1 Polynomial Practice

- (a) If f and g are non-zero real polynomials, how many roots do the following polynomials have at least? How many can they have at most? (Your answer may depend on the degrees of f and g.)
 - (i) f+g
 - (ii) $f \cdot g$
 - (iii) f/g, assuming that f/g is a polynomial
- (b) Now let f and g be polynomials over GF(p).
 - (i) We say a polynomial f = 0 if $\forall x, f(x) = 0$. If $f \cdot g = 0$, is it true that either f = 0 or g = 0?
 - (ii) How many f of degree exactly d < p are there such that f(0) = a for some fixed $a \in \{0, 1, ..., p-1\}$?
- (c) Find a polynomial f over GF(5) that satisfies f(0) = 1, f(2) = 2, f(4) = 0. How many such polynomials are there?

Solution:

- (a) (i) It could be that f+g has no roots at all (example: $f(x)=2x^2-1$ and $g(x)=-x^2+2$), so the minimum number is 0. However, if the highest degree of f+g is odd, then it has to cross the x-axis at least once, meaning that the minimum number of roots for odd degree polynomials is 1 (we did not look for this case when grading). On the other hand, f+g is a polynomial of degree at most $m=\max(\deg f,\deg g)$, so it can have at most m roots. The one exception to this expression is if f=-g. In that case, f+g=0, so the polynomial has an infinite number of roots!
 - (ii) A product is zero if and only if one of its factors vanishes. So if $f(x) \cdot g(x) = 0$ for some x, then either x is a root of f or it is a root of g, which gives a maximum of $\deg f + \deg g$ possibilities. Again, there may not be any roots if neither f nor g have any roots (example: $f(x) = g(x) = x^2 + 1$).
 - (iii) If f/g is a polynomial, then it must be of degree $d = \deg f \deg g$ and so there are at most d roots. Once more, it may not have any roots, e.g. if $f(x) = g(x)(x^2 + 1)$, $f/g = x^2 + 1$ has no root.

(b) (i) **Example 1:** $x^{p-1} - 1$ and x are both non-zero polynomials on GF(p) for any p. x has a root at 0, and by Little Fermat, $x^{p-1} - 1$ has a root at all non-zero points in GF(p). So, their product $x^p - x$ must have a zero on all points in GF(p).

Example 2: To satisfy $f \cdot g = 0$, all we need is $(\forall x \in S, f(x) = 0 \lor g(x) = 0)$ where $S = \{0, \dots, p-1\}$. We may see that this is not equivalent to $(\forall x \in S, f(x) = 0)) \lor (\forall x \in S, g(x) = 0)$.

To construct a concrete example, let p = 2 and we enforce f(0) = 1, f(1) = 0 (e.g. f(x) = 1 - x), and g(0) = 0, g(1) = 1 (e.g. g(x) = x). Then $f \cdot g = 0$ but neither f nor g is the zero polynomial.

- (ii) We know that in general each of the d+1 coefficients of $f(x) = \sum_{k=0}^{d} c_k x^k$ can take any of p values. However, the conditions f(0) and $\deg f = d$ impose constraints on the constant coefficient $f(0) = c_0 = a$ and the top coefficient $x_d \neq 0$. Hence we are left with $(p-1) \cdot p^{d-1}$ possibilities.
- (c) We know by part (b) that any polynomial over GF(5) can be of degree at most 4. A polynomial of degree ≤ 4 is determined by 5 points (x_i, y_i) . We have assigned three, which leaves $5^2 = 25$ possibilities. To find a specific polynomial, we use Lagrange interpolation:

$$\Delta_0(x) = 2(x-2)(x-4)$$
 $\Delta_2(x) = x(x-4)$ $\Delta_4(x) = 2x(x-2),$ and so $f(x) = \Delta_0(x) + 2\Delta_2(x) = 4x^2 + 1.$

2 Rational Root Theorem

The rational root theorem states that for a polynomial

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0,$$

 $a_0, \dots, a_n \in \mathbb{Z}$, if $a_0, a_n \neq 0$, then for each rational solution $\frac{p}{q}$ such that $\gcd(p, q) = 1$, $p|a_0$ and $q|a_n$. Prove the rational root theorem.

Solution: If $\frac{p}{q}$ is a root of the polynomial P, we can write

$$P\left(\frac{p}{q}\right) = a_n \left(\frac{p}{q}\right)^n + \dots + a_1 \left(\frac{p}{q}\right) + a_0 = 0.$$

Multiplying both sides by q^n we get

$$p(a_np^{n-1} + a_{n-1}qp^{n-1} + \dots + a_1q^{n-1}) = -a_0q^n$$

From this we can see that p divides a_0q^n ; however, recall that p and q are coprime, so p must divide a_0 , as desired.

If instead we chose to factor out q, we have

$$q(a_{n-1}p^{n-1} + \dots + a_0q^{n-1}) = -a_np^n$$

and for the same reasons we can say that q divides a_n .

3 Secrets in the United Nations

A vault in the United Nations can be opened with a secret combination $s \in \mathbb{Z}$. In only two situations should this vault be opened: (i) all 193 member countries must agree, or (ii) at least 55 countries, plus the U.N. Secretary-General, must agree.

- (a) Propose a scheme that gives private information to the Secretary-General and all 193 member countries so that the secret combination *s* can only be recovered under either one of the two specified conditions.
- (b) The General Assembly of the UN decides to add an extra level of security: each of the 193 member countries has a delegation of 12 representatives, all of whom must agree in order for that country to help open the vault. Propose a scheme that adds this new feature. The scheme should give private information to the Secretary-General and to each representative of each country.

Solution:

(a) Create a polynomial of degree 192 and give each country one point. Give the Secretary General 193-55=138 points, so that if she collaborates with 55 countries, they will have a total of 192 points and can reconstruct the polynomial. Without the Secretary-General, the polynomial can still be recovered if all 192 countries come together. (We do all our work in GF(p) where $p \ge d+1$).

Alternatively, we could have one scheme for condition (i) and another for (ii). The first condition is the secret-sharing setup we discussed in the notes, so a single polynomial of degree 192 suffices, with each country receiving one point, and evaluation at zero returning the combination s. For the second condition, create a polynomial f of degree 1 with f(0) = s, and give f(1) to the Secretary-General. Now create a second polynomial g of degree 54, with g(0) = f(2), and give one point of g to each country. This way any 55 countries can recover g(0) = f(2), and then can consult with the Secretary-General to recover g(0) from f(1) and f(2).

(b) We'll layer an *additional* round of secret-sharing onto the scheme from part (a). If t_i is the key given to the *i*th country, produce a degree-11 polynomial f_i so that $f_i(0) = t_i$, and give one point of f_i to each of the 12 delegates. Do the same for each country (using different f_i each time, of course).

4 Old Secrets. New Secrets

In order to share a secret number s, Alice distributed the values $(1, p(1)), (2, p(2)), \ldots, (n+1, p(n+1))$ of a degree n polynomial p with her friends Bob_1, \ldots, Bob_{n+1} . As usual, she chose p such that p(0) = s. Bob_1 through Bob_{n+1} now gather to jointly discover the secret. Suppose that for some reason Bob_1 already knows s, and wants to play a joke on Bob_2, \ldots, Bob_{n+1} , making them believe that the secret is in fact some fixed $s' \neq s$. How could he achieve this? In other words, what value should he report in order to make the others believe that the secret is s'?

Solution:

We know that in order to discover s, the Bobs would compute

$$s = y_1 \Delta_1(0) + \sum_{k=2}^{n+1} y_k \Delta_k(0), \tag{1}$$

where $y_i = p(i)$. Bob₁ now wants to change his value y_1 to some y'_1 , so that

$$s' = y_1' \Delta_1(0) + \sum_{k=2}^{n+1} y_k \Delta_k(0).$$
 (2)

Subtracting Equation 1 from 2 and solving for y'_1 , we see that

$$y_1' = (\Delta_1(0))^{-1} (s'-s) + y_1,$$

where $(\Delta_1(0))^{-1}$ exists, because $\deg \Delta_1(x) = n$ with its n roots at $2, \ldots, n+1$ (so $\Delta_1(0) \neq 0$).