

Machine Learning

Machine Learning

Lecture: Linear Regression

Ted Scully

Gradient Descent and Linear Regression

- To understand and visualize the application of gradient descent we are going to simplify the problem even further.
- We are going to assume that the y-intercept (b) is always 0. Therefore, we only have one variable to worry about now (λ_1)

•
$$h(x) = \lambda_1 x$$

$$c(\lambda_1) = \frac{1}{2m} \sum_{i=0}^{m} ((h(x^i) - y^i))^2$$

 $minimise_{\lambda_1} C(\lambda_1)$

Over the next few slides we will pick a few different value for λ_1 and we will monitor the corresponding value of the cost function. The following is our simple dataset:

X	Y
1	1
2	2
3	3

$h(x) = \lambda_1 x$	
----------------------	--

X	Υ
1	1
2	2
3	3

Let's examine what happens when I give λ_1 a value of 0.5.

We subsequent calculate the associated cost:

$$C(\lambda_1) = \frac{1}{2m} \sum_{i=0}^{m} ((h(x^i) - y^i))^2$$

$$\frac{1}{6}((0.5-1)^2+(1-2)^2+(1.5-3)^2)$$

$$\frac{1}{6}(0.25 + 1 + 2.25)$$

$$= 0.58$$

Notice we define our line only using a single parameter λ_1 . Controls the slope and must pass through the origin.

Function $C(\lambda_1)$

We are going to pick multiple values for λ_1 and map the relationship between $C(\lambda_1)$ and λ_1 . When $\lambda_1=0.5$ then $C(\lambda_1)=0.58$

Function h(x)

h(x) =	$\lambda_1 x$
--------	---------------

X	Y
1	1
2	2
3	3

Now we examine what happens when I give λ_1 a value of 1.

This provides an excellent fit to the data.

$$C(\lambda_1) = \frac{1}{2m} \sum_{i=0}^{m} ((h(x^i) - y^i))^2$$

$$\frac{1}{6}((1-1)^2 + (2-2)^2 + (3-3)^2)$$

$$\frac{1}{6}(0)$$

$$= ($$

Function $C(\lambda_1)$

We are going to pick multiple values for λ_1 and map the relationship between $C(\lambda_1)$ and λ_1 . When $\lambda_1=1$ then $C(\lambda_1)=0$

	<u> </u>	-unctio	<u>n h(x)</u>	/
у	I			
3	1			
2	1		•	
1	1/			
	<u> </u>	1	2 X	3

h(x)	=	λ_1	X	
------	---	-------------	---	--

X	Y
1	1
2	2
3	3

Let's examine what happens when I give λ_1 a value of 1.5.

We subsequent calculate the associated cost:

$$C(\lambda_1) = \frac{1}{2m} \sum_{i=0}^{m} ((h(x^i) - y^i))^2$$

$$\frac{1}{6}((1.5-1)^2+(3-2)^2+(4.5-3)^2)$$

$$\frac{1}{6}(0.25 + 1 + 2.25)$$
$$= 0.58$$

Notice we define our line only using a single parameter λ_1 . Controls the slope and must pass through the origin.

Function $C(\lambda_1)$

We are going to pick multiple values for λ_1 and map the relationship between $C(\lambda_1)$ and λ_1 . When $\lambda_1=1$ then $C(\lambda_1)=0$

If we were to continue this process and map the shape of $C(\lambda_1)$ then it would exhibit a regular **convex** shape as shown above.

$$h(x) = \lambda_1 x + b$$

Linear Regression – A Search Problem

- Now let's add the our additional parameter b back into our linear equation
- Below is an example **depiction of** $C(\lambda_1)$ when we have two parameters (λ_1) and (λ_2)

Gradient Decent – An Optimization Algorithm

- We have a function $C(\lambda_1, b)$ and our objective is to determine the values of λ_1 and b that will give the **minimum** value of $C(\lambda_1, b)$
- Gradient Decent (Overview)
 - Start with a **random** value of λ_1 and b
 - Alter the value of λ_1 and b in order to continually reduce the value of $C(\lambda_1, b)$
 - Continue until we reach a minimum

Gradient Decent – Algorithm

repeat {

$$\lambda_1 = \lambda_1 - \alpha \frac{\partial}{\partial \lambda_1} C(\lambda_1, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} C(\lambda_1, b)$$

. Where

- α is a numerical value that is called the <u>learning rate</u>. It controls the size of the decent that we make during each iteration. The larger the value of the greater the value of α
- $\frac{\partial}{\partial \lambda_1}$ and $\frac{\partial}{\partial b}$ are <u>derivative term</u> allowing us to calculate the slope of any point for the function

More Detail on Parameters of Gradient Decent Function (24)

 Lets' return to our simple example from earlier where we have

$$h(x) = \lambda_1 x$$

And our objective is:

$$minimise_{\lambda_1} C(\lambda_1)$$

• Our rule updating λ_1 according to the Grad. Dec. algorithm is:

$$\lambda_1 = \lambda_1 - \alpha \frac{\partial}{\partial \lambda_1} C(\lambda_1)$$

• We randomly pick an initial value for λ_1 as seen in the graph.

More Detail on Parameters of Gradient Decent Function ((2.))

$$\lambda_1 = \lambda_1 - \alpha \frac{\partial}{\partial \lambda_1} C(\lambda_1)$$

This derivative term allows us to calculate the slope of a line that forms a tangent to the point we have selected.

We can see the slope of this line is a positive number (slope obviously being height divided by horizontal – dashed lines)

More Detail on Parameters of Gradient Decent Function C(A_s)

$$\lambda_1 = \lambda_1 - \alpha \frac{\partial}{\partial \lambda_1} C(\lambda_1)$$

The derivative value in this case will be a **positive number**, which is then multiplied by the α (the learning rate).

Therefore, this ultimately reduces the value of λ_1 as we are subtracting a small positive number.

$$\lambda_1 = \lambda_1 - \alpha \frac{\partial}{\partial \lambda_1} C(\lambda_1)$$

Notice the value of λ_1 is reduced

$$\lambda_1 = \lambda_1 - \alpha \frac{\partial}{\partial \lambda_1} C(\lambda_1)$$

What happens to the value of λ_1 if we select an initial value of λ_1 as shown in the graph?

$$\lambda_1 = \lambda_1 - \alpha \frac{\partial}{\partial \lambda_1} C(\lambda_1)$$

What happens to the value of λ_1 if we select an initial value of λ_1 as shown in the graph?

 $\lambda_1 = \lambda_1 - \alpha \frac{\partial}{\partial \lambda_1} C(\lambda_1)$

The derivative of this line is negative. It is then multiplied by α and subtracted from λ_1 . This has the effect of increasing the value of λ_1

$$\lambda_1 = \lambda_1 - \alpha \frac{\partial}{\partial \lambda_1} C(\lambda_1)$$

The value of λ_1 is increased and is making it ways towards the minimum. Notice that we continue to move towards the minimum value of λ_1

 As we mentioned before the value of α controls the rate of decent.

$$\lambda_1 = \lambda_1 - \alpha \frac{\partial}{\partial \lambda_1} C(\lambda_1)$$

• Consider the scenario where the value of α is very small. What effect do you think it would have on the update of λ_1

This would result in very small movement in the value of λ_1 and would cause a long time until we reach convergence.

• Conversely if the value of α is very large then the change in value of λ_1 will be very substantial. Why would this be a problem?

It can cause very large jumps in the value of λ_1 and we could potentially miss the minimum as shown on the graph.

- It can cause very large jumps in the value of λ_1 and we could potentially miss the minimum as shown on the graph.
- What do you think will happen if we pick λ₁ such that it has the minimum value?

Derivatives for Linear Regression

$$\lambda_{1} = \lambda_{1} - \alpha \frac{\partial}{\partial \lambda_{1}} C(\lambda_{1}, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} C(\lambda_{1}, b)$$

$$\frac{\partial}{\partial \lambda_1} C(\lambda_1, b) = \frac{1}{m} \sum_{i=0}^{m} ((h(x^i) - y^i))(x^i)$$

$$\frac{\partial}{\partial b}$$
C(λ_1 , b)= $\frac{1}{m}\sum_{i=0}^{n}((h(x^i)-y^i))$

Gradient Decent Algorithm

```
repeat {
            \lambda_1 = \lambda_1 - \alpha \frac{\partial}{\partial \lambda_1} C(\lambda_1, b)
            b = b - \alpha \frac{\partial}{\partial h} C(\lambda_1, b)
repeat {
        \lambda_1 = \lambda_1 - \alpha \frac{1}{m} \sum_{i=0}^m ((h(x^i) - y^i))(x^i)
        b = b - \alpha \frac{1}{m} \sum_{i=0}^{m} ((h(x^{i}) - y^{i}))
}
```


