Instituto Federal do Piauí Tecnologia em Análise e Desenvolvimento de Sistemas Introdução a Computação Prof. Ricardo Ramos

1.0 Sistemas de Numeração

Define como um número pode ser representado utilizando distintos símbolos. Ex: 9_{10} , 1001_2 , 11_8 e 9_{16}

1.1 Sistema decimal

Símbolos $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8 e 9\}$ base = 10

Número = valor x base^{posição}

Ex 1:
$$7_{10} = (7 \times 10^{0}) = 7$$

Ex 2: $123_{10} = (1 \times 10^{2}) + (2 \times 10^{1}) + (3 \times 10^{0}) = 100 + 20 + 3 = 123$

Valor máximo ($N_{máx} = 10^k - 1$) k número de dígitos

Ex:
$$k = 3 N_{max} = 10^3 - 1 = 999$$

1.2 Sistema binário

Símbolos $S = \{0, 1\}$ base = 2 símbolos chamados de bits (binary digit)

Número = valor x base^{posição}

Ex 1:
$$101_2 = (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 4 + 0 + 1 = 5$$

Ex 2: $1111011_2 = (1 \times 2^6) + (1 \times 2^5) + (1 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 64 + 32 + 16 + 8 + 0 + 2 + 1 = 123$

Valor máximo ($N_{máx} = 2^k - 1$) k número de bits

Ex:
$$k = 3$$
 $N_{max} = 2^3 - 1 = 7$

1.3 Sistema hexadecimal

Símbolos S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} base = 16 A=10, B=11, C=12, D=13, E=14, F=15.

Número = valor x base^{posição}

Ex 1:
$$101_{16} = (1 \times 16^2) + (0 \times 16^1) + (1 \times 16^0) = 256 + 0 + 1 = 257$$

Ex 2: $A1_{16} = (10 \times 16^1) + (1 \times 16^0) = 160 + 1 = 161$

Valor máximo ($N_{máx} = 16^k$ -1) k número de bits

Ex:
$$k = 2$$
 $N_{max} = 16^2 - 1 = 255$

1.4 Sistema octal

Símbolos $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$ base = 8

Número = valor x base^{posição}

Ex 1:
$$101_8 = (1 \times 8^2) + (0 \times 8^1) + (1 \times 8^0) = 64 + 0 + 1 = 65$$

Valor máximo ($N_{máx} = 8^k - 1$) k número de bits

Ex:
$$k = 2$$
 $N_{max} = 8^2 - 1 = 63$

1.5 Tabela com os quatro sistemas

Decimal	Binário (nibble)	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

Binário 10000 (1 x 2^4) = 16 Ok Octal 20 = (2 x 8^1) + (0 x 8^0) = 16 + 0 = 16 Ok Hexadecimal 10 = (1 x 16^1) + (0 x 16^0) = 16 + 0 = 16 Ok