Marco Bayesiano para el análisis de datos, calibración de parámetros y modelamiento inverso

Probabilidad conjunta y condicional

Universidad Industrial de Santander U18 Fest

Región 1

	region ±	
	Gana	Pierde
	G_1	P_1
Gana	A	B
G_2	0.2	0.1
Pierde	C	D
P_2	0.4	0.3
	G_2 Pierde	$\begin{array}{c c} \text{Gana} & \\ G_1 & \\ \\ \text{Gana} & \\ G_2 & \\ \\ \text{Pierde} & \\ C & \\ \end{array}$

Podemos pensar en términos de eventos

$$\blacksquare \ P(G_1) = P(A) + P(C) = 0.6$$

$$\blacksquare \ P(P_1) = P(B) + P(D) = 0.4$$

Etc.

O podemos pensar en variables aleatorias

- $lacksquare Y_1$: Resultado en la región 1
- lacksquare Y_2 : Resultado en la región 2
- Variable vectorial

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$$

equivalente a
$$Y = [Y_1, Y_2]^{\top}$$

 $\begin{array}{c|cccc} {\sf Gana} & & & & \\ {\cal Y}_2 = 1 & & & & \\ & 0.2 & & & 0.1 \\ \end{array}$

 $Y_2=1$ $Y_2=1$ $Y_2=1$ Pierde $Y_2=0$

	,
$(1,0) \\ 0.4$	$(0,0) \\ 0.3$

Introducimos la pmf conjunta

$$\begin{split} p_Y(y) &= p_{Y_1Y_2}(y_1, y_2) \\ &= P(\{Y_1 = y_1\} \cup \{Y_2 = y_2\}) \end{split}$$

- $p_{Y_1Y_2}(1,0) = 0.4$
- $\blacksquare \ p_{Y_1Y_2}(0,0) = 0.3$
- Etc.

L

Probabilidad conjunta y marginal

Considérese las dos variables aleatorias

$$X \colon \Omega \to C_X, \quad Y \colon \Omega \to C_Y$$

pmf conjunta

$$p_{XY}(x,y)=P(\{X=x\}\cup\{Y=y\})$$

Probabilidad conjunta y marginal

Considérese las dos variables aleatorias

$$X \colon \Omega \to C_X, \quad Y \colon \Omega \to C_Y$$

pmf conjunta

$$p_{XY}(x,y) = P(\{X = x\} \cup \{Y = y\})$$

La pmf conjunta completamente define la distribución de probabilidad de ambas variables aleatorias

Probabilidad conjunta y marginal

Considérese las dos variables aleatorias

$$X \colon \Omega \to C_X, \quad Y \colon \Omega \to C_Y$$

pmf conjunta

$$p_{XY}(x,y) = P(\{X=x\} \cup \{Y=y\})$$

La pmf conjunta completamente define la distribución de probabilidad de ambas variables aleatorias

pmfs marginales

$$p_X(x) = \sum_{y \in C_Y} p_{XY}(x,y), \quad p_Y(y) = \sum_{x \in C_X} p_{XY}(x,y)$$

		Región 1	
		Gana	Pierde
		$Y_1 = 1$	$Y_1 = 0$
ón 2	$\begin{array}{c} {\sf Gana} \\ Y_2 = 1 \end{array}$	$(1,1) \\ 0.2$	$(0,1) \\ 0.1$
Región 2	$\begin{array}{l} {\rm Pierde} \\ Y_2 = 0 \end{array}$	$(1,0) \\ 0.4$	$(0,0) \\ 0.3$

pmf marginal de Y_1

$$\begin{split} p_{Y_1}(1) &= \sum_{y_2} p_{Y_1Y_2}(1,y_2) \\ &= p_{Y_1Y_2}(1,1) + p_{Y_1Y_2}(1,0) \\ &= 0.2 + 0.4 = 0.6 \\ p_{Y_1}(0) &= \sum_{y_2} p_{Y_1Y_2}(0,y_2) \\ &= p_{Y_1Y_2}(0,1) + p_{Y_1Y_2}(0,0) \\ &= 0.1 + 0.3 = 0.4 \end{split}$$

Independencia

Dos variables aleatorias son independientes si y sólo si

$$p(x,y) = p(x)p(y)$$
 para todo $x \in C_X, y \in C_Y$

i.e., si la pmf conjunta se factoriza en términos de las pmfs marginales

 Independencia implica que observar una variable aleatoria no provee información acerca del valor de la otra variable aleatoria

Región 1

		Region 1	
		Gana	Pierde
		$Y_1 = 1$	$Y_1 = 0$
	Gana	(1, 1)	(0,1)
Región 2	$Y_2 = 1$	0.2	0.05
egi.	Pierde	(1.0)	(0, 0)
Œ.	$Y_2 = 0$	(1,0) 0.1	$(0,0) \\ 0.65$
	_		

$$p_{Y_1}(1) = 0.3$$

$$p_{Y_2}(1) = 0.25$$

... por lo tanto, Y_1 y Y_2 **no** son independientes

Probabilidad condicional

Introducimos la pmf condicional $p_{X|Y}(x \mid y)$

- \blacksquare Indica la probabilidad de X=x dado que se ha observado que Y=y
- Relacionada con la pmf conjunta y las pmfs marginales a través de la relación

$$p_{XY}(x,y) = p_{X\mid Y}(x\mid y)p_Y(y)$$

Naturalmente,

$$p_{XY}(x,y) = p_{Y\mid X}(y\mid x)p_X(x)$$

		Región 1	
		Gana	Pierde
		$Y_1 = 1$	$Y_1 = 0$
Región 2	$\begin{array}{c} {\sf Gana} \\ Y_2 = 1 \end{array}$	$(1,1) \\ 0.2$	$(0,1) \\ 0.05$
Regi	$\begin{array}{l} {\rm Pierde} \\ Y_2 = 0 \end{array}$	$(1,0) \\ 0.1$	$(0,0) \\ 0.65$

Se observa que el referendo gana en la región 2. Cuál es la probabilidad de ganar en la región 1?

$$\begin{split} p_{Y_1\mid Y_2}(1\mid 1) &= \frac{p_{Y_1Y_2}(1,1)}{p_{Y_2}(1)} \\ &= \frac{0.2}{0.25} \approx 0.8 \end{split}$$

		$\begin{array}{cc} \text{Regi\'on 1} \\ \text{Gana} & \text{Pierde} \\ Y_1 = 1 & Y_1 = 0 \end{array}$	
ón 2	$\begin{array}{c} {\sf Gana} \\ Y_2 = 1 \end{array}$	$(1,1) \\ 0.2$	(0,1) 0.05
Región 2	$\begin{array}{c} \text{Pierde} \\ Y_2 = 0 \end{array}$	(1,0) 0.1	$(0,0) \\ 0.65$

Se observa que el referendo gana en la región 2. Cuál es la probabilidad de ganar en la región 1?

$$\begin{split} p_{Y_1 \mid Y_2}(1 \mid 1) &= \frac{p_{Y_1 Y_2}(1,1)}{p_{Y_2}(1)} \\ &= \frac{0.2}{0.25} \approx 0.8 \end{split}$$

Compárese:

- $p_{Y_1}(1) = 0.3$
- $p_{Y_1|Y_2}(1 \mid 1) = 0.8$

		$\begin{array}{cc} \text{Regi\'{o}n 1} \\ \text{Gana} & \text{Pierde} \\ Y_1 = 1 & Y_1 = 0 \end{array}$	
ón 2	$\begin{array}{c} \text{Gana} \\ Y_2 = 1 \end{array}$	$(1,1) \\ 0.2$	(0,1) 0.05
Región	$\begin{array}{l} {\rm Pierde} \\ Y_2 = 0 \end{array}$	(1,0) 0.1	(0,0) 0.65

Se observa que el referendo gana en la región 2. Cuál es la probabilidad de ganar en la región 1?

$$\begin{split} p_{Y_1 \mid Y_2}(1 \mid 1) &= \frac{p_{Y_1 Y_2}(1, 1)}{p_{Y_2}(1)} \\ &= \frac{0.2}{0.25} \approx 0.8 \end{split}$$

Compárese:

- $p_{Y_1}(1) = 0.3$
- $\blacksquare \ p_{Y_1 \mid Y_2}(1 \mid 1) = 0.8$

Observar Y_2 provee información acerca de Y_1

Independencia

Para dos variables aleatorias independientes,

$$p_{XY}\!(x,y) = p_X(x) p_Y\!(y)$$

Por lo tanto,

$$p_{X\mid Y}(x\mid y) = \frac{p_{XY}(x,y)}{p_Y(y)} = \frac{p_X(x)p_Y(y)}{p_Y(y)} = p_X(x)$$

i.e, la probabilidad de X=x es independiente del valor de Y

Considérese dos variables aleatorias contínuas

$$X \colon \Omega \to C_X, \quad Y \colon \Omega \to C_Y$$

- **pdf conjunta** $p_{XY}(x,y)$ Generaliza el concepto de pmf conjunta a variables contínuas
- pdf marginales

$$p_X(x) = \int_{C_Y} p_{XY}(x,y) \,\mathrm{d}y, \quad p_Y(y) = \int_{C_X} p_{XY}(x,y) \,\mathrm{d}x$$

Ejemplo: Variable aleatoria normal multivariante (*n*-variante)

$$Y = [Y_1, Y_2, \dots, Y_n]^\top, \quad Y \sim \mathcal{N}(\mu, C),$$

donde

- $\blacksquare \mu = [\mu_1, \mu_2, \dots, \mu_n]^{\top}$ es el vector de medias
- $lue{C}$ es la matrix $n \times n$ de covarianza

En el caso bivariante,

$$C = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2, \end{bmatrix}$$

donde ρ denota la correlación entre Y_1 y Y_2

Ejemplo: Variable aleatoria normal bivariante

Ejemplo: Variable aleatoria normal bivariante con $\rho=0.0$

Ejemplo: Variable aleatoria normal bivariante con $\rho=0.6$

- lacktriangle Se lanza una moneda cargada n (e.g., n=100) veces
- lacktriangle Se observa un número y (e.g., y=43) de caras
- lacktriangle Cuál es la probabilidad heta de obtener cara?

- \blacksquare Se lanza una moneda cargada n (e.g., n=100) veces
- lacktriangle Se observa un número y (e.g., y=43) de caras
- Cuál es la probabilidad θ de obtener cara?

Cómo podemos resolver éste problema?

■ Frecuentista: Estimador de máxima verosimilitud

$$\hat{\theta} = \frac{y}{n} = \frac{43}{100} = 0.43$$

- lacktriangle Se lanza una moneda cargada n (e.g., n=100) veces
- lacktriangle Se observa un número y (e.g., y=43) de caras
- Cuál es la probabilidad θ de obtener cara?

Cómo podemos resolver éste problema?

■ Frecuentista: Estimador de máxima verosimilitud

$$\hat{\theta} = \frac{y}{n} = \frac{43}{100} = 0.43$$

Bayesiano

Análisis Bayesiano

- 1. Tratamos a y y θ como variables aleatorias Y y Θ
- 2. Observamos Yy buscamos calcular la distribución de P condicional a la observación de Y

$$p_{\Theta\mid Y}(\theta\mid y) = \frac{p_{Y\Theta}(y,\theta)}{p_{Y}(y)} = \frac{p_{Y\Theta}(y,\theta)}{\int p_{Y\Theta}(y,\theta)\,\mathrm{d}y}$$

Análisis Bayesiano

- 1. Tratamos a y y θ como variables aleatorias Y y Θ
- 2. Observamos Yy buscamos calcular la distribución de P condicional a la observación de Y

$$p_{\Theta\mid Y}(\theta\mid y) = \frac{p_{Y\Theta}(y,\theta)}{p_{Y}(y)} = \frac{p_{Y\Theta}(y,\theta)}{\int p_{Y\Theta}(y,\theta)\,\mathrm{d}y}$$

Necesitamos especificar la densidad conjunta $p_{Y\Theta}(y,\theta)$

Cómo especificar la densidad conjunta $p_{Y\Theta}(y,\theta)$?

 \blacksquare Si se conoce θ , podemos modelar la densidad de Y

$$p_{Y\mid\Theta}(y\mid\theta) = \mathsf{Binomial}(y\mid\theta)$$

En otras palabras, podemos modelar la densidad condicional $p_{Y\mid\Theta}(y\mid\theta)$

Cómo especificar la densidad conjunta $p_{Y\Theta}(y,\theta)$?

 \blacksquare Si se conoce θ , podemos modelar la densidad de Y

$$p_{Y\mid\Theta}(y\mid\theta) = \mathsf{Binomial}(y\mid\theta)$$

En otras palabras, podemos modelar la densidad condicional $p_{Y\mid\Theta}(y\mid\theta)$

Dada la definición de probabilidad condicional,

$$p_{Y\Theta}(y,\theta) = p_{Y\mid\Theta}(y\mid\theta)p_{\Theta}(\theta)$$

En otras palabras, hace falta especificar $p_{\Theta}(\theta)$

Cómo especificar la densidad conjunta $p_{Y\Theta}(y,\theta)$?

 \blacksquare Si se conoce θ , podemos modelar la densidad de Y

$$p_{Y\mid\Theta}(y\mid\theta) = \mathsf{Binomial}(y\mid\theta)$$

En otras palabras, podemos modelar la densidad condicional $p_{Y\mid\Theta}(y\mid\theta)$

Dada la definición de probabilidad condicional,

$$p_{Y\Theta}(y,\theta) = p_{Y\mid\Theta}(y\mid\theta)p_{\Theta}(\theta)$$

En otras palabras, hace falta especificar $p_{\Theta}(\theta)$

Cómo especificar $p_{\Theta}(\theta)$?

- Antes de observar Y no sabemos mucho de la distribución de los valores de Θ . Es decir, no sabemos qué valores de Θ son más probables que otros...
- lacksquare ...pero sabemos que $\Theta \in [0,1]$

Cómo especificar $p_{\Theta}(\theta)$?

- Antes de observar Y no sabemos mucho de la distribución de los valores de Θ . Es decir, no sabemos qué valores de Θ son más probables que otros...
- lacksquare ...pero sabemos que $\Theta \in [0,1]$
- \blacksquare Entonces podemos asumir que $\Theta \sim U(0,1)$

Cómo especificar $p_{\Theta}(\theta)$?

- Antes de observar Yno sabemos mucho de la distribución de los valores de Θ . Es decir, no sabemos qué valores de Θ son más probables que otros...
- ...pero sabemos que $\Theta \in [0,1]$
- lacksquare Entonces podemos asumir que $\Theta \sim U(0,1)$

Acá utilizamos el concepto de probabilidad como medida de **(in)certidumbre**

 \blacksquare La suposición $\Theta \sim U(0,1)$ codifica nuestro nivel de certidumbre acerca del valor de de Θ

$$p_{\Theta \mid Y}(\theta \mid y) = \frac{P_{Y \mid \Theta}(y \mid \theta) p_{\Theta}(\theta)}{\int p_{Y \mid \Theta}(y \mid \theta) p_{\Theta}(\theta) \, \mathrm{d}\theta}$$

- $\blacksquare \text{ Tenemos } p_{Y \mid \Theta}(y \mid \theta) = \mathsf{Binomial}(y \mid \theta)$
- Tenemos $p_{\Theta}(\theta) = U(\theta \mid 0, 1)$
- Listo! Podemos evaluar la integral del denominador y ya...
- ...pero no vamos a hacer eso

Cálculos Bayesianos

$$p_{\Theta \mid Y}(\theta \mid y) = \frac{P_{Y \mid \Theta}(y \mid \theta) p_{\Theta}(\theta)}{\int p_{Y \mid \Theta}(y \mid \theta) p_{\Theta}(\theta) \, \mathrm{d}\theta}$$

- Calcular la integral en el denominador (función de partición) es sencillo cuando son pocos parámetros pero es muy costoso computacionalmente cuando son muchos parámetros
- Utilizaremos una familia de algoritmos, **Monte Carlo de cadenas de Markov (MCMC)** para generar directamente muestras de la distribución $p_{\Theta|Y}(\theta \mid y)$ sin tener qué calcular la integral

Monte Carlo de cadenas de Markov (MCMC)

- Se generan una o varias "cadenas" de números
- En el límite de convergencia, las cadenas corresponden a conjuntos de muestras de la distribución condicional $p_{\Theta|Y}(\theta \mid y)$
- Es el algoritmo de cálculos Bayesianos más costoso y más general

