POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI

KIERUNEK: AUTOMATYKA I ROBOTYKA (AIR)

SPECJALNOŚĆ: TECHNOLOGIE INF. W SYS. AUTOMATYKI (ART)

PRACA DYPLOMOWA INŻYNIERSKA

Aplikacja mobilna do sterowania robotem minisumo

Mobile application for controlling a minisumo robot

AUTOR:

Łukasz Miłaszewski

PROWADZĄCY PRACĘ:

dr inż. Łukasz Jeleń

OCENA PRACY:

Spis treści

1.	Wst	tęp					•		•		•		•		•	 •		•	 •	•	 	•	 	•	•	6
	1.1.	Cel pra	acy																		 . .		 			6
	1.2.	Minisu	umo																					6
	1.3.	Założe	enia								•				•									7
2.	Uży	te techi	nolo	gie										 							 		 			8
	2.1.	Arduin	no .																		 . .		 			8
	2.2.	C																			 , .		 			8
	2.3.	Swift																			 , .		 			8
		2.3.1.	UI	Kit																	 		 			8
		2.3.2.	Co	reBl	ueto	oth																		8
		2.3.3.	Co	reGı	raphi	ics															 . .		 			8
		2.3.4.	Co	reM	otior	ns.															 		 			8
3.	Kor	nunika	cja											 	•	 •					 		 			9
	3.1.	Moduł	ł blu	etoo	th .																 , .		 			9
	3.2.	Logika	a																					9
4.	Rob	ot mini	isun	no .			•							 							 		 			10
	4.1.	Konstr	rukc	ja			10
		4.1.1.	Na	dwo	zie .																 		 			10
		4.1.2.	Po	dwo	zie			10
		4.1.3.	Na	ıpęd																				10
	4.2.	Elektro	onik	a.																	 		 			10
		4.2.1.	Za	łoże	nia .																 		 			10
		4.2.2.	Źro	ódło	zasil	lani	a														 		 , .			10
		4.2.3.	Pro	oces	or .																 		 			10
		4.2.4.	Se	nsor	yka																 		 			10
		4.2.5.	Ste	erow	nik s	ilni	kó	W													 		 			10
		4.2.6.	Sc	hema	at pły	ytki	Ζi	int	erf	ejs	sen	1.									 . .		 , •			10
		4.2.7.	Sc	hema	at pły	ytki	gł	óv	vne	j.											 . .		 , •			10
	4.3.	Oprogr	ram	owar	nie .									 							 		 			10

		4.3.1.	Transmisja danych	 10
		4.3.2.	Obsługa przychodzących wiadomości	
		4.3.3.	Algorytmy walki	
5.	Apl	ikacja r	mobilna	 11
	5.1.	Platfor	ma	 11
	5.2.	Kompa	atybilność	 11
	5.3.	Wzorz	rec MVC	 11
	5.4.	Komur	nikacja	 11
	5.5.	Struktu	ura aplikacji	 11
		5.5.1.	Widok główny	 11
		5.5.2.	Widok sterowania automatycznego	 11
		5.5.3.	Widok sterowania zdalnego	 11
		5.5.4.	Widok diagnostyki	 11
6.	Imp	lement	tacja	 12
	6.1.	Kompi	ilacja projektu	 12
7.	Pod	sumowa	anie	 13
	7.1.	Zrealiz	zowane założenia	 13
	7.2.	Dalszy	v rozwój projektu	 13
	7.3.	Uwagi	l	 13
Inc	deks 1	rzeczow	vy	 14
т : 4	towatu			11

Spis rysunków

1.1.	Zawody sumo																																	7
------	-------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Spis listingów

Wstęp

1.1. Cel pracy

Celem niniejszej pracy jest implementacja aplikacji mobilnej służącej do sterowania robotem minisumo. W ramach pracy dyplomowej powstał samodzielnie wykonany dwukołowy robot w pełni spełniający wymagania do startu w zawodach minisumo. Dodatkowo powstała aplikacja mobilna na platformę iOS, która daje możliwość obsługi oraz konfiguracji wyżej wspomnianego robota. Dzięki niej użytkownik może wybrać jedną z wielu strategii walki, ustalić maksymalną moc silników oraz uwzględnić oczekiwanie na start za pomocą odbiornika fal podczerwonych. Dodatkowo aplikacja oferuje możliwość zdalnego sterowania robotem za pomocą akcelerometru lub wirtualnego dżojstiku oraz sprawdzenia poprawności działania sensorów i silników.

1.2. Minisumo

Minisumo jest jedną z kategorii walk robotów wzorowanych na popularnym japońskim sporcie - zapasach sumo. Tak samo jak i w prawdziwym sporcie, starcie odbywa się na okrągłym ringu. Wygrywa ten robot, który jako pierwszy wypchnie rywala z areny. Obowiązujące zasady są takie same dla każdej z kategorii (sumo, minisumo, nanosumo, pentosumo) z wyjątkiem dopuszczalnej wagi oraz rozmiaru. Dla minisumo maksymalna waga to 500 gramów, a szerokość oraz długość nie mogą przekroczyć 100 milimetrów. Dodatkowo każdy z robotów musi spełniać poniższe wymagania:

- musi być w pełni autonomiczny
- nie może być przytwierdzony do areny
- nie może zakłócać sterowania przeciwnika
- musi posiadać na wyposażeniu moduł startowy, dający możliwość zdalnego uruchomienia robota przez sędziego
- nie może emitować cieczy, gazów oraz nadmiernego ciepła

Rys. 1.1: Zawody sumo.

Na rysunku 1.1 przedstawiono przykładową walkę robotów klasy sumo. Warto zauważyć, iż wnętrze areny jest czarne, natomiast obwód biały. Dzięki zastosowanemu kontrastowi robot wyposażony w odpowiednie czujniki jest w stanie wykryć brzeg areny.

1.3. Założenia

Główne założenia realizowanego projektu:

- stworzenie robota spełniającego wymagania kategorii minisumo
- sprawna sensoryka pozwalająca na wykrycie przeciwnika oraz końca ringu
- w pełni działająca komunikacja między robotem, a aplikacją
- aplikacja mobilna pozwalająca na konfigurację wyżej wspomnianego robota

Użyte technologie

- 2.1. Arduino
- 2.2. C
- **2.3.** Swift
- 2.3.1. UIKit
- 2.3.2. CoreBluetooth
- 2.3.3. CoreGraphics
- 2.3.4. CoreMotions

Komunikacja

- 3.1. Moduł bluetooth
- 3.2. Logika

Robot minisumo

4.1.	Konstrul	kcia
		,, -,

- 4.1.1. Nadwozie
- 4.1.2. Podwozie
- 4.1.3. Napęd

4.2. Elektronika

- 4.2.1. Założenia
- 4.2.2. Źródło zasilania
- 4.2.3. Procesor
- 4.2.4. Sensoryka
- 4.2.5. Sterownik silników
- 4.2.6. Schemat płytki z interfejsem
- 4.2.7. Schemat płytki głównej

4.3. Oprogramowanie

- 4.3.1. Transmisja danych
- 4.3.2. Obsługa przychodzących wiadomości
- 4.3.3. Algorytmy walki

Aplikacja mobilna

- 5.1. Platforma
- 5.2. Kompatybilność
- 5.3. Wzorzec MVC
- 5.4. Komunikacja
- 5.5. Struktura aplikacji
- 5.5.1. Widok główny
- 5.5.2. Widok sterowania automatycznego
- 5.5.3. Widok sterowania zdalnego
- 5.5.4. Widok diagnostyki

Implementacja

6.1. Kompilacja projektu

Podsumowanie

- 7.1. Zrealizowane założenia
- 7.2. Dalszy rozwój projektu
- **7.3.** Uwagi

Literatura

- [1] Robot klasy sumo https://en.wikipedia.org/wiki/Robot-sumo (dostęp 09.11.2017).
- [2] Zawody minisumo https://pl.wikipedia.org/wiki/Minisumo (dostęp 09.11.2017).