### The Sum of Random Walks

Anni Hong, Kaiser Sun, Maddy Brown WXML Autumn 2019

Faculty mentor: Chris Hoffman Graduate mentor: Jacob Richey



### What is a simple random walk?

#### Biased vs. Unbiased

 $Z_j$  are the "steps", equal to 1 with probability  $p = \frac{1}{2}$ , and -1 with prob. 1 - p.

Starting at  $S_0 = 0$ ,  $\{S_n\}$  is a random walk

defined by 
$$S_n = \sum_{j=1}^n Z_j$$
.

#### Simple Symmetric Random Walk (n=10 steps)



### What is the argmax?

$$\operatorname*{argmax}_{0 \le x \le n} S_x = \{x | S_x \ge S_y, \forall y \in \{0, n\}\}\$$

The argmax is the step(s) where the maximum occurs.

Example below: max=1, argmax={1,3}

#### Simple Symmetric Random Walk (10 steps)



What do we expect the argmax to be for any given random walk?

$$p = q = 1/2$$





What do we expect the argmax to be for any given random walk?

at o or n 😯



## Number of argmax in single random walk

Symmetric case p = q = 1/2



Number of ArgMax

 $(1/2)^{j}$ ?

## Number of argmax in single random walk

$$P(\#argmax = j) = (\frac{1}{2})^j$$



Does this hold for asymmetrical case?



#### Number of ArgMax

$$P = (1-p) = rac{1}{2}$$
  $P(\#argmax = j) = (rac{1}{2})^j$ 

### What is the Probability of getting j argmaxes?

Asymmetrical

What is the probability that the max of the walk is 1, and it returned to the max j times before diverging to -inf? p=1/3, q=2/3



# What is the Probability of getting j argmaxes?

General formula

Summing all the possible number of argmaxes (over j) and summing all the possible value of maxes, we got:

$$Pr(\#argmaxes = j) = (1 - p)p^{j-1}$$

$$P = (1 - p) = \frac{1}{2}$$

$$Pr(\#argmaxes = j) = \frac{1}{2}^{j}$$

# Sums simple random walks (future research)



#### <u>Maximum Likelihood Estimation</u> (over 30,000 simulations for Y)

