Team: M2_ISR_21

ISRO's Web based Visualization Tool For AstroSat Observations

Data Preprocessing

Conversion of Coordinates

- The coordinates given in Catalog B were in J2000 RA/DEC.
- Using the AstroPy Python library the J2000 coordinates were converted to Galactic Longitude and Latitude coordinates.

Matching Catalog C to A

- All the entities in Catalog A that were observed by the Astrosat were selected.
- The names of the observed sources were searched for in the titles of Catalog C and the respective publication added to the source's dictionary in the Catalog A json file.

Matching Catalog B to A

- Compared the Galactic coordinates of Catalog B with A.
- The matching entries were marked as observations observed by the Astrosat.
- 3. For the matched entries the data from Catalog B was added to the source's dictionary in the Catalog A json file.

How to use the visualisation tool?

 The web-tool can be served as a website which can be viewed by anyone.

The executables can be used for desktop applications.

Web Application

Technology stack

Open source JavaScript Frameworks

- Backend
 - NodeJS
 - ExpressJS APIs
- Frontend
 - HTML, CSS, JavaScript
 - Bootstrap
 - PlotlyJS

Isolate sources observed by Astrosat

Stand Alone Application

- Command line application for Windows, Linux and MacOS
- Executable divided into two
 - Data2json.exe (for data analysis and conversion to json)
 - Created using python library pyinstaller (convert python scripts to .exe)
 - Server-win.exe (to run node application.)
 - Node pkg (command line interface to package node.js application to executables).
- NSIS (Nullsoft Scriptable Install System) used to archive two exe into one.
- Requirements
 - Any latest version of browser (Desktop view recommended).

- Smooth visualisation of an online plot
- Download dataset as JSON / PDF / CSV
- Hover to view minimal details like Name, Galactic Longitude, Galactic Latitude
- Click to view and download additional information retrieved from dataset
- Download plot as PNG
- NodeJS offers fast, scalable deployment

Code Compatibility and Extensibility

Backend, python code.

Different coordinate systems.

In case of other catalogue, we just need to run python code.

Documentation

We have made our documentation in markdown format.

- Program specific
 - Libraries used, documentation already available.
 - For our code, we have documented as well.
- User specific
 - Web application
 - Standalone

Web Application Documentation in Markdown

To run the web application you can

- · directly launch the executable given.
- use npm to run the web application locally (Please check the readme file to install the necessary dependencies).

When you run the web app, you can access it at https://127.0.0.1:8080.

The web app consists a plot of aitoff projection of the sky map. We used the galatic coordinates to plot all the sources.

Here is a look of web application

Cosmic Sources Visualisation

Astrophysical Analysis

Estimating the mass and radius of HD31648 using asteroseismology

Analysis Followed

$$\begin{split} \frac{M}{M_{\odot}} &\simeq \left(\frac{\nu_{\rm max}}{\nu_{\rm max,\odot}}\right)^3 \left(\frac{\Delta \nu}{\Delta \nu_{\odot}}\right)^{-4} \left(\frac{T_{\rm eff}}{T_{\rm eff,\odot}}\right)^{3/2}, \\ \frac{R}{R_{\odot}} &\simeq \left(\frac{\nu_{\rm max}}{\nu_{\rm max,\odot}}\right) \left(\frac{\Delta \nu}{\Delta \nu_{\odot}}\right)^{-2} \left(\frac{T_{\rm eff}}{T_{\rm eff,\odot}}\right)^{1/2} \text{ and} \\ \frac{g}{g_{\odot}} &\simeq \left(\frac{\nu_{\rm max}}{\nu_{\rm max,\odot}}\right) \left(\frac{T_{\rm eff}}{T_{\rm eff,\odot}}\right)^{1/2} \end{split}$$

Results and Accuracy

We estimated stellar mass and radius using Uncorrected Scaling Relations as:

An accurate estimate of the surface temperature (through spectral analysis) would lead to more accurate mass radius estimates

Thank You