Árboles

Árbol n-ario

Conceptos

Base: Un nodo es un árbol n-ario (si el árbol tiene un sólo nodo, éste es el <u>nodo raíz</u>)

Recurrencia: Si n es un nodo y T1, ..., Tk son árboles narios con raíces n1,..., nk, respectivamente, podemos construir un árbol que tenga como raíz el nodo n y subárboles T1, ..., Tk

A los nodos que son hijos de un mismo padre se les denomina **hermanos**.

Se llama grado de un nodo al número de

subárboles (de hijos) que tiene dicho nodo. Los nodos de grado 0 se denominan **hojas** o **nodos terminales**. El resto se llaman nodos **no terminales** o **interiores**.

El **grado de un árbol** es el máximo de los grados de sus nodos.

El **camino entre dos nodos**, ni y nj se define como la secuencia de nodos del árbol necesaria para alcanzar el nodo nj desde el nodo ni

La **longitud del camino** entre dos nodos es igual al número de nodos que forman el camino menos largo.

Nivel de un nodo

- Base: El nivel del nodo raíz es 0
- Recurrencia: si un nodo está en el nivel i, todos sus hijos están en el nivel i+1

La **profundidad de un árbol** es el máximo de los niveles de los nodos del árbol.

Recorridos

Recorridos en profundidad:

■ Preorden: raíz, Pre(T1), Pre(T2),..., Pre(Tk)
 ■ Inorden: In(T1), raíz, In(T2),..., In(Tk)
 ■ Postorden: Pos(T1), Pos(T2),..., Pos(Tk), raíz

Recorrido en anchura:

• Por niveles: de arriba a abajo y de izquierda a derecha, empezando por la raíz

Árbol binario

Conceptos

Base: Un árbol vacío es un árbol binario

Recurrencia: Si n es un nodo y T_{izq} y T_{der} son árboles binarios, podemos construir un nuevo árbol binario que tenga como raíz el nodo n y como subárboles T_{izq} y T_{der} (subárbol izquierdo y derecho, respectivamente)

Un árbol binario NO es un árbol n-ario de grado 2.

En un árbol binario, el **número máximo de nodos** que puede haber en el nivel i es 2i

Tipos

- Árbol binario homogéneo: aquél cuyos nodos tienen grado 0 ó 2 (no hay ninguno de grado 1)
- Árbol binario completo: aquél que tiene todos los niveles llenos excepto, quizá, el último, en cuyo caso los huecos deben quedar a la derecha

Recorridos en árboles binarios

Recorridos en profundidad:

Preorden: raíz, Pre(Tizq), Pre(Tder)
 Inorden: In(Tizq), raíz, In(Tder)
 Postorden: Pos(Tizq), Pos(Tder), raíz

Se pueden realizar de forma recursiva, siguiendo el esquema de construcción recursivo de árboles binarios •

Recorrido en anchura:

• **Por niveles**: de izquierda a derecha Se realiza de forma iterativa.

	Pre(n) <pre(m)< th=""><th>In(n)<in(m)< th=""><th>Pos(n)<pos(m)< th=""></pos(m)<></th></in(m)<></th></pre(m)<>	In(n) <in(m)< th=""><th>Pos(n)<pos(m)< th=""></pos(m)<></th></in(m)<>	Pos(n) <pos(m)< th=""></pos(m)<>
n a la izquierda de m	~	V	~
n a la derecha de m	×	×	X
n descendiente de m	X	▽ X	V
n ancestro de m	V	☑X	X

Completo

Lectura/escritura de un árbol

Homogéneo

- **Preorden** 1 2 4 x x 5 x 8 x x 3 6 x x 7 x x 1 2 4 5 8 3 6 7
- Por niveles 1 2 3 -1 4 5 6 7 -1 -1 -1 -1 8 -1 -1 -1 -1 -1

Función f(t) sobre un árbol binario, t

- Base: Valor de la función si t es el árbol vacío
- **Recurrencia**: se supone conocida la función para cada uno de los subárboles Tizq y Tder de t.

Se calcula el valor final de la función suponiendo conocidos los valores anteriores.

Representación mediante vectores

Las **etiquetas** de los nodos se almacenan en un vector.

Los **nodos** se enumeran de la siguiente forma:

- A la raíz le corresponde el índice 0
- Si a un nodo le corresponde el índice k:
 - Su hijo izquierdo, si tiene, está en la posición 2*(k+1)-1 = 2*k+1
 - Su hijo derecho, si tiene, está en la posición 2*(k+1) = 2*k+2
 - o Su padre, si tiene, está en la posición (k-1)/2

0	1	2	3	4	5	6	7	8	9	10	П	12	13	14	
a	Ь	С	d	е	f	g					h	i			

Representación mediante celdas enlazadas

Árboles Binarios Parcialmente Ordenados (APO)

Definición

Un árbol binario es un APO si cumpe:

la etiqueta de cada nodo es menor o igual que las etiquetas de los hijos, manteniéndose tan equilibrado (balanceado) como sea posible (hojas empujadas a la izquierda)

a c inveles interiores completos e e f hojas empujadas hacia la izquierda

Representación

La **representación** para los APO es la **del montón** (**Heap**). En este contexto, el montón M será un vector en el que se guardará el APO por niveles, de la siguiente forma:

- M[0] aloja la raíz.
- Los hijos izquierdo y derecho (si existen) del nodo M[k] estarán en las posiciones M[2k+1] y M[2k+2], lo que equivale a decir que el padre de M[k] es M[(k-1) \forall k>0

Árboles Binarios de Búsqueda (ABB)

Definición

Un ABB es un árbol binario con la propiedad de que todos los elementos almacenados en el **subárbol izquierdo** de cualquier nodo x (incluyendo la raíz) **son menores** (o iguales*) **que** el elemento almacenado en **x** y todos los elementos almacenados en el **subárbol derecho** de x son **mayores** que el elemento almacenado en **x**.

Propiedades

- La búsqueda de un elemento en el árbol reproduce la **búsqueda binaria** → O(log₂(n))
- El recorrido en el **InOrden** de un ABB produce un **listado ordenado** de las etiquetas

Árboles Binarios Equilibrados - AVL

En ocasiones, la construcción de los ABB conduce a árboles con características muy pobres para la búsqueda →

Idea: Construir ABB equilibrados, impidiendo que en ningún nodo las alturas de los subárboles izquierdo y derecho difieran en más de una unidad

Concepto

Diremos que un **ABB** es un AVL (o que está equilibrado en el sentido de Addelson-Velski-Landis) si para cada uno de sus nodos se cumple que las **alturas de sus dos subárboles difieren como máximo en 1**

Características

• En el peor de los casos, la búsqueda se puede realizar en O(log2 n)

Equilibrio en inserciones y borrados

Idea: Usar un campo altura en el registro que represente cada uno de los nodos del AVL para determinar el factor de equilibrio (diferencia de altura entre los subárboles izquierdo y derecho), de forma que cuando esa diferencia sea >1 se hagan los reajustes necesarios en los punteros para que tenga una diferencia de alturas ≤1

- Notaremos los subárboles como T_k, anotando entre paréntesis su altura (la altura de su raíz)
- Notaremos el factor de equilibrio como un valor con signo ubicado entre corchetes junto a cada padre o hijo

Las dos situaciones posibles que pueden presentarse son:

- Rotaciones simples
 - Se preserva el inorden
 - Altura del árbol final = altura árbol inicial
- Rotaciones dobles
 - Compuesto por dos rotaciones

Rotación simple a la derecha

Rotación simple a la izquierda

Rotación doble a la derecha

Rotación doble a la izquierda

¿Qué rotación utilizar?

Si la inserción se realiza en:

- El hijo izquierdo del hijo izquierdo del nodo desequilibrado → RSD
- El hijo derecho del hijo derecho del nodo desequilibrado → RSI
- El hijo derecho del hijo izquierdo del nodo desequilibrado → RDD
- El hijo izquierdo del hijo derecho del nodo desequilibrado

 RDI

Ejemplo

