

INDIAN INSTITUTE OF SCIENCE, BENGALURU

DEPARTMENT OF ELECTRONIC SYSTEMS ENGINEERING

DESIGN FOR ANALOG CIRCUITS LABORATORY REPORT

ASSIGNMENT 8
ACTIVE SECOND ORDER FILTERS

SOUMYA KANTA RANA

S.R. No.: 04-01-00-10-51-21-1-19261

October 2, 2021

Contents

1	KR	KRC Low Pass Filter		
	1.1	Aim		
	1.2	Schematic		
	1.3	Component Selection		
	1.4	Frequency Response		
	1.5	Transient Response		
2	KRC High Pass Filter			
	2.1	Aim		
	2.2	Schematic		
	2.3	Component Selection		
	2.4	Frequency Response		
	2.5	Transient Response		
3	Twin-T Notch Filter			
	3.1	Aim		
	3.2	Schematic		
	3.3	Component Selection		
	3.4	Frequency Response		
	3.5	Transient Response		
4	Multiple-feedback Band Pass Filter			
	4.1	Aim		
	4.2	Schematic		
	4.3	Component Selection		
	4.4	Frequency Response		
	4.5	Transient Response		
5	Con	nclusion 8		

List of Figures

1	LTSpice schematic of KRC low pass filter
2	Frequency response of KRC low pass filter
3	Transient response of KRC low pass filter
4	LTSpice schematic of KRC high pass filter
5	Frequency response of KRC high pass filter
6	Transient response of KRC high pass filter
7	LTSpice schematic of Twin-T notch filter
8	Frequency response of Twin-T notch filter
9	Transient response of Twin-T notch filter
10	LTSpice schematic of multiple-feedback bandpass filter
11	Frequency response of multiple-feedback bandpass filter
12	Transient response of multiple-feedback bandpass filter

1 KRC Low Pass Filter

1.1 Aim

To perform transient and frequency domain simulations of KRC low pass filter.

1.2 Schematic

Figure 1: LTSpice schematic of KRC low pass filter

1.3 Component Selection

The transfer function of the filter is given by

$$\frac{V_{o1}(s)}{V_i(s)} = \frac{K}{s^2 R_1 C_1 R_2 C_2 + s(C_2 R_2 + C_2 R_1 + (1 - K)C_1 R_1) + 1}$$
(1)

Where $K = 1 + R_{B1}/R_{A1}$. Choosing $C_1 = C_2, R_1 = R_2$, we have

$$H_{LP} = K, \omega_0 = \frac{1}{R_1 C_1}, Q = \frac{1}{3 - K}$$

For obtaining $\omega_0 = 2\pi \times 1.5 krad/s$ and Q = 0.707, the values chosen are $R_1 = R_2 = 3.22 k\Omega$, $C_1 = C_2 = 33nF$, $R_{A1} = 5.86 k\Omega$, $R_{B1} = 10 k\Omega$.

1.4 Frequency Response

Figure 2: Frequency response of KRC low pass filter

The figure 2 above shows the frequency response of the KRC low pass filter. The cutoff frequency obtained is $1.498~\mathrm{kHz}$.

1.5 Transient Response

Figure 3: Transient response of KRC low pass filter

The figure 3 above shows the transient response of the KRC low pass filter with 1 V, 1 kHz sinewave input. The output voltage amplitude obtained is 1.45 V.

2 KRC High Pass Filter

2.1 Aim

To perform transient and frequency domain simulations of KRC high pass filter.

2.2 Schematic

Figure 4: LTSpice schematic of KRC high pass filter

2.3 Component Selection

The transfer function of the filter is given by

$$\frac{V_{o2}(s)}{V_i(s)} = \frac{Ks^2}{s^2 R_3 C_3 R_4 C_4 + s(C_4 R_4 + C_4 R_3 + (1 - K)C_3 R_3) + 1}$$
(2)

Where $K = 1 + R_{B2}/R_{A2}$. Choosing $C_3 = C_4$, $R_3 = R_4$, we have

$$H_{HP} = K, \omega_0 = \frac{1}{R_3 C_3}, Q = \frac{1}{3 - K}$$

For obtaining $\omega_0=2\pi\times 0.6krad/s$ and Q=0.707, the values chosen are $R_3=R_4=8.04k\Omega, C_3=C_4=33nF, R_{B2}=5.86k\Omega, R_{A2}=10k\Omega.$

2.4 Frequency Response

Figure 5: Frequency response of KRC high pass filter

The figure 5 above shows the frequency response of the KRC high pass filter. The cutoff frequency obtained is $599.7~\mathrm{Hz}$.

2.5 Transient Response

Figure 6: Transient response of KRC high pass filter

The figure 6 above shows the transient response of the KRC high pass filter with 1 V, 1 kHz sinewave input. The output voltage amplitude obtained is 1.49 V.

3 Twin-T Notch Filter

3.1 Aim

To perform transient and frequency domain simulations of Twin-T Notch filter.

3.2 Schematic

Figure 7: LTSpice schematic of Twin-T notch filter

3.3 Component Selection

Choosing $R_5 = R_6 = 2R_7$, $C_5 = C_6 = C_7/2$, the transfer function of the filter is given by

$$\frac{V_{o3}(s)}{V_i(s)} = K \frac{(1 + s^2 R_5^2 C_5^2)}{s^2 R_5^2 C_5^2 + s(4 - 2K)R_5 C_5 + 1}$$
(3)

Where $K = 1 + R_{B3}/R_{A3}$. The parameters of the filter are

$$H_{0N} = K, \omega_0 = \frac{1}{R_5 C_5}, Q = \frac{1}{4 - 2K}$$

For obtaining $\omega_0 = 2\pi \times 60 rad/s$ the values chosen are $C_5 = C_6 = C_7/2 = 3.3 \mu F, R_5 = R_6 = 2R_7 = 0.804 k\Omega$ and $K = 1.5(R_{B3} = 5k\Omega, R_{A3} = 10k\Omega)$.

3.4 Frequency Response

Figure 8: Frequency response of Twin-T notch filter

The figure 8 above shows the frequency response of the Twin-T notch filter. The notch frequency obtained is $59.98~\mathrm{Hz}$.

3.5 Transient Response

Figure 9: Transient response of Twin-T notch filter

The figure 9 above shows the transient response of the Twin-T notch filter with 1 V, 1 kHz sinewave input. The output voltage amplitude obtained is 1.50 V.

4 Multiple-feedback Band Pass Filter

4.1 Aim

To perform transient and frequency domain simulations of multiple-feedback bandpass filter.

4.2 Schematic

Figure 10: LTSpice schematic of multiple-feedback bandpass filter

4.3 Component Selection

The transfer function of the filter is given by

$$\frac{V_{o4}(s)}{V_i(s)} = \frac{-sC_8R_9}{s^2C_8C_9R_8R_9 + sR_8(C_8 + C_9) + 1}$$
(4)

Choosing $C_8 = C_9$ the filter parameters obtained are

$$H_{0BP} = -2Q^2, Q = 0.5\sqrt{\frac{R_9}{R_8}}, \omega_0 = \frac{1}{\sqrt{R_8R_9}C_8}$$

For obtaining $\omega_0 = 2\pi \times 8krad/s$, Q = 8000/800 = 10, the values chosen are $R_8 = 1k\Omega$, $R_9 = 400k\Omega$, $C_8 = C_9 = 1nF$.

4.4 Frequency Response

Figure 11: Frequency response of multiple-feedback bandpass filter

The figure 11 above shows the frequency response of the multiple-feedback bandpass filter. The bandwidth obtained is 603.7 Hz and the peak gain is obtained at 7.396 kHz.

4.5 Transient Response

Figure 12: Transient response of multiple-feedback bandpass filter

The figure 12 above shows the transient response of the multiple-feedback bandpass filter with $1~\rm{V},~1~\rm{kHz}$ sinewave input. The output voltage amplitude obtained is $2.56~\rm{V}.$

5 Conclusion

- (1). The second order active filters offer higher selectivity compared to the first order filters as they have higher stop-band attenuation.
- (2). The second order filters can be used in cascade to design higher order filters.