Supermagic Labeling of an s-duplicate of $K_{n,n}^*$

Wai Chee Shiu[†], Peter Che Bor Lam[†] and Hee Lin Cheng[†]

Abstract

Let H and s be a graph and a positive integer respectively. An s-duplicate of H, denoted by sH, is a graph consisting of s identical components H. In this paper, we shall show that for $n \geq 2$, $sK_{n,n}$ is supermagic if and only if n is even or both s and n are odd.

Key words and phrases : Supermagic, orthogonal Latin square, balanced partition **2000 MSC:** 05C78, 05C50

1. Introduction

The graph G = (V, E) is called a (p, q)-graph if |V| = p and |E| = q. If there exists a bijection

$$f: E \to \{1, \cdots, q\}$$

such that the induced mapping f^+ from V to \mathbb{Z} defined by $f^+(u) = \sum_{uv \in E} f(uv)$ is a constant mapping,

then G is called *supermagic* and f a *supermagic labeling* of G. The concept of supermagic was defined by Stewart [6, 7] in 1966. Hartsfield and Ringel [2] had also studied supermagic graphs. In 1998, Shiu, Lam and Lee [4] proved that for $m \geq 2$, $n \geq 2$ but $(m, n) \neq (2, 2)$, the composition of an m-cycle and the null graph on n vertices is edge-magic. Recently, they [5] proved that it is supermagic. All supermagic graphs are edge-magic, but the converse does not necessarily hold. For definition of "edge-magic" and "composition", see [4].

Let H and s be a graph and a positive integer respectively. An s-duplicate of H, denoted by sH, is a graph consisting of s identical components H. In this paper, we shall consider the supermagicness of $sK_{n,n}$.

2. The s-duplicate of $K_{n,n}$

We first note that $sK_{n,n}$ and has 2sn vertices and sn^2 edges. In the lemma that follows, we give a necessary condition for $sK_{n,n}$ to be supermagic. The main purpose of this paper is to show that this necessary condition is also sufficient with the exception of some trivial cases.

Lemma 2.1: If $G = sK_{n,n}$ is supermagic, then $n(sn^2 + 1)$ is even.

Proof: Let f be a supermagic labeling of G = (V, E) and c be constant of the induced mapping f^+ . Then

$$2snc = \sum_{u \in V} f^{+}(u) = \sum_{u \in V} \sum_{v \in N(u)} f(uv)$$
$$= 2\sum_{e \in E} f(e) = sn^{2}(sn^{2} + 1).$$

Hence $n(sn^2 + 1) = 2c$ is an even integer.

^{*}Partially supported by Faculty Research Grant, Hong Kong Baptist University.

[†]Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.

Note that $n(sn^2 + 1)$ is even if and only if n is even or both n and s are odd. In the following theorem, we consider the trivial exceptional cases, i.e., when $n \leq 2$, where this necessary condition is not sufficient:

Theorem 2.2: When $n \leq 2$, then $sK_{n,n}$ is supermagic if and only if s = n = 1.

Proof: It is clear that $(sK_{1,1})$ is supermagic if and only if s=1. Now $sK_{2,2}$ consists of s components, each of which is a 4-cycle. Because any graph containing a cycle as a component is not supermagic, $sK_{2,2}$ cannot be supermagic.

3. A supermagic labeling of $sK_{n,n}$ when $n \geq 3$

Let G = (V, E) be a simple graph and S be a set. Suppose $f : E \to S$ is a mapping. A labeling matrix of G associated with f is a matrix whose rows and columns are named by the vertices of G and the (u, v)-entry is f(uv) if $uv \in E$, and is 0 otherwise. Thus a simple (p, q)-graph G = (V, E) is supermagic if and only if there exists a bijection $f : E \to \{1, 2, \dots, q\}$ such that the row sums and column sums of the labeling matrix of G associated with f are all equal.

Any labeling matrix of $sK_{n,n}$ may be expressed in the form:

$$\begin{pmatrix}
B_1 & O_{2n} & \cdots & O_{2n} & O_{2n} \\
O_{2n} & B_2 & \cdots & O_{2n} & O_{2n} \\
\vdots & & \ddots & & \vdots \\
O_{2n} & O_{2n} & \cdots & B_{s-1} & O_{2n} \\
O_{2n} & O_{2n} & \cdots & O_{2n} & B_s
\end{pmatrix} \text{ with } B_i = \begin{pmatrix}
O_n & A_i \\
A_i^T & O_n
\end{pmatrix}, \tag{1}$$

where A_i is an $n \times n$ matrix, $1 \le i \le s$, and O_j is the $j \times j$ zero matrix.

We can see that $sK_{n,n}$ is supermagic if and only if there exist $n \times n$ matrices A_1, \dots, A_s with distinct entries taken from the set $\{1, 2, \dots, sn^2\}$, and with all row sums and all column sums are the same. Let S be a set containing sn elements. Let $\mathscr P$ be a partition of S. If each class of $\mathscr P$ contains n elements, and the sum of numbers in each class is a constant, then $\mathscr P$ is called an (s, n)-balanced partition of S. $\mathscr P$ is usually denoted by $\{C_1, \dots, C_s\}$, where $C_i = (c_{i1}, c_{i2}, \dots, c_{in})^T$ for $1 \le i \le s$. We shall first quote the following lemmas:

Lemma 3.1 [4]: Suppose $s, n \ge 2$. If n is even or both s and n are odd, then $\{0, 1, \dots, sn-1\}$ has an (s, n)-balanced partition.

Lemma 3.2 [1, 3, 8]: There exists a pair of orthogonal Latin squares of order n if $n \ge 3$ and $n \ne 6$.

Suppose all elements in the first column of a square matrix X of order n are distinct, and any other column of X is a permutation of the first column. Let C be a column n-vector whose elements are all distinct. We shall denote by X(C) a matrix whose first column is C, and all other columns are permutations of C in exactly the same manner as X. Note that if X is a Latin square, so is X(C). The following theorem is the main result of this paper:

Theorem 3.3: Let $n \geq 3$, $s \geq 1$ Then $sK_{n,n}$ is supermagic.

Proof: Case (I): $n \neq 6$. By Lemma 3.1 and Lemma 3.2, we can find an (s, n)-balanced partition $\{C_1, \dots, C_s\}$ of $\{0, 1, \dots, sn-1\}$ and two orthogonal $n \times n$ Latin squares X and Y. Let $C = (1, 2, \dots, n)^T$ and $A_i = nY(C_i) + X(C)$ for $i = 1, \dots, s$. We then substitute A_i into (1).

Suppose the sum of elements in each C_i and in C is k_1 and k_0 respectively. Since both $nY(C_i)$ and X(C) are Latin squares, the sum of elements each row and in each column of A_i is nk_1+k_0 . Let

 $x \in \{1, 2, \dots, sn^2\}$, x can be written as x = nl + a uniquely, where $0 \le l \le sn - 1$ and $1 \le a \le n$. Therefore, there exists a unique i such that $l \in C_i$. Since $nY(C_i)$ and X(C) are orthogonal, the ordered pair (l, a) appears exactly once in A_i . Hence, all elements of $\{1, 2, \dots, sn^2\}$ appear only in one of the matrices A_i , and exactly once that matrix.

Case (II): n = 6. Since a pair of 6×6 orthogonal Latin squares does not exist, the method in Case (I) does not work. Nevertheless, M. Suzuki[†] found the following pair of orthogonal matrices:

$$Z = \begin{pmatrix} 1 & 6 & 6 & 1 & 6 & 1 \\ 5 & 5 & 2 & 2 & 5 & 2 \\ 3 & 4 & 4 & 4 & 3 & 3 \\ 4 & 3 & 3 & 3 & 4 & 4 \\ 2 & 2 & 5 & 5 & 2 & 5 \\ 6 & 1 & 1 & 6 & 1 & 6 \end{pmatrix} \text{ and } Z^T = \begin{pmatrix} 1 & 5 & 3 & 4 & 2 & 6 \\ 6 & 5 & 4 & 3 & 2 & 1 \\ 6 & 2 & 4 & 3 & 5 & 1 \\ 1 & 2 & 4 & 3 & 5 & 6 \\ 6 & 5 & 3 & 4 & 2 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}.$$
 (2)

We shall use these matrices, in stead of orthogonal Latin squares, and the balanced partition to construct a supermagic labeling matrix of $sK_{6,6}$. Now $\{0,1,\cdots,6s-1\}$ has an (s,6)-balanced partition $\{C_1,\cdots,C_6\}$, where for $i=1,2,\cdots,s$,

$$C_i = (i-1, 2s-i, 2s+i-1, 4s-i, 4s+i-1, 6s-i)^T$$
.

Note that the sum of all elements of C_i is 18s-3. As in case (I), we put $A_i = nZ(C_i) + (Z(C))^T$ for $i=1,\dots,s$ and then substitute A_i into (1). The sum of each column of A_i is n(18s-3)+21=3n(s-1)+21. Since the elements of each row of $Z(C_i)$ are exactly two numbers of C_i whose sum is 6s-1, and each of these two numbers appears three times, the row sum of each A_i is also 3n(6s-1)+21, same as the column sums. Let $x \in \{1,2,\dots,36s\}$, then x can be written uniquely as x=6l+a, where $0 \le l \le 6s-1$ and $1 \le a < 6$. As in case (I), there exists a unique i such that $l \in C_i$. Since $nZ(C_i)$ and $(Z(C))^T$ are orthogonal, all elements of $\{1,2,\dots,sn^2\}$ appear only in one of the matrices A_i , and exactly once that matrix.

Example 3.1: Let s = 3, n = 4 and $C = (1, 2, 3, 4)^T$. A (3, 4)-balanced partition of $(0, 1, \dots, 11)^T$ is $C_1 = (0, 5, 6, 11)^T$, $C_2 = (1, 4, 7, 10)^T$, and $C_3 = (2, 3, 8, 9)^T$.

$$X = \begin{pmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} a & b & c & d \\ c & d & a & b \\ d & c & b & a \\ b & a & d & c \end{pmatrix}$$

are two orthogonal Latin squares. Then

$$X(C) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix}, \quad Y(C_1) = \begin{pmatrix} 0 & 5 & 6 & 11 \\ 6 & 11 & 0 & 5 \\ 11 & 6 & 5 & 0 \\ 5 & 0 & 11 & 6 \end{pmatrix},$$

$$Y(C_2) = \begin{pmatrix} 1 & 4 & 7 & 10 \\ 7 & 10 & 1 & 4 \\ 10 & 7 & 4 & 1 \\ 4 & 1 & 10 & 7 \end{pmatrix}, \quad Y(C_3) = \begin{pmatrix} 2 & 3 & 8 & 9 \\ 8 & 9 & 2 & 3 \\ 9 & 8 & 3 & 2 \\ 3 & 2 & 9 & 8 \end{pmatrix}.$$

http://www.pse.che.tohoku.ac.jp/~msuzuki/MagicSquare.even.html

[‡]Mutsumi Suzuki, see homepage

Therefore the required assignment is given by:

$$A_{1} = 4Y(C_{1}) + X(C) = \begin{pmatrix} 1 & 22 & 27 & 48 \\ 26 & 45 & 4 & 23 \\ 47 & 28 & 21 & 2 \\ 24 & 3 & 46 & 25 \end{pmatrix},$$

$$A_{2} = 4Y(C_{2}) + X(C) = \begin{pmatrix} 5 & 18 & 31 & 44 \\ 30 & 41 & 8 & 19 \\ 43 & 32 & 17 & 6 \\ 20 & 7 & 42 & 29 \end{pmatrix},$$

$$A_{3} = 4Y(C_{3}) + X(C) = \begin{pmatrix} 9 & 14 & 35 & 40 \\ 34 & 37 & 12 & 15 \\ 39 & 36 & 13 & 10 \\ 16 & 11 & 38 & 33 \end{pmatrix}.$$

Example 3.2: Suppose s=4 and n=6. Let Z be given as in (2). Following the proof of Case (II) of Theorem 3.3, we obtain the following (4,6)-balanced partition of $\{0,1,2,\cdots,23\}$: $C_1=(0,7,8,15,16,23)^T$, $C_2=(1,6,9,14,17,22)^T$, $C_3=(2,5,10,13,18,21)^T$ and $C_4=(3,4,11,12,19,20)^T$. Then

Then $A_i = 6Z(C_i) + (Z(C))^T$ for i = 1, 2, 3, 4 are:

$$A_{1} = \begin{pmatrix} 1 & 143 & 141 & 4 & 140 & 6 \\ 102 & 101 & 46 & 45 & 98 & 43 \\ 91 & 50 & 52 & 51 & 95 & 96 \\ 48 & 47 & 99 & 100 & 44 & 97 \\ 139 & 2 & 3 & 142 & 5 & 144 \end{pmatrix}, A_{2} = \begin{pmatrix} 7 & 137 & 135 & 10 & 134 & 12 \\ 108 & 107 & 40 & 39 & 104 & 37 \\ 60 & 86 & 88 & 87 & 59 & 55 \\ 85 & 56 & 58 & 57 & 89 & 90 \\ 42 & 41 & 105 & 106 & 38 & 103 \\ 133 & 8 & 9 & 136 & 11 & 138 \end{pmatrix},$$

$$A_{3} = \begin{pmatrix} 13 & 131 & 129 & 16 & 128 & 18 \\ 114 & 113 & 34 & 33 & 110 & 31 \\ 66 & 80 & 82 & 81 & 65 & 61 \\ 79 & 62 & 64 & 63 & 83 & 84 \\ 36 & 35 & 111 & 112 & 32 & 109 \\ 127 & 14 & 15 & 130 & 17 & 132 \end{pmatrix}, A_{4} = \begin{pmatrix} 19 & 125 & 123 & 22 & 122 & 24 \\ 120 & 119 & 28 & 27 & 116 & 25 \\ 72 & 74 & 76 & 75 & 71 & 67 \\ 73 & 68 & 70 & 69 & 77 & 78 \\ 30 & 29 & 117 & 118 & 26 & 115 \\ 121 & 20 & 21 & 124 & 23 & 126 \end{pmatrix}.$$

These are the matrices of the labeling matrix of $4K_{6,6}$.

References

- [1] R. C. Bose, S. S. Shrikhande and E. T. Parker, Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, *Canadian Journal of Mathematics*, **12** (1960), 189-203.
- [2] N. Hartsfield and G. Ringel, Supermagic and antimagic graphs, *Journal of Recreational Mathematics*, **21** (1989), 107-115.
- [3] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge, 251-260, 1992.

- [4] W. C. Shiu, P. C. B. Lam and S. M. Lee, Edge-magicness of the composition of a cycle with a null graph, *Congressus Numerantium*, **132** (1998), 9-18.
- [5] W. C. Shiu, P. C. B. Lam and S. M. Lee, On a Construction of Supermagic Graphs, preprint, 2000.
- [6] B. M. Stewart, Magic graphs, Canadian Journal of Mathematics, 18 (1966), 1031-1059.
- [7] B. M. Stewart, Supermagic Complete Graphs, Canadian Journal of Mathematics, 19 (1967), 427-438.
- [8] D. R. Stinson, A Short Proof of the Nonexistence of a Pair of Orthogonal Latin Squares of Order Six, *Journal of Combonatorial Theory, Series A*, **36** (1984), 373-376.