INDEFINITE INTEGRALS-I

OBJECTIVE QUESTIONS

$$\int x^6 dx = ?$$

(a)
$$7x^7 + C$$
 (b) $\frac{x^7}{7} + C$ (c) $6x^5 + C$ (d) $6x^7 + C$

(b)
$$\frac{x^7}{7} + C$$

(d)
$$6x^7 + C$$

2.
$$\int x^{5/3} dx = ?$$

(a)
$$\frac{3}{5}x^{2/3} + C$$
 (b) $\frac{8}{3}x^{8/3} + C$ (c) $\frac{3}{8}x^{8/3} + C$ (d) $\frac{5}{3}x^{8/3} + C$

(b)
$$\frac{8}{3}x^{8/3} + 6$$

(c)
$$\frac{3}{8}x^{8/3} + C$$

(d)
$$\frac{5}{3}x^{8/3} + C$$

$$3. \qquad \int \frac{1}{x^3} \, dx = ?$$

(a)
$$\int \frac{-3}{r^2} + C$$
 (b)

$$\frac{-1}{2x^2} + C$$

(c)
$$\frac{-1}{3x^2} + C$$

(a)
$$\int \frac{-3}{x^2} + C$$
 (b) $\frac{-1}{2x^2} + C$ (c) $\frac{-1}{3x^2} + C$ (d) $\frac{x^{-2}}{2} + C$

$$4. \qquad \int \sqrt[3]{x} dx = ?$$

(a)
$$\frac{3}{4}x^{3/4} + C$$

(b)
$$\frac{4}{3}x^{3/4} + C$$

(c)
$$\frac{3}{4}x^{4/3} + C$$

(a)
$$\frac{3}{4}x^{3/4} + C$$
 (b) $\frac{4}{3}x^{3/4} + C$ (c) $\frac{3}{4}x^{4/3} + C$ (d) $\frac{4}{3}x^{4/3} + C$

$$5. \int \frac{1}{\sqrt[3]{x}} dx = ?$$

(a)
$$\frac{3}{2}x^{2/3} + C$$
 (b) $\frac{3}{2x^{2/3}} + C$ (c) $\frac{2}{3x^{2/3}} + C$ (d) $\frac{2}{3}x^{3/2} + C$

b)
$$\frac{3}{2x^{2/3}} + C$$

(c)
$$\frac{2}{3x^{2/3}} + C$$

(d)
$$\frac{2}{3}x^{\frac{3}{2}} + C$$

$$6. \qquad \int \sqrt[3]{x^2 dx} = ?$$

(a)
$$\frac{5}{3}x^{5/3} + C$$

(b)
$$\frac{3}{5}x^{5/3} + 6$$

(c)
$$\frac{5}{3}x^{3/3} + C$$

(a)
$$\frac{5}{3}x^{5/3} + C$$
 (b) $\frac{3}{5}x^{5/3} + C$ (c) $\frac{5}{3}x^{3/3} + C$ (d) $\frac{3}{5}x^{3/5} + C$

$$\int 3^X dx = ?$$

(a)
$$3^x (\log 3) + C$$
 (b) $3^x + C$ (c) $\frac{3^x}{\log 3} + C$ (d) $\frac{\log 3}{3^x} + C$

(b)
$$3^x + C$$

(c)
$$\frac{3^x}{\log 3} + C$$

(d)
$$\frac{\log 3}{3^x} + C$$

$$8. \qquad \int 2^{\log x} dx = ?$$

(a)
$$\frac{2^{\log x+1}}{(\log x+1)} + C$$
 (b) $\frac{x^{(\log 2+1)}}{(\log 2+1)} + C$ (c) $\frac{2^{\log x}}{\log 2} + C$ (d) $\frac{2^{\log x}}{2} + C$

9.
$$\int \cos ecx(\cos ecx + \cot x)dx = ?$$

(a)
$$\cot x - \csc x + C$$
 (b) $-\cot x + \csc x + C$

(c)
$$\cot x + \csc x + C$$
 (d) $-\cot x - \csc x + C$

10.
$$\int \frac{\sec x}{(\sec x + \tan x)} dx = ?$$

(a)
$$\tan x + \sec x + C$$
 (b) $\tan x - \sec x + C$

(c)
$$-\tan x + \sec x + C$$
 (d) $-\tan x - \sec x + C$

11.
$$\int \frac{(1-\cos 2x)}{(1+\cos 2x)} dx = ?$$

(a)
$$\tan x + x + C$$
 (b) $\tan x - x + C$ (c) $-\tan x + x + C$ (d) $-\tan x - x + C$

$$12. \qquad \int \frac{1}{\sin^2 x \cos^2 x} dx = ?$$

(a)
$$tan x + cot x + C$$
 (b) $-tan x + cot x + C$

(c)
$$-\tan x - \cot x + C$$
 (d) none of these

13.
$$\int \frac{\cos 2x}{\cos^2 x \sin^2 x} dx = ?$$

(a)
$$-\cot x - \tan x + C$$
 (b) $-\cot x + \tan x + C$

(c)
$$\cot x - \tan x + C$$
 (d) $\cot x + \tan x + C$

14.
$$\int \frac{(\cos 2x - \cos 2\alpha)}{(\cos x - \cos \alpha)} dx = ?$$

(a)
$$2\sin x + 2x \cos \alpha + C$$
 (b) $2\sin x - 2x \cos \alpha + C$

(c)
$$-2\sin x + 2x\cos \alpha + C$$
 (d) $-2\sin x - 2x\cos \alpha + C$

$$15. \qquad \int \sqrt{1 + \cos 2x} dx = ?$$

(a)
$$\sqrt{2}\cos x + C$$
 (b) $\sqrt{2}\sin x + C$ (c) $-\sqrt{2}c\cos x + C$ (d) $-\sqrt{2}\sin x + C$

$$16. \qquad \int \sqrt{1 + \sin 2x} dx = ?$$

(a)
$$\sin x + \cos x + C$$

(a)
$$\sin x + \cos x + C$$
 (b) $-\sin x + \cos x + C$

(c)
$$\sin x - \cos x + C$$
 (d) $-\sin x - \cos x + C$

(d)
$$-\sin x -\cos x + C$$

17.
$$\int \frac{\cos 2x}{\sin^2 x \cos^2 x} dx = ?$$

(a)
$$\cot x + \tan x + C$$
 (b) $-\cot x + \tan x C$

b)
$$-\cot x + \tan x C$$

(c)
$$\cot x - \tan x + C$$

(c)
$$\cot x - \tan x + C$$
 (d) $-\cot x - \tan x + C$

$$18. \qquad \int \frac{dx}{(1-\cos 2x)} = ?$$

(a)
$$\int \frac{1}{2} \cot x + C$$
 (b) $2 \cot x + C$ (c) $\frac{1}{2} \cot x + C$ (d) $-2 \cot x + C$

(c)
$$\frac{1}{2} \cot x + C$$

$$(d) -2 \cot x + C$$

$$19. \qquad \int \frac{\sin 2x}{\sin x} dx = ?$$

(b)
$$\frac{1}{2} \sin x + C$$

(c)
$$2\cos x + C$$

(a)
$$2\sin x + C$$
 (b) $\frac{1}{2}\sin x + C$ (c) $2\cos x + C$ (d) $\frac{1}{2}\cos x + C$

$$20. \qquad \int \frac{(1-\sin x)}{\cos^2 x} dx = ?$$

(a)
$$tan x + sec x + C$$

(a)
$$\tan x + \sec x + C$$
 (b) $\tan x - \sec x + C$

(c)
$$-\tan x + \sec x + C$$
 (d) $-\tan x - \sec x + C$

(d)
$$-\tan x - \sec x + C$$

$$21. \qquad \int \cot^2 x dx = ?$$

(a)
$$-\cot x - x + C$$

(b)
$$\cot x - x + C$$

(c)
$$-\cot x + x + C$$

(d)
$$\cot x + x + C$$

22.
$$\int \sec x (\sec x + \tan x) dx = ?$$

(a)
$$tan x - sec x + C$$

(a)
$$\tan x - \sec x + C$$
 (b) $-\tan x + \sec x + C$

(c)
$$tan x + sec x + C$$

(c)
$$tan x + sec x + C$$
 (d) $-tan x - sec x + C$

$$23. \qquad \int \frac{\sec^2 x}{\cos ec^2 x} dx = ?$$

(a)
$$tan x + x + C$$

(c)
$$-\tan x + x + C$$

(d)
$$-tan x + x + C$$

$$24. \qquad \int \frac{\sin^2 x}{(1+\cos x)} dx = ?$$

(a)
$$x + \sin x + C$$
 (b) $x - \sin x + C$ (c) $\sin x - x + C$ (d) $-\sin x - x + C$

(b)
$$x - \sin x + C$$

(c)
$$\sin x - x + C$$

(d)
$$-\sin x - x + C$$

25.
$$\int \frac{\cot x}{(\cos ecx - \cot x)} dx = ?$$

(a)
$$-\cos x - \cot x - x + C$$

(b)
$$\csc x - \cot x - x + C$$

(c)
$$-\cos c x + \cot x - x + C$$

(d)
$$cosec x + cot x - x + C$$

$$26. \qquad \int \frac{\sin x}{(1+\sin x)} \, dx = ?$$

(a)
$$\sec x + \tan x + x + C$$

(b)
$$\sec x - \tan x + x + C$$

(c)
$$-\sec x + \tan x + x + C$$

(d) none of these

27.
$$\int \frac{(1+\sin x)}{(1-\sin x)} dx = ?$$

(a)
$$2\tan x + 2\sec x + x + C$$

(b)
$$2\tan x + 2\sec x - x + C$$

(c)
$$tan x + sec x - X + C$$

(d) none of these

$$28. \qquad \int \frac{1}{(1+\cos x)} \, dx = ?$$

(a)
$$-\cot x + \csc x + C$$

(a)
$$-\cot x + \csc x + C$$
 (b) $\cot x - \csc x + C$

(c)
$$\cot x + \csc x + C$$
 (d) none of these

29.
$$\int \sin^{-1} (\cos x) dx = ?$$

(a)
$$cosec x + C$$

(b)
$$\frac{\pi x}{2} + \frac{x^2}{2} + C$$

(c)
$$\frac{\pi x}{2} - \frac{x^2}{2} + C$$

(a) cosec x + C (b)
$$\frac{\pi x}{2} + \frac{x^2}{2} + C$$
 (c) $\frac{\pi x}{2} - \frac{x^2}{2} + C$ (d) $\frac{x^2}{2} - \frac{\pi x}{2} + C$

30.
$$\int \tan^{-1} \left\{ \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} \right\} dx = ?$$

(a)
$$\frac{1}{(1+x^2)} + C$$

(b)
$$\frac{1}{\sqrt{1+x^2}} + C$$

(a)
$$\frac{1}{(1+x^2)} + C$$
 (b) $\frac{1}{\sqrt{1+x^2}} + C$ (c) $\frac{1}{\sqrt{1-x^2}} + C$ (d) $\frac{x^2}{2} + C$

(d)
$$\frac{x^2}{2} + C$$

- 31. $\int \cot^{-1} \left(\frac{\sin 2x}{1 \cos 2x} \right) dx = ?$

 - (a) $\frac{-1}{(1+x^2)} + C$ (b) $\frac{-1}{(1-x^2)} + C$
- (c) $\frac{x^2}{2} + C$
- (d) $2x^2 + C$

- 32. $\int \sin^{-1} \left(\frac{2 \tan x}{1 + \tan^2 x} \right) dx = ?$
- (a) $-x^2 + C$ (b) $x^2 + C$ (c) $\frac{x^2}{2} + C$ (d) $2x^2 + C$

- 33. $\int \cos^{-1} \left(\frac{1 \tan^2 x}{1 + \tan^2 x} \right) dx = ?$

- (a) $x^2 + C$ (b) $-x^2 + C$ (c) $\frac{1}{\sqrt{1+x^2}} + C$ (d) $\frac{1}{\sqrt{1-x^2}} + C$
- $34. \qquad \int \tan^{-1}(\cos ecx \cot x) dx = ?$

- (a) $\frac{x^2}{4} + C$ (b) $\frac{-x^2}{4} + C$ (c) $\frac{x^2}{2} + C$ (d) $\frac{-x^2}{2} + C$
- 35. $\int \left(\frac{(x^4 + 1)}{(x^2 + 1)} \right) dx = ?$
 - (a) $\frac{x^3}{3} + x \tan^{-1} x + C$

(b) $\frac{x^3}{2} - x - 2 \tan^{-1} x + C$

(c) $\frac{x^3}{3} + x - 2 \tan^{-1} x + C$

(d) none of these

- 36. $\int \frac{(ax+b)}{(cx+d)} dx = ?$
 - (a) $\frac{ax}{a} + \log|cx + d| + C$

(b) $\frac{a}{c} + \log |cx + d| + C$

- (c) $\frac{ax}{a} + \frac{(bc ad)}{a^2} \log |cx + d| + C$
- (d) none of these

37. $\int \frac{(\sin^3 x + \cos^3 x)}{\sin^2 x \cos^2 x} dx = ?$

- (a) $\sin x \cos x + C$ (b) $\tan x \cos x + C$ (c) $\sec x \csc x + C$ (d) none of these
- $38. \qquad \int \frac{\sin x}{\sin(x-\alpha)} \, dx = ?$
 - (a) x cos, $\alpha + (\sin \alpha) \log |\sin(x \alpha)| + C$
- (c) x cos $\alpha (\sin \alpha) \log |\sin(x \alpha)| + C$
- (b) $x \sin \alpha + (\sin \alpha) \log |\sin(x \alpha)| + C$
- (d)x sin $\alpha (\sin \alpha) \log |\sin(x \alpha)| + C$

- $39. \qquad \int \sin 3x \sin 2x dx = ?$
 - (a) $\frac{1}{5}\cos 5x + C$

(b) $\frac{1}{2}\sin x + \frac{1}{10}\sin 5x - C$

- (c) $\frac{1}{2}\sin x \frac{1}{10}\cos 5x + C$
- (d) none of these

- $40. \qquad \int \cos 3x \sin 2x dx = ?$
 - (a) $\frac{1}{2}\cos x \frac{1}{10}\cos 5x + C$
- (b) $\frac{1}{2}\sin x + \frac{1}{10}\sin 5x + C$
- (c) $\frac{1}{2}\cos x + \frac{1}{10}\cos 5x + C$
- (d) none of these

- $41. \qquad \int \cos 4x \cos x dx = ?$
 - (a) $\frac{1}{5}\sin 5x + \frac{1}{3}\sin 3x + C$
- (b) $\frac{1}{5}\cos 5x \frac{1}{3}\cos 3x + C$
- (c) $\frac{1}{10}\sin 5x + \frac{1}{6}\sin 3x + C$
- (d) none of these

ANSWERS: INDEFINITE INTEGRALS-I

1(b)	2. (c)	3. (b)	4. (c)	5. (a)	6. (b)	7. (c)	8. (b)	9. (d)	10. (b)
11. (b)) 12.(c)	13.(a)	14.(a)	15.(b)	16.(c)	17.(d)	18.(c)	19.(a)	20.(b)
21. (b)) 22.(c)	23.(b)	24. (b)	25.(a)	26.(b)	27.(b)	28.(a)	29.(c)	30.(d)
31. (0	32.(b)	33.(a)	34.(a)	35.(b)	36.(c)	37.(c)	38.(a)	39.(c)	40.(a)
41. (0	:)								