第8章 a:向量的基本概念

数学系 梁卓滨

2016-2017 **学年** II

提要

- 向量的基本概念
 - 向量的线性运算
 - 向量的长度
 - 向量间的夹角
 - 向量的投影
- 向量的坐标表示、计算
 - 计算向量的线性运算、长度、夹角、投影
- 向量的数量积
- 向量的向量积

We are here now...

◆ 向量的基本概念

♣ 向量的坐标表示

♥ 向量的数量积

♠ 向量的向量积

● 具有长度(大小)及方向的物理量

● 具有长度(大小)及方向的物理量:如力、速度等等

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

• B

 $A \cdot$

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

● 向量的定义:"箭头"。

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

• 向量的定义: "箭头"。向量的表示: AB

- 具有长度(大小)及方向的物理量:如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

• 向量的定义: "箭头"。向量的表示: \overrightarrow{AB} , \overrightarrow{a}

- 具有长度(大小)及方向的物理量:如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

• 向量的定义: "箭头"。向量的表示: \overrightarrow{AB} , \overrightarrow{a}

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 向量的定义: "箭头"。向量的表示: \overrightarrow{AB} , \overrightarrow{a}
- 注 向量与位置无关:通过平移能够重合的"箭头",视为同一向量。

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 向量的定义: "箭头"。向量的表示: \overrightarrow{AB} , \overrightarrow{a}
- •注 向量与位置无关:通过平移能够重合的"箭头",视为同一向量。
- 零向量: →

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 向量的定义: "箭头"。向量的表示: \overrightarrow{AB} , \overrightarrow{a}
- •注 向量与位置无关:通过平移能够重合的"箭头",视为同一向量。
- 零向量: $\overrightarrow{0}$ 。 单位向量 \overrightarrow{a} : $|\overrightarrow{a}| = 1$ 。

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 向量的定义: "箭头"。向量的表示: AB, →
- 注 向量与位置无关:通过平移能够重合的"箭头",视为同一向量。
- 零向量: $\overrightarrow{0}$ 。 单位向量 \overrightarrow{a} : $|\overrightarrow{a}| = 1$ 。
- 向量的夹角 θ:

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 向量的定义: "箭头"。向量的表示: \overrightarrow{AB} , \overrightarrow{a}
- 注 向量与位置无关:通过平移能够重合的"箭头",视为同一向量。
- 零向量: $\overrightarrow{0}$ 。 单位向量 \overrightarrow{a} : $|\overrightarrow{a}| = 1$ 。
- 向量的夹角 θ:

a

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 向量的定义: "箭头"。向量的表示: \overrightarrow{AB} , \overrightarrow{a}
- 注 向量与位置无关:通过平移能够重合的"箭头",视为同一向量。
- 零向量: $\overrightarrow{0}$ 。 单位向量 \overrightarrow{a} : $|\overrightarrow{a}| = 1$ 。
- 向量的夹角 θ :

 \overrightarrow{a}

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 向量的定义: "箭头"。向量的表示: \overrightarrow{AB} , \overrightarrow{a}
- 注 向量与位置无关:通过平移能够重合的"箭头",视为同一向量。
- 零向量: $\overrightarrow{0}$ 。 单位向量 \overrightarrow{a} : $|\overrightarrow{a}| = 1$ 。
- 向量的夹角 θ:

- 具有长度(大小)及方向的物理量:如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 向量的定义:"箭头"。向量的表示: \overrightarrow{AB} , \overrightarrow{a}
- 注 向量与位置无关:通过平移能够重合的"箭头",视为同一向量。
- 零向量: $\overrightarrow{0}$ 。单位向量 \overrightarrow{a} : $|\overrightarrow{a}| = 1$ 。

• 向量的夹角
$$\theta$$
: $\theta = \frac{\pi}{2}$

$$\theta = 0$$

$$\theta = \pi$$

- 具有长度(大小)及方向的物理量:如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 向量的定义: "箭头"。向量的表示: AB, a
- •注 向量与位置无关:通过平移能够重合的"箭头",视为同一向量。
- 零向量: $\overrightarrow{0}$ 。 单位向量 \overrightarrow{a} : $|\overrightarrow{a}| = 1$ 。
- 向量的夹角 θ : $\theta = \frac{\pi}{2} \iff \overrightarrow{a} \perp \overrightarrow{b}$

$$\theta = 0$$

$$\theta = \pi$$

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 向量的定义:"箭头"。向量的表示: \overrightarrow{AB} , \overrightarrow{a}
- •注 向量与位置无关:通过平移能够重合的"箭头",视为同一向量。
- 零向量: $\overrightarrow{0}$ 。 单位向量 \overrightarrow{a} : $|\overrightarrow{a}| = 1$ 。
- 向量的夹角 θ : $\theta = \frac{\pi}{2} \iff \overrightarrow{a} \perp \overrightarrow{b}$ $\theta = 0 \iff \overrightarrow{a}, \overrightarrow{b}$ 同向 $\theta = \pi$

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 向量的定义:"箭头"。向量的表示: \overrightarrow{AB} , \overrightarrow{a}
- 注 向量与位置无关:通过平移能够重合的"箭头",视为同一向量。
- 零向量: $\overrightarrow{0}$ 。 单位向量 \overrightarrow{a} : $|\overrightarrow{a}| = 1$ 。
- 向量的夹角 θ : $\theta = \frac{\pi}{2} \Leftrightarrow \overrightarrow{a} \perp \overrightarrow{b}$

$$\theta = 0 \Leftrightarrow \overrightarrow{a}, \overrightarrow{b}$$
 同向
 $\theta = \pi \Leftrightarrow \overrightarrow{a}, \overrightarrow{b}$ 反向

- 具有长度(大小)及方向的物理量: 如力、速度等等
- 能够转化成什么数学量,从而进行运算推演?

- 向量的定义:"箭头"。向量的表示: \overrightarrow{AB} , \overrightarrow{a}
- 注 向量与位置无关:通过平移能够重合的"箭头",视为同一向量。
- 零向量: $\overrightarrow{0}$ 。 单位向量 \overrightarrow{a} : $|\overrightarrow{a}| = 1$ 。
- 向量的夹角 θ : $\theta = \frac{\pi}{2} \iff \overrightarrow{a} \perp \overrightarrow{b}$ $\theta = 0 \iff \overrightarrow{a}, \overrightarrow{b} = 0 \Leftrightarrow \overrightarrow{a},$

加法: $\overrightarrow{a} + \overrightarrow{b}$

数乘: $\lambda \overrightarrow{a}$ $(\lambda \in \mathbb{R})$

加法:
$$\overrightarrow{a} + \overrightarrow{b}$$

数乘: $\lambda \overrightarrow{a}$ $(\lambda \in \mathbb{R})$

数乘: $\lambda \overrightarrow{a} \quad (\lambda \in \mathbb{R})$

数乘: $\lambda \overrightarrow{a}$ $(\lambda \in \mathbb{R})$

λ a 的方向:

λ a 的长度:

数乘: $\lambda \overrightarrow{a}$ $(\lambda \in \mathbb{R})$

λ a 的方向:

数乘: $\lambda \overrightarrow{a}$ $(\lambda \in \mathbb{R})$

λ a 的方向:

$$\left\{ \begin{array}{l} \lambda \geq 0, \\ \lambda < 0, \end{array} \right.$$

•
$$\lambda \overrightarrow{a}$$
 的长度: $|\lambda \overrightarrow{a}| = |\lambda| \cdot |\overrightarrow{a}|$

数乘: $\lambda \overrightarrow{a} \quad (\lambda \in \mathbb{R})$

λ a 的方向:

$$\begin{cases} \lambda \ge 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} & \exists \overrightarrow{a} &$$

数乘: $\lambda \overrightarrow{a}$ $(\lambda \in \mathbb{R})$

λ a 的方向:

$$\begin{cases} \lambda \ge 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} \\ \lambda < 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{b} = \overrightarrow{b$$

数乘: $\lambda \overrightarrow{a} \quad (\lambda \in \mathbb{R})$

λ a 的方向:

$$\begin{cases} \lambda \ge 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} \\ \lambda < 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{b} \end{cases}$$

数乘: $\lambda \overrightarrow{a} \quad (\lambda \in \mathbb{R})$

λ a 的方向:

$$\begin{cases} \lambda \ge 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} \\ \lambda < 0, \quad \lambda \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{a} \end{cases}$$

数乘: $\lambda \overrightarrow{a} \quad (\lambda \in \mathbb{R})$

λ α 的方向:

$$\begin{cases} \lambda \ge 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} = \lambda \\ \lambda < 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} = \lambda \end{cases}$$

数乘: $\lambda \overrightarrow{a} \quad (\lambda \in \mathbb{R})$

λ α 的方向:

$$\begin{cases} \lambda \ge 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} \\ \lambda < 0, \quad \lambda \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{a} \end{cases}$$

数乘: $\lambda \overrightarrow{a}$ $(\lambda \in \mathbb{R})$

λ α 的方向:

$$\begin{cases} \lambda \ge 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} \\ \lambda < 0, \quad \lambda \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{a} \end{cases}$$

运算律 设为 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 为向量, λ , $\mu \in \mathbb{R}$, 则

数乘: $\lambda \overrightarrow{a}$ $(\lambda \in \mathbb{R})$

λ a 的方向:

$$\begin{cases} \lambda \geq 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} \\ \lambda < 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{b} = \overrightarrow{$$

运算律 设为 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 为向量, λ , $\mu \in \mathbb{R}$, 则

$$\bullet \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a};$$

数乘: $\lambda \overrightarrow{a} \quad (\lambda \in \mathbb{R})$

λ a 的方向:

$$\begin{cases} \lambda \ge 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} \\ \lambda < 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{b} = \overrightarrow{b$$

数乘:
$$\lambda \overrightarrow{a} \quad (\lambda \in \mathbb{R})$$

λ a 的方向:

$$\begin{cases} \lambda \ge 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} \\ \lambda < 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{b} = \overrightarrow{b$$

运算律 设为
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 为向量, λ , $\mu \in \mathbb{R}$, 则

- $\bullet \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a};$
- $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c});$

加法:
$$\overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{a}$$

数乘: $\lambda \overrightarrow{a} \quad (\lambda \in \mathbb{R})$

λ a 的方向:

$$\begin{cases} \lambda \ge 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} \\ \lambda < 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{b} = \overrightarrow{b$$

运算律 设为
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 为向量, λ , $\mu \in \mathbb{R}$, 则

$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a};$$

•
$$(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c});$$

•
$$\lambda(\overrightarrow{a} + \overrightarrow{b}) = \lambda \overrightarrow{a} + \lambda \overrightarrow{b}$$
;

加法:
$$\overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{a}$$

数乘:
$$\lambda \overrightarrow{a} \quad (\lambda \in \mathbb{R})$$

λ a 的方向:

$$\left\{ \begin{array}{ll} \lambda \geq 0, & \lambda \overrightarrow{a} \mathrel{\ifigure{1pt}\end{1pt}} \begin{center} \hline \lambda < 0, & \lambda \overrightarrow{a} \mathrel{\ifigure{1pt}\end{1pt}} \begin{center} \hline \lambda & \lambda & \lambda & \lambda & \lambda \\ \hline \hline \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\ \hline \end{array} \right.$$

运算律 设为
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 为向量, λ , $\mu \in \mathbb{R}$, 则

$$\bullet \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a};$$

•
$$(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c});$$

•
$$\lambda(\overrightarrow{a} + \overrightarrow{b}) = \lambda \overrightarrow{a} + \lambda \overrightarrow{b}$$
;

•
$$\mu(\lambda \overrightarrow{a}) = (\mu \lambda) \overrightarrow{a}$$
;

加法:
$$\overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{a}$$

数乘:
$$\lambda \overrightarrow{a} \quad (\lambda \in \mathbb{R})$$

λ a 的方向:

$$\begin{cases} \lambda \ge 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} \\ \lambda < 0, \quad \lambda \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{a} = \overrightarrow{b} = \overrightarrow{a} = \overrightarrow{b} = \overrightarrow{b} = \overrightarrow{a} = \overrightarrow{b} = \overrightarrow{a} = \overrightarrow{b} = \overrightarrow{b$$

•
$$\lambda \overrightarrow{a}$$
 的长度: $|\lambda \overrightarrow{a}| = |\lambda| \cdot |\overrightarrow{a}|$

运算律 设为
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 为向量, λ , $\mu \in \mathbb{R}$, 则

$$\bullet \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a};$$

$$(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c});$$

•
$$\lambda(\overrightarrow{a} + \overrightarrow{b}) = \lambda \overrightarrow{a} + \lambda \overrightarrow{b}$$
;

•
$$\mu(\lambda \overrightarrow{a}) = (\mu \lambda) \overrightarrow{a}$$
;

•
$$1 \cdot \overrightarrow{a} = \overrightarrow{a}$$
; $0 \cdot \overrightarrow{a} = \overrightarrow{0}$.

例 如图, 用另外两向量表示第三个向量:

- $\overrightarrow{a} = \overrightarrow{b} = \overrightarrow{c} = \overrightarrow{c} = \overrightarrow{c}$

例 如图, 用另外两向量表示第三个向量:

- $\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$ $\overrightarrow{b} =$
- c =

例 如图,用另外两向量表示第三个向量:

•
$$\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$$

• $\overrightarrow{b} = \overrightarrow{a} - \overrightarrow{c}$
• $\overrightarrow{c} =$

例 如图,用另外两向量表示第三个向量:

•
$$\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$$

• $\overrightarrow{b} = \overrightarrow{a} - \overrightarrow{c}$
• $\overrightarrow{c} = -\overrightarrow{b} + \overrightarrow{a}$

例 如图, 用另外两向量表示第三个向量:

•
$$\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$$

• $\overrightarrow{b} = \overrightarrow{a} - \overrightarrow{c}$
• $\overrightarrow{c} = -\overrightarrow{b} + \overrightarrow{a}$

例 验证对任何三点
$$A, B, C$$
,总成立

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}, \qquad \overrightarrow{BA} = -\overrightarrow{AB}$$

$$\overrightarrow{BA} = -\overrightarrow{AB}$$

例 如图,用另外两向量表示第三个向量:

•
$$\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$$

• $\overrightarrow{b} = \overrightarrow{a} - \overrightarrow{c}$
• $\overrightarrow{c} = -\overrightarrow{b} + \overrightarrow{a}$

例 验证对任何三点 A, B, C, 总成立 $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}, \qquad \overrightarrow{BA} = -\overrightarrow{AB}$ B

例 如图,用另外两向量表示第三个向量:

•
$$\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$$

• $\overrightarrow{b} = \overrightarrow{a} - \overrightarrow{c}$
• $\overrightarrow{c} = -\overrightarrow{b} + \overrightarrow{a}$

例 验证对任何三点 \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} , 总成立 $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. $\overrightarrow{BA} = -\overrightarrow{AB}$

$$\overrightarrow{AB}$$
 \overrightarrow{BC}
 \overrightarrow{AB}
 \overrightarrow{C}

例 如图, 用另外两向量表示第三个向量:

•
$$\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$$

• $\overrightarrow{b} = \overrightarrow{a} - \overrightarrow{c}$
• $\overrightarrow{c} = -\overrightarrow{b} + \overrightarrow{a}$

例 验证对任何三点 A, B, C, 总成立

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}, \qquad \overrightarrow{BA} = -\overrightarrow{AB}$$

$$\overrightarrow{OC} =$$

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$$

$$\overrightarrow{a}$$
 \overrightarrow{b}
 \overrightarrow{b}

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{AC}$$

$$\overrightarrow{a}$$
 \overrightarrow{b}
 \overrightarrow{b}

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{AB} \qquad \qquad \frac{1}{2}(-\overrightarrow{a} + \overrightarrow{b})$$

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{2}(-\overrightarrow{a} + \overrightarrow{b})$$

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{2}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$$

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{\alpha} + \frac{1}{2}(-\overrightarrow{\alpha} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{b}$$

例 如图, 设 C, D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC} , \overrightarrow{OD}

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{\alpha} + \frac{1}{2}(-\overrightarrow{\alpha} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{b}$$

例 如图,设 C,D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC} , \overrightarrow{OD}

$$\overrightarrow{OC} =$$

$$\overrightarrow{OD} =$$

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{\alpha} + \frac{1}{2}(-\overrightarrow{\alpha} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{b}$$

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$$

$$\overrightarrow{OD} =$$

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{\alpha} + \frac{1}{2}(-\overrightarrow{\alpha} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{b}$$

例 如图, 设 C, D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC} , \overrightarrow{OD}

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{AC}$$

$$\overrightarrow{OD} =$$

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{\alpha} + \frac{1}{2}(-\overrightarrow{\alpha} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{b}$$

例 如图,设 C,D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} . \overrightarrow{b} 表示 \overrightarrow{OC} . \overrightarrow{OD}

$$\overrightarrow{a}$$
 \overrightarrow{c}
 \overrightarrow{b}

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{\alpha} + \frac{1}{3}\overrightarrow{AB}$$

$$\overrightarrow{OD} =$$

$$\overrightarrow{a}$$
 O
 \overrightarrow{b}
 B

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{\alpha} + \frac{1}{2}(-\overrightarrow{\alpha} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{b}$$

例 如图, 设 C, D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC} , \overrightarrow{OD}

$$\overrightarrow{a}$$
 \overrightarrow{a}
 \overrightarrow{b}
 \overrightarrow{b}

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{3}\overrightarrow{AB} \qquad \qquad \frac{1}{3}(-\overrightarrow{a} + \overrightarrow{b})$$

$$\longrightarrow$$

 $\overrightarrow{OD} =$

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{\alpha} + \frac{1}{2}(-\overrightarrow{\alpha} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{b}$$

例 如图, 设 C, D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC} , \overrightarrow{OD}

$$\overrightarrow{a}$$
 \overrightarrow{b}

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{3}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{3}(-\overrightarrow{a} + \overrightarrow{b})$$

$$\overrightarrow{OD} =$$

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{\alpha} + \frac{1}{2}(-\overrightarrow{\alpha} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{\alpha} + \frac{1}{2}\overrightarrow{b}$$

例 如图,设 C,D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} . \overrightarrow{b} 表示 \overrightarrow{OC} . \overrightarrow{OD}

$$\overrightarrow{a}$$
 C
 \overrightarrow{b}

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{3}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{3}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}$$

$$\overrightarrow{OD} =$$

$$\overrightarrow{a}$$
 O
 \overrightarrow{b}
 B

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{2}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$$

例 如图, 设 C, D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC} , \overrightarrow{OD}

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{3}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{3}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}$$

$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD}$$

$$\overrightarrow{a}$$
 O
 \overrightarrow{b}
 B

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{2}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$$

例 如图, 设 C, D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC} , \overrightarrow{OD}

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{3}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{3}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}$$

$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \overrightarrow{a} +$$

$$\overrightarrow{a}$$
 O
 \overrightarrow{b}
 B

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{2}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$$

例 如图, 设 C, D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC} , \overrightarrow{OD}

$$\overrightarrow{a}$$

$$\overrightarrow{c}$$

$$\overrightarrow{b}$$

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{3}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{3}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}$$

$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \overrightarrow{a} + \frac{2}{3}\overrightarrow{AB}$$

$$\overrightarrow{a}$$
 O
 \overrightarrow{b}
 B

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{2}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$$

例 如图, 设 C, D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC} , \overrightarrow{OD}

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{3}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{3}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}$$

$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \overrightarrow{a} + \frac{2}{3}\overrightarrow{AB} \qquad \frac{2}{3}(-\overrightarrow{a} + \overrightarrow{b})$$

例 如图, 设 C 是线段 \overline{AB} 的二等分点, 试 用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC}

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{2}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$$

例 如图, 设 C, D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC} , \overrightarrow{OD}

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{3}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{3}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}$$

$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \overrightarrow{a} + \frac{2}{3}\overrightarrow{AB} = \overrightarrow{a} + \frac{2}{3}(-\overrightarrow{a} + \overrightarrow{b})$$

例 如图, 设 C 是线段 \overrightarrow{AB} 的二等分点, 试 用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC}

$$\overrightarrow{a}$$
 O
 \overrightarrow{b}
 B

解

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{2}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{2}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$$

例 如图, 设 C, D 是线段 \overrightarrow{AB} 的三等分点, 试用 \overrightarrow{a} , \overrightarrow{b} 表示 \overrightarrow{OC} , \overrightarrow{OD}

$$\overrightarrow{a}$$
 \overrightarrow{b}
 \overrightarrow{b}

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{a} + \frac{1}{3}\overrightarrow{AB} = \overrightarrow{a} + \frac{1}{3}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}$$

$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \overrightarrow{a} + \frac{2}{3}\overrightarrow{AB} = \overrightarrow{a} + \frac{2}{3}(-\overrightarrow{a} + \overrightarrow{b}) = \frac{1}{3}\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}$$

$$\overrightarrow{OC_k} =$$

$$\overrightarrow{OC_k} = \overrightarrow{a} + \overrightarrow{b}$$

$$\overrightarrow{OC_k} = - \overrightarrow{n} \overrightarrow{a} + \overrightarrow{n} \overrightarrow{b}$$

$$\overrightarrow{OC_k} = \frac{n-k}{n} \overrightarrow{a} + \overrightarrow{n} \overrightarrow{b}$$

$$\overrightarrow{OC_k} = \frac{n-k}{n} \overrightarrow{a} + \frac{k}{n} \overrightarrow{b}$$

证明 往证: $\overrightarrow{a} = \overrightarrow{c}$ 。

证明 往证:
$$\overrightarrow{a} = \overrightarrow{c}$$
。这是:

$$\overrightarrow{a} = \overrightarrow{AP} + \overrightarrow{PB}$$

证明 往证: $\overrightarrow{a} = \overrightarrow{c}$ 。这是:

$$\overrightarrow{a} = \overrightarrow{AP} + \overrightarrow{PB} = \overrightarrow{PC} + \overrightarrow{DP}$$

证明 往证: $\overrightarrow{a} = \overrightarrow{c}$ 。这是:

$$\overrightarrow{a} = \overrightarrow{AP} + \overrightarrow{PB} = \overrightarrow{PC} + \overrightarrow{DP} = \overrightarrow{c}$$
.

性质 设 $\overrightarrow{a} \neq 0$, 定义

$$e_{\overrightarrow{a}} := \frac{1}{|\overrightarrow{a}|} \overrightarrow{a}.$$

则 $e_{\overrightarrow{a}}$ 是与 \overrightarrow{a} 同向的单位向量。

性质 设 $\overrightarrow{a} \neq 0$, 定义

$$e_{\overrightarrow{a}} := \frac{1}{|\overrightarrow{a}|} \overrightarrow{a}$$
.

则 $e_{\overrightarrow{a}}$ 是与 \overrightarrow{a} 同向的单位向量。

证明

• 因为 $\frac{1}{|\vec{a}|} > 0$,所以 $e_{\vec{a}}$ 与 \vec{a} 同向。

性质 设 $\overrightarrow{a} \neq 0$, 定义

$$e_{\overrightarrow{a}} := \frac{1}{|\overrightarrow{a}|} \overrightarrow{a}$$
.

则 $e_{\overrightarrow{a}}$ 是与 \overrightarrow{a} 同向的单位向量。

- 因为 $\frac{1}{|\vec{a}|} > 0$,所以 $e_{\vec{a}}$ 与 \vec{a} 同向。
- $|e_{\overrightarrow{a}}| =$

性质 设 $\overrightarrow{a} \neq 0$, 定义

$$e_{\overrightarrow{a}} := \frac{1}{|\overrightarrow{a}|} \overrightarrow{a}$$
.

则 $e_{\overrightarrow{a}}$ 是与 \overrightarrow{a} 同向的单位向量。

- 因为 $\frac{1}{|\vec{a}|} > 0$,所以 $e_{\vec{a}}$ 与 \vec{a} 同向。
- $|e_{\overrightarrow{a}}| = \left| \frac{1}{|\overrightarrow{a}|} \overrightarrow{a} \right| =$

性质 设 $\overrightarrow{a} \neq 0$, 定义

$$e_{\overrightarrow{a}} := \frac{1}{|\overrightarrow{a}|} \overrightarrow{a}$$
.

则 $e_{\overrightarrow{a}}$ 是与 \overrightarrow{a} 同向的单位向量。

- 因为 $\frac{1}{|\vec{a}|} > 0$,所以 $e_{\vec{a}}$ 与 \vec{a} 同向。
- $|e_{\overrightarrow{a}}| = \left|\frac{1}{|\overrightarrow{a}|}\overrightarrow{a}\right| = \left|\frac{1}{|\overrightarrow{a}|}\right| \cdot |\overrightarrow{a}| =$

性质 设 $\overrightarrow{a} \neq 0$, 定义

$$e_{\overrightarrow{a}} := \frac{1}{|\overrightarrow{a}|} \overrightarrow{a}$$
.

则 $e_{\overrightarrow{a}}$ 是与 \overrightarrow{a} 同向的单位向量。

- 因为 $\frac{1}{|\vec{a}|} > 0$,所以 $e_{\vec{a}}$ 与 \vec{a} 同向。
- $|e_{\overrightarrow{a}}| = \left| \frac{1}{|\overrightarrow{a}|} \overrightarrow{a} \right| = \left| \frac{1}{|\overrightarrow{a}|} \cdot |\overrightarrow{a}| = \frac{1}{|\overrightarrow{$

性质 设 $\overrightarrow{a} \neq 0$, 定义

$$e_{\overrightarrow{a}} := \frac{1}{|\overrightarrow{a}|} \overrightarrow{a}.$$

则 $e_{\overrightarrow{a}}$ 是与 \overrightarrow{a} 同向的单位向量。

- 因为 $\frac{1}{|\vec{a}|} > 0$,所以 $e_{\vec{a}}$ 与 \vec{a} 同向。
- $|e_{\overrightarrow{a}}| = \left| \frac{1}{|\overrightarrow{a}|} \overrightarrow{a} \right| = \left| \frac{1}{|\overrightarrow{a}|} \right| \cdot |\overrightarrow{a}| = \frac{1}{|\overrightarrow{a}|} \cdot |\overrightarrow{a}| = 1$.

性质 设 $\overrightarrow{a} \neq 0$, 定义

$$e_{\overrightarrow{a}} := \frac{1}{|\overrightarrow{a}|} \overrightarrow{a}.$$

则 $e_{\overrightarrow{a}}$ 是与 \overrightarrow{a} 同向的单位向量。

证明

- 因为 $\frac{1}{|\vec{\alpha}|} > 0$,所以 $e_{\vec{\alpha}}$ 与 $\vec{\alpha}$ 同向。
- $|e_{\overrightarrow{a}}| = \left| \frac{1}{|\overrightarrow{a}|} \overrightarrow{a} \right| = \left| \frac{1}{|\overrightarrow{a}|} \right| \cdot |\overrightarrow{a}| = \frac{1}{|\overrightarrow{a}|} \cdot |\overrightarrow{a}| = 1$.

注 $e_{\overrightarrow{a}}$ 也称为 \overrightarrow{a} 的单位化向量, 或方向向量。

平行向量

性质 设有两向量
$$\overrightarrow{a} \neq 0$$
 及 \overrightarrow{b} ,则
$$\overrightarrow{a} \parallel \overrightarrow{b} \qquad \Leftrightarrow \qquad \text{存在} \lambda \in \mathbb{R}, \ \text{使得} \overrightarrow{b} = \lambda \overrightarrow{a}$$

性质 设 θ 是向量 \overrightarrow{a} 和 \overrightarrow{b} 夹角,则 $\cos \theta$

性质 设 θ 是向量 \overrightarrow{a} 和 \overrightarrow{b} 夹角,则 $\cos \theta$

性质 设
$$\theta$$
 是向量 \overrightarrow{a} 和 \overrightarrow{b} 夹角,则
$$\cos \theta = \frac{|\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - |\overrightarrow{a} - \overrightarrow{b}|^2}{2|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

性质 设
$$\theta$$
 是向量 \overrightarrow{a} 和 \overrightarrow{b} 夹角,则
$$\cos \theta = \frac{|\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - |\overrightarrow{a} - \overrightarrow{b}|^2}{2|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

证明 这是由三角形的余弦定理:

$$|BA|^2 = |OA|^2 + |OB|^2 - 2|OA| \cdot |OB| \cdot \cos \theta$$

性质 设
$$\theta$$
 是向量 \overrightarrow{a} 和 \overrightarrow{b} 夹角,则
$$\cos \theta = \frac{|\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - |\overrightarrow{a} - \overrightarrow{b}|^2}{2|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

证明 这是由三角形的余弦定理:

$$|BA|^2 = |OA|^2 + |OB|^2 - 2|OA| \cdot |OB| \cdot \cos \theta$$

$$\Rightarrow |\overrightarrow{a} - \overrightarrow{b}|^2 = |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - 2|\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \theta$$

如图,存在唯一的数 λ ,使得:

$$\overrightarrow{OM'} = \lambda e_{\overrightarrow{u}}$$

如图,存在唯一的数 λ ,使得:

$$\overrightarrow{OM'} = \lambda e_{\overrightarrow{u}}$$

该 λ 称为 \overrightarrow{a} 在 \overrightarrow{u} 方向上的投影,记为:

如图,存在唯一的数 λ ,使得:

$$\overrightarrow{OM'} = \lambda e_{\overrightarrow{u}}$$

该 λ 称为 \overrightarrow{a} 在 \overrightarrow{u} 方向上的投影,记为:

$$\lambda = \operatorname{Prj}_{\overrightarrow{u}} \overrightarrow{a}$$

如图,存在唯一的数 λ ,使得:

$$\overrightarrow{OM'} = \lambda e_{\overrightarrow{u}}$$

该 λ 称为 \overrightarrow{a} 在 \overrightarrow{u} 方向上的投影,记为:

$$\lambda = \operatorname{Prj}_{\overrightarrow{u}} \overrightarrow{a}$$

性质 设 θ 为 \overrightarrow{a} 和 \overrightarrow{u} 的夹角,则成立

$$Prj_{\overrightarrow{u}}\overrightarrow{a} = |\overrightarrow{a}|\cos\theta$$
,

如图,存在唯一的数 λ ,使得:

$$\overrightarrow{OM'} = \lambda e_{\overrightarrow{u}}$$

该 λ 称为 \overrightarrow{a} 在 \overrightarrow{u} 方向上的投影,记为:

$$\lambda = \operatorname{Prj}_{\overrightarrow{u}} \overrightarrow{a}$$

性质 设 θ 为 \overrightarrow{a} 和 \overrightarrow{u} 的夹角,则成立

$$\operatorname{Prj}_{\overrightarrow{u}}\overrightarrow{a} = |\overrightarrow{a}|\cos\theta, \qquad \overrightarrow{OM'} = (|\overrightarrow{a}|\cos\theta)e_{\overrightarrow{u}}.$$

如图,存在唯一的数 λ ,使得:

$$\overrightarrow{OM'} = \lambda e_{\overrightarrow{u}}$$

该 λ 称为 \overrightarrow{a} 在 \overrightarrow{u} 方向上的投影,记为:

$$\lambda = \operatorname{Prj}_{\overrightarrow{u}} \overrightarrow{a}$$

性质 设 θ 为 \overrightarrow{a} 和 \overrightarrow{u} 的夹角,则成立

$$\operatorname{Prj}_{\overrightarrow{u}}\overrightarrow{a} = |\overrightarrow{a}|\cos\theta, \qquad \overrightarrow{OM'} = (|\overrightarrow{a}|\cos\theta)e_{\overrightarrow{u}}.$$

如图,存在唯一的数 λ ,使得:

$$\overrightarrow{OM'} = \lambda e_{\overrightarrow{u}}$$

该 λ 称为 \overrightarrow{a} 在 \overrightarrow{u} 方向上的投影,记为:

$$\lambda = \operatorname{Prj}_{\overrightarrow{u}} \overrightarrow{a}$$

性质 设 θ 为 \overrightarrow{a} 和 \overrightarrow{u} 的夹角,则成立

$$\operatorname{Prj}_{\overrightarrow{u}}\overrightarrow{a} = |\overrightarrow{a}|\cos\theta, \qquad \overrightarrow{OM'} = (|\overrightarrow{a}|\cos\theta)e_{\overrightarrow{u}}.$$

证明 只需证 $\overrightarrow{OM'}$ 和 $(|\overrightarrow{a}|\cos\theta)e_{\overrightarrow{u}}$

既同向,也同长度。分情况:

•
$$\theta \leq \frac{\pi}{2}$$

•
$$\theta \geq \frac{\pi}{2}$$

如图,存在唯一的数 λ ,使得:

$$\overrightarrow{OM'} = \lambda e_{\overrightarrow{u}}$$

该 λ 称为 \overrightarrow{a} 在 \overrightarrow{u} 方向上的投影, 记为:

$$\lambda = \operatorname{Prj}_{\overrightarrow{u}} \overrightarrow{a}$$

性质 设 θ 为 \overrightarrow{a} 和 \overrightarrow{u} 的夹角,则成立

$$\operatorname{Prj}_{\overrightarrow{u}}\overrightarrow{\alpha} = |\overrightarrow{\alpha}|\cos\theta, \qquad \overrightarrow{OM'} = \left(|\overrightarrow{\alpha}|\cos\theta\right)e_{\overrightarrow{u}}.$$

- $\theta \leq \frac{\pi}{2}$

如图,存在唯一的数 λ ,使得:

$$\overrightarrow{OM'} = \lambda e_{\overrightarrow{u}}$$

该 λ 称为 \overrightarrow{a} 在 \overrightarrow{u} 方向上的投影, 记为:

$$\lambda = \operatorname{Prj}_{\overrightarrow{u}} \overrightarrow{a}$$

性质 设 θ 为 \overrightarrow{a} 和 \overrightarrow{u} 的夹角,则成立

$$\operatorname{Prj}_{\overrightarrow{u}}\overrightarrow{\alpha} = |\overrightarrow{\alpha}|\cos\theta, \qquad \overrightarrow{OM'} = \left(|\overrightarrow{\alpha}|\cos\theta\right)e_{\overrightarrow{u}}.$$

- $\theta \leq \frac{\pi}{2}$

如图,存在唯一的数 λ ,使得:

$$\overrightarrow{OM'} = \lambda e_{\overrightarrow{u}}$$

该 λ 称为 \overrightarrow{a} 在 \overrightarrow{u} 方向上的投影, 记为:

$$\lambda = \operatorname{Prj}_{\overrightarrow{u}} \overrightarrow{a}$$

性质 设 θ 为 \overrightarrow{a} 和 \overrightarrow{u} 的夹角. 则成立

$$\operatorname{Prj}_{\overrightarrow{u}}\overrightarrow{a} = |\overrightarrow{a}|\cos\theta, \qquad \overrightarrow{OM'} = (|\overrightarrow{a}|\cos\theta)e_{\overrightarrow{u}}.$$

- $\theta \leq \frac{\pi}{2}$

如图,存在唯一的数 λ ,使得:

$$\overrightarrow{OM'} = \lambda e_{\overrightarrow{u}}$$

该 λ 称为 \overrightarrow{a} 在 \overrightarrow{u} 方向上的投影, 记为:

$$\lambda = \operatorname{Prj}_{\overrightarrow{u}} \overrightarrow{a}$$

性质 设 θ 为 \overrightarrow{a} 和 \overrightarrow{u} 的夹角. 则成立

$$\operatorname{Prj}_{\overrightarrow{u}}\overrightarrow{a} = |\overrightarrow{a}|\cos\theta, \qquad \overrightarrow{OM'} = (|\overrightarrow{a}|\cos\theta)e_{\overrightarrow{u}}.$$

- $\theta \leq \frac{\pi}{2}$

We are here now...

◆ 向量的基本概念

♣ 向量的坐标表示

♥ 向量的数量积

♠ 向量的向量积

М

- 点 M ←→ 三元数组 (x, y, z): 以 (x, y, z) 作为点 M 的坐标
- \overrightarrow{AB}

- 点 M ←→ 三元数组 (x, y, z): 以 (x, y, z) 作为点 M 的坐标
- \bullet \overrightarrow{AB} $\overset{\mathbb{T}8}{\longleftrightarrow}$ \overrightarrow{OM}

- 点 M ←→ 三元数组 (x, y, z): 以 (x, y, z) 作为点 M 的坐标
- \overrightarrow{AB} $\stackrel{\text{平移}}{\longleftrightarrow}$ \overrightarrow{OM}

- 点 M ←→ 三元数组 (x, y, z): 以 (x, y, z) 作为点 M 的坐标
- $\overrightarrow{AB} \overset{\mathbb{P}^{8}}{\longleftrightarrow} \overrightarrow{OM}$: 以 (x, y, z) 作为向量 \overrightarrow{AB} 的坐标

- 点 M ←→ 三元数组 (x, y, z): 以 (x, y, z) 作为点 M 的坐标
- $\overrightarrow{AB} \overset{\mathbb{P}^{8}}{\longleftrightarrow} \overrightarrow{OM}$: 以 (x, y, z) 作为向量 \overrightarrow{AB} 的坐标

- 点 M ←→ 三元数组 (x, y, z): 以 (x, y, z) 作为点 M 的坐标
- $\overrightarrow{AB} \overset{\mathbb{P}^{8}}{\longleftrightarrow} \overrightarrow{OM}$: 以 (x, y, z) 作为向量 \overrightarrow{AB} 的坐标

- 点 M ←→ 三元数组 (x, y, z):以 (x, y, z) 作为点 M 的坐标
- $\overrightarrow{AB} \overset{\mathbb{P}^{8}}{\longleftrightarrow} \overrightarrow{OM}$: 以 (x, y, z) 作为向量 \overrightarrow{AB} 的坐标

- 点 M ←→ 三元数组 (x, y, z): 以 (x, y, z) 作为点 M 的坐标
- $\overrightarrow{AB} \overset{\text{平8}}{\longleftrightarrow} \overrightarrow{OM}$: 以 (x, y, z) 作为向量 \overrightarrow{AB} 的坐标

- 点 M ←→ 三元数组 (x, y, z): 以 (x, y, z) 作为点 M 的坐标
- $\overrightarrow{AB} \overset{\text{平8}}{\longleftrightarrow} \overrightarrow{OM}$: 以 (x, y, z) 作为向量 \overrightarrow{AB} 的坐标

- 点 M ←→ 三元数组 (x, y, z): 以 (x, y, z) 作为点 M 的坐标
- $\overrightarrow{AB} \overset{\text{平8}}{\longleftrightarrow} \overrightarrow{OM}$: 以 (x, y, z) 作为向量 \overrightarrow{AB} 的坐标

- 点 M ←→ 三元数组 (x, y, z): 以 (x, y, z) 作为点 M 的坐标
- $\overrightarrow{AB} \overset{\text{平8}}{\longleftrightarrow} \overrightarrow{OM}$: 以 (x, y, z) 作为向量 \overrightarrow{AB} 的坐标

性质 向量 \overrightarrow{AB} 的坐标为 (x, y, z) 当且仅当 $\overrightarrow{AB} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ 。

性质 向量 \overrightarrow{AB} 的坐标为 (x, y, z) 当且仅当 $\overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ 。即

$$\overrightarrow{AB} = (x, y, z) \iff \overrightarrow{AB} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$

性质 向量 \overrightarrow{AB} 的坐标为 (x, y, z) 当且仅当 $\overrightarrow{AB} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ 。即 $\overrightarrow{AB} = (x, y, z) \iff \overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$

必要性

$$\overrightarrow{AB} = (x, y, z)$$

?\Rightarrow
$$\overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$

性质 向量 \overrightarrow{AB} 的坐标为 (x, y, z) 当且仅当 $\overrightarrow{AB} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ 。即 $\overrightarrow{AB} = (x, y, z) \iff \overrightarrow{AB} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$

证明

性质 向量 \overrightarrow{AB} 的坐标为 (x, y, z) 当且仅当 $\overrightarrow{AB} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ 。即 $\overrightarrow{AB} = (x, y, z) \iff \overrightarrow{AB} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$

性质 向量 \overrightarrow{AB} 的坐标为 (x, y, z) 当且仅当 $\overrightarrow{AB} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ 。即

$$\overrightarrow{AB} = (x, y, z) \iff \overrightarrow{AB} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$

证明

• 必要性

• 必要性
$$\overrightarrow{AB} = (x, y, z)$$

$$\Rightarrow \quad \triangle M \text{ which } AB = (x, y, z)$$

$$? \Rightarrow \overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$

$$x \xrightarrow{j} y$$

● 必要性
$$\overrightarrow{AB} = (x, y, z)$$
⇒ 点 M 坐标为 (x, y, z)

$$? \Rightarrow \overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$

$$x \xrightarrow{j} y$$

● 必要性
$$\overrightarrow{AB} = (x, y, z)$$
⇒ 点M坐标为(x, y, z)
$$? \Rightarrow \overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$

$$x \overrightarrow{i}$$

$$\overrightarrow{AB} = (x, y, z)$$

$$\overrightarrow{AB} = (x, y, z)$$

● 必要性
$$\overrightarrow{AB} = (x, y, z)$$
⇒ 点 M 坐标为 (x, y, z)

$$? \Rightarrow \overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$

$$x \overrightarrow{i}$$

$$\overrightarrow{j}$$
 $\overrightarrow{AB} = (x, y, z)$

• 必要性

必要性
$$\overrightarrow{AB} = (x, y, z)$$

$$\Rightarrow \qquad \triangle M \stackrel{?}{=} M \stackrel$$

● 必要性
$$\overrightarrow{AB} = (x, y, z)$$
⇒ 点 M 坐标为 (x, y, z)

$$? \Rightarrow \overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$

$$x \overrightarrow{i}$$

$$\overrightarrow{AB} = (x, y, z)$$

● 必要性
$$\overrightarrow{AB} = (x, y, z)$$
⇒ 点 M 坐标为 (x, y, z)

$$? \Rightarrow \overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$

$$\overrightarrow{AB} = (x, y, z)$$

● 必要性
$$\overrightarrow{AB} = (x, y, z)$$
⇒ 点 M 坐标为 (x, y, z)
⇒ $\overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$
?⇒ $\overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$

• 必要性

● 必要性
$$\overrightarrow{AB} = (x, y, z)$$
⇒ 点M坐标为(x, y, z)
⇒ $\overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$
?⇒ $\overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$

● 必要性
$$\overrightarrow{AB} = (x, y, z)$$
⇒ 点 M 坐标为 (x, y, z)
⇒ $\overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$
⇒ $\overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$

$$\overrightarrow{AB} = (x, y, z)$$

• 必要性
$$\overrightarrow{AB} = (x, y, z)$$

$$\Rightarrow \quad \underline{\triangle}M \leq \overline{AB} = (x, y, z)$$

$$\Rightarrow \quad \overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$

$$\Rightarrow \quad \overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$
• 充分性: 略

性质 向量 \overrightarrow{AB} 的坐标为 (x, y, z) 当且仅当 $\overrightarrow{AB} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ 。即

$$\overrightarrow{AB} = (x, y, z) \iff \overrightarrow{AB} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$

注 以后直接写: $\overrightarrow{AB} = (x, y, z) = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$

证明

● 必要性
$$\overrightarrow{AB} = (x, y, z)$$
⇒ 点 \overrightarrow{M} 坐标为 (x, y, z)
⇒ $\overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$
⇒ $\overrightarrow{AB} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$

$$\overrightarrow{AB} = (x, y, z)$$

• 充分性: 略

例 设有两点
$$A = (x_1, y_1, z_1)$$
 和 $B = (x_2, y_2, z_2)$,则 $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$

例 设有两点 $A = (x_1, y_1, z_1)$ 和 $B = (x_2, y_2, z_2)$,则 $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$

证明 这是
$$\overrightarrow{AB} =$$

例 设有两点 $A = (x_1, y_1, z_1)$ 和 $B = (x_2, y_2, z_2)$,则 $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$

例 设有两点 $A = (x_1, y_1, z_1)$ 和 $B = (x_2, y_2, z_2)$,则 $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$

例 设有两点 $A = (x_1, y_1, z_1)$ 和 $B = (x_2, y_2, z_2)$,则

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

证明 这是

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 \overrightarrow{i} + y_2 \overrightarrow{j} + z_2 \overrightarrow{k}) - ($$

例 设有两点 $A = (x_1, y_1, z_1)$ 和 $B = (x_2, y_2, z_2)$,则

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

证明 这是

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 \overrightarrow{i} + y_2 \overrightarrow{j} + z_2 \overrightarrow{k}) - (x_1 \overrightarrow{i} + y_1 \overrightarrow{j} + z_1 \overrightarrow{k})$$

例 设有两点 $A = (x_1, y_1, z_1)$ 和 $B = (x_2, y_2, z_2)$,则

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

证明 这是
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 \overrightarrow{i} + y_2 \overrightarrow{j} + z_2 \overrightarrow{k}) - (x_1 \overrightarrow{i} + y_1 \overrightarrow{j} + z_1 \overrightarrow{k})$$

利用坐标值,可以方便地计算:

- 向量的线性运算
- 向量的长度
- 向量间的夹角
- 向量的投影

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,设 $\lambda \in \mathbb{R}$,则 $\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$ $\lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,设 $\lambda \in \mathbb{R}$,则 $\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$ $\lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$

证明 这是
$$\overrightarrow{a} + \overrightarrow{b} =$$

$$\lambda \overrightarrow{a} =$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,设 $\lambda \in \mathbb{R}$,则
$$\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$$

$$\lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$$

$$\overrightarrow{a} + \overrightarrow{b} = (a_x, a_y, a_z) + (b_x, b_y, b_z)$$

$$\lambda \overrightarrow{a} =$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,设 $\lambda \in \mathbb{R}$,则
$$\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$$

$$\lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$$
 证明 这是

$$\overrightarrow{a} + \overrightarrow{b} = (a_x, a_y, a_z) + (b_x, b_y, b_z)$$

$$= (a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}) + (b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k})$$

$$\lambda \overrightarrow{a} =$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,设 $\lambda \in \mathbb{R}$,则
$$\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$$

$$\lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$$

证明 这是

$$\overrightarrow{a} + \overrightarrow{b} = (a_x, a_y, a_z) + (b_x, b_y, b_z)$$

$$= (a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}) + (b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k})$$

$$= (a_x + b_x) \overrightarrow{i} + (a_y + b_y) \overrightarrow{j} + (a_z + b_z) \overrightarrow{k}$$

$$\lambda \overrightarrow{a} =$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,设 $\lambda \in \mathbb{R}$,则
$$\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$$

$$\lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$$

证明 这是

$$\overrightarrow{a} + \overrightarrow{b} = (a_x, a_y, a_z) + (b_x, b_y, b_z)$$

$$= (a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}) + (b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k})$$

$$= (a_x + b_x) \overrightarrow{i} + (a_y + b_y) \overrightarrow{j} + (a_z + b_z) \overrightarrow{k}$$

$$= (a_x + b_x, a_y + b_y, a_z + b_z)$$

$$\lambda \overrightarrow{a} =$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,设 $\lambda \in \mathbb{R}$,则
$$\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$$

$$\lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$$

证明 这是

$$\overrightarrow{a} + \overrightarrow{b} = (a_x, a_y, a_z) + (b_x, b_y, b_z)$$

$$= (a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}) + (b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k})$$

$$= (a_x + b_x) \overrightarrow{i} + (a_y + b_y) \overrightarrow{j} + (a_z + b_z) \overrightarrow{k}$$

$$= (a_x + b_x, a_y + b_y, a_z + b_z)$$

$$\lambda \overrightarrow{a} = \lambda(a_x, a_y, a_z)$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,设 $\lambda \in \mathbb{R}$,则
$$\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$$

$$\lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$$

明 这是
$$\overrightarrow{a} + \overrightarrow{b} = (a_x, a_y, a_z) + (b_x, b_y, b_z)$$

$$= (a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}) + (b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k})$$

$$= (a_x + b_x) \overrightarrow{i} + (a_y + b_y) \overrightarrow{j} + (a_z + b_z) \overrightarrow{k}$$

$$= (a_x + b_x, a_y + b_y, a_z + b_z)$$

$$\lambda \overrightarrow{a} = \lambda(a_x, a_y, a_z) = \lambda \left(a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}\right)$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,设 $\lambda \in \mathbb{R}$,则 $\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$

 $\lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$

$$= \lambda a_{x} \overrightarrow{i} + \lambda a_{y} \overrightarrow{j} + \lambda a_{z} \overrightarrow{k}$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,设 $\lambda \in \mathbb{R}$,则 $\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$

 $\lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$

$$\overrightarrow{a} + \overrightarrow{b} = (a_x, a_y, a_z) + (b_x, b_y, b_z)$$

$$= (a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}) + (b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k})$$

$$= (a_x + b_x) \overrightarrow{i} + (a_y + b_y) \overrightarrow{j} + (a_z + b_z) \overrightarrow{k}$$

$$= (a_x + b_x, a_y + b_y, a_z + b_z)$$

 $\lambda \overrightarrow{a} = \lambda(a_x, a_y, a_z) = \lambda(a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k})$

 $= \lambda a_x \overrightarrow{i} + \lambda a_y \overrightarrow{j} + \lambda a_z \overrightarrow{k} = (\lambda a_x, \lambda a_y, \lambda a_z) \quad \textcircled{a}$

例 设向量
$$\overrightarrow{a} = (7, -1, 10), \overrightarrow{b} = (2, 1, 2), \$$
向量 \overrightarrow{x} 满足 $\overrightarrow{a} = 2\overrightarrow{b} - 3\overrightarrow{x}$ 。求 \overrightarrow{x}

例 设向量
$$\overrightarrow{a} = (7, -1, 10), \overrightarrow{b} = (2, 1, 2), \$$
向量 \overrightarrow{x} 满足 $\overrightarrow{a} = 2\overrightarrow{b} - 3\overrightarrow{x}$ 。求 \overrightarrow{x}

解

$$\overrightarrow{x} = \frac{1}{3}(2\overrightarrow{b} - \overrightarrow{a})$$

例 设向量
$$\overrightarrow{a} = (7, -1, 10), \overrightarrow{b} = (2, 1, 2), \$$
向量 \overrightarrow{x} 满足 $\overrightarrow{a} = 2\overrightarrow{b} - 3\overrightarrow{x}$ 。求 \overrightarrow{x}

解

$$\overrightarrow{x} = \frac{1}{3}(2\overrightarrow{b} - \overrightarrow{a}) = \frac{1}{3}[(4, 2, 4) - (7, -1, 10)]$$

例 设向量
$$\overrightarrow{a} = (7, -1, 10), \overrightarrow{b} = (2, 1, 2), \$$
向量 \overrightarrow{x} 满足 $\overrightarrow{a} = 2\overrightarrow{b} - 3\overrightarrow{x}$ 。求 \overrightarrow{x}

解

$$\overrightarrow{x} = \frac{1}{3} (2\overrightarrow{b} - \overrightarrow{a}) = \frac{1}{3} [(4, 2, 4) - (7, -1, 10)]$$
$$= \frac{1}{3} (-3, 3, -6)$$

例 设向量
$$\overrightarrow{a} = (7, -1, 10), \overrightarrow{b} = (2, 1, 2), \$$
向量 \overrightarrow{x} 满足 $\overrightarrow{a} = 2\overrightarrow{b} - 3\overrightarrow{x}$ 。求 \overrightarrow{x}

解

$$\overrightarrow{x} = \frac{1}{3} (2\overrightarrow{b} - \overrightarrow{a}) = \frac{1}{3} [(4, 2, 4) - (7, -1, 10)]$$
$$= \frac{1}{3} (-3, 3, -6) = (-1, 1, -2)$$

性质 向量 $\overrightarrow{a} = (x, y, z)$ 的长度是

$$|\overrightarrow{a}| =$$

性质 向量 $\overrightarrow{a} = (x, y, z)$ 的长度是

$$|\overrightarrow{a}| = \sqrt{x^2 + y^2 + z^2}.$$

性质 向量 $\overrightarrow{a} = (x, y, z)$ 的长度是

$$|\overrightarrow{a}| = \sqrt{x^2 + y^2 + z^2}.$$

证明 如图, 平移 **a** 得 **OM**,

性质 向量 $\overrightarrow{a} = (x, y, z)$ 的长度是

$$|\overrightarrow{a}| = \sqrt{x^2 + y^2 + z^2}.$$

$$|\overrightarrow{a}|^2 = \left| \overrightarrow{OM} \right|^2$$

性质 向量 $\overrightarrow{a} = (x, y, z)$ 的长度是

$$|\overrightarrow{a}| = \sqrt{x^2 + y^2 + z^2}.$$

$$|\overrightarrow{a}|^2 = \left| \overrightarrow{OM} \right|^2$$

性质 向量 $\overrightarrow{a} = (x, y, z)$ 的长度是

$$|\overrightarrow{a}| = \sqrt{x^2 + y^2 + z^2}.$$

$$|\overrightarrow{a}|^2 = \left|\overrightarrow{OM}\right|^2$$

性质 向量 $\overrightarrow{a} = (x, y, z)$ 的长度是

$$|\overrightarrow{a}| = \sqrt{x^2 + y^2 + z^2}.$$

$$|\overrightarrow{a}|^2 = |\overrightarrow{OM}|^2 = x^2 + y^2 + z^2$$

性质 向量 $\overrightarrow{a} = (x, y, z)$ 的长度是

$$|\overrightarrow{a}| = \sqrt{x^2 + y^2 + z^2}.$$

$$|\overrightarrow{a}|^2 = |\overrightarrow{OM}|^2 = x^2 + y^2 + z^2$$

$$|\overrightarrow{AB}| =$$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

证明 这是

$$\overrightarrow{AB} =$$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

证明 这是

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

证明 这是

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\Rightarrow |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

证明 这是

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\Rightarrow |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

例 设点 A(4,0,5) 和 B(7,1,3),求 $|\overrightarrow{AB}|$ 及 $e_{\overrightarrow{AB}}$ 。

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

证明 这是

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\Rightarrow |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

例 设点
$$A(4,0,5)$$
 和 $B(7,1,3)$,求 $|\overrightarrow{AB}|$ 及 $e_{\overrightarrow{AB}}$ 。

解

$$\overrightarrow{AB} = |\overrightarrow{AB}| = |\overrightarrow{AB}|$$

$$e_{\overrightarrow{AB}} =$$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

证明 这是

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\Rightarrow |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

例 设点
$$A(4,0,5)$$
 和 $B(7,1,3)$,求 $|\overrightarrow{AB}|$ 及 $e_{\overrightarrow{AB}}$ 。

解

$$\overrightarrow{AB} = (7-4, 1-0, 3-5)$$
 $|\overrightarrow{AB}| =$

 $e_{\overrightarrow{AB}} =$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

证明 这是

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\Rightarrow |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

例 设点
$$A(4,0,5)$$
 和 $B(7,1,3)$,求 $|\overrightarrow{AB}|$ 及 $e_{\overrightarrow{AB}}$ 。

解

$$\overrightarrow{AB} = (7-4, 1-0, 3-5) = (3, 1, -2)$$

 $|\overrightarrow{AB}| =$

$$e_{\overrightarrow{AB}} =$$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

证明 这是

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\Rightarrow |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

例 设点
$$A(4,0,5)$$
 和 $B(7,1,3)$,求 $|\overrightarrow{AB}|$ 及 $e_{\overrightarrow{AB}}$.

解

$$\overrightarrow{AB} = (7-4, 1-0, 3-5) = (3, 1, -2)$$

$$|\overrightarrow{AB}| = \sqrt{3^2 + 1^2 + (-2)^2}$$

 $e_{\overrightarrow{AB}} =$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

证明 这是

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\Rightarrow |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

例 设点
$$A(4,0,5)$$
 和 $B(7,1,3)$,求 $|\overrightarrow{AB}|$ 及 $e_{\overrightarrow{AB}}$ 。

解

$$\overrightarrow{AB} = (7 - 4, 1 - 0, 3 - 5) = (3, 1, -2)$$
$$|\overrightarrow{AB}| = \sqrt{3^2 + 1^2 + (-2)^2} = \sqrt{14}$$

 $e_{\overrightarrow{AB}} =$

性质 设点 $A(x_1, y_1, z_1)$ 和 $B(x_2, y_2, z_2)$,则 $|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

证明 这是

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\Rightarrow |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

例 设点 A(4,0,5) 和 B(7,1,3),求 $|\overrightarrow{AB}|$ 及 $e_{\overrightarrow{AB}}$ 。

$$\overrightarrow{AB} = (7 - 4, 1 - 0, 3 - 5) = (3, 1, -2)$$
$$|\overrightarrow{AB}| = \sqrt{3^2 + 1^2 + (-2)^2} = \sqrt{14}$$
$$e_{\overrightarrow{AB}} = \frac{1}{|\overrightarrow{AB}|} \overrightarrow{AB}$$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
证明 这是

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\Rightarrow |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

例 设点
$$A(4,0,5)$$
 和 $B(7,1,3)$,求 $|\overrightarrow{AB}|$ 及 $e_{\overrightarrow{AB}}$ 。

解

$$\overrightarrow{AB} = (7 - 4, 1 - 0, 3 - 5) = (3, 1, -2)$$
$$|\overrightarrow{AB}| = \sqrt{3^2 + 1^2 + (-2)^2} = \sqrt{14}$$
$$e_{\overrightarrow{AB}} = \frac{1}{|\overrightarrow{AB}|} \overrightarrow{AB} = \frac{1}{\sqrt{14}} (3, 1, -2)$$

 $|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ 证明 这是

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\Rightarrow |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

例 设点
$$A(4,0,5)$$
 和 $B(7,1,3)$,求 $|\overrightarrow{AB}|$ 及 $e_{\overrightarrow{AB}}$ 。

解

$$\overrightarrow{AB} = (7-4, 1-0, 3-5) = (3, 1, -2)$$

 $|\overrightarrow{AB}| = \sqrt{3^2 + 1^2 + (-2)^2} = \sqrt{14}$ $e_{\overrightarrow{AB}} = \frac{1}{|\overrightarrow{AB}|} \overrightarrow{AB} = \frac{1}{\sqrt{14}} (3, 1, -2) = \left(\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}\right)_{\text{ at } \frac{1}{\sqrt{14}}, \frac{1}{\sqrt{14}}}$

 $\cos \theta =$

性质 设
$$\theta$$
 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则

性质 设
$$\theta$$
 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则
$$\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则

$$\cos\theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

<mark>证明</mark> 由三角形余弦定理,成立

$$\cos\theta = \frac{|\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - |\overrightarrow{a} - \overrightarrow{b}|^2}{2|\overrightarrow{a}| |\overrightarrow{b}|}$$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则

$$\cos\theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

$$\cos \theta = \frac{|\vec{a}|^2 + |\vec{b}|^2 - |\vec{a} - \vec{b}|^2}{2|\vec{a}| \cdot |\vec{b}|}$$

$$= \frac{() + () - []}{2|\vec{a}| \cdot |\vec{b}|}$$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则

$$\cos\theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

$$\cos \theta = \frac{|\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - |\overrightarrow{a} - \overrightarrow{b}|^2}{2|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$= \frac{(a_x^2 + a_y^2 + a_z^2) + (\qquad) - [\qquad \qquad]}{2|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则

$$\cos\theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

$$\cos \theta = \frac{|\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 - |\overrightarrow{a} - \overrightarrow{b}|^2}{2|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$= \frac{(a_x^2 + a_y^2 + a_z^2) + (b_x^2 + b_y^2 + b_z^2) - \left[}{2|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则

$$\cos\theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

$$\cos \theta = \frac{|\vec{a}|^2 + |\vec{b}|^2 - |\vec{a} - \vec{b}|^2}{2|\vec{a}| \cdot |\vec{b}|}$$

$$= \frac{(a_x^2 + a_y^2 + a_z^2) + (b_x^2 + b_y^2 + b_z^2) - \left[(a_x - b_x)^2 + (a_y - b_y)^2 + (a_z - b_z)^2 \right]}{2|\vec{a}| \cdot |\vec{b}|}$$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则

$$\cos\theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

$$\cos \theta = \frac{|\vec{a}|^2 + |\vec{b}|^2 - |\vec{a} - \vec{b}|^2}{2|\vec{a}| \cdot |\vec{b}|}$$

$$= \frac{(a_x^2 + a_y^2 + a_z^2) + (b_x^2 + b_y^2 + b_z^2) - \left[(a_x - b_x)^2 + (a_y - b_y)^2 + (a_z - b_z)^2 \right]}{2|\vec{a}| \cdot |\vec{b}|}$$

$$= \frac{a_x b_x + a_y b_y + a_z b_z}{|\vec{a}| \cdot |\vec{b}|}$$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则

$$\cos\theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

证明 由三角形余弦定理,成立

$$\cos \theta = \frac{|\vec{a}|^2 + |\vec{b}|^2 - |\vec{a} - \vec{b}|^2}{2|\vec{a}| \cdot |\vec{b}|}$$

$$= \frac{(a_x^2 + a_y^2 + a_z^2) + (b_x^2 + b_y^2 + b_z^2) - \left[(a_x - b_x)^2 + (a_y - b_y)^2 + (a_z - b_z)^2 \right]}{2|\vec{a}| \cdot |\vec{b}|}$$

$$= \frac{a_x b_x + a_y b_y + a_z b_z}{|\vec{a}| \cdot |\vec{b}|}$$

例 设有三点 M(1, 1, 1), A(2, 2, 1), B(2, 1, 2), 计算角 $\theta = \angle AMB$ 。

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则 $\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$

例 设有三点 M(1, 1, 1), A(2, 2, 1), B(2, 1, 2), 计算角 $\theta = \angle AMB$ 。

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则 $\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$

例 设有三点 M(1, 1, 1), A(2, 2, 1), B(2, 1, 2), 计算角 $\theta = \angle AMB$ 。

性质 设
$$\theta$$
 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则
$$\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

例 设有三点 M(1, 1, 1), A(2, 2, 1), B(2, 1, 2), 计算角 $\theta = \angle AMB$ 。

解

$$\overrightarrow{MA} = ($$
), $\overrightarrow{MB} = ($)

性质 设
$$\theta$$
 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则
$$\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

例 设有三点 M(1, 1, 1), A(2, 2, 1), B(2, 1, 2), 计算角 $\theta = \angle AMB$ 。

解

$$\overrightarrow{MA} = (1, 1, 0), \qquad \overrightarrow{MB} = ($$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则 $\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$

例 设有三点 M(1, 1, 1), A(2, 2, 1), B(2, 1, 2), 计算角 $\theta = \angle AMB$ 。

$$\overrightarrow{MA} = (1, 1, 0), \qquad \overrightarrow{MB} = (1, 0, 1)$$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则 $\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$

例 设有三点 M(1, 1, 1), A(2, 2, 1), B(2, 1, 2), 计算角 $\theta = \angle AMB$ 。

$$\overrightarrow{MA} = (1, 1, 0), \qquad \overrightarrow{MB} = (1, 0, 1)$$

$$\Rightarrow$$
 cos $\theta =$

性质 设
$$\theta$$
 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则
$$\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

例 设有三点 M(1, 1, 1), A(2, 2, 1), B(2, 1, 2), 计算角 $\theta = \angle AMB$ 。

$$\overrightarrow{MA} = (1, 1, 0), \qquad \overrightarrow{MB} = (1, 0, 1)$$

$$\cos \theta = \frac{1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1}{1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1}$$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则 $a_y b_y + a_z b_z$

$$\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

例 设有三点 M(1, 1, 1), A(2, 2, 1), B(2, 1, 2), 计算角 $\theta = \angle AMB$ 。

$$\overrightarrow{MA} = (1, 1, 0), \qquad \overrightarrow{MB} = (1, 0, 1)$$

$$\Rightarrow \cos \theta = \frac{1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1}{\sqrt{1^2 + 1^2 + 0^2}}$$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则

$$\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

例 设有三点 M(1, 1, 1), A(2, 2, 1), B(2, 1, 2), 计算角 $\theta = \angle AMB$ 。

$$\overrightarrow{MA} = (1, 1, 0), \qquad \overrightarrow{MB} = (1, 0, 1)$$

 $1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1$

$$\Rightarrow \cos \theta = \frac{1111313131}{\sqrt{1^2 + 1^2 + 0^2} \cdot \sqrt{1^2 + 0^2 + 1}}$$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则

$$\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

例 设有三点 M(1, 1, 1), A(2, 2, 1), B(2, 1, 2), 计算角 $\theta = \angle AMB$ 。

$$\overrightarrow{MA} = (1, 1, 0), \qquad \overrightarrow{MB} = (1, 0, 1)$$

$$\Rightarrow \cos \theta = \frac{1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1}{\sqrt{1^2 + 1^2 + 0^2} \cdot \sqrt{1^2 + 0^2 + 1^2}} = \frac{1}{2}$$

性质 设 θ 为向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$ 的夹角,则

$$\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

例 设有三点 M(1, 1, 1), A(2, 2, 1), B(2, 1, 2), 计算角 $\theta = \angle AMB$ 。

$$\overrightarrow{MA} = (1, 1, 0), \qquad \overrightarrow{MB} = (1, 0, 1)$$

$$\Rightarrow \cos \theta = \frac{1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1}{\sqrt{1^2 + 1^2 + 0^2} \cdot \sqrt{1^2 + 0^2 + 1^2}}$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,则 $\Pr[\overrightarrow{b} \overrightarrow{a} = (a_x, a_y, a_z)]$ 和 $\overrightarrow{b} = (a_x, b_y, b_z)$,则

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,则
$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{b}|}.$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,则
$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{b}|}.$$

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = |\overrightarrow{a}| \cdot \cos \theta$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,则
$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{b}|}.$$

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = |\overrightarrow{a}| \cdot \cos \theta = |\overrightarrow{a}| \cdot \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,则
$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{b}|}.$$

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = |\overrightarrow{a}| \cdot \cos \theta = |\overrightarrow{a}| \cdot \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|}$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,则
$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{b}|}.$$

$$\operatorname{Prj}_{\overrightarrow{b}}\overrightarrow{a} = |\overrightarrow{a}| \cdot \cos \theta = |\overrightarrow{a}| \cdot \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|}$$

例 设
$$\overrightarrow{a} = (1, -3, 2), \overrightarrow{b} = (-2, 0, 3),$$
 计算角 $\Pr_{\overrightarrow{b}} \overrightarrow{a}$.

性质 设向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,则 $\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_x b_x + a_y b_y + a_z b_z}{\overrightarrow{b}}.$

证明 这是

$$\operatorname{Prj}_{\overrightarrow{b}}\overrightarrow{a} = |\overrightarrow{a}| \cdot \cos \theta = |\overrightarrow{a}| \cdot \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|}$$

例设
$$\overrightarrow{a} = (1, -3, 2), \overrightarrow{b} = (-2, 0, 3),$$
 计算角 $\Pr_{\overrightarrow{b}} \overrightarrow{a}$ 。

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,则
$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{b}|}.$$

证明 这是

$$\operatorname{Prj}_{\overrightarrow{b}}\overrightarrow{a} = |\overrightarrow{a}| \cdot \cos \theta = |\overrightarrow{a}| \cdot \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|}$$

例 设
$$\overrightarrow{a} = (1, -3, 2), \overrightarrow{b} = (-2, 0, 3),$$
 计算角 $\Pr_{\overrightarrow{b}} \overrightarrow{a}$ 。

$$\text{Prj}_{\overrightarrow{b}}\overrightarrow{a} =$$

性质 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,则
$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{b}|}.$$

证明 这是

$$\operatorname{Prj}_{\overrightarrow{b}}\overrightarrow{a} = |\overrightarrow{a}| \cdot \cos \theta = |\overrightarrow{a}| \cdot \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|}$$

例 设
$$\overrightarrow{a} = (1, -3, 2), \overrightarrow{b} = (-2, 0, 3),$$
 计算角 $\Pr_{\overrightarrow{b}} \overrightarrow{a}$ 。

$$\text{Prj}_{\vec{b}} \vec{a} = \frac{1 \cdot (-2) + (-3) \cdot 0 + 2 \cdot 3}{2 \cdot 3}$$

性质 设向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,则 $\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_x b_x + a_y b_y + a_z b_z}{\overrightarrow{b}}.$

证明 这是

$$\operatorname{Prj}_{\overrightarrow{b}}\overrightarrow{a} = |\overrightarrow{a}| \cdot \cos \theta = |\overrightarrow{a}| \cdot \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|}$$

例 设
$$\overrightarrow{a} = (1, -3, 2), \overrightarrow{b} = (-2, 0, 3),$$
 计算角 $\Pr_{\overrightarrow{b}} \overrightarrow{a}$ 。

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{1 \cdot (-2) + (-3) \cdot 0 + 2 \cdot 3}{\sqrt{(-2)^2 + 0^2 + 3^2}}$$

性质 设向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$, 则 $\operatorname{Prj}_{\overrightarrow{b}}\overrightarrow{a} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{\overrightarrow{b}_{1}}.$

证明 这是

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = |\overrightarrow{a}| \cdot \cos \theta = |\overrightarrow{a}| \cdot \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|}$$

例 设
$$\overrightarrow{a} = (1, -3, 2), \overrightarrow{b} = (-2, 0, 3),$$
 计算角 $\Pr_{\overrightarrow{b}} \overrightarrow{a}$ 。

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{\alpha} = \frac{1 \cdot (-2) + (-3) \cdot 0 + 2 \cdot 3}{\sqrt{(-2)^2 + 0^2 + 3^2}} = \frac{4}{\sqrt{13}}.$$

We are here now...

◆ 向量的基本概念

♣ 向量的坐标表示

♥ 向量的数量积

♠ 向量的向量积

$$\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{b}|}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z.$$

$$\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{b}|}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z.$$

注 求夹角、投影的公式可以改写为

$$\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$\operatorname{Prj}_{\overrightarrow{b}}\overrightarrow{a} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z.$$

注 求夹角、投影的公式可以改写为

$$\cos \theta = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$$

定义 设向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,定义 \overrightarrow{a} 和 \overrightarrow{b} 数量积为:

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z.$$

注 求夹角、投影的公式可以改写为

$$\cos \theta = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$$

定义 设向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,定义 \overrightarrow{a} 和 \overrightarrow{b} 数量积为:

$$\overrightarrow{a}\cdot\overrightarrow{b}=a_{x}b_{x}+a_{y}b_{y}+a_{z}b_{z}.$$

注 求夹角、投影的公式可以改写为

$$\cos \theta = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$$

性质 $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \theta$

定义 设向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,定义 \overrightarrow{a} 和 \overrightarrow{b} 数量积为:

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_X b_X + a_y b_y + a_z b_z.$$

注 求夹角、投影的公式可以改写为

$$\cos \theta = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$$

性质 $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \theta$, 特别地 $\overrightarrow{a} \cdot \overrightarrow{a} =$

定义 设向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$,定义 \overrightarrow{a} 和 \overrightarrow{b} 数量积为:

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_X b_X + a_y b_y + a_z b_z.$$

注 求夹角、投影的公式可以改写为

$$\cos \theta = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$$

性质 $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \theta$,特别地 $\overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}|^2$

定义 设向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$, 定义 \overrightarrow{a} 和 \overrightarrow{b} 数量积为:

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z.$$

注 求夹角、投影的公式可以改写为

$$\cos \theta = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$$

性质 $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \theta$,特别地

定义 设向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 和 $\overrightarrow{b} = (b_x, b_y, b_z)$, 定义 \overrightarrow{a} 和 \overrightarrow{b} 数量积为:

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}.$$

注 求夹角、投影的公式可以改写为

$$\cos \theta = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}}{|\overrightarrow{b}|} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$$

性质 $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \theta$, 特别地 $\overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}|^2, \qquad \overrightarrow{a} \perp \overrightarrow{b} \iff \overrightarrow{a} \cdot \overrightarrow{b} = 0$

例 设空间中三个点 C(1, -1, 2), A(3, 3, 1), B(3, 1, 3)。 令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$, $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$ 。 求 $\overrightarrow{a} \cdot \overrightarrow{b}$, θ , $\Pr_{\overrightarrow{b}} \overrightarrow{a}$ 。

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$, $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$ 。求 $\overrightarrow{a} \cdot \overrightarrow{b}$, θ , $\Pr_{\overrightarrow{b}} \overrightarrow{a}$ 。

$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1), \overrightarrow{b} = \overrightarrow{CB} = (2, 2, 1)$$

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$, $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$ 。求 $\overrightarrow{a} \cdot \overrightarrow{b}$, θ , $\Pr_{\overrightarrow{b}} \overrightarrow{a}$ 。

$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1), \overrightarrow{b} = \overrightarrow{CB} = (2, 2, 1)$$

$$\overrightarrow{a} \cdot \overrightarrow{b} =$$

3.
$$\cos \theta =$$

4.
$$Prj \overrightarrow{a} =$$

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$, $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$ 。求 $\overrightarrow{a} \cdot \overrightarrow{b}$, θ , $\Pr_{\overrightarrow{b}} \overrightarrow{a}$ 。

$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1), \overrightarrow{b} = \overrightarrow{CB} = (2, 2, 1)$$

2.
$$\overrightarrow{a} \cdot \overrightarrow{b} = 2 \cdot 2 + 4 \cdot 2 + (-1) \cdot 1 = 11$$

3.
$$\cos \theta =$$

4.
$$Prj \rightarrow \vec{a} =$$

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。 令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$, $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$ 。 求 $\overrightarrow{a} \cdot \overrightarrow{b}$, θ , $\Pr_{\overrightarrow{b}} \overrightarrow{a}$ 。

2.
$$\overrightarrow{a} \cdot \overrightarrow{b} = 2 \cdot 2 + 4 \cdot 2 + (-1) \cdot 1 = 11$$

3.
$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

4.
$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$$

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$, $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$ 。求 $\overrightarrow{a} \cdot \overrightarrow{b}$, θ , $\Pr_{\overrightarrow{b}} \overrightarrow{a}$ 。

$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1), \overrightarrow{b} = \overrightarrow{CB} = (2, 2, 1)$$

2.
$$\overrightarrow{a} \cdot \overrightarrow{b} = 2 \cdot 2 + 4 \cdot 2 + (-1) \cdot 1 = 11$$

3.
$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{b}|} = \frac{11}{3\sqrt{21}}$$

4.
$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$$

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$, $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$ 。求 $\overrightarrow{a} \cdot \overrightarrow{b}$, θ , $\Pr_{\overrightarrow{a}} \overrightarrow{a}$ 。

2.
$$\overrightarrow{a} \cdot \overrightarrow{b} = 2 \cdot 2 + 4 \cdot 2 + (-1) \cdot 1 = 11$$

3.
$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{b}|} = \frac{11}{3\sqrt{21}}$$

4.
$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|} = \frac{11}{3}$$

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$, $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$ 。求 $\overrightarrow{a} \cdot \overrightarrow{b}$, θ , $\Pr_{\overrightarrow{b}} \overrightarrow{a}$ 。

$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1), \overrightarrow{b} = \overrightarrow{CB} = (2, 2, 1)$$

2.
$$\overrightarrow{a} \cdot \overrightarrow{b} = 2 \cdot 2 + 4 \cdot 2 + (-1) \cdot 1 = 11$$

3.
$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{b}|} = \frac{11}{3\sqrt{21}}, \text{ fix } \theta = \arccos \frac{11}{3\sqrt{21}} \approx 36.9^{\circ}$$

4.
$$\operatorname{Prj}_{\overrightarrow{b}} \overrightarrow{a} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|} = \frac{11}{3}$$

交換律
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$

分配律 $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$
结合律 $(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \cdot \overrightarrow{b})$

交換律
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$

分配律 $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$
结合律 $(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \cdot \overrightarrow{b})$

证明 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), \overrightarrow{c} = (c_x, c_y, c_z),$$
则

交換律
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$

分配律 $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$
结合律 $(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \cdot \overrightarrow{b})$

证明 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), \overrightarrow{c} = (c_x, c_y, c_z), 则$$

$$\overrightarrow{a} \cdot \overrightarrow{b}$$

交換律
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$

分配律 $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$
结合律 $(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \cdot \overrightarrow{b})$

证明 设
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
, $\overrightarrow{b} = (b_x, b_y, b_z)$, $\overrightarrow{c} = (c_x, c_y, c_z)$, 则 $\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z$

交換律
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$

分配律 $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$
结合律 $(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \cdot \overrightarrow{b})$

证明 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), \overrightarrow{c} = (c_x, c_y, c_z),$$
 则
$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z \quad b_x a_x + b_y a_y + b_z a_z = \overrightarrow{b} \cdot \overrightarrow{a}$$

交換律
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$

分配律 $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$
结合律 $(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \cdot \overrightarrow{b})$

证明 设
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
, $\overrightarrow{b} = (b_x, b_y, b_z)$, $\overrightarrow{c} = (c_x, c_y, c_z)$, 则 $\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z = b_x a_x + b_y a_y + b_z a_z = \overrightarrow{b} \cdot \overrightarrow{a}$

交換律
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$

分配律 $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$
结合律 $(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \cdot \overrightarrow{b})$

证明 设
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
, $\overrightarrow{b} = (b_x, b_y, b_z)$, $\overrightarrow{c} = (c_x, c_y, c_z)$, 则
$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z = b_x a_x + b_y a_y + b_z a_z = \overrightarrow{b} \cdot \overrightarrow{a}$$

$$(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c}$$

$$\overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$$

交換律
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$

分配律 $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$
结合律 $(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \cdot \overrightarrow{b})$

证明 设
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
, $\overrightarrow{b} = (b_x, b_y, b_z)$, $\overrightarrow{c} = (c_x, c_y, c_z)$, 则
$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z = b_x a_x + b_y a_y + b_z a_z = \overrightarrow{b} \cdot \overrightarrow{a}$$

$$(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c}$$

$$a_{x}c_{x} + a_{y}c_{y} + a_{z}c_{z} + b_{x}c_{x} + b_{y}c_{y} + b_{z}c_{z}$$

$$= \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$$

交換律
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$

分配律 $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$
结合律 $(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \cdot \overrightarrow{b})$

证明 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), \overrightarrow{c} = (c_x, c_y, c_z), 则$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z = b_x a_x + b_y a_y + b_z a_z = \overrightarrow{b} \cdot \overrightarrow{a}$$

$$(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = (a_x + b_x, a_y + b_y, a_z + b_z) \cdot (c_x, c_y, c_z)$$

$$a_x c_x + a_y c_y + a_z c_z + b_x c_x + b_y c_y + b_z c_z$$

$$=\overrightarrow{a}\cdot\overrightarrow{c}+\overrightarrow{b}\cdot\overrightarrow{c}$$

交換律
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$

分配律 $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$
结合律 $(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \cdot \overrightarrow{b})$

 $= \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$

证明 设
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
, $\overrightarrow{b} = (b_x, b_y, b_z)$, $\overrightarrow{c} = (c_x, c_y, c_z)$, 则
$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z = b_x a_x + b_y a_y + b_z a_z = \overrightarrow{b} \cdot \overrightarrow{a}$$

$$(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = (a_x + b_x, a_y + b_y, a_z + b_z) \cdot (c_x, c_y, c_z)$$

$$= (a_x + b_x)c_x + (a_y + b_y)c_y + (a_z + b_z)c_z$$

 $a_x c_x + a_y c_y + a_z c_z + b_x c_x + b_y c_y + b_z c_z$

交換律 $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$

 $= \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$

分配律
$$(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}$$

结合律 $(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \cdot \overrightarrow{b})$
证明 设 $\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), \overrightarrow{c} = (c_x, c_y, c_z), 则$
 $\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z = b_x a_x + b_y a_y + b_z a_z = \overrightarrow{b} \cdot \overrightarrow{a}$
 $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{c} = (a_x + b_x, a_y + b_y, a_z + b_z) \cdot (c_x, c_y, c_z)$

 $=(a_x + b_x)c_x + (a_y + b_y)c_y + (a_z + b_z)c_z$

 $= a_x c_x + a_y c_y + a_z c_z + b_x c_x + b_y c_y + b_z c_z$

$$\lambda =$$

$$0 = (\overrightarrow{a} + \lambda \overrightarrow{b}) \cdot (\overrightarrow{a} - \lambda \overrightarrow{b})$$

$$\lambda = \underline{\hspace{1cm}}$$

$$0 = (\overrightarrow{a} + \lambda \overrightarrow{b}) \cdot (\overrightarrow{a} - \lambda \overrightarrow{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot (-\lambda \overrightarrow{b}) + (\lambda \overrightarrow{b}) \cdot \overrightarrow{a} + (\lambda \overrightarrow{b}) \cdot (-\lambda \overrightarrow{b})$$

$$\lambda = \underline{\hspace{1cm}}_{\circ}$$

$$0 = (\overrightarrow{a} + \lambda \overrightarrow{b}) \cdot (\overrightarrow{a} - \lambda \overrightarrow{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot (-\lambda \overrightarrow{b}) + (\lambda \overrightarrow{b}) \cdot \overrightarrow{a} + (\lambda \overrightarrow{b}) \cdot (-\lambda \overrightarrow{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} - \lambda \overrightarrow{a} \cdot \overrightarrow{b} + \lambda \overrightarrow{b} \cdot \overrightarrow{a} - \lambda^2 \overrightarrow{b} \cdot \overrightarrow{b}$$

$$\lambda = \underline{\hspace{1cm}}$$
.

$$0 = (\overrightarrow{a} + \lambda \overrightarrow{b}) \cdot (\overrightarrow{a} - \lambda \overrightarrow{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot (-\lambda \overrightarrow{b}) + (\lambda \overrightarrow{b}) \cdot \overrightarrow{a} + (\lambda \overrightarrow{b}) \cdot (-\lambda \overrightarrow{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} - \lambda \overrightarrow{a} \cdot \overrightarrow{b} + \lambda \overrightarrow{b} \cdot \overrightarrow{a} - \lambda^{2} \overrightarrow{b} \cdot \overrightarrow{b}$$

$$= |\overrightarrow{a}|^{2} - \lambda^{2} |\overrightarrow{b}|^{2}$$

$$\lambda = \underline{\hspace{1cm}}$$
 .

解

$$0 = (\overrightarrow{a} + \lambda \overrightarrow{b}) \cdot (\overrightarrow{a} - \lambda \overrightarrow{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot (-\lambda \overrightarrow{b}) + (\lambda \overrightarrow{b}) \cdot \overrightarrow{a} + (\lambda \overrightarrow{b}) \cdot (-\lambda \overrightarrow{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} - \lambda \overrightarrow{a} \cdot \overrightarrow{b} + \lambda \overrightarrow{b} \cdot \overrightarrow{a} - \lambda^{2} \overrightarrow{b} \cdot \overrightarrow{b}$$

$$= |\overrightarrow{a}|^{2} - \lambda^{2} |\overrightarrow{b}|^{2}$$

所以

$$\lambda^2 = \frac{|\overrightarrow{a}|^2}{|\overrightarrow{b}|^2}$$

$$\lambda = \underline{\hspace{1cm}}$$

解

$$0 = (\overrightarrow{a} + \lambda \overrightarrow{b}) \cdot (\overrightarrow{a} - \lambda \overrightarrow{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot (-\lambda \overrightarrow{b}) + (\lambda \overrightarrow{b}) \cdot \overrightarrow{a} + (\lambda \overrightarrow{b}) \cdot (-\lambda \overrightarrow{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} - \lambda \overrightarrow{a} \cdot \overrightarrow{b} + \lambda \overrightarrow{b} \cdot \overrightarrow{a} - \lambda^{2} \overrightarrow{b} \cdot \overrightarrow{b}$$

$$= |\overrightarrow{a}|^{2} - \lambda^{2} |\overrightarrow{b}|^{2}$$

所以

$$\lambda^2 = \frac{|\vec{\alpha}|^2}{|\vec{b}|^2} = \frac{2^2}{4^2} = \frac{1}{4}$$

$$\lambda =$$

$$0 = (\overrightarrow{a} + \lambda \overrightarrow{b}) \cdot (\overrightarrow{a} - \lambda \overrightarrow{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot (-\lambda \overrightarrow{b}) + (\lambda \overrightarrow{b}) \cdot \overrightarrow{a} + (\lambda \overrightarrow{b}) \cdot (-\lambda \overrightarrow{b})$$

$$= \overrightarrow{a} \cdot \overrightarrow{a} - \lambda \overrightarrow{a} \cdot \overrightarrow{b} + \lambda \overrightarrow{b} \cdot \overrightarrow{a} - \lambda^{2} \overrightarrow{b} \cdot \overrightarrow{b}$$

$$= |\overrightarrow{a}|^{2} - \lambda^{2} |\overrightarrow{b}|^{2}$$

所以

$$\lambda^2 = \frac{|\overrightarrow{a}|^2}{|\overrightarrow{b}|^2} = \frac{2^2}{4^2} = \frac{1}{4} \quad \Rightarrow \quad \lambda = \pm \frac{1}{2}.$$

定义 向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 的三个方向角:

α:

β:

γ:

定义 向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 的三个方向角:

 α : \overrightarrow{a} 与 x 轴正向的夹角,

 β :

 γ :

定义 向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 的三个方向角:

 α : \overrightarrow{a} 与 x 轴正向的夹角,

β: \overrightarrow{a} 与 y 轴正向的夹角,

 γ :

定义 向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 的三个方向角:

 α : \overrightarrow{a} 与 x 轴正向的夹角,

 $β: \overrightarrow{a} = y$ 轴正向的夹角,

 γ : \overrightarrow{a} 与 z 轴正向的夹角,

定义 向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 的三个方向角:

 α : \overrightarrow{a} 与 x 轴正向的夹角,即 $\alpha = \angle(\overrightarrow{a}, \overrightarrow{i})$

 β : \overrightarrow{a} 与 y 轴正向的夹角,即 $\beta = \angle(\overrightarrow{a}, \overrightarrow{j})$

 γ : \overrightarrow{a} 与 z 轴正向的夹角,即 $\gamma = \angle(\overrightarrow{a}, \overrightarrow{k})$

定义 向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 的三个方向角:

 α : \overrightarrow{a} 与 x 轴正向的夹角,即 $\alpha = \angle(\overrightarrow{a}, \overrightarrow{i})$

 β : \overrightarrow{a} 与 y 轴正向的夹角,即 $\beta = \angle(\overrightarrow{a}, \overrightarrow{j})$

 γ : \overrightarrow{a} 与 z 轴正向的夹角,即 $\gamma = \angle(\overrightarrow{a}, \overrightarrow{k})$

$$\cos \alpha =$$

$$\cos \beta =$$

$$\cos \gamma =$$

定义 向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 的三个方向角:

$$\alpha$$
: \overrightarrow{a} 与 x 轴正向的夹角,即 $\alpha = \angle(\overrightarrow{a}, \overrightarrow{i})$

$$\beta$$
: \overrightarrow{a} 与 y 轴正向的夹角,即 $\beta = \angle(\overrightarrow{a}, \overrightarrow{j})$

 γ : \overrightarrow{a} 与 z 轴正向的夹角,即 $\gamma = \angle(\overrightarrow{a}, \overrightarrow{k})$

$$\cos \alpha = \frac{\overrightarrow{a} \cdot \overrightarrow{i}}{|\overrightarrow{a}| \cdot |\overrightarrow{i}|} \qquad \cos \beta =$$

$$\cos \gamma =$$

定义 向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 的三个方向角:

$$\alpha$$
: \overrightarrow{a} 与 x 轴正向的夹角,即 $\alpha = \angle(\overrightarrow{a}, \overrightarrow{i})$

$$\beta$$
: \overrightarrow{a} 与 y 轴正向的夹角,即 $\beta = \angle(\overrightarrow{a}, \overrightarrow{j})$

 γ : \overrightarrow{a} 与 z 轴正向的夹角, 即 $\gamma = \angle(\overrightarrow{a}, \overrightarrow{k})$

$$\cos \alpha = \frac{\overrightarrow{a} \cdot \overrightarrow{i}}{|\overrightarrow{a}| \cdot |\overrightarrow{i}|}$$

$$\cos \beta = \frac{\overrightarrow{a} \cdot \overrightarrow{j}}{|\overrightarrow{a}| \cdot |\overrightarrow{j}|}$$

$$\cos \gamma =$$

定义 向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 的三个方向角:

$$\alpha$$
: \overrightarrow{a} 与 x 轴正向的夹角,即 $\alpha = \angle(\overrightarrow{a}, \overrightarrow{i})$

$$\beta$$
: \overrightarrow{a} 与 y 轴正向的夹角,即 $\beta = \angle(\overrightarrow{a}, \overrightarrow{j})$

 γ : \overrightarrow{a} 与 z 轴正向的夹角,即 $\gamma = \angle(\overrightarrow{a}, \overrightarrow{k})$

角的计算
$$\cos \alpha = \frac{\overrightarrow{a} \cdot \overrightarrow{i}}{|\overrightarrow{a}| \cdot |\overrightarrow{i}|}$$

$$\cos \gamma = \frac{\overrightarrow{a} \cdot \overrightarrow{k}}{|\overrightarrow{a}| \cdot |\overrightarrow{k}|}$$

$$\cos \beta = \frac{\overrightarrow{a} \cdot \overrightarrow{j}}{|\overrightarrow{a}| \cdot |\overrightarrow{j}|}$$

定义 向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 的三个方向角:

$$\alpha$$
: \overrightarrow{a} 与 x 轴正向的夹角,即 $\alpha = \angle(\overrightarrow{a}, \overrightarrow{i})$

$$\beta$$
: \overrightarrow{a} 与 y 轴正向的夹角,即 $\beta = \angle(\overrightarrow{a}, \overrightarrow{j})$

 γ : \overrightarrow{a} 与 z 轴正向的夹角,即 $\gamma = \angle(\overrightarrow{a}, \overrightarrow{k})$

$$\cos \alpha = \frac{\overrightarrow{a} \cdot \overrightarrow{i}}{|\overrightarrow{a}| \cdot |\overrightarrow{i}|} = \frac{a_x}{|\overrightarrow{a}|}, \qquad \cos \beta = \frac{\overrightarrow{a} \cdot \overrightarrow{j}}{|\overrightarrow{a}| \cdot |\overrightarrow{j}|}$$

$$\overrightarrow{a} \cdot \overrightarrow{k}$$

$$\cos \gamma = \frac{\overrightarrow{a} \cdot \overrightarrow{k}}{|\overrightarrow{a}| \cdot |\overrightarrow{k}|}$$

定义 向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 的三个方向角:

$$\alpha$$
: \overrightarrow{a} 与 x 轴正向的夹角, 即 $\alpha = \angle(\overrightarrow{a}, \overrightarrow{i})$

$$\beta$$
: \overrightarrow{a} 与 y 轴正向的夹角,即 $\beta = \angle(\overrightarrow{a}, \overrightarrow{j})$

 γ : \overrightarrow{a} 与 z 轴正向的夹角, 即 $\gamma = \angle(\overrightarrow{a}, \overrightarrow{k})$

$$\cos \alpha = \frac{\overrightarrow{a} \cdot \overrightarrow{i}}{|\overrightarrow{a}| \cdot |\overrightarrow{i}|} = \frac{a_x}{|\overrightarrow{a}|}, \qquad \cos \beta = \frac{\overrightarrow{a} \cdot \overrightarrow{j}}{|\overrightarrow{a}| \cdot |\overrightarrow{j}|} = \frac{a_y}{|\overrightarrow{a}|},$$

$$\cos \gamma = \frac{\overrightarrow{a} \cdot \overrightarrow{k}}{|\overrightarrow{a}| \cdot |\overrightarrow{k}|}$$

定义 向量 $\overrightarrow{a} = (a_x, a_y, a_z)$ 的三个方向角:

$$\alpha$$
: \overrightarrow{a} 与 x 轴正向的夹角, 即 $\alpha = \angle(\overrightarrow{a}, \overrightarrow{i})$

$$\beta$$
: \overrightarrow{a} 与 y 轴正向的夹角,即 $\beta = \angle(\overrightarrow{a}, \overrightarrow{j})$

 γ : \overrightarrow{a} 与 z 轴正向的夹角,即 $\gamma = \angle(\overrightarrow{a}, \overrightarrow{k})$

$$\cos \alpha = \frac{\overrightarrow{a} \cdot \overrightarrow{i}}{|\overrightarrow{a}| \cdot |\overrightarrow{i}|} = \frac{a_x}{|\overrightarrow{a}|}, \qquad \cos \beta = \frac{\overrightarrow{a} \cdot \overrightarrow{j}}{|\overrightarrow{a}| \cdot |\overrightarrow{j}|} = \frac{a_y}{|\overrightarrow{a}|},$$

$$\cos \gamma = \frac{\overrightarrow{a} \cdot \overrightarrow{k}}{|\overrightarrow{a}| \cdot |\overrightarrow{k}|} = \frac{a_z}{|\overrightarrow{a}|}.$$

定义 向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 的三个方向角:

$$\alpha$$
: $\overrightarrow{\alpha}$ 与 x 轴正向的夹角,即 $\alpha = \angle(\overrightarrow{\alpha}, \overrightarrow{i})$ β : $\overrightarrow{\alpha}$ 与 y 轴正向的夹角,即 $\beta = \angle(\overrightarrow{\alpha}, \overrightarrow{i})$

$$\gamma$$
: \overrightarrow{a} 与 z 轴正向的夹角, 即 $\gamma = \angle(\overrightarrow{a}, \overrightarrow{k})$

方向角的计算 $\cos \alpha = \frac{\overrightarrow{a} \cdot \overrightarrow{i}}{|\overrightarrow{a}| \cdot |\overrightarrow{i}|} = \frac{a_x}{|\overrightarrow{a}|}, \qquad \cos \beta = \frac{\overrightarrow{a} \cdot \overrightarrow{j}}{|\overrightarrow{a}| \cdot |\overrightarrow{j}|} = \frac{a_y}{|\overrightarrow{a}|},$

$$\cos \gamma = \frac{\overrightarrow{a} \cdot \overrightarrow{k}}{|\overrightarrow{a}| \cdot |\overrightarrow{k}|} = \frac{a_z}{|\overrightarrow{a}|}.$$

可见

$$(\cos \alpha, \cos \beta, \cos \gamma) = \frac{1}{|\overrightarrow{\alpha}|} (\alpha_x, \alpha_y, \alpha_z)$$

定义 向量
$$\overrightarrow{a} = (a_x, a_y, a_z)$$
 的三个方向角:

$$\alpha$$
: \overrightarrow{a} 与 x 轴正向的夹角,即 $\alpha = \angle(\overrightarrow{a}, \overrightarrow{i})$

$$\beta$$
: \overrightarrow{a} 与 y 轴正向的夹角,即 $\beta = \angle(\overrightarrow{a}, \overrightarrow{j})$ γ : \overrightarrow{a} 与 z 轴正向的夹角,即 $\gamma = \angle(\overrightarrow{a}, \overrightarrow{k})$

方向角的计算 $\cos \alpha = \frac{\overrightarrow{a} \cdot \overrightarrow{i}}{|\overrightarrow{a}| \cdot |\overrightarrow{i}|} = \frac{a_x}{|\overrightarrow{a}|}, \qquad \cos \beta = \frac{\overrightarrow{a} \cdot \overrightarrow{j}}{|\overrightarrow{a}| \cdot |\overrightarrow{j}|} = \frac{a_y}{|\overrightarrow{a}|},$

$$\cos \gamma = \frac{\overrightarrow{a} \cdot \overrightarrow{k}}{|\overrightarrow{a}| \cdot |\overrightarrow{k}|} = \frac{a_z}{|\overrightarrow{a}|}.$$

可见

 $(\cos \alpha, \cos \beta, \cos \gamma) = \frac{1}{|\overrightarrow{\alpha}|} (a_x, a_y, a_z) = e_{\overrightarrow{\alpha}}$

We are here now...

◆ 向量的基本概念

♣ 向量的坐标表示

♥ 向量的数量积

♠ 向量的向量积

二阶行列式

• 定义
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} =$$

称为 二阶行列式

• 定义
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
,称为 二阶行列式

• 定义
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
,称为 二阶行列式

• 定义
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
,称为 二阶行列式

•
$$\emptyset$$
 $\begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = (-1) \cdot 1 - 2 \cdot 3$

• 定义
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
,称为 二阶行列式

•
$$| \begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix} = (-1) \cdot 1 - 2 \cdot 3 = -7$$

• 定义
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
,称为 二阶行列式

•
$$\mathfrak{H}\begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = (-1) \cdot 1 - 2 \cdot 3 = -7, \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$$

• 定义
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
,称为 二阶行列式

•
$$| \begin{array}{c|c} -1 & 2 \\ 3 & 1 \end{array} | = (-1) \cdot 1 - 2 \cdot 3 = -7, \quad \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

• 定义
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
,称为 二阶行列式

• 反称性

$$\begin{vmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{vmatrix} , \begin{vmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{vmatrix}$$

• 定义
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
,称为 二阶行列式

•
$$| \begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix} = (-1) \cdot 1 - 2 \cdot 3 = -7, \quad \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

• 反称性

$$\begin{vmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \begin{vmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{vmatrix}$$

• 定义
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
,称为 二阶行列式

• 反称性

$$\begin{vmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \begin{vmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

• 定义
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
,称为 二阶行列式

• 反称性

$$\begin{vmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \begin{vmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

• 几何意义 平面向量 $\overrightarrow{a} = (a_x, a_y), \overrightarrow{b} = (b_x, b_y)$ 所张成平行四边 形面积为的 $\begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$ 绝对值。

• 定义
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
, 称为 二阶行列式

•
$$| 9 | \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = (-1) \cdot 1 - 2 \cdot 3 = -7, \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

• 反称性

$$\begin{vmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \begin{vmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

• 几何意义 平面向量 $\overrightarrow{a} = (a_x, a_y), \overrightarrow{b} = (b_x, b_y)$ 所张成平行四边 $|a_y, a_y|$

形面积为的
$$\begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$$
 绝对值。 $\overrightarrow{a} = (-1, 2)$ $\overrightarrow{b} = (3, 1)$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \qquad -a_{12} \qquad +a_{13}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} -a_{12} \\ +a_{13} \end{vmatrix}$$

$$-a_{12}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} -a_{12} \\ +a_{13} \end{vmatrix}$$

$$-a_{12}$$
 $+a_{13}$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} +a_{13} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} +a_{13} \\ -a_{13} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} -3 \end{vmatrix} \begin{vmatrix} +2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 1 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 1 & 7 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot \qquad -3 \cdot \qquad + 2 \cdot$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot + 2 \cdot$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot 5 + 2 \cdot$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot 5 + 2 \cdot 5$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot 5 + 2 \cdot 5 = -25$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot 5 + 2 \cdot 5 = -25$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix} = 1 \cdot \begin{vmatrix} -3 & 4 \\ -9 & 16 \end{vmatrix} - (-1) \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot 5 + 2 \cdot 5 = -25$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix} = 1 \cdot \begin{vmatrix} -3 & 4 \\ -9 & 16 \end{vmatrix} - (-1) \begin{vmatrix} 2 & 4 \\ 4 & 16 \end{vmatrix} + 1 \end{vmatrix}$$

三阶行列式 定义为

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot 5 + 2 \cdot 5 = -25$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix} = 1 \cdot \begin{vmatrix} -3 & 4 \\ -9 & 16 \end{vmatrix} - (-1) \begin{vmatrix} 2 & 4 \\ 4 & 16 \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix}$$

三阶行列式 定义为

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot 5 + 2 \cdot 5 = -25$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix} = 1 \cdot \begin{vmatrix} -3 & 4 \\ -9 & 16 \end{vmatrix} - (-1) \begin{vmatrix} 2 & 4 \\ 4 & 16 \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix}$$
$$= 1 \cdot + 1 \cdot + 2 \cdot$$

三阶行列式 定义为

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot 5 + 2 \cdot 5 = -25$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix} = 1 \cdot \begin{vmatrix} -3 & 4 \\ -9 & 16 \end{vmatrix} - (-1) \begin{vmatrix} 2 & 4 \\ 4 & 16 \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix}$$

 $= 1 \cdot (-12) + 1 \cdot + 2 \cdot$

三阶行列式 定义为

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot 5 + 2 \cdot 5 = -25$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix} = 1 \cdot \begin{vmatrix} -3 & 4 \\ -9 & 16 \end{vmatrix} - (-1) \begin{vmatrix} 2 & 4 \\ 4 & 16 \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix}$$

 $= 1 \cdot (-12) + 1 \cdot 16 + 2 \cdot$

整め大き
 MAN USHVESSE

三阶行列式 定义为

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot 5 + 2 \cdot 5 = -25$$

$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix} = 1 \cdot \begin{vmatrix} -3 & 4 \\ -9 & 16 \end{vmatrix} - (-1) \begin{vmatrix} 2 & 4 \\ 4 & 16 \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix}$$
$$= 1 \cdot (-12) + 1 \cdot 16 + 2 \cdot (-6)$$

三阶行列式 定义为

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot 5 + 2 \cdot 5 = -25$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix} = 1 \cdot \begin{vmatrix} -3 & 4 \\ -9 & 16 \end{vmatrix} - (-1) \begin{vmatrix} 2 & 4 \\ 4 & 16 \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix}$$
$$= 1 \cdot (-12) + 1 \cdot 16 + 2 \cdot (-6) = -2$$

三阶行列式 定义为

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

例 计算
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = 4 \cdot \begin{vmatrix} 0 & 1 \\ 5 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} + 2 \begin{vmatrix} 1 & 0 \\ 2 & 5 \end{vmatrix}$$
$$= 4 \cdot (-5) - 3 \cdot 5 + 2 \cdot 5 = -25$$
$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -3 & 4 \\ 4 & -9 & 16 \end{vmatrix} = 1 \cdot \begin{vmatrix} -3 & 4 \\ -9 & 16 \end{vmatrix} - (-1) \begin{vmatrix} 2 & 4 \\ 4 & 16 \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix}$$

 $= 1 \cdot (-12) + 1 \cdot 16 + 2 \cdot (-6) = -2$

性质 交换行列式的两行、或两列,行列式的值变号。

 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 张成平行六面体的体积

 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 张成平行六面体的体积 $|a_x \quad a_y \quad a_z|$

$$= \begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix}$$
的绝对值

$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 张成平行六面体的体积
$$= \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ b_x & b_y & b_z \end{vmatrix}$$
的绝对值
$$x \qquad \overrightarrow{a} = (a_x, a_y, a_z)$$

性质 向量 $\overrightarrow{a} = (a_x, a_y, a_z)$, $\overrightarrow{b} = (b_x, b_y, b_z)$, $\overrightarrow{c} = (c_x, c_y, c_z)$ 不 共面的充分必要条件是:

B あ大学
 MEAN UNIVERSITY

$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 张成平行六面体的体积
$$= \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ b_x & b_y & b_z \end{vmatrix}$$
的绝对值
$$x \qquad \overrightarrow{a} = (a_x, a_y, a_z)$$

性质 向量 $\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), \overrightarrow{c} = (c_x, c_y, c_z)$ 不 共面的充分必要条件是:

$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ b_x & b_y & b_z \end{vmatrix} \neq 0$$

右手规则

定义 假设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), \overrightarrow{c} = (c_x, c_y, c_z)$$
 不共面,若

$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} > 0,$$

$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} < 0,$$

右手规则

定义 假设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), \overrightarrow{c} = (c_x, c_y, c_z)$$
 不共面,若

•
$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} > 0$$
,则称有序向量组 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 符合右手规则;

$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} < 0,$$

右手规则

定义 假设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), \overrightarrow{c} = (c_x, c_y, c_z)$$
 不共面,若

•
$$\begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \end{vmatrix} > 0$$
,则称有序向量组 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 符合右手规则;
• $\begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \end{vmatrix} < 0$,则称有序向量组 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 符合左手规则;

- 1. $\vec{i} = (1, 0, 0), \vec{j} = (0, 1, 0), \vec{k} = (0, 0, 1)$ 符合 手规则;
- 2. $\overrightarrow{a} = (1, 1, 1), \overrightarrow{b} = (2, 3, 4), \overrightarrow{c} = (4, 9, 16)$ 符合 手规则;

1.
$$\overrightarrow{i} = (1, 0, 0), \overrightarrow{j} = (0, 1, 0), \overrightarrow{k} = (0, 0, 1)$$
 符合 手规则;

2.
$$\overrightarrow{a} = (1, 1, 1), \overrightarrow{b} = (2, 3, 4), \overrightarrow{c} = (4, 9, 16)$$
符合 手规则;

- 1. $\overrightarrow{i} = (1, 0, 0), \overrightarrow{j} = (0, 1, 0), \overrightarrow{k} = (0, 0, 1)$ 符合右手规则;
- 2. $\overrightarrow{a} = (1, 1, 1), \overrightarrow{b} = (2, 3, 4), \overrightarrow{c} = (4, 9, 16)$ 符合右手规则;

1.
$$\overrightarrow{i} = (1, 0, 0), \overrightarrow{j} = (0, 1, 0), \overrightarrow{k} = (0, 0, 1)$$
符合右手规则;

2.
$$\overrightarrow{a} = (1, 1, 1), \overrightarrow{b} = (2, 3, 4), \overrightarrow{c} = (4, 9, 16)$$
符合右手规则;

1.
$$\overrightarrow{i} = (1, 0, 0), \overrightarrow{j} = (0, 1, 0), \overrightarrow{k} = (0, 0, 1)$$
符合右手规则;

2.
$$\overrightarrow{a} = (1, 1, 1), \overrightarrow{b} = (2, 3, 4), \overrightarrow{c} = (4, 9, 16)$$
符合右手规则;

解 这是因为
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
 $= 1 > 0$, $\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{vmatrix}$ $= 2 > 0$

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{vmatrix} = 2 > 0$$

1.
$$\overrightarrow{i} = (1, 0, 0), \overrightarrow{j} = (0, 1, 0), \overrightarrow{k} = (0, 0, 1)$$
符合右手规则;

2.
$$\overrightarrow{a} = (1, 1, 1), \overrightarrow{b} = (2, 3, 4), \overrightarrow{c} = (4, 9, 16)$$
符合右手规则;

解 这是因为
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
 $= 1 > 0$, $\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{vmatrix}$ $= 2 > 0$

注 若 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 符合右手规则,则张开的右手手指可做如下指向:

食指 $\rightarrow \overrightarrow{a}$; 中指 $\rightarrow \overrightarrow{b}$; 拇指 $\rightarrow \overrightarrow{c}$

性质 假设 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 符合右手规则,则有序向量组

 \overrightarrow{a} , \overrightarrow{c} , \overrightarrow{b} \overrightarrow{D} \overrightarrow{D} , \overrightarrow{C} 符合左手规则

$$\begin{vmatrix} a_{X} & a_{y} & a_{z} \\ c_{X} & c_{y} & c_{z} \\ b_{X} & b_{y} & b_{z} \end{vmatrix}$$

$$\begin{vmatrix} a_{X} & a_{y} & a_{z} \\ b_{X} & b_{y} & b_{z} \\ -c_{X} & -c_{V} & -c_{z} \end{vmatrix}$$

$$\begin{vmatrix} a_{x} & a_{y} & a_{z} \\ c_{x} & c_{y} & c_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix} < 0$$

$$\begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ -c_{x} & -c_{y} & -c_{z} \end{vmatrix}$$

$$\begin{vmatrix} a_{x} & a_{y} & a_{z} \\ c_{x} & c_{y} & c_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix} < 0 \Rightarrow \overrightarrow{a}, \overrightarrow{c}, \overrightarrow{b}$$
 符合左手规则
$$\begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ -c_{x} & -c_{y} & -c_{z} \end{vmatrix}$$

$$\begin{vmatrix} a_{x} & a_{y} & a_{z} \\ c_{x} & c_{y} & c_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix} < 0 \Rightarrow \overrightarrow{a}, \overrightarrow{c}, \overrightarrow{b}$$
 符合左手规则
$$\begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ -c_{x} & -c_{y} & -c_{z} \end{vmatrix} < 0$$

$$\begin{vmatrix} a_{x} & a_{y} & a_{z} \\ c_{x} & c_{y} & c_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix} < 0 \Rightarrow \overrightarrow{a}, \overrightarrow{c}, \overrightarrow{b}$$
符合左手规则
$$\begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ -c_{x} & -c_{y} & -c_{z} \end{vmatrix} < 0 \Rightarrow \overrightarrow{a}, \overrightarrow{b}, -\overrightarrow{c}$$
符合左手规则

证明
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 符合右手规则 \Rightarrow $\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} > 0$, 所以

$$\begin{vmatrix} a_x & a_y & a_z \\ c_x & c_y & c_z \\ b_x & b_y & b_z \end{vmatrix} < 0 \Rightarrow \overrightarrow{a}, \overrightarrow{c}, \overrightarrow{b}$$
 符合左手规则

$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ -c_x & -c_y & -c_z \end{vmatrix} < 0 \quad \Rightarrow \quad \overrightarrow{a}, \overrightarrow{b}, -\overrightarrow{c} \quad \text{符合左手规则}$$

证明
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 符合右手规则 \Rightarrow $\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ b_x & b_y & b_z \end{vmatrix} > 0$, 所以 $\begin{vmatrix} a_x & a_y & a_z \\ c_x & c_y & c_z \\ b_x & b_y & b_z \end{vmatrix} < 0 \Rightarrow \overrightarrow{a}$, \overrightarrow{c} , \overrightarrow{b} 符合左手规则 $\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ -c_x & -c_y & -c_z \end{vmatrix} < 0 \Rightarrow \overrightarrow{a}$, \overrightarrow{b} , $-\overrightarrow{c}$ 符合左手规则

注 假设 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 不共面,则任意交换两个向量的次序,或者对任一个向量添加负号,

证明
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 符合右手规则 \Rightarrow $\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} > 0$, 所以 $\begin{vmatrix} a_x & a_y & a_z \\ c_x & c_y & c_z \\ b_x & b_y & b_z \end{vmatrix} < 0 \Rightarrow \overrightarrow{a}$, \overrightarrow{c} , \overrightarrow{b} 符合左手规则 $\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ -c_x & -c_y & -c_z \end{vmatrix} < 0 \Rightarrow \overrightarrow{a}$, \overrightarrow{b} , $-\overrightarrow{c}$ 符合左手规则

注 假设 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 不共面,则任意交换两个向量的次序,或者对任一个向量添加负号,新的有序向量组"手性"相反。

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向

长度

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向

长度

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直, 长度

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直, 长度

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直, 长度

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直,且 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 满足右手规则 长度

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直,且 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 满足右手规则 长度

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直,且 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 满足右手规则 长度 $|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \theta$, 其中 $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直,且 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 满足右手规则 长度 $|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \theta$, 其中 $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$

称 \overrightarrow{c} 为 \overrightarrow{a} , \overrightarrow{b} 的向量积, 记作 $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$.

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直,且 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 满足右手规则 长度 $|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \theta$, 其中 $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$

称 \overrightarrow{c} 为 \overrightarrow{a} , \overrightarrow{b} 的向量积, 记作 $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$.

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直,且 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 满足右手规则 长度 $|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \theta$, 其中 $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$

称 \overrightarrow{c} 为 \overrightarrow{a} , \overrightarrow{b} 的向量积, 记作 $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$.

注 1

 $|\overrightarrow{a} \times \overrightarrow{b}| = \overrightarrow{a}, \overrightarrow{b}$ 张成平行四边形面积

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直, 且 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 满足右手规则 长度 $|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \theta$, 其中 $\theta = \angle (\overrightarrow{a}, \overrightarrow{b})$

称 \overrightarrow{c} 为 \overrightarrow{a} , \overrightarrow{b} 的向量积, 记作 $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$.

注 1

$$|\overrightarrow{a} \times \overrightarrow{b}| = \overrightarrow{a}, \overrightarrow{b}$$
 张成平行四边形面积

$$\overrightarrow{a} \times \overrightarrow{b} = 0 \Leftrightarrow$$

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直, 且 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 满足右手规则 长度 $|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \theta$, 其中 $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$

称 \overrightarrow{c} 为 \overrightarrow{a} , \overrightarrow{b} 的向量积, 记作 $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$.

注 1

$$|\overrightarrow{a} \times \overrightarrow{b}| = \overrightarrow{a}, \overrightarrow{b}$$
 张成平行四边形面积

$$\overrightarrow{a} \times \overrightarrow{b} = 0 \iff \overrightarrow{a} \parallel \overrightarrow{b}$$

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直, 且 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 满足右手规则 长度 $|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \theta$, 其中 $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$

称 \overrightarrow{c} 为 \overrightarrow{a} , \overrightarrow{b} 的向量积, 记作 $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$.

注 1

 $|\overrightarrow{a} \times \overrightarrow{b}| = \overrightarrow{a}, \overrightarrow{b}$ 张成平行四边形面积

$$\overrightarrow{a} \times \overrightarrow{b} = 0 \iff \overrightarrow{a} \parallel \overrightarrow{b}$$

特别地, $\overrightarrow{a} \times \overrightarrow{a} =$

定义 设有向量 \overrightarrow{a} , \overrightarrow{b} , 现按如下方式定义第三个向量 \overrightarrow{c} :

方向 \overrightarrow{c} 与 \overrightarrow{a} , \overrightarrow{b} 均垂直,且 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 满足右手规则 长度 $|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \theta$, 其中 $\theta = \angle(\overrightarrow{a}, \overrightarrow{b})$

称 \overrightarrow{c} 为 \overrightarrow{a} , \overrightarrow{b} 的向量积, 记作 $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$.

注 1

 $|\overrightarrow{a} \times \overrightarrow{b}| = \overrightarrow{a}, \overrightarrow{b}$ 张成平行四边形面积

$$\overrightarrow{a} \times \overrightarrow{b} = 0 \iff \overrightarrow{a} \parallel \overrightarrow{b}$$

特别地, $\overrightarrow{a} \times \overrightarrow{a} = 0$

反交换
$$\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$$

反交换 $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$

反交换 $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$

反交换 $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$

反交换
$$\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$$

分配律 $(\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c}$

反交换
$$\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$$

分配律 $(\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c}$
结合律 $(\lambda \overrightarrow{a}) \times \overrightarrow{b} = \overrightarrow{a} \times (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \times \overrightarrow{b})$

性质 对于
$$\overrightarrow{i} = (1, 0, 0), \overrightarrow{j} = (0, 1, 0), \overrightarrow{k} = (0, 0, 1), 成立$$

$$\begin{cases} \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, & \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, & \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \\ \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, & \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}, & \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \end{cases}$$

性质 对于
$$\overrightarrow{i} = (1, 0, 0)$$
, $\overrightarrow{j} = (0, 1, 0)$, $\overrightarrow{k} = (0, 0, 1)$, 成立
$$\begin{cases} \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, & \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, & \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \\ \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, & \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}, & \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \\ \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0. \end{cases}$$

性质 对于
$$\overrightarrow{i} = (1, 0, 0)$$
, $\overrightarrow{j} = (0, 1, 0)$, $\overrightarrow{k} = (0, 0, 1)$, 成立
$$\begin{cases} \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, & \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, & \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \\ \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, & \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}, & \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \\ \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0. \end{cases}$$

证明 以为
$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$$
 例证明:

$$|\overrightarrow{i} \times \overrightarrow{j}| =$$

性质 对于
$$\overrightarrow{i} = (1, 0, 0)$$
, $\overrightarrow{j} = (0, 1, 0)$, $\overrightarrow{k} = (0, 0, 1)$, 成立
$$\begin{cases} \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, & \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, & \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \\ \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, & \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}, & \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \\ \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0. \end{cases}$$

证明 以为
$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$$
 例证明:

$$|\overrightarrow{i} \times \overrightarrow{j}| = |\overrightarrow{i}| \cdot |\overrightarrow{j}| \cdot \sin \frac{\pi}{2}$$

性质 对于
$$\overrightarrow{i} = (1, 0, 0)$$
, $\overrightarrow{j} = (0, 1, 0)$, $\overrightarrow{k} = (0, 0, 1)$, 成立
$$\begin{cases} \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, & \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, & \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \\ \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, & \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}, & \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \\ \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0. \end{cases}$$

证明 以为
$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$$
 例证明:

$$|\overrightarrow{i} \times \overrightarrow{j}| = |\overrightarrow{i}| \cdot |\overrightarrow{j}| \cdot \sin \frac{\pi}{2} = 1$$

性质 对于
$$\overrightarrow{i} = (1, 0, 0)$$
, $\overrightarrow{j} = (0, 1, 0)$, $\overrightarrow{k} = (0, 0, 1)$, 成立
$$\begin{cases} \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, & \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, & \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \\ \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, & \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}, & \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \\ \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0. \end{cases}$$

证明 以为
$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$$
 例证明:

$$|\overrightarrow{i} \times \overrightarrow{j}| = |\overrightarrow{i}| \cdot |\overrightarrow{j}| \cdot \sin \frac{\pi}{2} = 1 = |\overrightarrow{k}|$$

性质 对于
$$\overrightarrow{i} = (1, 0, 0)$$
, $\overrightarrow{j} = (0, 1, 0)$, $\overrightarrow{k} = (0, 0, 1)$, 成立
$$\begin{cases} \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, & \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, & \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \\ \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, & \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}, & \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \\ \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0. \end{cases}$$

证明 以为
$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$$
 例证明:

$$|\overrightarrow{i} \times \overrightarrow{j}| = |\overrightarrow{i}| \cdot |\overrightarrow{j}| \cdot \sin \frac{\pi}{2} = 1 = |\overrightarrow{k}|$$

$$\overrightarrow{i} \times \overrightarrow{j}$$
, \overrightarrow{k} 均同时垂直 \overrightarrow{i} 和 \overrightarrow{j} ⇒

性质 对于
$$\overrightarrow{i} = (1, 0, 0)$$
, $\overrightarrow{j} = (0, 1, 0)$, $\overrightarrow{k} = (0, 0, 1)$, 成立
$$\begin{cases} \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, & \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, & \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \\ \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, & \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}, & \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \\ \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0. \end{cases}$$

证明 以为
$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$$
 例证明:

$$|\overrightarrow{i} \times \overrightarrow{j}| = |\overrightarrow{i}| \cdot |\overrightarrow{j}| \cdot \sin \frac{\pi}{2} = 1 = |\overrightarrow{k}|$$

$$\overrightarrow{i} \times \overrightarrow{j}, \overrightarrow{k}$$
 均同时垂直 \overrightarrow{i} 和 \overrightarrow{j} \Rightarrow $\overrightarrow{i} \times \overrightarrow{j} \parallel \overrightarrow{k}$

性质 对于
$$\overrightarrow{i} = (1, 0, 0)$$
, $\overrightarrow{j} = (0, 1, 0)$, $\overrightarrow{k} = (0, 0, 1)$, 成立
$$\begin{cases} \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, & \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, & \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \\ \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, & \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}, & \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \\ \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0. \end{cases}$$

证明 以为
$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$$
 例证明:

$$|\overrightarrow{i} \times \overrightarrow{j}| = |\overrightarrow{i}| \cdot |\overrightarrow{j}| \cdot \sin \frac{\pi}{2} = 1 = |\overrightarrow{k}|$$

$$\overrightarrow{i} \times \overrightarrow{j}, \overrightarrow{k} \text{ blooms } \overrightarrow{i} \xrightarrow{n} \overrightarrow{j} \Rightarrow \overrightarrow{i} \times \overrightarrow{j} \parallel \overrightarrow{k}$$

性质 对于
$$\overrightarrow{i} = (1, 0, 0)$$
, $\overrightarrow{j} = (0, 1, 0)$, $\overrightarrow{k} = (0, 0, 1)$, 成立
$$\begin{cases} \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, & \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, & \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \\ \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, & \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}, & \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \\ \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0. \end{cases}$$

证明 以为
$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$$
 例证明:

$$|\overrightarrow{i} \times \overrightarrow{j}| = |\overrightarrow{i}| \cdot |\overrightarrow{j}| \cdot \sin \frac{\pi}{2} = 1 = |\overrightarrow{k}|$$

$$|\overrightarrow{i} \times \overrightarrow{j}| \times |\overrightarrow{i}| \times |\overrightarrow{j}| \times |\overrightarrow{k}| = \pm |\overrightarrow{k}|$$

$$|\overrightarrow{i} \times \overrightarrow{j}| \times |\overrightarrow{k}| = |\overrightarrow{i}| \cdot |\overrightarrow{j}| \cdot \sin \frac{\pi}{2} = 1 = |\overrightarrow{k}|$$

$$|\overrightarrow{i} \times \overrightarrow{j}| \times |\overrightarrow{j}| \times |\overrightarrow{k}| = \pm |\overrightarrow{k}|$$

$$\overrightarrow{i} \times \overrightarrow{j}, \overrightarrow{k} \text{ bloth } \overrightarrow{a} \xrightarrow{i} \overrightarrow{n} \xrightarrow{j} \Rightarrow \overrightarrow{i} \times \overrightarrow{j} \parallel \overrightarrow{k}$$
 $\Rightarrow \overrightarrow{i} \times \overrightarrow{j} \parallel \overrightarrow{k}$

性质 对于
$$\overrightarrow{i} = (1, 0, 0)$$
, $\overrightarrow{j} = (0, 1, 0)$, $\overrightarrow{k} = (0, 0, 1)$, 成立
$$\begin{cases} \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, & \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, & \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \\ \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, & \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}, & \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \\ \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0. \end{cases}$$

证明 以为 $\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$ 例证明:

$$|\overrightarrow{i} \times \overrightarrow{j}| = |\overrightarrow{i}| \cdot |\overrightarrow{j}| \cdot \sin \frac{\pi}{2} = 1 = |\overrightarrow{k}|$$

$$|\overrightarrow{i} \times \overrightarrow{j}| \times |\overrightarrow{i}| \times |\overrightarrow{j}| \times |\overrightarrow{k}|$$

$$|\overrightarrow{i} \times \overrightarrow{j}| \times |\overrightarrow{k}|$$

$$|\overrightarrow{k}|$$

$$|\overrightarrow{k}|$$

$$|\overrightarrow{k}|$$

$$|\overrightarrow{k}|$$

$$|\overrightarrow{k}|$$

$$|\overrightarrow{k}|$$

性质 对于
$$\overrightarrow{i} = (1, 0, 0)$$
, $\overrightarrow{j} = (0, 1, 0)$, $\overrightarrow{k} = (0, 0, 1)$, 成立
$$\begin{cases} \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, & \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, & \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \\ \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, & \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}, & \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \\ \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0. \end{cases}$$

证明 以为 $\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$ 例证明:

$$|\overrightarrow{i} \times \overrightarrow{j}| = |\overrightarrow{i}| \cdot |\overrightarrow{j}| \cdot \sin \frac{\pi}{2} = 1 = |\overrightarrow{k}|$$

$$|\overrightarrow{i} \times \overrightarrow{j}, \overrightarrow{k} \text{ j of } \text{ m in } \overrightarrow{j} \Rightarrow \overrightarrow{i} \times \overrightarrow{j} | \overrightarrow{k}$$

$$\Rightarrow \overrightarrow{i} \times \overrightarrow{j} = \pm \overrightarrow{k}$$

$$\xrightarrow{\overrightarrow{i},\overrightarrow{j},\overrightarrow{i}\times\overrightarrow{j}}\overrightarrow{\text{RealFall}}\overrightarrow{i}\times\overrightarrow{j}=\overrightarrow{k}$$

性质 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), 则$$

$$\overrightarrow{a} \times \overrightarrow{b} = ($$
, ,)

性质 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), 则$$

$$\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, \qquad , \qquad)$$

性质 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$$
 则
$$\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z,$$

性质 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$$
则
$$\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$$

性质 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$$
 则
$$\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$$

$$\overrightarrow{a} \times \overrightarrow{b} = \left(a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k} \right) \times \left(b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k} \right)$$

性质 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$$
 则
$$\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$$

证明

$$\overrightarrow{a} \times \overrightarrow{b} = \left(a_{x} \overrightarrow{i} + a_{y} \overrightarrow{j} + a_{z} \overrightarrow{k}\right) \times \left(b_{x} \overrightarrow{i} + b_{y} \overrightarrow{j} + b_{z} \overrightarrow{k}\right)$$

$$= a_{x} b_{x} (\overrightarrow{i} \times \overrightarrow{i}) + a_{x} b_{y} (\overrightarrow{i} \times \overrightarrow{j}) + a_{x} b_{z} (\overrightarrow{i} \times \overrightarrow{k}) +$$

$$a_{y} b_{x} (\overrightarrow{j} \times \overrightarrow{i}) + a_{y} b_{y} (\overrightarrow{j} \times \overrightarrow{j}) + a_{y} b_{z} (\overrightarrow{j} \times \overrightarrow{k}) +$$

$$a_{z} b_{x} (\overrightarrow{k} \times \overrightarrow{i}) + a_{z} b_{y} (\overrightarrow{k} \times \overrightarrow{j}) + a_{z} b_{z} (\overrightarrow{k} \times \overrightarrow{k})$$

性质 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$$
 则
$$\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$$

证明

证明
$$\overrightarrow{a} \times \overrightarrow{b} = (a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}) \times (b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k})$$

$$= a_x b_x (\overrightarrow{i} \times \overrightarrow{i}) + a_x b_y (\overrightarrow{i} \times \overrightarrow{j}) + a_x b_z (\overrightarrow{i} \times \overrightarrow{k}) +$$

$$a_y b_x (\overrightarrow{j} \times \overrightarrow{i}) + a_y b_y (\overrightarrow{j} \times \overrightarrow{j}) + a_y b_z (\overrightarrow{j} \times \overrightarrow{k}) +$$

$$a_z b_x (\overrightarrow{k} \times \overrightarrow{i}) + a_z b_y (\overrightarrow{k} \times \overrightarrow{j}) + a_z b_z (\overrightarrow{k} \times \overrightarrow{k})$$

$$= () \overrightarrow{i} + () \overrightarrow{j} + () \overrightarrow{k}$$

性质 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$$
 则
$$\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$$

证明
$$\overrightarrow{a} \times \overrightarrow{b} = (a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}) \times (b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k})$$

$$= a_x b_x (\overrightarrow{i} \times \overrightarrow{i}) + a_x b_y (\overrightarrow{i} \times \overrightarrow{j}) + a_x b_z (\overrightarrow{i} \times \overrightarrow{k}) +$$

$$a_y b_x (\overrightarrow{j} \times \overrightarrow{i}) + a_y b_y (\overrightarrow{j} \times \overrightarrow{j}) + a_y b_z (\overrightarrow{j} \times \overrightarrow{k}) +$$

$$a_z b_x (\overrightarrow{k} \times \overrightarrow{i}) + a_z b_y (\overrightarrow{k} \times \overrightarrow{j}) + a_z b_z (\overrightarrow{k} \times \overrightarrow{k})$$

$$= (a_y b_z - a_z b_y) \overrightarrow{i} + ($$

$$) \overrightarrow{j} + ($$

性质 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$$
 则
$$\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$$

证明

$$\overrightarrow{a} \times \overrightarrow{b} = \left(a_{x} \overrightarrow{i} + a_{y} \overrightarrow{j} + a_{z} \overrightarrow{k}\right) \times \left(b_{x} \overrightarrow{i} + b_{y} \overrightarrow{j} + b_{z} \overrightarrow{k}\right)$$

$$= a_{x} b_{x} (\overrightarrow{i} \times \overrightarrow{i}) + a_{x} b_{y} (\overrightarrow{i} \times \overrightarrow{j}) + a_{x} b_{z} (\overrightarrow{i} \times \overrightarrow{k}) +$$

$$a_{y} b_{x} (\overrightarrow{j} \times \overrightarrow{i}) + a_{y} b_{y} (\overrightarrow{j} \times \overrightarrow{j}) + a_{y} b_{z} (\overrightarrow{j} \times \overrightarrow{k}) +$$

$$a_{z} b_{x} (\overrightarrow{k} \times \overrightarrow{i}) + a_{z} b_{y} (\overrightarrow{k} \times \overrightarrow{j}) + a_{z} b_{z} (\overrightarrow{k} \times \overrightarrow{k})$$

$$= (a_{y} b_{z} - a_{z} b_{y}) \overrightarrow{i} + (a_{z} b_{x} - a_{x} b_{z}) \overrightarrow{j} + ($$

性质 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$$
 则
$$\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$$

证明

证明
$$\overrightarrow{a} \times \overrightarrow{b} = (a_{x} \overrightarrow{i} + a_{y} \overrightarrow{j} + a_{z} \overrightarrow{k}) \times (b_{x} \overrightarrow{i} + b_{y} \overrightarrow{j} + b_{z} \overrightarrow{k})$$

$$= a_{x} b_{x} (\overrightarrow{i} \times \overrightarrow{i}) + a_{x} b_{y} (\overrightarrow{i} \times \overrightarrow{j}) + a_{x} b_{z} (\overrightarrow{i} \times \overrightarrow{k}) +$$

$$a_{y} b_{x} (\overrightarrow{j} \times \overrightarrow{i}) + a_{y} b_{y} (\overrightarrow{j} \times \overrightarrow{j}) + a_{y} b_{z} (\overrightarrow{j} \times \overrightarrow{k}) +$$

$$a_{z} b_{x} (\overrightarrow{k} \times \overrightarrow{i}) + a_{z} b_{y} (\overrightarrow{k} \times \overrightarrow{j}) + a_{z} b_{z} (\overrightarrow{k} \times \overrightarrow{k})$$

$$= (a_{y} b_{z} - a_{z} b_{y}) \overrightarrow{i} + (a_{z} b_{x} - a_{x} b_{z}) \overrightarrow{j} + (a_{x} b_{y} - a_{y} b_{x}) \overrightarrow{k}$$

性质 设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$$
 则
$$\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$$

证明

$$\overrightarrow{a} \times \overrightarrow{b} = (a_X \overrightarrow{i} + a_Y \overrightarrow{j} + a_Z \overrightarrow{k}) \times (b_X \overrightarrow{i} + b_Y \overrightarrow{j} + b_Z \overrightarrow{k})$$

$$= a_X b_X (\overrightarrow{i} \times \overrightarrow{i}) + a_X b_Y (\overrightarrow{i} \times \overrightarrow{j}) + a_X b_Z (\overrightarrow{i} \times \overrightarrow{k}) +$$

$$a_Y b_X (\overrightarrow{j} \times \overrightarrow{i}) + a_Y b_Y (\overrightarrow{j} \times \overrightarrow{j}) + a_Y b_Z (\overrightarrow{j} \times \overrightarrow{k}) +$$

$$a_Z b_X (\overrightarrow{k} \times \overrightarrow{i}) + a_Z b_Y (\overrightarrow{k} \times \overrightarrow{j}) + a_Z b_Z (\overrightarrow{k} \times \overrightarrow{k})$$

$$= (a_Y b_Z - a_Z b_Y) \overrightarrow{i} + (a_Z b_X - a_X b_Z) \overrightarrow{j} + (a_X b_Y - a_Y b_X) \overrightarrow{k}$$
注

$$\overrightarrow{a} \times \overrightarrow{b} = \left| \overrightarrow{i} - \left| \overrightarrow{j} + \right| \right| \overrightarrow{k}$$

性质 设 $\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$ 则 $\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} \overrightarrow{j} + \end{vmatrix}$$

性质 设 $\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$ 则 $\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$

证明

$$\overrightarrow{a} \times \overrightarrow{b} = (a_{x} \overrightarrow{i} + a_{y} \overrightarrow{j} + a_{z} \overrightarrow{k}) \times (b_{x} \overrightarrow{i} + b_{y} \overrightarrow{j} + b_{z} \overrightarrow{k})$$

$$= a_{x} b_{x} (\overrightarrow{i} \times \overrightarrow{i}) + a_{x} b_{y} (\overrightarrow{i} \times \overrightarrow{j}) + a_{x} b_{z} (\overrightarrow{i} \times \overrightarrow{k}) +$$

$$a_{y} b_{x} (\overrightarrow{j} \times \overrightarrow{i}) + a_{y} b_{y} (\overrightarrow{j} \times \overrightarrow{j}) + a_{y} b_{z} (\overrightarrow{j} \times \overrightarrow{k}) +$$

$$a_{z} b_{x} (\overrightarrow{k} \times \overrightarrow{i}) + a_{z} b_{y} (\overrightarrow{k} \times \overrightarrow{j}) + a_{z} b_{z} (\overrightarrow{k} \times \overrightarrow{k})$$

$$= (a_{y} b_{z} - a_{z} b_{y}) \overrightarrow{i} + (a_{z} b_{x} - a_{x} b_{z}) \overrightarrow{j} + (a_{x} b_{y} - a_{y} b_{x}) \overrightarrow{k}$$
注

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z & a_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_z & a_z \\ a_z$$

性质 设 $\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$ 则 $\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$

证明

$$\overrightarrow{a} \times \overrightarrow{b} = (a_{x} \overrightarrow{i} + a_{y} \overrightarrow{j} + a_{z} \overrightarrow{k}) \times (b_{x} \overrightarrow{i} + b_{y} \overrightarrow{j} + b_{z} \overrightarrow{k})$$

$$= a_{x} b_{x} (\overrightarrow{i} \times \overrightarrow{i}) + a_{x} b_{y} (\overrightarrow{i} \times \overrightarrow{j}) + a_{x} b_{z} (\overrightarrow{i} \times \overrightarrow{k}) +$$

$$a_{y} b_{x} (\overrightarrow{j} \times \overrightarrow{i}) + a_{y} b_{y} (\overrightarrow{j} \times \overrightarrow{j}) + a_{y} b_{z} (\overrightarrow{j} \times \overrightarrow{k}) +$$

$$a_{z} b_{x} (\overrightarrow{k} \times \overrightarrow{i}) + a_{z} b_{y} (\overrightarrow{k} \times \overrightarrow{j}) + a_{z} b_{z} (\overrightarrow{k} \times \overrightarrow{k})$$

$$= (a_{y} b_{z} - a_{z} b_{y}) \overrightarrow{i} + (a_{z} b_{x} - a_{x} b_{z}) \overrightarrow{j} + (a_{x} b_{y} - a_{y} b_{x}) \overrightarrow{k}$$
注

 $\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \overrightarrow{k}$

性质 设 $\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z),$ 则 $\overrightarrow{a} \times \overrightarrow{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$

证明

$$\overrightarrow{a} \times \overrightarrow{b} = \left(a_{x} \overrightarrow{i} + a_{y} \overrightarrow{j} + a_{z} \overrightarrow{k}\right) \times \left(b_{x} \overrightarrow{i} + b_{y} \overrightarrow{j} + b_{z} \overrightarrow{k}\right)$$

$$= a_{x} b_{x} (\overrightarrow{i} \times \overrightarrow{i}) + a_{x} b_{y} (\overrightarrow{i} \times \overrightarrow{j}) + a_{x} b_{z} (\overrightarrow{i} \times \overrightarrow{k}) +$$

$$a_{y} b_{x} (\overrightarrow{j} \times \overrightarrow{i}) + a_{y} b_{y} (\overrightarrow{j} \times \overrightarrow{j}) + a_{y} b_{z} (\overrightarrow{j} \times \overrightarrow{k}) +$$

$$a_{z} b_{x} (\overrightarrow{k} \times \overrightarrow{i}) + a_{z} b_{y} (\overrightarrow{k} \times \overrightarrow{j}) + a_{z} b_{z} (\overrightarrow{k} \times \overrightarrow{k})$$

$$= (a_{y} b_{z} - a_{z} b_{y}) \overrightarrow{i} + (a_{z} b_{x} - a_{x} b_{z}) \overrightarrow{j} + (a_{x} b_{y} - a_{y} b_{x}) \overrightarrow{k}$$

$$\frac{\mathbf{i}}{\overrightarrow{a}} \times \overrightarrow{b} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \overrightarrow{k} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

例设
$$\overrightarrow{a} = (2, 1, -1), \overrightarrow{b} = (1, -1, 2),$$
 计算 $\overrightarrow{a} \times \overrightarrow{b}$

例设
$$\overrightarrow{a} = (2, 1, -1), \overrightarrow{b} = (1, -1, 2),$$
 计算 $\overrightarrow{a} \times \overrightarrow{b}$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \end{vmatrix}$$

例设
$$\overrightarrow{a} = (2, 1, -1), \overrightarrow{b} = (1, -1, 2),$$
 计算 $\overrightarrow{a} \times \overrightarrow{b}$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 1 & -1 \end{vmatrix}$$

例 设
$$\overrightarrow{a} = (2, 1, -1), \overrightarrow{b} = (1, -1, 2),$$
 计算 $\overrightarrow{a} \times \overrightarrow{b}$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{vmatrix}$$

例设
$$\overrightarrow{a} = (2, 1, -1), \overrightarrow{b} = (1, -1, 2),$$
 计算 $\overrightarrow{a} \times \overrightarrow{b}$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} \overrightarrow{i} - \end{vmatrix} \qquad \begin{vmatrix} \overrightarrow{j} + \end{vmatrix} \qquad |\overrightarrow{k}|$$

例 设
$$\overrightarrow{a} = (2, 1, -1), \overrightarrow{b} = (1, -1, 2),$$
 计算 $\overrightarrow{a} \times \overrightarrow{b}$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} 4 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} \overrightarrow{j} + \end{vmatrix} \begin{vmatrix} \overrightarrow{k} \end{vmatrix}$$

例 设
$$\overrightarrow{a} = (2, 1, -1), \overrightarrow{b} = (1, -1, 2),$$
 计算 $\overrightarrow{a} \times \overrightarrow{b}$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} 4 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} \overrightarrow{k} \end{vmatrix}$$

例设
$$\vec{a} = (2, 1, -1), \vec{b} = (1, -1, 2),$$
计算 $\vec{a} \times \vec{b}$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} 4 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 2 & 4 \\ 2 & 2 \end{vmatrix} \overrightarrow{k}$$

例设
$$\vec{a} = (2, 1, -1), \vec{b} = (1, -1, 2),$$
计算 $\vec{a} \times \vec{b}$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 4 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 2 & 4 \\ 2 & 2 \end{vmatrix} \overrightarrow{k}$$

$$= 6\overrightarrow{i} - 4\overrightarrow{j} - 4\overrightarrow{k}$$

例设
$$\vec{a} = (2, 1, -1), \vec{b} = (1, -1, 2),$$
计算 $\vec{a} \times \vec{b}$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 4 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 2 & 4 \\ 2 & 2 \end{vmatrix} \overrightarrow{k}$$

$$= 6 \overrightarrow{i} - 4 \overrightarrow{j} - 4 \overrightarrow{k} = (6, -4, -4)$$

例 设空间中三个点 C(1, -1, 2), A(3, 3, 1), B(3, 1, 3)。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$ 。求 $\overrightarrow{a} \times \overrightarrow{b}$ 及三角形 $\triangle ABC$ 面积。

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$ 。求 $\overrightarrow{a} \times \overrightarrow{b}$ 及三角形 $\triangle ABC$ 面积。

$$\overrightarrow{a} = \overrightarrow{CA} = (),$$

$$\overrightarrow{b} = \overrightarrow{CB} = (),$$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \end{vmatrix}$$

$$\Delta ABC$$
面积 =

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$ 。求 $\overrightarrow{a} \times \overrightarrow{b}$ 及三角形 $\triangle ABC$ 面积。

$$\overrightarrow{a} = \overrightarrow{CA} = (),$$

$$\overrightarrow{b} = \overrightarrow{CB} = (),$$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \end{vmatrix}$$

$$\triangle ABC$$
 面积 = $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$ 。求 $\overrightarrow{a} \times \overrightarrow{b}$ 及三角形 $\triangle ABC$ 面积。

$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1),$$

$$\overrightarrow{b} = \overrightarrow{CB} = (),$$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \end{vmatrix}$$

$$\triangle ABC$$
 面积 = $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$ 。求 $\overrightarrow{a} \times \overrightarrow{b}$ 及三角形 $\triangle ABC$ 面积。

$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1),$$

$$\overrightarrow{b} = \overrightarrow{CB} = (2, 2, 1),$$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \end{vmatrix}$$

$$\triangle ABC$$
 面积 = $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$ 。求 $\overrightarrow{a} \times \overrightarrow{b}$ 及三角形 $\triangle ABC$ 面积。

$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1),$$

$$\overrightarrow{b} = \overrightarrow{CB} = (2, 2, 1),$$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 4 & -1 \\ 2 & 2 & 1 \end{vmatrix}$$

$$\triangle ABC$$
 面积 = $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$

例 设空间中三个点
$$C(1, -1, 2)$$
, $A(3, 3, 1)$, $B(3, 1, 3)$ 。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$ 。求 $\overrightarrow{a} \times \overrightarrow{b}$ 及三角形 $\triangle ABC$ 面积。

$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1),$$

$$\overrightarrow{b} = \overrightarrow{CB} = (2, 2, 1),$$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 4 & -1 \\ 2 & 2 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 4 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 2 & 4 \\ 2 & 2 \end{vmatrix} \overrightarrow{k}$$

$$\triangle ABC$$
 面积 = $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$

例 设空间中三个点 C(1,-1,2), A(3,3,1), B(3,1,3)。令 $\overrightarrow{a} = \overrightarrow{CA}$. $\overrightarrow{b} = \overrightarrow{CB}$. $\overrightarrow{x} \overrightarrow{a} \times \overrightarrow{b}$ 及三角形 $\triangle ABC$ 面积.

$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1),$$

$$\overrightarrow{b} = \overrightarrow{CB} = (2, 2, 1).$$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 4 & -1 \\ 2 & 2 & 1 \end{vmatrix}$$

$$= \left| \begin{array}{cc|c} 4 & -1 \\ 2 & 1 \end{array} \right| \overrightarrow{i} - \left| \begin{array}{cc|c} 2 & -1 \\ 2 & 1 \end{array} \right| \overrightarrow{j} + \left| \begin{array}{cc|c} 2 & 4 \\ 2 & 2 \end{array} \right| \overrightarrow{k}$$

$$= \overrightarrow{6} \overrightarrow{i} - 4 \overrightarrow{j} - 4 \overrightarrow{k}$$

$$\triangle ABC$$
 面积 = $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$

例 设空间中三个点 C(1, -1, 2), A(3, 3, 1), B(3, 1, 3)。令 $\overrightarrow{a} = \overrightarrow{CA}$, $\overrightarrow{b} = \overrightarrow{CB}$ 。求 $\overrightarrow{a} \times \overrightarrow{b}$ 及三角形 $\triangle ABC$ 面积。

$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1),$$

$$\overrightarrow{b} = \overrightarrow{CB} = (2, 2, 1),$$

$$\overrightarrow{A} = \overrightarrow{CB} = (2, 2, 1),$$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 4 & -1 \\ 2 & 2 & 1 \end{vmatrix}$$

$$= \left| \begin{array}{cc|c} 4 & -1 \\ 2 & 1 \end{array} \right| \overrightarrow{i} - \left| \begin{array}{cc|c} 2 & -1 \\ 2 & 1 \end{array} \right| \overrightarrow{j} + \left| \begin{array}{cc|c} 2 & 4 \\ 2 & 2 \end{array} \right| \overrightarrow{k}$$

$$= 6\overrightarrow{i} - 4\overrightarrow{j} - 4\overrightarrow{k} = (6, -4, -4)$$

$$\triangle ABC$$
 面积 = $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$

例 设空间中三个点 C(1,-1,2), A(3,3,1), B(3,1,3)。令 $\overrightarrow{a} = \overrightarrow{CA}$. $\overrightarrow{b} = \overrightarrow{CB}$. $\overrightarrow{x} \overrightarrow{a} \times \overrightarrow{b}$ 及三角形 $\triangle ABC$ 面积.

解
$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1),$$

$$\overrightarrow{b} = \overrightarrow{CB} = (2, 2, 1),$$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 4 & -1 \\ 2 & 2 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 4 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 2 & -1 \\ 2 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 2 & 4 \\ 2 & 2 \end{vmatrix} \overrightarrow{k}$$

$$= 6 \overrightarrow{i} - 4 \overrightarrow{j} - 4 \overrightarrow{k} = (6, -4, -4)$$

$$\Delta ABC 面积 = \frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{2} \sqrt{6^2 + (-4)^2 + (-4)^2}$$

例 设空间中三个点 C(1,-1,2), A(3,3,1), B(3,1,3)。令 $\overrightarrow{a} = \overrightarrow{CA}$. $\overrightarrow{b} = \overrightarrow{CB}$. $\overrightarrow{x} \overrightarrow{a} \times \overrightarrow{b}$ 及三角形 $\triangle ABC$ 面积.

$$\overrightarrow{a} = \overrightarrow{CA} = (2, 4, -1),$$

$$\overrightarrow{b} = \overrightarrow{CB} = (2, 2, 1).$$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 4 & -1 \\ 2 & 2 & 1 \end{vmatrix}$$

$$= \left| \begin{array}{cc|c} 4 & -1 \\ 2 & 1 \end{array} \right| \overrightarrow{i} - \left| \begin{array}{cc|c} 2 & -1 \\ 2 & 1 \end{array} \right| \overrightarrow{j} + \left| \begin{array}{cc|c} 2 & 4 \\ 2 & 2 \end{array} \right| \overrightarrow{k}$$

$$= 6\overrightarrow{i} - 4\overrightarrow{j} - 4\overrightarrow{k} = (6, -4, -4)$$

ΔΑΒC面积 =
$$\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{2} \sqrt{6^2 + (-4)^2 + (-4)^2} = \frac{1}{2} \sqrt{68} = \sqrt{17}$$

$$d = \frac{\overrightarrow{BA}, \overrightarrow{u}$$
 张成平行四边形面积
$$|\overrightarrow{u}|$$

且与 $\overrightarrow{u} = (1, 1, 1)$ 平行。 求点 A(2,3,1) 到直线 ℓ 的距离 d。 解

$$d = \frac{\overrightarrow{BA}, \overrightarrow{u}$$
 张成平行四边形面积 $= \frac{|\overrightarrow{BA} \times \overrightarrow{u}|}{|\overrightarrow{u}|}$

且与
$$\overrightarrow{u} = (1, 1, 1)$$
 平行。
求点 $A(2, 3, 1)$ 到直线 ℓ 的距离 d 。

$$\overrightarrow{u}$$

$$\overrightarrow{BA} =$$

$$\overrightarrow{BA} \times \overrightarrow{u} =$$

$$d = \frac{\overrightarrow{BA}, \overrightarrow{u}$$
 张成平行四边形面积 $= \frac{|\overrightarrow{BA} \times \overrightarrow{u}|}{|\overrightarrow{u}|}$

且与
$$\overrightarrow{u} = (1, 1, 1)$$
 平行。
求点 $A(2, 3, 1)$ 到直线 ℓ 的距离 d 。

$$\overrightarrow{u}$$

$$\overrightarrow{BA} = (3, 1, 2)$$

$$\overrightarrow{BA} \times \overrightarrow{u} =$$

$$d = \frac{\overrightarrow{BA}, \overrightarrow{u}$$
张成平行四边形面积
$$= \frac{|\overrightarrow{BA} \times \overrightarrow{u}|}{|\overrightarrow{u}|}$$

且与
$$\overrightarrow{u} = (1, 1, 1)$$
 平行。
求点 $A(2, 3, 1)$ 到直线 ℓ 的距离 d 。

$$\overrightarrow{BA} = (3, 1, 2)$$

$$\overrightarrow{BA} \times \overrightarrow{u} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 3 & 1 & 2 \\ 1 & 1 & 1 \end{vmatrix}$$

$$\vec{u}$$

$$d = \frac{\overrightarrow{BA}, \overrightarrow{u}$$
 张成平行四边形面积 $= \frac{|\overrightarrow{BA} \times \overrightarrow{u}|}{|\overrightarrow{u}|}$

且与 $\overrightarrow{u} = (1, 1, 1)$ 平行。 求点 A(2, 3, 1) 到直线 ℓ 的距离 d。

$$\overrightarrow{BA} = (3, 1, 2)$$

$$\overrightarrow{BA} \times \overrightarrow{u} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 3 & 1 & 2 \\ 1 & 1 & 1 \end{vmatrix}$$

$$==\left(\left|\begin{array}{cc|c}1&2\\1&1\end{array}\right|,-\left|\begin{array}{cc|c}3&2\\1&1\end{array}\right|,\left|\begin{array}{cc|c}3&1\\1&1\end{array}\right|\right)$$

$$d = \frac{\overrightarrow{BA}, \overrightarrow{u}$$
 张成平行四边形面积 $= \frac{|\overrightarrow{BA} \times \overrightarrow{u}|}{|\overrightarrow{u}|}$

且与 $\overrightarrow{u} = (1, 1, 1)$ 平行。 求点 A(2, 3, 1) 到直线 ℓ 的距离 d。

$$\overrightarrow{BA} = (3, 1, 2)$$

$$\overrightarrow{BA} \times \overrightarrow{u} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 3 & 1 & 2 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \left(\left| \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 \\ 1 & 1 \end{array} \right|, - \left| \begin{array}{ccc} 3 & 2 \\ 1 & 1 \end{array} \right|, \left| \begin{array}{ccc} 3 & 1 \\ 1 & 1 \end{array} \right| \right) = (-1, -1, 2)$$

$$J = \frac{\overrightarrow{BA}, \overrightarrow{u}$$
张成平行四边形面积 $= |\overrightarrow{BA} \times \overrightarrow{u}|$

且与 $\overrightarrow{u} = (1, 1, 1)$ 平行。 求点 A(2,3,1) 到直线 ℓ 的距离 d。

$$\overrightarrow{BA} = (3, 1, 2)$$

$$\overrightarrow{BA} \times \overrightarrow{u} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 3 & 1 & 2 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= = \left(\left| \begin{array}{cc|c} 1 & 2 & | & 1 & | \\ 1 & 1 & | & - & | & 3 & 2 \\ 1 & 1 & | & | & | & 1 & | \end{array} \right) = (-1, -1, 2)$$

$$d = \frac{\overrightarrow{BA}, \overrightarrow{u}$$
 张成平行四边形面积
$$= \frac{|\overrightarrow{BA} \times \overrightarrow{u}|}{|\overrightarrow{u}|} = \frac{\checkmark}{\checkmark}$$

且与
$$\overrightarrow{u} = (1, 1, 1)$$
 平行。
求点 $A(2, 3, 1)$ 到直线 ℓ 的距离 d 。

$$\overrightarrow{BA} = (3, 1, 2)$$

$$\overrightarrow{BA} \times \overrightarrow{u} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 3 & 1 & 2 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= = \left(\left| \begin{array}{cc|c} 1 & 2 & | & 1 & | \\ 1 & 1 & | & - & | & 3 & 2 \\ 1 & 1 & | & | & | & 1 & | \end{array} \right) = (-1, -1, 2)$$

$$d = \frac{\overrightarrow{BA}, \overrightarrow{u}$$
 张成平行四边形面积 $= \frac{|\overrightarrow{BA} \times \overrightarrow{u}|}{|\overrightarrow{u}|} = \frac{\sqrt{6}}{\sqrt{3}} = \sqrt{2}$

