T.D. 4: Optique

Exercice 1 : (D.S.1 2017-2018)

Soit un système catadioptrique constitué par une lentille mince divergente L, de centre optique O, de distance focale f=10cm, et un miroir concave M de centre C confondu avec le foyer image F' de la lentille et de sommet S confondu avec le foyer objet F de L. Un objet AB de longueur Icm linéaire droit perpendiculaire à l'axe est situé a $\overline{OA} = -15cm$.

- 1- Construire l'image A'B' de l'objet AB, quelle est sa position
- 2- Quel est le grandissement linéaire du système ?
- 3- Préciser la nature de cette image
- 4– Déterminer le miroir équivalent

Exercice 2 : Etude d'un système catadioptrique (cc1 18-19)

On considère un système catadioptrique (Σ) d'indice n, plongé dans l'air constitué d'un dioptre sphérique (DS), de sommet S et de centre C_1 , et d'un miroir sphérique (MS), de même sommet S et de centre C_2 (voir figure)

1- En supposant qu'à travers (Σ) , un objet A peut avoir trois images A_0 , A_1 et A' selon le trajet suivant :

$$A \xrightarrow{DS} A_0 \xrightarrow{MS} A_1 \xrightarrow{DS} A'$$

Ecrivez la formule de conjugaison relative à chaque passage en considérant l'origine au sommet S

- 2- En déduire la formule de conjugaison du système (Σ) reliant les points conjugués A et A'
- 3- Montrer que le système (Σ) est équivalent à un miroir sphérique de sommet S et de centre C dont on déterminera le rayon de courbure $R = \overline{SC}$ en fonction de $R_1 = \overline{SC_1}$, $R_2 = \overline{SC_2}$ et n.
- 4- Quelle est la nature de ce miroir équivalent ?

Exercice 3 : rattrapage 17-18

Soient deux dioptres sphériques D_1 et D_2 de sommets et centres respectifs S_1 , C_1 , et S_2 , C_2

1- pour chacun de ces dioptres, calculer les distances focales objet et image

On donne:
$$n_1 = n_2 = 1$$
; $n = \frac{3}{2}$; $\overline{S_1 C_1} = 60cm$; $\overline{S_2 C_2} = -30cm$

- 2- on associe ces deux dioptres tel que $\overline{S_1S_2}=e=20cm$
 - a- déterminer la position de l'image M' de F'_1 (foyer image de D_1) à travers D_2 .
 - b- déterminer la position de l'objet M ayant son image confondue avec F_2 (foyer objet de D_2) à travers D_I
- 3- on fait tendre e vers 0, c'est-à-dire S_1 et S_2 confondus en un point S. soit A_2B_2 l'image d'un objet A_1B_1 à travers les 2 dioptres. On appellera AB l'image intermédiaire.
 - a- donner la relation permettant de calculer la position de A_2B_2 connaissant celle de A_1B_1
 - b- en déduire les distances focales objet et image de la lentille mince ainsi obtenue

Exercice 4: CC1 (12-13)

Soit un miroir sphérique concave de sommet S, de centre C, de rayon R, plongé dans l'air. Un rayon lumineux paraxial AI (A appartient à l'axe optique) se réfléchit en I sur le miroir et coupe l'axe au point A'. Soit H la projection de I sur l'axe optique, \vec{u} et \vec{u} vecteurs unitaires.

On pose
$$\overline{CA} = p$$
; $\overline{CA}' = p'$; $\overline{CS} = R$; $SCI = w$ (très petit)

- 1- Exprimer le chemin optique L = (AA') en fonction de p, p', R et w
- **2** En appliquant la condition générale de stigmatisme approché, établir la relation de conjugaison du miroir sphérique avec origine au centre
- **3** Application : Décrire l'image que donne un miroir sphérique concave (rayon de courbure = 60 cm) d'un objet de 3cm de hauteur placé perpendiculairement à l'axe optique et situé à 20 cm du sommet du miroir.

Faire une construction géométrique.

