

Học viện Công nghệ Bưu chính Viễn thông Khoa Công nghệ thông tin 1

Toán rời rạc 1

Bài toán đếm

TS. Đào Thị Thúy Quỳnh

Nội dung

- □ Giới thiệu
- □ Các nguyên lý đếm cơ bản
- Quy về bài toán con
- □ Hệ thức truy hồi
- □ Bài tập

Giới thiệu bài toán đếm

Bài toán đểm

- Là bài toán đếm xem có bao nhiêu cấu hình tổ hợp có thể tạo ra với những quy tắc đã nêu?
- Lời giải thường phụ thuộc vào số tham số ban đầu và người ta cố gắng biểu diễn những phụ thuộc này bằng những công thức toán học

Nguyên tắc chung giải bài toán đếm

 Để đếm các cấu hình đã cho, người ta tìm cách đưa về các cấu hình quen thuộc bằng cách thiếp lập một quan hệ 1-1 giữa chúng

Úng dụng của bài toán đếm trong khoa học máy tính

- Ước lượng số phép toán thực hiện trong một giải thuật, chương trình máy tính
- Ước lượng độ phức tạp thời gian và không gian của giải thuật

Các phương pháp giải quyết bài toán đếm

- Sử dụng các nguyên lý đểm cơ bản: nguyên lý cộng, nguyên lý nhân, nguyên lý bù trừ
- Qui về các bài toán con: Phân tích lời giải bài toán đếm phức tạp thành những bài toán con. Trong đó, mỗi bài toán con có thể giải được bằng các nguyên lý đếm cơ bản
- Sử dụng hệ thức truy hồi: Xây dựng công thức tính số nghiệm tổng quát bất kỳ dựa vào biểu diễn các số hạng biết trước
- Phương pháp hàm sinh: Sử dụng hàm sinh của một dãy số để đếm các cấu hình tổ hợp

Nội dung

- □ Giới thiệu
- Các nguyên lý đếm cơ bản
- Quy về bài toàn con
- □ Hệ thức truy hồi
- □ Bài tập

Nguyên lý cộng

Giả sử để làm công việc A có 2 phương pháp

- Phương pháp 1 có n cách làm
- Phương pháp 2 có m cách làm

Khi đó số cách làm công việc A là n+m

Ví dụ. An có 3 áo tay dài, 5 áo tay ngắn. Để chọn 1 cái áo thì An có mấy cách

Nguyên lý cộng (nhắc lại)

Giả sử một nhiệm vụ nào đó có thể thực hiện bởi hai phương pháp. Phương pháp thứ nhất có thể thực hiện bằng n_1 cách, phương pháp thứ hai thực hiện bằng n_2 cách thực hiện. Khi đó, sẽ có n_1 , n_2 cách thực hiện nhiệm vụ nêu trên.

Nếu A và B là hai tập rời nhau thì:

$$|A \cup B| = |A| + |B|$$

 \square Nếu $\{A_1, A_2, ..., A_k\}$ là một phân hoạch của tập hợp X thì

$$|X| = |A_1| + |A_2| + \cdots + |A_k|$$

■ Bài toán: Giả sử N, M là hai số tự nhiên đã xác định giá trị. Hãy cho biết giá trị của S sau khi thực hiện đoạn chương trình.

$$S = 0;$$

for $(i = 1; i i <= N; i + +)$
 $S + +;$
for $(j = 1; j <= M; j + +)$
 $S + +;$

□ Bài toán: Giả sử N, M là hai số tự nhiên đã xác định giá trị. Hãy cho biết giá trị của S sau khi thực hiện đoạn chương trình.

$$S = 0;$$

for $(i = 1; i \le N; i + +)$
 $S + +;$
for $(j = 1; j \le M; j + +)$
 $S + +;$

Lời giải: Gọi số phép toán thực hiện trong vòng lặp thứ nhất là T_1 , số phép toán thực hiện trong vòng lặp thứ hai là T_2 . Vì hai vòng lặp thực hiện độc lập nhau nên theo nguyên lý cộng, giá trị của $S = T_1 + T_2 = N + M$.

Nguyên lý nhân

Giả sử để làm công việc A cần thực hiện 2 bước

- Bước 1 có n cách làm
- Bước 2 có m cách làm

Khi đó số cách làm công việc A là n.m

Ví dụ:

Có 3.2 =6 con đường đi từ A đến C

Nguyên lý nhân (nhắc lại)

- □ Giả sử một nhiệm vụ nào đó được tách ra làm hai việc. Việc thứ nhất có thể thực hiện bằng n_1 cách, việc thứ hai thực hiện bằng n_2 cách sau khi việc thứ nhất đã được thực hiện. Khi đó, sẽ có n_1n_2 cách thực hiện nhiệm vụ nêu trên.
- □ Nếu mỗi thành phần a_i của bộ có thứ tự k thành phần (a_1, a_2, \ldots, a_k) có n_i khả năng chọn, thì số bộ được tạo ra sẽ là tích các khả năng $n_1n_2 \ldots n_k$
- □ Hệ quả:
 - $|A_1 \times A_2 \times \cdots \times A_k| = |A_1||A_2| \dots |A_k|$
 - $\circ |A^k| = |A|^k$

Ví du 2

□ **Bài toán**: Giả sử n_1 , n_2 là hai số nguyên dương đã xác định giá trị. Hãy cho biết giá trị của S sau khi thực hiện đoạn chương trình dưới đây?

```
int S = 0;
for (int i = 1; i <= n1; i + +)
for (int j = 1; j <= n2; j + +)
S + +;
```


□ **Bài toán**: Giả sử n_1 , n_2 là hai số nguyên dương đã xác định giá trị. Hãy cho biết giá trị của S sau khi thực hiện đoạn chương trình dưới đây?

```
int S = 0;
for (int i = 1; i <= n1; i + +)
for (int j = 1; j <= n2; j + +)
S + +;
```

□ **Lời giải.** Với mỗi giá trị của $i = 1,2, ..., n_1$ thì S được cộng n_2 đơn vị. Do vậy, theo nguyên lý nhân, sau n_1 vòng lặp giá trị của $S = n_1 \times n_2$.

□ Bài toán: Có bao nhiêu số nguyên dương có 5 chữ số không chứa chữ số 1 và không có 2 chữ số nào giống nhau?

Bài toán: Có bao nhiêu số nguyên dương có 5 chữ số không chứa chữ số 1 và không có 2 chữ số nào giống nhau?

Lời giải:

- Xét số có 5 chữ số a₁a₂a₃a₄a₅
- a₁ có 8 cách chọn (trừ 0 và 1)
- a₂ có 8 cách chọn (trừ a₁ và 1)
- o a_3 có 7 cách chọn (trừ a_1 , a_2 , và 1)
- o a_4 có 6 cách chọn (trừ a_1 , a_2 , a_3 , và 1)
- a₅ có 5 cách chọn (trừ a₁, a₂, a₃, a₄, và 1)
- Vậy có 8x8x7x6x5 số thỏa mãn

Bài toán: có bao nhiêu tên biến trong ngôn ngữ lập trình C độ dài 8 chỉ chứa hai chữ cái a,b và bắt đầu bởi aaa hoặc bbb?

- Bài toán: có bao nhiêu tên biến trong ngôn ngữ lập trình C độ dài 8 chỉ chứa hai chữ cái a,b và bắt đầu bởi aaa hoặc bbb?
- Lời giải: Tập các biến thỏa mãn đề bài được phân hoạch làm 2 tập: một tập gồm các biến bắt đầu bằng aaa, tập kia gồm các biến bắt đầu bằng bbb. Mỗi tên biến độ dài 8 bắt đầu bằng aaa (hoặc bbb) có thể được xây đựng như sau:
- Chọn ký tự thứ 4, chọn ký tự thứ 5, ..., chọn ký tự thứ 8.
- Mỗi ký tự có 2 cách chọn: a hoặc b
- $_{\circ}$ Có tất cả $2 \times 2 \times 2 \times 2 \times 2 = 32$ cách
- Toàn bộ có: 32 + 32 = 64 biến

Nguyên lý bù trừ

Khi các phương án A_1 , A_2 , ..., A_n để thực hiện công việc A không độc lập với nhau

- ⇒ Không thể dùng quy tắc cộng để tính cách thực hiện A.
- ⇒ Sau khi cộng số cách làm mỗi phương án cần trừ đi số cách làm trùng lặp.
 - Nguyên lý bù trừ: Nếu A và B là hai tập hợp, khi đó: $|A \cup B| = |A| + |B| |A \cap B|$
 - Tổng quát, nếu A_1,A_2,\ldots,A_k là các tập hợp hữu hạn, khi đó: $|A_1\cup A_2\cup\ldots\cup A_k|=N_1-N_2+\ldots+(-1)^{k-1}N_k,$

Trong đó, N_i là tổng của tất cả các giao của i tập lấy từ k tập đã cho

Một số nguyên lý cơ bản

Trong kỳ thi học sinh giỏi cấp thành phố, một trường PTCS có 20 học sinh đạt giải môn Toán, 11 học sinh đạt giải môn văn, trong số đó có 7 em đạt giải đồng thời cả Văn và Toán. Hỏi trường có bao nhiều học sinh đạt giải học sinh giỏi?

Giải:

Gọi A là tập các học sinh đạt giải môn Toán, B là tập các học sinh đạt giải môn Văn. Khi đó, tổng số học sinh đạt giải của trường là:

$$N(A \cup B) = N(A) + N(B) - N(A \cap B)$$

= 20 + 11 - 7 = 24

Giả sử một trường đại học có 1503 sinh viên năm thứ nhất. Trong số đó có 435 sinh viên tham gia CLB tin học, 267 sinh viên tham gia CLB toán học và 99 sinh viên tham gia cả hai CLB. Hỏi có bao nhiều sinh viên không tham gia cả CLB toán học cũng như CLB tin học?

Chỉnh hợp:

 Chỉnh hợp lặp: Một chỉnh hợp lặp chập k của n phần tử là bộ có thứ tự gồm k phần tử lấy từ n phần tử của tập đã cho, mỗi phần tử có thể lấy lặp lại

$$A_n^k = n^k$$

Ví dụ: Từ tập Q={a,b,c} có thể đặt bao nhiều tên biến có độ dài =4.

Chỉnh hợp:

 Chỉnh hợp lặp: Một chỉnh hợp lặp chập k của n phần tử là bộ có thứ tự gồm k phần tử lấy từ n phần tử của tập đã cho, mỗi phần tử có thể lấy lặp lại

$$A_n^k = n^k$$

Ví dụ: Từ tập Q={a,b,c} có thể đặt bao nhiêu tên biến có độ dài =4.

Mỗi tên biến có độ dài 4 kí tự và được lấy ra từ tập Q. 3x3x3x3=81

Chỉnh hợp:

 Chỉnh hợp không lặp: Một chỉnh hợp không lặp chập k của n phần tử là bộ có thứ tự gồm k phần tử lấy từ n phần tử của tập đã cho, mỗi phần tử không được lấy lặp lại

$$P_n^k = \text{n.(n-1)(n-2)...(n-k+1)} = \frac{n!}{(n-k)!}$$

 Ví dụ: Có bao nhiêu số có 4 chữ số khác nhau được chọn từ tập {1,3,4,5,6,7}

 Hoán vị: ta gọi các hoán vị của n phần tử là một cách xếp có thứ tự các phần tử đó. Số các hoán vị của tập n phần tử có thể coi là trường hợp riêng của chỉnh hợp không lặp với k=n.

$$P_n^n = n.(n-1)(n-2)...1 = n!$$

 Ví dụ: Có bốn người rủ nhau đi chụp ảnh là Anh, Bắc, Cúc, Dương. Hãy tính có bao nhiêu kiểu ảnh chụp mà tất cả bốn người đứng thành một hàng?

Tổ hợp:

 Tổ hợp không lặp: Một tổ hợp không lặp chập k của n phần tử là cách chọn không phân biệt thứ tự k phần tử từ tập n phần tử, mỗi phần tử không được lấy lặp lại.

$$C_n^k = \frac{n!}{(n-k)!\,k!}$$

 Ví dụ: Có 12 đội bóng tham dự giải chuyên nghiệp quốc gia, các đội thi đấu vòng tròn một lượt. Hỏi có bao nhiêu trận đấu được tổ chức?

Tổ hợp:

 Tổ hợp lặp: Mỗi cách chọn ra k vật từ n loại vật khác nhau (trong đó mỗi loại vật có thể được chọn lại nhiều lần) được gọi là tổ hợp lặp chập k của n

$$R_n^k = C_{n+k-1}^k = \frac{(n+k-1)!}{(n-1)!k!}$$

□ **Bài toán**: Phương trình $x_1 + x_2 + x_3 = 11$ có bao nhiều nghiệm nguyên không âm?

- □ **Bài toán**: Phương trình $x_1+x_2+x_3=11$ có bao nhiều nghiệm nguyên không âm?
- **Lời giải:** Mỗi nghiệm của phương trình tương ứng với cách chọn 11 phần tử từ 3 loại phần tử sao cho có x_1 phần tử loại 1, x_2 phần tử loại 2, x_3 phần tử loại 3 được chọn. Vì vậy số nghiệm bằng số tổ hợp lặp chập 11 phần tử từ 3 loại phần tử.

$$C_{13}^{11} = \frac{13 \times 12}{2} = 78$$

□ **Bài toán**: Phương trình $x_1 + x_2 + \cdots + x_n = k$ có bao nhiêu nghiệm nguyên không âm?

- □ **Bài toán**: Phương trình $x_1+x_2+\cdots+x_n=k$ có bao nhiêu nghiệm nguyên không âm?
- Lời giải: Tương tự Ví dụ 5 ta sẽ có số nghiệm nguyên không âm của phương trình là:

$$R_n^k = C_{n-1+k}^k = \frac{(n-1+k)!}{(n-1)!k!}$$

□ **Bài toán:** Phương trình $x_1+x_2+x_3=11$ có bao nhiêu nghiệm nguyên không âm thỏa mãn $x_1 \ge 1$, $x_2 \ge 2$, $x_3 \ge 3$.

- □ **Bài toán:** Phương trình $x_1+x_2+x_3=11$ có bao nhiều nghiệm nguyên không âm thỏa mãn $x_1\ge 1, x_2\ge 2, x_3\ge 3$.
- □ **Lời giải:** Phương trình tương đương:

$$(x_1-1) + (x_2-2) + (x_3-3) = 5$$

Đặt
$$y_1 = x_1 - 1, y_2 = x_2 - 2, y_3 = x_3 - 3$$

Phương trình trở thành: $y_1+y_2+y_3=5$

Theo Ví dụ 6, số nghiệm nguyên không âm là

$$C_{3-1+5}^5 = C_7^5 = \frac{7 \times 6}{2} = 21$$

□ **Bài toán**: Phương trình $x_1 + x_2 + \cdots + x_n = k$ có bao nhiều nghiệm nguyên không âm thỏa mãn $x_1 \ge m_1, ..., x_n \ge m_n$?

□ **Bài toán**: Phương trình $x_1+x_2+\cdots+x_n=k$ có bao nhiều nghiệm nguyên không âm thỏa mãn $x_1 \ge m_1, ..., x_n \ge m_n$?

Lời giải: Phương trình tương đương

$$(x_1 - m_1) + \cdots + (x_n - m_n) = k - (m_1 + \cdots + m_n)$$

Đặt
$$m = k - (m_1 + \cdots + m_n)$$

Bài toán quy về tìm số nghiệm nguyên không âm của

phương trình:
$$y_1+y_2+\cdots+y_n=m$$

Theo Ví dụ 6:
$$C^{m}_{n-1+m}$$

Bài toán: Phương trình $x_1+x_2+x_3+x_4+x_5+x_6=24$ có bao nhiều nghiệm nguyên không âm thỏa mãn $1 \le x_1 \le 5$, $3 \le x_2 \le 7$?

Bài toán: Phương trình $x_1+x_2+x_3+x_4+x_5+x_6=24$ có bao nhiều nghiệm nguyên không âm thỏa mãn $1 \le x_1 \le 5$, $3 \le x_2 \le 7$?

Lời giải: Gọi N_1 , N_2 , N_3 , N_4 là số các nghiệm nguyên không âm của phương trình (1), (2), (3), (4).

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 1, x_2 \ge 3 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 6, x_2 \ge 3; \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 1, x_2 \ge 8; \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 1, x_2 \ge 8; \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 6, x_2 \ge 8; \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 6, x_2 \ge 8; \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 6, x_2 \ge 8; \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 6, x_2 \ge 8; \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 6, x_2 \ge 8; \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 6, x_2 \ge 8; \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 6, x_2 \ge 8; \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 6, x_2 \ge 8; \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24 \\ x_1 \ge 6, x_2 \ge 8; \end{cases}$$

Ví du 9

Theo Ví dụ 8 ta có:

$$N_1 = C^{20}_{6-1+20} = C^{20}_{25} = 53130$$

 $N_2 = C^{15}_{6-1+15} = C^{15}_{20} = 15504$
 $N_3 = C^{15}_{6-1+15} = C^{15}_{20} = 15504$
 $N_4 = C^{10}_{6-1+10} = C^{10}_{15} = 3003$

Vì vậy số nghiệm thỏa mãn yêu cầu bài toán là:

$$N = N_1 - N_2 - N_3 + N_4$$

= 53130 - 15504 - 15504 + 3003
= 25125

- Một đợt phát hành xổ số mỗi tấm vé số gồm 2 phần. Phần chữ gồm 2 chữ cái nhận giá trị từ A đến Z, phần số gồm 4 chữ số nhận giá trị từ 0 đến 9. Mỗi đợt phát hành như vậy có 1 giải đặc biệt, 2 giải nhất, 5 giải nhì, và 10 giải ba. Tính xác suất 1 tấm vé số trúng giải từ giải ba trở lên trong 2 trường hợp sau
- a. Phần chữ đứng trước phần số trong mỗi tấm vé số.
- b. Phần chữ đứng tùy ý trong mỗi tấm vé số.

Tính số trận đấu tại mỗi vòng chung kết World Cup bóng đá.

Khi các phương án A_1 , A_2 , ..., A_n để thực hiện công việc A không độc lập với nhau

- ⇒ Không thể dùng quy tắc cộng để tính cách thực hiện A.
- ⇒ Sau khi cộng số cách làm mỗi phương án cần trừ đi số cách làm trùng lặp.
 - Nguyên lý bù trừ: Nếu A và B là hai tập hợp, khi đó: $|A \cup B| = |A| + |B| |A \cap B|$
 - Tổng quát, nếu A_1,A_2,\ldots,A_k là các tập hợp hữu hạn, khi đó: $|A_1\cup A_2\cup\ldots\cup A_k|=N_1-N_2+\ldots+(-1)^{k-1}N_k,$

Trong đó, N_i là tổng của tất cả các giao của i tập lấy từ k tập đã cho

n = 2 x: 2 l an $A \qquad B$ n = 3 x, y, z: 2 l an t: 3 l an $N(A \cup B \cup C) = N(A) + N(B) + N(C)$ $-N(A \cap B) - N(B \cap C) - N(C \cap A)$ $+N(A \cap B \cap C)$

Ví dụ: Xác định số lượng các số nguyên dương nhỏ hơn hoặc bằng 1000 chia hết cho 9 hoặc 11?

□ **Ví dụ:** Xác định số lượng các số nguyên dương nhỏ hơn hoặc bằng 1000 chia hết cho 9 hoặc 11?

Lời giải:

Gọi A_1 là tập các số thuộc X và chia hết cho 9

 A_2 là tập các số thuộc X và chia hết cho 11

Khi đó $A_1 \cup A_2$ là tập các số nguyên dương nhỏ hơn hoặc bằng 1000 chia hết cho 9 hoặc 11 và $A_1 \cap A_2$ là tập các số nguyên dương chia hết cho 9 và 11.

Trong đó, số số nguyên dương nhỏ hơn hoặc bằng 1000 chia hết 9 là [1000/9] và [1000/11] số chia hết cho 11. Vì 9 và 11 là hai số nguyên tố cùng nhau nên số chia hết cho 9 và 11 là số chi hết cho 9.11=99. Số này là [1000/9.11].

 $N|A_1 \cup A_2| = N|A_1| + N|A_2| - N|A_1 \cap A_2| = [1000/9] + [1000/11] - [1000/9.11] = 111 + 90 - 10 = 191.$

□ Bài toán: Trong tập hợp X = {1,2, ..., 10000} có bao nhiêu số không chia hết cho bất kỳ số nào trong các số 3, 4, 7 ?

□ Bài toán: Trong tập hợp X = {1,2, ..., 10000} có bao nhiều số không chia hết cho bất kỳ số nào trong các số 3, 4, 7?
Lời giải:

Gọi A_1 là tập các số thuộc X và chia hết cho 3 A_2 là tập các số thuộc X và chia hết cho 4 A_3 là tập các số thuộc X và chia hết cho 7

Khi đó $|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$

Tính toán trực tiếp các giá trị ta có:

$$N_1 = |A_1| + |A_2| + |A_3|$$

= [10000/3] + [10000/4] + [10000/7]
= 3333 + 2500 + 1428 = 7261.
 $N_2 = |A_1 \cap A_2| + |A_1 \cap A_3| + |A_2|$

$$N_2 = |A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|$$

$$=[10000/(3*4)] + [10000/(3*7)] + [10000/(4*7)]$$

$$=833+476+357=1666.$$

$$N_3 = |A_1 \cap A_2 \cap A_3| = [10000/(3*4*7)] = 119$$

Từ đó ta có số các số hoặc chia hết cho 3, hoặc chia hết cho 4, hoặc chia hết cho 7 là

$$N = N_1 - N_2 + N_3 = 7261 - 1666 + 119 = 5714.$$

Như vậy, số các số không chia hết cho bất kỳ số 3, 4, 7 là K = 10000 - N = 4286

□ Có bao nhiêu cách xếp 5 người, A, B, C, D, E, đứng thành một hàng ngang sao cho A không đứng cạnh B?

☐ Tính số lượng số có 5 chữ số sao cho có ít nhất hai chữ số giống nhau?

□ Biết rằng có 1202 sinh viên học tiếng Anh, 813 sinh viên học tiếng Pháp, 114 sinh viên học tiếng Nga, 103 sinh viên học cả tiếng Anh và tiếng Pháp, 23 sinh viên học tiếng Anh và tiếng Nga, 14 sinh viên học cả tiếng Pháp và tiếng Nga. Nếu tất cả 2092 sinh viên đều theo học ít nhất một ngoại ngữ, thì có bao nhiêu sinh viên học cả ba thứ tiếng?

Nội dung

- ☐ Giới thiệu
- Các nguyên lý đếm cơ bản
- Quy về bài toán con
- Hệ thức truy hồi
- Phương pháp hàm sinh
- Bài tập

Quy về bài toán con

- Một phương pháp khác để giải bài toán đếm là quy về các bài toán con đơn giản hơn
 - Diều này không phải lúc nào cũng dễ dàng vì ta cần phải phân tích sâu sắc các cấu hình cần đếm

Ví du 13

□ **Bài toán**: Trong các số tự nhiên có 7 chữ số hãy đếm số các số thuận nghịch (số đối xứng) có tổng các chữ số là 18?

- □ Bài toán: Trong các số tự nhiên có 7 chữ số hãy đếm số các số thuận nghịch (số đối xứng) có tổng các chữ số là 18?
- □ **Lời giải**: Một số thỏa mãn đề bài có dạng $x_1x_2x_3x_4x_3x_2x_1(x_1 \ge 1)$ và

$$2x_1 + 2x_2 + 2x_3 + x_4 = 18$$

- □ Vì $2x_1$, $2x_2$, $2x_3$ là những số chẵn nên x_4 cũng phải là một số chẵn. Do đó x_4 có thể nhận các giá trị 0, 2, 4, 6,8.
- □ Gọi N_0 , N_2 , N_4 , N_6 , N_8 là số nghiệm của pt ứng với các trường hợp x4 nhận giá trị 0, 2, 4, 6, 8. Theo nguyên lý cộng số cần tìm là

$$N = N_0 + N_2 + N_4 + N_6 + N_8$$

 Ta có N₀, N₂, N₄, N₆, N₈ là số nghiệm của các pt tương ứng sau

$$\begin{cases} 2x_1 + 2x_2 + 2x_3 + 0 = 18 \\ x_1 \ge 1 \end{cases} \Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 9 \\ x_1 \ge 1 \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 + 2x_3 + 2 = 18 \\ x_1 \ge 1 \end{cases} \Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 8 \\ x_1 \ge 1 \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 + 2x_3 + 4 = 18 \\ x_1 \ge 1 \end{cases} \Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 7 \\ x_1 \ge 1 \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 + 2x_3 + 6 = 18 \\ x_1 \ge 1 \end{cases} \Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 6 \\ x_1 \ge 1 \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 + 2x_3 + 8 = 18 \\ x_1 \ge 1 \end{cases} \Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 5 \\ x_1 \ge 1 \end{cases}$$

Các bài toán con này có thể giải dễ dàng theo Ví dụ 8

Nội dung

- □ Giới thiệu
- □ Các nguyên lý đếm cơ bản
- Quy về bài toàn con
- □ Hệ thức truy hồi
- □ Bài tập

- **Định nghĩa**: Hệ thức truy hồi đối với dãy số $\{a_n\}$ là công thức biểu diễn a_n qua một hay nhiều số hạng đi trước của dãy, cụ thể là $a_1, a_2, \ldots, a_{n-1}$, với n nguyên và $n \ge n_0$, trong đó n_0 là nguyên không âm. Dãy số được gọi là lời giải hay nghiệm của hệ thức truy hồi nếu các số hạng của nó thỏa mãn hệ thức truy hồi này.
- □ **Ví dụ**: Cho $\{a_n\}$ là dãy số thỏa mãn hệ thức truy hồi $a_n = a_{n-1} a_{n-2}$, với $n \ge 2$, và giả sử $a_0 = 3$, $a_1 = 5$. Tìm a_2 và a_3 ?

Ví dụ: Trong một quần thể vi sinh vật số lượng các cá thể tăng gấp đôi sau mỗi giờ. Sau 4 giờ số lượng chúng là bao nhiêu, nếu ban đầu có tất cả 5 cá thể?

- **Định nghĩa**: Hệ thức truy hồi đối với dãy số $\{a_n\}$ là công thức biểu diễn a_n qua một hay nhiều số hạng đi trước của dãy, cụ thể là a_1 , a_2 , ..., a_{n-1} , với n nguyên và $n \ge n_0$, trong đó n_0 là nguyên không âm.
 - Dãy số được gọi là lời giải hay nghiệm của hệ thức truy hồi nếu các số hạng của nó thỏa mãn hệ thức truy hồi này.
- □ **Ví dụ 14**: Cho $\{a_n\}$ là dãy số thỏa mãn hệ thức truy hồi $a_n = a_{n-1} a_{n-2}$, với $n \ge 2$, và giả sử $a_0 = 3$, $a_1 = 5$. Tìm a_2 và a_3 ?
- Lời giải. Từ hệ thức truy hồi ta có:

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$
,
 $a_3 = a_2 - a_1 = 2 - 5 = -3$.

□ **Ví dụ 15**: Trong một quần thể vi sinh vật số lượng các cá thể tăng gấp đôi sau mỗi giờ. Sau 4 giờ số lượng chúng là bao nhiêu, nếu ban đầu có tất cả 5 cá thể?

□ **Ví dụ**: Trong một quần thể vi sinh vật số lượng các cá thể tăng gấp đôi sau mỗi giờ. Sau 4 giờ số lượng chúng là bao nhiêu, nếu ban đầu có tất cả 5 cá thể?

Lời giải:

Ta giả sử số cá thể sau n giờ là a_n . Vì số cá thể tăng gấp đôi sau mỗi giờ nên ta có quan hệ: $a_n = 2a_{n-1}$ với n là số nguyên dương tùy ý với điều kiện ban đầu $a_0 = 5$.

$$a_4 = 2a_3 = 2.2$$
. $a_2 = 2.2.2$. $a_1 = 2.2.2$. $a_0 = 2^4a_0 = 2^4$. $5 = 80$.

Mô hình hóa hệ thức truy hồi

- Sử dụng hệ thức truy hồi, ta có thể mô hình hóa được lớp rất rộng trong thực tế. Mỗi bài toán cụ thể ta có một phương pháp mô hình hóa khác nhau. Dưới đây là một số ví dụ điển hình.
- Ví dụ 16: Bài toán dân số. Giả sử năm 1995, dân số thế giới là 7 tỉ người. Mỗi năm, dân số thế giới tăng 3%. Đến năm 2020, dân số thế giới là bao nhiều người?

Lời giải: Gọi dân số thế giới sau n năm là P_n . Khi đó, dân số năm thứ n bằng 1.03 dân số thế giới năm trước đó. Từ đó ta có công thức truy hồi cho dãy $\{P_n\}$ như sau.

$$P_n = 1.03P_{n-1}$$
, với $n \ge 1$ và $P_0 = 7$.

Để tính P_n ta có thể sử dụng phương pháp lặp như sau:

$$P_1 = 1.03. P_0 = 1.03. 7$$

 $P_2 = 1.03. P_1 = (1.03)^2.7$

$$P_n = 1.03 P_{n-1} = (1.03)^n$$
.7

Từ đó ta có $P_{25} = (1.03)^{25}.7$

Ví du 17

□ **Bài toán Lãi kép**: Một người gửi X=1000 đô la vào tài khoản của mình tại ngân hàng với lãi suất kép 11% một năm. Hỏi sau 30 năm người đó có bao nhiều tiền trong tài khoản?

Ví du 17

□ Gọi P_n là tổng số tiền có trong tài khoản sau n năm. Vì số tiền có trong tàikhoản sau n năm bằng số tièn có được trong (n-1) năm cộng lãi suất năm thứ n. Nên dãy $\{P_n\}$ thỏa mãn hệ thức truy hồi:

$$P_n = P_{n-1} + 0.11 P_{n-1} = 1.11 P_{n-1}$$

Chúng ta có thể dùng phương pháp lặp để tìm công thức trên cho P_n . Dễ nhận thấy rằng:

$$P_n = 10000$$

$$P_n = 1.11. P_0$$

$$P_n = 1,11. P_1 = (1.11)^2 P_0$$

. . . .

$$P_n = 1.11. P_{n-1} = (1.11)^n P_0$$

Ta có thể chứng minh tính đúng đắn của công thức truy hồi bằng quy nạp.

Thay
$$P_0 = 10000$$
, và n=30 ta được: $P_{30} = (1.11)^{n-1}P_0$

 \Box Gọi a_n là số xâu nhị phân độ dài n không có 2 số 0 liên tiếp. Xây dựng công thức truy hồi cho a_n và tính a_6 .

□ Gọi a_n là số xâu nhị phân độ dài n không có 2 số 0 liên tiếp. Để nhận được hệ thức truy hồi $\{a_n\}$, ta thấy theo nguyên tắc cộng, ta chia ra làm 2 trường hợp. Xét với $n \ge 3$.

Ta chia làm 2 trường hợp

- 1) Xâu nhị phân độ dài n kết thúc bằng số 1 thỏa mãn yêu cầu bài ra
- 2) Xâu nhị phân độ dài n kết thúc bằng số 0 thỏa mãn yêu cầu bài ra, suy ra số thứ (n-1) phải là 1.

Dễ thấy trong trường hợp 1) có a_{n-1} xâu thỏa mãn

Trường hợp 2) có a_{n-2} xâu thỏa mãn

Vậy
$$a_n = a_{n-1} + a_{n-2}$$

Tính số từ mã: Một hệ máy tính coi một xâu các chữ số hệ thập phân là một từ mã hợp lệ nếu nó chứa một số chẵn chữ số 0. Ví dụ từ 1683**0**4**0**73 là hợp lệ, từ 1**0**32**0**3**0**44 là không hợp lệ. Hãy tìm hệ thức truy hồi cho các từ mã hợp lệ có độ dài n?

- Tính số từ mã: Một hệ máy tính coi một xâu các chữ số hệ thập phân là một từ mã hợp lệ nếu nó chứa một số chẵn chữ số 0. Ví dụ từ 168304073 là hợp lệ, từ 103203044 là không hợp lệ. Hãy tìm hệ thức truy hồi cho các từ mã hợp lệ có độ dài n?
- \square **Gợi ý:** Gọi số từ mã hợp lệ độ dài n là a_n

Xét với $n \ge 2$, Ta chia làm 2 trường hợp

- 1) Xâu (n-1) chữ số đầu tiên là từ mã hợp lệ, suy ra chữ số cuối cùng khác 0. Vậy có $9a_{n-1}$
- 2) Xâu (n-1) chữ số đầu tiên không là từ mã hợp lệ, suy ra chữ số cuối cùng là 0. Vậy có $(10^{n-1} a_{n-1})$

Vậy
$$a_n = 9a_{n-1} + (10^{n-1} - a_{n-1}) = 8a_{n-1} + 10^{n-1}$$

- a) Hãy tìm hệ thức truy hồi và điều kiện đầu để tính số các xâu nhị phân có độ dài n có ít nhất một dãy hai số 0 liên tiếp?
- b) Hãy tìm hệ thức truy hồi và điều kiện đầu tìm số các xâu nhị phân có độ dài n không có dãy ba số 1 liên tiếp?
- c) Hãy tìm hệ thức truy hồi và điều kiện đầu tìm số các xâu nhị phân có độ dài n không có dãy bốn số 1 liên tiếp?
- d) Hãy tìm hệ thức truy hồi và điều kiện đầu tìm số các xâu nhị phân có độ dài n có ít nhất một dãy ba số 1 liên tiếp?
- e) Hãy tìm hệ thức truy hồi và điều kiện đầu tìm số các xâu nhị phân có độ dài n có ít nhất một dãy bốn số 1 liên tiếp?
- f) Hãy tìm hệ thức truy hồi và điều kiện đầu tìm số các xâu nhị phân có độ dài n không có dãy k số 1 liên tiếp?
- g) Hãy tìm hệ thức truy hồi và điều kiện đầu tìm số các xâu nhị phân có độ dài n có ít nhất một dãy k số 1 liên tiếp?

Phương pháp lặp giải hệ thức truy hồi

- Phương pháp: Lặp đến khi gặp điều kiện đầu trong các công thức truy hồi.
- Bài tập: Hãy tìm nghiệm của công thức truy hồi với điều kiện đầu dưới đây:

$$a_{n} = a_{n-1} + 2$$

$$v\acute{o}i \ a_0 = 3.$$

b)
$$a_n = a_{n-1} + n$$

$$v\acute{o}i a_0 = 1.$$

c)
$$a_n = a_{n-1} + 2n + 3$$
 vá $a_0 = 4$.

$$v\acute{a}$$
 $a_0 = 4$.

d)
$$a_n = a_{n-1} + 2^n$$

$$v\acute{o}i a_0 = 1.$$

$$e) a_n = a_{n-1} - 2n - 3$$

$$v\acute{o}i \ a_0 = 4.$$

🕇 Phương pháp lặp giải hệ thức truy hồi

a)
$$a_n = a_{n-1} + 2 \text{ v\'oi } a_0 = 3$$

= $a_{n-2} + 2 + 2$
= $a_{n-3} + 2 + 2 + 2$
= $a_{n-4} + 2 + 2 + 2 + 2$
=...
= $a_{n-n} + 2 + 2 + \cdots + 2 = a_0 + 2n = 3 + 2n$

PTAT

🎢 Phương pháp lặp giải hệ thức truy hồi

e)
$$a_n = a_{n-1} - 2n - 3$$
 với $a_0 = 4$

$$= a_{n-2} - 2(n-1) - 3 - 2n - 3 = a_{n-2} - 4n - 4$$

$$= a_{n-3} - 2(n-2) - 3 - 4n - 4 = a_{n-3} - 6n - 3$$

$$= a_{n-4} - 2(n-3) - 3 - 6n - 3 = a_{n-4} - 8n$$

$$= a_{n-5} - 2(n-4) - 3 - 8n = a_{n-5} - 10n + 5$$

$$= a_{n-6} - 2(n-5) - 3 - 10n + 5 = a_{n-6} - 12n + 12$$

$$= a_{n-7} - 2(n-6) - 3 - 12n + 12 = a_{n-7} - 14n + 21$$

$$= a_{n-8} - 2(n-7) - 3 - 14n + 21 = a_{n-8} - 16n + 32$$

. . .

$$= a_{n-k} - 2kn + (k-4)k$$

Vậy, với k=n ta có:

$$a_n = a_0 - 2n^2 + (n-4)n = 4 - 4n - n^2$$

Hệ thức truy hồi tuyến tính thuần nhất

oxdot **Định nghĩa:** Một hệ thức truy hồi tuyến tính thuần nhất bậc k với hệ số hằng số là hệ thức truy hồi có dạng:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$
 (1)

trong đó, $c_1, c_2, ..., c_k$ là các hằng số và $c_k \neq 0$.

Ta cần tìm công thức trực tiếp tính số hạng a_n của dãy $\{a_n\}$ thỏa mãn điều kiện (1).

Dãy số $\{a_n\}$ thỏa mãn điều kiện (1) sẽ được xác định duy nhất nếu nó thỏa mãn các điều kiện ban đầu như sau:

$$a_0 = C_0, a_1 = C_1, \dots, a_{k-1} = C_{k-1}$$
 (2)

trong đó C_0, \ldots, C_{k-1} là các hằng số.

- \Box Hệ thức truy hồi $P_n = (1.11)P_{n-1}$ là hệ thức truy hồi tuyến tính thuần nhất bậc 1
- \Box Hệ thức truy hồi $f_n = f_{n-1} + f_{n-2}$ là hệ thức truy hồi tuyến tính thuần nhất bậc 2
- \Box Hệ thức truy hồi $a_n = a_{n-5}$ là hệ thức truy hồi tuyến tính thuần nhất bậc 5
 - Hệ thức truy hồi $a_n = a_{n-1} + (a_{n-2})^2$ là không tuyến tính
 - Hệ thức truy hồi $H_n = 2H_{n-1} + 1$ là không thuần nhất Hệ thức $B_n = nB_n$ -1 không có hệ số hằng số

Phương pháp giải

□ Phương pháp chung để giải các hệ thức truy hồi tuyến tính thuần nhất là tìm nghiệm dưới dạng $a_n = r^n$, trong đó r là hằng số. Chú ý rằng, $a_n = r^n$ là nghiệm của hệ thức truy hồi khi và chỉ khi

$$r^{n} = c_{1}r^{n-1} + c_{2}r^{n-2} + \dots + c_{k}r^{n-k}$$
 (3)

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k} = 0$$
 (4)

Trường hợp nghiệm phân biệt

□ **Định lý**: Cho c_1, c_2 là hai số thực. Giả sử phương trình đặc trưng

$$r^2 - c_1 r - c_2 = 0$$

có hai nghiệm phân biệt r_1, r_2 . Khi đó, dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

khi và chỉ khi

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$

Trong đó α_1 và α_2 là các hằng số.

Để tìm α_1 và α_2 ta sử dụng các điều kiện ban đầu.

□ Bài toán: Tìm nghiệm của hệ thức truy hồi

$$a_n = a_{n-1} + 2a_{n-2}$$

với
$$a_0 = 2, a_1 = 7$$
.

Bài toán: Tìm nghiệm của hệ thức truy hồi

$$a_n = a_{n-1} + 2a_{n-2}$$

với $a_0 = 2, a_1 = 7$.

Giải:

Bước 1: Tìm nghiệm của phương trình đặc trưng

$$r^2-r-2=0 \Leftrightarrow r_1=2, r_2=-1.$$

Bước 2: Xây dựng công thức tổng quát cho {a_n}

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n$$

Bước 3: Xác định các hằng số dựa trên điều kiện ban đầu

$$\begin{cases} \alpha_1 + \alpha_2 = 2 \\ 2\alpha_1 - \alpha_2 = 7 \end{cases} \Leftrightarrow \begin{cases} \alpha_1 = 3 \\ \alpha_2 = -1 \end{cases}$$

Bước 4: Hoàn chỉnh nghiệm

$$a_n = 3.2^n - (-1)^n$$

□ Tìm nghiệm của hệ thức truy hồi $F_n = F_{n-1} + F_{n-2}$, $n \ge 2$, với điều kiện ban đầu $F_0 = 0$, $F_1 = 1$.

- Tìm nghiệm của các hệ thức truy hồi với điều kiện đầu dưới đây
- 1) $a_n = a_{n-1} + 6a_{n-2} \text{ v\'d} n \ge 2 \text{ v\'a } a_0 = 3, a_1 = 6.$
- 2) $a_n = 7a_{n-1} 10a_{n-2} \text{ vá} n \ge 2 \text{ và } a_0 = 2, a_1 = 1.$
- 3) $a_n = 13a_{n-1} 22a_{n-2} \text{ v\'d} n \ge 2 \text{ v\'a } a_0 = 3, a_1 = 15.$
- 4) $a_n = -13a_{n-1} 22a_{n-2} \text{v\'ol} n \ge 2 \text{ và } a_0 = 3, a_1 = 15.$

Trường hợp nghiệm kép

□ **Định lý:** Cho c_1, c_2 là hai số thực. Giả sử phương trình đặc trưng $r^2 - c_1 r - c_2 = 0$

có nghiệm kép $r_0=r_1=r_2$. Khi đó, dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

khi và chỉ khi

$$a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$$

Trong đó α_1 và α_2 là các hằng số.

Để tìm α_1 và α_2 ta sử dụng các điều kiện ban đầu.

□ Bài toán: Tìm nghiệm của hệ thức truy hồi

$$a_n = 6a_{n-1} - 9a_{n-2}$$

với
$$a_0 = 1, a_1 = 6$$
.

Bài toán: Tìm nghiệm của hệ thức truy hồi

$$a_n = 6a_{n-1} - 9a_{n-2}$$

với $a_0 = 1, a_1 = 6$.

□ Giải:

Bước 1: Tìm nghiệm của phương trình đặc trưng

$$r^2 - 6r + 9 = 0 \Leftrightarrow r_0 = r_1 = r_2 = 3.$$

Bước 2: Xây dựng công thức tổng quát cho {a_n}

$$a_n = \alpha_1 3^n + \alpha_2 n 3^n$$

Bước 3: Xác định các hằng số dựa trên điều kiện ban đầu

$$\begin{cases} \alpha_1 = 1 \\ 3\alpha_1 + 3\alpha_2 = 6 \end{cases} \Leftrightarrow \begin{cases} \alpha_1 = 1 \\ \alpha_2 = 1 \end{cases}$$

Bước 4: Hoàn chỉnh nghiệm

$$a_n = 3^n + n3^n$$

- Tìm nghiệm của các hệ thức truy hồi thỏa mãn các điều kiện ban đầu sau đây
- 1) $a_n = 2a_{n-1} a_{n-2}$, $v\acute{a} n \ge 2 \ v\grave{a} \ a_0 = 4$, $a_1 = 1$.
- 2) $a_n = 4a_{n-1} 4a_{n-2}$, $vol n \ge 2$ $val a_0 = 6$, $a_1 = 8$.
- 3) $a_n = -4a_{n-1} 4a_{n-2}$, $v\acute{0}$ $n \ge 2$ $v\grave{a}$ $a_0 = 0$, $a_1 = 1$.
- 4) $a_n = -6a_{n-1} 9a_{n-2}$, $value 1 \ge 2$ value 2 = 3, $a_1 = -3$.
- 5) $a_n = 14a_{n-1} 49a_{n-2} \text{ v\'ol } n \ge 2 \text{ v\'ol } a_0 = 3, a_1 = 35.$
- 6) $a_n = -14a_{n-1} 49a_{n-2} \text{ v\'a } n \ge 2 \text{ v\'a } a_0 = 3, a_1 = 35.$

Trường hợp nghiệm phức

□ **Định lý:** Cho c_1, c_2 là hai số thực. Giả sử phương trình đặc trưng

$$r^2 - c_1 r - c_2 = 0$$

có hai nghiệm phức liên hợp:

$$\begin{cases} r_1 = r(\cos(\theta) + i.\sin(\theta)) \\ r_2 = r(\cos(\theta) - i.\sin(\theta)) \end{cases}$$

Khi đó, dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

khi và chỉ khi

$$a_n = r^n(\alpha_1 \cos(n\theta) + \alpha_2 \sin(n\theta))$$

Trong đó α_1 và α_2 là các hằng số.

Để tìm α_1 và α_2 ta sử dụng các điều kiện ban đầu.

Chuyển số phức sang dạng lượng giác

Để chuyển số phức z = a + bi sang dạng lượng giác $z = r(\cos \phi + i \sin \phi)$ ta phải tìm được module và argument của số phức.

Bằng việc đồng nhất biểu thức hai số phức ta có:
$$\begin{cases} r = \sqrt{a^2 + b^2} \\ a = r\cos\phi \\ b = r\sin\phi \end{cases} \Leftrightarrow \begin{cases} r = \sqrt{a^2 + b^2} \\ \cos\phi = \frac{a}{r} = \frac{a}{\sqrt{a^2 + b^2}}, (1) \\ \sin\phi = \frac{b}{r} = \frac{b}{\sqrt{a^2 + b^2}}, (2) \end{cases}$$

Hệ phương trình trên cho phép chúng ta thực hiện việc chuyển đổi dễ dàng từ đại số sang lượng giác.

Bài toán: Tìm nghiệm của hệ thức truy hồi

$$a_n = 2a_{n-1} - 4a_{n-2}$$

với
$$a_1 = 4, a_2 = 4$$
.

Bước 1: Tìm nghiệm của phương trình đặc trưng

$$r^{2} - 2r + 4 = 0 \Leftrightarrow \begin{cases} r_{1} = 2\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right) \\ r_{2} = 2\left(\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)\right) \end{cases}$$

Bước 2: Xây dựng công thức tổng quát cho $\{a_n\}$

$$a_n = 2^n \left(\alpha_1 \cos\left(n\frac{\pi}{3}\right) + \alpha_2 \sin\left(n\frac{\pi}{3}\right)\right)$$

Bước 3: Xác định các hằng số dựa trên điều kiện ban đầu

$$\begin{cases} 2\left(\frac{1}{2}\alpha_1 + \frac{\sqrt{3}}{2}\alpha_2\right) = 4 \\ 4\left(-\frac{1}{2}\alpha_1 + \frac{\sqrt{3}}{2}\alpha_2\right) = 4 \end{cases} \Leftrightarrow \alpha_1 = 1; \alpha_2 = \sqrt{3}$$

Bước 4: Hoàn chỉnh nghiệm

$$a_n = 2^n \left(\cos\left(n\frac{\pi}{3}\right) + \sqrt{3}\sin\left(n\frac{\pi}{3}\right)\right)$$

Trường hợp tổng quát

▶ **Định lý**: Cho $c_1, c_2, ..., c_k$ là các số thực. Giả sử phương trình đặc trưng

$$r^k - c_1 r^{k-1} - \dots - c_{k-1} r - c_k = 0$$

Có k nghiệm phân biệt $r_1, r_2, ..., r_k$.

Khi đó, dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

khi và chỉ khi

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_k r_k^n$$

Trong đó $\alpha_1,...,\alpha_k$ là các hằng số.

Để tìm $\alpha_1,...,\alpha_k$ ta sử dụng các điều kiện ban đầu.

- Tìm nghiệm của các hệ thức truy hồi với điều kiện ban đầu sau:
- 1) $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$, với $n \ge 3$ và $a_0 = 2$, $a_1 = 5$, $a_2 = 15$.
- 2) $a_n = 2a_{n-1} + a_{n-2} 2a_{n-3}$, với $n \ge 3$ và $a_0 = 3$, $a_1 = 6$, $a_2 = 0$.
- 3) $a_n = 7a_{n-2} + 6a_{n-3}$, với $n \ge 3$ và $a_0 = 9$, $a_1 = 10$, $a_2 = 32$.
- 4) $a_n = 2a_{n-1} + 5a_{n-2} 6a_{n-3}$, với $n \ge 3$ và $a_0 = 7$, $a_1 = -4$, $a_2 = 8$.

Nội dung

- ☐ Giới thiệu
- ☐ Các nguyên lý đếm cơ bản
- Quy về bài toàn con
- Hệ thức truy hồi
- □ Bài tập