是燃料其理

层燃火焰传播原理

在稳定燃烧阶段,火焰以化学反应为原动力、通过热传导、热辐射等作用自发向下传播,火焰传播过程受对流冷却作用的影响。

气相守恒方程

质量守恒 $\frac{\partial}{\partial t}(\varepsilon \rho_g) + \frac{\partial}{\partial x_i}(\varepsilon \rho_g u_i) = S_m$

现有燃煤层燃模型

模拟分层煤斗

动量守恒 $\frac{\partial}{\partial t}(\varepsilon\rho u_i) + \frac{\partial}{\partial x_i}(\varepsilon\rho_g u_i u_j) = -\varepsilon \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_i}(\varepsilon\tau_{ij}) + \varepsilon\rho_g g + S_{p,i}$

组分守恒 $\frac{\partial}{\partial t}(\varepsilon X_l \rho_g) + \frac{\partial}{\partial x_i}(\varepsilon X_l \rho_g u_i) = \frac{\partial}{\partial x_i} \left(\varepsilon \rho_g D_{eff} \frac{\partial X_l}{\partial x_i}\right) + S_{s,l} + S_{g,l}$

能量守恒 $\frac{\partial}{\partial t}(\varepsilon c_{p,g}\rho_g T_g) + \frac{\partial}{\partial x_i}(\varepsilon u_i c_{p,g}\rho_g T_g) = \frac{\partial}{\partial x_i}\left(\varepsilon k_{c,g,eff}\frac{\partial T_g}{\partial x_i}\right) + S_{Q,c} + S_{Q,gr} + S_{Q,sr2}$

源项	物理意义	对应过程
质量源项	单位时间单位体积从 固相进入气相的质量	固相过程*
动量源项	多孔介质对流体的阻碍	流体通过多孔介质的流动 (Ergun Equation)
组分源项	单位时间单位体积由化学反 应引起的气体组分的质量增量	固相过程*、气相反应
能量源项	单位时间单位体积内由对流扩 散以外原因引起的能量的增量	气固对流换热、气相反应、固相 过程*、(气固辐射换热)

四层双收缩模型 考虑石墨化趋势的焦炭燃烧过程 床层炉膛耦合方法

床层下降模型

