$\mathbf{C\acute{A}LCULO}$ II - Agrupamento 4

27 de junho de 2022

Exame Final Duração: 2h30

A prova é composta por 7 questões. O formulário encontra-se no verso. Justifique todas as respostas de forma clara e concisa.

- 1. [30] Determine o raio e o domínio de convergência da série de potências $\sum_{n=1}^{\infty} \frac{(2x-1)^n}{\sqrt{n}}$, indicando os pontos onde a convergência é simples ou absoluta.
- 2. [30] Considere a função raiz cúbica $f(x) = \sqrt[3]{x}, x \in \mathbb{R}$.
 - (a) Escreva a fórmula de Taylor de segunda ordem da função f no ponto 1 (com resto de Lagrange).
 - (b) Mostre que o erro absoluto cometido ao aproximar f(x) pelo polinómio de Taylor de ordem 2 no ponto 1, no intervalo $\left[1,\frac{3}{2}\right]$, é inferior a 10^{-2} .
- 3. [30] Considere a função f definida em $[0,\pi]$ por f(x)=x.
 - (a) Determine a série de Fourier de senos de f.
 - (b) Represente graficamente a soma da série obtida na alínea anterior no intervalo $[-2\pi, 2\pi]$.
- 4. [20] Determine e classifique os pontos críticos da função $f(x,y) = y^4 y^2 2xy + x^2$.
- 5. [30] Resolva as seguinte equações diferenciais:
 - (a) $y' = (1 + y^2)\cos t$;
 - (b) $x^2y' + 2xy = y^3$, x > 0. (Sugestão: efetue a mudança de variável $z = y^{-2}$)
- 6. [45] Considere o seguinte problema de valores iniciais (PVI):

$$y'' + 3y' + 2y = e^{-2t}, \quad y(0) = 0 = y'(0).$$

- (a) Determine a solução do PVI começando por resolver a equação diferencial. (Sugestão: use o método dos coeficientes indeterminados)
- (b) Resolva o mesmo PVI usando agora transformadas de Laplace.
- 7. [15] Considere a equação diferencial linear (de coeficientes variáveis)

$$x^{2}y''(x) + ax y'(x) + b y(x) = x \ln x, \quad x > 0,$$
(1)

onde a, b são duas constantes reais.

Mostre que, dada uma qualquer solução y(x) da equação (1), a função $z(t)=y(e^t)$ é solução da equação diferencial linear de coeficientes constantes

$$z''(t) + (a-1)z'(t) + bz(t) = t e^t, t \in \mathbb{R}.$$

FORMULÁRIO

Algumas fórmulas de derivação

(fg)' = f'g + fg'	$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$
$(kf)' = kf' \qquad (k \in \mathbb{R})$	$(f^{\alpha})' = \alpha f^{\alpha - 1} f' \qquad (\alpha \in \mathbb{R})$
$(a^f)' = f' a^f \ln a \qquad (a \in \mathbb{R}^+)$	$(\log_a f)' = \frac{f'}{f \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$
$(\operatorname{sen} f)' = f' \cos f$	$(\cos f)' = -f' \operatorname{sen} f$
$(\operatorname{tg} f)' = f' \sec^2 f = \frac{f'}{\cos^2 f}$	$(\cot f)' = -f' \csc^2 f = -\frac{f'}{\operatorname{sen}^2 f}$
$(\operatorname{arcsen} f)' = \frac{f'}{\sqrt{1 - f^2}}$	$\left(\operatorname{arccos} f\right)' = -\frac{f'}{\sqrt{1-f^2}}$
$\left(\operatorname{arctg} f\right)' = \frac{f'}{1+f^2}$	$(\operatorname{arccotg} f)' = -\frac{f'}{1+f^2}$

Integração por partes:
$$\int f'g = fg - \int fg'$$

Alguns desenvolvimentos em série de MacLaurin

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots, \quad x \in]-1,1[$$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots, \quad x \in \mathbb{R}$$

•
$$\operatorname{sen} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots, \quad x \in \mathbb{R}$$

•
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots, \quad x \in \mathbb{R}.$$

Algumas transformadas de Laplace

$$F(s) = \mathcal{L}\{f(t)\}(s), \quad s > s_f$$

função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a}, \ s>a$
	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $

função	transformada
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda)$
$H_a(t)f(t-a) \ (a>0)$	$e^{-as}F(s)$
$f(at) \ (a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$
$f'(t) \ (n \in \mathbb{N})$	sF(s) - f(0)
$f''(t) \ (n \in \mathbb{N})$	$s^2 F(s) - s f(0) - f'(0)$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{(k-1)}(0)$