

Aula 6 – Introdução à Teoria dos Jogos

Teoria da Decisão - 2025.1

Lucas Thevenard

Respostas dos exercícios

EXERCÍCIO 1:

	EDM1	EDM2	EDM3	EDM4	EDM5
Decisão A	27	21	15	6	0
Decisão B	41	9	0	15	3
Decisão C	15	36	6	15	0
Decisão D	6	30	0	10	24
Decisão E	0	9	-30	60	6

Nível de otimismo: 0.8

EXERCÍCIO 2:

Considere o problema de decisão sob condição de ignorância representado na tabela a seguir. Há algum método de resolução, dentre os estudados em nosso curso, que oferece uma solução única para esse problema? Isso sugere algum problema com um dos métodos de solução que estudamos?

	EDM1	EDM2	EDM3
Decisão A	5	9	1
Decisão B	1	9	5
Decisão C	9	1	5

EXERCÍCIO 3:

Observe o problema de decisão sob condição de ignorância representado na tabela a seguir. Considerando que optamos por resolvê-lo utilizando o método da regra do otimismo, identifique o intervalo de valores do nível de otimismo para o qual escolheríamos a opção A. Em seguida, identifique também o intervalo para o qual escolheríamos a opção C.

	EDM1	EDM2	EDM3
Decisão A	21	84	55
Decisão B	42	42	42
Decisão C	93	0	50

EXERCÍCIO 4:

Crie um problema de teoria de decisão com 4 alternativas e 4 estados do mundo, de modo que cada método de decisão estudado no curso até agora ofereça uma solução destinta das demais. Construa a tabela desse problema na forma normal, indicando os payoffs e o nível de otimismo e, em seguida, resolva o jogo demonstrando que cada método resulta em uma resposta distinta.

Roteiro da aula

- Críticas aos Métodos de Solução do MDRI
- Introdução ao conceito de Jogos
- Primeiro método de solução: dominância
- Segundo método de solução: equilíbrio de Nash

1. Críticas aos modelos de decisão sob condição de ignorância

Quais são os principais problemas do método Maximin?

Maximin

- Método extremamente conservador.
- Impede a consideração das melhores oportunidades de ganho.
- Não considera todas as alternativas.

_	EDM1	EDM2
Α	1.5	1.75
В	1	900

_	EDM1	EDM2	EDM3	•••	EDM99	EDM100
Α	10	10	10	•••	10	10
В	9	20	20	•••	20	20

Quais são os principais problemas do método Minimax?

Minimax

 Ao contrário do maximin, neste método pode haver influência excessiva de alternativas melhores

	EDM1	EDM2
Α	300	300
В	-100	900

_	EDM1	EDM2	EDM3	•••	EDM99	EDM100
Α	10	10	10	•••	10	10
В	20	5	5	•••	5	5

Minimax

 Permutações dos mesmos resultados de uma alternativa de decisão entre os Estados do mundo podem levar a soluções diferentes.

	EDM1	EDM2	EDM3
Α	0	1	3
В	0	1	3
С	3	0	1

EDM1	EDM2	EDM3
3	0	0
3	0	0
0	1	2

 A inclusão de uma alternativa que não é escolhida pode mudar a solução do problema.

	EDM1	EDM2	EDM3
Α	0	10	4
В	5	2	10

EDM1	EDM2	EDM3
5	0	6
0	8	0

	EDM1	EDM2	EDM3
Α	0	10	4
В	5	2	10
С	10	5	1

EDM1	EDM2	EDM3
10	0	6
5	8	0
0	5	9

Minimax

- Ao contrário do maximin, neste método pode haver influência excessiva de alternativas melhores
- Permutações dos mesmos resultados de uma alternativa de decisão entre os Estados do mundo podem levar a soluções diferentes.
- A inclusão de uma alternativa que não é escolhida pode mudar a solução do problema.

Quais são os principais problemas da Regra do Otimismo?

Regra do Otimismo

- Necessidade de escolher o nível de otimismo (arbitrário).
- Considera apenas parte das opções.
- Pode se reverter em max-max ou maxmin:
 - Quando adotamos níveis de otimismo 1 ou 0;
 - Quando as melhores alternativas ou as piores são idênticas

	EDM1	EDM2	EDM3	EDM4
Α	0	1	1	11
В	0	10	10	10

_	EDM1	EDM2	EDM3	EDM4
Α	10	9	9	1
В	10	2	2	2

Quais são os principais problemas do Postulado da Razão Insuficiente?

Postulado da Razão Insuficiente

- Presunção de que as alternativas são equiprováveis.
- Presume neutralidade entre os cenários equiprováveis: pode ser um tratamento inadequado de riscos muito altos.

	EDM1	EDM2	EDM3
Α	-200	150	150
В	0	45	45

Conclusão geral sobre métodos de decisão racional sob condições de ignorância

- Todos os métodos enfrentam limitações.
 - Para utilizá-los é necessário entender qual método melhor se aplica ao problema analisado.
 - Sistema de votação dos métodos não funciona (pode incorrer no mesmo problema indicado por Arrow).

Paradoxo de condorcet na composição de métodos

Vamos considerar, no exemplo a seguir, como os três métodos ordenariam as alternativas, tomadas duas a duas (considerando um nível de otimismo de 0,5).

	EDM1	EDM2	EDM3
Α	1	14	13
В	-1	17	11
С	0	20	6

Método	A vs. B	B vs. C	A vs. C
Maximin	Α	С	А
Minimax	В	В	А
Otimismo	В	С	С

Chegamos a a um resultado que viola a transitividade, pois: $C \succ B \succ A \succ C$

Conclusão geral sobre métodos de decisão racional sob condições de ignorância

- Todos os métodos enfrentam limitações.
 - Para utilizá-los é necessário entender qual método melhor se aplica ao problema analisado.
 - Sistema de votação dos métodos não funciona (pode incorrer no mesmo problema indicado por Arrow).
- Limites de racionalidade em casos de ignorância profunda.
 - Método maximin é o único que admite uma escala ordinal de preferências.
 - Problema das experiências transformativas não tem solução na literatura.

2. Introdução ao conceito de Jogos

O que é um jogo?

- Interação estratégica entre os jogadores.
- Conceito de estratégia: antecipar ações/decisões alheias.
- Qual é a aplicabilidade desse conceito a fenômenos sociais e jurídicos?

Formalização de um jogo

- Elementos estruturais mínimos
 - Jogadores
 - Estratégias (cursos de ação ou 'jogadas')
 - Payoffs (para cada jogador e cada combinação de jogadas)

Vamos Jogar: o jogo dos porquinhos

Vamos Jogar: o jogo dos porquinhos

Bart

	Aciona	Espera
Aciona	(1/3, 2/3)	(<mark>0</mark> , 1)
Espera	(2/3 , 1/3)	(0, 0)

Bart

	Aciona	Espera
Aciona	(1/3, 2/3)	(0,1)
Espera	(<u>2/3</u> , 1/3)	(0,0)

	Aciona	Espera
Aciona	(1/3, 2/3)	(0, 1)
Espera	(<u>2/3</u> , 1/3)	(0, 0)

Bart

	Aciona	Espera
Aciona	(1/3, 2/3)	(<mark>0</mark> , 1)
<u>Espera</u>	(<u>2/3</u> , 1/3)	(<u>0</u> , 0)

Bart

	<u>Aciona</u>	Espera
Aciona	(1/3, 2/3)	(0,1)
<u>Espera</u>	(<u>2/3</u> , <u>1/3</u>)	(<u>0</u> , 0)

Homer

	<u>Aciona</u>	Espera
Aciona	(1/3, 2/3)	(<mark>0</mark> , 1)
<u>Espera</u>	(<u>2/3</u> , <u>1/3</u>)	(<u>O</u> , O)

Bart

Solução do Jogo: (Espera, Aciona)

- Solução: (Espera, Aciona)
 - <u>Importante</u>: sempre indicamos a solução como um par de estratégias, na ordem dos jogadores (jogador 1 nas linhas, jogador 2 nas colunas).
- Interações estratégicas podem ter resultados contra-intuitivos:
 - Bart "vence" o jogo, apesar de ser o mais fraco,
 - Insights interessantes para interações sociais,
 - Falta de alternativas pode levar a vantagens estratégicas.

3. Primeiro método de solução: dominância

Dominância

- Estratégias dominadas: aquelas que nunca são preferíveis às demais, independente das ações do outro jogador.
- Estratégia dominante: sempre oferece o melhor resultado, ou seja, única estratégia que não é dominada.
- Níveis de dominância:
 - \circ Dominância forte ou estrita: $A_i \succ B_i$, para todas as possíveis i combinações de jogadas envolvendo A e B.
 - \circ Dominância fraca: $A_i \succsim B_i$, para todas as possíveis i combinações de jogadas envolvendo A e B.

Exemplo 1: equilíbrio de estratégias dominantes

	С	D
A	(4,2)	(6,3)
В	(2,4)	(5,5)

	С	D	
A	(<u>4</u> , 2)	(6,3)	
В	(2 , 4)	(5,5)	

	C D	
A	(4,2)	(<u>6</u> ,3)
В	(2,4)	(5,5)

	С	D
<u>A</u>	(<u>4</u> , 2)	(<u>6</u> ,3)
В	(2,4)	(5,5)

	C D	
<u>A</u>	(4,2)	(<u>6</u> , <u>3</u>)
В	(2,4)	(5,5)

	С	D
<u>A</u>	(4,2)	(6,3)
В	(2,4)	(5 , <u>5</u>)

	С	<u>D</u>
<u>A</u>	(<u>4</u> , 2)	(<u>6</u> , <u>3</u>)
В	(2 , 4)	(5 , <u>5</u>)

Solução: (A, D)

Método do equilíbrio de estratégias dominantes

- <u>Solução</u>: (A, D)
- <u>Método de solução</u>: Identificamos a estratégia dominante de um jogador, quando ela existe, e presumimos que ele certamente optará por ela.
 - Em alguns casos, todos os jogadores têm estratégias dominantes (equilíbrio de estratégias dominantes).
 - Em outros casos, solucionando o jogo para parte dos jogadores, conseguimos prever a melhor resposta dos demais.

	D	E	F
Α	(13,3)	(1,4)	(7,3)
В	(4 , 1)	(3,3)	(6,2)
С	(-1, 9)	(2 , 8)	(8,-1)

	D	E	F
A	(13,3)	(1 , 4)	(7,3)
В	(4,1)	(3,3)	(6,2)
С	(-1,9)	(2,8)	(8,-1)

	D	E	F
A	(13,3)	(1,4)	(7,3)
В	(4,1)	(3, <u>3</u>)	(6,2)
С	(-1,9)	(2,8)	(8,-1)

	D	E	F
A	(13,3)	(1,4)	(7,3)
В	(4,1)	(3,3)	(6,2)
С	(-1, <u>9</u>)	(2,8)	(8,-1)

	D	E	F
A	(13,3)	(1 , 4)	(7,3)
В	(4 , 1)	(3 , <u>3</u>)	(6,2)
С	(-1 , <u>9</u>)	(2 , 8)	(8,-1)

	D	E	F
A	(13,3)	(1 , 4)	(7,3)
В	(4 , 1)	(3 , <u>3</u>)	(6,2)
С	(-1, <u>9</u>)	(2 , 8)	(8,-1)

	D	E	F
A	(<u>13</u> , 3)	(1,4)	(7,3)
В	(4,1)	(3,3)	(6,2)
С	(-1,9)	(2,8)	(8,-1)

	D	E	F
A	(<u>13</u> , 3)	(1,4)	(7,3)
В	(4,1)	(<u>3</u> , <u>3</u>)	(6,2)
С	(-1,9)	(2 , 8)	(8,-1)

	D	E	F
A	(<u>13</u> , 3)	(1 , 4)	(7,3)
В	(4 , 1)	(<u>3</u> , <u>3</u>)	(6,2)
С	(-1, <u>9</u>)	(2 , 8)	(8,-1)

	D	E	F
A	(<u>13</u> , 3)	(1 , <u>4</u>)	(7,3)
В	(4 , 1)	(<u>3</u> , <u>3</u>)	(6,2)
е	(-1,9)	(2,8)	(8,-1)

	D	E	F
A	(<u>13</u> , <u>3</u>)	(1, <u>4</u>)	(7,3)
В	(4,1)	(<u>3</u> , <u>3</u>)	(6,2)
е	(-1,9)	(2,8)	(8,-1)

	Ð	E	F
A	(13,3)	(1 , 4)	(7,3)
В	(4,1)	(<u>3</u> , <u>3</u>)	(6,2)
е	(-1,9)	(2,8)	(8,-1)

	Ð	E	F
A	(13,3)	(1,4)	(7,3)
В	(4,1)	(<u>3</u> , <u>3</u>)	(6,2)
е	(-1,9)	(2,8)	(8,-1)

Solução: (B, E)

Método da eliminação iterada de estratégias dominadas

- <u>Solução</u>: **(B, E)**
- <u>Forma de solução</u>: Eliminamos gradualmente as estratégias de cada jogador que nunca seriam escolhidas.
- A cada passo descartamos as estratégias dominadas:
 - Se o jogador 1 tem uma estratégia dominada, eliminamos a respectiva linha.
 - Se o jogador 2 tem uma estratégia dominada, eliminamos a respectiva coluna.
 - Repetimos o processo até sobrar apenas um par de estratégias.

4. Segundo método de solução: equilíbrio de Nash

A solução por dominância nem sempre é suficiente

	С	D
A	(1 , 1)	(0, 0)
В	(0, 0)	(1 , 1)

Equilíbrio de Nash

- Dados dois jogadores A e B dizemos que a combinação de estratégias (a, b) desses jogadores, respectivamente, é um "equilíbrio de Nash" se 'a' é a melhor resposta do Jogador A à estratégia 'b' do Jogador B, ao mesmo tempo em que 'b' é a melhor resposta do Jogador B à estratégia 'a' do Jogador A.
 - Cada jogador dá sua melhor resposta à jogada do outro.
 - Pode haver mais de um equilíbrio de Nash em um mesmo jogo.
 - Qualquer jogo finito tem ao menos um equilíbrio de Nash (que pode ser em estratégias mistas).

Empresa B

	Oferta Alta	Oferta Baixa
Oferta Alta	(12, 12)	(<mark>0</mark> , 18)
Oferta Baixa	(18, 0)	(8,8)

Empresa B

	Oferta Alta	Oferta Baixa
Oferta Alta	(12 , 12)	(0,18)
Oferta Baixa	(<u>18</u> , 0)	(8,8)

Empresa B

	Oferta Alta	Oferta Baixa
Oferta Alta	(12, 12)	(0, 18)
Oferta Baixa	(<u>18</u> , 0)	(8,8)

Empresa B

	Oferta Alta	Oferta Baixa
Oferta Alta	(12 , 12)	(<mark>0</mark> , 18)
Oferta Baixa	(<u>18</u> , 0)	(8,8)

Empresa B

	Oferta Alta	Oferta Baixa
Oferta Alta	(12, 12)	(0 , <u>18</u>)
Oferta Baixa	(<u>18</u> , 0)	(8,8)

Empresa B

	Oferta Alta	Oferta Baixa
Oferta Alta	(12, 12)	(0, <u>18</u>)
Oferta Baixa	(<u>18</u> , 0)	(<u>8,</u> 8)

Empresa B

	Oferta Alta	Oferta Baixa
Oferta Alta	(12 , 12)	(0 , <u>18</u>)
Oferta Baixa	(<u>18</u> , 0)	(<u>8</u> , <u>8</u>)

Empresa B

Empresa A

	Oferta Alta	Oferta Baixa
Oferta Alta	(12 , 12)	(0 , <u>18</u>)
Oferta Baixa	(<u>18</u> , 0)	(<u>8</u> , <u>8</u>)

Solução do Jogo: (Oferta Baixa, Oferta Baixa)

João

	Investe Menos	Investe Mais
Investe Menos	(84,84)	(40, 100)
Investe Mais	(100, 40)	(60, 60)

João

	Investe Menos	Investe Mais
Investe Menos	(84,84)	(40,100)
Investe Mais	(<u>100</u> , 40)	(60,60)

João

	Investe Menos	Investe Mais
Investe Menos	(84,84)	(40, 100)
Investe Mais	(100, 40)	(<u>60</u> , 60)

João

	Investe Menos	Investe Mais
Investe Menos	(84,84)	(40 , 100)
<u>Investe Mais</u>	(<u>100</u> , 40)	(<u>60</u> , 60)

João

	Investe Menos	Investe Mais
Investe Menos	(84,84)	(40 , 100)
<u>Investe Mais</u>	(<u>100</u> , 40)	(<u>60</u> , 60)

João

	Investe Menos	Investe Mais
Investe Menos	(84,84)	(40 , <u>100</u>)
Investe Mais	(<u>100</u> , 40)	(<u>60</u> , 60)

João

	Investe Menos	Investe Mais
Investe Menos	(84,84)	(40 , <u>100</u>)
<u>Investe Mais</u>	(100, 40)	(<u>60</u> , 60)

João

	Investe Menos	Investe Mais
Investe Menos	(84,84)	(40, <u>100</u>)
Investe Mais	(<u>100</u> , 40)	(<u>60</u> , <u>60</u>)

João

	Investe Menos	<u>Investe Mais</u>
Investe Menos	(84,84)	(40 , <u>100</u>)
Investe Mais	(<u>100</u> , 40)	(<u>60</u> , <u>60</u>)

João

Pedro

	Investe Menos	Investe Mais
Investe Menos	(84,84)	(40 , <u>100</u>)
<u>Investe Mais</u>	(<u>100</u> , 40)	(<u>60</u> , <u>60</u>)

Solução do Jogo: (Investe Mais, Investe Mais)