

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Reginaldo Arakaki Paulo S. Muniz Silva © 2011

Eng.de Computação

Aula 1:

Introdução Máq. von Neumann

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 jun. 2011

PCS-2302 / PCS-2024 Lab. de Fundamentos de Eng. de Computação

Aula 02

Máquina de von Neumann

Professores:

Anarosa Alves Franco Brandão (PCS 2302) Marcos A. Simplício Junior (PCS 2302) Reginaldo Arakaki (PCS 2024) Paulo Sergio Muniz Silva (PCS 2024)

Monitores: Allan Diego Lima, Luis Gustavo Nardin, Marcelo Amaral

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Reginaldo Arakaki Paulo S. Muniz Silva © 2011

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo I. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 jun. 2011

2

Roteiro

- 1. Máquina de von Neumann
 - a. Recapitulação
 - b. Sequência de Dados
- 2. Parte Experimental
 - a. Primitivas de uma biblioteca elementar para o simulador MVN, em código de máquina MVN

Diagrama da Arquitetura a Simular

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Reginaldo Arakaki Paulo S. Muniz Silva © 2011

Introdução Máq. von Neumann

Anna H. R. Costa

Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 jun. 2011

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Reginaldo Arakaki Paulo S. Muniz Silva © 2011

Aula 1:

Introdução Mág. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 jun. 2011

Conjunto de registradores da Máquina de von Neumann (MVN)

MAR Registrador de endereço de memória **MDR** Registrador de dados da memória

IC Registrador de endereço da próxima instrução

IR Registrador de instrução

OP Registrador de código de operação OI Registrador de operando de instrução

AC Acumulador

IR (16 bits)	
OP (4 bits)	OI (12 bits)

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computaçã

Marcos A. Simplício Jr Reginaldo Arakaki Paulo S. Muniz Silva © 2011

Introdução Máq. von Neumann

Anna H. R. Costa João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 jun. 2011

Conjunto de instruções da Máquina de von Neumann (MVN)

Código Instrução (hexa)

- 0 **Desvio incondicional**
- 1 Desvio se acumulador é zero 2 Desvio se acumulador é negativo
- 3 Deposita uma constante no acumulador
- Soma 4
- 5 Subtração
- Multiplicação 6
- 7 Divisão
- 8 Memória para acumulador
- 9 Acumulador para memória
- Desvio para subprograma (função) Δ
- В Retorno de subprograma (função)
- C **Parada**
- D **Entrada**
- Е Saída
- Chamada de supervisor

Operando

endereco do desvio endereço do desvio endereço do desvio

constante relativa de 12 bits

endereço da parcela endereço do subtraendo

endereço do multiplicador endereço do divisor

endereço-origem do dado

endereço-destino do dado endereço do subprograma

endereço do resultado endereço do desvio

dispositivo de e/s (*)

dispositivo de e/s (*)

constante (**)

(*) ver slide seguinte

(**) por ora, este operando (tipo da chamada) é irrelevante, e esta instrução nada faz.

PCS 2302/2024 Fundamentos da

Anarosa A. F. Brandão Marcos A. Simplício Jr Reginaldo Arakaki Paulo S. Muniz Silva © 2011

Aula 1:

Introdução Mág, von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo I A Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 iun. 2011

Diagrama de fluxo do Interpretador [detalhamento de EXECUTA]

Executa uma instrução

Determinar a próxima Eng.de Computação instrução a executar Professores:

> Obter a instrução em MEM[IC] e guardar em IR

Decodificar a instrução: OP:=Código de operação OI:=Operando

Ação a executar

(hexa) 0 1

OP

2

4

5

8

Se AC=0 então IC:=OI senão IC:=IC+1 Se AC<0 então IC:=OI senão IC:=IC+1

3 AC:=OI ; IC:=IC+1

AC:=AC+MEM[OI]; IC:=IC+1

AC:=AC-MEM[OI]; IC:=IC+1

AC:=AC*MEM[OI]; IC:=IC+1

6 7 AC:=int(AC/MEM[OI]); IC:=IC+1

AC:=MEM[OI] ; IC:=IC+1

MEM[OI]:=AC; IC:=IC+1

9 MEM[OI]:=IC+1; IC:=OI+1 Α В

IC:=MEM[OI]

C IC:=OI

D aguarda; AC:= dado de entrada; IC:=IC+1

Ē dado de saída := AC ; aguarda ; IC:=IC+1

(nada faz por ora); IC:=IC+1

Fundamentos da Eng.de Computação Professores:

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Reginaldo Arakaki Paulo S. Muniz Silva © 2011

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 jun. 2011

Operações de Entrada e Saída da MVN

OP Tipo Dispositivo	
---------------------	--

OP D (entrada) ou E (saída)
Tipo Tipos de dispositivo:

0 = Teclado 1 = Monitor 2 = Impressora 3 = Disco

Dispositivo Identificação do dispositivo. Pode-se

ter vários tipos de dispositivo, ou unidades lógicas (LU). No caso do disco, um arquivo é considerado uma unidade

lógica.

Pode-se ter, portanto, até 16 tipos de dispositivos e, cada um, pode ter até 256 unidades lógicas.

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Reginaldo Arakaki Paulo S. Muniz Silva © 2011

Aula 1:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 jun. 2011

Como visitar uma sequência de dados

 Suponha que se deseje ler uma sequência de dados armazenados na memória:

034C
034E
0350
0352
end.

_	
	0002
	0004
	0006
I	0008
	dados
l	

 Como fazer isto utilizando as instruções presentes nesta máquina de von Neumann?

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Professores: Anarosa A. F. Brandão Marcos A. Simplício Jr Reginaldo Arakaki Paulo S. Muniz Silva © 2011

Aula 1

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 jun. 2011

Como visitar uma sequência de dados

 Uma técnica de programação binária, que permite usar uma única instrução para percorrer mais de uma posição de memória, envolve a auto modificação do código. Veja neste exemplo:

End. Instr.	Comentário
0100 8F00	Obtém o endereço de onde se deseja ler o dado
0102 4F02	Compõe o endereço com o código de operação LOAD
0104 9106	Guarda instrução montada para ser executada
0106 0000	Executa a instrução recém-montada
0108	Usa o valor do acumulador e altera o conteúdo de 0F00 com o valor do próximo endereço da sequência.
015C 0100	Volta a repetir o procedimento.
0F00 034C 0F02 8000	Endereço (034C) para onde se deseja armazenar o dado Código de operação LOAD, com operando 000

 Notar que o artifício da alteração do código pelo próprio programa, embora condenado pela engenharia de software, é a forma mais prática de percorrer sequências nesta máquina de von Neumann.