Fusão de Dataframes

1 - Carregar Dataframe

Out [1]: Name Item Purchased Cost Store 1 Chris Sponge 22.5 Store 1 Kevyn Kitty Litter 2.5 Store 2 Filip Spoon 5.0

2 - Adicionar uma nova coluna (mesmo comprimento)

```
In [2]:
    df['Date'] = ['December 1', 'January 1', 'mid-day']
    df
```

```
Out [2]:Name Item Purchased Cost DateStore 1ChrisSponge22.5December 1Store 1KevynKitty Litter2.5January 1Store 2FilipSpoon5.0mid-day
```

3 - Flag de entraga do produto

```
In [3]: df['Deliverd'] = True
    df
```

```
Name Item Purchased Cost
                                                       Date Deliverd
Out[3]:
          Store 1 Chris
                                  Sponge 22.5 December 1
                                                                 True
          Store 1 Kevyn
                               Kitty Litter
                                            2.5
                                                   January 1
                                                                 True
          Store 2
                    Filip
                                   Spoon
                                            5.0
                                                    mid-day
                                                                 True
```

4 - Fornecer uma lista tão longa quanto o Dataframe

```
In [4]: df['Feedback'] = ['Positive', None, 'Negative']
    df
```

Out[4]:	Name		Item Purchased	Cost	Date	Deliverd	Feedback
	Store 1	Chris	Sponge	22.5	December 1	True	Positive
	Store 1	Kevyn	Kitty Litter	2.5	January 1	True	None

```
Name Item Purchased Cost
                                          Date Deliverd Feedback
Store 2
         Filip
                       Spoon
                                5.0
                                       mid-day
                                                    True
                                                           Negative
```

5 - Reiniciando índices

```
In [5]:
         adf = df.reset index()
         adf['Date'] = pd.Series({0: 'December 1', 2: 'mid-May'})
```

Out[5]:		index	Name	Item Purchased	Cost	Date	Deliverd	Feedback
	0	Store 1	Chris	Sponge	22.5	December 1	True	Positive
	1	Store 1	Kevyn	Kitty Litter	2.5	NaN	True	None
	2	Store 2	Filip	Spoon	5.0	mid-May	True	Negative

6 - Criação de dois Dataframes com sobreposição

```
In [8]:
         staff df = pd.DataFrame([{'Name': 'Kelly', 'Role': 'Director of HR'},
                                  {'Name': 'Sally', 'Role': 'Course liasion'},
                                   {'Name': 'James', 'Role': 'Grader'}])
         staff df = staff df.set index('Name')
         student df = pd.DataFrame([{'Name': 'James', 'School': 'Business'},
                                    {'Name': 'Mike', 'School': 'Law'},
                                    {'Name': 'Sally', 'School': 'Engineering'}])
         student df = student df.set index('Name')
         print(staff df.head())
         print()
         print(student df.head())
```

Role Name Kelly Director of HR Sally Course liasion James Grader School Name Business James Mike Law Sally Engineering

7 - Outer Join

```
In [9]:
         pd.merge(staff df, student df, how='outer', left index=True, right index=True)
```

Out[9]:		Role	School
	Name		
	James	Grader	Business
	Kelly	Director of HR	NaN
	Mike	NaN	Law

```
Sally
                  Course liasion Engineering
         8 - Inner Join
In [10]:
           pd.merge(staff df, student df, how='inner', left_index=True, right_index=True)
Out[10]:
                         Role
                                   School
           Name
            Sally
                 Course liasion Engineering
          James
                        Grader
                                 Business
         9 - Left Join
In [11]:
           pd.merge(staff df, student df, how='left', left index=True, right index=True)
Out[11]:
                         Role
                                   School
           Name
            Kelly Director of HR
                                     NaN
            Sally
                  Course liasion Engineering
          James
                        Grader
                                 Business
         10 - Right Join
In [12]:
           pd.merge(staff df, student df, how='right', left_index=True, right_index=True)
Out[12]:
                         Role
                                   School
           Name
          James
                        Grader
                                 Business
            Mike
                         NaN
                                     Law
            Sally Course liasion Engineering
         11 - Fusão por colunas
In [13]:
           staff df = staff df.reset index()
           student df = student df.reset index()
           pd.merge(staff df, student df, how='left', left on='Name', right on='Name')
Out[13]:
             Name
                            Role
                                     School
          0
               Kelly Director of HR
                                        NaN
                    Course liasion Engineering
          1
               Sally
          2 James
                          Grader
                                    Business
```

Role

Name

School

12 - Conflitos

Out[14]:	Name		Role	Location_x	School	Location_y
	0	Kelly	Director of HR	State Street	NaN	NaN
	1	Sally	Course liasion	Washington Avenue	Engineering	512 Wilson Crescent
	2	James	Grader	Washington Avenue	Business	1024 Billiard Avenue

13 - Multi-Indexação

```
    Out [17]:
    First Name
    Last Name
    Role
    School

    0
    Sally
    Brooks
    Course liasion
    Engineering
```

Python & Pandas Idiomáticos

14 - Importar CSV Censo USA

```
In [39]:
    import pandas as pd

    df = pd.read_csv('./Data/census.csv')
    df.head()
```

Out[39]:		SUMLEV	REGION	DIVISION	STATE	COUNTY	STNAME	CTYNAME	CENSUS2010POP	ESTIMATESBASE20
	0	40	3	6	1	0	Alabama	Alabama	4779736	4780′
	1	50	3	6	1	1	Alabama	Autauga County	54571	54!
	2	50	3	6	1	3	Alabama	Baldwin County	182265	1822
	3	50	3	6	1	5	Alabama	Barbour County	27457	274

5 rows × 100 columns

Out[21]:

15 - Encadeamento de métodos (Idiomático)

```
In [21]:
    (df.where(df['SUMLEV']==50)
        .dropna()
        .set_index(['STNAME','CTYNAME'])
        .rename(columns ={'ESTIMATESBASE2010': 'Estimates Base 2010'}))
```

SUMLEV REGION DIVISION STATE COUNTY CENSUS2010POP Base POPEST 2010 **STNAME CTYNAME** Alabama Autauga 50.0 3.0 6.0 1.0 1.0 54571.0 54571.0 County Baldwin 50.0 3.0 6.0 1.0 3.0 182265.0 182265.0 County Barbour 50.0 3.0 6.0 1.0 5.0 27457.0 27457.0 County Bibb 50.0 3.0 6.0 1.0 7.0 22915.0 22919.0 County **Blount** 50.0 6.0 9.0 3.0 1.0 57322.0 57322.0 County ... **Wyoming Sweetwater** 50.0 4.0 8.0 56.0 37.0 43806.0 43806.0 County Teton 50.0 4.0 8.0 56.0 39.0 21294.0 21294.0 County Uinta 50.0 4.0 8.0 56.0 41.0 21118.0 21118.0 County Washakie 50.0 4.0 8.0 56.0 43.0 8533.0 8533.0 County Weston 50.0 4.0 8.0 56.0 45.0 7208.0 7208.0 County

3142 rows × 98 columns

16 - Forma Tradicional do código anterior

```
In [22]:
    df = df[df['SUMLEV']==50]
    df.set_index(['STNAME','CTYNAME'], inplace=True)
    df.rename(columns={'ESTIMATESBASE2010': 'Estimates Base 2010'})
```

Out[22]:

SUMLEV REGION DIVISION STATE COUNTY CENSUS2010POP

Estimates

Base POPEST

2010

Estimates

								2010	
STNAME	CTYNAME								
Alabama	Autauga County	50	3	6	1	1	54571	54571	
	Baldwin County	50	3	6	1	3	182265	182265	
	Barbour County	50	3	6	1	5	27457	27457	
	Bibb County	50	3	6	1	7	22915	22919	
	Blount County	50	3	6	1	9	57322	57322	
•••	•••		•••						
Wyoming	Sweetwater County	50	4	8	56	37	43806	43806	
	Teton County	50	4	8	56	39	21294	21294	
	Uinta County	50	4	8	56	41	21118	21118	
	Washakie County	50	4	8	56	43	8533	8533	
	Weston County	50	4	8	56	45	7208	7208	

SUMLEV REGION DIVISION STATE COUNTY CENSUS2010POP

Estimates

Base POPEST

3142 rows × 98 columns

17 - Apply and Lambdas

```
In [23]:
         import numpy as np
         rows = ['POPESTIMATE2010',
                'POPESTIMATE2011',
                 'POPESTIMATE2012',
                 'POPESTIMATE2013',
                'POPESTIMATE2014',
                'POPESTIMATE2015']
         df.apply(lambda x: np.max(x[rows]), axis=1)
        STNAME CTYNAME
Out[23]:
                                  55347.0
        Alabama Autauga County
                Baldwin County
                                   203709.0
                Barbour County
                                    27341.0
                Bibb County
                                    22861.0
                Blount County
                                    57776.0
        Wyoming Sweetwater County 45162.0
                 Teton County
                                    23125.0
                 Uinta County
                                    21102.0
                Washakie County
                                     8545.0
                Weston County
                                     7234.0
        Length: 3142, dtype: float64
```

Função Groupby()

18 - Exclusão da totalização dos estados (==40)

```
In [25]: df = df[df['SUMLEV']==50]
    df.head()
```

Out[25]:	SUMLEV	REGION	DIVISION	STATE	COUNTY	CENSUS2010POP	ESTIMATESBASE2010
----------	--------	--------	----------	-------	--------	---------------	-------------------

STNAME	CTYNAME							
Alabama	Autauga County	50	3	6	1	1	54571	54571
	Baldwin County	50	3	6	1	3	182265	182265
	Barbour County	50	3	6	1	5	27457	27457
	Bibb County	50	3	6	1	7	22915	22919
	Blount County	50	3	6	1	9	57322	57322

5 rows × 98 columns

19 - Iterar todos os estados e gerar uma lista dos números com a média da população

20 - Função Groupby()

21 - Método agg() - construir um data frame sumário, com a população média por Estado

```
In [34]:
    df.groupby('STNAME').agg({'CENSUS2010POP': np.average})
```

Out [34]: CENSUS2010POP

STNAME	
Alabama	1.405805e+05
Alaska	4.734873e+04
Arizona	7.990021e+05
Arkansas	7.673468e+04
California	1.262846e+06

CENSUS2010POP

STNAME	
Colorado	1.547445e+05
Connecticut	7.942438e+05
Delaware	4.489670e+05
District of Columbia	6.017230e+05
Florida	5.529797e+05
Georgia	1.210957e+05
Hawaii	4.534337e+05
Idaho	6.967031e+04
Illinois	2.491385e+05
Indiana	1.394366e+05
lowa	6.092710e+04
Kansas	5.383242e+04
Kentucky	7.172507e+04
Louisiana	1.394884e+05
Maine	1.562778e+05
Maryland	4.618842e+05
Massachusetts	8.730172e+05
Michigan	2.353248e+05
Minnesota	1.205438e+05
Mississippi	7.150113e+04
Missouri	1.032574e+05
Montana	3.471632e+04
Nebraska	3.885832e+04
Nevada	3.000612e+05
New Hampshire	2.393582e+05
New Jersey	7.992631e+05
New Mexico	1.211282e+05
New York	6.151778e+05
North Carolina	1.888214e+05
North Dakota	2.491078e+04
Ohio	2.592473e+05
Oklahoma	9.618849e+04
Oregon	2.070851e+05
Pennsylvania	3.735994e+05
Rhode Island	3.508557e+05
South Carolina	1.968240e+05
South Dakota	2.430388e+04

CENSUS2010POP

STNAME	
Tennessee	1.322105e+05
Texas	1.972201e+05
Utah	1.842590e+05
Vermont	8.343213e+04
Virginia	1.193718e+05
Washington	3.362270e+05
West Virginia	6.617836e+04
Wisconsin	1.558078e+05
Wyoming	4.696883e+04

OTNIANE

22 - Função Groupby (Série vs. Dataframe)

23 - Na Série

```
In [46]:
   (df.set_index('STNAME').groupby(level=0)['CENSUS2010POP'].agg(avg='mean', soma='sum'))
```

Out[46]: avg soma

STNAME		
Alabama	1.405805e+05	9559472
Alaska	4.734873e+04	1420462
Arizona	7.990021e+05	12784034
Arkansas	7.673468e+04	5831836
California	1.262846e+06	74507912
Colorado	1.547445e+05	10058392
Connecticut	7.942438e+05	7148194
Delaware	4.489670e+05	1795868
District of Columbia	6.017230e+05	1203446
Florida	5.529797e+05	37602620
Georgia	1.210957e+05	19375306
Hawaii	4.534337e+05	2720602
Idaho	6.967031e+04	3135164
Illinois	2.491385e+05	25661264

	avg	soma
STNAME		
Indiana	1.394366e+05	12967604
Iowa	6.092710e+04	6092710
Kansas	5.383242e+04	5706236
Kentucky	7.172507e+04	8678734
Louisiana	1.394884e+05	9066744
Maine	1.562778e+05	2656722
Maryland	4.618842e+05	11547104
Massachusetts	8.730172e+05	13095258
Michigan	2.353248e+05	19767280
Minnesota	1.205438e+05	10607850
Mississippi	7.150113e+04	5934594
Missouri	1.032574e+05	11977854
Montana	3.471632e+04	1978830
Nebraska	3.885832e+04	3652682
Nevada	3.000612e+05	5401102
New Hampshire	2.393582e+05	2632940
New Jersey	7.992631e+05	17583788
New Mexico	1.211282e+05	4118358
New York	6.151778e+05	38756204
North Carolina	1.888214e+05	19070966
North Dakota	2.491078e+04	1345182
Ohio	2.592473e+05	23073008
Oklahoma	9.618849e+04	7502702
Oregon	2.070851e+05	7662148
Pennsylvania	3.735994e+05	25404758
Rhode Island	3.508557e+05	2105134
South Carolina	1.968240e+05	9250728
South Dakota	2.430388e+04	1628360
Tennessee	1.322105e+05	12692210
Texas	1.972201e+05	50291122
Utah	1.842590e+05	5527770
Vermont	8.343213e+04	1251482
Virginia	1.193718e+05	15995826
Washington	3.362270e+05	13449080
West Virginia	6.617836e+04	3705988
Wisconsin	1.558078e+05	11373972
Wyoming	4.696883e+04	1127252

```
In [55]:
```

```
(df.set_index('STNAME').groupby(level=0)['POPESTIMATE2010', 'POPESTIMATE2011'].agg(['mean',
# df.set_index('STNAME').groupby(level=0)[['POPESTIMATE2010', 'POPESTIMATE2011']]
# .agg({"POPESTIMATE2010": [np.mean, np.sum], "POPESTIMATE2011": [np.mean, np.sum]})
```

/var/folders/01/_r7b02r11p15j0s54gb9x0040000gn/T/ipykernel_3089/596025003.py:1: FutureWarn ing: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.

(df.set_index('STNAME').groupby(level=0)['POPESTIMATE2010','POPESTIMATE2011'].agg(['mea
n', 'sum']))

POPESTIMATE2011

POPESTIMATE2010

Out[55]:

	mean			
		sum	mean	sum
STNAME				
Alabama	1.407400e+05	9570322	1.412091e+05	9602216
Alaska	4.760140e+04	1428042	4.818133e+04	1445440
Arizona	8.010260e+05	12816416	8.085915e+05	12937464
Arkansas	7.690511e+04	5844788	7.732995e+04	5877076
California	1.265562e+06	74668158	1.277967e+06	75400068
Colorado	1.553309e+05	10096508	1.575225e+05	10238960
Connecticut	7.954927e+05	7159434	7.977242e+05	7179518
Delaware	4.498955e+05	1799582	4.539580e+05	1815832
District of Columbia	6.051260e+05	1210252	6.204720e+05	1240944
Florida	5.544085e+05	37699780	5.619274e+05	38211066
Georgia	1.214182e+05	19426908	1.226535e+05	19624560
Hawaii	4.546600e+05	2727960	4.594090e+05	2756454
Idaho	6.982160e+04	3141972	7.040596e+04	3168268
Illinois	2.493446e+05	25682498	2.497453e+05	25723764
Indiana	1.395826e+05	12981180	1.401472e+05	13033690
lowa	6.101388e+04	6101388	6.130778e+04	6130778
Kansas	5.394008e+04	5717648	5.414938e+04	5739834
Kentucky	7.186673e+04	8695874	7.219640e+04	8735764
Louisiana	1.398446e+05	9089902	1.407810e+05	9150762
Maine	1.561994e+05	2655390	1.562655e+05	2656514
Maryland	4.630727e+05	11576818	4.675337e+05	11688342
Massachusetts	8.753381e+05	13130072	8.815729e+05	13223594
Michigan	2.351755e+05	19754738	2.351569e+05	19753178
Minnesota	1.207023e+05	10621806	1.215482e+05	10696238
Mississippi	7.157388e+04	5940632	7.175901e+04	5955998
Missouri	1.033802e+05	11992104	1.036308e+05	12021174
Montana	3.475940e+04	1981286	3.500863e+04	1995492

	POPEST	IMATE2010	POPESTIMATE2011			
	mean	sum	mean	sum		
STNAME						
Nebraska	3.893670e+04	3660050	3.919964e+04	3684766		
Nevada	3.003822e+05	5406880	3.020910e+05	5437638		
New Hampshire	2.394015e+05	2633416	2.396989e+05	2636688		
New Jersey	8.003528e+05	17607762	8.039031e+05	17685868		
New Mexico	1.214554e+05	4129482	1.222486e+05	4156452		
New York	6.159657e+05	38805840	6.197842e+05	39046404		
North Carolina	1.892867e+05	19117958	1.911094e+05	19302050		
North Dakota	2.498259e+04	1349060	2.538244e+04	1370652		
Ohio	2.593431e+05	23081532	2.594481e+05	23090884		
Oklahoma	9.639990e+04	7519192	9.709297e+04	7573252		
Oregon	2.074579e+05	7675944	2.091086e+05	7737018		
Pennsylvania	3.738828e+05	25424028	3.748589e+05	25490404		
Rhode Island	3.510730e+05	2106438	3.506187e+05	2103712		
South Carolina	1.972721e+05	9271788	1.988397e+05	9345466		
South Dakota	2.436713e+04	1632598	2.460564e+04	1648578		
Tennessee	1.324289e+05	12713170	1.333002e+05	12796816		
Texas	1.979950e+05	50488726	2.012115e+05	51308928		
Utah	1.850284e+05	5550852	1.877627e+05	5632880		
Vermont	8.346453e+04	1251968	8.355827e+04	1253374		
Virginia	1.197879e+05	16051574	1.210565e+05	16221566		
Washington	3.371530e+05	13486120	3.411615e+05	13646458		
West Virginia	6.622232e+04	3708450	6.624814e+04	3709896		
Wisconsin	1.558960e+05	11380408	1.564307e+05	11419440		
Wyoming	4.704300e+04	1129032	4.731400e+04	1135536		

25 - Comportamento não esperado dada a mudança de rotulagem

(df.set index('STNAME').groupby(level=0)['POPESTIMATE2010','POPESTIMATE2011']

Out [37]: POPESTIMATE2010 POPESTIMATE2011

STNAME

Alabama	1.407400e+05	9602216
Alaska	4.760140e+04	1445440
Arizona	8.010260e+05	12937464

POPESTIMATE2010 POPESTIMATE2011

STNAME		
Arkansas	7.690511e+04	5877076
California	1.265562e+06	75400068
Colorado	1.553309e+05	10238960
Connecticut	7.954927e+05	7179518
Delaware	4.498955e+05	1815832
District of Columbia	6.051260e+05	1240944
Florida	5.544085e+05	38211066
Georgia	1.214182e+05	19624560
Hawaii	4.546600e+05	2756454
Idaho	6.982160e+04	3168268
Illinois	2.493446e+05	25723764
Indiana	1.395826e+05	13033690
Iowa	6.101388e+04	6130778
Kansas	5.394008e+04	5739834
Kentucky	7.186673e+04	8735764
Louisiana	1.398446e+05	9150762
Maine	1.561994e+05	2656514
Maryland	4.630727e+05	11688342
Massachusetts	8.753381e+05	13223594
Michigan	2.351755e+05	19753178
Minnesota	1.207023e+05	10696238
Mississippi	7.157388e+04	5955998
Missouri	1.033802e+05	12021174
Montana	3.475940e+04	1995492
Nebraska	3.893670e+04	3684766
Nevada	3.003822e+05	5437638
New Hampshire	2.394015e+05	2636688
New Jersey	8.003528e+05	17685868
New Mexico	1.214554e+05	4156452
New York	6.159657e+05	39046404
North Carolina	1.892867e+05	19302050
North Dakota	2.498259e+04	1370652
Ohio	2.593431e+05	23090884
Oklahoma	9.639990e+04	7573252
Oregon	2.074579e+05	7737018
Pennsylvania	3.738828e+05	25490404
Rhode Island	3.510730e+05	2103712

POPESTIMATE2010 POPESTIMATE2011

STNAME		
South Carolina	1.972721e+05	9345466
South Dakota	2.436713e+04	1648578
Tennessee	1.324289e+05	12796816
Texas	1.979950e+05	51308928
Utah	1.850284e+05	5632880
Vermont	8.346453e+04	1253374
Virginia	1.197879e+05	16221566
Washington	3.371530e+05	13646458
West Virginia	6.622232e+04	3709896
Wisconsin	1.558960e+05	11419440
Wyoming	4.704300e+04	1135536

Tabelas Pivot

CTNIABAL

26 - Carregar conjunto de dados "car.csv"

Out[57]:

:	YEAR	Make	Model	Size	(kW)	Unnamed: 5	TYPE	CITY (kWh/100 km)	HWY (kWh/100 km)	COMB (kWh/100 km)	(Le
0	2012	MITSUBISHI	i-MiEV	SUBCOMPACT	49	A1	В	16.9	21.4	18.7	
1	2012	NISSAN	LEAF	MID-SIZE	80	A1	В	19.3	23.0	21.1	
2	2013	FORD	FOCUS ELECTRIC	COMPACT	107	A1	В	19.0	21.1	20.0	
3	2013	MITSUBISHI	i-MiEV	SUBCOMPACT	49	A1	В	16.9	21.4	18.7	
4	2013	NISSAN	LEAF	MID-SIZE	80	A1	В	19.3	23.0	21.1	

27 - Comparação da marca de veículos elétricos contra os anos e fazer essa comparação em termos de capacidade da bateria

```
In [58]:
          df.pivot table(values='(kW)', index='YEAR', columns='Make', aggfunc=np.mean)
Out[58]:
          Make BMW CHEVROLET FORD KIA MITSUBISHI NISSAN SMART
                                                                            TESLA
          YEAR
          2012
                 NaN
                            NaN
                                   NaN NaN
                                                   49.0
                                                           80.0
                                                                   NaN
                                                                              NaN
          2013
                                  107.0 NaN
                                                   49.0
                                                           80.0
                                                                   35.0 280.000000
                 NaN
                            NaN
          2014
                            104.0
                                  107.0 NaN
                                                   49.0
                                                                   35.0 268.333333
                 NaN
                                                           80.0
```

Make	BMW	CHEVROLET	FORD	KIA	MITSUBISHI	NISSAN	SMART	TESLA
YEAR								
2015	125.0	104.0	107.0	81.0	49.0	80.0	35.0	320.666667
2016	125.0	104.0	107.0	81.0	49.0	80.0	35.0	409.700000

28 - Lista de funções diferentes para aplicar

```
In [59]:
    df.pivot_table(values='(kW)', index='YEAR', columns='Make', aggfunc=[np.mean,np.min], marg
```

Out[59]:										mean		
	Make	BMW	CHEVROLET	FORD	KIA	MITSUBISHI	NISSAN	SMART	TESLA	AII	BMW	CHEV
	YEAR											
	2012	NaN	NaN	NaN	NaN	49.0	80.0	NaN	NaN	64.500000	NaN	
	2013	NaN	NaN	107.0	NaN	49.0	80.0	35.0	280.000000	158.444444	NaN	
	2014	NaN	104.0	107.0	NaN	49.0	80.0	35.0	268.333333	135.000000	NaN	
	2015	125.0	104.0	107.0	81.0	49.0	80.0	35.0	320.666667	181.428571	125.0	
	2016	125.0	104.0	107.0	81.0	49.0	80.0	35.0	409.700000	252.263158	125.0	
	All	125.0	104.0	107.0	81.0	49.0	80.0	35.0	345.478261	190.622642	125.0	

Datas no Pandas

29 - Timestamp

```
In [60]: pd.Timestamp('9/1/2017 10:05AM')
Out[60]: Timestamp('2017-09-01 10:05:00')
```

30 - Period

```
In [61]: pd.Period('1/2017')
Out[61]: Period('2017-01', 'M')
```

```
In [62]: pd.Period('3/1/2017')
```

Out[62]: Period('2017-03-01', 'D')

31 - DatetimeIndex

```
In [63]:
t1 = pd.Series(list('abc'), [pd.Timestamp('2016-09-01'), pd.Timestamp('2016-09-02'), pd.Ti
t1
```

Out[63]: 2016-09-01 a 2016-09-02 b 2016-09-03 c dtype: object

32 - Tipo da série In [64]: type(t1.index) Out[64]: pandas.core.indexes.datetimes.DatetimeIndex 33 - PeriodIndex

```
In [65]: t2 = pd.Series(list('def'), [pd.Period('2016-09'), pd.Period('2016-10'), pd.Period('2016-1
t2
```

Out[65]: 2016-09 d 2016-10 e 2016-11 f Freq: M, dtype: object

In [66]: type(t2.index)

Out[66]: pandas.core.indexes.period.PeriodIndex

34 - Novo DataFrame para conversão to_datetime()

```
In [69]: d1 = ['2 June 2013', 'Aug 29, 2014', '2015-06-26', '7/12/16']
    ts3 = pd.DataFrame(np.random.randint(10, 100, (4,2)), index=d1, columns=list('ab'))
    ts3
```

```
Out [69]:

2 June 2013 27 51

Aug 29, 2014 93 27

2015-06-26 47 34

7/12/16 15 24
```

35 - Usando to_datetime()

```
In [70]: ts3.index = pd.to_datetime(ts3.index)
ts3
```

```
Out[70]:

2013-06-02 27 51

2014-08-29 93 27

2015-06-26 47 34

2016-07-12 15 24
```

36 - Data no formato Europeu

```
In [73]: pd.to_datetime('4.7.12', dayfirst=True)
Out[73]: Timestamp('2012-07-04 00:00:00')
```

37 - Timedeltas

```
In [75]: pd.Timestamp('9/3/2016') - pd.Timestamp('9/1/2016')
Out[75]: Timedelta('2 days 00:00:00')
```

38 - Encontrar datas e horas com Timedeltas

```
In [76]: pd.Timestamp('9/2/2016 8:10AM') + pd.Timedelta('12D 3H')
Out[76]: Timestamp('2016-09-14 11:10:00')
```

39 - Método date_range()

40 - Introduzindo datas aleatórias

Out[78]:		Count 1	Count 2	
	2016-10-02	105	119	
	2016-10-16	106	115	
	2016-10-30	108	122	
	2016-11-13	114	117	
	2016-11-27	112	120	
	2016-12-11	121	115	
	2016-12-25	122	123	
	2017-01-08	119	127	
	2017-01-22	115	127	

41 - Podemos verificar qual o dia da semana

42 - Diferença entre datas

```
In [81]: df.diff()
```

```
Out[81]:
                      Count 1 Count 2
          2016-10-02
                         NaN
                                 NaN
          2016-10-16
                         1.0
                                 -4.0
          2016-10-30
                          2.0
                                 7.0
           2016-11-13
                      6.0
                                 -5.0
           2016-11-27
                      -2.0
                                  3.0
           2016-12-11
                       9.0
                                 -5.0
                                  8.0
          2016-12-25
                       1.0
          2017-01-08
                      -3.0
                                  4.0
          2017-01-22 -4.0
                                  0.0
         43 - Função resample()
In [82]:
           df.resample('M').mean()
Out[82]:
                         Count 1
                                    Count 2
          2016-10-31 106.333333 118.666667
          2016-11-30 113.000000 118.500000
          2016-12-31 121.500000 119.000000
          2017-01-31 117.000000 127.000000
         44 - Indexação parcial em datas
In [84]:
           df.loc['2017']
Out[84]:
                      Count 1 Count 2
          2017-01-08
                                  127
          2017-01-22
                         115
                                  127
In [85]:
           df.loc['2016-12']
Out[85]:
                      Count 1 Count 2
           2016-12-11
                         121
                                  115
          2016-12-25
                         122
                                  123
In [86]:
           df.loc['2016-12':]
Out[86]:
                      Count 1 Count 2
           2016-12-11
                         121
                                  115
          2016-12-25
                         122
                                  123
```

2017-01-08

119

127

```
Count 1 Count 2
2017-01-22 115 127
```

45 - Preenchendo valores ausentes

```
In [87]: df.asfreq('W', method='ffill')
```

46 - Plotando

2017-01-08

2017-01-15

2017-01-22

119

119

115

127

127

127

```
import matplotlib.pyplot as plt
%matplotlib inline

df.plot()
```

Out[88]: <AxesSubplot:>

