Data Communication

Lecture Note

Lecture: 7

Week: 8

Topic: Analog Transmission: ASK, FSK, PSK & QPSK

Lecture Outline

- 1. Digital to Analog Conversion
- 2. Aspects of Conversion
- 3. Amplitude Shift Keying
- 4. Frequency Shift Keying
- 5. Phase Shift Keying
- 6. Constellation Diagram

1. Digital to Analog Conversion

Digital-to-analog conversion is the process of changing one of the characteristics of an analog signal based on the information in digital data. Figure 1 shows the relationship between the digital information, the digital-to-analog modulating process, and the resultant analog signal.

Figure 1: Digital-to-analog conversion

A sine wave is defined by three characteristics: amplitude, frequency, and phase. When we vary any one of these characteristics, we create a different version of that wave. So, by changing one characteristic of a simple electric signal, we can use it to represent digital data. Any of the three characteristics can be altered in this way, giving us at least three mechanisms for modulating digital data into an analog signal: amplitude shift keying (ASK), frequency shift keying (FSK), and phase shift keying (PSK). In addition, there is a fourth (and better) mechanism that combines changing both the amplitude and phase, called quadrature amplitude modulation (QAM).

Figure 2: Types of digital to analog conversion

2. Aspects of Conversion

Before we discuss specific methods of digital-to-analog modulation, two basic issues must be reviewed: bit and baud rates and the carrier signal.

Data Element Versus Signal Element: In Chapter 4, we discussed the concept of the data element versus the signal element. We defined a data element as the smallest piece of information to be exchanged, the bit. We also defined a signal element as the smallest unit of a signal that is constant. Although we continue to use the same terms in this chapter, we will see that the nature of the signal element is a little bit different in analog transmission.

Data Rate Versus Signal Rate: We can define the data rate (bit rate) and the signal rate (baud rate) as we did for digital transmission. Bit rate is the number of bits per second. Baud rate is the number of signal elements per second. In the analog transmission of digital data, the baud rate is less than or equal to the bit rate. The relationship between them is

$$S = N \times \frac{1}{r}$$
 baud

where N is the data rate (bps) and r is the number of data elements carried in one signal element.

Example 5.1

An analog signal carries 4 bits per signal element. If 1000 signal elements are sent per second, find the bit rate.

Solution: In this case, r = 4, S = 1000, and N is unknown. We can find the value of N from

$$S = N \times (1/r)$$
 or $N = S \times r = 1000 \times 4 = 4000 \text{ bps}$

Example 5.2

An analog signal has a bit rate of 8000 bps and a baud rate of 1000 baud. How many data elements are carried by each signal element? How many signal elements do we need?

Solution: In this example, S = 1000, N = 8000, and r and L are unknown. We first find the value of r and then the value of L.

$$S = N \times 1/r \longrightarrow r = N / S = 8000 / 10,000 = 8 \text{ bits/baud}$$

 $r = \log_2 L \longrightarrow L = 2^r = 2^8 = 256$

Carrier Signal: In analog transmission, the sending device produces a high-frequency signal that acts as a base for the information signal. This base signal is called the carrier signal or carrier frequency. The receiving device is tuned to the frequency of the carrier signal that it expects from the sender. Digital information then changes the carrier signal by modifying one or more of its characteristics (amplitude, frequency, or phase). This kind of modification is called modulation (shift keying).

3. Amplitude Shift Keying

In amplitude shift keying, the amplitude of the carrier signal is varied to create signal elements. Both frequency and phase remain constant while the amplitude changes.

Binary ASK (BASK)

Although we can have several levels (kinds) of signal elements, each with a different amplitude, ASK is normally implemented using only two levels. This is referred to as binary amplitude shift keying or on-off keying (OOK). The peak amplitude of one signal level is 0; the other is the same as the amplitude of the carrier frequency. Figure 3 gives a conceptual view of binary ASK.

Figure 3: Binary amplitude shift keying

Implementation: If digital data are presented as a unipolar NRZ (see Chapter 4) digital signal with a high voltage of 1 V and a low voltage of 0 V, the implementation can achieved by multiplying the NRZ digital signal by the carrier signal coming from an oscillator. When the amplitude of the NRZ signal is 1, the

amplitude of the carrier frequency is held; when the amplitude of the NRZ signal is 0, the amplitude of the carrier frequency is zero

Figure 4: Implementation of binary ASK

Example 5.3: We have an available bandwidth of 100 kHz which spans from 200 to 300 kHz. What are the carrier frequency and the bit rate if we modulated our data by using ASK with d = 1?

Solution: The middle of the bandwidth is located at 250 kHz. This means that our carrier frequency can be at fc = 250 kHz. We can use the formula for bandwidth to find the bit rate (with d = 1 and r = 1).

$$B = (1 + d) \times S = 2 \times N \times (1/r) = 2 \times N = 100 \text{ kHz} \longrightarrow N = 50 \text{ kbps}$$

Example 5.4: In data communications, we normally use full-duplex links with communication in both directions. We need to divide the bandwidth into two with two carrier frequencies, as shown in Figure 5.5. The figure shows the positions of two carrier frequencies and the bandwidths. The available bandwidth for each direction is now 50 kHz, which leaves us with a data rate of 25 kbps in each direction.

Figure 5: Bandwidth of a full-duplex ASK

4. Frequency Shift Keying

In frequency shift keying, the frequency of the carrier signal is varied to represent data. The frequency of the modulated signal is constant for the duration of one signal element, but changes for the next signal element if the data element changes. Both peak amplitude and phase remain constant for all signal elements.

Binary FSK (BFSK)

One way to think about binary FSK (or BFSK) is to consider two carrier frequencies. In Figure 6, we have selected two carrier frequencies, f1 and f2. We use the first carrier if the data element is 0; we use the second if the data element is 1. However, note that this is an unrealistic example used only for demonstration purposes. Normally the carrier frequencies are very high, and the difference between them is very small.

Figure 6: Binary frequency shift keying

As Figure 6 shows, the middle of one bandwidth is f1 and the middle of the other is f2. Both f1 and f2 are Δf apart from the midpoint between the two bands. The difference between the two frequencies is $2\Delta f$.

Example 5.5

We have an available bandwidth of 100 kHz which spans from 200 to 300 kHz. What should be the carrier frequency and the bit rate if we modulated our data by using FSK with d = 1?

Solution: This problem is similar to Example 5.3, but we are modulating by using FSK. The midpoint of the band is at 250 kHz. We choose $2\Delta f$ to be 50 kHz; this means

$$B = (1+d) \times S + 2\Delta_f = 100 \longrightarrow 2S = 50 \text{ kHz} \longrightarrow S = 25 \text{ kbaud} \longrightarrow N = 25 \text{ kbps}$$

Implementation

There are two implementations of BFSK: noncoherent and coherent. In noncoherent BFSK, there may be discontinuity in the phase when one signal element ends and the next begins. In coherent BFSK, the phase continues through the boundary of two signal elements. Noncoherent BFSK can be implemented by treating BFSK as two ASK modulations and using two carrier frequencies. Coherent BFSK can be implemented by using one voltage-controlled oscillator (VCO) that changes its frequency according to the input voltage. Figure 7 shows the simplified idea behind the second implementation. The input to the oscillator is the unipolar NRZ signal. When the amplitude of NRZ is zero, the oscillator keeps its regular frequency; when the amplitude is positive, the frequency is increased.

Figure 7: Implementation of BFSK

Example 5.6

We need to send data 3 bits at a time at a bit rate of 3 Mbps. The carrier frequency is 10 MHz. Calculate the number of levels (different frequencies), the baud rate, and the bandwidth.

Solution: We can have L=23=8. The baud rate is S=3 MHz/3 = 1 Mbaud. This means that the carrier frequencies must be 1 MHz apart ($2\Delta f=1$ MHz). The bandwidth is $B=8\times 1=8$ MHz. Figure 8 shows the allocation of frequencies and bandwidth.

Figure 8: Bandwidth of MFSK used in Example 5.6

5. Phase Shift Keying

In phase shift keying, the phase of the carrier is varied to represent two or more different signal elements. Both peak amplitude and frequency remain constant as the phase changes. Today, PSK is more common than ASK or FSK.

Binary PSK (BPSK)

The simplest PSK is binary PSK, in which we have only two signal elements, one with a phase of 0°, and the other with a phase of 180°. Figure 9 gives a conceptual view of PSK. Binary PSK is as simple as binary ASK with one big advantage it is less susceptible to noise. In ASK, the criterion for bit detection is the amplitude of the signal; in PSK, it is the phase. Noise can change the amplitude easier than it can change the phase. In other words, PSK is less susceptible to noise than ASK. PSK is superior to FSK because we do not need two carrier signals. However, PSK needs more sophisticated hardware to be able to distinguish between phases.

Figure 9: Binary phase shift keying

Implementation

The implementation of BPSK is as simple as that for ASK. The reason is that the signal element with phase 180° can be seen as the complement of the signal element with phase 0° . This gives us a clue on how to implement BPSK. We use the same idea we used for ASK but with a polar NRZ signal instead of a unipolar NRZ signal, as shown in Figure 5.10. The polar NRZ signal is multiplied by the carrier frequency; the 1 bit (positive voltage) is represented by a phase starting at 0° ; the 0 bit (negative voltage) is represented by a phase starting at 180° .

Figure 10: Implementation of BPSK

Quadrature PSK (QPSK)

The simplicity of BPSK enticed designers to use 2 bits at a time in each signal element, thereby decreasing the baud rate and eventually the required bandwidth. The scheme is called quadrature PSK or QPSK because it uses two separate BPSK modulations; one is in-phase, the other quadrature (out-of-phase). The incoming bits are first passed through a serial-to-parallel conversion that sends one bit to one modulator and the next bit to the other modulator. If the duration of each bit in the incoming signal is T, the duration of each bit sent to the corresponding BPSK signal is 2T. This means that the bit to each BPSK signal has one-half the frequency of the original signal. Figure 11 shows the idea.

Figure 11: QPSK and its implementation

The two composite signals created by each multiplier are sine waves with the same frequency, but different phases. When they are added, the result is another sine w ave, with one of four possible phases: 45° , -45° , 135° , and -135° . There are four kinds of signal elements in the output signal (L = 4), so we can send 2 bits per signal element (r = 2).

Example 5.7

Find the bandwidth for a signal transmitting at 12 Mbps for QPSK. The value of d = 0.

Solution: For QPSK, 2 bits are carried by one signal element. This means that r = 2. So the signal rate (baud rate) is $S = N \times (1/r) = 6$ Mbaud. With a value of d = 0, we have B = S = 6 MHz.

6. Constellation Diagram

A constellation diagram can help us define the amplitude and phase of a signal element, particularly when we are using two carriers (in-phase and quadrature). The diagram is useful when we are dealing with multilevel ASK, PSK, or QAM. In a constellation diagram, a signal element type is represented as a dot. The bit or combination of bits it can carry is often written next to it. The diagram has two axes. The X axis is related to the in-phase carrier; the Y axis is related to the quadrature carrier. For each point on the diagram, four pieces of information can be deduced. The projection of the point on the X axis defines the peak amplitude of the in-phase component; the projection of the point on the Y axis defines the peak amplitude of the quadrature component. The length of the line (vector) that connects the point to the origin is the peak amplitude of the signal element (combination of the X and Y components); the angle the line makes with the X axis is the phase of the signal element. All the information we need can easily be found on a constellation diagram. Figure 12 shows a constellation diagram.

Figure 12: Concept of a constellation diagram

Example 5.8

Show the constellation diagrams for ASK (OOK), BPSK, and QPSK signals.

Solution: Figure 13 shows the three constellation diagrams.

Figure 13: Three constellation diagrams

Let us analyze each case separately:

- □ BPSK also uses only an in-phase carrier. However, we use a polar NRZ signal for modulation. It creates two types of signal elements, one with amplitude 1 and the other with amplitude -1. This can be stated in other words: BPSK creates two different signal elements, one with amplitude 1 V and in phase and the other with amplitude 1 V and 180° out of phase.
- QPSK uses two carriers, one in-phase and the other quadrature. The point representing 11 is made of two combined signal elements, both with an amplitude of 1 V. One element is represented by an in-phase carrier, the other element by a quadrature carrier. The amplitude of the final signal element sent for this 2-bit data element is $2^{1/2}$, and the phase is 45° . The argument is similar for the other three points. All signal elements have an amplitude of $2^{1/2}$, but their phases are different $(45^{\circ}, 135^{\circ}, -135^{\circ}, \text{ and } -45^{\circ})$. Of course, we could have chosen the amplitude of the carrier to be $1/(2^{1/2})$ to make the final amplitudes 1 V.

References:

1. Forouzan, B. A. "Data Communication and Networking. Tata McGraw." 5^{th} Edition.