Problem 1

In [2]:

```
# Reading the dataset using pandas.

import pandas as pd

ratings = pd.read_csv('ratings.csv')

tags = pd.read_csv('tags.csv')

movies = pd.read_csv('movies.csv')
```

Problem 2

In [4]:

```
# Extract the first row from tags and print its type
tags_first_row = tags.head(1)
print(tags_first_row)
type(tags_first_row)
```

```
userId movieId tag timestamp
0 18 4141 Mark Waters 1240597180
```

Out[4]:

pandas.core.frame.DataFrame

Problem 3

In [5]:

```
# Extract row 0, 11, 2000 from tags DataFrame tags.iloc[[1, 11, 2000], :]
```

Out[5]:

	userld	movield	tag	timestamp
1	65	208	dark hero	1368150078
11	65	1783	noir thriller	1368149983
2000	910	68554	conspiracy theory	1368043943

```
In [12]:
```

Print index, columns of the DataFrame.

```
print("Index, columns of the ratings dataframe:::\n")
ratings.info()
print("\n Index, columns of the tags dataframe::: \n")
tags.info()
print("\n index, columns of the movies dataframe::: \n")
movies.info()
Index, columns of the ratings dataframe:::
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20000263 entries, 0 to 20000262
Data columns (total 4 columns):
             int64
userId
movieId
             int64
rating
            float64
timestamp
            int64
dtypes: float64(1), int64(3)
memory usage: 610.4 MB
 Index, columns of the tags dataframe:::
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 465564 entries, 0 to 465563
Data columns (total 4 columns):
userId
            465564 non-null int64
            465564 non-null int64
movieId
             465548 non-null object
tag
timestamp
            465564 non-null int64
dtypes: int64(3), object(1)
memory usage: 14.2+ MB
 index, columns of the movies dataframe:::
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27278 entries, 0 to 27277
Data columns (total 3 columns):
movieId 27278 non-null int64
title
           27278 non-null object
genres
          27278 non-null object
dtypes: int64(1), object(2)
memory usage: 639.4+ KB
```

In [15]:

```
# Calculate descriptive statistics for the 'ratings' column of the ratings DataF
rame. Verify using describe().

print("Descriptive statistics of the rating dataset using predefined methods")
print("countc:",ratings.rating.count())
print("Mean:",ratings.rating.mean())
print("Std:",ratings.rating.std())
print("Min:",ratings.rating.min())
print("Max:",ratings.rating.max())
print("Descriptive statistics of the rating dataset using describe")
ratings.rating.describe()
```

```
Descriptive statistics of the rating dataset using predefined method
countc: 20000263
Mean: 3.5255285642993797
Std: 1.051988919275684
Min: 0.5
Max: 5.0
Descriptive statistics of the rating dataset using describe
Out[15]:
         2.000026e+07
count
        3.525529e+00
mean
std
         1.051989e+00
         5.00000e-01
min
25%
        3.000000e+00
50%
        3.500000e+00
75%
         4.000000e+00
max
         5.000000e+00
Name: rating, dtype: float64
```

Problem 6

```
In [22]:
```

```
# Filter out ratings with rating > 5
res = ratings[ratings["rating"] > 5]
print(res)
print("Number of records with rating > 5 is: {}".format(res.size))

Empty DataFrame
Columns: [userId, movieId, rating, timestamp]
Index: []
```

Problem 7

Number of records with rating > 5 is: 0

In [25]:

```
# Find how many null values, missing values are present. Deal with them. Print o
ut how many rows have been modified.

print("No of NaN, missing values in each column of a ratings DataFrame")
print(ratings.isnull().sum(), sep='\n')
print("No of NaN, missing values in each column of a tags DataFrame")
print(tags.isnull().sum(), sep='\n')
print("No of NaN, missing values in each column of a movies DataFrame")
print(movies.isnull().sum(), sep='\n')

print("Filling Null or missing values with ASSIGNMENT")
Dataset=tags.fillna("ASSIGNMENT")
print("Modified row count is\n", Dataset[Dataset["tag"]=="ASSIGNMENT"].count())
```

```
No of NaN, missing values in each column of a ratings DataFrame
userId
movieId
             0
rating
             0
             0
timestamp
dtype: int64
No of NaN, missing values in each column of a tags DataFrame
userId
movieId
              0
             16
tag
timestamp
              0
dtype: int64
No of NaN, missing values in each column of a movies DataFrame
movieId
title
           0
genres
           0
dtype: int64
Filling Null or missing values with ASSIGNMENT
Modified row count is
 userId
              16
movieId
             16
tag
             16
timestamp
             16
dtype: int64
```

In [60]:

```
# Filter out movies from the movies DataFrame that are of type 'Animation'.
def filterGener(geners, gener anmimation):
    res_lst = []
    for gen in geners:
        if(gen.find(gener_anmimation) != -1):
            res_lst.append(True)
            res_lst.append(False)
    return res 1st
movies[filterGener(movies.genres, 'Animation')]
```

Out[60]:

genres	title	movield	
Adventure Animation Children Comedy Fantasy	Toy Story (1995)	1	0
Adventure Animation Children	Balto (1995)	13	12
Animation Children Drama Musical Romance	Pocahontas (1995)	48	47
Animation Children Comedy Romance	Goofy Movie, A (1995)	239	236
Animation Children	Gumby: The Movie (1995)	244	241
Animation Children	Swan Princess, The (1994)	313	310
Adventure Animation Children Drama Musical IMAX	Lion King, The (1994)	364	360
Adventure Animation	Secret Adventures of Tom Thumb, The (1993)	392	388
Animation Children Fantasy Musical	Nightmare Before Christmas, The (1993)	551	547
Action Adventure Animation Children Fantasy	Pagemaster, The (1994)	558	553
Adventure Animation Children Comedy Musical	Aladdin (1992)	588	582
Animation Children Drama Fantasy Musical	Snow White and the Seven Dwarfs (1937)	594	588
An imation Children Fantasy Musical Romance IMAX	Beauty and the Beast (1991)	595	589
Animation Children Fantasy Musical	Pinocchio (1940)	596	590
Action Adventure Animation Horror Sci-Fi	Heavy Metal (1981)	610	604
Animation Children	Aristocats, The (1970)	616	610
Adventure Animation Children Fantasy Musical R	All Dogs Go to Heaven 2 (1996)	631	624
Adventure Animation Children Fantasy Musical	James and the Giant Peach (1996)	661	653
Adventure Animation Children Comedy Fantasy Sc	Space Jam (1996)	673	664
Adventure Animation Children Comedy Musical	Oliver & Company (1988)	709	697
Adventure Animation Comedy	Wallace & Gromit: The Best of Aardman Animatio	720	708
Animation Sci-Fi	Ghost in the Shell (Kôkaku kidôtai) (1995)	741	728
Animation Children Comedy	Wallace & Gromit: A Close Shave (1995)	745	732
Animation Children Drama Musical Romance	Hunchback of Notre Dame, The (1996)	783	770
Adventure Animation Children Musical	Land Before Time III: The Time of the Great Gi	888	871
Animation Children Fantasy Musical Romance	Cinderella (1950)	1022	1003
Animation Children Musical	Winnie the Pooh and the Blustery Day (1968)	1023	1004
Animation Children Musical	Three Caballeros, The (1945)	1024	1005
Animation Children Fantasy Musical	Sword in the Stone, The (1963)	1025	1006
Animation Children Drama Musical	Dumbo (1941)	1029	1010

	movield	title	genres
27007	129830	Animals United (2011)	Animation Children Comedy
27008	129834	Tom and Jerry: The Lost Dragon (2014)	Animation Children Comedy
27018	129859	Mardock Scramble: The Second Combustion (2011)	Animation Sci-Fi
27054	130034	Stand by Me Doraemon (2014)	Animation Children Drama Fantasy
27070	130075	Frozen Fever (2015)	Adventure Animation
27103	130394	The Mascot (1934)	Animation
27107	130402	Cardcaptor Sakura: The Sealed Card (2000)	Adventure Animation Comedy Fantasy Romance
27129	130506	Berserk: The Golden Age Arc 2 - The Battle for	Action Animation Fantasy
27130	130508	Berserk: The Golden Age Arc - The Egg of the K	Action Adventure Animation Fantasy Horror
27131	130510	Berserk: The Golden Age Arc 3 - Descent (2013)	Action Animation Fantasy
27135	130518	The Amazing Screw-On Head (2006)	Action Adventure Animation Comedy Sci-Fi
27136	130520	Home (2015)	Animation Children Comedy Fantasy Sci-Fi
27137	130522	The Brave Little Toaster Goes to Mars (1998)	Animation Children
27155	130644	The Garden of Sinners - Chapter 5: Paradox Par	Animation
27205	131058	Santa's Apprentice (2010)	Animation Children
27208	131066	Ronal the Barbarian (2011)	Adventure Animation Fantasy
27215	131080	Cinderella III: A Twist in Time (2007)	Animation Children Fantasy Romance
27218	131086	The Little Polar Bear: Lars and the Little Tig	Animation Children
27221	131092	Mickey, Donald, Goofy: The Three Musketeers (2	Adventure Animation Children Comedy
27222	131094	Rudolph the Red-Nosed Reindeer: The Movie (1998)	Animation Children
27224	131098	Saving Santa (2013)	Animation Children Comedy
27226	131102	Lucky Luke: The Ballad of the Daltons (1978)	Animation Children Comedy Western
27228	131106	Casper's Haunted Christmas (2000)	Animation Children
27235	131120	Superstar Goofy (1991)	Animation Children Comedy
27240	131130	Tom and Jerry: A Nutcracker Tale (2007)	Animation Comedy
27241	131132	Kleines Arschloch - Der Film (1997)	Animation Comedy
27247	131144	Werner - Das muss kesseln!!! (1996)	Animation Comedy
27248	131146	Werner - Volles Rooäää (1999)	Animation Comedy

genres	title	movield	
Animation Comedy	Werner - Gekotzt wird später (2003)	131243	27269
Adventure Animation Children Comedy Fantasy	Brother Bear 2 (2006)	131248	27270

1027 rows × 3 columns

Problem 9

```
In [62]:
```

```
# Find the average rating of movies.
print("Average rating of the movies:",ratings.rating.mean())
```

Average rating of the movies: 3.5255285642993797

In [99]:

Perform an inner join of movies and tags based on movieId.
movies.join(tags,on='movieId',how='inner', lsuffix='Mov')

Out[99]:

	movieldMov	title	genres	userId	movield
0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	65	208
1	2	Jumanji (1995)	Adventure Children Fantasy	65	353
2	3	Grumpier Old Men (1995)	Comedy Romance	65	521
3	4	Waiting to Exhale (1995)	Comedy Drama Romance	65	592
4	5	Father of the Bride Part II (1995)	Comedy	65	668
5	6	Heat (1995)	Action Crime Thriller	65	898
6	7	Sabrina (1995)	Comedy Romance	65	1248
7	8	Tom and Huck (1995)	Adventure Children	65	1391
8	9	Sudden Death (1995)	Action	65	1617
9	10	GoldenEye (1995)	Action Adventure Thriller	65	1694
10	11	American President, The (1995)	Comedy Drama Romance	65	1783
11	12	Dracula: Dead and Loving It (1995)	Comedy Horror	65	2022
12	13	Balto (1995)	Adventure Animation Children	65	2193
13	14	Nixon (1995)	Drama	65	2353
14	15	Cutthroat Island (1995)	Action Adventure Romance	65	2662
15	16	Casino (1995)	Crime Drama	65	2726
16	17	Sense and Sensibility (1995)	Drama Romance	65	2840
17	18	Four Rooms (1995)	Comedy	65	3052
18	19	Ace Ventura: When Nature Calls (1995)	Comedy	65	5135
19	20	Money Train (1995)	Action Comedy Crime Drama Thriller	65	6539

	movieldMov	title	genres	userld	movield
20	21	Get Shorty (1995)	Comedy Crime Thriller	65	6874
21	22	Copycat (1995)	Crime Drama Horror Mystery Thriller	65	7013
22	23	Assassins (1995)	Action Crime Thriller	65	7318
23	24	Powder (1995)	Drama Sci-Fi	65	8529
24	25	Leaving Las Vegas (1995)	Drama Romance	65	8622
25	26	Othello (1995)	Drama	65	27803
26	27	Now and Then (1995)	Children Drama	65	27866
27	28	Persuasion (1995)	Drama Romance	65	48082
28	29	City of Lost Children, The (Cité des enfants p	Adventure Drama Fantasy Mystery Sci-Fi	65	48082
29	30	Shanghai Triad (Yao a yao yao dao waipo qiao) 	Crime Drama	65	51884
27248	131146	Werner - Volles Rooäää (1999)	Animation Comedy	34494	53956
27249	131148	What A Man (2011)	Comedy Romance	34494	53956
27250	131150	7 Dwarves: The Forest Is Not Enough (2006)	Comedy	34494	56719
27251	131152	The Fat Spy (1966)	Comedy	34494	58998
27252	131154	Die Bademeister – Weiber, saufen, Leben retten	Comedy	34494	58998
27253	131156	Ants in the Pants 2 (2002)	Comedy	34494	58998
27254	131158	Manta, Manta (1991)	Comedy	34494	58998

	movieldMov	title	genres	userld	movield
27255	131160	Oscar and the Lady in Pink (2009)	Drama	34494	58998
27256	131162	Por un puñado de besos (2014)	Drama Romance	34494	58998
27257	131164	Vietnam in HD (2011)	War	34494	60069
27258	131166	WWII IN HD (2009)	(no genres listed)	34494	60069
27259	131168	Phoenix (2014)	Drama	34494	60408
27260	131170	Parallels (2015)	Sci-Fi	34494	61323
27261	131172	Closed Curtain (2013)	(no genres listed)	34494	61323
27262	131174	Gentlemen (2014)	Drama Romance Thriller	34494	61323
27263	131176	A Second Chance (2014)	Drama	34494	61323
27264	131180	Dead Rising: Watchtower (2015)	Action Horror Thriller	34494	64614
27265	131231	Standby (2014)	Comedy Romance	34494	73587
27266	131237	What Men Talk About (2010)	Comedy	34494	76093
27267	131239	Three Quarter Moon (2011)	Comedy Drama	34494	76093
27268	131241	Ants in the Pants (2000)	Comedy Romance	34494	77191
27269	131243	Werner - Gekotzt wird später (2003)	Animation Comedy	34494	77191
27270	131248	Brother Bear 2 (2006)	Adventure Animation Children Comedy Fantasy	34494	78321
27271	131250	No More School (2000)	Comedy	34494	79132
27272	131252	Forklift Driver Klaus: The First Day on the Jo	Comedy Horror	34494	79132
27273	131254	Kein Bund für's Leben (2007)	Comedy	34494	79132

	movieldMov	title	genres	userld	movield
27274	131256	Feuer, Eis & Dosenbier (2002)	Comedy	34494	79132
27275	131258	The Pirates (2014)	Adventure	34494	79132
27276	131260	Rentun Ruusu (2001)	(no genres listed)	34494	79132
27277	131262	Innocence (2014)	Adventure Fantasy Horror	34494	79590

27278 rows × 7 columns

Problem 11

In [100]:

```
def filterGener(geners, gener anmimation):
   res lst = []
    for gen in geners:
        if(gen.find(gener anmimation) != -1):
            res lst.append(True)
        else:
            res_lst.append(False)
   return res_lst
comedy movies = movies[filterGener(movies.genres, 'Comedy')]
# Step 1 joining the comedy movies and ratings data frames.
comedy movies rating = comedy movies.join(ratings,on='movieId',how='inner',lsuff
ix='Mov')
#step 2 Displaying 5 movies which are Comedy in genre and have rating greater t
comedy_movies_rating_morethan_4 = comedy_movies_rating[comedy_movies_rating.rati
ng > 4.0]
#Step 3 Printing first 5 comedy movies having rating > 4
comedy_movies_rating_morethan_4.head(5)
```

Out[100]:

	movieldMov	title	genres	userld	movield	rating	timestamp
169	171	Jeffrey (1995)	Comedy Drama	1	8636	4.5	1970-01- 01
174	176	Living in Oblivion (1995)	Comedy	2	62	5.0	1970-01- 01
178	180	Mallrats (1995)	Comedy Romance	2	260	5.0	1970-01- 01
181	183	Mute Witness (1994)	Comedy Horror Thriller	2	480	5.0	1970-01- 01
192	194	Smoke (1995)	Comedy Drama	2	1259	5.0	1970-01- 01

In [77]:

```
# Split 'genres' into multiple columns.
df = movies['genres'].str.split('|').tolist()
generes_columns=pd.DataFrame(df,columns=['generes1', 'generes2', 'generes3', 'gene
res4', 'generes5', 'generes6', 'generes7', 'generes8', 'generes9', 'generes10'])
generes_columns
```

Out[77]:

	generes1	generes2	generes3	generes4	generes5	generes6	generes7	generes8	gı
0	Adventure	Animation	Children	Comedy	Fantasy	None	None	None	
1	Adventure	Children	Fantasy	None	None	None	None	None	
2	Comedy	Romance	None	None	None	None	None	None	
3	Comedy	Drama	Romance	None	None	None	None	None	
4	Comedy	None	None	None	None	None	None	None	
5	Action	Crime	Thriller	None	None	None	None	None	
6	Comedy	Romance	None	None	None	None	None	None	
7	Adventure	Children	None	None	None	None	None	None	
8	Action	None	None	None	None	None	None	None	
9	Action	Adventure	Thriller	None	None	None	None	None	
10	Comedy	Drama	Romance	None	None	None	None	None	
11	Comedy	Horror	None	None	None	None	None	None	
12	Adventure	Animation	Children	None	None	None	None	None	
13	Drama	None	None	None	None	None	None	None	
14	Action	Adventure	Romance	None	None	None	None	None	
15	Crime	Drama	None	None	None	None	None	None	
16	Drama	Romance	None	None	None	None	None	None	
17	Comedy	None	None	None	None	None	None	None	
18	Comedy	None	None	None	None	None	None	None	
19	Action	Comedy	Crime	Drama	Thriller	None	None	None	
20	Comedy	Crime	Thriller	None	None	None	None	None	
21	Crime	Drama	Horror	Mystery	Thriller	None	None	None	
22	Action	Crime	Thriller	None	None	None	None	None	
23	Drama	Sci-Fi	None	None	None	None	None	None	
24	Drama	Romance	None	None	None	None	None	None	
25	Drama	None	None	None	None	None	None	None	
26	Children	Drama	None	None	None	None	None	None	
27	Drama	Romance	None	None	None	None	None	None	
28	Adventure	Drama	Fantasy	Mystery	Sci-Fi	None	None	None	
29	Crime	Drama	None	None	None	None	None	None	
27248	Animation	Comedy	None	None	None	None	None	None	
27249	Comedy	Romance	None	None	None	None	None	None	
27250	Comedy	None	None	None	None	None	None	None	
27251	Comedy	None	None	None	None	None	None	None	
27252	Comedy	None	None	None	None	None	None	None	

	generes1	generes2	generes3	generes4	generes5	generes6	generes7	generes8	gı
27253	Comedy	None	None	None	None	None	None	None	
27254	Comedy	None	None	None	None	None	None	None	
27255	Drama	None	None	None	None	None	None	None	
27256	Drama	Romance	None	None	None	None	None	None	
27257	War	None	None	None	None	None	None	None	
27258	(no genres listed)	None	None	None	None	None	None	None	
27259	Drama	None	None	None	None	None	None	None	
27260	Sci-Fi	None	None	None	None	None	None	None	
27261	(no genres listed)	None	None	None	None	None	None	None	
27262	Drama	Romance	Thriller	None	None	None	None	None	
27263	Drama	None	None	None	None	None	None	None	
27264	Action	Horror	Thriller	None	None	None	None	None	
27265	Comedy	Romance	None	None	None	None	None	None	
27266	Comedy	None	None	None	None	None	None	None	
27267	Comedy	Drama	None	None	None	None	None	None	
27268	Comedy	Romance	None	None	None	None	None	None	
27269	Animation	Comedy	None	None	None	None	None	None	
27270	Adventure	Animation	Children	Comedy	Fantasy	None	None	None	
27271	Comedy	None	None	None	None	None	None	None	
27272	Comedy	Horror	None	None	None	None	None	None	
27273	Comedy	None	None	None	None	None	None	None	
27274	Comedy	None	None	None	None	None	None	None	
27275	Adventure	None	None	None	None	None	None	None	
27276	(no genres listed)	None	None	None	None	None	None	None	
27277	Adventure	Fantasy	Horror	None	None	None	None	None	

27278 rows × 10 columns

```
In [101]:
```

```
# Extract year from title e.g. (1995).
df=movies['title'].str[-5:-1]
df
```

Out[101]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	1995 1995 1995 1995 1995 1995 1995 1995
27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275	1999 2011 2006 1966 1999 2002 1991 2009 2014 2011 2009 2014 2015 2013 2014 2015 2014 2015 2011 2000 2011 2000 2001 2000 2001 2007 2002 2014

2001 27276 27277 2014

Name: title, Length: 27278, dtype: object

Problem 14

```
In [102]:
```

```
# Select rows based on timestamps later than 2015-02-01.
import datetime
df=ratings
ratings['timestamp'] = pd.to_datetime(ratings['timestamp']).dt.date
given date=datetime.date(2015,2,1)
res=ratings[ratings['timestamp'] > given date]
res
```

Out[102]:

userId movieId rating timestamp

In [103]:

```
# Sort the tags DataFrame based on timestamp.
tags_sorted = tags.sort_values(by='timestamp',ascending=True)
tags_sorted
```

Out[103]:

	userld	movield	tag	timestamp
333932	100371	2788	monty python	1135429210
333927	100371	1732	coen brothers	1135429236
333924	100371	1206	stanley kubrick	1135429248
333923	100371	1193	jack nicholson	1135429371
333939	100371	5004	peter sellers	1135429399
333922	100371	47	morgan freeman	1135429412
333921	100371	47	brad pitt	1135429412
333936	100371	4011	brad pitt	1135429431
333937	100371	4011	guy ritchie	1135429431
333920	100371	32	bruce willis	1135429442
333933	100371	2858	kevin spacey	1135429466
333931	100371	2329	fuckoff nazi	1135429508
333930	100371	2329	edward norton	1135429508
333944	100371	6016	brazil	1135429520
15903	3797	110	overrated	1135589075
256663	75141	4642	Terrible	1135688095
15926	3797	8573	Nonlinear Surrealism	1135936223
68928	16050	38886	twee	1136036612
68924	16050	38886	eighties	1136036612
68925	16050	38886	family	1136036612
68926	16050	38886	new york	1136036612
68927	16050	38886	overrated	1136036612
68919	16050	7060	christian	1136039301
68921	16050	7060	musical	1136039301
68920	16050	7060	kitsch	1136039301
68922	16050	7060	religious	1136039301
68918	16050	6898	harsh	1136039368
68916	16050	6898	british	1136039368
68917	16050	6898	drugs	1136039368
81444	20513	36529	truth	1136242623
119997	28906	115149	violent	1427746031
119991	28906	115149	lack of story	1427746053
119993	28906	115149	over the top	1427746060
119989	28906	115149	cheesy	1427746074
405155	123297	128642	CLV	1427746337

	userld	movield	tag	timestamp
399877	123297	4211	CLV	1427746709
400993	123297	6419	CLV	1427746864
401017	123297	6481	CLV	1427747220
405123	123297	118722	CLV	1427747321
400106	123297	4573	CLV	1427747462
150873	42640	115122	mockumentary	1427748778
150871	42640	115122	comedy	1427748797
150872	42640	115122	dark comedy	1427748808
392905	122523	5004	USA	1427752289
392904	122523	5004	party	1427752292
290536	88044	106782	unsatisfying ending	1427753000
290534	88044	106782	Orgies	1427753111
290529	88044	106782	ENFP	1427753147
290532	88044	106782	Left-Wing Propaganda	1427753266
290533	88044	106782	Left-Wing Writers	1427753621
290528	88044	106782	Economically Illiterate Writers	1427753739
290530	88044	106782	inaccurate	1427753806
290531	88044	106782	Jonah Hill	1427753849
290526	88044	106782	Amoral	1427753913
290527	88044	106782	crime	1427753921
290535	88044	106782	profanity	1427754096
288375	87797	215	Vienna	1427755801
158763	46072	3409	premonition	1427760726
158780	46072	6058	premonition	1427760764
339178	102853	115149	russian mafia	1427771352

465564 rows × 4 columns

In []: