Московский физико-технический институт

Лабораторная работа

Эффект Мессбауэра

выполнил студент 653 группы ФФКЭ Давыдов Валентин

1 Цель работы

Исследование резонансного поглощения γ -лучей, испускаемых ядрами олова Sn-119 в соединении BaSnO₃ при комнатной температуре. Определение положения максимума резонансного поглощения, его величины и экспериментальной ширины линии Γ . Оценка времени жизни возбуждённого состояния ядра Sn-119.

2 В работе используются:

- источник γ -квантов (BaSnO₃)
- поглотители (оловянная фольга различной толщины, фольга оксида олова SnO₂)
- эксцентрик
- сцинтилляторный кристалл NaI(Tl)
- усилитель
- одноканальный амплитудный анализатор
- персональный компьютер
- генератор для стабилизации двигателя
- высоковольтный стабилизированный выпрямитель
- фотоэлектронный умножитель
- двигатель с редуктором

3 Теоретические положения

При испускании или поглощении γ -кванта ядром, находящимся в узле кристаллической решётки, могут происходить два процесса:

- изменение колебательного состояния решётки, т.е. возбуждение фононов
- передача импульса γ -кванта решётке как целому, без изменения её колебательного состояния, т.е. упругое испускание и поглощение γ -кванта C понижением температуры вероятность упругих процессов возрастает.

Эффект Мессбауэра - явление излучения и поглощения γ -квантов в твёрдых телах без рождения фононов. Мессбауэровский переход осуществляется в том случае, если колебательное состояние решётки не изменяется и γ -квант получает всю энергию перехода.

Проведём оценки. Ядро, испускающее γ -квант, приобретает импульс отдачи, равный по абсолютной величине импульсу γ -кванта. Если ядро свободно и изначально покоится, энергия отдачи R равна

$$R = \frac{p^2}{M_n} = \frac{E_{\gamma}^2}{2M_n c^2} \tag{1}$$

В качестве примера рассмотрим ядро олова Sn-119, его расстояние между основным и первым возбуждённым уровнями составляет $E_0=23.8$ кэВ, тогда согласно закону сохранения энергии $E_0=E_\gamma+R$ и принимая $R\ll E_{qamma}$:

$$R = \frac{E_{\gamma}^2}{2M_p c^2} \simeq \frac{E_0^2}{2M_p c^2} = 2.5 \cdot 10^{-3} eV \tag{2}$$

Возбуждённые уровни ядра имеют конечную ширину. Отложим по оси абсцисс энергию ядра, по оси ординат - вероятность найти ядро с данной энергией. Ширина кривой, измеренная на половине высоты, называется естественной шириной линии Г. Она связана со средним временем жизни возбуждённого состояния ядра соотношением неопределённостей.

$$\Gamma \tau \simeq \hbar$$
 (3)

Ширина линий испускания и поглощения складывается из собственной ширины линии и доплеровской ширины, которая играет основную роль и связана с тепловым движением атомов. Доплеровский сдвиг уровней в нерелятивистском случае будет рассчитываться по формуле

$$D = -\frac{v}{c}E_{\gamma} \simeq -\frac{v}{c}E_0 \tag{4}$$

На одну степень свободы ядра (движение к поглотителю или от него) приходится энергия, равная $\frac{k_BT}{2}$. Приравнивая это значение к кинетической энергии ядра $\frac{M_nv^2}{2}$, получаем значение скорости

$$v = \sqrt{k_B T / M_n} \tag{5}$$

Итак, принимая во внимание (1), значение доплеровской ширины линии испускания Sn-119 при комнатной температуре равно

$$D = \sqrt{2Rk_BT} = 1.5 \cdot 10^{-2} eV \tag{6}$$

Также отметим формулу для определения вероятности эффекта Мессбауэра:

$$f = exp(\frac{-4\pi^2 \langle u^2 \rangle}{\lambda^2}),\tag{7}$$

где $\langle u^2 \rangle$ - среднеквадратичное смещение ядер в процессе тепловых колебаний решётки (в направлении вылета γ -кванта), λ - длина волны γ -излучения

Рис. 1: Энергетическое распределение, характеризующее возбуждённое состояние ядра

Рис. 2: Сдвиг линий испускания и поглощения из-за отдачи про свободных ядрах

Рис. 3: Перекрытие линий испускания и поглощения вследствие доплеровского уширения

4 Экспериментальная установка

В ходе измерения источник остаётся неподвижен, а образец поглотителя совершает равномерное движение с контролируемой скоростью. Доплеровский сдвиг изменяет частоту гамма-квантов в системе покоя поглотителя, что позволяет изучить зависимость поглощения в образце от энергии гамма-кванта. Детектируется интенсивность γ -излучения, прошедшего через образец поглотителя. При совпадении энергии гамма-кванта с разницей энергий между основным состоянием и первым возбуждённым происходит резонансное поглощения гамма-квантов и интенсивность прошедшего излучения уменьшается. Измерительная аппаратура (сцинцилятор с ФЭУ) оптимизированы под детектирование квантов с энергией 23.8 кэВ, электронная часть схемы измерения оптимизируется под обнаружение этих квантов в ходе работы. Принципиальная схема установки представлена на рисунке 4.

На рисунке обозначены:

- Э эксцентрик
- С сцинтилляторный кристалл NaI(Tl)
- У усилитель
- АА одноканальный амплитудный анализатор
- ЭВМ персональный компьютер
- Г генератор для стабилизации двигателя
- ВСВ высоковольтный стабилизированный выпрямитель
- ФЭУ фотоэлектронный умножитель
- РД-09 двигатель с редуктором

Рис. 4: Блок-схема экспериментальной установки для наблюдения эффекта Мессбауэра

5 Ход работы

5.1 Снятие спектра источника и его анализ

Цель этого этапа работы — подобрать настройки анализатора импульсов так, чтобы детектировались только гамма-кванты с энергией 23.8 кэВ, исходящие от источника Sn-119.

1. Подготовим приборы к работе. Проведём измерение спектра излучения источника при значениях нижнего порога напряжения от 0 до 9,5 В. Результаты измерения занесём в таблицу 1. Данные графически представим на рис. 5.

Таблица 1: Спектр источника излучения

Пороговое напряже-	1	1,5	2	2,5	3	3,5	4	4,5	5
ние, В									
Интенсивность, счёт.	24,5	11,6	17,3	37,8	68,1	115,7	178,2	223,4	263,3
Пороговое напряже-	5,5	6	6,5	7	7,5	8	8,5	9	9,5
ние, В									
Интенсивность, счёт.	256,4	214,3	148,3	92,7	51,5	27,1	11,7	6,5	3,3

2. По графику, приведённому на рис. 5, определяем, что большая часть гамма-квантов с нужной нам энергией 23,8 кэВ появляется при пороговых значениях от 3 В до 7 В. Установим эти значения на выпрямителе. По окончании этого этапа электронная схема нашей установки настроена так, что подсчитываются только гамма-кванты с энергиями, соответствующими используемому источнику.

5.2 Измерение резонансного поглощения

- 1. Установим время измерения 20 секунд, ход поглотителя 8,84 мм.
- 2. Измерим фоновое излучение. Вычитание фона в дальнейшем производится компьютером автоматически. Измеренное значение фона: $10.5~1/{\rm cek}$.
- 3. Проведём измерение спектра резонансного поглощения для трёх образцов: две оловянные пленки разной толщины и образец оксида олова ${\rm SnO_2}$. Для этого проведём серию измерений при разных скоростях движения поглотителя. Результаты занесём в таблицы 2-4.

Рис. 5: Спектр источника излучения

4. По результатам измерения построим графики спектров резонансного поглощения для разных поглотителей (рис. 6-8). По графикам определим амплитуду резонансного поглощения в максимуме (в процентах), величину химического сдвига (в мм/с и в эВ) и экспериментальную ширину линии Г. Результаты измерений занесём в таблицу 5.

Формула для вычисления величины амплитуды эффекта Мессбауэра:

$$\varepsilon(v) = \frac{N(\infty) - N(v)}{N(\infty) - N_b},\tag{8}$$

где $N(\infty)$ - скорость счёта квантов при достаточно большой скорости, N(v) - скорость счёта квантов, прошедших через поглотитель при некоторой скорости, N_b - скорость счёта радиоактивного фона (вычитается программой автоматически).

Величина химического сдвига, выраженная в эВ:

$$\Delta E = E \frac{v}{c},\tag{9}$$

где E - энергия гамма-кванта, излучаемого веществом (в нашем случае $E=23.8~{\rm kpB}$).

Экспериментальная ширина линии Γ_e , выраженная в эВ:

$$\Gamma_e = 2\Gamma = E \frac{v_{\Gamma}}{c},\tag{10}$$

5. Приведём на одном графике результаты измерения спектров резонансного поглощения для разных поглотителей (рис. 9). Видно, что увеличение толщины поглотителя уширяет резонансную линию (см. вывод)

Таблица 2: Поглотитель 1: Sn, толщина 90 мкм

Скорость, мм/с	0	0,87	1,28	1,3	1,53	1,7	1,92	1,92	2,02	2,12	2,34
Интенсивность,	1311,8	1258,2	1254,3	1232,5	1219,2	1222,9	1192,1	1179,4	1147	1129,8	1125,4
счёт.											
Скорость, мм/с	2,39	2,4	2,5	2,51	2,56	2,61	2,66	2,92	3,1	3,36	3,67
Интенсивность,	1122,7	1116,4	1123,8	1148,3	1145,9	1156,3	1154,3	1189,2	1212,2	1223,4	1251,4
счёт.											

Таблица 3: Поглотитель 2: Sn, толщина 180 мкм

Скорость, мм/с	0	0,7	1,32	1,59	1,6	1,65	1,66	1,66	1,68	1,68	1,69
Интенсивность,	587,8	599,1	581,2	579	572,9	573	587,8	577,8	564,3	551,2	567,2
счёт.											
Скорость, мм/с	1,71	1,87	1,92	2,05	2,08	2,2	2,29	2,34	2,39	2,44	2,47
Интенсивность,	552,5	550,4	538,8	528,4	514,2	508,8	497,4	485,6	497	511,8	499,4
счёт.											
Скорость, мм/с	2,57	2,62	3,35	3,47	3,58	3,65	3,75	5,28	6,06		
Интенсивность,	515,6	521,8	524,4	532	561,1	545,8	563,8	552,2	560,9		
счёт.											

Таблица 4: Поглотитель 4: SnO_2

Скорость, мм/с	-2,84	-2,33	-2,22	-2,07	-1,72	-1,7	-1,68	-1,21	-1,13	-0,92	-0,91
Интенсивность,	997,4	1003,4	995,2	979,2	968,2	973,3	967,7	893	874,2	815,6	831,3
счёт.											
Скорость, мм/с	-0,88	-0,86	-0,59	-0,56	-0,28	-0,13	0,16	0,3	0,57	0,58	0,85
Интенсивность,	815,8	806	758,4	752,5	719	708,4	710,8	725	769,3	763,6	826,4
счёт.											
Скорость, мм/с	0,87	0,88	0,91	1,09	1,17	1,66	1,7	1,7	2,06	2,19	3,07
Интенсивность,	837,2	836,5	840,5	883,7	890	939,7	956,8	956,8	977,3	1001,4	986,8
счёт.											

Таблица 5: Полученные значения

	Амплитуда эффекта, %	X им. сдвиг, $_{\mathrm{MM}/\mathrm{c}}$	Хим. сдвиг, эВ	Γ_e , mm/c	Γ_e , $_{\rm B}$
Поглотитель 1	11,3	2,4	$1,90 \cdot 10^{-3}$	1	$7,93 \cdot 10^{-3}$
Поглотитель 2	17,4	2,34	$1,86 \cdot 10^{-3}$	1,55	$12,30 \cdot 10^{-3}$
Поглотитель 4	29,4	0	0	2	$15,90 \cdot 10^{-3}$

Рис. 6: Спектр резонансного поглощения: поглотитель 1

Рис. 7: Спектр резонансного поглощения: поглотитель 2

Рис. 8: Спектр резонансного поглощения: поглотитель 4

Рис. 9: Спектры резонансного поглощения: различные поглотители

6. Оценим время жизни возбуждённого состояния ядра Sn-119, используя формулу (3): $\Gamma \propto 10^{-7} eV$ в эксперименте; естественная ширина $\Gamma \propto 3 \cdot 10^{-8} eV$:

$$au\simeq rac{\hbar}{\Gamma}$$
 $au\simeq 0.7\cdot 10^{-8}eV$ - по экспериментальным данным $au\simeq 2.1\cdot 10^{-8}eV$ - по табличным данным без уширения

6 Вывод

- 1. В ходе работы с помощью метода доплеровского сдвига для нескольких образцов поглотителя Sn были определены амплитуда резонансного поглощения, химический сдвиг и экспериментальное значение ширины спектральной линии см. таблицу 5. Естественная ширина спектральной линии составляет $\Gamma = 3 \cdot 10^{-8}$ эВ, что в несколько раз меньше значений, полученных экспериментально, но совпадает с ними по порядку величины. Это объясняется тем, что при комнатной температуре большую роль играет доплеровское уширение.
- 2. Были исследованы графики спектров резонансного поглощения различных образцов (см. рис. 9). Наблюдаются следующие эффекты:
 - уширение резонансной линии при увеличении толщины слоя поглотителя. Возможные объяснения:
 - кванты, энергия которых лежит вблизи максимума линии, сильно поглощаются уже в тонком поглотителе, и для них увеличение толщины поглотителя сказывается слабее, чем на "крыльях"линии
 - самопоглощение квантов в источнике, если в нём содержатся резонансно поглощающие ядра
 - доплеровское уширение как причина аппаратурного уширения, связанного с вибрациями источника и поглотителя
 - неравномерность скорости перемещения поглотителя относительно источника
 - уменьшение регистрируемой интенсивности при увеличении толщины слоя поглотителя (больше гамма-квантов поглощаются на пути к ФЭУ)
 - \bullet отсутствие химического сдвига у соединения оксида олова SnO_2
- 3. Было оценено время жизни мессбауэровского ядерного уровня 23,8 кэВ: по порядку величины оно совпало с табличным значением $\tau \simeq \cdot 10^{-8} eV$ (при полученных значениях $0.7 \cdot 10^{-8} eV$ и $2.1 \cdot 10^{-8} eV$ для естественной ширины линии и расчётной из эксперимента соответственно)