Deep Q Learning: From Paper to Code

Temporal Difference Learning

Last Time ...

Explore for long term or exploit for short term?

Many solutions → epsilon greedy

Occasionally random, occasionally greedy

Refining Value Function Estimate

$$v_{\pi}(s) = \sum_{a} \pi(a,s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

Estimate of value of a policy

Refine estimate

New estimate = old estimate + step size (target – old estimate)

Target?

New estimate = old estimate + step size (target – old estimate)

Direction of update

May be noisy

 R_{t}

Step Size?

New estimate = old estimate + step size (target – old estimate)

Control rate of change

Many forms

Update Frequency

Algorithm dependent

Monte Carlo → end of episode

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} = \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

Sum of discounted rewards that follow current time

New estimate = old estimate + step size (target – old estimate)

Temporal Difference Learning

Q learning

Online learning

Update at each time step

Non episodic tasks

Temporal Difference Updates

$$V(s_{t}) = V(s_{t}) + \alpha(R_{t+1} + \gamma V(s_{t+1}) - V(s_{t}))$$

Using earlier estimate to update

Bootstrapping

Importance of initial estimate?

On Convergence

Fixed \prod and small $\alpha \to \infty$ converge with good coverage

Hundreds of visits or so

How to use in Q learning?

Application to Q Learning

Have to consider action-value function!

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha(R_{t+1} + \gamma \max_{a} Q(s_{t+1}, a_{max}) - Q(s_t, a_t))$$

Compare to

$$V(s_t) = V(s_t) + \alpha(R_{t+1} + \gamma V(s_{t+1}) - V(s_t))$$

Use maximal Q for update equation

In the Frozen Lake

Small number of states, actions

	Action 1	Action 2	Action n
State 1	Q(1,1)	Q(1,2)	Q(1,n)
State 2	Q(2,1)	Q(2,2)	Q(2,n)
State m	Q(m,1)	Q(m,2)	Q(m,n)

Tabular Learning Method

Implementation Details

Epsilon-greedy action selection

For a given state (s) look up Q for each action (a)

Max action or random action

Use reward to update Q for s, a

Dont' reset table → coverage of all states

Off Policy Learning

Epsilon greedy to update greedy

Off Policy Learning

SARSA → On policy

Check out my YouTube for more

Q Learning Algorithm

Initialize Q for all states s and actions a

Initialize
$$\alpha = 0.001$$
 $\gamma = 0.9$ $\epsilon_{max} = 1.0, \epsilon_{min} = 0.01$

Repeat for n_episodes

Initialize state s

For each step of episode

Choose a with epsilon-greedy

Perform a, get new state s' and reward r

$$Q(s,a)=Q(s,a)+\alpha(r+\gamma \max_{a}Q(s',a_{\max})-Q(s,a))$$

$$s=s'$$

Agent should be a class

Q is a dictionary

Decrement epsilon over time

Separate files

Plot average score over 100 games 500,000 total games

Summary

- Temporal difference learning is online
- Bootstrap learning
- Q learning is tabular and off policy
- Achieve 70% win rate, up from 20%

Up Next

