Projektowanie efektywnych algorytmów

Autor: Tymon Tobolski (181037) Jacek Wieczorek (181043)

Prowadzący: Prof. dr hab. inż Adam Janiak

> Wydział Elektroniki III rok Cz TN 13.15 - 15.00

1 Cel projektu

Celem projektu jest zaimplementowanie i przetestowanie metaheurystycznego algorytmu genetycznego dla problemu szeregowania zadań na jednym procesorze przy kryterium minimalizacji ważonej sumy opóźnień zadań.

2 Opis problemu

Jednoprocesorowy problem szeregowania zadań przy kryterium minimalizacji ważonej sumy opóźnień zadań.

Danych jest n zadań (o numerach od 1 do n), które mają być wykonane bez przerwań przez pojedynczy procesor, mogący wykonywać co najwyżej jedno zadanie jednocześnie. Każde zadanie j jest dostępne do wykonania w chwili zero, do wykonania wymaga $p_j > 0$ jednostek czasu oraz ma określoną wagę (priorytet) $w_j > 0$ i oczekiwany termin zakończenia wykonywania $d_j > 0$. Zadanie j jest spóźnione, jeżeli zakończy się wykonywać po swoim terminie d_j , a miarą tego opóźnienia jest wielkość $T_j = max(0, C_j - d_j)$, gdzie C_j jest terminem zakończenia wykonywania zadania j. Problem polega na znalezieniu takiej kolejności wykonywania zadań (permutacji) aby zminimalizować kryterium $TWT = \sum_{j=1}^n w_j T_j$.

3 Opis algorytmu

${\bf Przebieg\ algorytmu:}$

1 todo

gdzie :

• TODO

4 Implementacja

Jezykiem implementacji algorytmu jest Scalaw wersji 2.9.1 działająca na JVM.

 $_{\rm todo}$

5 Testy

Test algorytmu tabu search przeprowadzony został dla trzech zestawów testów o różnej ilośći zadań, każdy składający się ze 125 instancji.

Jako wyniki testów przedstawiamy średni czas liczenia wszystkich instancji dla danego rozmiaru problemu - \bar{t} , a także średni błąd wzgledny rozwiązań dla każdej instancji - \bar{x} . Według wzoru :

$$\bar{t} = \frac{\sum_{j=1}^{m} \frac{\sum_{i=1}^{z} t_i}{z}}{m} \tag{1}$$

$$\bar{x} = \frac{\sum_{j=1}^{m} \frac{\sum_{i=1}^{z} x_i}{z}}{m} \tag{2}$$

gdzie:

- $\bullet \ z$ ilość rozwiązań w instancji
- \bullet m ilość instancji danego problemu

6 Wnioski

TODO