MGT 6203 - Office Hours Summary - Module 13

Quality

- Meeting or exceeding customers expectations
- Garvin's 8 Dimensions of

Product Quality

- Performance
- Functionality
- Durability
- Reliability
- Conformance to Specifications
- Serviceability
- Aesthetics
- Perceived Quality

Dimensions of Service Quality

- Consistency
- Courtesy
- Convenience/Availability
- Communication
- Accuracy/Reliability
- Timeliness/Responsiveness
- Credibility/Trustworthy
- Security

Cost of Quality

Appraisal Costs	Prevention Costs
 Inspection and Test 	Training
• Lab	Quality Improvement
 Calibration 	Quality Audits
 Product/Process 	Quality Planning
Audits	
Internal Failure Costs	External Failure Costs
• Scrap	Warranty
Rework	Reputation
Re-testing	Returns
6	Litigation

Cost of Good Quality

Cost of Poor Quality

Variation

- The extent to which, or the range in which, a thing varies
- Types of Variation
 - Random/Common Causes
 - Inherent in the process used
 - Unavoidable with current process
 - Can do nothing about this
 - Assignable/Special Causes
 - Can be identified
 - Can be corrected/fixed

Control Charts

- Used to identify assignable causes of variation
- \bar{x} Chart(Monitors the mean)

Assuming 3σ limits:

$$UCLx = \overline{\overline{X}} + A_2 * \overline{R}$$

$$LCLx = \overline{\overline{X}} + A_2 * \overline{R}$$

R Chart (Monitors the spread)

Assuming 3σ limits:

$$UCLr = D_4 * \bar{R}$$

$$LCLr = D_3 * \bar{R}$$

Process Capability

- SPC tells us if a process is showing signs of an assignable cause of variation but there is another important aspect to a given process
- Cp = (Upper specification Lower Specification)/6 σ
 - Cp >=1.0 indicates process is capable
 - Six Sigma equates to a Cp >=2.0
 - This value only looks at spread, not how well a process is centered on its target value
- Cpk = Minimum of [{upper specification- $\overline{x}/3\sigma$ }, { \overline{x} -lower specification/3 σ }]
 - Gives the proportion of variation between the center of the process and the nearest specification limit
 - Cpk = 1 means process meets specifications
 - Cpk < 1 Process does NOT meet specifications
 - Cpk > 1 Process is better than the specification requires