FCC TEST REPORT

according to

FCC Rules and Regulations

Part 15 Subpart C

Applicant	KCodes Corporation
Address	2F, No.501, Sec.2, Tiding Blvd., Neihu District, Taipei
Addiess	114, Taiwan
Equipment	MultiFunction Router
Model No.	KC 502g
Series No.	KC 502
FCC ID	U9XKCODES-502G
Trade Name	KCodes

Laboratory Accreditation

- 1332
- The test result refers exclusively to the test presented test model / sample.,
- Without written approval of Exclusive Certification Corp. the test report shall not be reproduced except in full.
- The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

I ssued date: Apr. 10, 2007

Contents

1.	кер	ort of Measurements and Examinations	5
	1.1	List of Measurements and Examinations	5
2.	Test	Configuration of Equipment under Test	6
	2.1	Feature of Equipment under Test	6
	2.2	RF Specifications	6
	2.3	Test Mode and Test Software	7
	2.4	Description of Test System	7
	2.5	Connection Diagram of Test System	8
	2.6	General Information of Test	9
	2.7	Description of Series model	9
	2.8	Measurement Uncertainty	9
3.	Ante	enna Requirements	10
	3.1	Standard Applicable	10
	3.2	Antenna Construction and Directional Gain	10
4.	Test	of Conducted Emission	11
	4.1	Test Limit	11
	4.2	Test Procedures	11
	4.3	Typical Test Setup	12
	4.4	Measurement equipment	12
	4.5	Test Result and Data	13
	4.6	Test Photographs	15
5.	Test	t of Radiated Emission	16
	5.1	Test Limit	16
	5.2	Test Procedures	17
	5.3	Typical Test Setup	18
	5.4	Measurement equipment	18
	5.5	Test Result and Data	19
	5.6	Test Photographs	35
6.	6dB	Bandwidth Measurement Data	36
	6.1	Test Limit	36
	6.2	Test Procedures	36
	6.3	Test Setup Layout	36
	6.4	Measurement equipment	36
	6.5	Test Result and Data	36
7.	Max	imum Peak Output Power	40
	7.1	Test Limit	40
	7.2	Test Procedures	40
	7.3	Test Setup Layout	40
	7.4	Measurement equipment	40
	7.5	Test Result and Data	40
8.	Ban	d Edges Measurement	44
	8.1	Test Limit	44
	8.2	Test Procedure :	44
	8.3	Test Setup Layout	44
	8.4	List of Measuring Equipment Used	
	8.5	Test Result and Data	44

	8.6	Restrict band emission Measurement Data	49
9.	Pow	er Spectral Density	50
	9.1	Test Limit	50
	9.2	Test Procedures	50
	9.3	Test Setup Layout :	50
	9.4	List of Measuring Equipment Used	50
	9.5	Test Result and Data	50
10.	Rest	tricted Bands of Operation	54
	10.1	Labeling Requirement	54
qqA	endix	A. Photographs of EUT	A1 ~ A8

CERTIFICATE OF COMPLIANCE

according to

FCC Rules and Regulations Part 15 Subpart C

Applicant	KCodes Corporation
Address	F2, No.501, Sec.2, Tiding Blvd., Neihu District, Taipei 114, Taiwan
Equipment	MultiFunction Router
Model No.	KC 502
Series No.	KC 502g
FCC ID	U9XKCODES-502G

I HEREBY CERTIFY THAT:

The measurements shown in this test report were made in accordance with the procedures given in **ANSI C63.4** The equipment was *passed* the test performed according to **FCC Rules** and Regulations Part 15 Subpart C (2003).

The test was carried out on Apr. 02, 2007 at Exclusive Certification Corp.

Anson Chou / Manager

1. Report of Measurements and Examinations

1.1 List of Measurements and Examinations

FCC Rule	. Description of Test	Result
15.203	. Antenna Requirement	Pass
15.207	. Conducted Emission	Pass
15.209 15.247(d)	. Radiated Emission	Pass
15.247(a)(2)	. 6dB Bandwidth	Pass
15.247(b)	. Maximum Peak Output Power	Pass
15.247(d)	. 100kHz Bandwidth of Frequency Band Edges	Pass
15.247(e)	. Power Spectral Density	Pass
1.1307 1.1310 2.1091 2.1093	. RF Exposure Compliance	Pass

2. Test Configuration of Equipment under Test

2.1 Feature of Equipment under Test

Ports: 1xWAN;4xLAN; 2xUSB2.0

• CPU/ Flash Memory/ SDRAM : X86 150MHz/ 2MB/ 8MB

• Switch : RealTek RTL8305

• 1 Init Button(Factor default and firmware upgrade)

• Configuration via the integration web interface as well as via the internet

• Function display via LED

Compact size

Support LPR and FTP

2.2 RF Specifications

Spreading

802.11b: DSSS, CCK, QPSK, BPSK

802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)

Frequency Range

2.4 ~ 2.4835GHz

Number of Channels

USA, Canada and Taiwan: 1 ~ 11 Most European Countries: 1 ~ 13

France: 10 ~ 13

Data Rate

802.11b: 11, 5.5, 2, 1 Mbs

802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps

Modulation

802.11g: OFDM

802.11b: CCK, DQPSK, DBPSK

Antenna

1/2 入 Dipole

Peak gain: 2dBi

Transmit Power

FCC: (Max Peak Power)

802.11b: 25.0 dBm 802.11g: 22.0 dBm

ETSI: (EIRP)

802.11b: 17.5 dBm 802.11g: 17.5 dBm

Exclusive **C**ertification **C**orp. Tel:886-2-2792-3366 Fax:886-2-2792-1100

2.3 Test Mode and Test Software

- a. During testing, the interface cables and equipment positions were varied according to ANSI C63.4.
- b. The complete test system included IBM PC, Monitor, Keyboard, Mouse, Modem, Printer and EUT for EMI test.
- c. An executive program, EMITEST.exe under WIN XP, which generates a complete line of continuously repeating "H" pattern was used as the test software.

The program was executed as follows:

- 1. Turn on the power of all equipment.
- 2. The EUT reads the test program from the hard disk drive and runs it.
- 3. The EUT sends "H" messages to the monitor, and the monitor displays "H" patterns on the screen.
- 4. The PC sends "H" messages to the modem.
- 5. The PC sends "H" messages to the internal Hard Disk, and the Hard Disk reads and writes the message.
- 6. Repeat the steps from 2 to 5.
- d. An executive program, Telnet.exe under WIN XP, which generates a continuous signal by the following frequency to test.
 - 802.11b (CH 01: 2412MHz) 802.11b (CH 10: 2457MHz) 802.11b (CH 11: 2462MHz)
 - 802.11g (CH 01: 2412MHz) 802.11g (CH 10: 2457MHz) 802.11g (CH 11: 2462MHz)

Note: All the transmitter rates had been pre-tested, and the test data is worst case

2.4 Description of Test System

Device	Manufacturer	Model No.	Description	
PC	IBM	IGV	Power Cable, Unshielding 1.8 m	
Monitor	SlimAGE	510A	Power Cable, Adapter Unshielding 1.8 m	
			Data Cable, VGA Shielding 1.35 m	
Keyboard	IBM	KB-0225	Data Cable, PS2 Shielding 1.85 m	
Mouse	IBM	MO28VO	Data Cable, USB Shielding 1.85 m	
Modem	ACEXX	DM-1414	Power Cable, Adapter Unshielding 1.8 m	
			Data Cable, RS232 Shielding 1.35 m	
Printer	HP	Desk Jet400	Power Cable, Adapter Unshielding 1.8 m	
			Data Cable, PRINT Shielding 1.6 m	

Use Cable:

Cable	Quantity	Description
RJ45	1	Unshielding, 1.5m
RJ45	4	Unshielding, 0.5m
USB flash memory	2	N/A

2.5 Connection Diagram of Test System

- 1. The RJ45 cable is connected from PC to the EUT.
- 2. The RS232 cable is connected from PC to the Modem.
- 3. The PRINT cable is connected from PC to the Printer.
- 4. The PS2 cable is connected from PC to the Keyboard.
- 5. The USB cable is connected from PC to the Mouse.
- 6. The VGA cable is connected from PC to the Monitor.
- 7. Those RJ45 cables are floating.
- 8. The Flash Memory is connected by USB slot of EUT.

2.6 General Information of Test

Test Site :	Exclusive Certification Corp.	
	4F-2, No. 28, Lane 78, Xing-Ai Rd. Nei-hu, Taipei City 114 Taiwan R.O.C.	
Test Site Location (OATS1-SD):	No.68-1, Shihbachongsi, shihding Township,	
	Taipei City 223, Taiwan, R.O.C.	
	Registration Number: 632249.	
FCC Registration Number :	632249	
IC Registration Number :	6597A-1	
VCCI Registration Number :	T-182 for Telecommunication Test	
	C-2188 for Conducted emission test	
	R-1902 for Radiated emission test	
Test Voltage:	AC 120V/ 60Hz	
Test in Compliance with:	ANSI C63.4-2003	
•	FCC Part 15 Subpart C	
Frequency Range Investigated:	Conducted: from 150kHz to 30 MHz	
	Radiation: from 30 MHz to 24620MHz	
Test Distance:	The test distance of radiated emission from antenna to EUT is	
	3 M.	

2.7 Description of Series model

The difference between the Series Model: KC502 and the Model No.: KC502g are wireless function. The function and hardware is identical.

2.8 Measurement Uncertainty

Measurement Item	Measurement Frequency	Polarization	Uncertainty
Conducted Emission	9 kHz ~ 30 MHz	LINE/NEUTRAL	2.71 dB
Radiated Emission	30 MHz ~ 1GHz	Vertical	4.11 dB
Radiated Effilssion	30 MHZ ~ TGHZ	Horizontal	4.10 dB
6 dB Bandwidth			7500 Hz
Maximum Peak Output Power			1.4 dB
100kHz Bandwidth of Frequency Band Edges			2.2 dB
Power Spectral Density			2.2 dB

3. Antenna Requirements

3.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

3.2 Antenna Construction and Directional Gain

Antenna type: Reverse SMA Connector, Dipole Antenna

Antenna Gain: 2 dBi.

Exclusive **C**ertification **C**orp. Tel:886-2-2792-3366 Fax:886-2-2792-1100

4. Test of Conducted Emission

4.1 Test Limit

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 120 VAC power and return leads of the EUT according to the methods defined in ANSI C63.4-2003 Section 3.1. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 2.2. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

Frequency (MHz)	Quasi Peak (dB µ V)	Average (dB μ V)
0.15 - 0.5	66-56*	56-46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

^{*}Decreases with the logarithm of the frequency.

4.2 Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least
 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 micro-Henry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

I ssued date: Apr. 10, 2007

4.3 Typical Test Setup

4.4 Measurement equipment

Instrument/Ancillary	Model No.	Manufacturer	Serial No.	Calibration Date	Valid Date.
Receiver	R&S	ESCI	100443	2006/09/20	2007/09/19
LISN	NNB-2/16Z	MESS TEC	02/10191	2006/03/31	2007/03/30
LISN	NNB-2/16Z	ROLF HEINE	03/10058	2006/04/27	2007/04/26

4.5 Test Result and Data

Power :	AC120V	Pol/Phase :	LINE
Test Mode :	802.11g CH1	Temperature :	25 °C
Memo :	DSA-15P-12US 090108	Humidity :	68 %

Trace: (Discrete)			110	quency (wiriz)			
I tem	Freq	Read Value	Factor	Result	Limit	Margin	Remark
1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	MHz 0.15 0.16 0.17 0.19 0.20 0.22 0.24 0.26 0.22 0.24 0.26 0.33 0.35 0.37 0.37 0.37 0.44 0.55 0.63 0.44 0.44 0.55 0.63 0.42 0.44 0.48 0.48 0.48 0.48 0.48 0.48 0.48	dBuV 59.22 35.20 57.16 33.60 57.17 45.65 52.44 32.46 55.37 56.95 54.02 58.72 59.45 52.73 48.22 59.45 52.73 48.32 50.26 41.70 46.37 42.54 33.38 44.66 35.30 43.83 44.66 35.30 43.83 44.66 35.30 43.83 44.66 35.30 43.83 44.66 35.30 43.83	dB 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.13	dBuV 59.34 35.32 57.28 33.72 57.27 52.56 32.58 55.49 38.69 56.30 57.38 54.14 58.85 49.57 52.82 54.82 50.39 41.84 46.74 32.80 34.80 34.80 34.80 34.80 35.80 46.40 36.80 46.40 37.81 38.60 46.40 38.60 46.40 4	55.47 64.85 54.85 64.11 53.45 62.79 62.08 61.56 60.59 60.24 50.24 50.24 50.24 50.00 50.00 50.00 50.00 50.00 60	-21.53 -7.96 -14.75 -6.44 -5.28 -7.94 -2.71 -1.98 -8.23 -7.16 -1.90 -8.61 -7.16 -11.82 -10.06 -15.44 -14.61 -12.71 -12.71 -12.71 -12.31 -11.57 -11.98 -13.20 -13.20 -9.64 -9.64 -9.80	QP AVERAGE

Remarks: 1. Level = Read Level + Factor
2. Factor = LISN(ISN) Factor + Cable Loss
3. All emission below 1GHz at 802.11b/g mode are all the same, so the 802.11g mode chosen as representative in final test.
4. According to technical experiences, all spurious emission of 802.11g mode at channel 1,6,11 are almost the same below 1GHz, so that the channel 1 was chosen as representative in final test.
5. The data is worse case.

Power :	AC120V	Pol/Phase :	NEUTRAL
Test Mode :	802.11g CH1	Temperature :	25 °C
Memo :	DSA-15P-12US 090108	Humidity :	68 %

Trace: (Dis	ecroto)		Fre	equency (MHz)			
Item	Freq	Read Value	Factor	Result	Limit	Margin	Remark
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	MHz 0.16 0.16 0.17 0.17 0.18 0.20 0.21 0.21 0.21 0.24 0.24 0.26 0.26 0.29 0.30 0.30 0.32 0.33	dBuV 53.26 30.42 51.25 33.82 50.79 26.32 49.89 31.91 50.58 37.99 47.59 34.86 51.22 39.45 49.49 37.48 49.49 37.48 42.90 31.44 40.46 27.51	dB 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	dBuV 53.38 30.54 51.37 33.94 50.91 26.44 50.01 32.03 50.70 38.11 47.71 34.98 51.34 39.56 39.56 38.37 49.56 38.37 49.62 37.61 43.03 31.57 40.60 27.65	dBuV 65.65 55.65 64.86 54.86 64.29 53.58 63.14 53.14 62.22 61.56 60.59 50.59 60.24 59.80 49.80 49.80 49.32	dBuV -12.26 -25.11 -13.49 -20.92 -13.37 -27.85 -13.57 -21.55 -12.44 -15.03 -14.50 -17.23 -10.21 -11.98 -11.03 -12.63 -12.63 -16.76 -18.22 -18.72 -21.68	QP AVERAGE

Remarks: 1. Level = Read Level + Factor

 Level = Read Level + Factor
 Factor = LISN(ISN) Factor + Cable Loss
 All emission below 1GHz at 802.11b/g mode are all the same, so the 802.11g mode chosen as representative in final test.
 According to technical experiences, all spurious emission of 802.11g mode at channel 1,6,11 are almost the same below 1GHz, so that the channel 1 was chosen as representative in final test.

5. The data is worse case.

Test engineer:

5. Test of Radiated Emission

5.1 Test Limit

Radiated emissions from 30 MHz to 25 GHz were measured according to the methods defines in ANSI C63.4-2003. The EUT was placed, 0.8 meter above the ground plane, as shown in section 5.6.3. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Distance	Radiated	Radiated
(MHz)	Meters	(µ V / M)	(dB µ V/ M)
30-88	3	100	40.0
88-216	3	150	43.5
216-960	3	200	46.0
Above 960	3	500	54.0

For unintentional device, according to CISPR PUB.22, for Class B digital devices, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 10 meters shall not exceed the above table.

Frequency (MHz)	Distance Meters	Radiated (dB µ V/ M)
30-230	10	30
230-1000	10	37

I ssued date: Apr. 10, 2007

5.2 Test Procedures

- 1. The EUT was placed on a rotatable table top 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- 5. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- 6. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

I ssued date: Apr. 10, 2007

5.3 Typical Test Setup

5.4 Measurement equipment

Instrument/Ancillary	Model No.	Manufacturer	Serial No.	Calibration Date	Valid Date
EMI Receiver	85460A	HP	3807A00454	2006/05/11	2007/05/10
Spectrum Analyzer	FSP40	R&S	10047	2007/01/23	2008/01/22
Horn Antenna	3115	EMCO	31589	2007/03/05	2008/03/04
Horn Antenna	3116	EMCO	31970	2007/03/06	2008/03/05
Bilog Antenna	CBL6112B	Schaffner	2840	2006/04/20	2007/04/19
Amplifier	8449B	Agilent	3008A01954	2007/01/12	2008/01/11
Amplifier	8447D	Agilent	2944A10531	2006/09/11	2007/09/10

5.5 Test Result and Data

Power :	AC120V	Pol/Phase	:	VERTICAL
Test Mode :	Transmit / Receive	Temperature		25 °C
Operation Channel :	1	Humidity		68 %
Modulation Type :	802.11g	Atmospheric Pressure	:	1010 hPa
Memo :	DSA-15P-12US 090108	Transmit Rate	:	18 Mbps

Item	Freq	Read Value	Factor	Result	Limit	Margin	Remark	Ant Pos	Tab Pos
1 2 3 4 5 6 7 8 9	MHz 48.43 56.68 111.68 150.73 200.23 210.68 225.80 240.10 250.55 270.35 300.05	dBuV/m 40.91 41.64 40.97 42.16 48.17 45.54 40.62 45.40 47.65 47.00 42.55	dB -6.10 -8.27 -9.32 -8.04 -7.80 -7.68 -5.53 -4.72 -5.29 -8.67 -5.18	dBuV/m 34.81 33.37 31.65 34.12 40.37 37.86 35.09 40.68 42.36 38.33 37.37	dBuV/m 40.00 40.00 43.50 43.50 43.50 43.50 46.00 46.00 46.00 46.00	dB -5.19 -6.63 -11.85 -9.38 -3.13 -5.64 -10.91 -5.32 -3.64 -7.67 -8.63	QP Peak Peak Peak QP QP Peak QP Peak Peak	cm 100 100 100 100 100 100 100 100 100	Deg 86 76 61 127 187 246 226 214 73 33 360

- 1. Result = Read Value + Factor
- Factor = Antenna Factor + Cable Loss Amplifier
 The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
- 4. All emission below 1GHz at 802.11b/g mode are all the same, so the 802.11g mode chosen as representative in final test.
- 5. According to technical experiences, all spurious emission of 802.11g mode at channel 1,6,11 are almost the same below 16Hz,so that the channel 1 was chosen as representative in final test. 6. The data is worse case.

Power :	AC120V	Pol/Phase	:	VERTICAL
Test Mode :	Transmit / Receive	Temperature	:	25 °C
Operation Channel :	1	Humidity	:	68 %
Modulation Type :	802.11g	Atmospheric Pressure	:	1010 hPa
Memo :	DSA-15P-12US 090108	Transmit Rate	:	18 Mbps

	Trace: (DIS									
Item	Freq	Read Value	Factor	Result	Limit	Margin	Remark	Ant Pos	Tab Pos	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	MHz 330.80 376.30 425.30 451.90 476.40 500.90 512.80 526.80 575.80 600.30 630.40 651.40 700.40 726.30 775.30 850.90 875.40 899.90 925.80 950.80	dBuV/m 45.62 40.33 39.35 39.91 43.06 42.63 38.06 43.02 37.17 37.04 36.66 35.72 37.31 35.90 36.49 33.96 33.97 33.84 36.72 37.31	dB -8.43 -3.71 -2.68 -3.62 -0.56 -2.69 -1.73 -0.98 2.55 0.95 1.75 2.89 -0.63 5.70 5.98 5.20 4.46 9.79 8.84 9.01	dBuV/m 37.19 36.62 36.67 36.29 42.50 39.94 36.33 42.04 39.72 37.99 38.41 36.68 41.13 42.19 39.03 39.95 39.04 40.51 40.51 41.46 50.60	dBuV/m 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00	dB -8.81 -9.38 -9.33 -9.71 -3.50 -6.06 -9.67 -3.96 -6.28 -8.01 -7.59 -7.39 -9.32 -4.87 -6.05 -6.95 -6.95 -6.95 -4.54 -3.40	Peak Peak Peak Peak Peak Peak Peak Peak	cm 100 100 100 100 100 100 100 100 100 10	Deg 360 176 47 360 244 176 311 224 211 245 221 114 227 335 114 87 96 71 221 360 360	

- 1. Result = Read Value + Factor
- Factor = Antenna Factor + Cable Loss Amplifier
 The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 16Hz.
- detection at frequency below 16Hz.

 4. All emission below 16Hz at 802.11b/g mode are all the same, so the 802.11g mode chosen as representative in final test.

 5. According to technical experiences, all spurious emission of 802.11g mode at channel 1,6,11 are almost the same below 16Hz, so that the channel 1 was chosen as representative in final test.

 6. The data is worse case.

Power :	AC120V	Pol/Phase	:	HORIZONTAL
Test Mode :	Transmit / Receive	Temperature	:	25 °C
Operation Channel :	1	Humidity	:	68 %
Modulation Type :	802.11g	Atmospheric Pressure	:	1010 hPa
Memo :	DSA-15P-12US 090108	Transmit Rate	:	18 Mbps

Item	Freq	Read Value	Factor	Result	Limit	Margin	Remark	Ant Pos	Tab Pos
1 2 3 4 5 6 7 8	MHz 109.48 150.73 200.23 210.68 240.10 250.55 276.68 280.80 300.05	dBuV/m 43.12 40.97 47.59 46.03 41.81 46.56 41.65 40.89 43.11	dB -14.34 -11.94 -11.23 -10.86 -10.09 -9.72 -7.44 -6.66 -5.06	dBuV/m 28.78 29.03 36.36 35.17 31.72 36.84 34.21 34.23 38.05	dBuV/m 43.50 43.50 43.50 43.50 46.00 46.00 46.00 46.00	dB -14.72 -14.47 -7.14 -8.33 -14.28 -9.16 -11.79 -11.77 -7.95	Peak Peak Peak Peak Peak Peak Peak Peak	cm 200 200 200 200 200 200 200 200 200	Deg 360 41 0 71 275 73 255 47 360

- 1. Result = Read Value + Factor
- Result Read value Recorded and Packet Recorded detection at frequency below 16Hz.
- 4. All emission below 16Hz at 802.11b/g mode are all the same, so the 802.11g mode chosen as representative in final test.
- According to technical experiences, all spurious emission of 802.11g mode at channel 1,6,11 are almost the same below 1GHz, so that the channel 1 was chosen as representative in final test.
- б. The data is worse case.

Power :	AC120V	Pol/Phase	:	HORIZONTAL
Test Mode :	Transmit / Receive	Temperature	:	25 °C
Operation Channel :	1	Humidity	:	68 %
Modulation Type :	802.11g	Atmospheric Pressure	:	1010 hPa
Memo :	DSA-15P-12US 090108	Transmit Rate	:	18 Mbps

MHz dBuV/m dB dBuV/m dBuV/m dBuV/m dB cm Deg 330.80 43.85 -5.96 37.89 46.00 -8.11 Peak 200 360 2 367.90 38.11 -3.02 35.09 46.00 -10.91 Peak 200 57 3 400.80 37.73 -2.13 35.60 46.00 -10.40 Peak 200 360 4 451.90 39.63 -2.18 37.45 46.00 -8.55 Peak 200 56 5 476.40 40.31 -2.35 37.96 46.00 -8.55 Peak 200 55 6 500.90 44.43 -3.24 41.19 46.00 -4.81 QP 200 0 7 526.80 44.71 -2.74 41.97 46.00 -4.81 QP 200 44 8 575.80 37.95 -0.83 37.12 46.00 -8.88 Peak 200 360 9 600.30 34.73 2.15 36.88 46.00 -9.12 Peak 200 62 10 626.90 37.28 1.76 39.04 46.00 -6.96 Peak 200 82 11 651.40 36.53 3.59 40.12 46.00 -5.88 QP 200 55 12 675.90 33.16 2.40 35.56 46.00 -10.44 Peak 200 217 13 700.40 37.06 2.98 40.04 46.00 -5.96 QP 200 360 14 726.30 35.12 4.25 39.37 46.00 -5.96 QP 200 360 15 750.80 36.96 5.43 42.39 46.00 -5.97 QP 200 360 17 799.80 36.96 5.43 42.39 46.00 -5.97 QP 200 360 17 799.80 36.99 4.58 40.03 46.00 -5.97 QP 200 360 17 799.80 36.99 4.58 40.67 46.00 -5.33 QP 200 157 18 810.30 33.39 6.51 39.90 46.00 -7.56 Peak 200 75 19 850.90 32.75 5.69 38.44 46.00 -7.56 Peak 200 360 360 875.40 34.51 5.40 39.91 46.00 -7.56 Peak 200 360 360 875.40 34.51 5.40 39.91 46.00 -7.56 Peak 200 360 360 875.40 34.51 5.40 39.91 46.00 -7.56 Peak 200 360 360 875.40 34.51 5.40 39.91 46.00 -7.56 Peak 200 360 360 875.40 34.51 5.40 39.91 46.00 -7.56 Peak 200 360 360 875.40 34.51 5.40 39.91 46.00 -7.56 Peak 200 360 360 875.40 34.51 5.40 39.91 46.00 -7.56 Peak 200 360 360 360 875.40 34.51 5.40 39.91 46.00 -7.56 Peak 200 360 360 875.40 34.51 5.40 39.91 46.00 -7.56 Peak 200 360 360 360 875.40 34.51 5.40 39.91 46.00 -7.56 Peak 200 360 360 360 360 360 360 360 360 360 3	Item	Freq	Read	Factor	Result	Limit	Margin	Remark	Ant Pos	Tab Pos	
21 899.90 35.03 5.70 40.73 46.00 -5.27 QP 200 360 22 925.80 32.24 7.98 40.22 46.00 -5.78 QP 200 147 23 950.30 31.66 7.94 39.60 46.00 -6.40 Peak 200 360 24 960.80 42.75 7.26 50.01 54.00 -3.99 QP 200 62	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	MHz 330.80 367.90 400.80 451.90 476.40 500.90 526.80 575.80 600.30 626.90 651.40 675.90 775.30 779.80 8799.80 810.30 850.90 875.40 899.90 925.80 950.30	dBuV/m 43.85 38.11 37.73 39.63 40.31 44.43 44.71 37.95 34.73 37.28 36.53 33.16 37.06 33.80 36.99 33.80 36.09 33.39 32.75 34.51 35.03 32.24 31.66	dB -5.96 -3.02 -2.13 -2.18 -2.35 -3.24 -2.74 -0.83 2.15 1.76 3.59 2.40 22.98 4.25 5.43 6.23 4.58 6.51 5.69 5.40 7.98 7.94	dBuV/m 37.89 35.60 37.45 37.96 41.19 41.97 37.12 36.88 39.04 40.12 35.56 40.04 39.37 42.39 40.03 40.67 39.90 38.44 39.91 40.22 39.60	dBuV/m 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00 46.00	dB -8.11 -10.91 -10.40 -8.55 -8.04 -4.81 -4.03 -8.88 -9.12 -6.96 -5.88 -10.44 -5.96 -6.63 -3.61 -5.97 -5.33 -6.10 -7.56 -6.09 -5.27 -5.78 -6.40	Peak Peak Peak Peak QP QP Peak Peak QP Peak QP Peak QP Peak QP Peak QP Peak Peak	cm 200 200 200 200 200 200 200 200 200 20	Deg 360 57 360 56 55 0 44 360 62 82 55 217 360 0 25 360 157 75 36 360 360 147 360	

- 1. Result = Read Value + Factor

- Result = Read Value + Factor
 Factor = Antenna Factor + Cable Loss Amplifier
 The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
 All emission below 1GHz at 802.11b/g mode are all the same, so the 802.11g mode chosen as representative in final test.
 According to technical experiences, all spurious emission of 802.11g mode at channel 1,6,11 are almost the same below 1GHz, so that the channel 1 was chosen as representative in final test.
 The data is worse case.

Power	: AC120V	Pol/Phase	:	VERTICAL
Test Mode	: Transmit / Receive	Temperature	:	24 °C
Operation Channel	: 1	Humidity	:	68 %
Modulation Type	: 802.11b	Atmospheric Pressure	:	1013 hPa
Memo	: DSA-15P-12US 090108	Transmit Rate	:	11 Mbps

- 1. Result = Read Value + Factor
- 2. Factor = Antenna Factor + Cable Loss Amplifier
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
- 6. The other emissions is too low to be measured.

Power	: AC120V	Pol/Phase	:	HORIZONTAL
Test Mode	: Transmit / Receive	Temperature	:	24 °C
Operation Channel	: 1	Humidity	:	68 %
Modulation Type	: 802.11b	Atmospheric Pressure	:	1013 hPa
Memo	: DSA-15P-12US 090108	Transmit Rate	:	11 Mbps

- 1. Result = Read Value + Factor
- 2. Factor = Antenna Factor + Cable Loss Amplifier
- 3. The resolution bandwidth of test receiver's spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
- detection at frequency below 16Hz.

 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
- 6. The other emissions is too low to be measured.

Power	AC120V	Pol/Phase	:	VERTICAL
Test Mode	Transmit / Receive	Temperature		24 °C
Operation Channel	6	Humidity		68 %
Modulation Type	802.11b	Atmospheric Pressure		1013 hPa
Memo	DSA-15P-12US 090108	Transmit Rate	:	11 Mbps

	Trace: (Disc	crete)				,				
Item	Freq	Read Value	Factor	Result	Limit	Margin	Remark	Ant Pos	Tab Pos	
_	MHz 4872.38 4872.38		dB 8.78 8.78	dBuV/m 40.03 51.53		dB -13.97 -22.47	Average Peak	cm 100 100	Deg <mark>215</mark> 215	

- 1. Result = Read Value + Factor
- 2. Factor = Antenna Factor + Cable Loss Amplifier
- The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
 The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above
- 1GHz.
- 5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
- 6. The other emissions is too low to be measured.

Power	:	AC120V	Pol/Phase	:	HORIZONTAL
Test Mode	:	Transmit / Receive	Temperature	:	24 °C
Operation Channel	:	6	Humidity	:	68 %
Modulation Type	:	802.11b	Atmospheric Pressure	:	1013 hPa
Memo	:	DSA-15P-12US 090108	Transmit Rate	:	11 Mbps

- 1. Result = Read Value + Factor
- Factor = Antenna Factor + Cable Loss Amplifier
 The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 16Hz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above
- 6. The other emissions is too low to be measured.

Power	: AC120V	Pol/Phase	:	VERTICAL
Test Mode	: Transmit / Receive	Temperature	:	24 °C
Operation Channel	: 11	Humidity	:	68 %
Modulation Type	: 802.11b	Atmospheric Pressure	:	1013 hPa
Memo	: DSA-15P-12US 090108	Transmit Rate	:	11 Mbps

Item	Freq	Read Value	Factor	Result	Limit	Margin	Remark	Ant Pos	Tab Pos
1 2		31.97	8.92	40.89	54.00	dB -13.11 -21.35		100	Deg <mark>215</mark> 215

- 1. Result = Read Value + Factor
- Factor = Antenna Factor + Cable Loss Amplifier
 The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak
- detection at frequency below 16Hz.

 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above
- 5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
- 6. The other emissions is too low to be measured.

Power	AC120V	Pol/Phase	:	HORIZONTAL
Test Mode	Transmit / Rece	ive Temperature	:	24 °C
Operation Channel	11	Humidity	:	68 %
Modulation Type	802.11b	Atmospheric Pressure	:	1013 hPa
Memo	DSA-15P-12US	090108 Transmit Rate	:	11 Mbps

Item	Freq	Read Value	Factor	Result	Limit	Margin	Remark	Ant Pos	Tab Pos
1 2	MHz 4923.38 4923.38	30.31		39.23	54.00	dB -14.77 -23.28		cm 100 100	Deg <mark>144</mark> 144

- 1. Result = Read Value + Factor
- Factor = Antenna Factor + Cable Loss Amplifier
 The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 16Hz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above
- б. The other emissions is too low to be measured.

Power	: AC120V	Pol/Phase	:	VERTICAL
Test Mode	: Transmit / Receive	Temperature	:	24 °C
Operation Channel	: 1	Humidity	:	68 %
Modulation Type	: 802.11g	Atmospheric Pressure	:	1013 hPa
Memo	: DSA-15P-12US 090108	Transmit Rate	:	18 Mbps

Item	Freq	Read Value	Factor	Result	Limit	Margin	Remark	Ant Pos	Tab Pos
1 2	MHz 4823.88 4823.88	00.10	dB <mark>8.64</mark> 8.64	dBuV/m 39.04 50.44		dB - <mark>14.96</mark> -23.56	Average Peak	cm 100 100	Deg <mark>215</mark> 215

- 1. Result = Read Value + Factor
 2. Factor = Antenna Factor + Cable Loss Amplifier
 3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 16Hz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
- 6. The other emissions is too low to be measured.

Power :	AC120V	Pol/Phase	:	HORIZONTAL
Test Mode :	Transmit / Receive	Temperature	:	24 °C
Operation Channel :	1	Humidity	:	68 %
Modulation Type :	802.11g	Atmospheric Pressure	:	1013 hPa
Memo :	DSA-15P-12US 090108	Transmit Rate	:	18 Mbps

- 1. Result = Read Value + Factor
- 2. Factor = Antenna Factor + Cable Loss Amplifier
 3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 16Hz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
- The other emissions is too low to be measured.

Power	AC120V	Pol/Phase :	VERTICAL
Test Mode	Transmit / Receive	Temperature :	24 °C
Operation Channel	6	Humidity :	68 %
Modulation Type	802.11g	Atmospheric Pressure :	1013 hPa
Memo	DSA-15P-12US 090108	Transmit Rate :	18 Mbps

- 1. Result = Read Value + Factor
- Factor = Antenna Factor + Cable Loss Amplifier
 The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 16Hz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above
- 6. The other emissions is too low to be measured.

Power	: AC120V	Pol/Phase	:	HORIZONTAL
Test Mode	: Transmit / Receive	Temperature	:	24 °C
Operation Channel	: 6	Humidity	:	68 %
Modulation Type	: 802.11g	Atmospheric Pressure	:	1013 hPa
Memo	: DSA-15P-12US 090108	Transmit Rate	:	18 Mbps

- 1. Result = Read Value + Factor
- Factor = Antenna Factor + Cable Loss Amplifier
 The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
- 6. The other emissions is too low to be measured.

Power	AC	C120V	Pol/Phase	:	VERTICAL
Test Mode	Tra	ansmit / Receive	Temperature		24 °C
Operation Channel	11		Humidity		68 %
Modulation Type	802	2.11g	Atmospheric Pressure		1013 hPa
Memo	DS	SA-15P-12US 090108	Transmit Rate	:	18 Mbps

Item	Freq	Read	Factor	Result	Limit	Margin	Remark	Ant Pos	Tab Pos
1 2	MHz 4923.50 4923.50		dB 8.92 8.92	dBuV/m 39.36 50.64		dB -14.64 -23.36		cm 100 100	Deg 215 215

- 1. Result = Read Value + Factor
- Result = Read Value + Factor
 Factor = Antenna Factor + Cable Loss Amplifier
 The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
 The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above
- 1GHz.
- 5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
- 6. The other emissions is too low to be measured.

Power	: AC120V	Pol/Phase	:	HORIZONTAL
Test Mode	: Transmit / Receive	Temperature	:	24 °C
Operation Channel	: 11	Humidity	:	68 %
Modulation Type	: 802.11g	Atmospheric Pressure	:	1013 hPa
Memo	: DSA-15P-12US 090108	Transmit Rate	:	18 Mbps

Item	Freq	Read Value	Factor	Result	Limit	Margin	Remark	Ant Pos	Tab Pos
1 2	MHz 4923.00 4923.00	30.24			54.00	-14.84		cm 100 100	Deg <mark>144</mark> 144

- 1. Result = Read Value + Factor
- 2. Factor = Antenna Factor + Cable Loss Amplifier
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz
- and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.

 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above
- 6. The other emissions is too low to be measured.

Test engineer:

6. 6dB Bandwidth Measurement Data

6.1 Test Limit

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

6.2 Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Set RBW of spectrum analyzer to 100 KHz and VBW to 100 KHz.
- 3. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB.

6.3 Test Setup Layout

6.4 Measurement equipment

Instrument/Ancillary	Model No.	Manufacturer	Serial No.	Calibration Date	Valid Date.
Spectrum Analyzer	FSP40	R&S	100047	2007/01/23	2008/01/22

6.5 Test Result and Data

(1) Modulation Standard: IEEE 802.11b (11Mbps)

Test Date: Mar. 29, 2007 Temperature: 25 Humidity: 65% Atmospheric pressure: 1010 hPa

Channal	Frequency	6dB Bandwidth
Channel	(MHz)	(MHz)
01	2412	12.2
06	2437	12.3
11	2462	12.3

(2) Modulation Standard: IEEE 802.11g (18Mbps)

Test Date: Mar. 29, 2007 Temperature: 25 Humidity: 65% Atmospheric pressure: 1010 hPa

Channal	Frequency	6dB Bandwidth
Channel	(MHz)	(MHz)
01	2412	16.5
06	2437	16.4
11	2462	16.5

I ssued date: Apr. 10, 2007

Modulation Standard: 802.11b (11Mbps) Channel: 01

Date: 29.MAR.2007 13:15:31

Channel:06

Date: 29.MAR.2007 13:18:46

Channel:11

Date: 29.MAR.2007 13:20:21

Modulation Standard:802.11g (18Mbps) Channel:01

Date: 29.MAR.2007 13:22:12

I ssued date: Apr. 10, 2007

Date: 29.MAR.2007 13:25:01

Channel:11

Date: 29.MAR.2007 13:26:49

7. Maximum Peak Output Power

7.1 Test Limit

The Maximum Peak Output Power Measurement is 30dBm.

7.2 Test Procedures

The antenna port(RF output)of the EUT was connected to the input(RF input)of a power meter. Power was read directly from the meter and cable loss connection was added to the reading to obtain power at the EUT antenna terminal. The EUT Output Power was set to maximum to produce the worse case test result.

7.3 Test Setup Layout

7.4 Measurement equipment

Instrument/Ancillary	Model No.	Manufacturer	Serial No.	Calibration Date	Valid Date.
Spectrum Analyzer	FSP40	R&S	100047	2007/01/23	2008/01/22

7.5 Test Result and Data

(1) Modulation Standard: IEEE 802.11b (11Mbps)

Test Date: Mar. 29, 2007 Temperature: 25 Humidity: 65% Atmospheric pressure: 1010 hPa

Channel	Frequency	Peak Power Output	Peak Power Output
Channel	(MHz)	(dBm)	(mW)
01	2412	24.46	279.3
06	2437	24.72	296.5
11	2462	25.13	325.8

(2) Modulation Standard: IEEE 802.11g (18Mbps)

Test Date: Mar. 29, 2007 Temperature: 25 Humidity: 65% Atmospheric pressure: 1010 hPa

Channal	Frequency	Peak Power Output	Peak Power Output	
Channel	(MHz)	(dBm)	(mW)	
01	2412	20.55	113.5	
06	2437	21.20	131.8	
11	2462	21.78	150.7	

Modulation Standard: 802.11b (11Mbps) Channel: 01

Date: 29.MAR.2007 11:53:45

Channel:06

Date: 29.MAR.2007 11:54:42

Date: 29.MAR.2007 11:55:34

Modulation Standard:802.11g (18Mbps) Channel:01

Date: 29.MAR.2007 11:58:18

Date: 29.MAR.2007 12:00:31

Channel:11

Date: 29.MAR.2007 12:01:50

8. Band Edges Measurement

8.1 Test Limit

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

8.2 Test Procedure:

- 1. The transmitter output was connected to the spectrum analyzer via a low lose cable.
- 2. Set both RBW and VBW of spectrum analyzer to 100 KHz with convenient frequency span including 100 KHz bandwidth from band edge.
- 3. The band edges was measured and recorded.

8.3 Test Setup Layout

8.4 List of Measuring Equipment Used

Instrument/Ancillary	Model No.	Manufacturer	Serial No.	Calibration Date	Valid Date.
Spectrum Analyzer	FSP40	R&S	100047	2007/01/23	2008/01/22

8.5 Test Result and Data

(1) Modulation Standard: IEEE 802.11b (11Mbps)

Test Date: Mar. 29, 2007 Temperature: 25 Humidity: 65% Atmospheric pressure: 1010 hPa

Channel	Fraguenav	maximum value is		
Channel	Frequency	(MHz)	(dBm)	
01	2412	2398.0	-28.39	
11	2462	2860.0	-38.08	

(2) Modulation Standard: IEEE 802.11g (18Mbps)

Test Date: Mar. 29, 2007 Temperature: 25 Humidity: 65% Atmospheric pressure: 1010 hPa

Channel			maximum value is
Channel	Frequency	(MHz)	(dBm)
01	2412	2399.6	-34.62
11	2462	2483.9	-41.92

Modulation Standard: 802.11b (11Mbps)

Channel: 01

Date: 29.MAR.2007 13:39:37

Date: 29.MAR.2007 13:41:12

Date: 29.MAR.2007 13:55:32

Date: 29.MAR.2007 13:56:37

Modulation Standard: 802.11g (18Mbps)

Channel: 01

Date: 29.MAR.2007 13:57:56

Date: 29.MAR.2007 13:58:38

Date: 29.MAR.2007 14:00:04

Date: 29.MAR.2007 14:04:47

FCC Test Report: FI 07032401-A

8.6 Restrict band emission Measurement Data

Modulation Standard: IEEE 802.11b (11Mbps)

Test Date: Mar. 28, 2007 Temperature: 24 Humidity: 68% Atmospheric pressure: 1013 hPa

a) Channel 1

Frequency (MHz)	Ant-Pol H/V	Meter Reading	Corrected Factor	Result (dBuV/m)	Remark		@3m V/m)	Margin (dB)	Table (Deg.)	Ant High
(111112)	.,, •	rtodding	i dotoi	(abav,iii)		Peak	Ave.	(42)	(20g.)	(m)
2376.198	Н	50.83	-0.20	50.63	Peak	74	54	-23.37	147	1.1
2389.968	Н	38.98	-0.14	38.84	Ave	74	54	-15.16	147	1.1
2385.174	V	56.05	-0.16	55.89	Peak	74	54	-18.11	215	1.0
2389.968	V	44.72	-0.14	44.58	Ave	74	54	-9.42	215	1.0

b) Channel 11

Frequency (MHz)	Ant-Pol H/V	Meter Reading	Corrected Factor	Result (dBuV/m) Remark		Limit((dBu)		Margin (dB)	Table (Deg.)	Ant High
		3		'	Peak	Ave.	(-)	(= -9-)	(m)	
2488.372	Н	51.97	0.25	52.22	Peak	74	54	-21.78	147	1.1
2483.508	Н	40.43	0.23	40.66	Ave	74	54	-13.34	147	1.1
2483.812	V	60.45	0.24	60.69	Peak	74	54	-13.31	215	1.0
2483.508	V	48.38	0.23	48.61	Ave	74	54	-5.39	215	1.0

Modulation Standard: 802.11g (18Mbps)

Test Date: Mar. 28, 2007 Temperature: 24 Humidity: 68% Atmospheric pressure: 1013 hPa

c) Channel 1

Frequency (MHz)	Ant-Pol H/V	Meter Reading	Corrected Factor	Result (dBuV/m)	Remark	Limit((dBu)		Margin (dB)	Table (Deg.)	Ant High
		3		,	Peak	Ave.	((3)	(m)	
2386.908	Н	51.09	-0.15	50.94	Peak	74	54	-23.06	147	1.1
2389.968	Н	39.36	-0.14	39.22	Ave	74	54	-14.78	147	1.1
2388.438	V	56.10	-0.15	55.95	Peak	74	54	-18.05	215	1.0
2389.968	V	44.86	-0.14	44.72	Ave	74	54	-9.28	215	1.0

d) Channel 11

	Frequency (MHz)	Ant-Pol H/V	Meter Reading	Corrected Factor	Result (dBuV/m)	(dBuV/m) Remark	Limit((dBu)		Margin (dB)	Table (Deg.)	Ant High
	(···· ·=)	, .			(42417111)		Peak	Ave.	(4.2)	(= 09.)	(m)
	2483.926	Н	52.55	0.24	52.79	Peak	74	54	-21.21	147	1.1
Ī	2483.508	Н	40.74	0.23	40.98	Ave	74	54	-13.02	147	1.1
	2483.584	V	62.49	0.23	62.72	Peak	74	54	-11.28	215	1.0
	2483.508	V	50.22	0.23	50.45	Ave	74	54	-3.55	215	1.0

Notes:

- 1. Result = Meter Reading + Factor
- 2. Factor = Antenna Factor + Cable Loss Amplifier
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection at frequency above 1GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz

9. Power Spectral Density

9.1 Test Limit

The Maximum of Power Spectral Density Measurement is 8dBm.

9.2 Test Procedures

- 1. The transmitter output was connected to spectrum analyzer.
- 2. The spectrum analyzer's resolution bandwidth were set at 3KHz RBW and 30KHz VBW as that of the fundamental frequency. Set the sweep time=span/3KHz.
- 3. The power spectral density was measured and recorded.
- 4. The Sweep time is allowed to be longer than span/3KHz for a full response of the mixer in the spectrum analyzer.

9.3 Test Setup Layout:

9.4 List of Measuring Equipment Used

Instrument/Ancillary	Model No.	Manufacturer	Serial No.	Calibration Date	Valid Date.
Spectrum Analyzer	FSP40	R&S	100047	2007/01/23	2008/01/22

9.5 Test Result and Data

(1) Modulation Standard: IEEE 802.11b (11Mbps)

Test Date: Mar. 29, 2007 Temperature: 25 Humidity: 65% Atmospheric pressure: 1010 hPa

Channel	Frequency	Maximum Power Density of 3 kHz Bandwidth (dBm)
01	2412	-7.58
06	2437	-7.13
11	2462	-6.67

(2) Modulation Standard: IEEE 802.11g (18Mbps)

Test Date: Mar. 29, 2007 Temperature: 25 Humidity: 65% Atmospheric pressure: 1010 hPa

Channel	Frequency	Maximum Power Density of 3 kHz Bandwidth	
		(dBm)	
01	2412	-15.64	
06	2437	-14.94	
11	2462	-14.51	

Modulation Standard: 802.11b (11Mbps) Channel: 01

Date: 29.MAR.2007 13:30:59

Channel:06

Date: 29.MAR.2007 13:32:24

Date: 29.MAR.2007 13:33:27

Modulation Standard:802.11g (18Mbps) Channel:01

Date: 29.MAR.2007 13:34:46

Date: 29.MAR.2007 13:35:50

Channel:11

Date: 29.MAR.2007 13:36:54

10. Restricted Bands of Operation

Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.09000 - 0.11000	16.42000 - 16.42300	399.9 – 410.0	4.500 - 5.250
0.49500 - 0.505**	16.69475 – 16.69525	608.0 - 614.0	5.350 - 5.460
2.17350 - 2.19050	16.80425 – 16.80475	960.0 - 1240.0	7.250 – 7.750
4.12500 - 4.12800	25.50000 – 25.67000	1300.0 – 1427.0	8.025 - 8.500
4.17725 – 4.17775	37.50000 – 38.25000	1435.0 – 1626.5	9.000 - 9.200
4.20725 - 4.20775	73.00000 – 74.60000	1645.5 – 1646.5	9.300 - 9.500
6.21500 - 6.21800	74.80000 – 75.20000	1660.0 – 1710.0	10.600 - 12.700
6.26775 - 6.26825	108.00000 – 121.94000	1718.8 – 1722.2	13.250 - 13.400
6.31175 - 6.31225	123.00000 – 138.00000	2200.0 - 2300.0	14.470 – 14.500
8.29100 - 8.29400	149.90000 – 150.05000	2310.0 – 2390.0	15.350 – 16.200
8.36200 - 8.36600	156.52475 – 156.52525	2483.5 – 2500.0	17.700 – 21.400
8.37625 - 8.38675	156.70000 – 156.90000	2655.0 - 2900.0	22.010 – 23.120
8.41425 - 8.41475	162.01250 – 167.17000	3260.0 - 3267.0	23.600 - 24.000
12.29000 - 12.29300	167.72000 – 173.20000	3332.0 - 3339.0	31.200 – 31.800
12.51975 – 12.52025	240.00000 – 285.00000	3345.8 - 3358.0	36.430 - 36.500
12.57675 – 12.57725	322.00000 - 335.40000	3600.0 - 4400.0	Above 38.6
13.36000 - 13.41000			

^{**:} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

10.1 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.