ЛАБОРАТОРНАЯ РАБОТА № 9

ИССЛЕДОВАНИЕ СХЕМ С ОБЩИМ ЭМИТТЕРОМ С ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ

1. Исследование схемы с общим эмиттером с параллельной отрицательной обратной связью по напряжению

1.1. Соберите схему. Тип транзистора T и E_{κ} должны соответствовать варианту задания. Амперметр должен быть в режиме **DC** (**Mode: DC**).

1.2. Рассчитайте R_{κ} и R_1 (при расчетах I_{κ} и E_{κ} должны соответствовать варианту задания, коэффициент β возьмите из лабораторной работы № 8)

$$egin{aligned} oldsymbol{U}_{69} &pprox oldsymbol{0,2} oldsymbol{B}; \ oldsymbol{U}_{K9} &pprox oldsymbol{E}_{K} \ oldsymbol{Z}_{K} &= \left(oldsymbol{E}_{K} - oldsymbol{U}_{K9}
ight) / oldsymbol{I}_{K}; \ oldsymbol{I}_{6} &pprox oldsymbol{I}_{K} / oldsymbol{\beta}; \ oldsymbol{R}_{1} &= oldsymbol{U}_{K9} / oldsymbol{I}_{6} &= \left(oldsymbol{U}_{K9} - oldsymbol{U}_{69}
ight) / oldsymbol{I}_{6}. \end{aligned}$$

- 1.3. Установите рассчитанные R_{κ} и R_1 в схему. Подайте с Function Generator на вход схемы синусоидальный сигнал с амплитудой $U_{\text{вх}} = 10 \text{ мВ}$ и частотой 1 к Γ ц.
- 1.4. Изменяя R_1 , установите ток коллектора I_{κ} в соответствии с вариантом задания (чем меньше R_1 , тем больше I_{κ}).
- 1.5. Установите на **Bode Plotter** пределы измерения коэффициента усиления по напряжению от 0 д**Б** (I = 0 d**B**) до 60 д**Б** (F = 60 d**B**) и частоты от 1 Гц (I = 1 Hz) до 200 МГц (F = 200 MHz).
 - 1.6. С помощью **Bode Plotter** определите:
 - а) максимальный коэффициент усиления схемы по напряжению $\mathbf{\textit{K}}_{\text{u}}$ [д \mathbf{b}];
 - б) низшую $f_{\text{н гр}}$ и высшую $f_{\text{в гр}}$ граничные частоты полосы пропускания;
 - в) частоту единичного усиления f_1 .

2. Исследование схемы с общим эмиттером с последовательной отрицательной обратной связью по току

2.1. Соберите схему. Тип транзистора T и E_{κ} должны соответствовать варианту задания. Амперметр должен быть в режиме **DC** (**Mode: DC**).

2.2. Рассчитайте R_3 , R_K , R_1 и R_2 (при расчетах I_K и E_K должны соответствовать варианту задания, коэффициент β возьмите из лабораторной работы № 8)

дания, коэффициент
$$oldsymbol{p}$$
 возьмите $U_{69}pprox {f 0,2}~{f B};$ $I_3pprox I_{{f K}};$ $U_{R9}pprox {f k}_9~{f E}_{{f K}};$ ${f 0,1}\le {f k}_9\le {f 0,25};$ ${f R}_9={f U}_{R9}/I_9;$ ${f U}_{{f K}9}pprox ({f E}_{{f K}}-{f U}_{R9})/2;$ ${f R}_{{f K}}=({f E}_{{f K}}-{f U}_{{f K}9}-{f U}_{{f R}9})/I_{{f K}};$ ${f I}_{6}pprox {f I}_{K}/{f \beta};$ ${f I}_{R2}pprox {f k}_{{f I}}~{f I}_{6};$ ${f 2}\le {f k}_{{f I}}\le {f 5};$ ${f R}_2=({f U}_{69}+{f U}_{R9})/I_{R2};$ ${f I}_{R1}={f I}_{R2}+{f I}_{6};$

 $\boldsymbol{R}_1 = (\boldsymbol{E}_{\kappa} - \boldsymbol{U}_{69} - \boldsymbol{U}_{R9}) / \boldsymbol{I}_{R1}.$

- 2.3. Установите рассчитанные R_3 , R_{κ} , R_1 и R_2 в схему. Подайте с Function Generator на вход схемы синусоидальный сигнал с амплитудой $U_{\text{вх}} = 10 \text{ мB}$ и частотой $1 \text{ к}\Gamma$ ц.
- 2.4. Изменяя R_1 , установите ток коллектора I_{κ} в соответствии с вариантом задания (чем меньше R_1 , тем больше I_{κ}).
- 2.5. Установите на **Bode Plotter** пределы измерения коэффициента усиления по напряжению от 0 д**Б** (I = 0 d**B**) до 60 д**Б** (F = 60 d**B**) и частоты от 1 Гц (I = 1 Hz) до 200 МГц (F = 200 MHz).
 - 2.6. С помощью **Bode Plotter** определите:
 - а) максимальный коэффициент усиления схемы по напряжению $K_{\rm u}$ [д**Б**];
 - б) низшую $f_{\text{н гр}}$ и высшую $f_{\text{в гр}}$ граничные частоты полосы пропускания;
 - в) частоту единичного усиления f_1 .
 - 2.7. Отсоедините C_{3} и повторите пункт 2.6.
 - 2.8. Уменьшите R_9 в десять, сто, тысячу раз и повторите пункты: 2.4, 2.6.
 - 2.9. Результаты всех измерений занесите в таблицу.

$C_{\mathfrak{I}}$	$R_{\scriptscriptstyle 9}$	<i>R</i> ₁ , кОм	<i>K</i> _u , дБ	$f_{\text{н гр}}$, Гц	$f_{{\scriptscriptstyle \mathrm{B}}{\scriptscriptstyle \mathrm{\Gamma}\mathrm{p}}}$, к Γ ц	f_1 , М Γ ц
1000 мкФ	$R_{\scriptscriptstyle 9}$					
нет	$R_{\scriptscriptstyle 9}$					
нет	$R_{\rm o}$ / 10					
нет	$R_9 / 100$					
нет	$R_{\rm 9} / 1000$					

2.10. Сравните результаты, полученные в пунктах 2.6, 2.7 и 2.8. Сделайте выводы.

Варианты заданий

11,2 12,2 13,2 14,2 15,2 16,2
12,2 13,2 14,2 15,2 16,2
13,2 14,2 15,2 16,2
14,2 15,2 16,2
15,2 16,2
16,2
17,2
18,2
19,2
20,2
21,2
22,2
23,2
24,2
25,2
26,2
27,2
28,2
29,2
30,2
11,4
12,4
13,4
14,4
15,4
16,4
17,4
18,4
19,4
20,4
21,4
22,4
23,4
24,4
25,4
26,4
27,4
28,4
29,4
30,4

T1 40

0.06