# Difference between BFS and DFS

Breadth First Search

**BFS** stands for **Breadth First Search** is a vertex based technique for finding a shortest path in graph. It uses a Queue data structure which follows first in first out. In BFS, one vertex is selected at a time when it is visited and marked then its adjacent are visited and stored in the queue. It is slower than DFS.

#### Ex-

```
A
/\
B C
/ /\
D E F
```

## **Output is:**

Depth First Search

**DFS** stands for **Depth First Search** is a edge based technique. It uses the Stack data structure, performs two stages, first visited vertices are pushed into stack and second if there is no vertices then visited vertices are popped.

#### Ex-



### **Output is:**

#### BFS vs DFS

| S.NO | BFS | DFS |
|------|-----|-----|
|      |     |     |

BFS stands for Breadth DFS stands for Depth

1. First Search. First Search.

|                        | BFS(Breadth First                                                                                                          |                                                                                                         |
|------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                        | Search) uses Queue data                                                                                                    | DFS(Depth First Search)                                                                                 |
|                        | structure for finding the                                                                                                  | uses Stack data                                                                                         |
| 2.                     | shortest path.                                                                                                             | structure.                                                                                              |
|                        | BFS can be used to find                                                                                                    |                                                                                                         |
|                        | single source shortest                                                                                                     |                                                                                                         |
|                        | path in an unweighted                                                                                                      |                                                                                                         |
|                        | graph, because in BFS,                                                                                                     | In DFS, we might                                                                                        |
|                        | we reach a vertex with                                                                                                     | traverse through more                                                                                   |
|                        | minimum number of                                                                                                          | edges to reach a                                                                                        |
|                        | edges from a source                                                                                                        | destination vertex from a                                                                               |
| 3.                     | vertex.                                                                                                                    | source.                                                                                                 |
|                        |                                                                                                                            |                                                                                                         |
|                        | BFS is more suitable for                                                                                                   |                                                                                                         |
|                        | BFS is more suitable for searching vertices which                                                                          | DFS is more suitable                                                                                    |
|                        |                                                                                                                            | DFS is more suitable when there are solutions                                                           |
| 3.                     | searching vertices which                                                                                                   |                                                                                                         |
| 3.                     | searching vertices which are closer to the given                                                                           | when there are solutions                                                                                |
| 3.                     | searching vertices which are closer to the given source.                                                                   | when there are solutions away from source.                                                              |
| 3.                     | searching vertices which are closer to the given source.  BFS considers all                                                | when there are solutions away from source.  DFS is more suitable for                                    |
| 3.                     | searching vertices which are closer to the given source.  BFS considers all neighbors first and                            | when there are solutions away from source.  DFS is more suitable for game or puzzle                     |
| <ol> <li>4.</li> </ol> | searching vertices which are closer to the given source.  BFS considers all neighbors first and therefore not suitable for | when there are solutions away from source.  DFS is more suitable for game or puzzle problems. We make a |

| decision. And if this |  |
|-----------------------|--|
| decision leads to win |  |
| situation, we stop.   |  |

The Time complexity of

BFS is O(V + E) when

Adjacency List is used

and O(V^2) when

Adjacency Matrix is used,

where V stands for

vertices and E stands for

The Time complexity of

DFS is also O(V + E)

when Adjacency List is

used and O(V^2) when

Adjacency Matrix is

used, where V stands for

vertices and E stands for

5.

edges.

// The real time example you can take for water jug problem also

edges.