Tecnicatura Superior en Telecomunicaciones

Electrónica Microcontrolada

Docentes: Jorge E. Morales, Gonzalo Vera.

Grupo nro 9:

- *Barrionuevo Eric Samuel
- *Passarell Gonzalo
- *Rios Lionel
- *Rojas Cristian
- *Zaccaro Victoria
- *Zarate Franco

Introducción:

El SOC ESP32 es el sucesor del ESP8266 y trae muchas funciones nuevas, entre las mas relevantes son que combina capacidades inalámbricas WiFi y Bluetooth y es de doble núcleo.

Aquí hay algunos ejemplos de tableros ESP32:

Especificaciones del ESP32:

Número de	
núcleos	2 (doble núcleo)
WiFi	2,4 GHz hasta 150 Mbits/s
Bluetooth	BLE (Bluetooth Low Energy) y Bluetooth heredado
Arquitectura	32 bits
Frecuencia	Hasta 240 MHz
de reloj	Hasta 240 IVIHZ
RAM	512 KB
Pines	30 o 36 (depende del modelo)
Periféricos	Toque capacitivo, ADC (convertidor de analógico a digital),
	DAC (convertidor de digital a analógico), I2C (circuito
	interintegrado), UART (receptor/transmisor asíncrono
	universal), CAN 2.0 (red de área del controlador), SPI (interfaz
	periférica en serie)), I2S (sonido inter-IC integrado), RMII
	(interfaz independiente de medios reducidos), PWM
	(modulación de ancho de pulso) y más.

El ESP32 se puede programar en diferentes entornos de programación. Puedes usar:

- *IDE de Arduino
- *Espressif IDF (marco de desarrollo de IoT)
- *Micropitón
- *JavaScript
- *lua

Los periféricos ESP32 incluyen:

- *18 canales convertidores de analógico a digital (ADC)
- *3 interfaces SPI
- *3 interfaces UART
- *2 interfaces I2C
- *16 canales de salida PWM
- *2 convertidores de digital a analógico (DAC)
- *2 interfaces I2S
- *10 GPIO de detección capacitiva
- *Las funciones ADC (convertidor analógico a digital) y DAC (convertidor digital a analógico) se asignan a pines estáticos específicos. Sin embargo, puede decidir qué pines son UART, I2C, SPI, PWM, etc. Solo necesita asignarlos en el código. Esto es posible gracias a la función de multiplexación del chip ESP32 que permite asignar múltiples funciones al mismo pin. Si no los establece en el código, los pines se utilizarán de manera predeterminada.

ESP32 DEVKIT V1 – DOIT

version with 30 GPIOs

ESP32 DEVKIT V1 - DOIT

version with 36 GPIOs

^{*} Pins SCK/CLK, SDO/SD0, SDI/SD1, SHD/SD2, SWP/SD3 and SCS/CMD, namely, GPIO6 to GPIO11 are connected to the integrated SPI flash integrated on ESP-WROOM-32 and are not recommended for other uses.