해석학2 기말고사 (타전공생용) 2021.12.07

배점: 5,7번 각 15점; 나머지 각 문항 10점

주의사항: 문제의 증명 또는 풀이과정을 상세히 기술하시오

- 1. For what values of p is the improper integral $\int_0^\infty \frac{x^p}{1+x^p} dx$ convergent?
- 2. Is the sequence of functions $f_n(x) = \begin{cases} \frac{1}{x} \sin \frac{x}{n} & \text{if } x \neq 0 \\ \frac{1}{n} & \text{if } x = 0 \end{cases}$ uniformly convergent on $[0, \infty)$?
- 3. Find the set of all points where the series $\sum_{n=1}^{\infty} \frac{2^n}{2n^2 + n} \left(\frac{x}{1-x}\right)^n$ is uniformly convergent
- 4. Find the sum of the power series $f(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{n+1}}{n(n+1)}$ for any $x \in [-1,1]$
- 5. Let $f(x) = \sum_{n=0}^{\infty} 5^{-n} \cos(4^n x)$.
- (i) Show that f(x) is differentiable on $[0,2\pi]$ and f'(x) is Riemann integrable on $[0,2\pi]$ ---8pt
- (ii) Evaluate the Riemann integral $\int_0^{2\pi} f'(x) dx$ --- 7pt
- 6. Is $f(x) = \begin{cases} \sin x & \text{if } x \text{ is a rational number} \\ \cos x & \text{if } x \text{ is a irrational number} \end{cases}$ Riemann-integrable on $[0, \pi/2]$?
- 7. Let $f(x) = \begin{cases} \frac{e^{-x} 1}{x}, & x \neq 0 \\ -1, & x = 0 \end{cases}$
- (i) Find the n-th order Taylor polynomial $T_n(x)$ at x=0 of the function f(x) --- 8pt
- (ii) Does $T_n(x)$ converge uniformly to f(x) on $\mathbb{R}=(-\infty,\infty)$? ---7pt
- 8. Determine each statement is true or false: 답만 쓰시오 [각 2점, 틀리면 2점씩 감점함]
- ① If f is integrable on [a,b] and $a < x_0 < b$, then $F(x) := \int_a^x f(t)dt$ is differentiable at x_0
- ② Suppose that $f, g \in \mathcal{R}[a,b]$ and f = g almost everywhere on [a,b] $\Rightarrow \int_a^b f(x)dx = \int_a^b g(x)dx$ (where both are Riemann integrals)
- 3 The improper integral $\int_0^\infty \sqrt{x} \sin(x^2) dx$ is convergent
- ① The series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n+x^2}$ does not converge uniformly on $(-\infty,\infty)$
- ⑤ If every f_n is Riemann- integrable on any compact interval of $[0,\infty)$ and $f_n \rightrightarrows f$ on $[0,\infty)$, then

$$\lim_{n \to \infty} \int_0^\infty f_n(x) e^{-x} dx = \int_0^\infty f(x) e^{-x} dx$$