HUMBER ENGINEERING

MENG 3510 – Control Systems LECTURE 11

LECTURE 11 Controller Design via Frequency Response

- Control System Design via Bode Diagram
 - Frequency Response of P, PI and PD Controllers
 - Proportional Controller Design
 - PD Controller Design
 - PI Controller Design

Control System Design via Bode Diagram

• Consider the following closed-loop system with controller $G_c(s)$

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G_c(s)G(s)}{1 + G_c(s)G(s)H(s)}$$

- The goal is to design the control system using the Bode diagram of the open-loop system $G_c(s)G(s)H(s)$, to satisfy the desired performance criteria such as gain margin, phase margin, and steady-state error.
- We will focus on designing the PID family controllers via Bode plot.
 - Proportional Controller
 - PI Controller
 - PD Controller

$$G_c(s) = K_p$$

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} \right)$$

$$G_c(s) = K_p \left(1 + \frac{T_d s}{\frac{T_d}{\beta} s + 1} \right)$$

Proportional Controller

The frequency response function of proportional controller

$$G_c(s) = K_p \rightarrow G_c(j\omega) = K_p$$

- Effect of a proportional controller on the Bode plot of the open-loop system $G_c(s)G(s)H(s)$
 - Shifts the Bode magnitude graph up or down
 - Does not affect the Bode phase graph

Example 1

Consider the following fourth-order system. Determine the K_p value so that the phase margin is at least 60°

and the gain margin is at least 15dB.

Desired performance characteristics:

$$PM \geq 60^{\circ}, \quad GM \geq 15 dB$$

Step 1: Plot Bode diagram of the open-loop system $K_pG(s)H(s)$, and find PM and GM

• Plot the Bode diagram of open-loop system, $K_pG(s)H(s)$, for a convenient small value of the gain, $K_p = 1$.

$$K_pG(s)H(s) = \frac{K_p60(s+3)}{s(s+2)(s+4)(s+7)}$$

Check the current Phase Margin and Gain Margin:

$$GM = 0 dB - (-10 dB) = 10 dB$$

$$PM = 180^{\circ} + (-150^{\circ}) = 30^{\circ}$$

Current GM and PM are not in the desired range.

$$PM = 30^{\circ}$$
 and $GM = 10 dB$

Example 1

Consider the following fourth-order system. Determine the K_p value so that the phase margin is at least 60°

and the gain margin is at least 15dB.

Desired performance characteristics:

$$PM \geq 60^{\circ}, GM \geq 15 dB$$

Step 2: Find the point on the phase plot to achieve the desired *PM*

$$PM_d = 180^{\circ} + \phi \rightarrow \varphi = 60^{\circ} - 180^{\circ} = -120^{\circ}$$

- Point A on the Bode diagram shows the location which can give us the $PM = 60^{\circ}$
- Find the New Gain Crossover Frequency at the desired PM:

$$PM = 60^{\circ} \rightarrow \omega_g = 0.986 \, rad/s$$

- Therefore, we must decrease the current gain K_p to shift down the magnitude plot to achieve the desired gain crossover frequency and the desired PM.
- Note that by changing the gain value K_p , only the magnitude plot can be modified, and the phase plot is **not** affected.

Example 1

Consider the following fourth-order system. Determine the K_p value so that the phase margin is at least 60°

and the gain margin is at least 15dB.

Desired performance characteristics:

$$PM \geq 60^{\circ}, GM \geq 15 dB$$

Step 3: Find the gain value at the new gain crossover frequency

$$\omega_{gc} = 0.986 \, rad/s$$

At point B
$$\rightarrow 20\log |K_pG(s)H(s)| = 9.5dB$$

We want to change the gain K_p to make the magnitude at point B equal to 0dB

Therefore, the new gain value must contribute the gain of -9.5dB

$$20 \log |K_{new}| = -9.5 dB \rightarrow K_{new} = 10^{-9.5/20} = 0.335$$
New Gain

Example 1

Consider the following fourth-order system. Determine the K_p value so that the phase margin is at least 60°

and the gain margin is at least 15dB.

Desired performance characteristics:

$$PM \geq 60^{\circ}, GM \geq 15 dB$$

We can plot the Bode diagram with the new gain to verify the result.

$$K_{new}=0.335$$

• The gain margin and phase margin satisfy the required criteria

$$\mathbf{PM} = \mathbf{60}^{\circ}$$

$$GM = 20 dB$$

Example 1

Consider the following fourth-order system. Determine the K_p value so that the phase margin is at least 60°

and the gain margin is at least 15dB.

Desired performance characteristics:

$$PM \geq 60^{\circ}$$
, $GM \geq 15 dB$

• We can also plot the unit-step response of the closed-loop system with $K_p=0.335$ to check the performance of the system in time-domain.

$$K_{new} = 0.335$$

$$PM = 60^{\circ}$$

$$GM = 20 dB$$

$$0. S. = 7.73\%$$
 $t_s = 4.05 sec$
 $e_{ss} = 0$

PI Controller Design via Bode Diagram

PI Controller

The frequency response function of PI controller

$$G_c(s) = K_P \left(1 + \frac{1}{T_i s} \right) = K_P \left(\frac{T_i s + 1}{T_i s} \right) = K_P \left(\frac{1}{T_i s} \right) (T_i s + 1)$$

$$G_c(j\omega) = K_P \left(\frac{1}{j T_i \omega} \right) (j T_i \omega + 1)$$

The corner frequencies of single zero

$$\omega_z = \frac{1}{T}$$

The low-frequency gain and the high- frequency gain

$$G_c(j0) = \infty$$
 and $G_c(j\infty) = K_p$

- Effect of a PI controller on the Bode plot of the open-loop system $G_c(s)G(s)H(s)$
 - Eliminates steady-state error by applying infinite gain at low frequencies
 - Decreases the bandwidth by shifting the gain crossover frequency to the left, which makes slower transient response
 - Negative phase angle contribution (may increase phase lag)
- Negative phase must be kept at low frequencies far enough from the gain crossover frequency to <u>not effect</u> the *PM*.

□ PI Controller Design Steps via Bode Diagram

Step 1: Plot Bode diagram of the open-loop system KG(s)H(s), and find PM and GM

$$G_c(s) = K_P \left(1 + \frac{1}{T_i s} \right)$$

Step 2: Find the required phase margin,
$$PM_{req} \longrightarrow PM_{req} = PM_d + \alpha^{\circ}$$
Safety factor (5° $\leq \alpha \leq 15^{\circ}$)

Step 3: Determine the frequency on the Bode diagram to achieve the required phase margin PM_{req} . Select this frequency as the new gain crossover frequency, ω_{gc}

Step 4: Find the corner frequency of zero
$$\omega_z = 0.1 \omega_{gc}$$

Step 5: Select the integral time constant
$$T_i \longrightarrow T_i = \frac{1}{\omega_z}$$

Step 6: Select the proportional gain K_p to bring down the magnitude plot to 0dB at the new crossover frequency ω_{gc} .

Consider the following third-order system

It is desired to design a PI controller to achieve the following performance characteristics

$$e_{ss}=0$$
 , $PM>70^{\circ}$, $GM>10dB$

Step 1: Plot Bode diagram of the open-loop system KG(s)H(s), and find PM and GM

From the Bode diagram of the <u>uncompensated</u> system with K = 1, we have the following relative stability margins

$$PM = 31^{\circ}$$
 and $GM = 8.63 dB$

Current *PM* and *GM* are not in the desired range.

Consider the following third-order system

It is desired to design a PI controller to achieve the following performance characteristics

$$e_{ss}=0$$
, $PM>70^{\circ}$, $GM>10dB$

Next, design a PI Controller to achieve the desired PM.

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} \right)$$

- PI controller modifies the both magnitude and phase plots by shifting the gain crossover to the left.
- To avoid the effect of negative phase, zero of the PI controller must be selected one decade below the new gain cross over frequency

Consider the following third-order system

It is desired to design a PI controller to achieve the following performance characteristics

$$e_{ss}=0$$
, $PM>70^{\circ}$, $GM>10dB$

Step 2: Find the required phase margin, PM_{req}

$$PM_{req} = PM_d + \alpha^{\circ} = 70^{\circ} + 10^{\circ} \longrightarrow PM_{req} = 80^{\circ}$$

A 10° safety factor is added to compensate the shifting in the gain crossover frequency

Step 3: Determine the frequency on the Bode diagram to achieve the required phase margin PM_{req} . Select this frequency as the new gain crossover frequency, ω_{qc}

$$PM_{req} = 80^{\circ}$$
 \longrightarrow $\omega_{gc} = 1.42 \text{ rad/s}$

New Gain Crossover Frequency

Consider the following third-order system

It is desired to design a PI controller to achieve the following performance characteristics

$$e_{SS}=0$$
 , $PM>70^{\circ}$, $GM>10dB$

Step 4: Find the corner frequency of zero

$$\omega_z = 0.1\omega_{gc} = 0.142 \, rad/s$$

Step 5: Select the integral time constant T_i

$$T_i = \frac{1}{\omega_z}$$
 \longrightarrow $T_i = 7.04 \text{ sec}$

Step 6: Select the proportional gain K_p to bring down the magnitude plot to 0dB at the new crossover frequency.

From the Bode plot the magnitude at the new gain crossover is

$$\omega_{gc} = 1.42$$
 \longrightarrow 9.17 dB

Consider the following third-order system

It is desired to design a PI controller to achieve the following performance characteristics

$$e_{ss}=0$$
, $PM>70^{\circ}$, $GM>10dB$

Designed PI Controller
$$G_c(s) = 0.35 \left(1 + \frac{1}{7.04s}\right)$$

Graph shows Bode plot of the following systems

$$G(s)H(s) = \frac{100}{(s+1)(s+2)(s+8)}$$

$$G_c(s)G(s)H(s) = 0.35\left(1 + \frac{1}{7.04s}\right)\frac{100}{(s+1)(s+2)(s+8)}$$

$$G_c(s) = 0.35 \left(1 + \frac{1}{7.04s}\right)$$

- The PI controller decreases the bandwidth of the system that results in slower transient response.
- The ω_z must be selected far enough from the new gain crossover frequency ω_{qc} to not effect the designed phase margin.

PD Controller Design via Bode Diagram

Ideal PD Controller

The frequency response function of PD controller

$$G_c(s) = K_P(1 + T_d s) \rightarrow G_c(j\omega) = K_p(1 + jT_d\omega)$$

The corner frequency of single zero

$$\omega_z = \frac{1}{T_c}$$

The low-frequency gain and the high- frequency gain

$$G_c(j0) = K_p$$
 and $G_c(j\infty) = \infty$

- Effect of a PD controller on the Bode plot of the open-loop system $G_c(s)G(s)H(s)$
 - Increases the bandwidth by shifting the gain crossover frequency to the right, which makes faster transient response
 - Positive phase angle contribution, which helps to increase the PM, which makes less overshoot and enhances the stability
- Ideal PD controller amplifies the high frequency noise.

Practical PD Controller

 ϕ_m

78.5°

100

In practical applications, to avoid of the amplifying high frequency noise, the high frequency gain is limited by adding a **pole** to the controller

$$G_c(s) = K_P \left(1 + \frac{T_d s}{\frac{T_d}{\beta} s + 1} \right) , \qquad 10 \le \beta \le 100$$

- The parameter β determines the distance between the pole and the zero.
- The corner frequency of the single pole and the single zero

$$\omega_p = \frac{\beta}{T_d}$$
 and $\omega_z = \frac{\beta}{(1+\beta)T_d} \approx \frac{1}{T_d}$

The low-frequency gain and the high-frequency gain

$$G_c(j0) = K_p$$
 and $G_c(j\infty) = (1 + \beta)K_p$

The maximum phase frequency and maximum phase angle

$$\omega_m = \sqrt{\omega_p \cdot \omega_z} = \frac{\sqrt{\beta}}{T_d}$$
 $\phi_m = \sin^{-1}\left(\frac{\beta - 1}{\beta + 1}\right)$

Practical PD controller is also called phase-lead controller

PD Controller Design Steps via Bode Diagram

Step 1: Determine the proportional gain K_p to satisfy the desired steady-state error.

Step 2: Plot Bode diagram of the open-loop system with proportional gain $K_pG(s)H(s)$, and find PM and GM.

Step 3: Find the maximum phase lead angle, ϕ_m to be added to the system to achieve the desired PM criteria.

$$\phi_m = PM_d - PM + \alpha^{\circ}$$
Safety factor $(5^{\circ} \le \alpha \le 15^{\circ})$

Step 4: Select the appropriate factor of β based on the ϕ_m value.

Step 5: Find the new gain crossover frequency ω_{gc} where the magnitude is $-20 \log \sqrt{1+\beta}$

Step 6: Assign the maximum phase frequency ω_m at the new gain crossover frequency ω_{gc} value.

$$\omega_m = \omega_{gc}$$

Step 7: Assign the derivative time constant T_d value as $T_d = \frac{\sqrt{\beta}}{\omega_m}$

$$T_d = \frac{\sqrt{\beta}}{\omega_m}$$

$$G_c(s) = K_P \left(1 + \frac{T_d s}{\frac{T_d}{\beta} s + 1} \right)$$

$$\phi_m = \sin^{-1}\left(\frac{\beta-1}{\beta+1}\right)$$

β	ϕ_m
10	55°
20	65°
30	70°
40	72°
50	74°
60	75°
70	76°
80	77°
90	78°
100	78.5°

Consider the following second-order system. It is desired to design a PD controller to achieve the following

performance characteristics

$$e_{ss} = 0.05, PM > 60^{\circ}, GM > 10dB$$

Predesign Performance Study

- First, check the unit-step response of the closed-loop system with proportional gain of $K_p = 1$.
- The results show that G(s) is a slow system with a large steady-state error.

$$t_r = 1.68 \sec$$

$$t_s = 2.92 \text{ sec}$$

$$e_{ss} = 0.75 = 75\%$$

Step Response of Closed-loop System with K = 1

Consider the following second-order system. It is desired to design a PD controller to achieve the following

$$e_{ss} = 0.05$$
, $PM > 60^{\circ}$, $GM > 10dB$

Step 1: Determine the proportional gain K_p to satisfy the desired steady-state error of unit-step response

• First, find the step-error constant, k_p based on the desired steady-state error.

$$e_{ss} = \frac{R}{1 + k_p} \quad \rightarrow \quad 0.05 = \frac{1}{1 + k_p} \quad \rightarrow \quad k_p = 19$$

$$k_p = \lim_{s \to 0} K_p G(s) H(s) \quad \to \quad 19 = \lim_{s \to 0} K_p \left(\frac{1}{(s+1)(s+3)} \right)$$

$$19 = \frac{K_p}{3} \rightarrow K_p = 57$$

$$K_p = 57$$

Desired Proportional Gain

Consider the following second-order system. It is desired to design a PD controller to achieve the following

performance characteristics

$$e_{ss} = 0.05, PM > 60^{\circ}, GM > 10dB$$

Step 2: Plot Bode diagram of the open-loop system with proportional gain $K_pG(s)H(s)$, and find PM and GM

Open-loop system with desired proportional gain

$$K_pG(s)H(s) = \frac{57}{(s+1)(s+3)}$$

• From the Bode diagram the gain crossover frequency, the phase margin and gain margin of the system with $K_p=57$

$$\omega_g = 7.22 \, rad/sec$$

$$PM=30^{\circ}$$
 , $GM=+\infty$

• The desired PM is not satisfied by only proportional gain of $K_p = 57$. Therefore; we have to add the derivative part to increase the PM.

Consider the following second-order system. It is desired to design a PD controller to achieve the following

$$e_{ss} = 0.05$$
, $PM > 60^{\circ}$, $GM > 10dB$

Next, design a PD Controller to achieve the desired PM.

$$G_c(s) = K_P \left(1 + \frac{T_d s}{\frac{T_d}{\beta} s + 1} \right)$$

- Adding the lead compensator modifies both magnitude and phase plots.
- The magnitude plot shifts up, thus the gain crossover frequency ω_g will be shifted to the right.

Y(s)

(s+1)(s+3)

Consider the following second-order system. It is desired to design a PD controller to achieve the following performance characteristics

$$e_{ss} = 0.05, PM > 60^{\circ}, GM > 10dB$$

Step 3: Find the maximum phase angle, ϕ_m to be added to the system to achieve the desired PM criteria

$$\phi_m = PM_d - PM + 10^\circ = 60^\circ - 30^\circ + 10^\circ = 40^\circ$$

$$\phi_m > 40^{\circ}$$

Step 4: Select the appropriate factor of β based on the ϕ_m value

$$\beta = 10$$
 $\phi_m = 55^{\circ}$

β	ϕ_m
10	55°
20	65°
30	70°
40	72°
50	74°
60	75°
70	76°
80	77°
90	78°
100	78.5°

Consider the following second-order system. It is desired to design a PD controller to achieve the following

performance characteristics

$$e_{ss} = 0.05$$
, $PM > 60^{\circ}$, $GM > 10dB$

Step 5: Find the new gain crossover frequency ω_{qc} where the magnitude is $-20 \log \sqrt{1+\beta}$

The new gain crossover frequency, ω_{gc} , can be determined from the Bode diagram at the magnitude of $-20\log \sqrt{1+\beta}$.

$$-20\log\sqrt{1+\beta} = -20\log\sqrt{11} = -10.41 \text{ dB}$$

$$\omega_{gc} = 13.5 \text{ rad/sec}$$

New Gain Crossover Frequency

Consider the following second-order system. It is desired to design a PD controller to achieve the following

performance characteristics

$$e_{ss} = 0.05$$
, $PM > 60^{\circ}$, $GM > 10dB$

Step 6: Assign the maximum phase frequency ω_m at the new gain crossover frequency ω_{ac} value

$$\omega_m = \omega_{gc} = 13.5 \text{ rad/sec}$$

Step 7: Assign the derivative time constant T_d value

$$T_d = \frac{\sqrt{\beta}}{\omega_m} \rightarrow T_d = \frac{\sqrt{10}}{13.5} \longrightarrow T_d = 0.23$$

The designed PD controller is obtained as

$$K_p = 57$$

$$T_d = 0.23$$

$$G_c(s) = 57\left(1 + \frac{0.23s}{0.023s + 1}\right)$$

Consider the following second-order system. It is desired to design a PD controller to achieve the following

performance characteristics

$$e_{ss} = 0.05, PM > 60^{\circ}, GM > 10dB$$

Graph shows Bode plot of the open-loop system with proportional controller only, the open-loop system with PD controller, and the PD controller

$$K_pG(s)H(s) = \frac{57}{(s+1)(s+3)}$$

$$G_c(s)G(s)H(s) = 57\left(1 + \frac{0.23s}{0.023s + 1}\right)\frac{1}{(s+1)(s+3)}$$

$$G_c(s) = 57\left(1 + \frac{0.23s}{0.023s + 1}\right)$$

- The new gain crossover frequency is located at the frequency of the maximum peak of the designed lead compensator at $\omega_{\rm m}$.
- PD controller increases the phase margin of the system by contributing the positive phase
- PD controller increases the bandwidth of the system that results in faster transient response.

Consider the following second-order system. It is desired to design a PD controller to achieve the following

performance characteristics

$$e_{ss} = 0.05, PM > 60^{\circ}, GM > 10dB$$

• Graphs show unit-step response of the closed-loop systems with P only controller $K_p = 57$ and with the designed PD controller

Closed-loop system with P only $K_p = 57$

Closed-loop system with the PD Controller

Y(s)

(s+1)(s+3)

THANK YOU

