P1 de Álgebra Linear I -2011.2

3 de Setembro de 2011.

Nome:	Matrícula:
Assinatura:	Turma:

Preencha CORRETA e COMPLETAMENTE todos os campos (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota <u>ZERO</u>. Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Duração: 1 hora 50 minutos

	\mathbf{Q}	1.a	1.b	1.c	2.a	2.b	2.c	3.a	3. b	3.c	4.a	4. b	4.c	soma
	V	0.5	1.0	0.5	1.0	1.0	1.0	0.5	1.0	1.5	1.0	0.5	0.5	10.0
Ī	Ν													

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) não serão corrigidos!!.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento. cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado. fonte: mini-Aurélio

1)

a) Considere o vetor $\overrightarrow{u} = (1,0,1)$. Determine se existe um vetor \overrightarrow{n} tal que

$$\overrightarrow{n} \times \overrightarrow{u} = \overrightarrow{\mathbf{k}} = (0, 0, 1).$$

Caso o vetor \overrightarrow{n} exista escreva suas coordenadas explicitamente.

b) Considere vetores \overrightarrow{w} e \overrightarrow{v} de \mathbb{R}^3 que verificam as seguintes propriedades:

$$||\overrightarrow{w}|| = 1, \quad ||\overrightarrow{v}|| = 4, \quad e \quad \overrightarrow{w} \cdot \overrightarrow{v} = 0.$$

Determine $||\overrightarrow{w} \times \overrightarrow{v}||$.

c) Considere vetores \overrightarrow{a} e \overrightarrow{c} de \mathbb{R}^3 tais que $||\overrightarrow{a}||=4$ e

$$(\overrightarrow{a} + \overrightarrow{c}) \cdot (\overrightarrow{a} - \overrightarrow{c}) = 0.$$

Calcule $||\overrightarrow{c}||$.

Resposta:

2) Considere as retas r_1 e r_2 cujas equações paramétricas são

$$r_1 = (1+t, -1, t), t \in \mathbb{R}$$
 $r_2 = (2+t, 0, 2+t), t \in \mathbb{R}.$

- a) Determine a equação cartesiana do plano π que contém as retas r_1 e r_2 .
- **b)** Determine a distância entre as retas r_1 e r_2 .
- c) Determine um ponto Q do plano π calculado no item (a) que seja equidistante das retas r_1 e r_2 (isto é, a distância entre r_1 e Q e entre r_2 e Q são iguais). Verifique a propriedade de equidistância.

Resposta:

3) Considere os pontos

$$A = (1, 1, 2), \quad B = (2, 0, 1), \quad C = (1, 1, 0).$$

- a) Determine a área do triângulo cujos vértices são $A, B \in C$.
- b) Determine a equação cartesiana do plano ϱ que contém os pontos A, B e C.
- c) Determine um ponto D do plano ϱ tal que A,B e D sejam os vértices de um triângulo retângulo isósceles Δ cujos catetos sejam os segmentos AB e AD (isósceles significa que os segmentos AB e AD têm o mesmo comprimento).

Resposta:

4) Considere o sistema

$$x + 2y + z = b_1,$$

 $x - 2y - 3z = b_2,$
 $x + y + az = b_3.$

- a) Determine as condições sobre $a,\ b_1,b_2$ e b_3 para que o sistema tenha solução única.
- **b)** Determine as condições sobre a, b_1, b_2 e b_3 para que o sistema não tenha solução.
- c) Determine as condições sobre a, b_1, b_2 e b_3 para que as soluções do sistema sejam da forma $(1+t, 2-t, 1+t), t \in \mathbb{R}$.