

论文编码: RUC-BK-070701-2020201699

中国人民大学本科毕业论文(设计)

p-进半平面与 Drinfeld 定理

作 者: 雷笔畅 数学学院 学 院: 数学拔尖人才实验班 专 业: 年 级: 2020 级 指导教师: 王善文 论文成绩: A-(87)完成日期: 2024年5月25日

中国人民大学学位论文原创性声明和使用授权说明 原创性声明

本人郑重声明: 所呈交的学位论文, 是本人在导师的指导下, 独立进行研究工作所取得的成果. 除文中已经注明引用的内容外, 本论文不含任何其他个人或集体已经发表或撰写过的作品或成果. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明.

论文作者签名:

日期: 年 月 日

学位论文使用授权说明

本人完全了解中国人民大学关于收集、保存、使用学位论文的规定, 即:

- 按照学校要求提交学位论文的印刷本和电子版本;
- 学校可以公布论文的全部或部分内容, 可以采用影印、缩印或其他复制手段保存论文.

论文作者签名:

指导教师签名:

日期: 年 月 日

摘要

设 D 是在素数 p 处分歧的 $\mathbb Q$ 上的四元数代数. Cerednik-Drinfeld 定理给出了相应于 $D(\mathbb A_f)^\times$ 的紧 开子群 U 的志村曲线的 p-进单值化. 此定理最初由 Cerednik 证明; 而 Drinfeld 利用他的 "基本定理", 即 p-进半平面 $\Omega = \mathbb P^1_{\mathbb Q_p} - \mathbb P^1(\mathbb Q_p)$ 的一个形式模型 $\widehat{\Omega}$ 参数化了一族 p-可除群, 重新导出了 Cerednik 的 原始结果. 为了证明 Drinfeld 的定理, 首先需要利用 Deligne 与 Drinfeld 的函子给出 $\widehat{\Omega}$ 的一个模诠释, 然后利用形式模的 Cartier 理论构造出 Drinfeld 定理中所需的同构. 这篇文章将主要跟随 [BC91], 构造 p-进半平面及其形式模型, 并补充其中部分细节, 随后参照 [Zin84] 给出 Cartier 理论的主要内容, 最后陈述 Drinfeld 定理.

关键词: p-进半平面 Cartier 理论 Drinfeld 定理

Abstract

Let D be a quaternion algebra over \mathbb{Q} , ramified at a prime p. The Cerednik-Drinfeld theorem gives the p-adic uniformisation of Shimura curves associated to compact open subgroups U of $D(\mathbb{A}_f)^{\times}$. This theorem was first proved by Cerednik. Then Drinfeld reinterpreted Cerednik's original result in another way using his theorem using his "fundamental theorem", which states that a formal model $\widehat{\Omega}$ of the p-adic half plane $\Omega = \mathbb{P}^1_{\mathbb{Q}_p} - \mathbb{P}^1(\mathbb{Q}_p)$ parameterised a family of p-divisible groups.

To prove the Drinfeld's theorem, the first step is to give a modular discription of $\widehat{\Omega}$ through Deligne's and Drinfeld's functor. Then with the help of the Cartier theory on formal modules, one can construct the isomorphism in Drinfeld's theorem. Following mainly to [BC91], this article will construct the p-adic half plane and its formal model with more details depicted. Then, the main contents of Cartier theory will be given with reference to [Zin84]. Finally, we state Drinfeld's theorem.

Keywords: p-adic half plane Cartier theory Drinfeld's theorem

目录

1	绪	论	1		
2	p -进半平面的构造 \ldots				
	2.1	$\operatorname{PGL}_2(K)$ 的 Bruhat-Tits 树	2		
		2.1.1 定义	2		
		2.1.2 <i>I</i> 的几何实现	3		
	2.2	刚性解析空间 Ω	4		
	2.3	形式概形 $\widehat{\Omega}$	5		
3	$\widehat{\Omega}$	的模诠释	6		
	3.1	Deligne 的函子	6		
	3.2	Drinfeld 的函子: 定义和陈述	8		
	3.3	自然变换 $\widehat{\Omega} o \mathcal{F}$ 的构造	G		
		$3.3.1$ 嵌入 $\mathcal{F}_s \to \mathcal{F}$	10		
		$3.3.2$ 嵌入 $\mathcal{F}_{[s,s']} \to \mathcal{F}$	11		
4	形	式群与 Cartier 理论	12		
	4.1	形式群: 函子观点	12		
		4.1.1 形式群	12		
		4.1.2 切空间	13		
		4.1.3 形式群律 1	14		
	4.2	Cartier 理论的主定理	15		
		4.2.1 第一主定理与 Cartier 环	15		
		4.2.2 既约 Cartier 模与第二主定理	16		
	4.3	局部 Cartier 理论	18		
		4.3.1 <i>p</i> -典型元素	18		
		4.3.2 主定理的局部版本 1	19		
		4.3.3 Witt 向量	19		
		4.3.4 高度	21		
5	Dr	infeld 定理	22		
	5.1	形式模	22		
		5.1.1 形式 <i>O</i> -模的 Cartier 理论	22		
		$5.1.2$ 形式 \mathcal{O}_D -模的 Cartier 理论	23		
	5.2	Drinfeld 定理: 陈述	24		
	5.3	自然变换 $\xi:\overline{G}\to\overline{H}$ 的构造	25		
附	录 .		26		
6	附	录	26		
	6.1	射影丛	26		
	6.2	爆破	26		
	6.3	形式概形 2	27		

6.3.1	形式概形作为环层空间	27
6.3.2	形式概形作为函子	28
参考文献		29
致谢		30

1 绪论

对复上半平面 $\mathcal{H}=\{\tau\in\mathbb{C}:\operatorname{Im}\tau>0\}\subset\mathbb{P}^1(\mathbb{C})-\mathbb{P}^1(\mathbb{R})$ 的研究由来已久. 作为复上半平面 的 p-进类比, p-进半平面 $\Omega=\mathbb{P}^1_{\mathbb{Q}_p}-\mathbb{P}^1(\mathbb{Q}_p)$ 对于数论而言是同样重要的研究对象, 其应用之一是给出所谓的 p-进单值化.

在复几何中, 某个或某类空间的单值化 (uniformisation) 通常指给出其万有覆叠. 例如, 熟知的黎曼单值化定理指出, 任何连通黎曼面一定同构于复平面 $\mathbb{A}^1(\mathbb{C})$, 复射影平面 $\mathbb{P}^1(\mathbb{C})$, 或者复上半平面 \mathcal{H} 的商. 在 p-进的情形, 类似的结论被称为 p-进单值化.

为了研究 p-进半平面,首先需要建立一种 p-进域上的解析理论: 刚性解析几何. 事实上,最初正是 Tate 在研究 \mathbb{Q}_p 上的椭圆曲线及其单值化时发现了这种理论. 粗略地讲,刚性解析几何理论关心刚性解析空间 (rigid analytic spaces) 范畴. 正如复流形由 \mathbb{C}^n 中的高维圆盘 (polydisk) 粘合而成,刚性解析空间是由仿射胚子集 (affnoid subset) 粘合而成的; 这种子集是 \mathbb{C}_p^n 或 \mathbb{Q}_p^n 中的高维圆盘的推广. 例如,射影空间 $\mathbb{P}^1(\mathbb{C}_p)$ 中的仿射胚子集就是 \mathbb{P}^1 挖去有限个开圆盘. 具体的理论可以参考 [Bos14] 和 [FvdP04].

Raynaud 发展了源自 Tate 的刚性解析几何, 并将其与形式概型的理论联系了起来. 对于环 A 及其理想 I, 考虑 I 给出的进制拓扑以及 A 关于 I-进拓扑的完备化 $\hat{A} := \varprojlim A/I^n$. 我们可以在 Zariski 拓扑空间 Spec A/I 上装备环层

$$D(f) \mapsto A \langle f^{-1} \rangle := \varprojlim A/I^n[f^{-1}],$$

所得环层空间 (ringed space) 记作 $\operatorname{Spf} \widehat{A}$. 所谓的形式概型 (formal scheme) 便是那些局部上形如 $\operatorname{Spf} \widehat{A}$ 的环层空间. 形式概型范畴与刚性解析空间范畴由函子 rig 联系起来: 取 \mathbb{Z}_p 上形式概型 X 的刚性泛在纤维 (rigid generic fibre) 可以得到 \mathbb{Q}_p 上的刚性解析空间 X^{rig} . 如果形式概型 X 的 刚性泛在纤维是刚性解析空间 Y,我们就称 X 是 Y 的形式模型 (formal model). 在 $[\operatorname{Ray}74]$ 中,Raynaud 证明了每个可容许刚性解析空间 (admissible rigid analytic space) 都有形式模型,并且 在可容许爆破 (admissible blow-up) 的意义下唯一. 具体的理论可以参考 $[\operatorname{Bos}14]$.

1976 年, Čerednik 在 [Čer76] 中利用 p-进半平面给出了一族志村曲线的单值化. 设 D 是 \mathbb{Q} 上的四元数代数, U 是 $D(\mathbb{A}_f)^{\times}$ 的紧开子群, 其中 \mathbb{A}_f 是 \mathbb{Q} 的有限 adéle. Čerednik 证明了以下结果: 如果 U 在 p 位置的分量 U_p 为极大紧子群, 则相应的志村曲线 S_U 基变换到 \mathbb{Q}_p 上所得曲线 $S_U \otimes \mathbb{Q}_p$ 是一些 p-进半平面关于 $\mathrm{PGL}_2(\mathbb{Q}_p)$ 的离散子群的商之并; 这就是 S_U 的 p-进单值化. 其后, Drinfeld 在 $[\mathrm{Dri76}]$ 给出了他的"基本定理", 以形式群的模空间重现了 p-进半平面 Ω ; 更准确地说, 他证明了 $\widehat{\Omega} \widehat{\otimes}_{\mathbb{Z}_p} \widehat{\mathbb{Z}}_p^{\mathrm{nr}}$ 参数化了一族带有 D 的整数环的作用的高度 4 的形式群, 其中 $\widehat{\Omega}$ 为 Ω 的一个形式模型, $\widehat{\mathbb{Z}}_p^{\mathrm{nr}}$ 是 \mathbb{Z}_p 的极大非分歧扩张的完备化. 利用此结果, Drinfeld 重新证明了 Čerednik 的单值化定理, 并且揭示了其后更丰富的结构. 这一单值化结果就此被称为 Čerednik-Drinfeld 定理. 然而, Drinfeld 的论文 $[\mathrm{Dri76}]$ 过于简短而难以阅读. 于是, Boutot 与 Carayol 在 $[\mathrm{BC91}]$ 中对一维情形更具体地解释了 Drinfeld 对 Čerednik-Drinfeld 定理的证明.

本文主要关心的是 Drinfeld 的基本定理, 即 p-进半平面的模诠释. 首先, Drinfeld 使用了 Deligne 的函子来局部地描述 $\hat{\Omega}$, 以此给出了 $\hat{\Omega}$ 的一个模诠释. 随后, 利用形式群的 Cartier 理论, Drinfeld 构造出了函子 $\hat{\Omega}$ 到该模问题的自然变换, 并且证明其为同构, 从而完成基本定理的证明.

本文主要参考了 [BC91]. 首先, 本文具体地构造和描述了 p-进局部域 K 上的 p-进半平面及 其形式模型 $\hat{\Omega}$. 随后, 本文回顾了形式群以及形式群的 Cartier 理论的主要结果. 最后, 本文陈述

了 Drinfeld 定理并给出其中的主要构造.

符号说明

在这篇文章中, 固定素数 p 以及特征零而剩余类域特征 p 的非阿局部域 K, 即 \mathbb{Q}_p 的有限扩张 K. 记 $\mathcal{O} := K^\circ$ 为 K 的整数环, ϖ 为一个选定的素元 (uniformizer), $k := \mathcal{O}/\varpi$ 为剩余类域, q := #k 为剩余类域的阶. 选定 K 的代数闭包 \overline{K} 及其完备化 $C := \widehat{K}$. 局部域 K 上的范数由 $|\varpi| = q^{-1}$ 规范, 并延拓至 C 上.

除非特别说明, 我们约定环为含幺环.

记集合范畴为 **Set**, Abel 群范畴为 **Ab**, 交换环范畴为 **CRing**. 交换环 A 上的模范畴记作 **Mod** $_A$, 含幺代数范畴记作 **Alg** $_A$.

对环 A, 记 A^{\times} 为其单位群, A^{op} 为其反环. 如果 A 是交换环 (相应地, 分次环), M 是 A-模 (相应地, 分次 A-模), 由 M 的给出的 Spec A (相应地, Proj A) 上拟凝聚层记作 \widetilde{M} .

对拓扑空间 X, 集合 (或群, 环, 代数等) G 给出的 X 上常值层记作 G_X 或在底空间明确时略去下标.

对环层空间 (ringed space) X, 记其结构层 (structure sheaf) 为 \mathcal{O}_X , 底空间为 |X|(或在含义清楚时以 X 代替).

对于范畴 \mathfrak{C} , 以 $x \in \mathfrak{C}$ 表示 $x \in \mathfrak{C}$ 的对象. 记 $x \in \mathfrak{C}$ 的恒等态射为 id_x .

对于集合 X 上的等价关系 \sim , 记商映射 $X \rightarrow X/\sim$ 为 $x \mapsto [x]$.

2 p-进半平面的构造

设 K 是 p-进局部域, C 是 K 的代数闭包的完备化. K 上的 p-进半平面是一个 K 上的刚性解析空间 Ω , 其 C-点在集合意义上等于 $\mathbb{P}^1(C) - \mathbb{P}^1(K)$. 在这一节中, 我们将首先构造 $\mathrm{PGL}_2(K)$ 的 Bruhat-Tits 树 I 及其几何实现 $I_{\mathbb{R}}$, 以此构造出 $\Omega(C) = \mathbb{P}^1(C) - \mathbb{P}^1(K)$ 上的刚性解析结构. 然后, 我们通过粘合局部信息, 构造出 Ω 的一个形式模型 $\widehat{\Omega}$.

2.1 $PGL_2(K)$ 的 Bruhat-Tits 树

2.1.1 定义

有限维 K-向量空间 V 中的**格** (lattice) 指 V 的满秩自由子 \mathcal{O} -模. 同一向量空间中的两个格 M 与 M' 称为是**位似的** (homothetic), 如果存在 $\lambda \in K^{\times}$, 使得 $M' = \lambda M$. 位似是一个等价关系.

定义 2.1. 群 $PGL_2(K)$ 的 Bruhat-Tits 树 (Bruhat-Tits tree) 是无向图 I, 定义如下:

- \diamond 顶点之集合为全体 K^2 中格的位似类. 格 $M \subset K^2$ 对应的顶点记作 [M].
- ◇ 顶点 s 与 s' 被一条边 [s,s'] 连接,当且仅当存在 s 的代表元 M 和 s' 的代表元 M',满足 $\varpi M \subsetneq M' \subsetneq M$.

设 s' = [M'] 与 s = [M] 相邻, 则选取代表元可以使得 $\varpi M \subseteq M' \subseteq M$, 即

$$0 \subseteq M'/\varpi M \subseteq M/\varpi M \simeq k^2$$
,

因此每个与 s 相邻的顶点对应着二维 k-向量空间中 k^2 的一条直线, 或 $\mathbb{P}^1(k)$ 中的一个点. 容易看出这是一个双射, 因此与一个顶点邻接的顶点数或与其相连的边数总是 q+1.

2.1.2 / 的几何实现

按定义, 图 I 的几何实现 $I_{\mathbb{R}}$ 是向 I 的每一条边 [s,s'] 指定一条线段

$$\{ts + (1-t)s' : 0 \le t \le 1\},\$$

再将所有边以顶点相连接所得到的对象图形; 上式中的加法看作形式和. 我们可以将 $I_{\mathbb{R}}$ 与二维 K-向量空间 K^2 中 (非 Archimedean) K-范数的 K^{\times} -等价类等同起来; 其中 K^2 中的两个 K-范数 $|\cdot|$ 与 $|\cdot|'$ 是 K^{\times} -等价的, 如果存在 $\lambda \in K^{\times}$, 使得 $|\cdot|$ = $\lambda |\cdot|'$.

1. 对于顶点 s=[M], 定义范数 $|\cdot|_M$ 为以 M 为单位球的 K^2 中范数. 具体地, 如果 $M=\mathcal{O}e_1+\mathcal{O}e_2$, 则

$$|a_1e_1 + a_2e_2|_M := \max\{|a_1|, |a_2|\}.$$

对于不同的代表元, 这样定义出的范数自然也相差一个 K× 中元素的数乘.

2. 设顶点 s = [M] 与 s' = [M'] 相邻, 且 $\varpi M \subset M' \subset M$. 通过取 $M/\varpi M$ 的 k-基再提升 回 M 中, 我们总是可以取得 M 的一组 \mathcal{O} -基 e_1 , e_2 , 使得 $M' = \mathcal{O}e_1 + \mathcal{O}\varpi e_2$. 于是对于 $v = a_1e_1 + a_2e_2 \in K^2$,

$$|v|_M = \max\{|a_1|, |a_2|\},\$$

 $|v|_{M'} = \max\{|a_1|, q|a_2|\}.$

对于边 [s,s'] 中的点 $x=(1-t)s+ts',\ 0\leq t\leq 1,$ 我们定义 K^2 上的范数 $|\cdot|_x$ 为

$$|v|_x = |v|_t := \max\{|a_1|, q^t|a_2|\}.$$

基于 K 上赋值的离散性, 我们看到

$$\{v \in K^2 : |v|_t \le \lambda\} = \begin{cases} M, & q^t \le \lambda < q, \\ M', & 1 \le \lambda < q^t. \end{cases}$$

反之, 设 $|\cdot|$ 是 K^2 上的范数. 首先注意到如果 $|\cdot|$ 是 K^2 中的范数, 则闭球 $M_{\lambda} := \{v \in K : |v| \le \lambda\}$ 对任何正实数 λ 都是 K^2 中的格, 并且

$$M_{\lambda'} \subset M_{\lambda} \iff \lambda' \leq \lambda, \ \lambda, \lambda' \in \mathbb{R}_{>0}.$$

又因为 $\varpi M_{\lambda} = M_{q^{-1}\lambda}$,所以格 M_{λ} 的位似类对于不同正实数 λ 至多取两个值,并且 $\lambda \mapsto [M_{\lambda}]$ 是周期的.

- 1. 如果 $[M_{\lambda}] = s$ 恒成立, $|\cdot|$ 自然对应着 $|\cdot|_{s}$.
- 2. 如果 $[M_{\lambda}]$ 或者等于 s, 或者等于 s', 则乘以适当的 K^{\times} 中元素后,

$$M_{\lambda} = \begin{cases} M, & q^t \le \lambda < q, \\ M', & 1 \le \lambda < q^t. \end{cases}$$

于是 $|\cdot|$ 对应于 $(1-t)s + ts' \in [s, s']$.

2.2 刚性解析空间 Ω

记 $\Omega := \mathbb{P}^1(C) - \mathbb{P}^1(K)$. 全体 K-线性同态 $K^2 \to C$ 组成的空间

$$\operatorname{Hom}_K(K^2, C) \simeq \operatorname{Hom}_K(K^2, K) \otimes_K C$$

是二维的 C-线性空间; 并且在此同构下, $K^2 \subset C^2$ 的原像正是那些满足 f(0,1) 与 f(1,0) 在 K 上线性相关的同态 f 之集合. 因此存在自然的双射

$$(\operatorname{Hom}_K(K^2, C) - \{0\})/C^{\times} \simeq \mathbb{P}^1(C),$$

并且 $\mathbb{P}^1(K)$ 在此双射下的原像为秩为 1 的同态之集合. 于是 Ω 作为集合可以与 K-线性嵌入 $K^2 \hookrightarrow C$ 之集合的 K^\times -数乘等价类等同; 这里的数乘等价与范数的定义相似: 称 $z, z': K^2 \hookrightarrow C$ 是 K^\times -数乘等价的, 如果存在 $\lambda \in K^\times$, 使得 $z = \lambda z'$. 对于每个这样的嵌入 $z: K^2 \hookrightarrow C$, 可以定义出 K^2 上的范数 $|\cdot|_z := |z(\cdot)|$, 由此定义出映射

$$\lambda:\Omega\to I_{\mathbb{R}},\ [z]\mapsto [|\cdot|_z].$$

命题 2.1. 固定 I 中相邻的项点 s = [M] 和 s' = [M'],并且固定 M 的基 e_1, e_2 使得 $M' = \mathcal{O}e_1 + \mathcal{O}\varpi e_2$. 对 Ω 中的每个嵌入的等价类,选取代表元 $z : K^2 \hookrightarrow C$ 使得 $z(e_2) = 1$,则 $z(e_1) \in C - K$;以 $z \mapsto z(e_2) = \zeta$ 将 Ω 与 C - K 等同.

在上述选取下, 我们有:

$$\lambda^{-1}(s) = B(0,1) - \bigcup_{a \in \mathcal{O}/\varpi\mathcal{O}} B^{\circ}(a,1),$$

$$\lambda^{-1}(s') = B(0,q^{-1}) - \bigcup_{b \in \varpi\mathcal{O}/\varpi^2\mathcal{O}} B^{\circ}(b,q^{-1}),$$

$$\lambda^{-1}(x) = \{\zeta \in C : |\zeta| = q^{-t}\}, \ x = (1-t)s + ts', \ 0 \le t \le 1,$$

$$\lambda^{-1}([s,s']) = B(0,1) - \bigcup_{a \in (\mathcal{O}/\varpi\mathcal{O})^{\times}} B^{\circ}(a,1) - \bigcup_{b \in \varpi\mathcal{O}/\varpi^2\mathcal{O}} B^{\circ}(b,q^{-1}).$$

其中 $B(x,r) = \{x \in C : |x| \le r\}, B^{\circ}(x,r) = \{x \in C : |x| < r\}.$

证明. 参见 [BC91, Chapter I, (2.3)].

此命题说明任何 Bruhat-Tits 树的顶点和边在 λ 下的原像都是 $\mathbb{P}^1_K(C)$ 中的仿射胚子集, 即 $\mathbb{P}^1_K(C)$ 中有限个开圆盘的补集; 并且 $\lambda^{-1}(s)$ 与 $\lambda^{-1}(s')$ 均为 $\lambda^{-1}([s,s'])$ 的开子集. 将所有边在 λ 下的原像沿相应顶点的原像粘合, 我们就得到了一个 K 上的刚性解析空间的 C-点集, 它作为集合等于 $\Omega(C)$. 我们称刚性解析空间 Ω 为 K 上的 p-进半平面 (p-adic half plane).

2.3 形式概形 $\widehat{\Omega}$

对于 K^2 中的格 M, 我们可以定义相应的射影空间 $\mathbb{P}(M)$. 选取 M 的一组基等价于固定同构 $M \simeq \mathcal{O}^2$, 从而诱导同构 $\mathbb{P}(M) \simeq \mathbb{P}_{\mathcal{O}}^1$. 而格之间的位似 $M' = \lambda M$ 决定出唯一的同构 $\mathbb{P}(M) \simeq \mathbb{P}(M')$, 因而我们可以任意选取 s = [M] 的代表元 M, 定义 $\mathbb{P}_s := \mathbb{P}(M)$.

令 Ω_s 为 \mathbb{P}_s 去除其特殊纤维的有理点得到的开子概形, $\widehat{\Omega}_s$ 为 Ω_s 沿其特殊纤维的形式完备 化.

命题 2.2. 我们有形式概形的同构

$$\widehat{\Omega}_s \simeq \operatorname{Spf} \mathcal{O} \left\langle T, \ \frac{1}{T^q - T} \right\rangle.$$

证明. 首先, Ω_s 的特殊纤维是 $(\Omega_s)_k \simeq \mathbb{P}^1_k - \mathbb{P}^1_k(k) = \operatorname{Spec} k[T, 1/(T^q - T)]$. 其次, 选取 \mathbb{P}^1_s 的仿射 开覆盖 $U_0 = \operatorname{Spec} \mathcal{O}[T]$ 和 $U_1 = \operatorname{Spec} \mathcal{O}[1/T]$, 使得 $\infty \in \mathbb{P}^1_k(k)$ 对应到 $(p, 1/T) \in U_1$. 尽管

$$\Omega_{s0} := U_0 \cap \Omega_s = \mathbb{A}^1_{\mathcal{O}} - \mathbb{A}^1_k(k) = \mathbb{A}^1_K \cup (\mathbb{A}^1_k - \mathbb{A}^1_k(k))$$

也不是仿射概形, 但随着 \mathbb{A}^1_K 在模可逆元 ϖ 时被消灭,

$$\Omega_{s0}/\varpi^n = \Omega_{s0} \times_{\mathcal{O}} \mathcal{O}/\varpi^n = \operatorname{Spec} \mathcal{O}/\varpi^n [T, 1/(T^q - T)].$$

故 $\widehat{\Omega}_{s0} = \operatorname{Spf} \mathcal{O} \langle T, 1/(T^q - T) \rangle$. 同理 $\widehat{\Omega}_{s1} = \operatorname{Spf} \mathcal{O} \langle 1/T, T^q/(1 - T^{q-1}) \rangle$. 这两片仿射空间相等,并通过恒等映射粘合成 $\widehat{\Omega}_s = \operatorname{Spf} \mathcal{O} \langle T, 1/T, 1/(T^{q-1} - 1) \rangle$.

因此 $\widehat{\Omega}_s$ 的刚性泛在纤维 Ω_s^{rig} 同构于 $\mathrm{Sp}\,K\,\langle T,1/(T^q-T)\rangle$, 其 C 点正是 $\mathbb{P}^1_K(C)=\mathbb{P}^1_{\mathcal{O}}(\mathcal{O}_C)$ 去除那些不特殊化到 $\mathbb{P}^1_k(k)$ 的点. 在命题 2.1 中的选取下, $\Omega_s^{\mathrm{rig}}(C)=\lambda^{-1}(s)$.

然后, 考虑邻接 s 的顶点 s'=[M'], 它按下述方式定出 \mathbb{P}^1_s 的特殊纤维上的一个有理点: 选取代表元使得 $\varpi M \subset M' \subset M$, 则满射

$$M \otimes_{\mathcal{O}} k = M/\varpi M \twoheadrightarrow M/M' \simeq k$$

给出 $\mathbb{P}(M) = \mathbb{P}_s$ 的特殊纤维的一个 k 点. 不妨将此闭点记作 s'. 具体来说, 选取基使得

$$M = \mathcal{O}e_1 + \mathcal{O}e_2, \ M' = \mathcal{O}e_1 + \mathcal{O}\varpi e_2.$$

在等同

$$\mathbb{P}_s(k) = (\mathbb{P}_s)_k(k) \stackrel{\sim}{\to} \mathbb{P}(k\overline{e_1} + k\overline{e_2}) = \mathbb{P}^1(k) = \left\{ [a:b] = \frac{b}{a} \in \mathbb{P}^1(k) = k \cup \infty \right\}$$

下, $M'/\varpi = k\overline{e_1} \in \mathbb{P}_s(k)$ 对应到 [1:0] = 0, 即 $I := (\varpi, T_0) \in \operatorname{Proj} \mathcal{O}[T_0, T_1] \simeq \mathbb{P}_s$.

令 $\mathbb{P}_{[s,s']}$ 为 \mathbb{P}_s 沿 s' 的爆破. 命 $\Omega_{[s,s']}$ 为 $\mathbb{P}_{[s,s']}$ 去除其特殊纤维中 s' 以外的有理点所得开子概形, 再定义 $\widehat{\Omega}_{[s,s']}$ 为 $\Omega_{[s,s']}$ 沿其特殊纤维的形式完备化.

命题 2.3. 我们有形式概形的同构

$$\widehat{\Omega}_{[s,s']} \simeq \operatorname{Spf} \mathcal{O} \left\langle T_0, T_1, \frac{1}{T_0^{q-1} - 1}, \frac{1}{T_1^{q-1} - 1} \right\rangle / (T_0 T_1 - \varpi),$$

并且 T_0 , T_1 分别给出 $\widehat{\Omega}_s$ 和 $\widehat{\Omega}_{s'}$ 到 $\widehat{\Omega}_{[s,s']}$ 的开浸入.

证明. 参考例 6.4 和命题 2.2, 容易证明.

最终, 沿命题 2.3 中的浸入粘合所有 $\widehat{\Omega}_{[s,s']}$, 我们就得到了 \mathcal{O} 上的形式概型 Ω , 其刚性泛在纤维的 C-点等于 $\Omega(C)$.

$\mathbf{3}$ $\widehat{\Omega}$ 的模诠释

3.1 Deligne 的函子

记 $\mathbf{Alg}_{\mathcal{O}}$ 为交换 \mathcal{O} -代数范畴. 我们考虑 $\mathbf{Alg}_{\mathcal{O}}$ 的以下两个子范畴:

- ⋄ ϖ -幂零 \mathcal{O} -代数范畴 $\mathbf{Nilp}_{\mathcal{O}}$, 其对象为 ϖ 在其中幂零的交换 \mathcal{O} -代数, 态射为 \mathcal{O} -同态;
- ◇ 完备 \mathcal{O} -代数范畴 $\mathbf{Compl}_{\mathcal{O}}$, 其对象为 ϖ -进完备交换 \mathcal{O} -代数, 态射为连续 \mathcal{O} -同态.

易见 $Nilp_{\mathcal{O}}$ 是 $Compl_{\mathcal{O}}$ 的全子范畴, 而 $Compl_{\mathcal{O}}$ 可以看作 $Nilp_{\mathcal{O}}$ 的完备化. 我们将形式概型看作 $Compl_{\mathcal{O}}$ 上的函子, 详见附录 6.3.2.

对 I 的项点 s = [M], 定义 $\mathbf{Compl}_{\mathcal{O}}$ 上取值在集合范畴 \mathbf{Set} 的函子 \mathcal{F}_s 如下. 对 $R \in \mathbf{Compl}_{\mathcal{O}}$, 命 $\mathcal{F}_s(R)$ 为二元对 (L,α) 的同构类, 其中:

- ♦ L 为秩 1 的自由 R-模, $\alpha: M \to L$ 为 \mathcal{O} -模同态.
- ◇ 对每个 $x \in \operatorname{Spec} R/\varpi$, 由于 ϖ 属于 x 对应的 R 中素理想 \mathfrak{p} , 故从 $\mathbf{k}(x) = R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$ 看出 ϖM 落在 $M \stackrel{\alpha}{\to} L \to L \otimes \mathbf{k}(x)$ 的核中,于是可以定义 $\alpha_x : M/\varpi \to L \otimes_R \mathbf{k}(x)$;我们要求 α_x 为单射.

命题 3.1. 函子 \mathcal{F}_s 由 $\widehat{\Omega}_s$ 表出.

证明. 同态 α 的条件表明对任意 $u\in M-\varpi M$, $\alpha(u)\in L$ 不等于 0, 从而是 L 的生成元. 特别地, 这说明 $\alpha\otimes \mathrm{id}_R: M\otimes_{\mathcal{O}}R\to L$ 为满射. 因此

$$(L,\alpha) \mapsto \alpha \otimes \mathrm{id}_R : M \otimes_{\mathcal{O}} R \twoheadrightarrow L$$

给出了函子的嵌入

$$\mathcal{F}_s(R) \hookrightarrow \widehat{\mathbb{P}}_s(R) = \mathbb{P}_s(R) = \{\widetilde{M} \otimes_{\mathcal{O}} \mathscr{O}_{\operatorname{Spec} R} \twoheadrightarrow \mathscr{L} : \mathscr{L} \$$
为可逆 $\mathscr{O}_{\operatorname{Spec} R} - \not \in \{M\} / \simeq .$

为了描述这个函子, 取 M 的一组基 e_1, e_2 . 则 $\alpha(e_1), \alpha(e_2)$ 都是 L 的生成元, 故 (L, α) 的同构类由唯一的 $\zeta \in R$ 使得 $\alpha(e_1) = \zeta \alpha(e_2)$ 决定; 事实上还立刻看出 $\zeta \neq 0$. 不妨命 $\alpha(e_2) = 1$. 定义等价于

$$M/\varpi = ke_1 \oplus ke_2 \to L \otimes_R \mathbf{k}(x) \simeq R \otimes_R \mathbf{k}(x) = \mathbf{k}(x), \quad e_1 \mapsto \overline{\zeta}, \ e_2 \mapsto 1$$

为单射, 即对所有 $a \in k$, $\overline{\zeta} - a \cdot 1 \neq 0 \in \mathbf{k}(x)$.

另一方面, 由命题 6.2 和命题 2.2 知,

$$\widehat{\Omega}_s(R) = \operatorname{Hom}_{\mathcal{O}}(\operatorname{Spf} R, \widehat{\Omega}_s) \simeq \operatorname{Hom}_{\mathcal{O}}(\operatorname{Spec} R, \operatorname{Spec} \mathcal{O}[T, 1/(T^q - T)]).$$

注意到给出态射 $\operatorname{Spec} R \to \operatorname{Spec} \mathcal{O}[T,1/(T^q-T)]$ 等价于给出态射 $\operatorname{Spec} R \to \operatorname{Spec} \mathcal{O}[T]$,使得 $\operatorname{Spec} R$ 中的每个点 x 都不被映到 $\mathbb{A}^1_k(k) \hookrightarrow \operatorname{Spec} \mathcal{O}[T]$ 中; 即对于对所有 $x \in \operatorname{Spec} R$ 和 $a \in k$,不存在交换图

$$R \longleftarrow \mathcal{O}[T]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{k}(x) \longleftarrow k[T]/(T-a);$$

因此, 给出态射 $\operatorname{Spec} R \to \operatorname{Spec} \mathcal{O}[T]$ 等价于决定 T 在 $\mathcal{O}[T] \to R$ 下的像 ζ , 而上述交换图不存在 等价于 ζ 在 $\mathbf{k}(x)$ 中的像 $\overline{\zeta}$ 满足 $\overline{\zeta} - a \cdot 1 \neq 0$, 对任何 $a \in k$ 成立.

如果 $x \in \operatorname{Spec} R[1/\varpi] \hookrightarrow \operatorname{Spec} R$,则作为泛在纤维中的点,其剩余类域 $\mathbf{k}(x)$ 是 K 的扩张,从而是特征零的域,因此不存在态射 $k \to \mathbf{k}(x)$. 所以只需考察 $\operatorname{Spec} R/\varpi \hookrightarrow \operatorname{Spec} R$ 中的点;而 x 在 $\operatorname{Spec} R$ 与 $\operatorname{Spec} R/\varpi$ 中的剩余类域相等. 这正说明 $\widehat{\Omega}_s(R) = \mathcal{F}_s(R)$.

对 Bruhat-Tits 树 I 的边 [s,s'], 定义 **Compl**_O 上的函子 $\mathcal{F}_{[s,s']}$ 如下. 取 s 与 s' 的代表元 M,M', 使得 $\varpi M \subset M' \subset M$. 命 $\mathcal{F}_{[s,s']}(R)$ 为六元组 $(L,L',\alpha,\alpha',c,c')$ 的同构类, 其中:

- ♦ L, L' 为秩 1 的自由 R-模; $\alpha: M \to L$, $\alpha': M \to L'$ 为 \mathcal{O} -模同态; $c: L \to L'$, $c': L' \to L$ 为 R-模同态.
- ♦ 图

$$\overline{\omega}M & \longrightarrow M' & \longrightarrow M \\
\downarrow^{\alpha/\overline{\omega}} & \downarrow^{\alpha'} & \downarrow^{\alpha} \\
L & \xrightarrow{c} & L' & \xrightarrow{c'} & L$$
(1)

交换.

♦ 对每个 $x \in \operatorname{Spec} R/\varpi$,

$$\ker[\alpha_x: M/\varpi \to L \otimes_R \mathbf{k}(x)] \subset M'/\varpi M,$$
$$\ker[\alpha'_x: M'/\varpi \to L \otimes_R \mathbf{k}(x)] \subset \varpi M/\varpi M';$$

命题 3.2. 函子 $\mathcal{F}_{[s,s']}$ 由 $\widehat{\Omega}_{[s,s']}$ 表出.

证明. 选取基使得 $M = \mathcal{O}e_1 + \mathcal{O}e_2$, $M' = \mathcal{O}e_1 + \mathcal{O}\varpi e_2$. 条件

$$\ker[\alpha_x: M/\varpi \to L \otimes_R \mathbf{k}(x)] \subset M'/\varpi M,$$
$$\ker[\alpha_x': M'/\varpi \to L \otimes_R \mathbf{k}(x)] \subset \varpi M/\varpi M'.$$

等价于

$$\alpha_x : M/M' \simeq ke_2 \hookrightarrow L \otimes_R \mathbf{k}(x) \simeq \mathbf{k}(x),$$

 $\alpha'_x : M'/\varpi M \simeq ke_1 \hookrightarrow L \otimes_R \mathbf{k}(x) \simeq \mathbf{k}(x).$

即 $\alpha(e_2)$ 为 L 的生成元, $\alpha'(e_1)$ 为 L' 的生成元. 于是二元组 (L,α) 和 (L',α') 的同构类分别由唯一的 $\zeta,\eta\in R$, 使得

$$\alpha(e_1) = \zeta \alpha(e_2), \ \eta \alpha(e_1) = \alpha'(e_2)$$

决定. 不妨命 $\alpha(e_2) = 1 \in L$, $\alpha'(e_1) = 1 \in L'$. 为了得到六元组, 只需添入交换图(1)的信息; 直接的验算表明它等价于

$$c = \eta, \ c' = \zeta, \ \zeta \eta = \eta \zeta = \varpi.$$

于是, 给出六元组的同构类归结为给出 $\zeta, \eta \in R$, 使得 $\zeta \eta = \varpi$, 且对所有 $a, b \in k$, $\overline{\zeta} - a \cdot 1 \neq 0 \in \mathbf{k}(x)$, $\overline{\eta} - b \cdot 1 \neq 0 \in \mathbf{k}(x)$. 而

$$\widehat{\Omega}_{[s,s']}(R) = \text{Hom}_{\mathcal{O}}\left(\mathcal{O}\left[T_0, T_1, \frac{1}{T_0^{q-1} - 1}, \frac{1}{T_1^{q-1} - 1}\right] \middle/ (T_0 T_1 - \varpi), R\right).$$

类似于命题 3.1, 按定义展开即可看出 $\widehat{\Omega}_{[s,s']}(R) = \mathcal{F}_{[s,s']}(R)$.

3.2 Drinfeld 的函子: 定义和陈述

对任何 \mathcal{O} -代数 R, 定义

$$R[\Pi] := R[X]/(X^2 - \varpi)$$

并装备 $\mathbb{Z}/2\mathbb{Z}$ -分次: $R[\Pi]_0 = R$, $R[\Pi]_1 = R\Pi$.

定义 3.1. 定义 $Nilp_{\mathcal{O}}$ 上取值在集合范畴的函子 \mathcal{F} 如下. 任取 $B \in Nilp_{\mathcal{O}}$, 记 $S = Spec\ B$. 定义 $\mathcal{F}(B) = \mathcal{F}(S)$ 为四元组 (η, T, u, r) 的同构类, 其中:

- $\diamond \eta = \eta_0 \oplus \eta_1$ 为 S 上 Zariski-可构造的平坦 $\mathbb{Z}/2\mathbb{Z}$ -分次 $\mathcal{O}[\Pi]$ -模.
- ♦ $T = T_0 \oplus T_1$ 为 $\mathbb{Z}/2\mathbb{Z}$ -分次 $\mathcal{O}_S[\Pi]$ -模, 满足齐次分支 T_0 和 T_1 皆为 S 上可逆层.
- $\diamond u: \eta \to T$ 为 0 次 $\mathcal{O}[\Pi]$ -线性态射, 满足 $u \otimes_{\mathcal{O}} \mathscr{O}_S: \eta \otimes_{\mathcal{O}} \mathscr{O}_S \hookrightarrow T$ 为单射.
- $♦ r : \underline{K}^2 \to \eta_0 ⊗_{\mathcal{O}} K$ 为 K-线性同构.

并且这些资料被以下条件限制. 记 S_i 为 $\Pi: T_i \to T_{i+1}$ 的零点集 (zero locus).

C1 $\eta_i|_{S_i} = \underline{\mathcal{O}}^2$.

C2 对每个 S 的几何点 x, u 诱导的映射 $\eta_x/\Pi\eta_x \hookrightarrow T(x)/\Pi T(x)$ 为单射.

C3
$$\bigwedge^2 \eta_i \big|_{S_i} = \varpi^{-i} \left(\bigwedge^2 \left(\Pi^i r \underline{\mathcal{O}}^2 \right) \right) \big|_{S_i}$$
.

让我们初步观察该定义.

1. 给出层 η 与 T 上的 Π 作用和态射 u 等价于给出周期 2 的 \mathcal{O} -模范畴中交换图

2. 取 S 的仿射开覆盖 $\{U_j = \operatorname{Spec} R_j\}_j$ 使得可逆层 T_0 与 T_1 限制在 U_j 上同构于 \mathcal{O}_{U_j} . 于是 $\Pi: T_i|_{U_j} \to T_1|_{U_j}$ 由元素 $f_i \in R_j$ 给出, i = 0, 1. 按定义, 限制在 U_j 上, $\Pi = f_i$ 的零点集为

$$\{\mathfrak{p} \in \operatorname{Spec} R_j : [R_{j_{\mathfrak{p}}} \ni 1 \mapsto f_i \in R_{j_{\mathfrak{p}}}] = 0\} = \{\mathfrak{p} \in \operatorname{Spec} R_j : f_i \in \mathfrak{p}\} = V(f_i),$$

即 $S_i \cap U_j = V(f_i)$. 作为态射, $\Pi^2 = \varpi$; 故作为元素, $f_0 f_1 = \varpi$. 由于 R_j 是 R-代数, ϖ 在 R 中幂零说明 ϖ 也在 R_j 中幂零, 所以

$$(S_0 \cap U_i) \cup (S_1 \cap U_i) = V(f_0) \cup V(f_1) = V(\varpi) = \operatorname{Spec} R_i.$$

因此, $S = S_0 \cup S_1$.

定理 3.1. 函子 $\mathcal{F}: \mathbf{Nilp}_{\mathcal{O}} \to \mathbf{Set}$ 由形式概形 $\widehat{\Omega}$ 表出.

3.3 自然变换 $\widehat{\Omega} \to \mathcal{F}$ 的构造

首先注意到以下事实. 取 Bruhat-Tits 树 I 的顶点 s=[M]. 由于 $\bigwedge^2 M$ 是 $\bigwedge^2 K=K$ 的 \mathcal{O} -子模, 一定存在 $n\in\mathbb{Z}$ 使得 $\bigwedge^2 M=\varpi^n\mathcal{O}$. 如果 λM 是 s 的另一个代表元, 其中 $\lambda=u\varpi^m$, $u\in\mathcal{O}^\times$, 则

$$\bigwedge^{2} \lambda M = \lambda^{2} \bigwedge^{2} M = \varpi^{2m+n} \mathcal{O},$$

故整数 n 的奇偶性无关代表元 M 的选取. 我们称项点 s = [M] 是**奇的** (相应地, **偶的**), 如果上述整数 n 是奇数 (相应地, 偶数). 又注意到, 如果 s' = [M'] 是邻接 s 的顶点, 且 $\varpi M \subset M' \subset M$, 则

$$\varpi^2 \bigwedge M \subset \bigwedge^2 M' \subset \bigwedge M^2$$
,

因此 s' 的奇偶性与 s 相反.

此后我们总是选取代表元 M, 使得 $\bigwedge^2 M = \varpi^{-1}\mathcal{O}$ 或者 $\bigwedge^2 M = \mathcal{O}$, 并且固定边 [s,s'] 的定向, 使得 s 为奇而 s' 为偶.

3.3.1 嵌入 $\mathcal{F}_s ightarrow \mathcal{F}$

取 I 的顶点 s 和 $B \in \mathbf{Nilp}_{\mathcal{O}}$. 先考虑 s 为奇顶点的情形. 对每个点 $(L,\alpha) \in \mathcal{F}_s(R)$, 我们定义交换图

$$\longrightarrow \eta_0 = \underline{M} \xrightarrow{\Pi=1} \eta_1 = \underline{M} \xrightarrow{\Pi=\varpi} \eta_0 = \underline{M} \longrightarrow$$

$$\downarrow u_0 = \alpha \qquad \qquad \downarrow u_1 = \alpha \qquad \qquad \downarrow u_0 = \alpha$$

$$\longrightarrow T_0 = \widetilde{L} \xrightarrow{\Pi=1} T_1 = \widetilde{L} \xrightarrow{\Pi=\varpi} T_0 = \widetilde{L} \longrightarrow$$

嵌入 $M \hookrightarrow K^2$ 诱导出同构 $r: \underline{K}^2 \overset{\sim}{\to} \underline{M} \otimes_{\mathcal{O}} K = \eta_0 \otimes_{\mathcal{O}} K$. 显然四元组 (η, T, u, r) 适合定义 3.1 中的类型要求; 我们来验证剩余的三个条件.

- C1 层 η_0 和 η_1 均为常值层 M, 条件显然成立.
- C2 取 S 的几何点 x. 在 $\eta_x = \eta_{0,x} \oplus \eta_{1,x} = M \oplus M$ 上, Π 的作用由

$$\Pi: M^2 \to M^2, \ (m_0, m_1) \mapsto (\varpi m_1, m_0),$$

给出,于是商

$$\eta_x/\Pi\eta_x = \frac{M \oplus M}{\varpi M \oplus M} \simeq M/\varpi M.$$

类似地, $T(x) = T_x \otimes_R \mathbf{k}(x) = L^2 \otimes_R \mathbf{k}(x)$,

$$\Pi: T(x) \to T(x), (l_0, l_1) \otimes a \mapsto (\varpi l_1, l_0) \otimes a,$$

商

$$T(x)/\Pi T(x) = \frac{(L \oplus L) \otimes_R \mathbf{k}(x)}{(\varpi L \oplus L) \otimes_R \mathbf{k}(x)} \simeq \frac{\mathbf{k}(x)}{\varpi \mathbf{k}(\mathbf{x})}.$$

因为 $\mathbf{k}(x)$ 是 $R \in \mathbf{Nilp}_{\mathcal{O}}$ 上的代数, ϖ 也在域 $\mathbf{k}(x)$ 中幂零, 故 $\varpi \mathbf{k}(x) = 0$, $T(x)/\Pi T(x) \simeq \mathbf{k}(x)$.

态射 u 诱导出映射

$$u_x: \eta_x \to T(x), (m_0, m_1) \mapsto (\alpha(m_0), \alpha(m_1)) \otimes 1,$$

进而诱导出 $M/\varpi M \simeq \eta_x/\Pi \eta_x \to \mathbf{k}(x) \simeq T(x)/\Pi T(x)$, 这正是 \mathcal{F}_s 定义中的单射 α_x : $M/\varpi \hookrightarrow L \otimes_R \mathbf{k}(x) \simeq \mathbf{k}(x)$.

C3 显然 $S_0 = \emptyset$, 故 $S_1 = S$. 观察 S 上任意一点 x 处的茎. 由定义, $r(\mathcal{O}^2) = M = \eta_{0,x}$, 而 $\Pi|_{\eta_0} = 1$; 由奇顶点的定义立刻看到 C3 成立.

若 s 为偶顶点,则对每个点 $(L,\alpha) \in \mathcal{F}_s(R)$,我们定义交换图

$$\longrightarrow \eta_0 = \underline{M} \xrightarrow{\Pi = \varpi} \eta_1 = \underline{M} \xrightarrow{\Pi = 1} \eta_0 = \underline{M} \longrightarrow$$

$$\downarrow^{u_0 = \alpha} \qquad \downarrow^{u_1 = \alpha} \qquad \downarrow^{u_0 = \alpha} \longrightarrow$$

$$\longrightarrow T_0 = \widetilde{L} \xrightarrow{\Pi = \varpi} T_1 = \widetilde{L} \xrightarrow{\Pi = 1} T_0 = \widetilde{L} \longrightarrow$$

嵌入 $M \hookrightarrow K^2$ 诱导出同构 $r: K^2 \stackrel{\sim}{\to} M \otimes_{\mathcal{O}} K$. 验证与奇顶点的情形类似, 略去不表.

3.3.2 嵌入 $\mathcal{F}_{[s,s']} o \mathcal{F}$

取 I 的边 [s,s'], $B \in \mathbf{Nilp}_{\mathcal{O}}$ 和 $\mathcal{F}_{[ss']}(B)$ 中的点

$$\overline{\omega}M & \longrightarrow M' & \longrightarrow M \\
\downarrow^{\alpha/\overline{\omega}} & \downarrow^{\alpha'} & \downarrow^{\alpha} \\
L & \xrightarrow{c} & L' & \xrightarrow{c'} & L.$$
(2)

我们逐次构造如下.

以图

$$\longrightarrow T_0 = \widetilde{L} \xrightarrow{\Pi = c} T_1 = \widetilde{L}' \xrightarrow{\Pi = c'} T_0 = \widetilde{L} \longrightarrow$$

定义 T 及其上的 Π -作用. 于是 S_0 为 $c:L'\to L$ 的零点集, S_1 为 $c':L\to L'$ 的零点集. 令 $U_0\subset S_0$ 收集所有使得 c'_x 可逆的 $x\in S$, $U_1\subset S_1$ 收集所有使得 c_x 可逆的 $x\in S$.

在 U_0 和 U_1 上, (2)分别退化为 $\mathcal{F}_s(U_0)$ 和 $\mathcal{F}_{s'}(U_1)$ 的点, 从而对应到 $\mathcal{F}(U)$ 和 $\mathcal{F}(U')$ 的点. 在 $V := S - (U_0 \cup U_1) = S_0 \cap S_1$ 上, 我们以资料

$$\underline{M}' \longleftrightarrow \underline{M} \xrightarrow{\Pi = \varpi} \underline{M}'
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
\widetilde{L}' \xrightarrow{c'} \widetilde{L} \xrightarrow{c} \widetilde{L}'$$

和 $M' \hookrightarrow K^2$ 定义 $\mathcal{F}(V)$ 的一个点.

然后, 我们证明这三个点粘合为 $\mathcal{F}(S)$ 的点 (η, T, u, r) , 其中 T 已经被定义. 我们以交换图

$$M|_{U_0} = M|_{U_0} \xrightarrow{\varpi} M|_{U_0}$$

$$\uparrow \qquad \qquad \downarrow_{\mathrm{id}} \qquad \qquad \uparrow$$

$$M'|_V \longleftrightarrow M|_V \xrightarrow{\varpi} M'|_V$$

$$\downarrow_{\mathrm{id}} \qquad \qquad \downarrow_{\mathrm{id}} \qquad \qquad \downarrow_{\mathrm{id}}$$

$$M'|_{U_1} \xrightarrow{\varpi} M'|_{U_1} = M'|_{U_1}$$

定义

$$\eta_0 \xrightarrow{\Pi} \eta_1 \xrightarrow{\Pi} \eta_0$$
.

特别地, $\eta_0|_{S_0}=M$ 而 $\eta_1|_{S_1}=M'$. 上图的交换性又表明三个点中的 r 粘合为 $r:\underline{K}^2\simeq\eta_0\otimes_{\mathcal{O}}K$. 最后, 定义 $u_0|_{S_0}:=\alpha',\,u_0|_{U_1}:=c^{-1}\alpha$, 并类似地定义 u_1 . 这就给出了嵌入 $\mathcal{F}_{[s,s']}\hookrightarrow\mathcal{F}$. 粘合所有这些信息, 便得到 $\widehat{\Omega}\to\mathcal{F}$; [BC91, I, 5.6] 证明了此自然变换为同构.

4 形式群与 Cartier 理论

形式群在有些文献中被定义为满足类似群乘法性质的形式幂级数,即形式群律;有些文献中则将形式群看作一类群函子. 本节将主要参考 [Zin84],采用函子的观点建立形式群的 Cartier 理论. 囿于篇幅限制, 陈述的大多数结论将不给出证明.

4.1 形式群: 函子观点

我们以幂零代数上的函子定义形式群,并指出形式群律与作为函子的形式群的联系.

4.1.1 形式群

环 R 上的一个**幂零代数 (nilpotent algebra)** 指 R-代数 N, 使得存在某个自然数 r, $N^r=0$. 记 **Nil**R 为 R 上幂零代数构成的范畴.

任何非零的幂零代数都不含幺, 但是我们可以将幂零 R-代数范畴嵌入含幺 R-代数的范畴中: 设 N 为幂零 R-代数, 我们在 $R \oplus N$ 上定义自然的乘法:

$$(r_1, n_1) \cdot (r_2, n_2) := (r_1 r_2, r_1 n_2 + r_2 n_1 + n_1 n_2).$$

于是 $R \oplus N \in \mathbf{Alg}_R$. 注意到投影 $R \oplus N \to R$ 与嵌入 $R \hookrightarrow R \oplus N$ 的复合等于 id_R , 于是我们可以具体描述 \mathbf{Nil}_R 在 \mathbf{Alg}_R 中的像.

定义 4.1. 一个增广 R-代数 (augmented R-algebra) 指含幺的 R 代数 A 并装备以增广同态 (augmentation) $\epsilon: A \to R$, 使得同态的复合 $R \to A \xrightarrow{\epsilon} R$ 为恒等同态 id_R , 其中第一个箭头为 A 的结构映射 (structure map). 记 $A^+ := \ker \epsilon$ 为增广 R-代数 A 的增广理想 (augmentation ideal). 称增广代数 A 是幂零的, 如果其增广理想 A^+ 是幂零的. 记 NilAug_R 为幂零的增广 R-代数范畴.

结合以上讨论, 容易看出范畴 Nil_R 与范畴 $NilAug_R$ 等价.

定义 4.2. 一个 R 上的光滑交换形式群 (smooth commutative formal group), 简称形式群 (formal group), 指保持无穷直和的正合函子 $G: Nil_R \to Ab$.

最简单的两个例子是加法群

$$\mathbb{G}_a: N \mapsto (N,+)$$

和乘法群

$$\mathbb{G}_{\mathrm{m}}: N \mapsto (1+N)^{\times},$$

其中 (N,+) 表示 N 的加法群, 而 $(1+N)^{\times}$ 表示形如 $1+n,n\in N$ 的元素组成的集合连同显然的乘法. 下面的例子是 \mathbb{G}_m 的推广.

例 4.3. 设 S 为增广 R 代数. 我们定义 Nil_R 上的函子

$$\mathbb{G}_{\mathrm{m}}S: N \mapsto (1 + S^+ \otimes_R N)^{\times}.$$

此函子保持直和, 且当 S 在 R 上平坦 (flat) 时正合, 从而是形式群. 特别地,

$$\Lambda_R := \mathbb{G}_{\mathrm{m}}R[t] : N \mapsto \Lambda(N) = (1 + tN[t])^{\times}$$

是形式群,并且在 Cartier 理论中发挥至关重要的作用.

现在我们考虑 Nil_R 范畴的"完备化". 一个完备的增广 R-代数指增广 R-代数 A 连同一列理想降链 $\{\mathfrak{a}_n\}$,满足 $\mathfrak{a}_1 = A^+$,且 A 对这组理想给出的拓扑完备,即 $A \simeq \varprojlim A/\mathfrak{a}_n$. 完备的增广 R 代数连同其间的连续同态组成一个范畴,记作 $ComplAug_R$. 我们有显然的嵌入 $Nil_R \hookrightarrow ComplAug_R$,且任何 Nil_R 上的函子 H 都能延拓到 $ComplAug_R$ 上:

$$H(A) := H(A^+) := \underline{\lim} H(A^+/\mathfrak{a}_n).$$

例如, Λ_R 在 R[[X]] 上的取值 $\Lambda_R(R[[X]])$ 为幂级数环 R[[X,t]] 中形如

$$1 + \sum_{m,n \ge 1} b_{mn} X^m t^n$$

的元素组成的集合, 装备以 R[[X,t]] 中的乘法, 其中 $b_{mn} \in R$, 且对固定的 m, 当 n 充分大时 $b_{mn}=0$.

4.1.2 切空间

通过定义平凡的乘法, 我们可以将 R 上的模范畴嵌入 R 上的幂零代数范畴, 即对 $x,y \in M \in \mathbf{Mod}_R$ 定义 xy := 0. 称函子 $H : \mathbf{Nil}_R \to \mathbf{Set}$ 在 $\mathbf{Mod}_R \hookrightarrow \mathbf{Nil}_R$ 上的限制为 H 的**切函子** (tangent functor), 记作 t_H .

注意到如果函子 $t: \mathbf{Mod}_R \to \mathbf{Set}$ 保持有限直积,则 t 将透过忘却函子 $\mathbf{Mod}_R \to \mathbf{Set}$ 分解;即对任何 $M \in \mathbf{Mod}_R$, t(M) 容许典范的 R-模结构.而且,如果 $t: \mathbf{Mod}_R \to \mathbf{Ab}$ 保持有限直积,则 t(M) 由此获得的加法与其 Abel 群结构的加法相同.

对于函子 $t: \mathbf{Mod}_R \to \mathbf{Mod}_R$,我们可以构造自然变换 $(-) \otimes_R t(R) \to t$ 如下: 设 $M \in \mathbf{Mod}_R$,每个 $m \in M$ 给出 R 线性同态

$$c_m: K \to M, \ 1 \mapsto m;$$

于是定义

$$M \otimes_R t(R) \to t(M), \ m \otimes \xi \mapsto t(c_m)\xi.$$
 (3)

定义-命题 4.4. 如果 $t: \mathbf{Mod}_R \to \mathbf{Mod}_R$ 是保持无穷直和的右正合函子, 则自然变换 (3) 为同构. 特别地, 任何 R 上的形式群 G 的切函子 t_G 都透过这样的函子分解, 因此 t_G 由 $t_G(R) = G(R)$ 决定; 记 $\mathrm{Lie}(G) := G(R)$, 称为 G 的**切空间 (tangent space)**.

证明. 两侧的函子皆右正合, 因而取模的展示便将问题划归为对自由模 $R^{(I)}$ 证明 (3) 为同构; 由于两侧的函子保持无穷直和, 问题再次划归为证明 (3) 对 R 成立; 这是显然的.

定义 4.5. 如果形式群 G 的切空间 Lie G 是秩为 d 的有限生成射影模, 我们就称 G 的维度有限, 并记 $\dim G = d$.

正如实李群的情形,形式群之间的态射如果诱导出切空间的同构,则此态射本身也是同构. 为此,我们需要利用函子与自然变换的光滑性.

定义 4.6. 设 $H,G: Nil_R \to Set.$ 自然变换 $\xi: H \to G$ 称为是**光滑的** (smooth), 如果对任何 Nil_R 中的满射 $M \to N$,

$$H(M) \to H(N) \times_{G(N)} G(M)$$

也是满射. 称函子 H 光滑, 如果典范的态射 $H \to \text{Hom}(R, -)$ 光滑.

注意到函子 H 光滑当且仅当 H 保持满射, 所以特别地, 形式群皆光滑.

定理 4.1. [Zin84, Theorem 2.30] 设 $H,G: \mathbf{Nil}_R \to \mathbf{Set}$ 正合. 若自然变换 $\alpha: H \to G$ 诱导出切 函子的同构 $\alpha|_{\mathbf{Mod}_R}: t_H \to t_G$, 则当 H 或 α 光滑时, $\alpha: H \to G$ 为同构.

4.1.3 形式群律

定义 4.7. 交换环 R 上的一个维数 n 的形式群律 (formal group law of dimension n) 指幂级数的 n 元组 $G = (G_1, \ldots, G_n)$, 其中 $G_i(X, Y) \in R[[X_1, \ldots, X_n, Y_1, \ldots, Y_n]]$, 满足以下公理.

- $\Leftrightarrow G_i(X,0) = G_i(0,X) = X_i$; 特别地, 这说明 $G_i(X,Y) = X_i + Y_i +$ 同时包含 X_i 与 Y_i 的高阶 项.
- $\Leftrightarrow G_i(G(X,Y),Z) = G_i(X,G(Y,Z)).$
- $\diamond G_i(X,Y) = G_i(Y,X).$

称环 $R[[X]] = R[[X_1, ..., X_n]]$ 为 G 的坐标环 (coordinate ring).

若 G 是 R 上 n 维的形式群律, H 是 R 上 m 维的形式群律, 其间的态射 $\varphi:G\to H$ 定义为 m 个 n 元形式幂级数

$$\varphi(X) = \varphi_i(X_1, \dots, X_n) \in A[[X_1, \dots, X_n]], \quad 1 \le i \le m,$$

满足

$$\varphi(G(X,Y)) = H(\varphi(X), \varphi(Y)),$$

即

$$\varphi_i(G_1(X,Y),\ldots,G_n(X,Y)) = H_i(\varphi_1(X),\ldots,\varphi_m(X),\varphi_1(Y),\ldots,\varphi_m(Y)), \ 1 \le i \le m.$$

加法群律 $\mathbb{G}_{a}(X,Y)=X+Y$ 和乘法群律 $\mathbb{G}_{m}(X,Y)=X+Y+XY$ 是最简单的一维形式群律,可以定义在任何交换环上.后者的表达式 $\mathbb{G}_{m}(X,Y)=(1+X)(1+Y)-1$ 更清楚地显示出 \mathbb{G}_{m} 表示着乘法.

设 G 为维数 n 的形式群律, N 为幂零 R-代数. 在 N^n 上, G 定义出运算

$$(a_n)_n +_G (b_n)_n := (G_n(a,b)).$$

形式群律的定义和 [Zin84, Corollary 1.5] 表明 $+_G$ 赋予了 N^n 一个新的群结构. 容易验证

$$\widetilde{G}: \mathbf{Nil}_R \to \mathbf{Ab}, \ N \mapsto (N^n, +_G)$$

是n维的形式群.不仅如此,在态射层面,如果H是形式群律,则

$$\operatorname{Hom}(G, H) \simeq \operatorname{Hom}(\widetilde{G}, \widetilde{H}).$$

注意到 \tilde{G} 的切空间 $\mathrm{Lie}(G)=R^n$ 的 Abel 群结构仍是直和 R^n 的群结构. 反过来, 观察切空间即可确定形式群是否来自形式群律.

定理 4.2. [Zin84, Corollary 2.32] 设 H 为 R 上的形式群. 若切空间 Lie(H) 为 R 上有限秩的自由模,则 H 来自形式群律,即存在形式群律 G 使得 $H = \tilde{G}$.

4.2 Cartier 理论的主定理

4.2.1 第一主定理与 Cartier 环

回忆 n 元对称群 \mathfrak{S}_n 在 n 元多项式环 $A[X_1,\ldots,X_n]$ 上以重排变元作用着, 其中 A 为环; 并且

$$A[X_1, \dots, X_n] \to A[X_1, \dots, X_n]^{\mathfrak{S}_n}, \ X_i \mapsto \sigma_i(X)$$

为环同构^①, 其中 $\sigma_i(X)$ 为初等对称多项式.

定义 4.8. 称函子 $H: Nil_R \to Set$ 是弱对称的, 如果对任何 $n \ge 1$ 和 $A \in NilAug_R$, 嵌入

$$A[[X_1,\ldots,X_n]]^{\mathfrak{S}_n} \hookrightarrow A[[X_1,\ldots,X_n]]$$

诱导出的映射

$$H(A[[X_1,\ldots,X_n]]^{\mathfrak{S}_n}) \to H(A[[X_1,\ldots,X_n]])^{\mathfrak{S}_n}$$

为同构.

例 4.9. 左正合函子弱对称. 特别地, 形式群弱对称.

定理 4.3 (Cartier 第一主定理). [Zin84, Theorem 3.5] 设函子 $H: \mathbf{Nil}_K \to \mathbf{Ab}$ 是弱对称的, 则我们有 Abel 群的同构

$$\lambda_H : \operatorname{Hom}(\Lambda_R, H) \xrightarrow{\sim} H(R[[X]])$$

$$\Phi \longmapsto \Phi_{R[[X]]}(1 - Xt).$$

定义 4.10. 命 $\mathbb{E}_R := (\operatorname{End} \Lambda_R)^{\operatorname{op}}$, 称为 R 的 Cartier 环. 对任何函子 H, 群 $\operatorname{Hom}(\Lambda, H)$ 带有 $\operatorname{End}(\Lambda)$ 自然的右作用, 相应的左 \mathbb{E} -模记作 M_H , 称为 H 的 Cartier 模.

①参见 [李 19, 定理 5.8.5]

我们考虑 Cartier 环 \mathbb{E} 中的一些特殊元素. 透过同构 $\lambda_{\Lambda}: \mathbb{E}_R \simeq \Lambda(R[[X]]) \subset R[[X,t]]$, 我们定义:

$$V_n := \lambda_{\Lambda}^{-1}(1 - X^n t), \qquad n \in \mathbb{N},$$

$$F_n := \lambda_{\Lambda}^{-1}(1 - X t^n), \qquad n \in \mathbb{N},$$

$$[c] := \lambda_{\Lambda}^{-1}(1 - cX t), \qquad c \in R.$$

利用这些元素, 我们可以具体地描述 Cartier 环中的元素.

定理 4.4. [Zin84, Theorem 3.12] 每个 $\xi \in \mathbb{E}$ 具有唯一的展开式

$$x = \sum_{m,n>0} V_m[a_{m,n}]F_n,$$

其中 $a_{m,n} \in B$, 且对固定的 m, 当 $n \gg 0$ 时 $a_{m,n} = 0$.

4.2.2 既约 Cartier 模与第二主定理

定义 4.11. 一个 V-既约 Cartier 模 (V-reduced Cartier module) 是一个左 \mathbb{E} -模 M 装备以一族 Abel 群的滤过

$$M = M^1 \supset M^2 \supset \cdots$$

满足以下条件:

- 1. $V_m[c]M^n \subset M^{mn}, \forall m, n \in \mathbb{N}, c \in K;$
- 2. F_m 是连续自同态, 即对任何 n, 存在 r, $F_mM^r \subset M^n$;
- 3. $V_m: M/M^2 \to M^m/M^{m+1}$ 为双射;
- 4. M 完备, 即 $M = \underline{\lim} M/M^n$.

例如, [Zin84], Example 3.10] 指出正合函子 H 的 Cartier 模 M_H 是既约的, 其滤过由

$$M^n_H:=\operatorname{im}\left[H(X^nR[[X]])\to H(XR[[X]])\right]$$

给出. 对于 $M_{\Lambda} \simeq \mathbb{E}$, 我们命

$$\mathbb{E}_n := M_{\Lambda}^n$$
.

设 M 是 V-既约 Cartier 模. 我们将对每个既约 Cartier 模构造一个 \mathbf{Nil}_R 上的右正合函子. 设 Q 是右 \mathbb{E} -模. 对每个自然数 n, 置

$$Q_n := \{ x \in Q : x \mathbb{E}_n = 0 \}.$$

于是 $\{Q_n\}$ 构成 Q 的子模升链. 称 Q 是扭的右 \mathbb{E} -模, 如果存在 n 使得 $Q=Q_n$

定义-命题 4.12. 设 M 为既约左 \mathbb{E} -模, Q 为右 \mathbb{E} -模. 对自然数 n, 记

$$Q_n \circ M^n := \operatorname{im} \left[Q_n \otimes_{\mathbb{Z}} M^n \to Q \otimes_{\mathbb{E}} M \right].$$

成立 $Q_n \circ M^n \subset Q_{n+1} \circ M^{n+1}$, 于是可以定义

$$(Q \otimes_{\mathbb{E}} M)_{\infty} := \underline{\lim} Q_n \circ M^n$$

和既约张量积 (reduced tensor product)

$$Q \overline{\otimes}_{\mathbb{E}} M := \frac{Q \otimes_{\mathbb{E}} M}{(Q \otimes_{\mathbb{E}} M)_{\infty}}.$$

引理 4.1. [Zin84, Theorem 3.21] 如果

$$Q_1 \rightarrow Q_2 \rightarrow Q_3 \rightarrow 0$$

是扭的右 正-模的正合列,则

$$Q_1 \overline{\otimes}_{\mathbb{E}} M \to Q_2 \overline{\otimes}_{\mathbb{E}} M \to Q_3 \overline{\otimes}_{\mathbb{E}} M \to 0$$

正合.

定义-命题 4.13. 设 $N \in Nil_{R}$. 定义函子

$$\Lambda \overline{\otimes}_{\mathbb{E}} M : N \mapsto \Lambda(N) \overline{\otimes}_{\mathbb{E}} M$$

则 $\Lambda \overline{\otimes}_{\mathbb{E}} M$ 是 $\mathbf{Nil}_R \to \mathbf{Ab}$ 的右正合函子.

证明. 取 $\Phi \in \mathbb{E}$ 和 $x \in N$, 右作用按

$$x \cdot \Phi := \Phi_N(n)$$

定义并延拓至 $\Lambda(N)$. [Zin84, Theorem 3.22] 证明了 $\Lambda(N)$ 为扭, 故引理 4.1给出右正合性.

定义 4.14. 称 V-既约 Cartier 模 M 是 V-平坦的 (V-flat) 如果 M/M^2 是平坦的 R-模.

定理 4.5 (Cartier 第二主定理). 环 R 上的形式群范畴与 V-平坦 V-既约 Cartier 模范畴等价, 相应的函子分别由

$$H \longmapsto M_H$$

和

$$\Lambda \overline{\otimes}_{\mathbb{E}} M \longleftrightarrow M$$

给出.

4.3 局部 Cartier 理论

记 $\mathbb{Z}_{(p)}$ 为 \mathbb{Z} 在素理想 $(p) = p\mathbb{Z}$ 处的局部化. 从现在起, 我们设 R 为 $\mathbb{Z}_{(p)}$ -代数.

4.3.1 *p*-典型元素

设 H 为 R 上的形式群. 如果 n 是与 p 互素的整数, 则乘以 n 的自同态 $n: H \to H$ 为同构; 因为根据定理 4.1 和定义-命题 4.4, 只需要验证 n 在 $t_H(R) = H(R)$ 上为同构. 特别地, $n \in \mathbb{E}^\times$. 我们定义

$$\epsilon_1 := \prod_{\ell} \left(1 - \frac{1}{\ell} F_{\ell} V_{\ell} \right) \in \mathbb{E},$$

其中 ℓ 取遍不等于 p 的素数. 对于与 p 互素的整数 n, 定义

$$\epsilon_n := \frac{1}{n} V_n \epsilon_1 F_n \in \mathbb{E}_n.$$

引理 4.2. ϵ_n 构成 \mathbb{E} 的一组投影子 (projector), 即

$$\epsilon^2 = \epsilon, \ \epsilon_n \epsilon_m = 0 (m \neq n), \ \sum_{p \nmid n} \epsilon_n = 1.$$

证明. 归结到 R 为 Q-代数的情形. 参见 [Zin84, Lemma 4.11].

因此对于任何幂零 R-代数 N, 有分解

$$\Lambda(N) = \bigoplus_{p \nmid n} \Lambda(N) \epsilon_n.$$

置 $\Lambda_n(N) := \Lambda(N)\epsilon_n$. 由于 ϵ_n 为投影子, Λ_n 均为形式群. 记 $\widehat{W} := \Lambda_1$, 称为 Witt 向量的形式群 (formal group of Witt vectors).

注意到 $F_nV_n=n$, 故右乘 V_n 与右乘 $\frac{1}{n}F_n$ 给出互逆的态射 $\Lambda_n\to \widehat{W}$ 和 $\widehat{W}\to\Lambda_n$. 因此上述分解可以重写为同构

$$\Lambda \simeq \bigoplus_{p \nmid n} \widehat{W}.$$

此同构能够转移到所有既约 Cartier 模上.

定义 4.15. 设 M 为既约 Cartier 模. 子群 $\epsilon_1 M \subset M$ 中的元素称为是 p-典型的 (p-typical).

定理 4.6. 元素 $m \in M$ 是 p-典型的当且仅当

$$F_n m = 0, \ \forall n > 1, \ p \nmid n.$$

每个元素 $m \in M$ 能唯一地分解为

$$m = \sum_{p \nmid n} V_n m_n,$$

其中 m_n 为 p-典型元素.

证明. 由于 F_{\bullet} 对下标具乘性, 只要考虑素数 $\ell \neq p$ 即可验证 p-典型性的判别. 直接计算得证. 分解取 $m_n := \frac{1}{n} \epsilon_1 F_n m$.

4.3.2 主定理的局部版本

设 H 为 R 上的形式群. 结合定理 4.3, 我们得到同构

$$\operatorname{Hom}(\widehat{W}, H) = \operatorname{Hom}(\Lambda \epsilon_1, H) \simeq \epsilon_1 \operatorname{Hom}(\Lambda, H) \simeq \epsilon_1 H(R[[X]]).$$

定义-命题 4.16. Witt 向量的形式群之自同态环 $\operatorname{End}\widehat{W} \simeq \epsilon_1\mathbb{E}\epsilon_1$. 定义关联于素数 p 的局部 Cartier 环 (local Cartier ring) 为 $\mathbb{E}_p := \epsilon_1\mathbb{E}\epsilon_1$. 命

$$V := \epsilon_1 V_p = V_p \epsilon_1, \ F := \epsilon_1 F_p = F_p \epsilon_1, \ [a]_p := \epsilon_1 [a] = [a] \epsilon_1 (a \in R),$$

则 \mathbb{E}_p 的每个元素具有唯一的分解

$$x = \sum_{m,n \ge 0} V^m[a_{m,n}]F^n,$$

其中 $a_{m,n} \in B$, 且对固定的 m, 有 $n \gg 0 \implies a_{m,n} = 0$.

证明. 参见 [Zin84, Definition and Theorem 4.17].

定义 4.17. 称左 \mathbb{E}_{p} -模 M 是 V-既约的, 如果:

- 1. $V: M \to M$ 为单射,
- 2. M 为 V-进完备, 即 $M \simeq \underline{\lim} M/V^n M$.

定理 4.7 (Cartier 第二主定理, 局部版本). 设 $H: Nil_R \to Ab$ 为形式群.

- 1. Cartier 模 $M_H = H(R[[X]])$ 的 p-典型元素之集 $\epsilon_1 H(R[[X]])$ 具有 V-既约 \mathbb{E}_p -模结构, 记作 $M_{p,H}$.
- 2. 存在典范同构

$$\widehat{W} \otimes_{\mathbb{E}_p} M_{p,H} \simeq H.$$

3. 函子 $H \mapsto M_{p,H}$ 给出了 R 上形式群与 V-既约 \mathbb{E}_p -模中那些 M_p/VM_p 为平坦 R-模的元素 组成的子范畴之间的等价, 且 H 的切空间 $\mathrm{Lie}(H)$ 在此等价下被映到 $M_{p,H}/VM_{p,H}$.

4.3.3 Witt 向量

回顾对于素数 p, 取 Witt 向量环给出了交换环范畴到自身的函子 $W: \mathbf{CRing} \to \mathbf{CRing};$ 它由以下性质刻画: 作为集合, $W(R) = R^{\mathbb{N}}$, 装备以环结构使得

$$W(R) \to R^{\mathbb{N}}, \ (a_n)_n \mapsto (w_n(a_0, \dots, a_n))_n$$

为环同态, 其中多项式

$$w_n(X_0, \dots, X_n) = X_0^{p^n} + pX_1^{p^{n-1}} + \dots + p^nX_n \in \mathbb{Z}[X_0, \dots, X_n].$$

本小节中, 我们将以另一种方式刻画 Witt 向量的形式群 \widehat{W} , 并建立它与 Witt 向量的一些联系.

引理 4.3. 取 $N \in Nil_R$. 群 $\Lambda(N)$ 的每个元素可以唯一地表示为有限乘积

$$\prod_{i=1}^{n} \left(1 - x_i t^i\right), \ x_i \in N;$$

而 $\widehat{W}(N)$ 的每个元素可以唯一地表示为有限乘积

$$\prod_{i=1}^{n} \left(1 - y_i t^{p^i}\right) \epsilon_1, \ y_i \in N.$$

证明. 考虑一般并非群同态的映射

$$\bigoplus_{i=1}^{\infty} N \to \Lambda(N), \ (x_i) \mapsto \prod_i (1 - x_i t^i). \tag{4}$$

注意到右边的乘积有限,且此映射对于 N 呈函子性; 我们断言(4)是自然同构,从而说明每个 $\Lambda(N)$ 中元素可唯一地表作有限积. 由定理 4.1, 只要在 $N^2=0$ 时证明; 此时 $\prod_i (1-x_it^i)=1-\sum_i x_it^i$. 按定义, 右边的求和唯一, 是故(4)为同构.

因为 $F_{\ell}\epsilon_1 = 1$ 在素数 $\ell \neq p$ 时成立, 所以每个 \widehat{W} 中元素都可写作

$$\prod (1 - x_i t^i) \epsilon_1 = \prod (1 - x_i t) F_i \epsilon_1 = \prod (1 - x_{p^i} t) F_{p^i} \epsilon_1.$$

我们证明将 $\Lambda \to \Lambda \epsilon_1$ 限制到 $\bigoplus_{i=p^n} N$ 在同构(4)下的像上为到 \widehat{W} 的同构. 仍然只需在 $N^2=0$ 处检验: 此时对任何 m>1, 当 (m,p)=1 时

$$(1 - y_n t^{p^n}) V_m = (1 - y_n t) F_{p^n} V_m = (1 - y_n^m t) F_{p^n} = 1 \cdot F_{p^n} = 1,$$

故

$$(1 - y_n t^{p^n})\epsilon_m = (1 - y_n t^{p^n}) \frac{1}{m} V_m \epsilon_1 F_m = 1 \cdot \frac{1}{m} \epsilon_1 F_m = 1;$$

因此当 $\prod (1 - y_n t^{p^n}) = 1$ 时,

$$\prod (1 - y_n t^{p^n}) = \prod \sum_{p \nmid m} (1 - y_n t^{p^n}) \epsilon_m = 1,$$

明所欲证.

定理 4.8. 多项式族 $\{w_n\}$ 定出了群函子同态

$$\widehat{W}(N) \longrightarrow \bigoplus_{n=0}^{\infty} \mathbb{G}_{\mathbf{a}}(N)$$
$$\prod (1 - y_n t^{p^n}) \longmapsto (w_n(y_0, \dots, y_n))_n.$$

是故嵌入 $\bigoplus_{n>0} N \to N^{\mathbb{N}}$ 诱导出群同态

$$\widehat{W}(N) \longrightarrow W(N)$$

$$\prod (1 - y_n t^{p^n}) \longmapsto (y_n)_n.$$

证明. 由于 N 幂零, 上述映射良定. 同态性参见 [Zin84, Theorem 4.2.5]

借助 Witt 环, 我们可以给出局部 Cartier 环的另一种描述.

推论 4.4. 映射

$$W(R) \longrightarrow \mathbb{E}_p$$

 $(a_n) \longmapsto \sum_n V^n[a_n] F^n$

是环的嵌入. 透过此嵌入将 W(R) 视为局部 Cartier 环 \mathbb{E}_p 的子环, 则 \mathbb{E}_p 同构于 W(R)[V,F] 关于右理想滤过 $\{(V^n)\}_n$ 的完备化.

4.3.4 高度

高度是形式群的一个重要不变量. 为此, 我们要先定义同源的概念.

定义 4.18. 设 G, H 为来自形式群律的 R 上形式群. 态射 $\varphi : G \to H$ 称为一个同源 (isogeny), 如果 $\ker \varphi : \mathbf{Nil}_R \to \mathbf{Set}$ 可表.

设 $\varphi: G \to H$ 为同源, 则 ker φ 由有限生成的射影 R-代数 A 表出. 考虑 A 的素理想 \mathfrak{p} 的剩余类域 $\mathbf{k}(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$. [Zin84, Theorem 5.3] 表明存在自然数 $h(\mathfrak{p})$ 使得 $\dim_{\mathbf{k}(\mathfrak{p})} A \otimes_R \mathbf{k}(\mathfrak{p}) = p^{h(\mathfrak{p})}$. 交换代数的结果指出 $\mathfrak{p} \mapsto h(\mathfrak{p})$ 是局部常值函数.

定义 4.19. 称同源 φ 的高度 (height) 为 $h \in \mathbb{N}$, 如果 $h(\mathfrak{p}) = h$ 对所有 $\mathfrak{p} \in \operatorname{Spec} A$ 成立. 称形式群 G 的高度为 h, 如果 $p \in \operatorname{End} G$ 为同源且高度为 h.

例如, 设 R 的特征为 p, 我们考察 $\mathbb{G}_{m/R}$ 的乘 p 同态

$$\mathbb{G}_{\mathrm{m}}(N) \to \mathbb{G}_{\mathrm{m}}(N), \ 1+n \mapsto (1+n)^p = 1+n^p.$$

则 $\ker \varphi$ 由 $R[X]/X^p$ 表出, 因此 $p: \mathbb{G}_m \to \mathbb{G}_m$ 是高度为 1 的同源, \mathbb{G}_m 的高度为 1.

5 Drinfeld 定理

从现在起, 让我们考虑 K 上的一个四元数代数除环 D, 其整数环记作 \mathcal{O}_D . 记 \mathcal{O}^{nr} 为 K 的 极大非分歧扩张 (maximal unramified extension) 的整数环, $\widehat{\mathcal{O}}^{nr}$ 为 \mathcal{O}^{nr} 的 ϖ -进完备化. Drinfeld 的 "基本定理" 称形式 \mathcal{O} -概形 $\widehat{\Omega} \widehat{\otimes}_{\mathcal{O}} \widehat{\mathcal{O}}^{nr}$ 参数化了一族幂零 \mathcal{O} -代数上高度为 4 的形式 \mathcal{O}_D -模.

5.1 形式模

5.1.1 形式 *O*-模的 Cartier 理论

定义 5.1. 一个 B 上的形式 \mathcal{O} -模 (formal \mathcal{O} -module) 指 B 上的一个来自形式群律的光滑形式群 X 连同一个 \mathcal{O} -作用,即环同态 $i:\mathcal{O}\to \operatorname{End} X$; 并且,我们要求此 \mathcal{O} -作用在切空间 $\operatorname{Lie} X$ 上诱导的 \mathcal{O} -作用与 $\operatorname{Lie} X$ 的 B-代数结构诱导的 \mathcal{O} -作用相同; 即对任何 $a\in\mathcal{O}$,相应的 B 上幂级数 $i(a)(T)\equiv aT\pmod{T^2}$. 特别地,对于 $\mathcal{O}=\mathbb{Z}_p$,B 上的形式 \mathbb{Z}_p -模范畴与 B 上的形式群范畴等价.

设 B 是一个 \mathcal{O} -代数. 仿照 Witt 向量环的定义, 容易证明 $B^{\mathbb{N}}$ 容许唯一的 \mathcal{O} -代数结构, 记作 $W_{\mathcal{O}}(B)$, 使得鬼映射 (ghost map) $w:W_{\mathcal{O}}(B)\to B^{\mathbb{N}}$ 为 \mathcal{O} -代数同态, 其中 $w=(w_n)_n$ 的分量由多项式映射

$$w_n: (a_n)_n \mapsto a_0^{q^n} + \varpi a_1^{q^{n-1}} + \dots + \varpi^n a_n$$

给出. 同样地, 我们考虑 $W_{\mathcal{O}}(B)$ 上的移位映射 (Verschiebung map)

$$\tau:(a_0,a_1,a_2,\cdots)\mapsto (0,a_0,a_1,\cdots),$$

由关系

$$w_n \sigma = w_{n+1}, \ \forall n \in \mathbb{N}$$

决定的 Frobenius 同态 σ , 和 Teichmüller 提升

$$[\cdot]: a \mapsto (a, 0, 0, \cdots).$$

记 $a \in \mathcal{O}$ 在结构映射 $\mathcal{O} \to W_{\mathcal{O}}(B)$ 下的像为 $a = a \cdot 1$, 则其鬼分量显然为 $w_n(a) = a$.

定义 5.2. 相应于 B 的 Dieudonné 环被定义为非交换的 \mathcal{O} -代数 $W_{\mathcal{O}}(B)[F,V]$, 其中 F 和 V 满足: 对任何 $x \in W_{\mathcal{O}}(B)$,

$$Fx = \sigma(x)F,$$

$$xV = V\sigma(x),$$

$$VxF = \tau(x),$$

$$FV = \varpi$$

我们在 Dieudonné 环上装备由右理想 (V) 定出的 V-进滤过, 并定义 **Cartier 环** $E_{\mathcal{O}}(B)$ 为 Dieudonné 环 $W_{\mathcal{O}}(B)[F,V]$ 关于 V-进拓扑的完备化.

当 $\mathcal{O} = \mathbb{Z}_p$ 时, $E_{\mathbb{Z}_p}(B)$ 正是上一节定义的局部 Cartier 环 $\mathbb{E}_{B,p}$. 因此, 我们可以平行于上一节的结论, 建立起形式 \mathcal{O} -模的 Cartier 理论.

每个 $E_{\mathcal{O}}(B)$ 中元素 x 可以典范地写作

$$x = \sum_{m,n>0} V^m[a_{m,n}]F^n, \ a_{m,n} \in B, \ n \gg 0 \implies a_{m,n} = 0.$$

特别地, 嵌入 $W_{\mathcal{O}}(B) \hookrightarrow E_{\mathcal{O}}(B)$ 由

$$(a_0,\cdots)\mapsto \sum_{n\geq 0}V^n[a_n]F^n$$

给出.

定义 5.3. 一个 B 上的 Cartier \mathcal{O} -模指一个左 $E_{\mathcal{O}}(B)$ -模, 满足

- 1. M/VM 是有限秩自由 B-模,
- 2. V 在 M 上为单射,
- 3. M 关于 V-进拓扑分离且完备, 即 $M \simeq \lim_{n \to \infty} M/V^n M$ 且 $\bigcap_n V^n M = 0$.

这样的模也称为既约 Cartier O-模.

仿照定理 4.7 的证明并结合定理 4.2, 我们得到:

定理 5.1. B 上的形式 \mathcal{O} -模范畴与 B 上的 Cartier \mathcal{O} -模范畴等价. 而且, 如果 M 是相应于形式 \mathcal{O} -模 X 的 Cartier \mathcal{O} -模, 则 $M/VM = \mathrm{Lie}(X)$.

5.1.2 形式 \mathcal{O}_D -模的 Cartier 理论

回忆 D 是 K 上的四元数代数, \mathcal{O}_D 为其整数环. 由 [Voi21, Theorem 13.3.11], K 的二次非分歧扩张 K' 唯一地嵌入 D. 记 \mathcal{O}' 为 K' 的整数环, $\sigma \in \operatorname{Gal}(K'/K)$ 为其 Galois 群中的非平凡元素. 同样由 [Voi21, Theorem 13.3.11], 存在 $\Pi \in \mathcal{O}_D$, 使得 $\Pi^2 = \varpi$, 且对任何 $a \in \mathcal{O}'$, $\Pi a = \sigma(a)\Pi$. 固定一个这样的 Π .

定义 5.4. 一个 B 上的形式 \mathcal{O}_D -模指 B 上的形式 \mathcal{O} -模 X 连同一个 \mathcal{O}_D -作用 $i: \mathcal{O}_D \to \operatorname{End} X$ 延拓了 X 本身的 \mathcal{O} -作用. 称形式 \mathcal{O}_D -模 X 是特殊 (special) 的, 如果其 \mathcal{O}' -作用使 Lie X 成为 秩 1 自由 $B \otimes_{\mathcal{O}} \mathcal{O}'$ 模.

Cartier 环 $E_{\mathcal{O}}(B)$ 带有自然的 $\mathbb{Z}/2\mathbb{Z}$ -分次, 由 $\deg F = \deg V = 1$ 定义; 齐次分量为

$$E_{\mathcal{O}}(B)_i = \left\{ \sum V^m[a_{m,n}]F^n : m + n \equiv i \pmod{2}, \ \forall m, n \right\}, \ i = 0, 1.$$

特别地, $W_{\mathcal{O}}(B) \subset E_{\mathcal{O}}(B)_0$.

定义 5.5. 一个分次 Cartier $\mathcal{O}[\Pi]$ -模指一个 $\mathbb{Z}/2\mathbb{Z}$ -分次 Cartier \mathcal{O} -模 $M=M_0\oplus M_1$ 连同一个 1 次 $E_{\mathcal{O}}(B)$ 线性自同态 Π , 满足 $\Pi^2=\varpi$. 此时 M_0 与 M_1 自动成为 $W_{\mathcal{O}}(B)$ -模. 称分次 Cartier $\mathcal{O}[\Pi]$ -模 M 是特殊的, 如果 M_0/VM_1 和 M_1/VM_0 皆为秩 1 自由 B 模.

定理 5.2. [BC91, II, 2.3] 设 $B \in \mathcal{O}'$ -模,则 B 上的形式 \mathcal{O}_D -模范畴与 B 上的分次 Cartier $\mathcal{O}[\Pi]$ -模范畴等价, 且此范畴等价保持特殊性.

5.2 Drinfeld 定理: 陈述

回忆 \overline{k} 为 k 的代数闭包, 其 Witt 向量环为 $W_{\mathcal{O}}(\overline{k}) = \widehat{\mathcal{O}}^{nr}$. 根据 [BC91, II, 5.2], \overline{k} 上高度 4 的特殊形式 \mathcal{O}_D -模具有唯一的同源类. 固定一个 \overline{k} 上高度 4 的特殊形式 \mathcal{O}_D -模 Φ .

定义 5.6. 定义 Nilp_O 上的函子 G 如下: 对 $B \in \text{Nilp}_{O}$, G(B) 为三元组 (ψ, X, ρ) 的同构类, 其中

- $\diamond \psi : \overline{k} \to B/\varpi B$ 为 k-同态,
- ♦ X 为 B 上高度 4 的特殊形式 \mathcal{O}_D -模,
- ♦ $\rho: \psi_*\Phi \to X_{B/\varpi B}$ 为高度 0 的拟同源.

定理 5.3 (Drinfeld). 函子 $G: \mathbf{Nilp}_{\mathcal{O}} \to \mathbf{Set}$ 由形式 \mathcal{O} -概形 $\widehat{\Omega} \widehat{\otimes}_{\mathcal{O}} \widehat{\mathcal{O}}^{\mathrm{nr}}$ 表出.

根据 Witt 向量环的泛性质, 给出一个 k-同态 $\psi: \overline{k} \to B/\varpi B$, 等价于给出一个 \mathcal{O} -同态 $\widetilde{\psi}: \mathcal{O}^{\mathrm{nr}} \to B$. 于是, 给出 G(B) 中的一个点等价于给出 \mathcal{O} -同态 $\widetilde{\psi}: \mathcal{O}^{\mathrm{nr}} \to B$ 连同 $G(B_{\widetilde{\psi}})$ 中的一个点, 其中 $B_{\widetilde{\phi}}$ 表示赋予 B 以来自 $\widetilde{\psi}$ 的 $\mathcal{O}^{\mathrm{nr}}$ -代数结构, 而 \overline{G} 定义如下.

定义 5.7. 令 $Nilp_{\mathcal{O}^{nr}}$ 为 ϖ 在其中幂零的 \mathcal{O}^{nr} -代数组成的范畴^②. 定义 $Nilp_{\mathcal{O}^{nr}}$ 上的函子 \overline{G} 如下: 对 $B \in Nilp_{\mathcal{O}^{nr}}$, $\overline{G}(B)$ 为二元对 (X, ρ) 的同构类, 其中

- ♦ X 为 B 上高度 4 的特殊形式 \mathcal{O}_D -模,
- ♦ $\rho: \Phi_{B/\varpi B} \to X_{B/\varpi B}$ 为高度 0 的拟同源.

注意到给出 $\operatorname{Hom}_{\widehat{\mathcal{O}}^{\operatorname{nr}}}(B,\widehat{\Omega} \widehat{\otimes}_{\mathcal{O}} \widehat{\mathcal{O}}^{\operatorname{nr}})$ 中的一个点等价于给出交换图

其中 $f \in \operatorname{Hom}_{\mathcal{O}}(B, \widehat{\Omega} \widehat{\otimes}_{\mathcal{O}} \widehat{\mathcal{O}}^{\operatorname{nr}}), \psi \in \operatorname{Hom}_{\mathcal{O},\operatorname{cont}}(\widehat{\mathcal{O}}^{\operatorname{nr}}, B) = \operatorname{Hom}_{\mathcal{O}}(\mathcal{O}^{\operatorname{nr}}, B).$ 因此为了证明定理 5.3, 只需证明下述定理.

定理 5.4 (Drinfeld). 函子 $\overline{G}: \mathbf{Nilp}_{\mathcal{O}^{\mathrm{nr}}} \to \mathbf{Set}$ 由形式 $\widehat{\mathcal{O}}^{\mathrm{nr}}$ -概形 $\widehat{\Omega} \widehat{\otimes}_{\mathcal{O}} \widehat{\mathcal{O}}^{\mathrm{nr}}$ 表出.

记 $\overline{H}: \mathbf{Nilp}_{\mathcal{O}^{\mathrm{nr}}} \to \mathbf{Set}$ 为定义 3.1 中的函子 $F: \mathbf{Nilp}_{\mathcal{O}} \to \mathbf{Set}$ 在 $\mathbf{Nilp}_{\mathcal{O}^{\mathrm{nr}}}$ 上的限制. 因为 F 由 形式 \mathcal{O} -概形 $\widehat{\Omega}$ 表出, 所以 \overline{H} 由形式 $\widehat{\mathcal{O}}^{\mathrm{nr}}$ -概形 $\widehat{\Omega} \otimes_{\mathcal{O}} \widehat{\mathcal{O}}^{\mathrm{nr}}$ 表出. 定理 5.4 也就是说函子 \overline{G} 同构于 \overline{H} . 我们将在下一小节中构造自然变换 $\xi: \overline{G} \to \overline{H}$; ξ 实为同构的证明请参阅 [BC91] 或 [Dri76].

^①由于 ϖ 在 B 中幂零, 这等价于给出连续的 \mathcal{O} -同态 $\widehat{\mathcal{O}}^{nr} \to B$.

 $^{^{\}circ}$ 自然也等于 ϖ 在其中幂零的 $\widehat{\mathcal{O}}^{nr}$ -代数组成的范畴.

5.3 自然变换 $\xi : \overline{G} \to \overline{H}$ 的构造

设 $B \in \mathbf{Nilp}_{\mathcal{O}^{\mathrm{nr}}}, M$ 是 B 上的分次 Cartier $\mathcal{O}[\Pi]$ -模.

回忆 Frobenius 同态 $\sigma: W_{\mathcal{O}}(B) \to W_{\mathcal{O}}(B)$ 为 \mathcal{O} -代数同态. 将 M 透过 σ 进行系数限制 (restriction of scalars) 得到一个 $W_{\mathcal{O}}(B)$ -模, 记作 M^{σ} .

我们定义 N(M) 为 O-模同态

$$M \to M \oplus M^{\sigma}, m \mapsto (Vm, -\Pi m)$$

的余核, 其上带有来自 $M \oplus M$ 的 $\mathbb{Z}/2\mathbb{Z}$ -分次. 由于 $m \mapsto (Vm, -\Pi m)$ 对于 V 和 Π 的作用等变, N(M) 上也带有 V 和 Π 的 1 次作用.

定义映射

$$\lambda_M: N(M) \to M, \ [(m, m')] \mapsto \Pi m + V m'.$$

命题 5.1. 存在唯一的映射 $L_M: M \to N(M)$, 满足:

- 1. $\lambda_M \circ L_M = F$,
- 2. L_M 对 B 呈函子性: 对任何 \mathcal{O} -同态 $B \to B'$, 图

$$\begin{array}{ccc} M & \xrightarrow{L_M} & N(M) \\ \downarrow & & \downarrow \\ M' & \xrightarrow{L_{M'}} & N(M') \end{array}$$

交换, 其中 $M' = M \widehat{\otimes}_{E_{\mathcal{O}}(B)} E_{\mathcal{O}}(B')$.

定义

$$\phi_M: N(M) \to N(M), [(m, m')] \mapsto L_M(m) + [(m', 0)].$$

再取 ϕ_M 的不动点

$$\eta_M := N(M)^{\phi_M} = \{ z \in N(M) : \phi(z) = z \}.$$

则 η_M 继承了来自 N(M) 的分次 $\mathcal{O}[\Pi]$ -模结构.

有了以上的准备, 我们就能够对 $(X,\rho) \in \overline{G}(B)$ 定义四元组 $\xi(X,\rho) = (\eta_X, T_X, u_X, r_{X,\rho})$ 如下. 记 M(Y) 为形式 \mathcal{O}_D -模 Y 的分次 Cartier $\mathcal{O}[\Pi]$ -模, $S = \operatorname{Spec} B$.

- \diamond η_X 为 X 上的层, 在每个仿射开集 Spec $A \subset S$ 上取值 $\eta_X(\operatorname{Spec} A) = \eta_{M(X_A)}$.
- ♦ T_X 为 X 上的层, 在每个仿射开集 Spec $A \subset S$ 上取值 $T_X(\operatorname{Spec} A) = \operatorname{Lie} X_A = M_{X_A}/VM_{X_A}$.
- $\diamond u_X: \eta_X \to T_X$, 在每个仿射开集 $\operatorname{Spec} A \subset S$ 由 $[(m, m')] \mapsto m \mod V$ 定义.
- ♦ $r_{X,\rho}:\underline{K}^2\to\eta_{X,0}\otimes_{\mathcal{O}}K$ 由 ρ 根据 [BC91, II, 7.5] 诱导而出.

这便是我们寻求的自然变换 $\xi: \overline{G} \to \overline{H}$.

6 附录

本节考虑的概形统一认为是 Noether 的.

6.1 射影丛

考虑概形 X 上的一个分次 \mathcal{O}_X -代数 \mathcal{B} , 即带有 \mathcal{O}_X -代数结构的拟凝聚分次 \mathcal{O}_X -模. 任何 X 的仿射开子概形 U 都给出其上的概形 $\operatorname{Proj} \mathcal{B}(U) \to U$. 如果 V 是 U 的仿射开子概形, 则

$$\mathscr{B}(V) = \mathscr{B}(U) \otimes_{\mathscr{O}_X(X)} \mathscr{O}_X(V),$$

因此 $\operatorname{Proj} \mathscr{B}(V) = \operatorname{Proj} \mathscr{B}(U) \times_X V$. 于是, 取 X 的仿射开覆盖 U_i , $\operatorname{Proj} \mathscr{B}(U_i)$ 可以粘合成为 X 上的概形, 记作 $\operatorname{Proj} \mathscr{B} \to X$.

例 6.1. 取 $\mathscr{B} = \mathscr{O}_X[T_0, \dots, T_n]$ 为多项式代数, 则 $\operatorname{Proj} \mathscr{B} = \mathbb{P}_X^n = \mathbb{P}_Z^n \times_{\mathbb{Z}} X$.

对于 X 上的拟凝聚层 \mathscr{E} , 我们定义 X-概形范畴上取值在集合范畴 **Set** 中的函子 $\mathbb{P}(\mathscr{E})$, 将 $h:Y\to X$ 映到二元对 (\mathscr{L} , $h^*\mathscr{E}\to\mathscr{L}$) 的集合, 其中 \mathscr{L} 为 Y 上可逆层. 由 [Har77, II, Proposition 7.12] 知, 此函子由射影概形 $\operatorname{Proj}(\operatorname{Sym}(\mathscr{E}))$ 表出, 因而为 X 上射影概形, 称为相应于 \mathscr{E} 的射影丛 (projective bundle).

例 6.2. 取 $X = \operatorname{Spec} \mathcal{O}$. 自由模 $M = \mathcal{O}^2$ 给出 X 上的凝聚层 M, 于是给出 $\mathbb{P}(M) := \mathbb{P}(M)$. 设 A 为 \mathcal{O} -代数, 则 $\mathbb{P}(M)$ 的 A-点由

如果 A = F 是一个域, 那么 $\mathbb{P}(M)(F)$ 中可以实现为 F^2 中余维数 1 的 F-子空间之集合, 因此 $\mathbb{P}(M)(F) = \mathbb{P}^1(F)$. 特别地, $\mathbb{P}(M)(K) = \mathbb{P}^1(K)$, $\mathbb{P}(M)(k) = \mathbb{P}^1(k)$. 此外, 存在双射

6.2 爆破

定义 6.3. 设 \mathscr{I} 为 X 上的凝聚理想层. 称 $\widetilde{X}:=\operatorname{Proj}\left(\bigoplus_{n\geq 0}\mathscr{I}^n\right)\to X$ 为 X 沿理想层 \mathscr{I} 或闭子概形 $Z:=V(\mathscr{I})$ 的爆破 (blow up).

由 Proj 的构造, 我们可以在仿射开集上作爆破再粘合. 所以不妨设 $X = \operatorname{Spec} A$, 于是存在 A 的有限生成的理想 $I = (f_1, \ldots, f_n)$ 使得 $\mathscr{I} = \widetilde{I}$, 爆破 $\widetilde{X} = \operatorname{Proj} B$, $B := \bigoplus_{d \geq 0} I^d$ 的分次 A-代数结构给出态射 $\widetilde{X} \to X$. 为了区分 B 的一次部分 $I = B_1$ 和零次部分的子集 $I \subset A = B_0$, 记 $t_i = f_i \in B_1$, 而 $f_i \in B_0$. 考虑满同态

$$\phi: A[T_1, \dots, T_n] \to B, \ T_i \mapsto t_i.$$

这是分次代数同态, 因而 $\widetilde{X} = \operatorname{Proj} B \simeq \operatorname{Proj} A[T_1, \dots, T_n] / \ker \phi$ 是 \mathbb{P}_A^n 的闭子概形. 注意到多项式 $P(T_1, \dots, T_n) \in \ker \phi$ 当且仅当 $P(f_1, \dots, f_n) = 0 \in A$.

命题 6.1. 令 $J := (f_i T_j - f_j T_i)_{1 \le i, j \le n}$,则 $J \subset \ker \phi$.如果 $Z := V_+(J) \subset \mathbb{P}_A^{n-1}$ 是整的 (integral),则 $\widetilde{X} \simeq Z$.

证明. 参见 [Liu02, Lemma 8.1.2].

例 6.4. 取 $X = \mathbb{A}^1_{\mathbb{Z}_p} = \operatorname{Spec} \mathbb{Z}_p[T]$. 我们考虑 X 沿极大齐次理想 I = (p, T) 定出的闭点 x = V(I) 的爆破 \widetilde{X} . 记 $A = \mathbb{Z}_p[T]$, $B = \bigoplus_{d \geq 0} I^d$. 我们考虑满同态 $\phi : A[S, W] \to B$ 和理想 $J = (TS - pW) \subset \ker \phi$. 由于 TS - pW 不可约,命题 6.1 导出

$$\widetilde{X} \simeq \operatorname{Proj} \frac{A[S, W]}{TS - pW} = V_{+}(J) \subset \mathbb{P}^{1}_{A}.$$

开子概形

$$D_{+}(W) = \operatorname{Spec} \frac{\mathbb{Z}_{p}[T, s]}{Ts - p}, \ s = S/W$$

和

$$D_+(S) = \operatorname{Spec} \frac{\mathbb{Z}_p[T, w]}{T - pw} \simeq \operatorname{Spec} \mathbb{Z}_p[w] \simeq \operatorname{Spec} \mathbb{Z}_p[T/p], \ w = W/S$$

组成了 \tilde{X} 的一个仿射开覆盖;它们透过同构

$$D_{+}(W)_{S} = \operatorname{Spec} \mathbb{Z}_{p}[T, s, s^{-1}] = \operatorname{Spec} \mathbb{Z}_{p}[T, w^{-1}, w] = D_{+}(S)_{W}$$

粘合成为 \tilde{X} .

6.3 形式概形

6.3.1 形式概形作为环层空间

如前所述, 形式概型是那些局部上形如 $\operatorname{Spf} A$ 的环层空间, 其中环 A 关于其理想 I 定出的进制拓扑完备. 对于一般的概型 X, 我们定义其沿其闭子概型 Y 的形式完备化 (formal completion) 为

$$\widehat{X} := \underline{\lim} X/\mathscr{I}^n = (Y, \underline{\lim} \mathscr{O}/\mathscr{I}^n),$$

其中 \mathscr{I} 是截出 Y 的理想层. 这样的空间是形式概型. 本文中, 我们主要考虑的离散赋值环上的概形沿其特殊纤维的形式完备化.

例 6.5. 考虑射影直线 $\mathbb{P}^1_{\mathbb{Z}_p} = \operatorname{Proj} \mathbb{Z}_p[T_0, T_1]$ 沿其特殊纤维 $\mathbb{P}^1_{\mathbb{F}_p}$ 的形式完备化. 闭浸入 $i: \mathbb{P}^1_{\mathbb{F}_p} \to \mathbb{P}^1_{\mathbb{Z}_p}$ 在仿射开集 $D_+(T_0)$ 和 $D_+(T_1)$ 上由模 p 给出, 因而 $\mathbb{P}^1_{\mathbb{Z}_p}$ 沿其特殊纤维的形式完备化 $\widehat{\mathbb{P}}^1_{\mathbb{Z}_p} = \left(|\mathbb{P}^1_{\mathbb{F}_p}|, \varprojlim \mathscr{O}_{\mathbb{P}^1_{\mathbb{Z}_p}}/(\ker i^\#)^n\right)$ 确为两片 $\widehat{\mathbb{A}}^1_{\mathbb{Z}_p}$ 透过 $\operatorname{Spf} \mathcal{O}\langle T, 1/T\rangle$ 的自同构 $T \mapsto 1/T$ 粘合而成, 是形式概型.

6.3.2 形式概形作为函子

任何 $\mathcal O$ 上的概形 X 定出 $\mathcal O$ -代数范畴 $\mathbf{Alg}_{\mathcal O}$ 上的函子 $R\mapsto X(R)$,其沿特殊纤维的完备化 $\hat X$ 定出 ϖ -进完备 $\mathcal O$ -代数范畴 $\mathbf{Compl}_{\mathcal O}$ 上的函子

$$R \mapsto \widehat{X}(R) = \operatorname{Hom}_{\mathcal{O}}(\operatorname{Spf} R, X).$$

命题 6.2. 成立函子同构 $\hat{X} \simeq X|_{\mathbf{Compl}_{\mathcal{O}}}$.

证明. 只需对仿射概形 $X=\operatorname{Spec} A$ 验证. 由于任何完备 \mathcal{O} -代数都是 ϖ -幂零 \mathcal{O} -代数的逆向极限, 而逆向极限与 $\operatorname{Hom}(A,-)$ 交换, 我们只要验证上述函子限制在 $\operatorname{Nilp}_{\mathcal{O}}$ 上成立, 即

$$\operatorname{Hom}_{\mathcal{O}}(A,R) \simeq \operatorname{Hom}_{\mathcal{O},\operatorname{cont}}(\varprojlim A/\varpi^n,R), \ \forall R \in \mathbf{Nilp}_{\mathcal{O}}.$$

记 $\widehat{A}=\varprojlim A/\varpi^n$. 同态 $\widehat{A}\to R$ 自然给出同态 $A\to \widehat{A}\to R$. 反之, 给定 \mathcal{O} -同态 $A\to R$, 由于 ϖ 在 R 中幂零, 对充分大的自然数 n 有交换图

从而诱导出 $\hat{A} \to R$. 可以直接验证这两个对应互逆.

作者签名:

参考文献

- [BC91] J.-F. Boutot and H. Carayol. Uniformisation *p*-adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfeld. Number 196-197, pages 7, 45–158. 1991. Courbes modulaires et courbes de Shimura (Orsay, 1987/1988).
- [Bos14] Siegfried Bosch. Lectures on formal and rigid geometry, volume 2105 of Lecture Notes in Mathematics. Springer, Cham, 2014.
- [Čer76] IV Čerednik. Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotients. *Mathematics of the USSR-Sbornik*, 29(1):55, 1976.
- [Dri76] Vladimir G Drinfel'd. Coverings of p-adic symmetric regions. Functional Analysis and its Applications, 10(2):107–115, 1976.
- [FvdP04] Jean Fresnel and Marius van der Put. Rigid analytic geometry and its applications, volume 218 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2004.
 - [Har77] R. Hartshorne. Algebraic geometry, volume No. 52 of Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977.
 - [Liu02] Qing Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné, Oxford Science Publications.
 - [Ray74] Michel Raynaud. Géométrie analytique rigide d'apres tate, kiehl. *Table ronde d'analyse non archimédienne (Paris, 1972)*, pages 319–327, 1974.
 - [SS91] P. Schneider and U. Stuhler. The cohomology of p-adic symmetric spaces. *Invent. Math.*, $105(1):47-122,\ 1991.$
 - [Voi21] John Voight. Quaternion algebras, volume 288 of Graduate Texts in Mathematics. Springer, Cham, [2021] ©2021.
 - [Zin84] Thomas Zink. Cartiertheorie kommutativer formaler Gruppen, volume 68 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics]. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1984. With English, French and Russian summaries.
 - [李 19] 李文威. 代数学方法 (第一卷), volume 67.1 of 现代数学基础丛书. 北京: 高等教育出版社, 2019.

致谢

首先,我想感谢亲人们长久以来在物质上和精神上对我的支持.因为他们,我才得以来到中国人民大学,并在此学习数学;他们始终如一的支持让我得以成长为今天的样貌.

感谢老师们在过去四年对我的指导和帮助. 其中王善文老师不仅指导了我的本科毕业论文, 而且一直在数学上指引着我. 正是在他的引导下, 我产生了对数论与代数几何的强烈兴趣, 并立 志在未来继续钻研.

感谢我的同学和朋友们, 他们的陪伴在学术和生活方面于我不可或缺. 特别地, 我要感谢姜杰东师兄一次又一次耐心而详尽地解答我 naïve 的数学问题.

本文至此结束, 但这只是一条长路的起点, 而我希望自己有意志与能力长久地走下去.