Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 7

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

- c) 1 10011011 0110000110000000000000000 $_{(2)}$

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$BX = BB60_{(16)}, \quad CX = 40C9_{(16)}, \quad DX = 17AC_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} \mathtt{VAR1} &=& ((\mathtt{DX} \vee 43) + (\mathtt{BX} - \mathtt{BX})) \vee 32 \\ \mathtt{VAR2} &=& \mathtt{BX} - ((\mathtt{DX} \vee \mathtt{BX}) - (26 \vee 10)) \\ \mathtt{VAR3} &=& \mathtt{BX} + (\mathtt{DX} + 98) \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e vogla duke e ruajtur indeksin e saj në regjistrin CX. Psh. nëse është variabla VAR2 atëherë në regjistrin CX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat çift ndërmjet numrit 16 dhe numrit 68 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin DX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $F1_{(16)} \wedge A0_{(16)}$
- b) $BA_{(16)} \wedge 4B_{(16)}$
- c) $16_{(16)} \wedge 0F_{(16)}$
- d) $A5_{(16)} \lor 08_{(16)}$
- e) $35_{(16)} + 02_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 64 bajtëshe. Cache memoria L1 ka kapacitet prej 4096KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 2-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$93F2B79E_{(16)}$$
, $0833924D_{(16)}$, $0AB29528_{(16)}$

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 2-linjësh.

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Table 1: RAM Memoria.

Blloku	w_0	w_1	w_2	w_3	w_4	w_5	w_6	w_7
$\overline{B_0}$	19	FE	82	87	20	В5	01	1C
B_1	58	F8	E8	BD	FO	7F	B4	F6
B_2	FF	82	45	C5	79	71	9F	F8
B_3	D1	62	19	2F	5D	85	46	91
B_4	B4	94	6A	88	78	CA	EC	61
B_5	62	70	4B	95	25	C6	D5	75
B_6	71	97	4C	E5	C9	20	9E	2D
B_7	51	57	00	80	92	09	3F	39
B_8	C9	AC	13	A5	9A	E2	E3	5A
B_9	8B	EF	D9	1C	FC	6C	46	22
B_A	DЗ	F2	EA	43	D8	04	FF	ВЗ
B_B	36	58	03	D7	BF	27	B1	CD
B_C	E5	C8	EB	25	79	2B	57	90
B_D	6E	В9	3F	8C	79	CE	3D	9F
B_E	49	82	60	53	42	ЗА	BF	1F
B_F	F4	35	09	92	5B	BB	8B	2B

Table 2: Cache Memoria.

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?