TSSOP

3 TO 8 LINE DECODER (INVERTING)

SOP

Table 1: Order Codes

- HIGH SPEED: $t_{PD} = 5.7 \text{ns}$ (TYP.) at $V_{CC} = 5 \text{V}$
- LOW POWER DISSIPATION: $I_{CC} = 4 \mu A \text{ (MAX.)}$ at $T_A = 25 \text{°C}$
- HIGH NOISE IMMUNITY: $V_{NIH} = V_{NII} = 28\% V_{CC}$ (MIN.)
- POWER DOWN PROTECTION ON INPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $|I_{OH}| = I_{OL} = 8 \text{ mA (MIN)}$
- BALANCED PROPAGATION DELAYS:
- **74 SERIES 138**
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The 74VHC138 is an advanced high-speed CMOS 3 TO 8 LINE DECODER (INVERTING) fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology. If the device is enabled, 3 binary select (A, B, and C) determine which one of the outputs will go low. If enable input G1 is held low or either G2A or G2B is held high, the decoding function is inhibited and all the 8 outputs go to high.

Tree enable inputs are provided to ease cascade connection and application of address decoders for memory systems.

Power down protection is provided on all inputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5V to 3V.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

November 2004 1/12

Figure 2: Input Equivalent Circuit

Table 2: Pin Description

PIN N°	SYMBOL	NAME AND FUNCTION
1, 2, 3	A, B, C	Address Inputs
4, 5	G2A, G2B	Enable Inputs
6	G1	Enable Input
15, 14, 13, 12, 11, 10, 9, 7	Y0 to Y7	Outputs
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

Table 3: Truth Table

		INP	UTS						OUT	DUTE			
	ENABLE			SELECT	-	OUTPUTS							
G2B	G2A	G1	С	В	Α	<u>Y0</u>	<u>Y1</u>	Y2	<u>Y3</u>	<u>Y4</u>	<u>Y5</u>	<u>Y6</u>	<u>Y7</u>
Х	Х	L	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Н	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

X : Don't care

Figure 3: Logic Diagram

This logic diagram has not be used to estimate propagation delays

47/

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 75	mA
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2 to 5.5	V
V _I	Input Voltage	0 to 5.5	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 1) (V _{CC} = 3.3 ± 0.3 V) (V _{CC} = 5.0 ± 0.5 V)	0 to 100 0 to 20	ns/V

¹⁾ $V_{\mbox{\footnotesize{IN}}}$ from 30% to 70% of $V_{\mbox{\footnotesize{CC}}}$

Table 6: DC Specifications

		1	est Condition				Value				
Symbol	Parameter	V _{CC}		T	_A = 25°	C	-40 to	85°C -55 to		125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	3.0 to 5.5		0.7V _{CC}			0.7V _{CC}		0.7V _{CC}		V
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	3.0 to 5.5				0.3V _{CC}		0.3V _{CC}		0.3V _{CC}	V
V _{OH}	High Level Output	2.0	I _O =-50 μA	1.9	2.0		1.9		1.9		
	Voltage	3.0	I _O =-50 μA	2.9	3.0		2.9		2.9		
		4.5	I _O =-50 μA	4.4	4.5		4.4		4.4		V
		3.0	I _O =-4 mA	2.58			2.48		2.4		
		4.5	I _O =-8 mA	3.94			3.8		3.7		
V _{OL}	Low Level Output	2.0	I _O =50 μA		0.0	0.1		0.1		0.1	
	Voltage	3.0	I _O =50 μA		0.0	0.1		0.1		0.1	
		4.5	I _O =50 μA		0.0	0.1		0.1		0.1	V
		3.0	I _O =4 mA			0.36		0.44		0.55	
		4.5	I _O =8 mA			0.36		0.44		0.55	
I _I	Input Leakage Current	0 to 5.5	V _I = 5.5V or GND			± 0.1		± 1		± 1	μΑ
Icc	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			4		40		40	μΑ

Table 7: AC Electrical Characteristics (Input $t_r = t_f = 3ns$)

		7	Test Co	ondition				Value				
Symbol	Symbol Parameter	V _{CC}	CL	CL	T _A = 25°C			-40 to 85°C		-55 to	125°C	Unit
		(V)	(p F)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
t _{PLH}	Propagation Delay	3.3 ^(*)	15			8.2	11.4	1.0	13.0	1.0	13.0	
t _{PHL}	Time A, B, C, to Y	3.3(*)	50			10.0	15.8	1.0	18.0	1.0	18.0	20
	, , , , , , , ,	5.0(**)	15			5.7	8.1	1.0	9.5	1.0	9.5	ns
		5.0(**)	50			7.2	10.1	1.0	11.5	1.0	11.5	
t _{PLH}	Propagation Delay	3.3 ^(*)	15			8.1	12.8	1.0	15.0	1.0	15.0	
t _{PHL}	Time_ G to Y	3.3(*)	50			10.6	16.3	1.0	18.5	1.0	18.5	20
		5.0(**)	15			5.6	8.1	1.0	9.5	1.0	9.5	ns
		5.0(**)	50			7.1	10.1	1.0	11.5	1.0	11.5	
t _{PLH}	Propagation Delay	3.3 ^(*)	15			8.2	11.4	1.0	13.5	1.0	13.5	
t _{PHL}	G2A, G2B to Y	3.3(*)	50			10.7	14.9	1.0	17.0	1.0	17.0	20
		5.0(**)	15			5.8	8.1	1.0	9.5	1.0	9.5	ns
		5.0 ^(**)	50			7.3	10.1	1.0	11.5	1.0	11.5	

^(*) Voltage range is $3.3\text{V} \pm 0.3\text{V}$ (**) Voltage range is $5.0\text{V} \pm 0.5\text{V}$

Table 8: Capacitive Characteristics

		Test Condition	Value							
Symbol	Parameter		T _A = 25°C -40 to 85°C -		-55 to 125°C		Unit			
			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance			6	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)			34						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$

Figure 4: Test Circuit

 $\rm C_L$ =15/50pF or equivalent (includes jig and probe capacitance) $\rm R_T$ = $\rm Z_{OUT}$ of pulse generator (typically 50 $\Omega)$

Figure 5: Waveform - Propagation Delays For Inverting Outputs (f=1MHz; 50% duty cycle)

Figure 6: Waveform - Propagation Delays For Non-inverting Outputs (f=1MHz; 50% duty cycle)

SO-16 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.25	0.004		0.010
a2			1.64			0.063
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1		!	45°	(typ.)		!
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S		•	8° (ı	max.)		4

TSSOP16 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0079
D	4.9	5	5.1	0.193	0.197	0.201
Е	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65 BSC			0.0256 BSC	
К	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Tape & Reel SO-16 MECHANICAL DATA

	mm.		inc				
MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
		330			12.992		
12.8		13.2	0.504		0.519		
20.2			0.795				
60			2.362				
		22.4			0.882		
6.45		6.65	0.254		0.262		
10.3		10.5	0.406		0.414		
2.1		2.3	0.082		0.090		
3.9		4.1	0.153		0.161		
7.9		8.1	0.311		0.319		
	12.8 20.2 60 6.45 10.3 2.1 3.9	MIN. TYP 12.8 20.2 60 6.45 10.3 2.1 3.9	MIN. TYP MAX. 330 12.8 13.2 20.2 60 22.4 6.45 6.65 10.5 2.1 2.3 3.9 4.1 4.1	MIN. TYP MAX. MIN. 330 12.8 13.2 0.504 20.2 0.795 0.795 60 2.362 22.4 6.45 6.65 0.254 10.3 10.5 0.406 2.1 2.3 0.082 3.9 4.1 0.153	MIN. TYP MAX. MIN. TYP. 330 12.8 13.2 0.504 20.2 0.795 0.795 60 2.362 0.254 6.45 6.65 0.254 10.3 10.5 0.406 2.1 2.3 0.082 3.9 4.1 0.153		

Tape & Reel TSSOP16 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.7		6.9	0.264		0.272
Во	5.3		5.5	0.209		0.217
Ko	1.6		1.8	0.063		0.071
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Table 9: Revision History

Date	Revision	Description of Changes
12-Nov-2004	4	Order Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.