(19) <u>SU</u>(11) <u>1594237 A1</u>

(51)5 D 21 H 23/00, 21/18//D 21 H 11:06, 17:06

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4392084/31-12

(22) 01.02.88

(46) 23.09.90. Бюл. № 35

(71) Ленинградский технологический институт целлюлозно-бумажной промышленности и Ленинградская лесотехническая академия им. С.М.Кирова

(72) В.А.Амосов, Г.И.Чижов, В.В.Шарков, А.В.Буров, С.В.Рябченко и Г.К.Булыгина

(53) 676.4 (088.8)

(56) Авторское свидетельство СССР № 910911, кл. D 21 H 5/26, 1982.

(54) СПОСОБ ПОЛУЧЕНИЯ БУМАГИ СУХО-ГО ФОРМОВАНИЯ

БТЕИЗООРЕТЕНИЕ ОТНОСИТСЯ К СПОСОБАМ ПОпучения бумаги сухого формования и может быте использовано в целлюлозно-бумажной промышленности. Цель изобретения — повышение механической прочности бумаги. Способ заключается в образовании волокнистого слоя из аэровзвеси целлюлозных волокон, пропитке слоя 2 — 8%-ным водным раствором резорцина, прессовании и сушке полученной бумаги. В качестве жидкостного реагента для обработки волокнистого слоя используют резорцин — химическое соеди-

нение, относящееся к многоатомным фенолам и имеющее в молекуле две гидроксильные группы, что обуславливает высокую склонность его к образованию водородных связей, определяющих прочность бумаги. В водных растворах резорцина целлюлозные волокна подвержены значительно большему набуханию, чем в чистой воде. Глубокое проникновение воды в межкристаллитные пространства целлюлозных волокон способствует их пластификации, увеличивает гибкость, что обеспечивает при последующих процессах прессования и сушки бумажного полотна в результате сил капиллярной контракции более полный контакт волокон. Кроме того, молекулы резорцина непосредственно сами увеличивают суммарную энергию межволоконного взаимодействия в структуре бумаги за счет образования связей целлюлоза - резорцин - целлюлоза. В связывании двух соседних целлюлозных волокон участвуют не только единичные молекулы, но и цепочки из нескольких молекул резорцина, что также приводит к увеличению связанной поверхности в бумаге, а следовательно, повышает ее прочность. 3 табл.

Изобретение относится к способам получения бумаги сухого формования и может быть использовано в целлюлозно-бумажной промышленности.

Цель изобретения – повышение механической прочности бумаги.

Сущность предлагаемого способа состоит в образовании волокнистого слоя из аэровзвеси целлюлозных волокон, пропитки слоя 2 – 8%-ным водным раствором резорцина, прессовании и сушке полученной бумаги.

Использование в способе в качестве жидкостного реагента для обработки волокнистого слоя резорцина — химического соединения, относящегося к многоатомным фенолам и имеющего в молекуле две гидроксильные группы, обуславливает высокую склонность его к образованию водородных связей, определяющих прочность бумаги.

В водных растворах резорцина целлюлозные волокна подвержены значительно большему набуханию, чем в чистой воде. Глубокое проникновение воды в межкристаллитные пространства целлюлозных волокон способствует их пластификации. увеличивает гибкость, что обуславливает при последующих процессах прессования и сушки бумажного полотна в результате сил такт волокон. Кроме этого, молекулы резорцина непосредственно сами увеличивают суммарную энергию межволоконного взаимодействия в структуре бумаги за счет образования связей целлюлоза – резорцин – целлюлоза. В связывании двух соседних целлюлозных волокон участвуют не только единичные молекулы, но и цепочки из нескольких молекул резорцина, что также приводит к увеличению связанной повер- 20 хности в бумаге, а следовательно, и ее прочности.

Пример 1. Сухой волокнистый слой сульфитной небеленой целлюлозы с массой 25 100 г/м² пропитывают водным раствором резорцина различной концентрации, прессуют между двумя прессовыми сукнами при давлении 7,5 и 10 МПа. после чего высушивают на цилиндре при 100 и 120°C.

Пример 2. Все операции проводят аналогично примеру 1, но на волокнах хвойной небеленой целлюлозы.

Пример 3. Сухой волокнистый слой из волокон сульфитной небеленой целлюлозы и слой волокон сульфатной хвойной небеленой целлюлозы пропитывают в соответствии с известным способом раствором капиллярной контракции более полный кон- 10 ции и затем прессуют и высушивают по режимам примеров 1 и 2.

Результаты испытаний бумаги, полученной по предлагаемому и известному способам, представлены для волокон сульфитной целлюлозы в табл.1, а для волокон хвойной сульфатной целлюлозы – в табл.2 и 3.

Предлагаемый способ, как следует из приведенных в табл. 1 - 3 данных, обеспечивает существенное повышение механических свойств бумаги сухого формования.

Формула изобретения Способ получения бумаги сухого формования путем образования волокнистого слоя из аэровзвеси целлюлозных волокон, пропитки слоя жидкостным реагентом, прессования и сушки полученной бумаги, отличаю щийся тем, что, с целью повышения механической прочности бумаги, пропитку слоя производят 2 - 8%-ным 30 водным раствором резорцина.

HON

из -!чи-14e-

MO-OLO . он, JM, ∄ГИ, 1510 ° ма-

ым

Таблица

, Jo	120	Сопротивление Сопротивление излому, число продавлива-		13 9 0.14		·	25 28 0.21
арактеристика бумаги пои температуре сущи о	mka adkı adaa	Разрывная Сс длина, и: м		3300 3170		3780 3810	3740 3880 4190
истика бумаги по		Сопротивление продавлива- нию,	Mna	0,0		0,23	0,22 0,22 0,22
АХарактер	(100)	сипротивление излрму инсло	гиров	2		25 28 27	30 31
	Pasounas	длина,	3120	3090		3700 3770 3720	3900 3870
Давление	прессования. МПа		7.5	10,0	٠.	7.5 10.0 7.5	7.5
Способ получе-	Z IBWYO Z		Известный	Предлагаемый	при концентра- ции раствора резорцина, %:	O 10	ω.

Таблица 2

			一 「一」、「一」の「一」の「一」の「一」の「一」	**************************************				
Способ получе-	Давление		Xabakte	Реристика бумаги пои температуре сущки ^о с	и температуре с	Jo MXIIIX		
ния бумаги	прессования,		100 V			120		
	MПа	Разрывная	Сопротивление	Сопротивление	Разрывная	Сопротивление	Сопротивление	
		длина,	изпомутнисло	продавлива-	длина,	излому, число		
		Σ	двойных пере-	нию,	Σ	двойных пере-	нию,	
(Aspecture)	7.6	CHOC	NOOB	1011 13		гибов	МПа	
Night Control	C'/	3220	27	0,16	3210	25	0.17	
	10.0	3210	30	0.18	3290	r c	0	
Предлагаемый	-					3,	2	
при концентра-						-		
ции раствора			-				-	
резорцина, %:								
2	7,5	3930	20	0.27	3960	• 40	300	
	10,0	4020	. 69	0.27	3920	23	0,20	
വ	7,5	4070	29	0.25	4000	3 6	0.20	
	10,0	4100	202	0.28	4250	5 6	77.0	
æ	7,5	4230	75	0.24	4370	3 6	0,43	
	10,0	4270	78	0.26	0.00	2 6	0,00	٠
			·	24:0	- 7		• '(: : :	_

Концентрация раствора резорцина,	Разрывная длина, м	Сопротивление излому, число двойных пе-	Сопротивление продавливанию, МПа
%		регибов	давляющимо, инты
1,5	2760	21	0,16
2,0	3920	63	0,28
5,0	4250	80	0.25
8,0	4420	81	0,27
10,0	3300	42	0,21

Редактор И. Дербак Составитель Е.Васильев Техред М.Моргентал

Корректор Н.Король

Заказ 2815

Тираж 330

Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5