計算論 A 第 10 回ミニレポート解答例

團孝直人, 難波瑛次郎

教科書 300 ページ 問 7.1.4

文法

 $S \rightarrow AAA|B$

 $A \rightarrow aA|B$

 $B \to \epsilon$

に対して,

- (a)ε-規則を除去せよ
- (b)単位規則を除去せよ
- (c)無用な記号があるか、あれば除去せよ
- (d)チョムスキー標準形に変換せよ.
- (a) ε-規則の除去

消去可能変数を求める.

B → ϵ より B は直接消去可能。

B が消去可能変数なので S \rightarrow B, A \rightarrow B より A と S は消去可能変数 A,B,S は消去可能変数.

 $S \to AAA$ については,A が消去可能なので, $S \to A$, $S \to AA$, $S \to AAA$ の三規則に置き換える. $A \to aA$ については,A が消去可能なので $A \to a$, $A \to aA$ の 2 規則に置き換える.

次の文法を得る.

 $S \rightarrow A|AA|AAA$

 $A \rightarrow a|aA$

(b) 単位規則の除去

すべての単位対を求める

s ^{*} S , A ^{*} A より、(S, S), (A, A)は単位対

(S,S)が単位対で、単位規則 $S \to A$ が存在するため(S,A)も単位対 すべての単位対(X,Y)と非単位規則 $Y \to Z$ に対する、規則 $X \to Z$ を集めて新たな規則を構

成する

単位対	元の非単位規則	新たな非単位規則
(S,S)	S → AA AAA	$S \rightarrow AA \mid AAA$
(S,A)	A → a aA	S → a aA
(A,A)	A → a aA	A → a aA

次の文法を得る.

 $S \rightarrow a \mid aA \mid AA \mid AAA$

 $A \rightarrow a \mid aA$

(c) 無用な記号の除去

a は終端記号なので生成的, また $A\rightarrow a$, $S\rightarrow a$ より A,S も生成的.

Sは出発記号なので到達可能. また S→aA より, a と A は到達可能.

a,A,S はすべて生成的記号かつ到達可能記号であり無用な記号は無い.

次の文法を得る.

 $S \rightarrow a \mid aA \mid AA \mid AAA$

 $A \rightarrow a \mid aA$

(d) チョムスキー標準形への変換

規則 $C \rightarrow a$ を導入し、長さ 2 以上の本体を変数のみで構成する.

S \rightarrow a | CA | AA | AAA

 $A \rightarrow a \mid CA$

 $C \rightarrow a$

規則 D ightarrow AA を導入し,AA を含む長さ 3 以上の本体を分解する.

次の文法を得る.

 $S \rightarrow a \mid CA \mid AA \mid AD$

 $A \rightarrow a \mid CA$

 $C \rightarrow a$

$D \rightarrow AA$

これはチョムスキー標準形の条件を満たしている.