СЕРИЯ MATEMATИЧЕСКАЯ Tom 45, № 5, 1981

УДК 519.48

BOCTOKOB C. B.

СИМВОЛЫ НА ФОРМАЛЬНЫХ ГРУППАХ

§ 1. Введение

Из K-теории хорошо известна теория непрерывных символов Стейнберга в локальном поле (см., например, [8] или ниже § 4). Напомним, что символом Стейнберга (или мультипликативным символом) в локальном поле k называют непрерывное билинейное спаривание c(,) из мультипликативной группы k^{\times} в некоторую топологическую группу, которое удовлетворяет соотношению c(x, 1-x) = 0 для любого отличного от 1 элемента x из k^{\times} . Одним из основных фактов этой теории является существование универсального символа такого, что все остальные символы будут его гомоморфными образами. Таким универсальным символом является символ норменного вычета Гильберта и его явное описание (см. [2], [3]) дает в явном виде универсальный объект в теории мультипликативных символов.

В настоящей работе обобщается теория мультипликативных символов на коммутативные формальные группы. В полном объеме эта теория развивается здесь для формальных групп Любина — Тэйта (см. §§ 5—7) и в этом случае описывается в явном виде универсальный символ (см. § 7), а также проверяется, что модуль значений любого символа является модулем с одной образующей, который изоморфно вкладывается в группу точек формальной группы (см. § 7, теорема 2).

Надо отметить, что развитие теории символов для формальных групп дает, в частности, новый подход к построению явных формул для символа Гильберта, заданного на группе точек формальной группы (см. § 8, а также [4]).

В общем случае коммутативных формальных групп, который рассматривается в § 9, доказывается, что модуль значений конечно порожден своими значениями на парах простого элемента локального поля и примарных элементов группы точек формальной группы. Кроме того, проверяется, что модуль значений символа изоморфно вкладывается в ядро изогении формальной группы.

При изложении мы придерживались той точки зрения, что доказательство вспомогательных утверждений не должно мешать развитию теории и поэтому мы отнесли их в конец статьи (см. §§ 10, 11). Первые

же три параграфа посвящены общим определениям и постановке задачи. В статье используется раздельная нумерация лемм, предложений и теорем.

§ 2. Формальные групповые законы

1°. Определения и основные факты теории формальных групп, которые мы сейчас будем рассматривать, можно найти в [9].

Пусть $\mathfrak o$ — коммутативное кольцо с 1 и F(X, Y) — коммутативный формальный групповой закон над $\mathfrak o$, т. е. степенной ряд с коэффициентами из $\mathfrak o$, который удовлетворяет условиям

$$F(X, 0) = X, \quad F(0, Y) = Y,$$

 $F(F(X, Y), Z) = F(X, F(Y, Z)), \quad F(X, Y) = F(Y, X).$

Как обычно, степенной ряд f(X) без свободного члена с коэффициентами из кольца $\mathfrak o$ называется гомоморфизмом формальных групповых законов F и G, определенных над $\mathfrak o$, если

$$f(F(X, Y)) = G(f(X), f(Y)).$$
 (1)

Групповые законы с гомоморфизмами образуют категорию, если в качестве композиции гомоморфизмов взять подстановку рядов.

 2° . Множество эндоморфизмов End F формального группового закона F имеет структуру кольца (так как F — коммутативный закон) и отображение c: End $F\mapsto \mathfrak{o}$, где c(f)=f'(0) будет вложением, если характеристика кольца \mathfrak{o} равна нулю (см., например, [6], предложение 1.1). Таким образом, кольцо эндоморфизмов End F, изоморфное образу c (End F), можно считать подкольцом в \mathfrak{o} ; если элемент a из кольца \mathfrak{o} принадлежит этому образу c (End F), то его прообраз будем обозначать через [a] (или $[a]_F$), \mathfrak{T} . e.

$$[a] = c^{-1}(a). (2)$$

Пусть \mathfrak{o}_0 — подкольцо в \mathfrak{o} . Групповой закон F называется формальным \mathfrak{o}_0 -модульным законом над \mathfrak{o} , если кольцо \mathfrak{o}_0 является подкольцом c (End F).

 3° . Предположим, что кольцо о имеет нулевую характеристику и пусть k — поле частных кольца о и $\widetilde{\mathfrak{o}}$ — локализация кольца о по системе $\{1, 2, \ldots\}$. Считаем, что о содержится в $\widetilde{\mathfrak{o}}$. Логарифмом формального закона F будем называть гомоморфизм над $\widetilde{\mathfrak{o}}$ закона F в аддитивный закон $F_a = X + Y$, т. е. всякий степенной ряд $\lambda(X) = X + c_2 X^2 + \ldots$ такой, что $\lambda(F(X, Y)) = \lambda(X) + \lambda(Y)$.

Нетрудно проверить, что если F и G — два формальных групповых закона над $\mathfrak o$ с логарифмами λ_F и λ_G соответственно и если f \in Hom (F,G), то

$$\lambda_{G}(f) = c(f)\lambda_{F}$$

(напомним, что c(f) = f'(0)). Это, в частности, дает для формального \mathfrak{o}_0 -модульного закона F над \mathfrak{o} равенство

$$[a]_F(X) = \lambda^{-1}(a\lambda(X)), \tag{3}$$

где a — элемент из кольца \mathfrak{o}_0 , и этим равенством эндоморфизм $[a]_{\mathbb{F}}$ определен однозначно.

4°. Определим теперь понятие высоты эндоморфизма f. Если кольцо \mathfrak{o} имеет простую характеристику p>1, то ненулевой эндоморфизм f можно представить в виде степенного ряда $\varphi(X^{p^h})$, где $c(\varphi)\neq 0$, а h неотрицательное целое число, которое и называется в этом случае высотой эндоморфизма f.

Если $\mathfrak o$ — локальное кольцо с максимальным идеалом $\mathfrak m$ и полем вычетов $k=\mathfrak o/\mathfrak m$, то высотой эндоморфизма f формальной группы F над $\mathfrak o$ будем называть высоту редукции f в k[X].

5°. Пусть M — коммутативная нильпотентная алгебра над $\mathfrak o$ (т. е. некоторая положительная степень каждого элемента из M равна нулю). Тогда формальная группа F определяет групповой закон на множестве элементов из M с помощью отображения $(x, y) \mapsto F(x, y)$ для x, y из M. Вместо F(x, y) мы будем писать в дальнейшем

$$F(x, y) = x +_{\mathbf{F}} y$$
.

Множество M с таким групповым законом мы обозначим через A(M) (или $A_F(M)$, если надо подчеркнуть формальную группу F). Ясно, что каждый эндоморфизм f(X) формальной группы F определяет эндоморфизм на A(M) благодаря отображению $x \mapsto f(x)$ для всех x из M. Поэтому если F является формальным \mathfrak{o}_0 -модульным законом, то группу A(M) мы можем также рассматривать как \mathfrak{o}_0 -модуль, в котором операторы из \mathfrak{o}_0 задаются с помощью отображения

$$x \mapsto [a]_E(x)$$

для всех $x \in A(M)$.

§ 3. Формальные групповые законы над дискретно нормированными кольцами

6°. Пусть k — полное относительно дискретного нормирования поле характеристики 0, поле вычетов которого имеет простую характеристику p>1.

Пусть F — формальный групповой закон, определенный над \mathfrak{o} . Максимальный идеал \mathfrak{m} кольца \mathfrak{o} будет топологическим нильпотентом в том смысле, что большая степень каждого элемента стремится к нулю. Поэтому мы можем рассматривать группу

$$A(\mathfrak{m})$$
,

которая как множество совпадает с \mathfrak{m} , и сложение в которой задано отображением $(x, y) \mapsto F(x, y) = x +_{\mathbb{F}} y$ для x и y из \mathfrak{m} . Эту группу мы будем

называть группой точек формальной группы F на \mathfrak{m} . Если F — формальный \mathfrak{o}_0 -модульный закон, то группа точек $A(\mathfrak{m})$ также будет \mathfrak{o}_0 -модулем, если положить $a\alpha = [a]_F(\alpha)$ для любого a из \mathfrak{o}_0 и α из \mathfrak{m} .

Пусть K — конечное расширение поля k, тогда оно, как и основное поле k, будет полным и мы можем на максимальном идеале \mathfrak{M}_{κ} кольца целых поля K рассматривать группу точек $A(\mathfrak{M}_{\kappa})$. Если же L — алгебраическое расширение поля k, то группой точек $A(\mathfrak{M}_{\kappa})$ максимального идеала \mathfrak{M}_{κ} поля L будем считать объединение $\bigcup A(\mathfrak{M}_{\kappa})$ по всем конечным расширениям поля k, которые содержатся в L. Если \overline{k} — фиксированное алгебраическое замыкание поля k и \overline{m} — максимальный идеал его кольца целых, то через $A(\overline{m})$ обозначаем группу точек F на \overline{m} .

7°. Эндоморфизм f формальной группы F называется изогенией, если индуцированный им гомоморфизм $f:A(\overline{\mathfrak{m}})\mapsto A(\overline{\mathfrak{m}})$ является эпиморфизмом с конечным ядром. Можно проверить, что f является изогенией тогда и только тогда, когда высота h эндоморфизма f конечна. При этом порядок ker f равен p^h (см. [6, предложение 2.2]).

Пусть эндоморфизм f формального группового закона F является изогенией, и пусть $f^{(n)}$ — n-кратная суперпозиция эндоморфизма f. Обозначим через $\varkappa_{f,n}$ ядро изогении $f^{(n)}:A(\overline{\mathfrak{m}})\mapsto A(\overline{\mathfrak{m}})$. Это ядро будет конечной группой в $A(\overline{\mathfrak{m}})$.

 8° . Нас интересует теперь специальный случай формальных групп — группы Любина — Тэйта. Предположим, что k_{\circ} — локальное поле, поле вычетов которого имеет q элементов. Пусть π_{\circ} —простой элемент кольца целых \mathfrak{o}_{\circ} поля k_{\circ} и $\mathscr{F}_{\pi_{\circ}}$ — набор степенных рядов f с коэффициентами из \mathfrak{o}_{\circ} таких, что

$$f(X) \equiv \pi_0 X \mod \deg 2$$
, $f(X) \equiv X^q \mod \pi_0$.

Для каждого ряда f из \mathcal{F}_{π_0} существует единственная формальная группа F_f (над \mathfrak{o}_0) такая, что f является ее эндоморфизмом (см. [10]). Эту группу называем формальной группой Любина — Тэйта.

Формальную группу, ассоциированную с $f_0(X) = \pi_0 X + X^q$, будем называть базисной группой Любина — Тэйта и будем обозначать через F_0 .

Кольцо эндоморфизмов формальной группы Любина — Тэйта совпадает с \mathfrak{o}_0 и отображение $a\mapsto [a]=c^{-1}(a)$ (см. (2)) задает изоморфизм кольца \mathfrak{o}_0 в End F_i , при котором $[\pi_0]=f$. Кроме того, для любых двух рядов f_1 и f_2 из \mathscr{F}_{π_0} соответствующие им формальные группы Любина — Тэйта F_{f_1} и F_{f_2} изоморфны.

§ 4. Мультипликативные символы в локальном поле

9°. Пусть k — полное дискретно нормированное поле с конечным полем вычетов (локальное поле), и пусть $\mathfrak A$ — полная топологическая абелева группа с хаусдорфовой топологией.

О пределение 1. Непрерывным символом Стейнберга (или просто символом) на поле k будем называть непрерывное билинейное спаривание

$$c: k^{\times} \times k^{\times} \mapsto \mathfrak{A}$$

удовлетворяющее соотношению

$$c(x, 1-x) = 0$$

для любого $x \neq 1$.

Теория символов в локальном поле хорошо известна (см., например, [8]), и мы изложим сейчас кратко основные факты этой теории.

Пусть \Re — мультипликативно замкнутая система представителей поля вычетов поля $k,\ U$ — группа главных единиц в k и π — простой элемент поля k. Тогда доказывается, что

$$c(\mathfrak{R}, U) = 0, \quad c(\mathfrak{R}, \mathfrak{R}) = 0,$$

 $c(U, U) \subset c(\pi, U).$

Эти свойства, в частности, означают, что символ $c(k^{\times}, k^{\times})$ порожден значениями $c(\pi, \Re)$ и $c(\pi, U)$.

О пределение 2. Символ $c: k^{\times} \times k^{\times} \mapsto \mathfrak{A}$ называется *ручным*, если $c(k^{\times}, U) = 0$, и диким, если $c(k^{\times}, \mathfrak{R}) = 0$.

Нетрудно проверить, что любой непрерывный символ на локальном поле однозначно представляется в виде суммы ручного и дикого символов и поэтому изучение символов распадается на изучение отдельно ручных и диких символов.

Определение 3. Символ $c: k^{\times} \times k^{\times} \mapsto \mathfrak{A}$ называется универсальным, если для любого символа $c': k^{\times} \times k^{\times} \mapsto \mathfrak{A}'$ существует непрерывный гомоморфизм $f: \mathfrak{A} \mapsto \mathfrak{A}'$ такой, что $f \circ c = c'$.

Легко указать универсальный ручной символ

$$c_{\text{vH. pyqH.}}(\alpha, \beta) \equiv (-1)^{v(\alpha)v(\beta)} \alpha^{v(\beta)} \beta^{-v(\alpha)} \mod \mathfrak{m}$$

(здесь \mathfrak{m} — максимальный идеал кольца целых поля k, v— \mathfrak{m} -адическое нормирование поля k) и тем самым описать множество всех ручных символов локального поля k.

Значительно сложней обстоит дело с описанием всех диких символов. Если поле k не содержит нетривиальных корней p-ой степени из 1 или характеристика поля k равна p, то любой дикий символ на поле k тривиален. Это утверждение непосредственно следует из определения символа и арифметики локального поля.

Если же k содержит p-ые корни из 1 и ζ —корень максимально возможной степени p^n в k, то можно проверить, что значения дикого символа $c(k^{\times}, k^{\times})$ образуют циклическую группу порядка p^r , $r \leq n$, и что p^n -ый символ норменного вычета Гильберта является универсальным диким символом на k.

Тем самым задача явного описания всех диких символов эквивалентна описанию в явном виде символа Гильберта. Эта задача была решена в работах [2] и [3] и построенное в них в явном виде спаривание

$$\delta(\alpha, \beta) = \zeta^{\operatorname{tr} \operatorname{res} \Phi_{\alpha, \beta}/s}$$

является универсальным диким символом на k, совпадающим с символом Гильберта. Здесь степенной ряд $\Phi_{\alpha,\beta}(X)$ однозначно определен элементами α и β , а $s(X) = \zeta(X)^{p^n}$ —1, где $\zeta(X)$ — ряд, полученный из разложения корня ζ по степеням π (подробнее см. [2] или [3]).

§ 5. Символы на формальных группах Любина— Тэйта

 10° . Обобщим понятие непрерывного символа Стейнберга и зададим его для произвольной формальной группы Любина — Тэйта F, определенной над кольцом \mathfrak{o}_{0} , поле вычетов которого по максимальному идеалу имеет q элементов. Пусть $[\pi_{0}]$ — эндоморфизм F.

Если $\lambda(X)$ — логарифм формальной группы F, а $\lambda_0(X)$ — логарифм базисной группы Любина — Тэйта F_0 , ассоциированной с многочленом $\pi_0X + X^q$ (см. § 3, п. 8°), то через $\mathcal{E}(X)$ будем обозначать ряд $\lambda^{-1} \circ \lambda_0$, который задает изоморфизм группы F_0 в F (см. (1)).

Пусть $\mathfrak A$ — топологический $\mathfrak o_0$ -модуль, в котором сложение и действие эндоморфизмов из кольца $\mathfrak o_0$ индуцировано формальной группой F. Пусть, далее, k — алгебраическое расширение поля частных k_0 кольца $\mathfrak o_0$ и $\mathfrak m$ — максимальный идеал кольца целых поля k. Рассмотрим группу точек $A(\mathfrak m)$ формальной группы F (см. § 3, п. 6°).

О пределение 4. Символом на группе точек $A(\mathfrak{m})$ будем называть непрерывное билинейное спаривание

$$c_F: k^{\times} \times A (\mathfrak{m}) \mapsto \mathfrak{A},$$

удовлетворяющее соотношению

$$c_F(\alpha, \mathscr{E}(\alpha^m)) = 0 \tag{4}$$

для любого α из m и любого натурального m, не делящегося на q.

Замечание 1. Билинейность символа $c_{\mathbf{F}}$ означает выполнение следующих равенств:

$$c_F(\alpha_1\alpha_2, \beta) = c_F(\alpha_1, \beta) + {}_Fc_F(\alpha_2, \beta),$$

$$c_F(\alpha, \beta_1 + {}_F\beta_2) = c_F(\alpha, \beta_1) + {}_Fc_F(\alpha, \beta_2),$$

$$c_F(\alpha, [a](\beta)) = ac_F(\alpha, \beta), \quad a \in \mathfrak{o}_0.$$

Замечание 2. Значения символа c_F образуют \mathfrak{o}_0 -подмодуль в \mathfrak{A} . Замечание 3. Если q=p, то условие (4) равносильно $c_F(\alpha,\mathscr{E}(\alpha))=$ =0.

Определение 5. Символ $c_F: k^{\times} \times A(\mathfrak{m}) \mapsto \mathfrak{A}$ назовем *универсальным*, если для любого символа $c'_F: k^{\times} \times A(\mathfrak{m}) \mapsto \mathfrak{A}'$ существует непрерывный гомоморфизм $\sigma: \mathfrak{A} \mapsto \mathfrak{A}'$ такой, что $\sigma \circ c_F = c'_F$.

11°. Если \Re — мультипликативная система представителей в k, то

$$c_F(\mathfrak{R}, A(\mathfrak{m})) = 0,$$

так как в \Re возможно извлечение любых степеней p из элементов, а в группе точек $A(\mathfrak{m})$ — деление на любую единицу кольца \mathfrak{o}_0 .

ЛЕММА 1. Если натуральное число т не делится на q, то

$$c_{\mathbf{F}}(\pi, \mathscr{E}(\theta\pi^m)) = 0$$

для любого $\theta \in \Re$. Если же $m = m_0 q^r$, где m_0 не делится на q, то

$$q^r c_{\mathbf{F}}(\pi, \mathscr{E}(\theta \pi^m)) = 0.$$

Доказательство. Проверим первое утверждение леммы. Пусть m не делится на q. Представим m в виде $m = m_1 p^r$, где $(m_1, p) = 1$. Пусть $\theta_1^{p^r} = \theta$, где $\theta_1 \in \Re$. Тогда для элемента $\alpha = \theta_1 \pi^{m_1}$ по определению символа c_F имеем

$$c_F(\alpha, \mathscr{E}(\alpha^{p^r})) = 0,$$

так как по условию m, а значит, и p^r не делятся на q. Далее,

$$0 = c_F(\alpha, \mathscr{E}(\alpha^{p^r})) = c_F(\theta_1, \mathscr{E}(\alpha^{p^r})) +_F c_F(\pi^{m_1}, \mathscr{E}(\alpha^{p^r})) =$$

$$= m_1 c_F(\pi, \mathscr{E}(\alpha^{p^r})) = m_1 c_F(\pi, \mathscr{E}(\theta \pi^m)).$$

Отсюда следует, что $c_F(\pi, \mathscr{E}(\theta \pi^m)) = 0$, так как m_1 взаимно просто с p. Второе утверждение леммы доказывается аналогично.

Из леммы 1, определения символа c_F и арифметики группы точек $A(\mathfrak{m})$ (см. § 11, п. 32°) непосредственно вытекает следующее

Предложение 1. Если в группе точек $A(\mathfrak{m})$ нет нетривиальных корней изогении $[\pi_0]$, то любой символ $c_{\mathbb{F}}$ на $A(\mathfrak{m})$ тривиален.

Пусть теперь в группе точек $A(\mathfrak{m})$ содержатся корни изогении $[\pi_0]$. ЛЕММА 2. Модуль значений символа c_F аннулируется изогенией $[\pi_0^r]$ при некотором r, τ . e. $\pi_0^r c_F(k^{\times}, A(\mathfrak{m})) = 0$.

Доказательство. Группа точек $A(\mathfrak{m})$ имеет в нашем случае следующую систему образующих (см. § 11, п. 32 $^{\circ}$):

$$\mathscr{E}(\theta \pi^i), \quad \omega_* = \mathscr{E}(\theta_* \pi^{qe_1}),$$
 (5)

где θ , $\theta_* \in \Re$, а индекс i принимает натуральные значения, меньшие qe_1 , не делящиеся на q (здесь $e_1 = e/(q-1)$, а e — индекс ветвления расширения k/k_0).

Согласно лемме 1, $c_F(\pi, \mathcal{E}(\theta\pi^i)) = 0$. Поэтому значения $c_F(\pi, A(\mathfrak{m}))$ порождены значением $c_F(\pi, \omega_*)$. Далее, если $qe_1 = q^s m_0$, где m_0 не делится на q, то по лемме 1 значение $c_F(\pi, \omega_*)$ аннулируется эндоморфизмом $[q^s]$. Если $q^s = \pi_0{}^r \varepsilon$, где ε — единица кольца \mathfrak{o}_0 , то

$$\pi_0^r c_F(\pi, \omega) = 0.$$

Таким образом, изогения $[\pi_0^r]$ аннулирует $c_F(\pi, A(\mathfrak{m}))$, а значит, и $c_F(k^\times, A(\mathfrak{m}))$, поскольку мультипликативная группа k^\times порождена произведениями простых элементов. Лемма доказана.

12°. Проверим теперь, что \mathfrak{o}_0 -модуль $c_F(k^\times, A(\mathfrak{m}))$ имеет одну образующую.

Предложение 2. Модуль значений символа c_{r} порожден значением на паре π , ω , где π — произвольный простой элемент, а ω — примарная образующая группы точек $A(\mathfrak{m})$ (см. § 11, π . 31°).

Доказательство. Проверим, что для любого простого элемента π значения $c_F(U, A(\mathfrak{m}))$ содержатся в $c_F(\pi, A(\mathfrak{m}))$ (здесь U — группа главных единиц поля k). Пусть $\epsilon \in U$ и β — некоторый элемент из $A(\mathfrak{m})$. Тогда найдется главная единица η в поле k такая, что $\beta = \mathscr{E}(\epsilon - \eta)$.

Из определения символа c_F следует, что $c_F(\varepsilon-\eta, \mathscr{E}(\varepsilon-\eta)) = 0$. Отсюда, используя линейность символа по первому аргументу, получим:

$$c_F(\varepsilon, \beta) = -c_F(1 - \varepsilon^{-1}\eta, \beta).$$

Обозначим $1-\varepsilon^{-1}\eta$ через α и прибавим к правой части символ $c_F(\alpha, \mathscr{E}(\alpha))$, равный по определению нулю. Тогда

$$c_F(\varepsilon, \beta) = c_F(\alpha, \mathscr{E}(\alpha)) \sim_F c_F(\alpha, \beta) = c_F(\alpha, \beta_1),$$
 (6)

где через β_1 обозначен элемент $\mathscr{E}(\alpha) \underset{F}{\sim} \mathscr{E}(\epsilon - \eta).$

Нетрудно видеть, что порядок элемента β_i строго больше порядка элемента β , т. е. $v(\beta_i)>v(\beta)$ (здесь v — показатель в поле k). Действительно, имеют место сравнения

$$\mathscr{E}(\alpha) \equiv \alpha \mod \alpha^2$$
, $\beta = \mathscr{E}(\varepsilon - \eta) \equiv \varepsilon \alpha \mod \alpha^2$,

откуда, в частности, следует, что $v(\alpha) = v(\beta)$. Далее, из определения формального группового закона F(X, Y) получаем:

$$\beta_1=\mathscr{E}\left(\alpha\right) \underset{F}{\sim} \mathscr{E}\left(\epsilon\alpha\right) \equiv \mathscr{E}\left(\alpha\right) - \mathscr{E}\left(\epsilon\alpha\right) \equiv (1-\epsilon)\,\alpha\,\mathrm{mod}\,\alpha^2.$$

Так как ε — главная единица и $v(\alpha) = v(\beta)$, то из последнего сравнения получим $v(\beta_1) > v(\beta)$.

Элемент α можно представить в виде $\alpha = \pi^{a_i}\theta_i\epsilon_i$, где $a_i \ge 1$, $\theta_i = \Re$, ϵ_i — главная единица. Тогда из (6) и линейности символа c_F следует:

$$c_F(\varepsilon, \beta) = c_F(\alpha, \beta_1) = a_1 c_F(\pi, \beta_1) + c_F(\varepsilon_1, \beta_1).$$

Продолжаем процесс с символом $c_F(\epsilon_1, \beta_1)$ до тех пор, пока не придем к разложению

$$c_F(\varepsilon, \beta) = \sum_{i=1}^m {}_{(F)}a_ic_F(\pi, \beta_i) + {}_{F}c_F(\varepsilon_m, \beta_m),$$

в котором элемент β_m имеет настолько большой порядок, что он будет делиться в группе точек $A(\mathfrak{m})$ на изогению $[\pi_0{}^r]$, т. е. $\beta_m = [\pi_0{}^r](\beta'_m)$, где $\beta'_m \in A(\mathfrak{m})$. Тогда $c_F(\epsilon_m, \beta_m) = \pi_0{}^r c_F(\epsilon_m, \beta'_m) = 0$ (напомним, что $\pi_0{}^r$ аннулирует $c_F(k^\times, A(\mathfrak{m}))$ и поэтому

$$c_F(\varepsilon, \beta) = c_F(\pi, \beta'),$$

где $\beta' = \sum_{i=1}^{m} [a_i] \beta_i \in A(\mathfrak{m})$. Таким образом, значения символа $c_F(k^{\times}, A(\mathfrak{m}))$

совпадают со значениями $c_F(\pi, A(\mathfrak{m}))$. Отсюда и из леммы 1 следует утверждение нашего предложения.

Из только что доказанного предложения, а также из леммы 2 вытекает следующее

Предложение 3. Модуль значений $c_{\mathbb{F}}(k^{\times}, A(\mathfrak{m}))$ изоморфно вкладывается в ядро изогении $[\pi_0^{\ r}]$ при некотором r.

Итак, мы проверили, что \mathfrak{o}_0 -модуль $c_F(k^\times, A(\mathfrak{m})$ имеет однуг образующую $c_F(\pi, \omega_*)$ и изоморфно вкладывается в \varkappa_r -ядро изогениь $[\pi_0^r]$. Нашей ближайшей задачей будет построение универсального символа, а также доказательство того, что $c_F(k^\times, A(\mathfrak{m}))$ изоморфно вкладывается в группу точек $A(\mathfrak{m})$.

§ 6. Спаривание \langle , \rangle_F как символ на группе Любина — Тэйта

В этом и следующем параграфах мы займемся задачей явного описания универсального символа формальной группы Любина — Тэйта. Для этого мы рассмотрим спаривание \langle , \rangle_F , впервые построенное в работе [4], и проверим, что оно является символом на F и задает универсальный символ на F (см. ниже теоремы 1 и 3). Мы считаем, что p — нечетное простое число.

13°. Пусть κ_n — \mathfrak{o}_0 -модуль корней изогении $[\pi_0{}^n]$, содержащийся в группе точек $A(\mathfrak{m})$, и при этом n имеет максимально возможное значение. Рассмотрим спаривание

$$\langle , \rangle_F : k^{\times} \times A(\mathfrak{m}) \mapsto \varkappa_n,$$

которое задается при $p\neq 2$ следующим образом. Пусть α — элемент мультипликативной группы k^{\times} , а β — элемент группы точек $A(\mathfrak{m})$, и пусть $\alpha = \pi^a \theta \varepsilon$, где $\theta \in \mathfrak{R}$, а ε — главная единица поля k. Обозначим через A(X) ряд $X^a \theta \varepsilon(X)$, где $\varepsilon(\pi) = \varepsilon$. Аналогично, через $\beta(X)$ обозначим ряд, получающийся из разложения элемента β по степеням простого элемента π , т. е. $\beta(\pi) = \beta$. Отметим, что при этом коэффициенты ряда A(X) принадлежат кольцу целых элементов \mathfrak{o}' абсолютного подполя инерции T' поля k, а коэффициенты ряда $\beta(X)$ принадлежат кольцу целых элементов \mathfrak{o} подполя инерции T расширения k/k_0 . Ясно, что $\mathfrak{o}' \subset \mathfrak{o}$. Фиксируем образующую ξ модуля κ_n , и пусть z(X) — ряд, полученный из разложения ξ по степеням π , т. е. $z(\pi) = \xi$. Через s(X) обозначим ряд $[\pi_0^n]z(X)$.

Пусть δ — автоморфизм Фробениуса поля T', который на поле вычетов действует возведением в степень p, и пусть $\Delta = \delta^f$ — автоморфизм Фробениуса расширения T/k_0 . Оператор следа в расширении T/k_0 обозначаем через tr.

Рассмотрим функцию

$$l_m(\varepsilon) = \left(1 - \frac{\Delta}{q}\right) \log \varepsilon(X),$$

определенную для любого степенного ряда $\varepsilon(X)$ с коэффициентами из кольца \mathfrak{o}' , который начинается с 1; а также функцию

$$l_F(\beta) = \left(1 - \frac{\Delta}{\pi_0}\right) \lambda(\beta),$$
 (7)

определенную для любого степенного ряда $\beta(X)$ без свободного члена из кольца $\mathfrak{o}[[X]]$.

Определим спаривание \langle , \rangle_F по формуле

$$\langle \alpha, \beta \rangle_F = [\operatorname{tr} \gamma_{\alpha,\beta}](\xi),$$
 (8)

где $\gamma_{\alpha,\beta}$ = res $\Phi_{\alpha,\beta}/s$, а ряд $\Phi_{\alpha,\beta}$ задается в виде

$$\Phi_{\alpha,\beta} = l_m(\varepsilon) \frac{d}{dX} l_F(\beta) - l_m(\varepsilon) \frac{d}{dX} \lambda(\beta) + l_F(\beta) A^{-1} \frac{dA}{dX}.$$

Замечание 4. Ряд $\Phi_{\alpha,\beta}$ является степенным рядом с коэффициентами из кольца $\mathfrak o$, а ряд $\Phi_{\alpha,\beta}/s$ принадлежит кольцу $\mathfrak o\{X\}$, которое состо-

ит из всех рядов $\sum_{i\to\infty}^{\infty} a_i X^i$, $a_i \in \mathfrak{o}$, удовлетворяющих условию: $a_i \to 0$, если $i \to -\infty$ (см. § 1, п. 3°).

Замечание 5. Несложно проверить (см. [4, предложение 4]), что спаривание \langle , \rangle_F является \mathbf{Z}_p -линейным по первому аргументу и \mathfrak{o}_0 -линейным по второму. Это свойство мы будем для простоты называть билинейностью.

Замечание 6. Поскольку на протяжении всего параграфа у нас будет фиксирована формальная группа F, то мы будем обозначать наше спаривание просто \langle , \rangle или \langle , \rangle_{π} , если нам надо подчеркнуть простой элемент π , относительно которого было задано спаривание.

 14° . Предложение 4. Значения спаривания \langle , \rangle не зависят от выбора простого элемента π и от способа разложения элементов в степенные ряды по π .

Доказательство. Утверждение предложения было доказано в теореме 1 работы [4] на множестве $\{\pi, A(\mathfrak{m})\}$. Докажем, что этого достаточно и для общего случая.

Инвариантность от выбора π нужно доказывать, учитывая билинейность лишь для пары главной единицы $\varepsilon \in k^{\times}$ и произвольного элемента $\beta \in A(\mathfrak{m})$. При этом надо проверить для произвольных простых элементов π и τ следующее равенство:

$$\langle \varepsilon, \beta \rangle_{\pi} = \langle \varepsilon, \beta \rangle_{\tau}.$$
 (9)

Обозначим через ρ простой элемент $\pi\epsilon$. Тогда, согласно доказанной в теореме 1 работы [4] инвариантности, имеем:

$$\langle \rho, \beta \rangle_{\rho} = \langle \rho, \beta \rangle_{\pi}, \quad \langle \rho, \beta \rangle_{\rho} = \langle \rho, \beta \rangle_{\tau}.$$

Отсюда и из билинейности спаривания следует:

$$\langle \rho, \beta \rangle_{\pi} = \langle \pi, \beta \rangle_{\pi} + {}_{F} \langle \epsilon, \beta \rangle_{\pi},$$

$$\langle \rho, \beta \rangle_{\tau} = \langle \pi, \beta \rangle_{\tau} + {}_{F} \langle \epsilon, \beta \rangle_{\tau} = \langle \pi, \beta \rangle_{\pi} + {}_{F} \langle \epsilon, \beta \rangle_{\tau}.$$

Из последних двух равенств вытекает требуемая инвариантность (9).

Проверим теперь независимость спаривания \langle , \rangle от разложения элементов в степенные ряды по простому элементу π . Нам надо проверить независимость отдельно по первому и второму аргументу.

Если первым аргументом является главная единица $\varepsilon \in k^{\times}$, то из инвариантности следует:

$$\langle \epsilon, \beta \rangle_{\pi} = \langle \tau, \beta \rangle_{\pi} \underset{F}{\sim} \langle \pi, \beta \rangle_{\pi} = \langle \tau, \beta \rangle_{\tau} \underset{F}{\sim} \langle \pi, \beta \rangle_{\pi},$$

где $\tau = \pi\epsilon$. Поэтому в этом случае независимость от разложения β в ряд по простому элементу вытекает из уже доказанной в теореме 1 работы [4] независимости на паре простого элемента и β . В общем случае независимость по второму аргументу следует из билинейности спаривания.

Осталось доказать независимость спаривания \langle , \rangle от разложения первого аргумента в степенной ряд по простому элементу π . Иначе говоря, надо проверить, что если A(X) и $A^{(1)}(X)$ — ряды, полученные из двух различных разложений элемента $\alpha \in k^{\times}$ в ряд по π , то для любого элемента β из $A(\mathfrak{m})$

$$\operatorname{tr} \gamma_{\alpha,\beta} \equiv \operatorname{tr} \gamma_{\alpha,\beta}^{(1)} \bmod \pi_0^n \tag{10}$$

(см. (8)). Обозначим tr $\gamma_{\alpha,\beta}$ через $\{A(X), \beta(X)\}_x$. Из билинейности спаривания следует, что сравнение (10) равносильно сравнению

$$\{\varepsilon(X), \, \beta(X)\}_X \equiv 0 \bmod \pi_0^n, \tag{11}$$

где $\varepsilon(X)$ — произвольный степенной ряд с коэффициентами из кольца \mathfrak{o}' , начинающийся с 1, и значение которого в точке $X=\pi$ равно 1, т. е. $\varepsilon(\pi)=1$.

Рассмотрим ряд $Y = g(X) = X_{\varepsilon}(X)$. Тогда для ряда $g^{-1}(X)$, так же как и для ряда g(X), выполнено условие

$$g^{-1}(\pi) = \pi$$

(здесь g^{-1} — ряд, обратный к g относительно суперпозиции). Инвариантность спаривания \langle , \rangle дает сравнение

$$\left\{g\left(X\right),\ \beta\left(X\right)\right\}_{X} \equiv \left\{Y,\ \beta\left(g^{-1}\left(Y\right)\right)\right\}_{Y} \bmod \pi_{0}^{n}.\tag{12}$$

Формально заменив Y на X, получаем:

$$\{Y, \beta(g^{-1}(Y))\}_{Y} = \{X, \beta(g^{-1}(X))\}_{X}.$$
 (13)

Из условия $g^{-1}(\pi) = \pi$ следует, что значения рядов $\beta(X)$ и $\beta(g^{-1}(X))$ в точке $X = \pi$ совпадают. Поэтому из независимости спаривания \langle, \rangle , доказанной в теореме 1 работы [4], получаем:

$$\{X, \beta(g^{-1}(X))\}_X \equiv \{X, \beta(X)\}_X \mod \pi_0^n.$$
 (14)

Наконец, из (12), (13) и (14) следует:

$$\{g(X), \beta(X)\}_X \equiv \{X, \beta(X)\}_X \mod \pi_0^n$$

Отсюда и из линейности по первому аргументу вытекает (11), так как $g(X) = X_{\epsilon}(X)$. Предложение полностью доказано.

15°. ТЕОРЕМА 1. Спаривание \langle , \rangle_F (см. (8)) задает непрерывный символ на F.

Доказательство. В предыдущем предложении была доказана корректность определения спаривания \langle , \rangle . Билинейность \langle , \rangle была проверена в [4], предложение 4. Осталось поэтому доказать, что для любого элемента α из максимального идеала m поля k имеет место равенство

$$\langle \alpha, \mathscr{E}(\alpha^u) \rangle = 0 \tag{15}$$

для любого натурального числа u, не делящегося на q.

Пусть $\alpha = \pi^{\alpha}\theta \epsilon$, где $\theta \in \Re$, а ϵ — главная единица поля k. Равенство (15) будет доказано, согласно определению (8), если мы проверим выполнение сравнения

$$\operatorname{tr} \, \gamma_{\alpha, \mathcal{E}(\alpha^{u_1})} \equiv 0 \, \operatorname{mod} \, \pi_0^n. \tag{16}$$

Ряд $\Phi(X)$, входящий в определение спаривания \langle , \rangle , имеет в нашем случае вид:

$$\Phi = l_F(\mathscr{E}(\mathbf{A}^u)) \mathbf{A}^{-1} \frac{d\mathbf{A}}{dX} - l_m(\varepsilon) \frac{d}{dX} \frac{\Delta}{\pi_0} \lambda(\mathscr{E}(\mathbf{A}^u)).$$

Пусть $\lambda_0(X) = X + c_2 X^2 + ...$ — логарифм базисной формальной группы Любина — Тэйта F_0 , ассоциированной с эндоморфизмом $\pi_0 X + X^q$, и пусть

$$c_v' = egin{cases} c_v, & ext{если } v & ext{не делится на } q, \ c_v - rac{1}{\pi_0} \, c_{v/q}, & ext{если } v & ext{делится на } q. \end{cases}$$

Из определения функции l_F (см. (7)) и ряда $\mathscr{E}(X) = \lambda^{-1} \circ \lambda_0$ получаем:

$$l_F(\mathscr{E}(\mathbf{A}^u)) = \left(1 - \frac{\Delta}{\pi_0}\right) \lambda(\mathbf{A}^u) = \sum_{q \neq v} c_v \mathbf{A}^{uv} + \sum_{v=1}^{\infty} \left(c_{qv} \mathbf{A}^{uvq} - \frac{c_v}{\pi_0} \mathbf{A}^{uv\Delta}\right) =$$

$$= \sum_{v=1}^{\infty} c_v' \mathbf{A}^{uv} + \sum_{v=1}^{\infty} \frac{c_v}{\pi_0} (\mathbf{A}^{uvq} - \mathbf{A}^{uv\Delta}).$$

Аналогично

$$\frac{\Delta}{\pi_0} \lambda \left(\mathscr{E} \left(\mathbf{A}^u \right) \right) = \sum_{v=1}^{\infty} \frac{c_v}{\pi_0} \, \mathbf{A}^{uv\Delta}.$$

Поэтому ряд Ф можно переписать в виде

$$\Phi = \sum_{v=1}^{\infty} c'_{v} \frac{d}{dX} \frac{\mathbf{A}^{uv}}{uv} + \sum_{v=1}^{\infty} \frac{c_{v}}{\pi_{0}} \left\{ (\mathbf{A}^{uvq} - \mathbf{A}^{uv\Delta}) \mathbf{A}^{-1} \frac{d}{dX} \mathbf{A} - l_{m} \left(\varepsilon \right) \frac{d}{dX} \mathbf{A}^{uv\Delta} \right\}.$$

Обозначим ряд, стоящий в скобках $\{\ldots\}$, через $f_{u,v}$ и проверим, что для всех $v\geqslant 1$ и всех u, не делящихся на q, имеют место сравнения:

$$\operatorname{tr}\operatorname{res} c_v'\left(\frac{d}{dX}\frac{\mathbf{A}^{uv}}{uv}\right)/\mathbf{s} \equiv 0 \bmod \pi_0^n, \tag{17}$$

tr res
$$\frac{c_v}{\pi_0} f_{u,v}/s \equiv 0 \mod \pi_0^n$$
. (18)

Эти сравнения дадут (16), а значит, и требуемое равенство (15).

Пусть $v = q^s v_0$, где v_0 не делится на q, и пусть $uv = q^r u_0$, где u_0 тоже не делится на q. Заметим, что если q = p, то обязательно r = s, если же $q \gg p^2$, то r может быть равным s+1, когда uv_0 делится на q (напомним, что у нас по условию u не делится на q). В любом случае, как будет доказано ниже в (45), элемент

$$c_{v}' \equiv 0 \bmod \pi_{0}'. \tag{19}$$

Если при этом $r \ge n$, то сравнение (17) очевидно. Если же $0 \le r < n$, то сравнение (17) следует из (19) и ниже доказываемого сравнения (44), в котором в качестве m надо брать uv.

Для проверки сравнения (18) используем легко проверяемые равенства:

$$\frac{d}{dX}h^{\Delta} = qX^{-1}\left(X\frac{d}{dX}h\right)^{\Delta},$$

$$h^{-1}\frac{dh}{dX} = \frac{d}{dX}l_{m}(\psi) + h^{-\Delta}\frac{d}{dX}\frac{h^{\Delta}}{q},$$
(20)

справедливые для любого степенного ряда h(X) с коэффициентами из кольца \mathfrak{o}' , если при этом $h = X^a \theta \psi(X)$, где $\theta \in \Re$, а степенной ряд ψ начинается с 1.

Пользуясь этими равенствами, ряд $f_{u,v}$ можно переписать в виде

$$f_{u,v} = \frac{d}{dX} \left(\frac{\mathbf{A}^{uvq} - \mathbf{A}^{uv\Delta^{\cdot}}}{uvq} - l_m (\varepsilon) \mathbf{A}^{uv\Delta} \right) = \frac{d}{dX} g_{u,v}.$$

Коэффициенты ряда $\frac{q}{p}$ $g_{u,v}$ делятся на uvq (см. ниже (38)), т. е. делятся на q^{r+1} . С другой стороны, согласно (46) элемент $\pi_0^{r+1}\left(\frac{c_v}{\pi_0}\right)$ будет целым, значит, и ряд $\frac{q}{\pi}\left(\frac{c_v}{\pi_0}\cdot g_{u,v}\right)$ имеет целые коэффициенты. Кроме того, из того же сравнения (38) следует, что ряд $\frac{c_v}{\pi_0}f_{u,v}$ также имеет целые коэффициенты.

Значит, мы можем воспользоваться доказанным в § 11 сравнением (42), из которого следует, что

$$\operatorname{res} \frac{c_v}{\pi_0} f_{u,v}/s = \operatorname{res} \left(\frac{d}{dX} \frac{c_v}{\pi_0} g_{u,v} \right) / s \equiv 0 \mod \pi_0^n.$$

Тем самым сравнение (18) доказано. Как уже говорилось, сравнения (17) и (18) дают требуемое равенство (15). Теорема доказана.

§ 7. Универсальный символ для формальной группы Любина — Тэйта

В этом параграфе будет доказано, что \mathfrak{o}_0 -модуль значений $c_F(k^\times, A(\mathfrak{m}))$ любого символа c_F изоморфно вкладывается в группу точек $A(\mathfrak{m})$. Кроме того, мы проверим, что спаривание \langle , \rangle_F задает универсальный символ для F. Основой, на которой будут доказываться эти утверждения, является невырожденность спаривания \langle , \rangle_F по второму аргументу (см. ниже § 10, теорему 5). Так же как и в § 6, мы предполагаем, что p— нечетное простое число.

16°. Пусть \varkappa_n — модуль корней изогении $[\pi_0^n]$ формальной группы F, содержащийся в группе точек $A(\mathfrak{m})$ с максимально возможным n, и пусть $\varkappa_r = c_F(k^\times, A(\mathfrak{m}))$ — модуль значений символа c_F на F (см. предложение 3).

ТЕОРЕМА 2. Модуль значений символа c_F формальной группы Любина — Тэйта F изоморфно вкладывается в группу точек $A(\mathfrak{m})$ и, таким образом, выполняется неравенство $r \leq n$.

Доказательство. Пусть ξ — некоторая образующая \mathfrak{o}_0 -модуля κ_n , содержащаяся в группе точек $A(\mathfrak{m})$. Согласно доказанной в теореме 5 невырожденности спаривания \langle , \rangle_F для элемента ξ найдется простой элемент π такой, что значение $\langle \pi, \xi \rangle_F$ является также образующим в \mathfrak{o}_0 -модуле κ_n . Поскольку $\langle \pi, \mathscr{E}(\theta \pi^m) \rangle_F = 0$ для любого m, не делящегося на q, и $\theta \in \mathfrak{R}$ (см. (15)), то в разложение элемента ξ по базису (5) обязательно входит примарный элемент ω_* с некоторым единичным коэффициентом.

Меняя, если нужно, образующую ξ, мы можем считать этот коэффициент равным 1. Поэтому

$$\xi = \sum_{\substack{1 \leq m < qe_1 \\ q \nmid m}} [r_m] \mathscr{E} (\theta_{r,m} \pi^m) +_F \omega_* = \beta' +_F \omega_*,$$

где $r_m \in \mathfrak{o}_0$. Для символа c_F значение $c_F(\pi, \mathscr{E}(\theta \pi^m))$ равно нулю, если m не делится на q и $\theta \in \Re$ (см. лемму 1), значит,

$$c_F(\pi, \xi) = c_F(\pi, \beta') + c_F(\pi, \omega_*) = c_F(\pi, \omega_*).$$

Таким образом, $c_F(\pi, \xi)$, как и $c_F(\pi, \omega_*)$, является образующим элементом \mathfrak{o}_0 -модуля значений символа c_F . Но

$$\pi_0^n c_F(\pi, \xi) = c_F(\pi, [\pi_0^n](\xi)) = c_F(\pi, 0) = 0.$$

Отсюда сразу следует, что $r \leqslant n$, и теорема вытекает теперь из предложения 2.

 17° . Модуль значений спаривания \langle , \rangle_F совпадает с ядром изогении $[\pi_0{}^n]$, при этом n — максимально возможное число, для которого ядро \varkappa_n содержится в группе точек $A(\mathfrak{m})$. С другой стороны, \mathfrak{o}_0 -модуль значений любого символа c_F изоморфен \varkappa_r , где $r \leqslant n$, по только что доказанной теореме. Отсюда немедленно вытекает следующая

ТЕОРЕМА 3. Спаривание \langle , \rangle_F является универсальным символом при $p \neq 2$ для формальной группы Любина — Тэйта F.

§ 8. Явная форма символа Гильберта

Мы используем теперь теорию символов на формальных группах Любина — Тэйта, которая была развита в предыдущих параграфах, для получения явной формы символа Гильберта на формальной группе F (см. также [4]). Мы проверим также, что символ Гильберта на F будет (наряду со спариванием \langle , \rangle_F) являться универсальным символом, невырожденным по второму аргументу (см. замечание 7).

18. Напомним определение и основные свойства символа Гильберта на формальной группе Любина — Тэйта F (см. [9], [4], [6]). Пусть в группе точек $A(\mathfrak{m})$ содержатся все корни изогении $[\pi_0^n]$, т. е. $\kappa_n \subset A(\mathfrak{m})$. Тогда для любого β из $A(\mathfrak{m})$ расширение K поля k, полученное делением точки β на изогению $[\pi_0^n]$, будет абелевым над k. Если ρ — один из корней уравнения $[\pi_0^n](X) = \beta$, то отображение $\sigma \mapsto \rho^{\sigma} \widehat{F} \rho$ является вложением группы Галуа G(K/k) в κ_n , которое не зависит от выбора ρ .

Под символом Гильберта на формальной группе F понимаем спаривание

$$(,)_F: k^{\times} \times A(\mathfrak{m}) \mapsto \varkappa_n,$$

которое задается равенством

$$(\alpha, \beta)_F = \rho^{\sigma_{\alpha}} \sim \rho,$$

где σ_{α} — элемент группы Галуа, соответствующий элементу α в силу локальной теории полей классов.

Это спаривание \mathbb{Z}_p -линейно по первому аргументу и \mathfrak{o}_0 -линейно по второму (\mathfrak{o}_0 — кольцо, над которым определена F). Ядро спаривания по второму аргументу равно [π_0^n] $A(\mathfrak{m})$. Спаривание (α , β) $_F$ равно 0 тогда и только тогда, когда элемент α является нормой в расширении K/k, полученном делением β на изогению [π_0^n]. Наконец, если G — формальная группа над \mathfrak{o}_0 , изоморфная F, и ряд f(X) задает этот изоморфизм, т. е. $f: F \mapsto G$, то

$$f((\alpha, \beta)_F) = (\alpha, f(\beta))_G. \tag{21}$$

Это равенство вытекает непосредственно из определения символа Гильберта, так как формальный групповой закон G имеет вид $G(X, Y) = = f(F(f^{-1}(X), f^{-1}(Y)))$, изогения $[\pi_0^n]_G$ группы G выражается через изогению $[\pi_0^n]_F$ группы F в виде $[\pi_0^n]_G = f \circ [\pi_0^n]_F \circ f^{-1}$ и группа корней изогении $[\pi_0^n]_G$ есть множество $f(\varkappa_n)$.

Ниже будет доказано еще одно важное свойство символа Гильберта — невырожденность по второму аргументу (см. замечание 7).

19°. Пусть $\lambda(X)$ — логарифм формальной группы F, а $\lambda_0(X)$ — логарифм базисной группы Любина — Тэйта F_0 , ассоциированной с эндоморфизмом $[\pi_0]_0 = \pi_0 X + X^q$. Как и раньше, ряд $\lambda^{-1} \circ \lambda_0$ обозначаем через $\mathcal{E}(X)$.

ЛЕММА 3. Для любого элемента α из группы точек $A(\mathfrak{m})$ и любого натурального m, взаимно простого c p, имеет место равенство

$$(\alpha, \mathcal{E}(\alpha^m))_F = 0. \tag{22}$$

Доказательство. Для формальной группы F_0 элемент α является, очевидно, мультипликативной нормой в расширении поля k, полученном делением точки α на изогению $[\pi_0^n]$, так как ряд $[\pi_0^n]_0$ является унитарным многочленом. Значит, $(\alpha, \alpha)_{F_0} = 0$ для всех $\alpha \in \mathfrak{m}$ (см. п. 18°). Далее, ряд $\mathscr{E} = \lambda^{-1} \circ \lambda_0$ задает изоморфизм из группы F_0 в F, поэтому

$$(\alpha, \mathscr{E}(\alpha))_{F} = \mathscr{E}((\alpha, \alpha)_{F_0}) = \mathscr{E}(0) = 0$$

(см. (21)). Равенство (22) следует теперь из того, что m — единица кольца \mathfrak{o}_0 . Лемма доказана.

 Π редложение 5. Символ Гильберта (,), является универсальным символом для формальной группы Любина — Тэйта F, если q=p.

Доказательство. Из непрерывности, билинейности символа Гильберта (которые вытекают непосредственно из определения), а также леммы 3 следует, что символ Гильберта (,) $_{\it F}$ является символом на $\it F$ в смысле определения 4 § 5.

Пусть в группе точек $A(\mathfrak{m})$ содержится ядро изогении $[\pi_0^n]$ формальной группы F и при этом n — максимально возможное число. Значение $(\pi, \omega)_F$, где $\omega = \pi_0^n$ -примарный элемент в $A(\mathfrak{m})$, является образующим ядра \varkappa_n изогении $[\pi_0^n]$ (см. [4], [5]). Значит, модуль значений символа Гильберта совпадает с ядром \varkappa_n . Отсюда, так же как и в теореме 3, следует универсальность символа Гильберта. Предложение доказано.

20°. В этом пункте будет доказана лемма, принадлежащая Ги Эньяру (Guy Henniart). Автор глубоко признателен профессору Эньяру, который сообщил ему об этом результате.

Рассмотрим группу Любина — Тэйта $F_{\rho,\eta}$, которая построена по эндоморфизму $[\pi_0]_{\rho,\eta} = \pi_0 X + \pi_0 \eta X^{\rho^\rho} + X^q$, где η — элемент мультипликативной системы \Re , а ρ принимает значения 1, 2, ..., f—1 (напомним,

что $q=p^{i}$). Пусть $\mathscr{E}_{\rho,\eta}(X)$ — степенной ряд, задающий изоморфизм из формальной группы $F_{\rho,\eta}$ в данную группу Любина — Тэйта F.

ЛЕММА 4. Элементы

$$\mathscr{E}(\theta\pi^i), \quad \mathscr{E}_{\varrho,\eta}(\theta\pi^i), \tag{23}$$

где θ , $\eta \in \Re$, $1 \le \rho \le f-1$, а индекс і прюбегает все натуральные взаимно простые с р значения, меньшие qe_1 , дают вместе с примарным элементом $\omega(a)$ (см. § 11, п. 31°) полную систему o_0 -образующих группы точек $A(\mathfrak{m})$. При этом

$$(\pi, \mathscr{E}(\theta\pi^i))_F = 0, \quad (\pi, \mathscr{E}_{\rho,\eta}(\theta\pi^i))_F = 0.$$

Доказательство. Достаточно проверить, очевидно, утверждение леммы для базисной формальной группы Любина — Тэйта F_0 (см. § 3, п. 8°), т. е. для $F = F_0$. Из вида эндоморфизмов групп $F_{\rho,\eta}$ и F_0 легко следует сравнение

$$\mathscr{E}_{\rho,\eta}(X) \equiv X + \frac{\eta}{1 - \pi_{\rho}^{\rho^{\rho}-1}} X^{\rho^{\rho}} \mod X^{\rho^{\rho}+1}.$$

Отсюда получаем:

$$\mathscr{E}_{\rho,\eta}(X) \underset{\widetilde{F_{\bullet}}}{\sim} X \equiv \frac{\eta}{1 - \pi_0^{\rho^{\rho} - 1}} X^{\rho^{\rho}} \mod X^{\rho^{\rho} + 1}$$

и, значит,

$$\mathscr{E}_{\rho,\eta}\left(\theta\pi^{i}\right) \underset{F_{\bullet}}{\sim} \left(\theta\pi^{i}\right) \equiv \eta \theta^{\rho^{\rho}} \pi^{i\rho^{\rho}} \mod \pi^{i\rho^{\rho+1}}.$$

Поэтому (см. § 11, п. 32°) эти элементы вместе с $\theta\pi^i$ и примарным элементом $\omega(a)$ дают полную систему образующих группы точек $A_{F_0}(\mathfrak{m})$ (при соответствующих условиях на индексы i и ρ). Мы получаем тем самым первое утверждение леммы.

Далее, поскольку $[\pi_0^n]_{\rho,\eta}$ является унитарным многочленом, то для символа Гильберта группы $F_{\rho,\eta}$ имеет место равенство $(\alpha, \alpha)_{F_{\rho,\eta}} = 0$ для любого α из \mathfrak{m} (см. п. 18°). Тогда

$$(\alpha, \mathscr{E}_{\rho,\eta}(\alpha))_{F_0} = 0$$

(см. (21)). Отсюда получаем второе утверждение леммы. Лемма доказана.

21°. Найдем теперь явную формулу для символа Гильберта.

ТЕОРЕМА 4. Символ Гильберта $(,)_F$ совпадает со спариванием \langle , \rangle_F , если $p \neq 2$, и, значит,

$$(\alpha, \beta)_F = [\operatorname{tr} \operatorname{res} \Phi_{\alpha,\beta}/s](\xi)$$

(относительно рядов $\Phi_{\alpha,\beta}(X)$ и s(X) см. § 6, n. 13°).

Доказательство. Случай q=p. Символ Гильберта (,) $_{F}$ и спаривание \langle , \rangle_{F} являются универсальными символами на F (см. тео-

рему 3 и предложение 5). При этом значения обоих символов совпадают на паре π , $\omega(a) = E_F(as)|_{x=\pi}$ (см. (36)). Поскольку значения $(\pi, \omega)_F$ и $\langle \pi, \omega \rangle_F$ являются образующими в модуле κ_n , то это дает совпадение самих символов $\langle \cdot \rangle_F$ и $\langle \cdot \rangle_F$.

Общий случай. Мы используем доказанную в теореме 1 работы [4] инвариантность и независимость спаривания \langle , \rangle_F на множестве $\{\pi, A(\mathfrak{m})\}$, а также лемму 4. Надо отметить, что мы будем сейчас практически повторять доказательство теоремы 2 работы [4].

Проверим сперва равенство

$$(\pi, \beta)_F = \langle \pi, \beta \rangle_F \tag{24}$$

для любого элемента β из $A(\mathfrak{m})$. Из независимости спаривания \langle , \rangle_F от разложения элементов группы точек $A(\mathfrak{m})$ в степенные ряды по простому элементу π (см. предложение 4) следует, что для элемента β мы можем взять такое представление его в виде ряда от π , которое соответствует разложению β по базису (23).

Для образующих этого базиса мы имеем равенства

$$(\pi, \mathcal{E}(\theta\pi^i))_F = 0, \quad (\pi, \mathcal{E}_{\rho,\eta}(\theta\pi^i))_F = 0$$
(25)

(см. лемму 4). С другой стороны, как было проверено в теореме 1,

$$\langle \pi, \mathscr{E}(\theta\pi^i) \rangle_F = 0$$

и, действуя так же как и при доказательстве равенства (15) в теореме 1, используя при этом соотношения (45) для логарифма группы $F_{\rho,\eta}$ (см. § 11, п. 38°), мы получим:

$$\langle \pi, \mathscr{E}_{0n}(\theta \pi^i) \rangle_F = 0.$$

Наконец, $(\pi, \omega(a))_F = \langle \pi, \omega(a) \rangle_F$ (см. (36)). Отсюда и из (25) следует (24).

Пусть теперь ε — главная единица поля k. Из инвариантности спаривания \langle , \rangle_F и равенства (24) получаем:

$$\begin{split} \left\langle \varepsilon, \, \beta \right\rangle_{\pi} &= \left\langle \pi \varepsilon, \, \beta \right\rangle_{\pi} \underset{F}{\sim} \left\langle \pi, \, \beta \right\rangle_{\pi} = \left\langle \tau, \, \beta \right\rangle_{\tau} \underset{F}{\sim} \left\langle \pi, \, \beta \right\rangle_{\pi} = \\ &= \left\langle \tau, \, \beta \right\rangle_{F} \underset{F}{\sim} \left\langle \pi, \, \beta \right\rangle_{F} = \left\langle \varepsilon, \, \beta \right\rangle_{F} \end{split}$$

(здесь $\tau = \pi \epsilon$). Общий случай следует теперь из билинейности символа Гильберта и спаривания \langle , \rangle_F . Теорема доказана.

Замечание 7. Из совпадения символа Гильберта со спариванием \langle , \rangle_F следует его универсальность как символа на группе точек $A(\mathfrak{m})$ формальной группы F, а также его невырожденность по второму аргументу (см. теоремы 3 и 5).

Замечание 8. Несомненно, что нельзя ожидать невырожденности символа Гильберта по первому аргументу. Например, в мультипликативном случае примарные элементы из k^{\times} будут ортогональны всей группе точек $A(\mathfrak{m})$. Было бы интересно выяснить ядро символа Гильберта по первому аргументу в общем случае.

§ 9. Символы на коммутативной формальной группе

Перейдем теперь к теории символов для произвольных коммутативных формальных групп. Доказательства основных утверждений будут даны конспективно, так как мы надеемся закончить и дать более подробные доказательства в другой статье.

 22° . Итак, пусть F — коммутативная формальная группа, заданная над полным дискретно нормированным кольцом $\mathfrak o$ с конечным полем вычетов по максимальному идеалу. Пусть при этом F является $\mathfrak o_0$ -модульным групповым законом относительно некоторого подкольца $\mathfrak o_0$ кольца $\mathfrak o$ (см. § 2, п. 2°). Если $\mathfrak m$ — максимальный идеал кольца целых элементов некоторого алгебраического расширения поля частных k_0 кольца $\mathfrak o_0$, то, как и раньше, через $A(\mathfrak m)$ обозначаем группу точек формальной группы F. Пусть, наконец, $f = [\pi_0]$ — изогения формальной группы F (π_0 — простой элемент в $\mathfrak o_0$) и $\mathfrak o$ ($X = X + d_2 X^2 + ...$ — произвольный степенной ряд с коэффициентами из кольца $\mathfrak o_0$.

Для мультипликативной группы k^{\times} , группы точек $A(\mathfrak{m})$ формальной группы F и некоторого топологического \mathfrak{o}_0 -модуля \mathfrak{A} , в котором сложение и действие эндоморфизмов из кольца \mathfrak{o}_0 индуцировано формальной группой F, определим ϕ -символ $c_{F,f}$ следующим образом.

Определение 6. Непрерывным φ -символом на группе точек $A(\mathfrak{m})$ с изогенией f будем называть непрерывное билинейное спаривание

$$c_{F,f}: k^{\times} \times A(\mathfrak{m}) \mapsto \mathfrak{A},$$

удовлетворяющее соотношению

$$c_{F,f}(\alpha, \varphi(\alpha^m)) = 0$$

для любого α из m и любого натурального m, не делящегося на $q=p^h$, где h— высота изогении f.

Определение 7. ϕ -символ $c_{F,f}: k^{\times} \times A(\mathfrak{m}) \mapsto \mathfrak{A}$ назовем универсальным, если для любого ϕ -символа $c'_{F,f}: k^{\times} \times A(\mathfrak{m}) \mapsto \mathfrak{A}'$ существует непрерывный гомоморфизм $\sigma: \mathfrak{A} \mapsto \mathfrak{A}'$ такой, что $\sigma \circ c_{F,f} = c'_{F,f}$.

 23° . Так же как и в лемме 1, доказываются для произвольного θ из \Re равенства: $c_{F,f}(\pi, \varphi(\theta\pi^m)) = 0$, если m не делится на q, и $f^{(r)}c_{F,f}(\pi, \varphi(\theta\pi^m)) = 0$ при произвольном m и некоторой суперпозиции $f^{(r)}$ изогении f.

Из этих равенств и арифметики группы точек $A(\mathfrak{m})$ получаем, с одной стороны, утверждение о тривиальности φ -символа c_{Ff} , когда $A(\mathfrak{m}) \cap \ker f = (0)$, а с другой стороны, теорему о том, что модуль значений $c_{F,f}(k^{\times}, A(\mathfrak{m}))$ аннулируется некоторой суперпозицией изогении f.

Группа точек $A(\mathfrak{m})$, кроме образующих вида $\varphi(\theta\pi^i)$, где $\theta \in \mathfrak{R}$, а натуральное число i не делится на $q = p^h$, имеет еще конечный набор примарных образующих вида $\omega_s = \varphi(\theta\pi^{t_s})$, $1 \leq s \leq m$, где t_s — константы, связанные с многоугольником Ньютона изогении f (см. [1, предложение 2.1]). При этом сами примарные элементы ω_s получаются из корней изогении f, содержащихся в группе точек $A(\mathfrak{m})$.

Практически без всяких изменений, так же как и в предложении 2, доказывается, что модуль значений $c_{F,f}(k^{\times}, A(\mathfrak{m}))$ порожден значениями на парах $c_{F,f}(\pi, \omega_s)$. Отсюда следует вложение модуля $c_{F,f}(k^{\times}, A(\mathfrak{m}))$ в ядро изогении $f^{(r)}$ при некотором r.

Для окончания теории ϕ -символов нам надо доказать существование универсального ϕ -символа, а также проверить вложение модуля $c_{F,f}(k^\times, A(\mathfrak{m}))$ в группу точек $A(\mathfrak{m})$. Автор видит в настоящий момент единственный путь к проверке этих утверждений — построить универсальный ϕ -символ, доказать его невырожденность и затем, используя способ, данный в теореме 2, доказать вложение модуля $c_{F,f}(k^\times, A(\mathfrak{m}))$ в группу точек $A(\mathfrak{m})$.

§ 10. Невырожденность спаривания \langle , \rangle_F

 24° В этом параграфе проверяется невырожденность спаривания \langle , \rangle_F (см. (8)) по второму аргументу. Пусть k_0 — поле, над кольцом целых элементов \mathfrak{o}_0 которого определена формальная группа F, и T — подполе инерции в расширении k/k_0 , оператор следа в расширении T/k_0 обозначим через tr , а степень этого расширения—через j . Пусть, далее, δ — автоморфизм Фробениуса поля T, который на поле вычетов действует как возведение в степень p , а $\Delta = \delta^f$ — автоморфизм Фробениуса в расширении T/k_0 (здесь f — степень инерции $\mathrm{k}_0/\mathbf{Q}_\mathrm{p}$). Наконец, через n_0 , как и раньше, обозначаем простой элемент поля k_0 .

ЛЕММА 5. Если для всех x из кольца целых элементов v поля T выполнено сравнение

$$\operatorname{tr}\left(c_0x + c_1x^{\delta} + \cdots + c_{f-1}x^{\delta^{f-1}}\right) \equiv 0 \bmod \pi_0,$$

 $c \partial e \ c_0, \ c_1, \ \ldots, \ c_{f-1}$ взяты из $\mathfrak{o}, \ to \ коэффициенты <math>c_0, \ c_1, \ \ldots, \ c_{f-1}$ делятся на \mathfrak{n}_0 .

Доказательство. Сравнение леммы при переходе к полю вычетов будет означать выполнение следующего равенства:

$$\sum_{s=0}^{f-1}\sum_{r=0}^{f-1}\overline{c_s^{\Delta r}}\overline{x}^{\Delta r\delta s}=0,$$

где \bar{c}_s и \bar{x} — вычеты элементов c_s и x. Из теоремы Артина о линейной независимости автоморфизмов (см. [7, с. 238]) получаем теперь, что все \bar{c}_s равны нулю в поле вычетов. Лемма доказана.

25°. Возьмем образующую ξ группы корней изогении $[\pi_0^n]$ формальной группы F. Элемент ξ имеет порядок $e_n = e/q^{n-1}(q-1)$ в группе точек $A(\mathfrak{m})$ (см. п. 31°). Пусть z(X) — степенной ряд, полученный из разложения ξ по степеням простого элемента π поля k с коэффициентами из кольца \mathfrak{o} , τ . е. $z(\pi) = \xi$. Будем считать, что разложение элемента ξ начинается с члена степени e_n . Для ряда $s(X) = [\pi_0^n] z(X)$ имеет место сравнение (см. [4, (17)])

$$1/s(X) \equiv 1/z(X)^{\Delta^n} \mod \pi_0$$
.

Поэтому ряд 1/s представляет собой по $\operatorname{mod} \pi_0$ ряд Лорана со степенями, делящимися на q, и начинающийся с члена степени ($-qe_1$), т. е.

$$1/s \equiv c_0 X^{-qe_1} + c_1 X^{-qe_1+q} + \cdots \mod \pi_0. \tag{26}$$

 26° . Пусть теперь имеются два натуральных числа m и m', меньших qe_1 и не делящихся на q, и пусть $m=p^r\overline{m}, m'=p^{r'}\overline{m}'$, где \overline{m} и \overline{m}' — взанимно простые с p числа. Возьмем, далее, главную единицу ε поля k, представленную в виде

$$\varepsilon = E_p(xX^{\mu})|_{X=\pi} = \exp\left(x\pi^{\mu} + \frac{x^{\delta}\pi^{\rho\mu}}{p} + \frac{x^{\delta^2}\pi^{\rho^2\mu}}{p^2} + \cdots\right),\tag{27}$$

где $\mu = (qe_1 - m)/p^r$, а x — произвольный элемент из кольца \mathfrak{o} . ЛЕММА 6. Имеет место сравнение

$$\operatorname{res}\left(aX^{m'}\frac{d}{dX}\log \varepsilon(X)\right)/s \equiv \operatorname{\mu} acx^{\delta^{r'}} \operatorname{mod} \pi_0,$$

 $e \partial e \ a \in \mathfrak{o}$, $a \ c - \kappa o \circ \phi \phi$ ициент при степени — $(m' + p^r) \mu$) в сравнении (26).

Доказательство. Из определения единицы є имеем равенство

$$aX^{m'}\frac{d}{dX}\log\varepsilon(X) = X^{-1}\sum_{\alpha=0}^{\infty}\mu ax^{\delta\alpha}X^{m'+p^{\alpha}\mu}.$$

Степень $m' + p^{\alpha}\mu$ может делиться на $q = p^{f}$ только в случае, когда $\alpha = r'$. Ряд 1/s имеет ненулевые коэффициенты по $\text{mod } \pi_{0}$ лишь при степенях, делящихся на q. Отсюда и из (26) следует сравнение леммы.

 27° . Рассмотрим для произвольного элемента β из группы точек $A(\mathfrak{m})$ его каноническое разложение (см. [4, (40)]), построенное с помощью простого элемента π :

$$\beta = E_F(\omega_\beta(X)) \mid_{X=\pi} + F_\omega(a_\beta), \tag{28}$$

где $w_{\beta}(X)$ — многочлен, для которого степень каждого его одночлена не делится на q и меньше чем qe_{1} , а $\omega(a_{\beta})$ — $\pi_{0}{}^{n}$ -примарный элемент. Отметим, что

$$\beta \in [\pi_0] \ A \ (\mathfrak{m}) \Leftrightarrow \begin{cases} w_\beta \ (X) \equiv 0 \ \text{mod} \ \pi_0, \\ \text{tr} \ a_\beta \equiv 0 \ \text{mod} \ \pi_0 \end{cases}$$
 (29)

(см. [4, предложение 2]).

 28° . В этом пункте мы будем считать, что в каноническом разложении (28) элемента β отсутствует примарный элемент и элемент β не делится в группе точек $A(\mathfrak{m})$ на изогению $[\pi_0]$. Тогда его каноническое разложение по $\operatorname{mod}[\pi_0]A(\mathfrak{m})$ будет иметь вид

$$\beta = E_F(w_\beta) \mid_{X=\pi} \tag{30}$$

И

$$w_{\mathbf{B}} = a_1 X^{m_1} + a_2 X^{m_2} + \cdots + a_t X^{m_t},$$

где все a_i не делятся на π_0 , а все степени $m_i < qe_1$ и не делятся на q.

Пусть, далее, α — первый индекс, для которого степень m_{α} имеет наименьший среди всех m_i порядок входящего в него простого числа p. Если ввести обозначения

$$m_i = p^{r_i} \overline{m}_i, \quad (\overline{m}_i, p) = 1,$$

то при нашем выборе α имеем:

$$\begin{cases} r_{\alpha} \leqslant r_{i} \text{ для всех } i \geqslant \alpha, \\ r_{\alpha} < r_{i} \text{ для всех } i < \alpha. \end{cases}$$
 (31)

Заметим также, что при всех і степени

$$r_i \leqslant f-1,$$
 (32)

так как m_i не делится на $q = p^f$.

Пусть $\mu = (qe_1 - m_\alpha)/p^{r_\alpha}$. Тогда для единицы є вида (27) будет иметь место следующее сравнение:

$$\operatorname{res}\left(w_{\beta}\frac{d}{dX}\log\varepsilon\right)/s \equiv a'_{\alpha}x^{\delta'^{\alpha}} + \sum_{i=1}^{\alpha-1} a'_{i}x^{\delta'^{i}} \operatorname{mod} \pi_{0}, \tag{33}$$

где $a_{\alpha}' = \mu a_{\alpha} c_0$, а коэффициент a_i' при $i \neq \alpha$ получается перемножением чисел μ , a_i и коэффициента при степени $-(m_i + p^{r_i}\mu)$ в сравнении (26).

Сравнение (33) вытекает непосредственно из леммы 6, если заметить, что члены с $i \geqslant \alpha$ не войдут в сумму правой части, так как при этом $m_i + p^{r_i}$ и будет больше qe_i .

29°. Пусть выполнены предположения предыдущего пункта. Проверим, что тогда имеет место следующее сравнение:

$$\operatorname{res}\left(l_{m}\left(\varepsilon\right)\frac{d}{dX}\left(\frac{\Delta}{\pi_{0}}\lambda\left(\beta\right)\right)\right)/s\equiv0\,\operatorname{mod}\pi_{0},\tag{34}$$

где $l_m(\varepsilon) = \left(1 - \frac{\Delta}{q}\right) \log \varepsilon$, а $\lambda(X)$ — логарифм формальной группы F. Легко проверить выполнение следующего равенства:

$$l_{m}\left(\varepsilon\right)\frac{d}{dX}\frac{\Delta}{\pi_{0}}\lambda\left(\beta\right)=\frac{p}{\pi_{0}}\left(p^{f-1}l_{m}\left(\varepsilon\right)\right)X^{-1}\left(X\frac{d}{dX}\lambda\left(\beta\right)\right)^{\Delta}.$$

Из вида единицы є (см. (27)) получаем:

$$p^{f-1}l_m(\varepsilon) = (p^{f-1} + p^{f-2}\delta + \dots + \delta^{f-1})\left(\left(1 - \frac{\delta}{p}\right)\log\varepsilon\right) \equiv x^{\delta^{f-1}}X^{p^{f-1}\mu} \bmod \pi_0.$$

Поэтому

$$l_m(\varepsilon) \frac{d}{dX} \frac{\Delta}{\pi_0} \lambda(\beta) \equiv X^{-1} \left\{ \frac{p}{\pi_0} x^{\delta^{f-1}} X^{p^{f-1}\mu} \left(X \frac{d}{dX} \lambda(\beta) \right)^{\Delta} \right\} \mod \pi_0.$$
 (35)

Если многочлен $w_{\beta}(X)$ (см. (30)) имеет степени, взаимно простые с p, то $(m_{\alpha}, p) = 1$ и, значит, $p^{f-1}\mu$ не делится на q. Отсюда следует, что в скобках $\{\ldots\}$ правой части сравнения (35) стоит ряд, у которого нет членов со степенями, делящимися на q. Но все члены ряда 1/s по $\text{mod } \pi_0$ имеют степени, делящиеся на q, значит,

$$\operatorname{res} X^{-1}\{\ldots\}/s \equiv 0 \mod \pi_0$$

и сравнение (34) в этом случае доказано.

Если же в многочлене $w_{\beta}(X)$ все степени делятся на p, то его можно представить в виде $w_{\beta}(X) = h(X)^{\delta}$, где h(X) — многочлен с целыми коэффициентами. Тогда

$$\lambda(\beta) = w_{\beta} + \frac{w_{\beta}^{\Delta}}{\pi_{0}} + \cdots = \left(\sum_{i=0}^{\infty} \frac{h^{\Delta^{i}}}{\pi_{0}^{i}}\right)^{\delta}$$

и поэтому

$$\frac{d}{dX}\lambda(\beta) = pX^{p-1}\left(\frac{d}{dX}\sum_{i}\frac{h^{\Delta i}}{\pi_{0}^{i}}\right)^{\delta}.$$

Отсюда и из (35) получаем:

$$\begin{split} l_m\left(\varepsilon\right) \frac{d}{dX} \, \frac{\Delta}{\pi_0} \, \lambda\left(\beta\right) &\equiv \\ &\equiv X^{-1} \left\{ \frac{\rho^2}{\pi_0} \, x^{\delta^{f-1}} X^{\rho^{f-1}\mu} \left(\, X \frac{d}{dX} \sum_{i=0}^{\infty} \frac{h^{\Delta^i}}{\pi_0^i} \right)^{\Delta \delta} \right\} \bmod \pi_{\mathbb{C}}. \end{split}$$

Производная ряда $\sum h^{\Delta^i}/\pi_0^i$ имеет, очевидно, целые коэффициенты. Значит, ряд, стоящий в правой части, $\equiv 0 \bmod \pi_0$. Отсюда и в этом случае получаем сравнение (34).

30°. Приступим теперь к доказательству основного результата этого параграфа.

ТЕОРЕМА 5. Для любого элемента β из группы точек $A(\mathfrak{m})$, не делящегося в $A(\mathfrak{m})$ на изогению $[\pi_0]$, найдется простой элемент π из поля k такой, что значение $\langle \pi, \beta \rangle$ является образующей \mathfrak{o}_0 -модуля $\kappa_n = \langle k^{\times}, A(\mathfrak{m}) \rangle$.

Доказательство. Если в каноническом разложении (28) элемента β для коэффициента a_{β} выполнено условие: $\operatorname{tr} a_{\beta} \not\equiv 0 \operatorname{mod} \pi_{0}$, то для простого элемента π будем иметь (см. (36))

$$\langle \pi, \beta \rangle = \langle \pi, \omega(a_{\beta}) \rangle = [\operatorname{tr} a_{\beta}](\xi)$$

и при этом элемент [tr $a_{\scriptscriptstyle \beta}$](ξ) будет снова образующей $\mathfrak{o}_{\scriptscriptstyle 0}$ -модуля \varkappa_n .

Если $\operatorname{tr} a_{\beta} \equiv 0 \operatorname{mod} \pi_{0}$, то элемент β , рассматриваемый по $\operatorname{mod}[\pi_{0}]A(\mathfrak{m})$, будет иметь вид (30) (см. (29)).

Рассмотрим в этом случае для элемента β единицу ϵ , построенную в п. 26°. Тогда по определению спаривания получим (см. (8)):

$$\langle \varepsilon, \beta \rangle = [\operatorname{tr} \gamma_{\varepsilon,\beta}](\xi),$$

где

$$\gamma_{\varepsilon,\beta} = \operatorname{res}\left(l_F(\beta) \frac{d}{dX} \log \varepsilon - l_m(\varepsilon) \frac{d}{dX} \frac{\Delta}{\pi_0} \lambda(\beta)\right).$$

Отметим, что согласно определению функции $l_{\rm F}$ (см. (7)) имеем $l_{\rm F}(\beta)=w_{\beta}(X)$, и поэтому из (33) и (34) получаем:

$$\operatorname{tr} \gamma_{\epsilon,\beta} \equiv \operatorname{tr} \left(a'_{\alpha} x^{\delta' \alpha} + \sum_{i=1}^{\alpha-1} a'_i x^{\delta' i} \right) \operatorname{mod} \pi_0.$$

Все степени r_i строго больше r_α и меньше f, а коэффициент a_{α}' обратим в кольце $\mathfrak o$ (см. (31), (32), (33)). Поэтому, согласно лемме 5, найдется x из кольца $\mathfrak o$, для которого правая часть последнего сравнения не будет делиться на π_0 , значит, для этого x (и тем самым для единицы ε) будем иметь:

$$\text{tr } \gamma_{\epsilon,\beta} \not\equiv 0 \text{ mod } \pi_0.$$

В этом случае значение $\langle \epsilon, \beta \rangle$, равное $[\operatorname{tr} \gamma_{\epsilon,\beta}](\xi)$, будет снова образующей \mathfrak{o}_0 -модуля \varkappa_n .

Для окончания доказательства теоремы возьмем простой элемент $\tau = \pi \epsilon$, для которого значение

$$\langle \tau, \beta \rangle = \langle \pi, \beta \rangle + {}_{F}\langle \varepsilon, \beta \rangle \equiv \langle \varepsilon, \beta \rangle \mod[\pi_0] \varkappa_n$$

будет образующей в \varkappa_n . Теорема доказана.

§ 11. Вспомогательные утверждения

 31° . Примарные элементы группы точек $A(\mathfrak{m})$. Пусть F — формальная группа Любина — Тэйта, определенная над кольцом \mathfrak{o}_0 . Если k — алгебраическое расширение поля отношений k_0 кольца \mathfrak{o}_0 , то через e обозначаем индекс ветвления расширения k/k_0 , \mathfrak{m} — максимальный идеал кольца целых k, \mathfrak{o} — кольцо целых элементов подполя инерции T расширения k/k_0 и, наконец, $q=p^f$ — число элементов поля вычетов поля k_0 .

В предложении 1 работы [4] были построены π_0^n -примарные элементы группы точек $A(\mathfrak{m})$ (т. е. элементы, дающие неразветвленное расширение поля k при делении их на изогению $[\pi_0^n]$). А именно, если ξ — фиксированная образующая \mathfrak{o}_0 -модуля корней изогении $[\pi_0^n]$ и z(X) — степенной ряд, полученный из разложения ξ по степеням π с коэффициентами из \mathfrak{o} , π . е. $z(\pi) = \xi$, то π_0^n -примарные элементы в $A(\mathfrak{m})$

имеют вид

$$\omega(a) = E_F(as(X)) \mid_{X=\pi},$$

где $a \in \mathfrak{o}$, $s(X) = [\pi_{\mathfrak{o}}^{n}](z)$ (подробнее см. [4], [5]).

Для π_0^n -примарного элемента $\omega(a)$ выполнены равенства

$$(\pi, \omega(a))_F = \langle \pi, \omega(a) \rangle_F = [\operatorname{tr} a](\xi), \tag{36}$$

где ${\rm tr}$ — оператор следа в T/k_0 , а также сравнение

$$\omega(a) \equiv a \xi^{q^n} \mod \pi^{q e_1 + 1}$$

(см. [4, предложение 1 и § 4]). Образующая ξ имеет порядок $e_n = e/q^{n-1}(q-1)$. Поэтому получаем:

$$\omega\left(a\right) \equiv \theta_a \pi^{qe_1} \bmod \pi^{qe_1+1}$$

при некотором θ_a из \Re .

32°. Арифметика группы точек $A(\mathfrak{m})$. В работе [4, § 4] был указан критерий для системы образующих в группе точек $A(\mathfrak{m})$: пусть для каждого натурального i, которое не делится на q и не превосходит qe_1 , а также для $i=qe_1$ и для каждого $\theta \in \mathfrak{R}$ выбран элемент $\varepsilon_i(\theta)$ в \mathfrak{d}_0 -модуле $A(\mathfrak{m})$, удовлетворяющий условию $\varepsilon_i(\theta) \equiv \theta \pi^i \text{mod } \pi^{i+1}$. Тогда элементы $\varepsilon_i(\theta)$ являются системой образующих для \mathfrak{d}_0 -модуля $A(\mathfrak{m})$.

Отметим, что в качестве элементов $\varepsilon_i(\theta)$ мы можем брать элементы вида $\varphi(\theta\pi^i)$, где $\varphi(X) = X + ... -$ произвольный степенной ряд с коэффициентами из кольца \mathfrak{o} , а в качестве элемента последней ступени $i = qe_1$ можем брать либо π_0^n -примарный элемент $\omega(a)$, либо $\varphi(\theta\pi^{qe_1})$.

33°. При тех же обозначениях, что и в п. 31° этого параграфа, пусть T' — подполе инерции в k/\mathbf{Q}_p и \mathfrak{o}' — кольцо целых элементов поля T'. Таким образом, \mathfrak{o}' с \mathfrak{o} . Через δ обозначим автоморфизм Фробениуса в T', который на поле вычетов действует как возведение в степень p, а через $\Delta = \delta^f$ — автоморфизм Фробениуса в расширении T/k_0 .

Пусть имеется ряд g(X) из кольца $\mathfrak{o}\{X\}$, которое состоит из всех рядов $\sum_{-\infty}^{\infty} a_i X^i$, $a_i \in \mathfrak{o}$, удовлетворяющих условию: $a_i \to 0$, если $i \to -\infty$ (подробнее см. [4, §1, п. 3°]).

Если $m=q^rm_0$, где $q \nmid m_0$, то несложная индукция по r показывает, что

$$g^{mq} \equiv g^{m\Delta} \bmod \pi_0^{r+1}. \tag{37}$$

Далее, пусть h(X) — произвольный степенной ряд без свободного члена с коэффициентами из кольца \mathfrak{o}' . Запишем его в виде $h=X^a\theta\epsilon(X)$, где θ — элемент мультипликативной системы \mathfrak{R} , а $\epsilon(X)$ — степенной ряд, начинающийся с 1, и проверим выполнение следующе-

го сравнения в кольце $\mathfrak{o}'[[X]]$ при $p \geqslant 3$:

$$h^{mq}$$
— $h^{m\Delta} \equiv mql_m(\varepsilon) h^{m\Delta} \mod (mp)^2$, (38) где $m \geqslant 1$, а $l_m(\varepsilon) = \left(1 - \frac{\Delta}{q}\right) \log \varepsilon$.

Действительно,

$$h^{mq-m\Delta} = \varepsilon^{mq-m\Delta} = \exp(mq l_m(\varepsilon)).$$

Поэтому

$$h^{mq} - h^{m\Delta} = h^{m\Delta} \left(\exp mq l_m \left(\varepsilon \right) - 1 \right) =$$

$$= mq h^{m\Delta} l_m \left(\varepsilon \right) + h^{m\Delta} \sum_{i=2}^{\infty} \frac{\left(mp \right)^i}{i!} \left(\frac{q}{p} l_m \left(\varepsilon \right) \right)^i. \tag{39}$$

Если $p \geqslant 3$, то легко видеть, что коэффициент $(mp)^i/i!$ делится в \mathbb{Z}_p на число $(mp)^2$. Кроме того, ряд

$$\frac{q}{p}l_m(\varepsilon) \in \mathfrak{o}'[[X]],$$

так как $\frac{q}{p} l_m(\varepsilon) = (p^{f-1} + p^{f-2}\delta + \cdots + \delta^{f-1}) \left(\left(1 - \frac{\delta}{p}\right) \log \varepsilon \right)$ и при этом ряд $\boldsymbol{l}(\varepsilon) = \left(1 - \frac{\delta}{p}\right) \log \varepsilon$ имеет целые коэффициенты (см. [2, лемма 2]). Значит,

каждое слагаемое в сумме (39) делится на $(mp)^2$, что дает (38).

Замечание 9. Можно показать, что сравнение (38) справедливо для любого ряда h(X) из кольца $v'\{X\}$.

Далее, из очевидных соображений для любого ряда g(X) из кольца $\mathfrak{o}\{X\}$ имеет место сравнение

$$\operatorname{tr}\operatorname{res} X^{-1}g^{\Delta} = \operatorname{tr}\operatorname{res} X^{-1}g. \tag{40}$$

34°. Рассмотрим ряд $s_i = [\pi_0{}^i]z(X)$ (см. п. 31°). Для ряда s_i имеют место сравнения

$$1/s_i \equiv 1/s_{i-1}^{\mathbf{A}} \bmod \pi_0^i, \quad \frac{d}{dX} (1/s_i) \equiv 0 \bmod \pi_0^i$$
 (41)

(см. [4, (20), (18)]). Поэтому для любого ряда g(X) из кольца T[[X]] такого, что ряды $\frac{d}{dX}\,g(X)$ и $\frac{q}{p}g(X)$ имеют уже целые коэффициенты из кольца $\mathfrak o$, выполнено сравнение

$$\operatorname{res}\left(\frac{d}{dX} g\right) / s_i \equiv 0 \mod \pi_0^i \tag{42}$$

(см. [4, лемма 13]). Наконец, если $g(X) \in \mathfrak{o}\{X\}$, то

$$\operatorname{tr}\operatorname{res}\left(\frac{d}{dX}\frac{g^{\Delta}}{q}\right)/s_{i}^{\Delta} = \operatorname{tr}\operatorname{res}X^{-1}\left(\left(X\frac{d}{dX}g\right)/s_{i}\right)^{\Delta} = \operatorname{tr}\operatorname{res}\left(\frac{d}{dX}g\right)/s_{i} \quad (43)$$

(мы использовали при этом (40) и (20)).

35°. Пусть, как и в п. 33°, взят произвольный степенной ряд h(X) без свободного члена с коэффициентами из кольца \mathfrak{o}' , и пусть $m=q^rm_0$, где $0 \leqslant r < n$, а число m_0 не делится на q. Имеет место сравнение:

$$\operatorname{tr}\operatorname{res}\left(\frac{d}{dX}\frac{h^m}{m}\right)/s \equiv 0 \bmod \pi_0^{n-r}. \tag{44}$$

Проверим это сравнение индукцией по r. Если m не делится на q, т. е. r=0, то ряд $\frac{q}{p}\frac{h^m}{m}$ имеет целые коэффициенты и, значит, из (42) для i=n будет следовать (44).

Если m делится на q, то ряд $\frac{q}{mp} (h^m - h^{\frac{m}{q}\Delta})$ имеет целые коэффициенты из кольца \mathfrak{o}' (см. (37), (38)). Поэтому (см. 42)

$$\operatorname{res}\left(\frac{d}{dX} \frac{h^m - h^{\frac{m}{q}} \Delta}{m}\right) / s \equiv 0 \operatorname{mod} \pi_0^n$$

и, значит, отсюда, а также из (41), (43) получим:

$$\operatorname{tr}\operatorname{res}\left(\frac{d}{dX}\frac{h^m}{m}\right)/s \equiv \operatorname{tr}\operatorname{res}\left(\frac{d}{dX}\frac{h^{\frac{m}{q}}\Delta}{m}\right)/s \equiv$$

$$\equiv \operatorname{tr}\operatorname{res}\left(\frac{d}{dX}\frac{h^{\frac{m}{q}}\Delta}{m}\right)/s_{n-1} = \operatorname{tr}\operatorname{res}\left(\frac{d}{dX}\frac{h^{m/q}}{m/q}\right)/s_{n-1}\operatorname{mod}\pi_0^{n-1}.$$

Применяя теперь индукционное предположение, получаем (44).

36°. Пусть $\lambda_0(X) = X + c_2 X^2 + \ldots$ логарифм базисной формальной группы Любина—Тэйта F_0 , которая построена по эндоморфизму $[\pi_0]_0 = \pi_0 X + X^q$. Обозначим через c'_m коэффициент c_m в $\lambda_0(X)$, если m не делится на q, и $c'_m = c_m - \frac{1}{\pi_0} c_{m/q}$, если $q \mid m$. Кроме того, через \mathbf{v}_0 обозначаем показатель в поле k_0 . В этом и следующем пунктах мы займемся проверкой неравенств

$$v_0(c'_m) \geqslant \begin{cases} r, & \text{если } q = p \text{ и } m = p^r m_0, \text{ где } p \nmid m_0, \\ r+1, & \text{если } q \geqslant p^2 \text{ и } m = q^r m_0, \text{ где } q \nmid m_0. \end{cases}$$
 (45a)

Из условий (45а, б) итерацией получаем:

$$v_0(c_m) \gg \begin{cases} -r, & \text{если } q = p \text{ и } m = p^r m_0, p \nmid m_0, \\ -(r-1), & \text{если } q \gg p^2 \text{ и } m = q^r m_0, q \nmid m_0. \end{cases}$$
 (46a)

Прежде всего докажем следующую лемму о биномиальных коэффициентах.

ЛЕММА 7. Пусть даны натуральные числа $m=q^rs$ и $i=q^{r-1}s++a(q-1)=q^{r'}s'$, где s и s' не делятся на q, а число $a\geqslant 0$. Для $q\geqslant 3$ имеют место следующие соотношения:

а) если $j \le r$, то $C_m{}^j$ делится на $\pi_0{}^{r+1-j}$, т. е.

$$v_0(C_m^j) \geqslant r+1-j;$$

б) если $a \ge 1$ и при a = 1 число і делится на q (т. е. $r' \ge 1$), то

$$v_0(C_i^{aq}) \gg (r + r' - \frac{aq}{2}) e_0 f_0;$$

в) если a=1 и число i не делится на q (r. e. r'=0), но при этом $r\geqslant 2$, то

$$v_0(C_i^q) \geqslant (r-2)e_0f_0$$

(здесь e_0 и f_0 — индекс ветвления и степень инерции расширения k_0/\mathbf{Q}_p). Доказательство. Заметим, что в а) из условия $j \leqslant r$ следует $j \leqslant q^r$. Поэтому простое число p входит в биномиальный коэффициент $C^i_{q^rs}$ лишь в множитель q^rs/j . Очевидно, что число j делится самое большее на p^{j-1} . Поэтому

$$v_0(C_m^j) = v_0(m) - v_0(j) \geqslant (r - (j-1)) e_0 \geqslant r + 1 - j.$$

Рассмотрим теперь C_i^{aq} . Степень простого числа p, входящего в знаменатель (aq)! коэффициента C_i^{aq} , равна $\left[\frac{aq}{p}\right] + \left[\frac{aq}{p^2}\right] + \cdots$. Поэтому $\mathbf{v}_0\left((aq)!\right) \leqslant \left[\frac{aq}{p-1}\right] e_0 \leqslant \frac{aq}{2} e_0 f_0$, если $q \geqslant 3$. Числитель C_i^{aq} делится как на число $i=q^{r'}s'$, так и на $q^{r-1}s$. Кроме того, нетрудно проверить, что среди оставшихся aq-2 сомножителей числителя найдется число, делящееся на q. Поэтому числитель коэффициента C_i^{aq} делится на $q^{r+r'}$, откуда следует 6).

Последний пункт в) проверяется аналогично.

37°. Приступим теперь к проверке условий (37а, б) для логарифма $\lambda_0(X)$. Коэффициенты логарифма λ_0 однозначно определяются из равенства $[\pi_0]_0 = \lambda_0^{-1} \pi_0 \lambda_0$ (см. (3)) или, что то же самое, из равенства $\pi_0 \lambda_0(X) = \lambda_0(\pi_0 X + X^q)$. Несложно проверить, что коэффициент c_m логарифма $\lambda_0(X)$ отличен от нуля только, если m делится на q-1. Учитывая это, напишем для c_m определяющее рекуррентное соотношение:

$$(1 - \pi_0^{m-1}) c_m = \sum_{\substack{i \\ \frac{m}{q} \leqslant i < m \\ i \equiv 1 \mod(q-1)}} c_i C_i^{i'q-m'+1} \pi_0^{i'q-m'} = \sum_i x_i, \tag{47}$$

где m' = (m-1)/(q-1), i' = (i-1)/(q-1).

Условия (45а, б) будем проверять индукцией. Эту проверку проведем для q=p. Случай $q\geqslant p^2$ разбирается аналогично, только вместо индукционного предположения (45а) и (46а) надо использовать (45б) и (46б), а также вместо неравенств $q=p\geqslant 3$ — неравенства $q\geqslant p^2\geqslant 9$.

Случай $p \nmid m$. Надо доказать, что при этом элемент $c'_m = c_m$ является целым. Рассмотрим i-ое слагаемое x_i в сумме (47). Если $p \nmid i$, то эле-

мент c_i — целый по индукционному предположению и непосредственно проверяется, что i'p— $m' \geqslant 0$. Поэтому элемент x_i — целый.

Если i делится на p и, например, $i=p^{r'}s'$, где $p \nmid s'$, то по индукционному предположению $v_0(c_i) \geqslant -r'$ (см. (46a)). Если для слагаемого x_i суммы (47) выполнено неравенство $i'p-m' \geqslant r'$, то, очевидно, что x_i целый. Если же $i'p-m'+1 \leqslant r'$, то, используя лемму 7(a) для биномиального коэффициента $C_i^{i'p-m'+1}$, получим

$$v_0(x_i) \geqslant -r' + (r'+1-(i'p-m'+1)) + i'p-m' = 0$$

и поэтому x_i опять будет целым элементом. Таким образом, мы проверили, что в сумме (47) все слагаемые — целые, а значит, и коэффициент c_m — целый.

Случай $p \mid m$. Пусть $m = p^r s$, где s не делится на p. Тогда индекс суммирования i в сумме (47) можно написать в виде $i = \frac{m}{p} + a(p-1)$, где $a \ge 0$, и тем самым сумма (47) перепишется следующим образом:

$$(1 - \pi_0^{m-1}) c'_m = \pi_0^{m-2} c_{pa/p} + \sum_{1 \le a < \frac{m}{p}} c_i C_i^{ap} \pi_0^{ap-1} = \sum_a x_a, \tag{48}$$

где
$$i = \frac{m}{p} + a(p-1)$$
.

Проверим, что все слагаемые суммы (48) делятся на π_0^r .

Слагаемое $x_0 = \pi_0^{m-2} c_{m/p}$ делится на π_0^r , так как по индукционному предположению $v_0(c_{m/p}) \geqslant -(r-1)$ (см. (46a)) и, значит,

$$v_0(x_0) \geqslant (m-2)-(r-1) \geqslant 3^r-r-1 \geqslant r.$$

Рассмотрим теперь слагаемое x_a в сумме (48), когда a>1. Пусть при этом $i=p^{r'}s'$, где (s',p)=1. Тогда по индукционному предположению $v_0(c_i)\geqslant -r'$ (см. (46a)). Если $ap-1\geqslant r'+r$, то $v_0(x_a)\geqslant v_0(c_i)+(ap-1)\geqslant \geqslant r$, что и требуется. Если же $ap\leqslant r'+r$, то, используя лемму 7(б), получаем:

$$v_{0}(x_{a}) \geqslant v_{0}(c_{i}) + v_{0}(C_{i}^{ap}) + ap - 1 \geqslant -r' + \left(r' + r - \frac{ap}{2}\right)e_{0}f_{0} + (ap - 1) =$$

$$= (r' + r - ap)(e_{0}f_{0} - 1) + \left(\frac{ap}{2}e_{0}f_{0} - 1\right) + r \geqslant \left(\frac{3}{2} - 1\right) + r \geqslant r.$$

Таким образом, и в этом случае x_a делится на π_0^r .

Пусть теперь взято слагаемое x_i и, значит, $i=p^{r-1}s+(p-1)=p^r's'$. Если при этом r=1 и r'=0, то $ap-1=(p-1)\geqslant r'+r=1$ и поэтому $v_0(x_1)\geqslant v_0(c_i)+(ap-1)\geqslant -r'+(p-1)\geqslant r$, т. е. x_1 делится на π_0^r . Остальные случаи разбираются аналогично с использованием леммы 7, б, в.

Итак, во всех случаях слагаемое x_a в сумме (48) делится на π_0^r , а значит, и элемент c'_m делится на π_0^r . Условие (45а, б) доказано.

38°. Пусть теперь $\lambda_{\rho,\eta}(X)$ — логарифм формальной группы Любина — Тэйта $F_{\rho,\eta}$, построенной по эндоморфизму $\pi_0 X + \pi_0 \eta X^{p^{\rho}} + X^q$, где $\eta \in \Re$,

 $1 \le \rho \le f-1$. Действуя аналогично доказательству условий (45а, б) для логарифма $\lambda_0(X)$, получаем такие же неравенства на коэффициенты логарифма $\lambda_{0,n}(X)$.

Литература

- 1. *Башмаков М. И., Кириллов А. Н.* Фильтрация Лютц формальных групп.— Изв. АН СССР. Сер. матем., 1975, т. 39, № 6, с. 1228—1239.
- 2. Востоков С. В. Явная форма закона взаимности.— Изв. АН СССР. Сер. матем., 1978, т. 42. № 6. с. 1288—1321.
- 3. Востоков С. В. Символ Гильберта в дискретно нормированном поле.— Зап. науч. семинаров Ленингр. отд. Мат. ин-та АН СССР, 1979, т. 94, с. 50—69.
- 4. *Востоков С. В.* Норменное спаривание в формальных модулях.— Изв. АН СССР: Сер. матем., 1979, т. 43, № 4, с. 766—794.
- 5. Востоков С. В., Лецко В. А. Каноническое разложение в группе точек формальной группы Любина Тэйта.— Зап. науч. семинаров. Ленингр. отд. Мат. ин-та АН СССР, 1980, т. 103, с. 52—57.
- Колывагин В. А. Формальные группы и символ норменного вычета.— Изв. АН СССР, Сер. матем., 1979, т. 43, № 5, с. 1054—1120.
- 7. Ленг С. Алгебра. М.: Мир, 1968, 564 с.
- 8. Милнор Дж. Введение в алгебраическую К-теорию. М.: Мир, 1974, 196 с.
- 9. Fröhlich A. Formal groups.—Lect. Notes Math., 1968, v. 74, 140 p.
- Lubin J., Tate J. Formal complex multiplication in local fields.—Ann. Math., 1965, v. 81, p. 380—387.

Поступила в редакцию 20.II.1981