# 22 第八讲图 (下)

## 最小生成树问题

# 什么是最小生成树(minimum spanning tree)

连通图 和 最小生成树存在 是 充要条件

- 是一棵树
  - o 没有回路
  - o V个顶点一定有 V-1 条边
- 是生成树
  - o 包含全部顶点
  - o v-1 条边都在图里



• 边的权重和最小

## 贪心算法

• 什么是贪: 每一步都要最好的

• 什么是好:权重最小的边

• 需要约束

- o 只能用图里有的边
- o 只能正好用掉 V-1条边
- o 不能有回路

## Prim算法 —— 让一棵小树长大

1957 年,美国计算机科学家罗伯特·普里姆(Robert C. Prim)在独立研究时发现了这个算法,并将其应用于计算机科学领域,尤其是在解决图的最小生成树问题上展现出了很高的效率。由于普里姆的工作,该算法开始在计算机科学和相关工程领域得到广泛传播和应用,因此这个算法被命名为 "普里姆算法"。有趣的是,1930 年,捷克数学家沃伊捷赫·亚尔尼克、1959 年,艾兹格·迪科斯彻(Edsger Dijkstra)都在独立研究中发现这一算法。

# Prim算法 — 让一棵小树长大

```
void Prim()
void Dijkstra( Vertex s )
                                                \{ MST = \{s\};
{ while (1) {
                                                   while (1) {
    V = \lambda \psi = \lambda \psi + \lambda \psi
                                                     V = \lambda \psi = \lambda \psi = \lambda \psi
    if (这样的V不存在)
                                                     if (这样的V不存在)
      break;
                                                      break;
    collected[V] = true;
                                                     将V收录进MST: dist[V] = 0;
    for ( V 的每个邻接点 W )
                                                     for ( V 的每个邻接点 W )
      if ( collected[W] == false )
                                                       if (dist[W]!= 0)
         if (dist[V]+E_{< V,W>} < dist[W]){
                                                          \quad \textbf{if} \ (\ E_{(V,W)} \ < \ dist[W] \ ) \, \{
          dist[W] = dist[V] + E_{\langle V,W \rangle};
                                                           dist[W] = E_{(V,W)};
           path[W] = V;
                                                           parent[W] = V;
  }
}
                                                   if (MST中收的顶点不到|V|个)
                                                     Error ("生成树不存在");
  dist[V] = E_{(s,V)}或 正无穷
  parent[s] = -1
                                      T = O(|V|^2)
                                                                   稠密图合算
                            Copyright @ 2014, 浙江大学计算机科学与技术学院
                                      All Rights Reserved
```

Dijkstra 算法和 Prim 算法虽然在实现结构上高度相似,但它们的命名差异源于以下三方面的本质区别:

#### 1 算法目标的根本差异

- 1 Dijkstra 算法的核心目标是单源最短路径问题
- 2 Prim 算法的目标是最小生成树问题

### 2. 历史发展的独立路径

1. Dijkstra 算法: 由荷兰计算机科学家 Edsger Dijkstra 于 1956 年提出,最初用于解决 荷兰国家银行的电信网络路由问题 2. Prim 算法: 最早由捷克数学家 Vojtěch Jarník 于 1930 年发现,但未被广泛关注。1957年,美国计算机科学家 Robert C. Prim 在独立研究中重新发现并推广了该算法,用于生成最小生成树

### 3. 数学模型的本质区别

- 1. Dijkstra 的松弛操作: 在更新节点距离时,需累加源点到当前节点的路径长度(如dis[v] = min(dis[v], dis[u] + weight(u, v)))
- 2. Prim 的边权选择: 每次选择的边权仅需比较当前节点到生成树的最短边 (qmin(weight(u, v))) ,无需考虑路径累加

## Kruskal算法 —— 将森林合并成树

Kruskal 算法是由美国数学家、统计学家、计算机科学家和心理测量学家约瑟夫·伯纳德·克鲁斯卡尔 (Joseph Bernard Kruskal) 在 1956 年提出的。当时,克鲁斯卡尔在研究图论相关问题时,为了解决最小生成树问题,提出了这一经典算法。在 Kruskal 算法提出后,它在计算机科学、运筹学、电信网络设计等领域得到了广泛应用。例如,在电信网络中,该算法可用于确定如何以最小的成本连接各个基站,以实现网络覆盖。

# Kruskal算法 — 将森林合并成树

```
      void Kruskal ( Graph G )

      { MST = { };

      while ( MST 中不到 |V| -1 条边 && E 中还有边 ) {

      从 E 中取一条权重最小的边 E<sub>(v,w)</sub>; /* 最小堆 */

      将 E<sub>(v,w)</sub>从 E 中删除;

      if ( E<sub>(v,w)</sub> 不在 MST 中构成回路) /* 并查集 */

      将 E<sub>(v,w)</sub> 加入 MST;

      else

      彻底无视 E<sub>(v,w)</sub>;

      }

      if ( MST 中不到 |V| -1 条边 )

      Error ( "生成树不存在" );
```

## $T = O(|E| \log |E|)$

# 拓扑排序 Topological Sorting

把 "Topos" 和 "-logia" 组合起来, "Topology" 的含义就是对物体位置和空间关系的研究。在数学领域,拓扑学是一门专门研究几何图形或空间在连续变形(如拉伸、弯曲,但不包括撕裂或黏合)下 保持不变性质的学科

| 课程号 | 课程名称       | 预修课程   |                                                                                    |
|-----|------------|--------|------------------------------------------------------------------------------------|
| C1  | 程序设计基础     | 无      |                                                                                    |
| C2  | 离散数学       | 无      | (c1) <sub>&lt;</sub>                                                               |
| C3  | 数据结构       | C1, C2 | (C3)—(C7)—(C12)                                                                    |
| C4  | 微积分 (一)    | 无      | (C2)                                                                               |
| C5  | 微积分 (二)    | C4     | C13                                                                                |
| C6  | 线性代数       | C5     |                                                                                    |
| C7  | 算法分析与设计    | C3     | (C8)—(C9)—(C11)                                                                    |
| C8  | 逻辑与计算机设计基础 | 无      | CII                                                                                |
| C9  | 计算机组成      | C8     | $(C4)$ $\longrightarrow$ $(C5)$ $\longrightarrow$ $(C6)$ $\longrightarrow$ $(C15)$ |
| C10 | 操作系统       | C7, C9 |                                                                                    |
| C11 | 编译原理       | C7, C9 |                                                                                    |
| C12 | 数据库        | C7     | AOV (Activity On Vertex)                                                           |
| C13 | 计算理论       | C2     | receivity on vertex)                                                               |
| C14 | 计算机网络      | C10    | 网络                                                                                 |
| C15 | 数值分析       | C6     | LATE                                                                               |

## 定义

拓扑序:如果图中从V到W有一条有向路径,则V一定排在W之前。满足此条件的顶点序列称为一个拓扑序

拓扑排序: 获得一个拓扑序的过程就是拓扑排序

AOV如果有合理的拓扑序,则必定是有向无环图(Directed Acyclic Graph, DAG)



## 算法

在TopSort函数中,如果外循环还没结束,就已经找不到"未输出的入度为0的顶点",则说明

- A. 图中必定存在回路
- B. 图不连通
- C. 图中可能有回路
- D. 程序写错啦

拓扑排序的核心是每次选取入度为 0 的顶点输出并删除相关边,适用于有向无环图(DAG)。若外循环未结束就找不到入度为 0 的未输出顶点,说明图中存在回路(环)。因为回路中的顶点相互依赖,入度始终无法变为 0,导致拓扑排序无法正常完成。

- A. 图中必定存在回路: 正确。回路的存在会使其中顶点入度始终不为 0, 导致此情况。
- **B. 图不连通**:错误。图不连通与入度为 0 的顶点是否存在无必然联系,不连通图的各连通分量若为 DAG,仍可拓扑排序。
- C. 图中可能有回路:错误。不是"可能",而是"必定"存在回路。
- D. 程序写错啦:错误。这是拓扑排序对有环图的正常表现,非程序错误。

# 算法

```
      void TopSort()

      { for (cnt = 0; cnt < |V|; cnt++ ) {</td>

      V = 未输出的入度为0的顶点; /* 0(|V|) */

      if (这样的V不存在) {

      Error ("图中有回路");

      break;

      }

      输出V,或者记录V的输出序号;

      for (V的每个邻接点W)

      Indegree[W]--;

      }
```

 $T = O(|V|^2)$ 

算法优化:随时将入度变为0的顶点放到一个容器里,这样下次执行循环时不用去找哪些顶点入度为0

```
void TopSort()
{ for (图中每个顶点 V)
    if (Indegree[V]==0)
        Enqueue(V, Q);
while (!IsEmpty(Q)) {
    V = Dequeue(Q);
    输出V,或者记录V的输出序号; cnt++;
    for (V的每个邻接点 W)
        if (--Indegree[W]==0)
        Enqueue(W, Q);
}
if (cnt != |V|)
    Error("图中有回路");
}
```

```
T = O(|V| + |E|)
```

此算法可以用来 检测有向图是否 DAG

### 关键路径问题

AOE (Activity On Edge)网络 —— 一般用于安排项目的工序

### 抽象结构





关键路径: 由绝对不允许延误的活动组成的路径

在 AOE (Activity On Edge) 网中,关键路径是指从起始顶点到完成顶点的最长路径。关键路径上的活动称为关键活动,这些活动的持续时间直接决定了整个项目的最早完工时间

整个工期有多长: Earliest[8] = 18

哪几个组有机动时间: 2、4、7

### 相关公式

Earliest

o Earliest[0] = 0

0

$$\text{Earliest}[j] = \max_{\langle i,j \rangle \in E} \left\{ \text{Earliest}[i] + C_{\langle i,j \rangle} \right\};$$

Latest

0

$$\operatorname{Latest}[i] = \min_{\langle i,j \rangle \in E} \left\{ \operatorname{Latest}[j] - C_{\langle i,j \rangle} \right\};$$

• 判断是否有延迟

0

$$D_{\langle i,j \rangle} = \text{Latest}[j] - \text{Earliest}[i] - C_{\langle i,j \rangle}$$

### 这构成了求关键路径的另外一种算法:

- 。 若  $D_{< i,j>}>0$ ,说明活动 < i,j> 有空闲时间,该活动对应的结点 (活动) 属于 "有空闲的结点"。
- 。 若  $D_{< i,j>} = 0$ ,说明活动 < i,j> 无松弛时间,是关键活动。

关键路径由所有  $D_{< i,j>}=0$  的关键活动组成。由于关键活动没有空闲时间,因此关键路径中不包含上述通过  $D_{< i,j>}>0$  判定的 "有空闲的结点"(活动)。