Alternative Bases for Circuits

Sam Barrett

May 24, 2021

1 Alternative Bases

So far we have looked a single (standard) basis which uses the gates $\{\neg, \lor, \land\}$. However, we can design circuits using arbitrary gate types.

Definition 1 A basis is a finite set $\Omega = \{f_i\}_{i < k}$ of Boolean functions (also referred to as connectives). We say that a basis Ω is ((functionally) complete / adequate) if every Boolean function is computed by an expression or formula formed from variables and elements in Ω .

Definition 2 Ω -Circuits.

Let Ω be a basis. An Ω -circuit is defined just like a Boolean circuit except with non-source nodes labelled by arbitrary elements $f: \{0,1\}^n \to \{0,1\}$ from Ω with precisely n incoming edges.

The size and depth of an Ω circuit is the same as for a Boolean circuit.

- The size of an Ω -Circuit: length of longest path from a source node to the sink
- The **depth** of an Ω -circuit: the number of nodes.

2 The change-of-basis theorem

Theorem 1 Let Ω_1 and Ω_2 be two **complete** bases. For any Ω_1 -circuit C_1 there is an Ω_2 -circuit C_2 computing a **logically equivalent** Boolean function with:

- $|C_2| = O(|C_1|)$
- $depth(C_2) = O(depth(C_1))$

Proof 1 (sketch)

For each element $f_i \in \Omega_1$, let F_i be an Ω_2 circuit of size s_i and depth d_i computing f_i .

Let $s = \max_i s_i$ and $d = \max_i d_i$

Construct C_2 by replacing each non-source node labelled f_i by the Ω_2 -circuit F_i . We can now say that $|C_2| \leq s \cdot |C_1|$ and $depth(C_2) \leq d \cdot depth(C_1)$

3 Ω -Rebalancing

Say we have a complete basis $\Delta = \{0, 1, \delta\}$ containing the Boolean constants 0 and 1 along with the function $\delta : \{0, 1\}^3 \to \{0, 1\}$ given by:

$$\delta(x, y, z) := (\neg x \land y) \lor (x \land z)$$

Theorem 2 Spira Balancing

Let Ω be a basis. For every Ω -formula A of size n, there is a logically equivalent Δ -formula A' s.t. $|A'| = n^{O(1)}$ and $depth(A') = O(\log n) = O(\log |A'|)$

We will show this for the case of **binary** complete bases containing $\{0,1\}$:

Lemma 1 Let T be a binary tree. There must exist some subtree S of T s.t.:

$$\frac{1}{3}|T| < |S| \le \frac{2}{3}|T|$$

Proof 2 (sketch of Lemma 1)

Starting from the root of a binary tree, repeatedly take the largest immediate subtree until one falls into the range specified in Lemma 1. At each step the subtree **at most halves** in size, and so the first time the subtree has $size \leq \frac{2}{3}|T|$ it must also have $size > \frac{1}{3}|T|$

Proof 3 (Spira Balancing)

We will continue by induction on n.

Let A be a Ω -formula and let B be a distinguished subformula of A s.t. $\frac{1}{3}|A| < |B| \leq \frac{2}{3}|A|$ (exists by Lemma 1)

We can say that A = C(B), Where this notation means that A is the combination of the subtree B and the remaining tree C. so $\therefore \frac{1}{3}|A| < |C(x)| \leq \frac{2}{3}|A|$ Meaning some amount in this range of A exists in C as |B| + |C| = |A|.

We can now say that A is logically equivalent to the Δ -formula:

We do this by taking a case analysis on the value of B which can be 1 or 0 to form:

$$\delta(B', C(0)', C(1)')$$

 $Which\ means:$

$$\delta = \begin{cases} C(0)' & B = 0 \\ C(1)' & B = 1 \end{cases}$$

Where B', C(0)', C(1)' are obtained by the inductive hypothesis on n.