TUTORIAL - 1 ON LAPLACE TRANSFORMS

- ¹ Show explicitly that Laplace transform of e^{x^2} does not exit.
- ² Find the Laplace transform of the following functions.
 - (a) f(x) = [x], where [x] denotes the greatest integer $\leq x$.
 - (b) $f(x) = e^{-x} (3\sinh(2x) 5\cosh(2x))$
 - (c) $f(x) = e^x x^2 \sin(4t)$
 - (d) $f(x) = \int_0^x \int_0^v \frac{1 e^{-u}}{u} du dv$
- ³ Find inverse Laplace transform of the following functions.

(a)
$$F(p) = \frac{1}{p} \sin\left(\frac{1}{p}\right)$$
, (b) $F(p) = \cot^{-1}(p+1)$, (c) $F(p) = \frac{2p^2 - 4}{(p-3)(p^2 - p - 2)}$

⁴ Solve the following differential equation with the help of Laplace transform.

(a)
$$y'' + 2y' + 5y = 3e^{-x}\sin(x)$$
, $y(0) = 0$, $y'(0) = 3$

(b)
$$xy'' + 2y' + xy = 0$$
, $y(0) = 1$, $y(\pi) = 0$

⁵ Solve
$$y' + 4y + 5 \int_0^x y dx = e^{-x}$$
, $y(0) = 0$.

⁶ Solve the integral equation $y(x) = x^3 + \int_0^x \sin(x-t)y(t)dt$ using Laplace transform.

TUTORIAL - 2 ON LAPLACE TRANSFORMS

¹ Find the Laplace transform of the following functions.

(a)
$$f(x) = 4e^{-2x} + \sin(3x) - 4\cos(5x) + 12x^3 - 5$$
 (b) $f(x) = \sin(5x)\cos(3x)$

$$(b) f(x) = \sin(5x)\cos(3x)$$

$$(c) f(x) = \cosh^2(4x)$$

(d)
$$f(x) = (x+2)^2 e^x$$

(e)
$$f(x) = \cos(ax)\sinh(bx)$$

$$(f) \ f(x) = e^{-2x} \cos^2(x)$$

$$(g) \ f(x) = \begin{cases} \sin(x - \pi/3) & \text{if } x > \pi/3 \\ 0 & \text{if } x < \pi/3 \end{cases}$$

$$(h) \ f(x) = \sin(ax) - ax\cos(ax) + \frac{\sin(x)}{x}$$

if
$$x > \pi/3$$

$$(h) f(x) = \sin(ax) - ax\cos(ax) + \frac{\sin(x)}{x}$$

(i)
$$f(x) = xe^{ax}sin(bx)$$

(j)
$$f(x) = \int_0^x \frac{1 - e^{-u}}{u} du$$

$$(k) \ f(x) = \int_0^x \frac{\sin t}{t} dt$$

(l)
$$f(x) = erf(\sqrt{x})$$

² Dose the Laplace transform of foillowing function exist?

$$(i) \frac{1}{x+2} \qquad (ii) e^{x^2-x}$$

$$(ii) e^{x^2-x}$$

$$(iii)\sin(x^2)$$

³ Find $L\{sin\sqrt{t}; p\}$. Also obtain $L\left\{\frac{cos\sqrt{t}}{\sqrt{t}}; p\right\}$

⁴ Prove that $L\left\{\frac{\cos(at)-\cos(bt)}{t};p\right\}=\frac{1}{2}\log\left(\frac{p^2+b^2}{p^2+a^2}\right)$ and deduce that

$$\int_0^\infty \frac{\cos(6t) - \cos(4t)}{t} dt = \log(2/3)$$

Frove that
$$L\left\{\frac{\sin^2(x)}{x};p\right\} = \frac{1}{4}\log\left(\frac{p^2+4}{p^2}\right)$$
 and deduce that
 (i) $\int_0^\infty e^{-x}\frac{\sin^2(x)}{x}dx = 0.25\log(5)$, (ii) $\int_0^\infty \frac{\sin^2(x)}{x^2}dx = \pi/2$

⁶ Evaluate the following integral with the help of Laplace Transform.

(i)
$$\int_0^\infty x^3 e^{-x} \sin(x) dx, \quad (ii) \quad \int_0^\infty \frac{e^{-x} \sin(x)}{x} dx, \quad (iii) \quad \int_0^\infty x e^{-2x} \cos(x) dx.$$

⁷ Prove that

$$L\left\{H(x-a);p\right\} = \frac{e^{-ap}}{p},$$

where H(x-a) is Heaviside's unit step function.

⁸ Show that $L\left\{\delta(x-a);p\right\}=e^{-ap},$ where $\delta(x)$ is Dirac-delta function.

⁹ Prove that
$$L\left\{J_0(x);p\right\} = \frac{1}{\sqrt{p^2+1}}$$
, deduce that

(i)
$$L\{J_0(ax); p\} = \frac{1}{\sqrt{p^2 + a^2}},$$
 (ii) $L\{xJ_0(ax); p\} = \frac{p}{(p^2 + a^2)^{3/2}},$

(iii)
$$\int_0^\infty J_0(x)dx = 1,$$

(iv)
$$L\{J_1(x); p\} = 1 - \frac{p}{\sqrt{p^2 + 1}},$$

(iv)
$$L\{J_1(x); p\} = 1 - \frac{p}{\sqrt{p^2 + 1}},$$

(v) $L\{xJ_1(x); p\} = \frac{1}{(p^2 + 1)^{3/2}}$

Find inverse Laplace transform of the following functions.

(a)
$$F(p) = \frac{1}{p^4} + \frac{3p}{p^2 + 16} + \frac{5}{p^2 + 4}$$
 (b) $F(p) = \frac{6}{2p - 3} - \frac{3 + 4p}{9p^2 - 16} + \frac{8 - 6p}{16p^2 + 9}$

(c)
$$F(p) = \frac{p^2 - 1}{(p^2 + 1)^2}$$
 (d) $F(p) = \frac{p}{(p+3)^{7/2}}$

(e)
$$F(p) = \frac{p}{(p+1)^5}$$
 (f) $F(p) = \frac{1}{\sqrt{(2p+3)}}$

$$(c) F(p) = \frac{p^2 - 1}{(p^2 + 1)^2}$$

$$(d) F(p) = \frac{p}{(p + 3)^{7/2}}$$

$$(e) F(p) = \frac{p}{(p + 1)^5}$$

$$(f) F(p) = \frac{1}{\sqrt{(2p + 3)}}$$

$$(g) F(p) = \frac{1}{\sqrt{(p^2 - 4p + 20)}}$$

$$(h) F(p) = \log\left(\frac{p^2 + a^2}{p^2 + b^2}\right)$$

$$(i) F(p) = \frac{1}{p} \log\left(\frac{p + 2}{p + 1}\right)$$

$$(j) F(p) = \frac{1}{(p + 2)(p^2 + 4)}$$

$$(k) F(p) = \frac{p}{(p^2 + a^2)^3}$$

$$(l) F(p) = \cot^{-1}(p + 1)$$

$$(m) F(p) = \frac{1}{(p + 2)(p^2 + 4)}$$

$$(l) F(p) = \frac{1}{(p + 2)(p^2 + 4)}$$

(i)
$$F(p) = \frac{1}{p} \log \left(\frac{p+2}{p+1} \right)$$
 (j) $F(p) = \frac{1}{(p+2)(p^2+4)}$

$$(k) F(p) = \frac{p}{(p^2 + a^2)^3}$$
 $(p+2)(p^2 + a^2)$ $(p+2)(p^2 + a^2)$

(m)
$$F(p) = \frac{1}{p^3(p^2+1)}$$
 (l) $F(p) = \frac{1}{(p+1)(p^2+1)}$

 12 Solve the following differential equation with the help of Laplace transform.

(a)
$$y'' + y = x \cos(2x)$$
, $y(0) = y'(0) = 0$

(b)
$$y'' + 2y' + y = x$$
, $y(0) = -3$, $y(1) = -1$

(c)
$$xy'' + 2y' + xy = 0$$
, $y(0) = 1$, $y(\pi) = 0$

(d)
$$xy'' + (x-1)y' - y = 0$$
, $y(0) = 5$, $y(\infty) = 0$

(e)
$$y'' + 2y' + 10y = \delta(x)$$
, $y(0) = 0$, $y'(0) = 0$ where $\delta(x)$ is Dirac-delta function.