

Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel

Tel. +972-4-6288001 Fax. +972-4-6288277

E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47 CFR part 15 section 15.255, RSS-210 issue 8 Annex 13, RSS-Gen issue 4

FOR:

Siklu Communication Ltd.

Point-to-point wireless Ethernet link operating in 57-64 GHz

Model: EH-600T

FCC ID:2ACYESK-60GTDD-A1

IC:12353A-60GTDDA1

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Report ID: SIKRAD_FCC.27393.docx

Date of Issue: 9-Sep-15

Table of contents

1	Applicant information	3
2	Equipment under test attributes	
3	Manufacturer information	
4	Test details	
5	Tests summary	
6	EUT description	
6.1	General information	5
6.2	Ports and lines	5
6.3	Support and test equipment	5
6.4	Changes made in the EUT	5
6.5	Test configuration	6
6.6	Transmitter characteristics	7
7	Transmitter tests	٤
7.1	Transmitter power test	8
7.2	Occupied bandwidth test	14
7.3	Spurious emissions at RF antenna connector test	19
7.4	Out of band radiated emissions below 40 GHz	
7.5	Frequency stability test	54
8	APPENDIX A Test equipment and ancillaries used for tests	56
9	APPENDIX B Measurement uncertainties	58
10	APPENDIX C Test laboratory description	
11	APPENDIX D Specification references	
12	APPENDIX E Test equipment correction factors	60
13	APPENDIX F Abbreviations and acronyms	69

Applicant information

Client name: Siklu Communication Ltd.

Address: 43 Hasivim street, Petach-Tikva 49517, Israel

Telephone: +972 3921 4015 Fax: +972 3921 4162 E-mail: baruch@siklu.com Contact name: Mr. Baruch Schwarz

2 Equipment under test attributes

Product name: Point-to-point wireless Ethernet link operating at 57-64 GHz

Transceiver Product type: EH-600T Model(s): Serial number: S538000151

Hardware version: C0 Software release: 6.6

Receipt date 8/19/2015

3 Manufacturer information

Siklu Communication Ltd. Manufacturer name:

Address: 43 Hasivim street, Petach-Tikva 49517, Israel

Telephone: +972 3921 4015 Fax: +972 3921 4162 E-Mail: baruch@siklu.com Contact name: Mr. Baruch Schwarz

4 Test details

Project ID: 27393

Location: Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel

Test started: 8/19/2015 Test completed: 8/30/2015

Test specification(s): FCC 47 CFR part 15 section 15.255:2014;

RSS-210 issue 8 Annex 13 section A13.2; RSS-Gen issue 4

5 Tests summary

Test	Status
FCC Section 15.255(b)(ii), RSS-210 section A13.2.2, Transmitter power and power spectral density	Pass
FCC Section 15.215(c), 2.1049, RSS-Gen, Section 6.6, Occupied bandwidth	Pass
FCC Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions	Pass
FCC Section 15.255(c)(2), RSS-210 section A13.2.2, Radiated spurious emissions below 40 GHz	Pass
FCC Section 15. 255(c)(3), RSS-210 section A13.2.2, Radiated emissions outside assigned band and above 40 GHz up to 220 GHz	Pass
FCC Section 15.255(f), RSS-210 section A13.2.5, Frequency tolerance	Tested without limit
FCC Section 15.255(g), RSS-Gen, section 5.5, RF exposure	Pass, exhibit included in Application for certification
RSS-Gen section 7.1, Receiver spurious emission Note: tested during the transmitter radiated spurious emissions below 40 GHz.	Pass*

The product was approved by FCC under FCC ID:2ACYESK-60GTDD-A1 and IC under IC:12353A-60GTDDA1. The relevant tests to support Application for Class II permissive changes certification were done.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mrs. E. Pitt, test engineer	August 30, 2015	BH
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	September 9, 2015	Chu
Approved by:	Mr. M. Nikishin, EMC and Radio group manager	September 24, 2015	ff

6 EUT description

6.1 General information

The EUT is an outdoor unit of point-to-point high BW system, the first TDD member of Siklu's EtherHaul family of wireless products, featuring carrier grade, high capacity Ethernet with flexible support of the 57-64 GHz regulated V-Band. The EUT radio supports up to 1 Gbps.

Siklu's EtherHaul EH-600T Rev C0 wireless backhaul radio link operates in the new V-band spectrum, which has clear technological and economical advantages over the existing lower frequency bands.

The EtherHaul EH-600T Rev C0 system comprises:

- the EtherHaul EH-600T-ODU outdoor unit (radio link unit and antenna);
- the EtherHaul system host software and command line interface for complete and flexible system configuration, administration and management.

During the testing the EUT system was powered by 48 VDC.

6.2 Ports and lines

Port type	Port description	Connected from Connected to		Qty.	Cable type	Cable length, m
Telecom	Ethernet	EUT	EUT (Loop)	2	F.O.	2
Signal	USB	For debugging only	Not connected	1	NA	NA
Power	AC	AC mains	DC power supply	1	Unshielded	10
Power	48 VDCDC	DC power supply	EUT	1	Unshielded	1.5

6.3 Support and test equipment

Description	Manufacturer	Model number	Serial number
Laptop	Lenovo	ThinkPad T61	L3-E0080
AC/DC adapter	PHIHONG	PDA041B-48VB	NA
Power supply	MEAN WELL	MRD- 40-48	RB11015370

6.4 Changes made in the EUT

No changes were performed in the EUT during testing.

6.5 Test configuration

6.5.1 EUT test configuration

6.6 Transmitter characteristics

Type of equipment		*** * **							
V Stand-alone (Equipme						M-!		4)	
Combined equipment						thin another typ	e of equipm	nent)	
	Plug-in card (Equipment intended for a variety of host systems)								
Intended use									
V fixed mobile						I=			
portable									
	iviay opei				than 20 cm to hum	ian body			
Assigned frequency range		57.0 GHz							
Operating frequencies (teste	ed)	57375, 60	375, 63	375	MHz for all BW				
Maximum rated output power	er	At transmi	tter 50 g	ΩRF	output connector			1	I2 dBm
		V No)						
In the management of the contract of the contr					C	ontinuous varia	ble		
Is transmitter output power variable?		Va	_		S	tepped variable	with stepsi	ze	dB
variable:		Ye	S	minimum RF power				dBm	
			1	maxi	mum RF power				
Antenna connection									
		standard connector			Integral			with temporary RF	
unique coupling	V			or				connector without temporary F	
								connector	
Antenna/s technical charact	orietics							COTITICO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				-	Mandalasasahasa			0 - :	
Type Integrated (cassegrain reflector)		nufacturer u Ltd.		Model number VSAN003				Gain 35 dBi	
<u> </u>	,								
Transmitter 99% power bar	ndwidth, M	lHz	Tra	nsm	itter aggregate da	ta rate/s, Mbps			nodulation
250					80				PSK
500			160					PSK	
500					852		-		QAM
500			1		1280			640	QAM
Type of multiplexing			TDD						
Transmitter power source									
	ninal rated		10.11			Battery type			
			48 V	,					
	tage range		42-57	. V		T			
	ninal rated					Frequency			
Common power source for transmitter and receiver V yes no									

Test specification:	Section 15.255(b)(ii), RSS-210 section A13.2.2, Transmitter power and power spectral density					
Test procedure:	47 CFR, Section 2.1046; Section 15.255(b); KDB 200433 D02					
Test mode:	Compliance	Verdict:	PASS			
Date:	8/19/2015	verdict.	FASS			
Temperature: 24.3 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC			
Remarks:						

7 Transmitter tests

7.1 Transmitter power test

7.1.1 General

This test was performed to measure the peak output power at RF antenna connector. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Conducted output power limits

Assigned frequency renge	Maximum output power				
Assigned frequency range, MHz	Peak out	put power	EIRP, dBm*		
IVII IZ	mW	dBm	Peak	Average	
57000 – 64000	500	27.0	53	50	

*EIRP limit was calculated as follows:

Average power: 82 dBm - 2 dB x (51-35) = 50 dBmPeak power: 85 dBm - 2 dB x (51-35) = 53 dBm.

7.1.2 Test procedure

- **7.1.2.1** The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- **7.1.2.2** The EUT was adjusted to produce maximum available for end user RF output power.
- **7.1.2.3** The peak output power was measured with spectrum analyzer as provided in the associated tables and plots.

Figure 7.1.1 Peak output power test setup

Test specification:	Section 15.255(b)(ii), RSS-210 section A13.2.2, Transmitter power and power spectral density					
Test procedure:	47 CFR, Section 2.1046; Section 15.255(b); KDB 200433 D02					
Test mode:	Compliance	Verdict:	PASS			
Date:	8/19/2015	verdict.	PASS			
Temperature: 24.3 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC			
Remarks:						

Table 7.1.2 Peak output power test results

OPERATING FREQUENCY RANGE: 57.0 – 64.0 GHz

DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 8 MHz
VIDEO BANDWIDTH: 50 MHz
TRANSMITTER OUTPUT POWER SETTINGS: Maximum

Frequency, MHz	Modulation	Emission Bandwidth MHz	Duty Cycle, %	Attenuator	Peak output power, dBm	Limit, dBm	Margin, dB*	Verdict
57375			100	included	11.18	27.0	-15.82	Pass
60375	QPSK	250	100	included	10.72	27.0	-16.28	Pass
63625			100	included	9.78	27.0	-17.22	Pass
57375			100	included	12.00	27.0	-15.00	Pass
60375	64 QAM	500	100	included	11.08	27.0	-15.92	Pass
63625			100	included	10.38	27.0	-16.62	Pass

^{*-} Margin = RF power, dBm – Limit, dBm

Report ID: SIKRAD_FCC.27393.docx

Date of Issue: 9-Sep-15

Test specification:	Section 15.255(b)(ii), RSS-210 section A13.2.2, Transmitter power and power spectral density					
Test procedure:	47 CFR, Section 2.1046; Section 15.255(b); KDB 200433 D02					
Test mode:	Compliance	Verdict:	PASS			
Date:	8/19/2015	verdict.	FASS			
Temperature: 24.3 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC			
Remarks:						

Table 7.1.3 Peak EIRP test results

OPERATING FREQUENCY RANGE: 57.0 - 64.0 GHz

DETECTOR USED: PEAK RESOLUTION BANDWIDTH: 8 MHz VIDEO BANDWIDTH: 50 MHz TRANSMITTER OUTPUT POWER SETTINGS: Maximum

Frequency, MHz	Modulation	Emission Bandwidth MHz	Duty Cycle, %	Peak output power dBm	EIRP, dBm*	Limit, dBm	Margin, dB**	Verdict
57375			100	11.18	46.18	53	-6.82	Pass
60375	QPSK	250	100	10.72	45.72	53	-7.28	Pass
63375			100	9.78	44.78	53	-8.22	Pass
57375			100	12.00	47.00	53	-6.00	Pass
60375	64 QAM	64 QAM 500	100	11.08	46.08	53	-6.92	Pass
63375			100	10.38	45.38	53	-7.62	Pass

^{* -} EIRP, dBm = Peak output power, dBm + Antenna Gain(dBi), where Antenna Gain = 35.0 dBi

Table 7.1.4 Average EIRP test results

OPERATING FREQUENCY RANGE: 57.0 - 64.0 GHz

DETECTOR USED: Average RESOLUTION BANDWIDTH: 8 MHz VIDEO BANDWIDTH: 50 MHz TRANSMITTER OUTPUT POWER SETTINGS: Maximum

Frequency, MHz	Modulation	Emission Bandwidth MHz	Duty Cycle, %	Average output power, dBm	EIRP, dBm*	Limit, dBm	Margin, dB**	Verdict
57375			100	6.24	41.24	50	-8.76	Pass
60375	QPSK	250	100	5.80	40.80	50	-9.20	Pass
63375			100	4.82	39.82	50	-10.18	Pass
57375			100	6.46	41.46	50	-8.54	Pass
60375	64 QAM	500	100	5.65	40.65	50	-9.35	Pass
63375			100	5.09	40.09	50	-9.91	Pass

^{* -} EIRP, dBm = Average output power, dBm + Antenna Gain(dBi), where Antenna Gain = 35.0 dBi

Reference numbers of test equipment used

HL 1303 HL 2358 HL 2909 HL 3291	HL 3295 HL 3305	HL 3433 HL 3	434
---------------------------------	-----------------	--------------	-----

Full description is given in Appendix A.

^{** -} Margin, dB = EIRP, dBm - Limit, dBm

^{** -} Margin, dB = EIRP, dBm - Limit, dBm

Test specification:	Section 15.255(b)(ii), RSS-210 section A13.2.2, Transmitter power and power spectral density		
Test procedure:	47 CFR, Section 2.1046; Sectio	ion 15.255(b); KDB 200433 D02	
Test mode:	Compliance	Verdict: PASS	
Date:	8/19/2015	verdict.	FASS
Temperature: 24.3 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC
Remarks:			

Plot 7.1.1 Output power test result at the low frequency

Plot 7.1.2 Output power test result at the mid frequency

Test specification:	Section 15.255(b)(ii), RSS-210 section A13.2.2, Transmitter power and power spectral density		
Test procedure:	47 CFR, Section 2.1046; Sec	tion 15.255(b); KDB 200433 D02	
Test mode:	Compliance	Verdict: PASS	
Date:	8/19/2015		
Temperature: 24.3 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC
Remarks:			

Plot 7.1.3 Output power test result at the high frequency

Plot 7.1.4 Output power test result at the low frequency

Test specification:	Section 15.255(b)(ii), RSS-210 section A13.2.2, Transmitter power and power spectral density		
Test procedure:	47 CFR, Section 2.1046; Sectio	ion 15.255(b); KDB 200433 D02	
Test mode:	Compliance	Verdict: PASS	
Date:	8/19/2015	verdict.	FASS
Temperature: 24.3 °C	Air Pressure: 1007 hPa	Relative Humidity: 42%	Power Supply: 48 VDC
Remarks:			

Plot 7.1.5 Output power test result at the mid frequency

Plot 7.1.6 Output power test result at the high frequency

Test specification:	Section 15.215(c), RSS-Gen section 4.6.1 Occupied bandwidth			
Test procedure:	47 CFR, Section 2.1049			
Test mode:	Compliance	Verdict:	PASS	
Date:	8/19/2015	verdict:	PASS	
Temperature: 23 °C	Air Pressure: 1008 hPa	Relative Humidity: 42%	Power Supply: 48 VDC	
Remarks:				

7.2 Occupied bandwidth test

7.2.1 General

This test was performed to measure transmitter occupied bandwidth. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Occupied bandwidth limits

Assigned frequency range, MHz	Modulation envelope reference points	Max bandwidth, MHz
57000 - 64000	20 dBc	250 / 500
57000 - 64000	99%	250 / 500

NOTE: Modulation envelope reference points provided in terms of attenuation below unmodulated carrier.

7.2.2 Test procedure

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- **7.2.2.2** The EUT was set to transmit modulated carrier as provided in Table 7.2.2.
- **7.2.2.3** The transmitter occupied bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope. The test results are provided in Table 7.2.2 and the associated plots.

Figure 7.2.1 Occupied bandwidth test setup

Test specification:	Section 15.215(c), RSS-Gen section 4.6.1 Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	8/19/2015	verdict:	PASS
Temperature: 23 °C	Air Pressure: 1008 hPa	Relative Humidity: 42%	Power Supply: 48 VDC
Remarks:		-	-

Table 7.2.2 Occupied bandwidth test results

OPERATING FREQUENCY RANGE: 57000 –64000 MHz

DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 1% OBW

REGOLO HON DAND	WID III.	170 ODV		
Frequency, MHz	Modulation	Occupied bandwidth 99%, MHz	Occupied bandwidth 20 dBc MHz	Verdict
		EBW = 250 MHz		
57375		235.73	245.8	Pass
60375	QPSK	234.91	243.2	Pass
63375		235.21	243.5	Pass
		EBW = 500 MHz		
57375		461.60	479.4	Pass
60375	64QAM	458.76	478.2	Pass
63375		460.79	479.7	Pass

Reference numbers of test equipment used

HL 1303	HL 2358	HL 2909	HL 3291	HL 3295	HL 3305	HL 3433	HL 3434

Full description is given in Appendix A.

Test specification:	Section 15.215(c), RSS-Gen section 4.6.1 Occupied bandwidth		
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date:	8/19/2015	verdict:	PASS
Temperature: 23 °C	Air Pressure: 1008 hPa	Relative Humidity: 42%	Power Supply: 48 VDC
Remarks:			

Plot 7.2.1 Occupied bandwidth at low frequency

MODULATION:	QPSK
EMISSION BANDWIDTH:	250 MHz

Plot 7.2.2 Occupied bandwidth at the mid frequency

MODULATION:	QPSK
EMISSION BANDWIDTH:	250 MHz

Test specification:	Section 15.215(c), RSS-Gen section 4.6.1 Occupied bandwidth					
Test procedure:	47 CFR, Section 2.1049	47 CFR, Section 2.1049				
Test mode:	Compliance	Vardiet, DACC				
Date:	8/19/2015	Verdict: PASS				
Temperature: 23 °C	Air Pressure: 1008 hPa	Relative Humidity: 42%	Power Supply: 48 VDC			
Remarks:		-	-			

Plot 7.2.3 Occupied bandwidth at the high frequency

MODULATION:	QPSK
EMISSION BANDWIDTH:	250 MHz

Plot 7.2.4 Occupied bandwidth at the low frequency

MODULATION:	64QAM
EMISSION BANDWIDTH:	500 MHz

Test specification:	Section 15.215(c), RSS-Gen section 4.6.1 Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049				
Test mode:	Compliance	Verdict:	PASS		
Date:	8/19/2015	verdict.	FASS		
Temperature: 23 °C	Air Pressure: 1008 hPa	Relative Humidity: 42%	Power Supply: 48 VDC		
Remarks:					

Plot 7.2.5 Occupied bandwidth at the mid frequency

MODULATION:	64QAM
EMISSION BANDWIDTH:	500 MHz

Plot 7.2.6 Occupied bandwidth at the high frequency

MODULATION:	64QAM
EMISSION BANDWIDTH:	500 MHz

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions					
Test procedure:	47 CFR, Section 2.1051; FCC	47 CFR, Section 2.1051; FCC Millimeter wave test procedures				
Test mode:	Compliance	Verdict: PASS				
Date:	8/19/2015-8/30/2015	verdict:	PASS			
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC			
Remarks:						

7.3 Spurious emissions at RF antenna connector test

7.3.1 General

This test was performed to measure spurious emissions at RF antenna connector. Specification test limits are given in Table 7.3.1.

Table 7.3.1 Spurious emission limits

Fraguency	Spurious emission level				
Frequency	pW/cm ² Power of spurious, dBm				
40 GHz – 200 GHz	90	-9.92			
9 kHz –40 GHz	According to FCC section 15.209/RSS=Gen				

NOTE 1: Spurious emission limits do not apply to in band emission within ± 250 % of the authorized bandwidth from the carrier.

7.3.2 Test procedure

- **7.3.2.1** The EUT was set up as shown in Figure 7.3.1, energized and its proper operation was checked.
- **7.3.2.2** The EUT was adjusted to produce maximum available for end user RF output power.
- **7.3.2.3** The spurious emission was measured with spectrum analyzer as provided in Table 7.3.2 and the associated plots.

Figure 7.3.1 Spurious emission test setup

Test specification:
Test procedure:

47 CFR, Section 2.1051; FCC Millimeter wave test procedures

Test mode:
Compliance
Date:
8/19/2015-8/30/2015
Temperature: 24°C
Remarks:

Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions

47 CFR, Section 2.1051; FCC Millimeter wave test procedures

Verdict:
PASS

Relative Humidity: 46%
Power Supply: 48 VDC

Table 7.3.2 Spurious emission test results

OPERATING FREQUENCY RANGE: 57000 – 64000 MHz INVESTIGATED FREQUENCY RANGE: 30000* - 200000 MHz

DETECTOR USED:
RESOLUTION BANDWIDTH:
VIDEO BANDWIDTH:
MODULATION:
EMISSION BANDWIDTH:
TRANSMITTER OUTPUT POWER SETTINGS:
Peak
1 MHz
2 MHz
2 MHz
MDZ MHZ
MAXIMUM

Carrier frequency, MHz	Spurious frequency, MHz	Spurious emission, dBm	Spurious attenuation, dBc	Spurious emission limit, dBm	Spurious attenuation limit, dBc	Margin, dB	Verdict
Low frequen	Low frequency 57375 MHz						
No emissions were found						Pass	
Mid frequenc	Mid frequency 60375 MHz						
No emissions were found					Pass		
High frequen	High frequency 63375 MHz						
No emissions were found					Pass		

^{* -} The EUT uses a waveguide antenna connector of WR15 type.

Reference numbers of test equipment used

HL 0747	HL 0748	HL 1295	HL 1299	HL 1300	HL 1303	HL 1304
HL 1306	HL 1312	HL 1424	HL 2909	HL 3235	HL 3290	HL 3291
HL 3294	HL 3297	HL 3305	HL 3433	HL 3434	HL 3455	HL 3901
HL 4023						

Full description is given in Appendix A.

Test specification:

Test procedure:

47 CFR, Section 2.1051; FCC Millimeter wave test procedures

Test mode:

Compliance
Date:

8/19/2015-8/30/2015

Temperature: 24°C
Remarks:

Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions

47 CFR, Section 2.1051; FCC Millimeter wave test procedures

Verdict:

PASS

Relative Humidity: 46%
Power Supply: 48 VDC

Plot 7.3.1 Spurious emission test results frequency from 30 to 40 GHz

^{*} Limit calculated as follows: 54 dB μ V/m – 95.2 dB = -41.2 dBm

Test specification: Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions 47 CFR, Section 2.1051; FCC Millimeter wave test procedures Test procedure: Test mode: Compliance **PASS** Verdict: 8/19/2015-8/30/2015 Date: Temperature: 24°C Air Pressure: 1008 hPa **Relative Humidity: 46%** Power Supply: 48 VDC Remarks:

Plot 7.3.2 Spurious emission measurements in 40 - 50 GHz range

DETECTOR:

Log 10 dB/

DI -9.9 dBm

VBW 3 MHz

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions				
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures				
Test mode:	Compliance	Vardiet: DACC			
Date:	8/19/2015-8/30/2015	Verdict: PASS			
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC		
Remarks:					

Plot 7.3.3 Spurious emission measurements in 50 - 57 GHz range

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions			
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures			
Test mode:	Compliance	Vardiet. DACC	PASS	
Date:	8/19/2015-8/30/2015	Verdict: PASS		
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC	
Remarks:		-	-	

Plot 7.3.4 Spurious emission measurements in 64 - 75 GHz range

DETECTOR:

Peak

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions			
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures			
Test mode:	Compliance	Vardiet: DACC	PASS	
Date:	8/19/2015-8/30/2015	Verdict: PASS		
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.5 Spurious emission test results at low carrier frequency from 75 to 83 GHz

DETECTOR:

Peak

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions			
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures			
Test mode:	Compliance	Vardiet: DACC	PASS	
Date:	8/19/2015-8/30/2015	Verdict: PASS		
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.6 Spurious emission test results at low carrier frequency from 83 to 90 GHz

High carrier 63.375 GHz

Test specification:

Test procedure:

47 CFR, Section 2.1051; FCC Millimeter wave test procedures

Test mode:

Compliance
Date:

8/19/2015-8/30/2015

Temperature: 24°C
Remarks:

Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions

47 CFR, Section 2.1051; FCC Millimeter wave test procedures

Verdict:

PASS

Relative Humidity: 46%
Power Supply: 48 VDC

Plot 7.3.7 Spurious emission test results at low carrier frequency from 90 to 100 GHz

DETECTOR:

Low carrier 57.375 GHz

Peak

Mid carrier 60.375 GHz

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions			
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures			
Test mode:	Compliance	Vardiet: DACC	PASS	
Date:	8/19/2015-8/30/2015	Verdict: PASS		
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.8 Spurious emission test results at low carrier frequency from 100 to 110 GHz

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions			
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures			
Test mode:	Compliance	Vardiet: DACC	PASS	
Date:	8/19/2015-8/30/2015	Verdict: PASS		
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.9 Spurious emission test results at low carrier frequency from 110 to 120 GHz

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions			
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures			
Test mode:	Compliance	Verdict: PASS		
Date:	8/19/2015-8/30/2015	verdict:	PASS	
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.10 Spurious emission test results at low carrier frequency from 120 to 130 GHz

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions			
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures			
Test mode:	Compliance	Verdict: PASS		
Date:	8/19/2015-8/30/2015			
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC	
Remarks:		-	-	

Plot 7.3.11 Spurious emission test results at low carrier frequency from 130 to 140 GHz

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions			
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures			
Test mode:	Compliance	Vardiet: DACC	PASS	
Date:	8/19/2015-8/30/2015	Verdict: PASS		
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.12 Spurious emission test results at low carrier frequency from 140 to 150 GHz

DETECTOR:

Peak

> Stop 160 GHz Sweep 81.89 ms (8190 pts)

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions			
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures			
Test mode:	Compliance	Verdict: PASS		
Date:	8/19/2015-8/30/2015			
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC	
Remarks:		-	-	

Plot 7.3.13 Spurious emission test results at low carrier frequency from 150 to 160 GHz

Peak

DETECTOR:

Mid carrier 60.375 GHz

Agilent 10.07.23 Aug 28, 2015 R T

Ref 0 dBm Ext Mix 21.11 dBm

Peak
Log 10 dB/
dB/
W1 52
S3 FC A AAA

#VBW 3 MHz

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions			
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures			
Test mode:	Compliance	Verdict: PASS		
Date:	8/19/2015-8/30/2015	verdict:	PASS	
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.14 Spurious emission test results at low carrier frequency from 160 to 170 GHz

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions			
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures			
Test mode:	Compliance	Verdict: PASS		
Date:	8/19/2015-8/30/2015			
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.15 Spurious emission test results at low carrier frequency from 170 to 180 GHz GHz

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions			
Test procedure:	47 CFR, Section 2.1051; FCC Millimeter wave test procedures			
Test mode:	Compliance	Verdict: PASS		
Date:	8/19/2015-8/30/2015	verdict:	PASS	
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC	
Remarks:				

Plot 7.3.16 Spurious emission test results at low carrier frequency from 180 to 190 GHz GHz

Test specification:	Section 15.255(c), RSS-210 section A13.2.2, Conducted spurious emissions					
Test procedure:	47 CFR, Section 2.1051; FCC	47 CFR, Section 2.1051; FCC Millimeter wave test procedures				
Test mode:	Compliance	Verdict:	PASS			
Date:	8/19/2015-8/30/2015	verdict:	PASS			
Temperature: 24°C	Air Pressure: 1008 hPa	Relative Humidity: 46%	Power Supply: 48 VDC			
Remarks:						

Plot 7.3.17 Spurious emission test results at low carrier frequency from 190 to 200 GHz GHz

Peak

DETECTOR:

Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated Test specification: emissions below 40 GHz Test procedure: 47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4 Test mode: Compliance **PASS** Verdict: 8/19/2015-8/30/2015 Date: Temperature: 24.8°C Air Pressure: 1012 hPa **Relative Humidity: 51%** Power Supply: 48 VDC Remarks:

7.4 Out of band radiated emissions below 40 GHz

7.4.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Radiated emission limits

Fraguency MHz	Field strength at 3 m within restricted bands, dB(μV/m)***					
Frequency, MHz	Peak	Quasi Peak	Average			
0.009 - 0.090	148.5 – 128.5	NA	128.5 – 108.5**			
0.090 - 0.110	NA	108.5 – 106.8**	NA			
0.110 - 0.490	126.8 – 113.8	NA	106.8 – 93.8**			
0.490 - 1.705		73.8 – 63.0**				
1.705 – 30.0*		69.5**				
30 – 88	NA	40.0	NA			
88 – 216		43.5				
216 – 960		46.0				
960 - 40000	74.0	NA	54.0			

^{*-} The above field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

where S_1 and S_2 – standard defined and test distance respectively in meters.

7.4.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.4.2.1 The EUT was set up as shown in Figure 7.4.1, energized and the performance check was conducted.
- **7.4.2.2** The specified frequency range was investigated with loop antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna was rotated around its vertical axis and the measuring antenna polarization was switched from vertical to horizontal.
- **7.4.2.3** The worst test results (the lowest margins) were recorded in Table 7.4.2 and shown in the associated plots.

7.4.3 Test procedure for spurious emission field strength measurements above 30 MHz

- 7.4.3.1 The EUT was set up as shown in Figure 7.5.2, energized and the performance check was conducted.
- **7.4.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- **7.4.3.3** The worst test results (the lowest margins) were recorded in Table 7.4.2, Table 7.4.3 and shown in the associated plots.

^{**-} The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: $\lim_{S_2} = \lim_{S_1} + 40 \log (S_1/S_2)$,

^{***-} The limit decreases linearly with the logarithm of frequency.

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz				
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4			
Test mode:	Compliance	Verdict:	PASS		
Date:	8/19/2015-8/30/2015	verdict:	PASS		
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51%	Power Supply: 48 VDC		
Remarks:					

Figure 7.4.1 Radiated emissions below 30 MHz test set up

Figure 7.4.2 Radiated emissions above 30 MHz test set up

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz				
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4			
Test mode:	Compliance	Verdict:	PASS		
Date:	8/19/2015-8/30/2015	verdict:	PASS		
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51%	Power Supply: 48 VDC		
Remarks:					

Table 7.4.2 Radiated emissions test results below 1000 MHz

TEST SITE: Semi Anechoic Chamber

TEST DISTANCE: 3 m

EUT POSITION: Typical (Vertical)

MODULATION: QPSK
EMISSION BANDWIDTH: 250 MHz
MODULATING SIGNAL: PRBS
TRANSMITTER OUTPUT POWER SETTINGS: Maximum

INVESTIGATED FREQUENCY RANGE: 0.009 – 40000 MHz

RESOLUTION BANDWIDTH: 1.0 kHz (9 kHz – 150 kHz)
9.0 kHz (150 kHz – 30 MHz)
120 kHz (30 MHz – 1000 MHz)

VIDEO BANDWIDTH:≥ Resolution bandwidthTEST ANTENNA TYPE:Active loop (9 kHz - 30 MHz)Biconilog (30 MHz - 1000 MHz)

			Queel neek	Biccimog	(30 MHZ - 1000	IVII 12)				
Frequency, MHz	Peak emission, dB(μV/m)	Measured emission, dB(μV/m)	Quasi-peak Limit, dB(uV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees	Verdict		
Low frequence	Low frequency 53375 MHz									
30.63	40.98	39.70	40.0	-0.30	Vert	1.0	0	Pass		
32.41	40.10	29.47	40.0	-10.53	Vert	1.0	50	Pass		
94.36	39.41	37.90	43.5	-5.60	Vert	1.2	0	Pass		
143.21	33.43	31.36	43.5	-12.14	Vert	1.0	80	Pass		
250.00	44.14	42.64	46.0	-3.36	Vert	1.1	270	Pass		
999.99	47.68	47.31	54.0	-6.69	Vert	1.2	0	Pass		
Mid frequenc	y 60375 MHz									
32.58	31.18	28.11	40.0	-11.89	Vert	1.0	350	Pass		
96.31	37.16	34.39	40.0	-5.61	Vert	1.0	330	Pass		
125.00	29.43	30.41	43.5	-13.09	Vert	1.0	190	Pass		
250.00	41.64	37.58	46.0	-8.42	Vert	1.4	270	Pass		
500.00	42.31	40.00	46.0	-6.00	Horiz	1.0	320	Pass		
625.00	36.22	34.41	46.0	-11.59	Vert	1.0	340	Pass		
999.99	46.79	44.83	54.0	-9.17	Vert	1.0	330	Pass		
High frequen	cy 63375 MHz									
30.61	38.73	37.10	40.0	-2.9	Vert	1.0	0	Pass		
94.35	41.88	39.31	43.5	-4.19	Vert	1.0	120	Pass		
143.28	35.23	34.34	43.5	-9.16	Verti	1.0	0	Pass		
250.00	44.72	42.56	46.0	-3.44	Vert	1.0	0	Pass		
500.00	38.58	37.22	46.0	-8.78	Horiz	1.0	340	Pass		
550.00	39.98	38.84	46.0	-7.16	Horiz	1.0	100	Pass		
999.99	46.71	46.46	54.0	-7.54	Horiz	1.0	300	Pass		

^{*-} Margin = Measured emission - specification limit.

^{**-} EUT front panel refer to 0 degrees position of turntable.

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz				
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4			
Test mode:	Compliance	Verdict:	PASS		
Date:	8/19/2015-8/30/2015	verdict:	PASS		
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51%	Power Supply: 48 VDC		
Remarks:					

Table 7.4.3 Radiated emissions test results in 1000 - 40000 MHz range

TEST SITE: OATS TEST DISTANCE: 3 m

EUT POSITION: Typical (Vertical)

MODULATION: QPSK
EMISSION BANDWIDTH: 125 MHz
MODULATING SIGNAL: PRBS
TRANSMITTER OUTPUT POWER SETTINGS: Maximum

INVESTIGATED FREQUENCY RANGE: 1000 – 40000 MHz

RESOLUTION BANDWIDTH: 1000 kHz

VIDEO BANDWIDTH:≥ Resolution bandwidthTEST ANTENNA TYPE:Double-Ridged Waveguide Horn

120171112		Doable Maged Wavegalde Hell								
Frequency,	equency, Antenna		Azimuth,	Peak field strength h, (VBW=3 MHz)		Average field strength (VBW=30 Hz)			Vordiot	
MHz	Polariz.	Height, m	degrees*	Measured, dB(μV/m)		Margin, dB**	Measured, dB(μV/m)	Limit, dB(μV/m)	Margin, dB***	Verdict
Low frequer	ncy 57375	MHz								
1067.500	Vertical	1.1	330	46.28	74.0	-27.72	45.98	54.0	-8.02	Pass
5000.000	Vertical	1.0	0	49.64	74.0	-24.36	49.02	54.0	-4.98	Pass
Mid frequen	cy 60375	MHz								
1067.500	Vertical	1.1	20	47.44	74.0	-26.56	47.20	54.0	-6.80	Pass
5000.000	Vertical	1.0	350	46.20	74.0	-27.8	45.98	54.0	-8.02	Fa55
High frequency 63375 MHz										
1067.500	Vertical	1.1	340	53.58	74.0	-20.42	53.01	54.0	-0.99	Pass
5000.000	Vertical	1.0	350	48.39	74.0	-25.61	48.04	54.0	-5.96	rass

^{*}EUT front panel refer to 0 degrees position of turntable

Reference numbers of test equipment used

HL 0446	HL 0521	HL 0604	HL 0768	HL 0769	HL 2909	HL 3535	HL 3901
HL 3903	HL 4114	HL 4353	HL 4722	HL 4856	HL 4932		

Full description is given in Appendix A.

^{**-} Margin = Measured emission - specification limit.

^{***-} Margin = Calculated emission - specification limit.

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz				
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4			
Test mode:	Compliance	Verdict:	PASS		
Date:	8/19/2015-8/30/2015	verdict:	PASS		
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51%	Power Supply: 48 VDC		
Remarks:					

Plot 7.4.1 Radiated emission measurements from 9 to 150 kHz

TEST SITE: Anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

High frequency: 63375 MHz Mid frequency: 60375 MHz Low frequency: 57375 MHz

(4)

ACTV DET: PEAK MEAS DET: PEAK OP AVG MKR 10.6 kHz 71.88 dBμV/m

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz				
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4			
Test mode:	Compliance	Verdict:	PASS		
Date:	8/19/2015-8/30/2015	verdict:	PASS		
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51%	Power Supply: 48 VDC		
Remarks:					

Plot 7.4.2 Radiated emission measurements from 0.15 to 30 MHz

TEST SITE: Anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

High frequency: 63375 MHz Mid frequency: 60375 MHz Low frequency: 57375 MHz

(B)

ACTV DET: PEAK MEAS DET: PEAK OP AVG MKR 160 kHz 57.84 dBµV/m

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz				
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4			
Test mode:	Compliance	Verdict:	PASS		
Date:	8/19/2015-8/30/2015	verdict:	PASS		
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51%	Power Supply: 48 VDC		
Remarks:					

Plot 7.4.3 Radiated emission measurements from 30 to 1000 MHz

TEST SITE:

TEST DISTANCE:

ANTENNA POLARIZATION:

Low frequency:

Semi anechoic chamber
3 m

Vertical

57375 MHz

(

Plot 7.4.4 Radiated emission measurements from 30 to 1000 MHz

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Horizontal Low frequency: 57375 MHz

(B)

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz				
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4			
Test mode:	Compliance	Verdict:	PASS		
Date:	8/19/2015-8/30/2015	verdict:	PASS		
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51%	Power Supply: 48 VDC		
Remarks:					

Plot 7.4.5 Radiated emission measurements from 30 to 1000 MHz

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical
Mid frequency: 60375 MHz

(B)

Plot 7.4.6 Radiated emission measurements from 30 to 1000 MHz

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Horizontal Mid frequency: 60375 MHz

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz					
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4				
Test mode:	Compliance	Vandiet DACC				
Date:	8/19/2015-8/30/2015	Verdict: PASS				
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51% Power Supply: 48 VDC				
Remarks:		-	-			

Plot 7.4.7 Radiated emission measurements from 30 to 1000 MHz

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical High frequency: 63375 MHz

(

Plot 7.4.8 Radiated emission measurements from 30 to 1000 MHz

TEST SITE:

TEST DISTANCE:

ANTENNA POLARIZATION:

High frequency:

Semi anechoic chamber
3 m

Horizontal
63375 MHz

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz					
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4				
Test mode:	Compliance	Verdict: PASS				
Date:	8/19/2015-8/30/2015	Verdict: PASS				
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51%	Power Supply: 48 VDC			
Remarks:						

Plot 7.4.9 Radiated emission measurements from 1000 to 6000 MHz

TEST SITE: Anechoic chamber TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal DETECTOR: Peak DETECTOR: Average

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz				
Test procedure:	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4				
Test mode:	Compliance	Verdict:	PASS		
Date:	8/19/2015-8/30/2015	verdict:	PASS		
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51%	Power Supply: 48 VDC		
Remarks:					

Plot 7.4.10 Radiated emission measurements from 1000 to 6000 MHz

TEST SITE: Anechoic chamber TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal DETECTOR: Peak DETECTOR: Average

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz					
Test procedure:	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4					
Test mode:	Compliance	Verdict: PASS				
Date:	8/19/2015-8/30/2015	Verdict: PASS				
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51% Power Supply: 48 VDC				
Remarks:		-	•			

Plot 7.4.11 Radiated emission measurements from 6000 - 18000 MHz

TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION:

DETECTOR:

Anechoic chamber 3 m Vertical and Horizontal Peak

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz					
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4				
Test mode:	Compliance	Verdict: PASS				
Date:	8/19/2015-8/30/2015	Verdict: PASS				
Temperature: 24.8°C	Air Pressure: 1012 hPa Relative Humidity: 51% Power Supply: 48 VDC					
Remarks:		-	-			

Plot 7.4.12 Radiated emission measurements from 6000 – 18000 MHz

TEST SITE:

TEST DISTANCE:

ANTENNA POLARIZATION:

DETECTOR:

Anechoic chamber

3 m

Vertical and Horizontal

Peak

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz						
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4					
Test mode:	Compliance	Verdict: PASS					
Date:	8/19/2015-8/30/2015	Verdict: PASS					
Temperature: 24.8°C	Air Pressure: 1012 hPa	Pressure: 1012 hPa Relative Humidity: 51% Power Supply: 48 VDC					
Remarks:							

Plot 7.4.13 Radiated emission measurements from 18000 to 26500 MHz

TEST SITE: Semi Anechoic Chamber TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal Peak

DETECTOR:

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz					
Test procedure:	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4					
Test mode:	Compliance	Verdict:	PASS			
Date:	8/19/2015-8/30/2015	verdict: PASS				
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51%	Power Supply: 48 VDC			
Remarks:						

Plot 7.4.14 Radiated emission measurements from 18000 to 26500 MHz

TEST SITE: Semi Anechoic Chamber TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

DETECTOR: Peak

Plot 7.4.15 Radiated emission measurements from 26500 to 40000 MHz

TEST SITE: Semi Anechoic Chamber TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical and Horizontal DETECTOR: Peak
LOW FREQUENCY: 57375 MHz

Test specification:	Section 15.255(c)(2), RSS-210 section A13.2.2, Out of band radiated emissions below 40 GHz					
Test procedure:	47 CFR, Section 2.1053; ANS	47 CFR, Section 2.1053; ANSI C63.4, Sections 8.3.2, 13.2, 13.4				
Test mode:	Compliance	Verdict: PASS				
Date:	8/19/2015-8/30/2015	Verdict: PASS				
Temperature: 24.8°C	Air Pressure: 1012 hPa	Relative Humidity: 51%	Power Supply: 48 VDC			
Remarks:						

Plot 7.4.16 Radiated emission measurements from 26500 to 40000 MHz

Plot 7.4.17 Radiated emission measurements from 26500 to 40000 MHz

Test specification:	Section 15.255(f), RSS-210 section A13.2.5, Frequency tolerance					
Test procedure:	47 CFR, Section 2.1055; KDB	47 CFR, Section 2.1055; KDB 200433 D02				
Test mode:	Compliance	Verdict: PASS				
Date:	8/30/2015	Verdict: PASS				
Temperature: 24.3°C	Air Pressure: 1012 hPa	Relative Humidity: 42%	Power Supply: 48 VDC			
Remarks:						

7.5 Frequency stability test

7.5.1 General

This test was performed to measure frequency stability of transmitter RF carrier. Specification test limits are given in Table 7.5.1.

Table 7.5.1 Frequency stability limits

Assigned frequency, MHz	Maximum allowed frequency displacement
57375	
60375	NA
63375	

7.5.2 Test procedure

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- **7.5.2.2** The EUT power was turned off. Temperature within test chamber was set to +30°C and a period of time sufficient to stabilize all of the oscillator circuit components was allowed.
- **7.5.2.3** The EUT was powered on and carrier frequency was measured at start up moment and then every minute until frequency had been stabilized or 10 minutes elapsed whichever reached the last. The EUT was powered off.
- **7.5.2.4** The above procedure was repeated at 0°C and at the lowest test temperature.
- **7.5.2.5** The EUT was powered on and carrier frequency was measured at start up moment and at the end of stabilization period at the rest of test temperatures and voltages. The EUT was powered off.
- 7.5.2.6 Frequency displacement was calculated and compared with the limit as provided in Table 7.5.2.

Figure 7.5.1 Frequency stability test setup

Report ID: SIKRAD_FCC.27393.docx

Date of Issue: 9-Sep-15

Test specification:	Section 15.255(f), RSS-210 section A13.2.5, Frequency tolerance						
Test procedure:	47 CFR, Section 2.1055; KDI	47 CFR, Section 2.1055; KDB 200433 D02					
Test mode:	Compliance	Verdict: PASS					
Date:	8/30/2015	Verdict: PASS					
Temperature: 24.3°C	Air Pressure: 1012 hPa	Relative Humidity: 42%	Power Supply: 48 VDC				
Remarks:			-				

Table 7.5.2 Frequency stability test results

57000 - 64000 MHz **OPERATING FREQUENCY:**

NOMINAL POWER VOLTAGE: 48 V TEMPERATURE STABILIZATION PERIOD: 20 min POWER DURING TEMPERATURE TRANSITION: Off SPECTRUM ANALYZER MODE: Counter RESOLUTION BANDWIDTH: 3 kHz VIDEO BANDWIDTH: 10 kHz Unmodulated MODULATION:

MOD	JLATION:					Unmodula	ated			
T, ºC	Voltage, V	Frequency, MHz						Max frequen	cy drift, kHz	
	V	Start up	1 st min	2 nd min	3 rd min	4 th min	5 th min	10 th min	Positive	Negative
Low f	requency 573	75 MHz								
-20	nominal	57375.5958	57375.5951	57375.5943	57375.5937	57375.5929	57375.5920	57375.5909	741.9	NA
-10	nominal	57375.4887	NA	NA	NA	NA	NA	57375.4887	639.7	NA
0	nominal	57375.3368	57375.3348	57375.3302	57375.3276	57375.3258	57375.3118	57375.3108	461.8	NA
10	nominal	57375.0942	NA	NA	NA	NA	NA	57375.0830	234.0	NA
20	+15%	57374.9085	NA	NA	NA	NA	NA	57374.8550	6.0	NA
20	nominal	57374.9073	NA	NA	NA	NA	NA	57374.8490	0.0	NA
20	-15%	57374.9071	NA	NA	NA	NA	NA	57374.8500	1.0	NA
30	nominal	57374.6038	57374.6024	57374.6004	57374.5967	57374.5913	57374.5894	57374.5866	NA	262.4
40	nominal	57374.4496	NA	NA	NA	NA	NA	57374.4110	NA	438.0
50	nominal	57374.3350	NA	NA	NA	NA	NA	57374.3172	NA	531.8
Mid fr	equency 603	75 MHz								
-20	nominal	60375.6176	60375.6162	60375.6150	60375.6144	60375.6139	60375.6133	60375.6130	801.0	NA
-10	nominal	60375.5310	NA	NA	NA	NA	NA	60375.4820	670.0	NA
0	nominal	60375.3260	60375.3251	60375.3242	60375.3172	60375.3155	60375.3162	60375.3164	504.4	NA
10	nominal	60375.1271	NA	NA	NA	NA	NA	60375.1025	290.5	NA
20	+15%	60374.8410	NA	NA	NA	NA	NA	60374.8135	1.5	NA
20	nominal	60374.8395	NA	NA	NA	NA	NA	60374.8120	0.0	NA
20	-15%	60374.8387	NA	NA	NA	NA	NA	60374.8109	NA	1.1
30	nominal	60374.5614	60374.5620	60374.5598	60374.5587	60374.5576	60374.5576	60374.5581	NA	253.9
40	nominal	60374.3773	NA	NA	NA	NA	NA	60374.3696	NA	442.4
50	nominal	60374.2931	NA	NA	NA	NA	NA	60374.2718	NA	540.2
High f	requency 633	375 MHz								
-20	nominal	63375.6421	63375.6424	63375.6431	63375.6438	63375.6442	63375.6447	63375.6450	848.0	NA
-10	nominal	63375.5874	NA	NA	NA	NA	NA	63375.5616	764.6	NA
0	nominal	63375.3300	63375.3306	63375.3304	63375.3266	63375.3260	63375.3257	63375.3259	528.9	NA
10	nominal	63375.2154	NA	NA	NA	NA	NA	63375.1538	356.8	NA
20	+15%	63374.7985	NA	NA	NA	NA	NA	63374.7990	2.0	NA
20	nominal	63374.7971	NA	NA	NA	NA	NA	63374.7970	0.0	NA
20	-15%)	63374.7963	NA	NA	NA	NA	NA	63374.7951	NA	1.9
30	nominal	63374.5331	63374.5302	63374.5309	63374.5317	63374.5302	63374.5295	63374.5289	NA	268.1
40	nominal	63374.3360	NA	NA	NA	NA	NA	63374.3335	NA	463.5
50	nominal	63374.2360	NA	NA	NA	NA	NA	63374.2350	NA	562.0

^{* -} Reference frequency

Reference numbers of test equipment used

		10.10	_	_	_	_	_	
HL 1303	HL 2358	HL 2909	HL 3291	HL 3295	HL 3305	HL 3433	HL 3434	

Full description is given in Appendix A.

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0446	Antenna, Loop, Active, 10 kHz - 30 MHz	EMCO	6502	2857	13-Jan-15	13-Jan-16
0521	EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz	Hewlett Packard	8546A	3617A 00319, 3448A002 53	22-Oct-14	22-Oct-15
0604	Antenna BiconiLog Log-Periodic/T Bow- TIE, 26 - 2000 MHz	EMCO	3141	9611-1011	15-May-15	15-May-16
0747	Mixer, Millimeter Wave Harmonic 90 - 140 GHZ	Oleson Microwave Labs	M08HW	F80429-1	08-Nov-13	08-Nov-16
0748	Mixer Millimeter Wave Harmonic 60 - 90 GHz	Oleson Microwave Labs	M12 HW	E 804 29-1	08-Nov-13	08-Nov-16
0768	Antenna Standard Gain Horn, 18-26.5 GHz, WR-42, 25 dB gain	Quinstar Technology	QWH- 4200-BA	110	25-Dec-14	25-Dec-15
0769	Antenna Standard Gain Horn, 26.5-40 GHz, WR28, 25 dB gain	Quinstar Technology	QWH- 2800-BA	112	25-Dec-14	25-Dec-15
0770	Antenna Standard Gain Horn, 40-60 GHz WR-19, U-band Gain - 25 dB	Quinstar Technology	QWH- 1900-AA	118	16-Jul-15	16-Jul-16
0771	Antenna Standard Gain Horn, 60-90 GHz, WR-12, Gain - 25 dB	Quinstar Technology	QWH- 1200-AA	111	12-Jul-15	12-Jul-16
0772	Antenna Standard Gain Horn, 75-110 GHz, WR-10, Gain - 25 dB	Quinstar Technology	QWH- 0800-AA	110	12-Jul-15	12-Jul-16
1295	Adapter 35WR28Kf, 26.5-40 GHz	Wiltron	35WR28K F	1295	03-Sep-13	03-Sep-16
1299	Transition waveguide ET28S -19R	Custom Microwave	ET28S - 19R	1299	30-Jul-15	30-Jul-18
1300	Transition waveguide ET28S -19R	Custom Microwave	ET28S - 19R	1300	30-Jul-15	30-Jul-18
1303	Transition waveguide ET28S -12R	Custom Microwave	ET28S - 12R	S0951	30-Jul-15	30-Jul-18
1304	Transition waveguide ET28S - 8R	Custom Microwave	ET28S - 8R	1304	30-Jul-15	30-Jul-18
1306	Transition waveguide ET28S - 5R	Custom Microwave	ET28S - 5R	1306	30-Jul-15	30-Jul-18
1312	Mixer Millimeter Wave Harmonic 140-220 GHz	Oleson Microwave Labs	M05HWD	G91112-1	08-Nov-13	08-Nov-16
1424	Spectrum Analyzer, 30 Hz- 40 GHz	Agilent Technologies	8564EC	3946A002 19	12-Apr-15	12-Apr-16
2358	Power Supply, 2 X 0-36VDC / 5A, 5VDC / 5A	Horizon Electronics	DHR3655 D	767469	02-Jun-15	02-Jun-16
2909	Spectrum analyzer, ESA-E, 100 Hz to 26.5 GHz	Agilent Technologies	E4407B	MY414447 62	22-Feb-15	22-Feb-16
3235	Harmonic mixer 40 to 60 GHz	Agilent Technologies	11970U	MY300301 82	23-Jul-13	23-Jul-16
3290	Attenuator, direct reading, 40 to 60 GHz, 0.4 W	Quinstar Technology	QAD- U00000	10381008	14-May-15	14-May-16
3291	Attenuator, direct reading, 60 to 90 GHz, 0.2 W	Quinstar Technology	QAD- E00000	10381009	14-May-15	14-May-16

HL	Description	Manufacturer	Model	Ser. No.	Last Cal./	Due Cal./
No					Check	Check
3294	Tapered transition, WR-28, UG-599 to WR-15, UG-385 (26.5-40 GHz to 50-75 GHz)	Quinstar Technology	QWP- AV0000	10381004	30-Jul-15	30-Jul-18
3295	Tapered transition, WR-28, UG-599 to WR-15, UG-385 (26.5-40 GHz to 50-75 GHz)	Quinstar Technology	QWP- AV0000	10381005	30-Jul-15	30-Jul-18
3297	Tapered , WR-28, UG-599 to WR-10, UG-387 (26.5-40 GHz to 75-100 GHz)	Quinstar Technology	QWP- AW0000	10381007	30-Jul-15	30-Jul-18
3305	Harmonic mixer 50 to 75 GHz	Agilent Technologies	11970V	MY300301 49	23-Jul-13	23-Jul-16
3329	Antenna Standard Gain Horn, 140-220 GHz, WR-5, Gain - 25 dB	Quinstar Technology	NA	NA	20-Jul-15	20-Jul-16
3433	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25679	11-Mar-15	11-Mar-16
3434	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25683	11-Mar-15	11-Mar-16
3455	Medium Power Fixed Coaxial Attenuator DC to 40 GHz, 20 dB, 5 W	Aeroflex / Weinschel	75A-20-12	1182	11-Mar-15	11-Mar-16
3535	Amplifier, low noise, 18 to 40 GHz	Quinstar Technology	QLJ- 18404537 -J0	111590030 01	01-Jan-15	01-Jan-16
3536	Antenna Standard Gain Horn, 90-140 GHz, WR-8, Midband Gain - 24 dB	Quinstar Technology	QWH- FPRR00	111590040 01	14-Jun-15	14-Jun-16
3901	Microwave Cable Assembly, 40.0 GHz, 3.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1225/2A	10-Feb-15	10-Feb-16
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1226/2A	10-Feb-15	10-Feb-16
4023	Diplexer for use OML mixers with Agilent spectrum analyzer	Oleson Microwave Labs	DPL.26	NA	14-May-15	14-May-16
4114	Antenna, Double-Ridged Waveguide Horn, 1-18 GHz	ETS Lindgren	3117	00123515	19-Dec-14	19-Dec-15
4353	Low Loss Armored Test Cable, DC - 18 GHz, 6.2 m, N type-M/N type-M	MegaPhase	NC29- N1N1-244	12025101 003	15-Mar-15	15-Mar-16
4722	Low Loss Armored Test Cable, DC - 18 GHz, 6.2 m, N type-M/N type-M	MegaPhase	NC29- N1N1-244	51228701 001	31-Aug-15	31-Aug-16
4856	Amplifier, solid state, 18 GHz to 40 GHz, 20 dBm output power	Quinstar Technology	QGW- 18402023 -JO	167790010 01	03-Apr-15	03-Apr-16
4932	Microwave preamplifier, 500 MHz to 18 GHz, 40 dB Gain	Com-Power Corporation	PAM- 118A	551029	18-Nov-14	18-Nov-15

9 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Frequency error	± 0.56 ppm
Carrier power conducted	± 1.7 dB
Spurious emissions conducted at RF antenna	30 MHz to 2.9 GHz: ± 2.6 dB
connector	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 12.75 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
Madical valariantian	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

10 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility.

Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), Registration Numbers 90624 for OATS and 90623 for the anechoic chamber; by Industry Canada for electromagnetic emissions (file numbers IC 2186A-1 for OATS), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, G-27 for full-anechoic chamber for RE measurements above 1 GHz, C-845 for conducted emissions site, T-1606 for conducted emissions at telecommunication ports), has a status of a Telefication - Listed Testing Laboratory, Certificate No. L138/00. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01). The FCC Designation Number is US1003.

Address: P.O. Box 23, Binyamina 30500, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com website: www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

11 APPENDIX D Specification references

47CFR part 15: 2014 Radio Frequency Devices.

FCC 47CFR part 2: 2014 Frequency allocations and radio treaty matters; general rules and regulations

ANSI C63.2: 1996 American National Standard for Instrumentation-Electromagnetic Noise and Field

Strength, 10 kHz to 40 GHz-Specifications.

ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions

from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40

GHz.

KDB200433 D02 RF Detector

Method v01

Guidelines for compliance testing of millimeter wave devices subject to the RF

detector measurement in sections 15.255 and 15.257

RSS-210 Issue 8: 2010 Low Power Licence- Exempt Radiocommunication Devices RSS-Gen Issue 4: 2014 General Requirements for Compliance of Radio Apparatus

12 APPENDIX E Test equipment correction factors

Antenna Factor Active Loop Antenna EMC Test Systems, model 6502, S/N 2857, HL 0446

Frequency, MHz	Magnetic Antenna Factor, dB(S/m)	Electric Antenna Factor, dB(1/m)
0.009	-32.8	18.7
0.010	-33.8	17.7
0.020	-38.3	13.2
0.050	-41.1	10.4
0.075	-41.3	10.2
0.100	-41.6	9.9
0.150	-41.7	9.8
0.250	-41.6	9.9
0.500	-41.8	9.7
0.750	-41.9	9.6
1.000	-41.4	10.1
2.000	-41.5	10.0
3.000	-41.4	10.1
4.000	-41.4	10.1
5.000	-41.5	10.0
10.000	-41.9	9.6
15.000	-41.9	9.6
20.000	-42.2	9.3
25.000	-42.8	8.7
30.000	-44.0	7.5

Antenna factor in dB(S/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ A/m). Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor Standard gain horn antenna Quinstar Technology Model QWH Ser.No.112, HL 0768, 0769, 0770, 0771, 0772

Frequency min, GHz	Frequency max, GHz	Antenna factor, dB(1/m)
18.000	26.500	32.01
26.500	40.000	35.48
40.000	60.000	39.03
60.000	90.000	42.55
90.000	140.000	46.23
140.000	220.000	50.11

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor Biconilog antenna EMCO Model 3141 Ser.No.1011, HL 0604

Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)
26	7.8	580	20.6	1320	27.8
28	7.8	600	21.3	1340	28.3
30	7.8	620	21.5	1360	28.2
40	7.2	640	21.2	1380	27.9
60	7.1	660	21.4	1400	27.9
70	8.5	680	21.9	1420	27.9
80	9.4	700	22.2	1440	27.8
90	9.8	720	22.2	1460	27.8
100	9.7	740	22.1	1480	28.0
110	9.3	760	22.3	1500	28.5
120	8.8	780	22.6	1520	28.9
130	8.7	800	22.7	1540	29.6
140	9.2	820	22.9	1560	29.8
150	9.8	840	23.1	1580	29.6
160	10.2	860	23.4	1600	29.5
170	10.4	880	23.8	1620	29.3
180	10.4	900	24.1	1640	29.2
190	10.3	920	24.1	1660	29.4
200	10.6	940	24.0	1680	29.6
220	11.6	960	24.1	1700	29.8
240	12.4	980	24.5	1720	30.3
260	12.8	1000	24.9	1740	30.8
280	13.7	1020	25.0	1760	31.1
300	14.7	1040	25.2	1780	31.0
320	15.2	1060	25.4	1800	30.9
340	15.4	1080	25.6	1820	30.7
360	16.1	1100	25.7	1840	30.6
380	16.4	1120	26.0	1860	30.6
400	16.6	1140	26.4	1880	30.6
420	16.7	1160	27.0	1900	30.6
440	17.0	1180	27.0	1920	30.7
460	17.7	1200	26.7	1940	30.9
480	18.1	1220	26.5	1960	31.2
500	18.5	1240	26.5	1980	31.6
520	19.1	1260	26.5	2000	32.0
540	19.5	1280	26.6		
560	19.8	1300	27.0		

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor Double-ridged waveguide horn antenna ETS Lindgren, Model 3117, serial number: 00123515, HL 4114

		Antenna factor, dB/m	
Frequency, MHz	Measured	Manufacturer	Deviation
1000	28.0	28.4	-0.4
1500	28.0	27.4	0.6
2000	31.2	30.9	0.3
2500	32.5	33.4	-0.9
3000	32.9	32.6	0.3
3500	32.7	32.8	-0.1
4000	33.1	33.4	-0.3
4500	33.8	33.9	-0.1
5000	33.8	34.1	-0.3
5500	34.4	34.5	-0.1
6000	35.0	35.2	-0.2
6500	35.4	35.5	-0.1
7000	35.7	35.7	0.0
7500	35.9	35.7	0.2
8000	35.8	35.8	0.0
8500	35.9	35.8	0.1
9000	36.3	36.2	0.1
9500	36.6	36.6	0.0
10000	37.1	37.1	0.0
10500	37.6	37.5	0.1
11000	37.9	37.7	0.2
11500	38.5	38.1	0.4
12000	39.2	38.7	0.5
12500	39.0	38.9	0.1
13000	39.1	39.1	0.0
13500	38.9	38.8	0.1
14000	39.0	38.8	0.2
14500	39.6	39.9	-0.3
15000	39.9	39.7	0.2
15500	39.9	40.1	-0.2
16000	40.7	40.8	-0.1
16500	41.3	41.8	-0.5
17000	42.5	42.1	0.4
17500	41.3	41.2	0.1
18000	41.4	40.9	0.5

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field strength in $dB(\mu V)$ meter)

Cable loss Test Cable, Mini-Circuits, CBL-5FT-SMSM+, SMA-SMA, 18 GHz, 1.5 m Mini-Circuits, HL 3433

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10.0	0.06	9000	2.01
100	0.17	9500	2.06
500	0.41	10000	2.05
1000	0.58	10500	2.18
1500	0.72	11000	2.26
2000	0.86	11500	2.28
2500	0.96	12000	2.43
3000	1.04	12500	2.53
3500	1.13	13000	2.52
4000	1.23	13500	2.56
4500	1.31	14000	2.60
5000	1.41	14500	2.59
5500	1.49	15000	2.67
6000	1.55	15500	2.76
6500	1.63	16000	2.86
7000	1.71	16500	2.91
7500	1.78	17000	2.95
8000	1.86	17500	3.02
8500	1.92	18000	3.07

Cable loss Test Cable, Mini-Circuits, CBL-5FT-SMSM+, SMA-SMA, 18 GHz, 1.5 m, S/N 25683 Mini-Circuits, HL 3434

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10.0	0.06	9000	1.96
100	0.16	9500	2.01
500	0.40	10000	2.01
1000	0.57	10500	2.14
1500	0.72	11000	2.21
2000	0.85	11500	2.24
2500	0.95	12000	2.36
3000	1.03	12500	2.47
3500	1.11	13000	2.46
4000	1.21	13500	2.50
4500	1.29	14000	2.53
5000	1.39	14500	2.53
5500	1.46	15000	2.62
6000	1.52	15500	2.70
6500	1.60	16000	2.80
7000	1.68	16500	2.86
7500	1.75	17000	2.88
8000	1.83	17500	2.94
8500	1.88	18000	3.00

Cable loss Microwave Cable Assembly, Huber-Suhner, 40 GHz, 3.5 m, SMA-SMA, S/N 1225/2A HL 3901

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.09	9500	4.29	21000	6.67
100	0.41	10000	4.40	22000	6.92
500	0.93	10500	4.52	23000	7.00
1000	1.33	11000	4.64	24000	7.18
1500	1.63	11500	4.76	25000	7.29
2000	1.90	12000	4.87	26000	7.55
2500	2.12	12500	4.99	27000	7.70
3000	2.33	13000	5.11	28000	7.88
3500	2.50	13500	5.20	29000	8.02
4000	2.67	14000	5.31	30000	8.15
4500	2.82	14500	5.42	31000	8.35
5000	2.99	15000	5.51	32000	8.40
5500	3.16	15500	5.58	33000	8.62
6000	3.32	16000	5.68	34000	8.73
6500	3.51	16500	5.78	35000	8.78
7000	3.65	17000	5.91	36000	8.94
7500	3.79	17500	5.99	37000	9.21
8000	3.92	18000	6.07	38000	9.37
8500	4.04	19000	6.36	39000	9.45
9000	4.18	20000	6.49	40000	9.52

Cable loss Microwave Cable Assembly, Huber-Suhner, 40 GHz, 1.5 m, SMA-SMA, S/N 1226/2A HL 3903

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	-0.02	9500	1.84	21000	2.98
100	0.15	10000	1.86	22000	3.07
500	0.38	10500	1.93	23000	3.13
1000	0.56	11000	1.99	24000	3.21
1500	0.69	11500	2.04	25000	3.26
2000	0.82	12000	2.10	26000	3.48
2500	0.90	12500	2.15	27000	3.44
3000	0.98	13000	2.21	28000	3.53
3500	1.06	13500	2.25	29000	3.59
4000	1.11	14000	2.29	30000	3.66
4500	1.17	14500	2.34	31000	3.70
5000	1.24	15000	2.36	32000	3.79
5500	1.32	15500	2.40	33000	3.88
6000	1.40	16000	2.45	34000	3.94
6500	1.50	16500	2.48	35000	3.91
7000	1.56	17000	2.56	36000	4.05
7500	1.62	17500	2.58	37000	4.22
8000	1.68	18000	2.60	38000	4.25
8500	1.74	19000	2.84	39000	4.27
9000	1.78	20000	2.88	40000	4.33

Cable loss Low Loss Armored Test Cable, MegaPhase, 18 GHz, 6.2 m, N type-M/N type-M, NC29-N1N1-244S/N 12025101 003, HL 4353

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
50	0.20	9000	2.71
100	0.27	9500	2.81
300	0.47	10000	2.90
500	0.61	10500	2.97
1000	0.87	11000	3.06
1500	1.07	11500	3.13
2000	1.24	12000	3.20
2500	1.39	12500	3.26
3000	1.53	13000	3.34
3500	1.65	13500	3.39
4000	1.77	14000	3.47
4500	1.89	14500	3.54
5000	1.99	15000	3.62
5500	2.07	15500	3.69
6000	2.20	16000	3.76
6500	2.30	16500	3.83
7000	2.39	17000	3.86
7500	2.51	17500	3.94
8000	2.58	18000	4.02
8500	2.65		

Cable loss Low Loss Armored Test Cable, MegaPhase, 18 GHz, 6.2 m, N type-M/N type-M, NC29-N1N1-244, S/N 51228701001 HL 4722

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
50	0.22	9000	2.93
100	0.30	9500	3.06
300	0.52	10000	3.16
500	0.66	10500	3.20
1000	0.93	11000	3.34
1500	1.15	11500	3.39
2000	1.33	12000	3.48
2500	1.49	12500	3.55
3000	1.64	13000	3.66
3500	1.77	13500	3.75
4000	1.90	14000	3.76
4500	2.03	14500	3.87
5000	2.17	15000	3.98
5500	2.30	15500	4.01
6000	2.39	16000	4.14
6500	2.51	16500	4.15
7000	2.59	17000	4.32
7500	2.67	17500	4.36
8000	2.76	18000	4.38
8500	2.84		

13 APPENDIX F Abbreviations and acronyms

A ampere

AC alternating current
A/m ampere per meter
AM amplitude modulation
AVRG average (detector)
CBW channel bandwidth

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu V) & \text{decibel referred to one microvolt} \end{array}$

 $\begin{array}{ll} dB(\mu V/m) & \text{decibel referred to one microvolt per meter} \\ dB(\mu A) & \text{decibel referred to one microampere} \end{array}$

DC direct current
EBW emission bandwidth

EIRP equivalent isotropically radiated power

ERP effective radiated power EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories
Hz hertz

k kilo kHz kilohertz local oscillator LO meter m megahertz MHz minute min mm millimeter millisecond ms microsecond

μs microsecond
NA not applicable
NB narrow band
OATS open area test site

 $\begin{array}{lll} \Omega & \text{Ohm} \\ \text{QP} & \text{quasi-peak} \\ \text{PM} & \text{pulse modulation} \\ \text{PS} & \text{power supply} \\ \text{RE} & \text{radiated emission} \\ \text{RF} & \text{radio frequency} \\ \text{rms} & \text{root mean square} \end{array}$

Rx receive s second T temperature Tx transmit V volt VA volt-ampere

END OF DOCUMENT

Page 69 of 69