



# 密码学

# 第五讲 中国商用分组密码SMS4

张焕国

武汉大学计算机学院空天信息安全与可信计算教育部重点实验室



# 内容简介

第一讲 信息安全概论

第二讲 密码学的基本概念

第三讲 数据加密标准(DES)

第四讲 高级数据加密标准(AES)

第五讲 中国商用分组密码(SMS4)

第六讲 分组密码的应用技术

第七讲 序列密码

第八讲 复习

第九讲 公钥密码(1)



# 内容简介

第十讲 公钥密码(2) 第十一讲 数字签名(1) 第十二讲 数字签名(2) 第十三讲 HASH函数 第十四讲 认证 第十五讲 密码协议 第十六讲 密钥管理(1) 第十七讲 密钥管理(2) 第十八讲 复习



### 教材与主要参考书

#### 教材

#### 参考书









### 一、我国商用密码的概况

- (1) 坚持密码的公开设计原则
- 密码的安全应仅依赖于密钥的保密,不依赖于算法的保密
- (2) 公开设计原则并不要求使用时公开所有的密码算法
- 核心密码不能公开算法
- 核心密码的设计也要遵循公开设计原则
- (3) 商用密码应当公开算法
- 美国DES开创了公开商用密码算法的先例
- 美国经历了DES(公开)→EES(保密)→AES(公开)的 曲折过程,实践证明公开征集、公布算法的路线是正确的
- 欧洲也公布商用密码算法



### 一、我国商用密码的概况

- (4)我国的商用密码概况
- 我国在密码技术方面具有优势
  - ■密码理论
  - ■密码分析
- 长期以来不公开密码算法,只提供密码芯片
  - ■少数专家设计,难免有疏漏
  - 难于标准化,应用成本高,不利于推广应用
- 近年来我国陆续公布了商用密码算法
  - ■2006年2月公布了分组密码SMS4
  - ■2011年2月公布了椭圆曲线密码SM2和杂凑算法SM3
  - ■商用密码管理更加科学化、与国际接轨
  - ■这将促进我国商用密码的发展



武漢大学

# 二、商用分组密码SMS4的概况

- ●分组密码
  - ■数据分组(明文,密文)长度=128位、密钥长度=128位
  - ■数据处理单位:字节(8位),字(32位)
- ●密码算法特点
  - ■对合运算:解密算法与加密算法相同
  - ■子密钥生成算法与加密算法结构类似
- ●密码结构
  - ■不是SP结构,也不是Feistel结构
  - ■是一种新的结构:滑动窗口结构



#### 1、SMS4密码算法结构





#### 2、SMS4密码算法

- (1)基本运算:
  - ① 模2加: 🖽, 32 比特异或运算
  - ② 循环移位: <<<ii>i , 把32位字循环左移i 位
- (2)基本密码部件:
  - ① 非线性字节变换部件S盒:
  - 8位输入,8位输出。
  - ■本质上是8位的非线性置换。
  - ■设输入为a,输出为b,S盒运算可表示为:

 $b=S\_Box(a)$ 





#### S盒数据表:

S 盒中数据均采用 16 进制表示。

| 3 盖下数据与水用 10 近期农小。 |    |    |    |    |            |    |    |    |            |    |    |    |    |    |    |    |
|--------------------|----|----|----|----|------------|----|----|----|------------|----|----|----|----|----|----|----|
|                    | 0  | 1  | 2  | 3  | 4          | 5  | 6  | 7  | - 8        | 9  | a  | b  | С  | d  | e  | f  |
| 0                  | d6 | 90 | e9 | fe | cc         | e1 | 3d | b7 | 16         | b6 | 14 | c2 | 28 | fb | 2c | 05 |
| 1                  | 2b | 67 | 9a | 76 | 2a         | be | 04 | c3 | aa         | 44 | 13 | 26 | 49 | 86 | 06 | 99 |
| 2                  | 9c | 42 | 50 | f4 | 91         | ef | 98 | 7a | 33         | 54 | 0b | 43 | ed | cf | ac | 62 |
| 3                  | e4 | b3 | 1c | a9 | <b>c</b> 9 | 08 | e8 | 95 | 80         | df | 94 | fa | 75 | 8f | 3f | a6 |
| 4                  | 47 | 07 | a7 | fc | f3         | 73 | 17 | ba | 83         | 59 | 3c | 19 | e6 | 85 | 4f | a8 |
| 5                  | 68 | 6b | 81 | b2 | 71         | 64 | da | 8b | f8         | eb | 0f | 4b | 70 | 56 | 9d | 35 |
| 6                  | 1e | 24 | 0e | 5e | 63         | 58 | d1 | a2 | 25         | 22 | 7c | 3b | 01 | 21 | 78 | 87 |
| 7                  | d4 | 00 | 46 | 57 | 9f         | d3 | 27 | 52 | 4c         | 36 | 02 | e7 | a0 | c4 | c8 | 9e |
| 8                  | ea | bf | 8a | d2 | 40         | c7 | 38 | b5 | a3         | f7 | f2 | ce | f9 | 61 | 15 | a1 |
| 9                  | e0 | ae | 5d | a4 | 9b         | 34 | 1a | 55 | ad         | 93 | 32 | 30 | f5 | 8c | b1 | e3 |
| a                  | 1d | f6 | e2 | 2e | 82         | 66 | ca | 60 | <b>c</b> 0 | 29 | 23 | ab | 0d | 53 | 4e | 6f |
| b                  | d5 | db | 37 | 45 | de         | fd | 8e | 2f | 03         | ff | 6a | 72 | 6d | 6c | 5b | 51 |
| с                  | 8d | 1b | af | 92 | bb         | dd | bc | 7f | 11         | d9 | 5c | 41 | 1f | 10 | 5a | d8 |
| d                  | 0a | c1 | 31 | 88 | a5         | cd | 7b | bd | 2d         | 74 | d0 | 12 | b8 | e5 | b4 | b0 |
| e                  | 89 | 69 | 97 | 4a | 0c         | 96 | 77 | 7e | 65         | b9 | f1 | 09 | c5 | 6e | c6 | 84 |
| f                  | 18 | f0 | 7d | ec | 3a         | de | 4d | 20 | 79         | ee | 5f | 3e | d7 | cb | 39 | 48 |





- S盒的置换规则:
  - 以输入的前半字节为行号,后半字节为列号,行列交叉点 处的数据即为输出。
  - ■举例:设输入为"ef",则行号为e,列号为f,于是S盒的输出值为表中第e行和第f列交叉点的值,即

$$Sbox('ef') = '84'$$

- ■说明:在主要密码学指标上达到最佳,与AES的S盒相当
- ②非线性字变换τ: 32位字的非线性变换
  - ■4个S盒并行置换
  - 设输入字 $A=(a_0,a_1,a_2,a_3)$ ,输出字 $B=(b_0,b_1,b_2,b_3)$ ,

 $B = \tau(A) = (S\_box(a_0), S\_box(a_1), S\_box(a_2), S\_box(a_3))$ 



武漢大学

#### ②非线性变换τ: 32位字的非线性变换

输入字A

 8位输入a<sub>0</sub>
 8位输入a<sub>1</sub>
 8位输入a<sub>2</sub>
 8位输入a<sub>3</sub>

 S盒
 S盒
 S盒
 S盒

 (置换)
 (置换)
 (置换)

 8位输出b<sub>0</sub>
 8位输出b<sub>1</sub>
 8位输出b<sub>2</sub>
 8位输出b<sub>3</sub>

**8**位输出**b**<sub>0</sub> **8**位输出



非线性

变换τ

- ③字线性部件L变换:
  - ■32位输入,32位输出。
  - 设输入为B,输出为C,表为:

$$C=L(B)$$

■运算规则:

$$C=L(B)$$

$$=B \oplus (B <<<2) \oplus (B <<<10) \oplus (B <<<18) \oplus (B <<<24)$$

- ④字合成变换T:
  - 由非线性变换  $\tau$  和线性变换 L 复合而成;

$$T(X)=L(\tau(X))$$
 o



先S盒变换,后L变换。



#### (3)轮函数F:

- 输入数据:  $(X_0, X_1, X_2, X_3)$ , 128位, 四个32位字。
- ■输入轮密钥: rk, 32位字。
- ■输出数据:32位字。
- ■轮函数F:

$$F (X_0, X_1, X_2, X_3, rk)$$

$$= X_0 \oplus T (X_1 \oplus X_2 \oplus X_3 \oplus rk)$$



#### (3)轮函数F:







#### (4)加密算法:

- 输入明文:  $(X_0, X_1, X_2, X_3)$ , 128位, 四个字。
- 输入轮密钥:  $rk_i$  , i=0,1,...,31, 共32个轮密钥。
- 输出密文: (Y<sub>0</sub>, Y<sub>1</sub>, Y<sub>2</sub>, Y<sub>3</sub>), 128位, 四个字。
- 算法结构:轮函数32轮迭代,每轮使用一个轮密钥。
- ●加密算法:

$$\begin{cases} X_{i+4} = F & (X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i) \\ = X_i \oplus T & (X_{i+1} \oplus X_{i+2} \oplus X_{i+3} \oplus rk_i), & i = 0,1...31 \end{cases}$$

$$(Y_0, Y_1, Y_2, Y_3) = (X_{35}, X_{34}, X_{33}, X_{32})$$



#### (4)加密算法:





#### (5)解密算法:

- SMS4密码算法是对合的,因此解密与加密算法相同,只是轮密钥的使用顺序相反。
- 输入密文: (Y<sub>0</sub>, Y<sub>1</sub>, Y<sub>2</sub>, Y<sub>3</sub>)
- 输入轮密钥:  $rk_i$ , i=31,30, ...,1, 0
- 輸出明文: (X<sub>0</sub>, X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>)
- 算法:轮函数的32轮迭代,每轮使用一个轮密钥。
- ●解密算法:

$$\begin{cases} Y_{i+4} = F & (Y_i, Y_{i+1}, Y_{i+2}, Y_{i+3}, rk_i) \\ = Y_i \oplus T & (Y_{i+1} \oplus Y_{i+2} \oplus Y_{i+3} \oplus rk_i), i = 31, ...1, 0 \\ (X_0, X_1, X_2, X_3) = (Y_{35}, Y_{34}, Y_{33}, Y_{32}) \end{cases}$$



或溪大学

- (6)密钥扩展算法:
- ①常数FK
- 在密钥扩展中使用一些常数

$$FK_0 = (A3B1BAC6)$$

$$FK_1 = (56AA3350)$$

$$FK_2 = (677D9197)$$

$$FK_3 = (B27022DC)$$



- (6)密钥扩展算法:
- ②固定参数CK
- 32 个固定参数*Ck<sub>i</sub>,i*=0,1,2...31

```
00070e15, 1c232a31, 383f464d, 545b6269,
```

70777e85, 8c939aa1, a8afb6bd, c4cbd2d9,

e0e7eef5, fc030a11, 181f262d, 343b4249,

50575e65, 6c737a81, 888f969d, a4abb2b9,

c0c7ced5, dce3eaf1, f8ff060d, 141b2229,

30373e45, 4c535a61, 686f767d, 848b9299,

a0a7aeb5, bcc3cad1, d8dfe6ed, f4fb0209,

10171e25, 2c333a41, 484f565d, 646b7279

产生规则:  $Ck_{ij}$ = (4i+j)×7(mod 256),i=0,1,2...31,j=0,1,...3。



#### (6)密钥扩展算法:

- 输入加密密钥:  $MK=(MK_0, MK_1, MK_2, MK_3)$
- 输出轮密钥: rk<sub>i</sub>, i=0, 1...,30, 31
- 中间数据:  $K_i$ , i=0, 1, ..., 34, 35
- 密钥扩展算法:
- ①  $(K_0,K_1,K_2,K_3)=(MK_0 \oplus FK_0,MK_1 \oplus FK_1,MK_2 \oplus FK_2,MK_3 \oplus FK_3)$
- ② For i=0, 1...,30, 31 Do  $ik_i = K_{i+4} = K_i \oplus T'(K_{i+1} \oplus K_{i+2} \oplus K_{i+3} \oplus CK_i)$
- $\bullet$  说明: T'变换与加密算法轮函数中的T基本相同,只将其中的线性变换L 修改为以下: L'

$$L'(B)=B \oplus (B <<< 13) \oplus (B <<< 23)$$



#### 3、实例:

- 明文: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
- 密钥: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
- 密文: 68 1e df 34 d2 06 96 5e 86 b3 e9 4f 53 6e 42 46

#### 4、安全性

- ■国家专业机构设计。算法简洁,以字和字节为处理单位,对合运算,符合当今分组密码主流。
- 专业机构进行了充分的密码分析,因此是安全的。
- 民间学者对21轮SMS4进行了差分密码分析。
- ●尚需经过更进一步的应用实践检验。

- ●商农的密码设计方法
  - ■扩散(diffusion):将明文和密钥的每一位的影响散布到尽量多的密文位中。
  - ■混淆(confusion):使明文、密钥和密文之间的关系 复杂化。
  - ■迭代:轮函数迭代
  - ■乘积:多密码复合



分组密码的结构可以分为以下几种类型:

- 1、Feistel结构
  - Feistel于1973年提出这种结构,根据商农的思想来设计分组密码。
- ●基本函数
  - 设要加密的明文数据M长n位(n是偶数),将M划分为两半:  $L_0$ , $R_0$ 。
  - 定义一个函数:输入是 < $L_{i-1}$ ,  $R_{i-1}$ >,输出是< $L_{i}$ ,  $R_{i}$ >,

$$L_{i}=L_{i-1}\oplus f(R_{i-1},K_{i})$$

$$R_{i}=R_{i-1}$$

其中f是任意函数, $K_i$ 是子密钥。



#### 1、Feistel结构

●基本函数





#### 1、Feistel结构

■结论1: 对于任意的函数f,上述函数都是可逆的。证明: 把< $L_{i-1}$ , $R_{i-1}$ >加到函数的输入端进行变换,可得< $L_{i}$ , $R_{i}$ >=< $L_{i-1}$ ⊕ $f(R_{i-1},K_{i})$ , $R_{i-1}$ >。现把< $L_{i}$ , $R_{i}$ >加到输入端再进

行变换,可得

 $<(L_{i-1}\oplus f(R_{i-1},K_{i}))\oplus f(R_{i-1},K_{i})$ , $R_{i-1}>=<L_{i-1}$ , $R_{i-1}>$ 。 这说明函数是可逆的。

■结论2:上述函数是对合的。

证明:由于上述函数的逆就是其本身,说明其是对合的。



#### 1、Feistel结构

- ●轮函数
  - 在基本函数基础上增加一个交换函数T

T(L,R)=(R,L)

- T是对合的
- ■因此轮函数是对合的
- 密码算法
  - ■对轮函数迭代





武漢大学

#### 1、Feistel结构

- 优点
  - ■不管f是什么函数,基本函数都可逆,进而确保轮函数可逆 以及整个密码算法可逆。
  - ■由于基本函数是对合的,进而确保轮函数是对合的以及整 个密码算法是对合的。
  - ■这使得密码算法的设计变得比较容易。
- 缺点
  - ■扩散较慢,算法迭代2轮才能改变输入的每1位。
- 成功实例DES
  - ■S盒实现混淆,P置换实现扩散,构成一个复杂的轮函数。
  - ■算法是对合的,工程实现节省一半。
  - ■密码是安全的。



- 1、Feistel结构
- Feistel结构得到广泛应用与发展
  - ■DES, FEAL, GOST, LOKI, E2, Blowfish, RC5等著名密码都采用Feistel结构。
  - ■除了标准Feistel结构外,被推广到非平衡Feistel结构。
    - ◆标准Feistel结构中,左右两半数据等长。而非平衡 Feistel结构中左右两块数据长度不同。



- 2、SP结构
- S(Substitution)P(Permutation)结构
  - ■用非线性S盒实现混淆,称为混淆层。
  - ■用线性置换实现扩散,称为扩散层。
  - ■在混淆层之前设置一个受密钥控制的前置处理层。
  - ■或者在扩散层之后设置一个受密钥控制的后置处理 层。



- 2、SP结构
- ●轮函数





#### 2、SP结构

- 优点
  - 结构清晰,容易分析和把握每层的密码学指标,从而把握 密码的安全性
  - ■扩散较Feistel结构快
- 缺点
  - ■不容易得到对合的密码算法
  - ■要注意密码算法迭代的开始和最后处理,应有密钥参与的密码变换。
- 应用实例
  - ■AES, MARS, SAFER, SHARK 等密码都采用SP结构。

- 3、滑动窗口结构
- 代表密码SMS4
- 结构特点
  - ■仍然是轮函数迭代结构
  - ■但是,具有密文链接的特点。每轮加密产生的最后一个密文字加入到下一轮的加密过程中,第一个密文字退出加密。相当于一个窗口在移动。
  - ■因此,形象地称为滑动窗口型



#### SMS4算法:





- 3、滑动窗口结构
- 优点
  - ■容易得到对合的密码算法
- 缺点
  - ■迭代轮数多
  - ■目前实例校少
- 应用实例
  - ■SMS4采用这种结构



- 4、Lai-Massey结构
- 代表密码IDEA
- 结构特点
  - ■采用三个代数群(⊕ 16位按位异或群,⊙ 16位 mod 2<sup>16</sup> +1乘法群, ⊞ 16位 mod 2<sup>16</sup> 加法群)。
  - ■这三种运算中的任意两种都不满足分配律和结合 律,不构成群。
  - ■混合运用这三种运算,获得了很好的非线性和混 滑特性,确保密码的安全性。



- 4、Lai-Massey结构
- 优点
  - ■容易得到对合的密码算法
- ●缺点
  - 结构扩展不方便。因为2<sup>16</sup>+1是素数, mod 2<sup>16</sup> +1构成乘 法群,所以可构成IDEA。
  - ■但2<sup>32</sup>+1不是素数, mod 2<sup>32</sup> +1不构成乘法群, 所以不能构成32位的IDEA。
- 应用实例
  - ■目前只有IDEA采用这种结构





### 作业题

1、p114第30题。

### 自选实践题

1、p114第29题。









