Data Science Capstone Project

Sana Ullah Imtiaz 14-02-2024

Presentation Contents

- Executive Summary
- Introduction
- Methodology
- Results
 - EDA with Visualization
 - EDA with SQL
 - Interactive Maps with Folium
 - Plotly Dash Dashboard
 - Predictive Analytics
- Conclusion

Executive Summary

Summary of Methodologies

- Collect data using SpaceX REST API and web scraping techniques
- Wrangle data to create success/fail outcome variable
- **Explore** data with data visualization techniques, considering the following factors: payload, launch site, flight number and yearly trend
- Analyze the data with SQL, calculating the following statistics: total payload, payload range for successful launches, and total # of successful and failed outcomes
- Explore launch site success rates and proximity to geographical markers
- Visualize the launch sites with the most success and successful payload ranges
- **Build Models** to predict landing outcomes using logistic regression, support vector machine (SVM), decision tree and K-nearest neighbor (KNN)

Executive Summary (Conti...)

Results

- Exploratory Data Analysis:
 - Launch success has improved over time
 - KSC LC-39A has the highest success rate among landing sites
 - Orbits ES-L1, GEO, HEO, and SSO have a 100% success rate
- Visualization/Analytics:
 - Most launch sites are near the equator, and all are close to the coast
- Predictive Analytics:
 - All models performed similarly on the test set. The decision tree model slightly outperformed

Introduction

Background

SpaceX, a leader in the space industry, strives to make space travel affordable for everyone. Its accomplishments include sending spacecraft to the international space station, launching a satellite constellation that provides internet access and sending manned missions to space. SpaceX can do this because the rocket launches are relatively inexpensive (\$62 million per launch) due to its novel reuse of the first stage of its Falcon 9 rocket. Other providers, which are not able to reuse the first stage, cost upwards of \$165 million each. By determining if the first stage will land, we can determine the price of the launch. To do this, we can use public data and machine learning models to predict whether SpaceX – or a competing company – can reuse the first stage.

Introduction(conti...)

Explore

- How payload mass, launch site, number of flights, and orbits affect first-stage landing success
- Rate of successful landings over time
- Best predictive model for successful landing (binary classification)

Methodology

Methodology

Steps

- Collect data using SpaceX REST API and web scraping techniques
- Wrangle data by filtering the data, handling missing values and applying one hot encoding – to prepare the data for analysis and modeling
- Explore data via EDA with SQL and data visualization techniques
- Visualize the data using Folium and Plotly Dash
- **Build Models** to predict landing outcomes using classification models. Tune and evaluate models to find best model and parameters

Data Collection —API

Steps

- Request data from SpaceX API (rocket launch data)
- **Decode response** using .json() and convert to a dataframe using .json_normalize()
- Request information about the launches from SpaceX API using custom functions
- Create dictionary from the data
- Create dataframe from the dictionary
- Filter dataframe to contain only Falcon 9 launches
- Replace missing values of Payload Mass with calculated .mean()
- Export data to csv file

Data Collection –Web Scraping

Steps

- Request data (Falcon 9 launch data) from Wikipedia
- Create BeautifulSoup object from HTML response
- Extract column names from HTML table header
- Collect data from parsing HTML tables
- Create dictionary from the data
- **Create dataframe** from the dictionary
- Export data to csv file

Data Wrangling

Steps

- Perform EDA and determine data labels
- Calculate:
 - # of launches for each site
 - # and occurrence of orbit
 - # and occurrence of mission outcome per orbit type]
- Create binary landing outcome column (dependent variable)
- Export data to csv file

Landing Outcome

- Landing was not always successful
- **True Ocean:** mission outcome had a successful landing to a specific region of the ocean

Landing Outcome Cont.

- **False Ocean:** represented an unsuccessful landing to a specific region of ocean
- True RTLS: meant the mission had a successful landing on a ground pad
- False RTLS: represented an unsuccessful landing on a ground pad
- True ASDS: meant the mission outcome had a successful landing on a drone ship
- False ASDS: represented an unsuccessful landing on drone ship
- **Outcomes converted** into 1 for a successful landing and 0 for an unsuccessful landing

EDA with Visualization

Charts

- Flight Number vs. Payload
- Flight Number vs. Launch Site
- Payload Mass (kg) vs. Launch Site
- Payload Mass (kg) vs. Orbit type

Analysis

- **View relationship** by using **scatter plots**. The variables could be useful for machine learning if a relationship exists
- **Show comparisons** among discrete categories with **bar charts**. Bar charts show the relationships among the categories and a measured value.

EDA with SQL

Queries

Display:

- Names of unique launch sites
- 5 records where launch site begins with 'CCA'
- Total payload mass carried by boosters launched by NASA (CRS)
- Average payload mass carried by booster version F9 v1.1.

List:

- · Date of first successful landing on ground pad
- Names of boosters which had success landing on drone ship and have payload mass greater than 4,000 but less than 6,000
- Total number of successful and failed missions
- Names of booster versions which have carried the max payload
- Failed landing outcomes on drone ship, their booster version and launch site for the months in the year 2015
- Count of landing outcomes between 2010-06-04 and 2017-03-20 (desc)

Map with Folium

Markers Indicating Launch Sites

- Added blue circle at NASA Johnson Space Center's coordinate with a popup label showing its name using its latitude and longitude coordinates
- Added red circles at all launch sites coordinates with a popup label showing its name using its name using its latitude and longitude coordinates

Colored Markers of Launch Outcomes

Added colored markers of successful (green) and unsuccessful (red)
 launches at each launch site to show which launch sites have high success rates

Distances Between a Launch Site to Proximities

 Added colored lines to show distance between launch site CCAFS SLC- 40 and its proximity to the nearest coastline, railway, highway, and city

Dashboard with Plotly Dash

Dropdown List with Launch Sites

Allow user to select all launch sites or a certain launch site

Pie Chart Showing Successful Launches

Allow user to see successful and unsuccessful launches as a percent of the total

Slider of Payload Mass Range

Allow user to select payload mass range

Scatter Chart Showing Payload Mass vs. Success Rate by Booster Version

Allow user to see the correlation between Payload and Launch Success

Predictive Analytics

Charts

- Create NumPy array from the Class column
- Standardize the data with StandardScaler. Fit and transform the data.
- **Split** the data using train_test_split
- **Create** a GridSearchCV object with cv=10 for parameter optimization
- Apply GridSearchCV on different algorithms: logistic regression (LogisticRegression()), support vector machine (SVC()), decision tree (DecisionTreeClassifier()), K-Nearest Neighbor (KNeighborsClassifier())
- Calculate accuracy on the test data using .score() for all models
- **Assess** the confusion matrix for all models
- **Identify** the best model using Jaccard_Score, F1_Score and Accuracy

Results

Results Summary

Exploratory Data Analysis

- Launch success has improved over time
- KSC LC-39A has the highest success rate among landing sites
- Orbits ES-L1, GEO, HEO and SSO have a 100% success rate

Visual Analytics

- Most launch sites are near the equator, and all are close to the coast
- Launch sites are far enough away from anything a failed launch can damage close enough to bring people and material to support launch activities

(city, highway, railway), while still

Predictive Analytics

Decision Tree model is the best predictive model for the dataset

Flight Number vs. Launch Site

- Earlier flights had a lower success rate
 (blue = fail)
- Later flights had a higher success rate (orange = success)
- Around half of launches were from CCAFS SLC 40 launch site
- VAFB SLC 4E and KSC LC 39A have higher success rates
- We can infer that new launches have a higher success rate

Payload vs. Launch Site

- Typically, the higher the payload mass (kg), the higher the success rate
- Most launces with a payload greater than 7,000 kg were successful
- KSC LC 39A has a 100% success rate for launches less than 5,500 kg
- VAFB SKC 4E has not launched anything greater than ~10,000 kg

Success Rate by Orbit

Exploratory Data Analysis

• 100% Success Rate: ES-L1, GEO, HEO and SSO

• 50%-80% Success Rate: GTO, ISS, LEO, MEO, PO

• 0% Success Rate: SO

Flight Number vs. Orbit

- The success rate typically increases with the number of flights for each orbit
- This relationship is highly apparent for the LEO orbit
- The GTO orbit, however, does not follow this trend

Payload vs. Orbit

- Heavy payloads are better with LEO, ISS and PO orbits
- The GTO orbit has mixed success with heavier payloads

Launch Success over Time

- The success rate improved from 2013-2017 and 2018-2019
- The success rate decreased from 2017-2018 and from 2019-2020
- Overall, the success rate has improved since 2013

Launch Site Information

Launch Site Names

- CCAFS LC-40
- CCAFS SLC-40
- KSC LC-39A
- VAFB SLC-4E

Records with Launch Site Starting with CCA

Displaying 5 records below

Landing Outcome Cont.

Payload Mass

Total Payload Mass

 45,596 kg (total) carried by boosters launched by NASA (CRS)

```
%sql SELECT SUM(PAYLOAD_MASS__KG_) \
    FROM_SPACEXTBL_\
    WHERE CUSTOMER = 'NASA (CRS)':

* ibm_db_sa://yyy33800:***@1bbf73c5-d84a-4|
    sqlite:///my_data1.db
Done.

1
45596
```

Average Payload Mass

 2,928 kg (average) carried by booster version F9 v1.1

```
%sql SELECT AVG(PAYLOAD_MASS__KG_) \
    FROM SPACEXTBL \
    WHERE BOOSTER_VERSION = 'F9 v1.1';

* ibm_db_sa://yyy33800:***@lbbf73c5-d84a-4
    sqlite:///my_data1.db
Done.

1
2928
```

Landing & Mission Info

1st Successful Landing in Ground Pad

• 12/22/2015

```
%sql SELECT MIN(DATE) \
FROM SPACEXTBL \
WHERE LANDING OUTCOME = 'Success (ground pad)'
* ibm_db_sa://yyy33800:***@lbbf73c5-d84a-4bb0-85b'
sqlite://my_data1.db
Done.

1
2015-12-22
```

Total Number of Successful and Failed Mission Outcomes

- 1 Failure in Flight
- 99 Success
- 1 Success (payload status unclear)

Booster Drone Ship Landing

- Booster mass greater than 4,000 but less than 6,000
- JSCAT-14, JSCAT-16, SES-10, SES-11 / EchoStar 105

```
%sql SELECT PAYLOAD \
FROM SPACEXTBL \
WHERE LANDING OUTCOME = 'Success (drone ship)' \
AND PAYLOAD MASS KG BETWEEN 4000 AND 6000;

* ibm_db_sa://yyy33800:***@lbbf73c5-d84a-4bb0-85b9-sqlite:///my_datal.db
Done.

payload

JCSAT-14

JCSAT-16

SES-10

SES-11 / EchoStar 105
```

Boosters

Carrying Max Payload

- F9 B5 B1048.4
- F9 B5 B1049.4
- F9 B5 B1051.3
- F9 B5 B1056.4
- F9 B5 B1048.5
- F9 B5 B1051.4
- F9 B5 B1049.5
- F9 B5 B1060.2
- F9 B5 B1058.3
- F9 B5 B1051.6
- F9 B5 B1060.3
- F9 B5 B1049.7

```
%sql SELECT BOOSTER_VERSION \
FROM SPACEXTBL \
WHERE PAYLOAD MASS KG = (SELECT MAX(PAYLOAD MASS KG) FROM SPACEXTBL);

* sqlite:///my_datal.db
Done.

Booster_Version

F9 B5 B1048.4

F9 B5 B1051.3

F9 B5 B1056.4

F9 B5 B1051.4

F9 B5 B1051.4

F9 B5 B1049.5
```

F9 B5 B1060.2

F9 B5 B1058.3

F9 B5 B1051.6

F9 B5 B1060.3

F9 B5 B1049.7

Failed Landings on Drone Ship

In 2015

• Showing month, date, booster version, launch site and landing outcome

Count of Successful Landings

Ranked Descending

• Count of landing outcomes between 2010-06-04 and 2017-03-20 in descending order

```
%sql SELECT [Landing _Outcome], count(*) as count_outcomes \
FROM SPACEXTBL \
WHERE DATE between '84-86-2010' and '20-03-2017' group by [Landing Outcome] order by count outcomes DESC:
 * sqlite:///my_datal.db
Done.
 Landing Outcome count_outcomes
            Success
                                 20
        No attempt
 Success (drone ship)
Success (ground pad)
  Failure (drone ship)
             Failure
  Controlled (ocean)
  Failure (parachute)
        No attempt
```

Launch Site Analysis

Launch Sites

With Markers

• **Near Equator**: the closer the launch site to the equator, the **easier** it is **to launch** to equatorial orbit, and the more help you get from Earth's rotation for a prograde orbit. Rockets launched from sites near the equator get an **additional natural boost** - due to the rotational speed of earth - that **helps save the cost** of putting in extra fuel and boosters.

Launch Outcomes

At Each Launch Site

- Outcomes:
- **Green** markers for successful launches
- **Red** markers for unsuccessful launches
- Launch site CCAFS SLC-40 has a 3/7 success rate (42.9%)

Distance to Proximities

CCAFS SLC-40

- .86 km from nearest coastline
- 21.96 km from nearest railway
- 23.23 km from nearest city
- 26.88 km from nearest highway

Distance to Proximities

CCAFS SLC-40

- Coasts: help ensure that spent stages dropped along the launch path or failed launches don't fall on people or property.
- **Safety / Security:** needs to be an exclusion zone around the launch site to keep unauthorized people away and keep people safe.
- **Transportation/Infrastructure and Cities**: need to be away from anything a failed launch can damage, but still close enough to roads/rails/docks to be able to bring people and material to or from it in support of launch activities.

Dashboard with Plotly

Launch Success by Site

Success as Percent of Total

• KSC LC-39A has the most successful launches amongst launch sites (41.2%)

SpaceX Launch Records Dashboard

Launch Success (KSC LC-29A)

Success as Percent of Total

- KSC LC-39A has the highest success rate amongst launch sites (76.9%)
- 10 successful launches and 3 failed launches

SpaceX Launch Records Dashboard

Payload Mass and Success

By Booster Version

- Payloads between 2,000 kg and 5,000 kg have the highest success rate
- 1 indicating successful outcome and 0 indicating an unsuccessful outcome

Predictive Analysis

Classification

Accuracy

- All the models performed at about the same level and had the same scores and accuracy. This is likely due to the small
 dataset. The Decision Tree model slightly outperformed the rest when looking at .best_score_
- .best_score_ is the average of all cv folds for a single combination of the parameters

	LogReg	SVM	Tree	KNN
Jaccard_Score	0.800000	0.800000	0.800000	0.800000
F1_Score	0.888889	0.888889	0.888889	0.888889
Accuracy	0.833333	0.833333	0.833333	0.833333

```
models = ('KNeighbors':knn_cv.best_score ,
              'DecisionTree': tree cv.best score ,
              'LogisticRegression':logreg cv.best score ,
              'SupportVector': sym cv.best score }
bestalgorithm = max(models, key=models.get)
print('Best model is', bestalgorithm,'with a score of', models[bestalgorithm])
if bestalgorithm == 'DecisionTree':
    print('Best params is :', tree_cv.best_params_)
if bestalgorithm == 'KNeighbors':
    print('Best params is :', knn_cv.best_params_)
if bestalgorithm == 'LogisticRegression':
    print('Best params is :', logreg cv.best params )
if bestalgorithm == 'SupportVector':
    print('Best params is :', svm_cv.best_params_)
Best model is DecisionTree with a score of 0.9017857142857142
Best params is : {'criterion': 'gini', 'max_depth': 16, 'max_features': 'auto', 'min_samples_leaf': 4, 'min_samples_split': 10, 'splitter': 'random'}
```

Confusion Matrices

Performance Summary

- · A confusion matrix summarizes the performance of a classification algorithm
- · All the confusion matrices were identical
- The fact that there are false positives (Type 1 error) is not good
- Confusion Matrix Outputs:
 - 12 True positive
 - 3 True negative
 - 3 False positive
 - 0 False Negative
- **Precision** = TP / (TP + FP)
 - 12 / 15 = .80
- **Recall** = TP / (TP + FN)
 - 12 / 12 = 1
- **F1 Score** = 2 * (Precision * Recall) / (Precision + Recall)
 - 2*(.8*1)/(.8+1) = .89
- **Accuracy** = (TP + TN) / (TP + TN + FP + FN) = .833

Conclusion

Research

- **Model Performance**: The models performed similarly on the test set with the decision tree model slightly outperforming
- **Equator**: Most of the launch sites are near the equator for an additional natural boost due to the rotational speed of earth which helps save the cost of putting in extra fuel and boosters
- **Coast**: All the launch sites are close to the coast
- Launch Success: Increases over time
- **KSC LC-39A**: Has the highest success rate among launch sites. Has a 100% success rate for launches less than 5,500 kg
- Orbits: ES-L1, GEO, HEO, and SSO have a 100% success rate
- Payload Mass: Across all launch sites, the higher the payload mass (kg), the higher the success rate

Conclusion

Things to Consider

- Dataset: A larger dataset will help build on the predictive analytics results to help understand if the findings can be generalizable to a larger data set
- Feature Analysis / PCA: Additional feature analysis or principal component analysis should be conducted to see if it can help improve accuracy
- XGBoost: Is a powerful model which was not utilized in this study. It would be interesting to see if it outperforms the other classification models