Zhihao Ruan

3131 Walnut St Unit #553, Philadelphia, PA 19104

ruanzh@grasp.upenn.edu • +1 (734) 881-4112 • https://zhihaoruan.xyz

EDUCATION

University of Pennsylvania Philadelphia, PA • General Robotics, Automation, Sensing & Perception (GRASP) Laboratory May 2022

Master of Science in Engineering in Robotics, projected

University of Michigan Ann Arbor, MI College of Engineering May 2020

Bachelor of Science in Computer Science Engineering, GPA: 3.89/4.00

Shanghai Jiao Tong University

Shanghai, China University of Michigan-Shanghai Jiao Tong University Joint Institute (UM-SJTU Joint Institute) August 2020

Bachelor of Science in Electrical and Computer Engineering, GPA: 3.56/4.00

RELATED COURSEWORK

ECE: Honors Physics, Electromagnetics, Signals and Systems, Analog Circuits, Logic Circuits Design, Semiconductor

CSE: Embedded Systems, Machine Learning, Computer Vision, Autonomous Robotics, CUDA programming, Operating Systems.

SCHOLARSHIP AND HONORS

James B. Angell Scholar Mar 2020 **University of Michigan Honors** Dec 2018, May 2019, Dec 2019 University of Michigan "Dean's List" Dec 2018, Apr 2019, Dec 2019 2018 SJTU Undergraduate Excellent Scholarship Sept 2017 - June 2018 UM-SJTU Joint Institute "Dean's List" Sept 2016 - June 2017 2017 SJTU Undergraduate Excellent Scholarship Sept 2016 - June 2017 "Honorable Mention" of 2017 Interdisciplinary Contest in Modeling April 2017

RESEARCH EXPERIENCE

Synthetic Health Sensor

Ann Arbor, MI

Interactive Sensing and Computing Lab of Prof. Alanson Sample, University of Michigan

Jan 2019 - Dec 2019

- o Built an embedded system with STM32 microprocessor and Panasonic's GridEye® 8 × 8 IR sensor using I2C, UART and MATLAB signal processing that can collect, detect and visualize heat distribution in the room.
- \circ Constructed a complete API from scratch for Panasonic's GridEye $^{\circ}$ 8 \times 8 IR sensor for STM32 microprocessor.
- o Implemented Direct Digital Synthesis (DDS) of a frequency-sweep ultrasonic sine wave from 39kHz to 41kHz with STM32 microprocessor and ultrasonic transducers.
- o Implemented two different ultrasound distance measurement algorithms including FMCW (Frequency-Modulated Continuous Wave) algorithm and phase-based ranging algorithm with STM32 microprocessor and Python.
- Implemented breath rate detection from phase-based ranging algorithm with ultrasound transducers.

Cost-Function Prediction Market Simulation with Bayesian Traders

Ann Arbor, MI

ML Research Paper Reading Group of Prof. Sindhu Kutty, University of Michigan

May 2019 - August 2019

- o Simulated cost-function based prediction market mechanism in Python, with its performance evaluated and compared with traditional machine learning algorithms.
- Reconstructed exponential-family prediction markets in theory with mathematical derivations.
- o Explored exponential-family prediction markets with different probability distributions.

TEACHING & WORKING EXPERIENCE

Grader for EECS 445: Introduction to Machine Learning

Department of Electrical Engineering and Computer Science, University of Michigan

Jan 2020 – April 2020

Ann Arbor, MI

Ann Arbor, MI

Ann Arbor, MI

• Assisted professor to grade all projects and assignments.

Grader for EECS 373: Introduction to Embedded Systems Design

Department of Electrical Engineering and Computer Science, University of Michigan

Sept 2019 - Dec 2019

o Assisted professor to grade all labs and assignments.

Grader for MATH 417: Matrix Algebra

Department of Mathematics, University of Michigan

Jan 2019 – April 2019

o Assisted professor to grade all assignments.

Teaching Assistant for VY 200: Academic Writing II

Center for Teaching and Learning, UM-SJTU Joint Institute

Shanghai, China

Mar 2018 - May 2018

- o Assisted professor to organize group discussion and group presentation in class.
- Held office hours every week to help students with writing academic essays.
- Helped to grade course quizzes and essays.

PROJECT EXPERIENCE

Real-Time On-Device Flow Statistics Detection and Prediction

Shanghai, China

Undergraduate Major Design Experience, UM-SJTU Joint Institute

June 2020 - Aug 2020

- Built a system which detects human tracffic flow, automatically analyzes & detects entrances on Raspberry Pi 4B, stores
 data on a server, visualizes analyzed data on a self-designed front-end website in real time.
- Implemented object tracking & people counting with self-designed Kalman filter tracker, automatic entrance detection with density-based clustering algorithm DBSCAN.

DOAPP: Dynamic Object Avoidance and Path Planning

Ann Arbor, MI

Undergraduate Major Design Experience, University of Michigan

Oct 2019 - Dec 2019

- Implemented a GPU-accelerated motion planning algorithm by Chonhyon Park, et al. on an Nvidia's GPU with CUDA parallel programming & optimization.
- Constructed a 3-D combined pointcloud from three separate Intel RealSense® cameras and converted it into an occupancy grid for obstacle detection.
- o Built a ROS controller and trajectory follower from scratch for Dynamixel motors on robot arm.

PatchMatch: Implementation and Applications

Ann Arbor, MI

EECS 442: Computer Vision, University of Michigan

Oct 2019 - Dec 2019

- o Implemented PatchMatch algorithm from Adobe Research from scratch in Python.
- Applied PatchMatch algorithm on image context-aware filling and image retargeting.
- Applied PatchMatch algorithm on image context-aware filling in both constrained and unconstrained cases.
- o Created a user interactive interface in Java Swing for customized image editing & algorithm visualization.

Interactive Game: Step on White Tiles

Ann Arbor, MI

EECS 373: Introduction to Embedded Systems Design, University of Michigan

March 2019 - April 2019

- o Visualized black & white tiles flow by driving a projector with FPGA by programming VGA protocols in Verilog.
- o Decoded signals from Nintendo controller in Verilog.
- Built a complete menu selection user interface on an LCD display with SmartFusion® microprocessor and Nintendo controller.
- o Achieved stepping detection on projected tiles through SPI communication with Pixy® camera.
- Enabled sound effects using SmartFusion® microprocessor, Adafruit® Audio Sound Board and Dell® stereos.

Gesture-Based Mouse Cursor Control System

Shanghai, China

Team Leader, VG 100: Introduction to Engineering, UM-SJTU Joint Institute

June 2017 - Aug 2017

- o Detected the motion of user's hands using MPU-9250, an inertia measurement unit.
- o Achieved data transmission between the control system and PC using an HC-06 Bluetooth transmitter.
- o Delivered three features on PC in C/C++ & batch scripts: switching PPT slides, moving and dragging mouse cursor.

The 9th SJTU Freshman Innovative Mechanical Competition

Champion Team Leader April 2017

o Designed, programmed and assembled a robot car which collected blocks and piled them up in a designate order. The project used AutoCAD, C program and STC microcontrollers.

Shanghai, China

o Competed with other 47 teams with strategies and skills and won the championship.

SKILLS

Programming Languages: C/C++, Python, MATLAB, Verilog.

Development Tools: STM32CubeMX, OpenCV, PyTorch, Scikit-Learn, LCM (Lightweight Communications and

Marshalling), ROS (Robotics Operating System), CUDA