

Dimensionnement de la motorisation du MaxPID – 45 minutes

Objectifs	édagogiques		Déterminer les caractéristiques d'un solide ou d'un ensemble de solides indéformables. Proposer une démarche permettant la détermination d'une action mécanique inconnue ou bi de mouvement.
		C2-07	Déterminer les actions mécaniques en statique.
		C2-08	Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.
	ğ	C2-09	Déterminer la loi de mouvement dans le cas où les efforts extérieurs sont connus.

bjectif

Dans une démarcher conception, on souhaite dimensionner le moteur permettant le déplacement d'une charge par le MaxPID. On cherche donc à connaître le couple et la vitesse de rotation que doit pouvoir fournir ce moteur.

Activité 1

Donner les caractéristiques du moteur nécessaires pour une étude des puissances.

Expérimenter

- ☐ Réaliser un mouvement vertical dans les conditions suivantes :
 - MaxPID horizontal (couché sur la table), vitesse maximale, angle de 90° chargement « nul » et chargement avec 3 masses.
 - MaxPID vertical (debout sur la table), vitesse maximale, angle de 90° chargement « nul » et chargement avec 3 masses.
- Pour chacun des essais, relever le courant moteur et la vitesse de rotation du moteur.
- Proposer un cas d'utilisation ou la puissance à délivrer par le moteur est maximale.

Modéliser et résoudre nalytiquemer

Activité 2

☐ Evaluer l'inertie équivalente ramenée à l'arbre moteur.

Modéliser et expérimenter

Activité 3

- ☐ Exprimer la puissance des interefforts entre le rotor et le stator du moteur.
- ☐ Exprimer la puissance des efforts de pesanteur.
- ☐ Proposer une modélisation des pertes énergétiques du MaxPID. Vous mettre en œuvre des expérimentations pour confirmer vos hypothèses et chiffrer ces pertes.

Modéliser

Activité 4

☐ En utilisant Capytale, tracer, sur un cycle de fonctionnement la puissance instantanée en fonction du temps en intégrant les pertes.

ésoudre

Activité 5

- Réaliser la comparaison de la puissance mesurée expérimentalement et de la puissance déterminée analytiquement.
- ☐ Conclure.

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Présenter les points clés de la modélisation analytique et de la simulation associée ;
- Comparer les résultats de la simulation et les résultats expérimentaux.
- Conclure.

Pour XENS – CCINP – Centrale :

- Donner l'objectif des activités.
- Présenter les points clés de la modélisation.
- Présenter les points clés de la résolution utilisant Capytale.
- Présenter le protocole expérimental.
- Présenter la courbe illustrant les résultats expérimentaux et ceux de la résolution.
- Analyser les écarts.

Pour CCMP:

- Synthétiser les points précédents sur un compte rendu.
- Imprimer le graphe o ù les courbes sont superposées.