Лекция 4

Два основных использования технических средств

- 1. Как средство расчета по полученным аналитическим моделям (ЭВМ и AВМ)
- 2. Средство имитационного моделирования

АВМ – ускоряет процесса решения, но не обеспечивает высокую точность.

Гибридно-вычислительные комплексы соединяют в себе высокую точность и для некоторых объектов повышают их скорость.

Гибридно-вычислительные машины объединят в себе узлы и блоки типовых и специализированных вычислительных машин с использованием различных форм представления информации и различных методов ее переработки. Для гибридно-вычислительной техники типичными являются различные преобразования формы представления информации (прецизионные коммутаторы, запоминающие устройства непрерывных сигналов, различные компараторы и т.д.).

Применение вычислительных гибридных машин

- Моделирование дискретных систем и случайных процессов
- Решение задачи оптимизации (в том числе многокритериальных)
- Для исследования, управления подвижным объектом

Основные направления гибридных вычислительных машин

- 1. На основе дискретно-управляемых элементов, меняющие свои параметры под воздействием управляющего кода
- 2. Разрядно-аналоговые обеспечивают высокую точность и быстродействие за счет цифровой формы представления информации и аналогового способа ее переработки

3. Цифровые интегрирующие машины - фактичеки спец. ЭВМ, но, в отличие от цифровой техники, в качестве основной операции - интегрирование

Аналоговые вычислительные машины (АВМ)

(принцип счета), в основе OT дискретной вычислительной технике заложен принцип моделирования. При использовании в качестве модели некоторой задачи электронных цепей каждой переменной величине задачи ставится в соответствие определенная переменная величина электрической цепи. При этом основой построения такой модели является изоморфизм (подобие исследуемой задачи и соотвествующей ей электронной модели). В большинстве случаев при определении критериев подобия используются специальные приемы масштабирования соответствующих значений параметров модели и переменных нашей задачи. АВМ реализует изоморфную модель исследуемой задачи. Согласно вычислительным возможностям, АВМ наиболее приспособлена своим исследования объектов, динамика которых описывается обыкновенными и в частных производных дифференциальными уравнениями, а также алгебраическими и др. Следовательно под **ABM** будем понимать совокупность электрических элементов, организованных в систему, позволяющих изоморфно моделировать динамику изучаемого объекта.

ABM делят на (по их возможности решать задачи, описываемые уравнениями n-го порядка):

- малые (меньше 10)
- средние (от 10 до 20)
- большие (больше 20)

Структурная схема АВМ

Под гибридной вычислительной машиной будем понимать широкий класс вычислительных систем, использующих как аналоговые, так и дискретные формы представления и обработки информации.

Подклассы гибридных вычислительных машин

- 1. АВМ, использующие цифровые методы численного анализа
- 2. АВМ, программируемые с помощью ЦВМ
- 3. АВМ с цифровым управлением и логикой
- 4. АВМ с цифровыми элементами

Сравнительная характеристика АВМ и ЦВМ

Показатель	ABM	ЦВМ
Тип информации	Непрерывный	Дискретный
Изменение значений	Величиной напряжения	Числовым значением
Базовые операции	Интегрирование	Суммирование
Принцип вычислений	Высоко-параллельный	Последовательно- параллельный
Режим реального времени	Без ограничений	Ограниченные возможности
Динамическое изменение решаемой задачи	По средствам системам коммутации	В диалоговом режиме
Основные профессиональные требования пользователей	Профессиональные знания в области IT, методика моделирования	Алгоритмизация
Уровень формализации задачи	Ограничен моделью решаемой задачи	От самого низа до самого верха (высочайший уровень)
Способность решать логические задачи	Ограниченные	Высочайшие
Точность	Меньше, чем в 10^{-4}	Зависит от разрядной сетки
Диапазон	От 1 до 10^{-4}	Зависит от разрядной сетки
Класс решаемых задач	Алгебраические и дифференциальные уравнения	Любые задачи
Специальные функции	Ограниченный набор	Широкий класс
Уровень миниатюризации	В карман не поместится	Высочайший уровень
Сфера применения	Ограниченная	Почти везде
Пользовательский интерфейс	Очень низкий уровень	Интуитивно понятный графический интерфейс