SIT221: Data Structures and Algorithms

Lecture 10: Algorithm Design Paradigms & Dynamic Programming

Week 9 recording for prac

	Recording Name	Session Name	Date	Duration
Week 9	Week 9 - prac - recording 1	Week 9 - prac	9/09/2017 4:23 pm	00:33:14
Week 8	Week 8 - prac - recording 1	Week 8 - prac	2/09/2017 4:08 pm	01:09:28
Week 7	Week 7 - prac - recording 1	Week 7 - prac	26/08/2017 4:11 pm	00:39:42
Week 4	SIT221 - Data Structures And Algorithms - recording 1	SIT221 - Data Structures And Algorith ms	3/08/2017 11:22 am	00:42:34
Week 3	SIT221 - Data Structures And Algorithms - recording 1	SIT221 - Data Structures And Algorith ms	27/07/2017 10:55 am	00:40:01
Week 2	Week 2 - prac - recording 1	Week 2 - prac	20/07/2017 11:01 am	00:31:17
Week 4 Week 3	SIT221 - Data Structures And Algorithms - recording 1 SIT221 - Data Structures And Algorithms - recording 1	SIT221 - Data Structures And Algorith ms SIT221 - Data Structures And Algorith ms	3/08/2017 11:22 am 27/07/2017 10:55 am 20/07/2017 11:01	00:42:34

Algorithm design paradigms

- ▶ These are techniques that we can use to solve a given problem.
 - Brute Force
 - Reduce to a known problem
 - Divide & Conquer
 - Dynamic Programming
 - Greedy Algorithms

Example

Given an array of n elements, can we check if it has repeated elements?

Brute force

- ▶ Try all possible solutions.
- Get a correct solution, and do not pay attention to the running time of your solution.

Brute forcing repeated array elements

- ▶ Loop on all elements, for each element I will compare it with all other elements in the array if a match is found, the algorithm is stopped and reports element X is repeated at index i.
- What's your BigO?

```
for(int i = 0; I < data.Count; i++) {
    for(int j = 0; j < data.Count; j++) {
        If( data[i] == data[j] && i!=j) {
            Console.WriteLine(string.Format("element {0} is repeated...)
        }
}</pre>
```

Reduce to known problem

- Same problem can be solved by sorting your data using O(nlog(n)) algorithm give one?
- Now the data is sorted, we can loop on all of them comparing every consecutive elements – O(n)
- ▶ So the total running time is O(???) Is this more efficient?

Divide and conquer

- Divide the problem into a number of smaller sub-problems of the same type.
- Conquer (solve) the smaller problems (recursively)
- Merge solutions of sub-problems into a solution to the original problem.
- Top-down, we start with the big problem and keep dividing until we reach atomic problem. see next slide

Find Min/Max	Factorial	Fibonacci
Max(data) or Min(data)	Fact(n) = n * Fact(n-1)	Fib(n) = Fib(n-1) + Fib(n-2)
int Max(int[] data, int start, int end) { if(start == end) return data[start]; int mid = (start+end)/2); int max1 = Max(data, 0, mid); int max2 = Max(data, mid+1, end); return (max1 > max2)? max1 : max2; } $T(n) = T(n/2) + T(n/2)$ $T(n) = 2 * T(n/2) = 2 * 2 * T(n/4)$ $T(n) = 2^{i} * T(n/2^{i})$ @ $n/2^{i} = 1 => n = 2^{i} => i = log_{2}n$ $T(n) = 2^{log_{2}(n)} = O(n)$	<pre>int Fact(int n) { if(n == 1) return 1; return n * Fact(n-1); } T(n) = T(n-1) + 1; T(n) = T(n-2) + 1 + 1; T(n) = T(n-3) + 1 + 1 + 1; T(n) = T(n - i) + i @ n - i = 1 => i = n - 1 T(n) = T(1) + n - 1 O(n)</pre>	int Fib(int n) { if(n == 1 n == 0) return 1; return Fib(n-1) + Fib(n-2) } T(n) = T(n-1) + T(n-2) T(n) ~= 2 * T(n - 1) T(n) ~= 2 * 2 * T(n-2) T(n) ~= 2*2*2 * 2(n-3) T(n) ~= 2 ⁿ * 1 EXPONENTIAL === ooppsss!

What else?

- Tree traversal (pre-order, post-order, in-order)
- List traversal, search, etc.
- Binary search
- Merge & Quick sort
- Other recursive problems

Problems with Divide & Conquer

- Stack overflow so deep, nested sub-problems?
- Repeated problems are repeatedly solved ==> we should use memorization as in dynamic programming
- Base case size ==> shall we keep breaking down the problem until we have empty list or input of size zero?

Dynamic programming (DP)- Careful brute force!

Divide & Conquer + Memorize

It moves bottom-up (instead of top-down) while storing solutions to sub-problems to use in solving the original problems.

0/1 Knapsack problem

- Given a set of n items, each with a weight and a value.
- You have a knapsack with max weight (W)
- Which items to take such that the total weight (sum w_i) is less than or equal to the knapsack limit and the benefit (b) is the maximum.

$$\max \sum_{i \in T} b_i \text{ subject to } \sum_{i \in T} w_i \leq W$$

0/1 Knapsack problem – solution development

If we have a knapsack of max weight 10 and items with weight and value as show below

i	1	2	3	4
$\overline{v_i}$	10	40	30	50
w_i	5	4	6	3

- Brute force? try all possible combinations \rightarrow O(24)
- Dynamic programming? Let's see

0/1 Knapsack problem – solution development

- Let $w_1, w_2, ..., w_n$ and $v_1, v_2, ..., v_n$ be the weights and values of item 1, 2, ..., n.
- Let W be the capacity of the bag
- $\triangleright w_1, w_2, ..., w_n$ and W are strictly positive integers.
- Let m[i, w] be the maximum value that can be attained with weight less than or equal to w using items up to i (first i items)
- We can define
 - m[0,w]=0
 - $m[i, w] = m[i 1, w] if w_i > w$
 - $m[i, w] = \max\{m[i-1, w], m[i-1, w-w_i] + v_i\}$ if $w_i \le w$
- ▶ The solution can be found by m[n, W]

0/1 Knapsack problem – solution development

```
for (int j=0; j<=W; j++)
        m[0][i] = 0;
for (int i=1; i<=n; i++)
        for (int j=0; j<=W; j++)
                if (w[i] > j)
                        m[i][j] = m[i-1][j];
                else
                        m[i][j] = max(m[i-1][j], m[i-1][j-w[i]] + v[i]);
```

Up to the first item:

Value	Weight	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0
10	5	0	0	0	0	0	10	10	10	10	10	10
40	4	0										
30	6	0										
50	3	0										

Weight 0 to 4, value is zero Weight 5 to 10, value is 10

$$m[i, w] = \max\{m[i-1, w], m[i-1, w-w_i] + v_i\}$$

Up to the second item:

Value	Weight	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0
10	5	0	0	0	0	0	10	10	10	10	10	10
40	4	0	0	0	0	40	40	40	40	40	50	50
30	6	0										
50	3	0										

Weight 0 to 3, value is zero Weight 4 to 8, value is 40 Weight 9 to 10, value is 50

$$m[i, w] = \max\{m[i-1, w], m[i-1, w-w_i] + v_i\}$$

Up to the third item:

Value	Weight	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0
10	5	0	0	0	0	0	10	10	10	10	10	10
40	4	0	0	0	0	40	40	40	40	40	50	50
30	6	0	0	0	0	40	40	40	40	40	50	60
50	3	0										

Weight 0 to 3, value is zero

Weight 4 to 8, value is 40

Weight 9 to 9, value is 50

Weight at 10, value is 60

$$m[i, w] = \max\{m[i-1, w], m[i-1, w-w_i] + v_i\}$$

Up to the fourth item:

Value	Weight	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0
10	5	0	0	0	0	0	10	10	10	10	10	10
40	4	0	0	0	0	40	40	40	40	40	50	50
30	6	0	0	0	0	40	40	40	40	40	50	60
50	3	0	0	0	50	50	50	50	90	90	90	90

Weight 0 to 2, value is zero Weight 3 to 6, value is 50 Weight 7 to 10, value is 90

Items to choose include: weight 3 & 4

$$m[i, w] = \max\{m[i-1, w], m[i-1, w-w_i] + v_i\}$$

Greedy Algorithms

- "take what you can get now" strategy.
- Work in phases, in each phase the currently best decision is made
- Not guaranteed optimal solution.

Coins – change problem

- You were asked to write a coin change program for a supermarket. Your program should choose the minimum number of coins to give as a change.
- You decided to use a greedy algorithm { choose max every round}
- Coins available {1cent, 5 cents, 10 cents, 20 cents, 50 cents}
- For a change of 63 cents, what coins should your code generate?
 - > 50 + 10 + 3 * 1 { 4 coins}
 - What if you are running out of 5 and 10 cents?
 - → 50 + 13 * 1 { 14 coins}, you could have chosen 3 * 20 + 3 * 1 { 6 coins }

Implementation

```
void change(int cents) {
  while (cents > 0)
      for (int i = coins.Length - 1; i >= 0; i--)
           if (cents / coins [i] > 0)
                Console.WriteLine(string.Format("{0} of {1} ", cents/coins [i], coins[i]));
                cents = cents % tems[i];
```