

Tumbling with Tornadoes:

A Tornado Simulation Project DAV 5300

Content

- Tornado Introduction
- EDA
- Correlation Analysis
- Logistic Regression & Random Forest
- Simulation
- Probabilistic Simulation
- Economic Loss Model
- Conclusion

Tornado Introduction

Probability in Weather Simulations:

- Weather is very complex
 - Severe weather is harder to model, especially in the short term
- Data and Observations are the keys to making simulations
 - The calculations and constantly evolving

About Tornadoes:

- Narrow, violently rotating column of air that extends from a thunderstorm to the ground
- Australia, Europe, Africa, Asia, and South America
- Form from two collisions of air masses
 - Warm moist air and dry cool air
- About 1,200 tornadoes hit the US annually

Dataset Introduction:

- From the NOAA and the NCDC
- 60k+ rows, 13 columns from 1950 to 2015

EDA

Correlation Analysis

Strong Correlation

- Injuries and Fatalities
- Injuries and Losses
- Fatalities and Losses

Moderate Correlation

- Length and Magnitude
- Width and Magnitude
- Length and Width

Weak Correlation

- Length and Fatalities
- Length and Injuries
- Length and Losses
- Width and Fatalities
- Width and Injuries
- Width and Losses
- Fatalities and Magnitude
- Injuries and Magnitude
- Losses and Magnitude

Logistic Regression & Random Forest

Logistic Regression	precision	recall	f1-score	support
0	0.72	0.96	0.83	4541
1	0.47	0.28	0.35	2060
2	0.26	0.04	0.06	590
3	0.53	0.05	0.09	172
4	0.00	0.00	0.00	38
.5	0.00	0.00	0.00	4
accuracy			0.67	7405
macro avg	0.33	0.22	0.22	7405
weighted avg	0.61	0.67	0.61	7405
Random Forest	precision	recall	f1-score	support
Random Forest	0.80	0.89	0.84	4541
1	0.52	0.53	0.52	2060
1 2 3 4 5	0.34	0.09	0.14	590
3	0.52	0.19	0.28	172
4	0.33	0.05	0.09	38
5	0.00	0.00	0.00	4
accuracy			0.71	7405
macro avg	0.42	0.29	0.31	7405
weighted avg		0.71	0.68	7405

Precision: Percentage of correct predictions Total Positive / (Total Positive + False Positive)

Recall: Percentage of positive instances Total Positive / (Total Positive + False Negatives)

F1: Percentage of correct positive prediction 2*(Recall * Precision) / (Recall + Precision)

Support: Number of occurrences per category in a dataset

Mathematical Model

Some physics background:

- Tornadoes are rotating columns of air
 - Use the laws of circular motion to think about this
- Equation for angular velocity is $\omega = v_r/r$
 - Radial velocity ranges for F-scale ranges:
 - F0: 0 73 mph
 - F1: 74 112 mph
 - F2: 113 157 mph
 - F3: 158 206 mph
 - F4: 207 260 mph
 - F5: > 261 mph

A =

B =

			î		ı
ω ₁₁	ω ₁₂	ω ₁₃		ω _{1n}	← v _r
ω ₂₁	ω ₂₂	ω ₂₃		ω_{2n}	
ω_{n1}	ω_{n2}	ω_{n3}		ω_{nn}	
				1	

r ₁₁	 r _{1n}
r ₂₁	 r _{2n}
r _{n1}	 r _{nn}

Mathematical Model

Probabilistic Simulation

F1 Tornadoes: Angular Velocity vs. Simulated Radius from Center of Vortex

Probabilistic Simulation

F3 Tornadoes: Angular Velocity vs. Simulated Radius from Center of Vortex

Probabilistic Simulation

Economic Loss Model

Model Baseline

Baseline RMSE: 22.3109329267541

Baseline R2: -0.003842043891185032

Linear Regression

Linear Reg 1 - RMSE: 18.495819925158944 Linear Reg 1 - R2: 0.31011437291787824

Linear Regression/Lasso Regularization

Linear Reg 2 - RMSE: 18.37598455888654 Linear Reg 2 - R2: 0.31902502157457124

Next Steps / Roadmap

- Exploring the relationship between angular velocity, magnitude, and radius more deeply
- Investigating creating simulations using injuries, fatalities, and losses attributes

Sources

- https://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
- nssl.noaa.gov/education/svrwx101/tornadoes/
- nssl.noaa.gov/education/svrwx101/tornadoes/
- https://www.nssl.noaa.gov/research/tornadoes/
- https://www.nssl.noaa.gov/research/tornadoes/#:~:text=The%20U.S.%20typically%20has%20more,warnings%20to%20help%20save%20lives.
- https://journals.ametsoc.org/view/journals/wefo/33/4/waf-d-17-0170_1.xml