$12a_{0447} (K12a_{0447})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{60} - u^{59} + \dots - u^2 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 60 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{60} - u^{59} + \dots - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{8} + 3u^{6} - 3u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{11} - 4u^{9} + 6u^{7} - 2u^{5} - 3u^{3} + 2u \\ u^{11} - 3u^{9} + 4u^{7} - u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{15} + 4u^{13} - 6u^{11} + 8u^{7} - 6u^{5} - 2u^{3} + 2u \\ u^{17} - 5u^{15} + 11u^{13} - 10u^{11} - u^{9} + 10u^{7} - 6u^{5} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{29} - 8u^{27} + \dots + 2u^{3} + u \\ -u^{31} + 9u^{29} + \dots - 4u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{14} + 5u^{12} - 10u^{10} + 7u^{8} + 4u^{6} - 8u^{4} + 2u^{2} + 1 \\ -u^{14} + 4u^{12} - 7u^{10} + 4u^{8} + 2u^{6} - 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{45} - 14u^{43} + \dots - 18u^{5} + 3u \\ u^{45} - 13u^{43} + \dots + u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{59} 72u^{57} + \cdots 8u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{60} + 35u^{59} + \dots + 2u + 1$
c_2, c_5	$u^{60} + u^{59} + \dots - u^2 + 1$
c_3,c_{10}	$u^{60} + u^{59} + \dots + 2u + 1$
c_4, c_8	$u^{60} + 3u^{59} + \dots - 453u^2 + 77$
$c_6, c_7, c_{11} \\ c_{12}$	$u^{60} + 3u^{59} + \dots + 34u + 5$
<i>C</i> 9	$u^{60} - 31u^{59} + \dots - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{60} - 19y^{59} + \dots - 10y + 1$
c_2, c_5	$y^{60} - 35y^{59} + \dots - 2y + 1$
c_3,c_{10}	$y^{60} - 31y^{59} + \dots - 2y + 1$
c_4, c_8	$y^{60} + 37y^{59} + \dots - 69762y + 5929$
$c_6, c_7, c_{11} \\ c_{12}$	$y^{60} + 73y^{59} + \dots + 74y + 25$
<i>c</i> ₉	$y^{60} - 3y^{59} + \dots - 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.919475 + 0.342245I	0.08563 + 3.24816I	2.86695 - 8.06640I
u = -0.919475 - 0.342245I	0.08563 - 3.24816I	2.86695 + 8.06640I
u = -1.044190 + 0.193501I	0.32484 + 3.60424I	-1.15833 - 4.66740I
u = -1.044190 - 0.193501I	0.32484 - 3.60424I	-1.15833 + 4.66740I
u = 0.905641 + 0.075866I	-1.51462 - 0.22405I	-6.40245 + 0.27111I
u = 0.905641 - 0.075866I	-1.51462 + 0.22405I	-6.40245 - 0.27111I
u = -0.006041 + 0.904852I	-10.02580 - 2.42359I	-2.65635 + 3.19391I
u = -0.006041 - 0.904852I	-10.02580 + 2.42359I	-2.65635 - 3.19391I
u = 0.038465 + 0.899651I	-4.64353 + 8.98999I	1.72039 - 5.67712I
u = 0.038465 - 0.899651I	-4.64353 - 8.98999I	1.72039 + 5.67712I
u = -0.030149 + 0.897007I	-7.37251 - 4.03814I	-1.44998 + 2.20533I
u = -0.030149 - 0.897007I	-7.37251 + 4.03814I	-1.44998 - 2.20533I
u = 0.763924 + 0.465497I	5.00437 - 6.11953I	7.26352 + 7.85803I
u = 0.763924 - 0.465497I	5.00437 + 6.11953I	7.26352 - 7.85803I
u = 0.030712 + 0.880798I	-3.02518 + 0.62968I	3.76609 + 0.36863I
u = 0.030712 - 0.880798I	-3.02518 - 0.62968I	3.76609 - 0.36863I
u = 1.092890 + 0.282962I	-3.07831 - 0.54807I	0
u = 1.092890 - 0.282962I	-3.07831 + 0.54807I	0
u = 1.032740 + 0.462956I	2.05457 - 2.50514I	0
u = 1.032740 - 0.462956I	2.05457 + 2.50514I	0
u = -0.739994 + 0.426951I	1.82247 + 1.86091I	4.36406 - 4.47008I
u = -0.739994 - 0.426951I	1.82247 - 1.86091I	4.36406 + 4.47008I
u = -1.117990 + 0.254452I	-0.50349 - 3.93794I	0
u = -1.117990 - 0.254452I	-0.50349 + 3.93794I	0
u = -1.062020 + 0.457339I	-1.79262 + 6.16892I	0
u = -1.062020 - 0.457339I	-1.79262 - 6.16892I	0
u = 0.701269 + 0.462491I	5.17636 + 2.18925I	8.10847 + 0.13060I
u = 0.701269 - 0.462491I	5.17636 - 2.18925I	8.10847 - 0.13060I
u = 1.109480 + 0.360438I	-4.69760 - 1.44356I	0
u = 1.109480 - 0.360438I	-4.69760 + 1.44356I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.065550 + 0.475941I	1.11940 - 10.83400I	0
u = 1.065550 - 0.475941I	1.11940 + 10.83400I	0
u = -1.104060 + 0.403777I	-4.38057 + 5.70362I	0
u = -1.104060 - 0.403777I	-4.38057 - 5.70362I	0
u = 0.255046 + 0.618563I	3.38358 + 6.59803I	5.15553 - 6.30688I
u = 0.255046 - 0.618563I	3.38358 - 6.59803I	5.15553 + 6.30688I
u = -1.257920 + 0.450457I	-6.94466 + 4.07293I	0
u = -1.257920 - 0.450457I	-6.94466 - 4.07293I	0
u = 1.249740 + 0.482651I	-6.70940 - 5.51033I	0
u = 1.249740 - 0.482651I	-6.70940 + 5.51033I	0
u = 1.267950 + 0.452530I	-11.34370 - 0.73251I	0
u = 1.267950 - 0.452530I	-11.34370 + 0.73251I	0
u = -1.270740 + 0.447700I	-8.65827 - 4.23519I	0
u = -1.270740 - 0.447700I	-8.65827 + 4.23519I	0
u = -1.257410 + 0.485584I	-11.0988 + 8.9801I	0
u = -1.257410 - 0.485584I	-11.0988 - 8.9801I	0
u = 1.256940 + 0.490183I	-8.3433 - 13.9630I	0
u = 1.256940 - 0.490183I	-8.3433 + 13.9630I	0
u = 1.268500 + 0.467782I	-13.92050 - 2.45161I	0
u = 1.268500 - 0.467782I	-13.92050 + 2.45161I	0
u = -1.266320 + 0.474454I	-13.8709 + 7.3329I	0
u = -1.266320 - 0.474454I	-13.8709 - 7.3329I	0
u = 0.306849 + 0.559155I	4.05629 - 1.56504I	7.07085 + 0.73954I
u = 0.306849 - 0.559155I	4.05629 + 1.56504I	7.07085 - 0.73954I
u = -0.234349 + 0.574464I	0.48435 - 2.11140I	1.91014 + 3.36891I
u = -0.234349 - 0.574464I	0.48435 + 2.11140I	1.91014 - 3.36891I
u = -0.061807 + 0.591217I	-1.52087 - 1.95278I	-1.21392 + 4.59969I
u = -0.061807 - 0.591217I	-1.52087 + 1.95278I	-1.21392 - 4.59969I
u = -0.473230 + 0.288232I	1.236790 - 0.098801I	8.77548 + 0.26744I
u = -0.473230 - 0.288232I	1.236790 + 0.098801I	8.77548 - 0.26744I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{60} + 35u^{59} + \dots + 2u + 1$
c_2, c_5	$u^{60} + u^{59} + \dots - u^2 + 1$
c_3, c_{10}	$u^{60} + u^{59} + \dots + 2u + 1$
c_4, c_8	$u^{60} + 3u^{59} + \dots - 453u^2 + 77$
c_6, c_7, c_{11} c_{12}	$u^{60} + 3u^{59} + \dots + 34u + 5$
<i>c</i> 9	$u^{60} - 31u^{59} + \dots - 2u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{60} - 19y^{59} + \dots - 10y + 1$
c_2, c_5	$y^{60} - 35y^{59} + \dots - 2y + 1$
c_3,c_{10}	$y^{60} - 31y^{59} + \dots - 2y + 1$
c_4, c_8	$y^{60} + 37y^{59} + \dots - 69762y + 5929$
c_6, c_7, c_{11} c_{12}	$y^{60} + 73y^{59} + \dots + 74y + 25$
<i>C</i> 9	$y^{60} - 3y^{59} + \dots - 2y + 1$