计算机组成原理 Homework7 (10.19)

中国人民大学 信息学院 崔冠宇 2018202147

- **1.** 已知某个系统采用传统海明码校验码, 如果接收端收到的海明码为: $H_{12} \sim H_1 = 110001111010$.
- 1) 该海明码的数据位数 k = ?, 校验位数 r = ?. 并指出 $H_{12} \sim H_1$ 对应数据位和校验位的关系.
- 2) 写出各校验位的产生逻辑表达式.
- 3) 写出发送端发出的原始海明码.

解: 1) 首先, 有 k+r=12; 其次, 因为校验位数为 r, 可以表示 2^r 个状态, 其中有一个状态表示数据正确, 2^r-1 个状态表示有错误, 所以 $2^r-1 \ge k+r$. 联立得到 $2^r \ge 13$, 所以 r=4, k=8. 根据海明码校验位处在 2^i (i=0,1,2,3), 可得到对应关系 (D 表示数据位, P 表示校验位):

				2^3				2^2		2^1	2^0
$\overline{H_{12}}$	H_{11}	H_{10}	H_9	H_8	H_7	H_6	H_5	H_4	H_3	H_2	$\overline{H_1}$
D_8	D_7	D_6	D_5	P_4	D_4	D_3	D_2	P_3	D_1	P_2	P_1
1	1	0	0	0	1	1	1	1	0	1	0

2) 写出各位的下标对应的二进制:

b_3	b_2	b_1	b_0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
	0 0 0 0 0 0 0 1 1 1	0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0	0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1

所以各校验位产生函数为:

 $P_1($ $\uplus \square H_1) = H_{11} \oplus H_9 \oplus H_7 \oplus H_5 \oplus H_3;$

 $P_2($ 也即 $H_2) = H_{11} \oplus H_{10} \oplus H_7 \oplus H_6 \oplus H_3;$

 $P_3(\biguplus \mathbb{P} H_4) = H_{12} \oplus H_7 \oplus H_6 \oplus H_5;$

 $P_4($ 也即 $H_8) = H_{12} \oplus H_{11} \oplus H_{10} \oplus H_9.$

3) 检验位 $C_1 = H_{11} \oplus H_9 \oplus H_7 \oplus H_5 \oplus H_3 \oplus H_1 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 1$.

 $C_2 = H_{11} \oplus H_{10} \oplus H_7 \oplus H_6 \oplus H_3 \oplus H_2 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 0.$

 $C_3=H_{12}\oplus H_7\oplus H_6\oplus H_5\oplus H_4=1\oplus 1\oplus 1\oplus 1\oplus 1\oplus 1=1.$

 $C_4 = H_{12} \oplus H_{11} \oplus H_{10} \oplus H_9 \oplus H_8 = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 0.$

综上 $C = C_4 C_3 C_2 C_1 = (0101)_2 = 5$, 所以原始海明码为 110001101010.

- **2.** 已知某个通讯系统采用传 (7,4) CRC 校验码, 生成多项式 G(x) = 1011.
- 1) 如果信息位为 1100, 请写出对应的 CRC 校验码.
- 2) 如果接收端收到的 CRC 校验码为: 1011110, 写出发送端发出的原始 CRC 校验码.

解:

- 1) 由題意, r = 4 1 = 3. 因为 $\frac{M(x)x^r}{G(x)} = \frac{1100000}{1011} = 1110 + \frac{010}{1011}$, 余数 R(x) = 010. 所以 $CRC = M(x)x^r + R(x) = 1100010$.
- 2) 先检查模 2 除法的余数: $1011110/1011 = 1000 \cdots 110$. 余数不为零,补 0 继续: $1100/1011 = 1 \cdots 111$, $1110/1011 = 1 \cdots 101$. 共多除了 2 次,所以从左起第三位有错,发送端 CRC 码为 1001110.