Polygon

Collection of points connected with lines

- Vertices: v₁,v₂,v₃,v₄
- Edges:

$$e_1 = v_1 v_2$$

$$e_2 = v_2 v_3$$

$$e_3 = v_3 v_4$$

$$e_4 = v_4 v_1$$

Polygons

- · Open / closed
- Planar / non-planar
- Filled / wireframe
- Convex / concave
- Simple / non-simple

Guerrilla CG Tutorial 01: The Polygon

Triangles

The most common primitive

- Simple
- Convex
- Planar

Plane Equation

$$\mathbf{n} = [a \ b \ c]^{\mathrm{T}}$$

Normal / point form

$$F(x, y, z) = ax + by + cz + d = \mathbf{n} \cdot P + d$$

For points on plane, $F(x, y, z) = 0$

Observation: Let's take an arbitrary vector \mathbf{u} that lies on the plane which can be defined by two points; e.g., P_1 , P_2 on the plane.

$$\mathbf{u} = P_2 - P_1$$

$$\mathbf{n} \bullet P_1 + d = 0
\mathbf{n} \bullet P_2 + d = 0$$

$$\Rightarrow \mathbf{n} \bullet (P_2 - P_1) = 0 \Rightarrow \mathbf{n} \bullet \mathbf{u} = 0 \Rightarrow \mathbf{n} \perp \mathbf{u}$$

Computing Normal / Point Form From 3 Points

$$F(x, y, z) = ax + by + cz + d = \mathbf{n} \bullet P + d$$

Points on Plane
$$F(x, y, z) = 0$$

 $\mathbf{n} = [a \ b \ c]^{\mathrm{T}}$

First way (4 equations in unknowns a, b, c, d):

$$\mathbf{n} \bullet P_0 + d = 0$$

$$\mathbf{n} \bullet P_1 + d = 0$$

$$\mathbf{n} \bullet P_2 + d = 0$$

$$|\mathbf{n}| = 1$$
 (arbitrary choice)

Second way:

 ${\bf n}$ is normal to the plane

Let's find a normal vector:

$$\mathbf{n} = (P_1 - P_0) \times (P_2 - P_0) = \mathbf{v}_1 \times \mathbf{v}_2$$

Compute d:

$$d = -\mathbf{n} \bullet P_0$$

Transforming Normals

Normal vectors are transformed along with vertices and polygons.

- · How do you transform a normal?
- · What about unit magnitude?

Deriving Transformation of Normals

Normal to
$$S$$
: $\mathbf{n} = [n_x, n_y, n_z, 0]^T$
Tangent to S : $\mathbf{v} = [v_x, v_y, v_z, 0]^T$

$$S' = MS \Rightarrow v' = Mv$$

What is n'?

$$0 = \mathbf{n} \cdot \mathbf{v} = \mathbf{n}^T \mathbf{v}$$

$$= \mathbf{n}^T (\mathbf{M}^{-1} \mathbf{M}) \mathbf{v}$$

$$= (\mathbf{n}^T \mathbf{M}^{-1}) (\mathbf{M} \mathbf{v})$$

$$= (\mathbf{M}^{-T} \mathbf{n})^T (\mathbf{M} \mathbf{v})$$

$$= (\mathbf{M}^{-T} \mathbf{n}) \cdot (\mathbf{M} \mathbf{v}) = \mathbf{n}' \cdot \mathbf{v}' = 0$$

Therefore, $\mathbf{n}' = \mathbf{M}^{-T}\mathbf{n}$

Polygonal Models / Data Structures

Indexed face set

te J	oes vertex list	74	rtex list K,Y,E
0	0,2,3,L	0	0,1,1
:	1,3,7,5	L	1,1,1
2	5,7,6,4	2	N,N, 1
1	4,6,2,0	1	1,0,1
•	4,0,1,5	4	0,1,0
5	2,6,7,3	5	1,1,0
		6	0,0,0
		7	1,0,0

Polygon Attributes

Per vertex

- Color
- · Texture coordinates

Per vertex or per face

- Color
- Normal

Guerrilla CG Tutorial 02: Multisided and Intersecting Polygons

Guerrilla CG Tutorial 05: Objects

Guerrilla CG Tutorial 11: Hierarchies

Guerrilla CG Tutorial 12: Hierarchies – Building a Robot

Guerrilla CG Tutorial 06: Primitives (Blocking Models)

