

SeqLoc: Visual Localization with an Image Sequence

Members: Liyuan Zhu¹, Jingyan Li¹, Han Sun¹ Supervisors: Dr. Daniel Barath², Dr. Iro Armeni² ¹IGP, ETH Zurich; ²CVG, ETH Zurich;

1 Motivation

Our Goal

- Localizing a set of sensors (e.g., cameras) mounted to a moving vehicle (e.g., robot) in a 3D map of the environment
- Leveraging abundant information in image sequences to improve the robustness

Our Solution

- Local reconstruction^[1] in the sequence
- Simple and efficient **generation of 3D-3D** correspondence from Superglue^[2]
- Solving **localization by point cloud** registration (*TEASER++* [3])
- Joint optimization with image sequence constraints

4 Pose Refinement

- Point cloud registration(PCR) localization accuracy @11cm
- Pose refinement based on reprojection error
- PCR + SBA: PCR + single image BA refinement
- PCR + GBA: PCR + global BA with sequence constraint

Set to constant	To be optimized
P^i : 3D structure of global map K^i : Camera intrinsics $\sum T_i$: Center coordinate of the sequence	(R^i, T^i) : Poses from PCR R_i^j : Relative motion in the sequence R^{center} : Orientation of the sequence frame

3 Point Cloud Registration

5 Experimental Results

[1] Sarlin, Paul-Edouard, et al. "From coarse to fine: Robust hierarchical localization at large scale." Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 2019.

[2] Sarlin, Paul-Edouard, et al. "Superglue: Learning feature matching with graph neural networks." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.

[3] Yang, Heng, Jingnan Shi, and Luca Carlone. "Teaser: Fast and certifiable point cloud registration." IEEE Transactions on Robotics 37.2

(2020): 314-333.