

MURATA LAB

Mid-term Presentation

Motif-aware method for graph analysis

Hoang Nguyen (M2), Supervisor: Assoc. Prof. Tsuyoshi Murata

2017/02/03

Roadmap Result of motif methods | Proposal of future models

Definition and applications Complex networks and significant subgraphs

Scales of network analysis:

- Macroscopic (global view)
- Microscopic (interactions)
- Mesoscopic (sub-structures)

Network motifs are ¹

patterns of statistically significant interconnections occurring in complex networks.

Applications

- Social networks ²
- Biological systems 1,3,4

⁴(Franceschet, 2012) ³(Honey, 2007) ²(Holland, 1970) ¹(Milo, 2002)

Motif conductance Network motifs in network analysis

Motif conductance (Benson, 2016)

- Generalization of graph conductance.
- Motif-cooccurrence matrix.
- Good results for graph partitioning.

$$\phi_m(S) = \frac{\operatorname{cut}_M(S, \bar{S})}{\min[\operatorname{vol}_M(S), \operatorname{vol}_M(\bar{S})]}$$

ExperimentsGraph embedding for classifying network node

Datasets:

- Blogcatalog3
- Cora, Citeseer, Pubmed
- Facebook (EgoNet)
- Transcription networks

Deciding motif:

- Motif frequency
- Z-score
- Motif conductance

Networks	#nodes	#edge
Blogcatalog3	10312	333983
Cora*	2708	5429
Citeseer*	3327	4732

^{*} Each node has a feature vector (tf-idf)

$$z_m = \frac{N_m(emp) - N_m(rnd)}{\sigma_m}$$

$$\phi_m(S) = \frac{\operatorname{cut}_M(S, \bar{S})}{\min[\operatorname{vol}_M(S), \operatorname{vol}_M(\bar{S})]}$$

ExperimentsMotif analysis - Results

Significant graph - Directed size 3 motifs

Experiments

Approach #1: motifwalk

Using motif as a guiding pattern

DeepWalk, LINE, node2vec:

Algorithm 1: Motif context sampling $P_m(\omega)$.

Notif context sampling $P_m(\omega)$.

Notif context sampling $P_m(\omega)$.

Input: start vertex, walk length, motif M = (V', E'), bias β ;

Result: Vertices in the local motif structure;

vertexList ← [start vertex] current ← start vertex

initialize dequeue buffer Q of size |V'|

while vertexList.length < walk length do

| candidate ← random(neighboor(current))

Q.append(candidate)

if Isomorphic(Q, M) then | if $random < \beta$ then

vertexList.append(candidate)

else

continue

else | if random $> \beta$ then

vertexList.append(candidate)

else

continue

return vertexList

ExperimentsApproach #1: motifwalk

Node multi-label classification

- Blogcatalog3 f1 score
- 39 classes (imbalanced), nodes can have multiple labels

Methods	10%		50%		90%	
	micro	macro	micro	macro	micro	macro
Spectral Clus.	29.05	12.98	36.47	20.11	39.77	23.11
DeepWalk	32.75	13.01	38.65	21.17	39.64	23.08
Node2Vec	35.08	16.76	37.67	21.4	37.60	22.77
MAGE (ours)	33.53	12.46	38.88	20.26	40.8	22.93

- Bottleneck at context generation (30 minutes).
- Social networks' motifs are not obvious.
- The optimization process is inefficient.

ExperimentsApproach #2: m-gcn

Motif laplacian for graph convolutional networks

mark the gcn and m-gcn

? use case and improvement and limitation

Node label classification

- Citation networks: Cora, citeseer, pubmed. f1 and acc.
- 3 to 6 classes, each node has exactly one label.

Methods	Cora		Citeseer		Pubmed	
	accuracy	macro	accuracy	macro	accuracy	macro
Spectral Clus.	59.5	-	42.7	_	65.3	-
DeepWalk	67.2	-	43.2	_	65.3	-
GCN	81.5	_	70.3	_	79.0	-
m-gcn (ours)	83.3	-	71.4	-	80.4	-

- Explaining why does it work.
- Minor contribution.

My interests:

- Network sampling (diversity oriented).
- Turn m-gcn into a generative model.

Agenda:

- Investigate graph spectral theory.
- Determinantal processes on graphs.
- Graph motif sampling model definition.
- (opt.) Generative Adversarial Networks and Auto-Encoders.

ReferencesNetwork Science | Machine Learning

(Diestel, 2000) Graph Theory.

(Mikolov, 2013) Distributed Representations of Words and Phrases and their Compositionality.

(Bengio, 2013) Deep Learning of Representations: Looking Forward.

(Ng, 2001) On Spectral Clustering: Analysis and an algorithm.

(Perozzi, 2014) DeepWalk: Online Learning of Social Representations.

(Tang, 2015) LINE: Large-scale Information Network Embedding.

(Cao, 2015) GraRep: Learning Graph Representations with Global Structural Information.

(Grover, 2016) node2vec: Scalable Feature Learning for Networks

(Yang, 2016) Semi-Supervised Classification with Graph Convolutional Networks

(Alon, 2007) Network motifs: theory and experimental approaches.

(Benson, 2016) Higher-order organization of complex networks.

AP. A MOTIF

Motif generalizes link Motif conductance | Motif spectral analysis

Motif here!

AP. B SKIPGRAM

Skip-gram model Applying NLP techniques to network science

NPL Skipgram

Graph convolutional networks Spectral methods meets neural networks

Laplacian, normalized, convolution operations