CS 446: Machine Learning Homework 1

Due on Tuesday, January 23, 2018, 11:59 a.m. Central Time

1. [4 points] Intro to Machine Learning

Consider the task of classifying an image as one of a set of objects. Suppose we use a convolutional neural network to do so (you will learn what this is later in the semester).

For this setup, what is the data (often referred to as $x^{(i)}$)?
Your answer:
For this setup, what is the label (often referred to as $y^{(i)}$)?
Your answer:
For this setup, what is the model?
Your answer:
What is the distinction between inference and learning for this task?
Your answer:

2. [8 points] K-Nearest Neighbors

K-Nearest Neighbors is an extension of the Nearest-Neighbor classification algorithm. Given a set of points with assigned labels, a new point is classified by considering the K points closest to it (according to some metric) and selecting the most common label among these points. One common metric to use for KNN is the squared euclidean distance, i.e.

$$d(x^{(1)}, x^{(2)}) = \|x^{(1)} - x^{(2)}\|_{2}^{2}$$
(1)

For this problem, consider the following set of points in \mathbb{R}^2 , each of which is assigned with a label $y \in \{1, 2\}$:

x_1	x_2	y
1	1	2
0.4	5.2	1
-2.8	-1.1	2
3.2	1.4	1
-1.3	3.2	1
-3	3.1	2

(a) Classify each of the following points using the Nearest Neighbor rule (i.e. K=1) with the squared euclidean distance metric.

one squared edendedir distance incure.				
	x_1	x_2	y	
Your answer:	-2.6	6.6	?	
Tour answer.	1.4	1.6	?	
	-2.5	1.2	?	

(b) Classify each of the following points using the 3-Nearest Neighbor rule with the squared euclidean distance metric.

<u>euclidean distan</u>	<u>ce metr</u>	1C.		
	x_1	x_2	y	
Your answer:	-2.6	6.6	?	
Tour answer.	1.4	1.6	?	
	-2.5	1.2	?	
				1

(c) Given a dataset containing n points, what is the outcome of classifying any additional point using the n-Nearest Neighbors algorithm?

1 0	 0	
Your answer:		

(d) How many parameters are learned when applying K-nearest neighbors?

Your ans	wer:			