UTC - CF04 Session Automne

CF04 Mécanique des fluides numérique et couplages multiphysiques

Emmanuel LEFRANÇOIS

Equipe Numérique

Mots-clés :

Mécanique des fluides, méthodes numériques, couplages multiphysiques

Laboratoire Roberval, UMR 7337 UTC-CNRS

http://roberval.utc.fr

Sixième partie

Du bon usage des modèles de turbulence

- Brève introduction
- 2 Origine de la turbulence
- Modélisation de la turbulence
- 4 RANS : Reynolds Averaged Navier Stokes
- **5** LES: Large Eddy Simulation
- 6 DES: Detached Eddy Simulation
- DNS : Direct Numerical Simulation
- 8 Du bon usage des modèles de turbulence

Section. 1

Brève introduction

1.1. La turbulence est partout...

La turbulence est l'état d'un fluide dont l'écoulement est irrégulier tel qu'en tout point de l'espace la vitesse varie aléatoirement. Son étude n'est pas récente et a toujours été un objet de fascination dans l'histoire.

(a) Da Vinci (1452-1519)

(b) Grande Vague Kanagawa (1830)

(C) Champ d'éoliennes

(d) Traînée induite

1.2. Constats généraux

- Les écoulement sont turbulents, 3D, instationnaires et donc imprévisibles par nature.
- A l'heure actuelle, la turbulence est au coeur des problèmes fondamentaux de la physique classique.
- 3. Elle est essentiellement caractérisée par l'existence de mouvements de toutes tailles, à l'inverse de l'écoulement laminaire qui a lieu à une échelle précise.
- 4. Ces mouvements correspondent entre autres à des tourbillons de tailles différentes dont les plus petits sont transportés par les plus grands.

Section. 2

Origine de la turbulence

2.1. Paramètre dimensionnant : le Reynolds $(\mathcal{R}e)S$

Notations : L et U échelles en dimension et en vitesse.

$$\widetilde{\mathbf{x}} = \frac{\mathbf{x}}{L}, \quad \widetilde{\mathbf{v}} = \frac{\mathbf{v}}{U}, \quad \widetilde{p} = \frac{p}{\rho U^2}, \quad \widetilde{\mathbf{t}} = \frac{\mathbf{U}}{L}t.$$

Forme adimensionnée des équations de Navier-Stokes :

$$\frac{\partial \widetilde{\mathbf{v}}}{\partial t} + \widetilde{\mathbf{v}} \vec{\nabla}' \widetilde{\mathbf{v}} = -\vec{\nabla}' \widetilde{\boldsymbol{p}} + \frac{1}{\mathscr{R}e} \Delta' \widetilde{\mathbf{v}}$$

Nombre de Reynolds :
$$\Re e = \frac{UL}{v} = \frac{\text{temps caractéristique de diffusion}}{\text{temps caractéristique de convection}}$$

- 1. $\Re e << 1 \rightarrow \widetilde{\mathbf{v}} \vec{\nabla}' \widetilde{\mathbf{v}} << 1$: équation linéaire où les phénomènes diffusifs dominent,
- 2. $\Re e>>1 \to \Delta' \widetilde{\mathbf{v}}<<1$: équation non-linéaire où les phénomènes convectifs dominent pour générer :
 - + des effets instationnaires,
 - + des brisures de symétries par rapport aux conditions aux limites initiales,
 - + ...

bref... la turbulence.

Comportement du terme de transport par diffusion

$$\rho C_p \frac{\partial T}{\partial t} = \kappa \Delta T$$

1. Perturbation :

$$T = \overline{T} + T'$$
.

2. Injection dans l'équation :

$$\rho C_{p} \left(\frac{\partial \overline{T}}{\partial t} + \frac{\partial T'}{\partial t} \right) = \kappa \Delta \overline{T} + \kappa \Delta T'.$$

- 3. Procédure de moyenne : $\overline{\overline{T}} = \overline{T}$ et $\overline{T'} = 0$
- 4. ... pour aboutir à :

$$\rho C_p \frac{\partial \overline{T}}{\partial t} = \kappa \Delta \overline{T}.$$

Conclusions

- la perturbation n'a pas d'influence sur la température moyenne (linéarité),
- la turbulence ne se manifeste pas via le transport par diffusion!

Comportement du terme de transport par convection

Equations de N.S. :
$$\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_i u_j) = -\frac{\partial}{\partial x_j}\left(p\delta_{ij} - \mu\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)\right)$$

1. Perturbation

$$u = \overline{u} + u' \dots$$

- 2. Injection...
- 3. Procédure de moyenne...

$$\Rightarrow \quad \frac{\partial}{\partial t} (\rho \overline{u}_i) + \frac{\partial}{\partial x_j} (\rho \overline{u}_i \overline{u}_j) = -\frac{\partial}{\partial x_j} \left(\overline{p} \delta_{ij} - \mu \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right) \right) - \frac{\partial}{\partial x_j} (\rho \overline{u'_i u'_j})$$

Terme supplémentaire $-\rho \overline{u_i'u_i'}$:

- ► Inconnues supplémentaires vy équations supplémentaires (fermeture du système),
- ► Terme de transport des fluctuations de vitesse à l'origine de la turbulence,
- ... qui s'apparente à celui d'un terme de diffusion (mélange, homogénéisation).

2.2. Pour résumer...

- Origine de ce désordre = terme non-linéaire de NS (terme inertiel),
- ▶ Instabilités → ingrédients essentiels de la turbulence.

► Instabilité = bifurcation dans la solution d'une équation non linéaire pour une certaine valeur d'un paramètre de contrôle : ici c'est Re qui pilote.

2.2.Origine turbulence / Déterministe... mais comportement chaotique

La bonne nouvelle...

Les équations de NS sont déterministes, considérées comme exactes et donc solvables!

Les mauvaises...

- 1. hors de portée avec les calculateurs actuels,
- 2. caractérisées par une sensibilité aux conditions initiales (SCI)!

Exemple illustrant la SCI : Soit à résoudre l'équation déterministe archi-simple :

$$U^{n+1} = 1 - 2(U^n)^2$$

2.3. Turbulence et transferts d'énergie grandes → petites structures

Jet 2D axisymétrique ([Prasad and al, 1990, Phys. Fluids A)

- 1. large gamme d'échelles tourbillonnaires en espace,
- 2. processus de création de toutes ces échelles est lié au concept de cascade d'énergie en turbulence due à Lewis Fry Richardson (1881-1953).

Gros tourbillons \rightarrow plus petits ... \rightarrow plus petit \rightarrow dissipation visqueuse en chaleur

2.4. Echelle de turbulence de Kolmogorov (1941)

Mathématicien russe Andreï Kolmogorov (1903-1987) à la base de la compréhension actuelle de la turbulence. On parle de la théorie K41.

2.5. Echelles spatiales de la turbulence

 $\eta \qquad \leadsto \qquad \qquad$ échelles de longueurs $\qquad \leadsto \qquad L$

- échelle intégrale L: taille des plus grands tourbillons, $L \neq f(v)$
- échelle de Kolmogorov η : taille des plus petites structures (>>>> échelle du mouvement brownien), $\eta \propto v$

Dissipation (chaleur) des plus petits tourbillons par la viscosité pour :

$$\mathscr{R}e(\eta) = \frac{u_{\eta}\eta}{v} \sim 1.$$

2.6. Cascade d'énergie turbulente

Spectre d'énergie turbulente

Nombre d'onde : $K = \frac{2\pi}{I}$ avec I la dimension de la structure tourbillonnaire.

2.7. Problématique liée à la modélisation de la turbulence

Résolution complète des équations de NS = toutes les échelles...

1. ... en espace :

$$\left(\frac{L}{\eta}\right)^3 \sim \Re e^{9/4}$$
 cellules

Ex: $\sim 10^9$ de cellules pour $\Re e = 10^4 ! !$

2. ... en temps :

$$\frac{\tau_L}{\tau_\eta} \sim \mathcal{R} e^{1/2}$$
 pas de temps.

Au total, prévoir de résoudre $\mathscr{R}e^{11/4}$ fois les équations de Navier-Stokes \dots

INENVISAGEABLE!

D'où la distinction entre les deux notions que sont :

Grandes échelles RESOLUTION

 \leftrightarrow

Petites échelles MODELISATION

Section. 3

Modélisation de la turbulence

3.1.Déterministe... mais comportement chaotique

Echelles modélisées et échelles simulées/résolues

3.2.État de l'art actuel

3.3. Une image qui en dit long...

DNS LES RANS
A. Maries, University of Pittsburgh

ELF/2017 CF04 21 / 43

Section. 4

RANS : Reynolds Averaged Navier Stokes

4.1. Analyse d'un signal turbulent (mesure expé)

Enregistrement d'une composante en vitesse fonction du temps (source vtchl.illinois.edu)

Observations:

- 1. signal fortement aléatoire,
- 2. extraction possible d'un signal moyenné.

Idée : appliquer une décomposition type

variable = composante moyenne + composante fluctuante

aux variables vitesses, pression... des équations de NS.

4.2. Décomposition en grandeurs moyenne et fluctuantes

Procédure en 3 étapes :

- 1. décomposition de chaque variable : $f = \overline{f} + f'$
- 2. insertion dans les équations d'équilibre,
- 3. application de l'opérateur moyenne temporelle à ces équations :

$$\overline{f}(x) = \lim_{T \to \infty} \frac{1}{T} \int_{t}^{t+T} f(x,t) dt$$

Application aux équations de Navier-Stokes

$$\frac{\partial}{\partial x_{j}}(\rho \overline{u_{j}}) = 0$$

$$\frac{\partial}{\partial t}(\rho \overline{u_{i}}) + \frac{\partial}{\partial x_{j}}(\rho \overline{u_{j}u_{i}}) = -\frac{\partial \overline{\rho}}{\partial x_{i}} + \frac{\partial}{\partial x_{i}} \overline{\tau}_{ij} + \overline{S}_{i} - \frac{\partial}{\partial x_{j}}(\rho \overline{u'_{i}u'_{j}})$$

Si même processus appliqué à l'équation de l'énergie $\rightarrow \rho C_p \overline{u_i' T'}$

4.3. Problématique liée à la fermeture des équations

Nouvelles inconnues

$$\mathcal{R}_{T} = -\rho \overline{u_{i}' u_{j}'} = -\rho \left[\begin{array}{cc} \overline{u_{1}' u_{1}'} & \overline{u_{1}' u_{2}'} & \overline{u_{1}' u_{3}'} \\ \underline{u_{2}' u_{1}'} & \underline{u_{2}' u_{2}'} & \underline{u_{2}' u_{3}'} \\ \underline{u_{3}' u_{1}'} & \underline{u_{3}' u_{2}'} & \underline{u_{3}' u_{3}'} \end{array} \right]$$
: tenseur des contraintes de Reynolds

→ nouvelles équations pour garantir la fermeture du système complet!

Deux grandes classes de modèles :

- modèles basés sur la viscosité turbulente μ_T (les plus connus),
- 2. modèles aux tensions de Reynolds.
 - ▶ 1 équation de transport / composante du tenseur \mathcal{R}_T : +6 inconnues!
 - ▶ plus lourds/complets → utiles si turbulence fortement anisotrope (séparateur cyclonique)

4.4. Modèles basés sur la viscosité turbulente

Hypothèse de Boussinesq (1877) :

- ▶ tenseur $\mathcal{R}_{\mathcal{T}}$ ≈ tenseur des contraintes visqueuses (au terme de viscosité près),
- turbulence isotrope (pas de direction privilégiée)

$$\mathscr{R}_T = 2\mu_T \, \overline{S} - \frac{2}{3} \left(\mu_T \nabla \cdot \overline{\mathbf{v}} \right) \mathbf{I} \quad \text{avec} \quad \overline{S} = \frac{1}{2} \left(\nabla \overline{u} + \nabla \overline{u}^T \right).$$

Objectif : modéliser le terme de viscosité turbulente μ_T avec \pm d'équations...!

- ▶ 0 équation (fermeture algébrique) : Baldwin-Lomax (1978),
- ► +1 équation (de transport) : Spalart-Almaras (1994).
- ► +2 équations (de transport) : modèles $k \epsilon$, modèle $k \omega$ (1972).

4.4. Viscosité turbulente / Spalart-Allmaras

- \blacktriangleright + 1 équation de transport pour résoudre μ_T ,
- trouve son origine dans les applications aérospatiales,
- développé autour d'une approche non structurée du solveur.

Deux variantes :

- 1. Standard (= Low Reynolds) SA: pas de loi de paroi.
- 2. High Reynolds SA: couplée à des lois de paroi.

Forces

- CL attachée ,
- décollement doux,
- calcul polaire, fuselage...

Faiblesses

- si couche de mélange,
- zones de recirculation dominantes,
- convection naturelle.

4.4. Viscosité turbulente / $k - \epsilon$ et $k - \omega$

+ 2 équations de transport : énergie cinétique de turbulence k, taux de dissipation d'énergie turbulente ϵ .

avec:

$$v_t = \frac{\mu_T}{\rho} = C_\mu \frac{k^2}{\epsilon}.$$

▶ le plus connu/cité... mais pas le meilleur!

Forces

- ► simple, dispo dans tous les codes,
- ▶ grande robustesse,
- comportement et limitations connues,
- domaine d'application large
- le chouchou des industriels pour une 1^{ere} estimation.

Faiblesses

- turbulence sur-estimé,
- n'aime pas les parois... (mieux si $k-\omega$),
- inadéquat si forts effets de \vec{g} ,
- ightharpoonup
 abla p adverse mal priss en compte,
- jets et sillages mal prédits,
- pas d'effets de compressibilité

4.5. Modèles hauts Reynolds versus bas Reynolds

4.5. Modèles hauts Reynolds *versus* bas Reynolds

... hauts Reynolds si :

- effets de parois peu importants,
- effets de décollement principalement dûs à des variations géométriques,
- temps CPU et limitations de taille de maillage requis,
- pas d'effet diffusif excessif observé en proche paroi.

... bas Reynolds si :

- précision sur profil de vitesse et température requise en proche paroi,
- effet de décollement résultants de gradients de pression adverses ;
- pas de contrainte sur le temps CPU ni de limites sur le maillage,
- effet diffusif excessif observé en proche paroi.

POST-TRAITEMENT

Vérifier a posteriori la qualité du maillage vis-à-vis du modèle de turbulence en affichant la carte du y^+ de la première couche de mailles!

Section. 5

LES: Large Eddy Simulation

5.1. Principes généraux de la LES

Modèles RANS, très abordables mais tueurs de la turbulence et de l'instationnaire!

- Très adaptée à une approche instationnaire sur les grandes échelles,
- Origine dans la simulation des courants atmosphériques (Smagorinsky, 1963),
- une des méthodes les plus prometteuses (compromis),
- Application d'un filtre spatial (et non temporel) pour séparer ce qui est résolu de ce qui est modélisé,

$$\mathcal{R}_T = 2\mu_T \overline{S} - \frac{2}{3} (\mu_T \nabla \cdot \widetilde{\mathbf{v}} + \rho \mathbf{k}) \mathbf{I}$$

avec k énergie cinétique de turbulence des échelles de sous-mailles,

- ightharpoonup Viscosité μ_T calculée à partir d'un modèle de sous-mailles (Smagorinsky, WALE).
- Requiert des maillages beaucoup plus fins qu'une approche RANS,
- ► Très sensibles aux conditions limites entrantes!
- Parois pas toujours bien captées selon le modèle de sous-mailles.

5.2. Equations filtrées de la turbulence

Effet de filtrage pour différentes échelles Δ (source Hao (2008)

Section. 6

DES: Detached Eddy Simulation

6.1. Principes généraux

Méthode hybride qui répond à un besoin de compromis :

- ▶ approche LES dans les zones décollées instationnaires (éloignées des parois),
- ▶ approche RANS dans les couches limites.

Problématique du maillage allégée! Méthode du compromis.

Plusieurs choix pour les modèles RANS :

- 1. variante Spalart-Allmaras DES,
- 2. variante $k \epsilon$ DES,
- 3. variante $k \omega$ DES.

Plusieurs variantes pour la DES:

- 1. DDES: Delayed DES
- 2. IDDES: Improved Delayed DES

Section. 7

DNS : Direct Numerical Simulation

7.1. La plus naturelle. . . et la plus coûteuse avec approche statistique du post-traitement

- le Saint Graal...
- ► Ingrédients les plus simples :
 - 1. schémas d'ordre les plus élevées,
 - 2. maillage pour capter TOUTES les échelles en espace,
 - 3. schéma en temps d'ordre élevé et pas de temps compatible avec la plus petite échelle en temps.
- réservé à un cadre de Recherche et encore...
- ► INABORDABLE sur le plan industriel!

Et si je ne coche pas de modèle de turbulence, je résous quoi?

↔ calcul DNS limité par le filtrage lié à la plus petite maille (donc de l'échelle turbulente résolue).

Parfois la meilleure solution...

7.2. Transition laminaire → turbulent vue sous l'angle expérimental

Transition laminaire/turbulent d'une couche limite de plaque plane

7.3. ... puis vue sous l'angle de la DNS

Direct numerical simulation of transition to turbulence (Stanford University)

Section. 8

Du bon usage des modèles de turbulence

8.1. Initialisation des variables du modèle de turbulence retenu

Modèle de turbulence → conditions aux limites enrichies!

I/ Méthode du report d'un profil en amont, pas la plus pratique.

II/ Imposition à l'entrée de l'énergie cinétique turbulente k et de la dissipation ϵ :

- 1. diamètre hydraulique $D_H = 4S/P$, vitesse débitante U, viscosité v.
- 2. Calcul de vitesse de frottement : $u_{\tau} = U \sqrt{\frac{\Lambda}{8}}$ Λ le cœfficient de perte de charge réparti *classique* :

$$\mathscr{R}e = UD_H/v \rightarrow \Lambda = \frac{0.316}{\mathscr{R}e^{0.25}} \quad \mathscr{R}e \leq 30000 \quad \text{ou} \quad \Lambda = \frac{0.184}{\mathscr{R}e^{0.2}} \quad \mathscr{R}e > 30000$$

3. On en déduit les niveaux : $k = \frac{u_{\tau}^2}{\sqrt{C_{\mu}}}$ et $\epsilon = \frac{u_{\tau}^3}{0.1 \kappa D_H}$ avec $\kappa = 0.42$ pour la constante de Karman et $C_{\mu} = 0.09$.

III/ Imposition d'intensité turbulente (selon solveurs) : $\mathcal{I} = 0.16(\Re e)^{-1/8}$

8.2. Quelques mots sur la transition laminaire ↔ turbulent

- Phénomène à prendre en compte dans les couches limites,
- Modèle complémentaire au modèle de turbulence pour prédire où a lieu cette transition.

Aerospace Engineering

Istanbul Technical University

Deux approches principales :

- Transition simulée en annulant les effets du modèle de turbulence en amont du point supposé connu (?!!),
- Modèle Gamma-Re-Theta basé sur l'ajout d'équations supplémentaires pour produire un seuil critique d'énergie turbulente déclenchant la transition.