Introduction to Probability Theory and Statistics

EXAM, JUNE 2016

Probability Theory

Problem 1

Let a production line consist of 5 components (or robots R_1, \ldots, R_5), two robots in sequence, followed by 3 robots in parallel (see Figure). Each robot R_i functions independently from the others with a probability p_i , $i = 1, \ldots, 5$. Find the probability that the whole production line is functioning.

Problem 2

Suppose we have 3 different sensors measuring the same physical phenomenon. The first sensor S_1 is the most expensive and the most precise one: it provides the correct reading 99% of the time. The second sensor S_2 gives correct measurements 75% of the time and the third sensor S_3 only 50% of the time.

In one time unit we receive one reading from each of S_2 and S_3 and two readings from S_1 . This gives us the probability that the received data originates from S_1 being equal to 50%, from S_2 25% and from S_3 25%.

- (a) If a reading is received without knowing which sensors has produced this data, what is the probability that this reading is correct?
- (b) If we have a reading and we know that it is a correct one, which of the sensors is most likely to have produced the reading?

Problem 3

Let X and Y be independent random variables with mean E[X] = 0 and E[Y] = 1 and variance Var(X) = 1 and Var(Y) = 1.

- (a) Let Z = 2X 4Y + 10. Find mean and variance of Z.
- (b) Let M = (X 1)Y. Find mean of M.
- (c) Find covariance of X and Y.