5 Закон Кулона. Электрическое поле

Закон Кулона. Два тела с зарядами q_1 и q_2 , расположенные в вакууме на расстоянии r, взаимодействуют друг с другом с **силой Кулона**

$$F_{\rm K} = k \frac{q_1 q_2}{r^2},\tag{1}$$

где k — коэффициент пропорциональности (см. справочные таблицы).

На рис. 1 изображены два отрицательных заряда.

Рис. 1. Взаимодействие двух отрицательных зарядов

Заряды q_1 и q_2 расположены на некотором расстоянии r друг от друга¹. Как и любые два заряженных тела, эти заряды *взаимодействуют* друг с другом. В данном случае заряд q_1 отталкивается от заряда q_2 с силой $F_{\rm K}$, а заряд q_2 — от заряда q_1 с такой же силой $F_{\rm K}$.

Сила Кулона зависит от среды, в которой находятся заряды. Часто заряды оказываются помещенными в так называемый *диэлектрик* — вещество, которое не проводят через себя электрические заряды (например, если соединить диэлектриком² два металлических шара, несущих разноименные заряды, то перераспределения зарядов между шарами не будет). В диэлектрике формула (1) приобретает вид:

$$F_{\rm K} = k \frac{q_1 q_2}{\varepsilon r^2},$$

где $\varepsilon - \partial u$ электрическая проницаемость среды (см. справочные таблицы).

Считают, что взаимодействие неподвижных зарядов осуществляется посредством электрического поля — формы материи, окружающей заряженные тела (поле можно представлять себе как невидимое истечение из тела воображаемой жидкости и т. п.). Сказанное проиллюстрировано на рис. 2: поле положительного заряда А «отталкивает» положительный заряд Б от заряда А (и наоборот)³.

Рис. 2. Действие поля одного заряда на другой

 $^{^{1}}$ Для однородно заряженных шарообразных тел r есть расстояние между их центрами.

 $^{^{2}\}Pi$ римерами диэлектриков являются пластик, стекло, масло и т. д.

 $^{^{3}}$ Скорость передачи взаимодействия между зарядами равна примерно $3\cdot10^{8}$ м/с.