

Міністерство освіти і науки України

Національний технічний університет України

"Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Лабораторна робота №2

Програмування ітелектуальних інформаційних систем

Виконав	Перевірила:
студент групи IП-11:	Баришич Л. М
Панченко С. В.	

3MICT

1 Мета лабораторної роботи	6
2 Завдання	7
3 Виконання	9
3.1 Завдання друге	9
3.2 Minkowski	10
3.3 Euclidian, Manhattan	13
3.4 Пояснення результатів	14
ДОДАТОК А ТЕКСТИ ПРОГРАМНОГО КОДУ	15

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Класифікація даних.

2 ЗАВДАННЯ

Метрики і спосіб виконання описані тут:

https://www.kaggle.com/code/prashant111/naive-bayes-classifier-in-python

Лабу можна виконати в онлайн-редакторах типу Google Collab.

1. Dataset1: /kaggle/input/adult-dataset/adult.csv'

Bayesian Classification + Support Vector Machine

Зробити предікшн двома вищезгаданими алгоритмами. Порівняти наступні метрики:

Recall, f1-score, Confusion matrix, accuracy score. Порівняти з нульгіпотезою і перевірити на оверфітинг. Пояснити результати.

2. Dataset2: https://www.kaggle.com/code/stieranka/k-nearest-neighbors K nearest neighbours.

Те саме що і в 1 завданні, але порівнюємо між собою метрики. Euclidean, Manhattan, Minkowski. Кластери потрібно візуалізувати. Метрики аналогічно п.1

3. Dataset3: https://www.kaggle.com/code/nuhashafnan/cluster-analysis-kmeans-kmediod-agnes-birch-dbscan

Agnes, Birch, DBSCAN

Інші методи можна ігнорувати. Зняти метрики (Silhouette Coefficient, ARI, NMI. Можна з п.1-2), пояснити.

4. Dataset4: https://www.kaggle.com/code/datark1/customers-clustering-k-means-dbscan-and-ap

Affinity propagation.

Порівняти з k-means. Метрики - Silhouette Coefficient, ARI, NMI

У звіті до кожної задачі:

- 1 Візуалізувати кластери
- 2 Вивести метрики. Для кластерів Silhouette Coefficient, ARI, NMI
- 3 Порівняння з нулем і перевірка на оверфіт.
- 4 Висновок.

SVM і AP можна виконати на будь-якому датасеті.

3 ВИКОНАННЯ

3.13авдання друге

Для початку імпортуємо модулі. Завантажимо датафрейм та виведемо його вміст.

In [53]:	<pre>import itertools import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import NullFormatter import pandas as pd import matplotlib.ticker as ticker from sklearn import preprocessing df = pd.read_csv('data/teleCust1000t.csv') df</pre>												
Out[53]:		region	tenure	age	marital	address	income	ed	employ	retire	gender	reside	cus
	0	2	13	44	1	9	64.0	4	5	0.0	0	2	
	1	3	11	33	1	7	136.0	5	5	0.0	0	6	
	2	3	68	52	1	24	116.0	1	29	0.0	1	2	
	3	2	33	33	0	12	33.0	2	0	0.0	1	1	
	4	2	23	30	1	9	30.0	1	2	0.0	0	4	
	995	3	10	39	0	0	27.0	3	0	0.0	1	3	
	996	1	7	34	0	2	22.0	5	5	0.0	1	1	
	997	3	67	59	0	40	944.0	5	33	0.0	1	1	
	998	3	70	49	0	18	87.0	2	22	0.0	1	1	
	999	3	50	36	1	7	39.0	3	3	0.0	1	3	
	1000	rows × 1	L2 colum	ns									•

Рисунок 3.1.1 - Сутності

Перетворимо датафрейм у масив NumPy.

Рисунок 3.1.2 - Перетворення датафрейму у масив NumPy

Нормалізуємо дані

Рисунок 3.1.3 - Нормалізація даних

Натренуємо модель.

Рисунок 3.1.4 - Тренування моделі

Класифікуємо дані.

```
In [58]: yhat = neigh.predict(X_test)
yhat[0:5]

Out[58]: array([1, 1, 3, 2, 4])
```

Рисунок 3.1.5 - Класифікуємо дані

Перевіримо точність.

```
In [59]: from sklearn import metrics
print("Train set Accuracy: ", metrics.accuracy_score(y_train, neigh.predict(X_train)))
print("Test set Accuracy: ", metrics.accuracy_score(y_test, yhat))

Train set Accuracy: 0.5475
Test set Accuracy: 0.32
```

Рисунок 3.1.6 - Точність

3.2Minkowski

Бачимо, що точність замала. Спробуємо підіюрати інші значення k. Визначимо, які варіанти параметрів найкраще вирішують дану задачу для різних дистанцій.

Визначимо найкращі параметри для Minkowski.

Рисунок 3.2.1 - Визначення найкращого параметра

Натренуємо модель з найкращим параметром.

Рисунок 3.2.2 - Тренування моделі K-Nearest Neighbors

Визначимо точність моделі на тренувальних та тестових даних. Бачимо, що модель має схильність до оверфітингу.

```
In [63]: y_pred = knn.predict(X_test)
    train_score = round(knn.score(X_train, y_train), 5)
    test_score = round(knn.score(X_test, y_test), 5)
    print(f'Train accuracy: {train_score}')
    print(f'Test accuracy: {test_score}')

Train accuracy: 0.45125
Test accuracy: 0.345
```

Рисунок 3.2.3 - Точність моделі K-Nearest Neighbors

Перевірка з нульовою точністю.

```
In [64]:

def calc_null_accuracy(y_train):
    y_pd = pd.DataFrame(y_train)
    dd = y_pd.value_counts().values
    return dd[0] / (sum(dd))
    null_acc = calc_null_accuracy(y_train)
    null_acc
Out[64]: 0.28375
```

Рисунок 3.2.4 - Перевірка з нульовою точністю

Матриця невідповідностей

Рисунок 3.2.5 - Матриця невідповідностей

Визначимо метрики класифікації

	<pre>from sklearn.metrics import classification_report print(classification_report(y_test, y_pred))</pre>						
	precision	recall	f1-score	support			
1	0.31	0.43	0.36	51			
2	0.36	0.32	0.34	44			
3	0.36	0.39	0.37	54			
4	0.38	0.24	0.29	51			
accuracy			0.34	200			
macro avg	0.35	0.34	0.34	200			
weighted avg	0.35	0.34	0.34	200			

Рисунок 3.2.6 - Метрики класифікації

I в кінці побудуємо матрицю кореляцій.

Рисунок 3.2.7 - Матриця кореляцій

Візуалізуємо спрогнозовані класи відносно tenure та ed.

```
In [73]: X_test_pd = pd.DataFrame(X_test, columns=df.columns[:-1])
       plt.scatter(X_test_pd.tenure, X_test_pd.ed, marker="o", c=y_pred, s=40, edgecolor="k")
       plt.show()
        2.0
               000
                       ....
                                            0
                                                  0
        1.5
              1.0
        0.5
                                                              0
        0.0
       -0.5
       -1.0
       -1.5
              -1.5
                             -0.5
                                     0.0
                     -1.0
                                            0.5
                                                   1.0
                                                           1.5
```

Рисунок 3.2.8 - Класи

3.3Euclidian, Manhattan

Визначимо найкращі параметри для Euclidian.

```
In [ ]: from sklearn.model_selection import GridSearchCV
        models = []
        for d in ['euclidean', 'manhattan']:
            classificator = KNeighborsClassifier(metric='euclidean')
            params = {'n_neighbors': range(1, 60)}
            grid_search = GridSearchCV(classificator, params, cv=10, verbose=1)
            grid_search.fit(X_train, y_train)
            mod = grid_search.best_estimator_
            mod.fit(X_train, y_train)
            y pred = mod.predict(X test)
            train_score = round(mod.score(X_train, y_train), 5)
            test_score = round(mod.score(X_test, y_test), 5)
            print(f'Train accuracy {d}: {train_score}')
            print(f'Test accuracy {d}: {test_score}')
            models.append(mod)
       Fitting 10 folds for each of 59 candidates, totalling 590 fits
       Train accuracy euclidean: 0.45125
       Test accuracy euclidean: 0.345
       Fitting 10 folds for each of 59 candidates, totalling 590 fits
       Train accuracy manhattan: 0.45125
Test accuracy manhattan: 0.345
```

Рисунок 3.3.1 - Матриця кореляцій

Візуалізуємо спрогнозовані класи відносно tenure та ed для Euclidian.

Рисунок 3.3.2 - класи Euclidian

Візуалізуємо спрогнозовані класи відносно tenure та ed для Manhattan.

Рисунок 3.3.3 - класи Manhattan

3.4Пояснення результатів

Отже, кінцева точність для всіх трьох відстаней складає 0.345, перевірка з нульовою точністю показує результат 0.28375, а тому модель показує хоч і погану роботу у прогнозуванні класів, але точність вища за нульову.

ДОДАТОК А ТЕКСТИ ПРОГРАМНОГО КОДУ

Тексти програмного коду (Найменування програми (документа))

> Жорсткий диск (Вид носія даних)

(Обсяг програми (документа), арк.)

Студента групи IП-113 курсу Панченка С. В

```
import itertools
     import numpy as np
     import matplotlib.pyplot as plt
     from matplotlib.ticker import NullFormatter
     import pandas as pd
     import matplotlib.ticker as ticker
     from sklearn import preprocessing
     df = pd.read_csv('data/teleCust1000t.csv')
     df
     X = df[['region', 'tenure', 'age', 'marital', 'address', 'income', 'ed',
      'employ', 'retire', 'gender', 'reside']].values
     y = df['custcat'].values
     X = preprocessing.StandardScaler().fit(X).transform(X.astype(float))
     from sklearn.model_selection import train_test_split
     X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2,
random_state=4)
     from sklearn.neighbors import KNeighborsClassifier
     neigh = KNeighborsClassifier(n_neighbors = k).fit(X_train,y_train)
     neigh
     yhat = neigh.predict(X_test)
     yhat[0:5]
     from sklearn import metrics
     print("Train set Accuracy: ", metrics.accuracy_score(y_train,
neigh.predict(X_train)))
     print("Test set Accuracy: ", metrics.accuracy_score(y_test, yhat))
     from sklearn.model_selection import GridSearchCV
     classificator = KNeighborsClassifier(metric='minkowski')
     params = {'n_neighbors': range(1, 60)}
     grid_search = GridSearchCV(classificator, params, cv=10, verbose=1)
     grid_search.fit(X_train, y_train)
     knn = grid_search.best_estimator_
     knn
     knn.fit(X_train, y_train)
     y_pred = knn.predict(X_test)
      train_score = round(knn.score(X_train, y_train), 5)
      test_score = round(knn.score(X_test, y_test), 5)
     print(f'Train accuracy: {train_score}')
     print(f'Test accuracy: {test_score}')
     def calc_null_accuracy(y_train):
     y_pd = pd.DataFrame(y_train)
```

```
dd = y_pd.value_counts().values
     return dd[0] / (sum(dd))
     null_acc = calc_null_accuracy(y_train)
     null_acc
     from sklearn.metrics import confusion_matrix
     import seaborn as sns
     def conf_mat(model, x_test, y_test):
     y_predicted = model.predict(x_test)
     cm = confusion_matrix(y_test, y_predicted)
     plt.figure(figsize = (8,5))
     sns.heatmap(cm, annot=True, fmt=".1f")
     plt.xlabel('Predicted')
     conf_mat(knn, X_test, y_test)
     from sklearn.metrics import classification_report
     print(classification_report(y_test, y_pred))
     def corr_map(df, figsize):
     fig, axis = plt.subplots(figsize=figsize)
     axis.set_title('Кореляція між факторами')
     sns.heatmap(df.corr(), ax=axis, annot=True)
     corr_map(df, (10, 6))
     X_test_pd = pd.DataFrame(X_test, columns=df.columns[:-1])
     plt.scatter(X_test_pd.tenure, X_test_pd.ed, marker="o", c=y_pred, s=40,
edgecolor="k")
     plt.show()
     from sklearn.model_selection import GridSearchCV
     models = []
     for d in ['euclidean', 'manhattan']:
     classificator = KNeighborsClassifier(metric='euclidean')
     params = {'n_neighbors': range(1, 60)}
     grid_search = GridSearchCV(classificator, params, cv=10, verbose=1)
     grid_search.fit(X_train, y_train)
     mod = grid_search.best_estimator_
     mod.fit(X_train, y_train)
     y_pred = mod.predict(X_test)
     train_score = round(mod.score(X_train, y_train), 5)
     test_score = round(mod.score(X_test, y_test), 5)
     print(f'Train accuracy {d}: {train_score}')
     print(f'Test accuracy {d}: {test_score}')
     models.append(mod)
     y_pred = models[0].predict(X_test)
     X_test_pd = pd.DataFrame(X_test, columns=df.columns[:-1])
     plt.scatter(X_test_pd.tenure, X_test_pd.ed, marker="o", c=y_pred, s=40,
edgecolor="k")
     plt.show()
```

```
y_pred = models[1].predict(X_test)
X_test_pd = pd.DataFrame(X_test, columns=df.columns[:-1])
plt.scatter(X_test_pd.tenure, X_test_pd.ed, marker="o", c=y_pred, s=40,
edgecolor="k")
plt.show()
```