5 Blutgerinnung

- Physiologie: **Zelluläres System** → Fibrinformation
 - o 1. Initiation
 - 2. Amplifikation (Vervielfachung)
 - 3. Propagation (Oberfläche der aggragierten Thrombozyten)
 - + Gegensteuerung
 - Fibrinolyse: Plasminogen → Plasmin // Firbinnetz →
 lösliche Fibrinopeptide
 - Endogene Gerinnungshemmung
 - TFPI (tissue factor pathway inhibitor)
 - Antithrombin
 - Fibrinopeptide: Alpha-2-Makroglobulin, Alpha-1-Antitrypsin
 - APC (activiertes Protein C) + Protein S
- Gerinnungstests
 - o ROTEM Thromboelastometrie clotting time, maximum lysis, aplitude 5min, firmness
 - aktivierte Thromboplastinzeit aPTT 2 5 9 10 11 Fibrinogen
 - o Prothrombinzeit PTZ 2 5 7 10 Fibrinogen
 - Thrombinzeit TZ
 - Fibrinogenspiegel
 - Thrombozytenfunktionstest

von-Willebrand-Faktor **vWF**: initiiert Thrombozytenadhäsion

o Präkonditionierende Faktoren: Temp., pH, Calcium, Erythrozyten, Vasokonstriktion

5

10

- o Reaktoren: Gerinnungsenzyme, Co-Faktoren 5+13
- o Zelluläre Reaktionsmatrix: TF-exprimierende Zellen, aktivierte Thrombozyten
- o Substrat: Fibrinogen
- Stabilisation des Reaktionsproduktes: Faktor 13a, Fibrinolyseinhibitoren (TAFI)
- Therapie der Blutung perioperativ, peripartal, traumatisch
 - Bei Hypokoagulation // zu schwachem Gerinnsel
 - Fibrinogenkonzentrat (Faktor XIII) // Gerinnungsfaktoren als häufigste periOP Blutungsursache fällt Fibrinogen als 1. Faktor kritisch ab → besseres/festeres Gerinnsel
 - Faktor XIII Konzentrat (bei späten Blutungsursachen, eher postOP)
 - Fresh frozen Plasma
 - o Bei <u>Hyperfibrinolyse</u> // zu instabilem Gerinnsel
 - Tranexamsäure (TXA) Antifibrinolytikum

IND: als Prophylaxe, systemisch bei EXTEM Spindelform

→ Plasminbildung wird blockiert

Dosis: 15 (-25) mg/kg

Applikation: i.v. oder: enoral / per os / Tab. / Saft / lokale Infiltration / Kombi

- o Bei Thrombozytendysfunktion
 - Desmopressin

Fördert Ausschüttung aus Endothel: vWF, t-PA, VIII über NO Vasodilatation Kombi mit TXA

- Thrombozytenkonzentrat (i.v. Fremdblut)
- Fibrinogenkonzentrat
- o Bei <u>Hypoaktivierung</u> // verzögerte Gerinnselbildung
 - PPSB-Konzentrat (Prothrombinkomplexkonzentrat)
 IND: INR 个, zB. Vitamin-K-induzierter (VKA) Blutung (in Kombi mit Vit. K)
 Cave: thrombogen
 - rFVIIa (rekombinanter Faktor VIIa, eptacog alpha) off-label use, teuer, thrombogen, last option

- bei "chirurgischer Blutung": Daumen, Klemme, Naht, Resektion, Packing, topischer hämostatischer Verband
- IND: Erythrozytenkonzentrat EK Transfusion
 - Hb < 6 / 6-8 / 8-10
 - eingeschränkte Kompensationsmöglichkeit ST-Streckenveränderungen, Tachykardie, Laktatazidose, Hypotension, relevante Nachblutungen
 - vorhandenen Risikofaktoren KHK, Herzinsuff. Insult
- von Willebrand Syndrom (vWS) ist eine angeborene hämorrhagische Diathese (Gerinnungsstörungen mit erhöhter Blutungsneigung)
 - → Thrombozytenadhäsion beerinträchtigt, verstärkter Abbau von Faktor VIII
 - Defekt
 - Quantitativ "Typ 1" partieller Mangel (häufigster Subtyp)
 "Typ 3" vollständiges Fehlen
 - Qualitativ "Typ 2"
 - o periOP Blutungsmanagement
 - Desmopressin, Tranexamsäure
 - vWF Substitution (seit 2018 auch rekombinater vWF) +/- Faktor VIII Konzentrat
- Angeborene Hämophilie
 - X chromosomal rezessiv, Frauen sind nur Träger
 - Diagnose: spontane Blutung (gr. Gelenke, Muskeln, Organe) auffällige Blutungsanamnese, aPTT-Verlängerung
 - Faktor VIII Mangel (Hämophilie A) Inversion im Intron 22 des F8 Gens
 - Faktor **IX** Mangel (Hämophilie B)
 - periOP Blutungsmanagement milde Form: Desmopressin+Tranexamsäure schwere Form: Faktor VIII bzw. IX Konzentrat
- Erworbene Hämophilie (AHA)
 - Ursache: Autoantikörper (Inhibitor) gegen Faktor VIII
 - Diagnose: spontane Blutung (gr. Gelenke, Muskeln, Organe) isolierte aPTT-Verlängerung
 - Mortalität 22%
 - o Therapie: Blutungskontrolle, Antikörpereradikation
 - periOP Blutungsmanagement milde Form: Desmopressin, Faktor VIII-Konzentrat schwere Form: mod. rekombinanter Faktor VIII

5.1 Antikoagulation

- Bei: Lungenembolie (LE) als Ursache des Bluthustens Tiefe Venen Thrombose (TVT)
- Indirekte Thrombinhemmung vermittelt via Antithrombin
 - Unfraktioniertes Heparin (UFH)
 - o Niedermolekulare Heparin (LMWH): Anti Xa // Antidot: Andexanet alfa
- Direkte Thrombinhemmung nicht vermittelt via Antithrombin
 - DOAK = direkte orale Antikoagulation bzw. NOAK = nicht Vitamin K-abhängige orale Antikoagulation
 - Dabigatran (Pradaxa): beachte Nierenfunktion, p.o.
 // Antidot: Idarucizumab
 - o **Argatroban** (Argatra): beachte Leberfunktion, i.v.
 - Direkte Xa Inhibitoren (DXA) fixe Gabe, beachte
 Nierenfunktion // Antidot: Andexanet alfa
 - Rivaroxaban (Xarelto)
 - Apixaban (Eliquis)
 - Edoxaban (Lixiana)

Drugmonitoring

- VKA = Vitamin K Antagonisten enges therapeutische Fenster, beachte Nierenfunktion & Interaktionen, inndividuelle Dosis // Antidot: Vit. K
 - Phenprocoumon (Marcoumar)
 - Acenocoumarol (Sintrom)
- Initiale Antikoagulation vs. Erhaltungstherapie
- Risikostratifizierung bei bestätigter LE
 - Hohes Risiko: direkt LYSE bei Dekompensation (mit rt-PA)
 - Niedriges Risiko: ambulat

5.2 Antiplättchentherapie

- Bei: Ischämie (Herzinfarkt, Schlafanfall, Stent...) // Blutverdünner
- Cyclooxygenase Hemmer
 - O **Aspirin** wenn Sekundärprophylaxe- lebenslang!
 - + (initial) P2Y12-Inhibitoren
- P2Y12-Inhibitoren
 - o Irreversible ADP Rezeptorblockade (Lebensdauer der Thrombozyten, 9-10 Tage)
 - o Wirkstoffe: Clopidogrel, Prasugrel
 - IND initial, bis Stent eingewachsen ist bei Aspirin Unverträglichkeit auch lebenslang
- GP IIb IIIa Inhibitoren: i.v. periinterventionell /-operativ

5.3 Präoperatives Absetzen

- Blutverdünner
 - Keine Pause bei Stent im Herzen, geplante OP nach frischem Stent
 - o Kein bridging mit "Thrombosespritzen"
 - o Aspirin: 5 Tage
 - o Clopidogrel: 5-7 Tage
 - Thrombodine: 10 Tage
- NOAKs
 72h vor blutungsrikanten OPs
 kein bridging, keine Pause bei kl. OPs
- Vitamin K Antagonisten
 - o keine Pause bei kl. OPs
 - 3-4 Tage bei Sintrom
 - o 7-10 Tage bei Marcoumar
 - bridging mit Enoxaparin bei mittlerem-hohem thromboembolischem Risiko
- Innovationen im Blutungsmanagement
 - Antidots gegen den NOAK / DOAK / VKA
 - Idarucizumab für Dabigatran
 - Andexanet alfa für Anti Xa Inhibitoren
 - Vitamin K für VKA
 - o Reversieren der Antiplättchentherapie: kein Antidot, aber Thrombozytenkonzentrat

5.4 Thromboseprophylaxe

- Häufigste Thrombophilie: Faktor V Leiden (homozygote Punktmutation) → Thromboseneigung
- → Resistenz gegen Abbau des Va durch aktiviertes Protein C (APC Resistenz)
- Thromboseentstehung: Virchow'sche Trias → postOP Vermeidung
 - o Endothelzellschädigung
 - → Antibiose, Entzüdungshemmung
 - Stase (verringerte Fließgeschwindigkeit)
 - → Venenpumpe, Mobilisation, intermittierende pneumatische Kompression, Vol. Terapie
 - Hyperkoagulabilität (gesteigerte Viskositätssteigerung)
 - → LMWH, UFH bei Niereninsuff., NOAK/DOAK bei Knie/Hüftprotethik, Vol. Therapie
- Zur Anti-Gerinnselstärke: Gelantine, Hydroäthylstärke (experimentelle Evidenz)

6 Immunologie

Körpereigene Abwehr	Angeborene Abwehr	Adaptive Immunität
Physikochemische	(Schleim-)Haut, Zilien, Magensäure, Hautepithel,	(Schleim-)Haut assoziiertes
Barrieren	Mikrobiom Haut, Darm, Lunge, Nase/Mund/Auge	lymphatisches Gewebe,
		sekretorische Antikörper
Lösliche Faktoren	-Komplementsystem	-Antikörper
(humorale Immunität)	-Akutphaseproteine	-Zytokine von Lymphozyten
	-Zytokine von Monozyten, Makrophagen, dendritischen	gebildete
	Zellen gebildete	
Zelluläre Faktoren	Granulozyten, Monozyten, Makrophagen,	Lymphozyten:
(zelluläre Immunität)	NK Zellen, dendritische Zellen	T Zellen, B Zellen

- Alle Zellen des Immunsystems gehen aus Vorläuferzellen im KM hervor
- Lymphatische Zelllinie
 - Lymphozyten adaptives Immunsystem (antigenspezifische Rezeptoren)
 - NK Zellen angeborenes Immunsystem

- Lymphe: transportiert Antigen vom Infektionsherd zum LK
- Lymphknoten
 - o Antigenbindende naive T-Zellen treten via Blutgefäße in einen LK
 - Wenn ihnen kein Antigen präsentiert wird, verlassen sie ihn wieder
 - Präsentieren antigenpräsentierende Zellen ein Antigen werden sie aktiviert und verlassen den LK differenziert → zirkulieren im Blut
 - o Antigenbindende naive **B-Zellen** treten via Blutgefäße in einen **LK**
 - Wenn ihnen kein Antigen präsentiert wird, verlassen sie ihn wieder
 - Treffen sie zwischen T und B Zell Zone auf ein Antigen, werden sie aktiviert
 - Bilden einen Primärfoci in den Marksträngen → **Keimzentrum** im primären Follikel
 - In **Keimzentren** findet somatische **Hypermutation & Affinitätsreifung** statt (T-Helferzellen & Centroblasten) → spezialisierte B-Zell-Vermehrung
 - Plasmablasten bleiben im primären Follikel oder wandern in das Knochenmark
- Milz (spleen)
 - Rote Pulpa baut Blutzellen ab
 - Weiße Pulpa besteht aus Lymphozyten
 - PALS Region (um die Arteriolen, die Antigene in die Milz transportiert), besteht aus T Zellen
 - Follikel bestehen aus B-Zellen
 - Sekundärfollikel beeinhaltet Keimzentren
- MALT (Mukosa Assoziiertes Lymphatisches Gewebe)
 - Atemwege
 - Verdauungstrakt: Peyer Plaques // Sekretorisches IgA (sIgA): kurze HWZ
 - Urogenitaltrakt

(membrangebundene) MHC Rezeptoren:
Unterscheidung von Fremd & Eigen
MHC-1 kontrollieren intrazellulär
MHC-2 kontrollieren extrazellulär

• Fremderkennung – adaptives Immunsystem

T-Zellen

■ T Zell Rezeptor (**TCR**) konstante Region variable Region = Antigenbindungsstelle: Alpha & Beta Kette

Aktivierung, durch antigenpräsentierende Zellen (Makrophage, B-Lymphozyten, dendritische Zellen Langerhans Zellen) ist der 1. Schritt zur Auslösung einer adaptven Immunantwort

- T-Zellen können lösliche Antigene nicht erkennen, sondern nur Peptide → antwortet nur auf körpereigene Antigenpräsentierende Zellen → T-Zell Aktivierung via MHC major histocompatibility complex Rezeptor → Phagozytose
- antigenunabhängige T-Zell Entwicklung im Thymus
- antigenabhängig T-Zell Differenzierung in der Peripherie Effektormechanismus
- MHC sind Zelloberflächenproteine, die für Antigenpräsentation und Antigenerkennung durch T-Zellen wichtig sind
 - **CD8** T-Killerzelle docken an **MHC-1** + Peptid

 → Viren intrazelluläre Erreger
 - **CD4** T-Helferzelle docken an **MHC-2** + Peptid
 → Bakterien *extrazelluläre Erreger*

- B-Zellen → Immunglobulingene: V- & C-Region
 - B-Zellen erkennen lösliche Antigene direkt
 - Können Antigene via MHC-2 Zelloberflächenproteine binden
 - antigenunabhängige B-Zell Entwicklung im KM
 - antigenabhängige B-Zell Differenzieung in den peripheren lymphatischen Organen
 - Leichte Kette, schwere Kette, Oberflächen Ig
- Voraussetzung für die Aktivierung von Lymphozyten: Wechselwirkung von Antigen UND antigenpräsentierenden Zellen + costimulierende Signale → Proliferation & Differenzierung zur T bzw. B Effektorzelle
- Antikörper binden am Antigen und verhindern so die Adhäsion/Fusion an/mit körpereigenen Zellen
- Fremderkennung innatives Immunsystem
 - o grobe, schnelle Breitbanderkennung
 - o verschiedene Mustererkennungsrezeptoren (PRRs) Pattern Recognition Receptors von Makrophagen, B-Lymphozyten, neutrophile Granulozyten, dendritischen Zellen erkennen PAMPs Pathogen-Assoziierte Molekular Muster grobe, molekulare Strukturen > naive T Lymphozyten werden aktiviert & Zytokine freigesetzt
 - o TLR (**Toll Like Rezeptoren**): Aktivierung → Wanderung in den LK
 - TLR1 & TLR2 erkennen bakterielle Liganden MHC-2
 - TLR7 erkennt virale RNA MHC-1
 - NFkappaB Aktivierung: Zytokine, Chemokine, Akutephaseproteine, ...
 - Makrophagen: Entzündungsreaktion (u.a. TNF-alpha), Aktivierung der adaptiven Immunantwort, Phagozytose, Gewebsreparation/Fibrose, Auflösung der Entzündungsreaktion
 - NK Zellen: erkennen viral-beladene Zellen, da diese weniger MHC-1 Rezeptoren aufweisen

Komplementsystem

○ Ziel: schnelle Abwehr von Erregern → Kaskade (inkl. adativer Immunantwort)

Klassischer Pathway	Lektin Pathway	Alternativer Pathway
Aktiviert durch den C1	Aktivierung durch	
Komplex	Mannosebindendes Lektin	
	(MBL) oder Finoline →	
	Serinproteasen im Serum	

Gemeinsame Endstrecke → Entzündung, Phagozytose, Bakterientwand Lyse

- Opsonierung/Markierung der Erreger mit C3b → Phagozytose
- Entzündung: Chemotaxis (C3a+C5a) & erhöhte Gefäßpermeabilität → Entzündungszellen können schneller einwandern
- Membranangriffskomplex (MAC) mit C5b+C9 → Bakterientwand Lyse / Bakterizid

Phagozyten

- Zelltypen: Makrophagenn, Neutrophile, Eosinophile, Langerhans-Zellen, B-Zellen, Mastzellen, Basophile, ...
- Fc Rezeptoren der Phagozyten binden am Liganden
- Respiratory Burst → antimikrobielle Eigenschaft, Freisetzung von reaktive Sauerstoffmetaboliten

6.1 Immun-mediierte Erkrankungen

- Krankheitserreger / Pathogene → Gewebeschädigung
 - o **Direkt**: Endotoxine, Exotoxine, direkte Zellschädigungen
 - Indirekt: Immunkomplexe, gegen den Wirt gerichtete Antikörper, zelluläre Immunität

Allergien & Hypersensitivitäten				
	Typ 1	Typ 2	Тур 3	Typ 4 T-Zell-mediiert
Immun- komponente	IgE	IgG	IgG	T Helfer 1 T Helfer 2 CLT
Beispiele	-Allergische Rhinitis -Asthma -systemische Anaphylaxie -Nahrungmittelallergie -akute Nesselsucht	-chron. Urticaria -MedAllergie	-Serumkrankheit -Arthus-Reaktion	-Gewebsabstoßungen -chron. Asthma -Kontaktdermatitis -Tuberkulinreaktion
Effektor- mechanismus	Mastzellenaktivierung	Komplement / antikörperveränderte Signalgebung	Komplement, Phagozyten	Makrophagenaktivierung, IgE Produktion, Zytotoxität

• IgE-mediierte Typ 1 Überempfindlichkeit / Allergie

- Effektormechanismus: Mastzellenaktivierung und Ausschüttung von Granula (Enzyme, toxische Mediatoren, Zytokine, Chemokine, Lipidmediatoren) → GI, Atemwege, Blutgefäße
- o IgE Antikörper binden an Fc Rezeptoren der Mastzelle
- TH2 vermittelte Entzündung bei allergischem Asthma: akute Reaktion u.a. Urtikaria, Angioödem, Entzündung der Atemwege
- Vs. IgE unabhängige Aktivierung von Mastzellen, durch: Substanz P, Codine, C5a, Stammzellfaktoren
- o Anaphylaxie
- O Nicht alle allergische Reaktionen sind IgE mediiert

Serumkrankheit – Typ 3

- o Vorübergehendes, vom Immunkomplexen vermitteltes Syndrom
- Durch Injektion von fremdem Serum → langfristige Folgen
- Symptome: Fieber, Vaskulitis, Arthritis, Nephritis

Ätiologie einer Urticaria

- -idiopatisch
- -infektions-abhängig
- -allergisch
- -autoimmun
- -Med-induziert
- -Nahrungsbedingt

First Line Therapie: orale H1 antihistamin

- Hypersensititätsreaktion von Typ 4: durch antigenspezifische T-Effektorzellen vermittelt
 - o Antigene: Nickel, Tuberkulin, Insektengifte, ... (Reaktion tritt verspätet auf)
 - Antigen wird durch Gewebemakrophagen prozessier ung stimulier T Helfer Zellen
 - o Chemokine und Cytokine werden freigesetzt
 - o Kontakthypersensitivität: Langerhans-Zellen präsentieren T Helfer 1 Effektorzellen
- Inflammasom (NLRP1, NLRP3, NLRC4)
 - = Proteinkomplex im Zytoplasma von Makrophagen & neutrophile Granulozyten
 - o wird aktiveirt durch: Bakterienbestandteile, Asbest, Harnsäurekristalle, ...
 - → Caspase-1 → aktiviert proinflammatorische Zytokine → Entzündungsreaktion

6.2 Labormethoden

- Antikörper selbst sichtbar machen ELISA (Enzyme-Linked Immuno Sorbent Assay)
- Hämagglutinationstest → Blutgruppenbestimmung
- Trübungsreaktion: quantitative Immunpräzipitation (Heidelberger Titrationskurve)
- Direkter & indirekter Coombs Test: Anti-Globulin Test für Antikörper gegen Antigene der Erythrozyten (Rhesus Krankheit)
- Durchflusszytometrie (FACS Fluorescence Activated Cell Sorting) ermöglicht das Zählen und die Analyse von physikalischen und molekularen Eigenschaften von Partikeln in einem Flüssigkeitsstrom – via Immunfluorezenz
- Zentrifugation: isolieren & stimulieren von Lymphozyten
- Next Generation Sequenzing & Sanger Sequenzierung

6.3 Immundefizienz

- PID // Primäre (angeborene) Abwehrschwäche
 - o Mehr als 400 verschiedene genetische Erkrankungen des Immunsystms leicht schwer
 - Chronisch, wiederkehrernde, schwere & oft lebensbedrohliche Infektionen / Autoimmunerkrankungen / entzündliche Erkrankungen
 - Viele Pat. zeigen erst als Erwachsene Symptome
 - o 2/3 der Pat. leiden an **Antikörper-Defizienzen** (Immunglobulin Mangel)
 - o alle Teile des Immunsystems können betroffen sein
 - o Symptome können im Kindes- oder Erwachsenenalter auftreten
 - Genetischer Defekt allerdings ist das defekte Gen nicht immer bekannt
- SID // secondary Immue Deficiency // sekundäre (erworbene) Abwehrschwäche
 - o evtl. auch ein genetischer Defekt des Immunsystems
 - bei/nach maligner Tumorerkrankung, med. Immunsuppression,
 Systemerkrankungen, Infektionserkrankungen, Mangelernährung, Verbrennung,
 Strahlensyndrom (zB bei Multiplem Myelom, chronisch lymphatisches Lymphom)
 - o Antikörper-Defizienzen sind wie auch beim PID die häufigste Art des SID
 - Klinischer Verlauf (inkl. Bronchiektasen) und delayed diagnose ähnlich wie bei PID
 - Lymphozyten werden durch Antigene aktiviert, wobei Klone antigenspezifischer
 Zellen entstehen, die für die adaptive Immunität verantwortlich sind
 - Effektormechanismen der adaptiven Immunität: Antikörper richten sich gegen extrazelluläre Krankheitserreger und ihre Toxine
 - Toxinneutralisation
 - Hemmung der Bakterienadhäsion
 - Development of long-lasting Antikörper Defizienz nach Anti-CD20 Behandlung: evtl.
 wäre die Immundefizienz so oder so früher oder später aufgetreten
 - o Immun Defekte bei Pat. mit CLL
 - Ursache: zellulär, humoral, Komplementsystem
 - → Hypoagammaglobulinämie
 - Krebs Indidenzen + anti-CD20 Therapie (abhängig von B-Zellen) → CVID
- **Hinweise** auf Immundefizienzen
 - Infektionen in der Anamnese (> 10 pro Jahr = warning sign)
 rezidivierende Pneumonien, seltener/opportunistischer Erreger, komplizierter Verlauf,

Folgeschäden, wdh mit dem gleichen Erreger, Otitis media, Sinusitis, Bronchitis, ...

- o Klinik: Hypoplasie lymphatischer Organe (LK, Tonsilen, Thymus, Milz)
- o Impfreaktion bei Lebendimpfungen
- o Pos. Familienanamnese
- o Problem: diagnostic delay

warning signs – z.T. reicht auch EINE schwerwiegende Infektion

nicht plazentagängig: IgA, IgM

plazentagängig: IgG

Diagnosen Einteilung

- O Störungen in der Entwicklung von B- bzw. T-Zellen
- o Kombinierte T- und B-Zell-Defekte
- Störungen der Phagozytenfunktion
- Defekte des Komplementsystems
- Vorwiegend Antikörper-Defizienzen häufigste Subklasse
- PRRs (pattern recognition receptors) wie der TLR (toll like rezeptor) erkennen PAMP (pathogen-assoziirete molekulare Muster)
 - Bakterien aktivierungen intra-& extrazellulär die PRRs
 - TLR stimuliert die Aktivierung von dendritischen Zellen und führt zur Wandung in den Lymphozyten
 - o TLR führen zu NFkappaB Aktivierung
- Wiskott-Aldrich Syndrom (WAS)
 - Selten, X-chromosomale PID
 - O Mutation am WAS Gen → WAS-Protein → Aufbau der hämatopoetischen Stammzellen
 - Klinik

Mikrothrombozytopenie weniger&kleine Blutplättchen, (Neugeborenen-) Ekzem, Infektionen, zelluläre & humorale Immundefizenz

Thrombozytopenie
-> verlängerte Blutugnszeit
-> Spontanblutung

- hohes Serum-IgE
- erhöhtes Risiko für autoimmune Symptome & maligne Erkrankungen
- Therapie kurativ: HSCT (hämatopoetischen Stammzelltransplantation)
 symptomatisch: Transfusion, IVIG (Immunglobulin Ersatztherapie)
- MHC-2 Defizienz
 - o fehlende MHC-2 Expression, Translationsproblem, keine B-Zell Antigenpräsentation
 - Klinik: Beginn in den ersten Lebensmonaten → Gedeihstörung, whd. schwere Infektionen, chronische Diarrhoe, respiratorische Infektionen, ...
 - o Labor: CD4 ↓ (CD8个)
 - Keine AK Bildung nach Tetanus Impfung
 - Mutation auf CIITA / RFX-ANK / RFX5 / RFXAP Gen
 - Therapie initial: AB-Prophylaxe & IVIG (Immunglobulin Ersatztherapie)
 kurativ: nur mit Stammzelltransplantation
- **Hyper-IgE-Syndrom** (AD-HIES)
 - o autosomal-dominant, sehr seltener PID
 - o STAT3 Defizienz → IgE Überschuss
 - Klink
 - Beginn: Neugeborenen Ekzem
 - hohes Serum-IgE (>2000 IU/ml) hundertfach, rezidivierende Staphylokokken-Hautabszesse, rezidivierende Pneumonien mit Bildung von Pneumatozelen
 - allergie-ähnliche Symptome, bakt. Osteomyelitis, Sepsis
 - Therapie IGRT image guided radiotherapy
 AB Prophylaxe
 antifungal Prophylaxe

6.4 Vorwiegend Antikörper-Defizienzen

Häufigesten Entitäten	Ursache		
	-langsamer Beginn der IgG Synthese		
Transient hypogammaglobulinaemia of	-IgG Produktion normal		
infancy	-normale B-Zell-Zahl		
	-physiologische Hypogammaglobulinämie (26. LM)		
XLA	-Mutation im BTK Gen		
	-alle Immunglobulin Isotypen reduziert		
X-linked agammaglobulinaemia	-keine reifen B Zellen		
	-Mutation im CD40L Gen der T-Zelle / anderem Gen		
In class switch recombination Deficiencies	der B-Zelle		
Ig class switch recombination Deficiencies	-IgG & IgA reduziert, IgM normal/hoch,		
	-normale B-Zell-Zahl		
CVID	-Mind. 2 Immunglobulin Isotypen reduziert (IgG &		
****	IgA)		
Common variable Immunodeficiency	-normaler/geringer B-Zell-Zahl		
	-Hypogammaglobulinämie		
Selective IgA Deficiencies	-lsotypen oder Leichtketten reduziert		
	-lgG Produktion & B-Zell-Zahl normal		

Typischer **Verlauf**: Pneumonie → Bronchiektasen anatanomische Zerstörung → Lungenresektion

Agammaglobulinämien			
CVID	XLA		
Common variable Immunodeficiency	X-linked agammaglobulinaemia		
- viele naive B-Zellen	- keine/kaum reife B-Zellen		
- normale/geringe B-Zell Zahl	- normale Zahl & Funktion der T-Zellen		
- Reduktion von mind. 2 Immunglobulin	- Reduktion aller Immunglobulin Isotypen: IgG, IgA,		
Isotypen: IgG, IgA, (IgM)	IgM		
 substanzieller Defekt der IgG- Antikörperbildung keine Antikörper trotz Impfung 	- Nur Jungen erkranken, Mutter ist Träger evtl. Onkel, Brüder erkrankt - Geneticher Defekt des BTK Gen → Bruton		
- Ätiologie: hereditär & sporadisch, vermehrt bei Pat. mit Lupus erythematodes	Tyrosin Kinase (Zellreifung) = defekt - DD: C2 Mangel (Komplementsystem) könnte klinisch ähnlich aussehen		
- rezidivierede, chronische (v.a. bakterielle) Infektionen von Lunge, GI, Nebenhöhlen, Respirationstrakt, (Pneumokokken, Haemophilus) -> hohes CRP	- rezidivierede (v.a. bakterielle) Infektionen beginnen im frühen Kindesalter , wenn der mütterliche Schutz abklingt - evtl. entwickelt sich eine sek. Neutropenie		
Therapie -SCIG / IVIG (Immunglobulin Ersatztherapie) evtl. Heimtherapie -evtl. + AB-Prophylaxe	IVIG (Immunglobulin Ersatztherapie) → Impfungen sind wieder möglich, abgesehen von Lebendimpfungen Rota, Masern, Mumps, Röteln, Varizellen		

- Selektiver IgG Antikörpermangel mit normalen Immunglobulin Konzentrationen (SPAD)
 - o **PID** mit normalem IgG Serumlevel IgG Serum-Normwert > 700 mg/dl
 - o Intakte IgG-Antwort gegen Protein-Antigene zB Diphtherie / Tetanus Impfung
 - o Fehlende IgG-Antwort gegen bakterielle Polysaccharid Antigenen
 - → nach Pneumokokken Polysaccharidimpfung werden keine AK gebildet
 - o Therapie SCIG / IVIG (Immuglobulin Ersatztherapie)

AB Prophylaxe

alternativer Pneumokokken Konjugatimpfstoff

6.5 Komplementdefizienz

- Defizienzen können auf allen Komponeten des Komplementsystems basieren
- sind sehr selten
- Labor zeigt verminderte Komplemtaktivierung
 - o CH'50 fehlt, AH'50 fehlt = C5-9 Defekt

 - CH'50 fehlt, AH'50 normal
 CH'50 normal, AH'50 fehlt
 CH'50 normal, AH'50 fehlt = Defekt von Properdin, Faktor B, Faktor D
- Autosomal rezessiv (beide Gene müssen betroffen sein damit die Krankheit auftritt)
- Typische Klinik: wiederkehrende, systemische Infektion mit Neisseria meningitidis & gonorrhoeae
- Suchtest: gesamthämolytischen Komplementaktivität nach Aktivierung über den alternativen / klassischen Weg
- Therapie non-specific Impfung (→ AK Produktion) + AB-Prophylaxe
- Neonataler Lupus erythematosus mit maternaler C2 Defizienz
- C2 Defizienz: typische Anfälligkeit für bakt. Nebenhöhlenentzündungen & Infektionen des unteren Respirationstraktes
- C3 Defizienz ist die schlimmste Form
- **C6 Defizienz** → defekter Membran-Attaken-Komplex

6.6 Phagozytendefekte

- Inkl. neutrophile Granulozyten
- Typische Klinik: bakterielle Infekte (zB Staph. aureus) bei Säuglingen, Kleinkindern
- Sehr selten
- Schwere kongenitale / zyklische Neutropenie
 - o Mutation am ELANE Gen
 - Therapie: AB-Prophylaxe, Wachstumsfaktoren, Stammzelltransplantation (letzte Möglichkeit)
 - o Zu wenig Phagozyten werden produziert
- chronische Granulomatose (CGD)
 - seltener PID, Beginn im Kleinkindalter
 - o Phagozyten Funktion der neutrophilen Granulozyten gestört
 - Klinik: erhöhte Anfälligkeit für schwere, whd. Bakterien- / Pilzinfektionen, Pneumonien, (Leber-) Abzesse, Entstehung von Granulomen, geschwollene LK, Knocheninfektionen, IBL (inflammartory bowel disease), schlechte Wundheilung, ...
 - 70%: **X**-chromosomale Mutatuion am CYBB Gen (\rightarrow NADPH oxidase) \rightarrow defekter, reduzierter respiratory burst der neutrophilen Granulozyten
 - Therapie: AB-Prophylaxe, Stammzelltransplantation
- Leukozytenadhäsionsdefekt (LAD1)
 - o Beginn: Säuglings-/Kleinkindalter
 - o Klinik: bakt. Hautabszesse, (Schleim-) Hautulzera mit defekter Wundheilung, verspätete Nabelschnugablösung, Gingivitis, schwere Periodontitis, whd. bakt. Infektionen
 - Mutationen im ITGB2-Gen → Beta-2-Integrin CD18 → Endothel Adhäsionsmolekülen der Leukozyten fühlen (Neutrophile, Monozyten) → Chemotaxis ist gestört

6.7 SCID – Severe combined immun deficiency

- kombinierter T-Zellen Immundefekt
 - Medizinischer Notfall bei Geburt
 - Letal, wenn nicht behandelt (= Stammzelltransplantation) // Beispiel: "Bubbly Boy"
 - o A) CD132 Defizienz $T \downarrow NK \downarrow B \uparrow$
 - o B) RAG 1/2 Defizienz T \downarrow NK \uparrow B \downarrow
- XL-SCID: X linked severe combined immune deficiency: besonders anfällig für eine Pneumocystis Pneumonie
- Evtl. "Omenn syndrom" schwere kombiierte Immundefizienz durch RAG 2 Mutation
- Therapie: hämatopoetische Stammzelltransplantation

6.8 Autoimmunerkrankungen

- X-Linked Autoimmune-Allergic Dysregulation (XLAAD) = Immunedysregulation,
 Polyendocrinopathy, Enteropathy, X-linked (IPEX) → Neurodermitis-ähnlichen Hautausschlag
- Diabetes mellitus Typ 1
- Goodpasture Syndrom
- ALPS (Autoimmunes LymphoProliferatives Syndrom)
 - o Mutation an Genen, die die CD95-mediierte Apoptose arrangieren
 - → CD95 wird vermehr expremiert → vermehrte Apopsose von T & B Zellen
 - Akkumulation abgestorbener Zellen → chronsich vergrößerte LK und/oder Milz
 - o Beginn meist vor dem 5. LJ
- Multiple Sklerose: autoreaktive T-Zellen zerstören die weiße Substanz des ZNS
- M Basedow: Autoantikörper stimulieren den TSH Rezeptor der SD → übermäßige Produktion von SD-Hormonen / Hyperthyreose (Gewichtsverlust, Nervosität, Nachtschweiß, Zyklusunregelmäßigkeiten, Herzrhythmusstörungen, Tremor, Schilddrüsenvergrößerung (Struma), Augen Beteiligung (endokrine Orbitopathie, Exophthalmus))
- Hashimoto
- Rheumatoide Arthritis: anti-citrullinated protein antibodies (ACPA)
- Sklerodermie
- Systemischer Lupus erythematodes (SLE): Zellkernantigene (ANA, Anti-de-DNA, Anti-Sm, ...) werden aus geschädigten Zellen frei und aktivieren autoreaktiver B-Zellen deren Autoantikörper zu weiteren Zellschäden führen

6.9 Therapie

- Infektionsprophylaxe: Impfungen sind die wirksamste Methode Infektionskrankheiten unter Kontrolle zu bringen
- Immunglobulin Ersatztherapie
 - o Einsatzgebiete: PID, SID, autoimmun & inflammatorischen Erkrankungen
 - akute Phase einer Kawasaki Erkrankung
 - schwere bakterielle Infektion
 - Hypogammaglobulinämie
 - o IND
 - Serum IgG > 500 mg/dl → verbesserter Schutz vor bakteriellen Infektionen & verbesserte Lungenfunktion
 - Serum IgG > 900 mg/dl → weitere Verbesserung der Anzahl und Dauer von Infektionen
 - o IVIG Applikation: intravenös
 - o **SCIG** Applikation: subcutan // Heimtherapie
 - o **Ziel -** Serum-IgG Talspiegel von 900 mg/dl oder darüber
 - Verhinderung schwerer AB-pflichtiger Infektionsepisoden

7 Bakterielle Infektionen

7.1 Durchfall

• zu häufig > 3* pro Tag // zu viel > 250g pro Tag // zu dünn Wassergehalt > 75%

Stuhlinspektion wässrig, schaumig, hell eher Dünndarm wenig, schleimig, blutig, dunkel eher Dickdarm

akut < 14 Tage eher infektiös Viren, Bakterien

persistierend 14-30 Tage

chronisch > 30 Tage eher nicht infektiös

• Diagnostik Stuhlkultur → pathogene Keime

Stuhlantigentest, PCR

Stuhl auf Parasiten testen (Protozoen, Würmer)

Point of care Tests

Therapie

Dauer

- o Kausale Therapie
- Symptomatische Therapie (zB Loperamid Peristaltikhemmer, syntethisches Opioid)
- Rehydration → Glu+ NaCl + Na-Bikarbonat + Kalium → Osmolarität 245mmol/l
- o ggf Probiotika & Komplikationsmanagement
- Hygiene
- AB bei schweren Verläufen, nach Erregernachweis: Azithromycin, Chinolon, Cotrimoxazol

Noroviren → Gastroenteritis

- VIRAL // hoch kontagiös // Ausbrüche bei Kreuzfahrten, Pflegenheimen, ...
- Fäko-orale Übertragung, Inkubationszeit: 6-50h, akut beginnende Klinik, kurze Dauer
- Klinik: meist akutes Erbrechen + starker Durchfall (nicht blutig), kein Fieber, ausgeprägtes Krankheitsgefühl
- Diagnostik: PCR, Stuhl Antigentest → Meldepflicht
- Therapie: symptomatisch

Campylobacter

- Häufigster Erreger einer bakteriellen Gastroenteritis
- Vor allem Kinder < 5 & 20-30a
- Infektionsweg: hohes Fleisch, rohe Milch, Heimtiere, Mensch-Mensch ist selten // Inkubationszeit 2-5 Tage, Dauer: meist < 7 Tage
- Klinik: vielfach asymptomatisch, symptomatisch als Enteritis, häufig Prodromi (Kopfschmerzen, Myalgien, Arthalgien, Müdigkeit), Bauchschmerzen/-krämpfe, Fieber, Diarrhoe (breiig-wässrig, auch blutig), Müdigkeit
- o Folgeerkrankungen: reaktive Arthritis, Guillain-Barre Syndrom (GBS)
- Diagnose: Stuhlkultur/-PCR → Meldepflicht
- Therapie: Azithromycin

Salmonellose

Subtypen Nicht-typhoidale Salmonellen → Gastroenteritis
 S. Typhi → Typhus

S. Paratyphi A/B/C → Paratyphus

- Reservoir: (Nutz-) Tiere
- Infektionswege: orale Erregeraufnahme: rohe Eier, rohes Fleisch
- Klinik: Darmentzüdnung mit plötzlicher Diarrhoe, Bauchschmerzen, Kopfschmerzen, Krankheitsgefühl, Fieber
- CAVE: septische Absiedelung in andere Organe, 1% → Bakteriämie
- Diagnostik: Stuhlkultur, PCR, Blutkultur wegen möglicher Bakteriämie → Meldepflicht
- Therapie bei schweren Verläufen: Cipro, Azithomycin, Cephalosporine III

Clostridioides difficile Infektion (CDI)

- Erreger: Clostridioides difficile // typischer Krankenhaus Keim kann dort Mo. überleben
- o CDI ist die häufigste Ursache einer nosokomialen Diarrhoe

- Toxinbildung (Toxin A/B/binär)
- o Risikofaktoren: Alter > 50, Komorbitidät, Chemo, Krankenhaus, PPI, AB Therapie
- Durchfallserkrankung durch AB-Gebrauch: v.a. Chinolone, Clindamycin,
 Cephalosporine, Co- Amoxiclav
- Diagnostik: Stuhlkultur, PCR, Toxinnachweis → Meldepflicht
- Klinik: asymptomatische Infektion, Diarrhoe ohne Colitis, Colitis mit/ohne Diarrhoe,
 schwerste CDI Manifestationen: pseudomembranöse Colitis, toxisches Megacolon
- Therapie Medikamentös (Vancomycin, Metonidazol, Fidsaxomicin),
 Stuhltransplantation
 Antikörper (Anti Cytotoxin B)
- Hygiene, Prävention, Isolation!

7.2 Tuberkulose

- Erreger Komplex: Mycobacterium tuberculosis (versch. Stämme, die in der Lage sind TBC auszulösen), säurefest
- Tröpfcheninfektion
- Gehört neben HIV/AIDS & Malaria zu den häufigsten Infektionskrankheiten
- Latenz vs. aktive Erkankung
 - o 5-10% der Infizierten entwickeln eine behandlungspflichtige TBC
 - Reaktivierung u.a. bei Immunschwäche (HIV), TNF-alpha Inhibitoren, Mangelernährung
 - Isoniazid Monotherapie (Prophylaxe) reduziert Reaktivierungsrisiko
- Klinik
 - Latente TBC ist asymptomatisch
 - Lungen TBC ist die h\u00e4ufigste symptomatische TBC // Lungen Granulome → Kavernen
 → Husten +/- Auswurft (evtl. blutig)
 - TBC kann aber eig. alle Organe befallen // extrapulmonale TBC
 - Initial: Allgemeinsymptome, grippale Symptome, B-Symptomatik, Appetitmangel, ...
- Diagnostik → Meldepflicht
 - Bakteriologisch: PCR, mikroskopische Nachweis (Ziehl Neelsen), kultureller Nachweis,
 Resistenztestung // gibt keine Info über Aktivität der Erkrankung
 - Bildgebung: Lungen RÖ, CT → Granulome
 - Klärung einer Exposition
 Tuberkulin Hauttest auch bei latenter TBC: pos. Hauttest
 Interferon Gamma releasing Assay (IGRA) Bluttest
- 4-fach Therapie bei aktiver TBC
 - o Isoniazid+Rifampicin+Ethambutol+Pyrazinamid (6 Mo. Kombi)
 - o wenn Therapie nicht richitg durchgeführt wird → resistente TBC

7.3 Atypische Mycobakterien

- = "nicht-tuberkulöse Mycobakterien"
- Krankheitsbilder: Pulmonale Infektionen, Haut-& Weichteilinfektionen, Augeninfektionen, Skelettinfektionen, Otitis media, zervikale Lymphadenitis, Katheterassoziierte Infektionen, zystische Fibrose, ...
- → Abszessen, Ulzera, ...
- Therapie: Kombis meist mit Rifampicin, Ethambutol, Isoniazid

7.4 Multiresistente Erreger

- Ursachen: Verbrauch gr. AB-Mengen, Anpassung von Bakterien an AB, inadäquater AB-Gebrauch zB in Tierzucht, bei viralen Infekten // lineale Korrelation von AB-Gebrauch & -Resistenz
- MRSA (Methicillin Flucloxazillin resistenter Staphylokokkus aureus)
- → Standard-AB wirken nicht mehr (zB Beta Lactame bei MRSA)
- → Reserve-AB mit anderem Wirkmechanismus müsse eingesetzt werden

7.5 Bartonellose, Brucellose, Leptospirose

Bartonellose

o zB: B. henselae: gramneg. Stäbchen, fak. intrazellulär

○ Reservoir Katze → leichter Verlauf **Katzenkratzkrankheit**

schwerer Verlauf bazilläre Angiomatose

infektiöse Gefäßerkrankung, bei Immunschwäche

evtl. Endokarditis

Klink: regionale LK Schwellung, manchmal Fieber/Kopf/Gliederschmerz

Diagnostik: Serologie

o Therapie, bei schweren Verläufen: Azithromycin, Doxycyclin

Brucellose

o Brucella sp: gramneg. Stäbchen

- o Zoonose: Bakterien im Urogenitaltrakt von Ziegen & Schafen
- Erkrankung via Kontakt mit geschlachteten Tieren / unbehandelter Milch
- Klinik: Fieber, Schwitzen, ggf. Arthritis/Spondylitis/Endokarditis
- Diagnostik: Blut-/Milzkultur, Serologie → Meldepflicht
- Therapie: Rifampicin, Doxycyclin, Streptomycin

Leptospirose

- Spirochäten // Zoonose (v.a. Nagetiere, Hunde, Schweine, Rinder, Pferde)
- Erkrankung bei Kontakt zum Urin der Tiere Schwimmer, Bauern, ...
- Klinik: Fieberhafte Erkrankung, seltener Verlauf mit Ikterus, Nierenversagen, Konjunktivitis // Mb Weil (Nierenversagen, Ikterus, Splenomegalie)
- Diagnostik: Mikroagglutinationstest, PCR → Meldepflicht
- o Therapie: Doxycyclin, Peicillin, Ceftriaxon (Cephalosporin III)

7.6 Borreliose

- Erreger: v.a. Borrelia burgdorferi s.s., afzeli, gerinii
- Reservoir: Nagetiere, Vögel
- Übertragung: Zeckenstich → Übertragungsrisiko ist abhängig von Stichdauer kritisch, wenn > 24h

Klinik / Stadienverlauf			
	Haut	Neurologische Manifestation	Andere Manifestation
früh lokaisiert	- Erythema migrans Wanderröte, zentrale Aufhellung, tritt erst nach 48h auf		
früh disseminiert	- multiple Erythema migratia - multiple Borrelien Lymphzytom Schwellung & Blaufärbung, zB der Ohrläppchen	- Frühe Neuroborreliose evtl. Fascialisparese	- Lyme Karditis - Frühe Lyme Arthritis - selten Augen Beteiligung
spät	- Acrodermatitis chronica atrophicans rot(blaue) Läsionen der Akren, fibroid Knoten, Hautverdickungen	- Späte Neuroborreliose Facialisparese, Meningopolyradiculitis, Meningisits	- Chronische Lyme Arthritis

Diagnostik: Klinik, ggf. Serologie (zum Ausschluss, Stufendiagnostik)
 nicht alles ist eine Borreliose: keine prophylaktischen AB-Therapien, Serologie mit Vorsicht

• Therapieprinzipien häufig auch selbstlimitierend

Doxycyclin, Amoxicillin, Ceftriaxon (Cephalosporin III)

HLA-DR

IL-1

ex vivo TNF-o

7.7 Sepsis

- Def.: Lebensbedrohliche Organdysfunktion aufgrung einer inadäquaten Wirtsantwort auf Infektionen
- Mortalität: 20-70% // rasches Erkennen wichtig
- Pathogenese
 - O Ursprung der Infektion häufig Lungeninfektion →
 Bakterielle Verbreitung in der Blutbahn → Gefäß
 Leaking → Organdysfunktion → Tod
 - O Dysbalance zwischen pro-&antiinflammatorischen
 Zytokinen → Hyperinflammation → Immunparalyse
 - Gewebsschädigung durch mikrovaskuläre Thrombose

Hypotonie sys. RR < 100mmHg

Hyper-

Immun-Reaktion

ZNS

Sepsis

> 2 Punkte > Pat. auf Intensivstation

Blutkultur → Erregernachweis

Entzündungsparameter (CRP, PCT Procalcitonin, IL-6)

Laktat ↑: druch Gewebs<u>hypoperfusion</u> Lungen RÖ → pneumonisches Infiltrat

- Komplikation / Gefahr eines septischen Schocks
- Therapie
 - o i.v. **Antibiotikatherapie** primär ungezielt *Meropenem, Pip/Taz, Cefepim, ...* → später gezielte **Fokus Sanierung**
 - + supportive Organersatztherapie: Nierenersatztherapie, hämodynamischer Support, Blutprodukte, Thromboseprophlaxe, ...

Komplett	er SOFA Score
Lunge	PaO2
Niere	Kreatinin, Ausfuhrmenge
Leber	Bilirubin
Herz	Blutdruck, Katecholamine
Blut	Thrombozyten

Glasgow Coma Scale

7.8 Erysipel

- Bakt. Entzündung der oberen Hautschicht durch Streptokokken seltener Staphylokokken wenn tiefer: Zellulitis – Furunkel – Fasziitis – Myonekrose
- Klinik: Schmerz, überwärmt, umschrieben, geschwollen, gerötet meist unilateral, Unterschenkel
- Diagnose: Klinik, erhöhte Inflammationsparameter, evtl. Blutkultur, Sono (Abszess?), MRT (Osteomyelitis?)
- Therapie: Penicillin, Sanierung der Eintrittspforte

7.9 Toxinvermittelte Erkrankungen

- Tetanus
 - Erreger: Clostridium tetani (kommt im Erdreich natürlich vor) Sporen sind umweltresistent
 - generalisierte Form
 - Klinik: Risus sardonicus (fixiertes Grinsen), Trismus (Kieferklemme),
 Opisthotonus (Überstreckung), Ateminsuffizienz
 - hohe Letalität
 - Diagnostik: typische Klinik → Meldepflicht
 - Therapie: Tetanus Immunglobulin (Impfung), ABX, chir. Wundversorgung
 - vs. neonatale Form
 - o vs. lokale Form
- Diphtherie
 - Erreger: Corynebacterium diphteriae // Inkubationtszeit 1-7 Tage
 - Klinik: Respiratorische Dipherie (Beläge)

Haut-/Wunddiphterie (wenig Toxinwirkung)

Systemische Komplikationen: Myokarditis, Neuritis → Letalität 5-10%

- Diagnostik: klinsiches Bild, Abstriche, Toxinnachweis → Meldepflicht
- Therapie: symptomatisch, Antitoxin (Impfung), Antibiotika

7.10 Sexuell übertragbare Infektionen

• Syphilis = Lues

- o Erreger: Treponema pallidum
- o Übertragung: direkt sexuell, intrauterin
- O Zunehmende Inzidenz v.a. homosexuelle Männer

Stadium I	3-10 Tage nach Übertragung: harter Schanker / schmerzloses Ulcus + vergrößerte, regionale LK
Stadium II	Generalisierung mit Hautausschlag Roseolen, Mundschleimhaut Plaques
	(2-3 Mo. nach Übertragung kann spontan abheilen)
Stadium III	Spätsyphilis: Neurosyphilis, Gummen (Haut), Organbefall

- Subtypen: Neurosyphilis, konnatale Syphilis
- Diagnostik: Serologie, Dunkelfeldmikroskopie, PCR → beschränkte Meldepflicht
- Therapie: Penicillin

• Chlamydia trachomatis

- o Häufigste sexuell bakteriell übertragbare Infektion, Inzidenz steigend
- Klinik Frau: häufig asymptomatisch, Zervizitis, Urethritis, "pelvic inflammatory disease" mit Infertilität

Mann: Urethritis, Lymphogranuloma venereum

Therapie: Doxycyclin

Gonorrhoe // Tripper

- o Erreger: Neisseria gonorrhoea // Inkubationszeit 1-14Tage
- o Übertragung durch Schleimhautkontakt, asymptomatisches Trägertum möglich
- O Klinik Frau: Urethritis, PID mit Infertilität

Mann: 10% asymptomatisch, eitrige Urethritis, Proktitis

- o Evtl. disseminierte Gonokokken Infektion
- o Diagnostik: PCR, Kultur, Mikroskopie
- Therapie: Ceftriaxon (Cephalosporin III)

8 Virale Genome & Replikationsstrategien

- Klassifikation von Viren: ICTV (International Committee on Taxonomy of Viruses) vs.
 Baltimore
- Basic Reporduction Ration R0 (sagt vereinfacht aus, wie viele Personen von einer infektiösen Person im Mittel angesteckt werden) Corona: 2.0-2.5

Spanische Gruppe: 1.5

- Case Fatality Rate CFR Letalitätsrate (sagt aus, wie viele infizierte Personen am Ende an einer Krankheit sterben)
- Prävalenz: bestehende Fälle
- Inzidenz: neu auftretende Fälle pro 100.000 (pro Jahr)
- Sensitivität: Wahrscheinlichkeit, dass Test pos. & Pat. auch wirklich krank

true pos.

• Spezifität: Wahrscheinlichkeit, dass Test neg. & Pat. auch wirklich gesund

true neg.

- Antigenshift = Tausch ganzer Gensegmente durch schnelles Reassortment
 - o genetischer Austausch zwischen Virus Subtypen
 - Voraussetzung: zeitgleiche Infektion des Pat. mit mind. 2 Viren
- Antigendrift = Genetische Veränderungen durch Punktmutationen oder Deletionen von kurzen Gensequenzen die kontinuierlich und langsam ablaufen
 - o zufällige Veränderung der Oberflächenstruktuen von Viren
 - Häufig bei RNA Viren
 - → Reassortment: Austausch → Neukombinationen
 - → Fähigkeit der Vermehrung kann verloren gehen
 - → immunologische Rezeptorerkennung kann verloren gehen
 - "Molekulare Mimikry"

DNA Viren	RNA Viren
Parvoviren	Picornaviren
Geminiviridae, Circovircoviridae	Astro & Calciviren
Papillomaviren	Hepatitis E
Polyomaviren	Togaviren
Adenoviren	Flaviviren
Herpesviren	Coronaviren
Pockeviren	Retroviren
Hepatitis B & D	

9 Virale Infektionen

9.1 HIV / AIDS

- Retrovirus
- HIV Oberflächenmoleküle binden an CD4+ Zellen → CD4 Untergang → Immunschwäche
- Verlauf (unbehandelt): Infektion → akute Phase → Latenzzeit → opportunistische Infektion (AIDS) → Tod
- Übertragung: sexuelle Übertragung > i.v. Drogenabusus > Bluttransfusionen > SS HIV pos. > unsterile med. Instrumente
- Inzidenz z.T. steigend: Männer homosexuelle > Frauen
- Diagnostik
 - O CAVE: diagnostische Lücke erst 10-20 Tage nach Infektion sind Antigene pos.
 - → Diagnosezeitpunkt ist entscheiden!

1. Suchtest ELISA hohe Sens. kominierter Antigen-AK

2. Bestätigungstest Immunoblot hohe Spez. AK
 PCR zeigt als 1. ein positives Ergebnis Antigen

Blut/Speichel Schnelltest
 Blut/Speichel Schnelltest

Test anbieten V.a. akute Infektion

Risikoverhalten

Vorliegen einer Indikatorerkrankung

Vorliegen von opportunistischen Erkrankungen

Klinik ist abhängig von der Anzahl der CD4+ Zellen < 350 Zellen pro μl

< 200 Zellen pro μl

< 100 Zellen pro µl

• Stadieneinteilung, CDC Center of Disease Control

Zahl der CD4	Kategorie A	Kategorie B	Kategorie C
Zellen	Asymptomatisch	Symptome, kein AIDS	Symptome, AIDS
1: > 500	A1	B1	C1
2: 200-499	A2	B2	C2
3: < 200	A3	В3	C3
Indikator-	-asymptomatische HIV-	-Herpes Zoster	-CMV Renitis
erkrankungen	Infektion	-periphere	-extrapulmonale
	-persistierende LK-	Neuropathie	Kryptokokken-Infektion
	adenopathie	-Diarrhoe	-HIV Enzephalopathie
	-akute symptomatische	-Listeriose	-Infektion mit Mykobakterien
	HIV-Infektion	-orale Haarleukoplakie	-PML
			-maligne Lymphome
			-Toxoplasma-Enzephalitis
			-Tuberkulose
			-Westing Syndrom

- Kategorie A (Symptome der akuten HIV-Infektion)
 - o 2-3 Wo. nach Infektion
 - o 90% der Pat. haben mind. ein Symptom
 - o 30% suchen einen Arzt auf meist wird kein Test durchgeführt
 - o "Pat. ist am ansteckensten" Diagnose essenziell
 - Abgeschlagenheit, Fieber, Muskelschmerz, Nachtschweiß, Pharyngitis, GI Symptomatik, Hautausschlag, Gewichtsverlust
- Kategorie B (nicht mit AIDS definiert)
 - o Mundschleimhaut: Haarleukoplakie, orale Candida, Kaposi-Sarkom
 - O Herpes zoster meist Brustdermatom, oft multisegmental, immer therapieren
- Kategorie C (AIDS definierende Erkrankungen, opportunistische Infektionen)
 - Tumore
 - HIV & AIDS Lymphome