嵌入式实时虚拟机ZVM关键核心技术进展介绍

汇报人: 熊程来, openEuler SIG-Zephyr Maintainer

湖南大学

嵌入式与网络计算湖南省重点实验室谢国琪教授团队

2023-12-16

嵌入式实时虚拟机ZVM关键核心技术进展介绍

- ZVM总体系统架构介绍
 - ZVM设计思路;
 - ZVM架构设计;
- ZVM系统功能特性
 - · ZVM系统功能特性;
 - ZVM系统新功能支持;
 - 性能测试对比;
- 未来应用场景

嵌入式OS对富功能与硬实时的混合关键部署要求

双子星联动

富功能OS

□ 智能座舱

- 】数据可视化
- □ 场景可视化

Linux宏内核

Linux:功能强大 但实时性不足

实时控制OS

- □ 智能驾驶
- □ 底盘控制
- □ 动力控制

实时微内核

QNX: 以闭源的方式来形成技术壁垒

满足关键场景对智能化、实时性及安全性的多重要求!

ZVM总体系统架构介绍

- 1 基于Zephyr RTOS的虚拟机设计思路
 - Zephyr RTOS现有功能支持
 - 核心虚拟化模块实现
 - 可裁剪Zephyr 系统模块
 - 运行虚拟机实例

ZVM整体设计思路

目标:满足开源、实时,灵活,智能特性的嵌入式虚拟机管理平台

ZVM总体系统架构介绍

2 基于Zephyr RTOS的虚拟机架构设计

分层架构设计:包括硬件、hypervisor、guest OS到应用的多层级系统:

- 硬件层: ARMv8处理器平台,包括处理器、内存、中断控制器等核心设备的支持;
- 虚拟化层:核心虚拟化功能模块化设计,虚拟化拓展模块设计,复用Zephyr RTOS内核服务及设备模型;
- 内核层:运行Zephyr RTOS、Linux等ARMv8架构内核;
- 应用层:客户虚拟机中运行实时或非实时任务;

ZVM整体架构

ZVM系统功能特性

1 系统可配置性

• 支持配置ZVM的灵活配置, 可在type-1到type-2型虚拟 机的按需切换; 2 动态资源分配

支持运行时动态内存分配、启动时动态设备分配,自适应任务调度;

3 设备虚拟化

• 支持设备直通、完全虚拟化、 半虚拟化virtlOv框架; 多类型Guest OS

支持社区Linux、openEulerEmbedded、Zephyr RTOS等;

5 Guest OS间通信

• 支持基于共享内存的实时通信;

3 强实时性

• 复用Zephyr RTOS的强实时能力,支持抢占式、全局/分区调度算法;

7 端侧实时推理

支持Paddle Lite 端侧AI推理
框架,支持ResNet50等多种
AI模型;

8 ARMv8硬件架构

• 支持RK3568等国产嵌入式 SoC板卡,利用VHE特性减 少性能损耗;

ZVM系统功能新特性

- 1 ZVM系统设备模型
 - · 支持核心设备完全虚拟化;
 - · 支持半虚拟化方案;
 - · 支持ZVM虚拟机的直通设备模型;
 - 根据板卡overlay初始化板卡可用设备;
 - ZVM初始化idle deveice list;
 - VM初始化分配空闲设备;
 - 使用virt device driver实例虚拟化设备;
 - 建立虚拟机设备的MMIO映射;
 - 通过API -> handle函数处理设备中断;

ZVM虚拟机直通设备模型

ZVM系统功能新特性

2 设备半虚拟化框架virtlO

 符合OASIS virtlO V1.1规范,支持virtio_mmio传输方式, 实现了virtlO块设备的后端支持

openEuler Embedded虚拟机支持

增添对openEuler Embeded虚拟机的支持,并支持启动 个性化定制内核

ZVM性能测试与对比

处理器频率1.42Ghz, 计 数器时钟频率24Mhz zym(cycles) zym(ns) loss

实时性对比,基于Zephyr Lantency_benchmark

items	board(cycles)	board(ns)	kvm(cycles)	kvm(ns)	loss	zvm(cycles)	zvm(ns)	loss
Preemptive threads ctx switch via k_yield (K -> K)	5	209	3	164	N.	4	207	N.
Cooperative threads ctx switch via k_yield (K -> K)	5	209	3	155	N.	4	207	N.
Switch from ISR back to interrupted thread	1	59	4	203	244.1%	1	59	N.
Switch from ISR to another thread (kernel)	1	82	2	88	7.3%	1	82	<u>\</u>
Create kernel thread from kernel thread	33	1399	35	1459	4.3%	33	1396	N.
Start kernel thread from kernel thread	6	268	7	321	19.8%	6	267	N.
Suspend kernel thread from kernel thread	6	250	5	249	N.	6	251	0.4%
Resume kernel thread from kernel thread	5	222	5	226	1.8%	5	221	<u>\</u>
Abort kernel thread from kernel thread	2	89	2	106	19.1%	2	88	<u>\</u>
Give a semaphore (no waiters) from kernel thread	0	3	0	2	N.	0	3	<u>\</u>
Take a semaphore (no blocking) from kernel thread	429496	17895679	429496	17895672	N.	429496	17895679	<u>\</u>
Take a semaphore (context switch K -> K)	5	241	5	227	N.	5	244	1.2%
Give a semaphore (context switch K -> K)	7	296	5	237	N.	7	296	<u>\</u>
Lock a mutex from kernel thread	429496	17895685	429496	17895673	N	429496	17895685	<u>\</u>
Unlock a mutex from kernel thread	429496	17895669	429496	17895660	N.	429496	17895669	N.
Average time for heap malloc	4	189	3	163	N.	4	192	1.6%
Average time for heap free	3	163	3	148	N.	3	157	N.

ZVM性能测试与对比

处理器频率1.42Ghz, 计 数器时钟频率24Mhz

2

系统性能,基于Zephyr sys_kernel benchmark

items	board(ns)	kvm(ns)	loss	zvm(ns)	Manageroc-11-PC SE Firefly
k_sem_init/ksem_take/ksem_give	1604	4112	156.4%	1633	1.8%
k_sem_init/ksem_take/k_yield/ksem_give	1195	3937	229.5%	1225	2.5%
k_sem_init/ksem_take/ksem_give/ksem_give/ksem_take	875	4316	393.3%	962	9.9%
k_lifo_init/k_lifo_get/k_lifo_put	1400	5920	322.9%	1370	1
k_lifo_init/k_lifo_get/klifo_get/k_lifo_put/k_yield	1283	5804	352.4%	1312	2.3%
k_lifo_init/k_lifo_get/k_lifo_put/klifo_get/k_lifo_put	962	4608	379.0%	991	3.0%
k_fifo_init/k_fifo_get/k_lifo_put	1254	6008	379.1%	1283	2.3%
k_fifo_init/k_fifo_get/k_fifo_get/k_lifo_put/k_yield	1312	5116	289.9%	1283	N
k_fifo_init/k_fifo_get/k_fifo_put/kfifo_get/k_fifo_put	1225	5891	380.9%	1225	N.
k_stack_init/k_stack_pop/k_stack_push	1370	4533	230.9%	1370	N.
k_stack_init/k_stack_pop/k_stack_pop/k_stack_push/k_yield	1195	5804	385.7%	1225	2.5%
k_stack_init/k_stack_pop/k_stack_push/k_stack_pop/k_stack_push	933	4416	373.3%	933	N.
k_mem_slab_alloc	145	300	106.9%	175	20.7%
k_mem_slab_free	116	262	125.9%	116	N

未来发展规划

ZVM未来发展规划 (应用)

(1) 增加对TSN的支持:

在虚拟机中**实现TSN通信协议**,保证车辆内多个域 之间通信的**高可靠、低时延和确定性**,以满足严苛的实时 要求和多个应用场景的需求。

(2) 增加端侧AI推理的支持:

为ZVM适配更多国产高性能嵌入式板卡,为AI模型 的推理提供充足的硬件资源。充分利用底层RTOS的实时 特性,加速AI推理。

(3) 增加对智能机器人控制系统的支持:

在智能机器人平台上搭建控制系统和人机交互系统, 保证实时控制机器人的同时,实现较好的人机交互能力。

THANKS

