

Data Mining

A Motivating Example

- A simple classification problem...
 - I know there is Salmon in this river
 - When I pick up a fish from this river, can you tell me whether this fish is Salmon?
- Assume you do not know how a Salmon looks like
 - Then... How to solve this problem?

A Motivating Example

Since you know nothing about Salmon or Tuna, the first thing you need to do is...

LEARN!

Different Kinds of Learning

- Two types of learning
 - Passive learning
 - 2. Active learning

Different Kinds of Learning

Passive learning

- Find an expert
- The expert <u>tells you all the</u> <u>characteristics</u> of Salmon
- You simply memorize and apply what you have learned

Different Kinds of Learning

Active learning

- Find an expert
- The expert catches a lot of Fish
- The expert <u>only tells</u> you which of them are Salmon, but <u>does</u> <u>not tell</u> you their characteristics
- You identify the characteristics of salmon by yourself

pinkish in color and have spots on their fins and back, blah blah blah...

The tuna is a streamlined fish, stout in the middle, blah blah blah... P. 7

Classification: Definition

- Given a collection of records (training set)
 - Each record contains:
 - A set of attributes (i.e., characteristics), and
 - One *class* attribute (i.e., class label)
- Find a model for class attribute as a function of the values of other attributes
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible

Classification: Example

Classification: Example

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Example of a Decision Tree

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Model: Decision Tree

Training Data

Start from the root of tree.

Refund		Taxable Income	Cheat
No	Married	80K	?

	•			
	Refund			
Yes		No		
NO		MarSt		
	Single, Dive	orced	Marr	ied
	TaxInc		NO	
<	80K/	√ > 80K		
	NO	YES		

Classification in Data Mining

- In data mining, we are always interested in <u>active learning</u>
 - You are an expert
 - You catch a lot of Fish
 - You <u>only tell</u> the model which of them are Salmon, but <u>do not tell</u> the characteristics
 - The model identifies the characteristics by itself

• Question:

As long as you are an expert, why don't you simply tell the characteristics of Salmon to the model?

Classification in Data Mining

Answer:

 Even an expert may sometimes find it difficult to generalize/ extract/identify the characteristics of some observations...

An example:

- You receive lots of emails. You must know which of them are <u>spam</u> and which of them are <u>not spam</u>
 - Yet, can you list ALL the characteristics of spam emails?
- For active learning, you only need to tell the model which of them are spam, and which are not

Examples of Classification Task

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Categorizing news stories as finance, weather, entertainment, sports, etc

Always Remember...

- From the data mining point of view...
 - Classification ≈ Prediction ≈ Forecasting
 - This is because the techniques are the same

Always Remember...

- Classification is also known as "Supervised Learning"
 - There must be an "expert" (you) to "supervise" the model
 - In contrast, Clustering is known as "Unsupervised Learning"
 - In later lectures...

Classification vs. Clustering

Classification—A Two-Step Process

- Model construction
- 2. Model usage

Classification—A Two-Step Process

- Model construction: describes a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is a training set
 - The model is represented as:
 - classification rules,
 - decision trees,
 - mathematical formulae, or
 - ...

Classification—A Two-Step Process

- Model usage: for classifying <u>future</u> or <u>unknown</u> objects
 - Estimate accuracy of the model
 - The known labels of test sample is compared against the classified result from the model
 - Accuracy rate is the percentage of testing set samples that are correctly classified by the model
 - If the accuracy is <u>acceptable</u>, use the model to classify data tuples whose class labels are not known

Learning and Operation

Classification Algorithms

- Nearest Neighbor
- Naïve Bayes
- Decision Tree

...

But first, ...

Testing

 Prepare the training data and testing data

ID	Color	Size	 Label	
1	Pink	20cm	 Salmon	
2	Green	30cm	 Not Salmon	
:	:	:	 :	
N	Pink	18cm	 Salmon	

ID	Color	Size		Label
1	Pink	20cm		Salmon
3	Green	32cm		Salmon
:	:	:		:
:	:	:	•••	:
K	Black	24cm		Not Salmon

Training Data

ID	Color	Size	 Label
2	Green	30cm	 Not Salmon
6	Grey	12cm	 Not Salmon
:	:	:	 :
:	:	:	 :
М	Pink	18cm	 Salmon

Testing Data

Testing

Testing process

This column is unknown to the model

ID	Color	 Label	Model's Decision
1	Pink	 Salmon	Not Salmon
2	Green	 Not Salmon	Salmon
:	:		
N	Pink	 Salmon	Salmon

Compare these two columns

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?
 - how to <u>partition</u> the data?

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?
 - how to <u>partition</u> the data?

Performance Evaluation

Confusion Matrix:

		Prediction	
		Salmon	Not Salmon
Actual Class	Salmon	Α	В
Actual Class	Not Salmon	С	D

A: TP (true positive) B: FN (false negative)

C: FP (false positive) D: TN (true negative)

Accuracy = $\frac{A+D}{A+B+C+D} = \frac{TP+TN}{TP+TN+FP+FN}$

An Example

Red
Not Red
Not Red
Red
Red
Red
Not Red
Red
Not Red
Not Red

True Positive: 4 (Red, Red)

True Negative:

False Positive:

False Negative:

Accuracy = ?

$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$		TP + TN	Prediction	
		Salmon	Not Salmon	
Actual Class		Salmon	TP	FN
		Not Salmon	FP	TN

An Example

	-			
	Red	True Positive:	4	(Red, Red)
	Not Red			
	Not Red	True Negative:	3	(Not, Not)
	Red			,
	Red	False Positive:	1	(Not, Red)
	Red	Taise Tositive.	•	(Not, Nea)
	Not Red	4	_	.
	Red	False Negative:	2	(Red, Not)
	Not Red			
	Not Red			
Accuracy = $(4 + 3) / (4 + 3 + 1 + 2) = 70\%$				

Limitation of Accuracy

- Consider...
 - The Total number of fish in the testing sample= 10,000
 - Number of Non-Salmon = 9990
 - Number of Salmon = 10
- If a model predicts everything to be class nonsalmon:
 - Accuracy is 9990/10000 = 99.9 %!!!
 - Accuracy could be misleading because this model cannot detect any Salmon!

Precision and Recall

- Precision: exactness what % of tuples that the classifier labeled as positive are actually positive?
- Recall: completeness what % of positive tuples did the classifier label as positive?
- Perfect score is 1.0
- Usually, there is an Inverse relationship between the two

Precision and Recall

Measuring the quality (effectiveness) of the model:

Precision (P) =
$$\frac{A}{A+C}$$

Recall
$$(R) = \frac{A}{A+B}$$

A: TP (true positive) B: FN (false negative)

C: FP (false positive) D: TN (true negative)

		Prediction	
		Salmon	Not Salmon
Actual Class	Salmon	Α	В
Actual Class	Not Salmon	С	D

relevant elements

selected elements

How many selected items are relevant?

How many relevant items are selected?

An Example

	<u> </u>		
Red	True Positive:	4	(Red, Red)
Not Red	///		
Not Red	True Negative:	3	(Not, Not)
Red			,
Red	False Positive:	1	(Not, Red)
Red	Taise Tositive.	1	(NOt, NCa)
Not Red			(D. 1.11.1)
Red	False Negative:	2	(Red, Not)
Not Red			
Not Red	Precision = ?		$Precision, p = \frac{A}{A+C}$
	Recall = ?		A+C
			Recall, $r = \frac{A}{A+B}$

An Example

Red	True Positive:	4	(Red, Red)
Not Red			
Not Red	True Negative:	3	(Not, Not)
Red			,
Red	False Positive:	1	(Not, Red)
Red	Taise Fositive.		
Not Red		_	(-
Red	False Negative:	2	(Red, Not)
Not Red	Precision = 4 / 6	4 + 1) = 8	0%
Not Red	Recall = 4 / (4 +	•	
	Precision = 4 / (Recall = 4 / (4 +	•	

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?
 - how to <u>partition</u> the data?

Methods of Estimation (I)

Holdout

- Randomly take 70% of the examples as training and the remaining 30% as testing
- Repeat for several times (e.g. 10)
- used for data set with large number of samples

Methods of Estimation (II)

Cross validation

- Randomly partition the data into k mutually exclusive subsets (D₁,D₂, .., D_k), each approximately equal size
- At i-th iteration, use D_i as test set and others as training set
- for data set with moderate size

Classification Algorithms

•

Classification Algorithms

- Nearest Neighbor
- Naïve Bayes
- Decision Tree

...

Instance-Based Classifiers

Set of Stored Cases

Atr1	 AtrN	Class
		A
		В
		В
		С
		A
		С
		В

- Store the training records
- Use training records to predict the class label of unseen cases

Unseen Case

Atr1	 AtrN

Instance-Based Classifiers

Examples:

- Rote-learner
 - Memorizes entire training data and performs classification <u>only</u> if attributes of record <u>match</u> one of the training examples exactly

Nearest neighbor

 Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

Basic idea:

If it walks like a duck, quacks like a duck, then it's probably a duck ☺

Nearest-Neighbor Classifiers Unknown record

- Requires three things
 - 1. The set of stored records
 - 2. Distance Metric to compute distance between records
 - **3. The value of** *k*, the number of nearest neighbors to retrieve