```
In [35]: # This Python 3 environment comes with many helpful analytics libraries installed
         # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker
         # For example, here's several helpful packages to load
         import numpy as np # linear algebra
         import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
         # Input data files are available in the read-only "../input/" directory
         # For example, running this (by clicking run or pressing Shift+Enter) will list all
         import os
         for dirname, _, filenames in os.walk('../CODES'):
             for filename in filenames:
                 print(os.path.join(dirname, filename))
         # You can write up to 20GB to the current directory (/kaggle/working/) that gets p
         # You can also write temporary files to /kaggle/temp/, but they won't be saved out:
         ../CODES\1.1. MicrosoftMalwareDetection.ipynb
         ../CODES\21.1. PersonalizedCancerDiagnosis.ipynb
         ../CODES\AirlinesTwitterAnalysisProject1.ipynb
         ../CODES\Cust_segmentation_online_retail.ipynb
         ../CODES\features.csv
         ../CODES\File 2.ipynb
         ../CODES\Image background remover and periodictable.ipynb
         ../CODES\kc_house_data.csv
         ../CODES\NYC Final.ipynb
         ../CODES\sales-advanced-analysis-and-prediction.ipynb
         ../CODES\stores.csv
         ../CODES\test.csv
         ../CODES\test.txt
         ../CODES\train.csv
         ../CODES\Untitled.ipynb
         ../CODES\Untitled1.ipynb
         ../CODES\w.jpeg
         ../CODES\w4.jpeg
         ../CODES\win.jpg
         ../CODES\win1.png
         ../CODES\win2.png
         ../CODES\win24.png
         ../CODES\.ipynb_checkpoints\1.1. MicrosoftMalwareDetection-checkpoint.ipynb
         ../CODES\.ipynb_checkpoints\21.1. PersonalizedCancerDiagnosis-checkpoint.ipynb
         ../CODES\.ipynb checkpoints\AirlinesTwitterAnalysisProject1-checkpoint.ipynb
         ../CODES\.ipynb checkpoints\File 2-checkpoint.ipynb
         ../CODES\.ipynb_checkpoints\Image background remover and periodictable-checkpoint.
         ../CODES\.ipynb checkpoints\NYC Final-checkpoint.ipynb
         ../CODES\.ipynb_checkpoints\sales-advanced-analysis-and-prediction-checkpoint.ipyn
         ../CODES\.ipynb_checkpoints\Untitled-checkpoint.ipynb
         ../CODES\.ipynb checkpoints\Untitled1-checkpoint.ipynb
         ../CODES\Predictive analytics\sales-advanced-analysis-and-prediction.ipynb
 In [5]: # Input data files are available in the "../input/" directory.
         # First let us load the datasets into different Dataframes
         def load data(datapath):
             data = pd.read_csv(datapath)
            # Dimensions
             print('Shape:', data.shape)
             # Set of features we have are: date, store, and item
             display(data.sample(10))
             return data
```

```
traindf=load_data('train.csv')
testdf=load_data('test.csv')
featuresdf=load_data('features.csv')
storesdf=load_data('stores.csv')
```

Shape: (421570, 5)

	Store	Dept	Date	Weekly_Sales	IsHoliday
244265	25	67	2011-03-18	5778.26	False
127043	13	92	2010-03-26	140088.85	False
99608	11	13	2011-02-11	42844.65	True
347528	37	8	2010-08-06	14633.94	False
164755	17	67	2012-08-10	6436.01	False
329654	34	91	2011-07-22	35670.52	False
158484	17	8	2010-06-18	20617.58	False
342029	36	14	2012-01-27	1419.92	False
235885	24	90	2012-04-06	86581.06	False
297761	31	30	2011-06-17	3842.20	False

Shape: (115064, 4)

	Store	Dept	Date	IsHoliday
53108	20	67	2013-03-22	False
58424	22	71	2012-11-09	False
71077	27	30	2013-01-18	False
55354	21	42	2013-02-22	False
67884	26	17	2013-04-12	False
81010	31	27	2013-03-08	False
107910	42	79	2013-05-31	False
23544	9	81	2013-04-05	False
66766	25	80	2013-07-26	False
106290	41	93	2013-01-18	False

Shape: (8190, 12)

	Store	Date	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDown4
5953	33	2012- 07-27	93.95	3.769	24.71	NaN	NaN	NaN
8050	45	2010- 11-26	46.15	3.039	NaN	NaN	NaN	NaN
7183	40	2011- 09-23	54.09	3.758	NaN	NaN	NaN	NaN
6833	38	2011- 12-30	44.64	3.428	353.07	1926.94	NaN	25.20
2195	13	2010- 04-23	55.66	2.936	NaN	NaN	NaN	NaN
2349	13	2013- 04-05	53.84	3.547	25061.60	16527.33	715.36	3092.08
2601	15	2011- 02-11	21.64	3.416	NaN	NaN	NaN	NaN
2387	14	2010- 07-02	76.61	2.815	NaN	NaN	NaN	NaN
5627	31	2013- 04-19	67.52	3.451	8848.14	792.60	84.09	937.55
6371	36	2010- 02-12	46.11	2.539	NaN	NaN	NaN	NaN

Shape: (45, 3)

	Store	Туре	Size
24	25	В	128107
0	1	Α	151315
27	28	Α	206302
17	18	В	120653
40	41	Α	196321
18	19	Α	203819
25	26	Α	152513
16	17	В	93188
44	45	В	118221
0	Ω	D	125022

DATA PREPARATION & ANALYSIS

Merging the features and training data to get cumulative insights from overall

In [6]: traindf1=traindf.merge(featuresdf,how='left',indicator=True).merge(storesdf,how='left')
In [7]: traindf1

Out[7]:		Store	Dept	Date	Weekly_Sales	IsHoliday	Temperature	Fuel_Price	MarkDown1	Mark
	0	1	1	2010- 02-05	24924.50	False	42.31	2.572	NaN	
	1	1	1	2010- 02-12	46039.49	True	38.51	2.548	NaN	
	2	1	1	2010- 02-19	41595.55	False	39.93	2.514	NaN	
	3	1	1	2010- 02-26	19403.54	False	46.63	2.561	NaN	
	4	1	1	2010- 03-05	21827.90	False	46.50	2.625	NaN	
	•••									
	421565	45	98	2012- 09-28	508.37	False	64.88	3.997	4556.61	
	421566	45	98	2012- 10-05	628.10	False	64.89	3.985	5046.74	
	421567	45	98	2012- 10-12	1061.02	False	54.47	4.000	1956.28	
	421568	45	98	2012- 10-19	760.01	False	56.47	3.969	2004.02	
	421569	45	98	2012- 10-26	1076.80	False	58.85	3.882	4018.91	
	421570 r	ows ×	17 col	umns						

Markdown values are typically a promotional factors and it contains 58% null values, So here Im avoiding it to perform neat analysis.

```
In [8]: traindf2=traindf1.drop(['MarkDown1','MarkDown2','MarkDown3','MarkDown4','MarkDown5
In [9]:
         traindf2.isna().sum()
         Store
                          0
Out[9]:
         Dept
                          0
         Date
                          0
        Weekly_Sales
                          0
         IsHoliday
                          0
         Temperature
                          0
         Fuel_Price
                          0
        CPI
                          0
        Unemployment
                          0
         _merge
                          0
        Type
                          0
         Size
                          0
        dtype: int64
        Let's check any outliers on sales values
```

In [10]: traindf2.loc[traindf2['Weekly_Sales']<=0] #outliers</pre>

Out[10]:		Store	Dept	Date	Weekly_Sales	IsHoliday	Temperature	Fuel_Price	СРІ	Unem
	846	1	6	2012- 08-10	-139.65	False	85.05	3.494	221.958433	
	2384	1	18	2012- 05-04	-1.27	False	75.55	3.749	221.671800	
	6048	1	47	2010- 02-19	-863.00	False	39.93	2.514	211.289143	
	6049	1	47	2010- 03-12	-698.00	False	57.79	2.667	211.380643	
	6051	1	47	2010- 10-08	-58.00	False	63.93	2.633	211.746754	
					•••					
	419597	45	80	2010- 02-12	-0.43	True	27.73	2.773	181.982317	
	419598	45	80	2010- 02-19	-0.27	False	31.27	2.745	182.034782	
	419603	45	80	2010- 04-16	-1.61	False	54.28	2.899	181.692477	
	419614	45	80	2010- 07-02	-0.27	False	76.61	2.815	182.318780	
	419640	45	80	2011- 02-11	-0.24	True	30.30	3.239	183.701613	

1358 rows × 12 columns

```
In [11]: traindf3=traindf2.loc[traindf2['Weekly_Sales']>0]
    traindf4=traindf3.drop(['_merge'],axis=1)
In [12]: traindf4.sort_values(by='Date')
```

Out[12]:		Store	Dept	Date	Weekly_Sales	IsHoliday	Temperature	Fuel_Price	СРІ	Unem _l
	0	1	1	2010- 02-05	24924.50	False	42.31	2.572	211.096358	
	140804	15	21	2010- 02-05	3253.19	False	19.83	2.954	131.527903	
	140661	15	20	2010- 02-05	4606.90	False	19.83	2.954	131.527903	
	140518	15	19	2010- 02-05	1381.40	False	19.83	2.954	131.527903	
	140408	15	18	2010- 02-05	2239.25	False	19.83	2.954	131.527903	
	•••				•••					
	173673	18	52	2012- 10-26	2226.10	False	56.09	3.917	138.728161	
	342211	36	16	2012- 10-26	564.50	False	74.39	3.494	222.113657	
	390158	41	92	2012- 10-26	131128.24	False	41.80	3.686	199.219532	
	175485	18	81	2012- 10-26	14036.52	False	56.09	3.917	138.728161	
	421569	45	98	2012- 10-26	1076.80	False	58.85	3.882	192.308899	

420212 rows × 11 columns

```
In [13]: traindf4['Type'].unique() #Store varities
         array(['A', 'B', 'C'], dtype=object)
Out[13]:
In [14]:
         # Import libraries
         import matplotlib.pyplot as plt
         import numpy as np
         # Creating dataset
         stores = ['Type A','Type B','Type C']
         data = traindf4['Type'].value_counts()
         # Creating plot
         fig, ax = plt.subplots()
         plt.pie(data, labels = stores,autopct='%.0f%%')
         ax.set_title('Which Type of stores has more sales')
         # show plot
         plt.show()
```

Which Type of stores has more sales


```
In [15]:
         traindf4['year'] = pd.DatetimeIndex(traindf4['Date']).year #Separating year data.
         # import modules
In [18]:
         import matplotlib.pyplot as mp
         import pandas as pd
         import seaborn as sns
         # import file with data
         data = traindf4
         # prints data that will be plotted
         # columns shown here are selected by corr() since
         # they are ideal for the plot
         print(data.corr())
         sns.set_theme(style="whitegrid")
         # plotting correlation heatmap
         dataplot = sns.heatmap(data.corr(), cmap="YlGnBu", annot=True)
         sns.set(rc = {'figure.figsize':(25,8)})
         # displaying heatmap
         mp.show()
                          Store
                                     Dept Weekly_Sales IsHoliday Temperature
         Store
                       1.000000 0.024258
                                              -0.085117
                                                        -0.000522
                                                                     -0.050230
         Dept
                                               0.148749
                                                                       0.004727
                       0.024258 1.000000
                                                          0.000663
         Weekly Sales -0.085117 0.148749
                                              1.000000
                                                                     -0.002339
                                                        0.012843
```

```
-0.000522 0.000663
                                                           -0.155775
IsHoliday
                                    0.012843
                                              1.000000
Temperature -0.050230 0.004727
                                    -0.002339 -0.155775
                                                            1.000000
Fuel Price
             0.065321 0.003544
                                    0.000089
                                              -0.078155
                                                            0.143700
CPI
            -0.211261 -0.007178
                                    -0.021162 -0.001933
                                                            0.182223
Unemployment 0.208759 0.007787
                                    -0.025806
                                              0.010555
                                                            0.096768
            -0.182763 -0.002491
                                    0.244117
                                               0.000797
                                                           -0.058413
Size
year
             0.002831 0.003716
                                   -0.010015 -0.056572
                                                            0.065712
             Fuel Price
                              CPI Unemployment
                                                    Size
                                                              year
                                      0.208759 -0.182763 0.002831
Store
               0.065321 -0.211261
Dept
               0.003544 -0.007178
                                      0.007787 -0.002491 0.003716
Weekly Sales
               0.000089 -0.021162
                                      -0.025806 0.244117 -0.010015
IsHoliday
              -0.078155 -0.001933
                                      0.010555 0.000797 -0.056572
               0.143700 0.182223
                                      0.096768 -0.058413 0.065712
Temperature
Fuel_Price
               1.000000 -0.164199
                                     -0.033915 0.003632 0.779681
CPI
              -0.164199 1.000000
                                     -0.299887 -0.003903 0.074547
Unemployment
              -0.033915 -0.299887
                                      1.000000 -0.068335 -0.237210
Size
               0.003632 -0.003903
                                      -0.068335 1.000000 -0.004716
               0.779681 0.074547
                                      -0.237210 -0.004716 1.000000
year
```


In [19]: print(traindf4.dtypes)

Store int64 Dept int64 object Date Weekly_Sales float64 IsHoliday bool Temperature float64 Fuel_Price float64 CPI float64 Unemployment float64 Type object Size int64 int64 year dtype: object

Year vs Fuel_price

```
In [20]: import seaborn as sns
    sns.set_theme(style="whitegrid")
    tips =traindf4
    ax = sns.barplot(x="year", y="Fuel_Price", data=tips)
    sns.set(rc = {'figure.figsize':(10,4)})
```

Weekly sales vs Store

```
In [21]: import seaborn as sns
sns.set_theme(style="whitegrid")
```

```
tips = traindf4
ax = sns.barplot(x='Store', y="Weekly_Sales", data=tips)
```


Store vs Unemployment

```
In [22]: # importing packages
import seaborn as sns
import matplotlib.pyplot as plt

# Loading dataset
data = traindf4

# draw LinepLot
sns.lineplot(x="Store", y="Unemployment", data=data)
plt.show()
```


In [23]: traindf4

Out[23]:		Store	Dent	Date	Weekly_Sales	IsHoliday	Temperature	Fuel Price	СРІ	Unemı
ouc[25].				2010-			<u> </u>			Onein
	0	1	1	02-05	24924.50	False	42.31	2.572	211.096358	
	1	1	1	2010- 02-12	46039.49	True	38.51	2.548	211.242170	
	2	1	1	2010- 02-19	41595.55	False	39.93	2.514	211.289143	
	3	1	1	2010- 02-26	19403.54	False	46.63	2.561	211.319643	
	4	1	1	2010- 03-05	21827.90	False	46.50	2.625	211.350143	
	•••									
	421565	45	98	2012- 09-28	508.37	False	64.88	3.997	192.013558	
	421566	45	98	2012- 10-05	628.10	False	64.89	3.985	192.170412	
	421567	45	98	2012- 10-12	1061.02	False	54.47	4.000	192.327265	
	421568	45	98	2012- 10-19	760.01	False	56.47	3.969	192.330854	
	421569	45	98	2012- 10-26	1076.80	False	58.85	3.882	192.308899	
	420212 r	ows ×	12 col	umns						
4										•

In [24]: traindf4['Dept'].unique() array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, Out[24]: 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 58, 59, 60, 67, 71, 72, 74, 77, 78, 79, 80, 81, 82, 83, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 39, 50, 43, 65], dtype=int64) In [25]: # importing required packages import seaborn as sns import matplotlib.pyplot as plt # Loading dataset data =traindf4 # draw pointplot sns.pointplot(x ='Dept', y = "Weekly_Sales", data = data) # show the plot sns.set(rc = {'figure.figsize':(25,8)}) plt.show()

Dept

traindf4['month'] = pd.DatetimeIndex(traindf4['Date']).month #extract month data In [26]:

traindf4['week'] = pd.DatetimeIndex(traindf4['Date']).week #extract week data In [27]:

> C:\Users\shubh\AppData\Local\Temp\ipykernel_560\2593830182.py:1: FutureWarning: we ekofyear and week have been deprecated, please use DatetimeIndex.isocalendar().wee k instead, which returns a Series. To exactly reproduce the behavior of week and w eekofyear and return an Index, you may call pd.Int64Index(idx.isocalendar().week) traindf4['week'] = pd.DatetimeIndex(traindf4['Date']).week #extract week data

traindf5=traindf4.drop(['Date'],axis=1) In [28]:

In [29]: month_wise_sales = pd.pivot_table(traindf5, values = "Weekly_Sales", columns = "yee") month_wise_sales.plot()

<Axes: xlabel='month'> Out[29]:

Label encoding for Holiday column and Type

```
In [30]:
         # Import label encoder
         from sklearn import preprocessing
         # label_encoder object knows how to understand word labels.
         label_encoder = preprocessing.LabelEncoder()
         # Encode labels in column 'species'.
         traindf5['IsHoliday']= label_encoder.fit_transform(traindf5['IsHoliday'])
         traindf5['Type']= label_encoder.fit_transform(traindf5['Type'])
         traindf5
```

Out[30]:		Store	Dept	Weekly_Sales	IsHoliday	Temperature	Fuel_Price	СРІ	Unemploymer
	0	1	1	24924.50	0	42.31	2.572	211.096358	8.10
	1	1	1	46039.49	1	38.51	2.548	211.242170	8.10
	2	1	1	41595.55	0	39.93	2.514	211.289143	8.10
	3	1	1	19403.54	0	46.63	2.561	211.319643	8.10
	4	1	1	21827.90	0	46.50	2.625	211.350143	8.10
	•••								
	421565	45	98	508.37	0	64.88	3.997	192.013558	8.68
	421566	45	98	628.10	0	64.89	3.985	192.170412	8.66
	421567	45	98	1061.02	0	54.47	4.000	192.327265	8.66
	421568	45	98	760.01	0	56.47	3.969	192.330854	8.66
	421569	45	98	1076.80	0	58.85	3.882	192.308899	8.66

420212 rows × 13 columns

Convolation Man 3

```
Correlation Map 2
```

```
In [31]: data = traindf5

# prints data that will be plotted
# columns shown here are selected by corr() since
# they are ideal for the plot
print(data.corr())
sns.set_theme(style="whitegrid")
# plotting correlation heatmap
dataplot = sns.heatmap(data.corr(), cmap="YlGnBu", annot=True)
sns.set(rc = {'figure.figsize':(25,8)})

# displaying heatmap
mp.show()
```

```
Weekly_Sales
                                                          IsHoliday
                     Store
                                  Dept
                                                                        Temperature
Store
                 1.000000
                             0.024258
                                             -0.085117
                                                           -0.000522
                                                                          -0.050230
Dept
                 0.024258
                             1.000000
                                              0.148749
                                                           0.000663
                                                                           0.004727
Weekly_Sales -0.085117
                             0.148749
                                              1.000000
                                                           0.012843
                                                                          -0.002339
IsHoliday
                -0.000522
                             0.000663
                                              0.012843
                                                            1.000000
                                                                          -0.155775
Temperature
                -0.050230
                             0.004727
                                             -0.002339
                                                           -0.155775
                                                                           1.000000
Fuel Price
                 0.065321
                             0.003544
                                              0.000089
                                                           -0.078155
                                                                           0.143700
                                                           -0.001933
CPT
                -0.211261 -0.007178
                                             -0.021162
                                                                           0.182223
               0.208759
                             0.007787
                                             -0.025806
                                                                           0.096768
Unemployment
                                                           0.010555
Type
                 0.226352
                             0.003157
                                             -0.182229
                                                           -0.001000
                                                                           0.043035
Size
                -0.182763 -0.002491
                                              0.244117
                                                           0.000797
                                                                          -0.058413
                 0.002831
                             0.003716
                                             -0.010015
                                                          -0.056572
                                                                           0.065712
year
                 0.000907
                                              0.028401
month
                             0.000800
                                                           0.123058
                                                                           0.235957
week
                 0.000926
                           0.000767
                                              0.027659
                                                           0.127846
                                                                           0.236256
                 Fuel Price
                                     CPI
                                            Unemployment
                                                                  Type
                                                                              Size
Store
                   0.065321 -0.211261
                                                             0.226352 -0.182763
                                                 0.208759
Dept
                   0.003544 -0.007178
                                                             0.003157 -0.002491
                                                 0.007787
Weekly_Sales
                   0.000089 -0.021162
                                               -0.025806 -0.182229
                                                                         0.244117
IsHoliday
                  -0.078155 -0.001933
                                                0.010555 -0.001000
                                                                         0.000797
Temperature
                   0.143700 0.182223
                                                0.096768
                                                            0.043035 -0.058413
Fuel Price
                   1.000000 -0.164199
                                                -0.033915
                                                             0.029483
                                                                         0.003632
CPI
                  -0.164199 1.000000
                                               -0.299887 -0.065094 -0.003903
                  -0.033915 -0.299887
                                                1.000000 0.148793 -0.068335
Unemployment
Type
                   0.029483 -0.065094
                                                0.148793
                                                            1.000000 -0.811541
                                               -0.068335 -0.811541
Size
                   0.003632 -0.003903
                                                                       1.000000
                                               -0.237210 0.004080 -0.004716
                   0.779681
                              0.074547
year
month
                  -0.040931
                               0.005366
                                               -0.012562 -0.000079 -0.001051
week
                  -0.031191 0.006428
                                               -0.015614 -0.000016 -0.001130
                      year
                                 month
                                              week
Store
                 0.002831
                             0.000907
                                         0.000926
                 0.003716
                             0.000800
                                         0.000767
Dept
Weekly_Sales -0.010015
                             0.028401
                                         0.027659
                -0.056572
                             0.123058
                                         0.127846
IsHoliday
Temperature
                             0.235957
                 0.065712
                                         0.236256
Fuel_Price
                 0.779681 -0.040931 -0.031191
CPI
                 0.074547
                             0.005366
                                         0.006428
Unemployment -0.237210 -0.012562 -0.015614
                 0.004080 -0.000079 -0.000016
Type
Size
                -0.004716 -0.001051 -0.001130
year
                 1.000000 -0.194295 -0.181804
                -0.194295
                             1.000000
                                         0.996000
month
                             0.996000
week
                -0.181804
                                         1.000000
   Store
                     -0.085
                                               -0.21
                                                                   -0.18
   Dept
                                        0.0035
                                                     0.0078
                                                                                      0.00077
                                                            -0.18
Neekly Sales
        -0.085
                                        8.9e-05
                                               -0.021
                                                     -0.026
                                                                         -0.01
              0.00066
                                  -0.16
                                        -0.078
                                               -0.0019
                                                            -0.001
                                                                  0.0008
                                                                         -0.057
        -0.05
              0.0047
                            -0.16
                                                            0.043
                                                                   -0.058
                                               -0.16
                           -0.078
                                                                                -0.041
 Fuel_Price
              0.0035
                     8.9e-05
                                                      -0.034
                                                                  0.0036
                                                      -0.3
                                                            -0.065
                                                                                0.0054
   CPI
        -0.21
              -0.0072
                     -0.021
                           -0.0019
                                         -0.16
                                                                  -0.0039
                                                                                      0.0064
                                                                                -0.013
              0.0078
                           0.011
                                        -0.034
                                                                         -0.24
                     -0.026
                                               -0.3
                                                                   -0.068
                                                                                      -0.016
                                                                  -0.81
                     -0.18
                           -0.001
                                        0.029
                                               -0.065
   Type
              0.0032
                                  0.043
                                                                         0.0041
                                                                                7.9e-05
                                                                                      -1.6e-05
                                                                                                  -0.25
                                  -0.058
   Size
        -0.18
                           0.0008
                                               -0.0039
                                                      -0.068
                                                                                -0.0011
              -0.0025
                                                            -0.81
                                                                                      -0.0011
                     -0.01
                                                      -0.24
                                                                                -0.19
              0.0037
                                                                                                  -0.50
                                                                  -0.0011
                                         -0.041
                                                                                                  - -0.75
```

Feature Importance Test using various techniques

from sklearn.inspection import permutation_importance
from sklearn.ensemble import RandomForestRegressor
import shap

Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)

Features=traindf5.drop(['Weekly_Sales'],axis=1) In [38]: Target=traindf5['Weekly_Sales']

In [39]: rf = RandomForestRegressor(n_estimators=100) rf.fit(Features, Target)

Out[39]: ▼ RandomForestRegressor RandomForestRegressor()

Features In [40]:

Out[40]:		Store	Dept	IsHoliday	Temperature	Fuel_Price	СРІ	Unemployment	Туре	Si
	0	1	1	0	42.31	2.572	211.096358	8.106	0	1513
	1	1	1	1	38.51	2.548	211.242170	8.106	0	1513
	2	1	1	0	39.93	2.514	211.289143	8.106	0	1513
	3	1	1	0	46.63	2.561	211.319643	8.106	0	1513
	4	1	1	0	46.50	2.625	211.350143	8.106	0	1513
	•••									
	421565	45	98	0	64.88	3.997	192.013558	8.684	1	1182
	421566	45	98	0	64.89	3.985	192.170412	8.667	1	1182
	421567	45	98	0	54.47	4.000	192.327265	8.667	1	1182
	421568	45	98	0	56.47	3.969	192.330854	8.667	1	1182
	421569	45	98	0	58.85	3.882	192.308899	8.667	1	1182

420212 rows × 12 columns

```
In [41]: f = plt.figure()
         f.set_figwidth(10)
         f.set_figheight(7)
         plt.barh(Features.columns, rf.feature_importances_)
Out[41]: <BarContainer object of 12 artists>
```


In [42]: F=Features.drop(["IsHoliday",'year'],axis=1)

In [43]: F

Out[43]:		Store	Dept	Temperature	Fuel_Price	СРІ	Unemployment	Туре	Size	month
	0	1	1	42.31	2.572	211.096358	8.106	0	151315	2
	1	1	1	38.51	2.548	211.242170	8.106	0	151315	2
	2	1	1	39.93	2.514	211.289143	8.106	0	151315	2
	3	1	1	46.63	2.561	211.319643	8.106	0	151315	2
	4	1	1	46.50	2.625	211.350143	8.106	0	151315	3
	•••									
	421565	45	98	64.88	3.997	192.013558	8.684	1	118221	9
	421566	45	98	64.89	3.985	192.170412	8.667	1	118221	10
	421567	45	98	54.47	4.000	192.327265	8.667	1	118221	10
	421568	45	98	56.47	3.969	192.330854	8.667	1	118221	10

3.882 192.308899

8.667

1 118221

10

420212 rows × 10 columns

45

98

58.85

421569

```
from math import sqrt
In [46]: DTRmodel = DecisionTreeRegressor(max_depth=3,random_state=0)
         DTRmodel.fit(x_train,y_train)
         y_pred = DTRmodel.predict(x_test)
         print("R2 score :",r2_score(y_test, y_pred))
In [47]:
         print("MSE score :",mean_squared_error(y_test, y_pred))
         print("RMSE: ",sqrt(mean_squared_error(y_test, y_pred)))
         R2 score : 0.3796166061691
         MSE score : 323184793.8287025
         RMSE: 17977.34112233237
In [48]: rf1 = RandomForestRegressor(n_estimators=50, random_state=42, n_jobs=-1, max_depth
                                    max_features = 'sqrt',min_samples_split = 10)
         rf1.fit(x_train,y_train)
         y_pred1 = rf1.predict(x_test)
         print("R2 score :",r2_score(y_test, y_pred))
In [49]:
         print("MSE score :",mean_squared_error(y_test, y_pred1))
         print("RMSE: ",sqrt(mean_squared_error(y_test, y_pred1)))
         R2 score : 0.3796166061691
         MSE score : 62845166.705938146
         RMSE: 7927.494352311968
In [54]: from xgboost import XGBRegressor
         model = XGBRegressor()
         model.fit(x_train,y_train)
Out[54]:
                                          XGBRegressor
         XGBRegressor(base_score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample_bytree=None, early_stopping_rounds=None,
                       enable_categorical=False, eval_metric=None, feature_types
         =None,
                       gamma=None, gpu_id=None, grow_policy=None, importance_typ
         e=None,
                       interaction_constraints=None, learning_rate=None, max_bin
         =None,
                       max_cat_threshold=None, max_cat_to_onehot=None,
                       max delta step=None, max depth=None, max leaves=None,
In [55]: y_pred2 = model.predict(x_test)
In [56]: print("R2 score :",r2_score(y_test, y_pred2))
         print("MSE score :",mean_squared_error(y_test, y_pred2))
         print("RMSE: ",sqrt(mean_squared_error(y_test, y_pred2)))
         R2 score : 0.9444449403000315
         MSE score : 28941055.95639064
         RMSE: 5379.689206300922
In [57]: y_pred2
Out[57]: array([26847.85 , 363.88 , 33762.836, ..., 8514.317, 5247.591,
                 9374.635], dtype=float32)
```

from sklearn.metrics import r2_score,mean_squared_error

```
In [58]:
         #Regularization
         from sklearn.linear_model import Ridge
         rr_model = Ridge(alpha=0.5)
         rr_model.fit(x_train,y_train)
Out[58]:
               Ridge
         Ridge(alpha=0.5)
In [59]: y_pred3 = model.predict(x_test)
         y_pred3
In [60]:
         array([26847.85 , 363.88 , 33762.836, ..., 8514.317, 5247.591,
Out[60]:
                9374.635], dtype=float32)
         print("R2 score :",r2_score(y_test, y_pred3))
In [61]:
         print("MSE score :",mean_squared_error(y_test, y_pred3))
         print("RMSE: ",sqrt(mean_squared_error(y_test, y_pred3)))
         R2 score : 0.9444449403000315
         MSE score : 28941055.95639064
         RMSE: 5379.689206300922
In [62]: y_test
Out[62]: 198556
                  18526.46
         342491
                   84.00
         267645
                27025.56
         169044 48324.54
         45102
                  2968.68
         323292
                  4156.69
         22041 15252.97
         261294
                  8461.31
                   835.99
         212048
                6728.27
         406506
         Name: Weekly_Sales, Length: 105053, dtype: float64
 In [ ]:
```