

Mathématiques

Classe: **Bac Maths**

Série: Série Nº33

Thème: Préparation Synthèse II

Nom du Prof: BENMBAREK MAHMOUD

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

© 50 min

3.5 pts

Dans la figure ci-contre:

- □ ABCDEFGH est un cube d'arête 1.
- \square $\left(A,\overrightarrow{AB},\overrightarrow{AD},\overrightarrow{AE}\right)$ est un repère orthonormé direct.
- \square M un point de coordonnées $(\alpha, \alpha, 1 \alpha)$.

- \bigcirc a Montrer que M est un point du segment [EC].
 - b Montrer que la distance du point M à la droite (BD) est égale à $\sqrt{3\alpha^2 4\alpha + \frac{3}{2}}$.
 - C Déterminer α pour que la distance de M à la droite (BD) soit minimale.
 - d Soit Ω le point de coordonnées $\left(\frac{2}{3},\frac{2}{3},\frac{1}{3}\right)$. Montrer que Ω est le centre de gravité du triangle BGD.
- Soit S la sphère de centre C et de rayon 1. Montrer que S coupe le plan (BGD) suivant un cercle $\mathscr C$ dont on précisera le centre et le rayon.
- On désigne par h l'homothétie de centre E et de rapport $\frac{2}{3}$. Soit S' = h(S), $\Omega' = h(\Omega)$ et \mathbb{Q} le plan passant par Ω' et perpendiculaire à la droite (EC).
 - a Montrer que **Q** est l'image du plan (BGD) par h.
 - b Déterminer $S' \cap \mathbb{Q}$.

Exercice 2

4 pts

L'espace est muni d'un repère orthonormé direct $(0, \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k})$. On considère les points A(1, -1, 2), B(-2, 2, 0) et C(-1, 1, 1).

- 1 a Montrer que les points A, B et C ne sont pas alignés.
 - b Déterminer une équation cartésienne du plan $\mathfrak{P} = (ABC)$.

- 2 Déterminer le centre I et le rayon R de la sphère S dont une équation est $x^2 + y^2 + z^2 4x + 2y + 2 = 0$.
 - b Montrer que le plan ${\mathfrak P}$ coupe la sphère S suivant un cercle ${\mathfrak C}$ dont on précisera le centre ${\mathsf H}$ et le rayon ${\mathsf r}$.
- Soit S' la shpère qui contient le point J(-1,0,1) et coupée par le plan $\mathfrak P$ suivant le cercle $\mathfrak C$. Déterminer les coordonnées de Ω centre de S' et préciser son rayon R'.
- Déterminer l'homothétie h de rapport 3 qui transforme S et S'.

Exercice 3

0 60 min

5 pts

Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = \frac{\ln(e^{2x}-1)}{e^x}$. On désigne par \mathscr{C}_f la courbe représentative de f dans un repère orthonormé $(0, \overrightarrow{1}, \overrightarrow{j})$. (Unité 2 cm).

- a Déterminer $\lim_{x\to 0^+} f(x)$. Interpréter le résultat graphiquement.
 - b Montrer que $\lim_{x\to +\infty} f(x) = 0$. Interpréter le résultat graphiquement.
- 2 Déetrminer le point d'intersection de \mathscr{C}_f avec l'axe des abscisses.
- Soit g la fonction définie sur]1; $+\infty$ [par $g(x) = 2x (x-1)\ln(x-1)$.
 - a Dresser le tableau de variation de g.
 - **b** Montrer que l'équation g(x) = 0 admet une unique solution α et que $10.1 < \alpha < 10.2$
 - c Déterminer le signe de g(x).
- Soit h la fonction définie sur $]1;+\infty[$ par $h(x)=\frac{\ln\left(x^2-1\right)}{x}.$
 - a Montrer que pour tout $x \in]1; +\infty[, h'(x) = \frac{g(x^2)}{x^2(x^2-1)}]$
 - b Déterminer le signe de $\mathbf{h'}(x)$.
- 5 a Vérifier que que pour tout $x \in]0; +\infty[$, on a $f(x) = h(e^x)$.
 - **b** Dresser le tableau de variation de f.
 - C Tracer $\mathscr{C}_{\mathbf{f}}$.
- a Montrer que pour tout $x \in]0; +\infty[$, on a: $f'(x) + f(x) = \frac{e^x}{e^x 1} \frac{e^x}{e^x + 1}$.

b Déterminer l'aire de la partie du plan limitée par \mathscr{C}_f , l'axe des abscisses et les droites d'équations x=ln(2) et x=ln(3).

Exercice 4

5 pts

I- Soit α et b deux entiers naturels non nuls tels que $\alpha^3+b^3\equiv 0\,[173].$

- 1 Vérifier que 173 est premier.
- 2 Montrer que $a^{171} \equiv -b^{171}$ [173]
- a Montrer que 173 divise α si et seulement si, 173 divise b.
 - **b** Montrer que si 173 divise α alors 173 divise $\alpha + b$.
- 4 On suppose que 173 ne divise pas α .
 - (a) Montrer que $a^{172} \equiv b^{172}$ [173].
 - **b** Montrer que $a^{171}(a+b) \equiv 0$ [173].
 - c Montrer que 173 divise a + b.
- $\text{II- Soit } \mathcal{E} = \big\{ \; (x,y) \in \mathbb{N}^* \times \mathbb{N}^* \; \text{tel que } x^3 + y^3 = 173 \, (xy+1) \; \; \big\}.$
- Soit $(x, y) \in \mathcal{E}$.
 - a Montrer qu'il existe $k \in \mathbb{N}^*$ tel que x+y=173k.
 - **b** Montrer que $k(x-y)^2 + (k-1)xy = 1$.
 - c En déduire que k = 1.
- 2 Déterminer l'ensemble &.