A Dynamical Model to Forecast Seasonal Respiratory Epidemics

David Champredon

York University (Toronto, Ontario) University of Western Ontario (London, Ontario) McMaster University (Hamilton, Ontario)

Acknowledgments

Advisor: Dr. Jonathan Dushoff, Theoretical Biology Laboratory, McMaster University

Funding:

Canadian Institutes of Health Research Mitacs York University McMaster University

Background & Outline

Background

Advances in Forecasting Epidemics

- Support public health efforts during outbreaks
- Critical mass of scientists
- Theoretical advances
- Data collection and access

Background

Advances in Forecasting Epidemics

- Support public health efforts during outbreaks
- Critical mass of scientists
- Theoretical advances
- Data collection and access.

Epidemics are ripe for forecasting!

Modelling framework and results when applied in "real-time" to seasonal influenza in Ontario

Renewal Equation for Forecasting Epidemics

Renewal Equation for Epidemics

Euler (1767), Lotka (1907), Kermack & McKendrick (1927)

$$i(t) = S_t \mathcal{R}_0 \int_0^\infty g(\tau) i(t-\tau) d\tau$$

$$dS_t/dt = -i(t)$$

i(t) : incidence at time t S_t : susceptible at time t

 $\mathcal{R}_{\scriptscriptstyle 0}$: basic reproduction number

g : generation interval distribution

au : age of infection

Renewal Equation for Epidemics

$$i(t) = S_t \mathcal{R}_0 \int_0^\infty g(\tau) i(t-\tau) d\tau$$

$$dS_t/dt = -i(t)$$

- model cohorts of infectious individuals
- focus on incidence
- simple, well adapted to forecasting

Different Framework?

Compartmental SE^mIⁿR

$$\begin{cases} \dot{S} &= -\beta SI \\ \dot{E}_1 &= \beta SI - m\sigma E_1 \\ \dot{E}_\ell &= m\sigma E_{\ell-1} - m\sigma E_\ell \\ \dot{I}_1 &= m\sigma E_m - n\gamma I_1 \\ \dot{I}_k &= n\gamma I_{k-1} - n\gamma I_k \\ \dot{R} &= n\gamma I_n \end{cases}$$

with $2 < \ell < m$ and 2 < k < n

Renewal Equation

$$i(t) = \mathcal{R}_{\scriptscriptstyle 0} S_t \int_0^\infty i(t-\tau) g(\tau) \,\mathrm{d} \tau$$

$$SE^mI^nR \Leftrightarrow RE(g_{SE^mI^nR})$$

Champredon et al. in SIAM Journal on Applied Mathematics, 2018 (vol 78)

Uncertainty

Aaron King et al. Avoidable errors in the modelling of outbreaks of emerging pathogen.

Proc. Roy. Soc. B, 2015 (vol. 282)

Standard practices: over-confident forecasts

Sources of randomness:

- transmission
- observation/reporting

Uncertainty Propagation

$$i(n) \sim \text{Poisson}\left(mean = S_n \mathcal{R}_0 \sum_{k=1}^n g(k) i(n-k)\right)$$

 $y(n) \sim \text{NegBinom}\left(mean = i(n); dispersion\right)$
 $Data : y_1, y_2, ..., y_n$

- *i* : "true" / unobserved incidence (transmission process)
- y : observed incidence (observation process)
- Posterior distribution for unobserved model parameters in Bayesian framework (e.g., MCMC, ABC, ...)

Forecasting

Forecasting = Two-Step Process

- 1. Fit model parameters on observed incidence y_1, y_2, \dots, y_n
- 2. Simulate forward from last observation date

Forecasts Embrace Uncertainty

Assessing Forecasts

Application:

Forecasting Seasonal Epidemics of Acute Respiratory Infections in Ontario during the 2018/19 Season

Acute Respiratory Infections in Ontario

- Influenza A,B & Respiratory Syncytial Virus (RSV)
- Weekly number of laboratory tests positive for a specific virus (1-2 week lag)
- 2018/19 season in Ontario in "real-time"

Weekly Forecasting Process

Forecasting Report

Forecasted Epidemic Trajectory

Forecasting Report

Probabilistic outputs:

Compared to the previous season:

Probability the peak will be earlier : 5.5~%Probability the peak incidence will be higher : 8.5~%

Forecasted mean peak week timing : later by 3 weeks (80%CI: later Forecasted mean peak incidence intensity : smaller by 43 % (80%CI: smaller by 44 % (

Forecasting Report

2-dimensional density of epidemic peak timing and value:

Forecasting Assessement

Relative error of epidemic peak value compared to realized value:

Forecasting Assessement

Relative error of epidemic peak value compared to previous seasons:

- Current performance can be improved
- Improve modelling and statistical inference
- Incidence time series only not enough
- Include additional information

- Real-time data from hospitals emergencies in Ontario: early warning?
 - no lag, actual real-time
 - not specific

- Real-time data from hospitals emergencies in Ontario: early warning?
 - no lag, actual real-time
 - not specific
- Genetic sequences: genetic/antigenic distance and epidemic severity? ("Genome to Biome")
 - timely
 - for influenza only
 - help very early in the season

Conclusion

Take Home Messages

- Real-time forecasting of seasonal epidemics is possible (proof of concept with ARI Ontario)
- Renewal Equation well adapted for forecasting
- Must quantify uncertainty
- How similar to/different from previous seasons (cannot pinpoint precise trajectory)
- Time series only not enough: complementary information

Thank you!