

Hyperbolic geometry

Simple random geometric graph	
1. Sprinkle N nodes uniformly on the hyperbolic disk of radius	R
2. Connect any nodes separated by a distance less than $r=R$	•

✓ high clustering ✓ power-law degree distribution with exponent -3 Phys. Rev. E 82, 036106 (2010)

Hyperbolic geometry

Simple random geometric graph

- 1. Sprinkle N nodes uniformly on the hyperbolic disk of radius R.
- 2. Connect any nodes separated by a distance less than r = R.

6

- ✓ high clustering
- ✓ power-law degree distribution with exponent -3

Phys. Rev. E 82, 036106 (2010)

A geometric approach to clustering: the $\mathbb{S}^1/\mathbb{H}^2$ model

The S¹ model

- 1. Sprinkle N nodes uniformly on a circle of radius R.
- 2. Assign an expected degree κ to each node according to some pdf $\rho(\kappa)$.
- 3. Draw a link between node i and node j with probability p_{ij} .
- \star fixes the expected degree of nodes (κ) \to soft configuration model (CM)
- \star triangle inequality of the underlying metric space \to triangles from pairwise interactions
- \star level of clustering tuned with parameter β

^[1] Phys. Rev. E 80, 035101 (2009)

^[3] Phys. Rev. Lett. 100, 078701 (2008)

^[2] Phys. Rev. E 82, 036106 (2010)

^[4] Nat. Rev. Phys. 3, 114 (2021)

^[5] Nat. Commun. 8, 14103 (2017)

^[6] Phys. Rev. E 84, 026114 (2011)

^[7] Phys. Rev. E 95, 032309 (2017)

^[8] Mol. Biosyst. 8, 843 (2012)

^[9] Nat. Phys. 12, 1076 (2016)

^[10] Phys. Rev. Lett. 118, 218301 (2017)

^[11] Nature 489, 537 (2012) [12] Sci. Rep. 5, 9421 (2015)

^[13] J. Stat. Phys. 173, 775 (2018)

^[14] New J. Phys. 20, 052002 (2018)

^[15] New J. Phys. 21, 123033 (2019)