INF243-Mandatory Assignment 5

Submission Deadline: May 23rd, 2023

Instructions for the assignment:

- This assignment has 3 pages and accounts for 10 points for your final grade
- Prepare a PDF file for your answers
 - you can use Latex (see manual at this link) as the text editor which compiles to a nice PDF file
 - You are suggested to use SageMath to assist your calculations on the questions
 - make sure to properly comment your source code.
 - If you answer questions with SageMath, you can provide necessary text for each question and export it directly as a PDF file via Latex

Q1. Reed-Muller codes

[3 pts]

Let RM(r, m) be the Reed-Muller code with length 2^m and be associated with all monomials with degree at most r in m variables.

- (i) Construct a generator matrix G and parity-check matrix H for RM(1,3)
- (ii) Determine the sent codeword for the following two received words for RM(1,3):

(iii) Construct a generator matrix G for RM(2,4) and encode the following two messages:

$$[1,0,0,1,1,0,1,0,1,0,1],$$
 $[1,1,1,0,0,1,0,0,1,0,1]$

Q2. Basics on LDPC codes

[2 pts]

- (i) Follow Example 15.3 in the textbook and construct a $(w_c, w_r) = (3, 5)$ parity-check matrix H for a regular LRPC code with length 20. Indicate the permutations you use in the construction
- (ii) Follow Example 15.5, construct the sets $\mathcal{N}(m)$ and $\mathcal{M}(n)$ for the above parity-check matrix H and construct the Tanner graph for H

Q3. Decoding of LDPC codes

[1+1+2+1 pts]

Consider the following AWGN communication model

where the noise is sampled from $\mathcal{N}(0,1)$.

Suppose an LDPC code C has the following parity-check matrix

According to the above communication model, we encode a message $\mathbf{m} = (m_1, m_2, m_3, m_4, m_5)$ with the LRPC code C defined by H, modulate each bit of $\mathbf{c} = (c_1, c_2, \ldots, c_{10})$ with BPSK as $\mathbf{x} = (x_1, x_2, \ldots, x_{10})$ with $x_i = (-1)^{c_i}$, and send the output $\mathbf{x} = (x_1, x_2, \ldots, x_{10})$ through the AWGN channel.

Suppose at the receiver we get a word

$$y = (-0.35, -0.43, -0.73, -0.05, 0.2, 0.98, -0.73, 0.36, -0.45, 0.58)$$

(i) **Initialization.** Construct the sets $\mathcal{N}(m)$ and $\mathcal{M}(n)$ for each $1 \leq m \leq 5$ and $1 \leq n \leq 10$. Calculate the intrinsic LLR of \mathbf{x} from the channel

$$L_n := L_c(\mathbf{x}) = [L_c(x_1), L_c(x_2), \dots, L_c(x_n)]$$

where $L_c(x_i) = \log \frac{P(y_i|x_i=1)}{P(y_i|x_i=-1)}$. (This corresponds to the initial step to create the message matrix $L_{n\to m}$ in Example 15.9)

(ii) **Update.** Consider the variable node v_1 connected to check nodes C_1, C_2, C_5 , i.e., v_1 appears in the following three parity-check equations

$$v_1 + v_2 + v_3 + v_6 + v_7 + v_{10} = 0$$

$$v_1 + v_3 + v_5 + v_6 + v_8 + v_9 = 0$$

$$v_1 + v_2 + v_4 + v_8 + v_9 + v_{10} = 0.$$

Draw the Tanner graph for the above variable nodes and check nodes. For each of the above equations, use the information in $L_c(\mathbf{x})$ to calculate the min-sum approximation of the LLR of x_1 , namely,

$$\begin{array}{l} L_{1\rightarrow 1} = \prod_{j\in\{2,3,6,7,10\}} sign(L_c(x_j)) \min_{j\in\{2,3,6,7,10\}} |L_c(x_j)| \\ L_{2\rightarrow 1} = \prod_{j\in\{3,5,6,8,9\}} sign(L_c(x_j)) \min_{j\in\{3,5,6,8,9\}} |L_c(x_j)| \\ L_{5\rightarrow 1} = \prod_{j\in\{2,4,8,9,10\}} sign(L_c(x_j)) \min_{j\in\{2,4,8,9,10\}} |L_c(x_j)| \end{array}$$

The above LLR values of x_1 are considered as three repetition of LLR of x_1 . Based on the three extrinsic LLR of x_1 , calculate the LLR message from x_1 to the check nodes C_1, C_2, C_5 as in Algorithm 15.1

- (iii) **Updating Rows and Columns.** Follow Algorithm 15.1 and Example 15.9. Construct the message matrix $L_{m\to n}$ and update it for one iteration with the following steps:
 - check node to variable node step (horizontal)
 - variable node check node step (vertical)
- (iv) More Iterations. Continue the above iterations and output the message $L_{n\to \text{out}}$. For the guessed $\hat{\mathbf{c}}$, carry out the parity check of $\hat{\mathbf{c}}$ with H until the correct codeword is obtained.