Magic Value

Let $B = [B_1, B_2, \dots, B_m]$ be an array with m elements. The *magic value* of B is defined as follows:

- 1. Let i and j be two indices such that $1 \le i \le j \le m$ holds. Define $v(i,j) = i \cdot \gcd(B_i, B_{i+1}, \dots, B_j)$. Here, \gcd means the greatest common divisor.
- 2. Calculate the maximum (v_{\max}) and minimum (v_{\min}) possible value of v(i,j) among all pairs (i,j) such that $1 \leq i \leq j \leq m$.
- 3. The *magic value* of B is defined as $(v_{\max} v_{\min}) \cdot m$.

Given an array of integers, calculate the sum of the magic values of all nonempty contiguous subarrays of the given array. Note that there are n(n+1)/2 such subarrays. Since this sum can be very large, only output it modulo $10^9 + 7$.

Complete the function $\frac{\text{sumOfMagicValues}}{\text{sumOfMagicValues}}$ which takes in an integer array and returns an integer denoting the sum of the magic values of all nonempty contiguous subarrays of the array, modulo 10^9+7 .

Input Format

The first line of input contains a single integer, n, denoting length of the given array.

The second line contains n space-separated integers A_1,A_2,\ldots,A_n , denoting the array elements.

Constraints

- $1 \le n \le 200000$
- $0 \le A_i \le 10^9$

Subtask

ullet For test cases worth ${\sim}40\%$ of the maximum points: $1 \le n \le 4000$

Output Format

Print a single line containing a single integer denoting the sum of the magic values of all subarrays modulo $10^9 + 7$.

Sample Input 0

8 2 4 6 12 18 36 40 80

Sample Output 0

26056

Explanation 0

Sample Input 1

3 1 4 2

Sample Output 1

Explanation 1

Since there are 3 elements , we have $\left(3*(3+1)/2\right)=6$ subarrays to consider.

For all 3 subarrays with 1 length we get magic values 0 as v_{\max} and v_{\min} are same.

For subarray [1,2], we get $v_{\max}=8$ and $v_{\min}=1$. so, magic value $=(8-1)\cdot 2=7\cdot 2=14$.

For subarray [2,3], we get $v_{ ext{max}}=4$ and $v_{ ext{min}}=2$. so, magic value $=(4-2)\cdot 2=2\cdot 2=4$.

For subarray [1,3], we get $v_{\max}=8$ and $v_{\min}=1$. so, magic value $=(8-1)\cdot 3=7\cdot 3=21$.

Hence, the total summation of all magic values is =14+4+21=39. Mod 10^9+7 , this is 39.