Chapter 1

2006年国际大学生数学竞赛

Odessa, Ukraine

1.1 第一天

- **1.** 设 $f: \mathbb{R} \to \mathbb{R}$ 是一个实值函数. 证明或否定下列论断:
 - (a) 如果 f 是连续的且 range(f) = \mathbb{R} , 则 f 是单调的;
 - (b) 如果 f 是单调的且 range(f) = \mathbb{R} , 则 f 是连续的;
 - (c) 如果 f 是单调的且 f 是连续的, 则 range(f) = \mathbb{R} .

解

- (a) 错误. 取反例 $f(x) = x^3 x$ 即可.
- (b) 正确. 如果假定 f 是非递减的, 对任意实数 a, 极限 f(a-) 与 f(a+) 都存在, 且 $f(a-) \le f(a+)$. 如果这两个极限相等, 则 f 在 a 处连续. 否则, 如果 f(a-) = b < f(a+) = c, 则当 x < a 时有 $f(x) \le b$, 当 x > a 时, $f(x) \ge c$, 则 range(f) $\subset (-\infty, b) \cup (c, +\infty) \cup \{f(a)\}$ 不可能是整个实数集.

(c) 错误, 取反例 $f(x) = \arctan x$ 即可.

2. 求出所有满足以下两个条件的正整数 x 的个数:

- $x < 10^{2006}$;
- $x^2 x$ 被 10^{2006} 整除.

解 方法一 记 $S_k = \{0 < x < 10^k | x^2 - x 被10整除\}, s(k) = |S_k|, k \ge 1.$ 设 $\overline{x = a_{k+1}a_k \cdots a_1}$ 表示整数 $x \in S_{k+1}, k \ge 1$ 的十进制写法,则显然 $y = \overline{a_k \cdots a_1} \in S_k$. 现在取定 $y = \overline{a_k \cdots a_1} \in S_k$,把 a_{k+1} 看成变化的数字,我们有 $x^2 - x = (a_{k+1}10^k + y)^2 - (a_{k+1}10^k + y) = (y^2 - y) + a_{k+1}10^k (2y - 1) + a_{k+1}^2 10^{2k}$. 由于 $y^2 - y = 10^k z$ 对某个整数 z 成立,于是 $x^2 - x$ 被 10^{k+1} 整除当且仅当 $z + a_{k+1}(2y - 1) \equiv 0 \mod 10$.

1

由于 $y \equiv 3 \mod 10$ 是显然不可能的,因此适定方程只有一个解. 于是对每个 $k \ge 1$,我们得到了一个集合 S_{k+1} 与 S_k 之间的一一对应. 所以 s(2006) = s(1) = 3,因为 $S_1 = \{1, 5, 6\}$.

方法二 由于 $x^2 - x = x(x-1)$, x 与 x - 1 互素, 因此其中必然有一个被 2^{2006} 整除, 一个 (可能是同一个) 要被 5^{2006} 整除. 因此 x 一定满足以下两个条件:

- $x \equiv 0$ 或 1 mod 2^{2006} ;
- $x \equiv 0$ 或1 mod 5^{2006} .

总共有四种情形. 由中国剩余定理, 每种情形在数 $0,1,\cdots,10^{2006}-1$ 中都有唯一解. 这四种情形的解都是不同的, 因为任意两个解模 2^{2006} 或 5^{2006} 的余数都不同. 而且, 0 是不满足的, 因此存在 3 个解.

3. 设 A 是一个 $n \times n$ 整数矩阵, 整数 b_1, \dots, b_k 满足 $\det(A) = b_1 \dots b_k$. 证明: 存在 $n \times n$ 整数矩阵 B_1, \dots, B_k 使得 $A = B_1 \dots B_k$, 且对所有的 $i = 1, \dots, k$ 有 $\det(B_i) = b_i$.

证明 由归纳法, 只需要考虑 m = 2 的情形即可. 进一步, 我们可以对 A 左乘或右乘行列式为 1 的整数矩阵, 也不改变问题. 因此我们可以假定 A 是上三角矩阵.

引理 1.1. 设 A 是一个上三角整数矩阵, b, c 是整数满足 A = bc, 则存在上三角整数矩阵 B, C 使得 $\det B = b$, $\det C = c$, A = BC.

引理 13.1 的证明 我们对 n 归纳. n=1 是显然的, 假定结论对 n-1 的情形成立. 定义 B_{nn} 是 b 和 A_{nn} 的最大公因数, 记住 $\frac{A_{nn}}{B_{nn}}$. 由于 A_{nn} 整除 bc, C_{nn} 整除 $\frac{b}{B_{nn}}c$, 进一步 C_{nn} 整除 c. 因此, $b'=\frac{b}{B_{nn}}$ 和 $c'=\frac{c}{B_{nn}}$ 都是整除. 设 A' 表示 A 的左上方 $(n-1)\times(n-1)$ 子矩阵, 则 detA'=b'c'. 由归纳法, 对 A' 我们可以找到矩阵 B', C' 使得 A'=B'C' 且 det B'=b', det C'=c'. 只需要定义 B_{in} , C_{in} 使得 A=BC 对所有的 (i,n) 元 (i< n) 都成立.

首先我们验证对所有 i < n, B_{ii} 和 C_{nn} 是互素的. 由于 B_{ii} 整除 b', 只需要证明 b' 和 C_{nn} 是互素的, 即

$$\gcd\left(\frac{b}{\gcd\left(b,A_{nn}\right)},\frac{A_{nn}}{\gcd\left(b,A_{nn}\right)}\right)=1,$$

而这是显然的.

现在我们递归定义 B_{jn} 和 C_{jn} : 假定我们已经定义了 B_{in} , C_{in} 对所有的 $i=j+1,j+2,\cdots,n-1$ 成立,则 B_{jn} , C_{jn} 必须满足

$$A_{jn} = B_{jj}C_{jn} + B_{j,j+1}C_{j+1,n} + \cdots + B_{jn}C_{nn}.$$

由于 B_{jj} 和 C_{nn} 互素, 我们可以取整数 C_{jn} , B_{jn} 使得上述方程成立. 对 $j = n - 1, n - 2, \dots, 1$, 我们最后得到 B, C 使得 A = BC.

1.1. 第一天

4. 设 f 是一个有理函数 (即两个实多项式的商), 且对无穷多个整数 n, f(n) 都是整数, 证明; f 是一个多项式.

证明 设 S 是一个有无穷个整数的集合, 且对任意 $x \in S$, 有理函数 f(x) 都是整数.

假定 $f(x) = \frac{p(x)}{q(x)}$, 其中 p,q 分别是次数为 k,n 的多项式. 则 p,q 是齐次方程组 p(x) = q(x)f(x), $\forall x \in S, q(x) \neq 0$. 这是齐次线性方程组, 系数函数 p,q 都是有理系数. 由于它们有一个解, 它们一定有一个有理解.

因此存在有理系数多项式 p',q' 使得 $p'(x) = q'(x)f(x), \forall x \in S, q(x) \neq 0$. 如果 x 不是 p 或 q 的根,则 $f(x) \neq 0$,因此 p'(x)q(x) = p(x)q'(x) 对 S 中有限个 p,q 的零点之外的点都成立. 因此 p'q 和 pq' 在无穷多个点都相等,意味着 $p'(x)q(x) \equiv p(x)q'(x)$. 两边除以 q(x)q'(x),我们可得 $\frac{p'(x)}{q'(x)} = \frac{p(x)}{q(x)} = f(x)$. 因此 f(x) 可以表示成两个有理系数多项式的商. 乘以某个整数后,它就可以表示成两个整系数多项式的商.

假定 $f(x) = \frac{p''(x)}{q''(x)}$, 其中 p'', q'' 都是整系数的. 存在多项式 s, r, 都是有理系数, 使得 p''(x) = q''(x)s(x) + r(x), 且 r 的次数小于 q'' 的次数. 两边除以 q''(x), 我们得到 $f(x) = s(x) + \frac{r(x)}{q''(x)}$. 存在整数 N, 使得 Ns(x) 是整系数,则对任意 $x \in S$, Nf(x) - Ns(x) 都是整数. 但是他等于有理函数 $\frac{Nr}{q''}$, 其分母比分子的次数更高,因此当 $x \to \infty$ 时,此式趋于 0. 也就是说对所有充分大的 $x \in S$, Nf(x) - Ns(x) = 0, 因此 r(x) = 0. 所有 r(x) 有无穷个零点,也就是它恒为零. 所有 f(x) = s(x), f 是一个多项式.

5. 设实数 a, b, c, d, e > 0 使得 $a^2 + b^2 + c^2 = d^2 + e^2$ 且 $a^4 + b^4 + c^4 = d^4 + e^4$. 比较 $a^3 + b^3 + c^3$ 和 $d^3 + e^3$.

证明 不妨假设 $x \ge b \ge c$, $d \ge e$. 设 $c^2 = e^2 + \Delta$, $\Delta \in \mathbb{R}$. 则 $d^2 = a^2 + b^2 + \Delta$, 且 第二个方程意味着

$$a^4 + b^4 + (e^2 + \Delta)^2 = (a^2 + b^2 + \Delta)^2 + e^4, \ \Delta = -\frac{a^2b^2}{a^2 + b^2 - e^2}.$$

由于 $d^2 = a^2 + b^2 - \frac{a^2b^2}{a^2 + b^2 - e^2} < a^2$ 且 $a > d \ge e > b \ge c$.

考虑函数 $f(x) = a^x + b^x + c^x - d^x - e^x, x \in \mathbb{R}$. 我们将证明 f(x) 只有两个零点 x = 2 和 x = 4, 且在每个零点处都改变符号. 假定此断言不成立, 则 Rolle 定理意味着 f'(x) 至少有两个不同的零点. 不失一般性, 设 a = 1. 则 $f'(x) = b^x \log x + c^x \log x - d^x \log x - e^x \log e, x \in \mathbb{R}$. 如果 $f'(x_1) = f'(x_2) = 0, x_1 < x_2$, 则

$$b^{x_i} \log b + c^{x_i} \log c = d^{x_i} \log d + e^{x_i} \log e, \ i = 1, 2.$$

但是由于 $1 > d \ge e > b \ge c$, 我们有

$$\frac{(-\log b)\,b^{x_2} + (-\log c)\,c^{x_2}}{(-\log b)\,b^{x_1} + (-\log c)\,c^{x_1}} \leqslant b^{x_2 - x_1} < e^{x_2 - x_1} \leqslant \frac{(-\log d)\,d^{x_2} + (-\log e)\,e^{x_2}}{(-\log d)\,d^{x_1} + (-\log e)\,e^{x_1}}$$

矛盾. 因此 f(x) 在区间 $(-\infty, 2), (2, 4), (4, +\infty)$ 上符号不变. 由于 f(0) = 1, 则

$$\begin{cases} f(x) > 0, & x \in (-\infty, 2) \cup (4, +\infty) \\ f(x) < 0, & x \in (2, 4) \end{cases}.$$

特别地,
$$f(3) = a^3 + b^3 + c^3 - d^3 - e^3 < 0$$
.

6. 求出所有实数序列 $a_0, a_1, \dots, a_n, n \ge 1, a_n \ne 0$, 使得下面论述成立:

如果 $f: \mathbb{R} \to \mathbb{R}$ 是一个 n 阶可微函数, 实数 $x_0 < x_1 < \cdots < x_n$ 满足 $f(x_0) = f(x_1) = \cdots = f(x_n) = 0$, 则存在 $h \in (x_0, x_n)$ 使得

$$a_0 f(h) + a_1 f'(h) + \dots + a_n f^{(n)}(h) = 0.$$

解 设 $A(x) = a_0 + a_1x + \cdots + a_nx^n$. 我们将证明 a_0, \cdots, a_n 要满足论述中的等式, 充要条件就是多项式 A(x) 的根都是实的.

(a) 假定 A(x) 的根都是实的. 我们用 I 表示恒等算子, D 表示微分算子. 对任意多项式 $P(x) = p_0 + p_1 x + \dots + p_n x^n$, $P(D) = p_0 I + p_1 D + p_2 D^2 + \dots + p_n D^n$. 则论述中的等式等价于 $(A(D)f)(\xi) = 0$.

首先对 n=1 证明. 考虑函数 $g(x)=\mathrm{e}^{\frac{a_0}{a_1}x}f(x)$, 由于 $g(x_0)=g(x_1)=0$, 根据 Rolle 定理可知存在 $\xi\in(x_0,x_1)$ 使得

$$g'(\xi) = \frac{a_0}{a_1} e^{\frac{a_0}{a_1} \xi} f(\xi) + e^{\frac{a_0}{a_1} \xi} f'(\xi) = e^{\frac{a_0}{a_1} \xi} \left(a_0 f(\xi) + a_1 f'(\xi) \right) = 0.$$

现在假定 n > 1, 结论对 n-1 已经成立. 令 A(x) = (x-c)B(x), 其中 c 是多项式 A 的一个实根. 根据 n=1 的情形, 存在 $y_0 \in (x_0,x_1)$, $y_1 \in (x_1,x_2)$, \cdots , $y_{n-1} \in (x_{n-1},x_n)$ 使得 $f'(y_j)-cf(y_j)=0$ 对所有 $j=0,1,\cdots,n-1$ 都成立. 对多项式 B(x), 函数 g=f'-cf 和点 y_0,\cdots,y_{n-1} 应用归纳假设, 存在 $\xi \in (y_0,y_{n-1}) \subset (x_0,x_n)$ 使得

$$(B(D)g)(\xi) = (B(D))(D - cI)f)(\xi) = (A(D)f)(\xi) = 0.$$

(b) 假定 u + vi 是多项式 A(x) 的一个复根, $v \neq 0$. 考虑线性微分方程 $a_n g^{(n)} + \cdots + a_1 g' + g = 0$, 此方程的一个解是 $g_1(x) = e^{ux} \sin vx$, 它由无穷个零点.

设 k 是使得 $a_k \neq 0$ 的最小指标, 取 $\varepsilon > 0$, 令 $f(x) = g_1(x) + \varepsilon x^k$. 如果 ε 足够小,则 f 有所要求的根数目,但是 $a_0 f + a_1 f' + \cdots + a_n f^{(n)} = a_k \varepsilon \neq 0$ 处处成立.

1.2 第二天

- **1.** 设 *V* 是一个凸 *n* 边形.
 - (a) 证明: 如果 n 被 3 整除,则 V 可以被剖分成三角形,使得 V 的每个顶点都恰好属于 奇数个三角形.
 - (b) 证明: 如果 n 不被 3 整除,则可以被剖分成三角形,使得恰好有两个顶点属于偶数个三角形.

1.2. 第二天 5

证明 对 n 用归纳法, n = 3, 4, 5 的情形如下:

现在假定上述论断对 n=k 成立, 我们考虑 n=k+3 的情形. 设 V 的顶点分别为 P_1, \dots, P_{k+3} .

对多边形 $P_1P_2\cdots P_k$ 应用归纳假设, 如果 n 不被 3 整除, 它的三角剖分中除去两个顶点外其它顶点恰好属于奇数个三角形. 现在再加上 $\triangle P_1P_kP_{k+2}$, $\triangle P_kP_{k+1}P_{k+2}$ 和 $\triangle P_1P_{k+2}P_{k+3}$. 用这样的方式, 我们在点 P_1 和 P_k 处增加了两个三角形, 因此奇偶性不变. 这就完成了证明.

2. 求出所以的函数 $f: \mathbb{R} \to \mathbb{R}$ 使得对任意实数 a < b, 像 f([a,b]) 都是一个长度为 b-a 的闭区间.

解 对任意常数 c, 函数 f(x) = x + c, f(x) = -x + c 显然满足条件, 我们下面证明只有这两组解.

设 f 是一个这样的函数. 则 f 显然满足对任意 x, y 有 $|f(x) - f(y)| \le |x - y|$, 因此 f 是连续的. 给定 x < y, 设 $a, b \in [x, y]$ 使得 f(a), f(b) 分别是 f 在 [x, y] 上的最大和最小值. 则 f([x, y]) = [f(b), f(a)], 于是

$$y - x = f(a) - f(b) \le |a - b| \le y - x.$$

这意味着 $\{a,b\} = \{x,y\}$, 因此 f 是单调函数. 假定 f 是单调递增的,则 f(x)-f(y) = x-y 意味着 f(x)-x=f(y)-y, 因此 f(x)=x+c, c 是某个常数. 类似的, 当 f 递减时, f(x)=-x+c.

3. 对任意 $x \in (0, \frac{\pi}{2})$, 比较 $\tan(\sin x)$ 与 $\sin(\tan x)$ 的大小.

解 $\Leftrightarrow f(x) = \tan(\sin x) - \sin(\tan x)$, 则

$$f'(x) = \frac{\cos x}{\cos^2(\sin x)} - \frac{\cos(\tan x)}{\cos^2 x} = \frac{\cos^3 x - \cos(\tan x) \cdot \cos^2(\sin x)}{\cos^2 x \cdot \cos^2(\tan x)}.$$

设 $0 < x < \arctan \frac{\pi}{2}$, 余弦函数在 $(0, \frac{\pi}{2})$ 上是凹的, 因此

$$\sqrt[3]{\cos(\tan x)\cos^2(\sin x)} < \frac{1}{3}\left(\cos(\tan x) + 2\cos(\sin x)\right) \leqslant \cos\left(\frac{\tan x + 2\sin x}{3}\right) < \cos x,$$

其中最后一步是因为

$$\left(\frac{\tan x + 2\sin x}{3} - x\right)' = \frac{1}{3} \left(\frac{1}{\cos^2 x} + 2\cos x\right) - 1 \ge 0.$$

这说明 $\cos^3 x - \cos(\tan x) \cdot \cos^2(\sin x) > 0$, 所以 f'(x) > 0, f 在区间 $\left[0, \arctan \frac{\pi}{2}\right]$ 单调 增. 注意到 $4 + \pi^2 < 16$, 于是

$$\tan\left(\sin\left(\arctan\frac{\pi}{2}\right)\right) = \tan\frac{\pi/2}{\sqrt{1+\pi^2/4}} > \tan\frac{\pi}{4} = 1.$$

这就意味着当 $x \in \left[\arctan \frac{\pi}{2}, \frac{\pi}{2}\right)$ 时, $\tan(\sin x) > 1$, 于是 f(x) > 0 对 $x \in \left(0, \frac{\pi}{2}\right)$ 都成立.

4. 设 v_0 是 \mathbb{R}^n 中的零向量, $v_1, v_2, \dots, v_{n+1} \in \mathbb{R}^n$ 使得对任意 $0 \le i, j \le n+1$, Euclid 范数 $|v_i - v_j|$ 都是有理数. 证明: v_1, \dots, v_{n+1} 在有理数域上是线性相关的.

证明 我们可以假定 v_1, \dots, v_n 在实数域上线性无关, 于是存在 $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ 满足

$$v_{n+1} = \sum_{j=1}^{n} \lambda_j v_j.$$

我么来证明所有的 λ_i 都是有理数.由

$$-2\langle v_i, v_j \rangle = |v_i - v_j|^2 - |v_i|^2 - |v_j|^2$$

可知对任意 $i, j, \langle v_i, v_j \rangle$ 都是有理数. 定义矩阵 $A = (a_{ij})_{n \times n}$, 其中 $a_{ij} = \langle v_i, v_j \rangle$. 设 $w = (w_1, \dots, w_n) \in \mathbb{Q}^n$, 其中 $w_i = \langle v_i, v_{n+1} \rangle$, $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$. 则

$$\langle v_i, v_{n+1} \rangle = \sum_{i=1}^n \lambda_j \langle v_i, v_j \rangle.$$

说明 $A\lambda = w$. 由于 v_1, \dots, v_n 是线性无关的, A 是可逆的, A^{-1} 中的所有项都是有理数, 因此 $\lambda = A^{-1}w \in \mathbb{Q}^n$, 得证.

5. 证明: 存在无穷对互素的正整数对 (m,n) 使得方程

$$(x+m)^3 = nx$$

有三个不同的正数根.

$$y^3 - ny + mn = 0.$$

设上述方程的两个根是 u, w, 则第三个根为 w = -(u + v). 这些根满足

$$uv + uw + vw = -(u^2 + uv + v^2) = -n$$
, $\mathbb{P}u^2 + uv + v^2 = n$,

1.2. 第二天 7

且 uvw = -uv(u+v) = mn. 因此我们需要找到整数对 (u,v) 使得 uv(u+v) 被 $u^2 + uv + v^2$ 整除. 注意到如果令 u = kp, v = kq, 则

$$u^{2} + uv + v^{2} = k^{2}(p^{2} + pq + q^{2})$$

Ħ.

$$uv(u+v) = k^3 pq(p+q).$$

取 p, q 互素, 令 $k = p^2 + pq + q^2$, 则 $\frac{uv(u+v)}{u^2+uv+v^2} = p^2 + pq + q^2$.

代回最原始的等式, 我们得到

$$n = (p^2 + pq + q^2)^3$$
, $m = p^2q + pq^2$,

以及三个根为
$$x_1 = p^3, x_2 = q^3, x_3 = -(p+q)^3$$
.

- **6.** 设 A_i, B_i, S_i (i = 1, 2, 3) 都是可逆的 2×2 实矩阵满足
 - (i) 不是所有的 Ai 都有公共实特征向量;

(ii)
$$A_i = S_i^{-1} B_i S_i, \forall i = 1, 2, 3;$$

(iii)
$$A_1 A_2 A_3 = B_1 B_2 B_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

证明: 存在一个可逆 2×2 实矩阵 S 使得 $A_i = S^{-1}B_iS$, $\forall i = 1, 2, 3$.

证明 注意到如果有某个 $A_j = \lambda I$, 则结论是平凡的, 所以假定这种情形不存在. 首先 考虑某个 A_j 有两个不同的特征值, 不妨设为 A_3 . 通过相似变换, 我们可以进一步假定

$$A_3 = B_3 = \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$
. 读 $A_2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $B_2 = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$, 则

$$a + d = \text{tr} A_2 = \text{tr} B_2 = a' + d'$$

$$a\lambda + d\mu = \operatorname{tr}(A_2 A_3) = \operatorname{tr} A_1^{-1} = \operatorname{tr} B_1^{-1} = \operatorname{tr}(B_2 B_3) = a'\lambda + d'\mu.$$

因此 a = a', d = d', 还有 bc = b'c'. 现在我们不能有 c = 0 或 b = 0, 因为此时 $(1,0)^{\mathrm{T}}$ 或者 $(0,1)^{\mathrm{T}}$ 将会是所以 A_j 的公共特征向量. 矩阵 $\begin{pmatrix} c' \\ c \end{pmatrix}$ 满足 $A_2 = S^{-1}B_2S$, 且 S 与 $A_3 = B_3$ 可交换, 于是 $A_j = S^{-1}B_jS$, $\forall j$.

如果 $A_3 = B_3$ 的不同特征值不是实数,那么由上可知, $A_j = S^{-1}B_jS$ 对某个 $S \in GL_2\mathbb{C}$,除非所有的 A_j 在 \mathbb{C} 上有公共特征向量. 在这种情形下,设 $A_jv = \lambda_jv$,那么所以的 A_j 可以同时对角化. 如果 $A_2 = \begin{pmatrix} a \\ d \end{pmatrix}$, $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$,那么同样有 a = a'd = d', b'c' = 0. 现在 B_2 , B_3 在 \mathbb{C} 上有公共特征向量,因此 B_1 也一样,它们可以同时对角化. 那么不论在哪种情形下,均有 $SA_j = B_jS$ 对某个 $S \in GL_2\mathbb{C}$ 成立. 设 $S_0 = \text{Re}S$, $S_1 = \text{Im}S$. 将实部与虚部分开,如果 S_0 或者 S_1 可逆,结论已经成立. 否则, S_0 可以相似于某个 $T^{-1}S_0T = \begin{pmatrix} x & 0 \\ y & 0 \end{pmatrix}$,且 $(x,y)^T \neq (0,0)^T$,且所有的 A_j 有公共特征 向量 $T(0,1)^T$,矛盾.

剩下的情形就是所以的 A_j 都没有相异特征值, 那么这些特征值自然是实的. 借助相似变换, 我们不妨假设 $A_3 = \begin{pmatrix} 1 & b \\ 1 \end{pmatrix}$, $b \neq 0$. 通过上三角矩阵的进一步相似, 我们可以假定 $A_2 = \begin{pmatrix} 0 & u \\ 1 & v \end{pmatrix}$, 这里 $v^2 = (\operatorname{tr} A_2)^2 = 4 \det A_2 = -4u$. 现在 $A_1 = A_3^{-1}A_2^{-1}\begin{pmatrix} -(b+v)/u & 1 \\ 1/u \end{pmatrix}$, 因此 $\frac{(b+v)^2}{u^2} = (\operatorname{tr} A_1)^2 = 4 \det A_1 = -\frac{4}{u}$, 比较可知 b = -2v. 我们已经把所有的矩阵 A_j 都约化到所有元素只依赖于 u,v 的矩阵, 但是 $\det A_2$ 和 $(\operatorname{tr} A_2)^2$ 本身都具有相似不变性, 所以 B_j 也可以同时约化到同样的矩阵.