Chapter 5

- ullet The sampling distribution of $ar{Y}$
 - $lacksquare \mu_{ar{Y}} = \mu$, $\sigma_{ar{Y}} = \sigma/\sqrt{n}$
 - $lacksquare If <math>Y \sim N(\mu, \sigma^2)$, then $ar{Y} \sim N(\mu, \sigma^2/n)$
 - Central Limit Theorem
- Normal Approximation to the Binomial Distribution
 - $lacksquare Y \stackrel{ ext{approx}}{\sim} N(np, np(1-p)) ext{ and } \hat{p} \stackrel{ ext{approx}}{\sim} N(p, p(1-p)/n)$
 - Continuity connection
 - $lacksquare np \geq 5 ext{ and } n(1-p) \geq 5$

Chapter 6

- Student's t distribution
 - t Table
- ullet Confidence intervals for μ
 - Two-sided
 - One-sided: upper and lower
 - Conditions
 - Summary

 $1 - \alpha$ confidence interval for μ :

- * Two-sided: $\bar{Y} \pm t_{n-1}(\alpha/2) \times SE_{\bar{Y}}$
- * Upper one-sided: $(-\infty, \bar{Y} + t_{n-1}(\alpha) \times SE_{\bar{Y}})$
- * Lower one-sided: $(\bar{Y} t_{n-1}(\alpha) \times SE_{\bar{Y}}, \infty)$

where

$$SE_{\bar{Y}} = \frac{s}{\sqrt{n}}$$

- Interpretation of a confidence interval
- ullet Planning a study to estimate μ
- Confidence intervals for $\mu_1 \mu_2$
 - Two-sided
 - One-sided: upper and lower
 - Conditions
 - Summary

 $1 - \alpha$ confidence interval for $\mu_1 - \mu_2$:

* Two-sided: $(\bar{Y}_1 - \bar{Y}_2) \pm t_{\nu}(\alpha/2) \times SE_{\bar{Y}_1 - \bar{Y}_2}$

* Upper one-sided: $(-\infty, (\bar{Y}_1 - \bar{Y}_2) + t_{\nu}(\alpha) \times SE_{\bar{Y}_1 - \bar{Y}_2})$

* Lower one-sided: $((\bar{Y}_1 - \bar{Y}_2) - t_{\nu}(\alpha) \times SE_{\bar{Y}_1 - \bar{Y}_2}, \infty)$

where the degrees of freedom ν will be given and

$$SE_{\bar{Y}_1 - \bar{Y}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Chapter 7

- ullet Two-sample t test
 - Two-sided
 - One-sided: left and right
 - lacktriangledown p-value and critical value
 - Conditions
 - Summary

H_0	H_A	Test statistic	Rejection region	<i>p</i> -value
$\mu_1 - \mu_2 = c$	$\mu_1 - \mu_2 \neq c$	$T = \frac{(\bar{Y}_1 - \bar{Y}_2) - c}{\mathrm{SE}_{\bar{Y}_1 - \bar{Y}_2}} \stackrel{H_0}{\sim} t_{\nu}$ with	$ T > t_{\nu}(\alpha/2)$	$2 \times P(t_{\nu} > T)$
$\mu_1 - \mu_2 \ge c$	$\mu_1 - \mu_2 < c$	$\frac{\operatorname{SE}_{ar{\mathrm{Y}}_1-ar{\mathrm{Y}}_2}}{(\operatorname{SE}_1^2+\operatorname{SE}_2^2)^2}$	$T < -t_{\nu}(\alpha)$	$P(t_{\nu} < T)$
$\mu_1 - \mu_2 \le c$	$\mu_1 - \mu_2 > c$		$T > t_{\nu}(\alpha)$	$P(t_{\nu} > T)$

- Type I and type II errors, power
- ullet How are H_0 and H_A chosen

Chapter 8

- One-sample t test
 - Two-sided
 - One-sided: left and right
 - lacktriangleq p-value and critical value
 - Conditions
 - Summary

H_0	H_A	Test statistic	Rejection region	p-value
$\mu = c$	$\mu \neq c$	- 77	$ T > t_{n-1}(\alpha/2)$	$2 \times P(t_{n-1} > T)$
$\mu \ge c$	$\mu < c$	$T = \frac{\bar{Y} - c}{SE_{\bar{Y}}} \stackrel{H_0}{\sim} t_{n-1}$	$T < -t_{n-1}(\alpha)$	$P(t_{n-1} < T)$
	$\mu > c$	•	$T > t_{n-1}(\alpha)$	$P(t_{n-1} > T)$

- Paired-sample
 - One-sample for differences
 - Conditions

Chapter 9

- ullet Confidence intervals for p
 - Two-sided
 - One-sided: upper and lower
 - Conditions
 - Summary
- The Chi-square goodness-of-fit test
 - The null and alternative hypotheses
 - Conditions