Лабораторная работа

Исследование углового распределения интенсивности космического излучения на уровне моря

В работе исследуется угловое распределение частиц космического излучения на уровне моря, которое состоит в основном из релятивистских μ -мезонов, составляющих так называемую жесткую компоненту, и идущую в равновесии с этими μ -мезонами мягкую компоненту. Мягкая компонента состоит из электронов и гамма-квантов, которые сравнительно легко поглощаются небольшими толщинами свинца, за что и получила такое название. Потоки частиц в данной работе предлагается измерять под различными углами θ к вертикали при помощи сцинтилляционного телескопа.

В данном эксперименте исследуется зависимость интенсивности частиц космического излучения на уровне моря от величины угла θ к вертикали. Полученную угловую зависимость можно аппроксимировать функцией вида $I(\theta)=I_0cos^n\theta$, где $I(\theta)$ - интенсивность космического излучения по направлению, составляющему угол θ с вертикалью, I_0 - значение $I(\theta)$ для угла $\theta=0$, n - величина показателя степени. В данной работе предлагается экспериментально определить величину n.

Экспериментальная установка

Схема экспериментальной установки изображена на рис.1

Рис. 1. Схема установки для изучения углового распределения жесткой компоненты космических лучей

Ход работы

1. Включаем высоковольтные источники питания ФЭУ, следим чтобы скорость счета составила около 30 отсчетов в секунду, определяем скорость счета двойных совпадений $I(\theta)$ для 10 положений телескопа с различными углами θ к вертикали, заносим данные в таблицы. При этом, измеряем и учитываем фоновые события I_{Φ}

In [1]:

```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

table = pd.read_csv('''C:\\Users\\Nikeyson-PC\\Desktop\\Laba 7-1.csv''', sep=';')
```

In [2]:

table

Out[2]:

	angle	num
0	0	142
1	0	125
2	0	117
3	13	130
4	13	118
5	13	126
6	20	107
7	20	111
8	20	111
9	30	113
10	30	79
11	30	83
12	40	82
13	40	85
14	40	87
15	50	49
16	50	76
17	50	57
18	60	71
19	60	50
20	60	37
21	70	35
22	70	43
23	70	43
24	80	44
25	80	42
26	80	30
27	90	25
28	90	32
29	90	30

In [3]:

```
#Убираем фоновые значения из выборки (90 градусов), обработаем их позже. arr = table.iloc[:-6, :]
```

In [4]:

```
x = np.array(arr.iloc[:, 0])
y = np.array(arr.iloc[:, 1])
```

In [5]:

```
fig = plt.figure(figsize= (12, 8), dpi= 100)
ax1 = fig.add_subplot()
ax1.plot(x, y, 'o' ,label= "Всё")
ax1.grid(True)
plt.xlabel("Угол наклона установки")
plt.ylabel("Число двойных совпадений")
plt.title("Данные")
plt.show()
```


In [6]:

```
#Усредняем данные, вычитаем фоновые события

x1 = []
y1 = []
back_events = (table.iloc[-1, 1] + table.iloc[-2, 1] + table.iloc[-3, 1])/3

for i in range(0, len(x), 3):
    x1.append(x[i])
    y1.append((y[i]+y[i+1]+y[i+2])/3)
    y1[-1] = y1[-1] - back_events
```

In [7]:

```
fig = plt.figure(figsize= (12, 8), dpi= 100)
ax1 = fig.add_subplot()
ax1.plot(x1, y1, 'o' ,label= "Всё")
ax1.grid(True)
plt.xlabel("Угол наклона установки")
plt.ylabel("Число двойных совпадений (без фоновых событий)")
plt.title("Усредненные данные")
plt.show()
```


2. Оценим роль случайных совпадений при измерениях $I(\theta)$. $N_{\mathrm{c}\pi} = 2 au_{\mathrm{pas}} N_1 N_2$

In [8]:

```
n_rand = 2 * (10**(-7)) * 30 * 30
print(n_rand)
```

0.00018

Из этого, их роль незначительна

3. Определяем показатель степени n по наклону прямой зависимости $lnI(\theta)$ от $lncos(\theta)$

In [9]:

```
x3 = [np.log(np.cos(i/180*np.pi)) for i in x1]
y3 = [np.log(i) for i in y1]
x3 = np.array(x3)
y3 = np.array(y3)
#Аппроксимируем прямой линией
a, b = np.polyfit(x3,y3,1)
```

In [10]:

```
fig = plt.figure(figsize= (12, 8), dpi= 100)
ax1 = fig.add_subplot()
ax1.plot(x3, y3, 'o' ,label= "Данные")
ax1.grid(True)
ap = [i for i in range(-1, 1, 1)]
p = [a*i + b for i in ap]
ax1.plot(ap, p, "--", label= "Аппроксимация")
ax1.legend()
plt.xlabel("lncos угла наклона установки")
plt.ylabel(" ln числа двойных совпадений (без фоновых событий)")
plt.title("")
plt.show()
```


Коэффициент наклона прямой:

In [11]:

print(a)

2.005509062044409

T.e. $n \approx 2$

Вывод

Исследовали зависимость интенсивности частиц космического излучения на уровне моря от величины угла θ к вертикали. Полученную угловую зависимость можно аппроксимировать функцией $I(\theta)=I_0cos^2\theta$.

Оценили роль случайных совпадений при измерениях $I(\theta)$, она незначительна и качественно не влияет на эксперимент.