Worksheet 16 Review

April 2, 2020

Question 1

a. Let $k \in \mathbb{N}$.

Here, the minimum possible change occurs for the loop variable in a single iteration when i = i + 1.

The maximum possible change occurs for the loop variable in a single iteration when i = i + 6.

The exact upper bound of the variable after k iteration is

$$i_k \le 6k \tag{1}$$

The exact lower bound of the variable after k iteration is

$$k \le i_k \tag{2}$$

Using the fact that the termination occurs when $i_k = n$, we can calculate that for the upper bound, the loop terminates when

$$6k \ge n \tag{3}$$

$$k \ge \frac{n}{6} \tag{4}$$

Because we know $\frac{n}{6}$ may be a decimal, we can conclude the closest value at which the loop terminates is when

$$k = \left\lceil \frac{n}{6} \right\rceil \tag{5}$$

Using the same fact, we can calculate that for the lower bound, the loop terminates when

$$k \ge n \tag{6}$$

It follows from above that for the lower bound, the smallest value of k at which the loop termination occurs is when

$$k = n \tag{7}$$

Then, we can conclude the function has asymptotic lower bound of $\Omega(n)$, and asymptotic upper bound of $\mathcal{O}(n)$.

Then, since both Ω and \mathcal{O} have the same value, $\Theta(n)$ is also true.

Correct Solution:

Here, the minimum possible change occurs for the loop variable in a single iteration when i = i + 1.

The maximum possible change occurs for the loop variable in a single iteration when i = i + 6.

The exact upper bound of the variable after k iteration is

$$i_k \le 6k \tag{8}$$

The exact lower bound of the variable after k iteration is

$$k \le i_k \tag{9}$$

Using the fact that the termination occurs when $i_k = n$, we can calculate that for the upper bound, the loop terminates when

$$6k \ge n \tag{10}$$

$$6k \ge n \tag{10}$$

$$k \ge \frac{n}{6} \tag{11}$$

Because we know $\frac{n}{6}$ may be a decimal, we can conclude the closest value at which the loop terminates is when

$$k = \left\lceil \frac{n}{6} \right\rceil + 1 \tag{12}$$

Using the same fact, we can calculate that for the lower bound, the loop terminates when

$$k \ge n \tag{13}$$

It follows from above that for the lower bound, the smallest value of k at which the loop termination occurs is when

$$k = n + 1 \tag{14}$$

Then, we can conclude the function has asymptotic lower bound of $\Omega(n)$, and asymptotic upper bound of $\mathcal{O}(n)$.

Since both Ω and \mathcal{O} have the same value, $\Theta(n)$ is also true.

Notes:

• where is +1 coming from? Is it coming from the loop variable i=0?

b. Let $k \in \mathbb{N}$.

Part 1 (Determining maximum and minimum possible change in a single iteration):

It follows from observation that the minimum possible change occurs when $i = i \cdot 2$, and the maximum possible change when $i = i \cdot 3$.

Part 2 (Determining lower bound and upper bound of loop iteration):

Because we know the smallest possible change occurs when $i = i \cdot 2$ occurs repeatedly, we can conclude that at k^{th} iteration i_k has the lower bound of 2^k .

Similarly, because we know largest possible change occurs when $i = i \cdot 3$ occurs repeatedly, we can conclude that at k^{th} iteration, i_k has the upper bound of 3^k .

Then, by putting together, we can conclude that

$$2^k \le i_k \le 3^k \tag{1}$$

Part 3 (Determining exact number of iterations for the lower bound and upper bound):

Because we know the loop runs until $i_k < n$, we can conclude that at lower bound, termination occurs when

$$i_k \ge n$$
 (2)

$$2^k \ge n \tag{3}$$

$$\log_2 2^k \ge \log_2 n \tag{4}$$

$$k \ge \log_2 n \tag{5}$$

Using the fact that we are looking for smallest value of k, we can calculate that for lower bound

$$k = \lceil \log_2 n \rceil + 1 \tag{6}$$

Similarly, for the upper bound, loop terminates when

$$i_k \ge n$$
 (7)

$$3^k \ge n \tag{8}$$

$$\log_3 3^k \ge \log_3 n \tag{9}$$

$$k \ge \log_3 n \tag{10}$$

Using the fact, we can calculate that for upper bound,

$$k = \lceil \log_3 n \rceil + 1 \tag{11}$$

Part 4 (Determining Big-Oh and Omega):

Because we know $\log_2 n$ dominates $\log_3 n$, we can conclude $\log_2 n$ is the asymptotic upper bound, and $\log_3 n$ is the asymptotic lower bound.

Then, we can conclude the algorithm has $\mathcal{O}(\log_2 n)$ and $\Omega(\log_3 n)$.

Notes:

• How come in solution, +1 doesn't exist? What rules of thumb i can follow to better determine whether +1 should be included?

Question 2

Question 3