ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СПбГУТ)

Кафедра экологической безопасности телекоммуникаций

Лабораторная работа 5 ОЦЕНКА ПОЖАРНОЙ ОПАСНОСТИ ПРЕДПРИЯТИЙ, ВЫБОР СРЕДСТВ ПОЖАРОТУШЕНИЯ

Преподаватель: Васильев В.В.

Студент: Громов А.А. Группа: ИКТЗ-83

Номер по списку 4 Вариант 4

Лабораторная работа 5

ОЦЕНКА ПОЖАРНОЙ ОПАСНОСТИ ПРЕДПРИЯТИЙ, ВЫБОР СРЕДСТВ ПОЖАРОТУШЕНИЯ

Цель работы: Приобретение навыков оценки степени взрывной пожарной опасности предприятий и принятии профилактических мер.

Теория

Использование в производственной деятельности горючих и взрывчатых жидкостей вызывает необходимость оценивать степень взрывной пожарной опасности предприятий и принимать профилактические меры.

Горением называется физико-химический процесс взаимодействия горючего вещества и окислителя, сопровождающегося выделением тепла и излучением света.

Для возникновения горения кроме горючей системы в большинстве случаев необходим источник высокой температуры (импульс).

В зависимости от свойств горючей смеси горение бывает гомогенным и гетерогенным. В первом случае горючее вещество и окислитель имеют одинаковое агрегатное состояние (например, горение газов), во втором — различное (горение твердых и жидких веществ). Но и при гетерогенной системе горение идет в газообразной форме, так как горючая жидкость испаряется и смешивается с воздухом, а при нагревании твердого горючего вещества происходит его разложение и выделяются газы и пары.

По скорости распространения пламени горение подразделяется на дефлаграционное (скорость измеряется несколькими м/с), взрывное (порядка десятка м/с) и детонационное (тысячи м/с).

Все горючие жидкости разделяются на два класса: легковоспламеняющиеся (ЛВЖ) с температурой вспышки до 61 °C и горючие (ГЖ) – с температурой вспышки выше 61 °C.

Температура вспышки по эмпирической зависимости:

 $T_{\text{\tiny B}}=0.736T_{\text{\tiny K}},\,^{\circ}\text{K}$, где $T_{\text{\tiny K}}-$ температура кипения, $^{\circ}\text{K}.$ $T_{\text{\tiny B}}=0.736*523=384.9~^{\circ}\text{K}$

Истинная температура в градусах Цельсия с учетом атмосферного давления:

 $t_{\rm B} = t + \Delta t$, где t – (средняя) температура вспышки, °C;

 $\Delta t = O,345(P - 760)$ — поправка на атмосферное давление

Р – барометрическое давление при испытании, мм рт. ст.

P = 766,6 MM pt. ct.

$$\Delta t = 0.345 * (766.6 - 760) = 2.3 = 2 °C$$

$$t_{\rm B} = 294.4 + 2 = 296.4 \, {\rm ^{\circ}C}$$

Результаты работы

Таблица 6.5

№ пом еще ния	Расчетная $t_{\rm B}$	ЖВП или ГЖ	Категория производст ва	Класс пожара	Вещества, используемые для тушения пожара	Тип огнетушителя
1	296,4 °C	ГЖ	В	В	Пена,	Порошковые
			(пожароопа		тонкораспыленная	
			сность)		вода, вода с	
					добавкой	
					фторированного	
					ПАВ, хладоны, CO_2 ,	
					порошки	

Эскиз огнетушителя с указанием основных частей:

Внешний вид порошковых огнетушителей со встроенными газовыми источниками давления (а) и закачных (б)

a) 6)

Для приведения порошкового огнетушителя в действие необходимо выдернуть чеку или фиксатор, направить огнетушитель или ствол огнетушителя на очаг пожара, поднять рычаг вверх (или нажать на кнопку для прокола газового баллона), через 5 секунд приступить к тушению пожара.

Для огнетушителя с газовым источником давления:

Для закачного огнетушителя:

Перед тушением надо убедиться в отсутствии скруток и перегибов на шланге огнетушителя. После тушения надо убедиться, что очаг горения ликвидирован и пожар не возобновился. При тушении пожара порошковыми огнетушителями необходимо применять дополнительные меры по охлаждению нагретых элементов оборудования или строительных конструкций.

Вывод: Была оценена пожарная опасность данного предприятия. Предприятие — это склад хранения дизельного топлива. Была рассчитана истинная температура вспышки, равная 296,4 °C. На предприятии хранится горючая жидкость - дизельное топливо (температура вспышки — более 61 °C), были определены категория производства В (пожароопасное производство), класс возможного пожара В.

Причинами пожара на складе могут стать:

- человеческий фактор (игнорирование основных правил пожарной безопасности, неосторожное обращение с топливом и приборами)
- неисправность электрической проводки
- возгорание электроприборов

При пожаре необходимо применить специальные вещества, такие как порошки, вода с добавкой фторированного ПАВ, хладоны и пр. и порошковые огнетушители. Рекомендую снабдить склад охранно-пожарной сигнализацией

с датчиками дыма, огнетушителями, установками тушения пожаров и скрыть электропроводку с выносом общей отключающей аппаратуры наружу.

Контрольные вопросы

1. Что такое горение, каковы условия его возникновения?

Горение — это физико-химический процесс взаимодействия горючего вещества и окислителя, сопровождающегося выделением тепла и излучением света. Для возникновения горения кроме горючей системы в большинстве случаев необходим источник высокой температуры (импульс). В ряде случаев возможно возникновение горения без внешнего импульса, т. е. самовозгорание.

2. Что такое область воспламенения и взрыва, нижний и верхний концентрационные пределы воспламенения и взрыва?

Область воспламенения — область концентраций паров и газов горючих веществ, лежащая между верхним и нижним концентрационными пределами.

Нижний концентрационный предел воспламенения (НКПВ) — минимальная концентрация газов и паров горючих веществ в воздухе, при которой они способны загораться и распространять пламя.

Верхний концентрационный предел воспламенения (ВКПВ) – максимальная концентрация горючих веществ в воздухе, при которой еще возможно распространение пламени.

3. Как подразделяется горение по скорости распространения пламени?

По скорости распространения пламени горение подразделяется на дефлаграционное (скорость измеряется несколькими м/с), взрывное (порядка десятка м/с) и детонационное (тысячи м/с).

<u>4. Что такое температура вспышки, воспламенения и самовоспламенения?</u>

Температура вспышки — самая низкая температура горючего вещества, при которой над поверхностью образуются пары и газы, способные вспыхивать в воздухе от источника зажигания, но скорость образования паров еще не достаточна для постоянного горения.

Температура воспламенения – температура горючего вещества, при которой оно выделяет горючие пары и газы с достаточной для устойчивого горения скоростью.

Температура самовоспламенения – минимальная температура вещества при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.

5. На какие категории делятся производства по взрывопожарности?

Согласно СП 12.13130.2009, производственные объекты в соответствии с характером технологического процесса делятся на пять категорий по взрывопожарной и пожарной опасности:

- А повышенная взрывопожароопасность;
- Б взрывопожароопасные;
- В пожароопасные;
- Γ умеренно пожароопасные;
- Д пониженная пожароопасность.

6. Как подразделяются жидкие горючие вещества?

Все горючие жидкости разделяются на два класса: легковоспламеняющиеся (ЛВЖ) с температурой вспышки до 61 °C и горючие (ГЖ) – с температурой вспышки выше 61 °C.

7. Как рассчитать температуру вспышки горючей жидкости в лабораторной работе?

По эмпирической формуле:

 $T_B = 0.736 T_K$, °К, где $T_K -$ температура кипения, °К.

8. Как определить истинную температуру вспышки?

Истинная температура в градусах Цельсия с учетом атмосферного давления определяется по формуле:

$$t_{\rm\scriptscriptstyle B} = t + \Delta t$$
,

где t – (средняя) температура вспышки, °С;

 $\Delta t = \text{O},345(P-760)$ — поправка на атмосферное давление (вычисляется с точностью до 1°C);

P – барометрическое давление при испытании, мм рт. ст.

9. Какие существуют классы пожаров в зависимости от горящих веществ?

Класс А – Горение твердых веществ

Класс В – Горение жидких веществ

Класс С – Горение газообразных веществ

Класс D – Горение металлов и металлосодержащих веществ

Класс Е – горение электроустановок

10. Какие вещества используют для тушения пожаров разных классов?

Вода является наиболее широко применяемым средством тушения. Попадая в зону горения, вода нагревается и испаряется, отнимая большое количество теплоты от горящих веществ. Водяной пар является инертным разбавителем, затрудняя доступ воздуха к очагу горения. Сильная струя воды сбивает пламя. Однако воду нельзя применять для тушения некоторых металлов, нефтепродуктов, электроустановок под напряжением и др.

Класс пожара	Подкласс пожара	Характеристика подкласса	Рекомендуемые средства пожаротушения		
	A1	Горение твердых веществ,	Вода со		
A		сопровождаемое тлением	смачивателями,		
		(например, древесина, бумага,	пена, хладоны,		
		уголь, текстиль)	порошки		
	A2	Горение твердых веществ, не	Все виды		
		сопровождаемое тлением	огнетушащих		
		(каучук, пластмассы)	средств		
			Пена,		
		Горение жидких веществ,	тонкораспыленная		
		нерастворимых в воде (бензин,	вода, вода с		
	B1	нефтепродукты), а также	добавкой		
		сжижаемых твердых веществ	фторированного		
		(парафин)	ПАВ, хладоны,		
В			СО2, порошки		
D			Пена на основе		
			специальных		
		Горение полярных жидких	пенообразователей		
		веществ, растворимых в воде	,		
		(спирты, ацетон, глицерин и др.)	тонкораспыленная		
			вода, хладоны,		
			порошки		

С	_	Бытовой газ, пропан, водород, аммиак и др.	Объемное тушение и флегматизация газовыми составами, порошки, вода для охлаждения оборудования	
	D1	Горение легких металлов и их сплавов (алюминий, магний и др.), кроме щелочных	Специальные порошки	
D	D2	Горение щелочных металлов (натрий, калий и др.)	Специальные порошки	
	D3	Горение металлосодержащих соединений (металлоорганические соединения, гидриды металлов)	Специальные порошки	
Е	_	_	_	

Основным огнегасительным свойством пены является изоляция зоны путем образования поверхности горения на горящей жидкости паронепроницаемого определенной слоя структуры стойкости. Характеристиками пены, определяющими ее огнегасящие свойства, являются стойкость и кратность. Стойкость – это способность пены сохраняться при высокой температуре во времени, кратность – отношение объема пены к объему жидкости, из которой она получена.

Инертные газы (углекислый, азот, аргон, фреоны и др.) понижают концентрацию кислорода в очаге горения и отбирают значительное количество теплоты. Применяют их в случаях, когда применение других веществ недопустимо.

Огнетушащие порошки являются универсальным средством для тушения пожаров. Они применяются при ликвидации небольших загораний, не поддающихся тушению другими средствами, в том числе при загорании щелочных металлов, металлоорганических соединений и других веществ.

11. Какие существуют типы огнетушителей? Как выбирают огнетушители?

Количество, тип огнетушителей, необходимых для защиты конкретного объекта, устанавливают, исходя из категории защищаемого помещения, величины пожарной нагрузки, физико-химических и пожароопасных свойств обращающихся горючих материалов и т. д.

Эффективность применения огнетушителей для тушения пожаров разных классов:

	Огнетушители									
Класс пожара	Водные		Воздушно- эмульсионные		Воздушно- пенные					
	с распыленной струей	с тонкораспыленн ой струей	с распыленной струей	с тонкораспыленн ой струей	пена низкой кратности	пена средней кратности	Воздушно-пенные с фторсодержащим зарядом	Порошковые	Углекислотные	Хладоновые
A	++	++	+++	+++	++	+	++	++	+	+
В	_	+	+++	+++	++	++	+++	+++	+	++
С	_	_					_	+++	+	+
D	_	_	_	_	1		_	+++	_	_
Е	_	+	_	++	_		_	++	+++	++

- +++ огнетушители, наиболее эффективные при тушении пожара данного класса;
- ++ огнетушители, пригодные для тушения пожара данного класса;
- + огнетушители, недостаточно эффективные при тушении пожара данного класса;
- огнетушители, непригодные для тушения пожара данного класса.

Водные, воздушно-пенные, воздушно-эмульсионные огнетушители не должны применяться для тушения пожаров оборудования, находящегося под электрическим напряжением, для тушения сильно нагретых или расплавленных веществ, а также веществ, вступающих с водой в химическую реакцию, которая сопровождается интенсивным выделением тепла и разбрызгиванием горючего.

Дата и подпись

30.11.2021

Громов А.А.

дата

подпись студента