Sequence Listing

<110> Baker, Kevin Botstein, David Eaton, Dan Ferrara, Napoleone Filvaroff, Ellen Gerritsen, Mary Goddard, Audrey Godowski, Paul Grimaldi, Christopher Gurney, Austin Hillan, Kenneth Kljavin, Ivar Napier, Mary Roy, Margaret Tumas, Daniel Wood, William

<120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

<130> P2548P1C1

- <150> 60/067,411
- <151> December 3, 1997
- <150> 60/069,334

M

<u>C</u>i

O

- <151> December 11, 1997
- <150> 60/069335
- <151> December 11, 1997
- <150> 60/069,278
- <151> December 11, 1997
- <150> 60/069,425
- <151> December 12, 1997
- <150> 60/069,696
- <151> December 16, 1997
- <150> 60/069,694
- <151> December 16, 1997
- <150> 60/069,702
- <151> December 16, 1997
- <150> 60/069,870
- <151> December 17, 1997
- <150> 60/069,873
- <151> December 17, 1997
- <150> 60/068,017
- <151> December 18, 1997
- <150> 60/070,440

- <151> January 5, 1998
- <150> 60/074,086
- <151> February 9, 1998
- <150> 60/074,092
- <151> February 9, 1998
- <150> 60/075,945
- <151> February 25, 1998
- <150> 60/112,850
- <151> December 16, 1998
- <150> 60/113,296
- <151> December 22, 1998
- <150> 60/146,222
- <151> July 28, 1999
- <150> PCT/US98/19330
- <151> September 16, 1998
- <150> PCT/US98/25108
- <151> December 1, 1998
- <150> 09/216,021

ø

T

F

Ē

Ш

- <151> December 16, 1998
- <150> 09/218,517
- <151> December 22, 1998
- <150> 09/254,311
- <151> March 3, 1999
- <150> PCT/US99/12252
- <151> June 22, 1999
- <150> PCT/US99/21090
- <151> September 15, 1999
- <150> PCT/US99/28409
- <151> November 30, 1999
- <150> PCT/US99/28313
- <151> November 30, 1999
- <150> PCT/US99/28301
- <151> December1, 1999
- <150> PCT/US99/30095
- <151> December 16, 1999
- <150> PCT/US00/03565
- <151> February 11, 2000
- <150> PCT/US00/04414
- <151> February 22, 2000

- <150> PCT/US00/05841
- <151> March 2, 2000
- <150> PCT/US00/08439
- <151> March 30, 2000
- <150> PCT/US00/14042
- <151> May 22, 2000
- <150> PCT/US00/20710
- <151> July 28, 2000
- <150> PCT/US00/32678
- <151> December 1, 2000
- <150> PCT/US01/06520
- <151> February 28, 2001
- <160> 120
- <210> 1
- <211> 2454
- <212> DNA
- <213> Homo Sapien
- <400> 1
- ggactaatct gtgggagcag tttattccag tatcacccag ggtgcagcca 50 caccaggact gtgttgaagg gtgtttttt tcttttaaat gtaatacctc 100 ctcatctttt cttcttacac agtgtctgag aacatttaca ttatagataa 150 gtagtacatg gtggataact tctactttta ggaggactac tctcttctga 200 cagtectaga etggtettet acactaagae accatgaagg agtatgtget 250 cctattattc ctggctttgt gctctgccaa acccttcttt agcccttcac 300 acatcgcact gaagaatatg atgctgaagg atatggaaga cacagatgat 350 gatgatgatg atgatgatga tgatgatgat gatgaggaca actctctttt 400 tccaacaaga gagccaagaa gccatttttt tccatttgat ctgtttccaa 450 tgtgtccatt tggatgtcag tgctattcac gagttgtaca ttgctcagat 500 ttaggtttga cctcagtccc aaccaacatt ccatttgata ctcgaatgct 550 tgatcttcaa aacaataaaa ttaaggaaat caaagaaaat gattttaaag 600 gactcacttc actttatggt ctgatcctga acaacaacaa gctaacgaag 650 attcacccaa aagcctttct aaccacaaag aagttgcgaa ggctgtatct 700 gtcccacaat caactaagtg aaataccact taatcttccc aaatcattag 750 cagaactcag aattcatgaa aataaagtta agaaaataca aaaggacaca 800

ttcaaaggaa tgaatgcttt acacgttttg gaaatgagtg caaaccctct 850 tgataataat gggatagagc caggggcatt tgaaggggtg acggtgttcc 900 atatcagaat tgcagaagca aaactgacct cagttcctaa aggcttacca 950 ccaactttat tggagcttca cttagattat aataaaattt caacagtgga 1000 acttgaggat tttaaacgat acaaagaact acaaaggctg ggcctaggaa 1050 acaacaaaat cacagatatc gaaaatggga gtcttgctaa cataccacgt 1100 gtgagagaaa tacatttgga aaacaataaa ctaaaaaaaa tcccttcagg 1150 attaccagag ttgaaatacc tccagataat cttccttcat tctaattcaa 1200 ttgcaagagt gggagtaaat gacttctgtc caacagtgcc aaagatgaag 1250 aaatctttat acagtgcaat aagtttattc aacaacccgg tgaaatactg 1300 ggaaatgcaa cctgcaacat ttcgttgtgt tttgagcaga atgagtgttc 1350 agcttgggaa ctttggaatg taataattag taattggtaa tgtccattta 1400 atataagatt caaaaatccc tacatttgga atacttgaac tctattaata 1450 atggtagtat tatatataca agcaaatatc tattctcaag tggtaagtcc 1500 actgacttat tttatgacaa gaaatttcaa cggaattttg ccaaactatt 1550 gatacataag gggttgagag aaacaagcat ctattgcagt ttcctttttg 1600 cgtacaaatg atcttacata aatctcatgc ttgaccattc ctttcttcat 1650 aacaaaaaag taagatattc ggtatttaac actttgttat caagcacatt 1700 ttaaaaagaa ctgtactgta aatggaatgc ttgacttagc aaaatttgtg 1750 ctctttcatt tgctgttaga aaaacagaat taacaaagac agtaatgtga 1800 agagtgcatt acactattct tattctttag taacttgggt agtactgtaa 1850 tatttttaat catcttaaag tatgatttga tataatctta ttgaaattac 1900 cttatcatgt cttagagccc gtctttatgt ttaaaactaa tttcttaaaa 1950 taaagccttc agtaaatgtt cattaccaac ttgataaatg ctactcataa 2000 gagetggttt ggggetatag catatgettt ttttttttta attattacet 2050 gatttaaaaa tctctgtaaa aacgtgtagt gtttcataaa atctgtaact 2100 cgcattttaa tgatccgcta ttataagctt ttaatagcat gaaaattgtt 2150 aggetatata acattgecae tteaacteta aggaatattt ttgagatate 2200 cetttggaag acettgettg gaagageetg gacactaaca attetacace 2250 aaattgtctc ttcaaatacg tatggactgg ataactctga gaaacacatc 2300 tagtataact gaataagcag agcatcaaat taaacagaca gaaaccgaaa 2350 gctctatata aatgctcaga gttctttatg tatttcttat tggcattcaa 2400 catatgtaaa atcagaaaac agggaaattt tcattaaaaa tattggtttg 2450 aaat 2454

<210> 2 <211> 379 <212> PRT <213> Homo Sapien

Lys Pro Phe Phe Ser Pro Ser His Ile Ala Leu Lys Asn Met Met 20 25 30

Asp Asp Asp Asp Glu Asp Asn Ser Leu Phe Pro Thr Arg Glu
50 55 60

Pro Arg Ser His Phe Phe Pro Phe Asp Leu Phe Pro Met Cys Pro 65 70 75

Phe Gly Cys Gln Cys Tyr Ser Arg Val Val His Cys Ser Asp Leu 80 85 90

Gly Leu Thr Ser Val Pro Thr Asn Ile Pro Phe Asp Thr Arg Met
95 100 105

Leu Asp Leu Gln Asn Asn Lys Ile Lys Glu Ile Lys Glu Asn Asp 110 115 120

Phe Lys Gly Leu Thr Ser Leu Tyr Gly Leu Ile Leu Asn Asn Asn 125 130 135

Lys Leu Thr Lys Ile His Pro Lys Ala Phe Leu Thr Thr Lys Lys 140 145 150

Leu Arg Arg Leu Tyr Leu Ser His Asn Gln Leu Ser Glu Ile Pro 155 160 165

Leu Asn Leu Pro Lys Ser Leu Ala Glu Leu Arg Ile His Glu Asn 170 175 180

Lys Val Lys Lys Ile Gln Lys Asp Thr Phe Lys Gly Met Asn Ala 185 190 195

Leu His Val Leu Glu Met Ser Ala Asn Pro Leu Asp Asn Asn Gly 200 205 210

<400> 4

tcccaagctg aacactcatt ctgc 24

Ile Glu Pro Gly Ala Phe Glu Gly Val Thr Val Phe His Ile Arg Ile Ala Glu Ala Lys Leu Thr Ser Val Pro Lys Gly Leu Pro Pro 230 Thr Leu Leu Glu Leu His Leu Asp Tyr Asn Lys Ile Ser Thr Val Glu Leu Glu Asp Phe Lys Arg Tyr Lys Glu Leu Gln Arg Leu Gly Leu Gly Asn Asn Lys Ile Thr Asp Ile Glu Asn Gly Ser Leu Ala Asn Ile Pro Arg Val Arg Glu Ile His Leu Glu Asn Asn Lys Leu 290 Lys Lys Ile Pro Ser Gly Leu Pro Glu Leu Lys Tyr Leu Gln Ile 310 Ile Phe Leu His Ser Asn Ser Ile Ala Arg Val Gly Val Asn Asp 325 Phe Cys Pro Thr Val Pro Lys Met Lys Lys Ser Leu Tyr Ser Ala 335 Ile Ser Leu Phe Asn Asn Pro Val Lys Tyr Trp Glu Met Gln Pro 350 Ala Thr Phe Arg Cys Val Leu Ser Arg Met Ser Val Gln Leu Gly 370 Asn Phe Gly Met <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 3 ggaaatgagt gcaaaccctc 20 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe

```
<210> 5
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 5
 gggtgacggt gttccatatc agaattgcag aagcaaaact gacctcagtt 50
<210> 6
<211> 3441
<212> DNA
<213> Homo Sapien
<400> 6
 cggacgcgtg ggcggacgcg tgggcccgcs gcaccgcccc cggcccggcc 50
 ctecgecete egeactegeg ectecetece tecgeceget ecegegeect 100
 cetecetece tectececag etgtecegtt egegteatge egageetece 150
 ggcccgccg gccccgctgc tgctcctcgg gctgctgctg ctcggctccc 200
 ggccggcccg cggcgccggc ccagagcccc ccgtgctgcc catccgttct 250
 gagaaggage egetgeeegt teggggageg geaggetgea eetteggegg 300
 gaaggtetat geettggaeg agaegtggea eeeggaeeta gggeageeat 350
 teggggtgat gegetgegtg etgtgegeet gegaggegee teagtggggt 400
 cgccgtacca ggggccctgg cagggtcagc tgcaagaaca tcaaaccaga 450
 gtgcccaacc ccggcctgtg ggcagccgcg ccagctgccg ggacactgct 500
 gccagacctg cccccaggag cgcagcagtt cggagcggca gccgagcggc 550
```

ctgtccttcg agtatccgcg ggacccggag catcgcagtt atagcgaccg 600

cggggagcca ggcgctgagg agcgggcccg tggtgacggc cacacggact 650

tcgtggcgct gctgacaggg ccgaggtcgc aggcggtggc acgagcccga 700

gtetegetge tgegetetag ceteegette tetateteet acaggegget 750

ggaccgccct accaggatcc gcttctcaga ctccaatggc agtgtcctgt 800

ttgagcaccc tgcagccccc acccaagatg gcctggtctg tggggtgtgg 850

cgggcagtgc ctcggttgtc tctgcggctc cttagggcag aacagctgca 900

tgtggcactt gtgacactca ctcacccttc aggggaggtc tgggggcctc 950

tcatccggca ccgggccctg gctgcagaga ccttcagtgc catcctgact 1000

ctagaaggcc ccccacagca gggcgtaggg ggcatcaccc tgctcactct 1050

cagtgacaca gaggactcct tgcatttttt gctgctcttc cgagggctgc 1100 tggaacccag gagtggggga ctaacccagg ttcccttgag gctccagatt 1150 ctacaccagg ggcagctact gcgagaactt caggccaatg tetcagecca 1200 ggaaccaggc tttgctgagg tgctgcccaa cctgacagtc caggagatgg 1250 actggctggt gctgggggag ctgcagatgg ccctggagtg ggcaggcagg 1300 ccagggctgc gcatcagtgg acacattgct gccaggaaga gctgcgacgt 1350 cctgcaaagt gtcctttgtg gggctgatgc cctgatccca gtccagacgg 1400 gtgctgccgg ctcagccagc ctcacgctgc taggaaatgg ctccctgatc 1450 tatcaggtgc aagtggtagg gacaagcagt gaggtggtgg ccatgacact 1500 ggagaccaag cctcagcgga gggatcagcg cactgtcctg tgccacatgg 1550 ctggactcca gccaggagga cacacggccg tgggtatctg ccctgggctg 1600 ggtgcccgag gggctcatat gctgctgcag aatgagctct tcctgaacgt 1650 gggcaccaag gacttcccag acggagagct tcgggggcac gtggctgccc 1700 tgccctactg tgggcatagc gcccgccatg acacgctgcc cgtgccccta 1750 gcaggagccc tggtgctacc ccctgtgaag agccaagcag cagggcacgc 1800 ctggctttcc ttggataccc actgtcacct gcactatgaa gtgctgctgg 1850 ctgggcttgg tggctcagaa caaggcactg tcactgccca cctccttggg 1900 cctcctggaa cgccagggcc tcggcggctg ctgaagggat tctatggctc 1950 agaggcccag ggtgtggtga aggacctgga gccggaactg ctgcggcacc 2000 tggcaaaagg catggcctcc ctgatgatca ccaccaaggg tagccccaga 2050 ggggagetee gagggeaggt geacatagee aaccaatgtg aggttggegg 2100 actgcgcctg gaggcggccg gggccgaggg ggtgcggggcg ctgggggctc 2150 cggatacago ctctgctgcg ccgcctgtgg tgcctggtct cccggcccta 2200 gegeeegeea aacetggtgg teetgggegg eeeegagaee eeaacacatg 2250 cttcttcgag gggcagcagc gccccacgg ggctcgctgg gcgcccaact 2300 acgacccgct ctgctcactc tgcacctgcc agagacgaac ggtgatctgt 2350 gacceggtgg tgtgcccacc gcccagctgc ccacaccegg tgcaggctcc 2400 cgaccagtgc tgccctgttt gccctgagaa acaagatgtc agagacttgc 2450 cagggctgcc aaggagccgg gacccaggag agggctgcta ttttgatggt 2500 gaccggagct ggcgggcagc gggtacgcgg tggcaccccg ttgtgccccc 2550 ctttggctta attaagtgtg ctgtctgcac ctgcaagggg ggcactggag 2600 aggtgcactg tgagaaggtg cagtgtcccc ggctggcctg tgcccagcct 2650 gtgcgtgtca accccaccga ctgctgcaaa cagtgtccag tggggtcggg 2700 ggcccacccc cagctggggg accccatgca ggctgatggg ccccggggct 2750 qccqttttgc tgggcagtgg ttcccagaga gtcagagctg gcacccctca 2800 gtgccccctt ttggagagat gagctgtatc acctgcagat gtggggcagg 2850 ggtgcctcac tgtgagcggg atgactgttc actgccactg tcctgtggct 2900 cggggaagga gagtcgatgc tgttcccgct gcacggccca ccggcggccc 2950 ccagagacca gaactgatcc agagctggag aaagaagccg aaggctctta 3000 gggagcagcc agagggccaa gtgaccaaga ggatggggcc tgagctgggg 3050 aaggggtggc atcgaggacc ttcttgcatt ctcctgtggg aagcccagtg 3100 cetttgetee tetgteetge etetacteee acceccacta cetetgggaa 3150 ccacagetee acaaggggga gaggeagetg ggeeagaceg aggteacage 3200 cactecaagt cetgeeetge caccetegge etetgteetg gaageeecac 3250 ccctttcctc ctgtacataa tgtcactggc ttgttgggat ttttaattta 3300 tetteactea geaceaaggg ecceegacae tecaeteetg etgeeeetga 3350 gctgagcaga gtcattattg gagagttttg tatttattaa aacatttctt 3400 tttcagtcaa aaaaaaaaaa aaaaaaaaaa a 3441

<210> 7

<211> 954

<212> PRT

<213> Homo Sapien

<400> 7

Met Pro Ser Leu Pro Ala Pro Pro Ala Pro Leu Leu Leu Gly
1 5 10 15

Leu Leu Leu Gly Ser Arg Pro Ala Arg Gly Ala Gly Pro Glu
20 25 30

Pro Pro Val Leu Pro Ile Arg Ser Glu Lys Glu Pro Leu Pro Val 35 40 45

Arg Gly Ala Ala Gly Cys Thr Phe Gly Gly Lys Val Tyr Ala Leu
50 55 60

Asp Glu Thr Trp His Pro Asp Leu Gly Gln Pro Phe Gly Val Met
65 70 75

Arg Cys Val Leu Cys Ala Cys Glu Ala Pro Gln Trp Gly Arg Arg Thr Arg Gly Pro Gly Arg Val Ser Cys Lys Asn Ile Lys Pro Glu Cys Pro Thr Pro Ala Cys Gly Gln Pro Arg Gln Leu Pro Gly His Cys Cys Gln Thr Cys Pro Gln Glu Arg Ser Ser Ser Glu Arg Gln 125 Pro Ser Gly Leu Ser Phe Glu Tyr Pro Arg Asp Pro Glu His Arg Ser Tyr Ser Asp Arg Gly Glu Pro Gly Ala Glu Glu Arg Ala Arg Gly Asp Gly His Thr Asp Phe Val Ala Leu Leu Thr Gly Pro Arg Ser Gln Ala Val Ala Arg Ala Arg Val Ser Leu Leu Arg Ser Ser Leu Arg Phe Ser Ile Ser Tyr Arg Arg Leu Asp Arg Pro Thr Arg Ile Arg Phe Ser Asp Ser Asn Gly Ser Val Leu Phe Glu His Pro Ala Ala Pro Thr Gln Asp Gly Leu Val Cys Gly Val Trp Arg Ala Val Pro Arg Leu Ser Leu Arg Leu Leu Arg Ala Glu Gln Leu His Val Ala Leu Val Thr Leu Thr His Pro Ser Gly Glu Val Trp Gly 260 Pro Leu Ile Arg His Arg Ala Leu Ala Ala Glu Thr Phe Ser Ala Ile Leu Thr Leu Glu Gly Pro Pro Gln Gln Gly Val Gly Gly Ile 290 Thr Leu Leu Thr Leu Ser Asp Thr Glu Asp Ser Leu His Phe Leu Leu Leu Phe Arg Gly Leu Leu Glu Pro Arg Ser Gly Gly Leu Thr Gln Val Pro Leu Arg Leu Gln Ile Leu His Gln Gly Gln Leu Leu Arg Glu Leu Gln Ala Asn Val Ser Ala Gln Glu Pro Gly Phe Ala 350 Glu Val Leu Pro Asn Leu Thr Val Gln Glu Met Asp Trp Leu Val

				365					370					375
Leu	Gly	Glu	Leu	Gln 380	Met	Ala	Leu	Glu	Trp 385	Ala	Gly	Arg	Pro	Gly 390
Leu	Arg	Ile	Ser	Gly 395	His	Ile	Ala	Ala	Arg 400	Lys	Ser	Cys	Asp	Val 405
Leu	Gln	Ser	Val	Leu 410	Cys	Gly	Ala	Asp	Ala 415	Leu	Ile	Pro	Val	Gln 420
Thr	Gly	Ala	Ala	Gly 425	Ser	Ala	Ser	Leu	Thr 430	Leu	Leu	Gly	Asn	Gly 435
Ser	Leu	Ile	Tyr	Gln 440	Val	Gln	Val	Val	Gly 445	Thr	Ser	Ser	Glu	Val 450
Val	Ala	Met	Thr	Leu 455	Glu	Thr	Lys	Pro	Gln 460	Arg	Arg	Asp	Gln	Arg 465
Thr	Val	Leu	Cys	His 470		Ala	Gly	Leu	Gln 475	Pro	Gly	Gly	His	Thr 480
Ala	Val	Gly	Ile	Cys 485	Pro	Gly	Leu	Gly	Ala 490	Arg	Gly	Ala	His	Met 495
Leu	Leu	Glm	. Asn	Glu 500	Leu	Phe	Leu	Asn	Val 505	Gly	Thr	Lys	Asp	Phe 510
Pro	Asp	Gly	/ Glu	Lev 515		gly	His	: Val	Ala 520	Ala	Leu	Pro	Tyr	Cys 525
Gly	/ His	s Sei	Ala	a Arg	g His	a Asp	Thr	Leu	Pro 535	Val	Pro	Leu	Ala	Gly 540
Ala	ı Lev	ı Val	l Leu	1 Pro	Pro	Val	Lys	s Ser	Gln 550	a Ala	Ala	Gly	, His	555
Trp	Let	ı Sei	r Lei	1 Asp 560	Thi	c His	s Cys	∍ His	565	ı His	з Туг	Glu	ı Val	Leu 570
Lev	ı Ala	a Gl	y Le	u Gly 57	y Gly 5	y Sei	r Glu	ı Glr	1 Gly 580	7 Thi	c Val	l Thi	c Ala	His 585
Le	ı Lei	u Gl	y Pro	o Pro	o Gl	y Thi	r Pro	o Gly	y Pro 595	o Arg	g Arg	g Le	ı Lev	Lys 600
Gl	y Ph	е Ту	r Gl	y Se 60	r Gl	u Ala	a Gl	n Gl	y Va:	1 Va:	l Ly:	s As	p Lei	u Glu 615
Pr	o Gl	u Le	u Le	u Ar 62	g Hi O	s Le	u Al	a Ly	s Gl	y Me 5	t Al	a Se	r Le	u Met 630
Il.	e Th	r Th	r Ly	s Gl 63	y Se 5	r Pr	o Ar	g Gl	y Gl 64	u Le 0	u Ar	g Gl	y Gl	n Val 645
Hi	s Il	e Al	a As	n Gl 65		s Gl	u Va	.1 G1	y Gl 65	у Le 5	u Ar	g Le	u Gl	u Ala 660

Ala Gly Ala Glu Gly Val Arg Ala Leu Gly Ala Pro Asp Thr Ala Ser Ala Ala Pro Pro Val Val Pro Gly Leu Pro Ala Leu Ala Pro Ala Lys Pro Gly Gly Pro Gly Arg Pro Arg Asp Pro Asn Thr Cys Phe Phe Glu Gly Gln Gln Arg Pro His Gly Ala Arg Trp Ala Pro Asn Tyr Asp Pro Leu Cys Ser Leu Cys Thr Cys Gln Arg Arg Thr Val Ile Cys Asp Pro Val Val Cys Pro Pro Pro Ser Cys Pro His Pro Val Gln Ala Pro Asp Gln Cys Cys Pro Val Cys Pro Glu Lys Gln Asp Val Arg Asp Leu Pro Gly Leu Pro Arg Ser Arg Asp Pro Gly Glu Gly Cys Tyr Phe Asp Gly Asp Arg Ser Trp Arg Ala Ala Gly Thr Arg Trp His Pro Val Val Pro Pro Phe Gly Leu Ile Lys Cys Ala Val Cys Thr Cys Lys Gly Gly Thr Gly Glu Val His Cys Glu Lys Val Gln Cys Pro Arg Leu Ala Cys Ala Gln Pro Val Arg Val Asn Pro Thr Asp Cys Cys Lys Gln Cys Pro Val Gly Ser Gly 845 Ala His Pro Gln Leu Gly Asp Pro Met Gln Ala Asp Gly Pro Arg 860 Gly Cys Arg Phe Ala Gly Gln Trp Phe Pro Glu Ser Gln Ser Trp His Pro Ser Val Pro Pro Phe Gly Glu Met Ser Cys Ile Thr Cys 895 Arg Cys Gly Ala Gly Val Pro His Cys Glu Arg Asp Asp Cys Ser Leu Pro Leu Ser Cys Gly Ser Gly Lys Glu Ser Arg Cys Cys Ser Arg Cys Thr Ala His Arg Arg Pro Pro Glu Thr Arg Thr Asp Pro 935 Glu Leu Glu Lys Glu Ala Glu Gly Ser

```
<210> 8
  <211> 44
  <212> DNA
  <213> Artificial Sequence
  <223> Synthetic Oligonucleotide probe
  <400> 8
   <210> 9
  <211> 28
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
   cggacgcgtg gggcctgcgc acccagct 28
  <210> 10
  <211> 36
   <212> DNA
   <213> Artificial Sequence
m
  <223> Synthetic oligonucleotide probe
   <400> 10
   geogeteece gaacgggeag eggeteette teagaa 36
Ü
  <210> 11
  <211> 36
  <212> DNA
   <213> Artificial Sequence
1
   <223> Synthetic oligonucleotide probe
   <400> 11
    ggcgcacagc acgcagcgca tcaccccgaa tggctc 36
   <210> 12
   <211> 26
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic Oligonucleotide Probe
   <400> 12
    gtgctgccca tccgttctga gaagga 26
   <210> 13
```

- <211> 22
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 13

gcagggtgct caaacaggac ac 22

- <210> 14
- <211> 3231
- <212> DNA
- <213> Homo Sapien
- <400> 14
- ggcggagcag ccctagccgc caccgtcgct ctcgcagctc tcgtcgccac 50 tgccaccgcc gccgccgtca ctgcgtcctg gctccggctc ccgcgccctc 100 ccggccggcc atgcagcccc gccgcgccca ggcgcccggt gcgcagctgc 150 tgcccgcgct ggccctgctg ctgctgctgc tcggagcggg gccccgaggc 200 agetecetgg ccaacceggt gecegeegeg ceettgtetg egeeegggee 250 gtgcgccgcg cagccctgcc ggaatggggg tgtgtgcacc tcgcgccctg 300 ageoggacco geageaccog geoccogeog gegageotgg etacagetge 350 acctgccccg ccgggatctc cggcgccaac tgccagcttg ttgcagatcc 400 ttgtgccagc aaccettgtc accatggcaa ctgcagcagc agcagcagca 450 gcagcagcga tggctacctc tgcatttgca atgaaggcta tgaaggtccc 500 aactgtgaac aggcacttcc cagtctccca gccactggct ggaccgaatc 550 catggcaccc cgacagette agectgttee tgctacteag gageetgaca 600 aaatcctgcc tcgctctcag gcaacggtga cactgcctac ctggcagccg 650 aaaacagggc agaaagttgt agaaatgaaa tgggatcaag tggaggtgat 700 cccagatatt gcctgtggga atgccagttc taacagctct gcgggtggcc 750 gcctggtatc ctttgaagtg ccacagaaca cctcagtcaa gattcggcaa 800 gatgccactg cctcactgat tttgctctgg aaggtcacgg ccacaggatt 850 ccaacagtgc tccctcatag atggacgaag tgtgaccccc cttcaggctt 900 cagggggact ggtcctcctg gaggagatgc tcgccttggg gaataatcac 950 tttattggtt ttgtgaatga ttctgtgact aagtctattg tggctttgcg 1000 cttaactctg gtggtgaagg tcagcacctg tgtgccgggg gagagtcacg 1050

caaatgactt ggagtgttca ggaaaaggaa aatgcaccac gaagccgtca 1100 gaggcaactt tttcctgtac ctgtgaggag cagtacgtgg gtactttctg 1150 tgaagaatac gatgettgee agaggaaace ttgeeaaaac aacgegaget 1200 gtattgatgc aaatgaaaag caagatggga gcaatttcac ctgtgtttgc 1250 cttcctggtt atactggaga gctttgccag tccaagattg attactgcat 1300 cctagaccca tgcagaaatg gagcaacatg catttccagt ctcagtggat 1350 tcacctgcca gtgtccagaa ggatacttcg gatctgcttg tgaagaaaag 1400 gtggacccct gcgcctcgtc tccgtgccag aacaacggca cctgctatgt 1450 ggacggggta cactttacct gcaactgcag cccgggcttc acagggccga 1500 cctgtgccca gcttattgac ttctgtgccc tcagcccctg tgctcatggc 1550 acgtgccgca gcgtgggcac cagctacaaa tgcctctgtg atccaggtta 1600 ccatggcctc tactgtgagg aggaatataa tgagtgcctc tccgctccat 1650 gcctgaatgc agccacctgc agggacctcg ttaatggcta tgagtgtgtg 1700 tgcctggcag aatacaaagg aacacactgt gaattgtaca aggatccctg 1750 cgctaacgtc agctgtctga acggagccac ctgtgacagc gacggcctga 1800 atggcacgtg catctgtgca cccgggttta caggtgaaga gtgcgacatt 1850 gacataaatg aatgtgacag taacccctgc caccatggtg ggagctgcct 1900 ggaccagece aatggttata actgccaetg ecegeatggt tgggtgggag 1950 caaactgtga gatccacctc caatggaagt ccgggcacat ggcggagagc 2000 ctcaccaaca tgccacggca ctccctctac atcatcattg gagccctctg 2050 cgtggccttc atccttatgc tgatcatcct gatcgtgggg atttgccgca 2100 tcagccgcat tgaataccag ggttcttcca ggccagccta tgaggagttc 2150 tacaactgcc gcagcatcga cagcgagttc agcaatgcca ttgcatccat 2200 ccggcatgcc aggtttggaa agaaatcccg gcctgcaatg tatgatgtga 2250 geoccatege ctatgaagat tacagteetg atgacaaace ettggteaca 2300 ctgattaaaa ctaaagattt gtaatctttt tttggattat ttttcaaaaa 2350 gatgagatac tacactcatt taaatatttt taagaaaata aaaagcttaa 2400 gaaatttaaa atgctagctg ctcaagagtt ttcagtagaa tatttaagaa 2450 ctaattttct gcagctttta gtttggaaaa aatattttaa aaacaaaatt 2500

tgtgaaacct atagacgatg ttttaatgta ccttcagctc tctaaactgt 2550 gtgcttctac tagtgtgtgc tcttttcact gtagacacta tcacgagacc 2600 cagattaatt totgtggttg ttacagaata agtotaatca aggagaagtt 2650 tetgtttgae gtttgagtge eggetttetg agtagagtta ggaaaaceae 2700 gtaacgtagc atatgatgta taatagagta tacccgttac ttaaaaagaa 2750 gtctgaaatg ttcgttttgt ggaaaagaaa ctagttaaat ttactattcc 2800 taacccgaat gaaattagcc tttgccttat tctgtgcatg ggtaagtaac 2850 ttatttctgc actgttttgt tgaactttgt ggaaacattc tttcgagttt 2900 gtttttgtca ttttcgtaac agtcgtcgaa ctaggcctca aaaacatacg 2950 taacgaaaag gcctagcgag gcaaattctg attgatttga atctatattt 3000 ttetttaaaa agteaagggt tetatattgt gagtaaatta aatttaeatt 3050 tgagttgttt gttgctaaga ggtagtaaat gtaagagagt actggttcct 3100 teagtagtga gtatttetea tagtgeaget ttatttatet eeaggatgtt 3150 tttgtggctg tatttgattg atatgtgctt cttctgattc ttgctaattt 3200 ccaaccatat tgaataaatg tgatcaagtc a 3231

<210> 15

<211> 737

<212> PRT

<213> Homo Sapien

<400> 15

Met Gln Pro Arg Arg Ala Gln Ala Pro Gly Ala Gln Leu Leu Pro

Ala Leu Ala Leu Leu Leu Leu Leu Gly Ala Gly Pro Arg Gly

Ser Ser Leu Ala Asn Pro Val Pro Ala Ala Pro Leu Ser Ala Pro

Gly Pro Cys Ala Ala Gln Pro Cys Arg Asn Gly Gly Val Cys Thr

Ser Arg Pro Glu Pro Asp Pro Gln His Pro Ala Pro Ala Gly Glu

Pro Gly Tyr Ser Cys Thr Cys Pro Ala Gly Ile Ser Gly Ala Asn

Cys Gln Leu Val Ala Asp Pro Cys Ala Ser Asn Pro Cys His His

Gly Asn Cys Ser Ser Ser Ser Ser Ser Ser Ser Asp Gly Tyr Leu

				110					115					120
Cys	Ile	Cys	Asn	Glu 125	Gly	Tyr	Glu	Gly	Pro 130	Asn	Cys	Glu	Gln	Ala 135
Leu	Pro	Ser	Leu	Pro 140	Ala	Thr	Gly	Trp	Thr 145	Glu	Ser	Met	Ala	Pro 150
Arg	Gln	Leu	Gln	Pro 155	Val	Pro	Ala	Thr	Gln 160	Glu	Pro	Asp	Lys	Ile 165
Leu	Pro	Arg	Ser	Gln 170	Ala	Thr	Val	Thr	Leu 175	Pro	Thr	Trp	Gln	Pro 180
Lys	Thr	Gly	Gln	Lys 185	Val	Val	Glu	Met	Lys 190	Trp	Asp	Gln	Val	Glu 195
Val	Ile	Pro	Asp	Ile 200	Ala	Cys	Gly	Asn	Ala 205	Ser	Ser	Asn	Ser	Ser 210
Ala	Gly	Gly	Arg	Leu 215	Val	Ser	Phe	Glu	Val 220	Pro	Gln	Asn	Thr	Ser 225
Val	Lys	Ile	Arg	Gln 230	Asp	Ala	Thr	Ala	Ser 235	Leu	Ile	Leu	Leu	Trp 240
Lys	Val	Thr	Ala	Thr 245	Gly	Phe	Gln	Gln	Cys 250	Ser	Leu	Ile	Asp	Gly 255
Arg	Ser	Val	Thr	Pro 260		Gln	Ala	Ser	Gly 265		Leu	Val	Leu	Leu 270
Glu	Glu	Met	Leu	Ala 275		Gly	Asn	Asn	His 280		Ile	Gly	Phe	Val 285
Asn	Asp	Ser	Val	Thr 290		Ser	Ile	Val	Ala 295	Leu	Arg	Leu	Thr	Leu 300
Val	Val	Lys	Val	Ser 305		Cys	Val	Pro	Gly 310		Ser	His	Ala	Asn 315
Asp	Leu	Glu	Cys	Ser 320	Gly	Lys	Gly	Lys	Cys 325	Thr	Thr	Lys	Pro	Ser 330
Glu	Ala	Thr	Phe	Ser 335		Thr	Cys	Glu	340		туг	· Val	Gly	Thr 345
Phe	Cys	Glu	Glu	350		Ala	Cys	Gln	355		Pro	суя	s Glr	Asn 360
Asn	Ala	Ser	Cys	365		Ala	Asn	Glu	Lys 370		a Asp	Gly	/ Ser	375
Phe	Thr	Cys	s Val	. Cys		Pro	Gly	Tyr	Th: 385	Gly	/ Glu	ı Lev	ı Cys	390
Ser	Lys	: Ile	e Asp	395		: Ile	Leu	a Asp	9 Pro		s Arg	g Ası	n Gly	/ Ala 405

Thr Cys Ile Ser Ser Leu Ser Gly Phe Thr Cys Gln Cys Pro Glu Gly Tyr Phe Gly Ser Ala Cys Glu Glu Lys Val Asp Pro Cys Ala Ser Ser Pro Cys Gln Asn Asn Gly Thr Cys Tyr Val Asp Gly Val His Phe Thr Cys Asn Cys Ser Pro Gly Phe Thr Gly Pro Thr Cys 455 Ala Gln Leu Ile Asp Phe Cys Ala Leu Ser Pro Cys Ala His Gly Thr Cys Arg Ser Val Gly Thr Ser Tyr Lys Cys Leu Cys Asp Pro Gly Tyr His Gly Leu Tyr Cys Glu Glu Glu Tyr Asn Glu Cys Leu Ser Ala Pro Cys Leu Asn Ala Ala Thr Cys Arg Asp Leu Val Asn Gly Tyr Glu Cys Val Cys Leu Ala Glu Tyr Lys Gly Thr His Cys Glu Leu Tyr Lys Asp Pro Cys Ala Asn Val Ser Cys Leu Asn Gly Ala Thr Cys Asp Ser Asp Gly Leu Asn Gly Thr Cys Ile Cys Ala Pro Gly Phe Thr Gly Glu Glu Cys Asp Ile Asp Ile Asn Glu Cys Asp Ser Asn Pro Cys His His Gly Gly Ser Cys Leu Asp Gln Pro Asn Gly Tyr Asn Cys His Cys Pro His Gly Trp Val Gly Ala Asn 610 Cys Glu Ile His Leu Gln Trp Lys Ser Gly His Met Ala Glu Ser 625 Leu Thr Asn Met Pro Arg His Ser Leu Tyr Ile Ile Gly Ala Leu Cys Val Ala Phe Ile Leu Met Leu Ile Ile Leu Ile Val Gly 660 Ile Cys Arg Ile Ser Arg Ile Glu Tyr Gln Gly Ser Ser Arg Pro Ala Tyr Glu Glu Phe Tyr Asn Cys Arg Ser Ile Asp Ser Glu Phe 690 680 Ser Asn Ala Ile Ala Ser Ile Arg His Ala Arg Phe Gly Lys Lys 695 700 705

Ser Arg Pro Ala Met Tyr Asp Val Ser Pro Ile Ala Tyr Glu Asp 710 715 720

Tyr Ser Pro Asp Asp Lys Pro Leu Val Thr Leu Ile Lys Thr Lys 725 730 735

Asp Leu

<210> 16

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 16

tgtaaaacga cggccagtta aatagacctg caattattaa tct 43

<210> 17

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

or or

Ø

Ш

<223> Synthetic Oligonucleotide Probe

<400> 17

caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41

<210> 18

<211> 508

<212> DNA

<213> Homo Sapien

<400> 18

ctctggaaggtcacggccacaggattcaacagtgctcctcatagatgg50acgaaagtgtgaccccctttcaggctttcagggggactggtcctcctgg100aggagatgctcgccttggggaataatcactttattggttttgtgaatgat150tctgtgactaagtctattgtggctttgcgcttaactctggtggtgaaggt200cagcacctgtgtgccgggggagagtcacgcaaatgacttggagtgttcag250gaaaaggaaaatgcaccacgaagccgtcagaggcaactttttcctgtacc300tgtgaggagcagtacgtgggtactttctgtgaagaatacgatgcttgcca350gaggaaaccttgccaaaacaacgcgagctgtattgatgcaaatgaaaagc400aagatgggagcaatttcacctgtgtttgccttcctggttatactggagag450

ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500

```
<211> 508
  <212> DNA
  <213> Homo Sapien
  <400> 19
   ctctggaagg tcacggccac aggattccaa cagtgctccc tcatagatgg 50
   acgaaagtgt gaccccctt tcaggctttc agggggactg gtcctcctgg 100
   aggagatgct cgccttgggg aataatcact ttattggttt tgtgaatgat 150
   tetgtgaeta agtetattgt ggetttgege ttaaetetgg tggtgaaggt 200
   cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250
    gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttcctgtacc 300
    tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350
    gaggaaacct tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400
    aagatgggag caatttcacc tgtgtttgcc ttcctggtta tactggagag 450
    ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500
    taggggag 508
m
   <210> 20
T
   <211> 23
   <212> DNA
   <213> Artificial Sequence
ij
   <223> Synthetic Oligonucleotide Probe
W
   <400> 20
    ctctggaagg tcacggccac agg 23
    <210> 21
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 21
     ctcagttcgg ttggcaaagc tctc 24
    <210> 22
    <211> 69
```

taggggag 508

<212> DNA

<220>

<213> Artificial Sequence

<210> 19

<223> Synthetic oligonucleotide probe

<400> 22
cagtgctccc tcatagatgg acgaaagtgt gacccccctt tcaggcgaga 50
gctttgccaa ccgaactga 69

<210> 23 <211> 1520 <212> DNA

<213> Homo Sapien

<400> 23 getgagtetg etgeteetge tgetgetget ceageetgta acetgtgeet 50 acaccacgcc aggecececc agagecetea ecaegetggg egececeaga 100 geccaeacea tgeegggeae etaegeteee tegaecaeae teagtagtee 150 cagcacccag ggcctgcaag agcaggcacg ggccctgatg cgggacttcc 200 cgctcgtgga cggccacaac gacctgcccc tggtcctaag gcaggtttac 250 cagaaagggc tacaggatgt taacctgcgc aatttcagct acggccagac 300 cagectggae aggettagag atggeetegt gggegeeeag ttetggteag 350 cctatgtgcc atgccagacc caggaccggg atgccctgcg cctcaccctg 400 gagcagattg acctcatacg ccgcatgtgt gcctcctatt ctgagctgga 450 gettgtgace teggetaaag etetgaacga cacteagaaa ttggeetgee 500 teateggtgt agagggtgge cactegetgg acaatageet etecatetta 550 cgtaccttct acatgctggg agtgcgctac ctgacgctca cccacacctg 600 caacacacce tgggcagaga gctccgctaa gggcgtccac tccttctaca 650 acaacatcag cgggctgact gactttggtg agaaggtggt ggcagaaatg 700 aaccgcctgg gcatgatggt agacttatcc catgtctcag atgctgtggc 750 acggcgggcc ctggaagtgt cacaggcacc tgtgatcttc tcccactcgg 800 ctgcccgggg tgtgtgcaac agtgctcgga atgttcctga tgacatcctg 850 cagettetga agaagaaegg tggegtegtg atggtgtett tgtecatggg 900 agtaatacag tgcaacccat cagccaatgt gtccactgtg gcagatcact 950 tcgaccacat caaggetgte attggateca agtteategg gattggtgga 1000 gattatgatg gggccggcaa attccctcag gggctggaag acgtgtccac 1050 atacccggtc ctgatagagg agttgctgag tcgtggctgg agtgaggaag 1100 agetteaggg tgteettegt ggaaacetge tgegggtett cagacaagtg 1150 gaaaaggtac aggaagaaa caaatggcaa agccccttgg aggacaagtt 1200 cccggatgag cagctgagca gttcctgcca ctccgacctc tcacgtctgc 1250 gtcagagaca gagtctgact tcaggccagg aactcactga gattcccata 1300 cactggacag ccaagttacc agccaagtgg tcagtctcag agtcctcccc 1350 ccacatggcc ccagtccttg cagttgtggc caccttccca gtccttattc 1400 tgtggctctg atgacccagt tagtcctgcc agatgtcact gtagcaagcc 1450 acagacaccc cacaaagttc ccctgttgtg caggcacaaa tatttcctga 1500 aataaatgtt ttggacatag 1520

<210> 24 <211> 433 <212> PRT <213> Homo Sapien

Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser 15

Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe 20

Pro Leu Val Asp Gly His Ser Leu Asp Arg Leu Arg Asp Leu Arg Gln Asp Gln Asp Gln Asp Arg Asp Phe 30

Tyr Gly Gln Thr Ser Leu Asp Arg Leu Arg Asp Gly Leu Val Gly 70

Asp Ala Leu Arg Leu Thr Leu Glu Gln Ile Asp Leu Ile Arg Arg 90

Met Cys Ala Ser Tyr Ser Glu Leu Glu Leu Glu Leu Glu Leu Val Thr Ser Ala Lys 120

Ala Leu Asn Asp Thr Gln Lys Leu Asp Asn Ser Leu Ser Ile Leu Arg Thr Phe 150

Gly Gly His Ser Leu Asp Asn Ser Leu Ser Ile Leu Arg Thr Phe

Tyr Met Leu Gly Val Arg Tyr Leu Thr Leu Thr His Thr Cys Asn

Thr Pro Trp Ala Glu Ser Ser Ala Lys Gly Val His Ser Phe Tyr

155

170

175

165


```
<400> 25
   agttctggtc agcctatgtg cc 22
  <210> 26
  <211> 24
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 26
   cgtgatggtg tctttgtcca tggg 24
  <210> 27
  <211> 24
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
   <400> 27
   ctccaccaat cccgatgaac ttgg 24
Ō
   <210> 28
ū
   <211> 50
   <212> DNA
   <213> Artificial Sequence
m
M
  <220>
  <223> Synthetic oligonucleotide probe
   <400> 28
    gagcagattg acctcatacg ccgcatgtgt gcctcctatt ctgagctgga 50
O
L
   <210> 29
   <211> 1416
   <212> DNA
   <213> Homo Sapien
   <400> 29
    aaaacctata aatattccgg attattcata ccgtcccacc atcgggcgcg 50
    gatecgegge egegaattet aaaccaacat geegggeace taegeteeet 100
    cgaccacact cagtagtece ageacceagg geetgeaaga geaggeaegg 150
    gccctgatgc gggacttccc gctcgtggac ggccacaacg acctgcccct 200
    ggtcctaagg caggtttacc agaaagggct acaggatgtt aacctgcgca 250
     atttcagcta eggecagace agectggaca ggettagaga tggeetegtg 300
     ggcgcccagt tctggtcagc ctatgtgcca tgccagaccc aggaccggga 350
     tgccctgcgc ctcaccctgg agcagattga cctcatacgc cgcatgtgtg 400
```

cctcctattc tgagctggag cttgtgacct cggctaaagc tctgaacgac 450 actcagaaat tggcctgcct catcggtgta gagggtggcc actcgctgga 500 caatageete tecatettae gtaeetteta eatgetggga gtgegetaee 550 tgacgctcac ccacacctgc aacacaccct gggcagagag ctccgctaag 600 ggcgtccact ccttctacaa caacatcagc gggctgactg actttggtga 650 gaaggtggtg gcagaaatga accgcctggg catgatggta gacttatccc 700 atgteteaga tgetgtggea eggegggeee tggaagtgte acaggeaeet 750 gtgatettet eccaetegge tgeeeggggt gtgtgeaaca gtgeteggaa 800 tgttcctgat gacatcctgc agcttctgaa gaagaacggt ggcgtcgtga 850 tggtgtcttt gtccatggga gtaatacagt gcaacccatc agccaatgtg 900 tccactgtgg cagatcactt cgaccacatc aaggetgtca ttggatccaa 950 gttcatcggg attggtggag attatgatgg ggccggcaaa ttccctcagg 1000 ggctggaaga cgtgtccaca tacccggtcc tgatagagga gttgctgagt 1050 cgtggctgga gtgaggaaga gcttcagggt gtccttcgtg gaaacctgct 1100 gcgggtcttc agacaagtgg aaaaggtaca ggaagaaaac aaatggcaaa 1150 gccccttgga ggacaagttc ccggatgagc agctgagcag ttcctgccac 1200 teegaeetet eaegtetgeg teagagaeag agtetgaett eaggeeagga 1250 actcactgag attcccatac actggacagc caagttacca gccaagtggt 1300 cagteteaga gteeteece caecetgaca aaacteacac atgeecaceg 1350 tgcccagcac ctgaactcct ggggggaccg tcagtcttcc tcttcccccc 1400 aaaacccaag gacacc 1416

<210> 30

<211> 446

<212> PRT

<213> Homo Sapien

<400> 30

Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser

Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe

Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln 45

Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser

					50					55					60
Tyr	Gly	Glr	1 7	Thr	Ser 65	Leu	Asp	Arg	Leu	Arg 70	Asp	Gly	Leu	Val	Gly 75
Ala	Gln	Phe	e 1	rp	Ser 80	Ala	Tyr	Val	Pro	Cys 85	Gln	Thr	Gln	Asp	Arg 90
Asp	Ala	Le	ı /	Arg	Leu 95	Thr	Leu	Glu	Gln	Ile 100	Asp	Leu	Ile	Arg	Arg 105
Met	Cys	Ala	а :	Ser	Tyr 110	Ser	Glu	Leu	Glu	Leu 115	Val	Thr	Ser	Ala	Lys 120
Ala	Leu	As	n.	Asp	Thr 125	Gln	Lys	Leu	Ala	Cys 130	Leu	Ile	Gly	Val	Glu 135
Gly	Gly	Hi	S	Ser	Leu 140	Asp	Asn	Ser	Leu	Ser 145	Ile	Leu	Arg	Thr	Phe 150
Tyr	Met	Le	u	Gly	Val 155	Arg	Tyr	Leu	Thr	Leu 160	Thr	His	Thr	Cys	Asn 165
Thr	Pro	Tr	p	Ala	Glu 170	Ser	Ser	Ala	Lys	Gly 175	Val	His	Ser	Phe	Tyr 180
Asn	Asn	ıll	e	Ser	Gly 185		Thr	Asp	Phe	Gly 190	Glu	Lys	Val	Val	Ala 195
Glu	Met	. As	n	Arg	Leu 200		Met	Met	Val	Asp 205	Leu	Ser	His	Val	Ser 210
Asp	Ala	ı Va	1	Ala	Arg 215		Ala	Leu	Glu	Val 220	Ser	Gln	Ala	Pro	Val 225
Ile	Phe	e Se	er	His	Ser 230		Alā	a Arc	g Gly	v Val 235	Cys	Asn	Ser	Ala	Arg 240
Asr	ı Val	l Pı	0	Asp	Asp 245		e Lev	ı Glr	ı Leı	1 Let 250	ı Lys	Lys	s Asr	n Gly	Gly 255
Va2	l Va	l Me	et	Val	Ser 260	Let	ı Ser	r Met	: Gly	7 Va: 26	l Ile 5	e Glr	ı Cys	s Asr	270
Se	r Al	a A	sn	Val	Ser 275		r Vai	l Ala	a Asp	280	s Phe O	e Asp) His	; Ile	285
Ala	a Va	1 I	le	Gly	290		s Ph	e Ile	e Gly	y Il 29	e Gly 5	y Gly	y As	р Ту	Asp 300
Gl	y Al	a G	ly	Lys	30!		o Gl	n Gl	y Le	u Gl 31	u Asj 0	o Va	l Se	r Th	7 Tyr
Pr	o Va	1 L	eu	Ile	32	u Gl	u Le	u Le	u Se	r Ar 32	g Gl:	y Tr	p Se	r Gl	u Gli 330
Gl	u Le	u G	ln	Gly	y Va 33		u Ar	g Gl	y As	n Le 34	u Le	u Ar	g Va	l Ph	e Ar

Gln Val Glu Lys Val Gln Glu Glu Asn Lys Trp Gln Ser Pro Leu Glu Asp Lys Phe Pro Asp Glu Gln Leu Ser Ser Cys His Ser Asp Leu Ser Arg Leu Arg Gln Arg Gln Ser Leu Thr Ser Gly Gln 385 Glu Leu Thr Glu Ile Pro Ile His Trp Thr Ala Lys Leu Pro Ala 395 Lys Trp Ser Val Ser Glu Ser Ser Pro His Pro Asp Lys Thr His 410 Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr

<210> 31 <211> 1790 <212> DNA <213> Homo Sapien

<400> 31 cgcccagcga cgtgcgggcg gcctggcccg cgccctcccg cgcccggcct 50 gegteeegeg ecetgegeea eegeegeega geegeageee geegegegee 100 cceggcageg ccggccccat gcccgccggc cgccggggcc ccgccgccca 150 atecgegegg eggeegeege egttgetgee eetgetgetg etgetetgeg 200 teetegggge geegegagee ggateaggag eccaeaage tgtgateagt 250 ccccaggate ccaegettet categgetee teeetgetgg ccaectgete 300 agtgcacgga gacccaccag gagccaccgc cgagggcetc tactggaccc 350 teaacgggcg ccgcctgccc cctgagctct cccgtgtact caacgcctcc 400 acettggete tggeeetgge caaceteaat gggteeagge ageggteggg 450 ggacaacete gtgtgecacg ecegtgacgg cageateetg getggeteet 500 geetetatgt tggeetgeee eeagagaaae eegteaaeat eagetgetgg 550 tecaagaaca tgaaggaett gaeetgeege tggaegeeag gggeeeacgg 600 ggagacette etceacacea actaetecet caagtacaag ettaggtggt 650 atggccagga caacacatgt gaggagtacc acacagtggg gccccactcc 700 tgccacatcc ccaaggacct ggctctcttt acgccctatg agatctgggt 750 ggaggccacc aaccgcctgg gctctgcccg ctccgatgta ctcacgctgg 800 atatectgga tgtggtgaee aeggaeeeee egeeegaegt geaegtgage 850 cgcgtcgggg gcctggagga ccagctgagc gtgcgctggg tgtcgccacc 900 cgccctcaag gatttcctct ttcaagccaa ataccagatc cgctaccgag 950 tggaggacag tgtggactgg aaggtggtgg acgatgtgag caaccagacc 1000 tectgeegee tggeeggeet gaaaceegge acegtgtact tegtgeaagt 1050 gegetgeaac ecetttggea tetatggete caagaaagee gggatetgga 1100 gtgagtggag ccaccccaca gccgcctcca ctccccgcag tgagcgcccg 1150 ggcccgggcg gcggggcgtg cgaaccgcgg ggcggagagc cgagctcggg 1200 geeggtgegg egegagetea ageagtteet gggetggete aagaageaeg 1250 cgtactgctc caacctcage ttccgcctct acgaccagtg gcgagcctgg 1300 atgcagaagt cgcacaagac ccgcaaccag gacgagggga tcctgccctc 1350 gggcagacgg ggcacggcga gaggtcctgc cagataagct gtaggggctc 1400 aggccaccet ccctgccacg tggagacgca gaggccgaac ccaaactggg 1450 gccacctctg taccctcact tcagggcacc tgagccaccc tcagcaggag 1500 ctggggtggc ccctgagctc caacggccat aacagctctg actcccacgt 1550 gaggccacct ttgggtgcac cccagtgggt gtgtgtgtgt gtgtgagggt 1600 tggttgagtt gcctagaacc cctgccaggg ctgggggtga gaaggggagt 1650 cattactece cattacetag ggeceeteca aaagagteet tttaaataaa 1700 tgagctattt aggtgctgtg attgtgaaaa aaaaaaaaa aaaaaaaaa 1750 aaaaaaaaa aaaaaaaaa aaaaaaaaaa 1790

<210> 32

<211> 422

<212> PRT

<213> Homo Sapien

<400> 32

Met Pro Ala Gly Arg Arg Gly Pro Ala Ala Gln Ser Ala Arg Arg

Pro Pro Pro Leu Leu Pro Leu Leu Leu Leu Cys Val Leu Gly

Ala Pro Arg Ala Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro

Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Leu Ala Thr Cys

Ser	Val	His	Gly	Asp 65	Pro	Pro	Gly	Ala	Thr 70	Ala	Glu	Gly	Leu	Tyr 75
Trp	Thr	Leu	Asn	Gly 80	Arg	Arg	Leu	Pro	Pro 85	Glu	Leu	Ser	Arg	Val 90
Leu	Asn	Ala	Ser	Thr 95	Leu	Ala	Leu	Ala	Leu 100	Ala	Asn	Leu	Asn	Gly 105
Ser	Arg	Gln	Arg	Ser 110	Gly	Asp	Asn	Leu	Val 115	Cys	His	Ala	Arg	Asp 120
Gly	Ser	Ile	Leu	Ala 125	Gly	Ser	Cys	Leu	Tyr 130	Val	Gly	Leu	Pro	Pro 135
Glu	Lys	Pro	Val	Asn 140	Ile	Ser	Cys	Trp	Ser 145	Lys	Asn	Met	Lys	Asp 150
Leu	Thr	Cys	Arg	Trp 155	Thr	Pro	Gly	Ala	His 160	Gly	Glu	Thr	Phe	Leu 165
His	Thr	Asn	Tyr	Ser 170	Leu	Lys	Tyr	Lys	Leu 175	Arg	Trp	Tyr	Gly	Gln 180
Asp	Asn	Thi	Cys	Glu 185		Tyr	His	Thr	Val 190	Gly	Pro	His	Ser	Cys 195
His	Ile	Pro	b Lys	200		Ala	Leu	Phe	Thr 205	Pro	Tyr	Glu	Ile	Trp 210
Val	. Glu	ı Ala	a Thi	215	Arg	Leu	Gly	Ser	Ala 220	Arg	Ser	Asp	Val	Leu 225
Thr	: Le	ı Ası	p Ile	230		Val	Val	Thr	Thr 235	Asp	Pro	Pro	Pro	240
Va]	l Hi:	s Va	l Se	r Arg 245	y Val	Gly	Gly	/ Leu	Glu 250	a Asp	Gln	Leu	ı Ser	Val 255
Arg	g Tr	p Va	l Se	r Pro 260	Pro	Ala	Let	ı Lys	Asp 265	Phe	e Lev	ı Phe	e Glr	1 Ala 270
Lys	з Ту	r Gl	n Il	e Arg 27	д Туг 5	Arg	y Val	l Glu	280	Ser O	val	l Asp	o Tri	285
Va:	l Va	l As	p As	p Va:		r Ası	n Gli	n Thi	c Se: 29!	r Cys 5	s Arg	g Let	ı Ala	a Gly 300
Le	u Ly	s Pr	o Gl	y Th: 30	r Val	1 Ту	r Ph	e Va	1 Gl: 31	n Vai	l Arg	g Cy:	s As	n Pro 315
Ph	e Gl	y Il	е Ту	r Gl 32		r Ly:	s Ly	s Ala	a Gl; 32	y Ile 5	e Tr	p Se	r Gl	u Trp 330
Se	r Hi	s Pr	o Th	r Al 33	a Al 5	a Se	r Th	r Pr	o Ar 34	g Se	r Gl	u Ar	g Pr	o Gly 345
Pr	o Gl	y Gl	.y Gl	y Al	а Су	s Gl	u Pr	o Ar	g Gl	y Gl	y Gl	u Pr	o Se	r Ser

	350		355			360						
Gly Pro Val Arg	Arg Glu I	Leu Lys	Gln Phe 370	Leu Gly	Trp Leu	Lys 375						
Lys His Ala Tyr	Cys Ser 1	Asn Leu	Ser Phe 385	Arg Leu	Tyr Asp	Gln 390						
Trp Arg Ala Trp	Met Gln 1	Lys Ser	His Lys	Thr Arg	Asn Gln	Asp 405						
Glu Gly Ile Leu	Pro Ser (Gly Arg	Arg Gly 415	Thr Ala	Arg Gly	Pro 420						
Ala Arg												
<210> 33 <211> 23 <212> DNA <213> Artificial	Sequence											
<220> <223> Synthetic	oligonucl	eotide.	probe									
<400> 33 cccgcccgac gtgcacgtga gcc 23												
<210> 34 <211> 23 <212> DNA <213> Artificial Sequence												
<220> <223> Synthetic oligonucleotide probe												
<400> 34 tgagccagcc cag	gaactgc tt	tg 23										
<210> 35 <211> 50 <212> DNA <213> Artificia	l Sequence	e										
<220> <223> Synthetic	oligonuc	leotide	probe									
<400> 35 caagtgcgct gca	acccctt to	ggcatct	at ggctc	caaga aa	gccgggat	50						
<210> 36 <211> 1771 <212> DNA <213> Homo Sapi	en											

TODENO. +BAEHPRO

<400> 36

cccacgcgtc cgctggtgtt agatcgagca accctctaaa agcagtttag 50

agtggtaaaa aaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg 100 atgaaatttc ttctggacat cctcctgctt ctcccgttac tgatcgtctg 150 ctccctagag tccttcgtga agctttttat tcctaagagg agaaaatcag 200 tcaccggcga aatcgtgctg attacaggag ctgggcatgg aattgggaga 250 ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300 tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg 350 gtgccaaggt tcataccttt gtggtagact gcagcaaccg agaagatatt 400 tacagetetg caaagaaggt gaaggeagaa attggagatg ttagtatttt 450 agtaaataat gctggtgtag tctatacatc agatttgttt gctacacaag 500 atcctcagat tgaaaagact tttgaagtta atgtacttgc acatttctgg 550 actacaaagg catttettee tgcaatgacg aagaataace atggecatat 600 tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg 650 cttactgttc aagcaagttt gctgctgttg gatttcataa aactttgaca 700 gatgaactgg ctgccttaca aataactgga gtcaaaacaa catgtctgtg 750 tectaattte gtaaacaetg getteateaa aaateeaagt acaagtttgg 800 gacccactct ggaacctgag gaagtggtaa acaggctgat gcatgggatt 850 ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900 aacattggaa aggateette etgagegttt eetggeagtt ttaaaaegaa 950 aaatcagtgt taagtttgat gcagttattg gatataaaat gaaagcgcaa 1000 taagcaccta gttttctgaa aactgattta ccaggtttag gttgatgtca 1050 tctaatagtg ccagaatttt aatgtttgaa cttctgtttt ttctaattat 1100 ccccatttct tcaatatcat ttttgaggct ttggcagtct tcatttacta 1150 ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200 tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac 1250 tttattaaaa taatttccaa gattatttgt ggctcacctg aaggctttgc 1300 aaaatttgta ccataaccgt ttatttaaca tatatttta tttttgattg 1350 cacttaaatt ttgtataatt tgtgtttctt tttctgttct acataaaatc 1400 agaaacttca agctctctaa ataaaatgaa ggactatatc tagtggtatt 1450 tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctacccatt 1500 <210> 37 <211> 300 <212> PRT <213> Homo Sapien

Val Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg 20 25 30

Arg Lys Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly $35 \cdot 40$ 45

His Gly Ile Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys 50 55 60

Ser Lys Leu Val Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu 65 70 75

Thr Ala Ala Lys Cys Lys Gly Leu Gly Ala Lys Val His Thr Phe 80 85 90

Val Val Asp Cys Ser Asn Arg Glu Asp Ile Tyr Ser Ser Ala Lys 95 100 105

Lys Val Lys Ala Glu Ile Gly Asp Val Ser Ile Leu Val Asn Asn 110 115 120

Ala Gly Val Val Tyr Thr Ser Asp Leu Phe Ala Thr Gln Asp Pro 125 130 135

Gln Ile Glu Lys Thr Phe Glu Val Asn Val Leu Ala His Phe Trp 140 145 150

Thr Thr Lys Ala Phe Leu Pro Ala Met Thr Lys Asn Asn His Gly
155 160 165

His Ile Val Thr Val Ala Ser Ala Ala Gly His Val Ser Val Pro 170 175 180

Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala Val Gly Phe

His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile Thr Gly

	200	205		210					
Val Lys Thr Thr	Cys Leu Cys 215	Pro Asn Phe 220	Val Asn Thr	Gly Phe 225					
Ile Lys Asn Pro	Ser Thr Ser	Leu Gly Pro 235	Thr Leu Glu	Pro Glu 240					
Glu Val Val Asn	Arg Leu Met 245	His Gly Ile 250	Leu Thr Glu	Gln Lys 255					
Met Ile Phe Ile	Pro Ser Ser 260	Ile Ala Phe 265	Leu Thr Thr	Leu Glu 270					
Arg Ile Leu Pro	Glu Arg Phe 275	Leu Ala Val 280	Leu Lys Arg	Lys Ile 285					
Ser Val Lys Phe	Asp Ala Val 290	Ile Gly Tyr 295	Lys Met Lys	Ala Gln 300					
<210> 38 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 38 ggtgaaggca gaaattggag atg 23 <210> 39 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 39 atcccatgca tcagcctgtt tacc 24 <210> 40 <211> 48 <212> DNA <213> Artificial Sequence <220> <221> 40 <210> 40 <211> 48 <212> DNA <213> Artificial Sequence <220>									
<400> 40 gctggtgtag tct	atacatc agat	ttgttt gctac	acaag atcctc	ag 48					

COCED" 45 DE 4660

<210> 41 <211> 1377 <212> DNA <213> Homo Sapien <400> 41 gactagttct cttggagtct gggaggagga aagcggagcc ggcagggagc 50 gaaccaggac tggggtgacg gcagggcagg gggcgcctgg ccggggagaa 100 gcgcgggggc tggagcacca ccaactggag ggtccggagt agcgagcgcc 150 ccgaaggagg ccatcgggga gccgggaggg gggactgcga gaggaccccg 200 gegteeggge teeeggtgee agegetatga ggeeacteet egteetgetg 250 ctcctgggcc tggcggccgg ctcgccccca ctggacgaca acaagatccc 300 cageetetge eeggggeace eeggeettee aggeaegeeg ggeeaceatg 350 gcagccaggg cttgccgggc cgcgatggcc gcgacggccg cgacggcgcg 400 cccggggctc cgggagagaa aggcgagggc gggaggccgg gactgccggg 450 acctcgaggg gaccccgggc cgcgaggaga ggcgggaccc gcggggccca 500 cegggcctgc cggggagtgc teggtgcctc cgcgatccgc cttcagcgcc 550 aagegeteeg agageegggt geeteegeeg tetgaegeae eettgeeett 600 cgaccgcgtg ctggtgaacg agcagggaca ttacgacgcc gtcaccggca 650 agttcacctg ccaggtgcct ggggtctact acttcgccgt ccatgccacc 700 gtctaccggg ccagcctgca gtttgatctg gtgaagaatg gcgaatccat 750 tgcctctttc ttccagtttt tcggggggtg gcccaagcca gcctcgctct 800 cggggggggc catggtgagg ctggagcctg aggaccaagt gtgggtgcag 850 gtgggtgtgg gtgactacat tggcatctat gccagcatca agacagacag 900 caccttctcc ggatttctgg tgtactccga ctggcacagc tccccagtct 950 ttgcttagtg cccactgcaa agtgagctca tgctctcact cctagaagga 1000 gggtgtgagg ctgacaacca ggtcatccag gagggctggc ccccctggaa 1050 tattgtgaat gactagggag gtggggtaga gcactctccg tcctgctgct 1100 ggcaaggaat gggaacagtg gctgtctgcg atcaggtctg gcagcatggg 1150 gcagtggctg gatttctgcc caagaccaga ggagtgtgct gtgctggcaa 1200 gtgtaagtcc cccagttgct ctggtccagg agcccacggt ggggtgctct 1250 cttcctggtc ctctgcttct ctggatcctc cccaccccct cctgctcctg 1300 gggccggccc ttttctcaga gatcactcaa taaacctaag aaccctcata 1350 aaaaaaaaa aaaaaaaaa aaaaaaa 1377

<210> 42

Val Phe Ala

<210> 43</1>

Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro

230

```
<212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 43
   tacaggccca gtcaggacca gggg 24
  <210> 44
  <211> 18
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 44
   agccagcctc gctctcgg 18
  <210> 45
  <211> 18
  <212> DNA
  <213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
₩ <400> 45
   gtctgcgatc aggtctgg 18
Œ١
m
  <210> 46
   <211> 20
   <212> DNA
  <213> Artificial Sequence
団
إيا
  <220>
  <223> Synthetic oligonucleotide probe
   <400> 46
   gaaagaggca atggattcgc 20
   <210> 47
   <211> 24
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 47
    gacttacact tgccagcaca gcac 24
   <210> 48
   <211> 45
   <212> DNA
   <213> Artificial Sequence
```

<220> <223> Synthetic oligonucleotide probe

<400> 48
ggagcaccac caactggagg gtccggagta gcgagcgccc cgaag 45

<210> 49
<211> 1876
<212> DNA

<213> Homo Sapien

<400> 49 ctcttttgtc caccagccca gcctgactcc tggagattgt gaatagctcc 50 atccagcctg agaaacaagc cgggtggctg agccaggctg tgcacggagc 100 acctgacggg cccaacagac ccatgctgca tccagagacc tcccctggcc 150 gggggcatct cctggctgtg ctcctggccc tccttggcac cacctgggca 200 gaggtgtggc caccccagct gcaggagcag gctccgatgg ccggagccct 250 gaacaggaag gagagtttct tgctcctctc cctgcacaac cgcctgcgca 300 gctgggtcca gccccctgcg gctgacatgc ggaggctgga ctggagtgac 350 agcctggccc aactggctca agccagggca gccctctgtg gaatcccaac 400 cccgagcctg gcatccggcc tgtggcgcac cctgcaagtg ggctggaaca 450 tgcagctgct gcccgcgggc ttggcgtcct ttgttgaagt ggtcagccta 500 tggtttgcag aggggcagcg gtacagccac gcggcaggag agtgtgctcg 550 caacgccacc tgcacccact acacgcagct cgtgtgggcc acctcaagcc 600 agctgggctg tgggcggcac ctgtgctctg caggccagac agcgatagaa 650 geetttgtet gtgeetaete eeeeggagge aactgggagg teaacgggaa 700 gacaatcatc ccctataaga agggtgcctg gtgttcgctc tgcacagcca 750 gtgtctcagg ctgcttcaaa gcctgggacc atgcaggggg gctctgtgag 800 gtccccagga atccttgtcg catgagctgc cagaaccatg gacgtctcaa 850 catcagcacc tgccactgcc actgtccccc tggctacacg ggcagatact 900 gccaagtgag gtgcagcctg cagtgtgtgc acggccggtt ccgggaggag 950 gagtgctcgt gcgtctgtga catcggctac gggggagccc agtgtgccac 1000 caaggtgcat tttcccttcc acacctgtga cctgaggatc gacggagact 1050 gcttcatggt gtcttcagag gcagacacct attacagagc caggatgaaa 1100 tgtcagagga aaggcggggt gctggcccag atcaagagcc agaaagtgca 1150 eggacatcete geettetate tgggeegeet ggagaceaee aacgaggtga 1200 etgacagtga ettegagace aggaacteet ggateggget cacctacaag 1250 accgeeaagg acteetteeg etgggeeaee ggggageaee aggeetteae 1300 eagttttgee tttgggeage etgacaaeea egggetggtg tggetgagtg 1350 etgecatggg gtttggeaae tgegtggage tgeaggette agetgeette 1400 aactggaaeg accagegetg eaaaaeeega aacegttaea tetgeeagtt 1450 etgeeaggag eacateteee ggtggggeee agggteetga ggeetgaeea 1500 eatggetee tegeetgeee tgggageee agggteetga ggeetgaeea 1500 eatggetee tegeetgeee tgggageaee ggetetgett acetgtetge 1550 ecacetgtet ggaacaaggg ecaggttaag accaeatgee teatgteeaa 1600 agaggtetea gaeettgeae aatgeeagaa gttgggeaga gagggeagg 1650 gaggeeagtg agggeeagg agtgagtte agaagaaget ggggeeette 1700 geetgettt gattgggaag atgggettea attagatgge gaaggagagg 1750 acaeeggeag tggteeaaaa aggetgetet etteeaeetg geeeagaeee 1800 tgtggggeag eggagettee etgtggeatg aaceeeaegg ggtattaaat 1850 tatgaataag etgaaaaaaa aaaaaa 1876

<210> 50

<211> 455

<212> PRT

<213> Homo Sapien

<400> 50

Met Leu His Pro Glu Thr Ser Pro Gly Arg Gly His Leu Leu Ala 1 5 10

Val Leu Leu Ala Leu Leu Gly Thr Thr Trp Ala Glu Val Trp Pro 20 25 30

Pro Gln Leu Gln Glu Gln Ala Pro Met Ala Gly Ala Leu Asn Arg 35 40 45

Lys Glu Ser Phe Leu Leu Leu Ser Leu His Asn Arg Leu Arg Ser 50 55 60

Trp Val Gln Pro Pro Ala Ala Asp Met Arg Arg Leu Asp Trp Ser
70
75

Asp Ser Leu Ala Gln Leu Ala Gln Ala Arg Ala Ala Leu Cys Gly 80 85 90

Ile Pro Thr Pro Ser Leu Ala Ser Gly Leu Trp Arg Thr Leu Gln 95 100 105

Val Gly Trp Asn Met Gln Leu Leu Pro Ala Gly Leu Ala Ser Phe

				110					115					120
Val	Glu	Val	Val	Ser 125	Leu	Trp	Phe	Ala	Glu 130	Gly	Gln	Arg	Tyr	Ser 135
His	Ala	Ala	Gly	Glu 140	Cys	Ala	Arg	Asn	Ala 145	Thr	Cys	Thr	His	Tyr 150
Thr	Gln	Leu	Val	Trp 155	Ala	Thr	Ser	Ser	Gln 160	Leu	Gly	Суѕ	Gly	Arg 165
His	Leu	Cys	Ser	Ala 170	Gly	Gln	Thr	Ala	Ile 175	Glu	Ala	Phe	Val	Cys 180
Ala	Tyr	Ser	Pro	Gly 185	Gly	Asn	Trp	Glu	Val 190	Asn	Gly	Lys	Thr	Ile 195
Ile	Pro	Tyr	Lys	Lys 200	Gly	Ala	Trp	Cys	Ser 205	Leu	Cys	Thr	Ala	Ser 210
Val	Ser	Gly	Cys	Phe 215	Lys	Ala	Trp	Asp	His 220	Ala	Gly	Gly	Leu	Cys 225
Glu	Val	Pro	Arg	Asn 230		Cys	Arg	Met	Ser 235	Суз	Gln	Asn	His	Gly 240
Arg	Leu	Asn	Ile	Ser 245		Cys	His	Cys	His 250	Сув	Pro	Pro	Gly	Tyr 255
Thr	Gly	Arg	Tyr	Cys 260		Val	Arg	Cys	Ser 265	Leu	Gln	Cys	Val	His 270
Gly	Arg	Phe	Arg	Glu 275		Glu	Cys	Ser	Cys 280	Val	Cys	Asp	Ile	Gly 285
Туг	Gly	gly,	Ala	Glr 290		: Ala	Thr	Lys	Val 295	His	: Phe	e Pro) Phe	His 300
Thi	Cys	s Asp	Lev	305		Asp	Gly	Asp	310	s Phe	e Met	: Val	Ser	Ser 315
Glı	ı Alá	a Asp	Thi	Tyr 320		Arg	, Ala	Arç	325	Lys	s Суя	s Glr	n Arg	330
Gl	y Gly	y Val	L Lev	1 Ala 335		ı Ile	e Lys	s Sei	Glr 340	ı Ly:	s Val	l Gl	n Asp	345
Le	u Ala	a Phe	е Ту	r Lei 35		y Arg	g Lei	ı Glu	359	r Th:	r Ası	n Gli	u Val	360
As	p Se	r Ası	p Phe	e Gl: 36		r Arg	g Ası	n Phe	e Trj 370	p Il.	e Gl	y Le	u Thi	7yr 3 7 5
Ly	s Th	r Ala	a Ly:	s As		r Phe	e Ar	g Trj	p Ala 38	a T h 5	r Gl	y Gl	u Hi:	s Gln 390
Al	a Ph	e Th	r Se	r Ph 39		a Ph	e Gl	y Gl	n Pr	o As O	p As	n Hi	s Gl	y Leu 405

Val Trp Leu Ser Ala Ala Met Gly Phe Gly Asn Cys Val Glu Leu 415 410 Gln Ala Ser Ala Ala Phe Asn Trp Asn Asp Gln Arg Cys Lys Thr 425 Arg Asn Arg Tyr Ile Cys Gln Phe Ala Gln Glu His Ile Ser Arg Trp Gly Pro Gly Ser 455 <210> 51 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 51 aggaacttct ggatcgggct cacc 24 **a** <210> 52 <211> 24 <212> DNA <213> Artificial Sequence **山** <220> 面 <223> Synthetic oligonucleotide probe <400> 52 gggtctgggc caggtggaag agag 24 <210> 53 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 53 gccaaggact cetteegetg ggccacaggg gagcaccagg cette 45 <210> 54 <211> 2331 <212> DNA <213> Homo Sapien <400> 54 eggacgegtg ggetgggege tgcaaagegt gteecegegg gteecegage 50 gtcccgcgcc ctcgccccgc catgctcctg ctgctggggc tgtgcctggg 100 gctgtccctg tgtgtggggt cgcaggaaga ggcgcagagc tggggccact 150 cttcggagca ggatggactc agggtcccga ggcaagtcag actgttgcag 200

M

Ø

aggctgaaaa ccaaaccttt gatgacagaa ttctcagtga agtctaccat 250 catttcccgt tatgccttca ctacggtttc ctgcagaatg ctgaacagag 300 cttctgaaga ccaggacatt gagttccaga tgcagattcc agctgcagct 350 ttcatcacca acttcactat gcttattgga gacaaggtgt atcagggcga 400 aattacagag agagaaaaga agagtggtga tagggtaaaa gagaaaagga 450 ataaaaccac agaagaaaat ggagagaagg ggactgaaat attcagagct 500 tctgcagtga ttcccagcaa ggacaaagcc gcctttttcc tgagttatga 550 ggagcttctg cagaggcgcc tgggcaagta cgagcacagc atcagcgtgc 600 ggccccagca gctgtccggg aggctgagcg tggacgtgaa tatcctggag 650 agegegggea tegeatecet ggaggtgetg eegetteaca acageaggea 700 gaggggcagt gggcgcgggg aagatgattc tgggcctccc ccatctactg 750 tcattaacca aaatgaaaca tttgccaaca taatttttaa acctactgta 800 gtacaacaag ccaggattgc ccagaatgga attttgggag actttatcat 850 tagatatgac gtcaatagag aacagagcat tggggacatc caggttctaa 900 atggctattt tgtgcactac tttgctccta aagaccttcc tcctttaccc 950 aagaatgtgg tattcgtgct tgacagcagt gcttctatgg tgggaaccaa 1000 actecggeag accaaggatg ceetetteae aatteteeat gaeeteegae 1050 cccaggaccg tttcagtatc attggatttt ccaaccggat caaagtatgg 1100 aaggaccact tgatatcagt cactccagac agcatcaggg atgggaaagt 1150 gtacattcac catatgtcac ccactggagg cacagacatc aacggggccc 1200 tgcagagggc catcaggctc ctcaacaagt acgtggccca cagtggcatt 1250 ggagaccgga gcgtgtccct catcgtcttc ctgacggatg ggaagcccac 1300 ggtcggggag acgcacaccc tcaagatcct caacaacacc cgagaggccg 1350 cccgaggcca agtctgcatc ttcaccattg gcatcggcaa cgacgtggac 1400 ttcaggctgc tggagaaact gtcgctggag aactgtggcc tcacacggcg 1450 cgtgcacgag gaggaggacg caggctcgca gctcatcggg ttctacgatg 1500 aaatcaggac cccgctcctc tctgacatcc gcatcgatta tccccccagc 1550 tcagtggtgc aggccaccaa gaccctgttc cccaactact tcaacggctc 1600 ggagatcatc attgcgggga agctggtgga caggaagctg gatcacctgc 1650 acgtggaggt caccgccagc aacagtaaga aattcatcat cctgaagaca 1700 gatgtgcctg tgcggcctca gaaggcaggg aaagatgtca caggaagccc 1750 caggcctgga ggcgatggag agggggacac caaccacatc gagcgtctct 1800 ggagctacct caccacaaag gagctgctga gctcctggct gcaaagtgac 1850 gatgaaccgg agaaggagcg gctgcggcag cgggcccagg ccctggctgt 1900 gagetacege treeteacte cetteacete catgaagetg agggggeegg 1950 tcccacgcat ggatggcctg gaggaggccc acggcatgtc ggctgccatg 2000 ggacccgaac cggtggtgca gagcgtgcga ggagctggca cgcagccagg 2050 aaaaaagaca tgggagagat ggtgtttttc ctctccacca cctggggata 2150 cgatgagaag atggccacct gcaagccagg aagacggccc tcaccagaca 2200 ccatgtctgc tggcaccttg atcttggacc tcccagcctc cagaactgtg 2250 aaaaaaaaaa aaaaaaaaaa aaaaaaaaa a 2331

<210> 55

<211> 694

<212> PRT

<213> Homo Sapien

<400> 55

Met Leu Leu Leu Gly Leu Cys Leu Gly Leu Ser Leu Cys Val

Gly Ser Gln Glu Glu Ala Gln Ser Trp Gly His Ser Ser Glu Gln

Asp Gly Leu Arg Val Pro Arg Gln Val Arg Leu Leu Gln Arg Leu

Lys Thr Lys Pro Leu Met Thr Glu Phe Ser Val Lys Ser Thr Ile

Ile Ser Arg Tyr Ala Phe Thr Thr Val Ser Cys Arg Met Leu Asn

Arg Ala Ser Glu Asp Gln Asp Ile Glu Phe Gln Met Gln Ile Pro

Ala Ala Ala Phe Ile Thr Asn Phe Thr Met Leu Ile Gly Asp Lys 95

Val Tyr Gln Gly Glu Ile Thr Glu Arg Glu Lys Lys Ser Gly Asp 115 110

				410					415					420
Asn	Asn	Thr	Arg	Glu 425	Ala	Ala	Arg	Gly	Gln 430	Val	Сув	Ile	Phe	Thr 435
Ile	Gly	Ile	Gly	Asn 440	Asp	Val	Asp	Phe	Arg 445	Leu	Leu	Glu	Lys	Leu 450
Ser	Leu	Glu	Asn	Cys 455	Gly	Leu	Thr	Arg	Arg 460	Val	His	Glu	Glu	Glu 465
Asp	Ala	Gly	Ser	Gln 470	Leu	Ile	Gly	Phe	Tyr 475	Asp	Glu	Ile	Arg	Thr 480
Pro	Leu	Leu	Ser	Asp 485	Ile	Arg	Ile	Asp	Tyr 490	Pro	Pro	Ser	Ser	Val 495
Val	Gln	Ala	Thr	Lys 500		Leu	Phe	Pro	Asn 505	Tyr	Phe	Asn	Gly	Ser 510
Glu	Ile	Ile	Ile	Ala 515		Lys	Leu	Val	Asp 520	Arg	Lys	Leu	Asp	His 525
Leu	His	Val	Glu	Val 530	Thr	Ala	Ser	Asn	Ser 535	Lys	Lys	Phe	Ile	Ile 540
Leu	Lys	Thr	. Asp	Val 545		Val	Arg	pro	Gln 550	Lys	Ala	Gly	Lys	Asp 555
Val	Thr	Gly	y Ser	Pro 560	Arg	, Pro	Gly	/ Gly	Asp 565	Gly	Glu	Gly	Asp	Thr 570
Asn	His	s Ile	e Glu	ı Arç 57!		ı Trp	Sei	с Туз	Leu 580	ı Thr	Thr	. Lys	: Glu	Leu 585
Leu	ı Se	r Se	r Trj	p Let 59	u Glr O	n Ser	: Ası	o Ası	9 Glu 59!	ı Pro	Glu	Lys	s Glu	Arg 600
Leu	ı Ar	g Gl	n Ar	g Al		n Ala	a Le	u Ala	a Vai	l Sei	с Туз	: Arç	g Phe	615
Thi	r Pr	o Ph	e Th	r Se 62	r Me	t Lys	s Le	u Ar	g G1 62	y Pro	o Vai	l Pro	o Ar	g Met 630
Ası	p Gl	y Le	u Gl	u Gl 63	u Al 5	a Hi	s Gl	у Ме	t Se 64	r Ala	a Ala	a Me	t Gl	y Pro 645
Gl	u Pr	o Va	ıl Va	1 Gl 65	n Se 0	r Va	l Ar	g Gl	y Al 65	a Gl	y Th	r Gl	n Pr	o Gly 660
Pr	o Le	u Le	eu Ly	rs Ly 66	s Pr	o As	n Se	r Va	1 Ly 67	s Ly	s Ly	s Gl	n As	n Lys 675
Th	r Ly	rs L}	/s Ar	g Hi 68		y Ar	g As	sp Gl	y Va 68	1 Ph	e Pr	o Le	u Hi	s His 690
Le	u Gl	y I]	le Ar	rg										

```
<210> 56
  <211> 24
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 56
   gtgggaacca aactccggca gacc 24
  <210> 57
  <211> 18
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 57
   cacategage gtetetgg 18
  <210> 58
<211> 24
面 <212> DNA
<213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
m
(400 > 58
   ageogeteet teteoggtte ateg 24
  <210> 59
   <211> 48
  <212> DNA
<213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 59
    tggaaggacc acttgatatc agtcactcca gacagcatca gggatggg 48
   <210> 60
   <211> 1413
   <212> DNA
   <213> Homo Sapien
   <400> 60
    eggacgegtg gggtgeeega catggegagt gtagtgetge egageggate 50
    ccagtgtgcg gcggcagcgg cggcggcggc gcctcccggg ctccggcttc 100
    tgctgttgct cttctccgcc gcggcactga tccccacagg tgatgggcag 150
    aatctgttta cgaaagacgt gacagtgatc gagggagagg ttgcgaccat 200
```

cagttgccaa gtcaataaga gtgacgactc tgtgattcag ctactgaatc 250 ccaacaggca gaccatttat ttcagggact tcaggccttt gaaggacagc 300 aggtttcagt tgctgaattt ttctagcagt gaactcaaag tatcattgac 350 aaacgtctca atttctgatg aaggaagata cttttgccag ctctataccg 400 atcccccaca ggaaagttac accaccatca cagtcctggt cccaccacgt 450 aatctgatga tcgatatcca gaaagacact gcggtggaag gtgaggagat 500 tgaagtcaac tgcactgcta tggccagcaa gccagccacg actatcaggt 550 ggttcaaagg gaacacagag ctaaaaggca aatcggaggt ggaagagtgg 600 tcagacatgt acactgtgac cagtcagctg atgctgaagg tgcacaagga 650 ggacgatggg gtcccagtga tctgccaggt ggagcaccct gcggtcactg 700 gaaacctgca gacccagcgg tatctagaag tacagtataa gcctcaagtg 750 cacattcaga tgacttatcc tctacaaggc ttaacccggg aaggggacgc 800 gcttgagtta acatgtgaag ccatcgggaa gccccagcct gtgatggtaa 850 cttgggtgag agtcgatgat gaaatgcctc aacacgccgt actgtctggg 900 cccaacctgt tcatcaataa cctaaacaaa acagataatg gtacataccg 950 ctgtgaagct tcaaacatag tggggaaagc tcactcggat tatatgctgt 1000 atgtatacga tecceccaca actatecete eteccacaac aaccaccace 1050 accaccacca ccaccaccac caccatcctt accatcatca cagattcccg 1100 agcaggtgaa gaaggctcga tcagggcagt ggatcatgcc gtgatcggtg 1150 gegtegtgge ggtggtggtg ttegecatge tgtgettget cateattetg 1200 gggcgctatt ttgccagaca taaaggtaca tacttcactc atgaagccaa 1250 aggageegat gaegeageag aegeagaeae agetataate aatgeagaag 1300 gaggacagaa caactccgaa gaaaagaaag agtacttcat ctagatcagc 1350 ctttttgttt caatgaggtg tccaactggc cctatttaga tgataaagag 1400 acagtgatat tgg 1413

<210> 61

<211> 440

<212> PRT

<213> Homo Sapien

<400> 61
Met Ala Ser Val Val Leu Pro Ser Gly Ser Gln Cys Ala Ala
10
15

	3	305	310		315								
	Ile Val Gly Lys A	Ala His Ser 320	Asp Tyr Met	Leu Tyr Val	Tyr Asp 330								
	Pro Pro Thr Thr	Ile Pro Pro 335	Pro Thr Thr	Thr Thr Thr	Thr Thr 345								
	Thr Thr Thr Thr	Thr Thr Ile	e Leu Thr Ile 355	Ile Thr Asp	Ser Arg 360								
	Ala Gly Glu Glu	Gly Ser Ilo 365	e Arg Ala Val 370	Asp His Ala	Val Ile 375								
	Gly Gly Val Val	Ala Val Va 380	l Val Phe Ala 385	Met Leu Cys	Leu Leu 390								
	Ile Ile Leu Gly	Arg Tyr Ph 395	e Ala Arg His 400	Lys Gly Thr	Tyr Phe 405								
	Thr His Glu Ala	Lys Gly Al 410	a Asp Asp Ala 415	Ala Asp Ala	Asp Thr 420								
	Ala Ile Ile Asn	Ala Glu Gl 425	y Gly Gln Asn 430	Asn Ser Glu	Glu Lys 435								
¥ ¥	Lys Glu Tyr Phe Ile 440												
	<210> 62 <211> 24 <212> DNA <213> Artificial Sequence												
	<220> <223> Synthetic oligonucleotide probe												
	<400> 62 ggcttctgct gttgctcttc tccg 24												
Ħ	<210> 63 <211> 20 <212> DNA <213> Artificial Sequence												
	<220> <223> Synthetic	oligonucle	eotide probe										
	<400> 63 gtacactgtg acc	agtcagc 20											
	<210> 64 <211> 20 <212> DNA <213> Artificia	l Sequence											
	<220> <223> Synthetic	oligonucl	eotide probe										

<400> 64 atcatcacag attcccgagc 20 <210> 65 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 65 ttcaatctcc tcaccttcca ccgc 24 <210> 66 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 66 atagctgtgt ctgcgtctgc tgcg 24 <210> 67 <211> 50 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 67 cgcggcactg atccccacag gtgatgggca gaatctgttt acgaaagacg 50 <210> 68 <211> 2555 <212> DNA <213> Homo Sapien <400> 68 ggggcgggtg gacgcggact cgaacgcagt tgcttcggga cccaggaccc 50 cctcgggccc gacccgccag gaaagactga ggccgcggcc tgccccgccc 100 ggctccctgc gccgccgccg cctcccggga cagaagatgt gctccagggt 150 ccctctgctg ctgccgctgc tcctgctact ggccctgggg cctggggtgc 200 agggetgeec atceggetge eagtgeagee agecacagae agtettetge 250 actgcccgcc aggggaccac ggtgccccga gacgtgccac ccgacacggt 300 ggggctgtac gtctttgaga acggcatcac catgctcgac gcaagcagct 350 ttgccggcct gccgggcctg cagctcctgg acctgtcaca gaaccagatc 400

đ

M

Ŭ

gegggtetga gtgtgaggtg ccactcatgg getteecagg geetggeete 1900 cagtcacccc tccacgcaaa gccctacatc taagccagag agagacaggg 1950 cagetgggge egggetetea gecagtgaga tggccagece eeteetgetg 2000 ccacaccacg taagttctca gtcccaacct cggggatgtg tgcagacagg 2050 getgtgtgac cacagetggg ceetgtteee tetggacete ggteteetea 2100 tetgtgagat getgtggeee agetgaegag eeetaaegte eeeagaaeeg 2150 agtgcctatg aggacagtgt ccgccctgcc ctccgcaacg tgcagtccct 2200 gggcacggcg ggccctgcca tgtgctggta acgcatgcct gggccctgct 2250 gggctctccc actccaggcg gaccctgggg gccagtgaag gaagctcccg 2300 gaaagagcag agggagagcg ggtaggcggc tgtgtgactc tagtcttggc 2350 cccaggaagc gaaggaacaa aagaaactgg aaaggaagat gctttaggaa 2400 catgttttgc ttttttaaaa tatatatat tttataagag atcctttccc 2450 atttattctg ggaagatgtt tttcaaactc agagacaagg actttggttt 2500 ttgtaagaca aacgatgata tgaaggcctt ttgtaagaaa aaataaaaaa 2550 aaaaa 2555

<210> 69

<211> 598

<212> PRT

<213> Homo Sapien

<400> 69

Met Cys Ser Arg Val Pro Leu Leu Pro Leu Leu Leu Leu Leu

Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys

Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr

Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe

Glu Asn Gly Ile Thr Met Leu Asp Ala Ser Ser Phe Ala Gly Leu

Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser

Leu Arg Leu Pro Arg Leu Leu Leu Asp Leu Ser His Asn Ser 95

Leu Leu Ala Leu Glu Pro Gly Ile Leu Asp Thr Ala Asn Val Glu

				110					115				:	120
Ala	Leu	Arg	Leu	Ala 125	Gly	Leu	Gly	Leu	Gln 130	Gln	Leu	Asp	Glu (Gly 135
Leu	Phe	Ser	Arg	Leu 140	Arg	Asn	Leu	His	Asp 145	Leu	Asp	Val	Ser	Asp 150
Asn	Gln	Leu	Glu	Arg 155	Val	Pro	Pro	Val	Ile 160	Arg	Gly	Leu	Arg	Gly 165
Leu	Thr	Arg	Leu	Arg 170	Leu	Ala	Gly	Asn	Thr 175	Arg	Ile	Ala	Gln	Leu 180
Arg	Pro	Glu	Asp	Leu 185	Ala	Gly	Leu	Ala	Ala 190	Leu	Gln	Glu	Leu	Asp 195
Val	Ser	Asn	Leu	Ser 200	Leu	Gln	Ala	Leu	Pro 205	Gly	Asp	Leu	Ser	Gly 210
Leu	Phe	Pro	Arg	Leu 215	Arg	Leu	Leu	Ala	Ala 220	Ala	Arg	Asn	Pro	Phe 225
Asn	Cys	Val	Cys	Pro 230		Ser	Trp	Phe	Gly 235	Pro	Trp	Val	Arg	Glu 240
Ser	His	Val	Thr	Leu 245	Ala	Ser	Pro	Glu	Glu 250	Thr	Arg	Cys	His	Phe 255
Pro	Pro	Lys	s Asn	Ala 260		Arg	Leu	. Leu	Leu 265	Glu	Leu	Asp	Tyr	Ala 270
Asp	Phe	e Gly	/ Cys	275		Thr	Thr	Thr	Thr 280	Ala	Thr	Val	Pro	Thr 285
Thr	Arg	g Pro	o Val	l Val 290		g Glu	ı Pro	Thi	Ala 295	ı Lev	ser	Ser	Ser	Leu 300
Ala	Pro	Th:	r Trį	2 Let 30!	ı Sei	r Pro	o Thi	c Ala	a Pro 310	o Ala O	a Thi	Glu	ı Ala	Pro 315
Ser	Pro	o Pro	o Se	r Thi		a Pro	o Pro	o Th	r Val	1 Gly 5	y Pro	o Val	l Pro	330
Pro	Gl:	n As	р Су	s Pro		o Se	r Th	r Cy	s Lei 34	u Ası O	n Gly	y Gl	y Thi	Cys 345
His	s Le	u Gl	y Th	r Ar		s Hi	s Le	u Al	a Cy 35	s Le	u Cys	s Pro	o Glu	1 Gly 360
Phe	e Th	r Gl	y Le	u Ty 36	r Cy 5	s Gl	u Se	r Gl	n Me 37	t Gl	y Gl	n Gl	y Thi	r Arg 375
Pro	o Se	r Pr	o Th	r Pr 38		l Th	r Pr	o Ar	g Pr 38	o Pr 5	o Ar	g Se	r Le	u Thr 390
Le	u Gl	y I1	e Gl	u Pr 39		l Se	r Pr	o Th	r Se 40	r Le	u Ar	g Va	l Gl	y Leu 405

<223> Synthetic oligonucleotide probe

<400> 71 cggttctggg gacgttaggg ctcg 24 <210> 72 <211> 25 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 72 ctgcccaccg tccacctgcc tcaat 25 <210> 73 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 73 aggactgccc accgtccacc tgcctcaatg ggggcacatg ccacc 45 <210> 74 <211> 45 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 74 acgcaaagcc ctacatctaa gccagagaga gacagggcag ctggg 45 <210> 75 <211> 1077 <212> DNA <213> Homo Sapien <400> 75 ggcactagga caacettett ecettetgea ecaetgeeeg taecettaee 50 cgccccgcca cctccttgct accccactct tgaaaccaca gctgttggca 100 gggtccccag ctcatgccag cctcatctcc tttcttgcta gcccccaaag 150 ggcctccagg caacatgggg ggcccagtca gagagccggc actctcagtt 200 gecetetggt tgagttgggg ggeagetetg ggggeegtgg ettgtgeeat 250 ggctctgctg acccaacaaa cagagctgca gagcctcagg agagaggtga 300 geeggetgea ggggacagga ggeeeeteee agaatgggga agggtateee 350 tggcagagtc tcccggagca gagttccgat gccctggaag cctgggagaa 400

ű

gi Ti

æ

M

tggggagaga tcccggaaaa ggagagagt gctcaccaa aaacagaaga 450 agcagcacte tgtcctgcac ctggttccca ttaacgccac ctccaaggat 500 gactccgatg tgacagaggt gatgtggcaa ccagctctta ggcgtgggag 550 aggcctacaag gcccaaggat atggtgtccg aatccaggat gctggagttt 600 atctgctgta tagccaggtc ctgtttcaag acgtgacttt caccatgggt 650 caggtggtg ctcgagaagg ccaaggaagg caggagactc tattccgatg 700 tataagaagt atgccctcc accaggaccg ggcctacaac agctgctata 750 gcgcaggtgt ctccattta caccaagggg atattctgag tgtcataatt 800 ccccgggcaa gggcgaaact taacctctct ccacatggaa ccttcctggg 850 gtttggaaa ctgtgattgt gttataaaaa gtggctcca gcttggaaga 900 ccagggtggg tacatactgg agacagccaa gagctgagta tataaaggag 950 agggaatgtg caggaacaga ggcatcttcc tgggtttggc tccccgttcc 1000 tcacttttcc cttttcattc ccacccccta gactttgatt ttacggatat 1050 cttgcttctg ttcccatgg agctccc

<210> 76

<211> 250

<212> PRT

<213> Homo Sapien

<400> 76

Met Pro Ala Ser Ser Pro Phe Leu Leu Ala Pro Lys Gly Pro Pro 1 5 10 15

Gly Asn Met Gly Gly Pro Val Arg Glu Pro Ala Leu Ser Val Ala 20 25 30

Leu Trp Leu Ser Trp Gly Ala Ala Leu Gly Ala Val Ala Cys Ala 35 40 45

Met Ala Leu Leu Thr Gln Gln Thr Glu Leu Gln Ser Leu Arg Arg
50 55 60

Glu Val Ser Arg Leu Gln Gly Thr Gly Gly Pro Ser Gln Asn Gly
65 70 75

Glu Gly Tyr Pro Trp Gln Ser Leu Pro Glu Gln Ser Ser Asp Ala 80 85 90

Leu Glu Ala Trp Glu Asn Gly Glu Arg Ser Arg Lys Arg Arg Ala

Val Leu Thr Gln Lys Gln Lys Lys Gln His Ser Val Leu His Leu 110 115 120

<210> 77

<211> 2849

<212> DNA

<213> Homo Sapien

cactttetee eteteteet thacttega gaaacegege theegethet 50 ggtegeagag aceteggaga eegegeeggg gagaeggagg tgetgtgggt 100 gggggggace tgtggetget eghaeegee eecaceetee tethetgeae 150 tgeegteete eggaagaeet theeeetge tetheteet teacegagte 200 tgtgcatege eecaggaegg ggettggeeg gegggagatg 250 etetaggge ggeggggag gageggeegg egggaeegg ggeegggag 300 gaagatggge teeegtggae agggaeetet getggetae tgeetgeeg 350 ttgeetttge etetggeet gteetgagte gtggeggaa ggeeeggeag 300 gaacageagg agtgggagg gaeetgagee gtgggeega tgeetggee 450 tgeetgeete eteetggeete gteetgagte gtgtgeeea tgteeagggg 400 gaacageagg getgaagaae aacatgaaaa ahacaggeee agteaggaee 500 agggaeaggt gaeegeegg geeceagate aacatcacta tettgaaagg 600 ggagaaaggg gaeegeegga ategaggeet eeaagggaaa tatggeaaaa 650

caggeteage aggggeeagg ggeeacactg gacceaaagg geagaaggge 700 tccatggggg cccctgggga gcggtgcaag agccactacg ccgccttttc 750 ggtgggccgg aagaagccca tgcacagcaa ccactactac cagacggtga 800 tettegacae ggagttegtg aacetetaeg accaetteaa catgtteaee 850 ggcaagttet actgetacgt geeeggeete taettettea geeteaaegt 900 gcacacctgg aaccagaagg agacctacct gcacatcatg aagaacgagg 950 aggaggtggt gatcttgttc gcgcaggtgg gcgaccgcag catcatgcaa 1000 agccagagcc tgatgctgga gctgcgagag caggaccagg tgtgggtacg 1050 cetetacaag ggcgaacgtg agaacgccat etteagegag gagetggaca 1100 cctacatcac cttcagtggc tacctggtca agcacgccac cgagccctag 1150 ctggccggcc acctcctttc ctctcgccac cttccacccc tgcgctgtgc 1200 tgaccccacc geetetteec egatecetgg acteegacte cetggetttg 1250 gcattcagtg agacgccctg cacacacaga aagccaaagc gatcggtgct 1300 cccagatccc gcagcctctg gagagagctg acggcagatg aaatcaccag 1350 ggeggggcae cegegagaae eetetgggae etteegegge eetetetgea 1400 cacatectea agtgaceeeg caeggegaga egegggtgge ggeagggegt 1450 cccagggtgc ggcaccgcgg ctccagtcct tggaaataat taggcaaatt 1500 ctaaaggtct caaaaggagc aaagtaaacc gtggaggaca aagaaaaggg 1550 ttgttatttt tgtctttcca gccagcctgc tggctcccaa gagagaggcc 1600 ttttcagttg agactetget taagagaaga tecaaagtta aagetetggg 1650 gtcaggggag gggccggggg caggaaacta cctctggctt aattctttta 1700 agccacgtag gaactttett gagggatagg tggaccetga catecetgtg 1750 gcettgccca agggetetge tggtetttet gagteacage tgegaggtga 1800 tgggggctgg ggccccaggc gtcagcctcc cagagggaca gctgagcccc 1850 ctgccttggc tccaggttgg tagaagcagc cgaagggctc ctgacagtgg 1900 ccagggaccc ctgggtcccc caggcctgca gatgtttcta tgaggggcag 1950 ageteettgg tacatecatg tgtggetetg etecaeeeet gtgceaeeee 2000 agagecetgg ggggtggtet ceatgeetge caecetggea teggetttet 2050 gtgccgcctc ccacacaaat cagccccaga aggccccggg gccttggctt 2100 tgggctaagc atcaccgctt ccaccgtgtg tgtgtttggtt ggcagcaagg 2200
ctgatccaga ccccttctgc ccccactgcc ctcatccagg cctctgacca 2250
gtagcctgag aggggctttt tctaggcttc agagcagggg agagctggaa 2300
ggggctagaa agctcccgct tgtctgttc tcaggctcct gtgagcctca 2350
gtcctgagac cagagtcaag aggaagtaca cgtcccaatc acccgtgtca 2400
ggattcactc tcaggagct ggtggcagga gaggcaatag cccctgtggc 2450
aattgcagga ccagctggag cagggttgcg gtgtctccac ggtgctctcg 2500
ccctgccat ggccaccca gactctgatc tccaggaacc ccatagcccc 2550
tctccacctc accccatgtt gatgccagg gtcactcttg ctaccgctg 2600
ggccccaaa cccccgctgc ctctcttcct tcccccatc ccccactgg 2600
tctttgactaa tcctgcttcc ctctctggc ctggctgccg ggatctggg 2700
tccctaagtc cctcttta aagaacttct gcgggtcaga ctctgaagc 2750
gagttgctgt gggcgtgccc ggaagcagag cgccacactc gctgcttaag 2800
ctccccagc tctttccaga aaacattaaa ctcagaattg tgtttcaa 2849

<210> 78

<211> 281

<212> PRT

<213> Homo Sapien

<400> 78

Met Gly Ser Arg Gly Gln Gly Leu Leu Leu Ala Tyr Cys Leu Leu

1 5 10 15

Leu Ala Phe Ala Ser Gly Leu Val Leu Ser Arg Val Pro His Val
20 25 30

Gln Gly Glu Gln Gln Glu Trp Glu Gly Thr Glu Glu Leu Pro Ser 35 40 45

Pro Pro Asp His Ala Glu Arg Ala Glu Glu Gln His Glu Lys Tyr
50 55 60

Arg Pro Ser Gln Asp Gln Gly Leu Pro Ala Ser Arg Cys Leu Arg
65 70 75

Cys Cys Asp Pro Gly Thr Ser Met Tyr Pro Ala Thr Ala Val Pro 80 85 90

Gln Ile Asn Ile Thr Ile Leu Lys Gly Glu Lys Gly Asp Arg Gly 95 100 105

Asp Arg Gly Leu Gln Gly Lys Tyr Gly Lys Thr Gly Ser Ala Gly

					110					115					120
	Ala	Arg	Gly	His	Thr 125	Gly	Pro	Lys	Gly	Gln 130	Lys	Gly	Ser	Met	Gly 135
	Ala	Pro	Gly	Glu	Arg 140	Cys	Lys	Ser	His	Tyr 145	Ala	Ala	Phe	Ser	Val 150
	Gly	Arg	Lys	Lys	Pro 155	Met	His	Ser	Asn	His 160	Tyr	Tyr	Gln	Thr	Val 165
	Ile	Phe	Asp	Thr	Glu 170	Phe	Val	Asn	Leu	Tyr 175	Asp	His	Phe	Asn	Met 180
,	Phe	Thr	Gly	Lys	Phe 185	Tyr	Cys	Tyr	Val	Pro 190	Gly	Leu	Tyr	Phe	Phe 195
	Ser	Leu	Asn	Val	His 200	Thr	Trp	Asn	Gln	Lys 205	Glu	Thr	Tyr	Leu	His 210
	Ile	Met	Lys	Asn	Glu 215	Glu	Glu	Val	Val	Ile 220	Leu	Phe	Ala	Gln	Val 225
	Gly	Asp	Arg	Ser	Ile 230	Met	Gln	Ser	Gln	Ser 235	Leu	Met	Leu	Glu	Leu 240
	Arg	Glu	Gln	Asp	Gln 245	Val	Trp	Val	Arg	Leu 250	Tyr	Lys	Gly	Glu	Arg 255
	Glu	Asn	Ala	Ile	Phe 260		Glu	Glu	Leu	Asp 265	Thr	Tyr	Ile	Thr	Phe 270
	Ser	Gly	Tyr	Leu	Val 275		His	Ala	Thr	Glu 280		•			
	<210 <211 <212 <213	> 24 > DN	Ά	cial	Seq	uenc	e								
	<220 <223	> > Sy	nthe	tic	olig	onuc	leot	ide	prob	e e					
	<400> 79 tacaggccca gtcaggacca gggg 24														
	<210> 80 <211> 24 <212> DNA <213> Artificial Sequence														
	<220 <223	> > Sy	mthe	etic	olig	gonuc	cleot	ide	prob	oe					
		> 80 Jaaga) lagt	agag	gccg	ggg (cacg	24							
	<210	> 81	L												

COOFWEET COUNCIL

- <211> 45
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 81

cccggtgctt gcgctgctgt gaccccggta cctccatgta cccgg 45

- <210> 82
- <211> 2284
- <212> DNA
- <213> Homo Sapien
- <400> 82

geggageate egetgeggte etegeegaga eeeeegegeg gattegeegg 50 teetteeege gggegegaca gagetgteet egeacetgga tggeageagg 100 ggcgccgggg tcctctcgac gccagagaga aatctcatca tctgtgcagc 150 cttcttaaag caaactaaga ccagagggag gattatcctt gacctttgaa 200 gaccaaaact aaactgaaat ttaaaatgtt cttcggggga gaagggagct 250 tgacttacac tttggtaata atttgcttcc tgacactaag gctgtctgct 300 agtcagaatt gcctcaaaaa gagtctagaa gatgttgtca ttgacatcca 350 gtcatctctt tctaagggaa tcagaggcaa tgagcccgta tatacttcaa 400 ctcaagaaga ctgcattaat tcttgctgtt caacaaaaaa catatcaggg 450 gacaaagcat gtaacttgat gatcttcgac actcgaaaaa cagctagaca 500 acccaactgc tacctatttt tctgtcccaa cgaggaagcc tgtccattga 550 aaccagcaaa aggacttatg agttacagga taattacaga ttttccatct 600 ttgaccagaa atttgccaag ccaagagtta ccccaggaag attctctctt 650 acatggccaa ttttcacaag cagtcactcc cctagcccat catcacacag 700 attattcaaa gcccaccgat atctcatgga gagacacact ttctcagaag 750 tttggatcct cagatcacct ggagaaacta tttaagatgg atgaagcaag 800 tgcccagctc cttgcttata aggaaaaagg ccattctcag agttcacaat 850 tttcctctga tcaagaaata gctcatctgc tgcctgaaaa tgtgagtgcg 900 ctcccagcta cggtggcagt tgcttctcca cataccacct cggctactcc 950 aaagcccgcc accettctac ccaccaatge ttcagtgaca cettctggga 1000 cttcccagcc acagctggcc accacagctc cacctgtaac cactgtcact 1050 teteageete ceaegaeeet catttetaca gtttttacae gggetgegge 1100 tacactccaa gcaatggcta caacagcagt tctgactacc acctttcagg 1150 cacctacgga ctcgaaaggc agcttagaaa ccataccgtt tacagaaatc 1200 tccaacttaa ctttgaacac agggaatgtg tataacccta ctgcactttc 1250 tatgtcaaat gtggagtctt ccactatgaa taaaactgct tcctgggaag 1300 gtagggaggc cagtccaggc agttcctccc agggcagtgt tccagaaaat 1350 cagtacggcc ttccatttga aaaatggctt cttatcgggt ccctgctctt 1400 tggtgtcctg ttcctggtga taggcctcgt cctcctgggt agaatccttt 1450 cggaatcact ccgcaggaaa cgttactcaa gactggatta tttgatcaat 1500 gggatctatg tggacatcta aggatggaac tcggtgtctc ttaattcatt 1550 tagtaaccag aagcccaaat gcaatgagtt tctgctgact tgctagtctt 1600 agcaggaggt tgtattttga agacaggaaa atgccccctt ctgctttcct 1650 ttttttttt ggagacagag tcttgctctg ttgcccaggc tggagtgcag 1700 tagcacgate teggetetea eegeaacete egteteetgg gtteaagega 1750 ttctcctgcc tcagcctcct aagtatctgg gattacaggc atgtgccacc 1800 acacctgggt gatttttgta tttttagtag agacggggtt tcaccatgtt 1850 ggtcaggctg gtctcaaact cctgacctag tgatccaccc tcctcggcct 1900 cccaaagtgc tgggattaca ggcatgagcc accacagctg gcccccttct 1950 gttttatgtt tggtttttga gaaggaatga agtgggaacc aaattaggta 2000 attttgggta atctgtctct aaaatattag ctaaaaacaa agctctatgt 2050 aaagtaataa agtataattg ccatataaat ttcaaaattc aactggcttt 2100 tatgcaaaga aacaggttag gacatctagg ttccaattca ttcacattct 2150 tggttccaga taaaatcaac tgtttatatc aatttctaat ggatttgctt 2200 ttctttttat atggattcct ttaaaactta ttccagatgt agttccttcc 2250 aattaaatat ttgaataaat cttttgttac tcaa 2284 <210> 83

<211> 431

<212> PRT

<213> Homo Sapien

<400> 83 Met Phe Phe Gly Gly Glu Gly Ser Leu Thr Tyr Thr Leu Val Ile

	305				310					315		
Ser Leu Glu Thr	Ile Pro	Phe	Thr	Glu	Ile 325	Ser	Asn	Leu	Thr	Leu 330		
Asn Thr Gly Asn	Val Tyr 335	Asn	Pro	Thr	Ala 340	Leu	Ser	Met	Ser	Asn 345		
Val Glu Ser Ser	Thr Met	Asn	Lys	Thr	Ala 355	Ser	Trp	Glu	Gly	Arg 360		
Glu Ala Ser Pro	Gly Ser 365	Ser	Ser	Gln	Gly 370	Ser	Val	Pro	Glu	Asn 375		
Gln Tyr Gly Leu	Pro Phe	Glu	Lys	Trp	Leu 385	Leu	Ile	Gly	Ser	Leu 390		
Leu Phe Gly Val	Leu Phe	Leu	Val	Ile	Gly 400	Leu	Val	Leu	Leu	Gly 405		
Arg Ile Leu Ser	Glu Sei 410	Leu	Arg	Arg	Lys 415	Arg	Tyr	Ser	Arg	Leu 420		
Asp Tyr Leu Ile	Asn Gly	/ Ile	Tyr	Val	Asp 430	Ile						
<210> 84 <211> 30 <212> DNA <213> Artificial Sequence												
<220> <223> Synthetic	oligonu	cleot	ide	prob	e							
<400> 84 agggaggatt atco	cttgacc	tttga	aagao	ec 30)							
<210> 85 <211> 18 <212> DNA <213> Artificia	l Sequen	ce										
<220> <223> Synthetic	oligonu	cleo	tide	prol	oe -							
<400> 85 gaagcaagtg ccc	agctc 18											
<210> 86 <211> 18 <212> DNA <213> Artificia	l Sequer	ıce										
<220> <223> Synthetic	oligonu	clec	tide	pro	be							
<400> 86 cgggtccctg ctc	·											

COOKEC - COEFCCI

```
<211> 24
  <212> DNA
  <213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
   <400> 87
    caccgtagct gggagcgcac tcac 24
   <210> 88
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 88
    agtgtaagtc aagctccc 18
   <210> 89
   <211> 49
   <212> DNA
   <213> Artificial Sequence
Ш
   <220>
   <223> Synthetic oligonucleotide probe
m
M
    gcttcctgac actaaggctg tctgctagtc agaattgcct caaaaagag 49
   <210> 90
   <211> 957
   <212> DNA
   <213> Homo Sapien
   <400> 90
    cctggaagat gcgcccattg gctggtggcc tgctcaaggt ggtgttcgtg 50
    gtcttcgcct ccttgtgtgc ctggtattcg gggtacctgc tcgcagagct 100
     cattccagat gcacccctgt ccagtgctgc ctatagcatc cgcagcatcg 150
    gggagaggcc tgtcctcaaa gctccagtcc ccaaaaggca aaaatgtgac 200
     cactggactc cctgcccatc tgacacctat gcctacaggt tactcagcgg 250
    aggtggcaga agcaagtacg ccaaaatctg ctttgaggat aacctactta 300
```

<210> 87

tgggagaaca gctgggaaat gttgccagag gaataaacat tgccattgtc 350

aactatgtaa ctgggaatgt gacagcaaca cgatgttttg atatgtatga 400

aggcgataac tctggaccga tgacaaagtt tattcagagt gctgctccaa 450

aatccctgct cttcatggtg acctatgacg acggaagcac aagactgaat 500

<210> 91

<211> 235

<212> PRT

<213> Homo Sapien

<400> 91

Met Arg Pro Leu Ala Gly Gly Leu Leu Lys Val Val Phe Val Val

Phe Ala Ser Leu Cys Ala Trp Tyr Ser Gly Tyr Leu Leu Ala Glu

Leu Ile Pro Asp Ala Pro Leu Ser Ser Ala Ala Tyr Ser Ile Arg

Ser Ile Gly Glu Arg Pro Val Leu Lys Ala Pro Val Pro Lys Arg

Gln Lys Cys Asp His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala

Tyr Arg Leu Leu Ser Gly Gly Gly Arg Ser Lys Tyr Ala Lys Ile

Cys Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val

Ala Arg Gly Ile Asn Ile Ala Ile Val Asn Tyr Val Thr Gly Asn 115

Val Thr Ala Thr Arg Cys Phe Asp Met Tyr Glu Gly Asp Asn Ser 135 125

Gly Pro Met Thr Lys Phe Ile Gln Ser Ala Ala Pro Lys Ser Leu 145

Leu Phe Met Val Thr Tyr Asp Asp Gly Ser Thr Arg Leu Asn Asn 165 160

Asp Ala Lys Asn Ala Ile Glu Ala Leu Gly Ser Lys Glu Ile Arg 175 170 Asn Met Lys Phe Arg Ser Ser Trp Val Phe Ile Ala Ala Lys Gly 190 Leu Glu Leu Pro Ser Glu Ile Gln Arg Glu Lys Ile Asn His Ser 205 Asp Ala Lys Asn Asn Arg Tyr Ser Gly Trp Pro Ala Glu Ile Gln Ile Glu Gly Cys Ile Pro Lys Glu Arg Ser 230 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe ☐ <400> 92 aatgtgacca ctggactccc 20 <210> 93 <211> 18 <212> DNA <213> Artificial Sequence ₣ <220> <223> Synthetic oligonucleotide probe <400> 93 aggettggaa eteeette 18 <210> 94 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 94 aagattettg agegatteea getg 24 <210> 95 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 95 aatccctgct cttcatggtg acctatgacg acggaagcac aagactg 47

94

ù M

M

<u>=</u>

Ŭ

ليا

```
<210> 96
  <211> 21
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 96
   ctcaagaagc acgcgtactg c 21
  <210> 97
  <211> 25
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 97
   ccaacctcag cttccgcctc tacga 25
  <210> 98
  <211> 18
  <212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
M
(T
  <400> 98
   catccagget egecactg 18
  <210> 99
  <211> 20
Œ
  <212> DNA
  <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
   <400> 99
    tggcaaggaa tgggaacagt 20
   <210> 100
   <211> 25
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
    atgctgccag acctgatcgc agaca 25
   <210> 101
    <211> 19
    <212> DNA
```



```
<213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 101
   gggcagaaat ccagccact 19
  <210> 102
  <211> 18
  <212> DNA
  <213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
   <400> 102
   cccttcgcct gcttttga 18
   <210> 103
   <211> 27
   <212> DNA
  <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
  <400> 103
   gccatctaat tgaagcccat cttccca 27
m
M
   <210> 104
  <211> 19
   <212> DNA
  <213> Artificial Sequence
Ø,
   <223> Synthetic oligonucleotide probe
   <400> 104
   ctggcggtgt cctctcctt 19
   <210> 105
   <211> 21
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 105
    cctcggtctc ctcatctgtg a 21
   <210> 106
   <211> 20
   <212> DNA
   <213> Artificial Sequence
   <220>
```

```
<223> Synthetic oligonucleotide probe
  <400> 106
   tggcccagct gacgagccct 20
  <210> 107
  <211> 21
  <212> DNA
  <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 107
   ctcataggca ctcggttctg g 21
  <210> 108
   <211> 19
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 108
tggctccci
与 <210> 109
   tggctcccag cttggaaga 19
(211> 30
   <212> DNA
m
   <213> Artificial Sequence
   <220>
<223> Synthetic oligonucleotide probe
   <400> 109
   cagetettgg etgtetecag tatgtaceca 30
<210> 110
   <211> 21
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 110
    gatgcctctg ttcctgcaca t 21
   <210> 111
   <211> 48
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
```

₽

Ф

<400> 111

ggattctaat acgactcact atagggctgc ccgcaacccc ttcaactg 48 <210> 112 <211> 48 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 112 ctatgaaatt aaccctcact aaagggaccg cagctgggtg accgtgta 48 <210> 113 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 113 ggattctaat acgactcact atagggccgc cccgccacct cct 43 <210> 114 <211> 48 = <212> DNA 🔟 <213> Artificial Sequence \Box <220> <223> Synthetic oligonucleotide probe £ <400> 114 ctatgaaatt aacceteact aaagggacte gagacaceae etgaceca 48 D <210> 115 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 115 ggattctaat acgactcact atagggccca aggaaggcag gagactct 48 <210> 116 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide probe ctatgaaatt aaccctcact aaagggacta gggggtggga atgaaaag 48

<210> 117

