Конспект лекцій зі статистичної фізики

Андрій Жугаєвич (zhugayevych@iop.kiev.ua) $6 \ \, \textit{березня} \ \, 2011 \, \, p.$

Передмова 2			
I 7	Гермодинаміка	3	
1	Аксіоматика і обгрунтування термодинаміки	3	
	1.1 Аксіоматична побудова термодинаміки	3	
	1.2 Вивід законів термодинаміки зі статистичної фізики	4	
2		6	
	2.1 Основні термодинамічні величини	6	
	2.2 Реальні термодинамічні системи	7	
	2.3 Інші питання рівноважної термодинаміки	8	
3		9	
	3.1 Закон зростання ентропії	9	
	3.2 Нерівноважні процеси	10	
	3.3 Термодинамічна теорія флуктуацій	10	
	о.о термодинами ша теорил флуктуации	10	
II I	Іринципи статистичної фізики	12	
4		12	
	4.1 Ергодичність	12	
	4.2 Вивід мікроканонічного розподілу	13	
	4.3 Перемішування	13	
	4.4 Вивід канонічного розподілу	14	
5		15	
	5.1 Рівноважні розподіли	15	
	5.2 Принцип тотожності частинок. Парадокс Гіббса	17	
	0.2 IIpiniqini 1010/miooti iaetinioki Itapaqoke 11000a		
III	Моделі без взаємодії	18	
6	Ансамбль конфігураційно ізольованих систем	18	
7	У Ідеальний класичний газ	20	
8	Ідеальний квантовий газ	21	
IVI	Ефекти взаємодії	26	
9	1	26	
	0 Віріальний розклад	26	
1	1 Фазові переходи	26	
	- ·	~-	
	Нерівноважна статистична фізика	27	
1		27	
	12.1 Кінетичне рівняння Паулі		
	12.2 Дифузія і процеси переносу	27	
	12.3 Кінетичне рівняння Больцмана	27	
1	3 Теорія лінійного відгуку	27	
	13.1 Лінійний відгук термодинамічної системи	27	
	13.2 Властивості причинних функцій впливу	27	
	13.3 Флуктуаційно-дисипативна теорема	28	
J	Іітература	29	
TI'			
Jlit	ература	29	

Задачі до курсу статистичної фізики

Андрій Жугаєвич (zhugavevych@univ.kiev.ua) 6 березня 2011 р.

1	Аксіоматика і обгрунтування термодинаміки
2	Рівноважна термодинаміка
3	Нерівноважна термодинаміка
4	Обгрунтування статистичної фізики
5	Принципи статистичної фізики
6	Ансамбль конфігураційно ізольованих систем
7	Ідеальний класичний газ
8	Ідеальний квантовий газ
12	Кінетичні явища
Лi	гература
Po	зв'язки

§1. Аксіоматика і обгрунтування термодинаміки

- 1. (20) Показати, що з оборотності адіабатичних процесів в термічно однорідній системі випливає, що $\delta Q =$
- 2. (10) Показати, що для термічно неоднорідної системи адіабатичні процеси загалом необоротні, розглянувши приклад ідеального газу, розділеного на дві частини адіабатичною жорсткою перегородкою. Зафіксувавши об'єм V_2 , розглянути круговий адіабатичний процес, при якому почергово фіксується T_1 і V_1 .
- 3. (5) Показати, що для термічно неоднорідної системи не існує функції стану σ такої, що $\delta Q = \lambda \, \mathrm{d}\sigma$, розглянувши приклад газу, розділеного на дві частини адіабатичною жорсткою перегородкою, у змінних $T_1, S_1, T_2, S_2.$
- 4. (5) Показати, що адіабатична недосяжність нуля температури еквівалентна тому, що S(T=0) не залежить ні від яких термодинамічних величин за умови, що вона скінченна.
- 5. (5) Показати, що з рівності S(T=0)=0 випливає, що всі теплоємності C_x і термічні коефіцієнти $(\partial x/\partial T)_X$, де x, X – пара спряжених термодинамічних величин, прямують до нуля при $T \to 0$.

§2. Рівноважна термодинаміка

* Тотожності

- 1. (3) Довести формули: a) $\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial x}\right)_z = 1;$ б) $\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1.$ 2. (3) Записати $C_p C_V$ у змінних: a) (T, V); б) (T, p); в) $(T, V, \mu).$
- 3. (3) Записати $(\partial T/\partial p)_H$ у змінних (T, V).
- 4. (3-5) Довести тотожності: а) $n=(\partial p/\partial \mu)_T;$ б) $E=-T^2(\partial [F/T]/\partial T)_V;$ в) $C_V=(\partial E/\partial T)_V;$ г) $C_p=(\partial H/\partial T)_p;$ д) $C_p/C_V=(\partial V/\partial p)_T/(\partial V/\partial p)_S;$ е) $C_p-C_V=(\partial p/\partial T)_V[V-(\partial H/\partial p)_T];$ є) $(\partial N/\partial \mu)_{T,V}=(\partial V/\partial P)_T$ $-N^2/V^2(\partial V/\partial p)_T$.
- 5. (5) Відомо, що вода в інтервалі температур від 0 до 4 °С стискується при нагріванні. Показати, що в цьому ж температурному інтервалі вода охолоджується при адіабатичному стисненні. (Г93)
 - *Диференціювання
- 6. (10) Довести, що рівняння політропи $C_V = C$ є розв'язком рівняння $dT/dV = T(\partial p/\partial T)_V/(C C_V)$. Знайти таким чином рівняння політропи газу ван-дер-Ваальса.
- 7. (5-8) Знайти p, S, E, C_V і $C_p C_V$ для системи, вільна енергія якої F(T,V) дорівнює: а) $NT \ln \frac{n}{T}$; б) $N\left(T\ln\frac{n}{T(1-bn)}-an\right);$ в) $NT\ln\frac{An}{T^{3/2}}.$ 8. (5) Знайти $T,\ p,\ C_V$ і C_p-C_V , якщо $S(E,V)=N\ln(E/V).$