Квадратичные вычеты и дроби

Определение 1. Пусть Z_p множество остатков при делении на простое число p и $a \in Z_p, a \neq 0$. Тогда можно определить величину $\frac{c}{a}$ — это элемент $b \in Z_p$ такой, что $ba \equiv c$.

Упражнение 1. а) Докажите, что б) $\frac{a}{1} \equiv a; \frac{1}{a} \frac{1}{b} \equiv \frac{1}{ab};$ в) $\frac{c}{d} \frac{b}{a} \equiv \frac{bc}{ad};$) $\frac{1}{a} + \frac{1}{b} \equiv \frac{a+b}{ab}$.

Определение 2. Число $r \not\equiv 0$ называется $\kappa в a \partial p a m u ч н ы м вычетом модулю <math>p$ (простое нечётное), если существует такое целое a такое, что $r \equiv a^2$.

Задача 1. Докажите, что квадратное уравнение $ax^2 + bx + c = 0, a \neq 0$ по простому модулю p > 2 имеет решение тогда и только тогда, когда $D = b^2 - 4ac$ квадратичный вычет по модулю p.

Задача 2. Докажите, что произведение:

- а) кадратичного вычета на квадратичный вычет это квадратичный вычет;
- б) кадратичного вычета на квадратичный невычет это квадратичный невычет;
- в) квадратичный невычета на квадратичный невычет это квадратичный вычет.
- г) Если a квадратичный вычет, то $\frac{1}{a}$ тоже квадратичный вычет и наоборот.

Задача 3. Пусть p — нечетное простое число. а) Докажите, что если a — квадратичный вычет по модулю p, то $a^{\frac{p-1}{2}} \equiv 1$.

- б) Докажите, что произвдение всех квадратичных вычетов сравнимо либо с 1 либо с -1.
- в) Докажите, что что если a квадратичный невычет по модулю p, то $a^{\frac{p-1}{2}} \equiv -1$. Указание: вспомните как доказывалась $MT\Phi$ и теорема Эйлера.

Определение 3. Пусть p простое число. Символом Лежандра называется выражение, обозначаемое $\left(\frac{a}{p}\right)$, равное 1, если a — квадратичный вычет по модулю p; -1, если a — невычет по модулю p и 0, если a кратно p.

Утверждение 1. Из задачи **2** следует, что если p нечетно, то $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}$.

Задача 4. а) При каких p вычет -1 является квадратичным вычетом по модулю p (где p — нечетное простое число)?

б) **Теорема Жирара.** Пусть $x^2 + y^2$ делится на простое число p = 4k + 3. Докажите тогда, что x и y делятся на p.

Задача 5. Мы знаем, что любой ненулевой остаток $a \in Z_p$ задаёт перестановку элементов в Z_p по правилу $b \to ab$. Пусть a квадратичный вычет, найдите чётность перестановки, связанной с a.

Задача 6. Докажите, что для любого простого p существует такое натуральное n, что $2^n + 3^n + 6^n - 1$ делится на p.

Задача 7. Решите в целых числах

$$\begin{cases} a^2 + b^2 = 5cd \\ c^2 + d^2 = 5ab \end{cases}$$