PART 2 The BREAK

if $\deg \varphi = \deg \varphi'$ and $\deg \psi = \deg \psi'$ then this square of

1-dimensional isogenies

is associated to

a **2-dimensional isogeny** $\Phi: E_2 \times E_3 \rightarrow E_1 \times E_4$

PART 2 The BREAK

if $\deg \varphi = \deg \varphi'$

and $\deg \psi = \deg \psi'$ then this square of

1-dimensional isogenies

is associated to

a 2-dimensional isogeny

$$\Phi: E_2 \times E_3 \to E_1 \times E_4$$

1D isogeny

if we know $\ker \varphi$, then we can compute $\varphi: E \to E'$ and $\varphi(P)$