COSC 222 Data Structure

Graphs – Part 3

Spanning Tree

- A company has a contract to provide high-speed internet to an area.
- Each client must be connected to the network while minimizing the total cost of building the network.
- Your are provided cost estimates for various possible links in the network.

Spanning Tree

- A spanning tree for a graph G is a spanning subgraph of G that is a tree.
 - Every connected graph has a spanning tree.
 - Any spanning tree for a graph G = (V; E)
 - has |V| vertices.
 - has |V| 1 edges.

Graph G

Spanning Tree of G

Spanning Tree of G

Another Application

You plan to visit all the important heritage sites, but in short time

Minimum Spanning Tree

 A Minimum Spanning Tree (MST) of a weighted graph G is a spanning tree of G that has the least possible total weight compared to all other spanning trees of G.

Total weight = 10

Total weight = 6

Minimum spanning trees: properties

- A valid MST cannot contain a cycle
- If we add or remove an edge from an MST, it's no longer a valid MST for that graph.
 - Adding an edge introduces a cycle; removing an edge means vertices are no longer connected.
 - An MST is always a tree.
 - If every edge has a unique weight, there exists a unique MST.

Finding a minimum spanning

- It is not always easy to derive a minimum spanning tree 'with eyes'.
- Two efficient algorithms for finding a minimum spanning tree:
 - Prim's algorithm
 - Kruskal's algorithm

- Greedy approach to find the minimum spanning tree.
- **Idea**: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices.
 - Pick the edge with the smallest weight.

Starting from empty *T*, choose a vertex at random and initialize

$$V = \{A\}, T = \{\}$$

Choose the vertex u not in V such that edge weight from u to a vertex in V is minimal (greedy!)

$$V = \{A,C\}$$

$$T = \{ (A,C) \}$$

Repeat until all vertices have been

chosen

$$V = \{A,C,D\}$$

T= { (A,C), (C,D)}

$$V = \{A,C,D,E\}$$

 $T = \{ (A,C), (C,D), (D,E) \}$

$$V = \{A,C,D,E,B\}$$

 $T = \{ (A,C), (C,D), (D,E), (E,B) \}$

Prim's Algorithm Implementation

```
Select a random vertex v.
Initialize the variables as: X:={v}, Y=V-X, E={}
while X != V do:
    Select e{x,y} edge of the graph where x ∈ X, y ∈ Y
        and w(e) is minimal. //weight of an edge e is w(e)
    X:= X ∪ {y};
    E:= E ∪ {(x,y)};
    Y:= Y-y
Return with the (X,E) tree
```

- Idea: Grow a forest out of edges that do not create a cycle.
- Pick an edge with the smallest weight.
- Steps
 - Remove all loops and parallel edges (keep the minimum one)
 - Arrange all edges in their increasing order of weight
 - Add the edge which has the least weight

$$\{7,4\}$$
 $\{2,1\}$ $\{7,5\}$ $\{5,6\}$ $\{5,4\}$ $\{1,6\}$ $\{2,7\}$ $\{2,3\}$ $\{3,4\}$ $\{1,5\}$ 0 1 1 2 2 3 3 3 4

Kruskal's Algorithm Implementation

```
Kruskals():
     sort edges in increasing order of length (e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub>,
  \ldots, e_m).
     T := \{\}.
     for i = 1 to m
           if e<sub>i</sub> does not add a cycle:
                 add e<sub>i</sub> to T.
     return T.
```

All-Pairs Shortest Path

- Dijkstra's algorithm requires a starting vertex
- What if you want to find the shortest path between all pairs of vertices in the graph?
 - Run Dijkstra's for each vertex v?
 - Can we do better?
 - Use dynamic programming: An algorithmic technique that systematically records the answers to sub-problems in a table and re-uses those recorded results.

optimal substructure property

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

Figure 25.3 Path p is a shortest path from vertex i to vertex j, and k is the highest-numbered intermediate vertex of p. Path p_1 , the portion of path p from vertex i to vertex k, has all intermediate vertices in the set $\{1, 2, \ldots, k-1\}$. The same holds for path p_2 from vertex k to vertex j.

The Algorithm

M[u][v] stores the cost of the best path from u to v Initialized to cost of edge between M[u][v]

The algorithm:

```
for (int k = 1; k =< V; k++)
  for (int i = 1; i =< V; i++)
  for (int j = 1; j =< V; j++)
    if ( M[i][k]+ M[k][j] < M[i][j] )
        M[i][j] = M[i][k]+ M[k][j]</pre>
```

After the kth iteration, the matrix M includes the shortest path between all pairs that use on only vertices 1..k as intermediate vertices in the paths

Initial state of the matrix:

	1	2	3	4	5
1	0	2	8	-4	8
2	8	0	-2	1	3
3	8	8	0	8	1
4	8	8	8	0	4
5	8	8	8	8	0

	1	2	3	4	5
1	0	2	8	-4	8
2	8	0	-2	1	3
3	8	8	0	8	1
4	8	8	8	0	4
5	8	8	8	8	0

	1	2	3	4	5
1	0	2	0	-4	5
2	8	0	-2	1	3
3	8	8	0	8	1
4	8	8	8	0	4
5	8	8	8	8	0

	1	2	3	4	5
1	0	2	0	-4	1
2	8	0	-2	1	-1
3	8	8	0	8	1
4	8	8	8	0	4
5	8	8	8	8	0

	1	2	3	4	5
1	0	2	0	-4	0
2	8	0	-2	1	-1
3	8	8	0	8	1
4	8	8	8	0	4
5	8	8	8	8	0

	1	2	3	4	5
1	0	2	0	-4	0
2	8	0	-2	1	-1
3	8	8	0	8	1
4	8	8	8	0	4
5	8	8	8	8	0

Graph Algorithms Summary

- Search
 - Depth-first search
 - Breadth-first search
- Topological sort
- Shortest paths
 - Breadth-first search (unweighted only)
 - Dijkstra's algorithm (requires starting vertex)
 - Floyd-Warshall algorithm (all-pairs)
- Minimum spanning trees
 - Prim's algorithm
 - Kruskal's algorithm

Thank You

- 1. 2-3 trees are B trees of order _____
 - a) 1
 - b) 2
 - c) 3
 - d) 4
 - e) none of the above
- 2. In a 2-3 Tree, a 3-Node has _____ data items
 - a) 1
 - b) 2
 - c) 3
 - d) 4
 - e) none of the above

- 3. During insertion and deletion operations, Red Black trees require fewer rotations than AVL trees.
 - True
 - False
- A Red-Black tree always has a black root
- A Red-Black tree can have two consecutive red nodes
- A Red-Black tree is always coloured either red or black
- Every path from a node to a null link must have the same number of red nodes
- 4. How many of the above statements are correct?
 - a) 1
 - b) 2
 - c) 3
 - d) 4

- 5. When a node is first inserted in a red-black tree, it is placed according to the insert procedure in a binary search tree. What colour is this newly inserted node (initially) if it is NOT the root?
 - a) Red
 - b) Black
 - c) Either Red or Black
 - d) It has no colour
- 6. The time complexity for peek operation on a min-heap is
 - a) O(1)
 - b) O(n)
 - c) O(logn)
 - d) O(nlogn)
 - e) none of the above
- 7. Bubble up and bubble down are used to restore heap ordering.
 - True
 - False

8. The following is an example of a **valid** Red-Black tree

- o True
- o False

- 9. Show the red-black trees after inserting the keys 42, 39, 30, 11, 18, 7 into an initially empty tree. Draw the tree after each insertion. For the red nodes, you may use labels (e.g., R) to indicate their colour.
- 10. Insert the following values into an initially empty 2-3tree: 1, 2, 3, 4, 5, 6, 7, 8, 9.

 Draw the tree after each insertion.

11. Construct a max-heap by adding the following elements onto the heap in the given order:

7, 2, 1, 9, 12, 3, 14.

Draw the heap after each completed insertion of an element.