The Pumping Lemma & Introduction to Parsing

CSCI 3136: Principles of Programming Languages

Agenda

- Announcements
 - Assignment 2 is out and due May 31
- Readings:
 - Today: 2.3.0, 2.3.1
 - Note: I recommend using alternative texts for this part of the course:
 - E..g, Hopcorft et al, "Introduction to Automata Theory"
- Lecture Contents
 - Pumping Lemma
 - Introduction to Parsing

Examples from last lecture:

- Show that L = {a^p | p is not prime} is not regular.
 - Recall that {a^p | p is prime} is not regular
- Show that $L = \{a^pb^q \mid p \text{ or } q \text{ is prime}\}\$ is not regular.
- Show that $L = \{a^p a^* a^p \mid p \text{ is prime}\}\$ is regular.

Nonregular Languages

- Problem: Not all languages are regular! E.g. $L = \{0^n1^n | n >= 0\}$ is not regular.
- Intuition: We need to keep track of how many 0's we encounter.
- A DFA has a finite number of states, so beyond that number we cannot keep track.
- How do we prove this formally?
 The Pumping Lemma!

Intuition

form is

accepted!

Observation: If a DFA with n states reads a string of length n or greater, one or more states will be visited multiple times (there will be a cycle).

The Pumping Lemma

For every regular language L, there exists a constant n such that every $\sigma \in L$, where $|\sigma| \ge n$, can be divided into three substrings $\sigma = \alpha\beta\gamma$ with the following properties:

- |αβ|≤n
- $|\beta| > 0$, and
- $\alpha\beta^k\gamma\in L, \forall k\geq 0$

• We can use this Lemma to show that a given language is non-regular.

Using the Pumping Lemma is like an Argument with the Devil

Applying the Pumping Lemma

Procedure: To show that L is not regular

- Convince yourself L is not regular (intuition)
- Assume that L is regular and that there is a constant n as stated by the Pumping Lemma

σ will (typically)

be a function of n

- Select $\sigma \in L$ such that
 - $|\sigma| > n$
 - $\sigma = \alpha \beta \gamma$, for all α and β
 - $|\alpha\beta| \le n$
 - $|\beta| > 0$
 - There *exists* $\alpha j \ge 0$ such that $\alpha \beta^j \gamma \notin L$
- But according to Pumping Lemma, $\sigma \in L$.
- Contradiction!
- Therefore L is not regular.

Using the Pumping Lemma is like an Argument with the Devil

Example: Use the Pumping Lemma

Show that $L = \{0^m 10^m | m \ge 0\}$ is not regular.

- Proof by contradiction: Assume L is regular.
- If L is regular, then there exists an n, by the PL
- Select $\sigma = 0^{n}10^{n}$
- Therefore, for all α and β
 - $\alpha\beta = 0^p$, because $p \le n$
 - $\beta = 0^j, 0 < j \le p$
- By the PL, $\alpha\beta^2\gamma\in L$
- But $\alpha\beta^2\gamma = 0^{n+j}10^n \notin L$
- Contradiction!

Examples

- L = $\{a^ib^j | i < j\}$
- $L = \{a^p | p \text{ is prime}\}$
- L = $\{a^ib^j \mid i = j \mod 3\}$ This one is actually regular
- Note: We cannot use the Pumping Lemma to prove a language is regular.
- Question: How do you show a language is regular?
 - Construct a regular expression for the language
 - Construct an NFA that recognizes the language
 - Construct the language from known Regular Languages using closure properties of regular languages.
- So, we're done... right?

Why Do We Need a Parser?

- A scanner yields a stream of tokens
- Q: Is this sufficient to determine if the input is a valid program?
- A: No! Most programming languages are not regular!
 E.g. braces and brackets must match: ((1 + 3) * (3 + 2))
- Scanners are useful for
 - Checking if program's tokens are correct
 - Providing higher level representation of programs
- Scanners cannot check if the syntax is correct
 - Analogy: Correctly spelled words do not make a correct sentence
- We need a different mechanism for checking syntax
- We need a parser

Recall: Phases of Compilation

Meet the Parser

- Parsing takes a stream of tokens
 - Checks whether the tokens represent a syntactically correct program
 - Creates a parse tree (a high level representation of the program)
- Question: How do we know what the correct syntax is?
- Answer: Based on the language specification
- Question: How do we specify the syntax
- Answer: By a grammar

Grammars

- Idea: Grammars specify the syntax of a language
- Example: English Sentences
 - Sentence → Phrase Verb Phrase .
 - Phrase → Noun | Adjective Phrase
 - *Adjective* → big | small | green
 - *Noun* → boss | cheese
 - *Verb* → is | jumps | eats

Valid Sentences:

- Boss is big cheese.
- Boss eats green cheese.
- Green cheese jumps boss.

Not all valid sentences make sense!

Example: Arithmetic Expressions

Grammar

$$E \rightarrow E Op E$$

$$E \rightarrow -E$$

$$E \rightarrow (E)$$

 $E \rightarrow Number$

 $E \rightarrow Identifier$

$$Op \rightarrow +$$

$$Op \rightarrow -$$

$$Op \rightarrow /$$

$$Op \rightarrow *$$

Valid Sentences

$$(1+2-3)*4$$

$$a + b$$

Typically programming languages are specified by Context Free Grammars (CFG)

Context Free Grammars (CFG)

A CFG G is a 4-tuple $G = (V, \Sigma, P, S)$ where

- V is the set of non-terminals
 - Also known as "Variables"
 - Denoted by Capitalized letters/words
- Σ is the set of terminals
 - The text tokens returned by the scanner
- P is the set of productions
 - Of the form $N \rightarrow (\Sigma \cup V)^*$, $N \in V$
 - Also known as "Rewriting Rules"
- S is the start symbol, S ∈ V

A CFG Example: Expressions

```
• V = {E, Op}
• Σ = {identifier, number, (, ), +, -, *, /}
• P={
             E \rightarrow E Op E
             E \rightarrow -E
             E \rightarrow (E)
             E \rightarrow number
             E \rightarrow identifier
            Op \rightarrow +
             Op \rightarrow -
             Op \rightarrow *
            Op \rightarrow /
• S = E
```

Notes on CFG Notation

- Note: Alternative productions can be merged using |
 - E.g., Op → + | | * | /
- Several different notations are in use:
 - Backus-Naur Form (BNF) uses ::= instead of →
 - Optional Components notation N_{opt} means that N is optional in the production
 - Regular Expressions in RHS notation allows regular expressions of terminals and nonterminals
- Question: How do we use a grammar?
- We determine whether a program is derivable from the grammar

Derivations

- A derivation is a sequence of rewriting operations that starts with the string σ = S and then repeats the following until σ contains only terminals:
 - Select a non-terminal in XEV, such that $\sigma = \alpha X\beta$ where $\alpha,\beta \in (V \cup \Sigma)*$
 - Select a production in $(X \rightarrow \rho) \in P$,
 - Replace X with ρ in the partial derivation σ I.e., $\sigma = \alpha \rho \beta$
- Eventually, σ will consist of only terminals, meaning the derivation is complete.

Derivations in a Nutshell

Derivation Example of an Expression

```
Derive (42 + 13) * 11
\sigma = \mathbf{E}
  \Rightarrow E Op E
  \Rightarrow ( E ) Op E
  \Rightarrow ( E Op E ) Op E
  \Rightarrow ( 42 Op E ) Op E
  \Rightarrow (42 + E) Op E
  \Rightarrow (42 + 13) Op E
  \Rightarrow (42 + 13) * E
  \Rightarrow (42 + 13) * 11
```

Grammar

- 1. $E \rightarrow E Op E$
- 2. $E \rightarrow -E$
- 3. $E \rightarrow (E)$
- 4. $E \rightarrow Number$
- 5. $E \rightarrow Identifier$
- 6. $Op \rightarrow +$
- 7. $Op \rightarrow -$
- 8. $Op \rightarrow /$
- 9. $Op \rightarrow *$

Definitions

- Definition: We write $S \Rightarrow^* \sigma$ if there exists a derivation $S \Rightarrow \sigma_1 \Rightarrow \sigma_2 \Rightarrow ... \Rightarrow \sigma$
- Definition: Every grammar G defines a language: $L(G)=\{\sigma \in \Sigma^* \mid S \Rightarrow^* \sigma\}$
- Definition: If G is a context-free grammar then L(G) is a context-free language.
- Example: What is the language defined by $G = (V, \Sigma, P, S)$

```
• V = \{S\}

• \Sigma = \{0,1,\epsilon\}

• P = \{ The language L(G) = \{0^n1^n \mid n \ge 0\}

• S \to \epsilon

• S \to 0 S 1

}

• S = S
```

Example 2

• What is the language defined by $G = (V, \Sigma, P, S)$

```
• V = \{S\}

• \Sigma = \{0,1,\epsilon\}

• P = \{

S \rightarrow \epsilon

S \rightarrow 0S0

S \rightarrow 1S1

}

• S = S
```

The language $L(G) = {\sigma \sigma^r | \sigma \in \Sigma^*}$

Note: σ^r means reverse of σ

- Observations:
 - These languages are nonregular
 - All regular languages are also context-free languages
 - There are more context-free than regular languages
- Q: How does we represent a derivation?

Parse Trees

- A program is syntactically correct if it can be derived from the grammar of the language it is written in.
- To analyze the program we need a better representation of it.
 - I.e., tokens are the input to the parser
- So, each derivation can be represented by a parse tree.

Structure of Parse Trees

- Root: S, the start nonterminal
- Internal nodes: nonterminals
- Leaf nodes: terminals (called the *yield* of the tree)
- Edge(X,w) : X \in V, w \in α , where (X \rightarrow α) \in P.

Parse Tree Example of an Expression

$$\sigma = \mathbf{E}$$

⇒ \mathbf{E} Op \mathbf{E}

⇒ (\mathbf{E}) Op \mathbf{E}

⇒ (\mathbf{E}) Op \mathbf{E}

Op \mathbf{E}) Op \mathbf{E}

⇒ $(42 \text{ Op } \mathbf{E})$ Op \mathbf{E}

⇒ $(42 + \mathbf{E})$ Op \mathbf{E}

⇒ $(42 + 13)$ Op \mathbf{E}

⇒ $(42 + 13) * \mathbf{E}$

⇒ $(42 + 13) * 11$

Another Example: 1 + 2 * 3 This is ambiguous!

 $\sigma = \mathbf{E}$ \Rightarrow **E** Op E \Rightarrow **E** Op E \Rightarrow **E** Op E Op E \Rightarrow 1 Op E \Rightarrow 1 **Op** E Op E \Rightarrow 1 + E \Rightarrow 1 + **E** Op E \Rightarrow 1 + **E** Op E (1 + 2) * 31 + (2 * 3) \Rightarrow 1 + 2 **Op** E \Rightarrow 1 + 2 **Op** E \Rightarrow 1 + 2 * **E** \Rightarrow 1 + 2 * **E** \Rightarrow 1 + 2 * 3 \Rightarrow 1 + 2 * 3 Op Ε Op Ε Op 3 Op Ε Ε 1 2 2 3

Ambiguity

Observations:

- There are infinitely many grammars to specify the same language
- There may be multiple parse trees for the same sentence!
- Definition: If multiple parse trees can be generated by G for the same sentence, then G is *ambiguous*.
- Definition: If L does not have an unambiguous grammar, then L is inherently ambiguous
 - Usually not the case for programming languages!

An Unambiguous Expression Grammar

Grammar

- $E \rightarrow T$
- $E \rightarrow E + T$
- $E \rightarrow E T$
- $T \rightarrow F$
- $T \rightarrow T * F$
- $T \rightarrow T/F$
- $F \rightarrow number$
- $F \rightarrow$ identifier
- $F \rightarrow (E)$

• Try deriving 1 + 2 * 3