

Semantic Analysis of Kaggle Dataset for Amazon Reviews

CSCI 561 - Homework 2

Shamim Samadi

Goal: perform semantic analysis on Amazon reviews in Python

- Determination of whether a review is "positive" or "negative"
- binary classification problem

Steps:

1. Pre-processing:

- Bag-of-words representation
- tokenization, remove punctuation, remove the stop words, lower case
- train-test split: every 5th sample belongs to test, the rest is training data

2. Classifier training

- Naive Bayes
- **Decision Tree**
- Neural Networks (multilayer perceptron)

3. Classifier evaluation on test data

- F-1 score, precision, recall
- ROC curve, AUC score

Naive Bayes was chosen as the 3rd classifier because:

- model is simple and computationally efficient
- a popular choice for text classification applications
- the feature independence assumption seems to go well with the bagof-word representation

Results & Discussion:

	class 0 (negative)	class 1 (positive)	average/total
Naive Bayes	0.84	0.86	0.85
Decision Tree	0.76	0.77	0.77
Neural Network	0.85	0.86	0.86
	class 0 (negative)	class 1 (positive)	average/total
Naive Bayes	0.86	0.84	0.85
Decision Tree	0.76	0.77	0.77
Neural Network	0.87	0.85	0.86
	class 0 (negative)	class 1 (positive)	average/total
Naive Bayes	0.85	0.85	0.85
Decision Tree	0.76	0.77	0.77
Neural Network	0.86	0.86	0.86

Precision

Results & Discussion:

- Performance ranking
 - 1. Neural Network
 - 2. Naive Bayes
 - 3. Decision Tree
- Although neural network classifier has a slight edge in performance when it comes to evaluation metrics, the Naive Bayes classifier would be an overall better choice since neural network requires intensive training and is computationally very expensive.
- Decision tree performs poorly in high-dimensional feature spaces (which is the case in the bag-ofwords feature representation used in this homework)
 - tricky to find the "key" tokens (as the key nodes) to split the tree on

