Parameters of case study

Ge Chen, Student Member, IEEE, Biao Yan, Member, IEEE, Hongcai Zhang, Member, IEEE, Dongdong Zhang, Member, IEEE, and Yonghua Song, Fellow, IEEE

 $\label{thm:conficients} \textbf{TABLE} \ \textbf{I} \\ \textbf{Bounds}, \textbf{physical properties and characteristic coefficients} \\$

Parameters	Value	Parameters	Value
$T_{ m min}^{ m sup}$	4°C	C_p	4.2 kJ/kg
$T_{\mathrm{max}}^{\mathrm{sup}}$	10°C	ρ	997 kg/m ³
$T_{ m min}^{ m re}$	4°C	λ_w	0.55W/(m·°C)
$T_{ m max}^{ m re}$	15°C	μ	$1.788 \times 10^{-3} \text{ kg/(m·s)}$
$\dot{m}_{ m min}$	3 kg/s	eta_1	7.3×10^{-10}
$\dot{m}_{ m max}$	10 kg/s	eta_2	7.3×10^{-7}
$P_{ m min}^{ m chi}$	1800 kW	β_3	7.3×10^{-4}
$P_{ m max}^{ m chi}$	20 kW	β_4	0.219
$T_{ m max}^{ m in}$	24°C	K_{p}	0.0162
$T_{ m max}^{ m in}$	28°C	Δt	5 min

TABLE II
ELECTRICITY PRICE IN MACAU

Time period	electricity price (\$)
00:00-09:00, 20:00-24:00	0.1096
09:00-20:00	0.0962

I. OVERVIEW

This file collects all the necessary parameters of the case study in paper "Chance-constraint optimal power dispatch of district cooling system under spatially-related demands".

II. LOWER AND UPPER BOUNDS, PHYSICAL PROPERTIES AND THE CHARACTERISTIC COEFFICIENTS

See Table I.

III. ELECTRICITY PRICE

See Table II.

IV. PARAMETERS OF DISTRICT PIPE NETWORK

The district pipe network of DCS in University of Macau contains 38 pipelines and 24 rooms. The parameters of pipelines are list in Table III. The heat transfer coefficients between pipelines and surroundings λ_i are set as 0.2 W/(m·°C).

V. PARAMETERS OF ROOMS

All rooms serving the same purpose in one building are aggregated as one individual room, so the corresponding heat capacity C_k is very large while the thermal resistance R_k between indoor and out environments is quite small (e.g. C_k and R_k are 333.3 kJ/°C and 0.09 °C/kW, respectively). The

TABLE III
PARAMETERS OF PIPELINES

Dinalina Na	Lanath (m)	Internal diameter (m)
Pipeline No.	Length (m) 400	Internal diameter (m) 0.12
1		
2 3	300	0.08
	300	0.08
4	600	0.16
5	400	0.12
6	300	0.08
7	300	0.08
8	300	0.08
9	400	0.12
10	300	0.08
11	300	0.08
12	300	0.08
13	400	0.12
14	300	0.08
15	300	0.08
16	300	0.08
17	600	0.24
18	600	0.20
19	400	0.12
20	300	0.08
21	300	0.08
22	300	0.08
23	600	0.16
24	400	0.12
25	300	0.08
26	300	0.08
27	300	0.08
28	400	0.12
29	300	0.08
30	300	0.08
31	300	0.08
32	600	0.16
33	400	0.12
34	300	0.08
35	300	0.08
36	400	0.12
37	300	0.08
38	300	0.08

coefficient for calculating the maximum heat transfer capacity ω_k is 12.75 kW·(s/kg)^{0.84}. The value of entries in matrix U are:

$$u_{kl} = \begin{cases} 1.667kW/^{\circ}\text{C}, & \text{room } k, l \text{ in one building,} \\ 0, & \text{room } k, l \text{ not in one building} \end{cases}$$
 (1)

The heat load of each room can be found in https://github.com/lelouchsola/CC-OPD/blob/master/heat_loads.csv.

G. Chen, B. Yan, H. Zhang, D. Zhang and Y. Song are with the State Key Laboratory of Internet of Things for Smart City and Department of Electrical and Computer Engineering, University of Macau, Macao, 999078 China (email: hczhang,dongdongzhang@um.edu.mo).