OSPF and BGP Implementation Report

Network Configuration with Four Cisco 4321 Routers

Table of Contents

- 1. Executive Summary
- 2. Network Protocols Overview
- 3. Network Architecture
- 4. Configuration Implementation
- 5. Troubleshooting and Testing
- 6. Conclusion

Executive Summary

This report documents the implementation of OSPF (Open Shortest Path First) and BGP (Border Gateway Protocol) routing protocols on a four-router network using Cisco 4321 routers in Cisco Packet Tracer. The network consists of two Autonomous Systems (AS 100 and AS 200) with OSPF providing intra-AS routing and BGP handling inter-AS routing.

Key Achievements:

- Successfully configured four Cisco 4321 routers with appropriate IP addressing
- Implemented OSPF within each autonomous system for internal routing
- Configured BGP for inter-autonomous system communication
- Established full connectivity between all network segments
- Implemented proper route redistribution between OSPF and BGP

Network Protocols Overview

What is OSPF?

Open Shortest Path First (OSPF) is a link-state interior gateway protocol (IGP) used for routing within an autonomous system.

Key Characteristics:

Protocol Type: Link-state routing protocol

Algorithm: Dijkstra's Shortest Path First algorithm

Administrative Distance: 110

- Convergence: Fast convergence due to link-state database
- **Scalability:** Hierarchical design with areas for large networks
- Metric: Cost based on bandwidth

Why OSPF is Used:

- Provides loop-free routing within an autonomous system
- Supports equal-cost multi-path (ECMP) routing
- Efficient bandwidth utilization
- Fast convergence after network changes
- Supports VLSM (Variable Length Subnet Masking)

What is BGP?

Border Gateway Protocol (BGP) is an exterior gateway protocol (EGP) used for routing between autonomous systems on the Internet.

Key Characteristics:

- Protocol Type: Path-vector routing protocol
- Administrative Distance: 20 (eBGP), 200 (iBGP)
- Convergence: Slower convergence, policy-based routing
- Scalability: Designed for Internet-scale routing
- Metric: Path attributes (AS_PATH, LOCAL_PREF, MED, etc.)

Types of BGP:

- eBGP (External BGP): Between different autonomous systems
- **iBGP** (Internal BGP): Within the same autonomous system

Why BGP is Used:

- Policy-based routing decisions
- Loop prevention through AS_PATH attribute
- Supports complex routing policies
- Essential for Internet connectivity
- Provides redundancy and load balancing

Network Architecture

Physical Topology

IP Addressing Scheme

Router	Interface	IP Address	Subnet Mask	Connected To	Description
R1	G0/0/0	10.0.0.1/30	255.255.255.252	R2	R1-R2 Link
R1	Lo0	1.1.1.1/32	255.255.255	Loopback	Router ID
R2	G0/0/0	10.0.0.2/30	255.255.255.252	R1	R2-R1 Link
R2	G0/0/1	10.0.0.5/30	255.255.255.252	R3	R2-R3 Link
R2	Lo0	2.2.2.2/32	255.255.255.255	Loopback	Router ID
R3	G0/0/0	10.0.0.6/30	255.255.255.252	R2	R3-R2 Link
R3	G0/0/1	10.0.0.9/30	255.255.255.252	R4	R3-R4 Link
R3	Lo0	3.3.3.3/32	255.255.255.255	Loopback	Router ID
R4	G0/0/0	10.0.0.10/30	255.255.255.252	R3	R4-R3 Link
R4	Lo0	4.4.4.4/32	255.255.255	Loopback	Router ID
4	•	•	•	•	

Autonomous System Design

- **AS 100:** Contains R1 and R2
 - OSPF Process ID: 1
 - Internal routing via OSPF
 - R2 acts as BGP border router
- AS 200: Contains R3 and R4
 - OSPF Process ID: 2
 - Internal routing via OSPF
 - R3 acts as BGP border router

Configuration Implementation

Step 1: Basic Interface Configuration

Router R1 Configuration

cisco

no shutdown

configure terminal hostname R1 interface GigabitEthernet0/0/0 ip address 10.0.0.1 255.255.255.252

interface loopback0 ip address 1.1.1.1 255.255.255.255 no shutdown

Router R2 Configuration

cisco

configure terminal hostname R2 interface GigabitEthernet0/0/0 ip address 10.0.0.2 255.255.255 no shutdown

interface GigabitEthernet0/0/1 ip address 10.0.0.5 255.255.255.252 no shutdown

interface loopback0 ip address 2.2.2.2 255.255.255 no shutdown

Router R3 Configuration

configure terminal hostname R3 interface GigabitEthernet0/0/0 ip address 10.0.0.6 255.255.255.252 no shutdown

interface GigabitEthernet0/0/1 ip address 10.0.0.9 255.255.255.252 no shutdown

interface loopback0 ip address 3.3.3.3 255.255.255.255 no shutdown

Router R4 Configuration

cisco

configure terminal hostname R4 interface GigabitEthernet0/0/0 ip address 10.0.0.10 255.255.255.252 no shutdown

interface loopback0 ip address 4.4.4.4 255.255.255 no shutdown

Step 2: OSPF Configuration AS 100

OSPF Configuration (R1 and R2)

Router R1:

cisco

router ospf 1 router-id 1.1.1.1 network 10.0.0.0 0.0.0.3 area 0 network 1.1.1.1 0.0.0.0 area 0

Router R2:

cisco

router ospf 1

router-id 2.2.2.2

network 10.0.0.0 0.0.0.3 area 0

network 10.0.0.4 0.0.0.3 area 0

network 2.2.2.2 0.0.0.0 area 0

AS 200 OSPF Configuration (R3 and

R4) Router R3:

cisco

router ospf 2

router-id 3.3.3.3

network 10.0.0.4 0.0.0.3 area 0

network 10.0.0.8 0.0.0.3 area 0

network 3.3.3.3 0.0.0.0 area 0

Router R4:

cisco

router ospf 2

router-id 4.4.4.4

network 10.0.0.8 0.0.0.3 area 0

network 4.4.4.4 0.0.0.0 area 0

Step 3: BGP Configuration

External BGP (eBGP)

Configuration Router R2 (AS 100):

cisco

router bgp 100

bgp log-neighbor-changes

neighbor 10.0.0.6 remote-as 200

network 1.1.1.1 mask 255.255.255.255

network 2.2.2.2 mask 255.255.255.255

Router R3 (AS 200):

router bgp 200
bgp log-neighbor-changes
neighbor 10.0.0.5 remote-as 100
network 3.3.3.3 mask 255.255.255.255

Step 4: Route Redistribution Configuration

network 4.4.4.4 mask 255.255.255.255

To enable full connectivity between all routers, route redistribution was implemented:

Router R2:

router ospf 1
redistribute bgp 100 subnets
router bgp 100
redistribute ospf 1

Router R3:

cisco

router ospf 2 redistribute bgp 200 subnets

router bgp 200 redistribute ospf 2

Command Explanations

OSPF Commands Detailed

router ospf [process-id]

Purpose: Enables OSPF routing process

Parameters: Process ID (1-65535) - locally significant

• Usage: router ospf 1

router-id [ip-address]

•

Purpose: Sets OSPF router identifier

Parameters: IP address format (typically loopback IP)

• Usage: router-id 1.1.1.1

network [network] [wildcard-mask] area [area-id]

• Purpose: Advertises networks into OSPF

• Parameters:

Network: Network address

Wildcard mask: Inverse of subnet mask

Area: OSPF area number

• Usage: network 10.0.0.0 0.0.0.3 area

BGP Commands Detailed

router bgp [as-number]

Purpose: Enables BGP routing process

Parameters: AS number (1-65535)

• Usage: router bgp 100

neighbor [ip-address] remote-as [as-number]

Purpose: Defines BGP neighbor relationship

• Parameters:

IP address: Neighbor's IP

AS number: Neighbor's AS number

• Usage: neighbor 10.0.0.6 remote-as 200

network [network] mask [subnet-mask]

Purpose: Advertises network via BGP

Parameters:

Network: Network address

Mask: Subnet mask

• Usage: (network 1.1.1.1 mask 255.255.255.255

redistribute [protocol] [process-id] subnets

Purpose: Redistributes routes from one protocol to another

Parameters:

Protocol: Source routing protocol

Process-id: Process identifier

Subnets: Include subnet routes

• Usage: redistribute ospf 1 subnets

Loopback Addresses

What are Loopback Addresses?

Loopback interfaces are virtual interfaces that are always up and reachable as long as the router is functioning. They are not associated with any physical interface.

Why Loopback Addresses are Used

1. **Stable Router ID:** Provides consistent OSPF router identification

- 2. **BGP Route Advertisement:** Used to advertise specific networks
- 3. Management Access: Provides reliable management access point
- 4. **Testing Connectivity:** Useful for end-to-end reachability testing
- 5. **Load Balancing:** Can represent networks for traffic distribution

Loopback Implementation in This Network

Router	Loopback IP	Purpose	
R1	1.1.1.1/32	OSPF Router ID, BGP advertisement	
R2	2.2.2.2/32	OSPF Router ID, BGP advertisement	
R3	3.3.3.3/32	OSPF Router ID, BGP advertisement	
R4	4.4.4.4/32	OSPF Router ID, BGP advertisement	
4	•	'	-

Troubleshooting and Testing

Initial Connectivity Issues

Problem Identification

Initial testing revealed that routers could not ping across AS boundaries:

- R4 could not ping R1's loopback (1.1.1.1)
- R1 could not ping R4's loopback (4.4.4.4)

Root Cause Analysis

The issue was identified as asymmetric routing:

1. Forward Path: Routes existed via OSPF/BGP

2. **Return Path:** Missing routes for return traffic

Solution Implementation

Route redistribution was implemented to solve the connectivity issue:

```
cisco

# On R2 (AS 100 border router)
router ospf 1
redistribute bgp 100 subnets

router bgp 100
redistribute ospf 1

# On R3 (AS 200 border router)
router ospf 2
redistribute bgp 200 subnets

router bgp 200
redistribute ospf 2
```

Verification Commands

OSPF Verification

cisco

show ip ospf neighbor # View OSPF neighbor relationships show ip ospf database # Display OSPF link-state database show ip route ospf # Show OSPF-learned routes

BGP Verification

cisco

show ip bgp summary # BGP neighbor status and statistics

show ip bgp # BGP routing table

show ip route bgp # Show BGP-learned routes

Connectivity Testing

cisco

ping [destination-ip] # Basic connectivity test

ping [destination-ip] source loopback0 # Test with specific source

traceroute [destination-ip] # Path verification

Test Results

OSPF Neighbor Verification

R1 OSPF Neighbors:

Neighbor ID Pri State Dead Time Address Interface
2.2.2.2 1 FULL/BDR 00:00:39 10.0.0.2 GigabitEthernet000/

R3 OSPF Neighbors:

Neighbor ID Pri State Dead Time Address Interface
4.4.4.4 1 FULL/BDR 00:00:38 10.0.0.10 GigabitEthernet0/10/
2.2.2.2 1 FULL/BDR 00:00:35 10.0.0.5 GigabitEthernet0/20/

BGP Summary Verification

R3 BGP Summary:

BGP router identifier 3.3.3.3, local AS number 200

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

10.0.0.5 4 100 5 3 5 0 0 00:01:02 4

Final Connectivity Tests

All connectivity tests were successful after implementing route redistribution:

From R4:

R4#ping 1.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

R4#ping 2.2.2.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 2.2.2.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

From R1:

R1#ping 3.3.3.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 3.3.3.3, timeout is 2 seconds:

1111

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

R1#ping 4.4.4.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 4.4.4.4, timeout is 2 seconds:

!!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

Network Routing Tables

Final Routing Table Analysis

After successful configuration, the routing tables showed proper route learning:

R4 Routing Table for 1.1.1.1

Routing entry for 1.1.1.1/32

Known via "ospf 2", distance 110, metric 20, type intra area

Last update from 10.0.0.9 on GigabitEthernet0/0/0, 00:00:09 ago

Routing Descriptor Blocks:

* 10.0.0.9, from 3.3.3.3, 00:00:09 ago, via GigabitEthernet0/0/0

Route metric is 20, traffic share count is 1

This shows that R4 learned about R1's loopback through OSPF redistribution via R3.

Configuration Best Practices Implemented

- 1. Router ID Configuration: Used loopback addresses for stable router IDs
- 2. **Area Design:** Used Area 0 (backbone area) for simplified topology
- 3. Route Redistribution: Implemented bidirectional redistribution for full connectivity
- 4. BGP Logging: Enabled neighbor change logging for troubleshooting
- 5. Interface Descriptions: Used meaningful IP addressing scheme

Conclusion

This project successfully demonstrated the implementation of OSPF and BGP routing protocols in a multiautonomous system environment. The key achievements include:

Technical Accomplishments

- 1. **Successful Protocol Implementation:** Both OSPF and BGP were properly configured and operational
- 2. Inter-AS Connectivity: Established communication between different autonomous systems
- 3. Route Redistribution: Implemented proper route sharing between protocols
- 4. **Troubleshooting Resolution:** Identified and resolved connectivity issues through systematic analysis
- 5. **Network Scalability:** Created a foundation that can be expanded for larger networks

Learning Outcomes

- 1. **Protocol Understanding:** Gained deep knowledge of OSPF and BGP operation
- 2. **Troubleshooting Skills:** Developed systematic approach to network problem resolution
- 3. Configuration Mastery: Learned proper implementation of enterprise routing protocols
- 4. **Network Design:** Understanding of autonomous system design principles

Practical Applications

This configuration demonstrates real-world scenarios where:

- Organizations need to connect multiple sites (autonomous systems)
- Internal routing (OSPF) and external routing (BGP) must coexist
- Route redistribution is required for full connectivity
- Redundancy and scalability are important considerations

The implemented network serves as a solid foundation for understanding enterprise routing architectures and can be extended to include additional features such as route filtering, path manipulation, and redundancy configurations.