

Exame - Parte 2 (com consulta, 10 valores, 90 minutos)

Nome:

- 1. Pretende-se analisar a utilização de mecanismos ARQ em dois cenários:
 - Cenário 1 capacidade do canal (em cada sentido): 2 Mbit/s; distância entre estações 25 m;
 - Cenário 2 capacidade do canal (em cada sentido): 2 Mbit/s; distância entre estações 2500 km;

O atraso de propagação no meio é de 5us/km. Considere que apenas são enviadas tramas de Informação (com tamanho de 2000 bits) num sentido e tramas de Supervisão em sentido oposto e despreze o tamanho das tramas de Supervisão.

a) (1 valor) Calcule a eficiência e débito máximo do mecanismo Stop and Wait nos dois cenários indicados e indique, justificando, se este mecanismo seria uma solução aceitável para algum dos cenários.

Stop and Wait	Cenário 1	Cenário 2
Eficiência máxima (%)		
Débito Máximo (kbit/s)		

b) (1,5 valores) Considere o Cenário 2 e os mecanismos Go-Back-N e Selective Reject com uma janela de 16 tramas. Assuma duas situações de erro distintas: **BER**₁=10⁻⁶ e **BER**₂=10⁻³. Calcule o débito máximo possível dos dois mecanismos para as duas situações de erro indicadas. Qual dos dois mecanismos escolheria na pior situação de erro?

Débito Máximo (kbit/s)	BER ₁	BER ₂
Go-Back-N		
Selective Reject		

Nome:		

c) (1,5 valores) Assuma que na alínea anterior escolhia o mecanismo de *Selective Reject*. No cenário 2 e na pior situação de erro, que estratégias usaria para aumentar a eficiência do protocolo?

- 2. Através de uma porta de saída de um comutador de pacotes é encaminhado tráfego recebido em 16 portas de entrada, prevendo-se que cada fluxo de entrada contribua com um débito médio de 300 kbit/s. Pretende-se nestas condições dimensionar a capacidade do canal que serve a porta de saída para uma utilização média (intensidade de tráfego) de 80%. Admita que os pacotes têm um comprimento médio de 1500 Bytes e que se pode modelizar o acesso ao canal por uma fila de espera M/M/1.
- a) (1 valor) Calcule, nas condições indicadas, a capacidade do canal referido, o tempo médio de atraso dos pacotes (T) e a ocupação média da fila de espera (N_w).

Capacidade do canal, C, (Mbit/s)	
Tempo médio de atraso dos pacotes, T, (ms)	
Ocupação média da fila de espera, N _w	

• •		
N	nm	Δ.
Τ 4.		v.

- b) (1 valor) Discuta como variaria o atraso médio dos pacotes e a ocupação média da fila de espera nos dois casos seguintes:
 - a. Duplicação do tráfego nas portas de entrada e duplicação da capacidade do canal
 - b. Duplicação do comprimento dos pacotes, mantendo-se o débito.

Que conclusões que pode extrair em face destes resultados?

	T (ms)	$N_{ m w}$
Duplicação de tráfego de entrada e de capacidade do canal		
Duplicação do comprimento dos pacotes, manutenção de débito		

Nome:

- c) (2 valores) Assuma agora que os pacotes têm um comprimento **constante** de 1500 Bytes e que a capacidade do canal é de 6 Mbit/s. Considere dois cenários:
 - a. Cenário 1: o processo de chegada de pacotes pode ser descrito como um processo de Poisson, isto é o intervalo entre chegada de pacotes consecutivos é caracterizado por uma distribuição exponencial.
 - c. Cenário 2: os fluxos são de débito constante, isto é, a cada uma das 16 portas chegam pacotes cujo intervalo entre chegada de pacotes consecutivos é constante; considere, no entanto, o pior caso, em que os pacotes das 16 portas chegam todos ao mesmo tempo.

Para estes dois cenários determine o tempo médio de atraso dos pacotes (T) e a ocupação média da fila de espera (N_w) . Compare os resultados com os obtidos na alínea a) e justifique as diferenças.

	T (ms)	$N_{\rm w}$
Cenário 1		
Cenário 2		

Nome:

3. Considere que um computador, numa rede local, tem configurada a seguinte tabela de encaminhamento:

Endereço / máscara	Flags (G, H)	Endereço de Gateway (next hop)
172.9.10.0 / 26		0.0.0.0
172.9.10.64 / 26	G	172.9.10.62
172.9.10.128 / 26	G	172.9.10.62
172.9.10.192 / 26	G	172.9.10.61
default (0.0.0.0)	G	172.9.10.60

a) (1 valor) Com bases na informação disponível nesta tabela indique, justificando:

Endereço da subrede do computador	
Endereço de <i>broadcast</i> da subrede	
Número máximo de endereços disponíveis para interfaces na subrede	

b)	(1 valor) Admita que a tabela ARP do computador está vazia e que é executado sucessivamente co	om sucess	o o
	comando <i>ping</i> para os seguintes endereços de outros computadores:		

172.9.10.20, 172.9.9.160 e 183.14.11.40.

No final, quais os endereços IP que deverão estar presentes na tabela ARP do computador (associados aos endereços MAC resolvidos)? Justifique.

Endereços IP:		