Checks of Adequacy and Modeling Procedure

Let A_0 be the RSS of the unrestricted model (V_0)

Let A_1 be the RSS of the certain ted model (V_0)

Then, let as define rakio $F = \frac{(A_1 - A_0)/S}{A_1(N_0)}$

u Lere:

S - number of restricted parameters

N- number of samples

r- number of estimated parameters

If bother ARMA(224, 244), and ARMA(24, 24-1) are adequate, then $F \sim F$ is the distr (s, N-r) Henry, reduce box in RSS is sign, brown to F > F s, N-r, α

X- Con tidence rate, usually set to 0.95 or 0.99

You can get it from table D (pp. 508-513)

15 F> F, X-r, X => 1 unst continue Sitting higher

and higher orders

1f F<F 5, N-r, d the new model did NOT suprove RSS significantly and the old wodel can be considered allequate The fist is correct DNZY if both models are adequate! => you con get a Cogues small RSS just because theoretically, the test is of! That's why you'll do that last check to see if P_k s are small (S_k \le \frac{2}{\sqrt{\pi}}) i.e. if residerals are judled white! So, when I have 11-complex and an testing ARMA (24+2, 24+1) VS ARMA (24, 24-1) # of restricted params 5= 4 # of estimated parame for unrestricted model?

1 = 24+2+24+1 + I = 44+4