

Computer Vision for Traffic Density Estimation

24-678: Computer Vision for Engineers

Web based mapping platforms can be unreliable!

- Estimated Time of Arrival (ETA) is never accurate!
- Heavy reliance on the applications ability to track location accurately.
- Current solutions are not as robust real-time traffic prediction and navigation planning.

SORRY I'M LATE FOR WORK. TRAFFIC ON THE STAIRS WAS BRUTAL.

Existing Gaps

What are the current Issues?

- Efficient use of resources at the cost of accuracy 🕾
- **Urban development** presents a technical problem!
- Technological advancements (5G) still have hiccups.
- Inability to distinguish between real and fake data-points.

Existing Gaps

Carnegie Mellon University

User Groups & Pain Points

- Professional workers (Uber / Lyft / Delivery driver) :
 - # Frequent navigation to different location
 - What are the shortest routes?
 - How can I get there in the quickest manner?
- Local users:
 - # Looking for directions to travel locally
 - Navigation routes that adapt to real time traffic data

Product Opportunity

Where do we come in?

- Solution already exists!
- Augment the algorithm by providing reliable data points
- Account for real-time discrepancies

Goal

- Organize information and make it more useful
- Focus is on Customer Engagement
 - -> Revenue
 - -> Impact

Previous Work

- Area mapping algorithm based on OpenCV and SURF.
- Image Matching Using SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted Images
- Automatic traffic density estimation using Single Shot Detection (SSD)
- Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillance

Study shows how Google Maps can be tricked!

Source:

https://www.youtube.com/watch?v=HbJGTKQ2NII

Our Process

Flowchart for Traffic Density Estimation:

/ Image Acquisition

ORB Feature Matching

- Compute Keypoints : corner/edge/contour detection
- Extract features : Brute Force ORB
- Compute distances : between every descriptor pair

Hamming Distance (ORB uses binary string based descriptors)

- Select best matches

ORB Feature Matching

Test Case 1

Test Case 2

/ Image Stitching

- Estimation of Homography Matrix
- Warp source images : Realignment for stitching
- Stitch wrapped Images: about every descriptor pair

Test Case 1

Test Case 2

Object Recognition

- YOLO: Deep learning based Object detection algorithm.
- **Dataset**: Microsoft Common Objects in Context (COCO Dataset)
- Train Algorithm: to detect various vehicle classes in a given image
- Classify and Store: the number of vehicles found in the image

Test Case 1

Test Case 3

Carnegie Mellon University

Traffic Density Calculation

- Calculate road_area: the area of road with respect to the input image
- Calculate Total_vehicle_area: the sum of individual vehicle areas
- Compute percentage occupancy: by dividing the two areas

$$Road\ Percent\ Occupancy = \frac{Total_vehicle_area}{Road\ Area}$$

- Note: The Road area may differ based on the type of road (single lane, multi-lane, incoming, and outgoing traffic)

- Pseudo-coloring (Mobility Heatmap)
 - Dataset showing the volume of traffic flow
- Data-driven city planning
 - Dataset measuring street speeds of traffic.

Motion Detection

Image 1

Image 3

Substraction (1-2)

Substraction (2-3)

Pseudo-Coloring

Value proposition

Customers Satisfaction 2

- Reliable traffic density data
- Privacy protection (Big Brother data harvesting)

Economic Impact

Increase in productivity and business revenue generation for local and professional consumers

Urban Infrastructure Planning 🤼

Highways, Parking Lots, Metro Lines, Malls ...

• Thank You!

- Any Questions?
- Please don't forget to provide your scores and any feedback! ©

