SECOND SEMESTER 2019-2020

Course Handout Part-I

Date: 6/1/2020

In addition to part I (General handout for all courses appended to the timetable) this portion gives further details regarding the course.

Course Number: PHY F111

Course Title: MECHANICS, OSCILLATIONS & WAVES

Instructor-in-Charge: P.K.THIRUVIKRAMAN

Instructors: Sashideep Gutti, Prashant Samantray, K.V.S.Shiv Chaitanya, V.S.N.Murthy and Swastik Bhattacharya

Course Description: "Mechanics, Oscillations, and Waves" serves as a fundamental course in physics for science and engineering. This course, consisting of a series of lectures coupled with several demonstrations, provides a good, sound, working knowledge of the following topics: polar coordinates, angular momentum, rigid body motion, central force motion, Special theory of Relativity, harmonic oscillator, coupled oscillations, waves and wave equation.

Scope & Objective: Newtonian mechanics, the oldest branch of physics, is rather robust and possesses a very solid foundation. The phenomena of oscillations and waves have always been intriguing and are ubiquitous in the world around us. A course on "Mechanics, Oscillations, and Waves" is indispensable to understand other branches of science and engineering and serves as one of the stepping stones for scientific, engineering and medical research and development. The wide-ranging spectrum of subject matter of this course provides a foundation for advanced level physics courses. The objective of this course is to develop good physics problem-solving skills by building a deep conceptual understanding of the subject.

Text Books:

- 1. An Introduction to Mechanics, by D. Kleppner and R. Kolenkow, Tata McGraw-Hill Edition, 2007.
- 2. French, Anthony P French, Vibrations and Waves, CBS, 2003.

Reference Books:

- 1. The Physics of Vibrations & Waves, by H. J. Pain, 6th edition, John Wiley & Sons, Inc., 2005.
- 2. Physics Vol I & II, Halliday/Resnick/Krane 5th Edition, John Wiley, 2003.
- 3. Berkeley Physics Course Volume I, Tata-McGraw Hill.
- 4. Berkeley Physics course volume 3, Tata-McGraw Hill
- 4. Feynman lectures on Physics, Vol I

Learning Outcomes:

- 1. Ability to draw free body diagrams with knowledge of constraints and forces and solve the equation of motion.
- 2. Ability to tackle mechanics problems in non-inertial frame.
- 3. Application of Newton's laws to planetary motion.
- 4. Ability to analyze and understand oscillatory mechanical systems which are coupled.
- 5. To understand Interference and diffraction phenomena

Lecture Number	Learning Objectives	Topics to be covered	Chapter in the Text Book
1-3	To understand the kinematical concepts in plane polar coordinates and use them to solve simple problems.	Motion in Plane Polar Co- ordinates	1.6-1.9 (TB1)
4-6	Understand torque equation and conservation of angular	Torque equation, Angular momentum	CHAP 6 (TB1)

	momentum		
7-8	Calculate frequency of small oscillations for arbitrary potentials	Introduction and review of SHM, Energy diagrams, Small oscillations in a bound system	4.8-4.10, 10.1 (TB1)
9-10	Damped harmonic oscillator	Lightly damped, heavily damped, and critically damped oscillations, Q factor	10.2 (TB1)
10-11	Forced harmonic oscillator	Undamped forced oscillator, resonance, forced damped oscillator, Q factor	10.3-10.4 (TB1)
12-13	To learn how vibrations can be combined to give more general vibrations leading to beats.	Superposed vibrations in 1D, two superposed vibrations of equal and unequal frequencies, beats	Chapter 2 – pages 19-28 (TB2)
14-17	To analyze the behavior of undamped coupled harmonic oscillators. Define normal modes and describe how they may be combined.	Coupled oscillators, normal modes, forced coupled oscillatos	Chapter 5 (TB2) Pages: 119-135
18-20	To find the normal modes of coupled pendulums. To determine the motion of coupled pendulums from their initial conditions.	Matrix method for finding normal mode frequencies, matrices, eigenvalues and eigenvectors	Class notes
21-24	To learn how to set up wave equation. To learn how a normal mode of vibration of a stretched string is describable as a combination of two progressive waves. To find the total energy associated with one complete wavelength of a sinusoidal wave on a stretched string.	The free vibrations of stretched string, Progressive Waves, the energy in a mechanical wave, phase and group velocity	Chapter 6 – TB2 (Pages: 161-170) Chapter 7 (Pages: 201-212) – TB2
25-26	To distinguish between particle and wave/phase velocity.	Superposition of waves, energy in mechanical wave	Pages 213-215, 230-234, 237- 242 (TB2)
27-29	To describe interference from multiple sources. Define diffraction grating. Study diffraction by a single slit.	Reflection of wave pulses, Interference from two and more than two sources, diffraction grating, diffraction by a single slit	Chapter 8 (TB2) Pages: 253- 259,267-274, 280-298
30-34	To understand the concept of central force motion and its manifestations in the motion of planets and satellites.	Central force motion, Energy diagrams, planetary motion, Kepler's laws	9.1-9.7 (TB1)
35-37	To understand the concept of angular momentum with regards to the rotation of a rigid body about the axis which is not fixed.	Vector nature of angular momentum, The Gyroscope, Angular Momentum	7.1-7.4(TB1)

	Study the mathematical treatment of gyroscopic motion.		
38-40	To understand the concept of non- inertial frames and the origin of fictitious forces in a rotating coordinate system.	Uniformly accelerating systems,	8.2,8.3, 8.5 (TB1)

Evaluation Scheme:

Evaluation Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid semester Test	90 mins.	35	3/3 9.00 - 10.30AM	Open Book
Quizzes *	50 mins.	20		Closed Book
Comprehensive	3 hours.	45	04/05 FN	Closed Book
Examination				

^{*} Two quizzes will be conducted and the best performance will be considered. No make-up for the quiz

Chamber Consultation Hour: To be announced in class.

Notices: Notices will be displayed on the physics department notice board and on CMS website.

Make up Policy: (1) Make up for *Mid sem* and *Compre exam* may be considered provided a **make-up** application (for a genuine health issue) forwarded by the **Chief Warden** is produced.

Instructor-in-Charge – PHYF111