Private

Ground Lesson (GL) 2

Chapter 2 – Airplane Systems

GL 2 Objectives

- Applicable FARs for private pilot privileges, limitations and flight operations
 - Identify the inspections and logbook documentation that are required for Airworthiness
 - Identify the equipment required for flight under 91.205 and the procedures to fly with inoperative equipment (91.213)
- Principles of Aircraft Engines and Aircraft Systems
 - ID airplane components
 - Explain how aircraft engines and related systems operate
 - Describe Flight Instrument functions and operating characteristics, including errors and malfunctions

Inspections, Logbook Documentation and Airworthiness

- For an aircraft to be airworthy.....simplified
 - Owner/Operator must maintain the aircraft
 - PIC must inspect the aircraft and find it to be safe to operate..... and have the required documents onboard
- ARROW Required Documents onboard
 - A Airworthiness Certificate
 - R Registration
 - R Radio Station License
 - O Operating Limitations (POH, ADs, Placards)
 - W Weight and Balance

Inspections, Logbook Documentation and Airworthiness – AAVIATE – Required Inspections and duration

- A Airworthiness Directives (As directed)
- A Annual (12 calendar months)
- V VOR Every 30 days if using VOR for Instrument Flight
- 1 100 Hour (Tachometer) if for hire
- A Altimeter (Static) Instrument Flight in controlled airspace (24 Calendar months)
- T Transponder (24 Calendar Months
- E ELT Inspection (12 Calendar Months) and Battery (replaced/recharged 1 hour continuous use or ½ battery life/useful life of charge)

Equipment required for Day VFR Flight (91.205) – A TOMATO FLAMES

- A Airspeed Indicator
- T Tachometer
- O Oil Pressure Gauge
- M Manifold Pressure Gauge*
- A Altimeter
- T Temperature Gauge*
- O Oil Temperature Gauge

- F Fuel Gauge
- L Landing Gear <u>Pos</u> Indicator*
- A Anti-Collision Lights
- M Magnetic Compass
- E Emg Location Transmitter
- S Safety Belts

Inoperative Equipment – 91.213

- Inoperative Doesn't work
- Must deal with it, even if not required

Airplane Major Parts

- Wing
 - Ailerons
 - Flaps
- Fuselage
- Empennage
 - Vertical Stabilizer
 - · Horizontal Stabilizer
 - Rudder
- Landing Gear
- Powerplant
- Trim Devices

Empennage Components

Landing Gear Types

- Floats
- Skis
- Wheels

- Conventional = Tailwheel
- Tricycle = with Nose wheel

The Ignition System

- Spark Plugs Two per Cylinder
- Magnetos Produce electricity (spark) from motion
 - Connected directly to the Engine
 - 2 systems, left and right, each power 1 spark plug per cylinder
 - Connected to Ignition Switch
 - Off
 - Left
 - Right
 - Both

The Fuel System

- C172N 43 gallons total, 40 gallons useable
- Two fuel tanks, left and right, in the Wings, with associated fuel gauges
- Supplies fuel to the Fuel Selector Valve
 - · Left, Right, Both, Off
 - Limitations when using Left or Right to cruise/straight and level flight
- Fuel Selector Valve supplies fuel to Carburetor
- Primer Small manual fuel pump that pumps fuel directly to the cylinder(s)
 - # of cylinders being primed varies by aircraft installation

The Fuel System

- 3 Fuel sample locations
 - One on each wing, one strainer with outflow near the nose wheel (just behind)
 - Look for contamination (water, particles, anything not fuel)
- Refueling
 - · Generally leave full at end of day
 - Refuel for next flight if less than......
 - Don't fill completely if Weight and Balance a concern on the next flight
- Color of the fuel and fuel grade
 - Expect to use 100LL and it is light blue

Carburetor

- Mixes air with fuel and delivers to combustion chamber
- Prone to icing in certain conditions

Powerplant and Related Systems 3

- Reciprocating Engine Operation
- Four Stroke Cycle
 - Intake
 - Compression
 - Power
 - Exhaust
- Tachometer (vs Hobbs Meter)

The Oil System

- Provides lubrication and some cooling
- Oil level checked as part of preflight
 - Hard to do accurately when engine has just been run
 - School policy, fill with 1 quart if 2 quarts below maximum
- Most of the 172Ns max is 8 quarts
 - N1294F (a 1980) max is 7 quarts
 - N53351, a C172P (1981 model) max is 7 quarts
- Max oil is the top line on the oil dipstick
- Follow the checklist and check engine oil pressure immediately after starting the engine – If not in the green on the gauge within 30 seconds, POH says to shut down the engine

Oil Systems

Propeller

- C172N has a fixed pitch prop, connected directly to the engine
- Preflight check for nicks and cracks
- Beware of the prop arc, that area the prop circles in, and stay out of it unless absolutely required
- Engine should not start when turning the prop by hand, however......
 - Remember those Magnetos.....
 - Turn the prop "backwards"
 - Ignition Switch Off only works if the grounding wire is connected
 - Be careful when turning on the Master Power Switch. A starter malfunction could
 cause the prop to turn

Electrical System

- Alternator Produces electrical energy when turning and turns when the engine is turning. Connected by a belt.
- Battery Small 24v battery Don't waste your battery power in preflight
- Ammeter Monitors Amps, electrical load
 - Negative Amps means you are discharging, using more electricity than alternator is producing
- Voltmeter Shows the voltage of the system
 - 28 volts with alternator working, 24 volt battery
- Master Switch Two Switches, Battery and Alternator
- Circuit Breakers Protects the electrical systems from overload, possible fire
 - · Reset once if a critical system

The "Six-Pack" aka The Flight Instruments

Flight Instruments

- Pitot-Static
 - Airspeed
 - Altimeter
 - Vertical Velocity Indicator
- Gyroscopic Instruments
 - Attitude Indicator Vacuum Powered
 - Directional Gyro Vacuum Powered
 - Turn Coordinator Electrically Powered
 - Also includes the Slip/Skid Indicator, Ball
- Magnetic Compass

Airspeed Indicator

Altimeter

Vertical Speed Indicator

Vacuum System, Attitude Indicator and DG

Attitude Indicator

Straight climb

Climbing right bank

Level left bank

Descending left bank

Pointer Artificial horizon Adjustment knob

Level right bank

Directional Gyro (DG)

Turn Coordinator

Turn Coordinator

Magnetic Compass

Completion Standards

- Demonstrate understanding of airplane components and systems, the powerplant and related systems, and flight instruments
- Complete the Chapter 2A, B, and C quizzes on Canvas with a minimum score of 80%

Any Questions?

- Next Ground Lesson 3 Aerodynamic Principles
- Read Chapter 3, Sections A, B and C