Resonance Catalysis Briefing

Date: September 24, 2025

Goal

To demonstrate and harness a new class of chemical reactivity, resonance-driven catalysis, where latent vibrational energy in CO2 and H2O is coherently activated into hydrocarbon formation.

This approach follows a two-track strategy:

- Track A (Proof of Concept): Rigorous lab-scale validation with advanced spectroscopy, isotope tracing, and high-Q resonators.
- Track B (Practical Downshift): Translate validated principles into accessible, low-cost systems that anyone can build, similar to how solar panels evolved from lab prototypes to household devices.

Scientific Foundation (Track A)

The Hypothesis

Conventional catalysis relies on thermal or electrochemical driving forces. Our framework proposes a third pathway:

- Resonant coupling between IR-active vibrational modes of CO2 (~2350 cm^-1) and H2O (~3400 cm^-1, 1640 cm^-1).
- Geometric resonance structures (metalloporphyrins, metamaterial antennas, phononic crystals) phase-lock these vibrations.
- Latent → active energy conversion: Coherent alignment lowers activation thresholds, enabling otherwise disfavored CO2 → hydrocarbon reactions.

Critical Validation Tasks

- 1. Spectroscopic confirmation: Detect resonance enhancement at CO2/H2O bands.
- 2. Isotopic tracing (¹³CO2, D2O): Verify incorporation into products.
- 3. On/off resonance control: Demonstrate rate enhancement disappears when geometry is detuned.
- 4. Cryogenic/pulsed tests: Mitigate decoherence and isolate coherent effects.

Resources

- Estimated budget: \$50K for mid-IR sources, cryogenics, mass spectrometry.
- Target collaborators: energy catalysis labs (e.g., Jaramillo Group, Stanford).

Engineering Application (Track B)

Simplified Prototype Design

The same physics can be expressed in household-scale devices:

- 1. Resonant Surface
 - o Etched copper/aluminum foil with fractal/antenna geometries.
 - o PCB-level fabrication (<\$50).
- 2. IR Photon Source
 - \circ Mid-IR LEDs tuned to 2.7 μ m (H2O) and 4.3 μ m (CO2).
 - o Off-the-shelf components (<\$100).
- 3. Reaction Environment
 - o Humid CO2 chamber (e.g., soda bottle + vinegar/baking soda).
 - o Thin water film or hydrogel matrix.
- 4. Detection
 - o Basic sensors: handheld fuel-cell detectors, gas sniffer kits.
 - Low-cost alternative to GC/MS for initial proof.

Key Equation (Simplified)

 $M_{active} \approx f(R \cdot P_{IR} \cdot G_{geom})$

- R: Resonance quality (geometry match)
- P_IR: Photon flux (LED power)
- G_geom: Overlap factor of reactants at active surface

Pathway to Democratization

- Once resonance effect is validated (Track A), the design can be open-sourced as a citizenlab kit.
- Goal: distributed energy devices that bypass industrial bottlenecks.
- Even at milliwatt yields, a working prototype would establish a new physics of catalysis.

Impact

- Scientific: Establishes resonance-driven chemistry as a legitimate third pillar alongside thermal and electrochemical methods.
- Technological: Creates foundation for hydrocarbon synthesis and energy harvesting using only light, water, and CO2.
- Societal: Democratizes access to energy experiments, enabling innovation outside centralized industry.