

Matz Radloff

23. Oktober 2016

Inhaltsverzeichnis

1																					1
	1.1	(a)																			1
	1.2																				

1

$$A := \{ n \in \mathbb{N} : n > 3 \} \tag{1}$$

$$B := \{ n \in \mathbb{N} : n = 14k, k \in \mathbb{N} \}$$
 (2)

$$C := \{ n \in \mathbb{N} : n > 5, \text{ ist durch 7 teilbar und n ist gerade} \}$$
 (3)

1.1 (a) $A \subseteq B$

Bedingung: $\forall a \in A : a \in B$

$$a_1 = k + 3, k \in \mathbb{N} \tag{4}$$

$$b_1 = 14l, l \in \mathbb{N} \tag{5}$$

kleinstmögliches k einsetzen, $a_1 = b_1$ setzen

$$l = \frac{2}{7} \tag{6}$$

Folglich ist die Aussage $A\subseteq B$ widerlegt, da l keine natürliche Zahl ist. Es gibt also ein Element in A, dass nicht in B liegt.

1.2 (b) $B \subseteq A$

Bedingung: $\forall b \in B : b \in A$

$$b_1 = 14l, l \in \mathbb{N} \tag{7}$$

$$a_1 = k + 3, k \in \mathbb{N} \tag{8}$$

Induktionsbeweis:

$$l = 1, b_1 = a_1 (9)$$

$$k = 11\sqrt{\tag{10}}$$

$$l = n + 1 \tag{11}$$

$$14n + 1 = k + 3 \tag{12}$$

$$k = 14n - 2 \tag{13}$$