Εξισώσεις 2ου βαθμού

ΑΣΚΗΣΕΙΣ

Ερωτήσεις θεωρίας

- α. Τι ονομάζουμε εξίσωση 2ου βαθμού.
- β. Ποιός αριθμός μας δείχνει το πλήθος των ριζών μιας εξίσωσης 200 βαθμού.
- γ. Πότε μια εξίσωση έχει 2 ρίζες, πότε μια και πότε είναι αδύνατη.
- 1. Να χαρακτηριστούν οι παρακάτω εξισώσεις ως σωστές (Σ) ή λανθασμένες (Λ).
 - α. Αν για μια εξίσωση 2^{ov} βαθμού έχουμε $\Delta > 0$ τότε έχει 2 άνισες λύσεις.
 - β. Αν για μια εξίσωση 2^{ou} βαθμού έχουμε $\Delta < 0$ τότε έχει μια διπλή λύση.
- γ . Η εξίσωση $ax^2 + \beta x + \gamma = 0$ παριστάνει μια εξίσωση 2ου βαθμού για κάθε τιμή του α.

Επίλυση εξισώσεων - Ειδικές περιπτώσεις

2. Να λυθούν οι παρακάτω εξισώσεις 200 βαθμού με παραγοντοποίηση.

$$\alpha. x^2 + 4x = 0$$

$$\delta. \ 4x^2 - 3x = 0$$

$$\beta. \ x^2 - 5x = 0$$

y.
$$2x^2 - 4x = 0$$

$$\epsilon . 2x^2 - 15x = 0$$

3. Να λυθούν οι παρακάτω εξισώσεις 200 βαθμού με παραγοντοποίηση.

$$\alpha$$
. $x^2 - 4 = 0$

$$\delta. \ x^2 + 16 = 0$$

$$\beta. \ x^2 - 25 = 0$$

$$\epsilon . 2x^2 - 3 = 0$$

$$y. \ 2x^2 - 32 = 0$$

$$στ. 3x^2 = 48$$

📕 Επίλυση εξισώσεων - Τύπος

4. Να λυθούν οι παρακάτω εξισώσεις 200 βαθμού με τη βοήθεια του τύπου.

$$\alpha. \ x^2 - 3x + 2 = 0$$

$$\sigma \tau. \ 2x^2 - 5x + 3 = 0$$

$$\beta. \ x^2 - 5x + 6 = 0$$

$$\zeta. \ \frac{1}{2}x^2 - x - 4 = 0$$

$$y. \ x^2 - 7x + 12 = 0$$

$$\delta. \ y^2 - y - 2 = 0$$

$$\eta. \ 0.1x^2 - 0.7x + 1.2 = 0$$

$$\epsilon \cdot -z^2 + 3z + 4 = 0$$

$$\theta. -y^2 + y + 3 = 0$$

5. Να λυθούν οι παρακάτω εξισώσεις 200 βαθμού με τη βοήθεια του τύπου.

$$\alpha$$
. $x^2 - 2x + 1 = 0$

$$\alpha. \ x^2 - 2x + 1 = 0$$
 $\delta. \ 25y^2 + 10y + 1 = 0$

$$\beta. \ x^2 + 4x + 4 = 0$$

$$\epsilon \cdot z^2 - z + \frac{1}{4} = 0$$

$$y. -x^2 + 6x - 9 = 0$$
 $\sigma \tau. \frac{x^2}{9} - \frac{2x}{3} + 1 = 0$

$$\sigma \tau. \ \frac{x^2}{9} - \frac{2x}{3} + 1 = 0$$

6. Να λυθούν οι παρακάτω εξισώσεις 200 βαθμού με τη βοήθεια του τύπου.

$$\alpha. x^2 - x + 1 = 0$$
 $y. 4x^2 + 1 = 0$

$$y. 4x^2 + 1 = 0$$

$$\beta$$
. $-x^2 + x - 3 = 0$ δ . $2x^2 + x + 1 = 0$

$$\delta \cdot 2x^2 + x + 1 = 0$$

7. Να λυθούν οι παρακάτω εξισώσεις.

$$\alpha$$
. $x^2 - x - 4 = 2$

$$\beta$$
. $v^2 - 3v + 6 = 2v$

y.
$$x^2 - 3x + 1 = x - 2$$

$$\delta$$
. $2z^2 - z - 2 = z^2$

$$\epsilon$$
. $x^2 + 2x + 4 = 4x + 3$

$$\sigma \tau$$
. $x^2 - 8x + 5 = 2x^2 - 7$

$$\zeta$$
. $2x^2 - 5x + 3 = (x - 1)^2$

n.
$$x^2 + 5x - 4 = 2x^2$$

$$\theta$$
. $(x-3)^2 + x = 2x - 1$

8. Να λυθούν οι παρακάτω εξισώσεις.

$$\alpha. \ \frac{x^2+2}{3} = \frac{x+5}{3} - 1$$

$$\beta. \ \frac{x^2}{4} + \frac{3x - 2}{2} = 3$$

$$y. \ \frac{x^2 - 3}{4} - \frac{2x + 1}{3} = 2 + \frac{3x}{8}$$

$$\delta. \ \frac{(x-2)^2}{3} - x = \frac{x}{5} - 3$$

$$\varepsilon. \ x\left(\frac{x}{2} - \frac{3}{4}\right) + \frac{1 - x}{5} = \frac{37}{20}$$

Παραγοντοποίηση τριωνύμου

9. Να παραγοντοποιηθούν τα παρακάτω τριώνυμα.

$$\alpha$$
. $x^2 - 3x + 2$

$$στ. x^2 + x + 4$$

$$\beta$$
. $x^2 - 5x + 6$

$$\zeta$$
. $-4y^2 + 4y - 1$

$$y$$
. $y^2 - y - 2$
 δ . $z^2 + 2z + 1$

$$\eta. 3z^2 + 10z - 8$$

$$\epsilon$$
. $2v^2 - 5v + 3$

1

$$\theta$$
. $4x^2 + 20x + 25$

10. Απλοποιήστε τα παρακάτω κλάσματα.

$$\alpha. \frac{x^2 - 3x + 2}{(x - 1)^2}$$

$$x^2 - 4$$

$$\varepsilon. \frac{2x^2 + 3x - 2}{4x^2 - 1}$$

$$\beta. \ \frac{x^2 - 4}{x^2 - x - 2}$$

β.
$$\frac{x^2 - 4}{x^2 - x - 2}$$
 στ. $\frac{-x^2 + 2x + 3}{x^2 - 3x}$

$$y. \ \frac{x^2 + 3x - 4}{x^2 - 16}$$

$$\zeta. \ \frac{x^2 - 4x + 4}{-x^2 + 3x - 2}$$

$$x^{2} - x - 2$$

$$y. \frac{x^{2} + 3x - 4}{x^{2} - 16}$$

$$\delta. \frac{x^{2} + 7x + 12}{x^{2} + x - 6}$$

$$x^{2} - 3x$$

$$\zeta. \frac{x^{2} - 4x + 4}{-x^{2} + 3x - 2}$$

$$\eta. \frac{2x^{2} - 5x + 3}{4x^{2} - 12x + 9}$$

$$\eta. \ \frac{2x^2 - 5x + 3}{4x^2 - 12x + 9}$$

11. Για καθένα από τα παρακάτω σχήματα