Assignment 2 - Image Filtering Computer Vision

1. Implement image low pass filtering with FFT using CV2 and Numpy (in python notebook please) as shown in the following figures (You may use your own images).

```
In [1]:
```

```
import numpy as np
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('set.jpeg',0)
def dft(img, axes):
    dft = np.fft.fft2(img, axes=axes) # do fft as complex output
    dft_shift = np.fft.fftshift(dft) # apply shift of origin to the center of image
   mag = np.abs(dft shift) # generate spectrum from magnitude image (usually for viewing
only)
   spec = np.log(mag) / 20
   return spec
def gauss blur(img,xy):
   blur img = cv2.GaussianBlur(img, xy, cv2.BORDER DEFAULT)
    return blur img
spec = dft(img, (0,1))
gauss img = gauss blur(img, (11,11))
gauss spec = dft(gauss img, (0,1))
img list = [img, spec, gauss img, gauss spec]
title = ['Original Image', 'Fourier Spectrum of image',
         'Image with Gaussian lowpass filter', 'Spectrum of image with Gaussian lowpass fi
lter']
plt.figure(figsize = (16,16))
for i in range(len(img_list)):
   plt.subplot (2, 2, i+1)
   plt.title([title[i]])
    plt.imshow(img list[i],cmap="RdGy")
    plt.yticks([]),plt.xticks([])
```

['Original Image']

['Image with Gaussian lowpass filter']

2. Similar like task #1, but now try to implement image high pass filtering.

```
In [2]:
```

```
def new gauss blur(img,xy):
   blur img = cv2.GaussianBlur(img, xy, cv2.BORDER DEFAULT) + 127
   hp = img - blur img
   return hp
gauss img 2 = \text{new gauss blur(img, (105, 105))}
gauss spec 2 = dft(gauss img, (0,1))
img list = [img, spec, gauss img 2, gauss spec 2]
title = ['Original Image', 'Fourier Spectrum of image',
         'Image with Gaussian highpass filter', 'Spectrum of image with Gaussian highpass
filter']
plt.figure(figsize = (16,16))
for i in range(len(img_list)):
   plt.subplot (2, 2, i+1)
   plt.title([title[i]])
    plt.imshow(img_list[i],cmap="RdGy")
    plt.yticks([]),plt.xticks([])
```

['Original Image']

['Fourier Spectrum of image']

['Image with Gaussian highpass filter']

3. This time is somewhat difficult. You are asked to design Butterworth Notch Filter to remove repetitive noise in the input image

```
In [3]:
```


['Image with Butterworth Notch Filter']

['Spectrum of Image with Butterworth Notch Filter']

