Equilibrium Phases in the 1-D Hubbard Model

Johann Gan, PHYS 416

Background

- John Hubbard (1963)
- Fermions + interactions
 - "Strongly correlated behavior"
- High-temperature superconductivity in cuprates
- Ultracold atoms

"Levitating superconductor"

Challenges

- Many-body quantum system
 - o # of states: 4ⁿ
 - Hard to simulate directly
- Mutual interactions
 - Hard to analyze

Hubbard Model in 1-D

$$\hat{H} = -t\sum_{i\sigma} \left(\hat{c}_{i\sigma}^{\dagger} \hat{c}_{(i+1)\sigma} + \hat{c}_{(i+1)\sigma}^{\dagger} \hat{c}_{i\sigma} \right) + U\sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} - \mu \sum_{i} \left(\hat{n}_{i\uparrow} + \hat{n}_{i\downarrow} \right)$$

- t: kinetic energy -- "hopping term"
- U: on-site interaction
- μ: external chemical potential

Exact Diagonalization (ED)

$$\hat{H} | \psi \rangle = E | \psi \rangle$$

- Encode Hamiltonian and solve TISE directly
- Small systems only...
- For Fermi-Hubbard:
 - Enumerate in number basis
 - Periodic boundary conditions
 - Particle number conserved -- block diagonalize

N=7: Band Gap

Mean Field Theory

• Interactions are hard, fields are easy

What is the mean field?

- Depends on our guess...
- Can solve energies analytically in both
- For Fermi-Hubbard:
 - Iterate over densities and interactions
 - Compute energy under FM and AFM
 - Pick the phase with lower energy

Equilibrium Phase Diagram

Compressibility (dρ/dμ)

- Raise the external chemical potential μ . How much does density change?
- An easy-to-calculate "surrogate" for conductivity
 - How readily electrons can be "forced" through the system?
- For Fermi-Hubbard: more annoying to calculate
 - \circ Don't know what density is for given μ , but need density to compute mean field
 - o Guess-update iteration until self-consistent
 - o Initial-guess dependent... randomize and do a bunch of trials

Compressibility (U/t = 0)

Compressibility (U/t = 8)

Conclusions

- Having interactions between fermions greatly changes behavior
- System can become ordered where it wasn't without interactions

Sources

- "Levitating superconductor" by Julian Litzel is licensed under CC BY-SA 3.0:
 https://upload.wikimedia.org/wikipedia/commons/1/15/Levitating superconductor.jpg
- "Lattice mott" by Sakurai2:
 https://upload.wikimedia.org/wikipedia/commons/b/b8/Lattice mott.JPG
- "Square lattice" by Jim.belk: https://commons.wikimedia.org/wiki/File:SquareLattice.svg
- "Ferromagnetic ordering" and "Antiferromagnetic ordering" by Michael Schmid is licensed under CC BY-SA 3.0: https://commons.wikimedia.org/wiki/File:Antiferromagnetic ordering.svg

Backup

Spectrum: N = 6, U/t = 0

Spectrum: N = 6, U/t = 100: Band Gap

Compressibility (U/t = 1)

