Introdução: sumário

- Conceitos fundamentais
- ☐ Multiplexagem e comutação
- □ Débitos e atrasos
- ☐ Arquitetura em camadas

"A computer network is a group of computer systems and other computing hardware devices that are linked together through communication channels to facilitate communication and resourcesharing among a wide range of users."

Techopedia dictionary

"A computer network is a group of <u>computer systems and other</u> <u>computing hardware devices</u> that are linked together through communication channels to facilitate communication and resource-sharing among a wide range of users."

Techopedia dictionary

Exemplos de **sistemas terminais**: PCs, servidores, quintas de servidores (*server farms*), *laptops*, *tablets*, telemóveis, televisões, frigoríficos, termostatos, etc.

"A computer network is a group of computer systems and other computing hardware devices that are linked together through <u>communication channels</u> to facilitate communication and resourcesharing among a wide range of users."

Techopedia dictionary

Canal de comunicação (ponto-a-ponto; difusão): abstração de comunicação construída sobre um qualquer meio físico: par de cobre entrelaçado, cabo coaxial, fibra ótica e rádio nas suas múltiplas variantes

"A computer network is a group of computer systems and other computing hardware devices that are <u>linked together</u> through communication channels to facilitate communication and resource-sharing among a wide range of users."

Techopedia dictionary

Interligação entre sistemas computacionais é efetuada por **comutadores** que transitam informação entre canais adjacentes

"A computer network is a group of computer systems and other computing hardware devices that are linked together through communication channels to <u>facilitate communication and resource-sharing</u> among a wide range of users."

Techopedia dictionary

Exemplos de **serviços** de comunicação e partilha de recursos: encaminhamento dos dados, garantia de entrega dos dados, limites ao atraso na entrega dos dados, autenticação, conversão entre nomes e endereços, etc.

"A global computer network providing a variety of information and communication facilities, consisting of interconnected networks using standardized communication protocols."

Oxford dictionary

"A global computer network providing a variety of information and communication facilities, consisting of interconnected networks using standardized communication protocols."

Oxford dictionary

Global no sentido geográfico e no sentido de presença ubíqua em todo o tipo de sistemas terminais

"A global computer network <u>providing a variety of information and</u> <u>communication facilities</u>, consisting of interconnected networks using standardized communication protocols."

Oxford dictionary

A quem são fornecidos os serviços de comunicação e informação? A aplicações distribuídas, tais como o correio eletrónico, a WWW, a voz e o vídeo interativos (Zoom), torrentes de áudio e vídeo vivo (*audio and video live streaming*), etc.

"A global computer network providing a variety of information and communication facilities, consisting of <u>interconnected networks</u> using standardized communication protocols."

Oxford dictionary

Uma rede de redes: redes residenciais; redes empresariais e universitárias; redes (ISP) de acesso; redes (ISP) Tier-1; centros-de-dados; redes de área-extensa (WANs); redes móveis celulares, etc.

"A global computer network providing a variety of information and communication facilities, consisting of interconnected networks using standardized communication protocols."

Oxford dictionary

Protocolos de comunicação: mecanismos distribuídos que fornecem um serviço; especificação do formato das mensagens trocadas e das ações tomadas aquando da receção destas

"A global computer network providing a variety of information and communication facilities, consisting of interconnected networks using standardized communication protocols."

Oxford dictionary

Protocolos de comunicação **standardizados**: abertos, sancionados por uma entidade competente (IETF), mas de adesão voluntária

Convergência tecnológica

Rede de acesso: DSL

Rede de acesso: FTTH (PON)

residência

caixa de visita (man hole)

central local

Comutador de pacotes

FTTH – Fiber To The Home

PON – Passive Optical Network

ONT – Optical Network Terminal

OLT – *Optical Line Terminal*

Rede de acesso: 3G, 4G, 5G

RNC – Radio Network Controller

MSC – *Mobile Switching Center*

 $SGSN-Serving\ GPRS\ Support\ Node$

GPRS – General Packet Radio Service

GMSC – *Gateway MSC*

GGSN – *Gateway SGSN*

HLR – Home Location Register

VLR – Visitor Location Register

Rede de acesso: satélites

Rede empresarial/universitária

Rede residencial por DSL

 $ONT-Optical\ Network\ Terminal \\ OLT-Optical\ Line\ Terminal$

Centro de dados

CP - Content Provider CDN - Content Distribution Network AP - Application Provider IXP - Internet Exchange Point

Mapa de ASes (2015)

CAIDA's IPv4 vs IPv6 AS Core AS-level Internet Graph

Archipelago July 2015

Copyright © 2015 UC Regents. All rights reserved.

Center for Applied Internet Data Analysis

Multiplexagem determinística e comutação de circuitos

Multiplexagem por divisão no tempo (TDM – *Time Divison Multiplexing*)

Multiplexagem determinística e comutação de circuitos

Multiplexagem

• Divisão de um canal em sub-canais de capacidades fixas (TDM, FDM, WDM, CDM)

□ Comutação

- Circuito: concatenação de sub-canais ao longo de um caminho
- Tabelas de expedição: associação entre pares de entrada (canal, sub-canal) e pares de saída (canal, sub-canal)

□ Circuitos dinâmicos

- Estabelecimento do circuito: atribuições de sub-canais em cada canal de um caminho e preenchimento das tabelas de expedição
- Terminação do circuito: remoção das atribuições e limpeza das tabelas de expedição
- Bloqueio se um canal não tiver um sub-canal disponível

Multiplexagem estatística e comutação de mensagens

Tabela de expedição em R

destino	porta	
В	b	
D	b	

Tabela de expedição em S

destino	porta
В	b
D	c

Multiplexagem estatística e comutação de mensagens

Multiplexagem

- Partilha assíncrona (no tempo) de um canal entre mensagens
- Cabeçalhos distinguem as mensagens

□ Comutação

- Armazenamento-e-expedição (*store-and-forward*): cada mensagem é recebida na totalidade antes de ser expedida
- Tabelas de expedição: associação entre destinos e portas que aproximam as mensagens dos destinos
- **Congestionamento** se a taxa de chegada de mensagens a um comutador for superior à capacidade deste, conduzindo a atrasos e, possivelmente, a perdas
- **Iniquidade** (*starvation*) quando uma mensagem longa impede o despacho de mensagens curtas

Multiplexagem estatística e comutação de pacotes por datagramas

Tabela de expedição em R

destino	porta
В	b
D	b

Tabela de expedição em S

destino	porta
В	b
D	c

Multiplexagem estatística e comutação de pacotes por datagramas

- □ Mensagens e torrentes de dados (*data streams*) divididos em pacotes de pequena dimensão
- □ Cabeçalhos dos pacotes contém informação que permite o seu reagrupamento nas mensagens e torrentes de dados originais
- □ **Equidade** na partilha dos recursos de transmissão e comutação

Multiplexagem estatística e comutação de pacotes por circuitos virtuais

Tabela de expedição em R

Entrada

Saída

porta	VCI	porta	VCI
а	7	b	3
\overline{c}	7	b	6

VCI – Virtual Circuit Identifier

Multiplexagem determinística vs. estatística

□ Dados

- *N* fluxos independentes
- Cada fluxo: débito 16 Mbit/s durante 10% do tempo
- Ligação: 100 Mbit/s

Multiplexagem determinística

- Bloqueio para N > 6
- Débito no canal igual ou inferior a 9,6 Mbit/s

Multiplexagem estatística

- Probabilidade de congestionamento para N=30 é $\sum_{i=7}^{30} {30 \choose i} 0,1^i \times 0,9^{30-i} \approx 0,03$
- Débito no canal para N = 30: 48 Mbit/s

N x 16 Mbit/s @ 10% do tempo

Atraso de pacote em uma secção de um caminho

- \Box Componentes do atraso de um pacote de u para v
 - comutação em u para v, d^{switch}
 - fila-de-espera em u para v, d^{queue}
 - transmissão em u para v, d^{trans}
 - propagação de *u* para *v*, *d* ^{prop}
- \square Perda de pacotes se o *buffer* em u para v estiver cheio

Atraso de pacote em uma secção de um caminho

- *L* dimensão do pacote *X* [bits]
- *c* capacidade de *uv* [bits/s]
- d- propagação em uv [s]
- d^X atraso do pacote X de u para v [s]
- $d^{switch} = L/c$
- $d^{prop} = d$

$$d^X = d^{switch} + d^{queue} + \frac{L}{c} + d$$

Atraso de um pacote ao longo de um caminho

 c_0 , d_0

 u_0

Atraso ao longo de um caminho

$$d^X = \sum_{i=0}^{n-1} \left(\frac{L}{c_i} + d_i\right)$$

 c_2 , d_2

Latência de mensagem com N pacotes

Atraso de propagação no caminho

$$\sum_{i=0}^{n-1} d_i$$

Capacidade do caminho

$$\min_{0 \le i < n} (c_i)$$

$$d^{X_N} = \sum_{i=0}^{n-1} \frac{L}{c_i} + \sum_{i=0}^{n-1} d_i + \frac{(N-1)L}{\min\limits_{0 \le i < n} (c_i)} \approx \sum_{i=0}^{n-1} d_i + \frac{NL}{\min\limits_{0 \le i < n} (c_i)}$$

Latência de uma torrente de áudio (VoIP)

- *r* débito de codificação
- *L* dimensão dos pacotes
- d^{VoIP} atraso na comunicação

• $d^{packet} = L/r$

$$d^{VoIP} = \frac{L}{r} + \sum_{i=0}^{n-1} \frac{L}{c_i} + \sum_{i=0}^{n-1} d_i \approx \frac{L}{r} + \sum_{i=0}^{n-1} d_i$$

Atraso em fila-de-espera

- Pacotes de comprimento fixo: *L* [bits]
- Chegada de pacotes ao canal de saída: processo de Poisson com taxa λ [pkt/s] (fila M/D/1)
- Capacidade do canal de saída: c [bit/s]
- Débito à entrada do canal de saída: $\lambda \times L$
- Utilização do canal de saída: $\rho = \lambda \times L/c$
- Probabilidade de um pacote esperar em fila: ρ
- Atraso médio em fila: $\frac{L}{c} \frac{\rho}{2(1-\rho)}$

Tamanho dos pacotes na prática

Tipicamente, os pacotes têm entre 64 bytes e 1500 bytes

	10 Mbit/s	100 Mbit/s	1 Gbit/s	10 Gbit/s
64 bytes	51,2 μs	5,1 µs	512 ηs	51 ηs
1500 bytes	1,2 ms	120 µs	12 µs	1,2 µs
64 Kibytes	52,4 ms	5,2 ms	520 µs	52 µs

Para capacidades elevadas, a granularidade em pacotes pode ser desprezada

traceroute

tracert (windows), traceroute (linux), www.traceroute.org

		www.it.pt					Trace	eroute		
Нор	Host	С	Loss%	ASN	best	Avg	worst Country		BGP Prefix	ASName
3	D 99-185-40-2.lightspeed.sntcca.sbcglobal.	5	0%	7132	21.6	21.94	22.5	US	99.176.0.0/12	SBIS-AS - AT&T Inte
4	D 71.145.12.202	5	0%	7132	21.7	21.9	22.2	US	71.128.0.0/11	SBIS-AS - AT&T Inte
	D 71.145.0.4	5	0%	7132	22.3	23.8	27.9	US	71.128.0.0/11	SBIS-AS - AT&T Inte
	D 151.164.43.214	5	096	7132	21.1	58.04	204.7	US	151.164.43.0/24	SBIS-AS - AT&T Inte
	D ppp-151-164-38-141.rcsntx.swbell.net	5	0%	7132	20.8	21.5	22	US	151.164.0.0/16	SBIS-AS - AT&T Inte
	D asn1299-telia.egsjca.sbcglobal.net	5	0%	7132	20.7	24.6	30.6	US	151.164.0.0/16	SBIS-AS - AT&T Inte
)	D las-bb1-link.telia.net	5	0 %	1299	96.7	96.8	97	EU	80.91.248.0/21	TELIANET TeliaNet G
1	D prs-bb1-link.telia.net	5	0%	1299	174	176.78	185.8	EU	80.91.248.0/21	TELIANET TeliaNet G
2	D mno-b1-link.telia.net	5	0.96	1299	186.1	222.78	343.8	EU	80.91.248.0/21	TELIANET TeliaNet G
3	D dante-ic-125713-mno-b1, c.telia, net	5	0.96	1299	185.8	186.02	186.2	EU	213.248.64.0/18	TELIANET TeliaNet G
4	D so-6-3-0.rt1.gen.ch.geant2.net	5	0.96	20965	194.3	196.84	206.2	EU	62.40.96.0/19	GEANT The GEANT IP
5	D so-7-0-0.rt1.mad.es.geant2.net	5	096	20965	215.8	216.14	216.8	EU	62.40.96.0/19	GEANT The GEANT IP
6	D fccn-gw.rt1.mad.es.geant2.net	5	0.96	20965	227.1	227.3	227.5	EU	62.40.96.0/19	GEANT The GEANT IP
7	D ROUTER9.10GE.Lisboa.fccn.pt	5	0.96	1930	226.9	227.26	227.6	PT	193.136.0.0/15	RCCN Rede Ciencia T
8	D UTL.Lisboa.fccn.pt	5	0.96	1930	227.1	227.38	227.8	PT	193.136.0.0/15	RCCN Rede Ciencia T
9	D gatekeeper1.ist.utl.pt	5	0 %	1930	227.4	227.74	227.9	PT	193.136.0.0/15	RCCN Rede Ciencia T
	<u>D</u> 193.136.222.254	5	0%	1930	228.2	228,42	228.7	PT	193.136.0.0/15	RCCN Rede Ciencia T
2	D sintra.lx.it.pt	5	0%	1930	227.5	228.08	228.6	PT	193.136.0.0/15	RCCN Rede Ciencia T

Page rendered in 2.6138 seconds for www.it.pt

Speedmeter

Speedmeter

Arquitetura modular em camadas

Encapsulamento de pacotes

Arquitetura da Internet (simplificação)

Conteúdo

Aplicação

API de sockets IP

Transporte

Rede

Ligação de dados

Física

- □ Aplicação
 - Protocolos dependentes da aplicação em causa
- □ Transporte
 - Controlo de erros e de fluxo extremo-a-extremo, controlo de congestionamento
- □ Rede
 - Encaminhamento e expedição globais
- □ Ligação de dados
 - Controlo de erros local, encaminhamento e expedição locais, controlo de acesso ao meio
- □ Multiplexagem e identificação em todas as camadas

Arquitetura da Internet nos dispositivos

Identificadores na Internet: nomes e endereços

Ap. Serviço+Nome

Trans. Porto+Endereço IP

Rede Endereço IP

L. dados Endereço MAC

MAC – Medium Access Control

- □ Serviço
 - http (www), smtp (@)
- □ Nomes
 - tecnico.ulisboa.pt, amazon.com
- □ Portos:
 - 25, 80, 58000
- □ Endereços IP:
 - 192.178.222.79 (IPv4)
 - 2001:db8:3e8:110:9a71:5f4e:74a1:120 (IPv6)
- □ Endereços MAC
 - 67-89-AB-CD-EF

Problema dos dois generais: concordância

- □ Os generais A e B são aliados e inimigos do general X
- □ A e B só conseguem derrotar X se o ataque for coordenado
- □ A decide se o ataque ocorrerá de noite ou de madrugada
- □ A comunicação entre A e B é por intermédio de mensageiros que podem ser capturados por X
- □ Que protocolo permite a A e a B coordenar o ataque?

Tentativa de protocolo

- □ A envia mensagem a B com informação de ataque
 - Como é que A sabe que B recebeu mensagem?
- □ B envia confirmação a A
 - Como é que B sabe que a confirmação chegou a A?
- ☐ A envia confirmação da confirmação a B
 - Como é que A sabe que a confirmação da confirmação chegou a B?
- ┙ ...

Impossibilidade de concordância

- $\hfill \square$ Protocolo P com o qual A e B terminam no mesmo estado: noite ou madrugada
- □ Em qualquer execução de *P* pelo menos uma mensagem tem que ser entregue de A para B
- \square Execução E de P com um número mínimo de mensagens entregues; Execução E com a última mensagem entregue de E perdida
 - Seja de B para A a última mensagem entregue
 - Estado final de B é o mesmo em *E* e em *E*'
 - Dado P, estado final de A em E'é o mesmo de B em E'; portanto, é o mesmo de A em E
 - Contradição: E' contém menos mensagens entregues do que E

A comunicação é possível!

- ☐ Há problemas que não requerem concordância
 - Por exemplo, a entrega de uma mensagem de A para B pode requerer que A saiba que a mensagem foi entregue, mas não requer que B saiba que A saiba que a mensagem foi entregue
- □ Problemas de concordância são possíveis com uma pequena margem de incerteza
 - O protocolo termina como uma pequeníssima probabilidade de o estado final não ser concordante (Monte Carlo)
 - O protocolo não termina com uma pequeníssima probabilidade, mas nas execuções terminantes há concordância (Las Vegas)