Etude du premier modèle de Hindmarsh-Rose

Vincent Matthys Maureen Muscat Mariène Wan 19 juin 2017

On fixe c = 1

On a alors:

$$x_{Tr+} = 1 + \sqrt{\frac{2}{3}}$$
 et $x_{Tr-} = 1 - \sqrt{\frac{2}{3}}$

Valeur de I_{ap}	Nombre de points stat	Caractérisation des points
7 1 2 1	pomis stat	
$I_{ap} \in]-2,-1[$	1	noeud stable
Bifurcation pli		
$I_{ap} = -1 I_{ap} \in]-1, -0.9971[$	2	noeud stable et col-noeud
$I_{ap} \in]-1, -0.9971[$	3	noeud stable et col et noeud stable
$I_{ap} \in$ $] - 0.9971, -0.9264[$	3	noeud stable et col et foyer stable
Bifurcation Hopf		
$I_{ap} \in]-0.9264, -0.816[$	3	noeud stable et col et foyer instable et cycle limite
Bifurcation homocline		
$I_{ap} \in]-0.816, -0.0856[$	3	noeud stable et col et foyer instable
$I_{ap} = 0.0856$	Bifurcation homocline	
$I_{ap} \in]-0.0856, 5/27[$	3	noeud stable et col et foyer instable et cycle limite
$I_{ap} = 5/27$	2	col-noeud et foyer instable et cycle limite
Bifurcation pli		
$I_{ap} \in]5/27, 10[$	1	foyer instable et cycle limite

Le cycle limite disparait aux alentours de $I_{ap} = 11, 5$ et créer un foyer stable, ce foyer devient ensuite un noeud stable $I_{ap} = 55, 26$.

Contrairement à c=2, on a l'apparition de bifurcations homoclines (pour $I_{ap}=-0.816$ et $I_{ap}=-0.0856$), faisant disparaître puis réapparaître le cycle limite stable.

Pour $I_{ap} = -0.817$, on peut voir dans la figure ci-dessous, à gauche, que les variétés stables et instable du col se superposent, on a donc une bifurcation homocline. De plus, au niveau du foyer instable, on peut observer l'existence d'un petit cycle limite. Celui-ci va disparaître pour $I_{ap} \ge -0.816$.

FIGURE 1 – Portrait de phase lorsque $I_{ap} = -0.817$

Lorsqu'on a $I_{ap}=-0.5$, on n'a plus de cycle limite au niveau du foyer et de bifurcation homocline.

Figure 2 – Portrait de phase lorsque $I_{ap}=-0.5$

Pour $I_{ap} = -0.008$, on a réapparition d'une bifurcation homocline, on peut observer sur la figure ci-dessous, que les variétés du col se superposent. Par ailleurs, on a aussi la réapparition d'un cycle limite, celui-ci va s'agrandir jusqu'à un certain point puis disparaitre :

FIGURE 3 – Portrait de phase lorsque $I_{ap}=-0.008$

Le système possède des régions de bistabilité :

- Pour $I_{ap} \in]-1, -0,9264[$ avec 2 points stables, Pour $I_{ap} \in]-0,9264, -0,818[$ avec 1 point stable et un cycle limite Pour $I_{ap} \in]-0,05,5/27[$ avec 1 point stable et un cycle limite stable