

1. Sejam S e T dois subespaços de um espaço vetorial V

- (a) Defina $S+T=\{s+t\;;\;s\in S\;\mathrm{e}\;t\in T\}$. Mostre que S+T é um subespaço vetorial.
 - (b) Defina $S \cup T = \{x \; ; \; x \in S \text{ ou } x \in T\}$. Argumente que $S \cup T$ não é necessariamente um subespaço
 - (c) Se S e T são retas no \mathbb{R}^3 , o que é S+T e $S\cup T$?
- 2. Como o núcleo N(C) é relacionado aos núcleos N(A) e N(B), onde $C = \begin{vmatrix} A \\ B \end{vmatrix}$?
- 3. Considere a matriz

$$A = \begin{bmatrix} 1 & 5 & 7 & 9 \\ 0 & 4 & 1 & 7 \\ 2 & -2 & 11 & -3 \end{bmatrix} \cdot \begin{array}{l} A_{mkn} B_{mkn} \\ N(A) = \left\{ x \in \mathbb{R}^m : Ax = 0 \right\} \end{array}$$

$$A = \begin{bmatrix} A_{mkn} B_{mkn} \\ A = 0 \\ A = 0 \end{bmatrix} \cdot \begin{array}{l} A_{mkn} B_{mkn} \\ A = 0 \\ A = 0 \end{bmatrix}$$

$$A = 0$$

- (a) Ache a sua forma escalonada reduzida.
- (b) Qual é o posto dessa matriz?
- (c) Ache uma solução especial para a equação Ax = 0.
- 4. Ache a matrizes A_1 e A_2 (não triviais) tais que posto $(A_1B) = 1$ e posto $(A_2B) = 0$ para $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
- 5. Verdadeiro ou Falso: cliprantes de L a O.
 - (a) O espaço das matrizes simétricas é subespaço.
 - (b) O espaço das matrizes anti-simétricas é um subespaço.
 - (c) O espaço das matrizes não-simétricas $(A^T \neq A)$ é um subespaço.
- 6. Se $A \in 4 \times 4$ e inversível, descreva todos os vetores no núcleo da matriz $B = \begin{bmatrix} A & A \end{bmatrix}$ (que (4×8)).
- 7. Mostre por contra-exemplos que as seguintes afirmações são falsas em geral:

- (a) $A \in A^T$ tem os mesmo núcleos.

- 8. Construa uma matriz cujo espaço coluna contenha (1,1,5) e (0,3,1) e cujo núcleo contenha (1,1,2).
- 9. Construa uma matriz cujo núcleo contenha todos os múltiplos de (4,3,2,1). $A = [A, A_2, A_3]$ columna
- 10. (Bonus) Dado um espaço vetorial real V, definimos o conjunto

$$A \begin{bmatrix} x_4 \\ x_2 \\ x_3 \end{bmatrix} = 0 \Rightarrow x_4 A_2 + x_2 A_2 + x_3 A_3 = 0$$

Ou seja, V^* é o conjunto de todas as funções lineares entre V e \mathbb{R} . Relembramos que uma função $f: E \to F$, onde E e F são espaços vetoriais, é dita linear se para todos $\mathbf{v}, \mathbf{w} \in E$ e $\alpha \in \mathbb{R}$ temos $f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w}) = f(\alpha \mathbf{v}) = \alpha f(\mathbf{v})$. Chamamos V^* de espaço dual de V.

 $V^* := \{ f : V \to \mathbb{R} \mid f \text{ \'e linear} \}.$

- (a) Mostre que V^* é um espaço vetorial.
- (b) Agora, seja $V=\mathbb{R}^n$. Mostre que existe uma bijeção $\varphi:V^*\to V$ tal que , para toda $f\in V^*$ e para todo $\mathbf{v} \in V$, tenhamos

$$f(\mathbf{v}) = \langle \varphi(f), \mathbf{v} \rangle.$$

Dica: Utilize a dimensão finita de \mathbb{R}^n para expandir \mathbf{v} como uma combinação linear dos vetores da base canônica e aplique a linearidade de f.

Em dimensão infinita, esse resultado é conhecido como Teorema da Representação de Riesz.

