

Outline	
□ Motivation & Rationale□ Data Science Foundations	
 □ Physics ↔ STEM ↔ Data Science R&D ↔ Education & Training Curricula □ Learning Resources & Instructional Materials □ Some Relevant Hands-on Demos 	
	M

From 23 ... to ... 2²³

- Data Science: 1798 vs. 2022
- □ In the 18th century, Henry Cavendish used just 23 observations to answer a fundamental question "What is the Mass of the Earth?" He estimated very accurately the mean density of the Earth/H₂O (5.483±0.1904 g/cm³)
- □ In the 21st century to achieve the same scientific impact, matching the reliability and the precision of the Cavendish's 18th century prediction, requires a monumental community effort using massive and complex information perhaps on the order of 2²³ bytes
- □ Scalability and Compression
 (per Gerald Friedland/Berkeley): 23 → 2²³≅10M

avendish (1798) Philosophical Transactions of the Royal Society of London

Dinov (2016) JSMI

IBM Big Data 4	V's: Volume, Variety, Velocity & Veracity		
Big Bio Data Dimensions	Tools	Example: analyzing observational data of 1.000's Parkinson's diseas	
Size	Harvesting and management of vast amounts of data	patients based on 10,000's signature biomarkers derived from	
Complexity	Wranglers for dealing with heterogeneous data	multi-source imaging, genetics, clinical, physiologic, phenomics an	
Incongruency	Tools for data harmonization and aggregation	demographic data elements	
Multi-source	Transfer and joint modeling of disparate elements	Software developments, student training, service platforms and	
Multi-scale	Macro to meso to micro scale observations	methodological advances associated with the Big Data	
Time	Techniques accounting for longitudinal patterns in the data	Discovery Science all present existing opportunities for learners,	
Incomplete	Reliable management of missing data	educators, researchers, practitioners and policy makers	

Physics ↔ STEM ↔ Data Science R&D ↔ Education & Training Curricula □ Transdisciplinary training integrating theoretical models, experimental science, computational algorithms, data science applications & domain-specific practice □ Curriculum Models (quant STEM-based vs. qual EDA-based) □ Lightweight (MOOCs, <12 semester credits), □ Intermediate (13-29 credits) □ Heavyweight (30-56 credits, UG/Grad) curricula □ Physics, Data Science and X Training Programs □ Some (Michigan) data science and biophysics course examples

Spacekime Analytics: Example of Translating Mathematical-Physics ⇒ Data Science & Al			
Physics	Data/Neuro Sciences		
A <u>particle</u> is a small localized object that permits observations and characterization of its physical or chemical properties	An <u>object</u> is something that exists by itself, actually or potentially, concretely or abstractly, physically or incorporeal (e.g., person, subject, etc.)		
An <u>observable</u> a dynamic variable about particles that can be measured	A <u>feature</u> is a dynamic variable or an attribute about an object that can be measured		
Particle <u>state</u> is an observable particle characteristic (e.g., position, momentum)	<u>Datum</u> is an observed quantitative or qualitative value, an instantiation, of a feature		
Particle <u>system</u> is a collection of independent particles and observable characteristics, in a closed system	Problem, aka Data System, is a collection of independent objects and features, without necessarily being associated with a priori hypotheses		
Wave-function	Inference-function		
Reference-Frame transforms (e.g., Lorentz)	Data transformations (e.g., wrangling, log-transform)		
State of a system is an observed measurement of all particles ~ wavefunction	<u>Dataset (data)</u> is an observed instance of a set of datum elements about the problem system, $O = \{X, Y\}$		
A particle system is computable if (1) the entire system is logical, consistent, complete and (2) the unknown internal states of the system don't influence the computation (wavefunction, intervals, probabilities, etc.)	Computable data object is a very special representation of a dataset which allows direct application of computational processing, modeling, analytics, or inference based on the observed dataset		
Din	ov & Velev (2021)		

Medical Physics

- ☐ <u>BIOPHYS 430 / PHYSICS 430</u> (Traditional UG/Grad course), 3-credits, students from physics, chemistry, STEM, biosciences
- □ Introduces the physics of physiological processes (muscular, cardiovascular, neuronal and renal), physics-based therapies, and biomedical imaging. Imaging techniques and physics-based therapies will be elucidated in the context of the underlying physical principles. Ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography. Radiotherapy methods will be also introduced. Course includes data acquisition & image analysis using R
- ☐ Instructor: Magdalena Ivanova

14

Biophysics of Disease

- □ <u>BIOPHYS 440 / Chem 440</u> (Traditional UG/Grad course), 3-credits, students from physics, chemistry, STEM, bio sciences
- □ Introduce the most commonly used biophysical methods for studying complex diseases and the application of these techniques for developing therapies. Emphasis is on protein aggregation diseases (Parkinson's, Alzheimer's and prion), but diseases like cancer, viral (HIV, influenza, and SARS-CoV-2) and bacterial infections will be also discussed. Classical biophysical methods like x-ray crystallography, NMR and cryoEM are covered, along with, recently emerging cutting-edge techniques. Some data science homework projects using real biomedical data.
- Instructor: Magdalena Ivanova

Learning Resources & Instructional Materials
□ EBooks
☐ <u>https://DSPA2.predictive.space</u>
☐ https://TCIU.predictive.space
☐ <u>https://BPAD.predictive.space</u>
☐ https://SpaceKime.org
D. D. Dookers
☐ R Package
https://cran.rstudio.com/web/packages/TCIU
☐ GitHub
☐ https://github.com/SOCR
Tittps.//gitilub.com/ Soci

