Project

May request team-matesAssigned end of each week

• 70% of Course Grade

• Remaining Time (~ 8 weeks)

ELEC 391 - 2021

- Mini-Project
 - ~ 4 weeks (no due date)
 - 30% of Course Grade
 - Pass=30 / Fail=0

ELEC 391 - 2021

- Mini-Project
 - Individual
 - Active Pendulum
- Project
 - 3 Student Teams
 - 3 ½ DOF Quality Control Robot
 - SCARA + Wrist + Gripper
 - Grab cylindrical object
 - Drop into waste bin

- Design & Simulation Software
 - Electronics
 - MultiSim
 - UltiBoard
 - Mechanics
 - Solidworks
 - SimulationX
 - Control
 - Matlab
 - Simulink
 - Arduino IDE

Mini-Project

• 30% of Total Grade

Report

- PPT Slide Deck
 - Notes Page Format
- Evidence of all REQ met

Oral Defence

- 2 minute demo
- 3 minute Q&A
- Prove its your work
- Software loaded & ready

Project

• 70% of Total Grade

Reports - 60%

- All design work & results
- 3 Separate Reports
 - Electrical
 - Mechanical
 - Robotics & Control

System Integration Video – 10%

Progress Meetings – 0%

- Feedback Only
- Ahead / On-Time / Late

Mini-Project – Components

- Model motor
 - Look up PN using maxmot* tool
 - Specs in Maxon catalog*
 - Develop Simulink model*
- Arduino IDE
 - Write simple P-Controller in C
 - Compute ISR Frequency*
- MultiSim
 - Amplifier CCT*
 - Use motor R (Ω) for load
 - Develop Matlab model
 - Show I/P Current < Arduino Spec @ nom V
 - Layout PCB in Ultiboard
 - Components
 - · Terminal block connectors

- SolidWorks
 - Arm + Logo
 - Steel
 - · Approx same length & diameter as motor
- - P-Control + Driver + Motor + Pendulum
 - 50% Ku (from root-locus)
- Simulation-X
 - · Motor + Primitive-Based Pendulum
 - Motor + STL-Based Pendulum
 - · Horizontal No Gravity
- 7. Co-Simulation
 - Simulink & SX
 - Optional
 - · Tune for improved response
 - Add gravity

Mini-Project – Deliverables

- 1. Motor data sheet & PN
- Micro-Controller
 - C-code for controller routine
 - Execution time
 - Control frequency calculation
- Driver
 - Multisim circuit drawing
 - Multisim step response (V & I) b)
 - Matlab model & step response
 - Ultiboard PCB layout

- Pendulum
 - SolidWorks model
 - b) Centre of mass & stress analysis
 - Assembly with motor & fasteners
 - Exploded view
- Simulink System
 - P + Driver + Motor + Pendulum
 - Step response
 - P + Driver + Motor (Elec Only)
 - · Use for Co-Simulation
- Co-Simulation System
 - Simulation-X Primitive Pendulum
 - Step Response
 - STL Pendulum
 - Step Response

^{*} See reference on Canvas or Project page of website

RCGs

Requirements

- Virtual Quality Control Robot
- 3 ½ DOF
 - SCARA Robot with Wrist
 - Gripper
- 3 marshmallows on stopped conveyor
 - Cylindrical (3cm Diam x 3cm Tall)
 - · Negligible mass & stiffness
- 0 → 3 products discarded
 - Grab / Move 10cm / Drop
- 0% Overshoot before gripping
 - Must not tip or push
- Custom Driver Circuit

Constraints

- Maxon or Faulhaber
 - Motor
 - Gearhead
 - Encoder
- Motors operate at or below nominal voltage / current
- Arduino Leonardo
 - One only
- McMaster Carr
 - Components
- Dual 2-Amp Power Supply

RCGs

Goals

- Minimum processing time
- Minimum cost
- Minimum footprint
 - Electronics
- Minimum working volume
 - Robot
- Minimum power requirements

Free Parameters

- Spacing between products
- Size of garbage chute
- Location of robot arm base
- Nothing above conveyor to interfere
- Damage to faulty product ok

Electrical – 20%

- Choose OTS Parts
 - Maxon or Faulhaber Catalogue
 - Any M-C DC Motor
 - Planetary Gearhead (optional)
 - Optical Encoders
- Design Driver CCTs
- Simulate
- Develop Linear Models

- Layout PCB
 - All drivers integrated on 1 board.
 - Connectors
 - Mounting HW
- Export CAD Model
- Design housing

Mechanics - 20%

- Design Parts & Assemblies
 - Gripper & Arms & Joints
 - Minimize Inertia
 - Satisfy Stress Constraint
 - McMaster Carr components
- Develop SX Model
 - Replace simple SW parts to optimize simulation time

- Identify Forces / Torques
- For each joint
 - Develop linear approx.
 - Reasonable operating point

Control - 20%

- Develop Control System
 - Import Linear Models
 - Optimize PID or Lead/Lag Controller
- Implement controller
 - All 4 joints
 - User-Defined Matlab Function
 - No PID or Transfer Function Block
 - · Derivative Filter
 - Encoder Resolution
 - ISR Clock-Rate (estimated)
 - Port to C
 - Compute ISR time (Arduino IDE tool)
 - Adjust filter pole

- Interface with SX
 - Co-Simulation TCP / IP
 - Re-Tune Controller
- Robotics
 - Direct Kinematics
 - Inverse Kinematics
 - Path Planning

System Performance & Features – 10%

- Control System
 - Exotic Tuning Algorithm
 - Performance Evaluation
- Electronics
 - PCB footprint (size)
 - Details
 - · Bypass capacitors
 - Fuses
 - Labels

- Mechanics
 - Custom mechanism (parallel?)
 - Gripper design
 - Stress / Inertia optimization
- System
 - Performance measurements
 - Cost estimate

Project – Report Deliverables

- 1. Actuator Specs
 - a) Motor / gear / sensor data-sheets
- 2. Mechanical
 - a) Custom parts designs
 - b) Stress analysis
 - c) OTS components & modifications
 - d) SX model
- 3. Electronics
 - a) Multisim circuit drawing
 - b) Multisim step response
 - c) Linear Matlab model
 - d) Matlab step response
 - e) PCB layout

- 4. Robotics & Control
 - a) PID Controller (Matlab Function)
 - b) PID Controller (C Code)
 - c) Tuning Strategy (each joint)
 - d) Robot Kinematics
 - e) Path Plan
- 5. Results / Evaluation
 - Verify ALL Requirements met
 - Verify ALL Constraints met
 - Identify Goals and identify which are met
 -) Cost
 - b) Controller (Joint & Task-Space) Performance
 - Rise Time
 - Settle TimeOvershoot
 - Cycle Time
 - Discard 1-3 objects

Project – Video Deliverables

- 1. YouTube link
- 2. System Demo
 - a) < 1 minute
 - b) Satisfied RCGs
 - c) Unsatisfied RCGs

- 3. Feature Demo
 - a) Remaining time (~4 min)
 - b) Debugging tools
 - c) Complex/Clever designs
 - d) Additional simulations
 - e) etc.