## 10.1 Unfolding Computational Graphs

A computational graph is a way to formalize the structure of a set of computations, such as those involved in mapping inputs and parameters to outputs and loss. Please refer to section 6.5.1 for a general introduction. In this section we explain the idea of **unfolding** a recursive or recurrent computation into a computational graph that has a repetitive structure, typically corresponding to a chain of events. Unfolding this graph results in the sharing of parameters across a deep network structure.

For example, consider the classical form of a dynamical system:

$$\boldsymbol{s}^{(t)} = f(\boldsymbol{s}^{(t-1)}; \boldsymbol{\theta}), \tag{10.1}$$

where  $s^{(t)}$  is called the state of the system.

Equation 10.1 is recurrent because the definition of s at time t refers back to the same definition at time t-1.

For a finite number of time steps  $\tau$ , the graph can be unfolded by applying the definition  $\tau-1$  times. For example, if we unfold equation 10.1 for  $\tau=3$  time steps, we obtain

$$s^{(3)} = f(s^{(2)}; \theta) \tag{10.2}$$

$$= f(f(\boldsymbol{s}^{(1)}; \boldsymbol{\theta}); \boldsymbol{\theta}) \tag{10.3}$$

Unfolding the equation by repeatedly applying the definition in this way has yielded an expression that does not involve recurrence. Such an expression can now be represented by a traditional directed acyclic computational graph. The unfolded computational graph of equation 10.1 and equation 10.3 is illustrated in figure 10.1.

$$\left(\begin{array}{c} s^{(\ldots)} \\ \end{array}\right) \begin{array}{c} f \\ \end{array} \begin{array}{c} s^{(t+1)} \\ \end{array} \begin{array}{c} f \\ \end{array} \begin{array}{c} s^{(t+1)} \\ \end{array} \begin{array}{c} f \\ \end{array} \begin{array}{c} s^{(\ldots)} \\ \end{array} \begin{array}{c} f \\ \end{array} \begin{array}{c} s^{(\ldots)} \\ \end{array} \begin{array}{c} f \\ \end{array} \begin{array}{c} s^{(\ldots)} \\ \end{array} \begin{array}{c} f \\ \end{array} \begin{array}{c} s^{(t+1)} \\ \end{array} \begin{array}$$

Figure 10.1: The classical dynamical system described by equation 10.1, illustrated as an unfolded computational graph. Each node represents the state at some time t and the function f maps the state at t to the state at t+1. The same parameters (the same value of  $\theta$  used to parametrize f) are used for all time steps.

As another example, let us consider a dynamical system driven by an external signal  $\boldsymbol{x}^{(t)}$ ,

375

$$s^{(t)} = f(s^{(t-1)}, x^{(t)}; \theta),$$
 (10.4)