Econ 1661 / API-135: Final Review

April 29, 2022

Jake Bradt

Agenda for today

- 1. Exam logistics and study recommendations
- 2. Overview of course material
- 3. Practice problems
- 4. Q&A

** Please ask questions throughout **

Exam logistics

- Final exam:
 - **When**: Saturday, May 7 from 9:00am 12:00pm
 - Where: Science Center Lecture Hall D
- Closed book, closed notes
- Calculators, graphing tools (e.g., ruler) will be allowed
- Content: weeks/modules 1-13
- Format: like midterm exam, past final exams
 - Combination of T/F/U and qualitative/quantitative short answers
- Arrive early (~15 min.)!
- Logistics email will be sent out early next week

Office hours and study help

- I have office hours by Zoom from 3:00-5:00pm today
- Additional office hours:
 - Friday, May 6 from 1:00-3:00pm ET in Harvard Hall 105 + Zoom
- Feel free to email any TF before 5:00pm on Friday, May 6 if specific questions come up while studying
- Reminder: practice exams posted to Canvas

Study recommendations

- Prioritize the material covered in recorded lectures and (less so) sections
 - Professor Stavins' "key take-aways" are a helpful guide
 - Don't worry about papers covered in section but not on the reading list (these will help your intuition/understanding, but will not be directly tested)
- Review problem set solutions
- Review notes from in-person sessions
- Do practice exams posted on Canvas (2019-2021 finals + solutions)
 - **Disclaimer 1**: the 2021 final was a take-home, open-note exam
 - Disclaimer 2: the 2019, 2020 finals include concepts we did not cover
- If you need to prioritize your time, do not worry about the reading list for the purposes of the exam
 - If we ask about a specific reading, you should be able to answer the question based on concepts from the lectures, not knowledge only found in the reading

Tips for the exam

- Be able to reproduce the main analytical/quantitative problems
 - Know what we are asking (e.g., "efficient abatement Q?"

 solve for Q such that MC=MB)
 - If applicable, be able to draw a graph: helpful even if we don't require it
- Clearly read each question and answer all parts
- Show your work! We want to give partial credit
- If you do not know the answer, start with what you do know
- For calculations:
 - It is okay to be approximate, within reason
 - We will accept answers that write out a calculation, but do not explicitly solve
- Pay attention to the point allocations for timing
 - We hope to give more time for a given question relative to the midterm

(Rough) Outline of Course

- 1. Fundamentals: Basic science & theory (economic, ethical)
- 2. Policy Analysis Methods: Estimating costs and benefits, NPV, etc.
- 3. Pollution Control: Policy options, design, comparisons
- 4. Local Air Pollution: EJ, relationship to GHG, policy lessons
- 5. National & Regional Policy: History, lessons, policy interactions
- 6. International Policy: History, challenges, next steps

Disclaimer

- We will not cover the entire course today
- Instead, want to emphasize certain important concepts and models from each topic to help guide your studying
- Suggest that you use these slides to guide your studying they should not be your only study resource, but these slides can help identify important topics covered so far

(Rough) Outline of Course

- 1. Fundamentals: Basic science & theory (economic, ethical)
- 2. Policy Analysis Methods: Estimating costs and benefits, NPV, etc.
- 3. Pollution Control: Policy options, design, comparisons
- 4. Local Air Pollution: EJ, relationship to GHG, policy lessons
- 5. National & Regional Policy: History, lessons, policy interactions
- 6. International Policy: History, challenges, next steps

Fundamentals: Science

CO₂ is a *globally mixed, stock pollutant*:

- → Global commons problem: local mitigation costs, global benefits
- → Intergenerational challenge: upfront costs, benefits accrue over time

Put yourself in decision-maker's shoes:

- Producers maximize profit (*Total Revenue Total Private Costs*)
- Consumers maximize utility
 - → Both only care about private benefits and private costs
- Social planners/policy-makers maximize total net benefits (TB TC)
 - → Social planners care about social benefits and social costs

If social and private costs or benefits differ (externalities), unregulated market won't meet social planner's goal!

Put yourself in decision-maker's shoes:

- Producers maximize profit (*Total Revenue Total Private Costs*)
- Consumers maximize utility
 - → Both only care about *private benefits and private costs*
- Social planners/policy-makers maximize total net benefits (TB TC)
 - → Social planners care about *social benefits and social costs*

Fundamentals: Ethical Foundations

Where does this goal come from?

Pareto efficiency: only undertake policies if at least some people are made better off and no one is made worse off.

Kaldor-Hicks criterion: only undertake policies with benefits greater than costs (necessary but not sufficient for Pareto efficiency)

"To an economist, being efficient means maximizing net benefits"

Equimarginal rule: Efficient level of abatement (Q^*) occurs where MB = MC

Externalities occur when private and social marginal costs (or benefits) are not equal

In these cases, intervention in the market is needed to reach the efficient outcome:

 Exception (Coase): Under certain conditions, bilateral negotiation can result in the efficient outcome without government intervention

Externalities occur when private and social marginal costs (or benefits) are not equal

Identifying deadweight loss

- Find equilibrium quantity (given PMC, PMB, any policies in place)
- Find efficient quantity
- Calculate net benefits <u>you're missing</u>
 <u>out on</u> by not being at efficient quantity
 (using SMC, SMB)

(Rough) Outline of Course

- 1. Fundamentals: Basic science & theory (economic, ethical)
- 2. Policy Analysis Methods: Estimating costs and benefits, NPV, etc.
- 3. Pollution Control: Policy options, design, comparisons
- 4. Local Air Pollution: EJ, relationship to GHG, policy lessons
- 5. National & Regional Policy: History, lessons, policy interactions
- 6. International Policy: History, challenges, next steps

Policy Analysis: Estimating Benefits and Costs

- Review taxonomy and estimation methods of benefits and compliance costs
- If benefits and/or costs accrue over time, think about defining efficiency in a dynamic way: maximize net present value (NPV)
 - Net present value scales down future benefits and costs using a discount rate
 - Tip: Remember what the "year" used to discount actually means
 - "Start of project"
 - End of first year
 - Beginning of second year

1/1/10 1/1/11 1/1/12

Consider a two-year project

Policy Analysis: Estimating Benefits and Costs

- Review taxonomy and estimation methods of benefits and compliance costs
- If benefits and/or costs accrue over time, think about defining efficiency in a dynamic way: maximize net present value (NPV)
 - Net present value scales down future benefits and costs using a discount rate
 - Tip: Remember what the "year" used to discount actually means
 - "Start of project" → No discounting: Year 0
 - End of first year → 12 months after "start": Year 1
 - Beginning of second year → 12 months after "start": Year 1

Cost and Benefit Concepts

- Taxonomy of compliance costs
 - Resource compliance costs
 - Government regulatory costs
 - Social welfare costs
 - Transitional costs
 - Indirect costs
- Taxonomy of environmental values:
 - Use values
 - Non-use values (including option and existence values)

Cost and Benefit Estimation

- Cost estimation methods: covered on midterm
- Benefit estimation methods:
 - Revealed preference (e.g., hedonic property model, hedonic wage model)
 - Stated preference
- Benefit transfer: taking existing benefit estimates from another context and using them to analyze policy
- Benefit estimation methods to avoid:
 - Avoided-cost measure of benefits
 - Societal revealed preference
 - Cost of illness
- VSL: translates estimates of mortality risk reduction from RP/SP methods into a standard unit

(Rough) Outline of Course

- 1. Fundamentals: Basic science & theory (economic, ethical)
- 2. Policy Analysis Methods: Estimating costs and benefits, NPV, etc.
- 3. Pollution Control: Policy options, design, comparisons
- 4. Local Air Pollution: EJ, relationship to GHG, policy lessons
- 5. National & Regional Policy: History, lessons, policy interactions
- 6. International Policy: History, challenges, next steps

Standards (e.g. technology, performance):

→ Are not cost-effective or are only cost-effective given perfect information about individual marginal costs curves

Market-based instruments (e.g. CAT, taxes):

→ Take advantage of firms' own incentives to reach cost-effective outcomes

<u>Efficient</u> policies maximize net benefits (or NPV if multiple periods) by equating <u>aggregate</u> marginal benefits and <u>aggregate</u> marginal costs

- Not always feasible (due to info requirements, etc.)
- Gives us policy goal that maximizes net benefits

<u>Cost-effective</u> policies achieve a given goal at minimum total cost

- This equates the marginal costs of reducing pollution for each firm
- → Helps us achieve any given goal in lowest-cost way

Necessary condition for C/E:

MC1(q1*) = MC2(q2*).

At the cost-effective allocation, any movement away from that allocation would increase costs.

Why do CAT/taxes achieve the costeffective allocation?

Firms choose cost-minimizing level of abatement. Under CAT/taxes, pay:

- MAC for each unit they abate
- Permit price/tax for each unit they continue to pollute

Firm abates until:

MAC = permit price

MAC = tax

This causes $MAC_1 = MAC_2 = ... = MAC_n$

Pollution Control Options: Uncertainty

Without uncertainty, P & Q instrument are equally cost-effective and can be designed to be efficient

With uncertainty in MC, the relative slopes determine the preferred policy instrument (to max. net benefits).

→ Weitzman Rule:

- Relatively steep MB: Favor Q instrument (CAT)
- Relatively flat MB: Favor P instrument (tax)

If MB is uncertain & that uncertainty is correlated with uncertainty in MC

→ Stavins Rule:

- Positive correlation: Push towards favoring Q instrument (CAT)
- Negative correlation: Push towards favoring P instrument (tax)

Pollution Control Options: Uncertainty

Graphing tips:

- 1) Policy-makers set the level of the tax or cap based on *expected* costs and benefits
- 2) The efficiency of the tax or CAT program is determined by *actual* costs and benefits

Pollution Control Options: Considerations

Also consider "real world" comparison

- Equivalent:
 - emissions reductions
 - aggregate abatement costs
 - effects on competitiveness
 - revenue raising ("nearly equivalent")
- Similar:
 - costs to regulated firms
 - distributional impacts

- Subtle Differences:
 - transactions costs ("some differences)
 - performance in presence of uncertainty
 - linkage between jurisdictions
- Significant differences:
 - carbon price volatility
 - complementary policy interactions
 - potential for market manipulation
 - administrative complexity

Pollution Control Options: Considerations

Rather than thinking about choice of tax vs. CAT as a dichotomous choice. *Design elements* can be more important than this choice

- Hybrid policies (e.g. price collar)
- Banking and borrowing
- Allowance allocation decision & use of revenue

(Rough) Outline of Course

- 1. Fundamentals: Basic science & theory (economic, ethical)
- 2. Policy Analysis Methods: Estimating costs and benefits, NPV, etc.
- 3. Pollution Control: Policy options, design, comparisons
- 4. Local Air Pollution: EJ, relationship to GHG, policy lessons
- 5. National & Regional Policy: History, lessons, policy interactions
- 6. International Policy: History, challenges, next steps

Local Air Pollution & Climate Change

What's the connection to climate change?

- 1. GHGs are often co-emitted with pollutants impacting local air quality (and reduction in GHGs can have substantial co-benefits)
- 2. Improvements in local air pollution can be important in garnering political support for domestic (state or local) climate action

Disproportionate exposure is a major environmental justice concern, with many possible causes For local air pollutants, the location of emissions abatement <u>affects the overall quantity of benefits and to whom they are distributed</u>

Local Air Pollution & Climate Change

What's the connection to climate change?

- 1. GHGs are often co-emitted with pollutants impacting local air quality (and reduction in GHGs can have substantial co-benefits)
- 2. Improvements in local air pollution can be important in garnering political support for domestic (state or local) climate action
- 3. Policy lessons from environmental policy & continuing legal and administrative structure
 - Example: Acid Rain Program (flexible and responsive policies, be wary of longterm projections, etc.)

(Rough) Outline of Course

- 1. Fundamentals: Basic science & theory (economic, ethical)
- 2. Policy Analysis Methods: Estimating costs and benefits, NPV, etc.
- 3. Pollution Control: Policy options, design, comparisons
- 4. Local Air Pollution: EJ, relationship to GHG, policy lessons
- 5. National & Regional Policy: History, lessons, policy interactions
- 6. International Policy: History, challenges, next steps

Lessons from experience: Carbon pricing

- 1. Emissions leakage: carbon pricing can lead to increased emissions in regions not covered by the policy, reducing policy effectiveness
 - Border adjustments, output-based free allocation?
- 2. Banking: potentially large percent of gains from trade, especially in thin markets
- 3. Allowance allocation is important distributional, political issue & affects benefit of program

Policy Interactions (examples)

- Perverse interactions: Federal CAT, strict subnational CAT system causes 100% leakage, higher cost
- Benign interactions: Federal tax, subnational CAT system (or Federal CAT, less stringent CAT system)
- *Positive interactions*: Subnational "laboratories", pressure for federal action, corrections for insufficient action

Multiple market failures justify multiple policy tools

- Private gap / "energy paradox": some energy efficient technology that would pay off for adopters are not adopted
- Social gap / "energy efficiency gap": some energy efficient technology that would be socially efficient (i.e., pay off for society) are not adopted

- Private gap / "energy paradox": some energy efficient technology that would pay off for adopters are not adopted
- Social gap / "energy efficiency gap": some energy efficient technology that would be socially efficient (i.e., pay off for society) are not adopted

Explanations: market failure (information & liquidity constraints, externalities, etc.), behavioral explanations (salience, heuristics), model/measurement explanations (unobserved costs or product attributes)

(Rough) Outline of Course

- 1. Fundamentals: Basic science & theory (economic, ethical)
- 2. Policy Analysis Methods: Estimating costs and benefits, NPV, etc.
- 3. Pollution Control: Policy options, design, comparisons
- 4. Local Air Pollution: EJ, relationship to GHG, policy lessons
- 5. National & Regional Policy: History, lessons, policy interactions
- 6. International Policy: History, challenges, next steps

International Climate Policy

Very (very) brief history—see Week 12 review session:

- 1992: UNFCCC Article 3: common but differentiated responsibility
- 1997: COP-3 Kyoto: didn't constrain largest emitters
- 2009-10: COP15/16: blurred Annex 1 & non-Annex 1 distinction
- 2011: COP-17 Durban: long-term participation of all parties, broke from Berlin Mandate
- 2015: COP-21 Paris: pledge and review, NDCs, ratchet mechanism, linkage

Necessary conditions for success: adequate scope of participation (achieved more or less), adequate ambition of individual regional contributions (how can we encourage increased ambition over time?)

International climate policy

- Should be able to discuss the various potential types of climate architecture
- Important distinction: topdown, bottom-up, hybrid
 - Which would Kyoto be?
 - Which would Paris be?

International Climate Policy

Linkage: emission reductions in one jurisdiction counted toward abatement commitments of another

- Benefits: cost savings, improved market functioning, political benefits, administrative economies of scale
- Concerns: distribution on correlated pollutants, decreased policy autonomy
- Can be relatively straight-forward (California and Quebec) or very complex

Article 6.2: Parties can use internationally transferred mitigation outcomes (ITMOs) to comply with emissions targets in NDCs, allows bottom-up, heterogeneous linkage, serves as unit of accounting

"What kinds of questions can we ask from weeks 7-13?"

- "Define the 'energy paradox' from an economic perspective. List three possible explanations for this apparent anomaly. For each explanation, identify whether the anomaly is based on a traditional economic market failure, a behavioral-based market failure, or a model or measurement explanation." (2013 Final)
- "Most economists would argue that carbon-pricing is a necessary but not a sufficient component of a sensible climate policy. Why would they argue that carbon pricing is not sufficient for a sensible climate policy?" (2016 Final)
- "Briefly explain why Professor Stavins says that the acid rain program achieved the right result for the wrong reason." (2017 Final)
- "What is 'linkage' in the context of international agreements to combat climate change? Briefly describe one advantage of linkage and one disadvantage." (2017 Final)

(non-exhaustive) List of quantitative questions

- Externality problems (e.g., PSET 1)
- NPV problems (e.g., PSET 1)
- Pollution control problems (e.g., PSET 2)
 - Mandates
 - Taxes
 - Cap-and-trade, w/ and w/o price-collar (e.g., PSET 3)
 - Prices vs. quantities (e.g., PSET 3)
 - Innovation incentives (e.g., PSET 5)

Pollution control example: 2018 Final Exam

There are two electricity plants that emit CO_2 . They have the following marginal costs of abatement (emissions reductions):

$$MC_1 = 4q_1 \text{ and } MC_2 = 2q_2$$

What is the cost-effective allocation of control when a total of 6 units of abatement is required?

- Cost-effectiveness $\rightarrow MC_1 = MC_2$
- We know that $q_1 + q_2 = 6$, so

$$4q_1 = 2q_2$$

$$4q_1 = 2(6 - q_1)$$

$$6q_1 = 12$$

$$q_1 = 2$$

- And as a result, we know that $q_2=4$
- Important distinction: cost-effectiveness vs. efficiency!!

Pollution control example: 2018 Final Exam

If the marginal benefits of abatement are given by MB = 10 - Q, what is the efficient allocation of pollution control?

- First we need the aggregate industry MC curve: horizontal aggregation.
 - $MC_1 = 4q_1 \rightarrow q_1 = \frac{1}{4}MC_1$
 - $MC_2 = 2q_2 \rightarrow q_2 = \frac{1}{2}MC_2$
 - We know that at efficient level, $MC_1 = MC_2 = MC_{industry}$
 - Since $q_1 + q_2 = Q$, can sum the above inverse MC curves to get Q as a function of $MC_{industry}$. Rearranging gives:

$$MC_{industry} = \frac{4}{3}Q$$

• Next, equate MB and $MC_{industry}$: $Q^* = \frac{30}{7}$

Thank You!