Probability

April 18, 2016

1 Probability Spaces

1.1 Classical Probability Spaces

Textbook probability theory [1, 2, 4] is defined using the notions of a sample space Ω , a space of events \mathcal{F} , and a probability measure μ . In this paper, we will only consider finite sample spaces: we therefore define a sample space Ω as an arbitrary non-empty finite set and the space of events \mathcal{F} as, 2^{Ω} , the powerset of Ω . A probability measure is a function $\mu : \mathcal{F} \to [0, 1]$ such that:

- $\mu(\Omega) = 1$, and
- for a collection of pairwise disjoint events E_i , we have $\mu(\bigcup E_i) = \sum \mu(E_i)$.

Example 1 (Two coin experiment). Consider an experiment that tosses two coins. We have four possible outcomes that constitute the sample space $\Omega = \{HH, HT, TH, TT\}$. The event that the first coin is "heads" is $\{HH, HT\}$; the event that the two coins land on opposite sides is $\{HT, TH\}$; the event that at least one coin is tails is $\{HT, TH, TT\}$. Depending on the assumptions regarding the coins, we can define several probability measures. Here is a possible one:

```
\mu(\emptyset)
                                             \mu(\{HT,TH\})
                                                                 2/3
    \mu(\{HH\})
                    1/3
                                             \mu(\{HT,TT\})
                                                                 0
    \mu(\{HT\})
                    0
                                             \mu(\{TH,TT\})
                                                                 2/3
    \mu(\{TH\})
                = 2/3
                                       \mu(\{HH, HT, TH\})
                                                                1
     \mu(\{TT\})
                = 0
                                        \mu(\{HH, HT, TT\})
                                                            = 1/3
\mu(\{HH, HT\})
                   1/3
                                        \mu(\{HH,TH,TT\})
                                                             = 1
\mu(\{HH,TH\})
                                        \mu(\{HT, TH, TT\})
                                                                 2/3
\mu(\{HH,TT\}) =
                   1/3
                                   \mu(\{HH, HT, TH, TT\}) =
```

1.2 Quantum Probability Spaces

A classical model decides the occurrence or non-occurence of all events simultaneously which is inconsistent with quantum mechanics. Indeed, in the quantum world, there are (non-commuting) events which cannot happen simultaneously. To accommodate this situation, we completely abandon the sample space Ω and define and reason directly about events. Thus a quantum probability space will consist of just two components: a set of events \mathcal{A} and a probability measure $\phi: \mathcal{A} \to [0,1]$. These components are defined as follows [3, 5].

We first assume an ambient Hilbert space \mathcal{H} and define the set of events \mathcal{A} as projections on \mathcal{H} . Similarly to the classical case, a probability measure is a function $\phi: \mathcal{A} \to [0,1]$ satisfying:

- $\phi(1) = 1$, and
- for all $A \in \mathcal{A}$, we have $\phi(A^*A) \geq 0$.

Yu-Tsung says: If we follow [3, 5], then we also need

• ϕ can be extended to a linear functional $\phi: alg(\mathcal{A}) \to \mathbb{C}$, where $alg(\mathcal{A})$ is the minimal *-algebra generated by \mathcal{A} .

Also,

• for all $A \in \mathcal{A}$, we have $\phi(A^*A) \geq 0$.

should be

• for all $A \in alg(A)$, we have $\phi(A^*A) \geq 0$.

because we have $\phi(A^*A) = \phi(A^2) = \phi(A)$ if A is a projection.

As an example, let P_1, P_2, \ldots, P_k be mutually orthogonal projections on \mathcal{H} with sum 1 and define the event space \mathcal{A} to be the linear span of these operators:

$$\mathcal{A} = \left\{ \sum_{j=1}^k \lambda_j P_j \;\middle|\; \lambda_1, \dots, \lambda_k \in \mathbb{C} \right\}.$$

Yu-Tsung says: $\left\{\sum_{j=1}^k \lambda_j P_j \mid \lambda_1, \dots, \lambda_k \in \mathbb{C}\right\}$ is the minimal *-algebra generated by P_1, P_2, \dots, P_k , but it contains all possible observables P_1, P_2, \dots, P_k can generate (and something more) not just projections. For example, $2\mathbb{1} \in \left\{\sum_{j=1}^k \lambda_j P_j \mid \lambda_1, \dots, \lambda_k \in \mathbb{C}\right\}$.

Each state $|\psi\rangle$ of the Hilbert space induces a probability measure $\phi_{\psi}: \mathcal{A} \to [0,1]$ defined as follows:

$$\phi_{\psi}(A) = \langle \psi | A\psi \rangle$$

Yu-Tsung says: So ϕ_{ψ} maps the projections generated by P_1, P_2, \dots, P_k to [0,1], and maps $\left\{\sum_{j=1}^k \lambda_j P_j \mid \lambda_1, \dots, \lambda_k \in \mathbb{C}\right\}$ to \mathbb{C} ...

Concrete example: consider the two qubit Hilbert space with computational bases $|0\rangle$ and $|1\rangle$. First, consider the two states

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}, |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

and consider the following families of projections:

- Family I: $|0\rangle\langle 0|$, $|1\rangle\langle 1|$
- Family II: $|+\rangle\langle+|$, $|-\rangle\langle-|$

In family I, all operators can be expressed as $\{\lambda_1|0\rangle\langle 0| + \lambda_2|1\rangle\langle 1| \mid \lambda_1,\lambda_2 \in \mathbb{C}\}$. In order to identify projectors among them, we need to solve the following two equations.

$$\lambda_1|0\rangle\langle 0| + \lambda_2|1\rangle\langle 1| = (\lambda_1|0\rangle\langle 0| + \lambda_2|1\rangle\langle 1|)^* = \lambda_1^*|0\rangle\langle 0| + \lambda_2^*|1\rangle\langle 1|$$

$$\lambda_1|0\rangle\langle 0| + \lambda_2|1\rangle\langle 1| = (\lambda_1|0\rangle\langle 0| + \lambda_2|1\rangle\langle 1|)^2 = \lambda_1^2|0\rangle\langle 0| + \lambda_2^2|1\rangle\langle 1|$$

Therefore, we actually have $\lambda_1, \lambda_2 \in \{0, 1\}$, and there are only four projections: $0, |0\rangle\langle 0|, |1\rangle\langle 1|$, and $\mathbb{1} = |0\rangle\langle 0| + |1\rangle\langle 1|$. Then, $\phi_{|+\rangle}$ and $\phi_{|-\rangle}$ of each projections are

Similarly, $\phi_{|+\rangle}$ and $\phi_{|-\rangle}$ gives two probability for family II as well.

1.3 Plan

Several assumptions are woven in the definition of a quantum probability space:

- the Hilbert space \mathcal{H} ;
- the real interval [0, 1];
- the fact that each state induces a probability measure, i.e., the Born rule;
- the fact that every probability measure is induced by a state, i.e., Gleason's theorem

In the remainder of the paper, we examine each of these assumptions and consider variations motivated by computation in a world with limited resources. In particular, we will consider a variant of the Hilbert space over finite fields $\mathbb{F}_{p^2}^d$. Instead of [0,1], we will consider set-valued probability measures, in particular $\{0\}$, impossible, and $(0,\infty)$, possible. Surprisingly, some combinations of space and probability will result in no probability measure or an unique probability measure. In these cases, there is no need to discuss whether there is a Born rule, because we do not have enough probability to correspond to every state.

If there may be more than one probability measure, we will discuss whether there is a Born rule to generate a probability measure from a state. When the space is \mathbb{C}^d , we will try to induced a Born rule from the conventional Born rule; when the space is $\mathbb{F}_{p^2}^d$, there is no natural way to induce a probability measure from a state, so we will set some conditions a Born $\tilde{\pi}$ should have:

- Given a pure state $|\Psi\rangle \in \mathbb{F}_{p^2}^{d*}$, a Born-rule $\tilde{\pi}$ should give a probability $\tilde{\pi}_{\Psi}$;
- $\langle \Psi | \Phi \rangle = 0 \Leftrightarrow \tilde{\pi}_{\Psi} (| \Phi \rangle) = \tilde{0}$, where $\tilde{0}$ is 0 while considering [0,1] and $\tilde{0}$ is impossible while considering $\{\text{impossible}\}$.
- $\tilde{\pi}_{\Psi}\left(|\Phi\rangle\right) = \tilde{\pi}_{\mathbf{U}|\Psi\rangle}\left(\mathbf{U}|\Phi\rangle\right)$, where $|\Psi\rangle, |\Phi\rangle \in \mathbb{F}_{p^2}^{d\,*}$ and \mathbf{U} is any unitary map, i.e., $\mathbf{U}^{\dagger}\mathbf{U} = \mathbb{1}$.

Notice that when the space is \mathbb{C}^d , every Born rule we consider will satisfy these three conditions.

Finally, if there is a Born rule, we will see whether every probability measure is induced by a state, and establish Gleason's theorem.

References

- [1] William G. Faris. Appendix: Probability in quantum mechanics. In *The infamous boundary : seven decades of controversy in quantum physics*. Boston: Birkhauser, 1995.
- [2] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for Computer Science. A foundation for computer science. Addison-Wesley, 1994.
- [3] Hans Maassen. Quantum probability and quantum information theory. In *Quantum information*, computation and cryptography, pages 65–108. Springer, 2010.
- [4] V.K. Rohatgi and A.K.M.E. Saleh. An Introduction to Probability and Statistics. Wiley Series in Probability and Statistics. Wiley, 2011.
- [5] JM Swart. Introduction to quantum probability. Lecture Notes, 2013.