Student Name -

Student Number -

Values

1. Find the limit for the following sequence of functions on the interval $0 \le x \le 5$, if it exists. Show your reasoning and all calculations.

$$\left\{ \frac{n^3x^3 + n^2x^2 + 4}{2n^3x^2 + nx + 1} \right\}$$

12 2. Determine whether the following series converge or diverge. If a series converges, find its sum. Justify your conclusions.

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n 3^n}{2^{2n+1}}$$

(b)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{an}\right)^4$$
 where $0 < a < 5$ is a constant

10 3. Find the open interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} [1 \cdot 4 \cdot 7 \cdots (3n+1)]}{2^n} (x+1)^{2n+1}.$$

- 4. (a) For the function $f(x) = \frac{1}{4+3x}$, calculate f'(x), f''(x), f'''(x), and more derivatives if necessary, in order to find a formula for the n^{th} derivative $f^{(n)}(x)$ of the function.
 - (b) Use the result in part (a) to find a formula for the Taylor remainder $R_n(1, x)$, simplified as much as possible.