Виктор Васильевич Лепин

Неопределенность — это когда противник не имеет противоположных интересов, но выигрыш действующего игрока во многом зависит от неизвестного заранее состояния противника.

Неопределенность — это когда противник не имеет противоположных интересов, но выигрыш действующего игрока во многом зависит от неизвестного заранее состояния противника.

Неопределенность зависит от недостатка информации о внешних условиях, в которых будет приниматься решение и не зависит от действий игрока

Неопределенность может быть следствием многих причин:

• колебание спроса;

- колебание спроса;
- нестабильность экономической ситуации;

- колебание спроса;
- нестабильность экономической ситуации;
- изменение курса валют;

- колебание спроса;
- нестабильность экономической ситуации;
- изменение курса валют;
- колебание уровня инфляции;

- колебание спроса;
- нестабильность экономической ситуации;
- изменение курса валют;
- колебание уровня инфляции;
- неустойчивая биржевая ситуация;

- колебание спроса;
- нестабильность экономической ситуации;
- изменение курса валют;
- колебание уровня инфляции;
- неустойчивая биржевая ситуация;
- погода как природное явление.

- колебание спроса;
- нестабильность экономической ситуации;
- изменение курса валют;
- колебание уровня инфляции;
- неустойчивая биржевая ситуация;
- погода как природное явление.

Неопределенность может быть следствием многих причин:

- колебание спроса;
- нестабильность экономической ситуации;
- изменение курса валют;
- колебание уровня инфляции;
- неустойчивая биржевая ситуация;
- погода как природное явление.

В таких задачах выбор решения зависит от состояния объективной действительности, называемой «природой», а математические модели называются «игры с природой».

Игра, в которой осознанно действует только один из игроков, называется **игрой с природой**.

Игра, в которой осознанно действует только один из игроков, называется **игрой с природой**.

«Природа» — это обобщенное понятие противника, не преследующего собственных целей в данном конфликте, хотя такую ситуацию конфликтом можно назвать лишь условно.

Игра, в которой осознанно действует только один из игроков, называется **игрой с природой**.

«Природа» — это обобщенное понятие противника, не преследующего собственных целей в данном конфликте, хотя такую ситуацию конфликтом можно назвать лишь условно.

Природа может принимать одно из своих возможных состояний и **не имеет целью получение выигрыша**

Игра, в которой осознанно действует только один из игроков, называется **игрой с природой**.

«Природа» — это обобщенное понятие противника, не преследующего собственных целей в данном конфликте, хотя такую ситуацию конфликтом можно назвать лишь условно.

Природа может принимать одно из своих возможных состояний и **не имеет целью получение выигрыша**

Игра с природой представляется в виде платежной матрицы, элементы которой — выигрыши игрока A, но не являются проигрышами природы Π .

Каждый элемент платежной матрицы $[a_{ij}]$ — выигрыш игрока A при стратегии A_i в состоянии природы Π_j

Каждый элемент платежной матрицы $[a_{ij}]$ — выигрыш игрока A при стратегии A_i в состоянии природы Π_j

Матрица еще называется матрицей доходности, которая агрегирует информацию о возможной доходности вариантов стратегии при различных сценариях развития экономической ситуации.

Различают два вида задач в играх с природой:

Различают два вида задач в играх с природой:

• Задачи о принятии решений в условиях неопределенности, когда нет возможности получить информацию о вероятностях появления состояний природы

Различают два вида задач в играх с природой:

- Задачи о принятии решений в условиях неопределенности, когда нет возможности получить информацию о вероятностях появления состояний природы
- Задача о принятии решений в условиях риска, когда известны вероятности, с которыми природа принимает каждое из возможных состояний

• Уникальные единичные случайные явления связаны с неопределенностью.

- Уникальные единичные случайные явления связаны с неопределенностью.
- Массовые случайные явления обязательно допускают некоторые закономерности вероятностного характера.

- Уникальные единичные случайные явления связаны с неопределенностью.
- Массовые случайные явления обязательно допускают некоторые закономерности вероятностного характера.
- Ситуация с полной неопределенностью характеризуется отсутствием какой бы то ни было дополнительной информации.

ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

• Предположим, что лицо, принимающее решение, может выбрать одну из возможных альтернатив, обозначенных номерами $i=1,2,\ldots,m$

- Предположим, что лицо, принимающее решение, может выбрать одну из возможных альтернатив, обозначенных номерами $i=1,2,\ldots,m$
- Ситуация является полностью неопределенной, т. е. известен лишь набор возможных вариантов состояний внешней (по отношению к лицу, принимающему решение) среды, обозначенных номерами $j=1,2,\ldots,n$.

- Предположим, что лицо, принимающее решение, может выбрать одну из возможных альтернатив, обозначенных номерами $i=1,2,\ldots,m$
- Ситуация является полностью неопределенной, т. е. известен лишь набор возможных вариантов состояний внешней (по отношению к лицу, принимающему решение) среды, обозначенных номерами $j = 1, 2, \ldots, n$.
- \bullet Если будет принято i-е решение, а состояние внешней среды соответствует j-й ситуации, то лицо, принимающее решение, получит доход

При решении Задачи о принятии решений в условиях неопределенности для отбора вариантов стратегии применяют так называемые критерии оптимальности (альтернативные критерии оптимальности):

• критерий Вальда,

- критерий Вальда,
- критерий оптимизма,

- критерий Вальда,
- критерий оптимизма,
- критерий пессимизма,

- критерий Вальда,
- критерий оптимизма,
- критерий пессимизма,
- критерий Сэвиджа,

- критерий Вальда,
- критерий оптимизма,
- критерий пессимизма,
- критерий Сэвиджа,
- критерий Гурвица

- критерий Вальда,
- критерий оптимизма,
- критерий пессимизма,
- критерий Сэвиджа,
- критерий Гурвица

При решении Задачи о принятии решений в условиях неопределенности для отбора вариантов стратегии применяют так называемые критерии оптимальности (альтернативные критерии оптимальности):

- критерий Вальда,
- критерий оптимизма,
- критерий пессимизма,
- критерий Сэвиджа,
- критерий Гурвица

Для выбора наиболее эффективного варианта стратегии ко всем возможным вариантам развития применяются все критерии оптимальности одновременно: каждый из критериев позволяет отобрать только один вариант, оптимальным же будет являться тот из них, на который указало большинство критериев.

Критерий Вальда

Критерий Вальда (критерий гарантированного результата, максиминный критерий) позволяет выбрать наибольший элемент матрицы доходности из её минимально возможных элементов:

$$W = \max_{i} \min_{j} a_{ij},$$

 a_{ij} — элемент матрицы доходности.

Критерий Вальда

Критерий Вальда (критерий гарантированного результата, максиминный критерий) позволяет выбрать наибольший элемент матрицы доходности из её минимально возможных элементов:

$$W = \max_{i} \min_{j} a_{ij},$$

 a_{ij} — элемент матрицы доходности.

Критерий Вальда предназначен для выбора из рассматриваемых вариантов стратегий варианта с наибольшим показателем эффективности из минимально возможных показателей для каждого из этих вариантов.

• Данный критерий обеспечивает максимизацию минимального выигрыша, который может быть получен при реализации каждого из вариантов стратегий.

- Данный критерий обеспечивает максимизацию минимального выигрыша, который может быть получен при реализации каждого из вариантов стратегий.
- Критерий ориентирует лицо, принимающее решение, на осторожную линию поведения, направленную на получение дохода и минимизацию возможных рисков одновременно.

- Данный критерий обеспечивает максимизацию минимального выигрыша, который может быть получен при реализации каждого из вариантов стратегий.
- Критерий ориентирует лицо, принимающее решение, на осторожную линию поведения, направленную на получение дохода и минимизацию возможных рисков одновременно.
- Применение критерия Вальда оправдано, если ситуация, в которой принимается решение, характеризуется следующими обстоятельствами:

- Данный критерий обеспечивает максимизацию минимального выигрыша, который может быть получен при реализации каждого из вариантов стратегий.
- Критерий ориентирует лицо, принимающее решение, на осторожную линию поведения, направленную на получение дохода и минимизацию возможных рисков одновременно.
- Применение критерия Вальда оправдано, если ситуация, в которой принимается решение, характеризуется следующими обстоятельствами:
 - о вероятности наступления того или иного состояния природы ничего не известно;

- Данный критерий обеспечивает максимизацию минимального выигрыша, который может быть получен при реализации каждого из вариантов стратегий.
- Критерий ориентирует лицо, принимающее решение, на осторожную линию поведения, направленную на получение дохода и минимизацию возможных рисков одновременно.
- Применение критерия Вальда оправдано, если ситуация, в которой принимается решение, характеризуется следующими обстоятельствами:
 - о вероятности наступления того или иного состояния природы ничего не известно;
 - не допускается никакой риск;

- Данный критерий обеспечивает максимизацию минимального выигрыша, который может быть получен при реализации каждого из вариантов стратегий.
- Критерий ориентирует лицо, принимающее решение, на осторожную линию поведения, направленную на получение дохода и минимизацию возможных рисков одновременно.
- Применение критерия Вальда оправдано, если ситуация, в которой принимается решение, характеризуется следующими обстоятельствами:
 - о вероятности наступления того или иного состояния природы ничего не известно;
 - не допускается никакой риск;
 - реализуется лишь малое количество решений.

$$M = \max_{i} \max_{j} a_{ij}.$$

Критерий оптимизма (критерий максимакса) предназначен для выбора наибольшего элемента матрицы доходности из её максимально возможных элементов:

$$M = \max_{i} \max_{j} a_{ij}.$$

• Критерий оптимизма используется, когда игрок оказывается в безвыходном положении, когда любой его шаг равновероятно может оказаться как абсолютным выигрышем, так и полным провалом.

$$M = \max_{i} \max_{j} a_{ij}.$$

- Критерий оптимизма используется, когда игрок оказывается в безвыходном положении, когда любой его шаг равновероятно может оказаться как абсолютным выигрышем, так и полным провалом.
- Данный критерий предполагает, что развитие ситуации будет благоприятным для лица, принимающего решение.

$$M = \max_{i} \max_{j} a_{ij}.$$

- Критерий оптимизма используется, когда игрок оказывается в безвыходном положении, когда любой его шаг равновероятно может оказаться как абсолютным выигрышем, так и полным провалом.
- Данный критерий предполагает, что развитие ситуации будет благоприятным для лица, принимающего решение.
- Поэтому, оптимальным выбором будет вариант с наибольшим значением показателя эффективности в матрице доходности.

$$M = \max_{i} \max_{j} a_{ij}.$$

- Критерий оптимизма используется, когда игрок оказывается в безвыходном положении, когда любой его шаг равновероятно может оказаться как абсолютным выигрышем, так и полным провалом.
- Данный критерий предполагает, что развитие ситуации будет благоприятным для лица, принимающего решение.
- Поэтому, оптимальным выбором будет вариант с наибольшим значением показателя эффективности в матрице доходности.
- Ценой игры в чистых стратегиях по критерию оптимизма (M) является наибольший из показателей эффективности

Критерий пессимизма предназначен для выбора наименьшего элемента матрицы доходности из её минимально возможных элементов:

$$P = \min_{i} \min_{j} a_{ij}.$$

Критерий пессимизма предназначен для выбора наименьшего элемента матрицы доходности из её минимально возможных элементов:

$$P = \min_{i} \min_{j} a_{ij}.$$

• Критерий пессимизма предполагает, что развитие ситуации будет неблагоприятным для лица, принимающего решение.

Критерий пессимизма предназначен для выбора наименьшего элемента матрицы доходности из её минимально возможных элементов:

$$P = \min_{i} \min_{j} a_{ij}.$$

- Критерий пессимизма предполагает, что развитие ситуации будет неблагоприятным для лица, принимающего решение.
- При использовании этого критерия лицо принимающее решение ориентируется на возможную потерю контроля над ситуацией и,

Критерий пессимизма предназначен для выбора наименьшего элемента матрицы доходности из её минимально возможных элементов:

$$P = \min_{i} \min_{j} a_{ij}.$$

- Критерий пессимизма предполагает, что развитие ситуации будет неблагоприятным для лица, принимающего решение.
- При использовании этого критерия лицо принимающее решение ориентируется на возможную потерю контроля над ситуацией и,
- поэтому, старается исключить все потенциальные риски и выбрать вариант с минимальной доходностью.

Критерий Сэвиджа (критерий минимаксного риска Сэвиджа) предназначен для выбора максимального элемента матрицы рисков из её минимально возможных элементов:

$$S = \min_{i} \max_{j} r_{ij}.$$

Критерий Сэвиджа (критерий минимаксного риска Сэвиджа) предназначен для выбора максимального элемента матрицы рисков из её минимально возможных элементов:

$$S = \min_{i} \max_{j} r_{ij}.$$

 Необходимо провести оценку риска в условиях, когда реальная ситуация неизвестна.

Критерий Сэвиджа (критерий минимаксного риска Сэвиджа) предназначен для выбора максимального элемента матрицы рисков из её минимально возможных элементов:

$$S = \min_{i} \max_{j} r_{ij}.$$

- Необходимо провести оценку риска в условиях, когда реальная ситуация неизвестна.
- Если игрок знает, что осуществляется j-е состояние природы, то выбрал бы наилучшее решение, то есть то, которое принесет наибольший выигрыш

$$b_j = \max_i a_{ij}$$

• Принимая i-е решение, игрок A рискует получить не b_j , а только a_{ij} , то есть, если игрок примет i-е решение, а в природе реализуется j-е состояние, то произойдет недополучение дохода в размере:

$$r_{ij} = b_j - a_{ij} = a_{\max j} - a_{ij}$$

• Принимая i-е решение, игрок A рискует получить не b_j , а только a_{ij} , то есть, если игрок примет i-е решение, а в природе реализуется j-е состояние, то произойдет недополучение дохода в размере:

$$r_{ij} = b_j - a_{ij} = a_{\max j} - a_{ij}$$

• (по сравнению с тем, как если бы игрок знал точно, что реализуется j-е состояние природы, и выбрал бы решение, приносящее наибольший доход $b_j = \max\{a_{ij}, \ j=1,2,\ldots,n\}$)

• Принимая i-е решение, игрок A рискует получить не b_i , а только a_{ij} , то есть, если игрок примет i-е решение, а в природе реализуется j-е состояние, то произойдет недополучение дохода в размере:

$$r_{ij} = b_j - a_{ij} = a_{\max j} - a_{ij}$$

- (по сравнению с тем, как если бы игрок знал точно, что реализуется *j*-е состояние природы, и выбрал бы решение, приносящее наибольший доход $b_j = \max\{a_{ij}, j = 1, 2, \dots, n\}$
- Матрица рисков (сожалений) $[r_{ij}]$ отражает риск реализации вариантов стратегии для каждой альтернативы развития событий (характеризует риск выбора определенного варианта стратегии), который будет зависеть от уровня риска варианта стратегии при наступлении различных сценариев.

• Среди элементов матрицы рисков сначала выбирается максимальный риск при каждой стратегии, а затем из них выбирается минимальный.

- Среди элементов матрицы рисков сначала выбирается максимальный риск при каждой стратегии, а затем из них выбирается минимальный.
- То есть в данном случае пессимистично настроенный игрок предполагает, что состояние природы будет таковым, что для любой его стратегии риск будет наибольшим, а стратегию выбирает такую, чтобы этот риск минимизировать.

- Среди элементов матрицы рисков сначала выбирается максимальный риск при каждой стратегии, а затем из них выбирается минимальный.
- То есть в данном случае пессимистично настроенный игрок предполагает, что состояние природы будет таковым, что для любой его стратегии риск будет наибольшим, а стратегию выбирает такую, чтобы этот риск минимизировать.
- Критерий Сэвиджа позволяет выбрать вариант стратегии с меньшей величиной риска по сравнению с более высоким, первоначально ожидаемым уровнем риска.

- Среди элементов матрицы рисков сначала выбирается максимальный риск при каждой стратегии, а затем из них выбирается минимальный.
- То есть в данном случае пессимистично настроенный игрок предполагает, что состояние природы будет таковым, что для любой его стратегии риск будет наибольшим, а стратегию выбирает такую, чтобы этот риск минимизировать.
- Критерий Сэвиджа позволяет выбрать вариант стратегии с меньшей величиной риска по сравнению с более высоким, первоначально ожидаемым уровнем риска.
- Данный критерий ориентирует лицо принимающее решение на более благоприятное развитие ситуации по сравнению с наихудшим состоянием, на которое то рассчитывало вначале.

Определение

Ценой игры в чистых стратегиях по критерию Сэвиджа называется минимальный показатель неэффективности среди показателей неэффективности всех чистых стратегий.

Определение

Ценой игры в чистых стратегиях по критерию Сэвиджа называется минимальный показатель неэффективности среди показателей неэффективности всех чистых стратегий.

Теорема

Для того чтобы чистая стратегия была безрисковой, т.е. чтобы её показатель неэффективности по критерию Сэвиджа был нулевым, необходимо и достаточно, чтобы она доминировала каждую из остальных чистых стратегий.

Критерий Гурвица (взвешивает пессимистический и оптимистический подходы к анализу неопределенной ситуации) предназначен для выбора некоторого среднего элемента матрицы доходности, отличающегося от крайних состояний — от минимального и максимального элементов:

$$H = \max_{i} \lambda \cdot \max_{j} a_{ij} + 1 - \lambda \cdot \min_{j} a_{ij},$$

где λ — коэффициент оптимизма, $0 \le \lambda \le 1$.

Критерий Гурвица (взвешивает пессимистический и оптимистический подходы к анализу неопределенной ситуации) предназначен для выбора некоторого среднего элемента матрицы доходности, отличающегося от крайних состояний — от минимального и максимального элементов:

$$H = \max_{i} \lambda \cdot \max_{j} a_{ij} + 1 - \lambda \cdot \min_{j} a_{ij},$$

где λ — коэффициент оптимизма, $0 \le \lambda \le 1$.

• Коэффициент λ выражает количественно «меру оптимизма» игрока A при выборе стратегии и определяется им из субъективных соображений на основе статистических исследований результатов принятия решений или личного опыта лица принимающего решение в схожих ситуациях.

Критерий Гурвица (взвешивает пессимистический и оптимистический подходы к анализу неопределенной ситуации) предназначен для выбора некоторого среднего элемента матрицы доходности, отличающегося от крайних состояний — от минимального и максимального элементов:

$$H = \max_{i} \lambda \cdot \max_{j} a_{ij} + 1 - \lambda \cdot \min_{j} a_{ij},$$

где λ — коэффициент оптимизма, $0 \le \lambda \le 1$.

- Коэффициент λ выражает количественно «меру оптимизма» игрока A при выборе стратегии и определяется им из субъективных соображений на основе статистических исследований результатов принятия решений или личного опыта лица принимающего решение в схожих ситуациях.
- ullet если λ коэффициент оптимизма, то $(1-\lambda)$ коэффициент пессимизма

• Критерий Гурвица позволяет избежать пограничных состояний при принятии решения — неоправданного оптимизма и крайнего пессимизма относительно ожидаемой доходности — и выбрать наиболее вероятный вариант стратегии, обеспечивающий наилучшую эффективность.

- Критерий Гурвица позволяет избежать пограничных состояний при принятии решения неоправданного оптимизма и крайнего пессимизма относительно ожидаемой доходности и выбрать наиболее вероятный вариант стратегии, обеспечивающий наилучшую эффективность.
- Критерий Гурвица ориентирован на установление баланса между случаями крайнего пессимизма и крайнего оптимизма при выборе стратегии путем взвешивания обоих исходов с помощью коэффициента оптимизма

Принятие решений в условиях риска

ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ РИСКА

• При решении Задачи о принятии решений в условиях риска различным состояниям природы поставлены в соответствие соответствующие вероятности.

Принятие решений в условиях риска

- При решении Задачи о принятии решений в условиях риска различным состояниям природы поставлены в соответствие соответствующие вероятности.
- Игрок А принимает решение на основе критерия максимального ожидаемого среднего выигрыша или минимального ожидаемого среднего риска

Критерии оптимальности в условиях риска:

• критерий Байеса;

Критерии оптимальности в условиях риска:

- критерий Байеса;
- критерий Лапласа;

Критерии оптимальности в условиях риска:

- критерий Байеса;
- критерий Лапласа;
- критерий Гермейера.

Критерий Байеса относительно выигрышей

• Предположим, что игроку A известны не только состояния $\Pi_1, \Pi_2, \dots, \Pi_n$ в которых случайным образом может находиться природа, но и вероятности (q_1, q_2, \dots, q_n) наступления этих состояний, при этом $\sum q_j = 1$.

Критерий Байеса относительно выигрышей

- Предположим, что игроку A известны не только состояния $\Pi_1, \Pi_2, \dots, \Pi_n$ в которых случайным образом может находиться природа, но и вероятности (q_1, q_2, \dots, q_n) наступления этих состояний, при этом $\sum q_j = 1$.
- Это говорит о том, что лицо принимающее решение находится в условиях риска.

Матрицу выигрышей игрока A и вероятности состояний природы П можно представить в виде общей матрицы:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ q_1 & q_2 & \cdots & q_n \end{bmatrix}.$$

Матрицу выигрышей игрока A и вероятности состояний природы Π можно представить в виде общей матрицы:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ q_1 & q_2 & \cdots & q_n \end{bmatrix}.$$

Чистую стратегию A_i можно определить как случайную величину со следующим законом распределения

A_i	a_{i1}	a_{i2}		a_{in}
q	q_1	q_2	• • •	q_n

Матрицу выигрышей игрока А и вероятности состояний природы П можно представить в виде общей матрицы:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ q_1 & q_2 & \cdots & q_n \end{bmatrix}.$$

Чистую стратегию A_i можно определить как случайную величину со следующим законом распределения

A_i	a_{i1}	a_{i2}	• • •	a_{in}
q	q_1	q_2	• • •	q_n

Математическое ожидание данной случайной величины

$$B_i = \sum_{j=1}^{n} q_i a_{ij}, \quad i = 1, 2, \dots, m$$

Оно означает средне взвешенное выигрышей i-ой строки матрицы с весами (q_1, q_2, \ldots, q_n) . 4 □ ト 4 □ ト 4 亘 ト 4 亘 ト □ ■ 9 0 0 0

Критерий Байеса относительно выигрышей позволяет выбрать максимальный из ожидаемых элементов матрицы доходности при известной вероятности возможных состояний природы:

$$B = \max_{i} \sum_{j=1}^{n} q_j a_{ij}$$

Матрицу рисков игрока A и вероятности состояний природы П можно представить матрицей:

$$R = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ r_{m1} & r_{m2} & \cdots & r_{mn} \\ q_1 & q_2 & \cdots & q_n \end{bmatrix}.$$

Матрицу рисков игрока A и вероятности состояний природы Π можно представить матрицей:

$$R = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ r_{m1} & r_{m2} & \cdots & r_{mn} \\ q_1 & q_2 & \cdots & q_n \end{bmatrix}.$$

Показателем эффективности стратегии A_i по критерию Байеса относительно рисков является математическое ожидание рисков, расположенных в i-ой строке матрицы R.

$$B_i^r = \sum_{j=1}^n q_j r_{ij}, \quad i = 1, 2, \dots, m$$

Критерий Байеса относительно рисков позволяет выбрать минимальное значение из средних рисков при известной вероятности возможных состояний природы:

$$B^r = \min_i \sum_{j=1}^n q_j r_{ij}.$$

Критерий Байеса относительно рисков позволяет выбрать минимальное значение из средних рисков при известной вероятности возможных состояний природы:

$$B^r = \min_{i} \sum_{j=1}^{n} q_j r_{ij}.$$

<u>Утв</u>ерждение

Критерии Байеса относительно выигрышей и относительно рисков эквивалентны, то есть по обоим критериям оптимальной будет одна и та же стратегия.

Вероятность состояний природы оценивается субъективно как равнозначные.

$$q_i = \frac{1}{n}$$

$$\sum q_i = \sum \frac{1}{n} = 1$$

Этот принцип называется — принцип недостаточного основания Лапласа.

Имеется игра с природой, в которой игрок A обладает m чистыми стратегиями A_i , природа Π может случайным образом находиться в одном из n своих состояний Π_j , а матрица выигрышей игрока A задается следующим образом:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ q_1 = 1/n & q_2 = 1/n & \cdots & q_n = 1/n \end{bmatrix}.$$

Имеется игра с природой, в которой игрок A обладает m чистыми стратегиями A_i , природа Π может случайным образом находиться в одном из n своих состояний Π_j , а матрица выигрышей игрока A задается следующим образом:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ q_1 = 1/n & q_2 = 1/n & \cdots & q_n = 1/n \end{bmatrix}.$$

Показателем эффективности чистой стратегии A_i по критерию Лапласа относительно выигрышей является среднеарифметическое выигрышей при этой стратегии.

$$L_i = \frac{1}{n} \sum_{j=1}^{n} a_{ij}, \quad i = 1, 2, \dots, m$$

Критерий Лапласа относительно выигрышей предполагает выбор варианта стратегии с максимальной ожидаемой доходностью при равной вероятности наступления возможных стратегий природы.

$$L = \max_{i \in \{1, \dots, m\}} \frac{1}{n} \sum_{j=1}^{n} a_{ij}$$

Матрицу рисков игрока A и вероятности состояний природы П при критерии Лапласа относительно рисков можно представить матрицей:

$$R = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ r_{m1} & r_{m2} & \cdots & r_{mn} \\ q_1 = 1/n & q_2 = 1/n & \cdots & q_n = 1/n \end{bmatrix}.$$

Матрицу рисков игрока A и вероятности состояний природы П при критерии Лапласа относительно рисков можно представить матрицей:

$$R = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ r_{m1} & r_{m2} & \cdots & r_{mn} \\ q_1 = 1/n & q_2 = 1/n & \cdots & q_n = 1/n \end{bmatrix}.$$

Показателем неэффективности чистой стратегии A_i по критерию Лапласа относительно рисков является среднеарифметическое рисков при этой стратегии.

$$L_i^r = \frac{1}{n} \sum_{j=1}^n r_{ij}, \quad i = 1, 2, \dots, m$$

Критерий Лапласа относительно рисков предполагает выбор варианта стратегии с минимальным риском при равной вероятности наступления возможных состояний природы.

$$L^{r} = \min_{i \in \{1, \dots, m\}} \frac{1}{n} \sum_{j=1}^{n} r_{ij}$$

Рассмотрим игру с природой размера $(m \geq 2)$ и $(n \geq 2)$ с матрицей выигрышей A

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ q_1 & q_2 & \cdots & q_n \end{bmatrix}.$$

• Выбрав чистую стратегию A_i , игрок A может получить выигрыш a_{ij} , если природа окажется в состоянии Π_j .

Рассмотрим игру с природой размера $(m \geq 2)$ и $(n \geq 2)$ с матрицей выигрышей A

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ q_1 & q_2 & \cdots & q_n \end{bmatrix}.$$

- Выбрав чистую стратегию A_i , игрок A может получить выигрыш a_{ij} , если природа окажется в состоянии Π_j .
- \bullet Но при этом природа может оказаться в этом состоянии с вероятностью $q_j = p(\Pi_j).$

Рассмотрим игру с природой размера $(m \geq 2)$ и $(n \geq 2)$ с матрицей выигрышей A

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ q_1 & q_2 & \cdots & q_n \end{bmatrix}.$$

- Выбрав чистую стратегию A_i , игрок A может получить выигрыш a_{ij} , если природа окажется в состоянии Π_j .
- Но при этом природа может оказаться в этом состоянии с вероятностью $q_j = p(\Pi_j).$
- Поэтому игрок A может получить свой выигрыш a_{ij} только с вероятностью q_j .

Критерий Гермейера относительно ВЫИГРЫШЕЙ

Рассмотрим игру с природой размера $(m \ge 2)$ и $(n \ge 2)$ с матрицей выигрышей A

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ q_1 & q_2 & \cdots & q_n \end{bmatrix}.$$

- Выбрав чистую стратегию A_i , игрок A может получить выигрыш a_{ij} , если природа окажется в состоянии Π_i .
- Но при этом природа может оказаться в этом состоянии с вероятностью $q_i = p(\Pi_i)$.
- Поэтому игрок A может получить свой выигрыш a_{ij} только с вероятностью q_i .
- В связи с этим рассматривается так называемый элемент Гермейера этого выигрыша — $a_{ij} \cdot q_i$.

• Если элемент Гермейера $a_{ij} \cdot q_j$ выигрыша a_{ij} больше элемента $a_{kl}q_l$ выигрыша a_{kl} , то выигрыш a_{ij} может быть не больше выигрыша a_{kl} .

- Если элемент Гермейера $a_{ij} \cdot q_j$ выигрыша a_{ij} больше элемента $a_{kl}q_l$ выигрыша a_{kl} , то выигрыш a_{ij} может быть не больше выигрыша a_{kl} .
- Матрица Гермейера состоит из элементов Гермейера и выглядит следующим образом:

$$A^{G} = \begin{bmatrix} a_{11}q_{1} & a_{12}q_{2} & \cdots & a_{1n}q_{n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1}q_{1} & a_{m2}q_{2} & \cdots & a_{mn}q_{n} \\ q_{1} & q_{2} & \cdots & q_{n} \end{bmatrix}.$$

• При выборе стратегии игрок А предполагает, что природа будет находиться в самом неблагоприятном для него состоянии, при котором элемент Гермейера будет являться самым минимальным среди всех элементов матрицы Гермейера соответствующие выбранной стратегии.

КРИТЕРИЙ ГЕРМЕЙЕРА ОТНОСИТЕЛЬНО ВЫИГРЫШЕЙ

- При выборе стратегии игрок А предполагает, что природа будет находиться в самом неблагоприятном для него состоянии, при котором элемент Гермейера будет являться самым минимальным среди всех элементов матрицы Гермейера соответствующие выбранной стратегии.
- Этот элемент называется показателем эффективности чистой стратегии A_i по критерию Гермейера относительно выигрышей:

$$G_i = \min_{1 \le j \le n} a_{ij} q_j, \quad i = 1, 2, \dots, m$$

Ценой игры в чистых стратегиях по критерию Гермейера относительно выигрышей является максимальное значение среди показателей эффективности чистой стратегии A_i по критерию Гермейера относительно выигрышей:

$$G = \max_{1 \le i \le m} \min_{1 \le j \le n} a_{ij} q_j$$