$0.1 \quad 12.09.2019$

0.1.1 Некоторые особенные примеры

Пример

$$\frac{\lim_{x \to 0} (1+x)^{\frac{1}{x+x^2y}}}{\lim_{x \to 0} (1+x)^{\frac{1}{x}+x^2y}} = \lim_{\substack{x \to 0 \\ y \to 1}} ((1+x)^{\frac{1}{x}})^{\frac{1}{1+xy}} = e$$

Пример

$$\frac{f(x,y)}{f(x,y)} = \begin{cases} \frac{x^3 - xy^2}{x^2 + y^2} & , x^2 + 2^2 \neq 0 \\ a & , else \end{cases}$$

- 1) a = ?, т.ч. f непр
- 2) a=?, f непрю на прямых, проходящих через 0

Решение

1)
$$a = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^3 - xy^2}{x^2 + y^2} = \lim_{\substack{x \to 0 \\ y \to 0}} x \frac{x^2 - y^2}{x^2 + y^2} = 0$$

Замечание

$$x^n y^m \le (\sqrt{x^2 + y^2})^{n+m}$$
 и $|x| \le \sqrt{x^2 + y^2}$

0.1.2 Частные производные. Определения

$$f: \Omega \subset \mathbb{R}^3 \to \mathbb{R}, P_0 = (x_0, y_0, z_0)$$

Опр

f - диф. в точке P_0 , если $\exists A,B,C\in\mathbb{R}$, т.ч.

$$f(x_0, +\delta x, y_0 + \delta y, z + \delta z = f(x_0, y_0, z_0) + A\delta x + B\delta y + C\delta z + \overline{o}(\sqrt{(\delta x)^2 + (\delta y)^2 + (\delta z)^2})$$

Пусть $h = (\delta x, \delta y, \delta z)^T$

$$f(P_0 + h) = f(P_0) = \begin{pmatrix} A \\ B \\ C \end{pmatrix}^T h + \overline{o}(|h|)$$

$$df(x, y, z) = Adx + Bdy + Cdz$$

Дифференциал сопоставляет $(dx, dy, dz) \rightarrow Adx + Bdy + Cdz$

Опр

Частной произв. по перем. х в т. (x_0, y_0, z_0) называется предел (если \exists)

$$\lim_{t \to 0} \frac{f(x_0 + t, y_0, t_0) - f(x_0, y_0, z_0)}{t} = \frac{\partial f}{\partial x}(x_0, y_0, z_0) = f'_x(x_0, y_0, z_0)$$

0.1.3 Частные производные. Примеры

y_{TB}

f - дифф.
$$\Rightarrow$$
 \exists част. пр. и $A=\frac{\partial f}{\partial x}(x_0,y_0,z_0),\,B=\frac{\partial f}{\partial x},\,C=\frac{\partial f}{\partial x}$

Производные старшего порядка

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial x})$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} \neq (\text{не всегда}) \ \frac{\partial}{\partial y} (\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial y \partial x}$$

Частные производные сложной функции

$$w = f(x, y, z), \ \mathbb{R}^2 \to \mathbb{R}^3. \ (u, v) \to (\varphi(u, v), \psi(u, v), \chi(u, v))$$

$$w = f(\varphi(u, v), \psi(u, v), \chi(u, v))$$

$$\frac{\partial w}{\partial u} = \frac{\partial f}{\partial x}, \frac{\partial \varphi}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial \psi}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial \chi}{\partial u}$$

$$\frac{\partial w}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial \varphi}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial \psi}{\partial v} + \frac{\partial f}{\partial z} \frac{\partial \chi}{\partial v}$$

$$\left(\frac{\partial w}{\partial u}\right) = \left(\frac{\partial \varphi}{\partial u}, \frac{\partial \psi}{\partial v}, \frac{\partial \psi}{\partial v}, \frac{\partial \chi}{\partial v}\right) \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial \psi}{\partial z}, \frac{\partial \psi}{\partial z}, \frac{\partial \chi}{\partial z}\right)$$

Пример

$$\frac{\partial^2 w}{\partial u \partial v} = \frac{\partial f}{\partial x} \frac{\partial^2 \varphi}{\partial u \partial v} + (\frac{\partial^2 f}{\partial x^2} \frac{\partial u}{\partial v} + \frac{\partial^2 f}{\partial x \partial y} \frac{\partial \psi}{\partial v} + \frac{\partial^2 f}{\partial x \partial z} \frac{\partial \chi}{\partial v}) \frac{\partial \varphi}{\partial u} + \dots$$

Пример

$$F = f(x, xy, xyz) = f(u, v, w)$$

$$\frac{\partial F}{\partial x} = \frac{\partial f}{\partial u} 1 + \frac{\partial f}{\partial v} y + \frac{\partial f}{\partial w} yz$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial u} + y \frac{\partial}{\partial v} + uz \frac{\partial}{\partial w}$$

$$\frac{\partial^2 F}{\partial x^2} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial u}) + \frac{\partial}{\partial x} (\frac{\partial f}{\partial v}) y + \frac{\partial f}{\partial v} \frac{\partial}{\partial x} (y) + \frac{\partial}{\partial x} (\frac{\partial f}{\partial w}) yz + \frac{\partial f}{\partial w} \frac{\partial}{\partial x} (yz)$$

$$\frac{\partial}{\partial x}(\frac{\partial f}{\partial u}) = \frac{\partial^2 f}{\partial u^2} + y \frac{\partial^2 f}{\partial u \partial v} + yz \frac{\partial^2 f}{\partial u \partial w} =$$

$$= \frac{\partial^2 f}{\partial u^2} + y \frac{\partial^2 f}{\partial v^2} + (yz)^2 \frac{\partial^2 f}{\partial w^2} + zy \frac{\partial^2 f}{\partial u \partial v} + 2y^2 z \frac{\partial^2 f}{\partial v \partial w} + 2yz \frac{\partial^2 f}{\partial u \partial w}$$

Пример

$$\frac{\partial u}{\partial x} = x^y$$
, найти $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial y^2}$, $\frac{\partial^2 u}{\partial x \partial y}$
$$\frac{\partial u}{\partial x} = yx^{y-1}, \quad \frac{d^2 u}{\partial x^2} = y(y-1)x^{y-2}$$

$$\frac{\partial u}{\partial y} = \ln(x)x^y, \quad \frac{\partial^2 y}{\partial y^2} = \ln^2(x)x^y$$

$$\frac{\partial^2 u}{\partial x \partial y} = x^{y-1} + y\ln(x)x^{y-1}$$