SEMESTER 6

ELECTRICAL & ELECTRONICS ENGINEERING

SEMESTER S6

CONTROL SYSTEMS

Course Code	РСЕЕТ601	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEET503	Course Type	Theory

Course Objectives:

- 1. To introduce various classical tools for analysis of linear control system in time and frequency domain.
- 2. To provide a fundamental knowledge of modern control system.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Control Systems and its time domain analysis Review of Open loop and Closed loop control systems; Automatic control systems; Necessity and significance. (Not for evaluation) (I hour) Time domain analysis of control systems: Impulse and Step responses of first and second order systems - Pole dominance for higher order systems. Time domain specifications. (4 hours) Error analysis: Steady state error analysis and static error constants. (2 hours)	7
2	Root Locus Analysis and Controllers: Root locus technique: Construction of Root locus - stability analysis- effect of addition of poles and zeros; Effect of positive feedback systems on Root locus. (5 hours) Controller design: Types of controllers and their control action-	7

	proportional (P), integral (I), derivative (D), PID control. PID tuning using	
	Ziegler-Nichols method. (2 hours)	
	Frequency domain analysis:	
3	Bode Plot: Construction, Concept of gain margin and phase margin-stability analysis. (4 hours) Frequency domain specifications - correlation between time domain and frequency domain responses (Resonant peak and resonant frequency). Introduction to compensators. (Concept only). (2 hours) Polar plot: Gain margin and phase margin, Stability analysis. (2 hours) Nyquist stability criterion. Concept of Nichols Chart. (3 hours)	11
4	Introduction to state-space modelling: State variables, state equations. State variable representation of electrical systems. (2 hours) Relationship between State space and Transfer function models: Derivation of transfer functions from state equations. Controllable, Observable and Diagonal/Jordan canonical forms. Introduction to similarity transformations (concept only). (4 hours) Solution of time invariant systems: Solution of time response of autonomous systems and forced systems. State transition matrix - computation using Method of Laplace Transform and Cayley Hamilton theorem. (4 hours) Controllability & Observability: Definition, Kalman's test. (1 hour)	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance Assignment/ Microproject Examin		Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each	• Two questions will be given from each module, out of	
carrying 3 marks	which 1 question should be answered.	60
	• Each question can have a maximum of 3 sub divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyse the time domain responses of linear systems and predict and diagnose transient response parameters of the system for standard input functions.	K2
CO2	Analyse dynamics systems for their performance and stability using Root locus	К3
CO3	Apply frequency domain tools to analyse the performance of linear dynamic systems	К3
CO4	Represent and analyse dynamic systems using state-space.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	1	3	3	3			3	2
CO2	3	3	2	2	2	3	3	3			3	2
CO3	3	3	2	2	2	3	3	3			3	2
CO4	3	2	1	2	1	3	3	3			3	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Modern Control Engineering	Katsuhiko Ogata	Pearson	5th edition, 2009			
2	Control Systems Engineering	Norman S. Nise	Wiley	5th edition, 2009			
3	Control Systems Engineering	I. J. Nagrath, M. Gopal	New Age	5th edition, 2009			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Automatic Control Systems,	Kuo B. C.	Prentice Hall of India	9th edition, 2014			
2	Control Systems Principles and Design	Gopal M.	Tata McGraw Hill.	4th edition, 2012			
3	Modern Control Systems	Dorf R. C., Bishop R. H	Pearson Education India	12th edition, 2013			

SEMESTER - S6
ELECTRICAL SYSTEM DESIGN AND ESTIMATION

Course Code	PCEET602	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. To create awareness regarding electrical symbols, Indian Standard codes, Indian Electricity acts and NEC norms
- 2. To enable students to design the various electrical installations with necessary precautions to ensure life safety, risk prevention and continuous operation of the system
- 3. To help in energy-efficient electrical design in compliance with codes and regulations.

Module No.	Syllabus Description	Contact Hours
1	Awareness on IS Codes - IS 732, IS 3043, IS 2026- IS 3646-part 1 & 2 - IS 5216 part 1 & 2 Electricity supply code-2014, IE Act 1910, 2003, NEC LT system wiring components, selection of cables, wires, switches, distribution box, metering system, basics of star rating and labelling Principle of operation of Fuse, MCB, MCCB, ELCB/RCCB, isolator.	7
2	General requirements for electrical installations- Residential/ Commercial/ High rise building, method of load survey for electrical installation, Diversity factor Sizing and selection of wires, MSB, SSB, DB and protection devices. Design steps in electrical wiring, material estimation and development of single line diagrams. Electrical CAD (optional). Pre-commissioning test applicable to domestic installation	12

	Lighting design calculations - Definitions of Luminous flux, Luminous	
	intensity, Illuminance. Illumination calculation, factors affecting Coefficients	
	of Utilisation (CoU) - Light Loss Factor (LLF).	
	Design and Estimation the quantity of material required in Electrical	
	Installation for - Small residential building/Flat/Factory (Micro-Project)	
	Indoor and Outdoor substation- selection of transformer, switch gears and	
	protective devices, Procedure for HT connection, design and estimation the	
	quantity of material required for substations, Pre-commissioning tests for	
	transformers	
	Industrial loads, selection of starters, cable and switchgears, Power factor	
3	improvement – kVAR calculation, correction methods	10
	Design of MSB & SSB including Motor Control Centre (MCC) - Selection of	
	bus bars (CU & Al) and Switchgears	
	Specifications of LT Breakers and other LT panel components (Basics only)	
	Selection of industrial UG cables - Calculation of ampacity, voltage drop,	
	short circuit withstand capacity	
	Standby DG Systems with AMF panel – Essential protections. UPS system	
	and its design for residential application	
	Selection and installation of elevators and lifts	
	Earthing and Soil Resistivity calculation— Earth electrodes. Methods of	
	earthing - Plate earthing - Pipe earthing - Rod earthing. Methods of improving	_
4	earth resistance - Size of earth continuity conductor	7
	Substation earthing and design (Theory only), substation lightning protection	
	(Theory only)	
	Solar PV Power generation – Design and installation of standalone and grid	
	interactive Solar PV system -Smart meter/Net meter	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the Indian standards and code of practice for efficient and effective energy usage with various electrical system design components.	K2
CO2	Design electrical wiring for residential and commercial consumers as per IS codes and NEC and integration of PV systems	К3
CO3	Design electrical installation for industrial consumers and high rise buildings.	К3
CO4	Analyse electrical system conditioning equipment and power backups.	K4
CO5	Design various earthing methods and protection	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1			2		2	2			2
CO2	3	3	3	1		2	2		2	1		2
CO3	3	3	3	1		2			2	1		2
CO4	3	3	3	1		2			2	1		2
CO5	3	3	3	1		2			2	1		2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	National Electrical Code, Bureau of Indian Standards.		Bureau of Indian Standards.			
2	Electrical Systems Design	M. K. Giridharan	IK International Publishers, New Delhi			
3	Electrical Design Estimating Costing	K. B. Raina, S. K. Bhattacharya	NEW AGE; Reprint edition			
4	Residential Commercial and Industrial Systems	H. Joshi	McGraw Hill Education			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
	National Lighting Code 2010,						
1	Bureau of Indian Standards.						
	National Building Code of INDIA						
2	2016 - Bureau of Indian Standards.						
				Reprint			
	A Course in Electrical Installation	I.D.C.	S.K. Kataria &	2013			
3	Estimating and Costing.	J. B. Gupta	Sons	edition			
				(2013)			
	Electrical actimating and accting	S. Singh, and R. D.	Dhanpat Rai and	1007			
4	Electrical estimating and costing	Singh	Co.	1997			

SEMESTER S6 DIGITAL PROTECTION OF POWER SYSTEMS

Course Code	PEEET631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEET501, PBEET604	Course Type	Theory

Course Objectives:

1. To deliver fundamental concepts to design various electronic circuits to implement various relaying functions.

Module No.	Syllabus Description	Contact Hours
1	Introduction: Need for protective systems, Zones of protection, Current transformers and voltage transformers (Electromagnetic and Capacitive voltage transformers), Principle of operation of magneto optic CT/ PT, effect on relaying philosophy. Relays: Over current relays - time-current characteristics of over current relays: definite time over current relays, inverse Definite Minimum time - directional over current relays, current setting and time setting - Numerical Problems - Differential relays: Operating and restraining characteristics, types of differential relays, Distance relays: impedance relays, reactance relays, mho relays (basic principles and characteristics only)	9
2	Protection of Transmission Lines: Schemes of distance protection, Differential line protection, Phase comparison line protection. Protection of Bus-bar, Transformer and Generator & Motor: Types of faults, differential protection: High impedance and low impedance differential protection schemes, harmonic restraint relay, Restricted Earth Fault Protection, frame leakage protection, stator and rotor protection against various types of faults.	9

	Digital (Numerical) Relays: Basic Components of numerical Relays with	
	block diagram, Processing Unit, Human machine Interface, Principle of	
	operation, Comparison of numerical relays with electromechanical and	
	static relays, Advantages of numerical relays - communication in protective	
	relays (IEC 61850), Information handling with substation automation	9
3	system (SAS) Signal Conditioning Subsystems: Surge Protection Circuits,	9
	Anti-aliasing filter, Conversion Subsystem, The Sampling Theorem,	
	aliasing, Sample and Hold Circuit, Concept of analog to digital and digital	
	to analog conversion, Idea of sliding window concept, Fourier, Discrete	
	and fast Fourier transforms	
	Signal processing techniques: Sinusoidal wave based algorithms, Fourier	
	Analysis based algorithms (half cycle and full cycle), Least squares based	
	algorithm. Digital filters - Fundamentals of Infinite Impulse Response	
	Filters, Finite Impulse Response filters, Filters with sine and cosine	9
	windows.	
4	Wide Area Protection and Measurement: Phasor Measurement Units,	
	concept of synchronized sampling, Definition of wide-area protection,	
	Architectures of wide-area protection, concept of Adaptive relaying,	
	advantages of adaptive relaying and its application, Adaptive Differential	
	protective scheme.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks) Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Tota l
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
G 6.1	Identify the relay protection scheme suitable for overcurrent,	К3
CO1	differential and distance protection.	
	Develop the protection scheme for bus bars, transformers, generators,	К3
CO2	motors and distribution systems using appropriate protective relays	
CO3	Illustrate the operation of a numerical relay.	K2
~	Explain signal processing methods and algorithms in digital	K2
CO4	protection	
CO5	Infer emerging protection schemes in power systems	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2									
CO2	3		2									
CO3	3		2									
CO4	3		2									
CO5	3		2									

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Digital Protection of Power System	A. T. Johns and S. K. Salman	Peter Peregrinus Ltd, UK	1995				
2	Computer Relaying for Power Systems	A. G. Phadke and James S. Thorpe	Research study press Ltd, John Wiley & Sons, Taunton, UK	1988				
3	Power System Protection and Switchgear	Badri Ram and D. N. Viswakarma	Tata McGraw Hill Education, Pvt Edition	2011				
4	Digital Signal Processing in Power System Protection and Control	Waldemar Rebizant	Springer Publication	2008				

	Video Links (NPTEL, SWAYAM)				
Sl No	Link ID				
1	https://archive.nptel.ac.in/courses/117/107/117107148/ (NPTEL lecture IIT Roorkee)				

SEMESTER S6 OPERATING SYSTEMS

Course Code	PEEET632	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Mins.
Prerequisites (if any)	PEEET526	Course Type	PE - Theory

Course objectives:

- 1. To understand the overall working of computer system, trade-offs between performance and functionality and the division of jobs between hardware and software.
- 2. Introduces the concepts of memory management, device management, process management, file management and security & protection mechanisms available in an operating system.
- 3. To understand the fundamentals about any operating system design

Module No.	Syllabus Description	Contact Hours		
	Introduction: Operating system overview – Functions, Boot Process			
	Processes - Process states, Process control block, threads, scheduling, Operations on			
1	processes - process creation and termination	8		
	Inter-process communication - shared memory systems, Message passing systems.	· ·		
	Process Scheduling – Basic concepts- Scheduling criteria -scheduling algorithms- First			
	come First Served, Shortest Job Firs, Priority scheduling, Round robin scheduling			
2	Process synchronization- Race conditions – Critical section problem – Peterson's solution, Synchronization hardware, Mutex Locks, Semaphores, Monitors – Synchronization problems - Producer Consumer, Dining Philosophers and Readers-Writers.	10		
3	Deadlocks: Necessary conditions, Resource allocation graphs, Deadlock prevention, Deadlock avoidance – Banker's algorithms, Deadlock detection, Recovery from deadlock. Memory Management: Concept of address spaces, Swapping, Contiguous memory allocation, fixed and variable partitions, Segmentation, Paging. Virtual memory, Demand paging, Page replacement algorithms.	10		

	File System: File concept - Attributes, Operations, types, structure - Access methods,					
	Protection. File-system implementation, Directory implementation. Allocation methods.					
4	Storage Management: Magnetic disks, Solid-state disks, Disk Structure, Disk	8				
	scheduling, Disk formatting.					

Course Assessment Method (CIE: -40 Marks, ESE: 60 Marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Ex-1	Internal Ex-2	Total
5	15	10	10	40

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub	
• Total of 8 Questions, each carrying 3 marks (8x3 = 24marks)	divisions. Each question carries 9 marks. $(4x9 = 36 \text{ marks})$	60

Course Outcomes (COs)

At the end of the course the student will be able to:

	Course Outcome	Bloom's Knowledge
		Level (KL)
CO1	Explain the relevance, structure and functions of Operating Systems in computing	K2
	devices.	
CO2	Illustrate the concepts of process management and process scheduling	K2
	mechanisms employed in Operating Systems.	
CO3	Explain process synchronization in Operating Systems and illustrate process	K2
	synchronization mechanisms using Mutex Locks, Semaphores and Monitors	
CO4	Explain any one method for detection, prevention, avoidance and recovery for	K2
	managing deadlocks in Operating Systems.	
CO5	Explain the memory management algorithms in Operating Systems.	K2
CO6	Explain the security aspects and algorithms for file and storage management in	K2
	Operating Systems.	

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO PO Mapping

	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3							1		2
CO2	2	3	3	2						1		2
CO3	2	3	3	2						1		2
CO4	2	3	3	2						1		2
CO5	2	3	3	2						1		2
CO6	2	3	3	2						1		2

^{1:} Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year				
1	Operating System Concepts	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne	Wiley India.	9th Edition, 2015				

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Modern Operating Systems	Andrew S Tanenbaum	Pearson, Global Edition	6th Edition, 2015.					
2	Operating Systems	Garry Nutt, Nabendu Chaki, Sarmistha Neogy	Pearson Education	3rd Edition,					
3	Operating Systems	D.M.Dhamdhere	Tata McGraw Hill	2nd Edition, 2011.					
4	Operating Systems	Sibsankar Haldar, Alex A Aravind	Pearson Education						

	Video Links (NPTEL, SWAYAM)						
Sl No	Link ID						
1	https://youtu.be/jciGIvn7UfM?si=iTyzYC1tztsAS8F4						
2	https://youtu.be/I_7rthka2Is?si=kRo68aA_ozTBrNno						

SEMESTER S6

HIGH VOLTAGE ENGINEERING

Course Code	РЕЕЕТ633	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

Course Objectives:

- 1. To introduce basic terms and techniques applicable to high voltage ac and dc networks.
- 2. To learn about generation of different type of High voltage waveforms, their measurement and analysis.

Module No.	Syllabus Description	Contact Hours
1	Generation of High DC and AC Voltages- half-wave rectifier circuit- Cockroft-Walton voltage multiplier circuit- Electrostatic generator- Generation of high AC voltages-Cascaded Transformers- Series resonant circuit. Generation of Impulse Voltages and Currents- Impulse voltage- Impulse generator circuits- Multistage impulse generator circuit- Construction of impulse generator- Triggering of impulse generator- Impulse current generation.	9
2	High Voltage Measurement Techniques -Measuring Spark Gaps - Sphere-to-sphere Spark Gap -Rod-to-rod Spark Gap - Electrostatic Voltmeter-Field Sensors - Electrically Short Sensors, Electrically Long Sensors, Potential-free Probes, Generator-mode Sensors, Electro- optical and Magneto-optical Field Sensors - Voltage Dividers - Instrument Transformers - Measurements of R.M.S. Value, Peak Value and Harmonics - Current Measurement Dielectric measurements- Dissipation Factor and Capacitance, Insulation Resistance, Conductivity, Dielectric System Response-Partial discharge measuring technique- Requirements on a partial discharge measuring	9

	system - Measuring systems for apparent charge - Partial discharge	
	measurements on high-voltage transformers, high-voltage cables, high-	
	voltage gas-insulated substations.	
	Classification of Voltages and Overvoltages-Origin of Overvoltages -	
	Representative Overvoltages- Performance Criterion –Withstand voltage.	
	Insulation Coordination Procedure- Determination of Representative	
	Voltages and Overvoltages-Continuous Power Frequency Voltage,	
	Temporary Overvoltages, Slow-Front Overvoltages, Fast-Front	
	Overvoltages	
3	Determination of Coordination Withstand Voltage (Ucw)-Deterministic	
	Approach, Statistical Approach: Risk of Failure - Determination of	9
	Required Withstand Voltage (Urw)-Altitude Correction Factor, Safety	
	Factor (Ks)- Selection of Standard Withstand Voltage (Uw)- Surge	
	Arresters- Rated Voltage- Discharge Current- Impulse Current Tests-	
	Residual Voltages- Arrester Durability Requirements.	
	High voltage Testing of insulators, bushings, isolators, circuit breakers,	
	transformers, surge diverters, cables.	
	Insulation Systems for AC Voltages -Cables, bushings and transformers-	
	Insulation Systems for DC Voltages- Capacitors, HVDC bushings and	
4	Cables-Insulation Systems for Impulse Voltages -Electrical Stress and	
7	Strength -Energy Storage -Impulse Capacitors (Energy Storage or Surge	9
	Capacitors)	
	Lightning Protection- Light and Laser Technology- X-ray Technology-	
	Electrostatic Particle Precipitation, Ionization- Spark plugs.	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full

question out of two questions

	Part A	Part B	Tota l
•	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module, out	
•	Total of 8 Questions, each	of which 1 question should be answered.	
	carrying 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
	(8x3 = 24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify different high voltage and current waveform generation circuits.	K1
CO2	Implement different sensing & measurement techniques for high voltage and current measurement.	К3
CO3	Describe insulation coordination and surge arrestor design.	К2
CO4	Implement different testing methods for equipments and applications of HV systems.	К3
CO5	Explain the various technologies for lightning protection.	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											2
CO2	3											2
CO3	3						2					2
CO4	3						2					2
CO5	3						2					2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	High Voltage Engineering	C. L. Wadhwa	New Age International	2011
2	High Voltage Engineering Fundamentals – Technology Applications	Andreas Kuchler	Springer	2018
3	High Voltage Engineering	Naidu M. S. and Kamaraju V.	Tata Mc Graw Hill	2004
4	High Voltage Engineering Fundamentals	Kuffel E. Zaengl S. and Kuffel J.	Elsevier India P Ltd	2005

SEMESTER S6

INTERNET OF THINGS

Course Code	РЕЕЕТ634	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	Theory

Course Objectives:

1. This course aims to introduce IOT fundamentals.

Module No.	Syllabus Description	Contact Hours
	Introduction to IoT technology: Definitions of IoT, Characteristics of	
	IoT devices – power, computational constraints, IoT Architectural view –	
	Middleware based architecture, Service oriented architecture, M2M	
1	Communication and IoT, Typical application areas of IoT technology (case	
	studies of at least four domains) - Energy management and Smart grid, IoT	9
	for Home, Cities, Environment monitoring, Agriculture, Supply chain and	
	customer monitoring	
	Components of IoT technology: Identification/Addressing - Electronic	
	Product Codes, RFID, ubiquitous code, IPv4, IPv6. Sensors and	
2	Actuators*. IoT Hardware**, IoT Software - overview of Operating	
	systems, Firmware, Middle ware, Application software used in IoT.	9
	Connectivity for IoT devices – characteristics.	
	Communication technologies for IoT: Zigbee - key features,	
	architecture, limitations, Bluetooth technology - bluetooth stack, piconet,	
	scatternet, limitations, Bluetooth Low Energy (key features, architecture,	
	limitations), Wifi (IEEE 802.11) technology - key features, limitations,	
3	Cellular technology – GSM, 3G, 4GLTE (overview), features, limitations,	9
	LoRa technology - features, LoRaWAN architecture, 6LoWPAN -	
	features, protocol stack, Narrow Band (NB- IoT) - features, applications,	
	Sigfox – features, applications	

	IoT Data Management: Storage technologies for IoT hardware -	
	Volatile, Non-volatile, Embedded (MTP/OTP), external flash	
	(NAND/NOR), DRAM, eflash, UFS, eMMC (overview of technologies).	
	Cloud and IoT, Cloud computing - architecture, advantages of cloud	
4	computing, Software as a Service (SaaS), Platform as a Service (PaaS),	9
	Infrastructure as a Service (IaaS). Case study of commercial cloud	
	computing platforms like - Microsoft Azure IoT Suite, Google Cloud's IoT	
	Platform, IBM Watson IoT Platform. IoT analytics	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Tota l
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain in a concise manner the architecture of IoT	K2
CO2	Identify various hardware and software components used in IoT	К3
CO3	Discuss the various communication technologies and interfaces in IoT	K2
CO4	Describe the usage of modern technologies like cloud computing for data management in IoT	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	2	2	2								2
CO2	3	2	2	2								2
CO3	3	2	2	1								2
CO4	3	2	2	1								2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Internet of Things: Architecture and Design Principles"	Rajkamal	McGraw Hill (India) Private Limited.	2nd edition,20 22			
2	"Internet of Things (A Hands- on- Approach)"	Vijay Madisetti and Arshdeep Bahga	Orient Blackswan Private Limited - New Delhi	1st Edition,201 5			

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Internet of things: A survey on enabling technologies, protocols, and applications	Al-Fuqaha	IEEE Communications Surveys & Tutorials	2015
2	The Internet of Things	Samuel Greengard	The MIT Press Essential Knowledge series Paperback	March 20, 2015
3	The Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems	Ovidu Vermesan and Peter Friess	River Publishers	1st Edition, 2013
4	. Internet of Things - From Research and Innovation to Market Deployment	Peter Friess, Ovidiu Vermesan	River Publishers	1 st Edition,20

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://youtu.be/WUYAjxnwjU4?si=s58W-NKMrEQMaJ8m https://youtu.be/BXDxYh1EV2w?si=8oFtQB9vycC_c-t2					
2	https://youtu.be/z3VEZPwl5gA?si=tNuzG_By-KBU3ks_ https://youtu.be/SXz0XR68dwE?si=1tVN1g9FQcGp87li https://youtu.be/TvzgzO6xKrY?si=gYzJstW51MTNsgKj					
3	https://youtu.be/qko-f1VDhCM?si=0tWM_OHS395ESV_w https://youtu.be/d9QfVpCG00Y?si=qeHk8tPg_torr2yX https://youtu.be/1zQ8wbBozqI?si=7vOSHMt8OT3nQINO					
4	https://youtube.com/playlist?list=PLE7VH8RC_N3bpVn-e8QzOAHziEgmjQ2qE&si=rr5Fpuew5q9_Y4qg					

SEMESTER S6

DIGITAL SIGNAL PROCESSING

Course Code	PEEET636	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEET603/ PEEOT522	Course Type	Theory

Course Objectives:

1. To provide a thorough understanding of the realisation, design and analysis of DSP systems

Module No.	Syllabus Description	Contact Hours
1	Introduction to DSP and Discrete Fourier transform: Basic elements of DSP system. Advantages and applications. Review of Discrete-Time Fourier transform (DTFT) and its properties. Frequency domain sampling, Discrete Fourier transform (DFT) - DFT pair, properties of DFT, frequency response analysis of signals using the DFT, circular convolution using DFT, linear filtering based on DFT. Fast Fourier transform (FFT): Introduction, Radix -2 decimation in time FFT algorithm, Radix-2 decimation in frequency algorithm, IDFT using FFT algorithm.	10
2	Realisation of Filters: Introduction to IIR and FIR systems. Structures for IIR Systems: Direct-Form Structures, Cascade-Form Structures, Parallel-Form Structures, Lattice Structures for IIR Systems. Structures for FIR Systems: Direct-Form Structure, Cascade-Form Structures, Lattice Structure. Linear Phase FIR filters. Signal Flow Graphs and Transposed Structures.	7
3	Design of Digital Filters: General considerations, Causality and its implications, characteristics of practical frequency selective filters.	10

	IIR filter design: Discrete time IIR filter from analog filter (Butterworth), IIR						
	filter (LPF, HPF, BPF, BRF) design by Impulse Invariance, Bilinear						
	transformation.						
	FIR filter design: Structures of FIR filter, Linear phase FIR filter						
	Filter design using windowing techniques (Rectangular, Hanning, Hamming),						
	frequency sampling Techniques.						
	Finite Word Length effects in Digital Filters:						
	Fixed point and floating-point number representations, Comparison,						
	Truncation and Rounding errors.						
	Quantization noise, Derivation for quantization noise power, coefficient						
	quantization error, Product quantization error.						
	Overflow error, Round-off noise power. Limit cycle oscillations due to						
4	product round-off and overflow errors, signal scaling.	9					
	Introduction to TMS320 Family:						
	Architecture, C24x CPU and other components; Assembly language						
	Instructions, Instruction Set summary, simple programs.						
	Design & Implementation and Filter Structures: MATLAB functions and						
	TMS320 Implementation (Demo/Assignment only)						

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full

question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub divisions.	60
	(4x9 = 36 marks)	
(8x3 =24marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Analyse discrete-time systems using DFT	K2				
CO2	Realise IIR and FIR filters	К3				
CO3	Design of IIR and FIR filters	К3				
CO4	Analyse effect of word length in digital filters	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	1	3	3	3			3	2
CO2	3	3	2	2	2	3	3	3			3	2
CO3	3	3	2	2	2	3	3	3			3	2
CO4	3	3	2	2	2	3	3	3			3	2

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Digital Signal Processing: Principles, Algorithm & Application	John G. Proakis Dimitris G. Manolakis	Pearson	4 th Edition							
2	Discrete-Time Signal Processing	A. Oppenheim and R. Schafer	Pearson-Prentice Hall	2 nd Edition							

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Digital Signal processing-A Practical Approach	Emmanuel C. Ifeachor, and Barrie W. Jervis	Pearson Education	2 nd Edition						
2	Digital Signal Processing	S. Salivahanan, A. Vallavaraj, and C. Gnapriya	Tata Mcgraw Hill	2 nd Edition						

SEMESTER S6

CLOUD COMPUTING

Course Code	PEEET637	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs 30 Min
Prerequisites (if any)	Nil	Course Type	PE - Theory

Course Objectives:

- 1. To enable learners to understand the concepts of cloud computing and its enabling technologies
- 2. Familiarize with mainstream cloud computing platforms and the services they offer.
- 3. To enable learners to have a basic understanding of virtualization, cloud security and cloud-based programming

Module No.	Syllabus Description	Contact Hours		
	Traditional computing- Limitations. Overview of Computing Paradigms-Grid			
	Computing, Cluster Computing, Distributed Computing, Utility Computing,			
	Cloud Computing. NIST reference Model-Basic terminology and concepts.			
	Cloud characteristics, benefits and challenges, Roles and Boundaries. Cloud			
1	delivery (service) models-Infrastructure-as-a-Service (IaaS), Platform-as-a-			
	Service(PaaS), Software-as-a-Service (SaaS), XaaS (Anything-as-a-service)-			
	Cloud deployment models- Public cloud, Community cloud, Private cloud,			
	Hybrid cloud.			
	Introduction to virtualization-Virtualizing physical computing resources,			
	Virtual Machines (Machine virtualization), Non-virtualized v/s Virtualized			
	machine environments. Types of VMs- Process VM v/s System VM.			
2	Emulation, Interpretation and Binary translation. Virtualization layers.	8		
	Hypervisors/VMM - Types of Hypervisors. Full Virtualization, Para	_		
	Virtualization, Hardware-assisted virtualization, OS level virtualization.			

	Basics of Network Virtualization, Storage Virtualization and Desktop					
	Virtualization.					
	Resource provisioning techniques: Static and Dynamic Resource					
	provisioning in cloud. Open Source Software platforms for Private Cloud :					
	OpenStack, Eucalyptus, Open Nebula, Nimbus					
	Popular public cloud platforms: AWS - AWS ecosystem, Compute services:					
3	EC2, Advanced compute services, Storage services: Amazon S3, Amazon	11				
	EBS, Database services, other major services. Google Cloud: IaaS offerings-					
	Compute Engine, Storage PaaS offerings-GAE. SaaS offerings. Microsoft					
	Azure: Azure Platform Architecture, Hyper-V, Azure VM, Compute					
	services, Storage services					
	Cloud programming: Parallel Computing and Programming Paradigms, Map					
	Reduce - Hadoop Library from Apache, HDFS, Pig Latin Basics, Apache					
	Spark					
	Fundamentals of Cloud Security: Basic terms & concepts in security – Threat					
4	agents, Cloud security threat/risks, Trust. OS security - Virtual Machine					
	security - Security of Virtualization - Security risk posed by Shared Images,	10				
	Security risk posed by Management OS, Infrastructure security – Network					
	Level, Host Level, Application Level, Security of the Physical systems,					
	Identity and Access Management					

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question

out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Explain the various cloud computing models and services	K2				
CO2	Demonstrate the significance of implementing virtualization techniques	K2				
CO3	Explain about the different private cloud platforms, and the services offered by popular cloud service providers	K2				
CO4	Apply appropriate cloud programming methods to solve big data problems	К3				
CO5	Describe the need for security mechanisms in cloud	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											2
CO2	2	2	2									2
CO3	2		1		3				1		1	2
CO4	2	3	3	3	3							2
CO5	2	2										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Cloud Computing: Concepts, Technology and Architecture	Thomas Erl, Zaigham Mahmood, Ricardo Puttini	Prentice Hall	2013						
2	Mastering Cloud Computing	Rajkumar Buyya, Christian Vecchiola,	McGraw Hill Education	2017						

			S. Thamarai Selvi				
3	Cloud Computing		Sandeep Bhowmik	Cambridge University Press	2017		
			Reference Books				
Sl. No		Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Cloud Computing: Theory and Practice		Dan C. Marinescu	Morgan Kaufmann publications	2018		
2	Cloud Parad	Computing: Principles and igms	Rajkumar Buyya, James Broberg, Andrzej M. Goscinski	Wiley	2013		
		Video	Links (NPTEL, SWAYAM)			
Modul	e No.		Link ID				
Module	- I	https://nptel.ac.in/courses/106105167					
Module - II		https://nptel.ac.in/courses/106104182					
Module - III		https://cloud.google.com/docs/ https://docs.aws.amazon.com/ https://learn.microsoft.com/en-us/azure/					
Module - IV https://nptel.ac.in/courses/106105167							

SEMESTER 6

OPTIMIZATION TECHNIQUES

Course Code	РЕЕЕТ638	CIE Marks	40	
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60	
Credits	3	Exam Hours	2 Hrs 30 Min	
Prerequisites (if any)	None	Course Type	PE - Theory	

Course Objectives:

1. The broad objective of the course is to introduce classical optimization, its need and techniques suitable for application in engineering problems

Module No.	Syllabus Description	Contact Hours
	Motivation and introduction to optimization in engineering practice	1
1	Properties of single variable functions and optimality criteria, Region elimination methods, Polynomial estimation methods - quadratic estimation, Bisection method, Newton raphson method, Secant method, Cubic search method	5
	Functions of several variables, optimality criteria, Direct search method, Hooke-Jeeves pattern search method, Powell's method, Gradient search methods - Cauchy's method, Newton's method	5
		11
2	Formulation of linear programming models, Graphical solution in two variables, Standard form	3
_	Simplex method, Duality, Dual simplex method - Karmarkar's method	6
		9

3	Equality constrained problems - Lagrange multipliers - Kuhn Tucker conditions - Kuhn Tucker theorems - Saddlepoint conditions - Second order optimality conditions - Generalized Lagrangian multiplier method	7
	Transformation methods - Concept of penalty - penalty functions - Method of Multipliers	3
		10
	Constrained direct search - simple direct search method - Complex method - Random search methods	4
4	Linearization methods for constrained Problems - Successive linear problems - Separable programming - Method of feasible directions - Simplex extensions for linearly constrained problems - Generalized reduced gradient method	5
		9

PS: Demonstrations of various techniques can be done using softwares like Scilab / Matlab / Octave or lower end softwares like Maxima

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance Assignment Microprojec		Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5 15		10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	To evaluate the optimality criteria and methods for functions with single variable	K4
CO2	To evaluate the optimality criteria and methods for functions with several variables	K4
CO3	To understand and apply linear programming techniques for optimization	К3
CO4	To explore optimization techniques for constrained problems	К3
CO5	To explore search techniques and applications in optimization	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			2	3						2
CO2	3	3			2	3						2
CO3	3	3			2	3						2
CO4	3	3			2	3						2
CO5	3	3			2	3						2

	Text Books						
Sl. No Title of the Book		Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Optimization, Methods and Applications	A Ravindran, K M Ragsdell, G V Reklaitis	John Wiley and Sons	2006			

	Reference Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year				
1	Introduction to Linear Optimization	Dimitris Bertsimas, John N Tsitsiklis	Athena Scientific	1997				
2	Stories about Maxima and Minima	V M Tikhomirov	American Mathematical Society	1990				

SEMESTER S6

INTRODUCTION TO CONTROL SYSTEMS

Course Code	OEEET611	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

1. To introduce various classical tools for analysis of linear control system in time and frequency domain.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Introduction to Control Systems, mathematical modelling and Transfer	
	function Based Analysis	
	Open loop and Closed loop control systems; Automatic control systems;	
	Necessity and significance. (1 hour)	
	Modelling of LTI systems: LTI Systems, Transfer function representation of	
1	differential equation in Laplace domain.	
	Electrical, translational and rotational mechanical systems, DC servo-motor	9
	modelling. (4 hours).	
	Block diagram representation - block diagram reduction. Signal flow graph -	
	Mason's gain formula. (4 hours)	
	Performance Analysis of Control Systems:	
	Time domain analysis of control systems: Impulse and Step responses of first	
2	and second order systems - Pole dominance for higher order systems. Time	
	domain specifications. Steady state error analysis and static error constants	8
	(5 hours)	

	Characteristic equation. Routh stability criterion. (3 hours)	
3	Root Locus Analysis and Controllers: Root locus technique: Construction of Root locus - stability analysis- effect of addition of poles and zeros; Effect of positive feedback systems on Root locus. (5 hours) Controller design: Types of controllers and their control action-proportional (P), integral (I), derivative (D), PID control. PID tuning using Ziegler-Nichols method. (3 hours)	8
4	Frequency domain analysis: Bode Plot: Construction, Concept of gain margin and phase margin-stability analysis. (4 hours) Frequency domain specifications - correlation between time domain and frequency domain responses (Resonant peak and resonant frequency). (2 hours) Polar plot: Gain margin and phase margin, Stability analysis. (2 hours) Nyquist stability criterion. Concept of Nichols Chart. (3 hours)	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5 15		10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
• 2 Questions from each	Each question carries 9 marks.		
module.	Two questions will be given from each module, out		
• Total of 8 Questions, each	of which 1 question should be answered.	60	
carrying 3 marks	Each question can have a maximum of 3 sub	00	
	divisions.		
(8x3 =24marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To represent continuous time systems in the classical domain.	K2
CO2	Analyse the time domain responses of linear systems and predict and diagnose transient response parameters of the system for standard input functions.	K2
CO3	Analyse dynamics systems for their performance and stability using Root locus.	К3
CO4	Analyse dynamics systems for their performance and stability in frequency domain	К3
CO5	To represent continuous time systems in the classical domain.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	1	3	3	3			3	2
CO2	3	2	1	2	1	3	3	3			3	2
CO3	3	3	2	2	2	3	3	3			3	2
CO4	3	3	2	2	2	3	3	3			3	2
CO5	3	2	1	2	1	3	3	3			3	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Control Systems Engineering	Norman S. Nise	Wiley	5th Edition, 2009			
2	Control Systems Engineering	I. J. Nagrath, M. Gopal	New Age	5th Edition, 2009			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Automatic Control Systems,	Kuo B. C,	Prentice Hall of India	9th Edition,2014				
2	Control Systems Principles and Design	Gopal M.	Tata McGraw Hill.	4th Edition, 2012				
3	Modern Control Systems	Dorf R. C., Bishop R. H	Pearson Education India	12th Edition, 2013				
4	Modern Control Engineering	Katsuhiko Ogata	Pearson	5th Edition, 2009				

SEMESTER S6 ENERGY MANAGEMENT

Course Code	OEEET612	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

1. To apply energy conservation principles and management techniques to different energy conversion systems

SYLLABUS

Syllabus Description	Contact Hours
General aspects of energy management and energy audit: Energy Management – Definition, General principles of energy management and energy management planning Energy Audit: Definition, need, types and methodologies. Instruments for energy audit. Energy audit report - Power quality audit	9
Energy conservation in buildings: ECBC code (basic aspects), Building Management System (BMS).	
Electricity transmission and distribution system, cascade efficiency. Lighting: Modern energy efficient light sources, life and efficacy comparison with older light sources, energy conservation in lighting. Motors: Development of energy efficient motors and the present status, techniques for improving energy efficiency, necessity for load matching and selection of motors for constant and variable loads. Demand side Management: Introduction to DSM, benefits of DSM, different techniques of DSM.	9
	General aspects of energy management and energy audit: Energy Management – Definition, General principles of energy management and energy management planning Energy Audit: Definition, need, types and methodologies. Instruments for energy audit, Energy audit report - Power quality audit Energy conservation in buildings: ECBC code (basic aspects), Building Management System (BMS). Energy Efficiency in Electrical Utilities: Electricity transmission and distribution system, cascade efficiency. Lighting: Modern energy efficient light sources, life and efficacy comparison with older light sources, energy conservation in lighting. Motors: Development of energy efficient motors and the present status, techniques for improving energy efficiency, necessity for load matching and selection of motors for constant and variable loads. Demand side Management: Introduction to DSM, benefits of DSM,

	Ancillary services: Introduction of ancillary services – Types of Ancillary				
	services				
	Energy Management in Electrical Utilities:				
	Boilers: working principle - blow down, energy conservation opportunities				
	in boiler.				
	Steam: properties of steam, distribution losses, steam trapping. Identifying				
	opportunities for energy savings in steam distribution.				
	Furnace: General fuel economy measures, energy conservation				
3	opportunities in furnaces.	9			
	HVAC system: Performance and saving opportunities in Refrigeration and				
	Air conditioning systems.				
	Heat Recovery Systems: Waste heat recovery system - Energy saving				
	opportunities.				
	Cogeneration: Types and schemes, optimal operation of cogeneration				
	plants, combined cycle electricity generation.				
	Energy Economics: Economic analysis: methods, cash flow model, time				
4	value of money, evaluation of proposals, pay-back period, average rate of				
	return method, internal rate of return method, present value method, life				
	cycle costing approach. Computer aided Energy Management Systems				
	(EMS).				

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full

question out of two questions

	Part A	Part B	Tota l
•	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module, out	
•	Total of 8 Questions, each	of which 1 question should be answered.	
	carrying 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
	(8x3 = 24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyse the significance of energy management and auditing.	K2
CO2	Discuss the energy efficiency and management of electrical loads.	K2
CO3	Apply demand side management techniques	K2
CO4	Explain the energy management opportunities in industries.	K2
CO5	Compute the economic feasibility of the energy conservation measures	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	2					1	1		1			
CO2	2		1	1		1	1					
CO3	2		1	1		1	1					
CO4	2		1	1		1	1					
CO5	2										2	

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Publications of Bureau of Energy Efficiency (BEE).							
2	Energy Management and Conservation Handbook	D. Yogi Goswami, Frank Kreith,	CRC Press	2007				
3	Energy management Hand Book	Wayne C. Turner	The Fairmount Press, Inc.	1997				
4	Energy Management and Conservation Handbook	D. Yogi Goswami, Frank Kreith	CRC Press	2007				
5	Industrial energy conservation	Charles M. Gottschalk	John Wiley & Sons	1996				

SEMESTER S6 RENEWABLE ENERGY SYSTEMS

Course Code	OEEET613	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

Course Objectives:

- 1. To understand energy scenario, energy sources and their utilization
- **2.** To explore society's present needs and future energy demands
- **3.** To study the principles of renewable energy conversion systems
- **4.** To be exposed to energy conservation methods

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Introduction: Principles of renewable energy; energy and sustainable	
	development, fundamentals and social implications. Worldwide renewable	
	energy availability, renewable energy availability in India, types of	
	renewable energy.	
1	Wind Energy: Properties of wind, availability of wind energy in India, wind	
	velocity and power from wind (numerical problems); major problems	9
	associated with wind power, Basic components of wind energy conversion	
	system (WECS); Classification of WECS- Horizontal axis- single, double	
	and multi-blade system. Vertical axis - Savonius and Darrieus types.	
	Solar Energy: Fundamentals; Solar Radiation; Estimation of solar radiation	
	on horizontal and inclined surfaces; Solar radiation Measurements -	
2	Pyrheliometers, Pyranometer, Sunshine Recorder. Solar Thermal systems:	
	concentrating and non-concentrating collectors - Flat plate collectors; Solar	9
	tower electric power plant. Photovoltaic system for electric power generation	

	- Classification of PV system - Principle of Solar cell, advantages,	
	disadvantages and applications of solar photovoltaic system.	
	Biomass Energy: Introduction; Principle of biomass energy generation -	
	Biofuels; Biomass Resources; Biomass conversion technologies-fixed	
	dome type biogas plant; Urban waste to energy conversion; Biomass	
3	gasification (Downdraft).	
	Tidal Power: Tides and waves as energy suppliers and their mechanics;	
	fundamental characteristics of tidal power, classification of tidal power	9
	plants - harnessing tidal energy, advantages and limitations.	
	Ocean Thermal Energy Conversion: Principle of working, classification,	
	OTEC power stations in the world, environmental impacts associated with	
	OTEC.	
	Introduction to geothermal energy	
4	Green Energy: Introduction, Fuel cells: Classification of fuel cells –	
	Hydrogen energy; Operating principles, Zero-energy Concepts. Benefits of	9
	hydrogen energy, hydrogen production technologies (electrolysis method	
	only), hydrogen energy storage, applications of hydrogen energy, problem	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each carrying 3 marks	 Two questions will be given from each module, out of which 1 question should be answered. 	
(8x3 =24marks)	 Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the environmental aspects of renewable energy resources in comparison with various conventional energy systems, their prospects and limitations.	K1
CO2	Understand the concepts of wind energy.	K1
CO3	Describe the use of solar energy and the various components used in the energy production with respect to applications like-heating, cooling, desalination, power generation.	К2
CO4	Understand the concept of biomass energy resources and conversion principles of tidal energy.	К2
CO5	Acquire the basic knowledge of ocean thermal energy conversion. Understand the principle of green energy and hydrogen energy.	K1

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2
CO5	3	3										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year							
1	Non-conventional energy sources	G. D. Rai	Khanna	4 th edition 2023							
2	Renewable energy systems	Thomas E. Kissell, David M. Buchla, Thomas L. Floyd,	Pearson	2017							
3	Non-Conventional Energy Resources	Sawhney G. S.	PHI Learning	2012							
4	Renewable energy systems	Thomas E. Kissell, David M. Buchla, Thomas L. Floyd,	Pearson	Pearson 2017							

SEMESTER S6

CONTROL SYSTEM LAB

(EE Branch)

Course Code	PCEEL607	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEET302/ PCEET601	Course Type	Lab

Course Objectives:

- 1. To make the students learn how to determine the parameters experimentally and model the given system.
- 2. To make the students learn the experimental determination of responses of dynamic systems and analyse its behaviour.
- **3.** To make the students learn the different analysis and controller design tools using appropriate simulation software

Expt. No.	Experiments
1	Transfer Function and State Space Modelling of Armature and Field Controlled DC Motor. Objective: Obtain the transfer function and state space model of the armature and field-controlled DC motor by experiment.
2	Transfer function of A.C. Servo motor. Objective: Obtain the transfer function of AC Servo motor by experiment.
3	Synchro Transmitter and Receiver for open loop position control. Objective: a) Plot the characteristics of synchro. Error study of the synchro transmitter and receiver pair as a simple open loop position control in Direct mode and Differential mode.

	Step response and frequency response of a second order system realised using					
	passive components					
	Objective: Design a second order (RLC network) system to analyse the following:					
	a. The effect of damping factor (0< ξ <1, ξ = 1, ξ > 1) for a step input .					
4	b. Verification of the delay time, rise time, peak overshoot and settling time with the theoretical values for $0 < \xi < 1$.					
	c. Effect of damping ratio on frequency response.					
	d. Verification of resonant peak, resonant frequency and bandwidth for $0 \le \xi \le 1$.					
	Realisation of lead compensator.					
5	Objective: Design, set up and analyse the gain and phase plots of a lead compensator by					
	hardware experimentation using i) passive elements and ii) active components					
	Realisation of lag compensator.					
	Objective: Design, set up and analyse the gain and phase plots of a lag compensator by					
6	hardware experimentation using:					
	i) passive elements and ii) active components.					
	Performance of a typical process control system					
7	Objective: Study of performance characteristics and response analysis of a typical					
	temperature/ Flow/ Level control system.					
	System Identification and Modeling					
8	Objective: Obtain the frequency response and identify the transfer function of the given system(black box),					

Step respo	onse and frequenc	y response of a secon	d order system	n using simulation
, btcp respt	moe and in equenc	y response of a secon	a oraci bystem	i using simuuu

Objective: To analyse the response of the second order system (in experiment 1) using (MATLAB/SCILAB/similar softwares)

- a. The effect of damping factor $(0 < \xi < 1, \xi = 1, \xi > 1)$ for a step input.
- b. Comparison of the delay time, rise time, peak overshoot and settling time with the experimental values for $0 < \xi < 1$.
 - c. The effect of damping ratio on frequency response.
 - d. Comparison of resonant peak, resonant frequency and bandwidth with the experimental values for $0 < \xi < 1$.

Performance Analysis using Root-Locus and frequency Response Methods in MATLAB/SCILAB/similar softwares.

Objective:

1. Plot the i) root locus ii) Bode plot and iii) Nyquist plot and iv) Nichols chart for the given transfer functions and analyse the following:

Root Locus:

- 10
- a. Determine the critical gain, frequency of oscillation at critical gain.
- b. The effect of gain, K on the stability.
- c. Determine the gain corresponding to a given damping ratio and obtain the step response
 - of the system for the corresponding gain.
- d. The effect of the addition of poles and zeros on the given system.

Frequency response:

e.Determination of Gain Margin and Phase Margin (stable and unstable, minimum/non-minimum phase system)

	f. The effect of controller gain K on the stability margin					
	g. The effect of the addition of poles and zeros on the given system (especially the					
	poles at origin).					
	h. Determine the stability of a given minimum and non-minimum phase system using					
	Nyquist stability criterion.					
	i. Determine the bandwidth of a given system from open loop frequency response					
	using Nichols chart.					
	Design of lag, lead and lag-lead compensator using root locus.					
11	Objective: Design a suitable compensator for the given system to satisfy the given time					
	domain specifications using MATLAB/SCILAB/ similar software.					
	Design of lag, lead and lag-lead compensator using frequency response.					
12	Objective: Design a suitable compensator for the given system to satisfy the given					
	frequency domain specifications using MATLAB/SCILAB/ similar software.					
	State Space Model, Analysis and Controller Design					
	Objective: Analyse the given system (eg. DC Servo motor modelled in experiment no.1					
	for speed control) in state space and design a controller by pole-placement technique using					
13	MATLAB/SCILAB/ similar software.					
	a. Determine the open loop stability, controllability and observability					
	b. Design a state-feedback controller by pole-placement technique for a given					
	specification.					
	PID Controller Design					
	Objective: Design a PID controller for the given system (eg. DC Servo motor modelled in					
1.4	experiment no. 1 for position control) using SIMULINK/ MATLAB based tool boxes.					
14	a. Design of P, PI, PD, PID controller using the Ziegler-Nichols method.					
	b. Design of a suitable controller (P/PI/PD/PID) to meet the desired specifications					
	using root locus/frequency response.					

Note: 1. A minimum of **12 experiments** are compulsory. 2. Experiment No. **11, 12, and 13** are mandatory.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify and conduct suitable experiments to determine the parameters to model a physical system.	К3
CO2	Conduct suitable experiments and determine the performance specifications.	К3
CO3	Analyse a linear continuous time system model using simulation tools.	К3
CO4	Design suitable controllers/compensators to meet the performance requirements using simulation tools.	K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	3	3	3	3	2	3	2
CO2	3	3	2	2	2	3	3	3	3	2	3	2
CO3	3	3	2	2	2	3	3	3	3	2	3	2
CO4	3	3	3	3	3	3	3	3	3	2	3	2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Modern Control Engineering	Katsuhiko Ogata	Pearson	5th edition, 2009						
2	Control Systems Engineering	Norman S. Nise	Wiley	5th edition, 2009						
3	Control Systems Engineering	I. J. Nagrath, M. Gopal	New Age	5th edition, 2009						

	Reference Books										
Sl. No	Sl. No Title of the Book Name of the Author/s Name of the Publisher										
1	Automatic Control Systems,	Kuo B. C.	Prentice Hall of India								
2	Control Systems Principles and Design	Gopal M.	Tata McGraw Hill.								
3	Modern Control Systems	Dorf R. C., Bishop R. H	Pearson Education India								

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

 Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.

- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S6

POWER SYSTEM LAB

Course Code	PCEEL609 CIE Marks		50	
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks	50	
Credits	1	Exam Hours	2 Hrs. 30 Min.	
Prerequisites (if any)	PCEET501	Course Type	Lab	

Course Objectives:

- 1. To encourage students learn through analytical problem solving and practical implementation.
- 2. To motivate the students for self-learning
- **3.** To make them ready for practical implementation of the knowledge that they have gained from theory.

Expt. No.	Experiments
	Software
	Y-Bus formulation:
1	Aim: (i) To formulate the bus admittance matrix of the given power system from its single
_	line diagram, using basic MATLAB programming.
	(ii) To incorporate changes in basic topology.
	Transmission Line Modelling: ABCD constants
2	Aim: (i) To model the given medium transmission line using nominal T and nominal pi
	representation and to derive the ABCD constants using basic MATLAB programming.
	Load Flow Analysis – Gauss-Siedel Method, Newton - Raphson Method, Fast Decoupled
3	Method – Aim: (i) To conduct load flow analysis using Gauss-Siedel method, Newton-
	Raphson method, Fast Decoupled method and to study the effect of change in
	load/generation schedule.
	Load Flow Analysis – Gauss-Siedel Method, Newton - Raphson Method, Fast Decoupled
	Method
4	Aim: (i) To conduct load flow analysis using Gauss-Siedel method, Newton-Raphson
	method, Fast Decoupled method and to study the effect of change in real power/reactive
	power limits.
5	Short Circuit Analysis – Symmetrical Faults and Unsymmetrical Faults
	Aim: (i) To conduct short circuit analysis for symmetrical and unsymmetrical faults.
	Transient Stability Analysis
6	Aim: To conduct transient stability analysis of a given system and plot suitable graphs
	using MATLAB Simulink or dedicated software (if available)

7	Automatic Generation Control – Single Area, Two Area
	Aim: To implement Automatic Generation Control in MATLAB Simulink.
8	Automatic Voltage Regulator
_	Aim: To implement Automatic Voltage Regulator in MATLAB Simulink.
	Ferranti Effect and Reactive Power Compensation
9	Aim: (i) To exhibit Ferranti effect in a lightly loaded long transmission line in MATLAB
	Simulink and to show the effect of reactive power compensation.
	(ii) To calculate Surge Impedance Loading of the line
	Plot the IV characteristics of a PV module and determine Maximum Power Point
10	Aim: To plot the IV characteristics of a PV module in MATLAB Simulink and determine
	the Maximum Power Point
	Hardware
11	High Voltage Testing – Power frequency /impulse
12	High Voltage Testing - DC
13	Relay Testing – Over current Relay / Earth Fault (Electromechanical / Static /Numerical)
13	Aim: To draw the characteristics of the given relay.
14	Relay Testing –Voltage relay/ Impedance Relay (Electromechanical/Static/Numerical)
17	Aim: To draw the characteristics of the given relay.
15	Insulation Testing – LT & HT Cable
	Aim: To determine the insulation resistance of the given LT & HT cable.
16	Testing of CT and PT
10	Aim: To conduct ratio test of the given CT and PT.
17	Testing of transformer oil
1,	Aim: To determine the dielectric strength of the given sample of transformer oil.
18	Testing of dielectric strength of solid insulating materials
	Aim: To determine the dielectric strength of the solid insulating material given.
19	Testing of dielectric strength of air
	Aim: To determine the dielectric strength of air.
	Power factor improvement
20	Aim: To calculate the power factor of the given RL series circuit (transmission line) and
	design the capacitance required to improve the power factor to the desired value.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total	
5	25	20	50	

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	xecution of work/ croubleshooting/ valid inference/ Quality of		Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (Cos)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop mathematical models and conduct steady state and transient analysis of power system networks using standard / dedicated software.	К3
CO2	Conduct appropriate tests for any power system component as per standards to analyse their performance.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	3	3	3	3				3	3	3	3
CO2	3	3	3	3	3				3	3	3	3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

 Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.

- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted