Behavioral Toolbox

Ivan Markovsky

Contents

1	ntroduction	2
2	2.1 When are two systems equal? 2.2 Interconnection of systems 2.3 Signal from noise separation 2.4 Missing input estimation	2 3 4 5 5
3	8.1 Nonparameteric representation of the restricted behavior	0 2 2
4	Implementation 10 1.1 Nonparameteric representation of the restricted behavior 17 1.2 Input/output partitioning 18 1.3 Subbehaviors 19 1.4 Analysis 2 1.5 Parametric representations 27 1.6 Signal processing and open-loop control 26 1.7 System identification 26 1.8 Auxiliary functions 30	7 8 9 1 3 6 8
A	Auxiliary functions 34	4
В	Data approximation and numerical errors333.1 LTI structure of B_T 333.2 Computation of B_T from inexact data363.3 Performance on DAISY37	5 6 7
C	Wiscellaneous examples 33 C.1 Restricted behavior 35 C.2 Input/output partitioning 40 C.3 Analysis 40 C.4 Signal processing 42 C.5 System identification 42 C.6 Input selection 42	8 0 0 2

1 Introduction

The Behavioral Toolbox is a collection of Matlab functions for analysis and design of dynamical systems using the behavioral approach to systems theory and control [1, 2]. It implements newly emerged nonparameteric data-driven methods (see the overviews [3, 4]) and classical parametric representations of linear time-invariant (LTI) systems.

At the core of the behavioral approach is the notion of a dynamical system as a set of trajectories—the behavior—which is appealing but abstract. An often asked question is "What can be done in the behavioral setting that can't be done in the classical setting?" Indeed, for theoretical analysis as well as for numerical computations, a representation of the behavior is needed. However, it need not be state-space, transfer function, or convolution. The Behavioral Toolbox uses a basis for the behavior restricted to a finite-horizon, which is a nonparameteric representation of a discrete-time LTI system. Unlike classical nonparameteric representations, such as the convolution, a basis for the restricted behavior doesn't assume an input/output partitioning and is a direct application of the behavioral approach.

For an in-depth introduction to the philosophy of the behavioral approach, its differences from the classical approach, and its relation to data-driven methods for systems and control, refer to the overview papers [3, 4]. The notation used in this document is also the same as the one in the overview papers. A summary is given in Table 1. Optional extra references for techniques implemented or used in functions of the Behavioral Toolbox are [5–9].

```
w \in (\mathbb{R}^q)^{\mathbb{N}}, w : \mathbb{N} \to \mathbb{R}^q
                                                    q-variate real discrete-time signal with time axis \mathbb{N}
w|_T := (w(1), \dots, w(T))
                                                    restriction of w to the interval [1, T]
w = w_{\rm ini} \wedge w_{\rm f}
                                                    concatenation of trajectories w<sub>ini</sub> and w<sub>f</sub>
\sigma, (\sigma w)(t) := w(t+1)
                                                    unit shift operator
\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{N}}
                                                    discrete-time dynamical system with q variables
\mathscr{B}|_T := \{ w|_T \mid w \in \mathscr{B} \}
                                                    restriction of \mathcal{B} to the interval [1, T]
                                                    set of linear time-invariant systems with q variables
m(\mathcal{B}) / \ell(\mathcal{B}) / n(\mathcal{B})
                                                    number of inputs / lag / order of \mathcal{B}
c(\mathscr{B}) := (m(\mathscr{B}), \ell(\mathscr{B}), n(\mathscr{B}))
                                                    complexity of \mathscr{B}
\mathscr{L}_{c}^{q} := \{ \mathscr{B} \in \mathscr{L}^{q} \mid \boldsymbol{c}(\mathscr{B}) \leq c \}
                                                    set of bounded complexity linear time-invariant systems
\mathcal{H}_T(w)
                                                    Hankel matrix with T block rows constructed from w
```

Table 1: Summary of notation.

Section 2 showcase the Behavioral Toolbox in examples. The examples admit solutions in the classical as well as in the behavioral settings. The latter are based on standard linear algebraic operations. They are conceptually simple and easy to implement. They are also applicable when the underlying system is unknown but data are available from the system. In this case, the methods in the toolbox achieve a direct map from the observed data to the desired solution. Classical solutions require a preliminary identification step. The current implementation of the methods in the Behavioral Toolbox, however, makes them less efficient computationally than alternative classical methods.

Section 3 is a tutorial to the functions in the toolbox. Optional material involving advanced topics or implementation details that can be skipped are marked with the symbol \hat{Y} in the right margin. Section 4 is a literate program of the functions. Auxiliary functions used for the development of the toolbox are presented in Appendix A. Approximation in case of inexact data and numerical errors due to the finite precision arithmetic are covered in Appendix B. Extra miscellaneous examples are collected in Appendix C.

The toolbox, the examples in this paper, and additional materials are available from:

```
https://imarkovs.github.io/bt
```

2 Showcases

This section illustrates the behavioral approach on simple to state but realistic examples. First, we consider the question when two systems are equal. In the classical setting, equality of LTI systems represented in state-space can be verified by finding a state transformation that makes the corresponding systems' parameters equal. In the behavioral setting, the question is equivalent to verifying equality of subspaces—a classical linear algebra problem. The second example is interconnection of systems. We show that series connection in the input/output setting is a

special case of intersection of behaviors. The third example is optimal signal-from-noise separation. The classical solution, which uses a state-space representation of the data-generating system, is the celebrated Kalman filter. The interpretation of the problem in the behavioral setting is projection on the behavior, *i.e.*, finding the nearest trajectory of a system to a given signal. The fourth example is the observer problem in the behavioral setting, *i.e.*, inferring one set of variables of a dynamical system from another set of variables, applied for the estimation of a missing input. The fifth example illustrates the direct data-driven approach, where instead of a system a trajectory of the system is given.

2.1 When are two systems equal?

The simple question "How to check if two systems are equal?" leads to the questions "How are the systems specified?" and "What does it mean that they are equal?". Intuitively we consider two systems equal when they have the same "external behaviors". The behavioral approach turns this intuition into a definition: the system *is* its external behavior.

Let's create a random discrete-time linear time-invariant system, defined by a state-space representation:

```
m = 2; p = 2; n = 3; sys1 = drss(n, p, m);
```

and another system that is obtained from the first one by a random change of the state-space basis:

```
sys2 = ss2ss(sys1, rand(n));
```

The external behaviors of the two systems are the same and in this sense the systems are *equal*. This fact, however, can not be inferred by comparing directly their state-space parameters and the equal to operation "==", is not supported:

```
try, sys1 == sys2, end % -> Operator '==' is not supported for operands of type 'ss
```

The problem of finding when two systems are equal admits many solutions. The reason == is not supported for LTI systems in the Control Toolbox of Matlab is due to the perception that LTI systems (ss objects in particular) are not comparable. In fact, LTI systems are comparable but the parameters of their state-space representations are not. The shift in perception brought by the behavioral approach is that *parameters of a representation are not the system*. In the behavioral setting, the answer to the question when a system \mathcal{B}^1 is equal to a system \mathcal{B}^2 follows directly from the definition of a system as a set of trajectories: "when $\mathcal{B}^1 = \mathcal{B}^2$ ". The answer doesn't suggest methods for doing the job. For this, one has to choose particular representations of the systems; hence the many possible solution methods.

Note 1 (Definitions and problems in the behavioral setting). Another shift of perception brought by the behavioral approach is that definitions (e.g., " \mathcal{B}^1 equals \mathcal{B}^2 " means " $\mathcal{B}^1 = \mathcal{B}^2$ ") are stated in terms of the behavior, i.e., systems' definitions do not involve systems' representations. Also, high-level problems related to systems (e.g., check if $\mathcal{B}^1 = \mathcal{B}^2$) are stated without involving systems' representations. The high-level problem statement shows "what we are after", irrespective of how we may go about achieving it. Indeed, when the systems are initially given by some representations, say transfer functions, it may be beneficial to switch to another one, say state-space. The person solving the problem should not be a priori obliged to use a particular representation. Lower-level problem formulation, however, may ask specifically about solving a high-level problem using a particular representation or method.

The Behavioral Toolbox makes the abstract set theoretic framework of the behavioral approach actionable by restricting the infinite-horizon behavior \mathscr{B} to a finite time-horizon [1,T], resulting in a finite-dimensional subspace $\mathscr{B}|_T \subset (\mathbb{R}^q)^T$, and constructing a basis for it. Provided that T is long enough (often this means T is larger than the lag of the system), a problem about \mathscr{B} can be reduced to an equivalent problem about $\mathscr{B}|_T$. In particular, one can check $\mathscr{B}^1 = \mathscr{B}^2$ by checking $\mathscr{B}^1|_T = \mathscr{B}^2|_T$ —a basic linear algebra problem, for which there are existing methods. As usual in science and engineering, a new problem is solved by reducing it to an already solved problem. An extra benefit of reducing the problem to basic linear algebra operations is existence of high-quality software that is easily accessible.

The function equal of the toolbox implements the check for equality of systems:

```
equal(sys1, sys2) % -> true
```

First, it converts the ss objects sys1 and sys2 to bases for the finite-horizon behaviors $\mathcal{B}^1|_T$, $\mathcal{B}^2|_T$. This is done by a "data-driven approach" that simulates a random trajectory of the system, constructs a Hankel matrix of the trajectory, and computes a basis for the image of the Hankel matrix. Then, $\mathcal{B}^1|_T = \mathcal{B}^2|_T$ is checked numerically by finding the distance (defined as the principal angle) between $\mathcal{B}^1|_T$, $\mathcal{B}^2|_T$ and checking if the distance is smaller than a tolerance.

2.2 Interconnection of systems

In the classical setting, interconnection of systems is done by *input-to-output connection*: the output of one system is fed to an input of another system. In the behavioral setting, interconnection is viewed as *variables sharing*: some variables of one system are set equal to some variables of another system. Input-to-output connection is a special case of variables sharing. Indeed, the former restricts the latter by selecting input/output partitionings of the variables of the systems and equating input to output variables only. In [2], Jan C. Willems argues that interconnection of *physical systems* is *always* variables sharing and only *incidentally* (typically in man-made systems) input-to-output assignment.

Next, we show how series connection fits into the general setting of interconnection by variables sharing. Consider two single-input single-output LTI systems \mathcal{B}^1 and \mathcal{B}^2 with input/output partitionings

$$w^1 = \begin{bmatrix} w_1^1 \\ w_2^1 \end{bmatrix} = \begin{bmatrix} u^1 \\ y^1 \end{bmatrix}$$
 and $w^2 = \begin{bmatrix} w_1^2 \\ w_2^2 \end{bmatrix} = \begin{bmatrix} u^2 \\ y^2 \end{bmatrix}$.

```
n1 = 2; B1 = drss(n1);

n2 = 2; B2 = drss(n2);
```

The variables sharing corresponding to the series connection of \mathcal{B}^1 and \mathcal{B}^2 is $w_2^1 = w_1^2$, or written in a "kernel form"

$$\begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} w_1^1 \\ w_2^1 \\ w_1^2 \\ w_2^2 \end{bmatrix} = 0. (w_2^1 = w_1^2)$$

$$R3 = [0 \ 1 \ -1 \ 0];$$

Equation $(w_2^1 = w_1^2)$ defines the static system $\mathscr{B}^3 := \{ w \mid w_2^1 = w_1^2 \}.$

In order to construct the interconnection system \mathscr{B}_{int} , first, we define the joint behavior of \mathscr{B}^1 and \mathscr{B}^2 without the interconnection:

$$\operatorname{append}(\mathscr{B}^1,\mathscr{B}^2) := \left\{ \begin{bmatrix} w^1 \\ w^2 \end{bmatrix} \mid w^1 \in \mathscr{B}^1, \ w^2 \in \mathscr{B}^2 \right\}. \tag{append}$$

The interconnection of \mathcal{B}^1 and \mathcal{B}^2 with the interconnection law $(w_2^1 = w_1^2)$ is obtained then as the intersection of the joint behavior append $(\mathcal{B}^1, \mathcal{B}^2)$ with \mathcal{B}^3 ,

$$\mathscr{B}_{\mathrm{int}} = \mathrm{append}(\mathscr{B}^1, \mathscr{B}^2) \cap \mathscr{B}^3.$$

It can be shown that the dynamics of the interconnected system \mathcal{B}_{int} is fully specified by its finite horizon behavior with horizon $T = n_1 + n_2$.

```
T = n1 + n2;
```

Thus, for the computation of \mathscr{B}_{int} , we restrict to a finite horizon [1,T]. The functions B2BT and R2BT of the toolbox construct the finite horizon behavior $\mathscr{B}|_T$ of an LTI system \mathscr{B} , specified by a state-space and a kernel representation, respectively:

```
BT1 = B2BT(B1, T); BT2 = B2BT(B2, T); BT3 = R2BT(R3, 4, T);
```

The function BTappend constructs a basis for the finite-horizon behavior of append $(\mathcal{B}^1, \mathcal{B}^2)$ and BTintersect computes the intersection of of two subspaces:

```
BT12 = BTappend(BT1, 2, BT2, 2);
BT12int = BTintersect(BT12, BT3);
```

Next, we verify that the resulting interconnected system \mathscr{B}_{int} corresponds to the series connection of \mathscr{B}^1 and \mathscr{B}^2 :

For this purpose, we project the behavior of \mathscr{B}_{int} on the $\begin{bmatrix} w_1^1 \\ w_2^2 \end{bmatrix}$ variables (thus eliminating the variables w_2^1 and w_1^2):

BT12 = BTproject(BT12int,
$$4$$
, [1 4]);

and, using the equal function, verify that the systems defined by B12 and BT12_ are equal:

We've found the series connection of \mathcal{B}_1 and \mathcal{B}_2 using the bases for their finite-horizon behaviors.

2.3 Signal from noise separation

The problem considered next is: Given a system \mathscr{B} and a noisy signal $w = \overline{w} + \widetilde{w}$, where $\overline{w} \in \mathscr{B}|_T$ is the to-be-estimated signal and \widetilde{w} is a zero-mean white Gaussian noise signal, find the maximum-likelihood estimate \widehat{w} of \overline{w} .

```
m = 1; p = 1; n = 3; q = m + p; B = drss(n, p, m); T = 10; w0 = B2w(B, T); wn = randn(size(w0)); w = w0 + 0.1 * norm(w0) * wn / norm(wn);
```

The setup described above—the data w is true value \overline{w} plus noise \widetilde{w} is called errors-in-variables [10]. The maximum-likelihood estimate \widehat{w} of \overline{w} in the errors-in-variables setup is the solution of the optimization problem

minimize over
$$\widehat{w} \quad \|w - \widehat{w}\|$$
 subject to $\widehat{w} \in \mathcal{B}|_T$, (KS)

i.e., the statistically optimal estimate \widehat{w} has a simple geometric interpretation as the projection of the noisy signal w on the finite-horizon behavior $\mathscr{B}|_T$ of the data-generating system \mathscr{B} .

Problem (KS) does not involve a particular representation of the system \mathcal{B} . It states what we are after without suggesting a method for solving the problem (see Note 1). The solution can be obtained using for example a state-space representation, which leads to a Riccati equation [11]. An alternative solution method using the nonparameteric representation of the restricted behavior is:

```
BT = B2BT(B, T); wh = BT \star BT' \star vec(w'); wh = reshape(wh, q, T)';
```

Since the basis BT of \mathcal{B}_T is orthonormal, BT * BT' is the orthogonal projector on \mathcal{B}_T , so wh = BT * BT' * vec (w') is the signal \widehat{w} solving (KS).

The model-based solution using the Riccati equation is computationally more efficiently (in terms of number of floating point operations) however it is harder to derive and implement. Indeed, the intuitive interpretation as projection on a subspace and the easy of implementation (wh = BT * BT' * vec(w')) is hard to beat.

2.4 Missing input estimation

Consider an system \mathcal{B} , which variables w are separated as follows:

$$w = \begin{bmatrix} u_{\text{missing}} \\ u_{\text{given}} \\ y \end{bmatrix}.$$

As the notation suggests, u_{missing} is an unknown / to-be-estimated input, u_{given} is an known / observed input, and y is known / observed outputs.

```
m_missing = 1; m_given = 1; m = m_missing + m_given; p = 2; n = 3; q = m + p; 
 B = drss(n, p, m); T = 10; w = B2w(B, T); 
 w_missing = w(:, 1:m_missing); w_given = w(:, m_missing+1:end);
```

The problem considered is to find u_{missing} , given u_{given} , y, and \mathcal{B} , *i.e.*, estimate a missing input u_{missing} of the system. The problem is a special case of the observer problem in the behavioral setting [12]. Using the nonparameteric representation of the restricted behavior, the solution of the missing input estimation problem leads to the solution:

$$\widehat{u}_{ ext{missing}} = B_T |_{I_{ ext{missing}}} \left(B_T |_{I_{ ext{given}}} \right)^+ \begin{bmatrix} u_{ ext{given}} \\ y \end{bmatrix},$$

where $B_T|_{I_{\text{missing}}}$ and $B_T|_{I_{\text{given}}}$ are the submatrices of B_T corresponding to the missing and the given data, respectively, and $(\cdot)^+$ denotes the pseudo-inverse. In Matlab code, the solution is:

```
BT = B2BT(B, T); [BT_missing, BT_given] = BT2UYT(BT, m_missing, m_given + p);
wh_missing = BT_missing * BT_given' * vec(w_given');
wh_missing = reshape(wh_missing, m_missing, T)';
```

Under the verifiable from the data condition

$$\operatorname{rank} B_T|_{I_{\operatorname{given}}} = \boldsymbol{m}(\mathscr{B})T + \boldsymbol{n}(\mathscr{B}),$$

```
rank(BT\_given) == T * m + n % -> 1
```

the problem has a unique solution, so that the missing input is recovered exactly. Indeed,

```
e = norm(w_missing - w_missing) / norm(w_missing) % -> 0
```

so that using standard linear algebra operations (pseudo-inverse computation and multiplication) on the basis B_T of the finite-horizon behavior $\mathcal{B}|_T$ and the given data $\begin{bmatrix} u_{\text{given}} \\ y \end{bmatrix}$, we have found the missing input u_{missing} .

2.5 Direct data-driven forecasting

The behavioral toolbox is based on the nonparametric representation of the finite-horizon behavior $\mathscr{B}|_T$. Such a representation can be obtained from another representation or from data, *i.e.*, a trajectory $w_d \in (\mathbb{R}^q)^{T_d}$ of the system \mathscr{B} . Leveraging the linearity and time-invariance properties of the system and assuming sufficiently long $(T_d > T)$ trajectory w_d of the system, the image of the Hankel matrix $\mathscr{H}_T(w_d)$ constructed from the data is included in the finite-horizon behavior $\mathscr{B}|_T$. Moreover, assuming that rank $\mathscr{H}_T(w_d)$ is sufficiently high, more specifically

rank
$$\mathcal{H}_T(w_d) = \boldsymbol{m}(\mathcal{B})T + \boldsymbol{n}(\mathcal{B}),$$

we have that

image
$$\mathcal{H}_T(w_d) = \mathcal{B}|_T$$
,

i.e., the raw data w_d in the form of the Hankel matrix $\mathcal{H}_T(w)$ serves as a nonparameteric representation of $\mathcal{B}|_T$.

The point that a representation of the finite-horizon behavior $\mathcal{B}|_T$ can be constructed directly from data using the Hankel matrix makes the methods in the toolbox applicable in situations where a model is not available but data from the system can be collected. In such situations, classical methods require a parametric system identification step prior to applying the methods. The methods in the toolbox, in contrast, implement the direct map from the given data to the desired solution. This direct map is theoretically interesting. As shown next it is also practically useful.

In practice the data is almost never exact. In case of noisy data, satisfying certain stochastic assumptions (true value plus zero mean white Gaussian noise), the maximum-likelihood solution, which is theoretically optimal, leads to a *Hankel structured low-rank approximation* problem [13]. The Hankel structured low-rank approximation problem is a nonconvex optimization problem. All currently existing methods are heuristics for solving this nonconvex problem. Based on empirical and theoretical evidence, we know that some heuristics are more effective than others. Currently there is no universally best method.

Next, we show the performance of the methods in the toolbox using a naive heuristic based on the pseudo-inverse. For comparison we apply the classical approach of model-identification (using state-of-the-art parametric system identification methods) followed by a model-based solution. The problem considered is prediction, *i.e.*, simulation of a "future" trajectory of unknown system, using past data. The data is the "Robot arm" benchmark from the data-base for system identification DAISY [14].

```
robot_arm_; m = 1; p = 1; n = 8;
wd = [u y]; [Td, q] = size(wd);
```

The data is split into an identification part followed by a validation part. The last $T_{\text{ini}} = 20$ samples of the identification part are also used for the estimation of the initial conditions for the validation part.

```
Tv = 50; Ti = Td - Tv;
wi = wd(1:Ti, :); wv = wd(Ti+1:end, :);
Tini = n; w_ini = wi(end - Tini + 1:end, :);
```

The prediction method based on the nonparameteric finite-horizon representation of the behavior is implemented in the function u2y of the Behavioral Toolbox. Note that once the past horizon T_{ini} is chosen, it has no tunable hyperparameters.

```
tic
yh_dd = u2y(hank(wi, Tv + Tini), q, wv(:, 1:m), w_ini);
t dd = toc % -> 0.0186
```

The corresponding model-based method is the function forecast from the System Identification Toolbox of Matlab, which takes as an input a model. The model is obtained by a subspace identification method, implemented in the n4sid function from the System Identification Toolbox. The model-based approach requires a hyper-parameter—the model order n. It is chosen as 8 by trail-and-error, aiming for optimal performance. In this hyper-parameter tuning the validation data is used which gives unfair advantage of the model-based method.

```
tic
Bh = n4sid(iddata(wi(:, m+1:end), wi(:, 1:m)), n);
f = forecast(Bh, iddata(w_ini(:, m+1:end), w_ini(:, 1:m)), Tv, wv(:, 1:m));
yh_mb = f.OutputData; t_mb = toc % -> 1.4176
```

Note that although the direct data-driven approach is computationally less efficient than the model-based approach, it is faster in the example.

The results of the two methods are compared in terms of the relative prediction error:

$$e := 100\% \frac{\|y_v - \widehat{y}_v\|}{\|y_v\|},$$

where y_v is the to-be-forecast output of the validation part of the data and \hat{y}_v is the forecast obtained by the method.

```
e = @(yh) 100 * norm(wv(:, m+1:end) - yh) / norm(wv(:, m+1:end));

[e(yh_dd), e(yh_mb)] % -> 3.5531 3.8398
```

In the example, the results of the two methods are similar. The model-based method, however, required tuning of a hyper-parameter (for which we've selected an optimal value using the validation data), while once $T_{\rm ini}$ is chosen, the direct data-driven method has no hyper-parameters.

3 Tutorial

In order to make the behavioral approach computationally feasible, we consider discrete-time systems and restrict the behavior \mathscr{B} to a finite horizon [1,T]. The restricted behavior $\mathscr{B}|_T$ of a linear time-invariant system is a shift-invariant subspace of $(\mathbb{R}^q)^T$. The methods developed in the toolbox use a basis for $\mathscr{B}|_T$ as a representation of the system \mathscr{B} . The system analysis, signal processing, and control methods in Sections 3.1–3.6 take as an input a basis for $\mathscr{B}|_T$. The identification methods in Section 3.7 take as an input a trajectory $w_d \in \mathscr{B}|_{T_d}$ of the system. The code from this section and Appendix A is extracted in a script file demo.m. It serves as a demo as well as a test suite for the toolbox.

3.1 Nonparameteric representation of the restricted behavior

This section introduces the functions of the toolbox for creating and using a basis $\{b^1, \dots, b^r\}$

$$\mathscr{B}|_{T} = \operatorname{image}\left[\underbrace{b^{1} \quad \cdots \quad b^{r}}_{B_{T}}\right], \quad \text{where } r := \dim \mathscr{B}|_{T}$$
 (B_T)

for the restricted behavior $\mathscr{B}|_T$ of a linear time-invariant system $\mathscr{B} \in \mathscr{L}^q$. With some abuse of notation, in what follows we refer to the matrix $B_T := \begin{bmatrix} b^1 & \cdots & b^r \end{bmatrix} \in \mathbb{R}^{qT \times r}$ of the basis vectors as the basis. The representation (B_T) of $\mathscr{B}|_T$ is nonparameteric because it involves $r := \dim \mathscr{B}|_T$ parameters $g_1, \ldots, g_r \in \mathbb{R}$ to specify $w \in \mathscr{B}|_T$ via $w = B_T g$. For $T \ge \ell(\mathscr{B}) + 1$, $\mathscr{B}|_T$ uniquely defines \mathscr{B} [8, Lemma 13]. Thus, (B_T) is a nonparameteric representation of \mathscr{B} .

In order to demonstrate and test the functions of the toolbox on numerical examples, we create a random linear time-invariant system $\mathscr{B} \in \mathscr{L}^q_{(m,\ell,n)}$, defined by an input/state/output representation—a Matlab's ss object B:

```
m = 2; p = 1; q = m + p; n = 3; B = drss(n, p, m);
```

The construction of the orthonormal basis B_T for the subspace $\mathscr{B}|_T \subset (\mathbb{R}^q)^T$ from an input/state/output representation of \mathscr{B} is done by the function B2BT:

$$T = 10; BT = B2BT(B, T);$$

The function B2BT implements a data-driven approach. Instead of using the parameters of the state-space representation of \mathcal{B} , it computes a random trajectory w_d of \mathcal{B} (using lsim), forms the Hankel matrix $\mathcal{H}_T(w_d)$ (using the toolbox's function hank), and computes an orthonormal basis for $\mathcal{B}|_T$ (using svd):

$$(A,B,C,D) \xrightarrow{\text{lsim}} w_d \xrightarrow{\text{hank}} \mathscr{H}_T(w_d) \xrightarrow{\text{svd}} \mathscr{B}|_T$$

Alternative functions to B2BT that implement the model-based approach are S2BT and R2BT. As the names suggest, SS2BT uses a state-space representation, while R2BT uses a kernel representation to compute a basis B_T for $\mathcal{B}|_T$.

In order to verify that the output BT of B2BT is correct, first, we verify that its dimension is correct. By [8, Corollary 5] we have that

$$\dim \mathscr{B}|_T = mT + n, \quad \text{for } T \ge \ell.$$
 (dim $\mathscr{B}|_T$)

check(size(BT, 2) ==
$$m * T + n$$
)

The function check prints "PASS" if its argument is true and "FAIL" otherwise.

Then, we check that a random trajectory $w \in \mathcal{B}|_T$ of the system is in the image of BT. The function B2w selects a random trajectory of B. Its output is a $T \times q$ matrix, where T is the number of samples and q is the number of variables. Checking if $w \in \mathcal{B}|_T$ is a common task and is implemented in a function w_in_B:

$$w = B2w(B, T); check(w in B(w, B))$$

The columns of BT are finite trajectories, *i.e.*, elements of $\mathcal{B}|_T$. The function BT2W extracts them into a cell array W:

$$W = BT2W(BT, q); check(all(w_in_B(W, B)))$$

The function w_in_B as well as many other functions of the toolbox all specification of multiple trajectories

$$\mathcal{W} = \{ w^1, \dots, w^N \}, \quad \text{where } w^i \in (\mathbb{R}^q)^{T_i}$$
 (W_d)

by a cell array as well as a single trajectory w_d .

Note 2 (Two representations of a signal $w \in (\mathbb{R}^q)^T$). A *q*-variate, *T*-samples long signal $w := (w(1), \dots, w(T))$ is represented in the toolbox by:

$$T imes q ext{ matrix} \begin{bmatrix} w^{ op}(1) \\ \vdots \\ w^{ op}(T) \end{bmatrix} ext{ or } qT imes 1 ext{ vector} \begin{bmatrix} w(1) \\ \vdots \\ w(T) \end{bmatrix}.$$

The matrix format has the advantage that the number of variables q can be deduced from the size. However, it is incompatible with (B_T) , which uses the vector format. The conversion from the matrix to the vector format is done by vec(w'), where vec is column-wise vectorization, and the conversion from the vector to the matrix format is done by reshape(w, q, T)'. Functions accepting B_T as an input require q to be passed as an extra input argument.

When the $T \times q$ matrix representation is used, multiple trajectories (W_d) are stored in a cell array with N elements, the ith element of which is a $T_i \times q$ matrix representing w^i . When the $Tq \times 1$ vector representation is used and $T_1 = \cdots = T_N =: T$, multiple trajectories (W_d) are stored in a $qT \times N$ matrix, the ith column of which represents w^i .

Note 3 (Computing the dimension of $\mathscr{B}|_T$). The computation of a basis B_T from a trajectory $w_d \in \mathscr{B}|_{T_d}$ requires finding the dimension of $\mathscr{B}|_T$. Under standard conditions on w_d (see Section 3.7) that are almost certainly satisfied for a sufficiently long random trajectory $w_d \in \mathscr{B}|_T$,

$$\dim \mathscr{B}|_T = \operatorname{rank} \mathscr{H}_T(w_d). \tag{dim-rank}$$

Thus, dim $\mathcal{B}|_T$ can be found by rank computation. A robust way of computing rank $\mathcal{H}_T(w_d)$ is thresholding the singular values of $\mathcal{H}_T(w_d)$. The functions of the toolbox that construct B_T from data therefore have an optional threshold parameter tol with default value:

Alternatively, the user can specify the model's complexity, in which case the dimension is computed from (dim $\mathcal{B}|_T$).

3.2 Input/output partitionings

A partitioning of the variables $w(t) \in \mathbb{R}^q$ into inputs $u(t) \in \mathbb{R}^m$ and outputs $y(t) \in \mathbb{R}^p$ is defined by a permutation matrix $\Pi \in \mathbb{R}^{q \times q}$ as follows:

$$w \mapsto (u, y) : \begin{bmatrix} u \\ y \end{bmatrix} := \Pi w \quad \text{and} \quad (u, y) \mapsto w : w = \Pi^{\top} \begin{bmatrix} u \\ y \end{bmatrix}.$$
 (I/O)

 Πw reorders the variables w, so that the first m variables are the inputs and the remaining p := q - m variables are the outputs. The permutation matrix Π is specified in the functions of the toolbox by a vector $i \circ$, such that $w(i \circ) \mapsto [u; y]$. The restricted behavior with permuted variables is created with the function BT2BT:

Indeed, the trajectory $w' := \Pi w$ with permuted variables belongs to the image of BTp:

```
check(w_in_B(w(:, io), BTp))
```

The function BT2UYT extracts from the basis of the restricted behavior $\mathcal{B}|_T$ its input and output components:

```
[UT, YT] = BT2UYT(BT, m, p);
```

Note 4 (Default input/output partitioning $w = \begin{bmatrix} u \\ y \end{bmatrix}$). BT2UYT and other functions of the toolbox that require an input/output partitioning but do not accept a specification for it assume $\Pi = I_q$:

```
if ~exist('io', 'var') || isempty(io), io = 1:q; end % <default-io>
```

For a general partitioning (I/O), defined by io, call the functions with input BT2BT (BT, q, io) instead of BT.

The inverse transformation UYT2BT reconstructs $\mathcal{B}|_T$ from its input and output components:

```
check(norm(BT - UYT2BT(UT, YT, m, p)) == 0)
```

The number of inputs m is uniquely defined by the behavior. However, an input/output partitioning of the variables is in general not unique. The currently available methods in the literature for finding an input/output partitioning of a system $\mathscr B$ are based on parametric representations of the system (e.g., the kernel representation). Next, we describe a data-driven method for finding an input/output partitioning directly from the finite-horizon behavior $\mathscr B|_T$. The key observation is that (I/O) is an input/output partitioning of $\mathscr B$ if and only if it is possible to simulate any trajectory of $\mathscr B$ by choosing the input u and the initial conditions, specified by a past trajectory w_{ini} . Therefore, for any $w_{\text{ini}} \in \mathscr B|_{T_{\text{ini}}}$ with $T_{\text{ini}} \geq \ell$ and $u_f \in (\mathbb R^m)^{T_f}$ with $T_f \geq \ell$, there should exist a unique $y_f \in (\mathbb R^p)^{T_f}$, such that

$$w_{\text{ini}} \wedge \Pi^{\top} \begin{bmatrix} u_{\text{f}} \\ y_{\text{f}} \end{bmatrix} \in \mathscr{B}|_{T_{\text{ini}} + T_{\text{f}}}.$$

Let $B_{T_{\text{ini}}+T_{\text{f}}}$ be the matrix of basis vectors for $\mathscr{B}|_{T_{\text{ini}}+T_{\text{f}}}$ and let $\begin{bmatrix} W_{\text{ini}} \\ U_{\text{f}} \end{bmatrix}$ be the submatrix of $B_{T_{\text{ini}}+T_{\text{f}}}$, corresponding to the initial trajectory w_{ini} and the input u_{f} . Then, (I/O) is an input/output partitioning of \mathscr{B} if and only if

$$\operatorname{rank} egin{bmatrix} W_{
m ini} \ U_{
m f} \end{bmatrix} = m(T_{
m ini} + T_{
m f}) + n.$$

The method described above is implemented in is_io, which checks if a given partitioning of the variables is a possible input/output partitioning, and BT2IO, which finds all possible input/output partitionings of the system. In order to test is_io and BT2IO, consider the following single-input single-output system

```
Bp = ss(tf([0 1], [1 1], 1));
```

that has an input/output partitioning $w = \begin{bmatrix} u \\ y \end{bmatrix}$ but not $w = \begin{bmatrix} y \\ u \end{bmatrix}$.

```
BpT = B2BT(Bp, T);
check(is_io(BpT, 2, [1 2]) == true)
check(is_io(BpT, 2, [2 1]) == false)
check(all(BT2IO(BpT, 2) == [1 2]))
```


3.3 Subbehaviors

The following subbehaviors of \mathcal{B} are of special interest:

- \mathscr{Y}_0 zero-input subbehavior, i.e., the set of transient responses,
- \mathcal{U}_0 zero-output subbehavior, i.e., the set of inputs blocked by the system,
- \mathcal{B}_0 zero initial conditions subbehavior, i.e., the set of zero initial conditions trajectories,
- \mathscr{B}_{c} controllable subbehavior, i.e., the set of trajectories that are patchable with zero past trajectory, and
- \mathcal{B}_p periodic subbehavior, i.e., the set of periodic trajectories.

Orthonormal bases for their restrictions to [1,T] are computed from $\mathcal{B}|_T$ by the following functions:

```
Y0 = BT2Y0 (BT, q);

U0 = BT2U0 (BT, q);

B0 = BT2B0 (BT, q);

BC = BT2BC (BT, q);

%BP = BT2BP (BT, q); TODO
```

Let's verify that a free response of \mathcal{B} is in the image of Y0:

```
y0 = initial(B, rand(n, 1), T-1); check(w_in_B(y0, Y0))
```

Next, we verify that $w = \begin{bmatrix} u \\ 0 \end{bmatrix}$ with u in the image of U0 is a trajectory of the system:

```
u0 = reshape(U0 * rand(size(U0, 2), 1), m, T)';

w0 = [u0 zeros(T, p)]; check(w_in_B(w0, BT))
```

Next, we verify that the initial conditions of a random trajectory in the zero initial conditions subbehavior are zero

```
T0 = size(B0, 1) / q;
w0 = reshape(B0 * rand(size(B0, 2), 1), q, T0)';
xini = w2xini(w0, B); check(norm(xini) < tol)</pre>
```

Using the zero initial conditions subbehavior $\mathscr{B}_0 \subset \mathscr{B}|_T$, we can find the zero initial conditions input-to-output map $H_T: u|_T \mapsto y|_T$. Let B_0 be the matrix of the basis vectors for \mathscr{B}_0 and let U_0 , Y_0 be the submatrices of B_0 corresponding to the inputs and the outputs. Then, $H_T = Y_0 U_0^{-1}$. The method is implemented in the function BT2HT:

```
[HT, T] = BT2HT(BT, q);
```

The $pT \times mT$ matrix H_T is the finite-horizon representation of the transfer function H(z) of the system \mathscr{B} corresponding to the input/output partitioning (I/O). In particular, it has lower-triangular block-Toeplitz structure:

```
check(norm(HT - convm(B, T)) < tol)</pre>
```

3.4 Analysis

In this section, we find properties of the system directly from its restricted behavior, rather than from parametric representations as done by classical analysis methods. The properties considered are: complexity, controllability, H_{∞} -norm, and distance between systems.

System's complexity

The complexity $c(\mathscr{B})$ of a linear time-invariant system \mathscr{B} is defined as the triple: number of inputs $m(\mathscr{B})$, lag $\ell(\mathscr{B})$, and order $n(\mathscr{B})$. Although in the classical setting the order $n(\mathscr{B})$ is defined via a minimal state-space representation, it is a property of the system \mathscr{B} and can be computed directly from the restricted behavior $\mathscr{B}|_T$ (provided $T \ge \ell(\mathscr{B}) + 1$). Also, the number of inputs $m(\mathscr{B})$ can be computed from $\mathscr{B}|_T$ without reference to a particular input/output representation. The method for finding $m(\mathscr{B})$ and $n(\mathscr{B})$ from $\mathscr{B}|_T$ is based on $(\dim \mathscr{B}|_T)$. Evaluating $\dim \mathscr{B}|_{I_i}$ (see Note 3) for $t_1 \ne t_2 \ge \ell(\mathscr{B})$, $e.g., t_1 = T$ and $t_2 = T - 1$, we obtain the system of equations

$$\begin{bmatrix} T & 1 \\ T-1 & 1 \end{bmatrix} \begin{bmatrix} m \\ n \end{bmatrix} = \begin{bmatrix} \dim \mathcal{B}|_T \\ \dim \mathcal{B}|_{T-1} \end{bmatrix},$$

from which $m = \mathbf{m}(\mathcal{B})$ and $n = \mathbf{n}(\mathcal{B})$ can be found. The resulting method is implemented in the function BT2c:

[ch, mh, ellh, nh] =
$$BT2c(BT, q)$$
; check(all([mh nh] == [m n]))

A model-based method for computing the lag of the system is implemented in the function lag:

```
ell = lag(B); check(ellh == ell)
```

As discussed in the next section, the complexity connects nonparameteric and parametric representations and is a critical first step in finding a parametric representation of the system.

Note 5. BT2c finds dim $\mathscr{B}|_{T-1}$ and dim $\mathscr{B}|_T$ by rank computation, *i.e.*, thresholding of the singular values using a user defined threshold tol (see Note 3).

Distance between systems

The function Bdist computes distance between systems. The distance is defined as the principal angle between the finite-horizon behaviors of the systems with default horizon T = 100. Here is an example:

$$Bp = B; Bp.a = Bp.a + 0.01 * randn(n); d = Bdist(B, Bp);$$

The distance measure Bdist is used by the function equal for checking if two systems are equal:

```
Bp = ss2ss(B, rand(n)); check(equal(B, Bp))
```

Controllability

The controllable subbehavior $\mathscr{B}_c \subset \mathscr{B}|_T$ for $T \geq \ell(\mathscr{B})$ is mT + n-dimensional if and only if \mathscr{B} is controllable. This leads to a data-driven controllability test that is implemented in the function isunctr:

```
Bp = ss([0.5 1; 0 0.25], [1; 0], [1 1], 1, -1);

n\_unctr = isunctr(Bp); check(n\_unctr == 1)
```

Moreover, $mT + n - \dim \mathcal{B}_c|_T$ is the number of uncontrollable modes of \mathcal{B} . Based on \mathcal{B}_c , a quantitative test for controllability—a distance to uncontrollability—is implemented in the function distunctr. Here is an example:

```
Bp = ss([0.5 1; 0 0.25], [1; 1e-5], [1 1], 1, -1);

d = distunctr(Bp); % -> 1e-7
```

H_{∞} -norm

Using the zero initial conditions input-to-output map H_T of \mathscr{B} for a given input/output partitioning allows us to compute the finite-horizon H_{∞} -norm of \mathscr{B} . The method is implemented in the function BT2Hinf:

```
[Hinf, ~, uinf] = BT2Hinf(BT, q); C = convm(B, T); check(abs(Hinf - norm(C)) / norm(C) < tol)
```

3.5 Parametric representations

So far, the tutorial reviewed functions related to and based on the nonparametric representation (B_T) of the restricted behavior $\mathcal{B}|_T$. This section shows an application of the approach for computing parametric representations.

Computing a kernel representation from $\mathscr{B}|_T$ is essentially applying the null function on $B_{\ell+1}^{\top}$. The method is implemented in the functions B2R and BT2R (B2R constructs BT from B and calls BT2R):

```
R = B2R(B); R = BT2R(BT, q);
```

The inverse operation—finding the restricted behavior from a kernel or a state-space representation—is done by the functions R2BT and ss2BT, which implement the model-based approach, *i.e.*, they construct B_T from the model parameters R and (A, B, C, D), respectively.

```
BT_{-} = R2BT(B2R(B), q, T); check(equal(B, BT_{-}))

BT_{-} = ss2BT(B, T); check(equal(B, BT_{-}))
```

The basis computed by ss2BT is not orthonormal. It consists of observability and convolution matrices, see $((A,B,C,D) \mapsto B_T)$ on page 24.

Contrary to BT2R (which is essentially Matlab's null function), computing a state-space representation from the restricted behavior is nontrivial. Indeed, it requires to do 1) state construction and 2) detect a possible input/output partitioning of the variables. The data-driven approach for these operations is implemented in the function BT2ss:

```
check(equal(B, BT2ss(BT, q)))
```

Similarly, the transformation from a kernel representation to a state-space representation is nontrivial. A data-driven method for this operation is implemented in the function R2ss:

```
check(equal(B, R2ss(R, q)))
```

For multi-output systems, the function B2R computes a *nonminimal* kernel representation. Computing a minimal kernel representation or converting a nonminimal kernel representation to a minimal one are also nontrivial operations. Data-driven methods for them are implemented in the functions BT2Rmin and R2Rmin:

```
Rmin = BT2Rmin(BT, q); check(equal(BT, R2BT(Rmin, q, T), q))
Rmin = R2Rmin(R, q); check(equal(BT, R2BT(Rmin, q, T), q))
```

Note 6 (Parametric vs non-parametric representations). The dichotomy of parametric vs nonparametric representations is misleading—there is a range of nonminimal parametric representations that cover the gap between minimal parametric and nonparametric representations. The problem of detecting when a parametric representation is minimal is equivalent to the one of finding the model's complexity, see Note 3. It is also essential in the case of identification from noisy data where the key issue is the one of achieving an accuracy—complexity trade-off.

Note 7 (The ctol parameter). All functions of the toolbox computing model's complexity accept as an optional input argument a tolerance for thresholding the singular values. Alternatively, the user may specify the model's complexity [m, ell, n] by ctol. If ctol is a scalar, it is used as a threshold tol for rank estimation as explained in Note 3. Otherwise, ctol should be the vector of integers specifying the model's complexity.

3.6 Signal processing and open-loop control

This section collects operations on signals by a dynamical system. The operations implemented are: projection of a signal on a system, computing initial conditions for a signal, simulation, and inference of one variable from another. They are special cases of a signal processing problem, called *interpolation and approximation of trajectories* [9].

Projection

The basic operation (KS) of projection of a signal $w \in (\mathbb{R}^q)^T$ on the behavior $\mathscr{B}|_T$ of a system $\mathscr{B} \in \mathscr{L}^q$ is equivalent to computing the *distance from* w *to* \mathscr{B} . The same operation is equivalent to (errors-in-variables) Kalman smoothing [11]: the projection \widehat{w} is the *smoothed version* of w. Problem (KS) is solved by the function dist:

```
[d, wh] = dist(w, B);
```

The distance d from w to $\mathscr{B}|_T$ is zero if and only if $w \in \mathscr{B}|_T$, so that dist is a robust way of checking if w is an exact trajectory of \mathscr{B} . (It is used in the implementation of w_in_B.)

Initial conditions estimation

For $w_d \in \mathcal{B}|_T$, there is a corresponding initial conditions. If \mathcal{B} is defined by an input/state/output representation, the initial conditions can be specified by the initial state $x_{\text{ini}} = x(1)$. The initial state x_{ini} corresponding to a trajectory w can be found with the function w2xini:

```
[xini, e] = w2xini(w, B); check(norm(w - B2w(B, T, xini, w(:, 1:m))) < tol)
```

The output argument e is zero when $w \in \mathcal{B}|_T$ and nonzero otherwise.

The initial conditions can be specified in a representation free way by an initial trajectory w_{ini} of length $T_{\text{ini}} \ge \ell(\mathcal{B})$. An initial trajectory w_{ini} of corresponding to a given trajectory w can be computed by the function w2wini:

```
BT = B2BT(B, ell + size(w,1));

[wini, e] = w2wini(w, BT, ell); check(w_in_B([wini; w], B))
```

Simulation

The classical simulation problem: given initial conditions and input, find the corresponding output is solved by u2y:

```
yf = u2y(BT, q, w(:, 1:m), wini); check(w(:, m+1:end) - yf)
```

As another example, next, we use u2y in order to find the first Tf samples of the impulse response of the system:

```
Tf = 3; u1 = [[1; zeros(q * Tf - 1, 1)] zeros(q * Tf, m - 1)];
h1 = u2y(BT, q, u1); h = lsim(B, u1); check(h1 - h < tol)
```

Observer

Consider a linear time-invariant system $\mathscr{B} \in \mathscr{L}^q$. The variables w of \mathscr{B} are partitioned into given/observed variables w_{given} with dimension q_{given} and missing/to-be-estimated variables w_{missing} with dimension $q_{\text{missing}} = q - q_{\text{given}}$. Without loss of generality, we assume that $w = \begin{bmatrix} w_{\text{given}} \\ w_m \end{bmatrix}$. The problem considered is: Given a system $\mathscr{B} \in \mathscr{L}^q$ and observed part w_{given} of a trajectory $w \in \mathscr{B}|_T$, find the missing part w_{missing} of w.

The solution is based on the finite-horizon nonparameteric representation (B_T) of \mathcal{B} . Let B_{given} be the submatrix of B_T corresponding to w_{given} and B_{missing} be the submatrix corresponding to w_{missing} . Then, there is a g, such that

$$w_{\text{given}} = B_{\text{given}}g$$
 and $w_{\text{missing}} = B_{\text{missing}}g$.

Solving for g the first equation and substituting into the second one, we have the following estimate of w_{missing} :

$$\widehat{w}_{\text{missing}} := B_{\text{missing}} B_{\text{given}}^+ w_{\text{given}}.$$

It can be shown that, when rank $B_{\text{given}} = \boldsymbol{m}(\mathscr{B})T + \boldsymbol{n}(\mathscr{B})$, $\widehat{w}_{\text{missing}}$ is exact, *i.e.*, of $\widehat{w}_{\text{missing}} = w_{\text{missing}}$.

Special cases of the observer problem are estimation of the input given the output (which is also a system inversion problem) and estimation of a second input, e.g., disturbance, given the input and the output.

The solution of the observer problem is implemented in the function wgiven2wmissing. Here is an example verifying the method for disturbance estimation:

```
qg = 2; qm = 2; q = qm + qg; m = 1; p = q - m; n = 5; B = drss(n, p, m); T = 20; w = B2w(B, T); wg = w(:, 1:qg); wm = w(:, qg+1:q); wmh = wgiven2wmissing(wg, B); check(norm(wm - wmh) / norm(wm) < tol)
```

Open-loop control

The control problem considered is open-loop linear quadratic tracking: Given a system $\mathscr{B} \in \mathscr{L}^q$, to-be-tracked trajectory $w_r \in (\mathbb{R}^q)^{T_r}$, and tracking criterion $\|e\|_{\nu} := \|v \otimes e\|$, where $v \in (\mathbb{R}^q_+)^{T_r}$ and \otimes is the element product,

minimize over
$$\widehat{w} \in (\mathbb{R}^q)^{T_r}$$
 $\|w_r - \widehat{w}\|_{v}$ subject to $\widehat{w} \in \mathscr{B}|_{T_r}$.

A variation of the problem is to specify initial and final conditions for the control trajectory \widehat{w} via "past" and "future" trajectories $w_p \in (\mathbb{R}^q)^{T_p}$ and $w_f \in (\mathbb{R}^q)^{T_f}$:

minimize over
$$\widehat{w} \in (\mathbb{R}^q)^{T_r} \| w_r - \widehat{w} \|_{\nu}$$
 subject to $w_p \wedge \widehat{w} \wedge w_f \in \mathscr{B}|_{T_p + T_r + T_f}$. (LQCTR)

This allows us to solve optimal state transfer problems, *i.e.*, find a trajectory of the system that achieves optimal transition from the given initial state to the given final state. The solution exists for any initial and final states if and only if the system \mathcal{B} is controllable and the state transfer is at least $\ell(\mathcal{B})$ -samples long.

The function in the toolbox solving the open-loop linear quadratic tracking control problem (LQCTR) is

```
wh = lqctr(B, wr, v, wp, wf);
```

The input parameters v, wp, and wf are optional. The default value of v is ones (Tr, q), *i.e.*, uniform weights for all variables and all moments of time. If wp and/or wf is not specified, then the corresponding constraint in (LQCTR) is dropped, *i.e.*, the corresponding initial or final condition is free.

Here is an example of linear quadratic tracking with free initial and final condition:

```
m = 1; p = 1; n = 3; q = m + p; B = drss(n, p, m);
Tr = 10; wr = [zeros(Tr, m) ones(Tr, p)]; ell = lag(B);
v = [1e-2 * ones(Tr, m), ones(Tr, p)]; wh = lqctr(B, wr, v);
```

In order to solve the optimal state transfer problem with specified initial and final states, first we check controllability of the system. The solution is verified by showing that $w_p \wedge \widehat{w} \wedge w_f \in \mathcal{B}|_{T_p+T_r+T_f}$.

```
if ~isunctr(B)
  Tr = ell; wr = zeros(Tr, q);
  wp = B2w(B, ell); wf = zeros(ell, q);
  wh = lqctr(B, wr, [], wp, wf);
  check(w_in_B([wp; wh; wf], B))
end
```

Control as interconnection

In the following example the plant \mathcal{B} is a 4th order single-input single-output system, defined by the transfer function

```
H(z) = \frac{0.2826z + 0.5067z^2}{1 - 1.4183z + 1.5894z^2 - 1.3161z^3 + 0.8864z^4}. Q = [0 0 0 0.28261 0.50666]; P = [1 -1.41833 1.58939 -1.31608 0.88642]; B = ss(tf(Q, P, -1));
```

The controller \mathcal{B}_c is obtained with the function h2syn from the Robust Control Toolbox of Matlab

```
Bc = h2syn(B, 1, 1);
```

It leads to the closed-loop system \mathcal{B}_{cl}

```
B_{-} = ss(B.a, B.b, [B.c; B.c], [B.d; B.d], 1); Bcl = lft(B_{-}, Bc);
```

The closed-loop system \mathscr{B}_{cl} can be obtained alternatively by projecting on the y-variable the interconnection of the plant \mathscr{B} and the control \mathscr{B}_{c} with flipped inputs and outputs:

$$\mathcal{B}_{cl} = \Pi_y \big(\mathcal{B} \cap \left[\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right] \mathcal{B}_c \big).$$
 T = 10; BT = B2BT(B, T); BcT = B2BT(Bc, T); Bcl_wT = BTintersect(BT, BT2BT(BcT, q, [2 1])); [Bcl_wT, Bcl_yT] = BT2UYT(Bcl_wT, 1, 1); equal(Bcl, Bcl yT, q) % -> 1

3.7 Identification

The functions presented in the previous sections of the tutorial use the nonparameteric representation (B_T) of a linear time-invariant system $\mathscr{B} \in \mathscr{L}^q_c$. In this section, the system \mathscr{B} is implicitly specified by a trajectory $w_d \in \mathscr{B}|_{T_d}$

$$Td = 100; wd = B2w(B, Td);$$

A necessary and sufficient condition for w_d to define $\mathcal{B} \in \mathcal{L}_c^q$ is the *identifiability condition* [8]:

$$\operatorname{rank} \mathscr{H}_{\boldsymbol{\ell}(\mathscr{B})+1}(w_{\mathrm{d}}) = \boldsymbol{m}(\mathscr{B})(\boldsymbol{\ell}(\mathscr{B})+1) + \boldsymbol{n}(\mathscr{B}). \tag{GPE-ID}$$

(GPE-ID) is a *generalized persistency of excitation* condition on the data w_d and requires prior knowledge of the complexity $c(\mathcal{B})$ of the data-generating system \mathcal{B} .

When (GPE-ID) is satisfied, \mathscr{B} can be recovered from the data w_d . This is done by finding the *most powerful* unfalsified model $\mathscr{B}_{MPUM}(w_d)$ for w_d . $\mathscr{B}_{MPUM}(w_d)$ is the least complicated exact model for w_d in the class of linear time-invariant systems \mathscr{L}^q . Note that $\mathscr{B}_{MPUM}(w_d)$ is well defined (i.e., it exists and is unique) for any $w_d \in (\mathbb{R}^q)^{T_d}$, independently of whether or not (GPE-ID) holds. Also, finding $\mathscr{B}_{MPUM}(w_d)$ from w_d does not require priori knowledge of $c(\mathscr{B})$: $\mathscr{B}_{MPUM}(w_d)$ is a computational construct that has theoretical guarantees to recover the data-generating system under the condition of (GPE-ID).

For $T \geq \ell(\mathcal{B})$, under the stronger generalized persistency of excitation condition

$$\operatorname{rank} \mathscr{H}_T(w_{\mathrm{d}}) = \boldsymbol{m}(\mathscr{B})T + \boldsymbol{n}(\mathscr{B}), \tag{GPE}$$

 (B_T) holds. A necessary condition for (GPE) is that the length T_d of w_d must satisfy the lower bound

$$T_{\rm d} \ge T_{\rm min} := (m+1)T + n - 1,$$
 ($T_{\rm min}$)

```
Tmin = @(T) (m + 1) * T + n - 1; %% < define-Tmin>
```

Thus, (T_{\min}) quantifies the statement " w_d is long enough for recovering the data-generating system".

An analog of BT2c for complexity computation from data w_d is c_mpum, which computes $c(\mathscr{B}_{MPUM}(w_d))$ without explicitly identifying $\mathscr{B}_{MPUM}(w_d)$:

```
ch = c_{mpum(wd)}; check(all(ch == [m, lag(B), n]))
```

The function w2BT computes a basis B_T for $\mathscr{B}_{MPUM}(w_d)|_T$ from data w_d

```
BhT = w2BT (wd, T);
```

Once \widehat{B}_T is obtained from w_d , the non-parametric analysis functions from the previous sections can be used.

The second parameter of w2BT allows specification of an upper bound [m, ell, n] on the model's complexity, in which case unstructured low-rank approximation is used to enforce the bound. Alternatively, the second parameter of w2BT can be a tolerance tol for the estimation of the complexity by singular values thresholding (see Notes 6 and 3). Unlike the function slra, which imposes both rank and structure constraints, w2BT doesn't impose shift-invariance structure on BT.

Note 8. c_mpum and w2BT detect, respectively, $c(\mathcal{B}_{MPUM}(w_d))$ and dim $\mathcal{B}_{MPUM}(w_d)$ from the data w_d by rank computation with a user defined tolerance (see Note 3 and Appendix B). Alternatively, the user may specify directly a complexity bound. When the complexity is wrongly estimated or misspecified, there may be no $\widehat{\mathcal{B}} \in \mathcal{L}^q_{(m,\ell,n)}$ that corresponds to image B_T , see Appendix B.

The following functions compute parametric representations of $\mathcal{B}_{MPUM}(w_d)$ and thus by construction impose both the bounded complexity and LTI structure. A kernel representation of $\mathcal{B}_{MPUM}(w_d)$ is obtained by the function w2R:

```
R = w2R(wd); check(w_in_B(wd, R2BT(R, q, Td)))
```

and a state-space representation by the function w2ss:

```
Bh = w2ss(wd); check(w_in_B(wd, Bh))
```

A lag recursive method for computing a *minimal* kernel representation of $\mathcal{B}_{MPUM}(w_d)$ ([8, Algorithm 1]) is implemented in the function mpum:

```
R_{-} = mpum(wd); check(w_in_B(wd, R2BT(R_{-}, q, Td)))
```

Note 9. c_mpum, w2R, w2ss, and mpum use the same methods as BT2c, BT2R, BT2ss, and BT2Rmin, respectively. The former operate on B_T while the latter on $\mathcal{H}_T(w_d)$. For exact data satisfying the (GPE) condition, image $B_T = \text{image } \mathcal{H}_T(w_d)$ and the functions yield the same result. For inexact data, an approximation of image $\mathcal{H}_{T_d}(w_d)$ by a low-dimensional linear time-invariant structured subspace is needed, see Note 6. This is a nontrivial operation that makes system identification problems harder than corresponding analysis problems.

4 Implementation

- Signals are represented in two different formats—matrix and vector format, see Note 2.
- For input/state/output representations we use the Control System Toolbox's ss object.
- In the naming of the functions and in the code, LTI systems are denoted by B when represented by an ss object and by BT when represented by (B_T) . In the BT representation, the number of variables q has to be passed along with BT. Thus, functions accepting (B_T) as an input also require q as an extra input argument.
- The polynomial matrix

$$R(z) = R_0 + R_1 z + \dots + R_{\ell} z^{\ell} \in \mathbb{R}^{p \times q}[z]$$

is represented by the matrix of its coefficients stacked in a row

$$R = \begin{bmatrix} R_0 & R_1 & \cdots & R_\ell \end{bmatrix} \in \mathbb{R}^{p \times q(\ell+1)}.$$

Contrary to Matlab's convention of ordering the coefficients in descending degrees, we order them in ascending degrees (which is consistent with the multiplication of R with the Hankel matrix $R\mathscr{H}_{\ell+1}(w_d) = 0$). As in the vector format for the representation of a signal, where the number of variables q has to be passed along with w, functions accepting R as an input also require q as an extra input argument.

- We use literate programming [15, 16]. This document is written in Emacs Org mode [17] and the code is automatically extracted from the source file.
- Sections 4.1–4.6 follow Sections 3.1–3.6 of the tutorial.

Handling ctol

The variable ctol is either complexity c = [m ell n] or tolerance tol. It is used for computing (from c) or estimating (from tol) the rank of the Hankel matrix $\mathcal{H}_T(w_d)$, which indicates the dimension of the restricted behavior $\mathcal{B}|_T$, see (rank).

```
function r = c2r(c, T, opt)
if ~exist('opt', 'var'), r = c(1) * T + c(3);
else r = c(1) * T; end % needed for BT2B0
```

When ctol is specified as a tolerance, the conversion from ctol to c, requires complexity estimation using R, BT, or =wd=, whichever is given. This is done by the functions BT2c and c_mpum:

```
%% <ctol2c>
if isscalar(ctol) % estimate c from BT or wd
  if exist('R', 'var') && ~exist('BT', 'var'), BT = null(R); end
  if exist('BT', 'var'), [c, m, ell, n] = BT2c(BT, q, ctol);
  elseif exist('wd', 'var'), [c, m, ell, n] = c_mpum(wd, ctol); end
else % ctol should specify complexity
  c = ctol; m = c(1); ell = c(2); n = c(3);
end
```

The computation of the model's complexity in the «ctol2c» chunk is the most fragile operation in the toolbox. On the other hand, «ctol2c» is used in almost all functions. In some cases it causes infinite recursion. This issue is still investigated and «ctol2c» will be subject to change.

If ctol is not specified, its default value is the default tolerance tol:

```
<<default-tol>>
if ~exist('ctol', 'var') || isempty(ctol), ctol = tol; end % <default-ctol>
```

4.1 Nonparameteric representation of the restricted behavior

B2w — select a random trajectory w from a system \mathscr{B}

The system \mathscr{B} is specified by an ss object, *i.e.*, an input/state/output representation. The Control System Toolbox's function lsim is used to simulate a trajectory $w \in \mathscr{B}|_T$. By default, random input and random initial conditions are used. If the simulated trajectory w is used in data-driven methods to represent the system \mathscr{B} , the initial conditions should be random. With zero initial conditions, the uncontrollable subbehavior of \mathscr{B} is not included in $\mathscr{B}_{MPUM}(w_d)$.

```
function w = B2w(B, T, xini, u)
[p, m] = size(B); n = order(B);
if ~exist('xini', 'var') || isempty(xini), xini = rand(n, 1); end
if isscalar(xini) && xini == 0, xini = zeros(n, 1); end
if ~exist('u', 'var') || isempty(u), u = rand(T, m); end
if isscalar(u) && u == 0, u = zeros(T, m); end
y = lsim(B, u, [], xini); w = [u y];
```

B2BT — construct an orthonormal basis for the restricted behavior $\mathscr{B}|_T$

B2BT implements the indirect "data-driven" approach:

```
(A,B,C,D) \stackrel{	exttt{lsim}}{\longmapsto} w_{\mathbf{d}} \stackrel{	exttt{hank}}{\longmapsto} \mathscr{H}_{T}(w_{\mathbf{d}}) \stackrel{	exttt{orth,lra}}{\longmapsto} B_{T}
```

The simulated random trajectory w_d has the minimal length (T_{min}) in order for the Hankel matrix $\mathcal{H}_T(w_d)$ to reach its maximal rank mT + n. Since the complexity of \mathcal{B} is a priori known, it is enforced using lra with rank m*T + n.

```
function BT = B2BT(B, T);
[p, m] = size(B); n = order(B);
<<define-Tmin>>
BT = lra(hank(B2w(B, Tmin(T)), T), m * T + n);
```

BT2W — convert the basis BT into a set of trajectories (cell array)

```
function W = BT2W(BT, q);
[qT, N] = size(BT); T = qT / q;
for i = 1:N, W{i} = reshape(BT(:, i), q, T)'; end
```

BT2BT — shortened horizon or restricted behavior with permuted variables

```
function BT = BT2BT(BT, q, Tio, ctol)
T = size(BT, 1) / q;
if isscalar(Tio), Tnew = Tio; % horizon restriction/extension
   if T == Tnew, return, end % nothing to do
   <<default-ctol>>
   if T < Tnew, % extension
      R = BT2R(BT, q, ctol); BT = R2BT(R, q, T, ctol);
   else % restriction</pre>
```

It was empirically observed that BT (1:q * Tnew, :) may fail. Most probably the reason is the finite precision computation. A fix is to complement BT (1:q * Tnew, :) with all possible shifts of a window with the new horizon over the old horizon.

After shortening the horizon, in general, the dimension of the subspace changes. An orthonormal bases is recomputed by orth if ctol is tolerance and lra if ctol is a complexity.

More generally, BT2BT can be used for extending the horizon. The construction of the basis vectors for the longer horizon, however, requires a nontrivial modification (obtain a parametric model from BT and us it for simulation).

BTappend — append one restricted behavior to another

```
function BT = BTappend(BT1, q1, BT2, q2, ctol)
<<default-ctol>>

[q1T1, nc1] = size(BT1); T1 = q1T1 / q1;
[q2T2, nc2] = size(BT2); T2 = q2T2 / q2;

T = min(T1, T2); q = q1 + q2;
BT1 = BT2BT(BT1, q1, T, ctol);
BT2 = BT2BT(BT2, q2, T, ctol);

BT = zeros(q * T, nc1 + nc2);
I = kron(ones(1, T), 1:q1) + kron(0:T-1, q * ones(1, q1));
BT(I, 1:nc1) = BT1;
I = kron(ones(1, T), q1+1:q) + kron(0:T-1, q * ones(1, q2));
BT(I, nc1+1:end) = BT2;
<<ctol2c>>
BT = lra(BT, c2r(c, T));
```

4.2 Input/output partitioning

BT2UYT — extract the restricted behaviors of the input and the output variables

```
function [UT, YT] = BT2UYT(BT, m, p)
q = m + p; [qT, N] = size(BT); T = qT / q;
UT = zeros(m * T, N); for i = 1:m, UT(i:m:end, :) = BT(i:q:end, :); end
YT = zeros(p * T, N); for i = 1:p, YT(i:p:end, :) = BT(m+i:q:end, :); end
```

BTproject — projection of the behavior on a subset of variables

```
function BvarT = BTproject(BT, q, var)
BT = BT2BT(BT, q, [var, setdiff(1:q, var)]);
BvarT = BT2UYT(BT, length(var), q - length(var));
```

$\mathtt{UYT2BT}$ — reconstruct $\mathscr{B}|_T$ from the input and the output restricted behaviors

```
function BT = UYT2BT(UT, YT, m, p) q = m + p; [mT, N] = size(UT); T = mT / m; BT = zeros(q * T, N); for i = 1:m, BT(i:q:end, :) = UT(i:m:end, :); end for i = 1:p, BT(m+i:q:end, :) = YT(i:p:end, :); end
```

is_io — check if a partitioning of the variables is a possible input/output partitioning

```
function ans = is_io(BT, q, io, ctol);
<<default-ctol>>
[c, m, ell, n] = BT2c(BT, q, ctol);
p = q - m; T = size(BT, 1) / q;
BTp = BT(1:q * ell, :); BTf = BT(q * ell + 1:end, :); % selection from BT!
UTf = BT2UYT(BT2BT(BTf, q, io), m, p);
ans = rank([BTp; UTf], tol) == m * T + n;
```

Note: the horizon should be $T > 2\ell + 1$.

BT2IO — find all input/output partitionings of the variables

```
function [IO_possible, IO_impossible] = BT2IO(BT, q, ctol);
<<default-ctol>>
IO = flipud(perms(1:q)); possible = []; impossible = [];
for i = 1:size(IO, 1)
   if is_io(BT, q, IO(i, :), ctol),
      possible = [possible; i];
   else
      impossible = [impossible; i];
   end
end
IO_possible = IO(possible, :);
IO_impossible = IO(impossible, :);
```

Note: the horizon should be $T \ge 2\ell + 1$.

4.3 Subbehaviors

BT2Y0 and ss2Y0 — zero input subbehavior

```
function Y0 = BT2Y0(BT, q, ctol);
<<default-ctol>>
[c, m] = BT2c(BT, q, ctol); p = q - m;
[UT, YT] = BT2UYT(BT, m, p);
Y0 = YT * null(UT, tol);
```

• Note: the horizon should be $T \ge \ell + 1$.

```
function Y0 = ss2Y0(B, T); Y0 = obsvm(B, T);
```

BT2U0 and ss2U0 — zero output subbehavior

```
function U0 = BT2U0(BT, q, ctol);
<<default-ctol>>
[c, m] = BT2c(BT, q, ctol); p = q - m;
```

```
[UT, YT] = BT2UYT(BT, m, p);
U0 = UT * null(YT, tol);
   • Note: the horizon should be T > \ell + 1.
function U0 = ss2U0(B, T);
% TODO
BT2B0 and B2B0 — zero initial conditions subbehavior
function [B0, T] = BT2B0(BT, q, ctol);
<<default-ctol>>
<<ctol2c>>
Bini = BT(1:q * ell, :); T = size(BT, 1) / q - ell; % selection from BT!
B0 = lra(BT(q * ell + 1:end, :) * null(Bini, tol), c2r(c, T, 0));
Note: the horizon should be T \ge 2\ell.
function B0 = B2B0(B, T, ctol)
<<default-tol>>
[p, m] = size(B); n = order(B);
<<define-Tmin>>
wd0 = B2w(B, Tmin(T), 0); B0 = orth(hank(wd0, T), tol);
BT2HT and B2HT — zero initial conditions finite-horizon input-to-output map
function [HT, T] = BT2HT(BT, q, ctol)
<<default-ctol>>
[c, m] = BT2c(BT, q, ctol); p = q - m;
[U0, Y0] = BT2UYT(BT2B0(BT, q, ctol), m, p);
HT = Y0 * pinv(U0, tol); T = size(U0, 1) / m;
function HT = B2HT(B, T), HT = convm(B, T);
BT2BC and B2BC — controllable subbehavior
function BC = BT2BC(BT, q, ctol);
<<default-ctol>>
[c, m, ell, n] = BT2c(BT, q, ctol); p = q - m;
Bini = BT(1:q * ell, :); % selection from BT!
BC = orth(BT((q * 2 * ell + 1):end, :) * null(Bini, tol), tol);
Note: the horizon should be T \ge 3\ell.
function BC = B2BC(B, T, ctol),
<<default-ctol>>
BC = B2B0(B, T, ctol); % is this correct?
BT2BP and B2BP — periodic subbehavior
function BP = BT2BP(BT, q, ctol);
<<default-ctol>>
[c, m, ell, n] = BT2c(BT, q, ctol); p = q - m;
T = size(BT, 1) / q; t = (1:T)';
```

```
[UT, YT] = BT2UYT(BT, m, p); P = [UT; YT];
z = \exp(i * linspace(0, 2 * pi, T));
for k = 1: length(z)
  A = [[zeros(m * T, p); -kron(z(k) .^ t, eye(p))] BT];
  hg = pinv(A, tol) * [kron(z(k) .^ t, eye(m)); zeros(p * T, m)];
  Hh(:, :, k) = hg(1:p, :);
end
function BP = B2BP(B, T)
% TODO
4.4 Analysis
lag — find the lag of a system, given as an ss object
function ell = lag(B, tol)
<<default-tol>>
[p, m] = size(B); O = obsv(B); r = rank(O, tol);
for ell = 0:r, if rank(0(1:p * ell, :), tol) == r, break, end, end
B2c — find the system's complexity from an ss object
function [c, m, ell, n] = B2c(B, tol);
<<default-tol>>
[p, m] = size(B); C = ctrb(B); n = rank(C, tol); ell = lag(B, tol); c = [m, ell, n];
BT2c — find the system's complexity from its restricted behavior
function [c, m, ell, n] = BT2c(BT, q, ctol);
<<default-ctol>>
if isscalar(ctol),
  tol = ctol; T = size(BT, 1) / q;
  r1 = rank(BT, tol); r2 = rank(BT2BT(BT, q, T - 1, ctol), ctol);
  mn = [T 1; T-1 1] \setminus [r1; r2];
  m = round(mn(1)); n = round(mn(2));
  if n > 0
    for ell = 1:n, if rank(BT2BT(BT, q, ell, ctol)) == m * ell + n, break, end, end
  else, ell = 0; end
  c = [m, ell, n];
else, c = ctol; m = c(1); ell = c(2); n = c(3); end
  Note: the horizon should be T > \ell + 1.
is_lti — check if B_T represents a bounded complexity LTI system
function ans = is_lti(BT, q, c, tol)
<<default-tol>>
ans = all(dist_lti(BT, q, c) <= tol);</pre>
dist 1 \pm i — distance of B_T to the set of bounded complexity LTI systems
function [d, BTh] = dist_lti(BT, q, c)
Rh = BT2R(BT, q, c);
```

```
BTh = R2BT(Rh, q, size(BT, 1) / q);

d = Bdist(BT, BTh, q);
```

Complexity selection from a complexity–accuracy trade-off: e(d)

```
function e = error_tradeoff(BT, q, m, n_range)
np = length(d_range); p = q - m;
for i = 1:np, e(i) = dist_lti(BT, q, [m, ceil(n_range(i) / p), n_range(i)]); end
```

Bdist — find the distance between two systems

The distance depends on the horizon T. The default horizon is:

```
if ~exist('T', 'var') || isempty(T), T = 100; end % <default-horizon>
```

When B1 and/or B2 are not ss, they should represent $\mathcal{B}^1|_{T_1}$ and $\mathcal{B}^2|_{T_2}$. In this case, $T = \min\{T_1, T_2\}$.

equal — check if two systems are equal

```
function ans = equal(B1, B2, q, tol, T)
<<default-tol>>
<<default-horizon>>
if ~exist('q', 'var'), q = []; end
[d, B1T, B2T] = Bdist(B1, B2, q, T);
ans = d < tol & size(B1T, 2) == size(B2T, 2);</pre>
```

isunctr — check controllability

```
function n_unctr = isunctr(B, ctol)
<<default-ctol>>
[p, m] = size(B); q = p + m; n = order(B); ell = lag(B);
T = 3 * ell; BC = BT2BC(B2BT(B, T), q, ctol);
n_unctr = m * size(BC, 1) / q + n - size(BC, 2);
```

distunctr — distance to uncontrollability

Computes the distance to the set of uncontrollable systems with at least n_c uncontrollable modes. The default value for n_c is 1.

```
function d = distunctr(B, nc)
if ~exist('nc', 'var') || isempty(nc), nc = 1; end
[p, m] = size(B); q = p + m; n = order(B); ell = lag(B);
BT = B2BT(B, 3 * ell); Bini = BT(1:q * ell, :); % selection from BT!
[~, NullBini] = lra(Bini', m * ell + n);
```

```
BC = BT((q * 2 * ell + 1):end, :) * NullBini';
[P, R, hatBC] = lra(BC, m * ell + n - nc);
d = norm(BC - hatBC, 'fro') / norm(BC, 'fro');
```

BT2Hinf — computation of the H_{∞} -norm

```
function [Hinf, HT, uinf] = BT2Hinf(BT, q, ctol)
<<default-ctol>>
HT = BT2HT(BT, q, ctol);
[u, s, v] = svd(HT); Hinf = s(1); uinf = v(:, 1);
```

BT2Hz — evaluation of the transfer function

```
function Hz = BT2Hz(BT, q, z, ctol)
<<default-ctol>>
[c, m] = BT2c(BT, q, ctol); p = q - m;
T = size(BT, 1) / q; t = (1:T)';
[UT, YT] = BT2UYT(BT, m, p); P = [UT; YT];
for k = 1:length(z)
    A = [[zeros(m * T, p); -kron(z(k) .^ t, eye(p))] P];
    hg = pinv(A, tol) * [kron(z(k) .^ t, eye(m)); zeros(p * T, m)];
    Hz(:, :, k) = hg(1:p, :);
end
```

4.5 Parametric representations

end

B2R — find a kernel representation of a system

$$(A,B,C,D) \stackrel{\text{lsim}}{\longmapsto} w_{\mathrm{d}} \stackrel{\text{null}}{\longmapsto} R$$

```
function R = B2R(B, tol)
<<default-tol>>
[c, m, ell] = B2c(B, tol);
[~, R] = lra(B2BT(B, ell + 1), c2r(c, ell + 1));
```

R2BT — construct a basis for the restricted behavior from a kernel representation

```
R \overset{\text{multmat}}{\longmapsto} \mathscr{M}_T(R) \overset{\text{null}}{\longmapsto} \mathscr{B}|_T = \ker \mathscr{M}_T(R)
function BT = R2BT(R, q, T, ctol);
<<default-ctol>>
<<ctol2c>>
MT = multmat(R, q, T);
if length(ctol) == 3
  [~, BT] = lra(MT', q * T - c2r(c, T)); BT = BT';
else
  [~, BT] = lra(MT', ctol); BT = BT';
```

BT2R — find a kernel representation from a basis of the restricted behavior

```
function R = BT2R(BT, q, ctol)
<<default-ctol>>
<<ctol2c>>
[~, R] = lra(BT2BT(BT, q, ell + 1, ctol), c2r(c, ell + 1));
```

Note: the horizon should be $T > \ell + 1$.

ss2BT — construct a basis for the restricted behavior from a state-space representation

```
(A,B,C,D) \mapsto B_T = \Pi_T \begin{bmatrix} 0_{mT \times n} & I_{mT} \\ \mathscr{O}_T(A,C) & \mathscr{T}_T(H) \end{bmatrix} \qquad ((A,B,C,D) \mapsto B_T) function BT = ss2BT(B, T); 
 [p, m] = size(B); n = order(B); 
 BT = uy2w([zeros(m * T, n) eye(m * T); obsvm(B, T) convm(B, T)], m, p);
```

BT2ss — find a state-space representation from a basis of the restricted behavior

```
function [Bh, io] = BT2ss(BT, q, io, ctol);
<<default-ctol>>
<<ctol2c>>
p = q - m;
%% compute state by past/future intersection
Wpf = BT(1:q * (2 * ell + 1), :); R = null(Wpf', tol)'; % selection from BT!
Wp = BT(1:q * ell, :); X = R(:, 1:q * ell) * Wp;
                                                    % selection from BT!
%% compute the shifted state
sigmaWp = BT(q + 1:q * (ell + 1), :);
sigmaX = R(:, 1:q * ell) * sigmaWp;
%% make X and sigmaX minimal by LRA
[u, s, \sim] = svd(X); P = u(1:n, :);
Xmin = P * X; sigmaXmin = P * sigmaX;
%% find an input/output partition
if ~exist('io', 'var') || isempty(io)
  IO = BT2IO(BT, q); io = IO(1, :);
end
if q > 1, BT = BT2BT(BT, q, io); end
[UT, YT] = BT2UYT(BT, m, p);
U = UT(m * ell + 1:m * (ell + 1), :);
Y = YT(p * ell + 1:p * (ell + 1), :);
%% compute the state-space parameters
abcd = [sigmaXmin; Y] * pinv([Xmin; U], tol);
Bh = ss(abcd(1:n,
                   1:n), abcd(1:n, n+1:end), ...
        abcd(n+1:end, 1:n), abcd(n+1:end, n+1:end), 1);
```

• Notes: the horizon should be $T \ge 2\ell + 1$.

R2ss — find an input/state/output representation from a given kernel representation

```
function [B, io] = R2ss(R, q, io, ctol)
<<default-ctol>>
ell1 = size(R, 2) / q; Tmin = 2 * ell1;
BT = R2BT(R, q, Tmin, ctol);
if ~exist('io', 'var') || isempty(io)
IO = BT2IO(BT, q); io = IO(1, :);
```

```
end
[B, io] = BT2ss(BT, q, io, ctol);
```

R2Rmin — make a kernel representation minimal

```
function [Rmin, ells] = R2Rmin(R, q, ctol)
<<default-ctol>>
ell1 = size(R, 2) / q; Tmin = 3 * ell1;
[Rmin, ells] = BT2Rmin(R2BT(R, q, Tmin, ctol), q, ctol);

• why Tmin = ell + 1 is not sufficient?
```

BT2Rmin — find a minimal kernel representation from the restricted behavior

```
function [Rmin, ells] = BT2Rmin(BT, q, ctol)
<<default-ctol>>
<<ctol2c>> % [c, m, ell] = BT2c(BT, q, ctol);
R = \{\}; ells = []; m = q; i = 0;
for L = 1:ell+1
  BL = BT2BT(BT, q, L, ctol); r = rank(BL, tol);
  if (r < m * L + sum(ells))
    N = null(BL', tol)'; Np = multmat_(R, q, L);
    if ~isempty(Np), Nnew = rspan_diff(N, Np); else, Nnew = N; end
    for j = 1:size(Nnew, 1) R\{i + j\} = Nnew(j, :); ells(i + j) = (L - 1); end
    i = i + size(Nnew, 1);
  end
end
ell_max = max(ells); Rmin = [];
for i = 1:length(R)
  Rmin = [Rmin; [R\{i\} zeros(1, q * (ell + 1) - size(R\{i\}, 2))]];
end
function M = multmat_(R, q, T)
M = [];
if ~isempty(R)
  for i = 1:length(R), M = [M; multmat(R{i}, q, T)]; end
end
```

Notes: the horizon should be $T \ge 2\ell + 1$.

Rappend — append one kernel representation to another

```
function R = Rappend(R1, q1, R2, q2)
[p1, ncol] = size(R1); ell1 = ncol / q1 - 1;
[p2, ncol] = size(R2); ell2 = ncol / q2 - 1;

ell = max(ell1, ell2); q = q1 + q2;
R = zeros(p1 + p2, q * (ell + 1));
I = kron(ones(1, ell+1), 1:q1) + kron(0:ell, q * ones(1, q1));
R(1:p1, I) = R1;
I = kron(ones(1, ell+1), q1+1:q) + kron(0:ell, q * ones(1, q2));
R(p1+1:end, I) = R2;
```

4.6 Signal processing and open-loop control

dist — find the distance from a trajectory to a system

```
function [d, wh] = dist(w, B, ctol)
<<default-ctol>>
if isa(w, 'ss') % distance between systems
  d = Bdist(w, B, ctol);
               % distance from signal to system
else
  if iscell(w)
    for i = 1:length(w),
      [d(i) wh{i}] = dist(w{i}, B, ctol);
    end
  else
    [T, q] = size(w);
    if isa(B, 'ss'), BT = B2BT(B, T); else, BT = BT2BT(B, q, T, ctol); end
    wh_vec = ProjBT(vec(w'), BT); wh = reshape(wh_vec, q, T)';
    d = norm(w - wh, 'fro');
end
```

Exploiting orthonormality of the basis B_T , the projection on $\mathscr{B}|_T$ can be computed by matrix multiplication: $\widehat{w} = B_T B_T^\top w$. For multiple trajectories w^1, \dots, w^N of length-T stack next to each other in a matrix $W := \begin{bmatrix} w^1 & \cdots & w^N \end{bmatrix}$, their simultaneous projection on $\mathscr{B}|_T$ is $\widehat{W} = B_T B_T^\top W$.

```
function wh = ProjBT(w, BT)
wh = BT * BT' * w;
```

w_in_B — check if a given signal is a trajectory of a system

The system can be specified either by a state-space representation or its finite horizon behavior.

```
function ans = w_in_B(w, B, tol)
<<default-tol>>
if iscell(w)
  for i = 1:length(w), ans(i) = w_in_B(w{i}, B, tol); end
else
  ans = dist(w, B) < tol;
end</pre>
```

Instead of using dist, another possible implementation for checking if $w \in \mathcal{B}|_T$ is rank $\begin{bmatrix} w & B_T \end{bmatrix} = \operatorname{rank} B_T$.

```
[T, q] = size(w);
ans = rank([vec(w') BT(1:q*T, :)], tol) == rank(BT(1:q*T, :), tol); % selection from
```

w_in_kerR — check if a given signal is a trajectory of a system defined by $\ker R(\sigma)$

```
function ans = w_in_kerR(w, R, tol)
<<default-tol>>
ans = norm(R * hank(w, size(R, 2) / size(w, 2))) < tol;</pre>
```

w_in_ss — check if a given signal is a trajectory of a system defined by $\mathcal{B}_{ijslo}(A,B,C,D)$

```
function ans = w_in_ss(w, B, tol)
<<default-tol>>
[xini, e] = w2xini(w, B); ans = e < tol;</pre>
```

```
w2xini — find initial state
function [xini, e] = w2xini(w, B)
[p, m] = size(B); [T, q] = size(w);
if m > 0,
  u = w(:, 1:m); y = w(:, m+1:end); y0 = y - lsim(B, u);
else, y0 = w; end
O = obsvm(B, T); xini = O \setminus vec(y0');
if nargout > 1, e = norm(vec(y0') - 0 * xini); end
function [Xini, e] = W2Xini(W, B)
[p, m] = size(B); q = m + p; T = size(W, 1) / q;
[U, Y] = BT2UYT(W, m, p);
if m > 0,
  Y0 = Y - convm(B, T) * U;
else, Y0 = Y; end
O = obsvm(B, T); Xini = O \setminus Y0;
if nargout > 1
  E = YO - O * Xini; e = sqrt(sum(E .^ 2));
end
w2wini — find initial trajectory
function [wini, e] = w2wini(wf, BT, Tini, tol)
<<default-tol>>
[Tf, q] = size(wf); T = size(BT, 1) / q;
if ~exist('Tini', 'var') || isempty(Tini), c = BT2c(BT, q); Tini = c(2); end
Bini = BT(1:q * Tini, :); Bf = BT(q * Tini + 1:end, :); % selection from BT!
g = pinv(Bf, tol) * vec(wf'); wini = reshape(Bini * g, q, Tini)';
if nargout > 1, e = norm(vec(wf') - Bf * g); end
   • note: q is inferred from the size of w_{\rm f}
u2y — simulation
```

```
function yf = u2y(BT, q, uf, wini)
T = size(BT, 1) / q; [Tf, m] = size(uf); p = q - m;
if ~exist('wini'), Tini = T - Tf; wini = zeros(Tini, q);
else, Tini = size(wini, 1); end
Bini = BT(1:q * Tini, :); % selection from BT!
[Uf, Yf] = BT2UYT(BT(q * Tini + 1:q * (Tini + Tf), :), m, p);
yf = Yf * (pinv([Bini; Uf]) * [vec(wini'); vec(uf')]);
yf = reshape(yf, p, Tf)';
```

- notes:
 - the horizon T should be $\geq T_{\rm ini} + T_{\rm f}$
 - if wini is not specified, by default it is taken as a zero trajectory of length $T-T_{\rm ini}$

wgiven2wmissing — observer

```
function wm = wgiven2wmissing(wg, B, tol)
<<default-tol>>
[p, m] = size(B); q = m + p;
```

```
[T, qq] = size(wq); qm = q - qq;
BT = B2BT(B, T); [Bg, Bm] = BT2UYT(BT, qg, qm);
wm = Bm * pinv(Bg, tol) * vec(wg');
wm = reshape(wm, qm, T)';
lqctr — linear-quadratic tracking control
function wh = lqctr(B, wr, v, wp, wf, ctol)
<<default-ctol>>
[Tr, q] = size(wr);
if ~exist('wp'), wp = []; Tp = 0; else, Tp = size(wp, 1); end
if ~exist('wf'), wf = []; Tf = 0; else, Tf = size(wf, 1); end
if \simexist('v') || isempty(v), v = ones(Tr, q); end
vec_v = vec(v'); vec_wr = vec(wr'); T = Tp + Tr + Tf;
if isa(B, 'ss'), BT = B2BT(B, T); else BT = BT2BT(BT, q, T, ctol); end
Bpf = BT([1:q * Tp, q * (Tp + Tr) + 1:end], :);
Br = BT(q * Tp + 1:q * (Tp + Tr), :);
Br = vec_v(:, ones(1, size(Br, 2))) .* Br; vec_wr = vec_v .* vec_wr;
if ~isempty(Bpf)
 N = \text{null}(Bpf); gp = \text{pinv}(Bpf) * [\text{vec}(wp'); \text{vec}(wf')];
  z = pinv(Br * N) * (vec\_wr - Br * gp);
  wh = Br * (gp + N * z);
else
```

4.7 System identification

wh = reshape(wh, q, Tr)';

end

wh = Br * pinv(Br) * vec_wr;

c_mpum — find the complexity of the most powerful unfalsified model

```
function [c, m, ell, n] = c_mpum(wd, ctol)
<<default-ctol>>
if length(ctol) == 3 % nothing to do
  c = ctol; m = c(1); ell = c(2); n = c(3); return
end
if ~iscell(wd)
  [Td, q] = size(wd); ell_max = floor((Td + 1) / (q + 1)) - 1;
else
  N = length(wd); for i = 1:N, [Td(i), q] = size(wd{i}); end
  %% find ell_max (different from the formula in the paper)
  Td = [sort(Td, 'descend') 0];
  for i = 1:N
    ell_{max} = floor((sum(Td(1:i)) + i) / (q + i)) - 1;
    if (Td(i + 1) < ell_max + 1), break, end
  end
end
r1 = rank(hank(wd, ell_max), tol);
r2 = rank(hank(wd, ell_max + 1), tol);
mn = [ell_max 1; ell_max+1 1] \setminus [r1; r2];
m = round(mn(1)); n = round(mn(2));
```

```
for ell = 0:n, if rank(hank(wd, ell), tol) == m * ell + n, break, end, end
c = [m, ell, n];
   • in case of one trajectory: ell_max = floor((Td + 1) / (q + 1)) - 1 — see [8]
w2BT — finite horizon behavior from data
                       \mathcal{W}_{d} \xrightarrow{\text{hank}} \mathcal{H}_{T}(\mathcal{W}_{d}) \xrightarrow{\text{orth/lra}} \mathcal{B}|_{T} = \text{image } \mathcal{H}_{T}(\mathcal{W}_{d})
function BT = w2BT(wd, T, ctol)
<<default-ctol>>
<<ctol2c>>
BT = lra(hank(wd, T), m * T + n);
w2R — from data to kernel representation
function R = w2R(wd, ctol)
<<default-ctol>>
<<ctol2c>>
[~,~R] = lra(hank(wd, ell + 1), m * (ell + 1) + n);
w2ss — state-space representation of the most powerful unfalsified model
function Bh = w2ss(wd, io, ctol)
<<default-ctol>>
<<ctol2c>>
q = size(wd, 2);
<<default-io>>
BT = w2BT (wd, 2 * ell + 1, c);
Bh = BT2ss(BT, q, io, c);
mpum — minimal kernel representation of the most powerful unfalsified model
function Rmat = mpum(w, ell_max, tol)
<<default-tol>>
if \simiscell(w), [T, q] = size(w); else, [T, q] = size(w{1}); end
if ~exist('ell_max', 'var') || isempty(ell_max)
  ell_max = floor((T + 1) / (q + 1));
end
m = q; p = 0; ell = []; R = {};
for L = 1:ell_max
  H = hank(w, L);
  if rank(H, tol) < m * L + sum(ell)
    N = null(H', tol)'; Np = multmat_(R, q, L);
    if isempty(Np), Rnew = N; else, Rnew = perp(Np / N) * N; end
    if ~isempty(Rnew),
         dp = size(Rnew, 1);
         for i = 1:dp, R\{p+i\} = Rnew(i, :); ell(p+i) = L - 1; end
         p = p + dp; m = m - dp;
```

ell = max(ell); p = length(R); Rmat = zeros(p, q * (ell+1));

end end end

for i = 1:p

```
Ri = R{i}; elli = size(Ri, 2) / q - 1;
Rmat(i, 1:q * (elli + 1)) = Ri;
end
```

4.8 Auxiliary functions

vec — column-wise vectorization of a matrix

```
function a = vec(A), a = A(:); end
```

uy2w and w2uy — row permutation reordering variables from (u, y) to w and back

```
function w = uy2w(uy, m, p)

q = m + p; T = size(uy, 1) / q; w = zeros(size(uy));
for i = 1:m, w(i:q:end, :) = uy(i:m:m*T, :); end
for i = 1:p, w(m+i:q:end, :) = uy(m*T+i:p:end, :); end

function [u, y] = w2uy(w, m, p)

q = m + p; T = size(w, 1) / q;
for i = 1:m, u(i:m:m*T, :) = w(i:q:end, :); end
for i = 1:p, y(i:p:p*T, :) = w(m+i:q:end, :); end
```

obsvm — extended observability matrix

$$\mathscr{O}_T(A,C) := egin{bmatrix} C \ CA \ dots \ CA^{T-1} \end{bmatrix} \in \mathbb{R}^{pT imes n}$$

```
function O = obsvm(B, T)
[p, m] = size(B);
O = B.c; for i = 2:T, O = [O; O(end-p+1:end, :) * B.a]; end
```

convm — convolution matrix

$$\mathscr{C}_T(H) := \begin{bmatrix} H(0) & 0 & \cdots & 0 \\ H(1) & H(0) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ H(T-1) & \cdots & H(1) & H(0) \end{bmatrix} \in \mathbb{R}^{pT \times mT}$$

```
function C = convm(B, T)
if isa(B, 'ss')
  [p, m] = size(B); if m == 0, return, end; h = impulse(B, T-1);
else,
  h = B; if length(size(h)) == 3, [TT, p, m] = size(h); else, p = 1; m = 1, end
end
C = zeros(p * T, m * T);
if m > 1
  H = zeros(T * p, m);
  for i = 1:T, H((i - 1) * p + 1:i * p, :) = reshape(h(i, :, :), p, m); end
else
  H = vec(h');
end
for i = 1:T
```

```
C((i-1) * p + 1:end, (i-1) * m + 1:i * m) = H(1:(T-i+1) * p, :);end
```

blkhank — block Hankel matrix

$$\mathscr{H}_{L}(w) := egin{bmatrix} w(1) & w(2) & \cdots & w(T-L+1) \\ w(2) & w(3) & \cdots & & \\ \vdots & \vdots & & \vdots \\ w(L) & w(L+2) & \cdots & w(T) \end{bmatrix} \in \mathbb{R}^{qL \times (T-L+1)}$$

function H = blkhank(w, L)
[q, T] = size(w); if T < q, w = w'; [q, T] = size(w); end, j = T - L + 1;
if j <= 0, H = []; else,
 H = zeros(L * q, j);
 for i = 1:L, H(((i - 1) * q + 1):(i * q), :) = w(:, i:(i + j - 1)); end
end</pre>

Pblkhank — block Hankel matrix projector

```
function wh = Pblkhank(D, L)
[m, n] = size(D); q = m / L; T = L + n - 1; np = T * q;
I = blkhank(reshape(1:np, q, T)', L);
for k = 1:np, ph(k) = mean(D(I == k)); end
wh = reshape(ph, q, T)';
```

hank — mosaic Hankel matrix

$$\mathscr{H}_L(w) := ig[\mathscr{H}_L(w^1) \ \cdots \ \mathscr{H}_L(w^N)ig] \in \mathbb{R}^{qL imes \sum_{i=1}^N (T_i - L + 1)}$$
 function $H = \mathrm{hank}\,(w, \ L)$

if ~iscell(w), H = blkhank(w, L); return, end
N = length(w); H = [];
for k = 1:N, H = [H blkhank(w{k}, L)]; end

Phank — mosaic Hankel matrix projector

```
function wh = Phank(D, L, n) if \simexist('n'), wh = Pblkhank(D, L); return, end for k = 1:length(n), wh{k} = Pblkhank(D(:, 1:n(k)), L); D(:, 1:n(k)) = []; end
```

multmat — multiplication matrix

For a matrix polynomial $R(z) =: \begin{bmatrix} R^1(z) \\ \vdots \\ R^g(z) \end{bmatrix} \in \mathbb{R}^{g \times q}[z]$, where $R^1, \dots, R^g \in \mathbb{R}^{1 \times q}[z]$,

$$R(\sigma)w = 0 \iff R^i(\sigma)w = 0, \text{ for } i = 1, \dots, g$$

 $\iff \mathcal{M}_T(R^i)w = 0, \text{ for } i = 1, \dots, g \iff \mathcal{M}_T(R)w = 0$

where

is the multiplication matrix of the row-vector polynomial

$$r(z) = r_0 + r_1 z + \cdots + r_\ell z^\ell \in \mathbb{R}^{1 \times q}[z]$$

and

$$\mathscr{M}_T(R) := egin{bmatrix} \mathscr{M}_T(R^1) \ dots \ \mathscr{M}_T(R^g) \end{bmatrix} \in \mathbb{R}^{(gT - \sum_{i=1}^g \deg R^i) imes qT}$$

is the multiplication matrix of the matrix polynomial R(z).

```
function M = multmat(R, q, T, tol)
<<default-tol>>
g = size(R, 1); M = [];
for i = 1:g, M = [M; scalar_multmat(R(i, :), q, T, tol)]; end

function M = scalar_multmat(R, q, T, tol)
R = remove_trailing_zeros(R, q, tol);
nc = length(R); n = T - nc / q + 1;
M = zeros(n, nc + (n - 1) * q);
for i = 1:n, M(i, (1:nc) + (i - 1) * q) = R; end

function R = remove_trailing_zeros(R, q, tol)
RR = reshape(R, q, length(R) / q);
n = find(sum(abs(RR), 1) > tol, 1, 'last');
R = vec(RR(:, 1:n))';
```

Pmultmat — multiplication matrix projector

```
function Rh = Pmultmat(D, p, q)
[m, n] = size(D); L = m / p; T = n / q; ell = T - L;
I = multmat(reshape(1:(p*(ell + 1)), p, ell + 1), q, T);
for k = 1:p*(ell + 1), ph(k) = mean(D(I == k)); end
Rh = reshape(ph, p, ell + 1);
```

rspan_intersect — intersection of subspaces defined by the row-spans of matrices

• row span C is the intersection of the subspaces row span A and row span B

```
function C = rspan_intersect(A, B, tol)
<<default-tol>>
Ap = null(A, tol); Bp = null(B, tol); C = null([Ap Bp]', tol)';
```

BTintersect — intersection of subspaces defined by the column-spans of matrices

• image B is intersection of the subspaces image B^1 and image B^2

```
function BT = BTintersect(BT1, BT2, tol)
<<default-tol>>
BT = rspan_intersect(BT1', BT2', tol)';
```

perp — orthogonal complement

• image Ap is $(image A)^{\perp}$ or $Ap = A^{\perp}$

```
function Ap = perp(A, tol)
<<default-tol>>
[u, s, v] = svd(A); r = sum(diag(s) > tol); Ap = v(:, (r + 1):end)';
```

rspan_diff — difference of subspaces

• row span C is the difference of the subspaces row span A and row span B

```
function C = rspan_diff(A, B, tol)
<<default-tol>>
C = perp(B / A) * A;
```

1ra — low-rank approximation

```
function [P, R, dh] = lra(d, rtol)
<<default-tol>>
if ~exist('rtol', 'var') || isempty(rtol), rtol = tol; end
[u, s, v] = svd(d);
if rtol < 1, r = sum(diag(s) > rtol); else r = rtol; end
P = u(:, 1:r); R = u(:, (r + 1):end)';
if nargout > 2, dh = u(:, 1:r) * s(1:r, 1:r) * v(:, 1:r)'; end
```

check — print PASS / FAIL

```
function check(a), if a, disp('PASS'), else, disp('FAIL'), end
```

References

- [1] J. C. Willems. "From time series to linear system—Part I. Finite dimensional linear time invariant systems, Part II. Exact modelling, Part III. Approximate modelling". In: *Automatica* 22, 23 (1986, 1987), pp. 561–580, 675–694, 87–115.
- [2] J. C. Willems. "The behavioral approach to open and interconnected systems: Modeling by tearing, zooming, and linking". In: *Control Systems Magazine* 27 (2007), pp. 46–99.
- [3] I. Markovsky and F. Dörfler. "Behavioral systems theory in data-driven analysis, signal processing, and control". In: *Annual Reviews in Control* 52 (2021), pp. 42–64.
- [4] I. Markovsky, L. Huang, and F. Dörfler. "Data-driven control based on behavioral approach: From theory to applications in power systems". In: *IEEE Control Systems Magazine* 43 (5 2023), pp. 28–68.
- [5] I. Markovsky and P. Rapisarda. "Data-driven simulation and control". In: Int. J. Control 81.12 (2008), pp. 1946–1959.
- [6] I. Markovsky. "A software package for system identification in the behavioral setting". In: *Control Eng. Practice* 21 (2013), pp. 1422–1436.
- [7] I. Markovsky. "A missing data approach to data-driven filtering and control". In: *IEEE Trans. Automat. Contr.* 62 (4 2017), pp. 1972–1978. ISSN: 1558–2523.
- [8] I. Markovsky and F. Dörfler. "Identifiability in the behavioral setting". In: *IEEE Trans. Automat. Contr.* 68 (3 2023), pp. 1667–1677.
- [9] I. Markovsky and F. Dörfler. "Data-driven dynamic interpolation and approximation". In: Automatica 135 (2022), p. 110008.
- [10] T. Söderström. Errors-in-Variables Methods in System Identification. Springer, 2018.
- [11] I. Markovsky and B. De Moor. "Linear dynamic filtering with noisy input and output". In: *Automatica* 41.1 (2005), pp. 167–171.
- [12] M. Bisiacco, M.-E. Valcher, and J. C. Willems. "A Behavioral Approach to Estimation and dead-beat observer design with applications to state-space models". In: *IEEE Trans. Automat. Contr.* 51.11 (2006), pp. 1787–1797.

- [13] I. Markovsky. Low-Rank Approximation: Algorithms, Implementation, Applications. Springer, 2019.
- [14] B. De Moor et al. "DAISY: A Database for Identification of Systems". In: *Journal A* 38.3 (1997). Available from http://homes.esat.kuleuven.be/~smc/daisy/, pp. 4-5.
- [15] D. Knuth. *Literate programming*. Cambridge University Press, 1992.
- [16] N. Ramsey. "Literate programming simplified". In: IEEE Software 11 (1994), pp. 97–105.
- [17] C. Dominik. The org mode 7 reference manual. Network theory, 2010.
- [18] I. Markovsky. "Structured low-rank approximation and its applications". In: Automatica 44.4 (2008), pp. 891–909.
- [19] I. Markovsky and K. Usevich. "Software for weighted structured low-rank approximation". In: *J. Comput. Appl. Math.* 256 (2014), pp. 278–292.

A Auxiliary functions

The functions presented in this section are used internally for the implementation of the main functions of the toolbox, presented in Section 3, and are not needed for using the toolbox however they may be useful for extending the functionality of the toolbox.

The function vec is the column-wise vectorization operator x = vec(X). The map $w \mapsto \begin{bmatrix} u \\ y \end{bmatrix}$, where w is the column vector with block elements $w(1), \dots, w(T)$ and similarly u and y are the column vectors of the sequential input and output samples is implemented in the function w2uy:

```
w = reshape(1:q*T, q, T)'; vec_w = vec(w');
[vec_u, vec_y] = w2uy(vec_w, m, p);
check(norm(vec_w - uy2w([vec_u; vec_y], m, p)) == 0)
```

Applied on $W := [w^1 \cdots w^N]$, w2uy gives $U := [u^1 \cdots u^N]$ and $Y := [y^1 \cdots y^N]$.

The extended observability matrix $\mathscr{O}_T(A,C)$ and convolution matrix $\mathscr{T}_T(H)$ are constructed by obsvm and convm, respectively:

The Hankel matrix $\mathcal{H}_T(w)$ constructor is blkhank:

```
H = blkhank([1 2 3 4 5], 3);
```

and the projection on the set of Hankel matrices is implemented in Pblkhank:

```
w = Pblkhank([1 2 3; 2 3 4; 3 4 5], 3);
```

More generally hank accepts as an input a cell array and constructs the mosaic Hankel matrix $\mathcal{H}_T(\mathcal{W})$:

```
H = hank({[1 2 3 4], [5 6 7]}, 3);
```

and Phank implements the projection on the set of mosaic Hankel matrices:

```
w = Phank([1 2 5; 2 3 6; 3 4 7], 3);
```

The multiplication matrix $\mathcal{M}_T(R)$ is implemented in multmat:

```
M = multmat([1 2 3], 1, 5);
```

and the corresponding projector in Pmultmat:

```
R = Pmultmat([1 2 3 0 0; 0 1 2 3 0; 0 0 1 2 3], 1, 1);
```

Next, we introduce operations with subspaces. The intersection of two subspaces, defined by the row-spans of given matrices, is implemented in rspan_intersect:

```
A = rand(2, 5); B = [rand(1, 5); rand(2) * A];

C = rspan_intersect(A, B); check(rank([A; C]) == 2)
```

The orthogonal complement of a subspace, defined as the image of a given matrix, is implemented in perp:

```
A = rand(2, 5); Ap = perp(A);
check(size(rspan_intersect(A, B), 1) == 0)
```

Finally, the difference of subspaces, defined as row-spans of given matrices, is implemented in rspan_diff:

```
A = rand(2, 5); B = [rand(1, 5); rand(2) * A];

C = rspan\_diff(B, A); check(rank([B(1, :); C]) == 1)
```

Unstructured low-rank approximation is implemented in lra:

```
D = rand(5, 5); [R, P, dh] = lra(D, 2);
```

and generalized low-rank approximation is implemented in glra:

```
dh_{-} = glra(D, 4, 1);
```

Hankel structured low-rank approximation in implemented in the function slra:

```
[ph, info] = slra(p, s, r);
```

of the SLRA package [18, 19], which is not included in the Behavioral Toolbox and should be installed separately. The slra function is used for optimization based approximate system identification, see [6].

B Data approximation and numerical errors

B.1 LTI structure of B_T

For a bounded complexity LTI system \mathscr{B} , the subspaces $\mathscr{B}|_T$ for $T \in \mathbb{N}$ are also structured. The structure of $\mathscr{B}|_T$ manifest itself in the function $d_T := \dim B|_T$, which is fully revealed when $T \ge \ell(\mathscr{B})$:

$$\mathscr{B} \in \mathscr{L}^q_{(m,\ell,n)} \implies \dim \mathscr{B}|_T = mT + n = \operatorname{rank} B_T, \quad \text{for } T \ge \ell(\mathscr{B}).$$
 (rank)

Figure 1: $\dim \mathcal{B}|_T$ is a piecewise affine function of T.

If \mathscr{B} is autonomous, B_T has n columns that are sum-of-polynomial-times-damped-exponential signals (*shift-invariant* structure). This structure implies that the *shift equation* $\underline{B}_T A = \overline{B}_T$, where \underline{B}_T removes the last p rows of of B_T and \overline{B}_T removes the first p rows of B_T , has a unique solution $A \in \mathbb{R}^{n \times n}$. The solution A of the shift equation is a state transition matrix of a state-space representation of \mathscr{B} . Thus, the eigenvalues $\lambda(A)$ of A reveal the *modes of* \mathscr{B} . For open systems, the structure of B_T is more involved due to the inputs. We refer to the structure of B_T in the general case of open systems as LTI structure. Note that in order to make the LTI structure of $\mathscr{B}|_T$ evident, \mathscr{B} must have bounded complexity and T must be sufficiently large.

By construction, image $\mathcal{H}_T(w_d)$ imposes linearity and shift-invariance, however, bounded complexity requires that in addition rank $\mathcal{H}_T(w_d) = \mathbf{m}(\mathcal{B})T + \mathbf{n}(\mathcal{B})$, so that $\mathcal{H}_T(w_d)$ is rank deficient for $T > \boldsymbol{\ell}(\mathcal{B})$. This gives us the following characterization of trajectories of bounded complexity LTI systems:

$$w \in \mathcal{B}|_T$$
 for $\mathcal{B} \in \mathcal{L}^q_{(m \ell n)} \iff \operatorname{rank} \mathcal{H}_L = mT + n$ for $\ell < L \le T - \ell$

The functions is_lti and $dist_lti$ check if B_T has LTI structure of a specified bounded complexity. is_lti does this by computing the complexity of the MPUM using BT2c and comparing it with the specified one. $dist_lti$ computes a parametric model of the specified complexity (a state-space representation) for the B_T using BT2ss and checking the distance between the finite horizon behavior of the obtained system of bounded complexity and image B_T . Here is an example that demonstrates the usage of is_lti and $dist_lti$ functions:

```
m = 2; p = 2; q = m + p; n = 3; B = drss(n, p, m);
T = 100; BT = B2BT(B, T);
is_lti(BT, q, [m lag(B) n])
dist_lti(BT, q, c)
```

B.2 Computation of B_T from inexact data

Computing B_T involves finding dim $\mathcal{B}|_T$, which is done via rank computation:

$$\dim \mathcal{B}|_T = qT - \operatorname{rank} \mathcal{M}_T(R) = \operatorname{rank} \mathcal{H}_T(w_d),$$

where in case of given data w_d it is assumed that (GPE) holds. By default, rank is computed using *singular values thresholding*:

$$\hat{r} := \# \text{ of singular values} \ge \text{tol},$$
 (\hat{r})

with a user-defined tolerance tol.

If there are singular values below the threshold tol, (\hat{r}) discards them. This implies an *approximation*. The SVD truncation, however, does not preserve the LTI structure, so that the computed basis B_T does not represent a finite-horizon behavior $\mathcal{B}|_T$ of a bounded complexity LTI system $\mathcal{B} \in \mathcal{L}^q_c$.

The toolbox offers two options for complexity estimation:

- 1. specify to1, in which case r is found using (\hat{r}) , or
- 2. specify $c := (m, \ell, n)$, in which case r is found using (dim $\mathcal{B}|_T$).

The second option allows the user the impose a priori complexity bound.

The horizon T depends on the usage of (B_T) . In system analysis, where $\mathscr{B} \in \mathscr{L}^q_c$ is given, T is of the order of $\ell(\mathscr{B})$ and B_T is constructed from another representation or data $w_d \in \mathscr{B}|_{T_d}$. The minimum number of data samples is (T_{\min}) and the results are exact up to numerical errors $(\sim 10^{-10})$. In contrast, system identification and data-driven control, where \mathscr{W}_d is given T may be large (e.g., control horizon in DeePC). The map $\mathscr{W}_d \mapsto B_T$ is nontrivial (it is an identification problem) and typically $T_d \gg T$. Generally it is best to use all the data. The results are approximate and the errors "large" $(\sim 20\%)$.

The problem of approximation of image $\mathcal{H}_T(w_d)$ by a low-dimensional shift-invariant subspace $\widehat{\mathcal{B}}$ is the numerical linear algebra problem of Hankel structured low-rank approximation [13]. Local optimization methods for its solution are implemented in the SLRA package [19] and the SLRA package is used for approximate identification in the behavioral setting [6]. The main function for local optimization-based approximation system identification is:

```
[sysh, info, wh, xini] = ident(wd, m, ell, opt)
```

For more information, we refer the reader to [6].

B.3 Performance on DAISY

Datasets

```
T m
N data set name
                                p - \ell
1 Destillation column
                        90
                                3
                             2
   pH process
                       2001
                                1
                                   6
3 Hair dryer
                       1000
                                1
                                   5
4 Heat flow density
                                   2
                       1680
                             2
                               1
                               1 2
5 Heating system
                        801
                             1
6 Lake Erie
                        57
                            5 2 1
7 CD-player arm
                       2048
                             2
8 Robot arm
                       1024
                            1 1 4
9 Steam heat exchanger
                      4000
                            1 1
                                   2
                       7500 1 2 1
10 Tank reactor
11 Steam generator
                       9600 4 4 1
```

%% <load-data>

```
switch I(i)
  case 1, destill_
                           , m = 5; ell = 1; l = 1;
                           , m = 2; ell = 6; l = 1;
  case 2, pHdata_
 case 3, dryer_
                           , m = 1; ell = 5; l = 1;
  case 4, thermic_res_wall_, m = 2; ell = 2; l = 1;
 case 5, heating_system_ , m = 1; ell = 2; l = 1;
                          , m = 5; ell = 1; l = 1;
 case 6, erie
 case 7, CD_player_arm_ , m = 2; ell = 1; l = 0.05;
 case 8, robot_arm_
                           , m = 1; ell = 4; l = 1;
                          , m = 1; ell = 2; l = 1;
  case 9,
         exchanger_
 case 10, cstr
                           , m = 1; ell = 1; l = 1;
                           , m = 4; ell = 1; l = 1;
  case 11, steamgen_
wd = [u \ y]; [T, q] = size(wd); p = q - m; n = p * ell;
```

Methods and validation criterion

```
%% <define-methods>
M.name{1} = 'pinv'; M.comp{1} = 'wh = ddint(wi, w);';
M.name{2} = 'lra'; M.comp{2} = 'wh = ddint(wi, w, [], [m, n, n]);';
M.name{3} = 'll'; M.comp{3} = 'wh = ddint(wi, w, [], [], l);';
M.name{4} = '2s-ml'; M.comp{4} = '[~, ~, wih] = ident(wi, m, ell); wh = ddint(wih, w)
```

Relative percentage approximation error:

```
e = @(yh) 100 * norm(yv - yh) / norm(yv); %% <define-error>
```

Test script

```
wi = wd(Ti, :); yv = wd(Tv, m+1:end);
 w = [wd(Tv, 1:m) NaN(length(Tv), p)];
  <<define-error>>
  for k = 1:length(K)
   tic, eval(M.comp{K(k)}); CT(i, k) = toc; RE(i, k) = e(wh(:, m+1:end));
  end
end
%% results
disp('relative errors: '), disp([[' '; Dname(I)'] [M.name(K); num2cell(RE)]])
disp('computation time (sec):'), disp([[' '; Dname(I)'] [M.name(K); num2cell(CT)]])
Results
relative errors:
   { ' '
                         { 'pinv' }
                                        { '11' }
                                                      {'2s-ml' }
                    }
    { 'dryer'
                        {[ 4.4971]}
                                       {[4.2406]}
                                                      {[4.5436]}
                   }
    { 'heating-system' }
                        {[ 19.6927]}
                                        {[4.7943]}
                                                      {[17.3568]}
                                        {[29.3446]} {[26.0374]}
   { 'CD_player_arm' }
                         {[344.1089]}
   { 'robot_arm' }
                        {[ 74.2473]}
                                        {[15.7626]}
                                                      {[70.6520]}
                         {[ 8.9045]}
                                        {[1.8622]}
    { 'exchanger'
                                                      {[12.5116]}
                   }
computation time (sec):
   { ' '
                    }
                         { 'pinv' }
                                      { '11' }
                                                    {'2s-ml'}
   {'dryer'
                         {[0.0369]}
                                      {[0.0552]}
                                                    {[0.2326]}
                    }
    { 'heating-system' }
                         {[0.0133]}
                                      {[0.0512]}
                                                    {[0.0541]}
                                     {[0.1931]}
    { 'CD_player_arm' }
                         {[0.3262]}
                                                    {[0.3493]}
   {'robot_arm'
                 }
                         {[0.0202]}
                                      {[0.0142]}
                                                    {[0.0446]}
                         {[0.4357]} {[0.9321]}
    { 'exchanger'
                   }
                                                    {[0.5611]}
```

C Miscellaneous examples

C.1 Restricted behavior

SISO system

```
m = 1; p = 1; q = m + p; n = 5;
B = drss(n, p, m); T = lag(B) + 1;
BT = B2BT(B, T); size(BT) % -> 12 x 11
plot(BT), axis off, print_fig('bt-f-basis')
```

• dim $\mathscr{B}|_T$ grows with T because $\mathscr{B}|_T$ "models" the inputs.

Autonomous system

```
m = 0; p = 1; q = m + p; n = 5;
B = drss(n, p, m); T = lag(B) + 1;
BT = B2BT(B, T); size(BT) % -> 6 x 5
plot(BT), axis off, print_fig('bt-f-basis-aut')
```


• In the autonomous case dim $\mathcal{B}_T = n$ does not depend on T. B_T is an extended observability matrix.

Stable / anti-stable autonomous system

• In the autonomous case, depending on the eigenvalues of the system, the trajectories are either exponentially converging to zero or diverging.

Change of dimension removing elements

```
clear all

m = 5; p = 5; q = m + p; n = 5; T = 10;
B = drss(n, p, m); BT = B2BT(B, T);

r = rank(BT); cr = q * T - r; I = 1:cr+1;
BT_ = BT; for i = I, BT_(1, :) = []; R(i) = rank(BT_); end, stem(I, R) % randi(size(I)); randi(size(I)); end, stem(I, R) % randi(size(I)); end, stem(I, R)

BT2c in case of lack of LTI structure

m = 1; p = 1; q = m + p; n = 5;
B = drss(n, p, m); T = 2 * lag(B) + 1; BT = B2BT(B, T);
c = [m, lag(B), n]

BTD = randn(size(BT)); BTD = BTD / norm(BTD);
BTP = BT + 0.5 * norm(BT) * BTD;
```

Accuracy–complexity trade-off

ch = BT2c(BTP, q, 0.5)

% TODO

Extension of the horizon

```
m = 2; p = 3; q = m + p; n = 7; B = drss(n, p, m);
T1 = 10; T2 = 100;
BT1 = B2BT(B, T1); BT2 = B2BT(B, T2);
R = BT2R(BT1, q); BT2_ = R2BT(R, q, T2); equal(BT2, BT2_, q)
R = null(BT1', 1e-12)'; BT2_ = null(multmat(R, q, T2, 1e-12)); equal(BT2, BT2_, q)
```

 $[d, BTh] = dist_lti(BTP, q, c); d = d, is_lti(BTh, q, c)$

C.2 Input/output partitioning

Swapping inputs and outputs results in inverse system

The following example shows that the "inverse system" (assuming that it exists) can be obtained from the finite-horizon behavior $\mathcal{B}|_T$ by swapping the inputs and the outputs:

```
check(equal(BT2BT(BT, q, [m+1:q, 1:m]), ss(inv(tf(B)))))
```

C.3 Analysis

Minimal kernel representation

We defined the complexity $c(\mathcal{B})$ of an LTI system \mathcal{B} as the triple $(m(\mathcal{B}), \ell(\mathcal{B}), n(\mathcal{B}))$. The rationale for this is that $c(\mathcal{B})$ fully specifies the dimension of $\mathcal{B}|_T$ for any $T \geq \ell(\mathcal{B})$ via $(\dim \mathcal{B}|_T)$. The formula $(\dim \mathcal{B}|_T)$, however, does not cover the interval $[1, \ell(\mathcal{B}) - 1]$, which has its own behavior specified by the integer invariants (ℓ_1, \dots, ℓ_p) , see Figure 1. Thus the complete specification of the complexity of \mathcal{B} is given by $m(\mathcal{B})$ and (ℓ_1, \dots, ℓ_p) . We will refer to (ℓ_1, \dots, ℓ_p) as the *lag structure* of \mathcal{B} .

In the following example, we generate a random LTI system with a specified complexity $\mathbf{m}(\mathcal{B})$ and (ℓ_1, \dots, ℓ_p)

```
m = 1; ells = [1 1 2];
```

Other integer invariants of the system follow from the specified number of inputs and lag structured:

```
ell = max(ells); n = sum(ells);
p = length(ells); q = m + p;
c = [m, ell, n];
```

The random system is defined via a minimal kernel representation

```
R = zeros(p, q * (ell + 1));
for i = 1:p
   R(i, 1:q * (ells(i) + 1)) = rand_schur(ells(i), q);
end
```

In order to test the function R2Rmin, we obtain a nonminimal kernel representation

```
T = 3 * (ell + 1);

BT = R2BT(R, q, T);

Rd = BT2R(BT, q);
```

convert it to a minimal one

```
[Rh, ellsh] = R2Rmin(Rd, q);
```

and verify that the systems defined by the two representations are equal

```
equal(BT, R2BT(Rd, q, T))
all(ells == ellsh)
equal(BT, R2BT(Rh, q, T))
```

Using the random system with general lag structure, we test also the conversion to a minimal state-space representation

```
Bh = BT2ss(BT, q, 1:q);

T = ell + 1; BT = R2BT(R, q, T); BhT = B2BT(Bh, T); Bdist(BT, BhT, q)
```

Controllability

```
Bp = ss([0.5 1; 0 0.25], [1; 0], [1 1], 1, -1);
n\_unctr = isunctr(Bp)
n_unctr = isunctr2(Bp)
Bp = ss([0.5 1; 0 0.25], [1; 1e-1], [1 1], 1, -1);
d = distunctr(Bp) % -> 1e-7
d = distunctr2(Bp) % -> 1e-16
function n_unctr = isunctr2(B, tol)
<<default-tol>>
[p, m] = size(B); q = p + m; n = order(B); ell = lag(B);
                      % is ell enough?
T = ell;
BC = B2B0(B, T, tol); % TODO: B2B0 vs B2BC ?
n_{unctr} = m * size(BC, 1) / q + n - size(BC, 2);
function d = distunctr2(B, T, tol)
<<default-tol>>
[p, m] = size(B); q = p + m; n = order(B); ell = lag(B);
if ~exist('T', 'var') || isempty(T), T = 2 * ell; end
BC = B2B0(B, T, tol); % TODO: B2B0 vs B2BC ?
d = Bdist(B, BC);
                    % dependence on T?
```

Interconnection of systems

This section presents non-parametric data-driven and parametric methods based on the kernel representation for interconnection of systems. The operation of appending two behaviors $\mathscr{B}^1 \subset (\mathbb{R}^{q_1})^{\mathbb{N}})$ and $\mathscr{B}^2 \subset (\mathbb{R}^{q_2})^{\mathbb{N}})$ is defined as (append). $\mathscr{B} := \operatorname{append}(\mathscr{B}^1, \mathscr{B}^2)$ is the joint behavior of \mathscr{B}^1 and \mathscr{B}^2 without interconnection. The "append" operation is implemented in the functions BTappend and Rappend. As the names suggest, BTappend uses the non-parametric representation (B_T) , while BTappend uses the kernel representation.

Consider an example of two systems:

```
n1 = 2; m1 = 2; p1 = 1; q1 = m1 + p1; B1 = drss(n1, p1, m1); % 1st system n2 = 2; m2 = 1; p2 = 1; q2 = m2 + p2; B2 = drss(n2, p2, m2); % 2nd system
```

The system $\mathscr{B} := \operatorname{append}(\mathscr{B}^1, \mathscr{B}^2)$ can be constructed in two different ways.

1. by computing and appending the finite-horizon behaviors:

```
BT1 = B2BT(B1, T); BT2 = B2BT(B2, T); BT = BTappend(BT1, q1, BT2, q2);
```

2. by computing and appending the kernel representations:

```
R = Rappend(B2R(B1), q1, B2R(B2), q2);
```

As a sanity check, we verify that the two methods give the same system:

```
check(norm(R * BT(1:size(R, 2), :)) < tol) % selection from BT!
```

The complexity of the resulting system \mathcal{B} is:

```
[m_app, ell_app, n_app] = BT2c(BT, q); % -> 3 2 4
```

which is the sum of the complexities of \mathcal{B}^1 and \mathcal{B}^2 .

Next, we add an interconnection law $w_1^1 = w_1^2$, which impose a shared variable of \mathcal{B}^1 and \mathcal{B}^2 :

```
qint = q1 + q2;
Rint = [R; [[1 zeros(1, q1-1), -1 zeros(1, q2-1)] zeros(1, size(R, 2) - qint)]];
```

and construct the finite-horizon behavior of the interconnected system using its kernel representation:

```
BTint = R2BT(Rint, qint, T); check(norm(Rint * BTint(1:size(Rint, 2), :)) < tol)
```

The complexity of the interconnected system is:

```
[m_int, ell_int, n_int] = BT2c(BTint, qint); % -> 2 2 4
```

As expected, the addition of the interconnection law reduced the number of inputs by one.

The interconnected system should not allow an input/output partitioning with $u = (w_1^1, w_2^1)$ because w_1^1 and w_2^1 are not independent. Indeed:

```
check(~is_io(BTint, qint, [1 4 2 3 5]))
```

Interestingly, there are 83 other partitionings of the variables (out of the total number of 120 partitionings) that are not possible:

```
[IOp, IOi] = BT2IO(BTint, gint); nIOi = size(IOi, 1); % -> 84
```

C.4 Signal processing

Computational efficiency

```
m = 1; p = 1; q = m + p; n = 100;
B = drss(n, p, m); ell = lag(B);
Tmax = 950;
tic, BT = B2BT(B, Tmax + ell); t_BT = toc % -> 0.5 sec
np = 10; TT = round(linspace(50, Tmax, np));
u = rand(Tmax, m); xini = rand(n, 1);
wini = w2wini([u lsim(B, u, [], xini)], BT, ell);
for i = 1:np, T = TT(i),
  tic, y = lsim(B, u(1:T, :), [], xini); t_lsim(i) = toc;
  tic, y_{-} = u2y(BT, q, u(1:T, :), wini); t_u2y(i) = toc;
  e(i) = norm(y - y_) / norm(y);
end
figure(1)
plot(TT, t_lsim, 'r-'), hold on
plot(TT, t_u2y, 'b--')
legend('lsim', 'u2y', 'location', 'northwest')
print_fig('bt-f-lsim-cost')
figure(2), plot(TT, e)
```

C.5 System identification

Using multiple trajectories

```
m = 1; p = 1; q = m + p; n = 2; B = drss(n, p, m); ell = lag(B); N = 6; Td = ell+1 * ones(1, N);
```

```
c = c_{mpum}(wd)
BT = w2BT (wd, ell+1);
R = w2R(wd)
Bh = w2ss(wd)
R = mpum(wd)
C.6 Input selection
function wh = input_selection(wd, wr, m, lambda)
if ~exist('lambda', 'var'), lambda = 1e-2; end
[Tr, q] = size(wr); p = q - m;
Hu = hank(wd(:, 1:m), Tr);
                              ur = vec(wr(:, 1:m)');
Hy = hank(wd(:, m+1:end), Tr); yr = vec(wr(:, m+1:end)');
cvx_begin quiet
  variable g(size(Hu, 2), 1)
  minimize(norm(yr - Hy \star g) + lambda \star sum(sum_square(ur - Hu \star g)))
wh = [reshape(Hu \star g, m, Tr)' reshape(Hy \star g, p, Tr)'];
clear all
%% simulation parameters
m = 10; p = 1; n = 2;
Tr = 50; % control horizon
Td = 1000; % number of data samples
B = drss(n, p, 1); B = ss(B.a, [B.b zeros(n, m-1)], B.c, [B.d zeros(p, m-1)], -1);
%% reference trajectory
ur = zeros(Tr, m); yr = ones(Tr, p);
%% simulate date
wd = B2w(B, Td); % random trajectory, uses the behavioral toolbox
%% solve the problem and check the result
wh = input_selection(wd, [ur yr], m, 1e-2);
figure, plot(yr, '-r'), hold on, plot(wh(:, m+1:end), '--b') % tracking
```

for i = 1:N, $wd\{i\} = B2w(B, Td(i))$; end

figure, stem(sum_square(ur - wh(:, 1:m))) % and sparsity of ur - uh