

Paul MacNeilage, Psychology Eelke Folmer, Computer Science

Human-VR Loop

Communicating with Light

- Sending signals
- Receiving signals

What is the content to be communicated?

Technically, how is this achieved?

Human Eye

Anatomy of the Eye

Anatomy of the Retina

- Like pixels for sampling
- Density varies
- Fovea at the center
 - Greatest acuity
 - Most cones

Adaptive Optics

Scanning Laser Opthalmoscope

Scanning Laser Opthalmoscope

Sampling Density on Retina

- Cones color daylight
- Rods motion low light levels

Blindspot?

Vertebrate eye

Dynamic Range

Luminance and retinal illumination

The range of luminances (left) and retinal illumination (right) found in the natural world

Light source	Luminance (cd/m^2)	Photons per receptor
Paper in starlight	0.0003	0.01
Paper in moonlight	0.2	1
Computer monitor	63	100
Room light	316	1000
Blue sky	2500	10,000
Paper in sunlight	40,000	100,000

Types of Cones

Photoreceptor Mosaic

Colorblind

Opponent Color "Channels"

Adaptation

Neuronal Receptive Fields

Anatomy of the Retina

From Retina to Cortex

Cortical Receptive Fields

Information is in the edges

и

The rest of the visual system

Form/shape

Implications for VR

- How good to displays have to be?
 - 1) Spatial resolution
 - 2) Intensity resolution and range
 - Temporal resolution (covered later)

Spatial Resolution

Too few pixels -> aliasing

What screen resolution is required?

Spatial Resolution

- Normal acuity (20/20):
- Size of 1 deg target $s = \tan(1) * d$

$$s = \tan(1) * d$$

- 30 cycles/deg

$$ppi = 60/s$$

– 60 pixels/deg or more needed

- Screen at 20 feet; how many pixels per inch needed?
- HMD at 1.5 inches; how many pixels per inch needed?
- Retinal display -> 326 ppi; what viewing distance is needed?

Intensity: Dynamic Range

Luminance and retinal illumination

The range of luminances (left) and retinal illumination (right) found in the natural world

Light source	Luminance (cd/m^2)	Photons per receptor
Paper in starlight	0.0003	0.01
Paper in moonlight	0.2	1
Computer monitor	63	100
Room light	316	1000
Blue sky	2500	10,000
Paper in sunlight	40,000	100,000