Is this transaction fraudulent?

Jessy Sun, Nada Liang, Duncan Wingfield, Travis Li

Machine Learning Final Project

Agenda

Business Problem

Dataset

Data Exploration

Models

Classification Tree Logistic Regression (Lasso) Random Forest Stacking (SVM, Log)

Business Interpretation & Application

Summary

Part 1

Business Scenario

Business Problem

Who are we?

E-Commerce company

What's our Goal?

To identify fraudulent customers at their first transaction.

What type of question is it?

Classification: 0 (not fraudulent) or 1 (fraudulent)

Business Interpretation

Predicted Result

Not fraudulent (0)

Fraudulent (1)

Actual

fraudulent (0)

Not

Fraudulent

TN	Type error I (FP): The transaction is not fraudulent, but we predicted it was.
Type error II (FN): The transaction is fraudulent, but we predicted not.	TP

Part 2 Dataset & Feature Engineering

Dataset: Each user first transaction

How large is it?

151,112 records / transactions

11 predictors

Response:

"Class"

- 0 (not fraudulent)
- 1 (fraudulent)

User_id [numeric] Unique User ID

Signup_time [date,time]Time when user created accountPurchase_time [date,time]Time when user bought an item

Purchase_value [numeric] Cost of the item purchased

Device_id [string] Unique physical device identification

Source [string] How the user found and clicked on the site

Browser [string] The internet browser the user used

Sex [string] User sex (male/female)

Age [numeric] User age

Ip_address [numeric] User numeric IP address

Ip_address_to_country [string] Shows what Country the

IP address is in upon purchase

Feature engineering: 11p → 15p → 48col

- 1. Delete user ID
- Divide time
- 3. Calculate Time difference
- 4. Transform ip, device id, country info
- 5. Transform string into categorical for tree based model
- 6. Transform categorical data to dummy variables for logistic regression
- 7. Scale data for logistic regression

Part 3

Data Exploration

Naive model

(If we predict that every transaction is not fraudulent)

Accuracy: 90.64%

Distribution of Response Values

First Glimpse of Target by Age & Gender

Part 4

Model & Results

Metric Selection

- 1. Since the dataset is imbalanced, we are not going to use ACCURACY as the sole metric
- 2. AUC and ROC curve will be leveraged as a trade-off metric

Model 1: Random Forest

Type I error 0.00%

Type II error 45.97%

Accuracy 95.68%

AUC 0.848

Actual

Fraud

Prediction

Not fraud Fraud Not fraud 0 27380 1536 1307

Model 1: Random Forest

Variable Importance in the Random Forest

time_diff
n_shared_device
n_shared_ip
purchase_quarter
purchase_month
signup_month
purchase_day
signup_day
signup_quarter
source
purchase_value
age
sex
n_shared_country
browser

n_shared_ip time_diff n_shared_device purchase_month purchase_value signup_month age purchase_quarter n_shared_country purchase_day signup_day browser signup_quarter source sex

Model 2: Logistic Regression (Lasso)

Type I error 0.46% Type II error 45.48% Accuracy 95.30% AUC 0.844

Actual

Fraud

Prediction

Not fraud Fraud Not fraud 27253 127 1550 1293

Model 2: Logistic Regression + New Loss

Validation set

XO	x1	x2	xn	У
0.89	0.72	0.50	0.66	0
0.58	0.71	0.92	0.27	1
0.10	0.35	0.27	0.37	0

Predict

Test set

		_		
XO	x1	x2	xn	У
0.29	0.77	0.05	0.09	?
0.38	0.66	0.42	0.91	?
0.72	0.66	0.92	0.11	?

X_train M1 M2

Y_train Labeled

pred1	pred2
0.72	0.70
0.25	0.22
0.80	0.96
0.58	0.52
0.20	0.93

	У	
L	0	
	1	
	0	
Γ	0	
Г	1	٦

Training

M3: SVM/LR

→ Test

X_test Y_test

M1 M2

pr	ed1	pred2
0.	50	0.39
0.	59	0.46
0.	31	0.54
0.	47	0.09
0.	.09	0.61

У	
?	
?	
?	
?	
?	l

Model 3: Stacking

M3: logistic regression

M3: SVM

AUC of linear sym

Summary of Models

Random Forest is the best model.

(overall performance is great, more simple than stacking)

	Classification Tree	Logistic Regressio	n Random Forest	Stacking-SVM	Stacking-Logistic Regression
Type I error	0.00%	0.46%	0.00%	0.00%	0.18%
Type II error	45.94%	45.48%	45.97%	45.97%	45.55%
Accuracy	95.68%	95.30%	95.68%	95.68%	95.55%
AUC	0.7704	0.844	0.848	0.848	0.847

Part 5

Business Interpretation & Application

Patterns of Fraudulent Transactions

Transactions that were difficult to identify:

6551/151112

4.3% of total records \rightarrow acc 95.66%

6551/14151

46.3% of fraud records → type error II

Lower Cutoff

To Get a Lower Type II Error

Based on Random Forest:

Cutoff Points	0.05	0.1	0.2	0.3	0.5
Accuracy	86.69%	91.83%	94.58%	95.43%	95.68%
Type error I	11.96%	5.87%	1.83%	0.37%	0.00%
Type error II	26.28%	30.25%	40.03%	45.02%	45.97%

Action Plan

Based on the fraud probability from our model, set ALERT 1 (0.1) and ALERT 2 (0.5)

If p < ALERT 1:

Normal, no alert

Cutoff Points	0.1	0.5	
Accuracy	91.83%	95.68%	
ype error l	5.87%	0.00%	
ype error II	30.25%	45.97%	

If ALERT 1 :

The purchase is suspicious, we will ask the customer for additional authorization. For example, send email or SMS to the customer, let him/her authorize the purchase.

If p > ALERT 2:

Then the purchase is highly suspicious. Not only ask the customer for additional authorization via email or SMS, but also put the purchase on hold and send the purchase information to relevant departments for further investigation.

Part 6 Summary

Summary and Recommendations

- In this scenario, type II error is more important.
- Random forest is our best model
- We lowered the cutoff points and deigned two alert levels based on 0.1 and 0.5 cutoff points.
- There is always a fraction of fraud that we can not distinguish (46%). Therefore, more data should be collected.

 For those who have had more than one IP address and purchased the products before signing up for 12 hours:

99.95% are fraudulent.

- Important variables:
 - Time difference between purchase time and sign-up time
 - Number of shared devices
 - Number of shared IPs
 - Purchase value
 - Purchase time (month/quarter)

Backup Slides

Stacking

Means making predictions of a number of models in a hold-out set and then using a different (Meta) model to train on these predictions.

Methodology

- Wolpert in 1992 introduced stacking. It involves:
- 1. **Splitting** the train set into two disjoint sets.
- 2. **Train** several base learners on the first part.
- 3. **Make predictions** with the base learners on the second (validation) part.
- 4. Using the **predictions** from (3) **as the inputs** to train a higher level learner.

Still confused about Stacking?

		Α		
XO	x1	x2	xn	У
0.17	0.25	0.93	0.79	1
0.35	0.61	0.93	0.57	0
0.44	0.59	0.56	0.46	0
0.37	0.43	0.74	0.28	1
0.96	0.07	0.57	0.01	1

В					
XO	x1	x2	xn	У	
0.89	0.72	0.50	0.66	0	
0.58	0.71	0.92	0.27	1	
0.10	0.35	0.27	0.37	0	
0.47	0.68	0.30	0.98	0	
0.39	0.53	0.59	0.18	1	

		С	55	
XO	x1	x2	xn	У
0.29	0.77	0.05	0.09	?
0.38	0.66	0.42	0.91	?
0.72	0.66	0.92	0.11	?
0.70	0.37	0.91	0.17	?
0.59	0.98	0.93	0.65	?

Train algorithm **0** on A and make predictions for B and C and save to **B1**, **C1**Train algorithm **1** on A and make predictions for B and C and save to **B1**, **C1**Train algorithm **2** on A and make predictions for B and C and save to **B1**, **C1**

B1						
pred0	pred1	pred2	У			
0.24	0.72	0.70	0			
0.95	0.25	0.22	1			
0.64	0.80	0.96	0			
0.89	0.58	0.52	0			
0.11	0.20	0.93	1			

pred0	pred1	pred2	У	Preds3
0.50	0.50	0.39	?	0.45
0.62	0.59	0.46	?	0.23
0.22	0.31	0.54	?	0.99
0.90	0.47	0.09	?	0.34
0.20	0.09	0.61	?	0.05

Train algorithm 3 on B1 and make predictions for C1

Clustering

Method

k means (2,3,4,5)

Fraud rate:

Average: 9.36% (k=4) Cluster1:30%

Lasso Regression

"acc for lasso is: 95.44 %"

testy pred_lasso 0 1 0 27295 1270 1 107 1551

"TypeI: 0.39 % TypeII: 45.02 %"

"roc score is: 0.847"

ROC Curve

RandomForest

```
Summary
```

"acc for random forest is" "95.57%"

Results

Predicted
Actual 0 1
0 41023 0
1 2010 2301

"Type I Error:" "0.00%"
"Type II Error:" "46.62%"

"roc score is 0.849"

Error Rates for Random Forest of different mtry

ROC Curve for Random Forest

