Supplementary to "Robust Inference of Bi-Directional Causal Relationships in Presence of Correlated Pleiotropy with GWAS Summary Data"

Haoran Xue¹ and Wei Pan^{1, 2}

¹Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455. ²Corresponding author. Email: panxx014@umn.edu. Phone: 612-624-4655. Fax: 612-626-0660.

Contents

S1	Full Simulation Results	2
S2	Full Real Data Results	42
	S2.1 48 Risk Factor-Disease Pairs	42
	S2.2 Pairs of 4 Diseases	50
	S2.3 Links to GWAS Summary Datasets	51
S3	Theoretical Results	52
	S3.1 Proof of Theorem 1	52
	S3.2 Proof of Theorem 2	55
	S3.3 MR-cML with Data Perturbation	57

S1 Full Simulation Results

S1 Fig: When both X and Y are continuous, $\theta_{XY} = 0$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S2 Fig: When both X and Y are continuous, $\theta_{XY} = 0$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0$, $\xi \sim Unif(-0.2,0.2)$, X Continuous, Y Continuous

S3 Fig: When both *X* and *Y* are continuous, $\theta_{XY} = 0.02$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 θ_{XY} = 0.02, ξ = 0, X Continuous, Y Continuous

S4 Fig: When both X and Y are continuous, $\theta_{XY} = 0.02$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.02, \, \xi \sim \text{Unif}(-0.2, 0.2), \, X \, \text{Continuous}, \, Y \, \text{Continuous}$

S5 Fig: When both X and Y are continuous, $\theta_{XY} = 0.1$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.1$, $\xi = 0$, X Continuous, Y Continuous

S6 Fig: When both X and Y are continuous, $\theta_{XY} = 0.1$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.1, \, \xi \sim \text{Unif}(-0.2, 0.2), \, X \, \text{Continuous}, \, Y \, \text{Continuous}$

S7 Fig: When both X and Y are continuous, $\theta_{XY} = 0.2$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.2$, $\xi = 0$, X Continuous, Y Continuous

S8 Fig: When both X and Y are continuous, $\theta_{XY} = 0.2$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.2, \, \xi \sim \text{Unif}(-0.2, 0.2), \, X \, \text{Continuous}, \, Y \, \text{Continuous}$

S9 Fig: When both X and Y are continuous, $\theta_{XY} = 0.3$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 θ_{XY} = 0.3, ξ = 0, X Continuous, Y Continuous

S10 Fig: When both X and Y are continuous, $\theta_{XY} = 0.3$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.3, \, \xi \sim \text{Unif}(-0.2, 0.2), \, X \, \text{Continuous}, \, Y \, \text{Continuous}$

S11 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S12 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0$, $\xi \sim Unif(-0.2,0.2)$, X Binary, Y Continuous

S13 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.02$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S14 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.02$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 θ_{XY} = 0.02, ξ ~ Unif(-0.2,0.2), X Binary, Y Continuous

S15 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.1$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S16 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.1$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.1, \xi \sim \text{Unif}(-0.2, 0.2), X \text{ Binary, Y Continuous}$

S17 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.2$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

18

S18 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.2$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.2, \xi \sim \text{Unif}(-0.2,0.2), X \text{ Binary, Y Continuous}$

S19 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.3$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S20 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.3$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.3, \, \xi \sim \text{Unif}(-0.2, 0.2), \, X \, \text{Binary}, \, Y \, \text{Continuous}$

S21 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S22 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0$, $\xi \sim \text{Unif}(-0.2,0.2)$, X Continuous, Y Binary

S23 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.02$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S24 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.02$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.02, \, \xi \sim \text{Unif}(-0.2, 0.2), \, X \, \text{Continuous}, \, Y \, \text{Binary}$

S25 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.1$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S26 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.1$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.1$, $\xi \sim \text{Unif}(-0.2,0.2)$, X Continuous, Y Binary

S27 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.2$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S28 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.2$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.2, \xi \sim \text{Unif}(-0.2,0.2), X \text{ Continuous, Y Binary}$

S29 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.3$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S30 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.3$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.3, \xi \sim \text{Unif}(-0.2,0.2), X \text{ Continuous, Y Binary}$

S31 Fig: When both X and Y are binary, $\theta_{XY} = 0$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S32 Fig: When both X and Y are binary, $\theta_{XY} = 0$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

33

S33 Fig: When both X and Y are binary, $\theta_{XY} = 0.02$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S34 Fig: When both X and Y are binary, $\theta_{XY} = 0.02$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.02, \, \xi \sim \text{Unif}(-0.2, 0.2), \, X \, \text{Binary}, \, Y \, \text{Binary}$

S35 Fig: When both X and Y are binary, $\theta_{XY} = 0.1$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S36 Fig: When both X and Y are binary, $\theta_{XY} = 0.1$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.1$, $\xi \sim \text{Unif}(-0.2,0.2)$, X Binary, Y Binary

S37 Fig: When both X and Y are binary, $\theta_{XY} = 0.2$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S38 Fig: When both X and Y are binary, $\theta_{XY} = 0.2$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.2$, $\xi \sim \text{Unif}(-0.2,0.2)$, X Binary, Y Binary

S39 Fig: When both X and Y are binary, $\theta_{XY} = 0.3$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

S40 Fig: When both X and Y are binary, $\theta_{XY} = 0.3$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

 $\theta_{XY} = 0.3$, $\xi \sim \text{Unif}(-0.2,0.2)$, X Binary, Y Binary

S2 Full Real Data Results

S2.1 48 Risk Factor-Disease Pairs

S1 Table: Inferring causal effects between first 6 risk factors and CAD. In each cell we show the Bonferroni adjusted 1-0.05/96 \approx 0.9995 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger's method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Direction	П						1		1			
Method	TG to CAD	CAD to TG	LDL to CAD	CAD to LDL	HDL to CAD	CAD to HDL	Height to CAD	CAD to Height	BMI to CAD	CAD to BMI	BF to CAD	CAD to BF
MR-cML-DP-S	(0.122,	(-0.049,	(0.184,	(-0.101,	(-0.557,	(-0.058,	(-0.166,	(-0.021,	(0.139,	(-0.084,	(-0.676,	(-0.104,
	0.563),	0.079),	0.67),	0.03),	0.035),	0.055),	-0.039),	0.069),	0.49),	0.003),	0.948),	0.019),
	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE
MR-cML-S	(0.278,	(-0.022,	(0.287,	(-0.076,	(-0.346,	(-0.039,	(-0.151,	(-0.007,	(0.171,	(-0.067,	(-0.159,	(-0.08,
	0.461),	0.047),	0.499),	0.014),	-0.179),	0.039),	-0.05),	0.053),	0.426),	-0.009),	0.577),	0.004),
	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE
CD-cML-DP-S	(0.02,	(-0.157,	(0.053,	(-0.387,	(-0.113,	(-0.193,	(-0.048,	(-0.067,	(0.047,	(-0.205,	(-0.144,	(-0.349,
	0.121),	0.268),	0.159),	0.116),	0.005),	0.213),	-0.011),	0.212),	0.16),	0.001),	0.223),	0.063),
	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE
CD-cML-S	(0.055,	(-0.091,	(0.096,	(-0.297,	(-0.074,	(-0.131,	(-0.043,	(-0.033,	(0.057,	(-0.175,	(-0.036,	(-0.269,
	0.093),	0.187),	0.135),	0.054),	-0.038),	0.152),	-0.014),	0.175),	0.139),	-0.022),	0.143),	0.012),
	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE
CD-Ratio-S	(0.046,	(-0.056,	(0.079,	(-0.016,	(-0.052,	(-0.158,	(-0.038,	(-0.068,	(0.052,	(-0.161,	(-0.054,	(-0.253,
	0.078),	0.211),	0.106),	0.267),	-0.023),	0.115),	-0.01),	0.124),	0.131),	-0.014),	0.093),	0.022),
	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE
CD-Egger-S	(0.036,	(-0.146,	(0.061,	(-0.151,	(-0.093,	(-0.282,	(-0.048,	(-0.205,	(0.032,	(-0.213,	(-0.168,	(-0.287,
	0.106),	0.34),	0.12),	0.513),	0.001),	0.174),	-0.004),	0.178),	0.164),	0.047),	0.144),	0.084),
	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE
MR-cML-DP	(0.122,	(-0.048,	(0.175,	(-0.098,	(-0.557,	(-0.055,	(-0.166,	(-0.024,	(0.139,	(-0.084,	(-0.676,	(-0.104,
	0.563),	0.081),	0.698),	0.03),	0.035),	0.054),	-0.039),	0.074),	0.49),	0.003),	0.948),	0.019),
	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE
MR-cML	(0.278,	(-0.022,	(0.225,	(-0.076,	(-0.346,	(-0.039,	(-0.151,	(-0.007,	(0.171,	(-0.067,	(-0.159,	(-0.08,
	0.461),	0.047),	0.584),	0.014),	-0.179),	0.039),	-0.05),	0.053),	0.426),	-0.009),	0.577),	0.004),
	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE
CD-cML-DP	(0.02,	(-0.158,	(0.053,	(-0.362,	(-0.113,	(-0.176,	(-0.048,	(-0.075,	(0.047,	(-0.205,	(-0.144,	(-0.349,
	0.121),	0.281),	0.162),	0.105),	0.005),	0.201),	-0.011),	0.222),	0.16),	0.001),	0.223),	0.063),
	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE
CD-cML	(0.055,	(-0.091,	(0.097,	(-0.297,	(-0.074,	(-0.131,	(-0.043,	(-0.033,	(0.057,	(-0.175,	(-0.036,	(-0.269,
	0.093),	0.187),	0.135),	0.054),	-0.038),	0.152),	-0.014),	0.175),	0.139),	-0.022),	0.143),	0.012),
	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE
CD-Ratio	(0.046,	(-0.016,	(0.081,	(0.049,	(-0.052,	(-0.303,	(-0.038,	(-0.079,	(0.052,	(-0.161,	(-0.054,	(-0.253,
	0.078),	0.25),	0.108),	0.327),	-0.023),	-0.04),	-0.01),	0.112),	0.131),	-0.014),	0.093),	0.022),
	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE
CD-Egger	(0.036,	(-0.156,	(0.053,	(-0.106,	(-0.093,	(-1.042,	(-0.048,	(-0.206,	(0.032,	(-0.213,	(-0.168,	(-0.287,
	0.106),	0.861),	0.152),	2.214),	0.001),	0.144),	-0.004),	0.201),	0.164),	0.047),	0.144),	0.084),
	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE
LHC-MR	(0.052,	(0.197,	(0.089,	(-0.333,	(-0.184,	(-0.643,	(-0.094,	(-0.498,	(0.103,	(-0.841,	(0.106,	(-0.29,
	0.202),	0.726),	0.23),	0.565),	-0.077),	-0.098),	-0.012),	0.766),	0.258),	0.621),	0.278),	0.538),
	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE
Steiger	0.505,	0.184,	0.608,	0.128,	0.617,	0.141,	0.914,	0.073,	0.492,	0.407,	0.111,	0.25,
	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE

S2 Table: Inferring causal effects between second 6 risk factors and CAD. In each cell we show the Bonferroni adjusted 1-0.05/96 \approx 0.9995 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger's method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Direction Method	BW to CAD	CAD to BW	DBP to CAD	CAD to DBP	SBP to CAD	CAD to SBP	FG to CAD	CAD to FG	Smoke to CAD	CAD to Smoke	Alcohol to CAD	CAD to Alcohol
MR-cML-DP-S	(-0.37,	(-0.063,	(0.055,	(-0.978,	(0.037,	(-1.501,	(0.126,	(-0.028,	(-0.166,	(-0.072,	(-0.212,	(-0.014,
	0.152),	0.027),	0.087),	1.072),	0.053),	4.369),	0.557),	0.05),	0.378),	0.037),	0.78),	0.023),
	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE
MR-cML-S	(-0.263,	(-0.05,	(0.058,	(-0.248,	(0.04,	(-0.345,	(0.139,	(-0.019,	(-0.092,	(-0.058,	(0.017,	(-0.01,
	0.027),	0.009),	0.075),	0.147),	0.05),	4.369),	0.547),	0.04),	0.311),	0.026),	0.558),	0.019),
	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE
CD-cML-DP-S	(-0.102,	(-0.23,	(0.16,	(-0.328,	(0.183,	(-0.302,	(0.019,	(-0.187,	(-0.089,	(-0.132,	(-0.06,	(-0.053,
	0.043),	0.098),	0.252),	0.361),	0.265),	0.862),	0.087),	0.306),	0.204),	0.069),	0.219),	0.086),
	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-cML-S	(-0.072,	(-0.182,	(0.168,	(-0.083,	(0.198,	(-0.273,	(0.021,	(-0.133,	(-0.049,	(-0.105,	(0.004,	(-0.038,
	0.008), FALSE	0.034), FALSE	0.217), TRUE	0.056), FALSE	0.248),	0.973), FALSE	0.085), TRUE	0.243), FALSE	0.168), FALSE	0.05), FALSE	0.156), TRUE	0.069), FALSE
CD-Ratio-S	(-0.066,	(-0.181,		(-0.022,	TRUE	(0.069,	(0.012,	(-0.135,		(-0.094,	(-0.018,	(-0.03,
CD-Ratio-S	0.009),	0.024),	(0.15, 0.195),	0.088),	(0.171, 0.217),	0.176),	0.012,	0.237),	(-0.027, 0.079),	0.055),	0.122),	0.072),
	FALSE	FALSE	0.193), TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-Egger-S	(-0.118,	(-0.245,	(0.142,	(-0.183,	(0.167,	(-0.042,	(-0.01,	(-0.188,	(-0.044,	(-0.136,	(-0.098,	(-0.052,
CD-Lggei-3	0.038),	0.057),	0.226),	0.25),	0.251),	0.327),	0.108),	0.291),	0.114),	0.12),	0.187),	0.094),
	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
MR-cML-DP	(-0.37,	(-0.065,	(0.054,	(-2.028,	(0.036,	(-2.254,	(0.126,	(-0.028,	(-0.166,	(-0.072,	(-0.212,	(-0.014,
mix con Dr	0.152),	0.031),	0.088),	2.379),	0.053),	5.004),	0.557),	0.05),	0.378),	0.037),	0.78),	0.023),
	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE
MR-cML	(-0.263,	(-0.05,	(0.058,	(-0.248,	(0.04,	(1.914,	(0.139,	(-0.019,	(-0.092,	(-0.058,	(0.017,	(-0.01,
	0.027),	0.009),	0.075),	0.148),	0.05),	3.044),	0.547),	0.04),	0.311),	0.026),	0.558),	0.019),
	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE
CD-cML-DP	(-0.102,	(-0.233,	(0.159,	(-0.635,	(0.184,	(-0.462,	(0.019,	(-0.187,	(-0.089,	(-0.132,	(-0.06,	(-0.053,
	0.043),	0.113),	0.254),	0.728),	0.263),	1.001),	0.087),	0.306),	0.204),	0.069),	0.219),	0.086),
	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-cML	(-0.072,	(-0.182,	(0.168,	(-0.083,	(0.198,	(0.35,	(0.021,	(-0.133,	(-0.049,	(-0.105,	(0.004,	(-0.038,
	0.008),	0.034),	0.217),	0.056),	0.248),	0.62),	0.085),	0.243),	0.168),	0.05),	0.156),	0.069),
	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE
CD-Ratio	(-0.066,	(-0.196,	(0.151,	(0.03,	(0.173,	(0.12,	(0.012,	(-0.135,	(-0.027,	(-0.094,	(-0.018,	(-0.03,
	0.009),	0.008),	0.196),	0.137),	0.218),	0.225),	0.075),	0.237),	0.079),	0.055),	0.122),	0.072),
	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-Egger	(-0.118,	(-0.28,	(0.142,	(-0.189,	(0.163,	(0.038,	(-0.01,	(-0.188,	(-0.044,	(-0.136,	(-0.098,	(-0.052,
	0.038),	0.049),	0.231),	0.696),	0.258),	0.656),	0.108),	0.291),	0.114),	0.12),	0.187),	0.094),
THC MD	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
LHC-MR	(-0.275,	(-0.933,	(0.171,	(-1.115,	(0.146,	(-2.152,	(0.029,	(-0.715,	(0.069,	(0.057,	(-0.261,	(-0.219,
	0.065),	0.353),	0.307),	0.292),	0.385),	1.499),	0.168),	-0.025),	0.3),	0.469),	0.095),	0.296),
Steiger	FALSE 0.407,	FALSE 0.296,	TRUE 0.833,	FALSE 0.055,	TRUE 0.809,	FALSE 0.071,	TRUE 0.167,	TRUE 0.097,	TRUE 0.209,	TRUE 0.64,	FALSE 0.27,	FALSE 0.69,
Sterger	TRUE	0.296, FALSE	TRUE	FALSE	0.809, TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE
	INUE	TALSE	TRUE	TALSE	TRUE	TALSE	TALSE	PALSE	TALSE	TRUE	TALSE	INUE

S3 Table: Inferring causal effects between first 6 risk factors and Stroke. In each cell we show the Bonferroni adjusted 1-0.05/96 \approx 0.9995 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger's method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Direction Method	TG to	Stroke to	LDL to	Stroke to	HDL to	Stroke to	Height to	Stroke to	BMI to	Stroke to	BF to	Stroke to
vietnod	Stroke	TG	Stroke	LDL	Stroke	HDL	Stroke	Height	Stroke	BMI	Stroke	BF
MR-cML-DP-S	(-0.109,	(-0.029,	(0.008,	(-0.188,	(-0.154,	(-0.107,	(-0.091,	(-0.233,	(-0.014,	(-0.112,	(-0.216,	(-0.098,
	0.116),	0.179),	0.2),	0.14),	0.029),	0.111),	0.062),	0.137),	0.299),	0.11),	0.45),	0.104),
	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
MR-cML-S	(-0.088,	(-0.009,	(0.044,	(-0.141,	(-0.138,	(-0.087,	(-0.069,	(-0.161,	(0.01,	(-0.085,	(-0.189,	(-0.095,
	0.088),	0.155),	0.178),	0.088),	0.02),	0.095),	0.045),	0.034),	0.293),	0.085),	0.399),	0.093),
	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
CD-cML-DP-S	(-0.022,	(-0.15,	(0.003,	(-0.598,	(-0.032,	(-0.355,	(-0.026,	(-0.862,	(-0.007,	(-0.252,	(-0.055,	(-0.336,
	0.023),	0.67),	0.045),	0.431),	0.005),	0.444),	0.018),	0.499),	0.094),	0.266),	0.115),	0.367),
	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-cML-S	(-0.018,	(-0.082,	(0.01,	(-0.456,	(-0.028,	(-0.293,	(-0.019,	(-0.597,	(0.001,	(-0.205,	(-0.047,	(-0.328,
	0.017),	0.601),	0.039),	0.292),	0.004),	0.399),	0.013),	0.134),	0.091),	0.22),	0.102),	0.332),
	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
CD-Ratio-S	(-0.017,	(-0.062,	(0.008,	(-0.359,	(-0.03,	(-0.295,	(-0.024,	(-0.387,	(-0.002,	(-0.243,	(-0.048,	(-0.325,
	0.018),	0.562),	0.037),	0.289),	0.002),	0.392),	0.007),	0.243),	0.085),	0.152),	0.101),	0.329),
	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-Egger-S	(-0.023,	(-0.123,	(0,	(-0.476,	(-0.039,	(-0.357,	(-0.03,	(-0.765,	(-0.021,	(-0.387,	(-0.051,	(-0.316,
	0.025),	0.677),	0.046),	0.473),	0.006),	0.475),	0.012),	0.48),	0.104),	0.238),	0.101),	0.33),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
MR-cML-DP	(-0.109,	(-0.029,	(0.008,	(-0.188,	(-0.154,	(-0.117,	(-0.091,	(-0.212,	(-0.014,	(-0.112,	(-0.216,	(-0.098,
	0.116),	0.179),	0.2),	0.137),	0.029),	0.135),	0.062),	0.12),	0.299),	0.11),	0.45),	0.104),
	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
MR-cML	(-0.088,	(-0.009,	(0.044,	(-0.141,	(-0.138,	(-0.087,	(-0.069,	(-0.161,	(0.01,	(-0.085,	(-0.189,	(-0.095,
	0.088),	0.155),	0.178),	0.088),	0.02),	0.095),	0.045),	0.034),	0.293),	0.085),	0.399),	0.093),
	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
CD-cML-DP	(-0.022,	(-0.15,	(0.003,	(-0.576,	(-0.032,	(-0.393,	(-0.026,	(-0.787,	(-0.007,	(-0.252,	(-0.055,	(-0.336,
	0.023),	0.67),	0.045),	0.409),	0.005),	0.53),	0.018),	0.451),	0.094),	0.266),	0.115),	0.367),
	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-cML	(-0.018,	(-0.082,	(0.01,	(-0.456,	(-0.028,	(-0.293,	(-0.019,	(-0.597,	(0.001,	(-0.205,	(-0.047,	(-0.328,
	0.017),	0.601),	0.039),	0.292),	0.004),	0.399),	0.013),	0.134),	0.091),	0.22),	0.102),	0.332),
	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
CD-Ratio	(-0.017,	(-0.062,	(0.008,	(-0.441,	(-0.03,	(-0.389,	(-0.024,	(-0.438,	(-0.002,	(-0.243,	(-0.048,	(-0.325,
	0.018),	0.562),	0.037),	0.194),	0.002),	0.283),	0.007),	0.189),	0.085),	0.152),	0.101),	0.329),
	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-Egger	(-0.023,	(-0.123,	(0,	(-0.902,	(-0.039,	(-0.941,	(-0.03,	(-2.199,	(-0.021,	(-0.387,	(-0.051,	(-0.316,
	0.025),	0.677),	0.046),	0.45),	0.006),	0.553),	0.012),	0.934),	0.104),	0.238),	0.101),	0.33),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
LHC-MR	(-0.009,	(0.142,	(0.02,	(-0.666,	(-0.089,	(-0.948,	(-0.011,	(-2.448,	(-0.059,	(-0.073,	(-0.035,	(-0.574,
	0.089),	0.999),	0.148),	0.008),	0.005),	-0.175),	0.056),	1.135),	0.144),	1.304),	0.333),	0.24),
	FALSE	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
Steiger	0.786,	0.086,	0.846,	0.066,	0.879,	0.061,	0.984,	0.011,	0.829,	0.132,	0.4,	0.32,
-	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE

S4 Table: Inferring causal effects between second 6 risk factors and Stroke. In each cell we show the Bonferroni adjusted 1-0.05/96 \approx 0.9995 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger's method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Direction	BW to	Stroke to	DBP to	Stroke to	SBP to	Stroke to	FG to	Stroke to	Smoke to	Stroke to	Alcohol	Stroke to
Method	Stroke	BW	Stroke	DBP	Stroke	SBP	Stroke	FG	Stroke	Smoke	to Stroke	Alcohol
MR-cML-DP-S	(-0.287,	(-0.163,	(0.042,	(-1.311,	(0.03,	(-1.638,	(-0.279,	(-0.049,	(-0.103,	(-0.108,	(-0.063,	(-0.038,
	0.25),	0.088),	0.069),	-0.019),	0.045),	5.285),	0.66),	0.114),	0.239),	0.149),	0.514),	0.033),
	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
MR-cML-S	(-0.208,	(-0.103,	(0.045,	(-1.236,	(0.031,	(-0.119,	(-0.083,	(-0.034,	(-0.045,	(-0.086,	(-0.029,	(-0.034,
	0.146),	0.05),	0.064),	-0.104),	0.042),	4.224),	0.422),	0.105),	0.197),	0.105),	0.474),	0.03),
	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-cML-DP-S	(-0.074,	(-0.594,	(0.116,	(-0.489,	(0.14,	(-0.404,	(-0.045,	(-0.343,	(-0.049,	(-0.187,	(-0.025,	(-0.147,
	0.062),	0.328),	0.187),	-0.007),	0.212),	1.127),	0.099),	0.741),	0.113),	0.293),	0.164),	0.124),
	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-cML-S	(-0.054,	(-0.371,	(0.127,	(-0.46,	(0.147,	(-0.099,	(-0.017,	(-0.24,	(-0.022,	(-0.153,	(-0.011,	(-0.133,
	0.036),	0.188),	0.177),	-0.038),	0.198),	0.906),	0.075),	0.684),	0.094),	0.217),	0.145),	0.114),
	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-Ratio-S	(-0.042,	(-0.387,	(0.114,	(-0.208,	(0.138,	(-0.019,	(-0.014,	(-0.258,	(-0.026,	(-0.149,	(-0.015,	(-0.133,
	0.039),	0.105),	0.162),	0.152),	0.187),	0.356),	0.054),	0.654),	0.087),	0.21),	0.137),	0.114),
	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-Egger-S	(-0.063,	(-0.581,	(0.108,	(-0.465,	(0.132,	(-0.314,	(-0.026,	(-0.285,	(-0.052,	(-0.235,	(-0.056,	(-0.13,
	0.062),	0.187),	0.18),	0.708),	0.206),	0.704),	0.088),	0.714),	0.125),	0.262),	0.17),	0.115),
	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
MR-cML-DP	(-0.287,	(-0.163,	(0.042,	(-1.371,	(0.029,	(4.192,	(-0.279,	(-0.049,	(-0.103,	(-0.108,	(-0.063,	(-0.038,
	0.25),	0.088),	0.069),	0.112),	0.044),	11.969),	0.66),	0.114),	0.239),	0.149),	0.514),	0.033),
	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
MR-cML	(-0.208,	(-0.103,	(0.045,	(-1.236,	(0.031,	(5.885,	(-0.083,	(-0.034,	(-0.045,	(-0.086,	(-0.029,	(-0.034,
	0.146),	0.05),	0.064),	-0.103),	0.042),	10.424),	0.422),	0.105),	0.197),	0.105),	0.474),	0.03),
	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-cML-DP	(-0.074,	(-0.594,	(0.116,	(-0.509,	(0.14,	(0.816,	(-0.045,	(-0.343,	(-0.049,	(-0.187,	(-0.025,	(-0.147,
	0.062),	0.328),	0.187),	0.041),	0.211),	2.51),	0.099),	0.741),	0.113),	0.293),	0.164),	0.124),
	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-cML	(-0.054,	(-0.371,	(0.127,	(-0.46,	(0.147,	(1.235,	(-0.017,	(-0.24,	(-0.022,	(-0.153,	(-0.011,	(-0.133,
	0.036),	0.188),	0.177),	-0.038),	0.198),	2.126),	0.075),	0.684),	0.094),	0.217),	0.145),	0.114),
	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-Ratio	(-0.042,	(-0.387,	(0.114,	(-0.099,	(0.139,	(0.212,	(-0.014,	(-0.258,	(-0.026,	(-0.149,	(-0.015,	(-0.133,
	0.039),	0.105),	0.162),	0.253),	0.187),	0.557),	0.054),	0.654),	0.087),	0.21),	0.137),	0.114),
	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-Egger	(-0.063,	(-0.581,	(0.108,	(-0.358,	(0.133,	(0.006,	(-0.026,	(-0.285,	(-0.052,	(-0.235,	(-0.056,	(-0.13,
	0.062),	0.187),	0.18),	2.127),	0.208),	1.689),	0.088),	0.714),	0.125),	0.262),	0.17),	0.115),
	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
LHC-MR	(-0.196,	(-0.041,	(0.127,	(0.043,	(0.071,	(-6.321,	(0.029,	(0.06,	(-0.078,	(-0.027,	(-0.138,	(-0.44,
	0.008),	0.663),	0.213),	0.529),	0.291),	6.806),	0.344),	0.775),	0.191),	0.943),	0.267),	0.161),
0	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE
Steiger	0.73,	0.143,	0.909,	0.013,	0.907,	0.011,	0.462,	0.038,	0.553,	0.368,	0.633,	0.347,
	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE

S5 Table: Inferring causal effects between first 6 risk factors and T2D. In each cell we show the Bonferroni adjusted 1-0.05/96 \approx 0.9995 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger's method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Direction	TG to	T2D to	LDL to	T2D to	HDL to	T2D to	Height to	T2D to	BMI to	T2D to	BF to	T2D to
Method	T2D	TG	T2D	LDL	T2D	HDL	T2D	Height	T2D	BMI	T2D	BF
MR-cML-DP-S	(-0.382,	(-0.05,	(-0.36,	(-0.021,	(-0.579,	(-0.084,	(-0.237,	(-0.034,	(0.426,	(-0.105,	(-0.17,	(-0.094,
	0.483),	0.15),	0.082),	0.045),	0.165),	0.049),	0.145),	0.057),	1.302),	-0.022),	3.255),	0.021),
	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE						
MR-cML-S	(-0.172,	(0.005,	(-0.316,	(-0.015,	(-0.411,	(-0.038,	(-0.184,	(-0.019,	(0.484,	(-0.094,	(0.404,	(-0.073,
	0.282),	0.11),	0.029),	0.042),	0.002),	0.018),	0.09),	0.043),	1.177),	-0.042),	2.836),	0.004),
	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE
CD-cML-DP-S	(-0.229,	(-0.062,	(-0.217,	(-0.029,	(-0.327,	(-0.118,	(-0.189,	(-0.04,	(0.379,	(-0.114,	(-0.192,	(-0.121,
	0.275),	0.22),	0.046),	0.068),	0.102),	0.065),	0.11),	0.069),	1.223),	-0.02),	2.647),	0.024),
	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE						
CD-cML-S	(-0.1,	(-0.007,	(-0.195,	(-0.021,	(-0.224,	(-0.063,	(-0.149,	(-0.024,	(0.435,	(-0.098,	(0.319,	(-0.096,
	0.152),	0.162),	0.013),	0.064),	0.011),	0.027),	0.071),	0.052),	1.087),	-0.044),	2.27),	0.001),
	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE						
CD-Ratio-S	(-0.102,	(0.009,	(-0.167,	(-0.021,	(-0.198,	(-0.076,	(-0.131,	(-0.025,	(0.409,	(-0.078,	(-0.249,	(-0.085,
	0.127),	0.099),	0.032),	0.063),	0.005),	0.01),	0.072),	0.035),	1.043),	-0.03),	1.168),	0.001),
	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
CD-Egger-S	(-0.166,	(-0.041,	(-0.203,	(-0.02,	(-0.258,	(-0.172,	(-0.179,	(-0.025,	(0.385,	(-0.213,	(-1.304,	(-0.189,
	0.235),	0.184),	0.061),	0.066),	0.046),	0.053),	0.114),	0.047),	1.182),	0.148),	2.297),	0.116),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
MR-cML-DP	(-0.382,	(-0.05,	(-0.36,	(-0.021,	(-0.569,	(-0.084,	(-0.237,	(-0.034,	(0.493,	(-0.105,	(0.395,	(-0.094,
	0.483),	0.15),	0.082),	0.045),	0.165),	0.049),	0.145),	0.057),	1.358),	-0.022),	3.477),	0.021),
	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE						
MR-cML	(-0.172,	(0.005,	(-0.316,	(-0.015,	(-0.411,	(-0.038,	(-0.184,	(-0.019,	(0.586,	(-0.094,	(1.077,	(-0.073,
	0.282),	0.11),	0.029),	0.042),	0.002),	0.018),	0.09),	0.043),	1.222),	-0.042),	2.983),	0.004),
	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE
CD-cML-DP	(-0.229,	(-0.062,	(-0.217,	(-0.029,	(-0.326,	(-0.118,	(-0.189,	(-0.04,	(0.447,	(-0.114,	(0.384,	(-0.121,
	0.275),	0.22),	0.046),	0.068),	0.109),	0.065),	0.11),	0.069),	1.274),	-0.02),	2.679),	0.024),
	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE						
CD-cML	(-0.1,	(-0.007,	(-0.195,	(-0.021,	(-0.224,	(-0.063,	(-0.149,	(-0.024,	(0.534,	(-0.098,	(0.843,	(-0.096,
	0.152),	0.162),	0.013),	0.064),	0.011),	0.027),	0.071),	0.052),	1.131),	-0.044),	2.328),	0.001),
	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE						
CD-Ratio	(-0.102,	(0.009,	(-0.167,	(-0.021,	(-0.207,	(-0.076,	(-0.131,	(-0.025,	(0.483,	(-0.078,	(0.249,	(-0.085,
	0.127),	0.099),	0.032),	0.063),	-0.005),	0.01),	0.072),	0.035),	1.066),	-0.03),	1.457),	0.001),
	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
CD-Egger	(-0.166,	(-0.041,	(-0.203,	(-0.02,	(-0.291,	(-0.172,	(-0.179,	(-0.025,	(-0.061,	(-0.213,	(-0.456,	(-0.189,
	0.235),	0.184),	0.061),	0.066),	0.034),	0.053),	0.114),	0.047),	1.396),	0.148),	2.198),	0.116),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
LHC-MR	(-0.054,	(0.065,	(-0.12,	(-0.185,	(-0.917,	(-0.171,	(-0.609,	(-0.261,	(0.998,	(-0.228,	(0.92,	(-1.112,
	1.011),	0.295),	0.708),	0.205),	-0.131),	0.004),	0.484),	0.049),	1.002),	-0.001),	1.079),	0.935),
	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE
Steiger	0.266,	0.172,	0.321,	0.111,	0.348,	0.13,	0.061,	0.034,	0,	0.171,	0,	0.6,
	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE						

S6 Table: Inferring causal effects between second 6 risk factors and T2D. In each cell we show the Bonferroni adjusted 1-0.05/96 \approx 0.9995 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger's method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

_							,					
Direction	BW to	T2D to	DBP to	T2D to	SBP to	T2D to	FG to	T2D to	Smoke to	T2D to	Alcohol	T2D to
Method	T2D	BW	T2D	DBP	T2D	SBP	T2D	FG	T2D	Smoke	to T2D	Alcohol
MR-cML-DP-S	(-0.98,	(-0.022,	(-0.009,	(-0.703,	(0.005,	(-0.531,	(0.927,	(0.032,	(-0.568,	(-0.062,	(-0.852,	(-0.045,
	0.226),	0.054),	0.056),	0.412),	0.039),	1.585),	3.134),	0.117),	0.614),	0.029),	1.662),	0.011),
	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE
MR-cML-S	(-0.831,	(-0.015,	(0,	(-0.522,	(0.009,	(0.32,	(1.167,	(0.042,	(-0.315,	(-0.058,	(-0.564,	(-0.029,
	0.01),	0.044),	0.044),	0.041),	0.034),	1.067),	2.882),	0.106),	0.244),	0.023),	1.372),	0.001),
	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-cML-DP-S	(-0.749,	(-0.028,	(-0.06,	(-0.09,	(0.058,	(-0.03,	(0.411,	(0.079,	(-0.781,	(-0.039,	(-0.66,	(-0.061,
	0.19),	0.072),	0.447),	0.054),	0.539),	0.109),	1.336),	0.261),	0.842),	0.02),	1.192),	0.017),
	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-cML-S	(-0.622,	(-0.019,	(0.006,	(-0.065,	(0.116,	(0.024,	(0.514,	(0.099,	(-0.481,	(-0.036,	(-0.438,	(-0.037,
	0.012),	0.059),	0.356),	0.005),	0.466),	0.073),	1.218),	0.238),	0.402),	0.016),	0.959),	0.002),
	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-Ratio-S	(-0.562,	(-0.044,	(0.018,	(-0.01,	(0.13,	(0.024,	(0.215,	(0.107,	(-0.44,	(-0.036,	(-0.455,	(-0.037,
	0.018),	0.028),	0.352),	0.024),	0.47),	0.062),	0.671),	0.235),	0.383),	0.015),	0.831),	-0.001),
	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE
CD-Egger-S	(-0.724,	(-0.177,	(-0.035,	(-0.038,	(0.103,	(0,	(-0.055,	(0.086,	(-0.516,	(-0.035,	(-0.527,	(-0.049,
	0.201),	0.123),	0.433),	0.057),	0.539),	0.105),	1.224),	0.276),	0.501),	0.016),	1.036),	0.006),
	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
MR-cML-DP	(-1.031,	(-0.022,	(-0.008,	(-0.703,	(0.004,	(-0.531,	(0.847,	(0.037,	(-0.568,	(-0.062,	(-0.852,	(-0.045,
	0.245),	0.054),	0.056),	0.412),	0.039),	1.585),	3.322),	0.11),	0.614),	0.029),	1.662),	0.011),
	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE
MR-cML	(-0.831,	(-0.015,	(0,	(-0.522,	(0.009,	(0.32,	(1.175,	(0.042,	(-0.315,	(-0.058,	(-0.564,	(-0.029,
	0.01),	0.044),	0.044),	0.041),	0.034),	1.067),	2.874),	0.106),	0.244),	0.023),	1.372),	0.001),
	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-cML-DP	(-0.798,	(-0.028,	(-0.061,	(-0.09,	(0.061,	(-0.03,	(0.411,	(0.088,	(-0.781,	(-0.039,	(-0.66,	(-0.061,
	0.21),	0.072),	0.452),	0.054),	0.534),	0.109),	1.427),	0.251),	0.842),	0.02),	1.192),	0.017),
	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-cML	(-0.622,	(-0.019,	(0.006,	(-0.065,	(0.116,	(0.024,	(0.603,	(0.099,	(-0.481,	(-0.036,	(-0.438,	(-0.037,
	0.012),	0.059),	0.356),	0.005),	0.466),	0.073),	1.324),	0.238),	0.402),	0.016),	0.959),	0.002),
	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-Ratio	(-0.697,	(-0.044,	(0.022,	(-0.01,	(0.148,	(0.024,	(0.268,	(0.115,	(-0.44,	(-0.036,	(-0.455,	(-0.037,
	-0.13),	0.028),	0.356),	0.024),	0.487),	0.062),	0.719),	0.243),	0.383),	0.015),	0.831),	-0.001),
	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE
CD-Egger	(-1.104,	(-0.177,	(-0.034,	(-0.038,	(0.09,	(0,	(-0.505,	(-0.033,	(-0.516,	(-0.035,	(-0.527,	(-0.049,
	0.172),	0.123),	0.462),	0.057),	0.633),	0.105),	1.715),	0.442),	0.501),	0.016),	1.036),	0.006),
LUCMD	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
LHC-MR	(-1.622,	(-0.49,	(-0.11,	(-0.021,	(-0.016,	(-0.081,	(-0.227,	(0.239,	(-0.683,	(-0.048,	(-0.291,	(-0.12,
	1.118),	0.068),	0.789),	0.248),	1.007),	0.216),	0.985),	0.5),	1.675),	0.118),	1.227),	0.029),
Challana	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
Steiger	0.038,	0.245, FALSE	0.005,	0.067, FALSE	0.005,	0.048, FALSE	0.091,	0.5, TRUE	0.032, EALSE	0.355, FALSE	O,	0.359, FALSE
	FALSE	FALSE	FALSE	PALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE

S7 Table: Inferring causal effects between first 6 risk factors and Asthma. In each cell we show the Bonferroni adjusted 1-0.05/96 \approx 0.9995 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger's method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Direction	TG to	Asthma	LDL to	Asthma	HDL to	Asthma	Height to	Asthma	BMI to	Asthma	BF to	Asthma
Method	Asthma	to TG	Asthma	to LDL	Asthma	to HDL	Asthma	to Height	Asthma	to BMI	Asthma	to BF
MR-cML-DP-S	(-0.305,	(-0.056,	(-0.152,	(-0.064,	(-0.204,	(-0.036,	(-0.088,	(-0.038,	(-0.14,	(-0.034,	(-0.392,	(-0.03,
	0.185),	0.077),	0.143),	0.035),	0.164),	0.059),	0.131),	0.023),	0.41),	0.028),	0.645),	0.061),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
MR-cML-S	(-0.222,	(-0.037,	(-0.13,	(-0.055,	(-0.154,	(-0.033,	(-0.058,	(-0.04,	(-0.092,	(-0.033,	(-0.38,	(-0.028,
	0.094),	0.055),	0.106),	0.031),	0.114),	0.055),	0.122),	0.023),	0.348),	0.026),	0.618),	0.058),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
CD-cML-DP-S	(-0.068,	(-0.173,	(-0.037,	(-0.196,	(-0.049,	(-0.112,	(-0.029,	(-0.116,	(-0.049,	(-0.078,	(-0.113,	(-0.091
	0.041),	0.24),	0.036),	0.113),	0.039),	0.183),	0.043),	0.073),	0.153),	0.065),	0.19),	0.177),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
CD-cML-S	(-0.05,	(-0.117,	(-0.032,	(-0.165,	(-0.036,	(-0.1,	(-0.019,	(-0.121,	(-0.032,	(-0.076,	(-0.108,	(-0.084
	0.021),	0.174),	0.027),	0.102),	0.026),	0.17),	0.04),	0.072),	0.131),	0.06),	0.182),	0.17),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
CD-Ratio-S	(-0.053,	(-0.113,	(-0.025,	(-0.186,	(-0.029,	(-0.181,	(-0.026,	(-0.118,	(-0.033,	(-0.077,	(-0.11,	(-0.084
	0.012),	0.146),	0.032),	0.053),	0.03),	0.068),	0.031),	0.072),	0.129),	0.06),	0.179),	0.169),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
CD-Egger-S	(-0.07,	(-0.177,	(-0.04,	(-0.231,	(-0.04,	(-0.334,	(-0.035,	(-0.114,	(-0.04,	(-0.076,	(-0.13,	(-0.085
	0.024),	0.201),	0.042),	0.081),	0.043),	0.182),	0.043),	0.111),	0.137),	0.062),	0.167),	0.169),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
MR-cML-DP	(-0.305,	(-0.056,	(-0.152,	(-0.064,	(-0.189,	(-0.036,	(-0.088,	(-0.043,	(-0.14,	(-0.034,	(-0.392,	(-0.03,
	0.185),	0.077),	0.143),	0.035),	0.15),	0.059),	0.131),	0.023),	0.41),	0.028),	0.645),	0.061),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
MR-cML	(-0.222,	(-0.037,	(-0.13,	(-0.055,	(-0.154,	(-0.033,	(-0.058,	(-0.04,	(-0.092,	(-0.033,	(-0.38,	(-0.028
	0.094),	0.055),	0.106),	0.031),	0.114),	0.055),	0.122),	0.023),	0.348),	0.026),	0.618),	0.058).
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
CD-cML-DP	(-0.068,	(-0.173,	(-0.037,	(-0.196,	(-0.045,	(-0.112,	(-0.029,	(-0.132,	(-0.049,	(-0.078,	(-0.113,	(-0.091
	0.041),	0.24),	0.036),	0.113),	0.036),	0.183),	0.043),	0.073),	0.153),	0.065),	0.19),	0.177),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
CD-cML	(-0.05,	(-0.117,	(-0.032,	(-0.165,	(-0.036,	(-0.1,	(-0.019,	(-0.121,	(-0.032,	(-0.076,	(-0.108,	(-0.084
	0.021),	0.174),	0.027),	0.102),	0.026),	0.17),	0.04),	0.072),	0.131),	0.06),	0.182),	0.17),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
CD-Ratio	(-0.053,	(-0.113,	(-0.025,	(-0.186,	(-0.031,	(-0.181,	(-0.026,	(-0.132,	(-0.033,	(-0.077,	(-0.11,	(-0.084
	0.012),	0.146),	0.032),	0.053),	0.029),	0.068),	0.031),	0.056),	0.129),	0.06),	0.179),	0.169).
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSI						
CD-Egger	(-0.07,	(-0.177,	(-0.04,	(-0.231,	(-0.068,	(-0.334,	(-0.035,	(-0.458,	(-0.04,	(-0.076,	(-0.13,	(-0.085
	0.024),	0.201),	0.042),	0.081),	0.053),	0.182),	0.043),	0.311),	0.137),	0.062),	0.167),	0.169).
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
LHC-MR	(-0.298,	(-0.663,	(-0.18,	(-0.175,	(-0.042,	(-0.836,	(-0.152,	(-0.792,	(-0.087,	(-0.076,	(-0.278,	(-0.52
	0.059),	0.317),	0.061),	0.312),	0.278),	0.137),	0.107),	0.09),	0.167),	0.133),	0.073),	0.4),
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSI						
Steiger	0.8,	0.2,	0.807,	0.182,	0.845,	0.155,	0.903,	0.024,	0.714,	0.208,	0.346,	0.654,
	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	TRUE

S8 Table: Inferring causal effects between second 6 risk factors and Asthma. In each cell we show the Bonferroni adjusted 1-0.05/96 \approx 0.9995 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger's method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Direction Method	BW to Asthma	Asthma to BW	DBP to Asthma	Asthma to DBP	SBP to Asthma	Asthma to SBP	FG to Asthma	Asthma to FG	Smoke to Asthma	Asthma to Smoke	Alcohol to Asthma	Asthma to Alco- hol
MR-cML-DP-S	(-0.233,	(-0.043,	(-0.023,	(-0.443,	(-0.01,	(-0.646,	(-0.722,	(-0.022,	(-0.16,	(-0.052,	(-0.864,	(-0.027,
	0.479),	0.023),	0.018),	0.222),	0.012),	0.331),	0.371),	0.05),	0.201),	0.044),	0.609),	0.017),
100 100 0	FALSE	FALSE	FALSE	FALSE								
MR-cML-S	(-0.14,	(-0.041,	(-0.018,	(-0.355,	(-0.008,	(-0.536,	(-0.558,	(-0.016,	(-0.167,	(-0.047,	(-0.75,	(-0.022,
	0.393),	0.021),	0.012),	0.069),	0.009),	0.159),	0.184),	0.045),	0.222),	0.041),	0.525),	0.011),
an 14 nn a	FALSE	FALSE	FALSE	FALSE								
CD-cML-DP-S	(-0.068,	(-0.141,	(-0.075,	(-0.132,	(-0.058,	(-0.116,	(-0.126,	(-0.128,	(-0.097,	(-0.084,	(-0.257,	(-0.088,
	0.147),	0.076),	0.057),	0.067),	0.066),	0.059),	0.065),	0.289),	0.123),	0.073),	0.192),	0.056),
	FALSE	FALSE	FALSE	FALSE								
CD-cML-S	(-0.04,	(-0.133,	(-0.057,	(-0.106,	(-0.046,	(-0.095,	(-0.098,	(-0.096,	(-0.102,	(-0.077,	(-0.223,	(-0.07,
	0.121), FALSE	0.066), FALSE	0.039), FALSE	0.022), FALSE	0.052), FALSE	0.028), FALSE	0.032), FALSE	0.261), FALSE	0.136), FALSE	0.067), FALSE	0.168), FALSE	0.036), FALSE
CD-Ratio-S	(-0.048,	(-0.131,	(-0.056,	(-0.079,	(-0.044,	(-0.053,	(-0.084,	(-0.1,	(-0.101,	(-0.076,	(-0.223,	(-0.062,
CD-Katio-S	0.11),	0.067),	0.038),	0.03),	0.051),	0.053),	0.042),	0.24),	0.136),	0.067),	0.167),	0.038),
	FALSE	FALSE	FALSE	FALSE								
CD-Egger-S	(-0.077,	(-0.131,	(-0.068,	(-0.126,	(-0.053,	(-0.096,	(-0.174,	(-0.142,	(-0.112,	(-0.077,	(-0.26,	(-0.076,
CD-Eggei-3	0.134),	0.065),	0.052),	0.065),	0.065),	0.11),	0.098),	0.265),	0.131),	0.068),	0.197),	0.06),
	FALSE	FALSE	FALSE	FALSE								
MR-cML-DP	(-0.233,	(-0.043,	(-0.023,	(-0.443,	(-0.01,	(-0.646,	(-0.722,	(-0.022,	(-0.16,	(-0.052,	(-0.864,	(-0.027,
IVIK-CIVIL-DF	0.479),	0.023),	0.018),	0.222),	0.012),	0.331),	0.371),	0.05),	0.201),	0.044),	0.609),	0.017),
	FALSE	FALSE	FALSE	FALSE								
MR-cML	(-0.14,	(-0.041,	(-0.018,	(-0.355,	(-0.008,	(-0.536,	(-0.558,	(-0.016,	(-0.167,	(-0.047,	(-0.75,	(-0.022,
WIK-CNIL	0.393),	0.021),	0.012),	0.069),	0.009),	0.159),	0.184),	0.045),	0.222),	0.041),	0.525),	0.011),
	FALSE	FALSE	FALSE	FALSE								
CD-cML-DP	(-0.068,	(-0.141,	(-0.075,	(-0.132,	(-0.058,	(-0.116,	(-0.126,	(-0.128,	(-0.097,	(-0.084,	(-0.257,	(-0.088,
CD-CNIL-DF	0.147),	0.076),	0.057),	0.067),	0.066),	0.059),	0.065),	0.289),	0.123),	0.073),	0.192),	0.056),
	FALSE	FALSE	FALSE	FALSE								
CD-cML	(-0.04,	(-0.133,	(-0.057,	(-0.106,	(-0.046,	(-0.095,	(-0.098,	(-0.096,	(-0.102,	(-0.077,	(-0.223,	(-0.07,
CD-CWL	0.121),	0.066),	0.039),	0.022),	0.052),	0.028),	0.032),	0.261),	0.136),	0.067),	0.168),	0.036),
	FALSE	FALSE	FALSE	FALSE								
CD-Ratio	(-0.048,	(-0.131,	(-0.056,	(-0.079,	(-0.044,	(-0.053,	(-0.084,	(-0.1,	(-0.101,	(-0.076,	(-0.223,	(-0.062,
CD-Ratio	0.11),	0.067),	0.038),	0.03),	0.051),	0.053),	0.042),	0.24),	0.136),	0.067),	0.167),	0.038),
	FALSE	FALSE	FALSE	FALSE								
CD-Egger	(-0.077.	(-0.131,	(-0.068,	(-0.126,	(-0.053,	(-0.096,	(-0.174,	(-0.142,	(-0.112,	(-0.077,	(-0.26,	(-0.076,
CD Legen	0.134),	0.065),	0.052),	0.065),	0.065),	0.11),	0.098),	0.265),	0.131),	0.068).	0.197),	0.06),
	FALSE	FALSE	FALSE	FALSE								
LHC-MR	(-0.292,	(-0.494,	(-0.128,	(-0.144,	(-0.093,	(-0.042,	(-2.037,	(-1.804,	(-0.197,	(-0.136,	(-0.279,	(-0.162,
2.1.0	0.175),	0.211),	0.148),	0.388),	0.174),	0.223),	2.356),	1.328),	0.139),	0.172),	0.079),	0.063),
	FALSE	FALSE	FALSE	FALSE								
Steiger	0.712,	0.271,	0.5,	0.024,	0.513,	0.031,	0.414,	0.517,	0.471,	0.5,	0.357,	0.405,
	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE

S2.2 Pairs of 4 Diseases

S41 Fig: Causal relationship between pairs of 4 diseases.

S9 Table: Inferring causal effects between pairs of 4 diseases. In each cell we show the Bonferroni adjusted 1-0.05/12 \approx 0.996 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger's method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

D:							1				П	_
Direction	CAD to	Stroke to	CAD to	T2D to	CAD to	Asthma	Stroke to	T2D to	Stroke to	Asthma	T2D to	Asthma
Method	Stroke	CAD	T2D	CAD	Asthma	to CAD	T2D	Stroke	Asthma	to Stroke	Asthma	to T2D
MR-cML-DP-S	(0.102,	(-0.032,	(-0.221,	(0.009,	(-0.179,	(-0.043,	(-0.313,	(0.011,	(-0.442,	(-0.077,	(-0.126,	(-0.209,
	0.318),	0.414),	0.233),	0.134),	0.17),	0.099),	0.523),	0.144),	0.132),	0.044),	0.095),	0.233),
	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
MR-cML-S	(0.135,	(0.05,	(-0.094,	(0.019,	(-0.125,	(-0.019,	(-0.223,	(0.023,	(-0.397,	(-0.069,	(-0.096,	(-0.117,
	0.25),	0.309),	0.165),	0.111),	0.13),	0.084),	0.473),	0.124),	0.068),	0.04),	0.072),	0.145),
	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-cML-DP-S	(0.099,	(-0.022,	(-0.592,	(0.003,	(-0.196,	(-0.039,	(-0.878,	(0.003,	(-0.511,	(-0.065,	(-0.049,	(-0.496,
	0.29),	0.432),	0.623),	0.048),	0.175),	0.087),	1.387),	0.048),	0.174),	0.035),	0.04),	0.565),
	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-cML-S	(0.131,	(0.057,	(-0.278,	(0.007,	(-0.139,	(-0.017,	(-0.674,	(0.007,	(-0.449,	(-0.058,	(-0.037,	(-0.281,
	0.232),	0.323),	0.449),	0.039),	0.095),	0.074),	1.276),	0.041),	0.097),	0.032),	0.03),	0.347),
	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-Ratio-S	(0.124,	(0.088,	(-0.278,	(0.009,	(-0.141,	(-0.025,	(-0.44,	(0.006,	(-0.401,	(-0.058,	(-0.03,	(-0.277,
	0.219),	0.322),	0.385),	0.037),	0.06),	0.058),	1.175),	0.039),	0.043),	0.032),	0.03),	0.305),
	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-Egger-S	(0.108,	(0.002,	(-0.47,	(0.005,	(-0.176,	(-0.071,	(-0.784,	(0.006,	(-0.535,	(-0.058,	(-0.043,	(-0.355,
	0.271),	0.525),	0.636),	0.044),	0.111),	0.142),	1.365),	0.042),	0.078),	0.034),	0.046),	0.382),
	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
MR-cML-DP	(0.098,	(-0.021,	(-0.221,	(0.009,	(-0.178,	(-0.043,	(-0.313,	(0.011,	(-0.442,	(-0.077,	(-0.126,	(-0.209,
	0.327),	0.417),	0.233),	0.134),	0.165),	0.099),	0.523),	0.144),	0.132),	0.044),	0.095),	0.233),
	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
MR-cML	(0.135,	(0.05,	(-0.094,	(0.019,	(-0.125,	(-0.019,	(-0.223,	(0.023,	(-0.397,	(-0.069,	(-0.096,	(-0.117,
	0.25),	0.309),	0.165),	0.111),	0.13),	0.084),	0.473),	0.124),	0.068),	0.04),	0.072),	0.145),
	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-cML-DP	(0.093,	(-0.028,	(-0.592,	(0.003,	(-0.199,	(-0.039,	(-0.878,	(0.003,	(-0.511,	(-0.065,	(-0.049,	(-0.496,
	0.303),	0.456),	0.623),	0.048),	0.173),	0.087),	1.387),	0.048),	0.174),	0.035),	0.04),	0.565),
	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-cML	(0.131,	(0.057,	(-0.278,	(0.007,	(-0.139,	(-0.017,	(-0.674,	(0.007,	(-0.449,	(-0.058,	(-0.037,	(-0.281,
	0.232),	0.323),	0.449),	0.039),	0.095),	0.074),	1.276),	0.041),	0.097),	0.032),	0.03),	0.347),
	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-Ratio	(0.131,	(0.123,	(-0.278,	(0.009,	(-0.139,	(-0.025,	(-0.44,	(0.006,	(-0.401,	(-0.058,	(-0.03,	(-0.277,
	0.225),	0.353),	0.385),	0.037),	0.061),	0.058),	1.175),	0.039),	0.043),	0.032),	0.03),	0.305),
	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-Egger	(0.115,	(0.001,	(-0.47,	(0.005,	(-0.257,	(-0.071,	(-0.784,	(0.006,	(-0.535,	(-0.058,	(-0.043,	(-0.355,
	0.293),	0.61),	0.636),	0.044),	0.128),	0.142),	1.365),	0.042),	0.078),	0.034),	0.046),	0.382),
	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
LHC-MR	(0.135,	(0.372,	(-0.332,	(0.013,	(-0.138,	(-0.043,	(-0.095,	(-0.032,	(-1.182,	(-0.298,	(-0.201,	(-0.286,
	0.386),	0.759),	1.551),	0.106),	0.243),	0.23),	1.009),	0.197),	0.442),	0.419),	0.059),	1.613),
	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
Steiger	0.768,	0.146,	0.014,	0.25,	0.411,	0.233,	0,	0.5,	0.312,	0.531,	0.414,	0,
	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE

S2.3 Links to GWAS Summary Datasets

We downloaded the GWAS summary datasets from the IEU GWAS database [1], which are the same as the data included in R package TwoSampleMR. The links are shown in S10 Table.

S10 Table: Links for downloading GWAS summary datasets to be used in real data analysis.

Trait	Link
TG	https://gwas.mrcieu.ac.uk/files/ebi-a-GCST002216/ebi-a-GCST002216.vcf.gz
LDL	https://gwas.mrcieu.ac.uk/files/ebi-a-GCST002222/ebi-a-GCST002222.vcf.gz
HDL	https://gwas.mrcieu.ac.uk/files/ebi-a-GCST002223/ebi-a-GCST002223.vcf.gz
Height	https://gwas.mrcieu.ac.uk/files/ieu-a-89/ieu-a-89.vcf.gz
BMI	https://gwas.mrcieu.ac.uk/files/ieu-a-835/ieu-a-835.vcf.gz
BF	https://gwas.mrcieu.ac.uk/files/ieu-a-999/ieu-a-999.vcf.gz
BW	https://gwas.mrcieu.ac.uk/files/ieu-a-1083/ieu-a-1083.vcf.gz
DBP	https://gwas.mrcieu.ac.uk/files/ieu-b-39/ieu-b-39.vcf.gz
SBP	https://gwas.mrcieu.ac.uk/files/ieu-b-38/ieu-b-38.vcf.gz
FG	https://gwas.mrcieu.ac.uk/files/ebi-a-GCST000568/ebi-a-GCST000568.vcf.gz
Smoke	https://gwas.mrcieu.ac.uk/files/ieu-b-25/ieu-b-25.vcf.gz
Alcohol	https://gwas.mrcieu.ac.uk/files/ieu-b-73/ieu-b-73.vcf.gz
CAD	https://gwas.mrcieu.ac.uk/files/ebi-a-GCST005195/ebi-a-GCST005195.vcf.gz
Stroke	https://gwas.mrcieu.ac.uk/files/ebi-a-GCST005838/ebi-a-GCST005838.vcf.gz
T2D	https://gwas.mrcieu.ac.uk/files/ieu-a-26/ieu-a-26.vcf.gz
Asthma	https://gwas.mrcieu.ac.uk/files/ebi-a-GCST006862/ebi-a-GCST006862.vcf.gz

S3 Theoretical Results

S3.1 Proof of Theorem 1

Theorem 1. Under Assumptions 1 and 2, if $m_{XY}^0 \in \mathcal{M}$, we have $P(\hat{m}_I = m_{XY}^0) \to 1$ and $P(\hat{B}_{XY}(\hat{m}_I) = B_{XY}^0) \to 1$ as $N_1, N_2 \to \infty$. Furthermore, the cMLE $\hat{K}_{XY} := \hat{K}_{XY}(\hat{m}_I)$ is consistent and asymptotically normal:

$$\sqrt{V}(\hat{K}_{XY} - K_{XY}) \xrightarrow{d} N(0,1), as N_1, N_2 \rightarrow \infty,$$

where

$$V = \sum_{g \in (B^0_{XY})^c} rac{
ho_{Xg}^2}{\sigma_{Xg}^2 \cdot K_{XY}^2 + \sigma_{Yg}^2}.$$

Proof. First, we show $P\left(\hat{B}_{XY}(m_{XY}^0) = B_{XY}^0\right) \to 1$, which is equivalent to show for any $B_1 \subseteq \{1, \dots, m\}$ such that $|B_1| = m_{XY}^0$ and $B_1 \neq B_{XY}^0$, $P\left(\hat{B}_{XY}(m_{XY}^0) = B_1\right) \to 0$ as $N_1, N_2 \to \infty$. We have

$$\begin{split} &P(\hat{B}_{XY}(m_{XY}^{0}) = B_{1}) \\ &\leq P(\min_{\tilde{K}, \tilde{\rho}_{Xg}} \sum_{g \in B_{1}^{c}} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^{2}}{\mathrm{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^{2}}{\mathrm{SE}(r_{Yg})^{2}} \right) \leq \min_{\tilde{K}, \tilde{\rho}_{Xg}} \sum_{g \in (B_{XY}^{0})^{c}} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^{2}}{\mathrm{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^{2}}{\mathrm{SE}(r_{Yg})^{2}} \right) \\ &\leq P(\min_{\tilde{K}, \tilde{\rho}_{Xg}} \sum_{g \in B_{1}^{c}} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^{2}}{\mathrm{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^{2}}{\mathrm{SE}(r_{Yg})^{2}} \right) \leq \sum_{g \in (B_{XY}^{0})^{c}} \left(\frac{(r_{Xg} - \rho_{Xg})^{2}}{\mathrm{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - K_{XY}\rho_{Xg})^{2}}{\mathrm{SE}(r_{Yg})^{2}} \right). \end{split}$$

Note that, for $g \in (B_{XY}^0)^c$, $\frac{r\chi_g - \rho \chi_g}{SE(r\chi_g)} \sim N(0,1)$ and $\frac{r\gamma_g - K_{XY}\rho \chi_g}{SE(r\gamma_g)} \sim N(0,1)$. So for any $\varepsilon > 0$, there exists C > 0 such that

$$P(\sum_{g \in (B_{YY}^0)^c} \left(\frac{(r_{Xg} - \rho_{Xg})^2}{SE(r_{Xg})^2} + \frac{(r_{Yg} - K_{XY}\rho_{Xg})^2}{SE(r_{Yg})^2} \right) > C) < \frac{\varepsilon}{2}.$$
 (1)

And we have

$$\begin{split} &P(\min_{\tilde{K},\tilde{\rho}_{Xg}} \sum_{g \in B_{1}^{c}} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^{2}}{\mathrm{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^{2}}{\mathrm{SE}(r_{Yg})^{2}} \right) \leq \sum_{g \in (B_{XY}^{0})^{c}} \left(\frac{(r_{Xg} - \rho_{Xg})^{2}}{\mathrm{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - K_{XY}\rho_{Xg})^{2}}{\mathrm{SE}(r_{Yg})^{2}} \right) \\ & \leq P(\min_{\tilde{K},\tilde{\rho}_{Xg}} \sum_{g \in B_{1}^{c}} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^{2}}{\mathrm{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^{2}}{\mathrm{SE}(r_{Yg})^{2}} \right) \leq C) + P(\sum_{g \in (B_{YY}^{0})^{c}} \left(\frac{(r_{Xg} - \rho_{Xg})^{2}}{\mathrm{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - K_{XY}\rho_{Xg})^{2}}{\mathrm{SE}(r_{Yg})^{2}} \right) > C). \end{split}$$

After profiling out $\tilde{\rho}_{Xg}$'s, we get

$$\min_{\tilde{K},\tilde{\rho}_{Xg}} \sum_{g \in B_1^c} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^2}{\mathrm{SE}(r_{Xg})^2} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^2}{\mathrm{SE}(r_{Yg})^2} \right) = \min_{\tilde{K}} \sum_{g \in B_1^c} \frac{(r_{Yg} - \tilde{K} \cdot r_{Xg})^2}{\mathrm{SE}(r_{Yg})^2 + \tilde{K}^2 \mathrm{SE}(r_{Xg})^2},$$

so

$$\begin{split} &P(\min_{\tilde{K},\tilde{\rho}_{Xg}}\sum_{g\in B_1^c}\left(\frac{(r_{Xg}-\tilde{\rho}_{Xg})^2}{\mathrm{SE}(r_{Xg})^2}+\frac{(r_{Yg}-\tilde{K}\tilde{\rho}_{Xg})^2}{\mathrm{SE}(r_{Yg})^2}\right)\leq C)\\ &=P(\min_{\tilde{K}}\sum_{g\in B_1^c}\frac{(r_{Yg}-\tilde{K}\cdot r_{Xg})^2}{\mathrm{SE}(r_{Yg})^2+\tilde{K}^2\mathrm{SE}(r_{Xg})^2}\leq C). \end{split}$$

We have $\frac{r_{Yg}-\tilde{K}\cdot r_{Xg}}{\sqrt{\mathrm{SE}(r_{Yg})^2+\tilde{K}^2\mathrm{SE}(r_{Xg})^2}}\sim N(\frac{K_{XY}\cdot \rho_{Xg}+b_{XYg}-\tilde{K}\cdot \rho_{Xg}}{\sqrt{\mathrm{SE}(r_{Yg})^2+\tilde{K}^2\mathrm{SE}(r_{Xg})^2}},1)$, so $\sum_{g\in B_1^c}\frac{(r_{Yg}-\tilde{K}\cdot r_{Xg})^2}{\mathrm{SE}(r_{Yg})^2+\tilde{K}^2\mathrm{SE}(r_{Xg})^2}$ follows non-central χ^2 distribution with degrees of freedom $(m-m_{XY}^0)$ and non-centrality parameter $\lambda_{\tilde{K}}$ depending on \tilde{K}

$$\lambda_{\tilde{K}} = \sum_{g \in B_1^c} \frac{(K_{XY} \cdot \rho_{Xg} + b_{XYg} - \tilde{K} \cdot \rho_{Xg})^2}{\operatorname{SE}(r_{Yg})^2 + \tilde{K}^2 \operatorname{SE}(r_{Xg})^2}.$$

With Assumption 2, we get

$$\lambda_{\tilde{K}} \geq \sum_{g \in B_1^c} \frac{(K_{XY} \cdot \rho_{Xg} + b_{XYg} - \tilde{K} \cdot \rho_{Xg})^2}{\frac{u_Y}{N_2} + \tilde{K}^2 \cdot \frac{u_X}{l_n \cdot N_2}} = N_2 \cdot \sum_{g \in B_1^c} \frac{(K_{XY} \cdot \rho_{Xg} + b_{XYg} - \tilde{K} \cdot \rho_{Xg})^2}{u_Y + \tilde{K}^2 \cdot \frac{u_X}{l_n}}.$$

With Assumption 1, we know

$$\min_{\tilde{K}} \sum_{g \in B_1^c} \frac{(K_{XY} \cdot \rho_{Xg} + b_{XYg} - \tilde{K} \cdot \rho_{Xg})^2}{u_Y + \tilde{K}^2 \cdot \frac{u_X}{l_n}} = v > 0,$$

here v is a constant. This is because, with Assumption 1, there is no \tilde{K} making $K_{XY} \cdot \rho_{Xg} + b_{XYg} - \tilde{K} \cdot \rho_{Xg} = 0$ for all $g \in B_1^c$ simultaneously. So we have $\min_{\tilde{K}} \lambda_{\tilde{K}} \geq N_2 \cdot v$. Then as N_2 large enough, we have

$$P(\min_{\tilde{K}} \sum_{g \in B_1^c} \frac{(r_{Yg} - \tilde{K} \cdot r_{Xg})^2}{\operatorname{SE}(r_{Yg})^2 + \tilde{K}^2 \operatorname{SE}(r_{Xg})^2} \le C) \le \frac{\varepsilon}{2}.$$
 (2)

Combining (1) and (2), we get $P(\hat{B}_{XY}(m_{XY}^0) = B_{XY}^0) \to 1$ as $N_1, N_2 \to \infty$.

Next, we show $P(\hat{m}_I = m_{XY}^0) \to 1$. For any $m_1 < m_{XY}^0$, we have

$$P(\hat{m}_I = m_1) \le P\left(BIC(m_1) \le BIC(m_{XY}^0)\right)$$

$$= P\left(-2 \cdot L\left(\hat{K}_{XY}(m_1), \hat{\rho}_{Xg}(m_1), \hat{b}_{XYg}(m_1)\right) + \log(n) \cdot m_1 \leq -2 \cdot L\left(\hat{K}_{XY}(m_{XY}^0), \hat{\rho}_{Xg}(m_{XY}^0), \hat{b}_{XYg}(m_{XY}^0)\right) + \log(n) \cdot m_{XY}^0\right)$$

$$= P\left(2 \cdot L\left(\hat{K}_{XY}(m_{XY}^0), \hat{\rho}_{Xg}(m_{XY}^0), \hat{b}_{XYg}(m_{XY}^0)\right) - 2 \cdot L\left(\hat{K}_{XY}(m_1), \hat{\rho}_{Xg}(m_1), \hat{b}_{XYg}(m_1)\right) \leq \log\left(n\right)(m_{XY}^0 - m_1)\right).$$

As we have shown $P(\hat{B}_{XY}(m_{XY}^0) = B_{XY}^0) \to 1$, with probability goes to 1 we have

$$2 \cdot L\left(\hat{K}_{XY}(m_{XY}^{0}), \hat{\rho}_{Xg}(m_{XY}^{0}), \hat{b}_{XYg}(m_{XY}^{0})\right) - 2 \cdot L\left(\hat{K}_{XY}(m_{1}), \hat{\rho}_{Xg}(m_{1}), \hat{b}_{XYg}(m_{1})\right)$$

$$= \min_{\tilde{K}, \tilde{\rho}_{Xg}} \sum_{g \in \hat{B}_{NL}^c} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^2}{\mathrm{SE}(r_{Xg})^2} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^2}{\mathrm{SE}(r_{Yg})^2} \right) - \min_{\tilde{K}, \tilde{\rho}_{Xg}} \sum_{g \in (B_{YY}^0)^c} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^2}{\mathrm{SE}(r_{Xg})^2} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^2}{\mathrm{SE}(r_{Yg})^2} \right)$$

$$\geq \min_{\tilde{K}, \tilde{\rho}_{Xg}} \sum_{g \in \hat{B}_{y_{t}}^{c}} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^{2}}{\mathrm{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^{2}}{\mathrm{SE}(r_{Yg})^{2}} \right) - \sum_{g \in (B_{YY}^{0})^{c}} \left(\frac{(r_{Xg} - \rho_{Xg})^{2}}{\mathrm{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - K_{XY}\rho_{Xg})^{2}}{\mathrm{SE}(r_{Yg})^{2}} \right).$$

Then we get

 $P(\hat{m}_I = m_1)$

$$\leq P \left(\min_{\tilde{K}, \tilde{\rho}_{Xg}} \sum_{g \in \hat{B}_{m_{1}}^{c}} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^{2}}{\operatorname{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^{2}}{\operatorname{SE}(r_{Yg})^{2}} \right) \leq \sum_{g \in (B_{XY}^{0})^{c}} \left(\frac{(r_{Xg} - \rho_{Xg})^{2}}{\operatorname{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - K_{XY}\rho_{Xg})^{2}}{\operatorname{SE}(r_{Yg})^{2}} \right) + \log(n)(m_{XY}^{0} - m_{1}) \right)$$

$$\leq \sum_{|B| = m_{1}} P \left(\min_{\tilde{K}, \tilde{\rho}_{Xg}} \sum_{g \in B^{c}} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^{2}}{\operatorname{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^{2}}{\operatorname{SE}(r_{Yg})^{2}} \right) \leq \sum_{g \in (B_{XY}^{0})^{c}} \left(\frac{(r_{Xg} - \rho_{Xg})^{2}}{\operatorname{SE}(r_{Xg})^{2}} + \frac{(r_{Yg} - K_{XY}\rho_{Xg})^{2}}{\operatorname{SE}(r_{Yg})^{2}} \right) + \log(n)(m_{XY}^{0} - m_{1}). \right)$$

Similar as above, we get

$$\min_{\tilde{K}, \tilde{\rho}_{Xg}} \sum_{g \in B^c} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^2}{\mathrm{SE}(r_{Xg})^2} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^2}{\mathrm{SE}(r_{Yg})^2} \right) = \min_{\tilde{K}} \sum_{g \in B^c} \frac{(r_{Yg} - \tilde{K} \cdot r_{Xg})^2}{\mathrm{SE}(r_{Yg})^2 + \tilde{K}^2 \mathrm{SE}(r_{Xg})^2},$$

and $\sum_{g \in B^c} \frac{(r_{Y_g} - \tilde{K} \cdot r_{X_g})^2}{\operatorname{SE}(r_{Y_g})^2 + \tilde{K}^2 \operatorname{SE}(r_{X_g})^2}$ follows non-central χ^2 distribution with degrees of freedom $(m - m_1)$ and non-centrality parameter $\lambda_{\tilde{K}}$ depending on \tilde{K}

$$\lambda_{\tilde{K}} = \sum_{g \in B^c} \frac{(K_{XY} \cdot \rho_{Xg} + b_{XYg} - \tilde{K} \cdot \rho_{Xg})^2}{\operatorname{SE}(r_{Yg})^2 + \tilde{K}^2 \operatorname{SE}(r_{Xg})^2}.$$

Similarly, since $m_1 < m_{XY}^0$, with Assumption 2 we have $\lambda_{\tilde{K}} \ge N_2 \cdot v$ for some constant v, so for any $|B| = m_1$, we get

$$P\left(\min_{\tilde{K}, \tilde{\rho}_{Xg}} \sum_{g \in B^c} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^2}{\mathrm{SE}(r_{Xg})^2} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^2}{\mathrm{SE}(r_{Yg})^2}\right) \leq \sum_{g \in (B_{YY}^0)^c} \left(\frac{(r_{Xg} - \rho_{Xg})^2}{\mathrm{SE}(r_{Xg})^2} + \frac{(r_{Yg} - K_{XY}\rho_{Xg})^2}{\mathrm{SE}(r_{Yg})^2}\right) + \log\left(n\right)(m_{XY}^0 - m_1)\right) \to 0.$$

This gives us $P(\hat{m}_I = m_1) \to 0$ for any $m_1 < m_{XY}^0$. For any $m_1 > m_{XY}^0$, we have

$$P(\hat{m}_I = m_1)$$

$$\leq P \left(\log(n)(m_1 - m_{XY}^0) \leq \sum_{g \in (B_{XY}^0)^c} \left(\frac{(r_{Xg} - \rho_{Xg})^2}{SE(r_{Xg})^2} + \frac{(r_{Yg} - K_{XY}\rho_{Xg})^2}{SE(r_{Yg})^2} \right) - \min_{\tilde{K}, \tilde{\rho}_{Xg}} \sum_{g \in \hat{B}_{m_1}^c} \left(\frac{(r_{Xg} - \tilde{\rho}_{Xg})^2}{SE(r_{Xg})^2} + \frac{(r_{Yg} - \tilde{K}\tilde{\rho}_{Xg})^2}{SE(r_{Yg})^2} \right) \right)$$

$$\leq P \left(\log(n)(m_1 - m_{XY}^0) \leq \sum_{g \in (B_{m_1}^0)^c} \left(\frac{(r_{Xg} - \rho_{Xg})^2}{SE(r_{Xg})^2} + \frac{(r_{Yg} - K_{XY}\rho_{Xg})^2}{SE(r_{Yg})^2} \right) \right)$$

Since $\sum_{g \in (B_{XY}^0)^c} \left(\frac{(r_{\chi_g} - \rho_{\chi_g})^2}{\operatorname{SE}(r_{\chi_g})^2} + \frac{(r_{\gamma_g} - K_{XY} \rho_{\chi_g})^2}{\operatorname{SE}(r_{\gamma_g})^2} \right)$ is a central χ^2 distribution with degrees of freedom $2(m - m_{XY}^0)$, we get $P(\hat{m}_I = m_1) \to 0$ for any $m_1 > m_{XY}^0$. So we have $P(\hat{m}_I = m_{XY}^0) \to 1$ as $N_1, N_2 \to \infty$.

As $P(\hat{B}_{XY}(\hat{m}_I) = B_{XY}^0) \to 1$, we could consistently select all invalid IVs. Following Theorem 3.2 in [4], we have

$$\frac{V}{\sqrt{V_1}}(\hat{K}_{XY}-K_{XY}) \xrightarrow{d} N(0,1)$$
, as $N_1,N_2 \to \infty$,

where

$$V = \sum_{g \in (B_{YY}^0)^c} \frac{\rho_{Xg}^2 \sigma_{Xg}^2 + \rho_{Yg}^2 \sigma_{Yg}^2}{(\sigma_{Xg}^2 \cdot K_{XY}^2 + \sigma_{Yg}^2)^2} = \sum_{g \in (B_{YY}^0)^c} \frac{\rho_{Xg}^2}{\sigma_{Xg}^2 \cdot K_{XY}^2 + \sigma_{Yg}^2},$$

and

$$V_1 = \sum_{g \in (B^0_{YY})^c} rac{
ho_{Xg}^2 \sigma_{Xg}^2 +
ho_{Yg}^2 \sigma_{Yg}^2 + \sigma_{Xg}^2 \sigma_{Yg}^2}{(\sigma_{Xg}^2 \cdot K_{XY}^2 + \sigma_{Yg}^2)^2}.$$

In our model ρ_{Xg} 's and ρ_{Yg} 's are fixed constants, σ_{Xg}^2 's and σ_{Yg}^2 's are O(1/n), so we have $V/V_1 \to 1$, and

$$\sqrt{V}(\hat{K}_{XY} - K_{XY}) \xrightarrow{d} N(0,1)$$
, as $N_1, N_2 \to \infty$.

S3.2 Proof of Theorem 2

First we introduce the definition of "converge weakly", as Definition 2.2 in [2].

Definition 2.2 by Xiong et al. [2]. $F(\cdot)$ is a distribution function, $F_n(\cdot)$ is random distribution function that depends on some random variable. We say $F_n(\cdot)$ converges weakly to $F(\cdot)$ in probability if for each continuous point x of $F(\cdot)$, $F_n(x) \stackrel{p}{\to} F(x)$ as $n \to \infty$. This is denoted by $F_n(\cdot) \stackrel{w.P}{\longrightarrow} F(\cdot)$.

Now we show the proof of Theorem 2.

Theorem 2. Under Assumptions 1 and 2, conditional on the original GWAS summary data, $\sqrt{V}(\hat{K}_{XY}^{(t)} - \hat{K}_{XY}) \xrightarrow{w.P.} N(0,1)$ as $N_1, N_2 \to \infty$.

Proof. Denote $\tilde{B} = \{i : \tilde{b}_{XYg} \neq 0\}$ as the set of estimated invalid IVs with non-zero direct effects based on perturbed data. First we show that $P(\tilde{B} = B_{XY}^0 | \mathcal{D}) \stackrel{p}{\to} 1$, which is equivalent to for any $\varepsilon > 0$, $\delta > 0$, there exists n such that when $n_1 > n, n_2 > n$ we have $P\left(P(\tilde{B} = B_{XY}^0 | \mathcal{D}) < 1 - \varepsilon\right) < \delta$. Following similar argument in Theorem 1, we could get the unconditional probability $P(\tilde{B} = B_{XY}^0) \to 1$. Suppose we could find a pair of $\varepsilon_0 > 0$, $\delta_0 > 0$ such that $P\left(P(\tilde{B} = B_{XY}^0 | \mathcal{D}) < 1 - \varepsilon_0\right) > \delta_0$ for arbitrarily large n_1, n_2 , then we can get

$$P(\tilde{B}=B_{XY}^0)=\int_{\mathscr{D}}P(\tilde{B}=B_{XY}^0|\mathscr{D})dF(\mathscr{D})<1-\varepsilon_0\delta_0,$$

contradicts that $P(\tilde{B} = B_{XY}^0) \to 1$, thus we have shown that $P(\tilde{B} = B_{XY}^0 | \mathcal{D}) \xrightarrow{p} 1$. Now we could focus on the case that $\tilde{B} = \hat{B} = B_{XY}^0$, for simplicity we use \tilde{K} , \hat{K} to represent $\hat{K}_{XY}^{(t)}$, \hat{K}_{XY} . Similar to [4], after profiling out ρ_{Xg} 's in the original log-likelihood function, we have

$$\tilde{K} = \arg\min_{K} \sum_{g \in (B_{XY}^0)^c} \frac{(\tilde{r}_{Yg} - K \cdot \tilde{r}_{Xg})^2}{\sigma_{Xg}^2 \cdot K^2 + \sigma_{Yg}^2}, \quad \hat{K} = \arg\min_{K} \sum_{g \in (B_{XY}^0)^c} \frac{(r_{Yg} - K \cdot r_{Xg})^2}{\sigma_{Xg}^2 \cdot K^2 + \sigma_{Yg}^2}.$$
 (3)

Denote

$$f(K) = \sum_{g \in (B_{XY}^0)^c} \frac{(\tilde{r}_{Yg} - K \cdot \tilde{r}_{Xg})^2}{\sigma_{Xg}^2 \cdot K^2 + \sigma_{Yg}^2},$$

and

$$\begin{split} \phi(K) &= \frac{\partial f(K)}{\partial K} = \sum_{g \in (B_{XY}^0)^c} \frac{(\tilde{r}\gamma_g - K\tilde{r}\chi_g)(K\tilde{r}\gamma_g\sigma_{Xg}^2 + \tilde{r}\chi_g\sigma_{Yg}^2)}{(\sigma_{Xg}^2K^2 + \sigma_{Yg}^2)^2} \\ &= \sum_{g \in (B_{YY}^0)^c} \frac{(r\gamma_g - Kr\chi_g)(Kr\gamma_g\sigma_{Xg}^2 + r\chi_g\sigma_{Yg}^2) + (r\gamma_g - Kr\chi_g)(K\xi_g\sigma_{Xg}^2 + \varepsilon_g\sigma_{Yg}^2) + (\xi_g - K\varepsilon_g)(Kr\gamma_g\sigma_{Xg}^2 + r\chi_g\sigma_{Yg}^2 + K\xi_g\sigma_{Xg}^2 + \varepsilon_g\sigma_{Yg}^2)}{(\sigma_{Xg}^2K^2 + \sigma_{Yg}^2)^2} \end{split}$$

here $\xi_g = \tilde{r}_{Yg} - r_{Yg} \sim N(0, \sigma_{Yg}^2)$, $\varepsilon_g = \tilde{r}_{Xg} - r_{Xg} \sim N(0, \sigma_{Xg}^2)$. We have

$$0 = \phi(\tilde{K}) = \phi(\hat{K}) + \phi'(\hat{K})(\tilde{K} - \hat{K}) + \frac{1}{2}\phi''(K^*)(\tilde{K} - \hat{K})^2,$$

with K^* is between \tilde{K} and \hat{K} , thus

$$\sqrt{V}(\tilde{K}-\hat{K}) = \frac{-\phi(\hat{K})/\sqrt{V}}{\phi'(\hat{K})/V + (1/2)(\tilde{K}-\hat{K})\phi''(K^*)/V}.$$

Next we show $\phi(\hat{K})/\sqrt{V}|\mathcal{D} \xrightarrow{w.P} N(0,1)$. From equation (6), we can get

$$\phi(\hat{K}) = \sum_{g \in (B_{XY}^0)^c} \frac{(r_{Yg} - \hat{K}r_{Xg})(\hat{K}\xi_g\sigma_{Xg}^2 + \varepsilon_g\sigma_{Yg}^2) + (\xi_g - \hat{K}\varepsilon_g)(\hat{K}r_{Yg}\sigma_{Xg}^2 + r_{Xg}\sigma_{Yg}^2 + \hat{K}\xi_g\sigma_{Xg}^2 + \varepsilon_g\sigma_{Yg}^2)}{(\sigma_{Xg}^2\hat{K}^2 + \sigma_{Yg}^2)^2}$$

Note that ξ_g 's and ε_g 's are $O_p(1/\sqrt{n})$, $n = \min(N_1, N_2)$, thus

$$\phi(\hat{K}) = \sum_{g \in (B_{XY}^0)^c} \frac{\xi_g(r_{Yg}\hat{K}\sigma_{Xg}^2 - \hat{K}^2r_{Xg}\sigma_{Xg}^2 + \hat{K}r_{Yg}\sigma_{Xg}^2 + r_{Xg}\sigma_{Yg}^2) + \varepsilon_g(r_{Yg}\sigma_{Yg}^2 - \hat{K}r_{Xg}\sigma_{Yg}^2 - \hat{K}r_{Xg}\sigma_{Xg}^2 - \hat{K}r_{Xg}\sigma_{Yg}^2)}{(\sigma_{Xg}^2\hat{K}^2 + \sigma_{Yg}^2)^2} + O_p(1),$$
(4)

thus $\phi(\hat{K})/\sqrt{V}|\mathcal{D}=N(0,V^*/V)|\mathcal{D}+O_p(1/\sqrt{n})$, with

$$V^* = \sum_{g \in (B_{XY}^0)^c} \frac{\sigma_{Yg}^2 (r_{Yg} \hat{K} \sigma_{Xg}^2 - \hat{K}^2 r_{Xg} \sigma_{Xg}^2 + \hat{K} r_{Yg} \sigma_{Xg}^2 + r_{Xg} \sigma_{Yg}^2)^2 + \sigma_{Xg}^2 (r_{Yg} \sigma_{Yg}^2 - \hat{K} r_{Xg} \sigma_{Yg}^2 - \hat{K}^2 r_{Yg} \sigma_{Xg}^2 - \hat{K} r_{Xg} \sigma_{Yg}^2)^2}{(\sigma_{Xg}^2 \hat{K}^2 + \sigma_{Yg}^2)^4},$$

as $r_{Xg} \xrightarrow{p} \rho_{Xi}$, $r_{Yg} \xrightarrow{p} \rho_{Yi}$, $\hat{K} \xrightarrow{p} K_0$, we can get $V^*/V \xrightarrow{p} 1$, thus we get $\phi(\hat{K})/\sqrt{V} | \mathcal{D} \xrightarrow{w.P} N(0,1)$.

Next we show $-\phi'(\hat{K})/V|\mathscr{D} \xrightarrow{w.P} 1$. After some calculation we get

$$\phi'(K) = \sum_{g \in (B_{XY}^0)^c} \frac{2\sigma_{Xg}^4 \tilde{r}_{Xg} \tilde{r}_{Yg} \cdot K^3 + 3(\sigma_{Xg}^2 \sigma_{Yg}^2 \tilde{r}_{Xg}^2 - \sigma_{Xg}^4 \tilde{r}_{Yg}^2) K^2 - 6\sigma_{Xg}^2 \sigma_{Yg}^2 \tilde{r}_{Xg} \tilde{r}_{Yg} K + (\sigma_{Xg}^2 \sigma_{Yg}^2 \tilde{r}_{Yg}^2 - \tilde{r}_{Xg}^2 \sigma_{Yg}^4)}{(\sigma_{Xg}^2 K^2 + \sigma_{Yg}^2)^3}$$
(5)

as $\tilde{r}_{Xg} \xrightarrow{p} \rho_{Xi}$, $\tilde{r}_{Yg} \xrightarrow{p} \rho_{Yi}$, $\hat{K} \xrightarrow{p} K_0$, we get $-\phi'(\hat{K})/V \xrightarrow{p} 1$, with Theorem 3.3 in [2], $-\phi'(\hat{K})/V | \mathcal{D} \xrightarrow{w.P} 1$.

Based on equation (8), we can see $\phi''(K)$ has its numerator of order n^5 and its denominator of order n^6 , thus $\phi''(K^*)/V = O_p(1)$. As $\tilde{K} \xrightarrow{p} K_0$, $\hat{K} \xrightarrow{p} K_0$, we have $\tilde{K} - \hat{K} \xrightarrow{p} 0$, again with Theorem 3.3 in [2] we get $\tilde{K} - \hat{K} | \mathcal{D} \xrightarrow{w.P} 0$. Thus we can get $\frac{1}{2}\phi''(K^*)(\tilde{K} - \hat{K})| \mathcal{D} \xrightarrow{w.P} 0$. Now with Theorem 3.2 in [2], we can get $\sqrt{V}(\tilde{K} - \hat{K})| \mathcal{D} \xrightarrow{w.P} N(0,1)$, completing the proof.

S3.3 MR-cML with Data Perturbation

Now we show that the data perturbation scheme is also consistent for MR-cML in [3]. We use the following notations: the true effects on X are β_{Xi} 's, and those on Y are β_{Yi} 's; the estimated/observed effects on X are $\hat{\beta}_{Xi} \sim N(\beta_{Xi}, \sigma_{Xi}^2)$, and those on Y are $\hat{\beta}_{Yi} \sim N(\beta_{Yi}, \sigma_{Yi}^2)$. Here σ_{Xi} 's and σ_{Yi} 's are the true standard deviations; in practice we have the standard errors $\hat{\sigma}_{Xi}$'s and $\hat{\sigma}_{Yi}$'s as their estimates from GWAS datasets, thus approximately we have $\hat{\beta}_{Xi} \sim N(\beta_{Xi}, \hat{\sigma}_{Xi}^2)$ and $\hat{\beta}_{Yi} \sim N(\beta_{Yi}, \hat{\sigma}_{Yi}^2)$. For simplicity and without ambiguity, we treat the standard errors $\hat{\sigma}_{Xi}$'s and $\hat{\sigma}_{Yi}$'s as the true values of σ_{Xi} 's and σ_{Yi} 's in the following. The perturbed effects on X are $\tilde{\beta}_{Xi} \sim N(\hat{\beta}_{Xi}, \sigma_{Xi}^2)$, and the perturbed effects on Y are $\tilde{\beta}_{Yi} \sim N(\hat{\beta}_{Yi}, \sigma_{Yi}^2)$. The true causal effect is θ_0 , the estimated causal effect based on the observed data with cML-BIC is $\hat{\theta}$, and the estimated causal effect based on a perturbed dataset with cML-BIC is $\hat{\theta}$. Let $\mathcal{D} = \{(\hat{\beta}_{Xi}, \hat{\beta}_{Yi}) | i = 1, \cdots, m\}$ denote the observed data.

Assumption 1 for MR-cML. (Plurality condition.) Suppose that B_0 is the index set of the invalid IVs with non-zero direct effects, i.e. $r_i \neq 0$ if and only if $i \in B_0$, and $K_0 = |B_0|$. For any $B \subseteq \{1, \dots, m\}$ and $|B| = K_0$, if $B \neq B_0$, then there does not exist any constant S such that $r_i = S \cdot \beta_{X_i}$ for all $i \in B^c$.

Assumption 2 for MR-cML. (Orders of the variances and sample sizes.) There exist positive constants l_X, l_Y, l_N and u_X, u_Y, u_N such that we have $l_X/n_1 \le \sigma_{Xi}^2 \le u_X/n_1$, $l_Y/n_2 \le \sigma_{Yi}^2 \le u_Y/n_2$, and $l_N \cdot n_2 \le n_1 \le u_N \cdot n_2$ for $i = 1, \dots, m$.

Denote

$$V = \sum_{i \in B_0^c} rac{eta_{Xi}^2}{\sigma_{Xi}^2 \cdot heta_0^2 + \sigma_{Yi}^2}.$$

Theorem 2 for MR-cML. Under Assumptions 1 for MR-cML and 2 for MR-cML, according to Definition 2.2 in [2], $\sqrt{V}(\tilde{\theta} - \hat{\theta})|\mathcal{D} \xrightarrow{w.P} N(0,1)$ as $n_1, n_2 \to \infty$.

Proof. Denote $\tilde{B} = \{i : \tilde{r}_i \neq 0\}$ as the set of estimated invalid IVs with non-zero direct effects based on perturbed data. First we show that $P(\tilde{B} = B_0 | \mathcal{D}) \xrightarrow{p} 1$, which is equivalent to for any $\varepsilon > 0$, $\delta > 0$, there exists n such that when $n_1 > n$, $n_2 > n$ we have $P\left(P(\tilde{B} = B_0 | \mathcal{D}) < 1 - \varepsilon\right) < \delta$. Following similar argument in Theorem 1, we could get the unconditional probability $P(\tilde{B} = B_0) \to 1$. Suppose we could find a pair of $\varepsilon_0 > 0$, $\delta_0 > 0$ such that $P\left(P(\tilde{B} = B_0 | \mathcal{D}) < 1 - \varepsilon_0\right) > \delta_0$ for arbitrarily large n_1, n_2 , then we can get

$$P(\tilde{B}=B_0)=\int_{\mathscr{D}}P(\tilde{B}=B_0|\mathscr{D})dF(\mathscr{D})<1-\varepsilon_0\delta_0,$$

contradicts that $P(\tilde{B} = B_0) \to 1$, thus we have shown that $P(\tilde{B} = B_0 | \mathcal{D}) \xrightarrow{p} 1$. Now we could focus on the case that $\tilde{B} = \hat{B} = B_0$. Similar to [4], after profiling out b_{Xi} 's in the original log-likelihood function, we have

$$\tilde{\theta} = \arg\min_{\theta} \sum_{i \in B_0^c} \frac{(\tilde{\beta}_{Yi} - \theta \cdot \tilde{\beta}_{Xi})^2}{\sigma_{Xi}^2 \cdot \theta^2 + \sigma_{Yi}^2}, \quad \hat{\theta} = \arg\min_{\theta} \sum_{i \in B_0^c} \frac{(\hat{\beta}_{Yi} - \theta \cdot \hat{\beta}_{Xi})^2}{\sigma_{Xi}^2 \cdot \theta^2 + \sigma_{Yi}^2}.$$
 (6)

Denote

$$f(\theta) = \sum_{i \in B_0^c} \frac{(\tilde{\beta}_{Yi} - \theta \cdot \tilde{\beta}_{Xi})^2}{\sigma_{Xi}^2 \cdot \theta^2 + \sigma_{Yi}^2},$$

and

$$\phi(\theta) = \frac{\partial f(\theta)}{\partial \theta} = \sum_{i \in B_0^c} \frac{(\tilde{\beta}_{Yi} - \theta \tilde{\beta}_{Xi})(\theta \tilde{\beta}_{Yi} \sigma_{Xi}^2 + \tilde{\beta}_{Xi} \sigma_{Yi}^2)}{(\sigma_{Xi}^2 \theta^2 + \sigma_{Yi}^2)^2}$$

$$=\sum_{i\in\mathcal{B}_{0}^{c}}\frac{(\hat{\beta}_{Yi}-\theta\hat{\beta}_{Xi})(\theta\hat{\beta}_{Yi}\sigma_{Xi}^{2}+\hat{\beta}_{Xi}\sigma_{Yi}^{2})+(\hat{\beta}_{Yi}-\theta\hat{\beta}_{Xi})(\theta\xi_{i}\sigma_{Xi}^{2}+\varepsilon_{i}\sigma_{Yi}^{2})+(\xi_{i}-\theta\varepsilon_{i})(\theta\hat{\beta}_{Yi}\sigma_{Xi}^{2}+\hat{\beta}_{Xi}\sigma_{Yi}^{2}+\theta\xi_{i}\sigma_{Xi}^{2}+\varepsilon_{i}\sigma_{Yi}^{2})}{(\sigma_{Xi}^{2}\theta^{2}+\sigma_{Yi}^{2})^{2}}$$

here $\xi_i = \tilde{\beta}_{Yi} - \hat{\beta}_{Yi} \sim N(0, \sigma_{Yi}^2)$, $\varepsilon_i = \tilde{\beta}_{Xi} - \hat{\beta}_{Xi} \sim N(0, \sigma_{Xi}^2)$. We have

$$0 = \phi(\tilde{\theta}) = \phi(\hat{\theta}) + \phi'(\hat{\theta})(\tilde{\theta} - \hat{\theta}) + \frac{1}{2}\phi''(\theta^*)(\tilde{\theta} - \hat{\theta})^2,$$

with θ^* is between $\tilde{\theta}$ and $\hat{\theta}$, thus

$$\sqrt{V}(\tilde{\theta} - \hat{\theta}) = \frac{-\phi(\hat{\theta})/\sqrt{V}}{\phi'(\hat{\theta})/V + (1/2)(\tilde{\theta} - \hat{\theta})\phi''(\theta^*)/V}.$$

Next we show $\phi(\hat{\theta})/\sqrt{V}|\mathcal{D} \xrightarrow{w.P} N(0,1)$. From equation (6), we can get

$$\phi(\hat{\theta}) = \sum_{i \in B_0^c} \frac{(\hat{\beta}_{Yi} - \hat{\theta} \hat{\beta}_{Xi})(\hat{\theta} \xi_i \sigma_{Xi}^2 + \varepsilon_i \sigma_{Yi}^2) + (\xi_i - \hat{\theta} \varepsilon_i)(\hat{\theta} \hat{\beta}_{Yi} \sigma_{Xi}^2 + \hat{\beta}_{Xi} \sigma_{Yi}^2 + \hat{\theta} \xi_i \sigma_{Xi}^2 + \varepsilon_i \sigma_{Yi}^2)}{(\sigma_{Xi}^2 \hat{\theta}^2 + \sigma_{Yi}^2)^2}$$

Note that ξ_i 's and ε_i 's are $O_p(1/\sqrt{n})$, $n = \min(n_1, n_2)$, thus

$$\phi(\hat{\theta}) = \sum_{i \in B_0^c} \frac{\xi_i(\hat{\beta}_{Yi}\hat{\theta}\,\sigma_{Xi}^2 - \hat{\theta}^2\hat{\beta}_{Xi}\sigma_{Xi}^2 + \hat{\theta}\,\hat{\beta}_{Yi}\sigma_{Xi}^2 + \hat{\beta}_{Xi}\sigma_{Yi}^2) + \varepsilon_i(\hat{\beta}_{Yi}\sigma_{Yi}^2 - \hat{\theta}\,\hat{\beta}_{Xi}\sigma_{Yi}^2 - \hat{\theta}^2\hat{\beta}_{Yi}\sigma_{Xi}^2 - \hat{\theta}\,\hat{\beta}_{Xi}\sigma_{Yi}^2)}{(\sigma_{Xi}^2\hat{\theta}^2 + \sigma_{Yi}^2)^2} + O_p(1),$$
(7)

thus $\phi(\hat{\theta})/\sqrt{V}|\mathscr{D}=N(0,V^*/V)|\mathscr{D}+O_p(1/\sqrt{n})$, with

$$V^* = \sum_{i \in B_0^c} \frac{\sigma_{Yi}^2 (\hat{\beta}_{Yi} \hat{\theta} \sigma_{Xi}^2 - \hat{\theta}^2 \hat{\beta}_{Xi} \sigma_{Xi}^2 + \hat{\theta} \hat{\beta}_{Yi} \sigma_{Xi}^2 + \hat{\beta}_{Xi} \sigma_{Yi}^2)^2 + \sigma_{Xi}^2 (\hat{\beta}_{Yi} \sigma_{Yi}^2 - \hat{\theta} \hat{\beta}_{Xi} \sigma_{Yi}^2 - \hat{\theta}^2 \hat{\beta}_{Yi} \sigma_{Xi}^2 - \hat{\theta} \hat{\beta}_{Xi} \sigma_{Yi}^2)^2}{(\sigma_{Xi}^2 \hat{\theta}^2 + \sigma_{Yi}^2)^4},$$

as $\hat{\beta}_{Xi} \xrightarrow{p} \beta_{Xi}$, $\hat{\beta}_{Yi} \xrightarrow{p} \beta_{Yi}$, $\hat{\theta} \xrightarrow{p} \theta_0$, we can get $V^*/V \xrightarrow{p} 1$, thus we get $\phi(\hat{\theta})/\sqrt{V}|\mathscr{D} \xrightarrow{w.P} N(0,1)$.

Next we show $-\phi'(\hat{\theta})/V|\mathscr{D} \xrightarrow{w.P} 1$. After some calculation we get

$$\phi'(\theta) = \sum_{i \in B_0^c} \frac{2\sigma_{Xi}^4 \tilde{\beta}_{Xi} \tilde{\beta}_{Yi} \cdot \theta^3 + 3(\sigma_{Xi}^2 \sigma_{Yi}^2 \tilde{\beta}_{Xi}^2 - \sigma_{Xi}^4 \tilde{\beta}_{Yi}^2)\theta^2 - 6\sigma_{Xi}^2 \sigma_{Yi}^2 \tilde{\beta}_{Xi} \tilde{\beta}_{Yi} \theta + (\sigma_{Xi}^2 \sigma_{Yi}^2 \tilde{\beta}_{Yi}^2 - \tilde{\beta}_{Xi}^2 \sigma_{Yi}^4)}{(\sigma_{Xi}^2 \theta^2 + \sigma_{Yi}^2)^3},$$
(8)

as $\tilde{\beta}_{Xi} \xrightarrow{p} \beta_{Xi}$, $\tilde{\beta}_{Yi} \xrightarrow{p} \beta_{Yi}$, $\hat{\theta} \xrightarrow{p} \theta_0$, we get $-\phi'(\hat{\theta})/V \xrightarrow{p} 1$, with Theorem 3.3 in [2], $-\phi'(\hat{\theta})/V | \mathcal{D} \xrightarrow{w.P} 1$.

Based on equation (8), we can see $\phi''(\theta)$ has its numerator of order n^5 and its denominator of order n^6 , thus $\phi''(\theta^*)/V = O_p(1)$. As $\tilde{\theta} \xrightarrow{p} \theta_0$, $\hat{\theta} \xrightarrow{p} \theta_0$, we have $\tilde{\theta} - \hat{\theta} \xrightarrow{p} 0$, again with Theorem 3.3 in [2] we get $\tilde{\theta} - \hat{\theta} | \mathscr{D} \xrightarrow{w.P} 0$. Thus we can get $\frac{1}{2}\phi''(\theta^*)(\tilde{\theta} - \hat{\theta})| \mathscr{D} \xrightarrow{w.P} 0$. Now with Theorem 3.2 in [2], we can get $\sqrt{V}(\tilde{\theta} - \hat{\theta})| \mathscr{D} \xrightarrow{w.P} N(0,1)$, completeing the proof.

References

- [1] Lyon, M. S., Andrews, S. J., Elsworth, B., Gaunt, T. R., Hemani, G., & Marcora, E. (2021). The variant call format provides efficient and robust storage of GWAS summary statistics. *Genome Biology*, 22(1), 1-10.
- [2] Xiong, S., & Li, G. (2008). Some results on the convergence of conditional distributions. Statistics & probability letters, 78(18), 3249-3253.
- [3] Xue, H., Shen, X., & Pan, W. (2021). Constrained maximum likelihood-based Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects. The American Journal of Human Genetics, 108(7), 1251-1269.
- [4] Zhao, Q., Wang, J., Hemani, G., Bowden, J., & Small, D. S. (2020). Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. The Annals of Statistics, 48(3), 1742-1769.