Operating System HW3

1. (10%) Explain what memory-mapped I/O is and how it works

Solution:

Memory-mapped I/O 是一種 CPU 控制 I/O Device 的方法。

把 I/O device 的 port 或是 memory 放到記憶體裡面,使 CPU 和 I/O Device 共用這一塊記憶體,如果 CPU 寫入資料到對應的記憶體位置,就相當於直接控制 I/O device。

2. (10%) Explain what DMA is and how it works.

Solution:

DMA(Direct Memory Access) 是一種記憶體存取方法。

DMA 會使用到額外的硬體 (DMA Controller) · 幫助 CPU 處理 I/O 相關的事件。有了 DMA · 就可以直接讓 I/O device 的資料直接送到記憶體,而不經由 CPU 內部的 register · 進而減少 CPU 中斷後處理 I/O device 的機會,增加效能。

3. Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

Process	Burst Time	Priority
P1	8	4
P2	1	1
P3	2	3
P4	1	5
P5	6	2

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0.

Solution:

(a)

Process	PCFS	SJF	Priority	RR
P1	8	18	17	18
P2	9	1	1	2
P3	11	4	9	7
P4	12	2	18	4
P5	18	10	7	16

(c)

Process	PCFS	SJF	Priority	RR
P1	0	10	9	10
P2	8	0	0	1
P3	9	2	7	5
P4	11	1	17	3
P5	12	4	1	10

(d)

The answer is SJF.

	PCFS	SJF	Priority	RR
Total	40	17	34	29

4. (10%) A UNIX process has two parts—the user part and the kernel part. Is the kernel part like a subroutine and a coroutine? Why?

Solution:

Subroutine · 當要從 user space 進到 kernel space 時 · 會從固定的地方開始執行 · 而不是從上一次執行結束的地方開始執行 ·