

Magnetic probes

D. Corona B.Carvalho

lilia.rivera@ipfn.ist.utl.pt

29rd - 30rd July 2019

Training activities

- Access to the ISTTOK data base
- Work with the saved signals from the Mirnov coils.
- Calculate and approximation of the plasma current and plasma current centroid position

Shot #45994

https://github.com/Sakbe/IAEA2019

Get SDAS signals

```
mirnv1='MARTE_NODE_IVO3.DataCollection.Channel_129'; mirnv2='MARTE_NODE_IVO3.DataCollection.Channel_130'; mirnv3='MARTE_NODE_IVO3.DataCollection.Channel_131'; mirnv4='MARTE_NODE_IVO3.DataCollection.Channel_132'; mirnv5='MARTE_NODE_IVO3.DataCollection.Channel_133'; mirnv6='MARTE_NODE_IVO3.DataCollection.Channel_134'; mirnv7='MARTE_NODE_IVO3.DataCollection.Channel_135'; mirnv8='MARTE_NODE_IVO3.DataCollection.Channel_136'; mirnv9='MARTE_NODE_IVO3.DataCollection.Channel_137'; mirnv10='MARTE_NODE_IVO3.DataCollection.Channel_138'; mirnv11='MARTE_NODE_IVO3.DataCollection.Channel_139'; mirnv12='MARTE_NODE_IVO3.DataCollection.Channel_139';
```

ADC factor=0.8605*1e-11

12 filaments at 5.5 cm from the center

Filament1 30° Filament2 60°

.

Filament12 0°

$$i_{p,f} = M_{fp}^{\dagger} f_p$$

$$r_0 = \sqrt{\frac{\sum_{k=1}^{\mu} i_{p,f_k} r_{p,f_k}^2}{\sum_{k=1}^{\mu} i_{p,f_k}}}$$

$$z_0 = \frac{\sum_{k=1}^{\mu} i_{p,f_k} z_{p,f_k}}{\sum_{k=1}^{\mu} i_{p,f_k}}$$

Where (r_{p,f_k}, z_{p,f_k}) and i_{p,f_k} are the position and the current of the filament $k, k=1,2,...,\mu$, respectively.

Get SDAS signals

mirnv_corr_flux1='MARTE_NODE_IVO3.DataCollection.Channel_202'; mirnv_corr_flux2='MARTE_NODE_IVO3.DataCollection.Channel_203'; mirnv_corr_flux3='MARTE_NODE_IVO3.DataCollection.Channel_204'; mirnv_corr_flux4='MARTE_NODE_IVO3.DataCollection.Channel_205'; mirnv_corr_flux5='MARTE_NODE_IVO3.DataCollection.Channel_206'; mirnv_corr_flux7='MARTE_NODE_IVO3.DataCollection.Channel_207'; mirnv_corr_flux8='MARTE_NODE_IVO3.DataCollection.Channel_208'; mirnv_corr_flux9='MARTE_NODE_IVO3.DataCollection.Channel_209'; mirnv_corr_flux10='MARTE_NODE_IVO3.DataCollection.Channel_210'; mirnv_corr_flux11='MARTE_NODE_IVO3.DataCollection.Channel_211'; mirnv_corr_flux12='MARTE_NODE_IVO3.DataCollection.Channel_212'; mirnv_corr_flux12='MARTE_NODE_IVO3.DataCollection.Channel_213';