Cadeaux du 14/09/22

Cadeau 1:

Soit A un anneau commutatif et soit $x \in A$. On dit que x est nilpotent (ou nihilpotent) si

$$\exists n \in \mathbb{N}, x^n = 0_A.$$

- 1. Montrer que, si x est nilpotent, alors x n'est pas inversible mais $1_A x$ est inversible.
- 2. Montrer que l'ensemble des éléments nilpotents de A est un idéal de A.

Réponse du cadeau 1 :

- 1. On procède par l'absurde. On suppose que x est nilpotent. Soit $n \in \mathbb{N}$ le plus petit possible tel que $x^n = 0_A$. On suppose qu'il existe $y \in A$ tel que $x \cdot y = 1_A$. D'où, $(xy)^n$ est, d'une part $x^n \cdot y^n = 0_A \cdot y^n = 0_A$ par commutativité, et d'autre part, $(xy)^n = 1_A^n = 1_A \neq 0_A$. Ce qui est absurde.
 - On suppose à présent $x \neq 1_A$. On sait que $A \ni \sum_{k=0}^{n-1} x^k = (1-x^n)/(1-x) = 1/(1-x)$. On a donc trouvé l'inverse de 1-x.
- 2. Soit x un élément nilpotent de A, et y un élément de A. Soit $n \in \mathbb{N}$ tel que $x^n = 0_A$. $x \cdot y$ est aussi un élément nilpotent de A. En effet, $(xy)^n = x^n \cdot y^n = 0_A \cdot y^n = 0_A$. On nomme $\mathcal I$ l'ensemble des éléments nilpotents de A. Montrons que $(\mathcal I,+)$ est un sousgroupe additif de (A,+). On a bien $0 \in \mathcal I$ car $0^k = 0$. Soient x et y deux éléments nilpotents. Montrons que $x-y \in \mathcal I$. Soient n_1 et $n_2 \in \mathbb{N}^*$ tels que $x^{n_1} = 0$ et $y^{n_2} = 0$. On veut montrer qu'il existe $n \in \mathbb{N}^*$ tel que $(x-y)^n = 0$. Soit $n = n_1 + n_2$. On a

$$(x-y)^n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} x^k y^{n-k} = \underbrace{\sum_{k=0}^{n_1} (-1)^{n-k} \binom{n}{k} x^y y^{n-k}}_{(1)} + \underbrace{\sum_{k=n_1+1}^{n_1+n_2} (-1)^{n-k} \binom{n}{k} x^y y^{n-k}}_{(2)}.$$

Or, dans la somme (1), $n - k = n_1 + n_2 - k = n_2 + (n_1 - k) \ge n_2$ et, dans la somme (2), $k \ge n_1$.

Cadeau 2:

Soit F l'ensemble des matrices de la forme $\begin{pmatrix} x & y \\ -5y & x+4y \end{pmatrix}$ où $(x,y) \in \mathbb{R}^2$. On note $J = \begin{pmatrix} -2 & 1 \\ -5 & 2 \end{pmatrix}$.

- 1. Montrer que F est un sous-espace vectoriel de $\mathcal{M}_{2,2}(\mathbb{R})$ et que (I_2,J) est une base de
- 2. Calculer J^2 puis $(x I_2 + yJ) \cdot (x' I + y' J)$ pour tout $(x, y, x', y') \in \mathbb{R}^4$. Qu'en déduire?

Réponse du cadeau 2:

1. On cherche à trouver $\alpha, \beta \in \mathbb{R}^2$ tels que $\binom{x}{-5} \binom{y}{x+4y} = \alpha I_2 + \beta J$. On a

$$\alpha I_2 + \beta J \iff \begin{pmatrix} x & y \\ -5y & x + 4y \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} + \begin{pmatrix} -2\beta & \beta \\ -5\beta & 2\beta \end{pmatrix}$$

$$\iff \begin{cases} x = \alpha - 2\beta \\ y = \beta \\ -5\beta = -5y \\ 2\beta + \alpha = x + y \end{cases}$$

$$\iff \begin{cases} \beta = y \\ \alpha = x + 2y \end{cases}$$

2. On a $J^2=-I_2$ et, en calculant minutieusement, on trouve, pour tout $(x,y,x',y')\in\mathbb{R}^4$, $(x\,I_2+y\,J)\cdot(x'\,I_2+y'\,J)=\cdots=(xx'-yy')\,I_2+(x'y+xy')\,J$. On remarque que $(F,+,\cdot)$ est isomorphe à $(\mathbb{C},+,\times)$. C'est un isomorphisme d'anneaux. Or, comme l'anneau $(\mathbb{C},+,\times)$ est un corps donc F l'est aussi.

1

Cadeau du 19/09/22

Cadeau:

Soit $(\vec{\imath}, \vec{\jmath}, \vec{k})$ une base orthonormée de \mathbb{R}^3 . On pose $f: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorphisme défini tel que

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \vec{\vec{j}} = [f]_{(\vec{\imath}, \vec{\jmath}, \vec{k})}.$$

$$f(\vec{\imath}) \quad f(\vec{\jmath}) \quad f(\vec{k})$$

Interpréter géométriquement f.

Réponse du cadeau :

Soit \mathscr{B} une base et $A = [f]_{\mathscr{B}}$, alors $f(\vec{\imath}) = \vec{\jmath}$, $f(\vec{\jmath}) = \vec{k}$, et $f(\vec{k}) = \vec{\imath}$. f est la rotation d'angle $2\pi/3$ autour de $\text{Vect}(\vec{\imath} + \vec{\jmath} + \vec{k})$.

On peut également le montrer en décomposant $f=g\circ h$, où g est la symétrie par rapport à $\mathrm{Vect}(\vec{\imath}+\vec{\jmath},\vec{k})$ et parallèlement à $\mathrm{Vect}(\vec{\imath},\vec{\jmath})$; et h la symétrie par rapport à $\mathrm{Vect}(\vec{\imath}+\vec{k},\vec{\jmath})$ parallèlement à $\mathrm{Vect}(\vec{\imath},\vec{k})$.

Cadeaux du 22/09/22

Cadeau 1:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite positive, telle que la suite $S_n=\sum_{k=0}^n u_k$ diverge. En calculant $\ln\frac{S_n}{S_{n-1}}$, montrer que la série $\sum\frac{u_n}{S_n}$ diverge.

Cadeau 2:

 $On\ pose$

$$D(x) = \begin{vmatrix} 7 - x & 14 - x & 3 - x \\ 8 - x & 2 - x & -x \\ 13 - x & -1 - x & 2 - x \end{vmatrix}.$$

Montrer qu'il existe deux réels α et β tels que, pour tout $x \in \mathbb{R}$, $D(x) = \alpha x + \beta$. Déterminer α et β .

Cadeau du 23/09/22

Cadeau:

Montrer qu'il n'existe pas $P \in GL_2(\mathbb{R})$ telle que, $A' = P^{-1}AP$ où

$$A = \begin{bmatrix} 0 & 7 \\ 0 & 0 \end{bmatrix} \qquad \text{et} \qquad A' = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}.$$

Réponse du cadeau :

Analyse On suppose $P^{-1}AP=\binom{\lambda\ 0}{0\ \mu}$. Alors, $\det A=\det A'$, d'où $0=\lambda\cdot\mu$. Et, $\operatorname{tr} A=\operatorname{tr} A'$, d'où $\lambda+\mu=0$. On en déduit donc que $\lambda=0=\mu$. Synthèse On a

$$P^{-1}AP = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

D'où, en multipliant à gauche par P et à droite par P^{-1} , on a

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

On en conclut que la matrice A n'est pas diagonalisable.

Cadeaux du 28/09/22

Cadeau 1:

On considère la matrice

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ f(\vec{\imath}) & f(\vec{\jmath}) & f(\vec{k}) \end{pmatrix} \vec{i}_{\vec{k}} = \begin{bmatrix} f \end{bmatrix}_{(\vec{\imath}, \vec{\jmath}, \vec{k})}.$$

Trouver et interpréter un vecteur propre et une valeur propre de M (et, de même, de f).

Indication : On a $M \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1 \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Le vecteur $\vec{i} + \vec{j} + \vec{k}$ est un vecteur directeur de l'axe de rotation. Montrer que les seuls vecteurs propres sont colinéaire au vecteur $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Cadeaux du 06/10/22

Cadeau:

On considère la matrice

$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}.$$

- 1. Quel est le spectre de la matrice A?
- 2. Déterminer une base de chaque sous-espace propre de la matrice A.
- 3. Montrer que la matrice A est trigonalisable mais pas diagonalisable.
- 4. Soit T la matrice ci-dessous. Déterminer une matrice P telle que $P^{-1}\cdot A\cdot P=T$:

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

5. Résoudre sur $\mathbb R$ le système d'équation différentielle (Σ) ci-dessous :

$$(\Sigma) : \begin{cases} x'(t) = y(t) + z(t) \\ y'(t) = -x(t) + y(t) + z(t) \\ z'(t) = -x(t) + y(t) + 2z(t) \end{cases}$$

Réponse au cadeau 1:

1. On calcule

$$\chi_A(x) = \det(xI_3 - A) = \begin{vmatrix} x & -1 & -1 \\ 1 & x - 1 & -1 \\ 1 & -1 & x - 2 \end{vmatrix}$$

$$= x \begin{vmatrix} x - 1 & -1 \\ -1 & x - 2 \end{vmatrix} - \begin{vmatrix} -1 & -1 \\ -1 & x - 2 \end{vmatrix} + \begin{vmatrix} -1 & -1 \\ x - 1 & -1 \end{vmatrix}$$

$$= x ((x - 1)(x - 2) - 1) - (2 - x) - 1 + (-1 + x - 1)$$

$$= x(x^2 - 3x + 1) - 2 + 2x$$

$$= x^3 - 3x^2 + 3x - 1$$

$$= (x - 1)^3$$

On en déduit que

$$\operatorname{Sp}(A) = \{1\}.$$

2. On cherche une base de SEP(1) : on cherche $X=\begin{pmatrix} x\\ z\\ z\end{pmatrix}\in \mathcal{M}_{3,1}(\mathbb{R}),$ tel que AX=X.

$$\begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \iff \begin{cases} y+z=x \\ -x+y+z=y \\ -x+y+2z=z \end{cases}$$
$$\iff \begin{cases} y=0 \\ x=z \end{cases}$$
$$\iff X=x \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
$$\iff X \in \text{Vect} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Ainsi, la base $\mathscr{B} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

- 3. La matrice A n'est pas diagonalisable : en effet, on a dim $\mathbb{R}^3=3\neq \dim(\operatorname{SEP}(1))=1$. Mais, le polynôme χ_A est scindé donc la matrice A est trigonalisable.
- 4. On cherche $P \in \mathrm{GL}_n(\mathbb{R})$ tel que

$$P^{-1} \cdot A \cdot P = T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{matrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{matrix}$$
$$f(\varepsilon_1) \quad f(\varepsilon_2) \quad f(\varepsilon_3)$$

On cherche donc $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ une base de \mathbb{R}^3 tel que

$$\begin{cases} f(\varepsilon_1) = \varepsilon_1 & (1) \\ f(\varepsilon_2) = \varepsilon_1 + \varepsilon_2 & (2) \\ f(\varepsilon_3) = \varepsilon_2 + \varepsilon_3 & (3). \end{cases}$$

On choisit $\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, d'après la question 2. Puis, on calcule

$$\underbrace{\begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}}_{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} x \\ y \\ z \end{pmatrix} \iff \begin{cases} -x + y + z = 1 \\ -x + z = 0 \\ -x + y + z = 1 \end{cases}$$

$$\iff \begin{cases} -x + y + z = 1 \\ -x + z = 0 \end{cases}$$

$$\iff \begin{cases} x = z \\ y = 1 \end{cases}$$

$$\iff \varepsilon_{2} = \begin{pmatrix} x \\ 1 \\ x \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} + x \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

On choisit donc $\varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (en choisissant x = 0). De même, on choisit $\varepsilon_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$. Donc, si

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix} e_{1} e_{2}$$

$$\varepsilon_{1} \quad \varepsilon_{2} \quad \varepsilon_{3}$$

alors $P^{-1} \cdot A \cdot P$, et on a bien det P = 1.

5.

$$\begin{split} (\Sigma) &\iff X'(t) = A \cdot X(t) \text{ où } X(t) \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} \\ &\iff U'(t) = T \cdot U(t) \text{ où } U(t) = \begin{pmatrix} u(t) \\ v(t) \\ w(t) \end{pmatrix} = P^{-1} \cdot X(t) \\ &\iff \begin{cases} u'(t) = u(t) + v(t) & (1) \\ v'(t) = v(t) + w(t) & (2) \\ w'(t) = w(t) & (3) \end{cases} \end{split}$$

D'où

(3)
$$\iff \exists K \in \mathbb{R}, \ \forall t \in \mathbb{R}, \ w(t) = Ke^t,$$

et

(2)
$$\iff v'(t) - v(t) = Ke^t$$
.

On résout l'équation homogène associé :

$$v'(t) = v(t) \iff \exists L \in \mathbb{R}, \ \forall t \in \mathbb{R}, \ v(t) = Le^t.$$

On pose $v(t) = \ell(t) e^t$, et donc

(2)
$$\iff \ell'(t) e^t + \ell(t) e^t - \ell(t) e^t = Ke^t$$

 $\iff \ell'(t) = K$
 $\iff \ell(t) = Kt + L$
 $\iff v(t) = (Kt + L) e^t$

Et donc

(1)
$$\iff$$
 $u'(t) = u(t) + v(t) = u(t) + (Kt + L) e^t$
 \iff $u(t) - u(t) = (Kt + L) e^t$

On résout l'équation homogène associée :

$$u'(t) - u(t) = 0 \iff \exists M \in \mathbb{R}, \ \forall t \in \mathbb{R} \ u(t) = Me^t.$$

On pose $u(t) = m(t) e^t$.

(2)
$$\iff m'(t) e^t - m(t) = (Kt + L) e^t$$

 $\iff m'(t) = Kt + L$
 $\iff m(t) = \frac{1}{2}Kt^2 + Lt + M$
 $\iff u(t) = \left(\frac{1}{2}Kt^2 + Lt + M\right) e^t$

Ainsi,

$$(\Sigma) \iff \exists (K, L, M) \in \mathbb{R}^3, \ \forall t \in \mathbb{R}, \begin{cases} u(t) = \left(\frac{1}{2}Kt^2 + Lt + M\right) e^t \\ v(t) = (Kt + L) e^t \\ w(t) = K e^t. \end{cases}$$

Or, $X(t) = P \cdot U(t)$, et donc

$$(2) \iff \exists (K, L, M) \in \mathbb{R}^3, \ \forall t \in \mathbb{R}, \begin{cases} x(t) = u(t) \\ y(t) = v(t) - w(t) \\ z(t) = u(t) + w(t) \end{cases}$$

$$\iff \exists (K, L, M) \in \mathbb{R}^3, \ \forall t \in \mathbb{R}, \begin{cases} x(t) = \left(\frac{1}{2}Kt^2 + LT + M\right)e^t \\ y(t) = (Kt + L - K)e^t \\ z(t) = \left(\frac{1}{2}Kt^2 + Lt + M + K\right)e^t \end{cases}$$

Cadeau 2 (matrices stochastiques):

Soit une matrice carrée $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ telle que

$$\forall i,j \in \llbracket 1,n \rrbracket \,, \; a_{i,j} \geqslant 0 \qquad \mbox{ et } \qquad \forall i \in \llbracket 1,n \rrbracket \,, \; \sum_{j=1}^n a_{i,j} = 1.$$

- 1. Montrer que $1 \in Sp(A)$.
- 2. Montrer que, si λ est une valeur propre de A, alors $|\lambda| \leq 1$.

Cadeau 3 (matrices à diagonale strictement dominante) : Soit $A=(a_{i,j})\in \mathscr{M}_n(\mathbb{R})$ telle que

$$\forall i \in [1, n], |a_{i,j}| > \sum_{j \neq i} |a_{i,j}|.$$

Montrer que A est inversible.

Cadeau du 12/10/22

Cadeau:

Soit $A \in \mathcal{M}_2(\mathbb{R})$ tell que $A^2 = -I_2$. Montrer qu'il existe P une matrice inversible telle que

$$P^{-1} \cdot A \cdot P = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = M.$$

Réponse au cadeau

On remarque que $A \sim \binom{i}{0} \binom{0}{-i}$. D'où, il existe $\varepsilon \in \mathscr{M}_{2,1}(\mathbb{C})$, tel que $A \cdot \varepsilon = i\varepsilon$. Également, $A \cdot \bar{\varepsilon} = -i\bar{\varepsilon}$. Soient $U = \varepsilon + \bar{\varepsilon} \in \mathscr{M}_{2,1}(\mathbb{R})$, et $V = i(\varepsilon + \bar{\varepsilon}) \in \mathscr{M}_{2,1}(\mathbb{R})$, puis on calcule

$$\begin{split} A \cdot U &= A \cdot \varepsilon + A \cdot \bar{\varepsilon} \\ &= i\varepsilon - i\bar{\varepsilon} \\ &= i(\varepsilon - \bar{\varepsilon}) \\ &= V. \end{split}$$

Cadeau du 19/10/22

Cadeau:

Soit f une fonction continue sur $[0, +\infty[$, telle que $\int_0^{+\infty} f(t) dt$ converge.

- 1. Montrer que ça n'implique pas que $f(x) \xrightarrow[x \to +\infty]{} 0$.
- 2. Montrer que, si $f(x) \xrightarrow[x \to +\infty]{} \ell \in \mathbb{R}$, alors $\ell = 0$.
- 3. Montrer que, si f est uniformément continue, alors $f(x) \xrightarrow[x \to +\infty]{} 0$.

Réponse du cadeau :

- 1. c.f. remarque 7 du cours
- 2. Quitte à remplacer ℓ par $-\ell,$ on suppose $\ell>0.$ Ainsi, il existe $X\geqslant 0$ tel que

$$\forall x \geqslant X, \ f(x) \geqslant \frac{\ell}{2}.$$

Or, l'intégrale

$$\int_{X}^{+\infty} \frac{\ell}{2} \, \mathrm{d}x$$

diverge. D'où

$$\int_{X}^{+\infty} f(x) \, \mathrm{d}x$$

diverge également. Ce qui est absurde. On en déduit que $\ell=0.$

3. On suppose f uniformément continue. Par l'absurde, supposons que $f(x)\xrightarrow[x\to +\infty]{}0,$ d'où

$$\exists \varepsilon > 0, \ \exists (u_n)_{n \in \mathbb{N}} \text{ tendant vers } + \infty, \ \forall n \in \mathbb{N}, \ f(u_n) \geqslant \varepsilon.$$

Or, comme f est uniformément continue, il existe $\delta>0$ tel que

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}^+, \quad |x - u_n| \leqslant \delta \implies |f(x) - f(y)| \leqslant \frac{\varepsilon}{2}.$$

D'où,

$$\int_0^{+\infty} f(x) \, dx \geqslant \int_0^{+\infty} \frac{\varepsilon}{2} \, dt$$

qui diverge. Ce qui est absurde.

Cadeau du 21/10/22

Théorème d'interpolation de Lagrange

Cadeau:

Soient (a_0, a_1, \ldots, a_n) une suite de n+1 réels distincts deux à deux. Soient aussi (b_0, b_1, \ldots, b_n) une suite de n+1 réels (qui peuvent être égales). Alors,

$$\exists ! P \in \mathbb{R}_n[X], \ \forall k \in \llbracket 0, n \rrbracket, \ P(a_k) = b_k.$$

Réponse du cadeau :

Ме́тноре 1 Soient n+1 réels a_0, a_1, \ldots, a_n distincts deux à deux. L'application

$$f: \mathbb{R}_n[X] \longrightarrow \mathbb{R}^{n+1}$$

 $P \longmapsto (P(a_0), P(a_1), \dots, P(a_n))$

est linéaire et la dimension de l'espace vectoriel de départ est égale à la dimension de l'espace vectoriel d'arrivée. Soit P un polynôme réel de degré au plus n.

$$P \in \operatorname{Ker} f \iff f(P) = (0, 0, \dots, 0)$$

 $\implies P(a_1) = P(a_2) = \dots = P(a_n) = 0$
 $\implies P \text{ a au moins } n+1 \text{ racines}$
 $\implies P = 0_{\mathbb{R}_n[X]} \text{ car } \# \text{racines} > \deg(P)$

D'où Ker $f=\{0_{\mathbb{R}_n[X]}\}$. On en déduit que f est injective. Et, d'après le théorème du rang, f est surjective (car dim $\mathbb{R}_n[X]=\dim\mathbb{R}^{n+1}$).

МÉТНОDE 2 On reprend la fonction f de la мÉТНОDE 1. Soit $\mathscr B$ la base canonique de $\mathbb R_n[X]:\mathscr B=(1,X,\ldots,X^n)$; et, soit $\mathscr C$ la base canonique de $\mathbb R^{n+1}:\mathscr C=(e_1,e_2,\ldots,e_{n+1})$. On a

$$[f]_{\mathscr{B}}^{\mathscr{C}} = \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(f) = \begin{pmatrix} 1 & a_0 & a_0^n & \cdots & a_0^n \\ 1 & a_1 & a_1^n & \cdots & a_1^n \\ 1 & a_2 & a_2^n & \cdots & a_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^n \end{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_3 = V.$$

$$\vdots \\ f(1) & f(X) & f(X^2) & \cdots & f(X^n)$$

On reconnaît un déterminant de Vandermonde :

$$\det V = (a_n - a_{n-1}) \cdots (a_n - a_1)(a_n - a_0)$$

$$\times (a_{n-1} - a_{n-2}) \cdots (a_{n-1} - a_{n-2}) \cdots (a_{n-1} - a_0)$$

$$\times$$

$$\vdots$$

$$\times (a_2 - a_1) \cdot (a_2 - a_0)$$

$$\times (a_1 - a_0)$$

$$= \prod_{i>j} (a_i - a_j)$$

D'où det $V \neq 0$ car les (a_i) sont distincts deux à deux. Donc V est inversible, et d'où f est bijective.

Ме́тноре 3 On va prouver la surjectivité en déterminant un polynôme P tel que $P(a_0) = b_0, P(a_1) = b_1, \ldots, P(a_n) = b_n$. Le voilà :

$$P = b_0 \frac{(X - a_1)(X - a_2) \cdots (X - a_n)}{(a_0 - a_1)(a_0 - a_2) \cdots (a_0 - a_n)}$$

$$+ b_1 \frac{(X - a_0)(X - a_1) \cdots (X - a_n)}{(a_1 - a_0)(a_1 - a_2) \cdots (a_1 - a_n)}$$

$$\vdots$$

$$+ b_n \frac{(X - a_0)(X - a_1) \cdots (X - a_{n-1})}{(a_n - a_0)(a_n - a_1) \cdots (a_n - a_{n-1})}.$$

Ce polynôme interpole les n+1 points et $\deg P \leqslant n$.