MATH 644

CHAPTER 3

SECTION 3.1: THE MAXIMUM PRINCIPLE

Contents

First Version	2
Second version	4
Third Version	Ę

Created by: Pierre-Olivier Parisé Spring 2023

FIRST VERSION

THEOREM 1. Suppose f is analytic in a region Ω . If there exists a $z_0 \in \Omega$ such that

$$|f(z_0)| = \sup_{z \in \Omega} |f(z)|,$$

then f is constant in Ω .

LEMMA 2. If $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ which converges in $\{z : |z - z_0| < r_0\}$ for some $r_0 > 0$, then for $r < r_0$

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$
. — Mean Value (MVP)

Proof. Power serves converges uniformly on 12: 12-201=13. So,

$$\frac{1}{2\pi} \int_{0}^{2\pi} f(z_{0} + reit) dt = \sum_{n=0}^{\infty} \frac{1}{2\pi} \int_{0}^{2\pi} a_{n} r^{n} e^{int} dt$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} a_{0} dt$$

$$= \alpha_{0} = f(z_{0}). \quad n$$

Proof of the Maximum Modulus Principle.

Suppose that 320 Er mt. sup |f(2)|= |f(2)|.

1)
$$|f(20)| = 0$$
, then $f = 0$.

2)
$$|f(z_0)| \neq 0$$
 $\neq 1$ set $\lambda := \frac{|f(z_0)|}{|f(z_0)|}$.

So,
$$\lambda f(z_0) = |f(z_0)|$$

Suppose b = Im[2f(zot reit)] +0 fu some r dt. then

$$|\lambda f(z_0)| = \sqrt{|f(z_0)|^2 + |b|^2} > |f(z_0)| \#.$$
So,
$$|f(z_0)| = \lambda f(z_0 + re^{it}) \quad \forall r < r, d$$

$$\forall t \in [0, 2\pi]$$

$$\Rightarrow f = f(z_0) \text{ in } dz : |z - z_0| < r, f.$$
Identify Principle $\Rightarrow f = f(z_0) \text{ in } D.$

Note:

• If f is analytic in Ω and there is a $z_0 \in \Omega$ such that $|f(z_0)| = \inf_{z \in \Omega} |f(z)|$ and $|f(z_0)| \neq 0$, then f is constant in Ω .

P.-O. Parisé MATH 644 Page 3

SECOND VERSION

COROLLARY 3. If f is a non-constant analytic function in a bounded region Ω , and if f is continuous on $\overline{\Omega} = \operatorname{clos}(\Omega)$, then

$$\max_{z \in \overline{\Omega}} |f(z)|$$

occurs on $\partial\Omega$, but not in Ω .

Proof. Since
$$\mathcal{Z}$$
 is bounded, \mathcal{T} is bounded.
This means \mathcal{T} is compact, so $\exists z_0 \in \mathcal{T}$ at.

$$|f(z_0)| = \max_{z \in \mathcal{T}} |f(z_0)|$$

$$\exists z \in \mathcal{Z}, \text{ then from the MVP (Version 1)}$$

$$f = \text{constant in } \mathcal{Z}. \#$$

 \square

50, 70 6 252.

Note:

- The requirement that Ω is bounded is necessary: the function $f(z)=e^{-iz}$ is
 - analytic in the upper half-plane $\mathbb{H} := \{z : \operatorname{Im} z > 0\};$
 - continuous on $\{z : \operatorname{Im} z \ge 0\}$ and;
 - has absolute value 1 on the real line \mathbb{R} .

However, f is not bounded by 1 in \mathbb{H} .

THIRD VERSION

Let Ω be a region in \mathbb{C} .

- A sequence $(z_n)_{n\geq 1}$ tends to $\partial\Omega$ if for any compact subset $K\subset\Omega$, there exists an $N\in\mathbb{N}$ such that $z_n\notin K$, when $n\geq N$.
- The region Ω can be unbounded. In this case, we consider the region as lying in \mathbb{C}^* and ∞ might be on $\partial\Omega$.
- If $f:\Omega\to\mathbb{C}$ is a continuous function, then

$$\limsup_{z \to \partial \Omega} |f(z)| := \sup \Big\{ \limsup_{n \to \infty} |f(z_n)| : z_n \to \partial \Omega \Big\}.$$

We can show that, if Ω is bounded, then

$$\limsup_{z\to\partial\Omega}|f(z)|=\lim_{\delta\to0}\sup\{|f(z)|\,:\,z\in\Omega,\mathrm{dist}(z,\partial\Omega)=\delta\}$$

Example 4.

- a) Show that $z_n \to \partial \mathbb{D}$ if and only if $|z_n| \to 1$, as $n \to \infty$.
- **b)** Let $\Omega := \{z : |z| > 2\}$. Compute $\limsup_{z \to \partial \Omega} \left| \frac{1+z}{1-z} \right|$.
- (a) Suppose $z_n \rightarrow \partial D$. For any compact set $K \subseteq D$, $\exists N \in \mathbb{N}$ sil. $z_n \notin K$ $\forall n \geq N$.

 Set $K = \{z : |z| \leq r\}$, with 0 < r < 1. $\exists N \text{ sil}$. $|z_n| > r$ $\forall n \geq N$. In other words, $\lim_{n \to \infty} |z_n| = 1$.

Suppose | Zn| -> | as n-300. Let K = B be compact. There is a R>O oit. K = BR & D Choose E = I-R, then FN = N oit. I- | Zn| < I-R Yn>N => | Zn|>R Yn>N-N

(b) 2 is unbounded, so
$$2 \le C^*$$
.

$$\frac{|+7|}{|-7|} = \sqrt{\frac{5+4\cos\theta}{5-4\cos\theta}} \qquad \left(\begin{array}{c} \max & \text{occurs at} \\ \theta = 0 \end{array}\right)$$

$$= \int \lim_{|z| \to z} \left| \frac{1+z}{1-z} \right| = A = 3$$

P.-O. Parisé

 $\limsup_{z \to \partial \Omega} |f(z)| = \sup_{\Omega} |f(z)|.$

Proof. Suppose } ≠ constant.

If $\sup |f(z)| = \infty$, then there is a sequence

(Zn) C 2 21. |f(zn) -> 00 (n->00). Here,

 $Z_{r} \rightarrow \partial \mathcal{Z}$, and $\limsup_{z \rightarrow \partial \mathcal{Z}} |f(z)| = \infty$.

Suppose sup f(z)/2 0. Défine

Dε:= 7 zer: clist(2,22) ≥ ε}

Since I is bounded, then
I is is bounded and so compact.

Since I is analytic on Its, by the

maximum modulus principle (version 2),

Sup |f(z)| = sup |f(z)|. ZE STE ZE DSTE

Let E->0, no

Note:

• If f is continuous on $\overline{\Omega}$, then we recover the second version of the Maximum Principle.