Courbes Elliptiques - Définitions et théorèmes majeurs

Johan Manuel

5 mars 2018

1 Définitions

On notera dans cette section E, E_1 et E_2 des courbes elliptiques, et $q = p^r$ avec p premier et $r \in \mathbb{N}$.

Degré d'une application (21): Soit $\phi: E_1 \to E_2$. Si ϕ est constante, on définit deg $\phi = 0$. Sinon, deg $\phi = [K(E_1): \phi^*K(E_2)]$.

Application séparable (21): L'application $\phi: E_1 \to E_2$ est dite séparable si $K(E_1)/\phi^*K(E_2)$ est séparable en tant qu'extension de corps. On note $\deg_s \phi$ et $\deg_i \phi$ les degrés séparables et inséparables de l'extension, respectivement.

Forme quadratique (85): Soit G un groupe commutatif. $d:G\to R$ est une forme quadratique si

Application non ramifiée (24): L'application $\phi: E_1 \to E_2$ est dite non-ramifiée si $\forall Q \in E_2, \ \#\phi^{-1}(\{Q\}) = \deg \ \phi.$

Isogénie (66): Une isogénie est un morphisme ϕ de E_1 dans E_2 tel que $\phi(O) = O$.

Application [m] (69): Soit $m \in \mathbb{N}$. On appelle $[m]: E \to E$ l'application "multiplication par m" et on note $\forall P \in E$, [m](P) = [m]P.

Sous groupe de m-torsion (69): On note E[m] l'ensemble des points de E d'ordre m, i.e $E[m] = \{P \in E \mid [m]P = O\} = \text{Ker } [m]$.

Courbe $E^{(q)}$ (25): Notons $a_1, ..., a_6$ les coefficients de l'équation de Weierstrass de E. Alors on note $E^{(q)}$ la courbe elliptique définie par les coefficients $a_1^q, ..., a_6^q$.

Morphisme de Frobenius (25, 70): L'application

$$\phi_q: E \to E^{(q)}$$
$$(x, y) \mapsto (x^q, y^q)$$

est appelée morphisme de Frobenius. ϕ_q est inséparable et deg $\phi_q=q$. Si E est définie sur F_q , alors $E=E^{(q)}$ et ϕ_q est un endomorphisme.

Trace de Frobenius: On appelle trace de Frobenius l'entier $a=q+1-\#E(F_q)$, puisque a est la trace de $\phi_{q\ell}$, l'application induite par ϕ_q sur le module de Tate de E.

2 Théorèmes et propositions

Proposition: End(E) a une structure d'anneau et forme un domaine intègre.

Proposition: Soit $m \in \mathbb{N}$. L'application [m] est de degré m^2 .

Proposition (70): Soit E/F_q . Alors l'ensemble des points fixes de ϕ_q est $E(F_q)$, l'ensemble des points à coordonnées dans F_q , i.e $E(F_q) = \{P \in E \mid \phi_q(P) = P\} = \text{Ker}(\phi_q - Id)$.

Théorème III.4.10: Soit $\phi: E_1 \to E_2$ une isogénie non nulle. Alors

- 1. $\forall Q \in E_2, \ \#\phi^{-1}(\{Q\}) = \deg_s \phi,$
- 2. L'application $\psi: T \in \operatorname{Ker} \phi \mapsto \tau_T^*$ est un isomorphisme de $\operatorname{Ker} \phi$ sur $\operatorname{Aut}(\overline{K}(E_1)/\phi^*\overline{K}(E_2))$,
- 3. Si ϕ est séparable, alors
 - (a) ϕ est non ramifiée,
 - (b) $\# \operatorname{Ker} \phi = \operatorname{deg} \phi$,
 - (c) $\overline{K}(E_1)$ est une extension de Galois de $\phi^*\overline{K}(E_2)$.

Proposition III.5.5 (79): Soit E/F_q , $q=p^r$, $(m,n) \in \mathbb{Z}^2$. Alors $mId + n\phi_q : E \to E$ est séparable si et seulement si $p \nmid n$. En particulier, $Id - \phi_q$ est séparable.

Lemme V.1.2 (138): Soit A un groupe commutatif, et $d: A \to Z$ une forme quadratique définie positive. Alors $\forall (a,b) \in A^2$, $|d(a-b)-d(a)-d(b)| \leq 2\sqrt{d(a)d(b)}$. C'est une adaptation de l'inégalité de Cauchy-Schwarz.

Théorème de Hasse (138): Soit E/F_q . Alors $|\#E(F_q) - (q+1)| \le 2\sqrt{q}$.

Proposition (89): Soit $\phi: E_1 \to E_2$ une isogénie, ℓ premier. Alors ϕ induit une application Z_{ℓ} -linéaire $\phi_{\ell}: T(E_1) \to T(E_2)$. Si $E_1 = E_2$, en choisissant une Z_{ℓ} -base de $T_{\ell}(E)$, ϕ_{ℓ} admet une représentation matricielle dans $GL_2(Z_{\ell})$.

Proposition III.8.6 (99, 141): Soit $\psi \in End(E)$. Alors

- 1. $\det \psi_{\ell} = \deg \psi$,
- 2. $\operatorname{tr} \psi_{\ell} = 1 + \operatorname{deg} \psi \operatorname{deg}(Id \psi),$
- 3. $\det \psi_{\ell}$, $\operatorname{tr} \psi_{\ell} \in \mathbb{Z}^2$.

Théorème V.2.3.1: Soit E/F_q une courbe elliptique, et $a = q + 1 - \#E(F_q)$.

- 1. Soit $(\alpha, \beta) \in \mathbb{C}^2$ les racines de $X^2 aX + q$. Alors α et β sont complexes conjuguées et vérifient $|\alpha| = |\beta| = \sqrt{q}$, et $\forall n \in \mathbb{N}^*$, $\#E(F_{q^n}) = q^n + 1 \alpha^n \beta^n$.
- 2. ϕ_q vérifie $\phi_q^2 a\phi_q + qId = 0_{End(E)}$.

3 Démonstrations

Lemme V.1.2: Soit A un groupe commutatif et $d:A\to Z$ une forme quadratique définie positive. Posons $\forall (\psi, \phi) \in A$, $L(\psi, \phi) = d(\psi - \phi) - d(\psi) - d(\phi)$. d étant une forme quadratique, L est une forme bilinéaire

Soit $(m, n) \in \mathbb{Z}^2$. On a $L(m\psi, n\phi) = d(m\psi - n\phi) - d(m\psi) - d(n\phi)$ d'où $d(m\psi - n\phi) = d(m\psi) + L(n\psi, m\phi) + d(n\phi) = m^2 d(\psi) + mnL(\psi, \phi) + n^2 d(\phi) \ge 0$ par positivité de d. En prenant $m = -L(\psi, \phi)$ et $n = 2d(\psi)$, on obtient

$$0 \le -d(\psi)L(\psi,\phi)^2 + 4d(\psi)^2d(\phi) = d(\psi)(4d(\psi)d(\phi) - L(\psi,\phi)^2),$$

d'où

$$|d(\psi - \phi) - d(\psi) - d(\phi)| \le 2\sqrt{d(\psi)d(\phi)}.$$

Théorème de Hasse: Soit $q=p^n$ avec p premier et $n\in\mathbb{N}^*,$ et E/F_q une courbe elliptique.

On a $E(F_q) = \text{Ker}(Id - \phi_q)$ d'après la théorie de Galois (voir en bas de la page 70). Or d'après III.5.5, $Id - \phi_q$ est séparable puisque $p \nmid 1$. Alors par le théorème III.4.10 on a $\#E(F_q) = \deg(Id - \phi_q)$. Comme l'application $\deg : End(E) \to Z$ est une forme quadratique et que End(E) forme un groupe commutatif, le lemme V.1.2 donne

$$|\deg(Id - \phi_q) - \deg Id - \deg \phi_q| \le 2\sqrt{\deg(Id)\deg(\phi_q)},$$

d'où finalement

$$|\#E(F_q) - (q+1)| \le 2\sqrt{q}.$$