6

Statistiques descriptives discrètes Analyse de données

Exemple • On considère le relevé des températures en janvier et en février dans une ville :

Janvier									
Valeurs	-3°	-2°	-1°	0°	1°	2°	3°	4°	Total
Effectifs	3	5	8	5	4	3	2	1	31
Février									
Valeurs	-3°	-2°	-1°	0°	1°	2°	3°	4°	Total
Effectifs	1	2	3	3	5	9	3	2	28

I. L'étendue

Dans une série statistique, on appelle **étendue** la différence entre la plus grande valeur et la plus petite.

Exemple • Janvier :

Février :

II. Caractéristiques de position

A. Moyenne

<u>Définition 2</u>

On considère une série statistique à valeurs numériques (série statistique quantitative). La **moyenne** M de cette série se calcule de la façon suivante :

$$M = \frac{\text{somme des valeurs}}{\text{effectif total}}$$

Dans le cas où les valeurs ont des effectifs (ou cœfficients) supérieurs à 1, on utilise aussi :

$$M = \frac{somme \ des \ (valeur \times effectif)}{effectif \ total}$$

Exemple •

B. Médiane

Pófinition 3

On considère une série statistique dont l'effectif total est égal à N. Les valeurs sont rangées dans l'ordre croissant.

Une médiane Me est un nombre réel qui permet de partager la série statistique en deux séries de même valeur.

Autrement dit, la moitié (50%) des valeurs de la série est inférieure ou égale à Me et l'autre moitié est supérieure ou égale à Me.

Méthode de calcul : Par définition, la médiane dépend de l'effectif de la série :

- Si N est impair, alors on calcule $\frac{N+1}{2}$ et le résultat correspond à la position de la médiane choisie dans la série.
- Si N est pair, alors la médiane choisie est égale à la moyenne de la valeur situé à la position $\frac{N}{2}$ et la valeur suivante.

Exemple •

C. Quartiles

Définition 4

On considère une série statistique S dont l'effectif total est égal à N. Les valeurs sont rangées dans l'ordre croissant.

- Le premier quartile Q₁ de S est le plus petit élément α de S tel qu'au moins 25% des données soient inférieures ou égales à α.
- Le troisième quartile Q₃ de S est le plus petit élément b de S tel qu'au moins 75% des données soient inférieures ou égales à b.

Méthode de calcul : Par définition, les quartiles dépendent de l'effectif de la série :

Premier quartile : On arrondit le nombre $\frac{N}{4}$ à l'unité par excès et cela donne la position de Q_1 dans la série S.

Troisième quartile : On arrondit le nombre $3 \times \frac{N}{4}$ à l'unité par excès et cela donne la position de Q₃ dans la série S.

Exemple •