(410) 919-3042 Durham, NC tinghsuan.chen@duke.edu

Ting-Hsuan Chen

Smart Wearable Device | Thermoregulation | Photonics

SUMMARY

- Materials scientist with 5+ year interdisciplinary experience in photonics, heat transfer, and wearable device engineering
- Experienced in wave-matter interaction and the correlation among polymer synthesis condition, structural characterization, charge transport, permittivity measurement, metamaterial absorber designs, and heat transfer
- Experienced in academic and industrial collaboration by driving deliverables and projects with Sony and Cambrios Inc.

EDUCATION

Duke University, PhD Candidate in Mechanical Engineering and Materials Science

Expected May 2024

Advisor: Dr. Po-Chun Hsu

Duke University, concurrent M.S. in Electrical and Computer Engineering **National Taiwan University**, B.S. in Materials Science and Engineering

Sept. 2014 — June 2018

Profile: tinghsuanchen.com

LinkedIn: Ting-HsuanChen

SKILLS

Lab/Fab

Simulation/Programming Characterization

COMSOL Multiphysics, Python, MATLAB, LabView, C/C++, LTEX

SEM, TEM (including STEM, EELS, SAED), FTIR, UV-Vis, Raman/PL, ellipsometry, XRD, profilometer CVD, Evaporation, Sputtering, Electrochmistry (Voltamperometric techniques, Impedance spectroscopy,

etc.), Spin-coating, Lithography, Wet etching, Reactive ion etching

RESEARCH EXPERIENCE

Duke University, PhD Candidate

Sept. 2019 — Present

Dept. of Mechanical Eng. and Materials Sci., Lab of Dr. Po-Chun Hsu

Durham, NC

Project: Wearable Variable Emittance Device (WeaVE)

- Devised and realized a new scheme of energy-efficient wearable personal thermoregulation device, leading to a first-author paper under review at Nature Electronics (preprint link)
- Demonstrated variable radiative transfer device by using **electrochromic conductive polymer**, expanded thermal comfort zone by 5 °C and decreased the energy consumption by four orders of magnitude compared to traditional electric heater
- · Built engineering prototype of autonomous personal thermoregulation systems by Arduino circuitry, sensors and device
- Fabricated organic electronic device by integrating electrochemical synthesis, optical characterization and kinetics
- Collaborated with team of researchers to design kirigami patterns by performing mechanical testing and FEM analysis
- Designed, constructed and installed a heat transfer measurement chamber with temperature PID control by LabView

Project: Electrochemically Tunable Thermal Metasurface

- · Designed the configuration and simulated the optical response of metamaterial absorber by COMSOL
- Performed spectroscopic ellipsometry measurement and fitting with complex dielectric dispersion relations
- Developed thin-film process, e.g. sputter, evaporation, dry/wet etching, spin-coating, etc. for dynamic metasurface

National Taiwan University, Research Assistant

July 2017 — Aug 2019

Taipei, Taiwan

Center of Condensed Matter Sciences, Advanced Materials Lab

Project: BiCuTeO-based Thermoelectric Material

- Identified defects and analyzed phases of thermoelectric materials, leading to a 2nd-author paper at Materials Today Physics
- Utilized TEM and STEM for characterization (lattice images, selected area electron diffraction, element mapping, line scan, etc.) with more than 300 hrs experience. Some specimens include: BiCuTeO, SnS₂, carbon nanotubes, ZnS, etc.

Project: Selective Heterojuction Photocatalyst for CO₂ Reduction

- Designed hydrothermal processes for different solution and enhanced heterojunction of photocatalysts and observed the morphology using SEM
- Participated in installing gas chromatograph and constructed calibration curve for measuring quantum efficiency

PUBLICATION

- 3. <u>T.-H. Chen</u>, Y. Hong, C.-T. Fu, A. Nandi, W. Xie, J. Yin, P.-C. Hsu (2022), "A Kirigami-enabled Electrochromic Wearable Variable Emittance (WeaVE) Device for Energy-Efficient Adaptive Personal Thermoregulation" *Under review at Nature Electronics*, preprint DOI: 10.21203/rs.3.rs-1420619/v1
- 2. C. Sui, J Pu, <u>T.-H. Chen</u>, Y.-T. Lai, Y. Rao, X. Li, J. Liang, V. Viswanathan, P.-C. Hsu, "Aqueous electrolyte and Pt-modified graphene for high-performance dynamic mid-infrared radiative heat management" *In progress*
- 1. H.-C. Chang, <u>T.-H. Chen</u>, R. Sankar, Y.-J. Yang, L.-C. Chen, K.-H. Chen (2020), "Highly improved thermoelectric performance of BiCuTeO achieved by decreasing the oxygen content", *Materials Today Physics*, DOI: 10.1016/j.mtphys.2020.100248