Finite Automata

δ	1	2	3
q_0	$\{q_0, q_1\}$	$\{q_0, q_2\}$	$\{q_0, q_3\}$
q_1	$\{q_1, q_f\}$	$\{q_1\}$	$\{q_1\}$
q_2	$\{q_2\}$	$\{q_2, q_f\}$	$\{q_2\}$
q_3	$\{q_3\}$	$\{q_3\}$	$\{q_3, q_f\}$
q_f	0	0	0

Prove that $w = 12321 \in L(M)$

Sol.: (chat for graph repres.)

//Nenisca Maria

3
$$(q_0, 12321)$$
 |- $(q_1, 2321)$ |- $(q_1, 1)$ |- $(q_f, epsilon) => w = 12321 $\in L(M)$$

2. Find the language accepted by the FA below.

// Moldovan Vasilica

$$L = \{ a^n b^m \mid n \in N, m \in N^* \}$$

? L = L(M)

1. ? L
$$\subseteq$$
 L(M) \iff N \in N, $m \in$ N*, $a^nb^m \in$ L(M) Let $n \in$ N, $m \in$ N* be fixed.

$$\begin{array}{c} \text{n} & \text{m-1} \\ (\text{p, } a^n b^m) \, | - \, (p, \, b^m) \, | - (q, \, b^{m-1}) \, | - \, (q, \, \, \epsilon) \\ \text{(i)} & \text{(ii)} \end{array}$$

(i)
$$(p, a^n) | - (p, \varepsilon), \forall n \in N$$

(ii) (q,
$$b^k$$
) $|-(q, \varepsilon), \forall k \in N$

1.1 For n = 0:
$$(p, \epsilon) | -(p, \epsilon)$$
 - True

1.2
$$P(k) \rightarrow P(k + 1)$$

P(k): (p,
$$\,a^k)\,|-\,(p,\,\epsilon)\,$$
 - (induction hypothesis) True

$$(p, a^{k+1}) | -(p, a^k) | -(p, \epsilon) => P(k+1)$$
 is True Ind. hyp.

From 1.1 and 1.2 => (i)

3. Build FAs that accept the following languages

a. Integer numbers

b. Variable declarations (Pascal, C, ...)

c.
$$L = \{0^n 1^m 0^q \mid n, m \in N^*, q \in N\}$$

d.
$$L = \{0(01)^n \mid n \in N\}$$

#todo: insert solutions