# STAT1012 Statistics for Life Sciences

Quick Revision Notes
Spring, 2020

LEUNG Man Fung, Heman

(Reference: lecture and tutorial notes)

# Contents

| I) Descriptive Statistics                     | 4  |
|-----------------------------------------------|----|
| Central tendency                              | 4  |
| Dispersion                                    | 4  |
| Graphical methods                             | 5  |
| II) Probability                               | 6  |
| Notations                                     | 6  |
| Probability theory                            | 6  |
| Conditional probability                       | 7  |
| III) Discrete Probability Distributions       | 8  |
| Discrete random variables                     | 8  |
| Binomial distribution                         | 8  |
| Poisson distribution                          | 9  |
| Hypergeometric distribution (not required)    | 9  |
| Geometric distribution (not required)         | 9  |
| Negative binomial distribution (not required) | 10 |
| IV) Continuous Probability Distributions      | 11 |
| Continuous random variables                   | 11 |
| Uniform distribution                          | 11 |
| Normal distribution                           | 12 |
| Some remarks (not required)                   | 13 |
| V) Point Estimation                           | 14 |
| Sampling                                      | 14 |
| Point estimator                               | 14 |
| Mean                                          | 15 |
| Variance                                      | 16 |
| Binomial proportion                           | 16 |
| Poisson rate                                  | 16 |
| VI) Interval Estimation                       | 17 |
| Confidence interval                           | 17 |
| Mean                                          | 17 |

| Variance                            | 18 |
|-------------------------------------|----|
| Binomial proportion                 | 18 |
| Poisson rate                        |    |
| VII) Hypothesis Testing             | 20 |
| Terminologies                       | 20 |
| One sample z-test                   | 21 |
| One sample t-test                   | 21 |
| One sample chi-squared test         | 22 |
| One sample binomial proportion test | 22 |
| Some remarks (not required)         | 22 |

# I) Descriptive Statistics

Data type: Qualitative (special: Categorical), Quantitative (Discrete, Continuous)

Population: the whole set of entities of interest

Sample: a subset of the population

# Central tendency

Sample mean:  $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ 

Sequential update property:  $\bar{X}_n = \frac{1}{n}[(n-1)\bar{X}_{n-1} + X_n]$ 

Mode: the value which has the greatest number of occurrence (may not be unique)

Median: the "middle" value, or the average of the two values closest to "middle" after sorting

Percentile: the p-th percentile  $(V_{\frac{p}{100}})$  is a value such that p% of the data are less than or equal to  $V_{\frac{p}{100}}$ . In particular, upper quantile =  $V_{0.75}$ , median =  $V_{0.5}$ , lower quantile =  $V_{0.25}$ 

Denote the sorted data by  $X_{(1)}, X_{(2)}, \dots, X_{(n)}$  where  $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$ . This is equivalent to saying that  $X_{(1)}$  is the smallest,  $X_{(2)}$  is the second smallest etc.

Median:  $V_{0.5}=X_{(\frac{n+1}{2})}$  if n is odd or  $\frac{1}{2}\Big[X_{(\frac{n}{2})}+X_{(\frac{n}{2}+1)}\Big]$  if n is even

Percentile:  $V_{\frac{p}{100}} = X_{(k)}$  where  $k = \text{roundUp}\left(\frac{np}{100}\right)$  if  $\frac{np}{100}$  is not an integer

Otherwise,  $V_{\frac{p}{100}} = \frac{1}{2} \left[ X_{\left(\frac{np}{100}\right)} + X_{\left(\frac{np}{100}+1\right)} \right]$ 

# **Dispersion**

Symmetric: the left hand side of the distribution mirrors the right hand side

Unimodal: the mode is unique

Skewness: measure of asymmetry

Left-skewed (negatively skewed): mean < median, have a few extreme small values

Right-skewed (positively skewed): mean > median, have a few extreme large values

Symmetric → mean = median (converse not true)

Symmetric + unimodal → mean = median = mode (converse not true)



Range: maximum – minimum  $(X_{(n)} - X_{(1)})$ 

Interquartile range:  $V_{0.75} - V_{0.25}$ 

Sample variance:  $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$  or  $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i^2 - n\bar{X}^2)$ 

Sample standard deviation:  $SD = \sqrt{S^2}$ 

# Graphical methods

Bar graph: use for categorical data, show the number of observations in each category

Histogram: use for quantitative data, showing the number of observations in each range

Stem-and-leaf plot: ordered the data into a tree-like structure

Boxplot: show 5 numbers (min, Q1, median, Q3, max), help locate outliers (As a rule of thumb, some people define outliers as values > Q3 + 1.5\*IQR or < Q1 – 1.5\*IQR)

# II) Probability

#### Notations

Sample space: the set of all possible outcomes, often denoted as  $\Omega$ 

Outcome: a possible type of occurrence

Event: any set of outcomes of interest, can be denoted as  $E \subset \Omega$ 

Probability (of an event): denoted by P(E), always lies between 0 and 1 (both inclusive)

$$P(E) = \frac{\text{# of outcomes in } E}{\text{# of outcomes in } \Omega}$$

Union: either A or B occurs, or they both occurs, denoted by  $A \cup B$  (logically equivalent to OR)

Intersection: both A and B occur, denoted by  $A \cap B$  (logically equivalent to AND)

Complement: A does not occur, denoted by  $A^{\mathcal{C}}$  (logically equivalent to NOT)

Commutativity:  $A \cup B = B \cup A$ ,  $A \cap B = B \cap A$ 

Associativity:  $(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$ 

Distributive laws:  $(A \cap B) \cup C = (A \cup C) \cap (B \cup C), (A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ 

DeMorgan's laws:  $(A \cup B)^C = A^C \cap B^C$ ,  $(A \cap B)^C = A^C \cup B^C$ 

### Probability theory

Mutually exclusive: A and B are mutually exclusive if  $P(A \cap B) = 0$  (cannot co-occur)

Independence:  $P(A \cap B) = P(A)P(B)$  iff A and B are independent

Their complements (A and B<sup>C</sup>; A<sup>C</sup> and B; A<sup>C</sup> and B<sup>C</sup>) will be pairwise independent as well

Mutual independence:  $P(A \cap B \cap C) = P(A)P(B)P(C)$  iff A, B and C are mutually independent

Mutual independence does not imply pairwise, vice versa

Addition law:  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

Multiplication law: if  $A_1, ..., A_k$  are mutually independent, then  $P(A_! \cap ... \cap A_k) = P(A_1) \times ... \times P(A_k)$ 

# Conditional probability

Conditional probability:  $P(B|A) = \frac{P(A \cap B)}{P(A)}$ , if P(B|A) = P(B), then A and B are independent

Relative risk: 
$$RR(B|A) = \frac{P(B|A)}{P(B|A^C)}$$

Total probability rule:  $P(B) = P(B|A)P(A) + P(B|A^C)P(A^C)$ 

Exhaustive: if  $A_1, ..., A_k$  are exhaustive, then  $A_1 \cup ... \cup A_k = \Omega$  (at least one of them must occur)

Generalized total probability rule: let  $A_1, \ldots, A_k$  be mutually exclusive and exhaustive events. For any event B, we have  $P(B) = \sum_{i=1}^k P(B|A_i)P(A_i)$ 



Bayes' theorem: conditional probability + generalized total probability rule. let  $A_1, \dots, A_k$  be mutually exclusive and exhaustive events. For any event B,

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^k P(B|A_i)P(A_i)}$$

# III) Discrete Probability Distributions

Random variables: numeric quantities that take different values with specified probabilities

Discrete random variable: a R.V. that takes value from a discrete set of numbers

Continuous random variable: a R.V. that takes value over an interval of numbers

### Discrete random variables

Probability mass function: a pmf assigns a probability to each possible value x of the discrete random variable X, denoted by f(x) = P(X = x)

$$\sum_{i=1}^{n} f(x_i) = 1$$
 (total probability rule)

Cumulative distribution function: a cdf gives the probability that X is less than or equal to the value x, denoted by  $F(x) = P(X \le x)$ 

Expected value:  $\mu = E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$  (the idea is "probability weighted average")

Variance:  $\sigma^2 = Var(X) = \sum_{i=1}^n (x_i - \mu)^2 P(X = x_i)$  (the idea is "probability weighted distance from mean")

Alternatively 
$$Var(X) = E(X^2) - [E(X)]^2$$

Translation/rescale: E(aX + b) = aE(X) + b,  $Var(aX + b) = a^2Var(X)$ 

Linearity of expectation:  $E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i)$ 

Variance of sum under independence: Var(X + Y) = Var(X) + Var(Y) if X, Y are independent

# **Binomial distribution**

Factorial:  $n! = n \times (n-1) \times ... \times 1$ , note that 0! = 1

Permutation (order is important):  $P_k^n = \frac{n!}{(n-k)!}$ 

Combination (order is not important):  $C_k^n = \frac{n!}{k!(n-k)!}$ , also denoted as  $\binom{n}{k}$ 

Binomial distribution: probability distribution on the number of successes X in n independent experiments, each experiment has a probability of success p, then  $X \sim B(n, p)$ 

Pmf: 
$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}$$
 for  $x = 0, 1, 2, ..., n$ 

Mean: E(X) = np

Variance: Var(X) = np(1-p)

Skewness: right-skewed if p<0.5, symmetric if p=0.5, left-skewed if p>0.5

#### Poisson distribution

Poisson distribution: probability distribution on the number of occurrence X (usually of a rare event) over a period of time or space with rate  $\mu$ , then  $X \sim Po(\mu)$ 

Pmf: 
$$P(X = x) = \frac{e^{-\mu}\mu^x}{x!}$$
 for  $x = 0, 1, 2, ...$ 

Mean:  $E(X) = \mu$ 

Variance:  $Var(X) = \mu$ 

Skewness: right-skewed

Poisson limit theorem (poisson approximation to binomial): if  $X \sim B(n, p)$  where  $n \ge 20$ , p < 0.1 and np < 5, then  $X \approx Y \sim Po(\mu)$  where  $\mu = np$ 

# Hypergeometric distribution (not required)

Hypergeometric distribution: probability distribution on the number of success X in n trials without replacement, from a finite population of size  $N_1 + N_2 = N \ge n$  that contains  $N_1$  trials classified as success, then  $X \sim Hypergeometric(N_1, N_2, n)$ 

Pmf: 
$$P(X = x) = \frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N}{n}}$$
 for  $x = \max(0, n - N_2)$ , ...,  $\min(n, N_1)$ 

Mean:  $E(X) = n\left(\frac{N_1}{N}\right)$ 

Variance:  $Var(X) = n \left(\frac{N_1}{N}\right) \left(\frac{N_2}{N}\right) \left(\frac{N-n}{N-1}\right)$ 

# Geometric distribution (not required)

Geometric distribution: probability distribution on the number of trials X when the first success occurs, each trial has a probability of success p, then  $X \sim Geo(p)$ 

Pmf: 
$$P(X = x) = (1 - p)^{x-1}p$$
 for  $x = 1, 2, ...$ 

Mean:  $E(X) = \frac{1}{p}$ 

Variance: 
$$Var(X) = \frac{1-p}{p^2}$$

Memoryless: P(X > k + j | X > k) = P(X > j). Geometric distribution is the only discrete distribution with this property

# Negative binomial distribution (not required)

Negative binomial distribution: probability distribution on the number of times X when the r success occurs, each trial has a probability of success p, then  $X \sim NB(r,p)$ 

Pmf: 
$$P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$$
 for  $x = r, r+1, ...$ 

Mean: 
$$E(X) = \frac{r}{p}$$

Variance: 
$$Var(X) = \frac{r(1-p)}{p^2}$$

# IV) Continuous Probability Distributions

#### Continuous random variables

Probability density function: a pdf specifies the probability of a random variable falling within a particular range of values, denoted by f(x)

 $P(a \le X \le b) = \int_a^b f(x) dx$ , which is the area under the curve from a to b

$$P(X = a) = \int_a^a f(x)dx = 0$$
 for all  $a$ 

$$\int_{-\infty}^{\infty} f(x)dx = 1 \text{ (total probability rule)}$$

Cumulative distribution function: a cdf gives the probability that X is less than or equal to the value x, denoted by  $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$ 

$$P(a \le X \le b) = \int_a^b f(x) dx = F(b) - F(a)$$
 (by the fundamental theorem of calculus)

Expected value:  $\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$  (the idea is "probability weighted average")

Variance:  $\sigma^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$  (the idea is "probability weighted distance from mean")

(Note: Calculus is NOT required in our course)

Translation/rescale: E(aX + b) = aE(X) + b,  $Var(aX + b) = a^2Var(X)$ 

Linearity of expectation:  $E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i)$ 

Variance of sum under independence: Var(X + Y) = Var(X) + Var(Y) if X, Y are independent

# **Uniform distribution**

Uniform distribution: if X follows uniform distribution on the interval [a,b], then it has the same probability density at any point in the interval and we denote it by  $X \sim U(a,b)$ 

Pdf: 
$$f(x) = \frac{1}{b-a}$$
 for  $a \le x \le b$ , otherwise 0

Cdf: 
$$F(x) = \int_a^x \frac{1}{b-a} dt = \left[\frac{t}{b-a}\right]_a^x = \frac{x-a}{b-a}$$
 for  $a \le x \le b$ 

Mean: 
$$E(X) = \frac{a+b}{2}$$

Variance: 
$$Var(X) = \frac{(b-a)^2}{12}$$

#### Normal distribution

Normal distribution: if X follows normal distribution with mean  $\mu$  and variance  $\sigma^2$ , then  $X \sim N(\mu, \sigma^2)$ , often used to represent continuous random variable with unknown distributions

Pdf: 
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$
 for  $-\infty < x < \infty$ 

Shape: bell-shape, symmetric about the mean, unimodal

Standard normal distribution:  $Z \sim N(0,1)$ 

Cdf of standard normal: denoted as  $\Phi(z) = P(Z \le z)$ 

$$P(a \le Z \le b) = P(Z \le b) - P(Z \le a) = \Phi(b) - \Phi(a)$$

 $\Phi(-z) = 1 - \Phi(z)$  by symmetric property

Percentile of standard normal:  $\Phi(1.645) = 0.95$ ,  $\Phi(1.96) = 0.975$ 

Standardization: if  $X \sim N(\mu, \sigma^2)$ , then  $\frac{X - \mu}{\sigma} \sim N(0, 1)$ 









$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

De Moivre-Laplace theorem (normal approximation to binomial): if  $X \sim B(n,p)$ ,  $P(a < X < b) \approx P(a-0.5 \le Y \le b+0.5)$  where  $Y \sim N(np, np(1-p))$ . The 0.5s are continuity correction

Condition for good approximation:  $np(1-p) \ge 5$ 

Normal approximation to poisson: if  $X \sim Po(\lambda)$ ,  $P(X \le a) \approx P(Y \le a + 0.5)$  where  $Y \sim N(\lambda, \lambda)$ 

Condition for good approximation:  $\lambda \geq 10$ 

# Some remarks (not required)

Statistical parameter: a numerical characteristic of a statistical population or a statistical model. We are given these numbers (e.g.  $p, \lambda, \mu$ ) in previous chapters but in reality we do not know these numbers. These lead to the next part of our course: Statistical Inference

Why approximation: one major reason is that calculating binomial probability involves combination and large factorials are hard/costly to compute in previous centuries

Variance of sum: Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

Tower rule of expectation: E(X) = E[E(X|Y)]

Law of total variance (EVE): Var(X) = E[Var(X|Y)] + Var[E(X|Y)]

Sum of poisson: if  $X \sim Po(\lambda_1)$ ,  $Y \sim Po(\lambda_2)$  independently, then  $X + Y \sim Po(\lambda_1 + \lambda_2)$ 

Sum of normal: if  $X \sim N(\mu_1, \sigma_1^2)$ ,  $Y \sim N(\mu_2, \sigma_2^2)$  independently, then  $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ 

Square of standard normal: if  $X \sim N(\mu, \sigma^2)$ , the  $Z^2 = \left[\frac{X - \mu}{\sigma}\right]^2 \sim \chi_1^2$ 

Sum of chi square: if  $X \sim \chi_n^2$ ,  $Y \sim \chi_m^2$ , then  $X + Y \sim \chi_{n+m}^2$ 

# V) Point Estimation

Statistical inference: process of drawing conclusions from data that are subject to random variations

Estimation: estimate the values of specific population parameters based on the observed data Hypothesis testing: test on whether the value of a population parameter is equal to some specific value based on the observed data

#### Sampling

Sample: the data obtained after the experiments are performed, usually denoted by  $x_1, \dots, x_n$  Random sample: the data before the experiments are performed, usually denoted by  $X_1, \dots, X_n$  Non-probability sample: some elements of the population have no chance of being selected Probability sample: all elements in the population has known nonzero chance to be selected Simple random sample: all elements in the population has the same probability to be selected Systematic sample: elements are selected at regular intervals through certain order Stratified sample: all elements are classified into different stratums and each stratum is sampled as an independent sub-population

Cluster sample: all elements are divided into different clusters and a simple random sample of clusters is selected

Coverage error: exists if some groups are excluded from the frame and have no chance of being selected

Non-response error: people who do not respond may be different from those who do respond Measurement error: due to weaknesses in question design, respondent error, and interviewer's impact on the respondent

Sampling error: Chance (luck of the draw) variation from sample to sample

#### Point estimator

Point estimator: a rule for calculating a single value to "best guess" an unknown population parameter of interest based on the observed data

(Note: estimator  $\hat{\theta}(X)$  is random, estimate  $\hat{\theta}(x)$  is fixed, estimand  $\theta$  is the unknown parameter)

Unbiasedness:  $E(\hat{\theta}) = \theta$ 

Minimum variance:  $Var(\hat{\theta}) \leq Var(\tilde{\theta}) \ \forall \ \tilde{\theta} \in \Theta$ 

Independent and identically distributed (i.i.d.): an assumption where the random variables  $X_1, \dots, X_n$  are sampled such that they are independent and follows the same distribution

Central limit theorem (CLT, Lindeberg–Lévy): Let  $X_1, \dots, X_n$  be i.i.d. random variables with mean  $\mu$  and finite variance  $\sigma^2$ , then as n tends to infinity (>30 in practice),  $\overline{X} \stackrel{d}{\to} N\left(\mu, \frac{\sigma^2}{n}\right)$ 



# Mean

Estimand:  $\theta = \mu = E(X)$ 

Sample mean (estimator):  $\hat{\theta} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 

Expectation:  $E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{n\mu}{n} = \mu$  (unbiased)

Variance:  $Var(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$  (by i.i.d.)

Distribution:  $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ . If  $X_1, \dots, X_n \sim N(\mu, \sigma^2)$ , then this follows from the fact that sum of independent normal is normal (remarks in section IV).

If  $X_1,\ldots,X_n$  follows some other distribution, then this follows from the CLT when n is large (usually >30). Otherwise ( $n\leq 30$ ) we have  $\sqrt{n}\left(\frac{\bar{X}-\mu}{S}\right)\sim t_{n-1}$ , where  $t_{n-1}$  is a Student's t-distribution with degree of freedom n-1.

# Variance

Estimand: 
$$\theta = \sigma^2 = Var(X)$$

Sample variance (estimator): 
$$\hat{\theta} = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
,  $S'^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$  if  $\mu$  is known

Expectation: 
$$E(S^2) = \sigma^2$$
 (unbiased)

Variance: 
$$Var(S^2) = \frac{2\sigma^4}{n-1}$$
 (not required)

Distribution: 
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2 \Rightarrow S^2 \sim \frac{\sigma^2}{n-1} \chi_{n-1}^2$$
 (right-skewed)

# Binomial proportion

Estimand: 
$$\theta = p = E(Y)$$
 where  $Y_1, ..., Y_n \sim B(1, p)$  (similar to mean case)

Estimator: 
$$\hat{p} = \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Expectation: 
$$E(\hat{p}) = \frac{1}{n} \sum_{i=1}^{n} E(Y_i) = \frac{np}{n} = p$$
 (unbiased)

Variance: 
$$Var(\hat{p}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(Y_i) = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n}$$
 (by i.i.d.)

Distribution:  $\hat{p} \sim B(n,p)$  because the sampling distribution is binomial. For n>30 or  $n\hat{p}\hat{q}>5$ , normal approximation gives  $\hat{p} \sim N\left(p,\frac{p(1-p)}{n}\right)$ 

# Poisson rate

Estimand:  $\theta = \lambda$  where  $X \sim Po(\lambda T)$  with T as the total number of units

Estimator: 
$$\hat{\lambda} = \frac{X}{T}$$

Expectation: 
$$E(\hat{\lambda}) = \frac{1}{T}E(X) = \frac{\lambda T}{T} = \lambda$$
 (unbiased)

Variance: 
$$Var(\hat{\lambda}) = \frac{1}{T^2} Var(X) = \frac{\lambda T}{T^2} = \frac{\lambda}{T}$$
 (by i.i.d.)

Distribution:  $\hat{\lambda} \sim Po(\lambda T)$  because the sampling distribution is Poisson. For n>30 or  $\hat{\lambda}T>10$ , normal approximation gives  $\hat{\lambda} \sim N\left(\lambda, \frac{\lambda}{T}\right)$ 

# VI) Interval Estimation

#### Confidence interval

Confidence interval: an interval associated with a confidence level  $1-\alpha$  that may contain the true value of an unknown population parameter

Meaning of confidence level: in the long run,  $100(1-\alpha)\%$  of all the confidence intervals that can be constructed will contain the unknown true parameter (NOT the probability that an interval will contain the parameter)



Elements of confidence interval:  $\{\hat{\theta}, c_{\alpha}, se(\hat{\theta})\}$ , where  $\hat{\theta}$  is the point estimate,  $c_a$  is the critical value from an asymptotic distribution under the confidence level  $1-\alpha$ ,  $se(\hat{\theta})$  is the standard error of the point estimate

#### Mean

Confidence interval ( $\sigma$  is known):  $\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$ 

Confidence interval ( $\sigma$  is unknown, n > 30):  $\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}}$ 

Confidence interval ( $\sigma$  is unknown,  $n \leq 30$ ):  $\bar{x} \pm t_{n-1,\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}}$  (differs in degree of freedom)

Margin of error:  $E=c_{lpha} imes se(\widehat{ heta})$  (width is 2E which helps determine sample size)

Critical values: standard normal and t-distribution are symmetric around 0  $\Rightarrow c_{1-\frac{\alpha}{2}} = c_{\frac{\alpha}{2}}$ 

Common normal critical value:  $z_{0.95} = 1.645, z_{0.975} = 1.96, z_{0.995} = 2.575$ 

One-sided confidence interval:  $\mu > \bar{x} - z_{1-\alpha} \times \frac{\sigma}{\sqrt{n}}$  or  $\mu < \bar{x} + z_{1-\alpha} \times \frac{\sigma}{\sqrt{n}}$ 

(Note: this is essentially adjusting the critical value, which arises naturally when we are not interested in the other bound, e.g. weight > 0 so negative lower bound is not interested)

#### Variance

Confidence interval (
$$\mu$$
 is unknown):  $\left(\frac{(n-1)s^2}{\chi^2_{n-1,1-\frac{\alpha}{2}}},\frac{(n-1)s^2}{\chi^2_{n-1,\frac{\alpha}{2}}}\right)$ 

$$\text{Confidence interval } (\mu \text{ is known}): \left(\frac{ns'^2}{\chi^2_{n,1-\frac{\alpha}{2}}},\frac{ns'^2}{\chi^2_{n\frac{\alpha}{2}}}\right) = \left(\frac{\sum_{i=1}^n (\chi_i-\mu)^2}{\chi^2_{n,1-\frac{\alpha}{2}}},\frac{\sum_{i=1}^n (\chi_i-\mu)^2}{\chi^2_{n,\frac{\alpha}{2}}}\right) \text{ (differs in d.f.)}$$

Critical values: chi-squared distribution is not symmetric, so cannot simplify

### Binomial proportion

Confidence interval (
$$n>30$$
 or  $n\hat{p}\hat{q}>5$ ):  $\hat{p}\pm z_{\frac{\alpha}{2}}\times se(\hat{p})\approx \hat{p}\pm z_{\frac{\alpha}{2}}\times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

(Note: the standard error here is an approximated version from the lecture notes)

Confidence interval (exact method): solve for 
$$p_L, p_U$$
 from 
$$\begin{cases} P(X \ge n\hat{p}|p = p_L) = \frac{\alpha}{2} \\ P(X \le n\hat{p}|p = p_U) = \frac{\alpha}{2} \end{cases}$$
 where  $X \sim B(n,p)$ 

#### Poisson rate

Confidence interval (exact method): solve for 
$$\lambda_L, \lambda_U$$
 from 
$$\begin{cases} P(X \geq \hat{\lambda}T | \lambda = \lambda_L) = \frac{\alpha}{2} \\ P(X \leq \hat{\lambda}T | \lambda = \lambda_U) = \frac{\alpha}{2} \end{cases}$$
 where  $X \sim Po(\lambda T)$ 

Confidence interval (bootstrap method): generate N sample of size m with replacement from X. Calculate the point estimate from each bootstrap sample. Sort the means and the bootstrap confidence interval is given by the corresponding percentiles.

(Note: bootstrap is a very powerful method which can be applied to many statistical problems that do not require close form)

# VII) Hypothesis Testing

#### <u>Terminologies</u>

Statistical hypothesis: a claim (assumption) about a population parameter

Null hypothesis:  $H_0$ , the hypothesis to be tested (default position)

Alternative hypothesis:  $H_1$ , a hypothesis challenge (against)  $H_0$  (what we want to conclude)

Hypothesis testing: a procedure to make decision on hypothesis based on some data samples. The idea is to assume  $H_0$  is true first. If the population under  $H_0$  is unlikely to generate the data sample, then we can make a decision to reject  $H_0$  (and thus accept  $H_1$ ).

Test statistics: a quantity (statistics) derived from the sample to help perform hypothesis test

Level of significance:  $\alpha$ , defines the unlikely value of the sample if  $H_0$  is true

Critical value: cutoff values from the distribution of test statistic under  $H_0$  given  $\alpha$ 

p-value: probability of obtaining a test statistics at least as extreme as the observed sample value given  $H_0$  is true



A p-value (shaded green area) is the probability of an observed (or more extreme) result arising by chance

"Accept the null hypothesis": if we fail to reject  $H_0$ , we cannot accept it because doing so violates the idea of prove by contradiction. It is possible that  $H_0$  is not true but we have not collected enough data to reject it

Type I error:  $\alpha$ , reject  $H_0$  when  $H_0$  is true (false positive).

(Note: traditional statistical procedure controls type I error by the level of significance, so that's why both of them are  $\alpha$ )

| Type II error: $\beta$      | . do not reiect | $H_0$ when $H$ | ດ is false | (false negative) |
|-----------------------------|-----------------|----------------|------------|------------------|
| . , , , , , , , , , , , , , | ,               | ()             | ()         | (                |

|                     | $H_0$ is true                                                | $H_0$ is false                                       |
|---------------------|--------------------------------------------------------------|------------------------------------------------------|
| Do not reject $H_0$ | Correct inference (true negative, probability = $1-\alpha$ ) | Type II error (false negative, probability = β)      |
| Reject $H_0$        | Type I error (false positive, probability = $\alpha$ )       | Correct inference (true positive, probability = 1-β) |

Duality of confidence interval with hypothesis test:  $H_0$  is rejected at significance level  $\alpha$  if and only if the corresponding confidence interval does not contain the value claimed by  $H_0$  with confidence level  $1-\alpha$  (true for common tests)

#### One sample z-test

Assumption: known  $\sigma$ , from normal distribution or of large size ( $n \ge 30$ )

Hypothesis: (1) 
$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$
 or (2)  $\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases}$  or (3)  $\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases}$ 

Test statistics: 
$$z_0 = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$
,  $Z_0 \sim N(0,1)$  under null

Decision rule: reject if (1) 
$$|z_0|>z_{1-\frac{\alpha}{2}}$$
; (2)  $z_0>z_{1-\alpha}$ ; (3)  $z_0< z_{\alpha}$ 

p-value: reject if  $p_0 < \alpha$  where (1)  $p_0 = P(Z_0 > |z_0|)$ ; (2)  $p_0 = P(Z_0 > z_0)$ ; (3)  $p_0 = P(Z_0 < z_0)$ 

# One sample t-test

Assumption: unknown  $\sigma$ 

Hypothesis: (1) 
$$\begin{cases} H_0\colon \mu = \mu_0 \\ H_1\colon \mu \neq \mu_0 \end{cases} \text{ or (2)} \begin{cases} H_0\colon \mu = \mu_0 \\ H_1\colon \mu > \mu_0 \end{cases} \text{ or (3)} \begin{cases} H_0\colon \mu = \mu_0 \\ H_1\colon \mu < \mu_0 \end{cases}$$

Test statistics: 
$$t_0 = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}}$$
,  $T_0 \sim t_{n-1}$  under null

Decision rule: reject if (1) 
$$|t_0| > t_{n-1,1-\frac{\alpha}{2}}$$
; (2)  $t_0 > t_{n-1,1-\alpha}$ ; (3)  $t_0 < t_{n-1,\alpha}$ 

# One sample chi-squared test

Assumption: unknown  $\sigma$ , from normal distribution

$$\text{Hypothesis: (1)} \begin{cases} H_0 \colon \sigma^2 = \sigma_0^2 \\ H_1 \colon \sigma^2 \neq \sigma_0^2 \end{cases} \text{ or (2)} \begin{cases} H_0 \colon \sigma^2 = \sigma_0^2 \\ H_1 \colon \sigma^2 > \sigma_0^2 \end{cases} \text{ or (3)} \begin{cases} H_0 \colon \sigma^2 = \sigma_0^2 \\ H_1 \colon \sigma^2 < \sigma_0^2 \end{cases}$$

Test statistics: 
$$\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2}$$
,  $X_0^2 \sim \chi_{n-1}^2$  under null

Decision rule: reject if (1) 
$$\chi_0^2 > \chi_{n-1,1-\frac{\alpha}{2}}^2$$
 or  $\chi_0^2 < \chi_{n-1,\frac{\alpha}{2}}^2$ ; (2)  $\chi_0^2 > \chi_{n-1,1-\alpha}^2$ ; (3)  $\chi_0^2 < \chi_{n-1,\alpha}^2$ 

### One sample binomial proportion test

Assumption: binomial sample with n > 30 or  $np_0q_0 > 5$ 

Hypothesis: (1) 
$$\begin{cases} H_0: p = p_0 \\ H_1: p \neq p_0 \end{cases}$$
 or (2)  $\begin{cases} H_0: p = p_0 \\ H_1: p > p_0 \end{cases}$  or (3)  $\begin{cases} H_0: p = p_0 \\ H_1: p < p_0 \end{cases}$ 

Test statistics: 
$$z_0=\frac{\bar{y}-p_0}{\frac{\sqrt{p_0(1-p_0)}}{\sqrt{n}}}$$
,  $Z_0{\sim}N(0,1)$  under null

Decision rule: reject if (1) 
$$|z_0| > z_{1-\frac{\alpha}{2}}$$
; (2)  $z_0 > z_{1-\alpha}$ ; (3)  $z_0 < z_{\alpha}$ 

#### Some remarks (not required)

Power:  $P(reject H_0|H_1 is true)$ . As higher power implies a lower type II error, traditional procedures usually fix the type I error and search for tests with high power

Bayesian inference: most procedures in this course are frequentist procedures. Taking interval estimation as an example, if we want our interval to have probability  $1-\alpha$  covering the unknown parameter, we should seek credible interval from Bayesian inference instead (confidence interval does not guarantee that). Consider taking more courses from our department if you are interested:)