(extract)

萃取物

萃取物成分

(extractive components; extractives)

定義:

魚貝類肌肉等組織中的水溶性低分子量成分

生物組織或食品以水、熱水萃取得到的水溶性區分,再除去其中的蛋白質、色素、維生素、多醣類等所剩下的小分子物質,稱為萃取物成分,定義上不包括無機成分。

/48頁

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503

萃取物成分組成之影響因素

- 種類
- **季**四
- 生長及生理狀態
- 棲息環境因子: salinity
- 御 侧
- 配本
- · 死後變化:handling and storing conditions

熱水萃取➡️分離脂肪、殘渣等━縮後的乾物。

뺉

蛋白質沉澱劑(乙醇、三氯醋酸 trichloroacetic acid、過氯酸 berchloric acid、苦味酸 bicric acid 等)溶液萃取 → 除去蛋白質沉澱劑 → (脫脂) → 萃取物

7

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503

萃取物成分的重要性

- 生理、生化代謝之關係物質
- 食品化學領域:
- 風味(flavor)、美味性(palatability)
- 安全性(safety):生物胺(piogenic amines)的 前驅物質
- 鮮度品質(freshness quality)

က

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503

水產食品得消費與利用

• 鮮度品質 (freshness quality)

- 貯藏條件與環境條件之影響
- 鮮度變化的特徵
- 貯藏/食用期限(shelf life)
- 衛生與安全性問題

· 風味或官能性質 (flavor or sensory properties)

- 消費者接受性(consumer acceptance)
- (特有)風味、美味、質地、顏色等
- 與鮮度品質的好壞密切相關
- 影響組成含量之因素多

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503

風味品質:

- 影響水產品消費接受性之首因
- 原有的風味特徵
- 加熱、料理後產生的風味特徵
- 鮮度逐漸降低,原有風味逐漸減弱至消失 並產生不良異臭味。
- 利用性

萃取物成分的組成

含氮成分(nitrogenous components)

- 游離胺基酸(free amino acids) 000
 - 胜肽(peptides)
- 核苷酸成分(nucleotides)
- 有機鹽基類(organic bases) 肌酸(creatine), 氧化 三甲胺(trimethylamine oxide), 尿素(urea), 四級胺鹽基類(quaternary ammonium bases), opines等

非含氮成分 (nonnitrogenous components)

- 有機酸(organic acids) 0
 - 西唐类頁(sugars) 0

不包括『無機離子(inorganic ions)』

非蛋白態氮(non-protein nitrogen) // 萃取物氮(extractive nitrogen)

⊕ 板鰓類>紅肉魚>白肉魚

⊕ 無脊椎動物>脊椎動物

表3-17 魚介類肌肉的總氮量及萃取物氮含量(mg/100g)

	總氮量	萃取物	В		總気量	萃取物	В
魚介類	(A)	(B)	—×100 A	魚介類	(A)	E	A A
魚類				軟體類			200
		1,450	37.8	鎖管		884	26.2
白斑早餐		1.410	36.9	日本就		728	25.1
1		1,280	42.1	牛角蚶		787	21.3
●		749	20.7	蠑螺		507	16.8
	3,720	735	19.8	鮑魚	2,280	909	22.2
秋刀魚		599	15.7	→ 點→		450	22.4
青花鱼		509	14.6	奉		429	21.5
調		354	11.5	上町		311	23.7
嘉師		389	11.4	甲殼類			
剝皮鱼		340	11.5	日本龍蝦		803	
高眼蝶		356	12.4	斑節蝦		992	
●		346	12.6	鳕場蟹	2,620	863	32.9
島角		321	8.7	松愛蟹		618	
色	2,310	290	12.6	蠘仔		564	

(清水等人,1954:須山等人,1958:鴻巢等人,1978:其他)11

*可食部分

Distribution percentage of non-protein nitrogenous compounds in fish and shellfish

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

	白肉魚	輕角	三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三	齫	殿	鎖管	
Free amino acids	10	25	5	75	65	20	35
Peptides	5	5	5	2	15	15	35
Nucleotides	15	10	5	5	5	2	5
Creatine & Creatinine	20	35	10	ı	ı	ı	
TMAO	15	15	20	10	5	15	5
Urea	-	•	22	-			
Betaines	-	•		2	10	2	15
Ammonia & Amides	2	10		-			5
Octopine	-	-		-	ı	10	ı

10

國立台灣海洋大學食品科學系:水產化學授課資料(一) - 邱思魁1060503 // 海大食品科學系:水產化學授課資料(一) - 邱思魁1060503

魚介類肌肉的游離胺基酸含量(mg/100g) 表3-18

胶基酸	1	曜	丑□	米	十二十	画	声	1	区			斑	語	類
	争	3	田毎	正理	力在	4	毎1年	黨	1997	玉	- E	無	107	歌
	¥	•	1	Del.	#	6	F		副		K	XX	NX.	題
-磺酸	44	138	171	123	84	75	26	50	946	664	784	150	89	243
多胺酸	7	+	+	-	1	-	-	-	0	21.		3 1	3 1	1
K胶酸	7	c:	4	10	11	7		4 04	00	12	1 2	10	•	2:
游艇	10	m	· cc	4	9	2 00	00	ט ני	200	27	01	133	0 20	4 .
胶醯胺+))	•		0	1	0	Se	3	0	155	101	7
冬醯胺 2		2	1	2	7	1								+
胶酸	12	2	9	4	18	13	e			103	140	34	7	19
版版	7	2	7	13	56	9	2			16	51	203	116	327
版戰	21	12	2	20	7	10	က			329	1925	1222	1078	623
版酸	19	13	13	22	26	21	7	23	86	130	256	43	42	187
胶酸	ı	1	ı	1	1	1	1			2	∞	1	1	
版酸	7	က	7	2	16	9	7			14	00	17	19	30
杭版酸	9	+	-	+	2	-	3			11	c	12	17	19
口版版	2	က	1	2	7	7	3			10	2	6	17	29
胶酸	∞	4	-	က	14	S	7			20	3	13	12	30
版酸	2	2	-	2	7	7	2			16	1	20	1	10
内版酸	4	2	1	7	4	1	2			20	2	7	9	17
版酸	1	1	1	I	1	1	1			1	1	1	1	10
織版酸	∞	4	-	7	929	289	1220			6	2	16	13	00
版版	က	11	17	128	93	25	35			25	2	52	21	25
敗睽	9	2	က	20	11	က	-			94	323	902	674	579

(藤田等人・1972:鴻巣等人・1974:須山等人・1975:其他)

可食部分以天冬醯胺計極微量

水產動物肌肉中主要含氮萃取物成分(核苷酸除外)之分布(mg/100 g)

南極蝦	116	106	217	266	17	206					106	212			3494
整	623	187	327	579	00	243					357	338			618 ¹³ 494
紅蝦	526	90	71	181	9	46						537			533
班節蝦	1220	43	203	902	16	150					763				835
日本観	22	38	897	49	164	415	1130				584	935			887
國員	1925	256	51	323	2	784					339	20			764
鮑魚	174	86	83	299	23	946					975	က			909
香魚	37	15	13	4	26	154		0	104					443	345
比田	2	13	_	_	τ-	17						313		464	332
嘉鵬	12	13	7	7	4	138						246	718		396
黑鮪	12	20	4	+	299	63		+	191	0				312	562
鰹魚	6	23	00	+	1340	20		252	559	0				337	802
鼠鲛	21	19	7	9	∞	44		0	1060	0		1100	1520	202	1450
鰮節	4	12	4	7	2	4		194	19	1730			19	333	702
	日胺酸	丙胺酸	辅胺酸	精胺酸	組胺酸	牛磺酸	章魚鹼	肌肽	鴉肌肽	Balenine	甘胺甜菜鹼	氧化三甲胺	宗素	肌酸	非蛋白態氮

國立台灣海洋大學食品科學系:水產化學授課資料(一)--加思魁1060503 // 海大食品科學系:水產化學授課資料(一)---加思魁1060503

無脊椎動物和魚類在肌肉FAA含量組成之差異

甲殼類>貝類(鮑魚及九孔例外) :無脊椎動物、紅肉魚>白肉魚 1. FAA総量

組成特徵 2 ○精胺酸(arginine)含量多

以磷酸精胺酸(bhosbhoarginine)形式存在,當作一種磷醯源(bhosbhagens)(掌控生活時高能量磷酸的貯藏和供給)

◎ 含量較高者:

廣鹽性魚介類中,甘胺酸(glycine)、丙胺酸(alanine)、 脯胺酸(proline)、牛磺酸 (taurine)等含量高。和滲透壓 調節之功能有關。在軟體動物,精胺酸、甘胺酸、 丙胺酸、脯胺酸、牛磺酸等和丙酮酸形成<mark>opines</mark>, 此和<mark>嫌氣性代謝</mark>有關。

◎含量特別高者

蝦蟹類之甘胺酸、鮑魚及九孔之牛磺酸等

游離胺基酸(free amino acids; FAA)

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

角類肌肉的FAA組成特徵

1. 組胺酸(histidine; His)

特別高含量:迴游性魚類,運動性愈大者 低含量:底棲性魚類、貝類、甲殼類

紅肉魚>中間型魚種>>>白肉魚

Histidine-containing peptides

牛磺酸(taurine):白肉魚>紅肉魚 ر.

4

國立台灣海洋大學食品科學系:水產化學授課資料(一) - 邱思魁1060503 // 海大食品科學系:水產化學授課資料(一) - 邱思魁1060503

胜肽(peptides)

balenine H1NCHCH1CH1CONHCH2COOH glutathione H2NCH2CH2CONHCHCH2

midazole C00H H2NCH2CH2CONHCHCH2 carnosine

15

- 三聚肽:穀胱甘肽(glutathione; GSH: y-L-glutaminyl- L**cysteinyl**glycine),參與氧化還原反應。
- 2 GSH (reduced form)

 GSSG (oxidized form)
- Histidine-containing dipeptides:分布在特定的魚種
- ◎肌肽(carnosine, **β-alanyl**-L-histidine)
- -鰻魚(特別高)、鯖魚
- ◎鵝鳥肌肽(anserine, **β-alanyl**-1-methyl-L-histidine)
- -鯖魚、鮭魚
- ◎ balenine(蛇含刻表ophidine, **β-alanyl-**3- methyl-L-histidine)
- 17 ⑤作為pH buffering agents:imidazole group的pK值在生理 pH附近,短時間激烈運動所進行嫌氣性能量代謝而生 氫離子,提供緩衝能而避免肌肉的pH降低

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

147.5 21.2 123.5 25.9 39.9 3.34 19.8 3.62 10.1 18.7

異鵝肌肽

_
公合物。
in
光色
4
海
*
平
器
衝
蹶
ス緩衝
K
5
魚類肌
美
44
က
表2.4.3
23
耒

象面化合物	黑皮旗魚	旗魚	ÁT.	鳟
	普通肉	血合肉	普通肉	血合肉
肌肉均質物	97.5(100)	54.6(100)	56.7(100)	29.0(100)
肌原纖維蛋白質	(6)6.8	14.3(26)	13.3(23)	10.4(36)
肌漿蛋白質	9.9(10)	6.2(11)	5.5(10)	3.3(11)
無機磷酸	17.3(18)	16.0(29)	26.2(46)	11.4(39)
脒唑化合物	60.6(62)	13.2(24)	9.9(17)	2.2(8)

數值爲緩衝能(mmol NaOH/pH·g肌肉,pH6.5~7.5,20°C),括弧內屬對肌 肉均質物級衝能之參與率(%)。

水產動物肌肉中 imidazole compounds

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

(nmole/g)的分布

水產動物	紅版酸	机 床	類加瓜	naiemne
軟骨魚	+	+	$1 \sim 33$	+
硬骨魚				
射亞目	$20 \sim 120$	~ 10	~ 120	+1
鮭亞目	~ 10	+	$7 \sim 42$	+1
鰻亞目	+	$7 \sim 25$	+	+
無亞目	$4\sim25$	+	+	+1
加亞目	+	+1	+1	+1
哺乳類				
響	+	$6 \sim 13$	+	$50 \sim 65$
数	+	$10\sim 20$	$1\sim 6$	$16\sim25$

及其相關化合物 (adenosine triphosphate and its related compounds) 核苷酸與相關化合物 (nucleotides and related compounds) / ATP

國立台灣海洋大學食品科學系:水產化學授課資料(一)-加思魁1060503 // 海大食品科學系:水產化學授課資料(一)-加思魁1060503

- 核苷酸(nucleotides):鹽基(bases)+核醣(ribose)+磷酸(phosphates)
- 魚介類肌肉:adenine nucleotide為主,含量4-9 umole/g
- ATP:能量代謝

(阿部,1982)

ATP的死後變化:變化速率及途徑依種類、致死條件、貯藏條 件等的不同而異。

- Inosine蓄積型、Hypoxanthine蓄積型、中間型
- 鮮度指標:K值(K-value) [Saito等,1959]

生物/食品中:核苷酸nucleotides、核苷nucleosides 籲基nucleobases (bases)

鱈肌肉的核苷酸含量*1 (μmol/g) 表3-21

正 第 0 5.34 0.576 0.690 1.26 0.113 0.639 0.109 4.34 0.04 0.22 0.04 0.59 () 0.04 0.22 0.04 0.59 () 0.04 0.22 0.05 () 0.057 5.86 () 0.120 0.196 0.055 4.34 () 0.095 0.202 0.125 4.30 () 0.10 0.14 0.15 0.66 () 0.10 0.14 0.15 1958)		貯藏天數*2	ATP	ADP	AMP	IMP
第 1 0.113 変 3 0 0.04 数 1 0.120 も 2 0.095 4~6試料的平均 0.10	出	0	5.34	0.576	0.690	1.26
(1) (1) (2) (2) (3) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	詗	7	0.113	0.639	0.109	4.34
5 3 0 0.260 5 1 0.120 4~6試料的平均 0.10	無	∞	0.04	0.22	0.04	0.59
4~6試料的平均 2 0.095 4~6試料的平均	液"3	0	0.260		0.057	
4~6試料的平均 2°C儲藏	郷	-	0.120		0.055	
 64~6試料的平均2°C 储藏	角	2	0.095		0.125	
4~6試料的平均 2°C儲藏		9	0.10		0.14	
	1 4~6	a式料的平均 諸藏		(JONES等)	人,1957	, 1958

國立台灣海洋大學食品科學系:水產化學授課資料(一) --邱思魁1060503 // 海大食品科學系:水產化學授課資料(一) --邱思魁1060503 NUCLEOTIDE DEGRADATION THAT OCCURS IN FISH MUSCLE ONCE THE FISH DIES Table 2.3.

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

pl
~
=
0
Ξ
mol/g)
-
17
7
變
F
Đ
器
抽
KY
to
D
L
长
H
初 用
力 物用
動物用
样動物用
苔样動物 B
莱 香 样 動 物 B
無 容样動物B
產無苔样動物用
海產無
2 海產無脊椎動物肌肉中核苷酸的變化(
22 海產無脊椎動物則
1-22 海產無脊椎動物別
3-22 海產無脊椎動物別
表3-22 海產無脊椎動物別
表3-22 海產無脊椎動物周
表3-22 海產無脊椎動物周
表3-22 海產無脊椎動物服

然	經過天數。1	ATP	ADP	IMP	AMP	HxR · Hx 2
蝦	0	0.61	2.09	0.00	0.94	0.00
腹部肌肉	28	0.18	0.17	1.61	1.31	6.14
毛蟹	0	5.87	1.75	0.00	0.29	0.00
腳部肌肉	35	0.35	0.46	1.98	3.47	1.14
章魚	0	2.48	1.43	00.00	0.67	0.68
施肌	20(小時)	09.0	1.43	0.00	0.89	2.31
1	0	7.48	1.53	0.00	0.55	0.01
外套膜肌	20(小時)	0.83	2.89	0.00	4.70	1.35
梅扇貝	0	3.48	1.18	0.00	1.56	0.00
閉殼肌	-	0.92	1.17	00.00	1.52	2.99
	0		0.59	0.00		0.00
足肌	45	0.30	0.92	0.00	3.04	00.00

國立台灣海洋大學食品科學系:水產化學授課資料(一)-印思魁1060503 // 海大食品科學系:水產化學授課資料(一)-印思魁1060503

CONCENTRATIONS OF NUCLEOTIDE DEGRADATION PRODUCTS Table 2.4. DIFFERENT RATIOS OF THE OBSERVED INDIVIDUAL

[ATP] + [ADP] + [AMP] + [IMP] + [Inosine] + [Hypoxanthine] [Inosine] + [Hypoxanthine] Ratio of Concentrations [IMP] + [Inosine] + [Hypoxanthine] [IMP] + [Inosine] + [Hypoxanthine] [Inosine] + [Hypoxanthine] [Inosine] + [Hypoxanthine] [AMP] + [IMP] + [Inosine] [Hypoxanthine] "Value" $H_c = -$

- a K value. 112
 - K, value. 109
- H value, also called K value 110

四級胺鹽基類(quaternary ammonium bases)

• 甘胺甜菜鹼 (glycine petaine) = 甜菜鹼 (petaine) 含量最多的一種;軟體類>甲殼類>>>無類

無管権動物肌肉中glycine betaine的含量(mg/100g) 表3-23

N. C.	ľ	F 1E 20 12	4
発 典段			343
改王 食竹 蚰 段			640
職作			646
級與難			357
			711
單魚	V	B泡 肌 〉	821
*	V	外套膜肌)	571
牛角蚶	V	被肌	1,052
	V	数	339
外郡	\sim	旗	808

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

25

無脊椎動物的homarine和trigonelline含量(mg/100g) 表3-24

無脊椎動	を	homarine	trigonelline	無脊椎動物		homarine	trigonelline
龍蝦	肌肉		19	文蛤	界裁肌	99	+
	中陽腺		15		中陽腺	142	16
蠟仔	極区		32	長臂蝦*	肌內	+	13
	中陽腺		24		內職	4	23
章角	聖		14	淡水蟹*	网	+	13
	盛出		12		中陽縣	6	13
日本鱿	外套膜肌	A 111	33	※水貝	界殼肌	91	0
	選出				中陽腺	2	0

+: Img/100g 以下

平野,1985)

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

butyrobetaine)、肉鹼 (carnitine)、龍蝦肌鹼(homarine)、葫蘆 巴鹼 (trigonelline)、atrinine、halocynine、stachydrine等。 B -甘胺甜菜鹼 (β-alanine betaine)、γ-丁酸甜菜鹼

26 β – alanine betaine (CH3)3NCH2CHCH2COO-(CH₃)₃\(CH₂)₄CHCOO-(CH₃)₃ TCH₂CH₂COOstachydrine H3C CH3 halocynine carnitine trigonelline (CH₃)₃ CH₂CH₂CH₂COOglycine betaine (CH3)3 TCH2 CHCOOr-butyrobetaine CH2OH (CH3)3 CH2COO--cooatrinine homarine

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

生理功能:

- 甘胺甜菜鹼:生合成甲硫胺酸之donor of methyl group、 生合成氧化三甲胺之前驅物質、滲透壓調節因子等。
- 四級胺鹽基類的生理意義仍多不明。
- 砷甜菜鹼(arsenobetaine):無毒性

represented by AB in canned seafood samples	canned seafood s	samples		8	represented by AB in canned scafood samples AB以外者	AB以外者
		總砷	砷甜菜鹼		Total water-soluble	Water-soluble As
Seafood product	Sample	Total As*	AB*	AB (%)†	As*.‡	other than AB*
Fish— Salmon	10	0.23	0.14	19	0.17	0.03
Lamellibranchs-						
Razor clams	02	1.55	0.13	8	96'0	0.83
	03	0.62	0.07	=	0.35	0.28
Cockles	90	2.06	0.10	2	0.50	0.40
Langostillo	05	1.92	69.0	36	1.35	99'0
Mussel	90	2.65	0.48	18	1.22	0.74
Clams	07	2.06	0.44	21	1.02	0.58
Gastropods— Snails	80	1.27	0.62	49	0.78	0.16
Crustaceans—						
Shrimps	60	0.87	0.40	94	0.62	0.22
	10	0.55	0.03	2	0.33	0.30
Crab	=	2.15	19.1	75	2.01	0.40

^{*} Results expressed in µg g - 1 As, fresh mass. † Percentages of total As. ‡ Total As in samples – As in solid residue resulting from the methanol-

From: J. Anal. Atomic Spectrometry, January 1997, 12: 91-266.

國立台灣海洋大學食品科學系:水產化學授課資料(一) --邱思魁1060203 // 海大食品科學系:水產化學授課資料(一) --邱思魁1060503

Quantitative results obtained in the analysis of reference materials, fish tissue and urine samples (for fish samples results in µg g⁻¹ As dry mass, for urine μg l⁻¹ As in undiluted sample)

Sample	As(V)	MMA	As(III)	DMA	AsB
DORM-2 (this work)	0.05 ± 0.01	Π	ııſ	0.29±0.02	16.1±0.6
DORM-2 [7]	9.4	nf	0.1	0.3	13.5
DORM-2 [11]	< 0.03	< 0.03	< 0.03	0.28 ± 0.01	16.0 ± 0.7
DORM-2 [31]	0.05 ± 0.02	0.14 ± 0.02	0.05 ± 0.01	0.49 ± 0.03	16.1 ± 0.7
Shark	0.01 ± 0.01	0.03 ± 0.01	пf	0.09 ± 0.02	12.8 ± 0.6
White ocean fish	nf	υľ	nf	0.04 ± 0.01	6.16 ± 0.38
Salmon	Π	Ju	nf	0.05 ± 0.01	1.73 ± 0.12
SRM 2670 (this work)	1.5 ± 0.2	9.6 ± 0.4	nf	47.2 ± 1.4	12.4 ± 1.8
SRM 2670 [20]	1.3 ± 0.2	9.8 ± 0.3	Ju	48.2 ± 2.3	17.8 ± 1.1
Urine, volunteer 1	0.3 ± 0.1	ut	ul	1.5 ± 0.2	1.7 ± 0.2

DORM, dogfish muscle tissue作為參考榡品;SRM 2670, 凍結乾燥尿液; $\mathsf{As}\left(\mathsf{V}
ight)$ (III), 三及5價時; MMA, monomethylarsonic acid; DMA, dimethylarsinic From: Talanta 58 (2002) 899-907 acid; AsB, arsenobetaine. [arsenocholine]

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

Table II. Total Arsenic and Organoarsenic Compounds Found in Seafood Samples

Atlantic total arsenic as sersion % organic Atlantic heatine of total heating but haddock 1.1 0.98 % organic cod 4.1 89 haddock 5.1 4.1 89 cod 4.1 89 88 cod 4.1 89 80 scallops 0.68 0.60 82 78 herring 0.08 0.60 88 88 bacific 80 80 88 88 hearing 0.03 0.03 0.086 0.13 (X) 88 hearing 0.03 1.0 0.86 0.13 (X) 71 reshwater, 7.4 6.2 4.6 84 bises 0.048 0.034 (X) 71 Albertar 0.048 0.034 (X) 71 Albertar 0.025 0.040 (X) 73 Albertar 0.023 0.040 (X) 73 w
fish arsenica betaine % 1.1 0.98 6.0 4.4 1.3.2 1.1 6.1.3 4.1 6.2.1 4.1 6.2.2 4.5 6.2.3 1.3 6.2.3 1.3 7.4 6.2 6.2.3 1.7 7.4 6.2 6.2 6.2 6.2 6.2 7.4 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6
fish arsenica betained other of 1.1 0.98 6.0 4.7 6.0 4.7 6.0 4.7 1.1 0.98 1.2 1.1 6.5 4.7 1.3 0.68 1.0 0.86 1.0 0.86 1.0 0.86 1.0 0.86 1.0 0.86 1.0 0.87 1.0 0.088 1.0 0.088 1.
1.1 0.98 6.0 4.7 6.1 4.1 1.3.2 10.34 1.3.2 10.34 1.0 0.86 0.31 0.15 0.13 (X) 5.3 1.7 5.3 1.7 5.3 1.7 7.4 6.2 3.2 (AC)* chased, 1.0 0.093 0.023 0.024 0.023 0.024 0.023 0.027 0.028 0.019 (Y) 0.026 0.020 0.020
1.1 0.98 6.0 4.7 6.0 4.7 6.0 4.1 10.55 1.1.3 10.68 0.86 10.68 0.86 10.031 0.15 0.13 (X) 2.3 1.7 2.0.8 15.8 3.2 (AC)* 7.4 6.2 0.087 (Y) 0.048 0.058 (Y) 0.058 0.006 (Y) pike 0.027 0.006 (Y) chased, 3.5 3.0
6.0 4.7 5.1 4.1 13.2 11.3 5.2 1.1.3 0.68 0.60 1.0 0.86 0.13 (X) 2.3 1.5 8 1.5 8 7.4 6.2 0.087 (Y) 0.048 0.087 (Y) 0.048 0.087 (Y) 0.087 (Y) 0.087 (Y) 0.087 (Y) 0.086 (Y) pike 0.023 0.006 (Y) chased, 3.5 0.019 (Y) 0.020 (Y) 0.024 0.023 0.034 (Y) 0.026 (Y) 0.027 (Y) 0.027 (Y) 0.027 (Y) 0.028 (Y) 0.029 (Y) 0.029 (Y) 0.027 (Y)
6.0 4.7 5.1 4.17 10.55 0.44 11.3 1.3 5.2 4.15 5.2 4.15 6.031 0.18 (X) 6.031 4.6 7.4 6.2 0.087 (X) 6.048 (X) 6.058 (X) 6.0
5.1 4.1 13.2 5 0.44 13.2 4.45 0.68 0.60 1.0 0.86 0.13 (X) 5.2 3 1.5 8.2 (AC) ^c 7.4 6.2 0.087 (Y) 0.048 0.087 (Y) 0.048 0.087 (Y) 0.087 (Y) 0.087 (Y) 0.087 (Y) 0.086 (Y) pike 0.023 0.006 (Y) chased, 3.5 0.019 (Y) 0.020 (Y) 0.024 0.023 0.034 (Y) 0.026 (Y) 0.027 (Y) 0.027 (Y) 0.027 (Y) 0.028 (Y) 0.029 (Y) 0.029 (Y) 0.027 (Y)
13.55 0.44 13.2 11.3 5.2 4.5 5.2 4.5 6.31 0.86 1.0 0.86 0.15 0.13 (X) 5.2 1.7 4.5 7.4 6.2 3.2 (AC) ^c 7.4 6.2 1.3 (X) 6.024 (Y) 6.025 0.006 (Y) 7.4 0.027 7.4 0.027 7.4 0.027 7.4 0.027 7.5 0.020 (Y) 7.6 0.027 7.7 (Y) 7.8 0.020 (Y) 7.9 0.027 7.9 0.027 7.9 0.027 7.9 0.027 7.9 0.027 7.9 0.027 7.9 0.027 7.9 0.027 7.9 0.027 7.9 0.027 7.9 0.027 7.9 0.028
13.2 11.3 5.2 0.68 0.68 0.60 1.0 0.86 0.13 (X) 2.3 1.74 2.3 15.8 3.2 (AC) ^c 7.4 6.2 0.087 (Y) 0.048 0.087 (Y) 0.048 0.087 (Y) 0.048 0.093 0.094 (Y) pike 0.092 0.092 0.092 (Y) chased, 3.5 0.020 0.10 0.024
5.2 4.5 0.68 0.86 1.0 0.86 0.31 4.6 2.3 4.6 2.3 15.8 3.2 (AC)° 7.4 6.2 0.087 (Y) 0.048 0.034 (Y) 0.048 0.034 (Y) 0.048 0.034 (Y) 0.058 (Y) 0.059 0.019 (Y) chased, 3.5 0.019 (Y) 0.10 0.028
0.68 0.60 1.0 0.86 0.13 (X) 2.3 1.7 2.0.8 15.8 0.13 (X) 2.0.8 15.8 0.087 (Y) 0.048 0.087 (Y) 0.048 0.034 (Y) 0.055 0.034 (Y) 0.056 0.034 (Y) 0.023 0.030 (Y) 0.024 0.023 0.031 (Y) 0.024 0.024 0.031 (Y) 0.027 0.031 (Y)
1.0 0.86 0.13 (X) 5.3 4.6 2.3 1.7 20.8 12.8 3.2 (AC)* 7.4 6.2 0.087 (Y) 0.048 0.034 (Y) 0.048 0.034 (Y) 0.058 0.034 (Y) 0.058 0.034 (Y) 0.058 0.034 (Y) 0.058 0.034 (Y) 0.059 0.034 (Y) 0.050 0.034 (Y) 0.050 0.034 (Y) 0.050 0.050 0.050 (Y)
0.30 0.30 0.35 0.37 20.8 15.8
5.31 0.15 0.13 (X) 5.3 4.6 2.3 1.7 20.8 15.8 3.2 (AC) 7.4 6.2 0.087 (Y) 0.048 0.084 (Y) 0.018 0.034 (Y) 0.024 0.040 (Y) 0.024 0.040 (Y) 0.027 0.006 (Y) 0.027 0.0019 (Y) 0.027 0.019 (Y) 0.10 0.008
5.2 4.6 7.4 7.4 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 16.0 13.8 17.9 13.0 17.0
2.3 1.7 3.2 (AC)° 7.4 6.2 3.2 (AC)° 7.4 6.2 9.2 (AC)° 7.4 6.2 9.2 (AC)° 6.048 0.087 (Y) 6.05 0.084 (Y) 6.05 0.047 0.13 (Y) 7.4 6.2 9.087 (Y) 7.4 6.2 9.087 (Y) 7.4 6.2 9.087 0.096 (Y) 7.4 6.2 9.08
20.8 15.8 3.2 (AC)? 7.4 6.2 0.087 (Y) 0.048 0.084 (Y) 0.048 0.034 (Y) 0.055 0.040 (Y) 0.024 0.006 (Y) pike 0.027 0.006 (Y) chased, 3.5 0.020 0.029 0.029
7.4 6.2 0.12 0.048 0.048 0.018 0.018 0.054 0.054 0.054 0.054 0.07 0.007 0.006 (Y) 0.027 0.027 0.019 (Y) 0.027 0.019 (Y) 0.010 0.028
reh 0.048 0.087 (Y) 0.048 0.084 (Y) 0.055 0.034 (Y) 0.055 0.034 (Y) 0.057 0.040 (Y) pike 0.023 0.040 (Y) pike 0.023 0.020 (Y) 0.024 0.023 0.020 (Y) 0.024 0.025 0.031 (Y) 0.024 0.026 (Y) 0.026 0.027 0.036 (Y) 0.027 0.029 0.039 (Y)
cch 0.028 0.087 (Y) 0.048 0.083 (Y) 0.018 0.034 (Y) 0.024 0.17 (Y) crch 0.007 0.006 (Y) chased, 3.5 3.0
reh 0.04 (Y) o.14 0.084 (Y) o.18 0.034 (Y) o.18 0.034 (Y) o.24 0.037 0.040 (Y) pike 0.027 0.006 (Y) chased, 3.5 3.0
reh 0.048 0.034 (Y) 0.018 0.034 (Y) 0.055 0.040 (Y) 0.024 0.017 (Y) 0.027 0.006 (Y) 0.027 0.020 (Y) 0.027 0.031 (Y) 0.024 0.019 (Y) 0.010 0.028
reh 0.18 0.13 (Y) srch 0.24 0.040 (Y) rch 0.24 0.17 (Y) pike 0.023 0.020 (Y) 0.024 0.037 chased, 3.5 3.0
rch 0.055 0.040 (Y) rch 0.007 0.006 (Y) pike 0.023 0.020 (Y) 0.024 0.019 (Y) chased, 3.5 3.0
rch 0.24 0.17 (Y) rch 0.007 0.006 (Y) pike 0.023 0.020 (Y) chased, 3.5 3.0 0.10 0.08
rch 0.007 0.006 (Y) pike 0.023 0.020 (Y) 0.037 0.021 (Y) chased, 3.5 3.0
Alberta vellow perch 0.007 0.006 (Y) 0.023 0.020 (Y) pickeral 0.037 0.031 (Y) 0.034 0.031 (Y) 0.024 0.031 0.031 (Y) 0.034 0.031 0.034 0.035 0.038
yellow perch 0.0007 0.0006 (Y) northern pike 0.023 0.020 (Y) pickeral 0.037 0.021 (Y) whitefish 0.024 0.019 (Y) Ottawa 3.5 3.0 soledock 3.5 3.0
northern pike 0.023 0.020 (Y) pickeral 0.031 (Y) whitefish 0.024 0.031 (Y) ocally Purchased, 0.024 0.019 (Y) haddock 3.5 3.0 sole
pickeral 0.037 0.031 (Y) whitefish 0.024 0.019 (Y) Cotally Purchased, Addock 3.5 3.0 sole
whitefish 0.024 0.019 (Y) ocally Purchased, 3.5 3.0 haddock 3.5 0.08
Octawa 3.5 3.0 sole
k 3.5 3.0
0.10 0.08
0000
7.2 0.58 5.2 (AC)

From: J. Agric. Food Chem. 1986, 34, 315-319

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

胍類化合物 (Guanidino compounds)

- 精胺酸(arginine)、肌酸(creatine)、肌酸酐(creatinine)、章魚肉 驗(octopine)等成分都帶有胍基(guanidino group),稱之。
- 游離態精胺酸:胺基酸。甲殼類之含量較高,主要以 phosphoarginine 形式存在,屬 phosphagens 的一種。
- 肌酸:**脊椎動物肌肉**的含量豐富,其餘動物之含量少或 極低。以 **phospho**creatine 形式存在,亦屬 phosphagen。 creatinine NH, COOH NH~PO,II, Creatine **低於肌酸,但魚肉** (及畜肉)加熱後 水而生成。含量遠 肌酸脱除一分子 使之大量增加。 肌酸酐:

phophocreatine NCH,COOH

NH(CH₂),CHCOOH NH~PO,H,

phosphoargini発

魚類肌肉的肌酸及肌酸酐含量(mg/100g) 表3-25

角類		肌酸	肌酸酐	角類		肌酸	肌酸酐
画	普遍內	444	5	嘉鯔		439	9
	√ □	109	_		√ □	246	က
青花魚	厘	453	9	温	囲	581	~
	$\sqrt{\Box}$	228	က	3	√ □	249	က
鄭	阑	446	9	比目魚	闽	675	6
	$\sqrt{\Box}$	241	က	国	囲	009	∞
虚	阑	497	9		普通內	452	9
	$\sqrt{\Box}$	242	3	鼬	厘	341	S
Slo	ow muscle	scle ?	Fastr	ast muscle	~		泰田 ,1985)
)

總反應: $C_6H_12O_6+6O_2 \rightarrow 6CO_2+6H_2O+30$ (or 32) ATP (能量提供) 35

Opines

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

有機酸+胺基酸 一 Opines

酸大多為 **arginine bhosbhate (AP)**形式。當被刺激而疲勞,處於嫌氣環境下,AP解離釋出精胺酸 並進行下列反應: 軟體類、頭足類等動物在靜止狀態時,肌肉中游離態精胺

Arginine + Pyruvate + NADH + H⁺ Octopine $+ NAD^{+} + H_2O$

土要是由維持 NADH 與 NAD+ Octopine生成的生理意義: 的平衡,促進醣解反應

國立台灣海洋大學食品科學系:水產化學授課資料(一)-印思魁1060503 // 海大食品科學系:水產化學授課資料(一)-印思魁1060503

- 丙酮酸(byruvic acid) 和 arginine 以 Octopine 形式暫時性貯存 當分別在肝醣合成、AP形成所需時,再釋放出利用,即扮 演一種的調控機能。
- 軟體動物及環形動物之其他opines:

Strombine $+ NAD^{\star} + H_2O$ + Pyruvate + NADH C Tauropine + NAD+ + H₂O + Pyruvate + NADH — Alanopine + NAD* + H₂O + Pyruvate + NADH Alanine **Faurine** Glycine

 β – alanopine СН2СН2СООН alanopine СН3СНСООН СН3СНСООН СНЗСИСООН CH2CH2SO3H tauropine CITACITCOOH CHICHCOOH NII(CII2)3CHCOOH HN=C NH2 NH octopine CILCOOH strombine CH3CHCOOH

•脊椎動物、甲殼類等:opines均不存在。取而代之,嫌氣性醣解生成之<mark>乳酸</mark>,直接利用NADH而予以還原之LDH(lactate dehrdrogenase)的活性高。

Pyruvate + NADH + H $^{+}$ $\blacksquare \spadesuit$ Lactate + NAD $^{+}$ + H $_2$ O

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

鱈魚科:存在TMAO還原酶

TMAO —— dimethylamine (DMA) + formaldehyde

- •加熱處理:亦促進TMAO化學性裂解為二甲胺及甲醛,尤其溫度愈高。
- 青肉罐頭:使用TMAO含量高之鮪魚肉製造罐頭,較易出現肉色青綠化。 Model system:

Myoglobin+TMAO+cysteine —— Mb的綠色沉澱物

氧化三甲胺(trimethylamine oxide; TMAO)

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

- 維持滲透壓之功能。海產動物之含量多,淡水產很少或不存在。
- ★紅肉魚>白肉魚(鱈魚科之台量多)
- ★板鰓類、頭足類之含量很高;有些頭足類僅一般含量
- 動物死後TMAO的變化
- ★魚腥臭、不新鮮異臭、腐敗臭

細菌TMAO reductase

TMAO ____________Trimethylamine (TMA, 三甲胺)

★依魚種而定,血合肉中該酵素活性也存在。

38

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

表3-26	魚介類肌肉的氧化三甲胺含量(mg/100g)
	表3-26

魚 星锯镇青嘉紫比萬 春煙什 貂峰鰮花 調蛋白 日蓋魚,類 齒魚 河魚鰈 ***	合量 1,410 1,390 30 177 349 137 359 172	供 湿 母 母 母 女 魚 鬼 鬼 鬼 鬼 鬼 鬼 鬼 鬼 鬼 鬼 鬼 鬼 鬼	外腕外腕外閉閉閉 续肌套脱索殼殼 膜 膜 膜肌肌肌 肌 肌 鼠	合量 1,410 600 1,736 884 204 269 2 0 0
*	0.5 5			2 391 338

*淡水產

(藤田等人,1972;須山,1975;原田,1975;其他)

R素Urea

- 哺乳類動物之N代謝(urea cycle)的排泄物成分
- 板鰓類:在肝臟除了<mark>尿素循環,一部份經由 bnrine cycle</mark> 而合成的尿素,大部分在腎臟尿系管再被吸收而分布體內 肌肉中含量達1400-2100 mg/100 g。和TMAO同樣作為滲透壓 之調節。
- 動物死後尿素的變化:魚腥臭、不新鮮異臭、腐敗臭

$$Urea + H_2O$$
 $With$ $Mithan Mithan Mithan$

從尿素生成氨

4

圖2.5.1 從AMP生成氨 图2.5.2

板鰓類肌肉的尿素含量(mg/100g) 表3-27

國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 海大食品科學系:水產化學授課資料(一)-邱思魁1060503

板鰓類	合量	板鰓類	合量
貂鮫	1,707	頭鮫	1,837
貂鮫	1,676	赤土魟	1,809
鮫	1,833	何氏鰩	2,032
大溪黑鮫	1,901	日本蝠魟	1,830
鮫	1,711	褐黄扁魟	1,995

(須山・1960)

國立台灣海洋大學食品科學系:水產化學授課資料(一) - 邱思魁1060503 // 海大食品科學系:水產化學授課資料(一) - 邱思魁1060503

非的氮成分

- 包含醣類及有機酸,
- 和含氮成分比較,在種類與含量上都少
- 0 活動性大魚類,肌肉中會蓄積**高量乳酸**

- 游離醣:glucose、ribose、fructose、arabinose galactose、inositol 等。
- <mark>磷酸糖:醣解 glycolysis 及戊糖磷酸循環 pentose phosphate cycle之中閰產物。</mark>

例如	表2.4.4	表2.4.4 鯉肌肉中之磷糖和乳酸**	锋糖和乳酸∞
Glucose-1-phosphate (G1P)			(mg / 100g)
Glucose-6-phosphate (G6P)	春春	休息狀態	消耗狀態
	G6P	17	35
Fructose-o-phosphate (FoF)	F6P	8	ю
Friichse-1 6-diphosphate	FDP	29	44
	α-GP ∗	43	42
Ribose-5'-phosphate	乳酸	33	113
	-	7 77 77 78	

- 因活存時的運動程度、死 的磷酸糖含量, 存條件等而異。 無介ത的 後的保護
 - 貝柱之加熱褐變:GGD、FGP等引起的非酵變反應。 海圆 医水素 医多种

國立台灣海洋大學食品科學系:水產化學授課資料(一) --邱思魁1060203 // 海大食品科學系:水產化學授課資料(一) --邱思魁1060503

丙酮酸、乳酸:於醣解 glycolysis 時生成。

- 鮪、鰹魚等洄游性魚類肌肉中的肝醣含量達1%或 以上,漁獲後的乳酸含量亦可高達1%以上;
- 底棲性魚類之肝醣僅0.2%以下,漁獲後的乳酸亦 達 200-300 mg/100 g。
- 乳酸的生成量:受致死方法、死後的保存條件等

有機酸(organic acids)

- 魚介肉中可測出的有機酸
- 醋酸 acetic acid、丙酸 propionic acid、丙酮酸 succinic acid、檸檬酸 citric acid、草酸 oxalic fumaric acid、蘋果酸 malic acid、琥珀酸 byruvic acid、乳酸 lactic acid、延胡索酸 acid 铧
- 0 重要者:丙酮酸、乳酸、琥珀酸等

第48/48頁 國立台灣海洋大學食品科學系:水產化學授課資料(一)-邱思魁1060503 // 水產化學授課資料(一)-邱思魁1060503//

在無脊椎動物,有機酸的分布因種類而差異

- 蝦、蟹類(甲殼類)之乳酸含量亦高。
- 行醣解因而生成丙酮酸,並再和精胺酸等作縮合反應形成 lactate dehrdrogenase)活性不存在或很低,嫌氣的條件下進 魷章魚、貝類(含多量的肝醣)等:乳酸脫氫酶(LDH octopine 等 opines。
- 在二枚貝等軟體類,嫌氣性醣解所生成之**磷酸烯醇丙酮酯** phosphoenolpyruvic acid (PEP) 再進入TCA cycle,常蓄積的 最終產物主要有**琥珀酸、丙酸、丙胺酸**等。

Glycogen ⇔ G1P ⇔ PEP ⇔ pyruvate

oxaloacetate ⇔ malate ⇔ fumarate ⇔