GROUPES ET ANNEAUX 2 FEUILLE DE TD N°4

Anneaux et idéaux

Exercice 1. Soit I un idéal d'un anneau A satisfaisant $I \neq A$.

- (i) Montrer que I est premier si et seulement si, pour tout $x,y\in A$, on a $xy\in I\Rightarrow x\in I$ ou $y\in I$.
- (ii) Montrer que I est maximal si et seulement si, pour tout idéal $J \subset A$, on a $I \subset J \Rightarrow J = I$ ou J = A.

Exercice 2. Soit $f: A \to B$ un morphisme d'anneaux.

- (i) Montrer que, si I est un idéal premier de B, alors $f^{-1}(I)$ est un idéal premier de A.
- (ii) Montrer que, si I est un idéal maximal de B, alors $f^{-1}(I)$ n'est pas nécessairement un idéal maximal de A.

Exercice 3. Montrer que, pour tout $\underline{a} = (a_1, \dots, a_n) \in \mathbb{k} \times \dots \times \mathbb{k}$, l'idéal

$$(X_1 - a_1, \dots, X_n - a_n) \subset \mathbb{k}[X_1, \dots, X_n]$$

est maximal. Indication: Étudier $\ker \varepsilon_a$ pour

$$\varepsilon_{\underline{a}} : \mathbb{k}[X_1, \dots, X_n] \to \mathbb{k}$$

$$P(X_1, \dots, X_n) \mapsto P(a_1, \dots, a_n).$$

Exercice 4. Soient I et J deux idéaux d'un anneau A.

(i) Montrer que

$$I + J = \{x + y \mid x \in I, y \in J\}$$

est un idéal de A qui contient $I \cup J$. Non seulement, il est le plus petit idéal de A ayant cette propriété : si K est un idéal de A et $I \cup J \subset K$, alors $I + J \subset K$.

(ii) Montrer que

$$IJ = \left\{ \sum_{i=1}^{n} x_i y_i \mid n \in \mathbb{N}, x_1, \dots, x_n \in I, y_1, \dots, y_n \in J \right\}$$

est un idéal de A contenu dans $I \cap J$.

Exercice 5. Soit B une A-algèbre, soit I un idéal de A, et soit

$$IB := \left\{ \sum_{i=1}^{n} a_i b_i \mid n \in \mathbb{N}, a_1, \dots, a_n \in I, b_1, \dots, b_n \in B \right\}$$

l'extension de I à B. Montrer que IB est un idéal de B. Ensuite, montrer que

$$A[X]/(I(A[X])) \cong (A/I)[X].$$

Exercice 6. Soient I un idéal de A et $\bar{A}=A/I$ l'anneau quotient. La projection canonique sera désignée par $\pi:A\to \bar{A}$.

- (i) Soit J un idéal de A contenant I, et soit $\bar{J}=\pi(J)$ son image dans \bar{A} . Montrer que $A/J\cong \bar{A}/\bar{J}$.
- (ii) Soit $J=(a_1,\ldots,a_n)$ l'idéal de A engendré par $a_1,\ldots,a_n\in A$, et soit $\bar{a}_i:=\pi(a_i)\in \bar{A}$. Montrer que $A/(I+J)\cong \bar{A}/(\bar{a}_1,\ldots,\bar{a}_n)$.

Exercice 7. On rappelle que deux idéaux I et J de A sont dit co-maximaux si I+J=A.

- (i) Montrer que, si $I \subset A$ est un idéal maximal, alors tout idéal $J \subset A$ est soit co-maximal avec I, soit inclus dans I.
- (ii) Donner un exemple de pair d'idéaux co-maximaux $I,J\subset A=\Bbbk[X,Y]$ tels que ni I ni J soient maximaux.
- (iii) Les idéaux I = (X) et J = (Y) de $A = \mathbb{k}[X, Y]$ sont-ils co-maximaux?

Exercice 8. Soit p > 2 un nombre premier et $\square_p = \{a^2 \mid a \in \mathbb{F}_p^{\times}\}$ l'ensemble des carrés non-nuls de \mathbb{F}_p .

- (i) Montrer que l'ensemble des racines de $X^{\frac{p-1}{2}}-1$ est précisément \square_p . Indication : On pourra utiliser le principe du berger pour déterminer $|\square_p|$.
- (ii) En déduire que $-1 \in \square_p$ si et seulement si $p \equiv 1 \pmod{4}$.
- (iii) Montrer que, si $p \equiv 1 \pmod{4}$, alors $(p) \subset \mathbb{Z}[\mathfrak{i}]$ n'est pas premier.
- (iv) Montrer que, si $p \equiv 3 \pmod 4$, alors $(p) \subset \mathbb{Z}[i]$ est maximal. Indication : Utiliser le fait que $\mathbb{Z}[i]$ est un anneau principal, avec jauge euclidienne $N(a+ib)=a^2+b^2$ pour tout $a+ib\in\mathbb{Z}[i]$, et remarquer que p n'est pas une somme de deux carrés, c'est-à-dire $p \notin \{a^2+b^2 \mid a,b\in\mathbb{Z}\}$.

Exercice 9. Soit $P \in \mathbb{k}[X]$ un polynôme de degré 2 ou 3.

- (i) Montrer que P est irréductible si et seulement si P ne possède aucune racine dans \Bbbk .
- (ii) Montrer que $\mathbb{F}_2[X]/(X^2+X+1)$ est un corps avec 4 éléments.
- (iii) Montrer que $\mathbb{F}_3[X]/(X^2+1)$ est un corps avec 9 éléments.
- (iv) Construire un corps avec 8 éléments et ensuite déterminer un générateur du groupe multiplicatif de ses éléments inversibles.