Bank Customers Churn Classification

Table of contents

Introduction

02 Methodology

Classification 04 Conclusion

Introduction

Introduction

In this work the purpose is to build a model that predicts if a customer will churn form the bank (or not) given various data points and information from historical data:

Goals:

- Predicting if a customer will leave or not.
- Banks will be able to predict the risk of the customer on whether they will leave or not.

02

Methodology

Methodology

Data Extraction

- -Data from Kaggle
- -10000 Row
- -14 Columns

EDA

- -Data Wrangling
- -Data Cleaning
- -Visualization

Feature Engineering

- -Outliers
- -Dummy Variables

Models

- -Model Preprocessing
- -Building Models

Tools

Jupyter Notebook

Pandas

Seaborn

Matplotlib

Sklearn

NumPy

Dabl

Data Split

Exploratory Data Analysis

- Data Cleaning
- Same size after cleaning

- No extreme values
- Imbalanced data

Heatmap

100														
France -		-0.58	-0.58						-0.23					-0.1
Germany -	-0.58	1	-0.33						0.4					
Spain -	-0.58	-0.33	1	-0.017	0.017				-0.13					-0.053
Female -				1	-1									
Male -				-1	1	-0.0029								-0.11
CreditScore -						1	-0.004							
Age -							1	-0.01						
Tenure -		-0.00057						1	-0.012					
Balance -	-0.23	0.4	-0.13						1	-0.3	-0.015			
NumOfProducts -									-0.3	1	0.0032	0.0096		-0.048
HasCrCard -											1	-0.012		
IsActiveMember -												1	-0.011	-0.16
EstimatedSalary -													1	0.012
Exited -	-0.1		-0.053		-0.11					-0.048		-0.16		
	- Jance -	many -	- uieds	male -	Male -	Score -	Age	enure -	lance	ducts -	-Card	mper -	alary -	- yited

Features that has big correlation with exiting the bank:

• Age (29%)

--0.75

- Customers in Germany (17%)
- Female customers (11%)

03 Data Preprocessing

Feature Engineering

Steps:

- Feature selection using LASSO and Recursive Feature Elimination
- Dummy variables
- Outliers

Data Imbalance

Solved using RandomOverSampler (ROS)

04 Models

Baseline Model: Logistic Regression

- 1200
- 1000
- 800
- 600
- 400
- 200

00	Score	Training	Validation
0	Accuracy	0.6659	0.6641
0	Precision	0.6636	0.6636
0	Recall	0.6800	0.6801
	Fl	0.6717	0.6718

DABL Modeling

```
In [116]: survivor classifier = dabl.SimpleClassifier(random state=42).fit(X train, y train)
          Running DummyClassifier()
          accuracy: 0.502 average precision: 0.498 roc auc: 0.500 recall macro: 0.500 f1 macro: 0.334
          === new best DummyClassifier() (using recall macro):
          accuracy: 0.502 average_precision: 0.498 roc auc: 0.500 recall macro: 0.500 f1_macro: 0.334
          Running GaussianNB()
          accuracy: 0.719 average precision: 0.776 roc auc: 0.792 recall macro: 0.719 f1 macro: 0.719
          === new best GaussianNB() (using recall macro):
          accuracy: 0.719 average precision: 0.776 roc auc: 0.792 recall macro: 0.719 f1 macro: 0.719
          Running MultinomialNB()
          accuracy: 0.637 average precision: 0.687 roc auc: 0.702 recall macro: 0.637 f1 macro: 0.637
          Running DecisionTreeClassifier(class_weight='balanced', max depth=1)
          accuracy: 0.700 average precision: 0.632 roc auc: 0.700 recall macro: 0.700 f1 macro: 0.697
          Running DecisionTreeClassifier(class weight='balanced', max depth=5)
          accuracy: 0.766 average precision: 0.819 roc auc: 0.846 recall macro: 0.766 f1 macro: 0.766
          === new best DecisionTreeClassifier(class weight='balanced', max depth=5) (using recall macro):
          accuracy: 0.766 average precision: 0.819 roc auc: 0.846 recall macro: 0.766 f1 macro: 0.766
          Running DecisionTreeClassifier(class weight='balanced', min impurity decrease=0.01)
          accuracy: 0.725 average precision: 0.730 roc auc: 0.779 recall macro: 0.725 f1 macro: 0.723
          Running LogisticRegression(C=0.1, class weight='balanced', max iter=1000)
          accuracy: 0.725 average precision: 0.765 roc auc: 0.209 recall macro: 0.725 f1 macro: 0.725
          Running LogisticRegression(class weight='balanced', max iter=1000)
          accuracy: 0.725 average precision: 0.765 roc auc: 0.209 recall macro: 0.725 f1 macro: 0.725
          Best model:
          DecisionTreeClassifier(class weight='balanced', max depth=5)
          Best Scores:
          accuracy: 0.766 average precision: 0.819 roc auc: 0.846 recall macro: 0.766 f1 macro: 0.766
```

Classification Models

Model	Accuracy	F1-Score		
Logistic Regression	0.7468	0.7461		
KNN	0.8702	0.8781		
Random Forest	0.8812	0.8881		
Gaussian Naïve Bayes	0.7444	0.7411		
SVM	0.7424	0.7372		
Decision Tree	0.8751	0.8830		
XGB	0.8221	0.8236		

Ensemble: Max Voting Classifier

Training Accuracy: 0.9438 Testing Accuracy: 0.8668

ROC Curve Graph

Best Model: Random Forest

Conclusions

- The best model to predict is Random Forest.
- Highest validation accuracy.

Thanks!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Storyset

