

Machine Learning for Time Series Exercise

Richard Dirauf, M.Sc. Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) **MLTS Exercise, 31.10.2024**

MLTS Exercise – Organization

Thursday, 12:15-13:45, Seminar room 0.68 (Werkstoffwissenschaften)

Recordings from 2022/23 available, but content is changing this semester!

Five topics with two exercise sessions each:

- Session 1: Recap of topic and introduction of coding task
- Session 2: Solution to coding task and questions

Recommended: solve coding task as homework

Slides and tasks uploaded on <u>StudOn</u>

Questions: Exercises or Forum

MLTS Exercise – Organization

— — — Holiday

Introduction (31.10.2024) Dynamic Time Warping (12.12.2024)

Bayesian Linear Regression (07.11.2024) No exercise planned (19.12.2024)

Bayesian Linear Regression (14.11.2024) RNN + LSTM (09.01.2025)

Kalman Filter (21.11.2024) RNN + LSTM (16.01.2025)

Kalman Filter (28.11.2024) Transformers (23.01.2025)

Dynamic Time Warping (05.12.2024) Transformers (30.01.2025)

Questions

MLTS Exercise 01

What is your major?

Computer Science	Advanced Signal Processing & Communications Engineering	
Computational Engineering	Communications and Multimedia Engineering	
Data Science	Electrical Engineering	
Artificial Intelligence	Mechatronics	
Mathematics	Medical Engineering	
Business Informatics	Something else?	

Questions

MLTS Exercise 01

Python experience?

MLTS Exercises Basics

Probability distributions

Discrete

probability mass function (pmf)

 Continuous probability density function (pdf)

$$0 \le p(x) \le 1$$

$$\int_{-\infty}^{+\infty} p(x)dx = 1$$

Binomial distribution

Gaussian (normal) distribution

Mean or expected value

Mean or expected value of a distribution

Discrete distribution

$$\mathbb{E}\left[X\right] \triangleq \sum_{x \in \mathcal{X}} x \ p(x)$$

Continuous distribution

$$\mathbb{E}\left[X\right] \triangleq \int_{\mathcal{X}} x \ p(x) dx$$

The expected value of function f

Discrete distribution

$$\mathbb{E}[f] \triangleq \Sigma_{x \in \mathcal{X}} f(x) p(x)$$

Continuous distribution

$$\mathbb{E}[f] \triangleq \int_{\mathcal{X}} f(x)p(x)dx$$

Variance

The variance is a measure of the spread of a distribution

$$\operatorname{var}[X] \triangleq \mathbb{E}\left[(X-\mu)^2\right] = \int (x-\mu)^2 p(x) dx$$
$$= \int x^2 p(x) dx + \mu^2 \int p(x) dx - 2\mu \int x p(x) dx = \mathbb{E}\left[X^2\right] - \mu^2$$

The standard deviation is defined as

$$\operatorname{std}\left[X\right] \triangleq \sqrt{\operatorname{var}\left[X\right]}$$

https://de.wikipedia.org/wiki/Normalverteilun

$$\operatorname{cov}\left[X,Y\right] \triangleq \mathbb{E}\left[(X - \mathbb{E}\left[X\right])(Y - \mathbb{E}\left[Y\right])\right] = \mathbb{E}\left[XY\right] - \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]$$

Basic rules of probability

Probability of the joint distribution X and Y as follows

$$p(X,Y) = p(X|Y)p(Y)$$

this is sometimes called the **product rule**.

• We define the marginal distribution as follows

$$p(X) = \sum_{y} p(X, Y) = \sum_{y} p(X|Y = y)p(Y = y)$$

where we are summing over all possible states of Y.

This is sometimes called the **sum rule**.

The product rule can be applied multiple times to yield the chain rule of probability:

$$p(X_{1:D}) = p(X_1)p(X_2|X_1)p(X_3|X_2, X_1)p(X_4|X_1, X_2, X_3) \dots p(X_D|X_{1:D-1})$$

On one glance

MLTS Exercise 01

Concepts of joint, marginal, and conditional probabilities

$$x \sim \mathcal{N}(\mu_x, \sigma_x^2)$$

$$x \sim \mathcal{N}(\mu_x, \sigma_x^2)$$

 $y \sim \mathcal{N}(\mu_y, \sigma_y^2)$

13

Posterior probability
$$p(X=x|Y=y) = \frac{p(X=x,Y=y)}{p(Y=y)} = \frac{p(X=x,Y=y)}{p(X=x|Y=y)} = \frac{p(X=x,Y=y)}{p(X=x|Y=y)} = \frac{p(X=x,Y=y)}{p(X=x|Y=y)}$$
Marginal likelihood

WS 2024/25 | Richard Dirauf | MaD Lab | Introduction

Thank you for your attention!

Any questions?