(19) World Intellectual Property Organization

International Bureau

TO THE TRANSPORT OF THE PROPERTY OF THE PROPER

(43) International Publication Date 22 April 2004 (22.04.2004)

PCT

(10) International Publication Number WO 2004/032648 A1

- (51) International Patent Classification⁷: A23L 1/03, A21D 8/04, A23L 1/217, 1/105, C12N 9/82, 15/52
- (21) International Application Number:

PCT/DK2003/000684

- (22) International Filing Date: 10 October 2003 (10.10.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

PA 2002 01547 11 October 2002 (11.10.2002) DF

- (71) Applicant (for all designated States except US): NOVOZYMES A/S [DK/DK]; Krogshøjvej 36, DK-2880 Bagsværd (DK).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BUDOLFSEN, Gitte [DK/DK]; Drosselvej 53M, DK-2000 Frederiksberg (DK). JENSEN, Morten, Tovborg [DK/DK]; Bringebakken 11, DK-3500 Værløse (DK). HELDT-HANSEN, Hans, Peter [DK/DK]; Vangeleddet 53, DK-2830 Virum (DK). STRINGER, Mary, Ann [US/DK]; Søborg Hovedgade 39C 3tv, DK-2860 Søborg (DK). LANGE, Lene [DK/DK]; Karensgade 5, DK-2500 Valby (DK).

- (74) Common Representative: NOVOZYMES A/S; Patents, Krogshøjvej 36, DK-2880 Bagsværd (DK).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD OF PREPARING A HEAT-TREATED PRODUCT

(57) Abstract: The formation of acrylamide during heat treatment in the production of a food product is reduced by treating the raw material with an enzyme before the heat treatment. The enzyme is capable of reacting on asparagine or glutamine (optionally substituted) as a substrate or is a laccase or a peroxidase.

METHOD OF PREPARING A HEAT-TREATED PRODUCT

FIELD OF THE INVENTION

The present invention relates to a method of preparing a heat-treated product with a low water content from raw material comprising carbohydrate, protein and water. It also relates to an asparaginase for use in the method

BACKGROUND OF THE INVENTION

E. Tabeke et al. (*J. Agric. Food Chem.*, 2002, *50*, 4998-5006) reported that acrylamide is formed during heating of starch-rich foods to high temperatures. The acrylamide formation has been ascribed to the Maillard reaction (D.S. Mottram et al., R.H. Stadtler et al., *Nature*, 10 419, 3 October 2002, 448-449).

WO 00/56762 discloses expressed sequence tags (EST) from A. oryzae.

Kim,K.-W.; Kamerud,J.Q.; Livingston,D.M.; Roon,R.J., (1988) Asparaginase II of Saccharomyces cerevisiae. Characterization of the ASP3 gene. J. Biol. Chem. 263:11948, discloses the peptide sequence of an extra-cellular asparaginase

15 **SUMMARY OF THE INVENTION**

20

According to the invention, the formation of acrylamide during heat treatment of raw material comprising carbohydrate, protein and water is reduced by treating the raw material with an enzyme before the heat treatment. Accordingly, the invention provides a method of preparing a heat-treated product, comprising the sequential steps of:

- a) providing a raw material which comprises carbohydrate, protein and water
- b) treating the raw material with an enzyme, and
- c) heat treating to reach a final water content below 35 % by weight.

The enzyme is capable of reacting on asparagine or glutamine (optionally substituted) as a substrate or is a laccase or a peroxidase.

The invention also provides an asparaginase for use in the process and a polynucleotide encoding the asparaginase.

DETAILED DESCRIPTION OF THE INVENTION

Raw material and enzyme treatment

The raw material comprises carbohydrate, protein and water, typically in amounts of 10-90 % or 20-50 % carbohydrate of the total weight. The carbohydrate may consist mainly of starch, and it may include reducing sugars such as glucose, e.g. added as glucose syrup,

honey or dry dextrose. The protein may include free amino acids such as asparagine and glutamine (optionally substituted).

The raw material may include tubers, potatoes, grains, oats, barley, corn (maize), wheat, nuts, fruits, dried fruit, bananas, sesame, rye and/or rice.

The raw material may be in the form of a dough comprising finely divided ingredients (e.g. flour) with water. The enzyme treatment may be done by mixing (kneading) the enzyme into the dough and optionally holding to let the enzyme act. The enzyme may be added in the form of an aqueous solution, a powder, a granulate or agglomerated powder. The dough may be formed into desired shapes, e.g. by sheeting, cutting and/or extrusion.

The raw material may also be in the form of intact vegetable pieces, e.g. slices or other pieces of potato, fruit or bananas, whole nuts, whole grains etc. The enzyme treatment may comprise immersing the vegetable pieces in an aqueous enzyme solution and optionally applying vacuum infusion. The intact pieces may optionally be blanched by immersion in hot water, e.g. at 70-100°C, either before or after the enzyme treatment.

The raw material may be grain intended for malting, e.g. malting barley or wheat. The enzyme treatment of the grain may be done before, during or after the malting (germination).

The raw material before heat treatment typically has a water content of 10-90 % by weight and is typically weakly acidic, e.g. having a pH of 5-7.

Heat treatment

5

10

20

30

The process of the invention involves a heat treatment at high temperature to reach a final water content (moisture content) in the product below 35 % by weight, typically 1-20 %, 1-10 % or 2-5 %. During the heat treatment, the temperature at the surface of the product may reach 110-220°C, e.g. 110-170°C or 120-160°C.

The heat treatment may involve, frying, particularly deep frying in tri- and/or di-25 glycerides (animal or vegetable oil or fat, optionally hydrogenated), e.g. at temperatures of 150-180°C. The heat treatment may also involve baking in hot air, e.g. at 160-310°C or 200-250°C for 2-10 minutes, or hot-plate heating. Further, the heat treatment may involve kilning of green malt.

Heat-treated product

The process of the invention may be used to produce a heat-treated product with low water content from raw material containing carbohydrate and protein, typically starchy food products fried or baked at high temperatures. The heat-treated product may be consumed directly as an edible product or may be used as an ingredient for further processing to prepare an edible or potable product.

Examples of products to be consumed directly are potato products, potato chips (crisps), French fries, hash browns, roast potatoes, breakfast cereals, crisp bread, muesli, biscuits, crackers, snack products, tortilla chips, roasted nuts, rice crackers (Japanese "senbei"), wafers, waffles, hot cakes, and pancakes.

Malt (e.g. caramelized malt or so-called chocolate malt) is generally further processed by mashing and brewing to make beer.

Enzyme capable of reacting with asparagine or glutamine (optionally substituted) as a substrate

The enzyme may be capable of reacting with asparagine or glutamine which is optionally glycosylated or substituted with a peptide at the alpha-amino and/or the carboxyl position. The enzyme may be an asparaginase, a glutaminase, an L-amino acid oxidase, a glycosylasparaginase, a glycoamidase or a peptidoglutaminase.

The glutaminase (EC 3.5.1.2) may be derived from *Escherichia coli*. The L-amino acid oxidase (EC 1.4.3.2) capable of reacting with asparagine or glutamine (optionally glycosylated) as a substrate may be derived from *Trichoderma harzianum* (WO 94/25574). The glycosylasparaginase (EC 3.5.1.26, aspartylglucosaminidase, N4-(N-acetyl-beta-glucosaminyl)-L-asparagine amidase) may be derived from *Flavobacterium meningosepticum*. The glycoamidase (peptide N-glycosidase, EC 3.5.1.52) may be derived from *Flavobacterium meningosepticum*. The peptidoglutaminase may be peptidoglutaminase I or II (EC 3.5.1.43, EC 3.5.1.44).

The enzyme is used in an amount which is effective to reduce the amount of acrylamide in the final product. The amount may be in the range 0.1-100 mg enzyme protein per kg dry matter, particularly 1-10 mg/kg. Asparaginase may be added in an amount of 10-100 units per kg dry matter where one unit will liberate 1 micromole of ammonia from L-asparagine per min at pH 8.6 at 37 °C

25 Asparaginase

20

5

The asparaginase (EC 3.5.1.1) may be derived from *Saccharomyces cerevisiae*, *Candia utilis*, *Escherichia coli*, *Aspergillus oryzae*, *Aspergillus nidulans*, *Aspergillus fumigatus*, *Fusarium graminearum*, or *Penicillium citrinum*. It may have the amino acid sequence shown in SEQ ID NO: 2 (optionally truncated to residues 27-378, 30-378, 75-378 or 80-378), 4, 6, 8, 10, 12 or 13 or a sequence which is at least 90 % (particularly at least 95 %) identical to one of these. It may be produced by use of the genetic information in SEQ ID NO: 1, 3, 5, 7, 9 or 11, e.g., as described in an example.

Whitehead Institute, MIT Center for Genome Research, Fungal Genome Initiative has published *A nidulans* release 1 and *F. graminearum* release 1 on the Internet at http://www-35 genome.wi.mit.edu/ftp/distribution/annotation/ under the *Aspergillus* Sequencing Project and

the Fusarium graminearum Sequencing Project. Preliminary sequence data for Aspergillus fumigatus was published on The Institute for Genomic Research website at http://www-genome.wi.mit.edu/ftp/distribution/annotation/.

The inventors inserted the gene encoding the asparaginase from *A. oryzae* into *E. coli* and deposited the clone under the terms of the Budapest Treaty with the DSMZ - Deutsche Sammlung von Microorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig. The deposit number was DSM 15960, deposited on 6 October 2003.

Alignment and identity

The enzyme and the nucleotide sequence of the invention may have homologies to the disclosed sequences of at least 90 % or at least 95 %, e.g. at least 98 %.

For purposes of the present invention, alignments of sequences and calculation of identity scores were done using a Needleman-Wunsch alignment (i.e. global alignment), useful for both protein and DNA alignments. The default scoring matrices BLOSUM50 and the identity matrix are used for protein and DNA alignments respectively. The penalty for the first residue in a gap is -12 for proteins and -16 for DNA, while the penalty for additional residues in a gap is -2 for proteins and -4 for DNA. Alignment is from the FASTA package version v20u6 (W. R. Pearson and D. J. Lipman (1988), "Improved Tools for Biological Sequence Analysis", PNAS 85:2444-2448, and W. R. Pearson (1990) "Rapid and Sensitive Sequence Comparison with FASTP and FASTA", Methods in Enzymology, 183:63-98).

20 Laccase or peroxidase

The laccase (EC 1.10.3.2) may be of plant or microbial origin, e.g. from bacteria or fungi (including filamentous fungi and yeasts). Examples include laccase from Aspergillus, Neurospora, e.g., N. crassa, Podospora, Botrytis, Collybia, Fomes, Lentinus, Pleurotus, Trametes, e.g., T. villosa and T. versicolor, Rhizoctonia, e.g., R. solani, Coprinus, e.g., C. cinereus, C. comatus, C. friesii, and C. plicatilis, Psathyrella, e.g., P. condelleana, Panaeolus, e.g., P. papilionaceus, Myceliophthora, e.g., M. thermophila, Schytalidium, e.g., S. thermophilum, Polyporus, e.g., P. pinsitus, Phlebia, e.g., P. radita, or Coriolus, e.g., C. hirsutus.

The peroxidase (EC 1.11.1.7) may be from plants (e.g. horseradish or soybean peroxidase) or microorganisms such as fungi or bacteria, e.g. *Coprinus*, in particular *Coprinus* cinereus f. microsporus (IFO 8371), or *Coprinus macrorhizus*, *Pseudomonas*, e.g. *P. fluorescens* (NRRL B-11), *Streptoverticillium*, e.g. *S. verticillium* ssp. *verticillium* (IFO 13864), *Streptomyces*, e.g. *S. thermoviolaceus* (CBS 278.66), *Streptomyces*, e.g. *S. viridosporus* (ATCC 39115), *S. badius* (ATCC 39117), *S. phaeochromogenes* (NRRL B-3559), *Pseudomonas*, e.g. *P. pyrrocinia* (ATCC 15958), *Fusarium*, e.g. *F. oxysporum* (DSM 2672) and *Bacillus*, e.g. *B. stearothermophilus* (ATCC 12978).

Oxidoreductase capable of reacting with a reducing sugar as a substrate

The method of the invention may comprise treating the raw material with an oxidoreductase capable of reacting with a reducing sugar as a substrate. The oxidoreductase may be an oxidase or dehydrogenase capable of reacting with a reducing sugar as a substrate such as 5 glucose and maltose.

The oxidase may be a glucose oxidase, a pyranose oxidase, a hexose oxidase, a galactose oxidase (EC 1.1.3.9) or a carbohydrate oxidase which has a higher activity on maltose than on glucose. The glucose oxidase (EC 1.1.3.4) may be derived from *Aspergillus niger* e.g. having the amino acid sequence described in US 5094951. The hexose oxidase (EC 1.1.3.5) may be derived from algal species such as *Iridophycus flaccidum*, *Chondrus crispus* and *Euthora cristata*. The pyranose oxidase may be derived from *Basidiomycete* fungi, *Peniophora gigantean*, *Aphyllophorales*, *Phanerochaete chrysosporium*, *Polyporus pinsitus*, *Bierkandera adusta* or *Phlebiopsis gigantean*. The carbohydrate oxidase which has a higher activity on maltose than on glucose may be derived from *Microdochium* or *Acremonium*, e.g. from *M. nivale* (US 6165761), *A. strictum*, *A. fusidioides* or *A. potronii*.

The dehydrogenase may be glucose dehydrogenase (EC 1.1.1.47, EC 1.1.99.10), galactose dehydrogenase (EC 1.1.1.48), D-aldohexose dehydrogenase (EC 1.1.1.118, EC 1.1.1.119), cellobiose dehydrogenase (EC 1.1.5.1, e.g. from *Humicola insolens*), fructose dehydrogenase (EC 1.1.99.11, EC 1.1.1.124, EC 1.1.99.11), aldehyde dehydrogenase (EC 1.2.1.3, EC 1.2.1.4, EC 1.2.1.5). Another example is glucose-fructose oxidoreductase (EC 1.1.99.28).

The oxidoreductase is used in an amount which is effective to reduce the amount of acrylamide in the final product. For glucose oxidase, the amount may be in the range 50-20,000 (e.g. 100-10,000 or 1,000-5,000) GODU/kg dry matter in the raw material. One GODU is the amount of enzyme which forms 1 µmol of hydrogen peroxide per minute at 30°C, pH 5.6 (acetate buffer) with glucose 16.2 g/l (90 mM) as substrate using 20 min. incubation time. For other enzymes, the dosage may be found similarly by analyzing with the appropriate substrate.

EXAMPLES

Media

30 DAP2C-1 11g MgSO₄·7H₂O 1g KH₂PO₄ 2g Citric acid, monohydrate

30g maltodextrin

6g K₃PO₄·3H₂O

0.5g yeast extract

0.5ml trace metals solution

1ml Pluronic PE 6100 (BASF, Ludwigshafen, Germany)

5 Components are blended in one liter distilled water and portioned out to flasks, adding 250 mg CaCO3 to each 150ml portion.

The medium is sterilized in an autoclave. After cooling the following is added to 1 liter of medium:

23 ml 50% w/v (NH₄)₂HPO₄, filter sterilized

10 33 ml 20% lactic acid, filter sterilized

Trace metals solution

6.8g ZnCl₂

2.5g CuSO₄·5H₂O

0.24g NiCl₂·6H₂O

15 13.9g FeSO₄·7H₂O

8.45g MnSO₄·H₂O

3g Citric acid, monohydrate

Components are blended in one liter distilled water.

Asparaginase activity assay

20 Stock solutions

50 mM Tris buffer, pH 8.6

189mM L-Asparagine solution

1.5 M Trichloroacetic Acid (TCA)

Nessler's reagent, Aldrich Stock No. 34,514-8 (Sigma-Aldrich, St. Louis, Mo. USA)

25 Asparaginase, Sigma Stock No. A4887 (Sigma-Aldrich, St. Louis, Mo. USA)

Assay

Enzyme reaction:

500 micro-l buffer

100 micro-I L-asparagine solution

30 350 micro-l water

are mixed and equilibrated to 37 °C.

100 micro-I of enzyme solution is added and the reactions are incubated at 37 °C for 30 minutes.

The reactions are stopped by placing on ice and adding 50 micro-I of 1.5M TCA.

The samples are mixed and centrifuged for 2 minutes at 20,000 g

Measurement of free ammonium:

50 micro-I of the enzyme reaction is mixed with 100 micro-I of water and 50 micro-I of Nessler's reagent. The reaction is mixed and absorbance at 436nm is measured after 1 min-5 ute.

Standard:

The asparaginase stock (Sigma A4887) is diluted 0.2, 0.5, 1, 1.5, 2, and 2.5 U/ml.

Example 1: Expression of an asparaginase from Aspergillus oryzae in Aspergillus oryzae

Libraries of cDNA of mRNA from *Aspergillus oryzae* were generated, sequenced and stored in a computer database as described in WO 00/56762.

The peptide sequence of asparaginase II from *Saccharomyces cerevisiae* (Kim,K.-W.; Kamerud,J.Q.; Livingston,D.M.; Roon,R.J., (1988) Asparaginase II of Saccharomyces cerevisiae. Characterization of the ASP3 gene. J. Biol. Chem. 263:11948), was compared to translations of the *Aspergillus oryzae* partial cDNA sequences using the TFASTXY program, version 3.2t07 (Pearson et al, Genomics (1997) 46:24-36). One translated *A. oryzae* sequence was identified as having 52% identity to yeast asparaginase II through a 165 amino acid overlap. The complete sequence of the cDNA insert of the corresponding clone (deposited as DSM 15960) was determined and is presented as SEQ ID NO: 1, and the peptide translated from this sequence, AoASP, is presented as SEQ ID NO: 2. This sequence was used to design primers for PCR amplification of the AoASP encoding-gene from DSM 15960, with appropriate restriction sites added to the primer ends to facilitate sub-cloning of the PCR product (primers AoASP7 and AoASP8, SEQ ID NOS: 14 and 15). PCR amplification was performed using Extensor Hi-Fidelity PCR Master Mix (ABgene, Surrey, U.K.) following the manufacturer's instructions and using an annealing temperature of 55°C for the first 5 cycles and 65°C for an additional 30 cycles and an extension time of 1.5 minutes.

The PCR fragment was restricted with *BamHI* and *HindIII* and cloned into the *Aspergillus* expression vector pMStr57 using standard techniques. The expression vector pMStr57 contains the same elements as pCaHj483 (WO 98/00529), with minor modifications made to the *Aspergillus* NA2 promoter as described for the vector pMT2188 in WO 01/12794, and has sequences for selection and propogation in *E. coli*, and selection and expression in *Aspergillus*. Specifically, selection in *Aspergillus* is facilitated by the *amd*S gene of *Aspergillus* nidulans, which allows the use of acetamide as a sole nitrogen source. Expression in *Aspergillus* is mediated by a modified neutral amylase II (NA2) promoter from *Aspergillus* niger which is fused to the 5' leader sequence of the triose phosphate isomerase (tpi) encoding-gene from

Aspergillus nidulans, and the terminator from the amyloglucosidase-encoding gene from Aspergillus niger. The asparaginase-encoding gene of the resulting Aspergillus expression construct, pMStr90, was sequenced and the sequence agreed completely with that determined previously for the insert of DSM 15960

The Aspergillus oryzae strain BECh2 (WO 00/39322) was transformed with pMStr90 using standard techniques (Christensen, T. et al., (1988), Biotechnology 6, 1419-1422). Transformants were cultured in DAP2C-1 medium shaken at 200 RPM at 30°C and expression of AoASP was monitored by SDS-PAGE and by measuring enzyme activity.

Example 2: Purification of Asparaginase

5

10 Culture broth from the preceding example was centrifuged (20000 x g, 20 min) and the supernatants were carefully decanted from the precipitates. The combined supernatants were filtered through a Seitz EKS plate in order to remove the rest of the Asperaillus host cells. The EKS filtrate was transferred to 10 mM Tris/HCl, pH 8 on a G25 sephadex column and applied to a Q sepharose HP column equilibrated in the same buffer. After washing the Q sepha-15 rose HP column extensively with the equilibration buffer, the asparaginase was eluted with a linear NaCl gradient (0 --> 0.5M) in the same buffer. Fractions from the column were analysed for asparaginase activity (using the pH 6.0 Universal buffer) and fractions with activity were pooled. Ammonium sulfate was added to the pool to 2.0M final concentration and the pool was applied to a Phenyl Toyopearl S column equilibrated in 20 mM succinic acid, 2.0M (NH₄)₂SO₄, 20 pH 6.0. After washing the Phenyl column extensively with the equilibration buffer, the enzyme was eluted with a linear (NH₄)₂SO₄ gradient (2.0 --> 0M) in the same buffer. Fractions from the column were again analysed for asparaginase activity and active fractions were further analysed by SDS-PAGE. Fractions, which was judged only to contain the asparaginase, were pooled as the purified preparation and was used for further characterization. The purified as-25 paraginase was heterogeneously glycosylated judged from the coomassie stained SDS-PAGE gel and in addition N-terminal sequencing of the preparation revealed that the preparation contained different asparaginase forms, as four different N-termini were found starting at amino acids A₂₇, S₃₀, G₇₅ and A₈₀ respectively of SEQ ID NO: 2. However, the N-terminal sequencing also indicated that the purified preparation was relatively pure as no other N-terminal se-30 quences were found by the analysis.

Example 3: Properties of asparaginase

The purified asparaginase from the preceding example was used for characterization.

Asparaginase assay

A coupled enzyme assay was used. Asparaginase was incubated with asparagine and the liberated ammonia was determined with an Ammonia kit from Boehringer Mannheim

8

(cat. no. 1 112 732) based on glutamate dehydrogenase and NADH oxidation to NAD $^+$ (can be measured as a decrease in A₃₇₆). Hence the decrease in absorbance at 375 nm was taken as a measure of asparaginase activity.

Asparagine substrate :	10mg/ml L-asparagine (Sigma A-7094) was dissolved in Universal buffers and pH was adjusted to the indicated pH-values with HCl or NaOH.	
Temperature :	controlled	
Universal buffers :	100 mM succinic acid, 100 mM HEPES, 100 mM CHES, 100 mM CABS, 1 mM CaCl $_2$, 150 mM KCl, 0.01% Triton X-100 adjusted to pH-values 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 and 12.0 with HCl or NaOH.	
Stop reagent :	500 mM TCA (Trichloroacetic acid).	
Assay buffer :	1.0M KH₂PO₄/NaOH, pH 7.5.	
Ammonia reagent A :	1 NADH tablet + 1.0 ml Bottle 1 (contain 2-oxoglutarate (second substrate) and buffer) + 2.0 ml Assay buffer.	
Ammonia reagent B :	40 micro-l Bottle 3 (contain glutamate dehydrogenase) + 1460 micro-l Assay buffer.	

450 micro-I asparagine substrate was placed on ice in an Eppendorf tube. 50 micro-I asparaginase sample (diluted in 0.01% Triton X-100) was added. The assay was initiated by transferring the Eppendorf tube to an Eppendorf thermomixer, which was set to the assay temperature. The tube was incubated for 15 minutes on the Eppendorf thermomixer at its highest shaking rate (1400 rpm). The incubation was stopped by transferring the tube back to the ice bath and adding 500 micro-I Stop reagent. The tube was vortexed and centrifuged shortly in an icecold centrifuge to precipitate the proteins in the tube. The amount of ammonia liberated by the enzyme was measured by the following procedure: 20 micro-I supernatant was transferred to a microtiter plate, 200 micro-I Ammonia reagent A was added and A₃₇₅ was read (A₃₇₅(initial)). Then 50 micro-I Ammonia reagent B was added and after 10 minutes at room temperature the plate was read again (A₃₇₅(final)). A₃₇₅(initial) – A₃₇₅(final) was a measure of asparaginase activity. A buffer blind was included in the assay (instead of enzyme) and the decrease in A₃₇₅ in the buffer blind was subtracted from the enzyme samples.

pH-activity, pH-stability, and temperature-activity of asparaginase

The above asparaginase assay was used for obtaining the pH-activity profile, the pH-20 stability profile as well as the temperature-activity profile at pH 7.0. For the pH-stability profile the asparaginase was diluted 7x in the Universal buffers and incubated for 2 hours at 37°C.

After incubation the asparaginase samples were transferred to neutral pH, before assay for residual activity, by dilution in the pH 7 Universal buffer.

The results for the: pH-activity profile at 37° C were as follows, relative to the residual activity at after 2 hours at pH 7.0 and 5° C:

рН	Asparaginase
2	0.00
3	0.01
4	0.10
5	0.53
6	0.95
7	1.00
8	0.66
9	0.22
10	0.08
11	0.00

5

The results for the pH-stability profile (residual activity after 2 hours at 37°C) were as follows:

рН	Asparaginase
2.0	0.00
3.0	0.00
4.0	1.06
5.0	1.08
6.0	1.09
7.0	1.09
8.0	0.92
9.0	0.00
10.0	0.00
11.0	0.00
12.0	0.00
	1.00

The results for the temperature activity profile (at pH 7.0) were as follows:

Temp (°C)	Asparaginase
15	0.24
25	0.39
37	0.60
50	0.81
60	1.00
70	0.18

Other characteristics

20

The relative molecular weight as determined by SDS-PAGE was seen as a broad band (a smear) at M_r = 40-65 kDa.

N-terminal sequencing showed four different terminals, corresponding to residues 27-5 37, 30-40, 75-85 and 80-91 of SEQ ID NO: 2, respectively.

Example 3: Cloning of asparaginase from Penicillium citrinum

Penicillium citrinum was grown in MEX-1 medium (Medium B in WO 98/38288) in flasks shaken at 150RPM at 26°C for 3 and 4 days. Mycelium was harvested, a cDNA library constructed, and cDNAs encoding secreted peptides were selected and sequenced by the methods described in WO 03/044049. Comparison to known sequences by methods described in WO 03/044049 indicated that Penicillium sequence ZY132299 encoded an asparaginase. The complete sequence of the corresponding cDNA was determined and is presented as SEQ ID NO: 11, and the peptide translated from this sequence is presented as SEQ ID NO: 12.

15 Example 4: Effect of asparaginase on acrylamide content in potato chips

Asparaginase from *A. oryzae* having the amino acid sequence shown in SEQ ID NO: 2 was prepared and purified as in Examples 1-2 and added at various dosages to potato chips made from 40 g of water, 52.2 g of dehydrated potato flakes, 5.8 g of potato starch and 2 g of salt.

The flour and dry ingredients were mixed for 30 sec. The salt and enzyme were dissolved in the water, and the solution was adjusted to 30°C The solution was added to the flour. The dough was further mixed for 15 min. The mixed dough was placed in a closed plastic bag and allowed to rest for 15 min at room temperature.

The dough was then initially compressed for 60 sec in a dough press.

The dough was sheeted and folded in a noodle roller machine until an approx. 5-10 mm dough is obtained. The dough was then rolled around a rolling pin and allowed to rest for

30 min in a plastic bag at room temperature. The dough was sheeted further to a final sheet thickness of approx 1.2 mm.

The sheet was cut into squares of approx 3 x 5 cm.

The sheets were placed in a frying basket, placed in an oil bath and fried for 45 sec at 180° C. The noodle basket was held at a 45° angle until the oil stopped dripping. The products were removed from the basket and left to cool on dry absorbent paper.

The potato chips were homogenized and analyzed for acrylamide. The results were as follows:

Asparaginase dosage	Acrylamide	
U/kg potato dry matter	Micro-g per kg	
0	5,200	
100	4,600	
500	3,100	
1000	1,200	
2000	150	

The results demonstrate that the asparaginase treatment is effective to reduce the acrylamide content in potato chips, that the acrylamide reduction is clearly dosage dependent, and that the acrylamide content can be reduced to a very low level.

Example 5: Effect of various enzymes on acrylamide content in potato chips

Potato chips were made as follows with addition of enzyme systems which are capa-15 ble of reacting on asparagine, as indicated below.

Recipe:

Tap water	40 g
Potato flakes dehydrated	52.2 g
Potato starch	5.8 g
Salt	2 g

Dough Procedure:

The potato flakes and potato starch are mixed for 30 sec in a mixer at speed 5. Salt and enzyme are dissolved in the water. The solution is adjusted to 30°C +/- 1°C. Stop mixer, 20 add all of the salt/enzyme solution to flour. The dough is further mixed for 15 min.

Place mixed dough in plastic bag, close bag and allow the dough to rest for 15 min at room temperature.

The dough is then initially compressed for 60 sec in a dough press.

The dough is sheeted and folded in a noodle roller machine until an approx. 5-10 mm dough is obtained. The dough is then rolled around a rolling pin and the dough is allowed to rest for 30 min in a plastic bag at room temperature. The dough is sheeted further to a final sheet thickness of approx 1.2 mm.

Cut the sheet into squares of approx 3 x 5 cm.

Sheets are placed in a frying basket, placed in the oil bath and fried for 60 sec at 180°C. Hold the noodle basket at a 45° angle and let the product drain until oil stops dripping. Remove the products from the basket and leave them to cool on dry absorbent paper.

The results from acrylamide analysis were as follows:

Enzyme	Enzyme dosage per kg of potato dry matter	Acrylamide Micro-g per kg
None (control)	0	4,100
Asparaginase from <i>Erwinia Chrysanthemi</i> A-2925	1000 U/kg	150
Glutaminase (product of Daiwa)	50 mg enzyme pro- tein/kg	1,800
Amino acid oxidase from <i>Trichoderma</i> harzianum described in WO 9425574.	50 mg enzyme pro- tein/kg	1,300
Laccase from Myceliophthora thermophila + peroxidase from Coprinus	5000 LAMU/kg + 75 mg enzyme protein/kg	2,000

10

5

The results demonstrate that all the tested enzyme systems are effective in reducing the acrylamide content of potato chips.

PCT

Original (for SUBMISSION) - printed on 10.10.2003 09:39:26 AM

0-1	Form - PCT/RO/134 (EASY) Indications Relating to Deposited Microorganism(s) or Other Biological Material (PCT Rule 13bis)	
0-1-1	Prepared using	PCT-EASY Version 2.92
		(updated 01.07.2003)
0-2	International Application No.	
0-3	Applicant's or agent's file reference	10347-WO
1	The indications made below relate to the deposited microorganism(s) or other biological material referred to in the description on:	·
1-1	page	4
1-2	line	5-7
1-3	Identification of Deposit	
1-3-1	Name of depositary institution	DSMZ-Deutsche Sammlung von
		Mikroorganismen und Zellkulturen GmbH
1-3-2	Address of depositary institution	Mascheroder Weg 1b, D-38124
		Braunschweig, Germany
1-3-3	Date of deposit	06 October 2003 (06.10.2003)
1-3-4	Accession Number	DSMZ 15960
1-4	Additional Indications	NONE
1-5	Designated States for Which Indications are Made	all designated States
1-6	Separate Furnishing of Indications	NONE
	These indications will be submitted to the International Bureau later	

FOR RECEIVING OFFICE USE ONLY

0-4	This form was received with the international application: (yes or no)	YE5
0-4-1	Authorized officer	The state of the s

FOR INTERNATIONAL BUREAU USE ONLY

	This form was received by the	
	international Bureau on:	
0-5-1	Authorized officer	
	<u> </u>	L

PCT/DK2003/000684

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Novozymes A/S Krogshojvej 36 DK-2880 Bagsvaerd

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

1. DEPOSITOR		IL IDENTIFICATION OF THE MICROORGANISM
Name: Address:	Novozymes A/S Krogshojvej 36 DK-2880 Bagsvaerd	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 15960 Date of the deposit or the transfer*: 2003-10-06
III. VIABII	JTY STATEMENT	
On that dat	ty of the microorganism identified under II above was tested on te, the said microorganism was	2003-10-06
)' no longer viable TIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PER	· FORMED ⁴
V. INTERN	NATIONAL DEPOSITARY AUTHORITY	
Name: Address:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date Indicate the date of original deposit of, where a first deposit of the transfer).

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test. Mark with a cross the applicable box.

Fill in if the information has been requested and if the results of the test were negative.

Form DSMZ-BP/9 (sole page) 12/2001

PCT/DK2003/000684

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Novozymes A/S Krogshojvej 36 DK-2880 Bagsvaerd

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

L IDENTIFICATION OF THE MICROORGANISM				
ĺ	on reference given by the DEPOSITOR: NO49697	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 15960		
II. SCIENT	TIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIG	NATION		
	The microorganism identified under L above was accompanied by: () a scientific description (X) a proposed taxonomic designation (Mark with a cross where applicable).			
III. RECEIPT AND ACCEPTANCE This International Depositary Authority accepts the microorganism identified under I. above, which was received by it on 2003-10-06 (Date of the original deposit).				
IV. RECEIF	IV. RECEIPT OF REQUEST FOR CONVERSION			
The microorganism identified under I above was received by this International Depositary Authority on and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on for conversion). (date of receipt of request				
V. INTERNATIONAL DEPOSITARY AUTHORITY				
Name: Address:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s): Date: 2003-10-13		

Where Rule 6.4 (d) applies, such date is the date on which the status of international depositary authority was acquired. Form DSMZ-BP/4 (sole page) 12/2001

CLAIMS

5

1. A method of preparing a heat-treated product, comprising the sequential steps of:

- a) providing a raw material which comprises carbohydrate, protein and water
- b) treating the raw material with an enzyme capable of reacting on asparagine or glutamine (optionally substituted) as a substrate, a laccase or a peroxidase, and
 - c) heat treating to reach a final water content below 35 % by weight.
- 2. The method of the preceding claim wherein the enzyme capable of reacting on asparagine or glutamine (optionally substituted) as a substrate is an asparaginase, a glutaminase, an L-amino acid oxidase, a glycosylasparaginase, a glycoamidase (peptide N-glycosidase) or 10 a peptidoglutaminase.
 - 3. The method of the preceding claim wherein the asparaginase has an amino acid sequence which is at least 90 % identical to SEQ ID NO: 2 (optionally truncated to residues 27-378, 30-378, 75-378 or 80-378), 4, 6, 8, 10, 12 or 13.
- 4. The method of any preceding claim which further comprises treating the raw material with an oxidoreductase capable of reacting with a reducing sugar as a substrate.
 - 5. The method of the preceding claim wherein the oxidoreductase capable of reacting with a reducing sugar as a substrate is a glucose oxidase, a pyranose oxidase, a hexose oxidase, a galactose oxidase (EC 1.1.3.9) or a carbohydrate oxidase which has a higher activity on maltose than on glucose.
- 20 6. The method of any preceding claim wherein the raw material is in the form of a dough and the enzyme treatment comprises mixing the enzyme into the dough and optionally holding.
 - 7. The method of any preceding claim wherein the raw material comprises intact vegetable pieces and the enzyme treatment comprises immersing the potato pieces in an aqueous solution of the enzyme.
- 25 8. The method of any preceding claim wherein the raw material comprises a potato product.

9. A polypeptide having asparaginase activity and having an amino acid sequence which is at least 90 % identical with SEQ ID NO: 2 (optionally truncated to residues 27-378, 30-378, 75-378 or 80-378) or SEQ ID NO: 12.

- 10. A polynucleotide encoding the polypeptide of the preceding claim.
- 5 11. A polynucleotide which encodes an asparaginase and which comprises a nucleotide sequence which is at least 90 % identical to the coding sequences of SEQ ID NO: 1 or 11.

10347-WO-ST25 SEQUENCE LISTING

<110> Novozymes A/S	
<120> Method of Preparing an Edible Product	
<130> 10347-wo	
<160> 15	
<170> PatentIn version 3.2	
<210> 1 <211> 1303 <212> DNA <213> Aspergillus oryzae	
<220> <221> CDS <222> (49)(1182)	
<pre><400> 1 ccacgcgtcc gattccctac tcagagcccc gagcaaccaa gcagcagt atg ggt gtc</pre>	57
aat ttc aaa gtt ctt gcc ctg tcg gcc tta gct act att agc cat gct Asn Phe Lys Val Leu Ala Leu Ser Ala Leu Ala Thr Ile Ser His Ala 5 10 15	105
tcg cct ctc cta tat cct cga gcc aca gac tcg aac gtc acc tat gtg Ser Pro Leu Leu Tyr Pro Arg Ala Thr Asp Ser Asn Val Thr Tyr Val 20 25 30 35	153
ttc acc aac ccc aat ggc ctg aac ttt act cag atg aac acc acc ctg Phe Thr Asn Pro Asn Gly Leu Asn Phe Thr Gln Met Asn Thr Thr Leu 40 45 50	201
cca aac gtc act atc ttc gcg aca ggc ggc aca atc gcg ggc tcc agc Pro Asn Val Thr Ile Phe Ala Thr Gly Gly Thr Ile Ala Gly Ser Ser 55 60 65	249
gcc gac aac acc gca aca aca ggt tac aaa gcc ggt gca gtc ggc atc Ala Asp Asn Thr Ala Thr Thr Gly Tyr Lys Ala Gly Ala Val Gly Ile 70 75 80	297
cag aca ctg atc gac gcg gtc ccg gaa atg cta aac gtt gcc aac gtc Gln Thr Leu Ile Asp Ala Val Pro Glu Met Leu Asn Val Ala Asn Val 85 90 95	345
gct ggc gtg caa gta acc aat gtc ggc agc cca gac atc acc tcc gac Ala Gly Val Gln Val Thr Asn Val Gly Ser Pro Asp Ile Thr Ser Asp 100 105 110 115	393
att ctc ctg cgt ctc tcc aaa cag atc aac gag gtg gtc tgc aac gac Ile Leu Leu Arg Leu Ser Lys Gln Ile Asn Glu Val Val Cys Asn Asp 120 125 130	441
ccc acc atg gcc ggt gca gtg gtc acc cac ggc acc gac acg ctc gaa Pro Thr Met Ala Gly Ala Val Val Thr His Gly Thr Asp Thr Leu Glu 135 140 145	489
gaa tcc gcc ttc ttc ctc gac gcc acg gtc aac tgt cgc aag ccc gtg Glu Ser Ala Phe Phe Leu Asp Ala Thr Val Asn Cys Arg Lys Pro Val 150 155 160	537
gtc atc gtc ggc gcc atg cgc cct tca acc gcc atc tcg gct gac ggc Page 1	585

۷al	Ile 165	۷a٦	Gly	Αla	Met	Arg 170	Pro	10 Ser)347- Thr	-WO-S Ala	T25 Ile 175	Ser	Ala	Asp	Gly	
ccc Pro 180	ctc Leu	aac Asn	ctc Leu	ctg Leu	caa Gln 185	tcc Ser	gtc Val	acc Thr	gtc Val	gcc Ala 190	gcg Ala	agc Ser	CCC Pro	aag Lys	gcc Ala 195	633
cga Arg	gac Asp	cgc Arg	ggc Gly	gcc Ala 200	ctg Leu	att Ile	gtc Val	atg Met	aac Asn 205	gac Asp	cgc Arg	atc Ile	gta Val	tcc ser 210	gcc Ala	681
ttc Phe	tac Tyr	gcc Ala	tcc Ser 215	aag Lys	acg Thr	aac Asn	gcc Ala	aac Asn 220	acc Thr	gtc Val	gat Asp	aca Thr	ttc Phe 225	aag Lys	gcc Ala	729
atc Ile	gaa Glu	atg Met 230	ggt Gly	aac Asn	ctg Leu	ggc Gly	gag Glu 235	gtc Val	gtc Val	tcc Ser	aac Asn	aaa Lys 240	ccc Pro	tac Tyr	ttc Phe	777
ttc Phe	tac Tyr 245	ccc Pro	cca Pro	gtc Val	aag Lys	cca Pro 250	aca Thr	ggc Gly	aag Lys	acg Thr	gaa Glu 255	gta val	gat Asp	atc Ile	cgg Arg	825
aac Asn 260	atc Ile	acc Thr	tcc Ser	atc Ile	ccc Pro 265	aga Arg	gtc Val	gac Asp	atc Ile	ctc Leu 270	tac Tyr	tca Ser	tac Tyr	gaa Glu	gac Asp 275	873
atg Met	cac His	aat Asn	gac Asp	acc Thr 280	ctt Leu	tac Tyr	tcc Ser	gcc Ala	atc Ile 285	gac Asp	aac Asn	ggc Gly	gca Ala	aag Lys 290	ggc Gly	921
atc Ile	gtt Val	atc Ile	gcc Ala 295	ggc Gly	tcc Ser	ggc Gly	tcc Ser	ggc Gly 300	tcc Ser	gtc Val	tcc Ser	acc Thr	ccc Pro 305	ttc Phe	agc Ser	969
gcc Ala	gcc Ala	atg Met 310	gaa Glu	gac Asp	atc Ile	aca Thr	acc Thr 315	aaa Lys	сас His	aac Asn	atc Ile	ccc Pro 320	atc Ile	gta Val	gcc Ala	1017
agc Ser	acg Thr 325	cgc Arg	acc Thr	gga Gly	aac Asn	ggg G1y 330	gag Glu	gtg Val	ccg Pro	tcc Ser	tcc Ser 335	gcc Ala	gag Glu	tcg Ser	agc Ser	1065
cag Gln 340	atc Ile	gca Ala	agc Ser	ggg Gly	tat Tyr 345	ttg Leu	aac Asn	ccc Pro	gca Ala	aag Lys 350	tca Ser	cgc Arg	gtt Val	ttg Leu	ctt Leu 355	1113
ggc Gly	ttg Leu	ttg Leu	ctt Leu	gcc Ala 360	cag Gln	ggg Gly	aag Lys	agt Ser	att Ile 365	gag Glu	gaa Glu	atg Met	agg Arg	gcg Ala 370	gtt Val	1161
ttt Phe	gag Glu	cgg Arg	att Ile 375	ggg Gly	gtt Val	gct Ala	tgat	tttt	tt t	tctt	ttct:	g ct	tggt	ctt	:	1212
gttt	aggg	itt g	gggt	ttgt	g ta	ttat	agat	taa	ıggat	tta	tgga	tggg	jat g	gata	ataga	1272
ttat	agat	ta t	agat	taag	ıt at	cgat	tato	g								1303
)> 2							-			•					

<400> 2

Met Gly Val Asn Phe Lys Val Leu Ala Leu Ser Ala Leu Ala Thr Ile Page 2

<210> 2 <211> 378 <212> PRT <213> Aspergillus oryzae

15

10347-wo-st25 5 10

Ser His Ala Ser Pro Leu Leu Tyr Pro Arg Ala Thr Asp Ser Asn Val 20 25 30

Thr Tyr Val Phe Thr Asn Pro Asn Gly Leu Asn Phe Thr Gln Met Asn 35 40 45

Thr Thr Leu Pro Asn Val Thr Ile Phe Ala Thr Gly Gly Thr Ile Ala 50 55 60

Gly Ser Ser Ala Asp Asm Thr Ala Thr Thr Gly Tyr Lys Ala Gly Ala 65 70 75 80

Val Gly Ile Gln Thr Leu Ile Asp Ala Val Pro Glu Met Leu Asn Val 85 90 95

Ala Asn Val Ala Gly Val Gln Val Thr Asn Val Gly Ser Pro Asp Ile $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Thr Ser Asp Ile Leu Leu Arg Leu Ser Lys Gln Ile Asn Glu Val Val 115 120 125

Cys Asn Asp Pro Thr Met Ala Gly Ala Val Val Thr His Gly Thr Asp 130 140

Thr Leu Glu Glu Ser Ala Phe Phe Leu Asp Ala Thr Val Asn Cys Arg 145 150 155 160

Lys Pro Val Val Ile Val Gly Ala Met Arg Pro Ser Thr Ala Ile Ser 165 170 175

Ala Asp Gly Pro Leu Asn Leu Leu Gln Ser Val Thr Val Ala Ala Ser 180 185 190

Pro Lys Ala Arg Asp Arg Gly Ala Leu Ile Val Met Asn Asp Arg Ile 195 200 205

Val Ser Ala Phe Tyr Ala Ser Lys Thr Asn Ala Asn Thr Val Asp Thr 210 215 220

Phe Lys Ala Ile Glu Met Gly Asn Leu Gly Glu Val Val Ser Asn Lys 225 230 240

Pro Tyr Phe Phe Tyr Pro Pro Val Lys Pro Thr Gly Lys Thr Glu Val 245 250 Lys Thr Glu Val 255

Asp Ile Arg Asn Ile Thr Ser Ile Pro Arg Val Asp Ile Leu Tyr Ser 260 265 270

Tyr Glu Asp Met His Asn Asp Thr Leu Tyr Ser Ala Ile Asp Asn Gly Page 3

10347-WO-ST25 275 280 285

Ala Lys Gly Ile Val Ile Ala Gly Ser Gly Ser Gly Ser Val Ser Thr 290 295 300

Pro Phe Ser Ala Ala Met Glu Asp Ile Thr Thr Lys His Asn Ile Pro 305 310 315

Ile Val Ala Ser Thr Arg Thr Gly Asn Gly Glu Val Pro Ser Ser Ala 325 330 335

Glu Ser Ser Gln Ile Ala Ser Gly Tyr Leu Asn Pro Ala Lys Ser Arg 340 345 350

Val Leu Gly Leu Leu Leu Ala Gln Gly Lys Ser Ile Glu Glu Met 355 360

Arg Ala Val Phe Glu Arg Ile Gly Val Ala 370 375

<210> 3

<211> 1400

<212> DNA

<213> Aspergillus nidulans

<220>

<221> CDS <222> (89)..(269)

<220>

<221> CDS

<222> (347)..(1299)

<400> 3

ccctttatga cggccgaaag atggatatgc tactatacag attcagcctt cttgcctttg 60

ggagagcgtt tgatactata cgcaaatc atg ggt ctc cgt gtc aaa gcc ctt 112 Met Gly Leu Arg Val Lys Ala Leu 1

gca gtg gca gct ctg gct acc ctc agc cag gcc tcg ccg gtc cta tac
Ala Val Ala Ala Leu Ala Thr Leu Ser Gln Ala Ser Pro Val Leu Tyr
10 20

act cgc gag gac act acc tcc aac aca acc tac gcc ttt acc aac agc 208
Thr Arg Glu Asp Thr Thr Ser Asn Thr Thr Tyr Ala Phe Thr Asn Ser
25 30 35 40

aac ggg Ctg aac ttc acc cag atg aac acc aca ctt cct aat gta acc 256
Asn Gly Leu Asn Phe Thr Gln Met Asn Thr Thr Leu Pro Asn Val Thr
45 50 55

atc ttc gca aca g gtatgaccgt cccttcactt tcccatctct ttccaacccc 309
Ile Phe Ala Thr
60

cttcagcaaa cagcaaacta aacaatagca acaacag gc ggc aca atc gcc ggc 363 Gly Gly Thr Ile Ala Gly 65

tcg Ser	gcc Ala	gcc Ala	tct Ser 70	aac Asn	act Thr	gca Ala	aca Thr	aca	ggc	WO-S tac Tyr	cag	gcg Ala	ggc Gly 80	gcc Ala	ctc Leu	411
gga Gly	atc Ile	cag Gln 85	acc	ctc Leu	atc Ile	gac Asp	gcc Ala 90	gtc	ccc Pro	gaa Glu	atg Met	ctc Leu 95	tcc Ser	gtc Val	gcc Ala	459
aac Asn	atc Ile 100	gcc Ala	ggc Gly	gtg Val	cag Gln	atc Ile 105	tcc Ser	aac Asn	gtc Val	ggt Gly	agc Ser 110	cca Pro	gac Asp	gtc Val	acc Thr	507
						atg Met										555
gag Glu	gac Asp	cca Pro	tcc Ser	atg Met 135	gct Ala	ggc Gly	gca Ala	gtc Val	gtc Val 140	acc Thr	cac His	ggc Gly	act Thr	gac Asp 145	acc Thr	603
ctt Leu	gag Glu	gaa Glu	acg Thr 150	gcc Ala	ttc Phe	ttc Phe	ctc Leu	gac Asp 155	gca Ala	aca Thr	gtc Val	aac Asn	tgc Cys 160	ggg Gly	aag Lys	651
cct Pro	att Ile	gtc Val 165	atc Ile	gtg Val	ggc Gly	gcc Ala	atg Met 170	cgg Arg	ccc Pro	gca Ala	aca Thr	ttc Phe 175	atc Ile	tct Ser	gcc Ala	699
gat Asp	ggg Gly 180	ccc Pro	tat Tyr	aat Asn	ctc Leu	ctg Leu 185	cag Gln	gcc Ala	gtt Val	act Thr	gtg Val 190	gcg Ala	agc Ser	acg Thr	aaa Lys	747
gag Glu 195	gca Ala	agg Arg	aac Asn	agg Arg	ggc Gly 200	gcg Ala	atg Met	gtc val	gtc val	atg Met 205	aac Asn	gac Asp	cgc Arg	atc Ile	gcc Ala 210	795
tcc Ser	gct Ala	tac Tyr	tac Tyr	gtg Val 215	tcc Ser	aag Lys	aca Thr	aac Asn	gcc Ala 220	aat Asn	acg Thr	atg Met	gat Asp	aca Thr 225	ttc Phe	843
aag Lys	gct Ala	gtg val	gaa Glu 230	atg Met	ggg Gly	tac Tyr	ctg Leu	ggt Gly 235	gcc Ala	att Ile	atc Ile	tcg Ser	aac Asn 240	act Thr	ccg Pro	891
ttc Phe	ttc Phe	tat Tyr 245	tac Tyr	ccg Pro	gcc Ala	gtg Val	cag Gln 250	cca Pro	agt Ser	ggg Gly	aag Lys	acg Thr 255	act Thr	gtc Val	gat Asp	939
						atc Ile 265										987
						acg Thr										1035
aag Lys	ggc Gly	gtt Val	gtt Val	atc Ile 295	gca Ala	gga Gly	tct Ser	ggt Gly	gct Ala 300	ggg Gly	agt Ser	gtc Val	gat Asp	acc Thr 305	gcc Ala	1083
						gat Asp										1131
						gga Gly										1179

								10	347-	WO-S	T25				
ggg Gly	ggt Gly 340	att Ile	tcg Ser	agc Ser	ggg Gly	ttc Phe 345	ctg Leu					tcg Ser	agg Arg	att Ile	ttg Leu
ttg Leu 355	gga Gly	ttg Leu	ctg Leu	ttg Leu	gcc Ala 360	cag Gln	gga Gly	ggg Gly	aag Lys	ggc Gly 365	act Thr	gaa Glu	gaa Glu	att Ile	agg Arg 370
gcg Ala	gtg Val	ttt Phe	ggg Gly	aag Lys 375	gtt Val	gct Ala	gtt Val	tga	ttcc	cga (ctgc	ccag	3g c1	tato	gatgt
gat	ttgai	tga 🤉	gata	tggta	at aa	ataat	tccg ¹	t ata	atate	ccag	taga	atato	at g	ggaag	gatgat
gaa	tagcı	tgc (С												
<210 <211 <211 <211	L> = 3 2> = 1	‡ 378 PRT Aspei	rgil`	lus r	ni du l	lans									
<400)> 4	4													
Met 1	Gly	Leu	Arg	Val 5	Lys	Ala	Leu	Ala	va1 10	Ala	Ala	Leu	Ala	Thr 15	Leu
Ser	Gln	Ala	Ser 20	Pro	٧a٦	Leu	Tyr	Thr 25	Arg	Glu	Asp	Thr	Thr 30	Ser	Asn
Thr	Thr	Tyr 35	Ala	Phe	Thr	Asn	Ser 40	Asn	Gly	Leu	Asn	Phe 45	Thr	Gln	Met
Asn	Thr 50	Thr	Leu	Pro	Asn	va1 55	Thr	Ile	Phe	Ala	Thr 60	Gly	Gly	Thr	Ile
А1а 65	G1y	Ser	Ala	Ala	Ser 70	Asn	Thr	Ala	Thr	Thr 75	Gly	Туг	Gln	Ala	Gly 80
Ala	Leu	Gly	Ile	G]n 85	Thr	Leu	Ile	Asp	А]а 90	٧a٦	Pro	Glu	Met	Leu 95	Ser
۷a٦	Αla	Asn	Ile 100	Ala	Glу	Val	Gln	11e 105	Ser	Asn	٧a٦	Gly	Ser 110	Pro	Asp
٧a٦	Thr	Ser 115	Thr	Ile	Leu	Leu	Glu 120	Met	Ala	His	Arg	Leu 125	Asn	Lys	val
۷a٦	Cys 130	Glu	Asp	Pro	Ser	Met 135	Ala	Gly	Ala	۷al	∨a7 140	Thr	His	Gly	Thr
Asp 145	Thr	Leu	Glu	Glu	Thr 150	Ala	Phe	Phe	Leu	Asp 155	Ala	Thr	٧a٦	Asn	Cys 160
Gly	Lys	Pro	Ile	Va7 165	Ile	Val	Gly	Ala	меt 170	Arg	Pro	Ala	Thr	Phe 175	Ile

Ser Ala Asp Gly Pro Tyr Asn Leu Leu Gln Ala Val Thr Val Ala Ser 180 185 190 Thr Lys Glu Ala Arg Asn Arg Gly Ala Met Val Val Met Asn Asp Arg 195 200 205 Ile Ala Ser Ala Tyr Tyr Val Ser Lys Thr Asn Ala Asn Thr Met Asp
210 215 220 Thr Phe Lys Ala Val Glu Met Gly Tyr Leu Gly Ala Ile Ile Ser Asn 225 230 235 Thr Pro Phe Phe Tyr Tyr Pro Ala Val Gln Pro Ser Gly Lys Thr Thr 245 250 255 Val Asp Val Ser Asn Val Thr Ser Ile Pro Arg Val Asp Ile Leu Tyr 260 265 270 Ser Phe Gln Asp Met Thr Asn Asp Thr Leu Tyr Ser Ser Ile Glu Asn 275 280 285 Gly Ala Lys Gly Val Val Ile Ala Gly Ser Gly Ala Gly Ser Val Asp 290 295 300 Thr Ala Phe Ser Thr Ala Ile Asp Asp Ile Ile Ser Asn Gln Gly Val 305 310 315 Pro Ile Val Gln Ser Thr Arg Thr Gly Asn Gly Glu Val Pro Tyr Ser 325 330 335 Ala Glu Gly Gly Ile Ser Ser Gly Phe Leu Asn Pro Ala Lys Ser Arg 340 345 Ile Leu Leu Gly Leu Leu Leu Ala Gln Gly Gly Lys Ġly Thr Glu Glu 355 360 365 Ile Arg Ala Val Phe Gly Lys Val Ala Val 370 <210> 1330 DNA Aspergillus fumigatus <220> <221> CDS (93)..(978) <220> <221> <222> CDS (1056)..(1291)

gccctacgat actitgtiga taccgitgcc iggcgigtac agcgatitca cicccicgaa

Page 7

10347-WO-ST25

									•							
agca	agago	cag 1	ttcg	cctc	gt ca	agat	cgcaa	a ag						ttc Phe		113
atc Ile	atc Ile	aca Thr 10	ctc Leu	gcg Ala	gct Ala	atg Met	ata Ile 15	gcc Ala	gtt Val	ggg Gly	aat Asn	gcc Ala 20	tct Ser	ccg Pro	ttt Phe	161
														acc Thr		209
														aat Asn		257
acc Thr	atc Ile	ctc Leu	gca Ala	acc Thr 60	ggc Gly	ggt Gly	acc Thr	att Ile	gcc Ala 65	ggc Gly	tcc Ser	agc Ser	aac Asn	gac Asp 70	aac Asn	305
acc Thr	gcc Ala	aca Thr	aca Thr 75	ggc Gly	tac Tyr	acg Thr	gcc Ala	ggc Gly 80	gcg Ala	atc Ile	ggc Gly	atc Ile	cag Gln 85	cag Gln	ctc Leu	353
atg Met	gat Asp	gcc Ala 90	gtc Val	cct Pro	gag Glu	atg Met	cta Leu 95	gac Asp	gtt Val	gct Ala	aac Asn	gtg Val 100	gcc Ala	ggc Gly	atc Ile	401
cag Gln	gtc Val 105	gcc Ala	aat Asn	gtc Val	ggc Gly	agc Ser 110	ccc Pro	gac Asp	gtg Val	acg Thr	tct ser 115	tcc Ser	ctt Leu	ctg Leu	ctc Leu	449
														acc Thr		497
agc Ser	ggc Gly	gcc Ala	gtc Val	atc Ile 140	acg Thr	сас His	ggc Gly	acc Thr	gac Asp 145	acg Thr	ctc Leu	gag Glu	gag Glu	acg Thr 150	gcc Ala	545
ttc Phe	ttc Phe	ctc Leu	gac Asp 155	gct Ala	aca Thr	gtc Val	aac Asn	tgc Cys 160	ggc Gly	aag Lys	ccc Pro	atc Ile	gtc Val 165	gtc Val	gtc Val	593
ggc Gly	gcc Ala	atg Met 170	cgg Arg	ccc Pro	gca Ala	acc Thr	gcc Ala 175	atc Ile	tcc Ser	gcc Ala	gac Asp	ggc Gly 180	ccg Pro	ttc Phe	aac Asn	641
ctc Leu	ctc Leu 185	cag Gln	gcc Ala	gtg Val	acc Thr	gtc Val 190	gcc Ala	gcg Ala	cac His	ccc Pro	act Thr 195	gcg Ala	cgc Arg	aac Asn	cgt Arg	689
ggt Gly 200	gcg Ala	ctg Leu	gtc Val	gtc Val	atg Met 205	aac Asn	gac Asp	cgc Arg	att Ile	gtg Val 210	tcc Ser	gcg Ala	tac Tyr	tac Tyr	gtc Val 215	737
tcc Ser	aag Lys	aca Thr	aac Asn	gcc Ala 220	aac Asn	acc Thr	atg Met	gac Asp	acc Thr 225	ttc Phe	aag Lys	gcc Ala	gtc Val	gag Glu 230	atg Met	785
														tac Tyr		833
									Phe					gtc Val		881
									PA (.⊷ ∧						

Page 8

10347-WO-ST25

tcc atc ccc aga Ser Ile Pro Arg 265	gtc gac atc ctc tac tcg tac cag gat atg caa aac Val Asp Ile Leu Tyr Ser Tyr Gln Asp Met Gln Asn 270 275	929
gat acg ctc tac Asp Thr Leu Tyr 280	gac gcc gtc gac aac ggc gcg aaa ggc atc gtc gta a Asp Ala Val Asp Asn Gly Ala Lys Gly Ile Val Val 285 290 295	978
gtccagcccc tttc	taaagc cctcaccgga tcaaccgctg aaattgaacc taatccagat	1038
cgccggctcc ggcg	cag ga agc gtc tca agt ggc tac tac gat gcc atc Arg Ser Val Ser Ser Gly Tyr Tyr Asp Ala Ile 300 305	1087
gac gac atc gca Asp Asp Ile Ala 310	tcc acg cac tcc ctc cct gtc gtc ctc agc act cgc Ser Thr His Ser Leu Pro Val Val Leu Ser Thr Arg 315 320	1135
acc ggc aac ggc Thr Gly Asn Gly 325	gaa gtc gcc atc aca gac agc gag acc aca att gag Glu Val Ala Ile Thr Asp Ser Glu Thr Thr Ile Glu 330 335	1183
agc ggc ttc ctg Ser Gly Phe Leu 340	aac ccg cag aaa gcg cgc atc ctg ctc ggt ctg ctg Asn Pro Gln Lys Ala Arg Ile Leu Leu Gly Leu Leu 345 350	1231
ctt gct gag gat Leu Ala Glu Asp 355	aag gga ttc aag gag atc aaa gag gcg ttc gcg aag Lys Gly Phe Lys Glu Ile Lys Glu Ala Phe Ala Lys 360 365 370	1279
aac ggg gtt gct Asn Gly Val Ala	tgattatgtc cttccttgtt ttgggtggca tttgtggtt	1330

<210> 6

<400> 6

Met Thr Lys Leu Ser Phe Lys Ile Ile Thr Leu Ala Ala Met Ile Ala 10 15

Val Gly Asn Ala Ser Pro Phe Val Tyr Pro Arg Ala Thr Ser Pro Asn $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Ser Thr Tyr Val Phe Thr Asn Ser His Gly Leu Asn Phe Thr Gln Met 35

Asn Thr Thr Leu Pro Asn Val Thr Ile Leu Ala Thr Gly Gly Thr Ile 50 60

Ala Gly Ser Ser Asn Asp Asn Thr Ala Thr Thr Gly Tyr Thr Ala Gly 70 75 80

Ala Ile Gly Ile Gln Gln Leu Met Asp Ala Val Pro Glu Met Leu Asp 85 90 95

Val Ala Asn Val Ala Gly Ile Gln Val Ala Asn Val Gly Ser Pro Asp Page 9

<211> 374

<212> PRT

<213> Aspergillus fumigatus

10347-WO-ST25 105

110 100 Val Thr Ser Ser Leu Leu Leu His Met Ala Arg Thr Ile Asn Glu Val 115 120 125 Val Cys Asp Asp Pro Thr Met Ser Gly Ala Val Ile Thr His Gly Thr 130 135 140 Asp Thr Leu Glu Glu Thr Ala Phe Phe Leu Asp Ala Thr Val Asn Cys 145 150 155 160 Gly Lys Pro Ile Val Val Gly Ala Met Arg Pro Ala Thr Ala Ile 165 170 175 Ser Ala Asp Gly Pro Phe Asn Leu Leu Gln Ala Val Thr Val Ala Ala 180 185 190 His Pro Thr Ala Arg Asn Arg Gly Ala Leu Val Val Met Asn Asp Arg 195 200 205 Ile Val Ser Ala Tyr Tyr Val Ser Lys Thr Asn Ala Asn Thr Met Asp 210 220 Thr Phe Lys Ala Val Glu Met Gly Asn Leu Gly Ala Ile Ile Ser Asn 225 230 235 240 Lys Pro Tyr Phe Phe Tyr Pro Pro Val Met Pro Thr Gly Lys Thr Thr 245 250 255 Phe Asp Val Arg Asn Val Ala Ser Ile Pro Arg Val Asp Ile Leu Tyr 260 265 270 Ser Tyr Gln Asp Met Gln Asn Asp Thr Leu Tyr Asp Ala Val Asp Asn 275 280 Gly Ala Lys Gly Ile Val Val Arg Ser Val Ser Ser Gly Tyr Tyr Asp 290 295 300Ala Ile Asp Asp Ile Ala Ser Thr His Ser Leu Pro Val Val Leu Ser 305 310 315 320Thr Arg Thr Gly Asn Gly Glu Val Ala Ile Thr Asp Ser Glu Thr Thr 325 330 335 Ile Glu Ser Gly Phe Leu Asn Pro Gln Lys Ala Arg Ile Leu Leu Gly 340 345 350Leu Leu Ala Glu Asp Lys Gly Phe Lys Glu Ile Lys Glu Ala Phe 355 360 365 Ala Lys Asn Gly Val Ala

Page 10

10347-WO-ST25

370

<210: <211: <212: <213:	> : > [7 1260 DNA Fusa	rium	grai	ninea	arum										
<220: <221: <222:	> (CDS (105))(1217))											
<400: ctgc		7 cgc a	agag	gagga	ag ca	agtc	tttt	t ct	tctc	gttc	ttta	accto	cc (ccto	cctcta	60
tctc	cag	tct (ctcca	aagt	gt tọ	gtgc	cctc	t tg	tgtta	agcc	cago				tct Ser	116
ttc Phe 1 5																164
gca Ala	tcc Ser	ccg Pro	atc Ile	ccg Pro 25	gag Glu	cca Pro	gaa Glu	aca Thr	ccg Pro 30	cag Gln	ctt Leu	atc Ile	ccc Pro	cgg Arg 35	gct Ala	212
gtt (Val	ggt Gly	gac Asp	ttt Phe 40	gag Glu	tgc Cys	ttc Phe	aac Asn	gct Ala 45	agt Ser	ctt Leu	ccc Pro	aac Asn	atc Ile 50	acc Thr	atc Ile	260
ttc (gcg Ala	act Thr 55	ggt Gly	ggt Gly	acc Thr	atc Ile	gct Ala 60	ggt Gly	tct Ser	gct Ala	ggt Gly	tct ser 65	gcc Ala	gat Asp	cag Gln	308
act a	acg Thr 70	ggt Gly	tac Tyr	cag Gln	gct Ala	ggt Gly 75	gca Ala	ttg Leu	ggt Gly	atc Ile	caa Gln 80	gcg Ala	ttg Leu	atc Ile	gac Asp	356
gct (Ala (85	gtc Val	ccg Pro	caa Gln	ctc Leu	tgc Cys 90	aac Asn	gtc Val	tcc Ser	aac Asn	gtc Val 95	agg Arg	ggt Gly	gtg Va i	cag Gln	atc Ile 100	404
gcc a	aac Asn	gtt Val	gat Asp	agc Ser 105	ggc Gly	gat Asp	gta Val	aac Asn	tct Ser 110	act Thr	atc Ile	ctg Leu	acc Thr	act Thr 115	ttg Leu	452
gcg Ala I	cat His	cgc Arg	atc Ile 120	cag Gln	act Thr	gat Asp	ctt Leu	gac Asp 125	aac Asn	cct Pro	cac His	atc Ile	caa Gln 130	ggt Gly	gtt Val	500
gtc (Val	gtc Val	acc Thr 135	cat His	ggc Gly	aca Thr	gac Asp	act Thr 140	ctc Leu	gag Glu	gag Glu	tct Ser	tca Ser 145	ttt Phe	ttc Phe	ctc Leu	548
gat (Asp	ctc Leu 150	act Thr	gtc Val	caa Gln	agt Ser	gaa Glu 155	aag Lys	cct Pro	gtt Val	gtt Val	atg Met 160	gtt Val	gga Gly	tcc Ser	atg Met	596
cgt (Arg I 165	cct Pro	gcc Ala	act Thr	gcc Ala	atc Ile 170	agc Ser	gct Ala	gat Asp	ggt Gly	ccc Pro 175	atc Ile	aac Asn	ctc Leu	ctg Leu	tct ser 180	644
gct (gtt Val	cga Arg	ttg Leu	gca Ala 185	ggt Gly	agc Ser	aag Lys	agt Ser	gcc Ala 190	aag Lys	ggt Gly	cgc Arg	ggt Gly	aca Thr 195	atg Met	692

Page 11

								10	1247_	-WO-S	T25					
att Ile	gta Val	ctc Leu	aac Asn 200	gac Asp	aag Lys	atc Ile	gct Ala	tct	qca	cac	tac	acc Thr	gtt Val 210	aaa Lys	tcc Ser	740
cac His	gcc Ala	aat Asn 215	gct Ala	gtc Val	cag Gln	act Thr	ttc Phe 220	att Ile	gcc Ala	gaa Glu	gat Asp	caa G1n 225	ggt Gly	tat Tyr	ctt Leu	788
ggt Gly	gcc Ala 230	ttt Phe	gaa Glu	aac Asn	att Ile	cag Gln 235	ccc Pro	gtc Val	ttc Phe	tgg Trp	tac Tyr 240	cct Pro	gct Ala	agt Ser	cga Arg	836
cca Pro 245	cta Leu	ggt Gly	cac His	cac His	tat Tyr 250	ttc Phe	aac Asn	att Ile	agt Ser	gct Ala 255	agc Ser	tca Ser	cct Pro	aag Lys	aag Lys 260	884
gct Ala	ctt Leu	cct Pro	cag Gln	gtt Val 265	gac Asp	gtt Val	ttg Leu	tac Tyr	ggc Gly 270	cac His	caa Gln	gaa Glu	gcg Ala	gac Asp 275	ccc Pro	932
gag Glu	ctt Leu	ttc Phe	caa Gln 280	gct Ala	gct Ala	gtc Val	gat Asp	agc Ser 285	ggc Gly	gcc Ala	cag Gln	ggc Gly	att Ile 290	gtt Val	ctc Leu	980
gct Ala	ggt Gly	ctt Leu 295	ggc Gly	gct Ala	gga Gly	ggc Gly	tgg Trp 300	cct Pro	gac Asp	gaa Glu	gct Ala	gct Ala 305	gat Asp	gag Glu	atc Ile	1028
aag Lys	aag Lys 310	gtc Val	ttg Leu	aac Asn	gag Glu	act Thr 315	aac Asn	att Ile	cct Pro	gtt Val	gtt Val 320	gtc Val	agc Ser	cgt Arg	cgt Arg	1076
act Thr 325	gct Ala	tgg Trp	ggt Gly	tac Tyr	gtt Val 330	gga Gly	gag Glu	agg Arg	cct Pro	ttc Phe 335	ggt Gly	atc Ile	ggt Gly	gct Ala	ggg Gly 340	1124
tac Tyr	ttg Leu	aac Asn	cct Pro	tcc Ser 345	aag Lys	gcc Ala	aga Arg	atc Ile	caa Gln 350	ctg Leu	caa Gln	ctt Leu	gcg Ala	ctt Leu 355	gag Glu	1172
aag Lys	aag Lys	ctt Leu	tct Ser 360	gtg Val	gag Glu	gag Glu	atc Ile	caa Gln 365	gac Asp	ata Ile	ttc Phe	gag Glu	tat Tyr 370	gtt Val		1217
tgat	tgga:	ag a	.ggat	tttg	a aa	tgaa	tcaa	tga	itata	tga	tta					1260

<210> 8

Met Ser Pro Ser Phe His Ser Leu Leu Ala Ile Ala Thr Leu Ala Gly $10 \ 15$

Ser Ala Ala Leu Ala Ser Pro Ile Pro Glu Pro Glu Thr Pro Gln Leu 20 30

Ile Pro Arg Ala Val Gly Asp Phe Glu Cys Phe Asn Ala Ser Leu Pro 35 40

Asn Ile Thr Ile Phe Ala Thr Gly Gly Thr Ile Ala Gly Ser Ala Gly 50 60

<21**1**> 371

<212> PRT <213> Fusarium graminearum

<400> 8

10347-WO-ST25

Ser Ala Asp Gln Thr Thr Gly Tyr Gln Ala Gly Ala Leu Gly Ile Gln 65 70 75 80 Ala Leu Ile Asp Ala Val Pro Gln Leu Cys Asn Val Ser Asn Val Arg 85 90 95 Gly Val Gln Ile Ala Asn Val Asp Ser Gly Asp Val Asn Ser Thr Ile 100 105 110Leu Thr Thr Leu Ala His Arg Ile Gln Thr Asp Leu Asp Asn Pro His 115 120 125 Ile Gln Gly Val Val Val Thr His Gly Thr Asp Thr Leu Glu Glu Ser 130 135 140 Ser Phe Phe Leu Asp Leu Thr Val Gln Ser Glu Lys Pro Val Val Met 145 150 155 Val Gly Ser Met Arg Pro Ala Thr Ala Ile Ser Ala Asp Gly Pro Ile 165 170 175 Asn Leu Leu Ser Ala Val Arg Leu Ala Gly Ser Lys Ser Ala Lys Gly 180 185 190 Arg Gly Thr Met Ile Val Leu Asn Asp Lys Ile Ala Ser Ala Arg Tyr $195 \hspace{1.5cm} 200 \hspace{1.5cm} 205$ Thr Val Lys Ser His Ala Asn Ala Val Gln Thr Phe Ile Ala Glu Asp 210 215 220 Gln Gly Tyr Leu Gly Ala Phe Glu Asn Ile Gln Pro Val Phe Trp Tyr 225 230 235 240 Pro Ala Ser Arg Pro Leu Gly His His Tyr Phe Asn Ile Ser Ala Ser 245 250 255 Ser Pro Lys Lys Ala Leu Pro Gln Val Asp Val Leu Tyr Gly His Gln 260 265 270 Glu Ala Asp Pro Glu Leu Phe Gln Ala Ala Val Asp Ser Gly Ala Gln 275 280 285 Gly Ile Val Leu Ala Gly Leu Gly Ala Gly Gly Trp Pro Asp Glu Ala 290 295 300 Ala Asp Glu Ile Lys Lys Val Leu Asn Glu Thr Asn Ile Pro Val Val 305 310 315 320 Val Ser Arg Arg Thr Ala Trp Gly Tyr Val Gly Glu Arg Pro Phe Gly 325 330 335 Page 13

PCT/DK2003/000684 WO 2004/032648

10347-WO-ST25

Ile Gly Ala Gly Tyr Leu Asn Pro Ser Lys Ala Arg Ile Gln Leu Gln 340 345 350

Leu Ala Leu Glu Lys Lys Leu Ser Val Glu Glu Ile Gln Asp Ile Phe

Glu Tyr Val 370 <210> 1470 <211> <212> DNA Fusarium graminearum <220> <221> CDS (77)..(1429)<400> 9 60 aggacaagcg tccatgaagc ataactacgc tacattgcct ttagctacag ttgatctata gatatcagtc tacatc atg atg ccc agc gtc aga aga ttt cac ggc cag act Met Met Pro Ser Val Arg Arg Phe His Gly Gln Thr $1 \hspace{1cm} 5 \hspace{1cm} 10$ 112 160 atg gtc gcc gct cct tct att tgc tca ggg cct gca gca tcg tcc Met Val Ala Ala Ala Pro Ser Ile Cys Ser Gly Pro Ala Ala Ser Ser 15 20 25 acc atc aag atg gct tca tcg tca gct tcg tgg acg act tat ctg tgg Thr Ile Lys Met Ala Ser Ser Ser Ala Ser Trp Thr Thr Tyr Leu Trp 30 35208 cgg ctt atc cta gct gtg ctg gct cct tca acg gcc ctg ctg cct ttt Arg Leu Ile Leu Ala Val Leu Ala Pro Ser Thr Ala Leu Leu Pro Phe 50 55 60 256 ggt gcg tgg gtt gtt tcg gtc tgg gga tct cct gtc ctc gac cta cac Gly Ala Trp Val Val Ser Val Trp Gly Ser Pro Val Leu Asp Leu His 65 70 75 304 352 gtc caa cct cac ttc tcg gtt caa caa aaa gcg cca ata cag acg ggc val Gln Pro His Phe Ser Val Gln Gln Lys Ala Pro Ile Gln Thr Gly atc cct ttc gaa att tcg acc acc tca gga ttc aac tgc ttc aat ccc lle Pro Phe Glu lle Ser Thr Thr Ser Gly Phe Asn Cys Phe Asn Pro 95 100 105 400 aat ctt ccc aac gtc act att tat gcc acc gga ggt act att gct ggc Ash Leu Pro Ash Val Thr Ile Tyr Ala Thr Gly Gly Thr Ile Ala Gly 110 115 120448 tcc gca agc tcg gct gat cag acc acg gga tac cgg tca gct gcg tta Ser Ala Ser Ser Ala Asp Gln Thr Thr Gly Tyr Arg Ser Ala Ala Leu 125 130 135 496 gga gtt gat tct ctc att gat gca gta ccc caa ttg tgc aat gta gcc Gly Val Asp Ser Leu Ile Asp Ala Val Pro Gln Leu Cys Asn Val Ala 145 150 155 544 592 aat gtg aga ggt gtc cag ttt gcc aac acg gac agc ata gac atg agc

Page 14

									•							
Asn	۷al	Arg	Gly 160	Val	Gln	Phe	Аlа			WO-S Asp		Ile	Asp 170	Met	Ser	
tcg Ser	gcc Ala	atg Met 175	ttg Leu	agg Arg	act Thr	ttg Leu	gcg Ala 180	aag Lys	cag Gln	atc Ile	cag Gln	aat Asn 185	gat Asp	ctg Leu	gac Asp	640
agt Ser	ccg Pro 190	ttt Phe	act Thr	caa Gln	ggc Gly	gca Ala 195	gtt Val	gtg Val	acg Thr	cac His	gga Gly 200	act Thr	gat Asp	act Thr	ctg Leu	688
gat Asp 205	gaa Glu	tct Ser	gcc Ala	ttc Phe	ttt Phe 210	ctg Leu	gat Asp	ctt Leu	act Thr	atc Ile 215	cag Gln	agc Ser	gac Asp	aag Lys	ccc Pro 220	736
gtg Val	gtc Val	gtg Val	aca Thr	ggc Gly 225	tca Ser	atg Met	cgc Arg	ccg Pro	gca Ala 230	act Thr	gct Ala	atc Ile	agc Ser	gca Ala 235	gat Asp	784
gga Gly	cca Pro	atg Met	aat Asn 240	ctt Leu	ttg Leu	tca Ser	tcg Ser	gtg Val 245	aca Thr	ttg Leu	gca Ala	gca Ala	gca Ala 250	gcg Ala	agt Ser	832
gct Ala	cga Arg	ggc Gly 255	aga Arg	gga Gly	gtg val	atg Met	att Ile 260	gcc Ala	atg Met	aat Asn	gat Asp	cgc Arg 265	att Ile	gga Gly	tct Ser	880
gct Ala	cgt Arg 270	ttt Phe	acg Thr	acc Thr	aaa Lys	gtc val 275	aac Asn	gcc Ala	aac Asn	cat His	ttg Leu 280	gac Asp	gcc Ala	ttc Phe	caa Gln	928
gcc Ala 285	cct Pro	gac Asp	agt Ser	ggc Gly	atg Met 290	ctg Leu	gga Gly	aca Thr	ttc Phe	gtc Val 295	aac Asn	gtt Val	cag Gln	cca Pro	gtg Val 300	976
														gat Asp 315		1024
cgg Arg	ccc Pro	atc Ile	acc Thr 320	aac Asn	aac Asn	ggc Gly	cgc Arg	cgg Arg 325	ttc Phe	gga Gly	cgc Arg	tct Ser	aca Thr 330	gcc Ala	ccc Pro	1072
gga Gly	gca Ala	gga Gly 335	tca Ser	tca Ser	gca Ala	cta Leu	ccc Pro 340	cag Gln	gtg val	gac Asp	gtg Val	ctc Leu 345	tac Tyr	gct Ala	tac Tyr	1120
cag Gln	gag Glu 350	ctc Leu	agc Ser	gtg Val	ggc Gly	atg Met 355	ttc Phe	cag Gln	gcg Ala	gcc Ala	atc Ile 360	gac Asp	ctt Leu	gga Gly	gcg Ala	1168
cag Gln 365	ggc Gly	atc Ile	gtt Val	cta Leu	gcg Ala 370	gga Gly	atg Met	ggc Gly	gct Ala	gga Gly 375	ttc Phe	tgg Trp	acg Thr	tcc ser	aaa Lys 380	1216
ggt Gly	acc Thr	gag Glu	gag Glu	att Ile 385	cgg Arg	cgt Arg	atc Ile	gtc Val	cac His 390	gag Glu	acc Thr	gat Asp	att Ile	ccc Pro 395	gtg Val	1264
ata Ile	gtg Val	agc Ser	cga Arg 400	aga Arg	ccg Pro	gaa Glu	ggc Gly	ggc Gly 405	ttc Phe	gtc Val	gga Gly	cca Pro	tgt Cys 410	gag Glu	gca Ala	1312
gga Gly	atc Ile	ggc Gly 415	gcg Ala	ggc Gly	ttt Phe	ttg Leu	aat Asn 420	ccg Pro	caa Gln	aag Lys	gcg Ala	agg Arg 425	atc Ile	cag Gln	ctc Leu	1360
caa	ctg	gcc	ctg	gag	acc	aag	atg	gac		gat e 15	_	atc	aaa	gcc	ctg	1408

PCT/DK2003/000684 WO 2004/032648

Gln Leu Ala Leu Glu Thr Lys Met Asp Asn Asp Ala Ile Lys Ala Leu 430 435 440

ttt gag cat tcg gga gtg cac taaagggaca aaaaagatcg aggttacagc Phe Glu His Ser Gly Val His 445 450

1459

agcaacacca c

1470

<210> 10

<211> 451 <212> **PRT**

Fusarium graminearum <213>

<400>

Met Met Pro Ser Val Arg Arg Phe His Gly Gln Thr Met Val Ala Ala 1 10 15

Ala Pro Ser Ile Cys Ser Gly Pro Ala Ala Ser Ser Thr Ile Lys Met 20 25 30

Ala Ser Ser Ser Ala Ser Trp Thr Thr Tyr Leu Trp Arg Leu Ile Leu 35 40 45

Ala Val Leu Ala Pro Ser Thr Ala Leu Leu Pro Phe Gly Ala Trp Val 50 60

Val Ser Val Trp Gly Ser Pro Val Leu Asp Leu His Val Gln Pro His 65 70 80

Phe Ser Val Gln Gln Lys Ala Pro Ile Gln Thr Gly Ile Pro Phe Glu 85 90 95

Ile Ser Thr Thr Ser Gly Phe Asn Cys Phe Asn Pro Asn Leu Pro Asn 100 105 110

Val Thr Ile Tyr Ala Thr Gly Gly Thr Ile Ala Gly Ser Ala Ser Ser 115 120 125

Ala Asp Gln Thr Thr Gly Tyr Arg Ser Ala Ala Leu Gly Val Asp Ser 130 140

Leu Ile Asp Ala Val Pro Gln Leu Cys Asn Val Ala Asn Val Arg Gly 145 150 155 160

Val Gln Phe Ala Asn Thr Asp Ser Ile Asp Met Ser Ser Ala Met Leu 165 170 175

Arg Thr Leu Ala Lys Gln Ile Gln Asn Asp Leu Asp Ser Pro Phe Thr 180 185 190

Gln Gly Ala Val Val Thr His Gly Thr Asp Thr Leu Asp Glu Ser Ala 195 200 205

10347-wo-st25

Phe Phe Leu Asp Leu Thr Ile Gln Ser Asp Lys Pro Val Val Val Thr 210 220

Gly Ser Met Arg Pro Ala Thr Ala Ile Ser Ala Asp Gly Pro Met Asn 225 230 235 240

Leu Leu Ser Ser Val Thr Leu Ala Ala Ala Ala Ser Ala Arg Gly Arg 245 250 255

Gly Val Met Ile Ala Met Asn Asp Arg Ile Gly Ser Ala Arg Phe Thr 260 265 270

Thr Lys Val Asn Ala Asn His Leu Asp Ala Phe Gln Ala Pro Asp Ser 275 280 285

Gly Met Leu Gly Thr Phe Val Asn Val Gln Pro Val Phe Phe Tyr Pro 290 295 300

Pro Ser Arg Pro Leu Gly His Arg His Phe Asp Leu Arg Pro Ile Thr 305 310 315 320

Asn Asn Gly Arg Arg Phe Gly Arg Ser Thr Ala Pro Gly Ala Gly Ser 325 330 335

Ser Ala Leu Pro Gln Val Asp Val Leu Tyr Ala Tyr Gln Glu Leu Ser 340 345 350

Val Gly Met Phe Gln Ala Ala Ile Asp Leu Gly Ala Gln Gly Ile Val 355 360 365

Leu Ala Gly Met Gly Ala Gly Phe Trp Thr Ser Lys Gly Thr Glu Glu 370 380

Ile Arg Arg Ile Val His Glu Thr Asp Ile Pro Val Ile Val Ser Arg 385 390 395

Arg Pro Glu Gly Gly Phe Val Gly Pro Cys Glu Ala Gly Ile Gly Ala 405 410 415

Gly Phe Leu Asn Pro Gln Lys Ala Arg Ile Gln Leu Gln Leu Ala Leu 420 425 430

Glu Thr Lys Met Asp Asn Asp Ala Ile Lys Ala Leu Phe Glu His Ser 435 440 445

Gly Val His 450

<210> 11 <211> 1236 <212> DNA 10347-wo-st25

<213> Penicillium citrinum

<220> <221> CDS (16)..(1152)<400> 11 acatattgaa acaat atg aga ctt cta ttt aat act ctg gct gtc tca gca Met Arg Leu Leu Phe Asn Thr Leu Ala Val Ser Ala 1 5 10 51 cta gct gct acg agt tat gcc tct ccc atc att cat tcc cgg gcc tcc Leu Ala Ala Thr Ser Tyr Ala Ser Pro Ile Ile His Ser Arg Ala Ser 15 20 25 99 aac acg tcc tat acc aac tct aat ggg ctg aaa ttt aac cat ttc gac Asn Thr Ser Tyr Thr Asn Ser Asn Gly Leu Lys Phe Asn His Phe Asp 147 gct tct ctt cca aat gtg act ttg ctg gca act ggt gga act att gcc Ala Ser Leu Pro Asn Val Thr Leu Leu Ala Thr Gly Gly Thr Ile Ala 195 ggt aca agc gat gac aag act gct acg gca gga tat gaa tcc ggg gct Gly Thr Ser Asp Lys Thr Ala Thr Ala Gly Tyr Glu Ser Gly Ala 65 70 75243 tta ggg ata aat aag att ctt tcc ggc atc cca gaa gtt tat gac att Leu Gly Ile Asn Lys Ile Leu Ser Gly Ile Pro Glu Val Tyr Asp Ile 80 85 90 291 gcc aac gtc aat gcg gta cag ttt gac aat gtc aac agc ggc gat gtc Ala Asn Val Asn Ala Val Gln Phe Asp Asn Val Asn Ser Gly Asp Val 95 100 105 339 tct yca tct ctc tta ctg aac atg aca cat acc ctt caa aag acc gtt Ser Xaa Ser Leu Leu Leu Asn Met Thr His Thr Leu Gln Lys Thr Val 387 tgt gat gac cct acg ata tct ggc gcc gtc atc acc cat ggc acc gat Cys Asp Asp Pro Thr Ile Ser Gly Ala Val Ile Thr His Gly Thr Asp 125 130 135 140 435 acc ctg gaa gaa tct gcc ttc ttc atc gat gca aca gtc aac tgc ggc Thr Leu Glu Glu Ser Ala Phe Phe Ile Asp Ala Thr Val Asn Cys Gly 145 150 483 aag ccg att gtg ttc gtt ggc tca atg cga cct tcc acc gca atc tct Lys Pro Ile Val Phe Val Gly Ser Met Arg Pro Ser Thr Ala Ile Ser 531 gcc gat ggc cct atg aat ttg ctc cag gga gtg act gtg gcc gct gac Ala Asp Gly Pro Met Asn Leu Leu Gln Gly Val Thr Val Ala Ala Asp 175 180 579 627 gtc tct gct ttc ttc gct aca aag aca aat gcg aat aca atg gac act Val Ser Ala Phe Phe Ala Thr Lys Thr Asn Ala Asn Thr Met Asp Thr 205 210 215 675 ttc aag gct tat gaa caa ggc agt ctt ggc atg att gtt tca aac aag Phe Lys Ala Tyr Glu Gln Gly Ser Leu Gly Met Ile Val Ser Asn Lys 225 230 235 723

Page 18

10347-WO-ST25 ccc tac ttc tat tat ccg gca gtc gag cca aac gcg aag cac gtt gtt Pro Tyr Phe Tyr Tyr Pro Ala Val Glu Pro Asn Ala Lys His Val Val 240 245 250	771
cat ctt gac gac gtg gat gcg atc ccc cgt gtg gat att ctc tac gct His Leu Asp Asp Val Asp Ala Ile Pro Arg Val Asp Ile Leu Tyr Ala 255 260 265	819
tac gag gac atg cat agc gac tcc ctt cac agt gct atc aaa aat gga Tyr Glu Asp Met His Ser Asp Ser Leu His Ser Ala Ile Lys Asn Gly 270 280	867
gcc aag ggc atc gtg gtc gcc ggc gag ggc gca ggt ggt atc tcc acg Ala Lys Gly Ile Val Val Ala Gly Glu Gly Ala Gly Gly Ile Ser Thr 285 290 295 300	915
gac ttt agt gat acc atc gat gag att gca tcg aag cat cag att ccc Asp Phe Ser Asp Thr Ile Asp Glu Ile Ala Ser Lys His Gln Ile Pro 305 310 315	963
att atc ctg agc cac aga acc gtg aac gga gaa gtt cct act gct gat Ile Ile Leu Ser His Arg Thr Val Asn Gly Glu Val Pro Thr Ala Asp 320 325 330	1011
att acg ggt gat agc gcg aag act cgc att gca agt ggc atg tat aac Ile Thr Gly Asp Ser Ala Lys Thr Arg Ile Ala Ser Gly Met Tyr Asn 335 340 345	1059
ccc cag cag gcg cgc gtc ttg ctt gga cta ttg ctc gca gaa ggc aag Pro Gln Gln Ala Arg Val Leu Leu Gly Leu Leu Leu Ala Glu Gly Lys 350 355 360	1107
aag ttt gag gat att cga act atc ttc gga aaa gct act gtt gcc Lys Phe Glu Asp Ile Arg Thr Ile Phe Gly Lys Ala Thr Val Ala 365 370 375	1152
tagacccacg tcatatatta tgcccatact tgggaacact tgaaactgat agactaaatt	1212
aattatattg tcgtttgttg ccgg	1236
<210> 12 <211> 379 <212> PRT <213> Penicillium citrinum	
<pre><220> <221> misc_feature <222> (110)(110) <223> The 'Xaa' at location 110 stands for Pro, or Ser.</pre>	
<400> 12	
Met Arg Leu Leu Phe Asn Thr Leu Ala Val Ser Ala Leu Ala Ala Thr 1 10 15	
Ser Tyr Ala Ser Pro Ile Ile His Ser Arg Ala Ser Asn Thr Ser Tyr 20 25 30	
Thr Asn Ser Asn Gly Leu Lys Phe Asn His Phe Asp Ala Ser Leu Pro 35 40 45	
Asn Val Thr Leu Leu Ala Thr Gly Gly Thr Ile Ala Gly Thr Ser Asp 50 60	

10347-wo-st25

Asp Lys Thr Ala Thr Ala Gly Tyr Glu Ser Gly Ala Leu Gly Ile Asn 65 70 75 Lys Ile Leu Ser Gly Ile Pro Glu Val Tyr Asp Ile Ala Asn Val Asn 90 95 Ala Val Gln Phe Asp Asn Val Asn Ser Gly Asp Val Ser Xaa Ser Leu 100 105 Leu Leu Asn Met Thr His Thr Leu Gln Lys Thr Val Cys Asp Asp Pro 115 120 125 Thr Ile Ser Gly Ala Val Ile Thr His Gly Thr Asp Thr Leu Glu Glu 130 140 Ser Ala Phe Phe Ile Asp Ala Thr Val Asn Cys Gly Lys Pro Ile Val 145 150 160 Phe Val Gly Ser Met Arg Pro Ser Thr Ala Ile Ser Ala Asp Gly Pro 165 170 175Met Asn Leu Eu Gln Gly Val Thr Val Ala Ala Asp Lys Gln Ala Lys 180 185 190 Asn Arg Gly Ala Leu Val Val Leu Asn Asp Arg Ile Val Ser Ala Phe 195 200 205 Phe Ala Thr Lys Thr Asn Ala Asn Thr Met Asp Thr Phe Lys Ala Tyr 210 215 220 Glu Gln Gly Ser Leu Gly Met Ile Val Ser Asn Lys Pro Tyr Phe Tyr 225 230 235 240 Tyr Pro Ala Val Glu Pro Asn Ala Lys His Val Val His Leu Asp Asp 245 250 255 Val Asp Ala Ile Pro Arg Val Asp Ile Leu Tyr Ala Tyr Glu Asp Met 260 270 His Ser Asp Ser Leu His Ser Ala Ile Lys Asn Gly Ala Lys Gly Ile 275 280 285 Val Val Ala Gly Glu Gly Ala Gly Gly Ile Ser Thr Asp Phe Ser Asp 290 295 300 Thr Ile Asp Glu Ile Ala Ser Lys His Gln Ile Pro Ile Ile Leu Ser 305 310 315 His Arg Thr Val Asn Gly Glu Val Pro Thr Ala Asp Ile Thr Gly Asp 325 330 335

10347-wo-st25

Ser Ala Lys Thr Arg Ile Ala Ser Gly Met Tyr Asn Pro Gln Gln Ala 340 345 350

Arg Val Leu Leu Gly Leu Leu Leu Ala Glu Gly Lys Lys Phe Glu Asp 355 360 365

Ile Arg Thr Ile Phe Gly Lys Ala Thr Val Ala 370

<210> <211> 362

Saccharomyces cerevisiae

<400>

Met Arg Ser Leu Asn Thr Leu Leu Leu Ser Leu Phe Val Ala Met Ser $1 \hspace{1cm} 5 \hspace{1cm} 15$

Ser Gly Ala Pro Leu Leu Lys Ile Arg Glu Glu Lys Asn Ser Ser Leu 20 25 30

Pro Ser Ile Lys Ile Phe Gly Thr Gly Gly Thr Ile Ala Ser Lys Gly 35 40

Ser Thr Ser Ala Thr Thr Ala Gly Tyr Ser Val Gly Leu Thr Val Asn 50 60

Asp Leu Ile Glu Ala Val Pro Ser Leu Ala Glu Lys Ala Asn Leu Asp 65 75 80

Tyr Leu Gln Val Ser Asn Val Gly Ser Asn Ser Leu Asn Tyr Thr His
85 90 95

Leu Ile Pro Leu Tyr His Gly Ile Ser Glu Ala Leu Ala Ser Asp Asp 100 105

Tyr Ala Gly Ala Val Val Thr His Gly Thr Asp Thr Met Glu Glu Thr 115 120 125

Ala Phe Phe Leu Asp Leu Thr Ile Asn Ser Glu Lys Pro Val Cys Ile 130 140

Ala Gly Ala Met Arg Pro Ala Thr Ala Thr Ser Ala Asp Gly Pro Met 145 150 155 160

Asn Leu Tyr Gln Ala Val Ser Ile Ala Ala Ser Glu Lys Ser Leu Gly 165 170 175

Arg Gly Thr Met Ile Thr Leu Asn Asp Arg Ile Ala Ser Gly Phe Trp 180 185

Thr Thr Lys Met Asn Ala Asn Ser Leu Asp Thr Phe Arg Ala Asp Glu 195 200 205 Gln Gly Tyr Leu Gly Tyr Phe Ser Asn Asp Asp Val Glu Phe Tyr Tyr 210 220 Pro Pro Val Lys Pro Asn Gly Trp Gln Phe Phe Asp Ile Ser Asn Leu 235 235 240 Thr Asp Pro Ser Glu Ile Pro Glu Val Ile Ile Leu Tyr Ser Tyr Gln 245 250 255 Gly Leu Asn Pro Glu Leu Ile Val Lys Ala Val Lys Asp Leu Gly Ala 260 265 270 Lys Gly Ile Val Leu Ala Gly Ser Gly Ala Gly Ser Trp Thr Ala Thr 275 280 285 Gly Ser Ile Val Asn Glu Gln Leu Tyr Glu Glu Tyr Gly Ile Pro Ile 290 295 300 Val His Ser Arg Arg Thr Ala Asp Gly Thr Val Pro Pro Asp Asp Ala 305 310 315 Pro Glu Tyr Ala Ile Gly Ser Gly Tyr Leu Asn Pro Gln Lys Ser Arg 325 330 335 Ile Leu Leu Gln Leu Cys Leu Tyr Ser Gly Tyr Gly Met Asp Gln Ile 340 345 350 Arg Ser Val Phe Ser Gly Val Tyr Gly Gly 355 360 <210> <211> 30 <212> DNA Artificial <220> Primer AOASP7 <223> <400> 14 30 caaggatcca gcagtatggg tgtcaatttc <210> 15 28 <211> <212> DNA Artificial <220> Primer AoASP8 <223> <400> 15

atcaagcttc tattatccat cccatcca

28

Internatic pplication No PCT/DK 03/00684

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A23L1/03 A21D A23L1/105 A21D8/04 A23L1/217 C12N9/82 C12N15/52 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 A23L A21D C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, FSTA C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. χ WO 94/28729 A (NOVONORDISK AS : SI JOAN QI 1.4 - 6(DK)) 22 December 1994 (1994-12-22) claims 1,12,13,16,17 page 9, paragraph 1 X WO 94/28728 A (NOVONORDISK AS; SI JOAN QI 1,4-6(DK)) 22 December 1994 (1994-12-22) claims 1,5,11 page 8, paragraph 1 X US 2002/004085 A1 (OLSEN HANS SEJR ET AL) 1.6 - 810 January 2002 (2002-01-10) the whole document Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: later document published after the International filing date or priority date and not in conflict with the application but 'A' document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. O' document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 23 January 2004 09/02/2004 Name and mailing address of the ISA Authorized officer European Palent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Vuillamy, V

Internati pplication No
PCT/DK 03/00684

Calegory °	etion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Jaiegoly *	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98/00029 A (NOVONORDISK AS ;WAGNER PETER (DK); NIELSEN PER MUNK (DK)) 8 January 1998 (1998-01-08) page 9, line 22 - line 31 page 6, line 29 - page 7, line 9	1-5,7,9
X	WO 02/30207 A (BUDOLFSEN GITTE ;NOVOZYMES AS (DK); CHRISTIANSEN LUISE (DK)) 18 April 2002 (2002-04-18) claims; example 1	1,2,6
X	US 6 039 982 A (SI JOAN QI ET AL) 21 March 2000 (2000-03-21) column 4, line 24 - line 39 column 6, paragraph 2 - paragraph '0003! claims	1,2,4-6
X	DATABASE WPI Section Ch, Week 199815 Derwent Publications Ltd., London, GB; Class D11, AN 1998-162469 XP002235162 & JP 10 028516 A (KAO CORP) 3 February 1998 (1998-02-03) abstract	1,2,4-6
X	PATENT ABSTRACTS OF JAPAN vol. 1997, no. 05, 30 May 1997 (1997-05-30) & JP 09 009862 A (CALPIS FOOD IND CO LTD:THE;AJINOMOTO CO INC), 14 January 1997 (1997-01-14) abstract	1
,	"Brief Communications" NATURE, vol. 419, 3 October 2002 (2002-10-03), pages 448-449, XP002235161 USA cited in the application the whole document	1
	BIEKMAN E S A: "TOEPASSING VAN ENZYMEN BIJ DE VERWERKING VAN AARDAPPELEN TOT CONSUMPTIEPRODUKTEN" VOEDINGSMIDDELEN TECHNOLOGIE, NOORDERVLIET B.V. ZEIST, NL, vol. 22, no. 20, 12 October 1989 (1989-10-12), pages 51-53, XP000069625 ISSN: 0042-7934 the whole document	1,4,5,7,

Internati pplication No
PCT/DK U3/00684

		PC1/DK 03/00684
C.(Continua Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Ind.
Calegory -	Change of the relevant passages	Relevant to claim No.
A	WO 02/39828 A (DANISCO ;SOE JOERN BORCH (DK); PETERSEN LARS WEXOEE (US)) 23 May 2002 (2002-05-23) claims; example 11	1
A	K.W. KIM: "Asparaginase II of Saccharomyces cerevisiae" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 263, no. 24, 1988, pages 11948-11953, XP002266820 USA cited in the application the whole document	3
	0 (continuation of second sheet) (-luty 1992)	

Inter application No. PCT/DK 03/00684

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
	Clalms Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inter	rnational Searching Authority found multiple inventions in this international application, as follows:
1. X	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. N	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is estricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark o	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Intormation on patent family members

Internati pplication No
PCT/UK U3/00684

							05/00004
	atent document d in search report		Publication date		Patent family member(s)		Publication date
WO	9428729	Α	22-12-1994	WO EP	9428729 0701403		22-12-1994 20-03-1996
WO	9428728	A	22-12-1994	AT DE DE WO DK EP ES GR PT US	188343 69422516 69422516 9428728 702519 0702519 2142399 3032941 702519 6296883	D1 T2 A1 T3 A1 T3 T3	15-01-2000 10-02-2000 06-07-2000 22-12-1994 29-05-2000 27-03-1996 16-04-2000 31-07-2000 30-06-2000 02-10-2001
US	2002004085	A1	10-01-2002	AU EP WO	5539201 1276389 0178524	A2	30-10-2001 22-01-2003 25-10-2001
WO	9800029	A	08-01-1998	AT AU CA DE DE WO DK EP IN JP	207698 3166997 2256767 69707881 69707881 9800029 912100 0912100 183759 2000513231	A A1 D1 T2 A1 T3 A1 A1	15-11-2001 21-01-1998 08-01-1998 06-12-2001 18-07-2002 08-01-1998 17-12-2001 06-05-1999 01-04-2000 10-10-2000
WO	0230207	Α	18-04-2002	AU WO EP	9368401 0230207 1326497	A1	22-04-2002 18-04-2002 16-07-2003
US	6039982	A	21-03-2000	AT AU CA CN DE DE WO DK EP IN JP	223652 701661 1030397 2236476 1203515 69623644 69623644 9721351 865241 0865241 183745 2000509245	B2 A A1 A,B D1 T2 A1 T3 A1	15-09-2002 04-02-1999 03-07-1997 19-06-1997 30-12-1998 17-10-2002 28-05-2003 19-06-1997 23-12-2002 23-09-1998 01-04-2000 25-07-2000
JP	10028516	Α	03-02-1998	NONE	· · · · · · · · · · · · · · · · · · ·		
JP	09009862	Α	14-01-1997	NONE			~
WO	0239828	A	23-05-2002	AU CA EP WO US	1942202 2427914 1341422 0239828 2002114864	A1 · A2 A2	27-05-2002 23-05-2002 10-09-2003 23-05-2002 22-08-2002