# Лабораторная работа №2 «Дискретное и дискретное во времени преобразования Фурье (ДВПФ, ДПФ)»

Курс: «Радиофизическая лаборатория», «Лаборатория инфокоммуникационных технологий» ФРКТ МФТИ

Данная лабораторная работа посвящена изучению дискретного и дискретного во времени преобразования Фурье. Эти два преобразования предназначены для сигнала с дискретным временем. Они позволяют получить спектр или оценки спектра для таких сигналов. В дальнейшем умение работать с этими спектрами позволит проводить спектральный анализ состава сигнала и его цифровую фильтрацию.

Лабораторная работа состоит из трех частей, каждая из которых рассчитана на одно занятие (4 ак. часа). Задания по моделированию выполняются с помощью библиотек языка программирования Python 3 (NumPy, SciPy, Matplotlib) либо в среде MATLAB.

# Задание к допуску

Задание к допуску основано на теоретических частях трех занятий.

№1. Запишите пару формул дискретного во времени преобразования Фурье (ДВПФ) в нормированных частотах (в переменных V). Пользуясь формулой прямого преобразования, определите ДВПФ следующих последовательностей:

- а)  $h[k] = \mathbf{1}[k] \mathbf{1}[k-1]$  (импульсная характеристика простого дискретного дифференциатора),
- б)  $w[k] = \sum_{m=0}^{N-1} \mathbf{1}[k-m]$  , N=10 (прямоугольное окно длиной в N отсчетов),
- в)  $h_3[k] = \frac{1}{3}\mathbf{1}[k] + \frac{1}{3}\mathbf{1}[k-1] + \frac{1}{3}\mathbf{1}[k-2]$  (импульсная характеристика фильтра скользящего среднего второго порядка).

Для получившихся спектральных плотностей  $X(v) = |X(v)| e^{j\phi(v)}$ . определите модуль |X(v)| и фазовую часть  $\phi(v) = arctg \, \frac{{
m Im} \, X(v)}{{
m Re} \, X(v)}$ .

**№2.** Определите ДВПФ X(v) и 16-точечное ДПФ  $\tilde{X}[n]$  (с нормировкой 1/N в прямом преобразовании) следующих дискретных гармонических сигналов:

a) 
$$x_1[k] = \sum_{m=-\infty}^{\infty} \mathbf{1} \big[ k - 16m \big]$$
 (последовательность единичных импульсов с периодом 16),

б) 
$$x_2[k] = \cos \left( 2\pi \frac{5}{16} k \right)$$
 (косинусоида с относительной частотой  $v_0 = \frac{5}{16}$  ),

в) 
$$x_3[k] = \sin\left(2\pi \frac{3}{16}k\right)$$
 (синусоида с относительной частотой  $v_0 = \frac{3}{16}$ ),

r) 
$$x_4[k] = \cos\left(2\pi \frac{5}{16}k\right) + \sin\left(2\pi \frac{3}{16}k\right)$$
.

Постройте графики действительной и мнимой части отсчетов ДПФ (  $\operatorname{Re} \tilde{X}[n]$  и  $\operatorname{Im} \tilde{X}[n]$ ), а также схематический график для ДВПФ с указанием весов дельта-функций. Сравните результаты. Указать, в чем заключается связь между ДВПФ и ДПФ для данных периодических последовательностей.

**Ne3.** Предположим, что спектр исходного сигнала для дискретизации был отличен от нуля лишь на интервале  $\left[-\frac{f_{_{\rm I}}}{4}, \frac{f_{_{\rm I}}}{4}\right]$  где  $f_{_{\rm I}}$  — частота дискретизации. График модуля спектра исходного сигнала изображен на рисунке ниже.



Установить, ли наблюдаться эффект наложения при дискретизации сигнала. Построить график модуля спектральной плотности дискретизованного сигнала.

**№4.** Пусть x[k] — действительная последовательность конечной длительности, для которой известны отсчеты 10-точечного ДПФ X[4] = 5 - j, X[0] = 5 и X[8] = 8 + j. Указать все значения ДВПФ X(v), которые можно установить из этих данных.

# Занятие 1. Основные свойства ДВПФ

Первая часть лабораторной работы посвящена изучению дискретного во времени преобразования Фурье (ДВПФ). Оно отличается от преобразования Фурье тем, что сигнал в нем имеет форму функции дискретного времени x[k],  $k \in Z$ . В этой части работы мы получим формулы ДВПФ, взяв преобразование Фурье от дискретизованного сигнала. Поскольку преобразование Фурье может быть применено для сигнала с континуальным временем x(t),  $t \in R$ , нам потребуется также континуальная запись дискретизованного сигнала.

# Теоретическая часть

# Преобразование Фурье для дискретизованных сигналов

#### Спектр дискретизованного сигнала

Рассмотрим способы описания дискретизованного сигнала, т.е. дискретного сигнала, получаемого из аналогового с помощью дискретизации.

#### 1) Функция дискретного времени.

Это описание дискретного сигнала в виде последовательности отсчетов x[k] в заданные моменты времени  $k\Delta t$  ,  $k\in Z$  , где  $\Delta t$  — шаг дискретизации:

$$x[k] = Tx(k\Delta t), T \in \{1; \Delta t\}$$

где T — константа с размерностью времени, равная единице или  $\Delta t$  . Выбор этой константы, как будет показано далее, влияет на связь между спектром дискретизованного и исходного сигнала.



### 2) Функция непрерывного времени (континуальная запись).

$$x_{_{\Pi}}(t) = T \sum_{k=-\infty}^{\infty} x(k\Delta t) \delta(t - k\Delta t) = \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t)$$

В этой записи дискретизованного сигнала представляется как результат умножения исходного аналогового сигнала x(t) на идеальную функцию дискретизации, представляющую собой периодическую последовательность дельта-функций Дирака с площадями  ${\rm T}$ 

$$D(t) = T \sum_{n=-\infty}^{\infty} \delta(t - n\Delta t).$$



В таком случае дискретизованный сигнал описывается последовательностью дельта-функций с площадями (весами)  $x[k] = Tx(k\Delta t)$ :

$$x_{_{\mathrm{I}}}(t) = \sum_{k=-\infty}^{\infty} \mathrm{T}x(k\Delta t)\delta(t - k\Delta t).$$

$$x_{_{\mathrm{I}}}(t) = \sum_{k=-\infty}^{\infty} x[k]\delta(t - k\Delta t)$$

Определим спектр дискретизованного сигнала  $X_{_{\rm I\! I}}(f)$ , зная спектр исходного аналогового сигнала до дискретизации X(f). Воспользуемся континуальной формой записи дискретизованного сигнала

$$x_{_{\Pi}}(t) = T \sum_{k=-\infty}^{\infty} x(k\Delta t)\delta(t - k\Delta t) = D(t)x(t)$$

$$D(t) = T \sum_{n=-\infty}^{\infty} \delta(t - n\Delta t).$$

Ряд Фурье для идеальной функции дискретизации

$$D(t) = \frac{T}{\Delta t} \sum_{m=-\infty}^{\infty} \exp(jm \frac{2\pi}{\Delta t} t).$$

$$X_{_{\mathrm{I}}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X(f - mf_{_{\mathrm{I}}}).$$

При непосредственном взятии отсчетов  $x[k] = x(k\Delta t)$  константа T = 1, и спектр перед периодическим повторением масштабируется.

При  $T=\Delta t$  (когда  $x[k]=\Delta t\;x(k\Delta t)$ ) дискретизация аналогового сигнала x(t) по времени с шагом  $\Delta t$  приводит к периодическому повторению его спектра с периодом (по частоте), равным частоте дискретизации  $f_{_{\rm H}}=1/\Delta t$ 

$$X_{_{\mathrm{I\hspace{-.1em}I}}}(f) = \sum_{m=-\infty}^{\infty} X(f - mf_{_{\mathrm{I\hspace{-.1em}I}}}).$$

Заметим, что при этом интервал  $\left[-rac{f_{_{\rm I\! I}}}{2},rac{f_{_{\rm I\! I}}}{2}
ight]$  является одним периодом функции  $X_{_{\rm I\! I}}(f)$  . Если

спектр аналогового сигнала лежит в этом интервале, то он периодически повторяется без наложения.



#### Эффект наложения



Если спектр аналогового сигнала до дискретизации не был ограничен интервалом  $\left[-\frac{f_{_{\rm A}}}{2},\frac{f_{_{\rm A}}}{2}\right]$ , то

возникает эффект наложения (англ. aliasing, элайзинг, алиасинг). В таком случае спектр аналогово и дискретизованного на этом интервале не совпадают. Частично устранить этот эффект можно примирением фильтра нижних частот с частотой среза  $f_c = f_{_{\rm H}} / 2$ , при этом информация о высокочастотных спектральных компонентах  $|f| > f_c$  не сохраняется.

#### Оценка спектра сигнала по последовательности его отсчетов

Пусть есть последовательность выборок  $x(k\Delta t), k\in Z$  некоторого аналогового сигнала x(t), где  $\Delta t$  — шаг дискретизации — интервал времени между каждой парой соседних эквидистантных отсчетов,  $k\in Z$  — номер отсчета.  $f_{\rm H}=1/\Delta t$  — частота дискретизации — величина, обратная шагу дискретизации (размерность [Гц]=[c  $^{-1}$ ]). Будем считать, что спектр исходного аналогового сигнала ограничен интервалом  $\left[-f_{\rm H}/2;\,f_{\rm H}/2\right]$ , а соответственно при дискретизации не наблюдается эффект наложения спектров ( $f_{\rm H}>2f_{\rm B}$ ).

Рассмотрим последовательность отсчетов (дискретный сигнал) x[k], которую будем определять через выборки следующим образом

$$x[k] = Tx(k\Delta t)$$
,

где  $\mathrm{T}=\Delta t$  . Как ранее (в лекциях) было установлено, при  $\mathrm{T}=\Delta t$  спектр дискретизованного сигнала x[k] представляет собой периодическое повторение исходного спектра аналогового сигнала x(t) с периодом, равным частоте дискретизации  $f_{\scriptscriptstyle \Pi}$  :

$$X_{_{\mathrm{I}}}(f) = \sum_{_{_{\mathrm{I}}=-\infty}}^{\infty} X_{_{\mathrm{a}}}(f - nf_{_{\mathrm{I}}}).$$

Необходимая спектральная информация будет содержаться в полосе  $\left[-f_{_{\rm I\!R}}/2;f_{_{\rm I\!R}}/2\right]$ . Теперь оценим спектр исходного сигнала по его выборкам в этой полосе.

Континуальная запись дискретного сигнала x[k] в данном случае

$$x_{_{\mathrm{I}}}(t) = \sum_{k=-\infty}^{\infty} x[k]\delta(t-k\Delta t).$$

Вычислим его спектр (преобразование Фурье)

$$X_{\pi}(f) = \int_{-\infty}^{\infty} x_{\pi}(t) \exp(-j2\pi f t) dt = \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t) \exp(-j2\pi f t) dt =$$

$$= \sum_{k=-\infty}^{\infty} x[k] \int_{-\infty}^{\infty} \delta(t - k\Delta t) \exp(-j2\pi f t) dt = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k\Delta t),$$

Таким образом, спектр дискретного сигнала определяется через его отсчёты по формуле

$$X_{_{\mathcal{I}}}(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t). \tag{1.1}$$

Эта формула определяет прямое дискретное во времени преобразование Фурье (ДВПФ). Учитывая, что (1.1) представляет собой ряд Фурье для периодической функции  $X_{_{\rm I}}(f)^{_{\rm I}}$ , получаем, что отсчётные значения дискретного сигнала соответствуют коэффициентам Фурье в этом ряде:

$$x[k] = c_{-k} = \frac{1}{f_{\pi}} \int_{-f_{\pi}/2}^{f_{\pi}/2} X(f) \exp(j2\pi f k \Delta t) df.$$
 (1.2)

В итоге получаем пару формул (1.1) и (1.2), определяющих прямое и обратное дискретное во времени преобразование Фурье (ДВПФ). ДВПФ в свою очередь показывает, каким является спектр дискретного сигнала x[k], который на отрезке оси частот  $\left[-f_{_{\rm Л}}/2;\,f_{_{\rm Л}}/2\right]$  в отсутствии наложения совпадает со спектром исходного аналогового сигнала. При этом важно помнить, что в данном случае выборки аналогового сигнала связаны с дискретной последовательностью как  $x[k] = \Delta t x(k\Delta t)$ .

# Различные формы записи ДВПФ

Мы установили, что пара дискретного во времени преобразования Фурье (ДВПФ) имеет вид

$$X(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t),$$

$$x[k] = \frac{1}{f_{\pi}} \int_{-f_{\pi}/2}^{f_{\pi}/2} X(f) \exp(j2\pi f k\Delta t) df.$$

Введем нормированные частоты  $\, {
m v} = f \, / \, f_{_{
m I}} = f \, \Delta t \, . \,$  Тогда пара ДВПФ может быть записана следующим образом:

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk),$$

$$x[k] = \int_{-1/2}^{1/2} X(v) \exp(j2\pi vk) dv.$$

Если принять  $2\pi f=\omega$  , а частоту дискретизации взять в рад/с  $~\omega_{_{\mathrm{I\! I}}}=2\pi/\Delta t$  , то

$$X(\omega) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j\omega k \Delta t),$$

 $\frac{1}{l}$  Напоминание. Для 2l - периодической функции f(x), абсолютно интегрируемой на интервале (-l;l) ряд Фурье по системе функций  $\phi_m(x) = \exp(jm\frac{\pi}{l}x)$ ,  $m \in Z$ :  $f(x) = \sum_{l=1}^{+\infty} c_m \exp(jm\frac{\pi}{l}x)$ , где коэффициенты Фурье  $c_m = \frac{1}{2l} \int_{-l}^{l} f(x) \exp(-jm\frac{\pi}{l}x) dx$ 

$$x[k] = \frac{\Delta t}{2\pi} \int_{-\omega_{\pi}/2}^{\omega_{\pi}/2} X(\omega) \exp(j\omega k \Delta t) d\omega.$$

Приняв  $\theta = 2\pi v$  (нормированный угол в радианах), получаем

$$X(\theta) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j\theta k),$$

$$x[k] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\theta) \exp(j\theta k) d\theta.$$

| Частотная                                        | Размерность  | Период                                     | Основной                                               |
|--------------------------------------------------|--------------|--------------------------------------------|--------------------------------------------------------|
| переменная                                       |              | повторения                                 | период                                                 |
|                                                  |              | спектра                                    |                                                        |
| f                                                | Гц           | $f_{_{\mathrm{II}}} = 1/\Delta t$          | $[-f_{_{\mathrm{I\!I}}}/2;f_{_{\mathrm{I\!I}}}/2]$     |
| $\omega = 2\pi f$                                | рад/с        | $\omega_{_{\mathrm{I}}} = 2\pi / \Delta t$ | $[-\omega_{_{\mathrm{I}}}/2;\omega_{_{\mathrm{I}}}/2]$ |
| $v = f / f_{\pi}$                                | безразмерная | 1                                          | [-0,5;0,5]                                             |
| $\theta = 2\pi f / f_{\scriptscriptstyle \rm I}$ | рад          | 2π                                         | $[-\pi;\pi]$                                           |

#### Пример.

Рассмотрим в качестве примера последовательность единичных импульсов  $x[k] = \mathbf{1}[k+1] + \mathbf{1}[k] + \mathbf{1}[k-1]$  , где  $\mathbf{1}[k]$  — единичный импульс, определяемый как

$$\mathbf{1}[k] = \begin{cases} 1, k = 0; \\ 0, k \neq 0. \end{cases}$$

ДВПФ такой последовательности

$$X(v) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi vk} = \sum_{k=-1}^{1} x[k]e^{-j2\pi vk} = x[-1]e^{j2\pi v} + x[0]e^{0} + x[1]e^{-j2\pi v} =$$

$$= \exp(j2\pi v) + 1 + \exp(-j2\pi v) = 1 + 2\cos(2\pi v)$$

### Свойства ДВПФ

#### Линейность

Если  $x[k] \overset{DTFT}{\longleftrightarrow} X(v)$  и  $y[k] \overset{DTFT}{\longleftrightarrow} Y(v)$ , то  $\alpha x[k] + \beta y[k] \overset{DTFT}{\longleftrightarrow} \alpha X(v) + \beta Y(v)$ , где  $\alpha$ ,  $\beta$  — фиксированные числа.

Это свойство следует непосредственно из соответствующих свойств интеграла и суммы.

Теорема запаздывания   
Если 
$$x[k] \leftrightarrow X(v)$$
, то  $x[k-l] \leftrightarrow X(v) \exp(-j2\pi v l)$ .

x[k-l] — это сигнал, запаздывающий по времени относительно сигнала x[k] на l отсчетов в случае l>0 и опережающий сигнал x[k] на -l отсчетов в случае l<0.

Докажем свойство. Для этого возьмем обратное ДВПФ для правой части выражения:

$$\int_{-1/2}^{1/2} X(v) \exp(-j2\pi v l) \exp(j2\pi v k) dv = \int_{-1/2}^{1/2} X(v) \exp(j2\pi v (k-l)) dv = x[k-l].$$

Стоит отметить, что  $|X({
m v})|$  для запаздывающего и исходного сигнала одинаков.

#### Пример



Теорема смещея Если 
$$x[k] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v})$$
, то  $x[k] \exp(j2\pi\mathbf{v}_0 k) \overset{DTFT}{\longleftrightarrow} X(\mathbf{v} - \mathbf{v}_0)$ 

Умножение сигнала на комплексную экспоненту вида  $\exp(j2\pi v_0 k), \ v_0 \in R$  приводит к сдвигу спектральной функции вдоль оси частот на  $\, \nu_0 \,$  вправо в случае  $\, \nu_0 > 0 \,$  и на  $\, - \nu_0 \,$  влево в случае  $v_0 < 0$ .

#### Пример.

$$y[k] = x[k] \exp(j2\pi v_0 k)$$
, где  $x[k] = \sum_{m=0}^{N-1} \mathbf{1}[k-m]$ . 
$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi v k) = \sum_{k=0}^{N-1} \exp(-j2\pi v k) = \frac{1-\exp(-j2\pi v N)}{1-\exp(-j2\pi v)} = \frac{1-\exp(-j2\pi v N)}{1-\exp(-j2\pi v N)} = \frac{1-\exp(-j$$

$$= \frac{2j}{2j} \frac{e^{-j\pi vN}}{e^{-j\pi v}} \frac{(e^{j\pi vN} - e^{-j\pi vN})}{(e^{j\pi v} - e^{-j\pi v})} = \frac{\sin(N\pi v)}{\sin(\pi v)} \exp(-j(N-1)\pi v).$$

$$|X(v)| = \left| \frac{\sin(N\pi v)}{\sin(\pi v)} \right|.$$

$$Y(v) = X(v - v_0) = \frac{\sin(N\pi(v - v_0))}{\sin(\pi(v - v_0))} \exp(-j(N - 1)\pi(v - v_0)).$$









### Равенство Парсеваля

$$\sum_{k=-\infty}^{\infty} |x[k]|^2 = \int_{-1/2}^{1/2} |X(v)|^2 dv$$

$$\sum_{k=-\infty}^{\infty} x[k] y^*[k] = \int_{-1/2}^{1/2} X(v) Y^*(v) dv$$

#### Пример.

Предположим, что имеется финитная последовательность  $x[k] = \{1; \ 1; \ 1\}$ . Тогда  $\sum_{k=-\infty}^{\infty} \left|x[k]\right|^2 = 3$ .

При этом 
$$X(v) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi vk} = x[-1]e^{j2\pi v} + x[0]e^0 + x[1]e^{-j2\pi v} =$$

$$= \exp(j2\pi v) + 1 + \exp(-j2\pi v) = 1 + 2\cos(2\pi v).$$

$$\int_{-1/2}^{1/2} |X(v)|^2 dv = \int_{-1/2}^{1/2} |1 + 2\cos(2\pi v)|^2 dv = 3.$$

Умножение на 
$$k$$
 и дифференцирование по частоте Если  $x[k] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v})$ , то  $kx[k] \overset{DTFT}{\longleftrightarrow} \frac{j}{2\pi} \frac{dX(\mathbf{v})}{d\mathbf{v}}$ .



#### Изменение масштаба

Если 
$$x[k] \overset{\mathrm{DTFT}}{\longleftrightarrow} X(\mathrm{V})$$
 , то  $\sum_{\mathrm{NN}=-\infty}^{\infty} x[m] \mathbf{1}[k-mL] \overset{\mathrm{DTFT}}{\longleftrightarrow} X(\mathrm{V}L).$ 

Для того, чтобы доказать свойство, вычислим ДВПФ для последовательности в левой части.

$$\sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x[m] \mathbf{1}[k-mL] \exp(-j2\pi vk) = \sum_{m=-\infty}^{\infty} x[m] \sum_{k=-\infty}^{\infty} \mathbf{1}[k-mL] \exp(-j2\pi vk) =$$

$$= \sum_{m=-\infty}^{\infty} x[m] \exp(-j2\pi (vL)m) = X(vL).$$

#### Пример



Рассмотрим последовательность из 10 единичных импульсов. Между каждой парой отсчетов добавим L-1 нулевой отсчет. Тогда модуль ДВПФ получившейся последовательности

$$|Y(v)| = \left| \frac{\sin(10\pi vL)}{\sin(\pi vL)} \right|.$$

Для L = 5 результат показан на рисунке.

#### Теоремы о свертке

а) Теорема о свертке во временной области.

Если 
$$x[k] \overset{DTFT}{\longleftrightarrow} X(\nu)$$
 и  $y[k] \overset{DTFT}{\longleftrightarrow} Y(\nu)$  , то  $\sum_{m=-\infty}^{\infty} x[m] y[k-m] \overset{DTFT}{\longleftrightarrow} X(\nu) Y(\nu).$ 

В левой части стоит дискретная свертка сигналов, в правой — произведение спектров.

#### б) Теорема о свертке в частотной области

Если 
$$x[k] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v})$$
 и  $y[k] \overset{DTFT}{\longleftrightarrow} Y(\mathbf{v})$  , то  $x[k]y[k] \overset{DTFT}{\longleftrightarrow} \int_{-1/2}^{1/2} X(\tilde{\mathbf{v}})Y(\mathbf{v}-\tilde{\mathbf{v}})d\tilde{\mathbf{v}}.$ 

В левой части стоит произведение сигналов, в правой -- циклическая свертка спектров.

#### ДВПФ периодических последовательностей

### а) последовательность единичных импульсов с периодом 1

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-m] \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(\nu-n)$$





Вычислим ДВПФ для последовательности  $\sum_{m=-\infty}^{\infty} \mathbf{1} \big[ k - m \big]$  .

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk) = \sum_{k=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} \mathbf{1}[k-m]\right) \exp(-j2\pi vk) = \sum_{m=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \mathbf{1}[k-m] \exp(-j2\pi vk).$$

$$X(v) = \sum_{m=-\infty}^{\infty} \exp(-j2\pi vm).$$

Заметим, что  $\sum_{m=-\infty}^{\infty} \exp(-j2\pi \nu m)$  — это ряд Фурье для периодической (по частоте)

последовательности  $\delta$  -функций с периодом 1

$$\sum_{n=-\infty}^{\infty} \delta(v-n) = \sum_{m=-\infty}^{\infty} C_{-m} \exp(-j2\pi v m),$$

где коэффициенты Фурье

$$C_{-m} = \int_{-1/2}^{1/2} \delta(\mathbf{v}) \exp(j2\pi \mathbf{v} m) d\mathbf{v} = e^0 = 1$$
. Тогда получаем, что  $X(\mathbf{v}) = \sum_{n=-\infty}^{\infty} \delta(\mathbf{v} - n)$ .

б) Периодическая последовательность единичных импульсов с периодом  $\,L_{\, \cdot \,}$ 

$$\sum_{m=-\infty}^{\infty} \mathbf{1} \left[ k - mL \right] \overset{DTFT}{\longleftrightarrow} \frac{1}{L} \sum_{n=-\infty}^{\infty} \delta \left( v - \frac{n}{L} \right)$$

Найдем ДВПФ для последовательности  $x(k) = \sum_{m=-\infty}^{\infty} \mathbf{1} \big[ k - mL \big]$  .



Используя свойство об изменении масштаба  $\sum_{m=-\infty}^{\infty}xigl[m]\mathbf{1}igl[k-mLigr]\overset{ ext{DTFT}}{\longleftrightarrow}X(vL)$ , из

$$\sum_{m=-\infty}^{\infty}\mathbf{1}\big[k-m\big] \overset{\mathrm{DTFT}}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta\big(\nu-n\big)$$
 получаем 
$$\sum_{m=-\infty}^{\infty}\mathbf{1}\big[k-mL\big] \overset{\mathrm{DTFT}}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta\big(\nu L-n\big)$$

Воспользовавшись свойством  $\delta$  -функции

$$\delta(av - b) = \frac{1}{|a|} \delta\left(v - \frac{b}{a}\right),$$

получаем, что

$$\sum_{m=-\infty}^{\infty} \mathbf{1} \left[ k - mL \right]^{DTFT} \stackrel{1}{\longleftrightarrow} \frac{1}{L} \sum_{n=-\infty}^{\infty} \delta \left( v - \frac{n}{L} \right)$$



#### в) Гармонические сигналы

$$\exp(j2\pi v_0 k), -\infty < k < +\infty \stackrel{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(v - v_0 - n).$$



Если  $x[k] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v})$ , то  $x[k] \exp \left(j2\pi \mathbf{v}_0 k\right) \overset{DTFT}{\longleftrightarrow} X(\mathbf{v} - \mathbf{v}_0)$ . (теорема смешения для ДВПФ). При этом  $\sum_{m=-\infty}^{\infty} \mathbf{1} \big[ k - m \big] \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta \big( \mathbf{v} - n \big)$ . Получаем, что

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-m] \exp(j2\pi v_0 k) \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(v-v_0-n).$$

$$\exp \left(j2\pi v_0 k\right), -\infty < k < +\infty \stackrel{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta \left(v - v_0 - n\right).$$



# Задание на моделирование

Далее значения N , L ,  $\nu_0$  следует использовать из таблицы в соответствии с Вашим вариантом задания.

| Вариант | N  | L | $\nu_0$ | Вариант | N  | L | $v_0$ |
|---------|----|---|---------|---------|----|---|-------|
| 1       | 8  | 4 | 0,1     | 11      | 7  | 2 | 0,1   |
| 2       | 9  | 3 | -0,1    | 12      | 8  | 3 | -0,1  |
| 3       | 6  | 4 | 0,1     | 13      | 9  | 4 | 0,1   |
| 4       | 7  | 2 | -0,1    | 14      | 7  | 2 | -0,1  |
| 5       | 8  | 3 | 0,1     | 15      | 8  | 3 | 0,1   |
| 6       | 10 | 3 | -0,1    | 16      | 10 | 2 | -0,1  |
| 7       | 6  | 2 | 0,1     | 17      | 7  | 2 | 0,1   |
| 8       | 7  | 3 | -0,1    | 18      | 8  | 4 | -0,1  |
| 9       | 8  | 3 | 0,1     | 19      | 10 | 2 | 0,1   |
| 10      | 9  | 2 | -0,1    | 20      | 8  | 3 | -0,1  |

**Задача 1.1. Прямоугольный импульс в дискретной форме.** С помощью моделирования вычислите и постройте график для модуля и фазы ДВПФ  $X_N(\nu)$  последовательности из N последовательных единичных импульсов  $x_N[k] = \sum_{m=0}^{N-1} \mathbf{1} \big[ k-m \big]$  для  $\nu \in [-0,5;0,5]$ . Сравните результат с аналитической записью для  $X_N(\nu)$  (задача 1.6 из задания к допуску). Заполнить таблицу, используя результаты моделирования и аналитические записи. Принять частоту дискретизации равной 1 Гц.

| 3начение<br><i>X</i> (0) | Ширина $\Delta v$ главного лепестка на нулевом уровне | Точки скачков<br>фазы на π | Энергия $^2$ х $\Delta t$ $\int_{-1/2}^{1/2}  X(\mathbf{v}) ^2 d\mathbf{v}$ |
|--------------------------|-------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------|
|                          |                                                       |                            |                                                                             |

Задача 1.2. Свойство масштабирования.

Рассмотрите последовательность  $x_L[k]$  , получаемую добавлением между каждой парой отсчетов последовательности  $x_N[k]$  (из задачи 1.1) L-1 нуля:

$$x_L[k] = \sum_{m=-\infty}^{\infty} x_N[m] \mathbf{1}[k - mL].$$

С помощью моделирования постойте модуль ее ДВПФ для  $v \in [-0,5;0,5]$  и сравните результат с  $X_N(vL)$ .

$$\int_{-0.5f_{\pi}}^{0.5f_{\pi}} |X(f)|^2 df = \frac{1}{\Delta t} \int_{-1/2}^{1/2} |X(v)|^2 dv$$

Для ее вычисления можно воспользоваться равенством Парсеваля для ДВПФ.

 $<sup>^2</sup>$  Для дискретного сигнала рассматривают энергию, приходящуюся на один период частоты, т.е. на полосу частот шириной  $f_{\pi}$  :

#### Задача 1.3. Дифференцирование спектральной плотности.

Рассмотрите последовательность  $x_D[k] = k \, x_N[k]$ . Постойте с помощью моделирования график для модуля ДВПФ этой последовательности  $X_D(v)$  для  $v \in [-0,5;0,5]$ .

\*\* Получить численным или символьным дифференцированием график для  $\frac{j}{2\pi} \frac{dX_N(v)}{dv}$  и сравнить его с  $X_D(v)$ . 3

#### Задача 1.4. Теорема смещения.

С помощью моделирования получите график модуля спектральной плотности  $X_S(v)$  для сигнала  $x_S[k] = x_N[k] \exp(j2\pi v_0 k)$  . Приведите ответы на следующие вопросы.

- а) Какую аналитическую форму записи имеет функция  $X_{\scriptscriptstyle S}({
  m v})$  ?
- б) Как результат моделирования соотносится с теоремой смещения для ДВПФ?
- в) Почему получившийся спектр не симметричен относительно нулевой частоты?

#### Задача 1.5. Теорема о свертке во временной области.

Определите с помощью моделирования линейную дискретную свертку последовательности  $x_N[k] = \sum_{m=0}^{N-1} \mathbf{1} \big[ k - m \big] \text{ с точно такой же последовательностью. Постойте график для модуля ДВПФ.}$ 

Воспользовавшись теоремой о свертке, получите аналитическую запись ДВПФ. Заполните таблицу.

| Значение | Ширина $\Delta  u$ главного | Энергия х $\Delta t$                      |
|----------|-----------------------------|-------------------------------------------|
| X(0)     | лепестка на нулевом уровне  | $\int_{-1/2}^{1/2}  X(v) ^2 dv$           |
|          |                             | $\int_{-1/2}  A(\mathbf{v})  d\mathbf{v}$ |
|          |                             |                                           |
|          |                             |                                           |

# Контрольные вопросы

№1. Пусть  $X(\nu)$  — ДВПФ спектр некоторой последовательности x[k]. Как нужно изменить последовательность x[k], чтобы ее ДВПФ спектр был сдвинут влево относительно исходного на  $\nu_0 = 1/10$ ?

**№2.** Пусть  $X_5(\mathbf{v})$  — ДВПФ спектр пяти последовательных единичных импульсов  $x_5[k] = \sum_{m=0}^4 \mathbf{1} \big[ k - m \big]$ , а  $Y(\mathbf{v})$  — ДВПФ спектр последовательности  $y[k] = k x_5[k]$ . Пусть также

$$\Phi(\mathbf{v}) = \int_{-1/2}^{1/2} X_5(\tilde{\mathbf{v}}) Y(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}},$$

 $<sup>^{3}</sup>$  Двумя звездочками « $^{**}$ » здесь и далее отмечены задачи повышенной трудности.

$$\Psi(\mathbf{v}) = \int_{-1/2}^{1/2} Y(\tilde{\mathbf{v}}) X_5(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}}.$$

Чему равно  $\Phi(v)$ ? Выполняется ли  $\Phi(v) \equiv \Psi(v)$ ?

№3. Предположим, что имеется финитная последовательность

$$x[k] = \{1; 5; 2; 4; 1; 1; 3\}.$$

Не вычисляя непосредственно ее ДВПФ X(v) , определите значения следующих выражений:

$$X(0); X(1/2); \int_{-1/2}^{1/2} X(v) dv; \int_{-1/2}^{1/2} |X(v)|^2 dv; \int_{-1/2}^{1/2} \left| \frac{dX(v)}{dv} \right|^2 dv.$$

№4. Докажите для ДВПФ свойство: если  $x[k] \overset{DTFT}{\longleftrightarrow} X(\nu)$ , то  $kx[k] \overset{DTFT}{\longleftrightarrow} \frac{j}{2\pi} \frac{dX(\nu)}{d\nu}$ . Получите аналогичное свойство для спектра сигнала (последовательности)  $k^M x[k]$ , где М - натуральное число.

В качестве примера рассмотрите случай  $x[k] = \sum_{m=0}^{N-1} \mathbf{1} \big[ k-m \big]$ . Постройте с помощью Octave/Python график последовательности и ДВПФ при  $-0.5 \le v \le 0.5\,$  для различных  $M\,$  (M=1, 2, 3).

**№5.** Предположим, что аналоговый сигнал  $x(t) = \cos(2\pi t f_0)$ ,  $-\infty < t < \infty$ ,  $f_0 = 250$  Гц был дискретизован с частотой дискретизации  $f_{\pi} = 1$  кГц. Будет ли наблюдаться эффект наложения (aliasing)?

Определить и построить график ДВПФ для отсчетов сигнала  $x[k] = \Delta t \, x(k \Delta t)$  в переменных v .

# Занятие 2. Основные свойства ДПФ

# Теоретическая часть

# Формы записи ДПФ

Пусть x[k] — последовательность отсчетов сигнала либо длиной в N отсчетов, либо периодическая с периодом N . Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) последовательности x[k] определяется следующим образом

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),\,$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j \frac{2\pi}{N} nk\right).$$

Примечание. Именно в таком виде ДПФ реализовано в Matlab, библиотеках Python Numpy и Scipy.

Наряду с приведенной парой формул, существует запись ДПФ с нормирующем множителем 1/N в прямом преобразовании:

$$\widetilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j \frac{2\pi}{N} nk\right).$$

Далее будет показано, что такая форма ДПФ удобна при рассмотрении периодических последовательностей отсчетов x[k]. Для того, чтобы различать две записи, будем использовать обозначения  $\tilde{X}[n]$  и X[n]. Очевидно, что

$$\tilde{X}[n] = \frac{1}{N} X[n].$$

В ДПФ и сигнал x[k], и последовательность ДПФ отсчетов X[n] представляют собой функции дискретного аргумента. Функцию X[n] обычно рассматривают только для значений  $n=0,1,\ldots,N-1$ , при этом она является периодической с периодом N.

В результате обратного ДПФ получается N –периодическая функция дискретного времени, что необходимо учитывать при использовании обратного ДПФ для последовательностей конечной длительности. Для них результат обратного преобразования нужно взять на периоде [0,N-1], а остальные отсчеты приравнять к нулю.

**Пример.** Пусть  $x[k] = \cos\left(2\pi\frac{3}{16}k\right)$ . Вычислить 16-точечное ДПФ этой последовательности  $\tilde{X}[n]$  по формуле с нормирующим множителем 1/N в прямом преобразовании.

Решение.

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \cos(2\pi \frac{3}{16}k) \exp(-j2\pi \frac{n}{N}k) =$$

$$= \frac{1}{16} \sum_{k=0}^{15} \left\{ \frac{1}{2} \exp\left(j2\pi k (\frac{3}{16} - \frac{n}{16})\right) + \frac{1}{2} \exp\left(-j2\pi k (\frac{3}{16} + \frac{n}{16})\right) \right\}$$

Рассмотрим отдельно сумму вида  $\sum_{k=0}^{15} \exp \left( j2\pi k \, \frac{m}{16} \right)$  при условии, что m- целое число, не равное нулю и не кратное 16. В таком случае по формуле суммы геометрической прогрессии

$$\sum_{k=0}^{15} \exp\left(j2\pi k \frac{m}{16}\right) = \frac{1 - \exp(j2\pi m)}{1 - \exp(j2\pi m \frac{1}{16})} = 0.$$

В случае когда m либо равно нулю, либо кратно 16, будет выполняться

 $\sum_{k=0}^{15} \exp\left(j2\pi k \frac{m}{16}\right) = \sum_{k=0}^{15} \mathrm{e}^0 = 16$ . В итоге на периоде есть только два ненулевых отсчета ДПФ —  $\tilde{X}[3] = 1/2$  и  $\tilde{X}[13] = 1/2$ .



# Свойства ДПФ

Предложим, что для последовательности x[k] ДПФ будет X[n], что символически будем обозначать  $x[k] \overset{DFT}{\longleftrightarrow} X[n]$ . Пусть также  $y[k] \overset{DFT}{\longleftrightarrow} Y[n]$ . Тогда справедливы следующие утверждения — свойства ДПФ. Далее запись вида  $x[k]_N$  обозначает  $x[k \bmod N]$ . Символ  $^*$  обозначает здесь комплексное сопряжение.

| Curus rus w[ls] us w[ls]                                            | <del>v</del> r 1 <del>v</del> r 1                                                                                                                                       | $N$ -consumes $\Pi\Pi\Phi$ $V[n]$ $U[n]$                                   |  |  |  |  |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Сигналы $x[k]$ и $y[k]$                                             | $N$ –точечные ДПФ $	ilde{X}[n]$ и $	ilde{Y}[n]$                                                                                                                         | N –точечное ДПФ $X[n]$ и $Y[n]$                                            |  |  |  |  |
|                                                                     | (с нормирующим множителем                                                                                                                                               | (без нормирующего множителя                                                |  |  |  |  |
|                                                                     | 1/N в прямом преобразовании)                                                                                                                                            | 1/N в прямом преобразовании)                                               |  |  |  |  |
| - [1] - 0 [1]                                                       | Линейность                                                                                                                                                              | Vf 1 . O.Vf 1                                                              |  |  |  |  |
| $\alpha x[k] + \beta y[k],$                                         | $\alpha \tilde{X}[n] + \beta \tilde{Y}[n]$                                                                                                                              | $\alpha X[n] + \beta Y[n]$                                                 |  |  |  |  |
| $\alpha, \beta \in \mathbb{C}$                                      |                                                                                                                                                                         |                                                                            |  |  |  |  |
| Единичный импульс                                                   |                                                                                                                                                                         |                                                                            |  |  |  |  |
| $x[k] = 1[k] = \begin{cases} 1, k = 0, \\ 0, k \neq 0. \end{cases}$ | $\tilde{X}[n] \equiv \frac{1}{N}$                                                                                                                                       | $X[n] \equiv 1$                                                            |  |  |  |  |
| (0, 1, 7 0.                                                         | Теорема запаздывания                                                                                                                                                    |                                                                            |  |  |  |  |
| 20 lz 20 l                                                          | ( - )                                                                                                                                                                   | ( 2-                                                                       |  |  |  |  |
| $x[k-m]_N$                                                          | $\tilde{X}[n]\exp\left(-j\frac{2\pi}{N}nm\right)$                                                                                                                       | $X[n]\exp\left(-j\frac{2\pi}{N}nm\right)$                                  |  |  |  |  |
|                                                                     | Теорема смещения                                                                                                                                                        |                                                                            |  |  |  |  |
| $x[k]\exp\left(\pm j\frac{2\pi}{N}n_0k\right),$                     | $\tilde{X}[n \mp n_0]_N$                                                                                                                                                | $X[n \mp n_0]_N$                                                           |  |  |  |  |
| $n_0 \in \mathbb{Z}$                                                |                                                                                                                                                                         |                                                                            |  |  |  |  |
|                                                                     | Симметрия                                                                                                                                                               |                                                                            |  |  |  |  |
| $x^*[k]$                                                            | ${	ilde X}^*[N-n]_N$ ,                                                                                                                                                  | $X^*[N-n]_N$ ,                                                             |  |  |  |  |
| $x[N-k]_N$                                                          | $\tilde{X}[N-n]_N$                                                                                                                                                      | $X^*[N-n]_N,$ $X[N-n]_N$                                                   |  |  |  |  |
| $x[k] = x^*[k]$                                                     | $\tilde{X}[n] = \tilde{X}^*[N-n]_N$                                                                                                                                     | $X[n] = X^*[N-n]_N$                                                        |  |  |  |  |
| действительная                                                      |                                                                                                                                                                         |                                                                            |  |  |  |  |
| последовательность                                                  |                                                                                                                                                                         |                                                                            |  |  |  |  |
| $x[k] = -x^*[k]$                                                    | $\tilde{X}[n] = -\tilde{X}^*[N-n]_N$                                                                                                                                    | $X[n] = -X^*[N-n]_N$                                                       |  |  |  |  |
| мнимая                                                              |                                                                                                                                                                         |                                                                            |  |  |  |  |
| последовательность                                                  |                                                                                                                                                                         |                                                                            |  |  |  |  |
|                                                                     | Георема о свертке (во временной об                                                                                                                                      | 1                                                                          |  |  |  |  |
| $\sum_{m=0}^{N-1} x[m] y[k-m]_N$                                    | $N	ilde{X}[n]	ilde{Y}[n]$                                                                                                                                               | X[n]Y[n]                                                                   |  |  |  |  |
| Произведен                                                          | ие сигналов (теорема о свертке в ч                                                                                                                                      | астотной области)                                                          |  |  |  |  |
| x[k]y[k]                                                            | $\sum_{m=0}^{N-1} \tilde{X}[m] \tilde{Y}[n-m]_{N}$                                                                                                                      | $\frac{1}{N} \sum_{m=0}^{N-1} X[m] Y[n-m]_{N}$                             |  |  |  |  |
|                                                                     | Равенство Парсеваля                                                                                                                                                     | <i>111-1</i> 2                                                             |  |  |  |  |
|                                                                     | $\frac{1}{N} \sum_{k=0}^{N-1} x[k] y^*[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \tilde{Y}^*[n],$                                                                              | $\sum_{k=0}^{N-1} x[k] y^*[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] Y^*[n],$ |  |  |  |  |
|                                                                     | $\frac{1}{N} \sum_{k=0}^{N-1} x[k] y^*[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \tilde{Y}^*[n],$ $\frac{1}{N} \sum_{k=0}^{N-1}  x[k] ^2 = \sum_{n=0}^{N-1}  \tilde{X}[n] ^2.$ | $\sum_{k=0}^{N-1}  x[k] ^2 = \frac{1}{N} \sum_{n=0}^{N-1}  X[n] ^2.$       |  |  |  |  |

#### Пример. Циклический сдвиг последовательности.

Пусть X[n] — восьмиточечное ДПФ последовательности

$$x[k] = \{0,1,0,2,0,3,0,4,0,5,0,6,0,7,0,8\}$$

изображенной на графике. Изобразить последовательность y[k], ДПФ которой имеет вид  $Y[n] = \exp\left(-j\frac{2\pi}{8}mn\right)X[n]$  для m=3 и m=5.

Решение.

Воспользуемся теоремой запаздывания для ДПФ:

Если 
$$x[k] \overset{DFT}{\longleftrightarrow} X[n]$$
 , то  $x[k-m]_N \overset{DFT}{\longleftrightarrow} X[n] \exp\biggl(-j \frac{2\pi}{N} nm \biggr)$ .

Тогда последовательность y[k] получается путем циклического сдвига x[k] на m отсчетов вправо (для положительных m):

$$y[k] = x[k-m]_N = x[(k-m) \mod N].$$



#### Пример. Симметрия ДПФ.

Пусть дана последовательность

$$x[k] = \cos(2\pi k0, 2)$$
,  $k = 0, 1, 2, ..., 15$ .

Эта последовательность не является периодом для  $\cos(2\pi k0,2)$ . Частота косинусоиды  $\nu_{\cos}=0,2$  не совпадает с частотами отсчетов ДПФ  $\nu_n=n/N$ , N=16. Максимально близкий отсчет к частоте  $\nu_{\cos}=0,2$  — это n=3 ( $\nu_3=0,1875$ ).

ДПФ этой последовательности представлено на рисунке.



Для действительной последовательности  $x[k] = x^*[k]$ 

$$x[k] \stackrel{DFT}{\longleftrightarrow} X^*[N-n]_N.$$

Это означает, что  $X[n] = X^*[N-n]_N$ . Например,  $X[3] = X^*[13]$ .

В данном случае мы наблюдаем симметрию действительной части и модуля  $\,\,$  и антисимметрию мнимой части и фазы коэффициентов ДПФ относительно отсчета с номером  $\,n=N\,/\,2=8$  .

# Матричная форма ДПФ

Введем в рассмотрение квадратную матрицу  $[W]_N$  порядка N с элементами

$$W_N^{nk} = \exp(-j\frac{2\pi}{N}nk), \quad n, k \in \{0, 1, 2, ..., N-1, \}$$

так, что номер строки совпадает с номером дискретной экспоненциальной функции, а номер столбца совпадает с номером отсчета функций. При этом произведение  $n \cdot k$  обычно берется по модулю N , т. е.

$$W_N^{nk} = W_N^{nk \mod N}.$$

Например, nk=17, тогда  $nk \mod 8=1$ . Эти свойства матрицы ДПФ следуют из N-периодичности функции  $W_N^{nk}$  по обоим аргументам. Для случая N=8 матрица ДПФ имеет вид

$$\begin{bmatrix} W \end{bmatrix}_8 = \begin{bmatrix} W_8^0 & W_8^0 \\ 1 & W_8^0 & W_8^1 & W_8^2 & W_8^3 & W_8^4 & W_8^5 & W_8^6 & W_8^7 \\ 2 & W_8^0 & W_8^2 & W_8^4 & W_8^6 & W_8^8 & W_8^{10} & W_8^{12} & W_8^{14} \\ 4 & W_8^0 & W_8^3 & W_8^6 & W_8^9 & W_8^{12} & W_8^{15} & W_8^{18} & W_8^{21} \\ 4 & W_8^0 & W_8^4 & W_8^8 & W_8^{12} & W_8^{16} & W_8^{20} & W_8^{24} & W_8^{28} \\ 5 & W_8^0 & W_8^5 & W_8^{10} & W_8^{15} & W_8^{10} & W_8^{20} & W_8^{24} & W_8^{28} \\ 6 & W_8^0 & W_8^6 & W_8^{12} & W_8^{18} & W_8^{24} & W_8^{30} & W_8^{35} & W_8^{42} \\ 7 & W_8^0 & W_8^7 & W_8^{14} & W_8^{21} & W_8^{28} & W_8^{35} & W_8^{42} & W_8^{49} \end{bmatrix}$$

Эта же матрица с минимальными фазами будет

Через множители  $\,W_{N}^{\,nk}\,$  пара ДПФ записывается в виде

$$X[n] = \sum_{k=0}^{N-1} x[k] W_N^{nk},$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] W_N^{-nk}.$$

Пусть  $\vec{X}$  и  $\vec{x}$  – N-мерные вектор-столбцы:

$$\vec{X} = \begin{bmatrix} X[0] \\ X[1] \\ \vdots \\ X[N-1] \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix}.$$

Тогда в матричной форме пара ДПФ (с нормирующим множителем в обратном преобразовании) имеет вид

$$ec{X} = igl[Wigr]_{\scriptscriptstyle N} \ ec{x}$$
 — прямое ДПФ,  $ec{x} = igl[W_{\scriptscriptstyle N}igr]^{\!-\!1} \ ec{X} \ -$  обратное ДПФ.

Чтобы найти обратную матрицу  $\left[W_{_{N}}\right]^{\!-1}$ , достаточно заметить, что

$$\frac{1}{N} [W_N]^* [W_N] = I_N,$$

где  $I_{\scriptscriptstyle N}$  – единичная матрица размером  $N\! imes\!N$ . В итоге получаем, что

$$\left[W_{N}\right]^{-1}=\frac{1}{N}\left[W_{N}\right]^{*},$$

т.е. для нахождения обратной матрицы достаточно выполнить комплексное сопряжение для  $\left[W_{_{\! N}}\right]$  и нормировать результат на N .

# Задание на моделирование

| Вариант | x[k]                  | m  | Вариант | x[k]                  | m  |
|---------|-----------------------|----|---------|-----------------------|----|
| 1       | {1;-3;2;4;6;7;4;6}    | 3  | 11      | {9;3;2;4;6;3;4;4}     | 3  |
| 2       | {7;3;2;-4;6;0;-4;1}   | 4  | 12      | {9;-3;2;4;2;7;1;3}    | 4  |
| 3       | {5;3;2;0;6;-7;4;-6}   | -1 | 13      | {3;-6;-8;4;6;7;4;9}   | 6  |
| 4       | {1;-3;2;4;1;7;1;1}    | -3 | 14      | {1;-6;0;-4;6;-7;4;-9} | -3 |
| 5       | {9;-3;2;4;2;7;1;3}    | 4  | 15      | {1;-6;0;-4;6;-7;0;9}  | -4 |
| 6       | {1;7;2;2;6;5;4;1}     | -2 | 16      | {8;6;-8;-4;6;-7;4;9}  | -1 |
| 7       | {3;6;-8;4;6;-7;4;9}   | 6  | 17      | {-1;-7;-2;2;-6;5;5;1} | 6  |
| 8       | {8;6;8;4;3;-7;4;5}    | 1  | 18      | {1;-3;2;7;1;7;1;1}    | 2  |
| 9       | {1;-6;8;4;6;-7;4;-9}  | 2  | 19      | {9;-3;2;5;2;7;1;3}    | -2 |
| 10      | {1;-6;8;-4;0;-7;4;-9} | -3 | 20      | {1;-1;8;4;6;-2;4;-6}  | -3 |

#### Задача 2.1. Алгоритмы вычисления ДПФ.

Вычислите ДПФ X[n] для последовательности x[k] (в соответствии с Вашим вариантом). Воспользуйтесь следующими способами:

- а) вычисление с использованием матричной формы ДПФ;
- б) алгоритм быстрого преобразование Фурье (БПФ).

Сравните результаты.

#### Задача 2.2 Свойства симметрии ДПФ.

Для последовательности x[k] постройте графики  $\operatorname{Re} X[n]$ ,  $\operatorname{Im} X[n]$ ,  $\left|X[n]\right|$ ,  $\angle X[n]$ .

Сравните получившиеся результаты со свойствами симметрии ДПФ.

# Задача 2.3. Циклический сдвиг в ДПФ.

Постойте график для последовательности x[k].

Вычислите последовательность y[k], ДПФ которой

$$Y[n] = \exp\left(-j\frac{2\pi}{8}mn\right)X[n].$$

Сравните получившиеся последовательности.

# Контрольные вопросы

**№1.** Записать матрицу, задающую ДПФ преобразование над последовательностью (вектором) длины 4. Указать также обратную матрицу, задающую обратное преобразование.

№2. Для последовательности из трех единичных импульсов  $x[k] = \mathbf{1}[k] + \mathbf{1}[k-1] + \mathbf{1}[k-2]$  изобразить

- а) линейную дискретную свертку  $\sum_{m=0}^{N-1} x[m]x[k-m],$
- б) циклическую дискретную свертку  $\sum_{m=0}^{N-1} x[m]x[k-m]_N$ .

Сравнить результаты.

# Занятие 3. Связь между ДВПФ и ДПФ.

# Теоретическая часть

# ДПФ последовательностей конечной длительности

#### Форма записи ДПФ

Пусть x[k] — последовательность отсчетов сигнала длиной в N отсчетов  $k=0,1,\ldots,N-1$ . Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) определяется следующим образом

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),\,$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right), \quad k = 0, 1, ..., N-1.$$

Функцию X[n] обычно рассматривают только для значений  $n=0,1,\dots,N-1$ , при этом она является периодической с периодом N ,  $n\in Z$  .

В обратном преобразовании необходимо ограничить длительность восстанавливаемой последовательности отсчетов сигнала, т.е. рассматривать x[k] для значений  $k=0,1,\ldots,N-1$ . Если длительность не ограничить, то будет восстановлена последовательность, являющаяся периодическим продолжением x(k).

#### Связь между ДПФ и ДВПФ в точках v = n / N.

Рассмотрим N – точечную последовательность x[k]. Ее ДВПФ

$$X(v) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

ДПФ для последовательности x(k), имеет следующий вид:

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j2\pi \frac{n}{N}k\right).$$

Сравнивая формулы, в точках v = n/N получаем равенство

$$X(v)|_{v=n/N} = X[n]$$

Это означает, что коэффициенты ДПФ X[n] равны отсчетам функции X(v), взятым в точках v=n/N (с шагом  $\Delta v=1/N$ ).

Интерполяция ДВПФ добавлением нулевых отсчетов в сигнал (Zero Padding) Улучшим качество визуализации ДВПФ при помощи отсчетов ДПФ. Получим M — точечную последовательность — добавим в исходную последовательность x[k] M — N отсчетов, равных нулю:

$$y[k] = \begin{cases} x[k], & 0 \le k \le N - 1; \\ 0, & N \le k \le M - 1. \end{cases}$$

Ее ДПФ M – точечное и определяется формулой

$$Y[n] = \sum_{k=0}^{M-1} y[k] \exp\left(-j\frac{2\pi}{M}nk\right) = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{M}nk\right).$$

При этом ДВПФ не изменяется:

$$Y(v) = \sum_{k=0}^{M-1} x[k] \exp(-j2\pi vk) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

С помощью добавления нулевых отсчетов улучшено качество визуализации ДВПФ, поскольку число точек v = n/N на одном периоде больше, чем в исходной последовательности.

#### Пример.

Рассмотрим последовательность отсчетов

$$x[k] = \begin{cases} \sin\left(2\pi \frac{1.5}{20}k\right) + \sin\left(2\pi \frac{5.4}{20}k\right) + \sin\left(2\pi \frac{7.6}{20}k\right), 0 \le k < N, \\ 0, \{k < 0\} \cup \{k \ge N\}. \end{cases}$$



Заметим, что частоты синусоид в ней не совпадают с бинами ДПФ:

$$v_1 = \frac{1.5}{20}$$
,  $v_2 = \frac{5.4}{20}$ ,  $v_3 = \frac{7.6}{20}$ .

На рисунке изображен модуль ДВПФ этой последовательности для частот  $v \in [0;1]$ . Приведено соответствие с 16–точечным ДПФ этой последовательности, вычисленным по формуле без

нормирующего множителя 1/N . В точках  $\nu = n/N$  значение ДВПФ совпадают с величиной отсчетов ДПФ в этих точках:

$$X(n\Delta v) = X[n], \ \Delta v = 1/N.$$

Теперь дополним рассматриваемый в ДПФ участок сигнала нулевыми отсчетами. ДВПФ при этом не изменится (мы даже не изменили сигнал x[k]), а число отсчетов ДПФ на одном периоде станет больше. Таким образом улучшено качество визуализации ДВПФ с помощью отсчетов ДПФ.



Интерполяционная формула восстановления ДВПФ по коэффициентам ДПФ в точках

$$v \neq n / N$$

Рассмотрим N – точечную последовательность x[k]. Ее ДВПФ

$$X(v) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

Обратное ДПФ для последовательности x[k]

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

Получаем, что

$$X(v) = \frac{1}{N} \sum_{k=0}^{N-1} \left( \sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right) \right) \exp\left(-j2\pi vk\right) = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \sum_{k=0}^{N-1} \exp\left(-j2\pi \left(v - \frac{n}{N}\right)k\right).$$

Рассмотрим отдельно множитель  $\sum_{k=0}^{N-1} \exp \left( -j2\pi (\nu - n/N)k \right)$ . Это сумма N членов геометрической прогрессии с первым членом

$$b_1 = 1$$
, и знаменателем  $q = \exp(-j2\pi(\nu - n/N))$ .

В точках  $v\neq n/N$  , где  $q\neq 1$  , получаем (используя известные формулы  $S_N=b_1(1-q^N)/(1-q)$  и  $\sin \phi=(e^{j\phi}-e^{-j\phi})/(2j)$ ):

$$\sum_{k=0}^{N-1} \exp\left(-j2\pi\left(\nu - \frac{n}{N}\right)k\right) = \frac{1 - \exp\left(-j2\pi\left(\nu - n/N\right)N\right)}{1 - \exp\left(-j2\pi\left(\nu - n/N\right)N\right)} =$$

$$= \frac{\exp\left(-j\pi\left(\nu - n/N\right)N\right)\left\{\exp\left(j\pi\left(\nu - n/N\right)N\right) - \exp\left(-j\pi\left(\nu - n/N\right)N\right)\right\}}{\exp\left(-j\pi\left(\nu - n/N\right)\right)\left\{\exp\left(j\pi\left(\nu - n/N\right)\right) - \exp\left(-j\pi\left(\nu - n/N\right)N\right)\right\}} =$$

$$= \exp\left(-j\pi\left(\nu - n/N\right)\left(N - 1\right)\right)\frac{\sin\left(\pi\left(\nu - n/N\right)N\right)}{\sin\left(\pi\left(\nu - n/N\right)N\right)}$$

Подставив формулу для суммы в связь, получаем интерполяционную формулу восстановления континуальной функции  $X(\mathfrak{v})$  по коэффициентам ДПФ X[n]:

$$X(\nu) = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \frac{\sin(\pi(\nu - n/N)N)}{\sin(\pi(\nu - n/N))} \exp(-j\pi(\nu - n/N)(N-1)).$$

Заметим, что для последовательностей конечной длительности ДВПФ непрерывно, а значит для интерполяционной формулы выполняется

$$\lim_{v\to n/N}X(v)=X[n],$$

что согласуется с тем, что в точках  $\left. \mathbf{v} = n \, / \, N \right.$  выполняется  $\left. X(\mathbf{v}) \right|_{\mathbf{v} = n / N} = X[n]$  .

# ДПФ периодических последовательностей

#### Форма записи ДПФ

Пусть x[k],  $k \in \mathbb{Z}$  — периодическая последовательность отсчетов сигнала с периодом N . Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) последовательности x[k] определяется следующим образом

$$\widetilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),\,$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

 $ilde{X}[n]$  может рассматриваться как N- точечная последовательность коэффициентов ДПФ (отсчетов ДПФ), где  $n=0,1,\ldots,N-1$ .  $ilde{X}[n]$  может также рассматриваться как периодическая последовательность с периодом N,  $n\in Z$ . В обратном преобразовании последовательность x(k) также получится периодической.

#### Связь между ДПФ и ДВПФ для периодических последовательностей.

Пусть аналоговый периодический сигнал x(t) с периодом T дискретизован с шагом  $\Delta t = T/N$ . Тогда на одном периоде x(t) будет содержаться N отсчетов (если крайний правый отсчет попадает на границу периода, то будем считать его относящимся к следующему периоду). Выделим для последовательности отсчетов x[k] один период

$$x_N[k] = \begin{cases} x[k], 0 \le k \le N - 1; \\ 0, \{k < 0\} \cup \{k \ge N\}. \end{cases}$$



Пусть  $x_N[k] \longleftrightarrow X_N(\mathbf{v})$  . Последовательность x(k) может быть представлена в виде дискретной сверки  $x_N[k]$  и  $\sum_{n=0}^{\infty} \mathbf{1} \big[ k - m N \big]$ . Причем

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-mN] \longleftrightarrow \frac{1}{N} \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

Тогда

$$X(v) = \frac{1}{N} X_N(v) \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

Последовательность  $x_N[k]$  имеет конечную длительность, является абсолютно суммируемой.  $X_N(\nu)$  непрерывна. При этом ДВПФ периодической последовательности x[k] имеет дискретную структуру, которой в континуальной записи соответствует некоторый периодический набор  $\delta$  - функции. Заметим, что по свойствам  $\delta$  -функции выполняется равенство

$$\frac{1}{N}X_{N}(v)\delta\left(v-\frac{n}{N}\right) = \frac{1}{N}X_{N}\left(\frac{n}{N}\right)\delta\left(v-\frac{n}{N}\right).$$

Введем периодическую функцию дискретного аргумента  $\tilde{X}[n]$ , значения которой будут соответствовать площадям дельта-функций в X(v) в точках v=n/N:

$$X(v) = \sum_{n=-\infty}^{\infty} \tilde{X}[n] \, \delta\left(v - \frac{n}{N}\right).$$

В таком случае

$$\tilde{X}[n] = \frac{1}{N} X_N(\frac{n}{N}) = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp(-j2\pi \frac{n}{N}k).$$

$$x[k] = \int_{-1/2}^{1/2} X(v) \exp(j2\pi vk) dv = \int_{0}^{1} X(v) \exp(j2\pi vk) dv =$$

$$= \int_{0}^{1} X_{N}(v) \frac{1}{N} \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right) \exp(j2\pi vk) dv = \frac{1}{N} \sum_{n=0}^{N-1} X_{N}(\frac{n}{N}) \exp(j2\pi \frac{n}{N}k).$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi \frac{n}{N}k).$$

Получаем следующую пару формул

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp(-j2\pi \frac{n}{N}k),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi \frac{n}{N}k),$$

определяющие прямое и обратное дискретное преобразование Фурье (ДПФ). В ДПФ частотная (n) и временная (k) переменная дискретны, функция  $\tilde{X}[n]$  периодична с периодом N , а в качестве главного периода для отсчетов ДПФ выбирают такой, на котором  $n=0,\dots,N-1$ .

#### Пример.

Предположим, что имеется периодическая последовательность

$$(\infty < k < +\infty)$$

$$x[k] = \cos(2\pi \frac{3}{16}k).$$

Учитывая, что

$$\cos(2\pi \frac{3}{16}k) = \frac{1}{2}\exp(j2\pi \frac{3}{16}k) + \frac{1}{2}\exp(-j2\pi \frac{3}{16}k),$$

получаем для ДВПФ этой последовательности

$$X(v) = \sum_{n=-\infty}^{\infty} \frac{1}{2} \delta(v - \frac{3}{16} - n) + \frac{1}{2} \delta(v + \frac{3}{16} - n).$$

X(v) содержит две  $\delta$  -функции с площадями 1/2 на каждом периоде. Рассмотрим период  $0 \le v < 1$  (правую крайнюю точку можем не включать из-за периодичности X(v) ). На нем содержится две  $\delta$  -функции в точках  $v_1 = \frac{3}{16}$  и  $v_2 = \frac{13}{16}$ . Последовательность имеет период N=16 точек. Это означает, что можно установить значения 16-точечного ДПФ  $\tilde{X}[3]=1/2$ ,  $\tilde{X}[13]=1/2$ , а в остальных точках главного периода  $\tilde{X}[n]=0$ .



Предположим, что нужно вычислить ДВПФ для одного периода последовательности  $x[k] = \cos(2\pi\frac{3}{16}k) \text{, т.е. для последовательности } x_N[k] = x[k]w[k] \text{ , где } w[k] = \sum_{k=0}^{15}\mathbf{1}\big[k-m\big].$ 

Заметим, что

$$W(v) = e^{-j(N-1)\pi v} \frac{\sin(N\pi v)}{\sin(\pi v)},$$

$$X(v) = 0.5 \sum_{m=-\infty}^{\infty} \delta(v - \frac{3}{16} - m) + 0.5 \sum_{m=-\infty}^{\infty} \delta(v + \frac{3}{16} - m).$$

<u>Способ 1.</u> ДВПФ последовательности Y(v) может быть представлено в виде циклической свертки

$$Y(v) = \int_{-1/2}^{1/2} X(\tilde{v})W(v - \tilde{v})d\tilde{v} = \int_{-1/2}^{1/2} W(\tilde{v})X(v - \tilde{v})d\tilde{v}$$

Используя фильтрующее свойство дельта-функции

$$\int_{a}^{b} W(v)\delta(v-v_{1})dv = \begin{cases} W(v_{1}), a < v_{1} < b, \\ 0.5W(v_{1}), (v_{1} = a) \cup (v_{1} = b), \\ 0, (v_{1} < a) \cup (v_{1} > b), \end{cases}$$

получаем, что

$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16}).$$



Способ 2. Аналогично через теорему смещения

$$y[k] = \left(\frac{1}{2}\exp(j2\pi k\frac{3}{16}) + \frac{1}{2}\exp(-j2\pi k\frac{3}{16})\right)w[k],$$
$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16}).$$

$$Y(v) = \frac{1}{2} \exp\left(-j(N-1)\pi(v-\frac{3}{16})\right) \frac{\sin(N\pi(v-\frac{3}{16}))}{\sin(\pi(v-\frac{3}{16}))} + \frac{1}{2} \exp\left(-j(N-1)\pi(v+\frac{3}{16})\right) \frac{\sin(N\pi(v+\frac{3}{16}))}{\sin(\pi(v+\frac{3}{16}))}.$$



# Частотная ось ДПФ

Отчету N – точечного ДПФ с номером n в случае сигнала конечной длительности соответствует значение ДВПФ в точке  $\nu = n/N$  по оси нормированных частот:

$$X(\mathbf{v})\big|_{\mathbf{v}=n/N} = X[n].$$

Если рассматривается периодическая последовательность отсчетов, и коэффициенты ДПФ вычисляются по периоду последовательности, то весам дельта-функций в точках  $\mathbf{v}=n/N$  в ДВПФ соответствуют отсчеты ДПФ с номерами n:

$$X(v) = \tilde{X}[n] \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

Эти два обстоятельства позволяют сопоставить отсчётам ДПФ частоты в спектре дискретизованного сигнала. Учитывая, что  $\nu=f/f_{_{\rm A}}=f\Delta t$  , где  $f_{_{\rm A}}$  — частота дискретизации,  $\Delta t$  — шаг дискретизации, получаем, что отсчету с номером n соответствует частота  $f=nf_{_{\rm A}}/N=n/(N\Delta t)$  Гц. Разрешение по оси частот при ДПФ анализе составляет  $f_{_{\rm A}}/N$  Гц.

В таблице ниже рассмотрены основные способы введения частотной оси для отсчетов ДПФ.

| Частотная переменная | Связь частотной                      | Разрешение по                           | Диапазон изменения                |
|----------------------|--------------------------------------|-----------------------------------------|-----------------------------------|
| и ее размерность     | переменной с                         | частоте                                 | частоты,                          |
|                      | номером отсчета ДПФ                  |                                         | соответствующий                   |
|                      |                                      |                                         | отсчетам $\left[ 0,N ight)$       |
| f , [Гц]             | $f = \frac{nf_{\pi}}{N}$             | $\Delta f = \frac{f_{\pi}}{N}$          | $[0,f_{\scriptscriptstyle  m I})$ |
| ω,[рад/с]            | $\omega = \frac{n\omega_{\perp}}{N}$ | $\Delta\omega = \frac{\omega_{\pi}}{N}$ | $[0,\omega_{_{\mathrm{J}}})$      |
| v , безразмерная     | $v = \frac{n}{N}$                    | $\Delta v = \frac{1}{N}$                | [0,1)                             |
| heta , [рад]         | $\theta = 2\pi \frac{n}{N}$          | $\Delta\theta = \frac{2\pi}{N}$         | $[0,2\pi)$                        |

| Залацие        | uа | МОЛЕЛ | ирование |
|----------------|----|-------|----------|
| <b>Јадапис</b> | па | модел | ированис |

| Вариант | $m_0$ | $m_1$ | Вариант | $m_0$ | $m_1$ |
|---------|-------|-------|---------|-------|-------|
| 1       | 1     | 0,25  | 11      | 1     | 0,6   |
| 2       | 2     | 0,2   | 12      | 2     | 0,5   |
| 3       | 3     | -0,25 | 13      | 3     | -0,5  |
| 4       | 4     | -0,2  | 14      | 4     | 0,85  |
| 5       | 5     | 0,8   | 15      | 5     | 0,6   |
| 6       | 6     | 0,75  | 16      | 6     | 0,5   |
| 7       | 7     | 0,6   | 17      | 7     | -0,5  |
| 8       | 8     | 0,5   | 18      | 8     | 0,85  |
| 9       | 9     | -0,5  | 19      | 9     | -0,25 |
| 10      | 10    | 0,85  | 20      | 10    | -0,2  |

Задача 3.1. Интерполяция ДВПФ добавлением нулевых отсчетов в сигнал.

Постройте на одном графике модули ДВПФ |X(v)| и ДПФ |X[n]| последовательности N=32

$$x[k] = \begin{cases} \sin\biggl(\frac{2\pi}{N}m_0k\biggr) + \sin\biggl(\frac{2\pi}{N}\bigl(m_0+0,25\bigr)k\biggr), \, 0 \leq k \leq N-1; \\ 0, \, \text{ при других } k. \end{cases}$$

Увеличите размерность ДПФ путем добавления нулевых отсчетов так, чтобы все относительные частоты синусоид попадали на бины ДПФ. Приведите на одном графике модули ДВПФ  $\left|X(v)\right|$  и ДПФ  $\left|X[n]\right|$  для этого случая. Сравните результаты.

Задача 3.2. ДВПФ и ДПФ периодической последовательсти.

Постройте графики для действительной и мнимой части коэффициентов ДПФ  $\tilde{X}[n]$  периодической последовательности  $x[k] = \cos\left(\frac{2\pi}{N}mk\right) + \sin\left(\frac{2\pi}{N}mk\right)$  с периодом N=32, для случаев  $m=m_0$  и  $m=m_0+m_1$ . Получите аналитическую запись ДПФ. Сравните ДПФ последовательности с ее ДВПФ. Определите, выполняется ли связь между весами дельта-функций в ДВПФ и величинами отсчетов ДПФ.

# Контрольные вопросы

**Ne1.** Построить графики ДВПФ сигналов (последовательностей)  $x_1[k] = \cos(2\pi k v_0)$  и  $x_2[k] = \sin(2\pi k v_0)$ ,  $v_0 = 0.2$ ,  $-\infty < k < \infty$ . Определить ДВПФ для последовательностей  $y_1[k]$  и  $y_2[k]$  взвешанных прямоугольной оконной функцией  $w[k] = \sum_{m=0}^{N-1} \mathbf{1}[k-m]$ , т.е.  $y_1[k] = x_1[k]w[k]$  и  $y_2[k] = x_2[k]w[k]$  (это можно сделать, зная ДВПФ окна и используя теорему смещения).

**Nº2.** Пусть имеется N=10 точечное ДПФ некоторой последовательности отсчетов конечной длительности. Частота дискретизации  $f_{_{\rm I\! I}}=1$  кГц. Указать, сколько дополнительных нулей нужно добавить к этой последовательсноти, чтобы растояние между отсчетами стало равным  $\Delta \! f = \! 10$  Гц.

№3. Воспользовавшись интерполяционной формулой восстановления ДВПФ по коэффициентам ДПФ получить спектральную плостность для последовательности отсчетов конечной длительности, ДПФ которой имеет вид

$$X[n] = \begin{cases} 5, & \text{при } n = 5 + mN, m \in \mathbb{Z}, \\ 0, & \text{иначе.} \end{cases}$$

Сравнить результат со спектральной плотностью сигнала, получаемого обратным ДПФ для X[n].

# Список литературы

В качестве учебной литературы рекомендуется использовать учебные пособия [1], [2] и [3]. Все книги есть в библиотеке МФТИ.

- 1. Солонина А.И. Цифровая обработка сигналов в зеркале Matlab. СПб.: БХВ-Петербург, 2021. 560 с.
- 2. Романюк Ю.А. Основы цифровой обработки сигналов. В 3-ч ч. Ч.1. Свойства и преобразования дискретных сигналов. Изд. 2-Е, . М.: МФТИ, 2007. 332 с.
- 3. Романюк Ю.А. Дискретное преобразование Фурье в цифровом спектральном анализе. Учебное пособие. М.: МФТИ, 2007. 120 с.

Уважаемые студенты! Если Вы заметили опечатки, сообщите о них с помощью Google-формы <a href="https://docs.google.com/forms/d/e/1FAIpQLScRRSwSPi3WZVEd6A81I2adHNZyQA5kc8txZZnI4Mr74\_PTIg/viewform">https://docs.google.com/forms/d/e/1FAIpQLScRRSwSPi3WZVEd6A81I2adHNZyQA5kc8txZZnI4Mr74\_PTIg/viewform</a>

# Приложение 1. Работа в среде GNU Octave или MATLAB

Помимо библиотек Python, лабораторную работу можно выполнять в среде MATLAB или GNU Octave. Далее по тексту GNU Octave и MATLAB можно считать синонимами.

#### Рабочая директория

В среде GNU Octave можно использовать не только встроенные команды, но и расширять функционал с помощью дополнительных файлов-скриптов (\*.m). Без указания полного пути в среде доступны файлы из так называемой «рабочей директории». Сменить ее можно с помощью команды ed, а также используя соответствующие кнопки в панели инструментов.

#### Рабочая область

В ходе работы все вычисленные ранее переменные сохраняются в так называемой «рабочей области». Посмотреть содержимое «рабоче области» можно как в отдельно окне, так и с помощью команды who. Очистить рабочую область можно командой clear.

#### Язык сценариев (т-файлы)

#### Переменные

Имена переменных могут состоять из произвольных букв, цифр и знаков «\_». Не рекомендуется использовать в качестве имен переменных имена стандартных функций, а также имена стандартных переменных:

- і или ј мнимая единица
- inf неопределенность 1/0
- Nan неопределенность 0/0
- ans результат последней операции.
- рі число Пи
- rand псевдослучайное число из интервала [0;1]
- eps текущая относительная точность вычислений

#### Матрицы

Матрицы – основной объект, с которым работает GNU Octave. Вектор – матрица размерности 1хN или Nx1. Скаляр – матрица 1x1. В записи размерности матрицы «MxN» М обозначает число строк, N – число столбцов.

Скаляры создаются с помощью оператора присваивания: scalar = 1.234;

Для ввода матриц большей размерности используются символы « [] ». Матрицы задаются построчно, элементы одной строки разделяются пробелом, а строки — символом « ; ». Например, матрицы можно задать так:

```
matrix = [1 2;3 4; 5 6]; % матрица 3x2
vector = [1 2 3]; %вектор — строка
vector1 = [1;2;3]; %вектор — столбец
```

Большие матрицы можно формировать из матриц меньшей размерности. Например, используя

матрицу и вектор, заданные выше, команда  $a = [matrix \ vector1; \ 0 \ 1 \ 2]$  определяет матрицу  $[1 \ 2 \ 1; \ 3 \ 4 \ 2; \ 5 \ 6 \ 3; \ 0 \ 1 \ 2]$ .

Для обращения к элементам матрицы используются « () ». Чтобы получить элемент из строки i и столбца j используется запись A(i,j). Нумерация строк и столбцов начинается с единицы. Можно обращаться не только к отдельным элементам матриц, но также получить целые строки и столбцы. A(i,j) = j-ый вектор-столбец, A(i,j) = i-ая строка.

Для создания вектора-строки из последовательных элементов есть специальный оператор перечисления «:»

```
u = start : step : end;
```

В результате в и будет вектор, состоящий из элементов арифметической прогрессии, первый элемент которой равен start, а шаг — step. Последний элемент вектора будет максимальным членом прогрессии, который не превышает end. Если step = 1, то можно его не указывать: v = 1:5 задает вектор [1 2 3 4 5] Для матриц доступны следующие полезный функции:

- оператор « / » транспонирует матрицу
- size (A) определяет размеры матрицы, возвращает вектор 1x2 вида [M, N], где м— число строк, N число столбцов.
- length (A) максимальный из размеров матрицы A. Удобно определять число элементов в векторе.

#### Арифметические операции

Т.к. все объекты в GNU Octave – это матрицы, то и операции с ними соответствуют операциям с матрицами. Ниже приведен список основных операций:

- = присваивание;
- + сложение;
- \* умножение;
- \ деление слева ( $\mathbf{x} = \mathbf{A} \setminus \mathbf{B}$  результат решения уравнения  $A \cdot X = B$ ,  $X = A^{-1} \cdot B$ );
- / деление справа (  $\mathbf{X} = \mathbf{A} / \mathbf{B}$  результат решения уравнения  $X \cdot B = A$  ,  $X = A \cdot B^{-1}$ );
- ^- возведение в степень;
- . \* поэлементное умножение;
- . ^- поэлементное возведение в степень;
- . / поэлементное деление.

Следуют помнить, что операции подчиняются требованиям традиционной матричной алгебры. GNU Octave автоматически проверяет размерность операндов.

#### Сценарии

Сценарий записываются в текстовых файлах с расширением «.m». В этом файле перечислена последовательность операций, так, как если бы она же выполнялась посредством ввода отдельных команд в командной строке. Все переменные, объявленные в сценарии, сохраняются в рабочей области и доступны для дальнейшего использования в командной строке или других

сценариях. Чтобы вызвать сценарий, нужно набрать имя его файла без расширения в командной строке. Например, запуск сценария my\_script.m из рабочей директории осуществляется вводом my\_script в окне команд.

#### Функции

Чтобы не засорять рабочую область лишними переменными, часть кода сценариев можно оформить в виде функций. Функции также записываются в текстовых файлах с расширением «.m». В отличие от сценариев в файле функции первым должен быть специальный оператор, содержащей описание функции:

```
function[out_params] = function_name(in_params)
```

Это означает, что в файле записана функция с именем function\_name, у которой есть входные аргументы in\_params, а результат сохраняется в выходных переменных out\_params.

Завершается описание функции ключевым словом end.

Название функции должно совпадать с названием файла, в котором она описана.

Входные аргументы передаются в функцию «по значению». Любые изменения этих переменных в теле функции не отразятся на их значениях в рабочей области.

Чтобы вызвать функцию, нужно указать ее имя и список аргументов в круглых скобках:

```
val = function name(some arg);
```

Если указаны несколько входных/выходных значений:

```
function[outlout2] = function name(in1,in2)
```

то функцию можно вызывать так:

```
[a1 a2] = function name(b1,b2);
```

#### Некоторые стандартные операции

В стандартной поставке GNU Octave доступны основные математический функции ( $\exp$ ,  $\cos$ ,  $\sin$ , acos, atan, sqrt, abs, log, log10 и т.п.)

Для округления можно пользоваться функциями round(x) (до ближайшего целого), fix(x) (до целого в сторону нуля), ceil(x) / floor(x) (до ближайшего целого в сторону увеличения/уменьшения).

Для работы с комплексными числами доступны следующие функции:

- arg(x) аргумент комплексного числа;
- abs (x) модуль комплексного числа;
- real (x) действительная часть;
- imag(x) мнимая часть;
- conj(x) комплексное сопряжение.

Иногда требуется сформировать вектора или матрицы определенного вида. Для этого есть следующие функции:

• linspace(start, end, N) - формирует вектор-строку из N элементов равномерно

расположенных между start и end.

- zeros(N, M) coздает нулевую матрицу размером NxM. Вектор-строку из M нулей можно получить с помощью команды zeros(1, M).
- ones (N, M) создает матрицу размером NxM, все элементы которой равны единице. Вектор-строку из M единиц можно получить с помощью команды ones (1, M).
- rand(N,M) создает матрицу размером NxM, все элементы которой случайные числа, равномерно распределенные на интервале (0.0, 1.0).

#### Рисование графиков

Команда **figure** создает новое окно для рисования графиков. Все команды рисования влияют на последнее созданное окно.

Непрерывные графики выводятся с помощью команды plot(x,y). Аргументами могут быть:

- вектора одинаковой размерности, x значения по оси абсцисс, y значения по оси ординат;
- матрицы одинаковой размерности: для каждого столбца из  $\mathbf{x}$  выбирается соответствующий столбец из  $\mathbf{y}$  и строится график, как в случае выше;
- $\mathbf{x}$  вектор, а  $\mathbf{y}$  матрица (или наоборот), такие, что длина вектора совпадает с одной из размерностей матрицы: для каждого столбца (строки) матрицы строится отдельный график, где в качестве значений для второй оси используются элементы вектора

Также можно задать несколько пар аргументов (x,y), чтобы построить несколько графиков на одном рисунке:

Если нужно нарисовать график отдельных отсчетов, то следует использовать команду stem. Ee аргументы аналогичны команде plot.

Повторные вызовы команд plot или stem заменяют график в последнем окне, созданном командой figure. Для того, чтобы отобразить в одном окне несколько отдельных графиков, существует команда subplot(i,j,p). Эта команда делит окно вывода графиков на сетку из i строк и j столбцов. Параметр p выбирает область окна, в которой следующая команда plot или stem будет осуществлять рисование графика. Области нумеруются слева направо сверху вниз (для вывода четырех графиков (i,j-p): 1,1-1, 1,2-2, 2,1-3, 2,2-4).

# Приложение 2. Вычисление ДПФ и ДВПФ в GNU Octave / MATLAB

Быстрое преобразование Фурье (БПФ)

Можно заметить, что вычисление всех отсчетов дискретного преобразования Фурье (ДПФ) непосредственно по формуле

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j2\pi \frac{nk}{N}\right)$$

в случае последовательностей x[k] большой длительности N требует значительного времени вычислений. Это связано с тем, что такой алгоритм требует  $N^2$  комплексных умножений и  $N^2-N$  комплексных сложений. С ростом N мы получаем квадратичный рост числа операций, что делает такой алгоритм не применимым на практике.

Однако число операций можно значительно сократить, воспользовавшись алгоритмом быстрого преобразования Фурье (БПФ, также FFT — от англ. Fast Fourier transform). Построение таких алгоритмов рассматривается или будет рассмотрено в лекционном курсе «Дискретные преобразования сигналов». Пока лишь подчеркнем, что для случая, когда N является степенью двух ( $N=2^m,\ m\in N$ ), асимптотическая сложность алгоритма БПФ будет  $O(N\log_2 N)$ .

Вычисление по алгоритму БПФ для одномерной последовательности отсчетов производится с помощью функции fft. Если она принимает на вход одно значение fft( $\mathbf{x}$ ), то в результате получится ДПФ той же размерности, что и сам сигнал. Если используется и второй аргумент fft( $\mathbf{x}$ ,  $\mathbf{n}$ ), то зависимости от  $\mathbf{n}$  возможны следующие ситуации.

- а) n меньше длины вектора x. В таком случае ДПФ определяется для сигнала, состоящего из n первых отсчетов вектора x.
- б) n равно длине вектора x. Этот случай эквивалентен fft(x). Размерность ДПФ совпадает с длиной вектора входных данных.
- в) n больше длины вектора x. Это означает, что будет определено ДПФ для последовательности x, дополненной нулевыми отсчетами справа до размера n. При таком дополнении спектр (ДВПФ) последовательности не изменяется, а размерность ДПФ (число отсчетов на периоде) становится равной n.

Обратное преобразование выполняется с помощью вызова ifft(x) или ifft(x, n), где второй аргумент функции определяется аналогичным образом. Если требуется определить ДПФ, нормированное на число отчетов,

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j2\pi \frac{nk}{N}\right)$$

что нужно, например, при анализе периодических последовательностей, то необходимо разделить вектор, описывающий результат, поэлементно на N.

Далее приведен пример кода для построения графика модуля отсчетов ДПФ с нормирующим множителем для последовательности отсчетов, записанной в векторе  $\mathbf{x}$ .

```
N=64;
k=0:1:N-1;
x=cos(2*pi*25/N*k);
Xn=fft(x)/length(x); % вычисляем ДПФ и нормируем результат
stem([0:1:(length(Xn)-1)], abs(Xn)); % строим график модуля отсчетов ДПФ
xlabel("n");
ylabel("|X[n]| / N");
```

Заметим, что в Matlab индексы массивов нумеруются с единицы. Так, например, отсчету ДПФ X[11] соответствует  $x_n$  (11+1) .

В таблице ниже приведены стандартные функции для работы с ДПФ и БПФ в MATLAB и библиотеках Python.

|                                                                 | Python (SciPy, NumPy)                               | MATLAB      |
|-----------------------------------------------------------------|-----------------------------------------------------|-------------|
| Матрица $\begin{bmatrix} W \end{bmatrix}_N$ матричной формы ДПФ | <pre>scipy.linalg.dft(n, scale)</pre>               | dftmtx(n)   |
| Вычисление прямого ДПФ по алгоритму БПФ                         | <pre>scipy.fft.fft(x) np.fft.fft(x)</pre>           | fft(x)      |
| Вычисление обратного<br>ДПФ по алгоритму БПФ                    | <pre>scipy.fft.ifft(x) np.fft.ifft(x)</pre>         | ifft(x)     |
| Сдвиг коэффициентов ДПФ на половину периода                     | <pre>scipy.fft.fftshift(X) np.fft.fftshift(X)</pre> | fftshift(X) |

Дискретное во времени преобразование Фурье

Эффективный способ вычисления ДВПФ на равномерной сетке в диапазоне частот основан на вычислении БПФ и использовании связи  $X(\nu)\big|_{\nu=n/N}=X[n]$  . Приведем пример вычисления с построением графика модуля ДВПФ.

```
M=2^12; %число точек сетки частот

nu=(0:(M-1))/M-0.5;

Wn=fftshift(fft(w, M)) % вычисление ДВПФ в М точках на [-0.5; 0.5)

plot(nu, abs(Yn));

ylabel("|Y(\nu)|");

xlabel("\nu");
```

В приведенном примере м — число точек в диапазоне частот  $v \in [-0,5;0,5]$ , в которых вычисляется ДВПФ. Функция fftshift позволяет перейти от диапазона  $v \in [0;1]$  к  $v \in [-0,5;0,5]$  (выполняет соответствующий циклический сдвиг массива).  $\mathbf{nu}$  — точки, в которых мы вычисляет ДВПФ.