ARKUSZ OBLICZENIOWY	Dokument Ref:	SX003a-EN-EU	Strona	1	Z	8	
*SECCESS Eurocodes made easy **	Tytuł	Przykład: Belka wolnopodparta z pośrednimi stężeniami bocznymi					
	Dotyczy Eurokodu	EN 1993-1-1:2004					
	Wykonał	Valérie LEMAIRE		Data		maj 20	005
	Sprawdził	Alain BUREAU		Data		maj 20	005

Przykład: Belka swobodnie podparta z pośrednimi stężeniami bocznymi

Przykład podaje szczegóły weryfikacji nośności belki swobodnie podpartej obciążonej w sposób równomierny. Belka jest stężona bocznie płatwiami.

Zakres

Przykład rozpatruje dachową belkę swobodnie podpartą, z pośrednimi stężeniami bocznymi, na którą działa obciążenie równomiernie rozłożone pochodzące od:

- Ciężaru własnego belki
- Ciężaru własnego pokrycia dachowego i płatwi
- Obciążeń atmosferycznych

Belka jest kształtownikiem walcowanym na gorąco, zginanym względem "mocniejszej" osi przekroju.

Przykład zawiera:

- Klasyfikację przekroju,
- Obliczenie nośności przy zginaniu,
- Obliczenie nośności przy ścinaniu,
- Obliczenie ugięcia w stanie granicznym użytkowalności.

Częściowy współczynnik bezpieczeństwa

Hg,sup Hg,inf HQ	= 1,35 = 1,0 = 1,50	(oddziaływania stałe) (oddziaływania stałe) (oddziaływania zmienne)	PN-EN 1990 Tablica A1.2(B)
Ж мо Ж м1	= 1,0 = 1,0		PN-EN 1993-1-1 § 6.1 (1)

Strona Dokument Ref: SX003a-EN-EU ARKUSZ OBLICZENIOWY Tytuł Przykład: Belka wolnopodparta z pośrednimi stężeniami bocznymi Dotyczy Eurokodu EN 1993-1-1:2004 Valérie LEMAIRE Wykonał Data maj 2005 Sprawdził Alain BUREAU Data maj 2005

Dane podstawowe

Projektowanie belki stalowej odbywa się według danych zestawionych poniżej. Belka jest podparta widełkowo na końcach.

Rozpiętość przęsła: 15,00 m

Rozstaw belek: 6,00 m

Ciężar własny pokrycia dachowego: 0,30 kN/m²
Obciążenie klimatyczne - śnieg: 0,60 kN/m²

Obciążenie klimatyczne - wiatr: -0,50 kN/m² (ssanie)

Gatunek stali: S235

Obciążenia klimatyczne podano o wartościach charakterystycznych, obliczonych według normy PN-EN 1991.

- 1: Stężenie boczne (płatew)
- 2: Stężenie boczne (przeciwskrętne)

Stężenie przeciwskrętne

Belka jest podparta widełkowo na podporach, posiada pas górny stężony płatwiami w rozstawie co 2,5 m, oraz pas dolny podparty bocznie (stężeniem przeciwskrętnym) w rozstawie co 5,0 m.

Belkę wykonano ze strzałką odwrotną o wartości 1/500 rozpiętości, $w_c = 30 \text{ mm}.$

ARKUSZ OBLICZENIOWY	Dokument Ref:	SX003a-EN-	EU	Strona	3	Z	8		
access			Przykład: Belka wolnopodparta z pośrednimi stężeniami bocznymi						
Eurocodes made easy	Dotyczy Eurokodu	EN 1993-1-1	:2004						
* *	Wykonał	Valérie LEM	IAIRE		Data		maj 2	005	
	Sprawdził	Alain BURE	AU		Data		maj 2	005	
Dobrano kształtownik IPI Wysokość Wysokość środni	h =	k stali S235 = 400 mm = 373 mm		z]		Euro 19-57	norm 7	
Grubość środnika t _w :		= 180 mm = 8,6 mm = 13,5 mm	$\frac{y}{h_w}$		y h				
<i>y</i>		= 21 mm 5,3 kg/m	 	z b	→				
Pole przekroju po	oprzecznego		A = 84,4	16 cm ²					
Moment bezwładności wzgl. osi y-y			$I_{\rm y} = 231$	30 cm ⁴					
Moment bezwładności wzgl. osi z-z		i z-z	$I_{\rm z} = 131$	8 cm ⁴					
Moment bezwładności przy skręcaniu			$I_{\rm t} = 51,08~{\rm cm}^4$						
Wycinkowy mor	nent bezwładno	ości	$I_{\rm w} = 490$	000 cr	n^6				
Corożyjsty wielzoź	Corożycty welzoźnik wystrzymożości			156 am	,3				

Ciężar własny belki: $(66,3 \times 9,81) \times 10^{-3} = 0,65 \text{ kN/m}$

Oddziaływania stałe:

$$G = 0.65 + 0.30 \times 6.00 = 2.45 \text{ kN/m}$$

Obciążenia klimatyczne:

$$Q_s = 0.60 \times 6.0 = 3.60 \text{ kN/m}$$

$$Q_{\rm w} = -0.50 \text{ x } 6.0 = -3.00 \text{ kN/m}$$

Kombinacja oddziaływań w stanie granicznym nośności (SGN):

Kombinacja 1	$\gamma_{G,\text{sup}} G + \gamma_{O} Q_{\text{s}} =$	$1,35 \times 2,45 + 1$	$1,50 \times 3,60 = 8,71 \text{ kN/m}$
--------------	---	------------------------	--

Kombinacja 2
$$\chi_{G,inf} G + \chi_Q Q_w = 1,00 \times 2,45 - 1,50 \times 3,00 = -2,05 \text{ kN/m}$$

PN-EN 1990

§ <u>6.4.3.2</u>

Wyrażenie 6.10

ARKUSZ OBLICZENIOWY CICCESS

Dokument Ref:	SX003a-EN-EU	Strona	4	Z	8	
Tytuł	Przykład: Belka wolnop bocznymi	Przykład: Belka wolnopodparta z pośrednimi stężeniami ocznymi				
Dotyczy Eurokodu	EN 1993-1-1:2004					
Wykonał	Valérie LEMAIRE		Data		maj 20	005
Sprawdził	Alain BUREAU		Data		mai 20	005

Wykres momentu zginającego

Największa wartość momentu zginającego (w środku rozpiętości):

Kombinacja 1
$$M_{v,Ed} = 0.125 \times 8.71 \times 15^2 = 244.97 \text{ kNm}$$

Kombinacja 2
$$M_{y,Ed} = 0.125 \times -2.05 \times 15^2 = -57.66 \text{ kNm}$$

Wykres siły poprzecznej

Największa wartość siły poprzecznej (przy podporze):

Kombinacja 1
$$V_{z,Ed} = 0.5 \times 8.71 \times 15 = 65.33 \text{ kN}$$

Kombinacja 2
$$V_{z,Ed} = 0.5 \times -2.05 \times 15 = -15.38 \text{ kN}$$

Granica plastyczności

Gatunek stali S235

Największa grubość ścianki wynosi 13,5 mm < 40 mm, więc:

 $f_{\rm y} = 235 \; {\rm N/mm}^2$

PN-EN 1993-1-1

Tablica 3.1

Uwaga: Załącznik krajowy może narzucić wartości f_y z Tablicy 3.1 lub wartości z norm wyrobu.

Klasyfikacja przekroju:

Współczynnik $\boldsymbol{\varepsilon}$ jest uzależniony od granicy plastyczności:

$$\varepsilon = \sqrt{\frac{235}{f_{y} [\text{N/mm}^2]}} = 1$$

PN-EN 1993-1-1

Tablica 5.2

Wspornikowa część pasa: ścianka ściskana równomierne na całej szerokości

$$c = (b - t_w - 2 r) / 2 = (180 - 8.6 - 2 \times 21)/2 = 64.7 \text{ mm}$$

$$c/t_f = 64.7 / 13.5 = 4.79 \le 9 \varepsilon = 9$$

Klasa 1

(arkusz 2 z 3)

	1					
ARKUSZ OBLICZENIOWY	Dokument Ref:	512000 21, 20	Strona	5 z	8	
	Tytuł	Przykład: Belka wolnop bocznymi	odparta :	z pośrednim	i stężen	iiami
Eurocodes made easy	Dotyczy Eurokodu	EN 1993-1-1:2004				
* *	Wykonał	Valérie LEMAIRE		Data	maj 2005	
	Sprawdził	Alain BUREAU Data			maj 2005	
Wewnętrzna część ścisk	•	•			PN-E 1993-	
		$3.5 - 2 \times 21 = 331 \text{ mm}$				ca 5.2
$c / t_{\rm w} = 331 / 8,6$	= 38,49 < 7	$22 \varepsilon = 72$ Klasa 1			(arku	
i stopek. W analizowanyr	Klasa przekroju jest najwyższą klasą (najmniej korzystną) spośród środnika i stopek. W analizowanym przypadku jest to klasa 1. Tak więc weryfikacja nośności w SGN może być przeprowadzona na podstawie nośności plastycznej przekroju.					
Nośność przekroju przy	zginaniu					
Obliczeniowa nośność prz	zekroju przy z	ginaniu określona jest	następi	ıjąco:	PN-E	
$M_{\rm c,Rd} = M_{\rm pl,Rd} = 1$	$W_{\rm pl,y} f_{\rm y} / \gamma_{\rm M0} =$	$(1307 \times 235 / 1,0) / 10$	000		1993-	
$M_{\rm c.Rd} = 307,15 \text{ kNm}$						<u>.5</u>
Kombinacja 1 $M_{y,Ed}$ / $M_{y,Ed}$	$M_{\rm c,Rd} = 244,97$	/ 307,15= 0,798 < 1	OK			
Kombinacja 2 $M_{y,Ed}$ /	$M_{\rm c,Rd}=57,66$	/ 307,15= 0,188 < 1	OK			
Ocena zwichrzenia pr budynkach, z punktowy Elementy, w których p bocznym, nie są nara stężeniami L_c i wynikaja spełnia warunek:	mi stężeniam pas ściskany nżone na zv	i bocznymi: jest stężony punktov vichrzenie , jeśli roz	wo w zstaw j	kierunku pomiędzy	PN-E 1993-	
$\overline{\lambda}_{\rm f} = \frac{k_{\rm c}}{i_{\rm f,z}}$	$\frac{L_{\rm c}}{2\lambda_{\rm l}} \le \overline{\lambda}_{\rm c0} \frac{M_{\rm c,l}}{M_{\rm y,l}}$	<u>Rd</u> Ed				
Gdzie:						
$M_{ m y,Ed}$ jest najwię między stężeniam		niowym momentem z	ginająco	eym		
k_c jest współczynnikiem poprawkowym uwzględniającym rozkład momentu zginającego pomiędzy stężeniami, PN-EN 1993-1-1 Tablica 6.6;						
, -	z pasa ściska	dności przekroju pa nego i 1/3 ściskanej				
$\overline{\lambda}_{c0}$ jest smukłośc	ią graniczną p	asa, jak wyżej:				
$\overline{\lambda}_{c0} = \overline{\lambda}_{LT,0} + 0.10$	0					
					1	

Dokument Ref: SX003a-EN-EU Strona ARKUSZ OBLICZENIOWY Przykład: Belka wolnopodparta z pośrednimi stężeniami Tytuł bocznymi EN 1993-1-1:2004 Dotyczy Eurokodu Valérie LEMAIRE maj 2005 Wykonał Data Alain BUREAU maj 2005 Sprawdził Data W przypadku kształtowników walcowanych, $\overline{\lambda}_{LT,0} = 0.40$ Uwaga: Smukłość graniczna może być podana w Załączniku krajowym. (W załączniku krajowym NA.18 do normy PN-EN 1993-1-1 zaleca PN-EN się przyjmować wartość $\overline{\lambda}_{LT,0} = 0.40$ (przyp. tłumacza)) 1993-1-1 6.3.2.3(1)

$$\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = 93.9\varepsilon$$
 and $\varepsilon = \sqrt{\frac{235}{f_y [\text{N/mm}^2]}} = 1$

Zastosowanie powyższych wzorów prowadzi do następujących wyników:

$$I_{\text{f,z}} = [1318 - (2 \times 37,3 / 3) \times 0,86^3 / 12] / 2 = 658,34 \text{ cm}^4$$

$$A_{\rm f,z} = [84,46 - (2 \times 37,3/3) \times 0,86]/2 = 31,54 \text{ cm}^2$$

$$i_{\rm f,z} = \sqrt{\frac{658,34}{31,54}} = 4,57 \text{ cm}$$

$$W_{\rm y} = W_{\rm pl,y} = 1307 \text{ cm}^3$$

$$\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = 93.9$$

PN-EN 1993-1-1

$$\overline{\lambda}_{c0} = 0,40 + 0,10 = 0,50$$

6.3.2.3

$$M_{\rm c,Rd} = W_{\rm y} \frac{f_{\rm y}}{\gamma_{\rm MI}} = (1307 \times \frac{235}{1.0}) / 1000 = 307.15 \text{ kNm}$$

Kombinacja 1

Uwaga: Rozkład momentu zginającego pomiędzy stężeniami w środkowej PN-EN części belki, gdzie pojawia się największa jego wartość, może być założony jako równomierny: Table 6.6

1993-1-1

$$k_{\rm c}=1$$

$$L_{\rm c} = 2,50 \text{ m}$$

$$\overline{\lambda}_{\rm f} = \frac{1 \times 250}{4,57 \times 93,9} = 0,583$$

$$\overline{\lambda}_{c0} M_{c,Rd} / M_{y,Ed} = 0.50 \times \frac{307.15}{244.97} = 0.627$$

$$\overline{\lambda}_{\rm f} = 0.583 \le \overline{\lambda}_{\rm c0} M_{\rm c,Rd} / M_{\rm y,Ed} = 0.627$$
 OK

ARKUSZ OBLICZENIOWY	Dokument Ref:	SX003a-EN-EU	Strona	7 z	8		
access	Tytuł	Przykład: Belka wolnop bocznymi	odparta	z pośrednin	ii stężei	niami	
Eurocodes made easy	Dotyczy Eurokodu	EN 1993-1-1:2004					
* +	Wykonał	Valérie LEMAIRE		Data	maj 2005		
	Sprawdził	Alain BUREAU		Data	maj 2005		
Kombinacja 2							
$k_{\rm c}=1$							
$L_{\rm c} = 5,00 \; {\rm m}$							
$\overline{\lambda}_{\rm f} = \frac{1 \times 500}{4,57 \times 93,9}$	= 1,165						
$\overline{\lambda}_{c0} M_{c,Rd} / M_{y,Ed}$	$=0,50\times\frac{307,1}{57,66}$	$\frac{5}{6} = 2,663$					
$\overline{\lambda}_{ m f}=1,1$	$65 \leq \overline{\lambda}_{c0} M_{c}$	$_{c,Rd} / M_{y,Ed} = 2,663$ O	K				
Nośność przy ścinaniu							
Przy braku skręcania, obl		ość plastyczna zależy	od po	la			
przekroju czynnego przy ścinaniu:						EN	
$A_{v,z} = A - 2 b t_f + (t_w + 2 r) t_f$						-1-1	
$A_{\text{v,z}} = 8446 - 2 \times 180 \times 13,5 + (8,6 + 2 \times 21) \times 13,5 = 4269 \text{ mm}^2$						<u>.6</u> (3)	
Nośność plastyczna przy					PN-E		
$V_{\text{pl,z,Rd}} = \frac{A_{\text{v,z}} (f_{\text{y}} / \sqrt{3})}{\gamma_{\text{M0}}} = \frac{4269 \times (235 / \sqrt{3})}{1.0} / 1000 = 579,21 \text{kN}$					§ <u>6.2</u>		
$V_{z,Ed} / V_{pl,z,Rd} = 6$	$V_{z,Ed} / V_{pl,z,Rd} = 65,33 / 579,21 = 0,113 < 1 $ OK						
Sprawdzenie stateczności	środnika nie je	est wymagane, jeśli:			PN-E		
$h_{\rm w} / t_{\rm w} \le 72 \ \varepsilon / \ \eta$					1993		
Wartość współczynnika η może zostać konserwatywnie przyjęta 1,0 $h_{\rm w}$ / $t_{\rm w}$ = (400 – 2 × 13,5) / 8,6 = 43,37 < 72 × 1 / 1,0 = 72						<u>.6</u> (6)	
Uwaga: Nie rozważano interakcji M-V ponieważ największy moment zginający występuje w środku rozpiętości, zaś największa siła poprzeczna przy podporze. W wypadku jednoczesnego zginania i ścinania, patrz PN-EN 1993-1-1 § 6.2.8.							
Sprawdzenie stanu granicznego użytkowalności (SGU)							
Kombinacja w SGU					PN-E	EN 1990	
Kombinacja char	akterystyczna:				§ <u>6.5</u>	.3	
$G + Q_s = 2,45 + 3$	• •	m			§ A1.		
20 7 7 7						<u> </u>	

ARKUSZ OBLICZENIOWY	Dokument Ref:	SX003a-EN-EU	Strona	8 z	8	
access	Tytuł	Przykład: Belka wolnop bocznymi	podparta	z pośrednim	ii stężer	ıiami
Eurocodes made easy	Dotyczy Eurokodu	EN 1993-1-1:2004				
* *	Wykonał	Valérie LEMAIRE		Data	maj 20	005
	Sprawdził	Alain BUREAU		Data	<u> </u>	
$w_{\rm c} = 30 \ {\rm mm}$ - $w_{\rm max} = w_{\rm tot} - w_{\rm c} = 0$ Ugięcie pod wpły Ugięcie od obciążenia $Q_{\rm s}$ $w_{\rm d} = \frac{5 (Q_{\rm s}) L^4}{384 \ E I_{\rm y}} = 0$ Ugięcie belki pod Uwaga: Wartości grani Zamawiającego wartości graniczny (W załączniku kiepodane graniczny dachowego, kra	$L^4 = \frac{5 \times 6}{384 \times 210}$ strzałka od $L^4 = 82,10 - 30 = 20$ sywem oddziały $L^4 = \frac{5 \times 6}{384 \times 210}$ strzałka od $L^4 = 82,10 - 30 = 20$ strzałka od strza	52,10 mm wań ($G+Q_s$) wynosi $\frac{(15000)^4}{\times 23130 \times 10^4} = 48,90$ działywań Q_s wynosi	L/288.) mm L/307. określorownie: 1993-1 ypadku alecana	m przez ż określić -1 zostały dźwigara	PN-E 1993 § 7.2.	EN 1990 .4.3

Protokół jakości

Tytuł zasobu	Przykład: Belka swobodnie podparta z pośrednimi stężeniami bocznymi				
Odniesienie					
ORIGINAŁ DOKUMENTU					
	lmię I nazwisko	Instytucja	Data		
Stworzony przez	Valérie LEMAIRE	CTICM	13/03/2005		
Zawartość techniczna sprawdzone przez	Alain BUREAU	CTICM	27/05/2005		
Zawartość redakcyjna sprawdzona przez	D C lles	SCI	11/7/05		
Zawartośc techniczna zaaprobowana przez:					
1. Wielka Brytania	G W Owens	SCI	30/06/05		
2. Francja	A Bureau	CTICM	30/06/05		
3. Szwecja	C Müller	RWTH	30/06/05		
4. Niemcy	A Olsson	SBI	30/06/05		
5. Hiszpania	J Chica	Labein	30/06/05		
Zasób zatwierdzony przez Koordynatora Technicznego	G W Owens	SCI	21/05/06		
TŁUMACZENIE DOKUMENTU					
Tłumaczenie wykonał i sprawdził:		L. Ślęczka			
Tłumaczenie zatwierdzone przez:					

Informacje ramowe

Tytuł*	Przykład: Belka swob	odnie podparta z pośrednimi stężeniami bocznymi
Seria		
Opis*		oły weryfikacji nośności belki swobodnie podpartej obciążonej w elka jest stężona bocznie płatwiami.
Poziom dostępu*	Umiejętności specjalistyczne	Specjalista
Identyfikator*	Nazwa pliku	P:\CMP\CMP554\Finalization\SX files\SX003\SX003a-EN-EU.doc
Format		Microsoft Office Word; 10 stron; 484kb;
Kategoria*	Typ zasobu	Przykład obliczeniowy
	Punkt widzenia	Inżynier
Temat*	Obszar stosowania	Budynki wielokondygnacyjne;
Daty	Data utworzenia	11/07/2005
	Data ostatniej modyfikacji	27/06/2005
	Data sprawdzenia	
	Ważny od	
	Ważny do	
Język(i)*		Polski
Kontakt	Autor	Valérie LEMAIRE, CTICM
	Sprawdził	Alain BUREAU, CTICM
	Zatwierdził	
	Redaktor	
	Ostatnia modyfikacja	
Słowa kluczowe*	Nośność przy zwichrze	niu, belki
Zobacz też	Odniesienie do Eurokodu	EN 1993-1-1
	Przykład(y) obliczeniowy	
	Komentarz	
	Dyskusja	
	Inne	
Sprawozdanie	Przydatność krajowa	Europa
Instrukcje szczególne		