Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	5.0

[5152]-543

S.E. (Electrical) (First Semester)

EXAMINATION, 2017

ANALOG & DIGITAL ELECTRONICS (2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Attempt Q. no. 1 or 2, Q. no. 3 or 4, Q. no. 5 or 6, Q. no. 7 or 8.
 - Figures to the right indicate full marks.
 - Neat diagram must be drawn wherever necessary.
 - Use of non-programmable calculator is permitted (iv)
 - Use suitable data, if necessary. (v)
- 1. Convert the following numbers into its equivalent numbers: (A)

[6]

- (i) $(7BC. A3)_{16} = (20)_{8}$ (ii) $(12.125)_{10} = (20)_{2}$
- (iii) $(754.51)_8 = ($
- JKWrite the truth table and derive excitation table for SR, (B) and D flip-flops. [6]

Or

- Draw and explain 4-bit controlled buffer register. 2. (A) [6]
 - Simplify using Boolean algebra: (B) [6] $D(\overline{A} + B) + \overline{B}(C + AD)$
- Draw and explain the frequency response characteristics of an 3. (\mathbf{A}) ideal and practical low pass filter. [7]

P.T.O.

	(B)	Draw neat diagram. Explain OPAMP as a peak detector.	
			[6]
		Or	
4.	(A)	List important characteristics of Comparator. What is t	he
		difference between zero crossing detector and comparator?	[7]
	(B)	Explain working of IC 555 as Astable Multivibrator	[6]
5.	(A)	Write a short note on Push Pull Amplifier.	[6]
	(B)	Draw and explain RC coupled amplifier and state its app	li-
		cations.	[6]
	_	Or	
6.	(A)	Draw and explain the construction of FET with its chara	ac-
		teristic.	[6]
	(B)	Explain the Darlington connection and how it improves t	he
		current gain.	[6]
7.	(A)	Draw neat diagram of the single phase half wave rectifier wi	.th
		R load. Define:	S).
		(i) Efficiency	
		(ii) Form factor	
		 (ii) Form factor (iii) Ripple factor (iv) Transformer utilization factor (v) Peak inverse voltage and (vi) Rectification efficiency 	
		(iv) Transformer utilization factor	
		(v) Peak inverse voltage and	
		(vi) Rectification efficiency.	[7]
	(B)	With neat diagram, explain the working of full wave precision	on
		rectifier.	[6]

[5152]-543

- 8. (A) A single phase full wave rectifier is supplied from 230 V, 50 Hz source. The load resistance is 100 ohm and diode resistance is 1 ohm, calculate:
 - (i) Average value of load voltage
 - (ii) DC output power
 - (iii) AC input power
 - (iv) Rectification efficiency.

(B) Explain the working of single phase half wave rectifier with

[7]

RL load with neat sketch and draw its waveform. [6]

[5152]-543