BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

199 40 765.7

Anmeldetag:

27. August 1999

Anmelder/Inhaber:

BASF Aktiengesellschaft, Ludwigshafen/DE

Bezeichnung:

Corynebacterium Glutamicum-Gene die Proteine

codieren, die an der Membransynthese und am

Membrantransport beteiligt sind

IPC:

C 07 K, C 12 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 4. Juli 2002

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

4/1

CERTIFIED COPY OF PRIORITY DOCUMENT

BEST AVAILABLE COPY

A 9161 06/00 EDV-L CORYNEBACTERIUM GLUTAMICUM-GENE, DIE PROTEINE CODIEREN, DIE AN DER MEMBRANSYNTHESE UND AM MEMBRANTRANSPORT BETEILIGT SIND

5 Hintergrund der Erfindung

Bestimmte Produkte und Nebenprodukte von natürlich-vorkommenden Stoffwechselprozessen in Zellen werden in vielen Industriezweigen verwendet, einschließlich der Nahrungsmittel-, Futtermittel-,

- 10 Kosmetik- und pharmazeutischen Industrie. Diese Moleküle, die gemeinsam als "Feinchemikalien" bezeichnet werden, umfassen organische Säuren, sowohl proteinogene als auch nicht-proteinogene Aminosäuren, Nukleotide und Nukleoside, Lipide und Fettsäuren, Diole, Kohlehydrate, aromatische Verbindungen, Vitamine und Co-
- 15 faktoren sowie Enzyme. Ihre Produktion erfolgt am besten mittels Anzucht von Bakterien im Großmaßstab, die entwickelt wurden, um große Mengen von einem oder mehreren Molekülen zu produzieren und sezernieren. Ein für diesen Zweck besonders geeigneter Organismus ist Corynebacterium glutamicum, ein gram-positives, nicht-patho-
- 20 genes Bakterium. Über Stammselektion ist eine Reihe von Mutantenstämmen entwickelt worden, die ein Sortiment wünschenswerter Verbindungen produzieren. Die Auswahl von Stämmen, die hinsichtlich der Produktion eines bestimmten Moleküls verbessert sind, ist jedoch ein zeitaufwendiges und schwieriges Verfahren.

25 Zusammenfassung der Erfindung

Diese Erfindung stellt neuartigé Nukleinsäuremoleküle bereit, die sich zur Identifizierung oder Klassifizierung von *Corynebacterium*

- 30 glutamicum oder verwandten Bakterienarten verwenden lassen. C. glutamicum ist ein gram-positives, aerobes Bakterium, das in der Industrie für die Produktion im Großmaßstab einer Reihe von Feinchemikalien, und auch zum Abbau von Kohlenwasserstoffen (bspw. beim Überlaufen von Rohöl) und zur Oxidation von Terpenoiden ge-
- 35 meinhin verwendet wird. Die Nukleinsäuremoleküle können daher zum Identifizieren von Mikroorganismen eingesetzt werden, die sich zur Produktion von Feinchemikalien, bspw. durch Fermentationsverfahren, verwenden lassen. C. glutamicum selbst ist zwar nicht-pathogen, jedoch ist es mit anderen Corynebacterium-Arten, wie Co-
- 40 rynebacterium diphtheriae (dem Erreger der Diphtherie) verwandt, die bedeutende Pathogene beim Menschen sind. Die Fähigkeit, das Vorhandensein von Corynebacterium-Arten zu identifizieren, kann daher auch eine signifikante klinische Bedeutung haben, z.B. bei diagnostischen Anwendungen. Diese Nukleinsäuremoleküle können zu-
- 45 dem als Bezugspunkte zur Kartierung des C. glutamicum-Genoms oder von Genomen verwandter Organismen dienen.

Diese neuen Nukleinsäuremoleküle codieren Proteine, die hier als Membrankonstruktions- und Membrantransport-(MCT)-Proteine bezeichnet werden. Diese MCT-Proteine können bspw. eine Funktion ausüben, die am Stoffwechsel (z.B. Biosynthese oder Abbau) von 5 Verbindungen beteiligt ist, die für die Membranbiosynthese notwendig sind, oder den Membrantransport von einer oder mehreren Verbindungen in die Zelle oder aus der Zelle unterstützen. Aufgrund der Verfügbarkeit von Klonierungsvektoren zur Verwendung in Corynebacterium glutamicum, wie bspw. offenbart in Sinskey 10 et al., US-Patent Nr. 4 649 119, und Techniken zur genetischen Manipulation von C. glutamicum und den verwandten Brevibacterium-Arten (z.B. Lactofermentum) Yoshihama et al., J. Bacteriol. 162 (1985) 591-597; Katsumata et al., J. Bacteriol. 159 (1984) 306-311; und Santamaria et al. J. Gen. Microbiol. 130 (1984) 15 2237-2246), lassen sich die erfindungsgemäßen Nukleinsäuremoleküle zur genetischen Manipulation dieses Organismus verwenden, um es als Produzenten von einer oder mehreren Feinchemikalien besser und effizienter zu machen. Die verbesserte Produktion oder Effizienz der Produktion einer Feinchemikalie kann auf einer direkten 20 Wirkung der Manipulation eines erfindungsgemäßen Gens oder auf

einer indirekten Wirkung dieser Manipulation beruhen.

Es gibt eine Reihe von Mechanismen, durch die die Veränderung eines erfindungsgemäßen MCT-Proteins die Ausbeute, Produktion und/ 25 oder die Effizienz der Produktion einer Feinchemikalie aus einem C. glutamicum-Stamm, der ein solches verändertes Protein enthält, direkt beeinflussen kann. Diese MCT-Proteine, die am Export der Feinchemikalien-Moleküle aus der Zelle beteiligt sind, können eine größere Anzahl oder höhere Aktivität aufweisen, so daß grö-30 ßere Mengen dieser Verbindungen in das extrazelluläre Medium sezerniert werden, aus dem sie leichter gewonnen werden. Diese MCT-Proteine, die am Import der Nährstoffe beteiligt sind, die für die Biosynthese von einer oder mehreren Feinchemikalien (z.B. Phosphat, Sulfat, Stickstoffverbindungen usw.) notwendig sind, 35 können eine größere Anzahl oder höhere Aktivität aufweisen, so daß diese Vorstufen, Cofaktoren oder Zwischenverbindungen in der Zelle in höherer Konzentration vorliegen. Zudem sind Fettsäuren und Lipide selbst wünschenswerte Feinchemikalien; durch Optimieren der Aktivität oder Vergrößern der Anzahl von einem oder meh-40 reren erfindungsgemäßen MCT-Proteinen, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Beeinträchtigen der Aktivität von einem oder mehreren MCT-Proteinen, die am Abbau dieser Verbindungen beteiligt sind, kann man die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäuren und Li-**45** pidmolekülen aus *C. glutamic*um steigern.

Die Mutagenese von einem oder mehreren erfindungsgemäßen MCT-Genen kann auch MCT-Proteine mit veränderten Aktivitäten hervorbringen, die die Produktion von einer oder mehreren gewünschten Feinchemikalien aus C. glutamicum indirekt beeinträchtigen. Bspw.

- 5 können erfindungsgemäße MCT-Proteine, die am Export von Abfallprodukten beteiligt sind, eine größere Zahl oder höhere Aktivität
 aufweisen, so daß die normalen Stoffwechselabfälle der Zelle
 (aufgrund der Überproduktion der gewünschten Feinchemikalie möglicherweise in höherer Quantität) effizient exportiert werden,
- 10 bevor sie die Nukleotide und Proteine in der Zelle beschädigen können (was die Lebensfähigkeit der Zelle herabsetzen würde) oder mit den Feinchemikalien-Biosynthesewegen wechselwirken können (was die Ausbeute, Produktion oder Effizienz der Produktion einer gewünschten Feinchemikalien senken würde). Die relativ großen in-
- 15 trazellulären Mengen der gewünschten Feinchemikalie können selbst für die Zelle toxisch sein, bspw. kann man durch Vergrößern der Anzahl an Transportern, die diese Verbindungen aus der Zelle exportieren können, die Lebensfähigkeit der Zelle in Kultur steigern, was wiederum bewirkt, daß eine größere Anzahl Zellen in der
- 20 Kultur die gewünschte Feinchemikalie produziert. Die erfindungsgemäßen MCT-Proteine können auch so manipuliert werden, daß die relativen Mengen der unterschiedlichen Lipid- und Fettsäuremoleküle produziert werden. Dies kann eine erhebliche Auswirkung auf die Lipidzusammensetzung der Zellmembran haben. Da jeder Lipidtyp
- 25 unterschiedliche physikalische Eigenschaften aufweist, kann eine Veränderung der Lipidzusammensetzung einer Membran die Membranfluidität signifikant verändern. Änderungen der Membranfluidität können den Transport der Moleküle über die Membran sowie die Integrität der Zelle beeinflussen, was jeweils eine erhebliche Aus-
- 30 wirkung auf die Produktion von Feinchemikalien aus C. glutamicum in großangelegten Fermenterkulturen hat.

Die Erfindung stellt neue Nukleinsäuremoleküle bereit, die Proteine codieren, die hier als MCT-Proteine bezeichnet werden und

- 35 bspw. am Metabolismus von Verbindungen, die für den Aufbau der Zellmembranen in *C. glutamicum* notwendig sind, oder am Transport von Molekülen über diese Membranen beteiligt sind. Das MCT-Protein ist in einer bevorzugten Ausführungsform am Metabolismus von Verbindungen, die für den Aufbau der Zellmembranen in *C. glutami*
- 40 cum nötig sind, oder am Transport von Molekülen über diese Membranen beteiligt. Beispiele für diese Proteine umfassen solche, die von den in Tabelle 1 angegebenen Genen codiert werden.
- Ein Aspekt der Erfindung betrifft folglich isolierte Nukleinsäu-45 remoleküle (bspw. cDNAs), umfassend eine Nukleotidsequenz, die ein MCT-Protein oder biologisch aktive Abschnitte davon codiert, sowie Nukleinsäurefragmente, die sich als Primer oder Hybridisie-

rungssonden zum Nachweisen oder zur Amplifikation von MCT-codierender Nukleinsäure (bspw. DNA oder mRNA) eignen. Bei besonders bevorzugten Ausführungsformen umfaßt das isolierte Nukleinsäuremolekül eine der in Anhang A aufgeführten Nukleotidsequenzen oder 5 den codierenden Bereich oder ein Komplement davon von einer dieser Nukleotidsequenzen. In anderen besonders bevorzugten Ausführungsformen umfaßt das erfindungsgemäße isolierte Nukleinsäuremolekül eine Nukleotidsequenz, die an eine in Anhang A angegebene Nukleotidsequenz oder einen Abschnitt davon hybridisiert oder 10 mindestens zu etwa 50%, vorzugsweise mindestens zu etwa 60%, stärker bevorzugt mindestens etwa 70%, 80% oder 90% und noch stärker bevorzugt mindestens etwa 95%, 96%, 97%, 98%, 99% oder noch homologer dazu ist. In anderen bevorzugten Ausführungsformen codiert das isolierte Nukleinsäuremolekül eine der in Anhang B 15 aufgeführten Aminosäuresequenzen. Die bevorzugten erfindungsgemäßen MCT-Proteine besitzen ebenfalls vorzugsweise mindestens eine der hier beschriebenen MCT-Aktivitäten.

Bei einer weiteren Ausführungsform codiert das isolierte Nuklein-20 säuremoleküle ein Protein oder einen Abschnitt davon, wobei das Protein oder sein Abschnitt eine Aminosäuresequenz enthält, die zu einer Aminsosäuresequenz in Anhang B hinreichend homolog ist, bspw. zu einer Aminsosäuresequenz in Anhang B derart hinreichend homolog ist, daß das Protein oder sein Abschnitt eine MCT-Aktivi-25 tät behält. Vorzugsweise kann das von dem Nukleinsäuremolekül codierte Protein oder der Abschnitt davon weiterhin die Fähigkeit behalten, am Metabolismus von Verbindungen teilzunehmen, die für den Aufbau der Zellmembranen von C. glutamicum oder den Transport von Molekülen über diese Membranen nötig sind. Bei einer Ausfüh-30 rungsform ist das von dem Nukleinsäuremolekül codierte Protein mindestens etwa 50%, vorzugsweise mindestens etwa 60% und stärker bevorzugt mindestens etwa 70%, 80% oder 90% und am stärksten bevorzugt mindestens etwa 95%, 96%, 97%, 98% oder 99% oder noch homologer zu einer Aminosäuresequenz in Anhang B (bspw. eine voll-35 ständige Aminosäuresequenz, ausgewählt aus den in Anhang B genannten Sequenzen). Bei einer weiteren bevorzugten Ausführungsform ist das Protein ein C. glutamicum-Vollängenprotein, das zu einer vollständigen Aminosäuresequenz in Anhang B (die von dem in Anhang A gezeigten offenen Leseraster codiert wird) im wesentli-40 chen homolog ist.

Bei einer weiteren bevorzugten Ausführungsform stammt das isolierte Nukleinsäuremolekül aus *C. glutamicum* und codiert ein Protein (z.B. ein MCT-Fusionsprotein), das eine zu einer der Aminosäuresequenzen in Anhang B zumindest etwa 50% oder stärker homologe biologisch aktive Domäne umfaßt, und am Metabolismus von Verbindungen, die für den Aufbau der Zellmembran nötig sind, und

verwendet.

am Transport von Molekülen über diese Membran beteiligt ist, oder eine oder mehrere der in Tabelle 1 angegebenen Aktivitäten aufweist und enthält ebenfalls heterologe Nukleinsäuresequenzen, die ein heterologes Polypeptid oder regulatorische Bereiche codieren.

Bei einer weiteren Ausführungsform ist das isolierte Nukleinsäuremolekül mindestens 15 Nukleotide lang und hybridisiert unter stringenten Bedingungen an ein Nukleinsäuremolekül, das eine Nukleotidsequenz aus Anhang A umfaßt. Das isolierte Nukleinsäure-10 molekül entspricht vorzugsweise einem natürlich vorkommenden Nukleinsäuremolekül. Die isolierte Nukleinsäure codiert stärker bevorzugt ein natürlich vorkommendes C. glutamicum-MCT-Protein oder einen biologisch aktiven Abschnitt davon.

15 Ein weiterer Aspekt der Erfindung betrifft Vektoren, bspw. rekombinante Expressionsvektoren, die die erfindungsgemäßen Nukleinsäuremoleküle enthalten, und Wirtszellen, in die diese Vektoren eingebracht worden sind. Bei einer Ausführungsform wird zur Herstellung eines MCT-Proteins eine Wirtszelle verwendet, die 20 in einem geeigneten Medium gezüchtet wird. Das MCT-Protein kann

dann aus dem Medium oder der Wirtszelle isoliert werden.

Ein weiterer Aspekt der Erfindung betrifft einen genetisch veränderten Mikroorganismus, bei dem ein MCT-Gen eingebracht oder ver-25 ändert worden ist. Das Genom des Mikroorganismus ist bei einer Ausführungsform durch Einbringen eines erfindungsgemäßen Nukleinsäuremoleküls verändert worden, das die MCT-Wildtyp- oder die mu4tierte MCT-Sequenz als Transgen codiert. Bei einer anderen Ausführungsform ist ein endogenes MCT-Gen im Genom des Mikroorga-30 nismus durch homologe Rekombination mit einem veränderten MCT-Gen verändert, z.B. funktionell disrumpiert, worden. Der Mikroorganismus gehört bei einer bevorzugten Ausführungsform zur Gattung Corynebacterium oder Brevibacterium, wobei Corynebacterium glutamicum besonders bevorzugt ist. Der Mikroorganismus wird in einer 35 bevorzugten Ausführungsform auch zur Herstellung einer gewünsch-

Ein weiterer Aspekt der Erfindung betrifft ein isoliertes MCT-40 Protein oder einen Abschnitt, bspw. einen biologisch aktiven Abschnitt davon. Das isolierte MCT-Protein oder sein Abschnitt kann in einer bevorzugten Ausführungsform am Metabolismus von Verbindungen, die für den Aufbau der Zellmembranen in C. glutamicum notwendig sind, oder am Transport von Molekülen über die Membra-45 nen beteiligt sein. Bei einer weiteren bevorzugten Ausführungsform ist das isolierte MCT-Protein oder ein Abschnitt davon hinreichend homolog zu einer Aminosäuresequenz von Anhang B, so daß

ten Verbindung, wie einer Aminosäure, besonders bevorzugt Lysin,

das Protein oder sein Abschnitt weiterhin am Metabolismus von Verbindungen, die für den Aufbau der Zellmembranen in *C. glutami-cum* notwendig sind, oder am Transport von Molekülen über die Membranen beteiligt sein kann.

Die Erfindung betrifft zudem ein isoliertes MCT-Proteinpräparat.
Das MCT-Protein umfaßt bei bevorzugten Ausführungsformen eine
Aminosäuresequenz aus Anhang B. Bei einer weiteren bevorzugten
Ausführungsform betrifft die Erfindung ein isoliertes Vollängenprotein, das zu einer vollständigen Aminosäuresequenz aus Anhang

- O protein, das zu einer vollstandigen Ammosdarebequend und B (welche von einem offenen Leseraster in Anhang A codiert wird) im wesentlichen homolog ist. Bei einer weiteren Ausführungsform ist das Protein mindestens zu etwa 50%, vorzugsweise mindestens zu etwa 60%, stärker bevorzugt mindestens etwa 70%, 80% oder 90%
- 15 und am stärksten bevorzugt mindestens etwa 95%, 96%, 97%, 98%, oder 99% oder noch homologer zu einer vollständigen Aminosäuresequenz aus Anhang B. Das isolierte MCT-Protein umfaßt bei anderen Ausführungsformen eine Aminosäuresequenz, die zu mindestens etwa 50% oder mehr zu einer der Aminosäuresequenzen aus Anhang B
- 20 homolog ist und am Metabolismus von Verbindungen, die für den Aufbau der Zellmembranen in *C. glutamicum* notwendig sind, oder am Transport von Molekülen über die Membranen beteiligt sein kann, oder eine oder mehrere der in Tabelle 1 angegebenen Aktivitäten hat.

Das isolierte MCT-Protein kann alternativ eine Aminosäuresequenz umfassen, die von einer Nukleotidsequenz codiert wird, welche mit einer Nukleotidsequenz aus Anhang B, bspw. unter stringenten Bedingungen, hybridisiert oder mindestens zu etwa 50%, vorzugsweise mindestens zu etwa 60%, stärker bevorzugt mindestens etwa 70%, 80% oder 90% und noch stärker bevorzugt mindestens etwa 95%, 96%, 97%, 98% oder 99% oder noch homologer dazu ist. Bevorzugte Formen der MCT-Proteine haben ebenfalls vorzugsweise eine oder mehrere der hier beschriebenen MCT-Bioaktivitäten.

Das MCT-Polypeptid oder ein biologisch aktiver Abschnitt davon kann mit einem Nicht-MCT-Polypeptid funktionsfähig verbunden werden, damit ein Fusionsprotein entsteht. Dieses Fusionsprotein hat bei bevorzugten Ausführungsformen eine andere Aktivität als das MCT-Protein allein und ergibt bei anderen bevorzugten Ausfüh-

rungsformen erhöhte Ausbeuten, eine erhöhte Produktion und/oder Effizienz der Produktion einer gewünschten Feinchemikalie aus C. glutamicum. Die Integration dieses Fusionsproteins in eine Wirtszelle moduliert bei besonders bevorzugten Ausführungsformen die

45 Produktion einer gewünschten Verbindung von der Zelle.

Stämmen ausgewählt.

7

Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zur Herstellung einer Feinchemikalie. Das Verfahren sieht die Anzucht einer Zelle vor, die einen Vektor enthält, der die Expression eines erfindungsgemäßen MCT-Nukleinsäuremoleküls bewirkt, so daß 5 eine Feinchemikalie produziert wird. Dieses Verfahren umfaßt bei einer bevorzugten Ausführungsform zudem den Schritt der Gewinnung einer Zelle, die einen solchen Vektor enthält, wobei die Zelle mit einem Vektor transfiziert ist, der die Expression einer MCT-Nukleinsäure bewirkt. Dieses Verfahren umfaßt bei einer weiteren bevorzugten Ausführungsform zudem den Schritt, bei dem die Feinchemikalie aus der Kultur gewonnen wird. Die Zelle gehört bei einer bevorzugten Ausführungsform zur Gattung Corynebacterium oder Brevibacterium oder wird aus den in Tabelle 3 angegebenen

15

Ein weiterer Aspekt der Erfindung betrifft Verfahren zur Modulation der Produktion eines Moleküls aus einem Mikroorganismus. Diese Verfahren umfassen das Zusammenbringen der Zelle mit einer Substanz, die die MCT-Proteinaktivität oder die MCT-Nukleinsäure-

- 20 Expression moduliert, so daß eine zellassoziierte Aktivität verglichen mit der gleichen Aktivität bei Fehlen der Substanz verändert wird. Die Zelle wird bei einer bevorzugten Ausführungsform hinsichtlich eines oder mehrerer C. glutamicum-Stoffwechselwege für Zellmembrankomponenten oder hinsichtlich des Transports von
- 25 Verbindungen über die Membranen moduliert, so daß die Ausbeuten oder die Produktionsrate einer gewünschten Feinchemikalie durch diesen Mikroorganismus verbessert werden. Die Substanz, die die MCT-Proteinaktivität moduliert, stimuliert bspw. die MCT-Proteinaktivität oder die MCT-Nukleinsäure-Expression. Beispiele von
- 30 Substanzen, die die MCT-Proteinaktivität oder die MCT-Nukleinsäureexpression stimulieren, umfassen kleine Moleküle, aktive MCTProteine und Nukleinsäuren, die MCT-Proteine codieren und in die
 Zelle eingebracht worden sind. Beispiele von Substanzen, die die
 MCT-Aktivität oder -Expression hemmen, umfassen kleine Moleküle
- 35 und Antisense-MCT-Nukleinsäuremoleküle.

Ein weiterer Aspekt der Erfindung betrifft Verfahren zur Modulation der Ausbeuten einer gewünschten Verbindung aus einer Zelle, umfassend das Einbringen eines MCT-Wildtyp- oder -Mutantengens in

- 40 eine Zelle, das entweder auf einem gesonderten Plasmid bleibt oder in das Genom der Wirtszelle integriert wird. Die Integration in das Genom kann zufallsgemäß oder durch homologe Rekombination erfolgen, so daß das native Gen durch die integrierte Kopie ersetzt wird, was die Produktion der gewünschten Verbindung aus der
- 45 zu modulierenden Zelle hervorruft. Diese Ausbeuten sind bei einer bevorzugten Ausführungsform erhöht. Bei einer weiteren bevorzugten Ausführungsform ist die Chemikalie eine Feinchemikalie, die

in einer besonders bevorzugten Ausführungsform eine Aminosäure ist. Diese Aminosäure ist in einer besonders bevorzugten Ausführungsform L-Lysin.

5 Eingehende Beschreibung der Erfindung

Die vorliegende Erfindung stellt MCT-Nukleinsäure- und -Proteinmoleküle bereit, die am Metabolismus von Verbindungen, die für den Aufbau der Zellmembranen in *C. glutamicum* notwendig sind,

- 10 oder am Transport von Molekülen über die Membranen beteiligt sein können. Die erfindungsgemäßen Moleküle lassen sich bei der Modulation der Produktion von Feinchemikalien von Mikroorganismen, wie C. glutamicum, verwenden, und zwar entweder direkt (z.B. wo die Überexpression oder Optimierung eines Fettsäurebiosynthe-
- 15 seproteins eine direkte Auswirkung auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure von modifiziertem C. glutamicum hat) oder durch eine mögliche indirekte Auswirkung, die trotzdem einen Anstieg der Ausbeute, Produktion und/oder Effizienz der Produktion der gewünschten Verbindung bewirkt (z.B.
- 20 wo die Modulation des Metabolismus der Zellmembrankomponenten Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der Zellmembran bewirkt, was wiederum die Produktion von einer oder mehreren Feinchemikalien beeinflußt). Die erfindungsgemäßen Aspekte werden nachstehend 25 weiter erläutert.

I. Feinchemikalien

Der Begriff "Feinchemikalie" ist im Fachgebiet bekannt und bein30 haltet Moleküle, die von einem Organismus produziert werden und
in verschiedenen Industriezweigen Anwendungen finden, wie bspw.,
jedoch nicht beschränkt auf die pharmazeutische Industrie, die
Landwirtschafts-, und Kosmetik-Industrie. Diese Verbindungen umfassen organische Säuren, wie Weinsäure, Itaconsäure und Diamino-

- pimelinsäure, sowohl proteinogene als auch nicht-proteinogene Aminosäuren, Purin- und Pyrimidinbasen, Nukleoside und Nukleotide (wie bspw. beschrieben in Kuninaka, A. (1996) Nucleotides and related compounds, S. 561-612, in Biotechnology Bd. 6, Rehm et al., Hrsg. VCH: Weinheim und den darin enthaltenen Zitaten), Lipide,
- 40 gesättigte und ungesättigte Fettsäuren (bspw. Arachidonsäure), Diole (bspw. Propandiol und Butandiol), Kohlenhydrate (bspw. Hyaluronsäure und Trehalose), aromatische Verbindungen (bspw. aromatische Amine, Vanillin und Indigo), Vitamine und Cofaktoren (wie beschrieben in Ullmann's Encyclopedia of Industrial
- 45 Chemistry, Bd. A27, "Vitamins", S. 443-613 (1996) VCH: Weinheim und den darin enthaltenen Zitaten; und Ong, A.S., Niki, E. und Packer, L. (1995) "Nutrition, Lipids, Health and Disease"

Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia and the Society for Free Radical Research - Asien, abgehalten am 1.-3. Sept. 1994 in Penang, Malysia, AOCS Press (1995)), Enzyme und sämtliche anderen 5 von Gutcho (1983) in Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 und den darin angegebenen Literaturstellen, beschriebenen Chemikalien. Der Metabolismus und die Verwendungen bestimmter Feinchemikalien sind nachstehend weiter erläutert.

10

Aminosäure-Metabolismus und Verwendungen

Die Aminosäuren umfassen die grundlegenden Struktureinheiten sämtlicher Proteine und sind somit für die normalen Zellfunktio-15 nen essentiell. Der Begriff "Aminosäure" ist im Fachgebiet bekannt. Die proteinogenen Aminosäuren, von denen es 20 Arten gibt, dienen als Struktureinheiten für Proteine, in denen sie über Peptidbindungen miteinander verknüpft sind, wohingegen die nichtproteinogenen Aminosäuren (von denen Hunderte bekannt sind) ge-20 wöhnlich nicht in Proteinen vorkommen (siehe Ullmann's Encyclopedia of Industrial Chemistry, Bd. A2, S. 57-97 VCH: Weinheim (1985)). Die Aminosäuren können in der D- oder L-Konfiguration vorliegen, obwohl L-Aminosäuren gewöhnlich der einzige Typ sind, den man in natürlich vorkommenden Proteinen vorfindet. Biosyn-25 these- und Abbauwege von jeder der 20 proteinogenen Aminosäuren sind sowohl bei prokaryotischen als auch eukaryotischen Zellen gut charakterisiert (siehe bspw. Stryer, L. Biochemistry, 3. Auflage, S. 578-590 (1988)). Die "essentiellen" Aminosäuren (Histidin, Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Threo-30 nin, Tryptophan und Valin), so bezeichnet, da sie aufgrund der Komplexität ihrer Biosynthesen mit der Ernährung aufgenommen werden müssen, werden durch einfache Biosyntheseswege in die übrigen 11 "nichtessentiellen" Aminosäuren (Alanin, Arginin, Asparagin, Aspartat, Cystein, Glutamat, Glutamin, Glycin, Prolin, Serin und 35 Tyrosin) umgewandelt. Höhere Tiere besitzen die Fähigkeit, einige dieser Aminosäuren zu synthetisieren, jedoch müssen die essentiellen Aminosäuren mit der Nahrung aufgenommen werden, damit eine normale Proteinsynthese stattfindet.

40 Abgesehen von ihrer Funktion bei der Proteinbiosynthese sind diese Aminosäuren interessante Chemikalien an sich, und man hat entdeckt, daß viele bei verschiedenen Anwendungen in der Nahrungsmittel-, Futter-, Chemie-, Kosmetik-, Landwirtschafts- und pharmazeutischen Industrie zum Einsatz kommen. Lysin ist nicht 45 nur für die Ernährung des Menschen eine wichtige Aminosäure, sondern auch für monogastrische Tiere, wie Geflügel und Schweine. Glutamat wird am häufigsten als Geschmacksadditiv (Mononatrium-

glutamat, MSG) sowie weithin in der Nahrungsmittelindustrie verwendet, wie auch Aspartat, Phenylalanin, Glycin und Cystein. Glycin, L-Methionin und Tryptophan werden sämtlich in der pharmazeutischen Industrie verwendet. Glutamin, Valin, Leucin, Isoleucin, 5 Histidin, Arginin, Prolin, Serin und Alanin werden in der pharmazeutischen Industrie und der Kosmetikindustrie verwendet. Threonin, Tryptophan und D-/L-Methionin sind weitverbreitete Futtermittelzusätze (Leuchtenberger, W. (1996) Amino acids - technical production and use, S. 466-502 in Rehm et al., (Hrsg.) Biotechno-10 logy Bd. 6, Kapitel 14a, VCH: Weinheim). Man hat entdeckt, daß sich diese Aminosäuren außerdem als Vorstufen für die Synthese von synthetischen Aminosäuren und Proteinen, wie N-Acetylcystein, S-Carboxymethyl-L-cystein, (S)-5-Hydroxytryptophan und anderen, in Ullmann's Encyclopedia of Industrial Chemistry, Bd. A2,

15 S. 57-97, VCH, Weinheim, 1985 beschriebenen Substanzen eignen.

Die Biosynthese dieser natürlichen Aminosäuren in Organismen, die sie produzieren können, bspw. Bakterien, ist gut charakterisiert worden (für einen Überblick der bakteriellen Aminosäure-Biosyn-

- 20 these und ihrer Regulation, s. Umbarger, H.E. (1978) Ann. Rev. Biochem. 47: 533 - 606). Glutamat wird durch reduktive Aminierung von $\alpha-\text{Ketoglutarat}$, einem Zwischenprodukt im Citronensäure-Zyklus, synthetisiert. Glutamin, Prolin und Arginin werden jeweils nacheinander aus Glutamat erzeugt. Die Biosynthese von Serin er-
- 25 folgt in einem Dreischritt-Verfahren und beginnt mit 3-Phosphoglycerat (einem Zwischenprodukt bei der Glykolyse), und ergibt nach Oxidations-, Transaminierungs- und Hydrolyseschritten diese Aminosäure. Cystein und Glycin werden jeweils aus Serin produziert, und zwar die erstere durch Kondensation von Homocystein
- 30 mit Serin, und die letztere durch Übertragung des Seitenketten-eta-Kohlenstoffatoms auf Tetrahydrofolat, in einer durch Serintranshydroxymethylase katalysierten Reaktion. Phenylalanin und Tyrosin werden aus den Vorstufen des Glycolyse- und Pentosephosphatweges, Erythrose-4-phosphat und Phosphoenolpyruvat in einem
- 35 9-Schritt-Biosyntheseweg synthetisiert, der sich nur in den letzten beiden Schritten nach der Synthese von Prephenat unterscheidet. Tryptophan wird ebenfalls aus diesen beiden Ausgangsmolekülen produziert, jedoch erfolgt dessen Synthese in einem 11-Schritt-Weg. Tyrosin läßt sich in einer durch Phenylalanin-
- 40 hydroxylase katalysierten Reaktion auch aus Phenylalanin herstellen. Alanin, Valin und Leucin sind jeweils Biosyntheseprodukte aus Pyruvat, dem Endprodukt der Glykolyse. Aspartat wird aus Oxalacetat, einem Zwischenprodukt des Citratzyklus, gebildet. Asparagin, Methionin, Threonin und Lysin werden jeweils durch Umwand-
- 45 lung von Aspartat produziert. Isoleucin wird aus Threonin gebildet. In einem komplexen 9-Schritt-Weg erfolgt die Bildung von

Histidin aus 5-Phosphoribosyl-1-pyrophosphat, einem aktivierten Zucker.

Aminosäuren, deren Menge den Proteinbiosynthesebedarf der Zelle 5 übersteigt, können nicht gespeichert werden, und werden stattdessen abgebaut, so daß Zwischenprodukte für die Haupt-Stoffwechselwege der Zelle bereitgestellt werden (für einen Überblick siehe Stryer, L., Biochemistry, 3. Aufl. Kap. 21 "Amino Acid Degradation and the Urea Cycle"; S 495-516 (1988)). Die Zelle ist 10 zwar in der Lage, ungewünschte Aminosäuren in nützliche Stoffwechsel-Zwischenprodukte umzuwandeln, jedoch ist die Aminosäureproduktion hinsichtlich der Energie, der Vorstufenmoleküle und der für ihre Synthese nötigen Enzyme aufwendig. Es überrascht daher nicht, daß die Aminosäure-Biosynthese durch Feedback-Hemmung 15 reguliert wird, wobei das Vorliegen einer bestimmten Aminosäure ihre eigene Produktion verlangsamt oder ganz beendet (für einen Überblick über den Rückkopplungs-Mechanismus bei Aminosäure-Biosynthesewegen, siehe Stryer, L., Biochemistry, 3. Aufl., Kap. 24, "Biosynthesis of Amino Acids and Heme", S. 575-600 (1988)). Der 20 Ausstoß einer bestimmten Aminosäure wird daher durch die Menge dieser Aminosäure in der Zelle eingeschränkt.

Vitamine, Cofaktoren und Nutrazeutika-Metabolismus sowie в. Verwendungen

25 Vitamine, Cofaktoren und Nutrazeutika umfassen eine weitere Gruppe von Molekülen. Höhere Tiere haben die Fähigkeit verloren, diese zu synthetisieren und müssen sie somit aufnehmen, obwohl sie leicht durch andere Organismen, wie Bakterien, synthetisiert 30 werden. Diese Moleküle sind entweder biologisch aktive Moleküle an sich oder Vorstufen von biologisch aktiven Substanzen, die als Elektronenträger oder Zwischenprodukte bei einer Reihe von Stoffwechselwegen dienen. Diese Verbindungen haben neben ihrem Nährwert auch einen signifikanten industriellen Wert als Farbstoffe, 35 Antioxidantien und Katalysatoren oder andere Verarbeitungs-Hilfsstoffe. (Für einen Überblick über die Struktur, Aktivität und die industriellen Anwendungen dieser Verbindungen siehe bspw. Ullmann's Encyclopedia of Industrial Chemistry, "Vitamins", Bd. A27, S. 443-613, VCH: Weinheim, 1996). Der Begriff "Vitamin" ist im 40 Fachgebiet bekannt und umfaßt Nährstoffe, die von einem Organismus für eine normale Funktion benötigt werden, jedoch nicht von diesem Organismus selbst synthetisiert werden können. Die Gruppe der Vitamine kann Cofaktoren und nutrazeutische Verbindungen umfassen. Der Begriff "Cofaktor" umfaßt nicht-proteinartige Verbin-45 dungen, die für das Auftreten einer normalen Enzymaktivität nötig sind. Diese Verbindungen können organisch oder anorganisch sein; die erfindungsgemäßen Cofaktor-Moleküle sind vorzugsweise orga-

nisch. Der Begriff "Nutrazeutikum" umfaßt Nahrungsmittelzusätze, die bei Pflanzen und Tieren, insbesondere dem Menschen, gesundheitsfördernd sind. Beispiele solcher Moleküle sind Vitamine, Antioxidantien und ebenfalls bestimmte Lipide (z.B. mehrfach **5** ungesättigte Fettsäuren).

Die Biosynthese dieser Moleküle in Organismen, die zu ihrer Produktion befähigt sind, wie Bakterien, ist umfassend charakterisiert worden (Ullmann's Encyclopedia of Industrial Chemistry, 10 "Vitamins", Bd. A27, S. 443-613, VCH: Weinheim, 1996, Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. und Packer, L. (1995) "Nutrition, Lipids, Health and Disease" Proceedings of the UNESCO/Confederation of Scientific and 15 Technological Associations in Malaysia and the Society for free Radical Research - Asien, abgehalten am 1.-3. Sept. 1994 in Penang, Malaysia, AOCS Press, Champaign, IL X, 374 S).

Thiamin (Vitamin B₁) wird durch chemisches Kuppeln von Pyrimidin 20 und Thiazol-Einheiten gebildet. Riboflavin (Vitamin B_2) wird aus Guanosin-5'-triphosphat (GTP) und Ribose-5'-phosphat synthetisiert. Riboflavin wiederum wird zur Synthese von Flavinmononukleotid (FMN) und Flavinadenindinukleotid (FAD) eingesetzt. Die Familie von Verbindungen, die gemeinsam als "Vitamin B6" bezeich-25 net werden (bspw. Pyridoxin, Pyridoxamin, Pyridoxal-5'-phosphat und das kommerziell verwendete Pyridoxinhydrochlorid), sind alle Derivate der gemeinsamen Struktureinheit 5-Hydroxy-6-methylpyridin. Panthothenat (Pantothensäure, R-(+)-N-(2,4-Dihydroxy-3,3-dimethyl-1-oxobutyl)- β -alanin) kann entweder durch chemische

30 Synthese oder durch Fermentation hergestellt werden. Die letzten Schritte bei der Pantothenat-Biosynthese bestehen aus der ATP-getriebenen Kondensation von $\beta-$ Alanin und Pantoinsäure. Die für die Biosyntheseschritte für die Umwandlung in Pantoinsäure, in eta-Alanin und zur Kondensation in Pantothensäure verantwortlichen En-

35 zyme sind bekannt. Die metabolisch aktive Form von Pantothenat ist Coenzym A, dessen Biosynthese über 5 enzymatische Schritte verläuft. Pantothenat, Pyridoxal-5'-phosphat, Cystein und ATP sind die Vorstufen von Coenzym A. Diese Enzyme katalysieren nicht nur die Bildung von Pantothenat, sondern auch die Produktion von

40 (R)-Pantoinsäure, (R)-Pantolacton, (R)-Panthenol (Provitamin B_5), Pantethein (und seinen Derivaten) und Coenzym A.

Die Biosynthese von Biotin aus dem Vorstufenmolekül Pimeloyl-CoA in Mikroorganismen ist ausführlich untersucht worden, und man hat 45 mehrere der beteiligten Gene identifiziert. Es hat sich herausgestellt, daß viele der entsprechenden Proteine an der Fe-Cluster-Synthese beteiligt sind und zu der Klasse der nifS-Proteine gehö-

ren. Die Liponsäure wird von der Octanonsäure abgeleitet und dient als Coenzym beim Energie-Metabolismus, wo sie Bestandteil des Pyruvatdehydrogenasekomplexes und des α-Ketoglutaratdehydrogenasekomplexes wird. Die Folate sind eine Gruppe von Substanzen, die alle von der Folsäure abgeleitet werden, die wiederum von L-Glutaminsäure, p-Aminobenzoesäure und 6-Methylpterin hergeleitet ist. Die Biosynthese der Folsäure und ihrer Derivate, ausgehend von den metabolischen Stoffwechselzwischenprodukten Guanosin-5'-triphosphat (GTP), L-Glutaminsäure und p-Aminobenzoesäure ist in bestimmten Mikroorganismen eingehend untersucht worden.

15

Corrinoide (wie die Cobalamine und insbesondere Vitamin B_{12}) und die Porphyrine gehören zu einer Gruppe von Chemikalien, die sich durch ein Tetrapyrrol-Ringsystem auszeichnen. Die Biosynthese von Vitamin B_{12} ist hinreichend komplex, daß sie noch nicht vollständig charakterisiert worden ist, jedoch ist inzwischen ein Großteil der beteiligten Enzyme und Substrate bekannt. Nikotinsäure (Nikotinat) und Nikotinamid sind Pyridin-Derivate, die auch als "Niacin" bezeichnet werden. Niacin ist die Vorstufe der wichtigen

20 Coenzyme NAD (Nikotinamidadenindinukleotid) und NADP (Nikotinamidadenindinukleotid) und ihrer reduzierten Formen.

Die Produktion dieser Verbindungen im Großmaßstab beruht größtenteils auf zellfreien chemischen Synthesen, obwohl einige dieser

- 25 Chemikalien ebenfalls durch großangelegte Anzucht von Mikroorganismen produziert worden sind, wie Riboflavin, Vitamin B6, Pantothenat und Biotin. Nur Vitamin B12 wird aufgrund der Komplexität seiner Synthese lediglich durch Fermentation produziert. In-vitro-Verfahren erfordern einen erheblichen Aufwand an
 30 Materialien und Zeit und häufig an hohen Kosten.
 - C. Purin-, Pyrimidin-, Nukleosid- und Nukleotid-Metabolismus und Verwendungen
- 35 Gene für den Purin- und Pyrimidin-Stoffwechsel und ihre entsprechenden Proteine sind wichtige Ziele für die Therapie von Tumorerkrankungen und Virusinfektionen. Der Begriff "Purin" oder "Pyrimidin" umfaßt stickstoffhaltige Basen, die Bestandteil der Nukleinsäuren, Coenzyme und Nukleotide sind. Der Begriff "Nukleo-
- 40 tid" beinhaltet die grundlegenden Struktureinheiten der Nukleinsäuremoleküle, die eine stickstoffhaltige Base, einen PentoseZucker (bei RNA ist der Zucker Ribose, bei DNA ist der Zucker DDesoxyribose) und Phosphorsäure umfassen. Der Begriff "Nukleosid"
 umfaßt Moleküle, die als Vorstufen von Nukleotiden dienen, die
- 45 aber im Gegensatz zu den Nukleotiden keine Phosphorsäureeinheit aufweisen. Durch Hemmen der Biosynthese dieser Moleküle oder ihrer Mobilisation zur Bildung von Nukleinsäuremolekülen ist es

tiziden entwickelt werden.

möglich, die RNA- und DNA-Synthese zu hemmen; wird diese Aktivität zielgerichtet bei kanzerogenen Zellen gehemmt, läßt sich die Teilungs- und Replikations-Fähigkeit von Tumorzellen hemmen. Es gibt zudem Nukleotide, die keine Nukleinsäuremoleküle bilden, jedoch als Energiespeicher (d.h. AMP) oder als Coenzyme (d.h. FAD und NAD) dienen.

Mehrere Veröffentlichungen haben die Verwendung dieser Chemikalien für diese medizinischen Indikationen beschrieben, wobei der 10 Purin- und/oder Pyrimidin-Metabolismus beeinflußt wird (bspw. Christopherson, R.I. und Lyons, S.D. (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents", Med. Res. Reviews 10: 505-548). Untersuchungen an Enzymen, die am Purin- und Pyrimidin-Metabolismus beteiligt sind, ha-15 ben sich auf die Entwicklung neuer Medikamente konzentriert, die bspw. als Immunsuppressionsmittel oder Antiproliferantien verwendet werden können (Smith, J.L. "Enzymes in Nucleotide Synthesis" Curr. Opin. Struct. Biol. 5 (1995) 752-757; Biochem. Soc. Transact. 23 (1995) 877-902) Die Purin- und Pyrimidinbasen, Nukleo-20 side und Nukleotide haben jedoch auch andere Einsatzmöglichkeiten: als Zwischenprodukte bei der Biosysnthese verschiedener Feinchemikalien (z.B. Thiamin, S-Adenosyl-methionin, Folate oder Riboflavin), als Energieträger für die Zelle (bspw. ATP oder GTP) und für Chemikalien selbst, werden gewöhnlich als Geschmacksver-25 stärker verwendet (bspw. IMP oder GMP) oder für viele medizini-

VCH: Weinheim, S. 561-612). Enzyme, die am Purin-, Pyrimidin-, Nukleosid- oder Nukleotid-Metabolismus beteiligt sind, dienen
30 auch immer stärker als Ziele, gegen die Chemikalien für den Pflanzenschutz, einschließlich Fungiziden, Herbiziden und Insek-

sche Anwendungen (siehe bspw. Kuninaka, A., (1996) "Nucleotides and Related Compounds in Biotechnology Bd. 6, Rehm et al., Hrsg.

Der Metabolismus dieser Verbindungen in Bakterien ist charakteri35 siert worden (für Übersichten siehe bspw. Zalkin, H. und Dixon,
J.E. (1992) "De novo purin nucleotide biosynthesis" in Progress
in Nucleic Acids Research and Molecular biology, Bd. 42, Academic
Press, S. 259-287; und Michal, G. (1999) "Nucleotides and Nucleosides"; Kap. 8 in : Biochemical Pathways: An Atlas of Biochemis-

- 40 try and Molecular Biology, Wiley, New York). Der Purin-Metabolismus, das Objekt intensiver Forschung, ist für das normale Funktionieren der Zelle essentiell. Ein gestörter Purin-Metabolismus in höheren Tieren kann schwere Erkrankungen verursachen, bspw. Gicht. Die Purinnukleotide werden über eine Reihe von Schritten
- 45 über die Zwischenverbindung Inosin-5'-phosphat (IMP) aus Ribose-5-phosphat synthetisiert, was zur Produktion von Guanosin-5'-monophosphat (GMP) oder Adenosin-5'-monophosphat (AMP)

führt, aus denen sich die als Nukleotide verwendeten Triphosphatformen leicht herstellen lassen. Diese Verbindungen werden auch
als Energiespeicher verwendet, so daß ihr Abbau Energie für viele
verschiedene biochemische Prozesse in der Zelle liefert. Die

5 Pyrimidinbiosynthese erfolgt über die Bildung von Uridin-5'-monophosphat (UMP) aus Ribose-5-phosphat. UMP wiederum wird in Cytidin-5'-triphosphat (CTP) umgewandelt. Die Desoxyformen sämtlicher
Nukleotide werden in einer Einschritt-Reduktionsreaktion aus der
Diphosphat-Riboseform des Nukleotides zur Diphosphat-Desoxyriboseform des Nukleotides hergestellt. Nach der Phosphorylierung
können diese Moleküle an der DNA-Synthese teilnehmen.

D. Trehalose-Metabolismus und Verwendungen

- 15 Trehalose besteht aus zwei Glucosemolekülen, die über $\alpha, \alpha-1, 1$ -Bindung miteinander verknüpft sind. Sie wird gewöhnlich in der Nahrungsmittelindustrie als Süßstoff, als Additiv für getrocknete oder gefrorene Nahrungsmittel sowie in Getränken verwendet. Sie wird jedoch auch in der pharmazeutischen Industrie,
- 20 der Kosmetik- und Biotechnologie-Industrie angewendet (s. bspw. Nishimoto et al., (1998) US-Patent Nr. 5 759 610; Singer, M.A. und Lindquist, S. Trends Biotech. 16 (1998) 460-467; Paiva, C.L.A. und Panek, A.D. Biotech Ann. Rev. 2 (1996) 293-314; und Shiosaka, M. J. Japan 172 (1997) 97-102). Trehalose wird durch
- 25 Enzyme von vielen Mikroorganismen produziert und auf natürliche Weise in das umgebende Medium abgegeben, aus dem sie durch im Fachgebiet bekannte Verfahren gewonnen werden kann.

II. Membran-Biosynthese und Transmembran-Transport

- Die Zellmembranen dienen in einer Zelle einer Reihe von Funktionen. Zuallererst differenziert eine Membran den Zellinhalt von der Umgebung, so daß die Zelle Integrität erhält. Die Membranen dienen auch als Schranken, damit gefährliche oder ungewünschte
- 35 Verbindungen nicht einströmen können und gewünschte Verbindungen nicht ausströmen können. Zellmembranen sind aufgrund ihrer Struktur von Natur aus gegenüber der nicht erleichterten Diffusion hydrophiler Verbindungen, wie Proteine, Wassermolekülen und Ionen undurchlässig: eine Doppelschicht aus Lipidmolekülen, in der die
- 40 polaren Kopfgruppen nach außen ragen (aus der Zelle heraus bzw. ins Zellinnere hinein) und die unpolaren Schwänze zur Mitte der Doppelschicht ragen und einen hydrophoben Kern bilden (für einen allgemeinen Überblick über die Struktur und Funktion der Membran siehe Gennis, R.B. (1989) Biomembranes, Molecular Structure and
- 45 Function, Springer: Heidelberg). Diese Schranke ermöglicht, daß die Zellen eine relativ höhere Konzentration an gewünschten Verbindungen und eine relativ kleinere Konzentration an ungewünsch-

ten Verbindungen als das umgebende Medium enthält, da die Diffusion dieser Verbindungen durch die Membran effizient blockiert wird.

- 5 Die Membran liefert jedoch auch eine wirksame Schranke gegenüber, dem Import von gewünschten Molekülen und dem Export von Abfallmolekülen. Zur Bewältigung dieser Schwierigkeit enthalten die Zellmembranen viele Arten von Transporterproteinen, die den Transmembrantransport verschiedenartiger Verbindungen erleichtern
- 10 können: Poren oder Kanäle und Transporter. Die ersteren sind integrale Membranproteine, gelegentlich Proteinkomplexe, die eine regulierte Öffnung durch die Membran bilden. Diese Regulation oder dieses "Gating" ist gewöhnlich für die durch die Pore oder den Kanal zu transportierenden spezifisch, so daß diese Trans-
- 15 membrankonstrukte für eine spezifische Klasse von Substraten spezifisch sind; bspw. ist ein Kaliumkanal derart konstruiert, daß nur Ionen mit ähnlicher Ladung und Größe wie Kalium hindurchgelangen können. Kanal- und Porenproteine haben bestimmte hydrophobe und hydrophile Domänen, so daß sich der hydrophobe Anteil
- 20 des Proteins an das Innere der Membran anlagern kann, wohingegen der hydrophile Anteil das Innere des Kanals ausmacht, wodurch eine geschützte hydrophile Umgebung bereitgestellt wird, durch die das ausgewählte hydrophile Molekül gelangen kann. Im Fachgebiet sind viele solche Poren/Kanäle bekannt, einschließlich
- 25 solche für Kalium-, Calcium-, Natrium- und Chloridionen.

Dieses durch Poren und Kanäle vermittelte System ist auf sehr kleine Moleküle, wie Ionen, eingeschränkt, da Poren oder Kanäle, die hinreichend groß sind, daß sie den Durchtritt vollständiger

- 30 Proteine durch erleichterte Diffusion ermöglichen, auch nicht dazu fähig wären, den Durchtritt kleinerer Moleküle zu verhindern. Der Transport von Molekülen durch durch diesen Prozeß wird gelegentlich als "erleichterte Diffusion" bezeichnet, da die treibende Kraft eines Konzentrationsgradienten erforderlich ist,
- 35 damit der Transport stattfindet. Permeasen ermöglichen ebenfalls die erleichterte Diffusion größerer Moleküle, wie Glucose oder anderer Zucker, in die Zelle, wenn die Konzentration dieser Moleküle auf einer Seite der Membran größer ist als auf der anderen (ebenfalls als "Uniport" bezeichnet). Im Gegensatz zu Poren oder
- 40 Kanälen bilden diese integralen Proteine (die oft 6 bis 14 membranüberspannende α -Helices aufweisen) keine offenen Kanäle durch die Membran, sie binden jedoch an das Zielmolekül an der Membranoberfläche und durchlaufen dann eine Konformationsänderung, so daß das Zielmolekül an der entgegengesetzten Seite der Membran
- **45** freigesetzt wird.

Zellen benötigen jedoch oft den Import oder Export von Molekülen gegen den bestehenden Konzentrationsgradienten ("aktiver Transport"), eine Situation, in der die erleichterte Diffusion nicht stattfinden kann. Es gibt zwei generelle Mechanismen, die von der Zelle für einen solchen Membrantransport verwendet wird; Symport oder Antiport, und energiegekuppelter Transport, wie derjenige, der durch ABC-Transporter vermittelt wird. Symport- und Antiportsysteme koppeln die Bewegung von zwei unterschiedlichen Molekülen über die Membran (über Permeasen mit zwei gesonderten Bindungstellen für zwei unterschiedliche Moleküle); beim Symport werden

10 stellen für zwei unterschiedliche Moleküle); beim Symport werden beide Moleküle in die gleiche Richtung transportiert, wohingegen beim Antiport ein Molekül importiert und das andere Molekül exportiert wird. Dies ist energetisch möglich, da sich eines dieser beiden Moleküle entlang eines Konzentrationsgradienten bewegt,

15 und dieses energetisch günstige Ereignis wird nur durch die gleichzeitige Bewegung einer gewünschten Verbindung gegen den herrschenden Konzentrationsgradienten ermöglicht. Einzelne Moleküle können gegen den Konzentrationsgradienten über die Membran in einem energiegetriebenen Prozeß transportiert werden, wie

20 bspw. bei den ABC-Transportern. Bei diesem System hat das in der Membran lokalisierte Transportprotein eine ATP-bindende Cassette, beim Binden des Zielmoleküls wird ATP in ADP + Pi umgewandelt, und die resultierende freigesetzte Energie wird zum Antreiben der Bewegung des Zielmoleküls zur entgegengesetzten Seite der Membran

25 verwendet, was durch den Transporter erleichtert wird. Für eingehendere Beschreibungen all dieser Transportsysteme, siehe Bamberg, E. et al., (1993) "Charge transport of ion pumps on lipid bilayer membranes", Q. Rev. Biophys. 26: 1-25; Findlay, J.B.C. (1991) "Structure and function in membrane transport systems",

30 Curr. Opin. Struct. Biol. 1: 804-810; Higgins, C.F. (1992) "ABC transporters from microorganisms to man", Ann. Rev. Cell. Biol. 8: 67-113; Gennis, R.B. (1989) "Pores, Channels and Transporters", in Biomebranes, Molecular Structure and Function, Springer: Heidelberg, S. 270-322; und Nikaido, H. und Saier, H.

35 (1992) "Transport proteins in bacteria: common themes in their design", Science 258: 936-942, und die in jeder dieser Zitate enthaltenen Literaturstellen.

Die Synthese von Membranen ist ein gut charakterisierter Prozeß,
40 an dem viele Komponenten beteiligt sind, von denen die wichtigsten die Lipidmoleküle sind. Die Lipidsynthese läßt sich in zwei
Teile aufteilen: die Synthese von Fettsäuren und ihre Bindung an
sn-Glycerin-3-Phosphat und die Addition oder Modifikation einer
polaren Kopfgruppe. Übliche Lipide, die in Bakterienmembranen

45 verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese ebginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch Acetyl-CoA-carbo-

xylase oder in Acetyl-ACP durch Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl-ACP, das durch eine Reihe von Kondensations-, Reduktions- und Dehydratisierungsreaktionen umgewandelt wird, so daß ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (für Beschreibungen der Fettsäuresynthese siehe F.C.

10 Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D.C. S. 612-636 und die darin angegebenen Literaturstellen; Lengeler et al. (Hrsg.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York und die darin angegebenen Literaturstellen, und Magnuson, K. et al. (1993) Microbiological Reviews

15 57: 522-542 und die darin angegebenen Literaturstellen). Die Cyclopropan-Fettsäuren (CFA) werden durch eine spezifische CFA-Synthase mit SAM als Cosubstrat synthetisiert. Verzeigte Fettsäureketten werden aus verzweigten desaminierten Aminosäureketten synthetisiert, so daß verzweigte 2-Oxosäuren erhalten werden (s.

20 Lengeler et al. (Hrsg) (1999) Biology of Procaryotes. Thieme:
Stuttgart, New York und die darin angegebenen Literaturstellen).
Ein weiterer wesentlicher Schritt bei der Lipidsynthese ist der
Transfer von Fettsäuren auf die polaren Kopfgruppen bspw. durch
Glycerinphosphatacyltransferasen. Die Kombination verschiedener

25 Vorstufenmoleküle und Biosyntheseenzyme bewirkt die Produktion verschiedener Fettsäuremoleküle, was eine erhebliche Auswirkung auf die Membranzusammensetzung hat.

III. Erfindungsgemäße Elemente und Verfahren

Die vorliegende Erfindung beruht zumindest teilweise auf der Entdeckung von neuen Molekülen, die hier als MCT-Nukleinsäure- und -Protein-Moleküle bezeichnet werden und die Produktion von Zellmembranen in C. glutamicum steuern sowie die Bewegung von Molekü-

- 35 len über diese Membranen bewerkstelligen. Bei einer Ausführungsform sind die MCT-Moleküle am Metabolismus von Verbindungen beteiligt, die für den Aufbau der Zellmembranen in C. glutamicum oder am Transport der Moleküle über diese Membranen beteiligt sind. Bei einer bevorzugten Ausführungsform hat die Aktivität der
- 40 erfindungsgemäßen MCT-Moleküle zur Regulation der Produktion von Membrankomponenten eine Auswirkung auf die Produktion einer gewünschten Feinchemikalie durch diesen Organismus. Bei einer besonders bevorzugten Ausführungsform ist die Aktivität der modulierten MCT-Moleküle derart moduliert, daß die C. glutamicum-
- 45 Stoffwechselwege, die von den erfindungsgemäßen MCT-Proteinen reguliert werden, hinsichtlich Ausbeute, Produktion und/oder Effizienz der Produktion moduliert sind sowie hinsichtlich der

Effizienz des Transports der Verbindungen durch die Membranen verändert sind, was die Ausbeute, Produktion und/oder Effizienz der Produktion einer gewünschten feinchemikalie durch C. glutamicum entweder direkt oder indirekt moduliert.

Der Begriff "MCT-Protein" oder "MCT-Polypeptid" umfaßt Proteine, die am Stoffwechsel von Verbindungen, die für den Aufbau von Zellmembranen in C. glutamicum notwendig sind, oder am Transport von Molekülen über diese Membranen beteiligt sind. Beispiele für

- 10 MCT-Proteine umfassen solche, die von den in Tabelle 1 und Anhang A aufgeführten MCT-Genen codiert werden. Die Ausdrücke "MCT-Gen" oder "MCT-Nukleinsäuresequenz" umfassen Nukleinsäuresequenzen, die ein MCT-Protein codieren, das aus einem codierenden Bereich und entsprechenden untranslatierten 5'- und 3'-Sequenzbereichen
- 15 besteht. Beispiele für MCT-Gene sind in Tabelle 1 aufgelistet. Die Begriffe "Produktion" oder "Produktivität" sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (bspw. der gewünschten Feinchemikalie, die innerhalb einer festgelegten Zeitspanne und eines festgelegten Fermentationsvolu-
- 20 mens gebildet werden (bspw. kg Produkt pro Std. pro 1). Der Begriff "Effizienz der Produktion" umfaßt die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (bspw. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff "Ausbeute" oder "Produkt/
- 25 Kohlenstoff-Ausbeute" ist im Fachgebiet bekannt und umfaßt die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinchemikalie). Dies wird bspw. gewöhnlich ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Vergrößern der Ausbeute oder Produktion der Verbindung wird die Menge der gewon-
- 30 nenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe "Biosynthese" oder "Biosyntheseweg" sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine
- 35 Zelle aus Zwischenverbindungen, bspw. in einem Mehrschritt- oder stark regulierten Prozeß. Die Begriffe "Abbau" oder "Abbauweg" sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger
- 40 komplexe Moleküle), bspw. in einem Mehrschritt- oder stark regulierten Prozeß. Der Begriff "Metabolismus" ist im Fachgebiet bekannt und umfaßt die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Metabolismus einer bestimmten Verbindung (z.B. der Metabolismus einer Aminosäure, wie
- 45 Glycin) umfaßt dann sämtliche Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle.

Die erfindungsgemäßen MCT-Moleküle sind in einer anderen Ausführungsform befähigt, die Produktion eines gewünschten Moleküls, wie einer Feinchemikalie, in einem Mikroorganismus, wie C. glutamicum, zu modulieren. Es gibt eine Reihe von Mechanismen, durch 5 die die Veränderung eines erfindungsgemäßen MCT-Proteins die Ausbeute, Produktion und/oder Effizienz der Produktion einer Feinchemikalie aus einem C. glutamicum-Stamm, der ein solches verändertes Protein enthält, direkt beeinflussen kann. Diese MCT-Proteine, die am Export der Feinchemikalienmoleküle aus der Zelle 10 beteiligt sind, können in größerer Anzahl vorliegen oder erhöhte Aktivität aufweisen, so daß größere Mengen dieser Verbindungen in das extrazelluläre Medium sezerniert werden, aus dem sie leichter gewonnen werden können. MCT-Proteine, die am Import der Nährstoffe beteiligt sind, die für die Biosynthese von einer oder 15 mehreren Feinchemikalien notwendig sind (bspw. Phosphat, Sulfat, Stickstoffverbindungen, usw.) können entsprechend in größerer Anzahl oder mit höherer Aktivität zugegen sein, so daß diese Vorstufen-, Cofaktor- oder Zwischenverbindungen in höherer Konzentration in der Zelle vorliegen. Zudem sind Fettsäuren und Lipide 20 selbst wünschenswerte Feinchemikalien; durch Optimieren der Aktivität oder Vergrößern der Anzahl von einem oder mehreren erfindungsgemäßen MCT-Proteinen, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Beeinflussen der Aktivität von

einem oder mehreren MCT-Proteinen, die am Abbau dieser Verbindun-25 gen beteiligt sind, kann man die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus C. glutamicum steigern.

Die Mutagenese von einem oder mehreren erfindungsgemäßen Genen 30 kann auch MCT-Proteine mit veränderten Aktivitäten hervorbringen, die die Produktion von einer oder mehreren Feinchemikalien aus C. glutamicum beeinflussen. Erfindungsgemäße MCT-Proteine, die am Export von Abfallprodukten beteiligt sind, können in größerer Anzahl oder höherer Aktivität zugegen sein, so daß die normalen 35 Stoffwechselabfälle der Zelle (aufgrund von Überproduktion der gewünschten Feinchemikalie möglicherweise in höherer Quantität) effizient exportiert werden, bevor sie Nukleotide und Proteine innerhalb der Zelle beschädigen (was die Lebensfähigkeit der Zelle herabsetzt) oder mit anderen Feinchemikalien-Stoffwechsel-40 wegen interagieren (was die Ausbeute, Produktion oder Effizienz der Produktion der gewünschten Feinchemikalie herabsetzt). Die relativ großen intrazellulären Mengen der gewünschten Feinchemikalie können an sich für die Zelle toxisch sein. Durch Vergrößern der Anzahl von Transportern, die zum Export dieser Verbindung aus 45 der Zelle befähigt ist, kann man somit die Lebensfähigkeit der Zelle in Kultur steigern, was wiederum eine größere Zahl an Zellen in Kultur mit sich bringt, die die gewünschte Feinchemikalie

produzieren. Die erfindungsgemäßen MCT-Proteine lassen sich derart manipulieren, daß die relativen Mengen unterschiedlicher Lipid- und Fettsäuremoleküle produziert werden. Dies kann eine erhebliche Auswirkung auf die Lipidzusammensetzung der Zellmembran haben. Da jeder Lipidtyp andere physikalische Eigenschaften aufweist, kann eine Veränderung der Lipidzusammensetzung einer Membran die Membranfluidität signifikant verändern. Änderungen der Membranfluidität können den Transport von Molekülen über die Membran sowie die Zellintegrität beeinflussen, was jeweils eine erhebliche Auswirkung auf die Produktion von Feinchemikalien von C. glutamicum in großangelegten Fermenterkulturen hat.

Die isolierten erfindungsgemäßen Nukleinsäuresequenzen befinden sich im Genom eines Corynebacterium glutamicum—Stammes, der von der American Type Culture Collection unter der Bezeichnung ATCC 13032 erhältlich ist. Die Nukleotidsequenz der isolierten C. glutamicum—MCT—cDNAs und die vorhergesagten Aminosäuresequenzen der C. glutamicum—MCT—Proteine sind im Anhang A bzw. B gezeigt. Es wurden Computeranalysen durchgeführt, die diese Nukleotidsequenzen zen als Sequenzen klassifizierten und/oder identifizierten, die Proteine codieren, die am Metabolismus von Zellmembrankomponenten beteiligt sind, oder Proteine, die am Transport von Verbindungen über die Membran beteiligt sind.

25 Die vorliegende Erfindung betrifft auch Proteine, deren Aminosäuresequenz zu einer Aminosäuresequenz in Anhang B im wesentlichen homolog ist. Wie hier verwendet, ist ein Protein, dessen Aminosäuresequenz zu einer ausgewählten Aminosäuresequenz im wesentlichen homolog ist, zur ausgewählten Aminosäuresequenz zumindest zu etwa 50% homolog, bspw. zur gesamten ausgewählten Aminosäuresequenz. Ein Protein, dessen Aminosäuresequenz zu einer ausgewählten Aminosäuresequenz im wesentlichen homolog ist, kann auch mindestens zu etwa 50-60%, vorzugsweise mindestens zu etwa 60-70%, stärker bevorzugt mindestens etwa 70-80%, 80-90% oder 90-95% und am stärksten bevorzugt mindestens zu etwa 96%, 97%, 98%, 99% oder noch homologer zur ausgewählten Aminosäuresequenz sein.

Das erfindungsgemäße MCT-Protein oder ein biologisch aktiver

40 Abschnitt oder Fragmente davon können am Metabolismus von Verbindungen, die für den Aufbau der Zellmembranen in C. glutamicum notwendig sind, oder am Transport von Molekülen über diese Membranen beteiligt sein, oder können eine oder mehrere der in Tabelle 1 aufgeführten Aktivitäten aufweisen.

In den nachstehenden Unterabschnitten sind verschiedene Aspekte der Erfindung ausführlicher beschrieben:

Isolierte Nukleinsäuremoleküle Α.-

Ein Aspekt der Erfindung betrifft isolierte Nukleinsäuremoleküle, die MCT-Polypeptide oder biologisch aktive Abschnitte davon codieren, sowie Nukleinsäurefragmente, die zur Verwendung als Hybridisierungssonden oder Primer zur Identifizierung oder

- 10 Amplifizierung von MCT-codierenden Nukleinsäuren (z.B. MCT-DNA) hinreichen. Der Begriff "Nukleinsäuremolekül" soll DNA-Moleküle (z.B. cDNA oder genomische DNA) und RNA-Moleküle (z.B. mRNA) sowie DNA- oder RNA-Analoga, die mittels Nukleotidanaloga erzeugt werden, umfassen. Dieser Begriff umfaßt zudem die am 3'- und
- 15 am 5'-Ende des codierenden Genbereichs gelegene untranslatierte Sequenz: mindestens etwa 100 Nukleoti'de der Sequenz stromaufwärts des 5'-Endes des codierenden Bereichs und mindestens etwa 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des codierenden Genbereichs. Das Nukleinsäuremolekül kann einzelsträngig oder
- 20 doppelsträngig sein, ist aber vorzugsweise eine doppelsträngige DNA. Ein "isoliertes" Nukleinsäuremolekül wird aus anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure zugegen sind. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, die die Nukleinsäure in der genomi-
- 25 schen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (bspw. Sequenzen, die sich am 5'- bzw. 3'-Ende der Nukleinsäure befinden). In verschiedenen Ausführungsformen kann bspw. das isolierte MCT-Nukleinsäuremolekül weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb der
- 30 Nukleotidsequenzen, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt (bspw. eine C. glutamicum-Zelle) flankieren. Ein "isoliertes" Nukleinsäuremolekül, wie ein cDNA-Molekül, kann überdies im wesentlichen frei von einem anderen zellulären Material oder
- 35 Kulturmedium sein, wenn es durch rekombinante Techniken hergestellt wird, oder frei von chemischen Vorstufen oder anderen Chemikalien sein, wenn es chemisch synthetisiert wird.

Ein erfindungsgemäßes Nukleinsäuremolekül, bspw. eine Nuklein-40 säuremolekül mit einer Nukleotidsequenz aus Anhang A oder ein Abschnitt davon, kann mittels molekularbiologischer Standard-Techniken und der hier bereitgestellten Sequenzinformation isoliert werden. Bspw. kann eine C. glutamicum-MCT-cDNA aus einer C. glutamicum-Bank isoliert werden, indem eine vollständige Sequenz aus

45 Anhang A oder ein Abschnitt davon als Hybridisierungssonde und Standard-Hybridisierungstechniken (wie bspw. beschrieben in Sambrook, J., Fritsch, E.F. und Maniatis, T. Molecular Cloning: A

werden.

23

Laboratory Manual. 2. Aufl. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) verwendet werden. Überdies läßt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz aus Anhang A oder ein Abschnitt 5 davon, durch Polymerasekettenreaktion isolieren, wobei die Oligonukleotidprimer, die auf der Basis dieser Sequenz erstellt wurden, verwendet werden (z.B. kann ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz aus Anhang A oder einen Abschnitt davon, durch Polymerasekettenreaktion isoliert werden, indem 10 Oligonukleotidprimer verwendet werden, die auf der Basis dieser gleichen Sequenz aus Anhang A erstellt worden sind). Bspw. läßt sich mRNA aus normalen Endothelzellen isolieren (bspw. durch das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Biochemistry 18: 5294-5299) und die cDNA kann mittels 15 reverser Transkriptase (bspw. Moloney-MLV-Reverse-Transkriptase, erhältlich bei Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transkriptase, erhältlich von Seikagaku America, Inc., St. Petersburg, FL) hergestellt werden. Synthetische Oligonukleotidprimer für die Amplifizierung via Polymerasekettereaktion lassen sich auf der 20 Basis einer der in Anhang A gezeigten Nukleotidsequenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann mittels cDNA oder alternativ genomischer DNA als Matrize und geeigneten Oligonukleotidprimern gemäß PCR-Standard-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen 25 geeigneten Vektor kloniert werden und durch DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer MCT-Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, bspw. mit einem automatischen DNA-Synthesegerät, hergestellt

Bei einer bevorzugten Ausführungsform umfaßt ein erfindungsgemäßes isoliertes Nukleinsäuremolekül eine der in Anhang A aufgeführten Nukleotidsequenzen. Die Sequenzen von Anhang A entsprechen den erfindungsgemäßen MCT-cDNAs aus Corynebacterium glutami
cum. Diese cDNAs umfassen Sequenzen, die MCT-Proteine (d.h. den "codierenden Bereich", der in jeder Sequenz in Anhang A angegeben ist), sowie die 5'-. und 3'-untranslatierten Sequenzen, die ebenfalls in Anhang A angegeben sind. Das Nukleinsäuremolekül kann alternativ nur den codierenden Bereich einer der Sequenzen in Anhang A umfassen.

Für erfindungsgemäße Zwecke hat selbstverständlich jede der in Anhang A angegebenen Sequenzen eine RXA- oder RXN-Identifizie-rungsnummer, wobei hinter der Bezeichnung "RXA" oder "RXN" 5

45 Ziffern aufgeführt sind (bspw. RXA00001). Jede dieser Sequenzen umfaßt bis zu drei Abschnitte: einen stromaufwärts gelegenen 5'-Bereich, einen codierenden Bereich, und einen stromabwärts

gelegenen 3'-Bereich. Jeder dieser drei Bereiche ist durch die gleiche RXA- oder RXN-Bezeichnung gekennzeichnet, um Verwirrung zu vermeiden. Die Bezeichnung "eine der Sequenzen in Anhang A" steht für eine der Sequenzen in Anhang A, die sich durch ihre unterschiedlichen RXA- oder RXN-Nummern unterscheiden lassen. Der codierende Bereich jeder Sequenz wird in die entsprechende Aminosäuresequenz translatiert, die in Anhang B angegeben ist. Die Sequenzen in Anhang B werden durch die gleichen RXA- oder RXN-Nummern wie in Anhang A identifiziert, so daß sie sich leicht zuordnen lassen. Bspw. ist die mit RXA00001 bezeichnete Aminosäuresequenz in Anhang B eine Translation des codierenden Bereichs der Nukleotidsequenz des Nukleinsäuremoleküls RXA00001 in Anhang A.

Bei einer Ausführungsform sollen die erfindungsgemäßen Nuklein15 säuremoleküle nicht die in Tabelle 2 zusammengestellten umfassen.
Eine Sequenz für das dapD-Gen wurde in Wehrmann, A. et al. (1998)
J. Bacteriol. 180(12): 3159-3165 veröffentlicht. Die von den
Erfindern der vorliegenden Patentanmeldung gewonnene Sequenz ist
jedoch erheblich länger als die veröffentlichte Version. Man
20 nimmt an, daß die veröffentlichte Version auf einem inkorrekten
Startcodon beruht, und somit nur ein Fragment des eigentlichen
codierenden Bereichs ausmacht.

Bei einer weiteren bevorzugten Ausführungsform umfaßt ein erfin25 dungsgemäßes isoliertes Nukleinsäuremolekül ein zu einer der in
Anhang A gezeigten Nukleotidsequenzen komplementäres Nukleinsäuremolekül oder einen Abschnitt davon, wobei es sich um ein
Nukleinsäuremolekül handelt, das zu einer der in Anhang A gezeigten Nukleotidsequenzen hinreichend komplementär ist, daß es mit
30 einer der in Anhang A angegebenen Sequenzen hybridisieren kann,
wodurch ein stabiler Duplex entsteht.

Bei einer weiteren bevorzugten Ausführungsform umfaßt ein erfindungsgemäßes isoliertes Nukleinsäuremolekül eine Nukleotidse35 quenz, die mindestens etwa 50-60%, vorzugsweise mindestens etwa 60-70%, stärker bevorzugt mindestens etwa 70-80%, 80-90% oder 90-95% und noch stärker bevorzugt mindestens etwa 95%, 96%, 97%, 98%, 99% oder noch homologer zu einer in Anhang A angegebenen Nukleotidsequenz oder einem Abschnitt davon ist. Bei einer weiteren bevorzugten Ausführungsform umfaßt ein erfindungsgemäßes isoliertes Nukleinsäuremolekül eine Nukleotidsequenz, die, bspw. unter stringenten Bedingungen, mit einer der in Anhang A gezeig-

45 Das erfindungsgemäße Nukleinsäuremolekül kann überdies nur einen Abschnitt des codierenden Bereichs von einer der Sequenzen in Anhang A umfassen, bspw. ein Fragment, das als Sonde oder Primer

ten Nukleotidsequenzen oder einem Abschnitt davon hybridisiert.

oder Fragment verwendet werden kann, welches einen biologisch aktiven Abschnitt eines MCT-Proteins codiert. Die aus der Klonierung der MCT-Gene aus C. glutamicum ermittelten Nukleotidsequenzen ermöglichen die Erzeugung von Sonden und Primern, die zur 5 Identifizierung und/oder Klonierung von MCT-Homologa in anderen Zelltypen und Organismen und MCT-Homologa von anderen Corynebakterien oder verwandten Arten ausgelegt sind.. Die Sonde bzw. der Primer umfassen gewöhnlich im wesentlichen gereinigtes Oligonukleotid. Das Oligonukleotid umfaßt gewöhnlich einen Nukleotid-10 sequenzbereich, der unter stringenten Bedingungen an mindestens etwa 12, vorzugsweise etwa 25, stärker bevorzugt etwa 40, 50 oder 75 aufeinanderfolgende Nukleotide eines Sense-Stranges von einer der in Anhang A angegebenen Sequenzen, eines Antisense-Stranges von einer der in Anhang A angegebenen Sequenzen oder natürlich 15 vorkommenden Mutanten davon hybridisiert. Primer auf der Basis einer Nukleotidsequenz aus Anhang A können in PCR-Reaktionen zur Klonierung von MCT-Homologa verwendet werden. Sonden auf der Basis der MCT-Nukleotidsequenzen können zum Nachweisen von Transkripten oder genomischen Sequenzen, die das gleiche oder homologe 20 Proteine codieren, verwendet werden. In bevorzugten Ausführungsformen umfaßt die Sonde zudem eine daran gebundene Markierungsgruppe, bspw. ein Radioisotop, eine fluoreszierende Verbindung, ein Enzym oder einen Enzym-Cofaktor. Diese Sonden können als Teil eines diagnostischen Test-Kits zur Identifizierung von Zellen 25 verwendet werden, die ein MCT-Protein misexprimieren, wie durch Messen einer Menge einer MCT-codierenden Nukleinsäure in einer Zellenprobe, bspw. Messen der MCT-mRNA-Spiegel oder durch Bestimmen, ob ein genomisches MCT-Gen mutiert oder deletiert ist.

30 Bei einer Ausführungsform codiert das erfindungsgemäße Nukleinsäuremolekül ein Protein oder einen Abschnitt davon, der eine Aminosäuresequenz umfaßt, die hinreichend homolog zu einer Aminosäuresequenz von Anhang B ist, daß das Protein oder ein Abschnitt davon weiterhin am Metabolismus von Verbindungen, die für den

35 Aufbau der Zellmembranen in *C. glutamicum* notwendig sind, oder am Transport der Moleküle über diese Membranen beteiligt sein kann. Wie hier verwendet, betrifft der Begriff "hinreichend homolog" Proteine oder Abschnitte davon, deren Aminosäuresequenzen eine minimale Anzahl identischer oder äquivalenter Aminosäurereste

40 (bspw. ein Aminosäurerest mit einer ähnlichen Seitenkette wie ein Aminosäurerest in einer der Sequenzen von Anhang B) zu einer Aminosäuresequenz aus Anhang B aufweisen, so daß das Protein oder ein Abschnitt davon weiterhin am Metabolismus von Verbindungen, die für den Aufbau der Zellmembranen in C. glutamicum notwendig

45 sind, oder am Transport der Moleküle über diese Membranen beteiligt sein kann. Proteinbestandteile dieser Stoffwechselwege für Membrankomponenten oder Membrantransportsysteme, wie hier be-

schrieben, können eine Rolle bei der Produktion und Sekretion von einer oder mehreren Feinchemikalien spielen. Beispiele dieser Aktivitäten sind ebenfalls hier beschrieben. Somit betrifft die "Funktion eines MCT-Proteins" entweder direkt oder indirekt die 5 Ausbeute, Produktion und/oder Effizienz der Produktion von einer oder mehreren Feinchemikalien. In Tabelle 1 sind Beispiele der MCT-Proteinaktivitäten angegeben.

Bei einer weiteren Ausführungsform ist das Protein mindestens 10 etwa 50-60%, vorzugsweise mindestens etwa 60-70%, stärker bevorzugt mindestens etwa 70-80%, 80-90%, 90-95% und am stärksten bevorzugt mindestens etwa 96%, 97%, 98%, 99% oder noch homologer zu einer vollständigen Aminosäuresequenz in Anhang B.

- 15 Abschnitte von Proteinen, die von den erfindungsgemäßen MCT-Nukleinsäuremolekülen codiert werden, sind vorzugsweise biologisch aktive Abschnitte von einem der MCT-Proteine. Der Begriff "biologisch aktiver Abschnitt eines MCT-Proteins", wie er hier verwendet wird, soll einen Abschnitt, bspw. eine Domäne oder ein
- 20 Motiv, eines MCT-Proteins umfassen, die/das am Metabolismus von Verbindungen, die für den Aufbau der Zellmembranen in C. glutamicum notwendig sind, oder am Transport von Molekülen über diese Membranen beteiligt sein kann, oder eine in Tabelle 1 angegebene Aktivität aufweist. Zur Bestimmung, ob ein MCT-Protein oder ein
- 25 biologisch aktiver Abschnitt davon am Metabolismus von Verbindungen, die für den Aufbau der Zellmembranen in C. glutamicum notwendig sind, oder am Transport von Molekülen über diese Membranen beteiligt sein kann, kann ein Test der enzymatischen Aktivität durchgeführt werden. Diese Testverfahren, wie eingehend beschrie-
- 30 ben in Beispiel 8 des Beispielteils, sind dem Fachmann geläufig.

Zusätzliche Nukleinsäurefragmente, die biologisch aktive Abschnitte eines MCT-Proteins codieren, lassen sich durch Isolieren eines Abschnitts von einer der Sequenzen in Anhang B, Exprimieren

- 35 des codierten Abschnitt des MCT-Proteins oder -Peptides (z.B. durch rekombinante Expression in vitro) und Bestimmen der Aktivität des codierten Abschnittes des MCT-Proteins oder Peptides herstellen.
- 40 Die Erfindung umfaßt zudem Nukleinsäuremoleküle, die sich von einer der in Anhang A gezeigten Nukleotidsequenzen (und Abschnitten davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit das gleiche MCT-Protein codieren wie dasjenige, das von den in Anhang A gezeigten Nukleotidsequenzen codiert wird. In ei-
- 45 ner anderen Ausführungsform hat ein erfindungsgemäßes isoliertes Nukleinsäuremolekül eine Nukleotidsequenz, die ein Protein mit einer in Anhang B gezeigten Aminosäuresequenz codiert. In einer

weiteren Ausführungsform codiert das erfindungsgemäße Nukleinsäuremolekül ein *C. glutamicum*-Vollängenprotein, das zu einer Aminosäuresequenz aus Anhang B (codiert von einem in Anhang A gezeigten offenen Leseraster) im wesentlichen homolog ist.

Zusätzlich zu den in Anhang A gezeigten C. glutamicum-MCT-Nukleotidsequenzen, geht der Fachmann davon aus, daß DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen von MCT-Proteinen führen, innerhalb einer Population (bspw. der C. gluta-10 micum-Population) existieren können. Diese genetischen Polymorphismen im MCT-Gen können zwischen Individuen innerhalb einer Population aufgrund der natürlichen Variation existieren. Wie hier verwendet, bedeuten die Begriffe "Gen" und "rekombinantes Gen" Nukleinsäuremoleküle mit einem offenen Leseraster, das ein MCT-15 Protein, vorzugsweise C. glutamicum-MCT-Protein codiert. Diese natürlichen Variationen bewirken üblicherweise eine Varianz von 1-5% in der Nukleotidsequenz des MCT-Gens. Sämtliche Nukleotidvariationen und daraus resultierenden Aminosäurepolymorphismen in MCT, die das Ergebnis natürlicher Variation sind und die funktio-20 nelle Aktivität von MCT-Proteinen nicht verändern, sollen im Umfang der Erfindung liegen.

Nukleinsäuremoleküle, die den natürlichen Varianten entsprechen, und Nicht-C. glutamicum-Homologa der erfindungsgemäßen C. gluta-25 micum-MCT-cDNA können auf der Grundlage ihrer Homologie zur hier offenbarten C. glutamicum-MCT-Nukleinsäure mit der C. glutamicumcDNA oder einem Abschnitt davon als Hybridisierungssonde gemäß Standard-Hybridisierungstechniken unter stringenten Hybridisierungbedingungen isoliert werden. In einer anderen Ausführungsform 30 ist ein erfindungsgemäßes isoliertes Nukleinsäuremolekül mindestens 15 Nukleotide lang und hybridisiert unter stringenten Bedingungen mit dem Nukleinsäuremolekül, das eine Nukleotidsequenz aus Anhang A umfaßt. In anderen Ausführungsformen ist die Nukleinsäure mindestens 30, 50, 100, 250 Nukleotide lang oder 35 länger. Der Begriff "hybridisiert unter stringenten Bedingungen", wie er hier verwendet wird, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60% homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, daß 40 Sequenzen, die mindestens etwa 65%, stärker bevorzugt mindestens etwa 70% und noch stärker bevorzugt mindestens etwa 75% oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Ausubel et al., Current Protocols in **45** Molecular Biology, John Wiley & Sons, NY. (1989), 6.3.1-6.3.6. finden. Ein bevorzugtes, nicht-einschränkendes Beispiel für

stringente Hybridisierungsbedingungen ist eine Hybridisierung in

30 verändert wird.

6x Natriumchlorid/Natriumcitrat (SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2x SSC, 0,1% SDS bei 50-65°C. Ein erfindungsgemäßes isoliertes Nukleinsäuremolekül, das unter stringenten Bedingungen an eine Sequenz aus Anhang A hybridisiert, entspricht vorzugsweise einem natürlich vorkommenden Nukleinsäuremolekül. Wie hier verwendet betrifft ein "natürlich vorkommendes" Nukleinsäuremolekül ein RNA- oder DNA-Molekül, mit einer Nukleotidsequenz, die in der Natur vorkommt (bspw. ein natürliches Protein codiert). Bei einer Ausführungsform codiert die Nukleinsäure ein natürlich vorkommendes C. glutamicum-MCT-Protein.

Zusätzlich zu natürlich vorkommenden Varianten der MCT-Sequenz, die in der Population existieren können, ist der Fachmann sich 15 ebenfalls dessen bewußt, daß Änderungen durch Mutation in eine Nukleotidsequenz von Anhang A eingebracht werden können, was zur Änderung der Aminosäuresequenz des codierten MCT-Proteins führt, ohne daß die Funktionsfähigkeit des MCT-Proteins beeinträchtigt wird. Bspw. lassen sich Nukleotidsusbtitutionen, die an "nicht-20 essentiellen" Aminosäureresten zu Aminosäuresubstitutionen führen, in einer Sequenz von Anhang A herstellen. Ein "nicht-essentieller" Aminosäurerest läßt sich in einer Wildtypsequenz von einem der MCT-Proteine (Anhang B) verändern, ohne daß die Aktivität des MCT-Proteins verändert wird, wohingegen ein "essentieller" 25 Aminosäurerest für die MCT-Proteinaktivität erforderlich ist. Andere Aminosäurereste jedoch (bspw. nicht-konservierte oder lediglich semikonservierte Aminosäurereste in der Domäne mit MCT-Aktivität) können für die Aktivität nicht essentiell sein und lassen sich somit wahrscheinlich verändern, ohne daß die MCT-Aktivität

Ein weiterer Aspekt der Erfindung betrifft Nukleinsäuremoleküle, die MCT-Proteine codieren, die veränderte Aminosäurereste enthalten, die für die MCT-Aktivität nicht-essentiell sind. Diese MCT-

- 35 Proteine unterscheiden sich in der Aminosäuresequenz von einer Sequenz in Anhang B und behalten zumindest eine der hier beschriebenen MCT-Aktivitäten. Das isolierte Nukleinsäuremolekül umfaßt bei einer Ausführungsform eine Nukleotidsequenz, die ein Protein codiert, das eine Aminosäuresequenz umfaßt, die minde-
- 40 stens etwa 50% Homologie zu einer Aminosäuresequenz aus Anhang B aufweist, und am Metabolismus von Verbindungen, die für den Aufbau der Zellmembranen in *C. glutamicum* notwendig sind, oder am Transport von Molekülen über diese Membranen beteiligt sein kann, oder eine oder mehrere der in Tabelle 1 aufgeführten Aktivitäten
- 45 besitzt. Das von dem Nukleinsäuremolekül codierte Protein weist vorzugsweise mindestens etwa 50-60%, stärker bevorzugt mindestens etwa 60-70%, noch stärker bevorzugt mindestens etwa 70-80%,

Positionen x 100).

80-90%, 90-95%, und am stärksten bevorzugt mindestens etwa 96%, 97%, 98% oder 99% Homologie zu einer der Sequenzen in Anhang B auf.

5 Zur Bestimmung der prozentualen Homologie von zwei Aminosäuresequenzen (bspw. einer der Sequenzen aus Anhang B und einer mutierten Form davon) oder von zwei Nukleinsäuren, werden die Sequenzen für optimale Vergleichszwecke untereinander geschrieben (bspw. können Lücken in die Sequenz eines Proteins oder einer Nuklein-10 säure eingefügt werden, damit ein optimales Alignment mit dem anderen Protein oder der anderen Nukleinsäure erzeugt wird). Die Aminosäurereste oder die Nukleotide werden dann an den entsprechenden Aminosäure- oder Nukleotidstellen miteinander verglichen. Wenn eine Position in einer Sequenz (bspw. eine der Sequenzen von 15 Anhang B) vom gleichen Aminosäurerest oder Nukleotid belegt wird, wie an der entsprechenden Stelle in der anderen Sequenz (bspw. eine mutierte Form der aus Anhang B ausgewählten Sequenz), dann sind die Moleküle an dieser Stelle homolog (d.h. der hier verwendete Begriff Aminosäure- oder Nukleinsäure-"Homologie" ist äqui-20 valent zu Aminosäure- oder Nukleinsäure-"Identität"). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl der identischen Stellen in allen Sequenzen (d.h. % Homologie = Anzahl der identischen Stellen/Gesamtanzahl der

Ein isoliertes Nukleinsäuremolekül, das ein MCT-Protein codiert, das zu einer Proteinsequenz aus Anhang B homolog ist, kann durch Einbringen von einer oder mehreren Nukleotidsubstitutionen, -additionen oder -deletionen in eine Nukleotidsequenz aus Anhang

- 30 A erzeugt werden, so daß eine oder mehrere Aminosäuresubstitutionen, -additionen oder -deletionen in das codierte Protein eingebracht werden. Die Mutationen können in eine der Sequenzen aus Anhang A durch Standard-Techniken eingebracht werden, wie stellengerichtete Mutagenese und PCR-vermittelte Mutagenese. Vor-
- 35 zugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nicht-essentiellen Aminosäureresten eingeführt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest durch einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien
- 40 von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. Lysin, Arginin, Histidin), sauren Seitenketten (z.B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z.B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin,
- 45 Cystein), nicht-polaren Seitenketten, (bspw. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan), beta-verzweigten Seitenketten (z.B. Threonin, Valin, Isoleucin)

40

30

und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einem MCT-Protein wird somit vorzugsweise durch einen anderen Aminosäurerest der gleichen Seitenkettenfamilie

5 ausgetauscht. In einer weiteren Ausführungsform können die Mutationen alternativ zufallsgemäß über die gesamte oder einen Teil der MCT-codierenden Sequenz eingebracht werden, bspw. durch Sättigungsmutagenese, und die resultierenden Mutanten können auf die hier beschriebene MCT-Aktivität untersucht werden, um Mutanten zu identifizieren, die eine MCT-Aktivität beibehalten. Nach der Mutagenese von einer der Sequenzen aus Anhang A kann das codierte Protein rekombinant exprimiert werden, und die Aktivität des Proteins kann bspw. mit den hier beschriebenen Tests (siehe Beispiel 8 des Beispielteils) bestimmt werden.

Zusätzlich zu den Nukleinsäuremolekülen, die die vorstehend beschriebenen MCT-Proteine codieren, betrifft ein weiterer Aspekt der Erfindung isolierte Nukleinsäuremoleküle, die antisense dazu sind. Eine "Antisense-"Nukleinsäure umfaßt eine Nukleotidsequenz,

- 20 die zu einer "Sense-"Nukleinsäure, welche ein Protein codiert, komplementär ist, bspw. komplementär zum codierenden Strang eines doppelsträngigen cDNA-Moleküls oder komplementär zu einer mRNA-Sequenz. Eine Antisense-Nukleinsäure kann folglich über Wasserstoffbrückenbindungen an eine Sense-Nukleinsäure binden. Die
- 25 Antisense-Nukleinsäure kann zum gesamten MCT-codierenden Strang oder nur zu einem Abschnitt davon komplementär sein. Bei einer Ausführungsform ist ein Antisense-Nukleinsäuremolekül antisense zu einem "codierenden Bereich" des codierenden Stranges einer Nukleotidsequenz, die ein MCT-Protein codiert. Der Begriff "co-
- 30 dierender Bereich" betrifft den Bereich der Nukleotidsequenz, der Codons umfaßt, die in Aminosäurereste translatiert werden (bspw. umfaßt der gesamte codierende Bereich von SEQ.-ID. RXA00001 die Nukleotide 1 bis 1128). Bei einer weiteren Ausführungsform ist das Antisense-Nukleinsäuremolekül antisense zu einem "nicht-
- 35 codierenden Bereich" des codierenden Stranges einer Nukleotidsequenz, die MCT codiert. Der Begriff "nicht-codierender Bereich" betrifft 5'- und 3'-Sequenzen, die den codierenden Bereich flankieren und nicht in Aminosäuren translatiert werden (d.h. die auch als 5'- und 3'-untranslatierte Bereiche bezeichnet werden).
 - Bei den hier offenbarten Sequenzen des codierenden Stranges, die das MCT codieren (bspw. die Sequenzen aus Anhang A), können die erfindungsgemäßen Antisense-Nukleinsäuren gemäß der Regeln der Watson-Crick-Basenpaarung ausgestaltet werden. Das Antisense-
- 45 Nukleinsäuremolekül kann zum gesamten codierenden Bereich von MCT-mRNA komplementär sein, ist aber stärker bevorzugt ein Oligonukleotid, das zu lediglich einem Abschnitt des codierenden oder

nicht-codierenden Bereichs der MCT-mRNA antisense ist. Das Antisense-Oligonukleotid kann bspw. zum Bereich, der die Translationsstartstelle von MCT-mRNA umgibt, komplementär sein. Ein Antisense-Oligonukleotid kann bspw. etwa 5, 10, 15, 20, 25, 30, 35,

- 5 40, 45 oder 50 Nukleotide lang sein. Eine erfindungsgemäße Antisense-Nukleinsäure kann mittels chemischer Synthese und enzymatischer Ligationsreaktionen mittels im Fachgebiet bekannter Verfahren konstruiert werden. Eine Antisense-Nukleinsäure (bspw. ein Antisense-Oligonukleotid) kann bspw. chemisch synthetisiert wer-
- 10 den, wobei natürlich vorkommende Nukleotide oder verschieden modifizierte Nukleotide verwendet werden, die so aufgebaut sind, daß sie die biologische Stabilität der Moleküle erhöhen, oder die physikalische Stabilität des Duplexes erhöhen, der zwischen der Antisense- und Sense-Nukleinsäure entstanden ist. Bspw. können
- 15 Phosphorthioat-Derivate und acridinsubstituierte Nukleotide verwendet werden. Beispiele modifizierter Nukleotide, die zur Erzeugung der Antisense-Nukleinsäure verwendet werden können, sind u.a. 5-Fluoruracil, 5-Bromuracil, 5-Chloruracil, 5-Ioduracil, Hypoxanthin, Xanthin, 4-Acetylcytosin, 5-(Carboxyhydroxylme-
- 20 thyl)uracil, 5-Carboxymethylaminomethyl-2-thiouridin, 5-Carboxymethylaminomethyluracil, Dihydrouracil, Beta-D-Galactosylqueosin, Inosin, N6-Isopentenyladenin, 1-Methylguanin, 1-Methylinosin, 2,2-Dimethylguanin, 2-Methyladenin, 2-Methylguanin, 3-Methylcytosin, 5-Methylcytosin, N6-Adenin, 7-Methylguanin, 5-Methylamino-
- 25 methyluracil, 5-Methoxyaminomethyl-2-thiouracil, Beta-D-Mannosylqueosin, 5'-Methoxycarboxymethyluracil, 5-Methoxyuracil, 2-Methylthio-N6-isopentyladenin, Uracil-5-oxyessigsäure (v), Wybutoxosin, Pseudouracil, Queosin, 2-Thiocytosin, 5-Methyl-2-thiouracil, 2-Thiouracil, 4-Thiouracil, 5-Methyluracil,
- 30 Uracil-5-oxyessigsäuremethylester, Uracil-5-oxyessigsäure (v), 5-Methyl-2-thiouracil, 3-(3-Amino-3-N-2-carboxypropyl)uracil, (acp3)w und 2,6-Diaminopurin. Die Antisense-Nukleinsäure kann ersatzweise biologisch hergestellt werden, indem ein Expressionsvektor verwendet wird, in den eine Nukleinsäure in Antisense-
- 35 Richtung subkloniert worden ist (d.h. RNA, die von der eingebrachten Nukleinsäure transkribiert wird, ist zu einer Zielnukleinsäure von Interesse in Antisense-Richtung orientiert, was im nachstehenden Unterabschnitt weiter beschrieben ist).
- 40 Die erfindungsgemäßen Antisense-Nukleinsäuremoleküle werden üblicherweise an eine Zelle verabreicht oder in situ erzeugt, so daß sie mit der zellulären mRNA und/oder der genomischen DNA, die ein MCT-Protein codiert, hybridisieren oder daran binden, so daß die Expression des Proteins, bspw. durch Hemmung der Transkription
- 45 und/oder Translation, gehemmt wird. Die Hybridisierung kann durch herkömmliche Nukleotid-Komplementarität unter Bildung eines stabilen Duplexes oder bspw. im Fall eines Antisense-Nukleinsäure-

moleküls, das DNA-Duplices bindet, durch spezifische Wechselwirkungen in der großen Furche der Doppelhelix erfolgen. Das
Antisense-Molekül kann so modifiziert werden, daß es spezifisch
an einen Rezeptor oder an ein Antigen bindet, das auf einer aus5 gewählten Zelloberfläche exprimiert wird, bspw. durch Verknüpfen
des Antisense-Nukleinsäuremoleküls an ein Peptid oder einen Antikörper, der an einen Zelloberflächenrezeptor oder Antigen bindet.
Das Antisense-Nukleinsäuremolekül kann ebenfalls an Zellen verabreicht werden, wobei die hier beschriebenen Vektoren verwendet
10 werden. Zur Erzielung hinreichender intrazellulärer Konzentrationen der Antisense-Moleküle sind Vektorkonstrukte, in denen sich
das Antisense-Nukleinsäuremolekül unter der Kontrolle eines
starken Pol-II- oder Pol-III-Promotors befindet, bevorzugt.

15 In einer weiteren Ausführungsform ist das erfindungsgemäße Antisense-Nukleinsäuremolekül ein α -anomeres Nukleinsäuremolekül. Ein α -anomeres Nukleinsäuremolekül bildet spezifische doppelsträngige Hybride mit komplementärer RNA, wobei die Stränge im Gegensatz zu gewöhnlichen β -Einheiten parallel zueinander verlaufen. (Gaultier

20 et al., (1987) Nucleic Acids Res. 15:6625-6641). Das Antisense-Nukleinsäuremolekül kann zudem ein 2'-o-Methylribonukleotid (Inoue et al., (1987) Nucleic Acids Res. 15:6131-6148) oder ein chimäres RNA-DNA-Analogon (Inoue et al. (1987) FEBS Lett. 215:327-330) umfassen.

In einer weiteren Ausführungsform ist eine erfindungsgemäße Antisense-Nukleinsäure ein Ribozym. Ribozyme sind katalytische RNA-Moleküle mit Ribonukleaseaktivität, die eine einzelsträngige Nukleinsäure, wie eine mRNA, spalten können, zu der sie einen

- 30 komplementären Bereich haben. Somit können Ribozyme (z.B. Hammer-head-Ribozyme (beschrieben in Haselhoff und Gerlach (1988) Nature 334:585-591)) zur katalytischen Spaltung von MCT-mRNA-Transkripten verwendet werden, um dadurch die Translation der MCT-mRNA zu hemmen. Ein Ribozym mit Spezifität für eine MCT-codierende
- 35 Nukleinsäure kann auf der Basis der Nukleotidsequenz einer hier offenbarten MCT-cDNA (d.h. RXA00001 in Anhang A) aufgebaut werden. Bspw. kann ein Derivat einer Tetrahymena-L-19-IVS-RNA konstruiert werden, wobei die Nukleotidsequenz der aktiven Stelle komplementär zur Nukleotidsequenz ist, die in einer MCT-codieren-
- 40 den mRNA gespalten werden soll. S. bspw. Cech et al., US-Patent Nr. 4 987 071 und Cech et al., US-Patent Nr. 5 116 742. Alternativ kann MCT-mRNA zur Selektion einer katalytischen RNA mit spezifischer Ribonukleaseaktivität aus einem Pool von RNA-Molekülen verwendet werden. Siehe bspw. Bartel, D., und Szostak, J.W.
- **45** (1993) Science 261: 1411-1418.

Die MCT-Genexpression läßt sich alternativ hemmen, indem Nukleotidsequenzen, die komplementär zum regulatorischen Bereich einer MCT-Nukleotidsequenz sind (bspw. ein MCT-Promotor und/oder -Enhancer) so dirigiert werden, daß Triple-Helixstrukturen gebildet werden, die die Transkription eines MCT-Gens in Ziel-Zellen verhindern. Siehe allgemein Helene, C. (1991) Anticancer Drug Res. 6(6) 569-584; Helene, C. et al., (1992) Ann. N. Y. Acad. Sci. 660: 27-36; und Maher. L.J. (1992) Bioassays 14(12) 807-815.

10 B. Rekombinante Expressionsvektoren und Wirtszellen

Ein weiterer Aspekt der Erfindung betrifft Vektoren, vorzugsweise Expressionsvektoren, die eine Nukleinsäure enthalten, die ein MCT-Protein (oder einen Abschnitt davon) codieren. Wie hier ver-15 wendet betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein vira-20 ler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (bspw. Bakterienvektoren, mit bakteriellem Replikationsursprung und episomale Säugetiervektoren). Andere Vektoren (z.B. nicht-25 episomale Säugetiervektoren) werden in das Genom einer Wirtszelle beim Einbringen in die Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden als "Expressionsvektoren" 30 bezeichnet. Gewöhnlich haben die Expressionsvektoren, die bei DNA-Rekombinationstechniken verwendet werden, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am

Der erfindungsgemäße rekombinante Expressionsvektor umfaßt eine erfindungsgemäße Nukleinsäure in einer Form, die sich zur Expression der Nukleinsäure in einer Wirtszelle eignet, was bedeutet, daß die rekombinanten Expressionsvektoren eine oder mehrere regulatorische Sequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimieterschaft verbunden ist, umfaßt.

häufigsten verwendete Vektorform ist. Die Erfindung soll diese 35 anderen Expressionsvektorformen, wie virale Vektoren (bspw. replikationsdefiziente Retroviren, Adenoviren und adenoverwandte

Viren), die ähnliche Funktionen ausüben, umfassen.

45 renden Nukleinsäuresequenz funktionsfähig verbunden ist, umfaßt. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", daß die Nukleotidsequenz von Interesse derart an die

regulatorische(n) Sequenz(en) gebunden ist, daß die Expression der Nukleotidsequenz möglich ist (bspw. in einem In-vitro-Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht ist). Der Begriff 5 "regulatorische Sequenz" soll Promotoren, Enhancer und andere Expressionskontrollelemente (bspw. Polyadenylierungssignale) umfassen. Diese regulatorischen Sequenzen sind bspw beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatorische Sequenzen 10 umfassen solche, die die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, die die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen steuern. Der Fachmann ist sich dessen bewußt, daß die Gestaltung eines Expressionsvektors von Faktoren abhängen kann, 15 wie der Wahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw. Die erfindungsgemäßen Expressionsvektoren können in die Wirtszellen eingebracht werden, so daß dadurch Proteine oder Peptide, einschließlich Fusionsproteinen oder -peptiden, die von den Nukleinsäuren, wie hier 20 beschrieben, codiert werden, hergestellt werden (bspw. MCT-Pro-

Die erfindungsgemäßen rekombinanten Expressionsvektoren können zur Expression von MCT-Proteinen in prokaryotischen oder euka25 ryotischen Zellen ausgestaltet sein. Bspw. können MCT-Gene in bekteriellen Zellen wie C. glutamicum. Insektenzellen (mit

teine, mutierte Formen von MCT-Proteinen, Fusionsproteine, usw.).

- bakteriellen Zellen, wie *C. glutamicum*, Insektenzellen (mit Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M.A. et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel, C.A.M.J.J. et
- 30 al. (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, Hrsg., S. 396-428: Academic Press: San Diego; und van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi. in: Applied Molecular Genetics
- 35 of Fungi, Peberdy, J.F. et al., Hrsg, S. 1-28, Cambridge University Press: Cambridge), Algen- und vielzelligen Pflanzenzellen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell
- 40 Rep.: 583-586) oder Säugetierzellen exprimiert werden. Geeignete Wirtszellen werden weiter erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, bspw. mit T7-Promotorregulatorischen Sequenzen und T7-Polymerase,
- 45 in vitro transkribiert und translatiert werden.

Die Expression von Proteinen in Prokaryonten erfolgt meist mit Vektoren, die konstitutive oder induzierbare Promotoren enthalten, die die Expression von Fusions- oder Nicht-Fusionsproteinen steuern. Fusionsvektoren steuern eine Reihe von Aminosäuren zu 5 einem darin codierten Protein, gewöhnlich am Aminoterminus des rekombinanten Proteins, bei. Diese Fusionsvektoren haben gewöhnlich drei Aufgaben: 1) die Verstärkung der Expression von rekombinantem Protein; 2) die Erhöhung der Löslichkeit des rekombinanten Proteins; und 3) die Unterstützung der Reinigung des rekombi-10 nanten Proteins durch Wirkung als Ligand bei der Affinitätsreinigung. Bei Fusions-Expressionsvektoren wird oft eine proteolytische Spaltstelle an der Verbindungsstelle der Fusionseinheit und des rekombinanten Proteins eingebracht, so daß die Trennung des rekombinanten Proteins von der Fusionseinheit nach der Reinigung 15 des Fusionsproteins möglich ist. Diese Enzyme und ihre entsprechenden Erkennungssequenzen umfassen Faktor Xa, Thrombin und Enterokinase.

Übliche Fusionsexpressionsvektoren umfassen pGEX (Pharmacia Bio20 tech Inc; Smith, D.B. und Johnson, K.S. (1988) Gene 67: 31-40),
 pMAL (New England Biolabs, Beverly, MA) und pRIT 5 (Pharmacia,
 Piscataway, NJ), bei denen Glutathion-S-Transferase (GST),
 Maltose E-bindendes Protein bzw. Protein A an das rekombinante
 Zielprotein fusioniert wird. Bei einer Ausführungsform ist die
25 codierende Sequenz des MCT-Proteins in einen pGEX-Expressions vektor kloniert, so daß ein Vektor erzeugt wird, der ein Fusions protein codiert, umfassend vom N-Terminus zum C-Terminus, GST Thrombin-Spaltstelle - X-Protein. Das Fusionsprotein kann durch
 Affinitätschromatographie mittels Glutathion-Agarose-Harz ge30 reinigt werden. Das rekombinante MCT-Protein, das nicht mit GST
 fusioniert ist, kann durch Spaltung des Fusionsproteins mit
 Thrombin gewonnen werden.

Beispiele geeigneter induzierbarer Nicht-Fusions-Expressionsvektoren aus E. coli umfassen pTrc (Amann et al., (1988) Gene 69: 301 - 315) und pET 11d (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89). Die Zielgenexpression aus dem pTrc-Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pET11d-Vektor beruht auf der Transkription von einem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA-Polymerase (T7 gn1) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL 21 (DE3) oder HMS174
45 (DE3) von einem residenten λ-Prophagen geliefert, der ein T7

gnl-Gen unter der Transkriptionskontrolle des lacUV 5-Promótors birgt.

Eine Strategie zur Maximierung der Expression des rekombinanten

5 Proteins ist die Expression des Proteins in einem Wirtsbakterium,
dessen Fähigkeit zur proteolytischen Spaltung des rekombinanten
Proteins gestört ist (Gottesman, S. Gene Expression Technology:
Methods in Enzymology 185, Academic Press, San Diego, Kalifornien
(1990) 119-128). Eine weitere Strategie ist die Veränderung der

10 Nukleinsäuresequenz der in einen Expressionsvektor zu inserierenden Nukleinsäure, so daß die einzelnen Codons für jede Aminosäure
diejenigen sind, die vorzugsweise in einem zur Expression ausgewählten Bakterium, wie C. glutamicum, verwendet werden (Wada et
al. (1992) Nucleic Acids Res. 20: 2111 - 2118). Diese Veränderung

15 der erfindungsgemäßen Nukleinsäuresequenzen erfolgt durch Standard-DNA-Synthesetechniken.

Bei einer weiteren Ausführungsform ist der MCT-Proteinexpressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pyepSecl (Baldari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113 - 123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al.,

Alternativ können die erfindungsgemäßen MCT-Proteine in Insektenzellen unter Verwendung von Baculovirus-Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (bspw. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al., (1983) Mol. Cell Biol.. 3: 2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170: 31-39).

40 In einer weiteren Ausführungsform können die erfindungsgemäßen MCT-Proteine in einzelligen Pflanzenzellen (wie Algen) oder in Pflanzenzellen höherer Pflanzen (bspw. Spermatophyten, wie Feldfrüchte) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in:

45 Becker, D., Kemper, E., Schell, J. und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20: 1195-1197; und Bevan, M.W.

(1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711-8721.

In einer weiteren Ausführungsform wird eine erfindungsgemäße 5 Nukleinsäure in Säugetierzellen mit einem Säugetier-Expressionsvektor exprimiert.. Beispiele für Säugetier-Expressionsvektoren umfassen pCDM8 (Seed, B. (1987) Nature 329:840) und pMT2PC (Kaufman et al. (1987) EMBO J. 6: 187-195). Bei der Verwendung in Säugetierzellen werden die Kontrollfunktionen des Expressions-

- 10 vektors oft von viralen regulatorischen Elementen bereitgestellt. Gemeinhin verwendete Promotoren stammen bspw. aus Polyoma, Adenovirus2, Cytomegalievirus und Simian Virus 40. Für weitere geeignete Expressionssysteme für prokaryotische und eukaryotische Zellen, siehe die Kapitel 16 und 17 aus Sambrook, J., Fritsch,
- 15 E.F. und Maniatis, T., Molecular cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

Bei einer weiteren Ausführungsform kann der rekombinante Säuge-20 tier-Expressionsvektor die Expression der Nukleinsäure vorzugsweise in einem bestimmten Zelltyp bewirken (bspw. werden gewebespezifische regulatorische Elemente zur Expression der Nukleinsäure verwendet). Gewebespezifische regulatorische Elemente sind im Fachgebiet bekannt. Nicht-einschränkende Beispiele für geei-

- 25 gnete gewebespezifische Promotoren umfassen den Albuminpromotor (leberspezifisch; Pinkert et al. (1987) Genes Dev. 1: 268-277), lymphoid-spezifische Promotoren (Calame und Eaton (1988) Adv. Immunol. 43: 235-275), insbesondere Promotoren von T-Zellrezeptoren (Winoto und Baltimore (1989) EMBO J. 8: 729-733) und Immun-
- **30** globulinen (Banerji et al. (1983) Cell 33: 729-740; Queen und Baltimore (1983) Cell 33: 741-748), neuronspezifische Promotoren (bspw. Neurofilament-Promotor; Byrne und Ruddle (1989) PNAS 86: 5473-5477), pankreasspezifische Promotoren (Edlund et al., (1985) Science 230: 912-916) und milchdrüsenspezifische Promotoren
- 35 (bspw. Milchserum-Promotor; US-Patent Nr. 4 873 316 und europäische Patentanmeldungsveröffentlichung Nr. 264 166). Entwicklungsregulierte Promotoren sind ebenfalls umfaßt, bspw. die Maus-hox-Promotoren (Kessel und Gruss (1990) Science 249: 374-379) und der $\alpha ext{-Fetoprotein-Promotor}$ (Campes und Tilghman (1989) Genes Dev. 3: **40** 537-546).

Die Erfindung stellt zudem einen rekombinanten Expressionsvektor bereit, umfassend ein erfindungsgemäßes DNA Molekül, das in Antisense-Richtung in den Expressionsvektor kloniert ist. Dies

45 bedeutet, daß das DNA-Molekül derart mit einer regulatorischen Sequenz funktionsfähig verbunden ist, daß die Expression (durch Transkription des DNA-. Moleküls) eines RNA-Moleküls, das zur MCT-

mRNA antisense ist, möglich ist. Es können regulatorische Sequenzen ausgewählt werden, die funktionsfähig an eine in Antisense-Richtung klonierte Nukleinsäure gebunden sind und die die kontinuierliche Expression des Antisense-RNA-Moleküls in einer Viel-5 zahl von Zelltypen steuern, bspw. können virale Promotoren und/ oder Enhancer oder regulatorische Sequenzen ausgewählt werden, die die konstitutive, gewebespezifische oder zelltypspezifische Expression von Antisense-RNA steuern. Der Antisense-Expressionsvektor kann in Form eines rekombinanten Plasmids, Phagemids oder 10 attenuierten Virus vorliegen, in dem Antisense-Nukleinsäuren unter der Kontrolle eines hochwirksamen regulatorischen Bereichs produziert werden, dessen Aktivität durch den Zelltyp bestimmt wird, in den der Vektor eingebracht wird. Für eine Diskussion der Regulation der Genexpression mittels Antisense-Genen, siehe Wein-15 traub, H. et al., Antisense-RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Bd. 1(1) 1986.

Ein weiterer Aspekt der Erfindung betrifft die Wirtszellen, in die ein erfindungsgemäßer rekombinanter Expressionsvektor einge20 bracht worden ist. Die Begriffe "Wirtszelle" und "rekombinante Wirtszelle" werden hier untereinander austauschbar verwendet. Es ist selbstverständlich, daß diese Begriffe nicht nur eine bestimmte Zielzelle, sondern auch die Nachkommen oder potentiellen Nachkommen dieser Zelle betreffen. Da in aufeinanderfolgenden Generationen aufgrund von Mutation oder Umwelteinflüssen bestimmte Modifikationen auftreten können, sind diese Nachkommen nicht unbedingt mit der Parentalzelle identisch, sind jedoch im Umfang des Begriffs, wie er hier verwendet wird, noch umfaßt.

- 30 Eine Wirtszelle kann eine prokaryotische oder eukaryotische Zelle sein. Bspw. kann ein MCT-Protein in Bakterienzellen, wie *C. glutamicum*, Insektenzellen, Hefe- oder Säugetierzellen (wie Ovarzellen des chinesischen Hamsters (CHO) oder COS-Zellen) exprimiert werden. Andere geeignete Wirtszellen sind dem Fachmann geläufig.
- 35 Mikroorganismen, die mit *Corynebacterium glutamicum* verwandt sind und sich geeignet als Wirtszellen für die erfindungsgemäßen Nukleinsäure- und Proteinmoleküle verwenden lassen, sind in Tabelle 3 aufgeführt.
- 40 Durch herkömmliche Transformations- oder Transfektionsverfahren läßt sich Vektor-DNA in prokaryotische oder eukaryotische Zellen einbringen. Die Begriffe "Transformation" und "Transfektion", "Konjugation" und "Transduktion" wie sie hier verwendet werden, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren
- 45 zum Einbringen fremder Nukleinsäure (bspw. DNA) in eine Wirtszelle umfassen, einschließlich Calciumphosphat- oder Calciumchlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion,

Lipofektion oder Elektroporation. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen lassen sich nachlesen in Sambrook et al. (Molecular Cloning: A Laboratory Manual. 2. Aufl. Cold Spring Harbor Laboratory, Cold Spring Harbor
5 Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern.

Für die stabile Transfektion von Säugetierzellen ist bekannt, daß je nach verwendetem Expressionsvektor und verwendeter Transfekti-10 onstechnik nur ein kleiner Teil der Zellen die fremde DNA in ihr Genom integriert. Zur Identifizierung und Selektion dieser Integranten wird gewöhnlich ein Gen, das einen selektierbaren Marker (z.B. Resistenz gegen Antibiotika) codiert, zusammen mit dem Gen von Interesse in die Wirtszellen eingebracht. Bevorzugte selek-15 tierbare Marker umfassen solche, die die Resistenz gegen Medikamente, wie G418, Hygromycin und Methotrexat, verleihen. Eine Nukleinsäure, die einen selektierbaren Marker codiert, kann in eine Wirtszelle auf dem gleichen Vektor eingebracht werden, wie derjenige, der ein MCT-Protein codiert, oder kann auf einem gesonder-20 ten Vektor eingebracht werden. Zellen, die mit der eingebrachten Nukleinsäure stabil transfiziert worden sind, können durch Medikamentenselektion identifiziert werden (z.B. Zellen, die den selektierbaren Marker integriert haben, überleben, wohingegen die anderen Zellen sterben).

25

Zur Erzeugung eines homolog rekombinierten Mikroorganismus wird ein Vektor hergestellt, der zumindest einen Abschnitt eines MCT-Gens enthält, in den eine Deletion, Addition oder Substitution eingebracht worden ist, um das MCT-Gen zu verändern, bspw. funk-

- 30 tionell zu disrumpieren. Dieses MCT-Gen ist vorzugsweise ein Corynebacterium glutamicum-MCT-Gen, jedoch kann ein Homologon von einem verwandten Bakterium oder sogar von einer Säugetier-, Hefeoder Insektenquelle verwendet werden. Bei einer bevorzugten Ausführungsform ist der Vektor derart ausgestaltet, daß das endogene
- 35 MCT-Gen bei homologer Rekombination funktionell disrumpiert ist (d.h. nicht länger ein funktionelles Protein codiert, ebenfalls bezeichnet als "Knockout"-Vektor). Der Vektor kann alternativ derart ausgestaltet sein, daß das endogene MCT-Gen bei homologer Rekombination mutiert oder anderweitig verändert ist, jedoch noch
- 40 das funktionelle Protein codiert (z.B. kann der stromaufwärts gelegene regulatorische Bereich derart verändert sein, daß dadurch die Expression des endogenen MCT-Proteins verändert wird.). Der veränderte Abschnitt des MCT-Gens ist im homologen Rekombinationsvektor an seinem 5'- und 3'-Ende von zusätzlicher Nukleinsäure
- 45 des MCT-Gens flankiert, die eine homologe Rekombination zwischen dem exogenen MCT-Gen, das von dem Vektor getragen wird, und einem endogenen MCT-Gen in einem Mikroorganismus, ermöglicht. Die zu-

sätzliche flankierende MCT-Nukleinsäure ist für eine erfolgreiche homologe Rekombination mit dem endogenen Gen hinreichend lang. Gewöhnlich enthält der Vektor mehrere Kilobasen flankierende DNA (sowohl am 5'- als auch am 3'-Ende) (siehe z.B. Thomas, K.R. und 5 Capecchi, M.R. (1987) Cell 51: 503 für eine Beschreibung von homologen Rekombinationsvektoren). Der Vektor wird in einen Mikroorganismus (z.B. durch Elektroporation) eingebracht, und Zellen, in denen das eingebrachte MCT-Gen mit dem endogenen MCT-Gen homolog rekombiniert ist, werden unter Verwendung im Fachgebiet be-

10 kannter Verfahren selektiert.

Bei einer anderen Ausführungsform können rekombinante Mikroorganismen produziert werden, die ausgewählte Systeme enthalten, die eine regulierte Expression des eingebrachten Gens ermöglichen.

- 15 Der Einschluß eines MCT-Gens in einem Vektor unter der Kontrolle des Lac-Operons ermöglicht z.B. die Expression des MCT-Gens nur in Gegenwart von IPTG. Diese regulatorischen Systeme sind im Fachgebiet bekannt.
- 20 Eine erfindungsgemäße Wirtszelle, wie eine prokaryotische oder eukaryotische Wirtszelle in Kultur, kann zur Produktion (d.h. Expression) eines MCT-Proteins verwendet werden. Die Erfindung stellt zudem Verfahren zur Produktion von MCT-Proteinen unter Verwendung der erfindungsgemäßen Wirtszellen bereit. Bei einer
- 25 Ausführungsform umfaßt das Verfahren die Anzucht der erfindungsgemäßen Wirtszelle (in die ein rekombinanter Expressionsvektor, der ein MCT-Protein codiert, eingebracht worden ist, oder in deren Genom ein Gen eingebracht worden ist, das ein Wildtyp- oder verändertes MCT-Protein codiert) in einem geeigneten Medium, bis
- 30 das MCT-Protein produziert worden ist. Das Verfahren umfaßt in einer weiteren Ausführungsform das Isolieren der MCT-Proteine aus dem Medium oder der Wirtszelle.

Isolierte MCT-Proteine

35

Ein weiterer Aspekt der Erfindung betrifft isolierte MCT-Proteine und biologisch aktive Abschnitte davon. Ein "isoliertes" oder "gereinigtes" Protein oder biologisch aktiver Abschnitt davon ist im Wesentlichen frei von zellulärem Material, wenn es durch DNA-

- 40 Rekombinationstechniken produziert wird, oder von chemischen Vorstufen oder andern Chemikalien, wenn es chemisch synthetisiert wird. Der Begriff "im Wesentlichen frei von zellulärem Material" umfaßt MCT-Proteinpräparationen, in denen das Protein von zellulären Komponenten der Zellen, in denen es natürlich oder rekombi-
 - 45 nant produziert wird, getrennt ist. Bei einer Ausführungsform umfaßt der Ausdruck "im Wesentlichen frei von zellulärem Material" MCT-Proteinpräparationen mit weniger als etwa 30% (bezogen auf

das Trockengewicht) Nicht-MCT-Protein (ebenfalls als "kontaminierendes Protein" bezeichnet), stärker bevorzugt weniger als etwa 20%, noch stärker bevorzugt weniger als etwa 10% und am stärksten bevorzugt weniger als etwa 5% Nicht-MCT-Protein. Das MCT-Protein 5 oder ein biologisch aktiver Abschnitt davon enthält nach rekombinanter Produktion im Wesentlichen kein Kulturmedium, d.h. das Kulturmedium macht weniger als etwa 20%, stärker bevorzugt weniger als etwa 10% und am stärksten bevorzugt weniger als etwa 5% des Volumens der Proteinpräparation aus. Der Begriff "im Wesent-10 lichen frei von chemischen Vorstufen oder anderen Chemikalien" umfaßt MCT-Proteinpräparationen, in denen das Protein von chemischen Vorstufen oder anderen Chemikalien getrennt ist, die an der Synthese des Proteins beteiligt sind. Bei einer Ausführungsform umfaßt der Begriff "im Wesentlichen frei von chemischen Vorstufen 15 oder anderen Chemikalien" MCT-Proteinpräparationen mit weniger als etwa 30% (bezogen auf das Trockengewicht), stärker bevorzugt weniger als etwa 20%, noch stärker bevorzugt weniger als etwa 10% und am stärksten bevorzugt weniger als etwa 5% chemische Vorstufen oder Nicht-MCT-Chemikalien. In bevorzugten Ausführungsformen 20 weisen die isolierten Proteine oder biologisch aktiven Abschnitte davon keine kontaminierenden Proteine aus dem gleichen Organismus auf, aus dem das MCT-Protein abstammt. Diese Proteine werden gewöhnlich hergestellt durch rekombinante Expression bspw. eines C. glutamicum-MCT-Proteins in einem Mikroorganismus, wie C. glutami-25 cum.

Ein erfindungsgemäßes isoliertes MCT-Protein oder ein Abschnitt davon kann am Metabolismus von Verbindungen, die für den Aufbau der Zellmembran in C. glutamicum nötig sind, oder am Transport 30 der Moleküle über diese Membranen, beteiligt sein, oder hat eine oder mehrere der in Tabelle 1 angegebenen Aktivitäten. In bevorzugten Ausführungsformen umfaßt das Protein oder ein Abschnitt davon eine Aminosäuresequenz, die zu einer Aminosäuresequenz aus Anhang B hinreichend homolog ist, daß das Protein oder der Ab-35 schnitt davon am Metabolismus von Verbindungen, die für den Aufbau der Zellmembran in C. glutamicum nötig sind, oder am Transport der Moleküle über diese Membranen, beteiligt sein kann. Der Abschnitt des Proteins ist vorzugsweise ein biologisch aktiver Abschnitt, wie hier beschrieben. Bei einer weiteren bevorzugten 40 Ausführungsform hat ein erfindungsgemäßes MCT-Protein eine der in Anhang B gezeigten Aminosäuresequenzen. In einer weiteren bevorzugten Ausführungsform hat das MCT-Protein eine Aminosäuresequenz, die von einer Nukleotidsequenz codiert wird, die, bspw. unter stringenten Bedingungen, an eine Nukleotidsequenz von An-45 hang A hybridisiert. In noch einer weiteren bevorzugten Ausführungsform hat das MCT-Protein eine Aminosäuresequenz, die von ei-

ner Nukleotidsequenz codiert wird und die mindestens etwa 50-60%,

vorzugsweise mindestens etwa 60-70%, stärker bevorzugt mindestens etwa 70-80%, 80-90%, 90-95% und noch stärker bevorzugt mindestens etwa 96%, 97%, 98%, 99% oder noch homologer zu einer der Aminosäuresequenzen von Anhang B ist. Die erfindungsgemäßen bevorzugten MCT-Proteine besitzen vorzugsweise ebenfalls mindestens eine der hier beschriebenen MCT-Aktivitäten. Ein erfindungsgemäßes bevorzugtes MCT-Protein umfaßt eine Aminosäuresequenz, die von einer Nukleotidsequenz codiert wird, die, bspw. unter stringenten Bedingungen, mit einer Nukleotidsequenz von Anhang A hybridisiert, und die am Metabolismus von Verbindungen, die für den Aufbau der Zellmembran in C. glutamicum nötig sind, oder am Transport der Moleküle über diese Membranen, beteiligt sein kann, oder die eine oder mehrere der in Tabelle 1 angegebenen Aktivitäten

aufweist. 15 Bei weiteren Ausführungsformen ist das MCT-Protein im Wesentlichen homolog zu einer Aminosäuresequenz von Anhang B und behält die funktionelle Aktivität des Proteins von einer der Sequenzen aus Anhang B, und unterscheidet sich dennoch in der Aminosäure-20 sequenz aufgrund der natürlichen Variation oder Mutagenese, wie eingehend beschrieben in Unterabschnitt I oben. In einer weiteren Ausführungsform umfaßt das MCT-Protein eine Aminosäuresequenz, die mindestens etwa 50-60%, vorzugsweise mindestens etwa 60-70%, stärker bevorzugt mindestens etwa 70-80%, 80-90%, 90-95% und am 25 stärksten bevorzugt mindestens etwa 96%, 97%, 98%, 99% oder noch homologer zu einer vollständigen Aminosäuresequenz aus Anhang B ist und die zumindest eine der hier beschriebenen MCT-Aktivitäten aufweist. Bei einer anderen Ausführungsform betrifft die Erfindung ein C. glutamicum-Vollängenprotein, das im Wesentlichen ho-30 molog zu einer vollständigen Aminosäuresequenz aus Anhang B ist.

Biologisch aktive Abschnitte eines MCT-Proteins umfassen Peptide mit Aminosäuresequenzen, die von der Aminosäuresequenz eines MCT-Proteins hergeleitet sind, bspw. eine in Anhang B gezeigte Aminosäuresequenz oder die Aminosäuresequenz eines Proteins, das zu einem MCT-Protein homolog ist, die weniger Aminosäuren als das Vollängen-MCT-Protein oder das Vollängenprotein aufweisen, das zu einem MCT-Protein homolog ist, und zumindest eine Aktivität eines MCT-Proteins aufweisen. Gewöhnlich umfassen biologisch aktive Abschnitte (Peptide, bspw. Peptide, die bspw 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 oder mehr Aminosäuren lang sind) eine Domäne oder ein Motiv mit mindestens einer Aktivität eines MCT-Proteins. Überdies können andere biologisch aktive Abschnitte, in denen andere Bereiche des Proteins deletiert sind, durch rekombinante Techniken hergestellt werden und bezüglich einer oder mehrerer der hier beschriebenen Aktivitäten untersucht werden. Die

biologisch aktiven Abschnitte eines MCT-Proteins umfassen vor-

zugsweise ein oder mehrere ausgewählte Domänen/Motive oder Abschnitte davon mit biologischer Aktivität.

MCT-Proteine werden vorzugsweise durch DNA-Rekombinationstechni-5 ken hergestellt. Bspw wird. ein Nukleinsäuremolekül, das das Protein codiert, in einen Expressionsvektor (wie vorstehend beschrieben) kloniert, der Expressionsvektor wird in eine Wirtszelle (wie vorstehend beschrieben) eingebracht, und das MCT-Protein wird in der Wirtszelle exprimiert. Das MCT-Protein kann dann

- 10 durch ein geeignetes Reinigungsschema mittels Standard-Protein-Reinigungstechniken aus den Zellen isoliert werden. Alternativ zur rekombinanten Expression kann ein MCT-Protein, -Polypeptid, oder -Peptid mittels Standard-Peptidsynthesetechniken chemisch synthetisiert werden. Überdies kann natives MCT-Protein aus
- 15 Zellen (bspw. Endothelzellen) z.B. mit einem Anti-MCT-Antikörper isoliert werden, der durch Standardtechniken produziert werden kann, wobei ein erfindungsgemäßes MCT-Protein oder ein Fragment davon verwendet wird.
- 20 Die Erfindung stellt auch chimäre MCT-Proteine oder MCT-Fusionsproteine bereit. Wie hier verwendet, umfaßt ein "chimäres MCT-Protein" oder "MCT-Fusionsprotein" ein MCT-Polypeptid, das funktionsfähig an ein Nicht-MCT-Polypeptid gebunden ist. Ein "MCT-Polypeptid" betrifft ein Polypeptid mit einer Aminosäuresequenz,
- 25 die MCT entspricht, wohingegen ein "Nicht-MCT-Polypeptid" ein Polypeptid mit einer Aminosäuresequenz betrifft, die einem Protein entspricht, das im Wesentlichen nicht homolog zum MCT-Protein ist, z.B. ein Protein, das sich vom MCT-Protein unterscheidet und vom gleichen oder einem anderen Organismus herrührt.
- 30 Innerhalb des Fusionsproteins soll der Begriff "funktionsfähig verbunden" bedeuten, daß das MCT-Polypeptid und das Nicht-MCT-Polypeptid im Leseraster miteinander fusioniert sind. Das Nicht-MCT-Polypeptid kann an den N- oder C-Terminus des MCT-Polypeptides gebunden sein. Bei einer Ausführungsform ist das Fusionspro-
- 35 tein bspw. ein GST-MCT-Fusionsprotein, bei dem die MCT-Sequenzen an den C-Terminus der GST-Sequenz gebunden sind. Diese Fusionsproteine können die Reinigung des rekombinanten MCT-Proteins erleichtern. Bei einer weiteren Ausführungsform ist das Fusionsprotein ein MCT-Protein, das eine heterologe Signalsequenz an seinem
- 40 N-Terminus aufweist. In bestimmten Wirtszellen (z.B. Säugetier-Wirtszellen) kann die Expression und/oder Sekretion eines MCT-Proteins durch Verwendung einer heterologen Signalsequenz gesteigert werden.
- 45 Ein erfindungsgemäßes chimäres MCT-Protein oder MCT-Fusionsprotein wird durch Standard-DNA-Rekombinationstechniken produziert. DNA-Fragmente, die unterschiedliche Polypeptidsequenzen codieren,

werden gemäß herkömmlicher Techniken im Leseraster aneinander ligiert, bspw. durch Einsatz glatter oder überhängender Enden zur Ligation, Restriktionsenzymspaltung zur Bereitstellung geeigneter Enden, Auffüllen kohäsiver Enden, falls erforderlich, Behandlung 5 mit alkalischer Phosphatase, um ungewollte Verknüpfungen zu vermeiden, und enzymatische Ligierung. Bei einer weiteren Ausführungsform kann das Fusionsgen durch herkömmliche Techniken, einschließlich DNA-Syntheseautomaten, synthetisiert werden. Alternativ kann eine PCR-Amplifizierung von Genfragmenten mittels Anker-10 primern durchgeführt werden, die komplementäre Überhänge zwischen aufeinanderfolgenden Genfragmenten erzeugen. Diese können anschließend miteinander hybridisiert und reamplifiziert werden, so daß eine chimäre Gensequenz erzeugt wird (s. bspw. Current Protocols in Molecular Biology, Hrsg. Ausubel et al., John Wiley & 15 Sons: 1992). Überdies sind viele Expressionsvektoren kommerziell erhältlich, die schon eine Fusionseinheit codieren (bspw. ein GST-Polypeptid). Eine MCT-codierende Nukleinsäure kann in einen solchen Expressionsvektor kloniert werden, so daß die Fusionsein-

20

Homologa des MCT-Proteins können durch Mutagenese erzeugt werden, z.B. durch bestimmte Punktmutation oder Verkürzung des MCT-Proteins. Der Begriff "Homologon", wie er hier verwendet wird, betrifft eine variante Form des MCT-Proteins, die als Agonist oder

heit mit dem MCT-Protein im Leseraster verbunden ist.

- 25 Antagonist der MCT-Protein-Aktivität wirkt. Ein Agonist des MCT-Proteins kann im Wesentlichen die gleiche oder einen Teil der biologischen Aktivitäten des MCT-Proteins beibehalten. Ein Antagonist des MCT-Proteins kann eine oder mehrere Aktivitäten der natürlich vorkommenden Form des MCT-Proteins bspw. durch kompeti-
- 30 tive Bindung an ein stromabwärts oder -aufwärts gelegenes Element der Stoffwechselkaskade für Zellmembrankomponenten, die das MCT-Protein umfaßt, oder durch Binden an eine MCT-Protein, das den Transport von Verbindungen über diese Membranen vermittelt, hemmen, wodurch verhindert wird, daß eine Translokation stattfindet.

35

Bei einer alternativen Ausführungsform können Homologa des MCT-Proteins durch Screening kombinatorischer Mutanten-Banken, bspw. Verkürzungsmutanten, des MCT-Proteins auf MCT-Protein-Agonistenoder -Antagonisten-Aktivität identifiziert werden. Bei einer Aus-

- 40 führungsform wird eine variegierte Bank von MCT-Varianten durch kombinatorische Mutagenese auf dem Nukleinsäure-Niveau erzeugt und von der variegierten Genbank codiert. Eine variegierte Bank von MCT-Varianten kann bspw durch enzymatisches Ligieren eines Gemisches synthetischer Oligonukleotide in die Gensequenzen her-
- 45 gestellt werden, so daß sich ein degenerierter Satz potentieller MCT-Sequenzen als individuelle Polypeptide oder alternativ als Satz größerer Fusionsproteine (z.B. Für Phage-Display), die die-

sen Satz von MCT-Sequenzen enthalten, exprimieren läßt. Es gibt eine Vielzahl von Verfahren, die zur Herstellung von Banken potentieller MCT-Homologa aus einer degenerierten Oligonukleotidsequenz verwendet werden können. Die chemische Synthese einer degenerierten Gensequenz kann in einem DNA-Syntheseautomaten durchgeführt werden, und das synthetische Gen kann dann in den geeigneten Expressionsvektor ligiert werden. Die Verwendung eines degenerierten Gensatzes ermöglicht die Bereitstellung sämtlicher Sequenzen, die den gewünschten Satz an potentiellen MCT-Sequenzen codieren, in einem Gemisch. Verfahren zur Synthese degenerierter Oligonukleotide sind im Fachgebiet bekannt (s. bspw. Narang, S.A. (1983) Tetrahedron 39: 3; Itakura et al. (1984) Annu. Rev. Biochem. 53: 323; Itakura et al., (1984) Science 198: 1056; Ike et al. (1983) Nucleic Acids Res. 11: 477).

Zusätzlich können Banken von Fragmenten der MCT-Protein-Codierung verwendet werden, um eine variegierte Population von MCT-Fragmenten zum Screening und für die anschließende Selektion von Homologa eines MCT-Proteins zu erzeugen. Bei einer Ausführungsform

- 20 kann eine Bank codierender Sequenzfragmente erzeugt werden durch Behandeln eines doppelsträngigen PCR-Fragmentes einer codierenden MCT-Sequenz mit einer Nuklease unter Bedingungen, unter denen ein Nicking nur etwa einmal pro Molekül erfolgt, Denaturieren der doppelsträngigen DNA, Renaturieren der DNA unter Bildung doppel-
- 25 strängiger DNA, die Sense-/Antisense-Paare von verschiedenen genickten Produkten umfassen kann, Entfernen einzelsträngiger Abschnitte aus neu gebildeten Duplices durch Behandlung mit S1-Nuklease, und Ligieren der resultierenden Fragmentbank in einen Expressionsvektor. Durch dieses Verfahren kann eine
- 30 Expressionsbank hergeleitet werden, die N-terminale, C-terminale und interne Fragmente verschiedenen Größen des MCT-Proteins codiert.

Im Fachgebiet sind mehrere Techniken zum Screening von Genproduk35 ten kombinatorischer Banken, die durch Punktmutationen oder Verkürzung hergestellt worden sind, und zum Screening von cDNABanken auf Genprodukte mit einer ausgewählten Eigenschaft, bekannt. Diese Techniken lassen sich an das schnelle Screening der
Genbanken anpassen, die durch kombinatorische Mutagenese von

- 40 MCT-Homologa erzeugt worden sind. Die am häufigsten verwendeten Techniken zum Screening großer Genbanken, die einer Analyse mit hohem Durchsatz unterliegen, umfassen das Klonieren der Genbank in replizierbare Expressionsvektoren, Transformieren der geeigneten Zellen mit der resultierenden Vektorenbank und Exprimieren
- 45 der kombinatorischen Gene unter Bedingungen, unter denen der Nachweis der gewünschten Aktivität die Isolation des Vektors, der das Gen codiert, dessen Produkt nachgewiesen wurde, erleichtert.

Recursive Ensemble Mutagenese (REM), eine neue Technik, die die Häufigkeit funktioneller Mutanten in den Banken vergrößert, kann in Kombination mit den Screeningtests verwendet werden, um MCT-Homologa zu identifizieren (Arkin und Yourvan (1992) PNAS 89: 5 7811-7815; Delgrave et al. (1993) Protein Engineering 6(3): 327-331).

Bei einer weiteren Ausführungsform können zellbezogene Tests zur Analyse einer variegierten MCT-Bank unter Verwendung von im Fach-10 gebiet bekannten Verfahren verwendet werden.

D. Erfindungsgemäße Verwendungen und Verfahren

Die hier beschriebenen Nukleinsäuremoleküle, Proteine, Protein
15 homologa, Fusionsproteine, Primer, Vektoren und Wirtszellen können in einem oder mehreren nachstehenden Verfahren verwendet werden: Identifikation von C. glutamicum und verwandten Organismen, Kartierung von Genomen von Organismen, die mit C. glutamicum verwandt sind, Identifikation und Lokalisation von C. glutamicum-Se-

- 20 quenzen von Interesse, Evolutionsstudien, Bestimmung von MCT-Proteinbereichen, die für die Funktion notwendig sind, Modulation der Aktivität eines MCT-Proteins; Modulation der Aktivität eines MCT-Wegs; und Modulation der zellulären Produktion einer gewünschten Verbindung, wie einer Feinchemikalie. Die erfindungsge-
- 25 mäßen MCT-Nukleinsäuremoleküle haben eine Vielzahl von Verwendungen. Sie können zunächst zur Identifikation eines Organismus als Corynebacterium glutamicum oder naher Verwandten davon verwendet werden. Sie können zudem zur Identifikation von C. glutamicum oder eines Verwandten davon in einer Mischpopulation von Mikro-
- 30 organismen verwendet werden. Die Erfindung stellt die Nukleinsäuresequenzen einer Reihe von *C. glutamicum*-Genen bereit. Durch Sondieren der extrahierten genomischen DNA einer Kultur einer einheitlichen oder gemischten Population von Mikroorganismen unter stringenten Bedingungen mit einer Sonde, die einen Bereich
- 35 eines C. glutamicum-Gens umfaßt, das für diesen Organismus einzigartig ist, kann man bestimmen, ob dieser Organismus zugegen ist. Corynebacterium glutamicum selbst ist zwar nicht pathogen, jedoch ist es mit pathogenen Arten, wie Corynebacterium diptheriae, verwandt. Der Nachweis eines solchen Organismus ist von signifikanter klinischer Bedeutung.

Die erfindungsgemäßen Nukleinsäure- und Proteinmoleküle können als Marker für spezifische Bereiche des Genoms dienen. Dies ist nicht nur beim Kartieren des Genoms, sondern auch für funktio-

45 nelle Studien von *C. glutamicum*-Proteinen nützlich. Zur Identifikation des Genombereichs, an den ein bestimmtes *C. glutamicum*-DNA-bindendes Protein bindet, kann das *C. glutamicum*-Genom bspw.

gespalten werden, und die Fragmente mit dem DNA-bindenden Protein inkubiert werden. Diejenigen, die das Protein binden, können zusätzlich mit den erfindungsgemäßen Nukleinsäuremolekülen, vorzugsweise mit leicht nachweisbaren Markierungen, sondiert werden; die Bindung eines solchen Nukleinsäuremoleküls an das Genomfragment ermöglicht die Lokalisation des Fragmentes auf der genomischen Karte von C. glutamicum, und wenn dies mehrmals mit unterschiedlichen Enzymen durchgeführt wird, erleichtert es eine rasche Bestimmung der Nukleinsäuresequenz, an die das Protein bindet. Die erfindungsgemäßen Nukleinsäuremoleküle können zudem hinreichend homolog zu den Sequenzen verwandter Arten sein, so daß diese Nukleinsäuremoleküle als Marker für die Konstruktion einer genomischen Karte in verwandten Bakterien, wie Brevibacterium lactofermentum, dienen können.

15

Die erfindungsgemäßen MCT-Nukleinsäuremoleküle eignen sich ebenfalls für Evolutions- und Proteinstrukturuntersuchungen. Die Stoffwechsel- und Transportprozesse, an denen die erfindungsgemäßen Moleküle beteiligt sind, werden bei einer vielen prokaryoti-

- 20 schen und eukaryotischen Zellen verwendet; durch Vergleich der Sequenzen der erfindungsgemäßen Nukleinsäuremoleküle mit solchen, die ähnliche Enzyme aus anderen Organismen codieren, kann der Evolutions-Verwandschaftsgrad der Organismen bestimmt werden. Entsprechend ermöglicht ein solcher Vergleich die Bestimmung,
- 25 welche Sequenzbereiche konserviert sind und welche nicht, was bei der Bestimmung solcher Bereiche des Proteins hilfreich sein kann, die für die Enzymfunktion essentiell sind. Dieser Typ der Bestimmung ist für Proteintechnologie-Untersuchungen wertvoll und kann einen Hinweis darauf geben, welches Protein Mutagenese
- 30 tolerieren kann, ohne die Funktion zu verlieren.

Die Manipulation der erfindungsgemäßen MCT-Nukleinsäuremoleküle kann die Produktion von MCT-Proteinen mit funktionellen Unterschieden zu den Wildtyp-MCT-Proteinen bewirken. Diese Proteine

- 35 können hinsichtlich ihrer Effizienz oder Aktivität verbessert werden, können in größerer Anzahl als gewöhnlich in der Zelle zugegen sein, oder können hinsichtlich ihrer Effizienz oder Aktivität geschwächt sein.
- 40 Es gibt viele Mechanismen, durch die die Veränderung eine erfindungsgemäßen MCT-Moleküls die Ausbeute, Produktion und/oder Effizienz der Produktion einer oder mehrerer Feinchemikalien von einem C. glutamicum-Stamm, der ein solches verändertes Protein enthält, direkt beeinflußt. Die Gewinnung der Feinchemikalienverbin-
- **45** dungen aus großangelegten *C. glutamicum*-Kulturen ist signifikant verbessert, wenn *C. glutamicum* die gewünschten Verbindungen sezerniert, da diese Verbindungen leicht aus dem Kulturmedium

gereinigt werden können (im Gegensatz zur Extraktion aus der Masse von C. glutamicum-Zellen). Durch Vergrößern der Anzahl oder Aktivität von Transportermolekülen, die die Feinchemikalien aus der Zelle exportieren, kann es möglich sein, die Menge der produ-5 zierten Feinchemikalie, die im extrazellulären Medium zugegen ist, zu steigern, wodurch die Ernte und Reinigung erleichtert wird. Zur effizienten Überproduktion von einer oder mehreren Feinchemikalien sind dagegen erhöhte Mengen von Cofaktoren, Vorstufenmolekülen und Zwischenverbindungen für die geeigneten Bio-10 synthesewege erforderlich. Durch Vergrößern der Anzahl und/oder der Aktivität von Transporterproteinen, die am Import von Nährstoffen, wie Kohlenstoffquellen (d.h. Zuckern), Stickstoffquellen (d.h. Aminosäuren, Ammoniumsalzen) Phosphaten und Schwefel beteiligt sind, kann man die Produktion einer Feinchemikalie auf-15 grund der Entfernung von jeglichen Einschränkungen des Nährstoffangebots bei dem Biosyntheseprozeß verbessern. Zudem sind Fettsäuren und Lipide selbst wünschenswerte Feinchemikalien; durch Optimieren der Aktivität oder durch Vergrößern der Anzahl von

einem oder mehreren erfindungsgemäßen MCT-Proteinen, die an der 20 Biosynthese dieser Verbindungen beteiligt sind, oder durch Beeinflussen der Aktivität von einem oder mehreren MCT-Proteinen, die am Abbau dieser Verbindungen beteiligt sind, kann man die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmoleküle von C. glutamicum steigern.

Die genetische Manipulation von einem oder mehreren erfindungsgemäßen MCT-Genen kann ebenfalls MCT-Proteine mit veränderten Aktivitäten hervorbringen, die die Produktion von einer oder mehreren
gewünschten Feinchemikalien aus C. glutamicum indirekt beein-

- 30 flussen. Die normalen biochemischen Stoffwechselprozesse bewirken bspw. die Produktion einer Vielzahl von Abfallprodukten (z.B. Wasserstoffperoxid und andere reaktive Sauerstoffspezies) die mit den gleichen Stoffwechselprozessen aktiv wechselwirken können (bspw. nitriert Peroxynitrit bekanntlich Tyrosin-Seitenketten,
- wodurch einige Enzyme mit Tyrosin im aktiven Zentrum inaktiviert werden (Groves, J.T. (1999) Curr. Opin. Chem. Biol. 3(2); 226-235). Diese Abfallprodukte werden zwar üblicherweise ausgeschieden, die zur fermentativen Großproduktion verwendeten C. glutamicum-Stämme werden zur Überproduktion von einer oder mehre-
- 40 ren Feinchemikalien jedoch optimiert und können so mehr Abfallprodukte produzieren als für einen *C. glutamicum*-Wildtyp üblich
 ist. Durch Optimieren der Aktivität von einem oder mehreren erfindungsgemäßen MCT-Proteinen, die am Export von Abfallmolekülen
 beteiligt sind, kann man die Lebensfähigkeit der Zelle verbessern
- 45 und eine effiziente metabolische Aktivität beibehalten. Das Vorliegen hoher intrazellulärer Mengen der gewünschten Feinchemikalie kann für die Zelle toxisch sein, so kann man durch Steigern

der Fähigkeit der Zelle zur Sekretion dieser Verbindungen die Lebensfähigkeit der Zelle verbessern.

Die erfindungsgemäßen MCT-Proteine können manipuliert werden, so 5 daß die relativen Mengen verschiedener Lipid- und Fettsäuremoleküle verändert werden. Dies kann eine erhebliche Auswirkung auf die Lipidzusammensetzung der Zellmembran haben. Da jeder Lipidtyp unterschiedliche physikalische Eigenschaften hat, kann eine Veränderung der Lipidzusammensetzung einer Membran die Membranflui-10 dität signifikant verändern. Änderungen der Membranfluidität können den Transport von Molekülen über die Membran beeinflussen, was wie vorstehend erläutert den Export von Abfallprodukten oder der produzierten Feinchemikalie oder den Import von notwendigen Nährstoffen modifizieren kann. Diese Membranfluiditätsänderungen 15 können ebenfalls die Zellintegrität erheblich beeinflussen; Zellen mit relativ schwächeren Membranen sind in einer Groß-Fermenterumgebung anfälliger gegenüber mechanischem Streß, was die Zellen beschädigen oder abtöten kann. Durch Manipulieren von MCT-Proteinen, die an der Produktion von Fettsäuren und Lipiden für 20 den Membranaufbau beteiligt sind, so daß die Membranzusammensetzung der resultierenden Membran gegenüber den in den Kulturen, die zur Produktion von Feinchemikalien verwendet werden, herrschenden Umweltbedingungen empfänglicher sind, sollten ein größerer Anteil an C. glutamicum-Zellen überleben und sich vermehren. 25 Größere Mengen an C. glutamicum-Zellen in einer Kultur sollten größere Ausbeuten, Produktion oder Effizienz der Produktion der Feinchemikalie aus der Kultur ergeben.

Die vorstehend genannten Mutagenesestrategien für MCT-Proteine, 30 die erhöhte Ausbeuten einer Feinchemikalie aus C. glutamicum bewirken sollen, sollen nicht einschränkend sein; Variationen dieser Strategien sind dem Fachmann leicht ersichtlich. Durch diese Mechanismen und mit Hilfe der hier offenbarten Mechanismen können die erfindungsgemäßen Nukleinsäure- und Proteinmoleküle verwendet 35 werden, um C. glutamicum oder verwandte Bakterienstämme, die mutierte MCT-Nukleinsäure- und Proteinmoleküle exprimieren, zu erzeugen, so daß die Ausbeute, Produktion und/oder Effizienz der Produktion einer gewünschten Verbindung verbessert wird. Die gewünschte Verbindung kann ein natürliches Produkt von C. gluta-40 micum sein, welches die Endprodukte der Biosynthesewege und Zwischenprodukte natürlich vorkommender metabolischer Wege sowie Moleküle umfaßt, die im Metabolismus von C. glutamicum nicht natürlich vorkommen, die jedoch von einem erfindungsgemäßen C. glutamicum-Stamm produziert werden.

Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als einschränkend aufgefaßt werden sollen. Die Inhalte sämtlicher, in dieser Patentanmeldung zitierter Literaturstellen, Patentanmeldungen, Patente und veröffent-5 lichter Patentanmeldungen sind hiermit durch Bezugnahme aufgenommen.

Beispiele

Präparation der gesamten genomischen DNA aus Coryne-10 Beispiel 1: bacterium glutamicum ATCC13032

Eine Kultur von Corynebacterium glutamicum (ATCC 13032) wurde über Nacht bei 30°C unter starkem Schütteln in BHI-Medium (Difco) 15 gezüchtet. Die Zellen wurden durch Zentrifugation geerntet, der Überstand wurde verworfen, und die Zellen wurden in 5ml Puffer I (5% des Ursprungsvolumens der Kultur - sämtliche angegebenen Volumina sind für 100 ml Kulturvolumen berechnet) resuspendiert. Die Zusammensetzung von Puffer I: 140,34 g/l Saccharose, 2,46 g/l

- 20 MgSO $_4$ · 7 H $_2$ O, 10 ml/l KH $_2$ PO $_4$ -Lösung (100g/l, mit KOH eingestellt auf pH-Wert 6,7), 50 ml/l M12-Konzentrat (10 g/l (NH $_4$) $_2$ SO $_4$, 1 g/l NaCl, 2 g/l MgSO₄ \cdot 7 H₂O, 0,2 g/l CaCl₂, 0,5 g/l Hefe-Extrakt (Difco), 10 ml/l Spurenelemente-Mischung (200 mg/l FeSO $_4$ · H $_2$ O, 10 mg/l $ZnSO_4 \cdot 7 H_2O$, 3 mg/l $MnCl_2 \cdot 4 H_2O$, 30 mg/l H_3BO_3 , 20 mg/l
- **25** $CoCl_2 \cdot 6 H_2O$, 1 $mg/1 NiCl_2 \cdot 6 H_2O$, 3 $mg/1 Na_2MoO_4 \cdot 2 H_2O$, 500 mg/1Komplexbildner (EDTA oder Citronensäure), 100 ml/l Vitamingemisch (0,2 ml/l Biotin, 0,2 mg/l Folsäure, 20 mg/l p-Aminobenzoesäure, 20 mg/l Riboflavin, 40 mg/l Ca-Panthothenat, 140 mg/l Nikotinsäure, 40 mg/l Pyridoxolhydrochlorid, 200 mg/l Myoinositol).
- 30 Lysozym wurde in einer Endkonzentration von 2,5 mg/ml zur Suspension gegeben. Nach etwa 4 Std. Inkubation bei 37°C wurde die Zellwand abgebaut, und die erhaltenen Protoplasten wurden durch Zentrifugation geerntet. Das Pellet wurde einmal mit 5 ml Puffer I und einmal mit 5 ml TE-Puffer (10 mM Tris-HCl, 1 mM EDTA, pH-Wert
- 35 8) gewaschen. Das Pellet wurde in 4 ml TE-Puffer resuspendiert, und 0,5 ml SDS-Lösung (10%) und 0,5 ml NaCl-Lösung (5 M) wurden zugegeben. Nach Zugabe von Proteinase K in einer Endkonzentration von 200 μg/ml wurde die Suspension etwa 18 Std. bei 37°C inkubiert. Die DNA wurde durch Extraktion mit Phenol, Phenol-Chloro-
- 40 form-Isoamylalkohol und Chloroform-Isoamylalkohol mittels Standard-Verfahren gereinigt. Dann wurde die DNA durch Zugabe von 1/50 Volumen 3 M Natriumacetat und 2 Volumina Ethanol, anschließender Inkubation für 30 min bei -20° C und 30 min Zentrifugation bei 12000 U/min in einer Hochgeschwindigkeitszentrifuge mit einem
- 45 SS34-Rotor (Sorvall) gefällt. Die DNA wurde in 1 ml TE-Puffer gelöst, der 20 μ g/ml RNase A enthielt, und für mindestens 3 Std. bei 4°C gegen 1000 ml TE-Puffer dialysiert. Während dieser Zeit

wurde der Puffer 3mal ausgetauscht. Zu Aliquots von 0,4 ml der dialysierten DNA-Lösung wurden 0,4 ml 2 M LiCl und 0,8 ml Ethanol zugegeben. Nach 30 min Inkubation bei -20°C wurde die DNA durch Zentrifugation gesammelt (13000 U/min, Biofuge Fresco, Heraeus, Hanau, Deutschland). Das DNA-Pellet wurde in TE-Puffer gelöst. Durch dieses Verfahren hergestellte DNA konnte für alle Zwecke verwendet werden, einschließlich Southern-Blotting oder zur Konstruktion genomischer Banken.

10 Beispiel 2: Konstruktion genomischer Corynebacterium glutamicum (ATCC13032)-Banken in Escherichia coli

Ausgehend von DNA, hergestellt wie in Beispiel 1 beschrieben, wurden gemäß bekannter und gut eingeführter Verfahren (siehe 15 bspw. Sambrook, J. et al. (1989) "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press oder Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons) Cosmid- und Plasmid-Banken hergestellt.

20 Es ließ sich jedes Plasmid oder Cosmid einsetzen. Besondere Verwendung fanden die Plasmide pBR322 (Sutcliffe, J.G. (1979) Proc. Natl Acad. Sci. USA, 75: 3737-3741); pACYC177 (Change & Cohen (1978) J. Bacteriol. 134: 1141-1156); Plasmide der pBS-Reihe (pBSSK+, pBSSK- und andere; Stratagene, LaJolla, USA) oder
25 Cosmide, wie SuperCos1 (Stratagene, LaJolla, USA) oder Lorist6 (Gibson, T.J. Rosenthal, A., und Waterson, R.H. (1987) Gene 53: 283-286.

Beispiel 3: DNA-Sequenzierung und Computer-Funktionsanalyse

Genomische Banken, wie in Beispiel 2 beschrieben, wurden zur DNASequenzierung gemäß Standard-Verfahren, insbesondere dem Kettenabbruchverfahren mit ABI377-Sequenziermaschinen (s. z.B. Fleischman, R.D. et al. (1995) "Whole-genome Random Sequencing and

35 Assembly of Haemophilus Influenzae Rd., Science 269; 496-512)
verwendet. Die Sequenzierprimer mit den folgenden Nukleotidsequenzen wurden verwendet: 5'-GGAAACAGTATGACCATG-3' oder
5'-GTAAAACGACGGCCAGT-3'.

40 Beispiel 4: In-vivo-Mutagenese

In vivo-Mutagenese von Corynebacterium glutamicum kann durchgeführt werden, indem eine Plasmid- (oder andere Vektor-) DNA durch E. coli oder andere Mikroorganismen (z.B. Bacillus spp.

45 oder Hefen, wie Saccharomyces cerevisiae) geleitet wird, die die Integrität ihrer genetischen Information nicht aufrechterhalten können. Übliche Mutatorstämme weisen Mutationen in den Genen für

das DNA-Reparatursystem auf (z.B., mutHLS, mutD, mutT, usw., zum Vergleich siehe Rupp, W.D. (1996) DNA repair mechanisms in Escherichia coli and Salmonella, S. 2277-2294, ASM: Washington). Diese Stämme sind dem Fachmann bekannt. Die Verwendung dieser Stämme ist bspw. in Greener, A. und Callahan, M. (1994) Strategies 7; 32-34 veranschaulicht.

Beispiel 5: DNA-Transfer zwischen Escherichia coli und Corynebacterium glutamicum

Mehrere Corynebacterium- und Brevibacterium-Arten enthalten endogene Plasmide (wie bspw. pHM1519 oder pBL1) die autonom replizieren (für einen Überblick siehe bspw. Martin, J.F. et al. (1987) Biotechnology 5: 137-146). Shuttle-Vektoren für Escherichia coli

- 15 und Corynebacterium glutamicum lassen sich leicht mittels Standard-Vektoren für E. coli konstruieren (Sambrook, J. et al., (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press oder Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons), denen ein
- 20 Replikationsursprung für und ein geeigneter Marker aus Corynebacterium glutamicum beigegeben wird. Solche Replikationsursprünge werden vorzugsweise von endogenen Plasmiden entnommen, die aus Corynebacterium- und Brevibactertium-Arten isoliert worden sind. Besondere Verwendung als Transformationsmarker für
- 25 diese Arten sind Gene für Kanamycin-Resistenz (wie solche, die vom Tn5- oder Tn-903-Transposon stammen) oder für Chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones - Introduction to Gene Technology, VCH, Weinheim). Es gibt zahlreiche Beispiele in der Literatur zur Herstellung einer großen Vielzahl von Shuttle-
- 30 Vektoren, die in *E. coli* und *C. glutamicum* repliziert werden, und die für verschiedene Zwecke verwendet werden können, einschließlich Gen-Überexpression (siehe bspw. Yoshihama, M. et al. (1985) J. Bacteriol. 162: 591-597, Martin, J.F. et al., (1987) Biotechnology, 5: 137-146 und Eikmanns, B.J. et al. (1992) Gene 35 102: 93-98).

Mittels Standard-Verfahren ist es möglich, ein Gen von Interesse in einen der vorstehend beschriebenen Shuttle-Vektoren zu klonieren und solche Hybrid-Vektoren in *Corynebacterium glutamicum*-

- 40 Stämme einzubringen. Die Transformation von *C. glutamicum* läßt sich durch Protoplastentransformation (Kastsumata, R. et al., (1984) J. Bacteriol. 159, 306-311), Elektroporation (Liebl, E. et al., (1989) FEMS Microbiol. Letters, 53: 399-303) und in Fällen, bei denen spezielle Vektoren verwendet werden, auch durch Konju-
- 45 gation erzielen (wie z.B. beschrieben in Schäfer, A., et (1990) J. Bacteriol. 172: 1663-1666). Es ist ebenfalls möglich, die Shuttle-Vektoren für C. glutamicum auf E. coli zu übertragen,

indem Plasmid-DNA aus *C. glutamicum* (mittels im Fachgebiet bekannter Standard-Verfahren) präpariert wird und in *E. coli* transformiert wird. Dieser Transformationsschritt kann mit Standard-Verfahren erfolgen, jedoch wird vorteilhafterweise ein Mcr-defizienter E. coli-Stamm verwendet, wie NM522 (Gough & Murray (1983) J. Mol. Biol. 166: 1-19).

Beispiel 6: Bestimmung der Expression des mutierten Proteins

- 10 Die Beobachtungen der Aktivität eines mutierten Proteins in einer transformierten Wirtszelle beruhen auf der Tatsache, daß das mutierte Protein auf ähnliche Weise und in ähnlicher Menge exprimiert wird wie das Wildtyp-Protein. Ein geeignetes Verfahren zur Bestimmung der Transkriptionsmenge des mutierten Gens (ein Anzei-
- then für die mRNA-Menge, die für die Translation des Genprodukts verfügbar ist) ist die Durchführung eines Northern-Blots (s. bspw. Ausubel et al., (1988) Current Protocols in Molecular Biology, Wiley: New York), wobei ein Primer, der so ausgestaltet ist, daß er an das Gen von Interesse bindet, mit einer nachweis-
- 20 baren (gewöhnlich radioaktiven oder chemilumineszierenden) Markierung versehen wird, so daß - wenn die Gesamt-RNA einer Kultur des Organismus extrahiert, auf einem Gel aufgetrennt, auf eine stabile Matrix übertragen und mit dieser Sonde inkubiert wird die Bindung und die Quantität der Bindung der Sonde das Vorliegen
- 25 und auch die Menge von mRNA für dieses Gen anzeigt. Diese Information ist ein Nachweis für das Ausmaß der Transkription des mutierten Gens. Gesamt-Zell-RNA läßt sich durch verschiedene Verfahren aus Corynebacterium glutamicum isolieren, die im Fachgebiet bekannt sind, wie beschrieben in Bormann, E.R. et al.,
- 30 (1992) Mol. Microbiol. 6: 317-326.

Zur Bestimmung des Vorliegens oder der relativen Menge von Protein, das aus dieser mRNA translatiert wird, können Standard-Techniken, wie Western-Blot, eingesetzt werden (s. bspw. Ausubel

- 35 et al. (1988) "Current Protocols in Molecular Biology", Wiley, New York). Bei diesem Verfahren werden Gesamt-Zellproteine extrahiert, durch Gelelektrophorese getrennt, auf eine Matrix, wie Nitrocellulose, übertragen und mit einer Sonde, wie einem Antikörper, inkubiert, die an das gewünschte Protein spezifisch bin-
- 40 det. Diese Sonde ist gewöhnlich mit einer chemilumineszierenden oder kolorimetrischen Markierung versehen, die sich leicht nachweisen läßt. Das Vorliegen und die beobachtete Menge an Markierung zeigt das Vorliegen und die Menge des gesuchten Mutantenproteins in der Zelle an.

Beispiel 7: Wachstum von genetisch verändertem Corynebacterium glutamicum - Medien und Anzuchtbedingungen

Genetisch veränderte Corynebakterien werden in synthetischen oder 5 natürlichen Wachstumsmedien gezüchtet. Eine Anzahl unterschiedlicher Wachstumsmedien für Corynebakterian sind bekannt und leicht erhältlich (Lieb et al. (1989) Appl. Microbiol. Biotechnol. 32: 205-210; von der Osten et al. (1998) Biotechnology Letters 11: 11-16; Patent DE 4 120 867; Liebl (1992) "The Genus, 10 Corynebacterium", in: The Procaryotes, Bd. II, Balows, A., et al., Hrsg. Springer-Verlag). Diese Medien bestehen aus einer oder mehreren Kohlenstoffquellen, Stickstoffquellen, anorganischen Salzen, Vitaminen und Spurenelementen. Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr 15 gute Kohlenstoffquellen sind bspw. Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte aus der Zucker-Raffinierung zu den Medien geben. Es kann auch 20 vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Alkohole und organische Säuren, wie Methanol, Ethanol, Essigsäure oder Milchsäure. Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen 25 enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak-Gas oder Ammoniumsalze, wie NH_4Cl oder $(NH_4)_2SO_4$, NH_4OH , Nitrate, Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakte, Fleischextrakte und andere.

30

Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor-, oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen. Chelatbildner können zum Medium gegeben

- 35 werden, um die Metallionen in Lösung zu halten. Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat oder organische Säuren, wie Citronensäure. Die Medien enthalten üblicherweise auch andere Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen bspw. Biotin, Ribofla-
- 40 vin, Thiamin, Folsäure, Nikotinsäure, Panthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt, Melassen, Maisquellwasser und dergleichen. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden Fall
- 45 individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press

(1997) S. 53-73, ISBN 0 19 963577 3). Wachstumsmedien lassen sich auch von kommerziellen Anbietern beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen.

5 Sämtliche Medienkomponenten sind sterilisiert, entweder durch Hitze (20 min bei 1,5 bar und 121°C) oder durch Sterilfiltration. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.

Die Anzuchtbedingungen werden für jedes Experiment gesondert definiert. Die Temperatur sollte zwischen 15°C und 45°C liegen und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen, und kann durch Zugabe von Puffern zu den Medien aufrechterhalten werden. Ein beispielhafter Puffer für diesen Zweck ist ein Kaliumphosphatpuffer. Synthetische Puffer, wie MOPS, HEPES; ACES usw., können alternativ oder gleichzeitig verwendet werden. Der Anzucht-pH-Wert läßt sich während der Anzucht auch durch Zugabe von NaOH oder NH4OH konstant halten. Werden komplexe Medienkomponenten, wie Hefe-Extrakt verwendet, sinkt der Bedarf an zusätzlichen Puffern, da viele komplexe Verbindungen eine hohe Pufferkapazität aufweisen. Beim Einsatz eines Fermenters für die Anzucht von Mikroorganismen kann der pH-Wert

auch mit gasförmigem Ammoniak reguliert werden.

Die Inkubationsdauer liegt gewöhnlich in einem Bereich von mehreren Stunden bis zu mehreren Tagen. Diese Zeit wird so ausgewählt, daß sich die maximale Menge Produkt in der Brühe ansammelt. Die offenbarten Wachstumsexperimente können in einer Vielzahl von Behältern, wie Mikrotiterplatten, Glasröhrchen, Glaskolben oder Glas- oder Metallfermentern unterschiedlicher Größen durchgeführt werden. Zum Screening einer großen Anzahl von Klonen sollten die Mikroorganismen in Mikrotiterplatten, Glasröhrchen oder Schüttelkolben entweder mit oder ohne Schikanen gezüchtet werden. Vorzugsweise werden 100-ml-Schüttelkolben verwendet, die mit 10% (bezogen auf das Volumen) des erforderlichen Wachstumsmediums gefüllt sind. Die Kolben sollten auf einem Kreiselschüttler

40 (Amplitude 25 mm) mit einer Geschwindigkeit im Bereich von 100-300 U/min geschüttelt werden. Verdampfungsverluste können durch Aufrechterhalten einer feuchten Atmosphäre verringert

werden; alternativ sollte für die Verdampfungsverluste eine

mathematische Korrektur durchgeführt werden.

Werden genetisch modifizierte Klone untersucht, sollten auch ein unmodifizierter Kontrollklon oder ein Kontrollklon getestet werden, der das Basisplasmid ohne Insertion enthält. Das Medium wird auf eine OD600 von 0,5 - 1,5 angeimpft, wobei Zellen verwendet werden, die auf Agarplatten gezüchtet wurden, wie CM-Platten (10 g/l Glucose, 2,5 g/l NaCl, 2 g/l Harnstoff, 10 g/l Polypepton, 5 g/l Hefeextrakt, 5 g/l Fleischextrakt, 22 g/l Agar pH-Wert 6,8 mit 2 M NaOH), die bei 30°C inkubiert worden sind. Das Animpfen der Medien erfolgt entweder durch Einbringen einer Kochsalzlösung von C. glutamicum-Zellen von CM-Platten oder durch Zugabe einer flüssigen Vorkultur dieses Bakteriums.

Beispiel 8: In-vitro-Analyse der Funktion mutierter Proteine

- 15 Die Bestimmung der Aktivitäten und kinetischen Parameter von Enzymen ist im Fachgebiet gut bekannt. Experimente zur Bestimmung der Aktivität eines bestimmten veränderten Enzyms müssen an die spezifische Aktivität des Wildtypenzyms angepaßt werden, was innerhalb der Fähigkeiten des Fachmann liegt. Überblicke über
- 20 Enzyme im Allgemeinen sowie spezifische Einzelheiten, die die Struktur, Kinetiken, Prinzipien, Verfahren, Anwendungen und Beispiele zur Bestimmung vieler Enzymaktivitäten betreffen, können bspw. in den nachstehenden Literaturstellen gefunden werden: Dixon, M., und Webb, E.C: (1979) Enzymes, Longmans, London;
- 25 Fersht (1985) Enzyme Structure and Mechanism, Freeman, New York; Walsh (1979) Enzymatic Reaction Mechanisms. Freeman, San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P.D. Hrsg. (1983) The Enzymes, 3. Aufl. Academic Press, New York; Bisswanger, H.
- 30 (1994) Enzymkinetik, 2. Aufl. VCH, Weinheim (ISBN 3527300325);
 Bergmeyer, H.U., Bergmeyer, J., Graßl, M. Hrsg. (1983-1986)
 Methods of Enzymatic Analysis, 3. Aufl. Bd. I-XII, Verlag Chemie:
 Weinheim; und Ullmann's Encyclopedia of Industrial Chemistry
 (1987) Bd. A9, "Enzymes", VCH, Weinheim, S. 352-363.
- Die Aktivität von Proteinen, die an DNA binden, kann durch viele gut eingeführte Verfahren gemessen werden, wie DNA-Banden-Shift-Assays (die auch als Gelretardations-Assays bezeichnet werden). Die Wirkung dieser Proteine auf die Expression anderer Moleküle
- 40 kann mit Reportergenassays (wie beschrieben in Kolmar, H. et al., (1995) EMBO J. 14: 3895-3904 und den darin zitierten Literaturstellen) gemessen werden. Reportergen-Testsysteme sind wohlbekannt und für Anwendungen in pro- und eukaryotischen Zellen etabliert, wobei Enzyme, wie beta-Galactosidase, Grün-Fluoreszenz-
- 45 Protein und mehrere andere verwendet werden.

Die Bestimmung der Aktivität von Membran-Transportproteinen kann gemäß den Techniken, wie beschrieben in Gennis, R.B. (1989) "Pores, Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, S. 85-137; 199-234; und 270-322, erfolgen.

Beispiel 9: Analyse des Einflusses von mutiertem Protein auf die Produktion des gewünschten Produktes

- 10 Die Wirkung der genetischen Modifikation in *C. glutamicum* auf die Produktion einer gewünschten Verbindung (wie einer Aminosäure) kann bestimmt werden, indem die modifizierten Mikroorganismen unter geeigneten Bedingungen (wie solchen, die vorstehend beschrieben sind) gezüchtet werden und das Medium und/oder die zellulären
- 15 Komponenten auf die erhöhte Produktion des gewünschten Produktes (d.h. einer Aminosäure) untersucht wird. Solche Analysetechniken sind dem Fachmann wohlbekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromato-
- 20 graphie, wie Hochleistungs-Flüssigkeitschromatographie (s. bspw. Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993)
- 25 Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A. et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F. und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons;
- 30 Shaeiwitz, J.A. und Henry, J.D. (1988) Biochemical Separations, in Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).

Zusätzlich zur Messung des Fermentationsendproduktes ist es ebenfalls möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamt-Produkti-

- 40 vität des Organismus, die Ausbeute und/oder die Effizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (bspw. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums,
- 45 Analyse der Produktion gewöhnlicher Metabolite aus Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in

Applied Microbial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsg. IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und den darin angegebenen Literaturstellen beschrieben.

Beispiel 10: Reinigung des gewünschten Produktes aus C. glutamicum-Kultur

Die Gewinnung des gewünschten Produktes aus C. glutamicum-Zellen oder aus dem Überstand der vorstehend beschriebenen Kultur kann durch verschiedene, im Fachgebiet bekannte Verfahren erfolgen. Wird das gewünschte Produkt von den Zellen nicht sezerniert, können die Zellen aus der Kultur durch langsame Zentrifugation geerntet werden, die Zellen können durch Standard-Techniken, wie 15 mechanische Kraft oder Ultrabeschallung, lysiert werden. Die Zelltrümmer werden durch Zentrifugation entfernt, und die Überstandsfraktion, die die löslichen Proteine enthält, wird zur weiteren Reinigung der gewünschten Verbindung erhalten. Wird das Produkt von den C. glutamicum-Zellen sezerniert, werden die Zellen durch langsame Zentrifugation aus der Kultur entfernt, und die Überstandsfraktion wird zur weiteren Reinigung behalten.

Die Überstandsfraktion aus beiden Reinigungsverfahren wird einer Chromatographie mit einem geeigneten Harz unterworfen, wobei das gewünschte Molekül entweder auf dem Chromatographieharz zurückgehalten wird, viele Verunreinigungen in der Probe jedoch nicht, oder wobei die Verunreinigungen auf dem Harz zurückbleiben, die Probe hingegen nicht. Diese Chromatographieschritte können nötigenfalls wiederholt werden, wobei die gleichen oder andere Chromatographieharze verwendet werden. Der Fachmann ist in der Auswahl der geeigneten Chromatographieharze und der wirksamsten Anwendung für ein bestimmtes, zu reinigendes Molekül bewandert. Das gereinigte Produkt kann durch Filtration oder Ultrafiltration konzentriert und bei einer Temperatur aufbewahrt werden, bei der die Stabilität des Produktes maximal ist.

Im Fachgebiet sind viele Reinigungsverfahren bekannt, die nicht auf das vorhergehende Reinigungsverfahren eingeschränkt sind. Diese sind bspw. beschrieben in Bailey, J.E. & Ollis, D.F.

40 Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).

Die Identität und Reinheit der isolierten Verbindungen kann durch Standard-Techniken des Fachgebiets bestimmt werden. Diese um45 fassen Hochleistungs-Flüssigkeitschromatographie (HPLC), spektroskopische Verfahren, Färbeverfahren, Dünnschichtchromatographie,

NIRS, Enzymtest oder mikrobiologische Tests. Diese Analysever-

fahren sind zusammengefaßt in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; und Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Bd. 5 A27, VCH: Weinheim, S. 89-90, S. 521-540, S. 540-547, S. 559-566, 575-581 und S. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, 10 Bd. 17.

Äquivalente

Der Fachmann erkennt oder kann – indem er lediglich Routine-15 verfahren verwendet – viele Äquivalente der erfindungsgemäßen spezifischen Ausführungsformen feststellen. Diese Äquivalente sollen von den nachstehenden Patentansprüchen umfaßt sein.

20

25

30

35

Patentansprüche

- Isoliertes Nukleinsäuremolekül aus Corynebacterium glutamicum, das ein MCT-Protein oder einen Abschnitt davon codiert.
- Isoliertes Nukleinsäuremolekül nach Anspruch 1, wobei das Nukleinsäuremolekül ein MCT-Protein codiert, welches an der Produktion einer Feinchemikalie beteiligt ist.
 - 3. Isoliertes Nukleinsäuremolekül aus *Corynebacterium gluta-micum*, ausgewählt aus der Gruppe, bestehend aus den in Anhang A aufgeführten Sequenzen oder einem Abschnitt davon.
- Isoliertes Nukleinsäuremolekül, das eine Polypeptidsequenz codiert, ausgewählt aus der Gruppe, bestehend aus den in Anhang B angegebenen Sequenzen.
- 20 5. Isoliertes Nukleinsäuremolekül, das eine natürlich vorkommende allelische Variante eines Polypeptides codiert, ausgewählt aus der Gruppe von Aminosäuresequenzen, bestehend aus den in Anhang B aufgeführten Sequenzen.
- 25 6. Isoliertes Nukleinsäuremolekül, umfassend eine Nukleotidsequenz, die zu mindestens 50% zu einer Nukleotidsequenz, ausgewählt aus der Gruppe, bestehend aus den in Anhang A angegebenen Sequenzen oder einem Abschnitt davon, homolog ist.
- 30 7. Isoliertes Nukleinsäuremolekül, umfassend ein Fragment mit mindestens 15 Nukleotiden einer Nukleinsäure mit einer Nukleotidsequenz, ausgewählt aus der Gruppe, bestehend aus den in Anhang A angegebenen Sequenzen.
- 35 8. Isoliertes Nukleinsäuremolekül, das unter stringenten Bedingungen an ein Nukleinsäuremolekül nach einem der Ansprüche 1-7 hybridisiert.
- 9. Isoliertes Nukleinsäuremolekül, umfassend das NukleinsäureMolekül nach einem der Ansprüche 1-8 oder einen Abschnitt davon und eine Nukleotidsequenz, die ein heterologes Polypeptid
 codiert.

- Vektor, umfassend das Nukleinsäuremolekül nach einem der Ansprüche 1-9.
- 11. Vektor nach Anspruch 10, welcher ein Expressionsvektor ist.
- 12. Wirtszelle, die mit dem Expressionsvektor nach Anspruch 11 transfiziert ist.
- 13. Wirtszelle nach Anspruch 12, wobei die Zelle ein Mikro-organismus ist.
 - 14. Wirtszelle nach Anspruch 13, wobei die Zelle zur Gattung Corynebacterium oder Brevibacterium gehört.
- 15 15. Wirtszelle nach Anspruch 12, wobei die Expression des Nukleinsäuremoleküls eine Modulation der Produktion einer Feinchemikalie von der Zelle bewirkt.
- 16. Wirtszelle nach Anspruch 15, wobei die Feinchemikalie ausgewählt ist aus der Gruppe, bestehend aus organischen Säuren,
 proteinogenen und nichtproteinogenen Aminosäuren, Purin- und
 Pyrimidinbasen, Nukleosiden, Nukleotiden, Lipiden, gesättigten und ungesättigten Fettsäuren, Diolen, Kohlehydraten,
 aromatischen Verbindungen, Vitaminen, Cofaktoren und Enzymen.
- 17. Verfahren zur Herstellung eines Polypeptides, umfassend das Züchten der Wirtszelle nach Anspruch 12 in einem geeigneten Kulturmedium, um so das Polypeptid zu produzieren.
- 30 18. Isoliertes MCT-Polypeptid aus Corynebacterium glutamicum oder ein Abschnitt davon.
 - 19. Polypeptid nach Anspruch 18, wobei das Polypeptid an der Produktion einer Feinchemikalie beteiligt ist.
 - 20. Isoliertes Polypeptid, umfassend eine Aminosäuresequenz, ausgewählt aus der Gruppe, bestehend aus den in Anhang B angegebenen Sequenzen.
- 40 21. Isoliertes Polypeptid, umfassend eine natürlich vorkommende allelische Variante eines Polypeptides, umfassend eine Aminosäuresequenz, ausgewählt aus der Gruppe, bestehend aus den in Anhang B angegebenen Sequenzen, oder einen Abschnitt davon.
- **45** 22. Isoliertes Polypeptid nach einem der Ansprüche 18-21, das zudem heterologe Aminosäuresequenzen umfaßt.

- 23. Isoliertes Polypeptid, das von einem Nukleinsäuremolekül codiert wird, umfassend eine Nukleotidsequenz, die mindestens zu 50% homolog zu einer Nukleinsäure ist, ausgewählt aus der Gruppe, bestehend aus den in Anhang A angegebenen Sequenzen.
- 24. Isoliertes Polypeptid, umfassend eine Aminosäuresequenz, die mindestens zu 50% homolog zu einer Aminosäuresequenz ist, ausgewählt aus der Gruppe, bestehend aus den in Anhang B angegebenen Sequenzen.
- 25. Verfahren zur Herstellung einer Feinchemikalie, umfassend das Züchten einer Zelle, die einen Vektor nach Anspruch 12 enthält, so daß die Feinchemikalie produziert wird.
- 15 26. Verfahren nach Anspruch 25, wobei das Verfahren zudem den Schritt Gewinnen der Feinchemikalie aus der Kultur umfaßt.
- 27. Verfahren nach Anspruch 25, wobei das Verfahren zudem den Schritt Transfizieren der Zelle mit dem Vektor nach
 20 Anspruch 11 umfaßt, so daß eine Zelle erhalten wird, die den Vektor enthält.
 - 28. Verfahren nach Anspruch 25, wobei die Zelle zur Gattung Corynebacterium oder Brevibacterium gehört.
- 29. Verfahren nach Anspruch 25, wobei die Zelle ausgewählt ist aus der Gruppe bestehend aus Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium acetoglutamicum, Corynebacterium ammoniagenes,
- Corynebacterium acetophilum, Corynebacterium ammoniagenes,
 Corynebacterium fujiokense, Corynebacterium nitrilophilus,
 Brevibacterium ammoniagenes, Brevibacterium butanicum, Brevibacterium divaricatum, Brevibacterium flavum, Brevibacterium
 healii, Brevibacterium ketoglutamicum, Brevibacterium ketosoreductum, Brevibacterium lactofermentum, Brevibacterium
 linens, Brevibacterium paraffinolyticum und den in Tabelle 3
- 30. Verfahren nach Anspruch 25, wobei die Expression des Nuklein-40 säuremoleküls aus dem Vektor die Modulation der Produktion der Feinchemikalie bewirkt.

angegebenen Stämmen.

Verfahren nach Anspruch 25, wobei die Feinchemikalie ausgewählt ist aus der Gruppe, bestehend aus organischen Säuren, proteinogenen und nichtproteinogenen Aminosäuren, Purin- und Pyrimidinbasen, Nukleosiden, Nukleotiden, Lipiden, gesättig-

ten und ungesättigten Fettsäuren, Diolen, Kohlehydraten, aromatischen Verbindungen, Vitaminen, Cofaktoren und Enzymen.

- 32. Verfahren nach Anspruch 25, wobei die Feinchemikalie eine Aminosäure ist.
- 33. Verfahren nach Anspruch 32, wobei die Aminosäure aus der Gruppe stammt, bestehend aus Lysin, Glutamat, Glutamin, Alanin, Aspartat, Glycin, Serin, Threonin, Methionin,
 10 Cystein, Valin, Leucin, Isoleucin, Arginin, Prolin, Histidin, Tyrosin; Phenylalanin und Tryptophan.
- 34. Verfahren zur Herstellung einer Feinchemikalie, umfassend das Züchten einer Zelle, deren genomische DNA durch Einschluß
 15 eines Nukleinsäuremoleküls nach einem der Ansprüche 1-9 verändert worden ist.

20

25

30

35

Tabelle 1: Gene der Patentanmeldung ABC-Transporter

		ABC-TI	anspor	Ler	· ·
	ID#	Contig	NT Start	NT Stop	Funktion des Gens
5	RXN00164	VV0232	1782	94	Hypothetischer ABC Transporter ATP-Bindendes Protein
	RXN00733	VV0132	1647	2531	Hypothetischer ABC Transporter ATP-Bindendes Protein
	RXN01191	VV0169	10478	12067	Hypothetischer ABC Transporter ATP-Bindendes Protein
LO	RXN01212	VV0169	3284	4207	Hypothetischer ABC Transporter ATP-Bindendes Protein
	RXN01602	VV0229	1109	2638	Hypothetischer ABC Transporter ATP-Bindendes Protein
	RXN01881	VV0105	529	95	Hypothetischer ABC Transporter ATP-Bindendes Protein
.5	RXN01946	VV0228	2	1276	Hypothetischer ABC Transporter ATP-Bindendes Protein
	RXN02515	VV0087	962	1717	Hypothetischer ABC Transporter ATP-Bindendes Protein
	RXN00525	VV0079	26304	27566	Hypothetischer ABC Transporter Permease Protein
	RXN02096	VV0126	20444	22135	Hypothetischer ABC Transporter Permease Protein
	RXN00412	VV0086	53923	52844	Hypothetischer Aminosäure ABC Transporter ATP-Bindendes Protein
5	RXN00411	VV0086	52844	52170	Hypothetischer Aminosäure ABC Transporter Permease Protein
ٔ د.	RXN00243	VV0057	28915	27899	, P, G, R ATPase Untereinheiten von ABC transportern
	RXN00456	VV0076	6780	8156	, P, G, R ATPase Untereinheiten von ABC transportern
0	RXN01604	VV0137	8117	7470	, P, G, R ATPase Untereinheiten von ABC transportern
	RXN02547	VV0057	27726	25588	, P, G, R ATPase Untereinheiten von ABC transportern
	RXN02614	VV0313	5964	5236	TAURIN TRANSPORT ATP-BINDENDES PROTEIN TAUB
5	RXN02613	VV0313	5223	4267	TAURIN-BINDENDES PERIPLASMIC PRO- TEIN PRECURSOR
	RXN00368	VV0226	2300	726	SPERMIDIN/PUTRESCIN TRANSPORT ATP- BINDENDES PROTEIN POTA
	RXN01285	VV0215	1780	1055	EISENHALTIGES ENTEROBACTIN TRANS- PORT ATP-BINDENDES PROTEIN FEPC
0	RXN00523	VV0194	1363	338	EISENHALTIGES ENTEROBACTIN TRANS- PORT PROTEIN FEPG
	RXN01142	VV0077	5805	6302	NITRAT TRANSPORT ATP-BINDENDES
	RXN01141	VV0077	4644	5468	PROTEIN NRTD NITRAT TRANSPORT PROTEIN NRTA
					TRANSPORT ATP-BINDENDES PROTEIN
5	RXN02074	VV0318	12775	11153	CYDD PHOSPHONATE TRANSPORT ATP-BINDEN-
	RXN01002	VV0106	8858	8055	DES PROTEIN PHNC

BASF Aktiengesellschaft

	•			_	·
	ID#	Contig	NT Start	NT Stop	Funktion des Gens
	RXN01000	VV0106	7252	6407	PHOSPHONATE TRANSPORT SYSTEM PER- MEASE PROTEIN PHNE
5	RXN01732	VV0106	9944	8895	PHOSPHONATE-BINDENDES PERIPLASMI- SCHER PROTEIN VORLÄUFER
	RXN03080	VV0045	1670	2449	EISENHALTIGES ENTEROBACTIN TRANS- PORT ATP-BINDENDES PROTEIN FEPC
	RXN03081	VV00.45	2476	2934	EISENENTEROBACTIN-BINDENDES PERI- PLASMIC PROTEIN VORLÄUFER
10	RXN03082	VV0045	3131	3,451	EISENENTEROBACTIN-BINDENDES PERI- PLASMIC PROTEIN VORLÄUFER

- 15

			•									
Literaturstellen	Bachmann, B. et al. "DNA fragment coding for phosphoenolpyruvat corboxylase, recombinant DNA carrying said fragment, strains carrying the recombinant DNA and method for producing L-aminino acids using said strains," Patent: EP 0358940-A 3 03/21/90	Moeckel, B. et al. "Production of L-isoleucine by means of recombinant micro-organisms with deregulated threonine dehydratase," Patent: WO 9519442-A 5 07/20/95	Kobayashi, M. et al. "Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria," <i>Biochem. Biophys. Res. Commun.</i> 236(2):383–388 (1997)	Wachi, M. et al. "A murC gene from Coryneform bacteria," Appl. Microbiol. Biotechnol., 51(2):223-228 (1999)	Kimura, E. et al. "Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from Brevibacterium lacto-fermentum," Biosci. Biotechnol. Biochem., 60(10):1565–1570 (1996)							
Genfunktion	Phosphoenolpyruvatcarboxylase	Threonindehydratase					D-Glutamatracemase	Transketolase	Glutainin-2-oxoglutarataminotransferase große und kleine Untereinheiten	Aconitase	Replikationsprotein	Replikationsprotein; Aminoglycosid-adenyltransferase
Gen-Name	8dd		murC; ftsQ; ftsZ	murC; ftsQ	dtsR	dtsR1; dtsR2	ınırı	ıkı	gltB; gltD	acn	rep	rep; aad
GenBank TM Zugangs-Nr.	A09073	A45579, A45581, A45583, A45585 A45587	AB003132	AB015023	AB018530	AB018531	AB020624	AB023377	AB024708	AB025424	AB027714	AB027715

Tabelle 2

GenBank™ Gen-Name Genfunktion Zugangs-Nr. N-Acetylglutamat-5-semialdehyd-dehydrogenase JF005242 argC dehydrogenase JF030405 hisF Cyclase JF031518 argG Argininosuccinatsynthetase JF031518 argG Argininosuccinatsynthetase JF031518 argF Ornithincarbamolytransferase JF031518 argF Ornithincarbamolytransferase JF031518 argF Ornithincarbamolytransferase JF031518 argF Ornithincarbamolytransferase JF031518 argD Arginine-Repressor JF031518 argR Arginine-Repressor AF041436 argR Argininosuccinatlyase AF041436 argH Argininosuccinatlyase AF048764 argH Argininosuccinatlyase AF049897 argC; argJ; argB; glutamatkinase; Acetylornithin- transmingG; argH AF050109 inhA Enoyl-acyl-Carrierprotein-Reductase AF050109 inhA Enoyl-acyl-Carrierprotein-Reductase AFD-CATIONAR ATP-Denybrablentality	Literaturstellen Wehmeier, L. et al. "The role of the Corynebacterium glutamicum rel gene in (p)ppGpp inetabolism," Microbiology. 144:1853–1862 (1998) se;
argC c c c c c c c c c c c c c c c c c c c	is
glnA hisF argG argF aroD pyc pyc closed argR argR argH argC; argJ; argB; argC; argJ; argB; argC; argH argC; argH argC; argH argC; argH argC; argH	ي كذ
argG argG aroD pyc pyc cdciAE; apt; rel impA argR argH argC; arg!; argB; argC; argH argG; argH inhA inhA	ي كذ
argF aroD pyc dciAE; apt; rel impA argH argH argC; arg!; argB; argC; argH argG; argH inhA inhA	i
aroD pyc dciAE; apt; rel impA argH argH argC; argJ; argB; argC; argH argG; argH inhA inhA	ن ن
aroD dciAE; apt; rel impA argH argH argC; argJ; argB; argC; argH argC; argH argC; argH argC; argH argC; argH argC; argH	ي ك
dciAE; apt; rel argR impA argH argH; argB; argC; argJ; argB; argG; argH inhA inhA	ي كة
dciAE; apt; rel 1 argR impA argH argC; arg1; argB; argD; argF; argR; argG; argH inhA inhA	ي كنا
argR impA argH argC; argJ; argB; argG; argH inhA inhA	
argR impA argH argC; argJ; argB; argD; argF; argR; argG; argH inhA	;e;
argH argC; argJ; argB; argD; argF; argR; argG; argH inhA	
argC; argJ; argB; argD; argF; argR; argG; argH inhA	, j
argC; arg!; argB; argD; argF; argR; argG; argH inhA	
argC; arg1; argB; argD; argF; argR; argG; argH inhA	
argD; argF; argR; argG; argH inhA	
argG; argH inhA bisG	ase;
inhA Enoyl-acyl-hisG ATP_Phosn	ynthase;
inhA Enoyl-acyl-	
hieG	Se
. Demi-	
Phosphoribosylforni-	
AF051846 hisA mino-5-amino-1-phosphoribosyl-4-	
A E0623652 med A Homoserin-O-aceiv transferase	Park, S. et al. "Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum,"
	Mol. Cells., 8(3):286-294 (1998)
AF053071 aroB Dehydrochinatsynthetase	
AF060558 hisH Glutaminamidotransferase	

9-9	26	1,8	}	•	٠	.0).	z	•	•	,() (0:	5.	0	/	5	0	6	2	6	D	E
	•`												•										
•														•									

								64				_
Literaturstellen			Dusch, N. et al. "Expression of the Corynebacterium glutamicum pand gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli," <i>Appl. Environ. Microbiol.</i> , 65(4)1530–1539 (1999)					Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," J. Bacteriol., 180(22):6005–6012 (1998)	Wehrmann, A. et al. "Different modes of diaminopimelate synthesis and their role in cell wall integrity: A study with Corynebacterium glutamicum," J. Bacteriol., 180(12):3159–3165 (1998)		Jakoby, M. et al. "Nitrogen regulation in Corynebacterium glutamicum; Isolation of genes involved in biochemical characterization of corresponding proteins," FEMS Microbiol., 173(2):303–310 (1999)	
Genfunktion	Phosphoribosyl-ATP-pyrophospho- hydrolase	5-Enolpyruvylshikimat-3-phosphatsynthase	L-Aspartat-alpha-decarboxylase-Vorstufe	3-Dehydrochinase; Shikimatdehydrogenase	Chorismatsynthase; Shikimatkinase; 3–Dehydrochinatsynthase; mutmaßliche Cytoplasmapeptidase			Transport von Ectoine, Glycin, Betain, Prolin	Tetrahydrodipicolinatsuccinylase (unvollständig)	Phosphoenolpyruvatcarboxylase; ?; High affinity—Anmoniun—Aufnahmeprotein; mutmassliche Ornithin—cyclodecarboxylase; Sarcosinoxidase	Beteiligt an Zellteilung; PII protein; uridylyltransferase (Uridylyl-entfernendes Enziny); Signalerkennungspartikel; Low affinity-Ammonium-Aufnahmeprotein	Chloramphenicol-acetyltransferase
Gen-Name	hisE	aroA	panD	aroD; aroE	aroC; aroK; aroB; pepQ	inhA	inhA	ectP	дарД	ppc; secG; amt; ocd; soxA	ftsY, glnB, glnD; srp; anntP	cat
GenBank [™] Zugangs-Nr.	AF086704	AF114233	AF116184	AF124518	AF124600	AF145897	AF145898	AJ001436	AJ004934	AJ007732	AJ010319	AJ132968

992	618	 Q.Z.	.0050	/50626	DE
•	•	 : ": "	,	,	

						65	• •		••	••	••••	•
Literaturstellen	Molemaar, D. et al. "Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Coryne-bacteriun glutamicum," Eur. J. Biochem., 254(2):395-403 (1998)		Lichtinger, T. et al. "Biochemical and biophysical characterization of the ceuwall porin of Corynebacterium glutamicum: The channel is formed by a low molecular mass polypeptide," <i>Biochemistry</i> . 37(43):15024–15032 (1998)	Vertes, A.A. et al. "Isolation and characterization of 1531831, a transposable element from Corynebacterium glutamicum," Mol. Microbiol., 11(4):739–746 (1994)	Usuda, Y. et al. "Molecular cloning of the Corynebacterium glutamucum (Brevibacterium lactofermentum AJ12036) odhA gene encoding a novel type of 2–oxoglutarate dehydrogenase," <i>Microbiology</i> , 142:3347–3354 (1996)	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Fatent: JP 1987232392-A 1 10/12/87	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," ratent: JP 1987232392-A 2 10/12/87		Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87	Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87	Hatakeyama, K. et al. "DNA fragment containing gene capable of coding biotin synthetase and its utilization," Patent: JP 1992278088–A 1 10/02/92	Kohama, K. et al. "Gene coding diaminopelargonic acid anniotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284–A 1 11/18/92
Genfunktion	L-malate: Chinonoxidoreductase	NADH-dehydrogenase	Porin	Transposables Element IS31831	2-Oxoglutaratdehydrogenase	Homoserindehydrogenase; Homoserin-kinase	Stromaufwärts des Startcodons des Homoserinkinase-Gens	Tryptophan-Operon	Leader-Peptid; Anthranilatsynthase	Promotor – und Operator – Bereiche des Tryptophan – Operons	Biotinsynthase	Dianninopelargonsäureanninotransferase
Gen-Name	obui	ndh	porA		odhA	hdh; hk			upL; upE			
GenBank TM 7.192105C-Nr		AJ238250	AJ238703	D17429	D84102	E01358	E01359	E01375	E01376	E01377	E03937	E04040

992618	,·· .	0.Z.	·0050	/ 50626	DE
••••••	1 :	• • • •	· • • • • • • • • • • • • • • • • • • •	•	

Gentunktion
Desthiobiotinsynthetase
Flavum aspartase
Isocitratlyase
Isocitratlyase N-terminales Fragment
Prephenatdehydratase
Aspartokinase
Dihydro-dipichormatsynthetase
Diaminopimelinsäuredehydrogenase
Threoninsynthase
Prephenatdehydratase
mutierte Prephenatdehydratase
Acetohydroxysäuresynthetase
Aspartokinase
mutierte Aspartokinase alpha-Untereinheit

٠.				
GenBank TM Zugangs-Nr.	Gen-Name	Genfunktion	Literaturstellen	
E06827	-	mutierte Aspartokinase alpha-Untereinheit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94	
E07701	secY		Honno, N. et al. "Gene DNA participating in integration of membraneous protein to membrane," Patent: JP 1994169780-A 1 06/21/94	•
E08177		Aspartokinase	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94	
E08178, E08179, E08180, F08181		Durch Rückkopplungshemmung freigesetzte Aspartokinase	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94	
E08232		Acetohydroxysäureisomeroreduktase	Inui, M. et al. "Gene DNA coding acetohydroxy acid isomeroreductase," Patent: JP 1994277067-A 1 10/04/94	•
E08234	secE		Asai, Y. et al. "Gene DNA coding for translocation machinery of protem," Patent: JP 1994277073-A 1 10/04/94	
E08643		FT-Aminotransferase und Desthiobiotin- synthetase-Promotorbereich		67
E08646	,	Biotinsynthetase	Hatakeyama, K. et al. "DNA fragment having promoter tunction in coryne-form bacterium," Patent: JP 1995031476-A 1 02/03/95	
E08649		Aspartase	Kohama, K. et al "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031478-A 1 02/03/95	
E08900		Dihydrodipicolinatreductase	Madon, M. et al. "DNA fragment containing gene coding Dibydrodipicolinate acid reductase and utilization thereof," Patent: JP 1995075578-A 1 03/20/95	
E08901		Diaminopimelinsäuredecarboxylase	Madori, M. et al. "DNA fragment containing gene coding Diaminopimelic acid decarboxylase and utilization thereof," Patent: JP 1995075579–A 1 03/20/95	
E12594	,	Serinhydroxymethyltransferase	Hatakeyama, K. et al. "Production of L-trypophan," Patent: JP 1997028391-A 1 02/04/97	
E12760, E12759, E12758		Transposase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	

						-8072	um gene," 89	mm:	spho- zymes II C. et al. unicum	malate
Literaturstellen	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97.	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291–A 03/18/97	Hatakeyama, K. et al. "Glucose-6-phosphate dehydrogenase and DNA capable of coding the same," Patent: JP 1997224661-A 1 09/02/97	Moeckel, B. et al. "Functional and structural analysis of the threonine dehydratase of Corynebacterium glutamicum," J. Bacteriol., 174:8065–8072 (1992)	Chen, C. et al. "The cloning and nucleotide sequence of Corynebacteriun glutamicum 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase gene," <i>FEMS Microbiol. Lett.</i> , 107:223-230 (1993)	Keilhauer, C. et al. "Isoleucine synthesis in Corynebacteriun glutamicum: nolecular analysis of the ilvB-ilvN-ilvC operon," J. Bacteriol., 175(17):5595–5603 (1993)	Fouet, A et al. "Bacillus subtilis sucrose–specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria," <i>PNAS USA</i> . 84(24):8773–8777 (1987); Lee, J.K. et al. "Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence," <i>FEMS Microbiol. Lett.</i> , 119(1–2):137–145 (1994)	Lee, H-S. et al. "Molecular characterization of aceB, a gene encoding malate synthase in Corynebacterium glutamicum," J. Microbiol. Biotechnol. 4(4):256-263 (1994)
Genfunktion	Arginyl-tRNA synthetase; Diaminopimelin-säuredecarboxylase	Dihydrodipicolinsäuresynthetase	Aspartokinase	Dihydrodipicolinsäurereductase	Glucose-6-phosphatedehydrogenase	Threonindehydratase	3-Desoxy-D-arabinoheptulosonat-7-phosphatsynthase	Acetohydroxysäuresynthase, froße Unter- einheit; Acetohydroxysäuresynthase kleine Untereinheit; Acetohydroxysäure-isomero- reductase	Phosphoenolpyruvat–Zuckerphospho- transferase	Malatsynthase
Gen-Name						IlvA	EC 4.2.1.15	IIvB; ilvN; ilvC	PısM	aceB
GenBank ^{rw} Zugangs-Nr.	E12764	E12767	E12770	E12773	E13655	L01508	L07603	L09232	L18874	L27123

	rom			(986)			69	,	re en.	ıre ien.
Literaturstellen	Jetten, M. S. et al. "Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum," <i>Appl. Environ. Microbiol.</i> , 60(7):2501–2507 (1994)		Oguiza, J.A. et al. "Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR from Brevibacterium lactofermentum," J. Bacteriol., 177(2):465–467 (1995)	Follettie, M.T. et al. "Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum phe Agene," J. Bacteriol., 167:695–702 (1986)	Park, Y-H. et al. "Phylogenetic analysis of the coryneform bacteria by 56 rRNA sequences," J. Bacteriol., 169:1801–1806 (1987)	Sano, K. et al. "Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," <i>Gene</i> , 52:191–200 (1987)	Sano, K. et al. "Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," <i>Gene</i> , 52:191–200 (1987)	O'Regan, M. et al. "Cloning and nucleotide sequence of the Phosphoenol-pyruvate carboxylase—coding gene of Corynebacterium glutamicum ATCC13032," <i>Gene</i> , 77(2):237–251 (1989)	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167–1175 (1992)	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167–1175 (1992)
Genfunktion	Pyruvatkinase	Isocitratlyase	Diphthenetoxinrepressor	Prephenatdehydratase		Anthranilatsynthase, 5'-Ende	Tryptophansynthase, 3'-Ende	Phosphoenolpyruvatcarboxylase	23S rRNA-Gen-Insertionssequenz	23S rRNA-Gen-Insertionssequenz
Gen-Name		aceA	dtxr		SS rRNA	upE	ирА			
GenBank [™] Zugangs-Nr.	L27126	L28760	L35906	M13774	M16175	M16663	M16664	M25819	M85106	M85107, M85108

_				70			•		`
Literaturstellen	Rossol, I. et al. "The Corynebacterium glutamicum aecD gene encodes a C–S lyase with alpha, beta–elimination activity that degrades aminoethylcysteine," <i>J. Bacteriol.</i> , 174(9):2968–2977 (1992); Tauch, A. et al. "Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product," <i>Arch. Microbiol.</i> , 169(4):303–312 (1998)	Herry, D.M. et al. "Cloning of the trp gene cluster from a tryptophan-hyper-producing strain of Corynebacterium glutamicum: identification of a mutation in the trp leader sequence," <i>Appl. Environ. Microbiol.</i> , 59(3):791–799 (1993)	O'Gara, J.P. and Dunican, L.K. (1994) Complete nucleotide sequence of the Corynebacterium glutamicum ATCC 21850 tpD gene." Thesis, Microbiology Department, University College Galway, Ireland.	Schafer, A. et al. "Cloning and characterization of a DNA region encoding a stress–sensitive restriction system from Corynebacterium glutamicum ATCC 13032 and analysis of its role in intergeneric conjugation with Escherichia coli," J. Bacteriol., 176(23):7309–7319 (1994); Schafer, A. et al. "The Corynebacterium glutamicum cglIM gene encoding a 5–cytosine in an McrBC-deficient Escherichia coli strain," Gene, 203(2):95–101 (1997)		Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412–4419 (1996)	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412–4419 (1996)	Serebriiskii, I.G., "Two new members of the bio B superfamily: Cloning, sequencing and expression of bio B genes of Methylobacillus flagellatun and Corynebacterium glutamicum," <i>Gene</i> . 175:15–22 (1996)
Genfunktion	Beta C-S lyase; Verzweigtketten-Aminosäure-Aufnahme-Carrier; hypothetisches Protein yhbw	Leader–Gen (Promotor)	Anthranilatphosphoribosyltransferase	mutmaßliche Typ II 5–Cytosin-methyl- transferase; mutmaßliche Type II Restriktionsendonuklease; mutmaßliche Typ I- oder Typ III Restriktions-endo- nuklease			L-Prolin: NADP+ 5-Oxidoreduktase	?;Gannna glutamylkinase; ähnlich den D-isoinerspezifischen 2-Hydroxysäure- dehydrogenasen	Biotinsynthase
Gen-Name	aœD; bmQ; yhbw	тр .	трД	cgliM; cgliR; clglIR	recA	xdd	proC	obg; proB; unkdh	bioB
GenBank ^{rw} Zugangs-Nr.	M89931	S59299 .	U11545	U13922	U14965	U31224	U31225	U31230	U31281

9 9	26	3-8	•••	•	O.Z.	•	0.0	56)./ 5	06	526	DE
	•	•	•	•	• •	•	•	•	•			

							71			
Literaturstellen	Jager, W. et al. "A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin—carboxyl—carrier proteins," <i>Arch. Microbiol.</i> , 166(2);76–82 (1996)	Jager, W. et al. "A Corynebacterium glutamicum gene conferring multidrug resistance in the heterologous host Escherichia coli," J. Bacteriol., 179(7):2449–2451 (1997)				Matsui, K. et al. "Complete nucleotide and deduced annino acid sequences of the Brevibacterium lactofermentum tryptophan operon," <i>Nucleic Acids Res.</i> , 14(24):10113–10114 (1986)	Yeh, P. et al. "Nucleic sequence of the lysA gene of Corynebacterium glutamicum and possible mechanisms for modulation of its expression," <i>Mol. Gen. Genet.</i> , 212(1):112–119 (1988)	Eikmanns, B.J. et al. "The Phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum: Molecular cloning, nucleotide sequence, and expression," <i>Mol. Gen. Genet.</i> , 218(2):330–339 (1989); Lepiniec, L. et al. "Sorghum Phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution," <i>Plant. Mol. Biol.</i> , 21 (3):487–502 (1993)	Von der Osten, C.H. et al. "Molecular cloning, nucleotide sequence and fine-structural analysis of the Corynebacterium glutamicum fda gene: structural comparison of C. glutamicum fructose—1, 6—biphosphate aldolase to class I and class II aldolases," Mol. Microbiol.,	Bonnassie, S. et al. "Nucleic sequence of the dapA gene from Coryne-bacterium glutamicum," <i>Nucleic Acids Res.</i> , 18(21):6421 (1990)
Genfunktion	Thiosulfatschwefeltransferase; Acyl CoA-Carboxylase	Multidrug-Resistenzprotein	Hitzeschock-ATP-Bindungsprotein	3'5"-Aminoglycosidphosphotransferase	Nicht identifizierte Corynebacterium glutamicum-Sequenz, die an der Histidin- biosynthese beteiligt ist, partielle Sequenz	Tryptophanoperon	DAP-Decarboxylase (meso-diamino- pimelatdecarboxylase, EC 4.1.1.20)	Phosphoenolpyruvatcarboxylase	Fructose-bisphosphataldolase	L-2, 3-Dihydrodipicolinatsynthetase (EC 4.2.1.52)
Gen-Name	thtR; accBC	cınr	clpB	aphA-3		տA; տB; տC; տD; տE; տG; տL	lys A	EC 4.1.1.31	fda	dapA
GenBank [™] Zugangs-Nr.	U35023	U43535	U43536	U53587	U89648	X04960	X07563	X14234	X17313	X53993

GenBank ^{tw} Zugangs-Nr.	Gen-Name	Genfunktion	Literaturstellen
X54223		AttB-verwandte Stelle	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol, Lett., 66:299–302 (1990)
X54740	argS; lysA	Arginyl-tRNA-synthetase; Diamino- pimelat- decarboxylase	Marcel, T. et al. "Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene," Mol. Microbiol. 4(11):1819–1830 (1990)
X55994	trpL; trpE	nnutmaßliches Leader-Peptid; Anthranilat- synthase-Komponente 1	Heery, D.M. et al. "Nucleotide sequence of the Corynebacterium glutamicum trpE gene," Nucleic Acids Res., 18(23):7138 (1990)
X56037	thrC	Threoninsynthase -	Han, K.S. et al. "The molecular structure of the Corynebacterium glutamicum threonine synthase gene," Mol. Microbiol., 4(10):1693–1702 (1990)
X56075	attB-verwandte Stelle	Bindungsstelle	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol, Lett., 66:299–302 (1990)
X57226	lysC-alpha; lysC-beta; asd	Aspartokinase–alpha–Untereinheit; Asparto-kinase–beta–Untereinheit; Aspartat– beta–seinialdehyddehydrogenase	
X59403	gap;pgk; tpi	Glyceraldehyde-3-phosphat; Phospho- glyceratkinase; Triosephosphat-isomerase	Eikmanns, B.J. "Identification, sequence analysis, and expression of a Coryne-bacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomeras," J. Bacteriol., 174(19):6076–6086 (1992)
X59404	gdh	Glutamatdehydrogenase 2	Bormann, E.R. et al. "Molecular analysis of the Corynebacteriun glutamicum gdh gene encoding glutamate dehydrogenase," <i>Mol. Microbiol.</i> , 6(3):317–326 (1992)
X60312	lysI	L-Lysinpernease	Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium glutamicum lysl gene involved in lysine uptake," <i>Mol. Microbiol.</i> , 5(12):2995–3005 (1991)

				· · · ,		73′				
Literaturstellen	Joliff, G. et al. "Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: The deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex," Mol. Microbiol., 6(16):2349–2362 (1992)	Eikmanns, B.J. et al. "Cloning sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase," <i>Microbiol.</i> , 140:1817–1828 (1994)	< 5.6	Peyret, J.L. et al. "Characterization of the cspB gene encoding PS2, an ordered surface—layer protein in Corynebacterium glutamicum," Mol. Microbiol. 9(1):97–109 (1993)	Bonamy, C. et al. "Identification of IS1206, a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis," Mol. Microbiol. 14(3):571–581 (1994)	Patek, M. et al. "Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis," Appl. Environ. Microbiol., 60(1):133–140 (1994)	Eikmanns, B.J. et al. "Cloning sequence analysis, expression, and mactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme," J. Bacteriol., 177(3):774–782 (1995)	-	Heery, D.M. et al. "A sequence from a tryptophan-hyperproducing strain of Corynebacterium glutamicum encoding resistance to 5-methyltryptophan," <i>Biochem. Biophys. Res. Commun.</i> , 201(3):1255–1262 (1994)	Fitzpatrick, R. et al. "Construction and characterization of rec.A mutant strains of Corynebacterium glutamicum and Brevibacterium lactofermentum," <i>Appl. Microbiol. Biotechnol.</i> , 42(4):575–580 (1994)
Genfunktion	Ps1 protein	Citratsynthase	Dihydrodipicolinatreductase	Oberflächenprotein PS2	IS3 –verwandtes Insertionselement	Isopropylmalatsynthase	Isocitratdehydrogenase (NADP+)	Glutamatdehydrogenase (NADP+)	5-Methyltryptophanresistenz	
Gen-Name	cop1	glt	dapB	csp2		leuA	icd	GDHA	штА	recA
GenBank TM Zugangs-Nr.	X66078	X66112	X67737	X69103	X69104	X70959	X71489	X72855	X75083, X70584	X75085

GenBank TM Zugangs-Nr.	Gen-Name	Genfunktion	Literaturstellen
X75504	aceA; thiX	partielle Isocitratlyase; ?	Reinscheid, D. J. et al. "Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme," J. Bacteriol., 176(12):3474–3483 (1994)
X76875		ATPase beta-Untereinheit	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," <i>Antonie Van Leeuwenhoek</i> , 64:285–305 (1993)
X77034	tuf	Elongationsfaktor Tu	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," Antonie Van Leeuwenhoek, 64:285–305 (1993)
X77384	recA		Billman-Jacobe, H. "Nucleotide sequence of a rech. gene from Colyno-bacterium glutamicum," DNA Seq., 4(6):403–404 (1994)
X78491	aceB	Malatsynthase	E & E
X80629	16S rDNA	16S ribosomale RNA	Rainey, F.A. et al. "Phylogenetic analysis of the genera Knodococcus and Norcardia and evidence for the evolutionary origin of the genus Norcardia from within the radiation of Rhodococcus species," <i>Microbiol.</i> , 141:523–528 (1995)
X81191	gluA; gluB; gluC; gluD	Glutainat-Aufnahinesystem	Kronemeyer, W. et al. "Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum," J. Bacteriol., 177(5):1152–1158 (1995)
X81379	dapE	Succinyldiaminopimelatdesuccinylase	Wehrmann, A. et al. "Analysis of different DNA tragments of Coryuchacterium glutamicun complementing dapE of Escherichia coli," Microbiology, 40:3349–56 (1994)
X82061	16S rDNA	16S ribosomale RNA	Ruiny, R. et al. "Fnylogeny of the genus Colyneoacterium acateera analyses of small-subunit ribosomal DNA sequences," Int. J. Syst. Bacteriol., 45(4):740–746 (1995)
X82928	asd; lysC	Aspartatsemialdehyddehydrogenase; ?	Screbrijski, I. et al. "Mulucopy suppression by asu gene and osmore stress-dependent complementation by heterologous proA in proA mutants," J. Bacteriol., 177(24):7255–7260 (1995)

						75				· · · · · · · · · · · · · · · · · · ·
Tieraturctellen	Eliteratus Services S	Screenjski, i. et al. Mullidopy suppression of an existence mutants," stress-dependent complementation by heterologous proA in proA mutants," J. Bacteriol, 177(24):7255–7260 (1995)	Pascual, C. et al. "Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences," <i>Int. J. Syst. Bacteriol.</i> , 45(4):724–728 (1995)	Wehrmann, A. et al. "Functional analysis of sequences adjacent to tape of Corynebacterium glutamicumproline reveals the presence of aroP, which encodes the aromatic amino acid transporter," J. Bacteriol. 177(20):5991–5993 (1995)	Sakanyan, V. et al. "Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway," <i>Microbiology</i> , 142:99–108 (1996)	Reinscheid, D.J. et al. "Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase," <i>Microbiology</i> , 145:503–513 (1999)	Le Marrec, C. et al. "Genetic characterization of site-specific integration functions of phi AAU2 infecting "Arthrobacter aureus C70," J. Bacteriol., 178(7):1996–2004 (1996)	Patek, M. et al. "Promoters from Corynebacterium guuaimeum: cuomig, molecular analysis and search for a consensus motif," <i>Microbiology</i> . 142:1297–1309 (1996).	Patek, M. et al. "Promoters from Corynebacterum gutamcum: cloums, molecular analysis and search for a consensus motif," <i>Microbiology</i> . 142:1297–1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium gludamedum. Colume, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297–1309 (1996)
	Genfunktion	Gamma-glutamylphosphatreduktase	16S ribosonnale RNA	aromatische Aminosäurepermease; ?	Acetylglutamatkinase; N-acetyl-gamma-glutamyl-phosphatreduktase; Acetylomithinaminotransferase; Ornithin-carbamoyltransferase; Glutamat-N-acetyltransferase	Phosphatacetyltransferase; Acetatkinase	Bindungsstelle	Promotorfragment F1	Promotorfragment F2	Promotorfragment F10
	Gen-Naine	proA	16S rDNA	aroP; dapE	argB; argC; argD; argF; argJ	pta; ackA	attB			
ConBontin	Zugangs-Nr.	X82929	X84257	X85965	X86157	X89084	X89850	X90356	X90357	X90358

9926	₹ . 6	_**	, c).Z.	0.0	50/50	626
• • • • •	• •	•	: '	·	***		

;	, -			,	76	5			· · · · · · · · · · · · · · · · · · ·	·
Literaturstellen	Patek, M. et al., "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297–1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297–1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297–1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297–1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297–1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> . 142:1297–1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297–1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutaimcum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> . 142:1297–1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> . 142:1297–1309 (1996)	Patek, M. et al. "Promoters from Corynebacteruun glutamucum: clonung, molecular analysis and search for a consensus motif," <i>Microbiology</i> . 142:1297–1309 (1996)
Genfunktion	Promotorfragment F13	Promotorfragment F22	Promotorfragment F34	Promotorfragment F37	Promotorfragment F45	Promotorfragment F64	Promotorfragment F75	Promotorfragment PF101	Promotorfragment PF104	Promotorfragment PF109.
Gen-Name								,		
GenBank TM	X90359	X90360	X90361	X90362.	X90363	X90364	X90365	X90366	X90367	X90368

982	e 1·8	•**•	Q. Z.	0.05	50/50626	D
77			***	***		
	Т					

					77		• •	**		·
Literaturstellen	Siewe, R.M. et al. "Functional and genetic characterization of the (methyl) amnonium uptake carrier of Corynebacterium glutamicum," J. Biol. Chem., 271(10):5398–5403 (1996)	Peter, H. et al. "Isolation, characterization, and expression of the Coryne-bacterium glutamicum betP gene, encoding the transport system for the compatible solute glycine betaine," J. Bacteriol., 178(17):5229–5234 (1996)	Patek, M. et al. "Identification and transcriptional analysis of the dapb—ORF2—dapA—ORF4 operon of Corynebacterium glutamicum, encoding two enzymes involved in L-lysine synthesis," <i>Biolechnol. Lett.</i> . 19:1113—1117 (1997)	Vrljic, M. et al. "A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum," <i>Mol. Microbiol.</i> , 22(5):815–826 (1996)	Sahin, H. et al. "D-pantothenate synthesis in Corynebacteriun glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction," <i>Appl. Environ. Microbiol.</i> , 65(5):1973–1979 (1999)		Ramos, A. et al. "Cloning, sequencing and expression of the gene encoding elongation factor P in the amino—acid producer Brevibacterium lactof-ermentum (Corynebacterium glutamicum ATCC 13869)," Gene. 198:217–222 (1997)	Mateos, L.M. et al. "Nucleotide sequence of the homoserine kinase (thrB) gene of the Brevibacterium lactofermentum," <i>Nucleic Acids Res.</i> , 15(9):3922 (1987)	Ishino, S. et al. "Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from Corynebacterium glutamicum," <i>Nucleic Acids Res.</i> , 15(9):3917 (1987)	Mateos, L.M. et al. "Nucleotide sequence of the homoserne dehydrogenase (thrA) gene of the Brevibacterium lactofermentum," Nucleic Acids Res 15(24):10598 (1987)
Genfunktion	Ammonium-Transportsystem	Glycin-Betain-Transportsystem		Lysinexporterprotein; Lysinexportregulator- protein	3-Methyl-2-oxobutanoatehydroxymethyl-transferase; Pantoat-beta-alaninligase; Xylulokinase	Insertionssequenz IS1207 und Transposase	Elongationsfaktor P	Homoserinkinase	Meso-diaminopimelat-D-dehydrogenase (EC 1.4.1.16)	Homoserindehydrogenase
Gen-Name	aınt	betP	orf4	lysE; lysG	panB; panC; xylB			thrB	ddh	thrA
GenBank TM Zugangs-Nr.	X93513	X93514	X95649 .	X96471	X96580	X96962	X99289	Y00140	Y00151	Y00476

	<i>'</i> .			•		78					
Literaturstellen	Peoples, O.P. et al. "Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon," <i>Mol. Microbiol.</i> , 2(1):63–72 (1988)	Honrubia, M.P. et al. "Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum," <i>Mol. Gen. Genet.</i> , 259(1):97–104 (1998)	Peter, H. et al. "Isolation of the putP gene of Corynebacterium glutamicum- proline and characterization of a low-affinity uptake system for compatible solutes," <i>Arch. Microbiol.</i> , 168(2):143–151 (1997)	Peters-Wendisch, P.G. et al. "Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene," <i>Microbiology</i> , 144:915–927 (1998)	Patek, M. et al. "Analysis of the leuB gene from Corynebacterium glutamicum," Appl. Microbiol. Biotechnol., 50(1):42–47 (1998)	Moreau, S. et al. "Site-specific integration of corynephage Phi-16: The construction of an integration vector," <i>Microbiol.</i> , 145:539–548 (1999)	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/ proline/glycine betaine carrier, EctP," J. Bacteriol., 180(22):6005–6012 (1998)	Jakoby, M. et al. "Isolation of Corynebacterium glutamicum glnA gene encoding glutamine synthetase I," FEMS Microbiol. Lett., 154(1):81–88 (1997)	1100.1.00	Moreau, S. et al. "Analysis of the integration functions of expni;304L: An integrase module among corynephages," <i>Vivology</i> , 255(1):150–159 (1999)	Oguiza, J.A. et al. "A gene encoding arginyl—IRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum: Regulation of argS—lysA cluster expression by arginine," J. Bacteriol., 175(22):7356–7362 (1993)
Genfunktion	-Homoserindehydrogenase; Homoserin-kinase	UPD-N-Acetylinuramatalaninligase; Teilungsinitiationsprotein oder Zellteilungs- protein; Zellteilungsprotein	High affinity-Prolintransportsystem	Pyruvatcarboxylase	3-Isopropylinalatdehydrogenase	Bindungsstelle Bacteriophage Phi-16	Prolin/Ectoin-Aufnahmesystemprotein	Glutaminsynthetase I	Dihydrolipoamiddehydrogenase	Bindungsstelle Corynephage 304L	Arginyl-tRNA-Synthetase; Diamino- pimelatdecarboxylase (partiell)
Gen-Name	hom; thrB	nnurC; ftsQ/divD; ftsZ	putP	pyc	lcuB		proP	glnA	pdl		argS; lysA
GenBank TM Zugangs–Nr.	Y00546	Y08964	Y09163	Y09548	Y09578	Y12472	Y12537	Y13221	Y16642	Y18059	221501

•						79	
Literaturstellen	Pisabarro, A. et al. "A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dibydrodipicolinate reductase, and a third polypeptide of unknown function," J. Bacteriol., 175(9):2743–2749 (1993)	Malumbres, M. et al. "Analysis and expression of the thrC gene of the encoded threonine synthase," Appl. Environ. Microbiol., 60(7)2209–2219 (1994)		Oguiza, J.A. et al "Multiple signa factor genes in Brevibacterium facto-fermentum: Characterization of sigA and sigB," J. Bacteriol., 178(2):550–553 (1996)	Oguiza, J.A. et al "The galE gene encoding the UDP-galactose 4-epimerase of Brevibacterium lactofermentum is coupled transcriptionally to the dmdR gene," Gene, 177:103-107 (1996)	Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium lacto-fermentum: Characterization of sigA and sigB," J. Bacteriol., 178(2):550–553 (1996)	Correia, A. et al. "Cloning and characterization of an IS-like element present in the genome of Brevibacterium lactofermentum ATCC 13869," <i>Gene</i> . 170(1):91–94 (1996)
Genfunktion	Dihydrodipicolinatsynthase; Dihydrodipicolinatreduktase	Threoninsynthase	Gene für 16S ribosomale RNA	SigA-Signafaktor	Katalytische Aktiviät UDP-Galactose 4-epimerase; Diphtherietoxin-regulatorisches Protein	?; SigB-Signafaktor	Transposase ?
Gen-Name	dapA; dapB	thrC	16S rDNA	sigA	galE; dtxR	orfl; sigB	
GenBank [™] Zugangs–Nr.	221502	Z29563	Z46753	249822	Z49823	249824	Z66534

den Erfindern der vorliegenden Erfindung erhaltene Sequenz ist jedoch erheblich länger als die Eine Sequenz für dieses Gen wurde in den angegebenen Literaturstellen veröffentlicht. Die von Startcodon beruht und somit nur ein Fragment des tatsächlichen codierenden Bereichs darstellt veröffentlichte Version. Man nimmt an, daß die veröffentlichte Version auf einem inkorrekten

Corynebacterium- und Brevibacterium-Stämme, die sich in der erfindungsgemäßen Praxis einsetzen lassen. TABELLE 3:

_	_				1			_			г	Γ	_					· -				_				1	<u> </u>
DSMZ																			:								
NCTC									ļ														1				
CBS										-												,					
NCIMB																						-					
CECT							٠.												1		·						
NRRL			· ¿				,												B11474	B11472							
FERM															P928					,		د					
ATCC	21054	19350	19351	19352	19353	19354	19355	19356	21055	21077	21553	21580	39101	21196	21792	21474	21129	21518			21127	21128	21427	21475	21217	21528	21529
Art	annomagenes	ammoniagenės	ammoniagenes	anninoniagenes	annnoniagenes	annnoniagenes	annnoniagenes	ammoniagenes	amnoniagenes	ammoniagenes	ammoniagenes	ammoniagenes	ammoniagenes	butanicum	divaricatum	flavun	flavum	flavun	flavun	flavum	flavum						
Gattung	Brevibacteriun	Brevibacterium	Brevibacteriun	Brevibacteriun	Brevibacterium	Brevibacteriun	Brevibacteriun	Brevibacterium	Brevibacteriun	Brevibacterium	Brevibacterium	Brevibacterium	Brevibacterium	Brevibacterium	Brevibacteriun	Brevibacterium	Brevibacterium	Brevibacterium	Brevibacteriun								

Г	Τ_	Τ-	Ī	Γ	Γ	Г	Γ		Ι	I	Τ	Γ	Π	Т	Т	Г	Γ	Γ	Γ.	Г		Γ:-		Г	Γ	<u> </u>				Γ
DSMZ									,								-													
NCTC																														
CBS																,	,									717.73	717.73			
NCIMB																									11160					
CECT									70	74	11																	,		
NRRL	B11477	B11478		B11474												B11470	B11471											·		
FERM																														
. ATCC			21127	,	15527	21004	21089	21914				21798	21799	21800	21801			21086	21420	21086	31269	9174	19391	8377				14604	21860	21864
Art	flavum	flavun	flavum	flavun	healii	ketoglutamicum	ketoglutamicum	ketosoreductum	lactofermentum	lineas	linens	linens	paraffinolyticum	spec.	spec.	spec.	spec.	spec.												
Gattung	Brevibacterium	Brevibacteriun	Brevibacterium	Brevibacterium	Brevibacterium	Brevibacterium	Brevibacterium	Brevibacterium	Brevibacteriun	Brevibacterium	Brevibacterium	Brevibacteriun	Brevibacterium	Brevibacteriun	Brevibacterium	Brevibacterium	Brevibacterium	Brevibacterium	Brevibacterium	Brevibacterium	Brevibacterium		Brevibacterium	Brevibacteriun						

_		_																	,	.										
DSMZ																ļ.														
NCTC								,				2399																		*
CBS																														
NCIMB				ļ.			-																							
CECT											-													1						` .
NRRL	, ,					B11473	B11475				B3671																			
FERM			,											-				,	,								`.			
ATCC	21865	21866	19240	21476	13870		,	15806	21491	31270		6872	15511	21496	14067	39137	21254	21255	31830	13032	14305	15455	13058	13059	13060	21492	21513	21526	21543	13287
Art	sbec.	sbec.	sbec.	acetoacidophilum	acetoacidophilum	acetoglutamicum	acetoglutamicum	acetoglutamicum	acetoglutamicum	acetoglutamicum	acetophilum	ammoniagenes	ammoniagenes	fujiokense	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutaınicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutannicum	glutamicum	glutamicum	glutamicum	glutamicum .
Gattung	Brevibacterium	Brevibacteriun	Brevibacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium	Corynebacterium :	Corynebacterium	Corynebacterium	Corynebacterium	Corynehacterium	Corynebacterium									

																														_
DSMZ	,																											.		
NCTC																				,										
CBS								-												.										
NCIMB								-	-																					
CECT																														
NRRL				,															,					-						
FERM .					4																									
ATCC	21851	21253	721514	21516	21299	21300	39684	21488	21649	21650	19223	13869	21157	21158	21159	21355	31808	21674	21562	21563	21564	21565	71566	21567	21568	21569	21570	21571	21572	21573
Art	glutamicum																													
Gattung	Corynebacterium																													

84

							•				_				-															
DSMZ										Í																				
NCTC		·					,						-				·												_	
CBS						•									-						`									`
NCIMB														,					-									11594		
CECT																		,												
NRRL				,																B8183	B8182	B12416	B12417	B12418	B11476				. ,	
FERM		٠														,							`				P973		P4445	P4446
ATCC	21579	19049	19050	19051	19052	19053	19054	19055	19056	19057	19058	19059	19060	19185	13286	21515	21527	21544	21492							21608		21419		·
Art	glutamicum	glutainicum	glutainicuin	glutainicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	lilium	nitrilophilus	spec.	spec.																
Gattung	Corynebacterium																													

Gattung	Art	ATCC	FERM	NRRL	CECT	FERM NRRL CECT NCIMB	CBS	NCTC	NCTC DSMZ
Corynebacterium	spec.	31088							
Corynebacterium	spec.	31089							
Corynebacterium	spec.	31090						\	
Corynebacterium	spec.	31090	-						
Corynebacterium	spec.	31090			•				`
Corynebacterium	spec.	15954							20145
Corynebacterium	spec.	21857					,		
Corynebacterium	spec.	21862			·				
Corynebacterium	spec.	21863		·.					

ATCC: American Type Culture Collection, Rockville, MD, USA

FERM: Fermentation Research Institute, Chiba, Japan

ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL, USA NRRL:

CECT: Coleccion Espanola de Cultivos Tipo, Valencia, Spain

National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, UK NCIMB:

CBS: Centraalbureau voor Schimmelcultures, Baarn, ML

NCTC: National Collection of Type Cultures, London, UK

Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany DSMZ:

fungi and yeasts (4. Aufl.), World federation for culture collections world data center on Siehe Sugawara, H. et al. (1993) World directory of collections of cultures of microorganisms: Saimata, Japen microorganisms, Bacteria,

RXN03082 translatiert von RXN03082 (9827) von 1 bis 321 MVMPESAMLTGLIREAGGTPVVDSLGAVGTITADPEQVVAMAPEIIIIQDFQGKGRENFANFLSNPALANVPAIENDKIFYAD TVTTGVTAGTDITTGLQQVAEMLS

RXN03082 - 5'-Region CAGAAGCAATCGACAATCGACAAGCCTGCCACCTGTGCTCACTTTGATGC AACGCGGACCACGCCAA

RXN03082 - kodierende Region
ATGGTCATGCCAGAATCTGCCATGCTCACCGGCCTGATCCGCGAAGCCGGCGCACTCCAGTGGTAGATTCTCTCGGCGCGGT
AGGCACCATCACTGCAGACCCAGAACAAGTTGTTGCGATGGCACCTGAGATCATCATCATTCAGGACTTCCAAGGTAAAAGGCC
GAGAGAACTTCGCTAATTTCCTCTCCAACCCAGCGCTAGCCAACGTTCCCGCCATTGAAAACGACAAGATTTTCTACGCCGAC
ACTGTCACCACTGGAGTTACTGCAGGTACCGATATCACCACTGGTCTGCAGCAAGTGGCAGAAATGCTGAGC

RXN03082 - 3'-Region TAGTTTTGAGATGTTGAAACTAG RXN03081 translatiert von RXN03081 (3848) von 1 bis 459 MKKSLIAIVASALVLSGCTSDSSDSSGTSGTVETTSITTSVAAADGAFPRTVTLDDSSITLESKPERIAVLTPEAASLVLPIT GADRVVMTAEMDTADEETAALASQVEYQVKNGGRLDPEQVVAGDPDLVIVSARFDTEQGTIDILEGLNVP

RXN03081 - kodierende Region
ATGAAAAATCACTCATCGCCATTGTTGCCAGTGCGCTCGTGTTAAGCGGCTGCACCTCTGATTCTTCTGACTCTTCCGGCAC
TTCCGGAACTGTGGAAACCACTTCGATTACAACCAGCGTTGCCGCAGCTGACGGCGCACTTCCCACGCACCGTCACACTCGACG
ATTCCTCCATCACCTTAGAATCCAAACCAGAGCGCATCGCCGTACTCACCCCAGAGGCAGCATCCTTGGTTCTCCCCATCACA
GGCGCCGACCGCGTCGTGATGACCGCCGAAATGGACACCGCTGACGAAGAAACCGCAGCTCTGGCCTCCCAAGTGGAATACCA
AGTCAAAAACGGTGGCAGGCTCGACCCCGAACAAGTTGTCGCCGGCGACCCAGATTTGGTGATCGTCAGTGCGCGTTTCGATA
CCGAACAAGGCACCATCGACATTTTGGAAGGCCTCAACGTCCCG

RXN03081 - 3'-Region TAGTTAACTTCGATTCAGACGCT

992618O.Z. 0050/50626 DE

RXN03080 translatiert von RXN03080 (3725) von 1 bis 780 MPQLVEIRDLNVEFPSRHAVKNVSFSAPAGKVTALIGPNGAGKSTALSAIAGLVESTGEVMVGGSGVASKSAKARARLLSLVP QNTELRIGFSARDVVAMGRYPHRGRFAVETDADRRATDDALRAINALDIAEQPVNELSGGQQQLIHIGRALAQDTAVVLLDEP VSALDLRHQVEVLQLLRARANSGTTVIVVLHDLNHVARWCDHAVLMADGEVVSQGDIREVLEPATLSTVYGLPIAVRDDPETS SLRVIPHPNPF

RXN03080 - kodierende Region
ATGCCTCAATTAGTTGAAATTCGTGATCTCAACGTTGAATTCCCCTCTCGCCATGCAGTGAAAAACGTGTCTTTTTCTGCACC
TGCTGGAAAAGTCACCGCACTGATTGGCCCAAATGGTGCTGGTAAAAGTACTGCCCTTTCGGCGATTGCAGGATTGGTTGAAT
CCACCGGCGAGGTAATGGTTGGTGGGGGGTTGCGTCGAAAAGCGCTAAAGCCCGAGCCCGCCTGCTCTCACTCGTGCCG
CAAAACACCGAGTTGCGCATTGGTTTTAGTGCACGCGACGTTGTCGCGATGGGCCGCTACCCGCATCGTGGCCGTCAACG
GGAGACCGACGCAGATCGACGCGCACCGATGACGCCCTGCGCCCAACACGCGCTCGACATCGCCGAGCAGCCCGTCAACG
AATTATCGGGCGGCCACCAGCACCACATCACCACATCGGCCGAGCCCCCAAGACACCCGCCGTCGTGCTTCTCGACGAGCCC
GTCTCCGCCCTTGATCTACCGCACCAAGTTGAAGTCCTTCAACTCCTGCGCGCCCGAGCTAATTCCGGCACCACCGTGATCGT
CGTCCTTCACGATCTCAACCACGTTGCCCGTTGGTGCGACCATGAGTGTTGATGGCCGACGGCGAAGTTGTCTCCCAAGGTG
LATCCGCGAGGTGCTCGAACCTGCCACACTGTCCACCGTGTACGGACTTGCGGTGCGCGATGATCCCGAAACCAGC
CACTTCGCGTGATCCCGCATCCAAATCCCTTT

RXN03080 - 3'-Region TGATTGAAAGTTTGACTTAAAAA

992618 O.Z. 0050/50626 DE

RXN01732 translatiert von RXN01732 (6268) von 1 bis 1050
MFKLSKPSKSMRVAVSTLAISTLALVGCSSSDESSSSSSSSSSSSSSSSDAASQWPESITLSLVPSTEGEDLAEALAPLTDYLSENLG
IEVNGVVASDYAATVEALGADQAQVIITDAGSLYNAIEQYDAQLILRDVRFGATSYSAVAYTNNPDKYCDDAPVAASYAASDV
DMLYCNGIETEGQAATGEGPAALDALEKIESGDKVALQAATSPAGYQYPIVAMQDLGMDTDSAFVQVPVEGNNNAVLSVLNGD
AEVSFGFWDARSTVLSEAPNAAEDVVAFAYTEMIPNGGVAASKSLPSDLVEKLTELMDDYADSSEEAKDVMFDMVGLSDWTAD
TAQDEITRYGEILKKFSN

RXN01732 - 5'-Region
GATTCTATCGCTGATCTCCCTTGCCTGGGTTTGTTCCCGGGTCTCCTTCTTAACTTTCTTGTCTCATGTCGCTGAA
AGGTTTTTAAAGATCTC

RXN01732 - 3'-Region TAATTTCCCTGTTTCCAATACTC

96

RXN01000 translatiert von RXN01000 (4854) von 1 bis 846
MSTLTSHRTVPAPSSPPARPNKLARNIVAIVAALIVLIATGTLKIEWNELPQMPAQVWHYLELMFSDPDWSKFGRAVQEMWRS
IAMAWLGAILCVVVSVPLGMLAARGVGPYWLRTVLRFVFAVIRAFPEVVIAIILLTVTGLTPFTGALALGISGIGQQAKWTYE
AIESTPTGPSEAVRAAGGTTPEVLRWALWPQVAPSIASFALYRFEINIRTSAVLGIVGAGGIGSMLANYTNYRQWDTVGMLLI
VVVVATMIVDLISGTIRRRIMKGASDRVVAPSN

RXN01000 - 5'-Region CTTTCTATGCCTACGCGGATGTTTCCGTGATCATTCTGGAAATCCTCATCGTGGTGATTGTCATTGAAGTAATCTCCAACGCA CTTCGAAAGAGGCTGGT

RXN01000 - kodierende Region

RXN01000 - 3'-Region
TGACGCTCCACCAAGCATCCGCA

RXN01002 translatiert von RXN01002 (1757) von 1 bis 804 MNSDASATTNSWAINFDHVSVTYPNGTKALDDVSLTINPGEMVAIVGLSGSGKSTLIRTINGLVRATEGTVTVGPHQINTLKG KALRDARGQIGMIFQGFNLSERSSVFQNVLVGRFAHTAWWRNLLGFPTEHDKQIAFHALESVGILHKVWTRAGALSGGQKQRV AIARALSQDPSVMLADEPVASLDPPTAHSVMRDLENINNVEGLTVLVNLHLIDLARQYTTRLVGLRAGKLVYDGPISEATDKD FEAIYGRPIQAKDLLGDRA

992618

RXN01002 - 5'-Region GACTGCTGATACGGCGAGATCCTGAAGAAGTTCTCCAACTAATTTCCCTGTTTCCAAT ACTCAAGGTGTGCGCAT

RXN01002 - 3'-Region TGACCACGCCTTCTTCTACACTT

RXN02074 translatiert von RXN02074 (7807) von 1 bis 1623
MRSLLRDIPAVGWLITATIVVRTLVVALVIVGIGLLIDVPSPAHSAMLWWVLAGATAAAALLCAEAVLPQRIRARVERSWRRQ
LAAKNLELNSSSSDDAQLITLATEATSKASTYTVMFLGPYFAVFLAPLTVIAVVGAAISWPIAGILCLGLCVIPFVISWAQRM
LKGAGAGYGRASGQLAGVFLESVRTLGTTMMLNAAGQRRQIITQRAENMRSQVMSLLYRNQLMILVTDGVFGVATTMVAAVFA
IGGFFSGSLTLGQAVALVLLARLLIDPINRMGRTFYTGMAGKPSLIAIEKALATTFTDQPTQQGQRHDGDLVVNNLKIARDHR
DIVHGISFSIPRGSHIAVVGPSGAGKSSVALALSGLLEFDGAISLGGHNCEMLDLRASVSFVPQSPTLFSGSIKSNIDLARTG
VDSDHIHAALLGEELPADLKVGETGKGVSGGQAARISIARGLVKNAAVIVLDEATAQLDYTNARQVRHLAKSLECTLVEITHR
PSEALDADFIIVLEDGQLTMMDTPSNVSQHNAFFRTAVMEEEQ

RXN02074 · 5'-Region CGGGGGAAGGCCTTGGATCTCAAGAAGAATTCGACTGGTTTAAAGTCTGGGCTTTAAGTGC AGAAAGGTTGTGGATTG

RXN02074 - kodierende Region

ATGCGCTCCCTGCTGATATCCCTGCGGTGGGTTGGCTAATCACCGCGACGATTGTTGTGCGCACGCTCGTTGTTGCGCT GGTCATCGTTGGGATCGGCTTGCTTATCGACGTCCCCTCGCCCGCTCATTCAGCCATGTTGTGGTGGGTTCTGGCAGGTGCCA TTGGCTGCTAAAAATCTGGAGCTGAATTCCAGTTCGTCAGATGATGCCCAGTTGATCACACTGGCAACTGAAGCCACCTCAAA AGCATCCACTTACACAGTGATGTTTCTGGGGCCTTACTTTGCAGTATTTTTGGCCCCACTGACAGTTATTGCCGTTGTCGGCG ASSCTATTTCCTGGCCGATTGCGGGGATACTGTGCCTCGGGTTGTGCGTGATACCTTTCGTTATTTCTTGGGCACAGCGCATG GAAAGGCGCTGGCGCGGGATACGGGCGAGCATCTGGGCAGTTGGCAGGCGTGTTTTTGGAATCGGTGCGCACACTAGGCAC CGATGATGCTGAATGCCGCTGGGCAGCGCAGGCAGATCATCACACAGCGCGCAGAGAATATGCGCTCCCAAGTGATGTCAT TGCTGTACCGAAATCAGTTGATGATTCTGGTGACCGACGGCGTGTTTGGAGTTGCCACCACAATGGTTGCTGCGGTGTTTGCC ATTGGAGGATTCTTTTCAGGCTCTCTTACTCTCGGCCAAGCTGTAGCACTCGTATTGCTGGCCAGGCTGCTTATTGATCCCAT TTACTGATCAGCCAACTCAACAGGGACAGCGCCACGATGGGGGATCTGGTGGTCAACAACTTGAAGATCGCCCGCGATCACAGG GACATTGTGCACGGTATCTCTTTCAGCATTCCCCGCGGTTCCCACATCGCGGTGGTAGGTCCCAGTGGCGCTGGTAAATCCTC TGTGGCTCTAGCGTTGTCCGGACTTTTAGAGTTTGATGGTGCGATTTCCCTCGGCGGCCACAACTGTGAGATGTTAGATCTTC GCGCCTCAGTCAGTTTCGTGCCCCAATCCCCCACGCTGTTTAGCGGAAGCATCAAAAGCAATATCGATCTGGCGCGCACGGGT GTTGATTCTGATCACATCCACGCAGCACTTTTAGGCGAAGAACTCCCCGCGGACCTCAAAGTCGGTGAAACCGGCAAAGGTGT CTCCGGCGGCCAAGCAGCACGCATTTCCATTGCCCGAGGTTTAGTAAAGAATGCTGCCGTGATTGTTCTCGACGAGGCGACCG CCATCAGAAGCCCTCGATGCAGACTTCATCATTGTTTTAGAGGATGGCCAATTGACCATGATGGATACACCCAGCAACGTTTC CCAGCACAATGCGTTTTTCCGCACCGCTGTGATGGAGGAAGAACAA

RXN02074 - 3'-Region TGATTTCCCGACTTCTCCAATTG

91

RXN01141 translatiert von RXN01141 (9956) von 1 bis 825 LSTALAGAARYVTSTSNNEPADNTPLTIGYVPIAGSAPIAIADALGLFKKHGVNVTLKKYSGWSDLWTAYATEQLDVAHMLSP MTVAINAGVTNASRPTELSFTQNTNGQAITLASKHYGSVNSAADLKGMVLGIPFEYSVHALLLRDYLVSNAVDPIADLELRLL RPADMVAQLTVEGIDGFIGPGPFNERAISNGSGRIWLLTKQLWDKHPCCAVAMAKEWKAEHPTAAQGVLNALEEASAILSNPA QFDSSARTLSQEKYLNQPATLLDGPS

RXN01141 - 5'-Region
AAAGAACACTCGGTATGGCACCTGATTTAAGGATGCTGCAATCGTGACACATATCCTCTTCGACAGCAGCGCGTTTTCTGCAAC
TGGGCGCTTTTGCGTCC

RXN01141 - kodierende Region

TTGAGCACCGCATTGGCCGGAGCGGCCCGCTACGTGACGTCGACAAGCAATAATGAACCTGCGGATAACACTCCCCTGACCAT
TGGCTACGTGCCTATTGCGGGCTCGGCGCCGATTGCTATCGCAGATGCGCTAGGGCTGTTTAAGAAACACGGCGTGAATGTCA
CGTTGAAGAAGTACTCAGGCTGGTCCGACCTGTGGACCGCCTATGCAACAGAGCAGCTTGATGTTGCGCACATGCTGTCGCCG
ATGACTGTGGCGATTAATGCTGGAGTGACCAACGCGTCGCCCGACGGAGCTGTCGTTTACCCAGAACACCAATGGGCAAGC
AATTACCTTGGCGTCAAAGCACTATGGTTCCGTCAATTCAGCGGCGGATCTTAAAGGCATGGTGCTGGGAATTCCTTTTGAAT
ATTCAGTCCATGCGCTGCTCCTGCGCGATTATCTCGTCTCAAACGCAGTTGATCCCATCGCCGATCTTGAGCTTCGCCTGC
CGACCTGCCGATATGGTCGCACAATTGACAGTTGAGGGCATCGATGGATTCATTGGGCCTGGGCCGTTTAATGAACGCGCCAT
CAGCAATGGCTCCGGCCGGATTTGGCTGACCAAACAACTGTGGGACAAACATCCATGCTGCCCGTGGCGATTGCCAAAG
ACTGGAAAGCTGAACACCCCACGGCGGCTCAGGGTGTGCTTAATGCGCTGGAGGAAGCCTCCGCAATTTTGAGCAATCCGGCA
ATTTGATTCCTCGGCACGCCGCTGTCGCAGGAAAAAATACCTCAACCAGCCTGCCACGTTGCTGGATCGACCA

RXN01141 - 3'-Region
TAATCATCGGCATCACCGGCTTA

RXN01142 translatiert von RXN01142 (3960) von 1 bis 498 LTARGNIDFGLRSARPSLSKTERADITRTHLEQVGLTDAAERRPARLSGGMQQRVGIARAFAIDPPIMLLDEPFGALDALTRR ELQLQLLNIWEASRRTVVMVTHDVDEAILLSDRVLVMSKSPEATIITDIPVNLPRPRHELSEDASVEAETTALRKRMLHLLEH

RXN01142 - 5'-Region CTCCCCATCCACCGGCACAGTCAGCGCAACGAAGAAATTAAAGGACCAGGACCTGACCGAGGCATGGTTTTCCAAGACC ACGCCCTCCTGCCCTGA

RXN01142 - 3'-Region TAGTTTCTAACACGTCTTTTAAA RXN00523 translatiert von RXN00523 (9218) von 1 bis 1026 MSLSHQLKRQRASRNSRRWLIVAALGVVTLGIFAFSLMWGEVFYGPAQVLKVLSGQQVPGASYSVGVLRLPRAVMGLTAGLAF GAAGVIFQTVLRNQLASPDIIGISSGASAAGVICIVFFGMSQSAVSAISLCASLAVALLIYLVAYRGGFSATRLILTGIGIAA MLNSLVSYSLSKADSWDLPTATRWLTGSLNGATWDRAMPLIVTTVVLIPLLVANARNVDLMRLGNDSAVGLGVATNRTRVIAI IAAVALIAVATAACGPIAFVAFVSGPIAARILGSGGSLIIPSALIGGLIVLIADLIGQYFLGTRYPVGVVTGAFGAPFLIYLL IRSNRAGVTL'

RXN00523 - 5'-Region

TGGTGACTCGTCCGAGTGAAATTGCCGTGGGCATCATCATGCCGATCATTGGTGCGCCACTGTTTATTTGGATTATTCGTCGT CAGAAAGTCAAAGAGCT

RXN00523 - kodierende Region

ATGAGCCTTAGCCATCAACTCAAGCGCCAGCGCGCATCGCGCAACTCCCGCAGGTGGCTGATTGTTGCGGCATTGGGCGTCGT CACGCTTGGTATTTTTGCTTTTTCTTTGATGTGGGGCGAGGTGTTTTATGGCCCTGCTCAGGTGCTGAAAGTGTTGTCTGGAC GGCGCGGCGGCGTGATTTTCAGACGGTGTTGCGTAATCAGTTGGCGTCGCCGGATATTATCGGCATTTCTTCTGGCGCGTC GGCGGCGGCGTAATTTGCATTGTTTTTTCGGGATGTCGCAGTCTGCAGTGTCGGCGATTTĆTTTGTGTGCGTCCTTGGCTG TGGCGTTGTTGATTTATCTGGTGGCGTATCGCGGTGGTTTTTCGGCCACGCGTCTGATTCTTACCGGCATTGGTATTGCTGCG ATGCTGAATTCATTAGTGTCGTATTCGCTGTCCAAGGCTGATTCTTGGGATCTGCCGACCGCGACGCGCTGGCTTACCGGCTC GCTCAATGGTGCGACGTGGGATCGTGCGATGCCGCTGATTGTCACCACTGTGGTACTCATTCCGCTGCTGGTGGCTAATGCGC GCAATGTGGATCTTATGCGTTTGGGCAATGATTCCGCGGTGGGTTTGGGCGTTGCTACTAATCGCACGCGCGTCATTGCGATT ATTGCCGCTGTTGCGCTCATCGCCGTTGCTACCGCTGCATGCGGCCCGATCGCATTCGTGGCGTTTGTGTCTGGCCCCATTGC CGCGCGCATTTTAGGCTCCGGCGGATCGCTCATCATCCCCTCCGCACTCATCGGCGGGTTGATCGTGCTCATCGCCGACCTAA TTGGCCAATACTTCCTCGGCACCCGCTÁCCCCGTCGGAGTTGTCACCGGCGCATTCGGCGCCCCATTCCTTATCTATTTACTC ATTCGTTCCAACCGCGCGGGAGTAACCCTG

RXN00523 - 3'-Region TGACCACCAACCATCAACTATCC

RXN01285 translatiert von RXN01285 (1049) von 1 bis 726 LNVTIPDNTFTAIIGPNGCGKSTLLRGFSRVLNPQHGKVLLDGRQLDSFKPKEIARELGLLPQTSIAPEGIRVYDLIARG RAPYQSLIQQWRTSDEDAVAQALASTNLTELAARLVDELSGGQRQRVWVAMLLAQQTPIMLLDEPTTFLDIAHQYELLEL LRAFNEAGKTVVTVLHDLNQAARYADHLIVMKDGHVHATGTPEEVLTAEMVQGVFGLPCIISPDPVTGTPTVVPLSRSRA GA

RXN01285 - kodierende Region CTCAACGTCACCATCCCCGACAACACCTTCACCGCCATCATCGGCCCCAACGGCTGCGGCAAATCCACCCTGCTCCGCGG $\tt CGCGCTCCCTACCAAAGCCTCATACAACAATGGCGCACCTCCGACGAAGACGCCGTCGCGCAAGCGCTCGCCTCCACGAA$ CCCAGCAAACACCGATCATGCTTCTCGACGAGCCCACCACCTTCCTCGACATCGCCCACCAATACGAACTCTTGGAATTG CCTCATCGTGATGAAAGATGGGCACGTACATGCCACGGGCACACCGGAGGAAGTCTTAACTGCCGAGATGGTTCAAGGAG TTTTTGGCCTGCCTGCATCATCTCCCCAGACCCCGTCACAGGAACCCCCACCGTCGTTCCCCTCAGTCGGTCTCGCGCA GGAGCT

RXN01285 - 3'-Region TAAGTAGCTACCCCTCCAACGGA RXN00368 translatiert von RXN00368 (9416) von 1 bis 1575
MRLGVWLIVAGLFITPLALVVGLALGGNQFPALWDSGLGKALWNSAYTTVLSAVGATIIGTIMALTLDRTDVFGRTALRLFLL
SPLLIPPFIGAIAWLQLFGKNQGINRFFGTEVWDIYGADGVTFLLIVHSYPTVYIIVSAALRQLPSDLEQAARIAGADTFTVL
RTITLPLLKPALLSAFTLTTVANLADFGIPALLGSPARFETLATMIYRFMESGTVSNPLQVVSTIGIVLLFLGIAAVTADYLV
SLYAASKLQDAGTPHRFTLNKSRIPVSVITWIIALIITAAPLLGLAYRALLPAPGVPFNLDNITLNNFEAALSNPRVIEGFSN
SLMLSLGAALICGVLGWLIGVLITRTQHFANVPLTLTVLLPTALPGMIIGVGWLILGRYTGIYNTPWVILGAYVCAFTALVVQ
AVRGPLSQAPEAIEEAARISGAGRLRSIMDTTGAMAIPAAFAGAVLVAVTAVRELTVSILLIAPGTTTLGVQVFNLQQAGNYN
QASALSLMFAIIGIVALALTVRSQKEF

RXN00368 - 5'-Region

TTCTTCCAAAACGCAATGAACTAGTTTTCCTATGCAGTTATCTCCTTCAAATACGTCGACGCAGCGCTTTCACATCTCTGCGTTGACGTCTTTGTCTTTC

RXN00368 - kodierende Region

ATGCGTCTGGGTGTGTGGCTGATTGTCGCGGGGTTGTTTATCACTCCGTTGGCGCTGGTGGTGGGGCTTGGCGTTGGGAGGCAA TCAGTTTCCTGCTCTGTGGGATTCCGGATTGGĢCAAAGCCCTATGGAATTCCGCCTATACAACAGTGCTTTCTGCGGTGGGCG CGACCATTATCGGCACGATCATGGCTCTCACGCTGGACCGAACTGATGTTTTCGGGCGCACCGCGTTGCGGTTATTTTTGTTA TCCCCGCTGTTGATCCCTCCGTTTATTGGGGCTATTGCGTGGTTGCAGCTGTTCGGGAAGAACCAGGGCATCAACCGGTTTTT CGGCACGGAAGTGTGGGATATTTACGGCGCTGATGGTGACATTTTTGTTGATTGTGCACTCCTATCCCACTGTGTACATCA GCACCATCACACTCCCACTGCTCAAACCTGCATTGTTGTCGGCGTTTACTCTTACCACAGTGGCGAACCTCGCCGACTTTGG CATTCCAGCTCTGTTGGGATCGCCAGCGCGTTTTGAAACCTTAGCCACCATGATTTATCGCTTCATGGAATCCGGCACCGTGA GCAATCCATTGCAGGTGGTATCCACCATTGGCATCGTGTTGTTGTTCTTGGGAATCGCAGCAGTAACCGCGGATTATCTGGTG TCTTTGTACGCGGCATCAAAGTTGCAAGACGCAGGAACACCGCATCGCTTTACTCTCAACAAATCACGAATCCCAGTCAGCGT TGCCGTTCAACCTAGACAACATCACGCTCAACAACTTTGAAGCAGCACTGAGCAATCCACGAGTAATCGAAGGATTCAGCAAC TCCCTCATGTTATCCCTGGGTGCAGCCCTAATCTGTGGGGTGCTGGGATGGCTGATCGGAGTGCTCATCACCCGAACCCAGCA CATGGACACCACGGAGCGATGGCAATTCCCGCAGCTTTCGCCGGCGCAGTGCTGGTTGCGGTAACTGCGGTTCGAGAGTTAA CCGTGTCCATTTTGCTCATCGCGCCGGGCACCACCCTGGGTGTGCAGGTGTTCAATTTGCAGCAGGCGGGAAATTACAAT CAGGCATCGGCGTTGTCGTTGATGTTTGCGATTATCGGTATCGTGGCGCTCGCGTTGACGGTGCGCAGCCAGAAGGAGTTT

RXN00368 - 3'-Region
TAGGTGTCATCGATCAAATTGCG

RXN02613 translatiert von RXN02613 (5283) von 1 bis 957
MKFKKIALVLAFGLGLASCSSASGDPATNADGSIDLSKVTLNIGDQIAGTEQVLQASGELDDVPYKIEWSSFTSGPPQIEALN
AGQIDFAITGNTPPIIGGPTNTKVVSAYNNDALGDVILVAPDSSITSVADLAGKKVAVARGSSAHGHLIQQLEKAGVSVDDVE
INLLQPSDAKAAFQNGQVDAWAVWDPYSSQAELEGAQVLVRGAGLVSGHGFGVASDEALDDPAKEAALADFLDRVADSYEWAE
DNTDEWATIFSQESGFDPEASQLNTRSLRHQVPLDESVNTYQNALIDAFVSAGLVEDFNFEDTVDTRFEG

RXN02613 - 5'-Region AGATATCCCCGGCGATCGCCACCCCTCCTTTGCCTCCTACACCGCTCAACTCCTTGAGTGGCTCGAAATCACCACAC CTGCCTAGAAAGAAATC

RXN02613 - 3'-Region TAAGTATGTCTGAGTATGGCAAA

RXN02614 translatiert von RXN02614 (5216) von 1 bis 729
MTATLSLKPAATVRGLRKSYGTKEVLQGIDLTINCGEVTALIGRSGSGKSTILRVLAGLSKEHSGSVEISGNPAVAFQEPRLL
PWKTVLDNVTFGLNRTDISWSEAQERASALLAEVKLPDSDAAWPLTLSGGQAQRVSLARALISEPELLLLDEPFGALDALTRL
TAODLLLKTVNTRNLGVLLVTHDVSEAIALADHVLLLDDGAITHSLTVDIPGDRRTHPSFASYTAQLLEWLEITTPA

RXN02614 - 5'-Region
TCATTGTATACGCCACCCTCGGTCTGCTGTCTGAAGCGCTGATCAGAGCTTGGGAACGTCACACCTTCCGCTACCGAAACGĆA
TAAGAAAGTTGCTCGCC

RXN02614 - 3'-Region TAGAAAGAAATCATGAAATTTAA RXN02547 translatiert von RXN02547 (8918) von 1 bis 2139
LELNNAARLTVDEYPAAREALESAGQRNVEDRTRAVDEFKAADQELSSLSKGSSNIEYRLLQVRENLCQDLGVSPRDMPFAGE
LIDPNNAEWEPVVQRILGGFAAEMLVPHGLLPRVRDWVNAKHLAALLKFNGVVTTGEYKTSRFPADSLIRKVDVVESPFRDWV
NQELGKRFNIRCVRTPEELSALGPRDQGVTILGVRKFAQQTGDPTTRWEKDDRRKLGDRSTYRLGSTNDAKVETLRETVKAGK
AVVQAADNRIAANRAELRELERQYQASQEILKVSWAQIDVESADAAIAELDRLLEELNNTPEATELSARHEAAKQTLARVSDL
LVAAQSEETVASMNLKRAETELKRLESLPVAEVSEEIAREVEKLFLANTRRVHAANVDEQTIALREDLDKQIDANEAELRRCE
NQIVGILRSYIETWPANRADLQAEPEFVGEAINRLGELRSDRLAEFTAKFLGLMNEMSTRNLGQISRRLRDARREIEERIEPI
NASLAQSEFNEGRFLHIDIRDQSGPIVREFQQKLDAATSGDLGTSTEKQAFARYALIAEIISKLASHDSADARWRNTVLDTRR
HVRFIGLERDSDGATVNTYVDSASLSGGQAQKLVFFCLAAALRYQLAEPGAHYPTYATVILDEAFDRADPAFTRQTMNVFHSF

RXN02547 - kodierende Region TTGGAGCTCAACAACGCTGCGCGGCTGACCGTGGATGAGTATCCGGCGGCGAGGGAAGCGCTTGAATCTGCAGGTCAGAGGAA TGTAGAGGACCGAACCCGTGCGGTTGATGAGTTCAAAGCGGCGGATCAAGAGCTGTCTTCTTTGAGTAAAGGCAGCAGTAATA TTGAGTACCGTTTGCTGCAGGTGCGGGAAAATTTGTGTCAGGATTTGGGCGTGAGCCCGCGGGATATGCCCTTTGCCGGTGAG CTGATTGATCCGAATAATGCGGAATGGGAACCCGTTGTGCAGCGCATTTTGGGTGGTTTTGCTGCGGAAATGTTGGTTCCTCA TGGGTTGTTGCCACGGGTTCGGGATTGGGTAAATGCCAAACATTTGGCAGCGCTGCTGAAATTCAACGGCGTGGTGACAACGG GGGAGTACAAAACCTCGCGTTTTCCGGCGGATTCCCTGATCCGAAAAGTTGATGTTGTGGAGTCGCCGTTTCGCGATTGGGTA CGTGACCATTTTGGGTGTGCGAAAATTTGCGCAGCAGACAGGCGATCCGACGCGTTGGGAAAAAGATGATCGCCGAAAGC TGGGGGATCGTTCCACATACCGTTTGGGTTCCACCAATGATGCCAAGGTGGAAACGCTTCGGGAAACCGTGAAAGCTGGCAAA GCAGTTGTGCAGGCAGCTGATAATCGCATTGCTGCAAACCGCGCTGAGCTGCGGGAACTTGAACGGCAGTATCAAGCTTCGCA AGAAATTTTGAAAGTGTCGTGGGCTCAGATTGATGTGGAATCAGCCGACGCGGCGATTGCTGAGCTGGACCGATTGCTGGAAG CTTGTCGCAGCTCAGAGTGAGGAAACCGTGGCGTCGATGAACCTGAAACGCGCCGAAACTGAATTGAAACGGCTCGAAAGCCT GCCGGTTGCGGAGGTTTCTGAAGAAATCGCGCGGGAAGTGGAGAAACTATTTCTTGCCAACACCCCGCCGGGTTCACGCCGCCA AACCAAATTGTTGGCATTTTTGCGCAGCTATATTGAAACGTGGCCTGCGAACCGCGCTGACTTACAAGCCGAACCTGAGTTTGT TGGTGAGGCCATCAACCGCCTCGGCGAGCTTCGCAGCGATCGTTTGGCAGAATTCACGGCCAAATTCCTAGGGCTCATGAACG AGATGTCCACCCGAAACCTCGGCCAAATCTCGCGGCGTCTACGTGATGCGCGCCGGGAAATCGAGGAGCGCATCGAGCCGATC AACGCCTCCTTGGCGCAGTCGGAATTCAACGAAGGTCGCTTCCTGCACATCGACATCCGTGATCAAAGTGGTCCGATTGTGAG GGAATTCCAGCAGAAACTTGATGCCGCTACCAGCGGTGACCTGGGAACCAGTACCGAGAAACAAGCCTTCGCCCGTTATGCGC TGATCGCTGAAATCATTTCCAAACTCGCCTCCCACGACTCCGCCGACGCCCGCTGGCGCAACACCGTTCTAGACACCCGCCGC CACGTTCGCTTCATCGGCCTCGAGCGCGATTCCGACGGCGCAACCGTCAACACCTACGTCGACTCCGCATCACTTTCAGGCGG ACAAGCCCAGAAGCTGGTGTTTTTCTGCCTCGCCGCTGCCTTGCGCTACCAGCTAGCCGAACCCGGCGCCCATTATCCCACCT ACGCCACCGTCATTCTGGACGAAGCCTTCGACCGCCCGACCCCGCCTTCACCCGCCAAACCATGAACGTCTTCCACAGCTTC GGCTTCCACATGGTGCTCGCGACCCCGCTGAAACTTATCCAAACCCTCGGCGATTATGTCGGCTCCACCATCGTGGTCAGCTA CACCGAAAAACCAAACGCCCAGGGCGCAATTCAGGGCAATTCCAGTTTCTCTAGGATCGAGAAA

RXN02547 - 3'-Region TAACATGCCATTGTTTATCGACG

RXN01604 translatiert von RXN01604 (7962) von 1 bis 648 MNTPLLRSSGLSIRDTPFADVEIAPDSGLTLLSTGRESQSSSFSLVLSGRMRASTGTIELNGEPIKATKLAKHVALAGIPEID SLERLVTVRTVVREQLAWSSPWYLMVPRDISDSGRWVDVEKHLGLNLNPKTLIGDLSVLERFKLRIALALLARPEAQLLVVDD PDQVRSMELRAEVLHALKGVAEDLPVVVVSTNPDFDSLADTALTITGAGN

RXN01604 - 5'-Region CTCTCATGTTGTTGTCCTCTAGTTGACAGCGGGGGTGGTGGTGGTCCTAAAATAGCCTACGATAACTGATAGTGTTTCCTCCA CTTACGGAAGAAGATAC

RXN01604 - kodierende Region
ATGAATACCCCTCTTTTGAGAAGCTCTGGGCTCTCCATCCGCGACACACCCTTCGCCGATGTTGAGATAGCTCCAGACAGCGG
ACTCACTTTGCTGAGCACCGGGCGCGAATCCCAATCCAGTTCCTTTTCTTTGGTACTTTCCGGCCGCATGCGCGCCTCCACCG
GAACCATCGAATTAAACGGCGAACCCATCAAGGCAACCAAGCTGGCCAAGCATGTGGCTTTTGGCGGGCATCCCTGAAATCGAT
TCACTCGAGCGACTTGTCACTGTGCGCACCGTTGTCCGTGAACAACTCGCCTGGTCAAGCCCTTGGTACCTGATGGTGCCCAG
GGATATTAGTGATTCGGGACGGTGGGTTGACGTCGAAAAGCATCTTGGCCTGAACCTGAACCCTAAAACCTTAATCGGCGACC
TCAGCGTGCTCGAGCGTTTTAAGCTGCGCATCGCGCTGGCGCTCTGGCGCGCCAGAGGCGCAACTGTTGGTCGTGGATGAT
CCCGATCAAGTGCGCAGCATGGAATTGCGTGCGGAGGTGTTGCACGCATTGAAAGGCGTTGCAGAGGATCTCCCTGTGGTCGT
GGTATCCACCAACCCAGATTTTGATTCCTTGGCCGATACCGCTTTGACCATTACGGGGGCTTGGAAAC

RXN01604 - 3'-Region TAATGGCATTTTTACACTTTGGC

RXN00456 translatiert von RXN00456 (2097) von 1 bis 1377 VLQALLAIMVSLSVAAILEGNRALVGLLLATTLGLGVAQWIQKVVAEDLGQHYVHEVRRELVGAALVPGNTASLGVTVTRASN DLTAVRNWVALGIVPMVTGLPLIAIVLVALFIQDLRTGVAVTVPLLMCVAVLPVVARWTLKRARELRKKRGRMAARIADSVMA GELLHATGAIDRELNAVTRDSDRVVIAAVRRSWATGFSRALMAMAASLGTVSIVISGHLEVSEVAGIMMLLGVLATPVAELGR VVEYRQNYKAATRILIPLLQRGSEFKHSQQKLPGLQATEGIPGVYVKGISALPGERIYLHGSADATRKWVTSLSAMEEGTDVI VNGQRLSQLPLKQRRALIGIASAHHLSRGSVSRLVGLRVPDATVEEIEQALEQVGLNNTGKQRLKNGGHPWSTSQINKLKIA SATLRTPPLLVLEGITPENLLNYPGVIISTVQENPSETWRQVNI

RXN00456 - 5'-Region CTCACCAACCGGAGATCGTCACAGCGGTGCTAACGGATCATGCCTAGCTTATGGCGTGCTCGTCGCAGACTTTTGCTCATTG CCCTAGGTGTACTTGGT

RXN00456 - kodierende Region GTGCTGCAGGCACTGCTGGCGATCATGGTGTCGTTGAGCGTAGCCGCCATACTTGAGGGAAACCGAGCACTTGTTGGATTGCT GCTTGCTACCACGTTGGGTTTGGGGGTGGCGCAGTGGATTCAAAAAGTAGTGGCAGAAGATCTAGGCCAGCATTATGTGCATG AGGTGCGTCGTGAATTGGTGGGTGCTGCGCTGGTGCCTGGAAATACGGCCTCGTTGGGCGTGACTGTCACCCGAGCCAGCAAT GATCTCACCGCGGTGCGCAATTGGGTGGCTTTGGGCATTGTTCCGATGGTCACCGGGCTGCCGTTGATTGCGATTGTGCTGGT GGCGTTGTTTATCCAAGATCTCCGCACAGGCGTGGCTGTTACTGTGCCACTGCTCATGTGTAGCCGTGCTGCCGGTGGTGG CGCGGTGGACTTTGAAAAGAGCACGTGAACTACGCAAAAAACGTGGACGCATGGCTGCGCGGATCGCAGATTCTGTCATGGCT GTAAGACGTTCCTGGGCCACCGGTTTTAGCCGCGCATTGATGGCCATGGCAGCCTCGCTTGGCACTGTCAGCATTGTGATTT ${\tt CTGGCCACCTGGAAGTAAGTGAGGTTGCGGGAATAATGATGCTTCTTGGCGTTCTTGCCACTCCAGTTGCAGAACTTGGCCGC}$ GTGGTGGAATATCGCCAAAATTATAAAGCCGCGACACGCATCCTGATTCCACTTCTGCAACGAGGCTCAGAATTTAAACACTC CCAACAAAACTACCCGGGTTGCAAGCAACAGAAGGAATCCCCGGTGTCTATGTCAAAGGTATTTCCGCCCTTCCTGGAGAAC GGATCTACCTCCACGGCTCTGCAGATGCGACGAGAAAATGGGTCACCTCGTTGTCTGCAATGGAGGAAGGCACAGATGTAATA GTCAACGGTCAAAGGCTTTCGCAGCTTCCTTTGAAACAACGACGCCCCTCATCGGAATCGCCTCAGCACCACCACCACTTAAG GTCTGAACACCCGGGAAACAACGCTTGAAAAACGGCGGACACCCCTGGAGTACTTCGCAGATCAACAAACTGAAAATTGCC AGCGCCACCCTTCGAACCCCACCGCTTTTGGTACTTGAAGGCATCACCCCTGAAAACCTCCTCAACTATCCCGGAGTGATCAT CTCCACCGTTCAGGAGAACCCATCCGAAACATGGCGGCAAGTGAACATC

RXN00456 - 3'-Region TAATCTAGAAACATGGCAGGACG

RXN00243 translatiert von RXN00243 (3186) von 1 bis 1017 VTSEQALDPIHPGQFRLSRIQLINWGTFHGTVDIPVTREGILVTGGSGSGKSTLIDAITAVLLPQGKLRFNSAAQANTPRNKG RSLVTYIRGAWRAQEDPLQDQIVSTYLRPRATYSLVGLTYSNGEGVEHTLVAIFYLKSGHNLTSDISSYYGVFPVDQDINALL DFLKEGIDKRQIRAAFKEAIFSEQHSVFSGRFRSRLGISSEEALLLLHRAQSAKDLQSLDDLFRDYMLVEPDTFSIAKTAVEQ FQDLEGAYEQVEDIKRQIHTLDPLVQLKNRREKAQQSKDHANALKKALPTVGNRIKKEEQEPLVRQFTVEQTQRSRRWSPPKL RQIVPAK

RXN00243 - 5'-Region CACTGCGCCAGATTTTTGATGCCGACACTGTGGCAGGTGTGCGCGCTGAGTACGAAAAATTTAACAAAGCAGCCCATGATGGA AATGAAGAGGAACAGAA

RXN00243 - kodierende Region
GTGACCAGGGAACAAGCTTTAGATCCTATCCACCCAGGTCAGTTCCGTCTTTCTCGGATTCAGTTGATCAACTGGGGAACCTT
CCACGGAACGGTGGACATTCCTGTGACCAGGGAAGGAATCTTAGTTACCGGTGGTTCGGGATCAGGAAAATCCACGCTGATTG
ATGCGATCACGGCGGTATTGCTTCCGCAAGGAAAGCTGAGGTTTAACTCTGCCGCACAGGCTAATACTCCGCGGAATAAGGGA
CGCAGTTTGGTTACCTATATCCGTGGCGCTTGGCGTGCGCAGGAGGATCCGCTGCAGGATCAGATTGTCTCCACGTACCTACG
TCCCCGCGCAACCTATTCGCTGGTTGGATTGACTTATTCCAACGGTGAAGGCGTCGAGCACACCTTGGTGGCTATTTTCTATC
TGAAATCGGGACACAATTTAACCTCCGATATTTCTTCATATTATGGTGTTTTCCCGTTGATCAAGACATCAATGCGCTGCTG
GATTTCCTGAAAGAGGGCCATCGATAAACGCCAGATCAGAGCTGCTTTCAAGGAAGCCATCTTTAGCGAGCAGCATCTTTTTCTATT
CTCCGGCAGGTTTAGAAGCCGTTTTGGGGATCTCCAGTGAGGAAGCTTTTGCTTTTTCACCGCCGCGCGCAACATTCTGTATT
TTCAAAGCTTGGATGATCTATTTCGGGATTACATGCTGGTGGAACCGGATACGTTCAGCATTGCCAAAACTGCCGTGGAACAA
TTCCAAGACCTTGAAGGTGCTTATGAGCAGGTCGAAGATATTAAACCGCAGATCCACACCCTGGATCCTTTTGGTGCAGCTGAA
GAATCGGCGAGAAAAGCGCAACAGTCCAAAGATCATGCCAATGCACTGAAGAAGGCGCTGCCGACTTTTAGAGCAGATCAAAACTGCCATTA
AGAAGGAAGACCAAGAACCGCTGGTTCGACAATTTACTGTCGAGCAAACGCAGCGAAGTCGAAGGTCGAAGATCGCCAAAATTG
AGAAGGAAGAGCCAAGAACCGCTGGTTCGACAATTTACTGTCGAGCAAACGCAGCGAAGTCGAAGGTGGAGTCCGCCAAAATTG
AGAAGGAAGAGCCACAGAACAGTCCAAAATTTACTGTCGAGCAAACGCAGCGAAGTCGAAGGTGGAAGTCCGCCAAAAATTG
AGAACGAACGATCGTGCCCGCGAAA

RXN00243 - 3'-Region TGAAAACCCTCGCGCACGACAAC

RXN00411 translatiert von RXN00411 (,5242) von 1 bis 675 MNEMILAADWNRLGPTFQTAIIDTLLMVIITMVVAGLLGLVVGLLLYTTRAGGILKNKVIYTILNVLVNFVRPIPFIILIAAI KPLTVAVMGTSIGRDAGIFVMVVAAIFSVARIVEQNLVSIDPGVIEAARSMGASPMRIIATVIIPEALGPLVLGYTFLFIAIV DMSAMVGYIGGGGLGDFAIVYGYRAFDNEVMYVAVLVIVIIVQAAQLLGNWLSKKIMRR

RXN00411 - 5'-Region CATTTGGCAAAATGACTGTTCGACTCACCGGCAACACCGCTGCGATTGAAGAGTTCTATCAAACCTTGACCAAGACCACGACC ATCAAGGAGATCACCCG

RXN00411 - kodierende Region ATGAACGAGATGATCCTCGCAGCTGACTGGAACCGGCTAGGACCCACCTTCCAAACAGCCATCATTGACACCCTGTTGATGGT CATCATCACCATGGTGGTGGCTGCTTACTGGGTCTTGTCGTCGGCCTGCTTTACACCACCCGCGCTGGTGGAATCTTGA AAGCCACTAACGGTCGCCGTCATGGGCACCTCCATCGGCCGAGATGCCGGCATCTTCGTCATGGTTGTCGCAGCGATTTTCTC TGCGCATCATCGCCACCGTGATCATTCCAGAAGCACTTGGACCATTGGTTCTGGGTTACACCTTCCTGTTCATCGCGATCGTC GATATGTCCGCAATGGTCGGCTACATCGGTGGCGGTGGTCTTGGTGACTTCGCCATTGTTTACGGCTACCGCGCCTTCGACAA TCATGCGCCGC

RXN00411 - 3'-Region TAAACCTCTTGCATAGAAAAACC

MM

RXN00412 translatiert von RXN00412 (7568) von 1 bis 1080 VSHTASTPTPEEYSAQQPSTQGTRVEFRGITKVFSNNKSAKTTALDNVTLTVEPGEVIGIIGYSGAGKSTLVRLINGLDSPTS GSLLLNGTDIVGMPESKLRKLRSNIGMIFQQFNLFQSRTAAGNVEYPLEVAKMDKAARKARVQEMLEFVGLGDKGKNYPEQLS GGQKQRVGIARALATNPTLLLADEATSALDPETTHEVLELLRKVNRELGITIVVITHEMEVVRSIADKVAVMESGKVVEYGSV YEVFSNPQTQVAQKFVATALRNTPDQVESEDLLSHEGRLFTIDLTETSGFFAATARAAEQGAFVNIVHGGVTTLQRQSFGKMT VRLTGNTAAIEEFYQTLTKTTTIKEITR

RXN00412 - 5'-Region CTTTTGACGAACACCACGTCGCGTACGCTTCCTCGGGGCGTTAAACTATTTGTCTTCCAGCTTTTGTCCCCCGACTTTTGTAC GAATCGAGGACACCGTC

RXN00412 - 3'-Region TGAACGAGATGATCCTCGCAGCT RXN02096 translatiert von RXN02096 (3261) von 1 bis 1692 mgldvsdeqieharlaqahdfidrlpnkyeevigergltlsggqrqrialaraflahpkvlvlddatsaidastedrifqal reelhdvtiliiahrhstlelgdrvglvedgrvtalgplsemrdharfshlmaldfqdshdpeftldngslpsqeqlwpevst ekqykilapapgrgrgmsmpatpellaqiealpaateetrvdagrlrtstsgfkllslfkqvrwlvvavialllvgvaadlaf ptlmraaidngvqaqststlwwiaiagsvvvllswaaaaintiitartgerllyglrlrsfvhllrlsmsyfertmsgrimtr mttdidnlssflqsglaqtvvsvgtligvvtmlaitdaqlalvalsvvpiiivltlifrrissrlytasreqasqvnavfhes iaglrtaqmhrmedqvfdnyageaeefrrlrvksqtaiaiyfpglgalseiaqalvlgfgalqvtrgdistgvlvafvlymgl mfgpiqqlsqifdsyqqaavgfrritellatqpsvqiwaptgtlgrlprslyclttspsaiqtirs

RXN02096 - 5'-Region CGCTTCGACGACCTCACCCACAGCGATATCCGCAGGAATCTCATCGCGGTTTTTGATGAGCCGTTCTTGTACTCCTCCAT ACCGCGAGAACATCTCG

RXN02096 - kodierende Region CAAATACGAGGAAGTCATTGGCGAACGCGGCCTGACGCTTTCTGGTGGTCAACGCCAACGCATCGCCCTCGCACGGGCTTTCC TGGCGCATCCCAAAGTGTTGGTGCTTGATGATGCCACCTCTGCCATTGATGCCTCCACTGAGGACCGCATTTTCCAGGCCTTG CGCGAAGAACTGCACGATGTCACCATTTTGATCATCGCGCACCGCCACTCCACTTTGGAGCTCGGCGATCGGGTTGGTCTGGT TCCAGGATTCTCACGATCCGGAATTCACCCTCGACAACGGTTCACTACCCAGCCAAGAGCAATTGTGGCCGGAGGTCTCCACA GAAAAGCAGTACAAGATTCTTGCGCCTGCCCCTGGTCGAGGCCGTGGCATGTCCATGCCAGCAACCCCTGAGCTGCTCGCCCA GATTGAGGCGCTGCCAGCAGCAACGGAAGAAACACGAGTTGATGCCGGGAGGCTACGCACCAGTACCTCCGGTTTCAAATTGC CGTAGTAGTCCTTCTGTCCTGGGCCGCCGCCGCGATCAACACGATTATCACGGCACCGCACCGGTGAACGGCTGCTTTACGGCT TGCGTCTGCGCTCATTTGTGCATCTATTGCGCCTGTCCATGAGCTATTTCGAACGCACCATGTCCGGCCGCATCATGACGCGC ATGACCACCGACATCGACAACCTCTCGTCCTTCCTCCAATCAGGTCTGGCGCAAACAGTTGTCTCTGTGGGCACGCTCATCGG TGTGGTCACCATGCTCGCCATCACCGACGCACAACTAGCACTCGTTGCGCTGTCCGTGGTGCCGATCATCATCGTGCTCACTC TCATTTTCCGACGCATCAGCTCCAGGCTGTACACCGCTTCACGCGAGCAAGCCAGGCCAGGTCAACGCGGTATTCCACGAGTCC ATCGCCGGTTTACGCACCGCGCAGATGCACCGCATGGAAGACCAAGTCTTTGACAATTATGCGGGCGAAGCAGAGGAATTCCG ACGCCTGCGTGTGAAATCCCAGACGGCCATCGCCATCTACTTCCCCGGCCTTGGCGCGCTCTCTGAAATCGCCCAGGCACTCG ATGTTCGGCCCCATCCAACAACTAAGCCAAATCTTCGACTCCTACCAACAAGCCGCCGTCGGCTTCCGTCGCATCACCGAACT CGTCACCTTCGGCTATTCAGACGATCCGATCC

RXN02096 - 3'-Region TAGACAACGTCACCGTCCAGATC

RXN00525 translatiert von RXN00525 (5915) von 1 bis 1263
MSLAESILLALTSLRSNKMRALLTLLGVIIGIASVIGILTIGKALQDQTLNSLESLGANDLSAQVEERPDEDSPEPDMFAFSG
AANSSGNLIPEETVDTLRDRFAGSITGISVGGMGTQGTLIGDTADLKSDLLGVNEDYMWNNGVEMNYGRAITQDDVAAQRPVA
VIAPDTFNTLFDANPNLALGSEVAFELNGQETFLRVIGVYKEAAAGGLVGSNPTVHTYTPYTVANDITHTEDGLNTLSIRAAQ
GVDQDSLKGSLQTYFDALYANNDSHHVAMLDFRKQIEEFNTILGAMSLGISAIGGISLLVGGIGVMNIMLVSVTERTREIGVR
KALGARRRDIRLQFVVEAMIICFIGGILGVLLGGILGLIMSSAIGYISLPPLSGIVIALVFSMAIGLFFGYYPANKAAKLDPI
DALRYE

RXN00525 - 5'-Region

 ${\tt CCATCGTGTTTATTACTCACAACCCTGAGCTTGCTGATGAATCTGATCGGGTGGTCACCATGGTTGACGGGCGCATCATTGGGTCAGGGGGGAAACACTC}$

RXN00525 - kodierende Region

ATGAGCCTTGCAGAATCAATTCTTTTGGCGCTCACCAGCCTGAGAAGCAACAAGATGCGTGCATTGTTGACGCTGTTAGGAGT CATCATTGGTATCGCATCAGTCATCGGAATTTTGACCATTGGTAAAGCCCTGCAGGATCAAACTTTGAATAGTTTGGAAAGCT TGGGCGCGAATGATCTGTCGGCGCAGGTGGAGGAACGCCCCGACGAAGATTCCCCCGAACCCGATATGTTCGCTTTTTCTGGG CAGCGTTGGCGGAATGGGTACGCAAGGCACTCTCATCGGCGACACCGCAGATCTTAAATCCGATCTCCTCGGCGTCAACGAGG ATTATATGTGGATGAATGGCGTCGAAATGAACTACGGCCGCCCATCACGCAAGACGATGTTGCCGCTCAGCGCCCCGTTGCG GTCATCGCCCCAGACACCTTTAATACGCTTTTCGACGCAAACCCCAACCTCGCTCTGGGGTCCGAAGTAGCTTTTGAACTCAA CGGTCAAGAGACATTTTTGCGGGTTATCGGTGTGTATAAAGAAGCCGCAGCAGGTGGACTTGTGGGAAGCAATCCAACCGTCC ACACCTACACCCCATATACGGTGGCCAATGACATCACCCACACGGAAGATGGATTGAACACGTTAAGTATCCGTGCAGCTCAG GGCGTAGACCAGGATTCACTTAAGGGTTCACTGCAAACCTACTTCGACGCGCTGTACGCCAACAATGACTCGCACCACGTTGC CATGTTGGACTTCCGTAAACAGATCGAAGAGTTCAACACCATTCTCGGCGCAATGAGTTTGGGTATCTCAGCCATCGGCGGAA TTTCCTTGCTTGTCGGTGGCATCGGAGTGATGAACATTATGTTGGTGTCTCTCACCGAGCGAACCCGCGAAATCGGTGTCCGA AAAGCCCTCGGCGCTCGACGTGACATTCGCCTGCAATTCGTCGTTGAAGCCATGATCATTTGTTTCATCGGTGGCATCCT CGGCGTGCTTTTGGGCGCATTTTGGGATTGATCATGTCCAGCGCTATTGGCTACATTTCCTTGCCACCACTGAGTGGAATCG TGATCGCCTTGGTATTTCCATGGCTATCGGCCTGTTTTTCGGCTACTACCCCGCCAACAAGGCAGCAAAGCTCGATCCAATT GACGCCTTGCGTTATGAG

RXN00525 - 3'-Region
TAAAAGCCTCGTTTTTAAGGTAG

RXN02515 translatiert von RXN02515 (4857) von 1 bis 756 MSTLEIRNLHAOVLPSDESAEPKEILKGVNLTINSGEIHAIMGPNGSGKSTLAYTLGGHPRYEVTAGEVLLDGENILEMEVDE RARAGLFLAMOYPTEIPGVSVANFLRSAATAIRGEAPKLREWVKEVRTAQEALAIDPEFSNRSVNEGFSGGEKKRHEVLOLDL LKPKFAIMDETDSGLDVDALRIVSEGINSYKQETEGGILMITHYKRILNYVKPDFIHVFANGQIVTTGGAELADKLEADGYDQ FIK

RXN02515 - 5'-Region GTGGCTAAGCACAGTTACTTGGCCAAGCTGGGCGGCAGAAAAACCGGCCCAGCTAATACTTCAGTTTAAAATTCGCTTCAACC CTGAAAGATTGTGACAG

RXN02515 - kodierende Region

ATGAGCACTCTTGAAATCCGTAACCTGCACGCACAGGTCCTGCCGTCCGATGAGTCCGCTGAGCCTAAGGAAATCCTCAAGGG CGTCAACCTCACCATCAACTCTGGTGAGATCCACGCCATCATGGGCCCTAACGGTTCCGGCAAGTCCACTCTTGCTTACACCC TTGGTGGACACCCACGCTACGAGGTAACCGCAGGCGAGGTCCTCCTCGACGCGAGAACATCCTGGAGATGGAAGTTGATGAG ${\tt CGTGCACGCGCTGGTCTCTTCCTGGCCATGCAGTATCCAACTGAAATCCCTGGCGTTTCCGTTGCTAACTTCCTGCGTTCCGC}$ AGCGACCGCAATCCGCGGGGGGGCTCCTAAGCTTCGCGAGTGGGTTAAGGAAGTCCGCACCGCTCAGGAAGCTCTGGCAATTG ACCCTGAGTTCTCCAACCGCTCAGTCAACGAAGGTTTCTCCGGTGGCGAGAAGAAGCGCCACGAGGTTCTGCAGCTTGATCTG CTGAAGCCAAAGTTCGCGATCATGGATGAGACCGACTCCGGCCTTGACGTGGATGCACTGCGCATTGTTTCCGAGGGCATCAA CTCCTACAAGCAGGAGACCGAAGGTGGCATCTTGATGATCACCCACTACAAGCGCATCCTCAACTACGTTAAGCCTGACTTCA TTCACGTTTTCGCGAATGGCCAGATTGTGACCACCGGTGGCGCTGAGCTTGCTGACAAGCTCGAGGCTGACGACCAG TTCATCAAG

RXN02515 - 3'-Region TAACATGTCCGATTTCCTCAATG RXN01946 translatiert von RXN01946 (7246) von 1 bis 1275

IRKYSRLEEQFQSLGGYEADAEAAQICDNLGLEARILDQQLKTLSGGQRRRVELAQILFAATNGSGKSKTTLLLDEPTNH LDADSITWLRDFLAKHEGGLIMISHDVELLGAVCNKIWYLDAVRSEADVYNMGFSKYVDARALDEARRRERANAEKKAG ALKDQAARLGAKATKAAAAKQMIARAERMIDNLDEIRVADRAANIVFPEPAPCGKTPLNAKGLTKMYGSLEVFAGVDLAI DKGSRVVVLGFNGAGKTTLLKLLAGVERTDGEGGIVTGYGLKIGYFAQEHDTIDPDKSVWQNTIEACADADQQSLRSLLG SFMFSGEQLDQPAGTLSGGEKTRLALATLVSSRANVLLLDEPTNNLDPISREQVLDALRTYTGAVVLVTHDPGAVKALEP ERVIVLPDGTEDLWNDOYMEIVELA

RXN01946 - kodierende Region

CGACAACCTCGGCCTCGAGGCACGCATCCTCGACCAGCAGCTTAAAACCCTGTCCGGCGGCCAGCGCCGCGCGTCGAGT TTGGACGCAGACTCGATCACCTGGCTCCGTGACTTCCTGGCGAAGCACGAAGGTGGACTGATCATGATTTCGCACGACGT CGAACTGCTTGGCGCCGTATGTAACAAGATTTGGTACCTCGACGCAGTACGCAGCGAAGCCGATGTCTACAACATGGGCT TTAGCAAATACGTCGATGCACGTGCACTCGATGAAGCACGCCGACGCCGTGAGCGCGCAAACGCCGAAAAGAAGACGCCGGA GCCCTCAAGGACCAGGCTGCACGCCTCGGCGCGAAAGCAACCAAGGCTGCCGCAGCTAAGCAGATGATCGCCCGTGCGGA ACGAATGATCGACAACCTCGACGAAATCCGCGTAGCTGACCGCGCCGCCAACATCGTTTTCCCAGAACCAGCACCCTGTG GAAAAACCCCACTCAACGCCAAGGGCCTGACCAAGATGTACGGCTCCCTCGAAGTCTTCGCCGGCGTCGACCTAGCCATC GACAAAGGCTCCCGCGTAGTCGTCCTCGGATTCAACGGTGCAGGTAAAACCACCCTGCTCAAACTCCTCGCCGGTGTGGA ACGCACCGACGCCGAAGGCGCATCGTCACCGGATACGGCCTCAAAATCGGCTACTTCGCCCAGGAACACGACACCATCG ACCCCGACAAATCCGTCTGGCAAAACACCATCGAAGCCTGCGCCGACGCCGACCAACAAGCCTCCGCAGCCTCCTCGGA TCCTTCATGTTCTCCGGCGAACAACTCGACCAACCAGCAGGAACACTCTCCGGCGGTGAAAAAAACCCGCCTCGCACTGGC CACCCTCGTGTCCTCCCGCGCAAACGTCCTGCTTCTCGACGAGCCCAACAACCTTGACCCGATCTCCCGCGAACAGG TCCTCGACGCACTGCGCACCTACACCGGCGCAGTCGTCCTGGTTACCCACGACCCGGGTGCAGTCAAGGCCCTTGAGCCA GAACGCGTCATCGTGCTTCCTGATGGCACCGAGGATCTTTGGAATGATCAGTACATGGAAATCGTGGAATTGGCG

RXN01946 - 3'-Region TAGGTTCTAAGGCTGTTTATGCT RXN01881 translatiert von RXN01881 (7932) von 1 bis 435
MANLINLENVSKTWGLKTLLDGVSLGVQTGDRIGVVGLNGGGKTTLLEVLTGIEKPDQGRVSHNSDLRMAVVTQRAELNDDDT
VADVVLGPLGLEVFEWASNATVRDVLGGLGIVDLGLDTKVGKPFPVGEAPTHQPGRRAGSRP

RXN01881 - 5'-Region ACCGGCCTGCGGCCTCAACCGCCGACCAGCGCGCGCACACATTTTGACTGTTTCATAATAAAGACAAACTTAAGTATCGGA GTCGAAGAAAAACCACA

RXN01881 - 3'-Region TGACCTGATCGTGCTCGACGAGC RXN01602 translatiert von RXN01602 (2220) von 1 bis 1530

MAKTHIRLQDLSLSYTSTPLITKLNITVSSGQCAVIVGENGRGKTTLLRALAREFPPSAGEILTHGTVAIAHQHMPAGDLSVG
EICDEAIRDSKNALEELERAGALLETNTAHALDGYQQALDAAEVLDAWNAEHRLEKALRSFGAITDRSRALSELSIGQRYRVR
LACLIGGDADILLLDEPTNHLDRGALNYLTEAITSHKGVVLVVSHDQALIKDVADFIIDIDSTPDGLPRIYHEGFDSYRRQRS
ALLETWRQDYAAAQTVQQQLQEDLEHARQRVNSSWKPPKGTGKHTRASRAPGVVQALKRAQDALDSKALDVPPAPAPLLLPTL
KVRPDKPMVDFSDLFVPHRLRLPGSHSVVSGDKIVITGDNGAGKSTLIEVLSGVLTPASGSVANHARTGVLGQESLVGEVPSI
ARDHAVKWGLLSVEESRFALQEFSIGQRRRLDLAMSLAGNPELLLLDEPSNHLSMHLVSALTEWLDTTAAAVIMVTHDRQLLR
DTAHWRHIELKS

RXN01602 - 5'-Region
TGCAGGCCACATGCCTCCCAGTGCCGTCTCTGCACGTTGATTTTCCCCTGCCACGACTGGTCGCAGGGCGACTTTCTAGCACT
TTTAAAGGAATTTTTTA

RXN01602 - kodierende Region ATGGCTAAAACCCATATTCGGTTACAGGACCTTTCCCTGTCATACACCTCAACCCCGTTAATTACGAAGCTCAATATCACTGT TTCTTCTGGACAGTGCGCAGTGATTGTTGGTGAGAATGGTCGAGGTAAAACCACACTTCTGCGAGCACTGGCTCGAGAATTCC CGCCATCTGCAGGTGAGATTCTCACTCATGGCACGGTAGCAATTGCTCATCAACACATGCCTGCAGGTGATCTGTCCGTCGGA GAGATCTGTGATGAGGCAATTCGTGATTCAAAGAATGCTCTCGAAGAGCTTGAGAGAGCTGGAGCTCTACTTGAGACAAACAC TGCGCACGCACTTGATGGATATCAACAAGCCCTTGATGCCGCTGAAGTGCTTGACGCATGGAACGCTGAACATCGATTAGAAA ${f T}_{f GGCCTGCCTCATCGGTGGCGATGCTGATATTTTGCTTCTCGATGAACCCACCAATCATCTTGACCGGGGCGCGCTTAACTA$ TCTCACCGAAGCCATAACCTCCCACAAAGGTGTGGTACTTGTTGTTTCTCATGATCAAGCACTGATCAAAGATGTCGCGGATT TCATCATCGATATTGATTCAACCCCAGACGGCCTACCACGGATCTATCATGAGGGTTTTGATTCTTATCGACGCCAAAGGAGT CCAGCGGGTGAATTCTTCGTGGAAACCTCCAAAAGGAACGGGAAAACACACTCGCGCATCTCGGGCTCCCGGAGTGGTGCAGG CCTTAAAGCGAGCACAGGATGCGTTGGATAGCAAAGCGTTGGACGTTCCCCCGGCTCCGGCCCCATTGCTTCTGCCTACCTTG AAAGTGCGACCAGATAAACCCATGGTGGACTTTTCGGACCTTTTTGTACCCCACCGCTTGCGTCTGCCAGGCTCACATTCAGT GGTATCAGGTGACAAAATAGTGATCACTGGTGACAACGGCGCTGGCAAATCAACGCTCATCGAAGTCTTGTCTGGGGTTTTGA CTCCGGCAAGTGGTTCGGTTGCAAACCATGCCCGAACTGGGGTTCTCGGCCAAGAATCACTTGTCGGCGAGGTGCCATCAATA GCACGAGATCACGCAGTTAAGTGGGGACTTTTAAGTGTTGAGGAGAGCCGATTTGCCCTACAGGAATTCTCAATTGGTCAACG CAGAAGACTAGATTTGGCCATGTCGTTAGCTGGCAATCCTGAACTGTTGCTTCTCGATGAACCTTCGAACCATCTGTCTATGC ACTTGGTTTCCGCACTTACAGAGTGGCTGGACACGACCGCGGCTGCAGTGATCATGGTAACGCATGATCGACAGCTACTCCGC GATACGGCTCATTGGAGGCACATCGAGTTGAAATCT

RXN01602 - 3'-Region
TAAGAATTCGCAAGGGCTTTCAC

RXN01212 translatiert von RXN01212 (3583) von 1 bis 924
MPMTTTPAIDVTDLVRTYGDYTAVKGLNFHVQRGEVFGLLGTNGAGKTSTLEVIEGLSAPSSGTVRISGLDPVADRAILRPEL
GIMLQSGGLPSQLTVAETMDMWHGTCTYPRAIKDVLADVDLLHRENVKVGALSGGEQRRLDLACALLGDPSILFLDEPTTGLD
PESRRHTWQLLLDLKQRGVTMMLTTHYLEEAEFLCDRIAIMNAGEIAVEGTLDELVAREKSIISFVLRGGQVELPVLSGAEII
RDNNHVRIATTTLQQHTLEILTWAAETGIALEGFAAKPATLESVFMDIASLENTSLQTA

RXN01212 - 5'-Region TTTAGAAGCCACATGACATATGTCATGAAAATTATGTGCAAAGTGCAGTAATACTCCTGACATATGGCTCTACCAGCGCCAAT GCGAAGTAGGAAGAATT

RXN01212 - 3'-Region
TAGAATCTTTAAGGAGACCACAA

RXN01191 translatiert von RXN01191 (2562) von 1 bis 1590 VGGLVDKLLATPSMRDVVVFALLIVAGGVVSSLGTWWGSALMARALEPAIAGLREDVLRAAVSLDANTIETAGRGDVISRIAD DSREVSTAASTVVPLMVQAGFTVVISAFGMAAVDWRLGLVGLVAIPLYWTTLRVYLPRSGPLYTREREAFGVRTQRLVGAVEG AETLRAFRAEDTELKRIDAASGEARDISISVFRFLTWAFSRNNRAECITLVLILGTGFYLVNIDLVTVGAVSTAALIFHRLFG PIGTLVGMFSDIQSASASLIRMVGVINAASNQVSGTSPASASTALTLFDVSHHYHTAPVIKNASVQLEPGEHIAIVGATGAGK STLALIAAGLLSPTSGQVALGGSSFSNVEPEALRQKIAMVSQEIHCFRGSVLDNLRIARPEATDADIHAVLADIGDSWLERLP QGIDTIVGDGAFRLTSVENQIMALARVHLADLAIVILDEATAESGSDHAKQLEDAALKVTENRSAIIVAHRLNQAKTADRIIV MDSGEIIESGTHEELRAIGGRYEQLWTAWSAR

RXN01191 - 5'-Region CGCTGCTTTCACGCAACTGAAACCGCACCGGATCAAGTTATTTGGGGTTGTTCTTTGTGGCGTGTTGGTGGCCGTCGCGGGGT TGGTAGGGCCCTGGGCG

RXN01191 - kodierende Region ATGTGTTGCGCGCGCGGTGAGTTTGGATGCGAACACGATTGAAACGGCGGGGCGCGGCGACGTGATTTCGCGTATCGCGGAT ${\tt GATTCGCGGGAGGTGTCCACTGCGGCGAGCACCGTGGTGCCGCTGATGGTGCAGGCGGGCTTTACCGTGGTGATTTCCGCGTTT}$ TGGCATGGCGGCGGTTGATTGGCGCCTCGGCCTTGTCGGTTTGGTCGCGATCCCGCTGTATTGGACCACGTTGCGCGTCTATT CCGGAAACCTTGCGCGCTTTCCGCGCAGAAGATACAGAATTAAAGCGTATCGACGCAGCCTCCGGCGAAGCCCGCGACATTTC CATTTCTGTTTTCAGGTTCCTCACATGGGCATTTTCCCGCAACAACCGCGCGGAATGCATCACCCTCGTGCTCATCTTGGGCA CCGGCTTTTACCTGGTCAACATCGATCTGGTCACCGTCGGCGCAGTCTCAACCGCCGCACTGATCTTCCACCGACTCTTCGGT CCAATCGGCACGCTCGTGGGCATGTTCTCCGACATCCAATCCGCCAGCGCATCGCTGATCCGCATGGTGGGCGTTATTAACGC GGCATCGAACCAGGTCAGCGGCACCTCGCCGGCGTCTGCCAGCACCGCTTTAACGCTTTTCGACGTCTCCCACCACTATCACA CTGCACCGTCATCAAGAATGCATCCGTGCAGCTGGAACCAGGGGAACACATCGCCATTGTGGGTGCGACCGGCGCTGGTAAA AGCACGCTCGCCCTCATTGCGGCAGGCCTGCTCAGCCCAACTTCCGGGCAGGTGGCTCTCGGCGGATCGAGTTTTTCTAACGT CGAACCGGAAGCATTGCGCCAGAAGATCGCGATGGTCAGCCAAGAAATCCACTGCTTCCGAGGATCTGTTTTAGATAATCTTC GTATCGCACGCCCCGAAGCCACCGATGCGGACATCCACGCCGTTCTCGCCGATATTGGTGATTCCTGGTTGGAGCGCTTACCG CAAGGCATAGACACCATCGTGGGTGATGGCGCTTTCCGTTTAACCTCTGTGGAAAACCAGATCATGGCGCTTGCTCGCGTACA TTTGGCCGACCTAGCAATCGTCATCCTTGATGAAGCAACGGCTGAATCAGGCTCTGATCATGCAAAACAGCTTGAAGATGCAG CCCTTAAAGTCACTGAAAACAGATCAGCCATCATCGTGGCTCACCGCCTCAACCAAGCGAAAACCGCCGATCGCATCATCGTC ATGGACTCCGGAGAAATCATAGAATCTGGAACCCATGAAGAGCTTCGAGCGATCGGCGGCCGATATGAACAACTGTGGACTGC GTGGTCTGCGCGC

RXN01191 - 3'-Region TAATTAGCCACCCAAGACCACGC RXN00733 translatiert von RXN00733 (1945) von 1 bis 885

MSNTAGPRGRSHQADAAPNQKAQNFGPSAKRLFGILGHDRNTLIFVIFLAVLSVGLTVLGPWLLGKATNVVFEGFLSKRMPAG ASKEDIIAQLQAAGKHNQASMMEDMNLVPGSGIDFEKLAMILGLVIGAYLIGSLLSLFQARMLNRIVQSAMHRLRMEVEEKIH RLPLSYFDSIKRGDLLSRVTNDVDNIGQSLQQTLSQAİTSLLTVIGVLVMMFIISPLLALVALVSIPVTIVVTVVVASRSQKL FAEQWKQTGILNARLEETYSGHAVVKVFGHQKDVQEAFEEENQACV

RXN00733 - 5'-Region

RXN00733 - kodierende Region

RXN00733 - 3'-Region TAAGGCCAGCTTTGGTGCCCAGT

RXN00164 translatiert von RXN00164 (2228) von 1 bis 1689 VGRIPRAKWWFLGALVLLSAGAYASVLVPQVLGRIVDLVSDGAQMRDFVELSVILIAVAIAGAVLSACGFYVVSRISEKIIAN LREDMVGTALGLPTHQVEDAGSGDLVSRSTDDVSELSAAVTETVPILSSSLFTIAATIIALFSLDWQFVLIPVVVAPVYYFAS KHYLSKAPDRYAAERAAMAERARKVLEAIRGRATVRAYSMEDAMHNQIDQASWSVVVKGIRARTTMLILNMWMLFAEFLMLAV ALVIGYKLVIDNALTIGAVTGAVLMIIRLRGPMNMFMRVLDTIQSGYASLARIVGVVADPPIPVPDSGVKAPQGKVELRNVSF SYGDSWAVKDIDITINSGETVALVGASGAGKTTVAALLAGLRVPDQGQVLVDDFPVSHLSDRERIARLAMVSQEVHVFSGTLR QDLTLAKPDASDEELAHALGQVNALDWLESLPEGLDTVVGARGIQLEPVVAQQLALARVLLLNPAIVIMDEATAEAGSAGASA LEEAADAVSKNRSALVVAHRLDQASRADQILVMDKGEVVESGTHQELLDHGGIYQRLWTAWSVGR

RXN00164 - 5'-Region CTGCTTTGCGGGAGATGAAAAGCATGCGCTTTCCGTTGGCCAGCCTGCCGCAAGTGCGGC GCGAGGTGGCCCGGCAAGTGCGGCGGCGCGCAGGTGGCCGGCAGGTGGCCCGGCAG

RXN00164 - kodierende Region GTGGGTCGTATTCCGCGGGCGAAGTGGTGGTTTTTAGGCGCGCTGGTGTTGCTGAGTGCGGGCGCTTATGCGTCGGTGCTGGT GCCGCAGGTGCTGGGGCGGATTGTGGATCTGGTGTCCGATGGCGCGCAGATGCGTGATTTTGTTGAGCTCAGTGTGATTCTCA TTGAGGGAAGATATGGTGGGCACCGCGCTTGGGTTGCCCACGCACCAGGTGGAAGATGCGGGCTCTGGCGATTTGGTGAGCCG CTCCACCGATGATGTCTCCGAGCTATCCGCAGCGGTGACAGAGACCGTCCCGATTTTAAGTTCCTCACTGTTTACCATTGCCG GACGATCATTGCGCTGTTTTCTTTGGACTGGCAATTTGTGCTCATTCCTGTCGTGGTGGCGCCGGTGTACTACTTCGCGTCC TATTCGCGGGCGTGCAACTGTGCGGGCGTATTCCATGGAAGATGCCATGCATAATCAGATTGATCAGGCGTCGTGGTCTGTGG TGGTCAAGGGTATTCGTGCGCGCACCACCATGTTGATTTTGAACATGTGGATGCTGTTTTGCGGAATTCCTCATGCTCGCGGTC GCGTTGGTGATCGGCTACAAGCTGGTCATTGATAATGCGCTGACGATCGGCGCGGTTACCGGTGCCGTGCTGATGATTATTCG TCTGCGTGGCCCGATGAATATGTTCATGCGCGTGCTCGACACCATTCAATCCGGCTATGCGTCGCTGGCGCGCATCGTGGGAG TTGTTGCGGATCCGCCGATTCCTGTGCCCGACAGCGGTGTGAAAGCACCTCAGGGCAAAGTGGAATTGCGCAACGTCAGCTTT AGCTATGGCGATTCCTGGGCGGTGAAAGACATCGACATCACGATCAATTCCGGCGAAACTGTCGCGCTCGTGGGCGCATCTGG CGCAGGTAAGACGACGGTCGCCGCCTTGCTGGCGGGCTTGCGGGTGCCAGATCAAGGGCAAGTGCTTGTCGACGACTTCCCCG TCTCTCACCTCTCTGACCGCGAGCGTATCGCCCGCTTGGCCATGGTCAGCCAGGAGGTTCATGTTTTCTCCGGCACGCTGCGC CAGGATCTCACCTTGGCTAAACCAGATGCCTCCGATGAGGAATTAGCGCATGCTCTTGGGCAAGTTAATGCCCTTGACTGGTT GGAGAGTCTTCCAGAAGGACTGGACACGGTCGTTGGTGCGCGAGGAATCCAGCTAGAACCAGTGGTGGCTCAGCAGTTGGCGT TGGCCCGGGTGTTGTTGCTCAATCCGGCGATCGTCATCATGGATGAAGCCACGGCAGAAGCAGGATCGGCGGGTGCCAGCGCA $\tt CTGGAAGAGGCTGCAGATGCAGTGAGCAAGAACCGTTCCGCATTGGTGGTGGCGCACCGGTTGGATCAGGCATCGCGGGCTGA$ TCAGATTCTGGTGATGGATAAGGGGGAGGTTGTGGAATCCGGTACTCACCAGGAGTTATTGGATCACGGGGGTATTTATCAGC GTCTGTGGACTGCGTGGAGTGTCGGAAGA

RXN00164 - 3'-Region TAGTTGACTGTTCAATGCGTTGA CORYNEBACTERIUM GLUTAMICUM-GENE, DIE PROTEINE CODIEREN, DIE AN DER MEMBRANSYNTHESE UND AM MEMBRANTRANSPORT BETEILIGT SIND

· 5 Zusammenfassung der Offenbarung

Isolierte Nukleinsäuremoleküle, die als MCT-Nukleinsäuremoleküle bezeichnet werden und neue MCT-Proteine aus Corynebacterium glutamicum codieren, werden beschrieben. Die Erfindung stellt zudem Antisense-Nukleinsäuremoleküle, rekombinante Expressionsvektoren, die MCT-Nukleinsäuremoleküle enthalten und Wirtszellen, in die die Expressionsvektoren eingebracht worden sind, bereit. Sie stellt weiterhin isolierte MCT-Proteine, mutierte MCT-Proteine, Fusionsproteine, antigene Peptide und Verfahren zur Verbesserung der Produktion einer gewünschten Verbindung aus C. glutamicum bereit, die auf der genetischen Manipulation von MCT-Genen in diesem Organismus beruhen.

20

25

30

35

40

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.