23. (5 分)神经细胞可以传递电信号。如图所示神经细胞由带树突的细胞体和轴突组成,它连接着人大脚趾的压力感觉细胞和脊髓中的神经,信号由树突进入细胞体,再从轴突传递出去。这种神经细胞的轴突像一个由薄膜构成的细长管子,半径为 5μm,长度为 1m,膜的厚度为 8.0nm,膜的相对介电常数为 7。已知轴突膜内外侧具有 90mV 的电势差。求: 轴突膜内外侧所带电荷电量是多少?

2006 级 (A2) A 卷参考答案

2008年1月16日

一 选择题 (共 54 分, 每题 3 分)

B C C C B D B A B A B B A D B B A

- 二 计算题(共46分)
- 19. (10 分)解:(1)设内层导线带电的电荷线密度为λ,则内层电介质中的电场强度为

$$E_1 = \frac{\lambda}{2\pi\varepsilon, r} (0 < r < R_1)$$

外层电介质中的电场强度为
$$E_2 = \frac{\lambda}{2\pi \varepsilon_2 r} (R_1 < r < R_2)$$
 (3 分)

两导体间的电势差为

$$U = \int E \cdot dr = \int_{R_1}^{R_2} E_1 dr + \int_{R_2}^{R_3} E_2 dr = \int_{R_1}^{R_2} \frac{\lambda}{2\pi \varepsilon_1 r} dr + \int_{R_2}^{R_3} \frac{\lambda}{2\pi \varepsilon_2 r} dr$$

$$= \frac{\lambda}{2\pi \varepsilon_1} \ln \frac{R_2}{R_1} + \frac{\lambda}{2\pi \varepsilon_2} \ln \frac{R_3}{R_2}$$
(4 \(\frac{\frac{\psi}}{2}\))

则电缆单位长度的电容为
$$C = \frac{\lambda}{U} = \frac{2\pi}{\frac{1}{\epsilon_0 \ln \frac{R_2}{R} + \frac{1}{\epsilon_0 \ln \frac{R_3}{R}}}}$$
 (1分)

(2) 电容器单位长度储存的静电能为

$$W = \frac{1}{2}CU^{2} = \frac{\pi}{\frac{1}{\varepsilon_{1}}\ln\frac{R_{2}}{R_{1}} + \frac{1}{\varepsilon_{2}}\ln\frac{R_{3}}{R_{2}}}U^{2}$$

$$(2 \%)$$

20. (11分)

解: (1)长直电流 $jRd\theta$ 对轴线上电流 I 单位长度的斥力大小为

(2)

$$\frac{\mu_0 I^2}{\pi^2 R} = \frac{\mu_0 I^2}{2\pi d}$$

$$d = \pi R/2$$
(2 \(\frac{\frac{1}{2}}{2}\))
(1 \(\frac{1}{2}\))

21. (10 分)解:由题意,大线圈中的电流 I 在小线圈回路处产生的磁场可视为均匀的.

$$B = \frac{\mu_0}{4\pi} \frac{2\pi I R^2}{(R^2 + x^2)^{3/2}} = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}}$$

故穿过小回路的磁通量为

$$\Phi = \vec{B} \cdot \vec{S} = \frac{\mu_0}{2} \frac{IR^2}{(R^2 + x^2)^{3/2}} \pi r^2 \approx \frac{\mu_0 \pi r^2 R^2 I}{2x^3}$$

由于小线圈的运动,小线圈中的感应电动势为

$$\mathbf{v}_{i} = \left| \frac{\mathbf{d} \Phi}{\mathbf{d} t} \right| = \frac{3 \mu_{0} \pi r^{2} I R^{2}}{2 x^{4}} \left| \frac{\mathbf{d} x}{\mathbf{d} t} \right| = \frac{3 \mu_{0} \pi r^{2} R^{2} I}{2 x^{4}} v$$
 2 \mathcal{D}

当x = NR时,小线圈回路中的感应电动势为

$$\mathbf{v}_{i} = 3 \mu_{0} \pi r^{2} I \nu / (2N^{4}R^{2})$$
 1 \mathcal{H}

22. (10 分) 解 设粒子被禁闭在长度为 a 的一维箱中运动形成驻波,根据驻波条件有

$$a = n \frac{\lambda_n}{2} (n = 1.2.3 \cdots) \tag{2 }$$

由德布罗意关系式可知 $p_n = \frac{h}{\lambda_n}$

所以定态动能为量子化的,量子化能级为

$$E = \frac{p^2}{2m} = \frac{(h/\lambda_n)^2}{2m} = \frac{h^2}{2m\lambda_n^2} = \frac{h^2}{2m(2a/n)^2} = \frac{n^2h^2}{8ma^2}$$

最小动能公式为
$$E_1 = \frac{h^2}{8ma^2}$$
 (3分)

相应的波函数为
$$\psi_1(x) = A \sin \frac{\pi}{a} x$$

式中 A 为常数。由归一化条件 $\int_{-\infty}^{\infty} \left| \psi(x) \right|^2 dx = \int_{0}^{a} \left| \psi(x) \right|^2 dx = 1$

求得归一化常数
$$A$$
 为 $A = \sqrt{\frac{2}{a}}$. (3 分)

概率密度为

$$\left|\varphi_{1}\right|^{2} = \sqrt{\frac{2}{a}} \sin \frac{\pi}{a} x \bigg|^{2} = \frac{2}{a} \sin^{2} \frac{\pi}{a} x \tag{2 }$$

23. (5分)

解: 1. 膜的厚度与轴突半径相比非常小,所以膜的任一小部分都可看成平面,因此可以把 轴突等效成平行板电容器。

$$C = \frac{\varepsilon_0 \varepsilon_r S}{d} \qquad \frac{C}{S} = \frac{\varepsilon_0 \varepsilon_r}{d} = 7.7 \times 10^{-3} \,\text{F/m}^2$$

$$S = 2\pi Rl \qquad C = 2.4 \times 10^{-7} \,\text{F}$$

$$q = CV = 2.2 \times 10^{-8} \text{ C}$$

利用柱形电容器及 D 的高斯定理计算正确者同样得分 (答案相同)。

北京理工大学《大学物理 II》

2007-2008 学年第一学期期末试题及参考答案(A卷)

姓名	_学 号		. 绩
任课教师姓名		物理课班号	

	_					总 分	
题号	1-18	19	20	21	22	23	
得分							

有关数据 真空介电常量 $\varepsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2}$

真空的磁导率 $\mu_0 = 4\pi \times 10^{-7} \, \text{T} \cdot \text{m} \cdot \text{A}^{-1}$

普朗克常量 $h = 6.63 \times 10^{-34} \,\mathrm{J \cdot s}$

基本电荷 $e=1.60\times10^{-19}$ C

一 选择题 (共 54 分, 每题 3 分)

请将答案写在试卷上指定方括号[]内。

1.在负点电荷 -q 的电场中,若取图中 P 点处为电势零点,则 M 点的电势为

(A)
$$\frac{q}{4\pi\varepsilon_0 a}$$
. (B) $\frac{q}{8\pi\varepsilon_0 a}$.

(C)
$$\frac{-q}{4\pi\varepsilon_0 a}$$
. (D) $\frac{-q}{8\pi\varepsilon_0 a}$.

种状态?

2.一根均匀细刚体绝缘杆,用细丝线系住一端悬挂起来,如右图所示.先让它的两端分别带上电荷+q和-q,再加上水平方向的均匀电场 \bar{E} . 试判断当杆平衡时,将处于下面各图中的哪

Γ

3.两条 "半无限长"均匀带电直线平行于x轴放置,距离x轴的距离均为a,

且它们的左侧端点均在 v 轴上, 如图所示.已知 两者的电荷线密度分别为+2和-2,则坐标原 点 O 处的场强 E 为

(A)
$$-\frac{\lambda}{4\pi\varepsilon_0 a}\vec{j}$$

(A)
$$-\frac{\lambda}{4\pi\varepsilon_0 a}\vec{j}$$
. (B) $-\frac{\lambda}{2\pi\varepsilon_0 a}\vec{i}$.

(C)
$$-\frac{\lambda}{2\pi\varepsilon_0 a}\vec{j}$$
. (D) $\frac{\lambda}{4\pi\varepsilon_0 a}\vec{i}$. (E) 0.

(D)
$$\frac{\lambda}{4\pi\varepsilon_0 a}\vec{i}$$

7

4.图示为一具有球对称性分布的静电场的 $E \sim r$ 关系曲线. 请指出该静电场是由 下列哪种带电体产生的.

- (A) 半径为 R 的均匀带电球面.
- (B) 半径为 R 的均匀带电球体.
- (C) 半径为 R 、电荷体密度 $\rho = Ar(A)$ 常数)的非均匀带电球体.

5.半径为 R 的圆周上 C、D、E、F 处固定有四个 电量均为q的点电荷, CD 与 EF 垂直, 如图所示. 此圆以角速度 ω 绕过O点与圆平面垂直的轴旋转 时,在圆心O点产生的磁感强度大小为 B_1 ;它以 同样的角速度绕 CD 轴旋转时, 在 O 点产生的磁 感强度的大小为 B_2 ,则 B_1 与 B_2 间的关系为

Γ

]

(A) $B_1 = B_2$. (B) $B_1 = 2B_2$.

(C)
$$B_1 = \frac{1}{2}B_2$$
. (D) $B_1 = B_2/4$.

6.如图所示. 一电量为 q 的点电荷, 以匀角速度 ω 作 圆周运动,圆周的半径为 R. 设 t=0 时 a 所在点的坐 标为 $x_0 = R$, $y_0 = 0$, 以 \overline{i} 、 \overline{j} 分别表示x 轴和y 轴上 的单位矢量,则圆心处o点的位移电流密度为:

(A)
$$\frac{q \omega}{4 \pi R^2} \sin \omega t \vec{i}$$
. (B) $\frac{q \omega}{4 \pi R^2} \cos \omega t \vec{j}$.

(C)
$$\frac{q \omega}{4\pi R^2} \vec{k}$$
. (D) $\frac{q \omega}{4\pi R^2} (\sin \omega t \vec{i} - \cos \omega t \vec{j})$.

7. 如图所示, 边长为 l 的正方形线圈 abcd 垂直于 均匀磁场 B 放置, 如果线圈绕通过 a 点并垂直于线 圈所在平面的轴,以匀角速度 α 旋转,那么 α , α 点间的动生电动势为

(A)
$$B\omega l^2/2$$
. (B) $B\omega l^2$.

(B)
$$B\omega l^2$$
.

(C)
$$2B\omega l^2$$
.

(D)
$$4B\omega l^2$$
. (E) 0.

Γ]

8.一根长为L、下端固定的导线 OA 处于匀强磁场中。磁场的方向竖直向上,大 小为 B。若该导线以角速度 ω 绕竖直轴 OO' 旋转,且角 速度方向与磁场的方向相同, 如图所示。则导线中的电 动势

(B) 大小为
$$\frac{B \omega L^2}{2} \sin \alpha$$
, 方向由 A \rightarrow O.

(C) 大小为
$$\frac{B \omega L^2}{2} \sin^2 \alpha$$
, 方向由 A \rightarrow O.

(D) 大小为
$$\frac{B \omega L^2}{2} \sin \alpha$$
, 方向由 O \rightarrow A. []

9. 如图所示的一细螺绕环,它由表面绝缘的导线在铁环 上密绕而成,每厘米绕 10 匝. 当导线中的电流 I 为 2.0 A 时,测得铁环内的磁感应强度的大小 B 为 1.0 T,则可求 得铁环的相对磁导率 4.为

- (A) 7.96×10^2 . (B) 3.98×10^2 .
- (C) 1.99×10^2 (D) 63.3 .

10. 一个长直螺线管单位长度的匝数为 n, 横截面积为 S. 则该螺线管单位长度 的自感系数和通有电流 I 时的磁能分别为

- (A) $L = \mu_0 n^2 S$, $W_{\rm m} = \frac{1}{2} \mu_0 n^2 S I^2$. (B) $L = \mu_0 n^2 S$, $W_{\rm m} = \frac{1}{2} \mu_0 n^2 S I$.
- (C) $L=\mu_0 nS$, $W_{\mathbf{m}} = \frac{1}{2} \mu_0 n^2 SI^2$. (D) $L=\mu_0 nS$, $W_{\mathbf{m}} = \frac{1}{2} \mu_0 nSI^2$.

1

11. 一飞船以 $\frac{3}{5}c$ (c 表示真空中光速)的速度飞离地球。宇航员向地球发射了一无 线电信号,经地球反射,40s后收到返回信号。则在地球反射信号时刻,飞船上 测得地球离飞船的距离为

- (A) 40 c. (B) 20 c.
- (C) 16 c. (D) 25 c.

Γ

1

12. 站台上相距 1m 的两机械手同时在速度为 0.6c 的火车上画出两痕,则车厢内 的观测者测得两痕的距离为

- (A) 0.8m. (B) 1.25m. (C) 0.6m.
- (D) 0.45m.

Γ 1

13. 已知电子的静止能量约为 0.5MeV, 若一个电子的相对论质量与静止质量的 比值为1.5,则该电子的动能为

- (A) 0.25MeV. (B) 0.5MeV. (C) 0.75MeV.
- (D) 1MeV.

Γ 7

14. 己知	单色光照射在	E钠表面上	二,测得光	电子的最大	动能是 1.2eV,	而钠的组	工限
波长为5	40nm,则入身	射光的波针	长应为				
(A) :	535 nm.	(B) 500n	ım. (C) 435 nm.	(D) 355 n	m.	
]
15. 氢原	子的电子跃迁	E到 L 壳点	昙(主量子	·数 n=2) p	次壳层的某量	遣子态上,	该
量子态的	四个量子数词	可能为					
(A) n=2	$2, l=1, m_l=2, m_l$	$m_{\rm S} = \frac{1}{2}$.		(B) n=2, l=	$1, m_{\bar{l}} = 0, m_{s} = -$	$\frac{1}{2}$.	
(C) n=2	$2, l=0, m_l=1, m_l$	$n_{\rm S} = \frac{1}{2}$.		(D) n=2, l=	$0, m_{l}=0, m_{s}=-$	$\frac{1}{2}$.	
						[]
16. 氦氖	激光器所发线	红光沿 x 车	由正向传播	,它的波长	:为 λ = 632.81	nm。已知	佗
的光子x	坐标的不确定	定量为 400	Okm。则利	用不确定关	系式△p _x △x≥h	可以求得	谱
线宽度 🛭	んわ						
(A)	1.58×10^{-12}	nm. ((B) 1.00×	10^{-9} nm.			
(C)	1.58×10 ⁻⁶ r	nm.	(D) 1.23	$\times 10^{-2}$ nm.			
	W. M]
	说法正确的是						
(A)	半导体的禁	带宽度大	于绝缘体的	的禁带宽度:	1		
(B)	导体的价带	没被电子	充满;				
(C)	本征半导体	的导电机	制为价带的	的电子导电	和导带的空穴	导电;	
(D)	N 型半导体	的多数载	流子为价	带的空穴,	少数载流子是	导带的电	子.
						[]
18. 假定	氢原子原是酮	争止的,则	氢原子从,	n=3 的激发	対状态直接通 対	过辐射跃达	迁到
基态时的	反冲速度大约	约是(氢原	子的质量,	$n = 1.67 \times 10$	⁻²⁷ kg)		
(A)	4 m/s.	(B)	10 m/s .				
(C)	100 m/s .	(D)	400 m/s .			[]

二 计算题 (共46分)

请将解答写在试卷上。

19. (10 分) 一柱形电容器的两极分别为半径为 R₁ 的无限长导体圆柱和半径为

 R_3 的无限长导体圆筒。两导体共轴, 其间充以两层 均匀电介质。内、外两层介质的介电常数分别为 ε_1 和 ε_2 ,分界面的半径为 R_2 ,如图所示。 (1)计算该电 容器单位长度的电容。(2) 若两极间电压为 U,求电 容器单位长度储存的静电能。

20. (11 分)如图所示,一半径为 R 的无限长半圆柱面导体,其上电流与其轴

线上一无限长直导线的电流等值反向,电流 *I* 在半圆柱面上均匀分布. (1) 试求轴线上导线单位长度所受的力; (2) 若将另一无限长直导线(通有大小、方向与半圆柱相同的电流 *I*) 代替圆柱面,产生同样的作用力,该导线应放在何处?

21. (10 分) 两个半径分别为 R 和 r 的同轴圆形线圈相距 x,且 R >> r, x >> R. 若大线圈通有电流 I 而小线圈沿 x 轴方向以速率 v 运动,试求 x = NR 时(N 为正数)小线圈回路中产生的感应电动势的大小.

22. (10 分) 粒子处于宽度为 a 的一维无限深方势阱中,其波函数在势阱的边界处为零且定态对应于德布罗意波的驻波。(1)试根据德布罗意关系式和驻波条件求出粒子的最小动能(不考虑相对论效应)。(2)若基态波函数为 $\psi_1(x) = A \sin \frac{\pi}{a} x$,求电子处于基态 (n=1) 时在势阱中出现的概率密度。