1.6 Working with Functions: Eraphs Graphs of Basic Functions A constant function has the form for some number c The Lines f(x)= mx+b, m and b fixed numbers

*j*11

$$f(x) = x^{2}$$

$$-(-2,4) \cdot (-2,4) \cdot (-2$$

Parabola

$$f(x) = x^{3}$$

$$(-1,-1)$$

$$(-2,-8)$$

$$f(x) = \sqrt{x}$$

 $Pomain [0, \infty)$

$$\frac{1}{(0,0)} = \frac{f(x)}{(2,12)} \frac{3}{(3,13)} \frac{(4,2)}{(4,2)}$$

$$f(x) = \sqrt{x}$$
 Demain $[0,\infty)$

Combining those two we get the graph

3

of $y^2 = \chi$ (0,0) (2,5) (3,13) (1,2) (2,5) (3,53) (4,-2)

Definitely not a function. Fails the vertical line test.

Graphing Piecewise Defined Functions

Eg: $f(x) = \begin{cases} x & \text{if } x \leq 2, \\ x + & \text{if } x > 2. \end{cases}$

E.g:
$$f(x) = \begin{cases} x^2 & x \ge 0, \\ x & x \ge 0. \end{cases}$$

Ex:
$$f(x) = |x| = \int x$$
 if $x \ge 0$, $-x$ if $x < 0$.

$$(-3,3)$$
 $(-2,2)$
 $(-1,1)$
 $(-1,1)$
 $(-1,1)$
 $(-1,1)$

1.7 Working with Function	~S'.
1.7 Working with Function Getting Informati	ion from the Graph
Read this section	
Domain and Range from	n a Graph
Domain	
Inputs	Range Outputs Dependent variable Y-values
Independent Variable	Dependent variable
X-values	y-values
Given a graph	
Range	
Domain	
Eig: let f(x) = 54-x2	$\frac{\gamma = f(x)}{(2,0)}$
	main: [-2,2]
	main. [-)

Domain: [-2,2] Range: [92] Increasing and Decreasing Functions

6

Defn: The function of is increasing it for any a < b
on the interval I if for any a < b
on the interval I f(a) < f(b)

(a,f(a))

(a,f(b))

The function f is decreasing on the interval I if for any acb on the interval I, f(a) > f(b)

Eig: f(x) = |x| is increasing on $[0,\infty)$ and decreasing on $[-\infty,\infty)$ and