Exercise 1.13

Prove that $\mathrm{Fib}(n)$ is the closest integer to $\phi^n/\sqrt{5}$, where

$$\phi = \frac{1+\sqrt{5}}{2}$$

Hint: Let

$$\psi = \frac{1 - \sqrt{5}}{2}$$

Use induction and the definition of the Fibonacci numbers to prove that

$$\mathrm{Fib}(n) = \frac{\phi^n - \psi^n}{\sqrt{5}}$$

Theorem 1. The nth Fibonacci number, $\mathrm{Fib}(n)$, is equal to

$$\frac{\phi^n - \psi^n}{\sqrt{5}}$$

Proof. We prove by induction.

Base case.

•
$$Fib(0) = \frac{0}{\sqrt{5}} = 0$$

• Fib(1) =
$$\frac{\phi - \psi}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}} = 1$$

• Fib(0) =
$$\frac{0}{\sqrt{5}}$$
 = 0
• Fib(1) = $\frac{\phi - \psi}{\sqrt{5}}$ = $\frac{\sqrt{5}}{\sqrt{5}}$ = 1
• Fib(2) = $\frac{\phi^2 - \psi^2}{\sqrt{5}}$ = $\frac{\sqrt{5}}{\sqrt{5}}$ = 1

Inductive step.

$$Fib(n) = Fib(n-1) + Fib(n-2)$$

$$= \frac{\phi^{n-1} - \psi^{n-1}}{\sqrt{5}} + \frac{\phi^{n-2} - \psi^{n-2}}{\sqrt{5}}$$

$$= \frac{\phi^{n-1} + \phi^{n-2} - (\psi^{n-1} + \psi^{n-2})}{\sqrt{5}}$$

$$= \frac{\phi^{n-2}(\phi + 1) - \psi^{n-2}(\psi + 1)}{\sqrt{5}}$$

But

$$\phi^{n-2}(\phi+1) = \phi^{n-2}\left(rac{3+\sqrt{5}}{2}
ight)$$
 $= \phi^{n-2}\left(rac{6+2\sqrt{5}}{4}
ight)$
 $= \phi^{n-2}\left(rac{1+2\sqrt{5}+\sqrt{5}^2}{4}
ight)$
 $= \phi^{n-2}\phi^2$
 $= \phi$

Similarly,

$$\psi^{n-2}(\psi+1) = \psi^{n-2}\left(rac{3-\sqrt{5}}{2}
ight)$$

$$= \psi^{n-2}\left(rac{6-2\sqrt{5}}{4}
ight)$$

$$= \psi^{n-2}\left(rac{1-2\sqrt{5}+\sqrt{5}^2}{4}
ight)$$

$$= \psi^{n-2}\psi^2$$

$$= \psi$$

Therefore,

$$\mathrm{Fib}(n) = \frac{\phi^n - \psi^n}{\sqrt{5}}$$

Q.E.D.

Corollary 1.

$$\mathrm{Fib}(n) = \left[\frac{\phi^n}{\sqrt{5}}\right]$$

Proof. We construct a chain of iffs:

$$\operatorname{Fib}(n) \Leftrightarrow \frac{\phi^n - \psi^n}{\sqrt{5}}$$
$$\Leftrightarrow \frac{\phi^n}{\sqrt{5}} - \frac{\psi^n}{\sqrt{5}}$$

Note that $\left| \frac{\psi^n}{\sqrt{5}} \right|$ will never exceed $\left| \frac{\psi}{\sqrt{5}} \right|$, since $0 < |\psi| < 1$. By extension, $\left| \frac{\psi^n}{\sqrt{5}} \right| < \frac{1}{2}$.

By the definition of [x], if x is an integer, $[x] = [x \pm r]$ if r < 0.5; therefore,

$$\frac{\phi^n}{\sqrt{5}} - \frac{\psi^n}{\sqrt{5}} \Leftrightarrow \left[\frac{\phi^n}{\sqrt{5}}\right]$$

Q.E.D.