Einführung in die Algebra

Blatt 3

Jendrik Stelzner

6. November 2013

Aufgabe 3.1.

Für $n=\{1,2\}$ ist \mathfrak{S}_n kommutativ, also $Z(\mathfrak{S}_1)=\mathfrak{S}_1$ und $Z(\mathfrak{S}_2)=\mathfrak{S}_2$. Für $n\geq 3$ ist $Z(\mathfrak{S}_n)=\{1\}$ die triviale Untergruppe:

Sei $\pi \in Z(\mathfrak{S}_n)$ und $\sigma := \begin{pmatrix} 1 & 2 & \dots & n-1 & n \end{pmatrix} \in \mathfrak{S}_n$ die Rotation mit $\sigma(1) = 2$. Es gibt dann $s \in \{0,\dots,n-1\}$ mit $\pi(1) = \sigma^s(1)$. Da π mit allen Elementen in \mathfrak{S}_n kommutiert, ist damit für alle $m \in \{1,\dots,n\}$

$$\pi(m)=\pi(\sigma^m(1))=\sigma^m(\pi(1))=\sigma^m(\sigma^s(1))\underset{(*)}{=}\sigma^s(\sigma^m(1))=\sigma^s(m),$$

also $\sigma^s=\pi,$ wobei bei (*) die Kommutativität von $\langle\sigma\rangle$ genutzt wird. Da wegen der Kommutativität von $\sigma^s=\pi$

$$\tau_{12} = \sigma^s \ \tau_{12} \ (\sigma^s)^{-1} = \tau_{(1+s)(2+s)},$$

wobei τ_{kl} die Transposition von $k \mod n$ und $l \mod n$ bezeichnet, muss s=0, also $\pi=\sigma^s=\mathrm{id}$. Dass $\mathrm{id}\in Z(\mathfrak{S}_n)$ ist allerdings klar, da $Z(\mathfrak{S}_n)\subseteq \mathfrak{S}_n$ eine Untergruppe ist.