Dispense del corso di Teoria della Rappresentazione

Fabio Zoratti

22 novembre 2016

Aggiungi l'esempio della prima lezione

1 Teoria dei gruppi

Definizione 1.1 (Gruppo). Un gruppo è un insieme con associata un operazione binaria $\cdot: G \times G \to G$ che gode di alcune proprietà

- 1. Associatività (ab)c = a(bc)
- 2. Esistenza unità ea = ae = a
- 3. Esistenza inverso a' per ogni elemento a a'a = aa' = e

Esempi

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ con l'operazione di somma.
- 2. \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^* con l'operazione di moltiplicazione. (Senza lo 0)
- 3. $GL_n(\mathbb{R})$ oppure GL(V)
- 4. $f: I \to I$ biunivoca, con I insieme e con l'operazione di composizione. Nel caso in cui I sia un insieme finito, tanto vale scegliere $I = \{1, 2, 3, \dots, n\}$. In tal caso questo gruppo si chiama S_n

Alcuni teoremi elementari

1. L'unità e è unica

Dimostrazione: supponiamo per assurdo che siano due distinte, e, e'. Allora vale

$$e = ee' = e' \quad \Box$$

2. L'inverso è unico.

Dimostrazione:

Supponiamo per assurdo che siano due, a', a''

$$(a'a)a'' = a'(aa'') \Rightarrow ea'' = a'e \quad \square$$

3. Se ho a_1, a_2, \ldots, a_n , il prodotto di questi termini è ben definito senza bisogno di parentesi

4. Esistono le potenze, ovvero $\forall k \in \mathbb{Z}, \forall a \in G \exists b \in G | a^k = b$ Vale sempre la regola

$$a^{k+h} = a^k \cdot a^h$$

Ricorda che

$$(ab)^{-1} = b^{-1}a^{-1}$$

Definizione 1.2 (Azione di un gruppo su un insieme).

Definizione 1.3 (Azione transitiva).

Definizione 1.4 (Orbita di un elemento).

1.1 Un esempio ricorrente: S_n

Teorema 1.1 (Ogni elemento $\sigma \in S_n$ si scrive in modo unico come prodotto di cicli disgiunti a meno dell'ordine dei fattori).

2 Algebra multilineare

2.1 Prodotto tensoriale

Definizione 2.1 (Prodotto tensoriale).

Definizione 2.2. DEFINISCI TRACCIA DEL PRODOTTO TENSORE, OVVERO

$$tr(f \otimes g)$$

Teorema 2.1. Se $f:V \to V$ e $g:W \to W$ sono endomorfismi di spazi vettoriali, allora vale la formula

$$tr(f \otimes g) = tr(f)tr(g)$$

DIMOSTRAZIONE:

2.2 Prodotto esterno e prodotto simmetrico

Definizione 2.3 (Prodotto esterno).

Teorema 2.2 (Dimensione del prodotto esterno).

Definizione 2.4 (Prodotto simmetrico).

Teorema 2.3 (Dimensione del prodotto simmetrico).

3 Prime proprietà delle rappresentazioni

Definizione 3.1 (Rappresentazione).

Definizione 3.2 (Sottospazio invariante).

3.1 Operazioni con le rappresentazioni

Definizione 3.3 (Somma di rappresentazioni).

Definizione 3.4 (Prodotto di rappresentazioni).

Definizione 3.5 (Rappresentazione regolare).

Esempio 3.1 (La rappresentazione regolare di S_3).

Teorema 3.1 (Lemma di Schur).

4 Teoria dei caratteri

Definizione 4.1. Sia $\rho: G \to V_{\rho}$ una rappresentazione di un gruppo G. Definiamo carattere di ρ la funzione che associa ad ogni elemento del gruppo G la traccia della matrice associata all'elemento, ovvero

$$\chi_{\rho}(s) := tr(\rho(s)) \quad \forall s \in G$$

Notare che χ è una funzione che va dal gruppo in \mathbb{C}^* , ovvero $\chi:G\to\mathbb{C}^*$

Vediamo delle proprietà elementari del carattere OSSERVAZIONI:

- 1. Se $dim(\rho) = 1$ allora il carattere di s è uguale a $\rho(s)$
- 2. $\chi_{\rho_1} = dim(\rho_1)^{-1}$
- 3. $\chi_{\rho+\sigma}(s) = \chi_{\rho}(s) + \chi_{\sigma}(s)$. Questo è dovuto al fatto che la somma di rappresentazioni si può scrivere come matrice a blocchi. Una volta scritto così è evidente il risultato.
- 4. $\chi_{\rho\sigma}(s) = \chi_{\rho}(s)\chi_{\sigma}(s)$. Questo deriva dal fatto che in generale se $f: V \to V$ e $g: W \to W$ sono endomorfismi di spazi vettoriali, allora vale $tr(f \otimes g) = tr(f)tr(g)$
- 5. $\chi_{\rho^*}(s) = \chi_{\rho}(s)$. Se abbiamo un gruppo finito ², allora $\exists n | (\rho(s))^n = id$, per cui tutti gli autovalori di $\rho(s)$ sono radici ennesime dell'unità e $\rho(s)$ è diagonalizzabile LINKA IL PUNTO IN CUI LO DIMOSTRI. Dato che possiamo scrivere $\rho(s)$ in una base in modo che sia diagonale per ogni s, è evidente che gli autovalori dell'inversa saranno l'inverso degli autovalori, ma dato che hanno modulo 1, l'inverso è uguale al coniugio.

¹Al solito ρ_1 è la rappresentazione che manda ogni elemento nell'identità di V_{ρ}

²Ricordiamo che $\rho^*(s) = (\rho(s)^{-1})^*$