Obligatorisk Innlevering 03

Eirik Isene

16. september 2013

Oppgave 4.13

Oppgave 5.3

(a) $(P \lor Q) \to \neg P$

Oppfyllbar når: P er usann Falsifiserbar når: P er sann

(b) $P \lor (Q \rightarrow \neg P)$

Tautologi fordi $(Q \to \neg P)$ blir sann alle ganger P er usann og de står på hver sin side av \lor tegnet

(c) $(P \wedge Q) \rightarrow \neg P$

Oppfyllbar når: P er usann Falsifiserbar når: P og Q er sann

(d) $((P \rightarrow Q) \land \neg Q) \rightarrow \neg P$

Tautologi, fordi om man prøver å falsifisere, må P være usann (så $\neg P$ blir sann) og videre må Q være sann (så $(P \to Q)$ blir sann), men da blir $\neg Q$ usann, som gjør hele $((P \to Q) \land \neg Q)$ usann, og dermed blir utrykket sant

(e) $\neg (P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor P)$

Oppfyllbar når: P, Q og R er usann Falsifiserbar ved alle andre kombinasjoner av P og Q

(f) $(\neg (P \lor Q)) \land P$

Kontradiksjon fordi P må være usann for at $\neg(P \lor Q)$ skal være sann, og dermed kan formelen aldri valueres til sann fordi P kan ikke være sann og usann samtidig!

Oppgave 5.8

For å lage en eksklusiv formel, altså at formelen blir sann når, og bare når en av variablene er sann og ikke den andre, så kommer vi fra til denne formelen:

$$(\neg F \land G) \lor (F \land \neg G)$$

Dette blir riktig fordi første del av formelen blir sann kun når G er sann og F er usann, og andre del av formelen blir sann kun når F er sann og G er usann, siden disse to formlene er kombinert sammen i en eller formel, så blir hele formelen sann når enten bare F eller bare G er sann.