⑨ DAS DATA 처리 관련

교정 데이터를 DAS에 입력하여 처리하는 과정에서 발생하는 불확도이다. DAS에서는 교정 데이터를 1차식이나 다항식, 혹은 look-up table 형식으로 저장하게 되는데, 이 과정에서 발생하는 curve fit에 의한 불확도를 관련 성능 인자로 정의한다. 이 단계는 위 Table 3.1.2.27 상의 $1\sim3$, 10, $12\sim14$, 17번 인자에 해당된다. 나머지 중 $6\sim9$, 11번 인자는 교정식이 transducer 모듈 자체에 입력되어 DAS에는 교정식이 반영된 데이터가 통신으로 전송되므로 해당되지 않는다. 4, 5, 15, 16번 인자는 직경으로서 교정식이 존재하지 않는다.

(다) 정량적 성능지표 분석을 위한 프로그램 작성

이상과 같은 체계로 정량적 성능지표 분석을 수행하고자 프로그램을 작성하였다. 전체 프로그램은 Microsoft Excel©로 작성하였다. 그 형태는 아래 그림과 같다(단, 그림에서 불확도의구체적인 수치는 정확하지는 않음).

	변수명	단위	값	센서교정	센서환경	원주불균	반경불균	Recovery	측추력	진원도	DAS채널	DAS처리
INPUT	am_p	Pa	122814.9189									
VARIABLES	am_dp	Pa	5202.297297									
	am_t	K	305.5002703									
	d_throat	m	0.2794									
	d_pipe	m	0.7458									
		Pa	117350.4969									
	ps02_avg	Pa	114330.7903									
	p05_avg	Pa	120920.5105									
	ps05_avg	Pa	112378.4469									
	t05_avg	K	305.5804054									
	ps_cell	Pa	102081.2539									
	pref		101325									
	fm	N	1869.338784									
	Di	m	0.2638									
	Do	m	0.2881									
	Wf	kg/hr	213.1005405									
Uncertainty	am_p	Pa	30	15	15							15
Estimate	am_dp	Pa	15	7.5	7.5	7.5						7.5
	am_t	K	0.1	0.05	0.05	0.05						0.03
	d_throat	m	0.000503389	0.000058						0.0005		
	d_pipe	m	0.00200085	0.000058						0.002		
	ps01_avg	Pa	80.83379742	29.86		75.12						
	ps02_avg	Pa	80.83379742	29.86		75.12						
	p05_avg	Pa	179.1711292	29.86		86.74	108.8	108.8				
	ps05_avg	Pa	58.30291783	29.86		50.08						
	t05_avg	DegK	2.107074734	0.15		0.34	0.28	0.28			2.032	0.15
	ps_cell	Pa	29.97702728	29.98								
	pref		19.57600572	2.7							19.2	2.7
	fm	N	6.669113859	1.786	1.786				0.285		4.36	4.36
	Ftare	N	5.830951905	1	1						4	- 2
	Di	m	2.91548E-05	2.9E-05								
	Do	m	2.91548E-05	2.9E-05								
	Wf	kg/hr	0.99600963	0.309	0.309						0.84	0.309

그림 3.1.2.51 정량적 성능 인자 분석 프로그램

3. 측정체계 고도화 완료 및 평가

- 가. AETF용 표준측정장치 설계기술 개발
- (1) 항우연 표준측정장치 개발
- (가) 경계층 압력분포 측정용 표준측정장치 설계 및 제작

엔진과 설비를 연결하는 직결형 덕트 중 엔진의 입구에 위치하는 05 섹션에서, 덕트 내 경계층에서의 압력분포를 측정하고자 경계층 압력측정용 레이크를 신규로 제작하였다. 기존 레이크는 프로브 끝단이 피토관 형식이나 신규로 제작한 경계층 압력측정용 레이크는 전압력/전온도 측정용 레이크와 동일하게 키엘타입 피토관 형식으로 제작하였다. 이를 통해 신규 경계층 레이크는 천이상태에서 경계층 내의 압력변동을 빠르게 확인할 수 있으며, 기존 경계층 레이크 보다 큰 유동각 범위에서 1% 이하의 전압력 오차를 달성할 수 있게 된다.

신규로 설계 및 제작한 경계층 압력측정용 레이크의 상세 설계형상은 그림 3.1.3.1과 같으며, 몸체 내부에는 단열용 시멘트를 채웠고, 몸체는 에어포일 형상을 적용함으로써 레이크가