Nenmatsru (year-end)

Quick report of a beam test for Csl both-end readout system

28/12/2017 Tomoo Mari Osaka Univ.

Outline

- KOTO experiment
- Beam test @ELPH

KOTO experiment, halo neutron B.G.

Signal:

$$K_L \to \pi^0 \nu \bar{\nu}$$

Background:

A beam halo neutron makes hadron shower in a CsI crystal, then another neutron from this shower make another cluster.

gamma Csl PMT

Signal

Background

NCC

Csl both-end readout system

Timing difference between MPPC and PMT = z position

Some detail

Current readout system

reflector
MPPC
PMT

Quartz plate

Both-end readout system

4MPPCs + Quartz

Reflector

Energy resolution of the PMT

Energy resolution of the PMT is expected to change, because

- Reflector will be replaced with smaller one
 - (material can also be changed)
- MPPCs will cover the upstream surface of CsI

To evaluate σ_F of the PMT...

200-800 MeV positron beam data (tested at ELPH)

Beam test at ELPH

Cosmic ray data were also acquired while the beam was off.

Setup

8 large (50x50x500mm³) Csl crystals 4 small (25x25x500mm³) Csl crystals

	w/o MPPC	w/ MPPC	
MPPC	none	4 MPPCs for L crystals 1 MPPC for S crystals	
reflector	KOTO-reflector (different between crystals)	Nishimiya-reflector (silver, square hall)	
calibration	800MeV positrons	cosmic rays (40mm from the up- stream surface of Csl)	
beam-run	200-800 MeV, beam position was the center of the stack		

Other informations:
Beam spot size > 10mm

Beam position shift

LO	L1		L2
L7	S0 S3	S1 S2	L3
L6	L5		L4

Large crystals: 50mm x 50mm

Small crystals: 25mm x 25mm

Beam position was deviated 4.5 ~ 6.5 cm

from expected position.

Calibration (w/o MPPC)

800MeV positron beam was injected at the center of each crystal

Fitted with asymmetric gaussian

$$G_A(x) = N_0 \exp \left[-\frac{(x-\mu)^2}{2(\sigma_1 x + \sigma_0)^2} \right]$$

Scale factor (w/o MPPC)

Geant4 simulation

Calibration (w/ MPPC)

Cosmic rays at 40mm from the upstream surface of CsI

- Fitting function: (landau*gaussian) + pol1
- MPV of landau is used for calibration
- Scale factor between large and small crystal = 2.0

LO	L1		L2
L7	S0 S3	S1 S2	L3
L6	L5		L4

Energy resolution of PMT

Blue: w/ MPPC Red: w/o MPPC

w/ MPPC is wider than w/o.

Energy resolution of PMT

Energy resolution := FWHM / MPV

Conclusion / Prospects

Conclusion

- We tested new Csl readout system for the calorimeter upgrade.
- I checked how the MPPCs affect energy resolution of PMTs.
 - Energy resolution got worse (max: 12% @200MeV)

Prospects

- Analysis of timing resolution of both-end readout system
- Analysis of other runs (backward run, rotated run, etc...)
- Optical photon simulatoin

Back up

Setup

Asymmetric Gaussian

$$G_A(x) = N_0 \exp \left[-\frac{(x-\mu)^2}{2(\sigma_1 x + \sigma_0)^2} \right]$$

4 parameters: $N_0, \mu, \sigma_0, \sigma_1$

$$MPV = \mu$$
 error $= \delta \mu$

$$FWHM = \frac{\mu + \xi \sigma_0/2}{1 - \xi \sigma_1/2} - \frac{\mu - \xi \sigma_0/2}{1 + \xi \sigma_1/2} \qquad \qquad \xi \equiv 2\sqrt{2 \ln 2}$$

error =
$$\sqrt{\frac{\xi}{1 - (\xi \sigma_1/2)^2} [(\sigma_1 \delta \mu)^2 + (\delta \sigma_0)^2] + (\frac{\xi}{2})^2 \left[\frac{\mu - \xi \sigma_0/2}{(1 + \xi \sigma_1/2)^2} - \frac{\mu + \xi \sigma_0/2}{(1 - \xi \sigma_1/2)^2} \right] (\delta \sigma_1)^2}$$

Tomoo Mari Nenmatsu 18

Asymmetry of energy deposition

X asymmetry: S1 - S0

Y asymmetry: S0 - S3

Total energy deposition (Geant)

Geant4 simulation.
Incident beam energy 800 MeV

Low energy tail does not exist...

MC by gsim4

