Bifurcation analysis of delay equations using software for ODEs

Francesca Scarabel

Dep. of Mathematics, The University of Manchester, UK

Juniper (Joint UNIversities Pandemic Epidemiological Research

CDLab, Dep. of Mathematics, Computer Sciences and Physics, University of Udine

Acknowledgements

Collaborators:

Dimitri Breda Rossana Vermiglio Odo Diekmann Mats Gyllenberg

and CDLab (U. Udine):

Davide Liessi Alessia Andò Simone De Reggi Stefano Maset

Material available at: https://github.com/scarabel/IFAC-TDS-2021 http://cdlab.uniud.it/software

email: francesca.scarabel (at) manchester.ac.uk

Test delay equations

Logistic Delay Differential Equation (DDE):

$$y'(t) = ry(t) (1 - y(t-1)), t \ge 0, r > 0$$

A cannibalism model formulated as Renewal Equations (RE):

$$y(t) = \frac{\gamma}{2} \int_{a_0}^{\tau} y(t-a) e^{-y(t-a)} da, \qquad t > 0, \ \gamma > 0$$

Note:

- delay (bounded)
- both point delays and distributed delays
- dependence on parameters: r, γ
- history function: $y_t(\theta) := y(t + \theta), \quad \theta \in [-\tau, 0],$

The abstract Cauchy problem

Setting $v(t) := y_t(\cdot)$, we can write a DE as an abstract equation

$$\frac{d}{dt}v(t) = \mathcal{A}v(t), \qquad t \ge 0$$

for some initial condition $v(0) = \psi$ and

$$\mathcal{A}\psi = \psi', \qquad \psi \in \mathsf{D}(\mathcal{A})$$

The abstract Cauchy problem

Setting $v(t) := y_t(\cdot)$, we can write a DE as an abstract equation

$$\frac{d}{dt}v(t) = Av(t), \qquad t \ge 0$$

for some initial condition $v(0) = \psi$ and

$$\mathcal{A}\psi = \psi', \qquad \psi \in \mathsf{D}(\mathcal{A})$$

For a DDE $y'(t) = f(y_t)$, we have

$$D(\mathcal{A}) = \{\psi, \psi' \in C([-\tau, 0]) \colon \psi'(0) = f(\psi)\}$$

For a RE $y(t) = f(y_t)$, we have

$$D(A) = \{\psi, \psi' \in L^1([-\tau, 0]) : \psi(0) = f(\psi)\}$$

From infinite dimension to finite dimension

via pseudospectral methods

Mesh of M + 1 nodes in
$$[-\tau, 0]$$

 $-\tau = \theta_{M} < \cdots < \theta_{0} = 0$

From infinite dimension to finite dimension

via pseudospectral methods

Mesh of M + 1 nodes in
$$[-\tau, 0]$$

 $-\tau = \theta_M < \cdots < \theta_0 = 0$

function in $Y \approx \text{polynomial of degree } M$

$$\psi(\theta) \approx p_{M}(\theta) = \sum_{j=0}^{M} \ell_{j}(\theta) \psi(\theta_{j})$$

with $\ell_j(\theta)$ Lagrange polynomials:

$$\ell_j(heta) = \prod_{k
eq j} rac{ heta - heta_k}{ heta_j - heta_k}$$

Delay differential equations

Abstract equation in C

$$\dot{v}(t) = \mathcal{A}(v(t))$$
 $v(t) \in D(\mathcal{A}) = \{\psi'(0) = f(\psi)\}$

Delay differential equations

- system of M + 1 ODEs, with $v_k(t) pprox v(t)(heta_k)$
- linear part for differentiation independent of the specific equation, $d_{kj} = \ell_j'(\theta_k)$
- the right-hand side f appears only in the equation for v_0

Equilibria and characteristic roots

- ullet one-to-one correspondence of equilibria: $ar{y} \leftrightarrow (ar{y}, \cdots, ar{y})$
- Chebyshev nodes (roots or extrema) ensure spectral convergence: M = 10 20 typically gives satisfactory accuracy

ODE system can be studied with established software

Bifurcation analysis and MatCont

Bifurcation analysis — how the dynamical long-term properties depend on parameters

MatCont — a software package for the bifurcation analysis of ODEs

MATLAB package, available on sourceforge.net

Bifurcation analysis and MatCont

Bifurcation analysis — how the dynamical long-term properties depend on parameters

MatCont — a software package for the bifurcation analysis of ODEs

- MATLAB package, available on sourceforge.net
- numerical continuation of equilibria and periodic orbits with respect to parameters
- other packages for ODEs, e.g. AUTO, but an important point is the possibility of varying the dimension of the system
- dde-biftool is a similar MATLAB package for DDEs with discrete delays

MatCont example: logistic DDE

$$y'(t) = ry_t(0) (1 - y_t(-1)), t \ge 0, r > 0$$

With $v_k \approx y_t(\theta_k)$, the approximating ODE reads

$$\dot{v}_{0}(t) = r v_{0}(t) (1 - v_{M}(t))$$
 $\dot{v}_{k}(t) = \sum_{j=0}^{M} d_{kj}v_{j}(t), k = 1, \dots, M$

Renewal equations and the integrated state

Given a renewal equation, $y(t) = f(y_t)$, t > 0, consider

$$v(t)(\theta) := \int_0^\theta y_t(s) ds, \qquad \theta \in [-\tau, 0]$$

and the operator $\mathcal{A}\psi = \psi'$, $\psi \in D(\mathcal{A}) = \{\psi \in L^1 : \psi' \in NBV, \psi(0) = 0\}$.

Abstract equation in NBV $\dot{v}(t) = \mathcal{A}v(t) - f(\mathcal{A}v(t))$ $v(t) \in D(\mathcal{A}) = \{\psi(0) = 0\}$ $\dot{v}_k = \sum_{j=0}^{M} d_{kj}v_j - f(p'_M), k = 1, \dots, M$ $p_M = p_M(0, v_1, \dots, v_M)$

ODE in \mathbb{R}^M

$$\dot{v}_{k} = \sum_{j=0}^{N} d_{kj}v_{j} - f(p'_{M}), \ k = 1, \dots, M$$

$$p_{\mathsf{M}}=p_{\mathsf{M}}(\mathsf{O},\mathsf{v}_{\mathsf{1}},\ldots,\mathsf{v}_{\mathsf{M}})$$

- $v_t \in L^1 \Rightarrow v(t) \in AC$
- algebraic condition for v_0 replaced by nonlinear perturbation

MatCont example: a RE for cannibalism

$$y(t) = \frac{\gamma}{2} \int_{a_0}^{\tau} y_t(-a) e^{-y_t(-a)} da, \qquad t > 0, \ \gamma > 0$$

With $v_k \approx \int_0^{\theta_k} y_t(s) \, ds$ and $p_M = p_M(0, v_1, \dots, v_M)$, the approximating ODE reads

$$\dot{v}_k(t) = \sum_{i=0}^{M} d_{kj} v_j(t) - \frac{\gamma}{2} \int_{a_0}^{\tau} p'_M(-a) e^{-p'_M(-a)} da, \ k = 1, \dots, M$$

MatCont example: a RE for cannibalism

$$y(t) = \frac{\gamma}{2} \int_{a_0}^{\tau} y_t(-a) e^{-y_t(-a)} da, \qquad t > 0, \ \gamma > 0$$

With $v_k \approx \int_0^{\theta_k} y_t(s) \, ds$ and $p_M = p_M(0, v_1, \dots, v_M)$, the approximating ODE reads

$$\begin{split} \dot{v}_k(t) &= \sum_{j=0}^M d_{kj} v_j(t) - \frac{\gamma}{2} \int_{a_0}^{\tau} p_M'(-a) e^{-p_M'(-a)} da, \ k = 1, \dots, M \\ &= \sum_{j=0}^M d_{kj} v_j(t) - \frac{\gamma}{2} \sum_{j=1}^M w_j p_M'(-a_j) e^{-p_M'(-a_j)} da \end{split}$$

for a_j , w_j nodes and weights for the quadrature formula.

Relevant references

- D. Breda, O. Diekmann, M. Gyllenberg, F. Scarabel, and R. Vermiglio, Pseudospectral discretization of nonlinear delay equations: new prospects for numerical bifurcation analysis, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 1–23.
- D. Breda, O. Diekmann, D. Liessi, and F. Scarabel, Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theory Differ. Equ., 64 (2016), pp. 1–24.
- M. GYLLENBERG, F. SCARABEL, AND R. VERMIGLIO, Equations with infinite delay: Numerical bifurcation analysis via pseudospectral discretization, Appl. Math. Comput., 333 (2018), pp. 490–505.
- F. SCARABEL, O. DIEKMANN, AND R. VERMIGLIO, Numerical bifurcation analysis of renewal equations via pseudospectral approximation, J. Comput. Appl. Math., 397 (2021), 113611.