Chapter 1

Systems of Linear Equations and Matrices

- 1.1. Introduction to Systems of Linear Equations
- 1.2. Gaussian Elimination
- 1.3. Matrices and Matrix Operations
- 1.4. Inverses; Algebraic Properties of Matrices
- 1.5. Elementary Matrices and a Method for Finding Inverse
- 1.6. More on Linear Systems and Invertible Matrices
- 1.7. Diagonal, Triangular, and Symmetric Matrices
- 1.8. Introduction to Linear Transformations

Chapter 1.3

Matrices and Matrix Operations

Matrix and its Size

DEFINITION 1

A *matrix* is a rectangular array of numbers. The numbers in the array are called the *entries* in the matrix.

A $m \times n$ matrix has m rows and n columns.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 a compact notation
$$A = \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mn} \end{bmatrix}$$

The entry in row i and column j of a matrix A

$$(A)_{ij} = a_{ij}$$

Row Vectors and Column Vectors

$$1 \times n$$
 row vector **a** (or row matrix)

$$m \times 1$$
 column vector **b** (or column matrix)

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$

Square Matrix & Main Diagonal

A matrix A with n rows and n columns is called a square matrix of order n,

and the shaded entries are said to be on the *main diagonal* of A.

```
\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}
```

Matrix Operations

DEFINITION 2 equal A = B same size and corresponding entries are equal

DEFINITION 3 sum A + B

difference A - B

DEFINITION 4 product cA a scalar multiple of A

DEFINITION 5 product AB

EXAMPLE 1 ~ EXAMPLE 4

exe

EXAMPLE 1

Consider the matrices

$$A = \begin{bmatrix} 2 & 1 \\ 3 & x \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 4 & 0 \end{bmatrix}$$

If x = 5, then A = B, but for all other values of x the matrices A and B are not equal, since not all of their corresponding entries are the same. There is no value of x for which A = C since A and C have different sizes.

EXAMPLE 2

Consider the matrices

$$A = \begin{bmatrix} 2 & 1 & 0 & 3 \\ -1 & 0 & 2 & 4 \\ 4 & -2 & 7 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} -4 & 3 & 5 & 1 \\ 2 & 2 & 0 & -1 \\ 3 & 2 & -4 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$

Then

$$A + B = \begin{bmatrix} -2 & 4 & 5 & 4 \\ 1 & 2 & 2 & 3 \\ 7 & 0 & 3 & 5 \end{bmatrix} \text{ and } A - B = \begin{bmatrix} 6 & -2 & -5 & 2 \\ -3 & -2 & 2 & 5 \\ 1 & -4 & 11 & -5 \end{bmatrix}$$

The expressions A + C, B + C, A - C, and B - C are undefined.

EXAMPLE 3

For the matrices

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 2 & 7 \\ -1 & 3 & -5 \end{bmatrix}, \quad C = \begin{bmatrix} 9 & -6 & 3 \\ 3 & 0 & 12 \end{bmatrix}$$

we have

$$2A = \begin{bmatrix} 4 & 6 & 8 \\ 2 & 6 & 2 \end{bmatrix}, \quad (-1)B = \begin{bmatrix} 0 & -2 & -7 \\ 1 & -3 & 5 \end{bmatrix}, \quad \frac{1}{3}C = \begin{bmatrix} 3 & -2 & 1 \\ 1 & 0 & 4 \end{bmatrix}$$

It is common practice to denote (-1)B by -B.

EXAMPLE 4

Consider the matrices

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix}$$

Since A is a 2 × 3 matrix and B is a 3 × 4 matrix, the product AB is a 2 × 4 matrix. To determine, for example, the entry in row 2 and column 3 of AB, we single out row 2 from A and column 3 from B. Then, as illustrated below, we multiply corresponding entries together and add up these products.

The entry in row 1 and column 4 of AB is computed as follows:

$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 13 \\ 13 \\ 1 \end{bmatrix}$$

$$(1 \cdot 3) + (2 \cdot 1) + (4 \cdot 2) = 13$$

The computations for the remaining entries are

$$(1 \cdot 4) + (2 \cdot 0) + (4 \cdot 2) = 12$$

$$(1 \cdot 1) - (2 \cdot 1) + (4 \cdot 7) = 27$$

$$(1 \cdot 4) + (2 \cdot 3) + (4 \cdot 5) = 30$$

$$(2 \cdot 4) + (6 \cdot 0) + (0 \cdot 2) = 8$$

$$(2 \cdot 1) - (6 \cdot 1) + (0 \cdot 7) = -4$$

$$(2 \cdot 3) + (6 \cdot 1) + (0 \cdot 2) = 12$$

$$AB = \begin{bmatrix} 12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12 \end{bmatrix}$$

Matrix Multiplications (Products)

Animated Example

https://www.youtube.com/watch?v=1hf_cHNbgCk

$$\begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} =$$

Matrix Multiplications (Products)

EXAMPLE 5 Determining Whether a Product Is Defined

AB is defined and is a 3×7 matrix; BC is defined and is a 4×3 matrix; CA is defined and is a 7×4 matrix.

The products AC, CB, and BA are all undefined.

Matrix Multiplications (Products)

In general, if $A = [a_{ij}]$ is an $m \times r$ matrix and $B = [b_{ij}]$ is an $r \times n$ matrix, illustrated by the shading in the following display,

$$AB = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1r} \\ a_{21} & a_{22} & \cdots & a_{2r} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ir} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mr} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{r1} & b_{r2} & \cdots & b_{rj} & \cdots & b_{rn} \end{bmatrix}$$

the entry $(AB)_{ij}$ in row i and column j of AB is given by

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + \dots + a_{ir}b_{rj}$$

is called the *row-column rule* for matrix multiplication.

Partitioned Matrices

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ \hline a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
 submatrices

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ \hline a_{21} & a_{22} & a_{23} & a_{24} \\ \hline a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \end{bmatrix}$$
 row vectors

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_3 & \mathbf{c}_4 \end{bmatrix}$$

$$column \ vectors$$

Matrix Multiplication by Columns/Rows

$$AB = A[\mathbf{b}_1 \quad \mathbf{b}_2 \quad \cdots \quad \mathbf{b}_n] = [A\mathbf{b}_1 \quad A\mathbf{b}_2 \quad \cdots \quad A\mathbf{b}_n]$$

(AB computed column by column)

*j*th column vector of AB = A[jth column vector of B]

$$AB = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_m \end{bmatrix} B = \begin{bmatrix} \mathbf{a}_1 B \\ \mathbf{a}_2 B \\ \vdots \\ \mathbf{a}_m B \end{bmatrix}$$

(AB computed row by row)

*i*th row vector of AB = [ith row vector of <math>A]B

Matrix Multiplication by Columns/Rows

EXAMPLE 6 Example 4 Revisited

Linear Combinations

DEFINITION 6

If A_1, A_2, \ldots, A_r are matrices of the same size, and if c_1, c_2, \ldots, c_r are scalars, then an expression of the form

$$c_1A_1 + c_2A_2 + \cdots + c_rA_r$$

is called a *linear combination* of A_1, A_2, \ldots, A_r

with *coefficients* c_1, c_2, \ldots, c_r

Product of a Matrix and a Column Vector as Linear Combinations

THEOREM 1.3.1

Matrix-Vector Products Let $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ be an $m \times n$ matrix, written in

terms of its columns
$$\mathbf{a}_1$$
, \mathbf{a}_2 , ..., \mathbf{a}_n . If $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ is any n-vector, the **product** $A\mathbf{x}$ is defined to be the m-vector given by:

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n$$

In other words, the product $A\mathbf{x}$ can be expressed as a linear combination of the column vectors of A in which the coefficients are the entries of \mathbf{x} .

EXAMPLE 7 Matrix Products as Linear Combinations

The matrix product

$$\begin{bmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \\ -3 \end{bmatrix}$$

can be written as the following linear combination of column vectors:

$$2\begin{bmatrix} -1\\1\\2\\2\end{bmatrix} - 1\begin{bmatrix} 3\\2\\1\\1\end{bmatrix} + 3\begin{bmatrix} 2\\-3\\-2\end{bmatrix} = \begin{bmatrix} 1\\-9\\-3\\-3\end{bmatrix}$$

EXAMPLE 8 Columns of a Product AB as Linear Combinations

exe

EXAMPLE 8

$$AB = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12 \end{bmatrix}$$

It follows from Formula (6) and Theorem 1.3.1 that the jth column vector of AB can be expressed as a linear combination of the column vectors of A in which the coefficients in the linear combination are the entries from the jth column of B. The computations are as follows:

$$\begin{bmatrix} 12 \\ 8 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 6 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 27 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 6 \end{bmatrix} + 7 \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 30 \\ 26 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 6 \end{bmatrix} + 5 \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 13 \\ 12 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 6 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

Column-Row Expansion

$$A = [\mathbf{c}_1 \quad \mathbf{c}_2 \quad \dots \quad \mathbf{c}_r]_{m \times r}$$

$$B = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \vdots \\ \mathbf{r}_r \end{bmatrix}_{r \times n}$$

$$AB = \mathbf{c}_1 \mathbf{r}_1 + \mathbf{c}_2 \mathbf{r}_2 + \dots + \mathbf{c}_r \mathbf{r}_r$$

Column-Row Expansion

EXAMPLE 9 Find the column-row expansion of the product

$$AB = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 4 \\ -3 & 5 & 1 \end{bmatrix} = \begin{bmatrix} -7 & 15 & 7 \\ 7 & -5 & 7 \end{bmatrix}$$

The column vectors of A and the row vectors of B are, respectively,

$$\mathbf{c}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \mathbf{c}_2 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}; \quad \mathbf{r}_1 = \begin{bmatrix} 2 & 0 & 4 \end{bmatrix}, \quad \mathbf{r}_2 = \begin{bmatrix} -3 & 5 & 1 \end{bmatrix}$$

Thus, the column-row expansion of AB is

$$AB = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 4 \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \end{bmatrix} \begin{bmatrix} -3 & 5 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 & 4 \\ 4 & 0 & 8 \end{bmatrix} + \begin{bmatrix} -9 & 15 & 3 \\ 3 & -5 & -1 \end{bmatrix}$$

Summarizing Matrix Multiplication

Four ways [Note]

Matrix Form of a Linear System

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 \vdots \vdots \vdots \vdots \vdots \vdots $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$

$$[A \mid \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$
 This is the augmented matrix for the system.

Transpose of a Matrix

DEFINITION 7

If A is any matrix, then the *transpose of* A, denoted by A^T , is defined to be the matrix that results by interchanging the rows and columns of A

$$(A^T)_{ij} = (A)_{ji}$$

E.g.

$$A = \begin{bmatrix} 1 & 6 & -4 \\ -8 & -2 & 9 \end{bmatrix} \text{ and } A^T = \begin{bmatrix} 1 & -8 \\ 6 & -2 \\ -4 & 9 \end{bmatrix}$$

Transpose of a Matrix

EXAMPLE 10 Some Transposes

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \\ 5 & 6 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix}, \quad D = \begin{bmatrix} 4 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}, \quad B^{T} = \begin{bmatrix} 2 & 1 & 5 \\ 3 & 4 & 6 \end{bmatrix}, \quad C^{T} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}, \quad D^{T} = [4]$$

Trace of a Matrix

DEFINITION 8

If A is a square matrix, then the *trace of* A, denoted by tr(A), is defined to be the sum of the entries on the main diagonal of A. The trace of A is undefined if A is not a square matrix.

EXAMPLE 11 Trace of a Matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 2 & 7 & 0 \\ 3 & 5 & -8 & 4 \\ 1 & 2 & 7 & -3 \\ 4 & -2 & 1 & 0 \end{bmatrix}$$

$$tr(A) = a_{11} + a_{22} + a_{33}$$

$$tr(B) = -1 + 5 + 7 + 0 = 11$$

Chapter 1-3 Objectives

- Determine the size of a given matrix.
- Identify the row vectors and column vectors of a given matrix.
- Perform the arithmetic operations of matrix addition, subtraction, scalar multiplication, and multiplication.
- Determine whether the product of two given matrices is defined.
- □ Compute matrix products using the row-column, the column by column, the row by row, and column-row expansion methods, respectively.
- Express the product of a matrix and a column vector as a linear combination of the columns of the matrix.

Chapter 1-3 Objectives

- Express a linear system as a matrix equation, and identify the coefficient matrix.
- □ Compute the transpose of a matrix.
- □ Compute the trace of a square matrix.