Contents

1	Intr	oduzione alla probabilità 3			
	1.1	Glossario			
	1.2	Moda e Mediana			
		1.2.1 Moda			
		1.2.2 Mediana			
	1.3	Media e Varianza Campionaria			
		1.3.1 Media Campionaria			
		1.3.2 Varianza Campionaria			
	1.4	Disugaglianza di Chebyshev			
	1.5	Percentile			
	1.6	Insieme di dati Bivariati			
		1.6.1 Coefficiente di correlazione campionario 6			
	1.7	Permutazioni, Combinazioni e Disposizioni 6			
		1.7.1 Permutazioni			
		1.7.2 Combinazioni			
		1.7.3 Disposizioni			
	1.8	Probabilità condizionata			
		1.8.1 Teorema di Bayes			
	1.9	Operazioni e proprietà tra eventi			
2	Variabile aleatorie 8				
_	2.1	Funzione di ripartizione (Tutte le variabili)			
	2.2	Funzione di massa (Variabili discrete)			
	2.3	Funzione della densità di probabilità (Variabili continue) 9			
		·			
3		zioni a due variabili 11			
	3.1	Funzione di ripartizione congiunta			
	3.2	Funzione di massa congiunta			
	3.3	Funzione densità congiunta			
	3.4	Variabili aleatorie indipendenti			
		3.4.1 X,Y indipendenti			
	3.5	Distribuzioni condizionate			
	3.6	funzione di massa condizionata (Discrete)			
	3.7	funzione di densità condizionata (Continue)			
4	Valo	ore atteso 17			
	4.1	Funzione di massa (Discrete)			
	4.2	Funzione di densità (Continue)			
	4.3	Valore atteso di una funzione			
	4.4	Dimostrazioni			
	4.5	Momenti N-esimi nel valore atteso			
	4.6	Valore atteso della somma di due variabili			

5	Varianza		
	5.1 Costanti reali nella varianza	22	
6	Deviazione Standard	23	
7	Covarianza	24	
	7.1 Proprietà della covarianza	24	
	7.2 Coefficiente di correlazione lineare	25	
8	Funzione generatrice dei momenti		
	8.1 Disugaglianza di Markov	26	
	8.2 Disugaglianza di Chebyshev	27	
9	Legge debole dei grandi numeri	29	
10	Modelli di variabili aleatorie		
	10.1 Bernoulli	30	
	10.2 Binomiali	30	
	10.2.1 Valore atteso e varianza di Binomiali	30	
	10.2.2 Funzione di massa e di ripartizione di Binomiali	30	
	10.3 Poisson	30	
	10.4 Ipergeometriche	30	
	10.5 Uniformi	30	
	10.6 Normali o Gaussiane	30	
	10.7 Esponenziali	30	
	10.8 Processi stocastici (Poisson)	30	
	10.9 Gamma	30	
	10.10Chi-quadro	30	
	10.11 Distribuzione T	30	
	10.12 Distribuzione F	30	
	10.13 Distribuzione logistica	30	

1 Introduzione alla probabilità

1.1 Glossario

- Sistemi non deterministici → conoscendo i dati iniziali non possiamo determinare i dati finali
- ullet Incertezza degli eventi o la varianza degli eventi che possono succede
- ullet Rumore o possiamo misurare un evento solo approssimatamente
- ullet Probabilità o la materia che studia i sistemi non deterministici
 - Frequestista → probabilità assegnata sulla base di più esperimenti ripetuti nella stessa condizioni
 - Soggettivista → non esiste un valore oggettivo ma ci si basa sulla fiducia e sull'incertezza che l'individuo ha riguardo l'occorrenza di un certo evento
- ullet Varianza o dispersione dei dati attorno al valore centrale / media / valore
- ullet Confidenza o intervallo che rappresenta una stima dei valori medi
- Frequenza
 - Frequenza assoluta \rightarrow Numero di volte che si verifica un evento
 - Frequenza relativa \rightarrow Rapporto tra frequenza assoluta e il numero di prove/dati
- ullet Dataset o numero di dati a disposizione $D_n = \{x_1 {\cdots} x_n\}$
- ullet Principio di enumerazione o Passare solo una volta da ogni elemento della raccolta
- Spazio esiti (s o Ω) o Tutti i possibili esiti di un evento o $Dado = \{1 \cdots 6\}$
- Spazio eventi (e) o Tutti i possibili risultati di un esperimento o $Dado = \{1||2\} \leftarrow$ che esca 1 oppure 2
- ullet Assioma o Tre assiomi fondamentali su cui si poggia la teoria del calcolo delle probabilità
 - 1' Assioma \to La probabilità di E è un numero reale **non negativo** $\mathbb{P}(E) \in \mathbb{R}, \mathbb{P}(E) \geq 0 \ \forall E \subseteq \Omega \ | \ 0 \leq P(E) \leq 1$
 - 2' Assioma ightarrow Allo spazio degli esiti è sempre associato ad ${f 1}$ ${\Bbb P}(s)=1$
 - 3' Assioma \to Per ogni coppia di eventi incompatibili $E_1, E_2 \subseteq \Omega$ la probabilità di $E_1 \cup E_2$ è uguale alla **somma della loro probabilità** $\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2)$

1.2 Moda e Mediana

1.2.1 Moda

Definizione: La moda è il valore che presenta la **massima frequenza** all'interno del dataset

Formula generica:

$$Moda
ightarrow v_i: f_i = max f_i egin{cases} ext{un solo valore} & extbf{Moda} \ ext{più di un valore} & extbf{Valori modali} \end{cases}$$

1.2.2 Mediana

Definizione: La mediana è il **valore centrale** all'interno del dataset (dati ordinati in ordine crescente/decresente)

Formula generica:

$$Mediana = \begin{cases} \text{n pari} & \frac{x \frac{n}{2} + x \frac{n}{2} + 1}{2} \\ \text{n dispari} & x_{\left[\frac{n+1}{2}\right]} \leftarrow \text{Intero superiore (Ceil)} \end{cases}$$

Esempio:

$$D_n = \{ 28, 34, 51, 19, 62, 43, 29, 38, 45, 26, 49, 33 \}$$

Per la mediana è necessario ordinare i dati in ordine crescente:

$$D_n = \{ 19, 26, 28, 29, 33, 34, 38, 43, 45, 49, 51, 62 \}$$

$$\frac{x_{\frac{12}{2}} + x_{\frac{12}{2}+1}}{2} = \frac{x_6 + x_7}{2} = \frac{34 + 38}{2} = \frac{72}{2} = 36$$

Nota: quando si trova ad esempio x_6 bisogna andare a sostituire il valore con la posizione di ${\bf x}$

1.3 Media e Varianza Campionaria

1.3.1 Media Campionaria

Definizione: La media campionaria è la media degli elementi di un campione.

Formula generica:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

1.3.2 Varianza Campionaria

Definizione: La varianza campionaria è la **dispersione** degli elementi di un campione.

Formula generica:

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Esempio: (Varianza e Media) $D_n = \{ 3, 4, 6, 7, 10 \}$

Media del campione: $\overline{X}=\frac{(\mathbf{3+4+6+7+10})}{\mathbf{5}}=\frac{30}{5}=6$

Varianza campionaria: $s^2 = \frac{[(-3)^2 + (-2)^2 + 0^2 + 1^2 + 4^2]}{4} = 7.5$

1.4 Disugaglianza di Chebyshev

Definizione: Dice quanti dati di un campione cadono all'interno di un intervallo con centro la **media**

$$\forall k \geq 1 : k \in \mathbb{R}$$
$$(\overline{x} - k_s, \overline{x} + k_s) \longrightarrow S_k : [i : 1 \leq i \leq n, |x_i - \overline{x} < k_s|]$$

Generalizzando:

$$\begin{aligned} |x - \overline{x}| &< 5 \longrightarrow 68\% \\ |x - \overline{x}| &< 25 \longrightarrow 95\% \\ |x - \overline{x}| &< 35 \longrightarrow 99.7\% \end{aligned}$$

1.5 Percentile

Definizione: Il percentile è un indicatore che serve ad **indicare il valore minimo** sotto al quade ricade una **determinata percentuale** degli altri elementi sotto osservazione.

Prima cosa da fare è ordinare i valori in ordine crescente Dove il secondo quartile è sempre uguale alla **mediana**

Esempio: $D_n = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8 \}$

1.6 Insieme di dati Bivariati

Definizione: è lo studio della relazione di due variabili.

Formula generica:

$$D_n: \{(X_1, Y_1)(X_2, Y_2) \cdots (X_n, Y_n)\}$$

1.6.1 Coefficiente di correlazione campionario

Definizione: utilizzato per capire se esiste un legame lineare tra due serie di dati.

Formula generica:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{(n-1)s_x s_y} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overleftarrow{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

1.7 Permutazioni, Combinazioni e Disposizioni

1.7.1 Permutazioni

Definizione: Modi possibili per sistemare n oggetti (0! = 1)

$$n! = n \cdot (n-1) \cdots (n \cdot (n-1))$$

Esempio: Fattoriale di 6

$$6! = 6 \cdot (6-1) \cdot (6-2) \cdot \cdot \cdot (6-5) = 720$$

1.7.2 Combinazioni

Definizione: Modi di disporre k elementi scelti da n elementi (l'ordine non conta)

$$\frac{n!}{k! \cdot (n-k)!} = \binom{n}{k}$$

Esempio: in una classe di 26 alunni si devono eleggere 2 rappresentanti

$$C_{n,k} = \frac{n!}{k! \cdot (n-k)!}$$

Sostituiamo n con 26 (numero di alunni) e k con 2 (numeri di rappresentanti)

$$C_{26,2} = \frac{26!}{2! \cdot (26-2)!} = \frac{26!}{2! \cdot 24!} = \frac{25 \cdot 26}{2} = \mathbf{325}$$

è possibile anche semplificare i fattoriali come in questo caso

1.7.3 Disposizioni

Definizione: Modi di disporre k elementi scelti da n elementi (l'ordine conta)

$$\frac{n!}{(n-k)!}$$

Esempio: Quante parole is possono ottenere usando 4 diverse lettere da *youmath* In questo caso dobbiamo contare le disposizioni senza ripetizione di classe 4 di 7

$$D_{7,4} = \frac{7!}{(7-4)!} = \frac{7!}{3!} = \frac{5040}{6} = 840$$

1.8 Probabilità condizionata

Definizione: è la probabilità che succeda un evento E dato un evento F

$$P(E|F) = \frac{P(E|F)}{P(F)}$$

Esempio: 3 scatole con contenuto nascosto dove in una è presente il premio

$$P(Vincita) = \frac{1}{3}$$

 $P(Vincita|1' \text{ pacco contiene un gatto}) = \frac{1}{2}$

P(Vincita|1' pacco NON contiene un gatto) = 0

1.8.1 Teorema di Bayes

Formula generica:

$$P(F_j|E) = \frac{P(F_j \cap E)}{P(E)} = \frac{P(E|F_j) \cdot P(F_j)}{\sum_{i=1}^{p} P(E|F_i) \cdot P(F_i)}$$

Probablità di F_j sapendo che si sia verificato l'evento ${f E}$

1.9 Operazioni e proprietà tra eventi

Definizione: Prendiamo come esempio E ed F come eventi

- $E \cup F \longleftarrow Unione$
- $E \cap F \leftarrow$ Intersezione
- $E \subset F \mid E \subseteq F \longleftarrow Contenuto$
- $E \supset F \mid E \supseteq F \longleftarrow$ Contiene
- $\bullet \ E^c \longleftarrow \mathsf{Complemento}$

Le seguenti operazioni possono essere combinate tra di loro: formando cosi le proprietà che seguono:

- $E \cup (F \cup G) = (E \cup F) \cup G \longrightarrow$ Associativa unione
- $(E \cup F) \cap G = (E \cap G) \cup (F \cup G) \longrightarrow \mathsf{Distributiva}$ intersezione
- $E \cap (F \cap G) = (E \cap F) \cap G \longrightarrow Associativa intersezione$
- $(E \cap F) \cup G = (E \cup G) \cap (F \cup G) \longrightarrow \mathsf{Distributiva}$ unione
- $(E \cup F)^c = \frac{E^c \cap F^c}{(E \cap F)^c} = E^c \cup F^c$

2 Variabile aleatorie

Definizione: La variabile aleatoria è una variabile che può assumere **valori diversi** in dipendenza da *qualche esperimento casuale*.

$$X egin{cases} Discrete & {\sf Solo} \ {\sf valori} \ {\sf finiti} \\ Continue & {\sf Possono} \ {\sf assumere} \ {\sf range} \ {\sf illimitati} \end{cases}$$

2.1 Funzione di ripartizione (Tutte le variabili)

Definizione: La Probabilità che la variabile aleatoria **X** assuma un valore minore o uguale ad x

Formula generica: $F(x) = P(X \le x)$

- F = funzione di ripartizione
- X = variabile aleatoria
- x = variabile normale

Esempio :

$$P(a < X \le b)$$

$$P(X \le b) = P(X \le a) + P(a < X \le b)$$

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

2.2 Funzione di massa (Variabili discrete)

Formula generica: p(a) = P(X = a)

se si ha la funzione di ripartizione è possibile ottenere la funzione di massa perche:

$$X \leq a = \bigcup X_i$$

Formula generica:

$$F(x) = P(X \le a) = \sum_{x \le a} p(x_i)$$

TODO- GRAFICO

Esempio: variabile aleatoria X che può assumere valori 1, 2 o 3 Dato che p(1) + p(2) + p(3) = 1

Se:

$$p(1) = \frac{1}{2}$$
$$p(2) = \frac{1}{2}$$

Allora:

$$p(3) = \frac{1}{6}$$

La funzione di ripartizione F di X è data da:

$$F(a) = \begin{cases} 0 & a < 1 \\ \frac{1}{2} & 1 \le a < 2 \\ \frac{5}{6} & 2 \le a < 3 \\ 1 & 3 \le a \end{cases}$$

2.3 Funzione della densità di probabilità (Variabili continue)

Formula generica:

$$P(X \in B) = \int_{B} f(x) dx$$

$$P(X \in (-\infty, +\infty)) = \int_{-\infty}^{+\infty} f(x) dx = 1$$

integrando $-\infty$ a $+\infty$ la probabilità che avvenga x è per forza 1 perche andiamo ad includere tutti i valori di $\mathbb R$

Se abbiamo che
$$\mathbf{B}=[\mathbf{a},\ \mathbf{b}]\longrightarrow P(a\leq X\leq b)=\int_a^bf(x)\,dx$$
 Se abbiamo che $\mathbf{B}=[\mathbf{a}]\longrightarrow P(X=a)=\int_a^af(x)\,dx=0$

Relazione che lega la funzione di ripartizione F alla densità f:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

Derivando entrambi i membri otteniamo che:

$$\frac{d}{da}F(a) = f(a)$$

Esempio: Sia assegnata una variabile aleatoria X con densità data da:

$$f(x) = \begin{cases} C(4x - 2x^2) & 0 < x < 2 \\ 0 & \text{altrimenti} \end{cases}$$

- (a) quanto vale C? (b) quanto vale P(X>1)?
- (a) siccome f è una densita allora:

$$1 = C \int_0^2 (4x - 2x^2) dx$$
$$= C[2x^2 - \frac{2x^3}{3}] \Big|_{x=0}^{x=2} = C \cdot \frac{8}{3}$$
$$= C = \frac{3}{8}$$

(b) conoscendo ora la densità f possiamo trovare la P(X > 1):

$$P(X > 1) = \int_{1}^{\infty} f(x) dx = \frac{3}{8} \int_{1}^{2} (4x - 2x^{2}) dx = \frac{1}{2}$$

3 Funzioni a due variabili

Questo tipo di funzioni ci sono utili quando l'utilizzo di una sola variabile è impossibile poichè l'oggetto in questione è basato sulla relazione di due variabili aleatorie

3.1 Funzione di ripartizione congiunta

Definizione: Funzione di ripartizione a due variabili aleatorie X e Y

Formula generica:

$$F(x,y) = P(X \le x, Y \le y)$$

Se vogliamo trovare solamente la funzione di ripartizione di una singola variabile aleatoria:

$$F_X(x) = P(X \le x)$$

$$= P(X \le x, Y \le \infty)$$

$$= F(x, \infty)$$

Applicabile anche alla $F_y(y)$

$$F_Y(y) = F(\infty, y)$$

3.2 Funzione di massa congiunta

Definizione: Probabilita che accadano due eventi (X e Y) nello stesso istante.

Formula generica: $p(x_i, y_j) = P(X = x_i, Y = y_j)$

Se vogliamo trovare solamente la funzione di massa di una singola variabile aleatoria:

$$\begin{aligned} p_X(x_i) &:= P(X = x_i) \\ &= P(\bigcup_j \{X = x_i, Y = y_j\}) \\ &= \sum_j P(X = x_i, Y = y_j) \\ &= \sum_j p(x_i, y_j) \end{aligned}$$

Applicabile anche alla p_Y

$$p_Y(y_j) = \sum_i p(x_i, y_j)$$

$$\sum_{x} \sum_{y} p(x, y) = 1$$

3.3 Funzione densità congiunta

Definizione: Due variabili aleatorie X e Y sono *congiuntamente continue* se esiste un funzione non negativa f(x,y) definita per tutti gli x e gli y

Formula generica:

$$P((X,Y) \in C) = \int \int_{(x,y) \in C} f(x,y) dx dy$$

se A e B sono sottoinsiemi qualsiasi di \mathbb{R} e C:= A x B

$$C := (x, y) \in \mathbb{R}^2 : x \in A, y \in B$$

Possiamo riscrivere la funzione di ripartizione congiunta di X e Y come segue:

$$F(a,b) = P(X \le a, Y \le b)$$

$$= P(X \in a, Y \in b)$$

$$= \int_{B} \int_{A} f(x,y) dx dy$$

$$= \int_{-\infty}^{a} \int_{-\infty}^{b} f(x,y) dx dy$$

Esempio: Siano X e Y due variabili aleatorie congiuntamente continue con densità di probabilità data da:

$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y} & x > 0, y > 0\\ 0 & altrimenti \end{cases}$$

Si calcolino (a) P(X > 1, Y < 1)

$$\begin{split} P(X > 1, Y < 1) &= \int_0^1 \int_1^\infty 2e^{-x}e^{-2y} \, dx \, dy \\ &= \int_0^1 2e^{-2y} (\int_1^\infty e^{-x} \, dx) \, dy \\ &= \int_0^1 2e^{-2y} \{-e^{-x}\}|_{x=1}^\infty \, dy \\ &= e^{-1} \int_0^1 2e^{-2y} \, dy \\ &= e^{-1} (1 - e^{-2}) \end{split}$$

In questo caso si è integrato prima in una variabile e poi nell'altra

3.4 Variabili aleatorie indipendenti

3.4.1 X,Y indipendenti

Definizione: Un evento su una variabile non influenza l'altra.

Formula generica: Se soddisfano questa richiesta le variabili si dicono *indipendenti*

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

Usando gli assiomi della probabilità è possibile dimostrare che la definizione di sopra è equivalente a:

$$P(X \le a, Y \le b) = P(X \le a)P(Y \le b)$$

$$\forall a, b \in \mathbb{R}$$

Ovvero che la funzione di ripartizione congiunta sia il prodotto delle marginali:

$$F(a,b) = F_X(a)F_Y(b)$$

Funzione di massa:

$$p(a,b) = p_X(a)p_Y(b)$$

$$P(X = a, Y = b) = P(X = a)P(Y = b)$$

Dimostrazione:

$$P(X \in A, Y \in B) = \sum_{x \in A} \sum_{y \in B} p(x, y)$$
$$= \sum_{x \in A} \sum_{y \in B} p_X(x) p_Y(y)$$
$$= \sum_{x \in A} p_X(x) \sum_{y \in B} p_Y(y)$$
$$= P(X \in A) P(Y \in B)$$

Funzione di densità:

$$f(x,y) = f_X(x)f_Y(y)$$
$$\forall x, y \in \mathbb{R}$$

Esempio con variabili indipendenti continue e con stessa funzione di densità:

$$f_X(t) = f_Y(t) = \begin{cases} e^{-t} & t > 0\\ 0 & altrimenti \end{cases}$$

Quale è la densità di probabilità della variabile aleatoria data dal rapporto X/Y

$$F_{X|Y}(a) = P(X|Y \le a)$$

$$= \int_{(x,y)} \int_{x \le ay} f(x,y) \, dx \, dy$$

$$= \int_{(x,y)} \int_{x \le ay} f(x) f(y) \, dx \, dy$$

$$= \int_{0}^{\infty} \int_{0}^{ay} e^{-x} f(x) f(y) \, dx \, dy$$

$$= \int_{0}^{\infty} e^{-y} \left(\int_{0}^{ay} e^{-x} \right) \, dy$$

$$= \int_{0}^{\infty} e^{-y} (1 - e^{-ay}) \, dy$$

$$= \left[-e^{-y} + \frac{e^{-(a+1)y}}{(a+1)} \right]_{0}^{\infty}$$

$$= 1 - \frac{1}{a+1}$$

La funzione di densità si ricava infine derivando la funzione di ripartizione

$$f_{X|Y}(a) = \frac{d}{da}(1 - \frac{1}{a+1}) = \frac{1}{(a+1)^2}a > 0$$

3.5 Distribuzioni condizionate

Definizione: La distribuzione condizionata di Y dato X è la probabilità di X quando è conosciuto il valore assunto da X.

A ogni distribuzione condizionata è associato un valore atteso condizionato e una varianza condizionata

Formula generica: $P(E|F) = \frac{P(E \cap F)}{P(F)}$

3.6 funzione di massa condizionata (Discrete)

Formula generica:

$$\begin{split} p_{X|Y}(X|Y) &= P(X=x,Y=y) \\ &= \frac{P(X=x,Y=y)}{P(Y=y)} \\ &= \frac{p(X,Y)}{p_Y(x,y)>0} \\ \forall x, \forall y \text{ con } p_Y(y)>0 \end{split}$$

Se y non è un valore possibile di Y, ovvero se P(Y = y) = 0, la quantità $p_{X|Y}(x|y)$ non è definita

Esempio: Siano X e Y due variabili aleatorie discrete con funzione di massa congiunta p dato che:

$$p(0,0) = 0.4$$
 $p(0,1) = 0.2$ $p(1,0) = 0.1$ $p(1,1) = 0.3$

Calcolare la massa di X condizionata da Y=1

$$P(Y = 1) = \sum_{x} p(x, 1) = p(0, 1) + p(1, 1) = 0.5$$

Quindi:

$$P(X = 0|Y = 1) = \frac{p(0,1)}{P(Y = 1)} = \frac{2}{5}$$

$$P(X = 1|Y = 1) = \frac{p(1,1)}{P(Y = 1)} = \frac{3}{5}$$

Se X e Y sono variabili congiuntamente continue, non è possibile utilizzare la definizione di distribuzione condizionata valida per quelle discrete, infatti sappiamo che P(Y=y)=0 per tutti i valori di y

3.7 funzione di densità condizionata (Continue)

Formula generica:

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

Se X e Y sono congiuntamente continue e A è un sottoinsieme di numeri reali per ogni y si può definire:

$$P(X \in A|Y = y) := \int_A f_{X|Y}(x|y) dx$$

Notiamo che X e Y sono indipendenti allora:

$$f_{X|Y}(x,y) = f_X(x) \qquad P(X \in A|Y = y) = P(X \in A)$$

Esempio: è data la seguente densità congiunta di X e Y

$$f(x,y) = \begin{cases} \frac{12}{5}x(2-x-y) & 0 < x < 1, 0 < y < 1\\ 0 & altrimenti \end{cases}$$

Si calcoli la densità condizionata di X rispetto a Y=y per 0 < y < 1. Se questi due numeri sono compresi tra 0 e 1 abbiamo che:

$$f_{X|Y}(x,y) := \frac{f(x,y)}{f_Y(y)}$$

$$= \frac{f(x,y)}{\int_{-\infty}^{\infty} f(x',y) dx'}$$

$$= \frac{x(2-x-y)}{\int_{0}^{1} x'(2-x'-y) dx'}$$

$$= \frac{x(2-x-y)}{\frac{2}{3} - \frac{y}{2}}$$

$$= \frac{6x(2-x-y)}{4-3y}$$

4 Valore atteso

Definizione: Rappresenta la media pesata dei valori di una variabile aleatoria

4.1 Funzione di massa (Discrete)

$$\mathbb{E}[X] := \sum_{i} x_i P(X = x_i)$$

Si può dire quindi che il valore atteso è anche detto media di X oppure aspettazione

Esempio semplice: Se X è una variabile aleatoria con funzione di massa

$$p(0) = \frac{1}{2} = p(1)$$

Allora:

$$\mathbb{E}[X] = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{0+1}{2} = \frac{1}{2}$$

Esempio dado fair 6 facce $P(x_i=i)=\frac{1}{6}$

$$\mathbb{E}[X] = \sum_{i=1}^{6} i \frac{1}{6} = \frac{1}{6} \sum_{i=1}^{6} i = \frac{21}{6} = \frac{7}{2} = 3.5$$

Oppure:

$$\mathbb{E}[X] := 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = \frac{7}{2} = 3.5$$

dove il risultato è la media dei valori che X può assumere

Se N è molto grande allora $N_i \approx N_p(x_i)$

$$\sum_{i=1}^{n} x_{i} p(x_{i}) \approx \sum_{i=1}^{n} x_{i} \frac{n_{i}}{n}$$

4.2 Funzione di densità (Continue)

Formula generica:

$$\mathbb{E}[X] := \int_{-\infty}^{+\infty} x f(x) \, dx$$

Esempio: Siamo in attesa di una comunicazione che deve arrivare dopo le ore 17. a partire dalle 17 è una variabile aleatoria con funzione di densità data da:

$$f(x) = \begin{cases} \frac{1}{1.5} & \text{se } 0 < x < 1.5\\ 0 & \text{altrimenti} \end{cases}$$

Il valore atteso del tempo che trascorre tra le 17 e il momento di arrivo della comunicazione è quindi:

$$\mathbb{E}[X] = \int_0^{1.5} \frac{x}{1.5} \, dx = 0.75$$

4.3 Valore atteso di una funzione

Definizione: è possibile calcolare il valore atteso di una funzione g(X) notando che essa stessa è una variabile aleatoria quindi si applicano le stesse proprietà, come segue:

Variabile discreta:

Variabile Continua:

$$\mathbb{E}[g(X)] = \sum_{i} g(x_i)p(x_i) \qquad \qquad \mathbb{E}[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x) dx$$

Esempio (discrete): quanto vale il valore atteso del quadrato di una variabile X con le seguenti funzioni di massa?

$$p(0) = 0.2$$
 $p(1) = 0.5$ $p(2) = 0.3$

Se poniamo $Y:=X^2$ questa diventa una variabile che può assumere i valori $0^2,\,1^2,\,2^2$

$$p_Y(0) := P(Y = 0^2) = 0.2$$

$$p_Y(1) := P(Y = 1^2) = 0.5$$

$$p_Y(4) := P(Y = 2^2) = 0.3$$

Quindi:

$$\mathbb{E}[X^2] = \mathbb{E}[Y] = 0 \cdot 0.2 + 1 \cdot 0.5 + 4 \cdot 0.3 = 1.7$$

Oppure (utilizzando la proposizione delle variabili discrete)

$$\mathbb{E}[X^2] = 0^2 \cdot 0.2 + 1^2 \cdot 0.5 + 2^2 \cdot 0.3 = 1.7$$

Esempio (continue): Il tempo – in ore – necessario per localizzare un guasto nell'impianto elettrico di una fabbrica è una variabile aleatoria X con funzione di densità

$$f(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{altrimenti} \end{cases}$$

Se il danno economico provocato da una interruzione di x ore è x^3 , qual è il valore atteso di questo costo?

Applicando la proposizione della variabile continua possiamo ottenere quanto segue:

$$\mathbb{E}[X^3] = \int_0^1 x^3 dx = \frac{1}{4}$$

4.4 Dimostrazioni

Sia per discreto che per continuo si applicano le seguenti proprietà:

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

Se proviamo a ponere a = 0 scopriamo che:

$$\mathbb{E}[b] = b$$

Se proviamo a ponere b = 0 scopriamo che:

$$\mathbb{E}[aX] = a\mathbb{E}[X]$$

Ovvero, il valore atteso di un fattore costante moltiplicato per una variabile aleatoria, è pari alla costante per il valore atteso della variabile aleatoria.

Per caso discreto:

$$\mathbb{E}[aX + b] = \sum_{x} (ax + b)p(x)$$
$$= a\sum_{x} xp(x) + b\sum_{x} p(x)$$
$$= a\mathbb{E}[X] + b$$

Per caso continuo:

$$\mathbb{E}[aX + b] = \int_{-\infty}^{+\infty} (ax + b)f(x) dx$$
$$= a \int_{-\infty}^{+\infty} xf(x) dx + b \int_{-\infty}^{+\infty} f(x) dx$$
$$= a\mathbb{E}[X] + b$$

4.5 Momenti N-esimi nel valore atteso

Definizione: se n = 1,2 ... n, la quantità $\mathbb{E}[X^n]$ se esiste viene detta *momento* n-esimo della variabile aleatoria X.

è possibile applicare le formule di prima, come segue:

$$\mathbb{E}[X^n] = \begin{cases} \sum_x x^n p(x) & \text{se X è discreta} \\ \int_{-\infty}^{+\infty} x^n f(x) \, dx & \text{se X è continua} \end{cases}$$

4.6 Valore atteso della somma di due variabili

Definizione: è possibile applicare le formule viste sopra anche quando abbiamo due variabili aleatorie

se in questo caso $\mathbb{E}[g(X,Y)]$ esiste allora:

$$\mathbb{E}[g(X,Y)] = \begin{cases} \sum_x \sum_y g(x,y) p(x,y) & \text{Se discreto} \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) \, dx \, dy & \text{Se continuo} \end{cases}$$

se g(X,Y) come g = X + Y allora

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Dimostrazione caso discreto:

$$\mathbb{E}[X+Y] = \sum_{x} \sum_{y} (x+y)p(x,y)$$

$$= \sum_{x} x \cdot \left[\sum_{j} p(x_i, y_j)\right] + \sum_{x} y \cdot \left[\sum_{i} p(x_i, y_j)\right]$$

$$= \sum_{x} x p_X(x) + \sum_{y} y p_Y(y)$$

$$= \mathbb{E}[X] + \mathbb{E}[Y]$$

Dimostrazione caso continuo:

$$\mathbb{E}[X+Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y)f(x,y) \, dx \, dy$$

$$= \int_{-\infty}^{\infty} x \left[\int_{-\infty}^{\infty} f(x,y) \, dy \right] dx + \int_{-\infty}^{+\infty} y \left[\int_{-\infty}^{+\infty} f(x,y) \, dx \right] dy$$

$$= \int_{-\infty}^{\infty} x f_X(x) \, dx + \int_{-\infty}^{\infty} y f_Y(y) \, dy$$

$$= \mathbb{E}[X] + \mathbb{E}[Y]$$

è possibile applicare la ricorsione per il numero di variabili aleatori

$$\begin{split} \mathbb{E}[X+Y+Z] &= \mathbb{E}[(X+Y)+Z] \\ &= \mathbb{E}[X+Y] + \mathbb{E}[Z] \\ &= \mathbb{E}[X] + \mathbb{E}[Y] + \mathbb{E}[Z] \end{split}$$

In generale per ogni n

$$\mathbb{E}[X_1 + X_2 + \dots + X_n] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \dots + \mathbb{E}[X_n]$$

Esempio: 2 dadi a 6 facce

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$= \sum_{i=1}^{6} x_i p(x_i) + \sum_{i=1}^{6} y_i p(y_i)$$

$$= \sum_{i=1}^{6} x_i \frac{1}{6} + \sum_{i=1}^{6} y_i \frac{1}{6}$$

$$= \frac{7}{2} + \frac{7}{2} = 7$$

Dove 7 è il valore atteso della somma dei due dadi.

Se vogliamo predire il valore di X possiamo scegliere un numero che sarà ugual ad X. L'errore che commeteremo sarà di $(X-c)^2$

Se $c=\mathbb{E}[X]$ l'errore sarà minimizzato $\mu:=\mathbb{E}[X]$

$$\mathbb{E}[(X-c)^2] \ge \mathbb{E}[(X-\mu)^2]$$

5 Varianza

Definizione: Indica di quanto i dati si discostano dalla media al quadrato

$$\mu = \mathbb{E}[X] \leftarrow \mathsf{Primo} \ \mathsf{momento} \qquad \qquad \mathbb{E}[X^2] \leftarrow \mathsf{Momento} \ \mathsf{secondo}$$

Formula generica:

$$Var(X) := \mathbb{E}[(X - \mu)^2]$$

Generalizzazione:

$$\begin{aligned} Var(X) &= \mathbb{E}[(X - \mu)^2] \\ &= \mathbb{E}[X^2 - 2\mu \cdot X + \mu^2] \\ &= \mathbb{E}[X^2] - 2\mu \cdot \mathbb{E}[X] + \mu^2 \\ &= \mathbb{E}[X^2] - \mu^2 \longrightarrow \mathbb{E}[X^2] - \mathbb{E}[X]^2 \end{aligned}$$

Esempio: Varianza di un dado

$$\mathbb{E}[X^2] = \sum_{1}^{6} i^2 P(X = i)$$

$$= 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + 3^2 \cdot \frac{1}{6} + 4^2 \cdot \frac{1}{6} + 5^2 \cdot \frac{1}{6} + 6^2 \cdot \frac{1}{6}$$

$$= \frac{91}{6}$$

Sapendo che $\mathbb{E}[X] = \frac{7}{2}$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{91}{6} - (\frac{7}{2})^2 = \frac{35}{12}$$

5.1 Costanti reali nella varianza

Una utile identità che riguarda la varianza è la seguente (per ogni coppia di costanti reali a e b)

$$Var(aX + b) = a^2 \cdot Var(X)$$

Per dimostrare ciò ricordiamoci sempre di $\mu := \mathbb{E}[X]$

Dimostrazione:

$$Var(aX + b) := \mathbb{E}[(aX + b - \mathbb{E}[aX + b])^2]$$

$$= \mathbb{E}[(aX + b - a\mu - b)^2]$$

$$= \mathbb{E}[a^2(X - \mu)^2]$$

$$= a^2\mathbb{E}[(X - \mu)^2]$$

$$= a^2Var(X)$$

Se sostituiamo i valori di a e b troviamo che:

SE $a=0\longrightarrow Var(b)=0\longrightarrow$ le costanti hanno varianza **nulla**

 $\mathsf{SE}\,a = 1 \longrightarrow Var(X+b) = Var(X) \longrightarrow \mathsf{sommando}$ una const. non cambia la varianza

SE $b = 0 \longrightarrow Var(aX) = a^2 \cdot Var(X)$

6 Deviazione Standard

Definizione: Indica di quanto dei dati si **discotastano dalla media** (non al quadrato)

Formula generica:

$$S = \sqrt{Var(X)}$$

$$Var(X + X) = Var(2 \cdot X) = 4 \cdot Var(X)$$

Se X è indipendente allora:

$$Var(X) + Var(X) = Var(X + X)$$

7 Covarianza

Definizione: Misura la variazione tra due variabili aleatorie associate tra di loro

Formula generica:

$$Cov(X,Y) := \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

Dove:

$$\mu_x = \mathbb{E}[X]$$
$$\mu_y = \mathbb{E}[Y]$$

La covarianza può essere negativa, positiva o nulla

Positivo → Le due variabili crescono o decrescono insieme

Nacativa → Ovarda variabili procesa l'altra de servere.

 $oldsymbol{\mathsf{Negativo}} \longrightarrow \mathsf{Quando}$ una variabile cresce l'altra decresce

 $Nullo \longrightarrow Le$ due variabili sono indipendenti

è presente una formula alternativa **più semplice** (si trova espandendo il prodotto al secondo membro)

$$\begin{aligned} Cov(X,Y) &= \mathbb{E}[XY - \mu_X Y - \mu_Y X + \mu_X \mu_Y] \\ &= \mathbb{E}[XY] - \mu_X \mathbb{E}[Y] - \mu_Y \mathbb{E}[X] + \mu_X \mu_Y \\ &= \mathbb{E}[XY] - \mu_X \mu_Y - \mu_X \mu_Y + \mu_X \mu_Y \\ &= \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y] \end{aligned}$$

7.1 Proprietà della covarianza

$$Cov(X,Y) = Cov(Y,X) \longleftarrow \mathsf{Simmetria}$$

 $Cov(X,X) = Var(X) \longleftarrow$ Generalizzazione della varianza

$$Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)$$

$$Cov(X + Y, Z + W) = Cov(X, Z) + Cov(X, W) + Cov(Y, Z) + Cov(Y, W)$$

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

- Se $X_1 \cdots X_n$ e Y sono variabili aleatorie qualsiasi allora:

$$Cov(\sum_{i=1}^{n} X_i, Y) = \sum_{i=1}^{n} Cov(X_i, Y)$$

- Se $X_1\cdots X_n$ e $Y_1\cdots Y_m$ sono variabili aleatorie qualsiasi allora:

$$Cov(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j)$$

Se X e Y sono variabili aleatorie **indipendenti**:

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

Questo implica che:

$$Cov(X,Y) = 0$$

Esempio: varianza della somma di 10 lanci indipendenti di un dado Denotiamo con X_i il punteggio del dado *i-esimo*, sappiamo che:

$$Var(\sum_{i=1}^{10} X_i) = \sum_{i=1}^{10} Var(X_i)$$
$$= 10 \cdot \frac{35}{12}$$
$$= \frac{175}{6}$$

7.2 Coefficiente di correlazione lineare

Definizione: numero puro che tiene conto della deviazione standard di X e Y

Formula generica:

$$Corr(X,Y) := \frac{Cov(X,Y)}{\sqrt{Var(X) \cdot Var(Y)}}$$

La correlazione può assumere valori compresi tra -1 e 1

 $-1 \longrightarrow \mathsf{Le}$ due variabili sono inversamente proporzionali

 $\mathbf{0} \longrightarrow \mathsf{Le}$ due variabili sono indipendenti

 $1 \longrightarrow \mathsf{Le}$ due variabili sono crescono o decrescono con lo stesso rapporto

8 Funzione generatrice dei momenti

Definizione: Funzione che ci permette di calcolare i momenti della distribuzione.

Formula generica:

$$\phi(t) = \mathbb{E}[e^{tX}]$$

Dove X è una variabile aleatoria e t è un parametro reale

$$\phi(t) := \mathbb{E}[e^{tX}] = \begin{cases} \sum_x e^{tx} p(x) & \text{se X discreta} \\ \int_{-\infty}^{+\infty} e^{tx} f(x) \, dx & \text{se X continua} \end{cases}$$

Derivando la funzione si ottengono i momenti:

$$\phi'(t) = \frac{d}{dt} \mathbb{E}[e^{tX}] = \mathbb{E}[\frac{d}{dt}e^{tX}] = \mathbb{E}[Xe^{tX} \longrightarrow \phi'(0) = \mathbb{E}[X]]$$

Analogamente:

$$\phi''(t) = \frac{d^2}{dt^2} \mathbb{E}[e^{tX}] = \mathbb{E}\left[\frac{d^2}{dt^2} e^{tX}\right] = \mathbb{E}[X^2 e^{tX} \longrightarrow \phi''(0) = \mathbb{E}[X^2]]$$

Generalizzando:

$$\phi^{(n)}(0) = \mathbb{E}[X^n]$$

Media:

Varianza:

$$\mu_x = \phi'(0)$$

$$\sigma_r^2 = \phi''(0) = {\{\phi(0)'\}'}$$

Ipotizziamo: se X e Y sono indipendenti con ϕ_X e ϕ_Y e se ϕ_{X+Y} è la funzione generatrice dei momenti di X + Y allora:

$$\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$$

Concludiamo che:

$$\begin{aligned} \phi_{X+Y}(t) &:= \mathbb{E}[e^{t(X+Y)}] \\ &= \mathbb{E}[e^{tX}e^{tY}] \\ &= \mathbb{E}[e^{tX}]\mathbb{E}[e^{tY}] \\ &= \phi_X(t)\phi_Y(t) \end{aligned}$$

8.1 Disugaglianza di Markov

Definizione: Ci permette di sapere la probabilità che una variabile assuma valori molto grandi

Serve per calcolare che una variabile aleatoria assuma un minimo di "a" $\longrightarrow a \in \mathbb{R}$

Solo per variabili positive: $X \in (0, +\infty)$

Formula generica:

$$P(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

Dimostrazione:

$$\mathbb{E}[X] := \int_0^{+\infty} x f(x) \, dx$$

$$= \int_0^a x f(x) \, dx + \int_a^{+\infty} x f(x) \, dx$$

$$\geq \int_a^{+\infty} x f(x) \, dx$$

$$\geq \int_a^{+\infty} a f(x) \, dx$$

$$= a \int_a^{+\infty} f(x) \, dx$$

$$= a P(X \geq a)$$

8.2 Disugaglianza di Chebyshev

Definizione: Ci permette di sapere la probabilità che una variabile si discosti dalla media per più di un certo numero di deviazioni standard.

$$\mathsf{Se}X$$
var aleatoria $egin{cases} \mu & \mathsf{Media} \ \sigma^2 & \mathsf{Varianza} \end{cases}$

Per ogni $\mathbf{r}>\mathbf{0}\longrightarrow\mathsf{valore}$ che indica il discostamento dalla media

Formula generica:

$$P(|X - \mu| \ge r) \le \frac{\sigma^2}{r^2}$$

Dimostrazione: Dimostriamo che:

$$\{|X - \mu| \ge r\}$$
 $\{(X - \mu)^2 \ge r^2\}$

Questi due eventi coincidono e quindi sono **equiprobabili** Sapendo per certo che $(X-\mu)^2$ è non negativa Possiamo applicare **Markov** con $a=r^2$ ottenendo:

$$P(|X - \mu| \ge r) = P((X - \mu)^2 \ge r^2)$$

$$\le \frac{\mathbb{E}[(X - \mu)^2]}{r^2} = \frac{\sigma^2}{r^2}$$

La disuguaglianza di **Markov** e di **Chebyshev** servono per ottenere le stime di probabilità di eventi rari di variabili cui conosciamo solo la **media** e la **varianza**.

Postilla: in caso di *distribuzione nota* non c'è bisogno di utilizzare una di queste disuguaglianze.

Esempio: I numeri di pezzi prodotti in una settimana è una X di 50

- (a) Cosa si può dire sulla probabilità che la produzione superi i 75 pezzi (a)?
- **(b)** Se è nota anche la varianza pari a **25** cosa si può dire sulla probabilità che la produzione sia compresa tra i *40* e i *60* pezzi?
- (a) per la disuglianza di Markov

$$P(X \ge 75) \le \frac{\mathbb{E}[X]}{75} = \frac{50}{75} = \frac{2}{3}$$

(b) Applicando la disuguaglianza di Chebyshev

$$P(|X - 50| \ge 10) \le \frac{25}{10^2} = \frac{1}{4}$$

Quindi:

$$P(40 \le X \le 60) = P(|X - 50| \le 10) \ge 1 - \frac{1}{4} = \frac{3}{4}$$

Perciò la probabilità che la produzione sia compresa tra 40 e i 60 pezzi è almeno del 75%

9 Legge debole dei grandi numeri

Definizione: Dice che la probabilità che la differenza tra la media campionaria e il valore atteso superi una determinata soglia diventa sempre più piccola all'aumentare del numero di osservazioni

Definizione: Sia $X_1, X_2 \cdots X_n$ una successione di variabili aleatorie tutte con la media $\mathbb{E}[X_i] =: \mu$ allora per ogni $\epsilon > 0$

Formula generica:

$$P(|\frac{X_1+\cdots+X_n}{n}-\mu|>\epsilon)\longrightarrow 0$$
 quando n $\longrightarrow \infty$

Dimostrazione: Proveremo a dimostrare con l'ipotesi che le X_i hanno varianza finita σ^2 abbiamo che:

$$\mathbb{E}\left[\frac{X_1 + \dots + X_n}{n}\right] = \mu \qquad Var\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{\sigma^2}{n}$$

La seconda si può trovare in questo modo:

$$Var(\frac{X_1 + \dots + X_n}{n}) = \frac{1}{n^2} Var(X_1 + \dots + X_n)$$
$$= \frac{Var(X_1) + \dots + Var(X_n)}{n^2}$$
$$= \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

Segue allora dalla disuguaglianza di *Chebyshev* applicata alla variabile aleatoria $(X_1 + \cdots + X_n)/n$ che:

$$P(|\frac{X_1 + \dots + X_n}{n} - \mu| > \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$

Esempio: Supponiamo di ripetere in successione *molte copie indipendenti* di un esperimento ponendo:

$$X_i := \begin{cases} 1 & \text{se E si realizza nell'esperimento } \textit{i-esimo} \\ 0 & \text{se E non si realizza nell'esperimento } \textit{i-esimo} \end{cases}$$

La sommatoria $X_1 + X_2 + \cdots + X_n$ rappresenta il numero di prove tra le prime n poichè:

$$\mathbb{E}[X_i] = P(X_i = 1) = P(E)$$

si deduce che la frazione delle n prove nelle quali si realizza E , tende (nel senso della legge debole dei grandi numeri) alla probabilità P(E).

10 Modelli di variabili aleatorie

- 10.1 Bernoulli
- 10.2 Binomiali
- 10.2.1 Valore atteso e varianza di Binomiali
- 10.2.2 Funzione di massa e di ripartizione di Binomiali
- 10.3 Poisson
- 10.4 Ipergeometriche
- 10.5 Uniformi
- 10.6 Normali o Gaussiane
- 10.7 Esponenziali
- 10.8 Processi stocastici (Poisson)
- 10.9 Gamma
- 10.10 Chi-quadro
- 10.11 Distribuzione T
- 10.12 Distribuzione F
- 10.13 Distribuzione logistica