# Теорія категорії І курс магістратура, 2 семестр

19 лютого 2024 р.

# 0.1 Основні означення

**Definition 0.1.1 Категорія** C складається з наступних компонент:

- із набору **об'єктів**; об'єкти позначають за  $x, y, z, \ldots$ , а набір позначають за Ob(C);
- із набору **морфізмів із** x **в** y C(x,y) для всіх  $x,y\in C$ ; морфізми позначають за  $\alpha,\beta,\gamma,\ldots$  Позначення  $\alpha\colon x\to y$  або  $x\stackrel{\alpha}{\to} y$  означають  $\alpha$  морфізм із x в y; ми називаємо x джерелом та y ціллю;
- кожний об'єкт x має **тотожний морфізм**  $1_x$ :  $x \to x$ ;
- для кожних морфізмів  $\alpha \colon x \to y, \ \beta \colon y \to z$  існуватиме **композиція морфізмів**  $\beta \alpha \colon x \to z.$  При цьому всьому зобов'язані виконуватися такі аксіоми:
- 1) для всіх морфізмів  $\alpha \colon x \to y$  виконано  $1_y \circ \alpha = \alpha \circ 1_x = \alpha;$
- 2) для кожних трьох морфізмів  $\alpha \colon w \to x, \beta \colon x \to y, \gamma \colon y \to z$  виконується асоціативність композиції, тобто  $\alpha(\beta\gamma) = (\alpha\beta)\gamma$ .

# Remark 0.1.2 Морфізми ще часто називають **стрілочками**.

**Remark 0.1.3** Морфізм  $1_x$  для кожного об'єкта x – єдиний.

**Example 0.1.4** Розглянемо **Set** – це буде категорія, яка складається з наступного:

- $\operatorname{Ob}(\mathbf{Set}) \operatorname{набір} \operatorname{всіх} \operatorname{множин};$
- Hom(Set) набір всіх функцій;
- тотожне відображення  $1_X \colon X \to X$  задається як  $x \mapsto x;$
- композиція між  $f\colon X\to Y$  та  $g\colon Y\to Z$  задається  $g\circ f$  таким чином:  $x\mapsto f(x)\mapsto g(f(x)).$  Ясно, що всі ці дві аксіоми виконані.

Важливо, що  $Ob(\mathbf{Set})$  – це саме <u>набір</u> всіх множин, а не множина всіх множин. Тому що парадокс Рассела стверджує, що не існує множини, елементи яких будуть множинами.

До речі,  $\mathbf{Set}(X,Y)$  – набір всіх відображень  $f\colon X\to Y$  – буде, насправді, <u>множиною</u>. Відображення між двома множинами – це просто підмножина декартового добутку  $X\times Y$ . Коли ми беремо дві довільні множини X,Y, то звідси  $X\times Y$  теж буде множиною.

**Example 0.1.5** Розглянемо стисло ще приклади категорій:

| Категорія                        | Об'єкти              | Морфізми                                  |
|----------------------------------|----------------------|-------------------------------------------|
| $\mathbf{Grp}$                   | групи                | гомоморфізми груп                         |
| $\mathbf{A}\mathbf{b}$           | абелеві групи        | гомоморфізми груп                         |
| $\mathbf{Rng}$                   | кільця               | гомоморфізми кілець                       |
| Ring                             | кільця з одиницею    | гомоморфізм кілець, що зберігають одиницю |
| $_R \operatorname{\mathbf{Mod}}$ | R-модуль             | R-лінійне відображення                    |
| $\mathbf{Top}$                   | топологічні простори | неперервній відображення                  |
| $\mathbf{Met}$                   | метричні простори    | неперервні відображення                   |
| Man                              | гладкі многовиди     | гладкі відображення                       |

**Example 0.1.6** Можна представити категорію за допомогою графів. Категорія **0** буде взагалі порожньо виглядати. Категоріїя **1**, категорія **2**, категорія **3** виглядають таким чином:



Так само  $\varepsilon$  категорії  $4,5,\ldots$ 

**Example 0.1.7** Розглянемо моноїд M. Ми можемо утворити категорію  $\mathcal{M}$ , яка містить єдиний об'єкт — це моноїд.

**Example 0.1.8** Розглянемо так званий посет  $(P, \prec)$  (partially ordered set). Скажемо, що  $\mathrm{Ob}(P) = P$  та P(i,j) – це будуть тільки ті стрілки, для яких  $i \prec j$ . Композиція тут існує, оскільки  $\prec$  є транзитивним відношенням. Також існує тотожне відображення, оскільки  $\prec$  є рефлексивним відношенням.

Навіть не обов'язково тут вимагати, щоб для  $(P, \prec)$  відношення  $\prec$  було антисиметричним.

# **Definition 0.1.9** Категорія C називається дискретною, якщо

$$C(x,y) = \begin{cases} \emptyset, & x \neq y \\ \{1_x\}, & x = y \end{cases}$$

Тобто існують лише стрілки  $x \to x$ , і тільки тотожні.

# **Definition 0.1.10** Категорія D називається підкатегорією C, якщо

набір об'єктів D міститься в наборі об'єктів C

набір стрілок  $x \to y$  в D міститься в наборі стрілок  $x \to y$  в C для довільних об'єктів x,y із D композиція двох морфізмів в D задається так само, як і в C

# **Definition 0.1.11** Підкатегорія D категорії C називається **повною**, якщо

набір стрілок x,y в D збігається з набором стрілок x,y в C, для довільних об'єктів x,y із D

**Example 0.1.12** Зокрема маємо кілька прикладів:

- 1) категорія **Ab** буде повною підкатегорією **Grp**;
- 2) категорія **FinSet** буде повною підкатегорією **Set**.

# 0.2 Узагальнення ін'єкції та сюр'єкції

# 0.2.1 Монік

**Definition 0.2.1** Задано C – категорія.

Морфізм  $\alpha \colon x \to y$  називається моніком, якщо

$$\alpha \beta_1 = \alpha \beta_2 \implies \beta_1 = \beta_2$$

Тобто морфізм - монік, якщо можна завжди скоротити зліва.

$$z \xrightarrow{\beta_2} x \xrightarrow{\alpha} y$$

**Theorem 0.2.2** У конкретній категорії кожний ін'єктивний морфізм – монік.

#### Proof.

Нехай C — конкретна категорія та  $\alpha\colon X\to Y$  — ін'єктивний морфізм. Нехай  $\beta_1,\beta_2\colon Z\to X$  — морфізми C та припустимо, що  $\alpha\beta_1=\alpha\beta_2$ . Для всіх  $z\in Z$  ми маємо  $\alpha(\beta_1(z))=\alpha\beta_1(z)=\alpha\beta_2(z)=\alpha(\beta_2(z))$ , тому за ін'єктивністю,  $\beta_1(z)=\beta_2(z)$ . Отже,  $\beta_1=\beta_2$ .

Remark 0.2.3 Зворотне твердження не працює.

**Example 0.2.4** Розглянемо повну категорію C= Div підкатегорії Grp. Тут абелева група називається **подільною**, якщо  $\forall a \in A, \forall n \in \mathbb{Z} \setminus \{0\} : \exists b \in A : a=nb$ .

Оберемо об'єкти  $\mathbb{Q}, \mathbb{Q}/\mathbb{Z}$  із нашої категорії C та гомоморфізм  $\alpha \colon \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$ , який є сюр'єктивним. Даний морфізм не ін'єктивний, оскільки  $\ker \alpha = \mathbb{Z}$ . Стверджується, що  $\alpha$  – монік.

Нехай  $\beta_1,\beta_2\colon A\to \mathbb{Q}$  – морфізми в C та припустимо, що  $\beta_1\neq\beta_2$ . Тоді існує елемент  $a\in A$ , для якого  $\beta_1(a)-\beta_2(a)\neq 0$ . Ліворуч раціональне число, тож  $\beta_1(a)-\beta_2(a)=\frac{r}{s}$  для деяких  $r,s\in \mathbb{Z}$  та  $r\neq 0,s\neq 0$ . Оскільки A – подільна група, то існує для елемента  $a\in A$  та n=2r існує  $b\in A$ , для якого a=nb. Тоді  $\beta_1(nb)-\beta_2(nb)=n\beta_1(b)-n\beta_2(b)=\frac{r}{s}$ .

Отже,  $\beta_1(b) - \beta_2(b) = \frac{1}{2s} \notin \mathbb{Z}$ , а тому звідси  $\alpha\beta_1 \neq \alpha\beta_2$ .

Theorem 0.2.5 У категоріях Set, Тор, Grp, Rng морфізм ін'єктивний ← морфізм – монік.

#### Proof.

Ми вже знаємо, що ін'єктивний морфізм – монік. Залишилося довести зворотний бік для цих категоріях.

(Set). Нехай  $\alpha\colon X\to Y$  – монік морфізм. Оберемо  $x_1,x_2\in X$  та припустимо, що  $\alpha(x_1)=\alpha(x_2)$ . Покладемо  $z=0\in\mathbb{Z}$  та покладемо  $Z=\{z\}$  (хоча тут може бути будь-який сінглтон), визначимо  $\beta_1,\beta_2\colon Z\to X$  як  $\beta_1(z)=x_1,\beta_2(z)=x_2$ . Тоді

 $\alpha\beta_1(z) = \alpha(\beta_1(z)) = \alpha(x_1) = \alpha(x_2) = \alpha(\beta_2(z)) = \alpha\beta_2(z).$ 

За монічністю, звідси  $\beta_1=\beta_2$ , тобто  $x_1=\beta_1(z)=\beta_2(z)=x_2$ . Таким чином,  $\alpha$  – ін'єктивний.

(Тор). Насправді, все аналогічно, тільки є деякі зауваження. На множину Z треба задати дискретну топологію (єдина можлива топологія для неї). Відображення  $\beta_1, \beta_2$  будуть уже неперервними через дискретність Z.

(Grp). Нехай  $\alpha \colon G \to H$  – монік морфізм. Розглянемо  $\beta_1, \beta_2 \colon \ker \alpha \to G$  – перший буде вкладенням, другий буде тривіальним. Тоді  $\alpha\beta_1 = \alpha\beta_2$ . Дійсно,

$$\alpha\beta_1(g) = \alpha(g) \stackrel{g \in \ker \alpha}{=} e = \alpha(e) = \alpha\beta_2(g).$$

За монічністю, звідси  $\beta_1=\beta_2$ , тобто  $\beta_1$  – тривіальне вкладення. Отже,  $\ker\alpha=\{e\}$ , а це означає ін'єктивніть  $\alpha$ .

(Rng). Таке саме доведення.

# 0.2.2 Розщеплений монік

**Definition 0.2.6** Задано C – категорія.

Морфізм  $\alpha\colon X\to Y$  називається **розщепленим моніком**, якщо

$$\exists \beta \colon y \to x : \beta \alpha = 1_x$$

Морфізм – розщеплений монік, тобто даний морфізм має лівий оборотний.

$$\int_{1_x} x \xrightarrow{\alpha}^{\exists \beta} y$$

**Theorem 0.2.7** Кожний розщеплений монік – монік.

#### Proof.

Нехай  $\alpha$ :  $x \to y$  – розщеплений монік в категорії, тобто існує морфізм  $\beta$ :  $y \to x$ , для якого  $\beta\alpha=1_x$ . Нехай  $\beta_1,\beta_2$ :  $z \to x$  будуть морфізмами та припустимо, що  $\alpha\beta_1=\alpha\beta_2$ . Тоді  $\beta_1=1_x\beta_1=\beta\alpha\beta_1=\beta\alpha\beta_2=1_x\beta_2=\beta_2$ .

**Theorem 0.2.8** У конкретній категорії кожний розщеплений монік – ін'єктивний морфізм.

# Proof.

Нехай C – конкретна категорія та  $\alpha\colon X\to Y$  – розщеплений монік, тобто існує морфізм  $\beta\colon Y\to X$ , для якого  $\beta\alpha=1_X$ . Тоді

$$x_1 = 1_X(x_1) = \beta \alpha(x_1) = \beta(\alpha(x_1)) = \beta(\alpha(x_2)) = \beta(\alpha(x_2)) = 1_X(x_2) = x_2.$$

Remark 0.2.9 Зворотне твердження не працює.

**Example 0.2.10** Розглянемо категорію Grp. Вкладення  $\alpha \colon 2\mathbb{Z} \to \mathbb{Z}$  – ін'єктивний гомоморфізм. Але це не буде розщепленим моніком.

!Припустимо, що все ж таки він розщеплений монік, тобто існує гомоморфізм  $\beta \colon \mathbb{Z} \to 2\mathbb{Z}$ , для якого  $\beta \alpha = 1_{2\mathbb{Z}}$ . Тоді  $2\beta(1) = \beta(2) = \beta(\alpha(2)) = \beta\alpha(2) = 2$ , тобто  $\beta(1) = 1$ , але це суперечність! Просто тому що  $\beta$  відображає на  $2\mathbb{Z}$ .

Можна аналогічні міркування провести для категорії Rng.

**Example 0.2.11** Розглянемо категорію Тор. Оберемо тотожне відображення  $\alpha \colon \mathbb{R} \to \mathbb{R}$ , де область визначення має дискретну топологія, а область значень – стандартну. Тоді  $\alpha$  – ін'єктивний, але не розщеплений монік.

!Припустимо, що існує морфізм  $\beta \colon \mathbb{R} \to \mathbb{R}$ , для якого  $\beta \alpha = 1_{\mathbb{R}}$ . Тоді  $\beta = \beta 1_{\mathbb{R}} = \beta \alpha = 1_{\mathbb{R}}$ , однак множина {0} відкрита в  $\mathbb{R}$  з дискретною топологією, але не відкрита в стандартній топології. Це суперечність! Тому що  $\beta$  – неперервне відображення.

**Theorem 0.2.12** Задано  $\alpha \colon X \to Y$  – морфізм в категорії Set.

$$lpha$$
 — розщеплений монік  $\iff egin{cases} lpha & - & \text{ін 'єктивний} \ X = \emptyset & \implies Y = \emptyset \end{cases}$  .

#### Proof.

 $\implies$  Дано:  $\alpha$  – розщеплений монік. Оскільки Set – конкретна категорія, то звідси  $\alpha$  – ін'єктивний.  $\overline{\text{Теп}}$ ер нехай  $X=\emptyset$ . Тоді за умовою, існує  $\beta\colon Y\to X$ , для якого  $\beta\alpha=1_X=1_\emptyset$ . Тоді оскільки  $\beta$  функція, то  $Y = \emptyset$ .

 $\leftarrow$  Дано:  $\alpha$  – ін'єктивний та  $X = \emptyset \implies Y = \emptyset$ .

 $\overline{\operatorname{Hex}}$ ай  $X \neq \emptyset$ , тобто існує елемент  $x_0 \in X$ . Оскільки  $\alpha$  – ін'єктивний, то  $\alpha|_{\operatorname{Im}\alpha}\colon X \to \operatorname{Im}\alpha$  буде задавати бієкцію, тож для кожного  $y \in \text{Im } \alpha$  існує єдиний елемент  $\beta(y) \in X$ , для якого  $\alpha(\beta(y)) = y$ . Це визначає функцію  $\beta$ : Іт  $\alpha \to X$ , що розширюється до функції  $\beta: Y \to X$ , якщо покласти  $\beta(y)=x_0,y\notin \mathrm{Im}\,\alpha.$  Для  $x\in X$  ми маємо  $\beta\alpha(x)=\beta(\alpha(x))=x=1_X(x).$ 

Нехай 
$$X=\emptyset$$
, тоді  $Y=\emptyset$  та порожня функція  $\beta\colon Y\to X$  задовольняє  $\beta\alpha=1_X$ .

Отже, в конкретній категорії маємо таку діаграму:

розщеплений монік 
$$\implies$$
 ін ективний  $\implies$  монік

Приклади нам показали, що жодні два терміни не збігаються загалом.

У більш загальних категоріям ін'єктивність більше не визначена, бо ми там оперуємо множинами. Але якщо слово ін ективний видалити, то діаграма залишається справедливою.

У повній підкатегорії Set, що містить всі непорожні множини, всі ці три терміни збігаються.

#### 0.2.3 Епікі

**Definition 0.2.13** Задано C – категорія.

Морфізм  $\alpha \colon x \to y$  називається **епіком**, якщо

$$\beta_1 \alpha = \beta_2 \alpha \implies \beta_1 = \beta_2$$

Тобто морфізм – епік, якщо можна завжди скоротити справа (дуальне означення моніка).

$$x \xrightarrow{\alpha} y \xrightarrow{\beta_1} z$$

**Theorem 0.2.14** У конкретній категорії кожний сюр'єктивний морфізм – епік.

Нехай C – конкретна категорія та  $\alpha\colon X\to Y$  – сюр'єктивний морфізм. Нехай  $\beta_1,\beta_2\colon Y\to Z$  – морфізми C та припустимо, що  $\beta_1 \alpha = \beta_2 \alpha$ . Оберемо  $y \in Y$ . Оскільки  $\alpha$  – сюр'єктивне, то  $y = \alpha(x)$ для деякого  $x \in X$ . Тоді маємо  $\beta_1(y) = \beta_1(\alpha(x)) = \beta_1\alpha(x) = \beta_2\alpha(x) = \beta_2(\alpha(x)) = \beta_2(y)$ . Отже,  $\beta_1 = \beta_2$ .

Remark 0.2.15 Зворотне твердження не працює.

**Example 0.2.16** Розглянемо категорію Rng та оберемо вкладення  $\alpha \colon \mathbb{Z} \to \mathbb{Q}$ , яке не є сюр'єктивним. Але доведемо, що  $\alpha$  – епік.

Нехай  $\beta_1,\beta_2:\mathbb{Q}\to\mathbb{R}$  — морфізми з Rng та припустимо, що  $\beta_1\alpha=\beta_2\alpha$ . Тоді  $\beta_1(n)=\beta_2(n)$  для будь-якого цілого  $n\in\mathbb{Z}.$  При  $n\neq 0$  ми маємо

будь-якого цьюго 
$$n \in \mathbb{Z}$$
. При  $n \neq 0$  ми маемо  $\beta_1(n^{-1}) = \beta_1(n^{-1})\beta_1(1) = \beta_1(n^{-1})\beta_2(1) = \beta_1(n^{-1})\beta_2(n)\beta_2(n^{-1}) = \beta_1(n^{-1})\beta_1(n)\beta_2(n^{-1}) = \beta_1(1)\beta_2(n^{-1}) = \beta_2(1)\beta_2(n^{-1}) = \beta_2(1)\beta_2(n^{-1})$ 

Таким інполі, для 
$$m$$
,  $n \in \mathbb{Z}$  при  $n \neq 0$  кім касело паступіс.  $\beta_1\left(\frac{m}{n}\right) = \beta_1(m)\beta_1(n^{-1}) = \beta_2(m)\beta_2(n^{-1}) = \beta_2(m)\beta_2(n^{-1}) = \beta_2\left(\frac{m}{n}\right)$ . Отже,  $\beta_1 = \beta_2$ .

Theorem 0.2.17 У категорія Set, Тор, Grp морфізм сюр'єктивний ⇔ морфізм – епік.

#### Proof.

Ми вже знаємо, що сюр'єктивний морфізм – епік. Залишилося довести зворотний бік для цих категоріях.

(Set). Нехай  $\alpha$ :  $X \to Y$  – епік морфізм. Нехай  $\beta_1$ :  $Y \to \{0,1\}$  буде характеристичною функцією для Іт  $\alpha$  та нехай  $\beta_2$ :  $Y \to \{0,1\}$  буде стало дорівнювати 1. Тоді  $\beta_1 \alpha = \beta_2 \alpha$ , тому за епічністю,  $\beta_1 = \beta_2$ . Із цього випливає, що Іт  $\alpha = Y$ , що доводить сюр'єктивність  $\alpha$ .

(Тор). Проводиться те саме доведення, як з Set. Тільки треба  $\alpha: X \to Y$  брати уже неперервне відображення, а на просторі  $\{0,1\}$  задати недискретну топологію, щоб  $\beta_1,\beta_2$  стали неерервними.

(Grp). !Нехай  $\alpha \colon G \to H$  — гомоморфізм груп та припустимо, що це — не сюр'єктивний. Звідси випливає, що  $[H: {\rm Im}\, \alpha] > 1$ . Ми тоді доведемо, що  $\alpha$  — не епік морфізм.

Випадок  $[H: \operatorname{Im} \alpha] = 2$ . Нехай  $\beta_1: H \to H/_{\operatorname{Im} \alpha}$  – канонічний гомоморфізм та  $\beta_2: H \to H/_{\operatorname{Im} \alpha}$  – тривіальний гомоморфізм. Тоді  $\beta_1 \alpha = \beta_2 \alpha$ , але при цьому  $\beta_1 \neq q\beta_2$ , оскільки  $\operatorname{Im} \alpha \neq H$ . Тобто в даному випадку  $\alpha$  – не епік.

Випадок  $[H:\operatorname{Im}\alpha]>2$ . Тоді існують два різних правих суміжних класи  $K_1=\operatorname{Im}\alpha\cdot h_1$  та  $K_2=\operatorname{Im}\alpha\cdot h_2$ , причому  $K_1,K_2\neq\operatorname{Im}\alpha$ . Покладемо  $b=h_1^{-1}h_2$  та зауважимо, що  $K_1b=K_2$ , а звідси  $K_2b^{-1}=K_1$ . Позначимо  $S_H$  за групу симетрії на H та оберемо бієкцію  $\sigma\in S_H$ , що задана формулою

$$\sigma(h) = \begin{cases} hb, & h \in K_1, \\ hb^{-1}, & h \in K_2,. \text{ Можна зауважити, що } \sigma^2 = 1_H \text{ та } \sigma(kh) = k\sigma(h) \text{ для всіх } k \in \operatorname{Im} \alpha, h \in H. \\ h, & \operatorname{ihakme} \end{cases}$$

Для  $h \in H$  нехай  $\lambda_h$  буде елементом  $S_H$ , що заданий формулою  $\lambda_h(x) = hx(x \in H)$ . Тоді звідси отримаємо  $\sigma \lambda_k = \lambda_k \sigma$  для всіх  $k \in \operatorname{Im} \alpha$ .

Визначимо  $\beta_1, \beta_2 \colon H \to S_H$  як  $\beta_1(h) = \lambda_k$  та  $\beta_2(h) = \sigma \lambda_k \sigma$ . Ці два відображення справдлі задають гомоморфізм груп. Для  $k \in \operatorname{Im} \alpha$  ми маємо

$$\beta_2(k)=\sigma\lambda_k\sigma=\lambda_k\sigma^2=\lambda_k=\beta_1(k),$$
 а тому  $\beta_1\alpha=\beta_2\alpha.$  Із іншого боку,  $\beta_2(h_1)(e)=\sigma\lambda_{h_1}\sigma(e)=\sigma(h_1)=h_2\neq h_1=\lambda_{h_1}(e)=\beta_1(h_1)(e).$  Тож звідси  $\beta_1\neq\beta_2.$  Тобто і в цьому випадку  $\alpha$  – не епік.

# 0.2.4 Розщеплений епік

**Definition 0.2.18** Задано C – категорія.

Морфізм  $\alpha\colon X\to Y$  називається **розщепленим епіком**, якщо

$$\exists \beta \colon y \to x : \alpha \beta = 1_y$$

Морфізм – розщеплений епік, тобто даний морфізм має правий оборотний (дуальне означення розщепленого моніка). Такий морфізм інколи ще називають **ретракцією**.

$$x \stackrel{\leftarrow}{\xrightarrow{\exists \beta}} y$$
  $y$ 

Theorem 0.2.19 Кожний розщеплений епік – епік.

#### Proof.

Нехай  $\alpha$ :  $x \to y$  — розщеплений епік в категорії, тобто існує морфізм  $\beta$ :  $y \to x$ , для якого  $\alpha\beta=1_1$ . Нехай  $\beta_1,\beta_2$ :  $y \to z$  будуть морфізмами та припустимо, що  $\beta_1\alpha=\beta_2\alpha$ . Тоді  $\beta_1=\beta_11_y=\beta_1\alpha\beta=\beta_2\alpha\beta=\beta_21_y=\beta_2$ .

**Theorem 0.2.20** У конкретній категорії кожний розщеплений епік – сюр'єктивний морфізм.

#### Proof.

Нехай C – конкретна категорія та  $\alpha\colon X\to Y$  – розщеплений епік, тобто існує морфізм  $\beta\colon Y\to X$ , для якого  $\alpha\beta=1_Y$ . Нехай  $y\in Y$ , тоді покладемо  $x=\beta(y)$ . Звідси  $\alpha(x)=\alpha(\beta(y))=\alpha\beta(y)=1_Y(y)=y$ .

Remark 0.2.21 Зворотне твердження не працює.

**Example 0.2.22** Розглянемо категорію Grp та визначимо морфізм  $\alpha \colon \mathbb{Z}_4 \to \mathbb{Z}_2$ , визначений як  $\alpha(0) = \alpha(2) = 0$  та  $\alpha(1) = \alpha(3) = 1$ . Це буде сюр'єктивний гомоморфізм. Оскільки  $1 \in \mathbb{Z}_2$  має порядок 2, то будь-який гомоморфізм  $\beta \colon \mathbb{Z}_2 \to \mathbb{Z}_4$  зобов'язаний відображати 1 на 0 або 2. Таким чином,  $\alpha\beta \neq 1_{\mathbb{Z}_2}$ . Отже,  $\alpha$  – не розщеплений епік.

Можна аналогічні міркування провести для категорії Rng.

**Example 0.2.23** Розглянемо категорію Тор. Маємо  $\alpha \colon \mathbb{R} \to \mathbb{R}$  – тотожне відображення; у першого – дискретна топологія, у другого – стандартна. Тоді  $\alpha$  – сюр'єктивний морфізм, але аналогічним чином можна довести, що це не епічний морфізм (як це було з епічним моніком).

Theorem 0.2.24 У категорії Set морфізм – розщеплений епік ← морфізм сюр'єктивний.

#### Proof.

Залишилося довести у зворотний бік.

 $\Leftarrow$  Дано:  $\alpha \colon X \to Y$  – сюр'єктивний морфізм. Тобто для кожного  $y \in Y$  знайдеться  $\beta(y) \in X$ , для якого  $\alpha(\beta(y)) = y$ , а це визначає функцію  $\beta \colon Y \to X$ , яка задовольняє  $\alpha\beta = 1_Y$ . Отже,  $\alpha$  – розщеплений епік.

Отже, в конкретній категорії маємо таку діаграму:

розщеплений епік 
$$\implies c \omega p' \epsilon \kappa m u \varepsilon h u \ddot{u} \implies eпік$$

Приклади нам показали, що жодні два терміни не збігаються загалом.

У більш загальних категоріям *сюр'єктивність* більше не визначена, бо ми там оперуємо множинами. Але якщо слово *сюр'єктивний* видалити, то діаграма залишається справедливою. У категорії Set всі ці три терміни збігаються.

### 0.2.5 Біморфізми та ізоморфізми

**Definition 0.2.25** Задано C – категорія.

Морфізм  $\alpha \colon x \to y$  називається **біморфізмом**, якщо

 $\alpha$  – одночасно монік та епік

Морфізм  $\alpha \colon x \to y$  називається **ізоморфізмом**, якщо

$$\exists \beta : y \to x : \beta \alpha = 1_x \qquad \alpha \beta = 1_y$$

**Remark 0.2.26** Якщо  $\alpha$  – ізоморфізм, то морфізм  $\beta$  в означенні – єдиний та позначається за  $\alpha^{-1}$ .

**Definition 0.2.27** Задано C – категорія.

Об'єкти x, y називаються **ізоморфними**, якщо

$$\exists \alpha \colon x o y$$
 — ізоморфізм

Позначення:  $x \cong y$  (це справді відношення еквівалентності).

**Theorem 0.2.28** Морфізм – ізоморфізм  $\iff$  морфізм – розщеплений монік та розщеплений епік.

#### Proof.

 $\Rightarrow$  миттево випливає з означення.

 $\sqsubseteq$  Дано:  $\alpha$  – розщеплений монік та розщеплений епік. Тобто існують морфізми  $\beta, \gamma \colon y \to x$ , для яких  $\beta \alpha = 1_x$ ,  $\alpha \gamma = 1_y$ . Але тоді  $\beta = \beta 1_y = \beta \alpha \gamma = 1_x \gamma = \gamma$ . Отже,  $\alpha$  – ізоморфізм.

Тепер ми маємо ось таку діаграму. Італік позначений лише для конкретних категорій.



**Theorem 0.2.29** У категорії Set, Grp біморфізм, бієкція, ізоморфізм – це одне й те саме.

#### Proof.

(Set). Нехай  $\alpha\colon X\to Y$  — біморфізм. Зважаючи на діаграму вище, достатньо довести, що  $\alpha$  — ізоморфізм. Оскільки  $\alpha$  — монік та епік, то в даній категорії  $\alpha$  — ін'єктивний та сюр'єктивний, тобто бієктивний. Значить, існує морфізм  $\alpha^{-1}$ , для якого  $\alpha^{-1}\alpha=1_X$ ,  $\alpha\alpha^{-1}=1_Y$ , що й доводить ізоморфність.

(Grp). Насправді, аналогічно. Але треба окремо пересвідчитися, що якщо  $\alpha$  – гомоморфізм, то  $\alpha^{-1}$  буде ним також.

Remark 0.2.30 Що по інших категоріях, які не потрапили в цю теорему.

(Rng). Зауважимо, що  $\mathbb{Z} \hookrightarrow \mathbb{Q}$  буде біморфізмом, але не бієкцією.

(Тор). Тотожне відображення  $R \to R$ , з дискретною та стандартною топологією відповідно, буде бієкцією, але не ізоморфізмом (тобто гомеоморфізмом в даному випадку).