

# Machine Learning

Prof. Adil Khan

#### Today's Objectives

- 1. A quick recap of what we learned last week
- 2. Why do DT's overfit?
- 3. How can we avoid overfitting in DTs?
  - Early stopping
  - Pruning
- 4. What is Ensemble Learning? Why is it motivated?
  - Bagging
  - Boosting
- 5. RandomForest: an example of Bagging
- 6. Adaboost: an example of Boosting

#### Recap

- 1. Machine Learning (Task, Expereince, Performance)
- 2. Predictors and Respone (Functional Relationship Estimation)
- 3. Regression and Classification
- 4. Linear Models
- 5. Non-linear Models
- 6. Representation Matters
- 7. Learning Representations

#### Recall: DT Class Boundaries



#### DT Boundaries at Different Depths









#### In General

#### Training error reduces with depth



Standard DT's have no "learning Bias"

### DT Overfitting



#### What Makes a Good DT?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
  - Computational efficiency (avoid redundant, suprious attributes)
  - Avoid overfitting
  - Interpretability
- "Oscam's Razor": find the simplest hypothesis that fits the observations
- Thus, we favor simple trees with good performance

#### What do we mean by "Simple is Better"?

• When two trees have the same classification error on validation set, choose the one that is simpler

| Tree Complexity | Training Error | Validation Error |
|-----------------|----------------|------------------|
| Low             | 0.23           | 0.24             |
| Moderate        | 0.12           | 0.15             |
| Complex         | 0.7            | 0.15             |
| Super Complex   | 0.0            | 0.18             |

#### How to avoid Overfitting in DTs?

1. Early Stopping: Stop learning before the tree becomes too complex

2. Pruning: Simplify tree after learning algorithm terminates

#### Early Stopping: Criteria 1

Limit the depth: stop splitting after max\_depth is reached



#### Early Stopping: Criteria 2

- Use a threshold for decrease  $\varepsilon$  in prediction error with a split
  - Stop if the error does not decrease more than  $\varepsilon$

#### Early Stopping: Criteria 3

 Use a threshold for the number of data points at a node for it to be eligible for further split

#### Stop when data points in a node $\leq N_{min}$



#### Summary: Early Stopping

#### 1. Limit tree depth

Stop splitting after a certain depth

#### 2. Prediction performance

 Do not consider a split unless it provides a significant boost in prediction performance

#### 3. Minimum node size

 Do not split a node unless it contains a significant number of data points

#### Pruning

- Grow a large tree and then prune back some nodes
- In other words,
  - We learn a big, complex tree
  - Then we use pruning to reduce the size of the tree by removing parts of the tree

#### Pruning (2)



## Why prune?



#### Which of These Trees is Simpler?



#### Which of These Trees is Simpler? (2)



#### Thus, Our Measure of Complexity is



#### New Learning Objective

Total Cost = Measure of Fit + Measure of Complexity

$$C(T) = Error(T) + \lambda L(T)$$

Error(T) is prediction error (large means bad fit to the data)

L(T) is Number of Leaves (large means likely to overfit)

#### DT Pruning Algorithm

Let T be the final tree

Start at the bottom of T and traverse up, apply prune\_split at each decision node M

#### prune\_split

- Prune\_split (T, M)
  - 1. Compute total cost C(T)
  - 2. Let  $T_{small}$  be the tree after pruning T at M
  - 3. Compute  $C(T_{small})$
  - 4. If  $C(T_{small}) < C(T)$ , prune T to  $T_{small}$

$$C(T) = Error(T) + \lambda L(T)$$

542.3 1063.8 12083.4 25386.4

$$C(T) = Error(T) + \lambda L(T)$$

*λ*=10000

$$542.3 + 10000 \times 4$$

$$1063.8 + 10000 \times 3$$

$$1063.8 + 10000 \times 3$$
  $12083.4 + 10000 \times 2$   $25386.4 + 10000 \times 1$ 







$$C(T) = Error(T) + \lambda L(T)$$

*λ*=10000

$$542.3 + 10000 \times 4$$

$$1063.8 + 10000 \times 3$$

 $1063.8 + 10000 \times 3$   $12083.4 + 10000 \times 2$   $25386.4 + 10000 \times 1$ 



$$C(T) = 40542.3$$



$$C(T) = 31063.8$$



$$C(T) = 32083.4$$



$$C(T) = 35386,4$$

$$C(T) = Error(T) + \lambda L(T)$$

**λ**=10000





 $12083.4 + 10000 \times 2$   $25386.4 + 10000 \times 1$ 





$$C(T) = 32083.4$$

$$C(T) = 40542.3$$

## Ensemble Learning

#### Recall: Bias and Variance

A complex model could exhibit high variance

A simple model could exhibit high bias

We can solve each case with ensemble learning. Let's first see what is ensemble learning.

#### Ensemble Learning

Meta-learning algorithms that combine several ML models into one predictive model



#### Ensemble Model in General

- Goal:
  - Predict output y
    - Either +1 or -1
  - From input x
- Learn ensemble model:
  - Classifiers:  $f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_T(\mathbf{x})$
  - Coefficients:  $\hat{w}_1, \hat{w}_2, ..., \hat{w}_T$
- Prediction:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_{t} f_{t}(\mathbf{x})\right)$$

#### Ensemble Model in General (2)

- Goal:
  - Predict output y
    - Either +1 or -1
  - From input x
- Learn ensemble model:
  - Classifiers:  $f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_T(\mathbf{x})$
  - Coefficients:  $\hat{w}_1, \hat{w}_2, ..., \hat{w}_T$
- Prediction:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

#### Ensemble Model in General (3)

- Goal:
  - Predict output y
    - Either +1 or -1
  - From input x
- Learn ensemble model:
  - Classifiers:  $f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_T(\mathbf{x})$
  - Coefficients:  $\hat{w}_1, \hat{w}_2, ..., \hat{w}_T$
- Prediction:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

# Bagging: Reducing Variance using An Ensemble of Classifiers from Bootstrap Samples

#### Important

• In order for ensemble methods to be more accurate than any of its individual members, the base learners have to be as accurate as possible and as diverse as possible (Hansen & Salamon, 1990)

#### Aside: Bootstrapping

| Training Data | Bootstrap 1 | Bootstrap 2 |       |
|---------------|-------------|-------------|-------|
|               |             |             |       |
| 1             | 2           | 7           | •••   |
| 2             | 2           | 3           | •••   |
| 3             | 1           | 2           | • • • |
| 4             | 3           | 1           | • • • |
| 5             | 7           | 1           | • • • |
| 6             | 2           | 7           | • • • |
| 7             | 4           | 7           | 0 0 0 |

Creating new datasets from the training data with replacement

#### Bagging



#### Random Forests – Example of Bagging

- 1. Draw a random **bootstrap** sample
- 2. Grow a decision tree from the bootstrap sample. At each node:
  - a) Random y select d features without replacement (  $d = \sqrt{n}$  ).
  - b) Split the node using the feature that provides the best split according to the objective function, for instance, by maximizing the information gain.
- 3. Repeat the steps 1 to 2 k times.
- 4. Aggregate the prediction by each tree to assign the class label by majority voting

#### Making Prediction with a Tree Ensemble





As per majority voting, the final result is 'Blue'.

#### Making Prediction with a Tree Ensemble (2)

the ensemble of trees  $\{T_b\}_1^B$ 

To make a prediction at a new point x:

Regression:  $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$ .

Classification: Let  $\hat{C}_b(x)$  be the class prediction of the bth random-forest tree. Then  $\hat{C}_{\rm rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$ .

# Boosting: Converting Weak Learners to Strong Learners through Ensemble Learning

#### Boosting vs. Bagging

Works in a similar way as bagging

#### • Except:

- Models are built sequentially: each model is built using information from previously built models.
- Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version of the original data set

#### Boosting (1)



# Boosting: (2) Train Next Classifier by Focusing More on the Hard Points



#### What does it mean to focus more?

- Weighted Dataset
  - Each  $(x_i, y_i)$  is weighted by  $\alpha_i$
  - More important point  $x_i$  = higher weight  $\alpha_i$

### Example: Learning a Simple Decision Stump

| Credit | Income | У     |
|--------|--------|-------|
| Α      | \$130K | Safe  |
| В      | \$80K  | Risky |
| С      | \$110K | Risky |
| Α      | \$110K | Safe  |
| Α      | \$90K  | Safe  |
| В      | \$120K | Safe  |
| С      | \$30K  | Risky |
| С      | \$60K  | Risky |
| В      | \$95K  | Safe  |
| Α      | \$60K  | Safe  |
| Α      | \$98K  | Safe  |



Example: Learning a Decision Stump on Weighted

Data

Increase weight **\alpha** of harder/misclassified points

| Credit | Income | у     | Weight α |
|--------|--------|-------|----------|
| Α      | \$130K | Safe  | 0.5      |
| В      | \$80K  | Risky | 1.5      |
| С      | \$110K | Risky | 1.2      |
| Α      | \$110K | Safe  | 0.8      |
| Α      | \$90K  | Safe  | 0.6      |
| В      | \$120K | Safe  | 0.7      |
| С      | \$30K  | Risky | 3        |
| С      | \$60K  | Risky | 2        |
| В      | \$95K  | Safe  | 0.8      |
| Α      | \$60K  | Safe  | 0.7      |
| Α      | \$98K  | Safe  | 0.9      |



#### Boosting



#### AdaBoost (Example of Boosting)

- 1. Start with the same weights for all points:  $\alpha_i = \frac{1}{m}$
- 2. For each  $t = 1, \dots, T$ 
  - $\triangleright$  Learn  $f_t(x)$  with data weights  $\alpha_i$
  - $\succ$  Compute coefficient  $\widehat{w}_t$
  - $\triangleright$  Recompute weights  $\alpha_i$
- Final model predicts as:

$$\widehat{y} = sign\left(\sum_{t=1}^{T} \widehat{w}_t f_t(x)\right)$$

Weight of the model

New weights of the data points

Yes Large 
$$\widehat{w}_t$$
 Is  $f_t$  good?

•  $f_t$  is good  $\rightarrow f_t$  has low training error

$$\widehat{w}_t = \frac{1}{2} \ln \left( \frac{1 - weighted \ error(f_t)}{weighted \ error(f_t)} \right)$$

#### Weighted Prediction Error

Total weight of the mistakes:

$$=\sum_{i=1}^{m}\alpha_{i}I(\widehat{y}_{i}\neq y_{i})$$

Total weight of all points:

$$=\sum_{i=1}^{m}\alpha_{i}$$

• Weighted error measures fraction of weight of mistakes:

$$= \frac{Total\ weight\ of\ the\ mistakes}{Total\ weight\ of\ all\ points}$$

$$\widehat{w}_t = \frac{1}{2} ln \left( \frac{1 - weighted \ error(f_t)}{weighted \ error(f_t)} \right)$$

| Weighted error on training data | $\frac{1 - weighted\ error(f_t)}{weighted\ error(f_t)}$ | $\widehat{w}_t$ |
|---------------------------------|---------------------------------------------------------|-----------------|
| 0.01                            |                                                         |                 |
| 0.5                             |                                                         |                 |
| 0.99                            |                                                         |                 |

$$\widehat{w}_t = \frac{1}{2} ln \left( \frac{1 - weighted \ error(f_t)}{weighted \ error(f_t)} \right)$$

| Weighted error on training data | $\frac{1 - weighted\ error(f_t)}{weighted\ error(f_t)}$ | $\widehat{w}_t$ |
|---------------------------------|---------------------------------------------------------|-----------------|
| 0.01                            | 99                                                      | 2.297           |
| 0.5                             | 1                                                       | 0               |
| 0.99                            | 0.01                                                    | -2.3            |

$$\widehat{w}_t = \frac{1}{2} ln \left( \frac{1 - weighted \ error(f_t)}{weighted \ error(f_t)} \right)$$



#### AdaBoost

- 1. Start with the same weights for all points:  $\alpha_i = \frac{1}{m}$
- 2. For each  $t = 1, \dots, T$ 
  - $\triangleright$  Learn  $f_t(x)$  with data weights  $\alpha_i$
  - $\triangleright$  Compute coefficient  $\widehat{w}_t$
  - $\triangleright$  Recompute weights  $\alpha_i$
- Final model predicts as:

$$\widehat{y} = sign\left(\sum_{t=1}^{T} \widehat{w}_t f_t(x)\right)$$

$$\widehat{w}_t = \frac{1}{2} ln \left( \frac{1 - weighted \ error(f_t)}{weighted \ error(f_t)} \right)$$

#### AdaBoost: Updating $\alpha_i$

Did 
$$f_t$$
 get  $x_i$  right?

No Increase  $\alpha_i$ 

$$\alpha_i \leftarrow \begin{cases} \alpha_i e^{-\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) = y_i \\ \alpha_i e^{\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) \neq y_i \end{cases}$$

#### AdaBoost: Updating $\alpha_i$

$$\alpha_i \leftarrow \begin{cases} \alpha_i e^{-\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) = y_i \\ \alpha_i e^{\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) \neq y_i \end{cases}$$

| Predicted Label | $\widehat{w}_t$ | $e^{-\widehat{w}_t} OR e^{\widehat{w}_t}$ | Result |
|-----------------|-----------------|-------------------------------------------|--------|
| Correct         | 2.3             | 0.1                                       | ?      |
| Correct         | 0               | 1                                         | ?      |
| Mistake         | 2.3             | 9.98                                      | ?      |
| Mistake         | 0               | 1                                         | ?      |

Increase, Decrease, or Keep the Same

#### AdaBoost

- 1. Start with the same weights for all points:  $\alpha_i = \frac{1}{m}$
- 2. For each  $t = 1, \dots, T$ 
  - $\triangleright$  Learn  $f_t(x)$  with data weights  $\alpha_i$
  - $\triangleright$  Compute coefficient  $\widehat{w}_t$
  - $\triangleright$  Recompute weights  $\alpha_i$
- Final model predicts as:

$$\widehat{w}_t = \frac{1}{2} ln \left( \frac{1 - weighted \ error(f_t)}{weighted \ error(f_t)} \right)$$

$$\alpha_{i} \leftarrow \begin{cases} \alpha_{i} e^{-\hat{\mathbf{w}}_{t}}, & \text{if } f_{t}(\mathbf{x}_{i}) = y_{i} \\ \alpha_{i} e^{\hat{\mathbf{w}}_{t}}, & \text{if } f_{t}(\mathbf{x}_{i}) \neq y_{i} \end{cases}$$

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{w}_{t} f_{t}(\mathbf{x})\right)$$

#### Important: Normalizing Weights

If  $x_i$  is often mistaken,  $\alpha_i$  could get very large

If  $x_i$  is often correct,  $\alpha_i$  could get very small

Can cause numerical instability

Thus we normalize weights after every iteration

$$\alpha_i \leftarrow \frac{\alpha_i}{\sum_{j=1}^N \alpha_j}$$

#### AdaBoost

- 1. Start with the same weights for all points:  $\alpha_i = \frac{1}{m}$
- 2. For each  $t = 1, \dots, T$ 
  - $\triangleright$  Learn  $f_t(x)$  with data weights  $\alpha_i$
  - $\triangleright$  Compute coefficient  $\widehat{w}_t$
  - $\triangleright$  Recompute weights  $\alpha_i$
  - $\triangleright$  Normalize  $\alpha_i$
- Final model predicts as:

$$\widehat{w}_t = \frac{1}{2} ln \left( \frac{1 - weighted \ error(f_t)}{weighted \ error(f_t)} \right)$$

$$\alpha_{i} \leftarrow \begin{cases} \alpha_{i} e^{-W_{t}}, & \text{if } f_{t}(\mathbf{x}_{i}) = y_{i} \\ \alpha_{i} e^{\hat{W}_{t}}, & \text{if } f_{t}(\mathbf{x}_{i}) \neq y_{i} \end{cases}$$

$$\hat{\sigma} = sign\left(\sum_{t=1}^{T} \widehat{w}_{t} f_{t}(\mathbf{x})\right) \qquad \alpha_{i} \leftarrow \frac{\alpha_{i}}{\sum_{j=1}^{N} \alpha_{j}}$$

#### Self-Study

- What is the effect of of:
  - Increasing the number of classifiers in *bagging*vs.
  - > Increasing the number of classifiers in **boosting**
- Why does Bagging reduce variance?

#### Summary

- 1. Why do DT's overfit?
- 2. How can we avoid overfitting in DTs?
  - Early stopping
  - Pruning
- 3. What is Ensemble Learning? Why is it motivated?
  - Bagging
  - Boosting
- 4. RandomForest: an example of Bagging
- 5. Adaboost: an example of Boosting