Learning in Neural Networks: From Intuition to Backpropagation

Sayan Chaki]

March 20, 2025

Outline

1 Motivation: How Learning Happens

2 Intuitive Understanding of Learning

Gradient Descent

The Mystery of Learning

- How do we humans learn?
 - Our brains contain approximately 86 billion neurons
 - Learning involves forming and strengthening connections
 - No explicit programming required
- We observe, make mistakes, and adapt
 - Example: Learning to ride a bicycle
 - Fall \rightarrow Adjust \rightarrow Try again \rightarrow Improve
- Learning is an iterative process of improvement
- Can we enable machines to learn in similar ways?

Learning in Biological vs. Artificial Systems

Biological Learning

- Synaptic connections strengthen or weaken
- Neurons that fire together, wire together (Hebb's Law)
- Experience-dependent plasticity
- Reinforcement through neurotransmitters

Artificial Neural Networks

- Weight parameters increase or decrease
- Connections adjusted based on error
- Data-dependent adaptation
- Reinforcement through error signals

Key Insight

Both systems learn through adjustment of connections based on feedback.

Learning Metaphors

The Child Learning to Walk

- Starts with no knowledge of balance or coordination
- Tries to stand, falls down (error signal)
- Brain processes what went wrong
- Adjusts muscle control (parameter updates)
- With each attempt, gradually improves
- Eventually masters walking without conscious thought

Neural Network Parallel

Initial random weights \to Forward pass \to Error calculation \to Weight adjustment \to Improved performance

Learning Metaphors

Finding the Valley in Fog

- You're on a mountain in thick fog
- Goal: Reach the lowest point (valley)
- Can only feel the slope under your feet
- You move in the direction of steepest descent
- Take small steps to avoid overshooting
- Each step brings you closer to the valley

Figure: Descent

Network Parallel

The error landscape has many dimensions (one for each weight), and gradient descent helps navigate this landscape to find the minimum error.

Learning Metaphors

The Orchestra Conductor

- Orchestra plays a piece (forward pass)
- Conductor hears the overall sound (output)
- Identifies which instruments are out of tune (error attribution)
- Provides specific feedback to each musician (backpropagation)
- Musicians adjust their playing (weight updates)
- Overall performance improves

Neural Network Parallel

Backpropagation distributes error corrections throughout the network, telling each weight how much it contributed to the error.

Real-World Examples of Learning Systems

Computer Vision

- Image classification (Is this a cat or a dog?)
- Object detection (Where is the pedestrian in this image?)
- Facial recognition (Who is this person?)

Natural Language Processing

- Sentiment analysis (Is this review positive or negative?)
- Machine translation (English to French)
- Text generation (Complete this paragraph)

Reinforcement Learning

- Game playing (Chess, Go, video games)
- Robotics (Learning to walk, grasp objects)
- Autonomous driving

Neural Networks: A Brief Overview

- Inspired by biological neural networks (our brains)
- Composed of interconnected nodes (neurons)
- Organized in layers:
 - Input layer: Receives data
 - Hidden layer(s): Processes information
 - Output layer: Provides predictions
- Each connection has a weight parameter
- Neurons apply an activation function to their input

What Does a Neural Network Need to Learn?

- A neural network is a collection of connections
- Each connection has a weight (a number)
- Learning means finding the right weights
- Goal: Find weights that make predictions match reality

Example: If $y = w_1x_1 + w_2x_2$ and we want y to be 1 when $x_1 = 2$ and $x_2 = 1$, we need:

$$w_1 \times 2 + w_2 \times 1 = 1 \tag{1}$$

Learning as Weight Adjustment

Example: We want y to be 1 when $x_1 = 1, x_2 = 0$

- Current weights: $w_1 = 0.3, w_2 = 0.4, w_3 = 0.5$
- Forward pass:

$$h = \sigma(w_1x_1 + w_2x_2) = \sigma(0.3 \times 1 + 0.4 \times 0) = \sigma(0.3) = 0.574$$

- Output: $y = \sigma(w_3 h) = \sigma(0.5 \times 0.574) = \sigma(0.287) = 0.571$
- Error: y should be 1, but it's 0.571
- Question: Which weights should we adjust, and by how much?

A Concrete Example: XOR Problem

The XOR function:

<i>x</i> ₁	<i>X</i> ₂	$XOR(x_1, x_2)$
0	0	0
0	1	1
1	0	1
1	1	0

- XOR is not linearly separable
- Requires at least one hidden layer
- Network must learn appropriate weights

How Learning Works - Intuitively

- Present an input to the network (e.g., $x_1 = 1, x_2 = 0$)
- Calculate the output using current weights
- **3** Compare output to desired target (e.g., $y_{target} = 1$)
- Calculate the error (difference): $E = \frac{1}{2}(y y_{target})^2$
- Adjust weights to reduce error
- Repeat with many examples

Key Questions:

- How much should we adjust each weight?
- In which direction should we adjust?
- How do we distribute the error across all weights?

The Learning Loop

- This loop constitutes one training iteration
- Training typically requires thousands to millions of iterations
- Each iteration improves the weights slightly
- Eventually, the weights converge to good values

The Learning Process: Visualization

Linear Regression Example:

- Blue line: True relationship (y = 0.5x + 1)
- Black dots: Training data
- Red lines: Model predictions during training
 - Solid: Initial prediction
 - Dashed: After some training
 - Dotted: Final prediction

Learning as Error Minimization

- Errors (dashed lines) are the differences between predictions and targets
- We want to minimize these errors
- Total error: $E = \sum_{i} \frac{1}{2} (y_i \hat{y}_i)^2$
- Learning means finding weights that minimize *E*

Key Insight

Learning is an optimization problem.

The Error Landscape

- For each set of weights, there's an associated error
- This creates an "error landscape" over weight space
- Valleys represent low error (good predictions)
- Hills represent high error (poor predictions)
- Goal: Find the lowest point in this landscape

Error Landscape: 2D Visualization

x-axis: Weight 1y-axis: Weight 2

z-axis (color): Error valueBlue regions: Low error

Red regions: High error

Gradient Descent Intuition

- If we're on a slope, which way should we move?
- Answer: In the direction of steepest descent
- This direction is given by the negative gradient
- The gradient points "uphill"
- The negative gradient points "downhill"

Key Insight

Follow the negative gradient to reduce error.

What is a Gradient?

- The gradient is a vector of partial derivatives
- For a function f(x, y), the gradient is:

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \tag{2}$$

• For error function $E(w_1, w_2, \ldots, w_n)$:

$$\nabla E = \left(\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_n}\right) \tag{3}$$

- The gradient points in the direction of steepest increase
- The negative gradient points in the direction of steepest decrease

The Gradient

The gradient of the error E with respect to a weight w tells us:

- Direction of steepest increase in error
- ullet How sensitive the error is to changes in w

Mathematically: $\nabla E = \frac{\partial E}{\partial w}$ To minimize error, move in opposite direction:

$$w_{new} = w_{old} - \eta \frac{\partial E}{\partial w}$$
 (4)

where η is the learning rate

Simple Gradient Descent Example

Linear regression with one weight: $\hat{v} = wx$

Error function:

$$E = \frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - wx)^2$$

Gradient:

$$\frac{\partial u}{\partial v}$$

$$\frac{\partial E}{\partial w} = \frac{\partial}{\partial w} \frac{1}{2} (y - wx)^2 = -(y - wx)x = -xy + wx^2$$

$$w_{new} = w_{old} - \eta(-xy + wx^2) = w_{old} + \eta(xy - wx^2)$$

Interpretation

If prediction is too low, increase w; if too high, decrease w.

(5)

(6)

(7)

(8)

Learning Rate

Learning rate too small:

- Very slow convergence
- Many iterations needed
- May get stuck in local minima

Learning rate too large:

- May overshoot minimum
- Can oscillate or diverge
- Learning becomes unstable

Key Insight:

Finding the right learning rate is crucial for efficient learning.

Learning Rate Comparison

- Red path: Learning rate too small ($\eta = 0.1$)
- Blue path: Good learning rate $(\eta = 0.5)$
- ullet Green path: Learning rate too large $(\eta=1.5)$