Trig Final (Practice v8)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 25 meters. The angle measure is 1.8 radians. How long is the radius in meters?

Question 2

Consider angles $\frac{13\pi}{6}$ and $\frac{-9\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{13\pi}{6}\right)$ and $\cos\left(\frac{-9\pi}{4}\right)$ by using a unit circle (provided separately).

Find $sin(13\pi/6)$

Find $\cos(-9\pi/4)$

Question 3

If $\cos(\theta) = \frac{20}{29}$, and θ is in quadrant IV, determine an exact value for $\tan(\theta)$.

Question 4

A mass-spring system oscillates vertically with a midline at y = -6.28 meters, a frequency of 2.68 Hz, and an amplitude of 8.84 meters. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).