Source: [KBhPHYS201CircuitsIndex]

1 | Capacitors

1.1 | Capacitors vs. Batteries

Batteries => Converting PE_{chem} => Eletrical energy

Capacitors => Converting PE_{elec} => Eletrical energy

When you are discharging a battery, they remain at constant voltage until they are used up, at which point the voltage drop like a plate.

When you are discharging a capacitor, there is a linear fall in voltage that is constant.

Charge remaining: capacitance times voltage

1.2 | Energy on a Capacitor

A little bit #disorganized

Energy stored on a capacitor: $E = \frac{V_c * Q}{2}$.

Charge on a capacitor: $Q = C \times V_c$

Farads: $F = \frac{C}{V}$

So, putting this together, the energy stored on a capacitor would be...

Definition 1
$$\cdot$$
 Energy stored in a capacitor $E=\frac{V\times Q}{2}=\frac{CV^2}{2}$ as $Q=C\times V_c$

$$Q_{cap} \propto V$$
. In fact $Q_{cap} = C \times V_c$.

1.3 | Capacitors interacting with Resistance

As you increase the [KBhPHYS201Resistance], the voltage