HW5 POINT SET TOPOLOGY

EMMANUEL FLORES

1. Consider $\mathbb R$ with the standard topology. Let C be a compact subset of $\mathbb R$. Prove that C as a maximum, that is a point $m \in C$ such that $x \leq m$ for all $x \in C$.

Proof. This follows from the Heine-Borel theorem, which states that $C \subset \mathbb{R}$, with the standard topology, is compact if and only if C is bounded and closed.

Now let's suppose that $C \subset \mathbb{R}$ is compact, then it follows that C is bounded and closed, but being bounded means that C is bounded from above and bounded from below, in particular let's focus on being bounded by above, this implies that there is a point $m \in \mathbb{R}$ such that $x \leq m$ for all $x \in C$. Now, because C is bounded it follows that it has a least upper bound, and let's call it m. Now, let's prove that $m \in C$; because m is the least upper bound it follows that for any $\epsilon > 0$ there is an element $x \in C$ such that $m - \epsilon < x \leq m$, which implies that m is a limit point of C and because C is closed, this implies that C contains all its limit points, therefore $m \in C$

Date: January 30, 2025.

2. If A and B are compact subspaces of a separated topological space (X, \mathcal{T}) , prove that $A \cup B$ is a compact subspace of X.

Proof. Let A and B be compact subspaces of a separated topological space (X, \mathcal{T}) . Thus let $\{O_{\alpha \in \lambda_A}^A\}$ and $\{O_{\beta \in \lambda_B}^B\}$ be open covers of A and B respectively, this is

$$A \subset \cup \{O_{\alpha \in \lambda_A}^A\}, \ B \subset \cup \{O_{\beta \in \lambda_B}^B\}.$$

From this if follows that $\{O_{\alpha \in \lambda_A}^A\} \cup \{O_{\beta \in \lambda_B}^B\}$ is an open cover for $A \cup B$, this is

$$A \cup B \subset \{O_{\alpha \in \lambda_A}^A\} \cup \{O_{\beta \in \lambda_B}^B\}.$$

Now, because A and B are compact it follows that every open cover has a finite subcover, this is $\exists n, k$ such that $\{O_1^A, \cdots, O_n^A\}$ is subcover for A and $\{O_1^B, \cdots, O_k^B\}$ is subcover for B, this is

$$A\subset \cup\{O_1^A,\cdots,O_n^A\},\ B\subset \cup\{O_1^B,\cdots,O_k^B\}.$$

And again, from this it follows that $\{O_1^A, \cdots, O_n^A\} \cup \{O_1^B, \cdots, O_k^B\}$ is a finite subcover for $A \cup B$. Because the covers were arbitrary it follows that every open cover for $A \cup B$ has a finite subcover, therefore, $A \cup B$ is compact.

- 3. A (X,\mathcal{T}) topological space is said to be normal if for every disjoint pair of closed subsets A and B there exist two disjoint open set U and V with $A\subset U$ and $B\subset V$. 3.1 Prove that (X,\mathcal{T}) is a normal topological space if and only if for each closed set A in X and open set U containing A, there exists an open set V such that $A\subset V$ and $V\subset U$.
- 3.2 Prove that (X, \mathcal{T}) is a normal topological space if and only if for every disjoint pair of closed subsets A and B there exist two disjoint open sets U and V with $A \subset U$, $B \subset V$ and $U \cap V = \emptyset$.
- 3.3 Prove that if (X,\mathcal{T}) is a (Hausdorff) compact topological space, then (X,T) is normal.

Proof. 3.1 (\Longrightarrow) Let (X,\mathcal{T}) is a normal topological space, A be a closed set in X, and U be an open set containing A, then it follows that $X\setminus$ are disjoint closed sets in X. Now, because X is normal, it follows that there exists disjoint open sets V and W such that $A\subset V$ and $X\setminus U\subset W$. Since V and W are disjoint, it follows that $V\subset X\setminus W$, but $X\setminus W\subset U$ then $A\subset V\subset X\setminus W\subset U$, which implies that $A\subset V\subset U$.

(\Leftarrow) Now, let's suppose that for each closed set $A \subset X$ and open set U containing A, there exists an open set V such that $A \subset V$ and $\overline{V} \subset U$. And let A and B be two disjoint closed sets in X, then, $X \setminus B$ is an open set containing A. By supposition, there is an open set V such that $A \subset V$ and $\overline{V} \subset X \setminus B$, then it follows that $B \subset X \setminus \overline{V}$. Because $X \setminus \overline{V}$ is open and disjoint from V, we have found disjoint open sets V and $X \setminus \overline{V}$ containing A and B respectively, therefore (X, \mathcal{T}) is a normal topological space.

4. Let $\{K_n\}_{n\geq 1}$ be a decreasing sequence of compact subspaces of a Hausdorff topological space (X, \mathcal{T}) . Prove that $K = \bigcap_{k=1}^{\infty} K_n$ is nonempty, and that for every open set O containing K, there exists a K_n contained in O.

Proof. First, let's prove that $K = \cap_{k=1}^{\infty} K_n$ is nonempty, and for that, let's do it by contradiction, that is, let's suppose that there's no point $x \in X$ that belongs to K_n for all n. Now, let's look at the complements of each one of the K_n , this is $U_n = X \setminus K_n$. Now, because each one of the K_n is compact and is also Hausdorff, it follows that K_n is compact for all n, which implies that U_n is open, and because no point belongs to all K_n , it follows that the collection $\{U_n\}_{n\leq 1}$ is an open cover of X. On the other hand, because each K_n is compact for each K_n there is finite subcover, in particular, let's focus on K_1 , and the finite subcover $\{U_{n_1}, \cdots, U_{n_k}\}$. Now, let's suppose that $n_1 < n_2 < \cdots < n_k$, and because $\{K_n\}_n$ is decreasing, it follows that

$$U_{n_1} \subset U_{n_2} \subset \cdots U_{n_k} \subset .$$

But then it follows that U_{n_k} by itself covers K_1 , which implies that $K_{n_k} \cap K_1 = \emptyset$ but this contradicts the fact that by supposition the sequence is decreasing, therefore $K = \bigcap_{k=1}^{\infty} K_n$ is nonempty.

Now, let's prove that for every open set O containing K, there exists a K_n contained in O. And let O be an open set containing K, thus $X \setminus O$ is closed. Now, let's define the closed sets $F_n = K_n \cap (X \setminus O)$, and each one is a subset of the compact K_n which implies that each F_n is also compact. On the other hand, by construction, the sequence $\{F_n\}_{n \leq 1}$ is also a decreasing sequence of compact sets. And even more, let's notice that

$$\bigcap_{n=1}^{\infty} F_n = (\bigcap_{n=1}^{\infty} K_n) \cap (X \setminus O) = K \cap (X \setminus O) = \emptyset$$

because $K \subset O$. By the same argument as before, a decreasing sequence of non-empty compact sets cannot have an empty intersection, therefore it follows that there must exist an n such that $F_n = \emptyset$, and from this it follows that $K_n \cap (X \setminus O) = \emptyset$, which implies that $K_n \subset O$ for each n, and this concludes the proof.

5. Consider the rational $\mathbb Q$ with the subspace topology from the standard topology on $\mathbb R$. Find a set A in $\mathbb Q$ that is closed and bounded but not compact.

Proof. Let's consider the following subset of \mathbb{Q} ,

$$A = \{q \in \mathbb{Q} | \sqrt{2} < q < \sqrt{3}\}.$$

Now, let's prove that A is bounded and closed but it's not compact. Indeed, A is bounded from below by $\sqrt{2}$ and bounded from above by $\sqrt{3}$, it follows that A is bounded. On the other hand let's consider the complement of A and let's prove that is open. Indeed

$$\mathbb{Q} \setminus A = \{ q \in \mathbb{Q} | q \le \sqrt{2} \text{ or } q \ge \sqrt{3} \}.$$

It follows that every rational number in $\mathbb{Q}\setminus A$ will have an open internal around it that is entirely contained in $\mathbb{Q}\setminus A$, and it follows that A is closed. Now, let's prove that A is not compact, thus for each rational number $q\in A$, choose a small open interval (a_q,b_q) in \mathbb{Q} centered at q such that

$$\sqrt{2} < a_q < q < b_q < \sqrt{3}.$$

It follows that the collection of all these intervals $\{(a_q,b_q|q\in A)\}$ is an open cover of A. Now, let's try to find a finite subcover; because $\mathbb Q$ is dense in $\mathbb R$ it follows that there are infinitely many rational numbers in between $\sqrt{2}$ and $\sqrt{3}$, and therefore for any finite subcover there will always be rational numbers in A that are not covered by this finite family, thus there is no finite subcover, and A is not compact. \square