a. Calculate initial

weighted Gini

root node.

impurity for the

Split

Points

Split

Here. Columns are: 'Outlook (Sunny, Overcast, Rainy are one-hot-encoded into 3 columns)'. 'Temperature' (in Fahrenheit), 'Humidity' (in %), 'Windy' (Yes/No) <mark>'Play'</mark> (Yes/No,

target feature)

For the First Tree

12 **YES**

0.0714

A

Step-2 Build a decision tree stump while considering sample weights.

Split

Split

Split

Point

Split

Points

Step-1

At first, we create depth-1 decision trees/ decision trees stumps as our weak learners. Each stump makes just one split, and we'll train 50 of them sequentially (Default).

Then, start by giving each training example equal weight:

- Each sample gets weight = 1/N (N is total number of samples)
- All weights together sum to 1

1.000

•••		ike in Dec	cision Tree	e classitier)	
SORTED	SORTED	SORTED	SORTED	SORTED	SORTED
5 0	0 0	0 0	6 64 64.5	6 65	5 0
13 0	1 0	1 0	5 65	5 70	13 0
2 0	5 O	7 O	4 68	8 70	2 0
3 0	7 0	2 0	8 69 	10 70	3 0
4 0	13 O	6 O	3 70 70.5	12 75	4 0
6 0	3 0	8 0	13 71	2 78	6 0
9 0	4 O	10 O	7 72	13 80	9 0
11 0	8 0	11 0	11 72 73.0	4 80	11 0
12 0	9 0	12 0	9 75	9 80	12 1
0.5	10 0	5 1	10 75 	0 85	0 1
1 1	2 1	13 1	1 80	1 90	1 1
7 1	6 1	3 1	12 81	11 90	7 1
8 1	11 1	4 1	2 83	7 95	8 1
10 1	12 1	9 1	0 85	з 96	10 1
1	1	1	11	8	1

<mark>g.</mark> Update sample weights

- Keep the original weights for correctly classified samples
- Multiply the weights of misclassified samples by e^(a).
- Divide each weight by the sum of all weights. This normalization ensures all weights still sum to 1 while maintaining their relative proportions.

Cases where the tree made mistakes (marked with X) get higher weights for the next round.

0.056

13 ...

12 0,056

2° 0,056

<mark>d.</mark> Create the second stump.

Updated

Weight (Normalized)

₩₃

0.0357

0.1250

0.0357

0.0643

0.0643

0.1250

0.0357

0.1250

0.0643

0.0643

0.0643

0.0357

0.0357

0.1250

1

→ 0.1944

For the Second Tree

a. Build a new stump, but now using the updated weights. Calculate new weighted Gini impurity for root node.

b. For each feature:

Same process as before, but the weights have changed.

Gini Impurity (with weight)

$$1 - \left(\frac{1}{0.2778}\right)^2 - \left(\frac{1}{0.7222}\right)^2 = 0.4012$$

c. Pick the split with best weighted Gini impurity reduction.

Notice that "overcast" is no longer the best split — the algorithm now finds temperature (84.0) gives the highest impurity reduction,

2nd tree achieves a lower error rate (0.222) and higher importance score (a = 1.253) than the first tree.

12 10 81

YES 83

85

2

0

Like before, misclassified examples get higher weights for the next round.

NO YES

0.0556

For the Third Tree onwards

Repeat Step-2 for all remaining trees.

The algorithm builds 50 simple decision trees sequentially, each with its own importance score (a).

Step 3: Final Ensemble Keep all trees and their importance scores

The 50 simple decision trees work together as a team, each with its own importance score (a). When making predictions, trees with higher a values (like Tree 2 with 1.253) have more influence on the final decision than trees with lower scores.

- When predicting for new data, each tree makes its prediction and multiplies it by its importance score (a).
- The final decision comes from adding up all weighted votes here, the NO class gets a higher total score (23.315 vs 15.440),
- So, the model predicts NO for this unseen example.