5

10

15

20

25

## **CLAIMS**

What is claimed is:

1. A method for deriving barycentric coordinates for a point  $\mathbf{p}$  within an n-sided polygon, wherein, for a particular coordinate  $w_j$ , corresponding to a vertex  $\mathbf{q}_j$ , the method embodies a formula which may be expressed as follows:

$$w_{j} = \frac{\cot(\gamma_{j}) + \cot(\delta_{j})}{\|\mathbf{p} - \mathbf{q}_{i}\|^{2}}$$

where  $\delta_i$  and  $\gamma_i$  are adjacent angles to the edge  $pq_j$  at the vertex  $q_j$ .

- 2. The method of claim 1 tangibly embodied on or in a memory.
- 3. The method of claim 2 wherein a series of instructions or program code embodying the method is stored in a memory.
- 4. A method for deriving weights  $w_{ij}$  for expressing a vertex  $\mathbf{q_i}$  in a mesh representation of an object surface in terms of its one-ring neighbors  $\mathbf{q_j}$ ,  $\forall j \in N(i)$ , wherein, for a particular weight  $w_{ij}$ , corresponding to a vertex  $\mathbf{q_j}$ , the method embodies a formula which may be expressed as follows:

$$w_{y} = \frac{\cot(\gamma_{j}) + \cot(\delta_{j})}{\|\mathbf{q}_{i} - \mathbf{q}_{j}\|^{2}}$$

where  $\delta_j$  and  $\gamma_J$  are adjacent angles to the edge  $q_iq_j$  at the vertex  $q_j.$ 

- 5. The method of claim 4 tangibly embodied on or in a memory.
- 6. The method of claim 5 wherein a series of instructions or program code embodying the method is stored in a memory.
- 7. A method of parameterizing a mesh representation of an object surface comprising the steps of:

for one or more vertices  $\mathbf{q_i}$  of the mesh representation, computing for one or more of its one-ring neighbors  $\mathbf{q_j}$ ,  $\forall j \in N(i)$ , a weight  $\mathbf{w_{ij}}$  in accordance with the following formula:

$$w_{y} = \frac{\cot(\gamma_{j}) + \cot(\delta_{j})}{\|\mathbf{q}_{i} - \mathbf{q}_{j}\|^{2}}$$

5

10

20

25

where  $\delta_j$  and  $\gamma_j$  are adjacent angles to the edge  $\mathbf{q_i}\mathbf{q_j}$  at the vertex  $\mathbf{q_j}$ ; and

responsive to one or more of the weights  $w_{ij}$  determined in the foregoing step, determining the parameterized coordinates of one or more of the vertices of the mesh representation.

- 8. The method of claim 7 further comprising fixing the positions of one or more boundary vertices in parameter space.
- 9. The method of claim 8 further comprising assigning each of these vertices a position on a fixed boundary C, where the position on the fixed boundary C assigned to a vertex i may be referred to as  $C_{u}$ .
- 10. The method of claim 9 further comprising solving the following system of linear equations in order to derive the parameterization of the mesh representation:

$$\forall i, i \in [1...n], \begin{cases} \sum_{j \in N(i)} w_{ij} (\mathbf{u}_i - \mathbf{u}_j) = 0 & \text{if } i \text{ is an interior vertex} \\ \mathbf{u}_i = \mathbf{C}_{\mathbf{u}_i} & \text{if } i \text{ is a boundary vertex} \end{cases}$$

where  $\mathbf{u_i}$  is the vertex i in parameter space (and  $\mathbf{u_j}$  is the vertex j in parameter space), and  $\mathbf{C}_{\mathbf{u_i}}$  is the boundary position in parameter space assigned to the boundary vertex i.

11. A method of parameterizing a mesh representation of an object surface comprising the steps of:

a step for computing, for one or more vertices  $\mathbf{q_i}$  of the mesh representation and one or more of its one-ring neighbors  $\mathbf{q_j}$ ,  $\forall j \in N(i)$ , a weight  $\mathbf{w_{ij}}$  in accordance with the following formula:

$$w_{y} = \frac{\cot(\gamma_{j}) + \cot(\delta_{j})}{\|\mathbf{q}_{i} - \mathbf{q}_{j}\|^{2}}$$

where  $\delta_{j}$  and  $\gamma_{j}$  are adjacent angles to the edge  $q_{i}q_{j}$  at the vertex  $q_{j};$  and

a step for determining, responsive to one or more of the weights  $w_{ij}$  determined in the foregoing step, the parameterized coordinates of one or more of the vertices of the mesh representation.

5

- 12. The methods of any of claims 1-11 tangibly embodied on or in a memory.
- 13. The memory of claim 12 wherein the method is embodied as a series of instructions or program code stored in the memory.