_Лабораторная работа №1

Тема: «Экспериментальное определение характеристик физико-механических свойств кормов»

<u>Цель работы</u>: ознакомиться со способами получения характеристик физико-механических свойств кормов и экспериментально определить эти характеристики.

<u>Наглядные пособия</u>: установка для определения критической скорости разрушения зерен; источник питания; прибор для определения коэффициентов трения; пикнометр; сушильный шкаф или влагометр зерна; бюксы; весы и разновесы; зерно; тахометр; динамометр.

Теоретическая часть:

Интенсивное развитие животноводства невозможно без создания в хозяйствах прочной кормовой базы, обеспечивающей сельскохозяйственных животных достаточным количеством полноценных кормов. К последним относятся продукты растительного и животного происхождения, а также минеральные вещества, используемые в кормлении сельскохозяйственных животных. Существует разнообразный ассортимент кормов, отличающихся между собой физическими свойствами, химическим составом, содержанием витаминов, вкусовыми качествами.

Биологическая ценность того или иного корма зависит от количества питательных веществ, содержащихся в нем, их переваримости и усвояемости организмом животного, от наличия в корме вкусовых раздражителей, возбуждающих аппетит у животного и способствующих его поедаемости. Корм не должен оказывать вредного действия на организм животного и качество получаемой от него продукции. Из этого следует, что кормление (питание) является важным фактором, влияющим на рост и развитие организма, на его телосложение, воспроизводительные функции, здоровье и

					Лаδораторная раδота №1				
Изм.	Лист	№ докум.	Подпись	Дата					
Разр	1δ.	Веренич А.	ч А. Экспериментальное определе-		/lum.	Лист	Листов		
Прове	₽ <i>p.</i>	Попов В.Б.			ние характеристик физико-		1	7	
Реце	43.				MONGHINIOSKIN SBOTERB KORMOB				
Н. Ко	нтр.				техинических соойсто кормоо	ГГТУ им.П.О.Сухого, гр. С-4			
Зав.к	αф.								

продуктивность.

Питание есть физиологическая потребность организма животного — процесс, обеспечивающий организм питательными веществами, необходимыми для его жизнедеятельности. К питательным веществам корма относятся: 1) органические вещества, представленные протеином (белком), углеводами, жирами, богатыми энергией, ферментами и витаминами, не представляющими энергетической ценности, но являющимися дополнительными факторами питания; 2) неорганические вещества — минеральные соли и вода, которые не обладают потенциальной энергией, но играют большую роль в жизненных процессах. Питательные вещества, потребленные животным в кормах, идут на образование продукции (молоко, мясо и др.), на пополнение затрат, произведенных организмом в процессе его жизнедеятельности, и служат при своих превращениях источником энергии, необходимой организму для его жизни.

Практическая часть:

Определение критической скорости разрушения зерен кукурузы:

Окружная скорость молотков $V_{\scriptscriptstyle M}$ в дробилках - один из главных факторов, определяющих эффективность рабочего процесса.

Для определения рабочей скорости молотков определяют скорость соударения V_{CP} молотка с зерном при которой зерно разрушается за один удар т.е. разрушающую скорость V_{PA3P} .

Рабочие скорости молотков в дробилках для достижения однократного разрушения должны быть $V_{M} = V_{PA3P} + V_{CJ} = \frac{V_{PA3P}}{(1 - \beta_{CJ})}$,

где $V_{\rm CM}$ — средняя скорость циркуляции воздушного продуктового слоя.

$$\beta_{CJI} = \frac{V_{CJI}}{V_M} = 0,4...0,5$$

Т.е. для однократного разрушения скорость молотков должна быть выше разрушающей скорости в 1,6 ... 2 раза.

					Лабор
Изм.	Лист	№ докум.	Подпись	Дата	

В современных консрукпиях $V_{\scriptscriptstyle M}=40...80$ м/с; отдельные дробилки кормоуборочных заводов имеют скорости $V_{\scriptscriptstyle M}=100...117$ м/с.

Определение критической скорости разрушения зерен кукурузы проводится на лабораторной установке (рисунок 1), содержащей диск с лопатками, вращающийся с регулируемой частотой до 7500 мин⁻¹, что соответствует линейной скорости в момент удара до 40 м/с. Частота вращения измеряется тахометром часовым ТЧ 10-Р.

Привод рабочего органа осуществляется от источника питания и электродвигателя постоянного тока.

Зерна сбрасываются на вращаящиеся лопасти по направляющей трубке.

Рисунок 1. Схема установки для определения критической скорости разрушения зерен кукурузы: 1- зерно; 2- направляющая; 3- накопительная камера; 4- рабочий орган (диск с лопатками).

Предварительно устанавливается диапазон частот вращения, обеспечивающих разрушение зерен от 5 до 95%.

Диапазон делится на 5-10 интервалов. Для каждой частоты вращения берется проба, содержащая не менее N = 14 зерен.

После испытаний при заданной частоте вращения определяется число неразрушившихся N_H , а по ней - число разрушившихся N_P зерен и их доля в процентах N_I .

Изм.	Лист	№ докум.	Подпись	Дата

$$N_P = N - N_H \; ; \qquad N_i = \frac{N}{N_P} \cdot 100\% \; .$$

Np=14-6=8; Ni=(14/8)*100=1,8%

Np=14-7=7; Ni=(14/7)*100=2%

Np=14-5=9; Ni=(14/9)*100=1,6%

Nrcp=(8+7+9)/3=8; Nicp=(1,8%+2%+1,6%)=1,80%

При трехкратной повторности опыта определяется среднее значение доли разрушенных зерен

$$N_{icp} = \sum N_i / \sum N_P .$$
 Nicp=((0.018+0.02+0.016)/(8+7+9))*100%=0.22%

Для каждой частоты вращения определяется окружная сиорость точки соударения лолатки с зерном $V = \frac{\pi \cdot r \cdot n}{30}$,

$$V1=(3.14*0.35*1500)/(30) = 54,95 \text{ m/c}$$

$$V2=(3.14*0.35*1800)/(30) = 65,94 \text{ m/c}$$

$$V3=(3.14*0.35*2000)/(30) = 73,26 \text{ m/c}$$

$$Vcp = (54,95+65,94+73,26)/3=64,72$$

где r – расстояние от оси вращения диска до точки соударения;

n – частота вращения.

Результаты испытаний заносятся в таблицу 1.

Таблица 1. Определение критической скорости разрушения зерен.

Ток, А	Напряжение, В	Частота вращения, об/мин	Число разру- шенных зерен, % шт	Доля разру- шенных зерен, %	Скорость соу- дарения, м/с	Критическая скорость, м/с
I	U	n	$N_{\scriptscriptstyle P}$	N_{i}	V	
1,99	3985	15003780	4	0.22%	64,72	80

Определение коэффициентов внутреннего и внешнего трения.

Для определения коэффициентов внутреннего и внешнего трения можно использовать стальные кольца, образующие поверхность трения площадью $F = 0.00785 \text{м}^2$ (рисунок 3).

Для определения коэффициентов внешнего трения на основании при-

						Лист
					Лабораторная работа №1	,
Изм.	Лист	№ докум.	Подпись	Дата		4

бора устанавливают два кольца и закрепляют нижнее кольцо. Определяют усилие, необходимое для передвижения пустого верхнего кольца (с помощью динамометра).

После этого центрируют кольца и засыпают в них испытываемый образец корма, разравнивают, излишек снимают линейкой по плоскости верхнего кольца, затем устанавливают крышку и грузы, изменяющиеся в опытах от 0,5 до 5 кг.

С помощью данамометра определяют усилие, необходимое для сдвига кольца (на 0,9 его толщины) с материалом и грузом.

Рисунок 3. Схема установки для определения коэффициентов внутреннего (а) и внешнего (b) трения: 1 - крышка; 2,3 - кольца; 4 - грузы; 5 - поверхности трения; 6 - штатив.

При одной в той же массе груза и исследуемого материала опыт проводят с трехтактной поверхностью. Одновременно контролируют влажность корма.

Для определения коэффициентов внешнего трения с прибора снимают нижнее кольцо и вместо него закрепляют полосу материала (металл, дерево, пластмасса и т.д.).

Опыты проводят в таком же порядке как и при определении коэффи-

						Лист
·	·				Лабораторная работа №1	Е
Изм.	Лист	№ докум.	Подпись	Дата	· · ·	כ

циентов внутреннего трения.

Численные значения коэффициентов трения определяют по формуле $f=\tau/\delta$, где $\tau-$ касательное напряжение, действующее в плоскости сдвига, Па; $\delta-$ нормальное напряжение в плоскости сдвига, Па.

Здесь касательное τ и нормальное δ напряжение расчитывают по формулам: $\tau = (P_1 - P_2)/S \text{ и } \delta = 9.81 \cdot (Q_1 + Q_2 + Q_3)/S,$

где P_1 – усилие необходимое для сдвига кольца с материалом и грузом, H;

 P_2 – усилие, необходимое для сдвига пустого кольца, H;

S – площадь поперечного сечения кольца, M^2 ;

 Q_1, Q_2, Q_3 – масса исследуемого материала пластины и груза соответственно, кг.

Таблица 2. Определение статических коэффициентов внешнего $f_{\it BHEUIH}$. и внутреннего $f_{\it BHVTP}$ трения.

Корм	f_{BHEIIIH} . при	влажности	W,13.1%	$f_{{\scriptscriptstyle BHYTP}}$ при влажности W , 13.1%			
Корм	7	W1,W2,W3		W1,W2,W3			
Дробленое зерно	0,36	0.4	0.45	0.6	0.62	0.61	
Wcp		0.4		0.61			

Таблица 3. Определение динамических коэффициентов внешнего $f_{\it BHEIIIH.}$ и внутреннего $f_{\it BHVTP.}$ трения.

Корм	f_{BHEIIIH} . при в	лажности	W,13.1%	$f_{{\it BHVTP}.}$ при влажности W ,13.1%			
Корм	W	1,W2,W3		W1,W2,W3			
Дробленое зерно	0,35	0.38	0.37	0.62	0.65	0.66	
Wcp	0.36				0.64		

Определение плотности корма.

Наиболее распростараненным способом определения плотности кормов (гранул, зерен) является пикнометрический.

В мерный цилиндр заливают жидкость (керосин, трансформаторное масло). Испытуемый образец корма (0,3 кг) взвешивают на аналитических весах и погружают в мерный цилиндр. В учебной работе масса навески может быть уменьшена до 100 зерен.

Перед погружением фиксируют первоначальный уровень жидкости в

						Лист
					Лабораторная работа №1	
Изм.	Лист	№ докум.	Подпись	Дата		D

мерном цилиндре. После прекращения выделения из сосуда с образцом пузырьков воздуха фиксируют новый уровень жидкости. Плотность корма (зерен, гранул), г/см³, определяется по формуле $\rho = a \cdot m/z$, где m- масса образца, г; z- число делений мерной трубки, на которое поднимается уровень жидкости при погружении в нее образца корма; a- постоянная прибора, определяемая при тарировке и выражающая количество делений мерной трубки, соответствующее увеличению количества жидкости на 1 см³.

Результаты измерений заносят в таблицу 3.

$$p2=(20*0.3)/12=0.5$$

$$p3=(20*0.28)/8=0.7$$

Таблица 3. Определение плотности корма.

Повторность	Характеристика плотности гранул								
	Масса образца т,	Число делений	Плотность						
опыта	КГ	прибора <i>z</i>	гранул ρ , г/см ³						
1	0,29	10	0,58						
2	0,3	12	0.5						
3	0,28	8	0.7						
Среднее	0,29	10	0.59						

Вывод: ознакомился со способами получения характеристик физикомеханических свойств кормов и экспериментально определил эти характеристики. Определил критическую скорость разрушения зерен кукурузы. Определил плотность корма. Определил коэффициенты внутреннего и внешнего трения.

Источник: https://www.dieselloc.ru/emkosti-dlia-sypuchih-gruzov/fiziko-mechanicheskie-svoistva-zernovykh-gruzov.html

			·	
Изм.	Лист	№ докум.	Подпись	Дата