Решени задачи от въведение в теория на числата

Валентин Стоянов

март 2018

Задача 1.

Да се докаже, че за всяко естествено число n, числото n^3+11n се дели на 6.

Доказателство по индукция:

1. База n = 1

6 | 12 да.

2. Индукционна хипотеза

Допускаме, че $6 \mid n^3 + 11n$

3. Индукционна стъпка

Проверяваме дали твърдението е вярно за $n+1 \Rightarrow$ \Rightarrow $6 \mid (n+1)^3+11(n+1)$ \Leftrightarrow $6 \mid n^3+3n^2+3n+1+11n+11$ \Leftrightarrow $6 \mid 3n^2+3n$ \Leftrightarrow $6 \mid 3n(n+1)$ \Leftrightarrow $2 \mid n(n+1)$ Но n(n+1) са две поредни числа \Rightarrow винаги поне едно е четно \Rightarrow $2 \mid n(n+1)$

Задача 2.

Да се докаже, че за всяко естествено число n, числото $3^{2^n}-1$ се дели на 2^{n+2} .

Доказателство по индукция:

1. База n = 1

8 | 8 да.

2. Индукционна хипотеза

Допускаме, че $2^{n+2} \mid 3^{2^n} - 1$

3. Индукционна стъпка

Проверяваме дали твърдението е изпълнено за $n+1\Rightarrow 2^{(n+1)+2}\mid 3^{2^{n+1}}-1$ $\Leftrightarrow 2^{(n+2)+1}\mid 3^{2^{n+1}}-1$ $\Leftrightarrow 2^{n+2}2^1\mid 3^{2^{n}2^1}-1$ $\Leftrightarrow 2^{n+2}2\mid 3^{2^{n}2^1}-1$ $\Leftrightarrow 2^{n+2}2\mid (3^{2^n})^2-1$ $\Leftrightarrow 2^{n+2}2\mid (3^{2^n})^2-1$ $\Leftrightarrow 2^{n+2}2\mid (3^{2^n}-1)(3^{2^n}+1)$ $\Leftrightarrow 2\mid (3^{2^n}+1)$ 3^{2^n} е нечетно число $\Rightarrow 3^{2^n}+1$ е четно $\Rightarrow 2\mid (3^{2^n}+1)$

Задача 3.

Да се намери d = HOД(a, b) и цели числа u, v, за които, <math>au + bv = d, ако:

a)
$$a = 315$$
, $b = 72$;

Решение:

Намираме НОД чрез алгоритъма на Евклид ⇒

```
\Rightarrow d = НОД(a, b) = НОД(315, 72)
315 : 72 = 4(остатък 27)
72 : 27 = 2(остатък 18)
27 : 18 = 1(остатък 9)
18 : 9 = 2(остатък 0)
НОД е последният ненулев остатък \Rightarrow d = (315, 72) = 9
```

$$6) a = 975, b = 308;$$

Решение: