Analízis

A differenciálszámítás középértéktételei:

1) Rolle-tétel:

Ha f folytonos a korlátos és zárt [a;b] intervallumon, f diffható [a;b]-n és f(a) = f(b), akkor van egy a < c < b belső pont, ahol f'(c) = 0 (vízszintes)

2) Lagrange-tétel:

Ha f folytonos a korlátos és zárt [a;b], f diffható (a;b)-n, akkor létezik olyan a < c < b, hogy f'(c) = (f(b) - f(a))/(b - a)

3) Cauchy-tétel:

nincs

Legyen f,g folytonos a korlátos és zárt [a;b] szakaszon, és diffhatók (a;b)-n. Akkor létezik a <c<b közbülső hely, hogy f'(c)/g'(c) = (f(b) – f(a))/(g(b) – g(a))

Tetel: Legyen f folytonos a korlátos és zárt [a,b] szakaszon, diffható (a,b)-n. Akkor f konstans [a;b]-n. akkor és csak akkor, ha f'=0 (a;b)-n.

Függvény mnotonitásvisgálata differenviálással:

Ha f(x) monoton nő [a;b]-n, és difható egy (a;b)-beli c helyen, akkor $f'(c) \ge 0$

Hasonlóan, ha f(x) monoton csökken [a;b]-n, és difható egy (a;b)-beli c helyen, akkor $f(c) \le 0$.

Tétel: Monotoitás vizsgálata deriválttal:

Legyen I egy véges, vagy végtelen intervallum, végpontjaival, vagy anélkül. Legyen f(x) folytonos I-n, diifható az I belső pontjaiban. Akkor:

- a) f(x) monoton nő I-n akkor és csak akkor, ha $f'(x) \ge 0$ I minden belső pontjában (csökken) (\le)
- b) f(x) szig. mon. nő I-n akkor és csak akkor, ha $f'(x) \ge 0$ I belső pontjaiban, és (csökken)

I-nek olyan részintervalluma, ahol $f \equiv 0$ (konstans)

- c) Ha f'(x) > 0 I minden belső pontjában, akkor f szig. mon. nő I-n (<) (csökken)
- köv: a) $f = konst \leftrightarrow f' = 0$ belül b) $f mon. nő \leftrightarrow f' \ge 0$ belül
 - c) f szig mon nő \leftarrow f' > 0 belül (visszafelé nem igaz)

asin (x) "arcus sinus x" [arc sin (x), sin⁻¹(x)]
sin (x):
$$[-\pi/2; \pi/2] \rightarrow [-1;1]$$

asin (x) $[-1;1] \rightarrow [-\pi/2; \pi/2]$

 $\sin(x) \rightarrow \text{szig mon nő, mert sin'} = \cos > 0 (-\pi/2; \pi/2)$ intervallumon, zárt intervallumon még szigorúbb a monotonitás

$$d/dx a sin (x) = 1/\sqrt{(1-x^2)}$$
 $|x| < 1$

$$acos (x)$$
 ,arcus cosinus x"
 $[arc cos (x), cos^{-1} (x)]$
 $cos (x): [0; \pi] \rightarrow [-1; 1]$
 $acos (x): [-1; 1] \rightarrow [0; \pi]$

$$cos(x) \rightarrow szig mon csökken, mert cos' = -sin < 0 (0; \pi)-n$$

$$d/dx \ acos (x) = -1/\sqrt{(1-x^2)}$$
 $|x| < 1$

```
köv: (a\sin + a\sin') = 0 (-1;1)-en, mert a\sin + a\cos = konstans [-1;1]-en
                  a\sin(x) + a\cos(x) = \pi/2 [-1;1]-en
megj: \sin \alpha = \cos (\pi/2-\alpha) ezért \pi/2 - a\sin (x) = a\cos (x)
    atan (x)
                  "arcus tangens x"
                                             [arc tg (x); tan^{-1}(x)]
         tan(x): (-\pi/2; \pi/2) \rightarrow R
         atan (x): R \rightarrow (-\pi/2; \pi/2)
    tan(x) \rightarrow szig mon nő, mert tan' = 1/cos^2 > 0
         d/dx atan (x) = 1/(1+x^2)
                                             x \in R
                  ", arcus cotangens x" [arc ctg (x); \cot^{-1}(x)]
    acot (x)
         \cot(x):(0;\pi)\to R
         acot (x): R \rightarrow (0; \pi)
    \cot(x) \rightarrow \text{szig mon cs\"{o}kken, mert cot'} = -1/\sin^2 < 0
         d/dx \ acot(x) = -1/(1+x^2)
megj: \sin \alpha = \cos (\pi/2-\alpha)
                                    \rightarrow tan \alpha = \cot(\pi/2-\alpha)
         \cos \alpha = \sin (\pi/2 - \alpha)
Áll:
                                                      \lim a \cot = 0
                  \lim a \cot = \pi
                                                      +\infty
                                                      \lim atan = \pi/2
                  \lim atan = -\pi/2
                                                      +\infty
Hiperbólikus függvények
    \sinh(x) = (e^x - e^{-x})/2
                                  "sinus hiperbolikus"
                                                                        [sh(x)]
                                                                                           páratlan
    \cosh(x) = (e^x + e^{-x})/2
                                   "cosinus hiperbolikus"
                                                                        [ch(x)]
                                                                                           páros
    tanh(x) = sinh(x)/cosh(x) = (e^{x} - e^{-x})/(e^{x} + e^{-x})
                                    "tangens hiperbolikus"
                                                                        [th (x)]páratlan
    \coth(x) = \cosh(x)/\sinh(x) = (e^x + e^{-x})/(e^{x-}e^{-x}) \quad x \neq 0
```

$$d/dx \cosh(x) = \sinh(x)$$

$$d/dx \sinh(x) = \cosh(x)$$

Köv: a)
$$cosh(x)$$
 szig mon nő $[0; \infty)$ -en , mert $cosh' = sinh > 0$, ha $x > 0$ (csökken $(-\infty; 0]$ -n) < 0 , ha $x < 0$ b) $cosh(x) \ge 1$, mert $x = 0$ -ban minimuma van

"cotangens hiperbolikus"

[cth(x)]

páratlan

c) sinh x szig mon nő R-en, mert sinh' =
$$\cosh \ge 1 > 0$$

Megj: $\cosh^2(x) - \sinh^2(x) = 1$

Addíciós képletek hiperbolikus függvényekre:

```
sinh(x+y) = sinh(x) \cdot cosh(y) + cosh(x) \cdot sinh(y)
        Spec: sinh(2x) = 2 sinh(x) \cdot cosh(x)
    \cosh(x+y) = \cosh(x) \cdot \cosh(y) + \sinh(x) \cdot \sinh(y)
        Spec: \cosh(2x) = \cosh^2(x) + \sinh^2(x)
        d/dx \tanh(x) = 1/\cosh^2(x)
        d/dx \coth(x) = -1/\sinh^2(x)  x \neq 0
Áll:
        \lim \tanh = \lim \coth = 1
        +\infty
                     +\infty
        \lim \tanh = \lim \coth = -1
        <u>-</u>∞
                     -∞
        \lim coth = +\infty
                                                   \lim coth = -\infty
         0 +
                                                   0-
A hiperbolikus függvények inverzei:
                         "area sinus hiperbolikus x"
    asinh (x)
                                                                   [arsh(x)]
    sinh' = cosh \ge 1 \rightarrow sinh szig mon nő
        d/dx asinh (x) = 1/\sqrt{1+x^2}
                                                  x \in R
Áll: asinh (x) = \ln (x+\sqrt{(x^2+1)})
    acosh (x)
                         , area cosinus hiperbolikus x" [arch (x)]
    \cosh' = \sinh > 0, ha x > 0, ezért \cosh szig mon nő, ha x \ge 0
        d/dx acosh (x) = 1/\sqrt{1-x^2}
                                                  x > 1
Áll: acosh (x) = ln(x+\sqrt{(x^2-1)})
                                                  x > 1
    atanh (x)
                         "area tangens hiperbolikus x"
                                                                    [arth(x)]
    tanh' = 1/cosh^2 > 0 \rightarrow tanh deriválható
        atanh: (-1; 1) \rightarrow R
        d/dx atanh (x) = 1/(1-x^2)
                                                  |x| < 1
                         "area cotangens hiperbolikus x"
    acoth (x)
                                                                    [arcth (x)]
        d/dx acoth (x) = 1/(1-x^2)
                                                  |x| > 1
Áll:
        atanh (x) = \frac{1}{2} \ln ((1+x)/(1-x))
                                                 |x| < 1
        acoth (x) = \frac{1}{2} \ln ((1+x)/(1-x))
                                                 |x| > 1
```

Def: Az f [a;b] konvex, ha a grafikonjának bármely szelője a grafikon fölött halad

Def: Az f (x) konkáv, ha minden szelője a grafikon alatt halad

Tétel: Konvexitás tesztje az első deriválttal

Legyen f folytonos a korlátos és zárt [a;b], diffható (a;b)-n. Akkor ekvivalens:

- a) f konvex [a;b]-n
- b) f' monoton nő (a;b)-n

(csökken)

c) grafikonjának bármely érintőegyenese a grafikon fölött halad

(alatt)

Tétel: Konvexitás tesztje a második deriválttal: 0

Legyen $f \in ([a;b]$ -n, kétszer diffható (a;b)-n. Akkor f konvex [a;b]-n akkor és csak akkor, ha (konkáv)

$$f'' \ge 0$$

$$(f'' \le 0)$$

Eljárás 0/0; ∞/∞ ; $0\cdot\infty$; 1^{∞} típusú határértékek kiszámítására

Tétel: l' Hopital szabály

Legyen

a)
$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$$

b)
$$\lim_{x \to a} |g(x)| = +\infty$$

Tegyük fel, hogy létezik lim f'(x)/g'(x).

Akkor létezik $\lim f(x)/g(x)$ is, és $\lim f(x)/g(x) = \lim f'(x)/g'(x)$ ugyanez érvényes a féloldali

 $x \rightarrow a$ $x \rightarrow a$ $x \rightarrow a$

határértékekre, $+/-\infty$ -ben vett határértékekre és akkor is igaz, ha lim $f'/g' = +/-\infty$

Def: f(x)-nek $x = x_0$ -ban lokális minimum helye van, ha van olyan K környezete x_0 -nak, ahol f értelmezett és $f(x) \ge f(x_0)$ minden $x \in K$ -ra.

Lokális maximum hely $\rightarrow f(x) \le f(x_0)$

Def: f(x)-nek x_0 -ban (abszolút) minimum helye van, ha $f(x) \ge f(x_0)$ minden $x \in D(f)$ -re Abszolút max $f(x) \le f(x_0)$

Szélsőértékhelyek keresése deriválással:

Def: Az f (x) függvény előjelet vált x₀-ban, ha létezik olyan r > 0, hogy (x₀-r;x₀)-ban f ≤ 0 , $(x_0;x_0+r)$ -en $f \geq 0$ (f - \rightarrow +), vagy $(x_0-r;x_0)$ - ban $f \geq 0$, $(x_0;x_0+r)$ -en $f \leq 0$ (f + \rightarrow -)

Áll: ha f
$$(x_0) = 0$$
 és f' $(x_0) > 0$, akkor f - \rightarrow + x_0 -ban

ha
$$f(x_0) = 0$$
 és $f'(x_0) < 0$, akkor $f + \rightarrow -x_0$ -ban

Tétel: Lokális szélsőérték szükséges feltétele:

Ha f (x)-nek x_0 -ban lokális szélsőérték helye van és f diffható x_0 -ban, akkor f (x_0) = 0

Tétel: Lokális szélsőértékhely elégséges feltétele:

Ha f (x) diffható x_0 egy környezetében, akkor

a) f' - \rightarrow + x_0 -ban \rightarrow f-nek lokális minimuma van x_0 -ban

b) f' + \rightarrow - x_0 -ban \rightarrow f-nek lokális maximuma van x_0 -ban

Tétel: Lokális szélsőérték elégséges feltétele a második deriválttal:

a)
$$f'(x_0) = 0$$
; $f'' > 0 \rightarrow f$ -nek x_0 -ban lokális minimum helye van

b) f'
$$(x_0) = 0$$
; f'' $< 0 \rightarrow$ f-nek x_0 -ban lokális maximum helye van

Lokális szélsőérték keresés:

f gyökeiben f" előjele: - f" > 0
$$\rightarrow$$
 lokális min
- f" < 0 \rightarrow lokális max
- f" = 0 \rightarrow ? f' előjelét ellenőrizzük

Módszer f(x) abszolút szélsőérték helyeinek megkeresésére:

Legyen $f \in ([a;b] \rightarrow l\acute{e}tezik minimum \acute{e}s maximum hely is.$

A szélsőérték lehet: - végpontban

- belső pontban, ott f' = 0 kell legyen

→ szélsőérték jelöltek: f' gyökei és az intervallum végpontjai

a legnagyobb függvényértéknél lesz max hely, a legkisebbnél pedig min hely

Tétel: az infelexiós pont szükséges és elégséges feltétele:

x₀ inflexiós pont akkor és csak akkor ha f' előjelet vált x₀-ban

Def: Az y = ax + b egyenes aszimptotája
$$f(x)$$
-nek + ∞ -ben, ha lim $(f(x) - (ax+b)) = 0$

$$(-\infty)$$

$$(-\infty)$$

Def: Az x = a egyenes aszimptotája f(x)-nek, ha lim f =
$$\infty$$
 vagy lim f = ∞ a+ (- ∞) a- (- ∞)

Aszimptota ≡ érintő a végtelenben

Aszimptota megkeresése:

(pl. $+\infty$ -ben)

a)
$$\lim_{+\infty} f(x)/x = a \rightarrow \text{egyenes meredeksége}$$

b)
$$\lim_{x\to +\infty} (f(x) - ax) \to az$$
 eltolás konstansa

$$\lim_{t\to 0} (e^t - 1)/t = 1$$

Függvényvizsgálat lépései:

- 1) értelmezési tartomány meghatározása
- 2) lim f féloldali határértékei a szakadási pontokban és D(f) határoló pontokban (+/- ∞-ben)
- 3) f páros, páratlan, periodikus-e?
- 4) f zérus helyei (ha nem nehéz)
- 5) monoton szakaszok, lokális és globális szélsőértékhelyek
- 6) konvex és konkáv szakaszok, inflexiós pontok
- 7) Aszimptotálás
- 8) grafikon lerajzolása

Def: df(a)(x) = f'(a)(x-a), az f(x) a bázispontú differenciáljának értéke az x helyen megj: a differenciál párhuzamos az a-beli érintőegyenessel

$$f(x) = f(a) + f'(a)(x-a) + \epsilon(x)$$

$$\lim_{x \to a} \epsilon(x)/(x-a) = 0$$
 "\$\epsilon(x)\$ sokkal kisebb (x-a)-nál, ha x közel van a-hoz"

Ezért: ha $f'(a) \neq 0$, akkor $\varepsilon(x)$ elhanyagolható az f'(a)(x-a) -hoz képest

Azaz: $f(x)-f(a) \approx f'(a)(x-a)$, ha x közel van a-hoz

$$f(a)(x-a) \rightarrow df$$

 $f(x) - f(a) \rightarrow \Delta f$

 $\Delta f \approx df$

Tétel: Ha f kétszer differenciálható [a;x] szakaszon, akkor létezik olyan $c \in (a;x)$, hogy $f(x) = f(a) + f'(a)(x-a) + \frac{1}{2} f''(c)(x-a)^2$, ezért

$$|\Delta f - df| \le |\frac{1}{2} f''(c)(x-a)^2| \le \frac{1}{2} M(x-a)^2$$

 $M = \max |f''| [a;x]$

Newton módszer:

f(x) = 0 megoldására

 x_{n+1} az x_n ponthoz tartozó érintő metszéspontja az x tengellyel y- $f(x_n) = f'(x_n)(x - x_n)$

$$x_{n+1} = x_n - (f(x_n)/f'(x_n))$$

A Newton módszer konvergenciája nagyon gyors

A Newton-módszer gyorsan konvergens, ha:

- a) a gyök közeléből indítjuk az iterációt
- b) a gyök egyszeres, azaz $f(x^*) \neq 0$
- c) $f \in c^2$ az x^* környezetében f kétszer deriválható ilyenkor $|x_{n-1} x^*| \le c|x_n x_*|^2$

Megj: a gyöktől távolabbról indítva az iteráció divergálhat

Létezik egy lassabb, de biztosan konvergens eljárás → felezéses módszer Lépésenként a hiba feleződik

$$f(a) \cdot f(b) < 0$$
 Legyen $c = (a+b)/2$

Integrál számítás

Def: Legyen I véges vagy végtelen intervallum végpontokkal vagy anélkül, legyen f: $I \rightarrow R$ A F: $I \rightarrow R$ függvény primitív függvénye f-nek az I intervallumon, ha:

- a) F folytonos
- b) F' = f az I belső pontjaiban

Tétel: A primitív függvény konstans összeadandó erejéig egyértelmű, F(x) + c alakú az összes primitív függvény

Jelölés: ∫f(x) dx jelöli f bármely primitív függvényét

Primitív függvény kiszámítási technikája:

Áll: Ha $\int f(x) dx = F(x) + c$, akkor $\int f(ax+b) dx = 1/a F(ax+b) + c$ f változójában lineáris függvényt adunk meg

Tétel: a) $\int f'(x) \cdot f^{\alpha}(x) dx = (f^{\alpha+1}(x))/(\alpha+1) + c$ ha $\alpha \ge 0$ egész, vagy h f(x) > 0 minden x-re, és $x \in \mathbb{R}$ és $\alpha \ne -1$

b) $\int f(x)/f(x) dx = \ln |f(x)| + c$ olyan intervallumokon, ahol f(x)-nek nincs gyöke

Láncszabály:

Ha F' = f, akkor d/dt F $(\phi(t))$ = F' $(\phi(t)) \cdot \phi'(t)$ = $f(\phi(t)) \cdot \phi'(t)$, azaz $\int f(\phi(t)) \cdot \phi'(t) dt$ = F $(\phi(t))$ +c Ha itt $\phi(t)$ szig mon, akkor invertálható, tehát $x = \phi(t)$ -ből $t = \phi^{-1}(x)$ kiszámolható

Tétel: Helyettesítéses integrálás

Ha $\varphi(t)$ szig mon és diffható I-n, akkor ott f(x) primitív függvénye $\int f(x) dx = \int f(\varphi(t)) \cdot \varphi'(t) dt$ $t = \varphi^{-1}(x)$

Tétel: Parciális integrálás

Legyen f, g folytonos I-n, diffható I belső pontjaiban. Ha f'g-nek van primitív függvénye I-n, akkor fg'-nek is van, és $\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$ "A deriválást átdobjuk g-ről f-re"

Alapintegrálok:

$$\int x^{\alpha} dx = (x^{\alpha+1})/(\alpha+1) + c \qquad \text{ha } x > 0, \ \alpha \neq -1 \text{ val\'os vagy}$$
$$x \in R \text{ \'es } \alpha \geq 0 \text{ eg\'esz}$$

$$\int 1/x \, dx = \ln|x| + c \qquad x \neq 0$$

$$\int e^x dx = e^x + c$$

$$\int a^x dx = (a^x)/(\ln (a)) + c$$
 ha $a > 0, a \ne 1$

$$\int \cos(x) dx = \sin(x) + c$$

$$\int \sin(x) dx = -\cos(x) + c$$

$$\int 1/\cos^2(x) = \tan(x) + c$$
 $x \neq (k+1/2) \pi$

$$\int 1/\sin^2(x) = -\cot(x) + c \qquad x \neq k\pi$$

$$\int \cosh(x) dx = \sinh(x) + c$$

$$\int \sinh(x) dx = \cosh(x) + c$$

$$\int 1/\cosh^2(x) = \tanh(x) + c$$

$$\int 1/\sinh^2(x) = -\coth(x) + c$$

$$\int 1/\sqrt{(1-x^2)} \, dx = a\sin(x) + c \qquad |x| < 1 = -a\cos(x) + c \qquad |x| < 1 (a\sin(x) + a\cosh(x) = \pi/2$$

$$\int 1/\sqrt{(1+x^2)} \, dx = a \sinh x + c$$

$$= \ln (x + \sqrt{(x^2+1)}) + c$$

$$\int 1/(1+x^2) dx = atan(x) + c$$

= -acot(x) + c

$$\begin{split} \int 1/(1-x^2) \; dx &= \text{atanh } (x) + c & \text{ha } |x| < 1 \\ &= \text{acoth } (x) + c & \text{ha } |x| > 1 \\ &= \frac{1}{2} \ln |(1+x)/(1-x)| + c & \text{ha } x \neq +/-1 \end{split}$$