

DO EXOTIC INVASIVE MAMMALS DISTURB THE NATIVE FAUNA? SPATIO-TEMPORAL DISTRIBUTION AND OVERLAP BETWEEN SPECIES IN A NATIONAL PARK OF ARGENTINA

Journal:	Integrative Zoology
Manuscript ID	Draft
Manuscript Type:	Original Article
Keywords:	activity pattern, Axis axis, niche, Sus scrofa, temporal segregation
Specialty:	Behavior, Biodiversity, Biological Invasion, Conservation, Integrative Biology

SCHOLARONE™ Manuscripts

DO EXOTIC INVASIVE MAMMALS DISTURB THE NATIVE FAUNA?

SPATIO-TEMPORAL DISTRIBUTION AND OVERLAP BETWEEN SPECIES

IN A NATIONAL PARK OF ARGENTINA

ABSTRACT

- Monitoring the invasive exotic species and their effect on the native fauna is
- fundamental for effective control. The exotic mammals Axis axis and Sus scrofa, were
- introduced in the Argentine territory approximately in 1928 and 1906 inhabiting, at
- present, four and fifteen protected natural areas, respectively. The objective of this work
- is to evaluate the distribution and spatio-temporal overlap of native and exotic, medium-
- and large-sized fauna in a national park of Central Argentina, in order to consider
- potential negative interactions between them. Camera-traps were distributed in 27 sites
- between 2017 and 2019 in El Palmar National Park, Argentina. Spatial and temporal
- overlap was estimated for every pair of exotic-natie taxa. With 2673 camera-days, two
- exotic: Axis axis and Sus scrofa and seven native taxa: Hydrochoerus hydrochaeris,
- Rhea americana, armadillos, foxes, Subulo gouazoubira, Leopardus geoffroyi and
- Nothura maculosa were detected. This research could affirm that exotic species are
- widely distributed in the National Park, but would not restrict the distribution of native
- species, having the possibility of interacting and, perhaps disturbing, the use of the area.
- In turn, there was a low overlap in the temporal activity of the exotic and native species
- when they share the food resources, but a high overlap with most of the other native
- species, although they differ in their peaks of maximum activity. The existence of
- variations found in the activity patterns with respect to other areas where the species
- inhabit could be showing a segregation in the daily activity to avoid the competition.

SHORT ABSTRACT

- 1) This research detects a spatial overlap between exotic mammals and native fauna that
- inhabit the El Palmar National Park.
- 2) The exotic mammals overlapped their activity patterns with the majority of the native
- fauna, although they differ in their peaks of maximum activity.

- 30 3) The existence of variations found in the activity patterns with respect to other areas
- 31 where the species inhabit, could be showing a segregation in the daily activity to avoid
- 32 the competition.
- 33 KEYWORDS: activity pattern, Axis axis, niche, Sus scrofa, temporal segregation.

34	INTRODUCTION
35	In order to conserve biodiversity, it is necessary to avoid processes that threaten its
36	persistence, such as habitat loss and fragmentation, illegal hunting and species
37	trafficking, forest fires or the presence of invasive exotic species (Margules & Pressey
38	2000). Particularly, the last one represents a problem in many national parks (Dayer et
39	al. 2020; Merino et al. 2009), and therefore it is necessary to generate adequate
40	management measures. The control of invasive species implies, first of all, preventing
41	the entry of exotic species, and if they do enter, containing their expansion. On the
42	assumption that they already have an established population, it is necessary to mitigate
43	the damage that the introduced species may cause (Simberloff et al. 2013). Studying the
44	biology of the problematic species and monitoring their populations in time and space is
45	fundamental for effective control (Sanguinetti & Pastore 2016).
46	In general terms, biological invasions were favored by anthropic activity and many of
47	those species were brought in to be used as livestock, pets, commensals or for sport
48	hunting (Long 2003). Exotic species can modify the structure and functioning of
49	invaded ecosystems, altering nutrient cycles and fires (Lovell & Stone 2006), and
50	therefore negatively affecting many native species (Williamson 1996). Biological
51	invasions have been perceived as analogous to natural disasters and are considered one
52	of the most important causes in global loss or change of biodiversity (Ricciardi et al.
53	2011; Sala et al. 2000; Wilcove et al. 1998). The impacts of biological invasion on a
54	new region depends on both the identity of the invader (intrinsic factors, e.g. body size,
55	locomotion, reproductive rate, population size) and the identity of the host community
56	and ecosystem (extrinsic factors, e.g. transport vectors, local dispersal filters; Valéry et
57	al. 2008). When an exotic species coexists with native species with whom shares
58	resources or some dimension of their ecological niches, it can generate new interspecific
59	competition interactions (Mooney & Cleland 2001). These new interactions can be
60	evidenced by a reduction of native species richness and abundance (Blackburn et al.
61	2004; Gaertner et al. 2009) but also through morphological differentiations, variations
62	in distribution (Cruz et al. 2018) or behavioral changes (Di Bitetti et al. 2009).
63	Globally, the list of species introduced by humans is growing, and so is the number of
64	species that become invasive and have a significant ecological, economic and cultural

effect (Mooney & Hobbs 2000). In the absence of specific regulations, these

66	introductions caused widespread damage due to the expansion of several species, in
67	some cases uncontrollable (e.g. Barrios-García and Ballari 2012; Bonino et al. 1997;
68	Fasola and Valenzuela 2014; Flueck 2014; Guichón and Doncaster 2008; Merino et al.
69	2009). As in the rest of the world, biological invasions are a serious threat to ecosystems
70	and their biodiversity in South America (Vilà et al. 2011), where at least 41% of the
71	most invasive species in the world are already established (Ballari et al. 2016; Speziale
72	et al. 2012). Currently, there are 23 species of invasive exotic mammals in Argentina
73	(Valenzuela et al. 2023), which represents 61% of introduced ones (Merino et al. 2009).
74	values far from those expected by the Rule of 10 (Williamson & Fitter 1996), which
75	postulates that one out of ten exotic species achieves establishment and one out of ten
76	established species become invasive (although these values are around 5%, Williamson
77	1999).
78	The exotic mammals Axis axis and Sus scrofa, were introduced in Argentine territory in
79	the beginning of the 19 century from India and Eurasia and northern Africa, respectively
80	(Duckworth et al. 2015, Long 2003). Currently, they inhabit four and fifteen protected
81	natural areas from Argentina, respectively (Valenzuela et al. 2023). Specifically, in El
82	Palmar National Park these species were introduced in 1970 (S. scrofa) and 1980 (A.
83	axis) for hunting and commercial purposes (Crespo 1982; Gürtler et al. 2017), not
84	applying the first measure to control the invasion of exotic species proposed by
85	Simberloff et al. (2013). In view of this fact, the National Park began hunting control
86	management in 2006 (second measure to control invasion), partially successful for S.
87	scrofa (decreased its abundance) but not for A. axis (Gürtler et al. 2017, 2018). So, in
88	this research, the populations of the problematic species were monitored to try to
89	mitigate the potential damage.
90	Based on the above, the general objective of this work is to evaluate the distribution and
91	spatio-temporal overlap of native and exotic, medium- and large-sized fauna in a
92	national park of central Argentina, in order to consider potential negative interactions
93	between them. In this work, it was determined that the native and exotic species have
94	the possibility of interacting and disturbing each other if they have similar daily activity
95	patterns and spatial distribution.

96	MATERIALS AND METHODS
07	G. 1

97 Study area

98 This research was conducted in El Palmar National Park (8500 ha., EPNP), located in

99 Entre Ríos province, in central Argentina (between 31°49'S - 31°55'S and 58°11'W -

100 58°18'W, Figure 1). It belongs to the Pampa eco-region (Bilenca et al. 2004; Brown &

Pacheco 2005) and it was created in 1965 by the argentinean national law No. 16802

with the objective of conserving the *Butia yatay* palm tree savannas. The climate is

temperate-humid, with an average annual temperature of 17.9 °C that can vary between

104 24.8 °C in January and 11.7 °C in June. The average annual precipitation value is 1200

105 mm (APN Management Plan 2015). The most common vegetation communities consist

of dense palms groves, shrublands with tall and sparse palm trees, shrublands with

young palm trees, grasslands with tall sparse palm trees, and open grasslands with tall

108 graminoids (Batista et al. 2014).

109 Camera trapping surveys

110 Camera-traps (Bushnell, with infrared flash) were distributed in 27 sites from April

2017 to March 2019 (Figure 1). Each site was sampled between one and five times

112 (totaling seven study times) along that period, and the cameras were active between 16

and 95 days per time. The camera traps were located at 60 centimeters from the ground

and took two photos per detection, with a delay of one second. All photos were taken

with a 5MP resolution. The minimum and maximum distances between cameras

installed at the same time was 372 and 9303 meters, respectively.

117 Data analysis

The species or taxon (when species were not possible to differentiate) and the number of

individuals were identified by visual inspection on a photo-by-photo basis. Photos were

labeled and sorted according to species (or taxon), season (autumn, winter and spring-

summer) and period of the day using digiKam 7.2.0 (digiKam Development Team

122 2021) and R package *camtrapR* (Niedballa *et al.* 2016). For all analyses, the presence of

a taxon at a given site and time was defined as the record of the taxon in a photo,

regardless of the number of individuals. Two records of the same species were

considered independent if the difference between photos was of over 60 minutes (Di

Bitetti et al. 2014; Gracanin & Mikac 2022). Three periods of the day were defined:

day, night and twilight. Twilight includes the period from one hour before and after the

128	average sunrise and sunset time in each season of the year, which were collected from
129	the Sunrise Maplog: https://sunrise.maplogs.com .
130	Spatial overlap between native and exotic taxa recorded (using the numbers of records
131	of each species per site) was assessed by means of the Morisita-Horn index (or
132	simplified Morisita index, Horn 1966) for each season of the year with the package spaa
133	(Zhang 2016). This index takes into account the relative abundance of each species in
134	each site and goes from 0, when the distribution is completely distinct, to 1, when both
135	species have identical spatial distribution (Horn 1966).
136	A chi-square (χ^2) test was performed to evaluate if the number of records in the day,
137	night and twilight are adjusted to the proportion of hours included in each period. This
138	analysis did not include categories for which the expected frequency was less than 5.
139	Additionally, the selectivity for the period i (w _i) was calculated for each species
140	following Manly et al. (2002) as: $w_i = o_i / \pi_i$ where o_i is the proportion of independent
141	records in period i, and π_i is the total hours of the period i/24 hs. The time period is
142	selected when $w_i > 1$ and the time period is avoided when $w_i < 1$ (Bu $\it{et~al.}$ 2016; Gerber
143	et al. 2012; Ogurtsov et al. 2018). The species were classified according to their habits
144	(time period selected) as nocturnal, diurnal or crepuscular. In the cases where no time
145	period was selected (χ^2 less than 0.10), the species was defined as cathemeral.
146	To determine whether the activity patterns of the different species varied among
147	seasons, the Mardia-Watson-Wheeler homogeneity test (MWW, Batschelet 198; Mardia
148	1972; Mendoza Sagrera 2020) was performed with the package circular (Lund et al.
149	2022) for species with, at least, 10 records per season. Overlap in activity patterns
150	between each of the exotic species with the rest of the native taxa was assessed by
151	means of the overlap coefficient (Δ , Schmid & Schmidt 2006). This coefficient is a
152	quantitative measure ranging from 0 (no overlap) to 1 (identical activity patterns),
153	considering low overlap when Δ < 0.50, intermediate when 0.50 < Δ < 0.75 and high
154	overlap when $\Delta > 0.75$. The coefficient Δ_1 was used when the smallest sample size was
155	less than 50 observations, and Δ_4 was used when the smallest sample size was greater
156	than or equal to 50 observations (Meredith & Ridout 2021). To detect whether the
157	activity patterns between each pair of species differed significantly from each other, the
158	Mardia-Watson-Wheeler homogeneity test was used for species with, at least, 10
159	records per season (Batschelet 1981). All statistical analyses were performed with

- 160 RStudio 2022.07.02 (RStudio Team 2022) and R version 4.2.2 (R Core Team 2022).
- 161 Finally, for descriptive purposes only, the night period was divided into three thirds:
- early night, middle night and late night.
- 163 RESULTS
- With a total sampling effort of 2673 camera-days (687 in autumn, 905 in winter, and
- 165 1081 in spring-summer), 33064 photos of two exotic and seven native taxa were taken,
- with 2829 of them (8.6%) being independent records. Axis axis (Erxleben, 1777)
- 167 (Artiodactyla, Cervidae, exotic) was recorded in 44.3%, *Hydrochoerus hydrochaeris*
- 168 (Linnaeus, 1766) (Rodentia, Caviidae, native) in 35.0%, Rhea americana (Linnaeus,
- 169 1758) (Struthioniformes, Rheidae, native) in 5.2%, armadillos (order Cingulata, native)
- in 4.9%, foxes (family Canidae, native) in 4.4%, Sus scrofa Linnaeus, 1758
- 171 (Artiodactyla, Suidae, exotic) in 3.0%, Subulo gouazoubira (G. Fischer, 1814)
- 172 (synonym of *Mazama gouazoubira*, Bernegossi *et al.* 2022, Artiodactyla, Cervidae,
- native) in 1.7%, *Leopardus geoffroyi* (d'Orbigny & Gervais, 1844) (Carnivora, Felidae,
- native) in 1.5% and *Nothura maculosa* (Temminck, 1815) (Tinamiformes, Tinamidae,
- native) in 0,04% of the independent records. The records of A. axis included between
- one to six individuals in the same photo, S. scrofa one to ten, H. hydrochaeris and R.
- americana one to five, foxes one or two and, armadillos, S. gouazoubira and L.
- 178 geoffroyi only one. Additionally, camera traps recorded offspring of A. axis, S. scrofa,
- 179 H. hydrochaeris and R. americana. All species are categorized both globally and
- nationally as Least Concern, except the *R. americana* which is considered globally as
- Near Threatened (BirdLife International 2022) and nationally as Vulnerable (Rabuffetti
- 182 & Cerezo 2017).
- 183 Spatial distribution
- 184 Considering the total data set of the study, A. axis was present in 96.3% (all sites except
- one), H. hydrochaeris in 66.7%, Canidae in 51.9%, Cingulata and S. gouazoubira in
- 44.4%, R. americana in 37.0%, S. scrofa in 33.3% and L. geoffroyi was recorded in
- 187 25.9% of the 27 sites (Figure 2 A-H), with some differences in the proportion of the
- occupied sites among seasons of the year for the same species (Table 1).
- In general terms, the spatial overlap between native and exotic species was higher in
- winter (Morisita-Horn index > 0.50), than in autumn and spring-summer (Morisita-Horn
- index < 0.30). Axis axis presented the highest values of spatial overlap with H.

- 192 hydrochaeris along all seasons of the year, and with L. geoffroyi, Cingulata and Canidae
- in winter. Sus scrofa had greater overlap particularly with Cingulata in winter (Table 2).
- 194 The spatial overlap between both exotic species was low and did not vary between
- seasons (Table 2).
- 196 Temporal distribution
- All species selected one or two periods of the day to be active (none cathemeral habit,
- 198 Table 3, Figure 3 A-H). Rhea americana was diurnal in all seasons and did not vary its
- activity patterns among seasons (MWW $_{among seasons} = 1.24$, p = 0.872, Table 3, Figure
- 3C). Subulo gouazoubira presented diurnal habit in autumn and winter, and crepuscular
- habit in winter and spring-summer (MWW between autumn and spring-summer = 4.11, p = 0.12,
- Table 3, Figure 3G). Hydrochoerus hydrochaeris was principally crepuscular, with
- crepuscular/nocturnal habits in spring-summer (MWW $_{among seasons} = 88.03$, p < 0.001,
- Table 3, Figure 3B). The rest of the native species and the exotic ones were
- crepuscular/nocturnal (Table 3). The armadillo (MWW $_{among seasons} = 8.02$, p = 0.091,
- Figure 3D), foxes (MWW $_{among seasons} = 7.76$, p = 0.101, Figure 3E) and L. geoffroyi
- 207 (MWW between autumn and winter = 7.76, p = 0.101, Figure 3H) did not vary their activity
- pattern along the season, while A. axis (MWW $_{among seasons} = 38.95$, p < 0.001, Figure
- 3A), H. hydrochaeris (MWW among seasons = 87.95, p < 0.001, Figure 3B) and S. scrofa
- 210 (MWW $_{among seasons} = 10.19$, p = 0.037, Figure 3F) did.
- Both exotic species shared their activity habits with almost all native species of the
- 212 National Park (Table 3). Particularly, A. axis overlapped their activity with all species in
- 213 all seasons of the year (Table 4), although in less degree with R. americana (Δ range:
- 214 0.33 0.44, Table 4). Sus scrofa, the other exotic species, overlapped their activity
- principally with *H. hydrochaeris*, the foxes and *L. geoffroyi* ($\Delta > 0.5$), but to a lesser
- 216 degree than A. axis in all cases (Table 4).
- 217 Although the activity of both exotic species often overlap, the moments with higher
- frequencies did not strictly coincide (Table 4, Figure 3A & 3F). Axis axis showed
- 219 activity in all the three thirds of the night in autumn and spring-summer while it was
- 220 more active in early and middle night in winter. On the other hand, S. scrofa showed
- more activity on late-night in autumn and spring-summer, and started in the middle of
- the night in winter. Differently, armadillos and foxes were always mostly active in the
- 223 early nights and *L. geoffroyi* had variable daily activities in the different seasons.

DISCUSION El Palmar National Park (EPNP) is inhabited by both native and exotic faunal taxa of medium and large size, with a greater richness of the first ones, including one species globally categorized as vulnerable (*Rhea americana*, BirdLife International 2022; Rabuffetti and Cerezo 2017). Axis axis is considered a species with a moderate level of environmental risk in Argentina (Category B, Lizarralde 2016) and S. scrofa is considered a high environmental risk (Category A, Lizarralde 2016), because both generate strong negative impacts on natural environments. One of these impacts is the transmission of viral, bacterial and parasitic diseases, which can be transmitted by direct contact with the species, their feces (brucellosis, tuberculosis, paratuberculosis, toxoplasmosis and leptospirosis), or by their consumption (trichinellosis) (Ballari et al. 2019; Marcos et al. 2021; Tammone Santos et al. 2018). Also, S. scrofa can affect the composition and structure of plant and animal communities, promoting the establishment and growth of invasive plants, and also alter soil properties and ecosystem processes (Barrios-García et al. 2014; Barrios-García & Ballari 2012; Gürtler et al. 2023). These exotic species had a wide spatial distribution in the EPNP, causing an overlap of their territory with native fauna. However, this overlap was not so high, probably due to the fact that the different taxa occupy the same areas but in different intensity. Also, both exotic species were active principally at night, like most of the native fauna, providing the possibility of temporary encounters in addition to spatial overlap dimension. According to the principle of competitive exclusion, it is predicted that species with a similar ecological niche cannot coexist indefinitely without exerting strong competition with each other, as this would result in the potential local extinction of one of the species or in the differentiation of some niche dimension (Hardin 1960; Macarthur & Levins 1967). Generally, the three most studied niche dimensions are the spatial, the temporal and the diet. In this research, the first two were analyzed, but it is relevant to take into account the diet of each species in order to understand the possible effect that invasive species may have on native taxa. Axis axis is a generalist herbivore (Tellarini et al. 2019) that feeds mainly on grasses (Valenzuela et al. 2023). In this sense, the diets dimension of the exotic deer would overlap with H. hydrochaeris, S. gouazoubira and

256	R. americana which are folivorous-herbivore (Bolkovic et al. 2019; Comparatore &
257	Yagueddú 2016; Juliá et al. 2019). In agreement with niche theory (Morris et al. 2000),
258	precisely, A.axis did not overlap their temporal dimension with two of these tree
259	species. On the other hand, S. scrofa is defined as a generalist omnivore by Ballari et al.
260	(2019), and as an opportunistic omnivore and mostly herbivore by Valenzuela et al.
261	(2023). This type of diet is shared with the two species of foxes cited to the National
262	Park in previous studies Cerdocyon thous (Linnaeus, 1766) and Lycalopex gymnocercus
263	Fisher, 1814, considered frugivores, scavengers and animalivores, mainly insectivores
264	(Cirignoli et al. 2019; Luengos Vidal et al. 2019), and with the three species of
265	Cingulata cited previously in the Park Dasypus hybridus (Desmarest, 1804), Dasypus
266	novemcinctus (Linnaeus, 1758) and Euphractus sexcinctus (Linnaeus, 1758), considered
267	omnivorous and myrmecophagous (Abba et al. 2019a, 2019b; Varela et al. 2019).
268	Coincident with what was observed for A. axis, S. scrofa showed a scarce spatial and
269	temporal overlap with the species with similar diet.
270	At last, in order to know if these spatial and, specially, temporal patterns are typical of
271	the species studied, or if they are the consequence of interference or competition
272	between them, commonly known as ghost of competition (Morris et al. 2000), it is
273	necessary to evaluate if these patterns are similar with those detected in other areas of
274	their distribution. As the intensity of competition increases as phylogenetic proximity
275	increases (Di Bitetti et al. 2009; Loveridge & Macdonald 2003) and, as aggressive
276	behaviors have been recorded between individuals of the two cervid species present in
277	the EPNP (Cirignoli S., pers. Obs. in Iberá National Park), it is important to analyze the
278	possible competition that exists between these species. It has been suggested that A. axis
279	could have the ability to displace other cervids, such as the case of Blastocerus
280	dichotomus (Illiger, 1815) in the Paraná Delta (Black-Decima et al. 2019). In this work,
281	both cervids overlapped their distribution inside the park at a low level. Additionally,
282	both species did not share the times of day of peak activity. The diurnal habit of S.
283	gouazoubira described in EPNP was also described in Ecuador, Brazil, the argentinean
284	Humid Chaco and Peru where was not in sympatry with A. axis but with Mazama
285	americana (Erxleben, 1777), other possible competing species with nocturnal (Albanesi
286	& Jayat 2016; Ferreguetti et al. 2015; Rivero et al. 2005) and cathemeral habits (Blake
287	et al. 2012; Ferreguetti et al. 2015; Huck et al. 2017; Tobler et al. 2009). However, in

other locations of yungas of northwestern Argentina and in the dry tropical forests of Bolivia, where M. americana also inhabit, the habit of S. gouazoubira was described as catemeral (Albanesi & Jayat 2016; Juliá et al. 2019; Rivero et al. 2005). Based on these results, the activity pattern of S. gouazoubira could vary according to community composition and, in agreement with the comments of Grotta-Neto et al. (2019), could also vary between habitats with different landscapes. It is necessary to take into account that A. axis, in its native distribution, is diurnal (Chaudhary et al. 2020; Ramesh et al. 2015). So, its nocturnal habit recorded in this research may also be a behavioral change due, among other possible causes, to the potential competitors present in the National Park, showing the possibility that both exotic and native species may have the need to vary their behaviors. Sus scrofa, in its native range (Johann et al. 2020; Keuling et al. 2008), is predominantly nocturnal, which coincides with the results found in this National Park and in forest and crops of Australia and xerophytic deciduous woodlands in Central Argentina (Caley 1997, Caruso et al. 2018). But, in other researches in Argentina and national forest of Rio Grande do Sul, Brazil, this species maintains crepuscular or catemeral habits (e.g. Ballari et al. 2019; Silveira de Oliveira et al. 2020). The S. scrofa activity in EPNP, with a peak activity at approximately midnight, show a possible effect due to the controlled hunting events occurred between 17:00 hs and 23:00 hs (Gürtler et al. 2018), generating a possible behavioral change in the species making it more nightly. In conclusion, this research could affirm that the exotic species of EPNP are widely distributed in the area, but would not restrict the distribution of native species, having the possibility of interacting and, perhaps disturbing, the use of the area. In turn, there was a low overlap in the temporal activity of the exotic and native species when they share the food resources, but a high overlap with most of the other native species, although they differ in their peaks of maximum activity. The variations found in the activity patterns with respect to other areas where the species inhabit, could be showing a segregation in the daily activity to relax the competition (Morris et al. 2000). In order to understand if this coexistence between exotic and native species causes not only a change in behavior but also a decrease in the abundance of native species, it would be convenient to continue the study of the community in the long term.

319	REFERENCES
320	Abba AM, Superina M, Varela D (2019a). Euphractus sexcinctus Categorización de
321	los mamíferos de Argentina. Available from: http://cma.sarem.org.ar/es/especie-
322	nativa/euphractus-sexcinctus
323	Abba AM, Torres RM, Superina M (2019b). Dasypus hybridus Categorización de los
324	mamíferos de Argentina. Available from: https://cma.sarem.org.ar/es/especie-
325	nativa/dasypus-hybridus
326	Albanesi SA, Jayat JP (2016). Patrones de actividad de mamíferos de medio y gran
327	porte en el pedemonte de yungas del noroeste argentino. Mastozoología
328	Neotropical 23, 335-358.
329	APN Management Plan (2015). Plan de gestión - Parque Nacional El Palmar
330	(Administración de Parques Nacionales). Available from:
331	https://sib.gob.ar/archivos/Plan_de_Gestion_El_Palmar_Doc_Final.pdf
332	Ballari SA, Cirignoli S, Winter M et al. (2019). Sus scrofa Categorización de los
333	mamíferos de Argentina. Available from: https://cma.sarem.org.ar/es/especie-
334	exotica/sus-scrofa
335	Ballari SA, Anderson CB, Valenzuela AEJ (2016). Understanding trends in biological
336	invasions by introduced mammals in southern South America: a review of
337	research and management. Mammal Review 46, 229-240. DOI:
338	10.1111/mam.12065
339	Barrios-García MN, Ballari SA (2012). Impact of wild boar (Sus scrofa) in its
340	introduced and native range: a review. Biological Invasions 14, 2283–2300. DOI:
341	10.1007/s10530-012-0229-6
342	Barrios-García MN, Classen AT, Simberloff D (2014). Disparate responses of above-
343	and belowground properties to soil disturbance by an invasive mammal.
344	Ecosphere 5 , 1–13.
345	Batista WB, Rolhauser AG, Biganzoli F et al. (2014). Las comunidades vegetales de La
346	Sabana del Parque Nacional El Palmar (Argentina). Darwiniana, nueva serie 2, 5-
347	38.
348	Batschelet E (1981). Circular statistics in biology. Academic Press, New York
349	Bernegossi AM, Borges CH de S, Sandoval EDP et al. (2022). Resurrection of the
350	genus Subulo Smith, 1827 for the gray brocket deer, with designation of a

2
3
1
4
3 4 5 6 7 8 9
6
7
/
8
9
10
10 11 12 13
11
12
12
13
14
15
16
10
17
18
10
14 15 16 17 18 19 20
20
21
22
22 23
23
24
25
23
26
24 25 26 27 28
28
20
29
30
31
21
32 33
33
34
25
35
34 35 36 37 38
37
20
39
40
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
20
57
58
59
60

351	neotype. Journal of Mammalogy 104, 619–633. DOI:
352	https://doi.org/10.1093/jmammal/gyac068
353	Bilenca D, Miñarro F, Fischer CG (2004). Identificación de áreas valiosas de pastizal
354	(AVPs) en las pampas y campos de Argentina, Uruguay y sur de Brasil.
355	Fundación Vida Silvestre Argentina Buenos Aires, Argentina.
356	BirdLife International. 2022. Rhea americana. The IUCN Red List of Threatened
357	Species: e.T22678073A219615764. Available from:
358	https://dx.doi.org/10.2305/IUCN.UK.2022-2.RLTS.T22678073A219615764.en.
359	Black-Decima P, Camino M, Cirignoli S et al. (2019). Tropical Ungulates of
360	Argentina. In: Gallina-Tessaro S, Ecology and Conservation of Tropical
361	Ungulates in Latin America. Springer International Publishing: Cham,
362	Switzerland, pp. 291-344. DOI: 10.1007/978-3-030-28868-6_13
363	Blackburn TM, Cassey P, Duncan RP, Evans KL, Gaston KJ (2004). Avian Extinction
364	and Mammalian Introductions on Oceanic Islands. Science 305, 1955–1958. DOI:
365	10.1126/science.1101617
366	Blake JG, Mosquera D, Loiselle BA, Swing K, Guerra J, Romo D (2012). Temporal
367	activity patterns of terrestrial mammals in lowland rainforest of eastern Ecuador.
368	Ecotropica 18, 137–146.
369	Bolkovic ML, Quintana R, Cirignoli S et al. (2019). Hydrochoerus hydrochaeris
370	Categorización de los mamíferos de Argentina. Available from:
371	http://cma.sarem.org.ar/es/especie-nativa/hydrochoerus-hydrochaeris
372	Bonino N, Sbriller A, Manacorda MM, Larosa F (1997). Food partitioning between the
373	mara (Dolichotis patagonum) and the introduced hare (Lepus europaeus) in the
374	Monte Desert, Argentina. Studies on Neotropical Fauna and Environment 32,
375	129–134.
376	Brown AD, Pacheco S (2005). Propuesta de actualización del mapa ecorregional de la
377	Argentina. La Situación Ambiental Argentina 28-31.
378	Bu H, Wang F, McShea WJ, Lu Z, Wang D, Li S (2016). Spatial Co-Occurrence and
379	Activity Patterns of Mesocarnivores in the Temperate Forests of Southwest China.
380	PLoS ONE 11, e0164271. DOI: 10.1371/journal.pone.0164271
381	Caley P (1997). Movements, activity patterns and habitat use of feral pigs (Sus scrofa)
382	in a tropical habitat. Wildlife Research 24, 77-87.

383	Caruso N, Valenzuela AE, Burdett CL, Luengos Vidal EM, Birochio D, Casanave EB
384	(2018). Summer habitat use and activity patterns of wild boar Sus scrofa in
385	rangelands of central Argentina. PLoS One 13, e0206513.
386	Chaudhary R, Zehra N, Musavi A, Khan JA (2020). Spatio-temporal partitioning and
387	coexistence between leopard (Panthera pardus fusca) and Asiatic lion (Panthera
388	leo persica) in Gir protected area, Gujarat, India. PloS one 15, e0229045.
389	Cirignoli S, Pereira JA, Varela D (2019). Cerdocyon thous Categorización de los
390	mamíferos de Argentina. Available from: https://cma.sarem.org.ar/es/especie-
391	nativa/cerdocyon-thous
392	Comparatore V, Yagueddú C (2016). Diet preference and density of the Greater Rhea
393	(Rhea americana) in grasslands of the Flooding Pampa, Argentina. Revista
394	Brasileira de Ornitologia 24, 13-20. DOI: 10.1007/BF03544323
395	Crespo JA (1982). Introducción a la ecología de los mamíferos del Parque Nacional El
396	Palmar, Entre Ríos. Museo Argentino de Ciencias Naturales "Bernardino
397	Rivadavia" 15
398	Cruz P, Iezzi ME, De Angelo C, Varela D, Di Bitetti MS, Paviolo A (2018). Effects of
399	human impacts on habitat use, activity patterns and ecological relationships
400	among medium and small felids of the Atlantic Forest. PLoS ONE 13, e0200806.
401	DOI: 10.1371/journal.pone.0200806
402	Dayer AA, Redford KH, Campbell KJ et al. (2020). The unaddressed threat of invasive
403	animals in U.S. National Parks. Biological Invasions 22, 177–188. DOI:
404	10.1007/s10530-019-02128-0
405	Di Bitetti MS, Di Blanco YE, Pereira JA, Paviolo A, Pírez IJ (2009). Time Partitioning
406	Favors the Coexistence of Sympatric Crab-Eating Foxes (Cerdocyon thous) and
407	Pampas Foxes (Lycalopex gymnocercus). Journal of Mammalogy 90, 479–490.
408	DOI: 10.1644/08-MAMM-A-113.1
409	Di Bitetti MS, Paviolo A, De Angelo C (2014). Camera trap photographic rates on roads
410	vs. off roads: location does matter. Mastozoología Neotropical 21, 37-46.
411	digiKam Development Team (2021). digiKam: digiKam API reference page. Available
412	from: https://www.digikam.org/
413	Duckworth JW, Kumar NS, Anwarul Islam M, Sagar Baral H, Timmins R (2015). Axis
414	axis The IIICN red list of threatened species: e T41783A22158006. Available

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10
18
19
20
21
22
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
22

from: https://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T41783A22158006.en
Fasola L, Valenzuela AEJ (2014). Invasive carnivores in Patagonia: defining priorities
for their management using the American mink (Neovison vison) as a case study.
Ecología Austral 24, 173–182.
Ferreguetti ÁC, Tomás WM, Bergallo HG (2015). Density, occupancy, and activity
pattern of two sympatric deer (Mazama) in the Atlantic Forest, Brazil. Journal of
Mammalogy 96 , 1245–1254.
Flueck WT (2014). Continuing impacts on red deer from a volcanic eruption in 2011.
European Journal of Wildlife Research 60, 699–702.
Gaertner M, Den Breeyen A, Hui C, Richardson DM (2009). Impacts of alien plant
invasions on species richness in Mediterranean-type ecosystems: a meta-analysis.
Progress in Physical Geography: Earth and Environment 33, 319–338. DOI:
10.1177/0309133309341607
Gerber BD, Karpanty SM, Randrianantenaina J (2012). Activity patterns of carnivores
in the rain forests of Madagascar: implications for species coexistence. Journal of
Mammalogy 93, 667–676. DOI: 10.1644/11-MAMM-A-265.1
Gracanin A, Mikac KM (2022). Camera traps reveal overlap and seasonal variation in
the diel activity of arboreal and semi-arboreal mammals. Mammalian Biology
102 , 341–355. DOI: 10.1007/s42991-021-00218-y
Grotta-Neto F, Peres PHF, Piovezan U, Passos FC, Duarte JMB (2019). Influential
factors on gray brocket deer (Mazama gouazoubira) activity and movement in the
Pantanal, Brazil. Journal of Mammalogy 100, 454–463. DOI:
10.1093/jmammal/gyz056
Guichón ML, Doncaster CP (2008). Invasion dynamics of an introduced squirrel in
Argentina. Ecography 31, 211–220.
Gürtler RE, Ballari SA, Maranta AA, Cohen JE (2023). Controlling the abundance of
invasive exotic wild boar (Sus scrofa) improves palm-tree conservation in north-
eastern Argentina. European Journal of Wildlife Research 69, 40. DOI:
10.1007/s10344-023-01668-0
Gürtler RE, Martín Izquierdo V, Gil G, Cavicchia M, Maranta A (2017). Coping with
wild boar in a conservation area: impacts of a 10-year management control

program in north-eastern Argentina. *Biological Invasions* **19**, 11–24. DOI:

447	10.1007/s10530-016-1256-5
448	Gürtler RE, Rodríguez-Planes LI, Gil G, Izquierdo VM, Cavicchia M, Maranta A
449	(2018). Differential long-term impacts of a management control program of axis
450	deer and wild boar in a protected area of north-eastern Argentina. Biological
451	Invasions 20, 1431–1447. DOI: 10.1007/s10530-017-1635-6
452	Hardin G (1960). The Competitive Exclusion Principle: An idea that took a century to
453	be born has implications in ecology, economics, and genetics. Science 131, 1292-
454	1297. DOI: 10.1126/science.131.3409.1292
455	Horn HS (1966). Measurement of "Overlap" in Comparative Ecological Studies. The
456	American Naturalist 100, 419-424. DOI: 10.1086/282436
457	Huck M, Juárez CP, Rotundo MA, Dávalos VM, Fernández-Duque E (2017). Mammals
458	and their activity patterns in a forest area in the Humid Chaco, northern Argentina.
459	Check List 13, 363–378.
460	Johann F, Handschuh M, Linderoth P, Dormann CF, Arnold J (2020). Adaptation of
461	wild boar (Sus scrofa) activity in a human-dominated landscape. BMC Ecology
462	20 , 4. DOI: 10.1186/s12898-019-0271-7
463	Juliá JP, Varela D, Periago ME et al. 2019. Mazama gouazoubira Categorización de
464	los mamíferos de Argentina. Available from: http://cma.sarem.org.ar/es/especie-
465	nativa/mazama-gouazoubira
466	Keuling O, Stier N, Roth M (2008). How does hunting influence activity and spatial
467	usage in wild boar Sus scrofa L.? European Journal of Wildlife Research 54, 729-
468	737. DOI: 10.1007/s10344-008-0204-9
469	Lizarralde M (2016). Especies exóticas invasoras (EEI) en Argentina: categorización de
470	mamíferos invasores y alternativas de manejo. Mastozoología neotropical 23,
471	267–277.
472	Long JL (2003). Introduced mammals of the world: their history, distribution and
473	abundance. Journal of Mammalogy 85, 363.
474	Lovell SJ, Stone SF (2006). The economic impacts of aquatic invasive species: a review
475	of the literature. Agricultural and resource economics review 35, 195-208.
476	Loveridge AJ, Macdonald DW (2003). Niche separation in sympatric jackals (Canis
477	mesomelas and Canis adustus). Journal of Zoology 259, 143–153. DOI:
478	10.1017/S0952836902003114

479	Luengos Vidal E, Farías A, Valenzuela AEJ, Caruso N (2019). Lycalopex gymnocercus
480	Categorización de los mamíferos de Argentina. Available from:
481	https://cma.sarem.org.ar/es/especie-nativa/lycalopex-gymnocercus
482	Lund U, Agostinelli C, Arai H et al. (2022). R package circular: Circular Statistics
483	(version 0.4-95). Available from: https://r-forge.r-project.org/projects/circular/
484	Macarthur R, Levins R (1967). The Limiting Similarity, Convergence, and Divergence
485	of Coexisting Species. The American Naturalist 101, 377–385. DOI:
486	10.1086/282505
487	Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002). Resource
488	selection by animals: statistical design and analysis for field studies. 2nd ed.
489	Springer Science & Business Media, Netherlands.
490	Marcos A, Carpinetti B, Ferro N, Aronowicz T, Dassa L (2021). Percepción del impacto
491	de cerdos cimarrones (jabalíes) sobre la producción agropecuaria de Argentina.
492	Revista veterinaria 31, 131–136.
493	Mardia KV (1975). Statistics of Directional Data. Journal of the Royal Statistical
494	Society 37, 349–371. DOI: https://doi.org/10.1111/j.2517-6161.1975.tb01550.x
495	Margules CR, Pressey RL (2000). Systematic conservation planning. Nature 405, 243-
496	253. DOI: 10.1038/35012251
497	Mendoza Sagrera I (2020). Estadística circular aplicada a la Ecología. <i>Ecosistemas</i> 29
498	DOI: 10.7818/ECOS.1995
499	Meredith M, Ridout M (2021). overlap: Estimates of Coefficient of Overlapping for
500	Animal Activity Patterns. Central R Archive Network
501	Merino ML, Carpinetti BN, Abba AM (2009). Invasive Mammals in the National Parks
502	System of Argentina. Natural Areas Journal 29, 42-49. DOI:
503	10.3375/043.029.0105
504	Mooney HA, Cleland EE (2001). The evolutionary impact of invasive species.
505	Proceedings of the National Academy of Sciences 98, 5446–5451. DOI:
506	10.1073/pnas.091093398
507	Mooney HA, Hobbs RJ (2000). Invasive species in a changing world. Island press.
508	Morris DW, Davidson DL, Krebs CJ (2000). Measuring the ghost of competition:
509	Insights from density-dependent habitat selection on the co-existence and

dynamics of lemmings. Evolutionary Ecology Research 2, 69-80.

511	Niedballa J, Sollmann R, Courtiol A, Wilting A (2016). camtrapR: an R package for
512	efficient camera trap data management. Methods in Ecology and Evolution 7,
513	1457–1462. DOI: 10.1111/2041-210X.12600
514	Ogurtsov SS, Zheltukhin AS, Kotlov IP (2018). Daily activity patterns of large and
515	medium-sized mammals based on camera traps data in the Central Forest Nature
516	Reserve, Valdai Upland, Russia. Nature Conservation Research 3, 68-88.
517	R Core Team (2022). R: A language and environment for statistical computing. R
518	Foundation for Statistical Computing, Vienna, Austria. Available from:
519	http://www.R-project.org/
520	Rabuffetti FL, Cerezo A (2017). Categorización de las Aves de la Argentina según su
521	Estado de Conservación. Aves Argentinas.
522	Ramesh T, Kalle R, Sankar K, Qureshi Q (2015). Role of body size in activity budgets
523	of mammals in the Western Ghats of India. Journal of Tropical Ecology 31, 315-
524	323. DOI: 10.1017/S0266467415000188
525	Ricciardi A, Palmer ME, Yan ND (2011). Should biological invasions be managed as
526	natural disasters? BioScience 61, 312–317.
527	Rivero K, Rumiz DI, Taber AB (2005). Differential habitat use by two sympatric
528	brocket deer species (Mazama americana and M. gouazoubira) in a seasonal
529	Chiquitano forest of Bolivia. Mammalia 69, 169–183.
530	RStudio Team (2022). RStudio: Integrated Development Environment for R. RStudio,
531	PBC, Boston, MA. Available from: http://www.rstudio.com/
532	Sala OE, Stuart Chapin FIII, Armesto JJ et al. 2000. Global Biodiversity Scenarios for
533	the Year 2100. Science 287, 1770–1774. DOI: 10.1126/science.287.5459.1770
534	Sanguinetti J, Pastore H (2016). Abundancia poblacional y manejo del jabalí (Sus
535	scrofa): una revisión global para abordar su gestión en la Argentina.
536	Mastozoología neotropical 23, 305–323.
537	Schmid F, Schmidt A (2006). Nonparametric estimation of the coefficient of
538	overlapping—theory and empirical application. Computational statistics & data
539	analysis 50 , 1583–1596.
540	Silveira de Oliveira Ê, Ludwig da Fontoura Rodrigues M, Machado Severo M, Gomes
541	dos Santos T, Kasper CB (2020). Who's afraid of the big bad boar? Assessing the
542	effect of wild boar presence on the occurrence and activity patterns of other

1
2
4
5
7
/ Q
9
10
11
12
13
14
15
15 16
17
18
19
20
21
22 23
23
24
25
26
21 22 23 24 25 26 27 28 29 30
28
29
30
31
32
33
34
35
36
37 38
38 39
39 40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

543	mammals. <i>PloS ONE</i> 15 , e0235312.
544	Simberloff D, Martin JL, Genovesi P et al. (2013). Impacts of biological invasions:
545	what's what and the way forward. Trends in Ecology & Evolution 28, 58-66.
546	DOI: 10.1016/j.tree.2012.07.013
547	Speziale KL, Lambertucci SA, Carrete M, Tella JL (2012). Dealing with non-native
548	species: what makes the difference in South America? Biological Invasions 14,
549	1609–1621.
550	Tammone Santos A, Condorí WE, Scialfa EA et al. (2018). Seroprevalencia de
551	leptospirosis en ciervo axis (Axis axis) en el marco del plan de control de
552	mamíferos exóticos invasores del Parque Nacional El Palmar. II Congreso
553	Internacional de Zoonosis y IX Congreso Argentino de Zoonosis; Ciudad
554	Autónoma de Buenos Aires; Argentina. 15-15
555	Tellarini JF, Cirignoli S, Aprile G et al. (2019). Axis axis Categorización de los
556	mamíferos de Argentina. Available from: https://cma.sarem.org.ar/es/especie-
557	exotica/axis-axis
558	Tobler MW, Carrillo-Percastegui SE, Powell G (2009). Habitat use, activity patterns
559	and use of mineral licks by five species of ungulate in south-eastern Peru. Journal
560	of Tropical Ecology 25 , 261–270.
561	Valenzuela AE, Anderson CB, Ballari SA, Ojeda RA (2023). Introduced Invasive
562	Mammals of Argentina - SAREM. 3
563	Valéry L, Fritz H, Lefeuvre J-C, Simberloff D (2008). In search of a real definition of
564	the biological invasion phenomenon itself. <i>Biological Invasions</i> 10 , 1345–1351.
565	DOI: 10.1007/s10530-007-9209-7
566	Varela D, Abba AM, Superina M (2019). Dasypus novemcinctus Categorización de los
567	mamíferos de Argentina. Available from: http://cma.sarem.org.ar/es/especie-
568	nativa/dasypus-novemcinctus
569	Vilà M, Espinar JL, Hejda M et al. (2011). Ecological impacts of invasive alien plants:
570	a meta-analysis of their effects on species, communities and ecosystems. Ecology
571	letters 14 , 702–708.
572	Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998). Quantifying threats to
573	imperiled species in the United States. <i>BioScience</i> 48 , 607–615.

Williamson M (1996). Biological invasions. Springer Science & Business Media.

575	Williamson M (1999). Invasions. <i>Ecography</i> 22 , 5–12.
576	Williamson M, Fitter A (1996). The varying success of invaders. Ecology 77, 1661-
577	1666.
578	Zhang J (2016). spaa: SPecies Association Analysis. R package version 0.2.2. Available
579	from: https://CRAN.R-project.org/package=spaa

Table 1: Percentage of sites with presence of each species in each season of the year between April 2017 and March 2019 in the El Palmar National Park, Entre Ríos, Argentina.

Species	Autumn	Winter	Spring - Summer
Axis axis	95	100	100
Hydrochoerus hydrochaeris	63	73	67
Rhea americana	32	40	44
armadillo	47	73	22
foxes	47	80	44
Sus scrofa	32	40	44
Subulo gouazoubira	26	33	44
Leopardus geoffroyi	26	33	22

Table 2: Observed Morisita-Horn index for each pair of exotic-native and exotic-exotic taxon per season of the year in the El Palmar National Park between April 2017 and March 2019, Entre Ríos, Argentina. Values above 0.5 were highlighted in bold.

Taxon 1	Taxon 2	Autumn	Winter	Spring-Summer
Axis axis	Sus scrofa	0.38	0.30	0.33
Axis axis	Hydrochoerus hydrochaeris	0.52	0.72	0.52
Axis axis	Rhea americana	0.09	0.14	0.18
Axis axis	armadillo	0.39	0.60	0.28
Axis axis	foxes	0.41	0.62	0.28
Axis axis	Subulo gouazoubira	0.27	0.37	0.51
Axis axis	Leopardus geoffroyi	0.18	0.66	0.51
Sus scrofa	Hydrochoerus hydrochaeris	0.28	0.21	0.17
Sus scrofa	Rhea americana	0.02	0.11	0.20
Sus scrofa	armadillo	0.42	0.51	0.33
Sus scrofa	foxes	0.08	0.14	0.07
Sus scrofa	Subulo gouazoubira	0.09	0.48	0.38
Sus scrofa	Leopardus geoffroyi	0.12	0.12	0.27

Species	Autumr	1			Winter				Spring -	Summer		
	wt	wd	wn	χ^2	wt	wd	wn	χ^2	wt	wd	wn	χ^2
Axis axis	1.63	0.41	1.26	115.5 **	1.57	0.42	1.27	156.4 **	1.28	0.31	1.60	167.2 **
Hydrochoerus hydrochaeris	1.56	0.89	0.88	24.5 **	1.74	0.87	0.84	50.3 **	1.31	0.39	1.50	78.9 **
Rhea americana	0.96	2.22	0.00	-	0.96	2.01	0.18	22.0 **	1.17	1.82	0.10	46.5 **
armadillo	1.20	0.68	1.19	5.8 †	2.00	0.40	1.13	27.6 **	1.26	0.25	1.66	15.4 **
foxes	0.67	0.78	1.30	-	1.45	0.28	1.43	32.9 **	1.77	0.92	0.77	5.6 .†
Sus scrofa	0.64	0.09	1.88	-	0.67	0.15	1.83	-	1.54	0.55	1.24	5.8 †
Subulo gouazoubira	0.50	1.76	0.55	-	1.33	1.47	0.49	-	1.38	0.73	1.12	-
Leopardus geoffroyi	3.27	0.00	1.00	-	1.80	0.26	1.32	-	1.50	0.00	1.82	-

Table 4: Overlap index (Δ) and Mardia-Watson-Wheeler index (MWW) for each pair of exotic-native and exotic-exotic taxon in El Palmar National Park between April 2017 and March 2019. P-values below 0.05 were marked with *; and p-values below 0.01 were marked with **.

		Autumn		Winter		Spring -	Summer
Taxon 1	Taxon 2	Δ	MWW	Δ	MWW	Δ	MWW
Axis axis	Sus scrofa	0.7	9.1 *	0.71	7.6 *	0.81	1.8
Axis axis	Hydrochoerus hydrochaeris	0.79	37.8 **	0.79	49.2 **	0.84	10.8 **
Axis axis	Rhea americana	0.44	42.8 **	0.33	60.2 **	0.34	107.1 **
Axis axis	armadillo	0.66	15.8 **	0.65	21.7 **	0.49	30.7 **
Axis axis	foxes	0.85	3.9	0.74	5.3	0.67	22.6 **
Axis axis	Subulo gouazoubira	0.61	7.0*	0.58	-	0.76	6.6 *
Axis axis	Leopardus geoffroyi	0.75	2.2	0.68	2.1	0.59	-
Sus scrofa	Hydrochoerus hydrochaeris	0.54	24.8 **	0.54	16.1 **	0.76	0.4
Sus scrofa	Rhea americana	0.27	27.1 **	0.1	28.4 **	0.5	32.6 **
Sus scrofa	armadillo	0.49	6.0	0.68	13.4 **	0.49	21.0 **
Sus scrofa	foxes	0.64	7.5 *	0.66	7.4 *	0.79	4.8
Sus scrofa	Subulo gouazoubira	0.45	11.4 **	0.32	-	0.83	0.8
Sus scrofa	Leopardus geoffroyi	0.68	8.5 *	0.52	1.7	0.58	-
597							

598	Figure 1: Location of the studied sites in El Palmar National Park, Entre Rios, Argentina
599	(2017-2019).

Figure 2: Sites where (A) *Axis axis*, (B) *Hydrochoerus hydrochaeris*, (C) *Rhea americana*, (D) armadillos, (E) foxes, (F) *Sus scrofa*, (G) *Subulo gouazoubira*, (H) *Leopardus geoffroyi* were recorded (colored points) at least one time in El Palmar National Park, Entre Ríos, Argentina (2017-2019). White points are sites without

605 records.

Figure 3: Activity patterns of (A) *Axis axis*, (B) *Hydrochoerus hydrochaeris*, (C) *Rhea americana*, (D) armadillos, (E) foxes, (F) *Sus scrofa*, (G) *Subulo gouazoubira*, (H) *Leopardus geoffroyi* for autumn (left panels), winter (center panels) and spring-summer (right panels) in El Palmar National Park, Entre Ríos, Argentina (2017-2019). The n shown represents the number of independent records for each species in each season.

Figure 3 A-H

198x141mm (96 x 96 DPI)