Midterm 1 Results for Nicholas Khang Tran

! Correct answers are hidden.

Score for this attempt: **39** out of 40 Submitted Oct 1 at 2:17am This attempt took 40 minutes.

Question 1	1/1 p
A DFA is defined by 3-tuple:	
O True	
false	
Question 2	1/1
An NFA is defined by 5-tuple:	
true	
O false	
Question 3	1/1
A technique that is used to show a given language is not regular is	
A technique that is used to show a given language is not regular is Dilemma	
A technique that is used to show a given language is not regular is Dilemma	
A technique that is used to show a given language is not regular is Dilemma	
A technique that is used to show a given language is not regular is Dilemma	
A technique that is used to show a given language is not regular is Dilemma DFA Pumping Lemma Regular expression	known as.
A technique that is used to show a given language is not regular is Dilemma DFA Pumping Lemma Regular expression	known as.
A technique that is used to show a given language is not regular is Dilemma DFA Pumping Lemma Regular expression Question 4 The machine that can exist in multiple state at any given time is known.	known as.
DFA Pumping Lemma	known as.

NFA	
Question 5	1/1
L U M = all strings that are either in L or M.	
true	
O false	
Question 6	1/1
What is Pigeon Hole Principle?	
at least one hole must contain more than one pigeon	
O Pigeons don't live in holes	
Each hole has exactly one pigeon	
O Pigeons love holes	
Question 7 The machine that can exist in only one state at any given time is known as:	1/1
Turing Machine	
Chomsky hierarchy	
DFA	
○ NFA	
Question 8	1/1
Regular Expressions are more like program syntax.	
true	
O false	
Question 9	1/1

True	
○ False	
Question 10	1 / 1 pt
Regular Languages are NOT closed under union operation.	
○ True	
False	
Question 11	1 / 1 pt
	ing itself) that can be reached from q by repeatedly
	ing itself) that can be reached from q by repeatedly
making an arbitrary number of ε-transitions. © true of false	
making an arbitrary number of ε-transitions. true false	1/1 pt
making an arbitrary number of ε-transitions. true false	1/1 pt
making an arbitrary number of ε-transitions. true false Question 12 An intermediate result that we show to prove a larger result is kn	1/1 pt
Question 12 An intermediate result that we show to prove a larger result is kn	1/1 pt
making an arbitrary number of ε-transitions. true false Question 12 An intermediate result that we show to prove a larger result is known prove. Proof Theorem	1/1 pt
naking an arbitrary number of ε-transitions. true false Question 12 An intermediate result that we show to prove a larger result is known prove. Proof Theorem corollary	1/1 pt

Question 14	1 / 1 pt
Regular languages are regular under reunion.	
O True	
False	
Question 15	1/1 p
Jnix environments heavily use regular expressions.	
True	
○ False	
	4.14
	1/10
	1710
How to decide if a string w in language L is accepted by a DFA?	1/16
How to decide if a string w in language L is accepted by a DFA? If the DFA hangs tight If the DFA ends in an accepting state	1/16
How to decide if a string w in language L is accepted by a DFA? If the DFA hangs tight If the DFA ends in an accepting state If the DFA ends in a start state If the DFA goes to sleep	
How to decide if a string w in language L is accepted by a DFA? If the DFA hangs tight If the DFA ends in an accepting state If the DFA ends in a start state If the DFA goes to sleep Question 17 String 00110100 will be accepted by a DFA that accepts?	
How to decide if a string w in language L is accepted by a DFA? If the DFA hangs tight If the DFA ends in an accepting state If the DFA ends in a start state If the DFA goes to sleep Guestion 17 String 00110100 will be accepted by a DFA that accepts?	
How to decide if a string w in language L is accepted by a DFA? If the DFA hangs tight If the DFA ends in an accepting state If the DFA ends in a start state If the DFA goes to sleep Puestion 17 String 00110100 will be accepted by a DFA that accepts? 1100 as substring 1010 as substring	
How to decide if a string w in language L is accepted by a DFA? If the DFA hangs tight If the DFA ends in an accepting state If the DFA ends in a start state If the DFA goes to sleep Question 17 String 00110100 will be accepted by a DFA that accepts?	
 If the DFA ends in an accepting state If the DFA ends in a start state If the DFA goes to sleep Question 17 String 00110100 will be accepted by a DFA that accepts? 1100 as substring 1010 as substring Only 1s 	1/1 pi

Empty string is represented by:	
O Σ (sigma)	
O δ(delta)	
ε (epsilon)	
O α (alpha)	
Question 19	1/1 p
explicit epsilon-transitions between different states introduce no	n-determinism:
• true	
○ False	
What is the regular expression for a DFA that accepts 01 as a su 1*00*1(0+1)* 1*(10)*0*	
What is the regular expression for a DFA that accepts 01 as a su	
What is the regular expression for a DFA that accepts 01 as a su 1*00*1(0+1)* 1*(10)*0*	ubstring?
Vhat is the regular expression for a DFA that accepts 01 as a su 1*00*1(0+1)* 1*(10)*0* 1*10* 1*100*(0)*	ubstring?
What is the regular expression for a DFA that accepts 01 as a sulting of the second of	ubstring?
What is the regular expression for a DFA that accepts 01 as a sulting of the second of	ubstring?
What is the regular expression for a DFA that accepts 01 as a sulting of the second of	ubstring?
1*(10)*0* 1*10* 1*100*(0)* Question 21 fransitions into a dead state are implicit for a NFA.	1/1 p ubstring? 1/1 p

O DFA NFA	
Chomsky hierarchy	
Turing Machine	
containment hierarchy of classes of formal languages is known as:	
uestion 25	1/1 p
O0000100	
O 11111000	
O 1010101	
DFA that accepts only even number of 1s and 0s will accept which of these strings? 11000011	
uestion 24	1/1 p
O Dumb	
O Decisive	
O Definitive	
$y \ge 4$, then $2^y \ge y^2$ is an example of what type of proof: deductive 	
uestion 23	1/1 _p
Remove unreachable states and Identify & condense equivalent states into one	
O Not possible	
O Identify empty states	

For every DFA A there exists a regular expression R such that L(R)=L(.	
True	
○ False	
Question 27	1/1 _F
Probabilistic models could be viewed as extensions of which state made	chines?
O DFA	
○ PDA	
О⊤М	
NFA	
Question 28	1/1;
alled:	r regular expression then the language is
	r regular expression then the language is
Not regular	r regular expression then the language is
alled: ○ Not regular ● regular	r regular expression then the language is
alled: Not regular regular complex simple	
Not regular regular complex simple	1/1;
Not regular regular complex simple	1/1
Not regular regular complex simple Question 29 transition from one state to another state without consuming any add	1/1;
Not regular regular complex simple Question 29 transition from one state to another state without consuming any add \$-transitions	1/1
Alled: Not regular regular complex simple Question 29 Atransition from one state to another state without consuming any add \$-transitions alpha-transitions	1/1;
regular complex simple Question 29 A transition from one state to another state without consuming any add \$-transitions alpha-transitions delta-transitions	11/

1100 as substring	
○ 1010 as substring	
only 1s	
Only 0s	
Question 31	1/1p
A property that confirms If a set of regular languages are combined υ also regular is called:	sing an operator, then the resulting language
Open property	
Closure property	
Clean property	
Clear property	
Question 32	
Question 32 A language is a collection of sentences of finite length all constructed	
Question 32	
Question 32 A language is a collection of sentences of finite length all constructed True	I from a finite alphabet of symbols:
Question 32 A language is a collection of sentences of finite length all constructed True False	I from a finite alphabet of symbols:
Question 32 A language is a collection of sentences of finite length all constructed True False	I from a finite alphabet of symbols:
Question 32 language is a collection of sentences of finite length all constructed True False	I from a finite alphabet of symbols:
Question 32 A language is a collection of sentences of finite length all constructed True False Question 33 Study of abstract computing devices or machines is known as:	I from a finite alphabet of symbols:
Question 32 language is a collection of sentences of finite length all constructed True False Question 33 Study of abstract computing devices or machines is known as: Computing	I from a finite alphabet of symbols:
Question 32 A language is a collection of sentences of finite length all constructed True False Puestion 33 Study of abstract computing devices or machines is known as: Computing Formal theory	1/1 p If from a finite alphabet of symbols:

2:23 AM	Nicholas Khang Tran's Quiz History: Midterm 1
	True or False: $(RS + R)^*RS = (RR^*S)^*$
	○ True
	© False
correct	Question 35
	$L = \{ \ w \ \ w \ is \ a \ binary \ string \ which \ does \ not \ contain \ two \ consecutive \ 0s \ or \ two \ consecutive \ 1s \ anywhere} \}. \ What \ is the \ regular \ expression \ for \ this \ language?$
	(01)* + (10)* + 0(10)* + 1(01)*
	$(01)^* + (10)^* + 0(10)^*$
	(10)* + 0(10)* + 1(01)*
	© (01)* + 10(10)* + 1(01)*
	Question 36
	When a language is regular?

Question 36	1 / 1 pts
When a language is regular?	
All languages are regular	
if we are able to construct a DFA or NFA or epsilon-NFA or regular expression	
If it is accepted by the program	
○ If it is accepted by TM	

Question 37	1 / 1 pts
Which of these is great for modeling regular expressions?	
O DFA	
O PDA	
Отм	

Question 38	1 / 1 pts

When a language is NOT regular?	
All languages are regular	
if we are able to construct a DFA or NFA or epsilon-NFA	or regular expression
If we can show that no FA can be built for a language	
If it is accepted by TM	
Question 39	1 / 1 pts
An NFA accepts w if there exists at least one path from the by w:	ne start state to an accepting (or final) state that is labeled
true	
truefalse	

Question 40	1 / 1 pts
An alphabet is not a finite set of symbols:	
O True	
False	

Quiz Score: 39 out of 40