Machine Learning Learning Theory

Alberto Maria Metelli - Francesco Trovò

Model Evaluation Options

- Validation
- Cross-validation/LOO
- Adjustment techniques

Open questions

- How much can we trust the value provided by Validation/Cross-validation/LOO?
- Are there other options not requiring retraining/testing on independent data?

Model Evaluation Options

- Validation
- Cross-validation/LOO
- Adjustment techniques

Open questions:

- How much can we trust the value provided by Validation/Cross-validation/LOO?
- Are there other options not requiring retraining/testing on independent data?

Model Evaluation Options

- Validation
- Cross-validation/LOO
- Adjustment techniques

Open questions:

- How much can we trust the value provided by Validation/Cross-validation/LOO?
- Are there other options not requiring retraining/testing on independent data?

ullet Input space ${\mathcal X}$

(typically
$$\mathcal{X} = \mathbb{R}^M$$
)

 \bullet Output space \mathcal{Y}

- (e.g., $\mathcal{Y} = \mathbb{R}$ for regression, $\mathcal{Y} = \{C_1, \dots, C_k\}$ for classification)
- (Unknown) joint probability $p(\mathbf{x}, t)$ on $\mathcal{X} \times \mathcal{Y}$
- Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

(e.g.
$$\ell(y, y') = (y - y')^2$$
, $\ell(y, y') = \mathbb{1}\{y \neq y'\}$

• Hypothesis space $\mathcal{H} \subset \{h : \mathcal{X} \to \mathcal{Y}\}$

ullet Input space ${\mathcal X}$

(typically $\mathcal{X} = \mathbb{R}^M$)

ullet Output space ${\cal Y}$

- (e.g., $\mathcal{Y} = \mathbb{R}$ for regression, $\mathcal{Y} = \{C_1, \dots, C_k\}$ for classification)
- (Unknown) joint probability $p(\mathbf{x}, t)$ on $\mathcal{X} \times \mathcal{Y}$
- Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

(e.g.
$$\ell(y, y') = (y - y')^2$$
, $\ell(y, y') = \mathbb{1}\{y \neq y'\}$

• Hypothesis space $\mathcal{H} \subset \{h : \mathcal{X} \to \mathcal{Y}\}$

ullet Input space ${\mathcal X}$

(typically $\mathcal{X} = \mathbb{R}^M$)

ullet Output space ${\cal Y}$

- (e.g., $\mathcal{Y} = \mathbb{R}$ for regression, $\mathcal{Y} = \{C_1, \dots, C_k\}$ for classification)
- (Unknown) joint probability $p(\mathbf{x}, t)$ on $\mathcal{X} \times \mathcal{Y}$
- Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

(e.g.
$$\ell(y, y') = (y - y')^2$$
, $\ell(y, y') = \mathbb{1}\{y \neq y'\}$

• Hypothesis space $\mathcal{H} \subset \{h : \mathcal{X} \to \mathcal{Y}\}$

• Input space \mathcal{X}

(typically $\mathcal{X} = \mathbb{R}^M$)

ullet Output space ${\cal Y}$

- (e.g., $\mathcal{Y} = \mathbb{R}$ for regression, $\mathcal{Y} = \{C_1, \dots, C_k\}$ for classification)
- (Unknown) joint probability $p(\mathbf{x}, t)$ on $\mathcal{X} \times \mathcal{Y}$
- Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

(e.g.
$$\ell(y, y') = (y - y')^2$$
, $\ell(y, y') = \mathbb{1}\{y \neq y'\}$)

• Hypothesis space $\mathcal{H} \subset \{h : \mathcal{X} \to \mathcal{Y}\}$

• Input space \mathcal{X}

(typically $\mathcal{X} = \mathbb{R}^M$)

ullet Output space ${\cal Y}$

- (e.g., $\mathcal{Y} = \mathbb{R}$ for regression, $\mathcal{Y} = \{C_1, \dots, C_k\}$ for classification)
- (Unknown) joint probability $p(\mathbf{x}, t)$ on $\mathcal{X} \times \mathcal{Y}$
- Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

(e.g. $\ell(y, y') = (y - y')^2$, $\ell(y, y') = \mathbb{1}\{y \neq y'\}$)

• Hypothesis space $\mathcal{H} \subset \{h : \mathcal{X} \to \mathcal{Y}\}$

• Population risk minimization: we know $p(\mathbf{x},t)$ and we minimize the true loss \mathcal{L}

$$h^* \in \arg\min_{h \in \mathcal{H}} \mathcal{L}(h) = \mathbb{E}_{t,\mathbf{x}}[\ell(h(\mathbf{x}),t)]$$

• Empirical risk minimization: we have a training dataset $\mathcal{D}_{\text{train}} = \{(\mathbf{x}_n, t_n)\}_{n=1}^N$ i.i.d. from p and we minimize the training loss $\hat{\mathcal{L}}$

$$\hat{h} \in \arg\min_{h \in \mathcal{H}} \hat{\mathcal{L}}(h) = \frac{1}{N} \sum_{n=1}^{N} \ell(h(\mathbf{x}_n), t_n)$$

• Population risk minimization: we know $p(\mathbf{x},t)$ and we minimize the true loss \mathcal{L}

$$h^* \in \arg\min_{h \in \mathcal{H}} \mathcal{L}(h) = \mathbb{E}_{t,\mathbf{x}}[\ell(h(\mathbf{x}),t)]$$

• Empirical risk minimization: we have a training dataset $\mathcal{D}_{\text{train}} = \{(\mathbf{x}_n, t_n)\}_{n=1}^N$ i.i.d. from p and we minimize the training loss $\hat{\mathcal{L}}$

$$\hat{h} \in \arg\min_{h \in \mathcal{H}} \hat{\mathcal{L}}(h) = \frac{1}{N} \sum_{n=1}^{N} \ell(h(\mathbf{x}_n), t_n)$$

• We want to evaluate the **true loss** of the **empirical risk minimizer**

$$\mathcal{L}(\hat{h}) = \mathbb{E}_{t,\mathbf{x}}[\ell(\hat{h}(\mathbf{x}),t)|\hat{h}]$$

- The true loss $\mathcal{L}(\hat{h})$ cannot be computed exactly without knowing $p(\mathbf{x},t)$
- The training loss $\hat{\mathcal{L}}(\hat{h})$ is a negatively biased estimator for the true loss $\mathcal{L}(\hat{h})$!

• We want to evaluate the **true loss** of the **empirical risk minimizer**

$$\mathcal{L}(\hat{h}) = \mathbb{E}_{t,\mathbf{x}}[\ell(\hat{h}(\mathbf{x}),t)|\hat{h}]$$

- The true loss $\mathcal{L}(\hat{h})$ cannot be computed exactly without knowing $p(\mathbf{x},t)$
- The training loss $\hat{\mathcal{L}}(\hat{h})$ is a negatively biased estimator for the true loss $\mathcal{L}(\hat{h})$!

• We want to evaluate the **true loss** of the **empirical risk minimizer**

$$\mathcal{L}(\hat{h}) = \mathbb{E}_{t,\mathbf{x}}[\ell(\hat{h}(\mathbf{x}),t)|\hat{h}]$$

- The true loss $\mathcal{L}(\hat{h})$ cannot be computed exactly without knowing $p(\mathbf{x},t)$
- The training loss $\hat{\mathcal{L}}(\hat{h})$ is a negatively biased estimator for the true loss $\mathcal{L}(\hat{h})$!

$$\mathcal{L}(\hat{h}) \leq \epsilon$$
 (quantities that can be computed from data) w.p. $1-\delta$

- Two cases:
 - We have a test dataset $\mathcal{D}_{\text{test}}$
 - We only have the training dataset \mathcal{D}_{tra}

$$\mathcal{L}(\hat{h}) \leq \epsilon$$
 (quantities that can be computed from data) w.p. $1-\delta$

- Two cases:
 - We have a **test dataset** \mathcal{D}_{test}
 - ullet We only have the **training dataset** $\mathcal{D}_{\text{train}}$

$$\mathcal{L}(\hat{h}) \leq \epsilon$$
 (quantities that can be computed from data) w.p. $1-\delta$

- Two cases:
 - We have a **test dataset** $\mathcal{D}_{\text{test}}$
 - ullet We only have the **training dataset** $\mathcal{D}_{\text{train}}$

$$\mathcal{L}(\hat{h}) \leq \epsilon$$
 (quantities that can be computed from data) w.p. $1-\delta$

- Two cases:
 - We have a **test dataset** $\mathcal{D}_{\text{test}}$
 - ullet We only have the **training dataset** \mathcal{D}_{train}

Using a Test Set

- We have a test set $\mathcal{D}_{\text{test}} = \{(\mathbf{x}_j, t_j)\}_{j=1}^J$ of i.i.d. samples from p and **independent** from the training dataset $\mathcal{D}_{\text{train}}$
- For an arbitrary hypothesis $h \in \mathcal{H}$, we can evaluate the **test loss**:

$$\tilde{\mathcal{L}}(h) = \frac{1}{J} \sum_{j=1}^{J} \ell(h(\mathbf{x}_j), t_j)$$

• The empirical risk minimizer \hat{h} is **independent** of \mathcal{D}_{test} (while it is **dependent** on \mathcal{D}_{train} !):

The **test loss** $\tilde{\mathcal{L}}(\hat{h})$ is an **unbiased** estimator for the true loss $\mathcal{L}(\hat{h})$

- We have a test set $\mathcal{D}_{\text{test}} = \{(\mathbf{x}_j, t_j)\}_{j=1}^J$ of i.i.d. samples from p and **independent** from the training dataset $\mathcal{D}_{\text{train}}$
- For an arbitrary hypothesis $h \in \mathcal{H}$, we can evaluate the **test loss**:

$$\tilde{\mathcal{L}}(h) = \frac{1}{J} \sum_{j=1}^{J} \ell(h(\mathbf{x}_j), t_j)$$

• The empirical risk minimizer \hat{h} is **independent** of \mathcal{D}_{test} (while it is **dependent** on \mathcal{D}_{train} !):

The **test loss** $\tilde{\mathcal{L}}(\hat{h})$ is an **unbiased** estimator for the true loss $\mathcal{L}(\hat{h})$

- We have a test set $\mathcal{D}_{\text{test}} = \{(\mathbf{x}_j, t_j)\}_{j=1}^J$ of i.i.d. samples from p and **independent** from the training dataset $\mathcal{D}_{\text{train}}$
- For an arbitrary hypothesis $h \in \mathcal{H}$, we can evaluate the **test loss**:

$$\tilde{\mathcal{L}}(h) = \frac{1}{J} \sum_{j=1}^{J} \ell(h(\mathbf{x}_j), t_j)$$

• The empirical risk minimizer \hat{h} is **independent** of \mathcal{D}_{test} (while it is **dependent** on \mathcal{D}_{train} !):

The **test loss** $\tilde{\mathcal{L}}(\hat{h})$ is an **unbiased** estimator for the true loss $\mathcal{L}(\hat{h})$

Hoeffding Inequality Bound

Let X_1, \ldots, X_t be i.i.d. random variables with support in [0, L] and identical mean $\mathbb{E}[X_i] =: X$ and let $\bar{X}_t = \frac{\sum_{i=1}^t X_i}{t}$ be the sample mean. Then:

$$\mathbb{P}\left(X \le \bar{X}_t + u\right) \ge 1 - e^{-\frac{2tu^2}{L^2}}$$

Meaning that we can built an upper bound with at least $1 - \delta$ confidence setting $\delta = e^{-\frac{2tu^2}{L^2}}$ The bound becomes:

$$X \le \bar{X}_t + u = \bar{X}_t + L\sqrt{\frac{\log(1/\delta)}{2n}}$$

- Crucial observation: all losses $\{\ell(\hat{h}(\mathbf{x}_j),t_j)\}_{j=1}^J$ are i.i.d. conditioned to \hat{h}
 - $\tilde{\mathcal{L}}(\hat{h})$ can be regarded as a sample mean of i.i.d. samples estimating the true mean $\mathcal{L}(\hat{h})$
- Under the assumption of bounded loss $\ell(y, y') \in [0, L]$, we can apply Höeffding's inequality:

$$\mathcal{L}(\hat{h}) \leq \tilde{\mathcal{L}}(\hat{h}) + L\sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2J}}$$
 w.p. $1 - \delta$

- The larger the test set (J), the more precise the estimate $\tilde{\mathcal{L}}(\hat{h})$ is
- No dependence on the hypothesis space ${\mathcal H}$ complexity

- Crucial observation: all losses $\{\ell(\hat{h}(\mathbf{x}_j),t_j)\}_{j=1}^J$ are i.i.d. conditioned to \hat{h}
 - ullet $ilde{\mathcal{L}}(\hat{h})$ can be regarded as a sample mean of i.i.d. samples estimating the true mean $\mathcal{L}(\hat{h})$
- Under the assumption of bounded loss $\ell(y, y') \in [0, L]$, we can apply Höeffding's inequality:

$$\mathcal{L}(\hat{h}) \leq \tilde{\mathcal{L}}(\hat{h}) + L\sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2J}}$$
 w.p. $1 - \delta$

- The larger the test set (J), the more precise the estimate $\tilde{\mathcal{L}}(\hat{h})$ is
- No dependence on the hypothesis space ${\mathcal H}$ complexity

- Crucial observation: all losses $\{\ell(\hat{h}(\mathbf{x}_j),t_j)\}_{j=1}^J$ are i.i.d. conditioned to \hat{h}
 - ullet $ilde{\mathcal{L}}(\hat{h})$ can be regarded as a sample mean of i.i.d. samples estimating the true mean $\mathcal{L}(\hat{h})$
- Under the assumption of bounded loss $\ell(y, y') \in [0, L]$, we can apply Höeffding's inequality:

$$\mathcal{L}(\hat{h}) \leq \tilde{\mathcal{L}}(\hat{h}) + L\sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2J}}$$
 w.p. $1 - \delta$

- The larger the test set (J), the more precise the estimate $\tilde{\mathcal{L}}(\hat{h})$ is
- ullet No dependence on the hypothesis space ${\cal H}$ complexity

- Crucial observation: all losses $\{\ell(\hat{h}(\mathbf{x}_j),t_j)\}_{j=1}^J$ are i.i.d. conditioned to \hat{h}
 - ullet $ilde{\mathcal{L}}(\hat{h})$ can be regarded as a sample mean of i.i.d. samples estimating the true mean $\mathcal{L}(\hat{h})$
- Under the assumption of bounded loss $\ell(y, y') \in [0, L]$, we can apply Höeffding's inequality:

$$\mathcal{L}(\hat{h}) \leq \tilde{\mathcal{L}}(\hat{h}) + L\sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2J}}$$
 w.p. $1 - \delta$

- The larger the test set (J), the more precise the estimate $\tilde{\mathcal{L}}(\hat{h})$ is
- ullet No dependence on the hypothesis space ${\cal H}$ complexity

- Crucial observation: all losses $\{\ell(\hat{h}(\mathbf{x}_j),t_j)\}_{j=1}^J$ are i.i.d. conditioned to \hat{h}
 - ullet $ilde{\mathcal{L}}(\hat{h})$ can be regarded as a sample mean of i.i.d. samples estimating the true mean $\mathcal{L}(\hat{h})$
- Under the assumption of bounded loss $\ell(y, y') \in [0, L]$, we can apply Höeffding's inequality:

$$\mathcal{L}(\hat{h}) \leq \tilde{\mathcal{L}}(\hat{h}) + L\sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2J}}$$
 w.p. $1 - \delta$

- The larger the test set (J), the more precise the estimate $\tilde{\mathcal{L}}(\hat{h})$ is
- ullet No dependence on the hypothesis space ${\cal H}$ complexity

Using the Training Set

- We can use **only** the same training set $\mathcal{D}_{\text{test}} = \{(\mathbf{x}_n, t_n)\}_{n=1}^N$ of i.i.d. samples from p used to learn the empirical risk minimizer \hat{h}
- For an arbitrary hypothesis $h \in \mathcal{H}$, we can evaluate the **training loss**:

$$\hat{\mathcal{L}}(h) = \frac{1}{N} \sum_{n=1}^{N} \ell(h(\mathbf{x}_n), t_n)$$

• The empirical risk minimizer \hat{h} is **dependent** on $\mathcal{D}_{\text{train}}$ (\hat{h} is obtained from the very same $\mathcal{D}_{\text{train}}$!): The **training loss** $\hat{\mathcal{L}}(\hat{h})$ a **negatively biased** estimator for the true loss $\mathcal{L}(\hat{h})$, indeed:

$$\mathbb{E}[\hat{\mathcal{L}}(\hat{h})|\hat{h}] \le \mathbb{E}[\hat{\mathcal{L}}(h^*)|\hat{h}] \le \mathcal{L}(h^*) \le \mathcal{L}(\hat{h})$$

- We can use **only** the same training set $\mathcal{D}_{\text{test}} = \{(\mathbf{x}_n, t_n)\}_{n=1}^N$ of i.i.d. samples from p used to learn the empirical risk minimizer \hat{h}
- For an arbitrary hypothesis $h \in \mathcal{H}$, we can evaluate the **training loss**:

$$\hat{\mathcal{L}}(h) = \frac{1}{N} \sum_{n=1}^{N} \ell(h(\mathbf{x}_n), t_n)$$

• The empirical risk minimizer \hat{h} is **dependent** on $\mathcal{D}_{\text{train}}$ (\hat{h} is obtained from the very same $\mathcal{D}_{\text{train}}$!): The **training loss** $\hat{\mathcal{L}}(\hat{h})$ a **negatively biased** estimator for the true loss $\mathcal{L}(\hat{h})$, indeed:

$$\mathbb{E}[\hat{\mathcal{L}}(\hat{h})|\hat{h}] \le \mathbb{E}[\hat{\mathcal{L}}(h^*)|\hat{h}] \le \mathcal{L}(h^*) \le \mathcal{L}(\hat{h})$$

- We can use **only** the same training set $\mathcal{D}_{\text{test}} = \{(\mathbf{x}_n, t_n)\}_{n=1}^N$ of i.i.d. samples from p used to learn the empirical risk minimizer \hat{h}
- For an arbitrary hypothesis $h \in \mathcal{H}$, we can evaluate the **training loss**:

$$\hat{\mathcal{L}}(h) = \frac{1}{N} \sum_{n=1}^{N} \ell(h(\mathbf{x}_n), t_n)$$

• The empirical risk minimizer \hat{h} is **dependent** on $\mathcal{D}_{\text{train}}$ (\hat{h} is obtained from the very same $\mathcal{D}_{\text{train}}$!): The **training loss** $\hat{\mathcal{L}}(\hat{h})$ a **negatively biased** estimator for the true loss $\mathcal{L}(\hat{h})$, indeed:

$$\mathbb{E}[\hat{\mathcal{L}}(\hat{h})|\hat{h}] \leq \mathbb{E}[\hat{\mathcal{L}}(h^*)|\hat{h}] \leq \mathcal{L}(h^*) \leq \mathcal{L}(\hat{h})$$

- Crucial observation: all losses $\{\ell(\hat{h}(\mathbf{x}_n),t_n)\}_{n=1}^N$ are **not i.**i.d. conditioned to \hat{h}
 - Cannot apply Höeffding's inequality!
- Statistical Learning Theory approach (Vapnik):

$$\mathcal{L}(\hat{h}) = \hat{\mathcal{L}}(\hat{h}) + \mathcal{L}(\hat{h}) - \hat{\mathcal{L}}(\hat{h}) \le \hat{\mathcal{L}}(\hat{h}) + \sup_{h \in \mathcal{H}} \left| \mathcal{L}(h) - \hat{\mathcal{L}}(h) \right|$$

- Now, the problem becomes providing bounds on $\sup_{h \to 0} |\mathcal{L}(h) \hat{\mathcal{L}}(h)|$, called **uniform bounds**.

- Crucial observation: all losses $\{\ell(\hat{h}(\mathbf{x}_n), t_n)\}_{n=1}^N$ are **not i.**i.d. conditioned to \hat{h}
 - Cannot apply Höeffding's inequality!
- Statistical Learning Theory approach (Vapnik):

$$\mathcal{L}(\hat{h}) = \hat{\mathcal{L}}(\hat{h}) + \mathcal{L}(\hat{h}) - \hat{\mathcal{L}}(\hat{h}) \le \hat{\mathcal{L}}(\hat{h}) + \sup_{h \in \mathcal{H}} \left| \mathcal{L}(h) - \hat{\mathcal{L}}(h) \right|$$

- Now, the problem becomes providing bounds on $\sup_{h \in \mathcal{H}} \left| \mathcal{L}(h) \hat{\mathcal{L}}(h) \right|$, called **uniform bounds**. They will depend on:
 - They will depend on.
 - The complexity of the hypothesis space \mathcal{H}

- Crucial observation: all losses $\{\ell(\hat{h}(\mathbf{x}_n), t_n)\}_{n=1}^N$ are **not i.**i.d. conditioned to \hat{h}
 - Cannot apply Höeffding's inequality!
- Statistical Learning Theory approach (Vapnik):

$$\mathcal{L}(\hat{h}) = \hat{\mathcal{L}}(\hat{h}) + \mathcal{L}(\hat{h}) - \hat{\mathcal{L}}(\hat{h}) \le \hat{\mathcal{L}}(\hat{h}) + \sup_{h \in \mathcal{H}} \left| \mathcal{L}(h) - \hat{\mathcal{L}}(h) \right|$$

- Now, the problem becomes providing bounds on $\sup_{h \in \mathcal{H}} \left| \mathcal{L}(h) \hat{\mathcal{L}}(h) \right|$, called **uniform bounds**. They will depend on:
 - \bullet The size of the training set N
 - The complexity of the hypothesis space H

- Crucial observation: all losses $\{\ell(\hat{h}(\mathbf{x}_n), t_n)\}_{n=1}^N$ are **not i**.i.d. conditioned to \hat{h}
 - Cannot apply Höeffding's inequality!
- Statistical Learning Theory approach (Vapnik):

$$\mathcal{L}(\hat{h}) = \hat{\mathcal{L}}(\hat{h}) + \mathcal{L}(\hat{h}) - \hat{\mathcal{L}}(\hat{h}) \le \hat{\mathcal{L}}(\hat{h}) + \sup_{h \in \mathcal{H}} \left| \mathcal{L}(h) - \hat{\mathcal{L}}(h) \right|$$

- Now, the problem becomes providing bounds on $\sup_{h \in \mathcal{H}} \left| \mathcal{L}(h) \hat{\mathcal{L}}(h) \right|$, called **uniform bounds**. They will depend on:
 - The size of the training set N
 - ullet The complexity of the hypothesis space ${\cal H}$

- Crucial observation: all losses $\{\ell(\hat{h}(\mathbf{x}_n),t_n)\}_{n=1}^N$ are **not i.**i.d. conditioned to \hat{h}
 - Cannot apply Höeffding's inequality!
- Statistical Learning Theory approach (Vapnik):

$$\mathcal{L}(\hat{h}) = \hat{\mathcal{L}}(\hat{h}) + \mathcal{L}(\hat{h}) - \hat{\mathcal{L}}(\hat{h}) \le \hat{\mathcal{L}}(\hat{h}) + \sup_{h \in \mathcal{H}} \left| \mathcal{L}(h) - \hat{\mathcal{L}}(h) \right|$$

- Now, the problem becomes providing bounds on $\sup_{h \in \mathcal{H}} \left| \mathcal{L}(h) \hat{\mathcal{L}}(h) \right|$, called **uniform bounds**.
 - They will depend on:
 - The size of the training set N

- Crucial observation: all losses $\{\ell(\hat{h}(\mathbf{x}_n), t_n)\}_{n=1}^N$ are **not i**.i.d. conditioned to \hat{h}
 - Cannot apply Höeffding's inequality!
- Statistical Learning Theory approach (Vapnik):

$$\mathcal{L}(\hat{h}) = \hat{\mathcal{L}}(\hat{h}) + \mathcal{L}(\hat{h}) - \hat{\mathcal{L}}(\hat{h}) \le \hat{\mathcal{L}}(\hat{h}) + \sup_{h \in \mathcal{H}} \left| \mathcal{L}(h) - \hat{\mathcal{L}}(h) \right|$$

- Now, the problem becomes providing bounds on $\sup_{h \in \mathcal{H}} \left| \mathcal{L}(h) \hat{\mathcal{L}}(h) \right|$, called **uniform bounds**.
 - They will depend on:
 - The size of the training set N
 - ullet The complexity of the hypothesis space ${\cal H}$

Uniform Bounds

We limit to **binary classification** and \mathcal{L} = accuracy:

• Finite hypothesis space $(|\mathcal{H}| < +\infty)$ and consistent learning $(\hat{\mathcal{L}}(\hat{h}) = 0$ always):

$$\mathcal{L}(\hat{h}) \leq \frac{\log |\mathcal{H}| + \log \left(\frac{1}{\delta}\right)}{N}$$
 w.p. $1 - \delta$

• Finite hypothesis space $(|\mathcal{H}| < +\infty)$ and agnostic learning $(\hat{\mathcal{L}}(\hat{h}) > 0$ possibly):

$$\mathcal{L}(\hat{h}) \le \hat{\mathcal{L}}(\hat{h}) + \sqrt{\frac{\log |\mathcal{H}| + \log \left(\frac{1}{\delta}\right)}{2N}}$$
 w.p. $1 - \epsilon$

Uniform Bounds

We limit to **binary classification** and \mathcal{L} = accuracy:

• Finite hypothesis space $(|\mathcal{H}| < +\infty)$ and consistent learning $(\hat{\mathcal{L}}(\hat{h}) = 0$ always):

$$\mathcal{L}(\hat{h}) \leq \frac{\log |\mathcal{H}| + \log \left(\frac{1}{\delta}\right)}{N}$$
 w.p. $1 - \delta$

• Finite hypothesis space $(|\mathcal{H}| < +\infty)$ and agnostic learning $(\hat{\mathcal{L}}(\hat{h}) > 0$ possibly):

$$\mathcal{L}(\hat{h}) \leq \hat{\mathcal{L}}(\hat{h}) + \sqrt{rac{\log |\mathcal{H}| + \log \left(rac{1}{\delta}
ight)}{2N}} \quad ext{w.p.} \quad 1 - \delta$$

Example

Let assume that we are using a training set composed of N=200 samples: Three different hypothesis spaces:

- \mathcal{H}_1 with cardinality e^{22}
- \mathcal{H}_2 with cardinality e^{46}
- \mathcal{H}_3 with cardinality e^{78}

If we want a confidence of $\delta = e^{-3}$

- Assuming the three estimated models $\hat{h}_1, \hat{h}_2, \hat{h}_3$ are in the version space
- Assuming the three estimated models have error on the training set of $\hat{\mathcal{L}}(\hat{h}_1) = 0.3, \hat{\mathcal{L}}(\hat{h}_1) = 0.15, \hat{\mathcal{L}}(\hat{h}_1) = 0.1$

Uniform Bounds

• Infinite hypothesis space ($|\mathcal{H}| = \infty$) and agnostic learning ($\hat{\mathcal{L}}(\hat{h}) > 0$ possibly):

$$\mathcal{L}(\hat{h}) \leq \hat{\mathcal{L}}(\hat{h}) + \sqrt{\frac{\text{VC}(\mathcal{H})\log\left(\frac{2eN}{\text{VC}(\mathcal{H})}\right) + \log\left(\frac{4}{\delta}\right)}{N}} \quad \text{w.p.} \quad 1 - \delta$$

Example

Let assume that we are using a training set composed of N=2400 samples: Three different hypothesis spaces:

- \mathcal{H}_1 with cardinality $+\infty$ and $VC(\mathcal{H}_1) = e^2$
- \mathcal{H}_2 with cardinality $+\infty$ and $VC(\mathcal{H}_2) = e^4$
- \mathcal{H}_3 with cardinality $+\infty$ and $VC(\mathcal{H}_3) = e^6$

If we want a confidence of $\delta = e^{-3}/4$

- Assuming the three estimated models $\hat{h}_1, \hat{h}_2, \hat{h}_3$ are in the version space
- Assuming the three estimated models have error on the training set of $\hat{\mathcal{L}}(\hat{h}_1) = 0.3, \hat{\mathcal{L}}(\hat{h}_1) = 0.15, \hat{\mathcal{L}}(\hat{h}_1) = 0.1$
- Hint: use the fact that $9 \approx e^2$, $81 \approx e^4$, $400 \approx e^6$

