REAL-TIME NETWORKS Ethernet

Prof. J.-D. Decotignie

CSEM Centre Suisse d'Electronique et de Microtechnique SA

Jaquet-Droz 1, 2007 Neuchâtel
jean-dominique.decotignie@csem.ch

Outline

- The good old Ethernet
- Myths and realities
- Companion protocols
- Improvements
- Switched Ethernet
- How to improve temporal behaviour
- Industrial Ethernet
- Experiments on Switched Ethernet
- Conclusion

IEEE 802 standards

« Vintage Ethernet »

- One segment of coaxial cable
- All nodes are hooked to the same cable
- A medium access control
 - Every station may listen what is emitted on the bus (cable segment)
 - Each station may listen to what it emits
- Packet transmission

Basic principles - emission

- A station that wants to transmit
 - Listen the transmission medium
 - If free during a given duration
 - Emits its message
 - While listening what is sensed on the cable
 - If there is a collision, it sends a jamming sequence et prepares to retry
 - If the medium is busy, the station waits until it becomes free and does as indicated above
 - 1-persistent CSMA/CD

Basic principles – retry in case of collision

- Not done immediately
- A number is chosen randomly in the backoff interval
- This number is multiplied by the slot duration (5μs à 100Mbit/s)
- Starts to transmit after the given duration (if medium is busy)
- If there is a collision, the backoff window is doubled
 - Maximum of 0..1023
 - After 16 attempts, transmission is cancelled
- When transmission is successful, the backoff interval returns to its original value [0..1]

CSMA/CD for Ethernet

Backoff

- In case of collision
 - Transmission is stopped after sending the jamming sequence
 - the backoff interval is calculated
 - [0..2^m-1] where m is the number of successive collisions
- A number is selected randomly in this interval
- Waiting time = selected number t . « slot time »
 - Slot time = 512 bit time (4096 @ 1Gbit/s)
- After each collision, the interval is doubled
 - Maximum interval of [0..1023] after 10 attempts
- In case of success, m is reset to 0

Collisions

- Collision zone = 2 x propagation time
 - This defines the « slot time »
 - Limits the cable length and defines the minimal size of a packet

Parameters (10base5)

- 50 ohms coaxial cable (thick ethernet)
- 10 Mbit/s
- Interframe silence = 96 bit time (9.6μs)
- « slot time » = 512 bits (51.2μ s)
- Distance < 2500 m. between 2 stations
 - 5 segments of 500 m and 4 repeaters
- Minimum frame size = 512 bits
- Maximum frame size = 1518 octets
- Jamming sequence size = 32 to 48 bits

History

- 1970: ALOHAnet is developed at Hawai University
- 1976: Bob Metcalfe and David Boggs make a talk at the National Computer Conference
- 13 déc. 1977: U.S. Patent #4,063,220 Multipoint data communication system with collision detection
- 1982: 1st version published by Xerox, Intel and DEC
- 1985: first 802.3 standard

Conventions

Speed	Transmission	Medium
1	BASE	-2
10	BROAD	-5
100		-36
1000		-T, -T2
10G		-F, -FB, -FL
		-X

Ethernet Frame

preamble	SFD	Destination address	Source address	Type / length	802.2 header and data	FCS	ESD
7 bytes	1 byte	6 bytes	6 bytes	2 bytes	46-1500 bytes	4 bytes	1 byte

MAC address

- 24 bits: identification of manufacturer (Organization Unique Indentifier)
- 24 bits: assigned by the manufacturer or the vendor

Vintage Ethernet Performances

- Difficult to establish in theory
- A maximum throughput of 37% is often mentionned
 - This is only valid under simplified asumptions and small packets
- In practice
 - Access delay are minimal in case of low traffic
 - Transmission delay increases linearly with the size of the packets and the number of nodes
 - The delay standard deviation also increases but more slowly

Measured performances at 10Mbit/s

- Mean delay
- Its standard deviation

Source Boggs, 1988

What makes a difference between theory and practice

- Calculations are complicated ⇒ simplified asumptions
 - Poisson arrival law
 - In practice, it is less smooth
 - Infinite population and always waiting packets
 - Packets are dropped due to buffer overflow
- In reality
 - Cable lengths are much smaller than the maximum allowed
 - Packet sizes according to a bimodal distribution
 - Lengths close to min and lengths close to max.

Problems

- « capture effect »
 - Assume 2 stations A and B have a lot of messages to send
 - At a given time, their emissions collide
 - A chooses 1 as a random number and B elects 0
 - Thus B succeeds at its first attempt
 - As B has more traffic, it attempts to send the next message right the way
 - This will collide with A second attempt
 - A has to double the backoff interval while B has the initial one
 - B has hence more chance to succeed than A, And so on
- Unbounded transmission time
 - Not exact but !!!

Companion protocols

- IP: Internet Protocol RFC 791
- TCP: Transport Control Protocol, RFC 793
- ARP: Address Resolution Protocol, RFC 826
- IGMP: Internet Group Management Protocol
- ICMP: Internet Control Message Protocol,
- RARP: Reverse Address Resolution Protocol, RFC 903
- DHCP: Dynamic Host Configuration Protocol, RFC 2131-2
- IPv6, BGP, OSPF, RIP, NAT,

Improvements

■ 1987: 1BASE5: 1Mbit/s on twisted pairs with hub

■ 1990: 10 Mbit/s

■ 1995: 100 Mbit/s

■ 1998: 1 Gbit/s

■ 10 Gbit/s

■ 1997: full duplex

Hub replaced by a bridge (switch)

Parameters

- Distances on twisted pairs < 100m.
- Distances with optical fibers < 40 km (10G)

Speed	Interframe	Slot time	
	space		
10	96 bits	512 bits	
100	96 bits	512 bits	
1000	96 bits	4096 bits	
10 G	96 bits	NA	

Switched Ethernet

- The original Ethernet operates in a half duplex mode
 - One station transmits or another but not both at the same time (except in case of collision)
- With a hub (repeater), there are only 2 nodes on a cable (hub + end node)
 - However the behavior must be the same as if all nodes share the same cable (collision domain)
 - This is necessary to detect possible collisions
- A switch
 - Receives on a port
 - Re-transmit on the port(s) toward the destination(s) of the packet
 - In between, it stores the packet

Switched Ethernet (2)

- With a switch, there are no longer collisions
 - An end node no longer needs to detect the collisions
 - As in a twisted pair cable,
 there a pair for each direction
 - Both directions may be exploited simultaneously

- Each link may hence be potentially exploited at twice the speed
- The available bandwidth is potentialy higher (multiple domains)
- That does not mean that all problems are solved

Switched Ethernet (3)

Switch buffers may overflow

80 Mbit/s

What about multiple paths between two nodes

Hubs and switches

- Sometimes misleading
 - Hub 10/100 is a switch
- Multilayer switches
 - Include a routing module and a switching module

Complementaty aspects

- Auto negociation
 - every 16ms +/-8

- VLAN IEEE 802.1Q NLPS
 - A way to isolate traffic among a group of nodes
 - Uses the « type/length » field
 - Add a LAN identifier (12 bits) and a priority field (3 bits)
- Quality of service IEEE 802.1D (includes 802.1p)
- Self learning
 - Switches may learn on which ports the nodes are reachable
 - Multicast raises a problem
 - IGMP snooping

Quality of service management

- According 802.1D (MAC bridges)
 - Not only for Ethernet
 - 8 traffic priorities
 - Most switches only implement « best effort », « real-time » and « management » on each egress
 - Packets arriving in a ingress port are inserted in the queue corresponding to the priority at the egress port (FIFO order within a priority level)
 - When the output link is free, the oldest packet of the highest priority is transmitted
 - This may cause priority inversions which are quite long (1500 bytes)
 - Packets that have no priority field or those that enter through selected ports may be forced at a given priority level
 - Very useful to filter the traffic coming from outside
- !!! This is not to be confused with QoS at network level such as IntServ or DiffServ

How to improve QoS in Ethernet?

- Access time
 - Modify the MAC
 - Add another MAC on top of CSMA/CD
 - Pure TDMA, master/slave, token, reservation, etc.
 - Adapt the traffic
 - Use of switches
- Synchronisation, dating, consistency
 - Clock synchronization algorithms

Add another MAC

- A number of such proposals
- Nearly all MAC types have been suggested
- The MAC used in many fieldbussses has been used
- Generaly speaking, rather inefficient
 - Pure TDMA @ 1Gbit/s \Rightarrow 4% utilization

Traffic adaptation

- Avoid bursts due to non real-time traffic
 - smoothing (limit traffic instantaneous intensity by delaying part of it)
 - shaping (periodic emissions by blocks)
- This only adds statistical guarantees
 - Reduces drop rate and jitter
 - Increases mean delay

Use of switches

- Avoids collisions
- Queues in switches may however overflow

Increases mean delays and increases jitter

Clock synchronization

- Using messages to synchronize and provide simultaneous sampling is not possible (unless exception)
- Accuracy γ of synchronization depends on the uncertainty ϵ in the transmission delay
 - $\gamma \ge \varepsilon (1 1/n)$ where n is the number of participating nodes

Current RT Ethernet contenders

- Non standard hardware
 - EtherCAT
 - SynqNet
 - SERCOS III
 - PowerDNA ?
- Standard hardware but not compatible with regular 802.3 nodes
 - Ethernet Powerlink
 - FTT-Ethernet
 - TTP over Ethernet (TTE)

- Standard hardware, compatible with regular 802.3 nodes
 - PROFINET
 - JetSync
 - EtherNet/IP (+CIP)
 - Modbus-TCP
 - Real-Time Publish-Subscribe
- And a number of academic proposals

EtherCat

- General topology with 65535 nodes / segment
 - Wide choice of cable from twisted pair to optical fibers
- Synchronisation based on distributed synchronized clocks
 - Claim accuracy to microseconds
- Quite performing
 - 100 axes in 100μs; 1000 I/O points in 30 μs
- Compliant with IEEE 802.3u Fast Ethernet
 - All protocols based on IP are supported (TCP, UDP,...)
 - Dedicated hardware (except for the master)
- Integration with CANopen and SERCOS profiles for compatibility with legacy
- Node to node communication only via master

EtherCat – Architecture & protocols

EtherCat technical introduction and overview, dec. 2004

EtherCat – Principles

- Master sends an Ethernet frame
 - That contains one or more EtherCat datagrams
 - Contains data for the outputs and has room for the input data
 - Nodes read and update part of the frame on the fly
 - Location in datagram is independent from the physical localization
- Inside each slave, there is a sync manager
 - That informs of the reception of new data
 - That manages the data read and write order

Ensures that data has been updated

EtherCat - analysis

- Advantages
 - Very fast (is this useful ?)
 - Standard hardware for the master
 - Compatible with legacy CAN Open or SERCOS
- Drawbacks
 - Targeted to inputs and outputs which is not sufficent in many cases
 - Incompatible with Ethernet
 - Requires specialized hardware
 - Restrictive topology

SERCOS III

- Up to 254 nodes on a single segment
 - Line or ring topology
 - Medium redundancy capability
- So-called « guaranteed and deterministic communication »
 - Cycle time from 31.25μs (62.5, 125, 250 and n x 250μs)
 - jitter <1µs (or 50µs for the low performance class)
- Compliant with IEEE 802.3u Fast Ethernet (fiber and copper)
 - IP based protocols are supported (TCP, UDP,...)
 - Implementation on dedicated hardware
- Integration SERCOS profiles
- Possibility of real-time node to node communication

SERCOS III - Topology

Ring

Line

Master

p2

p2

Slave 2

p1

p2

Slave 3

p1

p1

SERCOS - cycle

- Real-time channel present in each cycle to
 - Synchronize the slaves with the master
 - Exchange data and commands between the master and the slaves
 - In each cycle (real-time)
 - On request (service channel)
 - Exchange data between slaves
- IP channel for on demand transfers (optionnal)
 - Base on IP
 - Permet to exchange data between master and slaves
 - Operator display data, files, configurations, ...
 - Exchange between slaves
 - Transparent communication with standard Ethernet nodes (PC, ...)

SERCOS III – cycle

- Up to 4 Master Data Telegrams
- Up to 4 AT Device Telegrams
- A number of IP messages (max. duration)

SERCOS III - analysis

- Advantages
 - Efficient / possibility of line topology
 - hotplug
 - Redundancy capability
 - A node may be hooked to a regular Ethernet network (one port must be left open)
 - Guranteed cycle time and reduced jitter
 - Uses regular IP frames (no encapsulation)
- Drawbacks
 - Protected by patents
 - Requires non standard hardware
 - Real-time behavior impossible in presence of non compliant nodes
 - Requires a bridge to regular Ethernet

EPFL

Ethernet IP with time synchronization

- No limit in node number
 - Topology according to Ethernet
- No modification to 802.3
 - It is possible to use 802.1p priorities
 - Synchronisation according to IEEE 1588
- Compliant with IEEE 802.3u Fast Ethernet
 - IP based protocols are supported (TCP, UDP,...)
 - Implementation on standard 802.3 hardware
- Integration with CIP for compatibility with DeviceNet and ControlNet
- Node to node communication along a producer/consumer model

Ethernet IP

Ethernet IP - analysis

Advantages

- Standard hardware
- Most of the used protocols are standard
- Can be mixed with « pure » Ethernet nodes
- Compatibility with DeviceNet and ControlNet
- Synchronisation based on IEEE 1588

Drawbacks

- Cycle time is not constant, jitter is not controlled
- Only statistical guarantees
 - Using priorities in switches
 - Filtering external traffic

Ethernet Powerlink in short

- Up to 240 nodes on a segment
 - Topology according to Ethernet + line topology possible
- So-called « guaranteed and deterministic communication »
 - Cycle time from 200µs
 - jitter <1µs for precise node synchronisation
 - IAONA real-time class 4 (highest performance one)
- Compliant with IEEE 802.3u Fast Ethernet
 - IP based protocols are supported (TCP, UDP,...)
 - Implementation on regular 802.3 hardware
- Integration with CANopen EN50325-4 for interoperability
- Node to node communication along a producer/consumer mode

Ethernet Powerlink – Model

Ethernet Powerlink – cycle

- Synchronous part made of slots
 - Continuous: CN is polled at each cycle
 - Multiplexed: a given CN is polled every n cycles
 - Synchronous exchanges
 - Sequence of PollRequest followed by PollResponse
 - Response is sent in broadcast (available to all)
 - Producer -> consumer
- Idle part (to keep a constant duration to the cycle)

©2019, J.-D. Decotignie

Ethernet Powerlink - Analysis

Advantages

- Constant cycle duration (in absence of error)
- Line topology possible
- Presence of an application layer

Drawbacks

- Only contains a limited subset of the necessary concepts (cf. WorldFIP)
- Low efficiency (25µs lost in each transaction)
- Cannot coexist with regular Ethernet nodes
- Requires specialy designed routers and hubs
- Model does not take errors into account
- Quite sensitive to timing errors (collisions!)

Real-Time Ethernet EPA - Ethernet for Plant Automation – in short

- Number of nodes only limited by physical considerations
 - Topology according to Ethernet (switch and hub)
- So-called « guaranteed and deterministic communication »
 - Cycle time in multiples of milliseconds
 - jitter depends on the selected IEEE 1588 class
- Compliant with IEEE 802.3 (all variants)
 - IP based protocols are used (TCP, UDP,...)
 - Implementation on regular 802.3 hardware
- Based upon IEEE 1588 for clock synchronisation
- Device capabilities described in XML
- Conventional client-server communication model
 - Process variables communicated according to IEC 61499 and IEC 61804 (function blocks)

EPA – Topology

©2019, J.-D. Decotignie

Real-Time Ethernet EPA - architecture

EPA - scheduling

Real-Time Ethernet EPA - analysis

- Advantages
 - Support functional blocks
 - suitable application layer
- Drawbacks
 - Only client-server
 - Single polling cycle
 - Difficult to calculate guarantees (even in absence of error)
 - Some parts of the standard are quite obscure
 - Configuration must be centralized
 - To ensure that parameters are compatible and consistent

Others

Standards

- Profinet
 - V3 introduced real-time guarantees
- AFDX Avionics Full Duplex Switched Ethernet
- P-NET on IP
 - PNET is a virtual token MAC
 - Same on IP without any guarantee
- Real-Time publish-subscribe
 - Just a publish subscribe layer on top of TCP without any guarantee
- MODBUS on TCP/IP
 - Nothing real-time, just the protocol on top of TCP
- Vnet/IP
 - Based on temporal windows / Proposed by Yokogawa (<u>www.yokogawa.com/us</u>)
- Time Critical Control Network
- Non standard (so far): TT-Ethernet

Switched Ethernet

- Temporal definitions
 - t_{mux} : multiplexing delay
 - t_{queue}: queueing delay
 - t_{trans} : packet transmission delay = $t_{frame} + t_{mux} + t_{queue} + t_{os}$
 - t_{os}: operating system delay
 - t_{frame}: frame tx delay
 - 121μs for 1514 bytes @ 100Mbit/s
- How to calculate the delay ?
 - Use of the network calculus

4 port switch

Switched Ethernet (2)

Egress port

Ingress port

Ingress port

To 0

Egress

port

Egress

Ingress

Ingress port

- Let us look at one output port
 - Service curve $\beta(t) = C (t-t_{mux}) +$
 - + means that the function is equal to 0 for t-t_{mux} < 0
 - C is the maximum transmission rate on the output port

Arrival curve

- Sum of arrival curves of all incoming traffic whose destination is that output port
- One station on each ingress port : $\alpha(t) = \min [Ct + M, r_kt + b_k]$
 - M maximum frame size
 - r_k long term average rate ($\sum r_k \le C$ should hold for output)
 - b_k burstiness of the traffic (M< b_k and $r_k \le C$)

Switched Ethernet (3)

- Case of 2 incoming traffics ↑
 - Maximum backlog = max. vertical distance between arrival and service curves
 - Maximum delay (FIFO order) = max. horizontal deviation between arrival and service curves

EPFL

Switch backlog (FIFO order)

Inflexion point

$$g_i = \frac{b_i - M}{C - r_i}$$

Backlog

$$B = \sum_{k=1}^{N} b_k + \sum_{k=1}^{N} r_k g_{\max} - C(g_{\max} - t_{\max})$$

Backlog estimation

$$B_{est} = \sum_{k=1}^{N} b_k + Ct_{mux}$$

Switch delay (FIFO order)

- Distance at g_{max}
- Delay

$$t_{switch} = \sum_{k=1}^{N} \frac{b_k}{C} - g_{\text{max}} \left(1 - \sum_{k=1}^{N} \frac{r_k}{C} \right) + t_{mux}$$

Can be approximated

$$t_{est} = \sum_{k=1}^{N} \frac{b_k}{C} + t_{mux}$$

Remarks

- Arrival curve implies traffic shaping
 - This can be done using the token bucket algorithm
 - Bucket size b (If token arrives when the bucket is full, it is discarded)
 - Fill rate r (1 token is added to the bucket every 1/r seconds)
 - Alternately S tokens added every S/r seconds
 - Maximum packet size M
 - When a packet of n bytes arrives, n tokens are removed from the bucket, and the packet is sent to the network (waits otherwise).
- Backlog is per egress queue
 - Is a way to calculate necessary buffer size
- Analysis is valid for one switch (May be extended)

Measurement setup

- 3 different switches
 - 3Com office connect
 - Level-One FSW-2108TY
 - Intel Netstructure 470F
- NIC
 - Intel EEPro/100
 - 3Com 3C985B-SX
- Delays measured from with min. size frames on UDP

Switch buffer size

- Measured by sending bursts of traffic
 - Increasing burst length until missing frames
 - Using network calculus to derive buffer size

Switch	# 1514 byte frames	Size [Kbyte]
100M 3Com	14	20.5
100M level-One	87	127.4
1000M Intel	200	293

Source: J. Loeser 04

Influence of shaping interval

• Bucket size: $b = r T_s + M$

Node	C (40MB/s)	D (32MB/s)	E (20MB/s)
$T_s = 10ms$	51514 bytes	41514 bytes	26514 bytes
$T_s = 1 ms$	6515 bytes	5514 bytes	4014 bytes
$T_s = 0.1 ms$	2014 bytes	1914 bytes	1764 bytes

CPU usage

Node	C (40MB/s)	D (32MB/s)	E (20MB/s)
$T_s = 10 ms$	4.1%	2.9%	2.3%
$T_s = 1 ms$	11%	9%	7.2%
$T_s = 0.1 ms$	21.2%	17.2%	11.9%

Source: J. Loeser 04

Buffer bounds and delays

Packet transmitted from A to B

	buffer bound	t_{max}	t _{est}	t _{obs} max.
$T_s = 10 ms$	111.8 KB	9.357 ms	9.731 ms	8.759 ms
$T_s = 1 ms$	15.7KB	1.38 ms	1.345 ms	1.3 ms
$T_s = 0.1 ms$	6.1 KB	0.582 ms	0.506ms	0.438 ms

Source: J. Loeser 04

Analysis of the experiment

- Max. bandwidth on a link 98.6 Mb/s
- Experiment used 92 Mb/s \approx 93% link use
 - Max. delay from 0.58ms, 1.4 ms to 9.4 ms at 100 Mb/s
 - Requires traffic shaping
- Results valid
 - for a single switch
 - Must be adapted for cascaded switches (traffic shapes)
 - For FIFO behavior
 - Provided all nodes play the game

Can be extended to multiple switches, see J. Specht, S. Samii, Urgency-Based Scheduler for Time-Sensitive Switched Ethernet Networks, ECRTS 2016, pp.75-85

Conclusion

- Vintage Ethernet was not so bad
- Switched Ethernet
 - Gives the possibility to use up 100% of the bandwidth
 - With switches that have large enough buffers
 - With traffic shaping
 - Provided all nodes stick to the traffic shaping rules
 - Is not so good in terms of topology
 - Still suffer from delay variations

The solution?

- For satisfying real-time constraints
 - Switched Ethernet
 - Use of message priorities in switches (IEEE 802.1Q)
 - Traffic smoothing / shaping
 - IEEE 1588 for clock synchronization
- Look at IEEE Time Sensitive Networking group (https://en.wikipedia.org/wiki/Time-Sensitive_Networking)
- Security: 802.1x, IPSec, SSL
- Application layer (MMS or similar)

Work on Ethernet

- Still an active subject of research
 - Mainly studying the switch scheduling policies and the corresponding schedulability analysis
- Improving the standard
 - Time Sensitive Networking working groups under the IEEE 802.1 project
 - See next slide
 - Audio Video Bridging (AVB)
 - Started in 2005. First efforts to bring real-time to standard Ethernet
 - See U. Bordoloi et al, Schedulability Analysis of Ethernet AVB Swiches, RTCSA 2014.
 - Now generalized and renamed to TSN

Time Sensitive Networking (TSN)

Timing and sync (802.1AS)

Preemption (802.1Qbu)
Scheduled traffic (802.1Qbv)
Cyclic queuing (802.1 Qch)
Asyn. Shaping (802.1Qcr)

Credit-based shaper (802.1 Qav)

TSN components

Reliability

Synchronization

Resource management

Latency

Frame replacement & elimination (P802.1CB) Path Control (802.1Qca) Per-Stream Filtering (802.1 Qci) Time Sync (P802.1AS-Rev)

Stream Reserv Prot
(802.1Qat)
TSN configuration
P802.1Qcc)
YANG (P802.1Qcp)
Link-local Reserv Prot
P802.1CS)

Standards for TSN (Time Sensitive Flore Networking)

- IEEE Std 802.1Qbu-2016 IEEE Standard for Local and Metropolitan Area Networks -- Bridges and Bridged Networks -- Amendment 26: Frame Preemption. It allows a Bridge Port to suspend the transmission of non time critical frames while one or more time critical frames are transmitted
- IEEE Std 802.1Qbv-2015 IEEE Standard for Local and Metropolitan Area Networks -- Bridges and Bridged Networks -- Amendment 25: Enhancements for Scheduled Traffic. It specifies time aware queue draining to schedule the transmission of frames relative to a known time scale.
- IEEE Std 802.1Qca-2015 IEEE Standard for Local and Metropolitan Area Networks -- Bridges and Bridged Networks -- Amendment 24: Path Control and Reservation. It extends the application of Intermediate System to Intermediate System (IS-IS) to bridged networks in order to provide explicit trees for data traffic.

All 3 are now in IEEE Std 802.1Q-2018

©2019, J.-D. Decotignie

AVB standards (Audio Video Bridging)

- IEEE Std 802.1AS-2011 IEEE Standard for Local and Metropolitan Area Networks -- Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks. It provides a Layer 2 time synchronizing service that is appropriate for the most stringent requirements of consumer electronics applications.
- IEEE Std 802.1Qat-2010 IEEE Standard for Local and Metropolitan Area Networks -- Virtual Bridged Local Area Networks Amendment 14: Stream Reservation Protocol (SRP). Has been rolled into IEEE Std 802.1Q-2014.
- IEEE Std 802.1Qav-2009 IEEE Standard for Local and Metropolitan Area Networks -- Virtual Bridged Local Area Networks - Amendment 12: Forwarding and Queueing Enhancements for Time-Sensitive Streams, which specifies the Credit Based Shaper. Has been rolled into IEEE Std 802.1Q
- IEEE Std 802.1BA-2009 IEEE Standard for Local and Metropolitan Area Networks -- Audio Video Bridging (AVB) Systems. It specifies a set of usage-specific profiles to help interoperability between networked devices

TSN Standards under study

- P802.1CS Link-local Registration Protocol
- P802.1DC Quality of Service Provision by Network Systems
- P802.1DF TSN Profile for Service Provider Networks
- P802.1DG TSN Profile for Automotive In-Vehicle Ethernet Communications
- P802.1AS-Rev Timing and Synchronization for Time-Sensitive Applications
- P802.1AX-Rev Link Aggregation Revision
- P802.1ABcu LLDP YANG Data Model
- P802.1CBcv FRER YANG Data Model and Management Information Base Module
- P802.1CBdb FRER Extended Stream Identification Functions
- P802.1CMde Enhancements to Fronthaul Profiles to Support New Fronthaul Interface, Synchronization, and Syntonization Standards

TSN Standards under study (2)

- P802.1Qcj Automatic Attachment to Provider Backbone Bridging (PBB) services
- P802.1Qcr Bridges and Bridged Networks Amendment: Asynchronous Traffic Shaping
- P802.1Qcw YANG Data Models for Scheduled Traffic, Frame Preemption, and Per-Stream Filtering and Policing
- P802.1Qcx YANG Data Model for Connectivity Fault Management
- P802.1Qcz Congestion Isolation
- P802.1Qdd Resource Allocation Protocol

More info at https://l.ieee802.org/tsn/#Ongoing_TSN_Projects

References

- G. Held, « Ethernet networks », 4th edition, Wiley, 2003, ISBN 0-470-84476-0
- D. Boggs, J. Mogul, C. Kent, "Measured Capacity of an Ethernet: myths and reality", in Proc. SIGCOMM'88, Stanford, Ca, Aug.16-19, 1988, pp.222-234.
- A. Tanenbaum, « Networks », 4e ed., Pearson, ISBN 2-7440-7001-7
- J. Loeser, H. Haertig, « Low-latency Hard real-time communication over switched Ethernet », Proc. ECRTS 04, Catania, It., pp. 13-22.
- J.-D. Decotignie, « Ethernet Based Real-Time and Industrial Communications », Proc. of the IEEE, Vol. 93 (6), June 2005
 - Look at the references given in the paper

Information Sources

- Modbus (<u>www.modbus.org</u>) specs are online
- P-Net
- Ethernet Powerlink (<u>www.ethernet-powerlink.org</u>) few docs
- EtherCat (<u>www.ethercat.org</u>) some brochures
- Profinet (<u>www.profibus.com</u>)
 - PROFINET, « PROFINET CBA Architecture Description and Specification », Version 2.02, May 2004
- Ethernet IP (<u>www.ethernet-ip.org</u>)
- SERCOS (<u>www.sercos.de</u>)
- Fachhochschule Reutlingen website has a lot of information (www-pdv.fh-reutlingen.de/rte)