EXERCICES: RÉELS

1 Inégalités

1.1 Inégalités

1. Montrer que pour $a, b, c \in \mathbb{R}_+$

$$(a^2+1)(b^2+1)(c^2+1) \geqslant 8abc$$

2. Montrer que pour $a, b \in \mathbb{R}$ tels que $0 < a \leq b$, on a

$$\frac{1}{8} \cdot \frac{(b-a)^2}{b} \leqslant \frac{a+b}{2} - \sqrt{ab} \leqslant \frac{1}{8} \cdot \frac{(b-a)^2}{a}$$

3. Montrer que si $a, b, x, y \in \mathbb{R}_+^*$ sont tels que a+b=1, alors :

$$\frac{a}{x} + \frac{b}{y} \geqslant \frac{1}{ax + by}$$

1.2 Puissances

1. Soient $n \in \mathbb{N}^*$ et $(x, y) \in \mathbb{R}^2_+$. Montrer que

$$(x+y)^{\frac{1}{n}} \leqslant x^{\frac{1}{n}} + y^{\frac{1}{n}}$$

- 2. Soient $a \in \mathbb{R}_+$ et $n \in \mathbb{N}$. Montrer que $(1+a)^n \geqslant 1+na$.
- 3. Soient a et b deux nombres réels tels que $0 \le a \le b$ et $n \in \mathbb{N}^*$. Montrer que

$$n(b-a)a^{n-1} \leqslant b^n - a^n \leqslant n(b-a)b^{n-1}$$

4. Soient $a, b, c \in [0, 1]$. Montrer qu'au moins un des trois nombres réels

$$a(1-b), b(1-c), c(1-a)$$

est inférieur à $\frac{1}{4}$.

1.3 Système non linéaire

Soient x_1, \ldots, x_n des nombres réels tels que

$$\sum_{i=1}^{n} x_i = n \text{ et } \sum_{i=1}^{n} x_i^2 = n$$

Montrer que $x_i = 1$ pour tout $i \in [1, n]$.

1.4 Système non linéaire

On suppose que $(x, y, z, t) \in \mathbb{R}^{*4}$ vérifie le système

$$\begin{cases} x + y + z = t \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{t} \end{cases}$$

Établir que (x+y)(y+z)(z+x)=0, et en déduire la forme générale des solutions du système ci-dessus.

2 Archimédisme, partie entière

2.1 Autour de la partie entière

Soient x et y deux nombres réels et $n \in \mathbb{N}^*$.

1. Montrer que

$$E(x+y) \geqslant E(x) + E(y)$$

Y a-t-il des cas d'égalité? D'inégalité stricte?

2. Montrer que $E\left(\frac{E(nx)}{n}\right) = E(x)$.

2.2 Calcul de somme

1. Montrer que :

$$\forall x \in \mathbb{R} \quad E(x) + E(-x) = \begin{cases} 0 & \text{si } x \in \mathbb{Z} \\ -1 & \text{sinon} \end{cases}$$

2. En déduire que si $p, q \in \mathbb{N}^*$ sont premiers entre eux

$$\sum_{k=1}^{q-1} E\left(k \cdot \frac{p}{q}\right) = \frac{(p-1)(q-1)}{2}$$

3 Propriété de la borne supérieure

3.1 Comparaison de deux ensembles

Soient A et B deux parties non vides de \mathbb{R} telles que

$$\forall (a, b) \in A \times B \quad a \leq b$$

- 1. Montrer que $\sup (A)$ et $\inf (B)$ existent et que $\sup (A) \leq \inf (B)$.
- 2. Si l'on suppose maintenant que quel que soit $(a,b) \in A \times B$ on a a < b, peut-on en conclure que sup $(A) < \inf(B)$?

3.2 Borne supérieure

Soit A une partie bornée non vide de \mathbb{R} . Montrer que

$$\sup_{(x,y)\in A^2}|x-y|=\sup\left(A\right)-\inf\left(A\right)$$

3.3 Calcul de bornes supérieures

Déterminer, si elles ou ils existent, les bornes supérieure, bornes inférieure, plus grands élément, plus petits élément des parties de \mathbb{R} suivantes :

$$A = \left\{ \frac{1}{n} + \frac{1}{p} : (n, p) \in \mathbb{N}^{*2} \right\}$$

$$B = \left\{ \frac{n - \frac{1}{n}}{n + \frac{1}{n}} : n \in \mathbb{N}^* \right\}$$

$$C = \left\{ \frac{1}{n} + (-1)^p : (n, p) \in \mathbb{N}^* \times \mathbb{N} \right\}$$

3.4 Bornes supérieures

Soient A et B deux parties de $\mathbb R$ non vides et majorées. Soit λ un nombre réel. On pose :

$$C = \{a+b : a \in A \mid b \in B\}$$

$$D = \{\lambda \cdot a : a \in A\}$$

$$E = \{a \cdot b : a \in A \mid b \in B\}$$

- 1. Montrer que $\sup (C)$ existe et vaut $\sup (A) + \sup (B)$.
- 2. Que peut-on dire de l'existence et de la valeur de $\sup(D)$, $\sup(E)$? On pourra formuler des hypothèses supplémentaires adéquates $\sup(D)$, at e de e de

3.5 Un théorème de point fixe

Soient I = [a, b] avec a < b et soit $f : I \to I$ une application croissante. Montrer qu'il existe $c \in I$ tel que f(c) = c. Considérer pour cela la partie

$$A = \{x \in I, f(x) > x\}.$$

Quelle est l'interprétation géométrique de cette propriété en termes du graphe de f?

3.6 Intervalle

Soit I et J deux intervalles de \mathbb{R} . Montrer que

$$I + J = \{x + y : x \in I \text{ et } y \in J\}$$

est un intervalle.

4 Rationnels, irrationnels

4.1 Rationnels et irrationnels

- 1. Soient a et b deux éléments de $\mathbb{R} \setminus \mathbb{Q}$. Peut-on affirmer que a+b (respectivement $a \times b$) appartient à $\mathbb{R} \setminus \mathbb{Q}$? Et si $a \in \mathbb{Q}$ et $b \in \mathbb{R} \setminus \mathbb{Q}$?
- 2. En utilisant seulement le fait que $\sqrt{2}$ est irrationnel, montrer par l'absurde que $\sqrt{6} \sqrt{2} \sqrt{3}$ et $\sqrt{2} + \sqrt{3} + \sqrt{5}$ sont irrationnels.

4.2 Racine carrée

- 1. Pour $a \in [1, +\infty[$, simplifier $\sqrt{a + 2\sqrt{a 1}} + \sqrt{a 2\sqrt{a 1}}$.
- 2. Résoudre l'équation $\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1$ d'inconnue $x\in\mathbb{R}$.