Analytical and Monte-Carlo modeling of Multi-Parallel Slit and Knife-Edge Slit Prompt Gamma Cameras

E. Testa¹, B.F.B. Huisman^{1,2}, D. Dauvergne³, J. M. Létang², D. Sarrut²

¹Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, 69622 Villeurbanne, France, ²CREATIS, Université de Lyon; CNRS UMR5220; INSERM U1044; INSA-Lyon; Université Lyon 1; Centre Léon Bérard, Lyon, France, ³Université Grenoble Alpes, Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3, Grenoble, France

1. Introduction

Ion-range verification during hadrontherapy

- ► Major challenge to fully take benefit from ion beam ballistic properties
- ► Main imaging modalities under study: prompt gammas (PG) detection [1] with non-imaging systems (such as PG Timing, PG Spectroscopy and PG Peak Integral) and imaging systems, namely physically-collimated or electronically collimated cameras (Compton cameras)

PG collimated cameras

- ▶ 2 main collimator configurations: Multi-Parallel Slit (MPS) [2] and Knife-Edge Slit (KES) collimators [3] (Figure 1)
- ► No theoretical considerations have been proposed for the specific 1D collimation systems developed for PG detection

2. Objectives

- \triangleright Development of an analytical model (AM) of MPS and KES collimations \Rightarrow main intrinsic features of each collimator
- Verification of the AM by means of Monte Carlo (MC) simulations
- Comparison the MPS and KES prototypes developed by the CLaRyS collaboration [2] and IBA [3], respectively.

6. Figures of merit

- ▶ Detection efficiency (DE): #detected PG/#emitted PG in the camera Field of View
- Spatial resolution (Res) = FOW (Fall-Off Width)
- ► Fall-off Retrieval Precision (FRP): Standard deviation of the FOP distribution obtained with 50 MC simulation runs.

3. The Analytical Model of MPS and KES collimations

Figure 1: MPS (left) and KES (right) collimation. H: height. f: filling factor ((1-s)/p)

Table 1: Detection efficiencies (DE) and spatial resolution (Res=FOW) predicted by the analytical model. FOW: Fall-Off Width of the PG profile (see section "Figures of merit"); s_e : effective slit width; T_e : effective thickness.

7. Results

AMV

	MPS		KES	
	AM	MC	AM	MC
FOW (mm)	14.5	16.9	13.5	13.8
DE	6.66×10^{-4}	6.47×10^{-4}	1.06×10^{-3}	8.7×10^{-4}

PG profiles detected by the prototypes

Figure 3: Top: PG profiles obtained with MPS (left) and KES (right). See column PC of Table 2 for the parameters. Bottom: first derivative of the PG profiles.

4. Monte Carlo simulations & PG profile analysis

Monte Carlo simulations

- ► 2-stage simulation with Gate 7.2 (Geant4 4.10.02)
- ► First stage: target irradiation (QGSP_BIC_HP_EMY physics list)
 - ightharpoonup Optimization: vpgTLE variance reduction method \Rightarrow gain of $\sim 10^3$ [4]
- Second stage: photon propagation in the geometry (emlivermore physics list)
- ► PG profile analysis
 - Background (BKG) modeling:
 - Estimates of background counts in the detector (mainly due to secondary neutrons) are taken from [2] (MPS, $2.5 imes 10^{-7}$ counts/incident proton and per 8 mm bin) and [5] (KES, $5 imes 10^{-7}$ counts per primary proton per 4 mm bin) which are both based on measured data
 - ► Fall-Off Position (FOP): position corresponding to the half FO amplitude in the spline-fit to the PG profile
 - Fall-Off Width (FOW): width of the PG profile fall-off, namely the FWHM of the peak resulting from the computation of the PG profile first derivative (botto row of Figure 3)

Fall-off Retrieval Precision

# protons	MPS	KES
10 ⁹	0.32	0.65
10^8	1.05	1.80
10^7	2.81	17.1

Table 3: Standard deviations (in mm) of the FOP distributions. See column PC of Table 2 for the parameters.

5. Simulated geometries

- ▶ 2 configurations (Table 2):
 - ► The prototypes as they are published (Figure 2)
 - ► The prototypes with some alterations for the Analytical Model Verification (AMV)

	AMV	PC	
MPS	Dorfoct	BGO	
KES	renect	LYSO	
r	Perfect	Real	
MPS	1 Ma\/	> 1 MeV	
KES	/ I iviev	3–6 MeV	
MPS	no TOE	TOF	
KES		no TOF	
	No modeling	Exp. data based	
	No	Yes	
	160 MeV proton		
	r MPS KES MPS	MPS KES Perfect Perfect MPS KES No modeling No	

Table 2: AMV: Analytical Model Verification – PC: Prototypes Comparison. "Perfect" collimators and detectors: gamma full absorption. For AMV, the PG source corresponds to the PG emitted along the beam direction during the PMMA irradiation

Figure 2: Prototypes representation

8. Discussion and conclusion

- Analytical Model (AM)
 - Good agreement in overall with MC
 - Striking similarities between MPS and KES performances, unlike what can be concluded from previous studies [6, 7, 8]
 - ⇒ Same DE and FOW with perfect collimators
 - ⇒ With real collimators: slightly poorer DE for MPS and FOW for KES
 - ▶ Note that the MPS prototype allows for the detection of the whole PG profile: the field of view of the MPS and KES prototypes are of 30 cm and 10 cm, respectively

Prototypes comparison

- ► PG profiles: MPS prototype with larger fall-off amplitude and lower BKG level thanks to wider energy selection and TOF selection, respectively
- Better Fall-Off Retrieval Precision (FRP) with the MPS prototype
- ▶ Precisions in agreement with the ones published in [2] and [3]

References

- [1] J. Krimmer and et al., "Prompt-gamma monitoring in hadrontherapy: A review," NIMA, 2018.
- [2] M. Pinto and et al., "Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring.," PMB, vol. 59, 2014.
- [3] J. Smeets and et al., "Prompt gamma imaging with a slit camera for real-time range control in proton therapy," PMB, 2012.
- [4] B. F. B. Huisman and et al., "Accelerated prompt gamma estimation for clinical proton therapy simulations," PMB, 2016.
- [5] I. Perali and et al., "Prompt gamma imaging of proton pencil beams at clinical dose rate," PMB, 2014.
- [6] J. Smeets and et al., "Exp. Comparison of KES and MPS Collimators for Prompt Gamma Imaging of Proton Pencil Beams," RO, 2016.
- [7] H.-H. Lin and et al., "A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy," RPC, 2016.
- J. H. Park and et al., "Comparison of knife-edge and multi-slit camera for proton beam range verification by Monte Carlo simulation," NET, vol. 51, 2019.