Grocery List of Definitions

Alex Nelson

 $E\text{-}mail\ address: \verb"pqnelson@gmail.com"$

CHAPTER 1

Algebra

One of the basic algebraic tools:

DEFINITION 1. Let S be some set. A Law of Composition $f: S \times S \to S$ consists of

- - a set $f \subseteq dom(f) \times cod(f)$

such that

• for each $x \times y \in \text{dom}(f)$, there is a corresponding $z \in \text{cod}(f)$ such that $(x \times y, z) \in f$.

We can use it to introduce various mathematical objects, e.g.

Definition 2. A Monoid consists of

 \bullet a set M

equipped with

- a law of composition $*: M \times M \to M$
- an identity element $e \in M$

such that

- the law of composition is associative, i.e. (x*y)*z = x*(y*z) for all $x,y,z\in M$;
- closure under the law of composition, i.e. $(x * y) \in M$ for all $x, y \in M$;
- the identity satisfies e * x = x * e = x for all $x \in M$.

Definition 3. A Group G consists of

- ullet a monoid G
- equipped with
 - an inversion operator $(\cdot)^{-1}: G \to G$

such that

• $x^{-1} * x = x * x^{-1} = e$ for all $x \in G$.

CHAPTER 2

Measure Theory

DEFINITION 4. Let X be a set. A σ -Algebra over X consists of

• a collection Σ of subsets of X

such that

- Σ is nonempty,
- if $x \in \Sigma$, the $x^C \in \Sigma$,
- \bullet let I be a finite indexing set, then

$$\left(\bigcup_{i\in I} E_i\right) \in \Sigma$$

for countably many $E_i \in \Sigma$.

It allows us to introduce the notion of a measure:

Definition 5. Let X be some set, Σ be a σ -algebra over X. A **measure** μ consists of

• a function $\mu: \Sigma \to [-\infty, \infty]$

such that

- $\mu(E) \ge 0$ for all $E \in \Sigma$;
- $\bullet \ \mu(\emptyset) = 0;$
- if $\{E_i\}_{i\in I}$ is a countable collection of pairwise disjoint sets in Σ , then

$$\mu\left(\bigcup_{i\in I} E_i\right) = \sum_{i\in I} \mu(E_i).$$

Bibliography

 $[1] \ \ {\rm W.\ Rudin}, \ Principles\ of\ mathematical\ analysis.\ {\rm McGraw-Hill\ New\ York},\ 1964.$