Exercice 1 : (3.5pt) Soit (S) le système linéaire défini sur $\mathbb R$ par

$$\begin{cases}
-x + y + 2z = 2 \\
-x + 3y + 3z = 4a \\
x - y + z = 4 \\
-2x + 2y + (2-a)z = -2b
\end{cases}$$

1. Utiliser la méthode de l'échelonnement par ligne pour trouver une condition nécessaire et suffisante sur les réels a et b pour que (S) soit compatible.

Solution : En échelonnant par ligne le système (S) (ou la matrice du système (S)), on obtient le système équivalant suivant :

$$\begin{cases}
-x + y + 2z &= 2 \\
2y + z &= 4a - 2 \\
z &= 2 \\
(a+2)z &= 2(b+2)
\end{cases}$$
(0.75pt)

On en déduit que le système (S) est compatible si et seulement si 2(a+2)=2(b+2) si et seulement si a=b. (0.75pt)

2. Résoudre le système (S) lorsqu'il est compatible.

Solution : Le système (S) est donc compatible lorsque a=b, dans ce cas on remplace z=2 dans la deuxième équation puis y et z dans la première équation, on obtient la solutions du système (S): (x,y,z)=(2a,2a-2,2). (2pt)

Exercice 2 : (6.5pt) Soient $n \geq 2$ un entier et $M \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1.

1. Montrer que 0 est une valeur propre de M. Quelle est la dimension du sous-espace propre E_0 ?

Solution : On sait que λ est une valeur propre de M si et seulement si $\operatorname{rg}(M-\lambda I_n) < n$, on en déduit que 0 est une valeur propre de M car $\operatorname{rg}(M) = 1 < 2 \le n$, **(0.5pt)** et on a :

dim
$$E_0 = n - rg(A) = n - 1$$
. (0.5pt)

2. Que peut-on dire de la multiplicité de 0?

Solution : On a dim $E_0 \le m(0) \le n$, i.e., $n - 1 \le m(0) \le n$. (0.5pt)

3. En déduire que le polynôme caractéristique de M est de la forme $(-1)^n X^{n-1}(X - \alpha)$, avec $\alpha \in \mathbb{R}$. Justifier pourquoi $\alpha = \text{Tr}(M)$.

Solution : On sait que M admet n valeurs propres dans \mathbb{C} , puisque 0 est une valeur propre de M d'ordre au moins n-1, soit $\alpha \in \mathbb{C}$ la n-ième valeur propre de M, alors :

$$P_M(X) = \prod_{\lambda \in \text{Spec}(M)} (\lambda - X) = (-X)^{n-1} (\alpha - X) = (-1)^n X^{n-1} (X - \alpha).$$

Puisque par hypothèse $P_M(X) \in \mathbb{R}[X]$, on en déduit que $\alpha \in \mathbb{R}$. (1.5pt)

On a:

$$\operatorname{Tr}(M) = \sum_{\lambda \in \operatorname{Spec}(M)} \lambda = \alpha.$$
 (0.5pt)

4. Donner une condition nécessaire et suffisante pour que M soit diagonalisable.

Solution : Si $\alpha = 0$ on aura dim $E_0 = n - 1 < m(0) = n$, on en déduit que M n'est pas diagonalisable, d'où

$$M$$
 diagonalisable $\Longrightarrow \alpha \neq 0$.

Réciproquement, si $\alpha \neq 0$ (donc α est une valeur propre simple de M), on aura

$$\dim E_0 + \dim E_\alpha = (n-1) + 1 = n,$$

d'où M est diagonalisable.

Conclusion:

$$M$$
 diagonalisable \iff Tr $(M) \neq 0$. $(0.75pt) + (0.75pt)$

Application: Les matrices
$$A = \begin{pmatrix} 1 & \dots & 1 & 1-n \\ \vdots & & \vdots & \vdots \\ 1 & \dots & 1 & 1-n \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & \dots & 1 \end{pmatrix}$ de $\mathcal{M}_n(\mathbb{R})$

sont-elle diagonalisables?

Solution : Puisque par hypothèse $n \geq 2$ alors $1 - n \neq 0$, donc $\operatorname{rg}(A) = 1$, i.e., en notant par C_i , pour $1 \leq i \leq n$, la *i*-ième colonne de A et en remplaçant C_j par $C_n - (1 - n)C_j$, pour $1 \leq j \leq n - 1$, on obtient :

$$A \sim \begin{pmatrix} 0 & \dots & 0 & 1-n \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & 1-n \end{pmatrix}.$$

D'après la question précédente A n'est pas diagonalisable car Tr(A) = 0. (0.75pt)

Il est clair que rg(B) = 1 et $Tr(B) = n \neq 0$, d'après la question précédente B est diagonalisable. (0.75pt)

Exercice 3 : (10pt) Soient α, β, γ des réels non tous nuls et f l'endomorphisme de \mathbb{R}^3 dont la matrice relativement à la base canonique $B = (e_1, e_2, e_3)$ de \mathbb{R}^3 est

$$A = \begin{pmatrix} \alpha - \beta - \gamma & 2\alpha & 2\alpha \\ 2\beta & \beta - \alpha - \gamma & 2\beta \\ 2\gamma & 2\gamma & \gamma - \alpha - \beta \end{pmatrix}.$$

1. Vérifier que $v=(\alpha,\beta,\gamma)$ est un vecteur propre de f. Préciser la valeur propre associée.

Solution : Soit $\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$ la matrice des coordonnées de v relativement à la base B, on

a :

$$A \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} \alpha^2 + \alpha\beta + \alpha\gamma \\ \alpha\beta + \beta^2 + \beta\gamma \\ \alpha\gamma + \beta\gamma + \gamma^2 \end{pmatrix} = \begin{pmatrix} \alpha(\alpha + \beta + \gamma) \\ \beta(\alpha + \beta + \gamma) \\ \gamma(\alpha + \beta + \gamma) \end{pmatrix} = (\alpha + \beta + \gamma) \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}.$$

On en déduit que v est un vecteur propre (non nul) de f (0.75pt) et $\lambda = \alpha + \beta + \gamma$ est la valeur propre de f associée à v. (0.75pt)

2. Calculer le polynôme caractéristique de A.

Solution: On a:

$$P_{A}(X) = \begin{vmatrix} \alpha - \beta - \gamma - X & 2\alpha & 2\alpha \\ 2\beta & \beta - \alpha - \gamma - X & 2\beta \\ 2\gamma & \gamma - \alpha - \beta - X \end{vmatrix}$$

$$= \begin{vmatrix} \alpha + \beta + \gamma - X & \alpha + \beta + \gamma - X & \alpha + \beta + \gamma - X \\ 2\beta & \beta - \alpha - \gamma - X & 2\beta \\ 2\gamma & \gamma - \alpha - \beta - X \end{vmatrix}$$
 (somme des lignes)
$$= (\alpha + \beta + \gamma - X) \begin{vmatrix} 1 & 1 & 1 \\ 2\beta & \beta - \alpha - \gamma - X & 2\beta \\ 2\gamma & 2\gamma & \gamma - \alpha - \beta - X \end{vmatrix}$$

$$= (\alpha + \beta + \gamma - X) \begin{vmatrix} 1 & 0 & 0 \\ 2\beta & -\alpha - \beta - \gamma - X & 0 \\ 2\gamma & 0 & -\alpha - \beta - \gamma - X \end{vmatrix}$$

$$= (\alpha + \beta + \gamma - X)(-\alpha - \beta - \gamma - X)^{2}$$

$$= (\lambda - X)(-\lambda - X)^{2}.$$
 (2pt)

3. Discuter suivant les valeurs des réels α, β, γ la diagonalisation de A.

Solution:

<u>1er cas</u>: Si $\lambda = 0$, (i.e., $\alpha + \beta + \gamma = 0$) alors Spec $(A) = \{\lambda_{(3)}\}$, dans ce cas A est diagonalisable si et seulement si A = 0, mais $A = \begin{pmatrix} 2\alpha & 2\alpha & 2\alpha \\ 2\beta & 2\beta & 2\beta \\ 2\gamma & 2\gamma & 2\gamma \end{pmatrix} \neq 0$ car α, β, γ sont non tous nuls, d'où A n'est pas diagonalisable. (0.5pt)

<u>2ème cas</u>: Si $\lambda \neq 0$, alors Spec $(A) = \{\lambda, -\lambda_{(2)}\}$, dans ce cas A est diagonalisable si et seulement si dim $E_{-\lambda} = 2$ si et seulement si rg $(A + \lambda I_3) = 1$. On a

$$A + \lambda I_3 = \begin{pmatrix} 2\alpha & 2\alpha & 2\alpha \\ 2\beta & 2\beta & 2\beta \\ 2\gamma & 2\gamma & 2\gamma \end{pmatrix} \sim \begin{pmatrix} 2\alpha & 0 & 0 \\ 2\beta & 0 & 0 \\ 2\gamma & 0 & 0 \end{pmatrix}.$$

Puisque α, β, γ sont non tous nuls, alors $\operatorname{rg}(A + \lambda I_3) = 1$ et donc A est diagonalisable. (1pt)

- 4. Lorsque A est diagonalisable, déterminer :
 - (a) Une base de chacun des sous-espaces propres.

Solution: D'après la question précédente, on a :

$$E_{\lambda} = \langle v_1 = v \rangle$$
 (0.5pt)

et

$$E_{-\lambda} = \ker(f + \lambda i d_{\mathbb{R}^3}) = \langle v_2 = (-1, 1, 0), v_3 = (-1, 0, 1) \rangle.$$
 (1pt)

(b) Une matrice inversible P et une matrice diagonale D telles que $P^{-1}AP = D$.

Solution:

$$P = \begin{pmatrix} \alpha & -1 & -1 \\ \beta & 1 & 0 \\ \gamma & 0 & 1 \end{pmatrix} \quad (\mathbf{0.5pt}) \qquad \text{et} \qquad D = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & -\lambda & 0 \\ 0 & 0 & -\lambda \end{pmatrix}. \quad (\mathbf{0.5pt})$$

5. Donner une condition nécessaire et suffisante sur α, β, γ pour que A soit inversible.

Solution: On a det $A = \lambda^3$, d'où A est inversible si et seulement si $\lambda \neq 0$. (1pt)

6. Trouver l'expression de A^{-1} en fonction de A.

Solution : Remarquons que $D = \lambda J$ avec $J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ vérifiant $J^{-1} = J$.

On en déduit que

$$A = PDP^{-1} = \lambda PJP^{-1} \Longrightarrow PJP^{-1} = \frac{1}{\lambda}A.$$

D'où:

$$A^{-1} = PD^{-1}P^{-1} = \frac{1}{\lambda}PJP^{-1} = \frac{1}{\lambda^2}A.$$
 (1.5pt)