

Programmer en Python en 2^{nde}

Résumé Python

Cette page présente les instructions usuelles découvertes au cours de cette formation, accompagnées de leur équivalent en pseudo-code algorithmique.

I – Affecter une variable

Interprétation	Pseudo-code	Python
x prend la valeur 3	x ← 3	x = 3

Les types usuelles des valeurs manipulées en Python sont :

- Les entiers (type int)
- Les flottants (type float, assimilables aux décimaux)
- Les booléens (type bool) de valeurs True ou False, résultats d'un test
- Les chaînes de caractères (type str) qui représentent les textes
- Les listes (type list) qui sont des séquences d'objets

II – Définir une fonction

Interprétation	Pseudo-code	Python
f(x) = 2x + 3	Définir $f(x)$ Renvoyer 2 x + 3	<pre>def f(x): return 2*x+3</pre>

Attention, les deux points et l'indentation sont indispensables...

III - Faire un test

Interprétation	Pseudo-code	Python
x est-il égal à y ?	x = y	ж == у
x est-il distinct de y ?	<i>x</i> ≠ <i>y</i>	ж != у
x est-il strictement supérieur à y ?	<i>x</i> > <i>y</i>	х > у
x est-il supérieur ou égal à y ?	$x \ge y$	х >= у
x est-il strictement inférieur à y ?	<i>x</i> < <i>y</i>	ж < у
x est-il inférieur ou égal à y ?	$x \leq y$	х <= у

IV – Instructions conditionnelle

Remarque	Pseudo-code	Python
La partie « sinon » est optionnelle	Si $A > 0$ Alors $A \leftarrow -A$ Sinon $A \leftarrow f(A)$ Fin Si	<pre>if A > 0: A = -A else: A = f(A)</pre>

A nouveau, les deux points et l'indentation sont indispensables. S'il y a plusieurs instructions imbriquées, on peut utiliser elif, contraction de « else if ».

V – **Boucle itérateur**

Pseudo-code	Python	Entiers parcourus
Répéter 20 fois $A \leftarrow A$ Fin répétition	<pre>for i in range(20): A = A</pre>	De 0 à 19
Pour i allant de 1 à N : $A \leftarrow A+i$ Fin Pour	<pre>for i in range(1, N+1): A = A + i</pre>	De 1 à N

range (a, b, c) génère les entiers de a (*inclus*) à b (*exclus*), avec un pas de c. Par défaut, a = 0 et c = 1 donc écrire range (n) signifie range (0, n, 1).

VI - Boucle conditionnelle

Remarque	Pseudo-code	Python
Lorsqu'on passe sur machine, attention aux « boucles infinies »	Tant que $n > 1$ $n \leftarrow reste \ de \ n/q$ Fin Tant Que	while n > 1: n = n%q

VII – Modules complémentaires utiles

• math: contient les fonctions mathématiques les plus communes.

Pour importer les fonctions trigo.: ${\tt from\ math\ import\ sin,\ cos,\ tan}$

• random : pour générer des nombres pseudo-aléatoires.

Pour un décimal dans [0; 1[:from random import random Pour un entier dans [a; b]:from random import randint