

Preliminary Program

times and con		be subject to change						
	Start 11:30		Arrival /	Reception in Rotkreuz with Welcom	e Coffee			
Monday, 8. Sep.	13:00	Welcome Speech						
	13:30	Tutorials: all in parallel						
		Introduction to Modeling and Simulation, Debugging with Modelica and OpenModelica	FMI Beginners Tutorial	Introduction to System Structure and Parameterization (SSP)	eFMI: A beginner's overview and hands-on	Beyond Simulation: Building Workflows and Web Interfaces with Modelica and Python		
		Modeling complex thermal architectures using the DLR ThermoFluid Stream Library	3DS: Exporting and importing an FMU using C code	Using SMArtInt+: Machine-learning and easy integration of AI in Modelica	M&S of Robotic Arm Dynamics and Control in Modelica with MWORKS.	From Uncertainty-Aware Simulation to Learning-Based Control using FMI and Python		
		Regression Testing with Dymola and the Testing Library	CasADi tutorial on dynamic optimization with FMI 3.0 Model Exchange	Modeling and Simulation of profitableness in Modelica industrial energy systems	FMI3 co-simulation with UniFMU	Modiator: Develop a specialized Modelica Web-App		
	14:45	Coffee Break with Poster Presentations						
	15:15	Tutorials continued						
	16:30	Short Break						
	16:45	1 Platin and 3 Gold and 1 Silver Vendor Presentations: LTX, Dassault Systèmes, Modelon, Tongyuan, OpenModelica			7 Silver Sponsor Presentations: JuliaHub, Wolfram, XRG, orthogonal, eXXcellent, Claytex, MathWorks			
	19:05							
	08:30	Welcome Coffee						
	08:50		Cor	nference Opening by Ulf Christian Mi	iller			
	09:00	Keynote of Prof. Mishra Siddhartha on Physics-Informed AI						
	09:45		M	lodelica and FMI News by Dirk Zimm	er			
	10:00	0 Short Coffee Break with Poster Presentations						
		Scientific Track on General Modelica	Scientific Track on Energy	Scientific Track on Control & Al	Scientific Track on FMI and related	Industrial Users Presentations		
Tuesday,	10:20	Modelica Tool Development	Power System Simulation	Modelica & Al	FMI Tool Developement	Modelica Applications		
9 Sep.	12:00			Lunch				
	13:00	Chemics, Pharmacology and Medicin	Thermal Management for Green Energy Systems	Robotics	Layered Standards	Aerospace		
	14:15		C	offee Break with Poster Presentation	ns			
	14:45	Digital Twin	Media Property modellling	Control for HVAC and Buildings	FMI for energy systems	Credible Simulation, Traceability, SSP		
	16:00		Panel	discussion on the value of open star	ndards			
	17:00		Transfer to	Lucerne is individual by Train (Board	ding at KKL)			
	18:00	, , , , , , , , , , , , , , , , , , , ,						
	08:00) Welcome Coffe						
	08:30	Keynote of Dr. Johan R Åkesson on Opportunities and Challenges in Design and Operation of Integrated Energy Systems						
	09:15	Simulation and Optimization	Pumps and Vapour Compression	FMI for Embedded Systems and Virtual Prototyping	Workflows in Systems Engineering	FMI Applications		
	10:30							
Wednesday, 10 Sep.	11:00	Modeling Methods and Tools	Energy Generation Systems	Control- and Al-based Methods with FMI for Automotive	Maritime Applications	Modelica Applications		
	12:40	Lunch						
	13:40							
	14:10	New Translation Methods and Language Experiments	Fuel Cell Modeling and Control	Control Applications in Modelica	Automotive	FMI and SSP for Model-Based System Engineering		
	15:50			Coffee To Go				

		Industrial Track			
	General Modelica	Energy	Control & AI	FMI and related	Industrial Users
Tue, 10:20	Modelica Tool Development	Power System Simulation	Modelica & Al	FMI Tool Developement	Modelica Applications
	Hans Olsson Improved Unit Inference and Checking in Modelica	Marcelo de Castro and Luigi Vanfretti OpenIWPI: Open-Instance Wave- Phasor Interface Library for Power System Simulation Studies in Modelica	Andreas Hofmann and Lars Mikelsons Towards Integration of PeN-ODEs in a Modelica-based workflow	Luis Sanchez-Heres, Fredrik Olsson and Jan Östh Liaison: an open-source tool for distributed co-simulations	Kanadevia Inova AG Process-based Life-Cycle Sustainability Analysis of Integrated Solid Waste Management Systems: A Decision-Support Platform using OpenModelica
	Henrik Tidefelt and Quentin Lambert Implicit Unit Conversion in Modelica	Srijita Bhattacharjee, Fernando Fachini and Luigi Vanfretti Expanding an Open-Source Modelica- Compliant Package of Generic Renewable Energy Source Models: Implementation of the REEC_D and REGC_B Models in Modelica and OpenIPSL	Linus Langenkamp, Philip Hannebohm and Bernhard Bachmann Efficient Training of Physics-enhanced Neural ODEs via Direct Collocation and Nonlinear Programming	Michele Urbani, Michele Bolognese, Luca Prattico and Matteo Testi A Tool for the Implementation of Open Neural Network Exchange Models in Functional Mockup Units	Optimation AB On the challenges of large-scale simulation platforms and our solution to overcome them
	Zhipeng Chen, Zhichao Huang, Chong Zhou, Yinqi Chen, Qi Liu, Fanli Zhou and Liping Chen Model Disambiguation Technology in MWORKS.Sysplorer	Herbert Schmidt Analytical Treatment of Hollow Toroid Flux Tubes	Tim Jonas Hanke, Johannes Brunnemann, Robert Flesch and Jörg Eiden Status of the SMArtInt Library: Simple Modelica Artificial Intelligence Interface	Erik Henningsson, Christian Schulze, Julius Aka, Manuel Gräber, Dag Brück, Elmir Nahodovic and Oliver Lenord Input Smoothing for Faster Co- Simulation using FMI	Electric Power Research Institute, US System Cost of Hydrogen Optimization & Sub-Hourly Comparative Analysis of PEM and Alkaline Electrolyzer Operation
	Baptiste Mazurié, Audrey Jardin, Pascal Borel, Didier Boldo, Frans Davelaar and Luis Corona Mesa-Moles Data Reconciliation for Industrial Experiments	Thomas Egsgaard Kallesen, Søren Waagø Christiansen and Rene Just Nielsen Master controller concept for power flexible energy systems	Ankush Chakrabarty, Marco Forgione, Dario Piga, Alberto Bemporad and Christopher Laughman Zero-Shot Parameter Estimation of Modelica Models using Patch Transformer Networks	Felix Tischer, Simon Genser, Daniel Watzenig and Martin Benedikt Comparing the Predictive Event Handling Algorithm LookAhead to Rollback and Early Return	Smith Group, United States First Modelica Model: Lessons Learned from Modeling a Chilled Water Plant in Modelica
Tue, 13:00	Chemics, Pharmacology and Medicin	Thermal Management for Green Energy Systems	fmi Robotics	<u>fmi</u> Layered Standards	<u>fmi</u> Aerospace
	<i>Marek Matejak</i> Chemical 2.0 (Free open-source Modelica library)	Finn van Ginneken and Alexander Busch Modelling, Simulation and Validation of thermal propagation for 3D discretized battery cells in Modelica	Sebastian Rojas-Ordoñez, Mikel Segura and Ekaitz Zulueta Integration of Physical and Al Models Using Open and Interoperable Standards: A Model-Based Methodology for Autonomous Robot Development	Buffoni, Elmir Nahodovic, Robert Hällqvist, Oliver Lenord, Hans Olsson, Martin Otter, Antoine Vandamme and Adrian Pop Towards a Common Standard for Uncertainty Quantification	Dassault Aviation Bridging the gap between System Engineering and Simulation, applied to collaborative design of Aircraft Systems
7	Tomas Kulhanek, Filip Jezek, Jiri Kofranek, Marek Matejak and Stef Rommes Pharmacolibrary - Free Library to Model Pharmacology	Lone Meertens, Jelger Jansen and Lieve Helsen Development and Experimental Validation of an Unglazed Photovoltaic- Thermal Collector Modelica Model that only needs Datasheet Parameters	Matthias Reiner Modelica FMI based hybrid reinforcement learning enhanced trajectory planning for an ADR scenario for combined control of a satellite with a 7-axis robotic arm using Modelica/FMI	Tobias Thummerer, Hans Olsson, Chen Song, Julia Gundermann, Torsten Blochwitz and Lars Mikelsons LS-SA: Developing an FMI layered standard for holistic & efficient sensitivity analysis of FMUs	Saab Aeronautics OpenSCALING: A Saab Aeronautics Perspective
	Clément Coïc and Marco Masannek Combining static and dynamic optimization approaches for path planning, with collision avoidance	Markus Gillner and Arne Speerforck Modelling Aquifer Thermal Energy Storage (ATES) System with Buoyancy Flow	Antoine Pignède and Carsten Oldemeyer Automatic Modelica Package and Model Generation from Templates and Data Files with Python, Exemplified with URDF	Christian Bertsch, Kahramon Jumayev, Andreas Junghanns, Pierre R. Mai, Benedikt Menne, Masoud Najafi, Tim Pfitzer, Jan Ribbe, Klaus Schuch, Markus Süvern and Patrick Täuber FMI Layered Standard for Network Communication: Applications in Networked ECU Development	AIRBUS SAS, ALTEN FMI Standard and Airbus Needs, Usages and Expectations Full Version
Tue, 14:45	<u>fmi</u> Digital Twin	Media Property modellling	Control for HVAC and Buildings	fmi FMI for energy systems	SSP Credible Simulation, Traceability, SSP
	Corentin Lepais and Dirk Zimmer Prototypical Control for the Digital Twin of Aircraft Environmental Control System	Pascal Borel, Rafik Moulouel, Antoine Chupin and Felix Marsollier TAeZoSysPro: A Modelica Library for Thermal Aeraulic and Buildings Thermodynamics Calculations	Michael Wetter, Yan Chen, Karthik Devaprasad, Paul Ehrlich, Antoine Gautier, Jianjun Hu, Anand Prakash and Marco Pritoni Modelica Meets ASHRAE: Towards A Digital Standard for Building Control	Karim Besbes An innovative heterogeneous modeling approach to build a cooling system for battery thermal management with common fluid properties involving FMI terminals	AVL List GmbH, Robert Bosch GmbH Integration of systems engineering and simulation based on standards: The needs, challenges and solutions from an industrial perspective
	Andreas Heckmann, Alexander Poßeckert and Vijaya-Bhaskar Adusumalli Aspects and Ideas for the FMI-based Modeling of Railway Digital Twins	Rohit Dhumane, Dan Gorman, Rajkumar K S and Donaping Huang Development of a Refrigerant Mixture Package for Dynamic Simulation of Auto-Cascade Refrigeration: A Case Study with R23/R134a	Karl Walther, Michael Wetter, Anand Prakash and Jianjun Hu CDL-PLC translator: From Modelica HVAC control design to IEC 61131 PLC implementation	Sagnik Basumallik, Luigi Vanfretti, Mohammad Ali Dashtaki, Ziang Zhang, Reza Pourramezan and Hossein Hooshyar Enhancing Large-Scale Power Systems Simulations through Functional Mockup Unit-based Grid-Forming Inverter Models	Robert Bosch GmbH, Dassault Systèmes AB, eXXcellent solutions GmbH Towards a Credible System Simulation Architecture applicable to Heat Pump Systems using Modelica, FMI and SSP
	Gerhard Hippmann and Blas Blanco Mula Collaborative Digital Twin Development for Railway Braking and Traction Applications	Hubert Blervaque and Félix Marsollier A Generic Non-Miscible Liquid-Gas Medium Model in Modelica with Analysis of Incompressibility Assumptions	Lucas Bex, Muhammad Hafeez Saeed, Lucas Verleyen, Lieve Helsen and Geert Deconinck Yet Another Residential District Simulator: yards for Controller Development in the Residential Built Environment	Ruirui Zeng, Hui Gao, Wei Liu, Lei Huang, Qi Liu, Jian Liu and Xingjian Han Design and Simulation Validation of Steam Power Systems Based on MBSE	Robert Bosch GmbH, PMSF IT Consulting, eXXcellent solutions GmbH Traceability and Support of Modeling & Simulation using SSP-Traceability Layered Standard

Wed, 09:15	Simulation and Optimization	Pumps and Vapour Compression	FMI for Embedded Systems and Virtual Prototyping	Workflows in Systems Engineering	fmi FMI Applications
	Francesco Casella, Bernhard Bachmann, Karim Abdelhak, Philip Hannebohm and Teus van der Stelt Diagnosing Newton's Solver Convergence Failures in the Initialization of Modelica Models	Raphael Gebhart, Martin Düsing, Niels Weber and Franciscus L. J. van der Linden Centrifugal Pump Model of the DLR Thermofluid Stream Library	Tom Reynaud, Erfan Enferad and Maxime Lefrancois Facilitating the use of Physics-Based Simulations on Embedded Devices by running FMUs from MicroPython	Mark Williams, Hubertus Tummescheit, Ajaykumar Mst and Jose María Alvarez- Rodríguez The Fundamental Modeling Practices and Specifications to support the Preservation and Reuse of Analytical Simulations	Robert Bosch GmbH, DLR e.V. Optimization with FMI and CasADi: Analysis in Industrial Applications
	Matteo Luigi De Pascali, Lorenz T. Biegler, Emanuele Martelli and Francesco Casella Modelica2Pyomo: a tool to translate Modelica models into Pyomo optimization models	Jiacheng Ma and Matthis Thorade Frost/Defrost Models for Air-Source Heat Pumps with Retained Water Refreezing Considered	Nils Bosbach, Meik Schmidt, Lukas Jünger, Matthias Berthold and Rainer Leupers FMI Meets SystemC: A Framework for Cross-Tool Virtual Prototyping	Erik Rosenlund, Robert Hällqvist, Robert Braun and Petter Krus Automation Nation: Taming Complex V&V Workflows	DNV AS Accuracy and assurance of co-simulations in marine lifting operations
_	Linus Langenkamp and Bernhard Bachmann Enhancing Collocation-Based Dynamic Optimization through Adaptive Mesh Refinement	Scott Bortoff, Vedang Deshpande, Christopher Loughman and Hongtao Qiao A Dynamic Analysis of Refrigerant Mass in Vapor Compression Cycles	Tobias Kamp, Christoff Bürger, Johannes Rein and Jonathan Brembeck Hybrid Simulation Models for Embedded Applications: A Modelica and eFMI approach	Christoph Steinmann, Konstantin Wrede, Jens Schirmer and Jens Lienig Integration of Geometric Tolerance Analysis in System Simulations via Functional Mock-up Units	Renault Optimizing Assemblies of FMUs
Wed, 11:00	Modeling Paradigms and Language Experiemnts	Energy Generation Systems	Control- and Al-based Methods with FMI for Automotive	_C Maritime	Modelica Applications
	Gaadha Sudheerbabu, Dragos Truscan, Mikael Manngård and Kristian Klemets Validation of Dynamic Simulation Models using Metamorphic Testing and Given-When-Then Patterns	Inga Beyers, Lukas Krebeck, Astrid Bensmann and Richard Hanke- Rauschenbach Modelling and Impact of Hydraulic Short Circuit Operation in Pumped Hydro Energy Storage	<i>Minsu Hyun</i> A Study on Vehicle Suspension Loads Prediction Method Based on Hybrid Road Simulation using Modelica Library and FMI	Karl Gunnar Aarsæther and Stian Skjong Shared sea-environment definition and realization for maritime and offshore co-simulations	Electric Power Research Institute, Modelon Model Predictive Controller Development in Modelica
	Dirk Zimmer The Value of Enforcing a Strict Modeling Methodology within Modelica	Igor Belot, Francois Nepveu, Pierre Garcia, Nathan Fournier, Teddy Chedid, Etienne Letournel, Pierre Delmas, Alexis Gonnelle and Guillaume Raigné Introducing the NewLib Library and its application to multi-level, large-scale solar field models	Tobias Thummerer, Fabian Jarmolowitz, Daniel Sommer and Lars Mikelsons Br(e)aking the Boundaries of Physical Simulation Models: Neural Functional Mock-up Units for Modeling the Automotive Braking System	Severin Sadjina, Lars Kyllingstad and Stian Skjong Decreasing Risk in the Design of Large Coupled Systems via Co-Simulation- Based Optimization and Adaptive Stress Testing	Danfoss AS, TLK Energy GmbH Optimized usage of heat recovery potentials in modern liquid cooled data centers to minimize their environmental impact
	Christian Gutsche, Christoph Seidl, Volodymyr Prokopets, Sebastian Götz, Zizhe Wang and Uwe Assmann Context-Oriented Equation-based Modeling in ModelingToolkit.jl	Ao Zhang and Xiang Wang Further Application of Modelica-Based Nuclear Power System Simulation: Tasks in Different Scenarios Driven by Model and Data	Jonathan Brembeck, Ricardo Pinto de Castro, Johannes Ultsch, Jakub Tobolar, Christoph Winter and Kenan Ahmic VDCWorkbench: A Vehicle Dynamics Control Test & Evaluation Library for Model and Al-based Control Approaches	Basilio Puente Varela, Maria Dolores Fernández Ballesteros, Maria Isabel Lamas Galdo and Luis Carral ShipSIM: A Modelica Library for Ship Maneuverability Modeling and Simulation	Lince S.r.L. Optimal Energy Management of a Biogas Plant Using Model Predictive Control and Forecast-Driven Optimization
	Zizhe Wang, Christian Gutsche and Uwe Assmann Context-Oriented Modelica for Advanced Variability Management	Joy El Feghali, Louis Garbay, Adrien Guironnet, Philibert Parquier, Marco Chiaramello, Martin Franke and Luka Plavec An Open-Source Industrial-Grade Collection of Renewable Energy Source Generic Models in Modelica Language	Zhiguo Zhou, Xuehua Zhou, Lin Du, Peiquan Ma, Xiang Wang, Ying Chen, Mingjia Liu, Tengyue Wang, Lixin Hui and Cun Zeng Simulation of Embodied Cyber Physical System Based on Modelica/MWORKS: A Case Study of Intelligent Unmanned Surface Vessel	Boudewijn Van Groos, Alje Van Dam, Carsten von Ohlen, Finn Theel, Johannes Brunnemann and Jörg Eiden Modelica driven development of the thermal management control system for a zero emission yacht	Samsung Electronics Development of scalable rule-based temperature feedback controls for energy-efficient condenser water loops in semiconductor factories
Wed, 14:10	New Translation Methods and Tools	Fuel Cell Modeling and Control	Control Applications in Modelica	Automotive	Model-Based Workflows and SSP
	Benoît Caillaud, Albert Benveniste and Mathias Malandain Benchmarking the Modular Structural Analysis Algorithm	Michele Bolognese, Emanuele Martinelli, Luca Pratticò and Matteo Testi Dynamic modelling of an Ammonia to Power application at high efficiency using a solid oxide fuel cell system	Alberto Leva On the precise and efficient representation of industrial controllers in Modelica	Massimo Stellato, Alberto Momesso, Theodor Ensbury and Alessandro Picarelli Race Car Braking System Thermal Model for Real Time Use in a Driving Simulator	DENSO Automotive, BMW Group MBSE using SSP and SysML for Collaborative Development: An Open- source ADAS Use Case
14:35	Martin Otter and Hilding Elmqvist Resizable Arrays in Object-Oriented Modeling	Emanuele Martinelli, Michele Bolognese, Nirmala Nirmala, Narges Ataollahi and Matteo Testi Direct Ammonia Solid Oxide Fuel Cell Stack: Modelling and Experimental Validation	Rüdiger Franke, Marcin Bartosz and Rasmus Nyström Master controller for offshore wind power and hybrid grids	Jaewung Jung, Alessandro Picarelli, David Briant, Kadir Sahin, Garron Fish, Victor- Marie Lebrun, Christopher Stromberger, Arnaud Colleoni and Quentin Prieto Development of a Multi-Physical Simulation Platform for Durability Prediction for Hyundai & Kia Electric Vehicles	DENSO Automotive, PMSF IT Consulting Transmission Control Unit Use Case for Virtual ECUs and SSP-based Collaborative Development
	Karim Abdelhak and Bernhard Bachmann Constant Time Causalization using Resizable Arrays	Markus Pollak, André Thüring and Wilhelm Tegethoff Dynamic Simulation of a PEM Electrolysis System	Reiko Müller The FlightControl library for aircraft control design applications	Jan Friedrich Hellmuth, Markus Pollak, Andreas Schulte, Wilhelm Tegethoff and Jürgen Köhler Solid-State Battery-Systems and Thermal Management for Electric Long- Distance Buses	Toshiba Digital Solutions Corporation Cross-Company Collaborative Model- Based Development using FMI3.0 and SSP2.0
15:15	Hilding Elmqvist and Martin Otter Modiator - A Web App for Modelica Simulation	Axelle Hégo, Félix Bosio and Sylvain Mathonnière Model-Based Control Design for a Multi Stacks SOC System	Tilman Bünte and Jakub Tobolář Quasi-Periodic Feedforward Control Based on Inverse Model Tabled FFT		MAN Energy Solutions Neural Network-Based Reduced-Order Model of a Large-Scale CO ₂ Heat Pump for Real-Time Simulation and Digital Twin Applications

	Scientific Poster Presentations					
Mon, Tue, Wed, all day	Philip Hannebohm and Bernhard Bachmann Selective Evaluation of RHS during Multi-Rate Simulation	Markus Gillner, Jan Westphal, Béla Wiegel, Tom Steffen, Julian Urbansky, Anne Hagemeier, Stefanie Ruppert, Annika Heyer, Jörn Benthin, Tim Hanke, Johannes Brunnemann, Christian Becker and Arne Speerforck Status of the TransiEnt Library: Transient Simulation of Complex Integrated Energy Systems	Joshua Brun, Thomas Sergi, Sylvan Mutter, Tim Arnold and Ulf Christian Müller From Simulation to Reality: Deployment of Reinforcement Learning Based Neural Network Controllers Trained with Modelica Models	Stefan H. Reiterer, Alexander Meierhofer, Ivan Vidovic, Marco Forberger, Benjamin Stuntner and Jochen Nowotny Railway Marketplace for Data, Know- How and Services		
	Gustavo Canon, Volodymyr Prokopets, Fabian Elizondo Arrieta, Eliécer Arias and Alexander Zeißler A Thermal Digital Twin of Asphalt Pavements: Implementation and Application to an Instrumented Pavement in Costa Rica	Carles Ribas Tugores, Gerald Zotter and Carina Seidnitzer-Gallien Absolut Modelica library	A. Phong Tran and Fatma Cansu Yücel Safe and Efficient Control of a Brayton Cycle Heat Pump Using Reinforcement Learning	Simon Müller, Abdulrahman Dahash, Shariq Akbar, David Schmitt, Peter Bayer and Tobias Schrag Integrating a Seasonal Thermal Energy Storage FMU in a MATLAB/Simscape Thermal Source Network Model		
	Micah Condie, Abigaile Woodbury, James Goppert and Joel Andersson Rumoca: Towards a Translator from Modelica to Algebraic Modeling Languages	Marcelo Muro, Guido Sassaroli and Riccardo Lazzari MultiEnergySystem: A Modelica Library for Dynamic Modeling and Simulation of District Heating and Gas Networks	Robert Weber, Staša Gejo, Rainer Gehring and Lars Mikelsons Identification and Elimination of Instabilities During Simulation of Highly Stiff Vehicle Electrical Power System Models	Alberto Romero, Johannes Angerer, Elias Steinkellner and Luca Belforte A low complexity physics-based aging model for lithium ion cells with solid electrolyte interphase and lithium plating side-reactions		
	Requirement Verification with CRML and OpenModelica Requirement Verification with CRML and OpenModelica	Christophe Montsarrat, Pascal Borel and Ana Paez Calibration of a Chiller Modelica model with experimental data	Mathieu Specklin, Elie Solai, Clémence Rouge and Michael Deligant Dynamic modeling of a liquid piston compressor system including conjugate heat transfer	Li Zuo, Yuanhui Dong, Shubin Zhang, Yuxin Li, Haiming Zhang, Ji Ding, Fanli Zhou, Qi Liu and Liping Chen Dynamic Simulation of Off-Grid Energy Island with Wind-PV-Storage Hydrogen Production		
	Songchen Tan, Keming Miao, Alan Edelman and Christopher Rackauckas Scalable Higher-order Nonlinear Solvers via Higher-order Automatic Differentiation	Pierre Blaud and Imad Mourtaji A Dynamic Simulation Model of Outdoor Swimming Pool with Thermal Energy Storage, Boiler and Solar Thermal Collectors	Fabian Lagerstedt, Samuel Kärnell, Marcus Rösth and Liselott Ericson Modeling and Simulation of a Direct Heat Recovery System for Cabin Heating in Battery-Powered Mobile Machines	Bahareh Bakhsh Zahmatkesh, Mina Shahi and Amirhoushang Mahmoudi Physics-Based Dynamic Modeling of Solar-Powered Off-Grid Cold Storage for Perishables Using Modelica: A Case Study – Xingalool, Somalia		