8.3.19

Corrigé de la Série 12

1. (a) • Condition d'existence : $x \leq 6$

$$e^9 \cdot e^x > \left(e^{\sqrt{6-x}}\right)^2 \quad \Leftrightarrow \quad e^{9+x} > e^{2\sqrt{6-x}}$$

La fonction exponentielle étant strictement croissante :

$$\Rightarrow$$
 9+x > $2\sqrt{6-x}$

Condition de positivité : $9 + x > 0 \Leftrightarrow x > -9$

Après élévation au carré, nous avons : $x^2 + 18x + 81 > 4(6-x)$ \Leftrightarrow

$$(x+3)(x+19) > 0 \Leftrightarrow x \in]-\infty; -19[\cup]-3; +\infty[$$

Et avec les conditions d'existence et de positivité, nous avons : S =]-3; 6]

(b) Conditions d'existence: $x^2\sqrt{e^{2x}} > 0 \implies x > 0$ et $16x - 48 > 0 \implies x > 3$

En utilisant les propriétés du logarithme :

$$\ln(x^2\sqrt{e^{2x}}) > x + \ln(16x - 48) \quad \Leftrightarrow \quad \ln(x^2) + \ln(\sqrt{e^{2x}}) > x + \ln(16x - 48)$$

$$\Leftrightarrow 2 \ln x + x > x + \ln(16x - 48) \quad \Leftrightarrow \quad \ln(x^2) - \ln(16x - 48) > 0 \quad \Leftrightarrow \\ \ln(\frac{x^2}{16x - 48}) > \ln(1)$$

Comme le logarithme naturel est une fonction monotone croissante, on a :

$$\frac{x^2}{16x - 48} > 1$$
; comme $x > 3$ on peut écrire sous cette condition : $x^2 - 16x + 48 > 0 \Leftrightarrow (x - 4)(x - 12) > 0 \Leftrightarrow x \in]\leftarrow$; $4 [\cup]12 : \rightarrow [$;

On obtient ainsi avec les conditions d'existence : $S = [3; 4[\cup]12; \rightarrow[$.

(c) Ensemble de définition: les arguments du log doivent être positifs: $D_f =]-2$; 4

$$\log_a(4-x) + a \le a \cdot \log_a(x+2) - 1 \quad \Leftrightarrow \quad \log_a \frac{(4-x)}{(x+2)^a} \le -a - 1$$

(i)
$$\log_2 \frac{(4-x)}{(x+2)^2} \le -3$$

Le logarithme et la fonction puissance sont strictement monotones croissantes pour a=2; on peut prendre l'exponentielle de base 2 de chaque mombre:

$$\frac{(4-x)}{(x+2)^2} \le 2^{-3} \quad \Leftrightarrow \quad 4-x \le \frac{1}{8}(x+2)^2 \quad \Leftrightarrow \quad x^2 + 12x - 28 \ge 0$$

$$x \in]-\infty; -14[\cup [2; +\infty[=I_1; S=I_1 \cap D_f=[2; 4[.$$

(ii) Le logarithme et la fonction puis sance sont strictement monotones décroissantes pour a =1/2 ; on peut prendre l'exponentielle de base 1/2 de chaque membre:

$$\frac{(4-x)}{(x+2)^{\frac{1}{2}}} \ge \frac{1}{2}^{\frac{-3}{2}} \quad \Leftrightarrow \quad 4-x \ge \sqrt{8(x+2)} \quad \Leftrightarrow \quad x^2 - 16x \ge 0$$

car x < 4, donc on a pu élever l'inégalité au carré puisque tous les facteurs sont positifs.

$$x \in]-\infty$$
; $0[\cup]16$; $+\infty[=I_2; S=I_2 \cap D_f=]-2$; $0]$.

2. (a) Ensemble de définition : $D_f = \mathbb{R}_+^*$

On prend le logarithme:

$$x \ln \sqrt{x} = \sqrt{x} \ln x \quad \Leftrightarrow \quad \frac{1}{2} x \ln x = \sqrt{x} \ln x \quad \Leftrightarrow \quad \left(\frac{1}{2} x - \sqrt{x}\right) \ln x = 0$$

- Première solution : $\ln x = 0 \implies x = 1$
- Deuxième solution : $\sqrt{x} = \frac{1}{2}x \implies x = 4$

Ce sont les deux solutions $S = \{1; 4\} \in D_f$ car 0 n'appartient pas à D_f

(b) Ensemble de définition : $D_f = \mathbb{R}_+^*$ car : $[u(x)]^{v(x)} = e^{v(x) \ln u(x)}$

$$x(x^x) = x^{6/x} \Leftrightarrow x^{x+1} = x^{6/x} \Leftrightarrow e^{(x+1)\ln(x)} = e^{\frac{6}{x}\ln(x)} \Leftrightarrow (x+1)$$

1)
$$\ln(x) = \frac{6}{x} \ln(x)$$
 \Leftrightarrow $x + 1 = \frac{6}{x}$ ou $x = 1$ $x \in D_f$

 \Rightarrow $x^2 + x - 6 = 0$ et x = 1 ainsi x = 1, 2 sont les seules solutions acceptables.

3.

(a)
$$a(x) = \tan(a^x) = \tan(e^{x \ln a}) \implies a'(x) = \ln a e^{x \ln a} \left[1 + \tan^2(e^{x \ln a}) \right]$$

= $a^x \ln a \left[1 + \tan^2(a^x) \right]$,

(b)
$$b(x) = e^{1/\ln x} \implies b'(x) = (1/\ln x)' e^{1/\ln x} = -\frac{e^{1/\ln x}}{x \ln^2 x}$$

(c)
$$c(x) = \ln(\ln x) \implies c'(x) = (\ln x)' \frac{1}{\ln x} = \frac{1}{x \ln x}$$

(d)
$$d(x) = \arcsin(e^x)$$
 \Rightarrow $d'(x) = (e^x)' \frac{1}{\sqrt{1 - (e^x)^2}} = \frac{e^x}{\sqrt{1 - e^{2x}}}$,

$$\begin{array}{lll} (\mathrm{e}) & e(x) = x \cdot \sin(\ln x - \frac{\pi}{4}) & \Rightarrow & e'(x) = \sin(\ln x - \frac{\pi}{4}) + x(\frac{1}{x})\cos(\ln x - \frac{\pi}{4}) \\ & = \sin(\ln x - \frac{\pi}{4}) + \sin(\frac{\pi}{4} - \ln x) = \sqrt{2} \, \sin(\ln x) \,, \\ (\mathrm{f}) & f(x) = x^{\sin x} = e^{(\sin x) \ln x} & \Rightarrow & f'(x) = \left[\cos x \cdot \ln x + \frac{\sin x}{x}\right] e^{(\sin x) \ln x} \\ & = \left[\cos x \cdot \ln x + \frac{\sin x}{x}\right] x^{\sin x} \,, \\ (\mathrm{g}) & g(x) = (\sin x)^x = e^{x \ln \sin x} & \Rightarrow & g'(x) = (x \ln \sin x)' \cdot e^{x \ln \sin x} \\ & = \left[x \cot x + \ln(\sin x)\right] e^{x \ln \sin x} = \left[x \cot x + \ln(\sin x)\right] (\sin x)^x \,, \\ (\mathrm{h}) & h(x) = x^{1/x} = e^{\left(\frac{\ln x}{x}\right)} & \Rightarrow & h'(x) = \left[\frac{-1}{x^2} \ln x + \frac{1}{x^2}\right] e^{\left(\frac{\ln x}{x}\right)} = \frac{1 - \ln x}{x^2} \, x^{1/x} \,, \end{array}$$

$$h(x) = x^{1/x} = e^{(-x/x)} \implies h'(x) = \left\lfloor \frac{1}{x^2} \ln x + \frac{1}{x^2} \right\rfloor e^{(-x/x)} = \frac{1}{x^2} x^{1/x}$$

(i)
$$i(x) = x^{1/\ln(x^2)} = e^{\left(\frac{\ln x}{\ln(x^2)}\right)} \implies i'(x) = \left(\frac{\ln x}{\ln(x^2)}\right)' \cdot e^{\left(\frac{\ln x}{\ln(x^2)}\right)}$$

$$= \left[\frac{-2x}{x^2} \frac{1}{(\ln x^2)^2} \ln x + \frac{1}{x} \frac{1}{\ln x^2} \right] e^{\left(\frac{\ln x}{\ln(x^2)}\right)} = \left[\frac{-1}{x} \frac{1}{\ln x^2} + \frac{1}{x} \frac{1}{\ln x^2} \right] x^{1/\ln(x^2)} = 0.$$

$$\operatorname{car} (\ln x^2)^2 = (2 \ln x)^2 = (2 \ln x)(2 \ln x) = (2 \ln x)(\ln x^2).$$

On peut transformer facilement la fonction $i(x) = x^{1/\ln(x^2)} = e^{\left(\frac{\ln x}{\ln(x^2)}\right)} = e^{\left(\frac{\frac{\ln x}{2\ln(x)}\right)} = e^{\left(\frac{1}{2}\right)} = \sqrt{e}$:

la fonction est une constante, donc la dérivée est nulle!

4. (a) Ensemble de définition : $D_f = \mathbb{R}_+^*$;

$$y' = \frac{a}{(a-1)} \frac{(\ln x)^{a-1}}{x}; \quad y'' = \frac{a}{a-1} \frac{(\ln x)^{a-2}}{x^2} (-\ln x + a - 1)$$

La fonction y(x) est continue sur son ensemble de définition; il y a un point d'inflexion si sa deuxième dérivée s'annule et change de signe :

 $y''=0 \implies \{(\ln x)^{a-2}=0 \quad ou \quad -\ln x + a - 1 = 0\}$; les points d'inflexion sont:

- le point (1;0), pour $a \ge 3$ et a impair car $\ln x$ change de signe au voisinage de x = 1;
- les points $(e^{a-1}; (a-1)^{a-1})$; la partie $: -\ln x + a 1 = 0$ est la seule à s'annuler et changer de signe.

(b) En posant a-1=t, on a $y=g(t)=t^t=e^{t\ln t}$ d'où:

$$\frac{dy}{dt} = (1 + \ln t)e^{t \ln t} = 0 \quad \Rightarrow \quad \ln t = -1 \quad \Rightarrow \quad t = \frac{1}{e}$$

Pour $t < \frac{1}{e}$ on a g'(t) < 0 et pour $t > \frac{1}{e}$ on a g'(t) > 0; on en déduit que la courbe représentative de g présente un minimum en $t = \frac{1}{e}$.

La réponse est donc :
$$a = 1 + \frac{1}{e}$$
.

5. (a) La valeur $\ln(x+1) - \ln(x)$ représente l'aire du domaine limité par le graphe de $f(t) = \frac{1}{t}$, l'axe des abscisses et les deux droites verticales d'équation t = x et t = x + 1.

- Cette aire est strictement plus grande que l'aire du rectangle construit sur l'intervalle $I=\]x\,,\,x+1\,[$ et de hauteur $\frac{1}{x+1}\,,\,$ car $f(t)>\frac{1}{x+1}$ $\forall \ t\in I.$
- De même, elle est strictement plus petite que l'aire du rectangle construit sur l'intervalle I et de hauteur $\frac{1}{x}$, car $f(t) < \frac{1}{x} \quad \forall \ t \in I$.

D'où:
$$\frac{1}{x+1} < \ln(x+1) - \ln(x) < \frac{1}{x}, \quad \forall x > 0.$$

(b) D'après les règles de calcul des logarithmes,

$$\ln(x+1) - \ln x = \ln\left(\frac{x+1}{x}\right) = \ln\left(1 + \frac{1}{x}\right) \Rightarrow \frac{1}{x+1} < \ln\left(1 + \frac{1}{x}\right) < \frac{1}{x}.$$

Voulant faire apparaître la fonction puissance généralisée $\left(1+\frac{1}{x}\right)^x$, on multiplie les trois membres de la double inégalité par x>0.

$$\frac{x}{x+1} < x \cdot \ln\left(1 + \frac{1}{x}\right) < 1 \quad \Leftrightarrow \quad \frac{x}{x+1} < \ln\left(1 + \frac{1}{x}\right)^x < 1.$$

Et la fonction exponentielle étant strictement croissante, on a

$$e^{\frac{x}{x+1}} < \left(1 + \frac{1}{x}\right)^x < e$$
.

Or $\lim_{x\to +\infty} e^{\frac{x}{x+1}} = e$ car la fonction exponentielle est continue.

Donc d'après le théorème des deux gendarmes,

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e.$$