

联系方式

○ 主讲教师: 王刚, 李忠伟

○ 办公地点: 计算机楼409

○ 邮 件: wgzwp@nbjl.nankai.edu.cn

lizhongwei@nbjl.nankai.edu.cn

- 长江雨课堂、QQ群
- 助 教: 贺祎昕、张书睿、谢子涵、韩 佳迅、朱璟钰、徐文斌、杨科迪

联系方式

OQQ 群号: 566399167

群名称: 南开编译系统原理2023秋

群号: 566399167

课程目的

- 学习一些基础的编译理论和一些基本的 编译技术
- 学习一些辅助工具的使用
- 能用这些理论、技术和工具设计一个简单的通用编译器(简化C编译器) 能将编译技术应用于其他程序的设计

课程内容

- 理解源程序的理论和技术词法分析、语法分析、语义分析
- 将理解的结果转化为等价的目标程序的 理论和技术 中间代码生成、目标代码生成
- 关于做得更好的理论和技术 一些基本的优化方法

为什么学编译原理

I have always enjoyed teaching the compilers course.

Compiler design is a beautiful marriage of theory and practice

-- it is one of the first major areas of systems programming for which a strong theoretical foundation has developed that is now routinely used in practice.

为什么学编译原理(续)

- 对专业学习成果的一次很好的综合性的 实践练习——系统能力、问题求解能力
 - □程序设计语言与算法
 - □计算理论与软件工程
 - □体系结构与操作系统
- 更好地理解现有的程序设计语言,更好 地设计、优化程序
- 实现新的通用程序设计语言
- 实现一些专用语言、其他类型的应用 HTML/XML、SQL、Latex

CyberPortal 1.

为什么学编译原理(续)

L21: Loop Optimizations (old slides: S16, OCW)

○ MIT不上编译课?

Home Overview General Administrivia Schedule Reference Materials Fall 2018 Fall 2018

sep 10 Project 1 Information Session L4: Bottom-up Parsing (old stides: S16, QCW) Miniputz Handowts: Decaf language specification, course tools guide: Project 1 info session stides.	sep 11 LS: <u>Bottom-up Parsing</u> (old slides: <u>S15, OCW)</u> Minimusz	sep 12 L&: <u>Bottom-up Parsing</u> (old slides: <u>S16. OCW)</u> Miniquiz	sep 13 LP: Top-down Parsing (old slides: S15, QCW) Minitariz	sep 14
sep 17	sep 18	sep 19 DUE: Project 1	sep 20 Project 2 Information Session Lts: Intermediate Representations (old slides: S16. GCM) Miniquiz Semantic Checker Project . Project 2 info session slides.	sep 21 Career Fair
sep 24 L9: Intermediate Representations (old slides: \$15. OCW) Minipuls	sep 25 L 10: Semantic Analysis (old slides: S16. QCW) Minipalz DUE: Teams must be finalized	sep 26 L11: <u>Semantic Analysis</u> (old slides: <u>S16. OCW)</u> <u>Miniputs</u>	sep 27 L12: Unoptimized Code Generation (old slides: S16. OCW) Minimized	sep 28 L13: Uncotimized Code Generation (old slides: S16, OCW) Miniopiz
oct 1 L14: Unoptimized Code Generation (old slides: S16. QCW) Minipula	oct 2	oct 3	oct 4 Office hours for project 2 Project J. Info. session slides Assignment: P3, <u>Code Generator Project</u>	oct 5 ADD DATE DUE: Project 2
oct 8 Calumbus Day	oct 9 Columbus Dey	oct 10	oct 11	oct 12 QUIZ #1 2018 Fall (2018 Fall) Practice Exams (Exam 1): 2017 Fall (answers) 2016 Fall (answers), 2016 Spring (answers), 2014 (answers), 2011 (answers), 2010 on OCW.
oct 15 L15: Introduction to Program Analysis (old slides: S16: QCW) Miniquiz	oct 16 L16: Introduction to Program Analysis (old slides: S16: OCV) Miniquiz	oct 17 L17: Introduction to Data-flow Analysis (old slides: S16. OCW) Miniquiz	oct 18 L18: Introduction to Data-Bour Analysis (old slides: S16: OCW) Miniquiz	oct 19 L19c Introduction to Data-flow Analysis (old slides: S16, QCW) Miniquiz

L22: Register Allocation (old slides: S16, OCW)

nov 2

L23: Register Allocation Wrap-Up (old slides: S16, OCW) Miniousz

oct 29 L20: Loop Optimizations (old slides: S16, OCW)

为什么学编译原理(续)

- MIT的Computer Language Engineering是 真正的编译课,30次的重课
- ○一半编译基础——14次课
 - □正则表达式、文法;自底向上分析法、自顶 向下分析、中间表示;语义分析;非优化代 码的自动生成
- 一半程序分析+优化——16次课
 - □ 数据流分析、循环优化、寄存器分配、并行 化、内存优化、指令调度

C语言编程和优化

```
/* LOOP #1 */
for (i = 0; i < N; i++) {
   a[i] = a[i] * 2000;
   a[i] = a[i] / 10000; 择哪种编程方式?
/* LOOP #2 */
b = a;
for (i = 0; i < N; i++) {
    *b = *b * 2000;
   *b = *b / 10000;
   b++;
```

○ 为了获得运行更快 的目标程序, 你选

实验结果

LOOP	opt. level	SPARC	MIPS	Alpha
#1 (array)	no opt	20.5	21.6	7.85
#1 (array)	opt	8.8	12.3	3.26
#1 (array)	super	7.9	11.2	2.96
#2 (ptr)	no opt	19.5	17.6	7.55
#2 (ptr)	opt	12.4	15.4	4.09
#2 (ptr)	super	10.7	12.9	3.94

- 编译器不进行优化时——指针更优(优势微小) 但进行优化后——数组优势显著
- 告诉我们什么?

更多关注算法优化,不要沉迷"编程技巧"

——反而可能令编译器优化效果削弱

需要的先导课程

- 计算机基础
- 高级语言程序设计
- 数据结构
- 操作系统
- 汇编语言程序设计

O •••

参考书目

《编译原理》

(Compliers: Principles, Techniques, and Tools中文版),李建中、姜守旭译,机械工业出版社,2003

参考书目

《可变目标C编译器——

设计与实现》(A

Retargetable C Compiler:

Design and

Implementation),

Christopher W.Fraser等著,

王挺等译, 电子工业出版

社, 2005

参考书目

《Lex与Yacc》(第二版) (Lex and Yacc), Levine 等著,杨作梅等译, 机械 工业出版社, 2003

参考资料、开发工具

- 编译器自动生成工具
 - □ Flex, Bison
 - □ ANTLR
- 中间代码处理: llvm
- 汇编开发: gcc, llvm
- 编译器构造示例
 - □ lcc
 - □ Tiny-c

成绩

- 平时作业: 50%
 - □ 书面作业(七次): 15%, 手写完成拍照上传长江雨课堂
 - □上机实习(七个步骤):35%
 - ▶ 编译大赛SysY语言(简化C语言)的编译器,鼓励用辅助工具
 - □ 必须按时完成,期末一股脑交上来不予接受
 - □ 发现抄袭情况,成绩为0
 - □ 长江雨课堂布置预习作业,与出勤一起考核,一共5次及以上 未完成/未出勤,课程没有成绩
 - □ Open Topic讨论:提前发布Open Topic题目,大家查阅文献, 准备PPT,老师筛选优秀者在课堂讲解,优胜者+1分,候选者 中按相对完成情况给分,每人每学期最多+2分
- 期末考试: 50%
- 实验课安排: 周二晚18:30~21:05, 选课人数太多, 拟 主要采用线上方式

主动提升能力

- 构造一个编译器: 系统能力+问题求解能力的 综合培养
 - □ 对编译器构造问题建模的能力: 正则表达式、有限 自动机等数学模型
 - □ 在数学模型之上设计高效算法解决编译器各模块问 题的能力
 - □ 针对目标平台特点设计代码生成和代码优化算法的 能力
 - □ 使用高级语言准确、高效实现上述算法,构建完整 编译器的能力
 - □ 安装部署开发所需系统、工具链,进行调试的能力
 - □清晰组织内容,用自然语言和形式化方式准确表达
 - ,并用Latex工具编写格式规范的技术文档的能力

南京大学教改实践

- 以学生为本的课堂结构模型及实施方案
 - □ 讲义:面向解题、深度优先、启发式
 - □ 自学材料(教材): 经典摘选、提前自学
 - □研讨内容(OT): 教师选题、学生讲解
 - □ 课外作业: 教材习题为主、覆盖全部学习内容
 - □ 编程训练: 围绕内容、编选题目

Open Topic研讨

- 提前一周发布
- 学生抢题,事先准备PPT
- 每周4位同学有机会上讲台用25分钟介绍 对OT的理解
- 主讲教师作为听者参与点评讨论, 重点 关注思路和严谨性
- 图的应用:汉诺塔、Pagerank算法

教学安排

- 提前预习,课前完成作业!
- 课堂讲授,讲解+提问+OT讨论
 - □ 引导学生体会寻找答案过程,而非答案本身
 - □ 相对定义、定理、算法本身, 更关注动机、 背景、正确性的思考和论证
 - □ 如果你是第一个遇到此问题的人,怎么办?
- 习题课: 作业完成情况解析、更难题目
- 实验: OJ点评, 与理论教学呼应

希望同学们在本学期

- 课前主动预习: 老师和助教会提供PPT和 学案(指出本次学习内容、重点难点)
- 课堂主动思考、积极互动: 老师会借助 雨课堂引导大家
- 课后主动复习:老师会借助QQ群等提供 更丰富的学习材料(音频讲解PPT等)
- 作业主动独立认真完成: 老师会在课堂 简要讲解主要思路
- 实验主动探索: 老师和助教会提供辅助 (实验教学指导书、辅助工具)