The farthest most of leakptle and er Text

- Descriptive Statistics are Used by Researchers to Report on Populations and Samples
- In Sociology: Summary descriptions of measurements (variables) taken about a group of people
- By Summarizing Information, Descriptive Statistics Speed Up and Simplify Comprehension of a Group's Characteristics

Sample vs. Population

Sample

An Illustration:

Which Group is Smarter?

Class AI	Qs of 13 Students	Class B-	-IQs of 13 Students
102	115	127	162
128	109	131	103
131	89	96	111
98	106	80	109
140	119	93	87
93	97	120	105
110		109	

Each individual may be different. If you try to understand a group by remembering the qualities of each member, you become overwhelmed and fail to understand the group.

Which group is smarter now?

Class A--Average IQ

Class B--Average IQ

110.54

110.23

They're roughly the same!

With a summary descriptive statistic, it is much easier to answer our question.

Types of descriptive statistics:

- Organize Data
 - Tables
 - Graphs

- Summarize Data
 - Central Tendency
 - Variation

Types of descriptive statistics:

- Organize Data
 - Tables
 - Frequency Distributions
 - Relative Frequency Distributions
 - Graphs
 - Bar Chart or Histogram
 - Stem and Leaf Plot
 - Frequency Polygon

Frequency Distribution of IQ for Two Classes

IQ	Frequen	су			
82.0	0 1				
	87.00	1			
	89.00	1			
	93.00	2			
	96.00	1			
	97.00	1			
	98.00	1			
	102.00	1			
	103.00	1			
	105.00	1			
	106.00	1			
	107.00	1			
	109.00	1			
	111.00	1			
	115.00	1			
	119.00	1			
	120.00	1			
	127.00	1			
	128.00	1			
	131.00	2			
	140.00	1_			
	162.00	1			

Total 24

Relative Frequency Distribution

Relative Frequency Distribution of IQ for Two Classes

	IQ	Frequency	Percent	Valid Percent	Cumulative Percent
82.00	1	4.2	4.2	4.2	
	87.00	1	4.2	4.2	8.3
	89.00	1	4.2	4.2	12.5
	93.00	2	8.3	8.3	20.8
	96.00	1	4.2	4.2	25.0
	97.00	1	4.2	4.2	29.2
	98.00	1	4.2	4.2	33.3
	102.00	1	4.2	4.2	37.5
	103.00	1	4.2	4.2	41.7
	105.00	1	4.2	4.2	45.8
	106.00	1	4.2	4.2	50.0
	107.00	1	4.2	4.2	54.2
	109.00	1	4.2	4.2	58.3
	111.00	1	4.2	4.2	62.5
	115.00	1	4.2	4.2	66.7
	119.00	1	4.2	4.2	70.8
	120.00	1	4.2	4.2	75.0
	127.00	1	4.2	4.2	79.2
	128.00	1	4.2	4.2	83.3
	131.00	2	8.3	8.3	91.7
	140.00	1	4.2	4.2	95.8
	162.00	1	4.2	4.2	100.0
Total	24	100.0	100.0		

Grouped Relative Frequency Distribution

Relative Frequency Distribution of IQ for Two Classes

IQ	Frequenc	cyPercent	Cumula	tive Percent
80 - 89	3	12.5	12.5	
90 - 99	5	20.8	33.3	
100 – 109	6	25.0	58.3	
110 – 119	3	12.5	70.8	
120 – 129	3	12.5	83.3	
130 – 139	2	8.3	91.6	
140 – 149	1	4.2	95.8	
150 and o	ver	1	4.2	100.0
Total		24	100.0	100.0

SPSS Output for Frequency Distribution

IQ

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	82.00	1	4.2	4.2	4.2
	87.00	1	4.2	4.2	8.3
	89.00	1	4.2	4.2	12.5
	93.00	2	8.3	8.3	20.8
	96.00	1	4.2	4.2	25.0
	97.00	1	4.2	4.2	29.2
	98.00	1	4.2	4.2	33.3
	102.00	1	4.2	4.2	37.5
	103.00	1	4.2	4.2	41.7
	105.00	1	4.2	4.2	45.8
	106.00	1	4.2	4.2	50.0
	107.00	1	4.2	4.2	54.2
	109.00	1	4.2	4.2	58.3
	111.00	1	4.2	4.2	62.5
	115.00	1	4.2	4.2	66.7
	119.00	1	4.2	4.2	70.8
	120.00	1	4.2	4.2	75.0
	127.00	1	4.2	4.2	79.2
	128.00	1	4.2	4.2	83.3
	131.00	2	8.3	8.3	91.7
	140.00	1	4.2	4.2	95.8
	162.00	1	4.2	4.2	100.0
	Total	24	100.0	100.0	

Histogram

Histogram of IQ Scores for Two Classes

Bar Graph

Bar Graph of Number of Students in Two Classes

Stem and Leaf Plot

Stem and Leaf Plot of IQ for Two Classes

Stem	Leaf
	279
8	
9	3 6 7 8
10	235679
11	159
12	078
13	1
14	0
15	
16	2

Note: SPSS does not do a good job of producing these.

SPSS Output of a Frequency Polygon

Summarizing Data:

- Central Tendency (or Groups' "Middle Values")
 - Mean
 - Median
 - Mode
- Variation (or Summary of Differences Within Groups)
 - Range
 - Interquartile Range
 - Variance
 - Standard Deviation

Mean

Most commonly called the "average."

Add up the values for each case and divide by the total number of cases.

$$Y-bar = (\underbrace{Y1 + Y2 + \ldots + Yn}_{n})$$

Y-bar =
$$\sum_{n} Y_i$$

Mean

What's up with all those symbols, man?

Y-bar =
$$\frac{(Y1 + Y2 + ... + Yn)}{n}$$
Y-bar =
$$\frac{\sum Yi}{n}$$

Some Symbolic Conventions in this Class:

- Y = your variable (could be X or Q or ☺ or even "Glitter")
- "-bar" or line over symbol of your variable = mean of that variable
- Y1 = first case's value on variable Y
- "..." = ellipsis = continue sequentially
- Yn = last case's value on variable Y
- n = number of cases in your sample
- Σ = Greek letter "sigma" = sum or add up what follows
- i = a typical case or each case in the sample (1 through n)

Mean

Class	AIQs	s of 13	Students
-------	------	---------	----------

102 115

128 109

131 89

98 106

140 119

93 97

110

$$\Sigma Yi = 1437$$

Y-bar_A =
$$\Sigma Yi = 1437 = 110.54$$

Class B--IQs of 13 Students

127 162

131 103

96 111

80 109

93 87

120 105

109

$$\Sigma Yi = 1433$$

Y-bar_B =
$$\Sigma \frac{Yi}{n} = \frac{1433}{13} = \frac{110.23}{13}$$

The mean is the "balance point."

Each person's score is like 1 pound placed at the score's position on a see-saw. Below, on a 200 cm see-saw, the mean equals 110, the place on the see-saw where a fulcrum finds balance:

The scale is balanced because...

$$17 + 4$$
 on the left $=$ 21 on the right

Median

The middle value when a variable's values are ranked in order; the point that divides a distribution into two equal halves.

When data are listed in order, the median is the point at which 50% of the cases are above and 50% below it.

The 50th percentile.

Median

Class A--IQs of 13 Students

Median = 109

(six cases above, six below)

If the first student were to drop out of Class A, there would be a new median:

Median = 109.5 109 + 110 = 219/2 = 109.5(six cases above, six below)

Median

- If the recorded values for a variable form a symmetric distribution, the median and mean are identical.
- 3. In skewed data, the mean lies further toward the skew than the median.

The most common data point is called the mode.

The combined IQ scores for Classes A & B:

80 87 89 93 93 96 97 98 102 103 105 106 <u>109 109 109</u> 110 111 115 119 120 127 128 131 131 140 162

A la mode!!

BTW, It is possible to have more than one mode!

Mode

It may mot be at the center of a distribution.

Data distribution on the right is "bimodal" (even statistics can be open-minded)

Mode

- It may give you the most likely experience rather than the "typical" or "central" experience.
- In symmetric distributions, the mean, median, and mode are the same.
- In skewed data, the mean and median lie further toward the skew than the mode.

Summarizing Data:

- Central Tendency (or Groups' "Middle Values")
 - Mean
 - Median
 - Mode
- Variation (or Summary of Differences Within Groups)
 - Range
 - Interquartile Range
 - Variance
 - Standard Deviation

The spread, or the distance, between the lowest and highest values of a variable.

To get the range for a variable, you subtract its lowest value from its highest value.

Class AIQs of 13 Students		Class BIQs of 13 Students		
102	115	127	162	
128	109	131	103	
131	89	96	111	
98	106	80	109	
140	119	93	87	
93	97	120	105	
110		109		

Class A Range = 140 - 89 = 51

Class B Range = 162 - 80 = 82

Interquartile Range

A quartile is the value that marks one of the divisions that breaks a series of values into four equal parts.

The median is a quartile and divides the cases in half.

25th percentile is a quartile that divides the first ¼ of cases from the latter ¾.

75th percentile is a quartile that divides the first ¾ of cases from the latter ¼.

The interquartile range is the distance or range between the 25th percentile and the 75th percentile. Below, what is the interquartile range?

0 250 500 750 1000

Interquartile Range (1/7) (The Range of the middle 50% of scores)

$$IQR = Q3 - Q1$$

What are Q3 and Q1?

Q1 is the lower quartile of 25th percentile.

Q3 is the upper quartile of 75th percentile.

1, 3 5, 6 7, 8 8

End of Slide

$$Q3 = 8$$
 $Q1 = 3$

Middle of Middle of

Interquartile Range (2/7)

$$Q3 = 7$$
 $Q1 = 3$

Middle of Middle of top half. lower half.

$$Q3 = 9$$
 $Q1 = 4$

Middle of Middle of top half. lower half.

Interquartile Range and Stem-and-Leaf (4/7)

Stem		
0	0 1 2 6 Q1 1 3 3 5 6 Median 4 4 5 7 7 9 9	
1	1 3 3 5 6 Median	IQR = Q3 - Q1
2	4 4 5 7 7 9 9	
3	2 3 4 6 8	= 38 - 13
4	2 3 4 6 8 Q3 5 7 7 9	= 25
5	0 5	

Activata Wine

Interquartile Range - Box-and-Whisker (5/7)

- A Upper Extreme
- **B** Lower Extreme
- C Median
- D Upper Quartile Q3
- E Lower Quartile Q1

Activate Wind Go to Settings to

Interquartile Range - Box-and-Whisker

IQR - 5 Number Summary (7/7)

Lower Extreme, Lower Quartile, Median, Upper Quartile, Upper Extreme

1, 3, 8, 13, 16

Activate Wind Go to Settings to

A measure of the spread of the recorded values on a variable. A measure of dispersion.

The larger the variance, the further the individual cases are from the mean.

The smaller the variance, the closer the individual scores are to the mean.

Variance is a number that at first seems complex to calculate.

Calculating variance starts with a "deviation."

A deviation is the distance away from the mean of a case's score.

Yi – Y-bar

If the average person's car costs \$20,000, my deviation from the mean is - \$14,000!

$$6K - 20K = -14K$$

The deviation of 102 from 110.54 is?

Deviation of 115?

Class A--IQs of 13 Students

102 115

128 109

131 89

98 106

140 119

93 97

110

Y-bar_A = 110.54

The deviation of 102 from 110.54 is? Deviation of 115? 102 - 110.54 = -8.54 115 - 110.54 = 4.46

Class A--IQs of 13 Students

102 115

128 109

131 89

98 106

140 119

93 97

110

Y-bar_A = 110.54

- We want to add these to get total deviations, but if we were to do that, we would get zero every time. Why?
- We need a way to eliminate negative signs.

Squaring the deviations will eliminate negative signs...

A Deviation Squared: $(Yi - Y-bar)^2$

Back to the IQ example,

A deviation squared for 102 is: of 115:

 $(102 - 110.54)^2 = (-8.54)^2 = 72.93$ $(115 - 110.54)^2 = (4.46)^2 = 19.89$

If you were to add all the squared deviations together, you'd get what we call the "Sum of Squares."

Sum of Squares (SS) = $\Sigma (Yi - Y - bar)^2$

$$SS = (Y1 - Y-bar)^2 + (Y2 - Y-bar)^2 + ... + (Yn - Y-bar)^2$$

Class A, sum of squares:

$$(102 - 110.54)^2 + (115 - 110.54)^2 + 102$$

 $(126 - 110.54)^2 + (109 - 110.54)^2 + 128$
 $(131 - 110.54)^2 + (89 - 110.54)^2 + 131$
 $(98 - 110.54)^2 + (106 - 110.54)^2 + 98$
 $(140 - 110.54)^2 + (119 - 110.54)^2 + 140$
 $(93 - 110.54)^2 + (97 - 110.54)^2 + 93$
 $(110 - 110.54) = SS = 2825.39$ 110
Y-bar = 110.

Y-bar = 110.54

The last step...

The approximate average sum of squares is the variance.

SS/N = Variance for a population.

SS/n-1 = Variance for a sample.

Variance = $\Sigma(Yi - Y-bar)^2 / n - 1$

For Class A, Variance =
$$2825.39 / n - 1$$

= $2825.39 / 12 = 235.45$

How helpful is that???

Standard Deviation

To convert variance into something of meaning, let's create standard deviation.

The square root of the variance reveals the average deviation of the observations from the mean.

s.d. =
$$\int_{-1}^{\infty} \frac{\sum (Yi - Y-bar)^2}{1}$$

Standard Deviation

For Class A, the standard deviation is:

The average of persons' deviation from the mean IQ of 110.54 is 15.34 IQ points.

Review:

- 1. Deviation
- 2. Deviation squared
- 3. Sum of squares
- 4. Variance
- 5. Standard deviation

Standard Deviation

1. Larger s.d. = greater amounts of variation around the mean.

For example:

- s.d. = 0 only when all values are the same (only when you have a constant and not a "variable")
- If you were to "rescale" a variable, the s.d. would change by the same magnitude—if we changed units above so the mean equaled 250, the s.d. on the left would be 30, and on the right, 60
- 4. Like the mean, the s.d. will be inflated by an outlier case value.

Box-Plots

A way to graphically portray almost all the descriptive statistics at once is the box-plot.

A box-plot shows: Upper and lower quartiles

Mean

Median

Range

Outliers (1.5 IQR)

Box plots

- The bottom end is smallest observation
- The top end is highest observation
- The bottom of blue box is 25th Percentile
- The top of yellow box is 75th Percentile
- The line joining the yellow and blue box is median

Box-Plots

Box and whisker diagram horizontal orientation

- The left end is smallest observation
- The Right end is highest observation
- The start of blue box is 25th Percentile
- The end of yellow box is 75th Percentile
- The line joining the yellow and blue box is median

- For nominal variables
- Statistic for determining the dispersion of cases across categories of a variable.
- Ranges from 0 (no dispersion or variety) to 1 (maximum dispersion or variety)
- 1 refers to even numbers of cases in all categories, NOT that cases are distributed like population proportions
- IQV is affected by the number of categories

To calculate:

$$K(100^2 - \Sigma \text{ cat.}\%^2)$$
 $IQV = 100^2(K - 1)$

K=# of categories

Cat.% = percentage in each category

Problem: Is SJSU more diverse than UC Berkeley?

Solution: Calculate IQV for each campus to determine which is higher.

SJSU:		UC Berkeley:		
Percent	Category	Percent	Category	
00.6	Native American	00.6	Native American	
06.1	Black	03.9	Black	
39.3	Asian/PI	47.0	Asian/PI	
19.5	Latino	13.0	Latino	
34.5	White	35.5	White	

What can we say before calculating? Which campus is more evenly distributed?

$$IQV = \frac{K (100^2 - \Sigma \text{ cat.}\%^2)}{100^2 (K - 1)}$$

Problem: Is SJSU more diverse than UC Berkeley? YES

Solution: Calculate IQV for each campus to determine which is higher.

SJSU:			UC Berkeley:				
Percent	Category	% ²	Percent	Category	% ²		
00.6	Native American	0.36	00.6	Native American	0.36		
06.1	Black	37.21	03.9	Black	15.21		
39.3	Asian/PI	1544.49	47.0	Asian/PI	2209.00		
19.5	Latino	380.25	13.0	Latino	169.00		
34.5	White	1190.25	35.5	White	1260.25		
$K = 5 \qquad \Sigma \text{ cat.}\%^2 = 3152.56 \qquad k = 5 \qquad \Sigma \text{ cat.}\%^2 = 3653.82$ $100^2 = 10000 \qquad K \left(100^2 - \Sigma \text{ cat.}\%^2\right)$ $IQV = \qquad 100^2 (K - 1)$							

$$5(10000 - 3152.56) = 34237.2$$

 $10000(5 - 1) = 40000$ SJSU IQV = .856

$$5(10000 - 3653.82) = 31730.9$$

 $10000(5 - 1) = 40000$ UCB IQV =.793

Descriptive Statistics

Now you are qualified use descriptive

statistics!

Questions?

