Syllabus

SYMBIOSIS INTERNAITONAL (DEEMED UNIVERSITY) PhD ENTRANCE TEST

The Syllabus of Research Methodology

General

- Overview of Research: Meaning, purpose, significance of ethical conduct in research,
 Classification of Research based on its purpose (Basic, Applied, Evaluation and Action
 Research) Scientific Thinking: Types of reasoning, Critical Thinking, Importance of existing
 knowledgebase (research literature) Elements of Research: Concepts, Constructs,
 Definitions Theoretical and Operational, Theory, Literature Review and its importance,
 Models, research questions and objectives, research design and methodology.
- Quantitative Research Methods: Variables, Conjecture, Hypothesis, Measurement, Types of data and scales, Sample, Sampling techniques, Probability, Probability Distributions, Hypothesis Testing, Level of Significance and Confidence Interval, t-test, ANOVA, Correlation, Regression Analysis
- 3. Qualitative Research Method: Types of approaches Narrative, phenomenological, grounded theory, ethnographic, case study, Data Sources: Interviews, Focus groups, observations, approaches to analysis of qualitative data –coding, content analysis

☐ I. Foundation of Research (General Concepts)

1.1. Introduction to Research

- Meaning and Purpose of Research
- Significance of Research in Society
- Ethical Conduct in Research (plagiarism, consent, data fabrication)

1.2. Types of Research (Purpose-Based Classification)

• Basic Research

- Applied Research
- Evaluation Research
- Action Research

1.3. Scientific Thinking

- Types of Reasoning
 - Deductive
 - Inductive
 - Abductive
- Critical Thinking
 - o Objectivity
 - Skepticism
 - Logical reasoning
- Importance of existing knowledgebase
 - o Role of **Research Literature**

☐ II. Elements of a Research Study

2.1. Core Components

- Concepts vs. Constructs
- Definitions: Theoretical vs. Operational
- **Theory** and Theoretical Frameworks
- Importance of Literature Review

2.2. Research Blueprint

- Models of Research
- Formulating:
 - Research Questions
 - o Research Objectives
- Research Design and Methodology

III. Quantitative Research Methods

3.1. Basic Building Blocks

- Variables: Types (Independent, Dependent, Confounding)
- Conjectures and Hypotheses

• Measurement: Types and Errors

3.2. Data and Scales

- Types of Data: Nominal, Ordinal, Interval, Ratio
- Levels of Measurement

3.3. Sampling

- Population vs. Sample
- Sampling Techniques:
 - o Probability: Simple Random, Stratified, Cluster
 - o Non-Probability: Convenience, Purposive, Snowball

3.4. Probability and Distributions

- Basic Probability Concepts
- Probability Distributions: Normal, Binomial, Poisson

3.5. Statistical Testing

- Hypothesis Testing
- Level of Significance, p-value
- Confidence Interval
- t-test, ANOVA
- Correlation (Pearson, Spearman)
- **Regression Analysis** (Simple, Multiple)

IV. Qualitative Research Methods

4.1. Research Approaches

- Narrative Research
- Phenomenological Research
- Grounded Theory
- Ethnography
- Case Study

4.2. Data Sources

- Interviews (structured, unstructured)
- Focus Groups
- Observations (participant/non-participant)

4.3. Data Analysis in Qualitative Research

- Coding (Open, Axial, Selective)
 Content Analysis
 Thematic Analysis (Patterns, Themes, Concepts)

✓ 1.1 Meaning and Purpose of Research

Meaning of Research:

Research is a systematic and scientific way of finding answers to questions, solving problems, or discovering new knowledge.

The word "research" comes from "re-" (again) and "search" (to look), meaning "to search **again**" – to investigate thoroughly.

© Purpose of Research:

The main goals or **purposes** of research are:

- 1. **To explore** something unknown (Exploratory)
- 2. **To describe** characteristics or behaviors (Descriptive)
- 3. **To explain** causes and effects (Explanatory)
- 4. **To predict** future trends (Predictive)
- 5. **To solve** problems or improve practices (Applied)

Example: Research can help a company understand why customers are unhappy OR help scientists develop a new vaccine.

✓ 1.2 Significance of Research in Society

Research plays a crucial role in making progress in every field:

Role of Research Field **Medicine** Discovering new treatments or drugs **Technology** Developing better tools (e.g., AI, electric cars) **Education** Improving teaching and learning methods **Business** Understanding markets, trends, and customer behavior **Social Science** Studying behavior, inequality, culture Policy Making Making evidence-based laws and regulations

Key Point: Research helps develop new knowledge, verify existing facts, and make informed decisions.

✓ 1.3 Ethical Conduct in Research

Ethics in research means following **moral rules** and **honest practices** during all stages of research: planning, data collection, analysis, reporting, and publishing.

Q Key Ethical Issues:

1. Plagiarism

Using someone else's work (text, ideas, results) without giving credit.

It is cheating and violates academic integrity.

2. Informed Consent

If you are studying people, they must:

- o Know what the study is about,
- Voluntarily agree to take part,
- o Understand risks (if any).

3. Data Fabrication and Falsification

- **Fabrication** = *Making up data or results.*
- **Falsification** = *Changing data or results to fit the expected outcome.*
 - Both are serious misconduct.

4. Confidentiality

Keeping participants' information private and secure.

☐ Summary (in simple words):

- Research helps find truths, solve problems, and make progress.
- It's important for fields like science, business, and society.
- Ethical research means being honest, transparent, and respectful to people and data.

✓ 1.2 Types of Research (Purpose-Based Classification)

There are **4 main types** in this category: Basic, Applied, Evaluation, and Action Research.

[1 Basic Research (also called *Pure* or *Fundamental* Research)

What it is:

Research done to gain new knowledge or understanding, without aiming to solve an immediate problem.

- It is **theoretical**.
- It focuses on **why** things happen.
- The goal is to **build knowledge** or **create theories**.

□ Example:

- Studying how memory works in the brain.
- Understanding how gravity works at the atomic level.

Even if there's no direct use now, it builds the **foundation for future technologies** and discoveries.

2 Applied Research

What it is:

Research done to **solve real-world problems** using the knowledge from basic research.

- It is **practical**.
- It focuses on **how** to use knowledge.
- It results in **solutions**, **tools**, or **strategies**.

Example:

- Creating a new medicine to treat depression.
- Designing a more energy-efficient engine for cars.
- It applies theory to practice—it's where knowledge meets reality.

3 Evaluation Research

What it is:

Research that **assesses the value, effectiveness, or impact** of a program, product, policy, or process.

- It answers: Is it working? How well? What can be improved?
- Often used in education, health, government, and business sectors.

Q Example:

- Evaluating a government scheme like the mid-day meal program.
- Checking if an online training course improved employee skills.

Action Research

What it is:

Research **conducted by people in their own setting** (e.g., teachers, managers) to **solve immediate problems** and **improve practice**.

- It's **participatory** (researcher = doer).
- Focus is on improvement through action.
- It's **cyclical**: Plan \rightarrow Act \rightarrow Observe \rightarrow Reflect \rightarrow (Repeat)

Example:

- A teacher tries new teaching methods, collects feedback, and modifies them.
- A manager tests a new scheduling strategy to improve productivity.

Action research is **hands-on**, **local**, and **improvement-focused**.

☐ Summary Table:

Type of Research	Purpose	Nature	Example
Basic	Build knowledge or theory	Theoretical	Studying brain function in learning
Applied	Solve practical problems	Practical	Making an app to help dyslexic students
Evaluation	Assess effectiveness or value	Analytical	Checking if a scheme improved literacy
Action	Improve one's own practice	Participatory	Teacher experimenting with methods

✓ 1.3 Scientific Thinking

Scientific thinking is the **way scientists approach problems**—using logic, evidence, and fairness to understand reality.

It includes reasoning, critical thinking, and using previous research.

△ A. Types of Reasoning

Reasoning is how we **connect ideas** and **draw conclusions**.

Deductive Reasoning

Starts from a general rule or theory and applies it to a specific case.

Think: General → Specific

• If the general rule is true, the conclusion must be true.

☐ Example:

- All birds have feathers.
- A parrot is a bird.
 - So, a parrot has feathers.

Inductive Reasoning

Starts with **specific observations** and moves toward a **general conclusion** or pattern.

Think: Specific → General

The conclusion is **likely**, but not guaranteed.

□ Example:

- Swan 1 is white. Swan 2 is white. Swan 3 is white.
 - ✓ All swans might be white.

Used in **theory building** and qualitative research.

Abductive Reasoning

Starts with **incomplete observations** and tries to find the **best possible explanation**.

Think: Guessing the cause of an effect

The conclusion is the **most likely**, but not certain.

□ Example:

- The grass is wet in the morning.
 - ✓ Most likely, it rained last night (or maybe it was dew).

Used in diagnosis, case studies, and detective-like reasoning.

☐ Summary of Reasoning Types:

Reasoning Type	Direction	Use	Certainty
Deductive	General → Specific	Test theories	High
Inductive	Specific \rightarrow General	Build theories	Medium
Abductive	Clues → Best Guess	Explain causes (like Sherlock) Low

☐ B. Critical Thinking

Critical thinking is thinking clearly, rationally, and independently. It helps you analyze information, question assumptions, and avoid being fooled.

Dbjectivity

Looking at facts without personal bias or emotions.

\(\sum_{\text{in research}}\) In research, this means using **data** to decide—not opinions.

Example:

You may like a teaching method, but if the test scores don't improve, the method may not be effective.

Not accepting information blindly—asking:

Is this really true? Where's the evidence?

\$\times\$ It does **not** mean rejecting everything—it means asking good questions.

B Jogical Reasoning

Making decisions step by step, based on evidence and logic.

Helps avoid **faulty conclusions** (like confusing correlation with causation).

☐ C. Importance of Existing Knowledgebase

Before doing new research, you must **study past research**.

This is called using the **existing knowledgebase**.

${f Q}$ Role of Research Literature

- **Literature** = past studies, books, papers, reports.
- Reading this helps:
 - o Understand what is already known.
 - o Avoid repeating old research.
 - o Find gaps (what's missing).
 - o Support your own study with theories and data.

This is why we do a **literature review** before starting new research.

☐ Recap in Simple Terms:

Concept Meaning

Deductive Reasoning Apply a known rule to a case

Inductive Reasoning Find patterns from examples

Abductive Reasoning Make a smart guess from clues

Objectivity Be neutral, not biased

Skepticism Don't believe everything without proof

Logical Reasoning Follow facts and logic step by step

Role of Literature Build on what others have studied; avoid reinventing the wheel

☐ II. Elements of a Research Study – 2.1 Core Components

1 Concepts vs. Constructs

A **concept** is a basic idea or mental image that helps us understand something.

- It is general and abstract.
- Examples: "Health," "Education," "Poverty," "Leadership"

Concepts are **not directly measurable**.

A **construct** is a **special type of concept** that has been **clearly defined** and can be **measured** in research.

- It often includes multiple variables.
- Examples: "Job Satisfaction," "Self-Esteem," "Intelligence"

\$\times\$ Constructs are used when we study **psychological or social concepts**.

Q Example:

Term Type Measurable?

Happiness Concept No

Life Satisfaction (scale) Construct Yes (using questionnaire)

2 Definitions: Theoretical vs. Operational

Explains what something means in theory or conceptually.

- Based on existing knowledge or literature.
- Abstract and broad.

☐ Example:

"Intelligence is the ability to learn from experience and solve problems."

Explains **how to measure** a concept in your research.

- It's practical and specific.
- Makes it possible to collect data.

☐ Example:

"Intelligence will be measured using IQ test scores."

Q Summary:

Type Purpose Example

Theoretical Meaning of the concept Intelligence = problem-solving ability

Operational How you measure it Intelligence = score on a 40-question IQ test

3 Theory and Theoretical Frameworks

A theory is a **set of related ideas** that explains **how and why** something happens.

- It connects concepts and variables.
- Used to **predict outcomes**.

☐ Example:

In psychology, Maslow's Theory explains human motivation based on needs.

- Explains facts clearly
- Can be tested
- Helps build new knowledge

The **theoretical framework** is the part of your research where you **explain which theory or model** you are using to guide your study.

- It shows the **background ideas** behind your research.
- It connects your **research problem** with existing theories.

☐ Example:

If you are studying student motivation, you may use **Self-Determination Theory** as your framework.

4 Importance of Literature Review

A literature review is a detailed study of existing books, journal articles, reports, and previous research related to your topic.

Why is it Important?

- Shows what is already known
- Finds **gaps** in knowledge
- Helps in formulating your research question
- Avoids duplicate work
- Helps design your research method
- Gives support to your **arguments**

It's like doing your homework before starting your experiment.

☐ Summary Table:

Component Simple Me	aning Example
---------------------	---------------

Concept Abstract idea Education, Health

Construct Measurable concept Motivation, Anxiety

Theoretical Definition Meaning in theory Intelligence = mental ability

Operational Definition How it's measured Intelligence = IQ score

Theory Set of ideas explaining something Maslow's Theory

Theoretical Framework Theory used in your study

Using Maslow's theory to study stress

Literature Review Study of past research Reviewing 20 journal papers on topic

☐ 2.2. Research Blueprint

Think of this section as the **foundation** of your study. Just like you wouldn't build a house without a blueprint, you shouldn't do research without a **clear plan**.

1 Models of Research

A **research model** is a **structured approach** or **framework** that shows how different elements of a study are connected—like the flow of thinking in your research.

These models help you:

- Decide what to study
- Identify variables
- Link theory to practice
- Choose your method

* Common Models:

Model Type	Focus	Example
Linear Model	Step-by-step sequence	Problem → Hypothesis → Data
Cyclical Model	Repeating improvement cycles	$Plan \rightarrow Act \rightarrow Observe \rightarrow Reflect$ (used in Action Research)
Conceptual Model	Visual diagram of relationships	Flowchart connecting variables
Theoretical Model	Based on existing theory	Maslow's model for motivation

Models clarify relationships and guide data collection and analysis.

2 Formulating Research Questions and Objectives

A **research question** is the **main question** your study aims to answer.

It must be:

- Clear and focused
- Researchable (using data)
- Relevant to your field

☐ Example:

"What factors influence college students' use of mental health services?"

These are **specific goals** you want to achieve during your research.

They usually start with verbs like:

- To find out...
- To examine...
- To measure...
- To analyze...

☐ Example (from above question):

- To identify reasons students avoid mental health services
- To measure the impact of awareness campaigns

☆ Tips:

- Good questions \rightarrow guide your objectives
- Good objectives → guide your method

3 Research Design and Methodology

Let's break this down.

The **overall strategy** or **plan** you use to collect and analyze data.

It answers:

How will you conduct your study?

**Types of Research Design:

Type Purpose Example

Descriptive Describe characteristics Survey on mobile usage habits

Exploratory Explore unknown areas Interviews with first-time voters

Explanatory Explain cause-and-effect Study on how stress affects grades

Experimental Test a treatment or condition A/B testing in software design

The **detailed procedures** used for data collection, analysis, and interpretation.

It includes:

- Type of data: Quantitative or Qualitative
- Tools: Surveys, interviews, experiments
- Techniques: Sampling, coding, statistical analysis

While **research design** is *what* and *why*, **methodology** is *how* exactly you'll do it.

□ Summary Table:

Element	Meaning	Example
Research Model	Flow or structure of research	Conceptual model connecting variables
Research Question	What your study aims to answer	What motivates online learning?
Research Objective	Specific goals of your study	To identify factors affecting motivation

Element	Meaning	Example
Research Design	Overall plan for the study	Descriptive or Experimental design
Methodology	Actual methods used to collect/analyze Surveys, sampling, regression analysis	

III. Quantitative Research Methods – 3.1 Basic Building Blocks

♦ 1 Yariables: The Key Ingredients of Research

What is a Variable?

A variable is anything that can change or vary in your study.

Examples:

• Age, income, exam scores, motivation level, hours of study

Types of Variables

 \square A. Independent Variable (IV)

The variable you change or control to see its effect.

☐ Example: Number of hours studied

✓ You're choosing this value \rightarrow it's **independent**

B. Dependent Variable (DV)

The variable **you measure**—it **depends on** the independent variable.

☐ Example: Exam score

✓ It changes **because of** how many hours were studied.

C. Confounding Variable

A hidden factor that may affect both IV and DV and confuses the results.

 \square Example: Suppose you're studying if coffee helps study hours (IV) improve memory test scores (DV). But **sleep** could also affect memory.

So **sleep** is a confounding variable.

Variabl	е Туре	Meaning	Example
Independe	nt (IV)	What you change	Hours of study
Dependent	(DV)	What you measure	e Test scores
Confoundir	g Variable	A hidden influence	Sleep quality

2 Conjectures and Hypotheses

A general idea or guess you believe might be true, without proof yet.

- It's like a hunch or early thought.
- May come from **experience or observation**.

☐ Example: Students who sleep more may score better.

A clear, testable statement predicting the relationship between variables.

It's a scientific guess you can check with data.

***** Types of Hypotheses:

Type Description Example

Null Hypothesis (H_o) Says no effect or no relationship "Coffee has no effect on alertness"

Alternative Hypothesis (H₁) Says there is an effect or relationship "Coffee increases alertness"

? In testing, you try to reject the null hypothesis using statistics.			
♦ 3Me	easurement: Types and Er	rors	
■ What is	s Measurement?		
The proc	ess of assigning numbers or la	abels to things, so we ca	an compare them.
□ Examp	le: Measuring "motivation" usi	ng a 1–10 scale.	
Ж Тур	es of Measurement Scales	:	
Scale Typ	e What it Measures	Example	
Nominal	Categories (no order)	Gender (Male/Female)	
Ordinal	Order, but no fixed distance	Rank 1st, 2nd, 3rd	
Interval	Order + equal gaps, no true zero	o Temperature in °C	
Ratio	Order + equal gaps + true zero	Age, Height, Weight	
Most statistical analysis works best with interval and ratio data.			
	rement Errors		
Mistakes	or inaccuracies in the way we	collect or record data.	
Q Types of Errors:			
Error T	ype Meaning		Example
Systematic Error Error that repeats in same direction Faulty thermometer always shows +2°C			
Random E	Error Unpredictable, due to cha	ance Respondent g	uessed an answer

We try to **reduce errors** with good tools and proper research design.

✓ Summary Chart

Concept Simple Meaning

Variable Anything that can change (age, score, time)

Independent Variable You control or manipulate

Dependent Variable You observe/measured output

Confounding Variable Unseen factor messing up results

Conjecture Early idea or guess without full proof

Hypothesis Clear statement predicting relationships

Null Hypothesis Says there is **no effect**

Measurement Scale How we assign numbers to data (nominal to ratio)

Measurement Error Mistake in recording values

11 3.2 Data and Scales

Types of Data (Levels of Measurement)

In research, we **measure variables**, but different variables are measured differently. These measurements are categorized into **four levels**—from **simplest** to **most detailed**.

Nominal Data (Labels / Categories)

Data is just names or categories, with no order and no number value.

- You **cannot rank** or do arithmetic.
- Just classify.

☐ Examples:

- Gender: Male, Female, Other
- Blood group: A, B, AB, O
- Religion: Hindu, Muslim, Christian

2 Ordinal Data (Order matters)

Data has a clear order, but the differences between values are unknown.

• You can rank, but can't measure exact gap.

☐ Examples:

- Class position: 1st, 2nd, 3rd
- Likert scale: Strongly Agree → Strongly Disagree
- Socioeconomic class: Low, Middle, High

3 Interval Data (Equal gaps, no true zero)

Data has equal intervals between values but zero doesn't mean "nothing".

• Arithmetic possible (add/subtract), but ratios don't make sense.

☐ Examples:

- Temperature in °C or °F
- Calendar years (1990, 2000)
- IQ scores

4 Ratio Data (Equal gaps, true zero)

Has all properties: order, equal intervals, and a true zero (zero means nothing).

• You can do all math, including ratios.

☐ Examples:

- Age, Weight, Height
- Salary
- Distance traveled

□ Summary Table:

Level	Ordered?	Equal Gaps?	True Zero?	Examples
Nominal	×	×	×	Gender, Blood Type
Ordinal	✓	×	×	Rank, Satisfaction Level
Interval	✓	✓	×	Temperature, IQ Score
Ratio	✓	✓	✓	Age, Weight, Salary

□ 3.3 Sampling

Population vs. Sample

Population:
The entire group you want to study.
☐ Example: All PhD students in India.
Sample:
A smaller part of the population you actually study.
☐ Example: 200 PhD students selected from 10 universities.
A good sample should represent the population well.
Sampling Techniques
Sampling techniques are divided into two categories :
Probability Sampling (Everyone has a chance)
Every member of the population has a known, non-zero chance of being selected. This is more scientific and allows generalization.
✓ A. Simple Random Sampling
 Every individual has an equal chance. Often done using random numbers.
☐ Example: Pick 100 names from a list of 1000 students randomly.
✓ B. Stratified Sampling

☐ Example: Divide by gender (Male/Female) and select random students from each.

Divide population into subgroups (strata) and pick random samples from each.

C. Cluster Sampling					
• Divide popula	tion into clusters (groups) , th	hen randomly select whole clusters.			
☐ Example: Divide In	Example: Divide India into states. Randomly pick 5 states and survey all students in them.				
2 Non-Probability	Sampling (Not random)				
Some people have m o	re chance of being selected.	Faster, easier—but may have bias .			
⚠ A. Convenience Sam	pling				
Choose whoev	ver is easiest to reach .				
☐ Example: Ask stude	ents who are in your class righ	ht now.			
	ng				
• Select people	oased on purpose or experti s	se.			
☐ Example: Only surv	vey PhD guides for expert opi	inion.			
⚠ C. Snowball Samplin	g				
Ask participan	ts to refer others , especially	in hard-to-reach groups.			
☐ Example: Interview	ing drug users or LGBTQ+ y	outh by referrals.			
☐ Summary Table	:				
Type Rando	m? Use Case	Example			
Simple Random 🗸	General random selection	Pick 50 students randomly			

Туре	Random?	Use Case	Example
Stratified	✓	Ensure subgroups are included	l Gender-wise split
Cluster	✓	Group-based sampling	Pick a few colleges entirely
Convenience	×	Easy and quick	Ask nearby people
Purposive	×	Based on specific criteria	Interview only experts
Snowball	×	Hidden or sensitive groups	Peer-referred participants

✓ 3.5 Statistical Testing

1 Hypothesis Testing

A hypothesis is a **claim or assumption** you make about a population.

We test this claim using sample data.

Two Types of Hypotheses:

• Null Hypothesis (H₀): No effect, no difference.

Example: "There is **no difference** in marks between male and female students."

• Alternative Hypothesis (H₁ or Ha): There is an effect or difference.

Example: "There is a difference in marks between male and female students."

 \square The goal is to **test** if data supports H_1 and **reject** H_0 .

②Level of Significance (α)

It's the **threshold** for deciding whether a result is **statistically significant**.

- Usually: $\alpha = 0.05$ (5%)
- Means: You allow 5% chance of being wrong if you reject the null hypothesis.

 \bigcap If **p-value** < α , reject H₀ \Rightarrow result is **significant**

• 3 p-value

It tells you the **probability** of getting your result if the **null hypothesis were true**.

- Low p-value (< 0.05): Strong evidence against $H_0 \Rightarrow \text{Reject } H_0$
- High p-value (> 0.05): Weak evidence \Rightarrow Do not reject H₀

☐ Example:

If p = 0.02, you have **only 2% chance** that the result is due to random chance.

4 Confidence Interval (CI)

A range of values that likely contains the **true population parameter** (like mean).

- Commonly used: 95% CI
- It means: If you repeat the experiment 100 times, **95 times** the CI will contain the true value.

☐ Example:

If CI = [48, 52], then the population mean is likely between 48 and 52.

♦ 51-test

Compares **means** between groups to check for significant difference.

□ Types:

- **One-sample t-test**: Compare sample mean vs. population mean
- **Independent t-test**: Compare means of **two different groups**

Example: Male vs. Female test scores

• **Paired t-test**: Compare **same group** at two different times

Example: Before vs. After treatment

☐ Used when sample size is small & population standard deviation is unknown.

ANOVA (Analysis of Variance)

Compares means of 3 or more groups.

If ANOVA finds a significant difference, you can explore **which groups differ** using post-hoc tests (like Tukey).

☐ Example: Compare marks in 3 departments – Science, Commerce, Arts.

7 Correlation

Measures how strongly two variables move together.

Pearson Correlation (r)

- Measures linear relationship
- r ranges from -1 to +1
 - +1: perfect positive correlation
 - o −1: perfect negative correlation
 - o 0: no correlation
- Requires interval or ratio data

Spearman Correlation (p or rs)

- Measures **rank-based** relationship (not strictly linear)
- Works with **ordinal data** or non-normal data

☐ Examples:

- Pearson: Height vs. Weight
- Spearman: Rank in class vs. Rank in sports

Regression Analysis

Predicts one variable based on another.

✓ Simple Linear Regression:

- One **independent** variable (X) predicts one **dependent** variable (Y)
- Formula: Y = a + bX

☐ Example: Predict weight based on height

✓ Multiple Regression:

- $\label{eq:second-equation} \begin{array}{ll} \bullet & \text{Two or more } X \text{ variables predict } Y \\ \bullet & \text{Formula: } Y = a + b_1 X_1 + b_2 X_2 + \ldots + b_n X_n \end{array}$

☐ Example: Predict salary based on education, experience, and age

\square Summary Table

Concept	Purpose	Example
Hypothesis Testin	g Check if results are significant	Gender & scores
p-value	Probability of observed result by chance	e p < 0.05 = significant
CI	Range where true value lies	95% CI = [48, 52]
t-test	Compare 2 group means	Male vs Female scores
ANOVA	Compare 3+ group means	Science vs Arts vs Commerce
Correlation	See how two variables move together	Hours studied vs Marks
Regression	Predict one value using others	Predict salary from education & experience

IV. Qualitative Research Methods

4.1 Research Approaches

Each approach has its own focus, purpose, and data collection style.

1 Narrative Research

Focus: **Personal stories or life experiences** of individuals

☐ What it does:

- Studies a person's life story in detail to understand how they make sense of their experiences.
- Data is often collected through **interviews**, **diaries**, or **letters**.

Example:

Studying the **life journey of a cancer survivor** and how they describe their healing process.

2 Phenomenological Research

Focus: Lived experiences of people regarding a specific phenomenon

☐ What it does:

- Aims to understand the **common meaning** of a certain experience shared by several people.
- Seeks the **essence** of an experience—what it **feels like** to go through it.

Example:

Understanding the **experience of losing a loved one**—how people emotionally process grief.

3 Grounded Theory

Focus: Generating a new theory based on collected data

☐ What it does:

- Collects data from participants and develops a theory that is **grounded in** (emerges from) the data.
- Uses **coding** (labeling pieces of data) and **constant comparison**.

Example:

Creating a new theory about **why college students drop out**, based on interviews from 50 students.

4 Ethnography

Focus: Cultural patterns of a group of people

☐ What it does:

- The researcher **immerses** themselves in the group's setting (like a village, organization, or community).
- Studies daily life, rituals, language, interactions, etc.
- Often takes **months or years** to observe and record.

Example:

A researcher lives with a **tribal community** to study their **belief systems and lifestyle**.

5 Case Study

Focus: In-depth investigation of a single unit (case)

☐ What it does:

- Studies one individual, group, organization, event, or situation in detail.
- Helps understand **complex phenomena** within a real-life context.
- Uses multiple data sources (interviews, documents, observation, etc.)

Example:

Studying one school's unique way of teaching visually impaired students.

□ Summary Table

Approach	Focus Area	Data Type	Example
Narrative	Life stories of individuals	Interviews, journals	Story of a refugee's life journey
Phenomenology	Shared lived experiences	Interviews, reflections	How people feel after surviving an earthquake
Grounded Theory	Developing a theory from data	Interviews, focus groups	Theory of job satisfaction in tech companies
Ethnography	Cultural and social patterns of a group	Observation, field notes	Studying rituals in a rural Indian village
Case Study	Deep dive into a single case	All available sources	How one hospital adapted during COVID-19

4.2 Data Sources in Qualitative Research

These are the **tools** or **techniques** used to gather information from people or settings, especially about their thoughts, feelings, behaviors, and experiences.

1 Interviews

Talking directly to participants to understand their personal views, thoughts, or stories.

Туре	Description	Example
Structured	Same set of predefined questions for all participants; formal and consistent	Job interview with a fixed questionnaire
Unstructured	Open conversation , free-flowing; researcher may ask follow-up questions	Talking casually about school experience
Semi- structured	Some fixed questions, but allows flexibility to explore interesting points	Asking about health habits, then diving deeper based on answers

☐ Tip:

- Best for **deep understanding** of personal views
- Requires **listening carefully** and sometimes recording (with permission)

1 Focus Groups

A small group of people (usually 6–10) are interviewed **together** to discuss a topic.

A Features:

- Group setting allows for discussion, debate, and interaction
- The researcher acts as a **moderator**, guiding the conversation
- Can help uncover **shared beliefs**, **opinions**, and even **conflicts**

■ Example:

Discussing people's views on **online education** in a group of college students.

Pros:

- Saves time (multiple participants at once)
- Stimulates ideas and social responses

Cons:

- Some people may dominate the conversation
- Not ideal for sensitive topics

Solution Description

Watching people in their **natural setting** to understand how they behave or interact.

Type	Description	Example
Participant Observation	Researcher becomes part of the group being studied	Living with farmers to observe their daily routines
Non-participant Observation	Researcher stays outside the group , observes quietly	Watching how students interact in a classroom

□ Uses:

- Helpful when people might **not express** everything in words
- Useful in **ethnographic** and **case study** research

□ Summary Table

Method	Key Feature	Best Used For
Interviews	One-on-one conversations	Personal experiences, deep emotions
Focus Groups	Small group discussions	Exploring social norms, opinions
Observations	Watching natural behavior	Understanding culture, real-life actions

4.3 Data Analysis in Qualitative Research

♦ 1 Coding

Coding means giving labels or tags to chunks of data (sentences, phrases, or paragraphs) that represent certain ideas, actions, or emotions.

■ Example:

If someone says, "I feel anxious during exams," you might code that as: "Exam anxiety" or "Stress trigger"

Туре	Description	Purpose
Open Coding	Breaking down raw data into initial codes or labels	First step to explore the data
Axial Coding	Linking codes together to form categories (cause-effect, relationships)	Organize data meaningfully
Selective Coding	Picking a core theme or central idea, and linking all other codes to it	Final step in theory- building

Process:

- 1. Read the text closely
- 2. Highlight meaningful parts
- 3. Assign labels (codes)
- 4. Group similar codes \rightarrow categories \rightarrow themes

2 Content Analysis

A systematic method to identify patterns, frequencies, and meanings in textual data.

- Counts how often **certain words**, **phrases**, **or themes** appear.
- Useful for **structured analysis** of interviews, social media, newspapers, etc.

• Can be **quantitative** (e.g., "how many times 'stress' is mentioned") or **qualitative** (e.g., "how stress is described").

□ Example:

Analyzing 100 tweets to find how people talk about "online exams".

Thematic Analysis

A method for **finding patterns and themes** across data.

- 1. Read all transcripts carefully
- 2. Do open coding
- 3. Group codes into **themes** (e.g., "exam fear", "peer pressure")
- 4. Review and name themes
- 5. Interpret: What does this tell us?

■ Example:

Interviewing students about online learning, and finding themes like:

- Distraction at home
- Technical issues
- Lack of motivation

Thematic analysis is **flexible** and works across many qualitative approaches.

□ Summary Table

Method	Focus	Output	Best Used For
Coding	Breaking and labeling data	Codes → Categories → Themes	All types of qualitative research
Content Analysis	Counting + interpreting text	Word frequencies, patterns	Structured documents, media content

Method	Focus	Output	Best Used For
Thematic	Exploring deeper	Narrative explanation of	Interviews, open-ended
Analysis	patterns/themes	data	surveys, stories