Grzegorz Mika

Nierówności wyrocznie dla problemów odwrotnych

1. Streszczenie

W pracy rozważany będzie problem estymacji nieznanego elementu f na podstawie niebezpośrednich i zaburzonych obserwacji. Niech Λ będzie skończonym zbiorem estymatorów liniowych. Celem będzie konstrukcja metody wyboru estymatora z rodziny Λ naśladującego estymator o minimalnym ryzyku w tej klasie. Okaże się, że można to osiągnąć poprzez minimalizację odpowiedniego wyrażenia związanego z estymatorem ryzyka. W pierwszej części pracy zostaną przedstawione wyniki dotyczące operatorów zwartych. W drugiej części wyniki zostaną uogólnione na przypadek operatorów, które niekoniecznie są zwarte. Głównym wynikiem pracy jest zaprezentowanie odpowiednich nieasymptotycznych nierówności wyroczni w obu przypadkach.

Spis treści

1.	Streszczenie
2.	Wstęp
3.	Wyrocznie
4.	Główne rezultaty I
5.	Główne rezultaty II
6.	Przykład
7.	Lematy pomocnicze
Li	eratura

2. Wstęp

Na początek wprowadzimy potrzebną notację i oznaczenia oraz opiszemy model, w którym będziemy pracować w dalszej części. Niech H oraz G będą dwoma ośrodkowymi przestrzeniami Hilberta z iloczynem skalarnym oznaczanym odpowiednio $\langle\cdot,\cdot\rangle_H$ oraz $\langle\cdot,\cdot\rangle_G$ (lub gdy nie prowadzi to do nieporozumień krótko $\langle\cdot,\cdot\rangle$), natomiast A niech będzie liniowym i ograniczonym operatorem między tymi przestrzeniami. Naszym celem jest znalezienie takiego $f\in H$, by mając dany $g\in G$, spełnić równanie

$$Af = g.$$

Definicja 1. ([21], str. 1)

Problem nazwiemy dobrze postawionym wg Hadamarda, gdy:

- dla dowolnego $g \in G$ istnieje $f \in H$ spełniający zadane równanie,
- rozwiązanie jest jedyne,
- rozwiązanie jest stabilne, czyli zależy w sposób ciągły od prawej strony równania.

Jeżeli choć jeden z warunków powyższej definicji nie jest spełniony, problem nazywamy źle postawionym. W przypadku braku stabilności, operator odwrotny

 A^{-1} jest nieograniczony, co może prowadzić do eksplozji rozwiązania nawet w przypadku niewielkiego zaburzenia wartości g.

W dalszej części obserwacje będą zaburzone przez pewien losowy szum, zatem przypuśćmy, że dysponujemy następującym modelem

$$Y = Af + \epsilon \xi, \tag{1}$$

w którym celem jest odzyskanie informacji na temat elementu f na bazie zakłóconych obserwacji Y. Przez ξ rozumieć będziemy odpowiednio zdefiniowany poniżej stochastyczny szum, natomiast przez $\epsilon > 0$ jego poziom.

Definicja 2. (/1/, str. 7)

Stochastycznym blędem ξ nazwiemy proces na przestrzeni Hilberta G, czyli ograniczony liniowy operator $\xi \colon G \to L^2(\Omega, \mathcal{F}, \mathbb{P})$ taki, że dla dowolnych elementów $g_1, g_2 \in G$ mamy zdefiniowane zmienne losowe $\langle \xi, g_i \rangle$ takie, że $\mathbb{E}\langle \xi, g_i \rangle = 0$ oraz operator kowariancji Cov_{ξ} określony jako ograniczony liniowy operator ($||Cov_{\xi}|| \leqslant 1$) z przestrzeni G w przestrzeń G taki, że $\langle Cov_{\xi}g_1, g_2 \rangle = Cov(\langle \xi, g_1 \rangle, \langle \xi, g_2 \rangle)$. Przestrzeń $(\Omega, \mathcal{F}, \mathbb{P})$ jest podstawową przestrzenią probabilistyczną, natomiast $\mathcal{L}^2(\cdot)$ jest przestrzenią wszystkich funkcji całkowalnych z kwadratem na zadanej przestrzeni z miarą.

Definicja 3. ([1], str. 8)

Powiemy, że losowy błąd ξ jest gaussowskim białym szumem, jeśli $Cov_{\xi} = I$ oraz indukowane zmienne losowe są gaussowskie, czyli dla dowolnych elementów $g_1, g_2, \ldots, g_k \in G$ i dla dowolnego $k \in \mathbb{N}$ mamy, że $(\langle \xi, g_1 \rangle, \langle \xi, g_2 \rangle, \ldots, \langle \xi, g_k \rangle) \sim \mathcal{N}_k(\mathbf{0}, \mathbf{\Sigma})$. oraz $Cov(\langle \xi, g_i \rangle, \langle \xi, g_j \rangle) = \langle g_i, g_j \rangle$.

Lemat 1. (/1/, str. 8)

Niech ξ będzie białym szumem w przestrzeni G oraz niech $\{u_i\}_{i\in I}$ będzie ortonormalną bazą tej przestrzeni i niech $\xi_k = \langle \xi, u_k \rangle$. Wtedy $\{\xi_i\}_{i\in I}$ są niezależnymi zmiennymi losowymi o tym samym standardowym rozkładzie gaussowskim.

Dowód. Z definicji $\xi_k = \langle \xi, u_k \rangle \sim \mathcal{N}(0, ||u_k||^2) = \mathcal{N}(0, 1)$ oraz $Cov(\langle \xi, u_n \rangle, \langle \xi, u_k \rangle) = \langle u_n, u_k \rangle = \delta_{nk}$, gdzie δ_{nk} oznacza symbol Kroneckera, co wraz z założeniem o łącznym rozkładzie gaussowskim kończy dowód.

Zauważmy, że gdy ξ jest białym szumem, to Y nie jest elementem przestrzeni G, a staje się operatorem działającym na przestrzeni G w następujący sposób

$$\forall g \in G \ \langle Y, g \rangle = \langle Af, g \rangle + \epsilon \langle \xi, g \rangle$$

gdzie $\langle \xi, g \rangle \sim \mathcal{N}(0, ||g||^2)$.

Wprowadzimy teraz kilka faktów dotyczących operatorów liniowych na przestrzeniach Hilberta.

Rozważmy element $A \in L(H,G)$ przestrzeni ograniczonych operatorów liniowych między dwoma przestrzeniami Hilberta H,G. Założymy, że $D(A) = \{f \in H \colon \exists_{g \in G} \ Af = g\} = H.$

Operatorem sprzężonym do operatora A nazywamy operator A^* taki, że $\forall_{f \in H} \forall_{g \in G} \langle Af, g \rangle = \langle f, A^*g \rangle$, natomiast operator, który jest swoim własnym sprzężeniem nazwiemy samosprzężonym.

Operator $A\colon H\to H$ jest nieujemny, gdy $\forall_{f\in H}\ \langle Af,f\rangle\geqslant 0$ oraz dodatni, gdy $\forall_{f\in H\setminus\{0\}}\ \langle Af,f\rangle>0$.

Estymatorem liniowym elementu f w modelu (1) nazywamy estymator postaci T(Y), gdzie T jest pewnym operatorem z przestrzeni L(G,H), a działanie operatora T na proces Y zdefiniowane jest warunkiem $\langle T(Y), h \rangle = \langle Y, T^*h \rangle$ dla dowolnego elementu $h \in H$.

Poniższe twierdzenie pokazuje bardzo użyteczną możliwość rozkładu odpowiednich przestrzeni na pewne składowe wzajemnie ortogonalne.

Twierdzenie 1. ([1], str. 9, [18], str. 10) Niech $A \in L(H,G)$. Wtedy — $KerA = (RangeA^*)^{\perp}$ oraz $\overline{RangeA} = (KerA^*)^{\perp}$, — jeśli A jest iniektywny, to A^*A też, — $A^*A \in L(H)$ oraz A^*A jest dodatni i samosprzężony.

 $\begin{array}{l} Dow \acute{o}d. \ \ {\rm Zauważmy,} \ \dot{\rm ze} \ Range A^{\perp} = \{g \in G \colon \langle Af,g \rangle = 0 \ \forall f \in H\}. \ \ {\rm Wtedy \ dla} \\ {\rm dowolnych} \ f \in Ker A \ \dot{\rm i} \ g \in G \ {\rm mamy,} \ \dot{\rm ze} \ 0 = \langle Af,g \rangle = \langle f,A^*g \rangle, \ {\rm a \ stad} \ Ker A = (Range A^*)^{\perp}. \ \ {\rm Zamieniajac} \ A \ z \ A^* \ {\rm otrzymujemy,} \ \dot{\rm ze} \ Ker A^* = Range A^{\perp}, \ {\rm czyli} \\ (Ker A^*)^{\perp} = (Range A^{\perp})^{\perp} = \overline{Range A}, \ {\rm gdy\dot{z}} \ {\rm dla} \ {\rm dowolnej} \ {\rm przestrzeni} \ {\rm Hilberta} \\ H \ \dot{\rm i} \ {\rm dla} \ {\rm dowolnej} \ {\rm podprzestrzeni} \ A \ {\rm tej} \ {\rm przestrzeni} \ {\rm zachodzi}, \ \dot{\rm ze} \ (A^{\perp})^{\perp} = \overline{A}, \\ {\rm poniewa\dot{z}} \ {\rm dopelnienie} \ {\rm otrzynu} \ {\rm skalarnego}. \ {\rm Niech} \ \{x_n\} \ {\rm bedzie} \ {\rm ciagiem} \ {\rm Cauchy'ego} \ {\rm element\'{o}w} \ {\rm zbioru} \ A^{\perp} \ {\rm o \ granicy} \ x \in H. \ {\rm Wtedy \ dla} \ {\rm dowolnego} \ {\rm elementu} \ y \in A \ {\rm zachodzi} \ \langle x,y \rangle = \langle x-x_n,y \rangle + \langle x_n,y \rangle = \langle x-x_n,y \rangle + 0 \to 0, \ {\rm gdy} \ n \to \infty \\ {\rm co \ dowodzi}, \ \dot{\rm ze} \ x \in A^{\perp}. \end{array}$

Korzystając z równości $\langle A^*Af,f\rangle=\langle Af,Af\rangle=||Af||^2,$ widzimy, że $KerA=KerA^*A.$

Analogicznie otrzymujemy, że $\langle A^*Af, f \rangle = \langle Af, Af \rangle = \langle f, A^*Af \rangle$ oraz $\langle A^*Af, f \rangle = ||Af||^2 \geqslant 0$, zatem operator A^*A jest samosprzężony i nieujemny.

Wniosek 1.
$$-H = KerA \oplus KerA^{\perp} = KerA \oplus \overline{RangeA^*},$$

 $-G = \overline{RangeA} \oplus RangeA^{\perp} = \overline{RangeA} \oplus KerA^*.$

W pierwszej części pracy ograniczymy się do rozważania tylko zwartych operatorów liniowych, jednak dzięki temu uda się uzyskać dającą szerokie możliwości reprezentację według wartości singularnych. Założenie o zwartości badanego operatora jest naturalnym i często pojawiającym się założeniem w kontekście badania problemów odwrotnych w statystyce z uwagi na częste występowanie operatorów z tej klasy w praktycznych problemach, a także z uwagi na właśnie bardzo wygodną reprezentację.

Definicja 4. ([24], str. 264)

Operator $A: H \to G$ nazywamy zwartym, jeżeli dla każdego ograniczonego zbioru wH, jego obraz przez operator A jest względnie zwarty wG, czyli jego domknięcie jest zwarte wG. Przez K(H,G) będziemy oznaczać zbiór operatorów zwartych miedzy przestrzeniami H i G.

Przykładem operatorów zwartych są operatory całkowe postaci $(Ku)(x)=\int_a^b K(x,y)u(y)dy,\ x\in[a,b],\ u\in C([a,b]),$ gdzie jądro K(x,y) jest takie, że $\int_a^b \int_a^b |K(x,y)|^2 dx dy < +\infty \text{ lub słabo osobliwe, czyli postaci } \frac{\mathcal{H}(x,y)}{|x-y|^\alpha}, \text{ gdzie } \alpha\in(0,1) \text{ a funkcja } \mathcal{H} \text{ jest funkcją mierzalną i ograniczoną na odcinku } [a,b].$

Konsekwencją braku zwartości kuli jednostkowej w przestrzeniach nieskończenie wymiarowych jest bardzo istotna z punktu widzenia stabilności rozwiązania następująca uwaga

Uwaga 1. Jeżeli $A \in K(H,G)$ oraz $dimH = \infty$ to operator A^{-1} jest nieograniczony, o ile istnieje.

Fakt ten powoduje, że dla dowolnego zwartego operatora na przestrzeni nieskończenie wymiarowej, każdy związany z nim problem odwrotny jest źle postawiony.

Poniżej bez dowodu przytaczamy znane twierdzenie dotyczące reprezentacji spektralnej dla operatorów zwartych i samosprzężonych potrzebne do wykazania istnienia reprezentacji według wartości singularnych dla operatorów zwartych, ale już niekoniecznie samosprzężonych.

Twierdzenie 2 (Reprezentacja spektralna). Niech A będzie samosprzężonym operatorem zwartym na przestrzeni Hilberta H. Wtedy istnieje zupelny układ ortonormalnych wektorów własnych $E = \{f_j, j \in I\} \subset H$. Niech $J = \{j \in I\}$

 $I: \lambda_j \neq 0$ oznacza zbiór tych indeksów dla których odpowiednie wartości własne są niezerowe, wtedy zbiór J jest przeliczalny oraz

$$\forall f \in H \ Af = \sum_{j \in J} \lambda_j \langle f, f_j \rangle f_j.$$

Ponadto dla każdego $\delta > 0$ zbiór $J_{\delta} = \{j \in I : |\lambda_j| \geqslant \delta\}$ jest skończony, czyli jedynym możliwym punktem skupienia zbioru wartości własnych jest zero.

$$Dowód.$$
 Dowód w [1], str. 11.

Możemy teraz wprowadzić reprezentację według wartości singularnych dla operatora zwartego.

Twierdzenie 3 (Reprezentacja według wartości singularnych). Niech $A: H \rightarrow$ G będzie operatorem zwartym między przestrzeniami Hilberta H i G. Wtedy istnieją skończony lub zbieżny do zera ciąg liczb dodatnich $\{b_n\}_{n\in I}$ oraz układy $\begin{array}{l} \textit{ortonormalne} \ \{v_n\}_{n \in I} \subset H, \ \{u_n\}_{n \in I} \subset G \ \textit{takie, ize} \\ - \ KerA^{\perp} = span\{v_n, \ n \in I\}, \\ - \ \overline{RangeA} = span\{u_n, \ n \in I\}, \end{array}$

— $Af = \sum_n b_n \langle f, v_n \rangle u_n$ oraz $A^*g = \sum_n b_n \langle g, u_n \rangle v_n$. Ponadto $g \in RangeA$ wtedy i tylko wtedy, $gdy \ g = \sum_n \langle g, u_n \rangle u_n$ oraz spełniony jest tzw. warunek Picarda

$$\sum_{n} b_n^{-2} |\langle g, u_n \rangle|^2 < \infty g.$$

 $Wtedy \ rozwiązania \ równania \ Af=g \ mają \ postać$

$$f = f_0 + \sum_n b_n^{-1} \langle g, u_n \rangle v_n$$

przy czym $f_0 \in KerA$ jest dowolne.

Układ (u_n, v_n, b_n) nazywamy układem singularnym operatora A a jego reprezentację w postaci $Af=\sum_n \lambda_n \langle f, v_n \rangle u_n$ nazywamy dekompozycją według wartości singularnym (singular value decomposition– SVD) operatora A.

Dowód. ([18], str. 11, [21], str. 10)

Dowód twierdzenia opiera się na wykorzystaniu twierdzenia spektralnego do operatora A^*A .

Operator A^*A jest samosprzężony, zwarty i nieujemny, a zatem istnieją liczby $b_1^2 \geqslant b_2^2 \geqslant \cdots \geqslant 0$ oraz wektory ortonormalne v_n takie, że $A^*Av_n = b_n^2v_n$. Niech $I=\{n\colon b_n>0\}$ oraz przez u_n oznaczmy znormalizowane obrazy wektorów v_n , czyli $u_n=b_n^{-1}Av_n$ dla $n\in I$. Zauważmy, że $\langle u_k,u_l\rangle=b_k^{-1}b_l^{-1}\langle Av_k,Av_l\rangle=b_k^{-1}b_l^{-1}\langle v_k,A^*Av_l\rangle=b_k^{-1}b_l^{-1}\langle v_k,b_l^2v_l\rangle=\delta_{kl}$.

Korzystając w wykazanego wcześniej twierdzenia dostajemy, że $Ker A^{\perp} =$ $(Ker A^*A)^{\perp} = \overline{Range A^*A} = \overline{span}\{v_n, \ n \in I\}.$

Analogicznie rozpatrując operator AA^* z rozkładem spektralnym $AA^*u_n =$

b_n² u_n dostajemy, że $\overline{RangeA} = span\{u_n, \ n \in I\}$.

Tożsamości $Af = \sum_n b_n \langle f, v_n \rangle u_n$ oraz $A^*g = \sum_n b_n \langle g, u_n \rangle v_n$ otrzymujemy, zauważając, że $Af = \sum_n \langle Af, u_n \rangle u_n = \sum_n \langle Af, b_n^{-1} Av_n \rangle u_n = \sum_n \langle f, b_n^{-1} A^* Av_n \rangle u_n = \sum_n \langle f, b_n^{-1} b_n^2 v_n \rangle u_n = \sum_n b_n \langle f, v_n \rangle u_n$ oraz drugą analo-

Z nierówności Bessela dostajemy, że $\sum_n |\langle f, v_n \rangle|^2 < \infty$, bo $f \in H$ a stąd $\sum_n |\langle f, v_n \rangle|^2 = \sum_n b_n^{-4} |\langle f, b_n^2 v_n \rangle|^2 = \sum_n b_n^{-4} |\langle f, A^* A v_n \rangle|^2 = \sum_n b_n^{-4} |\langle Af, Av_n \rangle|^2 = \sum_n b_n^{-2} |\langle g, b_n^{-1} A v_n \rangle|^2 = \sum_n b_n^{-2} |\langle g, u_n \rangle|^2 < \infty$. W drugą stronę wnioskujemy, że jeśli spełniony jest warunek Picarda to możemy wypisać jawny wzór na rozwiązanie, gdyż odpowiedni szereg norm współczynników jest zbieżny i g jest sumą swojego szeregu Fouriera..

Ostatecznie możemy wnioskować, że $f = f_0 + \sum_n b_n^{-1} \langle g, u_n \rangle v_n$, gdzie $f_0 \in$ Ker A jest rozwiązaniem, gdyż na mocy powyższych faktów mamy, że $Af = A(f_0 + \sum_n b_n^{-1} \langle g, u_n \rangle v_n) = \sum_n \langle g, u_n \rangle b_n^{-1} A v_n = g$. Z drugiej strony, jeżeli $Af = A(f_0 + \sum_n b_n^{-1} \langle g, u_n \rangle v_n)$ g, to mamy, że $g = \sum_n \langle g, u_n \rangle u_n$ oraz $Af = \sum_n b_n \langle f, v_n \rangle u_n$ zatem musi zachodzić, że $b_n \langle f, v_n \rangle = \langle g, u_n \rangle$ dla dowolnego $n \in \mathbb{N}$, czyli $f = \sum_n b_n^{-1} \langle g, u_n \rangle + f_0$, gdzie $f_0 \in Ker A$.

Udało nam się zaprezentować działanie zwartego operatora w postaci jego rozwinięcia według wartości singularnym w postaci $Af = \sum_n b_n \langle f, v_n \rangle u_n$ oraz uzyskać postać szukanych rozwiązań w postaci $f = f_0 + \sum_n b_n^{-1} \langle g, u_n \rangle v_n$. Jednak takie rozwiązanie sytuacji stawia przed nami nowe problemy, gdy g jest znane tylko w przybliżeniu. Po pierwsze zauważmy, że jeżeli tylko g posiada niezerowe składowe w przestrzeni ortogonalnej do domknięcia obrazu operatora A równanie Af = g nie może być spełnione dokładnie. Niech $P \colon G \to \overline{RangeA}$ będzie rzutem ortogonalnym, czyli $\forall_{g \in G} \ Pg = \sum_n \langle g, u_n \rangle u_n$. Wtedy dla dowolnego elementu $f \in H$ mamy, że $||Af - g||^2 = ||Af - Pg||^2 + ||(1 - P)g||^2 \geqslant ||(1 - P)g||^2$.

Drugi problem związany jest ze zbieżnością szeregu w warunku Picarda. Z twierdzenia o reprezentacji spektralnej operatora zwartego samosprzężonego wiemy, że liczby $b_n \to 0$ gdy $n \to \infty$, a zatem liczby $b_n^{-2} \to \infty$ gdy $n \to \infty$, a nie mamy żadnej gwarancji, że liczby $\langle g, u_n \rangle$ zbiegają do zera odpowiednio szybko by zrównoważyć ten przyrost w przypadku zaburzonej wartości g.

W kolejnym kroku ograniczając się do badania operatorów zwartych w modelu białego szumu wprowadzimy równoważną formę wyjściowego zagadnienia

$$Y = Af + \epsilon \xi$$

w postaci modelu przestrzeni ciągowego.

Rozważmy układ singularny (u_n, v_n, b_n) operatora zwartego A oraz niech ξ będzie białym szumem. Możemy wtedy zapisać, rozpatrując działanie Y na układ $\{u_n\}$, że

$$\langle Y, u_n \rangle = \langle Af, u_n \rangle + \epsilon \langle \xi, u_n \rangle = \langle Af, b_n^{-1} A v_n \rangle + \epsilon \xi_n = b_n^{-1} \langle A^* Af, v_n \rangle + \epsilon \xi_n = b_n^{-1} \langle \sum_k b_k^2 \langle f, v_k \rangle v_k, v_n \rangle + \epsilon \xi_n = b_n \theta_n + \epsilon \xi_n$$

gdzie $\theta_n = \langle f, v_n \rangle$ są współczynnikami w rozwinięciu Fouriera funkcji f w bazie $\{v_n\}$, a $\xi_n = \langle \xi, u_n \rangle$ są zgodnie z lematem 1 niezależnymi zmiennymi losowymi o standardowym rozkładzie normalnym.

Oznaczając $y_n = \langle Y, u_n \rangle$ możemy wyjściowy problem $Y = Af + \epsilon \xi$ zapisać w równoważnej postaci modelu ciągowego jako

$$y_n = b_n \theta_n + \epsilon \xi_n, \ n = 1, 2, \dots$$

W tej postaci widać dokładnie trudności związane ze stochastycznymi problemami odwrotnymi. Jako że b_n są wartościami osobliwymi operatora zwartego mamy, że $b_n \to 0$ gdy $n \to \infty$, czyli widać, że wraz ze wzrostem n sygnał $b_n\theta_n$ staje się coraz słabszy i coraz trudniej estymować θ_n . Dodatkową trudnością jest fakt, że naszym celem jest estymacja współczynników θ_n a nie współczynników $b_n\theta_n$, dlatego możemy zapisać równoważną postać problemu

$$x_n = \theta_n + \epsilon \sigma_n \xi_n, \ n = 1, 2, \dots \tag{2}$$

gdzie $x_n = y_n/b_n$ oraz $\sigma_n = b_n^{-1}$, czyli $\sigma_n \to \infty$ gdy $n \to \infty$.

Korzystając z powyższego modelu wprowadzimy notację i pojęcia związane z konstrukcją rozważanych estymatorów i ich własnościami.

Mając pełną i niezaburzoną informację o współczynnikach $\theta_n,\ n=1,2,\ldots$ można by uzyskać pełną informację o poszukiwanym elemencie f z dokładnością do składowej znajdującej się w dopełnieniu ortogonalnym jądra operatora A kładąc $f=\sum_n \theta_n v_n$. W naturalny sposób można by zatem estymować współczynniki θ_n przez odpowiednie zaobserwowane wartości x_n , gdyż $\mathbb{E}_f(x_n)=\theta_n$. Uzasadnione może jednak być estymowanie współczynników rozwinięcia nie bezpośrednio przez zaobserwowane wartości, a przez przeskalowane w pewien sposób wartości, aby uwzględnić różne poziomy szumu.

Definicja 5. Niech $\lambda = (\lambda_1, \lambda_2, ...)$ będzie nielosowym ciągiem liczbowym. Estymatorem liniowym współczynników θ_n w modelu (2) nazwiemy estymator $\hat{\theta}(\lambda) = (\hat{\theta}_1, \hat{\theta}_2, ...)$, gdzie

$$\hat{\theta}_i = \lambda_i x_i, \ i = 1, 2, \dots$$

 $Ciqg \lambda nazywać będziemy filtrem lub wagami.$

Powyższa definicja jest przeformułowaniem ogólnej definicji estymatora liniowego w modelu obserwacji w białym szumie. Przykładowo estymatory rzutowe estymujące poszukiwany element f przez początkowe N składników w rozwinięciu w szereg Fouriera za współczynniki przyjmując zaobserwowane wartości odpowiadają filtrom $\lambda=(\lambda_1,\lambda_2,\ldots),$ w którym $\lambda_i=\mathbf{1}_{\{i\leqslant N\}},$ gdzie $\mathbf{1}_A$ oznacza indykator zbioru A. Innymi często stosowanymi wagami są wagi Tichonowa– Phillipsa postaci $\lambda_i=\frac{1}{1+(i/w)^a},$ w>0, a>0 lub Pinskera postaci $\lambda_i=\max\{0,1-(i/w)^a\},$ w>0, a>0.

Jakość estymatora \hat{f} elementu fmierzona będzie przy pomocy scałkowanego ryzyka średniokwadratowego.

Definicja 6. Scałkowanym ryzykiem średniokwadratowym estymatora \hat{f} elementu f nazywamy wyrażenie

$$\mathcal{R}(\hat{f}, f) = \mathbb{E}_f ||f - \hat{f}||^2.$$

W przypadku modelu (2) estymator \hat{f} możemy zapisać w postaci $\hat{f} = \sum_n \hat{\theta}_n v_n$. Wtedy dostajemy, że

$$\mathcal{R}(\hat{f}, f) = \mathbb{E}_f ||f - \hat{f}||^2 = \mathbb{E}_{\theta} \sum_{n} \left(\theta_n - \hat{\theta}_n \right)^2 = \mathbb{E}_{\theta} ||\theta - \hat{\theta}||^2,$$

gdzie druga równość wynika z tożsamości Parsevala, a norma $||\cdot||$ rozumiana jest odpowiednio w przestrzeni \mathcal{L}^2 lub l^2 , natomiast wartość oczekiwana jest liczona odpowiednio względem Y lub $X=(x_1,x_2,\ldots)$, w zależności od przyjętego modelu obserwacji.

Zatem w przypadku modelu (2) analiza ryzyka $\mathcal{R}(\hat{f}, f)$ jest równoważna analizie ryzyka $\mathcal{R}(\hat{\theta}, \theta) = \mathbb{E}_{\theta} ||\theta - \hat{\theta}||^2$. W przypadku estymatorów liniowych wyrażenie na ryzyko estymatora przyjmuje postać

$$\mathbb{E}_{\theta} ||\theta - \hat{\theta}||^2 = \mathbb{E}_{\theta} \sum_{n=1}^{\infty} \left(\theta_n - \hat{\theta}_n(\lambda) \right)^2 = \mathbb{E}_{\theta} \sum_{n=1}^{\infty} (\theta_n - \lambda_n x_n)^2 =$$

$$= \sum_{n=1}^{\infty} (1 - \lambda_n)^2 \theta_n^2 + \epsilon^2 \sum_{n=1}^{\infty} \sigma_n^2 \lambda_n^2. \tag{3}$$

Pierwszy składnik odpowiednia za obciążenie estymatora, natomiast drugi za jego wariancję.

Definicja 7. (/1/, str. 28)

Ryzykiem minimaksowym w klasie funkcji \mathcal{F} nazywamy wyrażenie

$$r(\mathcal{F}) = \inf_{\hat{f}} \sup_{f \in \mathcal{F}} \mathcal{R}(\hat{f}, f),$$

gdzie $\inf_{\hat{f}}$ wzięte jest po wszystkich możliwych estymatorach elementu f.

W przypadku nieparametrycznego podejścia do estymacji wyznaczenie estymatora realizującego ryzyko minimaksowe jest zwykle niemożliwe, dlatego poszukiwać będziemy estymatora asymptotycznie minimaksowego.

Definicja 8. ([1], str. 28)

Przypuśćmy, że istnieje estymator \tilde{f} , taki, że istnieją stałe $0 < C_1 \leqslant C_2 < \infty$ takie, że $gdy \epsilon \to 0$, to zachodzi

$$\sup_{f \in \mathcal{F}} \mathcal{R}(\tilde{f}, f) \leqslant C_2 a_{\epsilon}$$

$$\inf_{\hat{f}} \sup_{f \in \mathcal{F}} \mathcal{R}(\hat{f}, f) \geqslant C_1 a_{\epsilon},$$

gdzie ciąg nieujemnych wartości a_{ϵ} jest taki, że $a_{\epsilon} \to 0$, gdy $\epsilon \to 0$. Mówimy wtedy, że estymator \tilde{f} jest optymalny lub osiąga optymalne tempo zbieżności. W przypadku gdy $C_1 = C_2$, mówimy, że estymator \tilde{f} jest asymptotycznie minimaksowy.

Na koniec wprowadzimy jeszcze pewne pojęcia związane z założeniami o gładkości estymowanego elementu f w zależności od własności wygładzających danego operatora. Niech zatem $f \in H$ i niech A będzie operatorem zwartym.

Definicja 9. Powiemy, że dla elementu f zachodzi warunek źródłowy, jeżeli istnieje $w \in H$, L > 0 oraz $\mu \geqslant 0$ takie, że

$$f = (A^*A)^{\mu}w \text{ or } az ||w||^2 \leqslant L.$$

 $Przez H_{\mu,L}$ oznaczać będziemy klasę funkcji takich, że

$$H_{\mu,L} = \{ f \in H : f = (A^*A)^{\mu} w, \ w \in H, \ ||w||^2 \le L \}.$$

Mając do dyspozycji reprezentację spektralną operatora A^*A oraz tzw. rachunek funkcyjny, pozwalający zdefiniować funkcję od operatora poprzez jego reprezentację spektralną ([24]) dostaniemy równoważną postać warunku źródłowego. Zapiszmy

$$f = (A^*A)^{\mu}w = \sum_{k=1}^{\infty} b_k^{2\mu} w_k v_k,$$

gdzie $w_k = \langle w, v_k \rangle$. Oznaczając przez $\theta_k = \langle f, v_k \rangle = b_k^{2\mu} w_k$ dostajemy, że

$$||w||^2 \leqslant L \Longleftrightarrow \sum_{k=1}^{\infty} w_k^2 = \sum_{k=1}^{\infty} b_k^{-4\mu} \theta_k^2 \leqslant L.$$

Zatem założenie o warunku źródłowym jest równoważne założeniu, że współczynniki rozwinięcia Fouriera funkcji f w odpowiedniej bazie wektorów singularnych należą do pewnej elispoidy w przestrzeni l^2 . Oznaczmy taką elipsoidę przez

$$\Theta(a,L) = \left\{ \theta \in l^2 \colon \sum_{k=1}^{\infty} a_k^2 \theta_k^2 \leqslant L \right\},\,$$

gdzie L>0 oraz ciąg $a=\{a_k\}$ jest ciągiem nieujemnych liczb rozbieżnym do nieskończoności.

Wprowadzimy teraz pojęcie klasy Sobolewa funkcji.

Definicja 10. Niech H będzie pewną przestrzenią Hilberta a $\{\phi_i\}$ układem ortonormalnym w tej przestrzeni. Klasą Sobolewa nazywamy klasę postaci

$$\mathcal{W}(\alpha, L) = \left\{ f \in H \colon f = \sum_{i=1}^{\infty} \theta_i \phi_i, \ \theta \in \Theta(\alpha, L) \right\}.$$

gdzie ciąg a jest taki, że

$$a_i = \begin{cases} (i-1)^{\alpha}, \ dla \ i \ nieparzystego, \\ i^{\alpha}, \ dla \ i \ parzystego. \end{cases}$$

W przypadku, gdy α jest liczbą całkowitą, $H = \mathcal{L}^2[0,1]$ oraz $\{\phi_i\}$ jest układem trygonometrycznym, klasa Sobolewa ma równoważne przedstawienie

$$\mathcal{W}(\alpha, L) = \left\{ f \in H \colon \int_0^1 \left(f^{(\alpha)}(t) \right)^2 dt \leqslant L, \ f^{(j)}(0) = f^{(j)}(1) = 0, \ j = 0, 1, \dots, \alpha - 1 \right\},$$

gdzie $f^{(\alpha)}$ jest rozumiane jako pochodna słaba funkcji frzędu $\alpha.$

W przypadku problemów z wielomianowym tempem wzrostu współczynników $\sigma_k,$ czyli takich, że $\sigma_k^{-1}=b_k=k^{-\beta}$ warunki źródłowe są równoważne warunkowi

$$\sum_{k=1}^{\infty} b_k^{-4\mu} \theta_k^2 = \sum_{k=1}^{\infty} k^{4\mu\beta} \theta_k^2 \leqslant L,$$

czyli założeniu, że funkcja f jest z klasy Sobolewa $\mathcal{W}(2\mu\beta, L)$.

W przypadku problemów z wykładniczym tempem wzrostu współczynników σ , czyli takich, że $\sigma_k^{-1} = b_k = \exp(-\beta)$, warunki źródłowe prowadzą do warunku

$$\sum_{k=1}^{\infty} b_k^{-4\mu} \theta_k^2 = \sum_{k=1}^{\infty} e^{4\mu\beta k} \theta_k^2 \leqslant L,$$

czyli założenia, że funkcja f należy do klasy funkcji analitycznych postaci

$$\mathcal{A}(\alpha, L) = \left\{ f \in H \colon f = \sum_{k=1}^{\infty} \theta_k \phi_k, \ \theta \in \Theta_{\mathcal{A}}^{\alpha}(a, L) \right\},\,$$

gdzie $\Theta_{\mathcal{A}}(\alpha, L)$, to elipsoida $\Theta(a, L)$ z ciągiem a zdefiniowanym jako a_k $\exp(\alpha k)$ z $\alpha = 2\mu\beta$.

3. Wyrocznie

Przypuśćmy przez chwile, że zajmujemy się estymacja współczynników θ_i w następującym modelu

$$x_i = \theta_i + \sigma \epsilon_i, i = 1, 2, \dots, n,$$

gdzie σ jest stała dla wszystkich obserwacji, a ϵ_i są niezależnymi zmiennymi losowymi o standardowym rozkładzie normalnym. Będziemy je estymować przy pomocy estymatorów liniowych ze stałymi wagami, czyli postaci $\lambda X = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$. W takim przypadku ryzyko takiego estymatora wynosi

$$\mathcal{R}(\hat{\theta}, \theta) = (1 - \lambda)^2 ||\theta||_n^2 + n\lambda^2 \sigma^2,$$

gdzie $||\theta||_n^2=\sum_{i=1}^n\theta_i^2.$ Ryzyko to jest minimalizowane przez ustalenie wag jako

$$\tilde{\lambda} = \frac{||\theta||_n^{2}}{n\sigma^2 + ||\theta||_n^2}.$$

Wtedy estymator λX osiąga minimalne ryzyko w rozważanej klasie estymatorów równe

$$\mathcal{R}(\tilde{\lambda}X,\theta) = \frac{||\theta||_n^2}{n\sigma^2 + ||\theta||_n^2} = \inf_{\hat{\theta} \in \Lambda} \mathcal{R}(\hat{\theta},\theta),$$

gdzie $\Lambda = {\lambda X : \lambda \in [0,1]}$ jest rozważaną klasą estymatorów, w której wystarczy ograniczyć się do rozważania wag z przedziału [0,1], gdyż wagi spoza tego przedziału prowadzą do estymatorów niedopuszczalnych. Zauważmy jednak, że nie możemy zastosować tak wyznaczonego estymatora, gdyż korzysta on z niedostępnej dla nas informacji o estymowanym elemencie poprzez $||\theta||_n^2$. Minimalne ryzyko może zostać osiągnięte jedynie przez wyrocznię, która zna estymowany

element. Naszym celem byłaby konstrukcja takiej metody wyznaczania wagi λ , która korzystając jedynie z informacji zawartej w obserwowanej próbie starałaby się naśladować zachowanie wyroczni w kontekście osiąganego ryzyka. Tak postawione zagadnienie rozwiązywane jest przez znalezienie estymatora θ^* , którego ryzyko daje się kontrolować przez nieasymptotyczne nierówności wyrocznie postaci

 $\mathcal{R}(\theta^*, \theta) \leqslant C_1 \inf_{\hat{\theta} \in \Lambda} \mathcal{R}(\hat{\theta}, \theta) + C_2(\Lambda, n),$ (4)

gdzie stałe $C_1, C_2(\Lambda, n)$ nie zależą od estymowanego elementu, jednak stała $C_2(\Lambda, n)$ może zależeć od liczności rodziny Λ bądź jej złożoności, gdy jest ona nieskończona oraz od wielkości próby n ([19], str. 177) .

Dodatkowo pożądaną własnością takiego estymatora, która uzasadniałaby dodatkowo jego optymalne własności oraz wskazywałaby tempo zbieżności do estymatora asymptotycznie minimaksowaego, jest, by powyższa nierówność wyrocznia prowadziła do dokładnych nierówności postaci

$$\mathcal{R}(\theta^*, \theta) \leqslant (1 + o(1)) \inf_{\hat{\theta} \in \Lambda} \mathcal{R}(\hat{\theta}, \theta)$$
 (5)

gdy $\sigma \to 0$.

W przypadku rozważanego na początku rozdziału problemu poszukiwanym estymatorem naśladującym wyrocznię jest estymator Jamesa– Steina z wagą

$$\lambda^* = 1 - \frac{(n-2)\sigma^2}{\sum_{i=1}^{n} x_i^2}$$

spełniający nierówność wyrocznię postaci

$$\mathcal{R}(\lambda^* X, \theta) \leq 2\sigma^2 + \mathcal{R}(\tilde{\lambda} X, \theta).$$

Szczegółowe uzasadnienie można znaleźć w [25], str. 156.

W badanym w pracy zagadnieniu zaprezentowane zostaną analogiczne nierówności wyrocznie postaci (4) i (5) dla wszystkich badanych klas operatorów. Mając je do dyspozycji można uzasadnić optymalny wybór parametrów wygładzających w przypadku na przykład estymatorów typu rzutowego, Tichonowa-Phillipsa czy Pinskera.

4. Główne rezultaty I

Rezultaty uzyskane w tym rozdziale są rezultatami uzyskanymi w pracy [8] z kilkoma modyfikacjami.

Przypuśćmy, że dysponujemy skończonym zbiorem filtrów $\Lambda=(\lambda^1,\dots,\lambda^N)$ i związanych z nimi estymatorów liniowych, gdzie $\lambda^i=(\lambda^i_1,\lambda^i_2,\dots),\ i=1,2,\dots,N$. Naszym celem będzie konstrukcja filtra opartego na obserwacjach $\lambda^*(X)=(\lambda^i_1,\lambda^i_2,\dots)$ o wartościach w zbiorze Λ o asymptotycznie minimalnym ryzyku przy prawdziwej wartości θ , który równocześnie naśladuje ryzyko najlepszego estymatora w tej klasie w każdej skończonej próbie. Okaże się, że filtr ten może zostać zdefiniowany jako element minimalizujący względem $\lambda \in \Lambda$ nieobciążony estymator ryzyka. Zgodnie z (3) ryzyko estymatora liniowego wyraża się wzorem

$$\mathcal{R}(\hat{\theta}, \theta) = \sum_{n=1}^{\infty} (1 - \lambda_n)^2 \theta_n^2 + \epsilon^2 \sum_{n=1}^{\infty} \sigma_n^2 \lambda_n^2.$$

By minimalizacja ryzyka estymatora liniowego miała sens, trzeba założyć, że ryzyko jest skończone, a zatem należy dobierać filtry tak, by drugi człon był skończony. Ponadto założenie o dodatniości poniższej sumy implikuje, że żaden z rozważanych filtrów nie może być tożsamościowo równy zeru.

Założenie 1.

$$\forall_{\lambda \in \Lambda} \ 0 < \sum_{n=1}^{\infty} \sigma_n^2 \lambda_n^2 < \infty$$

Dodatkowo z postaci wyrażenia ma ryzyko widać, że wystarczy ograniczyć się do rozpatrywania wag takich, że $\forall_{\lambda \in \Lambda} \forall_i \ \lambda_i \in [0,1]$, gdyż w przeciwnym wypadku uzyskane estymatory stają się niedopuszczalne. Mimo tego narzucimy na rozważane wagi nieco słabsze wymagania.

Założenie 2.

$$\max_{\lambda \in \Lambda} \sup_{i} |\lambda_i| \leqslant 1$$

Dopuszczenie ujemnych wartości dla wag pozwala rozpatrywać potencjalnie także wagi związane na przykład z estymatorami jądrowymi przyjmującymi czasem ujemne wartości co może być uzasadnione ich lepszym zachowaniem w badanym problemie (głębsza dyskusja w [20]).

Ponadto będziemy zakładać skończoność poniższej sumy, by występujące później wyrażenia były skończone.

Założenie 3.

$$\forall_{\lambda \in \Lambda} \sum_{n=1}^{\infty} \lambda_n \sigma_n^2 < \infty.$$

Kolejnym krokiem jest wyznaczenie nieobciążonego estymatora wyrażenia (3). W dalszym ciągu rozważań założymy, że poziom szumu ϵ jest znany, natomiast czynniki σ_n związane są z rozważanym operatorem, którego pełna znajomość także jest zakładana. Pozostaje znalezienie nieobciążonego estymatora dla składników θ_n^2 . Zgodnie z modelem (2) estymatorem takim jest $x_n^2 - \sigma_n^2 \epsilon^2$, gdyż $x_n \sim \mathcal{N}(\theta_n, \sigma_n^2 \epsilon^2)$. Wstawiając to wyrażenie do wzoru opisującego ryzyko estymatora liniowego dostajemy

$$\sum_{n=1}^{\infty} (1 - \lambda_n)^2 (x_n^2 - \sigma_n^2 \epsilon^2) + \epsilon^2 \sum_{n=1}^{\infty} \sigma_n^2 \lambda_n^2 =$$

$$= \sum_{n=1}^{\infty} (x_n^2 - \sigma_n^2 \epsilon^2) + \sum_{n=1}^{\infty} (\lambda_n^2 - 2\lambda_n) (x_n^2 - \sigma_n^2 \epsilon^2) + \epsilon^2 \sum_{n=1}^{\infty} \sigma_n^2 \lambda_n^2 =$$

$$\sum_{n=1}^{\infty} (x_n^2 - \sigma_n^2 \epsilon^2) + \sum_{n=1}^{\infty} (\lambda_n^2 - 2\lambda_n) x_n^2 + 2\epsilon^2 \sum_{n=1}^{\infty} \lambda_n \sigma_n^2.$$

Jest to nieobciążony estymator ryzyka. Naszym celem jest jednak minimalizacja tego estymatora ze względu na wagi λ_i , stąd wystarczy ograniczyć się do rozpatrywania wyrażenia

$$U(\lambda, X) = \sum_{n=1}^{\infty} (\lambda_n^2 - 2\lambda_n) x_n^2 + 2\epsilon^2 \sum_{n=1}^{\infty} \lambda_n \sigma_n^2$$
 (6)

będącego nieobciążonym estymatorem $\mathcal{R}(\hat{\theta}, \theta) - \sum_{n=1}^{\infty} \theta_n^2$. Wyrażenie to jest skończone gdyż, dla dowolnego $\theta = \{\theta_i\}_{i=1}^{\infty}$ i λ spełniającego założenia 1–3 oraz ciągu zmiennych losowych określonych jako $\sqrt{\lambda_i^2 - 2\lambda_i}x_i$ o rozkładzie $\mathcal{N}(\sqrt{\lambda_i^2 - 2\lambda_i}\theta_i, (\lambda_i^2 - 2\lambda_i)\sigma_i^2\epsilon^2)$ mamy

$$\sum_{i=1}^{\infty} (\lambda_i^2 - 2\lambda_i)\theta_i^2 \leqslant 3\sum_{i=1}^{\infty} \theta_i^2 < \infty,$$

$$\sum_{i=1}^{\infty} (\lambda_i^2 - 2\lambda_i) \sigma_i^2 \epsilon^2 = \epsilon^2 \sum_{i=1}^{\infty} \lambda_i^2 \sigma_i^2 - 2\epsilon^2 \sum_{i=1}^{\infty} \lambda_i \sigma_i^2 < \infty,$$

co na mocy lematu 9 implikuje zbieżność $U(\lambda, X)$ w normie L_2 .

Uwaga 2. Wariancja funkcjonału $U(\lambda, X)$ wyraża się wzorem

$$\mathbb{V}arU(\lambda,X) = 2\epsilon^4 \sum_{n=1}^{\infty} \lambda_n^4 \sigma_n^4 - \sum_{n=1}^{\infty} \lambda_n^4 \theta_n^4 - 2\epsilon^2 \sum_{n=1}^{\infty} \theta_n^2 \sigma_n^2 \lambda_n^4 +$$

$$+8\epsilon^4 \sum_{n=1}^{\infty} \sigma_n^4 \lambda_n^2 - 4 \sum_{n=1}^{\infty} \lambda_n^2 \theta_n^4 - 8\epsilon^2 \sum_{n=1}^{\infty} \lambda_n^2 \sigma_n^2 \theta_n^2 - 8\epsilon^4 \sum_{n=1}^{\infty} \lambda_n^3 \sigma_n^4 + 4 \sum_{n=1}^{\infty} \lambda_n^3 \theta_n^4 + 8\epsilon^2 \sum_{n=1}^{\infty} \theta_n^2 \sigma_n^2 \lambda_n^3 \leqslant$$

$$\leqslant 2\epsilon^4 \sum_{n=1}^{\infty} \lambda_n^4 \sigma_n^4 + 8\epsilon^4 \sum_{n=1}^{\infty} \sigma_n^4 \lambda_n^2.$$

Wariancja ta jest skończona na mocy wcześniejszych założeń, gdyż zbieżność szeregu $\sum_{n=1}^\infty \lambda_n \sigma_n^2$ implikuje zbieżność szeregu $\sum_{n=1}^\infty \lambda_n^2 \sigma_n^4$.

Mając do dyspozycji odpowiednie wyrażenie związane z estymatorem ryzyka, możemy zdefiniować poszukiwany filtr wzorem

$$\lambda^* = \arg\min_{\lambda \in \Lambda} U(\lambda, X). \tag{7}$$

Dla tak zdefiniowanej metody wyboru wag pokazane i udowodnione zostaną nierówności wyrocznie.

Wprowadzimy następujące oznaczenia na występujące w późniejszych rozważaniach wielkości

$$\rho(\lambda) = \sup_{n} \sigma_{n}^{2} |\lambda_{n}| \left[\sum_{k=1}^{\infty} \sigma_{k}^{4} \lambda_{k}^{4} \right]^{-1/2},$$

$$\rho = \max_{\lambda \in \Lambda} \rho(\lambda),$$

$$S = \frac{\max_{\lambda \in \Lambda} \sup_{n} \sigma_{n}^{2} \lambda_{n}^{2}}{\min_{\lambda \in \Lambda} \sup_{n} \sigma_{n}^{2} \lambda_{n}^{2}},$$

$$M = \sum_{\lambda \in \Lambda} \exp\left(\frac{-1}{\rho(\lambda)}\right),$$

$$L_{\lambda} = \ln(NS) + \rho^{2} \ln^{2}(MS).$$

Wielkość $\rho(\lambda)$ jest pewnym sposobem mierzenia wielkości poszczególnych filtrów biorącym pod uwagę zarówno tempo znikania dalekich wyrazów poprzez $\left[\sum_{k=1}^{\infty}\sigma_k^4\lambda_k^4\right]^{-1/2}$ jak i rozrzut wokół zera poprzez $\sup_n\sigma_n^2|\lambda_n|$. Parametry S i M mierzą natomiast zachowanie rodziny wag Λ . Liczbę S można interpretować jako rozrzut bądź zmienność w rodzinie Λ natomiast M jest czynnikiem kontrolującym masywność tej rodziny (dalszy komentarz na temat znaczenia parametru M można znaleźć w pracy [4]). Zauważmy ponadto, że na mocy założeń 1 i 3 wszystkie te wartości są liczbami skończonymi.

Z założenia 2 wynika następująca nierówność

$$\sum_{k=1}^{\infty} \sigma_k^4 \lambda_k^4 \leqslant \sum_{k=1}^{\infty} \sigma_k^4 \lambda_k^2.$$

Dodatkowo wymagać będziemy istnienia następującej stałej

Założenie 4.

$$\exists_{C_1>0} \forall_{\lambda \in \Lambda} \sum_{k=1}^{\infty} \sigma_k^4 \lambda_k^2 \leqslant C_1 \sum_{k=1}^{\infty} \sigma_k^4 \lambda_k^4.$$

Oznacza to, że będziemy wymagać by obie sumy były tego samego rzędu. Jak widzieliśmy z postaci wariancji funkcjonału $U(\lambda,X)$ sumy $\epsilon^4 \sum_{k=1}^\infty \sigma_k^4 \lambda_k^4$ i $\epsilon^4 \sum_{k=1}^\infty \sigma_k^4 \lambda_k^2$ są głównymi jej składnikami. Z drugiej strony ze wzoru 3 mamy, że $\mathcal{R}(\hat{\theta},\theta) \geqslant \epsilon^2 \sum_{k=1}^\infty \sigma_k^2 \lambda_k^2$ oraz

$$\frac{\left(\epsilon^4 \sum_{k=1}^{\infty} \sigma_k^4 \lambda_k^4\right)^{1/2}}{\epsilon^2 \sum_{k=1}^{\infty} \sigma_k^2 \lambda_k^2} \leqslant \rho,\tag{8}$$

ponieważ z uwagi na założenie 2

$$\sum_{k=1}^{\infty} \sigma_k^4 \lambda_k^4 \leqslant \sum_{k=1}^{\infty} \sigma_k^4 |\lambda_k|^3 = \sum_{k=1}^{\infty} \sigma_k^2 \lambda_k^2 \cdot \sigma_k^2 |\lambda_k| \leqslant \sup_k \sigma_k^2 |\lambda_k| \leqslant \sum_{k=1}^{\infty} \sigma_k^2 \lambda_k^2$$

a stąd i z definicji $\rho(\lambda)$ dostajemy, że dla dowolnego $\lambda \in \Lambda$

$$\frac{\left(\epsilon^4 \sum_{k=1}^{\infty} \sigma_k^4 \lambda_k^4\right)^{1/2}}{\epsilon^2 \sum_{k=1}^{\infty} \sigma_k^2 \lambda_k^2} \leqslant \rho(\lambda) \leqslant \rho.$$

Zatem parametr ρ pozwala kontrolować wielkość stosunku odchylenia standardowego do wartości oczekiwanej funkcjonału $U(\lambda, X)$, czyli $\mathbb{V}ar^{1/2}U(\lambda, X)/\mathcal{R}(\hat{\theta}, \theta)$ jednostajnie względem λ i θ .

Dodatkowo z uwagi na fakt, że $\sup_k \sigma_k^2 |\lambda_k| \leqslant \sqrt{\sum_{k=1}^\infty \sigma_k^4 \lambda_k^2}$ i założenie 4 mamy, że

$$\forall_{\lambda \in \Lambda} \ \rho(\lambda) \leqslant \sqrt{C_1}$$
.

Przed wypowiedzeniem głównego twierdzenia zauważmy jeszcze, że zawsze zachodzi związek

$$M \leqslant N$$
,

gdzie N oznacza liczność rodziny Λ .

W poniższych dwóch twierdzeniach zebrane są główne wyniki otrzymane dla rozważanych problemów odwrotnych z operatorami zwartymi.

Twierdzenie 4. Niech będą spełnione założenia 1– 4. Wtedy dla dowolnego $\theta \in l^2$, dla dowolnego $B > B_0$ i dla estymatora liniowego θ^* z filtrem wybranym zgodnie z (7) zachodzi

$$\mathbb{E}_{\theta} \|\theta^* - \theta\|^2 \leq (1 + \gamma_1 B^{-1}) \min_{\Lambda \in \Lambda} \mathcal{R}(\hat{\theta}, \theta) + \gamma_2 B \epsilon^2 L_{\Lambda} \omega(B^2 L_{\Lambda}),$$

gdzie stałe $B_0 > 0, \gamma_1 > 0, \gamma_2 > 0$ zależą tylko od stałej C_1 , wyrażenie $\min_{\lambda \in \Lambda} \mathcal{R}(\hat{\theta}, \theta)$ rozumiane jest jako minimum wzięte po wszystkich estymatorach $\hat{\theta}$ postaci λX , $\lambda \in \Lambda$, a funkcja $\omega(x)$ jest postaci

$$\omega(x) = \max_{\lambda \in \Lambda} \sup_k \left[\sigma_k^2 \lambda_k^2 \mathbf{1} \left(\sum_{n=1}^\infty \sigma_n^2 \lambda_n^2 \leqslant x \sup_k \sigma_k^2 \lambda_k^2 \right) \right], \ x > 0.$$

Twierdzenie 5. Niech będą spełnione założenia 1– 4. Wtedy istnieją stałe $\gamma_3 > 0, \gamma_4 > 0$ zależące tylko od C_1 , takie że dla dowolnego $\theta \in l^2$ i dla estymatora liniowego θ^* z filtrem wybranym zgodnie z (7) zachodzi

$$\mathbb{E}_{\theta} \|\theta^* - \theta\|^2 \leq (1 + \gamma_3 \rho \sqrt{L_{\Lambda}}) \min_{\lambda \in \Lambda} \mathcal{R}(\hat{\theta}, \theta),$$

o ile $\rho\sqrt{L_{\Lambda}} < \gamma_4$, a minimum rozumiane jest jak w poprzednim twierdzeniu.

Zanim przejdziemy do dowodu powyższych twierdzeń podamy wniosek z twierdzenia 5, który pozwoli wnioskować o asymptotycznej dokładności podanych nierówności wyroczni postaci (5).

Wniosek 2. Niech będą spełnione założenia 1–4. Ponadto niech zachodzi $\lim_{\epsilon \to 0} \rho^2 \ln(NS) = 0$. Wtedy istnieją stałe $\mathbb{C}_2 > 0$, $\mathbb{C}_3 > 0$ załeżące tylko od stałej C_1 , takie że dla $\rho^2 \ln(NS) < \mathbb{C}_2$ i dla dowolnego $\theta \in l^2$ zachodzi

$$\mathbb{E}_{\theta} \left\| \hat{\theta} - \theta \right\|^{2} \leqslant \left(1 + \mathbb{C}_{3} \rho \sqrt{ln(NS)} \right) \min_{\lambda \in \Lambda} \mathcal{R}(\hat{\theta}, \theta),$$

gdzie estymator $\tilde{\theta}$ i minimum rozumiane są jak poprzednio.

Dowód. Skoro zachodzi $\lim_{\epsilon \to 0} \rho^2 \ln(NS) = 0$, zatem ciąg ten jest ograniczony przez pewną stałą zależną tylko od C_1 . Z twierdzenia 5 mamy, że stała γ_3 zależy tylko od stałej C_1 . Wystarczy zatem pokazać, że $L_{\Lambda} < C \ln(NS)$.

$$L_{\Lambda} = \ln(NS) + \rho^2 \ln^2(MS) \leqslant \ln(NS) + \rho^2 \ln^2(NS) \leqslant (1 + C_2) \ln(NS),$$
gdyż $M \leqslant N$.

Zatem warunek $\lim_{\epsilon\to 0} \rho^2 \ln(NS) = 0$ jest warunkiem wystarczającym do otrzymania dokładnych asymptotycznie nierówności wyroczni postaci (5). Zanim przejdziemy do dowodu twierdzeń 4 i 5 podamy trzy lematy z których będziemy korzystać, a których dowody znajdują się w rozdziałe 7.

Lemat 2. Niech $\{\xi_i\}_{i=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o tym samym standardowym rozkładzie normalnym i niech $v=\{v_i\}_{i=1}^{\infty}\in l^2$ będzie losowym ciągiem mierzalnym względem tej samej przestrzeni co ciąg $\{\xi_i\}_{i=1}^{\infty}$ i takim, że przyjmuje on wartości w skończony zbiorze $V\subset l^2$ o liczności N>1. Wtedy dla dowolnego $K\geqslant 1$ zachodzi

$$\mathbb{E}\left|\sum_{k=1}^{\infty} v_k \xi_k\right| \leqslant \sqrt{2\ln(NK)} \left(\mathbb{E}||v|| + \sqrt{2\mathbb{E}||v||^2/K}\right).$$

Lemat 3. Niech $\{\xi_i\}_{i=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o tym samym standardowym rozkładzie normalnym i niech $v=\{v_i\}_{i=1}^{\infty}\in l^2$ będzie losowym ciągiem mierzalnym względem tej samej przestrzeni co ciąg $\{\xi_i\}_{i=1}^{\infty}$ i takim, że przyjmuje on wartości w skończonym zbiorze $V\subset l^2$ o liczności N>1. Niech ponadto $v\neq 0$ dla każdego $v\in V$. Oznaczmy przez $m(v)=\sup_i |v_i|/||v||$, $m_V=\max_{v\in V} m(v)$ oraz

$$M(q) = \sum_{v \in V} \exp(-q/m(v)), \ q > 0.$$

Wtedy istnieje stala D zależna tylko od q, taka, że dla dowolnego $K \geqslant 1$ zachodzi

$$\mathbb{E}\left|\sum_{k=1}^{\infty} v_k(\xi_k^2 - 1)\right| \leq D\left(\sqrt{\ln(NK)} + m_V \ln(M(q)K)\right) \left(\mathbb{E}||v|| + \sqrt{\mathbb{E}||v||^2/K}\right).$$

Lemat 4. Niech $\hat{\theta}_i = \hat{\lambda}_i(X)X_i$ będzie estymatorem liniowym z wagami z przedziału [-1,1] przyjmującym wartości w zbiorze Λ . Oznaczmy przez

$$\Delta^{\epsilon}[\lambda] = \epsilon^2 L_{\Lambda} \sup_{i} \sigma_i^2 \lambda_i^2, \ \lambda \in \Lambda.$$

Wtedy istnieje absolutna stała C>0 taka, że dla dowolnego B>0 zachodzi

$$\mathbb{E}_{\theta} \left\| \hat{\theta} - \theta \right\|^{2} \leq (1 + 4B^{-1}) \mathbb{E}_{\theta} \mathcal{R}(\hat{\theta}, \theta) + CB \mathbb{E}_{\theta} \Delta^{\epsilon} [\lambda(X)].$$

Różnica w stałej $1+4B^{-1}$ w porównaniu do pracy [8] jest wynikiem innego doboru stałych w dowodzie twierdzeń 4 i 5 z uwagi na niewłaściwe dobraną stałą w pracy [8]. Różnica ta nie ma wpływa na ostateczny wydźwięk tych twierdzeń i wnioski z nich.

Przejdziemy teraz do dowodów twierdzenia 4, a później do dowodu twierdzenia 5

Dowód twierdzenia 4. Niech λ , $\lambda^* \in \Lambda$. Wtedy korzystając ze wzoru na różnicę kwadratów i szacowania $(a+b)^2 \leq 2(a^2+b^2)$, można pokazać, że

$$[(1-\lambda_i^{\cdot})^2-(1-\lambda_i^*)^2]^2\leqslant 4[(1-\lambda_i^{\cdot})^2+(1-\lambda_i^*)^2][\lambda_i^{\cdot2}+\lambda_i^{*2}].$$

Niech teraz $\tilde{\lambda} \in \Lambda$ będzie takim filtrem, że związany z nim estymator jest wyrocznią, czyli $\tilde{\theta} = \arg\min_{\lambda \in \Lambda} \mathcal{R}(\hat{\theta}, \theta)$, natomiast przez λ^* oznaczmy filtr definiowany przez (7) i konsekwentnie związany z nim estymator przez θ^* .

W rozpatrywanym modelu (2) $x_i = \theta_i + \epsilon \sigma_i \xi_i$, zatem $x_i^2 = \theta_i^2 + \epsilon^2 \sigma_i^2 \xi_i^2 + 2\epsilon \sigma_i \theta_i \xi_i$. Wstawiając to wyrażenie do wzoru na nieobciążony estymator ryzyka (6) mamy

$$U[\lambda^*, X] = \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*)(x_i^2 - \epsilon^2 \sigma_i^2) + \epsilon^2 \sum_{i=1}^{\infty} \sigma_i^2 \lambda_i^{*2} =$$

$$\begin{split} &= \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*)(\theta_i^2 + \epsilon^2 \sigma_i^2 \xi_i^2 + 2\epsilon \sigma_i \theta_i \xi_i - \epsilon^2 \sigma_i^2) + \epsilon^2 \sum_{i=1}^{\infty} \sigma_i^2 \lambda_i^{*2} = \\ &= 2\epsilon \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*) \sigma_i \theta_i \xi_i + \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*)(\theta_i^2 + \epsilon^2 \sigma_i^2 \xi_i^2 - \epsilon^2 \sigma_i^2) + \epsilon^2 \sum_{i=1}^{\infty} \sigma_i^2 \lambda_i^{*2} = \\ &= 2\epsilon \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*) \sigma_i \theta_i \xi_i + \epsilon^2 \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*) \sigma_i^2 (\xi_i^2 - 1) + \\ &+ \left[\sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*) \theta_i^2 + \epsilon^2 \sum_{i=1}^{\infty} \sigma_i^2 \lambda_i^{*2} + \sum_{i=1}^{\infty} \theta_i^2 \right] - \sum_{i=1}^{\infty} \theta_i^2 = \\ &= 2\epsilon \sum_{i=1}^{\infty} (1 - \lambda_i^*)^2 \sigma_i \theta_i \xi_i - 2\epsilon \sum_{i=1}^{\infty} \sigma_i \theta_i \xi_i - \sum_{i=1}^{\infty} \theta_i^2 + \epsilon^2 \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*) \sigma_i^2 (\xi_i^2 - 1) + \mathcal{R}(\theta^*, \theta). \end{split}$$

Obliczając wartość oczekiwaną powyższego wyrażenia dostajemy

$$\mathbb{E}_{\theta}U[\lambda^*, X] = \mathbb{E}_{\theta}\mathcal{R}(\theta^*, \theta) - \sum_{i=1}^{\infty} \theta_i^2 +$$
(9)

$$+2\epsilon \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1-\lambda_i^*)^2 \sigma_i \theta_i \xi_i + \epsilon^2 \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*) \sigma_i^2 (\xi_i^2 - 1).$$

Znajdziemy teraz dolne oszacowania na dwa ostatnie składniki powyższego wyrażenia. Zauważmy, że

$$\epsilon \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_{i}^{*})^{2} \sigma_{i} \theta_{i} \xi_{i} = \epsilon \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_{i}^{*})^{2} \sigma_{i} \theta_{i} \xi_{i} - 0 =$$

$$= \epsilon \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_{i}^{*})^{2} \sigma_{i} \theta_{i} \xi_{i} - \epsilon \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \tilde{\lambda}_{i})^{2} \sigma_{i} \theta_{i} \xi_{i} =$$

$$= \epsilon \mathbb{E}_{\theta} \sum_{i=1}^{\infty} [(1 - \lambda_{i}^{*})^{2} - (1 - \tilde{\lambda}_{i})^{2}] \sigma_{i} \theta_{i} \xi_{i} \geqslant$$

$$\geqslant -\epsilon \mathbb{E}_{\theta} \left| \sum_{i=1}^{\infty} [(1 - \lambda_{i}^{*})^{2} - (1 - \tilde{\lambda}_{i})^{2}] \sigma_{i} \theta_{i} \xi_{i} \right|.$$

Korzystając z lematu 2 z K=Si $v_i=[(1-\lambda_i^*)^2-(1-\tilde{\lambda_i})^2]\sigma_i\theta_i$ dostajemy

$$\begin{split} -\epsilon \mathbb{E}_{\theta} \left| \sum_{i=1}^{\infty} [(1-\lambda_i^*)^2 - (1-\tilde{\lambda}_i)^2] \sigma_i \theta_i \xi_i \right| \geqslant \\ \geqslant -\epsilon \sqrt{2 \ln(NS)} \mathbb{E}_{\theta} \left(\sum_{i=1}^{\infty} [(1-\lambda_i^*)^2 - (1-\tilde{\lambda}_i)^2]^2 \sigma_i^2 \theta_i^2 \right)^{1/2} - \\ -2\epsilon \sqrt{\ln(NS)/S} \left(\mathbb{E}_{\theta} \sum_{i=1}^{\infty} [(1-\lambda_i^*)^2 - (1-\tilde{\lambda}_i)^2]^2 \sigma_i^2 \theta_i^2 \right)^{1/2}. \end{split}$$

Następnie korzystając z nierówności wskazanej na początku dowodu dostajemy dolne oszacowanie postaci

$$-2\epsilon\sqrt{2\ln(NS)}\mathbb{E}_{\theta}\left(\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}](\lambda_{i}^{*2}+\tilde{\lambda_{i}^{2}})\theta_{i}^{2}\sigma_{i}^{2}\right)^{1/2}-$$

$$-4\epsilon\sqrt{\ln(NS)/S}\left(\mathbb{E}_{\theta}\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}](\lambda_{i}^{*2}+\tilde{\lambda_{i}^{2}})\theta_{i}^{2}\sigma_{i}^{2}\right)^{1/2}$$

W kolejnym kroku będziemy korzystać z nierówności $2ab \leq B^{-1}a^2 + Bb^2$ zachodzącej dla dowolnego B>0 i najpierw oszacujemy pierwszy składnik powyższego wyrażenia.

$$2\epsilon\sqrt{2\ln(NS)}\mathbb{E}_{\theta}\left(\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}](\lambda_{i}^{*2}+\tilde{\lambda_{i}^{2}})\theta_{i}^{2}\sigma_{i}^{2}\right)^{1/2} \leqslant$$

$$\leqslant 2\epsilon\sqrt{2\ln(NS)}\mathbb{E}_{\theta}\left\{\sup_{i}\left\{(\lambda_{i}^{*2}+\tilde{\lambda_{i}^{2}})\sigma_{i}^{2}\right\}\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}]\theta_{i}^{2}\right)^{1/2} =$$

$$=\mathbb{E}_{\theta}2\epsilon\sqrt{2\ln(NS)}\sup_{i}\left\{(\lambda_{i}^{*2}+\tilde{\lambda_{i}^{2}})\sigma_{i}^{2}\right\}\left(\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}]\theta_{i}^{2}\right)^{1/2} \leqslant$$

$$\leqslant 2B\epsilon^{2}\ln(NS)\mathbb{E}_{\theta}\sup_{i}\left\{(\lambda_{i}^{*2}+\tilde{\lambda_{i}^{2}})\sigma_{i}^{2}\right\}+B^{-1}\mathbb{E}_{\theta}\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}]\theta_{i}^{2} \leqslant$$

$$\leqslant 2B\epsilon^{2}\ln(NS)\mathbb{E}_{\theta}\left(\sup_{i}\lambda_{i}^{*2}\sigma_{i}^{2}+\sup_{i}\tilde{\lambda_{i}^{2}}\sigma_{i}^{2}\right)+B^{-1}\mathbb{E}_{\theta}\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}]\theta_{i}^{2}.$$

Analogicznie postępując z drugim wyrażeniem dostajemy

$$\begin{split} &4\epsilon\sqrt{\ln(NS)/S}\left(\mathbb{E}_{\theta}\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}](\lambda_{i}^{*2}+\tilde{\lambda_{i}^{2}})\theta_{i}^{2}\sigma_{i}^{2}\right)^{1/2}\leqslant\\ &\leqslant4\epsilon\sqrt{\ln(NS)/S}\left(\mathbb{E}_{\theta}\sup_{i}\left\{(\lambda_{i}^{*2}+\tilde{\lambda_{i}^{2}})\sigma_{i}^{2}\right\}\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}]\theta_{i}^{2}\right)^{1/2}\leqslant\\ &\leqslant2\cdot2\epsilon\sqrt{\ln(NS)/S}\left(\max_{\lambda\in\Lambda}\sup_{i}\left\{(\lambda_{i}^{2}+\tilde{\lambda_{i}^{2}})\sigma_{i}^{2}\right\}\right)^{1/2}\left(\mathbb{E}_{\theta}\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}]\theta_{i}^{2}\right)^{1/2}\leqslant\\ &\leqslant4B\epsilon^{2}\ln(NS)/S\max_{\lambda\in\Lambda}\sup_{i}\left\{(\lambda_{i}^{2}+\tilde{\lambda_{i}^{2}})\sigma_{i}^{2}\right\}+B^{-1}\mathbb{E}_{\theta}\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}]\theta_{i}^{2}. \end{split}$$

Zauważmy, że skoro

$$S = \frac{\max_{\lambda \in \Lambda} \sup_{i} \sigma_i^2 \lambda_i^2}{\min_{\lambda \in \Lambda} \sup_{i} \sigma_i^2 \lambda_i^2}$$

to wyrażenie $\max_{\lambda \in \Lambda} \sup_i \left\{ (\lambda_i^2 + \tilde{\lambda_i^2}) \sigma_i^2 \right\} / S$ można oszacować przez

$$\begin{split} \max_{\lambda \in \Lambda} \sup_{i} \left\{ (\lambda_{i}^{2} + \tilde{\lambda_{i}^{2}}) \sigma_{i}^{2} \right\} / S &= \frac{\min_{\lambda \in \Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}}{\max_{\lambda \in \Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}} \max_{\lambda \in \Lambda} \sup_{i} \left\{ (\lambda_{i}^{2} + \tilde{\lambda_{i}^{2}}) \sigma_{i}^{2} \right\} \leqslant \\ &\frac{\min_{\lambda \in \Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2} \cdot \max_{\lambda \in \Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}}{\max_{\lambda \in \Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}} + \frac{\min_{\lambda \in \Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2} \cdot \sup_{i} \tilde{\lambda_{i}^{2}} \sigma_{i}^{2}}{\max_{\lambda \in \Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}} = \\ &= \min_{\lambda \in \Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2} + \frac{1}{S} \sup_{\lambda \in \Lambda} \tilde{\lambda_{i}^{2}} \sigma_{i}^{2} \leqslant \sup_{\lambda \in \Lambda} \lambda_{i}^{*2} \sigma_{i}^{2} + \sup_{\lambda \in \Lambda} \tilde{\lambda_{i}^{2}} \sigma_{i}^{2}, \end{split}$$

a więc także przez wartość oczekiwaną ostatniego wyrażenia. Zatem dostajemy oszacowanie postaci

$$4\epsilon\sqrt{\ln(NS)/S}\left(\mathbb{E}_{\theta}\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}](\lambda_{i}^{*2}+\tilde{\lambda_{i}^{2}})\theta_{i}^{2}\sigma_{i}^{2}\right)^{1/2}\leqslant$$

$$\leqslant4B\epsilon^{2}\ln(NS)\mathbb{E}_{\theta}\left(\sup_{i}\lambda_{i}^{*2}\sigma_{i}^{2}+\sup_{i}\tilde{\lambda_{i}^{2}}\sigma_{i}^{2}\right)+B^{-1}\mathbb{E}_{\theta}\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2}+(1-\tilde{\lambda_{i}})^{2}]\theta_{i}^{2},$$

czyli takie samo z dokładnością do stałych jak dla czynnika pierwszego. Zatem możemy napisać, że

$$\epsilon \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_i^*)^2 \sigma_i \theta_i \xi_i \geqslant$$

$$\geqslant -6B\epsilon^2 \ln(NS) \mathbb{E}_{\theta} \left(\sup_{i} \lambda_i^{*2} \sigma_i^2 + \sup_{i} \tilde{\lambda_i^2} \sigma_i^2 \right) - 2B^{-1} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} [(1 - \lambda_i^*)^2 + (1 - \tilde{\lambda_i})^2] \theta_i^2$$

Zachodzi również

$$\sum_{i=1}^{\infty} (1 - \lambda_i^*)^2 \theta_i^2 \leqslant \mathcal{R}(\theta^*, \theta) \text{ oraz } \ln(NS) \leqslant L_{\Lambda}.$$

Przy oznaczeniu $\Delta^{\epsilon}[\lambda] = \epsilon^2 L_{\Lambda} \sup_i \sigma_i^2 \lambda_i^2$ jak w lemacie 4 prowadzi to do oszacowania postaci

$$-6B\epsilon^{2}\ln(NS)\mathbb{E}_{\theta}\left(\sup_{i}\lambda_{i}^{*2}\sigma_{i}^{2} + \sup_{i}\tilde{\lambda_{i}^{2}}\sigma_{i}^{2}\right) - 2B^{-1}\mathbb{E}_{\theta}\sum_{i=1}^{\infty}[(1-\lambda_{i}^{*})^{2} + (1-\tilde{\lambda_{i}})^{2}]\theta_{i}^{2} \geqslant$$

$$\geqslant -6B\epsilon^{2}\ln(NS)\mathbb{E}_{\theta}\left(\sup_{i}\lambda_{i}^{*2}\sigma_{i}^{2} + \sup_{i}\tilde{\lambda_{i}^{2}}\sigma_{i}^{2}\right) - 2B^{-1}\mathbb{E}_{\theta}\sum_{i=1}^{\infty}(1-\lambda_{i}^{*})^{2}\theta_{i}^{2} - 2B^{-1}\sum_{i=1}^{\infty}(1-\tilde{\lambda_{i}})^{2}\theta_{i}^{2} \geqslant$$

$$\geqslant -2B^{-1}\mathbb{E}_{\theta}\sum_{i=1}^{\infty}(1-\lambda_{i}^{*})^{2}\theta_{i}^{2} - 2B^{-1}\mathcal{R}(\tilde{\theta},\theta) - 6B\mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^{*}] - 6B\mathbb{E}_{\theta}\Delta^{\epsilon}[\tilde{\lambda}]. \quad (10)$$

Znajdziemy teraz oszacowanie dla składnika $\epsilon^2 \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*) \sigma_i^2(\xi_i^2 - 1)$. Zauważmy na początek, że z uwagi na to, że $|\lambda_i| \leq 1$ dla dowolnego $\lambda \in \Lambda$ z założenia 2, zachodzi $\lambda_i^2 \leq (\lambda_i^2 - 2\lambda_i)^2 \leq 9\lambda_i^2$. Do oszacowania analizowanego wyrażenia posłużymy się lematem 3 z K = S, q = 3 i $v_i = (\lambda_i^{*2} - 2\lambda_i^*)\sigma_i^2$. Zatem

$$\epsilon^{2} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (\lambda_{i}^{*2} - 2\lambda_{i}^{*}) \sigma_{i}^{2}(\xi_{i}^{2} - 1) \leqslant \epsilon^{2} \mathbb{E}_{\theta} \left| \sum_{i=1}^{\infty} (\lambda_{i}^{*2} - 2\lambda_{i}^{*}) \sigma_{i}^{2}(\xi_{i}^{2} - 1) \right| \leqslant \epsilon^{2} D \left(\sqrt{\ln(NS)} + m_{V} \ln(SM(3)) \right) \left(\mathbb{E}_{\theta} ||v|| + \sqrt{\mathbb{E}_{\theta} ||v||^{2}/S} \right).$$

Oszacujemy teraz niektóre z elementów pojawiających się powyżej:

$$m(v) = \sup_{i} |v_{i}|/||v|| = \frac{\sup_{i} |\lambda_{i}^{*2} - 2\lambda_{i}^{*}|\sigma_{i}^{2}}{\sqrt{\sum_{i=1}^{\infty} (\lambda_{i}^{*2} - 2\lambda_{i}^{*})^{2} \sigma_{i}^{4}}} \leqslant \frac{3 \sup_{i} |\lambda_{i}| \sigma_{i}^{2}}{\sqrt{\sum_{i=1}^{\infty} \lambda_{i}^{*4} \sigma_{i}^{4}}} \leqslant 3\rho(\lambda),$$

$$M(3) = \sum_{v} \exp(-3/m(v)) = \sum_{\lambda \in \Lambda} \exp(-3/m(v)) \leqslant \sum_{\lambda \in \Lambda} \exp(-1/\rho(\lambda)) = M,$$

$$m_V = \max_v m(v) \leqslant 3\rho = 3 \max_{\lambda \in \Lambda} \rho(\lambda).$$

Stad dostajemy, że

$$\left(\sqrt{\ln(NS)} + m_V \ln(SM(3))\right)^2 \leqslant \left(\sqrt{\ln(NS)} + 3\rho \ln(MS)\right)^2 \leqslant$$
$$\leqslant 2\ln(NS) + 6\rho^2 \ln^2(MS) \leqslant 6(\ln(NS) + \rho^2 \ln^2(MS)),$$

a stąd

$$\sqrt{\ln(NS)} + m_V \ln(SM(3)) \leqslant C\sqrt{L_\Lambda},$$

gdzie C jest pewną stałą. W dalszym ciągu rozważań wszystkie stałe generyczne zależne tylko od C_1 oznaczać będziemy przez C. Pozwala nam to oszacować badane wyrażenie od dołu przez

$$\epsilon^2 \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*) \sigma_i^2(\xi_i^2 - 1) \geqslant -\epsilon^2 D\left(\sqrt{\ln(NS)} + m_V \ln(SM(3))\right) \left(\mathbb{E}_{\theta} ||v|| + \sqrt{\mathbb{E}_{\theta} ||v||^2 / S}\right) \geqslant 0$$

$$\geqslant -\epsilon^2 C \sqrt{L_{\Lambda}} \mathbb{E}_{\theta} \left(\sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*)^2 \sigma_i^4 \right)^{1/2} - \epsilon^2 C \sqrt{L_{\Lambda}} S^{-1/2} \left(\mathbb{E}_{\theta} \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*)^2 \sigma_i^4 \right)^{1/2} \geqslant$$

$$\geqslant -\epsilon^2 3 C \sqrt{L_{\Lambda}} \mathbb{E}_{\theta} \left(\sum_{i=1}^{\infty} \lambda_i^{*2} \sigma_i^4 \right)^{1/2} - \epsilon^2 3 C \sqrt{L_{\Lambda}} S^{-1/2} \left(\mathbb{E}_{\theta} \sum_{i=1}^{\infty} \lambda_i^{*2} \sigma_i^4 \right)^{1/2} \geqslant$$

$$\geqslant -\epsilon^2 C \sqrt{C_1} \sqrt{L_{\Lambda}} \mathbb{E}_{\theta} \left(\sum_{i=1}^{\infty} \lambda_i^{*4} \sigma_i^4 \right)^{1/2} - \epsilon^2 C \sqrt{C_1} \sqrt{L_{\Lambda}} S^{-1/2} \left(\mathbb{E}_{\theta} \sum_{i=1}^{\infty} \lambda_i^{*4} \sigma_i^4 \right)^{1/2},$$

z uwagi na to, że $(\lambda_i^{*2} - 2\lambda_i^*)^2 \leq 9\lambda_i^{*2}$ oraz założenie 4. W dalszej części skorzystamy z faktu, że $\forall_{\omega \in \Omega} \min_{\lambda \in \Lambda} \sup_i \lambda_i^2 \sigma_i^2 \leq \sup_i \lambda_i^{*2} \sigma_i^2 = \sup_i \lambda_i^{*2}(\omega) \sigma_i^2$, a stąd $\min_{\lambda \in \Lambda} \sup_i \lambda_i^2 \sigma_i^2 \leq \mathbb{E}_{\theta} \sup_i \lambda_i^{*2} \sigma_i^2$. Analogicznie jak poprzednio

$$S^{-1}\mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{4} \lambda_{i}^{*4} \leqslant \frac{\min_{\lambda \in \Lambda} \sup_{i} \lambda_{i}^{2} \sigma_{i}^{2}}{\max_{\lambda \in \Lambda} \sup_{i} \lambda_{i}^{2} \sigma_{i}^{2}} \mathbb{E}_{\theta} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{*2} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{*2}$$

$$\leqslant \frac{\min_{\lambda \in \Lambda} \sup_{i} \lambda_{i}^{2} \sigma_{i}^{2}}{\max_{\lambda \in \Lambda} \sup_{i} \lambda_{i}^{2} \sigma_{i}^{2}} \max_{\lambda \in \Lambda} \sup_{i} \lambda_{i}^{2} \sigma_{i}^{2} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{*2} \leqslant$$

$$\leqslant \mathbb{E}_{\theta} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{*2} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{*2}.$$

Podobnie dla drugiego wyrażenia

$$\mathbb{E}_{\theta} \left(\sum_{i=1}^{\infty} \sigma_i^4 \lambda_i^{*4} \right)^{1/2} \leqslant \mathbb{E}_{\theta} \left(\sup_i \sigma_i^2 \lambda_i^{*2} \sum_{i=1}^{\infty} \sigma_i^2 \lambda_i^{*2} \right)^{1/2}.$$

Ponownie korzystając z nierówności $2ab \leqslant B^{-1}a^2 + Bb^2$ dostajemy

$$C\sqrt{L_{\Lambda}}\mathbb{E}_{\theta}\left(\sup_{i}\sigma_{i}^{2}\lambda_{i}^{*2}\sum_{i=1}^{\infty}\sigma_{i}^{2}\lambda_{i}^{*2}\right)^{1/2} = \mathbb{E}_{\theta}\left(2C\sqrt{L_{\Lambda}\sup_{i}\sigma_{i}^{2}\lambda_{i}^{*2}}\left(2\sum_{i=1}^{\infty}\sigma_{i}^{2}\lambda_{i}^{*2}\right)^{1/2}\right) \leqslant$$
$$\leqslant B\mathbb{E}_{\theta}C^{2}L_{\Lambda}\sup_{i}\sigma_{i}^{2}\lambda_{i}^{*2} + 2B^{-1}\mathbb{E}_{\theta}\sum_{i=1}^{\infty}\sigma_{i}^{2}\lambda_{i}^{*2}.$$

Podobnie dla drugiego wyrażenia

$$C\sqrt{L_{\Lambda}} \left(\mathbb{E}_{\theta} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{*2} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{*2} \right)^{1/2} = 2 \left(\mathbb{E}_{\theta} C L_{\Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{*2} \right)^{1/2} \left(2 \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{*2} \right)^{1/2} \leqslant$$

$$\leqslant B \mathbb{E}_{\theta} C L_{\Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{*2} + 2B^{-1} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{*2}.$$

Łącząc oba oszacowania oraz wykorzystując oznaczenie $\Delta^\epsilon[\lambda]=\epsilon^2L_\Lambda \sup_i\sigma_i^2\lambda_i^2$ dostajemy

$$\epsilon \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*) \sigma_i^2(\xi_i^2 - 1) \geqslant$$

$$\geqslant C \epsilon^2 B \mathbb{E}_{\theta} L_{\Lambda} \sup_{i} \sigma_i^2 \lambda_i^{*2} - 4 \epsilon^2 B^{-1} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_i^2 \lambda_i^{*2} =$$

$$= -C B \mathbb{E}_{\theta} \Delta^{\epsilon} [\lambda^*] - 4 \epsilon^2 B^{-1} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_i^2 \lambda_i^{*2}. \tag{11}$$

Łącząc wyrażenia (10) oraz (11) dostajemy

$$2\epsilon \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_i^*)^2 \sigma_i \theta_i \xi_i + \epsilon^2 \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*) \sigma_i^2 (\xi_i^2 - 1) \geqslant$$

$$\geqslant -4B^{-1}\mathbb{E}_{\theta} \left[\sum_{i=1}^{\infty} (1 - \lambda_{i}^{*})^{2} \theta_{i}^{2} + \epsilon^{2} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{*2} \right] - 4B^{-1}\mathcal{R}(\tilde{\theta}, \theta) - 12B\mathbb{E}_{\theta} \Delta^{\epsilon}[\lambda^{*}] - 12B\Delta^{\epsilon}[\tilde{\lambda}] =$$

$$= -4B^{-1}\mathbb{E}_{\theta}\mathcal{R}(\theta^{*}, \theta) - 4B^{-1}\mathcal{R}(\tilde{\theta}, \theta) - CB\mathbb{E}_{\theta} \Delta^{\epsilon}[\lambda^{*}] - CB\Delta^{\epsilon}[\tilde{\lambda}].$$
 (12)

Możemy teraz przejść do ostatecznego szacowania ryzyka badanego estymatora. Zgodnie z (9) mamy wykorzystując oszacowania (10) i (11) (bądź od razu (12))

$$\mathbb{E}_{\theta}U[\lambda^*, X] = \mathbb{E}_{\theta}\mathcal{R}(\theta^*, \theta) - \sum_{i=1}^{\infty} \theta_i^2 + \\ + 2\epsilon \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_i^*)^2 \sigma_i \theta_i \xi_i + \epsilon^2 \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (\lambda_i^{*2} - 2\lambda_i^*) \sigma_i^2 (\xi_i^2 - 1) \geqslant \\ \geqslant \mathbb{E}_{\theta}\mathcal{R}(\theta^*, \theta) - \sum_{i=1}^{\infty} \theta_i^2 - 4B^{-1} \mathbb{E}_{\theta}\mathcal{R}(\theta^*, \theta) - 4B^{-1} \mathcal{R}(\tilde{\theta}, \theta) - CB \mathbb{E}_{\theta} \Delta^{\epsilon}[\lambda^*] - CB \Delta^{\epsilon}[\tilde{\lambda}].$$

Zatem zachodzi

$$(1-4B^{-1})\mathbb{E}_{\theta}\mathcal{R}(\theta^*,\theta) \leqslant \mathbb{E}_{\theta}U[\lambda^*,X] + \sum_{i=1}^{\infty} \theta_i^2 + 4B^{-1}\mathcal{R}(\tilde{\theta},\theta) + CB\mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^*] + CB\Delta^{\epsilon}[\tilde{\lambda}].$$

Jednak, jako że filtr λ^* był zdefiniowany w (7) jako argument minimalizujący nieobciążony estymator ryzyka (6), musi zachodzić, że

$$\mathbb{E}_{\theta}U[\lambda^*, X] \leqslant \mathbb{E}_{\theta}U[\tilde{\lambda}, X] = \mathcal{R}(\tilde{\theta}, \theta) + \sum_{i=1}^{\infty} \theta_i^2.$$

Dochodzimy zatem do oszacowania postaci

$$(1 - 4B^{-1})\mathbb{E}_{\theta}\mathcal{R}(\theta^*, \theta) \leqslant (1 + 4B^{-1})\mathcal{R}(\tilde{\theta}, \theta) + CB\mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^*] + CB\Delta^{\epsilon}[\tilde{\lambda}]. \tag{13}$$

Zauważmy, że dla dowolnego x > 0 zachodzi następujące oszacowanie

$$\begin{split} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2} &= \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2} \mathbf{1} \left\{ x \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2} < \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2} \right\} + \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2} \mathbf{1} \left\{ x \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2} \geqslant \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2} \right\} \leqslant \\ &\leqslant \frac{1}{x} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2} + \max_{\lambda \in \Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2} \mathbf{1} \left\{ x \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2} \geqslant \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2} \right\} \leqslant \\ &\leqslant \frac{1}{x} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2} + \omega(x) \leqslant \frac{1}{x \epsilon^{2}} \mathcal{R}(\hat{\theta}, \theta) + \omega(x) \ \forall_{\lambda \in \Lambda}. \end{split}$$

Stąd dostajemy oszacowanie na składnik

$$\Delta^{\epsilon}[\lambda] = \epsilon^2 L_{\Lambda} \sup_{i} \sigma_i^2 \lambda_i^2 \leqslant \frac{L_{\Lambda}}{x} \mathcal{R}(\hat{\theta}, \theta) + \epsilon^2 L_{\Lambda} \omega(x).$$

Wykorzystamy teraz powyższe nierówności dla nierówności (13).

$$(1 - 4B^{-1})\mathbb{E}_{\theta}\mathcal{R}(\theta^*, \theta) \leqslant (1 + 4B^{-1})\mathcal{R}(\tilde{\theta}, \theta) + CB\mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^*] + CB\Delta^{\epsilon}[\tilde{\lambda}] \leqslant$$

$$\leqslant CB\frac{L_{\Lambda}}{x}\mathbb{E}_{\theta}\mathcal{R}(\theta^*, \theta) + CB\epsilon^2L_{\Lambda}\omega(x) + CB\epsilon^2L_{\Lambda}\omega(x) + CB\frac{L_{\Lambda}}{x}\mathcal{R}(\tilde{\theta}, \theta) + (1 + 4B^{-1})\mathcal{R}(\tilde{\theta}, \theta) =$$

$$= CB\frac{L_{\Lambda}}{x}\mathbb{E}_{\theta}\mathcal{R}(\theta^*, \theta) + CB\epsilon^2L_{\Lambda}\omega(x) + \left(CB\frac{L_{\Lambda}}{x} + 1 + 4B^{-1}\right)\mathcal{R}(\tilde{\theta}, \theta).$$

Mamy stąd

$$\mathbb{E}_{\theta} \mathcal{R}(\theta^*, \theta) \leqslant \frac{CB\epsilon^2 L_{\Lambda}\omega(x)}{1 - 4B^{-1} - CB\frac{L_{\Lambda}}{x}} + \frac{CB\frac{L_{\Lambda}}{x} + 1 + 4B^{-1}}{1 - 4B^{-1} - CB\frac{L_{\Lambda}}{x}} \mathcal{R}(\tilde{\theta}, \theta).$$

Korzystając z lematu 4 mamy ponadto, że

$$\mathbb{E}_{\theta}||\theta^* - \theta||^2 \leq (1 + 4B^{-1})\mathbb{E}_{\theta}\mathcal{R}(\theta^*, \theta) + CB\mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^*] \leq$$

$$\leq (1 + 4B^{-1} + CB\frac{L_{\Lambda}}{x})\mathbb{E}_{\theta}\mathcal{R}(\theta^*, \theta) + CB\epsilon^2L_{\Lambda}\omega(x).$$

Niech teraz $x = B^2 L_{\Lambda}$ oraz $\gamma = 4 + C$. Wtedy z powyższych nierówności dostajemy, że

$$\begin{split} & \mathbb{E}_{\theta} ||\theta^* - \theta||^2 \leqslant (1 + \gamma B^{-1}) \mathbb{E}_{\theta} \mathcal{R}(\theta^*, \theta) + CB \epsilon^2 L_{\Lambda} \omega(B^2 L_{\Lambda}) \leqslant \\ & \leqslant \frac{1 + \gamma B^{-1}}{1 - \gamma B^{-1}} CB \epsilon^2 L_{\Lambda} \omega(B^2 L_{\Lambda}) + CB \epsilon^2 L_{\Lambda} \omega(B^2 L_{\Lambda}) + \frac{(1 + \gamma B^{-1})^2}{1 - \gamma B^{-1}} \mathcal{R}(\tilde{\theta}, \theta). \end{split}$$

Zauważmy następnie, że z uwagi na fakt, że $\lim_{x\to\infty}\frac{x+\gamma}{x-\gamma}=1$, mamy, że $B\frac{1+\gamma B^{-1}}{1-\gamma B^{-1}}=C'B$ dla pewnej stałej C' zależnej tylko od C_1 (poprzez γ) o ile tylko $B>B_0$ dla pewnego $B_0>\gamma$. Analogicznie widzimy, że $\frac{(1+\gamma B^{-1})^2}{1-\gamma B^{-1}}=(1+\gamma B^{-1})\cdot C''$ o ile znowu $B>B_0$. Zwiększając stałą γ i oznaczając ją przez γ_1 dostajemy, że $\frac{(1+\gamma B^{-1})^2}{1-\gamma B^{-1}}=1+\gamma_1 B^{-1}$. Ostatecznie prowadzi nas do nierówności

$$\mathbb{E}_{\theta}||\theta^* - \theta||^2 \leqslant (1 + \gamma_1 B^{-1})\mathcal{R}(\tilde{\theta}, \theta) + \gamma_2 B \epsilon^2 L_{\Lambda} \omega(B^2 L_{\Lambda}).$$

Nierówność ta kończy dowód twierdzenia 4.

Dowód twierdzenia 5. Będziemy stosować te same oznaczenia na estymator i wyrocznię jak w dowodzie twierdzenia 4. Zauważmy na początek, że z uwagi (8) mamy

$$\frac{\left(\sum_{k=1}^{\infty} \sigma_k^4 \lambda_k^4\right)^{1/2}}{\sum_{k=1}^{\infty} \sigma_k^2 \lambda_k^2} \leqslant \rho \Longrightarrow \frac{1}{\sum_{k=1}^{\infty} \sigma_k^2 \lambda_k^2} \leqslant \frac{\rho}{\left(\sum_{k=1}^{\infty} \sigma_k^4 \lambda_k^4\right)^{1/2}}.$$

Zatem możemy oszacować wyrażenie $\frac{\sup_i \sigma_i^2 \lambda_i^2}{\sum_{k=1}^\infty \sigma_k^2 \lambda_k^2}$ w następujący sposób

$$\frac{\sup_{i}\sigma_{i}^{2}\lambda_{i}^{2}}{\sum_{k=1}^{\infty}\sigma_{k}^{2}\lambda_{k}^{2}}\leqslant\rho\frac{\sup_{i}\sigma_{i}^{2}\lambda_{i}^{2}}{\left(\sum_{k=1}^{\infty}\sigma_{k}^{4}\lambda_{k}^{4}\right)^{1/2}}\leqslant\rho^{2}$$

korzystając z definicji ρ . Zauważmy ponadto, że dla dowolnego $\lambda \in \Lambda$ zachodzi

$$\mathcal{R}(\hat{\theta}, \theta) = \sum_{i=1}^{\infty} (1 - \lambda_i)\theta_i^2 + \epsilon^2 \sum_{i=1}^{\infty} \sigma_i^2 \lambda_i^2 \geqslant \epsilon^2 \sum_{i=1}^{\infty} \sigma_i^2 \lambda_i^2.$$

Łącząc te dwie nierówności dostajemy, że

$$\epsilon^2 \sup_i \sigma_i^2 \lambda_i^2 \leqslant \epsilon^2 \rho^2 \sum_{i=1}^{\infty} \sigma_i^2 \lambda_i^2 \leqslant \rho^2 \mathcal{R}(\hat{\theta}, \theta).$$

Pozwala nam to oszacować wyrażenie $\Delta^\epsilon[\lambda]$ dla dowolnego $\lambda\in\Lambda$ i dowolnego $\theta\in l^2$ przez

$$\Delta^{\epsilon}[\lambda] = \epsilon^2 L_{\Lambda} \sup_{i} \sigma_i^2 \lambda_i^2 \leqslant \rho^2 L_{\Lambda} \mathcal{R}(\hat{\theta}, \theta).$$

Następnie analogicznie jak w dowodzie twierdzenia 4 możemy dostać nierówność postaci (oszacowanie (13))

$$(1 - 4B^{-1})\mathbb{E}_{\theta}\mathcal{R}(\theta^*, \theta) \leqslant (1 + 4B^{-1})\mathcal{R}(\tilde{\theta}, \theta) + CB\mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^*] + CB\Delta^{\epsilon}[\tilde{\lambda}].$$

Co prowadzi do nierówności

$$(1-4B^{-1})\mathbb{E}_{\theta}\mathcal{R}(\theta^*,\theta) \leqslant (1+4B^{-1})\mathcal{R}(\tilde{\theta},\theta) + CB\rho^2 L_{\Lambda}\mathbb{E}_{\theta}\mathcal{R}(\theta^*,\theta) + CB\rho^2 L_{\Lambda}\mathcal{R}(\tilde{\theta},\theta),$$

a stąd dostajemy

$$\mathbb{E}_{\theta} \mathcal{R}(\theta^*, \theta) \leqslant \frac{1 + 4B^{-1} + CB\rho^2 L_{\Lambda}}{1 - 4B^{-1} - CB\rho^2 L_{\Lambda}} \mathcal{R}(\tilde{\theta}, \theta).$$

Ponownie korzystając z lematu 4 dostajemy

$$\mathbb{E}_{\theta}||\theta^* - \theta||^2 \leqslant (1 + 4B^{-1})\mathbb{E}_{\theta}\mathcal{R}(\theta^*, \theta) + CB\mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^*] \leqslant$$
$$\leqslant (1 + 4B^{-1} + CB\rho^2L_{\Lambda})\mathcal{R}(\tilde{\theta}, \theta).$$

Łącząc te dwie nierówności mamy

$$\mathbb{E}_{\theta}||\theta^* - \theta||^2 \leqslant \frac{(1 + 4B^{-1} + CB\rho^2 L_{\Lambda})^2}{1 - 4B^{-1} - CB\rho^2 L_{\Lambda}} \mathcal{R}(\tilde{\theta}, \theta).$$

Zauważmy, że istnieje taka stała $\gamma_4 > 0$, że jeśli tylko zachodzi $\rho^2 L_{\Lambda} \leqslant \gamma_4$, to wybór B jako $(\rho^2 L_{\Lambda})^{-1/2}$ prowadzi do nierówności $4B^{-1} + CB\rho^2 L_{\Lambda} < 1/2$, a stąd $1 - 4B^{-1} - CB\rho^2 L_{\Lambda} \geqslant 1/2$. czyli jest odcięte od zera. Wtedy wybór $B = (\rho^2 L_{\Lambda})^{-1/2}$ prowadzi do nierówności

$$\mathbb{E}_{\theta}||\theta^* - \theta||^2 \leqslant \frac{(1 + (4 + C)\rho\sqrt{L_{\Lambda}})^2}{1 - (4 + C)\rho\sqrt{L_{\Lambda}}}\mathcal{R}(\tilde{\theta}, \theta),$$

co, rozumując analogicznie do dowodu twierdzenia 5, prowadzi do nierówności

$$\mathcal{R}(\tilde{\theta}, \theta) \leqslant (1 + \gamma_3 \rho \sqrt{L_{\Lambda}}) \mathcal{R}(\tilde{\theta}, \theta),$$

która kończy dowód.

5. Główne rezultaty II

Rezultaty zaprezentowane w tym rozdziale są modyfikacjami rezultatów uzyskanych w pracy [7].

W tej części pracy podejmiemy próbę zbudowania analogicznych jak w rozdziale poprzednim nierówności wyroczni w przypadku, gdy w rozważanym problemie

$$Y = Af + \epsilon \xi$$

operator A jest operatorem niekoniecznie zwartym.

Będziemy potrzebowali pojęcia operatora unitarnego.

Definicja 11. Niech H, G będą ośrodkowymi przestrzeniami Hilberta. Operator $U: H \to G$ nazwiemy operatorem unitarnym, jeżeli jest ciągły, liniowy, bijektywny i zachodzi $U^* = U^{-1}$.

Uwaga 3. Zauważmy, że jeżeli operator U jest unitarny, to zachowuje on iloczyn skalarny, ponieważ dla dowolnych $f,g \in H$ zachodzi

$$\langle f,g\rangle = \langle U^{-1}Uf,g\rangle = \langle U^*Uf,g\rangle = \langle Uf,Ug\rangle.$$

Jeżeli ξ jest szumem na przestrzeni H, natomiast operator T jest określony na tej samej przestrzeni, to możemy zdefiniować działanie operatora T na ξ w następujący sposób

$$\langle T\xi, f \rangle = \langle \xi, T^*f \rangle, \ \forall f \in TH.$$

Ponadto, jeżeli operator kowariancji ξ oznaczymy przez \mathbf{Cov}_{ξ} , to operator kowariancji $T\xi$ jest postaci $\mathbf{Cov}_{T\xi} = T\mathbf{Cov}_{\xi}T^*$ ([6], str. 2615). Wprowadźmy także następujące definicje

Definicja 12. (/23/, str. 102)

Niech $\xi\colon H\to {}_2(T,\mathbb{T},\tau)$ będzie losowym szumem. Powiem, że ξ ma skończony słaby drugi moment, jeżeli dla dowolnego $f\in H$ zachodzi $\int_T |\langle \xi,f\rangle|^2 d\tau < \infty$ oraz, że ma skończony silny drugi moment, jeżeli $\int_T \|\xi\|^2 d\tau < \infty$. Oczywiście silny moment implikuje słaby.

Definicja 13. (/3/, str. 13)

Operator $T: H \to H$ nazwiemy operatorem śladowym, jeżeli istnieją ciągi $\{a_k\}_{k=1}^{\infty}, \{b_k\}_{k=1}^{\infty} \subset H$ takie, że

$$\sum_{k=1}^{\infty} \|a_k\| \|b_k\| < \infty$$

oraz

$$\forall h \in H \ Ah = \sum_{k=1}^{\infty} \langle h, a_k \rangle b_k.$$

Okazuje się, że dla operatorów samosprzężonych można uogólnić twierdzenie o reprezentacji według wartości singularnych do następującej postaci ([22], str. 97)

Twierdzenie 6. Niech A będzie operatorem samosprzężonym na ośrodkowej przestrzeni Hilberta H. Wtedy istnieje przestrzeń mierzalna (S, \mathcal{S}, μ) , rzeczywista funkcja mierzalna b określona na S, operator unitarny $U: H \to L_2(S, \mathcal{S}, \mu)$, takie, że

$$A = U^{-1}M_bU,$$

gdzie M_b jest operatorem mnożenia przez funkcję b zdefiniowanym jako $(M_b g)(x) = b(x)g(x)$.

Zauważmy, że samosprzężone operatory zwarte i ich reprezentacja według wartości singularnych jest specjalnym przypadkiem powyższego twierdzenia, gdzie $S = \mathbb{N}$, $L_2(S, \mathcal{S}, \mu) = l^2(\mathbb{N}, 2^{\mathbb{N}}, \mu)$ z μ jako miarą liczącą, funkcją b taką, że $b(k) = b_k$ oraz operatorem U przeprowadzającym funkcję f w ciąg jej współczynników Fouriera względem bazy wektorów własnych.

Pierwszym krokiem jaki wykonamy przed dalszą analizą, będzie prekondycjonowanie problemu $Y=Af+\epsilon\xi$, czyli przekształcenie go do postaci

$$A^*Y = A^*Af + \epsilon A^*\xi. \tag{14}$$

Podstawową korzyścią z takiego przekształcenia jest to, że w dalszej części możemy zajmować się już tylko i wyłącznie operatorami samosprzężonymi i dodatnimi. Fakt, że operator A^*A jest dodatni implikuje, że funkcja b z twierdzenia 6 jest dodatnia μ – prawie wszędzie, a zatem operator mnożenia M_b jest odwracalny i jego odwrotność ma postać $(M_b)^{-1} = M_{b^{-1}}$. Z drugiej strony wiadomo, że f jest najlepszym rozwiązaniem w sensie minimalizacji kwadratu normy różnicy wyrażenia Af - g wtedy i tylko wtedy, gdy zachodzi $A^*Af = A^*g$ ([1], str. 13).

Korzystając z twierdzenia spektralnego 6 możemy rozważany model (14)

$$A^*Y = A^*Af + \epsilon A^*\xi = U^{-1}M_bUf + \epsilon A^*\xi$$

przekształcić do następującej postaci stosując operator U

$$UA^*Y = U(U^{-1}M_bU)f + \epsilon UA^*\xi,$$

co można zapisać jako

$$Z = b\theta + \epsilon \eta, \tag{15}$$

gdzie $Z = UA^*Y$, $\theta = Uf$ oraz $\eta = UA^*\xi$.

Podobnie jak w przypadku operatorów zwartych możemy zapisać to wyrażenie w postaci analogicznej do (2)

$$X = \theta + \epsilon \sigma \eta, \tag{16}$$

gdzie $\sigma\eta$ rozumiane jest jako $M_{b^{-1}}UA^*\xi$. Przejście z równości (15) do równości (16) rozumiane jest jako następujące przekształcenie równania operatorowego. Skoro (15) jest postaci $UA^*Y=M_bUf+\epsilon UA^*\xi$, zatem mnożąc lewostronnie to równanie przez $M_{b^{-1}}$ dostajemy równanie $M_{b^{-1}}UA^*Y=M_{b^{-1}}M_bUf+\epsilon M_{b^{-1}}UA^*\xi$, co po oznaczeniu przez $X=M_{b^{-1}}UA^*Y$ prowadzi do równania (16), gdyż $M_{b^{-1}}M_b$ jest operatorem identycznościowym. Natomiast równanie

(16) rozumiane jest tak, że dla dowolnego elementu $g \in L_2(S, \mathcal{S}, \mu)$ obserwowana jest zmienna losowa $\langle X, g \rangle = \langle \theta, g \rangle + \epsilon \langle \eta, b^{-1}g \rangle$, gdzie z kolei $\langle \eta, b^{-1}g \rangle$ jest zmienną losową z przestrzeni $L_2(\Omega, \mathcal{F}, \mathbb{P})$.

Twierdzenie 6 mówi tylko, że funkcja b jest mierzalną funkcją rzeczywistą nie mówiąc nie więcej o jej zachowaniu. Zatem o źle postawionym problemie będziemy mogli mówić tylko wtedy, gdy $b \to 0$ w jakimś sensie.

Przed dalszym rozumowaniem, udowodnimy, czym jest η . Okazuje się, że jest ona gaussowskim kolorowym szumem na przestrzeni $L_2(S, \mathcal{S}, \mu)$.

Twierdzenie 7. Niech η będzie określona jako $\eta = UA^*\xi$. Wtedy $\sqrt{\sigma}\eta$ jest gaussowskim białym szumem na przestrzeni $L_2(S, \mathcal{S}, \mu)$.

Dowód. Zauważmy na początek, że zachodzi $A = U^* M_{b^{1/2}} U$. A stąd mamy, że $\langle \sqrt{\sigma} \eta, F \rangle = \langle M_{b^{-1/2}} U A^* \xi, U f \rangle = \langle \xi, A U^* M_{b^{-1/2}} U f \rangle \sim \mathcal{N}(0, ||A U^* M_{b^{-1/2}} U f||^2)$, gdzie $||A U^* M_{b^{-1/2}} U f||^2 = ||U^* M_{b^{1/2}} U U^* M_{b^{-1/2}} U f||^2 = ||f||^2$, gdyż $U^* = U^{-1} = U$. Natomiast operator kowariancji ma postać $\mathbf{Cov}_{\sqrt{\sigma} \eta} = M_{b^{-1/2}} U A^* \mathbf{Cov}_{\xi} A U^* M_{b^{-1/2}} = M_{b^{-1/2}} M_b M_{b^{-1/2}} = I$, gdyż $\mathbf{Cov}_{\xi} = I$. □

Niech teraz $\hat{\theta}$ oznacza estymator elementu θ w modelu (16) na podstawie obserwacji X. Wtedy estymatorem poszukiwanego elementu f jest $U^{-1}\hat{\theta} = \hat{f}$ i możemy wyrazić ryzyko tego estymatora w następujący sposób

$$\mathcal{R}(\hat{f}, f) = \mathbb{E}_f ||\hat{f} - f||_H^2 = \mathbb{E}_\theta ||\hat{\theta} - \theta||_S^2 = \mathbb{E}_\theta \int_S |\hat{\theta} - \theta|^2 d\mu,$$

gdzie w drugiej równości skorzystaliśmy z faktu, że U jest liniowym operatorem unitarnym, czyli zachowuje normę elementu.

W pracy [7] pracowano przy założeniu, że obserwacje zaburzone są przez błąd pochodzący z białego szumu. Jednak z uwagi na to, że w przestrzeni nieskończenie wymiarowej operator identycznościowy, będący operatorem kowariancji dla białego szumu, nie jest operatorem zwartym, czyli nie może być operatorem śladowym, a więc nie może mieć skończonego silnego drugiego momentu. Z drugiej strony, jeżeli opeartor kowariancji pewnego szumu jest operatorem śladowym, to wtedy szum ten posiada silny drugi moment ([23], str. 175). Dlatego za [6] i korzystając ze wcześniejszego prekondycjonowania będziemy zakładać o operatorze A i szumie ξ , że zachodzą następujące warunki gwarantujące skończoność drugich momentów regularyzowanego rozwiązania

$$\forall f \in G \ \mathbb{E}\langle \xi, f \rangle = 0 \text{ oraz } \|\mathbf{Cov}_{\xi}\| \leqslant 1,$$

$$\mathbb{E} \|A^* \xi\|^2 < \infty.$$
(17)

Jeżeli spełnione są powyższe dwa warunki, możliwe jest takie dobranie operatora U w twierdzeniu 6, by zachodziło

$$\forall s \in S \ Var(UK^*\xi(s)) \leqslant b(s)$$

oraz $b \in L_1(S, \mathcal{S}, \mu)$ ([6], str. 2616). Przykłady modeli spełniających powyższe warunki znajdują sie w rozdziale 6 oraz w [6], str. 2620– 2624.

W ogólnym przypadku w związku ze złym uwarunkowaniem problemu $Z=Th+\epsilon\xi$ rozważane są estymatory elementu h postaci

$$\hat{h}_{\alpha} = \Phi_{\alpha}(T^*T)T^*Y,$$

gdzie funkcja Φ_{α} ma następujące własności ([17], str. 1426)

$$\sup_{t\geqslant 0}\Phi_{\alpha}(t)<\infty\ \forall\alpha>0,$$

$$\sup_{\alpha>0,t\geqslant 0}t\Phi_{\alpha}(t)<\infty,$$

$$\Phi_{\alpha}(t) \to t^{-1}, \ gdy \ \alpha \to 0, \ \forall t > 0.$$

W rozważanym przez nas problemie możemy rozważyć estymator liniowy elementu θ w postaci zaproponowanej powyżej, gdzie celem zachowania spójności ze wcześniejszymi oznaczeniami będziemy dalej pisać, że jest on postaci

$$\hat{\theta} = \lambda X,\tag{18}$$

gdzie $\lambda = \Phi_{\alpha}(A^*A)U^*M_b$ jest pewną nielosową funkcją, a funkcja Φ_{α} zależy od konkretnego wyboru estymatora. Przykładowo dla estymatorów projekcyjnych funkcja Φ_{α} przyjmuje postać

$$\Phi_{\alpha}(t) = \frac{1}{t} \mathbf{1}_{[\alpha,\infty)}.$$

Funkcję λ będziemy konsekwentnie nazywać wagą lub filtrem. W dalszej części ograniczymy się tylko do rozważania rzeczywistych filtrów i przestrzeni. Możemy teraz wyznaczyć górne oszacowanie ryzyka estymatora postaci (18). Warunki (17) narzucone na postać szumu i operator A gwarantują, że zarówno wyznaczone oszacowanie jak i samo ryzyko są skończone.

$$\mathcal{R}(\hat{\theta}, \theta) = \mathbb{E}_{\theta} ||\hat{\theta} - \theta||_{2}^{2} = \mathbb{E}_{\theta} ||\lambda \theta + \epsilon \lambda \sigma \eta - \theta||_{2}^{2} =$$

$$= \mathbb{E}_{\theta} ||\lambda \theta - \theta||_{2}^{2} + \mathbb{E}_{\theta} ||\epsilon \lambda \sigma \eta||_{2}^{2} = ||(1 - \lambda)\theta||_{2}^{2} + \epsilon^{2} \mathbb{E}_{\theta} ||\lambda \sigma \eta||_{2}^{2} =$$

$$= ||(1 - \lambda)\theta||_{2}^{2} + \epsilon^{2} \mathbb{E}_{\theta} \int_{S} (\lambda(s)\sigma(s)\eta(s))^{2} d\mu =$$

$$= ||(1 - \lambda)\theta||_{2}^{2} + \epsilon^{2} \int_{S} \lambda^{2}(s)\sigma^{2}(s)\mathbb{E}_{\theta}\eta^{2}(s)d\mu \leqslant$$

$$\leqslant ||(1 - \lambda)\theta||_{2}^{2} + \epsilon^{2} \int_{S} \lambda^{2}(s)\sigma(s)d\mu = \int_{S} (1 - \lambda(s))^{2}\theta^{2}(s)d\mu + \epsilon^{2} \int_{S} \lambda^{2}(s)\sigma(s)d\mu$$

W dalszej części będziemy omijać argumenty w funkcjach podcałkowych. Warto zauważyć, że w powyższym wyrażeniu w wyrażeniu $\epsilon^2 \int_S \lambda^2 \sigma d\mu$ składnik σ związany ze złym uwarunkowaniem problemu występuje w potędze o jeden niższej niż w analogicznym wyrażeniu (3), jednak trzeba zauważyć, że oba modele różnią się charakterem szumu.

Definicja 14. Wprowadzimy następujące oznaczenie

$$\Psi(\lambda, \theta) = \int_{S} (1 - \lambda)^{2} \theta^{2} d\mu + \epsilon^{2} \int_{S} \lambda^{2} \sigma d\mu$$

na wyrażenie będące odpowiednikiem wyrażenia (3) w modelu rozważanym w rozdziale 4.

Podobnie jak w przypadku rozważanych wcześniej modeli z operatorem zwartym wyrażenie $X^2-\epsilon^2\sigma^2$ jest nieobciążonym estymatorem dla θ^2 , co prowadzi nas do analogicznej do (6) definicji nieobciążonego estymatora wyrażenia $\Psi(\lambda,\theta)$.

Definicja 15. Nieobciążonym estymatorem wyrażenia $\Psi(\lambda, \theta)$ w modelu (16) nazywamy wyrażenie

$$\psi(\lambda, X) = \int_{S} (\lambda^2 - 2\lambda)(X^2 - \epsilon^2 \sigma^2) d\mu + \epsilon^2 \int_{S} \lambda^2 \sigma d\mu, \tag{19}$$

będące nieobciążonym estymatorem wyrażenia $\Psi(\lambda,\theta) - \int_S \theta^2 d\mu$ dla estymatora postaci $\hat{\theta} = \lambda X$. Wyrażenie to jest skończone przy założeniu (5).

Niech teraz badane filtry należą do pewnej skończonej rodziny $\Lambda = \{\lambda^1, \dots, \lambda^N\}$. Naszym celem będzie wybór na podstawie obserwacji takiego filtra z tej rodziny, by związany z nim estymator naśladował ryzyko najlepszego estymatora w Λ . Analogicznie do rozważanego wcześniej przypadku wymagać będziemy, by odpowiednie człony występujące w wyrażeniu na $\Psi(\lambda,\theta)$ oraz jego estymator $\psi(\lambda,X)$ były skończone oraz by estymatory nie były zbyt duże. Założymy także skończoność wyrażeń występujących później w wyrażeniach występujących w nierównościach wyroczniach dla badanych estymatorów.

Założenie 5. Załóżmy, że

$$\forall \ \lambda \in \Lambda \ 0 < \int_{S} \sigma^{2} \lambda^{2} d\mu < \infty,$$

$$\max_{\lambda \in \Lambda} \|\lambda\|_{\infty} \leqslant 1,$$

$$\forall \ \lambda \in \Lambda \ \int_{S} \lambda \sigma^{2} d\mu < \infty,$$

$$\forall \ \lambda \in \Lambda \ \int_{S} \sigma \lambda^{2} d\mu < \infty$$

$$\exists \ C_{2} > 0 \ \forall \ \lambda \in \Lambda \ \int_{S} \sigma^{4} \lambda^{2} d\mu \leqslant C_{2} \int_{S} \sigma^{3} \lambda^{4} d\mu,$$

Wprowadzimy także potrzebne oznaczenia

$$\rho(\lambda) = \|\sigma^2 \lambda\|_{\infty} \left[\int_{S} \sigma^4 \lambda^4 d\mu \right]^{-1/2},$$

$$\rho = \max_{\lambda \in \Lambda} \rho(\lambda),$$

$$S = \frac{\max_{\lambda \in \Lambda} \|\sigma^2 \lambda^2\|_{\infty}}{\min_{\lambda \in \Lambda} \|\sigma^2 \lambda^2\|_{\infty}},$$

$$M = \sum_{\lambda \in \Lambda} \exp\left(\frac{-1}{\rho(\lambda)}\right),$$

$$L_{\lambda} = \ln(NS) + \rho^2 \ln^2(MS).$$

Interpretacje powyższych wyrażeń przenoszą się z rozważanego wcześniej dyskretnego przypadku.

Mając już odpowiednie założenia możemy zdefiniować poszukiwany estymator naśladujący ryzyko najlepszego estymatora w klasie Λ . Ponownie wykorzystamy w tym celu zdefiniowane wcześniej wyrażenie $\psi(\lambda,X)$, który w pewien sposób przybliża górne ograniczenie na ryzyko, które chcielibyśmy zminimalizować.

Definicja 16. Niech funkcjonał $\psi(\lambda, X)$ będzie zdefiniowany jak w (19). Poszukiwanym filtrem jest element minimalizujący względem $\lambda \in \Lambda$ funkcjonał $\psi(\lambda, X)$, czyli

$$\lambda^* = \arg\min_{\lambda \in \Lambda} \psi(\lambda, X). \tag{20}$$

Przedstawimy teraz uogólnione wersje lematów 2, 3 i 4 na rozważany obecnie przypadek. Dowody znajdują się w części 7.

Lemat 5. Niech η będzie gaussowskim szumem na przestrzeni Hilberta $L_2(S, \mathcal{S}, \mu)$ z operatorem kowariancji postaci TT^* dla pewnego ograniczonego operatora T i o skończonym silnym drugim momencie i niech $v \in L_2(S, \mathcal{S}, \mu)$ będzie losowym elementem tej przestrzeni ze skończonego zbioru $V \subset L_2(S, \mathcal{S}, \mu)$ o liczności N > 1. Wtedy dla dowolnego $K \geqslant 1$ zachodzi

$$\mathbb{E} \left| \langle \eta, v \rangle \right| \leqslant \|T\| \sqrt{2 \ln(NK)} \left(\mathbb{E} ||v||_2 + \sqrt{2 \mathbb{E} ||v||_2^2 / K} \right).$$

Lemat 6. Niech η będzie gaussowskim szumem na przestrzeni Hilberta $L_2(S, \mathcal{S}, \mu)$ z operatorem kowariancji postaci TT^* dla pewnego ograniczonego operatora T i o skończonym silnym drugim momencie i niech $v \in L_2(S, \mathcal{S}, \mu)$ będzie losowym elementem tej przestrzeni ze skończonego zbioru $V \subset L_2(S, \mathcal{S}, \mu)$ o liczności N > 1. Niech ponadto $v \neq 0$ dla dowolnego $v \in V$. Oznaczmy przez $m(v) = \|v\|_{\infty} / \|v\|_2$, $m_V = \max_{v \in V} m(v)$ oraz

$$M(q) = \sum_{v \in V} \exp(-q/m(v)), \ q > 0.$$

Wtedy istnieje stała D zależna tylko od q i operatora T, taka, że dla dowolnego $K \ge 1$ zachodzi

$$\mathbb{E}\left|\left\langle \eta^2 - 1, v\right\rangle\right| \leqslant D \|T\|^2 \left(\sqrt{\ln(NK)} + m_V \ln(M(q)K)\right) \left(\mathbb{E}||v|| + \sqrt{\mathbb{E}||v||^2/K}\right).$$

Lemat 7. Niech η będzie gaussowskim szumem na przestrzeni Hilberta $L_2(S, \mathcal{S}, \mu)$ z operatorem kowariancji postaci TT^* dla pewnego ograniczonego operatora T i o skończonym silnym drugim momencie. Niech ponadto $\hat{\theta} = \hat{\lambda}(X)X$ będzie liniowym estymatorem z wagą z wartościami z przedziału [-1,1] przyjmującym wartości w zbiorze Λ . Oznaczmy przez

$$\Delta^{\epsilon}[\lambda] = \epsilon^2 L_{\Lambda} \|\sigma^2 \lambda^2\|_{\infty}, \ \lambda \in \Lambda.$$

Wtedy istnieje stała C>0 zależna tylko od operatora T taka, że dla dowolnego B>0 zachodzi

$$\mathbb{E}_{\theta} \left\| \hat{\theta} - \theta \right\|_{2}^{2} \leq \max\{1, C_{2}\}(1 + 4B^{-1} \max\{1, \|T\|^{2}\}) \mathbb{E}_{\theta} \Psi(\hat{\lambda}, \theta) + CB \|T\|^{2} \mathbb{E}_{\theta} \Delta^{\epsilon}[\lambda(X)].$$

Możemy teraz przejść do wypowiedzenia dwóch twierdzeń będących zarazem głównym wynikiem tego rozdziału i uogólnieniem twierdzeń 4 i 5 na przypadek, gdy badany problem może być modelowany jako (14).

Twierdzenie 8. Niech założenie 5 będzie spełnione. Wtedy dla dowolnego $\theta \in L_2(S, \mathcal{S}, \mu)$, dla dowolnego $B > B_0$ i dla estymatora liniowego θ^* z filtrem wybranym zgodnie z (20) zachodzi

$$\mathbb{E}_{\theta} \|\theta^* - \theta\|^2 \leq \max\{1, C_2\} \left((1 + \gamma_1 B^{-1} \max\{1, \|A\|^2\}) \min_{\lambda \in \Lambda} \Psi(\lambda, \theta) + \gamma_2 B \|A\|^2 \epsilon^2 L_{\Lambda} \omega(B^2 L_{\Lambda}) \right),$$

gdzie stałe $B_0 > 0, \gamma_1 > 0, \gamma_2 > 0$ zależą tylko od stałej C_1 i operatora A, wyrażenie $\min_{\lambda \in \Lambda} \Psi(\lambda, \theta)$ rozumiane jest jako minimum wzięte po wszystkich estymatorach $\hat{\theta}$ postaci λX , $\lambda \in \Lambda$, a funkcja $\omega(x)$ jest postaci

$$\omega(x) = \max_{\lambda \in \Lambda} \left\| \sigma^2 \lambda^2 \mathbf{1} \left(\int_S \sigma \lambda^2 d\mu \leqslant x \left\| \sigma^2 \lambda^2 \right\|_{\infty} \right) \right\|_{\infty}, \ x > 0.$$

Twierdzenie 9. Niech założenie 5 będzie spełnione. Wtedy istnieją stałe $\gamma_3 > 0, \gamma_4 > 0$ załeżące tylko od C_1 , takie że dla dowolnego $\theta \in L_2(S, \mathcal{S}, \mu)$ i dla estymatora liniowego θ^* z filtrem wybranym zgodnie z (20) zachodzi

$$\mathbb{E}_{\theta} \|\theta^* - \theta\|^2 \leq \max\{1, C_2\} (1 + \gamma_3 \|A\|^2 \rho \sqrt{L_{\Lambda}}) \min_{\lambda \in \Lambda} \Psi(\lambda, \theta),$$

o ile $\rho\sqrt{L_{\Lambda}} < \gamma_4$, a minimum rozumiane jest jak w poprzednim twierdzeniu.

Zanim udowodnimy powyższe twierdzenia, zauważmy, że nierówność występująca w tezie twierdzenia 8 możemy zapisać w postaci

$$\mathbb{E}_{\theta} \|\theta^* - \theta\|^2 \leqslant C'(1 + \gamma_1 B^{-1}) \min_{\lambda \in \Lambda} \left(\mathbb{E}_{\theta} \|\lambda X - \theta\|^2 + pen_A(\lambda) \right) + \gamma_2 B \|A\|^2 \epsilon^2 L_{\Lambda} \omega(B^2 L_{\Lambda})$$

dla pewnej funkcji $pen_A: \Lambda \to \mathbb{R}_+$, która może być interpretowana jako funkcja kary w badanym problemie pojawiająca się w związku z brakiem zwartości ('skomplikowaniem') operatora A. Takie przedstawienie uzyskanego wyniku jest podobne do wyników uzyskanych w innych modelach (por. [2], str. 378, [14], str. 181, [14], str. 668, [10], str. 37).

Dowód twierdzenia 8. Niech TT^* będzie rozkładem Choleskiego operatora kowariancji UA^*AU^* szumu η . Niech $\tilde{\lambda} \in \Lambda$ będzie takim filtrem, że związany z nim estymator jest wyrocznią, czyli $\tilde{\theta} = \arg\min_{\lambda \in \Lambda} \Psi(\lambda, \theta)$, natomiast przez λ^* oznaczmy filtr definiowany przez (20) i związany z nim estymator przez θ^* . Oznaczmy ponadto $\max\{1, C_2\} = C'$ oraz $\max\{1, \|T\|^2\} = C''$. W rozpatrywanym modelu (16) $X = \theta + \epsilon \sigma \eta$. Dostajemy stąd, że

$$\psi[\lambda^*,X] = 2\epsilon \int_S (1-\lambda^*)^2 \sigma \theta \eta d\mu - 2\epsilon \int_S \sigma \theta \eta d\mu - \int_S \theta^2 d\mu + \epsilon^2 \int_S (\lambda^{*2} - 2\lambda^*) \sigma^2 (\eta^2 - 1) + \Psi(\theta^*,\theta).$$

A stąd mamy

$$\mathbb{E}_{\theta} \psi[\lambda^*, X] = \mathbb{E}_{\theta} \Psi(\lambda^*, \theta) - \int_{S} \theta^2 d\mu + 2\epsilon \mathbb{E}_{\theta} \int_{S} (1 - \lambda^*)^2 \sigma \theta \eta d\mu + \epsilon^2 \mathbb{E}_{\theta} \int_{S} (\lambda^{*2} - 2\lambda^*) \sigma^2 (\eta^2 - 1) d\mu.$$

Korzystając z wprowadzonych wcześniej lematów, oszacujemy dwa ostatnie składniki tego wyrażenia.

Zauważmy, że zachodzi

$$\epsilon \mathbb{E}_{\theta} \int_{S} (1 - \lambda^{*})^{2} \sigma \theta \eta d\mu = \epsilon \mathbb{E}_{\theta} \int_{S} [(1 - \lambda^{*})^{2} - (1 - \tilde{\lambda})^{2}] \sigma \theta \eta d\mu \geqslant$$
$$\geqslant -\epsilon \mathbb{E}_{\theta} \left| \int_{S} [(1 - \lambda^{*})^{2} - (1 - \tilde{\lambda})^{2}] \sigma \theta \eta d\mu \right|.$$

Korzystając z lematu 5 z K=S i $v=[(1-\lambda^*)^2-(1-\tilde{\lambda})^2]\sigma\theta$ dostajemy

$$\begin{split} -\epsilon \mathbb{E}_{\theta} \left| \int_{S} [(1-\lambda^{*})^{2} - (1-\tilde{\lambda})^{2}] \sigma \theta \eta d\mu \right| &\geqslant -\epsilon \|T\| \sqrt{2 \ln(NS)} \mathbb{E}_{\theta} \left(\int_{S} [(1-\lambda^{*})^{2} - (1-\tilde{\lambda})^{2}] \sigma^{2} \theta^{2} d\mu \right)^{1/2} - \\ &- 2\epsilon \|T\| \sqrt{\ln(NS)/S} \left(\mathbb{E}_{\theta} \int_{S} [(1-\lambda^{*})^{2} - (1-\tilde{\lambda})^{2}] \sigma^{2} \theta^{2} d\mu \right)^{1/2} \geqslant \\ &\geqslant -2\epsilon \|T\| \sqrt{2 \ln(NS)} \mathbb{E}_{\theta} \left(\int_{S} [(1-\lambda^{*})^{2} + (1-\tilde{\lambda})^{2}] (\lambda^{*2} + \tilde{\lambda^{2}}) \theta^{2} \sigma^{2} d\mu \right)^{1/2} - \\ &- 4\epsilon \|T\| \sqrt{\ln(NS)/S} \left(\mathbb{E}_{\theta} \int_{S} [(1-\lambda^{*})^{2} + (1-\tilde{\lambda})^{2}] (\lambda^{*2} + \tilde{\lambda^{2}}) \theta^{2} \sigma^{2} d\mu \right)^{1/2}. \end{split}$$

Korzystając z nierówności $2ab\leqslant B^{-1}a^2+Bb^2$ zachodzącej dla dowolnego B>0 dla pierwszego składnika dostajemy

$$\begin{split} & 2\epsilon \, \|T\| \, \sqrt{2 \ln(NS)} \mathbb{E}_{\theta} \left(\int_{S} [(1-\lambda^{*})^{2} + (1-\tilde{\lambda})^{2}] (\lambda^{*2} + \tilde{\lambda^{2}}) \theta^{2} \sigma^{2} d\mu \right)^{1/2} \leqslant \\ & \leqslant \mathbb{E}_{\theta} 2\epsilon \, \|T\| \, \sqrt{2 \ln(NS)} \, \Big\| (\lambda^{*2} + \tilde{\lambda^{2}}) \sigma^{2} \Big\|_{\infty} \, \left(\int_{S} [(1-\lambda^{*})^{2} + (1-\tilde{\lambda})^{2}] \theta^{2} d\mu \right)^{1/2} \leqslant \\ & \leqslant 2B\epsilon^{2} \, \|T\|^{2} \ln(NS) \mathbb{E}_{\theta} \, \Big\| (\lambda^{*2} + \tilde{\lambda^{2}}) \sigma^{2} \Big\|_{\infty} + B^{-1} \mathbb{E}_{\theta} \, \int_{S} [(1-\lambda^{*})^{2} + (1-\tilde{\lambda})^{2}] \theta^{2} d\mu \leqslant \\ & \leqslant 2B\epsilon^{2} \, \|T\|^{2} \ln(NS) \mathbb{E}_{\theta} \, \left(\|\lambda^{*2} \sigma^{2}\|_{\infty} + \|\tilde{\lambda^{2}} \sigma^{2}\|_{\infty} \right) + B^{-1} \mathbb{E}_{\theta} \, \int_{S} [(1-\lambda^{*})^{2} + (1-\tilde{\lambda})^{2}] \theta^{2} d\mu. \end{split}$$

Postępując podobnie z drugim wyrażeniem otrzymujemy

$$4\epsilon \|T\| \sqrt{\ln(NS)/S} \left(\mathbb{E}_{\theta} \int_{S} [(1-\lambda^{*})^{2} + (1-\tilde{\lambda})^{2}] (\lambda^{*2} + \tilde{\lambda}^{2}) \theta^{2} \sigma^{2} d\mu \right)^{1/2} \le$$

$$\leq 4B\epsilon^{2} \|T\|^{2} \ln(NS)/S \max_{\lambda \in \Lambda} \left\| (\lambda^{2} + \tilde{\lambda}^{2}) \sigma^{2} \right\|_{\infty} + B^{-1} \mathbb{E}_{\theta} \int_{S} [(1-\lambda^{*})^{2} + (1-\tilde{\lambda})^{2}] \theta^{2} d\mu.$$

Korzystając z definicji wielkości S mamy, że

$$\frac{\max_{\lambda \in \Lambda} \left\| (\lambda^2 + \tilde{\lambda}^2) \sigma^2 \right\|_{\infty}}{S} \leq \left\| \lambda^{*2} \sigma^2 \right\|_{\infty} + \left\| \tilde{\lambda}^2 \sigma^2 \right\|_{\infty}.$$

A stąd mamy oszacowanie postaci

$$4\epsilon \|T\| \sqrt{\ln(NS)/S} \left(\mathbb{E}_{\theta} \int_{S} [(1-\lambda^*)^2 + (1-\tilde{\lambda})^2] (\lambda^{*2} + \tilde{\lambda^2}) \theta^2 \sigma^2 d\mu \right)^{1/2} \le$$

$$\leqslant 4B\epsilon^2 \|T\|^2 \ln(NS) \mathbb{E}_{\theta} \left(\|\lambda^{*2}\sigma^2\|_{\infty} + \|\tilde{\lambda^2}\sigma^2\|_{\infty} \right) + B^{-1} \mathbb{E}_{\theta} \int_{S} \left[(1-\lambda^*)^2 + (1-\tilde{\lambda})^2 \right] \theta^2 d\mu.$$

Jako, że zachodzi $\ln(NS) \leq L_{\Lambda}$, to łącząc powyższe dwa oszacowania dostajemy, że

$$\epsilon \mathbb{E}_{\theta} \int_{S} (1 - \lambda^*)^2 \sigma \theta \eta d\mu \geqslant$$

$$\geqslant -2B^{-1}\mathbb{E}_{\theta} \int_{S} (1-\lambda^{*})^{2} d\mu - 2B^{-1} \int_{S} (1-\tilde{\lambda})^{2} d\mu - 6B \|T\|^{2} \mathbb{E}_{\theta} \Delta^{\epsilon} [\lambda^{*}] - 6B \|T\|^{2} \mathbb{E}_{\theta} \Delta^{\epsilon} [\tilde{\lambda}].$$

Znajdziemy teraz oszacowanie dla składnika $\epsilon^2 \mathbb{E}_{\theta} \left| \int_S (\lambda^{*2} - 2\lambda^*) \sigma^2 (\eta^2 - 1) d\mu \right|$. Zauważmy, że dla dowolnego $\lambda \in \Lambda$ zachodzi $\lambda^2 \leqslant (\lambda^2 - 2\lambda)^2 \leqslant 9\lambda^2$ rozumiane jako nierówność funkcyjna zachodząca dla wszystkich argumentów funkcji λ . Posłużymy się teraz lematem 6 z $K = S, \ q = 3$ i $v = (\lambda^{*2} - 2\lambda^*)\sigma^2$.

$$\epsilon^{2} \mathbb{E}_{\theta} \left| \int_{S} (\lambda^{*2} - 2\lambda^{*}) \sigma^{2}(\eta^{2} - 1) d\mu \right| \leq$$

$$\leq \epsilon^{2} ||T||^{2} D\left(\sqrt{\ln(NS)} + m_{V} \ln(SM(3)) \right) \left(\mathbb{E}_{\theta} ||v|| + \sqrt{\mathbb{E}_{\theta} ||v||^{2}/S} \right).$$

Analogicznie jak w rozważanym wcześniej przypadku dekompozycji według wartości singularnych mamy, że

$$m(v) \leqslant 3\rho(\lambda), \ M(3) \leqslant M, \ m_V \leqslant 3 \max_{\lambda \in \Lambda} \rho(\lambda) = 3\rho.$$

Stąd dostajemy, że

$$\sqrt{\ln(NS)} + m_V \ln(SM(3)) \leqslant C\sqrt{L_\Lambda},$$

gdzie C jest pewną stałą zależną tylko od C_1 . Możemy teraz kontynuować szacowanie analizowanego wyrażenia.

$$\begin{split} \epsilon^2 \left\| T \right\|^2 \mathbb{E}_{\theta} \int_{S} (\lambda^{*2} - 2\lambda^*) \sigma^2(\eta^2 - 1) d\mu \geqslant \\ \geqslant -\epsilon^2 \left\| T \right\|^2 D\left(\sqrt{\ln(NS)} + m_V \ln(SM(3)) \right) \left(\mathbb{E}_{\theta} ||v|| + \sqrt{\mathbb{E}_{\theta} ||v||^2 / S} \right) \geqslant \\ \geqslant -\epsilon^2 \left\| T \right\|^2 C \sqrt{L_{\Lambda}} \mathbb{E}_{\theta} \left(\int_{S} (\lambda^{*2} - 2\lambda^*)^2 \sigma^4 d\mu \right)^{1/2} - \epsilon^2 \left\| T \right\|^2 C \sqrt{L_{\Lambda}} S^{-1/2} \left(\mathbb{E}_{\theta} \int_{S} (\lambda^{*2} - 2\lambda^*)^2 \sigma^4 d\mu \right)^{1/2} \geqslant \\ \geqslant -\epsilon^2 \left\| T \right\|^2 C \sqrt{L_{\Lambda}} \mathbb{E}_{\theta} \left(\int_{S} \lambda^{*3} \sigma^4 d\mu \right)^{1/2} - \epsilon^2 \left\| T \right\|^2 C \sqrt{L_{\Lambda}} S^{-1/2} \left(\mathbb{E}_{\theta} \int_{S} \lambda^{*3} \sigma^4 d\mu \right)^{1/2} . \end{split}$$

Korzystając z faktu, że $\min_{\lambda \in \Lambda} \left\| \lambda^2 \sigma^2 \right\|_{\infty} \leqslant \mathbb{E}_{\theta} \left\| \lambda^{*2} \sigma^2 \right\|_{\infty}$ mamy, że

$$S^{-1}\mathbb{E}_{\theta} \int_{S} \sigma^{3} \lambda^{*4} d\mu \leqslant \mathbb{E}_{\theta} \left\| \sigma^{2} \lambda^{*2} \right\|_{\infty} \mathbb{E}_{\theta} \int_{S} \sigma \lambda^{*2} d\mu.$$

Podobnie dla drugiego wyrażenia

$$\mathbb{E}_{\theta} \left(\int_{S} \sigma^{3} \lambda^{*4} d\mu \right)^{1/2} \leqslant \mathbb{E}_{\theta} \left(\left\| \sigma^{2} \lambda^{*2} \right\|_{\infty} \int_{S} \sigma \lambda^{*2} d\mu \right)^{1/2}.$$

Ponownie korzystając z nierówności $2ab \leqslant B^{-1}a^2 + Bb^2$ dostajemy

$$C\sqrt{L_{\Lambda}}\mathbb{E}_{\theta}\left(\left\|\sigma^{2}\lambda^{*2}\right\|_{\infty}\int_{S}\sigma\lambda^{*2}d\mu\right)^{1/2}\leqslant B\mathbb{E}_{\theta}C^{2}L_{\Lambda}\left\|\sigma^{2}\lambda^{*2}\right\|_{\infty}+2B^{-1}\mathbb{E}_{\theta}\int_{S}\sigma\lambda^{*2}d\mu.$$

Możemy także zapisać

$$C\sqrt{L_{\Lambda}} \left(\mathbb{E}_{\theta} \left\| \sigma^{2} \lambda^{*2} \right\|_{\infty} \mathbb{E}_{\theta} \int_{S} \sigma \lambda^{*2} d\mu \right)^{1/2} \leqslant B \mathbb{E}_{\theta} C L_{\Lambda} \left\| \sigma^{2} \lambda^{*2} \right\|_{\infty} + 2B^{-1} \mathbb{E}_{\theta} \int_{S} \sigma \lambda^{*2} d\mu.$$

Łącząc oba te oszacowania dostajemy

$$\epsilon^{2}\mathbb{E}_{\theta}\int_{S}(\lambda^{*2}-2\lambda^{*})\sigma^{2}(\eta^{2}-1)d\mu\geqslant -CB\left\Vert T\right\Vert ^{2}\mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^{*}]-4\epsilon^{2}\left\Vert T\right\Vert ^{2}B^{-1}\mathbb{E}_{\theta}\int_{S}\sigma\lambda^{*2}d\mu.$$

Powyższe rozważania pozwalają zapisać nam następujący wniosek

$$2\epsilon \mathbb{E}_{\theta} \int_{S} (1-\lambda^{*})^{2} \sigma \theta \eta d\mu + \epsilon^{2} \mathbb{E}_{\theta} \int_{S} (\lambda^{*2} - 2\lambda^{*}) \sigma^{2} (\eta^{2} - 1) d\mu \geqslant$$

$$\geqslant -4B^{-1} \|T\|^{2} \mathbb{E}_{\theta} \int_{S} \sigma \lambda^{*2} d\mu - 4B^{-1} \|T\|^{2} \int_{S} \sigma \tilde{\lambda}^{2} d\mu - CB \|T\|^{2} \mathbb{E}_{\theta} \Delta^{\epsilon} [\lambda^{*}] - CB \|T\|^{2} \Delta^{\epsilon} [\tilde{\lambda}].$$

Możemy teraz przejść do dalszych oszacowań.

$$\mathbb{E}_{\theta} \psi[\lambda^*, X] = \mathbb{E}_{\theta} \Psi(\lambda^*, \theta) - \int_{S} \theta^2 d\mu +$$

$$+2\epsilon \mathbb{E}_{\theta} \int_{S} (1 - \lambda^*)^2 \sigma \theta_i \eta d\mu + \epsilon^2 \mathbb{E}_{\theta} \int_{S} (\lambda^{*2} - 2\lambda^*) \sigma^2 (\eta^2 - 1) d\mu \geqslant$$

$$\geqslant \mathbb{E}_{\theta} \Psi(\lambda^*, \theta) - \int_{S} \theta^2 d\mu - 4B^{-1} C'' \mathbb{E}_{\theta} \Psi(\lambda^*, \theta) -$$

$$-4B^{-1} C'' \Psi(\tilde{\lambda}, \theta) - CB \|T\|^2 \mathbb{E}_{\theta} \Delta^{\epsilon} [\lambda^*] - CB \|T\|^2 \Delta^{\epsilon} [\tilde{\lambda}].$$

Zatem zachodzi, że

$$(1 - 4B^{-1}C''\mathbb{E}_{\theta}\Psi(\lambda^*, \theta) \leqslant$$

$$\leq \mathbb{E}_{\theta} \psi[\lambda^*, X] + \int_{S} \theta^2 d\mu + 4B^{-1} C'' \Psi(\tilde{\lambda}, \theta) + CB \|T\|^2 \mathbb{E}_{\theta} \Delta^{\epsilon} [\lambda^*] + CB \|T\|^2 \Delta^{\epsilon} [\tilde{\lambda}].$$

Jednak, jako że filtr λ^* był zdefiniowany jako argument minimalizujący nieobciążony estymator wyrażenia Ψ , musi zachodzić, że

$$\mathbb{E}_{\theta}\psi[\lambda^*, X] \leqslant \mathbb{E}_{\theta}\psi[\tilde{\lambda}, X] = \Psi(\tilde{\lambda}, \theta) + \int_{S} \theta^2 d\mu.$$

Otrzymujemy zatem, że

$$(1 - 4B^{-1}C'')\mathbb{E}_{\theta}\Psi(\lambda^*, \theta) \leqslant$$

$$\leq 1 + 4B^{-1}C'')\Psi(\tilde{\lambda},\theta) + CB\|T\|^2\mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^*] + CB\|T\|^2\Delta^{\epsilon}[\tilde{\lambda}].$$

Zauważmy, że dla dowolnego x > 0 zachodzi następujące oszacowanie

$$\begin{split} \left\|\sigma^2\lambda^2\right\|_{\infty} &= \left\|\sigma^2\lambda^2\mathbf{1}\left\{x\left\|\sigma^2\lambda^2\right\|_{\infty} < \int_{S}\sigma\lambda^2d\mu\right\}\right\|_{\infty} + \left\|\sigma^2\lambda^2\mathbf{1}\left\{x\left\|\sigma\lambda^2\right\|_{\infty} \geqslant \int_{S}\sigma\lambda^2d\mu\right\}\right\|_{\infty} \leqslant \\ &\leqslant \frac{1}{x}\int_{S}\sigma\lambda^2d\mu + \max_{\lambda\in\Lambda}\left\|\sigma^2\lambda^2\mathbf{1}\left\{x\left\|\sigma^2\lambda^2\right\|_{\infty} \geqslant \int_{S}\sigma\lambda^2d\mu\right\}\right\|_{\infty} \leqslant \\ &\leqslant \frac{1}{x}\int_{S}\sigma\lambda^2d\mu + \omega(x) \leqslant \frac{1}{x\epsilon^2}\Psi(\lambda,\theta) + \omega(x)\;\forall_{\lambda\in\Lambda}. \end{split}$$

Stąd dostajemy

$$\Delta^{\epsilon}[\lambda] = \epsilon^2 L_{\Lambda} \|\sigma^2 \lambda^2\|_{\infty} \leqslant \frac{L_{\Lambda}}{r} \Psi(\lambda, \theta) + \epsilon^2 L_{\Lambda} \omega(x).$$

Wykorzystamy teraz powyższe nierówności do wyrażenia $(1-4B^{-1}C'')\mathbb{E}_{\theta}\Psi(\lambda^*,\theta) \leq (1+4B^{-1}C'')\Psi(\tilde{\lambda},\theta) + CB \|T\|^2 \mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^*] + CB \|T\|^2 \Delta^{\epsilon}[\tilde{\lambda}].$

$$(1 - 4B^{-1}C'')\mathbb{E}_{\theta}\Psi(\lambda^*, \theta) \leqslant (1 + 4B^{-1}C'')\Psi(\tilde{\lambda}, \theta) + CB\|T\|^2 \mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^*] + CB\|T\|^2 \Delta^{\epsilon}[\tilde{\lambda}] \leqslant$$

$$\leqslant CB \|T\|^{2} \frac{L_{\Lambda}}{x} \mathbb{E}_{\theta} \Psi(\lambda^{*}, \theta) + CB \|T\|^{2} \epsilon^{2} L_{\Lambda} \omega(x) + \left(CB \|T\|^{2} \frac{L_{\Lambda}}{x} + 1 + 4B^{-1}C''\right) \Psi(\tilde{\lambda}, \theta).$$

Mamy stąd, że

$$\mathbb{E}_{\theta}\Psi(\lambda^*,\theta) \leqslant \frac{CB \|T\|^2 \epsilon^2 L_{\Lambda}\omega(x)}{1 - 4B^{-1}C'' - CB \|T\|^2 \frac{L_{\Lambda}}{x}} + \frac{CB \|T\|^2 \frac{L_{\Lambda}}{x} + 1 + 4B^{-1}C''}{1 - 4B^{-1}C'' - CB \|T\|^2 \frac{L_{\Lambda}}{x}}\Psi(\tilde{\lambda},\theta).$$

Korzystając z lematu 7 mamy ponadto, że

$$\frac{1}{C'}\mathbb{E}_{\theta}||\theta^* - \theta||^2 \leqslant (1 + 4B^{-1}C'')\mathbb{E}_{\theta}\Psi(\lambda^*, \theta) + CB||T||^2\mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^*] \leqslant$$

$$\leq (1 + 4B^{-1}C'' + CB \|T\|^2 \frac{L_{\Lambda}}{x}) \mathbb{E}_{\theta} \Psi(\lambda^*, \theta) + CB \|T\|^2 \epsilon^2 L_{\Lambda} \omega(x).$$

Niech teraz $x = B^2 L_{\Lambda}$ oraz γ będzie stałą zależną tylko od C (zależące tylko od stałej C_2). Wtedy

$$\frac{1}{C'}\mathbb{E}_{\theta}||\theta^* - \theta||^2 \leqslant (1 + \gamma B^{-1}C'')\mathbb{E}_{\theta}\Psi(\lambda^*, \theta) + CB \|T\|^2 \epsilon^2 L_{\Lambda}\omega(B^2L_{\Lambda} \|T\|^2) \leqslant$$

$$\leqslant \frac{1+\gamma B^{-1}C''}{1-\gamma B^{-1}C''}CB\left\|T\right\|^{2}\epsilon^{2}L_{\Lambda}\omega(B^{2}L_{\Lambda}\left\|T\right\|^{2})+CB\left\|T\right\|^{2}\epsilon^{2}L_{\Lambda}\omega(B^{2}L_{\Lambda}\left\|T\right\|^{2})+\frac{(1+\gamma B^{-1}C'')^{2}}{1-\gamma B^{-1}C''}\Psi(\tilde{\lambda},\theta).$$

Korzystając z faktu, że $\lim_{x\to\infty}\frac{x+\gamma}{x-\gamma}=1$, powyższe rozważania prowadzą nas do nierówności

$$\frac{1}{C'}\mathbb{E}_{\theta}||\theta^* - \theta||^2 \leq (1 + \gamma_1 B^{-1}C'')\Psi(\tilde{\lambda}, \theta) + \gamma_2 B ||T||^2 \epsilon^2 L_{\Lambda}\omega(B^2 L_{\Lambda}),$$

która kończy dowód twierdzenia 8.

Dowód~twierdzenia~9.~Będziemy stosować te same oznaczenia na estymator, wyrocznię i stałe jak w dowodzie twierdzenia 8. Wyrażenie $\frac{\left\|\sigma^2\lambda^2\right\|_{\infty}}{\int_S \sigma^2\lambda^2d\mu}$ możemy oszacować w następujący sposób

$$\frac{\left\|\sigma^2 \lambda^2\right\|_{\infty}}{\int_{S} \sigma^2 \lambda^2 d\mu} \leqslant \rho \frac{\left\|\sigma^2 \lambda^2\right\|_{\infty}}{\left(\int_{S} \sigma^4 \lambda^4 d\mu\right)^{1/2}} \leqslant \rho^2.$$

Zauważmy ponadto, że dla dowolnego $\lambda \in \Lambda$ zachodzi, że

$$\Psi(\lambda, \theta) = \int_{S} (1 - \lambda)^{2} \theta^{2} d\mu + \epsilon^{2} \int_{S} \sigma \lambda^{2} d\mu \geqslant \epsilon^{2} \int_{S} \sigma \lambda^{2} d\mu.$$

Skąd dostajemy, że

$$\epsilon^2 \|\sigma^2 \lambda^2\|_{\infty} \leqslant C_2 \rho^2 \Psi(\lambda, \theta).$$

Co z kolei prowadzi do oszacowania

$$\Delta^{\epsilon}[\lambda] = \epsilon^2 L_{\Lambda} \| \sigma^2 \lambda^2 \|_{\infty} \leqslant C_2 \rho^2 L_{\Lambda} \Psi(\lambda, \theta).$$

W dowodzie twierdzenia 8 uzyskaliśmy nierówność następującej postaci

$$(1 - 4B^{-1}C'')\mathbb{E}_{\theta}\Psi(\lambda^*, \theta) \leqslant (1 + 4B^{-1}C'')\Psi(\tilde{\lambda}, \theta) + CB \|T\|^2 \mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^*] + CB \|T\|^2 \Delta^{\epsilon}[\tilde{\lambda}].$$

Wykorzystując wyprowadzone oszacowanie mamy stąd, że

$$(1-4B^{-1})\mathbb{E}_{\theta}\Psi(\lambda^*,\theta) \leqslant (1+4B^{-1}C'')\Psi(\tilde{\lambda},\theta) + CBC_2 \|T\|^2 \rho^2 L_{\Lambda}\mathbb{E}_{\theta}\Psi(\lambda^*,\theta) + CBC_2 \|T\|^2 \rho^2 L_{\Lambda}\Psi(\tilde{\lambda},\theta),$$
co prowadzi do

$$\mathbb{E}_{\theta} \Psi(\lambda^*, \theta) \leqslant \frac{1 + 4B^{-1}C'' + CB \|T\|^2 \rho^2 L_{\Lambda}}{1 - 4B^{-1}C'' - CB \|T\|^2 \rho^2 L_{\Lambda}} \Psi(\tilde{\lambda}, \theta).$$

Ponownie korzystając z lematu 7 dostajemy, że

$$\frac{1}{C'}\mathbb{E}_{\theta}||\theta^* - \theta||^2 \leqslant (1 + 4B^{-1}C'')\mathbb{E}_{\theta}\Psi(\lambda^*, \theta) + CB||T||^2\mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda^*] \leqslant$$

$$\leq (1 + 4B^{-1}C'' + CB \|T\|^2 \rho^2 L_{\Lambda}) \Psi(\tilde{\lambda}, \theta).$$

Łącząc te dwie nierówności mamy

$$\frac{1}{C'}\mathbb{E}_{\theta}||\theta^* - \theta||^2 \leqslant \frac{(1 + 4B^{-1}C'' + CB \|T\|^2 \rho^2 L_{\Lambda})^2}{1 - 4B^{-1}C'' - CB \|T\|^2 \rho^2 L_{\Lambda}} \Psi(\tilde{\lambda}, \theta).$$

Zauważmy teraz, że istnieje taka stała $\gamma_4>0$, że jeśli tylko zachodzi $\|T\|^2 \rho^2 L_\Lambda \leqslant \gamma_4$, to wybór B jako $(\rho^2 L_\Lambda)^{-1/2}$ prowadzi do nierówności $4B^{-1}C''+CB\|T\|^2 \rho^2 L_\Lambda < \|T\|^2 1/2$, a stąd $1-4B^{-1}-CB\|T\|^2 \rho^2 L_\Lambda \geqslant 1/2$, czyli jest odcięte od zera. Wtedy wybór $B=(\rho^2 L_\Lambda)^{-1/2}$ prowadzi do nierówności

$$\frac{1}{C'}\mathbb{E}_{\theta}||\theta^* - \theta||^2 \leqslant \frac{(1 + C \|T\|^2 \rho \sqrt{L_{\Lambda}})^2}{1 - C \|T\|^2 \rho \sqrt{L_{\Lambda}}} \Psi(\tilde{\lambda}, \theta),$$

która z kolei prowadzi nas do postulowanej na początku nierówności

$$\frac{1}{C'} \mathbb{E}_{\theta} ||\theta^* - \theta||^2 \leqslant (1 + \gamma_3 ||T||^2 \rho \sqrt{L_{\Lambda}}) \Psi(\tilde{\lambda}, \theta),$$

która kończy dowód twierdzenia 9.

Wniosek 3. Niech założenie 5 będzie spełnione, ponadto niech zachodzi $\lim_{\epsilon \to 0} \rho^2 \ln(NS) = 0$. Wtedy istnieją stałe $\mathbb{C}_2 > 0$, $\mathbb{C}_3 > 0$ zależące tylko od stałej C_2 i operatora $T = UA^*$, takie że dla $\rho^2 \ln(NS) < \mathbb{C}_2$ i dla dowolnego $\theta \in L_2(S, \mathbb{S}, \mu)$ zachodzi

$$\mathbb{E}_{\theta}||\theta^* - \theta||^2 \leq \max\{1, C_2\} \left(1 + \mathbb{C}_3 \|T\|^2 \rho \sqrt{\ln(NS)}\right) \min_{\lambda \in \Lambda} \Psi(\lambda, \theta),$$

gdzie estymator $\tilde{\theta}$ i minimum rozumiane są jak poprzednio.

6. Przykład

7. Lematy pomocnicze

W rozdziale tym podamy dowody pomocniczych lematów użytych w pracy.

Lemat 8. Niech $\{X_i\}_{i=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o rozkładach odpowiednio $X_i \sim \mathcal{N}(0, s_i^2)$ i niech $\sum_{i=1}^{\infty} s_i^2 = S < \infty$. Wtedy istnieje zmienna losowa $X \sim \mathcal{N}(0, S)$ taka, że $L_2 - \lim_{n \to \infty} \sum_{i=1}^n X_i = X$.

Dowód. Przestrzeń $L_2(\Omega, \mathcal{F}, \mathbb{P})$ jest przestrzenią zupełną, więc wystarczy pokazać, że ciąg $\{\sum_{i=1}^{\infty} X_i\}_{n=1}^{\infty}$ jest ciągiem Cauchy'ego i graniczna zmienna losowa ma odpowiedni rozkład. Niech n>m, wtedy

$$0 \leqslant \left\| \sum_{i=1}^{n} X_i - \sum_{i=1}^{m} X_i \right\|_2^2 = \left\| \sum_{i=m+1}^{n} X_i \right\|_2^2 \leqslant \sum_{m+1}^{n} \left\| X_i \right\|_2^2 = \sum_{m+1}^{n} s_i^2 \to 0, \ n, m \to \infty,$$

bo szereg $\sum_{i=1}^{\infty} s_i^2$ jest zbieżny. Zatem ciąg $\{X_i\}_{i=1}^{\infty}$ jest ciągiem Cauchy'ego, a zatem istnieje zmienna losowa X taka, że $L_2 - \lim_{n \to \infty} \sum_{i=1}^n X_i = X$ oraz z uwagi na niezależność zmiennych $X_i, \sum_{i=1}^n X_i \sim \mathcal{N}(0, \sum_{i=1}^n s_i^2)$, a jako, że zbieżność w normie L_2 implikuje słabą zbieżność dostajemy żądaną tezę o rozkładzie X.

Lemat 9. Niech $\{X_i\}_{i=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o rozkładach odpowiednio $X_i \sim \mathcal{N}(\theta_i, \sigma_i^2)$ oraz niech szeregi $\sum_{i=1}^{\infty} \sigma_i^2$ i $\sum_{i=1}^{\infty} \theta_i^2$ będą zbieżne. Wtedy istnieje zmienna losowa $Y \in L_2(\Omega, \mathcal{F}, \mathbb{P})$ taka, że $L_2 - \lim_{n \to \infty} \sum_{i=1}^{n} X_i^2 = Y$.

 $Dow \acute{o}d.$ Przestrzeń $L_2(\Omega,\mathcal{F},\mathbb{P})$ jest przestrzenią zupełną, więc wystarczy pokazać, że ciąg $\left\{\sum_{i=1}^n X_i^2\right\}_{n=1}^\infty$ jest ciągiem Cauchy'ego. Niech n>m, wtedy mamy

$$0 \leqslant \left\| \sum_{i=1}^{n} X_i^2 - \sum_{i=1}^{m} X_i^2 \right\|_2^2 = \left\| \sum_{i=m+1}^{n} X_i^2 \right\|_2^2 \leqslant \sum_{m+1}^{n} \left\| X_i^2 \right\|_2^2.$$

Zauważmy teraz, że $\left\|X_i^2\right\|_2^2 = \mathbb{E}X_i^4 = \mathbb{E}\left(\left(X_i - \mathbb{E}X_i\right) + \mathbb{E}X_i\right)^4 = 3\sigma_i^2 + 6\theta_i^2\sigma_i^2 + \theta_i^4$. Założenie o zbieżności szeregów $\sum_{i=1}^\infty \sigma_i^2$ i $\sum_{i=1}^\infty \theta_i^2$ implikuje zbieżność szeregów $\sum_{i=1}^\infty \sigma_i^4$, $\sum_{i=1}^\infty \theta_i^4$ oraz $\sum_{i=1}^\infty \sigma_i^2\theta_i^2$, co wraz z poprzednim oszacowaniem pokazuje, że ciąg $\left\{\sum_{i=1}^\infty X_i^2\right\}_{n=1}^\infty$ jest ciągiem Cauchy'ego, co na mocy zupełności $L_2(\Omega, \mathcal{F}, \mathbb{P})$ implikuje istnienie żądanej zmiennej losowej Y.

Lemat 10. Niech $\eta\colon H\to L_2(T,\mathbb{T},\tau)$ będzie gaussowskim szumem o skończonym silnym drugim momencie oraz niech v będzie pewnym elementem z przestrzeni H takim, że $\|v\|_{\infty}<\infty$. Załóżmy, że zachodzi $\langle \eta,v\rangle\sim\mathcal{N}(0,1)$. Wtedy dla dowolnego t>0 zachodzi

$$\ln \mathbb{E} \exp \left(t \langle \eta^2 - 1, v \rangle \right) \leqslant \frac{t^2 \|v\|_2^2}{1 - t \|v\|_{\infty}}.$$

Dowód. Zachodzenie powyższego lematu pokazano, gdy v jest funkcją prostą w [13], str. 1325. Jako że η ma skończone drugie momenty i v jest ograniczona, możemy zastosować metodę komplikacji by uzyskać żądaną tezę.

Przejdziemy teraz do dowodów lematów użytych do dowodzenia głównych rezultatów pracy.

 $Dowód\ lematu\ 2.$ Na początek zauważmy pewien użyteczny fakt. Niech $X\sim\mathcal{N}(0,1)$ będzie zmienną losową. Wtedy zachodzi oszacowanie

$$\mathbb{E}X^2\mathbf{1}_{\{|X|>a\}} \leqslant \frac{2}{\sqrt{2\pi}}(a+a^{-1})e^{-a^2/2} \ \forall_{a>0}.$$

Istotnie możemy napisać, że

$$\mathbb{E}X^{2}\mathbf{1}_{\{|X|>a\}} = 2\int_{a}^{\infty} \frac{1}{\sqrt{2\pi}} x^{2} e^{-x^{2}/2} dx = \frac{2}{\sqrt{2\pi}} \left[-xe^{-x^{2}/2}|_{a}^{\infty} + \int_{a}^{\infty} e^{-x^{2}/2} dx \right] \leqslant \frac{2}{\sqrt{2\pi}} \left[ae^{-a^{2}/2} + \frac{1}{a}e^{-a^{2}/2} \right],$$

gdzie skorzystaliśmy z nierówności $1 - \Phi(x) \leq x^{-1}\phi(x)$ zachodzącej dla dowolnego x > 0, gdzie Φ, ϕ oznaczają odpowiednio dystrybuantę i gęstość standardowego rozkładu normalnego ([9], str. 175). Przejdziemy teraz do dowodu właściwej części lematu.

Oznaczmy przez $\zeta_v = \frac{1}{\|v\|} \sum_{k=1}^{\infty} v_k \xi_k$. Wyrażenie to jest skończone na mocy lematu 8 i faktu, że $v \in l^2$. Zachodzi oczywiście, że $|\zeta_v| \|v\| = |\sum_{k=1}^{\infty} v_k \xi_k|$. Możemy zatem zapisać, że

$$\mathbb{E}\left|\sum_{k=1}^{\infty} v_k \xi_k\right| = \mathbb{E}|\zeta_v| \|v\| \leqslant \mathbb{E} \|v\| \max_{u \in V} |\zeta_u| =$$

$$\mathbb{E} \|v\| \max_{u \in V} |\zeta_u| \mathbf{1}_{\{\max_{u \in V} |\zeta_u| \leqslant \sqrt{2\ln(NK)}\}} +$$

$$+ \mathbb{E} \|v\| \max_{u \in V} |\zeta_u| \mathbf{1}_{\{\max_{u \in V} |\zeta_u| > \sqrt{2\ln(NK)}\}} \leqslant$$

$$\leqslant \sqrt{2\ln(NK)} \mathbb{E} \|v\| + \mathbb{E} \|v\| \max_{u \in V} |\zeta_u| \mathbf{1}_{\{\max_{u \in V} |\zeta_u| > \sqrt{2\ln(NK)}\}}.$$

Skorzystamy następnie dla drugiego członu z nierówności Cauchy'ego– Schwarza.

$$\sqrt{2\ln(NK)}\mathbb{E}\left\|v\right\|+\mathbb{E}\left\|v\right\|\max_{u\in V}|\zeta_{u}|\mathbf{1}_{\left\{\max_{u\in V}|\zeta_{u}|>\sqrt{2\ln(NK)}\right\}}\leqslant$$

$$\leqslant \sqrt{2\ln(NK)}\mathbb{E}\left\|v\right\| + \left(\mathbb{E}\left\|v\right\|^2\right)^{1/2} \left(\mathbb{E}\max_{u \in V}|\zeta_u|^2\mathbf{1}_{\left\{\max_{u \in V}|\zeta_u| > \sqrt{2\ln(NK)}\right\}}\right)^{1/2}.$$

Rozważmy teraz funkcję $F(t)=t^2\mathbf{1}_{\{t>\sqrt{2\ln(NK)}\}}$. Z uwagi na monotoniczność funkcji kwadratowej dla dodatnich argumentów zachodzi, że

$$F(\max_{uv \in V} |\zeta_u|) = \max_{u \in V} F(|\zeta_u|),$$

Ponownie na mocy lematu 8 i niezależności zmiennych losowych $\{\xi_i\}$ mamy, że zmienne losowe ζ_v mają takie same rozkłady normalne $\mathcal{N}(0,1)$ dla każdego $v \in V$. Zatem możemy napisać

$$\mathbb{E}\left|\sum_{k=1}^{\infty}v_{k}\xi_{k}\right|\leqslant$$

$$\leqslant\sqrt{2\ln(NK)}\mathbb{E}\left\|v\right\|+\left(\mathbb{E}\left\|v\right\|^{2}\right)^{1/2}\left(\mathbb{E}\max_{u\in V}\left|\zeta_{u}\right|^{2}\mathbf{1}_{\left\{\max_{u\in V}\left|\zeta_{u}\right|>\sqrt{2\ln(NK)}\right\}}\right)^{1/2}\leqslant$$

$$\leqslant\sqrt{2\ln(NK)}\mathbb{E}\left\|v\right\|+\left(\mathbb{E}\left\|v\right\|^{2}\right)^{1/2}\left(\sum_{u\in V}\mathbb{E}\left|\zeta_{u}\right|^{2}\mathbf{1}_{\left\{\left|\zeta_{u}\right|>\sqrt{2\ln(NK)}\right\}}\right)^{1/2}=$$

$$=\sqrt{2\ln(NK)}\mathbb{E}\left\|v\right\|+\left(\mathbb{E}\left\|v\right\|^{2}\right)^{1/2}\left(N\mathbb{E}\left|\zeta_{v}\right|^{2}\mathbf{1}_{\left\{\left|\zeta_{v}\right|>\sqrt{2\ln(NK)}\right\}}\right)^{1/2}$$

Następnie korzystając z oszacowania pokazanego na początku dowodu z $a=\sqrt{2\ln(NK)}$ dostajemy, że

$$N\mathbb{E}|\zeta_{v}|^{2}\mathbf{1}_{\{|\zeta_{v}|>\sqrt{2\ln(NK)}\}} \leqslant \frac{2N}{\sqrt{2\pi}} \left(\sqrt{2\ln(NK)} + \frac{1}{\sqrt{2\ln(NK)}}\right) \frac{1}{NK} \leqslant$$
$$\leqslant \frac{1}{K} \left(\sqrt{2\ln(NK)} + \frac{1}{\sqrt{2\ln(NK)}}\right) \leqslant \frac{1}{K} \cdot 2\ln(NK),$$

o ile tylko zachodzi, że $NK\geqslant 2$. Przy założeniu na K jest to spełnione dla każdego nietrywialnego problemu z licznością V>1. Łącząc te nierówności dostajemy, że

$$\sqrt{2\ln(NK)}\mathbb{E} \|v\| + \left(\mathbb{E} \|v\|^2\right)^{1/2} \left(N\mathbb{E}|\zeta_v|^2 \mathbf{1}_{\{|\zeta_v| > \sqrt{2\ln(NK)}\}}\right)^{1/2} \leqslant$$

$$\leqslant \sqrt{2\ln(NK)}\mathbb{E} \|v\| + \sqrt{2\ln(NK)} \left(\mathbb{E} \|v\|^2 \cdot \frac{1}{K}\right)^{1/2}$$

co kończy dowód. \Box

Dowód lematu 3. Zauważmy na początek, że z nierówności Markowa dostajemy, że dla dowolnego t>0 zachodzi, że $P(X>\epsilon)\leqslant e^{-t\epsilon}\mathbb{E}e^{tX}$. Policzymy pomocniczo następującą wartość oczekiwaną, dla dowolnego $a\in(0,1/2)$

$$\mathbb{E}\exp(a\xi_i^2) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ax^2} e^{-x^2/2} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}(1-2a)} dx = \sqrt{\frac{1}{1-2a}}.$$

Niech teraz $\eta_v = \frac{1}{\sqrt{2||v||}} \sum_{i=1}^{\infty} v_i(\xi_i^2 - 1)$. Wyrażenie to jest skończone na mocy lematu 9 oraz faktu, że $v \in l^2$, a zatem szereg $\sum_{i=1}^{\infty} v_i$ jest skończony. Korzystając z powyższych faktów możemy napisać dla dowolnego t > 0 i dla ustalonego $u \in V$

$$P(\eta_u > x) \leqslant \exp(-tx)\mathbb{E}\exp(t\eta_u) = \exp(-tx)\mathbb{E}\exp\left(t\frac{1}{\sqrt{2}\|U\|}\sum_{i=1}^{\infty}U_i(\xi_i^2 - 1)\right) =$$

$$= \exp(-tx) \prod_{i=1}^{\infty} \mathbb{E} \exp\left(t \frac{1}{\sqrt{2} \|u\|} u_i(\xi_i^2 - 1)\right) =$$

$$= \exp(-tx) \prod_{i=1}^{\infty} \exp\left(-\frac{tu_i}{\sqrt{2} \|u\|}\right) \mathbb{E} \exp\left(\frac{t}{\sqrt{2} \|u\|} u_i \xi_i^2\right) =$$

$$= \exp(-tx) \prod_{i=1}^{\infty} \exp\left(-\frac{tu_i}{\sqrt{2} \|u\|}\right) \sqrt{\frac{\|u\|}{\|u\| - \sqrt{2}tu_i}} =$$

$$= \exp(-tx) \prod_{i=1}^{\infty} \exp\left(-\frac{tu_i}{\sqrt{2} \|u\|} - \frac{1}{2} \ln\left(1 - \frac{\sqrt{2}tu_i}{\|u\|}\right)\right).$$

W powyższym wyrażeniu skorzystać będziemy chcieli z następującego rozwinięcia $-\ln(1-x)=\sum_{k=1}^\infty\frac{x^k}{k}$ dla |x|<1. Zatem musimy założyć dodatkowo, że $t<\frac{1}{\sqrt{2}m(u)}.$ Stąd

$$\exp(-tx) \prod_{i=1}^{\infty} \exp\left(-\frac{tu_i}{\sqrt{2}\|u\|} - \frac{1}{2}\ln\left(1 - \frac{\sqrt{2}tu_i}{\|u\|}\right)\right) =$$

$$= \exp(-tx) \prod_{i=1}^{\infty} \exp\left(-\frac{tu_i}{\sqrt{2}\|u\|} + \frac{1}{2}\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{\sqrt{2}tu_i}{\|u\|}\right)^k\right) =$$

$$= \exp(-tx) \exp\left(\sum_{i=1}^{\infty}\sum_{k=2}^{\infty} \frac{1}{2k}\left(\frac{\sqrt{2}tu_i}{\|u\|}\right)^k\right) =$$

$$= \exp(-tx) \exp\left(\sum_{k=2}^{\infty}\sum_{i=1}^{\infty} \frac{1}{2k}\left(\frac{\sqrt{2}tu_i}{\|u\|}\right)^k\right) =$$

$$= \exp(-tx) \exp\left(\sum_{k=2}^{\infty} \frac{(\sqrt{2}t)^k}{2k}\sum_{i=1}^{\infty} \left(\frac{u_i}{\|u\|}\right)^2 \left(\frac{u_i}{\|u\|}\right)^{k-2}\right) =$$

$$\leq \exp(-tx) \exp\left(\sum_{k=2}^{\infty} \frac{(\sqrt{2}t)^k}{2k} (m(u))^{k-2} \frac{\sum_{i=1}^{\infty} u_i^2}{\|u\|^2}\right) =$$

$$= \exp(-tx) \exp\left(\frac{1}{2m^2(u)}\sum_{k=2}^{\infty} \frac{1}{k} \left(\sqrt{2}tm(u)\right)^k\right) =$$

$$= \exp(-tx) \exp\left(-\frac{1}{2m^2(u)}\ln\left(1 - \sqrt{2}tm(u)\right) - \frac{t}{\sqrt{2}m(u)}\right).$$

Minimalizując ostatnie wyrażenie względem t dostajemy, że w punkcie $t=\frac{1}{\sqrt{2}m(u)}-\frac{1}{2m^2(u)x+\sqrt{2}m(u)}$ osiągane jest minimum o wartości $\exp\left(\frac{1}{2m^2(u)}\ln\left(1+\sqrt{2}m(u)x\right)-\frac{x}{\sqrt{2}m(u)}\right)$. Możemy zatem zapisać, że

$$P(\eta_u > x) \leqslant \exp\left(\frac{1}{2m^2(u)}\ln\left(1 + \sqrt{2}m(u)x\right) - \frac{x}{\sqrt{2}m(u)}\right) =$$
$$= \exp\left(\frac{1}{2m^2(u)}\left(\ln\left(1 + \sqrt{2}m(u)x\right) - \sqrt{2}m(u)x\right)\right).$$

Zauważmy następnie, że zachodzi następująca zależność

$$\ln(1+z) - z = z \int_0^1 \left(-\frac{tz}{1+tz} \right) dt \leqslant -\int_0^1 \frac{tz^2}{1+z} dt = -\frac{z^2}{2(1+z)}.$$

Zatem powyższe oszacowanie sprowadza się do postaci

$$P(\eta_u > x) \le \exp\left(-\frac{x^2}{2(1+\sqrt{2}m(u)x)}\right).$$

Zauważmy, że zachodzi również $P(\eta_u < -x) = P(-\eta_u > x) = P(\eta_{-u} > x)$ i powyższe rozumowanie przenosi się na ten przypadek, a stąd dostajemy oszacowanie

$$P(|\eta_u| > x) \le 2 \exp\left(-\frac{x^2}{2(1+\sqrt{2}m(u)x)}\right).$$

Wyrażenie $-\frac{x^2}{2(1+\sqrt{2}m(u)x)}$ możemy ograniczyć w następujący sposób

$$-\frac{x^2}{2(1+\sqrt{2}m(u)x)} \leqslant \begin{cases} -\frac{x^2}{4}, \ \sqrt{2}m(u)x < 1\\ -\frac{x}{\sqrt{32}m(u)}, \ \sqrt{2}m(u)x \geqslant 1 \end{cases}.$$

Zauważmy następnie, że dla nieujemnej zmiennej losowej X zachodzi, że $\mathbb{E}X^2=2\int_0^\infty tP(X>t)dt.$ Zatem dla dowolnego Q>0 mamy, że

$$\mathbb{E}\eta_u^2 \mathbf{1}\{|\eta_u| > Q\} = 2\int_Q^\infty t P(|\eta_u| > t) dt \leqslant 4\int_Q^\infty t \exp\left(-\frac{t^2}{2(1+\sqrt{2}m(u)t)}\right) dt \leqslant$$

$$\leqslant 4\int_Q^{\frac{1}{\sqrt{2}m(u)}} t \exp\left(-\frac{t^2}{4}\right) dt + 4\int_Q^\infty t \exp\left(\frac{-t}{\sqrt{32}m(u)}\right) dt \leqslant$$

$$\leqslant C \exp\left(-\frac{Q^2}{4}\right) + CQ \exp\left(-\frac{Q}{\sqrt{32}m(u)}\right),$$

Gdy $Q\leqslant \frac{1}{\sqrt{2}m(u)}$. Natomiast gdy $Q>\frac{1}{\sqrt{2}m(u)}$ całkę $4\int_Q^\infty t\exp\left(-\frac{t^2}{2(1+\sqrt{2}m(u)t)}\right)dt$ można oszacować przez $CQ\exp\left(-\frac{Q}{\sqrt{32}m(u)}\right)$, co z uwagi na to, że $C\exp\left(-\frac{Q^2}{4}\right)\geqslant 0$ prowadzi do tego samego oszacowania. Następnie możemy zapisać, że

$$\sum_{u \in V} \exp\left(-\frac{Q}{\sqrt{32}m(u)}\right) = \sum_{u \in V} \exp\left(-\frac{q}{m(u)}\right) \exp\left(-\frac{Q/\sqrt{32} - q}{m(u)}\right) \leqslant$$
$$\leqslant M(q) \exp\left(-\frac{Q/\sqrt{32} - q}{m_V}\right),$$

o ile $Q > q\sqrt{32}$.

Będziemy teraz postępować analogicznie jak w dowodzie poprzedniego lematu dla dowolnego $Q>q\sqrt{32}.$

$$\begin{split} \mathbb{E}\left|\sum_{i=1}^{\infty}v_{i}(\xi_{i}^{2}-1)\right| &= \mathbb{E}\left|\sqrt{2}\left\|v\right\|\left|\eta_{v}\right|\right| \leqslant \sqrt{2}\mathbb{E}\left\|v\right\|\max_{v\in V}\left|\eta_{v}\right| \leqslant \\ &\leqslant \sqrt{2}\mathbb{E}\left\|v\right\|\max_{u\in V}\left|\eta_{u}\right|\mathbf{1}\{\max_{u\in V}\left|\eta_{u}\right| \leqslant Q\} + \sqrt{2}\mathbb{E}\left\|v\right\|\max_{u\in V}\left|\eta_{u}\right|\mathbf{1}\{\max_{u\in V}\left|\eta_{u}\right| > Q\} \leqslant \\ &\leqslant \sqrt{2}Q\mathbb{E}\left\|v\right\| + \sqrt{2}\mathbb{E}\left\|v\right\|\max_{u\in V}\left|\eta_{u}\right|\mathbf{1}\{\max_{u\in V}\left|\eta_{u}\right| > Q\} \leqslant \\ &\leqslant \sqrt{2}Q\mathbb{E}\left\|v\right\| + \left(2\mathbb{E}\left\|v\right\|^{2}\right)^{1/2}\left(\mathbb{E}\max_{u\in V}\left|\eta_{u}\right|^{2}\mathbf{1}\{\max_{u\in V}\left|\eta_{u}\right| > Q\}\right)^{1/2} \leqslant \\ &\leqslant \sqrt{2}Q\mathbb{E}\left\|v\right\| + \left(2\mathbb{E}\left\|v\right\|^{2}\right)^{1/2}\left(\sum_{u\in V}\mathbb{E}\left|\eta_{u}\right|^{2}\mathbf{1}\{\max_{u\in V}\left|\eta_{u}\right| > Q\}\right)^{1/2} \leqslant \\ &\leqslant \sqrt{2}Q\mathbb{E}\left\|v\right\| + \left(2\mathbb{E}\left\|v\right\|^{2}\right)^{1/2}\left(\sum_{u\in V}\left(C\exp\left(-\frac{Q^{2}}{4}\right) + CQ\exp\left(-\frac{Q}{\sqrt{32}m(u)}\right)\right)\right)^{1/2} \leqslant \\ &\leqslant \sqrt{2}Q\mathbb{E}\left\|v\right\| + \left(2\mathbb{E}\left\|v\right\|^{2}\right)^{1/2}\left(NC\exp\left(-\frac{Q^{2}}{4}\right) + CQM(q)\exp\left(-\frac{Q/\sqrt{32}-q}{m_{V}}\right)\right)^{1/2}. \end{split}$$

Przyjmując teraz $Q=2\sqrt{\ln(NK)}+\sqrt{32}m_V\ln(M(q)K)+q\sqrt{32}$ dostajemy, że powyższe oszacowanie sprowadza się do następującej postaci

$$\left(2\sqrt{2}\sqrt{\ln(NK)} + 8m_V \ln(M(q)K) + 8q\right) \mathbb{E} \|v\| + \left(2\mathbb{E} \|v\|^2\right)^{1/2} \cdot$$

$$\left(NC \exp\left(-\ln(NK)\right) \exp\left(-8m_V^2 \ln^2(M(q)K) - 8q - 8\sqrt{2}q\sqrt{\ln(NK)} - 32qm_V \ln(M(q)K) - 8\sqrt{2}\sqrt{\ln(NK)}m_V \ln(M(q)K)\right) + CM(q)\left(2\sqrt{\ln(NK)} + \sqrt{32}m_V \ln(M(q)K) + q\sqrt{32}\right)\right)$$

$$\exp\left(-\ln(M(q)K)\right) \exp\left(-\frac{\sqrt{\ln(NK)}}{2\sqrt{2}m_V}\right)^{1/2} \leqslant$$

$$\leqslant D\left(\sqrt{\ln(NK)} + m_V \ln(M(q)K)\right) \left(\mathbb{E} \|v\| + \left(\frac{1}{K}\mathbb{E} \|v\|^2\right)^{1/2}\right),$$

dla pewnej stałej D zależnej tylko od q i operatora T. Nierówność ta kończy dowód lematu.

Dowód lematu 4. Przypomnijmy, że w naszym modelu (2) mamy $x_i = \theta_i + \epsilon \sigma_i \xi_i$, a stąd $x_i^2 = \theta_i^2 + \epsilon^2 \sigma_i^2 \xi_i^2 + 2\epsilon \theta_i \sigma_i \xi_i$. Zgodnie z definicją możemy zapisać, że

$$\mathbb{E}_{\theta} \left\| \hat{\theta} - \theta \right\|^{2} = \mathbb{E}_{\theta} \left[\sum_{i=1}^{\infty} (\lambda_{i}(X)x_{i} - \theta_{i})^{2} \right] =$$

$$= \mathbb{E}_{\theta} \left[\sum_{i=1}^{\infty} \lambda_{i}^{2}(X)x_{i}^{2} + \sum_{i=1}^{\infty} \theta_{i}^{2} - 2\sum_{i=1}^{\infty} \lambda_{i}(X)x_{i}\theta_{i} \right] =$$

$$= \mathbb{E}_{\theta} \left[\sum_{i=1}^{\infty} \lambda_{i}^{2}(X) \left(\theta_{i}^{2} + \epsilon^{2}\sigma_{i}^{2}\xi_{i}^{2} + 2\epsilon\theta_{i}\sigma_{i}\xi_{i} \right) + \sum_{i=1}^{\infty} \theta_{i}^{2} - 2\sum_{i=1}^{\infty} \lambda_{i}(X)\theta_{i} \left(\theta_{i} + \epsilon\sigma_{i}\xi_{i} \right) \right] =$$

$$= \mathbb{E}_{\theta} \left[\sum_{i=1}^{\infty} (1 - \lambda_{i}(X))^{2}\theta_{i}^{2} - 2\epsilon \sum_{i=1}^{\infty} (1 - \lambda_{i}(X))\theta_{i}\lambda_{i}(X)\sigma_{i}\xi_{i} +$$

$$+ \epsilon^{2} \sum_{i=1}^{\infty} \lambda_{i}^{2}(X)\sigma_{i}^{2}(\xi_{i}^{2} - 1) + \epsilon^{2} \sum_{i=1}^{\infty} \lambda_{i}^{2}(X)\sigma_{i}^{2} \right] =$$

$$= \mathbb{E}_{\theta} \mathcal{R}(\hat{\theta}, \theta) - 2\epsilon \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_{i}(X))\theta_{i}\lambda_{i}(X)\sigma_{i}\xi_{i} + \epsilon^{2}\mathbb{E}_{\theta} \sum_{i=1}^{\infty} \lambda_{i}^{2}(X)\sigma_{i}^{2}(\xi_{i}^{2} - 1).$$

Następnie korzystając z pierwszego z lematów z K=S oszacujemy wyrażenie $\epsilon \mathbb{E}_{\theta} | \sum_{i=1}^{\infty} (1 - \lambda_i(X)) \theta_i \lambda_i(X) \sigma_i \xi_i |$. Ciągiem v_i jest tym razem ciąg $(1 - \lambda_i(X)) \theta_i \lambda_i(X) \sigma_i$.

$$\begin{split} \epsilon \mathbb{E}_{\theta} \left| \sum_{i=1}^{\infty} (1 - \lambda_{i}(X)) \theta_{i} \lambda_{i}(X) \sigma_{i} \xi_{i} \right| \leqslant \\ \leqslant \epsilon \sqrt{2 \ln(NS)} \mathbb{E}_{\theta} \left(\sum_{i=1}^{\infty} (1 - \lambda_{i}(X))^{2} \theta_{i}^{2} \lambda_{i}^{2}(X) \sigma_{i}^{2} \right)^{1/2} + \\ + 2\epsilon \sqrt{\ln(NS)} S^{-1/2} \left(\mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_{i}(X))^{2} \theta_{i}^{2} \lambda_{i}^{2}(X) \sigma_{i}^{2} \right)^{1/2} \leqslant \\ \leqslant \epsilon \sqrt{2 \ln(NS)} \mathbb{E}_{\theta} \sup_{i} \sigma_{i} |\lambda_{i}(X)| \left(\sum_{i=1}^{\infty} (1 - \lambda_{i}(X))^{2} \theta_{i}^{2} \right)^{1/2} + \\ + 2\epsilon \sqrt{\ln(NS)} S^{-1/2} \max_{\lambda \in \Lambda} \sup_{i} \sigma_{i} |\lambda_{i}| \left(\mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_{i}(X))^{2} \theta_{i}^{2} \right)^{1/2} \leqslant \end{split}$$

$$\leq \frac{1}{2} \epsilon^2 B \ln(NS) \mathbb{E}_{\theta} \sup_{i} \sigma_i^2 \lambda_i^2(X) + B^{-1} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_i(X))^2 \theta_i^2 + \epsilon^2 B \ln(NS) \frac{\max_{\lambda \in \Lambda} \sup_{i} \sigma_i^2 \lambda_i^2}{S} + B^{-1} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_i(X))^2 \theta_i^2,$$

gdzie skorzystaliśmy z nierówności $2ab\leqslant Ba^2+B^{-1}b^2$ spełnionej dla dowolnego B>0. Zauważmy, że skoro $S=\frac{\max_{\lambda\in\Lambda}\sup_i\sigma_i^2\lambda_i^2}{\min_{\lambda\in\Lambda}\sup_i\sigma_i^2\lambda_i^2}$ zatem $\frac{\max_{\lambda\in\Lambda}\sup_i\sigma_i^2\lambda_i^2}{S}=\min_{\lambda\in\Lambda}\sup_i\sigma_i^2\lambda_i^2$, a stąd powyższe wyrażenie redukuje się do postaci

$$\begin{split} 2B^{-1}\mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1-\lambda_{i}(X))^{2} \theta_{i}^{2} + \frac{1}{2} \epsilon^{2} B \ln(NS) \mathbb{E}_{\theta} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}(X) + \epsilon^{2} B \ln(NS) \min_{\lambda \in \Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2} \leqslant \\ \leqslant 2B^{-1}\mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1-\lambda_{i}(X))^{2} \theta_{i}^{2} + \frac{1}{2} B \mathbb{E}_{\theta} \left(\epsilon^{2} \ln(NS) \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}(X) \right) + \\ + B \mathbb{E}_{\theta} \left(\epsilon^{2} \ln(NS) \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}(X) \right) \leqslant \\ \leqslant 2B^{-1}\mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1-\lambda_{i}(X))^{2} \theta_{i}^{2} + \frac{3}{2} B \mathbb{E}_{\theta} \Delta^{\epsilon} [\lambda(X)]. \end{split}$$

Następnie będziemy szacować wyrażenie $\epsilon^2 \mathbb{E}_{\theta} \left| \sum_{i=1}^{\infty} \lambda_i^2(X) \sigma_i^2(\xi_i^2 - 1) \right|$ korzystając z drugiego z lematów z K = S, q = 1 i ciągu $v_i = \lambda_i^2(X) \sigma_i^2$. Ponadto zachodzi

$$m(v) = \sup_{i} \frac{|v_i|}{\|v\|} = \sup_{i} \lambda_i^2(X)\sigma_i^2 \left(\sum_{k=1}^{\infty} \lambda_k^4(X)\sigma_k^4\right)^{-1/2} \leqslant \rho(\lambda(X)),$$

a stąd $m_V \leqslant \rho$ oraz $M(1) \leqslant M$ i możemy szacować wyrażenie $\sqrt{\ln(NS)} + m_V \ln(M(1)S)$ przez $\sqrt{2L_\Lambda}$. Możemy zatem zapisać, że

$$\epsilon^{2}\mathbb{E}_{\theta}\left|\sum_{i=1}^{\infty}\lambda_{i}^{2}(X)\sigma_{i}^{2}(\xi_{i}^{2}-1)\right| \leqslant$$

$$\leqslant \epsilon^{2}D\left(\sqrt{\ln(NS)} + m_{V}\ln(M(1)S)\right)\left(\mathbb{E}_{\theta}\left(\sum_{i=1}^{\infty}\lambda_{i}^{4}(X)\sigma_{i}^{4}\right)^{1/2} + \left(\frac{1}{S}\mathbb{E}_{\theta}\sum_{i=1}^{\infty}\lambda_{i}^{4}(X)\sigma_{i}^{4}\right)^{1/2}\right) \leqslant$$

$$\leqslant \epsilon^{2}D\sqrt{2L_{\Lambda}}\mathbb{E}_{\theta}\left(\sum_{i=1}^{\infty}\lambda_{i}^{4}(X)\sigma_{i}^{4}\right)^{1/2} + \frac{\epsilon^{2}D\sqrt{2L_{\Lambda}}}{\sqrt{S}}\left(\mathbb{E}_{\theta}\sum_{i=1}^{\infty}\lambda_{i}^{4}(X)\sigma_{i}^{4}\right)^{1/2}.$$

Zauważmy, że zachodzi następujący związek

$$\begin{split} S^{-1}\mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{4} \lambda_{i}^{4}(X) &\leqslant \frac{\min_{\lambda \in \Lambda} \sup_{i} \lambda_{i}^{2} \sigma_{i}^{2}}{\max_{\lambda \in \Lambda} \sup_{i} \lambda_{i}^{2} \sigma_{i}^{2}} \mathbb{E}_{\theta} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}(X) \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2}(X) \\ &\leqslant \frac{\min_{\lambda \in \Lambda} \sup_{i} \lambda_{i}^{2} \sigma_{i}^{2}}{\max_{\lambda \in \Lambda} \sup_{i} \lambda_{i}^{2} \sigma_{i}^{2}} \max_{\lambda \in \Lambda} \sup_{i} \lambda_{i}^{2} \sigma_{i}^{2} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2}(X) \leqslant \\ &\leqslant \mathbb{E}_{\theta} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}(X) \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2}(X). \end{split}$$

Korzystając z tego faktu i ponownie z nierówności $2ab\leqslant Ba^2+B^{-1}b^2$ z B>0 dostajemy

$$\epsilon^2 D \sqrt{2L_\Lambda} \mathbb{E}_\theta \left(\sum_{i=1}^\infty \lambda_i^4(X) \sigma_i^4 \right)^{1/2} + \frac{\epsilon^2 D \sqrt{2L_\Lambda}}{\sqrt{S}} \left(\mathbb{E}_\theta \sum_{i=1}^\infty \lambda_i^4(X) \sigma_i^4 \right)^{1/2} \leqslant$$

$$\leqslant \epsilon^{2} D \sqrt{2L_{\Lambda}} \mathbb{E}_{\theta} \left(\sum_{i=1}^{\infty} \lambda_{i}^{4}(X) \sigma_{i}^{4} \right)^{1/2} + \epsilon^{2} D \sqrt{2L_{\Lambda}} \left(\mathbb{E}_{\theta} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}(X) \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2}(X) \right)^{1/2} \leqslant$$

$$\leqslant \mathbb{E}_{\theta} \frac{\epsilon^{2} B D^{2} L_{\Lambda}}{4} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}(X) + 2\epsilon^{2} B^{-1} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2}(X) +$$

$$+ \mathbb{E}_{\theta} \frac{\epsilon^{2} B D^{2} L_{\Lambda}}{4} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}(X) + 2\epsilon^{2} B^{-1} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2}(X) =$$

$$= 4\epsilon^{2} B^{-1} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2}(X) + \frac{\epsilon^{2} B D^{2}}{2} \mathbb{E}_{\theta} L_{\Lambda} \sup_{i} \sigma_{i}^{2} \lambda_{i}^{2}(X) \leqslant$$

$$\leqslant 4\epsilon^{2} B^{-1} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2}(X) + \frac{B D^{2}}{2} \mathbb{E}_{\theta} \Delta^{\epsilon} [\lambda(X)].$$

Łącząc te oszacowania dostajemy, że

$$\mathbb{E}_{\theta} \left\| \hat{\theta} - \theta \right\|^{2} \leqslant \mathbb{E}_{\theta} \mathcal{R}(\hat{\theta}, \theta) - 2\epsilon \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_{i}(X)) \theta_{i} \lambda_{i}(X) \sigma_{i} \xi_{i} + \epsilon^{2} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \lambda_{i}^{2}(X) \sigma_{i}^{2}(\xi_{i}^{2} - 1) \leqslant$$

$$\leqslant \mathbb{E}_{\theta} \mathcal{R}(\hat{\theta}, \theta) + 4B^{-1} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} (1 - \lambda_{i}(X))^{2} \theta_{i}^{2} + \frac{3}{2} B \mathbb{E}_{\theta} \Delta^{\epsilon} [\lambda(X)] +$$

$$+4\epsilon^{2} B^{-1} \mathbb{E}_{\theta} \sum_{i=1}^{\infty} \sigma_{i}^{2} \lambda_{i}^{2}(X) + \frac{BD^{2}}{2} \mathbb{E}_{\theta} \Delta^{\epsilon} [\lambda(X)] =$$

$$= (1 + 4B^{-1}) \mathbb{E}_{\theta} \mathcal{R}(\hat{\theta}, \theta) + CB \mathbb{E}_{\theta} \Delta^{\epsilon} [\lambda(X)],$$

co kończy dowód lematu.

Dowód lematu 5. W dowodzie lematu ponownie skorzystamy z oszacowania

$$\mathbb{E}X^2\mathbf{1}_{\{|X|>a\}} \leqslant \frac{2}{\sqrt{2\pi}}(a+a^{-1})e^{-a^2/2} \ \forall_{a>0}$$

zachodzącego dla zmiennych losowych o standardowym rozkładzie normalnym oraz z własności

$$F(\max_{v \in V} |\zeta_v|) \leqslant \sum_{v \in V} F(|\zeta_v|)$$

dla funkcji postaci $F(t) = t^2 \mathbf{1}_{\{t > \sqrt{2 \ln(NK)}\}}$.

Oznaczmy przez $\zeta_v = \frac{\langle \eta, v \rangle}{\|T^*v\|_2}$. Zauważmy, że z faktu, że η jest gaussowskim szumem z operatorem kowariancji postaci TT^* , może być przedstawiona jako $T\xi$, gdzie ξ jest gaussowskim białym szumem. Wynika stąd, że ζ_v ma standardowy rozkład normalny $\mathcal{N}(0,1)$. Możemy teraz napisać, że

$$\mathbb{E} \left| \langle \eta, v \rangle \right| = \mathbb{E} |\zeta| \, \|T^*v\|_2 \leqslant \mathbb{E} |\zeta| \, \|T^*\| \, \|v\|_2 \leqslant \|T^*\| \, \mathbb{E} \, \|v\|_2 \max_{v \in V} |\zeta_v| = \\ = \|T^*\| \, \mathbb{E} \, \|v\|_2 \max_{v \in V} |\zeta_v| \mathbf{1}_{\{\max_{v \in V} |\zeta_v| \leqslant \|T^*\| \sqrt{2 \ln(NK)}\}} + \|T^*\| \, \mathbb{E} \, \|v\|_2 \max_{v \in V} |\zeta_v| \mathbf{1}_{\{\max_{v \in V} |\zeta_v| > \sqrt{2 \ln(NK)}\}} \leqslant \\ \leqslant \|T^*\| \, \sqrt{2 \ln(NK)} \mathbb{E} \, \|v\|_2 + \|T^*\| \, \mathbb{E} \, \|v\|_2 \max_{v \in V} |\zeta_v| \mathbf{1}_{\{\max_{v \in V} |\zeta_v| > \sqrt{2 \ln(NK)}\}} \leqslant \\ \leqslant \|T^*\| \, \sqrt{2 \ln(NK)} \mathbb{E} \, \|v\|_2 + \|T^*\| \, \Big(\mathbb{E} \, \|v\|_2^2 \Big)^{1/2} \, \Big(\mathbb{E} \max_{v \in V} |\zeta_v|^2 \mathbf{1}_{\{\max_{v \in V} |\zeta_v| > \sqrt{2 \ln(NK)}\}} \Big)^{1/2} \leqslant \\ \leqslant \|T^*\| \, \sqrt{2 \ln(NK)} \mathbb{E} \, \|v\|_2 + \|T^*\| \, \Big(\mathbb{E} \, \|v\|_2^2 \Big)^{1/2} \, \Big(\sum_{v \in V} \mathbb{E} |\zeta_v|^2 \mathbf{1}_{\{|\zeta_v| > \sqrt{2 \ln(NK)}\}} \Big)^{1/2} = \\ = \|T^*\| \, \sqrt{2 \ln(NK)} \mathbb{E} \, \|v\|_2 + \|T^*\| \, \Big(\mathbb{E} \, \|v\|_2^2 \Big)^{1/2} \, \Big(N \mathbb{E} |\zeta_v|^2 \mathbf{1}_{\{|\zeta_v| > \sqrt{2 \ln(NK)}\}} \Big)^{1/2} \, .$$

Korzystając ze wspomnianego na początku oszacowania z $a = \sqrt{2 \ln(NK)}$ dostajemy, że

$$||T^*|| \sqrt{2\ln(NK)} \mathbb{E} ||v||_2 + ||T^*|| \left(\mathbb{E} ||v||_2^2 \right)^{1/2} \left(N \mathbb{E} |\zeta_v|^2 \mathbf{1}_{\{|\zeta_v| > \sqrt{2\ln(NK)}\}} \right)^{1/2} \le$$

$$\leq ||T^*|| \sqrt{2\ln(NK)} \left(\mathbb{E} ||v||_2 + \sqrt{2\mathbb{E} ||v||_2^2/K} \right) = ||T|| \sqrt{2\ln(NK)} \left(\mathbb{E} ||v||_2 + \sqrt{2\mathbb{E} ||v||_2^2/K} \right),$$
gdyż $||T^*|| = ||T||$, co kończy dowód.

 $Dowód\ lematu\ 6$. Jeżeli η jest gaussowskim szumem z operatorem kowariancji TT^* to można go przedstawić w postaci $T\xi$, gdzie ξ jest gaussowskim białym szumem. Oznaczmy $\zeta_v = \frac{1}{\|T^*v\|_2^2} \langle \eta^2 - 1, v \rangle$. Zauważmy, że tak zdefiniowana zmienna losowa spełnia założenia lematu 10 z $v = \frac{v}{\|T^*v\|_2}$. Z nierówności Markowa dostajemy, że dla dowolnego t>0 i x>0 zachodzi i ustalonego $u\in V$

$$\ln P(\zeta_u > x) \le -tx + \ln \mathbb{E} \exp\left(\frac{t}{\|T^*u\|_2^2} \langle \eta^2 - 1, u \rangle\right) \le$$

$$\leqslant -tx + \frac{\left(\frac{t}{\|T^*u\|}\right)^2 \|u\|_2^2}{1 - \frac{t}{\|T^*u\|_2} \|u\|_\infty} \leqslant -tx + \frac{\left(\frac{t}{\|T^*u\|_2}\right)^2 \|u\|_2^2}{1 - \frac{t}{\|T^*u\|_2} \|u\|_2 m(u)}.$$

Zauważmy następnie, że dla dowolnego a>0 i $t\in[0,\frac{1}{\sqrt{2}a})$ zachodzi nierówność

$$\frac{t^2}{1-at} \leqslant \frac{-1}{a^2} \ln(1-\sqrt{2}at) - \frac{\sqrt{2}t}{a}.$$

Dostajemy zatem następującą nierówność

$$P(\zeta_u > x) \le \exp(-tx) \exp\left(-\frac{1}{m^2(u)} \ln\left(1 - \frac{\sqrt{2}m(u) \|u\|_2}{\|T^*u\|_2}t\right) - \frac{\sqrt{2} \|u\|_2}{\|T^*u\|_2 m(u)}t\right),$$

o ile $t<\frac{\|T^*u\|}{\sqrt{2}m(u)\|u\|_2}$. Zauważmy, że nierówność ta sprowadza się do analogicznej nierówności z dowodu lematu 3, gdy operator T jest operatorem identycznościowym, jak w przypadku białego szumu. Minimalizując prawą stronę powyższego wyrażenia względem t dostajemy, że w punkcie $t_{min}=\frac{\|T^*u\|}{\sqrt{2}m(u)\|u\|_2}-\frac{1}{m^2(u)x+\frac{\sqrt{2}m(u)\|u\|_2}{\|T^*x\|}}$ osiągane jest minimum o wartości

$$\exp\left(-\frac{\|T^*u\|_2 x}{\sqrt{2}m(u)\|u\|_2} + \frac{1}{m^2(u)}\ln\left(1 + \frac{\|T^*u\|_2 m(u)x}{\sqrt{2}\|u\|}\right)\right) =$$

$$= \exp\left(\frac{1}{m^2(u)}\left(\ln\left(1 + \frac{\|T^*u\|_2 m(u)}{\sqrt{2}\|u\|_2}x\right) - \frac{\|T^*u\|_2 m(u)}{\sqrt{2}\|u\|_2}\right)\right) \leqslant$$

$$\leqslant \exp\left(\frac{-\frac{\|T^*u\|_2^2}{\|u\|_2^2}x^2}{1 + \frac{\|T^*u\|m(u)}{\sqrt{2}\|u\|_2}x}\right), \tag{21}$$

gdzie ponownie skorzystaliśmy z nierówności $\ln(1+z)-z \leqslant -\frac{z^2}{2(1+z)}$ zachodzącej dla dodatnich z. Powyższe rozważania będą wykorzystane tylko w przypadku, gdy operator T^* jest operatorem ograniczonym i odwracalnym, co gwarantuje istnienie stałych c, C > 0 takich, że dla dowolnego v zachodzi ([16], str. 216)

$$c \|u\|_{2} \leq \|Tu\|_{2} \leq C \|u\|_{2}$$
.

W dalszym ciągu rozważań największą ze stałych c dla których zachodzi powyższa nierówność będzie oznaczać przez $\|t\|$, natomiast najmniejszą ze stałych

C przez ||T||. Oczywiście stała ||T|| jest normą operatora T. Przy takich oznaczeniach oszacowanie (21) przyjmuje postać

$$\exp\left(\frac{-\|t\|^2 x^2}{1+2^{-1/2} \|T\| m(u)x}\right).$$

Zauważmy, że powyższe wyrażenie można oszacować następująco w zależności od wielkości x.

$$\exp\left(\frac{-\left\|t\right\|^{2}x^{2}}{1+2^{-1/2}\left\|T\right\|m(u)x}\right) \leqslant \begin{cases} \frac{-\left\|t\right\|^{2}x^{2}}{2}, \ gdy \ 2^{-1/2}\left\|T\right\|m(u)x < 1, \\ \frac{-\left\|t\right\|^{2}x}{\sqrt{2}\left\|T\right\|m(u)}, \ gdy \ 2^{-1/2}\left\|T\right\|m(u)x \geqslant 1. \end{cases}$$

Ostatecznie prowadzi nas to do następującego oszacowania

$$P(\zeta_u > x) \leqslant \begin{cases} \frac{-\|t\|^2 x^2}{2}, & gdy \ 2^{-1/2} \|T\| \ m(u)x < 1, \\ \frac{-\|t\|^2 x}{\sqrt{2} \|T\| m(u)}, & gdy \ 2^{-1/2} \|T\| \ m(u)x \geqslant 1. \end{cases}$$

Zauważmy, że zachodzi również $P(\zeta_u < -x) = P(-\zeta_u > x) = P(\zeta_{-u} > x)$ i powyższe rozumowanie przenosi się na ten przypadek, a stąd dostajemy oszacowanie

$$P(|\zeta_u| > x) \le 2 \begin{cases} \frac{-\|t\|^2 x^2}{2}, & \text{gdy } 2^{-1/2} \|T\| \ m(u)x < 1, \\ \frac{-\|t\|^2 x}{\sqrt{2} \|T\| m(u)}, & \text{gdy } 2^{-1/2} \|T\| \ m(u)x \ge 1. \end{cases}$$

Następnie korzystając z uzyskanego oszacowania możemy zapisać dla dowolnego $\frac{\sqrt{2}}{\|T\|_{m(u)}}\geqslant Q>0$

$$\mathbb{E}\zeta_{u}^{2}\mathbf{1}\{|\zeta_{u}| > Q\} = 2\int_{Q}^{\infty} zP\left(|\zeta_{u}| > z\right) dz \leqslant 4\int_{Q}^{\infty} z \exp\left(\frac{-\|t\|^{2} z^{2}}{1 + 2^{-1/2} \|T\| m(u)z}\right) dt \leqslant$$

$$\leqslant 4\int_{Q}^{\frac{\sqrt{2}}{\|T\| m(u)}} z \exp\left(\frac{-\|t\|^{2} z^{2}}{2}\right) dz + 4\int_{Q}^{\infty} z \exp\left(\frac{-\|t\|^{2} z}{\sqrt{2} \|T\| m(u)}\right) dz \leqslant$$

$$\leqslant C \exp\left(\frac{-\|t\|^{2} Q^{2}}{2}\right) + CQ \exp\left(\frac{-\|t\|^{2} Q}{\sqrt{2} \|T\| m(u)}\right).$$

Podobnie jak w dowodzie lematu 3 nierówność tą możemy u
ogólnić dla dowolnego Q>0. Zauważmy następnie, że zachodzi

$$\begin{split} \sum_{u \in V} \exp\left(\frac{-\left\|t\right\|^{2} Q}{\sqrt{2} \left\|T\right\| m(u)}\right) &= \sum_{u \in V} \exp\left(-\frac{q}{m(u)}\right) \exp\left(-\frac{\left\|t\right\| Q/(\sqrt{2} \left\|T\right\|) - q}{m(u)}\right) \leqslant \\ &\leqslant M(q) \exp\left(-\frac{\left\|t\right\| Q/(\sqrt{2} \left\|T\right\|) - q}{m_{V}}\right), \end{split}$$

o ile $Q > \frac{\sqrt{2}q\|T\|}{\|t\|}$. Niech zatem $Q > \frac{\sqrt{2}q\|T\|}{\|t\|}$, wtedy

$$\mathbb{E}\left|\left\langle \eta^{2}-1,u\right\rangle\right| = \mathbb{E}\left\|T^{*}u\right\|_{2}^{2}\left|\zeta_{u}\right| \leqslant$$

$$\leqslant \|T\|^{2} \mathbb{E}\left\|u\right\|_{2}^{2}\left|\zeta_{u}\right| \leqslant \|T\|^{2} \mathbb{E}\left\|u\right\|_{2}^{2} \max_{u\in V}\left|\zeta_{u}\right| \leqslant$$

$$\leq ||T||^{2} \mathbb{E} ||u||_{2}^{2} \max_{u \in V} |\zeta_{u}| \mathbf{1} \{ \max_{u \in V} |\zeta_{u}| \leq Q \} + ||T||^{2} \mathbb{E} ||u||_{2}^{2} \max_{u \in V} |\zeta_{u}| \mathbf{1} \{ \max_{u \in V} |\zeta_{u}| > Q \} \leq 2 \mathbb{E} ||u||_{2}^{2} \max_{u \in V} |\zeta_{u}| \mathbf{1} \{ \max_{u \in V} |\zeta_{u}| > Q \} \leq 2 \mathbb{E} ||u||_{2}^{2} \max_{u \in V} |\zeta_{u}| \mathbf{1} \{ \max_{u \in V} |\zeta_{u}| > Q \} \leq 2 \mathbb{E} ||u||_{2}^{2} \max_{u \in V} |\zeta_{u}| \mathbf{1} \{ \max_{u \in V} |\zeta_{u}| > Q \} \leq 2 \mathbb{E} ||u||_{2}^{2} \max_{u \in V} |\zeta_{u}| \mathbf{1} \{ \max_{u \in V} |\zeta_{u}| > Q \} \leq 2 \mathbb{E} ||u||_{2}^{2} \max_{u \in V} |\zeta_{u}| \mathbf{1} \{ \max_{u \in V} |\zeta_{u}| > Q \} \leq 2 \mathbb{E} ||u||_{2}^{2} \max_{u \in V} |\zeta_{u}| \mathbf{1} \{ \max_{u \in V} |\zeta_{u}| > Q \} \leq 2 \mathbb{E} ||u||_{2}^{2} \max_{u \in V} |\zeta_{u}| \mathbf{1} \{ \max_{u \in V} |\zeta_{u}| > Q \} \leq 2 \mathbb{E} ||u||_{2}^{2} \max_{u \in V} ||u$$

$$\leqslant \left\|T\right\|^{2} \mathbb{E}\left\|u\right\|_{2}^{2} Q+\left\|T\right\|^{2} \left(\mathbb{E}\left\|v\right\|_{2}^{4}\right)^{1/2} \left(\mathbb{E}\max_{u\in V}\left|\zeta_{u}\right|^{2} \mathbf{1}\{\max_{u\in V}\left|\zeta_{u}\right|>Q\}\right)^{1/2} \leqslant$$

$$\leqslant \left\|T\right\|^{2} \mathbb{E}\left\|u\right\|_{2}^{2} Q+\left\|T\right\|^{2} \left(\mathbb{E}\left\|v\right\|_{2}^{4}\right)^{1/2} \left(\sum_{u \in V} \mathbb{E}\left|\zeta_{u}\right|^{2} \mathbf{1}\left\{\max_{u \in V}\left|\zeta_{u}\right| > Q\right\}\right)^{1/2} \leqslant$$

$$\leqslant \|T\|^2 \, \mathbb{E} \, \|u\|_2^2 \, Q + \|T\|^2 \, \left(\mathbb{E} \, \|v\|_2^4 \right)^{1/2} \left(\sum_{u \in V} \left(C \exp\left(\frac{-\|t\|^2 \, Q^2}{2} \right) + CQ \exp\left(\frac{-\|t\|^2 \, Q}{\sqrt{2} \, \|T\| \, m(u)} \right) \right) \right)^{1/2} \leqslant$$

$$\leqslant \|T\|^2 \, \mathbb{E} \, \|u\|_2^2 \, Q + \|T\|^2 \, \left(\mathbb{E} \, \|v\|_2^4 \right)^{1/2} \left(NC \exp\left(\frac{-\|t\|^2 \, Q^2}{2} \right) + CQM(q) \exp\left(-\frac{\|t\| \, Q/(\sqrt{2} \, \|T\|) - q}{m_V} \right) \right)^{1/2}$$
 Przyjmując teraz $Q = \frac{1}{\|v\|} \left(\frac{\sqrt{2}}{\|t\|^2} \sqrt{\ln(NK)} + \frac{\sqrt{2}\|T\|}{\|t\|} m_V \ln(M(q)K) \right) + \frac{\sqrt{2}q\|T\|}{\|t\|}$ dostajemy tezę. \square

 $Dowód\ lematu\ 7.$ Oznaczmy przez $C'=\max\{1,C_2\}.$ Zauważmy, że z faktu istnienia stałej C_2 wynika

$$\int_{S} \lambda \sigma^{2} d\mu \leqslant \int_{S} \frac{\lambda^{2} \sigma^{4}}{\lambda \sigma^{2}} d\mu \leqslant C_{2} \int_{S} \frac{\lambda^{4} \sigma^{3}}{\lambda \sigma^{2}} d\mu = C_{2} \int_{S} \lambda^{3} \sigma d\mu \leqslant C_{2} \int_{S} \lambda^{2} \sigma d\mu.$$

Przypomnijmy, że w naszym modelu (16) mamy, że $X=\theta+\epsilon\sigma\eta$, a stąd $X^2=\theta^2+\epsilon^2\sigma^2\eta^2+2\epsilon\theta\sigma\eta$.

$$\mathbb{E}_{\theta} \left\| \hat{\theta} - \theta \right\|^{2} = \mathbb{E}_{\theta} \left[\int_{S} (\lambda(X)X - \theta)^{2} d\mu \right] =$$

$$= \mathbb{E}_{\theta} \left[\int_{S} \lambda^{2}(X)X^{2} d\mu + \int_{S} \theta^{2} d\mu - 2 \int_{S} \lambda(X)X\theta d\mu \right] =$$

$$= \mathbb{E}_{\theta} \left[\int_{S} \lambda^{2}(X) \left(\theta^{2} + \epsilon^{2}\sigma^{2}\eta^{2} + 2\epsilon\theta\sigma\eta \right) d\mu + \int_{S} \theta^{2} d\mu - 2 \int_{S} \lambda(X)\theta \left(\theta + \epsilon\sigma\eta \right) d\mu \right] =$$

$$= \mathbb{E}_{\theta} \left[\int_{S} (1 - \lambda(X))^{2}\theta^{2} d\mu - 2\epsilon \int_{S} (1 - \lambda(X))\theta\lambda(X)\sigma\eta d\mu +$$

$$+ \epsilon^{2} \int_{S} \lambda^{2}(X)\sigma^{2}(\eta^{2} - 1) d\mu + \epsilon^{2} \int_{S} \lambda^{2}(X)\sigma^{2} d\mu \right] \leqslant$$

$$\leqslant \mathbb{E}_{\theta} C' \Psi(\lambda, \theta) - 2\epsilon \mathbb{E}_{\theta} \int_{S} (1 - \lambda(X))\theta\lambda(X)\sigma\eta d\mu + \epsilon^{2} \mathbb{E}_{\theta} \int_{S} \lambda^{2}(X)\sigma^{2}(\eta^{2} - 1) d\mu.$$

Następnie korzystając z pierwszego z lematów z K=S oszacujemy wyrażenie $\epsilon \mathbb{E}_{\theta} \left| \int_S (1-\lambda(X)) \theta \lambda(X) \sigma \eta d\mu \right|.$

$$\begin{split} \epsilon \mathbb{E}_{\theta} \left| \int_{S} (1 - \lambda(X)) \theta \lambda(X) \sigma \eta d\mu \right| \leqslant \\ \leqslant \epsilon \left\| T \right\| \sqrt{2 \ln(NS)} \mathbb{E}_{\theta} \left(\int_{S} (1 - \lambda(X))^{2} \theta^{2} \lambda^{2}(X) \sigma^{2} d\mu \right)^{1/2} + \\ + 2\epsilon \left\| T \right\| \sqrt{\ln(NS)} S^{-1/2} \left(\mathbb{E}_{\theta} \int_{S} (1 - \lambda(X))^{2} \theta^{2} \lambda^{2}(X) \sigma^{2} d\mu \right)^{1/2} \leqslant \\ \leqslant \epsilon \left\| T \right\| \sqrt{2 \ln(NS)} \mathbb{E}_{\theta} \left\| \sigma^{2} \lambda^{2}(X) \right\|_{\infty} \left(\int_{S} (1 - \lambda(X))^{2} \theta^{2} d\mu \right)^{1/2} + \\ + 2\epsilon \left\| T \right\| \sqrt{\ln(NS)} S^{-1/2} \max_{\lambda \in \Lambda} \left\| \sigma^{2} \lambda^{2}(X) \right\|_{\infty} \left(\mathbb{E}_{\theta} \int_{S} (1 - \lambda(X))^{2} \theta^{2} d\mu \right)^{1/2}. \\ \leqslant \frac{1}{2C'} \epsilon^{2} \left\| T \right\|^{2} B \ln(NS) \mathbb{E}_{\theta} \left\| \sigma^{2} \lambda^{2}(X) \right\|_{\infty} + B^{-1} C' \mathbb{E}_{\theta} \int_{S} (1 - \lambda(X))^{2} \theta^{2} d\mu + \\ + \epsilon^{2} \frac{1}{C'} \left\| T \right\|^{2} B \ln(NS) \frac{\max_{\lambda \in \Lambda} \left\| \sigma^{2} \lambda^{2}(X) \right\|_{\infty}}{S} + B^{-1} C' \mathbb{E}_{\theta} \int_{S} (1 - \lambda(X))^{2} \theta^{2} d\mu, \end{split}$$

gdzie korzystaliśmy z nierówności $2ab \leqslant C'B^{-1}a^2 + BC'^{-1}b^2$ zachodzącej dla dowolnego B>0.

Ponownie możemy zauważyć, że skoro $S = \frac{\max_{\lambda \in \Lambda} \left\| \sigma^2 \lambda^2(X) \right\|_{\infty}}{\min_{\lambda \in \Lambda} \left\| \sigma^2 \lambda^2(X) \right\|_{\infty}}$ zatem $\frac{\max_{\lambda \in \Lambda} \left\| \sigma^2 \lambda^2(X) \right\|_{\infty}}{S} = \min_{\lambda \in \Lambda} \left\| \sigma^2 \lambda^2(X) \right\|_{\infty}$, a stąd powyższe wyrażenie redukuje się do postaci

$$2B^{-1}C'\mathbb{E}_{\theta} \int_{S} (1-\lambda(X))^{2}\theta^{2}d\mu + \frac{1}{2C'}\epsilon^{2} \|T\|^{2} B \ln(NS)\mathbb{E}_{\theta} \|\sigma^{2}\lambda^{2}(X)\|_{\infty} + \epsilon^{2}B \frac{1}{C'} \|T\|^{2} \ln(NS) \min_{\lambda \in \Lambda} \|\sigma^{2}\lambda^{2}(X)\|_{\infty}$$

$$\leq 2B^{-1}C'\mathbb{E}_{\theta} \int_{S} (1-\lambda(X))^{2}\theta^{2}d\mu + \frac{3}{2C'}B \|T\|^{2} \mathbb{E}_{\theta}\Delta^{\epsilon}[\lambda(X)].$$

Następnie będziemy szacować drugie z wyrażeń, czyli $\epsilon^2 \mathbb{E}_{\theta} \left| \int_S \lambda^2(X) \sigma^2(\eta^2 - 1) d\mu \right|$ korzystając z lematu 6. Zauważmy na początek, że

$$m(v) = \frac{\|v\|_{\infty}}{\|v\|_2} \leqslant \rho(\lambda),$$

a stąd $m_V \leqslant \rho$ oraz $M(1) \leqslant M$ i możemy szacować wyrażenie $\sqrt{\ln(NS)} + m_V \ln(M(1)S)$ przez $\sqrt{2L_\Lambda}$. Zachodzi zatem

$$\begin{split} \epsilon^2 \mathbb{E}_{\theta} \left| \int_{S} \lambda^2(X) \sigma^2(\eta^2 - 1) d\mu \right| \leqslant \\ \leqslant \epsilon^2 D \sqrt{C_2} \left\| T \right\|^2 \sqrt{2L_{\Lambda}} \mathbb{E}_{\theta} \left(\int_{S} \lambda^4(X) \sigma^3 d\mu \right)^{1/2} + \frac{\epsilon^2 D \sqrt{C_2} \left\| T \right\|^2 \sqrt{2L_{\Lambda}}}{\sqrt{S}} \left(\mathbb{E}_{\theta} \int_{S} \lambda^4(X) \sigma^3 \mu \right)^{1/2}. \end{split}$$

Analogicznie do poprzednich rozważań zachodzi

$$S^{-1}\mathbb{E}_{\theta} \int_{S} \sigma^{3} \lambda^{4}(X) d\mu \leqslant$$

$$\leqslant \mathbb{E}_{\theta} \|\sigma^{2} \lambda^{2}(X)\|_{\infty} \mathbb{E}_{\theta} \int_{S} \sigma \lambda^{2}(X) d\mu.$$

Dostajemy stąd następujące oszacowanie

$$\begin{split} &\epsilon^2 D \sqrt{C_2} \, \|T\|^2 \, \sqrt{2L_\Lambda} \mathbb{E}_\theta \left(\int_S \lambda^4(X) \sigma^3 d\mu \right)^{1/2} + \frac{\epsilon^2 D \sqrt{C_2} \, \|T\|^2 \, \sqrt{2L_\Lambda}}{\sqrt{S}} \left(\mathbb{E}_\theta \int_S \lambda^4(X) \sigma^3 \mu \right)^{1/2} \leqslant \\ &\leqslant \epsilon^2 D \sqrt{C_2} \, \|T\|^2 \, \sqrt{2L_\Lambda} \mathbb{E}_\theta \left(\int_S \lambda^4(X) \sigma^3 d\mu \right)^{1/2} + \epsilon^2 D \sqrt{C_2} \, \|T\|^2 \, \sqrt{2L_\Lambda} \left(\mathbb{E}_\theta \, \left\| \sigma^2 \lambda^2(X) \right\|_\infty \, \mathbb{E}_\theta \int_S \sigma \lambda^2(X) d\mu \right)^{1/2} \\ &\leqslant \mathbb{E}_\theta \frac{\epsilon^2 B D^2 C_2 \, \|T\|^4 \, L_\Lambda}{4C'} \, \left\| \sigma^2 \lambda^2(X) \right\|_\infty + 2\epsilon^2 B^{-1} C' \, \|T\|^2 \, \mathbb{E}_\theta \int_S \sigma \lambda^2(X) d\mu + \\ &+ \mathbb{E}_\theta \frac{\epsilon^2 B D^2 C_2 \, \|T\|^4 \, L_\Lambda}{4C'} \, \left\| \sigma^2 \lambda^2(X) \right\|_\infty + 2\epsilon^2 B^{-1} C' \, \|T\|^2 \, \mathbb{E}_\theta \int_S \sigma \lambda^2(X) d\mu = \\ &= 4\epsilon^2 B^{-1} C' \, \|T\|^2 \, \mathbb{E}_\theta \int_S \sigma \lambda^2(X) d\mu + \frac{\epsilon^2 B D^2 C_2 \, \|T\|^2}{2C'} \mathbb{E}_\theta L_\Lambda \, \left\| \sigma^2 \lambda^2(X) \right\|_\infty \leqslant \\ &\leqslant 4\epsilon^2 B^{-1} C' \, \|T\|^2 \, \mathbb{E}_\theta \int_S \sigma \lambda^2(X) d\mu + \frac{B D^2 C_2 \, \|T\|^2}{2C'} \mathbb{E}_\theta \Delta^\epsilon[\lambda(X)]. \end{split}$$

Łącząc te oszacowania dostajemy tezę lematu.

Literatura

[1] P. Alquier, E. Gautier, G. Stoltz, *Inverse Problems and High-Dimensional Estimation* Springer-Verlag, 2011, wydanie zbiorowe,

- [2] A. Barron, L. Birge, P. Massart, Risk bounds for model selection via penalization, Probab. Theory Relat. Fields, 113, 1999, pp. 301–413,
- [3] M. Beśka, Wykład monograficzny. Dodatek,
- [4] L. Birge, Model selection via testing: an alternative to (penalized) maximum likelihood estimators, Ann. I. H. Poincaré, PR 42, 2006, pp. 273–325,

- [5] L. Birge, Statistical estimation with model selection, arXiv, 2006, The Brouwer Lecture, 2005.
- [6] N. Bissantz, T. Hohange, A. Munk, F. Ruymgaart, Convergence rates of general regularization methods for statistical inverse problems and applications, SIAM J. Numer. Anal., Vol. 45, No. 6, 2007, pp. 2610-2636,
- [7] L. Cavalier, *Inverse problems with non-compact operators*, Journal of Statistical Planning and Inference, 136, 2006, pp. 390–400,
- [8] L. Cavalier, G. K. Golubev, D. Picard, A.B. Tsybakov, Oracle inequalities for inverse problems, The Annals of Statistics, Vol. 30, No. 3, 2002, pp. 843–874,
- [9] W. Feller, An Introduction to Probability Theory and Its Applications. Volume 1, John Wiley and Sons, 1968,
- [10] C. Giraud, Introduction to High–Dimensional Statistics, CRC Press, 2015,
- [11] P. R. Halmos, What does the spectral theorem say?, The American Mathematical Monthly, Vol. 70, No. 3, 1963, pp. 241-247,
- [12] T. Hida, Brownian Motion, Springer, 1980,
- [13] B.Laurent, P. Massart, Adaptive estimation of a quadratic functional by model selection, The Annals of Statistics, Vol. 28, No. 5, 2000, pp. 1302–1338,
- [14] J.- M. Loubes, C. Ludena, Penalized estimators for non linear inverse problems, ESAIM: PS Vol. 14, 2010, pp. 173–191,
- [15] J.- M. Loubes, C. Ludena, Adaptive complexity regularization for linear inverse problems, Electronic Journal of Statistics, Vol. 2, 2008, pp. 661–677,
- [16] L. A. Lusternik, V. J. Sobolew, Elements of functional analysis, John Wiley and Sons, 1974,
- [17] B. A. Mair, F. H. Ruymgaart, Statistical inverse estimation in Hilbert scales, SIAM J. Appl. Math, Vol. 56, No. 5, 1996, pp. 1424–1444,
- [18] J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems, Springer, 2004,
- [19] C. Mitchell, S. van de Geer, General oracle inequalities for model selection, Electron. J. Statist, 3 (2009), pp. 176-204,
- [20] B. W. Silverman, Density Estimation for Statistics and Data Analysis, Springer-Science+Business Media, B.Y., 1986,
- [21] Z. Szkutnik, Statystyczne problemy odwrotne, notatki do wykładu,
- [22] M. E. Taylor, Partial Differential Equations II. Qualitative Studies of Linear Equations, Springer Science+Business Media, 2011,
- [23] N. N. Vakhania, V. I. Tarieladze, Probability Distributions on Banach Spaces, D. Reidel Publishing Company, 1987,
- [24] H. Lal Vasudeva, Elements of Hilbert Spaces and Operator Theory, Springer Verlag, 2017,
- [25] L. Wasserman, All of Nonparametric Statistics, Springer Science+Business Media, Inc., 2006,