User's Guide for Multi-Modular Penn State Integrated Hydrologic Model

User's Guide for MM-PIHM Version 1.0

Yuning Shi yshi@psu.edu

May 23, 2016

Contents

1	Overview	3
2	Installation	5
3	Running MM-PIHM	7
4	PIHM input files	8
	4.1 Mesh structure file	. 8
	4.2 Element attribute file	. 9
	4.3 Soil parameter file	. 9
	4.4 Vegetation parameter file	. 10
	4.5 River file	. 10
	4.6 Meteorological forcing file	. 11
	4.7 Control parameter file	. 12
	4.8 Calibration file	. 13
5	PIHM output files	16
\mathbf{A}	Sample input files	18
	A.1 Sample mesh structure file	. 18
	A.2 Sample element attribute file	. 19
	A.3 Sample soil parameter file	. 20
	A.4 Sample vegetation parameter file	. 21
	A.5 Sample river file	. 22
	A.6 Sample meteorological forcing file	. 23
	A.7 Sample control parameter file	
	A.8 Sample calibration file	
В	Sample output files	25

1 Overview

The Multi-Modular Penn State Integrated Hydrologic Model (MM-PIHM) is a multi-modular watershed model based on the Penn State Integrated Hydrologic Model. The first release of MM-PIHM (MM-PIHM Version 1.0) contains the source code for PIHM (Qu and Duffy 2007), PIHM with a surface heat flux module (Flux-PIHM; Shi et al. 2013), PIHM with surface heat flux and biogeochemistry modules (Flux-PIHM-BGC), and Flux-PIHM data assimilation system using the ensemble Kalman filter (Flux-PIHM-EnKF system; Shi et al. 2014).

PIHM is a spatially-distributed, physically-based hydrologic model. Flux-PIHM adds a land surface model [adapted from the Noah land surface model (Chen and Dudhia 2001)] to PIHM for the simulation of land surface processes. Flux-PIHM-BGC couples Flux-PIHM with a terrestrial ecosystem model [adapted from Biome-BGC (Thornton et al. 2002)] that enables the simulation of carbon and nitrogen cycles. The Flux-PIHM-EnKF system can be used for Flux-PIHM parameter and state estimation using data assimilation via the EnKF method (Evensen 1994). The source code for the reactive transport (RT) module and landscape evoluation (LE) module will be provided in future releases.

MM-PIHM is open source software and the development is coordinated via the MM-PIHM GitHub page (https://github.com/PSUmodeling/MM-PIHM).

Penn State University makes no proprietary claims, either statutory or otherwise, to this version and release of MM-PIHM and considers MM-PIHM to be in the public domain for use by any person or entity for any purpose without any fee or charge. We request that any MM-PIHM user include a credit to Penn State in any publications that result from the use of MM-PIHM. The names Penn State shall not be used or referenced in any advertising or publicity which endorses or promotes any products or commercial entity associated with or using PIHM, or any derivative works thereof, without the written authorization of Penn State.

MM-PIHM is provided on an "AS IS" basis and any warranties, either express or implied, including but not limited to implied warranties of noninfringement, originality, merchantability and fitness for a particular purpose, are disclaimed. Penn State will not be obligated to provide the user with any support, consulting, training or assistance of any kind with regard to the use, operation and performance of PIHM nor to provide the user with any updates, revisions, new

versions, error corrections or "bug" fixes. In no event will Penn State be liable for any damages, whatsoever, whether direct, indirect, consequential or special, which may result from an action in contract, negligence or other claim that arises out of or in connection with the access, use or performance of MM-PIHM, including infringement actions.

2 Installation

The source code provided in the MM-PIHM package can be used to compile excecutables for PIHM, Flux-PIHM, Flux-PIHM-BGC, and Flux-PIHM-EnKF.

MM-PIHM requires the SUNDIALS CVODE implicit solver. The SUNDIALS Version 2.2.0 source code, which contains CVODE Version 2.4.0, is provided with the MM-PIHM package for users' convenience. SUNDIALS (©2012–2014) is copirighted software produced at the Lawrence Livermore National Laboratory. A SUNDIALS copyright note can be found in the sundials/shared directory. If you have not previously installed CVODE Version 2.4.0, you need to run

\$ make sundials

to install CVODE.

After CVODE is successfully installed, you can now install PIHM using

\$ make pihm

To install other MM-PIHM members, run

\$ make <model>

where <model> can be flux-pihm, flux-pihm-bgc, or flux-pihm-enkf.

The command

\$ make clean

will clean the executbles and object files. Note that if you want to switch from one MM-PIHM model to another MM-PIHM model, you must \$ make clean first.

A help message will appear if you run \$ make:

Makefile for MM-PIHM

USAGE:

help: Show this help

all: Install sundials and compile PIHM

sundials: Install sundials library

pihm: Compile PIHM

flux-pihm: Complile Flux-PIHM (PIHM with land surface module,

adapted from Noah LSM)

rt-flux-pihm: Complile RT-Flux-PIHM (Reactive Transport Flux PIHM

) for hydrogeochemical coupling.

flux-pihm-bgc: Compile Flux-PIHM-BGC (Flux-PIHM with

Biogeochemical module, adapted from Biome-BGC)

flux-pihm-enkf: Compile Flux-PIHM-EnKF (Flux-PIHM EnKF system) pihm-cycles: Compile PIHM-Cycles (Flux-PIHM with crop module,

adapted from Cycles)

clean: Clean executables and objects

NOTE: Please always "make clean" when switching from one module to another!

3 Running MM-PIHM

After the installation, you can run MM-PIHM models using

```
$ ./<model> [-v] [-d] [-o] ct>
```

where <model> is the installed executable, <project> is the name of the project, and [-vdo] are optional parameters.

The optional -v parameter will turn on the verbose mode. The optional -d parameter will turn on the debug mode. The optional -o will let MM-PIHM write all model output variables in the output directory (this may overwrite existing model output files), instead of being saved in a separate directory named after the project and the system time when the simulation is executed (Section 5).

When MM-PIHM model runs, the model will look into the input/ct> directory for the input files (Section 4). The following message should appear for successful MM-PIHM runs:

```
########
                                    ##
           #### ##
                         ## ##
##
            ##
                 ##
                         ## ###
                                   ###
##
            ##
                ##
                         ## #### ####
########
            ##
                ######## ## ### ##
##
            ##
                         ## ##
                                    ##
##
            ##
                 ##
                         ## ##
                                    ##
##
           #### ##
                         ## ##
                                    ##
```

The Penn State Integrated Hydrologic Model

Output directory: output/example.1603021343/

Step = 2009-01-01 00:00 Step = 2009-01-01 01:00 Step = 2009-01-01 02:00

4 PIHM input files

PIHM input files are organized by projects. The input files for each project (except for the vegprmt.tbl file) should be put into the same directory, under <PIHM_DIR>/input/<project>, where <PIHM_DIR> is the directory in which PIHM is installed, and <project> is the name of the project. The vegprmt.tbl input file is provided with the source code, and is stored in the input directory. Each project may have a total of twelve input files, including eight required input files and four optional input files (Table 1).

Table 1: A list of PIHM input files.

File	File name	Purpose
Required:		
Mesh structure	<pre><pre><pre>oject>.mesh</pre></pre></pre>	Spatial information of nodes and irregular meshes
Element attribute	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Attribute table defining different classes an element belongs to
Soil parameter	<pre><pre><pre>oject>.soil</pre></pre></pre>	Soil properties of different soil types
Vegetation parameter	vegprmt.tbl	Landcover properties of different landcover types
River	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Spatial, geometry and material properties of river channels
Meteorological forcing	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Meteorological forcing time series
Model control parameter	<project>.para</project>	Control parameters (solver options, model modes, error control, etc.)
Calibration file	<pre><pre>ct>.calib</pre></pre>	Calibration coefficients
Optional:		
Geology parameter	<pre><pre><pre>project>.geol</pre></pre></pre>	Geology properties of bedrock
Boundary condition	<pre><pre><pre>oject>.ibc</pre></pre></pre>	Boundary condition time series
Initial condition	<pre><pre><pre>oject>.init</pre></pre></pre>	Initial condition
Leaf area index file	<project>.lai</project>	Leaf area time series

4.1 Mesh structure file

The mesh structure (.mesh) file is a required input file for PIHM. It provides the irregular mesh (triangular irregular network, or TIN) structure of the model domain. The mesh structure file consists of the element block and the node block. The element block describes the total number of elements, and the three vertex nodes and three neighbor elements of each trigular element. The node block describes the location and elevation of each node. A sample mesh structure file is provided in Appendix A.1. A description of the input variables can be found in Table 2.

Table 2: Description of the mesh structure input file.

Variable	Type	Description	Unit
Element block			
NUMELE	Integer	Total number of elements	-
INDEX	Integer	Element index	-
$\mathtt{NODE}\left[i ight]$	Integer	The i th node of element	-
$\mathtt{NABR}\left[i ight]$	Integer	The neighbor element on the i th edge ^a	-
$Node\ bloc$	k		
NUMNODE	Integer	Total number of nodes	-
INDEX	Integer	Node index	-
X	Double	x coordinate of node	m
Y	Double	y coordinate of node	m
ZMIN	Double	Bedrock elevation of node	m
ZMAX	Double	Surface elevation of node	m

^a 0: Boundary.

4.2 Element attribute file

The element attribute (.att) file is a lookup table which stores the attribute of each mesh element, including soil type, land cover type, meteorological forcing type, boundary condition type, etc. It allows efficient data storage. A sample element attribute file is provided in Appendix A.2. A description of the input variables can be found in Table 3.

Table 3: Description of element attribute file.

Variable	Type	Description	Unit
INDEX	Integer	Element index	-
SOIL	Integer	Soil class	-
GEOL	Integer	Geology class	-
LC	Integer	Land cover class	-
METEO	Integer	Meteorological forcing series	-
LAI	Integer	Leaf area index forcing series ^a	-
SS	Integer	Source/sink forcing series	-
$\mathtt{BC}[i]$	Integer	Boundary condition type on Edge i	-

^a 0: NLCD climatological LAI will be used.

4.3 Soil parameter file

The soil parameter (.soil) file contains the hydraulic and thermal parameters of all soil classes, for both soil matrix and macropore, in the model domain. A sample soil parameter file is provided

in Appendix A.3. A description of the input variables can be found in Table 4.

Table 4: Description of soil parameter file.

Variable	Type	Description	Unit
INDEX	Integer	Soil class index	-
SILT	Double	Silt percentage	%
CLAY	Double	Clay percentage	%
OM	Double	Organic matter percentage	%
BD	Double	Bulk density	${ m g~cm^{-3}}$
KINF	Double	Vertical saturated infiltration hydraulic conductivity ^a	$\mathrm{m}\ \mathrm{s}^{-1}$
KSATV	Double	Vertical saturated hydraulic conductivity ^a	$\mathrm{m}\ \mathrm{s}^{-1}$
KSATH	Double	Horizontal saturated hydraulic conductivity ^a	$\mathrm{m}\ \mathrm{s}^{-1}$
MAXSMC	Double	Porosity ^a	$\mathrm{m^3~m^{-3}}$
MAXSMC	Double	Residual porosity ^a	$\mathrm{m^3~m^{-3}}$
ALPHA	Double	van Genuchten soil parameter (related to the inverse of the	m^{-1}
		air entry suction) ^a	
BETA	Double	van Genuchten soil parameter (measure of the pore-size	Dimensionless
		distribution) ^a	
MACHF	Double	Horizontal area fraction of macropore	$\mathrm{m^2~m^{-2}}$
MACVF	Double	Vertical area fraction of macropore	$\mathrm{m^2~m^{-2}}$
DMAC	Double	Macropore depth	m
QTZ	Double	Quartz content ^a	100%
DINF	Double	Top soil layer across which infiltration is calculated	m
KMACV_RO	Double	Ratio between vertical macropore hydraulic conductivity	Dimensionless
		and vertical saturated infiltration hydarulic conductivity	
KMACH_RO	Double	Ratio between horizontal macropore hydraulic conductivity	Dimensionless
		and horizontal saturated hydarulic conductivity	

^a -999 indicates missing values and will be filled using pedotransfer functions.

4.4 Vegetation parameter file

The vegetation parameter (vegprmt.tbl) file contains the vegetation parameters corresponding to different landcover classes present in the model domain. This file is shared by all projects and the file should not be renamed. A sample vegetation parameter file is provided in Appendix A.4. A description of the input variables can be found in Table 5.

4.5 River file

The river (.riv) file provides description of the river channel properties. It consists of five blocks.

The river attribute block describes the topographical information related to river segments (the

Table 5: Description of vegetation parameter (vegprmt.tbl) file.

Variable	Type	Description	Unit
INDEX	Integer	Land cover class	-
SHDFAC	Double	Green vegetation fraction	$\mathrm{m^2~m^{-2}}$
DROOT	Double	Rooting depth	m
RS	Double	Minimum stomatal resistance	$\mathrm{s}~\mathrm{m}^{-1}$
RGL	Double	Parameter used in radiation stress function	${ m W~m^{-2}}$
HS	Double	Parameter used in vapor pressure dificit function	
SNUP	Double	Threshold water-equivalent snow depth that implies 100%	m
		snow cover	
LAIMIN	Double	Minimum leaf area index through the year	$\mathrm{m^2~m^{-2}}$
LAIMAX	Double	Maximum leaf area index through the year	$\mathrm{m^2~m^{-2}}$
EMISMIN	Double	Minimum background emissivity through the year	Dimensionless
EMISMAX	Double	Maximum background emissivity through the year	Dimensionless
ALBMIN	Double	Minimum background albedo through the year	Dimensionless
ALBMAX	Double	Maximum background albedo through the year	Dimensionless
ZOMIN	Double	Minimum background roughness length through the year	m
ZOMAX	Double	Maximum background roughness length through the year	m
ROUGH	Double	Manning's roughness coefficient	${\rm s} {\rm m}^{-1/3}$
TOPT	Double	Optimum transpiration air temperature	K
CFACTR	Double	Parameter used in the canopy interception calculation	Dimensionless
RSMAX	Double	Maximum stomatal resistance	${ m s~m}^{-1}$
BARE	Double	The land-use category representing bare ground	-
NATURAL	Double	The land-use category representing the non-urban portion	-
		of urban land-use points	

upstream and downstrem nodes and the left and right bank elements), and river shape, material, boundary condition, and reservoir types. The shape and material blocks contain the parameters for different shape and material types. The boundary conditions and reservoir time series are provided in the boundary condition and reservoir blocks. A sample river file is provided in Appendix A.5. A description of the input variables can be found in Table 6.

4.6 Meteorological forcing file

The meteorological forcing (.forc) file contains the meteorological forcing for the model, including precipitation rate, air tempearature, relative humidity, surface wind speed, downward solar radiation, downward longwave radiation, and surface pressure. Note that the meteorological forcing file can contain multiple meteorological forcing time series. A sample meteorological forcing file is provided in Appendix A.6. A description of the input variables can be found in Table 7.

Table 6: Description of river (.riv) file.

Variable	Type	Description	Unit
Attribute			
NUMRIV	Integer	Number of river segments	-
INDEX	Integer	River segment ID	-
FROM	Integer	From node ID	-
TO	Integer	To node ID	-
DOWN	Integer	Downstream segment ID	-
LEFT	Integer	Left element ID	-
RIGHT	Integer	Right element ID	-
SHAPE	Integer	Shape type	-
MATL	Integer	River bank and bed material type	-
BC	Integer	Boundary condition type	-
RES	Integer	Reservoir type	-
Shape blo	ck		
SHAPE	Integer	Number of shape types	-
INDEX	Integer	River shape type index	-
DPTH	Double	Depth of river	m
OINT	Double	Interpolation order ^a	Dimensionless
CWID	Double	Width coefficient ^a	Dimensionless
Material	block		
MATERIAL	. Integer	Number of material types	-
INDEX	Integer	River material type index	-
ROUGH	Double	Manning's roughness coefficient	$\mathrm{s}~\mathrm{m}^{-1/3}$
CWR	Double	Discharge coefficient	Dimensionless
KH	Double	River bank hydraulic conductivity	${ m m~s^{-1}}$
KV	Double	River bed hydraulic conductivity	$\mathrm{m}\ \mathrm{s}^{-1}$
BEDTHCK	Double	River bed depth	m
_	y condition	n block	
BC	Integer	Number of boundary conditions	-
Reservoir	block		
RES	Integer	Number of reservoir time series	-

a Interpolation order (b) and width coefficient (a) are parameters defining relationship between river width and depth as $D = ax \left(\frac{W}{2}\right)^b$.

4.7 Control parameter file

The control parameter (.para) file consists of the model control block and the output control block. The model control block provides all the control parameters to the model, including solver options, model modes, parameters that govern model error, etc. The output control block controls which variables should be printed for output with what output interval. The output intervals have the unit of second. If the output interval for a variable is 0, the variable will not be printed for output.

Table 7: Description of meteorological forcing file.

Variable	Type	Description	Unit
METEO_TS	Integer	Index of meteorological forcing time series	-
WIND_LVL	Double	Height of wind speed observation	m
TIME	String	Time of forcing observation	-
PRCP	Double	Precipitation rate	${\rm kg~m^2~s^{-1}}$
SFCTMP	Double	Surface air temperature	K
RH	Double	Relative humidity	%
SFCSPD	Double	Wind speed measured at WIND_LVL	${ m m~s^{-1}}$
SOLAR	Double	Downward solar radiation	${ m W~m^{-2}}$
LONGWV	Double	Downward longwave radiation	${ m W~m^{-2}}$
PRES	Double	Surface pressure	Pa

A sample control parameter file is provided in Appendix A.7. A description of the input variables can be found in Table 8.

4.8 Calibration file

The calibration (.calib) file contains the global calibration coefficient of key model parameters and climate scenario parameters. All calibration coefficients in the .calib file are the calibration multiplier to the original corresponding variables. The climate scenario parameters can be a multiplier or an offset. A sample .calib file is provided in Appendix A.8. A description of the variables can be found in Table 9.

Table 8: Description of .para input file.

Variable	Type	Description	Unit
INIT_MODE	Integer	Initialization mode ^a	-
ASCII_OUTPUT	Integer	ASCII output switch ^b	-
WRITE_IC	Integer	Write initial condition to file switch ^c	-
UNSAT_MODE	Integer	Unsaturation formulation ^d	-
SURF_MODE	Integer	Surface formulation ^d	-
RIV_MODE	Integer	River formulation ^d	-
SOLVER	Integer	CVODE solver type ^{e,f}	-
ABSTOL	Double	Absolute tolerance ^f	m
RELTOL	Double	Relative tolerance ^f	Dimensionless
INIT_SOLVER_STE	P Double	Initial time step ^f	S
MAX_SOLVER_STEP	Double	Maximum time step ^f	S
LSM_STEP	Integer	Land surface model (Evapotranspiration) time	S
		$\mathrm{step^g}$	
START	String	Simulation start time	-
END	String	Simulation end time	-
MODEL_STEPSIZE	Integer	Model step size	s

^a 0: Relaxation mode (Model starts from saturation); 3: Hot start mode (Model starts from the initial condition described in .init file.

b 0: Do not print ASCII output/1: Print ASCII output.

c 0: Do not write .init file/1: Last step of model output will be written into .init file.

d 1: Kinematic/2: Diffusion.

e 2: Iterative.

 $^{^{\}rm f}$ See SUNDIALS manual for details. $^{\rm g}$ Must be larger than ${\tt MODEL_STEPSIZE}.$

^h Output will be turned of if set to 0.

Table 9: Description of .calib input file.

Variable	Type	Description	Unit
Calibratio	n $block$		
KSATH	Double	Calibration coefficients for horizontal saturation conductivity	Dimensionless
KSATV	Double	Calibration coefficients for vertical saturation conductivity	Dimensionless
KINF	Double	Calibration coefficients for vertical infiltration saturation conductivity	Dimensionless
KMACSATH	Double	Calibration coefficients for horizontal macropore saturation conductivity	Dimensionless
KMACSATV	Double	Calibration coefficients for vertical macropore saturation conductivity	Dimensionless
DINF	Double	Calibration coefficients for infiltration depth	Dimensionless
DROOT	Double	Calibration coefficients for rooting depth	Dimensionless
DMAC	Double	Calibration coefficients for macropore depth	Dimensionless
POROSITY	Double	Calibration coefficients for porosity	Dimensionless
ALPHA	Double	Calibration coefficients for van Genuchten α	Dimensionless
BETA	Double	Calibration coefficients for van Genuchten β	Dimensionless
MACVF	Double	Calibration coefficients for vertical areal fraction of macopore	Dimensionless
MACHF	Double	Calibration coefficients for horizontal areal fraction of macopore	Dimensionless
VEGFRAC	Double	Calibration coefficients for vegetation fraction	Dimensionless
ALBEDO	Double	Calibration coefficients for albedo	Dimensionless
ROUGH	Double	Calibration coefficients for Manning's n for landcover	Dimensionless
PRCP	Double	Calibration coefficients for precipitation rate	Dimensionless
SFCTMP	Double	Calibration coefficients for surface air temperature	Dimensionless
EC	Double	Calibration coefficients for canopy evaporation	Dimensionless
ETT	Double	Calibration coefficients for total transpiration	Dimensionless
EDIR	Double	Calibration coefficients for soil evaporation	Dimensionless
ROUGH_RIV	<i>I</i> Double	Calibration coefficients for river Manning's n	Dimensionless
KRIVH	Double	Calibration coefficients for river bank conductivity	Dimensionless
KRIVV	Double	Calibration coefficients for river bed conductivity	Dimensionless
BEDTHCK	Double	Calibration coefficients for river bed thickness	Dimensionless
RIV_DPTH	Double	Calibration coefficients for river depth	Dimensionless
RIV_WDTH	Double	Calibration coefficients for river width coefficient	Dimensionless
$Climate \ se$	cenario ble	ock	
PRCP	Double	Multiplier for precipitation forcing	Dimensionless
SFCTMP	Double	Offset for surface air temperature	K

5 PIHM output files

PIHM can store model output variables in both text and binary formats. Table 10 shows all available variables for output. The control for output can be found in the model control parameter file 4.7, where users can turn on/off output for desired variables as well as change the output intervals.

Table 10: Description of output variables.

Variable	Extension	Description	Unit
SURF	surf	Surface water level	m
UNSAT	unsat	Unsaturated water storage	m
GW	gw	Element groundwater level	m
RIVSTG	stage	River stage	m
RIVGW	rivgw	River groundwater level	m
SNOW	snow	Water-equivalent snow depth	m
CMC	is	Canopy interception	m
INFIL	infil	Infiltration rate	$\mathrm{m}~\mathrm{s}^{-1}$
RECHARGE	recharge	Recharge rate	$\mathrm{m}~\mathrm{s}^{-1}$
EC	ec	Canopy evaporation	$\mathrm{m}~\mathrm{s}^{-1}$
ETT	ett	Total transpiration	$\mathrm{m}\ \mathrm{s}^{-1}$
EDIR	edir	Soil evaporation	${ m m~s^{-1}}$
RIVFLXO	rivflx0	Longitudinal flow to river	$\mathrm{m}^3~\mathrm{s}^{-1}$
RIVFLX1	rivflx1	Longitudinal flow from river	$\mathrm{m}^3~\mathrm{s}^{-1}$
RIVFLX2	rivflx2	Lateral overland flow to river from left	$\mathrm{m^3~s^{-1}}$
RIVFLX3	rivflx3	Lateral overland flow to river from right	$\mathrm{m}^3~\mathrm{s}^{-1}$
RIVFLX4	rivflx4	Lateral groundwater flow to river from left	$\mathrm{m^3~s^{-1}}$
RIVFLX5	rivflx5	Lateral groundwater flow to river from right	$\mathrm{m^3~s^{-1}}$
RIVFLX6	rivflx6	Leakage flow from river to aquifer	$\mathrm{m}^3~\mathrm{s}^{-1}$
RIVFLX7	rivflx7	Longitudinal flow to river aquifer	$\mathrm{m}^3~\mathrm{s}^{-1}$
RIVFLX8	rivflx8	Longitudinal flow from river aquifer	$\mathrm{m}^3~\mathrm{s}^{-1}$
RIVFLX9	rivflx9	Lateral groundwater flow to aquifer from left	$\mathrm{m}^3~\mathrm{s}^{-1}$
RIVFLX10	rivflx10	Lateral groundwater flow to aquifer from right	$\mathrm{m^3~s^{-1}}$
SUBFLX	subflx[0-2]	Subsurface water flux	$\mathrm{m}^3~\mathrm{s}^{-1}$
SURFFLX	surflx[0-2]	Surface water flux	${ m m}^{3} { m s}^{-1}$

The default output format is binary, but ASCII output can be turned on in the model control parameter file (Section 4.7) if desired. The output files are stored in the output/ct>.<time>/
directory by default, and are named as cproject>.<extension>.<fmt>, where cproject> is the name of the project, <time> is the system time when the simulation is executed, in the format of "yyyymmddHHMM", <extension> indicates the variable stored in the output file (Table 10), and

fmt can be dat (for binary files) or txt (for ASCII files). Each output variable is stored in one output file, which contains the time series of all model grid elements, or river segments.

For the ASCII files, the first column of the output file is output time, in the format of "yyyy-mm-dd HH:MM". The time string is followed by output variables from the first element (or river channel segment) to the last element (or river channel segment). Appendix B shows a sample output file in ASCII format. Structure of the binary output files is similar to the ASCII files, except that the output time is stored as the seconds since the Unix epch, i.e., 00:00:00 UTC 1 January 1970, and the binary files stores the output variables (including the output time) as double-precision floting-point type.

A Sample input files

A.1 Sample mesh structure file

A sample mesh structure (.mesh) file is provided below, which can also be found in the input/example/directory in the MM-PIHM release.

NUMELE	535					
INDEX	NODE1	NODE2	NODE3	NABR1	NABR2	NABR3
1	139	6	179	239	112	238
2	50	49	46	45	4	23
3	16	249	248	442	439	440
4	50	46	48	30	77	2
5	256	257	205	455	453	452
531	237	297	212	375	371	420
532	131	298	121	470	201	204
533	295	298	268	204	475	526
534	218	299	217	499	383	225
535	281	299	291	225	515	518
NUMNOD	E 299					
INDEX	X		Y		ZMIN	ZMAX
1	254488	.5000	4505385	.500	269.576	271.617
2	254469	.5000	4505386	.500	268.968	270.577
3	254381	.5000	4505355	EOO	064 050	000 200
4			4000000	.500	264.050	266.320
4	254375	.0479	4505356		263.830	266.067
5	254375 254356			.322		
_			4505356	.322	263.830	266.067
5		.9955	4505356	.322	263.830	266.067
5	254356	.9955	4505356 4505358	.322 .623	263.830 262.499	266.067 264.821
5 295	254356 254523	.9955 .0261 .0785	4505356 4505358 4505424	.322 .623 .616 .247	263.830 262.499 274.937	266.067 264.821 277.046
5 295 296	254356 254523 254437	.9955 .0261 .0785 .3477	4505356 4505358 4505424 4505434	.322 .623 .616 .247 .753	263.830 262.499 274.937 280.271	266.067 264.821 277.046 282.313

A.2 Sample element attribute file

A sample element attribute (.att) file is provided below, which can also be found in the input/example directory in the MM-PIHM release.

INDEX	SOIL	GEOL	LC	METEO	LAI	SS	BCO	BC1	BC2
1	5	0	5	1	1	0	0	0	0
2	1	0	5	1	1	0	0	0	0
3	1	0	5	1	1	0	0	0	0
4	2	0	4	1	1	0	0	0	0
5	2	0	4	1	1	0	0	0	0
531	1	0	4	1	1	0	0	0	0
532	1	0	4	1	1	0	0	0	0
533	3	0	4	1	1	0	0	0	0
534	1	0	4	1	1	0	0	0	0
535	1	0	4	1	1	0	0	0	0

A.3 Sample soil parameter file

A sample .soil file is provided on the next page, which can also be found in the input/example directory in the MM-PIHM release.

NUMSOI	L 5														
INDEX	SILT	CLAY	MO	BD	KINF	KSATV	KSATH	MAXSMC	MINSMC	ALPHA	BETA	MACHF	MACVF	DMAC	QTZ
1	41.67	14.44	4.02	1.15	9.098E-5	1.625E-5	1.202E-5	0.3698	0.0370	8.80	1.240	0.01	0.01	1.0	0.25
2	33.90	15.85	3.44	1.53	1.516E-4	1.862E-5	9.802E-6	0.4032	0.0403	6.45	1.212	0.01	0.01	1.0	0.25
3	33.90	15.85	3.44	1.49	9.833E-5	1.086E-5	2.263E-5	0.4247	0.0425	6.50	1.258	0.01	0.01	1.0	0.25
4	39.70	19.86	3.66	1.64	1.506E-5	6.762E-6	3.047E-5	0.4179	0.0418	5.34	1.260	0.01	0.01	1.0	0.25
5	39.70	19.86	3.66	1.48	8.281E-5	3.705E-5	6.962E-5	0.4928	0.0493	5.82	1.220	0.01	0.01	1.0	0.25
DINF	0.10	0													
KMACV_RO 100.0															
KMACH_RO 1000.0															

A.4 Sample vegetation parameter file

A sample vegetation parameter (vegprmt.tbl) file is provided below, which can also be found in the input directory in the MM-PIHM release.

NUMLC	20														
INDEX	SHDFAC	DROOT	RS	RGL	HS	SNUP	LAIMIN	LAIMAX	EMISMIN	EMISMAX	ALBMIN	ALBMAX	ZOMIN	ZOMAX	ROUGH
1	0.70	0.6	125.0	30.0	47.35	0.08	5.00	6.40	0.950	0.950	0.12	0.12	0.50	0.50	0.070
2	0.95	0.6	150.0	30.0	41.69	0.08	3.08	6.48	0.950	0.950	0.12	0.12	0.50	0.50	0.070
3	0.70	0.6	150.0	30.0	47.35	0.08	1.00	5.16	0.930	0.940	0.14	0.15	0.50	0.50	0.070
4	0.80	0.6	100.0	30.0	54.53	0.08	1.85	3.31	0.930	0.930	0.16	0.17	0.50	0.50	0.070
5	0.80	0.6	125.0	30.0	51.93	0.08	2.80	5.50	0.930	0.970	0.17	0.25	0.20	0.50	0.060
6	0.70	0.4	300.0	100.0	42.00	0.03	0.50	3.66	0.930	0.930	0.25	0.30	0.01	0.05	0.045
7	0.70	0.4	170.0	100.0	39.18	0.035	0.60	2.60	0.930	0.950	0.22	0.30	0.01	0.06	0.045
8	0.70	0.4	300.0	100.0	42.00	0.03	0.50	3.66	0.930	0.930	0.25	0.30	0.01	0.05	999.9
9	0.50	0.4	70.0	65.0	54.53	0.04	0.50	3.66	0.920	0.920	0.20	0.20	0.15	0.15	999.9
10	0.80	0.4	40.0	100.0	36.35	0.04	0.52	2.90	0.920	0.960	0.19	0.23	0.10	0.12	0.040
11	0.60	0.1	70.0	65.0	55.97	0.015	1.75	5.72	0.950	0.950	0.14	0.14	0.30	0.30	999.9
12	0.80	0.4	40.0	100.0	36.25	0.04	1.56	5.68	0.920	0.985	0.17	0.23	0.05	0.15	0.040
13	0.10	0.05	200.0	999.0	999.0	0.04	1.00	1.00	0.880	0.880	0.15	0.15	0.50	0.50	0.010
14	0.80	0.4	40.0	100.0	36.25	0.04	2.29	4.29	0.920	0.980	0.18	0.23	0.05	0.14	999.9
15	0.00	0.05	999.0	999.0	999.0	0.02	0.01	0.01	0.950	0.950	0.55	0.70	0.001	0.001	999.9
16	0.01	0.05	999.0	999.0	999.0	0.02	0.10	0.75	0.900	0.900	0.38	0.38	0.01	0.01	0.035
17	0.00	0.0	100.0	30.0	51.75	0.01	0.01	0.01	0.980	0.980	0.08	0.08	0.0001	0.0001	0.035
18	0.60	0.4	150.0	100.0	42.00	0.025	0.41	3.35	0.930	0.930	0.15	0.20	0.30	0.30	999.9
19	0.60	0.4	150.0	100.0	42.00	0.025	0.41	3.35	0.920	0.920	0.15	0.20	0.15	0.15	999.9
20	0.30	0.1	200.0	100.0	42.00	0.02	0.41	3.35	0.900	0.900	0.25	0.25	0.05	0.10	999.9
торт	200 0														

TOPT 298.0 CFACTR 0.5 RSMAX 5000.0 BARE 16 NATURAL 14

A.5 Sample river file

A sample river (.riv) file is provided below, which can also be found in the input/example directory in the MM-PIHM release.

NUMRIV	20								
INDEX	FROM	TO	DOWN	LEFT	RIGHT	SHAPE	MATL	BC	RES
1	1	2	2	118	162	1	1	0	0
2	2	97	3	153	160	1	1	0	0
3	97	93	4	120	155	1	1	0	0
4	93	52	5	148	151	2	1	0	0
5	52	57	6	71	98	2	1	0	0
6	57	60	7	8	80	2	1	0	0
7	60	3	8	51	85	2	1	0	0
8	3	4	9	9	57	2	1	0	0
9	4	5	10	7	31	3	1	0	0
10	5	140	11	240	241	3	1	0	0
11	140	63	12	110	245	3	1	0	0
12	63	139	13	270	273	3	1	0	0
13	139	6	14	1	238	3	1	0	0
14	6	7	15	93	314	4	1	0	0
15	7	55	16	28	84	4	1	0	0
16	55	8	17	75	76	4	1	0	0
17	8	41	18	54	65	4	2	0	0
18	41	43	19	15	63	4	2	0	0
19	43	9	20	58	59	4	2	0	0
20	9	10	-3	17	66	4	2	0	0
SHAPE	4								
INDEX	DPTH	OINT	CWID						
1	0.1	1	1.5						
2	0.3	1	1.5						
3	0.4	1	1.5						
4	0.4	1	1.5						
MATERI	AL 2								
INDEX	ROUGH	CWR	KH		KV	BEDT	HCK		
1	0.04	0.6	6.96	2E-5	3.705E-	5 0.11			
2	0.04	0.6	6.96	2E-5	3.705E-	5 1.00			
BC 0									
RES 0									

A.6 Sample meteorological forcing file

A sample meteorological forcing file is provided below. It is the same as the input/example/example.forc file in the MM-PIHM release.

METEO_TS 1 WIND	_LVL 10.0						
TIME	PRCP	SFCTMP	RH	SFCSPD	SOLAR	LONGWV	PRES
TS	kg/m2/s	K	%	m/s	W/m2	W/m2	Pa
2008-01-01 00:00	0.00047200	272.35	83.88	2.62	0.00	227.36	97614.16
2008-01-01 01:00	0.00047200	271.94	84.75	1.75	0.00	224.42	97625.35
2008-01-01 02:00	0.00047200	270.75	90.53	2.77	0.00	231.55	97628.40
2008-01-01 03:00	0.00047200	270.82	90.02	3.79	0.00	231.40	97576.52
2008-01-01 04:00	0.00047200	270.50	90.83	5.17	0.00	239.81	97439.20
2008-01-01 05:00	0.00000000	271.52	86.02	5.98	0.00	243.08	97374.10
2008-01-01 06:00	0.00000000	273.24	79.50	7.58	0.00	274.33	97226.61
2008-01-01 07:00	0.00000000	273.32	79.67	8.68	0.00	293.40	97098.44
2008-01-01 08:00	0.00000000	273.72	79.88	7.34	0.00	312.25	96976.38
2008-01-01 09:00	0.00000000	274.11	80.50	8.51	0.00	304.58	96836.00
2008-01-01 10:00	0.00000000	275.16	80.41	3.81	0.00	317.05	96845.16
2008-01-01 11:00	0.00000000	275.23	82.25	6.28	0.00	312.86	96840.07
2008-01-01 12:00	0.00041700	273.64	93.53	7.34	0.00	292.23	96808.54
2008-01-01 13:00	0.00005600	273.20	96.97	7.32	39.98	250.54	96784.12
2008-01-01 14:00	0.00000000	273.29	97.47	8.18	262.38	258.77	96836.00
2008-01-01 15:00	0.00002800	274.35	93.10	8.80	126.15	296.00	96891.95
2008-01-01 16:00	0.00000000	275.59	67.40	8.43	119.58	300.35	96859.40
2008-01-01 17:00	0.00000000	275.35	62.29	8.21	117.95	300.32	96792.26
2008-01-01 18:00	0.00000000	275.27	62.89	8.67	107.57	302.44	96813.62
2008-01-01 19:00	0.00000000	274.77	65.81	8.94	109.47	293.69	96846.17
2008-01-01 20:00	0.00000000	274.28	69.28	9.24	77.09	287.17	96860.41
2008-01-01 21:00	0.00000000	274.12	68.07	10.15	21.79	277.67	96881.78
2008-01-01 22:00	0.00000000	273.69	67.75	9.38	0.00	293.64	96920.43
2008-01-01 23:00	0.00000000	273.15	69.57	10.38	0.00	285.67	96931.62
2008-01-02 00:00	0.00000000	272.75	70.72	9.69	0.00	289.00	96979.43

A.7 Sample control parameter file

A sample control parameter file is provided below. It is the same as the input/example/example.para file in the MM-PIHM release.

INIT_MODE	0
ASCII_OUTPUT	1
WRITE_IC	0
UNSAT_MODE	2
SURF_MODE	2
RIV_MODE	2
SOLVER	2
ABSTOL	1E-4
RELTOL	1E-3
INIT_SOLVER_STEP	5E-5
MAX_SOLVER_STEP	60
LSM_STEP	900
START	2009-05-01 00:00
END	2009-11-01 00:00
MODEL_STEPSIZE	60
SURF	3600
UNSAT	3600
GW	3600
RIVSTG	3600
RIVGW	3600
SNOW	3600
CMC	3600
INFIL	3600
RECHARGE	3600
EC	3600
ETT	3600
EDIR	3600
RIVFLXO	3600
RIVFLX1	3600
RIVFLX2	3600
RIVFLX3	3600
RIVFLX4	3600
RIVFLX5	3600
RIVFLX6	3600
RIVFLX7	3600
RIVFLX8	3600
RIVFLX9	3600
RIVFLX10	3600
SUBFLX	3600
SURFFLX	3600

A.8 Sample calibration file

A sample calibration file is provided below. It is the same as the input/example.calib file in the MM-PIHM release.

KSATH	5.0
KSATV	3.5
KINF	5.0
KMACSATH	10.0
KMACSATV	0.25
DINF	1.0
DROOT	1.0
DMAC	1.6
POROSITY	0.78
ALPHA	1.0
BETA	1.14
MACVF	10.0
MACHF	10.0
VEGFRAC	1.0
ALBEDO	1.0
ROUGH	1.0
EC	1.0
ETT	1.0
EDIR	1.0
ROUGH_RIV	1.0
KRIVH	1.0
KRIVV	1.0
BEDTHCK	1.0
RIV_DPTH	1.0
RIV_WDTH	1.0
#########	##############
# Scenario	#
#########	#############
PRCP	1.0
SFCTMP	0.0

B Sample output files

A sample output file is provided below.

```
"2009-05-01 01:00"
                   2.230311 2.226720 2.786549 2.963137
                                                               2.194498
"2009-05-01 02:00"
                   2.256147
                             2.248865
                                       2.804228 2.999801
                                                               2.172541
"2009-05-01 03:00"
                   2.242130 2.233259
                                       2.766913 2.991224
                                                               2.156478
"2009-05-01 04:00"
                   2.231134 2.218965
                                       2.722830
                                                2.970623
                                                               2.141306
"2009-05-01 05:00"
                   2.222300 2.206838
                                       2.681986
                                                2.931470
                                                               2.128164
```

• • •

References

- Chen, F. and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn StateNCAR MM5 modeling system. Part I: Model implementation and sensitivity. *Mon. Weather Rev.*, **129** (4), 569–585, doi:10.1175/1520-0493(2001)129\(0.0569:CAALSH\)\(0.020:CO:2.
- Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. *J. Geophys. Res.*, **99** (C5), 10143–10162, doi:10.1029/94JC00572.
- Qu, Y. and C. J. Duffy, 2007: A semidiscrete finite volume formulation for multiprocess watershed simulation. *Water Resour. Res.*, **43** (8), W08 419, doi:10.1029/2006WR005752.
- Shi, Y., K. J. Davis, C. J. Duffy and X. Yu, 2013: Development of a Coupled Land Surface Hydrologic Model and Evaluation at a Critical Zone Observatory. *J. Hydrometeorol.*, **14** (5), 1401–1420, doi:10.1175/JHM-D-12-0145.1.
- Shi, Y., K. J. Davis, F. Zhang, C. J. Duffy and X. Yu, 2014: Parameter estimation of a physically based land surface hydrologic model using the ensemble Kalman filter: A synthetic experiment. Water Resour. Res., 50 (1), 706–724, doi:10.1002/2013WR014070.
- Thornton, P. E. and Coauthors, 2002: Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. *Agric. For. Meteor.*, **113** (1–4), 185–222, doi:10.1016/S0168-1923(02)00108-9.