

1960

CHEMISCHE BERICHTE

Fortsetzung der

BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT

93. Jahrg. Nr. 2

S.289 - 560

Manuel Lora-Tamayo, Ramon Madroñero und Guillermo García Muñoz

Die Anwendung der Nitriliumsalze bei der Synthese heterocycl. Verbindungen, I

Derivate des 3.4-Dihydro-isochinolins

Aus dem Instituto de Química "Alonso Barba" (C.S.I.C.) Madrid (Spanien)
(Eingegangen am 31. Juli 1959)

Die durch Reaktion von β-Chloräthyl-benzol oder von im Benzolkern methoxylsubstituierten Derivaten mit Nitril-Metallhalogenid-Komplexen entstehenden Nitriliumsalze können durch Erhitzen mit guten Ausbeuten in 3.4-Dihydro-isochinolin-Derivate übergeführt werden. Der Einsatz von methoxylsubstituierten Nitrilen ergibt geringe Ausbeuten.

Unsere Untersuchungen über den Philodien-Charakter der Imidchloride¹⁾ lenkten unsere Aufmerksamkeit auf die Nitriliumsalze (I, X = BF₄, SbCl₆, AlCl₄, usw.), die F. Klages und W. Grill²⁾ durch Umsetzung von N-arylsubstituierten Benzimidchloriden und elektrophilen Metallhalogeniden erhalten haben. Die Nitriliumsalze entstehen rasch und mit guter Ausbeute in einem inerten polaren Lösungsmittel (Schwefeldioxyd, Äthylenchlorid, o-Dichlorbenzol, usw.); die Methode eignet sich aber infolge der geringen Stabilität der Imidchloride nur für die Synthese bestimmter Nitriliumsalze (R = Aryl, R' = Aryl und gelegentlich Alkyl). Durch die Arbeiten von H. Meerwein und Mitarbb.³⁾ ist jedoch eine große Anzahl von Nitriliumsalzen zugänglich geworden; gegenwärtig bestehen nur Beschränkungen bezüglich des Anions X[©].

Die Resonanz zwischen den mesomeren Formeln I und II führte MEERWEIN und Mitarbb.⁴⁾ zu einer eleganten Chinazolinsynthese. Wie wir schon in einer kurzen Mitteilung⁵⁾ bekannt gaben, sind die synthetischen Möglichkeiten dieser Verbindungs-

¹⁾ R. Madroñero, E. F. Alvarez und M. Lora-Tamayo, An. Real Soc. españ. Física Quím., Ser. B 51, 276, 465 [1955]; M. Lora-Tamayo und R. Madroñero, Festschrift Arthur Stoll, Birkhäuser AG., Basel, S. 220; M. Lora-Tamayo, G. García Muñoz und R. Madroñero, Bull. Soc. chim. France 1958, 1331; M. Lora-Tamayo, T. López Aparicio und R. Madroñero, An. Real Soc. españ. Física Quím., Ser. B 54, 567 [1958].

²⁾ Liebigs Ann. Chem. **594**, 21 [1955].

³⁾ H. MEERWEIN, P. LASCH, R. MERSCH und J. SPILLE, Chem. Ber. 89, 209 [1956].

⁴⁾ H. MEERWEIN, P. LASCH, R. MERSCH und J. NENTWIG, Chem. Ber. 89, 224 [1956].

⁵⁾ M. Lora-Tamayo, R. Madroñero und G. García Muñoz, Chem. and Ind. 1959, 657; vgl. auch M. Lora-Tamayo und R. Madroñero, Rev. Real Acad. Ciencias (Madrid), 53, 527 [1959]. Wir haben bewiesen, daß die dort als 2-Methyl-1.4-dihydro-chinazolin beschriebene Verbindung in Wirklichkeit das 3.4-Dihydro-Isomere ist.

72 7.63 9.64 61 7.74 9.46 73 9.46 9.46 74 9.46 9.46 75 4.00 14.74 81 8.28 8.81 80 4.30 14.43 80 4.30 14.34 91 6.32 6.75 700 7.00
Ber. 82.72 7.63 Gef. 82.61 7.74 Ber. 51.34 3.77 Gef. 51.55 4.00 Gef. 82.81 8.28 Gef. 82.81 8.28 Gef. 52.58 4.15 Gef. 52.80 4.30 Gef. 87.21 6.32
C ₆ H ₃ N ₃ O ₇
C ₁₁ H ₁₃ N (159.2) C ₁₁ H ₁₃ N·C ₆ H ₃ (388.3) C ₁₅ H ₁₃ N (207.3)
Flüssigk., Sdp. _{0.5} 76–77° n ^{16.5} : 1.5607–1.5585 (aus 4 Frakt.) Schmp. 190° (aus Äthanol) (Lit. ⁷⁾ : 190–192°) Dickflüssige Flüssigkeit, Sdp. _{0.7} 139–140°, n ^{19.5} : 1.6304
ssige Flüssigkeit, $139-140^{\circ}$, $n_{\rm D}^{19.5}$:
65 Dickflüssi Sdp.0.7 13
6

gruppe damit nicht erschöpft. Wir beschreiben im folgenden eine Anwendung zur Synthese von 3.4-Dihydro-isochinolin-Derivaten.

$$[R-C = \overset{\oplus}{N}-R'] X^{\ominus} \longleftrightarrow [R-\overset{\oplus}{C}=N-R'] X^{\ominus}$$

$$I \qquad II$$

Auf Grund der Anschauungen von Meerwein³⁾ sollte die Reaktion zwischen elektrophilen Metallhalogenid-Nitril-Komplexen III und β-Chloräthyl-benzol-Derivaten IV zu Nitriliumsalzen vom Typ V führen, welche durch spontanen Ringschluß 3.4-Dihydro-isochinolin-Derivate VI, ähnlich einer Bischler-Napieralski-Reaktion, liefern könnten.

$$\begin{array}{c}
CH_{2} \\
CH_{2}CI \\
CN \\
N \to MeCl_{n}
\end{array}$$

$$\begin{array}{c}
CH_{2} \\
CH_{2} \\$$

Trotz der von Meerwein und Mitarbb. 3) beobachteten geringeren Reaktionsfestigkeit primärer Halogenderivate gegenüber sekundären und tertiären konnten wir zeigen, daß das β -Chloräthyl-benzol und einige seiner ringsubstituierten Derivate mit den Komplexen III leicht reagieren. So erhält man aus β -Chloräthyl-benzol mit dem Acetonitril-Zinn(IV)-chlorid-Komplex ohne Lösungsmittel bei $100-120^{\circ}$ das 1-Methyl-3.4-dihydro-isochinolin in 91-proz. Ausbeute. Dabei ist es nicht nötig, den Komplex zu isolieren; es genügt, wenn man ein äquimolekulares Gemisch von Nitril und Metallhalogenid mit dem β -Chloräthyl-benzol oder eine Lösung des Nitrils in dem β -Chloräthyl-benzol mit dem Metallhalogenid versetzt und anschließend erwärmt. Die mit verschiedenen Nitrilen durchgeführten Reaktionen sind in Tab. 1 zusammengestellt.

Man ersieht, daß Aceto- und Propionitril hohe Ausbeuten an den entsprechenden 3.4-Dihydro-isochinolin-Derivaten ergeben. Die geringe Ausbeute bei der Blausäure ist nicht überraschend, wenn man sie mit der Bischler-Napieralski-Reaktion¹¹⁾ vergleicht, bei der man aus N-Formyl-β-phenyl-äthylamin 3.4-Dihydro-isochinolin nur in knapp 18-proz. Ausbeute erhält. Wie das Beispiel des Trichloracetonitrils zeigt, verhindern basizitätsvermindernde Gruppen die Bildung des Komplexes und damit die des 3.4-Dihydro-isochinolin-Derivates.

Aromatische (Beispiele 5, 6, 10 und 11) und nicht substituierte arylaliphatische Nitrile (Beisp. 12) liefern befriedigende Ausbeuten, die durch eine systematische Untersuchung der Reaktionsbedingungen oder durch Anwendung anderer elektrophiler Metallhalogenide wohl noch verbessert werden könnten. Die geringere Ausbeute beim α-Naphthonitril erklärt sich durch sterische Hinderung, die die Wasserstoffatome der 8-Stellung des 3.4-Dihydro-isochinolin-Kerns und der 8-Stellung des Naphthalinrings verursachen.

Die Gegenwart der Nitrogruppe in dem aromatischen Ring (Beispiele 7, 8 und 9) bietet eine interessante Besonderheit. Während die niedrige Ausbeute beim p-Isomeren infolge der Verminderung der Basizität des Nitrils auf Grund des induktiven Effekts der p-Nitrogruppe, analog zum Trichloracetonitril, zu erwarten war, ergibt das o-Isomere ähnlich hohe Ausbeuten wie die aromatischen, nicht substituierten Nitrile.

Wegen des Vorkommens in natürlichen Isochinolinderivaten wurde der Einfluß der Methoxylgruppe auf den Reaktionsverlauf untersucht. Einerseits wurden verschiedene methoxylsubstituierte aromatische Nitrile mit β -Chloräthyl-benzol, andererseits nicht substituierte Nitrile mit im Benzolring substituiertem β -Chloräthyl-benzol umgesetzt.

Wie die Beispiele A, 1-3 (Tab. 2), zeigen, erhält man im ersten Fall außerordentlich niedrige Ausbeuten 12), deren Erklärung auf den ersten Blick schwierig ist, da die Äthergruppen durch ihren Elektronendonator-Charakter die Bildung des Komplexes erleichtern müßten.

Die Annahme, daß das elektrophile Metallhalogenid eine Entmethylierung des Ausgangsmaterials oder des Isochinolinderivats auslösen könnte, erwies sich als unzutreffend. Denn nach Erhitzen von 3.4-Dimethoxy-benzonitril mit SnCl₄ sowohl ohne Lösungsmittel als auch unter den Bedingungen der normalen Reaktion in o-Dichlorbenzol ließ sich das unveränderte Nitril als solches oder in Folgeprodukten wiedergewinnen; ferner konnte nie die Bildung von Phenolen nachgewiesen werden. Ebensowenig konnte die Anwesenheit phenolischer Derivate des 3.4-Dihydro-isochinolins in der bei der normalen Isolierung der Base erhaltenen alkalischen Lösung festgestellt werden. Derartige Deutungen kommen auch deshalb nicht in Betracht, weil Methoxylgruppen im aromatischen Kern des Halogenderivates dem gleichen Einfluß unterliegen würden; in diesem Fall (Tab. 2, B und C) erhält man aber ausgezeichnete Ausbeuten.

Die Methoxylgruppe erleichtert die Bildung des Nitril-Komplexes; aber nicht dessen Bildung, sondern dessen Reaktivität ist für die Reaktion maßgebend. Die Mesomerie mit

H₃CO=

C=N-SnCl₄

vermindert die elektrophile Aktivität so stark, daß die Attacke auf den aromatischen Kern kaum noch zu erfolgen vermag. Wir versuchen z. Zt., die Frage experimentell zu prüfen.

Die bei Einsatz von im Benzolkern methoxylsubstituiertem β-Chloräthyl-benzol erhaltenen hohen Ausbeuten an den 3.4-Dihydro-isochinolinen VII und VIII erklären sich mit der bekannten Aktivierung des Chloratoms im β-Chloräthyl-benzol durch Methoxylierung ^{13,14)}.

VII
$$CH_3O$$
 R CH_3O R CH_3O R

¹¹⁾ H. DECKER und P. BECKER (Liebigs Ann. Chem. 382, 369 [1911]) konnten mit P₂O₅ keinen Ringschluß erzielen, obgleich E. Späth, F. Berger und W. Kuntara (vgl. l. c. ⁷⁾) die Base in 18-proz. Ausbeute erhielten. Später haben H. R. Snyder und F. X. Werber (l. c. ⁶⁾) einen Ringschluß mit Polyphosphorsäure (31-proz. Ausbeute) beschrieben.

¹²⁾ Erwähnenswert ist, daß ähnliche Schwierigkeiten bei gleichartigen Ringschlüssen nach der Bischler-Napieralski-Reaktion bekannt sind. So wird die Ausbeute beim Ringschluß des N-[p-Methoxy-benzoyl]-β-phenyläthylamins mit P₂O₅ bei 110° als "poor" bezeichnet (Org. Reactions 6, 104 [1951]).

¹³⁾ G. BADDELEY und G. M. BENNET, J. chem. Soc. [London] 1935, 1819.

¹⁴⁾ Bezüglich der Möglichkeit, Papaverin und ähnliche Verbindungen durch Umsetzung von Methoxyderivaten des β-Chloräthyl-benzols mit geeigneten Nitrilen darzustellen, sei auf für später geplante Veröffentlichungen verwiesen.

Z

Analysen H

 \circ

Summenformel (Mol.-Gew.)

Aussehen, physikal. Konstanten

rodukt

Reakt.-P

Angewandte Nitrile

Lora-Tamayo, Madroñero und García Muñoz				Jahrg. 93 1960				Nitriliumsalze und Synthese heterocycl. Verbindungen						
5	12.04	11.66	11.29	6.82	12.89	5.24	5.07	11.28	10.97		12.89	11.28	4.98	10.97
6	4.05	4.19	4.06	7.36	4.17	6.41	6.18	4.06	4.34		4.17	4.06	6.80	4.34
27.	Gef. 56.71	Ber. 57.50 Gef. 57.69	Ber. 55.65 Gef. 55.31	Ber. 70.20 Gef. 70.13	Ber. 49.76 Gef. 50.04	Ber. 76.38	Gef. 76.20	Ber. 55.65 Gef. 55.54	Ber. 56.46 Gef. 56.72		Ber. 49.76 Gef. 50.00	Ber. 55.65 Gef. 55.60	Ber. 76.82 Gef. 76.79	Ber. 56.46 Gef. 56.23
	C16H15NO·C6H3N3O7 (466.4)	C ₁₇ H ₁₇ NO·C ₆ H ₃ N ₃ O ₇ (480.4)	C ₁₇ H ₁₇ NO ₂ ·C ₆ H ₃ N ₃ O ₇ (496.4)	C ₁₂ H ₁₅ NO ₂	C ₁₂ H ₁₅ NO ₂ ·C ₆ H ₃ N ₃ O ₇ (434.4)	C ₁₇ H ₁₇ NO ₂		C ₁₇ H ₁₇ NO ₂ · C ₆ H ₃ N ₃ O ₇ (496.4)	$C_{18}H_{19}NO_2 \cdot C_6H_3N_3O_7$ (510.5)		C ₁₂ H ₁₅ NO ₂ · C ₆ H ₃ N ₃ O ₇ (434.4)	C ₁₇ H ₁₇ NO ₂ ·C ₆ H ₃ N ₃ O ₇ (496.4)	C ₁₈ H ₁₉ NO ₂ (281.4)	C ₁₈ H ₁₉ NO ₂ · C ₆ H ₃ N ₃ O ₇ (510.5)
	Schmp. 155-156° (aus Äthanol/Essigsäure)	Schmp. 173 – 174.5°	Schmp. 193° (Zers.) (aus Äthanol)	l]-äthan Farbl. Kristalle, Schmp. 105 – 106°	Schmp. 212-213.5° (aus Äthanol) (Lit. 205° (Zers.) 15), 210-212°, i. Vak. 16))	Farblose Kristalle, Schmp.	- 0	Schmp. 195-196.5° (aus Äthanol/Essigsäure)	Schmp. 181-182° (aus Äthanol/Essigsäure)	I]-äthan 19)	Schmp. 184—186° (aus Äthanol)	Schmp. 202.5—203° (aus Äthanol)	Kristalle, Schmp. 43°; Sdp. _{0,3} 175°	Schmp. 174-175° (aus Äthanol)
∞		9		cy-phenyi 58		82		08	3	cy-pheny. 70		. 83	80	
Versuche mit β -Chloräthyl-benzol -Methoxy- VI, $R = \rho$ -Meth- benzonitril oxy-phenyl		VI, $R = p$ -Methoxy-benzyl (Pikrat)	VI, R = 3.4-Di- methoxy-phenyl (Pikrat)	Versuche mit α -Chlor- β -[3.4-dimethoxy-phenyl]-äthan Acetonitril ²⁰⁾ VII, $R = Methyl$ 58 Farbl	(Pikrat)	VII, R = Phenyi		(Pikrat) VII. R = Renzvi	(Pikrat)	Versuche mit α -Chlor- β - $[2.5$ -dimethoxy-phenyl]-äthan 19) Acetonitril VIII, $R = Methyl$ 70	(Pikrat)	VIII, R = Phenyl (Pikrat)	VIII, R = Benzyl	(Pikrat)
 A. Versuche mit β-C 1. p-Methoxy- benzonitril 		 p-Methoxy-phenyl-acetonitril 	3. 3.4-Dimethoxy-benzonitril	B. Versuche mit α-C1. Acetonitril²⁰⁾		2. Benzonitril ²⁰⁾		3. Phenvi-	•	 Versuche mit α-C Acetonitril 		2. Benzonitril	 Phenyl- acetonitril ²⁰⁾ 	

chem. Ges. 49, 675 [1916].

Versuche C, 1-3, mit ihr durchgeführt. auf einer durch Dehydrohalogenierung verursachten Teil seiner Doktorarbeit diese Verbindung dargestellt und die er sie Bildung von Polymeren beobachtet wurde, welche wohl beruht, wurde in inerter Atmosphäre gearbeitet. 15) A. KAUFMANN und R. RADOSEVIĆ, Ber. dt.
16) E. SPÄTH und POLGAR, Mh. Chem. 51, 19
17) H. J. HARWOOD und T. B. JOHNSON, J. A.
18) S. SUGASAWA, J. pharmac. Soc. Japan [Y.
19) Herr M. Stud hat als Teil seiner Dokto
20) Da bei einigen Versucher die Bildung vo.
Bildung von Styrolderivaten beruht, wurde in

1960

BESCHREIBUNG DER VERSUCHE

Die Schmelzpunkte sind nicht korrigiert. Die Mikroanalysen wurden von J. Prieto, unter Leitung von Dr. Calderón in den Laboratorien für Mikroanalyse des Instituto de Química "Alonso Barba", ausgeführt.

Alle angewandten Nitrile sind Handelspräparate oder wurden nach bekannten Methoden hergestellt. Das β-Chioräthyl-benzol wurde durch Behandlung des entsprechenden Alkohols mit einer Lösung von Zinkehlorid in konz. Salzsäure nach J. F. Norris und H. B. Taylor ²¹⁾ erhalten; Ausb. 80–90% d. Th.; Sdp.₁₃ 86°.

 α -Chlor- β -[2.5-dimethoxy-phenyl]-äthan: 37 g (0.2 Mol) β -[2.5-Dimethoxy-phenyl]-äthanol²² werden mit einer Lösung von 68 g (0.5 Mol) Zinkchlorid in 47 g konz. Salzsäure 2 Stdn. im Wasserbad erhitzt. Nach dem Erkalten wird die Lösung mit Wasser verdünnt und das Chlorid in Äther aufgenommen. Die äther. Extrakte werden mit Wasser, Natriumhydrogenearbonatlösung und, nochmals mit Wasser gewaschen und über Natriumsulfat getrocknet. Der von Äther befreite Rückstand ergibt durch Fraktionierung 33 g (82% d. Th.) der Substanz. Sdp._{0.2} 84°; n_0^{16} 1.5405.

C₁₀H₁₃ClO₂ (200.7) Ber. C 59.84 H 6.52 Cl 17.66 Gef. C 59.96 11 6.28 Cl 17.53

 β -/3.4-Dimethoxy-phenyl]-dihanol: Eine Lösung von n-Butyl-lithium (aus 5.25 g Lithium und 42.5 g n-Butylbromid hergestellt) wird mit 53.5 g 4-Brom-veratrol in 100 ccm wasserfreiem Äther 1 Stde. bei -30° (Außentemperatur) gehalten. Hernach wird Äthylenoxyd im Überschuß zugefügt und mit einer Eis/Kochsalz-Mischung gekühlt. Der erhaltene Alkohol wird nach der gewohnten Methode isoliert. Ausb. 14 g. Sdp.₂ 150–155.

C₁₀U₁₄O₃ (182.2) Rer. C 65.92 H 7.74 Gef. C 65.73 H 7.64

a-Chlor- β -[3.4-dimethoxy-phenyl]-äthan wird wie das 2.5-Dimethoxy-Derivat erhalten. Ausb. 80% d. Th. Farblose Flüssigkeit, Sdp._{0.7} 105—110°; $n_0^{20.5}$ 1.5464.

C₁₀H₁₃ClO₂ (200.7) Ber. C 59.84 H 6.52 Cl 17.66 Gef. C 60.11 H 6.56 Cl 17.44

Herstellung von Derivoten des 3.4-Dihydro-isochinolins

- a) 0,02 Mol des Nitril-Zinn(IV)-chlorid-Komplexes werden in 0.02 Mol (in einigen Fällen ist ein Überschuß ratsam) des β-Chloräthyl-benzol-Derivates gelöst und das Gemisch im Ölbad 1-3 Stdn. auf 100-130° erhitzt. Nach dem Erkalten wird mit 20-proz. Natronlauge stark alkalisiert und das abgetrennte Öl in Äther aufgenommen. Die vereinigten Ätherextrakte werden mit 20-proz. Salzsäure gewaschen. Durch Neutralisation der daraus entstehenden sauren Lösung erhält man das 3.4-Dihydro-isochinolin-Derivat, das nach bekannten Methoden gereinigt wird.
- b) Eine Lösung oder Suspension des Nitrils in dem β-Chloräthyl-benzol-Derivat (in äqui-molekularem Verhältnis oder mit einem Überschuß an Halogenderivat) versetzt man mit Zinn(IV)-chlorid, erhitzt das Gemisch nach Beendigung der exothermen Reaktion auf 100 bis 130° und arbeitet auf wie unter a).
- c) 0.02 Mol des Nitrils läßt man mit 5.2 g (0.02 Mol) Zinn(IV)-chlorid reagieren, fügt nach Beendigung der exothermen Reaktion 0.02-0.048 Mol des 3-Chloräthyl-benzol-Derivates zu und führt den Versuch wie bei den vorhergehenden Fällen weiter.
- d) Manchmal ist es von Vorteil, das Reaktionsgemisch über Nacht stehen zu lassen und hernach die Reaktion, wie schon beschrieben, durch Erwärmen zu beenden.

Die erhaltenen Ausbeuten unterscheiden sich bei den einzelnen Methoden nur wenig. Die Daten der hergestellten Verbindungen finden sich in den Tabellen 1 und 2.

Aneja, Mukerjee und Seshadri

Verhalten des 3.4-Dimethoxy-benzonitrils gegenüber SnCl4

- 1. Ohne Lösungsmittel: Man erhitzt 3.26 g (0.02 Mol) 3.4-Dimethoxy-benzonitril mit 5.2 g (0.02 Mol) SnCl₄ 2 Stdn. bei 110°, alkalisiert alsdann mit 20-proz. Natronlauge und nimmt in Äther auf. Durch Verdampfen der getrockneten Ätherextrakte und Umkristallisieren des Rückstandes erhält man 3.1 g 3.4-Dimethoxy-benzonitril vom Schmp. und Misch-Schmp. 66-67°. Beim Ansäuern der alkalischen Lösung war kein phenolisches Produkt nachzuweisen.
- 2. In o-Dichlorbenzol: Eine Lösung des Nitrils in 50 ccm o-Dichlorbenzol wird wie oben erhitzt. Nach dem Erkalten wird mit 20-proz. Natronlauge alkalisiert und mit Wasserdampf destilliert. Der Chloroform-Extrakt des Destillates hinterläßt einen farblosen Rückstand, der, aus Wasser umkristallisiert, bei 168-169° schmilzt und sich durch den Misch-Schmp. als Veratramid erweist. Durch Ansäuern der alkalischen Lösung und nachträgliches Ausäthern erhält man 0.6 g einer farblosen Substanz, die, aus Äthanol umkristallisiert, mit Veratrumsäure, Schmp. 183-184°, identisch ist.

^[21] J. Amer. chem. Soc. **46**, 753 [1924].

²²⁾ R. A. BARNES, J. Amer. chem. Soc. 75, 3004 [1953].