МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №2

по дисциплине: Теория автоматов и формальных языков тема: «Преобразования КС-грамматик.»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: ст. пр. Рязанов Юрий Дмитриевич

Лабораторная работа №2

Преобразования КС-грамматик. Вариант 8

Цель работы: изучить основные эквивалентные преобразования КС-грамматик и научиться применять их для получения КС-грамматик, обладающих заданными свойствами.

Задание:

- 1. $T \rightarrow abETP$
- 2. $T \rightarrow aDE$
- $3. T \rightarrow D$
- 4. $D \rightarrow DTAb$
- 5. $D \rightarrow b$
- 6. $E \rightarrow \varepsilon$
- 7. $P \rightarrow BCa$
- 8. $P \rightarrow Cb$
- 9. $C \rightarrow abC$
- 10. $A \rightarrow Bbb$
- 11. $B \rightarrow aECb$
- 12. $B \rightarrow D$
 - 1. Преобразовать исходную грамматику G в грамматику G_1 без лишних символов. **Модификации:** в ходе выполнения лабораторной работы обнаружено, что в грамматике не будет недостижимых символов. Поэтому добавим правило:

13.
$$S \rightarrow ab$$

Найдём в исходной грамматике бесплодные нетерминалы.

Для начала найдём продуктивные нетерминалы.

В множество продуктивных нетерминалов Р включаем нетерминал D (правило 5) нетерминал E (правило 6) и нетерминал S (правило 13). Получаем $= \{D, E, S\}$. Повторяем проверку и включаем нетерминал T (правило 2) и нетерминал B (правило 12). Получаем $P = \{D, E, S, T, B\}$

Повторяем проверку и включаем A (правило 10). Получаем $P = \{D, E, S, T, B, A\}$ Множество P больше увеличить не можем.

Из множества нетерминалов исключаем продуктивные нетерминалы и получаем $\{P,C\}$ - множество бесплодных нетерминалов.

Исключаем правила 1, 7, 8, 9, 11 так как они содержат бесплодные нетерминалы. Получаем грамматику:

- 2. $T \rightarrow aDE$
- 3. $T \rightarrow D$
- 4. $D \rightarrow DTAb$

5.
$$D \rightarrow b$$

6.
$$E \rightarrow \varepsilon$$

10.
$$A \rightarrow Bbb$$

12.
$$B \rightarrow D$$

13.
$$S \rightarrow ab$$

Найдём достижимые символы.

Положим $P = \{T\}$, где T - начальный нетерминал.

Включим в список a, D, E (правило 2). $P = \{T, a, D, E\}$.

Включим в список b, A (правило 4), ε . $P = \{T, a, D, E, \varepsilon, b, A\}$.

Включим в список B (правило 10). $P = \{T, a, D, E, \varepsilon, b, A, B\}.$

Множество Р больше увеличить не можем.

Из множества терминалов и нетерминалов исключаем достижимые терминалы и нетерминалы и получаем $\{S\}$ - множество недостижимых нетерминалов и терминалов.

Исключаем из грамматики правило 13, так как оно содержит недостижимый символ.

Искомая грамматика G_1 :

1.
$$T \rightarrow aDE$$

$$2. T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

5.
$$E \to \varepsilon$$

6.
$$A \rightarrow Bbb$$

$$7. B \rightarrow D$$

2. Преобразовать грамматику G_1 в грамматику G_2 без ε -правил.

Выберем правило 5. Иключаем из правой части каждого правила исходной грамматики всеми возможными способами вхождение нетерминала Е. Полученные правила добавляем в множество правил грамматики.

1_1.
$$T \rightarrow aDE$$

1 2.
$$T \rightarrow aD$$

$$2.T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

$$4. D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Bbb$$

7.
$$B \rightarrow D$$

Исключаем из списка правил правило 5.

1 1.
$$T \rightarrow aDE$$

$$1^{-}2. T \rightarrow aD$$

$$2.T \rightarrow D$$

$$3. D \rightarrow DTAb$$

- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

Исключим из правил непродуктивные символы:

- $1_2. T \rightarrow aD$
- 2. $T \rightarrow D$
- $3. D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- $7. B \rightarrow D$

В полученной грамматике G_2 нет правил вида $A \to A$, одинаковых правил и ε -правил. Получили искомую грамматику:

Искомая грамматика G_2 :

- 1. $T \rightarrow aD$
- $2. T \rightarrow D$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- $7. B \rightarrow D$

3. Преобразовать грамматику G_1 в грамматику G_3 без цепных правил.

Исходная грамматика:

- 1. $T \rightarrow aDE$
- $2. T \rightarrow D$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 5. $E \rightarrow \varepsilon$
- 6. $A \rightarrow Bbb$
- $7. B \rightarrow D$

Выполним замену края в правиле 2, так как нетерминал Т - начальный:

- 1. $T \rightarrow aDE$
- 2 1. $T \rightarrow DTAb$
- 2_2. $T \rightarrow b$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 5. $E \rightarrow \varepsilon$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

Заменим символ В в правиле 6 и удалим правило 7:

- 1. $T \rightarrow aDE$
- 2 1. $T \rightarrow DTAb$
- $2^{-}2. T \rightarrow b$
- $3. D \rightarrow DTAb$

4.
$$D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6 1.
$$A \rightarrow Bbb$$

$$6\ 2.\ A \rightarrow Dbb$$

Исключим правила с бесплодными нетерминалами:

1.
$$T \rightarrow aDE$$

2 1.
$$T \rightarrow DTAb$$

2 2.
$$T \rightarrow b$$

$$3. D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

$$6_2$$
. $A \rightarrow Dbb$

Искомая грамматика G_3 :

1.
$$T \rightarrow aDE$$

2.
$$T \rightarrow DTAb$$

3.
$$T \rightarrow b$$

4.
$$D \rightarrow DTAb$$

$$5. D \rightarrow b$$

6.
$$E \rightarrow \varepsilon$$

7.
$$A \rightarrow Dbb$$

4. Преобразовать грамматику G_1 в грамматику G_4 без левой рекурсии.

Исходная грамматика:

1.
$$T \rightarrow aDE$$

$$2. T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Bbb$$

7.
$$B \rightarrow D$$

Т не содержит левой рекурсии. Выполним устранение самолеворекурсивного правила для D:

$$T \rightarrow aDE$$

$$T \to D$$

$$D \to b D'$$

$$E \to \varepsilon$$

$$A \rightarrow Bbb$$

$$B \to D$$

$$D' \to TAbD'$$

$$D' \to \varepsilon$$

Выполним замену края в правиле 6:

$$T \to aDE$$

$$T \to D$$

$$D \to bD'$$

$$E \to \varepsilon$$

$$A \rightarrow Bbb$$

$$B \to bD'$$

$$D' \to TAbD'$$

$$D' \to \varepsilon$$

Искомая грамматика G_4 :

1.
$$T \rightarrow aDE$$

$$2. T \rightarrow D$$

$$3. D \rightarrow bD'$$

4.
$$E \rightarrow \varepsilon$$

5.
$$A \rightarrow Bbb$$

6.
$$B \rightarrow bD'$$

7.
$$D' \rightarrow TAbD'$$

8.
$$D' \rightarrow \varepsilon$$

5. Преобразовать грамматику G_1 в грамматику G_5 без несаморекурсивных нетерминалов.

Искходная грамматика:

1.
$$T \rightarrow aDE$$

$$2. T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Bbb$$

7.
$$B \rightarrow D$$

Нетерминал Е несаморекурсивный.

Исключаем правило 5:

5.
$$E \rightarrow \varepsilon$$

Выбираем вхождение символа Е в правиле 1 и выполняем одиночную замену:

1_1.
$$T \rightarrow aD$$

$$2.T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

$$4. D \rightarrow b$$

6.
$$A \rightarrow Bbb$$

$$7. B \rightarrow D$$

Исключаем правило 7, выполняя одиночную замену:

$$1_1. T \rightarrow aD$$

$$2. T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

$$4. D \rightarrow b$$

6.
$$A \rightarrow Dbb$$

Нетерминал А несаморекурсивный.

Исключаем правило 7, выполняя одиночную замену:

$$1_1. T \rightarrow aD$$

$$2.T \rightarrow D$$

3.
$$D \rightarrow DTDbbb$$

$$4. D \rightarrow b$$

Нетерминал D саморекурсивный. Нетерминал T хоть и несаморекурсивный, однко является начальным терминалом, а значит выполнять преобразования с ним не можем.

Искомая грамматика G_5 :

$$1. T \rightarrow a\bar{D}$$

2.
$$T \rightarrow D$$

3.
$$D \rightarrow DTDbbb$$

4.
$$D \rightarrow b$$

6. Получить грамматику G_6 , эквивалентную грамматике G_1 , в которой правая часть каждого правила состоит либо из одного терминала, либо двух нетерминалов.

Для получения грамматики G_6 необходимо привести грамматику G_1 к нормальной форме Хомского.

Воспользуемся грамматикой G_3' , в которой нет цепных правил, ε -правил и цепных правил.

Исходная грамматика:

$$1. T \rightarrow aD$$

2.
$$T \rightarrow DTAb$$

3.
$$T \rightarrow b$$

4.
$$D \rightarrow DTAb$$

$$5. D \rightarrow b$$

6.
$$A \rightarrow Bbb$$

7.
$$B \rightarrow DTAb$$

$$8. B \rightarrow b$$

Выполним пункт 1 алгоритма (преобразование правил вида $A \to Xa$):

$$T \to aD$$

$$T \to DN_1$$

$$T \to b$$

$$D \to DN_1$$

$$D \to b$$

$$A \to Bbb$$

$$B \to DN_1$$

$$B \to b$$

$$N_1 \to TAb$$

$$T \to aD$$

$$T \to DN_1$$

$$T \to b$$

$$D \to DN_1$$

$$D \to b$$

$$A \to BN_2$$

$$B \to DN_1$$

$$B \to b$$

$$N_1 \to TAb$$

$$N_2 \to bb$$

$$T \rightarrow aD$$

$$T \rightarrow DN_1$$

$$T \rightarrow b$$

$$D \rightarrow DN_1$$

$$D \rightarrow b$$

$$A \rightarrow BN_2$$

$$B \rightarrow DN_1$$

$$B \rightarrow b$$

$$N_1 \rightarrow TN_3$$

$$N_2 \rightarrow bb$$

$$N_3 \rightarrow Ab$$

Выполним пункт 2 алгоритма (преобразование правил вида $A \to tB$):

$$T \rightarrow N_4D$$

$$T \rightarrow DN_1$$

$$T \rightarrow b$$

$$D \rightarrow DN_1$$

$$D \rightarrow b$$

$$A \rightarrow BN_2$$

$$B \rightarrow DN_1$$

$$B \rightarrow b$$

$$N_1 \rightarrow TN_3$$

$$N_2 \rightarrow bb$$

$$N_3 \rightarrow Ab$$

$$N_4 \rightarrow a$$

Выполним пункт 3 алгоритма (преобразование правил вида $A \to Bt$): $T \to N_4 D$

$$T \rightarrow DN_1$$

$$T \rightarrow b$$

$$D \rightarrow DN_1$$

$$D \rightarrow b$$

$$A \rightarrow BN_2$$

$$B \rightarrow DN_1$$

$$B \rightarrow b$$

$$N_1 \rightarrow TN_3$$

$$N_2 \rightarrow bb$$

$$N_3 \rightarrow AN_5$$

$$N_4 \rightarrow a$$

$$N_5 \rightarrow b$$

Выполним пункт 4 алгоритма (преобразование правил вида $A \to tt$):

 $T \to N_4 D$ $T \to D N_1$ $T \to b$

 $D \to DN_1$

 $D \to b$

 $A \to BN_2$

 $B \to DN_1$

 $B \to b$

 $N_1 \to TN_3$

 $N_2 \rightarrow N_5 N_5$

 $N_3 \to AN_5$

 $N_4 \to a$

 $N_5 \rightarrow b$

Искомая грамматика G_6 :

 $T \rightarrow N_4 D$

 $T \to DN_1$

 $T \to b$

 $D \to DN_1$

 $D \to b$

 $A \to BN_2$

 $B \to DN_1$

 $B \to b$

 $N_1 \rightarrow TN_3$

 $N_2 \rightarrow N_5 N_5$

 $N_3 \to AN_5$

 $N_4 \to a$

 $N_5 \rightarrow b$

7. Получить грамматику G_7 , эквивалентную грамматике G_1 , в которой правая часть каждого правила начинается терминалом.

Используем преобразованную грамматику G_1 без левой рекурсии G_4 :

В G_4 есть ε -правила. Исключим их и получим грамматику G_4' :

- 1. $T \rightarrow aD$
- 2. $T \rightarrow DTAb$
- 3. $T \rightarrow b$
- 4. $D \rightarrow bB_1$
- 5. $B_1 \rightarrow TAbB_1$
- 6. $B_1 \rightarrow \varepsilon$
- 7. $A \rightarrow Bbb$
- 8. $B \rightarrow bB_1TAb$
- 9. $B \rightarrow b$
- 1. $T \rightarrow aD$
- 2. $T \rightarrow DTAb$
- 3. $T \rightarrow b$
- 4 1. $D \rightarrow bB_1$
- $4_2. D \rightarrow b$
- 5 1. $B_1 \rightarrow TAbB_1$
- $5_2. B_1 \rightarrow TAb$
- 7. $A \rightarrow Bbb$
- 8 1. $B \rightarrow bB_1TAb$
- 8 2. $B \rightarrow bTAb$
- 9. $B \rightarrow b$

Упорядочим грамматику:

- 1. $B_1 \rightarrow TAb$
- $2. B_1 \rightarrow TAbB_1$
- 3. $T \rightarrow aD$
- 4. $T \rightarrow DTAb$
- 5. $D \rightarrow bB_1$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow bB_1TAb$
- 8. $B \rightarrow bTAb$
- 9. $B \rightarrow b$
- 10. $T \rightarrow b$
- 11. $D \rightarrow b$

Выполнение замены края:

- 1. $B_1 \to TAb$
- 2. $B_1 \rightarrow TAbB_1$
- 3. $T \rightarrow aD$
- 4. $T \rightarrow DTAb$
- 5. $D \rightarrow bB_1$
- $6_1. A \rightarrow bB_1TAbbb$

6 2.
$$A \rightarrow bTAbbb$$

6 3.
$$A \rightarrow bbb$$

7.
$$B \rightarrow bB_1TAb$$

8.
$$B \rightarrow bTAb$$

9.
$$B \rightarrow b$$

10.
$$T \rightarrow b$$

11.
$$D \rightarrow b$$

1.
$$B_1 \rightarrow TAb$$

2.
$$B_1 \rightarrow TAbB_1$$

$$3. T \rightarrow aD$$

4.
$$T \rightarrow bB_1TAb$$

5.
$$D \rightarrow bB_1$$

6 1.
$$A \rightarrow bB_1TAbbb$$

6 2.
$$A \rightarrow bTAbbb$$

$$6^{-}3. A \rightarrow bbb$$

$$7.B \rightarrow bB_1TAb$$

8.
$$B \rightarrow bTAb$$

9.
$$B \rightarrow b$$

10.
$$T \rightarrow b$$

11.
$$D \rightarrow b$$

$$1_1. B_1 \rightarrow aDAb$$

$$1 2. B_1 \rightarrow bB_1TAbAb$$

$$2\overline{}1. B_1 \rightarrow aDAbB_1$$

2_2.
$$B_1 \rightarrow bB_1TAbAbB_1$$

3.
$$T \rightarrow aD$$

4.
$$T \rightarrow bB_1TAb$$

5.
$$D \rightarrow bB_1$$

6 1.
$$A \rightarrow bB_1TAbbb$$

$$6^{-}2. A \rightarrow bTAbbb$$

$$6_3. A \rightarrow bbb$$

$$7.B \rightarrow bB_1TAb$$

8.
$$B \rightarrow bTAb$$

9.
$$B \rightarrow b$$

10.
$$T \rightarrow b$$

11.
$$D \rightarrow b$$

Искомая грамматика G_7 :

1.
$$B_1 \rightarrow aDAb$$

2.
$$B_1 \rightarrow bB_1TAbAb$$

3.
$$B_1 \rightarrow aDAbB_1$$

4.
$$B_1 \rightarrow bB_1TAbAbB_1$$

5.
$$T \rightarrow aD$$

6.
$$T \rightarrow bB_1TAb$$

7.
$$D \rightarrow bB_1$$

8. $A \rightarrow bB_1TAbbb$
9. $A \rightarrow bTAbbb$
10. $A \rightarrow bbb$
11. $B \rightarrow bB_1TAb$
12. $B \rightarrow bTAb$
13. $B \rightarrow b$
14. $T \rightarrow b$

15. $D \rightarrow b$

8. Получить грамматику G_8 , эквивалентную грамматике G_1 , в которой правая часть каждого не ε -правила начинается терминалом и любые два правила с одинаковой левой частью различаются первым символом в правой части.

Для получения такой грамматики можем проводить множественную левую факторизацию и замену в грамматике G_7 .

Модификации: в ходе выполнения задания было выявлено, что грамматика G_7 преобразовать к искомой невозможно, так как алгоримт зациклился. Попробуем удалить из грамматики G_7 правила 2, 3, 4, 5.

$$B_1 \rightarrow aDAb$$

 $T \rightarrow bB_1TAb$
 $D \rightarrow bB_1$
 $A \rightarrow bB_1TAbbb$
 $A \rightarrow bTAbbb$
 $A \rightarrow bB_1TAb$
 $B \rightarrow bB_1TAb$
 $B \rightarrow bTAb$
 $A \rightarrow bTAb$
 $A \rightarrow bB_1TAb$
 $A \rightarrow bB_1TAb$

Выполним левую факторизацию:

$$B_{1} \rightarrow aDAb$$

$$T \rightarrow bB_{1}TAb$$

$$D \rightarrow bB_{1}$$

$$A \rightarrow bE_{1}$$

$$E_{1} \rightarrow B_{1}TAbbb$$

$$E_{1} \rightarrow TAbbb$$

$$E_{1} \rightarrow bb$$

$$B \rightarrow bE_{2}$$

$$E_{2} \rightarrow B_{1}TAb$$

$$E_{2} \rightarrow TAb$$

$$E_{2} \rightarrow C$$

$$T \rightarrow b$$

$$D \rightarrow b$$

Выполним замену:

$$B_1 \to aDAb$$

$$T \to bB_1TAb$$

$$D \rightarrow bB_1$$

$$A \rightarrow bE_1$$

$$E_1 \rightarrow aDAbTAbbb$$

$$E_1 \rightarrow bB_1TAbAbbb$$

$$E_1 \rightarrow bb$$

$$B \to bE_2$$

$$E_2 \rightarrow aDAbTAb$$

$$E_2 \rightarrow bB_1TAbAb$$

$$E_2 \to \varepsilon$$

$$T \to b$$

$$D \to b$$

Выполним левую факторизацию:

$$B_1 \to aDAb$$

$$T \to bB_1TAb$$

$$D \rightarrow bB_1$$

$$A \rightarrow bE_1$$

$$E_1 \rightarrow aDAbTAbbb$$

$$E_1 \rightarrow bE_3$$

$$E_3 \rightarrow B_1 T Ab Abbb$$

$$E_3 \to b$$

$$B \to bE_2$$

$$E_2 \rightarrow aDAbTAb$$

$$E_2 \rightarrow bB_1TAbAb$$

$$E_2 \to \varepsilon$$

$$T \to b$$

$$D \to b$$

Выполним замену:

$$B_1 \to aDAb$$

$$T \to bB_1TAb$$

$$D \to bB_1$$

$$A \to bE_1$$

$$E_1 \rightarrow aDAbTAbbb$$

$$E_1 \rightarrow bE_3$$

$$E_3 \rightarrow aDAbTAbAbbb$$

$$E_3 \to b$$

$$B \to bE_2$$

$$E_2 \to aDAbTAb$$

$$E_2 \rightarrow bB_1TAbAb$$

$$E_2 \to \varepsilon$$

$$T \to b \\ D \to b$$

Искомая грамматика G_8 :

$$B_1 \rightarrow aDAb$$

$$T \to bB_1TAb$$

$$D \to bB_1$$

$$A \rightarrow bE_1$$

$$B \to bE_2$$

$$T \to b$$

$$D \to b$$

$$E_1 \rightarrow aDAbTAbbb$$

$$E_1 \rightarrow bE_3$$

$$E_2 \rightarrow aDAbTAb$$

$$E_2 \rightarrow bB_1TAbAb$$

$$E_2 \to \varepsilon$$

$$E_3 \rightarrow aDAbTAbAbbb$$

$$E_3 \to b$$

9. Получить грамматику G_9 , эквивалентную грамматике G_1 , в которой правая часть каждого правила не содержит двух стоящих рядом нетерминала.

Для получения такой грамматики преобразуем грамматику G_7 к операторной КС-грамматике.

Исходная грамматика:

$$B_1 \rightarrow aDA\bar{b}$$

$$B_1 \to bB_1TAbAb$$

$$B_1 \rightarrow aDAbB_1$$

$$B_1 \rightarrow bB_1TAbAbB_1$$

$$T \to aD$$

$$T \to bB_1TAb$$

$$D \to bB_1$$

$$A \to bB_1TAbbb$$

$$A \rightarrow bTAbbb$$

$$A \to bbb$$

$$B \rightarrow bB_1TAb$$

$$B \to bTAb$$

$$B \to b$$

$$T \to b$$

$$D \to b$$

Введём операторные правила:

$$B_1 \to aN_1b$$

$$B_1 \to bN_2bAb$$

$$B_1 \to aN_1bB_1$$

$$B_1 \to bN_2bAbB_1$$

```
T \to aD
T \to bN_2b
D \to bB_1
A \to bN_2bN_4
A \to bN_3bN_4
A \to bN_2b
B \to bN_2b
B \to bN_3b
B \to b
T \to b
D \to b
N_1 \to DA
```

 $N_2 \to B_1 T A$ $N_3 \to T A$

 $N_4 \rightarrow N_5 b$

 $N_5 \rightarrow b$

Выполним преобразования операторных правил:

 $B_1 \to aN_1b$

 $B_1 \to bN_2bAb$

 $B_1 \to aN_1bB_1$

 $B_1 \to bN_2bAbB_1$

 $T \to aD$

 $T \rightarrow bN_2b$

 $D \to bB_1$

 $A \rightarrow bN_2bN_4$

 $A \rightarrow bN_3bN_4$

 $A \rightarrow bN_4$

 $B \to bN_2b$

 $B \to bN_3b$

 $B \to b$

 $T \to b$

 $D \to b$

 $N_1 \to DbN_2bN_4$

 $N_1 \to DbN_3bN_4$

 $N_1 \to DbN_4$

 $N_2 \to B_1 a D b N_2 b N_4$

 $N_2 \rightarrow B_1 a D b N_3 b N_4$

 $N_2 \rightarrow B_1 a D b N_4$

 $N_2 \to B_1 b N_2 b A$

 $N_3 \to TbN_2bN_4$

 $N_3 \to TbN_3bN_4$

 $N_3 \to TbN_4$

 $N_4 \rightarrow N_5 b$

 $N_5 \rightarrow b$

Искомая грамматика G_9 :

- 1. $B_1 \rightarrow aN_1b$
- 2. $B_1 \rightarrow bN_2bAb$
- 3. $B_1 \rightarrow aN_1bB_1$
- 4. $B_1 \rightarrow bN_2bAbB_1$
- 5. $T \rightarrow aD$
- 6. $T \rightarrow bN_2b$
- 7. $D \rightarrow bB_1$
- 8. $A \rightarrow bN_2bN_4$
- 9. $A \rightarrow bN_3bN_4$
- 10. $A \rightarrow bN_4$
- 11. $B \rightarrow bN_2b$
- 12. $B \rightarrow bN_3b$
- 13. $B \rightarrow b$
- 14. $T \rightarrow b$
- 15. $D \rightarrow b$
- 16. $N_1 \rightarrow DbN_2bN_4$
- 17. $N_1 \rightarrow DbN_3bN_4$
- 18. $N_1 \rightarrow DbN_4$
- 19. $N_2 \rightarrow B_1 a D b N_2 b N_4$
- 20. $N_2 \rightarrow B_1 a D b N_3 b N_4$
- 21. $N_2 \rightarrow B_1 a D b N_4$
- 22. $N_2 \rightarrow B_1 b N_2 b A$
- 23. $N_3 \rightarrow TbN_2bN_4$
- 24. $N_3 \rightarrow TbN_3bN_4$
- 25. $N_3 \rightarrow TbN_4$
- 26. $N_4 \rightarrow N_5 b$
- 27. $N_5 \rightarrow b$
- 10. Получить грамматику G_{10} , эквивалентную грамматике G_1 , в которой любой символ занимает либо только крайнюю правую позицию в правых частях правил, либо находится левее самого правого символа в правых частях правил.

Возьмём грамматику G_2 :

- 1. $T \rightarrow aD$
- 2. $T \rightarrow D$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 5. $A \rightarrow Bbb$
- $6. B \rightarrow D$

Введём одиночные правила $N_1 \to D$ и $N_2 \to b$ и выполним замену там где D и b находится не в крайней правой позиции:

$$T \to aD$$

$$T \to D$$

$$D \to N_1 T A b$$

$$D \to b$$

$$A \to BN_2b$$

$$B \to D$$

$$N_1 \to D$$

$$N_2 \to b$$

Искомая грамматика G_{10} :

- 1. $T \rightarrow aD$
- $2. T \rightarrow D$
- 3. $D \rightarrow N_1 T A b$
- 4. $D \rightarrow b$
- 5. $A \rightarrow BN_2b$
- 6. $B \rightarrow D$
- 7. $N_1 \rightarrow D$
- 8. $N_2 \rightarrow b$

Вывод: в ходе лабораторной работы изучили основные эквивалентные преобразования КС-грамматик и научились применять их для получения КС-грамматик, обладающих заданными свойствами.