

CS5344: GRAPH MINING(I)

Anthony Tung

School of Computing

National University of Singapore

Slide Credit: Bryan Hooi, Chris von der Weth, Stanford CS246 – Mining Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeff Ullman: https://mmds.org, cytoscape.org

GRAPHS: INTRODUCTION

PHILOSOPHY OF GRAPHS

(One)source
One produced One;
One produced Two;
Two produced Three;

(Three) change/comparison—Three produced All things."

"道生一,生二,二生三,三生万物。"《道德经》

- Lao Tzu

- Similarity Search/Clustering: Similarity Function
- Association rules: Connection between items
- •Classification/Regression: Connection between attribute values and a target attribute
- •Time series: Connection between time points
- •CS5344: Connection between untrained and trained data scientist
- "Three" produce All things because it represent connections and changes

GRAPHS ARE EVERYWHERE

Graphs are ubiquitous: social, biological, chemical, web, textual, ...

TRANSPORTATION

- Find shortest paths
- Plan bus routes
- Predict traffic flow / usage
- Optimize transport system design

FRUIT FLY CONNECTOME

Recently sequenced map of the fruit fly's 'hemibrain', containing 25,000 neurons and 20M neural connections

GRAPH MINING OVERVIEW

- 1. Introduction
- 2. Basic Concepts
- 3. Community Detection
 - Betweenness-based: Girvan Newman
- Modularity Maximization
- 4. Classification Problems on Graphs

GRAPHS

A **graph** (or **network**) is a data structure used to model interactions.

Undirected graphs contain a set of nodes V, and a set of (undirected) edges E between pairs of nodes.

Example: Facebook: nodes represent people, edges represent friendships

facebook

DIRECTED GRAPHS

A **graph** (or **network**) is a data structure used to model interactions.

Directed graphs contain a set of nodes V, and a set of (directed) edges between pairs of nodes.

Example: Twitter: nodes represent people, edges represent follows

WEIGHTED GRAPH

Each edge is associated with a weight (e.g. the score of a review)

BIPARTITE GRAPHS

A bipartite graph is a graph with two sets of nodes, U and W.

Each edge connects a node from U and a node from W.

Example: (Review graph) U as the set of users, W as products, and edges representing a review by a user for a product.

HETEROGENEOUS GRAPH

A **heterogeneous graph** has multiple types of nodes and / or edges

Example: **knowledge graphs** can have many node types (Person, Place, Country, ...) and many different types of edges ("Is a", "Is located in", "Is born on", ...)

CYCLIC GRAPHS, MULTIGRAPHS, SPARSE GRAPHS

Cyclic Graph

VS.

(Directed) Acyclic Graph

(Simple) Graph

VS.

Multigraph

Sparse Graph

VS.

Dense Graph

SUBGRAPHS AND NEIGHBORHOODS

A **subgraph** is a graph formed by a subset of the nodes and edges of a graph.

The **neighbors** of a node v are the set of nodes which have edges with v.

(For directed graphs: in-neighbors have edges to v; out-neighbors have edges from v)

The **neighborhood** N(v) is a subgraph formed by the neighbors of the node v (and the node v itself¹, and the edges joining this set of nodes).

The **degree** of a node is its number of neighbors.

• (For directed graphs: **in-degree** is the number of in-neighbors; **out-degree** is the number of out-neighbors)

1: the "closed neighborhood" includes the node v itself; the "open neighborhood" excludes it.

ADJACENCY MATRIX

Binary matrix **A** representing a graph

Each row and column represents a node

Each entry is 1 if there is an edge from one node to the other; 0 otherwise

A is symmetric for undirected graphs, but not for directed graphs

For weighted graphs, A need not be a binary matrix

	1	2	3	4	5	
1	0	1	1	0	1	
2	1	0	1	0	0	
3	1	1	0	1	0	
4	0	0	1	0	1	
5	1	0	0	1	0	

CENTRALITY MEASURES

Centrality measures are ways to quantify the 'importance' of each node Different measures give different 'flavors' of importance

DEGREE CENTRALITY

Undirected graph

Sum of weights of connected edges

$$c_d(v_i) = \sum_{v_j \in V} A[i, j]$$

Directed graph

Sum of weights of incoming edges

$$c_{d_in}(v_i) = \sum_{v_j \in V} A[j,i] \qquad c_{d_out}(v_i) = \sum_{v_j \in V} A[i,j]$$

Sum of weights of outgoing edges

$$c_{d_out}(v_i) = \sum_{v_j \in V} A[i, j]$$

$$c_{d_in}(v) = 8$$

$$c_{d_out}(v) = 14$$

Pro: easy and fast to calculate

Con: only considers the node's immediate neighborhood, ignoring the rest of the graph

CLOSENESS CENTRALITY

Intuition: a node is central if its distance to most other nodes is small

Closeness centrality is the reciprocal of the node's average distance to other nodes

For directed graphs, we can either consider incoming or outgoing edges for calculating distances

Note: For directed graphs, this definition calculates a node's closeness using its incoming edges — more common case. To consider outgoing edges, d(v,u) becomes d(u,v).

BETWEENNESS CENTRALITY

Intuition: node v is central if many shortest paths between other node pairs pass through v

- Removing such nodes would cause the most "disruption" to the graph
- Directly applicable to both directed/undirected and weighted/unweighted graphs

COMPARISON BETWEEN CENTRALITY MEASURES

DISCUSSION: CENTRALITY MEASURES

Different centrality measures have very different meanings and interpretations. Choose the one that makes the most sense for your use-case.

Time complexity: betweenness and closeness centrality are relatively slow: $O(|V| \cdot |E|)$ time, which is faster than the naive approach (of computing all shortest paths), but still often slow in practice

GRAPH MINING OVERVIEW

- 1. Introduction
- 2. Basic Concepts
- 3. Community Detection
 - Betweenness-based: Girvan Newman
 - Modularity Maximization
- 4. Classification Problems on Graphs

MOTIVATION: COMMUNITY DETECTION

MOTIVATION: COMMUNITY DETECTION

FINDING COMMUNITIES IN LARGE GRAPH

Many social networks or interaction graphs can be represented as an adjacency matrix consisting of 1's and 0's. Cluster the nodes based on Jaccard distance

	Α	В	С	D	Е	F	G	Н	ı	J
Α	0	1	0	0	0	0	0	0	0	0
В	1	0	1	0	0	1	1	1	0	0
С	0	1	0	1	0	1	1	1	0	0
D	0	0	1	0	0	0	0	1	0	0
Е	0	0	0	0	0	1	0	0	0	0
F	0	1	1	0	1	0	1	1	0	0
G	0	1	1	0	0	1	0	1	0	0
Н	0	1	1	1	0	1	1	0	1	1
1	0	0	0	0	0	0	0	1	0	0
J	0	0	0	0	0	0	0	1	0	0

EXAMPLE: MOVIES-TO-ACTORS GRAPH (BIPARTITE)

GRAPH MINING OVERVIEW

- 1. Introduction
- 2. Basic Concepts
- 3. Community Detection
 - Betweenness-based: Girvan Newman
 - Modularity Maximization
- 4. Classification Problems on Graphs

EDGE BETWEENNESS

Edge betweenness: Number of shortest paths passing over the edge

Intuition: high betweenness edges are the edges that act as 'bridges' between different parts of the graph (the red edges in the graph below):

Edge betweenness (red = higher)

E.g. this edge is on the shortest path for all $4 \times 4 = 16$ of the paths from any point in the left cluster to any point in the right cluster

GIRVAN NEWMAN ALGORITHM

Divisive **hierarchical clustering** based on the notion of edge **betweenness**:

Girvan-Newman Algorithm:

- Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove edge with highest betweenness
- Gives a hierarchical decomposition of the network

GIRVAN NEWMAN: EXAMPLE

GIRVAN NEWMAN: EXAMPLE

is completely separated into nodes

Step 3:

Note: Need to recompute betweenness at every step

Just like in hierarchical clustering, this produces a hierarchy ...until the graph

Hierarchical network decomposition:

GIRVAN NEWMAN: EXAMPLE OUTPUT

Communities in physics collaboration network

GIRVAN NEWMAN: EXAMPLE OUTPUT

Zachary's Karate Club

GIRVAN-NEWMAN: SELECTING NO. OF CLUSTERS

To select the no. of clusters, we need to find the right level to cut at (similar to in hierarchical clustering)

This requires a **quality measure** to decide which clustering is best

MODULARITY

Communities: sets of tightly connected nodes

Define: Modularity Q

- A measure of how well a network is partitioned into communities
- Given a partitioning of the network into groups $s \in S$:

 $Q \propto \sum_{s \in S} [(\# \text{ edges within group } s) - (\text{expected } \# \text{ edges within group } s)]$

Need a null model!

NULL MODEL: CONFIGURATION MODEL

Given real G on n nodes and m edges, construct rewired network G'

- Same degree distribution but random connections
- Consider G' as a multigraph
- The expected number of edges between nodes i and j of degrees k_i and k_j equals to: $k_i \cdot \frac{k_j}{2m} = \frac{k_i k_j}{2m}$

MODULARITY

Modularity of partitioning S of graph G:

• Q $\propto \sum_{s \in S} [$ (# edges within group s) – (expected # edges within group s)]

$$\textbf{Q}(\textbf{\textit{G}},\textbf{\textit{S}}) = \frac{1}{2m} \sum_{s \in \textbf{\textit{S}}} \sum_{i \in s} \sum_{j \in s} \left(A_{ij} - \frac{k_i k_j}{2m} \right)$$
 A $= 1 \text{ if } i \rightarrow j$, Normalizing cost.: -1 < Q < 1 0 else

Modularity values take range [-1,1]

- It is positive if the number of edges within groups exceeds the expected number
- 0.3-0.7<Q means significant community structure</p>

MODULARITY: NUMBER OF CLUSTERS

Another idea: we could just optimize modularity directly!

GRAPH MINING OVERVIEW

- 1. Introduction
- 2. Basic Concepts
- 3. Community Detection
 - Betweenness-based: Girvan Newman
 - Modularity Maximization
- 4. Classification Problems on Graphs

1. Each node starts in its own community

- 1. Each node starts in its own community
- 2. Repeat until convergence:
 - For each node i, compute the change in modularity if we move node i to each other community

If moved to orange community: +0.1 If moved to blue community: -0.2

• • •

- 1. Each node starts in its own community
- 2. Repeat until convergence:
 - For each node i, compute the change in modularity if we move node i to each other community
 - Move i to the community resulting in the highest modularity

• • •

- 1. Each node starts in its own community
- 2. Repeat until convergence:
 - For each node i, compute the change in modularity if we move node i to each other community
 - Move i to the community resulting in the highest modularity

• • •

- 1. Each node starts in its own community
- 2. Repeat until convergence:
 - For each node i, compute the change in modularity if we move node i to each other community
 - Move i to the community resulting in the highest modularity

(Do the same for all other nodes)

- 1. Each node starts in its own community
- 2. Repeat until convergence:
 - For each node i, compute the change in modularity if we move node i to each other community
 - Move i to the community resulting in the highest modularity
 - Collapse each community into a "supernode" and continue the algorithm

COMPARISON: GIRVAN-NEWMAN VS MODULARITY

Modularity Maximization (Louvain)

Prefers to "break" high betweenness edges

Treats all edges equally

VARIANTS OF COMMUNITY DETECTION: OVERLAPPING COMMUNITIES

Non-overlapping vs. overlapping communities

EXAMPLE: PROTEIN-PROTEIN INTERACTIONS

VARIANTS: BICLUSTERING (COMMUNITY DETECTION FOR BIPARTITE GRAPHS)

Goal: Groups the rows and columns into subgroups, such that most of the edges lie long a few "subrectangles"

[Andersen, Lang: Communities from seed sets, 2006]

GRAPH MINING OVERVIEW

- 1. Introduction
- 2. Basic Concepts
- 3. Community Detection
 - Betweenness-based: Girvan Newman
 - Modularity Maximization
- 4. Classification Problems on Graphs

OVERALL GOAL

Many modern neural networks are designed for sequences (e.g. text, time series) and grids (e.g. images, videos)

How can we generalize them beyond sequences and grids, to graphs, which can model objects and relationships more generally?

GOAL: NODE CLASSIFICATION

Given:

- Graph, with adjacency matrix A
- Node feature vectors x_i (for node i)
- Some labelled nodes y_i

Output:

Labels for unlabelled nodes

NODE PREDICTION: EXAMPLES

Citation networks

Social networks

Online commerce

GOAL: LINK PREDICTION

Given:

- Graph, with adjacency matrix A
- Node feature vectors x_i (for node i)

Output:

 Predict whether a given link will be created in future

LINK PREDICTION: APPLICATIONS

Knowledge graph completion

Recommender systems

GOAL: GRAPH PREDICTION

Given:

- Graphs, with adjacency matrices A_i
- Labels for graphs, y_i

Output:

• Predict label for unlabeled graphs

GRAPH PREDICTION EXAMPLE: DRUG REPURPOSING

Given a large database of drugs, we can predict which will interact with proteins associated with a given disease

Early successes: e.g. [1] reportedly discovered a new type of antibiotic ("halicin") based on this approach which was effective against a "wide spectrum of pathogens" in tests on mice, including "pan-resistant" strains for which antibiotics are urgently required

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.