Національний авіаційний університет Навчально-науковий Інститут інформаційно-діагностичних систем Кафедра прикладної математики

Завдання для лабораторних робіт з дисципліни "Комп'ютерні графічні технології та просторове моделювання"

для студентів спеціальності 6.040301 Прикладна математика

Юрчук І.А.

Зміст

Пояснювальна записка	3
Модуль 1 "Геометричні перетворення та проекції"	
Лабораторна робота 1.1	4
Лабораторна робота 1.2	5
Домашне завдання 1	7
Теоритичні питання до МКР №1	8
Модуль 2 "Побудова плоских та просторових криг	вих"
Лабораторна робота 2.1	10
Лабораторна робота 2.2	11
Домашне завдання 2	12
Теоритичні питання до МКР №2	13
Модуль 3 "Побудова та відображення поверхонь"	
Лабораторна робота 3.1	15
Лабораторна робота 3.2	16
Домашне завдання 3	17
Теоритичні питання до МКР №3	18
Модуль 4 "Видалення невидимих ліній і поверхонь.	Роз-
РАРБОВУВАННЯ"	
Лабораторна робота 4.1	19
Лабораторна робота 4.2	20
Домашне завдання 4	21
Теоритичні питання до МКР №4	22
Література	23
Додаток 1.	24
Додаток 4.	25

Пояснювальна записка

Метою викладання дисципліни є оволодіння студентами теоретичних основ комп'ютерних графічних технологій, надбання навичок просторового моделювання та створення на їх основі програмних засобів комп'ютерної графіки.

Дисципліна "Комп'ютерні графічні технології та просторове моделювання входить в цикл "Математичне забезпечення обчислювальних систем напряму підготовки 6.040301 "Прикладна математика викладається в п'ятому та шостому семестрах. Складається з чотирьох тематичних модулів та чотирьох домашніх завдань. Кожен модуль містить дві лабораторні роботи, що мають бути оформлені наступним чином:

- 1. Титульний лист.
- 2. Тема та мета роботи.
- 3. Завдання.
- 4. Короткі теоретичні відомості.
- 5. Хід роботи з розрахунками, програмними кодами та результатами роботи програм.
- 6. Висновки.

Домашні завдання (ДЗ) виконуються в п'ятому та шостому семестрах, відповідно до затверджених в установленому порядку методичних рекомендацій, з метою закріплення та поглиблення теоретичних знань та вмінь студентів і є важливим етапом у засвоєнні навчального матеріалу, що викладається у цих семестрах.

Метою домашнього завдання є подальше поглиблене вивчення студентом прийомів і методів, що викладаються на лекційних та лабораторних заняттях.

Модуль 1 "Геометричні перетворення та проекції"

Лабораторна робота 1.1

Тема:Побудова двовимірних геометричних об'єктів.

Мета: Вивчити афінні перетворення на площині та вміти застосовувати їх до геометричних конструкцій. Вміти реалізувати довільні рухи на площині як композицію повороту, масштабування, перенесення та дзеркального відображення.

Завдання:

- 1. Вивчити всі види афінних перетворень на площині та їх матричне представлення в однорідних координатах.
- 2. Створити програмне забезпечення для реалізації повороту, зсуву, непропорційного розтягу (стиску) та дзеркального відображення відносно прямої Ax + By + C = 0 геометричного об'єкту G, де G визначений для кожного студента окремо згідно його варіанту (див. табл.1.), дотримуючись наступних вимог:
 - значення параметрів A, B та C задаються користувачем;
- розмір та координати вузлів об'єкту G автор програми визначає на свій розсуд, виходячи з параметрів монітору та естетичних міркувань (об'єкт має бути по центру, рухи над G в полі зору і т.д.).

Таблиця 1. Варіанти завдань до ЛР 1.1.

$\mathcal{N}_{ar{0}}$	G	$N_{ar{f 0}}$	G
1	ламана, що складається з	11	трикутник
	6 відрізків		
2	рівнобедрений трикутник	12	квадрат
3	рівностороній трикутник	13	прямокутник
4	прямокутний трикутник	14	паралелограм
5	трапеція	15	п'ятикутник
6	правильний п'ятикутник	16	ламана, що складається з
			5 відрізків
7	шестикутник	17	правильний шестикутник
8	випуклий чотирикутник	18	ламана, що складається з
			4 відрізків
9	ламана, що складається з	19	прямокутна трапеція
	5 відрізків із самоперети-		
	нами		
10	шестикутник	20	ламана, що складається з
			6 відрізків із самоперети-
			нами

Лабораторна робота 1.2

Тема: Побудова просторових геометричних об'єктів.

Мета: Вивчити афінні перетворення в просторі, паралельні і перспективні проекції та вміти застосовувати їх до геометричних конструкцій.

Завдання:

- 1. Вивчити всі типи афінних перетворень, паралельних і перспективних проекцій в просторі та їх матричне представлення в однорідних координатах.
- 2. Реалізувати програмно алгоритми наступних рухів геометричного об'єкту GO (варіанти завдань наведені в табл. 2.):
- елементарні афінні перетворення у просторі (повороти навколо координатних осей, зсув, розтяг/стиск та дзеркальне відображення відносно координатних плошин);
- перетворення, що вказане у варіанті завдання, як комбінація елементарних перетворень, значення параметрів якого задаються користувачем. Якщо на вказані параметри існують обмеження, що наведені в індивідуальному завданні студента, то коритувача про це необхідно повідомити;
- перспективні перетворення, що вказані у варіанті, з можливістю введення їх параметрів користувачем.
- 3. Розмір та координати вузлів об'єкту GO автор програми визначає на свій розсуд, виходячи параметрів монітору та естетичних міркувань (об'єкт має бути по центру, рух GO в полі зору і т.д.);

Зауваження: Система координат Oxyz повина бути схематично зображена на моніторі. Початок системи має співпадати з центром вікна, в якому зображений геометричний об'єкт. Вісь Oz — глибина, Ox — ширина, а Oy — висота (правостороння система).

Таблиця 2. Варіанти завдань до ЛР 1.2.

$N_{\overline{0}}$	GO	Рух	Проекція
1	куб зі зрізаним	поворот на кут α від-	триметрія та триточко-
	кутом	носно прямої, що зада-	ва перспективна прое-
		на точкою $A(x_0, y_0, z_0)$	кція
		та напрямним вектором	
		$\overrightarrow{p}(l,m,n)$	
2	тетраедр	поворот на кут α з кро-	диметрія (задана кута-
		ком $\frac{\alpha}{n}$ відносно локаль-	ми), проекція Кавальє
		ної осі, що проходить	та одноточкова перспе-
		через висоту	ктивна проекція
3	зрізаний тетра-	обертання відносно ру-	ізометрія, довільна ко-
	едр (зріз під ку-	хомої осі, що паралель-	сокутна та двоточкова
	том до основи)	на Ох та пересувається	перспективна проекції
		за законом $z=y$	

$N_{ar{f o}}$	GO	Рух	Проекція
4	правильний тетраедр*	поворот на кут α 3 кроком $\frac{\alpha}{n}$ відносно локальної осі, що проходить через центр	диметрія (задана кута- ми), довільна косокутна та двоточкова перспе- ктивна проекції
5	паралелепіпед	обертання відносно рухомої осі, що паралельна Ох та пересувається за законом $z=y^2$	диметрія (задана відно- шеннями), довільна ко- сокутна та двоточкова перспективна проекції
6	похила призма, в основі якої три- кутник	обертання відносно рухомої осі, що паралельна Оу та пересувається за законом $z=x$	ізометрія, проекція Кавальє та триточкова перспективна проекція
7	пряма призма, в основі якої ромб	поворот на кут α з кроком $\frac{\alpha}{n}$ відносно локальної осі, яка проходить через діагональ	диметрія (задана від- ношенням), кабінетна проекція та триточкова перспективна проекція
8	пряма призма, в основі якої тра- пеція	поворот на кут α відно- сно прямої, що задана точками $M_1(x_1,y_1,z_1)$ та $M_2(x_2,y_2,z_2)$	триметрія, проекція Кавальє та двоточкова перспективна проекція
9	пряма призма зі зрізаним кутом, в основі якої ква- драт	обертання відносно рухомої осі, що паралельна Оу та пересувається за законом $z^2 + x^2 = R^2$	триметрія, кабінетна проекція та двоточкова перспективна проекція
10	октаедр*	поворот на кут α з кроком $\frac{\alpha}{n}$ відносно локальної осі, що проходить через центр	триметрія, довільна ко- сокутна та одноточкова перспективна проекція
11	піраміда, в основі якої прямоку- тник	обертання відносно рухомої осі, що паралельна Оу та пересувається за законом $z^2 = x$	ізометрія, кабінетна проекція та триточкова перспективна проекція
12	основі якої пря- мокутник	поворот на кут α з кроком $\frac{\alpha}{n}$ відносно локальної осі, що проходить через вершину	диметрія (задана від- ношеннями), проекція Кавальє та триточкова перспективна проекція
13	піраміда, в осно- ві якої трапеція	обертання відносно рухомої осі, що паралельна Ох та пересувається за законом $y^2 + x^2 = R^2$	стандартна диметрія (2 : 2 : 1), довільна ко- сокутна та одноточкова перспективна проекції

$N_{\overline{0}}$	GO	Рух	Проекція
14	гексаедр*	поворот на кут α 3 кро-	стандартна диметрія
		ком $\frac{\alpha}{n}$ відносно локаль-	(2 : 2 : 1), проекція
		ної осі, що проходить	Кавальє та триточкова
		через центр	перспективна проекції
15	піраміда, в осно-	обертання відносно ру-	стандартна диметрія
	ві якої квадрат, а	хомої осі, що паралель-	(2 : 2 : 1), кабіне-
	її висота співпа-	на Oz та пересувається	тна та триточкова
	дає з ребром	за законом $y = 2x$	перспективна проекції
16	правильна чоти-	поворот на кут α з кро-	довільна косокутна та
	рикутна пірамі-	ком $\frac{\alpha}{n}$ відносно локаль-	триточкова перспектив-
	да	ної осі, що проходить	на проекції
		через діагональ грані	
17	зрізана піраміда,	обертання відносно ру-	стандартна диметрія
	в основі якої	хомої осі, що паралель-	(2:1:2), довільна ко-
	прямокутник	на Оz та пересувається	сокутна та одноточкова
	(зріз під кутом	за законом $y = x^2 + a$	перспективна проекції
	до основи)		
18	пряма призма зі	поворот на кут α з кро-	стандартна диметрія
	зрізаним кутом,	ком $\frac{\alpha}{n}$ відносно локаль-	(1 : 2 : 2), проекція
	в основі якої пря-	ної осі, що проходить	Кавальє та триточкова
	мокутник	через діагональ грані	перспективна проекції
19	1 1 /	обертання відносно ру-	стандартна диметрія
	ві якої прямоку-	хомої осі, що паралель-	(2 : 1 : 2), кабіне-
	тний трикутник,	на Ох та пересувається	тна та триточкова
	а ребро співпа-	за законом $z^2 + y^2 = R^2$	перспективна проекції
0.0	дає з висотою		. /
20	піраміда, в осно-	поворот на кут α відно-	диметрія (задана кута-
	ві якої прямоку-	сно прямої, що є лінією	ми), кабінетна проекція
	тна трапеція	перетину двох площин	та двоточкова перспе-
			ктивна проекція

Примітка: Алгоритм побудови геометричних об'єктів, так званих платонівських тіл, що позначені *, можна знайти в [1, ст.68].

Домашне завдання 1

Домашнє завдання N1 виконується на основі навчального матеріалу, що винесене на самостійне опрацювання студентами, і є складовою модулю N1 "Геометричні перетворення та проекції".

Тематика:

- 1. Фотографія як перспективна проекція.
- 2. Стереографічна проекція.
- 3. Методи генерації стереозображень.
- 4. Кольоровий анагліф як метод генерації стереозображень.
- 5. Поляризований анагліф як метод генерації стереозображень.

- 6. Методи виводу зображень стереографічних проекцій.
- 7. Метод побудови проекції з фіксованим об'єктом.
- 8. Метод побудови проекції з фіксованим центром проекції.
- 9. Відновлення тривимірних об'єктів за проекціями.
- 10. Картографічні проекції.
- 11. Рівнокутна картографічна проекція.
- 12. Рівновелика картографічна проекція.
- 13. Класифікація картографічних проекцій по виду паралелей та медіанів.
- 14. Проекція Меркатора у навігаційних картах.
- 15. Азимутна картографічна проекція.
- 16. Циліндрична картографічна проекція.
- 17. Конічна картографічна проекція.
- 18. Етап модельних перетворень у реалістичних зображеннях.
- 19. Етап видових перетворень у реалістичних зображеннях.
- 20. Застосування комп'ютерної графіки

Домашне завдання 1 оформляється у вигляді реферату, що має складатись з:

- 1. титульної сторінки (назва міністерства, назва ВУЗу, назва кафедри, тема ДЗ, ПІБ виконавця та викладача, місто та рік);
 - 2. вступу (історія виникнення поняття та його актуальність);
 - 3. основної частини (1-2 пункти, обсяг 3-5 сторінок);
- 4. списку використаної літератури (для друкованого джерела назва, автор, видавництво, рік, сторінки; для інтернет ресурсу посилання).

Вимоги до оформлення: текст 12 пт Times New Roman, інтервал між рядками – 1, форматування по ширині, відступи: 2 см зліва, 1,5 см – справа, зверху та знизу сторінки, абзац 1 см. Назву пункту реферерату виділяти **напівжирним** шрифтом.

Теоритичні питання до МКР №1

- 1. Чи утворюють афінні перетворення, задані в декартових координатах, лінійний простір? Віповідь обгрунтуйте.
- 2. Афінні перетворення простору \mathbb{R}^2 в декартових координатах та його властивості.
- 3. Матричні форми запису афінних перетворень простору \mathbb{R}^2 в декартових координатах.
- 4. Однорідні координати в просторі \mathbb{R}^2 .
- 5. Чи утворюють афінні перетворення простору \mathbb{R}^2 , задані в однорідних координатах, лінійний простір? Віповідь обгрунтуйте.
- 6. Афінні перетворення простору \mathbb{R}^2 в однорідних координатах та його властивості.
- 7. Матричні форми запису афінних перетворень простору \mathbb{R}^2 в однорідних координатах.

- 8. Методи знаходження матриць складних перетворень.
- 9. Афінні перетворення простору \mathbb{R}^3 в декартових координатах та його властивості.
- 10. Матричні форми запису афінних перетворень простору \mathbb{R}^3 в декартових координатах.
- 11. Однорідні координати в просторі \mathbb{R}^3 .
- 12. Чи утворюють афінні перетворення простору \mathbb{R}^3 , задані в однорідних координатах, лінійний простір? Віповідь обгрунтуйте.
- 13. Афінні перетворення простору \mathbb{R}^3 в однорідних координатах та його властивості.
- 14. Матричні форми запису афінних перетворень простору \mathbb{R}^2 в однорідних координатах.
- 15. Ортографічні проекція. Матрична форма запису.
- 16. Аксонометрична проекція. Триметрія.
- 17. Поняття диметрії та ізометрії.
- 18. Косокутна проекція.
- 19. Перпективна проекція. Одноточкова перспективна проекція.
- 20. Двоточкова та триточкова перспективні проекції.

Модуль 2 "Побудова плоских та просторових кривих"

Лабораторна робота 2.1

Тема:Побудова плоских та просторових кривих.

Мета: Вивчити побудову інтерполяційних та згладжуючих кривих на площині і в просторі, та закріпити властивість інваріантності кривих Безьє відносно афінних перетворень на площині.

Завдання:

- 1. Вивчити побудову кубічного сплайна та кривої Безьє.
- 2. Реалізувати програмно алгоритм побудови геометричних об'єктів G_1 та G_2 , що задані на площині і в просторі, та забезпечити виконання афінних перетворень над ними (G_1 та G_2 визначені для кожного студента окремо згідно його варіанту в табл.3).
 - об'єкт G_1 побудувати за допомогою кривої Безьє;
- об'єкт G_2 побудувати двома способами за допомогою підстановки значень параметра у рівняння та кубічного сплайну з можливістю задання як рівномірних та і не рівномірних вузлів;
- -забезпечити реалістичне зображення кривих у просторі за допомогою композиції аксонометричної (диметрія чи ізометрія) та ортогональної проекцій;
 - у висновках надати аналіз отриманих побудов;
- значення параметрів афінних перетворень задаються користувачем;
- при неправильному введені параметрів виводиться повідомлення про повторне введення (правильними є значення, при яких рух геометричного об'єкту повністю видно на екрані)
 - -побудовані об'єкти вивести на екран.

Варіанти завдань:

Таблиця 3. Варіанти завдань до ЛР 2.1.

$N_{ar{o}}$	$G_1 \in \mathbb{R}^2$	$G_2 \in \mathbb{R}^3$
1	заєць	$x(t) = 5\cos 4t, \ y(t) = 5\sin 4t, \ z = 10t$
2	гусак	$x(t) = e^t \cos t, \ y(t) = e^t \sin t, \ z = e^t$
3	орел	$x(t) = \cos t^2, \ y(t) = \sin t^2, \ z = 2t$
4	ворона	$x(t) = 2(t - \sin t), \ y(t) = 2(1 - \cos t), \ z = 8\cos\frac{t}{2}$
5	риба	$x(t) = 1 - \cos 2t, \ y(t) = \sin 2t, \ z = 2\cos t$
6	дельфін	$x(t) = 5(1 + \cos t), y(t) = 5\sin t, z = 10\sin\frac{t}{2}$
7	пінгвін	$x(t) = \cos^3 t, \ y(t) = \sin^3 t, \ z = \cos 2t$
8	пес	$x(t) = 5 \operatorname{ch} t, \ y(t) = 5 \operatorname{sh} t, \ z = 5t$
9	черепаха	$x(t) = 3\cos t, \ y(t) = 3\sin t, \ z = t^2$
10	носоріг	$x(t) = 8\sin\frac{t}{4}, y(t) = 4\sin t, z = 4(1+\cos t)$

$N_{\overline{0}}$	$G_1 \in \mathbb{R}^2$	$G_2 \in R^3$
11	ведмідь	$x(t) = 6\cos 3t, \ y(t) = -6\sin 3t, \ z = 5t$
12	лебідь	$x(t) = 2e^{3t}\cos t, \ y(t) = 2e^{3t}\sin t, \ z = 4e^{3t}$
13	фламінго	$x(t) = 2\cos t^2, \ y(t) = 6t, \ z = 2\sin t^2$
14	папуга	$x(t) = 3(t - \sin t), \ y(t) = 3(1 - \cos t), \ z = 12\cos\frac{t}{2}$
15	краб	$x(t) = \sin 4t, y(t) = 1 - \cos 4t, z = 4\cos t$
16	акула	$x(t) = 3(1 + \cos t), y(t) = 6\sin\frac{t}{2}, z = 3\sin t$
17	тюлень	$x(t) = \cos^5 t, \ y(t) = \sin^5 t, \ z = \cos 4t$
18	кіт	$x(t) = 2t, y(t) = 2 \operatorname{sh} t, z = 2 \operatorname{ch} t$
19	крокодил	$x(t) = 3\cos t, \ y(t) = 3\sin t, \ z = t^2$
20	бегемот	$x(t) = 3(1 + \cos t), y(t) = 3\sin t, z = 6\sin\frac{t}{4}$

Лабораторна робота 2.2

Тема: Побудова фракталів.

Мета: Навчитись будувати різнокольорові конструктивні фрактали за допомогою генератора.

Завдання:

- 1. Провести аналіз конструктивного фракталу, що представленний своїм генератором, за допомогою масштабування та повороту.
- 2. Реалізувати програмно алгоритми побудови фракталу за заданим генератором G, що зображений у Додатку 1, та числом ітерацій p.

- Варіанти завдань:

- В1. Побудувати різнокольоровий фрактал, в якого основа квадрат, генератор G зображений на мал.1, а p=4.
- В2. Побудувати різнокольоровий фрактал, в якого основа пряма, генератор G зображений на мал.2, а p=4.
- ВЗ. Побудувати різнокольоровий фрактал, в якого основа трикутник, генератор G зображений на мал.3, а p=5.
- В4. Побудувати різнокольоровий фрактал, в якого основа квадрат, генератор G зображений на мал.4, а p=4.
- В5. Побудувати різнокольоровий фрактал,
в якого основа пряма, генератор G зображений на мал.
5, а p=3.
- В6. Побудувати різнокольоровий фрактал, в якого основа трикутник, генератор G зображений на мал.6, а p=3.
- В7. Побудувати різнокольоровий фрактал суцвіття, в якого генератор G зображений на мал.8, а p=3.
- В8. Побудувати різнокольоровий фрактал, в якого основа пряма, генератор G зображений на мал.1, а p=4.
- В9. Побудувати різнокольоровий фрактал, в якого основа трикутник, генератор G зображений на мал.2, а p=4.
- В10. Побудувати різнокольоровий фрактал, в якого основа квадрат, генератор G зображений на мал.3, а p=5.

- В11. Побудувати різнокольоровий фрактал, в якого основа пряма, генератор G зображений на мал.4, а p=4.
- В12. Побудувати різнокольоровий фрактал, в якого основа трикутник, генератор G зображений на мал.5, а p=3.
- В13. Побудувати різнокольоровий фрактал, в якого основа квадрат, генератор G зображений на мал.6, а p=3.
- В14. Побудувати різнокольоровий фрактал лист папороті, в якого генератор G зображений на мал.7, а p=3.
- В15. Побудувати різнокольоровий фрактал, в якого основа трикутник, генератор G зображений на мал.1, а p=4.
- В16. Побудувати різнокольоровий фрактал, в якого основа квадрат, генератор G зображений на мал.2, а p=4.
- В17. Побудувати різнокольоровий фрактал, в якого основа пряма, генератор G зображений на мал.3, а p=5.
- В18. Побудувати різнокольоровий фрактал, в якого основа трикутник, генератор G зображений на мал.4, а p=4.
- В19. Побудувати різнокольоровий фрактал, в якого основа квадрат, генератор G зображений на мал.5, а p=3.
- В20. Побудувати різнокольоровий фрактал, в якого основа пряма, генератор G зображений на мал.6, а p=3.

Домашне завдання 2

Домашнє завдання N^2 виконується на основі навчального матеріалу, що винесене на самостійне опрацювання студентами, і є складовою модулю N^2 "Побудова плоских та просторових кривих".

Тематика:

- 1. TCB-сплайни в анімації. Дати їх порівняльний аналіз з кривими Безьє.
- 2. Порівняти побудову, властивості та застосування складених кубічних В-сплайнових кривих та складених кубічних кривих Ерміта.
- 3. Порівняти побудову, властивості та застосування В-сплайнових кривих та TCB-сплайнів.
- 4. Порівняти побудову, властивості та застосування В-сплайнових кривих та раціональних кубічних В-сплайнових кривих.
- 5. Порівняти побудову, властивості та застосування раціональних кубічних В-сплайнових кривих та інтерполяційних кубічних кривих Ерміта.
- 6. Порівняти побудову, властивості та застосування В-сплайнових кривих та інтерполяційних кубічних кривих Ерміта.
- 7. Порівняти побудову, властивості та застосування складених кубічних В-сплайнових кривих та згладжуючих кубічних сплайнів.
- 8. Порівняти побудову, властивості та застосування раціональних кубічних В-сплайнових кривих та TCB-сплайнів.

- 9. Порівняти побудову, властивості та застосування складених кубічних В-сплайнових кривих та В-сплайнових кривих.
- 10. TCB-сплайни. Дати їх порівняльний аналіз з кривими Ерміта.
- 11. Порівняти побудову, властивості та застосування складених кубічних В-сплайнових кривих та складених кубічних кривих Безьє.
- 12. Порівняти побудову, властивості та застосування раціональних кубічних В-сплайнових кривих та В-сплайнових кривих.
- 13. Порівняти побудову, властивості та застосування згладжуючих кубічних сплайнів та інтерполяційних кубічних кривих Ерміта.
- 14. Порівняти побудову, властивості та застосування інтерполяційних кубічних кривих Ерміта та згладжуючих кубічних сплайнів.
- 15. Порівняти побудову, властивості та застосування складених та раціональних кубічних В-сплайнових кривих.
- 16. Порівняти побудову, властивості та застосування раціональних кубічних В-сплайнових кривих та згладжуючих кубічних сплайнів.
- 17. Порівняти побудову, властивості та застосування складених кубічних кривих Безьє та TCB-сплайнів.
- 18. Порівняти побудову, властивості та застосування складених кубічних кривих Безьє та згладжуючих кубічних сплайнів.
- 19. Порівняти побудову, властивості та застосування складених кубічних кривих Безьє та Ерміта.

Домашне завдання 2 оформляється у вигляді реферату, що має складатись з:

- 1. титульної сторінки (назва міністерства, назва ВУЗу, назва кафедри, тема ДЗ, ПІБ виконавця та викладача, місто та рік);
 - 2. вступу (історія виникнення поняття та його актуальність);
 - 3. основної частини (1-2 пункти, обсяг 3-5 сторінок);
- 4. списку використаної літератури (для друкованого джерела назва, автор, видавництво, рік, сторінки; для інтернет ресурсу посилання).

Вимоги до оформлення: текст 12 пт Times New Roman, інтервал між рядками – 1, форматування по ширині, відступи: 2 см зліва, 1,5 см – справа, зверху та знизу сторінки, абзац 1 см. Назву пункту реферерату виділяти **напівжирним** шрифтом.

Теоритичні питання до МКР №2

- 1. Задачі інтерполяції та згладжування на площині;
- 2. Інтерполяційний многочлен Лагранжа;
- 3. Інтерполяційний кубічний сплайн та його крайові умови;
- 4. Алгоритм побудови кубічного сплайну;

- 5. Сплайнові криві;
- 6. Криві Безьє;
- 7. Властивості поліномів Бернштейна;
- 8. Властивості кривих Безьє;
- 9. Геометричний алгоритм для кривої Безьє;
- 10. Означення фракталу. Фрактал острів Коха;
- 11. Конструктивні та динамічні фрактали;
- 12. Означення фракталу. Фрактал острів Мінковського;
- 13. Означення фракталу. Льодовий фрактал;
- 14. Динамічні фрактали. Фрактал Жуліа;
- 15. Динамічні фрактали. Фрактал Мандельброта;
- 16. Динамічні фрактали. Фрактал Ньютона.

Модуль 3 "Побудова та відображення поверхонь"

Лабораторна робота 3.1

Тема:Побудова поверхонь.

Мета: Вивчити математичні моделі поверхонь.

Завдання:

- 1. Вивчити основні способи задання поверхонь та їх математичні моделі.
- 2. Реалізувати програмно алгоритм побудови поверхонь S_1 , S_2 та S_3 , що визначені для кожного студента окремо згідно його варіанту (Таблиця 1.).
 - представити поверхню у вигляді каркасу;
- при необхідності більш реалістичного зображення поверхні, що побудована, скористатись проекцією (косокутною, перспективною і т.п.)!!!!
- для кожної з побудованих поверхонь у інтерфейсі програми передбачити можливість виконувати всі афінні перетворення в просторі (зсув, поворот, маштабування та дзеркальну проекцію);
 - побудовані об'єкти вивести на екран.

Зауваження:

- 1. На екрані має бути зображення системи координат з підписаними осями, в якій побудована поверхня;
- 2. Для поверхні S_2 користувач задає лише вказані в таблиці 1. координати векторів, а решта студент фіксує на свій розсуд.
- 3. Для поверхні S_3 користувач задає координати всіх опорних точок, на яких будується поверхня. Для зручності їх можна обмежити деяким кубом, розмірність якого студент визначає сам.

Таблиця 1. Варіанти завдань до ЛР 3.1.

$\mathcal{N}_{ar{0}}$	S_1	S_2	S_2
1,	Поверхня, утворена	Бікубічна поверхня Кун-	поверхня
7,	обертанням кривої	са (користувач задає ко-	Безьє
13	P(t) навколо відрізка	ординати чотирьох доти-	
	P_1P_2	чних векторів)	
2,	Поверхня, утворена	Бікубічна поверхня Кунса	поверхня
8,	обертанням кривої	(користувач задає коорди-	Безьє
14	P(t) навколо відріз-	нати векторів скруту)	
	ка P_1P_2 з центром в		
	$T.O \in A_1 A_2$		
3,	Білінійна поверхня	Бікубічна поверхня Кун-	поверхня
9,		са(користувач задає ко-	Безьє
15		ординати чотирьох доти-	
		чних векторів)	

$N_{ar{f o}}$	S_1	S_2	S_2
4,	Поверхня, утворена	Бікубічна поверхня Кунса	В-сплайнова
10,	обертанням кривої	(користувач задає коорди-	поверхня
16	$\mid P(t)$ навколо відрізка	нати векторів скруту)	
	P_1P_2		
5,	Поверхня, утворена	Бікубічна поверхня Кун-	В-сплайнова
11,	обертанням кривої	са (користувач задає ко-	поверхня
17	P(t) навколо відріз-	ординати чотирьох доти-	
	ка P_1P_2 з центром в	чних векторів)	
	$T.O \in A_1 A_2$		
6,	Білінійна поверхня	Бікубічна поверхня Кунса	В-сплайнова
12,		(користувач задає коорди-	поверхня
18		нати векторів скруту)	

Лабораторна робота 3.2

Тема: Алгоритми відсікання та загортання подарунка.

Мета: Вивчити основні алгоритми відсікання та загортання подарунка.

Завдання:

- 1. Вивчити основні алгоритми відсікання та алгоритм загортання подарунка.
- 2. Реалізувати програмно дані алгоритми на основі картинки, що визначена для кожного студента окремо згідно його варіанту (Таблиця 2.).
- представити об'єкти картинки плоскими для задач з рухом транспорту і об'ємними для руху джерела світла;
 - при можливості зображення розфарбувати;
- у інтерфейсі програми передбачити можливість задавати необхідні рухи;
 - побудовані об'єкти вивести на екран.

Таблиця 2. Варіанти завдань до ЛР 3.2.

$N_{ar{f o}}$	Об'єкт	ландшафт або пейзаж
1	рух джерела світла зі сходу на захід	місто (2 об'єкти)
2	рух потягу	місто (3 об'єкти)
3	рух джерела світла зі сходу на захід	стіл (2 об'єкти)
4	рух автобуса	гори (3 об'єкти)
5	взліт ракети	небо (3 об'єкти)
6	рух джерела світла із заходу на схід	гори (2 об'єкти)
7	рух автомобіля	місто (3 об'єкти)
8	рух джерела світла зі півдня на пів-	стіл (2 об'єкти)
	ніч	
9	рух літака	гори (3 об'єкти)

$N_{\overline{0}}$	Об'єкт	ландшафт або пейзаж
10	взліт ракети	космос (3 об'єкти)
11	рух джерела світла із півночі на пів-	село (2 об'єкти)
	день	
12	рух потягу	гори (3 об'єкти)
13	рух джерела світла зі півночі на пів-	сцена (2 об'єкти)
	день	
14	рух автобуса	місто (3 об'єкти)
15	політ ядра	за містом (3 об'єкти)
16	рух джерела світла із півдня на пів-	гори (2 об'єкти)
	ніч	
17	рух автомобіля	село (3 об'єкти)
18	рух джерела світла зі заходу на схід	сцена (2 об'єкти)
19	рух літака	небо (3 об'єкти)
20	політ ядра	із території замку (3 об'є-
		кти)

Домашне завдання 3

Домашнє завдання №3 виконується на основі навчального матеріалу, що винесене на самостійне опрацювання студентами, і є складовою модулю №3 "Побудова та відображення поверхонь".

Тематика:

- 1. Лінійна поверхня Кунса.
- 2. FC-алгоритм.
- 3. Алгоритм Вейлера Азертона.
- 4. Алгоритм Ліанга-Барскі.
- 5. Метод обходу Грехема.
- 6. Бікубічна поверхня Кунса.
- 7. Променевий тест орієнтації точки відносно полігону.
- 8. Тріангуляція опуклих полігонів.
- 9. Тріангуляція неопуклих полігонів.
- 10. Тріангуляція Делоне.
- 11. Раціональні В-сплайн поверхні.
- 12. Алгоритм перетину та об'єднання опуклих полігонів.
- 13. Алгоритм перетину променя зі сферою.
- 14. Алгоритм перетину променя з площиною.
- 15. Алгоритм перетину променя з прямокутним паралелепіпедом.
- 16. Гаусова кривизна і якість поверхні.
- 17. Метод "розділяй та володарюй" побудови опуклої оболонки.
- 18. Відкритий алгоритм Препарата побудови опуклої оболонки.

Домашне завдання 3 оформляється у вигляді реферату, що має складатись з:

- 1. титульної сторінки (назва міністерства, назва ВУЗу, назва кафедри, тема ДЗ, ПІБ виконавця та викладача, місто та рік);
 - 2. вступу (історія виникнення поняття та його актуальність);
 - 3. основної частини (1-2 пункти, обсяг 3-5 сторінок);
- 4. списку використаної літератури (для друкованого джерела назва, автор, видавництво, рік, сторінки; для інтернет ресурсу посилання).

Вимоги до оформлення: текст 12 пт Times New Roman, інтервал між рядками – 1, форматування по ширині, відступи: 2 см зліва, 1,5 см — справа, зверху та знизу сторінки, абзац 1 см. Назву пункту реферерату виділяти **напівжирним** шрифтом.

Теоритичні питання до МКР №3

- 1. Поверхні обертання;
- 2. Лінійчасті поверхні;
- 3. Квадратичні поверхні;
- 4. Білінійні поверхні;
- 5. Бікубічна поверхня Кунса;
- 6. Поверхня Безьє;
- 7. В-сплайнові поверхні;
- 8. Тест обходу трьох точок;
- 9. Габаритний тест;
- 10. Кутовий тест;
- 11. Променевий тест;
- 12. Тест перетину прямої з полігоном;
- 13. Тест перетину відрізків;
- 14. Двовимірний алгоритм Сазерленда- Коена;
- 15. Математичні основи алгоритму Кіруса- Бека.
- 16. Алгоритм Кіруса- Бека.
- 17. Алгоритм загортання подарунку.

Модуль 4 "Видалення невидимих ліній і поверхонь. Розфарбовування"

Лабораторна робота 4.1

Тема:Видалення невидимих ліній.

Мета: Вивчити алгоритм Робертса усунення невидимих ліній та граней.

Завдання:

- 1. Вивчити алгоритм Робертса та його тести.
- 2. Реалізувати програмно алгоритм усунення невидимих ліній та граней поліедра S, що відповідає варіанту лабораторної роботи N01.2., відносно спостерігача:
- користувач повинен мати можливість змінювати місце положення спостерігача;
 - побудований об'єкт коректно вивести на екран.

Теоритичні відомості

Перш ніж перейти до перевірки тестів, необхідно опрацювати два списка Triangle та Rib. Зі списку ребер Rib видаляємо ті, що прилягають до елементарних трикутників з h < 0 (яке беремо з рівняння площини ax + by + cz = h, яка містить трикутник, і не забуваємо про спеціальну організацію вершин трикутника: рух від першої до останньої проти годинникової стрілки, якщо дивитись на об'єкт зовні), вони невидимі.

Перевіряємо виконання наступних тестів для всіх можливих пар трикутник-ребро:

- Тест 1. Якщо $ax_P + by_P + cz_P \le h$ і $ax_Q + by_Q + cz_Q \le h$, то PQ видимий. Тобто, PQ перед чи на $\triangle ABC$.
- Тест 2. Підставляємо координати точок A, B і C в рівняння площини, що проходить через точки P, E і Q. Якщо всі отримані значення одного знаку (нуль включно), то PQ видимий. Тобто, PQ зовні піраміди.
- Тест 3. В рівняння площини, що проходить через точки AEB підставляємо значення координат точок P і C. Якщо вони різних знаків, то P зовні піраміди. Запам'ятовуємо цю інформацію, як P_{out} . Аналогічно перевіряємо для Q. Якщо P_{out} і Q_{out} , то PQ видимий.

Якщо не встановлено видимість відносно AEB, то, аналогічно, перевіряємо для AEC і BEC.

Тест 4. Якщо PQ лежить в середині піраміди і попередні тести не виконались, то PQ – невидимий.

Особлива ситуація, коли PQ лежить на піраміді позаду AB: Якщо відрізок AB є діагоналю грані чи ребром, то PQ є невидимим.

Тест 5. Знайдемо точку перетину прямої PQ із гранями AEB, AEC і BEC. Для цього обчислимо значення λ_i та μ_i , i=1,2,3.

Після цього знайдемо мінімальне λ_{min} і максимальне λ_{max} значення серед всіх значень λ_i таких, що $0 \le \lambda_i \le 1$ і $0 \le \mu_i \le 1$.

Якщо при деякому $0 \le \lambda_i \le 1$, знайдена точка I лежить перед $\triangle ABC$, то PQ – невидимий.

Тест 6. Якщо $\lambda_{min} \neq \lambda_{max}$, то знаходимо координати точок I і J (в них відрізок перетинає піраміду).

Якщо $P=P_{out}$, то PI – видимий.

Якщо $Q = Q_{out}$, то JQ – видимий.

Якщо $\lambda_{min}=\lambda_{max}$, то I=J, звідки випливає, що або PI видимий $(P=P_{out})$, або JQ – видимий $(Q=Q_{out})$.

Зауваження 1. Складність алгоритму n^2 , де n – кількість граней.

Зауваження 2. Оскільки використовують числа з плаваючою крапкою, то точку варто перевірити двічі при x=a і $abs(x-a) \le \epsilon$.

Лабораторна робота 4.2

Тема:Розфарбоввування об'єкта.

Мета: Вивчити алгоритм трасування променів.

Деякі теоритичні аспекти: Проста модель:

1) Дзеркальне освітлювання (гладкі поверхні – метали, скло):

$$I_s = Ik_s \cos^p \alpha$$
,

де α – кут між відбитим від точки поверхні променем та вектором направленим з точки поверхні в точку спотерігача, I – інтенсивність джерела випромінювання світла, p – розмір відблиску на поверхні і $p \in [1;200]$ (великі значення відповідають металам, а малі неметалевим поверхням), а k_s – коефіцієнт дзеркального відбиття і $0 < k_s < 1$. Відбитий дзеркальний промінь від металу зберігає властивості падаючого променя.

2) Дифузне освітлювання (шорскі поверхні — папір, гіпс, пісок): $I_d = I k_d \cos \theta$, де θ — кут між напрямком від точки в якій визначається промінь на джерело світла та зовнішньою нормаллю до площини в цій точці, I — інтенсивність джерела випромінювання світла, а k_d — коефіцієнт дифузного відбиття і $0 < k_d < 1$.

Звідки

(1)
$$I = I_a k_a + \frac{I}{d+k} (k_s \cos^p \alpha + k_d \cos \theta),$$

де k_a — коефіцієнт відбиття поверхнею розсіяного світла, I_a — інтенсивність фонового розсіяного світла, яка є постійна для всіх об'єктів, d — відстань від об'єкта до джерела світла, k — деяка константа.

Приклади параметрів моделі освітлення див. Додаток 4.

Для сфокусованого джерела світла: $I_p = I \cos^t \varphi$, де φ – кут між вектором, що задає напрям джерела світла, та вектором, що направлений від джерела світла до точки поверхні, t – величина, що описує сфокусованість і змінюється від 0 до 128.

Тоді формула (1) набуде вигляду

$$I = (I_a k_a + \frac{I}{d+k} (k_s \cos^p \alpha + k_d \cos \theta)) \cos^t \varphi.$$

Зауваження 1: Для кольорових об'єктів розрахунок кожної компоненти кольору (наприклад, RGB) ведеться окремо і колір кожного пікселя зображення визначають значення складових інтенсивностей світла для відповідних компонент кольору.

Зауваження 2: якщо джерел світла декілька, то їх інтенсивності сумуються.

Завдання: За допомогою методу трасування променів створити реалістичне зображення з одним джерелом світла, поліедром S (координати поліедра з лабораторної роботи 4.1.) та вертикальною площиною, що розміщена навпроти джерела світла. Кольори площини та тип поверхні поліедра описані в таблиці 4.3.

	· · · · · · · · · · · · · · · · · · ·	, -			
No	Колір пло-	Тип по-	Nº	Колір пло-	Тип по-
	щини	верхні		щини	верхні
1	синій	метал	2	червоний	папір
		латунь			
3	зелений	метал мідь	4	фіолетовий	гіпс
5	жовтий	метал	6	оранжевий	шліфоване
		срібло			дерево
7	малиновий	метал	8	жовто-	папір
		латунь		зелений	
9	червоний	метал мідь	10	синій	гіпс
11	фіолетовий	метал	12	зелений	шліфоване
		срібло			дерево
13	оранжевий	метал	14	малиновий	папір
		латунь			
15	жовтий	метал мідь	16	коричневий	гіпс

Таблиця 4.3. Варіанти завдань до ЛР 4.2.

Домашне завдання 4

Домашнє завдання №4 виконується на основі навчального матеріалу, що винесене на самостійне опрацювання студентами, і є складовою модулю №4 "Видалення невидимих ліній і поверхонь. Розфарбовування".

Тематика:

1. Алгоритм поточного горизонту усунення невидимих ліній та граней.

- 2. Метод Z-буфера.
- 3. Метод відсікання нелицьових граней.
- 4. Алгоритм розбиття картинної площини Варнока.
- 5. Метод сортування за глибиною. Алгоритм художника.
- 6. Метод Фонга.
- 7. Метод Гуро.
- 8. Алгоритм Аппеля.
- 9. Алгоритм побудови графіку функції двох змінних.
- 10. Метод сортування за глибиною як алгоритм впорядкування.
- 11. Метод двійкового розбиття простору як алгоритм сортування
- 12. Метод построкового сканування.
- 13. Метод випромінювання. Фізичні аспекти.
- 14. Алгоритмічна реалізація методу випромінювання.
- 15. Порівняльна характеристика існуючих методів усунення невидимих ліній та граней.
- 16. Порівняльна характеристика існуючих методів зафарбовування.

Домашне завдання 4 оформляється у вигляді реферату, що має складатись з:

- 1. титульної сторінки (назва міністерства, назва ВУЗу, назва кафедри, тема ДЗ, ПІБ виконавця та викладача, місто та рік);
 - 2. вступу (історія виникнення поняття та його актуальність);
 - 3. основної частини (1-2 пункти, обсяг 3-5 сторінок);
- 4. списку використаної літератури (для друкованого джерела назва, автор, видавництво, рік, сторінки; для інтернет ресурсу посилання).

Вимоги до оформлення: текст 12 пт Times New Roman, інтервал між рядками — 1, форматування по ширині, відступи: 2 см зліва, 1,5 см — справа, зверху та знизу сторінки, абзац 1 см. Назву пункту реферерату виділяти **напівжирним** шрифтом.

Теоритичні питання до МКР №4

- 1. Задача усунення невидимих ліній та граней;
- 2. Алогоритм Робертса. Його математичні аспекти;
- 3. Ідеологія алгоритму Робертса;
- 4. Тестова реалізація алгоритму Робертса;
- 5. Метод трасування променів. Фізичні аспекти;
- 6. Основна модель трасуванния променів;
- 7. Проста модель Холла трасування променів;
- 8. Модель Уіттеда трасування променів;
- 9. Побудова текстури;
- 10. Світова система координат та система координат об'єкта;
- 11. Світова та видова системи координат;
- 12. Видове перетворення.

Π ІТЕРАТУРА

[1] *Шикин Е.В., Боресков А.В.* Компьютерная графика. Динамика, реалистические изображения. - М.:Диалог-МИФИ, 1995

Додаток 1.

Додаток 4.

Матеріал	Фонові коеф. k_a			Дифузійні коеф. k_d			Дзеркальні коеф. k_s			Степі
	R	G	В	R	G	В	R	G	В	нь р
латунь	0.3294	0.2235	0.0275	0.7804	0.5687	0.1137	0.9922	0.9412	0.8078	28
бронза	0.2125	0.1275	0.0540	0.7140	0.4284	0.1814	0.3935	0.2719	0.1667	26
хром	0.2500	0.2500	0.2500	0.4000	0.4000	0.4000	0.7746	0.7746	0.7746	77
мідь	0.1913	0.0735	0.0225	0.7038	0.2705	0.0828	0.2568	0.1376	0.0860	13
поліроване срібло	0.2313	0.2313	0.2313	0.2775	0.2775	0.2775	0.7739	0.7739	0.7739	90
чорна пласмаса	0.0	0.0	0.0	0.0100	0.0100	0.0100	0.5000	0.5000	0.5000	32