Human Activity Recognition

February 3, 2019

```
In [1]: import numpy as np
       import pandas as pd
       import matplotlib.pyplot as plt
       import seaborn as sns
       from tabulate import tabulate
In [151]: plt.style.use('ggplot')
         %config InlineBackend.figure_format = 'retina'
          sns.set(rc={'figure.figsize':(10,6)})
In [3]: !gpustat
instance-gpu Sat Feb 2 10:51:28 2019
[0] Tesla P100-PCIE-16GB | 39'C, 0 % | 82 / 16280 MB | root(82M)
In [4]: !ls
breast_cancer_1.csv Human Activity Recognition.ipynb UCI HAR Dataset
HAR_RAW_1.csv
                         nohup.out
                                                                 UCI HAR Dataset.names
In [5]: !ls "UCI HAR Dataset"/"train"/"Inertial Signals"
body_acc_x_train.txt body_gyro_x_train.txt total_acc_x_train.txt
body_acc_y_train.txt body_gyro_y_train.txt total_acc_y_train.txt
body_acc_z_train.txt body_gyro_z_train.txt total_acc_z_train.txt
In [6]: %%sh
       head -n 1 "UCI HAR Dataset"/"train"/"Inertial Signals"/body_acc_x_train.txt | wc -w
128
In [7]: %%sh
       cat "UCI HAR Dataset"/"train"/y_train.txt | wc -1
       cat "UCI HAR Dataset"/"test"/y_test.txt | wc -1
7352
2947
```

0.0.1 Preparing the dataset

```
In [8]: SIGNALS = [
            'body_acc_x',
            'body_acc_y',
            'body_acc_z',
            'body_gyro_x',
            'body_gyro_y',
            'body_gyro_z',
            'total_acc_x',
            'total_acc_y',
            'total_acc_z'
        ]
In [9]: def get_data(subset, part, oneHotEncoded=True):
            if part == 'features':
                all_signals = []
                for signal in SIGNALS:
                    all_signals.append(np.genfromtxt(
                        "UCI HAR Dataset/{}/Inertial Signals/{}_{}.txt".format(subset, signal, s
                return np.transpose(all_signals, (1, 2, 0))
            elif part == 'labels':
                y = np.genfromtxt("UCI HAR Dataset/{s}/y_{s}.txt".format(s=subset))
                if oneHotEncoded:
                    return pd.get_dummies(y).values
                return y
In [10]: %%time
         X_train = get_data(subset='train', part='features')
         X_test = get_data(subset='test', part='features')
CPU times: user 8.35 s, sys: 626 ms, total: 8.98 s
Wall time: 8.98 s
In [11]: %%time
         y_train = get_data(subset='train', part='labels')
         y_test = get_data(subset='test', part='labels')
CPU times: user 32.2 ms, sys: 3.15 ms, total: 35.3 ms
Wall time: 33.2 ms
In [12]: X_train.shape
Out[12]: (7352, 128, 9)
In [13]: X_test.shape
Out[13]: (2947, 128, 9)
```

```
In [14]: y_train.shape
Out[14]: (7352, 6)
In [15]: y_test.shape
Out[15]: (2947, 6)
0.0.2 Building a LSTM structure
In [16]: X_train.shape[1:]
Out[16]: (128, 9)
In [17]: from keras.layers import LSTM, Dropout, Dense
         from keras.models import Sequential
Using TensorFlow backend.
In [18]: from talos import live
         import talos
In [23]: def get_best_lstm_model(x_train, y_test, x_val, y_val, params):
             timesteps, data_point_size = X_train.shape[1:]
             n_classes = y_train.shape[1]
             model = Sequential()
             model.add(LSTM(units=params['first_neuron'],
                            input_shape=(timesteps, data_point_size)))
             model.add(Dropout(rate=params['dropout']))
             model.add(Dense(n_classes, activation='softmax'))
             model.compile(optimizer=params['optimizer'],
                          loss=params['losses'],
                          metrics=['accuracy'])
             history = model.fit(x_train, y_train,
                                 validation_data=[x_val, y_val],
                                 batch_size=params['batch_size'],
                                 callbacks=[live()],
                                 epochs=params['epochs'],
                                 verbose=2)
             return history, model
In [24]: y_train.shape[1]
```

```
Out[24]: 6
In [25]: params = {
             'optimizer': ['Adam'],
             'losses': ['binary_crossentropy'],
             'first_neuron': [16, 32, 64],
             'batch_size': [16],
             'epochs': [20],
             'dropout': [0.3, 0.5, 0.7]
         }
In [148]: get_ipython().run_line_magic('matplotlib', 'inline')
0.0.3 Randomised GridSearch with one layer LSTM
In [ ]: # The ouput of this cell has been omitted because it
        # the connection from the jupyter server is broken due to
        # poor internet connections.
        # This code runs for almost 6 hours on my GPU (Nvidia Titan XP)
        t = talos.Scan(x=X_train, y=y_train,
                  x_val=X_test, y_val=y_test,
                  model=get_best_lstm_model,
                  params=params, search_method='random',
                  shuffle=True, dataset_name='HAR_RAW',
                  experiment_no='1', seed=42)
In [31]: t.details
Out[31]: complete_time
                                  02/02/19/16:10
                                       HAR RAW 1
         experiment_name
         grid_downsample
                                            None
         random method
                                uniform mersenne
         reduce loss
                                           False
                                               50
         reduction_interval
         reduction_method
                                            None
         reduction_metric
                                         val_acc
         reduction_threshold
                                             0.2
         reduction_window
                                               20
         x_shape
                                   (7352, 128, 9)
                                       (7352, 6)
         y_shape
         dtype: object
In [35]: print('We have fit {} number of models'.format(len(t.saved_models)))
We have fit 9 number of models
In [100]: epoch_results = t.data.drop(['losses', 'optimizer',
                       'epochs', 'batch_size', 'round_epochs'], axis=1)
```

Val Loss	Train Loss	Val Accuracy	Train Accuracy	LSTM cells	Dropout
0.0829701	0.0447081	0.971044	0.982567	64	0.3
0.0801187	0.0529833	0.96816	0.979529	64	0.5
0.0936313	0.0711846	0.967255	0.976356	64	0.7
0.107525	0.0581586	0.96488	0.978963	32	0.5
0.113176	0.0646532	0.961769	0.97792	32	0.3
0.132993	0.080815	0.960355	0.97257	32	0.7
0.139463	0.134935	0.956566	0.948699	16	0.3
0.136943	0.116637	0.954021	0.95287	16	0.5
0.175511	0.182294	0.919692	0.914558	16	0.7

```
In [142]: # from keras.callbacks import Callback
          # from IPython.display import clear_output
In [143]: # Code Courtesy: https://qist.qithub.com/stared/dfb4dfaf6d9a8501cd1cc8b8cb806d2e
          # class PlotLearning(Callback):
                def on_train_begin(self, logs={}):
          #
                    self.i = 0
          #
                    self.x = []
                    self.losses = []
          #
          #
                    self.val_losses = []
          #
                    self.acc = []
                    self.val\_acc = []
          #
                    self.fig = plt.figure()
          #
                    self.logs = []
          #
                def on_epoch_end(self, epoch, logs={}):
          #
                    self.logs.append(logs)
          #
                    self.x.append(self.i)
          #
                    self.losses.append(logs.get('loss'))
          #
                    self.val_losses.append(logs.get('val_loss'))
          #
                    self.acc.append(logs.get('acc'))
          #
                    self.val_acc.append(logs.get('val_acc'))
                    self.i += 1
          #
                    f, (ax1, ax2) = plt.subplots(1, 2, sharex=True)
          #
                    clear_output(wait=True)
          #
                    ax1.set_yscale('log')
          #
                    ax1.plot(self.x, self.losses, label="loss")
                    ax1.plot(self.x, self.val_losses, label="val_loss")
          #
          #
                    ax1.legend()
                    ax2.plot(self.x, self.acc, label="accuracy")
          #
          #
                    ax2.plot(self.x, self.val_acc, label="validation accuracy")
                    ax2.legend()
                    plt.show();
          # plot = PlotLearning()
```

0.0.4 Randomised GridSearch with 2 layer GridSearch

```
n_classes = y_train.shape[1]
              model = Sequential()
              model.add(LSTM(units=params['first_neuron'],
                             input_shape=(timesteps, data_point_size),
                             return_sequences=True))
              model.add(Dropout(rate=params['dropout']))
              model.add(LSTM(units=params['first_neuron']))
              model.add(Dropout(rate=params['dropout']))
              model.add(Dense(n_classes, activation='softmax'))
              model.compile(optimizer=params['optimizer'],
                           loss=params['losses'],
                           metrics=['accuracy'])
              history = model.fit(x_train, y_train,
                                  validation_data=[x_val, y_val],
                                  batch_size=params['batch_size'],
                                  callbacks=[live()],
                                  epochs=params['epochs'],
                                  verbose=2)
              return history, model
In [147]: params = {
              'optimizer': ['Adam'],
              'losses': ['binary_crossentropy'],
              'first_neuron': [64],
              'batch_size': [16],
              'epochs': [20],
              'dropout': [0.3, 0.5]
          }
In [152]: t = talos.Scan(x=X_train, y=y_train,
                    x_val=X_test, y_val=y_test,
                    model=get_best_lstm_model_2_layer,
                    params=params, search_method='random',
                    shuffle=True, dataset_name='HAR_RAW',
                    experiment_no='2', seed=42)
```


100%|| 2/2 [2:21:02<00:00, 4233.94s/it]

Scan Finished!

```
In [153]: t.details
```

```
Out[153]: complete_time
                                    02/02/19/20:30
          experiment_name
                                         HAR_RAW_2
          grid_downsample
                                               None
          random_method
                                  uniform_mersenne
          reduce_loss
                                              False
          reduction_interval
                                                 50
          reduction_method
                                               None
          reduction metric
                                            val acc
          reduction_threshold
                                                0.2
          reduction window
                                                 20
          x_shape
                                    (7352, 128, 9)
                                          (7352, 6)
          y_shape
          dtype: object
```

In [154]: print('We have fit {} number of models'.format(len(t.saved_models)))

We have fit 2 number of models

Val Loss	Train Loss	Val Accuracy	Train Accuracy	LSTM cells	Dropout
0.071176	0.037237	0.971553	0.983678	64	0.3
0.0857582	0.0404991	0.969743	0.984313	64	0.5

0.0.5 Conclusion

- Talos is a wonderful library, a little buggy and difficult to get it perfect but reports many things and feels so native to GridSearchCV
- Dropouts are fitting the problem without much overfitting but this problem was computationally very expensive even on GPU
- Even 20 epochs seems more for the LSTMs. The problem is converging very soon within 15 epochs reminds me the power of LSTMs
- With LSTMs we are able to take the maximum validation acuuracy to staggering 97.2% which amazing thinking the fact that our Domain expert features are absent here. Means a person without haveing any domain expertise also can do wonder here.
- Building 2 layer LSTM structure didn't do much good but it took more time. Hence it seems better to stick to 1 layer sructure and looking at the number of training points it seems reasonable.
- One problems with talos is that it can parallelize a single model fit on GPU but can not parallelize all the model fits from GridSearch.