

### **COMUNICACIONES**



# **COMUNICACIONES ÓPTICAS**

Ingeniero ALEJANDRO LUIS ECHAZÚ

http://www.comunicacionnueva.com.ar

aechazu@comunicacionnueva.com.ar

### ESPECTRO ELECTROMAGNÉTICO



# FIBRA ÓPTICA Detalles constructivos



n = C/Vp

- •n (índice de refracción en un medio - densidad)
- •C (velocidad de propagación en el vacío)
- •Vp (velocidad de propagación en un medio)

### **Funcionamiento**



LEY DE SNELL  $n1 \text{ sen } \emptyset 1 = n2 \text{ sen } \emptyset 2$ 

Principio de Reflexión Total Interna (RTI)

ø1 tal que ø2=90°





#### TIPOS DE FO Perfil de Modo de alto Dispersion indice Orden retractivo AB 50 MHz.km Señal Señal de Salida Entrada **MULTIMODO INDICE** Modo bajo Orden **ESCALÓN** Perfil de indice Dispersion -> 100/1000 MHz.km Señal Señal de de Salida Entrada **MULTIMODO INDICE GRADUAL** Perfil de indice 10 GHz.km Señal Señal Entrada Salida **MONOMODO**

# ANCHO DE BANDA DE UNA FO

Disminuye a medida que nos alejamos de la fuente.

Limitado por la dispersión de la luz (modal y cromática).

Ensanchamiento del pulso transmitido.

Se expresa en GHz.km

# VENTANAS DE OPERACIÓN DE LA FO EN EL ESPECTRO





### TIPOS DE FIBRA ÓPTICA SEGÚN VENTANA



# PÉRDIDAS EN FO

**Disminución** de potencia de luz y **reducción** del ancho de banda

•<u>Dispersión modal</u> (+ importante. En FO multimodo. Distintos tiempos de propagación. Ensanchamiento de pulso)

Tipos de

pérdidas

•<u>Dispersión cromática</u> (caso de LED. Velocidades diferentes según  $\lambda$ )

•Absorción y radiación (por impurezas que se incorporan al silicio para obtener distintos n)

- <u>Acoplamiento</u> (conectorizado y empalmes)
- •<u>Dispersión de Rayleigh</u> (por irregularidades al solidificarse el estado plástico)

### SISTEMA OPTOELECTRÓNICO





# **EMISORES DE LUZ COMPARADOS**

Alto

|                                                                                                            | -                       |                          |  |
|------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|--|
| Característica<br>técnica                                                                                  | LED                     | LASER                    |  |
| Tipo de luz emitida                                                                                        | Incoherente             | Coherente                |  |
| Potencia óptima emitida                                                                                    | Baja (Fig. 5 - 49)      | Alta (Fig. 5 - 49)       |  |
| Potencia frente a longitud<br>de onda. (Ancho espectral)                                                   | Grande<br>(Fig. 5 - 50) | Pequeño<br>(Fig. 5 - 50) |  |
| Direccionamiento de la luz                                                                                 | Menor                   | Mayor                    |  |
| Tiempo de crecimiento<br>Tiempo necesario para que<br>la tensión pase de 10% al<br>90% de ese valor típico | 100 ns                  | 1 ns                     |  |
| Confiabilidad                                                                                              | Mayor                   | Menor                    |  |
| Vida útil                                                                                                  | Aprox. 10⁵ h            | Aprox. 10⁵ h             |  |
| Necesidad de circuitos<br>estabilizadores y de<br>enfriamiento                                             | No                      | SI                       |  |
| Ruido modal<br>(Distorsión de amplitud)                                                                    | Bajo                    | Alto                     |  |

Bajo

Costo





Nota: El ancho espectral del láser es más estrecho que el del diodo LED; típicamente de 1 a 6 nm para el primero, y de 25 a 40 nm, para el segundo.

# CABLES ÓPTICOS

### **MONOFIBRA**

### **MULTIFIBRA**







#### **CONECTORES**

**CAJA DE EMPALME** 





#### **EMPALMADORA**



# FIBRA ÓPTICA PLÁSTICA (POF)



https://www.bannerengineering.com/us/en/company/expertinsights/plastic-glass-fiber-optics-how-to-choose.html

# RESUMEN DE PROPIEDADES

#### **GRAN ANCHO DE BANDA**

### INMUNIDAD AL RUIDO Y A LAS INTERFERENCIAS ELECTROMAGNÉTICAS

TAMAÑO Y PESO ADECUADOS

USA BAJAS POTENCIAS

**BAJA ATENUACIÓN** 

MULTIPLEXIÓN POR DIVISIÓN DE LONGITUD DE ONDA (WDM)

# EMPLEO DE FO

**BACKBONE DE REDES** 

**CABLES SUBMARINOS** 

ANILLOS SDH / SONET

RED FDDI (FIBER DISTRIBUTION DATA INTERFACE)

**HFC (HYBRID FIBER COAX)** 

FTTH (FIBER TO THE HOME)

FTTC (FIBER TO THE CURB)

FTTB (FIBER TO THE BUILDING)

FTTO (FIBER TO THE OFFICE)

#### PERFORMANCE DATA

|                 |             |         | Attenuation (dB/km) |        |        | Bandwidth (MHz-km.) |        |
|-----------------|-------------|---------|---------------------|--------|--------|---------------------|--------|
| Part Number     | Fiber Type  |         | 850nm               | 1300nm | 1550nm | 850nm               | 1300nm |
| OPXXXXCB3510/15 | FDDI        | Maximum | 3.5                 | 1.0    | N/A    | 160                 | 500    |
|                 | 62.5/125    | Typical | 2.9                 | 0.55   | N/A    |                     |        |
| OPXXXXAB0504    | Single-Mode | Maximum | N/A                 | 0.5    | 0.4    | N/A                 | N/A    |
|                 |             | Typical | N/A                 | 0.4    | 0.3    |                     |        |

#### ORDERING DATA

OUTSIDE PLANT

RISER UL LISTED OFNR CSA FT4 IEEE 383 FLAME TEST

| 10-00120-27-012-03-012 |                  |     |         |       | Minimum Bend Radius |      |           |     |
|------------------------|------------------|-----|---------|-------|---------------------|------|-----------|-----|
| Part Number            | Outside Diameter |     | Weight  |       | Installation        |      | Long Term |     |
| Standard / Riser       | inches           | cm  | Lbs/kft | kg/km | inches              | cm   | inches    | cm  |
| OPD002 / OPR002        | 0.360            | 9,1 | 46      | 68    | .5.4                | 13.7 | 3.6       | 9.1 |
| OPD004 / OPR004        | 0.360            | 9.1 | 46      | .68   | 5.4                 | 13.7 | 3.6       | 9.1 |
| OPD006 / OPR006        | 0.360            | 9.1 | 46      | 68    | 5.4                 | 13.7 | 3.6       | 9.  |
| OPD012 / OPR012        | 0.390            | 9.9 | 51      | 76    | 5.9                 | 14.9 | 3.9       | 9.9 |

#### ARMORED OUTSIDE PLANT

|             |                  |      |                         |       | Mir          | nimum Be | end Radius             | -    |
|-------------|------------------|------|-------------------------|-------|--------------|----------|------------------------|------|
|             | Outside Diameter |      | Weight<br>Lbs/kft ka/km |       | Installation |          | Long Term<br>inches cm |      |
| Part Number | inches           | cm   | LOS/KII                 | кд/кт | inches       | cm       | inches                 | cm   |
| OPA002      | 0.530            | 13.5 | 114                     | 168   | - 15.9       | 40.3     | 15.9                   | 40.7 |
| OPA004      | 0.530            | 13.5 | 114                     | 168   | 15.9         | 40.3     | 15.9                   | 40.3 |
| OPA006      | , Ó.530          | 13.5 | 114                     | 168   | 15.9         | 40.3     | 15.9                   | 40.3 |
| OPA012      | 0.580            | 14.7 | 123                     | 183   | 17.4         | 44.0     | 17.4                   | 44.0 |

Maximum Tensile Loading:

Installation 600 Lbs, 2670 N Long term 200 Lbs, 890 N

The UNI-Lite cables are designed to be compatible with the following installation environments:

- · Interbuilding Conduit With or Without Duct Liner
- · Building Riser/Backbone
- Direct Burial
- · Interbuilding Tray
- Lashed Aerial
- Industrial Outside Plant



#### Berk-Tek

Corporate Headquarters and Sales Office 132 White Oak Road New Holland, PA 17557 P717.354.6200 F717.354.7944

1-800-BERK-TEK

## FOLLETO TÉCNICO DE FO

# **DATOS PARA DECISIONES**

|                              | FO                                        | COAXIL                    | PAR<br>METÁLICO                     |
|------------------------------|-------------------------------------------|---------------------------|-------------------------------------|
| ATENUACIÓN<br>TÍPICA         | <br>0.3 a 3.5<br>dB/km (según<br>ventana) | <br>7dB/100m<br>(100 MHz) | -<br>20 dB/100m<br>(100 MHz<br>UTP) |
| ANCHO DE<br>BANDA<br>(ORDEN) | +++<br>GHz                                | ++<br>MHz                 | +<br>MHz / KHz                      |
| COSTOS                       | +                                         | +++                       | ++                                  |
| COSTOS DE<br>DISPOSITIVOS    | +++                                       | ++                        | +                                   |

# LÁSER

Transmisión de información mediante un haz de luz coherente, convenientemente modulado.



