Épisode 4

Jean-Baptiste Bertrand

25 janvier 2022

Compostition du moment cinétique

Exemple simple : composition de spins $\frac{1}{2}$

E.C.O.C :
$$\mathbf{S}_{1}^{2} \, \mathbf{S}_{2}^{2} \, S_{1z} \, S_{2z}$$

 $\left|\frac{1}{2},\epsilon_1\right>\otimes\left|\frac{1}{2},\epsilon_2\right> = \left|\frac{1}{2},\frac{1}{2};\epsilon_1,\epsilon_2\right> \rightarrow |\epsilon_1,\epsilon_2\rangle \quad \text{ Car les spins sont toujours } 1/2 \text{ dans notre cas }$

$$\mathbf{S}_{1}^{2} |\epsilon_{1}, \epsilon_{2}\rangle = \frac{1}{2} \left(\frac{1}{2} + 1 \right) \hbar^{2} |\epsilon_{1}, \epsilon_{2}\rangle$$
$$\mathbf{S}_{1z} |\epsilon_{1}, \epsilon_{2}\rangle = \frac{\epsilon}{2} \hbar |\epsilon_{1}, \epsilon_{2}\rangle$$

nouvel E.C.O.C :
$$\mathbf{S}_1^2$$
 , \mathbf{S}_2^2 , \mathbf{S}^2 , S_z

On peut vérifier qu'il commutent tous entre eux mais on le feras pas.

On peut également vérifier la complétion. On va le vérifier plus tard.

Cela induit nécessairement une nouvelle base

$$\left|\frac{1}{2}, \frac{1}{2}, S, M\right\rangle \to \left|S, M\right\rangle$$

$$\begin{split} |S,M\rangle &= \mathbb{1} |S,M\rangle \\ |SM\rangle &= \sum_{\epsilon_1,\epsilon_2} |\epsilon_1,\epsilon_2\rangle \langle \epsilon_1,\epsilon_2| \, |S,M\rangle \end{split}$$

Les coefficient de cette expression sont appelées Clebsch-Gordan

$$\mathbf{S}^{2} | S, M \rangle = S(S+1)\hbar^{2} | S, M \rangle$$

 $S_{z} | S, M \rangle = M\hbar | SM \rangle$

$$S \ge M \ge -S$$

Contrainte
$$S_z |\epsilon_1, \epsilon_2\rangle = (S_{1z} + S_{2z}) |\epsilon_1, \epsilon_2\rangle = \underbrace{\left(\frac{\epsilon_1}{2} + \frac{\epsilon_2}{2}\right)}_{M\hbar} |\epsilon_1, \epsilon_2\rangle$$

$$\implies M_{\text{max}} = \frac{1}{2} + \frac{1}{2} = 1$$

$m \backslash S$	1 (triplet)	0 (singulet)
1	$ 1,1\rangle = +,+\rangle$	
0	$ 1,0\rangle = \frac{1}{\sqrt{2}}[+-\rangle + -+\rangle]$	$ 0,0\rangle = +,-\rangle - -+\rangle$
-1	$ 1,-1\rangle = \rangle$	

Pour savoir comment les nouveau opérateur agissent sur les vecteur, on expirme les nouveaux vecteur et opérateurs en fonctions des anciens

$$\mathbf{S}^{2} |1,1\rangle = (\mathbf{S}_{1} + \mathbf{S}_{2})^{2} |+,+\rangle = (\mathbf{S}_{1}^{2} + \mathbf{S}_{2}^{2} + 2\mathbf{S}_{1}\mathbf{S}_{2}) |+,+\rangle = \left(\mathbf{S}_{1}^{2} + \mathbf{S}_{2}^{2} + 2(\underbrace{S_{1x}S_{2x} + S_{1y}S_{2y}}_{S_{1+}S_{2+} + S_{1-}S_{2+}} + S_{1z}S_{2z})\right) |+,+\rangle$$

On fait le produit scalaire et on retrouver S_{\pm}

$$|0,0\rangle = \alpha |+,-\rangle + \beta |-+\rangle$$

On a les contraintes $\alpha^2+\beta^2=1$ et $\frac{\alpha}{\sqrt{2}}+\frac{\beta}{\sqrt{2}}=0$ par orthogonalité.

Généralisation à des spins plus grands : spins J_1 et J_2 fixées

L'idée reste la même. On part d'un acien ECOC

ECOC:
$$\mathbf{J}_{1}^{2}$$
, J_{2}^{2} , J_{1z} , J_{2z}

Base $|J_1, m_1\rangle \otimes |J_2, m_2\rangle \rightarrow |J_1, J_2; m_1, m_2\rangle$

$$\mathbf{J}_1^2 |J_1 J_2 m_1 m_2\rangle = J_1 (J_1 + 1) \hbar^2 |J_1 J_2 m_1 m_2\rangle$$

$$\mathbf{J}_{1z} |J_1 J_2 m_1 m_2\rangle = m_1 \hbar |J_1 J_2 m_1 m_2\rangle$$

nouvel ECOC
$$\mathbf{J}_1^2$$
, \mathbf{J}_2^2 , \mathbf{J}^2 , J_z

$$-J \le M \le J$$

On fait le même changement de base avec les coefficients de Clebsch-Gordan. Au lieu d'une somme sur epsilon on doit maintenant sommer sur tout les m_1 et m_2

On trouve, de manière similaire a précédement

$$M = m_1 + m_2$$

Encore une fois, on veut maintenant trouver les nouveau vecteurs prorpes.

$M \backslash J$	$J_1 + J_2$	$J_1 + J_s - 1$
$M_{\text{max}} = J_1 + J_2$	$ J_1+J_2,J_1+J_2\rangle$	
$J_1 + J_2 - 1$	$ J_1+J_2,J_1+J_2-1\rangle$	$ J_1+J_2-1,J_1+J_2-1\rangle$
• • • •		
$-J_1 - J_2$	$ -J_1-J_2,-J_1-J_2\rangle$	

$$|J_1 + J_2, J_1 + J_2\rangle = |J_1, J_2; J_1, J_2\rangle$$

$$\underbrace{J_{-}}_{J_{1-}+J_{2-}}\underbrace{|J_{1}+J_{2},J_{1}+J_{2}\rangle}_{J_{1},J_{2};J_{1},J_{2}} = \hbar\underbrace{\sqrt{(J_{1}+J_{2})(J_{1}+J_{2}+1)-(J_{1}+J_{2})(J_{1}+J_{2}-1)}}_{2(J_{1}+J_{2})}|J_{1},J_{2};J_{1},J_{2}\rangle$$

 $J_{1-}+J_{2-}$ S'applique et donne aussi des longues racines, je suis pas trop sur de la conclusion... On verifié que ça marche je crois