From DataFrames to Tungsten: A Peek into Spark's Future

Reynold Xin @rxin Spark Summit, San Francisco June 16th, 2015

DataFrame noun

Making Spark accessible to everyone (data scientists, engineers, statisticians, ...)

Tungsten

noun

Making Spark faster & prepare for the next five years.

How do DataFrames and Tungsten relate to each other?

Google Trends for "dataframe"

Single-node tabular data structure, with API for

Data frame: lingua franca for "small data"

```
head(flights)
#> Source: local data frame [6 x 16]
#>
     year month day dep time dep delay arr time arr delay carrier tailnum
#>
                                            830
#> 1
     2013
                         517
                                                              UA
                                                                  N14228
#> 2 2013
                         533
                                            850
                                                      20
                                                              UA
                                                                  N24211
#> 3 2013
                         542
                                            923
                                                      33
                                                              AA
                                                                  N619AA
#> 4 2013
                         544
                                           1004
                                                     -18
                                                              B6
                                                                  N804JB
```


Spark DataFrame

Distributed data frame for Java, Python, R, Scala

Similar APIs as single-node tools (Pandas, dplyr), i.e. easy to learn

```
> head(filter(df, df$waiting < 50)) # an example in R
## eruptions waiting
##1   1.750   47
##2   1.750   47
##3   1.867   48</pre>
```


It is not Spark vs Python/R, but Spark and Python/R.

Spark and Python/R

Viz

Machine Learning

Stats

Spark RDD Execution

Spark DataFrame Execution

Intermediate representation for computation

Spark DataFrame Execution

Simple wrappers to create logical plan

Intermediate representation for computation

Benefit of Logical Plan: Simpler Frontend

Python: ~2000 line of code (built over a weekend)

R:~1000 line of code

i.e. much easier to add new language bindings (Julia, Clojure, ...)

Performance

Runtime for an example aggregation workload

Benefit of Logical Plan: Performance Parity Across Languages

Runtime for an example aggregation workload (secs)

What about Tungsten?

Storage

Network

CPU

CPU

2010
Storage 50+MB/s
(HDD)

Network 1Gbps

~3GHz

Storage

Network

CPU

databricks

2010

50+MB/s (HDD)

1Gbps

~3GHz

2015

500+MB/s

(SSD)

10Gbps

~3GHz

Storage

Network

CPU

databricks

2010 50+MB/s

(HDD)

1Gbps

~3GHz

2015

500+MB/s

(SSD)

10Gbps

~3GHz

10X

10X

Tungsten: Preparing Spark for Next 5 Years

Substantially speed up execution by optimizing CPU efficiency, via:

- (1) Runtime code generation
- (2) Exploiting cache locality
- (3) Off-heap memory management

From DataFrame to Tungsten

5PM

Deep Dive into Project Tungsten Developer Track by Josh Rosen

Initial Performance Results

Unified API, One Engine, Automatically Optimized

Spark Office Hours Today

	Topic Area
1:00-1:45	Core, YARN, Ops
1:45-2:30	Core/SQL/Data Science
3:00-3:40	Streaming
3:40-4:15	Core, Python, R
4:30-5:15	Machine Learning
5:15-6:00	Matei Zaharia

Databricks booth A1

