Česká zemědělská univerzita v Praze Technická fakulta

Laboratorní práce

Speciální senzorika

Meteostanice

Autor: Josef Kořínek

30. prosince 2022

1.Zadání

- Porovnejte rychlost proudu vzduchu zjištěnou lopatkovým a digitálním anemometrem
- Pomocí korouhve zjistěte směr proudění vzduchu
- Zjistěte množství srážek pomocí čidla pro měření srážkových úhrnů
- Vypracujte protokol dle vzoru, který naleznete v kurzu předmětu na moodle.czu.cz

2. Princip fungování senzoru

Lopatky elektro-mechanického miskového **anemometru** otáčí hřídelkou, na které je připevněn magnet. Vlivem otáčení se mění pozice magnetického pole. Jednotlivé pozice jsou snímány jazýčkovými magnetickými kontakty. Při změně pozice dojde k sepnutí nebo rozepnutí vodiče. Z frekvence spínání jsme schopni odvodit rychlost otáčení za předpokladu že obvodová rychlost misek odpovídá rychlosti větru. [1]

Čidlo směru větru pracuje na obdobném principu jako anemometr s tím rozdílem, že se na čidle směru nachází 8 spínačů, přičemž každý spíná rozdílný odpor. Směr větru odvodíme ze změřeného odporu. [2]

Magnetický spínač polohy je taktéž využit pro měření srážek **digitálním srážkoměrem.** Spínač spíná, když dojde k překlopení sběrače vody.[3]

3. Postup měření

Anemometr byl zapojen dle schématu (Obr. 1) a následně byl pomocí stojanového ventilátoru zatěžován proudem vzduchu. Pro kontrolu byla rychlost změřena ručním anemometrem. Po třech měření byl změněn rychlostní stupeň ventilátoru.

Čidlo směru větru bylo zapojeno dle schématu (Obr. 2). Pro každou světovou stranu s pomocí kompasu byla změřena hodnota odporu odpovídající dané světové straně.

Nejdříve byly měřením zjištěny rozměry **srážkoměru** a objem komor sběrače vody při kterém došlo k překlopení. Následně byla do srážkoměru zapojeného podle schématu (Obr. 1) vlita voda o definovaném objemu a na osciloskopu spočítaný počet pulzů.

4. Schéma zapojení

Obr. 1 Schéma zapojení anemometru a srážkoměru

Obr. 2 Schéma zapojení čidla směru větru

5. Použité přístroje

Číslo	Název	Тур	Sériové číslo
1.	Multimetr Agilent	C1241B	DHM00038322
2.	Osciloskop Tektronix	TBS1052C	DHM00081864
3.	Laboratorní zdroj Lomgwei	LW-K3010D	211102034

Tab. 1 Seznam použitých přístrojů

6. Použité senzory

Číslo	Тур
1.	Anemometr
2.	Korouhev
3.	Srážkoměr
4.	Anemometr ruční

Tab. 2 Seznam použitých senzorů

7. Zpracování dat

Bylo vypozorováno, že osciloskopu se za jednu otáčku vykazuje dvě periody. Z naměřených hodnot byla nejdříve podle vztahu $2*\frac{\frac{Délka \, více \, pulzů}{Počet \, měřených \, pulzů}}{\frac{Délka \, více \, pulzů}{Počet \, měřených \, pulzů}}$ spočítána doba jednoho otočení a následně z doby jednoho otočení [ms] rychlost otáčení [ot./s] podle vztahu $\frac{1000}{\text{doba jednoho otočení}}$. Změřený poloměr od středu k misce je 0,07 m, dráha, kterou opíše miska během jedné otočky je: $2\pi r\cong 0$,04398 m. Rychlost byla spočítána jako v= Frekvence otáčení * dráha.

Rychlostní stupeň	Změřená rychlost větru [m/s]	Průměr	Počet měřených pulzů	Délka měřených pulzů [ms]	Doba jednoho otočení [ms]	Frekvence otáčení [ot./s]	Spočítaná rychlost větru [m/s]
1	2,8		5	880	352	2,84	1,25
1	2,7	2,77	5	820	328	3,05	1,34
1	2,8		5	788	315,2	3,17	1,40
2	3,4	3,43	6	792	264	3,79	1,67
2	3,3		6	808	269,33	3,71	1,63
2	3,6		6	832	277,33	3,61	1,59
3	3,8		8	838	209,5	4,77	2,10
3	3,7	3,8	4	429	214,5	4,66	2,05
3	3,9		4	413	206,5	4,84	2,13

Tab. 3 Měření anemometru

Světová strana	Změřený odpor [kΩ]	Tabulkové hodnoty [kΩ]	
Sever	120	120	
Severo-východ	64,72	64,9	
Východ	32,97	33	
Jiho-východ	8,236	8,2	
Jih	1,003	1	
Jiho-západ	2,194	2,2	
Západ	3,898	3,9	
Severo-západ	16,03	16	

Tab. 4 Měření čidla směru větru (Zdroj tabulkových hodnot: [2])

Měření	Objem komory [ml]			
Werein	pravá	levá	průměr	
1.	1,1	1,2	1,225	
2.	1,3	1,3		

Tab. 5 Měření objemu komor sběrače vody

Bylo změřeno že plocha, na kterou dopadá déšť je **110x50** mm. Což je 5 500 mm² a pokud napadne 10 mm srážek tak objem, který proteče nádržkou je 5 500x10 =55 000 mm³. Objem byl převeden na 55 ml a následně odměřen měrným válcem. Teoreticky jsme odvodili, že za předpokladu, že k pulzu dochází každé druhé překlopení, počet překlopení by měl odpovídat $\frac{zachycený objem}{2*objem komory} = \frac{55}{2*1,225} = 22,45 pulzů$. Na osciloskopu při vlití objemu bylo naměřeno **22** pulzů.

8.Závěr

Při porovnání hodnot změřené ručním **anemometrem** a spočítané rychlosti větru můžeme dojít k závěru, že jsou hodnoty nepřesné. Hodnoty by bylo potřeba vynásobit koeficientem, který neznáme. Koeficient v sobě bude zahrnovat ztráty způsobené větrem působícím v opačném směru otáčení anemometru.

Změřené hodnoty **čidla směru větru** odpovídají tabulkovým hodnotám. Měřením byly ověřeny teoretická východiska.

Pokud byl předpoklad s pulzy při každém druhém překlopení správný, tak jsou teoretické hodnoty naměřené u **srážkoměru** vskutku přesné. Pokud je tento předpoklad milný a srážkoměr má dva spínače (pro pravé i levé překlopení vlastní) tak se reálná hodnota od teoretických předpokladů liší přibližně o 50 %. To by znamenalo že by vyhodnocovací člen měl jinou formuli pro výpočet úhrnu srážek.

9.Zdroje

- [1] WH-SP-WS01 čidlo rychlosti větru anemometr | LaskaKit [online]. [vid. 2023-01-02]. Dostupné z: https://www.laskakit.cz/wh-sp-ws01-cidlo-rychlosti-vetru-anemometr/
- [2] WH-SP-WD čidlo směru větru / LaskaKit [online]. [vid. 2023-01-02]. Dostupné z: https://www.laskakit.cz/wh-sp-wd-cidlo-smeru-vetru/
- [3] MS-WH-SP-RG srážkoměr / LaskaKit [online]. [vid. 2023-01-03]. Dostupné z: https://www.laskakit.cz/ms-wh-sp-rg-srazkomer/