Problem 1. (10pt) Let f(x) be a function such that $f^{-1}(x)$ exists. A partial table of values for f(x) is given below:

x	1	2	3	4	5
f(x)	5	7	0	9	3

Based on the table above (or your knowledge of functions and inverses), find the following:

- (a) f(3)
- (b) $f^{-1}(3)$
- (c) f(4)
- (d) $f^{-1}(9)$
- (e) $f(f^{-1}(5))$
- (f) $f^{-1}(f(9))$
- (g) $f^{-1}(f(-8))$
- (h) $f(f^{-1}(10))$

Problem 2. (10pt) Let $f(x) = \frac{1}{4}(x-3)$. Assume that $f^{-1}(x)$ exists.

- (a) Find f(15).
- (b) Use (a) to explain why $f^{-1}(3) = 15$.
- (c) Solve the equation given by f(x) = 11.
- (d) Use (c) to explain why $f^{-1}(11)=2$.

Problem 3. (10pt) A graph of a relation f(x) is shown below:

Using the graph above, answer the following:

- (a) Is the relation f(x) a function? Explain.
- (b) Does the relation f(x) have an inverse function? Explain.