

Fundaciones superficiales Estados límites de servicio

Interacción Terreno Estructura I Especialización en Ingeniería Geotécnica

Contenido

- Introducción. Aspectos generales
- Solución de Boussinesq (Repaso)
- Asentamientos instantáneos (S_i)
- Asentamientos por consolidación (S_c, S_s)
- Asentamiento de fundaciones sobre roca

$$S_T = S_i + S_c + S_s$$

S_i : Asentamiento instantáneo

- Deformación elástica del terreno sin cambios en el contenido de agua.
- Predominante en suelos gruesos con elevadas permeabilidades y suelos finos parcialmente saturados.

$$S_T = S_i + S_c + S_s$$

 S_i : Asentamiento instantáneo

 S_c : Asentamiento por consolidación primaria

- Reducción en la relación de vacíos debido a la expulsión de agua en los poros
- Predominante en suelos finos saturados

$$S_T = S_i + S_c + S_s$$

 S_i : Asentamiento instantáneo

 S_c : Asentamiento por consolidación primaria

 S_s : Asentamiento por consolidación secundaria

- Es un problema de creep asociado al comportamiento viscoso del terreno
- Predominante en suelos con elevados contenidos de material organico

El problema de los asentamientos

El asentamiento total de las fundaciones (S_T) puede estar asociado a numerosos factores:

- Cargas sobre la fundación
- Suelos expansivos
- Cambios en el nivel freático
- Problemas de erosión
- Vibraciones

Los asentamientos deben ser controlados: $S_T \leq S_{T.adm}$

Asentamientos totales vs Asentamientos diferenciales

No sólo deben controlarse los asentamientos totales.

- Asentamientos uniformes totales (S_T): Problemas en instalaciones, servicios, drenajes
- Asentamientos diferenciales totales (ΔS_T): Problemas estructurales

Criterion	Isolated foundation	Rafts
Angular distortion (cracking), β_{max}	1/300	
Greatest differential settlement, $\Delta S_{T(max)}$		
Clays	45 (35)*	
Sands	32 (25)	
Maximum total settlement, $S_{T(max)}$		
Clays	75	75–125 (65–100
Sands	50	50-75 (35-65)

^{*} Valores en mm Skempton ans MacDonald (1956)

Asentamientos totales vs Asentamientos diferenciales

No sólo deben controlarse los asentamientos totales.

- Asentamientos uniformes totales (S_T): Problemas en instalaciones, servicios, drenajes
- Asentamientos diferenciales totales (ΔS_T): Problemas estructurales

Criterion	Isolated foundation	Rafts
Angular distortion (cracking), β_{max}	1/300	
Greatest differential settlement, $\Delta S_{T(max)}$		
Clays	45 (35)*	
Sands	32 (25)	
Maximum total settlement, $S_{T(max)}$		
Clays	75	75–125 (65–100
Sands	50	50-75 (35-65)

Construction and/or material	Maximum δ/L
Masonry (centre sag)	1/250-1/700
(edge sag)	1/500-1/1000
Masonry and steel	1/500
Steel with metal siding	1/250
Tall structures	<1/300
Storage tanks (centre – to – edge)	<1/300

Bowles (2001)

^{*} Valores en mm Skempton ans MacDonald (1956)

Distorsiones admisibles (AASHTO 1996)

Tyle of structure	β_a
Steel tanks	1/25
Bridges with simply-supported spans	1/125
Bridges with continuous spans	1/250
Buildings which are very tolerant of differential settlement, such as industrial buildings with corrugated steel siding and no sensitive interior finish	1/250
Typical commercial and residential buildings	1/500
Overhead traveling crane rails	1/500
Buildings which are especially intolerant of differential settlements, such as that with sensitive wall or floor finishes	1/1000
Machinery ^a	1/1500
Buildings with unreinforced masonry load bearing walls Length/height≤ 3	1/2500
Length/height≥ 5	1/1250
^a Large machines, such as turbines or large punch presses, often have their own foundation, separate from the	at of the building that

houses them. It often is appropriate to discuss allowable differential settlement issues with the machine manufacturer.

$$S_T = S_i + S_c + S_s$$

 S_i : Asentamiento instantáneo

 S_c : Asentamiento por consolidación primaria

 S_s : Asentamiento por consolidación secundaria

El asentamiento de una fundación es función del estado tensional impuesto al suelo. Estas pueden ser calculadas asumiendo un semi-espacio elástico y homogéneo.

Ejercicio

 Determine el estado tensional del terreno producto de la aplicación de una carga infinita de 1m de ancho y 150 kPa.

Contenido

- Introducción. Aspectos generales
- Solución de Boussinesq (Repaso)
- Asentamientos instantáneos (S_i)
- Asentamientos por consolidación (S_c, S_s)
- Asentamiento de fundaciones sobre roca

Solución de Boussinesq

•
$$\sigma_{Z(r,z)} = \frac{3 Q z^3}{2 \pi R^5}$$

•
$$\sigma_{r(r,z)} = \frac{Q}{2\pi} \left[\frac{3zr^2}{R^5} - \frac{1-2\nu}{R(R+z)} \right]$$

•
$$\sigma_{\theta (r,z)} = \frac{Q}{2\pi} (1 - 2\nu) \left[\frac{1}{R(R+z)} - \frac{z}{R^3} \right]$$

•
$$\tau_{rz(r,z)} = \frac{3 Q r z^2}{2 \pi R^5}$$

Solución de Boussinesq

- $dA = r d\theta dr \mid dQ = q r d\theta dr$
- $d\sigma_{z(r,z)} = \frac{3(q r d\theta dr) z^3}{2\pi (r^2+z^2)^{5/2}}$
- $\sigma_Z = \int d\sigma_{Z(r,z)} = \int_0^R \int_0^{2\pi} \frac{3 (q r d\theta dr) z^3}{2 \pi (r^2 + z^2)^{5/2}}$ $\sigma_Z = q \left[1 - \frac{z^3}{(R^2 + z^2)^{3/2}} \right]$
- $\sigma_r = \sigma_\theta = \frac{q}{2} \left[1 + 2\nu \frac{2(1+\nu)z}{(R^2+z^2)^{1/2}} + \frac{z^3}{(R^2+z^2)^{3/2}} \right]$

Ejercicio

- Determine la solución de Boussinesq para una base rectangular.
- Grafique la solución obtenida y verifique los resultados del modelo elástico efectuado en el ejercicio anterior.

Ayuda Solución de Boussinesq en cartesianas

$$\bullet \quad \sigma_Z = \frac{3Q \, z^3}{2 \, \pi \, R^5}$$

•
$$\sigma_{\chi} = \frac{3 Q}{2 \pi} \left\{ \frac{x^2 z}{R^5} + \frac{1 - 2\nu}{3} \left[\frac{1}{R (R+z)} - \frac{(2R+z) x^2}{R^3 (R+z)^2} - \frac{z}{R^3} \right] \right\}$$

•
$$\sigma_y = \frac{3 Q}{2 \pi} \left\{ \frac{y^2 z}{R^5} + \frac{1 - 2\nu}{3} \left[\frac{1}{R (R+z)} - \frac{(2R+z) y^2}{R^3 (R+z)^2} - \frac{z}{R^3} \right] \right\}$$

•
$$\tau_{xy} = \frac{3Q}{2\pi} \left[\frac{xyz}{R^5} - \frac{1-2\nu}{3} \frac{(2R+z)xy}{R^3 (R+z)^2} \right]$$

$$\bullet \quad \tau_{xz} = \frac{3Q}{2\pi} \frac{xz^2}{R^5}$$

•
$$\tau_{yz} = \frac{3Q}{2\pi} \frac{yz^2}{R^5}$$

Contenido

- Introducción. Aspectos generales
- Solución de Boussinesq (Repaso)
- Asentamientos instantáneos (S_i)
- Asentamientos por consolidación (S_c, S_s)
- Asentamiento de fundaciones sobre roca

Fundaciones flexibles vs rigida

Fundaciones flexibles

q/unit area Elastic material Settlement profile Contact pressure = q(a) q/unit area Settlement profile (b) Contact pressure = q

Fundaciones rígidas

Fundaciones sobre suelos granulares

 Deformación especifica bajo el centro de una fundación flexible (presión uniforme) circular de radio R

$$\epsilon_Z = \frac{1}{E_S} \left[\sigma_Z - \nu (\sigma_r + \sigma_\theta) \right]$$

$$\epsilon_z = \frac{q (1+\nu)}{E_S} [(1-2\nu) A' + B']$$

Fundaciones sobre suelos granulares

 Deformación especifica bajo el centro de una fundación flexible (presión uniforme) circular de radio R

$$\epsilon_{Z} = \frac{1}{E_{S}} \left[\sigma_{Z} - \nu (\sigma_{r} + \sigma_{\theta}) \right]$$

$$\epsilon_{Z} = \frac{q (1+\nu)}{E_{S}} \left[(1-2\nu) A' + B' \right]$$

Factor de influencia de deformación

$$I_Z = \frac{\epsilon_Z E_S}{q} (1 + \nu) [(1 - 2\nu) A' + B']$$

Se asume rigidez constante en cada estrato

$$\varepsilon_z = \frac{1}{E_S} \left(\Delta \sigma_v + v (\Delta \sigma_2 + \Delta \sigma_3) \right)$$

Se reemplaza la solución exacta por una aproximada y se integra

$$\varepsilon_{z} = \frac{q}{E_{s}} I_{z} \qquad \delta = \int_{0}^{\infty} \varepsilon_{z} dz$$

$$S_i = C_1 C_2 C_3 q_{net} \sum_{z=0}^{z=z_2} \frac{I_z}{E_s} \Delta z$$

- q_{net} : Presión neta de contacto: $q_{net} = q_{total} \sigma'_0$
- σ'_0 : Presión efectiva vertical en el plano de fundación
- q_{total} : Presión aplicada en el plano de la fundación
- E_s: Módulo de elasticidad del terreno
- Δz: Espesor de la capa de suelo

$$S_i = C_1 C_2 C_3 q_{net} \sum_{z=0}^{z=z_2} \frac{I_z}{E_s} \Delta z$$

Factores de corrección:

• c_1 : Corrección por profundidad: $c_1 = 1 - 0.50 \, \sigma'_0/q_{net}$

• C_2 : Corrección por creep: $C_2 = 1 + 0.20 \cdot \log(t/0.10)$

• C_3 : Corrección por forma: $C_3 = 1.03 - 0.03 (L/B) \ge 0.73$

$$S_i = C_1 C_2 C_3 q_{net} \sum_{z=0}^{z=z_2} \frac{I_z}{E_s} \Delta z$$

- z_2 : Profundidad en la cual I_z es nulo
- I_z: Factor de influencia

$$I_{zp} = 0.5 + 0.1 \sqrt{q_{net}/\sigma'_{zp}}$$

Fundaciones cuadradas o circulares

$$-I_{zs} = 0.10 + (z/B) (2I_{zp} - 0.2) z = [0; B/2]$$

- $I_{zs} = 0.667I_{zp} (2 - z/B) z = [B/2; 2B]$

• Fundaciones corridas $(L/B \ge 10)$

$$-I_{zc} = 0.20 + (z/B) (I_{zp} - 0.2) z = [0; B]$$

- $I_{zc} = 0.333I_{zp} (4 - z/B) z = [B; 4B]$

• Fundaciones rectangulares (1 < L/B < 10)

$$-I_{zr} = I_{zs} + 0.111 (I_{zc} - I_{zs}) (L/B - 1)$$

Influencia del nivel freático

Asentamiento adicional producto del aumento del nivel freático

(Shahriar et al. 2014)

$$S_{e,add} = \frac{A_w}{A_t} S_e$$

Mayne & Poulos (1999)

 Mayne & Poulos (1999). Asentamiento en el centro de una fundación rectangular uniformemente cargada de diámetro equivalente B_e:

$$S_i = \frac{q_0 B_e I_G I_F I_E}{E_0} (1 - v_s^2)$$

Asentamiento instantáneos

Base; E_f E_o $E_s = (E_o + kz)$ Compressible soil layer E_s ; μ_s Rigid layer

- Factor de influencia de la variación de E_s
 - Los asentamientos aumentan conforme aumenta el espesor del estrato compresible.

Asentamiento instantáneos

Base; E_f E_o $E_s = (E_o + kz)$ Compressible soil layer E_s ; μ_s Rigid layer

- Factor de influencia de la variación de E_s
- Factor de influencia de la rigidez de la base
 - El asentamiento instantáneo en fundaciones rígidas es del orden del 80% del asentamiento en una fundación flexible

Asentamiento instantáneos

Base; E_f E_o $E_s = (E_o + kz)$ Compressible soil layer E_s ; μ_s Rigid layer

- Factor de influencia de la variación de E_s
- Factor de influencia de la rigidez de la base
- Factor de influencia de la profundidad
 - Fundaciones con mayor profundidad asientan menos.

Ejercicio

- B = 1 m; L = 2 m
- t = 0.30 m; $E_f = 15 GPa$
- $E_0 \approx 6700 \, kPa$; $k \approx 885 \, kN/m$

•
$$B_e = \sqrt{\frac{4 B L}{\pi}} = 1.6 m$$

- $\beta = \frac{E_o}{k B_e} = 4.73 \rightarrow I_G \approx 0.75$
- $I_F = 0.787$; $I_E = 0.908$
- $S_i = \frac{q_0 B_e I_G I_F I_E}{E_0} (1 v_s^2) = 17.5 mm$

STS superficiales

.UBAfiul

Arcillas saturadas (Comportamiento no drenado)

Christian and Carrier (1978): Asentamientos instantáneos bajo una zapata flexible cargada con una presión uniforme q

$$S_i = \mu_0 \,\mu_1 \frac{q \,B}{E}$$

Contenido

- Introducción. Aspectos generales
- Solución de Boussinesq (Repaso)
- Asentamientos instantáneos (S_i)
- Asentamientos por consolidación (S_c, S_s)
- Asentamiento de fundaciones sobre roca

Compresión edométrica (o compresión unidimensional)

Trayectoria de compresión típica de suelos blandos cargados con rellenos

- Vertical $\epsilon_1 > 0$
- Horizontal $\epsilon_3 = 0$

Puede ser

- Reversible (elástica)
- Permanente (elastoplástica)
- Dependiente del tiempo (viscosa)

La reducción de *e* produce aumento de rigidez (línea azul no es horizontal)

Ensayo edométrico: equipo

Ensayo edométrico: procedimiento

Ensayo edométrico: resultados

Pendiente ramas "elástica", "elastoplástica" y tensión de fluencia σ_{vc} ("presión de preconsolidación")

Ensayo edométrico: resultados

Si la carga se mantiene en el tiempo se produce una compresión adicional (comportamiento viscoplástico)

Suelos preconsolidados

Un suelo está preconsolidado si su estado $(e - \sigma_v)$ está a la izquierda de la línea de compresión 1D

Esto puede ocurrir por dos razones

- Tensión pasada mayor que la actual
- Tensión actual aplicada mucho tiempo

Preconsolidación

$$OCR = \frac{\sigma_{v3}}{\sigma_{v2}}$$

- Parte de un estado normalmente cons.
- Se incrementa σ_v
- Se reduce σ_v
- Se define el Over Consolidation Ratio
- Mismo σ_v , distinto OCR

Preconsolidación por tiempo

- Estado inicial
- Se recorre la rama preconsolidada
- Se cruza la tensión de fluencia
- Se recorre la rama normalmente cons.
- Se alcanza la tensión final
- Pasan 10 años

Preconsolidación por tiempo

El tiempo preconsolida

- A los 10 años se alcanza el punto ()
- Al mismo punto se llega si se carga hasta σ_{10} y descarga hasta σ_{vf}
- Entonces, NC con 10 años es preconsolidado

Cálculo del asentamiento total

- Asentamiento: $\Delta h = \Delta n h$
- Cambio de porosidad: $\Delta n = \frac{\Delta e}{1+e_0}$
- $\Delta e_1 = C_r \log \left[\frac{\sigma_c}{\sigma_{vo}} \right] \rightarrow \Delta h_1 = \frac{C_r}{1 + e_0} \log \left[\frac{\sigma_c}{\sigma_{vo}} \right] h_0 e_3$
- $\Delta e_2 = C_c \log \left[\frac{\sigma_{vf}}{\sigma_c} \right] \rightarrow \Delta h_2 = \frac{C_c}{1 + e_1} \log \left[\frac{\sigma_{vf}}{\sigma_c} \right] h_1$
- $\Delta e_3 = C_\alpha \log \left[\frac{t}{t_p} \right] \to \Delta h_3 = \frac{C_\alpha}{1 + e_2} \log \left[\frac{t}{t_p} \right] h_2$
- $\Delta h = \Delta h_1 + \Delta h_2 + \Delta h_3$

Teoría de la consolidación Solución de Taylor (1961)

 h_f

$$\Delta\sigma_v$$
 ———

$$U_{\%} = \frac{100}{\Delta \sigma_{\nu}'} \int u \cdot d\zeta = f[T_{\nu}]$$

- $U_{\%} < 60\% \rightarrow$ $T_v \cong \frac{\pi}{4}U^2$
- $U_{\%} > 60\% \rightarrow$ $T_{17} \cong 1.781 - 0.933$ $\log(100 - U\%)$

<i>U</i> %	T_{v}
0	0
25	0.049
50	0.197
75	0.477
90	0.848
95	1.129
~99	~3
100	∞

El tiempo requerido para alcanzar un grado de consolidación se calcula con

$$t = \frac{T_v h_f^2}{C_v}$$

.UBAfiuba PACULTAD DE INGENIERÍA

Asentamientos por consolidación primaria en una fundación

$$\Delta \sigma_{av} = \frac{1}{H_2 - H_1} \int_{H_1}^{H_2} \Delta \sigma \, dz$$

Entonces, para una arcilla normalmente consolidada (i.e. $\sigma_0' = \sigma_c'$)

$$S_c = \frac{\Delta e}{1 + e_0} = \frac{C_c H_c}{1 + e_0} \log \left(\frac{\sigma_0' + \Delta \sigma_{av}}{\sigma_0'} \right)$$

.UBAfiuk Asentamientos por consolidación primaria en una fundación

$$\Delta \sigma_{av} = \frac{1}{H_2 - H_1} \int_{H_1}^{H_2} \Delta \sigma \, dz$$

Griffiths (1984):

$$\Delta \sigma_{av} = q \, I_{av \, (a/H,b/H)}$$

.ubafiuba

Asentamientos por consolidación primaria en una fundación

$$\Delta \sigma_{av} = \frac{1}{H_2 - H_1} \int_{H_1}^{H_2} \Delta \sigma \, dz$$

Griffiths (1984):

$$\Delta \sigma_{av} = q \, I_{av \, (a/H,b/H)}$$

$$\Delta \sigma_{av} = q \left[\frac{H_2 I_{av (H_2)} - H_1 I_{av (H_1)}}{H_c} \right]$$

Asentamientos por consolidación primaria en una fundación

• Otra alternativa es subdividir el estrato arcilloso y calcular el asentamiento en cada una de las fajas donde $\Delta \sigma_{av\;(i)} \approx \Delta \sigma_i$

$$S_c = \sum_{i=1}^{n} \frac{\Delta e_i}{1 + e_{0(i)}}$$

Nota: Todos estos cálculos contemplan únicamente el caso 1D (conservador). Ver Apartado 5.5.3 – Braja M. Das (2017)

Ejercicio

- Calcule los asentamientos elásticos y a tiempo infinito de la siguiente fundación
- Compare los resultados utilizando el modelo HMC de Optum

Diferencias entre compresión primaria y secundaria

Compresión primaria

- Es producida por el cambio de presión efectiva
- Si el agua no tuviera viscosidad sería un fenómeno instantáneo

Compresión secundaria

- Es producida a presión efectiva constante
- Está asociada a un comportamiento viscoplástico de las arcillas

.UBAfiuba

Viscoplasticidad y compresión secundaria de arcillas

Teoría "clásica" de compresión de suelos:
 la compresión secundaria comienza
 con el fin de la compresión primaria

$$- \Delta e = f[\sigma_{vf} - \sigma_{vi}] + f[t]$$

- Viscoplasticidad: la deformación viscosa está siempre presente
 - Velocidad depende de distancia entre tensión y tensión de fluencia
 - No se puede separar el efecto del cambio de tensión del efecto del tiempo

$$-\Delta e = f \big[\sigma_{vf} - \sigma_{vi}, t \big]$$

Índice de compresión secundaria

$$C_{\alpha} = \frac{\Delta e}{\log(t_2/t_1)}$$

Algunos rango de C_{α} :

- Arcillas sobre consolidadas (OCR > 2 | 3): 0.001
- Suelos orgánicos: > 0.025
- Arcillas normalmente consolidadas: 0.004 | 0.025

Cálculo del asentamiento total

- Asentamiento: $\Delta h = \Delta n h$
- Cambio de porosidad: $\Delta n = \frac{\Delta e}{1+e_0}$

• $\Delta h = \Delta h_1 + \Delta h_2 + \Delta h_3$

Drenes verticales

Para acelerar el proceso de consolidación se pueden instalar drenes verticales que inducen flujo radial

Drenes verticales

Para acelerar el proceso de consolidación se pueden instalar drenes verticales que inducen flujo radial

Contenido

- Introducción. Aspectos generales
- Solución de Boussinesq (Repaso)
- Asentamientos instantáneos (S_i)
- Asentamientos por consolidación (S_c, S_s)
- Asentamiento de fundaciones sobre roca

Fundaciones sobre rocas débiles

- Formaciones rocosas muy fisuradas o rocas meteorizadas débiles poseen un grado de compresibilidad que puede hacer necesaria la estimación de asentamiento
- En todos los casos, las soluciones están basadas en la teoría de la elasticidad
- Meigh (1976): Asentamiento inmediato bajo la esquina de una zona cargada uniformemente

$$S_i = q \left(\frac{B}{E_f}\right) I_p' F_B F_D$$

I_p' : Factor de influencia

$$k = \frac{E_d - E_f}{E_f} \left(\frac{B}{H} \right)$$

Factores de corrección

- F_B: Factor de corrección de la rugosidad de la base
- F_D: Factor de corrección de la profundidad

