فيه: رياضيات، تعني رياضي		ام جبه الممورجية موضوع المتحال شهادة البحاثوري الدورة. 2024 الحبير تعدد. العموم الفيريانية المسعبة.
العلامة		عناصر الإجابة – الموضوع الأول
مجموع	مجزأة	حاصر الإجابة – المويصوع الاون
		الجزء الأول: (14 نقطة)
		التمرين الأول: (04 نقاط)
0,50		الطربقة الأولى:
	0, 25	1. نوع السقوط: سقوط حر
	0, 25	التبرير: الكريّة خاضعة لتأثير قوة ثقلها فقط
		v(t) لموضع الكرية: $v(t)$ لموضع الكرية:
4.00	$0,25 \times 2$	$\sum \vec{F}_{ext} = m \vec{a}_G \implies \vec{P} = m \vec{a}_G$
1,00	$0,25 \times 2$	$m g = m a_G \Rightarrow \frac{d^2 y}{dt^2} = g$ بالإسقاط على المحور (Oy) وأخذ القيم الجبرية نجد:
		3. ايجاد الارتفاع h لمئذنة الجامع:
	$0,25\times 2$	$v^2-v_0^2=2gh o h=rac{v^2}{2g}$ بما أن الحركة مستقيمة متسارعة بانتظام فإن:
0,75	0,25	$h = \frac{\left(72,11\right)^2}{2 \times 9,80} = 265,3 m$
		ملاحظة: تقبل طرق أخرى للحل
		الطريقة الثانية:
		1. التحقق من كتلة الكرية:
		$E_{C}=A\cdot t^{2}+B$: البيان خط مستقيم معادلته من الشكل
1,00	0, 25	$A = \frac{1}{2} m g^2 \Rightarrow m = \frac{2A}{g^2}$ بالمطابقة مع العبارة النظرية المعطاة، نجد
,	0, 25 0, 25	$A = \frac{\Delta E_C}{\Delta t^2} = 4.8J \cdot s^{-2}$ حيث
	0,25	$m = \frac{2 \times 4.8}{9.8^2} \approx 0.1 \text{Kg} \rightarrow m \approx 100 \text{g}$
		$E_{C_0}+W\left(\overrightarrow{P} ight)=E_{C_P}$: معادلة انحفاظ الطاقة
0.75	0, 25	$h=rac{E_{C_p}-E_{C_0}}{mg}$:ارتفاع مِئْذَنة الجامع $h=rac{E_{C_p}-E_{C_0}}{mg}$
0,75	0,25	mg $h = \frac{280 - 20}{0.1 \times 9.8} = 265,3m$ ت ع:
	-,	0,1112,0
		التمرين الثاني: (04 نقاط)
1,00	0,25	1.1. تعريف النشاط الإشعاعي: تحول نووي تلقائي لنواة مشعة إلى نواة أخرى أكثر استقرارا مع انبعاث اشعاعات وجسيمات.
		البعاث الشعاعات وجسيدات.

	يو بي پي مرد د يو دي پي د د د د د د د د د د د د د د د د د							
	0, 25	$^{201}_{81}Tl ightarrow ^{A}_{z}Hg + ^{0}_{+1}e + \gamma : 201$ کتابة معادلة تفکك نواة نظير الثّاليوم 201.						
	0, 25	$egin{cases} 201 = A \ 81 = Z + 1 \end{cases} \Rightarrow egin{cases} A = 201 \ Z = 80 \end{cases}$ حسب قانوني الانحفاظ لصودي:						
	0, 25	${}^{201}_{81}Tl \rightarrow {}^{201}_{80}Hg + {}^{0}_{+1}e + \gamma$						
		1.2. حساب قيمة النشاط A للمحلول المشع لحظة استعماله:						
	$0,25\times 2$	$A = A_0 e^{-\lambda t}$, $\lambda = \frac{\ln 2}{t_{1/2}}$						
1,25	0,25	$A = A_0 e^{-\frac{\ln 2}{t_{1/2}}t} = 153,9 \times 10^6 \times e^{-\frac{\ln 2}{73} \times 24} = 122,5 \times 10^6 Bq$						
		2.2. نشاط العيّنة:						
	$0,25 \times 2$	اذن نشاط العيّنة كاف الإجراء عملية التصوير الطبي. $12,25 \times 10^7 Bq > 11 \times 10^7 Bq$						
		$rac{A_{(202Tl)}}{A_{(81Tl)}}$ بدلالة الزمن:						
	0, 25	$A_{(rac{201}{81}TI)}=A_{01}\cdot e^{-\lambda_{(rac{201}{81}TI)}\cdot t}$ منه: $A_{(rac{202}{81}TI)}=A_{02}\cdot e^{-\lambda_{(rac{202}{81}TI)}\cdot t}$						
	0, 25	منه: $A_{_{(202TI)}} = A_{_{02}} \cdot e^{-\lambda_{_{(81}^{-202}TI)} \cdot t}$						
	0,23	$A_{202TI} \qquad A \qquad \begin{pmatrix} -\lambda_{202TI} \\ 81 \end{pmatrix}^{t} \qquad \qquad \begin{pmatrix} \lambda_{201TI} \\ -\lambda_{202TI} \end{pmatrix}^{t}$						
1,75	$0,25 \times 2$	$\frac{A_{\binom{202}{81}Tl)}}{A_{\binom{201}{81}Tl)}} = \frac{A_{02} \cdot e^{-\lambda_{\binom{202}{81}Tl)} \cdot t}}{A_{01} \cdot e^{-\lambda_{\binom{201}{81}Tl)} \cdot t}} = 0,005 \cdot e^{\left(\lambda_{\binom{201}{81}Tl} - \lambda_{\binom{202}{81}Tl}\right)^{t}} = 0,005 \cdot e^{1,982 \times 10^{-6}t}$						
		2.3. المدة الزمنية التي من أجلها تصبح العيّنة غير صالحة للاستخدام:						
	0, 25	$0.02 = 0.005 \cdot e^{1.982 \times 10^{-6} t} \implies e^{1.982 \times 10^{-6} t} = \frac{0.02}{0.005} = 4$						
	$0,25 \times 2$	$\ln e^{1.982 \times 10^{-6} t} = \ln 4 \implies t = \frac{\ln 4}{1,982 \times 10^{-6}} = 699442, 16s = 194, 3h$						
		· · · · · · · · · · · · · · · · · · ·						
		التمرين الثالث: (06 نقاط)						
0,50	0.5	أولا: الدراسة الحركية لتفاعل أكسدة $-$ إرجاع $-$ 1. ظهور اللون الأزرق: يدل على حدوث تفاعل كيميائي وتشكل شوارد النحاس الثنائي $-$ 2 $-$ 0.						
	0,5	# #						
	0, 25	1.2. تصنيف التحول من حيث مدة حدوثه: التحول بطيء						
		2.2. جدول تقدم التفاعل الحادث:						
المعادلة $Cu(s) + 2Ag^+(aq) = Cu^{2+}(aq)$								
2,50	$0,25\times 2$	كمية المادة الجملة						
	0,23 × 2	0 $n_0 = \frac{m}{M}$ cV 0 0						
		انتقالیة x n_0-x $cV-2x$ x $2x$						
		نهائية x_f n_0-x_f $cV-2x_f$ x_f $2x_f$						
	1							

	~ T	3 3 3
		3.2. تحديد قيمة التقدم النهائي والمتفاعل المُحد:
		✓ التقدم النهائي:
	$0,25 \times 2$	$\left[Cu^{2+}\right]_f = \frac{n_f(Cu^{2+})}{V} = \frac{x_f}{V} \Rightarrow x_f = \left[Cu^{2+}\right]_f \cdot V$
	0, 25	$\left[Cu^{2+}\right]_f=5 imes10^{-3}\ mol\cdot L^{-1}$ من البيان
	0,25	$x_f = 5 \times 10^{-4} mol$ ومنه
		✓ استنتاج المتفاعل المحد:
	0, 25 0, 25	$n_0 = \frac{m}{M} = 0.1 mol$
	0, 25	$n_f\left(Cu ight)=n_0-x_f=9,95 imes10^{-2}\ mol eq0$ في الحالة النهائية
		ومنه المتفاعل المحد هو $^+Ag^+$ ومنه المتفاعل المحد هو
		t=0 المطة وي اللحظة $t=0$:
	0,25	$v_{vol} = \frac{1}{V} \frac{dx}{dt} , n(Cu^{2+}) = x$
	0, 25	$v_{vol} = \frac{1}{V} \frac{d n(Cu^{2+})}{dt} = \frac{d (\frac{n(Cu^{2+})}{V})}{dt} = \frac{d \left[Cu^{2+} \right]}{dt}$
0,75		$v_{vol} = \frac{1}{V} \frac{d h(Cd)}{dt} = \frac{V}{dt} = \frac{d Cd}{dt}$
		t=0 قيمتها في اللحظة $t=0$
	0,25	$v_{vol_0} = \left(\frac{d[Cu^{2+}]}{dt}\right)_{t=0} = \frac{\Delta[Cu^{2+}]}{\Delta t} = 3,33 \times 10^{-4} mol \cdot L^{-1} \cdot min^{-1}$
		ثانيا: اشتغال عمود
0,50	$0,25 \times 2$	$Q_{r,i} = \frac{\left[Sn^{2+}\right]_0}{\left[Pb^{2+}\right]_0} = 0,67$: $Q_{r,i}$ الابتدائي الابتدائي .1
		2. استنتاج جهة التطور التلقائي للجملة أثناء اشتغال العمود:
0,50	$0,25\times 2$	بما أن $Q_{r,i} < K$ فإن الجملة تتطور تلقائيا في الاتجاه المباشر .
		3. كتابة المعادلتين النصفيتين:
0,50	0, 25	$Pb^{2+}ig(aqig)+2e^-=Pbig(sig):$ بجوار مسرى الرصاص
	0,25	$Sn(s) = Sn^{2+}(aq) + 2e^-$: بجوار مسرى القصدير
0, 25	0,25	$\Theta Sn \left Sn^{2+} \right Pb^{2+} \left Pb \oplus Sn^{2+} \right $.4
0,50	0,25	$Q_r = \frac{\left[Sn^{2+}\right]}{\left[Pb^{2+}\right]} = 2,18$: کسر التفاعل: 1.5
0,50	0,25	.2.5 نلاحظ أن $Q_r = K$ والعمود يتوقف عن الاشتغال.

الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2024 اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات، تقني رياضي

	<u>"</u>	
	0, 25×2	الجزء الثاني: (06 نقاط) $ u_b $ التمرين التجريبي: (06 نقاط) $ u_R $ $ u_R $ $ u_R $ $ u_R $
		2.1. إيجاد المعادلة التفاضلية التي تُحققها شدّة التيار المار في الدارة:
	0, 25	$u_{R}+u_{b}=E$:بتطبیق قانون جمع التوترات
2,00	$0,25\times 2$	$Ri + ri + L\frac{di}{dt} = E$
	0, 25	$\frac{di}{dt} + \frac{\left(R+r\right)}{I} \cdot i = \frac{E}{I}$
		$u_b = E - u_R = E - Ri = I_0 \left(r + Re^{-\frac{R_T}{L} \cdot t} \right)$:عبارة التوتر الكهربائي: 3.1.
	$0,25\times 2$	$u_b = L \frac{di}{dt} + ri = I_0 \left(r + Re^{-\frac{R_r}{L} \cdot t} \right)$
		1.2. كيفية تطور التوتر بين طرفي الوشيعة:
	0,25	يتناقص التوتر $u_b(t)$ من قيمة عظمى في اللحظة $t=0$ إلى قيمة صغرى (نظام انتقالي) ثم يحافظ
		على نفس القيمة (نظام دائم).
		2.2. شدة التيار الكهربائي في النظام الدائم في التجربتين:
	$0,25 \times 2$	$r_1 + R_1 = r_2 + R_2$: حيث $I_{01} = \frac{E}{r_1 + R_1}$; $I_{02} = \frac{E}{r_2 + R_2}$
	0, 25	$I_{01}\!=\!I_{02}$:منه
		شدة التيار الكهربائي في النظام الدائم هي نفسها في التجربتين
4,00		$:u_{b_1}(t)$ يوافق (1) يوافق 3.2.
	0,25	$egin{aligned} u_{b1} = I_0 \cdot r_1 \ u_{b2} = I_0 \cdot r_2 \end{aligned} igg\}$ في النظام الدائم
	0, 25	(في النظام الدائم) منه $u_{b1}>u_{b2}$ منه $r_{1}>r_{2}$
	0, 25	$u_{b1}(t)$ يوافق $u_{b1}(t)$ يوافق
		4.2. إيجاد بيانيا قيمة كل من:
	0, 25	$E\!=\!2\! imes\!5\!=\!10V$ القوة المحركة الكهربائية للمولد: $E\!=\!2\! imes\!5\!=\!10V$
	0, 25	$ au_1 = 1$ ست الزمن $ au_1 = 1$
	0, 25	$ au_2$ =1,5 ms : $ au_2$ ثابت الزمن –
	1	

	$:L_2$ استنتاج قیمتی L_1 و $:L_2$
$0,25 \times 2$	$ au_1 = \frac{L_1}{R_T} \Longrightarrow L_1 = 0.1 H$
$0,25\times 2$	$\tau_2 = \frac{L_2}{R_T} \Rightarrow L_2 = 0.15 H$
	6.2. تبرير سبب تأخر بلوغ النظام الدائم في التجربة الثانية عن التجربة الأولى:
0,50	زمن بلوغ النظام الدائم هو $ au au = rac{L}{R_{\scriptscriptstyle T}}$. بما أن $R_{\scriptscriptstyle T}$ نفسها فإن التأخر في بلوغ النظام الدائم في
	$L_{\scriptscriptstyle 1}$ التجربة الثانية يعود الى قيمة ذاتية الوشيعة $L_{\scriptscriptstyle 2}$ أكبر من

الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2024 اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات، تقني رياضي

العلامة							
مجموع	مجزأة	عناصر الإجابة – الموضوع الثاني					
		الجزء الأول: (14 نقطة)					
		التمرين الأول: (04 نقاط)					
		1. التوريوم 232 والانشطار النووي					
	0,25	1.1.1. تعريف الانشطار النووي:					
		تفاعل نووي يتم فيه قذف نواة ثقيلة بنيترون فتنقسم إلى نواتين أخف وتحرير نيترونات مع اصدار طاقة.					
	0.25	2.1.1. التفاعل رقم (1) ليس تفاعل انشطار لأن الانشطار ينتج نواتين بينما هذا التفاعل أعطى نواة					
	0,25	واحدة فقط.					
2,00	0,50	$^{232}_{90}Th + ^{1}_{0}n \rightarrow ^{233}_{90}Th$:(1) اكمال المعادلة: 3.1.1.					
		$^{233}_{92}U$: عن انشطار نواة $^{233}_{92}U$:					
	0, 25	$E_{lib} = (m_i - m_f).c^2 = \Delta m .c^2$					
	0,25	$\left \Delta m\right = m\left(\frac{233}{92}U\right) - \left(m\left(\frac{137}{54}Xe\right) + m\left(\frac{94}{38}Sr\right) + 2m\left(\frac{1}{0}n\right)\right)$					
	0,25	$ \Delta m = 233,03963 - (136,91156 + 93,91536 + 2 \times 1,00866)$ $ \Delta m = 0,19539u$					
	0,25	$E_{lib} = 0.19539u \times 931, 5 = 182 MeV$					
		2. التوريوم 230 والتأريخ:					
	0,25	$^{234}_{92}U ightarrow ^{230}_{90}Th + {}^{4}_{2}He: 234$ معادلة تفكك اليورانيوم 234. معادلة تفكك اليورانيوم					
	0,25	lpha نمط التفكك: $lpha$					
		1.2.2. قانون التناقص الإشعاعي:					
	0,25	$N(t) = N_0 e^{-\lambda t}$					
2,00		$: \frac{N(^{230}Th)}{N(^{234}U)} = e^{\lambda t} - 1$ ثبات العلاقة. 2.2.2					
	0,25	$N_{U}(t) = N_{U0}e^{-\lambda t}$					
	0,25	$N_{Th}(t) = N_{U0} - N_{U}(t) = N_{U0} - N_{U0}e^{-\lambda t} = N_{U0}(1 - e^{-\lambda t})$					
	0,25	$\frac{N_{Th}(t)}{N_{U}(t)} = \frac{N_{Th}(t)}{N_{U}(t)} = \frac{N_{U0}(1 - e^{-\lambda t})}{N_{U0}e^{-\lambda t}} = \frac{1 - e^{-\lambda t}}{e^{-\lambda t}} = e^{\lambda t} \left(1 - e^{-\lambda t}\right)$					
		$\frac{N_{Th}(t)}{N_{U}(t)} = e^{\lambda t} - 1$					

	و ريدي	<u> </u>
		3.2.2 حساب عمر الصخرة البحرية:
		$\frac{N_{Th}(t)}{N_{II}(t)} = \frac{3}{4}$
	0,25	$e^{\lambda t} - 1 = \frac{3}{4}$
	0,25	$e^{\lambda t} = 1,75$; $t = \frac{t_{1/2}}{\ln 2} \ln 1,75 = 1,98 \times 10^5 ans$
		التمرين الثاني: (04 نقاط)
0,50	0, 25 × 2	u_R التيار وأسهم التوترات: u_R u_C
		2. المعادلة التفاضلية التي تحققها شحنة المكثفة:
	$0,25\times3$	$u_C + u_R = E \Rightarrow \frac{q(t)}{C} + \frac{Rdq(t)}{dt} = E$
1.50		$RC\frac{dq(t)}{dt} + q(t) - EC = 0$
1,50	0,25	dt $a=RC$, $b=EC$: بالمطابقة
	$0,25\times 2$	$a = Re^{-}$, $b = Le^{-}$. المدلول الفيزيائي a هو ثابت الزمن و يمثل الزمن اللازم لبلوغ شحنة المكثفة 63% من قيمتها
		الأعظمية. 6 هو الشحنة الأعظمية
		3. التأكد من حل المعادلة التفاضلية:
	0,50	بتعويض العبارة $q(t) = EC(1-e^{-\frac{t}{RC}})$ بتعويض العبارة والمعادلة التفاضلية نجد
0,50		$RC\frac{d(EC(1-e^{-\frac{t}{RC}}))}{dt} + EC(1-e^{-\frac{t}{RC}}) - EC = 0$
		$EC.e^{-\frac{t}{RC}} + EC - EC.e^{-\frac{t}{RC}} - EC = 0$
		ملاحظة: يمكن استعمال المعادلة التفاضلية والحل المعطى بدلالة الثوابت.
0,25	0,25	au=22s :تحدید قیمة ثابت الزمن بیانیا: $ au=22s$
		5. عبارة الطاقة:
	0,25	$E_{C} = \frac{1}{2}C(u_{C}(t))^{2} \Rightarrow E_{C} = \frac{(q(t))^{2}}{2C}$
0,75	0,23	ع.2 قيمة الطاقة عندما تبلغ شحنتها % 89 من شحنتها الأعظمية:
0,73	0,25	$Q_{ m max}=6,6 imes3=19,8m$ C : من البيان الشحنة العظمى للمكثفة
	0,25	$E_C = \frac{1}{2} \frac{(0.89 \times Q_{\text{max}})^2}{C} = \frac{\left(0.89 \times 19.8 \cdot 10^{-3}\right)^2}{2 \times 2.2 \times 10^{-3}} = 0.07 = 7 \times 10^{-2} \text{ J}$ منه:
	0,25	6. إيجاد المدة الزمنية القصوى:
0,50	0,25	$q = C \times u_C = 2,2 \times 10^{-3} \times 8 = 17,6 \times 10^{-3} \text{ C}$ شحنة الموافقة للتوتر
	0,23	$\Delta t \simeq 48,4s$ أن: $\Delta t \simeq 48,4s$

	/ b a m x _ A = a m x b i b i
	التمرين الثالث: (06 نقاط)
	1. دراسة حركة مركز عطالة الكرة
0.25 × 2	العبارة الشعاعية \vec{a}_G لتسارع مركز عطالة الكرة:
0,23×2	$\sum \overrightarrow{F}_{ext} = \overrightarrow{ma}_G \Longrightarrow \overrightarrow{P} = \overrightarrow{ma}_G$
0,25	$\vec{a}_G = \vec{g} = -g \vec{k}$
	2.1.1. المعادلتان الزمنيتان $x(t)$ و $x(t)$ لحركة مركز عطالة الكرة.
$0,25 \times 2$	$\overrightarrow{OG_0} \begin{cases} x_0 = 0 \\ z_0 = 0 \end{cases}$ $\overrightarrow{v_0} \begin{cases} v_{0_x} = v_0 \cos \alpha \\ v_{0_z} = v_0 \sin \alpha \end{cases}$: الشروط الابتدائية:
$0,25 \times 2$	$\begin{cases} v_x = v_0 \cos \alpha \\ v_z = -gt + v_0 \sin \alpha \end{cases}$
	$\begin{cases} x(t) = v_0 \cos \alpha \cdot t \\ x(t) = 5,28t \dots 1 \end{cases}$
$0,25 \times 2$	$\begin{cases} x(t) = v_0 \cos \alpha \cdot t \\ z(t) = -\frac{g}{2}t^2 + v_0 \sin \alpha \end{cases} \Rightarrow \begin{cases} x(t) = 5, 28t \dots 1 \\ z(t) = -4, 9t^2 + 10, 8t \dots 2 \end{cases}$
	3.1.1. معادلة مسار مركز عطالة الكرة:
0,25	$t = \frac{x}{v_0 \cos \alpha} = \frac{x}{5,28}$ نستنتج أن: $x(t)$
0,25	$z(x) = -0.176x^2 + 2.05x$ نعوض في عبارة $z(t)$ نجد:
	.1.2.1
0,25	$d < x_A$; $z_A < h$: الشرطان
	2.2.1. التحقق من امكانية تسجيل الهدف
0, 25	$z(x) = -0.176 x^2 + 2.05 x$ نعوض ب $x_A = 11m$ نعوض ب
	$z_A = 1,2m$:نجد أن
0,25	يمكن للاعب تسجيل الهدف $z_{A}=1,2m<2,44m$
	2. الدراسة الطاقوية
	1.2. ارفاق كل منحنى بياني بشكل الطاقة الموافقة:
	$1 \rightarrow E_{pp} \; ; 2 \rightarrow E_c \; ; 3 \rightarrow E$
$0,25 \times 2$	$E=C^{\frac{le}{2}}$ ، $E_{C} \searrow V \searrow$ ، $E_{pp} \nearrow h \nearrow$: التعليل:
	$E=C^{te}$ ، $E_{c}\nearrow v \nearrow$ ، $E_{pp}\searrow h \searrow$ الهبوط:
	ملاحظة: تقبل تبريرات منطقية أخرى
	2.2. تبيان أن طاقة الجملة محفوظة:
0,25	في أي لحظة لذلك فطاقة الجملة محفوظة $E=Ec+Epp=C^{rac{te}{2}}$
	$0,25 \times 2$ $0,25 \times 2$ $0,25 \times 2$ $0,25$ $0,25$ $0,25$ $0,25$

الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2024 اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات، تقني رياضي

0,50	0, 25	2. الصيغة الجزيئية نصف المفصلة للحمض والكحول: $C_{2}H_{5}-COOH$ الحمض العضوي: $C_{13}-CH_{2}-C$ OH CH3 $C_{13}-CH_{2}-CH_{3}$ الكحول: $C_{13}-CH_{2}-CH_{2}-CH_{2}-CH_{2}$
0,5	0,5	الجزء الثاني: (06 نقطة) مرد التجريبي: (06 نقطة) المجزء الثاني: (06 نقطة) مرد التجريبي: (06 نقطة) المجزء الثاني: (08 نقطة
	0,25	$E_{cs} = \sqrt{\frac{2 \times 6}{0,45}} = 5,2m \cdot s^{-1}$ ت ع:
	0, 25	استنتاج سرعة المرور بنقطة الذروة: $E_{cs} = \frac{1}{2} m v_s^2 \rightarrow v_s = \sqrt{\frac{2E_{cs}}{m}}$
	0, 25	الطاقة الحركية عند نقطة الذروة: $E_{cs} = 6,0 \mathrm{J} : \label{eq:ecs}$ من البيان: $E_{cs} = 6,0 \mathrm{J}$
		4.2. قيمة الطاقة الحركية عند نقطة الذروة وسرعة مرور الكرية منها:
		ملاحظة: تقبل حلول منطقية أخرى (معادلة المسار، استغلال المعادلات الزمنية).
	0,25	$z_s = \frac{26.5}{0.1 \times 9.8} = 6m$: ومنه
	0,25	$E_{pps}=26,5$ J من البيان
	0,25	$z_{s} = \frac{E_{pps}}{mg}$
	0,25	$x_s = 5,8m$ من البيان:
		$S(x_s, z_s)$ احداثيتي نقطة الذروة: $S(x_s, z_s)$:

-	- +				
0,75	0,5	$_{\rm H_3C-CH_2-CH_2-OH}^{\rm CH_3}$ + $_{\rm H_2O}^{\rm CH_3}$ = $_{\rm H_3C-CH_2-C}^{\rm CH_3}$ + $_{\rm H_2O}^{\rm CH_3}$ = $_{\rm CH_3}^{\rm CH_3}$ + $_{\rm CH_3}^{\rm CH_3}$ = $_{\rm CH_3}^{\rm CH_3}$ + $_{\rm CH_3}^{\rm CH_3}$ = $_{\rm CH_3}^{\rm CH_3}$ + $_{\rm CH_3}^{\rm CH_3}^{\rm CH_3}$ + $_{\rm CH_3}^{\rm $			
		خصائصه: عكوس، لا حراري، بطيء.			
0,25	0,25	4. لا يظهر في معادلة التفاعل الكيميائي			
0.75	$0,25\times 2$	5. كمية المادة الحمض العضوي: $n(acide) = \frac{m}{M} = \frac{14.8}{74} = 0,2 mol$			
0,75	0,25	m = 74 74 $M = 74$ 74 ومنه: المزيج الابتدائي متساوي المولات $n(acide) = n(alcool)$			
0,50	0,25×2	: مردود التفاعل $r = \frac{n_{ester}}{n_{acide}}.100 = \frac{0.134}{0.2}.100 = 67\%$			
0,50	0,25	$_{\rm H_3C-CH_2-CH_2-CH_2-CH_2-CH_3}$: د معادلة التفاعل: $_{\rm H_3C-CH_2-CH_2-CH_2-CH_2-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3$			
	0,25	2.7. خصائص التفاعل: تام، سريع ، ناشر للحرارة.			
0,25	0, 25	 8. اقتراح طريقة أخرى لتحسين مردود التفاعل: استعمال مزيج ابتدائي غير متساوي المولات ، نزع الماء ، نزع الأستر. 			
0,25		ثانيا: تأثير التخفيف على نسبة التقدم النهائي وثابت الحموضة 1. معادلة التفاعل:			
0,20	0,25	$C_2H_5COOH(aq) + H_2O(aq) = C_2H_5COO^-(aq) + H_3O^+(aq)$			

الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2024 اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات، تقني رياضي

	0,25					2. اكمال الجدول		
1,25			$\tau_f = \frac{x_f}{x_{max}} = \frac{1}{1}$	$\frac{H_3O^+}{c}$	$=\frac{10^{-pH}}{c}$	$; k_a = \frac{c \tau_f^2}{1 - \tau_f}$		
		المحلول	$c\left(mol.L^{-1} ight)$ التركيز المولي	pН	$ au_f$	K _a		
	$0,25\times4$	S_1	$1,0 \times 10^{-2}$	3,44	0,036	1,34×10 ⁻⁵		
	ŕ	S_2	$1,0 \times 10^{-3}$	3,96	0,110	$1,34 \times 10^{-5}$		
						3.الاستنتاج:		
0.50	0,25	عند تغيير التركيز المولي للمحلول لا تتغير قيمة ثابت الحموضة						
0,50	0, 25	$^{ au_f}$ del	$ au_f$ عندما ينقص التركيز المولي للمحلول تزداد نسبة التقدم النهائي للتفاعل					