Resume No.3: Cinemática y Dinámica

Propiedades cinemáticas

• Producto escalar o punto $\vec{A} \cdot \vec{B}$

$$\vec{A} \cdot \vec{B} = AB\cos\alpha = a_x b_x + a_y b_y + a_z b_z$$

donde $\vec{A} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$ y $\vec{B} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}$, \vec{A} y \vec{B} son la norma de \vec{A} y \vec{B} , respectivamente, y α es el ángulo entre \vec{A} y \vec{B} .

• Campo de velocidades

$$\vec{U} = u\vec{i} + v\vec{j} + w\vec{k}$$

donde u, v y w son las componentes de la velocidad en x, y y z, respectivamente, y $\vec{i}, \vec{j} y \vec{k}$ son vectores unitarios en x, y y z, respectivamente. Note que u, v y w son f(x, y, z, t).

• Operador nabla $(\vec{\nabla})$

$$\vec{\nabla} = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}$$

• Operador Laplaciano (∇^2)

$$\vec{\nabla} \cdot \vec{\nabla} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

• Divergencia de un campo escalar ϕ

$$\vec{\nabla}\phi = \frac{\partial\phi}{\partial x}\vec{i} + \frac{\partial\phi}{\partial y}\vec{j} + \frac{\partial\phi}{\partial z}\vec{k}$$

 $\bullet\,$ Divergencia de un campo vectorial \vec{U}

$$\vec{\nabla} \cdot \vec{U} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

• Rotacional de \bar{U}

$$\nabla \times \vec{U} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix} = \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) \vec{i} + \left(\frac{\partial w}{\partial x} - \frac{\partial u}{\partial z} \right) \vec{j} + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \vec{k}$$

• Línea de corriente: El vector \vec{U} es tangente a la línea de corriente en cada punto. La ecuación de la línea de corriente es:

$$\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}$$

- Métodos para analizar un flujo:
 - 1. Método de Lagrange: Sigue cada partícula o sistema de flujo en el espacio, por lo tanto su posición es función del tiempo: $x(x_0, y_0, z_0, t)$, $y(x_0, y_0, z_0, t)$ y $z(x_0, y_0, z_0, t)$, donde (x_0, y_0, z_0) es un punto inicial.
 - 2. Método de Euler: Establece un punto o *volumen de control* fijo en el espacio en donde se observan variables en el tiempo como la velocidad o la aceleración.

Para relacionar los dos métodos, es necesario obtener para cada partícula las funciones x(t), y(t) y z(t), a partir:

$$u = \frac{dx}{dt}$$
 $v = \frac{dy}{dt}$ $w = \frac{dz}{dt}$

integrando para x, y y z, partiendo de valores conocidos de u, v y w (M. Euler) y de un punto (x_0, y_0, z_0) para $t = t_0$.

Propiedades cinemáticas

• Vector aceleración $\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$

$$\vec{a} = \frac{d\vec{U}}{dt} = \frac{\partial \vec{U}}{\partial t} + u \frac{\partial \vec{U}}{\partial x} + v \frac{\partial \vec{U}}{\partial y} + w \frac{\partial \vec{U}}{\partial z} = \frac{\partial \vec{U}}{\partial t} + (\vec{\nabla} \cdot \vec{U}) \vec{U}$$

- Tipos de flujo
 - 1. Flujo permanente o no permanente: Para el primero, el caudal es constante en el tiempo. Ejemplo: en una sección de una tubería, la velocidad no cambia en el tiempo.
 - 2. Flujo *uniforme* o *no uniforme*: Para el primero, la velocidad no cambia en el espacio para un instante de tiempo.
 - 3. Flujo compresible o incompresible: Para el primero, la densidad cambia en el espacio y/o en el tiempo (e.g. gases).
 - 4. Flujo laminar o turbulento: El flujo laminar es un flujo en "laminas" que siguen trayectórias rectilíneas donde Re < 2000. El flujo turbulento es un flujo caótico y errático donde Re > 4000. $Re = 4\bar{U}R_H/\nu$ es el número de Reynolds, donde \bar{U} es la velocidad media, $R_H = A/P$ es el radio hidráulico, donde A es el área y P es el perímetro mojado, y ν es la viscosidad cinemática.
 - 5. Flujo unidimensional (1D) (e.g. en x), flujo bidimensional (2D) (e.g. en x, y) y flujo tridimensional (3D) (e.g. en x, y y z).
- ullet Flujo volumétrico o caudal (Q): Cantidad de volumen de fluido que pasa a través de una superficie A por unidad de tiempo.

$$Q = \int_{A} \vec{U} \cdot d\vec{A} = \int_{A} (\vec{U} \cdot \vec{n}) dA = \int_{A} U \ dA \cos \alpha$$

donde \vec{n} es el vector unitario normal a dA y α es el ángulo entre \vec{n} y \vec{U} .

• Flujo másico (*ṁ*): Cantidad de masa (*m*) de fluido que pasa a través de una superficie *A* por unidad de tiempo.

$$\dot{m} = \int_A \rho(\vec{U} \cdot d\vec{A}) = \int_A \rho(\vec{U} \cdot \vec{n}) dA = \int_A \rho U \ dA \cos \alpha$$

donde ρ es la densidad del fluido. Si la velocidad en la sección es uniforme y A es constante, Q=UA y $\dot{m}=\rho UA$.

Teorema de transporte de Reynolds

Unifíca la aproximación Lagrangiana (e.g. movimiento de un sistema o partícula en el espacio) y la aproximación Euleriana (e.g. flujo a través de un volumen de control). Determina los cambios temporales de una propiedad extensiva (sea un escalar o un campo vectoria) en el tiempo.

$$\frac{dN}{dt} = \iint_{S.C.} \eta \rho(\vec{U} \cdot d\vec{A}) + \frac{\partial}{\partial t} \iiint_{V.C.} \eta \rho dv$$

donde N es una propiedad extensiva cualquiera $N = \iiint_{sistema} \eta \rho dv$ para un tiempo t, η es la propiedad intensiva de N por unidad de masa, V.C. es el volumen de control y S.C. es la superficie del V.C.. El teorema dice que el cambio de N en el tiempo es igual a la suma de flujo neto de N a través de S.C. y al cambio temporal de N dentro de V.C.

Conservación de la masa

• Continuidad en un volumen de control (forma integral): Del teorema de transporte de Reynolds, si N=m, entonces $\eta=1$. Del principio de conservación de la masa (m), esta no cambia en el tiempo, por tanto, $\frac{dm}{dt}=0$. Entonces:

Esto significa que el flujo masico neto de salida a través de S.C. es igual a la tása de decrecimiento de la masa dentro de V.C.

• Continuidad en un punto (forma diferencial)

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} + \frac{\partial(\rho w)}{\partial z} = \frac{\partial\rho}{\partial t}$$

Si el flujo es permanente, el termino de la derecha en ambas ecuaciones se elimina. Si el flujo es *incompresible*, ρ se elimina también.

Flujo potencial y función de corriente

• Flujo potencial: Existe una función de potencial ϕ tal que:

$$u = \frac{d\phi}{dx}$$
 $v = \frac{d\phi}{dy}$ $w = \frac{d\phi}{dz}$

por lo tanto $\vec{\nabla} \times \vec{U} = 0$, el flujo potencial es *irrotacional*.

• Función de corriente (en 2D): Para que la ecuación de continuidad para flujo permanente e incompresible se cumpla, debe existir una función de corriente ψ tal que:

$$u = \frac{\partial \psi}{\partial y} \quad v = -\frac{\partial \psi}{\partial x}$$

De la definición de línea de corriente, ψ es constante a lo largo de una línea de corriente. Por otro lado, el caudal Q entre dos líneas de corriente 1 y 2, es:

$$Q = \psi_2 - \psi_1$$

Si el flujo es compresible:

$$\rho u = \frac{\partial \psi}{\partial u} \quad \rho v = -\frac{\partial \psi}{\partial x}$$

por lo tanto el flujo másico es:

$$\rho Q = \psi_2 - \psi_1$$

Conservación de la energía

Del teorema de transporte de Reynolds aplicado a la cantidad extensiva energía E cuya propiedad intensiva es e (E por unidad de masa), y teniendo en cuenta la primera ley de la termodinánica que establece que la tasa de cambio de $E \frac{dE}{dt} = \frac{dQ}{dt} - \frac{dW}{dt}$ donde $\frac{dQ}{dt}$ es la tasa de calor transferido al sistema y $\frac{dW}{dt} = \left(\frac{dW}{dt}\right)_{meca} - \left(\frac{dW}{dt}\right)_{esf.vis}$ es la tasa de trabajo realizado por un instrumento mecánico y por los esfuerzos viscosos sobre el sistema, tenemos:

$$\begin{split} \frac{dQ}{dt} - \left(\frac{dW}{dt}\right)_{meca} + \left(\frac{dW}{dt}\right)_{esf.vis} &= \frac{dE}{dt} = \\ \oiint_{S.C.} \left(\hat{h} + \frac{V^2}{2} + gz\right) \rho(\vec{U} \cdot \vec{dA}) + \frac{\partial}{\partial t} \iiint_{V.C.} \left(\hat{u} + \frac{V^2}{2} + gz\right) \rho dv \end{split}$$

Conservación de la energía

donde $\hat{h} = \hat{u} + \frac{p}{a}$ es la entalpía, \hat{u} es la energia interna debido a la acción molecular, p es la presión, ρ es la densidad del fluido, V es la velocidad media y z es la altura del sistema.

Ecuación de Bernoulli

Partiendo de la ecuación general de conservación de la energía para flujo 1D, permanente e incompresible y dividiendo por el peso del fluido, dicha ecuación aplicada a un V.C. con una sección de entrada 1 y una de salida 2 se convierte en:

$$\frac{p_1}{\gamma} + \frac{\hat{u}_1}{q} + \frac{V_1^2}{2q} + z_1 = \frac{p_2}{\gamma} + \frac{\hat{u}_2}{q} + \frac{V_2^2}{2q} + z_1 - h_q + h_m - h_v$$

donde h_q , h_m y h_v son la cabeza de energía (en unidades de longitud) de calor adicionado al sistema y del trabajo realizado por una máquina y por los esfuerzos viscosos, respectiva-

En un sistema hidráulico (e.g. tubería a presión), los terminos $\frac{\hat{u}}{a}$ y h_v son despreciables. Si en ese sistema el termino $-h_q + h_m$ equivale a la energía que se gana y se pierde entre la sección 1 y 2, la ecuación anterior se convierte en la ecuación de Bernoulli:

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2a} + z_1 = \frac{p_2}{\gamma} + \frac{V_2^2}{2a} + z_2 - h_f - h_b + h_t$$

- $\frac{p}{\gamma}$: Cabeza de presión (*Energía del flujo* por unidad de peso).
- $\frac{V^2}{2a}$: Cabeza de velocidad (*Energía cinética* por unidad de peso).
- z: Cabeza de posición (Energía potencial por unidad de peso)
- h_f: Perdidas de cabeza de energía por fricción y/o por accesorios.
- h_b: Cabeza de energía adicionada al sistema por una bomba.
- h_t: Cabeza de energía sustraida del sistema por una turbina.

La potencia hidráulica $P = \gamma HQ$, donde H es equivalente a h_b o h_t . La potencia nominal $P_a = \gamma H Q \eta$ donde η es la eficiencia de la bomba o turbina.

Debido a la distribución no uniforme de la velocidad en una sección transversal de flujo, $\frac{V^2}{2a}$ se debe corregir multiplicandola por el coeficiente de Coriolis $\alpha = \frac{1}{A} \int_A \left(\frac{u}{V}\right)^3 dA$ donde ues la función de velocidad en la sección transversal y $V = \frac{Q}{A}$ es la velocidad media.

La ecuación de Bernoulli puede ser visualizada gráficamente a través de la Línea de Energía (LE) y de la Línea de Gradiente Hidráulico (LGH), en donde en cada sección del flujo $LE=rac{p}{\gamma}+rac{V^2}{2g}+z$ (energía total) y $LGH=rac{p}{\gamma}+z$. Algunas aplicaciones de la ecuación de Bernoulli para determinar el caudal son:

• tubo Pitot: Tubo en forma de L colocado en contraflujo para determinar la velocidad u_1^i justo antes del tubo (sección 1) en un punto i de la sección. Aplicando Ec. de Bernoulli entre 1 y 2 (sección del tubo Pitot), se tiene:

$$u_1^i = \sqrt{2g\left(\frac{p_2}{\gamma} - \frac{p_1}{\gamma}\right)}$$

El caudal $Q = \sum_{i=1}^{n} u_1^i A_i$ donde A_i es una porción de area y n es el # de puntos.

• tubo Venturi: Tubo con una reducción brusca y una expansión gradual de la sección. Aplicando la Ec. de Bernoulli y la ecuación de continuidad $(Q_1 = Q_2)$, la velocidad en la contracción (sección 2) es:

$$V_2 = C_v \sqrt{\frac{2g\left(\frac{p_1}{\gamma} - \frac{p_2}{\gamma} + z_1 - z_2\right)}{\left(1 - \left(\frac{A_2}{A_1}\right)^2\right)}}$$

donde C_v es el coeficiente de contracción del Venturi