成都信息工程大学考试试卷

2017 — 2018 学年第一学期

	1				2 1 214	4 794								
		课程名称:_	概率论与数理统	统计	月班级:201	6级非统计专业								
		试卷形式:	开卷 引闭卷											
1		试题	_	二	Ξ	四	总分							
		得分												
4		一、填空(每	空1分,共10	分)										
ידע		1、试验"反复抛硬币,直到出现'正面'为止,观察所抛次数"的样本空间 $\Omega=$												
	! 2、已知 P(Ā)=0.2 · P(AB)=0.3 。则 P(ĀUB)=。													
	交日	"出现'3'点或'	5'点"的概率为											
阵名	内不	•												
	然	4、从数集{1,	2,3,K,15}中降	道机抽取 3 个 7	下同的数,已知	这 3 个数的和为	内奇数,则这3							
	粉料	本 个数的积为奇数的概率为												
吐 数		6、设X~b(n, p)。若EX	= 2, $DX = 1$.6.则 n =	, p =	•							
4元 4	7、设 X ~ U [a,b]。若 EX = 2 、 DX = 1/3 、则 a = , b =													
	二、判断: 只判断对错,无须改错(每题1分,共10分)													
		[]												
	2、记 $F_{\alpha}(m,n)$ 为 F 分布的上侧 α 分位点,则 $F_{\alpha}(m,n) \times F_{1-\alpha}(n,m) = 1$ 。													
		3、对区间估计	$+ P(\underline{\theta} < \theta < \overline{\theta})$	$=1-\alpha$. $1-$	α 是估计的置值	信度。【 】								
	-	4、概率为0日	的事件一定是不	可能事件。【	1									
		5、对任一假i	设检验 ,犯第一	类错误的概率	与犯第二类错误	吴的概率之和为	1. 【 】							

6. $AUBUC = AU(B-AB)U(C-AC)$ [
7、如果事件 A 比事件 \overline{A} 更有可能发生,则 $P(A) > 0.5$ 。【 】								
8、如果 AB = Ø,则 P(A)+P(B)≤1。【 】								
9、如果 P(A B) = P(A C). 则 P(B) = P(C). 【 】								
10、如果 $X \le 0$,则对任意 t , $F(t) > 0$ 。								
三、单项选择(每题2分,共20分)								
1、X、Y都服从区间为[0, 5]上的均匀分布,则E(X+Y)=【 】								
① 2.5 ② 5 ③ 10 ④ 无法计算								
2、 掷硬币三次, 记 A: "第 i 次出现正面" ($i=1,2,3$)。 则事件"最多出现两次正面"的								
正确表达式为【								
① AUAUA ② ĀAAUAĀAUAĀĀ								
3、设A与B相互独立, P(AB)=P(ĀB)且P(A)=0.3,则P(B)=【 】								
① 0.2 ② 0.4 ③ 0.7 ④ 1								
4、设P(A)>0, P(B)>0, 则由A、B相互独立不能推出【 】								
① $P(AU B) = P(A) P(B \overline{A}) = P(\overline{B})$								
5、设 X 与 Y 独立, 其方差分别为 5 和 1, 则 D(2 X - Y) = 【 】								
① 9 ② 15 ③ 21 ④ 27								
6、对任意二事件 A和 B . 有 P(AUB) = 【 】.								
——第 2 页/共 8 页——								

①
$$P(A) + P(B)$$

7、 t_{α} 表示(中心)t-分布的上 α 分位点,则有【

①
$$t_{1-\alpha} = t_{\alpha}$$

②
$$t_{1-\alpha} + t_{\alpha} = 1$$

③
$$t_{1-\alpha} = -t_{1-\alpha}$$

$$(4) t_{1-\alpha} - t_{\alpha} = 2t_{\alpha}$$

8、设随机变量 X 的概率密度为

$$f(x) = \frac{1}{\sqrt{\pi}} e^{-x^2}$$

则 DX = 【

②
$$\sqrt{2}$$
 ③ $\frac{1}{2}$ ④ $\frac{1}{\sqrt{2}}$

9、一批产品共100件,其中有5件不合格,从中不放回抽取5件进行检查,如果没有发 现不合格产品就接受这批产品,则该批产品被接受的概率为【

①
$$\frac{C_{95}^5}{C_{100}^5}$$

$$(2) \left(\frac{95}{100}\right)^3$$

$$3 1 - \frac{C_{95}^5}{C_{100}^5}$$

①
$$\frac{C_{95}^5}{C_{100}^5}$$
 ② $\left(\frac{95}{100}\right)^5$ ③ $1-\frac{C_{95}^5}{C_{100}^5}$ ④ $1-\left(\frac{95}{100}\right)^5$

10、设离散型随机变量 X 的分布律为

若X的分布函数为F(x),则F(1.5)=【

四、计算(共60分)(计算结果保留两位小数)

(10分) 1、设发报台分别以 0.4 和 0.6 的概率发出信号"0"和"1"。由于干扰, 当发出信 号"0"时, 收报台分别以 0.9 和 0.1 的概率收到信号"0"和"1"; 当发出信号"1"时, 收报台

音点

分别以 0.2 和 0.8 的概率收到信号"0"和"1"。

计算:

- (1) 收到信号"1"的概率。
- (2) 当收到信号为"1"时,发报台确实发出信号"1"的概率。

(10分) 2、设随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} 2x & , & 0 < x < A \\ 0 & , & \text{其他} \end{cases}$$

- (1) 计算A;
- (2) 计算 X 的数学期望;
- (3) 计算 X 的方差。

$$f(x) = \begin{cases} (\theta+1)x^{\theta} & , & 0 < x < 1 \\ 0 & , & \text{ } \sharp \text{ } \end{split}$$

其中 $\theta > 0$, θ 为未知参数。 (X_1,L,X_n) 是取自总体 X 的一个简单随机样本。

- (1) 求未知参数 θ 的极大似然估计量。
- (2) 求未知参数 θ 的矩估计量。

(10分) 4、某工厂随机选取 10 只部件, 测得其装配时间(单位: min) 为:

9.8, 10.4, 10.6, 9.6, 9.7, 9.9, 10.9, 11.1, 9.6, 10.2

(经计算, 其和为 $\sum_{i=1}^{10} x_i = 101.8$, 其平方和为 $\sum_{i=1}^{10} x_i^2 = 1039.04$)

设装配时间的总体服从正态分布 $N(\mu, \sigma^2)$ 。是否可以认为装配时间的均值显著地大于 10 (取 $\alpha = 0.05$)?

(
$$z_{0.05} = 1.64, z_{0.025} = 1.96; t_{0.05}(9) = 1.83, t_{0.025}(9) = 2.26$$
)

(10 分) 5、数据集 morley 为 Michelson 于 1879 年对光速的测量数据, 其第一个实验的 20 次测量结果如下(单位: km/sec, 已减去 299000):

850 740 900 1070 930 850 950 980 980 880

1000 980 930 650 760 810 1000 1000 960 960

(经计算:
$$\sum_{i=1}^{10} x_i = 18180$$
, $\sum_{i=1}^{10} x_i^2 = 16734800$)

一般而言。测量结果服从正态分布 $N(c,\sigma^2)$,其中,c 为光速的真实值。根据以上数据,试以 95%的置信度给出 c 的置信区间。

(
$$z_{0.05} = 1.64$$
, $z_{0.025} = 1.96$; $t_{0.05}(19) = 1.73$, $t_{0.025}(19) = 2.09$)

(10分) 6、数据集 InsectSprays 为六种专杀番茄天蛾的杀虫剂杀虫效果的实验数据,其中 3 种(spray A,spray B,spray F)的实验数据如下(响应变量为喷洒一段时间后地块中番茄天蛾的数量,各喷洒 12 个地块):

spray_A	10	7	20	14	14	12	10	23	17	20	14	13
spray_B	11	17	21	11	16	14	17	17	19	21	7	13
spray_F	11	9	15	22	15	16	13	10	26	26	24	13

(1) 试填写如下方差分析表:

平方和	自由度	平均平方和	F 统计量	临界值
SSA=	r-1=	SSA/(r-1)=	F=	F _{0.05} =3. 28
SSE=870. 33	nr-r=	SSE/(nr-r)=		
SST=899	nr-1=			

(2) 根据如上方差分析表,可得出什么结论?

 $\overline{\mathbb{Z}}$

密封线

姓名

李号

4

扩

逃逃