

Hiding Signatures of Gravitational Instability in Protoplanetary Discs: Forming Rings & Gaps

Sahl Rowther^{1,2}, Farzana Meru^{1,2}, Grant Kennedy^{1,2}, Rebecca Nealon³, Christophe Pinte⁴

sahl.rowther@warwick.ac.uk

¹Centre for Exoplanets and Habitability, University of Warwick, Coventry CV4 7AL, UK ²Department of Physics, University of Warwick, Coventry CV4 7AL, UK

³Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, United Kingdom ⁴School of Physics and Astronomy, Monash University, Clayton Vic 3800, Australia

Mock observations

Top: No spiral arms due to gravitational instability are seen for a disc with a migrating giant planet. However, spiral arms (annotated below) from the planet are seen.

Bottom: Three spiral arms due to gravitational instability are seen for a disc evolved without a giant planet.

Implications on observational times

Short observation times (<1hr): Difficult to detect non-axisymmetric features, such as the spiral arms caused by the planet.

Long observation times (>1hr): More likely to see plausible evidence of planet-disc interaction.

Conclusions

_

Planet-disc interactions can hide signatures of gravitational instability in a protoplanetary disc, giving the appearance of an axisymmetric disc.

Possible evidence of planet-disc interactions becomes more apparent at longer than typical observation times (>1hr).