

Assessment Report

on

"Market Basket Analysis"

submitted as partial fulfillment for the award of

BACHELOR OF TECHNOLOGY DEGREE

SESSION 2024-25

In

Artificial Intelligence and Machine Learning

By

Rahul Prajapati (202401100400150)

Under the supervision of

"Abhishek Shukla Sir"

KIET Group of Institutions, Ghaziabad

Affiliated to

Dr. A.P.J. Abdul Kalam Technical University, Lucknow (Formerly UPTU)

18 April, 2025

Introduction:

In this project, we tackle the problem of clustering aisle names in a dataset. The dataset contains textual descriptions of aisles, and the task is to group similar aisle names together. This is done through the following steps:

- **Text Vectorization**: The aisle names are first converted into numerical vectors using the TF-IDF technique, which helps capture the importance of words within the aisle names relative to the entire corpus.
- **Clustering**: The K Means clustering algorithm is applied to the vectorized data to group the aisle names into clusters based on their similarity.
- **Dimensionality Reduction**: PCA is used to reduce the high-dimensional vectorized data to two dimensions, which allows for easier visualization of the clusters.
- **Evaluation**: The project also includes a mock classification and confusion matrix to simulate how the clustering labels would behave if there were true labels for comparison.
- **Applications**: Clustering aisle names can improve store layout, enhance product recommendations, and aid in inventory management.
- **Significance**: This project demonstrates applying machine learning to real-world retail data, offering practical benefits in organizing and analyzing data efficiently.

Methodology:

The following steps were used to solve the problem:

- **File Upload and Data Loading**: The data was uploaded from a CSV file, and the contents were previewed using pandas
- **Text Vectorization**: The aisle names were transformed into numerical vectors using the Tfidf Vectorizer from scikit-learn, which calculates the Term Frequency-Inverse Document Frequency of words in the aisle names.
- **Clustering:** The K Means clustering algorithm was applied to the vectorized data with a predefined number of clusters (k=5). This grouped the aisle names into clusters based on their similarity.
- PCA for Visualization: Principal Component Analysis (PCA) was performed to reduce the dimensionality of the data to 2D for visualization. The reduced components (PC1 and PC2) were plotted in a scatter plot to visualize the clusters.
- **Evaluation Metrics and Heatmap**: A mock classification was performed, and the predicted labels were compared with randomly generated true labels. The performance was evaluated using a confusion matrix and metrics like accuracy, precision, and recall

Code:

```
# STEP 1: Upload the file
from google.colab import files
uploaded = files.upload()
# STEP 2: Load the file
import pandas as pd
filename = list(uploaded.keys())[0]
df = pd.read csv(filename)
print("Preview of data:")
print(df.head())
# STEP 3: Text vectorization of aisle names
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import seaborn as sns
# Vectorize the aisle names
vectorizer = TfidfVectorizer(stop words='english')
X = vectorizer.fit transform(df['aisle'])
```

```
# STEP 4: Clustering the aisle names
k = 5 # number of clusters
model = KMeans(n clusters=k, random state=42)
df['Cluster'] = model.fit predict(X)
# STEP 5: PCA to reduce to 2D for plotting
pca = PCA(n components=2)
components = pca.fit transform(X.toarray())
df['PC1'] = components[:, 0]
df['PC2'] = components[:, 1]
# Plotting the clusters
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df, x='PC1', y='PC2', hue='Cluster', palette='Set2', s=100)
plt.title("Clusters of Aisles Based on Name Similarity")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.legend()
plt.show()
# STEP 6: Mock classification and heatmap for fun
import numpy as np
```

```
from sklearn.metrics import confusion matrix, accuracy score, precision score,
recall score
# Create fake true labels (for illustration only)
true labels = np.random.choice(range(k), size=len(df))
predicted labels = df['Cluster']
# Confusion matrix
cm = confusion matrix(true labels, predicted labels)
plt.figure(figsize=(6, 5))
sns.heatmap(cm, annot=True, fmt='d', cmap='coolwarm')
plt.title("Confusion Matrix Heatmap (Mocked)")
plt.xlabel("Predicted")
plt.ylabel("True")
plt.show()
# Evaluation metrics
print("Accuracy:", accuracy score(true labels, predicted labels))
print("Precision (macro):", precision score(true labels, predicted labels,
average='macro'))
print("Recall (macro):", recall score(true labels, predicted labels,
average='macro'))
```

Output/Result:

The output of the code includes the visualization of the clustered aisle names in a scatter plot, which shows the clusters based on their similarity. Additionally, a confusion matrix heatmap is generated to simulate the evaluation of the clustering model, and metrics such as accuracy, precision, and recall are printed.

References/Credits:

- Dataset: [Provide the source of your dataset, if applicable]
- Libraries Used:

pandas: for data manipulation scikit-learn: for machine learning models (KMeans, PCA, TfidfVectorizer) matplotlib & seaborn: for data visualization

• **Images**: The images used for visualizing the data (scatter plot and heatmap) were generated through the code provided.