TP3 – Classification bayésienne

Rappels de cours

La segmentation d'une image en niveaux de gris $\mathbf{x}=(x_s)_{s\in\mathcal{S}}$ peut être effectuée par classification. En choisissant un nombre N de classes, supposées gaussiennes, et en supposant connues les moyennes μ_1,\ldots,μ_N et les écarts-types σ_1,\ldots,σ_N des différentes classes, le résultat est la configuration $\hat{\mathbf{k}}=(\hat{k}_s)_{s\in\mathcal{S}}$ qui maximise la probabilité a posteriori de la configuration $\mathbf{k}=(k_s)_{s\in\mathcal{S}}$, sachant \mathbf{x} . Or, d'après le théorème de Bayes :

$$p(\mathbf{k}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{k}) p(\mathbf{k})}{p(\mathbf{x})} \propto p(\mathbf{x}|\mathbf{k}) p(\mathbf{k})$$
(1)

L'hypothèse d'indépendance des données permet d'écrire la vraisemblance sous la forme d'un produit :

$$p(\mathbf{x}|\mathbf{k}) = \prod_{s \in \mathcal{S}} p(x_s|k_s) = \prod_{s \in \mathcal{S}} \frac{1}{\sigma_{k_s} \sqrt{2\pi}} \exp\left\{-\frac{(x_s - \mu_{k_s})^2}{2\sigma_{k_s}^2}\right\}$$
(2)

Quant à la probabilit'e a priori de la configuration ${\bf k}$, elle est donnée par le $mod\`ele$ de Potts:

$$p(\mathbf{k}) \propto \exp \left\{ -\beta \sum_{\{s,t\} \in \mathcal{C}_2} [1 - \delta(k_s, k_t)] \right\}$$
 (3)

où C_2 désigne l'ensemble des paires $\{s, t\}$ de pixels voisins, défini par le « système de voisinage des 8 plus proches voisins ». De (1), (2) et (3), il vient :

$$p(\mathbf{k}|\mathbf{x}) \propto \exp \left\{ -\sum_{s \in \mathcal{S}} \frac{1}{2} \left[\ln \sigma_{k_s}^2 + \frac{(x_s - \mu_{k_s})^2}{\sigma_{k_s}^2} \right] - \beta \sum_{\{s,t\} \in \mathcal{C}_2} [1 - \delta(k_s, k_t)] \right\}$$
(4)

Chercher le maximum de $p(\mathbf{k}|\mathbf{x})$ équivaut donc à chercher le minimum de l'énergie $U(\mathbf{k})$:

$$U(\mathbf{k}) = \sum_{s \in \mathcal{S}} \frac{1}{2} \left[\ln \sigma_{k_s}^2 + \frac{(x_s - \mu_{k_s})^2}{\sigma_{k_s}^2} \right] + \beta \sum_{\{s,t\} \in \mathcal{C}_2} [1 - \delta(k_s, k_t)]$$
 (5)

Étant donné qu'il est impossible, en pratique, de tester $N^{\operatorname{card}(S)}$ configurations \mathbf{k} , il faut recourir à une *méta-heuristique*, en l'occurrence le *recuit simulé*, qui fait décroître un paramètre T appelé température, à chaque itération. L'algorithme complet s'écrit :

- 1. Initialisations: $T \leftarrow T_0$; $\mathbf{k} \leftarrow$ Configuration obtenue par maximisation de la vraisemblance.
- 2. Parcours de tous les pixels s de l'image, visitée ligne par ligne et colonne par colonne :
 - Tirer une valeur $k'_s \in \{1, ..., N\} \setminus \{k_s\}$, et comparer les deux énergies locales suivantes :

$$\begin{cases}
U_{s} = \frac{1}{2} \left[\ln \sigma_{k_{s}}^{2} + \frac{(x_{s} - \mu_{k_{s}})^{2}}{\sigma_{k_{s}}^{2}} \right] + \beta \sum_{t \in \mathcal{V}(s)} \left[1 - \delta(k_{s}, k_{t}) \right] \\
U'_{s} = \frac{1}{2} \left[\ln \sigma_{k'_{s}}^{2} + \frac{(x_{s} - \mu_{k'_{s}})^{2}}{\sigma_{k'_{s}}^{2}} \right] + \beta \sum_{t \in \mathcal{V}(s)} \left[1 - \delta(k'_{s}, k_{t}) \right]
\end{cases}$$
(6)

où $\mathcal{V}(s)$ désigne l'ensemble des pixels t voisins de s.

- Si $U_s' < U_s$, remplacer k_s par k_s' . Sinon, faire de même, mais avec une probabilité $\exp\left\{-\frac{U_s'-U_s}{T}\right\}$ qui décroît avec la température T. Une particularité du recuit simulé est donc de ne pas systématiquement éliminer les changements de configuration qui font croître l'énergie.
- 3. Mises à jour : $T \leftarrow \alpha T$, puis retour en 2, tant que le nombre maximal d'itérations n'est pas atteint.

Exercice 1 : segmentation par classification supervisée

Écrivez les fonctions estimation, attache_donnees, regularisation et recuit, appelées par exercice_1:

- Les paramètres de chaque classe (moyenne et écart-type) sont estimés par la fonction estimation, à partir d'un échantillon sélectionné par l'utilisateur, d'où le caractère supervisé de la classification.
- La fonction attache_donnees doit retourner une matrice tridimensionnelle contenant, pour chaque pixel s, la valeur de l'attache aux données $\frac{1}{2} \left[\ln \sigma_{k_s}^2 + \frac{(x_s \mu_{k_s})^2}{\sigma_{k_s}^2} \right]$, relativement à chacune des N classes.
- La fonction regularisation doit retourner le terme de régularisation $\sum_{\{s,t\}\in\mathcal{C}_2} [1-\delta(k_s,k_t)]$ de l'énergie $U(\mathbf{k})$, pour laquelle il est conseillé d'utiliser l'opérateur « différent de », qui s'écrit \sim = en Matlab.

Observez ce qui se passe dans les cas suivants :

- \bullet Si le nombre N de classes est différent de 4.
- Lorsque les échantillons sont mal sélectionnés.
- Si $T_0 = 0$, ce qui élimine tout changement de configuration faisant croître l'énergie.

Classification non supervisée

Pour éviter à l'utilisateur de sélectionner à la main un échantillon de chaque classe, il est envisageable d'estimer les paramètres des N classes, en cherchant un mélange de N gaussiennes coïncidant avec l'histogramme f(x) de l'image en niveaux de gris :

$$f(x) = \sum_{i=1}^{N} \frac{p_i}{\sigma_i \sqrt{2\pi}} \exp\left\{-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right\}, \qquad x \in \{1, \dots, 255\}$$
 (7)

où μ_i , σ_i et p_i désignent, respectivement, la moyenne, l'écart-type et le poids de la $i^{\text{ème}}$ gaussienne. L'estimation des paramètres de ce modèle revient donc à résoudre un problème en moindres carrés linéaire vis-à-vis de p_i , mais non linéaire vis-à-vis de μ_i et σ_i :

$$(\widehat{\mu}_i, \widehat{\sigma}_i, \widehat{p}_i)_{i \in \{1, \dots, N\}} = \underset{(\mu_i, \sigma_i, p_i)_{i \in \{1, \dots, N\}}}{\arg \min} \sum_{x=0}^{255} \left[f(x) - \sum_{i=1}^{N} \frac{p_i}{\sigma_i \sqrt{2\pi}} \exp\left\{ -\frac{(x - \mu_i)^2}{2 \sigma_i^2} \right\} \right]^2$$
(8)

Exercice 2 : segmentation par classification non supervisée

Écrivez la fonction $\operatorname{argument_eq_8}$, appelée par le script $\operatorname{exercice_2}$, permettant de calculer l'argument du problème d'optimisation (8). L'estimation des paramètres μ_i et σ_i peut être effectuée en minimisant l'argument de (8) par tirages aléatoires. Les moyennes μ_i sont recherchées dans l'intervalle [0, 255], mais les écarts-types σ_i peuvent être recherchées dans l'intervalle [10, 25], afin d'accélérer la résolution. Quant à l'estimation des poids p_i , elle est facilitée par le fait que le problème en moindres carrés (8) est linéaire en p_i . Pour estimer les poids, à chaque tirage aléatoire de 2N valeurs réelles (μ_i, σ_i) , $i \in \{1, \dots, N\}$, il faut donc résoudre un système linéaire du type $\mathbf{AP} = \mathbf{F}$, où $\mathbf{P} = [p_1, \dots, p_N]^{\top}$ et où \mathbf{F} contient les 256 valeurs de l'histogramme.

Bien que beaucoup plus lente, à cause de l'estimation des paramètres par tirages aléatoires, cette méthode doit vous permettre d'atteindre un pourcentage de bonnes classifications comparable à celui de l'exercice 1, et ce de manière entièrement automatique!

Exercice 3: utilisation de l'algorithme EM (facultatif)

La méthode la plus adaptée à la résolution d'un problème tel que (8) est l'algorithme EM, qui a déjà été vu dans le TP2. Libre à vous d'écrire une nouvelle version du script précédent, de nom exercice_3.