Instructor: James R. Lee

1 The quantum data processing inequality

1.1 Quantum channels

A classical stochastic channel is a mapping $\Phi: \mathcal{P}(X) \to \mathcal{P}(\mathcal{Y})$ that sends probability measures over a set \mathcal{X} to probability measures over a set \mathcal{Y} . In the discrete setting, such a channel is specified by a mapping of every $x \in \mathcal{X}$ to a probability measure $v_x \in \mathcal{P}(\mathcal{Y})$, and then $\Phi(\mu)(y) = \sum_{x \in \mathcal{X}} v_x(y)$. In terms of samples, every element $x \in \mathcal{X}$ is mapped to a random element Y(x) of \mathcal{Y} . So if X is a random variable taking values in X, then after passing through the channel, the resulting random variable is Y(X).

Note that a classical channel can be viewed as a linear map $\Phi : \mathbb{R}^{\mathcal{X}} \to \mathbb{R}^{\mathcal{Y}}$ that preserves probability measures, and this can be decomposed into two properties:

- 1. (Positivity). If $p \in \mathbb{R}_+^X$, then $\Phi(p) \in \mathbb{R}_+^Y$.
- 2. (Trace preservation). $\sum_{i=1}^{k} \Phi(p)_i = \sum_{i=1}^{n} p_i$.

Let us now describe the analogous notion of a quantum channel. As in the classical case, one can look for "operational" descriptions, or structural ones. Consider a linear map $\mathcal{E}: \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$; we might impose additional properties as in the classical setting:

- 1. \mathcal{E} is a *positive map* if it maps positive matrices to positive matrices.
- 2. \mathcal{E} is trace-preserving if $\operatorname{Tr}(\mathcal{E}(A)) = \operatorname{Tr}(A)$ for $A \in \mathbb{M}_n(\mathbb{C})$.

There is an additional property of classical stochastic channels that holds for free: If $\Phi: \mathbb{R}^{\mathcal{X}} \to \mathbb{R}^{\mathcal{Y}}$ is a stochastic channel, then we can extend Φ to a stochastic channel $\tilde{\Phi}: \mathbb{R}^{\mathcal{X}} \otimes \mathbb{R}^{\mathcal{X}'} \to \mathbb{R}^{\mathcal{Y}} \otimes \mathcal{R}^{\mathcal{X}'}$ that only acts non-trivially on the first coordinate, i.e., $\tilde{\Phi} = \Phi \otimes I_{\mathcal{X}'}$. Indeed, we often take for granted that operating stochastically on some subsystem can also be envisioned as a stochastic map on the whole system.

Remark 1.1 (Failure of channel extension). This property can fail in the quantum setting: The tranpose map $\mathcal{E}(A) = A^T$ is positive and trace-preserving, but $\mathcal{E} \otimes I_2$ fails to be positive. Indeed, operating on a 2×2 block matrix, we have

$$(\mathcal{E} \otimes I_2) \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

It is straightforward to verify that the first matrix is PSD, while the second has eigenvalue -1 corresponding to the eigenvector (0, -1, 1, 0).

A linear map $\mathcal{E}: \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is called ℓ -positive if $\mathcal{E} \otimes I_\ell : \mathbb{M}_{n\ell}(\mathbb{C}) \to \mathbb{M}_{k\ell}(\mathbb{C})$ is positive. If \mathcal{E} is ℓ -positive for every $\ell \geq 0$, one says that \mathcal{E} is *completely positive (CP)*. A completely positive trace-preserving map (*CPT map*, for short) is our definition of a quantum channel.

Theorem 1.2 (Choi, Kraus). A map $\mathcal{E}: \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is completely positive if and only if

$$\mathcal{E}(\rho) = V_1 \rho V_1^* + \dots + V_m \rho V_m^*$$

for some linear operators $V_1, \ldots, V_m : \mathbb{C}^n \to \mathbb{C}^k$. A map is CPT if additionally $V_1^*V_1 + \cdots + V_m^*V_m = I$.

The Stinespring Dilation Theorem can be used to give a "physical" interpretation of CPT maps.

Theorem 1.3. Let $\mathcal{E}: \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ be a CPT map. Then there is an auxiliary Hilbert space \mathbb{C}^m , a density $\sigma \in \mathcal{D}(\mathbb{C}^m)$, a unitary U, and a decomposition $\mathbb{C}^n \otimes \mathbb{C}^m = \mathcal{H}_A \otimes \mathcal{H}_B$ such that

$$\mathcal{E}(\rho) = \operatorname{Tr}_B \left(U(\rho \otimes \sigma) U^* \right).$$

The physical interpretation is analogous to the discussion of state transformations in Lecture 8. One can think of $\rho \otimes \sigma$ as a coupling of ρ with some larger environment, the map $\rho \otimes \sigma \mapsto U(\rho \otimes \sigma)U^*$ as a unitary evolution, and the partial trace $\text{Tr}_B(\cdot)$ as observing only part of the resulting system.

1.2 A data-processing inequality

The classical data processing inequality asserts that stochastic channels can only reduce the relative entropy:

$$\mathsf{D}(\Phi(p) \parallel \Phi(q)) \leqslant \mathsf{D}(p \parallel q).$$

This is also true in the quantum setting.

Theorem 1.4 (Quantum DPI). For any quantum channel $\mathcal{E}: \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ and densities $\rho, \sigma \in \mathcal{D}(\mathbb{C}^n)$, it holds that

$$S(\mathcal{E}(\rho) \parallel \mathcal{E}(\sigma)) \leq S(\rho \parallel \sigma).$$

You will prove this in HW #2 using the following special case.

Theorem 1.5. If ρ , $\sigma \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ is are bipartite states, then

$$S(Tr_A(\rho) \parallel Tr_A(\sigma)) \leq S(\rho \parallel \sigma).$$

Proof. In HW #1, you showed that if $X \in M_k(\mathbb{C})$ is a matrix, and $D_X \in M_k(\mathbb{C})$ is its diagonal, then we can write

$$D_X = \frac{1}{k} \sum_{i=0}^{k-1} U^j X U^{*j},$$

where *U* is unitary.

Suppose *D* is a diagonal matrix. We claim that

$$\frac{\text{Tr}(D)}{k}I = \frac{1}{k} \sum_{j=0}^{k-1} V^{j} D V^{*j}$$

for some permutation matrix V. Indeed, V can simply correspond to a cyclic permutation of the diagonal so that by averaging over all k shifts, every entry of the diagonal is equal to the average diagonal entry. Summarizing: There are unitaries U_1, U_2, \ldots, U_r such that for any $X \in M_k(\mathbb{C})$,

$$\frac{\operatorname{Tr}(X)}{k}I = \frac{1}{r}\sum_{j=1}^{r}U_{j}XU_{j}^{*}.$$

A similar construction works for block matrices: Assume that $\mathcal{H}_A = \mathbb{C}^n$ and $\mathcal{H}_B = \mathbb{C}^k$, and think of $\rho \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ as an $n \times n$ block matrix where each block is a $k \times k$ matrix. Let M_ρ denote the block matrix where every block contains $\frac{\operatorname{Tr}_A(\rho)}{k}I_k$. Then there are unitaries V_1, V_2, \ldots, V_r such that for any $\rho \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$,

$$M_{\rho} = \frac{1}{r} \sum_{j=1}^{r} V_{j} \rho V_{j}^{*}. \tag{1.1}$$

In fact, we can define V_j to be the $n \times n$ block matrix with blocks U_j on the diagonal. One can think of M_ρ in (1.1) as a sort of "operator conditional expectation," and the following argument as an operator variant of Jensen's inequality applied to the jointly convex function $(\rho, \sigma) \mapsto S(\rho \parallel \sigma)$.

Do this now to both ρ and σ , yielding

$$\begin{split} \mathsf{S}(\mathsf{Tr}_{A}(\rho) \, \| \, \mathsf{Tr}_{A}(\sigma)) &= \mathsf{S}(M_{\rho} \, \| \, M_{\sigma}) \\ &= \mathsf{S}\left(\frac{1}{r} \sum_{j=1}^{r} V_{j} \rho V_{j}^{*} \, \left\| \, \, \frac{1}{r} \sum_{j=1}^{r} V_{j} \sigma V_{j}^{*} \right\| \right) \\ &\leqslant \frac{1}{r} \sum_{j=1}^{r} \mathsf{S}(V_{j} \rho V_{j}^{*} \, \| \, V_{j} \sigma V_{j}^{*}) \\ &= \mathcal{S}(\rho \, \| \, \sigma), \end{split}$$

where the inequality uses joint convexity of the relative entropy, and the last line uses unitary invariance of the relative entropy: For all unitaries U and density matrices A, B,

$$S(UAU^* \parallel UBU^*) = Tr(UAU^*(\log(UAU^*) - \log(UBU^*))$$
$$= Tr(UA[(\log A)U^* - (\log B)U^*])$$
$$= S(A \parallel B).$$

In the preceding equality, we used that $U^*U = I$, that $\log(UAU^*) = U\log(A)U^*$ holds for any unitary U, and that the trace is unitarily invariant.

It is instructive to see that joint convexity of the quantum relative entropy is also a consequence of Theorem 1.5. Indeed, consider $\rho_1, \rho_2, \sigma_1, \sigma_2 \in \mathcal{D}(\mathbb{C}^n)$ and define

$$\rho := \begin{bmatrix} t \rho_1 & 0 \\ 0 & (1-t)\rho_2 \end{bmatrix}, \quad \sigma := \begin{bmatrix} t \sigma_1 & 0 \\ 0 & (1-t)\sigma_2 \end{bmatrix},$$

for some $t \in [0,1]$. Then,

$$S(\rho \| \sigma) = tS(\rho_1 \| \sigma_1) + (1 - t)S(\rho_2 \| \sigma_2),$$

and

$$S(t \rho_1 + (1-t)\rho_2 || t\sigma_1 + (1-t)\sigma_2)$$

is precisely the relative entropy of the states after taking partial trace of the 2 × 2 block matrices, hence Theorem 1.5 implies that $(\rho, \sigma) \mapsto S(\rho \parallel \sigma)$ is jointly convex.

2 The operator Jensen inequality

If matrices A_1, A_2, \ldots, A_m satisfy $A_1^*A_1 + \cdots + A_m^*A_m = I$, we have already said that the map $X \mapsto A_1^*XA_1 + \cdots + A_m^*XA_m$ is like a "noncommutative averaging operation." We can extend this to the notion of a noncommutative convex combination of matrices X_1, X_2, \ldots, X_m :

$$A_1^*X_1A_1+\cdots+A_m^*X_mA_m.$$

It is remarkable that operator convexity of a function f generalizes to the stronger notion of operator convexity with respect to noncommutative convex combinations, as the next theorem asserts. In the next theorem, a rectangular matrix V is called an *isometry* if its columns are orthogonal, i.e., if $V^*V = I$. Note that a unitary matrix is precisely an isometry that is also a square matrix.

Theorem 2.1 (Hansen-Pedersen). *Suppose* $f: J \to \mathbb{R}$ *is continuous on some interval* $J \subseteq \mathbb{R}$ *. Then the following are equivalent:*

- (i) f is operator convex.
- (ii) For any square matrices A_1, \ldots, A_m with

$$A_1^* A_1 + \dots + A_m^* A_m = I, \tag{2.1}$$

and Hermitian matrices X_1, \ldots, X_m (whose spectrum lies in J),

$$f(A_1^*X_1A_1 + \dots + A_m^*X_mA_m) \le A_1^*f(X_1)A_1 + \dots + A_m^*f(X_m)A_m.$$

(iii) $f(V^*XV) \leq V^*f(X)V$ for every isometry V and Hermitian X with $\operatorname{spec}(X) \subseteq J$.

Proof. Let us prove that (i) \Rightarrow (ii). We leave the easier implications (ii) \Rightarrow (iii) \Rightarrow (i) as an exercise. Consider $A_1, \ldots, A_m \in \mathbb{M}_n(\mathbb{C})$ satisfying (2.1). Note that

$$V := \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix} : \mathbb{C}^n \to \mathbb{C}^{mn}$$

is an isometry since $V^*V = A_1^*A_1 + \cdots + A_m^*A_m = I_n$. In particular, we can decompose $\mathbb{C}^{mn} = K \oplus K'$, where $K = V(\mathbb{C}^n)$ is the range of V, and $K' \cong \mathbb{C}^{n(m-1)}$. Let $\{u_1, \ldots, u_{n(m-1)}\}$ be an orthonormal basis for K', and define the matrix

$$U := \begin{bmatrix} | & | & | & A_1 \\ | & | & | & A_2 \\ u_1 & \cdots & u_{n(m-1)} & \vdots \\ | & | & | & A_{m-1} \\ | & | & | & A_m \end{bmatrix} \in M_{mn}(\mathbb{C}),$$

where the first n(m-1) columns contain the vectors $u_1, \ldots, u_{n(m-1)}$ (as column vectors), and the last n columns contain V. Then $U \in \mathbb{M}_{mn}(\mathbb{C})$ is an isometry, hence a unitary matrix, and if we think of U as an $m \times m$ block matrix, then $U_{km} = A_k$ for each $k = 1, 2, \ldots, m$

Define $X \in \mathbb{M}_{mn}(\mathbb{C})$ as the block diagonal matrix with Hermitian matrices X_1, X_2, \ldots, X_m on the diagonal. Let $\omega_m := \exp(2\pi i/m)$ denote a primitive mth root of unity, and define the block-diagonal matrix $E \in \mathbb{M}_{mn}(\mathbb{C})$ by

$$E := \begin{bmatrix} \omega_m I_n & 0 & 0 & \cdots & 0 \\ 0 & \omega_m^2 I_n & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \cdots & 0 \\ 0 & \cdots & 0 & \omega_m^{m-1} I_n & 0 \\ 0 & 0 & \cdots & 0 & I_n \end{bmatrix}$$

Note that, as in HW #1, for any $Y \in \mathbb{M}_{mn}(\mathbb{C})$, we have

$$D_Y = \frac{1}{m} \sum_{j=1}^m E^{-j} Y E^j,$$
 (2.2)

where $D_Y \in \mathbb{M}_{mn}(\mathbb{C})$ is the block-diagonal matrix with $(D_Y)_{jj} = Y_{jj}$ and $(D_Y)_{ij} = 0$ otherwise. Now write

$$f\left(\sum_{j=1}^{m} A_{j}^{*} X_{j} A_{j}\right) = f((U^{*} X U)_{mm})^{\binom{2.2}{2}} f\left(\left(\sum_{j=1}^{m} \frac{1}{m} E^{-j} U^{*} X U E^{j}\right)_{mm}\right)$$

$$= \left(f\left(\sum_{j=1}^{m} \frac{1}{m} E^{-j} U^{*} X U E^{j}\right)\right)_{mm}$$

$$\leq \left(\frac{1}{m} \sum_{j=1}^{m} f(E^{-k} U^{*} X U E^{k})\right)_{mm} = \left(U^{*} f(X) U\right)_{mm} = \sum_{j=1}^{m} A_{j}^{*} f(X_{j}) A_{j}. \square$$

Note that the third equality uses the fact that $\sum_{j=1}^{m} \frac{1}{m} E^{-j} U^* X U E^j$ is a block diagonal matrix. If M is a block-diagonal matrix with M_1, M_2, \ldots, M_m on the diagonal, then f(M) is the block-diagonal matrix with $f(M_1), f(M_2), \ldots, f(M_m)$ on the diagonal, hence $f(M_{mm}) = f(M)_{mm}$.

Example 2.2 (Operator convexity of the square). If $A, B \ge 0$ and $S^*S + T^*T = I$, then operator convexity of the square gives

$$(S^*AS + T^*BT)^2 \le S^*A^2S + T^*B^2T.$$

Apparently there is no simpler proof of this matrix inequality.