Exercícios de Programação Linear

Questão 1:

Um fazendeiro deseja plantar duas culturas: soja e feijão. A tabela abaixo mostra a produtividade em kg/m² e o lucro/kg para cada cultura:

	Cultura	Produtividade (kg/m ²)	Lucro (R\$/kg)
ĺ	Soja	0.5	0.15
	Feijão	0.4	0.08

O fazendeiro possui uma área cultivável de 500 m^2 . Ele quer maximizar seus lucros, mas também precisa plantar pelo menos 100 m^2 de feijão. Formule esse problema como um modelo de programação linear.

Questão 2:

Uma indústria fabrica dois produtos: A e B. Cada produto requer recursos de produção, como matéria-prima e horas de trabalho. A tabela abaixo mostra os recursos necessários e os limites de disponibilidade:

Produto	Recurso A	Recurso B	Horas de Trabalho
A	2	3	5
В	1	$\overline{2}$	4

Os lucros por unidade de A e B são R\$ 50 e R\$ 40, respectivamente. Formule esse problema como um modelo de programação linear.

Questão 3:

Edson Cordeiro é o diretor do Centro de Informática da Faculdade de Jaboatão. Ele precisa fazer a escala da equipe do centro, que opera das 8 horas até a meianoite. Edson monitorou a utilização desse centro em vários períodos do dia e determinou o seguinte número mínimo de consultores em informática necessário:

Período do dia	Número mínimo de consultores
8h ao meio-dia	4
Meio-dia às 16h	8
16h às 20h	10
20h à meia-noite	6

Podem ser contratados dois tipos de consultores: em tempo integral e em tempo parcial. Os consultores em tempo integral trabalham por oito horas consecutivas em qualquer um dos seguintes turnos: manhã (8h às 16h), tarde (12h às 20h), noite (16h à meia-noite). Os consultores em tempo integral recebem U\$ 40 por hora. Já os consultores em tempo parcial podem ser contratados para trabalhar em qualquer um dos turnos indicados na tabela anterior e recebem U\$ 30 por hora. Durante qualquer período, deve haver pelo menos dois consultores integrais de plantão para cada consultor de período parcial.

Edson quer determinar quantos consultores em tempo integral e quantos em tempo parcial serão necessários em cada turno para atender as condições

anteriores a um custo mínimo. Formule um modelo de programação linear para este problema.

Questão 4:

Uma empresa que vende produtos domésticos, mediante um catálogo online, precisa de bastante espaço em depósitos para armazená-los. Por enquanto, estão sendo feitos planos para o aluguel desse espaço para os próximos 5 meses. Quanto será necessário de espaço e o custo do aluguel em cada um desses meses são dados conhecidos, conforme apresentado a seguir:

Mês	Espaço necessário (m ²)	Custo do aluguel por m ²
1	10,000	U\$ 65
2	30,000	U\$ 100
3	60,000	U\$ 135
4	50,000	U\$ 160
5	80,000	U\$ 190

O contrato dos aluguéis só permite que, ao alugar um espaço em determinado mês, esse espaço fique alugado até o último mês, sendo, ao final, aplicado um desconto em função do prazo do contrato. Por exemplo, caso seja alugado um espaço no primeiro mês, o cliente pagará o aluguel de U\$ 65 por m² a cada mês até chegar ao quinto. Como o contrato durou cinco meses, o desconto será de U\$ 300 (bem generoso, por sinal). Os valores dos descontos são apresentados na seguinte tabela:

Prazo do contrato (em meses)	Desconto por m ²
1	U\$ 0
2	U\$ 70
3	U\$ 160
4	U\$ 220
5	U\$ 300

O objetivo é minimizar o custo total de aluguel para atender às exigências de espaço, respeitando as regras do contrato. Formule o modelo de programação linear para esse problema.

Questão 5:

Uma empresa fabrica três tipos de móveis: cadeiras, mesas e armários. A produção de cada móvel requer madeira e tempo de produção. Os limites de recursos disponíveis são:

Móvel	Madeira (m ³)	Horas de Produção
Cadeira	0.5	1
Mesa	1	3
Armário	2	4

Os lucros por unidade de cadeira, mesa e armário são R\$ 10, R\$ 30 e R\$ 50, respectivamente. Formule esse problema como um modelo de programação linear.

Exercícios de Programação Linear

Questão 6:

Um supermercado vende duas marcas de detergente: A e B. Os preços de venda por unidade de A e B são R\$ 5 e R\$ 8, respectivamente. A demanda por A não pode exceder 300 unidades, enquanto a demanda por B deve ser pelo menos 150 unidades. Formule esse problema como um modelo de programação linear.

Questão 7:

Um restaurante serve três pratos principais: A, B e C. Os lucros por prato são R\$ 15, R\$ 20 e R\$ 25, respectivamente. O restaurante deseja maximizar seus lucros, mas está sujeito às seguintes restrições:

Prato	Quantidade Mínima
A	20% do total
В	-
C	-

Formule esse problema como um modelo de programação linear.

Questão 8:

Uma loja vende dois tipos de produtos: eletrônicos e roupas. Os lucros por unidade de eletrônico e roupa são R\$ 100 e R\$ 50, respectivamente. A loja quer maximizar seus lucros, mas está limitada às seguintes condições:

Produto	Quantidade Máxima 150 2 vezes a quantidade de eletrônicos	
Eletrônico		
Roupa		

Formule esse problema como um modelo de programação linear.

Questão 9:

Uma padaria produz dois tipos de pães: integral e francês. Os custos de produção por unidade de pão integral e pão francês são R\$ 1,50 e R\$ 0,80, respectivamente. A padaria deseja minimizar seus custos, mas está sujeita às seguintes restrições:

Tipo de Pão	Quantidade Mínima
Integral	Metade do total
Francês	_

Formule esse problema como um modelo de programação linear.

Questão 10:

Uma fábrica precisa decidir quantas unidades produzir dos produtos A e B. As unidades dos produtos A e B trazem, respectivamente, lucros de R\$ 20,00 e R\$ 30,00. É claro que a fábrica pretende maximizar seus lucros, porém os recursos R1, R2 e R3, necessários para a produção desses produtos, são escassos: há

apenas 10 unidades de R1, 20 de R2 e 20 de R3. A tabela abaixo informa quantas unidades de cada recurso são consumidas para a produção de uma

unidade de A ou de B.

igaac ac 11 ou			
	Produto	Recurso R1	Recurso R2
	Recurso R3		
	A	2	1
	3		
	В	3	3
	2	,	

- a. Formule o problema da fábrica como um problema de programação linear.
- b. Que crítica pode ser feita ao seu modelo?

Exercícios de Programação Linear

Questão 10:

Uma empresa precisa decidir quanto investir em dois tipos de projetos: A e B. Cada projeto requer um certo investimento e tem um retorno associado. A tabela abaixo mostra os investimentos necessários e os retornos esperados:

Projeto	Investimento (R\$)	Retorno Esperado (R\$)
A	100,000	150,000
В	150,000	200,000

A empresa quer maximizar seu retorno total, mas está limitada às seguintes condições:

1. O investimento total não deve exceder R\$ 200,000. 2. A diferença entre os investimentos nos projetos A e B deve ser, no máximo, R\$ 50,000.

Formule esse problema como um modelo de programação linear.

Gabarito - Exercícios de Programação Linear

Questão 1:

Variáveis de Decisão: - x_{soja} : Área plantada com soja (m²) - x_{feijao} : Área plantada com feijão (m²)

Função Objetivo: Maximizar $0.15x_{\text{soja}} + 0.08x_{\text{feijao}}$

Restrições: 1. $x_{\text{soja}} + x_{\text{feijao}} \leq 500$ (Área cultivável) 2. $x_{\text{feijao}} \geq 100$ (Área mínima de feijão)

Questão 2:

Variáveis de Decisão: - x_A : Quantidade de produtos do tipo A produzidos - x_B : Quantidade de produtos do tipo B produzidos

Função Objetivo: Maximizar $20x_A + 30x_B$

Restrições: 1. $2x_A+3x_B\leq 10$ (Recurso R1) 2. $3x_A+3x_B\leq 20$ (Recurso R2) 3. $3x_A+2x_B\leq 20$ (Recurso R3)

Questão 3:

Variáveis de Decisão: - x_{manha} : Número de consultores em tempo integral na manhã - x_{tarde} : Número de consultores em tempo integral na tarde - x_{noite} : Número de consultores em tempo integral na noite - $x_{\text{parcial_manha}}$: Número de consultores em tempo parcial na manhã - $x_{\text{parcial_tarde}}$: Número de consultores em tempo parcial na tarde - $x_{\text{parcial_noite}}$: Número de consultores em tempo parcial na noite

Função Objetivo: Minimizar $40(x_{\text{manha}}+x_{\text{tarde}}+x_{\text{noite}})+30(x_{\text{parcial_manha}}+x_{\text{parcial_tarde}}+x_{\text{parcial_noite}})$

 $\begin{array}{l} \textbf{Restrições:} \ 1. \ x_{\text{manha}} + x_{\text{parcial_manha}} \geq 4 \ (\text{Manhã}) \ 2. \ x_{\text{tarde}} + x_{\text{parcial_tarde}} \geq \\ 8 \ (\text{Tarde}) \ 3. \ x_{\text{noite}} + x_{\text{parcial_noite}} \geq 10 \ (\text{Noite}) \ 4. \ x_{\text{manha}} + x_{\text{tarde}} + x_{\text{noite}} \geq 16 \\ (\text{Total de consultores em tempo integral}) \ 5. \ 2(x_{\text{parcial_manha}} + x_{\text{parcial_tarde}} + x_{\text{parcial_noite}}) \geq x_{\text{manha}} + x_{\text{tarde}} + x_{\text{noite}} \ (\text{Consultores em tempo parcial}) \\ \end{array}$

Questão 4:

Variáveis de Decisão: - x_1 : Espaço alugado no primeiro mês (m²) - x_2 : Espaço alugado no segundo mês (m²) - x_3 : Espaço alugado no terceiro mês (m²) - x_4 : Espaço alugado no quarto mês (m²) - x_5 : Espaço alugado no quinto mês (m²)

Função Objetivo: Minimizar $65x_1 + 100x_2 + 135x_3 + 160x_4 + 190x_5$ Restrições: 1. $x_1 \le x_2 \le x_3 \le x_4 \le x_5$ (Contrato contínuo) 2. $x_1 + x_2 + x_3 + x_4 + x_5 \le 200,000$ (Espaço total)

Questão 5:

Variáveis de Decisão: - x_E : Quantidade de encomendas do serviço expresso - x_P : Quantidade de encomendas do serviço padrão

Função Objetivo: Maximizar $50x_E + 30x_P$

Restrições: 1. $x_E + x_P \le 40$ (Limite de encomendas) 2. $x_E \ge 0.2 \times (x_E + x_P)$ (Pelo menos 20

Questão 6:

Variáveis de Decisão: - x_A : Quantidade de detergentes da marca A a vender - x_B : Quantidade de detergentes da marca B a vender

Função Objetivo: Maximizar $5x_A + 8x_B$

Restrições: 1. $x_A \leq 300$ (Demanda máxima de A) 2. $x_B \geq 150$ (Demanda mínima de B)

Questão 7:

Variáveis de Decisão: - x_E : Quantidade de encomendas do serviço expresso - x_P : Quantidade de encomendas do serviço padrão

Função Objetivo: Maximizar $50x_E + 30x_P$

Restrições: 1. $x_E + x_P \le 40$ (Limite de encomendas) 2. $x_E \ge 0.2 \times (x_E + x_P)$ (Pelo menos 20

Questão 8:

Variáveis de Decisão: - x_A : Quantidade de pedidos do prato A - x_B : Quantidade de pedidos do prato B - x_C : Quantidade de pedidos do prato C

Função Objetivo: Maximizar $15x_A + 20x_B + 25x_C$

Restrições: 1. $x_A + x_B + x_C \le 80$ (Capacidade máxima) 2. $x_B \ge 0.5 \times (x_A + x_C)$ (Pelo menos metade dos pedidos de B)

Questão 9:

Variáveis de Decisão: - x_I : Quantidade de pães integrais a produzir - x_F : Quantidade de pães franceses a produzir

Função Objetivo: Minimizar $1.5x_I + 0.8x_F$

Restrições: 1. $x_I + x_F \ge 100$ (Pelo menos 100 pães no total) 2. $x_I \ge 0.5 \times (x_I + x_F)$ (Pelo menos metade de pães integrais)

Questão 10:

Variáveis de Decisão: - x_A : Valor investido no projeto A (R\$) - x_B : Valor investido no projeto B (R\$)

Função Objetivo: Maximizar $150,000x_A + 200,000x_B$

Restrições: 1. $100,000x_A+150,000x_B \leq 200,000$ (Investimento total) 2. $|x_A-x_B| \leq 50,000$ (Diferença máxima entre investimentos)

Restrições de Não-Negatividade: $x_A \ge 0$ $x_B \ge 0$