

Compiladores

Gramáticas livres de contexto

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt</pre>

DETI, Universidade de Aveiro

Ano letivo de 2022-2023

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 1/43

Sumário

- 1 Gramáticas livres de contexto (GLC)
- 2 Derivação e árvore de derivação
- 3 Ambiguidade
- 4 Projeto de gramáticas
- Operações sobre GLC
- 6 Limpeza de gramáticas

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 2/43

Gramáticas Definição

Uma gramática é um quádruplo G = (T, N, P, S), onde

- T é um conjunto finito não vazio de símbolos terminais;
- N, com $N \cap T = \emptyset$, é um conjunto finito não vazio de símbolos **não** terminais;
- P é um conjunto de **produções** (ou regras de rescrita), cada uma da forma $\alpha \to \beta$;
- $S \in N$ é o símbolo inicial.
- α e β são designados por cabeça da produção e corpo da produção, respetivamente.
- No caso geral $\alpha \in (N \cup T)^* \times N \times (N \cup T)^*$ e $\beta = (N \cup T)^*$.
- Em ANTLR:
 - os terminais são representados por ids começados por letra maíscula
 - os não terminais são representados por ids começados por letra minúscula

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 4/43

Gramáticas livres de contexto – GLC Definição

 ${\mathcal D}$ Uma gramática G=(T,N,P,S) diz-se **livre de contexto** (ou **independente do contexto**) se, para qualquer produção $(\alpha \to \beta) \in P$, as duas condições seguintes são satisfeitas

$$\alpha \in N$$
$$\beta \in (T \cup N)^*$$

- A linguagem gerada por uma gramática livre de contexto diz-se livre de contexto
- As gramáticas regulares são livres de contexto
- As gramáticas livres de contexto são fechadas sob as operações de reunião, concatenação e fecho
 - mas não o são sob as operações de intersecção e complementação.

• Note que: se $\beta \in T^* \cup T^*N$, então $\beta \in (T \cup N)^*$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 5/43

Derivação Exemplo

 \mathcal{Q} Considere, sobre o alfabeto $T = \{a, b, c\}$, a gramática

$$S
ightarrow arepsilon \mid$$
 a $B \mid$ b $A \mid$ c S $A
ightarrow$ a $S \mid$ b $A \mid$ c $A \mid$ B $ightarrow$ a $B \mid$ b $S \mid$ c $B \mid$

e transforme o símbolo inicial S na palavra <code>aabcbc</code> por aplicação sucessiva de produções da gramática

 \mathcal{R}

$$S\Rightarrow aB\Rightarrow aaBB\Rightarrow aabSB\Rightarrow aabcSB\Rightarrow aabcbS$$

 $\Rightarrow aabcbcS\Rightarrow aabcbc$

- Acabou de se obter uma derivação à esquerda da palavra aabcbc
- Cada passo dessa derivação é uma derivação direta à esquerda
- Quando há dois ou mais símbolos não terminais, opta-se por expandir primeiro o mais à esquerda

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 7/43

Derivação Definições

 ${\mathcal D}$ Dada uma palavra $\alpha A \beta$, com $A \in N$ e $\alpha, \beta \in (N \cup T)^*$, e uma produção $(A \to \gamma) \in P$, com $\gamma \in (N \cup T)^*$, chama-se **derivação direta** à rescrita de $\alpha A \beta$ em $\alpha \gamma \beta$, denotando-se

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

 ${\mathcal D}$ Dada uma palavra $\alpha A \beta$, com $A \in N$, $\alpha \in T^*$ e $\beta \in (N \cup T)^*$, e uma produção $(A \to \gamma) \in P$, com $\gamma \in (N \cup T)^*$, chama-se **derivação direta à esquerda** à rescrita de $\alpha A \beta$ em $\alpha \gamma \beta$, denotando-se

$$\alpha A\beta \stackrel{E}{\Rightarrow} \alpha \gamma \beta$$

 ${\mathcal D}$ Dada uma palavra $\alpha A \beta$, com $A \in N$, $\alpha \in (N \cup T)^*$ e $\beta \in T^*$, e uma produção $(A \to \gamma) \in P$, com $\gamma \in (N \cup T)^*$, chama-se **derivação direta à direita** à rescrita de $\alpha A \beta$ em $\alpha \gamma \beta$, denotando-se

$$\alpha A\beta \stackrel{D}{\Rightarrow} \alpha \gamma \beta$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 8/43

Derivação Definições

D Chama-se **derivação** a uma sucessão de zero ou mais derivações diretas, denotando-se

$$\alpha \Rightarrow^* \beta \equiv \alpha = \gamma_0 \Rightarrow \gamma_1 \Rightarrow \cdots \Rightarrow \gamma_n = \beta$$

onde n é o comprimento da derivação.

D Chama-se derivação à esquerda a uma sucessão de zero ou mais derivações diretas à esquerda, denotando-se

$$\alpha \stackrel{E}{\Rightarrow} {}^*\beta \equiv \alpha_1 \stackrel{E}{\Rightarrow} \cdots \stackrel{E}{\Rightarrow} \alpha_n = \beta$$

onde n é o comprimento da derivação.

Chama-se derivação à direita a uma sucessão de zero ou mais derivações diretas à direita, denotando-se

$$\alpha \stackrel{D}{\Rightarrow} {}^*\beta \equiv \alpha = \gamma_0 \stackrel{D}{\Rightarrow} \gamma_1 \stackrel{D}{\Rightarrow} \cdots \stackrel{D}{\Rightarrow} \gamma_n = \beta$$

onde n é o comprimento da derivação.

ACP (DETI/UA) Maio de 2023

Derivação Exemplo

 \mathcal{Q} Considere, sobre o alfabeto $T = \{a, b, c\}$, a gramática seguinte

$$S \, \rightarrow \, \varepsilon \, \mid \, \mathsf{a} \, \, B \, \mid \, \mathsf{b} \, \, A \, \mid \, \mathsf{c} \, \, S$$

$$A \rightarrow a S \mid b A A \mid c A$$

$$B\,\rightarrow\,$$
 a B B $|$ b S $|$ c B

Determine as derivações à esquerda e à direita da palavra aabcbc

 \mathcal{R}

à esquerda

querda
$$S \Rightarrow aB \Rightarrow aabSB \Rightarrow aabcSB$$

$$\Rightarrow$$
 aabcb $S \Rightarrow$ aabcbc $S \Rightarrow$ aabcbc

à direita

$$\mathcal{L} \mathcal{E}$$
 $RR \rightarrow aaRhS -$

$$S \Rightarrow aB \Rightarrow aaBB \Rightarrow aaBbS \Rightarrow aaBbcS$$

 $\Rightarrow aaBbc \Rightarrow aabcbc \Rightarrow aabcbc$

• Note que se usou \Rightarrow em vez de $\stackrel{D}{\Rightarrow}$ e $\stackrel{E}{\Rightarrow}$

ACP (DETI/UA)

Derivação

Alternativas de derivação

 O grafo seguinte capta as alternativas de derivação. Considera-se novamente a palavra aabcbc e a gramática anterior

• Identifique os caminhos que correspondem às derivações à direita e à esquerda

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 11/43

Derivação Árvore de derivação

- Uma árvore de derivação (parse tree) é uma representação de uma derivação onde os nós-ramos são símbolos não terminais e os nós-folhas são símbolos terminais
- A árvore de derivação da palavra aabcbc na gramática anterior é

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 12/43

Ambiguidade

Ilustração através de um exemplo

- Considere a gramática $S \to S + S \mid S S \mid$ (S) | n e desenhe a árvore de derivação da palavra n+n-n
- R Podem obter-se duas árvores de derivação diferentes

Pode haver duas interpretações diferentes para a palavra; há ambiguidade

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 14/43

Ambiguidade Definição

- Diz-se que uma palavra é derivada **ambiguamente** se possuir duas ou mais árvores de derivação distintas
- Diz-se que uma gramática é **ambígua** se possuir pelo menos uma palavra gerada ambiguamente
- Frequentemente é possível definir-se uma gramática não ambígua que gera a mesma linguagem que uma ambígua
- No entanto, há gramáticas inerentemente ambíguas

Por exemplo, a linguagem

$$L = \{\mathbf{a}^i \mathbf{b}^j \mathbf{c}^k \mid i = j \vee j = k\}$$

não possui uma gramática não ambígua que a represente.

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 15/43

Ambiguidade

Remoção da ambiguidade

 $\ensuremath{\mathcal{R}}$ Considere-se novamente a gramática

$$S \rightarrow S + S \mid S - S \mid (S) \mid n$$

e obtenha-se uma gramática não ambígua equivalente

 \mathcal{R}

$$S \to K \mid S + K \mid S - K$$
$$K \to n \mid (S)$$

Q Desenhe a árvore de derivação da palavra n+n-n na nova gramática

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 16/43

Projeto de gramáticas

Exemplo #1, solução #1

 ${\cal Q}\,$ Sobre o conjunto de terminais $T=\{{\tt a},{\tt b}\},$ determine uma gramática livre de contexto que represente a linguagem

$$L_1 \,=\, \{\omega \in T^* \,:\, \#(\mathbf{a},\omega) = \#(\mathbf{b},\omega)\}$$

 \mathcal{R}_1

$$S\,\rightarrow\,\varepsilon$$
 $|$ a S b S $|$ b S a S

Q A gramática é ambígua? Analise a palavra aabbab

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 18/43

Exemplo #1, solução #2

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_1 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

 \mathcal{R}_2

$$S \to \varepsilon \mid a B \mid b A$$

 $A \to a S \mid b A A$
 $B \to a B B \mid b S$

Q A gramática é ambígua?Analise a palavra aababb.

Falta expandir alguns nós

ACP (DETI/UA)

Comp 2022/2023

Maio de 2023

19/43

Projeto de gramáticas

Exemplo #1, solução #3

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_1 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

 \mathcal{R}_3

$$S \, \rightarrow \, \varepsilon \, \mid \, \mathbf{a} \, \mathrel{B} \, S \, \mid \, \mathbf{b} \, \mathrel{A} \, S$$

$$A \rightarrow a \mid b \mid A \mid A$$

$$B\,\rightarrow\,$$
 a $B\,\,B\,\mid\,$ b

Q A gramática é ambígua? Analise a palavra aababb

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 20/43

Exemplo #2

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_2 = \{\omega \in T^* : \#(\mathtt{a},\omega) = \#(\mathtt{b},\omega)\}$$
 \mathcal{R}
$$S \to \varepsilon \mid \mathtt{a} \mid B \mid S \mid \mathtt{b} \mid A \mid S \mid \mathtt{c} \mid S$$

$$A \to \mathtt{a} \mid \mathtt{b} \mid A \mid A \mid \mathtt{c} \mid A$$

$$B \to \mathtt{a} \mid B \mid \mathtt{b} \mid \mathtt{c} \mid B$$

Q A gramática é ambígua? Ver a S66ac

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 21 / 43

Projeto de gramáticas

Exemplo #3, solução #1

 \mathcal{R}_1

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática livre de contexto que represente a linguagem

Q A gramática é ambígua? Analise a palavra aababb

- O número de ocorrências das letras a e b é igual, mas em qualquer prefixo das palavras da linguagem não pode haver mais bs que as, ou seja o a aparece antes
- Solução inspirada na do exemplo 1.1, removendo a produção $S \to b \ S \ a \ S$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 22/43

Exemplo #3: solução #2

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_3 = \{\omega \in T^* \,:\, \#(\mathbf{a},\omega) = \#(\mathbf{b},\omega) \land \\ \forall_{i \leq |\omega|} \ \#(\mathbf{a},\mathsf{prefix}(i,\omega)) \geq \#(\mathbf{b},\mathsf{prefix}(i,\omega)) \}$$

$$\mathcal{R}_2$$

$$S \to \varepsilon \mid \mathbf{a} \ B \mid \mathbf{c} \ S$$

$$B \to \mathbf{a} \ B \ B \mid \mathbf{b} \ S \mid \mathbf{c} \ B$$

Q A gramática é ambígua? Analise a palavra aababb

• Solução inspirada na do exemplo 1.2, removendo a produção $S \to \mathtt{b} \ A$ e as começadas por A

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 23 / 43

Projeto de gramáticas

Exemplo #3: solução #3

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_3 = \{\omega \in T^* \,:\, \#(\mathtt{a},\omega) = \#(\mathtt{b},\omega) \land \\ \forall_{i \leq |\omega|} \ \#(\mathtt{a},\mathsf{prefix}(i,\omega)) \geq \#(\mathtt{b},\mathsf{prefix}(i,\omega)) \}$$

$$\mathcal{R}_3$$

$$S \to \varepsilon \mid \mathtt{a} \mathrel{B} \mathrel{S} \mid \mathtt{c} \mathrel{S} \\ B \to \mathtt{a} \mathrel{B} \mathrel{B} \mid \mathtt{b} \mid \mathtt{c} \mathrel{B}$$

Q A gramática é ambígua? Analise a palavra aababb

• Solução inspirada na do exemplo 1.3, removendo a produção $S \to \flat \ A \ S$ e as começadas por A

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 24/43

Exercício

 \mathcal{Q} Sobre o conjunto de terminais $T = \{a, b, c, (,), +, \star\}$, determine uma gramática independente do contexto que represente a linguagem

$$L = \{ \ \omega \in T^* \ : \\ \omega \text{ representa uma expressão regular sobre o alfabeto } \{ \mathtt{a}, \mathtt{b}, \mathtt{c} \} \}$$

 \mathcal{R} Em ANTLR, poder-se-ia fazer

mas em geral não, porque, em geral, as alternativas estão todas ao mesmo nível

- Como escrever a gramática de modo à precedência ser imposta por construção?
- Está a usar-se o operador + em vez do |

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 25/43

Projeto de gramáticas

Exercício (cont.)

 \mathcal{R} Em geral

- Uma expressão é vista como uma 'soma' de termos
- Um termo é visto como um 'produto' (concatenação) de fatores
- Um fator é visto como um 'fecho' de operandos
- Um operando ou é um elemento base ou uma expressão entre parêntesis
- Está a usar-se o operador + em vez do |

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 26 / 40

Reunião de GLC Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, determine uma gramática livre de contexto que represente a linguagem

$$L = \{ \omega \in T^* : \#(a, \omega) = \#(b, \omega) \lor \#(a, \omega) = \#(c, \omega) \}$$

$$L_1 = \{ \omega \in T^* : \#(a, \omega) = \#(b, \omega) \}$$

$$S_1 \to \varepsilon \mid a S_1 \mid b S_1 \mid b S_1 \mid c S_1$$

$$\downarrow b S_1 \mid a S_1 \mid c S_1$$

$$\downarrow b S_2 \mid c S_2 \mid a S_2$$

$$\downarrow b S_2 \mid c S_2 \mid a S_2$$

$$S \to S_1 \mid S_2$$

$$S_1 \to \varepsilon \mid a S_1 \mid b S_1 \mid c S_1$$

$$\downarrow b S_1 \mid a S_1 \mid c S_1$$

$$\downarrow b S_1 \mid a S_1 \mid c S_1$$

$$\downarrow b S_1 \mid a S_1 \mid c S_1$$

$$\downarrow b S_2 \mid c S_2 \mid a S_2$$

$$\downarrow b S_2 \mid c S_2 \mid a S_2$$

• Para esta linguagem, mesmo que as gramáticas de L_1 e L_2 não sejam ambíguas, a de L será ambígua. Porquê?

ACP (DETI/UA)

Comp 2022/2023

Maio de 2023 28/43

Comp L1

Comp L2

Com L1

Com L2

Com L2

Com L2

Operações sobre GLCs

Reunião

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas livres de contexto quaisquer, com $N_1\cap N_2=\emptyset$.

A gramática G = (T, N, P, S) onde

$$T = T_1 \cup T_2$$

$$N = N_1 \cup N_2 \cup \{S\} \quad \text{com} \quad S \notin (N_1 \cup N_2)$$

$$P = \{S \rightarrow S_1, S \rightarrow S_2\} \cup P_1 \cup P_2$$

é livre de contexto e gera a linguagem $L = L(G_1) \cup L(G_2)$

- As novas produções $S \to S_i$, com i=1,2, permitem que G gere a linguagem $L(G_i)$
- Esta definição é idêntica à que foi dada para a operação de reunião nas gramáticas regulares

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 29 / 40

Concatenação de GLC Exemplo

 $L = L_1 \cdot L_2$

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, determine uma gramática livre de contexto que represente a linguagem

$$L = \{ \omega_{1}\omega_{2} : \omega_{1}, \omega_{2} \in T^{*} \\ \wedge \#(\mathsf{a}, \omega_{1}) = \#(\mathsf{b}, \omega_{1}) \wedge \#(\mathsf{a}, \omega_{2}) = \#(\mathsf{c}, \omega_{2}) \}$$

$$L_{1} = \{ \omega \in T^{*} : \#(\mathsf{a}, \omega) = \#(\mathsf{b}, \omega) \} \begin{vmatrix} S_{1} \to \varepsilon \mid \mathsf{a} S_{1} \mid \mathsf{b} S_{1} \\ \mid \mathsf{b} S_{1} \mid \mathsf{a} S_{1} \mid \mathsf{c} S_{1} \end{vmatrix}$$

$$L_{2} = \{ \omega \in T^{*} : \#(\mathsf{a}, \omega) = \#(\mathsf{c}, \omega) \} \begin{vmatrix} S_{2} \to \varepsilon \mid \mathsf{a} S_{2} \mid \mathsf{c} S_{2} \\ \mid \mathsf{b} S_{2} \mid \mathsf{c} S_{2} \mid \mathsf{a} S_{2} \end{vmatrix}$$

$$S \to S_{1} S_{2}$$

$$S_{1} \to \varepsilon \mid \mathsf{a} S_{1} \mid \mathsf{b} S_{1} \end{vmatrix}$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 30/4

 \mid b S_1 a S_1 \mid c S_1

 \mid b $S_2 \mid$ c S_2 a S_2

 $S_2 \rightarrow \varepsilon \mid$ a S_2 c S_2

Operações sobre gramáticas:

Concatenação

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas livres de contexto quaisquer, com $N_1\cap N_2=\emptyset$.

A gramática G = (T, N, P, S) onde

$$T = T_1 \cup T_2$$
 $N = N_1 \cup N_2 \cup \{S\}$ com $S \notin (N_1 \cup N_2)$ $P = \{S \to S_1 S_2\} \cup P_1 \cup P_2$

é livre de contexto e gera a linguagem $L = L(G_1) \cdot L(G_2)$

- A nova produção $S \to S_1S_2$ justapõe palavras de $L(G_2)$ às de $L(G_1)$
- Esta definição é diferente da que foi dada para a operação de concatenação nas gramáticas regulares

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 31 / 40

Fecho de Kleene de GLC

Exemplo

 \mathcal{Q} Sobre o conjunto de terminais $T = \{a, b, c\}$, determine uma gramática livre de contexto que represente a linguagem

$$L\,=\,\{\,\omega\in T^*\,:\,\#(\mathbf{a},\omega)\geq\#(\mathbf{b},\omega)\}$$

 \mathcal{R}

C		
	$X = \{ \omega \in T^* : \#(\mathtt{a},\omega) = \#(\mathtt{b},\omega)\}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$A = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) + 1 \}$	Basta usar o A anterior como símbolo inicial
-	$L = X \cup A^*$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

• O fecho de A inclui a palavra vazia mas não as outras palavras com $\#_a = \#_b$

ACP (DETI/UA)

Comp 2022/2023

Maio de 2023

Operações sobre gramáticas

Fecho de Kleene

Seja $G_1 = (T_1, N_1, P_1, S_1)$ uma gramática livre de contexto qualquer. A gramática G = (T, N, P, S) onde

$$\begin{array}{ll} T = T_1 \\ N = N_1 \, \cup \, \{S\} & \mathsf{com} \quad S \not \in N_1 \\ P = \{S \rightarrow \varepsilon, S \rightarrow S_1 S\} \, \cup \, P_1 \end{array}$$

é livre de contexto e gera a linguagem $L = (L(G_1))^*$

- A produção $S \to \varepsilon$, per si, garante que $L^0(G_1) \subseteq L(G)$
- As produções $S \to S_1 S$ e $S \to \varepsilon$ garantem que $L^i(G_1) \subseteq L(G)$, para qualquer i > 0
- Esta definição é diferente da que foi dada para a operação de fecho nas gramáticas regulares

ACP (DETI/UA)

Símbolos produtivos e improdutivos

Exemplo de ilustração

Q Sobre o conjunto de terminais $T = \{a, b, c, d\}$, considere a gramática

$$S
ightarrow$$
 a A b $|$ b B $A
ightarrow$ c C $|$ b B $|$ d $B
ightarrow$ d D $|$ b $C
ightarrow$ A C $|$ B D $|$ S D $D
ightarrow$ A D $|$ B C $|$ C S $E
ightarrow$ a A $|$ b B $|$ $arepsilon$

- Tente expandir (através de uma derivação) o símbolo não terminal A para uma sequência apenas com símbolos terminais $(S \Rightarrow^* u, \text{ com } u \in T^*)$
 - $A \Rightarrow d$
- Faça o mesmo com o símbolo C
 - Não consegue
- A é um símbolo produtivo; C é um símbolo improdutivo

ACP (DETI/UA) Maio de 2023

Símbolos produtivos e improdutivos

Definição de símbolo produtivo

- Seja G = (T, N, P, S) uma gramática qualquer
- Um símbolo não terminal A diz-se **produtivo** se for possível expandi-lo para uma expressão contendo apenas símbolos terminais
- Ou seja, A é produtivo se

$$A \Rightarrow^+ u \land u \in T^*$$

- Caso contrário, diz-se que A é improdutivo
- Uma gramática é improdutiva se o seu símbolo inicial for improdutivo
- Na gramática

$$S \to \mathtt{a} \ \mathtt{b} \ | \ \mathtt{a} \ S \ \mathtt{b} \ | \ X \\ X \to \mathtt{c} \ X$$

- $S \neq \text{ for produtivo, porque} \quad S \Rightarrow \text{ab} \quad \land \quad \text{ab} \in T^*$
- $X \neq \mathsf{c}X \Rightarrow \mathsf{c}X \Rightarrow \mathsf{c}X \Rightarrow^* \mathsf{c} \cdots \mathsf{c}X$

ACP (DETI/UA) Maio de 2023

Símbolos produtivos

Algoritmo de cálculo

• O conjunto dos símbolos produtivos, N_p , pode ser obtido por aplicação sucessiva das seguintes regras construtivas

```
\begin{array}{l} \textbf{if} \ (A \to \alpha) \in P \ \ \textbf{and} \ \alpha \in T^* \ \ \textbf{then} \ A \in N_p \\ \textbf{if} \ (A \to \alpha) \in P \ \ \textbf{and} \ \alpha \in (T \cup N_p)^* \ \ \textbf{then} \ A \in N_P \end{array}
```

Algoritmo de cálculo:

```
\begin{array}{lll} \mathbf{let} \ N_p \leftarrow \emptyset, & P_p \leftarrow P & \# \ N_p - \mathit{s\'imbolos} \ \mathit{produtivos} \\ \mathbf{repeat} & & \\ \mathrm{nothingAdded} \leftarrow \mathsf{true} \\ & \mathbf{foreach} \ (A \rightarrow \alpha) \in P_p \ \ \mathbf{do} \\ & \mathbf{if} \ \alpha \in (T \cup N_p)^* \ \ \mathbf{then} & \#\mathit{se} \ \mathit{todos} \ \mathit{s\~ao} \ \mathit{terminais} \ \mathit{ou} \ \mathit{produtivos}, A \ \acute{e} \ \mathit{produtivos} \\ & \mathbf{if} \ A \not \in N_p \ \ \mathbf{then} & \#\mathit{se} \ \mathit{ainda} \ \mathit{n\~ao} \ \mathit{pertence} \ \mathit{aos} \ \mathit{produtivos} \\ & N_p \leftarrow N_p \cup \{A\} & \#\mathit{e} \ \acute{e} \ \mathit{processo} \\ & nothingAdded \leftarrow \ \mathit{false} & \#\mathit{e} \ \acute{e} \ \mathit{processo} \ \mathit{epetir} \ \mathit{o} \ \mathit{processo} \\ & P_p \leftarrow P_p - \{A \rightarrow \alpha\} & \#\mathit{a} \ \mathit{produ\~c\~ao} \ \mathit{j\'a} \ \mathit{n\~ao} \ \mathit{precisa} \ \mathit{de} \ \mathit{ser} \ \mathit{processada} \ \mathit{mais} \\ \mathbf{until} \ \mathit{nothingAdded} \ \ \mathbf{or} \ N_p = N \end{array}
```

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 37/43

Símbolos acessíveis e inacessíveis

Exemplo de ilustração

 \mathcal{Q} Sobre o conjunto de terminais $T = \{a, b, c, d\}$, considere a gramática

$$S
ightarrow$$
 a A b $|$ b B $A
ightarrow$ c C $|$ b B $|$ d $B
ightarrow$ d D $|$ b $C
ightarrow$ A C $|$ B D $|$ S D $D
ightarrow$ A D $|$ B C $|$ C S $E
ightarrow$ a A $|$ b B $|$ $arepsilon$

- Tente alcançar (através de uma derivação) o símbolo não terminal C a partir do símbolo inicial (S) $(S \Rightarrow^* \alpha C \beta, \text{ com } \alpha, \beta \in (T \cup N)^*)$
 - $S \Rightarrow b B \Rightarrow b d D \Rightarrow b d B C$
- ullet Faça o mesmo com o símbolo E
 - Não consegue
- C é um símbolo acessível; E é um símbolo inacessível

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 38/43

Símbolos acessíveis e inacessíveis

Definição de símbolo acessível

- Seja G = (T, N, P, S) uma gramática qualquer
- Um símbolo terminal ou não terminal x diz-se **acessível** se for possível expandir S (o símbolo inicial) para uma expressão que contenha x
- Ou seja, x é acessível se

$$S \Rightarrow^* \alpha x \beta$$

- Caso contrário, diz-se que x é inacessível
- Na gramática

$$S
ightarrow arepsilon \mid$$
 a S b \mid c C c $C
ightarrow c$ S c $D
ightarrow$ d X d $X
ightarrow C$ C

- D, d, e X são inacessíveis
- Os restantes são acessíveis

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 39/43

Símbolos acessíveis

Algoritmo de cálculo

• O conjunto dos seus símbolos acessíveis, V_A , pode ser obtido por aplicação das seguintes regras construtivas

$$S \in V_A$$
 if $A o lpha B eta \in P$ and $A \in V_A$ then $B \in V_A$

• Algoritmo de cálculo:

```
V_A \leftarrow \{S\}
                                       # no fim. ficará com todos os símbolos acessíveis
N_A \leftarrow \{S\}
                    # conjunto de símbolos não terminais acessíveis a processar
repeat
    X \leftarrow \text{elementOf}(N_A)
                                                   \# retira um elemento qualquer de N_A
     foreach (X \to \alpha) \in P do
          foreach x in \alpha do
              if x \not\in V_A then \# se ainda não está marcado como acessível
                   V_A \leftarrow V_A \cup \{x\}
                                                                           # passa a estar
                   \texttt{if}\ x \in N \ \texttt{then}
                                                       # se adicinalmente é não terminal
                        N_A \leftarrow N_A \cup \{x\}
                                                                # terá de ser processado
until N_A = \emptyset
```

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 40/43

Gramáticas limpas

Algoritmo de limpeza

- Numa gramática, os símbolos inacessíveis e os símbolos improdutivos são símbolos inúteis
- Se tais símbolos forem removidos obtém-se uma gramática equivalente
- Diz-se que uma gramática é limpa se não possuir símbolos inúteis
- Para limpar uma gramática deve-se:
 - começar por a expurgar dos símbolos improdutivos
 - só depois remover os inacessíveis

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 41/43

Gramáticas limpas Exemplo #1

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\}$, determine uma gramática limpa equivalente à gramática seguinte

$$S
ightarrow$$
 a A b $|$ b B $A
ightarrow$ c C $|$ b B $|$ d $B
ightarrow$ d D $|$ b $C
ightarrow$ A C $|$ B D $|$ S D $D
ightarrow$ A D $|$ B C $|$ C S $E
ightarrow$ a A $|$ b B $|$ $arepsilon$

• Cálculo dos símbolos produtivos

```
1 Inicialmente N_p \leftarrow \emptyset
2 A \rightarrow d \land d \in T^* \Longrightarrow
```

$$2 A \to d \land d \in T^* \implies N_p \leftarrow N_p \cup \{A\}$$

$$3 B \to b \land b \in T^* \implies N_p \leftarrow N_p \cup \{B\}$$

$$4 E \to \varepsilon \land \varepsilon \in T^* \implies N_p \leftarrow N_p \cup \{E\}$$

5
$$S \to aAb \land a, A, b \in (T \cup N_p)^* \implies N_p \leftarrow N_p \cup \{S\}$$

6 Nada mais se consegue acrescentar a $N_p \implies C$ e D são improdutivos

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 42/43

Gramáticas limpas Exemplo #1, cont.

Gramática após a remoção dos símbolos improdutivos

$$S
ightarrow$$
 a A b $|$ b B $A
ightarrow$ b B $|$ d $B
ightarrow$ b $E
ightarrow$ a A $|$ b B $|$ $arepsilon$

- Cálculo dos símbolos não terminais acessíveis sobre a nova gramática
 - 1 S é acessível, porque é o inicial
 - 2 sendo S acessível, de $S \to a$ A b, tem-se que A é acessível
 - 3 sendo S acessível, de $S \to \mathtt{b} \ B$, tem-se que B é acessível
 - 4 de *A* só se chega a *B*, que já foi marcado como acessível
 - 5 de B não se chega a nenhum não terminal
 - 6 Logo E não é acessível, pelo que a gramática limpa é

$$S \rightarrow a \ A \ b \mid b \ B$$
 $A \rightarrow b \ B \mid d$ $B \rightarrow b$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 43/43