CongressStats for UTM CSCI 352 Spring 2018

Cody Robertson and Joshua Freeman

Abstract

CongressStats is a desktop application for Microsoft Windows that displays statistics such as attendance and voting records for U.S. senators and representatives. The application also displays descriptions and statuses of popular bills. Our application is for use by the average American citizen looking to learn more about how the U.S. government is representing him or her. Currently, we have fleshed out basic project goals as well as a short-term roadmap to implement the application's core features. In this paper, we document our design of CongressStats and the challenges we faced.

1. Introduction

In recent years, the United States has seen record interest in policy and legislation passed by its national government. The FCC's net neutrality policy, for example, reigned in nearly 22 million comments regarding citizens' positions on the issue [2]. Public trust in the government also remains near history lows [1]. Observing these two trends have generated our inspiration for creating CongressStats, a desktop application for Microsoft Windows.

CongressStats fetches and arranges public data to allow users to view voting histories and attendance records for U.S. senators and representatives. The application also allows users to view descriptions and statuses of popular bills. By empowering U.S. citizens with this wealth of information, voters will be able to stay active in current legislature and be able to see for themselves whether or not they are truly being represented by their elected officials.

1.1. Background

In U.S. national and state governments, are split into three branches: executive, legislative, judicial. The legislative branch, or Congress, is split into two groups: the House of Representatives and the Senate. Members of the House are referred to as representatives or congressmen/congresswomen. Members of the Senate are referred to as Senators.

1.2. Challenges

An initial challenge for the project will be to manually track down all public records in XML form hosted by various sites of the U.S. government and automate the fetching, storage, and retrieval of their contents. Another future challenge will be designing the user interface since we are both unfamiliar with many of the options available for design through Microsoft Visual Studio.

2. Scope

Our goals for CongressStats are to fetch and automatically update biographies and attendance for U.S. senators and representatives. We also want to parse voting records for bills to generate and display statistics for each official. In addition to these statistics, we would like to display information on bills themselves, including bill description, time/date of voting, and the voting result. The project will be complete if we can accomplish the above.

If time permits, we would like to add support for the same statistics for state governments that maintain adequate and public digital records, and we would like to add notifications for the following of specific bills.

2.1. Requirements

As part of fleshing out the scope of your requirements, you'll also need to keep in mind both your functional and non-functional requirements. These should be listed, and explained in detail as necessary. Use this area to explain how you gathered these requirements.

Use Case ID	Use Case Name	Primary Actor	Complexity	Priority
1	Add item to cart	Shopper	Med	1
2	Checkout	Shopper	Med	1

TABLE 1. SAMPLE USE CASE TABLE

2.1.1. Functional.

- User needs to have a private shopping cart this cannot be shared between users, and needs to maintain state across subsequent visits to the site
- Users need to have website accounts this will help track recent purchases, keep shopping cart records, etc.
- You'll need more than 2 of these...

2.1.2. Non-Functional.

- Security user credentials must be encrypted on disk, users should be able to reset their passwords if forgotten
- you'll typically have fewer non-functional than functional requirements

2.2. Use Cases

This subsection is arguably part of how you define your project scope (why it is in the Scope section...). In a traditional Waterfall approach, as part of your requirements gathering phase (what does the product actually *need* to do?), you will typically sit down with a user to develop use cases.

You should have a table listing all use cases discussed in the document, the ID is just the order it is listed in, the name should be indicative of what should happen, the primary actor is typically most important in an application where you may have different levels of users (think admin vs normal user), complexity is a best-guess on your part as to how hard it should be. A lower number in priority indicates that it needs to happen sooner rather than later. A sample table, or Use Case Index can be seen in Table 1.

Use Case Number: 1

Use Case Name: Add item to cart

Description: A shopper on our site has identified an item they wish to buy. They will click on a "Add to Cart" button. This will kick off a process to add one instance of the item to their cart.

You will then go on to (minimally) discuss a basic flow for the process:

- 1) User navigates to page listing desired item
- 2) User left-clicks on "Add to Cart" button.
- 3) User cart is updated to reflect the new item, this also updates the current total.

Termination Outcome: The user now has a single instance of the item in their cart.

You may need to also add in any alternative flows:

Alternative: Item already exists in the cart

- 1) User navigates to page listing desired item
- 2) User left-clicks on "Add to Cart" button.
- 3) User cart is updated to reflect the new item, showing that one more instance of the existing item has been added. This also updates the current total.

Termination Outcome: The user now has multiple instances of the item in their cart.

You will often also need to include pictures or diagrams. It is quite common to see use-case diagrams in such write-ups. To properly reference an image, you will need to use the figure environment and will need to reference it in your text (via the ref command) (see Figure 1). NOTE: this is not a use case diagram, but a kitten.

After fully describing a use case, it is time to move on to the next use case:

Use Case Number: 2

Use Case Name: Checkout

Description: A shopper on our site has finished shopping. They will click on a "Checkout" button. This will kick off a process to calculate cart total, any taxes, shipping rates, and collect payment from the shopper.

You will then need to continue to flesh out all use cases you have identified for your project.

Figure 1. First picture, this is a kitten, not a use case diagram

2.3. Interface Mockups

At first, this will largely be completely made up, as you get further along in your project, and closer to a final product, this will typically become simple screenshots of your running application.

In this subsection, you will be showing what the screen should look like as the user moves through various use cases (make sure to tie the interface mockups back to the specific use cases they illustrate).

3. Project Timeline

Go back to your notes and look up a typical project development life cycle for the Waterfall approach. How will you follow this life cycle over the remainder of this semester? This will usually involve a chart showing your proposed timeline, with specific milestones plotted out. Make sure you have deliverable dates from the course schedule listed, with a plan to meet them (NOTE: these are generally optimistic deadlines).

4. Project Structure

At first, this will be a little empty (it will need to be filled in by the time you turn in your final report). This is your chance to discuss all of your design decisions (consider this the README's big brother).

4.1. UML Outline

Show the full structure of your program. Make sure to keep on updating this section as your project evolves (you often start out with one plan, but end up modifying things as you move along). As a note, while Dia fails miserably at generating pdfs (probably my fault), I have had much success with png files. Make sure to wrap your images in a figure environment, and to reference with the ref command. For example, see Figure 2.

4.2. Design Patterns Used

Make sure to actually use at least 2 design patterns from this class. This is not normally part of such documentation, but largely just specific to this class – I want to see you use the patterns!

Figure 2. Your figures should be in the figure environment, and have captions. Should also be of diagrams pertaining to your project, not random internet kittens

5. Results

This section will start out a little vague, but it should grow as your project evolves. With each deliverable you hand in, give me a final summary of where your project stands. By the end, this should be a reflective section discussing how many of your original goals you managed to attain/how many desired use cases you implemented/how many extra features you added.

5.1. Future Work

Where are you going next with your project? For early deliverables, what are your next steps? (HINT: you will typically want to look back at your timeline and evaluate: did you meet your expected goals? Are you ahead of schedule? Did you decide to shift gears and implement a new feature?) By the end, what do you plan on doing with this project? Will you try to sell it? Set it on fire? Link to it on your resume and forget it exists?

References

- [1] BELL, P. Public trust in government: 1958-2017, May 2017.
- [2] KENT, J. L., AND NEWCOMB, A. The fcc just stopped regulating equal access to the internet, Dec 2017.