PHYSICS CLASS 12 BATCH

Electric Charges and Field

DPP-03

- An electron is moving round the nucleus of a 1. hydrogen atom in a circular orbit of radius r. The coulomb force \vec{F} between the two is (Where $K = \frac{1}{4\pi\varepsilon_0}$);
 - (1) $-K\frac{e^1}{r^3}\hat{r}$ (2) $K\frac{e^1}{r^3}\vec{r}$
 - (3) $-K \frac{e^2}{r^3} \vec{r}$ (4) $K \frac{e^1}{r^2} \hat{r}$
- 2. Two small spheres each having the charge +Q are suspended by insulating threads of length L from a hook. This arrangement is taken in space where there is no gravitational effect, then the angle between the two suspensions and the tension in each will be:
 - (1) 180°, $\frac{1}{4\pi\varepsilon_0} \frac{Q^2}{(2L)^2}$
 - (2) 90°, $\frac{1}{4\pi\epsilon_0} \frac{Q^2}{I^2}$
 - (3) $180^{\circ}, \frac{1}{4\pi\epsilon_0} \frac{Q^2}{2I^2}$
 - (4) $180^{\circ}, \frac{1}{4\pi\epsilon_0} \frac{Q^2}{I^2}$
- 3. Charge q_2 of mass m revolves around a stationary charge q_1 in a circular orbit of radius r. The orbital periodic time of q_2 would be:
 - (1) $\left[\frac{4\pi^2 mr^3}{kq_1q_2} \right]^{1/2}$ (2) $\left[\frac{kq_1q_2}{4\pi^2 mr^3} \right]^{1/2}$
 - (3) $\left[\frac{4\pi^2 mr^4}{kq_1q_2}\right]^{1/2}$ (4) $\left[\frac{4\pi^2 mr^2}{kq_1q_2}\right]^{1/2}$

- The ratio of electrostatic and gravitational forces acting between electron and proton separated by a distance 5×10^{-11} m will be (Charge on electron = 1.6×10^{-19} C, mass of electron = 9.1×10^{-31} kg, mass of proton = 1.6×10^{-27} kg, $G = 6.7 \times 10^{-11}$ Nm^2/kg^2):
 - (1) 2.36×10^{39}
- (2) 2.36×10^{40}
- (3) 2.34×10^{41}
- (4) 2.34×10^{42}
- 5. Four charges are arranged at the corners of a square ABCD, as shown in the adjoining figure. The force on the charge q kept at the centre O is:

- (1) zero
- (2) along the diagonal AC
- along the diagonal BD
- perpendicular to side DC
- A charge q_1 exerts some force on a second charge q_2 . If third charge q_3 is brought near, the force that q_1 exerts on q_2 and net force on q_2 respectively
 - (1) decreases, increases
 - (2) increases, increases
 - (3) remains unchanged, may increase or decrease
 - (4) remains unchanged, remains unchanged
- 7. Two equal point charges each of 3µC are separated by a certain distance in metres. If they are located at $(\hat{i}+j+k)$ and $(2\hat{i}+3j+3k)$, then the electrostatic force between them is:
 - (1) $9 \times 10^3 N$
 - (2) $9 \times 10^{-3} N$
 - (3) $3 \times 10^{-3} N$
 - (4) $9 \times 10^{-2} N$

- 8. Three charges are placed at the vertices of an equilateral triangle of side 'a' as shown in the following figure. The force experienced by the charge placed at the vertex A in a direction normal to BC is:
 - (1) $Q^2/(4\pi\varepsilon_0 a^2)$
 - (2) $-Q^2/(4\pi\varepsilon_0 a^2)$
 - (3) zero
 - (4) $Q^2 / (2\pi\varepsilon_0 a^2)$

- **9.** Equal charges q are placed at the four corners A, B, C, D of a square of length a. The magnitude of the force on the charge at B will be:
 - $(1) \quad \frac{3q^2}{4\pi\varepsilon_0 a^2}$
 - $(2) \quad \frac{4q^2}{4\pi\varepsilon_0 a^2}$
 - $(3) \quad \left(\frac{1+2\sqrt{2}}{2}\right) \frac{q^2}{4\pi\varepsilon_0 a^2}$
 - $(4) \quad \left(2 + \frac{1}{\sqrt{2}}\right) \frac{q^2}{4\pi\varepsilon_0 a^2}$

- **10.** Four charges equal to −*Q* are placed at the four corners of a square and a charge *q* is at its centre. If the system is in equilibrium the value of *q* is:
 - (1) $-\frac{Q}{4}(1+2\sqrt{2})$
 - $(2) \quad \frac{Q}{4} \left(1 + 2\sqrt{2} \right)$
 - $(3) \quad -\frac{Q}{2}\left(1+2\sqrt{2}\right)$
 - $(4) \quad \frac{Q}{2} \left(1 + 2\sqrt{2} \right)$
- 11. Three identical charges are placed at the corners of an equilateral triangle. If the force between any two charges is *F*, then the net force on each will be:
 - (1) $\sqrt{2}F$
- (2) 2*F*
- (3) $\sqrt{3}F$
- (4) 3*F*

ANSWER KEY

1. (3)

2. (1)

3. (1)

4. **(1)**

5. (4)

(3)

(2)

8. (3) 9. (3) 10. (2)

11. (3)