Flujo de la Información Genética

Flujo de la Información Genética

Principios Generales de la Traducción

Código Genético

The nucleotide sequence of an mRNA is translated into the amino acid sequence of a protein via the genetic code

Example of how the genetic code—a non-overlapping, comma-less triplet code—can be read in different frames

Two-step decoding process for translating nucleic acid sequences in mRNA into amino acid sequences in proteins

Resumen de la Traducción

Todas estas etapas requieren de proteínas accesorias específicas y de energía en forma de ATP o GTP

Fuente: COOPER, G. M. 2000 The Cell - A Molecular Approach Second Edition, ASM Press, Washington, D.C. & Sinater Associates, Inc., Sunderland, Massachusetts.

¿Que tal si la bloqueamos?

En Bacterias

En Mamíferos

Ricinus communis o Higuerilla

Ricina

En humanos: Oral LD50 1–20 mg/kg bw

Cadena A 267 aminoácidos Cadena B 262 aminoácidos Unión por puente disulfuro

Cadena A: N-glycoside hydrolase Depurina (A4324) del 28S rRNA Inactiva el sitio de interacción con Factores de Elongación

B: Lectina Se une a N-acetylgalactosamine o beta-1,4-linked galactose en Glicoproteínas

Envenenamiento con Ricina

Diarrea severa

Daño Hepático y Renal

Daño Renal

Muerte a los 3-5 días luego de exposición

Maquinaria Celular que realiza la Traducción

Elementos Indispensables en el Proceso de Traducción

- 1. tRNAs
- 2. Ribosomas
- 3. mRNAs
- 4. Factores accesorios

Estructura de tRNAs – Moléculas Adaptadoras

https://www.rcsb.org/3d-view/1EHZ/1

The genetic code is translated by the cooperation of two adaptors: aminoacyl-tRNA synthetases and tRNAs

NET RESULT: AMINO ACID IS SELECTED BY ITS CODON IN AN mRNA

https://www.rcsb.org/3d-view/1ASY/1

Estructura de los Ribosomas

Actividad catalítica: rRNAs

Actividad estructural: Proteínas Ribosomales

https://www.rcsb.org/3d-view/4V4I/1

Fuente: COOPER, G. M. 2000 The Cell - A Molecular Approach Second Edition, ASM Press, Washington, D.C. & Sinager Associates, Inc., Sunderland, Massachusetts.

Estructura de mRNAs Eucarióticos y Procarióticos

Fuente: COOPER, G. M. 2000 The Cell - A Molecular Approach Second Edition, ASM Press, Washington, D.C. & Sinauer Associates, Inc., Sunderland, Massachusetts.

Factores Accesorios

Factores de Iniciación

- IF1, IF2, IF3 (Procariotes)
- eIF1, eIF1A, eIF2, eIF3, eIF4A, eIF4B, eIF4E, eIF4G, eIF5 (Eucariotes)

Factores de Elongación

- EF-Tu, EF-G (Procariotes)
- eEF1-alpha, eEF2 (Eucariotes)

Factores de Terminación

- RF (Procariotes)
- eRF1 (Eucariotes)

Otros Factores

PABP (Eucariotes)

The three roles of RNA in protein synthesis

eRF1 + eRF3•GTP eRF3-GTP eRF1 Peptidyl-tRNA cleavage eRF1 + eRF3•GDP + P_i

Proteins are synthesized on polyribosomes

Polisomas o Poli-ribosomas

Fuente: COOPER, G. M. 2000 The Cell - A Molecular Approach Second Edition, ASM Press, Washington, D.C. & Sinauer Associates, Inc., Sunderland, Massachusetts.

Model of protein synthesis on circular polysomes and recycling of ribosomal subunits.

