### 適用動畫超解析之卷積神經網路處理器設計

#### Convolutional Neural Network Processor for Animation Super Resolution

組員: 張嘉祐、林俊曄、陳昭霖

指導教授:黃朝宗 組別: A49

#### 1. Abstract

在這個科技發達的世代,很多人使用手機或平板看動畫,但在網路不好的狀況下,傳輸速率變差,導致畫質下降, 降低了我們的觀看品質。如果先行下載高畫質的影片至手機內,不僅要等待下載的時間而且會占掉許多寶貴的記憶體空 間。因此在這個專題研究中,我們使用Pytorch訓練出一個針對海賊王動畫風格的超解析之CNN網路,讓畫質較差的圖 片經過這個網路後解析度能提高,並以Verilog實作出一個CNN硬體加速器,最後以TSMC 40nm製程完成APR。最終目 標為將此處理器應用於手機或平板這種方便攜帶的電子產品上,讓我們只需以少量的記憶體空間存放Parameters,便能 隨時觀賞高畫質的動畫。

### 2. Implementation

## I. Anime-ResNet Model

- ◆ 我們分別訓練圖1這些Model, 以20張不在Data Set內的圖片 測試,平均後得出其相對應的 PSNR,並衡量Performance與 該Model實作在硬體上所需的 記憶體空間。我們最終決定採 用ResBlock\*4 和nFearture=24 的架構,如表1所示。
- ◆ Model 的架構如圖2所示,包含 四個ResBlock unit和兩個 Upsampler, 因此Output的圖 片大小為Input的16倍。

| Parameter | nFeat | nResblock | nEpochs |
|-----------|-------|-----------|---------|
| Value     | 24    | 4         | 200     |

表1 Anime-ResNet Model Specification





圖2 Anime-ResNet Model Structure

◆ 利用Dynamic Fixed Point 可以將硬體的資 源最大化。在硬體上不適合用32bits的浮點 數運算,因此我們分析每層Parameters跟 Activation的分布情形,再擷取最佳範圍, 將每個bit的效用發揮到最大。



圖3 Dynamic Fixed Point Operation

◆ 如圖3所示,左圖是還未經過Dynamic Fixed Point調整的Upsampler 2 Activation分布圖, 可觀察到有Saturation的現象,因此我們將小 數部分的1個bit 分給整數部分,以完整表達 所有整數部分。

#### II. 硬體架構設計

◆ 在數位電路設計中,為了使Throughput能達到動畫等級的規格(每秒輸出24張圖),我們使用864個乘法器, 一個Cycle可以輸出四個值存進SRAM。運算過程我們使用兩組相同規格的SRAM(A、B)交互存放Activation。

| Input               | 320x180 image               |  |
|---------------------|-----------------------------|--|
| Output              | 1280x720 image              |  |
| 乘法器數量               | 864個                        |  |
| SRAM for activation | 45MB x2個<br>(SRAM_A&SRAM_B) |  |
| SRAM for weight     | 88KB x1個                    |  |
| SRAM for bias       | 0.4KB x1個                   |  |







#### 3. Result

# nage01 from the latest animation

**Activation: 20bits** 

**Timing** 

Area

**Power(dynamic):** 

Power(leakage):

**Total Cycles** 

**Throughput** 



Gaussian Blur



Anime-ResNet(Hardware)

圖6 軟體硬體成果比較

(30.254dB)

**Synthesis** 

3.8ns

 $844568 \mu m^2$ 

56.046*mW* 

 $3.57 \times 10^{3} \mu W$ 

10,715,029個

24.56 image/sec

表3 合成與APR之結果



**APR** 

(Utilization 0.5)

**5.4ns** 

 $936079 \mu m^2$ 

50.96*mW* 

 $4.46 \times 10^{3} \mu W$ 

10,715,029個

17.28 image/sec







圖7 APR Layout

#### 4. Contribution

- 軟體的Quantization,除了Parameter, 將 Activation 也做Dynamic Fixed Point 的處理,可以讓整體PSNR再提高0.3dB。
- 硬體設計處理Resblock Forwarding運算 使用先讀後寫,利用Pipeline錯開SRAM 讀值與寫值的時間,將Forwarding的值 從SRAM\_B讀出,處理完加法後再寫回 SRAM\_B同一位置,如此雖然會有多一個 加法運算的Overhead,但可以節省大量 的Cycle、不必多開一組SRAM去存值。