IICN					
OBIN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

I Semester B. E. Regular / Supplementary Examinations Feb/Mar-2025

PRINCIPLES OF ELECTRONICS ENGINEERING

Time: 03 Hours
Instructions to candidates:

Maximum Marks: 100

1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8 & 9 and 10.

PART-A

M BT CO

1	1.1	In a regulated <i>DC</i> power supply the output voltage drops from 12 <i>V</i> to 11.8 <i>V</i> when the input voltage reduces by 10%. The line regulation			
		is	01	1	1
	1.2	The input to a full wave bridge rectifier with a filter of $100\mu F$ is			
		$100 \sin 314t$ and the load resistance of 900Ω . The <i>DC</i> output voltage			
		is	01	1	2
	1.3	An NPN transistor has $I_{CO} = 25nA$, $I_B = 0$, $V_{CE} = 4V$ and			
		$I_C = 20\mu A$. The value of β is	01	2	2
	1.4	Three amplifiers with voltage gain of 20,100 and 2000 are connected	_		-
		in cascade, the overall gain in $dB = \underline{\hspace{1cm}}$.	01	1	2
	1.5	The Slew rate of an $Op - Amp$ is $3V/\mu sec$ with a peak value of voltage			
		as 2V. Calculate the maximum output frequency so that the output		.	
		is not distorted.	01	1	2
	1.6	In a RC phase shift oscillator circuit using an ideal voltage amplifier			
		with $C = 0.01 \mu F$ and $R = 2K\Omega$. The frequency of oscillation is	01	2	2
		An op-Amp has a differential gain of 86dB and Common mode gain	01	4	
	1.7	of 20dB. The CMRR in dB is	01	1	1
	1 0	A non-inverting amplifier using an op-amp has $R_i = 10K\Omega$ and	01	1	•
	1.8	$R_f = 40K\Omega$. The closed loop gain is	01	1	1 1
	1.0	In a 3 variable $K - map$, if all the cells contain 1's then the output is	, ,	1	
	1.9	III a 5 variable h map, ii aii the cond contain 15 thoir the output is	01	1	1 1
	1.10	The minimized form of logic expression:	-	_	-
	1.10	$A'B'C' + A'BC' + A'BC + ABC' \text{ is } \underline{\hspace{1cm}}.$	01	2	2
	1.11	A COLUMN TO A COLUMN TO THE CO			
	1.11	then it can be used as	01	1	1
	1.12	The Hexadecimal equivalent of (536) ₈ is	01	1	1
	1.13	The total power delivered by an amplitude modulated wave is			
		2640W. If the modulation index = 0.8, the power in each side			
		bands = W .	01	1	2
	1.14	In a voltage follower circuit, the op-amp is ideal in all respect except			
		that it has a finite gain of 400. The % error in the gain of the voltage	١,,		
		follower with respect to its ideal value is equal to	01	2	2
	1.15	An audio signal of $2KHz$ is used to amplitude modulate the carrier KHZ .	0.1	1	1
		of 600KHz. The bandwidth required isKHz.	01	1	1

	1.16	The value of intermediate frequency in super heterodyne receiver is				1
		KHz.	01	1	١.	
1	1.17	Convert the binary number (1010101) ₂ to octal.	01	1	1	
		The device which converts energy from one form to another form is	01	1	1	
		called	01	1	1	
	1.19	Differentiate between Sensors and Transducers.		1	1	l
L	1.17	Emorated Services Serious and Transducers.	02	1	. 2 '	1

PART-B

2	a b	A full wave bridge rectifier drives a load resistance of 150Ω in parallel with a filter capacitor C . If the ac input to the rectifier is $150V$ at $100Hz$, calculate the capacitor value needed so that the ripple factor is 2% . Determine the output dc voltage, peak to peak ripple voltage and the load regulation. Briefly explain the three regions of operation of a BJT . Draw and		2	2
	С	explain the input and output characteristics of a BJT in Common Emitter Configuration. Design the Zener Regulator for the given specifications:	05	1	1
		V_{in} varies from 12V to 18V R_L varies from 225 Ω to 1.8K Ω $V_Z = 9V$ $I_{Z(\min)} = 10mA$ $P_{d(\max)} = 4.5W$	06	3	4
3	a b	Explain the operation of RC phase shift oscillator with a circuit diagram and also calculate the frequency of oscillation if $R = 5K\Omega$ and $C = 0.01\mu F$. Draw the circuit and design the values of a summer circuit using 2 ideal op-amps to get an output voltage $V_0 = V_1 - 2V_2 - 4V_3 + 6V_4 + 8V_5$ where V_1, V_2, V_3, V_4 and V_5 are the	08	1	1
		available input voltages. OR	08	3	4
4	a b	Draw the circuit of an integrator using an op-amp and derive the expression for the output voltage. An amplifier has a gain of 50 dB. The bandwidth of 250KHz, distortion of 12%, an input impedance of 30K Ω , and an output impedance of 2K Ω . If the voltage series negative feedback of 2.9% is given to this amplifier, calculate the gain, input impedance, output impedance, bandwidth, and distortion of the amplifier with negative	08	1	1
		feedback.	08	2	3 /
5	а	Write the truth table for "SUM" and "CARRYOUT" of a full adder. From the truth table, obtain the expressions for the same and realize the full adder using 2 half adders.	08	2	1

		in which was and implement the logic	: [
	b	Simplify the logic expression using K map and implement the logic			
		circuit using NAND Gate.			
		$F = \sum_{i} m(0,1,2,3,5,7,8,9,10,12,13)$	08	3	3
		0.70		1	1 1
		OR	1		
=		1 1' a serie e basic sotos			
6	a	Simplify the following expression and realize using basic gates			
		Y = (A + B)(A + B)(A + B)	06	1	2
1		ii) $Y = XY + XYZ + XY\bar{Z} + \bar{X}YZ$	00		2
	b	Subtract the given number using 2's complement method			
		i) $(9)_{10} - (7)_{10}$	04	2	2
		ii) $(3)_{10} - (6)_{10}$	04	2	
	С	Perform the following:			
		i) Convert (475.25) ₈ to its decimal equivalent	06	1	2
		ii) Convert $(3509)_{10}$ to its hexadecimal equivalent	06	1	2
			00	-	
7	а	Differentiate between RISC and CISC architecture.	08	1	2
	b	A carrier of 2MHz has 1KW of its power amplitude modulated with a			
		sinusoidal signal of 2KHz. The depth of modulation is 60%.			
		Calculate the sideband frequencies, the signal bandwidth, the			-
		power in the sidebands and total power in the modulated wave.	08	2	3
		OR			
8		With the help of a block diagram, explain the working of super		7	
0	а	heterodyne receiver.	08	1	1
	b	Differentiate between Harvard and <i>Von – Neumann CPU</i> architecture.	08	1	1
	D	Differentiate between flatvard and voit weamant of a defineedate.	00	-	
9		Explain the working principle of the following sensors and mention			
	а	its applications.			
		i) Humidity sensor			
		ii) Ultrasonic sensor.	08	2	1
	b	Biomedical sensors are widely used to monitor various parameters		-	1
		of the human body. Mention any such 4 parameters of human body			
		for which Biomedical sensors can be used, also mention the details			
		of the sensors used for measuring these parameters.	08	1	2
				1	4
		OR			
10	0	Explain the following with examples:			
10	а	i) Active sensor			
		ii) Passive sensor			
	b	Describe	80	2	1
	2	i) Piezo-electric Transducer			_
		ii) Hall Effect transducer.		٠	
			08.	1	1
					1 4