CSC236H Exercise 2

Sample Solutions

Winter 2016

- 1. Let F be a set defined as follows:
 - any tree consisting of a single node is an element of F;
 - if $t_1, t_2 \in F$, so is a binary tree consisting of a new root with t_1 and t_2 as subtrees;
 - nothing else belongs to F.

Use structural induction to prove that every $t \in F$ has exactly one more leaf than interior nodes.

Solution: P(t): the tree t has exactly one more leaf than interior nodes.

The goal is to prove for all $t \in F$, P(t).

Base Case: Let t be a single node.

Then t has one leaf and no interior node. Therefore, t has exactly one more leaf than interior nodes, and so P(t).

Induction Step: Let $t_1, t_2 \in F$. By definition, F includes a binary tree t consisting of a root with t_1 and t_2 as subtrees.

Suppose $P(t_1)$ and $P(t_2)$, i.e., both t_1 and t_2 have exactly one more leaf than interior nodes. **[IH]** WTP: P(t), i.e., t has exactly one more leaf than interior nodes.

Let l_1 denote the number of leaves in t_1 , l_2 denote the number of leaves in t_2 , and l denote the number of leaves in t.

Let i_1 denote the number of interior nodes in t_1 , i_2 denote the number of interior nodes in t_2 , and i denote the number of interior nodes in t.

Then $l = l_1 + l_2$ and $i = i_1 + i_2 + 1$.

By IH, $l_1 = i_1 + 1$ and $l_2 = i_2 + 1$.

Then, $l = i_1 + 1 + i_2 + 1 = i_1 + i_2 + 2$.

Therefore l = i + 1, and so P(t) holds.

- 2. Let G be a set defined as follows:
 - if x is a propositional variable, then $x \in G$;
 - if $f_1, f_2 \in G$, then $\neg f_1 \in G$, $(f_1 \lor f_2) \in G$, and $(f_1 \land f_2) \in G$;
 - nothing else belongs to G.

Use structural induction to prove that for every $f \in G$, there exists $f' \in G$ such that f and f' are logically equivalent, and f' does not contain the \land symbol.

(Recall that propositional formulas f_1 and f_2 are logically equivalent if f_1 and f_2 evaluate to the same value, no matter how their variables are set.)

Solution: P(f): There exists $f' \in G$ such that f' and f are logically equivalent, and f' does not contain the \land symbol.

We use structural induction (on the set G) to prove that for all $f \in G$, P(f) holds.

Base Case: Let f = x, where x is a propositional variable.

Let f' = x. Then f' is in G, f' does not contain the \wedge symbol, and f' and f are logically equivalent. Therefore P(f) holds.

Induction Step: Assume $f_1, f_2 \in G$. By definition, $\neg f_1 \in G$, $(f_1 \lor f_2) \in G$, and $(f_1 \land f_2) \in G$. Suppose $P(f_1)$ and $P(f_2)$, i.e., there exist $f'_1, f'_2 \in G$ such that f'_1 is logically equivalent to f_1 , and f'_2 is logically equivalent to f_2 , and f'_1 and f'_2 do not contain the \land symbol. **[IH] WTP:** (A) $P(\neg f_1)$, (B) $P((f_1 \lor f_2))$, (C) $P((f_1 \land f_2))$.

Case (A): For $f = \neg f_1$, let $f' = \neg f'_1$.

By IH, $f'_1 \in G$, and therefore $f' \in G$.

By IH, f'_1 does not contain the \wedge symbol and therefore neither does f'_- .

By IH, f_1 is logically equivalent to f'_1 , and therefore f is logically equivalent to f'_2 .

Therefore P(f).

Case (B): For $f = (f_1 \vee f_2)$, let $f' = (f'_1 \vee f'_2)$.

By IH, $f'_1, f'_2 \in G$, and therefore $f' \in G$.

By IH, f_1' and f_2' do not contain the \wedge symbol, and therefore neither does f'.

By IH, f_1 and f_2 are logically equivalent to f'_1 and f'_2 respectively. Therefore, f is logically equivalent to f'.

Therefore P(f).

Case (C): For $f = (f_1 \wedge f_2)$, let $f' = \neg(\neg f'_1 \vee \neg f'_2)$.

Since f_1', f_2' are in G, then so are $\neg f_1'$ and $\neg f_2'$, as well as $(\neg f_1' \lor \neg f_2')$, and $\neg (\neg f_1' \lor \neg f_2')$. Thus $f' \in G$. Also, f' and f are logically equivalent.

By IH, f'_1 and f'_2 do not contain the \wedge symbol.

Then f' does not contain the \wedge symbol.

Therefore P(f).