1

Quiz 1

MANIKANTA VALLEPU AI20BTECH11014

Download latex-tikz codes from

https://github.com/AI20BTECH11014/EE3900-Linear-Systems-and-Signal-processing/blob/ main/QUIZ_1/QUIZ_1.tex

1 Question

For the following signal determine whether the system is (1) stable, (2) casual, (3) linear and (4) time invariant.

$$T(x[n]) = x[n] \sum_{k=0}^{\infty} \delta[n-k]$$
 (1.0.1)

2 Solution

$$\sum_{k=0}^{\infty} \delta[n-k] = u[n]$$

For n > 0

$$T(x[n]) = x[n]$$

For n < 0

$$T(x[n]) = 0$$

Definition 2.1. *Stable* A system is said to be BIBO stable if the response to a bounded input is always bounded.

As the given signal input x[n] is bounded,

$$|x[n]| < M$$
 for some real M (2.0.1)

Hence
$$|x[n]| < M$$
 (2.0.2)

So x[n] is also bounded. Hence, the system is stable i.e, bounded input bounded output stable.

Definition 2.2. Casual The output at any instant does not depend on the future inputs i.e, for at n_0 $y[n_0]$ does not depend on x[n] for $n > n_0$.

Here, for this signal the output depends on $x[n_0]$. As the output always depends on the present time the system is casual.

Definition 2.3. *Linear* The response to an arbitary linear combination of input signals is always the same linear combinations of the individual responses to these signals

$$x_1[n] \implies x_1[n] \tag{2.0.3}$$

$$x_2[n] \implies x_2[n]$$
 (2.0.4)

$$ax_1[n] + bx_2[n] \implies ax_1[n] + bx_2[n]$$
 (2.0.5)

Hence the given system is linear

Definition 2.4. Time Invariant The response to an arbitrary translated set of inputs is always the response to the original set, but translated by the same amount.

If

$$x[n] \implies y[n]$$
 (2.0.6)

then

$$x[n - n_0] \implies y[n - n_0]$$
 (2.0.7)

for all x and n_0 .

here

$$x[n] \implies x[n] \tag{2.0.8}$$

adding time delay(n_0) to the output signal

$$x[n] \implies x[(n-n_0)] \tag{2.0.9}$$

adding time delay(n_0) to the input signal

$$x[n] \implies x[n - n_0] \tag{2.0.10}$$

Now the ouput signal

$$x[n - n_0] \implies x[n - n_0]$$
 (2.0.11)

As 2.0.9 and 2.0.11 are same, the given signal is time invariant.