

مدرس: دکتر فدایی و دکتر یعقوبزاده طراح: آرش هاتفی - حمید خدادادی - سینا نگارنده

Dataloader

از این کلاس جهت آماده سازی داده های ورودی استفاده میشود. این کلاس در Constructor خود، برداری از داده ها (data)، برچسبهای متناظر (labels)، تعداد كلاسها (n_classes)، اندازهي batch موردنظر (batch_size) و بُر خوردن يا نخوردن دادهها (shuffle) را ميگيرد.

Args	Description
data	دادهها
labels	برچسبهای متناظر
n_classes	تعداد كالاسها
batch_size	اندازهی batch
shuffle	بُر خوردن یا نخوردن دادهها

Methods

onehot

از برچسبهای ورودی، بردارهای onehot میسازد. این تابع برچسبها و تعداد کلاسها را به عنوان ورودی دریافت مینماید.

Args	Description
labels	برچسبها
n_classes	تعداد كلاسها

Returns	Description
onehot_vectors	بردارهای برچسبهای onehot شده

shuffle_dataset

همزمان دادهها و برچسبهایشان را بُر میزند.

Args	Description
labels	برچسبهای دادهها

iter

برای گرفتن batchها استفاده می شود.

Returns	Description
Batch	با توجه به batch ،batch_size را باز می گرداند

Activation Functions

قالب کلی برای توابع فعالساز مورد استفاده در شبکه های عصبی. تنها برای LeakyRelu داریم:

Args	Description
negative_slope	مقدار پارامتر آلفا برای شیب منفی

Methods

val

مقدار تابع را به ازای یک ورودی خاص محاسبه می کند.

Args	Description
matrix	بردار ورودى تابع فعالساز

Returns	Description
val	مقدار تابع

derivative

مشتق تابع را به ازای یک ورودی خاص محاسبه می کند.

Args	Description
matrix	بردار ورودي مشتق تابع فعالساز

Returns	Description
derivative_val	مقدار مشتق تابع

سایر متدهای موجود جهت آسانتر کردن کاربری کلاسها است.	است.	كلاسها	کارېږي	کردن	آسانتر	جهت	موجود	متدهای	ساير
--	------	--------	--------	------	--------	-----	-------	--------	------

(cal	

متد موجود جهت آسانتر کردن کاربری کلاس است.

Args	Description
matrix	بردار ورودى تابع فعالساز

Returns	Description
val	مقدار تابع

نكته:

```
identical(x)
```

زمانی که call را باز می گرداند. به صورت خود کار متد "_call_" از کلاس call می شود که val را باز می گرداند. به عبارت دیگر از کد بالا به جای کد پایین باید استفاده کنیم.

```
identical.val(x)
```

در ادامه به بررسی هر یک از توابع فعالساز میپردازیم. تابع فعالساز Softmax در Cross Entropy توضیح داده شده است.

Identity

از این تابع برای مدل سازی در زمانی که قصد استفاده از توابع فعال ساز را در یک لایه را نداریم، استفاده میکنیم.

Plot

Function	Derivative	Range
f(x) = x	f'(x) = 1	$(-\infty,\infty)$

Sigmoid

Plot

Function	Derivative	Range
$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))	(0,1)

Hyperbolic tangent (tanh)

Plot

Function	Derivative	Range
$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	$f'(x) = 1 - f(x)^2$	(-1,1)

Rectified linear unit (ReLU)

Plot

Function	Derivative	Range
$f(x) = \begin{cases} 0 & if \ x \le 0 \\ x & if \ x > 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 & \text{if } x > 0\\ undefined & \text{if } x = 0 \end{cases}$	$[0,\infty)$

Leaky rectified linear unit (Leaky ReLU)

Plot

Function	Derivative	Range
$f(x) = \begin{cases} 0.01 \times x & if \ x < 0 \\ x & if \ x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0.01 & if \ x < 0 \\ 1 & if \ x \ge 0 \end{cases}$	$(-\infty,\infty)$

Parametric rectified linear unit (PReLU)

Plot

Function	Derivative	Range
$f(x) = \begin{cases} \alpha \times x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & if \ x < 0 \\ 1 & if \ x \ge 0 \end{cases}$	$(-\infty,\infty)$

CrossEntropy

از این کلاس برای پیادهسازی تابع زیان (Loss function) استفاده میکنیم.

Args	Description
None	

Methods

val

مقدار تابع را به ازای یک ورودی خاص محاسبه می کند.

Args	Description
true_val	برچسبهای خروجی شبکه
expected_val	برچسبهای مجموعه دادهها

Returns	Description
cross_entropy_value	مقدار تابع

derivative

مشتق تابع را به ازاي يک ورودي خاص محاسبه مي كند.

Args	Description
true_val	برچسبهای خروجی شبکه
expected_val	برچسبهای مجموعه دادهها

Returns	Description	
cross_entropy_derivative		مقدار مشتق تابع

__call__

متد موجود جهت آسان تر کردن کاربری کلاس است.

Args	Description
true_val	برچسبهای خروجی شبکه
expected_val	برچسبهای مجموعه دادهها

Returns	Description
cross_entropy_value	مقدار خروجي تابع خطا

تابع هزینه (Cost function) یا تابع زیان (Loss function) در علم آمار و بهینهسازی تابعی است که مقدار ضرر را در یک پیشامد و در واقع میزان خطا در هر بار اجرای شبکهی عصبی را برای دادههای آموزشی نمایش می دهد. در یک مسئله بهینهسازی هدف مینیممسازی تابع هزینه است و این کار معمولاً با الگوریتمهای تخمینی انجام می شود. تابع زیان، معیاری برای سنجش مناسب بودن مدل از نظر قابلیت و توانایی در پیشگویی مقدارهای جدید است. یکی از روشهای معمول برای پیدا کردن کمینه تابع زیان، استفاده از مشتق و الگوریتم «گرادیان کاهشی» (Gradient Descent) است. انتخاب تابع زیان مناسب به عوامل متعددی نظیر وجود نقاط یا دادههای پرت، نوع الگوریتم یادگیری ماشین، هزینه زمانی اجرای الگوریتم و سادگی محاسبه مشتق و ... بستگی دارد.

تابع هزینهی Cross Entropy در درون خود باید شامل تابع فعالساز Softmax نیز باشد. این به این معنا است که لازم نیست که در هنگام استفاده از این تابع هزینه، لایهی آخر شبکه دارای تابع هزینهی Softmax باشد. همچنین، مشتق این دو تابع نیز باید به صورت یکجا گرفته شود و استفاده شود. علت این شیوهی پیاده سازی به ساده تر شدن فرم مشتق حاصل از قرار گرفتن این دو تابع در پشت هم و افزایش پایداری محاسبات شبکه مربوط است.

با توجه به توضیحات داده شده، باید خروجی لایه آخر شبکه (بدون تابع فعالساز) را به عنوان ورودی به Softmax دهید و از خروجی آن به عنوان \hat{y} استفاده کنید.

برای پیادهسازی می توانید از عبارات زیر کمک بگیرید.

Softmax

Value

$$Softmax(x) = \frac{e^{x_i}}{\sum_{i=1}^{J} e^{x_i}}$$
 for $i = 1,..., J$

توجه: برای جلوگیری از overflow در محاسبه ی Softmax به ازای ورودی های بزرگ، از نسخه ی پایدار این تابع (Stable Softmax) استفاده کنید. (در نسخه ی پایدار قبل از محاسبه ی Softmax برای یک بردار، همه ی عناصر بردار را از یک مقدار ثابت کم می کنیم تا ماکسیمم درایه ی بردار کاهش یابد و overflow اتفاق نیفتد. این مقدار ثابت می تواند بزرگترین درایه ی بردار یا هر مقدار دیگری باشد.)

Cross Entropy

Value

$$CrossEntropy(y, \hat{y}) = -\sum_{i} y_{i} \times log(\hat{y}_{i})$$

Derivative

 $CrossEntropy(y, \hat{y})' = \hat{y} - y$

برای مطالعات بیشتر درباره نحوه محاسبه مشتق Cross Entropy می توانید به <u>لینک</u> مراجعه کنید.

Layer

از این کلاس جهت ایجاد کردن هر یک از لایههای شبکهی عصبی استفاده می شود.

تابع فعالساز لايه (activation) به صورت پيشفرض identical (يا بدون activation function) است.

شیوه ی وزن دهی اولیه (شامل 2 متد وزن دهی uniform یا normal) و پارامترهای مرتبط با آن. (شیوه ی وزن دهی مطلوب مخاطب به وسیله ی یک رشته در ورودی مشخص می شود.)

Args	Description
input_size	اندازهی بردار ورودی به لایه
output_size	اندازهی بردار خروجی از لایه
activation	تابع فعالساز لایه - به صورت پیشفرض identical (بدون activation function) است.
initial_weight	شیوهی وزندهی اولیه

Methods

forward

به ازای یک ورودی خاص، خروجی لایه را محاسبه می کند.

در هر بار صدا شدن این متد، مقادیر ورودی لایه، ورودی تابع فعالساز، مشتق تابع فعالساز نسبت به ورودی و خروجی لایه ذخیرهسازی می شوند تا از آنها در فرایند backpropagation جهت آپدیت کردن وزنهای شبکه استفاده شود.

Args	Description
layer_input	ورودی لایه

Returns	Description
selflast_activati on_output	خروجي لايه

update_weights

بهروزرسانی وزنهای لایه را با توجه به جریان گرادیان بهروزرسانی میکند.

این تابع در ورودی خود گرادیان محاسبه شده را از لایههای بعدی و learning Rate را دریافت مینماید.

این تابع شامل آپدیت کردن بایاس هم می باشد.

Args	Description
backprop_tensor	گرادیان محاسبه شده در لایه بعدی
lr	learning Rate مقدار

FeedForwardNN

از این کلاس برای پیاده سازی شبکه های feed forward با معماری دلخواه استفاده می نماییم. این کلاس در constructor خود سایز ورودی شبکه را دریافت مینماید.

Args	Description
input_shape	سایز ورودی شبکه

این کلاس دارای دو دسته متد است: از متدهای دستهی اول برای ساختن شبکه و از متدهای دستهی دوم برای آموزش شبکه استفاده میشود.

Methods

متدهای دستهی اول به شرح زیر هستند:

add_layer

جهت تشکیل معماری شبکه عصبی، از متد add_layer استفاده می شود. از این متد می توان برای اضافه کردن یک لایه ی جدید به انتهای شبکه استفاده کرد.

این متد، پارامترهای موردنیاز جهت ساخت لایهی جدید ازجمله تعداد نورونها، تابع فعالساز و .. را به عنوان آرگومان ورودی دریافت می کند.

Args	Description
n_neurons	تعداد نورونها
activation	تابع فعالساز
initial_weight	شیوهی وزندهی اولیه

set_training_param

پارامترهای آموزش (از جمله Loss Function و Leanring Rate) را تعیین می کند.

Args	Description
loss	تابع خطا
lr	Leanring Rate مقدار

forward

به ازای یک ورودی دلخواه، برای محاسبهی خروجی شبکه ایجاد شده استفاده می شود.

Args	Description
network_input	ورودى شبكه

Returns	Description
network_output	خروجي شبكه

متدهای دستهی دوم به شرح زیرند:

fit

شبکه را آموزش میدهد.

Args	Description
epochs	تعداد ایباکهای آموزش
trainloader	dataloader دادههای آموزش
testloader	dataloader دادههای تست (در صورت تمایل)
print_results	درصورتی که print_result فعال باشد، بعد از هر epoch آموزش، مقادیر دقت شبکه چاپ می شود.

Returns	Description
log	یک log از فرایند آموزش شبکه در قالب یک dictionary

__train

شبکه را بر روی یک dataloader از مجموعه دادههای train، (به طول یک ایپاک) آموزش میدهد.

Args	Description
trainloader	یک dataloader از مجموعه دادههای train

Returns	Description
np.mean(bach_accurac ies)	میانگین مقدارهای batch_accuracy
np.mean(batch_losses)	میانگین مقدارهای batch_average_loss

__test

شبکه را بر روی یک dataloader از مجموعه دادههای test، (به طول یک ایپاک) تست میکند.

Args	Description
testloader	یک dataloader از مجموعه دادههای test

Returns	Description
np.mean(bach_accurac ies)	میانگین مقدارهای batch_accuracy
np.mean(batch_losses)	میانگین مقدارهای batch_average_loss

__train_on_batch

شبکه را روی دادههای یک batch از مجموعه دادههای train، آموزش می دهد.

Args	Description
x_batch	دادههای یک batch از مجوعه داده train
y_batch	برچسبهای یک batch از مجوعه داده train

Returns	Description
(batch_accuracy, batch_average_loss)	یک tuple از مقدار batch_accuracy و batch_average

__test_on_batch

شبکه را بر روی دادههای یک batch از مجموعه دادههای test، تست می کند.

Args	Description
x_batch	دادههای یک batch از مجوعه داده test
y_batch	برچسبهای یک batch از مجوعه داده test

Returns	Description
(batch_accuracy, batch_average_loss)	یک tuple از مقدار batch_accuracy و batch_average_loss

__get_labels

برای گرفتن برچسب بردارهای خروجی استفاده میشود.

Args	Description
outputs	بردارهای خروجی شبکه

Returns	Description
labels	برچسبهای تولید شده از بردارهای خروجی شبکه

__compute_accuracy

accuracy شبکه با توجه به یک خروجی واقعی و مقدار مورد انتظار آن در خروجی محاسبه میکند.

Args	Description
output	خروجي واقعي
expected_output	مقدار مورد انتظار

Returns	Description
accuracy	مقدار accuracy شبکه

__update_weights

وزن لایههای شبکه را به توجه به ورودی و خروجی ذخیره شده در آنها آپدیت میکند.

این متد، مقدار واقعی شبکه به ازای یک batch از مجموعه داده آموزش و مقدار مورد انتظار در خروجی را دریافت می کند.

Args	Description
output	برچسبهای خروجی شبکه
y_train	برچسبهای یک batch از مجوعه داده train

Returns	Description
None	

منابع:

 $https://en.wikipedia.org/wiki/Activation_function$

https://levelup.gitconnected.com/killer-combo-softmax-and-cross-entropy-5907442f60ba