行列 F のエルミート共役(または共役転置) F^{\dagger} の主な性質を以下に示します。

エルミート共役の基本的な性質

以下の性質は、複素数 c (スカラー)、および適切なサイズの行列 A と B に対して成り立ちます。

1. 二重共役

エルミート共役を2回繰り返すと、元の行列に戻ります。

$$(F^{\dagger})^{\dagger} = F$$

2. スカラー倍

スカラー倍された行列のエルミート共役は、スカラーの複素共役と、元の行列のエルミート共役の積になります。

$$(cF)^{\dagger} = c^* F^{\dagger}$$

ここで c^* はスカラー c の複素共役です。

3. 和

行列の和のエルミート共役は、それぞれのエルミート共役の和になります。

$$(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$$

4. 積

行列の積のエルミート共役は、順序を逆にしたそれぞれのエルミート共役の積になります。

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

5. 逆行列 (可逆な場合)

可逆な行列 F の場合、逆行列のエルミート共役は、エルミート共役の逆行列に等しくなります。

$$(F^{-1})^{\dagger} = (F^{\dagger})^{-1}$$

特殊な行列との関連

エルミート行列 (Hermitian Matrix)

F が自身のエルミート共役に等しい場合。

$$F^{\dagger} = F$$

ユニタリ行列 (Unitary Matrix)

F のエルミート共役が F の逆行列に等しい場合。

$$F^{\dagger}=F^{-1}$$
 または $F^{\dagger}F=FF^{\dagger}=I$

(I は単位行列です。)

エルミート共役と複素共役の関係

エルミート共役 \mathbf{A}^{\dagger} は、複素共役 \mathbf{A}^{*} と転置 \mathbf{A}^{T} を組み合わせた操作です。

$$\mathbf{A}^{\dagger} = (\mathbf{A}^*)^T = (\mathbf{A}^T)^* \tag{1}$$

ここで、

- \mathbf{A}^{\dagger} : エルミート共役 (Hermitian Conjugate または Adjoint)
- A*: 複素共役 (Complex Conjugate)
- $(\cdots)^T$: 転置 (Transpose)

【スカラー(数)の場合】

行列 ${f A}$ が複素数 z の場合、転置の操作がないため、エルミート共役と複素共役は等しくなります。

$$\mathbf{z}^{\dagger} = \mathbf{z}^* \tag{2}$$