

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине:

Введение в искусственный интеллект

Студент	Абидоков Рашид Ширамбиевич		
Группа	PK6-11M		
Вариант	56		
Тема лабораторной работы	Программирование на языке prolog		
Студент	 подпись, дата	Абидоков Р. Ш. фамилия, и.о.	
Преподаватель	подпись, дата	Федорук В. Г. фамилия, и.о.	
Опенка			

Оглавление

Задание на лабораторную работу	3
Программная реализация	3
Результат решения задачи	6

Задание на лабораторную работу

Ферзь находится на поле A7 шахматной доски. Необходимо найти последовательность из четырех ходов, обеспечивающую прохождение ферзем следующих девяти полей: A6, A7, A8, B6, B7, B8, C6, C7, C8.

Программная реализация

Все возможные клетки доски заданы в виде 64 фактов вида pos([Xi, Yi]).

Исходный код программы на языке prolog вместе с комментариями приведен в Листинге 1.

Листинг 1.

```
pair(a, 1).
 pair(b, 2).
pair(c, 3).
 pair(d, 4).
 pair(e, 5).
pair(f, 6).
 pair(g, 7).
 pair(h, 8).
 left pos([CurrH|CurrT], [ResH,ResT]):-
     ResH is CurrH - 1, ResT is CurrT, pos([ResH, ResT]),!.
 right pos([CurrH|CurrT], [ResH,ResT]):-
     ResH is CurrH + 1, ResT is CurrT, pos([ResH, ResT]),!.
 lower pos([CurrH|CurrT], [ResH,ResT]):-
     ResH is CurrH, ResT is CurrT - 1, pos([ResH, ResT]),!.
 higher_pos([CurrH|CurrT], [ResH,ResT]):-
     ResH is CurrH, ResT is CurrT + 1, pos([ResH, ResT]),!.
```

```
v possible_move([PosH|PosT], [MoveH|MoveT]):-
        pos([MoveH|MoveT]), MoveH = PosH, not(MoveT = PosT);
        pos([MoveH|MoveT]), MoveT = PosT, not(MoveH = PosH);
        pos([MoveH|MoveT]), Y is MoveH - PosH, X is MoveT - PosT,
        X = Y, not(MoveH = PosH);
        pos([MoveH|MoveT]), Y is MoveH - PosH, X is PosT - MoveT,
        X = Y, not(MoveH = PosH).
    hor_passed_cells(A, A, [A]):-!.
08 v hor_passed_cells([FromH|FromT], [ToH|ToT], [CellsH|CellsT]):-
        FromH < ToH, right_pos([FromH|FromT], NewFrom),</pre>
        CellsH = [FromH|FromT], hor_passed_cells(NewFrom, [ToH|ToT], CellsT), !;
        FromH > ToH, left_pos([FromH|FromT], NewFrom),
        CellsH = [FromH|FromT], hor_passed_cells(NewFrom, [ToH|ToT], CellsT), !.
    ver_passed_cells(A, A, [A]):-!.
17 ver_passed_cells([FromH|FromT], [ToH|ToT], [CellsH|CellsT]):-
        FromT = [FromTH|_], ToT = [ToTH|_],
        FromTH < ToTH, higher_pos([FromH|FromT], NewFrom),</pre>
        CellsH = [FromH|FromT], ver_passed_cells(NewFrom, [ToH|ToT], CellsT), !;
        FromT = [FromTH|_], ToT = [ToTH|_],
        FromTH > ToTH,lower_pos([FromH|FromT], NewFrom),
        CellsH = [FromH|FromT],
        ver_passed_cells(NewFrom, [ToH|ToT], CellsT), !.
```

```
diag_passed_cells(A, A, [A]):-!.
 diag_passed_cells([FromH|FromT], [ToH|ToT], [CellsH|CellsT]):-
     higher_pos([FromH|FromT], TempFrom), right_pos(TempFrom, NewFrom),
     CellsH = [FromH|FromT], diag_passed_cells(NewFrom, [ToH|ToT], CellsT), !;
     lower_pos([FromH|FromT], TempFrom), right_pos(TempFrom, NewFrom),
     CellsH = [FromH|FromT], diag_passed_cells(NewFrom, [ToH|ToT], CellsT), !;
     higher_pos([FromH|FromT], TempFrom), left_pos(TempFrom, NewFrom),
     CellsH = [FromH|FromT], diag_passed_cells(NewFrom, [ToH|ToT], CellsT), !;
     lower_pos([FromH|FromT], TempFrom), left_pos(TempFrom, NewFrom),
     CellsH = [FromH|FromT], diag_passed_cells(NewFrom, [ToH|ToT], CellsT), !.
passed_cells([FromH|FromT], [ToH|ToT], Cells):-
     diag_passed_cells([FromH|FromT], [ToH|ToT], Cells).
remove_elements([], _, []):-!.
pairs([], []):-!.
```

```
184 × % Τακ, noexanu
185 % (meκywan nosuqua, что надо посетить, оставшееся количество ходов, сами ходы)
186 × moves_sub(_,[],N,[]):-
187 N >= 0, !.
188 × moves_sub(Pos, Points, N, [MovesH|MovesT]):-
189 N >= 0,
190 possible_move(Pos, Move),
191 passed_cells(Pos, Move, PassCells),
192 remove_elements(Points, PassCells, PointsNew),
193 NNew is N - 1,
194 MovesH = Move,
195 moves_sub(Move, PointsNew, NNew, MovesT).
196
197 × moves(Pos, Points, N, Moves):-
198 pairs([PosNum], [Pos]),
199 pairs(PointsNum, Points),
190 moves_sub(PosNum, PointsNum, N, MovesNum),
201 pairs(MovesNum, Moves).
```

Результат решения задачи

Рис. 1 Первое найденное решение

