Proyecto de Redes - Callcenter - PUJ, Cali.

Alejandro Cardona, Luis Santiago Osorio $3\ {\rm de\ junio\ de\ }2013$

Índice

1.	Intr	odución	4
2.	Plai	nteamiento del problema	5
3.	Req	uerimienos de la red	7
	3.1.	Numero de computadores	7
	3.2.	Conectividad VoIP	8
	3.3.	Usuarios	8
	3.4.	Proveedor de internet	8
	3.5.	Cables	9
	3.6.	Velocidad	9
	3.7.	Costo	9
4.	Dist	trucibucion de el paso de los cables	10
5.	Ana	disis de consumo	11
	5.1.	Consumo VoIP	11
	5.2.	Consumo TCP/IP Cámaras de seguridad	13
	5.3.	Consumo Navegación web, chat, videos, email	15
	5.4.	Consumo Total	15
		5.4.1. Plano de consumo	16
		5.4.2. Consumo por servicio	16
6.	Equ	ipos	18
	6.1.	Equipos de la red	19
			10

	6.3. Switches	20
	6.4. Acces point	20
7.	Mapa de coexiones de la red y Rack	22
8.	VLCM de la red	2 4
9.	Simulacion Packet Tracer	2 5
	9.1. Plano Packet Tracer	25

1. Introdución

En el desarrollo de una red para un callcenter, se aplicaran los pasos básicos de diseño, para obtener una solución que concuerde con los requerimientos necesarios de dicha red. En el proceso se realizaran los diseños y los cálculos de el consumo, espacio y demás, para hallar los elementos físicos necesarios y adecuados para el montaje de la red en donde no se haga desperdicio de recurso y se empleen los equipos y los elementos adecuados.

En este documento se mostrara el plano de la red, los equipos necesarios, tablas de comparación y demás, que respalden el buen diseño de la red y la buena selección de los equipos.

2. Planteamiento del problema

Se necesita realizar el diseño de una red para un callcenter, equipado por 18 computadores que serán manejados por personal de la empresa, 2 computadores manejados en la oficina de dirección, servidores, y un servicio wifi, para la sala de visitas. En donde todos los computadores y dispositivos móviles, deberán poder tener acceso a internet, con sus debidas restricciones, en cuanto a el acceso a las diferentes redes internas del callcenter.

Además se debe garantizar una robustez en la red, ya que la conexión debe ser permanente para que no sea afectado el trabajo del callcenter.

Dentro de los problemas básicos que se abordaran serán los siguientes:

- Proveedor de servicios
- Computadores
- infraestructura
- Robustez

En el siguiente dibujo se muestra el plano del callcenter.

3. Requerimienos de la red

Los requerimientos de la red para el callcenter serán los siguientes:

- Numero de computadores.
- Conectividad Voip.
- Usuarios.
- Proveedor de internet.
- Tipos de cables.
- Velocidad.
- Costos.

3.1. Numero de computadores

En la red se tendrán al rededor de 30 a 42, con la siguiente distribución:

- 2-7 computadores en la oficina, 2 con punto de red y de 1 a 5 por acceso wifi.
- 10 posibles accesos en la salada de espera, todos por acceso wifi.
- 18 computadores en la sala de atención del callcenter, cada uno con su respectivo punto de red.
- 5 puntos de acceso a cámaras de seguridad.

3.2. Conectividad VoIP

Debe existir conectividad Voip, tanto en los computadores de servicio como en los computadores de la oficina, ya que debido a que el software que se manejara para la atención del callcenter maneja la conectividad por VoIP.

3.3. Usuarios

Los usuarios de la red del callcenter, tendran la capacidad de desarrollar diferentes tareas y diferentes tipos de servicios en la red, los cuales se muestran acontinacion.

Servicio/Usuario	Pcs-Atencion	Pcs-Oficina	Pcs-Sala	Seguridad
Nevegacion Web	No	Si	Si	No
VoIp	Si	Si	No	No
Descargas	No	Si	Si	No
Video llamadas	Si	Si	No	No
OS	Windows	Windows	All	Otro

3.4. Proveedor de internet

Se requiere que se tengan 2 proveedores de internet para que exista una robustez en la red, ya que debido a que es un callcenter, la conexión deberá ser continua y sin interrupciones, también se debe tener en cuenta la calidad del servicio del proveedor en cuanto a una respuesta a fallos en la red y si el servicio cumple con las necesidades de los usuarios.

3.5. Cables

Los tipos de cables para la red, deben soportar el trafico de red y garantizar conexión.

3.6. Velocidad

La velocidad de conexión debe ser efectiva y continua, para poder sostener las llamadas del callcenter, y que siempre exista una comunicación fluida con los clientes del callcenter.

3.7. Costo

El costo de la red es libre, se cuenta con el capital para cualquier inversión, siempre y cuando esta inversión este justificada.

4. Distrucibucion de el paso de los cables

En esta sección del documento se muestra un plano de la distribución, a los diferentes equipos finales de la red, como lo son los computadores de la oficina de la sala del callcenter y el accespoint para la sala.

5. Analisis de consumo

Dentro de los requerimientos de la red, se tendrán en cuenta para el análisis del trafico aquellos en los que aya un mayor uso por parte de los usuarios del callcenter, para poder posteriormente, hacer las posibles evaluaciones de selección del proveedor de servicio, selección de los equipos a utilizar y de los diferentes materiales de infraestructura que se utilizaran.

En los servicios que se deben prestar para el callcenter los mas utilizados son el manejo de VoIP y las cámaras de seguridad debido a que tienen un flujo continuo sobre la red, y la navegación web para los computadores que no están restringidos.

5.1. Consumo VoIP

En el consumo VoIP, se tiene en cuenta que este servicio consta de 2 etapas, la señalización de la llamada y la transmisión de audio que es realizada a través de RTP, dado a que el ancho de banda consumido por la señalización no es relevante, se enfocara el calculo de consumo en la transmisión del audio.

Para el análisis de esta transmisión veremos el empaquetamiento de los datos en las 7 capas del modelo OSI. El audio codificado necesita ser empaquetado dentro de paquetes RTP. A su vez, los paquetes RTP necesitan ser empaquetados dentro de paquetes UDP, que luego necesitan ser empaquetados dentro de paquetes IP. en este ejemplo tomaremos Ethernet que es el tipo de red más común, y requiere otro

empaquetamiento.

En la siguiente tabla se ilustra lo dicho, con los respectivos valores para cada una de las capaz.

Ethernet	15.2 kbps
IP	8 kbps
UDP	3.2 kbps
RTP	4.8 kbps
Encoded Audio	Depende del codec

Los codecs de audio para el VoIP, son el G711, G722, GSM Y G729 en los cuales veremos diferentes características y tomaremos el mas indicado para el callcenter.

Codec	Calidad Audio	Recursos CPU	Tamaño
G711	Buena	Muy pocos	95.2
G722	Muy Buena	Pocos	95.2
GSM	Aceptable	Promedio	44.2
G729	Promedio	Altos	39.2

Según las tablas anteriormente mostradas, el codec adecuado para el callcenter será el G722, ya que uno de los principales requerimientos es que debe haber una buena comunicación, se utilizara este codec y debido a que se cuenta con los recursos necesarios se adaptara la red para tener el uso de este codec.

En un total el consumo de uno de los equipos para el uso de este servicio seria el siguiente en cuanto a kbps:

Ethernet	15.2 kbps
IP	8 kbps
UDP	3.2 kbps
RTP	4.8 kbps
Encoded Audio	64 kbps
Total	$95.2~\mathrm{kbps}$

De acuerdo con los cálculos, cada equipo de los usuarios de atención y de los usuarios de oficina consumirá un total de 73 kbps, y teniendo en cuenta la calidad media de conexión de equipos en la red el consumo por kbps seria de 25 * 73 kbps dándonos un total medio de consumo de VoIP de 2380 kbps.

5.2. Consumo TCP/IP Cámaras de seguridad

El sistema de vigilancia del callcenter Serra de tipo IP, el cual utilizara los recursos TCP/IP de la red para enviar video y audio de cada cámara a el servidor dedicado del sistema de vigilancia. el calculo de ancho de banda para las cámaras de seguridad esta dado, según la resolución que envíen las cámaras al servidor. El sistema de seguridad del callcenter se realizara en formato de video MPEG4. En la siguiente tabla se muestra algunas de las resoluciones y sus valores de consumo de banda ancha para el formato MPEG4.

Resolucion	IPS	Kbps
CIF	3	160
CIF	7	185
CIF	15	200
CIF	30	500
2CIF	3	320
2CIF	7	370
2CIF	15	400
2CIF	30	1000
4CIF	3	640
4CIF	7	740
4CIF	15	800
4CIF	30	2000

La calidad requerida para el callcenter será 2CIF a 15 IPS, que es el formato mas común y de buena calidad para la imagen. Dados los datos el consumo de las cámaras de seguridad en la red común de 400 kbps por cada cámara, dándonos un tota de 5*400 la suma de el trafico de todas las cámaras de seguridad, para un total de 2000 kbps.

5.3. Consumo Navegación web, chat, videos, email

El calculo de el trafico consumido por la navegación web, chat, videos y email se realizara con un simulador Capsa de Colasoft, en el cual se realizo una medición de un solo ordenador efectuando las tareas descritas. El resultado fue que el computador realizando estas tareas tiene un consumo de alrededor de 36 kbps, lo cual nos dará un total de consumo para los computadores que no tienen esta restricción de 17 * 36 kbps tomando el peor de los casos en los que estén todos los pcs conectados sin restricción para un total de 612 kbps.

5.4. Consumo Total

El consumo total en la red se mostrara en el siguiente plano del callcenter, en el que se observaran los distintos tipos de consumos sacados anteriormente, ya que son los mas importantes en la red.

5.4.1. Plano de consumo

5.4.2. Consumo por servicio

En el plano se observa el flujo de consumo de cada uno de los servicios fundamentales de la red. en la siguiente tabla se explica cada color y si el servicio consume de subida y de bajada.

Color	Servicio	Download	Upload
Amarillo	VoIP	Si	Si
Rojo	NavegacionWeb y otros	si	Poco
Azul	Seguridad	Poco	Si

- VoIP(Amarillo): El consumo de VoIP en el cable amarillo, segun el consumo calculado es de 95.2 por equipo, y segun la tabla anterior, este consumo estara de subida y bajada por lo que el trafico en el cable amarillo por computador con acceso a este servicio sera un total de 190.4 kbps.
- NavegacionWeb y otros(Rojo): El consumo de este servicio es un consumo que tiene su gran parte de trafico en la descarga por lo que no tendremos en cuenta el poco trafico de subida. Para cada uno de los equipos con este servicio el consumo de navegacion sera entonces 36 Kbps.
- Seguridad(Azul): El consumo de la seguridad, muestra que es poco su consumo de descarga ya que este servicio tiene un mayor de consumo de subida, por el envio de las imagenes y audio, caculados previamente, en este servicio tendremos en cuenta su consumo de subida, el cual nos dara un total de 400 Kbps por camara.

El total consumido en los sectores del callcenter, se muestra en el plano de consumo y estara definido por la cantidad de colores que pasen por la canaleta y los computadores ligados en ese momento a dicho color.

6. Equipos

Los equipos que utilizaremos para el callcenter, estarán seleccionados según los cálculos de consumo hechos anteriormente y se mostraran las especificaciones necesarias para la red de cada equipo, que nos permita tomar una decisión acerca de cual es mejor para nuestra red.

En la red observamos que tenemos un consumo de descarga en su punto máximo de 5372 Kbps y de subida de 6760 kbps.En la siguiente tabla se muestra los calculos de subida y de bajada.

• Calculo de bajada:

Servicio	Consumo	NoEquipos	Total
VoIP	190.4 Kbps	25	4760 Kbps
NavegacionWeb	36 Kbps	17	612 Kbps
y otros			
		Total	5370 Kbps

• Calculo de subida:

Servicio	Consumo	NoEquipos	Total
VoIP	190.4 Kbps	25	4760 Kbps
Seguridad	400 Kbps	5	2000 Kbps
		Total	6760 Kbps

6.1. Equipos de la red

En la siguente lista se mostraran los equipos que se utilizaran en la red.

- 4 Routers.
- 4 Switches.
- 2 Acces Point.
- Computadores.
- Servidor Camaras de seguridad.
- Servidor VoIP.

6.2. Routers

En esta sección del documento se mostraran algunas comparaciones, características de los routers para realizar la selección de los routers indicados para la red.

Marca	Router	Puertos	Mbps	Frecuencia
		FastEthernet		
D-link	AC1000	4	300	2.4GHz
Huawei	E5776	4	150	2.4GHz
Cisco	1812/K9	8	100	2.4GHz

En la selección del router se escoge el router Cisco debido que a pesar de que el costo es un poco mas elevado, posee la velocidad necesaria y adecuada para el call-center y tiene un mejor soporte que los otros 2 routers.

6.3. Switches

En esta sección del documento se mostraran algunas comparaciones, características de los switches para realizar la selección de los switches indicados para la red.

Marca	Switche	Puertos	RackMountable
Cisco	WS-C2960-24TT-L	24	Si
Cisco	WS-C3560X-24T-L	24	Si
D-link	DES-108	8	No
D-link	DGS-1024A	24	No
D-link	DSS-16+	16	Si

En la selección del switche, se toma el switche cisco WS-C2960-24TT-L, ya que a pesar de que los dos switches cumplen con las características principales de la red, no es necesario del switche WS-C3560X-24T-L, que tenga tantas opciones de conexión remota ya que la red se manejara internamente en el callcenter, para el manejo de la red de los pcs de la oficina ya que el router tiene un switche integrado, no abra neecidad de switche, ya que la capacidad requerida no supera los puertos de conexión del router.

6.4. Acces point

En esta sesión del documento se mostraran algunas comparaciones, características de los accespoint para realizar la selección de los accespoint indicados para la

 red .

Marca	Accespoint	band	
Cisco	AIR-AP1261N-A-K9	5GHz	
D-link	DAP-1522	2.4GHz	

Se selecciona el accespoint de cisco AIR-AP1261N-A-K9, ya que tiene una mejor frecuencia.

7. Mapa de coexiones de la red y Rack

A continuación se mostrara el mapa de la red física y la relación entre cada dispositivo.

En la imagen se observa las conexiones entre los router switches y accespoint de la red. En la señalización, el color azul, representa la entrada de los dos proveedores de Internet. El color verde las conexiones entre los routers internos para las subredes y el color rojo, la conexión de salida de los routers internos a los dispositivos necesarios.

En la siguiente imagen se mostrara la organización del rack con los dispositivos que se encuentren en el, ya que los accespoint no estarán presentes en el rack.

8. VLCM de la red

para el manejo de las direcciones de red, se manejo protocolo de enrrutamiento RIP v2 y VLCM para la asignación de las IP, en la siguiente tabla se muestra la asignación de cada IP a las redes internas necesarias dentro del callcenter.

- Red central = A.
- Red Oficina = B.
- ullet Red de Sala de Atencion callcenter = C.
- Red Sala de visitas = D.

Red	\mathbf{Pcs}	Direction	Mask	Rango
С	18	192.168.0.0	255.255.255.224	.130
D	10	192.168.0.32	255.255.255.240	.3346
В	7	192.168.0.48	255.255.255.240	.4962
A	4	192.168.0.64	255.255.255.248	.6570

9. Simulacion Packet Tracer

El diseño de la red se simulo en el Cisco Packet Tracer, en donde se genero el plano de la red con las especificaciones requeridas y se demostró conexión entre los equipos y a la salida de internet.

9.1. Plano Packet Tracer

