Analysis II

Ferrulli Massimiliano

21 febbraio 2024

Indice

1	The vector space \mathbb{R}^n	2
	1.1 Operations	2
2	Allegati	3
	2.1 Dimostrazione 1	3

1 The vector space \mathbb{R}^n

1.1 Operations

Addition and scalar multiplications are defined as follows:

$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$
$$\lambda \mathbf{x} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix}$$
$$\lambda \mathbf{x} + \mathbf{y} = \lambda \mathbf{x} + \lambda \mathbf{y}$$

Scalar product, $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, in the vector space \mathbb{R}^n is defined as:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k y_k$$

The scalar product satisfies the following properties:

1 Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0 \,\forall x \text{ with } \langle \mathbf{x}, \mathbf{x} \rangle = 0 \Longleftrightarrow^{\text{iff}} x = 0$

Materials: 2 Allegati

2 Allegati

2.1 Dimostrazione 1