Lecture 2.1: Intuition Behind Sampling Distributions

2014/01/29

Say we draw a random sample of size n=100 from any distribution that has true population mean $\mu=5$.

Say we draw a random sample of size n=100 from any distribution that has true population mean $\mu=5$.

Two Important Conceptual Questions:

Say we draw a random sample of size n=100 from any distribution that has true population mean $\mu=5$.

Two Important Conceptual Questions:

1. If we compute the sample mean \overline{x} of these points, are we going to always get exactly 5?

Say we draw a random sample of size n=100 from any distribution that has true population mean $\mu=5$.

Two Important Conceptual Questions:

- 1. If we compute the sample mean \overline{x} of these points, are we going to always get exactly 5?
- 2. Say we do this once and the sample mean is $\overline{x} = 5.025$. If we repeat this procedure
 - (i.e. generate a new sample of 100 points and compute \overline{x}) are we going to get $\overline{x} = 5.025$ exactly?

Do this for the 1st time

We get, say, $\overline{x} = 4.831$

Do this for the 1st time
Do this for the 2nd time

We get, say, $\overline{x}=4.831$ We get, say, $\overline{x}=5.104$

Do this for the 1st time Do this for the 2nd time Do this for the 3rd time We get, say, $\overline{x}=4.831$ We get, say, $\overline{x}=5.104$ We get, say, $\overline{x}=4.965$

Do this for the 1st time Do this for the 2nd time Do this for the 3rd time We get, say, $\overline{x}=4.831$ We get, say, $\overline{x}=5.104$ We get, say, $\overline{x}=4.965$

Do this for the 1st time
Do this for the 2nd time
Do this for the 3rd time

We get, say, $\overline{x}=4.831$ We get, say, $\overline{x}=5.104$ We get, say, $\overline{x}=4.965$

. . .

Do this for the 1000th time

We get, say, $\overline{x} = 4.957$

Do this for the 1st time	We get, say, $\overline{x} = 4.831$
Do this for the 2nd time	We get, say, $\overline{x} = 5.104$
Do this for the 3rd time	We get, say, $\overline{x} = 4.965$
Do this for the 1000th time	We get, say, $\overline{x}=4.957$

The sampling distribution describes the random behavior of these estimates.

Example: Sampling Distribution of the Sample Mean

Consider the histogram of 1000 instances of \overline{x} , where each \overline{x} is computed from a sample of $n=100~\text{Normal}(\mu=5,\sigma^2=4)~\text{RV's}.$

Example: Sampling Distribution of the Sample Mean

Consider the histogram of 1000 instances of \overline{x} , where each \overline{x} is computed from a sample of n=100 Normal($\mu=5,\sigma^2=4$) RV's.

The standard deviation associated with a statistic is called the standard error.

The standard deviation associated with a statistic is called the standard error.

If the X_i 's have standard deviation σ , the standard error of the sample mean is

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

The standard deviation associated with a statistic is called the standard error.

If the X_i 's have standard deviation σ , the standard error of the sample mean is

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

Notice the \sqrt{n} in the denominator: n increases, SE decreases!

Recall n=100 with $X_i \sim \text{Normal}(\mu=5, \sigma^2=4)$. The standard error is the SD of the sampling distribution:

$$SE = \frac{\sigma}{\sqrt{n}} = \frac{2}{\sqrt{100}} = \frac{2}{10} = 0.2$$

Now compare the sampling distributions based on

Standard Error of the Sample Mean \bar{x}

Now compare the sampling distributions based on

▶ 1000 instances of \overline{x} where n = 100. $SE = \frac{2}{\sqrt{100}} = 0.2$

Standard Error of the Sample Mean \bar{x}

Now compare the sampling distributions based on

- ▶ 1000 instances of \overline{x} where n = 100. $SE = \frac{2}{\sqrt{100}} = 0.2$
- ▶ 1000 instances of \bar{x} where n = 1000. $SE = \frac{2}{\sqrt{1000}} = 0.0632$

Standard Error of the Sample Mean \bar{x}

Now compare the sampling distributions based on

- ▶ 1000 instances of \overline{x} where n = 100. $SE = \frac{2}{\sqrt{100}} = 0.2$
- ▶ 1000 instances of \bar{x} where n = 1000. $SE = \frac{2}{\sqrt{1000}} = 0.0632$

