Farm-wide virtual load monitoring for offshore wind structures via Bayesian neural networks

Nandar Hlaing^{1,*}, Pablo G. Morato¹, Francisco de Nolasco Santos², Wout Weijtjens², Christof Devriendt² and Philippe Rigo¹

¹Naval & Offshore Engineering, ArGEnCo, University of Liege, 4000 Liege, Belgium ²OWI-Lab, Vrije Universiteit Brussel, 1050 Brussels, Belgium

WORKSHOP in VUB November 16, 2022, Brussels

Why Bayesian neural networks?

- When lacking known grounds, Bayesian models express higher uncertainty in the extrapolation regime.
- Probabilistic interpretation of prediction models
 - predicted value
 - its confidence
- Joint uncertainty quantification
 - aleatory (physical) uncertainty
 - epistemic (model) uncertainty

ABC of uncertainty quantification

Physical uncertainty

https://www.nytimes.com/2016/08/23/science/americas-first-offshore-wind-farm-may-power-up-a-new-industry.html

Aleatory

Measurement uncertainty

Model uncertainty

https://www.smart-energy.com/renewable-energy/nrel-iea-release-open-access-plans-for-iea-15-mw-wind-turbine/

Epistemic

Statistical uncertainty

http://www.winspector.eu/news-andevents/oscillation-measurement-on-windturbine-blade/

Source:https://www.researchgate.net/publicati on/275154568_MONITORING_THE_CONSUMED _FATIGUE_LIFE_OF_WIND_TURBINES_ON_MON OPILE_FOUNDATIONS

Example BNN with a simple dataset

A BNN modelling a sine function

- Stochastic components
 - Stochastic weights and biases, and/or
 - Stochastic activations
- Stochastic output, i.e., a probability distribution
 - One parameter can be known.

Distribution layer

Bayesian inference

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{\int P(D|\theta)P(\theta)d\theta}$$

 $P(\theta)$ = prior distribution of model parameters (user-specified)

 $P(D|\theta)$ = likelihood (D is the observed 'training' data)

 $P(\theta|D)$ = posterior distribution of model parameters

** High dimensional integral over the weights >> intractable posterior

Variational inference

• Objective of VI – to estimate unknown posterior distribution by a variational distribution, usually Gaussian $\mathcal{N}(\mu, \sigma)$.

How to measure similarity or divergence?

Variational inference (in just a little bit of Maths :D)

$$\mathbb{KL}(q_{\lambda}(\theta)||P(\theta|D)) = \int q_{\lambda}(\theta) \log \frac{q_{\lambda}(\theta)}{P(\theta|D)} d\theta$$

$$\mathbb{KL}(q_{\lambda}(\theta)| \mid P(\theta|D)) = \int q_{\lambda}(\theta) \log \frac{q_{\lambda}(\theta)}{P(\theta,D)} d\theta$$

$$\mathbb{KL}(q_{\lambda}(\theta)||P(\theta|D)) = \int q_{\lambda}(\theta) \log P(D) d\theta - \int q_{\lambda}(\theta) \log \frac{P(\theta,D)}{q_{\lambda}(\theta)} d\theta$$

$$\mathbb{KL}(q_{\lambda}(\theta)||P(\theta|D)) = \log P(D) - \int q_{\lambda}(\theta) \log \frac{P(D||\theta)P(\theta)}{q_{\lambda}(\theta)} d\theta$$

$$\mathbb{KL}(q_{\lambda}(\theta)||P(\theta|D)) = -\int q_{\lambda}(\theta) \log \frac{P(\theta)}{q_{\lambda}(\theta)} d\theta - \int q_{\lambda}(\theta) \log P(D|\theta) d\theta$$

$$\mathbb{KL}(q_{\lambda}(\theta)| \mid P(\theta|D)) = \int q_{\lambda}(\theta) \log \frac{q_{\lambda}(\theta)}{P(\theta)} d\theta - \int q_{\lambda}(\theta) \log P(D|\theta) d\theta$$

$$\mathbb{KL}\big(q_{\lambda}(\theta)|\mid P(\theta\mid D)\big) = \mathbb{KL}\big(q_{\lambda}(\theta)|\mid P(\theta)\big) - \mathbb{E}_{\theta \sim q_{\lambda}}\big[\log(P(D\mid \theta))\big]$$

Variational inference

$$\lambda^* = \operatorname{argmin} \left\{ \mathbb{KL} \left(q_{\lambda}(\theta) | | P(\theta) \right) - \mathbb{E}_{\theta \sim q_{\lambda}} \left[\log(P(D|\theta)) \right] \right\}$$
 Expected negative log-likelihood

- ✓ KL between variational and prior distributions.
- ✓ Prevents overfitting

Variational inference

$$\lambda^* = \operatorname{argmin} \left\{ \mathbb{KL} \left(q_{\lambda}(\theta) | | P(\theta) \right) - \mathbb{E}_{\theta \sim q_{\lambda}} \left[\log(P(D||\theta)) \right] \right\}$$
 Expected negative log-likelihood

- ✓ KL between variational and prior distributions.
- ✓ Prevents overfitting.

- ✓ Maximize the likelihood of the 'labels'.
- ✓ One realization instead of expectation*.

Training Bayesian neural networks

- Pick a prior distribution for the weights and/or biases.
- Draw a random sample from the distribution.
- Perform a forward pass.
- Compute the loss function (KL+NLL) given the random sample.
- Compute the derivative of the loss w.r.t the distribution parameters.
 - Update the (posterior) distribution parameters.

Training Bayesian neural networks

Reparametrization: $\theta = \mu_{\theta} + \sigma_{\theta} \cdot \varepsilon$

Some more practical things

- Implementation of BNNs in TensorFlow Probability
- Dense variational layers
 - DenseReparameterization
 - DenseFlipout
 - •
- Convolutional variational layers
 - DenseReparameterization
 - DenseFlipout
 - •
- Distribution layers
 - Sevaral ready-to-use distributions
 - <u>DistributionLambda</u> for other distributions

Farm-wide application

- Multiple forward runs in BNNs
- Expectation of the predicted load
- Compute the overall and model uncertainty
- Compare against measured labels**

Total variance theorem:

$$\mathbb{V}(\hat{y}|\mathbf{x}) = \mathbb{E}[\sigma_y^2|\mathbf{x}] + \mathbb{V}(\mu_y|\mathbf{x})$$
Aleatory Epistemic

- μ_y and σ_y are also stochastic.
- Perfect model $>> \sigma_y$ is the aleatory uncertainty.

 Model uncertainty from distribution of weights.

Model uncertainty (BNN's output only, no labels)

Comparison against labels (DNNs Vs BNNs)

Mininum Eucleadian distances to the nearest training point

In-training point

Out-of-training point

- Go to <u>Github.com/Nandarhline</u>.
- The name of the repository is 'BayesianNN'.
- Launch binder in README.md

- Case(1): Synthetic data with constant noise
- Case(2): Adding training data from different regions
- Case(3): Synthetic data with varied noise

Case(1): Synthetic data with constant noise

Case(2): Adding training data from different regions

Predictive mean

Measured

95% CI (+/- 1.96std)

5
-10
-10
-1 0 1 2 3

20 points between 2 and 2.25 20 points between 2.25 and 2.5

20 points between 1.75 and 2 20 points between 2 and 2.5

10 points between 0.5 and 1.5 30 points between 1.5 and 2.5

• Case(3): Synthetic data with varied noise

Predictive mean

Measured

95% CI (+/- 1.96std)

-5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

Overall predictive uncertainty

Model uncertainty

Future work

- To identify new optimal training points.
- To compare with kernel-based methods, e.g., Gaussian processes.
- To implement in decision-making for life-cycle management.

Partners

With the support of Energy Transition Fund

