e invariantes en el tiempo (SLIT). Simule los sistemas en Python.

○
$$y[n] = x[n]/3 + 2x[n-1] - y[n-1].$$

○ $y[n] = \sum_{k=-\infty}^{n} x^{2}[k].$
○ $y(t) = Ax(t) + B; A, B \in \mathbb{R}.$

- Hallar la salida y[n] de un SLIT ante la entrada $x[n] = \{-15, 5, -3^\dagger, 0, 5, 7, -1\}$, con respuesta al impulso $h[n] = \{1, -2, 0^\dagger, 1, -2\}$, donde $n \in \{0, \pm 1, \pm 2, \ldots, \pm N\}$ y n = 0 para $x[n]^\dagger$. Nota: Utilizar método gráfico para encontrar la salida y comprobar con simulación en Python. Ver cuaderno Convolución discreta. Repita el proceso para el sistema con respuesta al escalón $\{-1, 6, -10, 3^\dagger, 1, -10, 2, 5\}$ (Ver cuaderno Respuesta Escalón).
- Sea la señal Gaussiana $x(t) = e^{-at^2}$ con $a \in \mathbb{R}^+$, el sistema A con relación entrada-salida $y_A(t) = x^2(t)$, y el sistema lineal e invariante con el tiempo B con respuesta al impulso $h_B(t) = Be^{-bt^2}$: a) Encuentre la salida del sistema en serie $x(t) \to h_B(t) \to y_A(t) \to y(t)$ b) Encuentre la salida del sistema en serie $x(t) \to y_A(t) \to y_A(t) \to y_A(t) \to y_A(t) \to y_A(t) \to y_A(t) \to y_A(t)$.

Referencias

https://github.com/amalvarezme/SenalesSistemas

Hsu, H., (2014). Signals and systems (Vol. 8). New York: McGraw-Hill Education.

Castellanos-Dominguez et. al (2010), *Teoría de señales: fundamentos*, Universidad Nacional de Colombia - sede Manizales.

Hsu, H. (2003), *Theory and problems of analog and digital communications*, Schaum's Outline series, McGraw-Hill.

Hsu, H. (1995), Schaum's outlines of theory and problems of signals and systems, McGraw Hill.

Hsu, H. (1970), Análisis de Fourier, Prentice Hall.