ITHIM-R

August 7, 2019

Description

Add distance columns to injury tables, matching on information in the injury contingency table

Usage

```
add_distance_columns(injury_table, mode_names, true_distances_0, dist,
    scenarios = SCEN)
```

Arguments

injury_table (list of) data frame(s) to be edited mode_names which modes to take distances for

true_distances_0

distances to add to injury table

dist table used to access bus distance

scenarios which scenarios to process

Value

edited (list of) data frame(s)

2 add_trips

 add_ghost_trips

Add trips taken by no one

Description

Creates trips based on distance relative to another (reference) mode, without altering the synthetic population

Usage

```
add_ghost_trips(raw_trip_set, trip_mode = "bus_driver",
   distance_ratio = BUS_TO_PASSENGER_RATIO * DISTANCE_SCALAR_PT,
   reference_mode = "bus")
```

Arguments

```
raw_trip_set data frame of trips
trip_mode which mode to add
distance_ratio fraction of reference distance to create
reference_mode name of reference mode
```

Value

data frame of trips

 $\mathsf{add_trips}$

Add trips to trip set

Description

Creates a data frame of the same description as a trip set to append

Usage

```
add_trips(trip_ids = 0, new_mode = "walking", distance = 1,
  participant_id = 0, age = 20, sex = "Male", nTrips = 3,
  speed = 4.8)
```

add_walk_trips 3

Arguments

trip_ids ids for new trips

new_mode mode for new trips

distance distances to sample from

participant_id participant id for new trips

age age for participant sex sex for participant

nTrips number of trips for participant

speed speed for new trips

Value

data frame of trips

add_walk_trips

Add walk trips to trip set

Description

Create data frame of walk-to-PT trips from PT trips and walk-to-bus time

Usage

```
add_walk_trips(pt_trips)
```

Arguments

pt_trips data frame of PT trips

Value

list of data frames of PT trips and walk-to-PT trips

4 assign_age_groups

```
ap_dose_response_curve
```

Computes RR as a DR relationship

Description

Computes RR as a DR relationship given four parameters and the PM2.5 exposure

Usage

```
ap_dose_response_curve(pm, alpha, beta, gamma, tmrel)
```

Arguments

pm	PM2.5 exposure
alpha	DR parameter
beta	DR parameter
gamma	DR parameter
tmrel	DR parameter

Value

RR

assign_age_groups

Assign age groups to individuals

Description

Prunes dataset given max and min ages; assigns age group labels given age

Usage

```
assign_age_groups(dataset, age_category = AGE_CATEGORY,
   age_lower_bounds = AGE_LOWER_BOUNDS, max_age = MAX_AGE,
   min_age = AGE_LOWER_BOUNDS[1], age_label = "age")
```

Arguments

```
data frame to be edited

age_category vector of strings giving age categories

age_lower_bounds

lower boundaries of age categories

max_age maximum age for model

min_age minimum age for model

age_label string label for age column
```

beta_pointiness 5

Value

edited data frame

beta_pointiness

Parametrise confidence in PA data

Description

Takes a confidence value between 0 and 1 and returns a parameter for a beta distribution

Usage

```
beta_pointiness(confidence)
```

Arguments

confidence

value between 0 and 1 representing how confident we are about the PA dataset

Value

a value to parametrise a beta distribution

combined_rr_ap_pa

Combine relative risks from AP and PA

Description

Combine relative risks from AP and PA through multiplication for crossover diseases

Usage

```
combined_rr_ap_pa(ind_pa, ind_ap)
```

Arguments

ind_pa	data frame of individual RRs for diseases affected by PA
ind_ap	data frame of individual RRs for diseases affected by AP

Value

combined RR for diseases after accounted for AP and PA exposures

combine_health_and_pif

Combine health and PIF

Description

Applies PIF calculated from RRs to the current observed health burden from GBD to generate scenario health burden

Usage

```
combine_health_and_pif(pif_values, hc = DISEASE_BURDEN)
```

Arguments

pif_values vector of values of PIFs

hc data frame of current burden of disease

Value

estimated scenario burden of disease

 ${\tt complete_trip_distance_duration}$

Data harmonisation: add columns to trip set if missing

Description

Creates any columns needed and missing from the trip set, then writes the trip set to the global environment

Usage

```
complete_trip_distance_duration()
```

create_all_scenarios 7

Description

Creates five prespecified scenarios from the baseline for Accra and Sao Paulo

Usage

```
create_all_scenarios(trip_set)
```

Arguments

trip_set

data frame of baseline trips

Value

list of scenarios

```
create_cycle_scenarios
```

Creates cycling scenarios

Description

Creates five scenarios with 10-50

Usage

```
create_cycle_scenarios(trip_set)
```

Arguments

trip_set

data frame of baseline trips

Value

list of scenarios

8 create_scenario

```
create_max_mode_share_scenarios
```

Create scenarios defined by maximum mode share

Description

Creates five scenarios where, in each one, the mode share is elevated to the maximum observed across the cities. The scenario-modes are walking, cycling, car, motorcycle and bus

Usage

```
create_max_mode_share_scenarios(trip_set)
```

Arguments

trip_set data frame, baseline scenario

Value

list of baseline scenario and five mode scenarios

create_scenario

Create individual scenario

Description

Function to create individual scenario for the five prespecified scenarios from the baseline for Accra and Sao Paulo (create_all_scenarios)

Usage

```
create_scenario(rdr, scen_name, source_modes, combined_modes = F,
  target_modes, source_distance_cats, source_trips, target_trips)
```

Arguments

target_trips

rdr data frame of trips
scen_name name of scenario
source_modes which mode(s) to take trips from
combined_modes whether or not to combine source modes
target_modes mode to change to
source_distance_cats
which categories to select trips from
source_trips how many trips to leave, or to take

create_synth_pop 9

Value

list of scenarios

create_synth_pop

Creates synthetic population

Description

Creates a synthetic population by matching individuals in the trip set to individuals in the PA set

Usage

```
create_synth_pop(raw_trip_set)
```

Arguments

```
raw_trip_set data frame of raw trips taken
```

Value

the synthetic population and the trip set which has been pruned

Description

Duplicate baseline scenario; give each person one 1km walk in the scenario

Usage

```
create_walk_scenario(trip_set)
```

Arguments

trip_set

data frame, baseline scenario

Value

list of baseline scenario and walking scenario

dirichlet_pointiness Function for Dirichlet parameters

Description

Function to map a confidence value to a parametrisation of a Dirichlet distribution

Usage

```
dirichlet_pointiness(confidence)
```

Arguments

confidence

value between 0 and 1

Value

parametrisation

```
distances_for_injury_function
```

Get distances and model for injuries module

Description

Computes exposures (distances) to parametrise the injury regression model, which is computed as a Poisson with various offsets and used later in prediction

Usage

```
distances_for_injury_function(trip_scen_sets, dist)
```

Arguments

```
trip_scen_sets list of synthetic trip sets for scenarios
dist table of (total) distances per mode per scenario
```

Value

list of distances, injury table, and injury regression model

dist_dur_tbls 11

dist_dur_tbls

Get distances and durations

Description

Summaries of total distances and durations spent travelling per mode per scenario

Usage

```
dist_dur_tbls(trip_scen_sets)
```

Arguments

trip_scen_sets list of synthetic trip sets for scenarios

Value

list of table of (total) distances and durations per mode per scenario

gen_ap_rr

Get RR for diseases given AP exposure

Description

Computes the RR for individuals for each disease given AP exposure

Usage

```
gen_ap_rr(pm_conc_pp)
```

Arguments

pm_conc_pp

individual AP exposures

Value

data frame of relative risks per person per disease

12 get_all_distances

gen_pa_rr

Get RR for diseases given mMETs

Description

Computes the RR for individuals for each disease given mMETs (PA exposure)

Usage

```
gen_pa_rr(mmets_pp)
```

Arguments

mmets_pp

individual mMETs

Value

data frame of relative risks per person per disease

get_all_distances

Sequence to get distance data

Description

Sequence of function calls to get distance data for modules from synthetic population

Usage

```
get_all_distances(ithim_object)
```

Arguments

ithim_object list containing synthetic trip set

Value

ithim_object again, with additional distance objects

get_scenario_settings 13

```
get_scenario_settings Get values for max mode share scenario
```

Description

Computes the maximum mode share for specified mode types and specified distance categories across specified (stored) cities. Used for max mode share scenario generation.

Usage

```
get_scenario_settings(cities = c("accra", "sao_paulo", "delhi",
   "bangalore"), modes = c("walking", "bicycle", "car", "motorcycle",
   "bus"), distances = c("0-1 km", "2-5 km", "6+ km"), speeds = list(bus
   = 15, bus_driver = 15, minibus = 15, minibus_driver = 15, car = 21, taxi
   = 21, walking = 4.8, walk_to_pt = 4.8, bicycle = 14.5, motorcycle = 25,
   truck = 21, van = 15, subway = 28, rail = 35, auto_rickshaw = 22,
   shared_auto = 22, cycle_rickshaw = 10))
```

Arguments

cities which cities to use modes which modes to use

distances which distance categories to use

speeds named list of mode speeds (to be applied to all cities)

Value

data frame of proportions by mode and distance category

Description

Sequence of functions to set up the synthetic population, the synthetic trips, and the scenarios. Also sets global variables for later use.

Usage

```
get_synthetic_from_trips()
```

Value

data frame of all trips from all scenarios

injuries_function_2

health_burden

Compute health burden

Description

Compute health burden for populations in scenarios given relative risks

Usage

```
health_burden(ind_ap_pa, combined_AP_PA = T)
```

Arguments

```
ind_ap_pa data.frame of all individuals' relative risks for diseases combined_AP_PA=T
```

logic: whether to combine the two exposure pathways (AP and PA) or to compute independently

Value

list of data.frames: one for deaths per disease per demographic group, and likewise for YLLs

```
injuries_function_2 Predict injuries
```

Description

Predict injuries based on regression model from baseline and scenario travel

Usage

```
injuries_function_2(true_distances, injuries_list, reg_model,
  constant_mode = F)
```

Arguments

true_distances data frame to set up results

injuries_list list of data frames to supply to regression model for prediction

reg_model regression glm object

constant_mode whether or not we are in constant (vs sampling) mode

Value

list of injury prediction data frames and whw matrices

injury_death_to_yll 15

Description

Calculated the YLL burden from the death burden of injury based on the ratio in the GBD data.

Usage

```
injury_death_to_yll(injuries)
```

Arguments

injuries

data frame of injury deaths

Value

list of injury deaths and YLLs (which are differences from reference scenario) plus the values in the reference scenario.

```
ithim_calculation_sequence
```

Cascade of computations that form the ITHIM

Description

Ordered set of computations that form the ITHIM, from travel information to health burden.

Usage

```
ithim_calculation_sequence(ithim_object, seed = 1)
```

Arguments

```
ithim_object name of disease
seed
```

Value

list of items making up the ithim result

ithim_load_data

Load data for model and setting

Description

Loads and processes data from file. Local data for the setting and global data for the model. Writes objects to the global environment.

Usage

```
ithim_load_data(speeds = list(bus = 15, bus_driver = 15, minibus = 15,
  minibus_driver = 15, car = 21, taxi = 21, walking = 4.8, walk_to_pt =
  4.8, bicycle = 14.5, motorcycle = 25, truck = 21, van = 15, subway = 28,
  rail = 35, auto_rickshaw = 22, shared_auto = 22, cycle_rickshaw = 10))
```

Arguments

speeds

named list of mode speeds

```
ithim_setup_baseline_scenario
```

Set up baseline scenario data frame

Description

Create scenario by adding distance categories and scenario=baseline column to trip set data frame

Usage

```
ithim_setup_baseline_scenario(trip_set)
```

Arguments

trip_set

data frame of trips

Value

trip_set as baseline scenario

ithim_setup_parameters

Routine to sample or set parameters for ITHIM

Description

Parameters have two options: to be set to a constant, and to be sampled from a prespecified distribution. Each parameter is given as an argument of length 1 or 2. If length 1, it's constant, and set to the global environment. If length 2, a distribution is defined and sampled from NSAMPLE times. There are some exceptions, listed below.

Usage

```
ithim_setup_parameters(NSAMPLES = 1, BUS_WALK_TIME = 5,
    MMET_CYCLING = 4.63, MMET_WALKING = 2.53, PM_CONC_BASE = 50,
    PM_TRANS_SHARE = 0.225, PA_DOSE_RESPONSE_QUANTILE = F,
    AP_DOSE_RESPONSE_QUANTILE = F, BACKGROUND_PA_SCALAR = 1,
    BACKGROUND_PA_CONFIDENCE = 1, INJURY_REPORTING_RATE = 1,
    CHRONIC_DISEASE_SCALAR = 1, DAY_TO_WEEK_TRAVEL_SCALAR = 7,
    INJURY_LINEARITY = 1, CASUALTY_EXPONENT_FRACTION = 0.5,
    BUS_TO_PASSENGER_RATIO = 0.022, TRUCK_TO_CAR_RATIO = 0.21,
    EMISSION_INVENTORY_CONFIDENCE = 1, DISTANCE_SCALAR_CAR_TAXI = 1,
    DISTANCE_SCALAR_WALKING = 1, DISTANCE_SCALAR_PT = 1,
    DISTANCE_SCALAR_CYCLING = 1, DISTANCE_SCALAR_MOTORCYCLE = 1)
```

Arguments

```
NSAMPLES
                 constant integer: number of samples to take
                 lognormal parameter: duration of walk to PT
BUS_WALK_TIME
MMET_CYCLING
                 lognormal parameter: mMETs when cycling
                 lognormal parameter: mMETs when walking
MMET_WALKING
PM_CONC_BASE
                 lognormal parameter: background PM2.5 concentration
PM_TRANS_SHARE beta parameter: fraction of background PM2.5 attributable to transport
PA_DOSE_RESPONSE_QUANTILE
                 logic: whether or not to sample from PA RR DR functions
AP_DOSE_RESPONSE_QUANTILE
                 logic: whether or not to sample from AP RR DR functions
BACKGROUND_PA_SCALAR
                 lognormal parameter: reporting scalar for PA
BACKGROUND_PA_CONFIDENCE
                 beta parameter: confidence in accuracy of PA survey
INJURY_REPORTING_RATE
                 lognormal parameter: rate of injury reporting
CHRONIC_DISEASE_SCALAR
                 lognormal parameter: scalar for background disease rates
```

18 ithim_uncertainty

DAY_TO_WEEK_TRAVEL_SCALAR

beta parameter: rate of scaling travel from one day to one week

INJURY_LINEARITY

lognormal parameter: linearity of injuries in space

CASUALTY_EXPONENT_FRACTION

beta parameter: casualty contribution to linearity of scalaing of injuries in space

BUS_TO_PASSENGER_RATIO

beta parameter: number of buses per passenger

TRUCK_TO_CAR_RATIO

beta parameter: number of trucks per car

EMISSION_INVENTORY_CONFIDENCE

beta parameter: confidence in accuracy of emission inventory

DISTANCE_SCALAR_CAR_TAXI

lognormal parameter: scalar for car distance travelled

DISTANCE_SCALAR_WALKING

lognormal parameter: scalar for walking distance travelled

DISTANCE_SCALAR_PT

lognormal parameter: scalar for PT distance travelled

DISTANCE_SCALAR_CYCLING

lognormal parameter: scalar for cycling distance travelled

DISTANCE_SCALAR_MOTORCYCLE

lognormal parameter: scalar for motorcycle distance travelled

Value

list of samples of uncertain parameters

ithim_uncertainty

Sampling routine for calculating ITHIM with uncertainty

Description

Sets sampled parameters to the global environment and runs the ITHIM routine (run_ithim)

Usage

```
ithim_uncertainty(ithim_object, seed = 1)
```

Arguments

ithim_object list of necessary inputs, including parameters

seed which sample to take

Value

list of ITHIM outcomes

join_hb_and_injury 19

join_hb_and_injury	Join disease health burden and injury
Join_nb_ana_injary	Join discuse nearin burden and injury

Description

Join the two data frames for health burden: that from disease, and that from road-traffic injury

Usage

```
join_hb_and_injury(ind_ap_pa, inj)
```

Arguments

ind_ap_pa list (deaths, YLLs) of data frames of all demographic groups' burdens for dis-

eases

inj list (deaths, YLLs) of data frames of all demographic groups' burdens for road-

traffic injury

Value

list of data.frames: one for deaths per cause per demographic group, and likewise for YLLs

PA_dose_response Calculate RR given PA

Description

Calculate RR for a disease given PA

Usage

```
PA_dose_response(cause, dose, confidence_intervals = F)
```

Arguments

cause name of disease

dose vector of doses of PA from individuals

confidence_intervals

logic: whether or not to return confidence intervals

Value

data frame of relative risks

```
parallel_evppi_for_AP Compute AP EVPPI
```

Description

For use to compute AP EVPPI in parallel

Usage

```
parallel_evppi_for_AP(disease, parameter_samples, outcome, NSCEN)
```

Arguments

```
disease name
```

parameter_samples

data frame of parameter samples

outcome data frame of outcomes

NSCEN number of scenarios

Value

```
vector of EVPPI values (one per scenario)
```

```
population_attributable_fraction
```

Calculate population attributable fraction

Description

Calculate population attributable fraction

Usage

```
population_attributable_fraction(pop, cn, mat)
```

Arguments

pop

cn

mat

Value

population attributable fractions by demographic group

run_ithim 21

run_ithim

Wrapper for running ITHIM

Description

Switch to run the computation directly, or divert to the sampling case

Usage

```
run_ithim(ithim_object, seed = 1)
```

Arguments

```
ithim_object list of items making up the ithim set up seed
```

Value

ithim_object list of items making up the ithim result

run_ithim_setup

Run the set up script for ITHIM

Description

Sets up the basic ITHIM object for onward calculation. Data loading, processing and harmonisation. Setting global values.

Usage

```
run_ithim_setup(seed = 1, CITY = "accra", speeds = NULL,
    emission_inventory = NULL,
    setup_call_summary_filename = "setup_call_summary.txt",
    DIST_CAT = c("0-6 km", "7-9 km", "10+ km"), AGE_RANGE = c(0, 150),
    ADD_WALK_TO_BUS_TRIPS = T, ADD_BUS_DRIVERS = T,
    ADD_TRUCK_DRIVERS = T, TEST_WALK_SCENARIO = F,
    TEST_CYCLE_SCENARIO = F, MAX_MODE_SHARE_SCENARIO = F,
    REFERENCE_SCENARIO = "Baseline", PATH_TO_LOCAL_DATA = NULL,
    NSAMPLES = 1, BUS_WALK_TIME = 5, MMET_CYCLING = 4.63,
    MMET_WALKING = 2.53, PM_CONC_BASE = 50, PM_TRANS_SHARE = 0.225,
    PA_DOSE_RESPONSE_QUANTILE = F, AP_DOSE_RESPONSE_QUANTILE = F,
    BACKGROUND_PA_SCALAR = 1, BACKGROUND_PA_CONFIDENCE = 1,
    INJURY_REPORTING_RATE = 1, CHRONIC_DISEASE_SCALAR = 1,
    DAY_TO_WEEK_TRAVEL_SCALAR = 7, INJURY_LINEARITY = 1,
    CASUALTY_EXPONENT_FRACTION = 0.5, MOTORCYCLE_TO_CAR_RATIO = 0.2,
```

22 run_ithim_setup

```
BUS_TO_PASSENGER_RATIO = 0.022, TRUCK_TO_CAR_RATIO = 0.21,

EMISSION_INVENTORY_CONFIDENCE = 1, DISTANCE_SCALAR_CAR_TAXI = 1,

DISTANCE_SCALAR_WALKING = 1, DISTANCE_SCALAR_PT = 1,

DISTANCE_SCALAR_CYCLING = 1, DISTANCE_SCALAR_MOTORCYCLE = 1)
```

Arguments

CITY name of the city, and name of the directory containing city data files

speeds named list of mode speeds

emission_inventory

named list of mode emissions

setup_call_summary_filename

name to write setup call summary to

DIST_CAT vector string of distance categories in the form '0-6'. (The unit is assumed to be

the same as in the trip set.)

AGE_RANGE vector of minimum and maximum ages to include

ADD_WALK_TO_BUS_TRIPS

logic: whether or not to add short walks to all PT trips

ADD_BUS_DRIVERS

logic: whether or not to add bus drivers

ADD_TRUCK_DRIVERS

logic: whether or not to add truck drivers

TEST_WALK_SCENARIO

logic: whether or not to run the walk scenario

TEST_CYCLE_SCENARIO

logic: whether or not to run the cycle scenario

MAX_MODE_SHARE_SCENARIO

logic: whether or not to run the max mode share scenario

REFERENCE_SCENARIO

which scenario forms the reference for the health comparison

PATH_TO_LOCAL_DATA

path to CITY directory, if not using package

NSAMPLES constant integer: number of samples to take
BUS_WALK_TIME lognormal parameter: duration of walk to PT
MMET_CYCLING lognormal parameter: mMETs when cycling
MMET_WALKING lognormal parameter: mMETs when walking

PM_CONC_BASE lognormal parameter: background PM2.5 concentration

PM_TRANS_SHARE beta parameter: fraction of background PM2.5 attributable to transport

PA_DOSE_RESPONSE_QUANTILE

logic: whether or not to sample from PA RR DR functions

AP_DOSE_RESPONSE_QUANTILE

logic: whether or not to sample from AP RR DR functions

BACKGROUND_PA_SCALAR

lognormal parameter: reporting scalar for PA

run_ithim_setup 23

BACKGROUND_PA_CONFIDENCE

beta parameter: confidence in accuracy of PA survey

INJURY_REPORTING_RATE

lognormal parameter: rate of injury reporting

CHRONIC_DISEASE_SCALAR

lognormal parameter: scalar for background disease rates

DAY_TO_WEEK_TRAVEL_SCALAR

beta parameter: rate of scaling travel from one day to one week

INJURY_LINEARITY

lognormal parameter: linearity of injuries in space

CASUALTY_EXPONENT_FRACTION

beta parameter: casualty contribution to linearity of scalaing of injuries in space

BUS_TO_PASSENGER_RATIO

beta parameter: number of buses per passenger

TRUCK_TO_CAR_RATIO

beta parameter: number of trucks per car

EMISSION_INVENTORY_CONFIDENCE

beta parameter: confidence in accuracy of emission inventory

DISTANCE_SCALAR_CAR_TAXI

lognormal parameter: scalar for car distance travelled

DISTANCE_SCALAR_WALKING

lognormal parameter: scalar for walking distance travelled

DISTANCE_SCALAR_PT

lognormal parameter: scalar for PT distance travelled

DISTANCE_SCALAR_CYCLING

lognormal parameter: scalar for cycling distance travelled

DISTANCE_SCALAR_MOTORCYCLE

lognormal parameter: scalar for motorcycle distance travelled

Details

Parameters have two options: to be set to a constant, and to be sampled from a prespecified distribution. Each parameter is given as an argument of length 1 or 2. If length 1, it's constant, and set to the global environment. If length 2, a distribution is defined and sampled from NSAMPLE times. There are some exceptions, listed below.

Value

ithim_object list of objects for onward use.

```
scale_trip_distances
```

Description

Applies mode-specific distance scalars to all trips

Usage

```
scale_trip_distances(trips)
```

Arguments

trips

data frame, all trips from all scenarios

Value

data frame, all trips from all scenarios

```
scenario_pm_calculations
```

Calculate total AP exposure per person

Description

Calculate total AP exposure per person based on population and personal travel

Usage

```
scenario_pm_calculations(dist, trip_scen_sets)
```

Arguments

```
dist data frame of population travel from all scenarios trip_scen_sets data frame of all trips from all scenarios
```

Value

```
background AP
total AP exposure per person
```

set_injury_contingency 25

```
set_injury_contingency
```

Create contingency table from itemised list of injuries

Description

One of the inputs is a list of injury events. This function aggregates injuries by type into a long contingency table with prespecified column names. Write tables to global environment.

Usage

```
set_injury_contingency(injuries)
```

Arguments

injuries data frame of injury events

```
set_vehicle_inventory Collate all vehicle information
```

Description

Puts all vehicle information in one place. Writes to global environment.

Usage

```
set_vehicle_inventory()
```

```
summarise_ithim_inputs
```

Graphical processing of input data

Description

Produce graphs summarising some input data, e.g. travel, injury, AP

Usage

```
summarise_ithim_inputs(ithim_object)
```

Arguments

```
ithim_object processed ithim_object from run_ithim_setup
```

26 trim_glm_object

total_mmet

Calculate total mMETs per person

Description

Calculate total mMETs per person based on PA and active travel

Usage

```
total_mmet(trip_scen_sets)
```

Arguments

trip_scen_sets data frame of all trips from all scenarios

Value

total mMETs per week per person

trim_glm_object

Reduce size of glm object

Description

Delete some attributes of glm object in order to save space

Usage

```
trim_glm_object(obj)
```

Arguments

obj

glm object

Value

glm object

 $walk_to_pt_and_combine_scen \\ Add\ walk\ to\ PT$

Description

Adds a short walk stage to any PT trip if required. Combines list of scenarios into one data frame

Usage

```
walk_to_pt_and_combine_scen(SYNTHETIC_TRIPS)
```

Arguments

trip_set list of data frames, trips from all scenarios

Value

data frame, all trips from all scenarios

Index

```
add_distance_columns, 1
                                                PA_dose_response, 19
add_ghost_trips, 2
                                                parallel_evppi_for_AP, 20
                                                {\tt population\_attributable\_fraction,}~20
add_trips, 2
add_walk_trips, 3
                                                 run_ithim, 21
ap_dose_response_curve, 4
                                                run_ithim_setup, 21
assign_age_groups, 4
                                                scale_trip_distances, 24
beta_pointiness, 5
                                                {\tt scenario\_pm\_calculations}, {\tt 24}
                                                set_injury_contingency, 25
combine_health_and_pif, 6
                                                set_vehicle_inventory, 25
combined_rr_ap_pa, 5
                                                summarise_ithim_inputs, 25
complete_trip_distance_duration, 6
create_all_scenarios, 7
                                                total_mmet, 26
create_cycle_scenarios, 7
                                                trim_glm_object, 26
create_max_mode_share_scenarios, 8
create\_scenario, 8
                                                walk_to_pt_and_combine_scen, 27
create_synth_pop, 9
create_walk_scenario, 9
dirichlet_pointiness, 10
dist_dur_tbls, 11
distances_for_injury_function, 10
gen_ap_rr, 11
gen_pa_rr, 12
get_all_distances, 12
get_scenario_settings, 13
get_synthetic_from_trips, 13
health_burden, 14
injuries_function_2, 14
injury_death_to_yll, 15
ithim_calculation_sequence, 15
ithim_load_data, 16
ithim_setup_baseline_scenario, 16
ithim_setup_parameters, 17
ithim_uncertainty, 18
join_hb_and_injury, 19
```