ML for natural and physical scientists 2023 6

CART

this slide deck:

https://slides.com/federicabianco/mlpn23_6

what is machine learning?

supervised learning

classification prediction

feature selection

unsupervised learning

understanding structure
organizing/compressing data
anomaly detection
dimensionality reduction

supervised learning methods (nearly all other methods you heard of) learns by example

used to:

classify, predict (regression)

• Similarity can be used in conjunction to parametric or non-parametric methods

- Need labels, in some cases a lot of labels
- Dependent on the definition of similarity

supervised learning methods (nearly all other methods you heard of) learns by example

used to:

classify, predict (regression)

• Similarity can be used in conjunction to parametric or non-parametric methods

- Need labels, in some cases a lot of labels
- Dependent on the definition of similarity

clustering vs classifying unsupervised supervised

goal is to partition the space so that the unobserved variables are

observed features: (\vec{x}, \vec{y})

separated in groups consistently with an observed subset

target features: (color)

X

supervised ML: classification

A subset of variables has class labels. Guess the label for the other variables

SVM

finds a hyperplane that optimally separates observations

observed features: (\vec{x}, \vec{y})

X

(color)

supervised ML: classification

A subset of variables has class labels. Guess the label for the other variables

KNearest Neighbors

Assigns the class of closest neighbors

observed features: (\vec{x}, \vec{y})

target features: (color)

supervised ML: classification

A subset of variables has class labels. Guess the label for the other variables

Tree Methods

split spaces along each axis separately

target features: (color)

CART Classification and Regression trees

singletree

(Kaggle)

https://www.kaggle.com/c/titanic

features:

- gender
- ticket class
- age

target variable:

(Kaggle)

https://www.kaggle.com/c/titanic

features:

- gender
- ticket class
- age

target variable:

-> survival (y/n)

optimize over purity:

$$p = rac{N_{largest\ class}}{N_{totalset}}$$

(Kaggle)

https://www.kaggle.com/c/titanic

features:

- gender
- ticket class
- age

target variable:

$$p = rac{N_{largest\ class}}{N_{totalset}}$$

(Kaggle)

https://www.kaggle.com/c/titanic

features:

- gender 79% | 75%
- ticket class 66 | 54%
- age

target variable:

(Kaggle)

https://www.kaggle.com/c/titanic

features:

- gender 79% | 75%
- ticket class 66% | 54%
- age 66% | 61%

target variable:

(Kaggle)

https://www.kaggle.com/c/titanic

features:

- gender 79 | 75%
- ticket class *M* 60 | 85% *F* 96 | 65%
- age *M* 74 | 67% *F* 66 | 60%

target variable:

(Kaggle)

https://www.kaggle.com/c/titanic

features:

- gender 79 | 75%
- ticket class *M* 60 | 85% *F* 96 | 65%
- age **M 74 | 67%** F 66 | 60%

target variable:

Application:

a robot to predict surviving the **Titanic**

(Kaggle)

https://www.kaggle.com/c/titanic

features:

- gender 79 | 75%
- ticket class M 60 | 85% F 96 | 65%

>6.5

• age **M 74 | 67%** F 66 | 60%

714 passengers Ns=424 Nd=290 gender M Ns=93 Nd=360 Ns=197 Nd=64 age class <=6.5 1st + 2nd Ns=250 Nd=107 Ns=139 Nd=217 Ns=120 Nd=80 Ns=234 Nd=298

target variable:

Application:

a robot to predict surviving the Titanic

(Kaggle)

https://www.kaggle.com/c/titanic

features:

- gender 79 | 75%
- ticket class *M* 60 | 85% *F* 96 | 65%
- age *M* **74** | **67%** *F* 66 | 60%

target variable:

Application:

a robot to predict surviving the Titanic

(Kaggle)

https://www.kaggle.com/c/titanic

features:

- gender (binary already used)
- ticket class (ordinal)
- age (continuous)

target variable:

A single tree

https://github.com/fedhere/DSPS/blob/ma ster/lab9/titanictree.ipynb

tree hyperparameters

sklearn.tree.DecisionTreeClassifier¶

class sklearn.tree. **DecisionTreeClassifier** (criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)

[source]

A single tree: hyperparameters

criterion: string, optional (default="gini")

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain.

gini impurity

$${
m I}_G(p) \ = \ 1 - \sum_{i=1}^J {p_i}^2$$

information gain (entropy)

$$\mathrm{H}(T) \ = -\sum_{i=1}^J p_i \log_2 p_i$$

A single tree: hyperparameters A

depth

A single tree: hyperparameters A

A single tree: hyperparameters A

PREVENTS OVERGFITTING

A single tree: hyperparameters

alternative: tree pruning

regression with trees

CART: Classification and Regression Trees

treeensambles

issues with trees

variance:

different trees lead to different results

issues with trees

variance:

different trees lead to different results

why?

because calculating the criterion for every split and every mote is an untractable problem!

e.g. 2 coutinuous variables would be a problem of order $\,\infty^2$

issues with trees

variance:

different trees lead to different results

solution

run many trees and take an "ensamble" decision!

Random Forests

a bunch of parallel trees

Gradient Boosted Trees

a series of trees

Random Egrest and Fraction Forest and Fraction

ensemble methods

run multiple versions of the same model with some small (stochastic or progressive) variation and learn from the emsemble of methods

tree ensemble methods

Random forest:

trees run in parallel (independently of each other)

each tree uses a random subset of observations/features (boostrap - bagging)

class predicted by majority vote: what class do most trees think a point belong to

Gradient boosted trees:

trees run in series (one after the other)

each tree uses different weights for the features learning the weighs from the previous tree

the last tree has the prediction

sklearn.ensemble.RandomForestClassifie r

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) ¶ [source]

sklearn.ensemble.RandomForestClassifie r

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) ¶ [source]

sklearn.ensemble.GradientBoostingClass ifier

```
class sklearn.ensemble.GradientBoostingClassifier(*, loss='log_loss', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False, validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0) ¶
```

[source]

sklearn.ensemble.GradientBoostingRegre ssor

```
class sklearn.ensemble.GradientBoostingRegressor(*,
loss='squared_error', learning_rate=0.1, n_estimators=100, subsample=1.0,
criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, init=None,
random_state=None, max_features=None, alpha=0.9, verbose=0,
max_leaf_nodes=None, warm_start=False, validation_fraction=0.1,
n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0) ¶ [source]
```

ML model performance

ML model performance Accuracy, Recall, Precision

	H0 is True	H0 is False
H0 is falsified	Type l Error False Positive	True Positive
H0 is not falsified	True Negative	Type II Error False Negative

ML model performance Accuracy, Recall, Precision

H0 is True important message spammed
True Negative falsified

H0 is True H0 is False
True Positive

spam in your inbox

ML model performance

Accuracy, Recall, Precision

Precision
$$= \frac{TP}{TP + FP}$$

Recall
$$= rac{TP}{TP + FN}$$

Accuracy
$$=rac{TP+TN}{TP+TN+FP+FN}$$

TP=True Positive

FP=False Positive

TN=True Negative

FN=False Positive

ML model performance

Accuracy, Recall, Precision

Precision
$$= \frac{TP}{TP + FP}$$

Recall
$$=rac{TP}{TP+FN}$$

Accuracy
$$= rac{TP + TN}{TP + TN + FP + FN}$$

Formula

 \mathbf{TP} = number of true positives

 ${f FP}$ = number of false positives

FN = number of false negatives

TP=True Positive

FP=False Positive

TN=True Negative

FN=False Positive

Receiver operating characteristic

Receiver operating characteristic

tuning by changing hyperparameters

Receiver operating characteristic

Extraction of features

. feature importance

In principle CART methods are interpretable you can measure the influence that each feature has on the decision : feature importance

https://github.com/fedhere/DSPS/blob/ma ster/lab9/titanictree.ipynb

. feature importance

In principle CART methods are interpretable you can measure the influence that each feature has on the decision : feature importance

In practice the interpretation is complicated by covariance of features

encoding, categorical variables

spicies	age	weight
dog	7	32.3
bird	1	0.3
cat	3	8.1

spicies	age	weight	
dog	7	32.3	
bird	1	0.3	
cat	3	8.1	continuous

one-hot encoding

change categorical to (integer) numerical

change each category to a binary

spicies	age	weight
1	7	32.3
2	1	0.3
3	3	8.1

cat	bird	dog	age	weight
0	0	1	7	32.3
0	1	0	1	0.3
1	0	0	3	8.1

one-hot encoding

change categorical to (integer) numerical

change each category to a binary

spicies	age	weight
1	7	32.3
2	1	0.3
3	3	8.1

cat	bird	dog	age	weight
0	0	1	7	32.3
0	1	0	1	0.3
1	0	0	3	8.1

implies an order that does not exist

one-hot encoding

change categorical to (integer) numerical

change each category to a binary

spicies	age	weight
1	7	32.3
2	1	0.3
3	3	8.1

implies an order that does not exist

cat	bird	dog	age	weight
0	0	1	7	32.3
0	1	0	1	0.3
1	0	0	3	8.1

ignores covariance between features increases the dimensionality

change categorical to (integer) numerical

spicies	age	weight
1	7	32.3
2	1	0.3
3	3	8.1

implies an order that does not exist

one-hot encoding Definitely

change each category to a binary

Preferred!

cat	bird	dog	age	weight
0	0	1	7	32.3
C	1	0	1	0.3
1	0	0	3	8.1

ignores covariance between features increases the dimensionality problematic if you are interested in feature importance

one-hot encoding

https://github.com/fedhere/MLPNS_FBianco/blob/main/OHE/locationLocationLocation.ip ynb

CART

http://what-when-how.com/artificial-intelligence/decision-tree-applications-for-data-modelling-artificial-intelligence/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/

Feature extractions from time series

Distributed and parallel time series feature extraction for industrial big data applications

Maximilian Christ a , Andreas W. Kempa-Liehrb,c, Michael Fein https://arxiv.org/pdf/1610.07717.pdf

TL;DR:

https://towardsdatascience.com/time-series-feature-extraction-for-industrial-big-data-iiot-applications-5243c84aaf0e

http://www.vldb.org/pvldb/vol12/p1762-paparrizos.pdf

Figure 1: Comparison of classification accuracies across 128 datasets using time series in their raw representations against compact representations of size 20 computed with DFT and GRAIL. Circles over the diagonal indicate datasets over which raw representations outperform low-dimensional representations.

Kaggle PLAsTICc challenge