Análisis de Algoritmos y Estructuras de Datos Cl0116 – Grupo 4

Andrew Umaña Quirós - B37091

Tarea 3

Demostrar Ton L (nd prontodo n2no
Para K31 0 2) TM) < (K ¹ 2) T(N+1) < O(N+1) ¹
5) T(N+1) 2-(4N, +(N+1)) 5 (QN+1) - (N+1) 5) L(N+1) 2-(4N, +(N+1)) 5) L(N+1) 2-(4N, +(N+1)) 5) L(N+1) 2-(4N, +(N+1)) 6) (QN+1) 3-(4N, +(N+1)) 6) (QN+1) 3-(4N, +(N+1)) 7) L(N+1) 2-(4N, +(N+1)) 6) (QN+1) 3-(4N, +(N+1)) 7) L(N+1) 2-(4N, +(N+1)) 8) L(N+1) 2-(4N, +(N+1)) 8
Para todo 1/21 = 1/4 (); (2)() CZ/ 3/11

1) T(h)=) T(n)+h 2d: T(n)= O(nlogn)
Deroster
T(n) = (h logn para 00 y nz no
DT(N) 5 (Nlog N para n = N < no
I Col () Mart of la Con Balan
T(n) 52 (cc) log (ch) 3+0n
こうていろきょくくくろうしゅくかりりゃりくりとう
is on log(n) - on +n
como colagn-conta = colaggo
s: -(n+n \le 0, entonces n\le cn & c>1
se comple.

5) T(n) = 2) T(n-1)21 (on sd: T(n)=0(1)
Demy trar
T(n) 4 (2") para (20 y 12%
(on n=0
(2 TCO) +1
T(K) < (3M-1
=) T(N+1) = (dn+1-1
2) TCK+1)= a TCK)+1 = can+1-1
(ono (2)(0) +1 y no 30
1. T(n) E(2"-1 para n=0
Se cumple.

4) T(n)= T(n)+ T(dn)+h Perostar TON Ecna para todo n 2 hg (on 100 n2) 2) T(1) = ((3) + ((3)) . 3 () 9 + 6 () 1 + 6 () Se cumple