Forward kinematics using screws $\mathcal{S} = \begin{bmatrix} \mathbf{w} \\ \mathbf{v} \end{bmatrix}$, $\|\mathbf{w}\| = 1$, $\mathbf{v} = -\mathbf{w} \times \mathbf{p}$

The vector \mathbf{w} is a unit vector along the screw axis.

The vector \mathbf{p} is a position vector from $\{s\}$ to any any point on the screw axis.

Note that $\{s\} = \{\mathbf{0}, \hat{\mathbf{x}}_s, \hat{\mathbf{y}}_s, \hat{\mathbf{z}}_s\}$ is the fixed base frame and $\{b\} = \{\mathbf{o}_b, \hat{\mathbf{x}}_b, \hat{\mathbf{y}}_b, \hat{\mathbf{z}}_b\}$ is the moving end-effector frame. Note the directions of the screws, where ⊗ denotes a vector into the page and ⊙ denotes a vector out of the page.

$$\begin{split} \mathcal{S}_1 &= \begin{bmatrix} -\hat{\mathbf{z}}_s \\ \mathbf{v}_1 \end{bmatrix}, \qquad \mathbf{v}_1 = \mathbf{0} \\ \mathcal{S}_2 &= \begin{bmatrix} \hat{\mathbf{y}}_s \\ \mathbf{v}_2 \end{bmatrix}, \qquad \mathbf{v}_2 = -\hat{\mathbf{y}}_s \times \left(\ell_1 \hat{\mathbf{x}}_s + \ell_2 \hat{\mathbf{z}}_s\right) \\ \mathcal{S}_3 &= \begin{bmatrix} -\hat{\mathbf{y}}_s \\ \mathbf{v}_3 \end{bmatrix}, \qquad \mathbf{v}_3 = \hat{\mathbf{y}}_s \times \left(\ell_1 \hat{\mathbf{x}}_s + \left(\ell_2 + \ell_3\right) \hat{\mathbf{z}}_s\right) \end{split}$$

The zero pose of the robot

$$\mathbf{H}_b^{s}(\mathbf{0}) = \begin{bmatrix} \mathbf{R}_b^{s}(\mathbf{0}) & \mathbf{r}_b^{s}(\mathbf{0}) \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_y(-\pi/2) & \begin{bmatrix} (\ell_1 - \ell_5) \\ 0 \\ \ell_2 + \ell_3 + \ell_4 \end{bmatrix} \\ \mathbf{0} & 1 \end{bmatrix}$$

Forward kinematics can be written

 $\mathbf{H}_{b}^{s}(\mathbf{q}) = \exp(\tilde{S}_{1}q_{1}) \exp(\tilde{S}_{2}q_{2}) \exp(\tilde{S}_{3}q_{3}) \mathbf{H}_{b}^{s}(\mathbf{0})$

$$\mathbf{\tilde{h}}_{b}(\mathbf{q}) = \exp(\delta_{1}q_{1}) \exp(\delta_{2}q_{2}) \exp(\delta_{3}q_{3}) \mathbf{h}_{b}(\mathbf{0})$$
where the $\widetilde{\Xi}$ (tilde) operator denotes a Lie algebra
$$\widetilde{\mathcal{S}} = \begin{bmatrix} \widetilde{\mathbf{w}} & \mathbf{v} \\ \mathbf{0} & 0 \end{bmatrix} \in se(3), \qquad \widetilde{\mathbf{w}} = \begin{bmatrix} 0 & -w_{3} & w_{2} \\ w_{3} & 0 & -w_{1} \\ -w_{2} & w_{1} & 0 \end{bmatrix} \in so(3)$$

Table when using $L_4 = 1492.18$

Х	Z	q2	q3
700.63	1483.7	-75	-86
-757.56	2643.2	-75	-10
-33.831	3433	-20	-10
2871.3	77.808	95	-125
649.95	-518.9	95	-223.95
649.97	151.55	52.94	-213.94
1842.2	2240	0	-90

Table from doc

Tioni doc						
Pos	X	Z	Ax.2	Ax.3		
	[mm]	[mm]	[deg]	[deg]		
1	700,63	1483,71	-75°	-86°		
2	-757,56	2643,15	-75°	-10°		
3	-33,82	3432,97	-20°	-10°		
4	2871,3	77,81	95°	-125°		
5	650	-518,93	95°	-223,95°		
6	650	151,56	52,94°	-213,94°		
7	1842,18	2240	0°	-90°		

Velocity and acceleration using twist $\mathcal{V} = \begin{bmatrix} \mathbf{\omega}_b^s \\ \mathbf{v}_{b/s}^s \end{bmatrix}$, where $\mathbf{\omega}_b^s$ is the angular velocity of $\{b\}$ in $\{s\}$.

$$\mathcal{V} = \begin{bmatrix} \mathbf{w}_b^S \\ \mathbf{v}_{b/s}^S \end{bmatrix} = \mathbf{J}(\mathbf{q}) (\dot{\mathbf{q}} + \dot{q}_2 \hat{\mathbf{z}}_s)
\dot{\mathcal{V}} = \frac{d\mathcal{V}}{dt} = \begin{bmatrix} \dot{\mathbf{w}}_b^S \\ \mathbf{v}_{b/s}^S \end{bmatrix} = \frac{\partial \mathbf{J}}{\partial \mathbf{q}} \dot{\mathbf{q}} (\dot{\mathbf{q}} + \dot{q}_2 \hat{\mathbf{z}}_s) + \mathbf{J}(\mathbf{q}) (\ddot{\mathbf{q}} + \ddot{q}_2 \hat{\mathbf{z}}_s)$$

The Jacobian is built using screws mapped to adjacent joints (the previous screw axis) $\mathbf{J}(\mathbf{q}) = \begin{bmatrix} \mathcal{S}_1 & \mathrm{Ad}_{\mathbf{H}_1(\mathbf{q})}(\mathcal{S}_2) & \mathrm{Ad}_{\mathbf{H}_2(\mathbf{q})}(\mathcal{S}_3) \end{bmatrix} \in \mathbb{R}^{6\times 3}$

$$\mathbf{J}(\mathbf{q}) = [S_1 \quad \mathrm{Ad}_{\mathbf{H}_1(\mathbf{q})}(S_2) \quad \mathrm{Ad}_{\mathbf{H}_2(\mathbf{q})}(S_3)] \in \mathbb{R}^{6\times 1}$$

where

$$\mathrm{Ad}_{\mathbf{H}(\mathbf{q})} = \begin{bmatrix} \mathbf{R}(\mathbf{q}) & \mathbf{0} \\ \tilde{\mathbf{r}}(\mathbf{q})\mathbf{R}(\mathbf{q}) & \mathbf{R}(\mathbf{q}) \end{bmatrix}, \qquad \mathbf{H}_i(\mathbf{q}) = \begin{bmatrix} \mathbf{R}_i(\mathbf{q}) & \mathbf{r}_i(\mathbf{q}) \\ \mathbf{0} & 1 \end{bmatrix} \in SE(3)$$

Note that the vector $\mathbf{v}_{b/s}^{s}$ is <u>not</u> the translational velocity of $\{b\}$ in $\{s\}$. That would just be $\mathbf{v}_{b}^{s} = \dot{\mathbf{r}}_{b}^{s}$.

Rather, it is the velocity and acceleration: $\dot{\mathbf{r}}_b^s = \mathbf{v}_{b/s}^s + \boldsymbol{\omega}_b^s \times \mathbf{r}_b^s + \boldsymbol{\omega}_s \times \dot{\mathbf{r}}_b^s$ when mapped back to the origin of $\{s\}$. Hence, to calculate the velocity and acceleration: $\dot{\mathbf{r}}_b^s = \dot{\mathbf{v}}_{b/s}^s + \dot{\boldsymbol{\omega}}_b^s \times \mathbf{r}_b^s + \boldsymbol{\omega}_s \times \dot{\mathbf{r}}_b^s$ $\ddot{\mathbf{r}}_b^s = \dot{\mathbf{v}}_{b/s}^s + \dot{\boldsymbol{\omega}}_b^s \times \mathbf{r}_b^s + \boldsymbol{\omega}_s \times \dot{\mathbf{r}}_b^s$

$$\mathbf{r}_b^3 = \mathbf{v}_{b/s}^3 + \mathbf{\omega}_b^3 \times \mathbf{r}_b^3$$

$$\ddot{\mathbf{r}}_{h}^{s} = \dot{\mathbf{v}}_{h/s}^{s} + \dot{\boldsymbol{\omega}}_{h}^{s} \times \mathbf{r}_{h}^{s} + \boldsymbol{\omega}_{s} \times \dot{\mathbf{r}}_{h}^{s}$$

To calculate the orientation of $\{b\}$, we assume an order of rotation: XYZ, (roll-pitch-yaw)

$$\mathbf{\phi} = \begin{bmatrix} \phi_x \\ \phi_y \\ \phi_z \end{bmatrix}, \qquad \mathbf{R} = \mathbf{R}_x (\phi_x) \mathbf{R}_y (\phi_y) \mathbf{R}_z (\phi_z)$$

We can use the elements of ${\bf R}$ to determine consistent values of ${m \phi}$, but with a catch whenever ${m \phi}_y=\pm 90^\circ$.

We can use the elements of **R** to determine consistent values of
$$\phi$$
, but with a catch whenever $\phi_y = \pm 90^\circ$.

At that point, **R** gets the form $\mathbf{R} = \begin{bmatrix} 0 & 0 & \pm 1 \\ c_x s_z \pm s_x c_z & c_x c_z \mp s_x s_z & 0 \\ s_x s_z \mp c_x c_z & c_x s_z \pm s_x c_z & 0 \end{bmatrix}$ and we cannot determine a unique ϕ_x , ϕ_z .

$$2(c_x s_z + s_x c_z) = r_{21} + r_{32}$$

If we need the rates of change of ϕ , $\dot{\phi}$, then we can find a relation $\omega_{\it b}^{\it s} = T(q)\dot{\phi}$, using $\it XYZ$ order of rotation.