Equidistribution Course

Scribe: James Leng, Jiazhen Tan, and Daniel Shapiro

Ross 2020

Contents

1	Lecture #1		
	1.1	Uniform Distribution of Sequences	2
	1.2	Next time	4
	1.3	Solutions to Exercises	4
2	Lecture #2		
	2.1	Questions from Last Time	7
	2.2	Uniform Distribution	8
	2.3	Weierstrass Approximation Theorem	9
	2.4	Additional Exercises	10
	2.5	Next time	10
	2.6	Solution to Exercises	10
3	Lecture #3		
	3.1	Exploration: U.D. and Denseness	11
	3.2	Criterion of U.D	12
4	4 Lecture #4		14
5 Lecture #5		16	

1.1 Uniform Distribution of Sequences

Recall that a subset A of \mathbb{R} is *dense* if every $x \in \mathbb{R}$ is arbitrarily close to A. That is, for every $\varepsilon > 0$, that x is ε -close to some element of A. More precisely:

 $\forall x \in \mathbb{R} \text{ and } \forall \varepsilon > 0$, there exists $a \in A$ such that $|x - a| < \varepsilon$.

Exercise 1. Examples of dense subsets:

- 1. \mathbb{Q} is dense in \mathbb{R} .
- 2. $\mathbb{Q}^2 = \mathbb{Q} \times \mathbb{Q}$ is dense in $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$.

That is: $\forall \epsilon > 0$, $\forall (x, y) \in \mathbb{R}^2$, $\exists (r, s) \in \mathbb{Q}^2$ such that $distance((x, y), (r, s)) < \epsilon$.

Here we use the Euclidean distance.

3. (optional) Let C be the classical middle-thirds Cantor set. Verify that the set of endpoints of all the removed intervals is a dense subset of C.

If $x \in \mathbb{R}$ define its *fractional part* to be $\{x\} = x - \lfloor x \rfloor$, where $\lfloor \cdot \rfloor$ is the floor function. Then $\{x\} \in [0, 1)$. We sometimes write $(x \mod 1)$ in place of $\{x\}$.

MOTIVATING EXAMPLE.

Proposition 1.1. If $\alpha \in \mathbb{R}$ is irrational, then the sequence $\{n\alpha\}_{n\in\mathbb{N}}$ is dense in [0,1].

How do we define a dense "sequence"? We defined denseness above only for subsets.

Corollary 1.1.1. (Easy exercise.) There are uncountably many dense sequences.

We will prove Proposition 1.1 in several steps. Before starting the proof, we recall some terminology. Given $\epsilon > 0$, a sequence (a_n) in [0, 1] is called ϵ -dense if:

$$\forall x \in [0, 1], \exists n \in \mathbb{N} \text{ such that } |a_n - x| < \epsilon.$$

This says: For any subinterval $J \subseteq [0, 1]$ of length 2ϵ , some terms of the sequence (a_n) are in J.

Check that a sequence (a_n) is dense in [0,1] if it is $\frac{1}{k}$ -dense for every $k \in \mathbb{N}$.

To prove the Proposition, we need to show: $\forall k \in \mathbb{N}$ the sequence $\{na\}_{n \in \mathbb{N}}$ is $\frac{1}{k}$ -dense.

Let's consider the case k = 10.

Claim 1.2. If there exists m such that $\{m\alpha\} < \frac{1}{10}$, then the sequence $\{n\alpha\}_{n\in\mathbb{N}}$ is $\frac{1}{10}$ -dense.

Proof. Given such m, the sequence $\{m\alpha\}, \{2m\alpha\}, \{3m\alpha\}, \dots$ must enter every subinterval of length $\frac{1}{10}$.

Claim 1.3. Among $\{\alpha\}, \{2\alpha\}, \dots, \{11\alpha\}$ in [0, 1], there are two terms with distance < 1/10.

Proof. Pigeonhole with the subintervals $\left[0,\frac{1}{10}\right]$, $\left[\frac{1}{10},\frac{2}{10}\right]$, \cdots , $\left[\frac{9}{10},1\right]$.

Proof of Proposition 1.1. By Claim 1.3, there exist i > j such that $\left| \{ i\alpha \} - \{ j\alpha \} \right| < \frac{1}{10}$. If $\{ i\alpha \} > \{ j\alpha \}$ in [0, 1], then m = i - j satisfies $\{ m\alpha \} = \{ i\alpha - j\alpha \} = \{ i\alpha \} - \{ j\alpha \} < \frac{1}{10}$, and Claim 1.2 applies.

What if $\{i\alpha\} < \{j\alpha\}$ in [0, 1]? Show that $\frac{9}{10} < \{m\alpha\} < 1$. Can we conclude that the sequence is $\frac{1}{10}$ -dense i this case? [Yes. Successive multiples of $\{m\alpha\}$ differ by less than $\frac{1}{10}$, so they also enter every length $\frac{1}{10}$ subintervals.]

Finish the proof by replacing 10 with arbitrarily large integer k.

Question 2. Can you generalize the above for $[0, \alpha)$ where $\alpha \neq 1$?

Question 3. When is the sequence $(\{n\alpha\}, \{n\beta\})_{n\in\mathbb{N}}$ dense in $[0, 1] \times [0, 1]$?

(Much easier variant) When is the sequence $(\{m\alpha\}, \{n\beta\})_{m,n\in\mathbb{N}}$ dense in $[0,1]\times[0,1]$?

Question 4 (Daniel). *If* $B \subset A \subset S$ *and* A *is dense in* S, B *is dense in* A, *is* B *dense in* S?

(Yes, by the $\epsilon/2$ trick. For any x in S and any $\epsilon>0$, approximate x in A with error at most $\epsilon/2$. Approximate this approximation again in B with error at most $\epsilon/2$.)

Question 5. Suppose α is irrational and $A \subset \mathbb{N}$ is infinite. Is $\{n\alpha \mid n \in A\}$ necessarily dense in [0,1]?

(No. See an example of *A* in Exercise 6.)

Exercise 6. For $0 < x_1 < x_2 < 1$, the set $A = \{n : \{n\alpha\} \in [x_1, x_2]\}$ is infinite.

[Deduce this as a corollary of the denseness of $\{A\alpha\}$ in $[x_1, x_2]$.]

Clearly $\{n\alpha \mid n \in A\}$ is not dense for the A in the exercise above.

Question 7. Is $\{n\alpha \mid n \equiv 0 \mod 17\}$ dense in [0, 1]?

(Write $n = 17k, k \in \mathbb{N}$. Since 17α is irrational, apply Proposition 1.1 to $S = \{k \cdot (17\alpha) \mid k \in \mathbb{N}\}$ to show S is dense.)

It is natural to ask:

Which sequences (a_n) satisfy: For every irrational α , the sequence $(\{a_n\alpha\})_{n\in\mathbb{N}}$ is dense in [0,1]?

Question 8 (Pico). Is the set $\{n^2\alpha\}_{n\in\mathbb{N}}$ dense in [0,1]?

Theorem 1.4 (Misha and Aditya). If α is irrational, the sequence $\{p_n\alpha\}_{n\in\mathbb{N}}$ is dense in [0,1]. Here p_n is the n^{th} prime.

Claim 1.5. The set $\{n^2\alpha\}_{n\in\mathbb{N}}$ is dense. For polynomial $f(x)\in\mathbf{Z}[x]$ and irrational α , the sequence $\{f(n)\alpha\}_{n\in\mathbb{N}}$ is dense.

The following result is even stronger.

Theorem 1.6 (Barz and Weyl). If f(t) is a real polynomial with at least one coefficient irrational, other than the constant term, then the sequence $\{f(n)\}_{n\in\mathbb{N}}$ is dense in [0,1].

(Misha Donchenko) In fact: $\{f(p_n)\}$ is also dense!

1.2 Next time

Please review Riemann integration of functions $f : [0, 1] \to \mathbb{R}$.

Theorem 1.7 (Weierstrass Approximation Theorem). Any continuous function on a closed interval [a, b] can be uniformly approximated by polynomials.

Theorem 1.8 (Furstenberg-Sàrközy Theorem). if $S \subset \mathbb{N}$ satisfy that no two numbers in S differ by a square number, then the asymptotic density of S is zero.

1.3 Solutions to Exercises

Exercise 1.

- 1. For every $r \in \mathbb{R}$, truncations of its decimal expression, or its continued fraction approximation, are rational numbers that approximate x to arbitrary precision.
- 2. This problem only asks about a finite product. In fact, this works for arbitrary products.

Claim 1.9 (More generally). For arbitrary product spaces $\prod_{i \in I} A_i$ such that each A_i is dense in B_i , we have

$$\prod_{i \in I} A_i \text{ dense in } \prod_{i \in I} B_i$$

when we take the product topology for $\prod_{i \in I} B_i$.

Proof. Take an arbitrary $x \in \prod_{i \in I} B_i$, and an arbitrary open neighborhood O of x. By the definition of a topology generated by a basis, there exists some basis element $\prod_{i \in I} U_i$ such that

$$x \in \prod_{i \in I} U_i \subset O$$

where each U_i is open in B_i . Take $p_i \in U_i \cap A_i$ for all i; the point with i^{th} coordinate $p_i \forall i$ is in O.

Note that I don't need to split into cases for the finitely many $U_i \neq B_i$ and the remaining U_i that equals to the whole space; it's an open set in B_i either case and $U_i \cap A_i$ is always nonempty by denseness. \square

- 3. Using the base-3 decimal definition, successively longer truncations of decimals who only has digits 0, 2 still gives a decimal with only digits 0, 2, but is an endpoint.
 - Using the intersection of nested set definition, for $x \in C$ and $\varepsilon > 0$, take $n \in \mathbb{N}$ large enough so that $\frac{1}{3^n} < \varepsilon$. Consider the segment containing x in the n^{th} iteration. It has length less than ε , and both endpoints are boundary points of some removed open intervals. So x is within ε distance from endpoints of removed intervals for arbitrary positive ε .

Question 2.

Answer. There is a bijection betwen dense sequences $\{n\gamma \bmod 1\}$ and $\{n\lambda \bmod \alpha\}$ via the map $f: \gamma \mapsto \gamma \alpha$. Scale all intervals by a factor of α or $\frac{1}{\alpha}$ to show having an element in all intervals of one implies that for the other.

Question 3.

1. When α , β , $\frac{\beta}{\alpha} \in \mathbb{R} \setminus \mathbb{Q}$.

Proof. See Sophie's later proof of Theorem 3.7, the uniform distribution of $\{n\alpha\}$.

Similarly to prove the U.D. of $\{n\alpha, n\beta\}$ we consider continuous $f: \mathbb{T}^2 \to \mathbb{R}$ with fourier series

$$f = \sum_{i,k \in \mathbb{Z}} c_{j,k} e^{2\pi i (jx+ky)}.$$

Since f can be uniformly approximated by certain truncation of its series (e.g. by Fejér kernel, the average of the first n truncations) We can change the order of summation for the corresponding finite sums and only consider $e^{2\pi i(jx+ky)}$ for arbitrary j, k when considering definition 2.4:

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\sum_{i,k< M}c_{j,k}e^{2\pi i(jn\alpha+kn\beta)} ? \int_{\mathbb{T}^2}f(n\alpha,n\beta)d\mu$$

Consider when $n(j\alpha + k\beta) \neq 0$,

$$\frac{1}{N} \sum_{n=1}^{N} e^{2\pi i (jn\alpha + kn\beta)} = \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i n (j\alpha + k\beta)} = \frac{1}{N} \frac{e^{2\pi i (N+1)(j\alpha + k\beta)} - 1}{e^{2\pi i (j\alpha + k\beta)} - 1}.$$

Consider the modulus of the right side; it goes to 0 as N gets large because the modulus of $e^{i\theta}$ is bounded by 1. When j = k = 0, this limit is

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} 1 = 1.$$

When $n(j\alpha + k\beta) \neq 0$ for all pairs $j, k \in \mathbb{Z}$ s.t. j, k aren't both zero, which is when $\alpha, \beta, \frac{\beta}{\alpha} \in \mathbb{R} \setminus \mathbb{Q}$, the limit of this sum $\frac{1}{N} \sum_{n=1}^{N} e^{2\pi i (jn\alpha + kn\beta)}$ equals to the integral

$$\int e^{2\pi i(jx+ky)}d\mu \forall j,k\in \mathbf{Z}.$$

2. When $\alpha, \beta, \in \mathbb{R} \setminus \mathbb{Q}$.

The proof is entirely analogous to the one dimensional case. In fact, this set is $\{n\alpha\}_{n\in\mathbb{N}} \times \{m\beta\}_{m\in\mathbb{N}}$, and both components are dense by Proposition 1.1. In Claim 1.9, I have shown this gives a dense set.

Exercise 6.

1. By contradiction. Suppose the set is finite. All finite subsets of a linearly ordered set, [0, 1] in our case, has a least element, so it makes sense to talk about the smallest and the second smallest element of $A\alpha := \{n\alpha \mid n \in A\}$.

The interval between the smallest $\{n\alpha\}$ in $[x_1, x_2]$ and the second smallest contains at least one $\{m\alpha\}$ for some $m \in \mathbb{N}$ due to the denseness of $\{n\alpha | n \in \mathbb{N}\}$ in [0, 1]. Contradiction.

2. Direct Proof. By denseness, there is at least one $\{m_1\alpha\} \in [x_1, x_2] := I_1$. Since $x_1 \neq x_2$, $\{m_1\alpha\}$ can't coincide with both endpoints of the interval, and WLOG assume $m_1 \neq x_2$. Take $I_2 = [m_1, x_2]$. Let S be the set of n where this process stops working. WOP on it to show $S = \emptyset$ and you now constructed an infinite sequence $\{m_i\alpha\}_{i=1}^{\infty}$.

2.1 Questions from Last Time

Question 9 (Lev). Let $A \in M_{n \times n}(\mathbb{Z})$ integer-valued matrices. Take $A\vec{v} \pmod{1}$. Are orbits dense?

Example 10. Take

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

the "Arnold Cat map." We will get to this later.

Question 11. What if the matrix A in the above question has the property that $A^n = \text{Id}$? (All orbits end up being periodic).

Question 12. Let $A \in M_{n \times n}(\mathbb{Z})$ integer-valued matrices. Take $A\vec{v} \pmod{1}$. Which points are periodic under the orbit? That is, for which \vec{v} such that there exists n with $A^n\vec{v} = \vec{v}$?

Let's understand the one dimensional case first.

Example 13. What about the case if we let n = 1 in the above example and A = (2)? In other words, for which $x \in [0, 1)$ is $2^n x \equiv x \pmod{1}$?

Observe that (2) is not invertible as an 1×1 integer valued matrix.

We can see exponentiation as iterated application of the function $f(x) = 2x \mod 1$ on [0, 1].

Question 14. What happens if our matrix A is invertible?

Question 15. For which x with $2^n x \pmod{1}$ dense in [0, 1]?

LEV'S QUOTE: This should occur if x is normal [in base 2].

Conjecture 16 (Pratyush). This should occur if *x* is irrational.

This turns out to not be true.

Question 17. Is it true that $2^n x \pmod{1}$, $k \in \mathbb{N}$, is dense for uncountably many x?

It turns out this is true. For $x \in [0, 1]$, write x in base two:

$$x = \sum_{i=1}^{\infty} \frac{\beta_i}{2^i} = 0.\beta_1 \beta_2 \beta_3 \dots_2 : \beta_i \in \{0, 1\}.$$

Then

$$2x = \sum_{i=1}^{\infty} \frac{\beta_i}{2^{i-1}} = \beta_1 + \sum_{i=1}^{\infty} \frac{\beta_{i+1}}{2^i} = \beta_1.\beta_2\beta_3\beta_4...$$

Taking mod 1, it's equivalent to $0.\beta_2\beta_3\beta_4...$

If we represent real numbers by the sequence of its binary digits then

$$x \sim (\beta_1, \beta_2, \beta_3, \beta_4, \ldots)$$
$$2x \sim (\beta_2, \beta_3, \beta_4, \beta_5, \ldots)$$

So f(x) = 2x is the shift-one-place-left operation.

Question 18 (James). Some numbers don't have a unique decimal expansion. What do we do for these numbers? Is it a countable set?

Answer. If a number has two expansions: one infinite and one finite, then we always pick the finite representation.

In fact, if we have two binary expansion of the same number

$$\sum_{i=1}^{\infty} \frac{\beta_i}{2^i} = \sum_{i=1}^{\infty} \frac{\gamma_i}{2^i},$$

and they first differ at the k^{th} digit, then WLOG let $b_k = 1$, $\gamma_k = 0$, and we see

$$\sum_{i=1}^{\infty} \frac{\beta_i}{2^i} \ge \left(\sum_{i=1}^{k-1} \frac{\beta_i}{2^i}\right) + \frac{1}{2^k} \ge \sum_{i=1}^{k-1} \frac{\gamma_i}{2^i} + \sum_{i=k+1}^{\infty} \frac{\gamma_i}{2^i}.$$

Equality is only obtained when $\beta_m = 0$ and $\gamma_m = 1$ for all m > k. Also, for a finite expansion we can always rewrite the last nonzero digit ... 1 as ... 01. So numbers with two expansions are exactly those with a finite expansion. So yes for countable and the above criterion suffices.

Theorem 2.1 (Srinath Mahankali). $2^n x \pmod{1}$ is dense if and only if every finite length string of 0's and 1's appears in the binary expansion of x.

2.2 Uniform Distribution

Definition 2.2. A sequence $(x_n) \in [0, 1]$ is uniformly distributed (U.D.) if for any subinterval [a, b] one has

$$\lim_{n\to\infty}\frac{|\{x_n:1\leq n\leq N\}\cap [a,b]|}{n}\to b-a.$$

Here's another description:

Definition 2.3. (x_n) is U.D. if the probability of hitting [a, b] is b - a.

It's not obvious that such a sequence exists. There are uncountably many intervals [a, b] of a fixed length r and the sequence has to spend r of its lifetime in such an interval.

Example 19. Take the sequence

$$0, 1, 0, \frac{1}{2}, 1, 0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1, \dots, 0, \frac{1}{2^k}, \frac{2}{2^k} \dots$$

Our intuition suggests that this is uniformly distributed.

Exercise 20 (Mandatory (Pico's) exercise). Prove that in the definition of U.D., it suffices to prove this for intervals [a,b] with $a,b \in \left\{\frac{n}{2^d} \mid n,d \in \mathbb{N}\right\}$.

Here's an equivalent definition of uniform distribution:

Definition 2.4. A sequence $(x_n) \in [0,1]$ is uniformly distributed if for all $f \in C^0([0,1])$, i.e. continuous functions $f : [0,1] \to \mathbb{R}$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i) = \int_0^1 f(x) dx.$$
 (2.1)

If instead of f, we take $1_{[a,b]}$, then we end up with the other definition of uniform distribution. Here's our next equivalent form:

Definition 2.5. A sequence $(x_n) \in [0,1]$ is uniformly distributed if for all Riemann integrable f, (2.1) holds:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i) = \int_0^1 f(x) dx.$$

Exercise 21. All definitions are equivalent.

Question 22 (Jacob). Would replacing any f in 2.1 with any Lebesgue measurable [integrable] functions work?

2.3 Weierstrass Approximation Theorem

Theorem 2.6 (polynomial version). For any $f \in C([0,1])$ and $\varepsilon > 0$ there exists a polynomial p with

$$|f(x) - p(x)| < \varepsilon$$

for all x.

Theorem 2.7 (trignometric version). For any $f \in C([0,1])$ and $\epsilon > 0$ there exists a trigonometric polynomial τ with

$$|f(x) - \tau(x)| < \epsilon.$$

where a trigonometric polynomial is a finite sum

$$\sum_{i=1}^{n} a_i \sin(nx) + b_i \cos(nx).$$

2.4 Additional Exercises

Exercise 23. Assume that for all $\epsilon > 0$ there exists n such that $n^2 \alpha \pmod{1} < \epsilon$. Prove that $n^2 \alpha$ is dense everywhere.

2.5 Next time

Metric Spaces. Examples include \mathbb{R}^n with the metric

$$\delta_p(x,y) = \sqrt[p]{\sum_{i=1}^n |x_i - y_i|^p} \quad \text{for } p \ge 1$$

In particular,

- $p = \infty$ corresponds to the max norm: $\delta(x, y) = \max\{|x_i y_i|\}$.
- p = 2 corresponds to the Euclidean distance.

Cantor Sets. Construct them and show that they are homeomorphic to the space $\{0,1\}^{\mathbb{N}}$ under the metric

$$d(\vec{x}, \vec{y}) = \sum_{i \in \mathbb{N}} \frac{|x_i - y_i|}{2^i}, \quad \vec{x}, \vec{y} \in \{0, 1\}^{\mathbb{N}}$$

2.6 Solution to Exercises

Pico's Exercise. Take arbitrary $[a, b] \in \mathbb{R}$. Take small $\epsilon > 0$ s.t. $\epsilon/4 < b - a$ (for simplicity). Take dyadic rationals m, k s.t. $m \in [a, a + \epsilon/4]$ and $k \in [b - \epsilon/4, b]$. Then

$$\lim_{N\to\infty}\frac{|\{x_n:1\leq n\leq N\}\cap [m,k]|}{N}\to k-m.$$

Now take large N so that the fraction inside the limit is within $\varepsilon/2$ from k-m for all $N' \ge N$. Note that

$$\frac{\left|\left\{x_n:1\leq n\leq N\right\}\cap\left[m,k\right]\right|}{n}\leq \frac{\left|\left\{x_n:1\leq n\leq N\right\}\cap\left[a,b\right]\right|}{n}$$

Similarly take $a - \frac{\epsilon}{4} < m' < a < b < k' < b + \frac{\epsilon}{4}$ to squeeze the RHS above between $b - a - \epsilon$ and $b - a + \epsilon$ for sufficient large N.

Exercise 21.

3.1 Exploration: U.D. and Denseness

Question 24 (Michael Barz and Aditya Jambhale). Can we classify functions $f:[0,1] \to [0,1]$ such that if $\{a_n\}_{n\in\mathbb{N}}$ is U.D. then $\{f(a_n)\}_{n\in\mathbb{N}}$ is also U.D.?

KEVIN DU: Must we have $f' = \pm 1$?

MICHAEL BARZ: If you assume f is nice, then |f'| = 1 can be shown, so yes.

But what if *f* is not differentiable?

PICO: How about decimal part of 2x, why wouldn't that work?

Or 2x on $[0, \frac{1}{2}]$ and 2 - 2x on $[\frac{1}{2}, 1]$.

PICO: The requirement that you need isnt very strong, and for Riemann integrable functions all you need is the image of (a, b) to have "measure" b - a. Being Riemann integrable is much stronger than we need, but simplifies a lot of the ugly stuff.

Proposed Answer. Let $f:[0,1] \to [0,1]$ be a surjective continuous function then it preserves denseness.

Question 25. For which sequences $(n_k)_{k \in \mathbb{N}}$ satisfy: if (x_n) is uniformly distributed, then (x_{n_k}) is uniformly distributed?

Definition 3.1. We call a sequence $(n_k)_{k \in \mathbb{N}}$ in Question 25 a universal sequence.

Question 26. For which sequences n_k satisfy: if (x_n) is dense, then (x_{n_k}) is dense?

Proposed Answer. Sequences $(n_k)_{k\in\mathbb{N}}$ that misses at most finitely many elements of \mathbb{N} .

Proof. NECESSITY. For any $(n_k)_{k\in\mathbb{N}}$ whose complement in \mathbb{N} is also an infinite sequence $(m_k)_{k\in\mathbb{N}}$, take the sequence $\{x_i\}_{i\in\mathbb{N}}$ that such that

$$x_{n_k} = 1, x_{m_k} = r_k, \quad \forall k \in \mathbb{N}$$

where r_k is the k^{th} rational number under some enumeration.

SUFFICIENCY. For an interval [a, b], a dense sequence must have infinitely many elements in it as you can divide it into N subintervals for any $N \in \mathbb{N}$. Thus, throwing finitely many terms out of a dense sequence

does not affect its denseness because there are more terms between any two [a, b] than what you throw away.

Example 27. $n\alpha$ for $\alpha \notin \mathbb{Q}$ is dense mod 1, and $n^2\alpha$ is dense mod 1.

Question 28. Which function preserves denseness?

Here's a fact:

Theorem 3.2. If $\alpha \notin \mathbb{Q}$, then $n^2\alpha$ is uniformly distributed.

Question 29. For which α are $2^n\alpha$ uniformly distributed?

Review of the fact:

Theorem 3.3. If in its expansion α contains all 0-1 strings, then $2^n \alpha$ is dense.

We can generalize this:

Theorem 3.4. Let k be a positive integer. Then $k^n \alpha$ is dense mod 1 if the base k expansion of α contains all words in $\{0, 1, 2, ..., k-1\}$.

But the above only covers integers only. We can ask a question about more general rational or real numbers:

Question 30. For what x is $\pi^n x$ dense mod 1? What about $\frac{3}{2}^n x$? (Base π -expansion? Base β expansion?)

Theorem 3.5 (Open Problem). Is $(3/2)^n$ dense mod 1?

Exercise 31. Give an example of x such that x^n is dense mod 1.

Theorem 3.6 (Furstenberg). Let α be irrational. Then the set

$$\{2^n 3^m \alpha \pmod{1} : n, m \in \mathbb{N}\}$$

is dense in (0, 1).

Remark. When we deal with denseness, the order of the sequence is immaterial. This is not true if we are interested in U.D. phenomenon!

For example, \mathbb{Q} is dense, but it takes work to find a ordering that makes it U.D. On the other hand, $(n\alpha)_{n\in\mathbb{N}}$ has a natural ordering.

We can order the set

$$\{2^n3^m\mid m,n\in\mathbb{N}\}$$

by size. Define the sequence

$$(a_n)_{n\in\mathbb{N}}:=\{1,2,3,4,6,8,9,12,16,18,\cdots\}.$$

Question 32 (Big Bonus Problem.). Find α , such that $a_n\alpha$ is not U.D., a_n defined as above.

Exercise 33. There are uncountably many irrational α for which $2^n\alpha$ is not dense mod 1.

3.2 Criterion of U.D.

Question 34 (Big Problem). Which sequences are uniformly distributed and why?

Theorem 3.7. $(n\alpha)$ is uniformly distributed mod 1.

Sophie's solution (a sketch). Refer to definition 2.4. We show that for all $f \in C([0,1])$,

$$\frac{1}{n}\sum_{i=0}^{n-1}f(j\alpha)\to\int_0^1f(x)dx.$$

Since f may be approximated by sums of trig polynomials $e^{2\pi ikx}$, it suffices to show this for $f(x) = e^{2\pi ikx}$. We have

$$\frac{1}{n}\sum_{i=0}^{n-1}e^{2\pi ijk\alpha} = \frac{1}{n}\frac{e^{2\pi ikn\alpha}-1}{e^{2\pi ik\alpha}-1} \to \delta_k$$

if $k \neq 0$ and

$$\int_0^1 e^{2\pi i k x} dx = \delta_k = \begin{cases} 0 & k \neq 0 \\ 1 & k = 0 \end{cases}.$$

There is a subtle point: only f that satisfy f(0) = f(1) can be approximated by trigonometric polynomials.

Theorem 3.8 (Weyl's Criterion). A sequence $(x_n) \subset [0,1]$ is uniformly distributed modulo 1 if and only if for any $h \in \mathbb{Z} \setminus \{0\}$ one has

$$\frac{1}{N}\sum_{n=0}^{N-1}e^{2\pi ihx_n}\to 0.$$

Example 35. More examples of U.D.

- $\sqrt{n} \mod 1$.
- $\log^2 n \mod 1$.
- $n^2\alpha + \log^2 n \mod 1$.

Conjecture 36 (Kevin Du). If $\lim_{n\to\infty} a_{n+1} - a_n \to 0$ and $\lim_{n\to\infty} a_n \to \infty$, is it true that $(a_n)_{n\in\mathbb{N}}$ is U.D.?

Fact 3.9. The sequence $\log n \mod 1$ is not U.D., but $\log^{1+\epsilon} n \mod 1$ for any $\epsilon > 0$ is U.D.

Exercise 37. Kevin's criterion is enough for denseness!

Exercise 38 (Pico). Does the harmonic series not being U.D. follow from log(n) not being U.D.?

Recall conjecture last time:

Conjecture 39 (Kevin's Conjecture). Assume $(a_n) \subset \mathbb{R}$ such that $a_n \to \infty$ monotonically, $a_{n+1} - a_n \to 0$, and $n(a_{n+1} - a_n) \to \infty$. Then $a_n \pmod{1}$ is uniformly distributed.

Compare with the classical Fejer's theorem:

Theorem 4.1 (Fejer). Let $f: [0, \infty) \to [0, \infty)$ be a differentiable function such that $f(x) \to \infty$ as $x \to \infty$, $f'(x) \to 0$, and $xf'(x) \to \infty$. Then $f(n) \pmod{1}$ is uniformly distributed.

Question 40 (Aditya). Are there interesting functions $f:[0,1] \to [0,1]$ with $f^n(x_0)$ is uniformly distributed for some x_0 ?

What about *f* continuous?

Example 41. $f(x) = 2x \pmod{1}$. Not strictly continuous, but can make a "tent function." In addition, can take S^1 instead of [0, 1]. Then the discontinuity at $\frac{1}{2}$ disappears.

Example 42. n^{c} for 0 < c < 1.

Example 43. $\log(n)^c$ for c > 1.

Exercise 44. sin(n) is dense mod 1.

Example 45. $\log(n) \log \log(n)$

Exercise 46. How about n^c , c > 0, $c \in \mathbb{N}$? How about $n^c \log^b(n)$? For which parameters b, c uniformly distributed? Dense?

Theorem 4.2. Let $x \in [0, 1]$ be a base 2 normal number. Then $2^n x \pmod{1}$ is uniformly distributed.

Definition 4.3. A number $x \in [0, 1]$ is base 2 normal if any finite $w \cdot 0 - 1$ word appears in the binary expansion of x with probability

 $\frac{1}{2^{|w|}}$

where |w| is the length of w.

Theorem 4.4. Base 2 normal numbers in 0-1 have full measure. In other words, the complement of normal numbers has measure 0.

Corollary 4.4.1. Almost all numbers in [0, 1] are normal in every base.

Example 47. Champernone's constant: 0.12345678910111213... is normal in base 10. Square concatenation is also normal: 0.1491625.... So is prime concatenation: 0.2357111317....

There are rather general theorems of this time: if $f:(0,\infty)$ is "nice", then 0.f(1)f(2)f(3)... is normal in base 10.

Theorem 4.5. Let $x \in [0,1]$. Then $2^n x \pmod{1}$ is uniformly distributed if and only if x is a base 2 normal number.

Question 48. How can you define p-q normality? Where 0 appears with probability p and 1 appears with probability q=1-p.

Theorem 4.6. There exists a 1-1 correspondence between subsets of $\mathbb N$ and $\{0,1\}^{\mathbb N}$

Proof. 1 if the element is in the subset and 0 otherwise.

Let us call a subset S of \mathbb{N} normal if 1_S is a normal binary sequence.

Definition 4.7. Let $S \subset \mathbb{N}$. The density of $S \subset \mathbb{N}$ is defined by

$$d(S) = \lim_{N \to \infty} \frac{|S \cap \{1, 2, \dots, N\}|}{N} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} 1_{S}(x).$$

Exercise 49. If S is normal, then $d(S) = \frac{1}{2}$. Also, $d(\mathbb{N} \setminus S) = \frac{1}{2}$.

Exercise 50. $d(S \cap S - n) = \frac{1}{4}$ for all integers n.

Exercise 51. For any $n_1, n_2, ..., n_k$ not equal, $d(S \cap (S - n_1) \cap (S - n_2) \cap ... \cap (S - n_k)) = \frac{1}{2^{k+1}}$.

Exercise 52. If we replace the sets in the above equation with their complements, then the formula is still valid.

Example 53. Example of U.D. sequences based on Fejèr's theorem.

- 1. \sqrt{n} , or more generally, n^c for 0 < c < 1.
- 2. $\log^{c} n$, for c > 1.
- *3.* sin *n*.
- 4. Candidates:
 - $\log n \cdot \log \log n$
 - $\log n \cdot \log \log n \log \log \log n$
 - $\log n \cdot \log^c \log n$
 - $\log n \cdot \log \log^c \log n$
 - How about $n^c \mod 1$, $c \notin \mathbb{N}$, c > 0?
 - How about $n^c \log^b n$ for parameter $c \notin \mathbb{N}, b > 1$ are they U.D.? Dense?

Exercise 54. $\sin n \mod 1$ *is dense.*

Fact 5.1 (In response to Pico). *After appropriately defining U.D.* mod 2 (*your exercise*), *you can show that* \sqrt{n} *U.D.* mod 2.

Exercise 55 (Additional). How about U.D. mod $\sqrt{2}$

Is $n\sqrt{3}$ or $\frac{n}{\sqrt{3}}$ U.D. $\text{mod }\sqrt{2}$? mod 2? mod 3?

Conjecture 56 (Michael Barz and Aditya Jambhale). Every dense sequence has a U.D. subsequence.

Theorem 5.2. Any dense sequence has a U.D. rearrangement.

Bergelson: This is proved by a familiar technique, by a famous guy, youngish at the time, in 20th century, who is already dead. Ex: guess who is it.

Definition 5.3 (Terminology). We say a sequence $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ is U.D. if $(x_n \mod 1)$ is U.D.

When convevient, we'll identify it with the 1 dimensional torus $\mathbb{T} = [0, 1)$.

More generally, consider $\mathbb{T}^n = \mathbb{R}^n/\mathbf{Z}^n$.

Recall our equivalent definitions of U.D.:

- 1. The frequency that a sequence hit [a, b] is proportional to the length of [a, b], as $n \to \infty$.
- 2. The average value of any continuous $f \in C[0, 1]$ on its first n terms, as we take $n \to \infty$, converges to its integral on [0, 1].
- 3. The average value of Riemann integrable functions on the first $n \to \infty$ terms converges to its integral.

We now add:

4. For any nonzero integer h,

$$\frac{1}{N}\sum_{n=1}^N e^{2\pi i h x_n} \to 0.$$

5. The criterion using continuous functions can be restricted to the subset of C[0, 1] s.t. f(0) = f(1).

Theorem 5.4 (Weyl). For any sequence (n_k) that goes to infinity, and $n_k \in \mathbb{N}$, then then set $x \in \mathbb{R}$ for which $n_k x$ is uniformly distributed has full measure.

Theorem 5.5 (Borel). A sequence $2^n x \pmod{1}$ is uniformly distributed if and only if x is normal.

These two theorems imply that normal numbers are of full measure. Both of these deal with measure 0 since

the complement of something full measure is measure 0.

Definition 5.6. A sequence $f_n : [0, 1] \to \mathbb{R}$ is almost everywhere convergent if

$$\lim_{n\to\infty} f_n(x)$$

exists for a set of x of full measure in [0, 1].

Definition 5.7. A sequence $f_n : [0, 1] \to \mathbb{R}$ is uniformly convergent to f if for all $\epsilon > 0$, there exists N_0 such that for all $n \ge N_0$

$$\max_{x \in [0,1]} |f_n(x) - f(x)| < \varepsilon$$

Definition 5.8. $f_n \to f$ if $\int_0^1 |f_n(x) - f(x)| dx = 0$ (L^1 convergence).

Exercise 57. All these methods of convergence are different notions.

Fact 5.9. For any $\alpha \notin \mathbb{Q}$, $n^2\alpha$ is uniformly distributed mod 1. In particular, this sequence is dense mod 1.

Proof. We use the Van Der Corput trick, which is as follows.

Lemma 5.10. Let $(x_n) \subset \mathbb{R}$. Assume that for any $h \in \mathbb{N}$, the sequence $x_{n+h} - x_n \pmod{1}$ for $n \in \mathbb{N}$ is uniformly distributed. Then $x_n \pmod{1}$ is uniformly distributed.

Proof. See https://terrytao.wordpress.com/2008/06/14/the-van-der-corputs-trick-and-equidistribution-on-nilmanifolds/lemma 1 and corollary 2. □

Let $x_n = n\alpha$. Then $x_{n+h} - x_n = h^2\alpha + 2nh\alpha$ which is a uniformly distributed sequence shifted by a constant amount. Hence, $n^2\alpha \pmod{1}$ is dense.

Definition 5.11. A set $E \subset \mathbb{N}$ is called a Van Der Corput set if if in order to apply the van der corput trick you only need to check for $h \in E$.

Exercise 58. *Show that E is not finite.*

Observation (Misha Donchenko): Any $k\mathbf{Z}$ is a VDC set because this means the subsequences sorted by remainder mod k are each U.D. and merging U.D. sets gives you a U.D. set.

Example 59. Here are examples of van der Corput sets:

$$\{n^2\}, \{17n\}, n^2+1, n^2-1, P-1, P+1, P+17, P-17.$$

where P is the set of primes.

Primes don't work. The only prime shifts that work are P-1 and P+1.

Theorem 5.12. For any unbounded sequence that goes to infinity, $(a_n) \subset \mathbb{N}$, $a_n - a_m$ is a van der Corput set.

Question 60 (Jessie). Can we define a sense of U.D. mod1 for f in C[0, 1]?

rational coefficient polynomials on [0, 1]. We don't want uncountably many things.

Definition 5.13. How would you define (and bring interesting examples) a notion of uniformly distribution for $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$?

Exercise 61. Is there a version of van der Corput for denseness?

Exercise 62. Prove Weyl's theorem on U.D. of polynomials by VDC's trick.