Substance Abuse Prediction Model

Data by Professor Jordan P. Davis

By Rupali Bahl, Megan D'Souza, Sarah Okamoto, Prathik Rao

Agenda **Future** Survival Regression **Mission Data** Work

Team Weed

Our Process

HOW WE CAME TO OUR IDEA

01
Current Issues

Vaping Crises & Deaths,
Opioid Crisis - how can we
study these

02
Data Available

Datasets we found for opioids had data about marijuana

03 Marijuana Abuse

We finally reached our topic because of the way the data lead us

The Problem

WHY WE CHOSE TO FOCUS ON SUBSTANCE ABUSE

- In 2005, ~¼ million emergency room visits in the US involved marijuana
- Recognizing which patients are more likely to relapse can help treatment centers reallocate resources to patients that need it
- Marijuana is the most popular illicit drug in the US (~24 million current users)
 - ~4 million of those people experienced significant issues related to their usage of the substance
- Marijuana often leads to use of and experimentation with other, harder drugs
- Most people who abuse marijuana do not seek treatment, but for those who check into rehabilitation centers, about 60% will relapse

Prof. Jordan P. Davis

- Research addressing substance use and the developmental needs of marginalized and vulnerable populations
- Intervention work on Mindfulness-Based
 Relapse Prevention

The Data Set:

20,000 Individuals checked into treatment centers

- 13,000 marijuana abusers
- 0-3 months: Treatment
- 3-12 months: Post-treatment
- 2 hr interview (once in 3 months): psych, mental, physical health
- Intervention
- Cognitive behavioral therapy

Measures demographics such as gender and age, trauma, and mental health conditions

The Goal:

- Help those who abuse marijuana and are seeking treatment
- Predict the likelihood of relapse for patients checked into rehabilitation centers
- Allocate resources and plan interventions according to these predictions

Key Features

IN-DEPTH PREDICTION

01

Trauma

Do people who've experienced trauma, stratified by type of trauma, have higher chances of relapse?

02

Ethnicity

Do people of different ethnicities have significantly different chances of relapse?

03

Gender

Do men and women have significantly different chances of relapse, and can we train our model based on this?

Related Work

What's already out there?

Individualized relapse prediction: Personality measures and striatal and insular activity during reward-processing robustly predict relapse

Use of a Machine
Learning
Framework to
Predict Substance
Use Disorder
Treatment Success

03

Neural Activation
Patterns of
Methamphetamine-De
pendent Subjects
During Decision
Making Predict
Relapse

Preprocessing

01

Marijuana Days

Filtered data only to patients being treated for marijuana abuse

02

Trim Predictors

Only keep predictors relevant to marijuana abuse

03

Missing Data

Filled in missing data with mean/mode for features that had less than 25% missing values

Classification

(Logistic Regression)

	Predicted: NO	Predicted: YES				
Actual: NO	2705	1008				
Actual: YES	1345	1565				

	Predicted: NO	Predicted: YES				
Actual: NO	1698	1291				
Actual: YES	1050	2584				

people who relapsed in the 1st 3 months

people who didn't relapse in the 1st 3 months

	Predicted: NO	Predicted: YES				
Actual: NO	3858	407				
Actual: YES	1734	624				

	Predicted: NO	Predicted: YES				
Actual: NO	5633	25				
Actual: YES	948	17				

people who didn't relapse in the 1st 6 months

people who didn't relapse in 1 year

Linear Regression

Metrics for Each Model

R^2

Determination Coefficient

a difference of the total variance and the variance still not explained by your model

MAE

Median Absolute Error

the median difference
between the
approximated value and
the true value

EV

Explained Variance

the total variance is explained by factors that are actually present and is not due to error variance.

Attempted Regression Models

Linear Regression

XGBoost

Lasso

Random Forest **SVM**

R^2: 0.068365

EV: 0.069254

MAE: 76.696494

R^2: 0.105686

EV: 0.106588

MAE: 75.418133

R^2: 0.063992

EV: 0.064907

MAE: 77.961828

R^2: -0.007847

EV: -0.007806

MAE: 77.25

R^2: -0.036086

EV: 0.057095

MAE: 61.872242

~77
days

~76 days ~78 days

~78 days

~62 days

Support Vector Machine (SVM)

How does it work?

Linear SVM

- A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane
- Given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane that categorizes new examples
- Works by selecting the extreme points (all points that are close to the opposing class) and creating support vectors from them
- Get hyperplane (a line that divides the two classes) by finding the line between the support vectors

How does it work? (cont.)

Examples

• In a more complex space (non-linear SVM), apply transformation (kernel) adding more dimensions to find a clear separation

May also run into overlapping data plots (regularization)

Feature Importance

FEATURES IN ORDER OF HIGHEST IMPACT ON MODEL

- SPSm_0 Substance Problem Scale (Past Month)
- **S2x_0** P90: Days in controlled environment
- dldiag Dual diagnosis
- **female** whether or not the patient is female
- HIVrisk HIV risk Scale across NPS, SxRS and GVS items
- **ncar** Participant is not close to anyone in recovery [E5g, E6g, and E7g=4 or skipped]
- tottxp4 Total number of treatment planning needs endorsed-per LaVerne
 examples of treatment: medicare, job placement, etc.

	Coefficients	column_name
31	-13.159539	SPSm_0
30	11.817768	S2x_0
13	-11.300838	dldiag
0	11.123025	female
27	-10.883599	HIVrisk
24	9.775970	ncar
5	-8.836512	tottxp4
4	-8.273132	prsatx

• **prsatx** - Any prior substance abuse treatment

Map of the Bay Area

Map of the Greater Los Angeles Area

Survival Analysis

Thanks Aaron!!!

Metrics

Concordance Index

Trauma

None: 0.581

Experienced: 0.575

Gender

Male: 0.591

Female: 0.577

Race

White: 0.591

Non-White: 0.586

HUMANITIES GOLD STANDARD: 0.2-0.4

Web App - Interpretability

- Interface makes our models more readable and interpretable for people, like Jordan, who work in social work
 - Also important for people working in the rehabilitation centers

[Web App Demonstration]

Gender Plots

Risk of Marijuana Relapse Over Time

Probability of Marijuana Relapse Over Time

Gender Feature Importance

	Coefficient	Males	Females		Coefficient	Males	Females		Coefficient	Males	Females		Coefficient	Males	Females
0	nonwhite	-0.001659	0.077357	10	IPI	0.001308	0.021452	20	ERS21_0	0.080240	0.077044	30	SPSm_0	0.102842	0.154341
1	unemplmt	-0.065102	-0.143643	11	S9y10	-0.009030	0.006118	21	homeless_0	-0.015414	0.065972	31	EPS7p_0	0.012088	0.033121
2	B2a_0	-0.019487	-0.011622	12	dldiag	0.018592	0.014563	22	S6	-0.003445	0.022992				
3	prsatx	0.098602	-0.031836	13	DSS9_0	-0.008402	-0.017082	23	ncar	-0.027114	-0.073205				
4	tottxp4	0.012020	0.058482	14	ADHDs_0	0.030735	-0.036960	24	engage30	0.033549	-0.050416				
5	TRI_0	0.038297	0.055626	15	CDS_0	0.002761	0.025465	25	init	-0.041395	0.029993				
6	GVS	-0.025235	-0.019732	16	suicprbs_0	-0.031600	-0.096766	26	HIVrisk	0.102601	0.067406				
7	tsd_0	-0.112690	-0.071935	17	CJSI_0	-0.004864	-0.018974	27	totttld	-0.059037	-0.115038				
8	und15	0.046469	0.097521	18	LRI7_0	0.011775	-0.035244	28	POS_0	-0.013149	-0.029020				
9	CWS_0	-0.014230	-0.000077	19	SRI7_0	-0.019816	0.024310	29	S2x_0	-0.028015	-0.042544				

Race Plots

Risk of Marijuana Relapse Over Time

Probability of Marijuana Relapse Over Time

Race Feature Importance

	Coefficient	White	Non-White		Coefficient	White	Non-White		Coefficient	White	Non-White		Coefficient	White	Non-White
0	female	-0.072901	-0.015640	10	IPI	-0.002156	0.007601	20	ERS21_0	0.134650	0.066843	30	SPSm_0	0.059989	0.150322
1	unemplmt	0.000952	-0.066822	11	S9y10	-0.016232	-0.001418	21	homeless_0	-0.022125	0.021429	31	EPS7p_0	0.007770	0.024547
2	B2a_0	-0.018040	-0.020140	12	dldiag	0.077237	0.034820	22	S6	0.030899	0.008466				
3	prsatx	0.105581	0.045368	13	DSS9_0	-0.011906	-0.011531	23	ncar	-0.059395	0.011944				
4	tottxp4	-0.015695	0.020157	14	ADHDs_0	-0.026304	0.043348	24	engage30	-0.013672	0.049003				
5	TRI_0	0.068928	0.008180	15	CDS_0	0.052800	-0.007989	25	init	-0.083359	0.033814				
6	GVS	-0.029742	-0.039498	16	suicprbs_0	0.001791	-0.106738	26	HIVrisk	0.131783	0.133057				
7	tsd_0	-0.085786	-0.041287	17	CJSI_0	-0.030512	0.004886	27	totttld	-0.050170	-0.091527				
8	und15	0.054036	0.039762	18	LRI7_0	-0.065563	0.022558	28	POS_0	-0.022152	-0.015301				
9	CWS_0	0.002176	-0.028679	19	SRI7_0	-0.013944	-0.005865	29	S2x_0	-0.086043	-0.009803				

Trauma Plots

Future Work

Augment Dataset

Do environmental factors (such as socioeconomic status) impact the time it takes for someone to relapse?

Approach:

- Augment dataset with other factors from social explorer for each census tract
 - Poverty status, public assistance, unemployment status, age (less than 18), etc.
- Use the address of the rehabilitation center a patient was checked into
 - Add columns for the latitude and longitude of each center
 - Using the latitude and longitude, find the FIPS code (correlates to census tract in the social explorer csv file)
 - Append FIPS code column to original dataset
 - Join the two datasets on the FIPS column

Future Work Cont.

Fairness

- False Positive predict someone will relapse when they do not
- False Negative predict someone will not relapse but they do
 - Most important to minimize
- True Negative predict someone will not relapse and they do not
- True Positive predict someone will relapse and they do

Prioritize high sensitivity

- Few false negatives
- High Specificity
 - Few false positives

Future Work Cont.

Extensions

- Look into predicting relapse for other substances
 - i.e. opioids
- Optimization of rehabilitation centers
 - Given the number of clinics in a given area,
 measure the impact of adding a new facility to that region
- Anything with success/fail outcome

Thanks Prof!!

Any Questions?

Thanks for listening

- Original Idea interested in vaping or opioids → data led us to marijuana
 - jordan <3 Rupali
 - his background
 - Data set and possibly background about Jordan's work
 - High level outline of goals -Rupali
 - Help those who abuse marijuana and are seeking treatment
 - Predicting relapse will be helpful in prevention -- allocate more resources
 - Possibly predict/optimize effective placement for rehabilitation centers
 - Related Work (what is already being done) Rupali
 - Our planned approach Rupali
 - pre-processing
 - Attempted Regression Models Sarah
 - Linear Regression
 - r^2, median, explained variance (?)
 - XGBoost
 - Random Forests
 - o SVM
 - all of the features and their coefficients (feature importance)
 - Talk about maps thing
 - Classification (lasso and logistic regression) ***if we get it working*** Rupali/Megan
 - Survival Model
 - censoring
 - o nx2 vector the first one predicts if the event actually occurs
 - o if a user does not relapse, the model might predict that they will relapse in 500 days, but the data stops at 365, our model would think we are inaccurate, but censoring combats this issue
 - Present survival plots & hazards of demographics we chose, and feature importance, and concordance index
 - Web app interpretability
 - Augmented Dataset ***if we get it working*** Sarah
 - Do socio economic / environmental factors affect a person's relapse time?
 - Future Work Megan
 - Extensions