Vehicle Price Prediction - Internship Project

The goal of this project is to build a regression model to accurately predict the price of used vehicles based on their features like manufacturer, year, body, etc. reading.

Dependencies

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform
```

Data Overview

Importing csv

```
In [332... data = pd.read_csv("dataset.csv")
In [333... # Set the option to display all columns
    pd.set_option('display.max_columns', None)
In [334... data.head()
```

	name	description	make	model	year	price	engine	cylinders	fuel	mileage	tra
0	2024 Jeep Wagoneer Series II	\n \n Heated Leather Seats, Nav Sy	Jeep	Wagoneer	2024	74600.0	24V GDI DOHC Twin Turbo	6.0	Gasoline	10.0	
1	2024 Jeep Grand Cherokee Laredo	Al West is committed to offering every custome	Jeep	Grand Cherokee	2024	50170.0	ОНV	6.0	Gasoline	1.0	
2	2024 GMC Yukon XL Denali	NaN	GMC	Yukon XL	2024	96410.0	6.2L V-8 gasoline direct injection, variable v	8.0	Gasoline	0.0	
3	2023 Dodge Durango Pursuit	White Knuckle Clearcoat 2023 Dodge Durango Pur	Dodge	Durango	2023	46835.0	16V MPFI OHV	8.0	Gasoline	32.0	
4	2024 RAM 3500 Laramie	\n \n 2024 Ram 3500 Laramie Billet	RAM	3500	2024	81663.0	24V DDI OHV Turbo Diesel	6.0	Diesel	10.0	

• Shape

```
In [335... shape = data.shape
    print(f"No of rows {shape[0]}")
    print(f"No of cols {shape[1]}")
```

No of rows 1002 No of cols 17

• Info

```
In [336... data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1002 entries, 0 to 1001
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	name	1002 non-null	object
1	description	946 non-null	object
2	make	1002 non-null	object
3	model	1002 non-null	object
4	year	1002 non-null	int64
5	price	979 non-null	float64
6	engine	1000 non-null	object
7	cylinders	897 non-null	float64
8	fuel	995 non-null	object
9	mileage	968 non-null	float64
10	transmission	1000 non-null	object
11	trim	1001 non-null	object
12	body	999 non-null	object
13	doors	995 non-null	float64
14	exterior_color	997 non-null	object
15	interior_color	964 non-null	object
16	drivetrain	1002 non-null	object
dtyp	es: float64(4),	int64(1), object	(12)
m 0 m 0	ny 115260 122 21	KD.	

memory usage: 133.2+ KB

In [337...

data.describe()

Out[337...

	year	price	cylinders	mileage	doors
count	1002.000000	979.000000	897.000000	968.000000	995.000000
mean	2023.916168	50202.985700	4.975474	69.033058	3.943719
std	0.298109	18700.392062	1.392526	507.435745	0.274409
min	2023.000000	0.000000	0.000000	0.000000	2.000000
25%	2024.000000	36600.000000	4.000000	4.000000	4.000000
50%	2024.000000	47165.000000	4.000000	8.000000	4.000000
75%	2024.000000	58919.500000	6.000000	13.000000	4.000000
max	2025.000000	195895.000000	8.000000	9711.000000	5.000000

• How many nan values are their in each column

In [338... data.:

data.isna().sum()

```
name
description
                  56
make
                   0
model
year
                   0
                  23
price
                  2
engine
cylinders
                 105
fuel
                   7
mileage
                  34
transmission
                   2
trim
                   3
body
                   7
doors
exterior_color
                   5
interior_color
                  38
drivetrain
dtype: int64
```

Out[338...

• Every Category in each feature

```
In [339...
          print("Drive Train: ", list(data['drivetrain'].unique()))
          print("Makers Names: ", list(data['make'].unique()))
          print("Cylinders: ", list(data['cylinders'].unique()))
          print("Fuel Types: ", list(data['fuel'].unique()))
          print("cars Body Type: ", list(data['body'].unique()))
          print("No. of Doors: ", list(data['doors'].unique()))
        Drive Train: ['Four-wheel Drive', 'All-wheel Drive', 'Rear-wheel Drive', 'Front-wheel Drive']
        Makers Names: ['Jeep', 'GMC', 'Dodge', 'RAM', 'Nissan', 'Ford', 'Hyundai', 'Chevrolet', 'Volk
        swagen', 'Chrysler', 'Kia', 'Mazda', 'Acura', 'Subaru', 'Audi', 'BMW', 'Toyota', 'Buick', 'Mer
        cedes-Benz', 'Honda', 'Lincoln', 'Cadillac', 'INFINITI', 'Lexus', 'Land Rover', 'Volvo', 'Gene
        sis', 'Jaguar']
        Cylinders: [np.float64(6.0), np.float64(8.0), np.float64(4.0), np.float64(nan), np.float64(3.
        0), np.float64(0.0)]
        Fuel Types: ['Gasoline', 'Diesel', 'Hybrid', 'Electric', 'E85 Flex Fuel', 'PHEV Hybrid Fuel',
        nan, 'Diesel (B20 capable)']
        cars Body Type: ['SUV', 'Pickup Truck', 'Sedan', 'Passenger Van', 'Cargo Van', nan, 'Hatchbac
        k', 'Convertible', 'Minivan']
        No. of Doors: [np.float64(4.0), np.float64(3.0), np.float64(nan), np.float64(2.0), np.float64
         (5.0)
```

Note: You will see nan values in category is it because it is not yet cleaned

Data Cleaning

Data Droping and Imputation

1. Delete name and description column

```
In [340... cleanedData = data.drop(['name', 'description'], axis=1)
    cleanedData.head(2)
```

Out[340	make	model	year	price	engine	cylinders	fuel	mileage	transmission	trim	body
			•	•	_	•		_			•

0 Je	eep	Wagoneer	2024	74600.0	24V GDI DOHC Twin Turbo	6.0	Gasoline	10.0	8-Speed Automatic	Series II	SUV
1 Je	eep	Grand Cherokee	2024	50170.0	OHV	6.0	Gasoline	1.0	8-Speed Automatic	Laredo	SUV

Name column is to be deleted because the same data are already present in year, make, model, trim columns

2. Remove nan values from engine

cleanedData[cleanedData['engine'].isna()] In [341...

Out[341...

	make	model	year	price	engine	cylinders	fuel	mileage	transmission	trim	bo	
614	Honda	CR-V Hybrid	2025	42150.0	NaN	4.0	Gasoline	1.0	1-Speed CVT with Overdrive	Sport Touring	SI	
803	Jeep	Wagoneer	2024	73999.0	NaN	6.0	Gasoline	59.0	8-Speed Automatic	Series II	SI	
4 @	-	_	-	_	_	_					•	
clea	<pre>cleanedData.loc[(cleanedData['make'] == "Honda") & (cleanedData['model'] == "CR-V Hybrid")]</pre>											

In [342...

	_			
\cap	1 de [$^{-}$	71 1)
Uι	111		42	

	make	model	year	price	engine	cylinders	fuel	mileage	transmission	trim	body
109	Honda	CR-V Hybrid	2024	42005.0	16V GDI DOHC Hybrid	4.0	Hybrid	1.0	Automatic CVT	Sport Touring	SUV
304	Honda	CR-V Hybrid	2024	36900.0	16V GDI DOHC Hybrid	4.0	Hybrid	1.0	Automatic CVT	Sport	SUV
534	Honda	CR-V Hybrid	2024	40355.0	16V GDI DOHC Hybrid	4.0	Hybrid	68.0	Automatic CVT	Sport-L	SUV
614	Honda	CR-V Hybrid	2025	42150.0	NaN	4.0	Gasoline	1.0	1-Speed CVT with Overdrive	Sport Touring	SUV
637	Honda	CR-V Hybrid	2024	36900.0	16V GDI DOHC Hybrid	4.0	Hybrid	1.0	Automatic CVT	Sport	SUV
673	Honda	CR-V Hybrid	2024	37505.0	16V GDI DOHC Hybrid	4.0	Hybrid	0.0	Automatic CVT	Sport-L	SUV
4				_		_	_				•

In [343...

cleanedData[(cleanedData['make'] == "Jeep") & (cleanedData['model'] == "Wagoneer")& (cleanedData['model']

In [345...

cleanedData.isna().sum()

	make	model	year	price	engine	cylinders	fuel	mileage	transmission	trim	body
0	Jeep	Wagoneer	2024	74600.0	24V GDI DOHC Twin Turbo	6.0	Gasoline	10.0	8-Speed Automatic	Series II	SUV
250	Jeep	Wagoneer	2024	87488.0	24V GDI DOHC Twin Turbo	6.0	Gasoline	22.0	8-Speed Automatic	Series II	SUV
261	Jeep	Wagoneer	2024	72908.0	24V GDI DOHC Twin Turbo	6.0	Gasoline	NaN	8-Speed Automatic	Series II	SUV
399	Jeep	Wagoneer	2024	75888.0	24V GDI DOHC Twin Turbo	6.0	Gasoline	NaN	8-Speed Automatic	Series II	SUV
650	Jeep	Wagoneer	2024	84935.0	24V GDI DOHC Twin Turbo	6.0	Gasoline	1.0	8-Speed Automatic	Series II	SUV
772	Jeep	Wagoneer	2024	79487.0	24V GDI DOHC Twin Turbo	6.0	Gasoline	18.0	8-Speed Automatic	Series II	SUV
803	Jeep	Wagoneer	2024	73999.0	NaN	6.0	Gasoline	59.0	8-Speed Automatic	Series II	SUV
970	Jeep	Wagoneer	2024	74625.0	24V GDI DOHC Twin Turbo	6.0	Gasoline	10.0	8-Speed Automatic	Series II	SUV

Note: As we can see from above rows containing nan values can be filled by locating similar type of models and makers, and here they both containing same engine as founded

- 1. Honda with CR-V Hybrid have 16V GDI DOHC Hybrid engine and doors 4.0.
- 2. Jeep with Wagoneer have 24V GDI DOHC Twin Turbo engine.

```
In [344...
cleanedData.loc[614,'engine'] = "16V GDI DOHC Hybrid"
cleanedData.loc[614,'doors'] = np.float64(4.0)
cleanedData.loc[803,'engine'] = "24V GDI DOHC Twin Turbo"
```

make	0
model	0
year	0
price	23
engine	0
cylinders	105
fuel	7
mileage	34
transmission	2
trim	1
body	3
doors	6
exterior_color	5
interior_color	38
drivetrain	0
dtype: int64	

3. Remove nan values from transmission

In [346... cleanedData[cleanedData['transmission'].isna()]

Out[346... price engine cylinders model year fuel mileage transmission make trim Mercedes-**EQS** Base 725 S 2024 111245.0 C NaN Electric 10.0 NaN 450 Benz 4MATIC 24V 148 WB PDI E85 Transit-Medium 940 Ford 2024 52530.0 DOHC 6.0 1.0 NaN Flex 350 Roof Flexible Fuel Cargo Fuel

In [347... cleanedData[(cleanedData['make'] == "Ford") & (cleanedData['model'] == "Transit-350") & (cleanedData['model']

Out[347...

Out[345...

year make model price engine cylinders fuel mileage transmission trim body d 24V **GDI** 10-Speed Cargo Transit-**793** 2023 57000.0 Ford **DOHC** 6.0 Gasoline 5581.0 Automatic 350 Van Twin Turbo 24V **GDI** 10-Speed Cargo Transit-805 Ford 2023 54525.0 6.0 Gasoline 0.0 **DOHC** NaN 350 Automatic Van Twin Turbo

In [348... cleanedData[(cleanedData['make'] == "Mercedes-Benz") & (cleanedData['model'] == "EQS 450") &

	make	model	year	price	engine	cylinders	fuel	mileage	transmission	trim	b
142	Mercedes- Benz	EQS 450	2024	NaN	С	NaN	Electric	8.0	Automatic	Base 4MATIC	Se
253	Mercedes- Benz	EQS 450	2024	110395.0	С	NaN	Electric	5.0	Automatic	Base 4MATIC	Se
328	Mercedes- Benz	EQS 450	2024	NaN	С	NaN	Electric	10.0	Automatic	Base 4MATIC	Se
372	Mercedes- Benz	EQS 450	2024	NaN	С	NaN	Electric	4.0	Automatic	Base 4MATIC	Se
484	Mercedes- Benz	EQS 450	2024	117985.0	С	NaN	Electric	1.0	Automatic	Base 4MATIC	Se
725	Mercedes- Benz	EQS 450	2024	111245.0	С	NaN	Electric	10.0	NaN	Base 4MATIC	Se

Note: Same approach is used here looking at the same make, model, engine or body we can find same cars

- 1. Mercedes-Benz of model EQS 450 and body Sedan have transmission Automatic
- 2. Ford of model Transit-350 and engine 24V GDI DOHC Twin Turbo have transmission 10-Speed Automatic

```
cleanedData.loc[725,'transmission'] = "Automatic"
In [349...
          cleanedData.loc[940,'transmission'] = "10-Speed Automatic"
In [350...
          cleanedData.isna().sum()
Out[350...
          make
           model
                               0
          year
                               0
           price
                              23
                               0
           engine
           cylinders
                             105
           fuel
                               7
           mileage
                              34
           transmission
                               0
           trim
                               1
                               3
           body
           doors
                               6
                               5
           exterior_color
                              38
           interior_color
           drivetrain
                               0
           dtype: int64
```

4. Remove nan values from trim

```
In [351... cleanedData[cleanedData['trim'].isna()]
```


Out[355		make	model	year	price	engine	cylinders	fuel	mileage	transmission	trim	bod
	164	Dodge	Hornet	2024	41497.0	gasoline direct injection, DOHC, Multiair va	4.0	4.0 Gasoline 11.0 6-Spec Automa		6-Speed Automatic	R/T EAWD	Na
	235	Dodge	Hornet	2024	41036.0	gasoline direct injection, DOHC, Multiair va	4.0	Gasoline	5.0	6-Speed Automatic	R/T EAWD	Na
	687	INFINITI	QX50	2024	49404.0	ER	4.0	Gasoline	7.0	(CVT) CONT VAR.	SPORT	Na
	4											
In [356	clea	nedData[((cleaned	Data[make'] =	= "INFINI	TI") & (cl	.eanedData	a['model']] == "QX50")]		
Out[356		make	model	year	price	engine	cylinders	fuel	mileage	transmission	trim	bc
	167	INFINITI	QX50	2024	48350.0	o 2L I-4 port/direct injection, DOHC, variable	4.0	Gasoline	3.0	Variable	LUXE	S
	335	INFINITI	QX50	2024	45055.0	o 2L I-4 port/direct injection, DOHC, variable	4.0	Gasoline	25.0	Variable	LUXE	S
	687	INFINITI	QX50	2024	49404.0	ER	4.0	Gasoline	7.0	(CVT) CONT VAR.	SPORT	N
	799	INFINITI	QX50	2024	46855.0	o 2L I-4 port/direct injection, DOHC, variable	4.0	Gasoline	11.0	Variable	LUXE	S

cleanedData[(cleanedData['make'] == "Dodge") & (cleanedData['model'] == "Hornet") & (cleanedData['model']

In [357...

Out[357		make	model	year	price	engine	cylinders	fuel	mileage	transmission	trim	body
	55	Dodge	Hornet	2024	42855.0	gasoline direct injection, DOHC, Multiair va	4.0	Gasoline	5.0	6-Speed Automatic	R/T EAWD	SU\
	164	Dodge	Hornet	2024	41497.0	gasoline direct injection, DOHC, Multiair va	4.0	Gasoline	11.0	6-Speed Automatic	R/T EAWD	NaN
	235	Dodge	Hornet	2024	41036.0	gasoline direct injection, DOHC, Multiair va	4.0	Gasoline	5.0	6-Speed Automatic	R/T EAWD	NaN
	243	Dodge	Hornet	2024	48595.0	gasoline direct injection, DOHC, Multiair va	4.0	Gasoline	0.0	6-Spd Aisin F21-250 PHEV Auto Trans	Hornet R/T Plus Eawd	SU\
	511	Dodge	Hornet	2024	46490.0	gasoline direct injection, DOHC, Multiair va	4.0	Gasoline	21.0	6-Speed Automatic	R/T Plus EAWD	SU\
	4 @	_	_		_							•
In [358	clea	nedData	.loc[235	, 'body	/'] = "SL /'] = "SL /'] = "SL	IV"						
In [359	clea	nedData	isna().	sum()								
Out[359	fuel mile tran trim body door exte inte	el ne nders eage smissio	n lor lor	0 0 23 0 105 7 34 0 0 6 5 38								

```
In [360...
```

cleanedData[cleanedData['fuel'].isna()]

Out[360...

	make	model	year	price	engine	cylinders	fuel	mileage	transmission
128	Subaru	Solterra	2024	39934.0	С	NaN	NaN	5.0	1-Speed Automatic
219	Honda	Prologue	2024	55800.0	С	NaN	NaN	NaN	1-Speed Automatic
315	Honda	Prologue	2024	56550.0	С	NaN	NaN	1.0	1-Speed Automatic
489	Honda	Prologue	2024	55800.0	С	NaN	NaN	NaN	1-Speed Automatic
490	Honda	Prologue	2024	55800.0	С	NaN	NaN	NaN	1-Speed Automatic
610	Chevrolet	Equinox EV	2024	47495.0	<dt>VIN</dt> \n 3GN7DNRPXRS232327	NaN	NaN	0.0	Automatic
726	Jaguar	I-PACE	2024	77053.0	d>\n\n \n <dt>VIN</dt> \n SADHM2S12R1	NaN	NaN	8.0	Automatic
4									•

In [361...

cleanedData['fuel'].value_counts()

Out[361...

fuel

Gasoline 664
Hybrid 137
Electric 99
Diesel 73
PHEV Hybrid Fuel 16
E85 Flex Fuel 5
Diesel (B20 capable) 1
Name: count, dtype: int64

Note: Generally all cars have fuel type gasoline so we are going to replace all nan value with Gasoline

In [362...

```
cleanedData.fillna({'fuel':"Gasoline"},inplace=True)
```

7. Remove nan values from doors

```
In [363... cle
```

cleanedData['doors'].value_counts()

Out[363...

doors
4.0 948
3.0 37
2.0 10
5.0 1

Name: count, dtype: int64

• Generally every car comes with 4 doors so nan values in doors columns are going to fill with 4

```
In [364... cleanedData.fillna({'doors':4},inplace=True)
```

In [365	cleanedData.isna	().sum()			
Out[365	make	0			
	model	0			
	year	0			
	price	23			
	engine	0			
	cylinders	105			
	fuel	0			
	mileage	34			
	transmission	0			
	trim	0			
	body	0			
	doors	0			
	exterior_color	5			
	interior_color	38			
	drivetrain	0			
	dtype: int64				

8. Remove nan values from exterior_colors

In [366... cleanedData[cleanedData['exterior_color'].isna()]

ut[366		make	model	year	price	engine	cylinders	fuel	mileage	transmission	tı
	117	Jeep	Wrangler	2024	59456.0	ar 3.6L V-6 DOHC, variable valve control, regu	6.0	Gasoline	15.0	Automatic	4-D Sah
	137	Acura	ZDX	2024	69850.0	С	0.0	Electric	0.0	Automatic	A-SI
	373	Mercedes- Benz	EQS 450	2024	114850.0	С	NaN	Electric	8.0	1-Speed Automatic	B 4MA
	608	Mercedes- Benz	Sprinter 2500	2023	58665.0	gasoline direct injection, DOHC, variable valv	4.0	Gasoline	0.0	Automatic	H R
	612	Mercedes- Benz	Sprinter 2500	2024	65129.0	diesel direct injection, DOHC, intercooled tur	4.0	Diesel	0.0	Automatic	H R
	4 @										

cleanedData['exterior_color'].value_counts()

In [367...

```
Out[367...
          exterior_color
          Bright White Clearcoat
                                        81
          Black
                                        32
          White
                                        29
          Gray
                                        27
          Diamond Black
                                        26
          Aspen White / Super Black
                                         1
          Jungle Green
                                         1
          Cactus Gray
                                         1
          Pearl White Tricoat
                                         1
          Wheatland Yellow
          Name: count, Length: 263, dtype: int64
```

• It is going to be filled with Black because Bright White Clearcoat already as 81 and by adding more numbers to it fill make the data unfair

```
In [368... cleanedData.fillna({'exterior_color': 'Black'},inplace=True)
```

Doubt: Is doing this good or not?

9. Remove nan values from price

```
In [369... cleanedData.fillna({'price':round(cleanedData['price'].mean(),2)},inplace=True)
```

10. Remove nan values from cylinders

```
In [370... cleanedData[cleanedData['cylinders'].isna()]
```

	make	model	year	price	engine	cylinders	fuel	mileage	transmission
14	Chevrolet	Blazer EV	2024	51695.0	С	NaN	Electric	4.0	1-Speed Automatic
28	Chevrolet	Blazer EV	2024	52190.0	С	NaN	Electric	6.0	1-Speed Automatic
33	Kia	EV6	2024	49820.0	С	NaN	Electric	13.0	Automatic
35	Ford	Mustang Mach-E	2024	47790.0	С	NaN	Electric	5.0	1-Speed Automatic
49	Hyundai	IONIQ 5	2024	44195.0	С	NaN	Electric	14.0	1-Speed Automatic
•••									
884	BMW	i7	2024	195895.0	C	NaN	Electric	0.0	1-Speed Automatic
893	Honda	CR-V	2025	38305.0	d>\n\n \n <dt>VIN</dt> \n 7FARS4H71SE	NaN	Gasoline	0.0	Automatic CVT
941	Hyundai	IONIQ 5	2024	38201.0	С	NaN	Electric	12.0	Automatic
944	Kia	EV6	2024	41528.0	C	NaN	Electric	13.0	Automatic
978	Kia	EV6	2024	43439.0	C	NaN	Electric	14.0	Automatic

105 rows × 15 columns

```
In [371... cleanedData[cleanedData['fuel'] == "Gasoline"]['cylinders'].value_counts()
```

Out[371...

cylinders

4.0 347

6.0 207

8.0 82

3.0 27

Name: count, dtype: int64

- We are going to fill 4 in cylinders whose cylinders are Nan and fuel type is Gasoline
- In [372... cleanedData.loc[(cleanedData['cylinders'].isna()) & (cleanedData['fuel'] == 'Gasoline'),'cylinders'
 - We are going to fill 0 in cylinders whose cylinders are Nan and fuel type is Electric
- In [373... cleanedData.loc[(cleanedData['cylinders'].isna()) & (cleanedData['fuel'] == 'Electric'),'cylinders']
 - 11. Remove nan values from mileage
- In [374... cleanedData[cleanedData['mileage'].isna()][:5]

	make	model	year	price	engine	cylinders	fuel	mileage	transmission	trim
27	' Chrysler	Pacifica	2024	48705.0	24V MPFI DOHC	6.0	Gasoline	NaN	9-Speed Automatic	Touring-L
47	' Subaru	Outback	2024	44354.0	16V GDI DOHC Turbo	4.0	Gasoline	NaN	Automatic CVT	Wilderness
63	3 Jeep	Grand Cherokee L	2024	51360.0	24V MPFI DOHC	6.0	Gasoline	NaN	8-Speed Automatic	Limited
73	3 Jeep	Wagoneer	2024	63057.0	24V GDI DOHC Twin Turbo	6.0	Gasoline	NaN	8-Speed Automatic	Base
84	Jeep	Grand Cherokee L	2024	49390.0	ОНV	6.0	Gasoline	NaN	8-Speed Automatic	Limited
4										•

In [375...

```
cleanedData['mileage'].value_counts()
```

```
Out[375...
```

```
mileage
5.0
         116
0.0
         110
10.0
         108
1.0
          58
6.0
          50
697.0
           1
66.0
41.0
           1
141.0
           1
296.0
Name: count, Length: 95, dtype: int64
```

• Generally the milage is 5.0 so we are going to replace it with nan values

```
In [376...
```

```
cleanedData.fillna({'mileage': 5.0},inplace=True)
```

Doubt: Is doing this a good option?

12. Remove nan values from interior_colors

```
cleanedData['interior_color'].value_counts()
In [377...
```

```
77
          Gray
                           45
          Jet Black
          Ebony
                           43
          Caramel
                            1
          gray
                            1
          Dark Palazzo
                            1
          Gray/Black
                            1
          Navy Pier
                            1
          Name: count, Length: 91, dtype: int64
            • Here Black interior is the most commone one
In [378...
          cleanedData.fillna({'interior_color':'Black'},inplace=True)
In [379...
          cleanedData.isna().sum()
Out[379...
          make
          model
                            0
          year
                            0
                            0
          price
          engine
                            0
          cylinders
                            0
          fuel
                            0
          mileage
                            0
          transmission
                            0
          trim
                            0
          body
          doors
          exterior_color
                            0
          interior_color
                            0
                            0
          drivetrain
          dtype: int64
In [380...
          cleanedData.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1002 entries, 0 to 1001
         Data columns (total 15 columns):
          #
              Column
                            Non-Null Count Dtype
              _____
                             -----
         ---
                                             ----
          0
              make
                             1002 non-null
                                             object
          1
              model
                            1002 non-null
                                             object
          2
                            1002 non-null
                                             int64
              year
          3
              price
                             1002 non-null
                                             float64
          4
             engine
                            1002 non-null
                                             object
          5
             cylinders
                            1002 non-null
                                             float64
          6
             fuel
                            1002 non-null
                                              object
          7
                             1002 non-null
                                             float64
             mileage
          8
             transmission 1002 non-null
                                             object
              trim
                            1002 non-null
                                              object
          10 body
                             1002 non-null
                                              object
          11 doors
                             1002 non-null
                                             float64
          12 exterior_color 1002 non-null
                                              object
          13 interior_color 1002 non-null
                                              object
          14 drivetrain
                             1002 non-null
                                              object
         dtypes: float64(4), int64(1), object(10)
         memory usage: 117.6+ KB
```

Out[377...

interior_color

Global Black

Achievement

510

84

Black

Without removing any data we successully cleaned our dataset with right values

Detecting Outliers

Possible Outliers can exist in:

- price
- mileage

Before Removing Outliers

```
fig, axs = plt.subplots(2,1, figsize=(10, 5)) # 2 rows, 2 columns
In [381...
          axs[0].boxplot(cleanedData['price'],orientation='horizontal')
          axs[1].boxplot(cleanedData['mileage'],orientation='horizontal')
          plt.show()
                                                       o രത്തേയാ വായ
         1
                                                                                  0
                                                                                                    0
               0
                        25000
                                   50000
                                              75000
                                                        100000
                                                                   125000
                                                                              150000
                                                                                         175000
                                                                                                    200000
         1
                                                     ത്താ
                                                                0
                                                                                                    0
               0
                               2000
                                                 4000
                                                                   6000
                                                                                    8000
                                                                                                     10000
          cleanedData = cleanedData[(cleanedData['price'] < 100000) & (cleanedData['price'] > 10)]
In [382...
```

Note: I dont know if i handeled the outliers correctly or not

cleanedData = cleanedData[cleanedData['mileage'] < 30]</pre>

After Removing Outliers

In [383...

```
fig, axs = plt.subplots(2,1, figsize=(10, 5)) # 2 rows, 2 columns
axs[0].boxplot(cleanedData['price'],orientation='horizontal')
axs[1].boxplot(cleanedData['mileage'],orientation='horizontal')
plt.show()
```


Shape now after cleaning the data

```
In [385... shape = cleanedData.shape
    print(f"No. of rows: {shape[0]}")
    print(f"No. of rows removed: {data.shape[0]-shape[0]}")

No. of rows: 894
    No. of rows removed: 108
```

EDA

1. Create a Histogram of Price to see the distribution of price

```
In [386... plt.figure(figsize=(6,6),dpi=120)
    ax = sns.histplot(cleanedData['price'])
    ax.bar_label(ax.containers[0],fontsize = 10)
    ax.set_xlabel("Price ( In USD $ )")
    ax.set_ylabel("Count")
    ax.set_title("Price Distribution",fontdict={'weight':"bold",'size':24},pad=20)
    plt.show()
```

Price Distribution

2. We will create a Bar graph of make feature to how many cars in total is made by each maker

```
In [387... plt.figure(figsize=(11,6),dpi=150)

ax = sns.barplot(data=cleanedData['make'].value_counts(),errorbar=None,estimator="sum",orient=
ax.bar_label(ax.containers[0],fontsize = 10)
ax.set_xlabel("Count")
ax.set_ylabel("Maker's Name")
ax.set_title("Value Count of each Car Maker",loc="left",fontdict={'weight':"bold",'size':24},
plt.tight_layout()
plt.show()
```

Value Count of each Car Maker

3. Create a Histogram of fuel

```
In [388... plt.figure(figsize=(8,5),dpi=110)
    ax = sns.barplot(cleanedData['fuel'].value_counts(),errorbar=None,orient='y')
    ax.bar_label(ax.containers[0],fontsize = 10)
    ax.set_xlabel("Count")
    ax.set_ylabel("Fuel Type")
    ax.set_title("Fuel Distribution",fontdict={'weight':"bold",'size':24},pad=20,loc='left')
    plt.show()
```

Fuel Distribution

4. Create a Bar graph of Body do see general body type of all cars

```
In [389...
plt.figure(figsize=(8,5),dpi=110)
ax = sns.barplot(cleanedData['body'].value_counts(),errorbar=None,orient='y')
ax.bar_label(ax.containers[0],fontsize = 10)
```

```
ax.set_xlabel("Count")
ax.set_ylabel("Body Type")
ax.set_title("Body Distribution",fontdict={'weight':"bold",'size':24},pad=20,loc='left')
plt.show()
```

Body Distribution

5. Create a Bar Graph of drivetrain

```
In [390... plt.figure(figsize=(7,5),dpi=110)

ax = sns.histplot(cleanedData['drivetrain'])
ax.bar_label(ax.containers[0],fontsize = 10)
ax.tick_params(axis='x')
ax.set_xlabel("Drive Trains")
ax.set_ylabel("Count")
ax.set_title("Types of Drive train",fontdict={'weight':"bold",'size':24},pad=20)
plt.tight_layout()
plt.show()
```

Types of Drive train

6. Create a scatter plot where x axis makers name in ascending order of price and y axis show price (
The idea to show how much each company spend)

```
import matplotlib.ticker as ticker
In [391...
          make_price = cleanedData.groupby('make', as_index=False)['price'].sum()
          make_price
          plt.figure(figsize=(11,8), dpi=150)
          ax = sns.scatterplot(
              data=make_price,
              x='price',
              y='make',
              size='price',
              hue='price',
              sizes=(50, 500),
              palette='viridis',
              legend=False
          max_price = make_price['price'].max()
          ticks = np.linspace(0, max_price, 6)
          ax.set_xticks(ticks)
          ax.xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'${x/1000:.0f}k'))
          ax.set_xlabel('Total Price (USD)')
          ax.set_ylabel("Maker's Name")
          ax.set_title("Total spending by maker (sum of prices)", loc='left', fontdict={'weight':'bold'
          plt.tight_layout()
          plt.show()
```

Total spending by maker (sum of prices)

Feature Engineering

Out[393...

1. Make a Prediction data for Feature Engineering and Model training

```
In [392... predictionData = cleanedData[['make', 'year', 'price', 'cylinders', 'fuel', 'mileage', 'body'
In [393... predictionData.head()
```

	make	year	price	cylinders	fuel	mileage	body	doors	drivetrain
0	Jeep	2024	74600.0	6.0	Gasoline	10.0	SUV	4.0	Four-wheel Drive
1	Jeep	2024	50170.0	6.0	Gasoline	1.0	SUV	4.0	Four-wheel Drive
2	GMC	2024	96410.0	8.0	Gasoline	0.0	SUV	4.0	Four-wheel Drive
4	RAM	2024	81663.0	6.0	Diesel	10.0	Pickup Truck	4.0	Four-wheel Drive
6	Jeep	2024	63862.0	6.0	Gasoline	5.0	SUV	4.0	Rear-wheel Drive

2. Add an Age feauture which shows the age of a car

```
In [394... # Example
    current_year = 2024
    predictionData.loc[:,'age'] = current_year - predictionData['year']
```

```
C:\Users\Shaurya Srivastava\AppData\Local\Temp\ipykernel_11784\2453037954.py:3: SettingWithCop
yWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/
indexing.html#returning-a-view-versus-a-copy
   predictionData.loc[:,'age'] = current_year - predictionData['year']
```

3. Perform Feature Encoding on make, fuel, body, drive train

```
In [395... # Example Fix
encodedData = pd.get_dummies(predictionData, columns=['make', 'fuel', 'body','drivetrain'], d
encodedData
```

Out[395...

		year	price	cylinders	mileage	doors	age	make_Audi	make_BMW	make_Buick	make_Cad
	0	2024	74600.0	6.0	10.0	4.0	0	False	False	False	F
	1	2024	50170.0	6.0	1.0	4.0	0	False	False	False	F
	2	2024	96410.0	8.0	0.0	4.0	0	False	False	False	F
	4	2024	81663.0	6.0	10.0	4.0	0	False	False	False	F
	6	2024	63862.0	6.0	5.0	4.0	0	False	False	False	F
	•••		•••	•••		•••					
9	996	2024	69315.0	6.0	0.0	4.0	0	False	False	False	F
9	997	2024	59037.0	4.0	10.0	3.0	0	False	False	False	F
9	998	2024	49720.0	4.0	0.0	4.0	0	False	False	False	F
9	999	2024	69085.0	6.0	20.0	4.0	0	False	False	False	F
10	000	2024	43495.0	6.0	6.0	4.0	0	False	False	False	F

894 rows × 49 columns

Train and Test Data

```
In [396... X = encodedData.drop(['price'],axis=1)
y = encodedData['price']

X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=45,train_size=0.8,test_size=
```

Data Scaling

```
In [397... scaler = StandardScaler()

# 1. Fit on training data and transform it
X_train_scaled = scaler.fit_transform(X_train)

# 2. Use the SAME scaler to transform the test data
X_test_scaled = scaler.transform(X_test)
```

```
X_train_scaled_df = pd.DataFrame(X_train_scaled,columns=X_train.columns)
X_test_scaled_df = pd.DataFrame(X_test_scaled,columns=X_test.columns)
```

Model Selection and Evaluation

For this project we are going to use Linear Regression

```
In [398...
          linearModel = LinearRegression()
          linearModel.fit(X_train_scaled_df,y_train)
          prediction = linearModel.predict(X_test_scaled_df)
          mae = mean_absolute_error(y_test, prediction)
          rmse = np.sqrt(mean_squared_error(y_test, prediction))
          r2 = r2_score(y_test, prediction)
          print(f"MAE: ${mae:,.2f}")
          print(f"RMSE: ${rmse:,.2f}")
          print(f"R-squared: {r2:.4f}")
         MAE: $7,216.15
         RMSE: $9,140.43
         R-squared: 0.6885
In [408...
          regressor = RandomForestRegressor(n_estimators=10, random_state=0, oob_score=True)
          regressor.fit(X_train_scaled_df, y_train)
          tunedregressor = RandomForestRegressor(n_estimators=100, max_features=0.57,random_state=0, ool
          tunedregressor.fit(X_train_scaled_df, y_train)
         C:\Users\Shaurya Srivastava\AppData\Roaming\Python\Python313\site-packages\sklearn\ensemble\_f
         orest.py:611: UserWarning: Some inputs do not have OOB scores. This probably means too few tre
         es were used to compute any reliable OOB estimates.
           warn(
Out [408...
             RandomForestRegressor
           ► Parameters
In [400...
          predictions = regressor.predict(X_test_scaled_df)
          oob_score = regressor.oob_score_
          mae = mean_absolute_error(y_test, predictions)
          rmse = np.sqrt(mean_squared_error(y_test, predictions))
          r2 = r2_score(y_test, predictions)
          print(f'Out-of-Bag Score: {oob_score}')
          print(f"MAE: ${mae:,.2f}")
          print(f"RMSE: ${rmse:,.2f}")
          print(f"R-squared: {r2:.4f}")
         Out-of-Bag Score: 0.49022696177874137
         MAE: $6,290.23
         RMSE: $8,853.63
         R-squared: 0.7078
In [409...
          predictions = tunedregressor.predict(X_test_scaled_df)
          oob_score = tunedregressor.oob_score_
          mae = mean_absolute_error(y_test, predictions)
          rmse = np.sqrt(mean_squared_error(y_test, predictions))
          r2 = r2_score(y_test, predictions)
```

```
print(f'Out-of-Bag Score: {oob_score}')
          print(f"MAE: ${mae:,.2f}")
          print(f"RMSE: ${rmse:,.2f}")
          print(f"R-squared: {r2:.4f}")
         Out-of-Bag Score: 0.689879206075898
         MAE: $5,984.16
         RMSE: $8,276.86
         R-squared: 0.7446
In [402...
          sample = X_test.iloc[0:1]
          samplePrice = y_test.iloc[0:1]
          prediction = tunedregressor.predict(scaler.transform(sample))
          sample_dict = sample.iloc[0].to_dict()
          print(f"\nSample Data: {sample_dict}")
          print(f"Predicted Price: {prediction[0]}\nActual Price: {samplePrice.values[0]}")
         Sample Data: {'year': 2024, 'cylinders': 3.0, 'mileage': 6.0, 'doors': 4.0, 'age': 0, 'make_Au
         di': False, 'make_BMW': False, 'make_Buick': True, 'make_Cadillac': False, 'make_Chevrolet': F
         alse, 'make_Chrysler': False, 'make_Dodge': False, 'make_Ford': False, 'make_GMC': False, 'mak
         e_Genesis': False, 'make_Honda': False, 'make_Hyundai': False, 'make_INFINITI': False, 'make_J
         aguar': False, 'make_Jeep': False, 'make_Kia': False, 'make_Land Rover': False, 'make_Lexus':
         False, 'make_Lincoln': False, 'make_Mazda': False, 'make_Mercedes-Benz': False, 'make_Nissan':
         False, 'make_RAM': False, 'make_Subaru': False, 'make_Toyota': False, 'make_Volkswagen': False
         e, 'make_Volvo': False, 'fuel_Diesel (B20 capable)': False, 'fuel_E85 Flex Fuel': False, 'fuel
         _Electric': False, 'fuel_Gasoline': True, 'fuel_Hybrid': False, 'fuel_PHEV Hybrid Fuel': Fals
         e, 'body_Convertible': False, 'body_Hatchback': False, 'body_Minivan': False, 'body_Passenger
         Van': False, 'body_Pickup Truck': False, 'body_SUV': True, 'body_Sedan': False, 'drivetrain_Fo
         ur-wheel Drive': False, 'drivetrain_Front-wheel Drive': True, 'drivetrain_Rear-wheel Drive': F
         alse}
         Predicted Price: 30682.113392857147
         Actual Price: 27075.0
         C:\Users\Shaurya Srivastava\AppData\Roaming\Python\Python313\site-packages\sklearn\utils\valid
         ation.py:2749: UserWarning: X does not have valid feature names, but RandomForestRegressor was
         fitted with feature names
          warnings.warn(
```

If we add 3000\$ in the predicted price it will match the price of actual price

Hyper parameter tuning for Randome Forest Regressor

```
In [403...
          # Define the search space for continuous hyperparameters
          # For example, 'n_estimators' (integer) and 'max_features' (continuous)
          param distributions = {
              'n_estimators': [100, 200, 300],
              'max_features': uniform(0.1, 0.9) # Continuous range from 0.1 to 1.0 (0.1 + 0.9)
          # Perform Randomized Search
          random_search = RandomizedSearchCV(
              estimator=regressor,
              param_distributions=param_distributions,
              n iter=50, # Number of random combinations to try
                          # 5-fold cross-validation
              scoring='neg_mean_squared_error', # Metric for evaluation
              random_state=42
          # Fit the search to your data
          random_search.fit(X_train_scaled_df, y_train)
          # Get the best hyperparameters
```

```
best_params = random_search.best_params_
best_params
```

Out[403... {'max_features': np.float64(0.5722807884690141), 'n_estimators': 100}