Matemática discreta 1 IMERL Teórico vespertino (Florencia)

RESUMEN TEÓRICO SEMANA 5 Funciones generatrices

Este material está basado en el material colgado en eva "Notas teóricas".

Problema

Sabemos contar la cantidad de formas de repartir n objetos (indistinguibles) en m cajas (distinguibles): considerando es esquema con los símbolos "x" y "|" obtenemos el resultado siguiente

$$CR_n^m = \binom{n+m-1}{m-1} = \binom{n+m-1}{n}.$$

A su vez, este problema equivale a la cantidad de soluciones de la ecuación

$$i_1+i_2+\ldots+i_m=n,$$

con
$$i_k \in \mathbb{N}, \ \forall k = 1, \dots, m.$$

Usando PIE, podemos resolver el problema anterior incluso con restricciones para i_k , es decir, la cantidad de soluciones de la ecuación

$$i_1 + i_2 + \ldots + i_m = n,$$

$$a_k \leq i_k \leq b_k, i_k \in \mathbb{N}, \forall k = 1, \dots, m,$$

o análogamente,

$$i_1 + i_2 + \ldots + i_m = n$$

 $i_k \in I_k = \{ i \in \mathbb{N} : a_k \le i \le b_k \}, \ i_k \in \mathbb{N}, \ \forall k = 1, \ldots, m.$ (1)

Ejemplo Si consideramos el problema de la cantidad de soluciones de la ecuación

$$i_1 + i_2 + i_3 = 17$$

$$2 \le i_1 \le 5, \ 4 \le i_2, \ 8 \le i_3 \le 13, \ i_k \in \mathbb{N}, \ \forall k = 1, 2, 3,$$

Equivale a hallar el coeficiente en x^{17} de

$$(x^2 + x^3 + x^4 + x^5)(x^4 + x^5 + \dots + x^{17})(x^8 + x^9 + \dots + x^{13})$$

identificando la variable i_k con la potencia elegida del factor k-ésimo.

En general, la solución al problema de hallar la cantidad de soluciones de 1 coincide con el coeficiente en x^n del siguiente producto:

$$(x^{a_1} + x^{a_1+1} + \ldots + x^{b_1})(x^{a_2} + x^{a_2+1} + \ldots + x^{b_2})\ldots(x^{a_m} + x^{a_m+1} + \ldots + x^{b_m})$$

la idea será entonces encontrar los coeficientes de una expresión de esa forma.

De hecho, con esa estrategia podremos resolver problemas más generales, del tipo cantidad de soluciones de la ecuación

$$i_1 + i_2 + \ldots + i_m = n$$

$$i_k \in I_k \subset \mathbb{N}$$
 cualesquiera $\forall k = 1, \dots, m$.

hallando el coeficiente en x^n de

$$\left(\sum_{i \in I_1} x^i\right) \left(\sum_{i \in I_2} x^i\right) \dots \left(\sum_{i \in I_m} x^i\right).$$

Definición La función generatriz de la sucesión $(a_n) = a_0, a_1, a_2, a_3, \ldots$ es la serie de potencias formal ("polinomio infinito") dada por

$$A(x) = \sum_{n=0}^{\infty} a_n x^n$$

Ejercicios Hallar las funciones generatrices asociadas a

- $(a_n) = (1, 1, 1, 1, \dots, 1, \dots).$
- $(b_n) = (0, 1, 0, 1, \dots, 0, 1, \dots).$
- $(c_n) = (1, 1, 1, 1, \dots, 1, 0, 0, \dots).$

Observación Si $a_n = 0$ a partir de un cierto n_0 entonces tenemos que la función generatriz asociada es un polinomio.

Observación Si $x \in \mathbb{R}$, $x \neq 1$ se cumple que

$$1 + x + x^2 + \ldots + x^n = \frac{1 - x^{n+1}}{1 - x}.$$

Definiciones La suma de funciones generatrices $A(x) = \sum_{n=0}^{\infty} a_n x^n$ y $B(x) = \sum_{n=0}^{\infty} b_n x^n$ es

$$A(x) + B(x) = \sum_{n=0}^{\infty} c_n x^n$$
 donde $c_n = a_n + b_n$.

El producto de funciones generatrices $A(x) = \sum_{n=0}^{\infty} a_n x^n$ y $B(x) = \sum_{n=0}^{\infty} b_n x^n$ es

$$A(x) \cdot B(x) = \sum_{n=0}^{\infty} c_n x^n$$
 donde $c_n = \sum_{i+j=n} a_i b_j = \sum_{i=0}^n a_i b_{n-i} = a_n * b_n$.

Una función generatriz A(x) se dice *invertible* si existe otra función generatriz B(x) tal que A(x)B(x) = 1. En este caso definimos B(x) como la inversa de A(x), es decir

$$\frac{1}{A(x)} = B(x)$$

Teorema Una función generatriz $A(x) = \sum_{n=0}^{\infty} a_n x^n$ es invertible si y sólo si $A(0) = a_0 \neq 0$. Además $\frac{1}{A(x)} = \sum_{n=0}^{\infty} b_n x^n$ donde la sucesión (b_n) viene dada por:

$$b_0 = \frac{1}{a_0}$$

$$b_n = -\frac{\sum_{i=0}^{n-1} a_{n-i} b_i}{a_0} \text{ para } n \ge 1$$

Definición Cociente de funciones generatrices

Si $B(0) \neq 0$ se define $\frac{A(x)}{B(x)} := A(x) \cdot \frac{1}{B(x)}$, es decir, dividir entre una función generatriz invertible es multiplicar por su inversa.

Observación Si $B(0) \neq 0$, la ecuación $\frac{A(x)}{B(x)} = C(x)$ es equivalente a A(x) = B(x)C(x) que se obtiene usando la fórmula del producto.

<u>Importante</u>: Las operaciones definidas cumplen con las mismas propiedades que las operaciones de polinomios.

Ejercicio Hallar los cuatro primeros términos de la función generatriz $\frac{2-x}{1-x-x^2}$

Ejemplo Inversa de 1-x

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots = \sum_{i=0}^{\infty} x^i$$
 (2)

Proposición Si $m \in \mathbb{Z}^+$

$$\frac{1}{(1-x)^m} = \sum_{n=0}^{\infty} \binom{n+m-1}{m-1} x^n = \sum_{n=0}^{\infty} \binom{n+m-1}{n} x^n$$
 (3)

Observación Sea $m \in \mathbb{Z}^+$, si definimos para $x \in \mathbb{R}$

$$\binom{x}{n} := \frac{x(x-1)(x-2)\dots(x-m+1)}{n!},$$

obtenemos que

$$(1-x)^{-m} = \sum_{n=0}^{\infty} {\binom{-m}{n}} (-x)^n$$

<u>Notación</u>: Si $A(x) = \sum_{n=0}^{\infty} a_n x^n$ es una función generatriz, $[x^k](A(x)) = a_k$, es decir, $[x^k](A(x))$ denota el coeficente k-ésimo de A(x).

Observación Sea $A(x) = \sum_{n=0}^{\infty} a_n x^n$ una función generatriz cualquiera y F(x) una función generatriz con F(0) = 0 entonces $A(F(x)) = \sum_{n=0}^{\infty} a_n (F(x))^n$ cumple que

$$[x^k]A(F(x)) = [x^k]\left(\sum_{n=0}^{\infty} a_n(F(x))^n\right) = \sum_{n=0}^{\infty} a_n \cdot [x^k](F(x))^n.$$

Ejercicio Hallar las sucesiones asociadas a la funciones $\frac{1}{1-x^2}$ y $\frac{1}{1-2x}$.

Definición Llamamos fracción simple a una función generatriz de la forma

$$F(x) = \frac{a}{(1 - bx)^m} \text{ con } ab \neq 0 \text{ y } m \in \mathbb{Z}^+$$

Observamos que aplicando la fórmula de la potencia negativa de binomio 3 y sustituyendo x por bx obtenemos

$$\frac{1}{(1-bx)^m} = \sum_{n=0}^{\infty} \binom{n+m-1}{m-1} b^n x^n.$$

Luego,

$$\frac{a}{(1-bx)^m} = \sum_{n=0}^{\infty} a \binom{n+m-1}{m-1} b^n x^n$$

Esta es la ventaja principal de las fracciones simples: es muy sencillo obtener explícitamente cualquier coeficiente.

Ejemplo Sea $F(x) = \frac{a}{(x-b)^m}$ con $ab \neq 0$ y $m \in \mathbb{Z}^+$ tenemos que

$$\frac{a}{(x-b)^m} = \frac{a}{(-b)^m (1-\frac{x}{b})^m} = a(-1)^m b^{-m} \sum_{n=0}^{\infty} \binom{n+m-1}{m-1} \left(\frac{x}{b}\right)^n = \sum_{n=0}^{\infty} (-1)^m a \cdot b^{-(n+m)} \binom{n+m-1}{m-1} x^n$$

Ejercicio ¿De cuántas formas podemos repartir 20 pelotitas idénticas en cuatro cajas numeradas de forma que, las primeras dos cajas contengan una cantidad par de pelotitas; las dos últimas contengan una cantidad impar de pelotitas y que la primer caja contenga al menos una pelotita?

Ejercicio Encontrar una función generatriz y el coeficiente que resuelve el siguiente problema: ¿De cuántas formas podemos distribuir 20 pelotitas idénticas en tres recipientes numerados tal que el tercer recipiente contenga una cantidad par de pelotitas?