

Bank Marketing

Strategy & Tactical Plan

Yinglu Deng, Anji Dong, Cloris Zhang, Sunny Sun

Introduction: Project Context

Research Question:

What are important factors that contribute to a customer's decision on deposit?

Motivation:

Higher efficiency in aiming for customers (ex: advertise more to specific targets)

Bank Marketing Client Dataset

- From UCI Machine Learning Repository
 - o Train.csv 8,929 rows
 - o Test.csv 2,233 rows
- 9 categorical features and 7 numerical features
- Target: "deposit" column (has the client subscribed a term deposit?)

	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutcome	deposit
0	59	admin.	married	secondary	no	2343	yes	no	unknown	5	may	1042	1	-1	0	unknown	yes
1	56	admin.	married	secondary	no	45	no	no	unknown	5	may	1467	1	-1	0	unknown	yes
2	41	technician	married	secondary	no	1270	yes	no	unknown	5	may	1389	1	-1	0	unknown	yes
3	55	services	married	secondary	no	2476	yes	no	unknown	5	may	579	1	-1	0	unknown	yes
4	54	admin.	married	tertiary	no	184	no	no	unknown	5	may	673	2	-1	0	unknown	yes

9 Categorical Features:

Bar plot findings:

- 1. Top three job field: Management; blue-collar; technician
- 2. Most of clients are married and with higher education (secondary and tertiary), no credit in default, don't have personal loan.
- 3. The majority communication type is cellular.
- 4. Last contact months are mainly focused on May, June, July and August.
- 5. There are slightly higher amount of failure than success in the outcome of the previous marketing campaign.

7 Numerical Features:

Histograms findings:

- 1. Medium age of our clients are around 30 50 years old.
- 2. Most of the numerical columns are not normally distributed and some of them have outliers.

Data Analysis:

• Management, technician and blue-collar are the ones who have the highest balance in their accounts.

- Retired clients and students are more likely to subscribe a term deposit.
- Customers with blue-collar and services' jobs are less likely to subscribe.

The **characteristic** of clients who are more likely to subscribed for term

deposit:

- 1. No housing loan
- 2. <u>Success outcome of previous</u> marketing campaign
- 3. By cellular contact communication
- 4. Married status
- 5. Higher level education

						Educa	ation	
Deposit	Housing	Poutcome	Contact	Marital	primary	secondary	tertiary	unknown
yes	no	success	cellular	divorced	6	25	21	3
				married	32	171	143	17
				single	7	83	139	15
			telephone	divorced	6	1		1
				married	13	17	9	7
				single	1	7	4	
		failure	cellular	divorced	2	11	7	3
				married	17	70	71	9
				single	3	37	60	7
			telephone	married	10	9	3	3
				single		3	3	
	yes	success	cellular	divorced	4	13	10	
				married	11	72	37	11
				single		35	44	1
			telephone	divorced		2		
				married	1	4	1	
				single			1	
		failure	cellular	divorced	3	16	10	1
				married	19	86	38	1
				single	2	44	54	2
			telephone	divorced		1		1
				married	1	3	2	
				single		1	1	

• The number of people who are 25 to 45 years old with a term deposit account is high.

Correlation Matrix

There is a moderate correlation (r = 0.51) between the days and the previous days.

Data Cleaning & Feature Engineering

1. Inconsistency & Errors

- Check NAN values
- Check upper/lower case sensitive
- Check consistency

[&]quot;pdays": number of days that passed by after the contact from previous campaign (-1 if not previously contacted)

[&]quot;poutcome": outcome for the previous campaign (success, failure, other, unknown)

[&]quot;previous": number of contacts for previous campaign

Train Test Split

- Training set: 70%
- Testing set: 30%


```
y = df["deposit"]
X = df.drop(['deposit'], axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
X_train = X_train.reset_index(drop=True)
y_train = y_train.reset_index(drop=True)
X_test = X_test.reset_index(drop=True)
y_test = y_test.reset_index(drop=True)
```


2. Convert Ordinal Categorical variables

- "Education"
 - primary, secondary, tertiary, unknown
 - Remove "unknown"
 - {primary: 1, secondary: 2, tertiary: 3}

```
# mode of education for each job title
dictionary = {}
for job in df['job'].unique():
   accounts_with_job = df[df['job']==job]
   mode_job = accounts_with_job['education'].mode()[0]
   dictionary[job] = mode job
```

- 3. Check Outliers for numerical variables
 - Find the outlier range (O1-1.5*IOR, O3+1.5*IOR)
 - % of outliers > 5% : "balance", "duration", "campaign", "pdays", "previous"
 - Significant ones: "pdays", "previous", "balance"
 - Solutions
 - Lower bound and upper bound (Q1-2.5*IQR, Q3+2.5*IQR)

The percentage of outliers in 'balance' column is 9.509791373352105%.

The largest outlier is 49.176226896112176 IQR above/below the outlier range.

The percentage of outliers in 'pdays' column is 17.970049916805326%.

The largest outlier is 16.9318181818183 IQR above/below the outlier range.

The percentage of outliers in 'previous' column is 11.263279150134393%. The largest outlier is 55.5 IQR above/below the outlier range.

"Pdays" & "previous"

- ~ 74% of Newly contacted customers (pdays=-1 and previous=0)
- Split the data into newly contacted and previously contacted
- Added a new binary feature "not_previously_contacted"

```
% outliers in 'pdays' column for previously contacted customers is 0.3071803404582107%.
```

% outliers in 'previous' column for previously contacted customers is 11.263279150134393%.

The largest outlier is 0.9367816091954023 IQR above/below the outlier range.

4. Normalization & dummy variables

- Used StandardScaler() to normalize numerical values
- create dummy variables for categorical variables

X_train.head()

	age	balance	day	duration	campaign	pdays	previous
0	2.765525	-0.755311	-0.324645	0.631535	-0.188574	-0.489456	-0.358947
1	1.168241	-0.724987	-1.038703	0.415362	0.919609	-0.489456	-0.358947
2	1.336376	-0.598118	1.341489	-0.497015	-0.742666	-0.489456	-0.358947
3	-0.344975	1.704700	-0.562664	-0.636892	-0.188574	-0.489456	-0.358947
4	1.252309	2.719648	1.579509	-0.729083	-0.742666	1.330014	0.067780

Methods and Approaches

Select a list of base models (no hyperparameter tuni

- a. Decision Tree Classifier
- b. KNeighbors Classifier
- c. Support Vector Machines Classifier
- d. Multi-layer Perceptron classifier
- e. Linear Discriminant Analysis
- f. Logistic Regression Classifier
- g. Random Forest Classifier
- h. Gradient Boosting Classifier

Decision Tree Classifier

```
# The Decision tree Classifier
from sklearn.tree import DecisionTreeClassifier
# Create Decision Tree classifer object
dtc = DecisionTreeClassifier()
# Train Decision Tree Classifer
dtc.fit(X_train, y_train)
#Predict the response for test dataset
y_pred = dtc.predict(X_test)
# model Evaluation
acc_dtc = accuracy_score(y_test, y_pred)
acc_dtc
```

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.78	0.79	0.79	1760
1	0.77	0.76	0.76	1589
accuracy			0.78	3349
macro avg	0.78	0.77	0.77	3349
weighted avg	0.78	0.78	0.78	3349

KNeighbors Classifier

```
# The KNN Classifier
from sklearn.neighbors import KNeighborsClassifier
# build model
knn_model = KNeighborsClassifier()
# fit classifiers
knn_model.fit(X_train, y_train)
# Prediction
y_pred = knn_model.predict(X_test)
# model Evaluation
acc_knn = accuracy_score(y_test, y_pred)
acc_knn
```

0.8154673036727381

print(classification_report(y_test,y_pred))

		precision	recall	fl-score	support
	0	0.81	0.84	0.83	1760
	1	0.82	0.78	0.80	1589
accui	racy			0.82	3349
macro	avg	0.82	0.81	0.81	3349
weighted	avg	0.82	0.82	0.82	3349

Support Vector Machines Classifier

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.88	0.83	0.85	1760
1	0.82	0.88	0.85	1589
accuracy			0.85	3349
macro avg	0.85	0.85	0.85	3349
weighted avg	0.85	0.85	0.85	3349

```
# the SVM Classifier
from sklearn import svm
# build model
svm_model = svm.SVC()
# fit classifiers
svm_model.fit(X_train, y_train)
# Prediction
y_pred = svm_model.predict(X_test)
# model Evaluation
acc_svm = accuracy_score(y_test, y_pred)
acc_svm
```

0.8507017020005972

Multi-layer Perceptron Classifier

```
from sklearn.neural_network import MLPClassifier
mlp_model = MLPClassifier()
# fit classifiers
mlp_model.fit(X_train, y_train)
# Prediction
y_pred = mlp_model.predict(X_test)
# model Evaluation
acc_mlp = accuracy_score(y_test, y_pred)
acc_mlp
```

0.8450283666766198

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.87	0.83	0.85	1760
1	0.82	0.86	0.84	1589
accuracy			0.85	3349
macro avg	0.84	0.85	0.84	3349
weighted avg	0.85	0.85	0.85	3349

Linear Discriminant Analysis

```
# Linear Discriminant Analysis
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
# build model
lda = LinearDiscriminantAnalysis()
# fit classifiers
lda.fit(X_train, y_train)
# Prediction
y_pred = lda.predict(X_test)
# model Evaluation
acc_lda = accuracy_score(y_test, y_pred)
acc_lda
```

0.8256195879366975

print(classification_report(y_test,y_pred))

		precision	recall	fl-score	support
	0	0.81	0.88	0.84	1760
	1	0.85	0.77	0.81	1589
accui	cacy			0.83	3349
macro	avg	0.83	0.82	0.82	3349
weighted	avg	0.83	0.83	0.82	3349

Logistic Regression Classifier

```
# The Logistic Regression Classifier
from sklearn.linear_model import LogisticRegression
# build model
log_model = LogisticRegression()
# fit classifiers
log_model.fit(X_train, y_train)
# Prediction
y_pred = log_model.predict(X_test)

# model Evaluation
acc_log = accuracy_score(y_test, y_pred)
acc_log
```

0.826515377724694

```
print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
0	0.82	0.86	0.84	1760
1	0.83	0.79	0.81	1589
accuracy			0.83	3349
macro avg	0.83	0.82	0.83	3349
weighted avg	0.83	0.83	0.83	3349

Random Forest Classifier

```
# The Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier
# build model
rf_model = RandomForestClassifier()
# Fitting the classifier
rf_model.fit(X_train, y_train)
# Prediction
rf_pred = rf_model.predict(X_test)
# model Evaluation
acc_rf = accuracy_score(y_test, rf_pred)
acc_rf
```

0.8504031054045984

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.82	0.86	0.84	1760
1	0.83	0.79	0.81	1589
accuracy			0.83	3349
macro avo	0.83	0.82	0.83	3349
weighted avo	0.83	0.83	0.83	3349

Gradient Boosting Classifier

print(classification_report(y_test,y_pred))

		precision	recall	fl-score	support
	0	0.86	0.83	0.85	1760
	1	0.82	0.85	0.84	1589
accurac	су			0.84	3349
macro av	vg	0.84	0.84	0.84	3349
weighted a	vg	0.84	0.84	0.84	3349

```
# Gradient Boosting Classifier
from sklearn.ensemble import GradientBoostingClassifier
# build model
gbc = GradientBoostingClassifier()
# Fitting the classifier
gbc.fit(X_train, y_train)
# Prediction
y_pred = gbc.predict(X_test)
# model Evaluation
acc_gbc = accuracy_score(y_test, y_pred)
acc_gbc
```

0.8414452075246343

Compare

- Accuracy
 - measure how often the algorithm classifies a data point correctly
- TPR: true positive rate / sensitivity / recall
 - measure the percentage of actual positives which are correctly identified

	accuracy	TPR
Decision Tree Classifier	0.775754	0.755192
KNeighbors Classifier	0.815467	0.784770
Support Vector Machines Classifier	0.850702	0.877281
Multi-layer Perceptron Classifier	0.845028	0.858402
Linear Discriminant Analysis	0.825620	0.770296
Logistic Regression	0.826515	0.794210
Random Forest Classifier	0.850702	0.880428
Gradient Boosting	0.841445	0.852738

GridSearchCV

- helps to loop through predefined hyperparameters and fit the estimator (model) on training set
- o in the end, we can select the best parameters from the listed hyperparameters
- e.g. GradientBoostingClassifier

GradientBoostingClassifier(n estimators=500)

```
param_grid = {'loss': ['exponential', 'deviance'], 'learning_rate' : [0.001, 0.01, 0.1, 1, 10, 100], 'n_estimators': [50, 100, 500]}
gbc = GridSearchCV(GradientBoostingClassifier(), param_grid, verbose = -1)

# fitting the model for grid search
gbc.fit(X_train, y_train)
# print best parameter after tuning
print(gbc.best_params_)

# print how our model looks after hyper-parameter tuning
print(gbc.best_estimator_)
{'learning_rate': 0.1, 'loss': 'deviance', 'n_estimators': 500}
```

- Accuracy increases0.01
- TPR increases 0.02

	accuracy	TPR
GradientB oosting Classifier	0.841445	0.852738
Gradient Boosting Classifier Tuned	0.856076	0.874135

- MLPClassifier
 - o activation, solver default
 - o learning_rate_init 0.0005
 - o batch size 32
 - o hidden_layer_sizes=(5, 5, 5)
- Accuracy increases 0.003
- TPR increases 0.03

	accuracy	TPR
Multi-layer Perceptron Classifier	0.845028	0.858402
Multi-layer Perceptron Classifier Tuned	0.848313	0.885463

```
mlp = MLPClassifier(hidden_layer_sizes=(5, 5, 5), batch_size=(32), learning_rate_init=0.0005, activation='relu', solver='adam', verbose=0)
mlp.fit(X_train, y_train)
# Prediction
y_pred = mlp.predict(X_test)
# model Evaluation
acc_mlp_tune = accuracy_score(y_test, y_pred)
acc_mlp_tune
```

- Support Vector Machines
 Classifier
 - PCA to reduce dimensionality
 - reduced accuracy
 - GridSearchCV to tune parameters like {'C', 'gamma', 'kernel'}
 - accuracy increased by less than 0.5%.

```
#Trying to reduce the dimensionality for SVM classifier

from sklearn.decomposition import PCA
for i in np.arange(10,40):
    pca = PCA(n_components = i)
    pca.fit(X_train)
    pca2 = PCA(n_components = i)
    pca2.fit(X_test)
    X_test_pca = pca2.transform(X_test)
    X_pca = pca.transform(X_train)
    svm_pca = svm.SVC().fit(X_pca, y_train)
    svm_pred = svm_pca.predict(X_test_pca)

# model Evaluation
    print("Accuracy PCA",i,": ",accuracy_score(y_test, svm_pred))
```

- Random Forest Classifier
 - 5-Fold CV
 - accuracy increased by less than 0.5%.
 - GridSearchCV to tune parameters like {'ccp_alpha'}
 - similar results

```
from sklearn.ensemble import RandomForestClassifier
grid_values = {'ccp_alpha' : [0,0.0001]}

rf_model = RandomForestClassifier(n_estimators=100)
cv = KFold(n_splits = 5, random_state = 1, shuffle = True)
rf_cv = GridSearchCV(rf_model,param_grid = grid_values, scoring = 'accuracy', cv = cv, verbose = 0)
# Fitting the classifier
rf_cv.fit(X_train, y_train)
rf_pred = rf_cv.predict(X_test)
print("Accuracy:", accuracy_score(y_test, rf_pred))
# Confusion matrix
print(confusion_matrix(y_test, rf_pred))
print(rf_cv.best_params_)
```

CatBoostingClassifier & Regressor

Tree growth examples:

- Algorithm for gradient boosting on Decision Tree
- Each successive tree is built with reduced loss compared to previous trees.
- Automatic Overfitting Detector
 - IncToDec: Threshold value in starting parameters > CurrentPV Value
 - Iter: # of iterations > value specified in training parameters

CatBoostClassifier

• Baseline CatBoostClassifer model achieved a high accuracy of 85.8%.

CatBoostClassifier Report:

	precision	recall	f1-score	support
0 1	0.88 0.83	0.84 0.88	0.86 0.85	1760 1589
accuracy macro avg weighted avg	0.86 0.86	0.86 0.86	0.86 0.86 0.86	3349 3349 3349

Accuracy of CatBoostClassifier is: 0.8581666169005673

CatBoostClassifier with Tuning

	precision	recall	f1-score	support
0 1	0.88 0.83	0.84 0.88	0.86 0.86	1760 1589
accuracy macro avg weighted avg	0.86 0.86	0.86 0.86	0.86 0.86 0.86	3349 3349 3349

Accuracy: 0.8590624066885637

[[1483 277] [195 1394]]

- Conducted RandomizedSearchCV to tune learning_rate and max_depth.
- RandomizedSearchCV requires less runtime than GridSearchCV while exploring same parameters and achieving similar performance.
- CatBoostClassifier (w/learning_rate = 0.5 & max_depth = 6) achieved 85.9% accuracy.
 - Slight improvement in both accuracy and f1-score for people with deposit.

CatBoostRegressor with Tuning

- Conducted select_features to find right amount of significant columns to achieve the lowest RMSE.
 - Initially starting with column counts from
 20 to 40 and narrowed to 29
 - Used RecursiveByShapValues as the algorithm - most accurate method
- Selected columns are

CatBoostRegressor with Tuning (cont.)


```
: # calculate the g-mean for each threshold
gmeans = np.sqrt(tpr * (1-fpr))
# locate the index of the largest g-mean
ix = np.argmax(gmeans)
print('Best Threshold=%f, G-Mean=%.3f' % (thresholds[ix], gmeans[ix]))
```

Best Threshold=0.456248, G-Mean=0.869

- Fitted the model with training sets of selected_features.
- High AUC ⇒ High model performance in distinguishing classes.
- Used G-Means to calculate the best threshold to cut off o and 1 for deposit.
 - Best Threshold = 0.456248
 - G-Mean=0.869

Looking at Feature Importance

- Conducting feature_importances_, we find the importances of the 29 variables we have selected.
- Top five features are duration, day, contact_unknown, poutcome_sucess, and housing_yes.
- Experimented with re-fitting the model without variables that have low importances (<= 1), accuracy dropped.

Feature Id	Importances
------------	-------------

0	duration	32.392715	19	poutcome_unknown	0.947882
1	day	10.595458	20	not_previously_contacted	0.940161
2	contact_unknown	6.353713	21	marital_married	0.853954
3	poutcome_success	6.321325	22	job_student	0.752955
4	housing_yes	6.242035	23	contact_telephone	0.657187
5	pdays	4.482228	24	month_sep	0.549721
6	campaign	3.645062	25	marital_single	0.493954
7	month_aug	3.068043	26	month_dec	0.170294
8	month_jul	2.934039	27	job_housemaid	0.126064
9	month_feb	2.455316	28	default_yes	0.108430

Feature

Final CatBoostRegressor

- Final CatBoostRegressor with 29 selected features.
- 87% Accuracy
- 0.92 Recall Rate (TPR)
- Correctly predicting customers that subscribed to term deposits.

support	f1-score	recall	precision	
1760 1589	0.87 0.87	0.82 0.92	0.92 0.82	0 1
3349 3349 3349	0.87 0.87 0.87	0.87 0.87	0.87 0.87	accuracy macro avg weighted avg

Findings

- Different approaches generated different performance metrics
- GridSearchCV and RandomizedSearchCV are useful for tuning hyperparameters
- CV improves TPR

Real World Application

- Marketing Campaign
 - o target desired audience

Future Work

- Use more cross validation methods
- Learn and use some computational expensive machine learning algorithms
- Get more data that has valuable information

Thank you! Questions?

