Supplementary Tables

Selcen Ari 16 09 2019

Table S1: minsamp sample dataset that includes interaction factors.

competing	miRNA	Competing_expression	$miRNA_expression$	seed_type	region	energy
Gene1	Mir1	10000	1000	0.43	0.30	-20
Gene2	Mir1	10000	1000	0.43	0.01	-15
Gene3	Mir1	5000	1000	0.32	0.40	-14
Gene4	Mir1	10000	1000	0.23	0.50	-10
Gene4	Mir2	10000	2000	0.35	0.90	-12
Gene5	Mir2	5000	2000	0.05	0.40	-11
Gene6	Mir2	10000	2000	0.01	0.80	-25

Note: Energy values in miRNA:target pairs are represented by high-throughput studies (Helwak et al. 2013; Moore et al. 2015) which are utilized in this study. On the other hand, we have specified the other interaction factors, seed type and location of binding region on the target, as numeric values based on the previous studies.(Grimson et al. 2007) have compared the seed types' effect on target repression with few miRNA had canonical seed pairing in their study. Additionally, (Bartel 2009) and (Betel et al. 2010) have studied on functional and non-functional seed interactions. Based on results of these studies we have arranged seed types of miRNA:target interactions as numeric values. We also have redefined location of binding region on the target as numeric values, based on studies of (Hausser et al. 2013) and (Helwak et al. 2013). With this process, we have handled this entegrated dataset in context of competitor behaviours and functionality of interactions.

Table S2: Efficiency factors for seed types.

	seed_type	$seed_{_}$	_type_	effect
1	6-mer_noncanonical			0.05
2	9-mer			0.43
3	6-mer			0.07
4	8-mer			0.43
5	7-mer			0.23
6	none			0.01
7	5-mer_noncanonical			0.04
8	5-mer			0.05
9	6-merA1_noncanonical			0.05
10	7-mer-8m_noncanonical			0.21
11	7-mer- 8 m			0.25
12	8-mer_noncanonical			0.35
13	7-merA1_noncanonical			0.16
14	7-merA1			0.19
15	6-merA1			0.07

Table S3: Efficiency factors for binding regions on targets

	region	region_effect
1	3UTR	0.84
2	CDS	0.42
3	3UTRCDS	0.93
4	5UTR	0.01
5	5UTRCDS	0.42
6		0.01
7	intron	0.01
8	CDS3UTR	0.93
9	CDS5UTR	0.42
10	exon_unclassified	0.20
11	CDS3UTRintron	0.93
12	3UTRintron	0.84
13	CDSintron	0.42
14	5UTRintron	0.01
15	5UTR 3 UTR	0.93
16	CDS5UTR3UTR	0.93

Table S4: Example of E9GE_mirnagenenormal dataset.

Hugo_Symb	oolmiRNA_name	e mirna_RPI	M GE_normal	energy	seed_type	_eff æe gion_effect
ENAH	hsa-let-7a-5p	111204.15	7540	-22.70	0.01	0.00
GALNT2	hsa-let-7a-5p	111204.15	2824	-20.50	0.14	0.00
RLF	hsa-let-7a-5p	111204.15	1144	-18.00	0.03	0.20
MAST2	hsa-let-7a-5p	111204.15	2640	-22.60	0.24	0.00
DOCK1	hsa-let-7a-5p	111204.15	4826	-20.50	0.01	0.00
ZBTB16	hsa-let-7a-5p	111204.15	315	-24.30	0.14	0.00

As a result of simulation a dataset, a graph object is obtained that includes various variables in edge and node data. A graph object includes variables at followings.

Table S5: The context graph object during the process.

Variebles	Structure		Means
Node Variables			
name	character		node name
type	character		Competing or miRNA
node_id	numeric		in on graph object
initial_count	numeric		Initial Expression value of node
count_pre	numeric		Expression value of node at previous regulation
count_current	numeric		Existing expression value of node
changes_variable	character		Regulation of node (Up, down or steady)
Edge Variables			
Competing name	character		name of genes
miRNA name	character		name of miRNAs
Competing expression	numeric		Expression values of competing elements at steady-state
miRNA expression	numeric		Expression values of miRNA
•		2	elements at steady-state
energy	numeric	2	coefficient of miRNA:target interactions (binding affinity)
seed type	numeric		coefficient of miRNA:target interactions (binding affinity)

Variebles	Structure	Means
mirna_count	numeric	pre: miRNA expression at previous iteration;current: miRNA expression at present iteration
effect	numeric	pre: total miRNA reppressive effect on individual target at previous iteration;current: miRNA reppressive effect on
effect_list	list	individual target at present iteration list of miRNA reppressive effect on individual target for each iteration

REFERENCES

Bartel, David P. 2009. "MicroRNAs: Target Recognition and Regulatory Functions." Cell 136 (2): 215–33. https://doi.org/10.1016/j.cell.2009.01.002.

Betel, Doron, Anjali Koppal, Phaedra Agius, Chris Sander, and Christina Leslie. 2010. "Comprehensive Modeling of microRNA Targets Predicts Functional Non-Conserved and Non-Canonical Sites." *Genome Biology* 11 (8): R90.

Grimson, Andrew, Kyle Kai-How Farh, Wendy K. Johnston, Philip Garrett-Engele, Lee P. Lim, and David P. Bartel. 2007. "MicroRNA Targeting Specificity in Mammals: Determinants Beyond Seed Pairing." *Molecular Cell* 27 (1): 91–105. https://doi.org/10.1016/j.molcel.2007.06.017.

Hausser, J., A. P. Syed, B. Bilen, and M. Zavolan. 2013. "Analysis of CDS-Located miRNA Target Sites Suggests That They Can Effectively Inhibit Translation." *Genome Research* 23 (4): 604–15. https://doi.org/10.1101/gr.139758.112.

Helwak, Aleksandra, Grzegorz Kudla, Tatiana Dudnakova, and David Tollervey. 2013. "Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding." *Cell* 153 (3): 654–65. https://doi.org/10.1016/j.cell.2013.03.043.

Moore, Michael J., Troels K. H. Scheel, Joseph M. Luna, Christopher Y. Park, John J. Fak, Eiko Nishiuchi, Charles M. Rice, and Robert B. Darnell. 2015. "miRNA-Target Chimeras Reveal miRNA 3'-End Pairing as a Major Determinant of Argonaute Target Specificity." *Nature Communications* 6 (November): 8864. https://doi.org/10.1038/ncomms9864.