Lec 11/29

Tuesday, November 29, 2016 9:04 AM

Your series:

$$\sum_{n=6}^{\infty} c_n(x-n)^n = f(x)$$

L' endpoints of interval. $\sum_{n=0}^{\infty} c_n(x-a)^n = f(x) \qquad q = cp(\sum_{n=0}^{\infty} c_n) \qquad q = q|x-a| \qquad R = \frac{1}{q} \qquad \text{end points } could \text{ have}$

Integration & Differentiation

Generally, connot integrate/Differentiale
$$\sum_{n=0}^{\infty} f_n(x) = f(x)$$

Simple count erexample:
$$\sum_{n=1}^{\infty} \left(\frac{\sin(n^2x)}{n} - \frac{\sin((n+1)^2x)}{n+1} \right), \quad S_n = \sin(x) - \frac{\sin((n+1)^2x)}{n+1}$$

$$bu+ cos(x) \neq \sum_{n=1}^{\infty} \left(\frac{cos(n^{2}x)n^{2}}{n} - \frac{cos(h^{4}n^{2}x)(h+1)^{2}}{n+1} \right)$$

$$\frac{1}{n-2} \int_{0}^{\infty} \frac{s(x)}{n} \int_{0}^{\infty}$$

$$\lim_{n\to\infty} S_n = S_n(x) \quad \text{for all } x.$$

$$\bigcup_{n\to\infty} (os(x) - \frac{(n+1)^2(os((n+1)^2x))}{n+1} DNF.$$

Theorem (1)
$$\sum_{n=0}^{\infty} C_n(x-a)^n$$
, (2) $\sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$, and (3) $\sum_{n=0}^{\infty} \frac{c_n}{n+1} (x-a)^{n+1}$ have some radius of convergence.

the convergence parameters of series of Gefficients are the same. (R= 1)

then Cluster points of Ear. by are L sines the cluster points of Eb.3.

Proof: If Cis a chafer point of {bn} mm lin
$$b_{n_j} = C$$
. For some subsequence $\{b_{n_j}\}$.

Then $\lim_{j \to \infty} a_{n_j} b_{n_j} = L \cdot C$ since $\lim_{n \to \infty} a_{n_j} = \lim_{n \to \infty} a_n$.

Conversely, if ê is a cluster point of Eanbar then lim anjoy = ê so lim bn; = lim (an;) · an; bn; = [...

Proof of theorem:

$$q_{a} = \left\{ \left| \frac{c_{a}}{n_{el}} \right|^{\frac{1}{N_{el}}} \right\}.$$

for 93 take
$$a'_{n} = \left(\frac{1}{n+1}\right)^{1/n+1}$$
 $b'_{n} = |C_{n}|^{1/n+1}$

lim a' = I as well.

L=1.

now need to show that cluster points of \{ |C_n| \land \{ |C_n| \land \} and \{ |C_n| \land \land \} and \{ |C_n| \land \land \}.

Partral proof: Suppose c is a cluster point of
$$\mathcal{E}[C_n]^{1/n}$$
.

Then $C = \lim_{j \to \infty} \frac{|C_n|^{1/n}j}{j \to \infty} = \lim_{j \to \infty} \frac{|C_n|^{1/n}j}{j \to \infty} = \lim_{j \to \infty} \frac{|C_n|^{1/n}j}{n_j = 1} = \log C$.

The trouble ω / int/dif term by term 15 from fact that cant interchange limits of derivatives in general: $\left(\lim_{n\to\infty}f_n(x)\right)^{\frac{1}{2}}+\lim_{n\to\infty}f_n'(x)$

$$\left(\frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{1}{n} = 0\right) = 0$$

integrals are a bit better, since if $f(x) \leq g(x)$ than $\int_{\Sigma} f \leq \int_{\Sigma} g(x) dx$

whereas $f \leq g \Rightarrow f' \leq g'$

even integrals have issues: $f_n(x) = \frac{1}{2/n}$

 $\lim_{n \to \infty} f_n(x) = 0 \text{ for all } x \text{ (triungle 2 verezes to the left)}.$

So $\int_{0}^{\left(\frac{1}{n} + \frac{1}{n} + \frac{$

Theorem Suppose $\{f_n(x)\}_{n=1}^4$ is a sequence of integrable functions over some internal $[a_1b_2]$.

Suppose there is a sequence of positive constants $\{M_n\}$ such that

(1) $|f_n(x)| \in M_n$ for all $x \in [a_1b_2]$.

(2) lim Mn = 0

Then $\lim_{n\to\infty}\int_{x}^{b}f_{n}(x)\,dx=O=\int_{x}^{b}\left(\lim_{n\to\infty}f_{n}(x)\right)\,dx$.

Proof: $-M_n \in f_n(x) \leq M_n \Rightarrow \lim_{n \to \infty} f_n(x) = 0$ for $n \in [a_1b_1]$ by g_n . Then,

Proof:
$$-M_{u} \leq f_{u}(x) \leq M_{u} \Rightarrow \lim_{n \to \infty} f_{n}(x) = 0$$
 for $n \in [a_{1}b_{1}]$ by 3η . That $\lim_{n \to \infty} \int_{a}^{b} (\lim_{n \to \infty} f_{n}(x)) dx = 0$
 $-M_{u}(b-a) = \int_{a}^{b} M_{u} dx \leq \int_{a}^{b} f_{n}(x) dx \leq \int_{a}^{b} M_{u} dx = M_{u}(b-a)$
 $\lim_{n \to \infty} \int_{a}^{b} (\lim_{n \to \infty} f_{n}(x)) dx \leq \int_{a}^{b} f_{n}(x) dx \leq \int_{a}^{b} f_{n}(x) dx = 0$

by $sq. thm$.

(1) Apply this theorem to remainders of power series.