Conjuntos parcialmente ordenados y retículos Sesión de Problemas No. 1 DIAS 2017

Rafael S. González D'León

Ejercicios para trabajar en la sesión

- 1. Dibuje todos los posets sin etiquetas (clases de isomorfismo) que hay en un conjunto de uno, dos, tres o cuatro elementos. Cuantos posets diferentes hay en los conjuntos [1], [2], [3] y [4]?
- 2. Verifique que el conjunto Π_n de particiones del conjunto [n] junto con la relación de refinamiento forman un conjunto parcialmente ordenado. Describa las relaciones de cobertura.
- 3. Sea G un grafo conexo con n vertices y sea Π_G el subposet inducido de Π_n formado por el conjunto de particiones $\pi \in \Pi_n$ con la propiedad de que para cada bloque $B \in \pi$, el subgrafo inducido $G|_B$ es conexo. Muestre que cuando G = T es un árbol (un grafo conexo sin loops ni ciclos) $\Pi_T \cong \mathbb{B}_{n-1}$, o sea Π_T es un poset isomorfo al álgebra de Boole \mathbb{B}_{n-1} .
- 4. Verifique que si $f: P \to Q$ y $g: Q \to R$ son mapas monótonos entonces $g \circ f: P \to R$ también lo es.
- 5. Dé un ejemplo de una biyección monótona $f: P \to Q$ que no sea un isomorfismo de posets. Dé un ejemplo de una biyección monótona $f: P \to P$ que no sea un automorfismo de posets. Que condición tiene que cumplir P en este caso?
- 6. Dé un ejemplo de un poset finito que no sea graduado.
- 7. Demuestre la siguiente proposición:
 - **Proposición** Si P es un poset finito graduado entonces existe una función bien definida $\rho: P \to \mathbb{N}_0$ tal que $\rho(x) = 0$ siempre que $x \in \mathcal{M}in(P)$ y si $x \lessdot y$ entonces $\rho(y) = \rho(x) + 1$.
- 8. Encuentre una fórmula en términos de productos de polinomios para la función generadora por grados del álgebra de Boole $F(\mathbb{B}_n, t)$.

Conjuntos parcialmente ordenados y retículos Sesión de Problemas No. 2 DIAS 2017

Rafael S. González D'León

Ejercicios para trabajar en la sesión

- 1. Dé un ejemplo concreto (utilizando diagramas de Hasse) de cada una de las operaciones $P+Q, P\oplus Q, P\times Q, P\otimes Q$ y Q^P . Cuales de estas operaciones son simétricas, o sea, $P\circledast Q\cong Q\circledast P$?
- 2. Muestre que $\mathbb{B}_n \cong \mathbf{2} \times \mathbf{2} \times \cdots \times \mathbf{2} = \mathbf{2}^n$. Calcule $F(\mathbb{B}_n, t)$ usando esta relación y la conclusión del ejercicio 8.
- 3. Cuales de los posets en uno, dos, tres, cuatro o cinco elementos son retículos?.
- 4. Determine la estructura de J(P) cuando P es una cadena, una anticadena o la suma directa de cadenas.
- 5. Muestre que Π_n es un retículo. Describa para un par de particiones $\pi, \pi' \in \Pi_n$ su concurrencia $\pi \wedge \pi'$ y su juntura $\pi \vee \pi'$.
- 6. Muestre que un retículo, \vee y \wedge cumplen con las leyes de absorción $x \wedge (x \vee y) = x$ y $x \vee (x \wedge y) = x$.
- 7. Utilice el ejercicio anterior para mostrar que un retículo satisface la ley distributiva (D1) si y sólo si satisface la ley distributiva (D2).
 - (D1) $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ para todo $x, y, x \in L$.
 - (D2) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ para todo $x, y, x \in L$.

Ejercicios adicionales

- 8. Muestre que $F(P \times Q, t) = F(P, t)F(Q, t)$.
- 9. Sea n un entero positivo con decomposición en primos $n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$. Muestre que $D_n \cong \mathbf{n_1} + \mathbf{1} \times \mathbf{n_2} + \mathbf{1} \times \cdots \times \mathbf{n_k} + \mathbf{1}$. Encuentre $F(D_n, t)$ usando esta relación.
- 10. Muestre que las operaciones fundamentales entre posets satisfacen las siguientes relaciones:
 - $P \times (Q+R) \cong (P \times Q) + (P \times R).$
 - $P^{Q+R} \cong P^Q \times P^R.$
 - P^{Q} P^{Q} P^{Q} P^{Q} .
- 11. Muestre que $J(P+Q) \cong J(P) \times J(Q)$.
- 12. Muestre que en un retículo L las operaciones \vee y \wedge son asociativas (así expresiones como $x \wedge y \wedge z$ tienen sentido), conmutativas e idempotentes $(x \vee x = x)$.
- 13. Verifique que si L y M son retículos entonces también lo son L^* , $L \times M$, $L \oplus M$ y $\widehat{L+M}$, en donde $\widehat{L+M} := \{\widehat{0}\} \oplus (L+M) \oplus \{\widehat{1}\}.$
- 14. Muestre que $\mathbf{2}^P \cong J(P)^* \cong J(P^*)$ en donde $\mathbf{2}$ es la cadena con dos elementos.
- 15. Sea P un poset. Muestre que existe una colección S de conjuntos que si los ordenamos por inclusión, o sea $A \leq B$ siempre que $A \subseteq B$, tenemos que $P \cong S$.

Conjuntos parcialmente ordenados y retículos Sesión de Problemas No. 3 DIAS 2017

Rafael S. González D'León

Ejercicios para trabajar en la sesión

- 1. Utilice la caracterización alternativa de retículos finitos modulares para concluir que todos los retículo distributivos son modulares.
- 2. Muestre que Π_n es semimodular pero no es modular. (Sugerencia: Busque dos coátomos que no cubran su concurrencia). Es Π_n un retículo distributivo?
- 3. Usando la caracterización alternativa de los retículos semimodulares demuestre la siguiente Proposición:

Proposition Un retículo finito L es geometrico si y solo si satisface la siguiente condición:

$$x \lessdot y \iff \exists a > \hat{0} \ tal \ que \ y = x \lor a.$$

- 4. Calcule los valores $\mu([\hat{0},x])$ de la función de Möbius para \mathbb{B}_3 y Π_3 .
- 5. Compute varios ejemplos de los valores $\mu([\hat{0}, x])$ de la función de Möbius para D_n . Conjeture y pruebe una formula para $\mu(D_n)$.
- 6. Use la definición recursiva de la función de Möbius para demostrar la siguiente proposición: **Proposición:** Sean P y Q posets localmente finitos y $(x, y) \le (x', y')$ en $P \times Q$ entonces $\mu([(x, y), (x', y')]) = \mu([x, x'])\mu([y, y'])$.
- 7. Utilice la fórmula de Weisner par calcular los valores de la función de Möbius en \mathbb{B}_n .
- 8. Un desarreglo es una permutación de [n] (una biyección $\sigma:[n] \to [n]$) que no contiene puntos fijos, es decir puntos tal que $\sigma(i) = i$. Teniendo en cuenta que hay n! permutaciones de [n], demuestre que el número d(n) de desarreglos de [n] puede ser calculado con la formula

$$n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$$
.

(Sugerencia: Utilice el teorema de inversión binomial y la fórmula $\binom{n}{k} := \frac{n!}{k!(n-k)!}$)

Ejercicios adicionales

9. Demuetre directamente el Principio de Inclusión-Exclusión sin usar posets.