74HC/HCT595

FEATURES

- · 8-bit serial input
- · 8-bit serial or parallel output
- Storage register with 3-state outputs
- · Shift register with direct clear
- . 100 MHz (typ) shift out frequency
- · Output capability:
 - parallel outputs; bus driver
 - serial output; standard
- I_{cc} category: MSI.

APPLICATIONS

- Serial-to-parallel data conversion
- Remote control holding register.

DESCRIPTION

The 74HC/HCT595 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The "595" is an 8-stage serial shift register with a storage register and 3-state outputs. The shift register and storage register have separate clocks.

Data is shifted on the positive-going transitions of the SH_{CP} input. The data in each register is transferred to the storage register on a positive-going transition of the ST_{CP} input. If both clocks are connected together, the shift register will always be one clock pulse ahead of the storage register.

The shift register has a serial input (D_s) and a serial standard output (Q_7) for cascading. It is also provided with asynchronous reset (active LOW) for all 8 shift register

stages. The storage register has 8 parallel 3-state bus driver outputs. Data in the storage register appears at the output whenever the output enable input (OE) is LOW.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}\text{C}$; $t_r = t_f = 6 \, \text{ns}$.

SYMBOL	24244575	CONDITIONS	TY	UNIT	
	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PHL} /t _{PLH}	propagation delay SH _{CP} to Q ₇ ' ST _{CP} to Q _n MR to Q ₇ '	C _L = 15 pF V _{CC} = 5 V	16 17 14	21 20 19	ns ns ns
f _{max}	maximum clock frequency SH _{CP} , ST _{CP}		100	57	MHz
Ci	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	115	130	pF

Notes

 C_{p_D} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz C_L = output load capacitance in pF

 $f_0 = \text{output frequency in MHz}$ $V_{CC} = \text{supply voltage in V}$

 $\Sigma(C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

For HC the condition is $V_1 = GND$ to V_{CC} For HCT the condition is $V_1 = GND$ to V_{CC} - 1.5 V.

ORDERING INFORMATION

ſ	EXTENDED TYPE	PACKAGE								
١	NUMBER	PINS	PIN POSITION	MATERIAL	CODE					
	74HC/HCT595N	16	DIL	plastic	SOT38Z					
	74HC/HCT595D	16	SO16	plastic	SOT109A					

74HC/HCT595

PINNING

SYMBOL	PIN	DESCRIPTION
Q ₀ - Q ₇	15, 1 - 7	parallel data output
GND	8	ground (0 V)
Q ₇ '	9	serial data output
MR	10	master reset (active LOW)
SH _{CP}	11	shift register clock input
ST _{CP}	12	storage register clock input
ŌĒ	13	output enable (active LOW)
Ds	14	serial data input
V _{cc}	16	positive supply voltage

74HC/HCT595

FUNCTION TABLE

		INPUTS	_		OUI	PTUTS	FUNCTION			
SH _{CP}	STCP	ŌĒ	MR	Ds	Q ₇ '	Q _n				
X	х	L	1	х	L	NC	a LOW level on MR only affects the shift registers			
×	1	L	L	х	L	L	empty shift register loaded into storage register			
×	x	н	L	х	L	z	shift register clear. Parallel outputs in high-impedance OFF-state			
↑	x	L	Н	Н	Q ₆ '	NC	logic high level shifted into shift register stage 0. Contents of all shift register stages shifted through, e.g. previous state of stage 6 (internal Q ₆ ') appears on the serial output (Q ₇ ')			
X	, ↑	L	Н	x	NC	Q _n '	contents of shift register stages (internal Q _n ') are transferred to the storage register andparallel output stages			
↑	1	L	Н	x	Q ₆ '	Q _n '	contents of shift register shifted through. Previous contents of the shift register is transferred to the storage register and the parallel output stages.			

H = HIGH voltage level

L = LOW voltage level

↑ = LOW-to-HIGH transition

↓ = HIGH-to-LOW transition

Z = high-impedance OFF-state

NC = no change X = don't care.

725

74HC/HCT595

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: parallel outputs, bus driver; serial output, standard $\,$ I $_{\rm cc}$ category: MSI.

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$.

		T _{amb (°C)}								TES	CONDITION
SYMBOL	PARAMETER		+25			o +85	40 to	+125	UNIT	V _{cc} (V)	WAVEFORMS
ļ		MIN	TYP	MAX	MIN	MAX	MIN	MAX			WATER OTTIME
	l dolov		52	160	_	200	-	240	ns	2.0	
t _{PHL} /t _{PLH}	propagation delay SH _{CP} to Q ₇ '	-	19	32	-	40	-	48	ns	4.5	Fig.7
	SHCP to Q7	l –	15	27		34	-	41	ns	6.0	-
	propagation delay	-	55	175	-	220	-	265	ns	2.0	F:- 0
t _{PHL} /t _{PLH}	ST _{CP} to Q _n	-	20	35]-	44	-	53	ns	4.5	Fig.8
THE TO	S1CP LO CIn	-	16	30	<u> </u>	37		45	ns	6.0	
^"	N1-1	_	47	175	-	220	-	265	ns	2.0	<u> </u>
t _{PHL}	propagation delay	-	17	35	1-	44	-	53	ns	4.5	Fig.10
FILE	MR to Q ₇ '	-	14	30		37	-	45	ns	6.0	<u> </u>
	3-state output	-	47	150	-	190	-	225	ns	2.0	1
t_{PZH}/t_{PZL}	enable time	_	17	30	l –	38	-	45	ns	4.5	Fig.11
TPZH TPZL	OE to Q _n	_	14	26	-	33	l	38	ns	6.0	
	3-state output disable time OE to Qn	-	41	150	Ī-	190	T-	225	ns	2.0	
t _{PHZ} /t _{PLZ}		_	15	30	-	38	-	45	ns	4.5	Fig.11
PHZ PLZ		_	12	26	-	33	l –	38	ns	6.0	
	shift clock pulse width HIGH or LOW	75	17	1_	95	-	110	T-	ns	2.0	
+		15	6	_	19	-	22		ns	4.5	Fig.7
t _w		13	5	_	16	-	19	1-	ns	6.0	
	storage clock	75	11	1-	95	1_	110	-	ns	2.0	
t _w		15	4	_	19	 _	22	-	ns	4.5	Fig.8
w	or LOW	13	3	-	16	-	19	-	ns	6.0	
	012011	75	17	1_	95	_	110	T-	ns	2.0	
t _w	master reset	15	6.0	l_	19	-	22	1-	ns	4.5	Fig.10
·w	pulse width LOW	13	5.0	-	16	1-	19	-	ns	6.0	
		50	11		65	1-	75	-	ns	2.0	
t _{su}	set-up time Ds to	10	4.0	_	13	-	15	-	ns	4.5	Fig.9
^L su	SH _{CP}	9.0	3.0	1-	11	-	13	l	ns	6.0	
	ļ	75	22	1_	95	_	110	1-	ns	2.0	
+	set-up time SH _{CP}	15	8	-	19	_	22	-	ns	4.5	Fig.8
t _{su}	to ST _{CP}	13	7	_	16	-	19	-	ns	6.0	
		3	-6	-	3	-	3	-	ns	2.0	
t _h	hold time D _s to	3	-2	-	3	-	3	-	ns	4.5	Fig.9
th	SH _{CP}	3	-2	-	3	-	3		ns	6.0	
	 	50	-19	1_	65		75	T-	ns	2.0	
	removal time MR	10	-7	_	13	_	15	-	ns	4.5	Fig.10
t_{rem}	to SH _{CP}	9	-6	1_	11	1_	13	-	ns	6.0	

74HC/HCT595

					T _{amb (°C})				TEST	CONDITION	
SYMBOL	PARAMETER		+25		-40 1	o +85	-40 to	+125	UNIT	V _{cc}	WAVEFORMS	
		MIN	TYP	MAX	MIN	MAX	MIN	MAX		(v)		
	maximum clock	6	30	_	4.8		4	-	MHz	2.0		
f _{max}	pulse frequency SH _{CP} or ST _{CP}	30 35	91 108	- -	24 28	- -	20 24	 -	MHz MHz	4.5 6.0	Figs 7 and 8	

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: parallel outputs, bus driver; serial output, standard $I_{\rm CC}$ category: MSI.

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

$$GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$$

INPUT	UNIT LOAD COEFFICIENT
D _s	0.25
MR	1.50
SH _{CP}	1.50
ST _{CP}	1.50
ŌĒ	1.50

74HC/HCT595

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$.

		T _{amb (°C)}								TEST CONDITION	
SYMBOL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{cc}	WAVEFORMS
		MIN	TYP	MAX	MIN	MAX	MIN	MAX		(V)	WAVEI ORING
t _{PHL} /t _{PLH}	propagation delay SH _{CP} to Q ₇ '	_	25	42	-	53	_	63	ns	4.5	Fig.7
t _{PHL} /t _{PLH}	propagation delay ST _{CP} to Q _n	-	24	40		50	-	60	ns	4.5	Fig.8
t _{PHL}	propagation delay MR to Q ₇ '	-	23	40	_	50	_	60	ns	4.5	Fig.10
t _{PZH} / t _{PZL}	3-state output enable time OE to Q _n	-	21	35	_	44	_	53	ns	4.5	Fig.11
t _{PHZ} /t _{PLZ}	3-state output disable time OE to Q _n	-	18	30	_	38		45	ns	4.5	Fig.11
t _w	shift clock pulse width HIGH or LOW	16	6	-	20	_	24		ns	4.5	Fig.7
t _w	storage clock pulse width HIGH or LOW	16	5	_	20		24	-	ns	4.5	Fig.8
t _w	master reset pulse width LOW	20	8		25	_	30	_	ns	4.5	Fig.10
t _{su}	set-up time D _s to SH _{CP}	16	5	-	20	_	24	-	ns	4.5	Fig.9
t _{su}	set-up time SH _{CP} to ST _{CP}	16	8	-	20	_	24		ns	4.5	Fig.8
t _h	hold time D _S to SH _{CP}	3	-2	[-	3	_	3	-	ns	4.5	Fig.9
t _{rem}	removal time MR to SH _{CP}	10	-7	_	13	_	15		ns	4.5	Fig.10
f _{max}	maximum clock pulse frequency SH _{CP} or ST _{CP}	30	52	-	24	_	20	_	MHz	4.5	Figs 7 and 8

74HC/HCT595

AC WAVEFORMS

Fig.7 Waveforms showing the clock (SH_{CP}) to output (Q₇') propagation delays, the shift clock pulse width and maximum shift clock frequency.

Fig.8 Waveforms showing the storage clock (ST_{CP}) to output (Q_n) propagation delays, the storage clock pulse width and the shift clock to storage clock set-up time.

Fig.10 Waveforms showing the master reset ($\overline{\text{MR}}$) pulse width, the master reset to output (Q_7 ') propagation delay and the master reset to shift clock (SH_{CP}) removal time.

74HC/HCT595

Note to AC waveforms

(1) HC : V_M = 50%; V_I = GND to V_{CC} HCT: V_M = 1.3 V; V_I = GND to 3 V.