Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [3]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2001.
df

Out[3]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2001- 08-01 01:00:00	NaN	0.37	NaN	NaN	NaN	58.400002	87.150002	NaN	34.529999	1(
1	2001- 08-01 01:00:00	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000	1(
2	2001- 08-01 01:00:00	NaN	0.28	NaN	NaN	NaN	50.660000	61.380001	NaN	46.310001	1(
3	2001- 08-01 01:00:00	NaN	0.47	NaN	NaN	NaN	69.790001	73.449997	NaN	40.650002	(
4	2001- 08-01 01:00:00	NaN	0.39	NaN	NaN	NaN	22.830000	24.799999	NaN	66.309998	7
217867	2001- 04-01 00:00:00	10.45	1.81	NaN	NaN	NaN	73.000000	264.399994	NaN	5.200000	2
217868	2001- 04-01 00:00:00	5.20	0.69	4.56	NaN	0.13	71.080002	129.300003	NaN	13.460000	2
217869	2001- 04-01 00:00:00	0.49	1.09	NaN	1.00	0.19	76.279999	128.399994	0.35	5.020000	2
217870	2001- 04-01 00:00:00	5.62	1.01	5.04	11.38	NaN	80.019997	197.000000	2.58	5.840000	3
217871	2001- 04-01 00:00:00	8.09	1.62	6.66	13.04	0.18	76.809998	206.300003	5.20	8.340000	ŧ
217872	217872 rows × 16 columns										
4											

Data Cleaning and Data Preprocessing

In [4]:

df=df.dropna()

In [5]:

```
df.columns
```

```
Out[5]:
```

In [6]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 29669 entries, 1 to 217871
Data columns (total 16 columns):
             Non-Null Count Dtype
    Column
    -----
             -----
---
                             ----
0
    date
             29669 non-null object
 1
    BEN
             29669 non-null float64
 2
    CO
             29669 non-null float64
 3
    EBE
             29669 non-null float64
 4
    MXY
             29669 non-null float64
 5
             29669 non-null float64
    NMHC
 6
    NO_2
             29669 non-null float64
 7
    NOx
             29669 non-null float64
 8
    OXY
             29669 non-null float64
 9
    0 3
             29669 non-null float64
 10
    PM10
             29669 non-null float64
 11
    PXY
             29669 non-null float64
 12
    S0_2
             29669 non-null float64
 13
    TCH
             29669 non-null float64
 14
             29669 non-null float64
    TOL
15 station 29669 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 3.8+ MB
```

```
In [17]:
```

```
data=df[['BEN', 'CO', 'station']]
data
```

Out[17]:

	BEN	СО	station
1	1.50	0.34	28079035
5	2.11	0.63	28079006
21	0.80	0.43	28079024
23	1.29	0.34	28079099
25	0.87	0.06	28079035
217829	11.76	4.48	28079006
217847	9.79	2.65	28079099
217849	5.86	1.22	28079035
217853	14.47	1.83	28079006
217871	8.09	1.62	28079099

29669 rows × 3 columns

Line chart

In [18]:

```
data.plot.line(subplots=True)
```

Out[18]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

```
In [19]:
```

```
data.plot.line()
```

Out[19]:

<AxesSubplot:>

Bar chart

```
In [20]:
```

```
b=data[0:50]
```

```
In [21]:
```

```
b.plot.bar()
```

Out[21]:

<AxesSubplot:>

Histogram

In [22]:

data.plot.hist()

Out[22]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [23]:

data.plot.area()

Out[23]:

<AxesSubplot:>

Box chart

In [24]:

data.plot.box()

Out[24]:

<AxesSubplot:>

Pie chart

In [25]:

```
b.plot.pie(y='station' )
```

Out[25]:

<AxesSubplot:ylabel='station'>

Scatter chart

In [26]:

```
data.plot.scatter(x='CO' ,y='station')
```

Out[26]:

<AxesSubplot:xlabel='CO', ylabel='station'>

In [27]:

```
df.info()
```

```
Int64Index: 29669 entries, 1 to 217871
Data columns (total 16 columns):
 #
     Column
              Non-Null Count Dtype
0
     date
              29669 non-null
                               object
 1
     BEN
              29669 non-null
                               float64
 2
     CO
              29669 non-null
                               float64
 3
     EBE
              29669 non-null
                               float64
 4
     MXY
              29669 non-null
                               float64
 5
     NMHC
              29669 non-null
                               float64
 6
     NO_2
              29669 non-null
                               float64
 7
     NOx
              29669 non-null
                               float64
 8
     OXY
              29669 non-null
                               float64
 9
     0 3
              29669 non-null
                               float64
 10
     PM10
              29669 non-null
                               float64
 11
     PXY
              29669 non-null
                               float64
 12
     SO 2
              29669 non-null
                               float64
 13
     TCH
              29669 non-null
                               float64
 14
     TOL
              29669 non-null
                               float64
              29669 non-null
     station
                               int64
dtypes: float64(14), int64(1), object(1)
memory usage: 3.8+ MB
```

<class 'pandas.core.frame.DataFrame'>

```
In [28]:
```

```
df.describe()
```

Out[28]:

	BEN	СО	EBE	MXY	NMHC	NO_2
count	29669.000000	29669.000000	29669.000000	29669.000000	29669.000000	29669.000000
mean	3.361895	1.005413	3.580229	8.113086	0.195222	67.652292
std	3.176669	0.863135	3.744496	7.909701	0.192585	34.003120
min	0.100000	0.000000	0.140000	0.210000	0.000000	1.180000
25%	1.280000	0.470000	1.390000	3.040000	0.080000	44.299999
50%	2.510000	0.760000	2.600000	5.830000	0.140000	64.449997
75%	4.420000	1.270000	4.580000	10.640000	0.250000	86.540001
max	54.560001	11.890000	77.260002	150.600006	2.880000	292.700012
4						•

In [30]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [31]:

sns.pairplot(df1[0:50])

Out[31]:

<seaborn.axisgrid.PairGrid at 0x248f6e09250>

In [32]:

```
sns.distplot(df1['station'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[32]:

<AxesSubplot:xlabel='station', ylabel='Density'>

In [33]:

sns.heatmap(df1.corr())

Out[33]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [34]:
```

In [35]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

In [36]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[36]:

LinearRegression()

In [37]:

```
lr.intercept_
```

Out[37]:

28079007.64496446

In [38]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[38]:

	Co-efficient
BEN	6.970464
со	-15.513928
EBE	0.740165
MXY	-0.177168
NMHC	80.626169
NO_2	0.112355
NOx	-0.081561
OXY	-3.117769
O_3	-0.024178
PM10	-0.063713
PXY	1.304098
SO_2	-0.315505
тсн	36.870386
TOL	-1.132227

In [39]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[39]:

<matplotlib.collections.PathCollection at 0x24882d7cac0>

ACCURACY

```
In [40]:
lr.score(x_test,y_test)
Out[40]:
0.1647074187443297
In [41]:
lr.score(x_train,y_train)
Out[41]:
0.16493490828376267
Ridge and Lasso
In [42]:
from sklearn.linear_model import Ridge,Lasso
In [43]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[43]:
Ridge(alpha=10)
Accuracy(Ridge)
In [44]:
rr.score(x_test,y_test)
Out[44]:
0.16425017603940917
In [45]:
rr.score(x_train,y_train)
Out[45]:
0.1646970650280114
In [46]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[46]:
```

Lasso(alpha=10)

```
In [47]:
```

```
la.score(x_train,y_train)
```

Out[47]:

0.040014295690649515

Accuracy(Lasso)

```
In [48]:
la.score(x_test,y_test)
Out[48]:
0.0376097730714563
In [49]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[49]:
ElasticNet()
In [50]:
en.coef_
Out[50]:
array([ 4.84124189, 0. , 0.71064843, -0.29880189, 0.0723964 ,
        0.06242194, -0.03254308, -2.52507789, -0.033144 , 0.07237582,
        0.81792277, -0.33712439, 1.21467131, -0.63262354])
In [51]:
en.intercept_
Out[51]:
28079049.346572097
In [52]:
prediction=en.predict(x_test)
In [53]:
en.score(x_test,y_test)
Out[53]:
0.09943610174409923
```

Evaluation Metrics

```
In [54]:
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
30.369818605860505
1208.4702603479132
34.76305884625105
Logistic Regression
In [55]:
from sklearn.linear_model import LogisticRegression
In [56]:
feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
       'PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
target_vector=df[ 'station']
In [57]:
feature_matrix.shape
Out[57]:
(29669, 14)
In [58]:
target_vector.shape
Out[58]:
(29669,)
In [59]:
from sklearn.preprocessing import StandardScaler
In [60]:
fs=StandardScaler().fit transform(feature matrix)
In [61]:
logr=LogisticRegression(max iter=10000)
logr.fit(fs,target_vector)
Out[61]:
```

LogisticRegression(max_iter=10000)

```
In [62]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [63]:
prediction=logr.predict(observation)
print(prediction)
[28079035]
In [64]:
logr.classes_
Out[64]:
array([28079006, 28079024, 28079035, 28079099], dtype=int64)
In [65]:
logr.score(fs,target_vector)
Out[65]:
0.8087229094340894
In [66]:
logr.predict_proba(observation)[0][0]
Out[66]:
1.724527777144498e-43
In [67]:
logr.predict_proba(observation)
Out[67]:
array([[1.72452778e-43, 2.43756289e-56, 9.99998565e-01, 1.43537418e-06]])
Random Forest
In [68]:
from sklearn.ensemble import RandomForestClassifier
In [69]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[69]:
```

RandomForestClassifier()

```
In [70]:
```

In [71]:

```
from sklearn.model_selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

Out[71]:

In [72]:

```
grid_search.best_score_
```

Out[72]:

0.7301617873651772

In [73]:

```
rfc_best=grid_search.best_estimator_
```

In [74]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
```

Out[74]:

```
[\text{Text}(2263.5849056603774, 1993.2, 'EBE <= 1.205 \mid ngini = 0.734 \mid nsamples = 1]
3105\nvalue = [5967, 2916, 5911, 5974]\nclass = d'),
 Text(1116.0, 1630.8000000000002, 'CO <= 0.405\ngini = 0.652\nsamples = 27
73\nvalue = [147, 1842, 1634, 745]\nclass = b'),
 Text(463.24528301886795, 1268.4, 'TOL <= 1.375\ngini = 0.627\nsamples = 1
506\nvalue = [87, 497, 1230, 526]\nclass = c'),
 Text(168.45283018867926, 906.0, 'TCH <= 1.235\ngini = 0.22\nsamples = 161
\nvalue = [0, 220, 27, 4] \setminus (ass = b'),
 Text(84.22641509433963, 543.599999999999, 'gini = 0.357\nsamples = 11\nv
alue = [0, 2, 11, 1] \setminus class = c'),
 nsamples = 150 nvalue = [0, 218, 16, 3] nclass = b'),
 Text(168.45283018867926, 181.19999999999982, 'gini = 0.261\nsamples = 76
\nvalue = [0, 102, 15, 3] \setminus class = b'),
 value = [0, 116, 1, 0]\nclass = b'),
 Text(758.0377358490566, 906.0, 'NOx <= 48.615\ngini = 0.587\nsamples = 13
45\nvalue = [87, 277, 1203, 522]\nclass = c'),
 Text(589.5849056603774, 543.599999999999, 'CO <= 0.145\ngini = 0.674\nsa
mples = 796\nvalue = [51, 265, 493, 424]\nclass = c'),
 Text(505.35849056603774, 181.1999999999982, 'gini = 0.137\nsamples = 218
\nvalue = [1, 22, 317, 2] \setminus class = c'),
 Text(673.811320754717, 181.19999999999982, 'gini = 0.659 \n samples = 578 \n
value = [50, 243, 176, 422]\nclass = d'),
 Text(926.4905660377359, 543.59999999999, 'TOL <= 2.77\ngini = 0.297\nsa
mples = 549\nvalue = [36, 12, 710, 98]\nclass = c'),
 Text(842.2641509433963, 181.1999999999999, 'gini = 0.562\nsamples = 50\n
value = [16, 2, 48, 13] \setminus class = c'),
 Text(1010.7169811320755, 181.1999999999982, 'gini = 0.261\nsamples = 499
\nvalue = [20, 10, 662, 85]\nclass = c'),
 Text(1768.754716981132, 1268.4, 'EBE <= 0.885\ngini = 0.508\nsamples = 12
67\nvalue = [60, 1345, 404, 219]\nclass = b'),
 Text(1431.8490566037738, 906.0, 'NO_2 <= 51.075 \setminus ini = 0.253 \setminus ini = 
722\nvalue = [4, 973, 111, 46]\nclass = b'),
 Text(1263.3962264150944, 543.5999999999999, 'OXY <= 1.015 \cdot ini = 0.106 \cdot ini
samples = 578\nvalue = [2, 859, 20, 28]\nclass = b'),
 Text(1179.169811320755, 181.1999999999982, 'gini = 0.088\nsamples = 568
\nvalue = [2, 855, 18, 21]\nclass = b'),
 Text(1347.622641509434, 181.199999999999982, 'gini = 0.592 \nsamples = 10 \n
value = [0, 4, 2, 7] \setminus nclass = d'),
 Text(1600.301886792453, 543.599999999999, 'PM10 <= 29.185\ngini = 0.573
\nsamples = 144\nvalue = [2, 114, 91, 18]\nclass = b'),
 Text(1516.0754716981132, 181.1999999999982, 'gini = 0.567\nsamples = 87
\nvalue = [0, 40, 78, 18] \setminus class = c'),
 Text(1684.5283018867926, 181.1999999999982, 'gini = 0.287\nsamples = 57
\nvalue = [2, 74, 13, 0] \setminus (ass = b'),
 Text(2105.6603773584907, 906.0, 'NO_2 <= 28.255\ngini = 0.678\nsamples =
545\nvalue = [56, 372, 293, 173]\nclass = b'),
 samples = 124\nvalue = [0, 190, 0, 12]\nclass = b'),
 Text(1852.9811320754718, 181.1999999999982, 'gini = 0.0\nsamples = 111\n
value = [0, 180, 0, 0]\nclass = b'),
 Text(2021.433962264151, 181.199999999999999, 'gini = 0.496 \nsamples = 13 \n
value = [0, 10, 0, 12] \setminus class = d'),
 Text(2274.11320754717, 543.599999999999, 'PXY <= 0.985\ngini = 0.691\nsa
mples = 421\nvalue = [56, 182, 293, 161]\nclass = c'),
 Text(2189.8867924528304, 181.1999999999982, 'gini = 0.669\nsamples = 199
\nvalue = [46, 157, 39, 87]\nclass = b'),
 Text(2358.33962264151, 181.199999999999, 'gini = 0.463\nsamples = 222\n
value = [10, 25, 254, 74] \setminus class = c'),
 Text(3411.169811320755, 1630.8000000000002, 'OXY <= 4.265\ngini = 0.7\nsa
```

```
mples = 10332\nvalue = [5820, 1074, 4277, 5229]\nclass = a'),
 Text(2905.811320754717, 1268.4, '0 3 < 7 3.74\ngini = 0.695\nsamples = 646
8\nvalue = [2193, 910, 2889, 4246]\nclass = d'),
 Text(2695.245283018868, 906.0, 'NMHC <= 0.365\ngini = 0.142\nsamples = 24
1\nvalue = [26, 35, 0, 3]\nclass = b'),
 Text(2611.0188679245284, 543.599999999999, 'SO_2 <= 17.395\ngini = 0.107
\nsamples = 227 \text{ nvalue} = [17, 335, 0, 3] \text{ nclass} = b'),
 Text(2526.7924528301887, 181.1999999999982, 'giri = 0.07\nsamples = 214
\nvalue = [9, 322, 0, 3] \ln (ass = b'),
 value = [8, 13, 0, 0]\nclass = b'),
 Text(2779.471698113208, 543.599999999999, /gini \neq 0.453\nsamples \neq 14\nv
alue [9 17, 6 0] clas b b
                                                                                            Mary or a distribution of the state of the s
Lean Bold St. 19:490566, 906.0, NMHC <= 0.045\ngini = 0.677\nsamples = 62
27\nvalue = [2167, 558, 2889, 4243]\nclass = \d'),
 mples = 674\nvalue = [868, 9, 148, 50]\nclass = a'),
ACCUSES: 981132075475, 181.1999999999999, 'gini = 0.404\nsamples = 30
\nvalue = [6, 5, 37, 1] \setminus class = c'),
\nvalue = [862, 4, 111, 49]\nclass = a'),
 Text(3284.8301886792456, 543.599999999999, 'TCH <= 1.285\ngini = 0.649\n
Ridge Regression: 0a15236555741871216, 2741, 4193]\nclass = d'),
 Text(3200.603773584906, 181.1999999999982, 'gini = 0.672\nsamples = 923
Lassburgeression:10:038983500736449695 = c'),
 Text(3369.0566037735853, 181.199999999999, 'gini = 0.628\nsamples = 463
0\nvalue = [840, 531, 2203, 3768]\nclass = d'), 

Elastic Net Regression 69 928, 714262 28 846358 <= 0.125\ngini = 0.577\nsamples =
3864\nvalue = [3627, 164, 1388, 983]\nclass = a'),
Lbeystie 70 5 g P632 io 11: 0.88 6229 0643408 6229 (= 15.975 \ngini = 0.229 \nsamples = 3
61\nvalue = [496, 3, 48, 21]\nclass = a'),
Text(3621.735849056604, 543.599999999999, 'BEN <= 1.745\ngini = 0.188\ns Random Forest:0.7331953004622496 amples = 350\nvalue = [494, 3, 36, 17]\nclass = a'),
 Text(3537.509433962264, 181.19999999999999, 'gini = 0.631 \nsamples = 10 \n
value = [8, 3, 3, 1] \setminus ass = a'),
Logistic Regressions is suitable for this 2 dataset = 0.17 \nsamples = 340
\nvalue = [486, 0, 33, 16]\nclass = a'),
 value = [2, 0, 12, 4] \setminus class = c'),
 Text(4127.094339622642, 906.0, 'NO 2 <= 91.125 \setminus gini = 0.599 \setminus gini = 3
503\nvalue = [3131, 161, 1340, 962]\nclass = a'),
 \nsamples = 1845\nvalue = [1856, 95, 508, 506]\nclass = a'),
 Text(3874.415094339623. 181.1999999999982. 'gini = 0.633\nsamples = 1296
```