## **HYSICS HIGHER LEVEL PAPER 2**

1. This question is about circular motion.

A ball of mass 0.50 kg is attached to a string and is made to rotate with constant speed v along a horizontal circle of radius r = 0.8 m. The string is attached to the ceiling and makes an angle of  $30^{\circ}$  with the vertical.



| (a) | (i)   | On the diagram above, draw and label arrows to represent the forces on the ball in the position shown. | (2) |
|-----|-------|--------------------------------------------------------------------------------------------------------|-----|
|     | (ii)  | State and explain whether the ball is in equilibrium.                                                  |     |
|     |       |                                                                                                        |     |
|     |       |                                                                                                        |     |
|     |       |                                                                                                        | (2) |
| (b) | Deter | rmine the speed of rotation of the ball.                                                               |     |
|     |       |                                                                                                        |     |
|     |       |                                                                                                        |     |
|     |       |                                                                                                        |     |

**(3)** 

(Total 7 marks)

**2.** This question is about kinematics.

Lucy stands on the edge of a vertical cliff and throws a stone vertically upwards.



The stone leaves her hand with a speed of  $15 \text{ m s}^{-1}$  at the instant her hand is 100 m above the surface of the sea. Air resistance is negligible and the acceleration of free fall is  $9.8 \text{ m s}^{-2}$ .

| Calculate the maximum height reached by the stone as measured from the point where it is thrown. |
|--------------------------------------------------------------------------------------------------|
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
| Determine the time for the stone to reach the surface of the sea after leaving Lucy's hand.      |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |

- **3.** This question is about nuclear processes.
  - (a) A nucleus of radium-91 ( $^{226}_{91}$ Ra) undergoes alpha particle decay to form a nucleus of radon (Rn).
    - (i) Identify the proton number and nucleon number of the nucleus of Rn.

Proton number:

Nucleon number:

(ii) The half-life of radium-91 is 1600 years. Determine the length of time taken for 93.75 % of the radium to disintegrate.

(2)

- **4.** This question is about the emf induced in a coil.
  - (a) Define magnetic flux.

(2)

**(2)** 

(b) A coil is rotated at constant speed in a region of uniform magnetic field.

The graph shows the variation with time t of the emf  $\varepsilon$  induced in the coil for one cycle of rotation.



|              | (Total 6 m                                                                                  | (1)<br>rks) |
|--------------|---------------------------------------------------------------------------------------------|-------------|
|              |                                                                                             |             |
| (111)        | Carculate the 100t mean square value of the mudeed enit.                                    |             |
| (iii)        | Calculate the root mean square value of the induced emf.                                    |             |
|              |                                                                                             | (2)         |
|              |                                                                                             |             |
|              |                                                                                             |             |
| (ii)         | Use the graph to determine the rate of change of flux at $t = 8.0$ ms. Explain your answer. |             |
| <i>(</i> ::) |                                                                                             |             |
| (1)          | maximum.                                                                                    | (1)         |
| (i)          | On the graph label, with the letter T, a time at which the flux linkage in the coil is a    |             |