

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

FILE COPPY

E

ETR 18
WILDERNESS/NATURAL AREAS

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

DEPLOYMENT AREA SELECTION AND LAND WITHDRAWAL/ ACQUISITION

85 01 24 148

DEPARTMENT OF THE AIR FORCE

WILDERNESS/NATURAL AREAS

Prepared for

United States Air Force Ballistic Missile Office Norton Air Force Base, California ion For

GRARI

Granded

Catton

Chility Codes

Avail and/or

Special

A-1

Ву

Henningson, Durham & Richardson, Inc. Santa Barbara, California

REVIEW COPY OF WORK IN PROGRESS

2 October 1981

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DEPARTMENT OF THE AIR FORCE WASHINGTON 20330

OFFICE OF THE ASSISTANT SECRETARY

Federal, State and Local Agencies

On October 2, 1981, the President announced his decision to complete production of the M-X missile, but cancelled the M-X Multiple Protective Shelter (MPS) basing system. The Air Force was, at the time of these decisions, working to prepare a Final Environmental Impact Statement (FEIS) for the MPS site selection process. These efforts have been terminated and the Air Force no longer intends to file a FEIS for the MPS system. However, the attached preliminary FEIS captures the environmental data and analysis in the document that was nearing completion when the President decided to deploy the system in a different manner.

The preliminary FEIS and associated technical reports represent an intensive effort at resource planning and development that may be of significant value to state and local agencies involved in future planning efforts in the study area. Therefore, in response to requests for environmental technical data from the Congress, federal agencies and the states involved, we have published limited copies of the document for their use. Other interested parties may obtain copies by contacting:

National Technical Information Service United States Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161 Telephone: (703) 487-4650

Sincerely,

1 Attachment Preliminary FEIS JAMES F. BOATRIGHT
Deputy Assistant Secretary
of the Air Force (Installations)

TABLE OF CONTENTS

				Page
1.0	Intro	duction	1	1
2.0	Neva	da/Uta	h Region	5
	2.1	Wilder	ness	5
	2.2	Signifi	icant Natural Areas	5
3.0	Texa	s/New	Mexico Region	29
	3.1	Wilder	rness	29
	3.2	Signifi	icant Natural Areas	29
4.0	Princ	cipal Im	pacts to Wilderness	39
	4.1 4.2	Introd Metho	uction dology	39 43
		4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7	Visual Impact Analysis Increased Access Impact Analysis Indirect Effects Analysis	43 44 45 47 49 53 53
	4.3 4.4	Data b Propos	pase sed Action	55 55
		4.4.1 4.4.2 4.4.3	DDA Impacts Coyote Spring Valley OB Milford OB	55 101 103
		Altern Altern Altern Altern Altern	native 1 native 2 native 3 native 4 native 5 native 6 native 7	103 104 104 106 106 106
	4.12	Altern	native / native 8 arison of Alternatives	112

		Page
5.0	Principal Impacts to Significant Natural Areas	119
	5.1 Nevada/Utah 5.2 Texas/New Mexico	119 137
6.0	Future Trends Without Project	147
7.0	References	151

LIST OF FIGURES

No.		Page
2.1-1	Wilderness resources in the Nevada/Utah study area	11
2.2-1	Significant natural areas in the Nevada/Utah study area	21
3.1-1	Wilderness resources in the Texas/New Mexico study area	31
3.2-1	Significant natural areas in the Texas/New Mexico study area	37
4.2.2-1	Determination of noise impact on hydrologic subunits	46
4.2.3-1	Determination of visual impacts upon hydrologic subunits	48
4.2.4-1	Determination of increased access impacts upon hydrologic subunits	50
4.2.5-1	Determination of indirect effects impact on hydrologic subunits	54
4.4.1-1	Wilderness resources and the Proposed Action conceptual project layout in the Nevada/Utah study area	85
4.4.2-1	Wilderness resources in the vicinity of the Coyote Spring operating base	102
4.11-1	Wilderness Resources and the conceptual project layout for Alternative 7, Texas/New Mexico	111
4.12-1	Wilderness resources and the split basing conceptual project layout for the Nevada/Utah study area, Alternative 8	115
4.12-2	Wilderness resources and the split basing conceptual project layout for the Texas/New Mexico study area, Alternative 8	117
5.1-1	Significant natural areas and the Proposed Action conceptual layout Nevada/Utah study area	127
5.2-1	Significant natural areas and the Proposed Action conceptual layout Texas/New Mexico study area	141

Wélak

LIST OF TABLES

No.		Page
2.1-1	Wilderness resources in and around the Nevada/Utah study area	6
2.2-1	Inventory of significant natural areas, Nevada study area	12
2.2-2	Inventory of significant natural areas, Utah study area	17
2.2-3	Significant natural areas in the Nevada/Utah study area	22
3.2-1	Inventory of significant natural areas, Texas study area	32
3.2-2	Inventory of significant natural areas in the New Mexico study area	33
4.1-1	Summary of potential impacts to wilderness resources in the Nevada/Utah study area	40
4.3-1	Construction-related data base for determinination of impacts on wilderness quality	56
4.3-2	Peak year projected population-related increased wilderness resource use for the Proposed Action	60
4.3-3	Peak year projected population-related increased wilderness resource use for Alternative 1	63
4.3-4	Peak year projected population-related increased wilderness resource use for Alternative 2	66
4.3-5	Peak year projected population-related increased wilderness resource use for Alternative 3	69
4.3-6	Peak year projected population-related increased wilderness resource use for Alternative 4	72
4.3-7	Peak year projected population-related wilderness resource use for Alternative 5	75
4.3-8	Peak year projected population-related increased wilderness resource use for Alternative 6	78
4.3-9	Peak year projected population-related increased wilderness resource use for Alternative 8A	81

No.		Page
4.4.1-1	Summary of effects and related consequences on the attribute "wilderness ecology" for potentially significant project related disturbances	86
4.4.1-2	Summary of effects and related consequences on the attribute "wilderness quality" for potentially significant project-related disturbances	88
4.4.1-3	Attributes of wilderness resource areas with projected crowding estimates of greater than or equal to 0.4 visitor days per acre	90
4.4.1-4	Potential impact to wilderness resources in the Nevada/Utah DDA and associated OB hydrologic subunits for the Proposed Action and Alternatives 1 and 2	97
4.7-1	Potential impact to wilderness resources in the Nevada/Utah DDA and associated OB hydrologic subunits for Alternatives 3 and 5	105
4.8-1	Potential impact to wilderness resources in the Nevada/Utah DDA and associated OB hydrologic subunits for Alternative 4	107
4.10-1	Potential impact to wilderness resources in the Nevada/Utah DDA and associated OB hydrologic subunits for Alternative 6	108
4.11-1	Potential impact to wilderness resources in the Texas/New Mexico study area for Alternative 7	109
4.12-1	Potential impact to wilderness resources in the Nevada/Utah and Texas/New Mexico DDAs and associated hydrologic subunits/counties for Alternative 8.	113
4.13-1	Ranking of alternatives based on Kendall's Tau correlation analysis	118
5.1-1	Potential impacts to significant natural areas from various project parameters	121
5.1-2	Direct impacts to significant natural areas, Nevada/Utah potential deployment area	123
5.1-3	Potential population-related indirect impacts to SNAs during construction and operation, Nevada/Utah potential deployment area	128

No.		Page
5.1-4	Significant natural areas within a 50 air-mile radius of the potential Beryl OB site	131
5.1-5	Significant natural areas within a 50 air mile radius of the potential Coyote Spring OB site	132
5.1-6	Significant natural areas within a 50 air-mile radius of the potential Delta OB site	134
5.1-7	Significant natural areas within a 50 air-mile radius of the potential Ely OB site	135
5.1-8	Significant natural areas within a 50 air-mile radius of the potential Milford OB site	136
5.2-1	Direct impacts to significant natural areas, Texas/New Mexico potential deployment area	138
5.2-2	Potential population related indirect impacts to SNAs during construction and operation, Texas/New Mexico deployment area	143
5.2-3	Significant natural areas within a 50 air-mile radius of the potential Clovis OB site	145
5.2-4	Significant natural areas within a 50 air-mile radius of the potential Dalhart OB site	146

1.0 INTRODUCTION

Two types of land classes occur in both the Nevada/Utah and the Texas/New Mexico areas that are being studied for possible deployment of the M-X system. Wilderness resources, including areas now under review for possible additions in the wilderness program, are areas legally excluded from M-X deployment. Significant natural areas, for this study, are special areas of ecological importance or sensitivity that are afforded some degree of protection to preserve their significant features. Most are formally classified by federal or state agencies. Several other types of natural areas, not formally classified, are of special local significance. Not included here are natural areas where recreation is a dominant use. While not legally mandated, it is Air Force policy to avoid deployment of M-X system components in all these areas to the maximum degree possible.

The National Wilderness Preservation System (NWPS), initiated under the Wilderness Act of 1964, currently consists of 79,920,639 million acres of land (Hauer, 1981) in the United States classified as wilderness within areas administered by such federal land-managing agencies as the Bureau of Land Management (BLM), U.S. Forest Service (USFS), U.S. Fish and Wildlife Service (FWS), and National Park Service (NPS). Wilderness areas are roadless, primitive, unique natural areas of 5,000 or more contiguous acres of federal land. Wilderness is intended to preserve natural conditions and outstanding opportunities for solitude. For areas classified under the Wilderness Act this is a legal requirement. Sustained rapid growth in the recreational use of wilderness lands threatens the preservation of both naturainess and solitude. In 1979 areas administered by USFS received about 9.5 million visitor-use days (Glen, 1980). The magnitude of the wilderness system, its current and projected use, and the controversy surrounding proposed additions to the wilderness system, make wilderness preservation a public issue.

The mandate to preserve wilderness is based upon a wide range of perceived benefits which society derives from the preservation of wilderness resources. These benefits include:

- o Preserving a sample of key ecosystems to ensure biotic diversity
- o Conserving gene pools and endangered ecosystems
- o Preserving natural areas for research and baseline ecosystem monitoring
- o Providing backcountry recreation
- Conserving wildlife and fish
- Conserving scenic resources for tourism
- o Protecting a balanced land-use pattern
- o Conserving a cultural heritage
- o Preserving aesthetic values

o Providing educational opportunities.

(

All federal land-managing agencies except the Department of Defense and the Department of Energy are required to review the lands under their jurisdiction and to identify areas meeting the wilderness criteria set forth by the Wilderness Act (WA) of 1964 and the Federal Land Policy and Management Act (FLPMA) of 1976. The NPS, USFS, and USFWS have completed reviews of land under their jurisdiction and have identified areas for inclusion in the NWPS. The BLM is currently engaged in such a review.

The requisite characteristics to qualify an area for wilderness status are:

- o That it be roadless (no routes improved or maintained by mechanical means) (FLPMA, 1976)
- o That it contain 5,000 or more acres of contiguous public land (FLPMA, 1976)
- o That it be natural (affected primarily by natural forces with man's impact essentially unnoticeable) (WA, 1964)
- o That it be primitive (providing an opportunity for solitude and unconfined recreation) (WA, 1964)
- o That there be ecological, geological, scientific, educational, scenic, or historical factors favoring its preservation as wilderness (WA, 1964)

In January 1979, the U.S. Forest Service completed its wilderness identification program called Roadless Area Review and Evaluation II or "RARE II" as published in a Final Environmental Impact Statement. In these recommended areas, "no activities which might alter wilderness qualities of the land will be allowed, unless permitted by law or prior right, and entry for development purposes will be prohibited" (USFS, 1979). The NPS, USFWS, and USFS will have satisfied their mandates when congressional action on those roadless areas currently being reviewed is completed.

The BLM identification of wilderness areas is scheduled for completion in 1991. As of April 1981, over 13 million acres are currently under review in the states of Nevada and Utah. These include Wilderness Study Areas (WSAs) as well as units under appeal to the Interior Board of Land Appeals (IBLA). Although these areas are not yet congressionally designated Wilderness, they are managed as such under the Interim Management Policy and Guidelines set forth by the Department of the Interior. All BLM lands currently under review for incorporation into the NWPS are managed as directed by FLPMA, Section 603 (c); that is, "so as not to impair the suitability of such areas for preservation as wilderness," as prescribed in the Department of the Interior's Interim Policy and Guidelines for Lands Under Wilderness Review, (December 1979). The BLM is directed to prevent unnecessary or undue degradation of the lands and their resources, and to afford them environmental protection. Mineral and grazing uses are allowed to continue in the manner in which they were being conducted on the date of approval of FLPMA (October 21, 1976). Examples of uses that would be incompatible with the Interim Management Guidelines include new utility corridors and power generating stations.

Prior to the passage of FLPMA in 1976, several areas administered by the BLM on public lands had been set aside as Research Natural Areas (RNAs) for scientific and educational purposes, and as Outstanding Natural Areas (ONAs) for recreation. As mandated by FLPMA all these previously designated natural areas were identified as Instant Study Areas (ISAs) and reevaluated for wilderness characteristics.

"Significant natural areas" is an inclusive term subject to a variety of interpretations. Such areas could include an especially scenic landscape, a pristine woods or stream, an attractive camping or fishing area, a unique geologic formation, an historic site, a park, a wildlife refuge, a national monument, and many more. Some areas, such as cultural and historic sites, properly belong in assessments of archaeological or anthropological impacts, others should be included in discussion of land use; most are recreational sites. To avoid redundancy within this environmental impact statement and to confine this study to areas of special ecological sensitivity, the following criteria were developed to define significant natural areas:

- o Such areas must be ecologically important requiring management to preserve their intrinsic biological values for scientific study and as representatives of ecological communities
- o Such areas must be formally classified by one or more state or federal agencies. To be listed in a survey report as being "significant" is not sufficient reason for inclusion
- o Such areas are subject to a management policy administered by a state or federal agency.
- o Private lands may be included if they are formally classified even though they may not be managed by a public agency
- o Classified areas for which the dominant use is recreation, although ecologically important, shall not be included in the analysis.

Using the above criteria, significant natural areas for this study are: National Natural Landmarks, Research Natural Areas, National Wildlife Refuges, Wildlife Management Areas, National Grasslands, and Areas of Critical Environmental Concern.

A National Natural Landmark is an area identified by the National Park Service as having an ecological or geological feature that is a significant example of the nation's cultural heritage. Once a landmark is designated by the Secretary of the Interior, it is included in the National Registry of Natural Landmarks. Designation of an area as a Natural Landmark does not constitute a land withdrawal, and does not affect ownership of the site. Owners of a Natural Landmark may voluntarily agree to protect their area's outstanding natural values; such an agreement results in designation of the area as a Registered National Natural Landmark.

A Research Natural Area (RNA) is a classification used by several federal land management agencies to designate lands on which various natural features are

preserved in an undisturbed state solely for scientific research and educational purposes. RNAs are part of a national system under development since 1927. There are two primary purposes for establishing RNAs: (1) to preserve a representative array of all significant natural ecosystems and their inherent processes as baseline areas, and (2) to obtain, through scientific education and research, information about natural system structure and function, and to compare these systems with representative manipulated systems. The Research Natural Area system receives no special legislative protection. The additional protection that is afforded RNAs is derived from the agencies that designate them. Unless an activity contributes to the preservation of the designated feature, it is prohibited. Picnicking, camping, hiking, swimming, and gathering are generally discouraged, and sometimes prohibited. Hunting, fishing, and trapping are discouraged, but are permitted subject to state regulation. Scientists wishing to use a particular RNA must obtain permission from the managing agency.

A National Wildlife Refuge is a special habitat within a U.S. Fish and Wildlife-managed system established to safeguard a national network of lands and waters and to make available public benefits that are associated with wildlife, particularly migratory birds and endangered species. In addition to the preservation of wildlife, a National Wildlife Refuge may provide opportunities for scientific studies and wildlife-oriented recreation. It is the policy of the U.S. Fish and Wildlife Service that public use on refuges will be secondary to the primary purpose of management for wildlife.

Wildlife Management Areas are similar to National Wildlife Refuges in objectives; they are managed by agencies other than the U.S. Fish and Wildlife Service.

A National Grassland is part of the National Forest System administered by the U.S. Dept. of Agriculture, Forest Service, for purposes of land conservation and multiple use. Objectives of the project include the development of grassland agriculture, and sustained-yield management of the forage, fish, wildlife, timber, water, and recreational resources of the area. National Grassland resources are managed to maintain soil and vegetative cover. The Secretary of Agriculture may sell, lease, or otherwise transfer National Grasslands for public purposes only; industrial parks and private or commercial enterprises may not be established on National Grasslands.

An Area of Critical Environmental Concern is an area within public lands, administered by the Bureau of Land Management, where special management attention is required to prevent irreparable damage to important historic, cultural, or natural areas, or to protect life and safety from natural hazards.

In the Nevada/Utah study area, more than 2 million acres are occupied by formally classified significant natural areas; an additional 405,000 acres are areas nominated as National Natural Landmarks. In the Texas/New Mexico study area, classified significant natural areas total more than 362,000 acres, with an additional 3,600 acres nominated as National Natural Landmarks.

There are no Areas of Critical Environmental Concern in either study area.

2.0 NEVADA/UTAH REGION

2.1 **WILDERNESS**

Currently, Nevada and Utah have one Congressionally Designated Wilderness area each, both administered by the USFS: Jarbidge in the Humboldt National Forest in northeastern Nevada, and Lone Peak in the Uinta and Wasatch National Forest of central Utah. These areas are located approximately 125 and 65 mi, respectively, from the nearest system feature and are not likely to be directly affected by the M-X project. As a result of the USFS RARE II program, approximately 212,000 acres of Forest Service roadless areas in the vicinity of the Nevada/Utah study region have been recommended for wilderness status or earmarked for further planning. Administratively Endorsed Wilderness Proposals in the vicinity of the proposed deployment area are: the Desert National Wildlife Range (USFWS), Bryce Canyon (NPS), Zion National Park (NPS), and portions of the Lake Mead National Recreation Area (NPS). Anaho Island in Pyramid Lake and Sheldon National Antelope Refuge, more than 100 mi from the study area in northwestern Nevada, have also been administratively endorsed for wilderness status but are not likely to be directly affected by the project.

As of April 1981, total BLM wilderness resources within the proposed deployment area comprised approximately 2.5 million acres of land, which include designated wilderness study areas resulting from special high-priority project requirements such as land transfers and energy projects as well as those resulting from the November 1980 BLM determinations and subsequent wilderness unit appeals to the Interior Board of Land Appeals (IBLA). The names, unit numbers, and current status for interagency wilderness resources in the study area are presented on a hydrologic subunit basis in Table 2.1-1; data on location and size of these areas are mapped in Figure 2.1-1.

2.2 SIGNIFICANT NATURAL AREAS

Significant natural areas in the Nevada/Utah study area, identified by federal or state agencies as areas to be preserved for their unique ecological or geological characteristics, include 8 designated and 49 potential National Natural Landmarks, 13 National Wildlife Refuges or Wildlife Management Areas, 25 Research Natural Areas, and more than 30 "other" natural areas. Table 2.2-1 lists significant natural areas in the Nevada study area; Table 2.2-2 lists these areas for Utah. Figure 2.2-1 shows their locations. Table 2.2-3 lists these areas by hydrologic subunit.

The National Natural Landmarks Program, formerly administered under the Heritage Conservation and Recreation Service (HCRS), Department of the Interior Division of Natural Landmarks, was consolidated within the National Park Service in late spring 1981. HCRS supplied the most recent information on the status of Natural Landmarks for this impact statement; descriptions were obtained from a comprehensive study of the Great Basin (Bostick et al., 1975). Designated National Natural Landmarks on the Registery in Nevada and Utah are listed below:

1. The Hot Creek Springs and Marsh in Nye County, Nevada is a Registered National Natural Landmark; it is being considered for expansion to

Table 2.1-1. Wilderness resources in and around the Nevada/Utah study area (Page 1 of 4).

Hy	Hydrologic Subunit		Wilderness	Wilderness Resource Area			Approximate	Percent Wilderner
Number	Name	Managing Agency	Name	Number	Status (April 1981)	Total Resource Acreage	Within Hydrologic Subunit	Resource In Hydrologic Subunit
3	Snake, Nev./Utah	BLM BLM BLM BLM USFS USFS USFS BLM	Deep Creek Mountains Fish Springs Range Granite Spring Conger Mountain Mt. Moriah Wheeler Peak Highland Ridge King Top Wah Wah Mountains	UT-050-020 UT-050-127 NV-040-086 UT-050-035 4-352 4-359 A-391 UT-050-073	WSA ² WSA WSA Under Appeal WSA FP FP FP FP WSA WSA	68,910 52,500 23,400 22,863 97,205 61,869 76,017 84,771	26,875 10,500 23,400 11,889 78,736 44,546 23,565 31,365 2,450	39 20 100 82 72 31 37
•	Pine, Utah	BLM BLM BLM	Mountain Home Range Central Wah Wah Range Wah Wah Mountains	UT-040-104 UT-040-204B UT-050-073	WSA IU ⁴ Under Appeal WSA	19,019 37,238 35,000	4,945 17,502 15,050	26 47 43
•	White, Utah	BLM BLM BLM BLM BLM BLM	King Top Notch Peak Conger Mountain Howell Peak Swasey Mountain Fish Springs Range	UT-050-070 UT-050-078 UT-050-035 UT-050-077 UT-050-061 UT-050-127	**************************************	84,771 51,130 22,863 23,825 49,500 52,500	47,472 17,896 10,974 16,201 20,790 11,550	5 £ 88 2 2 2
7	Fish Springs, Utah	BLM BLM BLM	Fish Springs Range Dugway Mountains Swasey Mountain	UT-050-127 UT-020-129 UT-050-061	WSA IU Under Appeal WSA	52,500 20,638 49,500	30,450 9,906 9,405	58 48 19
∞	Dugway, Utah	RLM	Dugway Mountains	UT-020-129	IU Under Appeal	20,638	10,732	52
6	Government Creek, Utah		None				o	c
94	Sevier Desert, Utah	BLM	Rockwell Swasey Mountain	UT-050-186 UT-050-061	WSA	9,151	9,151	100
468	Sevier Desert- Dry Lake, Utah	BLM BLM BLM	Swasey Mountain Howell Peak Notch Peak	UT-050-061 UT-050-077 UT-050-078	#SA #SA #SA	49,500 23,825 51,130	7,920 7,624 33,235	16 32 65
8	Milford, Utah		None				o	c
25	Lund District, Utah		None				0	0
53	Beryl-Enterprises District, Utah	USES	Pine Valley Mountain	A4-251	Rare II Wilderness Recommendation	83,500	835	-
54	Wah Wah, Utah	BLM BLM BLW	Wah Wah Mountains Central Wah Wah Range King Top	UT-050-073 UT-040-204B UT-050-070	WSA IU Under Appeal WSA	35,000 37,238 84,771	17,500 19,736 5,934	82.
1 37 A	137A Big Smoky- Tonopah Flat, Nev.	USFS	Arc Dome	4-667	Rare II ⁶ Wilderness Recommendation	94,370	3,775	3

Table 2.1-1. Wilderness resources in and around the Nevada/Utah study area (Page 2 of 4).

Ť	Hydrologic Subunit		Wilderness	Wilderness Resource Area			Approximate	Percent
Number	Vane	Managing Agency	Name	Number	Status (April 1981)	Total Resource Acreage	widerness Resource Acreage Within Hydrologic Subunit	Wilderness Resource In Hydrologic Subunit
1 36	Kobeh, Nev.	PLM BLM	Roberts Simpson Park	NV-060-541 NV-060-428	WSA Under Appeal WSA Under Appeal	15,090	2,113	14 26
1403	140A Monitor-North, Nev.		None				0	0
1408	149B Monttor-South, Nev.		None				0	O
-	Ralston, Nev.		None				0	0
142	Alkalı Səring, Nev.		None				0	0
84-	Cactus Flat, Nev.	BLM	Kawich	610-090-AN	WSA Under Appeal	27,360	6,840	25
671	Stone Cabin, Nev.	RLM RLM	Rawhide Mountain Kawich	NV-060 359 NV-060-019	WSA Under Appeal WSA Under Appeal	64,360	28,318 10,123	37
131	Antelope, Nev.		None				0	0
75	Newark, Nev.		None				0	c
155/	155A Little Smoky. North, Nev.	BLM BLM	Antelope Park Range	NV-060-231/241 NV-040-154	WSA Under Appeal WSA Under Appeal	87,400	11,362	13
1550	155C. Little Smoky- South, Nev.	ВГМ ВГМ	Palisado Mesa The Wall	NV-060-142/162 NV-060-163	WSA Under Appeal WSA Under Appeal	99,550 38,000	946'11	12
1.56	156 Hot Greek, Nev.	PLM PLM PLM PLM PLM PLM PLM PLM PLM PLM	S. Reveille Kawich Palisade Mesa Rawhide Mountain Radango Morcy Antelope Park Range	NV-060-112 NV 060-019 NV-060-142/142 NV-060-059 NV-060-191 NV-060-231/241 NV-040-154	WSA Under Appeal	106,200 27,360 29,550 64,360 40,940 20,120 87,400 46,500	16,992 10,397 10,397 36,042 19,651 20,120 40,204 24,645	16 28 41 88 100 100 13
179	Penoyer, Nev.	HSFS BLM	Quinn Worthington Mountains	4-360 NV 040-242	Rare II Wilderness Recommendation WSA Under Appeal	88,616	14,179	91
171	Coal, Nev.	BLM	Weepah Spring	NV-040-246	WSA	000'19	12,690	53
7.1	Garden, Nev.	USFS	Quinn	4-360	Rare II Wilderness	88,616	22,154	22
		1JSES	Grant Range	178-4	Recommendation Rare II Wilderness	98.904	48,463	611
		BLM	Worthington Mountains	NV-040-242	WSA Under Appeal	47,100	16,485	3.5
17.37	173A Railroad-South, Nev.	RLM	South Reveille	NV 060-112	WSA Under Appeal	106,200	89,208	7 %

15042/9-16-81

Table 2.1-1. Wilderness resources in and around the Nevada/Utah study area (Page 3 of 4).

Percent Wilderness	Resource In Hydrologic Subunit	4.7 89 59	07	100 50	0	0	71	\$\$	20 13 1	28 49 49	0	13	34 67 38 1	10 32 33 33	75 16 44 37
Approximate Wilderness	Resource Acreage Within Hydrologic Subunit	46,789 33,820 52,283	5,840 39,562	59, 560 28, 400	o	0	16,847	54,505	4,960 7,085 851	23,828 26,705 24,402	0	16,471 6,006	12,104 26,532 20,710 770	3,560 24,325 17,323 18,469 13,068	14,264 5,696 8,617 28,126
	Total Resource A	99,550 38,000 88,616	5,840	59,560 56,800			001,66	99,100	24,800 54,500 85,100	85,100 54,500 49,800		126,700 28,600	35,600 39,600 54,500 77,000	35,600 76,017 61,869 97,205 39,600	19,019 35,600 19,590 76,017
	Status (April 1981)	WSA Under Appeal WSA Under Appeal Rare II Wilderness	WSA Under Appeal Rare II Wilderness Perconnection	WSA Under Appeal WSA Under Appeal			Non-WSA Under Appeal	Non-WSA Under	Appeal 10 Under Appeal WSA WSA	WSA WSA WSA		WSA WSA	WSA Under Appeal WSA WSA WSA	WSA Under Appeal FP FP FP WSA	IU Under Appeal WSA Under Appeal WSA FP
Wilderness Resource Area	Number	NV-060-142/162 NV-060-163 4-360	NV-060-166(A,B) 4-371	NV-060-158/199 NV-040-166			NV-040-015	NV-040-015	NV-040-123 NV-040-169 NV-040-168	NV-040-168 NV-040-169 NV-040-172		NV-050-0177 NV-050-0132	NV-040-197 NV-040-177 NV-040-169 NV-040-169	NV-040-197 4-391 4-359 4-352 NV-040-177	1)T-040-104 NV-040-197 NV-040-202 4-391
Wildernes	Name	Palisade Mesa The Wall Quinn	Grant Range Grant Range	Blue Eagle Riordan's Well	None	None	Goshute Canyon	Goshute Canyon	Martin Spring Mt. Grafton South Egan Range	South Egan Range Mt. Grafton Far South Egan	None	Delamar Mountains South Pahrocs/Hiko	Table Mountain Fortification Range Mt. Grafton Parsnip Peak	Table Mountain Highland Ridge Wheeler Peak Mt. Moriah Fortification Range	Mountain Horne Range Table Mountain White Rock Range Highland Ridge
	Managing Agency	BLM BLM USFS	BLM USFS	BLM BLM			ВГМ	ВГМ	BLM BLM BLM	8LM 8LM BLM		BLM BLM	BLM BLM BLM BLM	BLM USFS USFS USFS BLM	BLM BLM BLM USFS
Hydrologic Subunit	Name	1738 Railroad-North, Nev.			Jakes, Nev.	Long, Nev.	Butte-South, Nev.	Steptoe, Nev.		Cave, Nev.	Dry Lake, Nev.	Delamar, Nev.	Lake, Nev.	Spring, Nev.	Hamlin, Nev./Utah
Hydi	Number	17.3R			174	17.5	1788	621		180	181	182	183	184	961

8

Table 2.1-1. Wilderness resources in and around the Nevada/Utah study area (Page 4 of 4).

Hyc	Hydrologic Subunit		Wilderness	Wilderness Resource Area			Approximate Wilderness	Percent Wildernorr
Number	Name	Managing Agency	Name	Number	Status (April 1981)	Total Resource Acreage	Resource Acreage Within Hydrologic Subunit	Resource In Hydrologic Subunit
202	Patterson, Nev.	RLM	Parsnip Peak	NV-040-206	WSA	77,000	40,040	\$2
202	Meadow Valley Wash,	RLM	Meadow Valley Mountains	NV-050-0156	WSA	185,744	143,023	7.7
	:	BLM BLM	Mormon Mountains Grapevine Spring	NV-050-0161 NV-050-0139	WSA WSA	162,887	112,392	82
202	White River, Nev.	USFS	Grant Range	4-371	Rare II Wilderness	98,904	10,879	I
		вгм	Riordan's Well	NV-040-166	WSA Under Appeal	56,800	28,968	15
		S S	Far South Egan	NV-040-172 NV-040-168	WSA	49,800	25,398	<u>.</u> 2
		ВГМ	Martin Spring	NV-040-123	IU Under Appeal	24,800	19,840	. 08
208	Pahroc, Nev.	вгм	Weepah Spring	NV-040-246	WSA	61,000	43,310	7.1
502	Pahranagat, Nev.	ish and Wildlife	Desert National Wildlife Range	FW-915	AEWP ⁷	1,460,340	29,207	2
		BLM	E. Pahranagat	NV-050-0131	WSA Under Appeal	16,200	11,502	- S
		BLM	Lower Pahranagat Lake	NV-050-0165	WSA Under Appeal	3,350	3,350	8 6
		BLM	South Pahrocs/Hiko Delamar Mountains	NV-050-0132 NV-050-0177	WSA ASA	28,600	22,594	79
210	Coyote Spring, F	ish and Wildlife	Desert National Wildlife Range	FW-915	AEWP	1,460,340	778.681	13
	:	BLM	F&W#3	NV-050-0217	WSA	22,002	3,080	3
		BLM	F & W #2	NV-050-0216	₩ S A	16,516	16,516	001
		BLM	Arrow Canyon Range	NV-050-0215	WSA	28,000	9,800	\$2
		BLM 91 M	Meadow Valley Mountains	S NV-050-0156	WSW.	\$5,744	26,004	æ 6
		BLM	Evergreen	NV-050-9201 NV-050-01R-16	€ & & & & & & & & & & & & & & & & & & &	2,834	2,834	88
			,	(A,B,C)				
		BLM	Delamar Mountains	NV-050-0177	WSA	126,700	77,287	5
519	Muddy Springs, Nev.		Arrow Canyon Range	NV-050-0215	WSA	28.000	17,360	62
T\$042/9-16-81	18-81							

9

T5042/9-16-81

Due to an accuracy level of + I percent, these figures have been rounded to the nearest whole number. Therefore, calculated total acreage figures may not precisely correspond to managing agency total acreage figures.

Wilderness Study Area.

Further Planning.

hrentory Unit.

Roadless Area Review and Evaluation. Subunits containing OB sites.

⁷Administratively Endorsed Wilderness President

Figure 2.1-1. Wilderness resources in the Nevada/Utah study area.

<u>4458</u>-0 CA-0399-D

Table 2.2-1. Inventory of significant natural areas.* Nevada study area (Page 1 of 5).

Significant Natural Area	County	Acres	Managing Agency
National Natural Landmarks			
Designated			
Hot Creek Springs and Marsh 1	Nye	15	State
Ichthyosaur Site ¹	Nye	200	State
Lunar Crater	Nye	400	BLM
Ruby Lake Marsh	Elko, White Pine	12,000	USFWS
Timber Mountain Caldera	Nye	263,680	DOE: DOD
Valley of Fire l	Clark	30,000	State
Potential			
Arc Dome	Nye	41,000	USFS
Big Dune Natural Area	Nye	5,760	BLM
Charlestown Peak	Clark	N/A	
Desert National Wildlife Range	Clark, Lincoln	1,443,000	USFWS
Diana's Punchbowl ²	Nye	160	Private
Duckwater	Nye	100	Indian/Public
Frenchman Flat Fossil Site	Nye	N/A	DOE
Frenchman Mountain- Rainbow Gardens ²	Clark	N/A	
Hot Creek Range ²	Nye	266,440	BLM: Private
Morey Peak	Nye	23,680	BLM
Leviathan Cave	Lincoln	3,840	BLM
Lexington Arch	White Pine	40	USFS
McCullough Range	Clark	384,840	BLM; Private

Table 2.2-1. Inventory of significant natural areas.* Nevada study area (Page 2 of 5).

Significant Natural Area	County	Acres	Managing Agency
National Natural Landmarks			
Potential (continued)			
Mormon Mesa	Clark	23,200	BLM; NPS
Mount Grafton	Lincoln, White Pine	38,400	BLM
Mount Jefferson Research Natural Area	Nye	3,490	USFS
Pupfish	Nye	176,380	BLM, NPS, State
Red Rock Escarpment	Clark	77,770	BLM; State
Pine Creek Natural Area	Clark	240	BLM
Roberts Mountains	Eureka	62,500	BLM
Ruby Mountains ²	Elko	40,000	USFS; Private
Sarcobatus Flat ²	Nye	50,000	BLM
Snake Range ²	White Pine	N/A	USFS
Mount Moriah	White Pine	120,000	USFS
Wheeler Peak Scenic Area	White Pine	28,000	USFS
Spring Valley White Sage Flat	White Pine	1,820	BLM
Troy Peak-Hooper Canyon	Nye	97,540	USFS
Virgin River	Clark	2,000	State
Weiser Bowl	Clark	4,000	BLM
White Mountains ²	Esmeralda	329,000	USFS
The Wild Granites	Nye	11,000	USFS

Table 2.2-1. Inventory of significant natural areas.* Nevada study area (Page 3 of 5).

Significant Natural Area	County	Acres	Managing Agency
Refuges			
Desert National Wildlife Range	Clark, Lincoln	1,588,458	USFWS
Key-Pittman ³	Lincoln	1,200	State
Kirch	Nye	5,593	State
Moapa Valley ⁴	Clark	11	USFWS
Overton ³	Clark	14,575	State
Pahranagat	Lincoln	5,381	USFWS
Pupfish ³	Nye	137	BLM
Ruby Lake ⁴	Elko, White Pine	37,621	USFWS
Railroad Valley ³	Nye	14,710	BLM
Research Natural Areas			
Basin	Clark	650	USFWS
Carpenter Canyon	Clark	2,250	USFS
Deadhorse	Clark	8,640	USFWS
Goshute Canyon	White Pine	7,650	BLM
Hayford Peak	Clark	2,000	USFWS
Heusser Mountain Bristlecone Pine	White Pine	480	BLM
Mount Jefferson	Nye	3,490	USFS
Mountain Meadow	Nye	22	BLM
Papoose Lake	Lincoln	23,680	USFWS
Pine Creek	Clark	150	BLM
Pinyon-Joshua Transition	Esmeralda	560	BLM

Table 2.2-1. Inventory of significant natural areas.* Nevada study area (Page 4 of 5).

Significant Natural Area	County	Acres	Managing Agency	
Research Natural Areas (continued)				
Pinyon-Juniper	Clark	500	USFWS	
Ruby Valley Marsh	Elko, White Pine	10,000	USEWS	
Shoshone Ponds	White Pine	1,240	BUM	
Shoshone Pygmy Sage	White Pine	160	BLM	
Sunrise Mountain	Clark	10,240	BLM	
Swamp Cedar	White Pine	3,200	BLM	
Virgin Mountain	Clark	6,560	BLM	
Areas of Critical Environmental Concern				
None				
Other Natural Areas ⁵				
Arrow Canyon	Clark	11,120	BLM	
Black Mountain Caldera	Nye		BUM:USAF	
Cathedral Canyon Natural Arch	White Pine	1	USFS	
Cherry Creek's Engleman Spruce	Elko	6,880	BLM	
Clover Creek and Mountains	Lincoln	41,600	BLM	
Coal Valley	Nye	495	BLM	
Crescent Valley Grassland	Eureka		BLM:private	
Delamar	Lincoln	139,000	BLM	
Devil's Throat	Clark	1	BLM	
Eureka Formation Fossils	White Pine	495	USFS	
Fish Lake Valley Badlands	Esmeralda		RLM	
Gold Butte	Clark		BLM	

Table 2.2-1. Inventory of significant natural areas.* Nevada study area (Page 5 of 5).

Significant Natural Area	County	Acres	Managing Agency
Other Natural Areas (continued)			
Ikes Canyon	Nye	1,920	BLM;USFS
Lone Mountain	Esmeralda		BLM
McCan Canyon Geologic Area	Nye	1,360	USFS
Meadow Valley Mountains	Lincoln	124,490	BLM
Meiklejohn Peak Fossil Site	Nye		BLM
Mormon Peak	Lincoln	19,200	BLM
Osceola Cave and Arch	White Pine	1,280	BLM
Pearl Peak Bristlecone Pine	Elko	9,600	BLM
Pilot Mountain	Mineral		BLM
Pilot Peak Engleman Spruce	Elko	26,240	BLM
Railroad Pass Natural Arch	White Pine	10	BLM
Shipley Hot Spring	Eureka	40	Private
Silver Peak Natural Area	Esmeralda	640	BLM
Spencer Hot Springs	Lander	640	BLM
Toquima Cave	Lander	1	USFS

^{*}Areas listed are primarily those formally classified by federal or state managing agencies. Unclassified areas, except where noted, are not listed. Also not listed are areas for which recreation is a dominant use.

Registered.

In nominating process.

³Wildlife Management Area.

⁴ National Wildlife Refuge.

Areas are not classified natural areas by federal managing agencies but are considered sensitive by the state.

Table 2.2-2. Inventory of significant natural areas,* Utah study area (Page 1 of 3)

Significant Natural Area	County	Acres	Managing Agency				
National Natural Landmarks							
Designated							
Joshua Tree Natural Area ¹	Washington	1,040	BLM				
Neffs Canyon Cave ¹	Salt Lake		USFS				
Potential							
Antelope Spring Trilobite Beds ²	Millard	10,000	BLM				
Bonneville Salt Flats ²	Tooele	36,480	BLM; State				
Brighton Basin Igneous and Metamorphic Rocks	Utah, Wasatch, Salt Lake	2,880	USFS				
Cinder Cone-Head of Snow Canyon	Washington	320	State; Private				
Deep Creek Mountains	Juab, Tooele	129,367	BLM				
Desert Range Research Natural Area ²	Millard	1,846	USFS				
Faulted Basalts in Virgin River Gorge, Hurricane	Washington	960	Private				
Fish Springs	Juab	17,992	USFWS				
Inverted Valleys, St. George	Washington	16,000	Private				
Mount Nebo	Juab, Utah	25,280	USFS; State				
Mount Timpanogos Oquirrh Formation	Utah	6,080	USFS				
Pink Sand Dunes, Hurricane	Washington	3,840	State				
Red Mountain (Dixie Corridor)	Washington	16,000	BLM				
T4775/9-19-81							

Table 2.2-2. Inventory of significant natural areas,* Utah study area (Page 2 of 3).

Significant Natural Area	County	Acres	Managing Agency				
National Natural Landmarks							
Potential (continued)							
Ripple Arch	Washington	760	BLM				
Scenic Overlook Hurricane Cliffs	Washington	1,280	State				
Spanish Fork Peaks-Maple Mountain Faceted Spurs and Glaciation	Utah	6,800	USFS				
Steamboat Mountain	Iron	7,680	BLM				
Thistle Canyon Landslides	Utah	1,088	Private				
Refuges							
Clear Lake ³	Millard	6,150	State				
Fish Springs ⁴	Juab	17,992	USFWS				
Indian Peak ⁵	Beaver	10,240	State				
Topaz Marsh ³	Juab	4,142	State				
Research Natural Areas							
Bighorn	Washington	5,760	NPS (Zi n)				
Cedar Breaks	Iron	5,230	NPS (Zion)				
Desert Range ⁶	Millard	1,846	USFS				
Joshua Tree ⁷	Washington	1,040	BUM				
Kolob Mesas	Washington	500	NPS (Zion)				
Partridge Mountain	Millard	1,200	USFS				
West Rim-Phantom Valley	Washington	15,360	NPS (Zion)				

T4775/9-19-817-29-81

Table 2.2-2. Inventory of significant natural areas,* Utah study area (Page 3 of 3).

Significant Natural Area	County	Acres	Managing Agency
Areas of Critical Environmental Concern			
None			
Other Natural Areas ⁸			
Desert Experimental Range	Millard	55,680	USFS
Fumarole Butte	Juab	1,920	BLM
Millard County Deer Winter Range	Millard	16,538	State
Red Mountain	Washington	16,000	BLM
The Caves of Gandy Mountain	Millard	1,280	BLM

*Areas listed are primarily those formally classified by federal or state managing agencies. Unclassified areas, except where noted, are not listed. Also not listed are areas for which recreation is a dominant use.

¹Registered.

²In nominating process.

³Waterfowl Management Area.

⁴ National Wildlife Refuge.

⁵Wildlife Management Area.

⁶Within Desert Experimental Range.

⁷National Natural Landmark.

⁸Not classified by federal agency.

Figure 2.2-1. Significant natural areas in the Nevada/Utah study area.

Table 2.2-3. Significant natural areas in and around the Nevada/Utah study area by hydrologic subunit (Page 1 of 4).

No.	Hydrologic Subunit Name	Significant Natural Area	County	Total Acreage	Approximate SNA Acreage Within Subunit
4	Snake, Nev./Utah	Snake Range	White Pine	238,455	176,455
		Deep Creek Mountains	Juab, Tooele	129,365	50,872
		Wheeler Peak Scenic Area	White Pine	28,000	22,400
		Lexington Arch	White Pine	40	49
		Desert Experimental Range	Millard	55,680	10,000
		The Caves of Gandy Mountain	Millard	1,280	1,280
		Mt. Moriah	White Pine	120,000	84,000
5	Pine, Ctah	Desert Range Research Natural Area	Millard	1,346	1,846
		Desert Experimental Range	Millard	55,680	45,671
		Indian Peak Wildlife Management Area	Beaver	10,240	10,240
6	White, Utah	Antelope Spring Trilobite Beds	Millard	10,000	300
7	Fish Springs, Utan	Fish Springs National Wildlife Refuge	Juab	17,992	17,992
8	Dugway Creek, Utah	None	-		
9	Government Creek, Utah	None			
46	Sevier Desert, Utah	Clear Lake Waterfowl Management Area	Millard	6,150	6,150
		Partridge Mountain	Millard	1,200	1,200
		Fumarole Butte	Juab	1,920	1,920
		Antelope Spring Trilobite Beds	Millard	10,000	3,300
		Topaz Marsh Waterfowl Management Area	Juab	4,142	4,142
46A	Sevier Desert-Dry Lake, Utah	Antelope Spring Trilobite Bed	Millard	10,000	6,300
50	Milford, Utah ¹	None			
52	Lund District, Utah	Steamboat Mountain	Iron	7,680	7,680
53	Beryl-Enterprise District, Utah	None			_
54	Wah Wah, Utah	None		_	
137 4	Big Smoky-Tonopah Flat,	Arc Dome	Vye	41,000	2,870
	Nev.	Lone Mountain	Esmeralda	495	495
1 39	Kobeh, Nev.	Roberts Mountains	Eureka	62,500	25,625
140A	Monitor-North, Nev.	Diana's Punchbowl	Nye	160	160
		ike's Canyon	Nye	1,920	1,920
T915/8	-19-81				

Table 2.2-3. Significant natural areas in and around the Nevada/Utah study area by hydrologic subunit (Page 2 of 4).

	Hydrologic Subunit	Significant Natural Area	County	Tota!	Approximate SNA Acreage
No.	Name	ngimeant values ries	County	Acreage	Within Subunit
140B	Monitor-South, Nev.	Mt. Jefferson Research Natural Area	Nye	3,490	1,430
141	Raiston, Nev.	McCan Canyon Geologic Area	Nye	1,360	325
142	Alkali Spring, Nev.	None			
148	Cactus Flat, Nev.	None			
149	Stone Cabin, Nev.	Hot Creek Range	Nye	266,440	31,970
		McCan Canyon Geologic Area	Nye	1,360	1,035
151	Antelope, Nev.	None			
154	Newark, Nev.	None			
155A	Little Smoky-North, Nev.	None			
155C	Little Smoky-South, Nev.	Lunar Crater	Nye	400	355
156	Hot Creek, Nev.	Hot Creek Range	Nve	266,440	21,580
		Lunar Crater	Nye	400	45
170	Penoyer, Nev.	Leviathan Cave	Lincoln	3,840	2,805
171	Coal, Nev.	Coal Valley	Nye	495	495
172	Garden, Nev.	Leviathan Cave	Lincoln	3,840	1,035
		Troy Peak-Hooper Canyon	Nye	97,540	41,940
1734	Railroad-South, Nev.	None		_	
1738	Railroad-North, Nev.	Railroad Valley Wildlife Management Area	Nye	14,710	14,710
		Troy Peak-Hooper Canyon	Nye	97,540	49,745
		Duckwater	Vye	100	100
		Cathedral Canyon Natural Arch	White Pine	ı	1
174	Jakes, Nev.	None			
175	Long, Nev.	None			_
173B	Butte Valley-South, Nev.	Goshute Canyon	White Pine	7,650	995
179	Steptoe, Nev. 1	Goshute Canyon	White Pine	7,650	6,655
		Heusser Mountain Bristle Cone Pine	White Pine	480	480
130	Cave, Nev.	Mount Grafton	Lincoln,	38,400	16,130
			White Pine		

T915/8-19-81

Table 2.2-3. Significant natural areas in and around the Nevada/Utah study area by hydrologic subunit (Page 3 of 4).

No.	Hydrologic Subunit Name	Significant Natural Area	County	Total Acreage	Approximate SNA Acreage Within Subunit
i 3 1	Dry Lake, Nev.	Delamar	Lincoln	139,000	11,000
132	Delamar, Nev.	Delamar	Lincoln	139,000	34,700
183	Lake, Nev.	Mount Grafton	Lincoln, White Pine	38,400	22,270
184	Spring, Nev.	Osceola Cave and Arch	White Pine	1,280	1,280
		Mount Moriah	White Pine	120,000	36,000
		Swamp Cedar Research Natural Area	White Pine	3,200	3200
		Eureka Formation Fossils	White Pine	45	495
		Spring Valley White Sage Flat	White Pine	1,820	i,820
		Shoshone Pygmy Sage Research Natural			
		Area	White Pine	160	160
		Shoshone Ponds	White Pine	1,240	1,240
		Snake Range	White Pine	238,455	59,615
		Wheeler Peak Scenic Area	White Pine	28,000	4,200
196	Hamlin, Nev./Utah	Snake Range	White Pine	238,455	2,385
		Wheeler Peak Scenic Area	White Pine	28,000	1,400
202	Patterson, Nev.	None			
205	Meadow Wash, Nev. 1	Mormon Peak	Lincoln	19,200	10,000
		Meadow Valley Mountains	Lincoln	124,490	110,795
		Delamar	Lincoln	139,000	41,700
		Clover Creek & Mountains	Lincoln	41,600	13,310
257	White River, Nev.	Kirch Wildlife Management Area	Vve	5,595	5,595
		Troy Peak-Hooper Canyon	Nye	97,540	58,525
		Hot Creek Springs and Marsh	Nve	15	15
208	Panroc, Nev.	Vone			
209	Panranagat, Nev.	Key-Pittman Wildlife Management Area	Lincoln	1,200	1,200
		Pahranagat National Wildlife Refuge	Lincoln	5,380	5,380
		Desert National Wildlife Range	Clark, Lincoln	1,588,458	31,770

T915/8-19-81

Table 2.2-3. Significant natural areas in and around the Nevada/Utah study area by hydrologic subunit (Page 4 of 4).

	Hydrologic Subunit	Significant Natural Area	County	Total Acreage	Approximate SNA Acreage Within
No.	Name			J	Subunit
210	Coyote Spring, Nev. 1	Meadow Valley Mountains	Lincoln	124,490	1,245
		Delamar	Lincoln	139,000	1,390
		Desert National Wildlife Range	Clark, Lincoln	1,588,458	190,615
		Pinyon-Juniper Research Natural Area	Clark	500	500
		Deadhorse Research Natural Area	Clark	8,640	520
		Arrow Canyon	Clark	11,120	4,115
219	Muddy Springs, Nev. 1	Arrow Canyon	Clark	11,120	7,005
		Moapa Valley National Wildlife Refuge	Clark	11	11

T915/8-19-81

Sources: Bostick et al., 1975; Federal Committee on Research Natural Areas, 1968; Federal Committee on Ecological Reserves, 1977; Heritage Conservation and Recreation Service, 1980.

¹Hydrologic subunit associated with OB.

include the Wayne Kirch Wildlife Management Area. The springs and creek support a good population of the rare White River Springfish (Crenichthys baileyi), and the marsh is a haven for wildlife. The Nevada Department of Wildlife has fenced this area to provide a sanctuary for the rare fish.

- 2. The Ichthyosaur Site in the Toiyabe National Forest in Nye County, also a Registered National Natural Landmark is an outstanding fossil area, where fossil remains of the Jurassic ichthyosaur have been found. The site is a state park.
- 3. Lunar Crater in Nye County is an outstanding geological feature, about 3,800 ft across and 430 ft deep which covers more than 400 acres (BLM, 1979). The volcanic field surrounding it is noted for its lava flows, cinder cones, and numerous craters as well as for the beautiful displays of wildflowers, particularly the showy scarlet globe mallow (Sphaeralcea spp.). It is currently managed by the BLM as a recreation area.
- 4. Ruby Lake Marsh, in Elko and White Pine counties, is an important nesting area for greater sandhill cranes and trumpeter swans, both rare and majestic birds. The marsh is one of the largest and finest natural wetlands in Nevada.
- 5. Timber Mountain Caldera in Nye County is an outstanding example of volcanic phenomena which created an elliptical dome some 8 by 10 mi in extent. The site is in the western portion of the Nevada Test Site and the Nellis Air Force Gunnery Range.
- 6. Valley of Fire near Las Vegas is a state park managed as a natural area for its unusual red rock formations and excellent examples of both Mojave Desert and Great Basin flora and fauna. It is a Registered National Natural Landmark.
- 7. Joshua Tree Natural Area, located on bajadas along the southwest flank of the Beaver Dam Mountains in southern Washington County, Utah, is the only joshua tree forest in Utah and, with a few exceptions, is the northernmost stand of tree yuccas in the United States. The area has also been set aside as a Research Natural Area by the BLM and is used for grazing.
- 8. Neffs Canyon Cave, formed by the capture of a surface stream, is an extremely dangerous cave with no horizontal passages. Most passages dip steeply at a 45-60 degree gradient.

National Wildlife Refuges and Ranges are set aside by the U.S. Fish and Wildlife Service principally for the preservation of wetland habitats for migratory waterfowl, endangered species, or significant habitats of big game populations. The Desert National Wildlife Range is one of the nation's largest wildlife conservation areas. Its purpose is to preserve the desert bighorn sheep and the habitat vital to it, and other wildlife species. The Wildlife Range varies in elevation from 2,500 ft to nearly 10,000 ft. Although there are many outdoor recreational activities permitted on the Range, the number of people engaged in any one recreational activity at any

one time is limited. Ruby Lake and Fish Springs National Wildlife Refuges provide havens for several species of waterfowl, shore birds, and sandhill cranes; Ruby Lake also harbors Canada geese, sage grouse, and muskrats. The two primary species in Pahranagat are ducks, and geese. The Moapa Valley National Wildlife Refuge was purchased early in 1979 as part of a recovery plan to acquire habitats for the endangered Moapa dace. A former habitat for Moapa dace, it is now being developed to accept the species from other habitats. Clear Lake Waterfowl Management Area and Kirch Wildlife Management Area, managed by the Nevada Division of Wildlife, provide roosting sites for the endangered bald eagle.

Research Natural Areas (RNAs) in the Nevada/Utah study area are managed by the Bureau of Land Management (BLM), U.S. Fish and Wildlife Service (USFWS), U.S. Forest Service (USFS), and the National Park Service (NPS). All agencies employ a similar set of regulations to ensure the protection of the scientific and educational values for which the RNAs were designated, although specific management policies are determined on a case-by-case basis.

"Other" natural areas are not formally classified into the above designations by federal managing agencies. Most of these areas are managed by the BLM. In Nevada, the Division of State Parks has identified as significant all the "other" natural areas listed in Table 2.2-1. In Utah, the Millard County Deer Winter Range, managed by the Utah Division of Wildlife Resources, is aided by federal funds through the USFWS. Although access by the public is not restricted, development is prohibited. These areas, now administered by BLM, had been recommended for study as National Natural Landmarks.

3.0 TEXAS/NEW MEXICO REGION

3.1 WILDERNESS

One Congressionally Designated Wilderness and one wilderness study area are located in the New Mexico portion of the Texas/New Mexico study area. These are the USFWS-managed Salt Creek Wilderness, within the Bitter Lake National Wildlife Refuge, and the BLM-designated Sabinosa Wilderness Study Area (Figure 3.1-1).

3.2 SIGNIFICANT NATURAL AREAS

As in Nevada and Utah, various federal and state agencies in Texas and New Mexico have identified unique, undisturbed ecosystems and sites of geologic interest to be managed and preserved for their natural qualities. These are collectively termed "significant natural areas" and, with the inclusion of the USFS-managed National Grasslands, fall into the same categories as previously discussed in Section 2.2. Tables 3.2-1 and 3.2-2 list significant natural areas in Texas and New Mexico, their proposed or designated status, the managing agency, and their acreage. Figure 3.2-1 shows the locations of these areas.

As stated in Section 2.2, the National Natural Landmarks program was consolidated within the National Park Service in late spring 1981. Most recent information on the status of Natural Landmarks for this impact statement was supplied by the Heritage Conservation and Recreation Service (DOI) which formerly administered the National Natural Landmarks Program.

- 1. The High Plains Natural Area, within Buffalo Lake National Wildlife Refuge in Randall County, Texas, is a rolling prairie at an elevation of approximately 3,700 ft. As a natural community it significantly represents the grama-buffalo grass association.
- 2. Muleshoe National Wildlife Refuge of Bailey County, Texas, is outstanding for its more than 5,000 acres of short grasses, mesquite, and rangelands, its waterfowl, shorebirds, and the largest fall-winter concentration of little brown cranes in the United States. It is nationally significant as a seasonal haven for concentrations of waterfowl.
- 3. Palo Duro Canyon State Park in Armstrong and Randall counties, Texas, was formed by erosion of a fork of the Red River and contains cross-sectional views of sedimentary rock representing four geological periods and some Triassic and Pliocene vertebrate fossils.
- 4. The Bitter Lake Group, Chaves County, New Mexico, contains sinkhole depressions formed by solution of gypsum-bearing rocks and supports shrub-grassland vegetation representative of the northern Chihuahuan Desert.
- 5. Bueveros Shortgrass Plains, a Registered Landmark in Harding County, New Mexico, is an example of the blue grama-buffalo grass prairie of the Great Plains considered to be typical of the pre-cattle grazing era. Pronghorn and prairie dogs, two of the three dominant herbivores, are still in the area.

Figure 3.1-1. Wilderness resources in the Texas/New Mexico study area.

Table 3.2-1. Inventory of significant natural areas*, Texas study area.

Significant Natural Area	County	Acres	Managing Agency
National Natural Landmarks			
Designated			
High Plains Natural Area	Randall	175	USFWS
Muleshoe´ Palo Duro Canyon State Park¹	Bailey Armstrong, Randall	5,650 16,465	USFWS State Parks and
Potential	ò		Wildlife
Buffalo Springs	Dallam	364	Private
Refuges			
Buffalo Lake	Randall	7,664	USFWS
Muleshoe ⁵	Bailey	5,809	USFWS
Research Natural Areas			
High Plains ⁴	Randall	320	USFWS
Areas of Critical Environmental Concern			
None			
Grasslands			
Rita Blanca National Grasslands	Dallam	ر 2000,000	USFS
T4776, -19-81			

^{*}Areas listed are primarily those formally classified by federal or state managing agencies. Unclassified areas are not listed. Also not listed are areas for which recreation is a dominant use.

Registered.

²In nominating process.

³National Wildlife Refuge.

 $^{^{\}mu}$ Within Buffalo Lake National Wildlife Refuge.

 $^{^5\}mathrm{An}$ additional 200,000 acres is privately owned.

Table 3.2-2. Inventory of significant natural areas,* New Mexico study area (Page 1 of 2).

Significant Natural Area	County	Acres	Managing Agency
National Natural Landmarks			
Designated			
Bitter Lake Group	Chaves	10,090	USFWS
Bueyeros Shortgrass Plains	Harding	322	Private
Potential			
Mescalero Escarpinent	Quay	7,040	Private
Mescalero Sands ²	Chaves	3,571	BLM, State
Vaughn	Guadalupe	80	Private
Refuges			
Bitter Lake 3	Chaves	23,269	USFWS
Grulla ³	Roosevelt	3,231	USFWS
Las Vegas ³	San Miguel	8,239	USFWS
Maxwell 3	Colfax	3,454	USFWS
ðlackhills ⁵	Roosevelt	1,320	State
Claudell	Roosevelt	1,760	State
Crossroads 2	Chaves	2,189	State
Gallena Wells Tracts	Roosevelt	3,751	State
Liberty	Roosevelt	929	State
Marshall ²	Roosevelt	320	State
T4777/9-19-81			

Table 3.2-2. Inventory of significant natural areas,* New Mexico study area (Page 2 of 2).

Significant Natural Area	County	Acres	Managing Agency
Refuges (Continued)			
Wilnesand ⁵	Roosevelt	6,551	State
North Bluit 5	Roosevelt	1,280	State
South Bluit ⁵	Lea	049	State
Research Natural Areas			
Bitter Lake ⁴	Chaves	300	USFWS
Inkpot ⁴	Chaves	2	USFWS
Lake St. Francis	Chaves	700	USFWS
Mathers	Chaves	362	BLM
Areas of Critical Environmental Concern			
None			
Grasslands			
Kiowa National Grasslands	Union, Harding, Mora	136,412	USFS
T4777/9-19-81			

*Areas listed are primarily those formally classified by federal or state managing agencies. Unclassified areas, except where noted, are not listed. Also not listed are areas for which recreation is a dominant use.

Registered.

In nominating process.

³ National Wildlife Refuge.

⁴Within Bitter Lake National Wildlife Refuge.

⁵Wildlife Management Area

In addition to the USFWS-managed National Wildlife Refuges, there are several Wildlife Management Areas acquired by New Mexico for the establishment of restoration areas for the lesser prairie chicken. Although state-managed, partial funding for these areas has come through the USFWS-administered Federal Aid Program. These areas, totalling approximately 20,000 acres, are listed in Table 3.2-2.

Within the four-state area studied for possible M-X deployment, only Texas and New Mexico contain National Grasslands. Rita Blanca National Grasslands in Texas, and Kiowa National Grasslands in New Mexico are both within the study area. National Grasslands are a part of the National Forest System and are permanently held by the Department of Agriculture for administration under principles of land conservation and multiple use. Generally, there are no restrictions to hiking or camping.

Figure 3.2-1. Significant natural areas in the Texas/New Mexico study area.

4.0 PRINCIPAL IMPACTS TO WILDERNESS

4.1 INTRODUCTION

Wilderness areas are generally established to protect the natural environments of plant and animal populations, preserve genetic resources contained in rare ecosystems, and serve as sources of baseline data on undisturbed ecosystems. In addition to preserving natural conditions, wilderness is intended to preserve outstanding opportunities for solitude by providing low density, backcountry recreational experiences (Irland, 1979). For areas classified under the Wilderness Act (1964) this is a legal requirement. Increasing demand coupled with limited opportunities for expansion of the supply has created conditions in many areas that make the preservation of "wilderness character" extremely difficult and threatens the preservation of both naturalness and solitude. A salient feature of the Great Basin region, identified in the SCOPING process (HDR, 1980), are the wide vistas imparting a sense of open space, the last frontier, and associated qualities--important descriptions and components of wilderness in the eyes of many, particularly of this region. M-X deployment with its attendant visual and noise intrusions, as well as increased numbers of people in an area that is now primarily wildland, is expected to diminish the biophysical resource values characteristic of the Great Basin wildlands.

Wilderness Act criteria were used in developing the impact analysis. The analysis was performed in three steps: (1) a description of project effects on the wilderness resource, (2) an assessment of the impact to the wildland resources, and (3) a determination of impact significance. Effects on wilderness ecosystem integrity and quality of experience were estimated by combining baseline information with project information and are summarized in Table 4.1-1. These effects result primarily from construction and recreation. Primary sources of impact include (1) alteration of scenic landscapes by construction of clusters and road networks, (2) increased noise levels during construction activities, (3) increased access to formerly remote areas, combined with (4) increased numbers of people during both construction and operation, and (5) ambient air quality deterioration. Localized effects of dust generation by construction vehicles and wind erosion of disturbed areas are discussed in ETR-13 (Atmospheric Resources).

The short-term effects of the project on wilderness resources would include construction-related noise and lowered air quality and dispersed use of recreational resources by the increased human population associated with the project. Once construction is completed, the presence of fenced structures, DTN (Designated Transportation Network), and cluster-road networks would permanently alter scenic vistas from nearby wilderness resource areas. This constitutes an irreversible long-term effect. Population-related effects on the ecological integrity and on the quality of the wilderness experience would be proportional to user-density and would be primarily a function of population centers associated with construction camps and operating bases (OBs). From the standpoint of population and site-permanence, the long-term, recreation-related impacts on the wilderness resource would appear to be greater for population centers associated with the OBs.

Siting clusters and road networks adjacent to prospective wilderness would increase access to, and hence opportunities for, enjoyment of our wilderness

Table 4.1-1. Summary of potential impacts to wilderness resources in the Nevada/Utah study area (Page 1 of 2).

Project Parameter	Secondary Effects	Potential Impacts to Wilderness Resources	Refere nces
Area disturbed	Construction		
Protective structure = 10 acres/shelter	Fugitive dust	Degradation in scenic vista quality - temporary loss in wilderness quality.	Merriam and Ammons, 1964; Krutilla, 1972; Hendee et al., 1978
	Erosion	No effects predicted	richaee et an, 1970
	Loss of vegetation	Degradation in aesthetic quality. For those areas from which project construction is visible, there will be temporary loss in wilderness quality	Merriam and Ammons, 1964: Krutilla, 1972; Hendee et al., 1978
4,690 structures, full basing	Presence of people and machinery	Loss in aesthetic quality and increase in noise levels causing temporary loss in wilderness quality.	Merriam and Ammons, 1964: Krutilla, 1972; Hendee et al., 1978
2,300 structures, solit	Operations		
basing	Fugitive dust	Degradation in scenic vista quality - temporary loss in wilderness quality.	Merriam and Ammons, 1964; Krutilla, 1972; Hendee et al., 1978
Roads = 100 ft wide	Erosion	No effects predicted.	
1,269-1,450 mt DTN, full basing: 73- mt DTN split basing: 5,949-6,200 mt object roads, full basing: 3,171 mt cluster roads, split basing	Revegetation of disturbed areas	Reduction of fugitive dust leading to scenic vista improvement over time as revegetation occurs. Time scale will depend upon natural rate of revegetation and whether enhancement programs are implemented.	
Total = 160,565-172,375 acres	Transmission lines	For any built within view of areas, will be degradation in aesthetic quality, loss in wilderness quality	Merriam and Ammons, 1964: Krutilla, 1972; Hendee et al., 1978
Water use Construction: full basing 36,000-136,000 acre-fit vritotal	Lowering of water table with potential loss of surface water in lowland areas which might be connected through connecting drainage	Potential for wilderness quality loss and aquatic habitat loss resulting in increased concentrations of people into pristine areas. Minimal effects expected.	Dudley and Larson, 1976
	systems		
Vehicle traffic			
Construction	Fugitive dust	Degradation in scenic vista quality; temporary loss in wilderness	Merriam and Ammons, 1964: Krutilla, 1972;
Operations ASC to cluster = +,200 trips/yr	Noise and visual	quality. Degradation in wilderness quality for those areas through or near which vehicle traffic increases. Project data insufficient to predict specific	Hendee et al., 1978. Merriam and Ammons, 1964; Krutilla, 1972; Hendee et al., 1978.
T2368/10.2.3.31		locations.	

T2368/10-2-31

Table 4.1-1. Summary of potential impacts to wilderness resources in the Nevada/Utah study area (Page 2 of 2).

Project Parameter	Secondary Effects	Potential Impacts to Wilderness Resources	References
Security	Radar and microwave emissios	No effects predicted.	
	Noise and visual (e.g., helicopter and ground patrol)	Degradation in wilderness quality for areas through or near which security maneuvers are involved.	Merriam and Ammons, 1964; Krutilla, 1972; Hendee et al., 1978
		Project data insufficient to predict specific locations	
People	Sewage	No effects expected.	
	Solid waste	No effects expected.	
Construction	Introduction of exotic species	Data insufficient to predict effects.	
Direct labor =32,936 vr/beak, full basing; = 20,407 vr/peak			
split basing	Recreation	Degradation/loss of wilderness quality. Habitat destruction through vegetation	Utah Outdoor Recreation Agency. 1978, Altmann, 1956: McNamara.
	Unauthorized ORV use	removal and soil disturbance. Changes in animal behavior patterns due to habitat loss and increased noise levels. Increased noise and air pollution levels.	Berwick, & Hillver, 1980: The Geological Society of America. 1977; Wilshire & Nakata, 1976: Wilshire et al., 1978a.b: Bury et al., 1977; Vollmer et al., 1976a.b: BLM, 1975: Bondello, 1980;
induced growth = 125,000 peak, full basing		Data insufficient to quantify effects or location.	Busak & Bury, 1974; San Diego State Univ. & Hubbs/Sea World Research Institution, 1978.
Operations direct happy - induced growth = 34,000 permanent residents.	Camping, hiking, etc.	Degradation/loss in wilderness quality due to trampling and crushing of vegetation. Trail erosion from increased use of area.	Irland, 1979; Settergren, 1977; McQuaid-Cook, 1978; Frissell & Duncan, 1965; Merriam & Smith 1974; Verburg, 1974.
		Alteration of animal populations.	McQuivey, 1978.
		Increased level of contact with cultural amenities.	Henden et al., 1978.
_		Increased use and missuse of resources.	Miller, 1980; Long, 1980; DeGraff, 1980.
During construction, people will be dispersed throughout deployment area.		Increased litter and sanitation problems, attraction of nuisance organisms.	, and the second
During operation, people and effects will be concentrated in the vicinity of operating bases.	Hunting, fishing, poaching	Wilderness quality degradation/loss since there exists the potential for decrease in populations, particularly in isolated areas with the anticipated increase in hunting and fishing pressures.	Curran, 1980: Parkins, 1980.

T2368/10-2-81

heritage. However, such action would also reduce and compromise the desirable, unimpaired, primitive, and natural qualities associated with the wilderness resource. Although wilderness perception may vary with the user, in general, wilderness may be described as undeveloped, natural country, of difficult access (at least 3 mi from the nearest development) and usually with few people (Merriam & Ammons, 1964). According to Lucas (1980) the primary factors affecting wilderness experience satisfaction are (1) scenic and beauty including the wild natural quality of the land, and (2) the opportunity for solitude, with crowding as a negative influence. Where there are encroaching clusters and associated structures, the actual impact zone would be expanded since such proximity would have the potential to diminish the solitude opportunity of the wilderness experience within those wilderness resources.

Public comments reflect these concerns:

PUBLIC COMMENTS ON THE DRAFT EIS:

"The MX will not be deployed in designated or potential wilderness areas yet doesn't plan to eliminate such factors as noise and air pollution which will mar the primitive and natural aspect of wilderness. Vistas of the wilderness would include M-X roads and structures. Personnel seeking recreation would destroy the solitude of these areas, and M-X roads would increase population access." (A-0258-3-021)

"In addition to claiming resources that will be needed to develop our domestic, peace-time industry, the M-X would destroy the natural integrity of the remotest parts of the Basin and Range country where a man might like to go for discovery or just peace of mind." (A0411-8-006)

"Some proposed sites lie near existing and potential wilderness areas. If M-X is built, these areas may have lowered scenic and solitary values as wilderness areas." (B0164-2-333)

"Many potential wilderness units are virtually devoid of economic resources, yet they afford extraordinary values of solitude, scenery, and demanding primitive travel, camping, and hunting. Due to the low human presence in most of the valleys (which M-X would alter permanently), the contrasts between de facto wilderness, semi-wilderness lands, and the grazed and inhabited valleys is rarely jarring or discordant." (A0475-3-006)

"The M-X project, no matter how well thought out and/or implemented, will do many irreversible things to the area it is planned for. Building roads to and for the sites will bring ready access to now remote places. This in itself will destroy some of the natural beauty and appeal of these areas . . . its own wildness." (A0755-8-002)

Calculations based on information provided in ETR-10, "Noise," show that typical noise intrusion levels during various stages of construction (e.g. ground clearing, excavation, and erection) are less than 110 decibels on the A scale (dBA). Assuming construction activities to be relatively contained and these noise levels to be approaching a "point source" (as opposed to having multiple source sounds), under normal atmospheric conditions sounds of 110 dBA would attenuate to 35 dBA in

about 1,600 meters (1 mi). This compares, for example, to the threshold of audibility in humans (0 dBA), a freeway (80 dBA) and the threshold of pain (100-120 dBA) (CEQ Annual Report, 1979). A busy freeway constituting a line source of noise at 75 dBA would have its noise attenuated to 35 dBA at 2,600 meters (1.6 mi). Line or multiple source sounds attenuate at a slower rate than do those emanating from a point source.

Normal ambient sound levels in wilderness areas are of the order of 35 decibels according to the EPA (1978). However, HDR field observations report "natural" sound levels (Leq) of 43.5 ± 3.2 dBA and 50.7 ± 4.9 dBA for the proposed Coyote Spring and Beryl-Milford OB sites, respectively. Equivalent sound level (Leq) is defined as the sound level averaged on a power basis over a specified time period (3 minutes). The discrepancy between these findings and those reported by the EPA (1978) may be attributed largely to consistent high winds (5-12 mph) in the vicinity of the proposed OB zones as well as background noise from Highway 93. Presumably wilderness resources within the vicinity of these sites would have similar noise levels.

The quality of noise, however, is important since a bird may not seem "intrusive" to wilderness users while a distant bulldozer might (Schiff, 1981). Characteristic of the Great Basin region are the distances at which such integrated sounds may be perceived. HDR field observations in Coyote Spring indicate that traffic noise from Highway 93 can be heard up to 4.1 mi away. The 35 dBA level for noise attenuation distance was used in this analysis since it is the level below which differences in the quality of sounds are difficult for many to perceive (Schiff, 1981), although evaluations of worst case noise intrusions must include a subjective statement of long-range effects as experienced in Coyote Spring Valley (above).

The 30 dBA contour under worst case noise exposure is forecast to extend 16 to 19 kilometers (10 to 12 mi) from either end of airport runways connected with operating bases. The area within this contour decreases from a width of about 8 kilometers (5 mi) near the airport to a point 10 to 12 mi away (ETR-10).

4.2 METHODOLOGY

WILDERNESS RESOURCE DATA BASE (4.2.1)

Source materials for the wilderness resource computer data base included:

1:125,000 scale November 1980 BLM Wilderness Inventory Maps (Nevada)

1:500,000 scale November 1980 BLM Wilderness Inventory Maps (Utah, New Mexico)

1:1,000,000 scale April 1979 maps of USFS RARE II Wilderness Recommendations (Nevada, Utah, New Mexico)

1:1,000,000 scale USFWS map of the Salt Creek Wilderness (New Mexico)

For Nevada, BLM, NPS, and USFWS resource areas UTM (universal transverse mercator) tic marks were superimposed onto the 1:125,000 BLM maps. Resource polygons were then digitized into the computer from these maps using the UTM

coordinate system. Nevada and Utah USFS RARE II Wilderness Recommendations and Further Planning Unit polygons were hand transferred from the 1:1,000,000 scale USFS maps onto 1:250,000 scale USGS topographic sheets. Utah and New Mexico BLM and NPS (Utah) wilderness resource polygons were hand-transferred from the 1:500,000 scale BLM maps onto the 1:250,000 USGS topo sheets as was the USFS Salt Creek Wilderness. All transfers to the USGS topo sheets were as a result of original managing agency source maps having no UTM coordinates. Once transferred, the resource polygons were digitized into the computer from the USGS 1:250,000 topographic sheets using the UTM coordinate system.

RESOURCE ABUNDANCE AND NOISE IMPACT ANALYSIS (4.2.2)

Digitized data maps including hydrologic abunit boundaries, wilderness resource area boundaries, and project feature locations were input to a computerized map analysis package—MAP (Tomlin et al., 1979). The program allows the data maps to be manipulated as variables in a spatial, cell-based configuration with the data for each map referenced to the center of each (1 km by 1 km) cell. Subsequent arithmetic (multiply, differentiate, etc.) and combinative (cross tabulate, clump, cover, etc.) operations can be performed on respective cells of one or more maps depending on the designated operation.

MAP operations can be organized (using FORTRAN) to issue a series of commands which manipulate the data. Equations using this command structure model allows evaluation of the input data stored in relation to the centroid of each cell in the mapped area. Fast processing (a few seconds) of the cell-based data maps generates an output which provides evaluations of spatial relationships according to the set-up of the command structure model. The values assigned to each cell after processing can range from 1 to 100 and can be printed out using overprint capabilities on a line printer or can be output as shaded polygons on a plotter.

For determination of resource abundance, maps containing the spatial relationships between hydrologic subunits and wilderness resource areas were input to MAP and a cross-tabulation operation performed. The resultant output indicates the percentage of each wilderness resource area contained within each hydrologic subunit.

A prerequisite for the determination of potential impacts resulting from acute construction moise and increased access involved identification of wilderness resources within 1, 3, and 6 mi, respectively, of a project feature. Normal ambient sound levels in colderness areas are of the order of 35 decibels, according to the CPA (1978). Under normal atmospheric conditions, typical construction noise levels of 116 dBA or less attenuate to 35 dBA in about 1,600 meters (1 mi) (ETR-10 "Noise"). The 3 mi limit for nany wilderness users defines the boundaries of quality experience. Although wilderness perception may vary with the user, generally wilderness has be described as undeveloped, natural country, of difficult access at least 3 mi from the hearest development (Merriam and Ammons, 1964). The 6 mi rone was incorporated into this analysis to include perceptible but more extensive project-related house effects since the current BLM procedure for determining a threshold at which external audible and visual effects compromise wilderness quality is still performed subjectively by BLM personnel (Harmon, 1980).

To obtain these data, a step involving the designation of masking zones (areas within 2 km (1.2 mi), 5 km (3 mi), and 10 km (6 mi) from the nearest project element) was incorporated into the MAP. The previously described cross-tabulation process was subsequently conducted for the zoned areas with the resultant output listing the percent of each wilderness resource area lying within each of the above described contours for each hydrologic subunit. The results are summarized in Table 4.3-1.

Using the data obtained from the MAP output, each wilderness resource area was assigned a noise impact value of 3 (high potential impact) if any portion of it occurred within the 1 to 3 mi contours of a project element; a 1 (low potential impact) if any portion occurred more than 3 mi but less than 6 mi from a proposed project element; and a 0 (no potential impact) if 100 percent of the wilderness occurred more than 6 mi from the nearest project feature.

Then, for each hydrologic subunit, the initial values were summed for all wilderness resource areas which were either partly or wholly contained within that hydrologic subunit. For example, Fish Springs Valley includes portions of three wilderness resource areas each of which had been assigned a noise impact value of three. These assigned values were summed together to give an overall combined subunit value of nine. This combined noise impact grade indicated the relative level of impact. The categorization of hydrologic subunits as having low, moderate, high, or no potential noise related effects was based upon: (a) distance from the potential source for all wilderness resources in the subunit; (b) noise attenuation determination (ETR-10, Noise); and (c) a natural aggregation of noise-related scores from Table 4.3-1 information into three groups chacterized as high, moderate, low, or none when plotted in a histogram (the impact determination process for noise-related effects is illustrated in Figure 4.2.2-1).

VISUAL IMPACT ANALYSIS (4.2.3)

In order to arrive at a means of assessing the potential visual impact of the M-X road network on the characteristic sweeping vistas of valley floors from montane wilderness resource areas, the following analysis was performed. Using September 1980 USGS 1:250,000 scale topographic sheets overlaid with a computer generated DDA hydrologic subunit map, a line was drawn on the long axis of each valley, and perpendicular to this axis in the subunit at midpoint. A road intercept count for each hydrologic subunit without the project superimposed was tabulated as baseline data. The USGS baseline map was then overlaid with a 1:250,000 scale map of the conceptualized project system for the DDA and the number of road intercept again tabulated. The percent increase in number of road intercepts over baseline was calculated. The measurement was unbiased, the selection not being based upon the distribution of clusters or the view of the author but rather upon the shape and dimensions of each valley. The analysis presumes to quantitatively describe the proportionate increase in road intercepts visible from wilderness units adjacent to the valley floors in lieu of visiting all of the vantage points at each site to assess field of view as influenced by vegetative and topographic screening. The qualitative aspects of a grid-like linear patterning of project roads are not incorporated into this analysis. The results are summarized in Table 4.3-1.

To evaluate on a hydrologic subunit basis potential visual impacts to regional wilderness resources, the following procedure was employed. A hydrologic subunit

Figure 4.2.2-1. Determination of noise impact on hydrologic subunits.

4847-A

was assigned a value of 1 (low impact potential) if the percent increase in road intercepts resulting from M-X were less than 10 percent. The 10 percent figure was chosen because of the unknown perceptual variance due to vegetation and topographic screening and since it is within the realm of possible error of analysis or observation. Likewise, due to the potentially pervasive visual impact of the project on "de facto" wilderness, a value of 1 (low potential impact) was accorded subunits presently containing no legally defined wilderness resource areas. Hydrologic subunits containing an OB or having a greater than 10 percent increase in road intercepts were assigned a value of 3 (high potential impact). This initial subunit grade was multiplied by the number of wilderness resources within the subunit to determine on a hydrologic subunit basis the potential for project-related visual effects on vicinity wilderness resource areas. (The impact determination process for visual-related effects is illustrated in Figure 4.2.3-1.)

INCREASED ACCESS IMPACT ANALYSIS (4,2,4)

In order to determine the potential impact of the increased access resulting from the proposed M-X road network to wilderness resources, the following analysis was performed. Wilderness resources and hydrologic subunits were computer plotted on a USGS topographic map at a 1:500,000 scale. The number of existing road access points within 3 mi of each wilderness resource area was tabulated for the baseline resource access determination. Three miles constitutes the distance from man-made features that many wilderness users feel is minimal to their wilderness experience (Merriam and Ammons, 1964). It is also the distance a fast walker can cover in an hour's hike making the resource vulnerable to short day-trips.

Similar distance calculations were tabulated by the M-X DIST computer program for the study area wilderness resources with the conceptual M-X system layout (including DTN). This program normalized UTM data retrieved from the geographic data base to meters. The distance between two types of data (e.g., resource and spur roads) represented as (X_O, Y_O) , (X_1, Y_1) was determined by

Distance =
$$\sqrt{(X_O - X_1)^2 + (Y_O - Y_1)^2}$$

The distance in meters was then transformed to miles. Since the calculations were only made to digitized points with no interpolation performed, the distance to a given wilderness resource was determined by the distance to the nearest digitized point defining that area. Also, distance calculations by hand were made for those areas where UTM zones were crossed. The results are summarized in Table 4.3-1.

For each wilderness resource area, a value of 0 was assigned if no M-X related access points occurred within 3 mi; a value of 1 was assigned to wilderness resource areas that would have 1 to 10 additional access points within 3 mi as a result of M-X; and a value of 3 was assigned to areas where more than 10 access points would occur within 3 mi due to M-X deployment. For this analysis the number of increased access points rather than percent increase over baseline was used since road access points are not subject to interpretation as are impacts related to perception (Section 4.2.3). The 1 - 10 figure was chosen since it is within the realm of possible analysis error and also to accommodate the uncertainty factor in population dispersion.

Step 1 (For hydrologic subunits)

Figure 4.2.3-1. Determination of visual impact upon hydrologic subunits.

4848-A

Each hydrologic subunit was assigned a numerical value to reflect the relative amount of increased access. This value was used in computing the indirect effects index (Section 4.2.5). The process for determination of increased access effects on a hydrologic subunit basis is illustrated in Figure 4.2.4-1.

INDIRECT EFFECTS ANALYSIS (4.2.5)

Because many of the indirect effects of the project will result from recreational activity, it is necessary to predict levels of wilderness recreation that would result from the in-migrants responding to M-X construction and operation needs. To this end, a model was developed (ETR-30) that predicts the recreational use of developed recreational areas (campsites, lakes, picnic areas), undeveloped areas where water can be found, as well as for wilderness resources. The model predicts use of these areas on the basis of travel time and the opportunities available at the sites.

Only camping, swimming, fishing, picnicking, off-road-vehicle (ORV) use, hiking, boating, and water skiing are considered. Hunting and snowskiing are not addressed because these activities do not follow gravity model assumptions. The area of interest encompasses the entire states of Nevada and Utah, and portions of Texas and New Mexico. Certain wilderness recreation opportunities such as solitude, nature study, mountain climbing, etc., do not show in the analysis since it is assumed that these activities are a small fraction of the total potential recreational activities and would thus pose fewer indirect effects than, for example, camping. Since camping and hiking are requisite activities of nearly all wilderness use, people are apportioned by these major categories.

The model provides predictions in space and time of recreation in Nevada, Utah, Texas, and New Mexico. Recreational use is based upon baseline and M-X population growth projections distributed among all communities, operating bases and construction camps in the impacted states. Two baseline population projections are used: trend baseline which projects normal population growth and high baseline which projects normal population growth plus expected growth from other projects planned for the region (ETR-37). Yearly recreational use is simulated for the years 1982 to 1994.

The basic assumptions of the model are these: (1) all other things being equal, use of a recreation area tends to decrease with travel time from a given population center. (2) Current inventories of features in wilderness resource areas (Table 4.4.1-3) reflect a spectrum of wilderness recreation opportunities which are assessed in the model. (3) The distance people are willing to travel for recreation can vary with location, i.e., people in Nevada may be willing to travel farther than those in Utah for a comparable activity. These differences are explicitly defined in the model.

The model is:

The same of the sa

$$A_{tp} = QR_{tp}$$
 (1)

Figure 4.2.4-1. Determination of increased access impact upon hydrologic subunits.

4849-A

where,

A_{tp} = vector of use (visitor days) of recreation area i at time t and population level p

Q = matrix of the fraction of population from the jth population center traveling to area i

R_{tp} = vector of visitor-days available in population center j at time t and population level p.

The dimensions of A are 4 population levels by 12 years by 983 areas; Q is defined for 983 areas by 92 population centers; R is defined for 4 population levels, 12 years and 92 population centers.

The matrix Q is developed by computing the probability of travel from population center j to area i as a function of travel time multiplied by a weighting factor that takes available resources and current use data into account for relative appeal of the recreation area. Refer to ETR-30 for details.

Equation (1) distributes all the available visitor days from each population center j among all the available recreation areas i since

$$a_{i} = \sum_{j} q_{ij} r_{j}$$
 (2)

and

$$\sum_{j} q_{ij} = 1.$$

The reader is referred to ETR-30 for a complete discussion of the model, its derivation and testing.

The model was calibrated by iteratively comparing predictions of visitor use data to observations of visitor use data from more than 500 sites. The model accounted for 99 percent of the variance in the observed data. The residuals were normally distributed about 0, with a high degree of Kurtosis (ETR-30, Indirect Effects Model Documentation).

Limitations of the model include (1) an assumption that willingness to travel is invariant with respect to each activity considered, (2) use of commercial areas is omitted, (3) recreation is modeled on a yearly basis and therefore cannot be used to project peak use during holiday periods.

The metric of interest is the increase of use over projected baseline:

$$A_{t} = A_{t+my} - A_{t} \tag{4}$$

and

$$A_{h} = A_{h+mx} - A_{h} \tag{5}$$

where

 ΔA_{+} = increase of use over trend population due to M-X in-migration.

and ΔA_h = increase of use over high population baseline due to M-X in-migration.

In order to determine the potential impact of increased recreational pressures in Nevada/Utah wilderness resources a "user index" (number of visitor-days) and "crowding index" (number of visitor days per acre of resource) derived from the indirect effects model (ETR-30) were combined with the access index in order to arrive at a population-related "indirect effect index." A visitor-day is defined as the number of people visiting an area in any one twelve-hour time period (e.g., one person for twelve hours or two people for six hours, etc.). The indirect effect index is not a prediction of the actual level of impact on any one wilderness resource area such as those involving trail-head and campsite over-crowding, vegetation loss, and erosion by trampling, poaching, etc. These would be site-specific and will be analyzed for subsequent tiered decisionmaking.

The indirect effects model does not specifically predict wilderness use. Its capability of projecting dispersion for the related activities of camping, hiking, and fishing, however, was used to estimate the relative use of the various wilderness resource areas. Because the model was based on variables that would disperse people from population centers to recreation sites throughout the project area with wilderness recreation a subset of camping and hiking activities, a calibration factor was calculated specifically to incorporate motivations unique to wilderness use, such as solitude, nature observation, mountain climbing, etc. This calibration factor was calculated by taking the ratio between peak year (1987) trend growth population numbers (ETR-2) predicted to visit wilderness resources (Ludeman, 1980) to the number of people estimated by the indirect effects model to visit 75 backcountry areas within the DDA (ETR-30). The conversion of visitor-days to people assumes an average wilderness visitation of 3 days duration (Biddulph, 1981; McElwain, 1981; The calibration factor multiplied by visitor-days/average visit provides a crowding index estimation calibrated for the wilderness resources. However, since the dispersion model estimates that approximately 50 percent of the total population would recreate outside of the region and that this figure is partially offset by the in-migration of approximately 30 percent non-resident recreationists (Lucas, 1980), 20 percent (0.6) was subtracted from the calibration factor prior to calculating the crowding index.

The estimated wilderness use is approximately twice the amount of total use that the model disperses to wilderness resource areas on the basis of camping, hiking, and fishing opportunities. Therefore, the model has been used to project the use of wilderness resource areas by multiplying the projection based on camping, hiking, and fishing by a factor of two.

The system used in determining the indirect effects for each wilderness resource involved assigning a score of I (low) to areas with a user index of I to 5 percent and a crowding index of less than 0.1 visitor days per acre; a score of 2 (moderate) to areas with a user index of 5 to 15 percent and a crowding index of 0.1 to 0.4 visitor days per acre; a score of 3 (high) to areas with a user index greater than 15 percent and a crowding index of greater than 0.4 visitor days per acre. These scores were combined with the access index to obtain a total indirect effects

grade for each wilderness resource. The indirect effect indices of the wilderness resource areas in each watershed were averaged to obtain an indirect effects index for the watershed. The categorization into low, moderate, high, or no potential effect was based on a natural aggregation of numerical values when plotted in a histogram. The impact determination process for people-related effects is illustrated in Figure 4.2.5-1. It should be noted, however, that these are conservative impact predictions since (1) possible increases in the proportion of the population who will be using wilderness resources is not taken into account; and (2) the 0.4 visitor days per acre crowding index cutoff for high impact is a result of data from a well-watered heterogeneous area in the High Uintas (Stankey, 1973) as compared to the majority of the arid Great Basin wilderness resources which would tend to concentrate people. It is difficult to determine the probability of impact underprediction given the paucity of baseline user information. However, the potential for underprediction does exist.

RESOURCE ATTRIBUTE ANALYSIS (4.2.6)

In order to determine which wilderness resources contain fragile or unique features such as threatened and/or endangered flora and/or fauna, rare or exceptional wildlife, as well as archaeological and historical sites, a computerized cross tabulation was performed using the Map Analysis Package (Tomlin et al., 1979) discussed previously under Section 4.2.2, Resource Abundance and Noise. For this particular analysis, digitized wilderness resource areas, pronghorn, mule deer, and bighorn range/key habitat, as well as locations of endangered aquatic species, rare plants, sage grouse, bald eagle wintering areas, and archaeological/historic sites were transferred from the HDR data base into a cell-based grid format for manipulation by MAP. The co-occurrence of wilderness resources with the above listed ecological features is indicated in Table 4.4.1-3.

COMPARISON OF ALTERNATIVES (4.2.7)

The method used for the ordinal ranking of alternatives was based on a non-parametric statistical scheme known as the Kendall's Tau Correlation Analysis (Dixon and Brown, 1977). This scheme computes the correlation for pairs of baseline/impact indices for the hydrologic subunits within each alternative as follows:

Each subunit containing wilderness resource areas was assigned a baseline indirect effect index and a potential indirect effect index. Baseline values were determined from managing agency visitor-use and crowding estimates along with access data as measured from USGS 1:500,000 scale topocomposites (see Section 4.2.4, Increased Access Analysis). The baseline values were subsequently ranked by means of the methodology used for obtaining the indirect effects index (Section 4.2.5): the mean of the combined access, use, and crowding indices for all wilderness resources within each subunit was calculated and assigned an index value of 1 and 3 for low and moderate baseline, respectively.

Kendall's Tau Correlation (t_b) coefficients based on the ranked baseline/impact index pairs and not on observed values were calculated as follows:

$$t_b = \frac{P - Q}{N(N-1)}$$

Step 1 (Determination of crowding and user indices for each wilderness resource area)

Figure 4.2.5-1. Determination of indirect effects impact on hydrologic subunits.

where:

P = twice the number of pairs of rankings such that both $r_j > r_l$ and $s_i > s_l$

Q = twice the number of pairs of rankings such that both $r_j > r_l$ and $s_i < s_l$

r_n = the ranks of the values of one variable (i.e., impact)

s = the ranks of the values of the second variable (i.e., baseline)

and N = the number of observations (i.e., hydrologic subunits containing wilderness resources).

The result is a rank correlation coefficient for each alternative, the relationship being: the higher the coefficient, the less the potential impact (i.e., the less the deviation from baseline figures).

4.3 DATA BASE

The data base upon which the impact analysis for visual, noise, increased access, and population-related effects on the wilderness resource was performed are tabulated in Table 4.3-1 (construction-related data base for determination of impacts on wilderness quality) and in Tables 4.3-2 through 4.3-9.

4.4 PROPOSED ACTION

DDA IMPACTS (4.4.1)

Full deployment in Nevada and Utah will mean the construction or upgrading of about 8,500 mi of road and the importation of about 125,000 people/workers, their families, associated merchants, and others by the 1987 peak year (ETR-2). Valley floor scarification by cluster and road networks with the resultant increased access for an increased population would have the potential to impinge on the Great Basin wilderness resources. Figure 4.4.1-1 illustrates the resource and project overlap.

According to the conceptual layout for the Proposed Action depicted in Figure 4.4.1-1, there are direct shelter conflicts with the Worthington Mountains WSA in the Penoyer and Garden hydrologic subunits (Nevada). All wilderness resource areas including WSAs are legal exclusion areas for development according to the Wilderness Act (1964) and the Federal Land Policy and Management Act (1976). It is Air Force policy to avoid siting in these areas. This particular WSA had been recommended to be dropped from further wilderness consideration by the BLM (April, 1980) when the conceptual layout was generated and was thus not excluded during the initial screening process. This conflict will necessarily be resolved in a later Tier before construction begins on the subject clusters. Either (1) the system layout would be altered such that the cluster siting would not impinge upon the wilderness resource area, or (2) the Congress would resolve the conflict by authorizing the Air Force to withdraw the land for M-X deployment.

Table 4.3-1. Construction-related data base for determination of impacts on wilderness quality (Page 1 of 4).

			Percent							Increase in Number of
Na	Hydrologic Subunit	₩ilderness Resource Name	Subunit Road Intersection Increase As a Result of M-X	Approximat Within I Project El Acres (Pe	Mi of lement	Approxima Within 3 Project E Acres (Pe	Mi of lement	Approximat Within 6! Project Ele Acres (Per	Mi of ement	Access Points Within 3 Mr Due to M-X
No.	Name		Construction							M-X Construction
Ļ	Snake, Nev./Utah	Deep Creek Mountains Fish Springs Range Granite Spring Conger Mountain Mount Moriah Wheeler Peak Highland Ridge King Top Wah Wah Mountains		4,824 i,575 1,872 1,829 1,944 0 0 4,239 700	(7) (3) (8) (8) (2)	17,917 7,350 7,956 9,602 15,553 0 0 16,954 2,450	(26) (14) (34) (42) (16) (20) (1)	31,010 10,500 17,550 11,889 45,686 0 0 31,365 2,450	(45) (20) (75) (52) (47) (37) (7)	35 31 25 41 19 4 15 34
		Total	108	16,983		77,782		150,450		
5	Pine, Utah	Mountain Home Range Central Wah Wah Range Wah Wah Mountains		0 0 700	(2)	0 0 6,650	(19)	0 0 11,900	(34)	23 31 42
		Total	153	700		6,650		11,900		_
6	White, Utah	King Top Notch Peak Conger Mountain Howell Peak Swasey Mountain Fish Springs Range		3,391 0 1,372 0 1,980 2,100	(4) (6) (4) (4)	13,563 2,045 3,658 0 6,930 7,350	(16) (4) (16) (14) (14)	40,690 11,760 10,974 7,624 17,820 11,550	(48) (23) (48) (32) (36) (22)	34 24 41 G 53 31
		Total	86	8,843	(4)	33,546	(14)	100,418	(22)	21
7	Fish Springs, Utah	Fish Springs Range Dugway Mountains Swasey Mountain	50	5,250 3,508 0	(10) (17)	13,650 7,223 6,435	(26) (35) (13)	29,925 9,906 9,900	(57) (48) (20)	31 35 53
		Total	113	8,758		27,308		49,731		
8	Dugway, Utah	Dugway Mountains	150	2,683	(13)	8,668	(42)	10,732	(52)	35
9	Government Creek, Utah	None	15	0		٥		0		0
46	Sevier Desert, Utah	Rockwell Swasey Mountain	2	0 2,475	(5)	0 7,920	(16)	0 11, 38 5	(23)	0 53
46A	Sevier Desert-Dry Lake, Utan	Swasey Mountain Howell Peak Notch Peak		3,465 0 511	(7) (1)	7,425 0 9,203	(15)	7,920 6,433 30,167	(16) (27) (59)	53 0 24
	2	Total	67	3,976		16,628		44,520		
50	Milford, Utah ²	None	0	0		0		0		О
52	Lund District, Utah ²	None	0	0		0		0		0
53	Beryl-Enterprise, Utah ²	Pine Valley Mountain	o	0		0		0		0
54	Wah ₩ah, Utah	Wah Wah Mountains Central Wah Wah Range King Top		6,300 0 2,543	(18)	11,200 0 5,086	(32)	16,800 0 5,934	(48) (7)	42 31 34
		Total	176	8,843		16,286		22,734		

Table 4.3-1. Construction-related data base for determination of impacts on wilderness quality (Page 2 of 4).

Hydrologic Subunit Wilderness Resource Name Subunit Road Name Name Wilderness Resource Name Nam				Percent							Increase in Number of
Nev Nev None 146 None 147 None 148 None None 148 None None 148 None None	No.			Intersection Increase As a Result of M-X	Within 1 Project E	Mi of lement	Within 3 Project E	Mi of lement	Within 6 Project El	Mi of ement	Access Points Within 3 Mi Due to M-X
Simpson Park 1940 1941 1942 1942 1944	137.A		Arc Dome	61	0		0		0		G
140A Monitor-North, Nev. None 188 0 0 0 0 0 N/A 140B Monitor-South, Nev. None 188 0 0 0 0 N/A 141 Raiston, Nev. None 143 0 0 0 0 N/A 142 Alkali Spring, Nev. None 146 0 0 0 0 N/A 143 Cactus Flat, Nev. Kawich 0 0 0 1,642 60 6,880 (25) 41 149 Stone Cabin, Nev. Kawich 0 0 0 1,642 (6) 6,880 (25) 41 140 Stone Cabin, Nev. Rawhide Mountain 137 11,465 14,224 17,27,031 (42) 38 151 Antelope, Nev. None 114 0 0 0 0 0 0 N/A 153 Antelope, Nev. None 114 0 0 0 0 0 0 N/A 154 Newark, Nev. None 114 0 0 0 0 0 0 N/A 155 Little Smoky-North, Nev. Park Range 7,905 (17) 113,950 (30) 15,810 (33) 23 152 Little Smoky-South, Nev. Palisade Mesa 7,905 (17) 113,950 (30) 15,810 (33) 23 154 Hot Creek, Nev. Palisade Mesa 10 0,527 (17) 113,950 (30) (10) 4,560 (12) 19 156 Hot Creek, Nev. Palisade Mesa 3,982 (4) 1,140 (3) 3,800 (10) 4,560 (12) 19 156 Hot Creek, Nev. Palisade Mesa 3,982 (4) 1,140 (3) 3,800 (10) 4,560 (12) 19 156 Hot Creek, Nev. Palisade Mesa 3,982 (4) 1,140 (3) 3,800 (10) 4,560 (12) 19 156 Hot Creek, Nev. Palisade Mesa 3,982 (4) 1,140 (3) 3,800 (10) 4,560 (12) 19 157 Hot Creek, Nev. Palisade Mesa 3,982 (4) 1,140 (3) 3,800 (10) 4,560 (12) 19 157 Hot Creek, Nev. Palisade Mesa 3,982 (4) 1,140 (3) 3,800 (10) 4,560 (12) 19 157 Hot Creek, Nev. Palisade Mesa 3,982 (4) 1,140 (3) 3,800 (10) 4,560 (12) 19 158 Hot Creek, Nev. Palisade Mesa 3,982 (4) 1,140 (3) 3,800 (10) 4,560 (12) 19 159 Hot Creek, Nev. Palisade Mesa 3,982 (4) 1,140 (3) 3,800 (10) 4,560 (12) 19 150 Hot Creek, Nev. Palisade Mesa 3,982 (4) 1,140 (3)	139	Kobeh, Nev.			-	(8)	-	(44)			
Montror-South, Nev. None			Total	141	3,974		21,855		29,324		
Raiston, Nev. None 143 0 0 0 0 0 N/A Raiston, Nev. None 146 0 0 0 0 0 N/A Raiston, Nev. None 146 0 0 0 0 0 N/A Raiston, Nev. None 146 0 0 0 0 0 0 N/A Rawich Rawich 0 0 0 1,642 (6) 6,840 (25) 41 Rawide Mountain 137 1,465 14,224 37,154 Total 137 1,465 14,224 37,154 Total 137 1,465 14,224 37,154 Total 137 1,465 14,224 37,154 Newark, Nev. None 340 0 0 0 0 0 0 N/A Newark, Nev. None 114 0 0 0 0 0 0 N/A Stitle Smoky-North, Nev. Antelope 2,622 (3) 9,614 (11) 12,236 (14) 7 Park Range 7,765 (17) 13,500 (30) 15,810 (30) 23 Total 114 10,527 23,564 28,046 Stitle Smoky-South, Nev. Palisade Mesa 0 6,969 (7) 11,946 (12) 46 Total 240 1,140 31,800 (10) 4,560 (12) 46 Total 240 1,140 10,769 (10) 4,560 (12) 46 Hot Creek, Nev. Palisade Mesa 3,982 (4) 19,910 (20) 40,816 (41) 46 Kawich Rawide Mountain 7,774 (4) 1,162 (11) 16,992 (16) 66 Kawich Rawide Mountain 7,774 (4) 1,162 (11) 16,992 (16) 66 Kawich Rawide Mountain 7,774 (4) 1,162 (11) 1,162 (11) 1,162 (11) 1,162 Randargo 0 0 0 0 0 0 0 0 Randargo 0 0 0 0 0 0 0 0 Randargo 0 0 0 0 0 0 0 0 Randargo 0 0 0 0 0 0 0 0 Randargo 0 0 0 0 0 0 0 0 0 Randargo 0 0 0 0 0 0 0 0 0 Randargo 0 0 0 0 0 0 0 0 0 Randargo 0 0 0 0 0 0 0 0 0	140A	Monitor-North, Nev.	None	188	0		0		0		N A
	140B	Monitor-South, Nev.	None	8	0		0		0		N/A
	141	Raiston, Nev.	None	143	0		0		0		N/A
Stone Cabin, Nev. Kawich Rawhide Mountain Stone Cabin, Nev. Kawich Rawhide Mountain Stone Cabin, Nev. Rawhide Mountain Stone Cabin, Nev. Total 137 1,465 110,941 (17) 27,031 (42) 38 38 38 38 38 38 38 3	142	Alkali Spring, Nev.	None	146	0		0		0		N/A
Total 137 1,465	148	Cactus Flat, Nev.	Kawich	0	C		1,642	(6)	6,840	(25)	41
151 Antelope, Nev. None 340 0 0 0 0 0 N/A 154 Newark, Nev. None 114 0 0 0 0 0 N/A 155A Little Smoky-North, Nev. Antelope Park Range 7,905 (17) 13,950 (30) 15,810 (34) 23 Total 114 10,527 23,564 28,046 155C Little Smoky-South, Nev. Palisade Mesa The Wall 240 1,140 (3) 3,800 (10) 4,560 (12) 19 Total 240 1,140 (3) 3,800 (10) 4,560 (12) 19 Total 240 1,140 (3) 1,462 (11) 16,506 (12) 19 Total 240 1,140 (3) 1,462 (11) 16,506 (12) 19 Total 240 1,140 (3) 1,462 (11) 16,506 (12) 19 Total 240 1,140 (3) 1,462 (11) 16,902 (16) 66 Kawich 4,378 (16) 9,810 (36) 10,397 (38) 41 Rawhide Mountain 2,574 (4) 12,228 (19) 40,816 (41) 38 Fandango 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	149	Stone Cabin, Nev.									-
Newark, Nev. None 114 0 0 0 0 0 N/A			Total	137	1,465		14,224		37,154		
155A Little Smoky-North, Nev. Antelope Park Range 7,905 (17) 13,950 (30) 15,810 (34) 23 Total 114 10,527 23,564 28,046	151	Antelope, Nev.	None	340	0		0		0		N/A
Park Range	154	Newark, Nev.	None	114	0		0		0		N/A
155C Little Smoky-South, Nev. Palisade Mesa Capacida Capac	155A	Little Smoky-North, Nev.									
The Wall 240 1,140 (3) 3,800 (10) 4,560 (12) 19 Total 240 1,140 10,769 16,506 156 Hot Creek, Nev. Palisade Mesa 3,982 (4) 19,910 (20) 40,816 (41) 46 South Reveille 5,310 (5) 11,682 (11) 16,992 (16) 66 Kawich 4,378 (16) 9,850 (36) 10,397 (38) 41 Rawhide Mountain 2,574 (4) 12,228 (19) 40,816 (41) 38 Fandango 0 0 0 0 0 5 Morey 604 (3) 9,658 (48) 20,120 (100) 19 Antelope 0 874 (1) 11,362 (13) 7 Park Range 0 0 874 (1) 11,362 (13) 7 Park Range 0 0 60,975 (15) 23 Total 238 17,988 64,202 147,478 170 Penoyer, Nev. Quinn 0 1,772 (2) 14,179 (16) 21 Worthington Mountains 94 26,847 (57) 30,615 (65) 30,615 (65) 121 Total 94 32,387 44,794 171 Coal, Nev. Weepah Spring 83 3,660 (6) 6,710 (11) 17,690 (29) 14 172 Garden, Nev. Quinn 0 2,658 (3) 22,154 (25) 21 Garden, Nev. Quinn 0 2,658 (3) 22,154 (25) 21 Garden, Nev. Quinn 0 2,658 (3) 22,154 (25) 21 Garden, Nev. Quinn 0 2,658 (3) 22,154 (25) 21 Total 186 17,474 32,990 84,135			Total	114	10,527		23,564		28,046		
Hot Creek, Nev. Palisade Mesa 3,982 (4) 19,910 (20) 40,816 (41) 46	155C	Little Smoky-South, Nev.		240	•	(3)					
South Reveille			Total	240	1,140		10,769		16,506		
Antelope Park Range 0 874 (1) 11,362 (13) 7 Park Range 0 0 0 0 0 6,975 (15) 23 Total 238 17,988 64,202 147,478 170 Penoyer, Nev. Quinn Worthington Mountains 94 26,847 (57) 30,615 (65) 30,615 (65) 121 Total 94 32,387 44,794 171 Coal, Nev. Weepah Spring 83 3,660 (6) 6,710 (11) 17,690 (29) 14 172 Garden, Nev. Quinn Grant Range (USFS) 989 (1) 13,847 (14) 45,496 (46) 10 Grant Range (USFS) 989 (1) 13,847 (14) 45,496 (46) 10 Worthington Mountains 186 16,485 (35) 16,485 (35) 16,485 (35) 121 Total 186 17,474 32,990 84,135	156	Hot Creek, Nev.	South Reveille Kawich Rawhide Mountain		5,310 4,378 2,574 0	(5) (16) (4)	11,682 9,850 12,228	(11) (36) (19)	16,992 10,397 40,816	(16) (38) (41)	66 41 38 5
Penoyer, Nev. Quinn Worthington Mountains 94 26,847 (57) 30,615 (65) 30,615 (65) 121			Antelope		0	(3)	874		11,362	(13)	7
Worthington Mountains 94 26,847 (57) 30,615 (65) 30,615 (65) 121 Total 94 32,387 44,794 171 Coal, Nev. Weepah Spring 83 3,660 (6) 6,710 (11) 17,690 (29) 14 172 Garden, Nev. Quinn 0 2,658 (3) 22,154 (25) 21 Grant Range (USFS) 989 (1) 13,847 (14) 45,496 (46) 10 Worthington Mountains 186 16,485 (35) 16,485 (35) 16,485 (35) 16,485 Total 186 17,474 32,990 84,135 173A Railroad-South, Nev. South Reveille 164 15,930 (15) 52,038 (49) 87,084 (82) 66			Total	238	17,988		64,202		147,478		
171 Coal, Nev. Weepah Spring 83 3,660 (6) 6,710 (11) 17,690 (29) 14 172 Garden, Nev. Quinn 0 2,658 (3) 22,154 (25) 21 Grant Range (USFS) 989 (1) 13,847 (14) 45,496 (46) 10 Worthington Mountains 186 16,485 (35) 16,485 (35) 16,485 (35) 121 Total 186 17,474 32,990 84,135 173A Railroad-South, Nev. South Reveille 164 15,930 (15) 52,038 (49) 87,084 (82) 66	170	Penoyer, Nev.		94	-	(57)	- /				
172 Garden, Nev. Quinn 0 2,658 (3) 22,154 (25) 21 Grant Range (USFS) 989 (1) 13,847 (14) 45,496 (46) 10 Worthington Mountains 186 16,485 (35) 16,485 (35) 16,485 (35) 121 Total 186 17,474 32,990 84,135 173A Railroad-South, Nev. South Reveille 164 15,930 (15) 52,038 (49) 87,084 (82) 66			Total	94			32,387		44,794		
Grant Range (USFS) 989 (1) 13,847 (14) 43,496 (46) 10 Worthington Mountains 186 16,485 (35) 16,485 (35) 16,485 (35) 121 Total 186 17,474 32,990 84,135 173A Railroad-South, Nev. South Reveille 164 15,930 (15) 52,038 (49) 87,084 (82) 66	171	Coal, Nev.	Weepah Spring	83	3,660	(6)	6,710	(11)	17,690	(29)	14
173A Railroad-South, Nev. South Reveille 164 15,930 (15) 52,038 (49) 87,084 (82) 66	172	Garden, Nev.	Grant Range (USFS)	186	989		13,847	(14)	45,496	(46)	10
2,000			Total	186	17,474		32,990		84,135		
		·	South Reveille	164	15,930	(15)	52,038	(49)	87,084	(82)	66

Table 4.3-1. Construction-related data base for determination of impacts on wilderness quality (Page 3 of 4).

			Percent							Increase in Number of
No.	Hydrologic Subunit Name	Wilderness Resource Name	Subunit Road Intersection Increase As a Result of M-X Construction	Approximat Within 1 i Project Ele Acres (Per	Mi of ement	Approximate Within 3 Project El Acres (Pe	Mi of ement	Approximate Within 6 M Project Ele Acres (Per	Ai of ement	Access Points Within 3 Mi Due to M-X Construction
173B	Railroad-North, Nev.	Palisade Mesa The Wall Quinn Grant Range(BLM) Grant Range(USFS) Blue Eagle Riordan's Well		10,951 2,280 4,431 0 0 0	(11) (6) (5)	26,879 13,300 25,699 4,847 3,956 0 1,704	(27) (35) (29) (83) (4)	46,789 33,820 52,283 5,840 24,726 10,721 17,040	(47) (89) (59) (100) (25) (18) (30)	46 19 21 3 10 0 21
		Total	108	17,662		76,385		191,219		51/5
174	Jakes, Nev.	None	200	0		0		0		N/A
17.5	Long, Nev.	None	64	0		0		0	(2)	N/A 0
178B	Butte-South, Nev.	Goshute Canyon	94	0		0	4	1,982	(2)	0
179	Steptoe, Nev. ²	Goshute Canyon Martin Spring Mount Grafton South Egan Range	o	0 7 44 0 0	(3)	991 3,224 545 0	(1) (13) (1)	1,982 4,960 7,085 851	(2) (20) (13) (1)	0 20 0
		Total	0	744		4,760		14,878		
180	Cave, Nev.	South Egan Range Mount Grafton Far South Egan		0 545 11,454	(1) (23)	4,360 22,908	(8) (46)	2,553 21,255 24,402	(3) (39) (49)	0 20 37
		Total	123	11,999		27,268		48,210		
181	Dry Lake, Nev.	None	100	0		0	0		0	N/A
182	Delamar, Nev.	Delamar Mountains South Pahrocs/Hiko		3,801 286	(3) (1)	10,136 1,716	(8) (6)	6,006	(13) (21)	3
		Total	82	4,087		11,852		22,477		•
183	Lake, Nev.	Table Mountain Fortification Range Mount Grafton Parsnip Peak		0 12,672 9,810 0	(32) (18)	2,136 26,532 20,165 0	(6) (67) (37)	11,036 26,532 21,255 770	(31) (67) (39) (1)	3 4.1 20 5
		Total	111	22,482		46,697		59,593		
184	Spring, Nev.	Table Mountain Highland Ridge Wheeler Peak Mount Moriah Fortification Range		0 0 0 0 7,524	(19)	760 0 0 0 13,068	(1)	3,204 8,362 0 0 13,068	(9) (11) (33)	3 15 4 19 42
		Total	31	7,524		13,828		24,634		
196	Hamlin, Nev./Utah	Mountain Home Range Table Mountain White Rock Range Highland Ridge		0 0 0		0 0 0		0 0		23 3 2 15
		Total	68	0		0		0		_
202	Patterson, Nev.	Parsnip Peak	5	2,310	(3)	7,700	(10)	23,870	(31)	5
205	Meadow Valley Wash, Nev. ²	Meadow Valley Mounta Mormon Mountains Grapevine Spring	ins	0 0 0		9,287 0 0	(5)	9,28 7 0 0	(5)	0 0
		Total	0	0		9,287		9,287		

T5087/9-18-81

Table 4.3-1. Construction-related data base for determination of impacts on wilderness quality (Page 4 of 4).

			Percent							Increase in Number of
No.	Hydrologic Subunit Name	Wilderness Resource Name	Subunit Road Intersection Increase As a Result of M-X Construction	Approxima Within 1 Project E Acres (Po	Mi of lement	Approxima Within 3 Project E Acres (Pe	Mi of lement	Approxima Within 6 Project El Acres (Pe	Mi of ement	Access Points Within 3 Mi Due to M-X Construction
207	White River, Nev.	Grant Range (USFS) Riordan's Well Far South Egan South Egan Range Martin Spring	20	7,952 0 0 496	(14)	1,978 18,176 7,470 0 4,216	(2) (32) (15) (17)	7,912 28,968 25,398 8,510 17,360	(8) (51) (51) (10) (70)	10 21 37 6 0
208	Pahroc, Nev.	Total Weepah Spring	28 0	8,448 0		31,840 4,270	(7)	88,148 17,690	(29)	14
208	Patroc, Nev.	weepan spring	U	•		4,2/0	(//	17,670	(2)	14
209	Panranagat, Nev.	Desert National Wild- life Range		0		9		0		0
		East Pahranagat		0		0		0		0
		Medsger Pass		0		0		0		0
		Lower Pahranagat Lake		0		0		0		0
		South Pahrocs/Hiko Delamar Mountains		0		6,292	(22)	21,450	(75)	4 3
				-		0		0		,
	•	Total	0	О		6,292		21,450		
210	Covote Spring, Nev. 2	Desert National Wild- life Range		14,603	(1)	58,414	(4)	131,431	(9)	0
		Fish and Wildlife #3		0		0		0		0
		Fish and Wildlife #2		3.964	(24)	7,102	(43)	12,552	(76)	С
		Arrow Canyon Range		5,320	(19)	7,280	(26)	8,960	(32)	ō
		Meadow Valley Mountain	is	9,287	(5)	20,432	(11)	26.004	(14)	0
		Fish and Wildlife #1		0	(100)	8,991	(100)	8,991	(100)	Ö
		Evergreen Delamar Mountains		2,834 19,005	(100) (15)	2,834 29,141	(100) (23)	2,834 51,947	(190) (41)	0 3
		Total	0	55,013	(1)	134,194	(2)/	242,719	(417	,
219	Muddy River Springs, Nev.	Arrow Canyon Range	0	4,760	(17)	10,640	(38)	14,000	(50)	o

T5087/9-18-81

 $^{^{1}}$ Wilderness Resource Area

 $^{^2\}mbox{Hydrologic subunit associated with OB.}$

PROPOSED ACTION FULL DEPLOYMENT NEVADA/UTAH BASE I COYOTE SPRING, NEV BASE 2 MILFORD, UTAH

NAME	VISITOR DAY DIFFERENCE	PERCENT INCREASE	INDEX OF PRIMACY*	NAME	VISITUR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDEX OF PRIMACY
M-MOREY	1882 5	į.	100 0	· œ	206 4	19.80	
W FANDANGO	1882. \$		100 0	RAP CAN	206 4	17 32	7
WILM VERMIN CREEK	•	29.8	94.0		167.4		32 6
N-710N	9 ZB06			W-ORDERVILLE CYN	1909.1		ω
WITAYLOR CREEK CYN	206 4		94 0	W-N FORK VIRGIN R	870.9		14 5
W-RED BUTTE	206 4	29 8		W-TUNNEL SPRING	1298.0	1. 36	
W-BEAR TRAP CANYON	206 4		94 0	W-BONELLI PEAK	692.2	1 31	99
PINE VALLEY MIN	2846 8	29 3	9군, 4	W-GARROIT BUTTES	735. 5	1.24	6 3
ORDERVILLE CYN	1 404 1	29. 1	91 8	W-LA VERKIN CREEK	206. 4	1 22	-0
M-SIMPSON PARK	1118 7	29 1	918	W-THE WATCHMAN	192 7	1 15	
DEEP CREFK	334 9	29 1	918	W-EL DORADO	1113 1	1 06	
GOLDS CREEK CYN	167 4	1 62	918	W-IRETEBA PEAKS	963 0	1.00	5 1
THE FURN VIRGIN R	870 9	29 1	918	W-E OF BRYCE	231. 4	96 0	4
PARIA-HACKBEPRY	474 1	28 7	90.5	W-RED BUTTE	206. 4	98 0	4 3
ASHDOWN GORGE	322. 2	28 5	89.9	W-GRANT RANGE	933.8		
CEDAR BREAKS	322 2	28 5	6 68	W-CROSS CYN	348 2		
WIRED MIN	245 3	28 4	9 68	-SHE 1KS	471.6		
CIARCATION POINT	245 3	28 4	9 68	W-PINE CREEK			
W-FARIA CYN	1469 5	28 3	D.	ESCAL	131. 7	0.63	
M-COTTONWOOD CYN	266 6	28 3		E-OEM	121 7		
COUGAR CANYON	147 4		0 68	W-EVERGREEN	210.7	4	
BURNING HILLS	40 7			W-NELLIS	197 2		
HIJWELL PEAK	1356 B			W-LOWER PAHRANAGAT			
W-THE WATCHMAN	192 7	27.9		W-ROBERTS	1249 8		1 8
W-THE BLUES	119 0	27 9		W-DEEP CREEK			1 8
W-PARUNUWEAP CYN	2388 6	27 8		W-S PAHROCS/HIKO	1731 4		1.7
CANAAN MIN	385 3		87 7	W-FREMONT GORGE	337 7	0 30	1 5
CARCASS CANYON	88 1	27 7	87 4	W-MOREY	1882 5		1 5
WINDRSE SPRING CYN	88 1	27 7	97.4	W-WHITE ROCK RANGE	941 0		1 5
PED CANYON N	254 4	27 6	87 1		507 4	0 27	1 4
W-SCORPION	65 8	27 4	86. 4	¥	276 4		1.3
SPRING CANYON	214 3	27 4	86 4	W-CONGER RANGE	766 4		n 3
W-ESCALANIE S	131 7	27 4	86.4	M-210N	9 2806		1 3
W-N ESCALANTE	6638 7			W-KAWICH	1349 6		1 2
W-F OF BRYCE	231 4			W-PARIA CYN	1469 5		1 2
W-RED CANYON S	231 4			M-SQUAW PAPOOSE CYN			1 0
W-WAHWEFP	4 66	27 2	85.8	W-CEDAR BREAKS	322 2	€2 0	1 2
W-BRYCE CANYON	257 2			W-GRAND GULCH			1.2
FIFTYMILE MIN	90 4			W-WHITE ROCK RANGE			1 2
BOX DEATH HOLLOW	81 6			M-HONTONE MINE	63 7		-
PIPPS DEATH	1192 3			W-MARTIN SPRING	1063 7		1 1
MIM HI HOPOM	174 0	26 7			572 9		1 1
PALIFITY MIN			:	. 1			
		,		エレス しんしかば カーコ	7 8677	OC C	-

C10153

*INDEX OF PRIMACY (PERCENTAGE OF LARGEST VALUE) CALCULATED WITH PERCENT INCREASE

*INDEX OF PRIMACY CALCULATED WITH INDEX OF V-D/ACRE

PRIMACY+ INDEX VD/ACRE INDEX DIFFERENCE VISITOR 0 0 0 0 0000000 646. 526. 1372. 545 299 1298. 644. 32. 78. 235. 271 1069 663 1427 M-MEADOW VALLEY MTN W-COTTONWOOD-SALMON 4-GRAPEVINE SPRING 4-GOSHUTE CANYON A-FACTORY BUTTE W-BLUE HILLS W-MILLION HILLS 4-FIDDLER BUTTE 4-E. PAHRANAGAT NAME V-DELAMAR MTNS J-SIMPSON PARK 4-GABBS VALLEY 4-AUGUSTA MINS -INDIAN CREEK W-RAWHIDE MIN 4-MULLEN REEF A-GUINN, NORTH 4-MUD SPRING 4-S REVEILLE M-DEVILS CYN 4-QUEER MIN W-KING TOP A-JOB PEAK PRIMACY* INDEX PERCENT INCREASE 0 6 8 7 9 9 9 DIFFERENCE m 04 O 000 001 VISITOR 496 180 210. 1076. 116. 874. 210 116. 682 210 169 1591 1731. 941 161 W-MEADOW VALLEY MIN W-WHITE ROCK RANGE W-GRAPEVINE SPRING J-LOWER PAHRANAGAT W-S PAHROCS/HIKO W-TABLE MOUNTAIN W-FAR S EGAN W-TUNNEL SPRING W-FORTIFICATION PAHRANAGAT W-BONNIE CLAIRE A-MEDSGER PASS NAME A-S EGAN RANGE W-DELAMAR MINS W-HONTONE MINE W-PARSNIP PEAK W-CEDAR RIDGE W-RED SPRING W-MT GRAFTON A-EVERGREEN W-EXCELSIOR W-ARC DOME W-BASALT

ALTERNATIVE 1 FULL DEPLOYMENT NEVADAZUTAH RASE 1 COYOTE SPRING, NEV RASE 2 BERYL, UTAH

	VISITUR DAY DIFFERENCE	PERCENT	INDEX OF PRIMACY*	NAME	VISITOR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDEX OF PRIMACY+
W MORES	1836 7	31. 1	100 0	-TAYLOR CRE	212 2	19 97	!
W-FANDANGO	1836 7	31 1	_	-BEAR T		17 47	87 5
W-COUGAR CANYON	169 4	31 1		-GOOSE CREEK			
5		-		_		3 77	
BEAR TRAP				N FORK	0 688	2.89	14.5
W LA VERKIN CREEK		30 4		W-TUNNEL SPRING	1349 6	1 37	6 9
W-RED BUITE			7 7		711 1	1.31	99
W-TAYLOR CREEK CYN	212.2		7 7 2	W-GARROTT BUTTES	755 5	1.23	£ 9
M-ZION	9337.1	30.4	7		212 2	1 23	6.2
W-PINE VALLEY MIN	2987.2		97.4	W-THE WATCHMAN	195.8	1.16	
W-CEDAR BREAKS	349. 6	30.2	97 1	W-EL DORADO	1138 6	1.06	53
W-ASHDOWN GORGE	349.6			W-IRETEBA PEAKS	984 6	00 1	
W-DRDERVILLE CYN	1949.0			W-E OF BRYCE	229.4	96 0	4
W-GODSE CREEK CYN	170 9			W-RED BUTTE	212 2		
W-DEEP CREEK	341 9				915 9		
W-N FORK VIRGIN R	0 688	29. 5		CROSS C	320.6	0.75	,
W-RED MIN	253.1			×	471.1		3.7
W-STARVATION POINT	253 1		93. 2	W-PINE CREEK	-	•	
W-COTIONWOOD CYN	274 8			W-ESCALANTE 5	130, 5	•	6 6
W-SIMPSON PARK	1094, 3			M-GEM	124.7	ß	2.7
W-PARIA-HACKBERRY	469.8				214 4	0.47	
W-PARIA CYN	1476 4			W-CAPITOL REEF		4	
W-THE WATCHMAN	195.8				201.9	0.39	0 N
W-PARUNUWEAP CYN	2428.0			W-LOWER PAHRANAGAT	-		
W-RED CANYON N	261.7	28 2	40 7	W-ROBERTS		0.35	1 8
W-CANAAN MIN	391. 7			W-DEEP CREEK	341 9		1.8
W-BURNING HILLS	4.09			W-S PAHROCS/HIKO	1769 9		1.7
W-HOWELL PEAK	1365 0				1836. 7		1.5
W-THE BLUES		28 0	0 06	WHITE R	1003 2	0.29	1 5
W-PIPPS DEATH					206. 9		1.4
W-BOX DEATH HOLLOW			89. 1	W-CONGER RANGE	692.3		E .1
W-HORSE SPRING CYN			88.4	M-2 ION	9337 1		1. 3
W-CARCASS CANYON	87.2		88 4	W-KAWICH	1369. 2	0 24	1.2
W- WAHWEEP	100 9		88. 4	W-CEDAR BREAKS	349 6		1.2
W-FIFTYMILE MTN	91.8		1 88		1476 4	0 24	1 2
W-SCORPION	65 2			W-WHITE ROCK RANGE	84. 1		1.2
W-N ESCALANTE	6575. 2			W-SGUAW PAPOOSE CYN	488 5	0.23	1.2
W-ESCALANTE S	130.5	27.2	87.5	W-GRAND GULCH	1699 6		1.2
W-RED CANYON S	229.4		8.98	W-FACTORY BUTTE	262.2		1.2
W-E OF BRYCE	229.4			W-HONTONE MINE		0.22	1.1
W-BRYCE CANYON	255.0	27 0	86 8	W-HOWELL PEAK	533.6	0.21	1 1
W-MOGUITH MIN		26.9			30.6		1 1
W-RAWHIDE MIN	1337. 2	26 1		W-MARTIN SPRING	974.0	0.21	1 1
			•				

CT0154

1ABLE 4 3 - 3 PEAK YEAR POPULATION-RELATED INCREASED WILDERNESS RESOURCE USE FOR ALTERNATIVE 1

NAME	VISITOR DAY DIFFERENCE	PERCENT INCREASE	INDEX OF PRIMACY*	NAME	VISITOR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDEX OF PRIMACY+
SADE M	1403 8	25.8	0 68	W-N ESCALANTE	6575.2		1 0
W-THE WALL	1403 B		m			เก	1 0
MBUIRN, NORTH	1294 7	24 9	80 1		251 0	0.19	1.0
W-S REVEILLF	1461 4		9	z	143 1	0.19	
W-ROBERTS	1216 3		Ö		55.6	-	
W-MT PENNEL	492 0		73 3	W-WHITE MINS(FP)	1210 1	7	
W-LITTLE ROCKIES	41.7		eri Eri	W-RESTING SPRINGS	8 99		
W-MT HILLERS	534 2	22 8	ო	W-PARUNUWEAP CYN	2428 0	0.18	6.0
W-MANCOS MESA	2 66		72.0		1051 8	****	6 0
WI-CROSS CYN	320 6		71 7	W-GUAIL SPRING	199 3	0 17	
W-SILVER PK RANGE	1064 7	22 3	71 7	W-PORTER MINE	121 4	0.17	6 0
W-ROAD CYN	35 3		71.4	M-RED CANYON N	261 7	_	
W-FISH CREEK CYN	35, 3	25. 2	71 4	W-ASHDOWN GORGE	349 6	_	6 0
W-GABBS VALLEY	1000 9		71 4	W-PINE CANYON	506 9	_	
WHICHEESE BOX CANYON	58.1	22 1	71 1	W-MCCULLOUGH MTS	764 2	0 16	0.8
W-GRANT RANGE (USES)	828. 2		70 4	M-SWASEY MTN	2 969	_	
W-MIDDLE POINT	55.5	21.6	5 69	W-MT STIRLING	2 656	_	8.0
M-DARK-WOODENSHOE	144 3	21.6	69 5	W-RED CANYON S	229, 4	0.15	Ξ.
W-ARCH CANYON	188 6	21.6	69 5	W-FANDANGO	1836, 7	7	0.7
M-SQUAW PAPODSE CYN	488.5	21 6	69 5	W-WEEPAH SPRING	1630 7	_	0.7
W-MULE CANYON	42.9	21.6	69 5		1403.8	٦.	٠.
W-DARK CANYON	316.2	-	69.5	W-SILVER PK RANGE	1064 7	٦.	0.7
W-SWEET ALICE CYN	27 7	21.5		M-CRACK CANYON	212 7	-	0 7
W-BULLET CANYON	206 9	21.1	_	C	876. 2	-	
	1699 6	21 1	<u> </u>		124 7	_	
	206.9	21 1	<u> </u>	ທ	214 4	0. 12	9 0
	471 1	21 1		W-PINE VALLEY MIN	2987 2	۳.	
	206 9	21 1	· .	W-MT GRAFION	1076 4	_	
	1369 2	_	_	W-ARCH CANYON	188 6	~	
W GRANT RANGE	915 9	_	•	ILLERS	534 2	_	
	200 4		•	W-DEEP CREEK MINS	724 4	~	
W WHITE MINS(FP)	1210 1		6 99	⊢	634 4	0 11	9 0
W PIGEON SPRING	1 43 1		9 9 9	-SAN R	1/9 3	_	-
W-WORTHINGTON MINS	168 4		63.7		272 7	-	
W-ANTELOPE	755 5	19 5	Ci	T	650 4	_	
W-WEEPAH SPRING	1630.7		62 4	₽.	112.6	_	
W-HIGHLAND RIDGE, N	531.9	•	62.4	W-HANKS CREEK	-	~	
W-WHEELER PEAK	531.9	19 4	62 4	W-PIPPS DEATH	1239 2	0 10	
WILTILE HUMBOLDI R	7 1	19 1	61 4	W-STARVATION POINT	253 1		
W MARTIN SPRING	974.0	15 0	61 1	W-AMARGUSA	124 7	60 0	
U PARK PANGE	206 4	18 9	8 09	W-BLUE EAGLE	•	60 0	0.5
W HONIONE MINE	64 2		60 5	W-SIDS MIN	251 5	0 0	
TALL CLUSTER OF THE		0	A) 18	U-DAUNTHE MIN	ני לבבו	0	

NAME	VISITOR DAY DIFFERENCE	PERCENT	INDEX OF PRIMACY*	NAME	VISITOR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDEX OF PRIMACY+
W-BASALT	115.6	18 8	60 5	W-MUD SPRING	524 7	80 0	4 0
W-EXCELSIOR	796 1	18 8	90 5	W-MORMON MINS	1610 9	0 08	0
W-S PAHROCS/HIKO	1769 9	18 4	59.2	W-SIMPSON PARK	1094 3	B O 0	0
W-TUNNEL SPRING	1349 6	18 3	58 8	W-F % W 1	108 1	80 0	0 4
W-FAR S EGAN	9 '99	18 1	58 2	W-DELAMAR MTNS	1617 7		0 4
W-GRANITE SPRINGS	163 8	18 0	57.9	W-E PAHRANAGAT	214 4	0 08	0
W-BUNNIE CLAIRE	162 0	18.0	57.9	W-FREMONT GORGE	326 5		0
W-MI MORIAH	491 5	18 0	57.9	M-COTTONWOOD CYN	274 8		0
W-TABLE MOUNTAIN	151 1	17 7	56.9	W-COTTONWOOD-SALMON	292 4		0
W-WHITE ROCK RANGE	1003 2	17 7	26.9	M-MEADOW VALLEY MIN	1837 6		0 4
W-PARSNIP PEAK	192.4	17 7	26.9	W-KING TOP	617.8		0 4
W-ARC DOME	495.2	17 6	56 6	W-QUEER MIN	1073 4		0 4
W-FORTIFICATION	876. 2	17 3	55 6	W-GOSHUTE CANYON	6010		E 0
W-GRAPEVINE SPRING	708 8	17 3	55.6	W-MILLION HILLS	81.9	90 0	E 0
W-RED SPRING	112 6	16 9	543	M-AUGUSTA MINS	640 3		6°0
W-CEDAR RIDGE	112 6	16.9	54 3	W-GUINN, NORTH	1294 7		0 3
W-LUWER PAHRANAGAT	214 4	16 2	52 1	W-S REVEILLE	1461 4		0 3
W-E PAHRANAGAT	214.4	16 2	52 1	W-MULLEN REEF	56.3		е 0
W-MEDSGER PASS	214 4	16 2	52 1	W-GABBS VALLEY	1000 9		0 3
W-EVERGREEN	214 4	16 2	52 1	W-DEVILS CYN	251 5		0 3
W-S EGAN RANGE	169 3	16 0	51 4	W-JOB PEAK	523.3	0.05	E 0
W-MI GRAFION	1076 4	16 0	51 4	W-INDIAN CREEK	14 6		E 0
W DELAMAR MINS	1617 7	15 3	49 2	W-CEDAR RIDGE	112 6		e 0
M-MEADOW VALLEY MIN	1837 6	15 2	48 9	W-GRAPEVINE SPRING	708 8	0.05	0 3
Wife & William	108 1	15 2	48 9	W-BRYCE CANYON	255 0	0.05	င ်ဝ

*INNEX OF PRIMACY (PERCENTAGE OF LARGEST VALUE) CALCULATED WITH PERCENT INCREASE *INDEX OF PRIMACY CALCULATED WITH INDEX OF V-D/ACRE

ALTERNATIVE 2 FULL DEPLOYMENT NEVADA/UTAH BASE 1 COYOTE SPRING, NEV. BASE 2 DELTA, UTAH

NAME	VISITOR DAY DIFFERENCE	PERCENT	INDEX OF PRIMACY#	NAME	VISITOR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDEX OF PRIMACY+
W-MOREY				-TAYLOR CRE	ı,		100 0
W-FANDANGO			0	-BEAR	195 2	0	
W.SIMPSON PARK		28.8 19.8	0 0 0 0 0 0			6 35	32.6
WIFTAKIA CYN				ILLE CYN	1792.5	ا ب	18 9
	195.2		_ ·	_		00 6	
W-LA VERKIN CREEK	195 2		91. 7	ω,		1.34	6 9
W-MED BOILE	195.2		7 1 7		687.3	1.31	6 7
W-IAYLUM CHEEN CYN	140.6		7 7	W-GARRUII BOLIES		4.0	
MIN AND THE OTHER	0.48080		71.	M-LA VERKIN CREEK	19.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	1 50	יט ני ט ני
W-Tive VALLEY 7774	2.000 4.000 7.000 7.000 7.000 7.000		7 60	Maine Walchigh		1. 14	
W-GOUSE CREEK CYN	157.0	27.0		W-IRFTERA PFAKG	9.54.0	0 0	 -
W-N FORK VIRGIN R			89. 1	, E			4 0
W-COTTONWOOD CYN	260.2		89 1	W-RED BUTTE	193. 2		4
W-ORDERVILLE CYN			1 68	W-GRANT RANGE			6. 6.
W-STARVATION POINT	238.0		89. 1	W-CROSS CYN	349. 7	0.74	9 9
W-RED MIN	238 0		89 1	W-SHEIKS FLAT	483.6	0. 73	3.7
W-CEDAR BREAKS	288 1		1 88	W-PINE CREEK	1371.9		9. A
W-FARIA-HACKBERRY	447 0		1 88	W-ESCALANTE 5	124.9	0. 62	(A)
M ASHDOWN GORGE	288.1		88. 1	W-GEM	120.6	0.54	13 13
W-COUGAR CANYON	131, 3		87. 2	M-DEVILS CYN	289. 2	0 54	9 6
M-SPRING CANYON	199.7			W-EVERGREEN	207. 4		9
W-THE WATCHMAN	185.8			W-LOWER PAHRANAGAT	207.4		
W-PARUNUWEAP CYN	2303. 2			W-NELL IS	196.0		O (i
W-CANAAN MIN		27. 1	86.9	W-ROCKWELL	440 7		1.8
W-HOWELL PEAK				W-ROBERTS			1 8
W-THE BLUES		56.9			_		1.7
W-BURLING HILLS				C	٠.		1 7
W-CARCASS CANYON		26.6	85 3	W-FREMONT CORGE	_	0.30	1.5
WHOPSE SPRING CYN					_		1 5
MAHMEEP	96.2	26 5	84.9	CAN	520.3		1.4
U FIFTYMILE MIN	87.5			W-WHITE ROCK RANGE	_		1. 4
	6563.9	26.3		ϫ	257 4		
	4 29			W-CONGER RANGE	718.		ю -
W ESCALANTE 5	124 9		84 3	M-ZION	-	0 25	n -
W PED CANYON N	223, 5			M-KAWICH	1328.3		 (4
W BOX DEATH HOLLOW	73.4		83.7		1497.6	CV	1.2
W-MOQUITH MIN	168 4		m		1744.5	U	<u>.</u>
W-PAWHIDE MIN			m	M-SQUAM PAPOOSE CYN		0 23	Ci
W-E OF BRYCE		26.0		BREA	288. 1		1
	1070 9		83.3		6 89	0 25	-
\Box			m	ш	63.2		-
W-RED CANYON S	218 3	26 0	83.3	W-MARTIN SPRING	OI.	0.21	
W-BLUE EAGLE	1314 9	25 7	82.4	W-HOWELL PEAK	565.5		1 1

Ω'n

Ì

CT0155

.....

AUTERNATISE 3 FULL DEPLOYMENT NEVADAZUTAH BASE 1 BERNE, UTAH BASE 2 ELY, NEV

	DAY	INCREASE	INDEX OF PRIMACY*	NAME	VISTIUR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDE X UF PRIMACY+
CAL	186 0		100 0	W-TAYLOR CREEK CYN	-	19 93	100 0
W-MOREY	1881 6		ī,	W-BEAR TRAF CANYON	211 0	4	
W-F ANDANGO	1881 6	31.7	95.5	W-GOOSE CREEK CYN	168 8	4	32 5
M-SIMPSON PARK	1230 2			W-PUEBLO MOUNTAIN	٠n	0	202
W-PINE VALLEY MIN	3184 2		95 5	W-ORDERVILLE CYN	1925 3		
W-LA VERKIN CREEK	211 0	30.2	91 0	W-N FORK VIRGIN R	878 2	2 88	4
W-BEAR TRAP CANYON	211 0		910	W-TUNNEL SPRING	1136 6		6 7
W-RED BUTTE	211 0		91.0	W-BONELLI PEAK		1 25	
M TAYLOR CREFK CYN	211		91 0	W-LA VERKIN CREEK	_	1.23	6
W-Z10H	9284 2	30.2	910	W-GARROTT BUTTES		1 19	0 9
W SPRING CANYON	245 0		40.7	W-THE WATCHMAN	179 3	1 13	5 7
M- ASHPOWN GORGE	337 9	29 4	9 88	W-EL DORADO	459 6	1.00	5.0
W CFDAR BRFAKS	337 9	29 4	88 6	W-E OF BRYCE	237 0	0 97	4 9
W-BURNING HILLS	643			W-IRETEBA PEAKS	396 4		4 8
W-GOOSE CREEN CYN	168 8			W-RED BUTTE	211 0	0.87	4
W N FORK VIRGIN R	878 2			W-GRANT RANGE			
	1925 3	29 3	88 3	W-CROSS CYN	347 9	0 74	3.7
W-PEEP CREEK	337 8			W-SHEIKS FLAT	468 1		3 6
W MARTIN SPRING	1723 0	29 3		- 1			En En
W- HIGHLAND RIDGE, N	9018			W-PINE CREEK	570 B		.π Ε
W WHEELER PEAK	901.8	58 9	87 0	W-GEM	29 8	0 52	5 6
	475.8		86 7	W-EVERGREEN	0 86		ru Cu
W RAWHIDE MIN	1524 4			W-COTTONWOOD-SALMON	446 5		ر 1
	1511 7			W-ROBERTS	•		0.
W PALISAPE NESA	1606 2			M-NELL IS			1 9
M THE WALL	1.06 2			W-LOWER PAHRANAGAT	_		1 8
E PED CANYON N	259 5			W-DEEP CREEK	337 8		1 8
WITHE BLUES	119 5		84.3	W-S PAHROCS/HIKO			1 6
A HIMELL PEAK	1362 7	28 0	84.3	W-FREMONT GORGE	• •	0 30	1 5
H PARIA CYN	1440 7		84 0	W-WHITE ROCK RANGE	1032 4		1.5
W F OF BRYCE	538 0		R3 7	W-MOREY	1881 6		1.5
H PRYCE CANYON	265 6		83.7	M-BULLET CANYON			1 4
W PED CANYON S	538 0		83.7	W-CONGER RANGE	1133 9		1 4
HOME SPRING CYN	88 7		83.7	W-FISHLAKE MIN			1 3
M CAPCASS CANYON	68 7		R3 7	W-WHITE ROCK RANGE			1 3
W STAPVATION POINT	734 5		83 1	M-ZION	9284 2		1 3
S PED SIE	736 5		83 1	W-CEDAR BREAKS			(v
M POBERTS	1518 6		82.8	W-MARTIN SPRING	1723 0		Cii ⊶
WOLFFILM SCORETON	0 99		82.5	W-PARIA CYN	1440 7	0 24	1 6
W IV ESCALANTE	4655 9	27.4		W-SQUAW PAPOOSE CYN	490 3		1 2
M FSCALANTE 5	132 1	27.4	82.5	M-GRAND GULCH	1688 6	0 23	(r)
TANGE TOWN TOWN		,			0		

NAME	VISITOR DAY DIFFERENCE	PERCENT	INDEX OF PRIMACY*	NAME	VISITOR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDEX OF PRIMACY+
W-PIPPS DEATH	1179.5	26.7	80.4	W-HOWELL PEAK	812.9	0.22	1 1
W-BOX DEATH HOLLOW	80 7	26.7	80 4	W-HONTONE MINE	58 2		1 1
W-THE WATCHMAN	179.3	26. 4	79.5	W-LITTLE GOOSE CR	100.8	0. 20	1 0
W-CANAAN MIN		26. 4	79.5	_	6655 9	0. 20	1 0
W-PARUNUWEAP CYN	2222. 9	26.4	79.5	W-HOWELL PEAK	1362.7	0. 20	0 1
W-WAHWEEP	95. 4	26. 4	79.5	W-PIGEON SPRING	121.9	0. 19	1.0
W-FIFTYMILE MTN	86. 7	26.3	79.2	W-SPRING CANYON	245.0	0. 18	6 0
W-MT MORIAH	790.9	26. 1	78.6	W-DEATH VALLEY	681.1	0 18	6 0
W-GRANITE SPRINGS	263.6	26 1	78. 6	W-PARUNUWEAP CYN	2222. 9	0.18	6 0
W-MOGUITH MIN	166. 7	25.9	78.0	W-PORTER MINE	78.6	0.17	6 0
W-QUINN, NORTH	1293. B	24.8	7.4.7	M-RED CANYON N	259.5	0.17	6 0
W-LITTLE HUMBOLDT R	ტ ტ	24 2	72. 9	W-WHITE MINS(FP)	1051.9	0.17	6 0
W-GRANT RANGE (USES)	925. 4	23.9	72 0		23.0	0.17	6 0
W-MT HILLERS	546 4	23. 2	6 69	W-RESTING SPRINGS	34, 4	0. 17	6 0
W-MT PENNEL	502 8	23. 2	6 69	W-GUAIL SPRING	88.4	0.16	8 0
W-LITTLE ROCKIES	42.7	23, 2	6 69	M-ASHDOWN GORGE	337. 9	0.16	B .0
W-GRANT RANGE	1042.3	23.0	6.79	M-PINE CANYON	203. 6	0 16	80
W-RIORDANS WELL	228.0	23 0	69.3	W-RED CANYON S	239.0	~	0 8
W-MANCOS MESA	101.8	22. 9	0 69	W-SWASEY MTN	820. 5	0.15	0 8
W PARK RANGE	252.6	22. 7	4 89	W-MCCULLOUGH MTS	306. 6	0.15	8 0
M-CHEESE BOX CANYON	29 7	22. 6	68.1	W-MUDDY MINS	92.5	0.15	8 0
-CROSS CYN	347.9	22, 1	9 .99	W-FANDANGD	1881 6	-	8 0
A-ROAD CYN	35, 1	22. 1	9 .99	W-THE WALL	1606. 2	0.15	8 0
M-FISH CREFK CYN	35, 1	22 1	9.99	W-TOBIN RANGE	170.9	0.14	0 7
-SQUAW FAPOUSE CYN	490 3	21 7	65 4	W-MT STIRLING	449 4	0 14	0 7
MULE CANYON	43.0	21 7	65. 4	W-SILVER PK RANGE	926 1	0 14	0 7
ARCH CANYON	189 3	21, 7	65 4	W-FORTIFICATION	1136.3	-	0 7
ANTELOPE	856 7	21 6	65. 1		1393 6	0.13	0.7
CEDAR RIDGE	147 8	21 5	Ξ.		1152 7	_	0 7
-PFD SPRING	147 8	215	Ξ.	>	3184 2	0. 12	9 0
W-MIDDLE POINT	542	21 2	63.9	W-CRACK CANYON	202 9	0 12	9 0
WISWEET ALICE CYN	27 0	21, 1	9 69	W-MT HILLERS	546 4	0 12	9 0
DARK CANYON	308 7	21 1	9 69	W-ARCH CANYON	189, 3	0. 12	9 0
DARK-WOODENSHOE	140 8	21 1		W-NOTHING FLATS	29 8	0.12	9 0
SLICKHORN CANYON	203 6	21 0	633	W-RED SPRING	147.8	0.11	9 0
SHETKS FLAT	468 1	21 0	63 3	W-DEEP CREEK MINS	875 4	0 11	9 0
M-PINE CANYON	203 6	21 0		W-DESATOYA MINS	728 1	0 11	9 0
MIGRAND GULCH	1688 6	21 0	6 63	W-FISH SPRINGS	681 6	-	0 5
W-BULLET CANYON	203 6	21 0		M-HANKS CREEK	365, 6	0.10	1 0
W-FORTIFICATION	1136 3	50 9		W-STARVATION POINT	236. 5	0 10	0 5
M-GABBS VALLEY	885 0	20 1	90 2	ш	1179 5	0.10	0.5
		0	. 07		0		

^INDEX OF PRIMACY (PERCENTAGE OF LARGEST VALUE) CALCULATED WITH PERCENT INCREASE +INDEX OF PRIMACY CALCULATED WITH INDEX OF V~D/ACRE

TALLE A BEST FEAK YEAR PROJECTED POPULATION RELATED INCREASED WILDERNESS RESCORCE USE FOR ALTERNATIVE 4

ACTERNATIVE 4 FOLL DEFLOYMENT NEVADAZOTAH FASE 1 RERYL, OTAH BASE 2 COYOTE SPRING, NEV

December Cartering 1400 2 2 2 100 0 0 0 0 0 0 0 0	NAME	VISITOR DAY DIFFERENCE	PERCENT	INDEX OF PRIMACY#	NAME.	VISITOR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDEX OF PRIMACY+
THE VALLE MIN 1274 0 27 4 0 0 0 0 0 0 0 0 0				100 0	-TAYLOR CREEK			
Heart May Critical Carry 118 110 95 4 W-000BE CREEK CVA 147 7 55 4 32 15 15 15 15 15 15 15 1				697	BEAR TRAP		7	
Land Hamiltonian Carron 19 8 31 0 95 4 H-DRIERVILLE CVN 1992 3 37 9 19				95.4	GOOSE CREEK		t)	
10 10 10 10 10 10 10 10				95.4			7	_
Part				95 4	VIRGIN			•
Page 19 Page		4628 7		95.4	W-TUNNEL SPRING		1 35	6 7
17 17 17 17 17 17 17 17				95.4			1.33	
NONSE CREEK CYN 174 7 30 0 92 3 W—THE WATCHFRAN 190 5 115 4 6		245.0		9 26	W-GARROIT BUTTES		1 26	
Particle Canada		174 7		92.3	W-LA VERKIN CREEK		1 24	
ACMINGHOULE CVN 1992 3 0 92 3 H-EL DORNDO BZO 710 107 5 ACMICHANIE E CVN 1992 3 0 92 3 H-EL DORNDO 270 10 10 9 4 AL PARTAL RIGGIN R 325 3 0 92 3 H-ER DORNDO 270 0 97 3 4 RED DOLTE 270 0 97 3 4 RED DOLTE 270 0 97 3 4 A 1 2 3 3 3 3 3 3 3 4 4 4 1 1 3 3		349 5			W-THE WATCHMAN		1.15	
March Marc		1992. 3			W-EL DORADO		1.07	
Figure Record Color Co		325 2			-IRETEBA PEAK		1.01	
Figure Virgin R 908 8 30 92 3 Mu-RRD BUTTE 218 8 0 88 4		325 2			W-E OF BRYCE	240 1		
FAMINATOR 1736 1 279 9 9 72 0 W-PRINSS CYN 352 6 0 75 3 3 4	N FORE VIRGIN				W-RED BUTTE			٦,
December 125 25 9 9 9 9 0 December 125 0 1 4 1 1 1 2 December 125 0 1 2 9 9 9 9 0 December 125 0 1 2 9 9 9 1 December 125 0 1 2 9 9 9 1 December 125 0 1 2 9 9 9 1 December 125 0 1 2 9 9 9 1 December 125 0 1 2 9 9 9 1 December 125 0 1 2 9 9 December 125 0 1 2 9 9 December 125 0 1 2 9 9 9 December 125 0 1 2 9 December 125 0 1	J-FANDANGO				-CROSS		۲.	
1736 1 279 92 0 W-SHETKS FLAT 1712 1736 1 279 92 0 W-SHETKS FLAT 1712 1 279 92 0 W-SHETKS FLAT 1712 1 271 1 271 1 271 1 272 2 28 9 88 9 W-ESCALANTE 134 5					-GRANT		7	
FABLICATERRY 500 5 27 8 9 17 7 W-PINE CREEK 1015 2 0 67 3 3 4 6 6 6 6 7 3 4 6 6 6 7 3 4 6 6 6 7 3 4 6 6 6 7 3 4 6 6 7 3 4 6 6 7 3 4 6 6 7 3 4 6 6 7 3 4 6 6 7 3 4 6 6 7 3 4 6 6 7 3 4 7 6 7 3 4 7 6 7 3 4 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7					-SHEIKS			
PED MIN 252 2 28 9 BB 9 H-ESCALANTE 5 134 5 0 64 3 7 PARAVATION POINT 252 2 28 9 BB 9 H-CERRER 138 7 0 65 2 6 2 6 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7					-PINE			
STAMPORTION POINT 252 2 2 8 9 9 88 9 H-GEM 106 8 105 8 105 9								
HIFE BLUES 125 2 28 9 68 9 H-EVERGREEN 138 7 0 45 22 HUMELL FEAK 1427 6 28 8 9 H-COLTONAUDOD-SALMON 290.1 0.37 HORRIA CYN 248 6 28 8 H-COLTONAUDOD-SALMON 290.1 0.37 HORRIA CYN 248 2 88 9 H-COLTONAUDOD-SALMON 145 9 0.37 HURGE SCRIVOLN 248 2 88 9 H-COLTONAUDOD-SALMON 138 7 0.38 HURGE SCRIVOLN 240 1 28 2 8 8 H-COLTONAUDOD 1216 4 0.37 HURGE SCRIVOLN 259 3 28 0 86 2 H-COLTONAUDOD 1216 4 0.37 HURGE SCRIVOLN 259 3 28 0 86 2 H-COLTONAUDOD 1216 4 0.37 HURGE SCRIVOLN 259 3 28 0 86 2 H-COLTONAUDOD 1216 4 0.37 HURGE SCRIVOLN 250 3 28 0 86 2 H-COLTONAUDOD 1216 4 0.37 HURGE SCRIVOLN 250 3 28 0 86 2 H-COLTONAUDOD 1216 4 0.37 HURGE SCRIVOLN 250 3 8 8 H-COLTONAUDOD 1216 4 0.37 HURGE SCRIVOLN 250 3 8 8 H-COLTONAUDOD 250 3 HURGE SCRIVOLN 250 3 8 8 H-COLTONAUDOD 250 3 HURGE SCRIVOLN 250 3 8 8 H-COLTONAUDOD 250 3 HURGE SCRIVOLN 250 8 8 8 H-COLTONAUDOD 250 3 HURGE SCRIVOLN 250 8 8 H-COLTONAUDO 250 8 HURGE SCRIVOLN 250 8				-	- 1		ß	
HOWELL PEAK 1427 6 28 9 9 8 9 W-COTTONWUOD-SALMON 280. 1 0 40 2		125 2				138.7		
CANTONATOD CYN 268 6 28 4 87 4 W-WELLIS 145 1 0.37 1.	JOHOWELL PEAK	1427.6			- 1	280 1		
PARIA CVA 1469 9 28 3 B7 1 W-LOBER PAHRANAGAT 138.7 0 3B 1 PARIA SCANYON 90 1 28 2 86 8 W-DEF CREEK 349 5 0 35 1 PURICE SCANYON 90 1 28 2 86 8 W-PROBETS 1155 7 0 34 1 PET CANYON IN 259 3 28 0 86 2 W-FRENDIN GORGE 1216 4 0 35 1 PET CANYON IN 259 3 28 0 86 2 W-FRENDIN GORGE 1216 4 0 35 1 PET CANYON IN 250 1 27 9 85 8 W-MHTE ROCK RANGE 971 0 0 29 1 PET CANYON IN 27 9 85 8 W-MHTE ROCK RANGE 971 0 0 29 1 PET CANYON IN 27 2 27 8 85 5 W-BULLET CANYON 270 0 0 29 1 PET CANYON IN 27 2 27 8 85 5 W-CONGER RANGE 972 0 0 26 1 PET CANYON IN 27 2 27 8 85 5 W-CONGER RANGE <t< td=""><td>I-COLIONMOOD CYN</td><td></td><td></td><td>87.4</td><td>NELL I</td><td>145.1</td><td></td><td>1 9</td></t<>	I-COLIONMOOD CYN			87.4	NELL I	145.1		1 9
CARCASS CANYON 90 1 28 2 86 8 W-DEEP CREK 349 5 0 35 1 HIRTER SPRING CYN 90 1 28 2 86 8 W-ROBERTS 1155 7 0 34 3 1 1 1 1 1 1 1 1 1 3 1 1 1 3 4 1 0 3 1 1 1 1 1 1 1 1 1 1 1 2 4 8 8 8 9 9 3 0 3 1 1 1 1 1 2 3 4					-LOWER	138.7		1 9
HORENEE SPRING CYN 90 1 28 2 86 8 W-ROBERTS 1155 7 0 34 1 PFT G CALLYON N 259 3 28 0 86 2 W-S PAHROCS/HIKO 1216 4 0 32 1 PFT G CALLYON 266 8 27 9 85 8 W-WHITE ROCK RANGE 971 0 0 29 1 F (0 PRYCE 240 1 27 9 85 8 W-WHITE ROCK RANGE 971 0 0 29 1 F (0 PRYCE 240 1 27 9 85 8 W-MOREY 1736 1 0 29 1 F (0 PRYCE 240 1 27 8 85 5 W-MOREY 1736 1 0 29 1 F (10 PRYCE 27 8 85 5 W-FORDER 770 5 26 1 F (10 PRYCE) 27 8 84 9 W-FILLEY 770 5 26 1 F (10 PRYCE) 27 8 84 9 W-FILLEY 770 5 24 1 F (10 PRYCE) 27 8 84 6 M-FILLEY 770 6 0 24 1 F (10 PRYCE) <t< td=""><td>LICARCASS CANYON</td><td>90 1</td><td></td><td></td><td></td><td>349 5</td><td></td><td>1 7</td></t<>	LICARCASS CANYON	90 1				349 5		1 7
GED CAUMON N 259 3 28 0 86 2 W-S PAMROCS/HIKO 1216 4 0 32 1 FREMON N 256 8 27 9 85 8 W-FREMONT GORGE 339 3 0 30 1 F GE PRYCE 240 1 27 9 85 8 W-MOREY 1736 1 0 29 1 F GE RALPOR 240 1 27 9 85 8 W-MOREY 1736 1 0 29 1 F GALANTE S 27 8 85 8 W-BULET CANYON 507 0 0 27 1 F GALANTE S 27 8 85 5 W-BULET CANYON 507 0 0 27 1 F GRALATIE 47 2 27 8 85 5 W-CHOKER RANGE 770 5 26 1 F ARLINGWEAP CYN 381 1 27 6 84 9 W-CROMER RANGE 70 5 26 1 F ARLINGWEAP GYN 381 1 27 6 84 9 W-GRAND GUCH 470 6 0 23 1 F GALATH 1223 3 27 5 84 6 W-M-GRAND GUCH 46 4 0 23 1	THURSE SPRING CYN	90 1			- 1	1155 7		1.7
Fig. 1997 Fig.	LPED CANYON N	259 3			- 1	1216 4		1 6
F (# PRYCE 240 I 27 9 B5 B H-WHTTE ROCK RANGE 971 0 0 29 I RF ID CANYON 240 I 27 9 B5 B M-MOREY 1736 I 0 29 I ESCORPTION 172 S 27 B B5 5 M-FICHLAKE MTN 278 I 0 26 I FSCORPTION 67 Z 27 B B5 5 M-FICHLAKE MTN 278 I 0 26 I F FCARLANTE 677 Z 27 B B5 5 M-CONGER RANGE 770 S 0 26 I F FCARLANTE 677 Z 27 B B4 D M-CONGER RANGE 770 S 0 26 I F FARLAND MIN 381 J 27 G B4 D M-FARIA CYN 40 C 0 26 I F FARLAND MIN 129 B A G B4 D M-KAMICH 1700 C 0 23 I F FILT YMILE MIN 37 B B4 D M-MINTER RANGE 96 A 0 23 I F IF YMILE MIN 37 B B4 D M-MINTER MIN B4 D B4 D	U PPICE CANYON				GO			1 5
REDUCTION S 240 1 27 9 B5 B W—MOREY 1736 1 0 29 1 FESCALANTE 134 5 27 B B5 5 W—BULLET CANYON 507 0 0 27 1 FESCALANTE 57 2 27 B B5 5 W—FISHLAKE MTN 27 B 0 26 1 FARTINITE 6777 2 27 B B5 5 W—CONGER RANGE 770 5 0 26 1 FARTINITE 6777 2 27 B B4 9 W—FARIA 1469 9 0 26 1 FARTINIMATIN 190 5 27 B B4 9 W—FARIA CYN 490 6 0 23 1 FILTER WALLE 100 1 27 B B4 6 W—FAMICH 490 6 0 23 1 BOLK DEATH HOLLOW B3 B 27 B B4 6 W—FAMICH 1700 0 0 23 1 BOLK DEATH HOLLOW B3 B 27 B B4 6 W—FAMICH 40 B 0 23 1 BOLK DEATH HOLLOW B3 B B4 B M—FAMICH B4 B 0 23 1	A F OF PRYCE	240 1			-WHITE ROCK	_		1 4
ESCALANTE 5 134 5 27 8 85 9 W-BULLET CANYON 507 0 0 27 1 1 1 2 2 2 8 85 5 W-BULLET CANYON 507 0 0 27 1 1 2 2 2 8 85 5 W-FISHLAKE MTN 278 1 0 26 1 1 2 4 5 2 2 8 85 5 W-FISHLAKE MTN 278 1 0 26 1 1 2 4 5 2 2 8 85 5 W-FISHLAKE MTN 270 5 0 26 1 1 2 2 2 2 2 8 84 9 W-FISHLAKE MTN 1469 9 0 24 1 1 2 2 2 2 5 84 6 W-FRANG CULCH 1700 0 0 23 1 1 2 1 2 2 2 2 5 84 6 W-FRANG CULCH 1700 0 0 2 3 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A RED CANYON S				-MOREY			1 4
SCORPTON S7 2 27 8 85 5 W-FISHLAKE MTN 278 1 0 26 1					BULLET	_		1
R FCCALANTE 6777 2 27 8 B5 5 W—CONGER RANGE 770 5 0 26 1 FARUALUMEAP CAN 2362 4 27 6 B4 9 W—710N 962B 7 0 26 1 FARUALUMEAP B3 1 27 6 B4 9 W—STAN 1469 9 0 24 1 FIFFY B6 A1 1 27 5 B4 6 W—GRAND GULCH 1700 0 0 23 1 FIFFY B6 A1 1 B7 8 B4 6 M—KAMICH 1700 0 0 23 1 B0X DEATH HOLLOW B3 B 27 5 B4 6 M—WHITE ROCK RANGE 96 4 0 23 1 F1 FYMILE MTN 91 0 27 3 B4 6 M—WHITE ROCK RANGE 96 4 0 23 1 F1 FYMILE MTN 91 0 27 2 B3 1 M—HOWELL PRAK 32 5 0 23 1 B1 MCH MA-HOWELL PRAK 1427 6 0 21 1 1 1 B1 MALIN 1252 3 24 B 76 3 M—HOWELL PRAK					FISHLAKE			13
PARPLATUMEAP CYN 2362 4 27 6 84 9 W-710N 9628 7 0 26 1 -ANDARIA MIN 381 1 27 6 84 9 W-PARIA CYN 1469 9 0 24 1 14 WENT MARK 190 5 27 6 84 9 W-SQUAM PARODSE CYN 490 6 0 23 1 14 WENT MARK 1223 3 27 5 84 6 W-KAMICH 1700 0 0 23 1 10 1 27 3 84 6 W-HANTE ROCK RANGE 96 4 0 23 1 11 YM WENT MIN 91 0 27 2 83 1 W-HONTONE MINE 63 9 0 22 51 MPSON PARK 982 9 27 0 83 1 W-HOWELL PEAK 588 5 0 22 MOUGUITH MIN 174 0 26 7 82 2 W-HOWELL PEAK 1427 6 0 21 MANDIAL MIN 1252 3 24 8 76 3 W-HOWELL PEAK 155 6 0 21 MANDIAL MIN 1252 3 24 8 76 3 W-HOWELL MIN 135 8 0 21	L RECOLATIF				-CONGER			- -
-CANDARN MIN 381 1 27 6 84 9 W-PARIA CYN 1469 9 0 24 1 FLIP WATCHMAN 190 5 27 6 84 9 W-SQUAW PARODSE CYN 490 6 0 23 1 FLIP FG 100 1 27 84 6 W-KAMICH 1700 0 23 1 MATHULE MT 91 0 27 3 84 6 W-WHITE ROCK RANGE 96 4 0 23 1 FILL WILL 91 0 27 2 83 7 W-HONTONE MINE 623 1 SIMPSON PARK 982 9 27 0 83 1 W-GEDAR RANGE 325 7 0 22 1 MOUGULL MIN 174 0 26 7 82 2 0 22 1 RAWHIDE MIN 1268 3 24 8 76					7 I ON			1 3
THE WATCHMATE 190 5 27 6 84 9 W-SQUAW PAPODSE CYN 490 6 0 23 1 FIPPS DEATH 1223 3 27 5 84 6 W-GRAND GUCH 1700 0 0 23 1 BOX DEATH HOLLOW 83 8 27 5 84 6 W-WAMICH 170 5 0 23 1 MANINEE 100 1 27 3 84 0 W-WHITE ROCK RANGE 96 4 0 23 1 FITTYMILE MIN 91 0 27 2 83 1 W-WHITE ROCK RANGE 96 4 0 23 1 FITTYMILE MIN 982 9 27 0 83 1 W-CEDAR REAKS 325 7 0 22 1 RAWHIDE MIN 174 0 26 7 82 2 W-HOWELL PEAK 1427 6 0 21 1 RAWHIDE MIN 1252 3 24 8 76 3 W-HOWELL PEAK 135 8 0 21 1		381 1			-PARIA	-	۲ij	1.2
PLEATH 1223 3 27 5 B4 6 W-GRAND GULCH 1700 0 0 23 1 BOX DEATH HOLLOW B3 B 27 5 B4 6 W-KAWICH 1170 5 0 23 1 MARINEE 100 1 27 3 B4 6 W-WHITE ROCK RANGE 96 4 0 23 1 FILTYMILE MIN 91 0 27 2 B3 7 W-HUNTONE 96 4 0 23 1 SIMPSON PARK 982 9 27 2 B3 1 W-CEDAR MINE 35 2 0 22 1 RAWHIDE MIN 1740 0 26 7 B2 2 W-HOWELL PEAK 58B 5 0 21 1 RAWHIDE MIN 1258 3 24 B 76 3 W-HOWELL PEAK 1427 6 0 21 1 BIUL MIN 1255 3 24 B 76 3 W-BULL MIN 135 B 0 21 1					-SOUAW PAPOUSE			1 1
BOX DEATH HOLLOW B3 B 27 5 B4 6 W-KAWICH 1170 5 0 23 1 WARIUR ER 100 1 27 3 B4 0 W-WHITE ROCK RANGE 96 4 0 23 1 FILTYMILE MTN 91 0 27 2 B3 7 W-HONTONE MINE 63 9 0 22 1 FINANCY PARK 98 2 27 0 B3 1 W-HOWELL PEAK 325 7 0 22 1 MOQUITH MIN 17 40 27 1 B2 2 W-HOWELL PEAK 58 5 0 21 1 RAWHIDE MIN 1258 3 24 8 76 3 W-HOWELL PEAK 1427 6 0 21 1	FIPPS DEATH				GRAND	-		1 1
WAHINE EPT 100 1 27 3 84 0 W-WHITE ROCK RANGE 96 4 0 23 1 FIFTYMILE MTN 91 0 27 2 83 7 W-HONTONE MINE 63 9 0 22 1 SIMPSON PARK 982 9 27 0 83 1 W-CEDAR BREAKS 325 7 0 22 1 MOQUITH MIN 174 0 26 7 82 2 W-HOWELL PEAK 588 5 0 21 1 RAWHIDE MIN 1268 3 25 1 77 2 W-HOWELL PEAK 1427 6 0 21 1 ULUE FAGE 1252 3 24 8 76 3 W-BUILL MIN 135 8 0 21 1	J BOX DEATH HOLLOW				W-KAWICH	-	Cú	
FILTYMILE MIN 91 0 27 2 83 7 W-HONTONE MINE 63 9 0 22 1 51 MPSON PARK 982 9 27 0 83 1 W-CEDAR BREAKS 325 2 0 22 1 MPGUITH MIN 174 0 26 7 82 2 W-HOWELL PEAK 588 5 0 21 1 RAWHIDE MIN 1268 3 25 1 77 2 W-HOWELL PEAK 1427 6 0 21 1 UCLY FAGE 1252 3 24 8 76 3 W-BUIL MIN 135 8 0 21 1					-WHITE ROCK		Cú	1 1
SIMPSON PARK 982 9 27 0 83 1 W-CEDAR BREAKS 325 2 0 22 1 1 M-CEDAR BREAKS 325 2 0 22 1 1 NOQUITH MIN 174 0 26 7 82 2 W-HOWELL PEAK 588 5 0 21 1 NAWHIDE MIN 1268 3 25 1 77 2 W-HOWELL PEAK 1427 6 0 21 1 UCT FAGE 1252 3 24 8 76 3 W-BUIL MIN 135 8 0 21 1					HONTONE		ſυ	- 1
MORALITH MIN 174 0 26 7 82 2 W-HOWELL PEAK 588 5 0 21 1 RAWHIDE MIN 1268 3 25 1 77 2 W-HOWELL PEAK 1427 6 0 21 1 UT FAGE 1252 3 24 8 76 3 W-BUIL MIN 135 8 0 21 1	I SIMPSON PARK				-CEDAR		٤٩	1 1
PAWHIDE MIN 1268 3 25 1 77 2 W-HOWELL PEAK 1427 6 0 21 1 ULUF FAGE 1252 3 24 8 76 3 W-BUIL MIN 135 8 0 21 1						-		0 1
ULUF FAGE 1252.3 24.8 76.3 W-BUIL MTN 135.8 0.21 1	RAMHIDE		25.1		:	_		1 0
			24 B		-BULL MI	ال -		1 0

NAME		PERCENT INCREASE	INDE'X OF	NAME		VD/ACRE INDEX	INDEX OF
	DIFFERENCE		PRIMACY*		DIFFERENCE	(CX)	PRIMACY+
MHESALISADE MESA	1330	_	76 3	W-MARIIN SPRING		0 21	1.0
13 - THE WALE.	1330 6	24 B	26.3	M N ESCALANTE			0 -
E-GUITHL NORTH	1214 4	23 7	72 9	UPPER P		Cu	1 0
	4.54	23 1	71 1	Z	137 9	0 19	
M MT HILLERS	542 6	23 1	71 1		m	0 18	
U-MI PENNEL	9 664	53 0		W-DEATH VALLEY	905 3	-	6 0
M-MANCUS MESA	102 0	6 55 6	70.5		41, 1	0 18	6 0
U CHEESE BOX CANYON	59 7	25 6	69 5	W-SPRING CANYON	245 0	-	
U Appents	1155 7	4 55	6 8 9	W-RESTING SPRINGS	53 7	-	
MAD BUCKER OAM	352 6	4 55	6 89	W-PARUNUWEAP CYN		0 18	
MAD GAN	35 6	22 3	9 89	M RED CANYON N	259 3	_	
CONTRACTOR	35 6		9 89	\sim	104 5	0 17	8 0
U JARRS TALLEY	4 626	21 8	67 1	W-GUAIL SPRING	145 7		
A ASSURE CANYON	189 3	21 7	8 99 9	W-SO FISH CREEK		-	
II MINAM PAPONSE CYN	490 6	21.7	8 99		553 2	-	
C MULE CANYON	43 0	217	8 99	M-PINE CANYON	507 0	_	
THE BLUE	1300 7	21 7	8 99	W-MT STIRLING	749 9	_	
IL THEFF OF RANGE	1031 4	21.7	66.8	M-RED CANYON S	240.1	-	
a suffractor can	27 6	215	5 99	W-SWASEY MIN	741 6	-	
. MILLE POINT	55.4	215	5 99	M-ASHDOWN GORGE	325 2	_	
DINRE CANTON	315 3	21 5	2 99	W-FANDANGO	1736 1	-	
WITHHER MOODENSHOE	143 9	21.5	2 99	W-THE WALL	1330 6	-	
C SRAND GULCH	1700 0	_	65 2	W-SILVER PK RANGE	1031 4	0 14	0 7
LEILE CANYON	507.0	21.2	65 2	W-WEEPAH SPRING	-	0 13	9 0
IN TOUR BELL CANYON	507 0			W-FORTIFICATION		_	-
L SHEIRS FLAT	471 2		ı,	×		_	9 0
A LICKHURN CANYON	507 0	21.2	r)			7	
E WHEFLEP PEAK	585 3	20 4	643	<i>(</i>)	189 3	-	-
CHICHEAD RIDGEN	585 3					-	-
	755 2		62.8	M-NOTHING FLATS		0 12	-
COMMITTER MINS(FP)	1173 7			W-MT HILLERS			-
ANTELOPE	790 3			-DESATOYA MI	673 0	0 11	
U PTGEON SPRING	137.9				776 1	0 11	
U MARTIN SPRING	1020 3		9 09				
H LIPANT PANCE	827 3		59 1			_	
HIGHDANS WELL	181 0			W-ROCK CREEK	_		
LITTLE HOMBOLDI R	9 9	18.9		W-HANKS CREEK	544 9	0 10	
W FACELSTOR	793 1		57.8	W. FISH SPRINGS	617 4	0 10	
U BASALT	115 1	18 8		M-SAN RAFAEL REEF		0 10	
IS HOUTONE MINE	6 69		57.5	W PIPPS DEATH	1223 3	0 10	
J 11 HOPIAH	512 4	18 6	57.2	W-STARVATION POINT	222	0 10	
SENTER SPRINGS	170 8	9 81	57 2	W AMARGOSA	106 8	60 0	t 0
M PAWICH	1170 5	18 5	56.9	W-SIDS MIN	245 6	60 0	0 4
NIM STREET	1021 0	18 0	55.4	M-MORMON MINS	1080 4	0 08	4 0
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

I

TABLE 4 300 PEAK YEAR PROJECTED POPULATION-RELATED INCREASED WILDFRNESS RESOURCE USE FOR ALTERNATIVE 4

NAME VISITO DAY	VISITOR DAY DIFFERENCE	PERCENT INCPEASE	INDEX OF PRIMACY*	NAME	VISITOR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDEX OF PRIMACY+
W-FAR S EGAN	62.9	18 0	55 4	W-BLUE EAGLE	1252 3	80 0	0 4
W PARK RANGE	187 7	17.9	55 1	W-RAWHIDE MIN	1268 3	80 0	4 0
W TABLE MOUNTAIN	148 3	17.5	53 8	1 A % F-3	9 69	0 08	4 0
W ARC DOME	493 5	17 5	53 8	W-COTTONWOOD CYN	568 6	80 O	4
M-TUNNEL SPRING		17.3	53.2	W-DELAMAR MINS	1045.6		4
W UHITE ROCK RANGE		17.2	52.9	W-MUD SPRING	558 9	-	0
U PARSNIP PEAK		17.2	52.9	W-E PAHRANAGAT	138 7		0 4
W BOWNIE CLAIRE	152.7	17 1	52 6	W-FACTORY BUTTE	271 7	0 07	0 3
WI ORLIFICATION	848.5	16.9	52 0	W-KING TOP	681 4		E 0
W-WAH WAH MINS	149.2	16 6	51 1	W-QUEER MIN	1021 0		e 0
W PED SPRING		16 3	50.2	W-SIMPSON PARK	982.9		0
W GRAPEVINE SPRING	659.3	16 3	50 2	W-MEADOW VALLEY MIN	1181, 9		
W-CEDAR RIDGE		16 3		W-GABBS VALLEY	4 626		
WINDRINGTON MINS	132 0	16.2		M-GDSHUTE CANYON	617 1		0 3
W- WHITE ROCK RANGE	96 4	158	48 6	M-MILLION HILLS	58 6		0 3
WIS EGAN RANGE	166.2	15 7	48 3	W-S REVEILLE	1300.7		0 3
W MT GRAFTON	1056 2	15.7	48 3	M-GUINN, NORTH	1214, 4		60
U WEEPAH SPRING	1251.0	15.6	48.0	W-BRIDGER PASS MESA	16. 4	90 0	0 3
*INDEX OF PRIMACY (PERCENTAGE OF LARGEST VALUE) CALCULATED .INDEX OF PRIMACY CALCULATED WITH INDEX OF V-D/ACRE	PERCENTAGE OF	LARGEST VA	LUE) CALCULAT	ED WITH PERCENT INCREASE			CT 0157

TABLE 4 3 1 PEAK LEAR PROJECTED POPULATION-RELATED WILDERNESS RESOURCE USE FOR ALTERNATIVE 5

ALTERNATIVE 5 FULL DEPLOYMENT NEVADA/UTAH BASE 1 MILEORD, UTAH BASE 2 ELY, NEV

	DIFFERENCE	INCREASE	OF PRIMACY*		DAY DIFFERENCE	INDEX (X2)	DF PRIMACY+
	2052 6			AYLOR CRE	217 8	0	0
-	2025 6			-BEAR TRAP CA	7	7	
	1259 2	32	95 8	-GOOSE CREEK	179 8	09 9	32 8
	72. 0		4	-URDERVILLE CYN	$\overline{}$		
1	3083 7		CI I			46 5	14 6
	217 8		CU	-MDRMON	_	1 37	
	217 8		ณ	W-TUNNEL SPRING	1094 2	1 32	99
	9582 5		N	W-LA VERKIN CREEK		1 24	
LARIA-HACK	526. 3	-	Cų :		'n	1 24	
	217 8		ווח	-DISASTER PK	38.9	1 23	
C - A CERKIN CREEK	217.8		92.0	1		1 18	
	2050 7		91 1	-THE WATCH		1 14	5 7
W DEFF CREEK	324 8		91 1	_		1 01	_
	179 B		1 16	W-EL DORADO		0	_
	935.4	-	41 1				4
	101	30.5		W-IRETEBA PEAKS	351 0		
M CARCASS CANYON	101.1			\supset			4
M BRYCE CANYON	301.8	30, 5			1075 9	7	
U RED CANYON S	271 6	30 4	_	W-CROSS CYN	347 7	0 74	3.7
S F OF BRYCE	271 6	30 4	_	W-SHEIKS FLAT	472.3		3 6
B N ESCALANTE	7556 2			W-ESCALANTE 5	149.9	99 0	93
-	1624 5	30 0		W-PINE CREEK	502 9		3 1
W ESCALANTE S	149.9				Ξ.		2 6
S SCOPPION	74.9			W-JARBIDGE ADDITION	159.5	0 52	5 6
W WHEFLER PEAK	921 9		99 0		0 86		5.1
WITH AND RIDGE, N	921 9			M-COTTONWOOD-SALMON	450 6		5 0
WINDWELL PEAK	1487 3		88 7	W-NELLIS	73 7		1 8
M THE BLUES	130 5						
	1611 8	29 B		W-LOWER PAHRANAGAT		98 0	G
4 FALISADE MESA	1712 6			W-DEEP CREEK			1 7
MALL.	1712.6	29 8	88. 7	1			1.5
C MARTIN SPRING	1721 2			W-S PAHROCS/HIKO			1 2
S BARIA CYN	1535 0						1.5
O PONERTS	1541 7			\simeq	879 4		1 4
U ASHDOWN GORGE	290 8	27 7			1322 3		4.4
T BED CANYON N	255.3		-	W-BULLET CANYON			1.3
W FEAR BREAKS	540 B	27 7	82.4	W-FISHLAKE MIN	402 2		1.3
M COUGAR CANYON	133 8	27 6	82 1	M-ZION	9582 5		E .
M LIMHWELP	0 86	-	80 1	W-PARIA CYN	1535 0	0 25	
IN THE WATCHMAN	182 5	26 8	8 6/.	W-MARTIN SPRING	1721 2	0 24	
S LARUNUMEAN CYN	2263 2		79 B	M-SQUAM PAPOOSE CYN	203 0	0 24	1.2
Wildman Min	365 1	_	8 6 <i>1</i>	W-KAWICH	1090 6	ניו	1 1

TANK THE FOR STITLE SPENS ALTERNATIVE BELAIFD WILEFURESS PESCHAGE FOR ALTERNATIVE 5

March Marc	Sector .	VISITOR DAY DIFFERENCE	PERCENT	INDEX OF PRIMACY®	NAME	VISITOR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDEX Pr PRIMACY+
The state of the		I			GRAND			
March Marc	7.8 2.7				WHITE ROCK	_		1 1
The standard 1074 C 26 5 75 2 2 4 4 10 10 4 5 5 5 5 5 5 5 5 5	Contracting Point				CEDAR	90	Çŋ	1 1
The property of the property	Table Hillowale				HONTONE		Cu	
The property The	HINGS COLUMN						ſψ	1 1
Maintenning Carl 240 0 26 0 77 1 Maintenning Carl 755 0 75 1 75 1 Maintenning Carl 75 1 75 1 75 1 Maintenning Carl 75 1 75 1 75 1 Maintenning Carl 75 1 75 1 Maintenning Carl 75 1 75 1 75 1 Maintenning Carl 75 1 75 1 Maintenning Carl 75 1	TO SERVICE HORSE						Cú	1 0
Particle	Med dulmation of	_						0.1
Part	Strike of Gilbert T				Σ			1 0
The property 194 2 25 6 26 6 26 6 27 6	M. B. F. I.N.				GUUSE			10
Principal Control Co	. AMINICANTON				BIRDSEY			1 0
Colored State Colored Stat	HIM WE ISLE A	1342 3			-PIGEON	•	-	
WATER PROPERTY STATES ST	a 10 hdw a 10.00				PARUNUMEAP		_	
Here	15450 - 30088 - 10080 - 1						-	
March Marc	MARIA DIE MENA						-	
Secretary with 235 4 23 6 70 2 W. SPRING CANYON 194 2 0 17	S HELL BOY CANTON				PESTING SPRING		-	
WED CANDING MED CANYON NEW PORTER MINE NEW PORTER MI	TO THE BOARD MALL				SPRING		-	
Week with Week	SAMP PANGE				PORTER		-	
1.11 6.02 1.53 2.3 4 6.9 6 WUMBB SFRINGS 1131 9 0 17 0 0 0 0 0 0 0 0 0	L WASH WASH MING				RED			
Control Cont	S. 11.11 F. G. P. M. 15. 1				JUMBO			
CAMPAN CANADA SS4 5 S23 4 69 6 W-PINE CANYON SO8 1 0 16	light to the control of the control				WHITE		-	
W-GMAIL SPRING 258 5 23 1 68 8 W-GMAIL SPRING 74 0 0 16 0 0 16	THE FRE		23.4		PINE		-	
WATER ONE WATE	FRAME BANGE		73.1		GUAIL		-	
FAMILIE CANADILE CONADILE CANADILE CA			500		RED CANYON		_	
March Canada 44 1 22 1 65 8 March Man 995 0 0 15 0	سا		th th		NEPHI		-	
The Carolina 194 2 22 1 65 P W-ASHDIDWN GORGE 290 B 0 15		44 1	22 1		1		7	
FICH CREE CYL 35 2 2 1 65 8 W-THE WALL 1712 6 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0	S APER CANAGE	194 2	1 1 1					
POINT STATES POINT POINT STATES POINT STATES POINT STATES POINT STATE		35 2	25 I		1	712		
GENAS CYN 347 7 22 1 65 8 W-MCCULLDUGH MTS 272 2 0 15 0 GEDAP PIDGE 149 1 21 6 64 3 W-DIGMAY MINS 93 8 0 15 0 GED SPRING 149 1 21 6 64 3 W-DIGMAY MINS 998 8 0 14 0 GED SPRING 1137 5 21 4 63 7 W-MT STILLING 443 2 0 14 0 GABRS VALLEY 956 3 21 4 63 7 W-GRACK CANON 349 5 0 13 0 GER S VALLEY 958 1 21 2 63 1 W-GRATION 1420 2 0 13 0 GER P STALL 472 3 21 2 63 1 W-GRATION 1137 5 0 13 0 GRUCH 508 1 21 2 63 1 W-MCRITICATION 1105 6 0 13 0 GRUCH 508 1 21 2 63 1 W-MCRTICEY MIN 3083 7 0 12 0 GRUCH 508 1 21 2 63 1 W-MCRTICEY MIN 3084 5		35 2	22 1		W-FANDANGO		~	0 7
CEDAP PIDGE 147 1 21 6 64 3 W-DUGMAY MINS 93 8 0 15 0 HED SPRING 149 1 21 6 64 3 W-SILVER PK RANGE 998 8 0 14 0 FORTH ICATION 1137 5 21 4 63 7 W-SILVER 998 8 0 14 0 FORTH ICATION 1137 5 21 4 63 1 W-CRACK CANYON 349 5 0 13 0 GLEWSTALEN 956 3 21 7 63 1 W-CRACK CANYON 1420 2 0 13 0 GLEWSTALL 472 3 21 2 63 1 W-CRATEIRICATION 1137 5 0 13 0 GRED SOUCH 472 3 21 2 63 1 W-CRATEIRICATION 1137 5 0 13 0 FOLIS 64 1 21 2 63 1 W-CRATEIRICATION 1105 6 0 13 0 GRUCH 50 1 21 2 63 1 W-MERAL CANTON 104 2 0 12 0 GRUCH 50 1 51 2 63 1		347 7	22 1		MCCULL BUGH MT		•	
FE SPRING		149 1	•		M-DUGWAY MINS		1	
CABLETT CATTON 1137 5 21 4 63 7 W-CRACK CANON 349 5 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		149 1			-SILVER PK		-	
CABPS VALLEY 956 3 21 4 63 7 W-CRACK CANYON 349 5 0 13 0 ST FRIGHT 508 1 21 2 63 1 W-FGPTFION 1420 2 0 13 0 SFELYS FLAT 472 3 21 2 63 1 W-FGPTFION 1137 5 0 13 0 PFDF CALYON 508 1 21 2 63 1 W-MERPAH SPRING 1105 6 0 13 0 PARME GALCH 1703 7 21 2 63 1 W-MERPAH SPRING 1105 6 0 13 0 SEATH GALCH 1703 7 21 2 63 1 W-MERPAH SPRING 112 0 SEATH GALCH 99 8 21 2 63 1 W-MERPAH SPRING 172 0 SEATH GALCH 99 8 21 2 63 1 W-MERPAH GANYON 192 0 SEATH GALCH 99 8 21 2 63 1 W-GEM 67 2 0 0 SEATH GALCH 90 9 42 2 W-GEM 0 0 0 0 CORINGER		1137 5			Έ		-	
CHERNICAL CANTON 508 1 21 2 63 1 WILLGATION 1420 2 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		626 3		63.7	-CRACK		_	_
SHCIPS FLAT 472.3 21.2 63.1 W-FGPTFICATION 1137.5 0.13 0.0 FTM CARYON 508.1 21.2 63.1 W-PINE VALLEY MIN 3083.7 0.13 0.0 FPM GOLCH 1703.7 21.2 63.1 W-PINE VALLEY MIN 3083.7 0.12 0.12 FFM FLET CARYON 508.1 21.2 63.1 W-MF HILLERS 554.5 0.12 0.12 FFM FLET CARYON 99.8 21.2 63.1 W-MF HILLERS 194.7 0.12 0.12 FFM GOLGE POLITION 30.3 20.9 62.2 W-GEM 9.0 0.12 0.12 FARM CARYON 30.3 20.9 62.2 W-GEM 0.11 0.0 FARM CARYON 30.3 20.9 62.2 W-GEM 0.11 0.0		508 1		63 1				_
FTDE CARLOW 508 1 21 2 63 1 W-WEEPAH SPRING 1105 6 0 13 0 JPAND OULCH 1703 7 21 2 63 1 W-PINE VALLEY MIN 3083 7 0 12 0 SPELET CARLOD 508 1 21 2 63 1 W-MT HILLERS 554 5 0 12 0 STE PRING 998 8 21 2 63 1 W-MT HILLERS 554 5 0 12 0 STE PRING 998 8 21 2 63 1 W-GEM 194 2 0 12 0 FARM CARRODINI 33 2 20 9 62 2 W-GEM 100 9 0 12 0 FARM CARRODINI 30 3 20 9 62 2 W-GEM 752 8 0 11 0 CORRES TARRODINI 1322 3 20 9 42 2 W-GEM 752 8 0 11 0			_	63 1			-	
#PAND GUESH 1703 7 21 2 63 1 W-PINE VALLEY MIN 3083 7 0 12 0 0 12	_			63 1	,		-	
PUBLICE CANYON 508 1 21 2 63 1 W-MT HILLERS 554 5 0 12 0 STATE PARKER 998 8 21 2 63 1 W-ARCH CANYON 194 2 0 12 0 HIDBLE FOINT 53 2 20 9 62 2 W-GEM 182 8 0 11 0 CARR CANYON 303 3 20 9 62 2 W-DESATOYA MINS 752 8 0 11 0 CORNCER PARKER 1322 3 20 9 62 2 W DEEP CPEEK MINS 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 62 2 W DEEP CPEEK MINS 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 62 2 W DEEP CPEEK MINS 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 62 2 W DEEP CPEEK MINS 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 62 2 W DEEP CPEEK MINS 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 62 2 W DEEP CPEEK MINS 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 62 2 W DEEP CPEEK MINS 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 62 2 W DEEP CPEEK MINS 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 62 2 W DEEP CPEEK MINS 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 62 2 W DEEP CPEEK MINS 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 62 2 W DEEP CPEEK MINS 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 995 3 0 11 0 CORNCER PARKER 1322 3 20 9 995 3 0 11 0 0 CORNCER PARKER 1322 3 10 10 10 10 10 10 10				63.1	PINE VALLEY MT		_	-
M-ARCH CANYON 194 2 0 12 0 195 0	4 - PERT CANYON	508 1		63 1			_	
53.2 20.9 62.2 W-GEM RO 9 0.12 0 303.3 20.9 62.2 W-DESATOYA MTMS 752.8 0.11 0 1322.3 20.9 62.2 W DEEP CPEFE MTMS 995.3 0.11 0				63.1	- ARCH		_	
303.3 20.9 62.2 W-DESATOYAMINS 752.8 0.11 0.1322.3 20.9 62.2 WINEEP CPEFICMING 995.3 0.11 0.	J MIDBLE POINT						_	
1322 3 20.9 45.2 WINEEP CPEFE MINS 30.011 0					DESATOYA		_	
	4 CONCER PANCE				DEFF CPEFK		0 11	

TABLE 4 3-7 PEAK YEAR PROJECTED POPULATION-RELATED WILDERNESS RESOURCE USE FOR ALTERNATIVE 5

импе	VISITOR DAY DIFFERENCE	PERCENT	INDEX OF PRIMACY*	NAME	VISITOR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDEX OF PRIMACY+
A PAPE-WOODENSHOE	138 4	50.9	62.2	W-RED SPRING	149 1	0 11	0.5
W SUFFT ALICE CYN	26 6	20 8	619	W-FISH SPRINGS	776 1	0 10	0 5
W S PEVEILLE	1180 1	20 1	59 8	W-SAN RAFAEL REEF	186 3	0 10	0 5
G LAP S EGAN	757	20 1	59 8	W-MEDSGER PASS	0 86	0 10	0 5
WIS EGAN RANGE	223 4	20 0	595	W-LIME CANYON	53 7	0 10	0.5
W-MI SRAFION	1420 2	0 02	59.5	W-STARVATION POINT	225, 3	0 10	0 5
W-WHITE MINS(FP)	1131 8	19.7	58 6	W-HANKS CREEK	370 5	0 10	0.5
SNIBUS NUBBILL	132 9	19 5	58.0	W-RUCK CREEK	299 1		0 5
W EXCELSIOR	780 2	18 5	55 1	W-PIPPS DEATH	1094 5		
M BAGALT	113 3	18 5	55 1	W-MUD SPRING	749 8		
S HONTONE MINE	6 29	18 5	55 1	W-BLUE EAGLE	1611 8	60 0	0 4
Marine Top	1128 3	18 4	548	W-SIDS MIN	262.4		
M HOWELL PEAK		18 4	54 8	W-N F LIT HUMBOLDT	194 1		4
W DEATH PIDSE		18 4	548	W-SIMPSON PARK	1259 2		0 4
MOVNEY SANKON		17.8		W-FIDDLER BUTTE	9 82		0
A TAPLE MOTULAIN	149 8	17 6	52 4	W-COTTONWOOD CYN	240 0		0 4
HAM HAM DATED S			52 1	W-RAWHIDE MTN			
M FAULCH			52 1	W-DELAMAR MTNS	725 4		
J 2PC 1079E			51.2	1 3 % 4-3	43 7		
JUNERA MIN		171	50.9	W-GUEER MIN	€ 096		0 3
W BOHNIF CLAIRE			47.9	W-FACTORY BUTTE	340°B		
A PARSNIP PEAK		15.9	47.3	W-KING TOP	1128 3	0 07	
U WHITE POCK PANGE		15.9	47 3	W-E PAHRANAGAT	0 86		
w TURNEL SPRING	1094 2	15 4	45 B	W-AUGUSTA MINS	735 3	90 0	Е 0

*TRIBER OF PRIMACY (PERCENTAGE OF LARGEST VALUE) CALCULATED WITH PERCENT INCREASE *ITHER OF PRIMACY CALCULATED WITH INDEX OF V-DZACRE

ALTERNATIVE & FULL DEPLOYMENT NEVADA/UTAH BASE 1 MILFORD, UTAH BASE 2 COYOTE SPRING, NEV

	VISITOR DAY DIFFERENCE	PERCENT INCREASE	INDEX OF PRIMACY*	ž	VISITOR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDEX DF PRIMACY+
W MOREY	1763 2		100 0	AYLOR	l IC	19 77	100 0
M I ANDANGO	1763 2	30 3		TRAP CAN	202	17 29	87.5
W-BEAR TRAP CANYON			0 86	W-GOOSE CREEK CYN	m		
WILM VERKIN CREEK				W-ORDERVILLE CYN	U)		
W-RED BUTTE	202 5			W-N FORK VIRGIN R		2.88	14 6
W-TAYLOR CREEK CYN			0 86	W-BONELLI PEAK	7		
M-710N				W-TUNNEL SPRING		1 32	6 7
W-PINE VALLEY MIN				W-GARROTT BUTTES		1 26	
W-DURNING HILLS	64 7		7 7 4	W-LA VERKIN CREEK	205.2	1, 22	
W-PARIA HACKBERRY				W-THE WATCHMAN	_	1 14	
W-DEEP CREEK	337 2	29 3	46 7	W-EL DORADO		1 07	5 4
ORDERVILLE CYN	1922 2			W-IRETEBA PEAKS		1 01	
GOOSE CREEK CYN	168 6			W-E OF BRYCE			4
N FORK VIRGIN R	8768			Ŧ			
W-ASHDOWN GORGE	306 7			W-CROSS CYN		7	
W-CEDAR BREAKS	306 7			W-GRANT RANGE		0 74	
HURSE SPRING CYN	92 1			W-SHEIKS FLAT		1	
M-CARCASS CANYON	92 1	58 6				€.	
W-HOWELL PEAK	1404 8	5B 6	94 4	W-ESCALANTE 5			
W-THE BLUES	123 2		94 4	M-GEM		0.53	
W-COUGAR CANYON	149, 1		94 1	W-EVERGREEN			
W-SIMPSON PARK	1080 3	28 4	93.7	-NELLIS		m	
W-SCOPPION	9 89		93 1	W-LOWER PAHRANAGAT		m	
	6919.3		93 1	W-ROBERTS			
W-ESCALANTE 5	137 3		93 1	W-DEEP CREEK			1 8
	261 7		93 1	W-S PAHROCS/HIKO			1 6
W-RED CANYON S		28.2	93 1	W-FREMONT GORGE	393 3	0.30	1.5
W-E OF BRYCE	243, 5		93 1	W-MOREY			1.5
W-RPYCE CANYON	270.6		93 1	œ			1 4
W-PAPIA CYN	1451 9		92 4	W-BULLET CANYON			1 4
W-PIPPS DEATH			90 4	W-FISHLAKE MIN	322 2		1 4
W-BOX DEATH HOLLOW	83 2	27 4	90 4	M-210N			. 1
W-RED MTN	528 6		89 1	W-CONGER RANGE			1 3
W-STARVATION POINT	228 6		89 1	W-PARIA CYN			1.2
W-PARUNUWEAP CYN	2268 8	26 8	88 4	W-WHITE ROCK RANGE			1 2
W.CANAAN MIN	366.0			W-KAWICH			1
-THE WATCHMAN	183 0			W-SQUAW PAPOOSE CYN		ผ	Ci
W COTTONWOOD CYN			88 1	W-GRAND GULCH		0 23	1 2
WISPRING CANYON	208 2			W-CEDAR BREAKS	306 7	CI	1 1
FIFTYMILE MIN	98 0	56 6		W-MARTIN SPRING		CA	1 1
W-WAITWEEP	49 7	9		W-HONTONE MINE	62.4	Cú	1 1
W-MOQUITH MIN	169 9		86.5	W-BULL MIN			1
M-PAWHIDE MIN	1275 2	S	83.2	W~HOWELL PEAK			1 1
THE WALL	1337 9	4	CV.	-HOWELL.	616 9	0 21	1 1

Í

• 1 · · · · · · · · · · · · ·

INDEX

VD/ACRE

VISITOR

VISITOR

NAME

ALTERNATIVE BA SPLIT BASING DEPLOYMENT NV/UT PART BASE I COYOTE SPRING, NEV BASE 2 CLOVIS, N MEX

THE STATE OF THE S	DAY DAY DIFFERENCE	INCREASE	INDEX OF PRIMACY*	ламе 1	VISITUR DAY DIFFERENCE	VD/ACRE INDEX (X2)	INDEX OF PRIMACY+
TAVEUR CREEK CYN	188 4		100 0	W-TAYLOR CREEK CYN	189 4	19 29	100 0
7104	8588 8		100 0	Z	188 4	16 87	87 5
LA DERKIN CREEK	188, 4	27.9	0 001	W-GDOSE CREEK CYN	152 3	62.9	32 6
RED BUTTE	188 4		100 0	W-ORDERVILLE CYN	-	3 65	18.9
PEAR TRAP CANYON	188 4		100 0	G	792 3		14 5
PINE VALLEY MIN	2579.6		9 7 8	W-TUNNEL SPRING	1080 7	1 32	8 9
N FORK VIRGIN R	792 3		97.5	W-BONELLI PEAK	598.9	1 30	
GOCTE CREEK CYN	152 3		97.5	W-GARROIT BUTTES	6363	1 23	4 4
DRDCRVILLE CYN	1736 9		97 5	W-LA VERKIN CREEK	188.4	1 19	ر د م
DEFP CREEK	304 7		97 5	W-THE WATCHMAN	180 4	1 13	
REP MIN	230 4		97 1	W-EL DORADO	967 2	1 04	τυ 4
COTTONWOOD CYN	251 9	27 1	97 1	W-IRETEBA PEAKS	837 0	86 0	5 1
STARVATION POINT	230 4	27 1	97 1	W-E OF BRYCE	207 5	0 93	4 8
PARIA CYN	1349 9	26.6	95.3	W-RED BUTTE	188 4	0 84	4
ASHDOWN GORGE	274 6		95 3	W-CROSS CYN	337 3	0 74	ස ෆ
CEDAR BREAKS	274 6		95.3	W-SHEIKS FLAT	459 5	0 72	
W-THE WATCHMAN	180 4		95 0	W-GRANT RANGE	583.1	89 0	හ හ
-PARUNUMEAP CYN	2236 8	26 5	95.0	W-PINE CREEK	1200 1		т Т
CANAAN MIN	360 8		95 0	W-ESCALANTE 5	0		(J)
SPRING CANYON	191 6		94.6	M-GEM	71.2		-
COUGAR CANYON	125 9		-	W-EVERGREEN	177 7		CI CI
FARIA - HACKBERRY	421 3		94 3	W-NELLIS	171 7		
NAHULEP	6 26			œ	177 7		
HOWFLL PEAK	1217 5		92.5	W-DEEP CREEK	304 7		1 8
THE BLUES	106 8	25 8	92.5	W-S PAHROCS/HIKO	1412.3		1 7
U-FIFTYMILE MIN	84 5		92 5	_	347 7		1.5
W BURNING HILLS	53.4		92 1	Œ	844 8	0 28	1 5
W-CARCASS CANYON	0 62			M-BULLET CANYON	4 4 4		1 4
WHORSE SPRING CYN	29.0	25 6	91 8		ο-	0.25	1 3
W-MOGULTH MIN	162 8			W-CONGER RANGE	492 3		
W FSCALANTE 5	119 0		91 0	W-PARIA CYN	ď		Ci
N ESCALANTE	5995. 6		91 0	M-SQUAW PAPODSE CYN	474 3	0 23	Cv
4 SCORPION	59 4	25.4	91 0	W-MOREY	682.1	0 23	1 2
M RED CANYON N	211.9		90.3	W-GRAND GULCH	1657 5		1 2
U-C OF BRYCE	207 5	ı,	0 06	W-WHITE ROCK RANGE	59.9	0.22	1
W-PED CANYON S	207 5	J.	0 06	W-KAWICH	737 9		
M-BRYCE CANYON	230.5	25 1	0 06	W-CEDAR BREAKS	274.6	0.21	1 1
W-PIPPS DEATH	1013 5	ıc	89 6	W-HOWELL PEAK	1217 5		10
U-BOX DEATH HOLLOW	4 69	25 c	9 68	W-HOWELL, PEAK	372.7	C	0 .
M-MANCOS MESA	94 5	21 6	77 4	W-HONTONE MINE	31.8	0 50	1 0
1000 000000							

*INDEX OF PRIMACY (PERCENTAGE OF LARGEST VALUE) CALCULATED WITH PERCENT INCREASE FINDEX OF PRIMACY CALCULATED WITH INDEX OF V-D/ACRE

C10160

Impacts on the wilderness resource can be defined by the extent to which wilderness attributes -- ecosystem integrity and quality experience--are degraded. Acceptable levels are determined by the particular managing agency of a given wilderness resource in accordance with the Wilderness Act of 1964 and the Federal Land Policy and Management Act of 1976 (FLPMA). The primary sources of project-related impacts to the wilderness resource would include (1) valley floor scarification by cluster and road networks with the resultant alteration of scenic landscapes visible from montane vista points. (2) increased noise levels (ETR-10) and ambient air quality deterioration (ETR-13) during construction activities, (3) increased access to formerly remote areas, and (4) increased numbers of people.

The majority of the DDA wilderness resources are the BLM-managed wilderness study areas. Because of the paucity of ecological information on these units under current study, the salient issues as related to the project effects on general ecosystemic characteristics and quality experience are summarized in Tables 4.4.1-1 and 4.4.1-2. The significance of the effects as determined by answering the four basic questions -- competition for resources, constraints on future developments, stress on growing communities, and preservation of biological, physical, and cultural resources -- are disclosed so as not to ignore these important issues, and to emphasize the fragility of these ecosystems in addition to the poor quality of the existing data base. Attributes and unique features of wilderness resource areas predicted by the indirect effects model to receive increases of greater than 0.4 visitor-days per acre as a result of peak year (1987) M-X activities are indicated in Table 4.4.1-3.

The data in Table 4.3-1 suggest a potential for wilderness quality degradation since approximately 12 percent of the subject resources within the deployment area are within one mile of a project feature and approximately 35 percent of the resources are within 3 mi of a project feature with the consequent high probability of sight and sound intrusion as well as disturbance of wilderness fauna (e.g., pronghorn are known to flee from sounds 2.5 mi distant (Kitchen, 1974)). audible range (approximately 6 mi) of project noises will affect roughly 80 percent of the total wilderness resource acreage in the DDA. It is assumed that M-X construction in hydrologic subunits with several resource areas will result in a greater potential for impact on the overall wilderness quality of the area than in those with only one wilderness resource area. Snake, Little Smoky-North, Hot Creek, Penoyer, Garden, Railroad-South, Railroad-North, Cave, Lake, and Coyote Spring are particularly critical subunits since all have more than 10,000 wilderness resource acres within one mi of a project feature. However, because of the large dispersed nature of the M-X project, noise and visual effects of construction activities are expected to occur over an area considerably larger than the immediate valleys disturbed during construction of facilities. These effects will diminish but not disappear during operations.

The population-related effects of the project are additive in terms of projected population trends. In the absence of M-X and other major projects, the population projection for the region indicates about a 45 percent increase by 1994 over present 1980 figures -- an increase of approximately 620,000 people (ETR-2). Including M-X, long-term growth would increase by about 34,000 people. However, calculations show that M-X will be responsible for approximately 30 percent (125,000) of the anticipated deployment region population increase during

Figure 4.4.1-1. Wilderness resources and the Proposed Action conceptual layout in the Nevada/Utah study area.

potentially significant project disturbances		
Ē		
"wilderness ecology"		
<u>د</u>		
equences on the attribute		
e a		
Ē		
č		
č		
يوطة		
related consedu		
٤		
<u>و</u>		
s and		
13		
=======================================		
õ	ĭ 2)	
=	-	
VITALITY OF T	Рак	
	ت	

Fire	Selective Increase	Increase changes and loss of vegetation due to man-caused fires around heavy use areas. Hendee et al., 1978 Daubenmire, 1968, 1970 Ahlgren & Ahlgren, 1960	Precludes use (camping, grazing, etc.) for several years after after a fire	Fire suppression activities stimulate local economies (use of facilities such as air fields, purchase of goods and services by fire fighters, and employment of locals on firelines)	Loss of riparian and aquatic for and fauna outside and inside wilderness resource areas. Hendoe et al., 1978	
	Cver- Protection	Loss of entire vegetative communities which are of senic value and which are of critical importance for wildlife species (e.g., aspen and mountain bunch grass meadows are important for deer and e.k.	Stoddart et al., 1955 Decrease in grazing and hunting increase in poor quality timber which cannot be extracted resulting eventually in high fuel loading and the potential for catastrophic fire with devastating effects (e.g., in areas with stands of Doughs fir and lodgepole pineSnake, Schell Greek, and Egan ranges).	Bailey, 1978 Stoddarf et al., 1955 Decrease in value of summer grazing leases due to decrease in grass and strublands; loss of recreational hunting Bailey, 1978 Stoddarf et al., 1955	Loss of native xeric successional communities of value to grazing, wildlife, and recreation	Daubenmire, 1968 Daubenmire, 1970 Stoddard et al., 1955
Compaction	Erosion	Would accelerate docrease in percolation; with switch-backing, loss of litter and vegetative cover, increased compartion sheet and gully erosion. McQuaid-Cook, 1978 Liddle, 1975	<	٧/٧	Loss of riparian and aquatic flora and fauna outside and inside wilderness resource areas.	Hendee et al., 1978
	Necreuse J Vegetation	Would decrease recharge in in watershed which is the source of aquifer recharge as well as stream and spring sources; would result in decreased opportunities for livestork watering and mining inside and outside wilderness resource areas. Berwirk, 1976 Hendee et al, 1978	Minor and local effects would only slightly derrease forage base for stock and wildlife primarily in riparian areas	Small relief of other M-X included economic stresses due to increased sales of hay, packstoves, etc. Robinson et al., 1979 Additionally, water loss may stress irrigation, agriculture, and livestock industries	Loss of important riparian vegetation and campsites	Frisell & Duncan, 1965 Wagar, 1964 Merrian & Smith, 1974 Bell & Bliss, 1973 Liddle, 1975 Schmidly et al, 1976 Schmidly & Ditton, 1979
		Constraints on future develop- ment	Competition for resources	Stress on growing economy	Preservation of biological, physical, and cultural	r/18 2-01/62251

Summary of effects and related consequences on the attribute "wilderness erology" for potentially significant project disturbances (Page 2 of 2). Table 4.4.1-1.

Increased Use	Forage	Increased pack animal may result in decreased vegetation as well as loss of palatable forage for wild grazers and livestock (cattle and sheep) Weaver and Dale, 1978 Liddle, 1975	Competition of pack animals with livestock,	Decreased value of summer grazing leases.	Loss of important riparian vegetation and campsites. Frissell & Duncan, 1965 Wagar, 1964 Merriam & Smith, 1974 Rell & Bliss, 1973 Liddle, 1975 Schmidly et al., 1976 Settergren, 1977 Schmidly & Ditton, 1979
Incr	Poo,₩	Increased exploitation of firewood results in local denudation around camps for about 20-50 years after release from impact and management control begins; also results in increased erosion, decreased water recharge, and decreased fauna. Settergren, 1977 Hendee et al., 1978	٧/٧	Sinall relief of other M-X-included economic stresses due to increased sales of hay, packstoves, etc. Robinson et al., 1979 Additionally, water loss may stress irrigation, agriculture, and livestock industries.	Loss of important riparian vegetation and campsites. Frissell & Duncan, 1965 Wagar, 1964 Merriam & Smith, 1974 Rell & Bliss, 1973 Liddle, 1975 Schmidly et al., 1976 Schmidly & Ditton, 1977 Schmidly & Ditton, 1977
Fauna	Increased Winter Range Exploitation	Loss of harvestable game and furbearers during hunting and winter trapping seasons. Particular impacts may be felt by such vertical migrants as mule deer, elk, mountain sheep, and bobcat. Dasmann, 1964 Leopold, 1966 Gallizioli, 1979 Skovlin et al., 1968 Mackie, 1970	Decreased huntable and watchable wildlife in wilderness resulting in altered ecology and compressed succession time Geist, 1975 Leopold, 1966 Gallizioli, 1979 Taber & Dasmann, 1958	Increased population with increased access results in increased furtrapping for valuable higher altitude furbearers such as marten and hobeat, stimulation of local economies. Smith & Jordan, 1976	Loss of native fauna (marten and bobcat) and primary browsing herbivores. Hendre et al., 1978 Gallizioli, 1979
		Constraints on future development	Competition for resources	Stress on growing economy	Preservation of biological, physical, and cultural resources

Summary of effects and related consequences on the attribute "wilderness quality" for potentially significant project-related disturbances (Page 1 of 2). Table 4.4.1-2.

Population Related Effects

Increased Encounters

Degrease in quality of wilderness experience the floor of Yosemite Valley) foreclosure of intensive developed recreation. result in wilderness zoning to reduce or spread use within a finite limit and would place an absolute ceiling on the economic benefits of this type of recreation as with increased densities of people would recreation and associated profits (e.g., opposed to the almost infinitely compressible high density Constraints on future

development

Stankey et al., 1976 Hender et al., 1978 Heberhein, 1977 Behan, 1976

M-X-induced increased population would add to the competition for wilderness experience.

Competition for

SUDMICSUL

The use of other USES and BLM lands would result in increased competition for agency management, and funding for wilderness.

The several thousand new wilderness users would stimulate local recreation supply business, and enhance tourism-based businesses, e.g., gas, motel, restaurants, gambling, etc. Strass on growing

et onomy

Influx of non-residents would change endemic Zion National Park currently indicates about degrease in solitude aspects of wilderness problems, such as giardiasis, introduction cultures and economies in proportion to density of new wilderness users and how alien they are -- e.g., extrapolation from 25 percent foreign users with attendant cultural adjustments. Biophysical correlates of increased public health of exotic flora and fauna as well as

and cultural resources

biological, physical,

Preservation of

Coman & Brunner, 1972 Christensen et al., 1979 Daily & Redman, 1975 Stankey et al., 1976 Hender et al., 1978 Anonymous, 1979 Stankey, 1973 Badger, 1975 Iverson, 1978 Denney, 1974

Increased Litter and Vandalism

Would constrain use of future wilderness insofar as private land owners with access would impose restrictions on public use of access points. Increased agency costs associated with dispersion and development of less than first choice campsites would result in more dispersed use of wilderness and, therefore, decreased wilderness.

Schuldt, 1980

Management and enforcement costs associated with litter and vandalism would detract from other resource developments, e.g., intensive recreation, information/education programs, etc.

DeGraffe, 1980

A small stimulus to local economies to dispose of waste, repair and restore vandalized objects, trails, etc.

Degradation of wilderness quality -naturalness aspect.

Stankey, 1973 Lee, 1975

13758/10-2 81/4

Summars, of effects and related consequences on the actualistic "valterness quality" for patentially significant projects related deturbances (Page 2 of 2). 1 delete 4.4.1 2.

6

a

Coastruction and Operation Effects

Visual Pollution	Nor auso of the montaine nature of local wilderness resource areas, vistas and unimpeded views above timberline with a line of sight often reaching 50 miles or more. The visual imposition of M-X deployment on wilderness would be extensive since about 80 percent of these areas are resources within 6 mi of a project feature.		Change in the visual nature of what is now an essentially rural, wild landscape will result in the project competing for visual or aesthetic resources.	Litton, 1972 Harmon, 1980	Local over flights of private and commercial aircraft may, if precedent holds, have to detour around or fly above a minimum height above wilderness (e.g., Ventana and Sespe Wilderness and the California condor).	Increased noise will compromise widerness quality and character particularly during construction. Hendee et al., 1978	Change in the visual nature of what is now an essentially rural, wild landscape would result in the project competing for visual or aesthetic resources.	Litton, 1972 Harmon, 1980
hereased Noise	Noise at levels above natural analysis of 0 miles from construction unabuner; and arcraft. Such changes in mare levels would decrease the quality of almost 89 percent of the context wheteness resources under review. Whitava arcraft noise in the vicinity of Hill Air Force Base, Ilfah, dininished the "outstanding apportunity for solltude" aspect in nearby potential wheteness under inventory that it did not qualify for continued review.	Biddulph, 1980	V /V		Local overflights of private and connected, after aft may, if proceeding holes, have to defour around, or fly above a minimum height above wilderness (e.g., Ventana and Sespe Wilderness and the California condor) resource areas.	Local overflights of private and commercial aircraft may, if precedent holds, have to detour around, or Ily above a minimum hands, shows a full points.	insign and Sespe Wilderness and the Ventana and Sespe Wilderness and the California condor) resource areas.	Increased noise will compromise wilderiness quality and character particularly during construction
	Constraints on fature development		Competition for resources		Affress on prowing or others.	Preservation of bridgical, physical, and cultural resources		

T3/58/19 7.81/4

Hendee et al., 1978

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

Attributes of wilderness resource areas with projected crowding estimates of greater than or equal to 0.4 visitor days per acre. (Page 1 of 2). Lable 4.4.1-3.

2 Su 2 Su 5 Su 5 Su 5 Su 5 Su 5 Su 5 Su 5 Su 5	MM	~	<u> </u>	Z P		•				=				Ξ																														
Fragile or Unique Attributes	A P BR MR.ME	C.P.C.MR	A RD MD	Dak H MD	A 5 5 1 5 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5	ANG YOU	7.MK		WK.	3R,3K	3,53	ĭ	ی	W.MR,MKH												٥ , ۸	ڻ	J							۷, ن	ی	ۍ					ۍ	<u>ی</u>	
Present Visitor Use	< * * * *	* * *	٠	*	•			•	•		·	*	•	•	•	•	,		:	;	•	ı	,	*	•	• • • • •		•	•	•	•	*	•	•	:	:	•			•	•	:		
Naturalness 1	:	* * * * *	*	*			: :	*	*	* * *	:	*	•	***	* *	-	*	•	*	•	•	=	* * *	•	* * *	•	* * *	•	*	•	*	•	:	•	* * *	:	•	•		•	•	•	•	
Accessibility	*	*	-	* * *				•	*	* * * *	* * * *	*	* * *	* *	•		•	•	•		•	*	*	*	•		•	•	* *	* * *	*	*	*	* *	•	•	•	•		•	•	:	* * *	
Scenic Vistas	* *	*	*			k 1	k :	* * *	* * * *		*	•	* *	***	•	ı	1	1	•			ı	ı	•	i	ı	•	•	:	1		:	*	•	* * * *		* *		1	ı	•	•		
Opportunity for Solitude	*	*	*	*		t 3	* :	*	*	* *	* * * *	*	* *	* * * * *	*	* *	* *	* *	*	,	•	* *	:	*	•	*	•	* * * * * * * * * * * * * * * * * * * *	*	•	•	*	* * *	*	*	* * *		*		:	:	•	•	
Wildlife	:	*	*			k 3 k 1	*	*	*	# #	ι	*	,	* * * *		,	*	ı	*	1	•		Ĭ	,	* *	ı	,	•	•	*	•	•	•	*		*	*			•	•	:	:	
Fishing	*	*		•			1		1	•	1	*	1	٠	•	1	1	,	ı	i	*	ř	•	1	1	1	•	•	•	•	1	ι	•	,	•	•	,	,		•	ı	ı	í	
Hunting	:						•	•	* *	,	,	* *	•	*	,		* *	1	,		ı	•	ŀ	,	,	1		•	*	* * *	:	•	*	:	:	,	•	•	, ,	•	:	:	:	
Hiking	•	•			. ;		:	*	•	•	•	•	*	* * *	*	* *	* * *	* * *	* *		*	:	*	* *	*	*	*	:	:	:	•	•	•	*		•	:	•	ı	•	•	:	:	
Water	:	•					:		•	1	,	*	,	•	,	*	,	•			*	•	1	ſ	:	* * * *	*	*	* *	,	:	*	:	,	*		,		,	,	,	:	:	
Wilderness Resource		Pobores	S - S	Crant Runge	1 - MT 1	White Rock Range	5. Pahros s/Hiko	Conger Mountain	Howell Peak	Evergreen	Lower Pahranagat	Tunnel Spring	Hontone Mine	Martir Spring	Laylor Creek Canyon	Rear Trap Canyon	La Verkin Crk. Cvn.	Const. Creek Canyon	Orderville Canyon	N. Fork Virginia	River	The Watchman	E. of Bryce	Red Butte	Deep Creek	Paria Canvon	Escalante South	N. Escalante	Garrott Buttes	Nellis	Bonelli Peak	El Dorado	Ireteba Peaks	Cem	Pine Creek	Zion	Codar Breaks	Squaw & Papoose	Canyon	Grand Gulch	Cross Canyon	Bullet Canyon	Shorks Flat	
Alternative	0 / 3 % 6 6 7 6 6	0,0,0,0,0,0,0,0	0,0,7,4,7,1,7,1	X'4'C'8'C'7'''V'.	8,4,5,4,5,1,6,1	F.A.1.2. 5.4.2.6.X	PA. 1.2. 3.9.5.6.8	PA.1.2.3.4.5.6.8	17,1,2,3,4,5,6,8	17.1.2.3,4,5,6,8	PA,1.2.3.4.5.4.8	PA, 1, 2, 3, 4, 5, 6, 8	PA,1.2,3,4,5,6.8	PA,1,2,3,4,5,6	PA.1.2.3.4.5.6.8	PA.1.2.3.4.5.6.8	PA.1.7.3.4.5.6.8	PA 1.2.34.56.8	PA-1-2-3-4-5-6-8	8.9.5.9.6.7.1.7.3		PA.1.2.3.4.5.6.8	PA 1.2.3.4.5.6.8	PA.1.2.3.4.5.6.8	PA.1.2.3.4.5.6.8	PA.1.2.3.4.5.6.8	17.1.7.3.4.5.6.8	PA 1.2, 3, 4, 5, 6, 8	PA.1.2.3.4.5.6.8	FA.1.2.3.4.5,6.8	PA.1.2.3.4.5.6.8	PA.1.2.3,4,5,6,8	PA,1.2,3,4,5,6,8	17.1.2, 3,4.5,6.8	PA.1.2.3.4.5.6.8	PA.1.2.3.4.5,6.8	PA.1.2.3.4.5.6.8	PA,1,2,3,4,5,6,8		PA.1,2,3,4,5,6,8	PA.1.2.3.4.5.6.8	PA.1.2, 3, 4, 5, 6, 8	PA.1.2.3,4,5,6,8	F\$191/10-2-81

Table 4.4.1-3. Attributes of wilderness resource areas with projected crowding estimates of greater than or equal to 0.4 visitor days per acre. (Page 2 of 2).

Alternative	Wilderness Resource	Water	Hikmg	Hunterg	Fishing	Wildlife	Opportunity for Solitude	Scenic Vistas	Accessibility	Naturalness	Present Visitor Use	Fragile or Umpn ² Attributes
P.3.2.3.4.5.6	Fishlake Mountain	:	•	:		:	:		•	:	•	<
PA.1.4.5.6	Upper Muddy	•	•	:	•	•	•		•	•	•	• •
3,4,5,6	Cottonwood-Salmon	* * * * *	•		4 * * * * *	:	•		:	•	:	
3,5	Little Goose Creek	•	•	:		•	•		:	•	•	
·	Horseshoe Canyon	• • • • •	•	•	•	•	::		•	::	•	<
2	Devil's Canyon	:	:	:	,	* * *	:		•••	•	•	
_	Capitol Reef	ı	:	•	,	•	::		:	•	•	3
•	Birdseye	•	:	:	,	:	•		:	•	:	
~	Jarbidge Addition	•	:	:	:	:	:		•	:	:	
\$	Disaster Peak		•	:	•	:	::		::	:	:	
2	Amargosa	•	•	:	,	***	:		:	:	•	
2	Mormon Mts.		•	:	•	* *	•		:	:	•	<
PA.2.3,4,5,6	Fremont Gorge	•		:	•	*	:		:	:	:	
2,5	Rockwell	•	:	•	,	1	•		:	::	•	٤.
9.4	Bull Mountain	•	•	•		•	:		:	•	:	
-	Factory Butte	•	:	,	•	•	:		:	:	•	J

T5101/10-2-81

Low or Poor
Moderate or Good

Maturalness . A measure of the absence of cultural (i.e., noise or visual) intrusions.

Eaves
Race Plants
Geologic
Race or Evenptional Wildlife
Righorn Sheep
Pronghon
Mule Decr
Key Habitat

Range Bald Eugle wintering area Archaeological/Historic

construction between 1982 and the peak year 1987 with the Nevada/Utah regional population reaching a total of approximately 1.84 million by 1987 (ETR-2), According to Lucas (1981) approximately 2 percent of the nation's population use wilderness with the percentage of wilderness users higher in the west. Thus an estimate of 5-10 percent of the region's 1.84 million would seem a reasonable projection of wilderness users. This means that by 1987, a potential 92,000-184,000 people would be using wilderness resources. An Air Force hase survey of construction and military personnel, their associates and families at Mountain Home, Idaho indicated about 7 percent of the residents used wilderness (Ludeman, 1981). This figure does not reflect "use" frequency but rather the total number of people using the resource. The 7 percent figure is used as a reasonable estimate of projected M-X wilderness users since it is assumed that there would be demographic similarities.

Thus, a reasonable projection of potential wilderness users might be 5-10 percent of the 125,000 M-X peak year in-migrants (6,250-12,500). Trend growth projection without M-X, but including other projects, estimate an approximate 1.7 million people in the area by 1987 (ETR-2).

In contrast to the additive effects of population due to the projected spectrum of projects, M-X will act in a synergistic fashion to disperse the user population and render wilderness more accessible because of the project-related road network. In addition, the legislative constitution of wilderness as "designated" is likely to render newly classified wilderness more attractive (Hendee et al., 1978) than undesignated areas. Even in areas some distance from population centers, such as designated wilderness in Montana, 15 to 42 percent of visitors are from out of state. Similar percentages can be expected when the wilderness resources under review within the DDA are designated. These visitations may add to M-X-related and endemic growth. With the historically pristine Great Basin wildlands hosting increased levels of recreationists, there exists the potential for degradation of the ecological integrity and quality of wilderness experience that would not be entirely avoidable by increased management attention (CEQ, 1979), Furthermore, competitive demand for other recreational uses could further reduce the available supply of wilderness resources. Public comment reflects these concerns,

PUBLIC COMMENT ON THE DRAFT EIS:

"Beyond the immediate vicinity, the M-X could result in regionwide impacts on high-quality wilderness, both in terms of reduction in air quality (2-123), and increased use pressures caused by growth. Given the nature of wilderness recreation, proportionately small increases in such demand could significantly affect the supply of this resource." (80125-3-543),

The lack of prior use a visitor encounters on a wilderness trip influences satisfaction. According to a 1973 report, about two-thirds of the visitors to the High Uintas Primitive Area, located about 50 mi east of Salt Lake City, expressed dissatisfaction at the crowding near a lakeside camp. More than 50 percent agreed their visit was most enjoyable when they did not encounter other people. If 3 to 4 parties were encountered, the experience was considered unpleasant. According to

the survey this level of encounter is, however, common, and in 1969, this 237,000 acre area experienced over 100,000 visitor-days use (Stankey, 1973). This indicates a use level of about 0.42 visitor days/acre per , ear, although it should be noted that this is an average, since use density is usually uneven with highly concentrated use correlated with resources such as water and trails (Hendee et al., 1978; Lucas, 1980). Thus, a small area within any one wilderness resource receives most of the area's recreational use. Between 1969 and 1975 the area received a 32 percent increase in visitation (Hendee et al., 1978). Counties in the vicinity of the area (Cache, Davis, Morgan, Salt Lake, Utah, Wasatch, and Weber) that were potential contributors to increased use, experienced a population increase of 13 percent during the same time period (Utah Population Work Committee, 1980).

Approximately 19 percent of the Nevada/Utah USFS RARE II Wilderness under review survived as wilderness recommendations (USFS, 1979; Haaser, 1981). Assuming (1) that a similar percent of BLM recommended/designated WSAs (approximately 13 million acres as of April 1981) in the vicinity of the DDA survives wilderness screening, and (2) the peak year population estimates according to current models (ETR-2), then the average peak year (1987) visitor-days/acre BLM wilderness resource lands would be approximately 0.31 visitor-days/acre with M-X and 0.29 visitor-days/acre without M-X. These figures are 69 percent and 73 percent, respectively, of that of the High Uintas and indicate a relatively high potential for crowding at levels that degrade "opportunities of solitude" in the eyes of many users (Stankey, 1973). M-X would be responsible for about 7 percent of this increase in visitor-days/acre. This increase is compounded by the dispersal potential of the DTN, which would render the areas more accessible.

Implementation of other projects, such as the Anaconda Molyhdenum Mine near Tonopah, White Pine Power Project (WPPP), Pine Grove Molyhdenum project in Pine Valley, Harry Allen power project in Dry Lake Valley, Alunite Mine in Wah Wah Valley, Rocky Mountain Natural Gas Pipeline Project, and the Intermountain Power Project (IPP) near Delta, would cause additional land disturbance and population growth. Construction activities for most of these projects would be small compared to those for M-X, and the cumulative effects are expected to be small. As for the combined effects of population growth, projected population increases from construction and operation of the other projects would be small compared to those projected for M-X. IPP is the exception in which population increases during construction would approach that of M-X.

Project-related indirect effects on wilderness resources are expected to originate primarily from construction and OB population centers. Those resulting from population growth in the Coyote Spring area are expected to peak during construction when the maximum number of people (appoximately 48,000) would be present in the area, and then decline with the number of people remaining (18,000) in proportion to the number of permanent residents during operations (ETR-2). Siting a base at Milford will result in a long-term population increase of about 15,400 (ETR-2). The extent to which wilderness resources in the vicinity of these OBs would experience additional use would depend upon the recreational preferences of the in-migrants. Recreational preferences and user satisfaction depend upon a number of variables.

PUBLIC COMMENT ON THE DRAFT EIS:

"Impacts and user satisfactions depend on a great array of variables, some of them peculiar to each area (some places are easily trespassed with vehicles, whereas others are so rugged and dry that humans may never visit them during M-X construction). User behavior is a great imponderance land one of the least accountable factors in impact calculations) for it depends on attitudes, equipment, recreational time available, and many other things. There is virtually no antecedent research on Great Basin backcountry users, much less on military and construction personnel in desert contexts." (A04753-013)

During the operations phase -- using the 7 percent figure discussed previously (Ludeman, 1981) -- wilderness resources in the vicinity of Coyote Spring would receive, on the average, up to 1,300 additional visitors, while those in the vicinity of Milford would receive up to approximately 1,100 additional visitors. The impact to wilderness would vary with the density of people, this being a function of distance travelled as well as the spectrum of wilderness-related recreational opportunities of the site.

The impact of this additional use on the wilderness resource will be determined by the carryine capacity of the particular area visited. Carryine capacity is that critical number of visitors above which degradation of ecological characteristics or reduction of the quality of the wilderness experience occurs. A quantifiable measure of M-X population-related effects would be that degree to which the influx of M-X-related population causes the carrying capacity to be exceeded. At this level, no more visitors would be admitted. However, it is difficult to demonstrate specific impacts for several reasons: (1) carrying capacities have not been determined by appropriate authorities (BLM, USPS) for many of the areas since comprehensive visitor-use data are incomplete or not available (Schuldt, 1980; Shochet, 1980; Orvil, 1980; Harmon, 1980; Biddulph, 1980k (2) wilderness is a limited resource managed according to its own characteristics rather than by user demand. Demand in excess of capacity results in waiting lines, rather than additions to the system. Having to register and wait for a "wilderness experience" in itself constitutes impairment of that experience. Finally, both the Wilderness Act of 1964 and FLPMA (1976) prohibit recreational overuse.

"Productivity" of wilderness can be considered the sustainable carrying capacity for human use and enjoyment, that is the human use that can occur without degrading ecological characteristics or reducing the quality of the wilderness experience. Overuse or encroachment by audible or visual evidence of human activities (i.e., construction or crowding) will reduce the carrying capacity (productivity), for example, by rendering the periphery of an area nonwilderness, where noise of construction or trail-head crowds are experienced. Using this concept, the major reduction in productivity may occur when there is maximum construction activity and human population in proximity to wilderness resources, however, productivity would be partially restored during operations.

The effects of M-X construction would reduce short-term productivity of wilderness, particularly in areas where project features are sited within one mi of the resource. More than 60 percent of the hydrologic subunits within the DDA that

contain wilderness resources fall within this category. It is impossible to estimate the absolute level of this reduction from existing data. Reduction in long-terin productivity relative to wilderness over-use is anticipated to be relatively small since appropriate management policies are expected to be implemented to preserve wilderness character. However, due to the pervasive nature of the project, reduction in long-term productivity relative to permanent alteration of scenic landscapes from vista points in montane wilderness will transcend the life of the project. This reduction in long-term wilderness productivity as compared to projections without M-X is anticipated to be relatively large due to the extensive nature of the project. Over 80 percent of deployment area wilderness resources are within 6 mi of a project feature.

The visual impact of the project features upon edderness overs in the many areas that offer sweeping vistas at large partions of the Great Rasin, will be virtually permanent and constitute an irreversible and irretrievable commitment of resources. This is particularly so since many of the edderness resources are located in nontane environments above valley floors with little to obstruct the view. Project-related noise, on the other hand, will be temporary and ephemoral. Human overses, if reduced or eliminated, is, for the insist part, reversible and retrievable because of biological succession, reinvasion, and colonization.

Valley roads and vehicles exist and can be seen from surrounding wilderness responsive. Custom time would seem to constitute an existing compromises however. the disturbance in a natter of scale. Measurements by a line drawn on the long axis of each DDA subsent, and a line perpendicular to thin axis at midpoint, indicate a hand no average of 16 intersections of roads per valley. These whichits will have an average of 11 intercepts with the project or a 94 percent increase in road interrests. Discussions with BLM personnel (Harmon, 1980) indicate that, in at neat the DDA, potential wilderness study areas were eliminated from consideration or had their houndaries withdrawn because of roads, starks, and other visible human intrinium emanating from outside of the area. The BLM policy is currently developing toward consideration of audio-visual effects on wilderness resources as indicated by the Oraft Wilderness Study Policy released December 19, 1980: "The features of the area to be considered in evaluating its outstanding opportunities for solitude are. . . presence of outside sights and sounds and whether they have such an incoming effect as to outweigh any benefits of wilderness designation" (Federal Register, 1930). Currently the threshold at which an external influence compromises wilderness quality is subjectively determined by BLM personnel. The Great Rusin presently has some of the last vast stretches of relatively untouched land in the continental limited States which after apportunities for solitude. The visual impact of the 4,600 shelters, and associated road network, fencing, and support familities would not only severely affect the visual character of the lanchrape but would greatly reduce those for solutude.

It is difficult to separate the project effects from the projected population growth of the Nevada/Fitah region without M-X. Further, there are many values of wilderness -- companionship, whitude, self-testing, and escape -- that may be little affected by the temporary noise of construction and the permanent visual impact of the project. However, visual and noise intrusions are a matter of concern to EPA, the U.S. Forest Service, and other agencies. Standards for visual and noise factors are presently being developed for de facto wilderness (Litton and Tetlow, 1978).

As further evidence of agency and public concern for the issue of preservation of aesthetic resources (vis-a-vin wilderness) the Bureau of Land Management (Sunmary of SCOPING for the M-Y, ETR-22% HTM. 1989) in an analysis of issues

raised during the scoping process, binned the asses of audio and visual impacts due to M-X, noting "the M-X project will create significant changes in the land-forms--changes in opportunity for dispersed and primitive forms of recreation ... all actions occurring on BLM-managed lands which affect the appearance of the landscape are required under FLPMA and Bureau policy to be considered in terms of visual resource management abjectives. These objectives require that such actions be understood and managed to be compatible with the natural character and visual quality of the landscape. Therefore, all phases of the M-X project must include considerations for scenic quality . . . * These sontiments reflect the though of the Wilderness Act of 1966 which defines wilderness (in part) as ", , an arma primarily affected by the forces of nature, with the imprint of man's work substantially unnoticeable." The wheetign of 6 mil from project construction and features) were a reasonable boundary to preserve a tense of wilderness since in restance forests of the western United Nates, meddinground distances wertil in reveable "manimade changes and landscape conflicts" range up to 5 mil (Litton, 1972)

Externess characteristics would be diminished for some wilderness resource areas. The total effects would depend upon both the relative M: K configuration and the influence of other projects. The wilderness resource areas yields for the function in the National Externess Presentation System (NEPS) will be explosed on a case: by case begin before final determinations are made by Congress on whether the areas are suitable for the lysion in the NEPS.

The tireat figure has were of the last great, relatively ununaded econic vistas in the montinental limited Status. There are a priceton national and regional employers. That expanses of ease, budges pointbright and alter and tand engetation marper the valley floors, and sweep upward to most hugged magnific ranges, it is a hand of expansive vietas, gentle colors, and hald reflet : where man's artivities previous manage by blames in so the landercases. The stranditor against aged and event crosses. mountain fange after mountain fange, descending from earth with an utofottur and since onto the salles benefit age to less. I resulting not the end court. Some are experience is age everywhy in an either hand to inthusting the control to the large by the transmission, everyone for ranching and range land transmission. In the modifies of the landerage and its bifurcials are retained the American interitages of open spares and frantier life exhan. Even the multitude of travellers and hier terrorses to represent the special and sentiment may represent and the senter of restance history, which are provided in this timilerage. The physical and visual qualities of her extends the state of the section transport the value of this manager think the tight to author a trippert pranscripts or allocation by this analysis. Considerable public consists was expressed SHIP THEY

DURFIE COMMENT ON THE UN AFT EIF

"... there always fraggle removement are an improvement part of our variething notified dimension benefage, a benefage administ extinct in this work of our encountries without arbanistation and inclusive adjust our."

(AN 5 m)...g...qu 2)

The Great Macin region is one of the few hirales in the fewer of states where early a heritage could be protected. That is certain is that the project would reduce the regional wilderness character and foverhow its courses image as a genuine last frontier characterized by relict American life crubes and wide open spaces. Additional consequences are airmagisted in Tables 6.6.1-1 and 6.6.1-2.

adaminin ning ning tanggan kanan dan menganan menganan sebagai sebagai kanan sebagai sebagai sebagai sebagai s Menganan sebagai sebagai

	and the second second	Trapal Code in Grat				
	De iff ebreiter - Nationers	Bullettiette Attende T	وعدد الا	Service .	tollion.	Constitution and
h.	N	Til PENGER & Juli	1 467 . 12*	* repuss*	1 / IB. D	100.01.
۸.	>.60 €1	No. debt.				i i kapaja
	191.y					
	Discussion has a sub-	5.75 mm t			,,,,,	
	Trial Supple	77		444		
	Process Supple	10 2 3			****	1111
·	" ute Dat erate, feste	At 1.5		****	****	
	Transport from	i T [†]			,	* * * *
,	agenteer castet the caste					•
vr2	MENT IN THE TABLE	dt : 🛥	* * *	n n n	* * *	* * *
***	Street respective and a sense, respective	• Atte	64 A B 3		* * * * * *	
24	Asia da i sala	1	-			,
	, ideas Albert . Frage	1	-			•
. :	Spirit of the spirit and spirit and spirit	∌ thr				5.5.5
17	Water Water Could	• 5: ₫i		55.55.5	2222	* * 5 * 5
57 4	Big. Directiffen Guternfente imige. Debe	s. + √	2.5			1.1.7
:99	Elizati Situ	1.2 No.1	1 2 4 5 2	5.6.5		
#11 Y	Arapan rank sheak rive histor	1				•
+ :14	Grupes einer Gerande Gente	•	*.			
,	* galuparata — β es iz		*			
	Bratistic Class come states	•	7			,
- 4	gentre frage steen	4 . 🕶 /		1.5.1		
. ,	District graces body	ari	5.5	2.50	1.3.1.1.3	
	Secrestice 🐗 💎 🎏	•				r
-'+	has a yest. Has a		re-			7
•	neus in ber beiberte bigge	** +* 12	4 D 2 D 1	2.5	. 1 1 4 5	,,,,,
. 4	children Dier eiter, Derenter bege-	+ PI (₹	.00.	y		•) •
14.	The company to the contract of	சிரை அதுக	1020		211	5 7 3 7 7
	"ristoria giglida" - Piplica	÷+ 🐲 t	ب الله د		. 3	9.4 1.2 9
	- sel : Pessi	* 1030	2.3	*	1.5	
•	rige Million - Million	Water Printer	ن د د د	1.2.7	19199	2.4.4.4.2
	Court the Courts State	and the	10 =	1.8.1	1211	
- 100	figgetingster Steel isten inter-	rássa la els		والمواود وال	دودو.	
٠,	September 1990	•				
• •	ereg Star		•			,
-411	Arapany, Queaphe 1980.	es trip			231	, , ,
	a highly a burney to the Page of	4° - 1		1222		
411	york the	· for thinks	9499		ديد	
•	76 physic lines) • • • • • • • • • • • • • • • • • • •	-			•
• •	Titol service - Titol vicino - Titol					2000
•	1.4	61 - \$2		****	4 - 1 - 2	11 1
	sint sign (Mass			.		2 • 2 - •
16.	Traper year traper of traper	-	. 🕶 🗸 .	••		
	* ign beginning see	100 m 190		>		***
	Have story to be the Proper State	250 (1965) 144 - 1540)		4	د د د د د	* * * *
		न्तर क्रमणा ना नाक्ष			**	2.4.4
	* photosis - Mani * photosis paragraphi - Odan	# 2 # 28* #800 *****				22144
	The production of the control of the	940 - 1115 1280 - 1118				
	Attendant of the company of the comp					
	the many of the person of the state of the s	₹'				
	Annual Communication of the Co					. • •

Section 1

1 94 94	ng i diggi ng ng ngagar
	1 Burger efter eine aufreiere eine ber ber iffer jede f. ein Caurry einer gur bereiten bereiten.
	the water the commence of the
• 44	. 18 - Trigo no digo godin poda in inganipro off digo goringanio die inganipro graduni graduni graduni graduni
	n gen jegt - na politika nin - jegt met gegen jegen meter gland in die de gegen meter gegen de gegen in de jeg
	- adoption when made - particular pages
	n der Berter in der Berter ber ber ber ber ber ber ber ber ber b
	Sign of the state
 1 ուպասերածա	grand the same approximate general consequences approximately a second of the sequences of the second of the secon
	This game is streetly the complete of the comp
	روان دوره دارد در در در او
	ாரண்டுக் கூட்டு நாட்டு கண்ணுக்கு நடித்து கொண்டுக்கு இருந்து இருந்த
	والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراع
	couperforgore where the spin Couper
 2140	gir. Manne degen agan agan manne gemen mega inngan magamagaman angan ne Nicologia in Antologia kelala
	records the special series of the series of
	المسامونها المهريدسة ينوالدمنا الداك طوية الهمهاني والماميعة بهيمهما فهاها ويعمد المواد ومواددات
	the control of the co

. Tanggang selatang at agy 18 jawan

[։] - Համապարստում աշագինում անիանագար և տարածալ գարը մասագույան գործում և և և համար գարինքարում և չում աջաջան և

Predicted effect beyons and their significance are authinosticed in Table 6.6.1-6 for each hydrologic suburit in which project elements would be deploised. The dispersed nature of population-defined effects would generate with the deploised impacts to reading or algorithm hydrologic suburits having no project elements. The difficults with predicting the actual level of impact fresulting floor increased within the actual level of impact fresulting floor increased within the subsequent descriptment of an effect tribes to which a chearing units tribus to contest to chearing the contest of increase to contest the contest of the cont

The major interes to be authorised presentation of these means of the second of the se

AIR FUNCE MITH, A THINK

Fig. 1.4 % The many appropriate the supplies instruction and and placed to the appropriate operations of the placed to the place

The Air Korne will implement a flien cienteral property and an animalist cienteral original and an animalist cienteral animals of the Air Court of Maringensent Thought and Additionalist, the Air Court of the Air Air of the Air Court of the Air Air of the Air

I there concerns generalis and the interplantament the the Ken Ken Concern The properties will grown the five suspension of algebraic themselven and the sistem of the interpretation of algebraic terms them consider a their properties that any or that we to suspension and any or the transfer and transfer

The Live house will insighemment he enriceitents cite and becker in the first becker his distribution will analyticate cite and the first becker in the first and the head of cite and the head of the property of the head of the property and the head of the head of the property and the head of the head of the property and the head of the h

A Name Management Program will be provided by the Air Force. This brougham will provide for the installation of builtee and multiers on construction equipment, planning of construction actualizes in consideration of noise impacts and materials of materials in amount of sevens.

The fire Force will provide education programs for workers and dependents. There programs will be broughed to educate personned in the most to present the transfer of the most to present the transfer of the resources in the series. There programs could be conditioned in the constitution takes and operation for conditions and another constitution camps and operation flows.

OTHER MITIGATIONS UNDER CONSIDERATION

Impairment of Landieges Dur to Searcheation

Privalente fior a navage habitet in interprivate the interprivate of authorities would be once interprivate the interprivate of authorities of authorities of authorities of authorities of authorities and au

Impairment of Villamore Dur to Make

Pharm aim annumed protestatus in interprete and spicetorism grafiche of architecture arm dies and continue the continue of the architecture and spicetorism grafiche of architecture grafic of architecture grafic architecture grafic of grafic grafi

Parts inthem geografile mersenmen cincle he whe seminatives of specialist to several look some flighter in the vicinsty of deliferance species soft actionalistics conservations in arrival; into the language integers of language of

Inquirments of Latelleaury Dur To Air Challes

Impairment of Wikherness Quality from Increased Kenreation

the first of the content of the cont

Note that we call to the location of the location of the location of the control of the control

the control of the service of the service of the end of the end of the service of

The control of the control of the following space of the control o

COYOTE SPRING VALLEY OB (4.4.2)

The contraction of the expectation of the Covote forms OB and the covote forms OB and the covote forms of some steps are some reasons and the AAB = 1 and the covorest of the covote set of the covote set

The property of the property of the property of the property of the proposed layout the property of the proposed layout the property of the proposed layout the property of the proposed layout the propo

The livergreen WSA, and the state of the experience an indeterminable of the experience and distinct allows would be a supported by the experience associated with more of the experience of the experience associated with more

The second secon

The sates to come away from the sates to come away from wildercome and the common of the complete terms of the process estimation of the
common of the complete terms of the register of the first and Wildlife #1 and
complete terms of the first area of the first and Wildlife #1 and
complete terms of the complete terms of the first and Wildlife #1 and
complete terms of the complete terms of the Complete Arrow Canyon
complete terms of the complete terms. The

The state of the s

LEGEND

WILDERNESS RESOURCES

Wilderness resources in the vicinity Figure 1 1 2-1. of the Corate Spring OB.

An influx of an estimated 18,000 permanent residents to the Coyote Spring area is anticipated with project implementation (ETR-2). The effects of this large human population growth would be expected to increase use of the wilderness resources in the area--and will vary with the socioeconomic and demographic characteristics of the in-migrants. A general summary of potential consequences relative to the four issue areas is provided in Tables 4.4.1-1 and 4.4.1-2.

Hydrologic subunits were ranked as low, moderate, or high potential impact based on the mean indirect effects index for all wilderness resources in a given subunit. Table 4.4.1-4 summarizes wilderness resource abundance and level of population-related effects on a hydrologic subunit basis with Coyote Spring as Operating Base A for the Proposed Action. According to the indirect effects analysis, regions outside the DDA anticipated to receive a greater than 15 percent increase in visitor-days as a result of W-X include the BLM-managed Cedar Ridge, Red Spring, Little Humboldt River, Gabbs Vallev, Basalt, Hontone Mine, Silver Peak Range, Tunnel Spring, Grapevine Spring, Pigeon Spring, Bourie Clair Flat, Queer Mountain, as well as the USFS-managed Excelsion and White Mountains (Table 4.3-2).

MILFORD OB (4.4.3)

There are no wilderness resource areas present within the immediate vicinity of the Milford OB site. The closest wilderness resource is the BLM-managed Wah Wah Mountains WSA approximately 30 mi north-northwest of the base.

A projected long-term population increase of approximately 15,400 is anticipated for the Milford area as a result of base siting (ETR-2). As discussed in the previous section, effects of such growth-increased use of wilderness resources and associated impacts-will demand increased management attention. Table 4.4.1-4 summarizes wilderness resource abundance and level of population-related impacts by hydrologic subunit with Milford as Base B for the Proposed Action. Additional wilderness resources outside the DDA anticipated to receive a greater than 15 percent increase in visitor-day use as a result of M-X are the same as those already discussed for Coyote Spring.

4.5 ALTERNATIVE 1

The DDA, first OB, and associated impact would be the same as for the Proposed Action. The second OB would be located at Beryl, Utah.

There are no wilderness resources in the immediate vicinity of the proposed second base. The closest areas are the RARE II recommended Pine Valley Mountain region and the BLM-managed White Rock and Central Wah Wah Mountains. All are located approximately 30 air-miles south-southeast of the base site.

Impacts of an OB in this area would stem from the indirect effects of the movements and recreational activities of an estimated 14,400 additional permanent residents in the Beryl region (ETR-2). Although recreational use preferences would be a function of the socioeconomic and demographic characteristics of the inmigrants, key hydrologic subunits targeted for increased wilderness visitation, including level of population-related effects as identified by the indirect effects index, are the same as those listed for the Proposed Action (Table 4.4.1-4).

Wilderness resources outside the DDA anticipated to receive at least a 15 percent increase in visitor-day use because of project siting are also the same as those tabulated under the Proposed Action.

4.6 ALTERNATIVE 2

The DDA, first OB, and associated impacts would be the same as for the Proposed Action. The second OB would be located near Delta. There are no wilderness resources intersecting the OB suitability zone. The nearest wilderness resource is the BLM-managed Swasey Mountains approximately 12 mi northwest of the base location. Additional nearby areas include the designated WSAs Notch and Howell Peaks located approximately 16 and 18 mi, respectively, to the west of the proposed site.

An influx of an estimated 14,500 permanent residents to the Delta area is expected as a result of using Delta as a second base (ETR-2). According to the indirect effects analysis hydrologic subunits anticipated to receive increased wilderness resource use (including the level of population-related effects) that would result from a second base siting in the vicinity of Delta differ from the Proposed Action and Alternative 1 only with respect to the Muddy River Springs subunit (Table 4.4.1-4). Wilderness resources outside the DDA anticipated to receive a greater than 15 percent increase in visitor day use because of project siting are the same as for the Proposed Action and Alternative 1.

4.7 ALTERNATIVE 3

The DDA and associated impacts would be the same as for the Proposed Action. Using Beryl as the primary base location for Alternative 3 would result in an increase of 20,000 long-term residents in the area-approximately 27 percent more than Alternative I with Beryl as a second base (ETR-2). Although these figures differ, no qualitative change in the potential population-related effects of an OB location at Beryl are anticipated.

The second OB would be located near Ely. There are no wilderness resources within the proposed Ely OB suitability zone. The nearest areas include Martin Spring (a BLM-managed inventory unit under appeal to the Interior Board of Land Appeals) located approximately 22 mi southwest of the proposed site; and, the designated WSAs, South Egan Range and Mt. Grafton located approximately 30 and 35 air-miles, south-southwest and south, respectively. Additional nearby resources are the USFS Further Planning Unit, Mt. Moriah, and the South Egan Range WSA. Both are within approximately 30 air-miles of the Ely suitability zone. Impacts to wilderness by locating an OB in the vicinity of Ely would stem from the recreational activities of an estimated 15,400 additional permanent residents in the region (ETR-2). Using the indirect effects index for impact analysis, it is possible to identify candidate hydrologic subunits for increased backcountry use. Table 4.7-1 summarizes wilderness abundance and level of population-related effects. Wilderness resources outside the DDA anticipated to receive greater than 15 percent increase in visitor-day use because of project siting include the BLM-managed Cedar Ridge, Red Spring, Little Humboldt River, Gabbs Valley, Silver Peak Range, Tunnel Spring, Pigeon Spring, Queer Mountain, Death Ridge, Cougar Canvon, and the USFS-managed White Mountains.

Potential impact t to wilderness resources in the Nevada/Utah DDA and associated Table 4.7-1. OB hydrologic subunits for Alternatives 3 and 5.

	Hydrologic Subunit	Approximate Wilderness Resource	Visual	Noise b	Indirect	Estimated Overally
No.	Name	Acreage Within Subunit	Effects	Effects	Effects ^C	Impact
	DDA					
4	Snake, Nev./Utah	252,776	****	****	****	
5	Pine, Utah	37,478	****	***	***	***
6	White, Utah	124,636	****	****	****	****
7	Fish Springs, Utah	50,313	****	****	****	*****
8	Dugway, Utah Alternative 5	. 691	***	***	***	***
9	Government Creek, Utah	0	•	-	-	•
46	Sevier Desert, Utah	20,536	***	***	****	*****
46A	Sevier Desert-Dry Lake, Utah	48,574	****	****	****	*****
50	Milford, Utah ²	0	*	•	-	•
52	Lund District, Utah ²	9	•	•	-	•
53	Beryl-Enterprise, Utah ²	835	***	-		***
54	Wah Wah, Utah	43,208	****	****		****
1 37 A	Big Smoky-Tonopah Flat, Nev		***	•	•	***
1 39	Kobeh, Nev.	29,947	****	***	****	*****
140A	Monitor-North, Nev.	2	•	-	-	•
140B	Monitor-South, Nev.	9	•	-	-	•
141	Raiston, Nev.	n	•	-	-	•
142	Aikalı Spring, Nev.	ŋ	•	-	-	•
148	Cactus Flat, Nev.	6.785	•	***	****	****
149	Stone Cabin, Nev.	38,662	*****	****	****	****
151	Antelope, Nev.	ũ	•	-	-	•
1 54	Newark, Nev.)	•	. •	-	•
155A	Little Smoky-North, Nev.	27,516	****	****	****	****
155C	Little Smoky-South, Nev.	15,918	****	****	*****	****
156	Hot Creek, Nev.	208,069	*****	****	*****	*****
170	Penoyer, Nev.	44,303	****		****	****
171	Coal, Nev.	17,568	****		***	****
172	Garden, Nev.	36,941	****	•••	***	
173A 173B	Railroad-South, Nev.	89,527		****	*****	*****
174	Railroad-North, Nev.	266,651	•	*****	*****	
175	Jakes, Nev.	Ö		-	-	
178B	Long, Nev. Butte-South, Nev.	16,748	•••	-	••••	
179		67,582	****		****	*****
180	Steptoe, Nev. Cave, Nev.	74,850	*****	••••	****	*****
181	Dry Lake, Nev.	74.870	•		*****	•
182	Delamar, Nev.	22,927		••••	•••	
183	Lake, Nev.	60,193	****		****	****
184	Spring, Nev.	77,733	****		• • •	****
196	Hamlin, Nev./Utah	56,351	****	•••		
202	Patterson, Nev.	39,732	•	***	***	• • •
205	Meadow Valley Wash, Nev. 2	325,062		***		*****
207	White River, Nev.	144,953	****		•••	
208	Pahroc, Nev.	43,432	•	***		• * •
209	Pahranagat, Nev.	89,708	****			****
210	Covote Spring, Nev.	339,708				
219	Muddy River Springs, Nev. 2	17,360	***	•••	•	•••

T5257/10-27-81/F

••	= None	 a) Value not used. b) Wilderness resources lie beyond 6 mi from nearest project feature. c) No wilderness resources.
•	= Low	 a) Due to the pervasive nature of the project on "de facto" wilderness areas, a visual impact value was accorded to subunits which presently contain no wild

resource areas.
b) Only one wilderness resource lies between 3 and 6 mi from nearest project feature.

low

c) Average value of indirect effects indices, including user increase, access, and crowding is less than three,

a) One to ten percent additional road intercepts due to M-X are visible from more = Moderate than one wilderness resource.

b) Two or three wilderness resources each lie between 3 to 6 mi from a project feature; or only one wilderness resource is less than 3 ms from a project feature. c) Average value of indirect effects indices, is less than four.

a). More than ten percent additional road intercepts due to M-X are visible from

more than one wilderness resource.

b) If more than one wilderness resource is less than 3 mi from any project feature.

c) Average value of indirect effects indices is four or greater.

= High

²Subunits containing OB sites.

Impact index determined as the maximum of the effect ratings.

4.8 ALTERNATIVE 4

The DDA and associated impacts would be the same as for the Proposed Action. Impacts for the first OB at Beryl are the same as for Alternative 3.

Impact for the proposed OB location at Coyote Spring are discussed under the Proposed Action. Although the siting of Coyote Spring as a second OB would reduce the influx of permanent residents by about 24 percent, there would be no substantial change in the indirect population-related effects of an OB location in this region. Table 4.8-1 summarizes wilderness abundance and level of population-related effects. Wilderness resources outside the DDA anticipated to receive greater than 15 percent increase in visitor-day use are the same as those listed for the Proposed Action.

4.9 ALTERNATIVE 5

Impacts for the proposed OB location at Milford are discussed under the Proposed Action. Using Milford as the primary base would result in an estimated 28 percent increase in permanent residents over that projected for Milford as a second base, but no substantial qualitative changes in the anticipated recreational impacts on wilderness resources would be expected. Hydrologic subunits with the potential for impact as a result of first OB are listed in Table 4.7-1, as are the level of population-related effects. Impacts for the proposed Ely OB are the same as for Alternative 3.

4.10 ALTERNATIVE 6

The DDA and associated impacts would be the same as for the Proposed Action. Impacts for a first OB at Milford and a second OB at Covote Spring are the same as those for Alternatives 5 and 4, respectively. Table 4.10-1 summarizes wilderness abundance and level of population-related effects on a hydrologic subunit basis for Alternative 6.

4.11 ALTERNATIVE 7

Wilderness resources within the Texas/New Mexico study region include the Sabinosa Wilderness Study Area (WSA) and the Congressionally Designated Salt Creek Wilderness within the Bitter Lake National Wildlife Refuge. It is not anticipated that M-X construction activities would result in significant impact to the wilderness quality of either area. The Sabinosa WSA is located approximately 40 mi from the nearest project feature and potential project-related effects on the wilderness quality of the Salt Creek are small compared with those due to its proximity to the City of Roswell (Figure 4.11-1). Table 4.11-1 summarizes potential impacts to wilderness resources for Alternative 7.

With the exception of hunting, siting an OB at Clovis would not be anticipated to result in substantial increases in recreational activities within the Salt Creek Wilderness. Present management strategies are to promote educational and scientific use of the Bitter Lake NWR and to discourage picnicking (Marlatt, 1980). However, the steep rock-walled canyons and densely vegetated landscape characterizing the Sabinosa WSA could serve as a magnet for wilderness recreationists from as far away as Clovis (approximately 100 mi). No direct or substantial indirect impacts to the wilderness resource are anticipated as a result of the Dalhart OB.

Table +(\$-1) Potential impact to +ilderness resources in the Nevada 1 tan 90% and associated OR hydrologic subunits for Alternative +.

	Hydrologic Subunit	Approximate 1.Iderness Resource	Visual Effects d	hone	Indire 1	Estimated Overall
No.	Name	Acreage Bithin Submit	rijects	Filects ⁹	Effects	! npact 1
	DDA					
•	Snake, Nev. Etah	252, **6	••••	****	••••	••••
5	Pine, litah	37,478	••••	• • •	••••	****
6	White, I'tah	124,636	••••	****	••••	****
•	Fish Springs, 1'tah	95,313	••••	••••		****
8	Dugway, titah	19,691	•••	•••	•••	•••
9	Government Creek, I tah		•	•	•	•
46	Sevier Desert, Utah	20,5%	•••	***	••••	••••
-64	Sevier Desert-Dry Lake, I tah		••••	••••	••••	
45	Milford, I tah*	2	•	•	•	•
52	Lund District, I'tah	. 0		•	•	•
53 54	Beryl-Enterprise, Utah	\$35	•••	••••	•••	****
1374	Wah Wah, Itah	43,298 . 3,775	••••		••••	••••
139	Big Smoky-Tonopah Flat, Nev Kobeh, Nev.	. 3,773 29,967	****	•••	••••	
1-24	Monitor-North, Nev.	67.747	•			•
1428	Monitor-South, Nev.	ž	•	•	•	
141	Raiston, Nev.	2		:	•	
1+2	Alkali Soring, Nev.	<u>;</u>	•	•	•	•
48	Cactus Flat, Nev.	6,785	•	•••		
149	Stone Cabin, Nev.	78,662				
151	Antelope, Nev.	~	•	•		•
154	Newark, Nev.	Ď	•			•
1554	Little Smoky-North, Nev.	27,516	****			
155C	Little Smoky-South, Nev.	15,918	****	••••	••••	
156	Hot Creek, Nev.	208.369	****	••••	••••	
179	Penover, Nev.	88,303	****		••••	••••
171	Coal, Nev.	17,368	•••	•••	****	****
172	Garden, Nev.	\$6.941	****		****	••••
173A	Railroad-South, Nev.	39. 527	•••		****	••••
1736	Railroad-North, Nev.	?66,651	••••	••••	••••	
174	Jakes, Nev.	2	•		•	•
175	Long, Nev.	9	•	•	•	•
1788	Butte-South, Nev.	16,748	•••	•	•••	•••
179	Steptoe, Nev.	67,582	••••	••••	•••	••••
180	Cave, Nev.	74,850	••••	••••	•••	****
131	Dry Lake, Nev.		•	•	•	•
182	Delamar, Nev.	22,927	****	••••	•••	****
183	Lake, Nev.	60,193	•••••	••••	••••	••••
134	Spring, Nev.	77,733	••••	••••	•••	••••
196	Hamlin, Nev./Utah	36,351	••••	•••	••••	••••
202	Patterson, Nev.	39,732	•	• • •	•••	•••
205	Meadow Valley Wash, Nev. 2	325.062	• • • • •	•••	• • •	••••
207	White River, Nev.	144,953	••••	• • • •	• • •	• • • • •
208 209	Pahroc, Nev.	43,432	•	•••	••••	
210	Pahranagat, Nev.	89.708	••••	••••	•••	****
219	Coyote Spring, Nev. Muddy River Springs, Nev. 2	339.708	••••	••••	•••	••••
417	Audus grace Shrinks' Aca.	17.160		•••	•	•••

T5258/10-27-81/F

1	5)	Value not used. Wilderness resources lie bevond 6 mi from nearest project feature. No wilderness resources.
• :[b)	Due to the pervasive nature of the project on "de facto" wilderness areas, a low visual impact value was accorded to subunits which presently contain no wilderness resource areas. Only one wilderness resource lies between 3 and 6 mi from nearest project feature. Average value of indirect effects indices, including user increase, access, and crowding is less than three,
*** : \	b)	One to ten percent additional road intercepts due to M-X are visible from more than one wilderness resource. Two or three wilderness resources each lie between 3 to 6 mi from a project feature; or only one wilderness resource is less than 3 mi from a project feature. Average value of indirect effects is less than four.
***** 2 }	b)	More than ten percent additional road intercepts due to M-X are visible from more than one wilderness resource. If more than one wilderness resource is less than 3 mi from any project feature. Average value of indirect effects indices is four or greater.

²Subunits containing OB sites.

Impact index determined as the maximum of the effect ratings.

Table 1 (1). Porter to all hought of the limb may resolutively of the Nethada of tak 1979 & and associated.
This is the polygon is that had been pative to

	nka trou ≰ i Subrup. *	Abyada Mate Bulaniana Resoluti e	1 Sud	No set g	In a .ir- i	Estimated
		A reade \$ 15.0	F * 9 en 13 e	7.146-18	f 11m 12	A
*• J	8 2 mg	NuSture 1				torque t
	111					
•	Miland, New Call	197 274	••••	••••	••••	••••
3	Prover Far	87., x 74	****	• • •	• • •	
	\$5 te, fah	leye ≒e	****	****	••••	••••
1	fish hijir nga, itan	N5 , 3 L 9	••••		••••	****
ŧ	Magnesia, 1 tain	.5, •≸	•••	***	•••	•••
•	walker herrit Scheme, tark	<u> </u>	•			•
••	tev er Besørt, i tali	25. 1 🖜	•••	•••	*****	*****
	- the of Masortights Land, " fat	49.774	••••	••••	****	*****
٠,	Musika si tan	:	•	-		•
* .	Control This section for the section of	:	•			•
* *	theretof steepe her, " tah"	9.11	•••	•	***	• • •
3.	\$ and \$ and 1 tan	49,254	••••	••••	*****	••••
1. 1	– Aug. Sinioneri™omografi Flat, Sere	,	•••		•••	• • •
. 149	* Home Sev.	79, MF	••••	•••	••••	••••
# 1 N	Shain, tak - Neakthy Now	5	•			•
# J.Ph	" የ _መ ዘንር ያ ንም ፦ ቅርዓናልዊቸር - የአመ ንፉ	:	•			•
• .	States and Serve	:	•			•
• ;	Almen Bar Ma dien	<u>.</u> :	•			•
+ 1	Carlotte Prate Service	4.393	•	•••	••••	••••
	de him and a grant	W . es.;	•••••	****	••••	****
7.1	Andres Sparing Apparail	3	•			•
7.8	vende, ven	5	•			•
7.7 %	Selle divinish reproduct from	;**,31e	••••	*****	*****	••••
1 34	to the fireman and the services of the service	* **				
***	Mark Comman Name	200 to 1	*****		• • • • •	*****
•	Parisyan Nav	40.12.1	••••	••••	••••	••••
	Sal Ser	- * . * a. \$	••••	•••	••••	
2.8	had from . None .	\$6 ; 74 ; 80 ; 1 2 *	•••	•••	*****	••••
* 100	if all their finance, when		••••	••••	••••	
	Report Section 1990	744.475	•			•
	sace. Nev.	.				
118	t, single temp. August Accepts, temp.	:4, 114	•••	•	• • •	
• •	ingerm industry, reme, Anaphinas in News	4 42	••••	••••	•••	••••
45	140. 100.	1 193	****	*****	•••	*****
•	They have they	•.••	•			•
1:	Jan San San Jana Lah Tahan San Jana	;;,*;	••••	•••		
	340. NO.	40,.31	****	••••	••••	••••
	100 UK - 2004	•• • • • • • • • • • • • • • • • • • • •	••••	••••		****
ie.	-twelfing New Cos	% , 15:	*****	•••	****	*****
: ::	Salament Ame	10	•	•••	•••	•••
	Mentry Falley Bash, Nev.	17.5 SA		•••	•••	
•	Shire Diver New	164 353	****	****	•••	
114	Panent Nev	11.10	•		••••	****
	interagat, Nev.	99, *08		••••	•••	
• •	System Spendy News	170, 100			•••	*****
	Marity Twee Springs, New .			•••		•••
					-	

****** 1,2*.*; F

	1.00	a) is all promote month.
		h) Total many requirement (in her med 4 m. from magness groupers faggine).
		of No wilderness resources.
• .	. N u	31 The in the pervisore has provided to valuents on the factor adjuments areas, a low- releasingment cause was accorded to valuents which presently contain to wilderness reprierce areas.
		3) This was assignment required on the between 3 and 6 ms from nearest project feat me of 3 at month send.
•••	. Hodengee	4) The to ten general additional haid intercepts the to 1.1 are visible from more than one evidences respired.
		3) "wo in three audienness resources each Le between 3 to 6 mill from a project feature; or only one wilderness resource is less than 3 mill from a project feature.
		 Average value of infarent effects indices, including lawr increase, and mouding siles than four.
•••••	. of g r	a) If one than two parcient add to shall mad interprint due to IEUE are solder from more than one wilderness resource.
		5) If more than one wilderness resource is less than 3 mill from any project teasure.

Subunits containing Na cities.

Impact index determined as the maximum of the effect can nex.

ிக்கொள்ள பட்ட ரிறின்றி கட்டுவத் ிட்டிய பின்பண்டிய அந்தப்பின்ற பட்டின் இக்கும் இருக்கு பிரும்பு அரசும் 7 ஏ. சி. முற அரசும்

त्रे (के के _{स्वर} ाहर है) व ष्ट्	to the was travial e	A broke * 99 gr. 1g b	i (d) en t 199en (s	the eater the day congenit
Sea or of the analysis of the	Ng i dente \$ par parez		•••	•••

	* p. 19*40	to the properties of the prop
		. No. State Promoting Company and State Control State Control Contro
		Section 20 Commence of the Com
•	***	க்ட ^{ு நி} ல்கோர் நின் என்ன செய்தான். நின் நின் நின் நின் நின் நின் நின் நின்
		न्तिक्षेत्रकर्तात् के अपने के अपने के उन्हें पात्रकर्तात्र के अपने क्षात्रकर्तात् के राजनात्र के कियान क्षात्र अस्तिक्षे
		NO Profits named to comprehensive and recovering and hopen graduates. Original discussive equippropriate processors the participants
		ிய ண்டின் ன கூறு என்ற விறையுள்ளனர். களினேற்கு நடித்தின்னது நடித்த முறுவர்களுள்ளனர். இருவியுள்ளனர் கண்ணும் குறுவரியுள்ளனர்.
		e and there is no an incident the second to
• • •	" Fracijane greja	a in Normal than the committee of a first in the company in the committee of the state of the st
		remain in a confidence of the
		- 51. Pares no christia y their terre communication agrico a hydrogram Fine & inc. Frozen y processor facto par
		nder nomblig i nomble tig - Spannerskoper i modern der inde i gelegen och der in i der inner i grunnligen in der grunn gelegen.
		3. Reserving the large case of most make make most continuous of continuous of continuous and
• • • • •	18. 6 %	ا مهراه معرض معرض عليك ين عامين في الك مم عهدات ومصوب مقدم من شهيدة من شهده ما الشائية معطف معطف معطف المعرف • الأنت
		and a Charmana make make a
		- 10 - E-mission milyon rather to the netting retains about the end of the Company of the processor of the graph participation of
		1.5 Business graphies at the control of the control

Produce thereonyment be the made maken of the angle in the case

Tripped to the trip will formed a make process and the conservation of the past of the tripped of tripped of the tripped of tripped

4.12 ALTERNATIVE S

Englishe 2 of 1 million 1 1 diamy as a series of white the recover remarks are all incomes of a construction of the constitution of the constituti

The control of the TIP to the event a few applies have a point of the prevent and the method of medical and a content of the prevent of the p

The properties of the properties of the properties of the composition of the preference of the composition and the control of the composition of t

Trees to the contraction of the contract of th

A 11 COMPARISON OF ALTERNATIONS

● The control of は、 Mode of the officers and a menting times と To control of the professional and the professional of the professional and the profession

and the second of the second o

Commence of the commence of th

andre de la Company de la La company de la Company d La company de la Company d

•

٠.

4. The first Mark Community of the second of the second

The ordinal ranking of these alternatives, shown in Table 4.13-1, was based upon the indirect effects index developed to predict wilderness resources most likely to be impacted by recreation-related impacts and was calculated by using the non-parametric statistical scheme known as the Kendall's Tau Correlation Analysis (Section 4.2.7). The split basing Alternative 8 would be the next preferred alternative, despite the fact that the Coyote Spring base suitability zone overlaps six surrounding designated wilderness study areas. This alternative reduces project-related population growth and reduces the number of hydrologic subunits containing project elements by approximately 55 percent over full basing. Since there is the potential for direct project overlap with wilderness resources under review at the Coyote Spring site, the remaining full-basing alternatives, which share this OB site, are considered essentially equivalent. However the ranking, according to the indirect effects index discussed above, shows some differentiation between these remaining full basing alternatives, with the smallest population-related effects on the wilderness resource under Alternative 6 (Milford/Coyote Spring), followed by Alternatives 4 and 2, with the Proposed Action and Alternative 1 having the highest potential for recreational impacts to wilderness resources.

Table 4.13-1. Ranking of alternatives based on Kendall's Tau correlation analysis.

Rank By Kendall's Tau	Alternative Number	OB Base Pairs	Kendall's Tau Correlation Coefficients
ı	3	Beryl/Ely	0.266
2	5	Milford/Ely	0.212
3	6	Milford/Coyote	0.123
4	4	Beryl/Coyote	-0.016
5	2	Coyote/Pelta	-0.126
6	i	Coyote/Beryl	-0-144
	PA	Coyote/Milford	-01111

T 5261/8-28-81

¹The higher the correlation coefficient, the less the potential impact.

5.0 PRINCIPAL IMPACTS TO SIGNIFICANT NATURAL AREAS

5.1 NEVADA/UTAH

Significant natural areas in the Nevada/Utah study area are expected to be impacted directly from effects of project construction and indirectly from project-related population increases. Where project siting occurs within the boundaries of SNAs, direct impacts could be long term and possibly irreversible; outside the boundaries (but in the vicinity) of SNAs impacts would be short term, continuing only for the duration of construction activities. Indirect impacts would continue for the life of the project, peaking when construction schedules for the system and the operating bases overlap and declining during the operations phase when construction has been completed.

Direct impacts from construction of bases, clusters, shelters, roads, and other support facilities would include loss or deterioration of habitats, alteration of genetic diversity, loss of areas for scientific research and education, destruction of ecological or geological features, disturbance of wildlife, and deterioration of air quality.

Indirect impacts would arise primarily from recreational activities of project construction and operation personnel. They may be short- or long-term. Increased demand for access to natural resources for touring, hiking, camping, hunting, other outdoor activities, and competition for licenses and permits may strain the capabilities of managing agencies to implement protective policies. BLM policies for management of formally classified areas, in general, exclude activities that would disturb the special features for which the areas were designated. Because present user demands are generally low and high enforcement levels are not necessary, implementation of most policies are largely limited to the publication of restrictions in the Federal Register, in brochures and other media, to periodic surveillance patrols, and to posted notices. This applies to most designated areas such as National Natural Landmarks and Research Natural Areas. Management Areas under BLM management are protected by additional measures: mining is not permitted, as most WMAs are withdrawn from mineral entry; ORV use is controlled (ORV problems are not great at present); and seasonal closings occur where an area receives excess visitation. In most cases, protection of an area depends upon the discretion of individual managers. In designated areas managers are obliged to implement measures that will ensure that policy objectives will be met. Although at present a high level of enforcement measures is not necessary, "the mechanism exists to protect these areas" (Goichoechea, 1981). BLM's Las Vegas District, Nevada, is updating a "Management Framework Plan" that will be implemented within the next ten years; by 1986 several areas including Pine Creek, Sunrise Mountain, and Virgin Peak are expected to be under a recreation management plan.

USFWS management policies for National Wildlife Refuges are rigorously enforced. In addition to the publication of regulations in the <u>Federal Register</u> and other media, enforcement is carried out by each refuge manager and by a designated law enforcement staff who operate under the USFWS policy that "public use on refuges will be secondary to the primary purpose of management for wildlife" (USFWS, 1976). Access to refuges is controlled, where necessary, by fencing and by

seasonal closings; for some (Ruby Lake, for example), restrictions on certain types of activities are imposed during the nesting season. Limitations on the number of users may be placed where areas receive a heavy demand, with the maximum set by individual managers. Hunting and fishing are limited by the number of licenses issued. Where a refuge provides habitats for threatened or endangered species, freedom of public use may be greatly curtailed. Each National Wildlife Refuge is managed to protect its own special characteristics; regulations are imposed to meet conditions on each area.

Policies for the protection of state Wildlife Management Areas generally parallel those for National Wildlife Refuges. Implementation of those policies by area caretakers includes fencing, seasonal closings, limited access where necessary, and hunting and fishing licenses. In Nevada regulations for hunter use are currently more restrictive on Wildlife Management Areas in the eastern part of the state (including the study area) than in the western side (Molini, 1981). Several Wildlife Management Areas do not have full-time caretakers. For those areas state Departments of Wildlife personnel make periodic visits for monitoring purposes.

Most significant natural areas managed by the National Park Service and by the U.S. Forest Service are located within National Parks and Forests. Several National Natural Landmarks, Research Natural Areas, and unclassified Other Natural Areas identified in this study are managed by these agencies. The Desert Experimental Range in Utah, managed by the USFS, is an area reserved as an agricultural range experiment station; the entire tract, withdrawn from mineral entry, is fenced. Management policies developed and implemented for recreational use would apply to those SNAs in public parks and forests (owners of Registered National Natural Landmarks have agreed to preserve the special characteristics of these Landmarks).

Potential general impacts to significant natural areas from various project parameters are summarized in Table 5.1-1. Figure 5.1-1 shows locations of significant natural areas in the proposed deployment area and the conceptual project layout. For discussions of impacts to biological resources, see ETR-14, Native Vegetation; ETR-15, Wildlife; ETR-16, Aquatic Species; and ETR-17, Protected Species.

Direct effects of M-X deployment on significant natural areas were calculated from computer-generated resource maps prepared and digitized as were those for Wilderness (see Methodology). More than 55,000 acres of significant natural areas would be directly impacted by construction and operation of the proposed project (Table 5.1-2). Most of this occurs in Snake and Hot Creek hydrologic subunits, where approximately 8,000 acres of Deep Creek Mountains in Utah and 40,000 acres of Hot Creek Range in Nevada would contain cluster roads and shelters; both SNAs are potential National Natural Landmarks. Hot Creek Range, in process of nomination, is presently remote, wild, and essentially natural. It is of considerable interest to geologists, and one of the best known composite ranges in the Great Basin (Bostick et al., 1975). M-X siting here would permanently destroy ecological and geological features that not only typify the Great Basin, but which also serve as study areas for scientists and educators. The Deep Creek Mountain Range is high and outstanding with many natural features. M-X deployment here would open up an area that is relatively unknown with a resulting destruction of those natural features for which it is valued. The proposed Great Basin National Park study area, which spans portions of Spring, Snake, and Hamlin subunits, is currently under

Table 5.1-1. Potential impacts to significant natural areas from various project parameters (Page 1 of 2).

Project Parameter	Potential Impacts
Area Disturbed	Degradation in aesthetic quality where project construction is visible and where the presence of people and machinery cause increased noise levels.
	Increased construction activities will tend to concentrate diurnally feeding waterfowl within the refuge for longer periods of time resulting in a depletion of aquatic feeding ducks such as teal; grazing waterfowl (i.e. mallards and geese) will graze adjacent fields at night, while the puddle ducks (i.e. teal) will suffer from increased forage competition during the day.
	Potential for alteration of surface runoff patterns affecting the water supply of waterfowl areas and sensitive aquatic ecosystems.
	Potential for runoff carrying increased sediment loads as a result of vegetative cover loss.
	Potential for runoff contaminated by construction-related pollutantsoil, grease, gasoline.
Water Use	Lowering of water table with potential loss of surface water in lowland areas which might be connected through connecting drainage systems.
	Potential loss of riparian and aquatic habitat resulting in a concentration of people in remaining areas.
Vehicle Traffic	Degradation in air quality and increased audible noise pollution in those areas through or near which vehicle traffic increases. Potential for disturbance of wildlife behavior patterns.
People	Increased visitation and hunting pressures resulting in:
	Increased use and misuse of resources.
	Disturbance to vegetation due to compaction.
	Habitat destruction through vegetation removal, soil compaction and resultant erosion.
	Illegal harvesting/collecting.

Table 5.1-1. Potential impacts to significant natural areas from various project parameters (Page 2 of 2).

Project Parameter	Potential Impacts				
People (cont'd.)	Changes in animal behavior patterns due to habitat loss and increased noise levels.				
	Concentration of wildlife with overgrazing and overbrowsing.				
Increased fishing pressure.					
	Potential for decrease in animal populations through poaching.				
	Increased litter and sanitation problems, attraction of nuisance organisms.				
	Increased economic benefits because of concessions and other visitor related services.				
Security	Specific effects to be determined in Tier 2 studies.				
T4798/9-24-81/F					

Table 5.1-2. Prirect impacts to significant natural areas, Nevada II Itan potential deployment area.

	Historologic subunit	Approximate 51	NA acres in subunit
Number	Name	Total	Disturbed
4	Shake, Nev. 15tan	238,645	1.630
•	Pine, Utah	55,911	. 360
6	White, I tah	V);	
•	Fish Springs, Utah	17,990	•
•	Dusway Greek, Itan	•	••
4	Covernment Creek, Litar	••	••
46	Sevier Desert, Litari	16,715	••
464	Sevier Desert-Dry Lake,	•	
	Litan	6, 8%	
\$7	Millord, tan	••	v +
52	Lund District, France	1,680	\$
53	Bervi-Enterprise, I'tah		
94	Wan Wan, Frah	••	.,
1374	Big Smoky Tonopah Flat.		
	Nev.	1, 161	:
. 19	Kobeh, fitah	25,625	111
1454	Monitor-North, Nev.	2.086	2
1404	Monitor-South, Nev.	1.4%	•
L#1	Raiston, Nev.	121	5
142	Alkalı Spring, Nev.	••	• •
; 4 P	Cartin Flat, Nev.	••	**
144	Stone Cabin, Nev.	11,000	10
15.	Antelope, Nev.	••	••
! 54	Newark, Nev.	44	
1554	Little Smoki-North, Nev.	••	••
15%?	Little Smoky-South, Nev.	355	^ ;
(56	Hot Creek, Nev.	211,840	39,960
175	Penover, Nev.	2,831	195
17.	Coal, Nev.	495	125
•:	Garden, Nev.	62,474	Ç
1734	Railroad-South, Nev.	**	••
1. 160	Railroad-North, Nev.	44,999	455
174	lakes, Nev.	•••	••
; • •	Long, Nev.	••	••
1*3P	Butte-South, Yev.	495	\$
: 79	Medice, Nev.	1,114	•
132	Cave, Nev.	16,1 V;	
131	Dry Lake, Nev.	11.125	•
187	Delamar, Nev.	34,750	
142	Lake, Nes.	22.279	\$
136	Spring, Nev.	47.810	•
196	Hamlin, Nev./!!tah	2.385	5
292	Patterson, Nev.	-	**
205	Meadow Wash, Nev.	175,890	
207	White River, Nev.	64,135	5
278	Pahroc, Nev.		
279	Pahranagat, Nev.	38,350	•
212	Covote Soring, Nevada	197.365	3, 335
219	Mundy Springs, Nevada	7.015	3, 335
	res disturbed, system		50.545
Total ac	res disturbed, bases		6,670
	Grand total		\$7,715

T5100/8-12-81

[.] Hydrologic subunit associated with $\Omega \mathbf{A}_{i}$

review with the NPS and the Och Marth, 1981). Her ause project situal has avoided this proposed ours stats area, no tire to straits a 11 occur within its boundaties. It loans Spring and Much's Springs, a total of more than 6,999 acres of Arrow's anison Bange I have than 30 percently would be within the notential Covote Soring off suitability come. Arrow's anison Bange is a proposed state bank. Direct objects of lesser magnitude would only in Europe is a proposed state bank. Direct objects of lesser magnitude would only in eight other ty frologic subunits as one or note project features would cross SNA boundaries. These include the Desert Experimental Bange in Pine, Autelope Spring Indoute Berts in Sevier Desert and Sevier Desert-Ors Lake, Roberts Mountains in Koben, McCan Canson Geologic Area in Stone Cabin, Lexistian Case in Perover, Coar Valles in Coal, and Railroad Valles Wildlife Management Area in Railroad-North.

Indirect impacts to significant natural areas are expected to care according to their distances from construction camps and operating bases, procincity of alternative areas for recreation, general SNA attraction, and effectiveness of management policies. Table 5.1-3 shows estimated M-X population-related indirect impacts to SNAs in the Nevada/I tab deployment area for construction and operation phases of the proposed projects.

Analysis of indirect impacts within hidrologic subunits considered (1) presence of construction camp or operating base, (2) camp or base distance from SNAs, (3) total acres of SNAs, (3) acres of individual SNAs, (5) classification of SNAs, and (6) proximity of state and national parks and forests and other recreation areas.

A 50 gir-mile radius was chosen as an initial distance limit of inhact for several reasons. First, significant natural areas, in general, are not expected to concive the level of user depand associated with state and national parks and forests, wilderness, and various recreation areas. With the exception of highly publicized and attractive SNAs, most indirect impacts would probably occur within relatively short distances. Second, air-mile distances are shorter than actual driving distances which increase exponentially with distance from their mights. An SNA 50 air-miles from a camp or base could be at an actual drivine distance two to three times greater. Third, for simplicity; to include SNAs within a 100 air-mile radius, for example, would result in such a level of redundance that a comparison of impacts between camps or bases would lose its clarity. Finally, the 50 air-mile distance was not an absolute limit. SNAs of particular attraction at greater distances were considered in the analysis.

Benause sensitivity to impact and management policy vary among and between SNNs, indirent impacts are not amenable to analysis by formula or computer modeling. Thus, determinations of high, medium, and low impacts to bidrologic subunits were made using a "best judgment" approach, factoring in all of the considerations described above. Distance between an SNA and construction camp for operating base) was the first consideration; an SNA within 25 mi would automatically be assigned a high impact. However, its size, sensitivity, or attractiveness rould modify the potential impact. For example, an SNA of 59,000 acres or more within 20 mi would be large enough to acrommodate all the construction workers from several camps with a resulting low impact: an SNA of less than 10,000 acres fall else being equal) would probably receive a high impact. Conversely, an SNA 50 injor more from a camp would receive a low impact modified by size and appeal considerations. Management policies would result in different impacts for otherwise similar SNAs; generally, USFAS-managed refuges probably would not be impacted to the same degree as potential National National Landmarks. Determination of impact for an entire hydrologic subunit was generally

LEGEND

SEVAUA MATINEAL MATCHAS LANDMANAS Period California 20 Minutes Com Section to co 38 - Specially and the Aprillation Disagge of the 2 Streeting Print Francisco (SMC Sparings) (1964) White for Mil Tour Frank Marchell Streets 19 Mersteine Proges Suga Contraction of the There was serviced to the serv 'A Samuella Care. 14 Creger Mentereder +: Atteres Westerberer MF ... Miss Micro Consistent a total to the fate one extra me 188 - Beruttere Criefelt Bertereren Mittelfelte Britteren. ML Mines Minertene Catefory 160 - Spiere Berreitens Merciffiet, Britige. Cafficiation Consume Manter in Breit. · 2,41144. Mi Chine e Crant & management Statement I the from women to be #1 # attere Mertratene Merefrite Diarry III. Gug efferennen Mertiffette Mitteppetrerer Bereit. the stateografferik 2 Jugen States Startiage 1. Derite Mittellitte Morrigarement Derie. 13. Wingen Kather Bertraren Mittellitte Rechinge. ter a ent water o Here Magnetine The Marie arrests Mark Silve Greek (Marie Silve ar 1.1 : Dente tente Mettalitet. Wertegerertunt. Griefe 4" true There's Carriedo Carrestina Carrell 148 - Cathermengen Berreiten Merteliebe Brittinge. Franklings Cartina Sec. Contraction Contraction 4 Can beren Manuels of Colors & Chica 18 Stepher . ifter Merrerene Mettelete Gertreig. C 16114-464 Mills dear and Missign 31: 4 optie Massyrtuger 160 - Melbige Chieffen Carattenger Rein. 256 - Breitigegerer Meitrearing Mortefelte Traffunge Mr Mangeleng Calles Magazettates .g. 11 Phone .y. wat ber bieber mitte ? Hirb. biebet bib consignate to 2 Se morning from 59 White attentige dier ge Accepts the state of the Court 5 **10 (10 (10 ()**) 18 Ministration of Chicago Manner of any Co. Standberra We free Megantener II Printerior for Spirite part 47 Sandana Springer White at the rest to an in water a first to His division for the con-482 Murrame Morgerburer Merrebiner uner Derrie Hill Brief Brief Mitter & Price 19 Pyramia Morana Scotter and 1997 Springer Mit Serie 31 Gige Mreeft Copenigermen 73) Anne Meines Course treenen. 27. Anne Course Marter er Brich Contrarer in . 27. Anne Course Cou Uf Marriage Marriage 850 4-sperieses 186-1 16. Car e deaters & ... Planging dauffing " pennietier ter e Brattager 28 Tracks Comp. to the Course Spring a feet of 11 Marine Marine SPARMORE LARGER AND TAKE TANK Thoropropied. 7 3 jagendige & Louis Programmen Phasen ; 7 1 nigenthale Communication of Reseas. 7 1 10 10 Williams 17.5 Martin Grapelleine tet Brue jur jent fager Carre Breen tieber ber bie fen bei bei bei beiten ber Pro Boutterman Cate Witter MA True Ministration Truste to Min The Averton span Chairman Communication 11421 Br 1146 11. Technical Processor. 11. Europe Stage Philippin arrival. F. Tappin Laure 1960 – gysty Allysk 1871 – Prime – Prime Smellink (Primery) (m. 1887) 117 – Leisen – Smill Miller (Primer) 1914 Cathonic and the gather throughts made to the cather made to the The region of the Web contrained to the contract of the contra mater men mit fin eine git 1. 1. Conceptation of Whitester and The Paris & & Street County Manager Bitteries Freie. BRO Designation Deposits Brown State of Control Montage Deposits Brown State of Control Manager Control Brown State of Control Manager Control Brown State of Control Control Deposits of Control Brown State of Control Control State on Control Control Brown State of Control Control State on Control Con Constitution of the Consti 111 041 African out of the And the second of the second s Pro Mercello Art Living

Carlo Brongarous Space and Space and

Special Street, and Special

the state of the

-an -

ľ

.


```
The second secon
                                                                                                                                                   According to the control of the cont
3 ...
                                                                                                                                                                                                                                                                                                                                                                                                     ...
```

...

Telephone surpression of the service of the service

Control of the Contro

is or form the solution of a tender to the trust on the solution to substitute with several NNAs, it one of the value of the remaining form of the solution of

The light and and all result 8% him the deployment area would be within 50 mil The second of th employees a respect to the increase to another haters 1,355 with a duration of in a country to a country to a country for the country to take a map absoluted personner, in the On a common area in experient to peak before 1986 1986, as construction schedules or as a more as a second of the born water to the Indirect objects peak at the is a first of the extension of the second of the depleasment area, 28 are expected is more or an including hits level on a Gerate in pasts, whose, and the remaining 15 or swelland served. Table to the list of the 15 thet or payted butwardts, 1% would contain lead to be a compared from a compared of the compared polynomers of was not the on a size of a for incoming. Nowing for example, constants more than 200,000 in the SNA is not in the public, and more in more in the public, and more in more in the public of the public. The state of SNA to see the wife with ok o 17 Nov. 30 kg o 18 kg averlane i nova hele token altoke emissiget oto kolortigist diigts artificat t is the Court of a burn of the kings of New Agriculty of auteor, as a moteritial National Seals are given a construction with the ease of the compression of printerly considered in The street of a thing of the cares of Landy Mountain, 1,385 actes, is an inclusified construited from the solven specification appearings and lawes that are vulnerable to the article of and are in the account of the test of the amost better example, Monitor North in Streaks, with the main crammaring a experter to terminal a high degree of impart on the river shifted in his case them there is a highest publicated and frequently systed 18 Day on the second content of the composition as a National National Landmark, and and a largery are are assistant area of 2,000 areas considered sensitive by the state. Not alise for them are a consistent and the figure of the time which the complete, in final example is There is a construction of the problem of a compact patient camp but expected to receive only a make and herebe to be an in Three States of Pore total more than \$5,000 gives: Source Conge Chity Senere Cyner centa Baner, and Indian Penk Wildlife This is the term Note with the content of the fire management into tections.

There are no selection of the campaint at an of the submits expected to the composite of the composite of the campaint of the

For the normal or are reported to the one substantially during operation when the control of the original NOS memoration when the statement at two operating bases. The advances one in the control of \$1.000 in 1989 and will remain at the control of the original of the trace of \$1.000 in the trace of \$1.000 in the control of \$1.000 in the control

As a sign of the construction of the construction of the tenth as that for construction of the constructio

BERYL

Operations from the Bersl, a table of max result is high induced impacts to SNAs in Pine and Lund District subunits in Litals. Steamboat Mountain, a potential National Natural Landiniats for Limid Distinctly is a short distance from the center of the OB mutability come (Easte 3.1-4). The mountain, a relatively printing area of conferous forest and mountains, comments begin Range and Wafi Wah Mountains, all are geologically significant and attractive. Indian Peak Wildlife Majorgennent Area in Pine in other of a firm refluges that has no resident caretaken. It is an attractive trigiting area for deer, ells, singill machinals, and oplant garde. Pressure for furiting liverises faint special permits for ethi mould adversely affect the resident furnati property transfer. Deer and updated gathe frunting there to be directed (Neobiuck, 1981). because to age excess tend to the born on other subjurnits. In Meadon Wash, Newada, Clovet Cremic and Mountains is part of more than 190,000 acres of 5% hs, sufficient to as confirmatate a high bevel of users de highd. Desett Lapetinental Kange and Desett Bange Benearich Natural Area are well profes feel. Rupple Arch, Red Mouritain, and inverted Valleys, not in the potential deployment area, are protected of inarressible. Prosinity of the Bergs site to Basic National Lorest, Jan National Park, Bryon Canyon, and other recteational areas suggests a focus of user demining directed toward those areas.

COYOTE SPRING

Febru the Covide Speing, Newada 20 population delated impacts are expected to be high in Muhhy Springs and Consote Spring subsunits, Arrow Canyon Range (already firms the impacted by the piotenstial AB, and proposed as a state path), Meladow Valley Mountains, Pinyoni-Juniped Research Satural Area, Deadhorse Research Natural Area, and Moapia Valles Naturnal Buildlife Before are all expected to neriminary harany nerimations all previous are their acres of hierar properties, to the protection with site (Eahle 8.6-5). Impairts would be high in Attow Cangron Range and Meadow Valley Morentains, both are unedgestood areas and as such may not receive the degree of projection affor and classified areas. The Desert Sational Wildlife Haripe in the Pahranagat subumit used again about the west bookenidate of the ON cite. I were neess see accept he high has an exectine effective 151 \$6 management policy should knep unparts to a moderate level. Mojaga Valley NBB in Middly Springs, Patiranagat NWR and ReviPittings WWA in Paktanagati South, and Owerton WITA cultide the proposed deployment area a night all experiences increased competition for biological rosanijecijas which words have an an advingum in impacit in periodent populations, 🕻ith additional enforcement officers which probably would be correspond with M.V. deployment, it is experited that enforcement mechanisms would be adequate to prevent a high level of impacts. Impacts to other 55%s within the 5% air mile radius are expected to be movines to loss fore Table 5.1-3). Proximits of the Covote Spring OB to Las Vegas, Lake Mead National Perceation Area, Tolivabe National Forest, the Grand Canvon, and other recreational great would facilitate the movement of recreational activities away from the more sensitive 5% 8.5.

DELTA

Base siting at Delta, I tak may result in high indirect impacts in the Sevier Desert and Sevier Desert-Dry Lake hydrologic subunits, and moderate impacts in White, Fish Springs, and Little Smoke-South in Nevada (see Table 5.1-2). Topaz Marsh Waterfowl Management Area is an undeveloped wetland utilized by waterfowl

Table 5.1-4. Significant natural areas within a 50 airmile (80 kin) radius of the potential Beryl OB site.

Significant Natural Area	Approximate Distance from OB Site	
	Miles	km
Nevada		
Clover Creek and Mountains	15	55
Fitah		
Steamboat Wountain	10	13
Indian Peak Wildlife Management Area	25	40
Ripple Arch	45	70
Red Wountain	45	70
Desert Range Research Natural Area	10	80
Desert Esperimental Range	10	80
Inverted Valleys, St. George	10	80

13079/9-19-51

1

Table 5.1-5. Significant natural areas within a 50 air-mile (80 km) radius of the potential Coyote Spring OB site.

Significant Natural Area	Approximate Distance from OB Site	
	Miles	km
Nevada		
Arrow Canyon Range	O	0
Desert National Wildlife Range	5	10
Pinyon-Juniper Research Natural Area	10	15
Meadow Valley Mountains	10	15
Deadhorse Research Natural Area	15	25
Moapa Valley National Wildlife Refuge	15	25
Basin Research Natural Area	20	30
Hayford Peak Research Natural Area	20	30
Weiser Bowl	25	40
Mormon Peak	25	40
Delamar	25	40
Pahranagat National Wildlife Refuge	30	50
Valley of Fire National Natural Landmark	30	50
Overton Wildlife Management Area	35	55
Virgin River	35	55
Gold Butte	45	70
Virgin Mountain Research Natural Area	50	80
Devil's Throat	50	80
Papoose Lake Research Natural Area	50	80
Key-Pittman Wildlife Management Area	50	80

Litah

None

T5078/9-19-81

and shore birds with unlimited public access; there is no caretaker in residence but it is visited periodically by the local conservation officer (Drobnick, 1981). though the Utah Division of Wildlife would implement restrictions on use if population demands require such action, potential impact would be high because of its short distance from the base site. Recreational impacts to Antelope Spring Trilobite Beds, a potential National Natural Landmark, and to Fumarole Butte, one of the oldest active volcanic vents in the United States, are also expected to be Both attract visitors and are relatively small areas, easily accessible. Because they are not officially classified they may not receive the degree of protection that an M-X-related population increase would warrant. Clear Lake Waterfowl Management Area is fenced and employs a full-time caretaker. Scenic attraction is not high. During the nesting season access is limited. Bird watching is a principal activity at Clear Lake which also supports bald eagle roosting sites. M-X population impacts probably would be moderate; hunting limits and additional enforcement measures may be required. Effective management policies implemented at some SNAs within a 50 air-mile radius and large size at others would tend to reduce potential indirect impacts (Table 5.1-6). In the Little Smoky-South subunit, well beyond the 50 air-mile radius, Lunar Crater may draw enough M-X visitors to create a moderate impact.

ELY

Base siting at Ely is expected to result in high population-related impacts to the Railroad-North, and Spring hydrologic subunits (see Table 5.3-1). Duckwater is a highly sensitive ecosystem in Railroad-North which contains habitats for several rare or endemic species, including the Railroad Valley spring fish. A pond on the site is one of only two places where red-legged frogs have been found in Nevada. Although approximately 50 air-miles from the proposed Ely base, Duckwater is considered highly vulnerable, as there is "an everpresent threat that someone will introduce exotic predators into this closed ecosystem" (Bostick et al., 1975). In the Spring subunit, Osceola Cave and Arch, and Eureka Formation Fossils, both unclassified areas within 25 air-miles of the base site, may not receive enough protection from increased visitation. Indirect impacts at Wheeler Peak Scenic Area, a highly publicized and attractive potential National Natural Landmark, would probably be high as the area is only 35 air-miles from the Ely site (Table 5.1-7). Other SNAs in the Steptoe, Snake, Hamlin, and White River subunits are expected to receive moderate to low impacts. Heusser Mountain Bristlecone Pine RNA, ten miles from the proposed base, is located high on the steep western slopes of the Egan Range; accessibility is extremely difficult. Impacts to most other areas would be reduced by their large areas, by effective management policies, or by inaccessibility (to reach the Caves of Gandy Mountain in the Snake subunit, for example, one would be required to drive around a mountain range). An increase in the demand for wildlife resources at Kirch and Railroad Valley Wildlife Management Areas, both beyond 50 air-miles from the base, is expected to be significant enough to require additional enforcement measures.

MILFORD

Indirect impacts from base siting at Milford, Utah are expected to be high in Steamboat Mountains in the Lund District hydrologic subunit, and in the Indian Peak Wildlife Management Area in the Pine subunit (Table 5.1-8). Discussion for the Beryl site would apply here. The Desert Experimental Range and Desert Range

Table 5.1-6. Significant natural areas within a 50 air-mile (80 km) radius of the potential Delta OB site.

Significant natural area	Approximate distance from OB site	
	Miles	km
Nevada		
None		
Utah		
Topaz Marsh Waterfowl Management Area	15	25
Antelope Spring Trilobite Beds	15	25
Clear Lake Waterfowl Management Area	20	30
Fumarole Butte	25	40
Kolob Mesa Research Natural Area	35	55
Partridge Mountain Research Natural Area	40	65
Fish Springs National Wildlife Refuge	45	70
Deep Creek Mountains	50	80

T5077/9-19-81

Table 5.1-7. Significant natural areas within a 50 air-mile (80 km) radius of the potential Ely OB site.

Significant Natural Area	Approximate Distance from OB Site	
	Miles	km
Nevada		
Heusser Mt. Bristlecone Pine Research Natural Area	10	15
Eureka Formation Fossils	25	40
Spring Valley White Sage Flat	25	40
Swamp Cedar Research Natural Area	25	40
Osceola Cave and Arch	25	40
Shoshone Pygmy Sage Research Natural Area	30	50
Mount Moriah	30	50
Snake Range	30	50
Cathedral Canyon Natural Arch	35	55
Shoshone Ponds Research Natural Area	35	55
Wheeler Peak Scenic Area	35	55
Mount Grafton	40	65
Goshute Canyon Research Natural Area	50	80
Duckwater	50	80
Lexington Arch	50	80
Kirch Wildlife Management Area	50	80
Utah		
The Caves of Gandy Mountains	45	70
Deep Creek Mountains	50	80

T5076/9-19-81

Table 5.1-8. Significant natural areas within a 50 air-mile (80 km) radius of the potential Milford OB site.

Significant Natural Area	Approximate Distance from OB Site	
	Miles	km
Nevada		
None		
Utah		
Steamboat Mountains	25	40
Indian Peak Wildlife Management Area	30	50
Desert Experimental Range	40	65
Desert Range Research Natural Area	40	65

RNA are well protected. As with the Bervl site, proximity to Zion National Park, Dixie National Forest, and other recreation areas would reduce population pressures to SNAs nearby.

5.2 TEXAS/NEW MEXICO

As in the Nevada/Utah potential deployment area, impacts to significant natural areas in Texas/New Mexico could occur directly from construction and operation, and indirectly from increased recreational use. Because most of the Texas/New Mexico High Plains region is either intensively cultivated or heavily used as rangeland, the few remaining natural areas are of great importance. Several of these lie within the deployment area and could be directly impacted by construction and operation (Figure 5.2-1).

Direct impacts were estimated from computer generated maps prepared and digitized in the same manner as those for Wilderness (see Methods section). Of the more than 250,000 acres of SNAs in the Texas/New Mexico potential deployment area, approximately 3,000 acres would be directly impacted by construction of M-X shelters and roads (Table 5.2-1). In Dallam County, Texas, project siting in Buffalo Springs potential National Natural Landmark and in Rita Blanca National Grasslands could destroy approximately 2,000 acres. In New Mexico, construction at Claudell, Gailena Wells Tracts, and in the Marshall Wildlife Management Areas in Roosevelt County, as well as Mescalero Sands potential National Natural Landmark in Chaves could result in more than 900 acres destroyed.

Buffalo Spring is a privately owned series of live springs and marshy habitat near the headwaters of Coldwater Creek. The area circled on Fig. 5.2-1, considerably larger than the actual Buffalo Springs potential National Natural Landmark, is for general locational purposes; most of the area is within Rita Blanca National Grasslands and is already encroached on by grazing. Of the area shown on Figure 5.2-1 as Rita Blanca National Grasslands, 70,000 acres are managed by the USFS. The remaining area, more than 200,000 acres, is privately owned. Direct impacts from construction could occur to USFS-managed as well as privately owned sections of the Grasslands.

Claudell, Gallena Wells Tracts, and Marshall Wildlife Management areas are state-managed Federal Aid Wildlife Restoration Projects funded through the USFWS. These Wildlife Management Areas, including several others listed in Table 3.2-2, were acquired by New Mexico's Game and Fish Department to provide restoration areas for the lesser prairie chicken. These populations have been adversely impacted in other states where much of their former range has been turned into agricultural land. Construction of the M-X system in these areas would destroy a large portion of their remaining habitat.

Mescalero Sands, in nomination as a National Natural Landmark, is part of a larger unit that was recently under BLM wilderness consideration. It is composed primarily of low rolling sand dunes stabilized by a heavy cover of shinnery oak vegetation. After much study and public controversy, the unit was dropped from further wilderness consideration. However, Mescalero Sands has been identified by BLM as a special area in need of protection and careful management. M-X construction would destroy portions of an area of cultural, scientific, and scenic values, as well as one of great public interest.

Table 5.2-1. Direct impacts to significant natural areas, Texas/New Mexico potential deployment area.

State/County	Approximate SNA Acres By County		
	Total	Disturbed	
Texas			
Bailey	5,800	0	
Castro		••	
Cochran	••		
Dallam	70,000•	2,000	
Deaf Smith	••	••	
Hale			
Hockley			
Lamb	••	4.0	
Lubbock	••	**	
Moore	••	••	
Oldham	••	••	
Parmer	**		
Potter		••	
Randall	24,300	0	
Sherman	**		
Swisher	**		
New Mexico			
Chaves	29,100	800	
Curry			
DeBaca	••		
Guadalupe	80	9	
Harding	34,400	ŋ	
Lea	640	9	
Quay	7,000	0	
Roosevelt	18,800	100	
Union	68,200	0	

LEGEND

TEXAS

MATIONAL MATORAL EMBORARES

PERFICIO RA

HISVAREN NATURAL AREAS

GRASSLANDS

NEW MEXICO

NATIONAL NATIONAL LANDMANNS

•

H41 9 45

The second secon

RESEARCH NATIONAL AREAS

POZA PZARO

The property of the property o

Part of the second of the seco

A Notice of the second of the

The process of the pr

A STAN OF A STAN

They will be the second of the control of the second of th

Fable 3.2-2. Pate that population-related indirect impacts to 55.55 during construction and operation, fexas New Mexico deploament area.

Indirect Impacts ! Full-Basing

	15 4 1 105		Operation (OB Alternatives)	
Mate Sunti		Construction		
			Clovis	Dalhart
Fr 4.33				
March .	5,500	****	***	•
#### 3	r	7	•	•
51 Mali 🚓 "			•	•
") a a "	*0,000+	***	•	•
Deat Sim 45	+ +	•	•	-
*1.a.e	• •	3	•	•
PROLETE WITH		r	•	•
ال يهسير في	ŧ		•	-
Libbon W	1 -	•	•	•
M home	v	•	•	-
11 History			•	•
to all miles			•	•
Elig # # Mile			•	•
🖾 andali	24, V 00	****	* * *	* * *
Short man			•	•
Sw: chem		•	•	-
New Mexico				
2 40 CB 14 40 CB	;:9 , 1, 7/0	****	* * *	•
14.4 A		•	•	•
Je 44. 3		•	•	•
🛴 nacha i ine	₹.0	•	•	•
Har fing	164 j. 4.00	•	•	•
<u>`</u> , ● \$	64 0	****	•	•
C) HAY	1.000	•	•	•
Threever *	14,500	****	***	•
, in a sta	48.200	•	•	•

TRIM RIPART T

*** - Thidenate majact,

**** - Wight mpg.

Analysis of indicate impairs a two consists as considered (1) prosented of conservation or amplier operating base. (2) camples have discarded from SNAs. (4) a ros of individual SNAs. (5) if assist cation of SNAs. and its provents, of state and har one parks and invests and other recipeation areas.

the more than 70,000 acres of Rita Blanca National Grasslands would probably be able to absorb M-X increased population pressures.

PUBLIC COMMENTS ON THE DRAFT EIS:

"The number of acres required would not cause a significant reduction in the forage produced on the Rita Blanca National Grassland. Likewise the impact on wildlife habitat would be insignificant. Most of the soils in the affected ecosystems are suitable for this type of use.

"The demand for recreation by the additional people brought into the area as result of the project would dramatically increase. This demand could be assume to dated as current recreation use is extremely low." (B3434-9-556)

SNAs in counties expected to release low impacts are privately owned, of low attraction, or of high a reages.

Indirect impacts are expected to decime substantially during operation when most of the reduced M-X population would be stationed at two operating bases. As in the Nevada/Vtah deployment area, the total full deployment population will increase to approximately 13,0% by 1989 and will remain at that level for the life of the project. More than half of this total will be stationed at the first OB complex (see ETR-31, Construction).

CLOVIS

Indirect impults were estimated as were those for the Nevada Utah area. First OB siting at Clovis is expected to result in moderate impacts to Bailey and Randall counties in Texas, and to Chaves and Roosevelt counties in New Mexico (see Table 5.2-2). Indirect impacts to all other counties are expected to be low or none. All SNAs within 50 air-niles of the Clovis site that would receive moderate impacts are wildlife refuges (Table 5.2-3). Grulla National Wildlife Refuge in Roosevelt would be the closest, at 25 air-niles. Enforcement mechanisms for state and USEWS management policies probably would be adequate to protect these areas at the reduced levels of M-X related user demand. Some additional enforcement personnel may be desirable. Mescalero Escarpment would not attract visitors to an important degree. The escarpment, produced by erosion, is the western run of the High Plains. It is crossed by many highways and virtually invulnerable to deterioration.

The Buffalo Lake National Wildlife Refuge in Randall County, Texas is a highly attractive area of moderate size (see construction impacts). Although well outside the 50 air-mile radius, its many attractions would draw visitors and sportsmen from relatively long distances. Management policies are expected to be effectively enforced, and M-X population related impacts during operation would be moderate.

Moderate impacts may also be expected in Chaves County. Although Bitter Lake National Wildlife Refuge and Mescalero Sands are more than 50 air-miles from Clovis, their attractiveness, combined with a scarcity of alternative recreational facilities in the area probably would draw enough visitors from the Clovis site to exert a moderate degree of impact.

Table 3.3-3. Signific wit reatural areas within a 30 air-mile 180 km radius of the potential Closes OB site.

Note to ast that stall Afra	Approximate Distance from OR site	
	Males Kin.	
feea:		
Mulestone National Wildute Refuge	45 75	
New Mexico		
it illa National Wildlife Befoge	25 45	
La sifell Wildlife Wanagerment Area	34 55	
Winds alarto Elecarpinamet	45 65	
Coherity '\$ (Educe Management Acea	45 65	
Marssall Wildlife Management Area	45 8 7	
Gallena Tracts Wildlife Management Area	\$5, 85.	
Stanchills Wildlife Wahagement Area	% 0 8 0	
ምር ነር ነገር ነው ነው።		

DALHART

Operation personnel from the Dathart site are expected to exert moderate impacts to Randall, and low to no impacts in all other counties in the Texas/New Mexico deployment area (see Table 5.2-2). Discussion of impacts to Randall resulting from the OB operation at Clovis applies here as well. SNAs within 50 air-imles of Dathart are either extensive National Grasslands or privately owned National Natural Landmarks (designated or potential) (Table 5.2-4).

Table 5.2-4. Significant natural areas within a 50 air-mile (80 km) radius of the potential Dalhart OB site.

Significant Natural Area	Approximate from OB	
	Miles	Km
Texas		
Rita Planca National Grasslands	30	50
Buffalo Springs	40	65
New Mexico		
Bueyeros Shortgrass Plains	35	55
Kiowa National Grasslands	40	65
75233/8-18-81		

6.0 FUTURE TRENDS WITHOUT PROJECT

In the absence of M-X, several activities involving wilderness and significant natural areas may cause significant changes in land use in the Great Basin. The two most likely sources of change in the next 20 years center on the proposed Great Basin National Park Study Area and the BLM Wilderness Study Areas. The proposed study area of an undefined Great Basin natural recreation system (NPS) would attract additional recreationists into an essentially rural area if the site became a National Park. Such large numbers of people would need goods and services. The BLM Wilderness Study Area plans for the states of Nevada and Utah could eliminate as much as 3.5 million acres from current multiple use such as future mining and changes in grazing schedules from levels before designation.

In the Wilderness Act of 1964 (PL 88-577), Congress declared its policy "to secure for the American people of present and future generations the benefits of an enduring resource of wilderness." Only Congress can designate a "wilderness area" from federally administered lands, and once an area is so designated it must be managed in such a manner that the wilderness character is unimpaired and protected. Thus, by statute, identification of an area for wilderness review limits opportunities for development. The Wilderness Act recognized that certain activities are incompatible with the preservation of wilderness characteristics, and prohibits these activities in wilderness areas (16 U.S.C. 33 (c)):

"Except as specifically provided for in this chapter, and subject to existing private rights, there shall be no commercial enterprise and no permanent road within any wilderness area designated by this chapter and, except as necessary to meet minimum requirements for the administration of the area for the purpose of this chapter (including measures required in emergencies involving the health and safety of persons within the area), there shall be no temporary road, no use of motor vehicles, motorized equipment or motorboats, no landing of aircraft, no other form of mechanical transport, and no structure of installation within any such area."

The Solicitor of the Department of Interior, in a memorandum (Sept. 5, 1978) to the Secretary of DOI, stated that "although Congress has not flatly considered that all developmental activity impacts the suitability of an area for wilderness preservation, it is difficult if not impossible to give meaningful illustrations of types of activities that will or will not impair the suitability of an area for wilderness preservation. For example, commercial timber harvesting has been held both to impair (Parker v. United States, 309 F. Supp. 593 (D. Colo. 1970)) and not necessarily to impair (Minnesota Public Interest Research Group v. Butz, 541 F. 2d 1292 (8th Cir. 1976) wilderness. The nature of the area and the extent of the proposed activity are the controlling factors."

Under Section 169A of the Clean Air Act (CAA) as amended (42 U.S.C. 74a) Congress established as a national goal "the prevention of any future, and the remedying of any existing impairment of visibility in mandatory Class I Federal areas which impairment results from manmade air pollution." Mandatory Class I areas include all National Wilderness Areas and Memorial Parks larger than 5,000 acres established at the time of the Clean Air Act Amendments (1977). Additional

proposed areas such as wilderness areas added to the NWPS after the CAA amendments can be redesignated to Class I Status by the state.

On May 22, 1980 the EPA proposed regulations for the visibility protection of Federal Class I areas and on July 23, 1980 issued proposed guidelines for state protection of such areas. These proposed regulations will be effective constraints on many stationary industrial sources of air pollution.

A key question regarding potential wilderness designation is the effects of development and growth. Wilderness and development are by definition mutually exclusive. Potential wilderness located within areas proposed for the M-X prograin, and development of other projects such as the Intermountain Power Project in Millard County, Utah, an alunite mine and processing plant in Beaver County, Utah; the Anaconda open pit molybdenum mine and mill in Tonopah, Nevada; the proposed White Pine Power plant and possible reopening of the Kennecott Copper Company smelting operation in White Pine County, Nevada; Rocky Mountain Natural Gas Pipeline Project; as well as the Harry Allen power project in Dry Lake Valley may pose constraints by reducing land availability. While on the one hand wildland resources are a constraining factor to future developments, on the other, they provide potential recreational opportunities for the people associated with those projects.

Two major federal land-managing agencies control land in the Nevada/Utah study area: the Forest Service and the Bureau of Land Mangement. Currently, Nevada and Utah have one congressionally designated wilderness area each, both administered by the USFS: the Humboldt National Forest Jarbidge Wilderness in northern Elko County, Nevada, and the Lone Peak Wilderness on the border between the Uinta and Wasatch National Forest southeast of Salt Lake City. Current recreational use figures for the Jarbidge Ranger District show a steady increase in total visitors over the last few years: from 7,300 visitor-days in 1975 to 12,300 visitor-days in 1979 (Davis, 1980). This represents a 68 percent increase in use. The trend is expected to continue through the next two decades. A profile of the users of the Jarbidge Wilderness, which makes up about 60 percent of the Jarbidge Ranger District, shows that approximately 55 percent are from Nevada (Las Vegas, Reno, and Elko) and that the remaining 45 percent are from out of state with the majority of users from California and Idaho (Wyatt, 1980). The USFS Roadless Area Review and Evaluation II (RARE II) program was designated for additional study of areas having wilderness potential and resulted in seven Nevada and 16 Utah wilderness recommendations as well as seven Nevada and six Utah "further planning" areas.

As of April 1981, total Nevada/Utah wilderness resources comprised an estimated 13 million acres, of which an approximate 2.5 million are scattered throughout the M-X study area. It is impossible to forecast how much of the estimated 13 million acres will be withdrawn from the multiple use category they now occupy and be recommended for congressional designation. If one uses the Nevada/Utah regional RARE II analysis as a model, about 19 percent of this potential wilderness acreage could become recommended wilderness. This would be an area of about 2.5 million acres. Also following the RARE II paradigm, about nine percent of the wilderness resources under review would be protected for future planning. The maximum estimate of possible future wilderness in the states of Nevada and Utah would represent an area of approximately 3.5 million acres.

Another potential change in land status that will have significant effects on the study area is the proposed Great Basin National Park. The park was originally proposed in 1959. In the fall of 1979, the Secretary of the Interior submitted a report on the study of the area for potential inclusion in the National Park System (House Document No. 96-202, Part VI). Of the four areas considered, the Snake Range/Spring Valley Study Area was selected for further study as the choice for the location of the park. The Snake Range/Spring Valley Study Area is an 811,600 acre parcel of land approximately 30 mi east of Ely, White Pine County, Nevada. Field investigations in July 1980 resulted in a draft document on specific park alternatives. The fact that the area may be declared a National Park would increase visitation to the area.

For the most part, continued operation of Great Basin significant natural areas such as wildlife refuges, National Natural Landmarks, etc. (Tables 2.2-1 and 2.2-2) with their specialized audiences, will have comparatively little impact on the study area throughout the rest of the century.

In the Texas/New Mexico study area, future use of existing state and national park and forest land is expected to increase in proportion to population growth. New Mexico has plans for opening one new state park approximately 80 mi northwest of Clovis to be named either Santa Rosa or Los Esteros State Park. Texas has no new areas within the study area proposed for acquisition. However, Caprock Canyon State Park in Briscoe County is currently scheduled for full development in the mid 1980s. No other future developments are anticipated in the Texas portion of the study area. Additional likely action are changes in status of various proposed National Natural Landmarks in New Mexico.

7.0 REFERENCES

- Ahlgren, I.F. and C.E. Ahlgren, 1960. Ecological Effects of Forest Fires. Bot. Rev. 26:483-535.
- Altmann, M., 1956. Patterns of Herd Behavior in Free-Ranging Elk of Wyoming. Zoologica 41:56-71.
- Anonymous, 1979. Water quality. In Ittner, R., Potter, D.R., Agee, J.K., and S. Anschell. Proc. Recreational Impact on Wildlands: U.S. Forest Service, Misc. Pub. No. R-6-001-1979;329-331.
- B.L.M., See U.S. Department of Interior.
- Babb, F., 1980. NPS. Personal Communication. MX80-HDRS-MISC-198.
- Badger, T.J., 1975. Rahwa Wilderness crowding tolerances and some management techniques: an aspect of social carrying capacity. M.S. thesis, Colorado State University, Ft. Collins. 83 pp.
- Bailey, Arthur W., 1978. Use of fire to manage grasslands of the Great Plains: Northern Great Plains and adjacent forests. In Hyder, D.N. editor, Proc. First International Rangeland Congress, August 14-18.
- Behan, R.W., 1976. Rationing wilderness use: an example from the Grand Canyon. Western Wildlands 3(2):23-26.
- Bell, K.L. and L.C. Bliss, 1973. Alpine disturbance studies, Olympic National Park, U.S.A. Biol. Conserv. 5(1):25-32.
- Berwick, S., 1976. The Gir Forest ecosystem. Amer. Sci. 64(1):28-40.
- Biddulph, K., 1980. BLM. Personal Communication, MX80-HDRS-MISC-1422.
- Biddulph, K., 1981. BLM. Personal Communication, MX80-HDRS-MISC-1408.
- Bondello, M.C., 1980. In: Santa Barbara News Press, 27 June. Effect of man-made noises on creatures of the desert, Pt. C, p. 4.
- Bostick, V.B., W.E. Niles, W.A. McClellan, E.H. Oakes, and J.R. Wilbanks, 1975.

 Inventory of Natural Landmarks of the Great Basin. Compiled for the National Park Service.
- Brattstrom, B. H. and M. C. Bondello, 1980. The Effect of Off-Road Vehicle Sounds on Three Species of Desert Vertebrates. Abstr. 5th Ann. Desert Tortoise Council.
- Bury, R. B., R. A. Luckenbach, and S. D. Busack, 1977. Effects of Offroad Vehicles on Vertebrates in the California Desert. U.S. Fish and Wildlife Service, Wildl. Res. Rept. 8.

- Busack, S. D. and B. R. Bury, 1974. Some Effects on Off-Road Vehicles and Sheep Grazing on Lizard Populations in the Mojave Desert. Biol. Conserv. 6:179-183.
- CEQ, 1979. Environmental Quality The tenth annual report of the council on environmental quality. U.S. Government Printing Office, \$16 pp.
- Christensen, H.H., R.E. Pacha, K.J. Varness, and R.F. Lapen, 1979. Human use in dispersed recreation area and its effect on water quality. In littner, R., Potter, D.R., Agee, J.K., and S. Anchell. <u>Proc. Recreational Impact on Wildlands:</u> U.S. Forest Service, Misc. Pub. No. R-6-001-1979:107-119.
- Cole, D.N., 1979. Reducing the Impact of Hikers on Vegetation: An Application of Analytical Research Methods. In: Ittner, R., Potter, D.R., Agee, J.K. and S. Anschell. Proc. Recreational Impact on Wilderness: U.S. Forest Service, Misc. Pub. No. R-6-001-1979; 71-78.
- Colorado State University, 1975. Ecological Theme Analysis and Inventory of Potential Natural Landmarks of the Great Plains Natural Region. Rept. to National Park Service. Contract 14-10-9-900-248.
- Coman, B.J. and H. Brunner, 1972. Food habits of the feral house cat in Victoria. J. Wildl. Manage. 36(3):848-853.
- Crawford, J.E., E.C. Roberts, and D.P. Meridith, 1979. Public Land Management Opportunities for Mitigation. In: The Mitigation Symposium, July 16-20, Fort Collins, Colorado, U.S. Dept. of Agriculture, pp. 488-490.
- Curran, J., 1980. Nevada Department of Wildlife. Personal Communication, MX80-HDRS-MISC-204.
- Daily, T. and D. Redman, 1975. Guidelines for roadless area campsite spacing to minimize impact of human-related noises. USDA For. Serv. Gen. Tech. Report PNW-35, 20 p. Pac. Northwest For. and Range Exp. Stn., Portland, Oregon.
- Dasmann, Raymond, 1964. Wildlife Biology. New York: John Wiley. 231 pp.
- Daubenmire, R., 1968. Plant Communities. New York: Harper & Row. 300 pp.
- Daubenmire, R., 1970. Steppe vegetation of Washington, Tech. Bull 62, 131 pp., illus. Wash. Agric. Exp. Stn., College of Agriculture, Pullman: Washington State University.
- Davis, J., 1980. USFS. Personal Communication, MX80-HDRS-MISC-255.
- DeGraff, E., 1980. USFS. Personal Communication, MX80-HDRS-MISC-1414.
- Denney, R.N., 1974. The impact of uncontrolled dogs on wildlife and livestock.

 Trans. of the 39th No. Arner. Wildlife and Natural Resources Conference.
- Dixon, W. J. and M. B. Brown (ed.) 1977. BMDP-77 Biomedical Computer Programs P-Series. Berkeley: University of California Press. 881 pp.

- Drobnick, R., 1981. Utah Division of Wildlife. Personal Communication, MX80-HDRS-MISC-814.
- Dudley, W. W., Jr. and J. D. Larson, 1976. <u>Effects of Irrigation Pumping on Desert Pupfish Habitats in Ash Meadows, Nye County, Nevada</u>. Geological Survey Professional Paper 927, Government Printing Office.
- Dunn, J., 1981. BLM. Personal Communication, MX-HDRS-MISC-1409.
- Environmental Protection Agency, Nov. 1978. "Protective Noise Levels--Condensed Version of EPA Levels Document," EPA 550/9-79-100.
- Federal Committee on Ecological Reserves, 1977. <u>Directory of Research Natural</u>
 Areas of Federal Lands of the U.S.A. USDA Forest Service.
- Federal Committee on Research Natural Areas, 1968. <u>Directory of Research Natural Areas on Federal Lands of the United States</u>. U.S. Government Printing Office.
- Federal Register, 1980. Bureau of Land Management Draft Wilderness Study Policy. 45(246):83780-83804.
- Federal Register, 1981. The Wilderness Act of September 3, 1964; Public Law 38-577; 38th Congress, S. 4. 46 (11):4475.
- Frissell, S.S. and D.P. Duncan, 1965. Campsite preference and deterioration. J. For. 63(4):256-260.
- Gallizioli, S., 1979. Effects of livestock grazing on wildlife. Cal-Neva Wildlife Transaction.
- Geist, Valerius, 1975. Mountain Sheep and Man in the Northern Wilds. Ithaca, N.Y.; Cornell University Press, 248 pp.
- Geological Society of America, Committee on Environment and Public Policy, 1977. Impacts and Management of Off-Road Vehicles. Boulder, Colorado.
- Glen, Robert, 1980. USFS. Personal Communication, MX80-HDRS-MISC-1413.
- Goichoechea, D., 1°31. Wildlife Refuges, BLM Nevada. Personal Communication, MX80-HDRS-MISC-1439.
- Gullion, G.W., 1973. Management of northern forests for Ruffed Grouse. Minnesota Agricultural Experiment Station. Misc. Journal Series Publication 110, 1429. St. Paul, 34 pp.
- Haaser, C., 1981. USFS, Personal Communication, MX80-HDRS-MISC-870.
- Harmon, D., 1980. BLM. Personal Communication, MX80-HDRS-MISC-502.
- Harmon, D., 1981. BLM, Personal Communication, MX80-HDRS-MISC-879.

- Hauer, J., 1981. BLM. Personal Communication, MX80-HDRS-MISC-1419.
- HDR, 1980. Summary of SCOPING for the M-X: deployment area selection/land withdrawal environmental impact statement. ETR-225. Santa Barbara, Calif.
- Heberlein, Thomas A., 1977. Density, crowding and satisfaction: sociological studies for determining carrying capacities. In Proc. River Recreation Management and Research Symposium. Ten. Tech. Rpt. Nc-28, 455 p. U.S. Dept. Agric., For. Serv. North Central For. Exp. Stn., St. Paul, Minn.
- Hendee, J.C., G.H. Stankey, and R.C. Lucas, 1978. Wilderness Management. USDA Forest Service Publication #1365, 381 pp.
- Heritage Conservation and Recreation Service, 1980a. Existing and Potential Natural Landmarks, New Mexico.
- Heritage Conservation and Recreation Service, 1980b. Existing and Potential Natural Landmarks, Texas.
- Heritage Conservation and Recreation Service, 1980c. Bernice Tannenbaum letter MX79-MISC-INC-217. March 10.
- Irland, L.C., 1979. Wilderness Economics and Policy. Lexington, Massachusetts: D.C. Heath & Co. 225 pp.
- Ittner, R., D.R. Potter, J.K. Agee, and S. Anschell, 1979. Proc. Recreational Impact on Wildlands. U.S. Forest Service, Misc. Publ. No. R-6-001-1979:326-328.
- Iverson, J.B., 1978. The impact of feral cats and dogs on populations of the West Indian Rock iguana, Cyclura carinata. Biol. Conserv. 14:63-73.
- Kitchen, David, 1974. Social behavior and ecology of the pronghorn. Wildlife Monographs, No. 28, 96 pp.
- Krutilla, J.V., 1972. Natural Environments. Baltimore: Johns Hopkins University Press. 352 pp.
- tee, Robert, 1975. The management of human components in the Yosemite National Park ecosystem. (Final Report to the Yosemite Institute and the National Park Service.) Department of Forestry and Conservation. Berkeley: University of California, 134 pp.
- Leopold, A.S., 1966. Adaptability of animals to habitat change. In Darling, F.F. and T.P. Milton, eds. 1966. Future Environments of North America. Garden City, N.Y.: Natural History Press.
- Liddle, M.7., 1975. A selective review of the ecological effects of human trainpling on natural ecosystems. Biol. Conserv. 7(1):17-36.
- Litton, R.B., Jr., 1972. Aesthetic dimensions of the landscape. In J. Krutilla, ed. Natural Environments. Baltimore: Johns Hopkins University Press, p. 262-292.

- Litton, R.B. and R.J. Tetlow, 1978. A Landscape Inventory Francework: Scenic Analyses of the Northern Great Plants. USDA Forest Service Research Paper 1958-135. Berkeley, California: Pacific Southwest Forest and Range Experiment Station.
- Long, W., 1989. NPS. Personal Communication, MASS-HDRN-MINC-1415.
- Lineas, Robert, 1980. I se patterns and vinitor characteristics, attitudes and preferences in nine wildersess and other roadless areas. I SDA Forest Service Research Paper INT-203. Intermodulain Forest and Range Experiment Station, Ogden, Utah, 89 pp.
- Likers, Robert, 1981. I. SES. Personal Commun. atom, MASS-HDRS-MISC-895.
- Ludernan, Steven, 1981. SAC, Offutt Air Force Base. Personal Communication, WSSO-HDRS-MISC-878.
- Mickie, R.J., 1979. Range ecology and relations of male deer, elk, and cattle in the Missouri River Breaks, Montana Wild, Mono, No. 29.
- Marlatt, L.B., 1980. USEWS. Personal Communication, MX89-HDRS-HDRS-639.
- McElwain, F., 1981. USES. Personal Communication, MX89-MIRS-MISC-1919.
- McNamara, K., S. Berwick, and E. Hillyer, 1989. Elk on the Aspen Mountain winter range. Pitkin County, Colorado. Vale School of Forestry and Environmental Studies. Working paper, 85 pp.
- McQuard-Cook, 7., 1978. Effects of Hikers and Horses on Mountain Trails. J. Environ. Manage., 6:209-212.
- McQuivey, R.P., 1978. The Desert Bighorn Sheep of Nevada. Nevada Dept. of Fish and Garne, Dist. Bill. 10.6.
- Merriain, L.C., Jr. and L.B. Ammons, 1964. The Wilderness User in Three Montana.

 Areas, Minneapolis: University of Minnesota. 54 pp.
- Merriam, L.C. Ir. and C.K. Smith, 1974. Visitor impact on newly developed campsites in the Boundary Waters Canal Area. J. For 72(19):627-639.
- Miller, Robert, 1980. USFS. Personal Communication, MX89-HDRS-MISC-1418.
- Minnesota Pollution Control Agency, 1980. Sherco 3 Draft Environmental Supplement, to the Northern States Power Company's Proposed Units 3 and 4, Sherco steam Electric Station, Final EIS.
- Minnesota Public Interest Research Group v. Putz, 541 F. 2d 1292 (8th Cir. 1976).
- Molini, W., 1981. Chief. Habitat Section, Nevada Department of Wildlife. Letter dated Aug. 6, MX89-MISC-INC-569.
- New Mexico State Planning Office, 1976. Outdoor Recreation: A Comprehensive Plan for New Mexico. Santa Fe: State Printing Office.

- Severy De 1980, SEN. Personal Continued about MAR. HDRN-MING 1411.
- Parker with mited States, Book is populated William in 1970 to
- Paraona, \$1, 1985. Nevada Dewarthert of Modzife. Personal Con Navadation, Massimino 186-189.
- Priess. May 1978. And the to Automa, With the Refuges. Wastden Cita, N. V. Albitist.
- Distribution, L., R. Casteell, and M. Miller, 1979. Backs ounder forse need. In Itthet, B., Pister, D.R., Agee, J.M. and M. S. Sitell, Proc. Rectentional Impact on Australia. 1.35 Forest Service, Mills. Pub. No. R. 6 251-1979(196-198).
- (8.) Diego State 1 (websity). See 5. S. Aut 1 of e. Space and Misside Statem Organization, 1918.
- 大きまた、Mr., 1945. い間ではいたいのではないである。そのでは、一部でおいれば、Commissionは、Mine 2 9459時後、Mine 1947.
- Note: 19, 19, 2, and R.B. Ditton, 1979. Helating human activities and hiological resources in repartanchabitate of western lesses. In Proceedings of the Symposium on Strategies for Protection and Management of Floodplain Methanits and Other Riparian Ecosystems. ISBA For Serv. USB W63-12:107-116.
- Schooldly, O.J., R.B., Ditting, W.J., Bonner, and A.B., Grande, 1976. Interrelationships a nong visitor isage, hyman impact and the biotic resources of the riparian or osystem in Big Bend National Bark. Paper presented at the Eirst Conf. No. Res. in Natl Parks, New Orleans, Louisiana, Novembers.
- S. Phillit. V., 1987. USES, Personal Communication, M880. HDRS-MISC-1421.
- Softergren, C.D., 1955. Impacts of their recreation use on atteambank soil and vegetation state of the knowledge. In Proc. Buset Recreation Management and Research Symposium. USDA Forest Service General Technical Report No. 28.
- Show hat, I., 1997, USFS, Personal Commissionation, MNRO-HDRS-MISC-1417,
- Skinvin, J.M., P.J. Edgerton, and R.W. Harris, 1968. The influence of cattle management on deer and elk. Trans. N.A. Wildl. and National Res. Conf., 13:161-131.
- No to, H.R., and P.N. Tordan, 1916. An explosited population of musikrats with missial hip mass, productivity, and body size. State Geological and Natural History Sieves of Connecticut, Report of Investigation #1, 16 pp.
- Notices Michael Mino par Power Agency, 1981. 300 MM Power Plant Site North, Pfector and Shidtz HDR, Inc.
- Stankov, George A., 1973. A sitor perception of wilderness recreation carrying capacity. I SDA For, Sorv. Res. Pap. INT-142m 61 p. Intermt. For, and Range Exp. Sto., Ogden, Etan.

- うたapperty、 A for Min in Europa and 作業 Lone 1976 of いたいとう pates and wilderness. Persign a 83 2 - 20 min for たんち 83 年
- Storddart, E. A., A. S. Soliti, and A. B. Bur, 1977. Range Malageries to New Yorks.
 Microsoft D. 392 on
- Dather, M. D. and M. S. Saar and 1988. The two of a let been little chapmana. I aid. Dept. of Bian antology en la lettic. No. 8, 2864
- Froll now, Access to A., 1914. Bute. a fargenant took is addition. Ather a 1914 there. D. N., edition, Dr. G. Frest D. ten national Bargenand Congress, August 14-18.
- 1 5 No. 1 on e, かoace and Mossise baste o Officanceation, 1978, 都ctential Inignal to the System Societies Societies No. the Parts of the California Islands. Literature Rosewasche and Official Problems あっぱっぱっぱいましま。 「Pratt 一覧ance, 養育」、予算、予修的。 and California California California (California) Acade Societies Soci
- 10.5 Department of Agriculture, 1919. Boadless Area Healen and Exalistion, RARI B. Konstanovicos mental Atatement. Forest Service, 18, 175.
 - S. Donne Franch of County, 1979. Washe Inc. at on Promote Proget, 1964 ft ft, 2 will
 - No Department of the Interior, Buerail of Camit Managerment, 1979, Interior Managerment, 1979, Interior Managerment, 1979, and the new for Cariffs under Managermess Resiew. December 2.2.
 - 3 Demandicient of the Enter or, Planea of Daniel Manage ment, 1975, 1976.
 Balifor Das Vegas Motorcycle Baren, Exacuation Report.
- 2.5 Decouper sent of the Esterior, Office of the Social top, 5 Sept. 1985. Memoraphylic to the Section Section Esterior, 1983 of Sciences Periods. Section 653, 2 about 1 (1985) and 1 Property 1.
- 1. No Deplant ment of the Interior, 多次 to 1918。 The public foreat Basic Scattorial Park, New 2. Rogorts on of other of one of toas with Potential for Serifision in the National Park System, Mouse Too orient No. 1867, Basic 附,
- C.S. Dengant month of this Internity Fight and W. H. fo Sockers, 1976, Fire Polymonic months I maked State month Operation of the Sant and Middle Ref. go Systems.
- F. S. E sh and W. F. En Sore, of some 1. S. Dongramone of the force of
- S. Forest sore of spect S. Dengermone of Age. To you
- I tak Diethor Reinart in Topiner, 1978. The State Correspondent in Diethor Reinart in Plan. Salt Lake City: Depart Feet Fact mal Resources.

- ta strongation work a crossitee, 1987. A opublished data provided by the Utah Demark Sent at 20 Spools sent New City.
- recover, \$1, 1914. The Carryon Capacity of Recreational Lands: A Review. State State Service, Planning Division, Prairie Region Park, Canada,
- Advisor, A. L., Mara, Mara, P.A., Mercia, F.B., Luttier, and N.A. Buttherg, 1976a. The front of soft Start Versions of a Desert Consistence. J. Environ. Manage. 1976; 13-139.
 - 1976 The Lopa to distribute Velocles on a Desert Ecosystem.
 (2000) Manage Wood of
- Wagan, I.A., 1964. The larger cases to of wildlands for recreation. For Sci. Munigri, 1, 23 pp.
- *equal, forms 10. Name of the consideration of takers, motorcycles, and horses on meaning and forests. It Non-Book, 15990 4.
- またいのでは、 The Company Associates (1976) Off Road Nebucle Effects on California's Missage Teaert, California Geology, ep. 123-137.
- W. Marie, Marie, S. Shipler, por JR. Navata, 1978a. Imparts of Off-Road Vehicles on Vegetation. Trans. of what North American Willfule and Natural Resources instances et 181, 189.
- * 12000, Style, Ite, Nakata, S. Shipler, and K. Prestegaard, 1978b. Impacts of Vehicles on Natural Terrain at Seven Sites in the San Francisco Bay Area. Thurson, seed., 2658:295-379.
- Again, S., 1945. SES Personal Forming Latine, MARGHDRS-MISC-1416.

END

FILMED

à

3-85

DTIC

