Amendments to the Claims:

The following Listing of Claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. (Currently Amended) A method of reducing non-specific binding of target molecules to a surface, the method comprising:

providing a sample comprising target molecules;

providing a solid phase material comprising a surface that comprises a hydrophobic portion and capture sites, wherein the capture sites are either covalently attached or hydrophobically attached to the solid phase material;

providing a fluorinated nonionic surfactant comprising two or more fluorinated hydrophobic segments and one or more hydrophilic segments;

contacting the solid phase material with the fluorinated nonionic surfactant to block at least a portion of the hydrophobic portion of the solid phase material thereby creating a blocked solid phase material;

contacting the blocked solid phase material with the sample so that at least a portion of the target molecules of the sample adheres to the capture sites thereby creating adhered target molecules; and

optionally removing at least a portion of the adhered target molecules of the sample from the blocked solid phase material,

wherein non-specific binding of target molecules to the surface is decreased relative to non-specific binding to the surface without contacting the solid phase material with the fluorinated nonionic surfactant.

- 2. (Original) The method of claim 1 wherein the solid phase material is porous.
- 3. (Original) The method of claim 2 wherein the solid phase material comprises a polytetrafluoroethylene fibril matrix and sorptive particles enmeshed in the matrix, wherein the sorptive particles comprise the capture sites.

- 4. (Previously Presented) The method of claim 32 wherein the secondary blocking agent comprises a polypeptide, a nucleic acid, a surfactant, a stabilizing agent, a lipid, a biological sample, or combinations thereof.
- 5. (Currently Amended) The method of claim 1 wherein the fluorinated <u>nonionic</u> surfactant includes at least one unit of the following formula (I):

$$\begin{bmatrix} CH_2 & C \\ & &$$

wherein: the rectangular box represents a bond in a polymerizable or polymer chain; R_f is a (C3-C10) linear or branched perfluorinated group; R and R^2 are each independently hydrogen or a C1-C4 alkyl group; n is an integer of 2 to 10; and x is at least [1]2.

6. (Currently Amended) The method of claim 5 wherein the fluorinated <u>nonionic</u> surfactant is of the following formula (II):

$$\begin{bmatrix} CH_2 & C \\ X & C \end{bmatrix}_{X} & \begin{bmatrix} CH_2 & C \\ -C \end{bmatrix}_{Y} & C \end{bmatrix}_{Y}$$

$$(CH_2)_{n} & R^{1}$$

$$C_4F_9$$

wherein: the rectangular box represents a bond in a polymerizable or polymer chain; R, R¹, and R² are each independently hydrogen or a C1-C4 alkyl group; n is an integer of 2 to 10; R³ is a straight or branched alkylene-oxy group, linked together and having 2-6 carbon atoms, or a straight or branched alkylene group having 12-20 carbon atoms; and x, y, and z are each independently at least 1.

- 7. (Currently Amended) The method of claim 1 wherein at least 50% of the adhered target molecules are released upon removing at least a portion of the adhered target molecules of the sample from the blocked solid phase material.
- 8. (Currently Amended) The method of claim 7 wherein at least 90% of the adhered target molecules are released upon removing at least a portion of the adhered target molecules of the sample from the blocked solid phase material.
- 9. (Cancelled)

10. (Currently Amended) The method of claim 1[9] wherein providing a solid phase material comprising a surface that comprises a hydrophobic portion and capture sites comprises:

providing a solid phase material comprising a hydrophobic portion;
providing a capture protein; and
contacting solid phase material with the capture protein to hydrophobically attach the
capture protein and provide capture sites.

- 11. (Original) The method of claim 10 wherein the capture protein comprises Protein A, Protein G, lectins, antibodies, avidin, streptavidin, receptor proteins, or mixtures thereof.
- 12. (Cancelled)
- 13. (Currently Amended) The method of claim 1[12] wherein the <u>capture sites eovalently</u> attached molecules comprise proteins, metal affinity ligands, boronates, protein binding dyes, polypeptides, Protein A mimetics, oligonucleotides, or mixtures thereof.
- 14. (Withdrawn-Currently Amended) A method of reducing non-specific binding of target molecules to a surface, the method comprising:

providing a sample comprising target molecules;

providing a solid phase material comprising a polytetrafluoroethylene fibril matrix and sorptive particles enmeshed in the matrix;

providing a fluorinated nonionic surfactant comprising two or more fluorinated hydrophobic segments and one or more hydrophilic segments;

optionally providing a secondary blocking agent;

contacting the solid phase material with the fluorinated nonionic surfactant and optionally contacting the solid phase material with the secondary blocking agent to block at least a portion of the polytetrafluoroethylene fibril matrix thereby creating a blocked solid phase material;

contacting the blocked solid phase material with the sample to adhere at least a portion of the target molecules of the biological sample to the sorptive particles thereby creating adhered target molecules; and

removing at least a portion of the adhered target molecules of the sample from the blocked solid phase material.

15. (Currently Amended) A method of preparing a solid phase material the method comprising:

providing a solid phase material comprising a surface that comprises a hydrophobic portion and capture sites, wherein the capture sites are either covalently attached or hydrophobically attached to the solid phase material;

providing a fluorinated nonionic surfactant comprising two or more fluorinated hydrophobic segments and one or more hydrophilic segments; and

contacting the solid phase material with the fluorinated nonionic surfactant to block at least a portion of the hydrophobic portion. so that at least portion of the hydrophobic portion is blocked.

16. (Withdrawn-Currently Amended) A method of reducing non-specific binding of target molecules to a surface, the method comprising:

providing a sample comprising target molecules;

providing a solid phase material comprising a hydrophobic portion and one or more hydrophobically attached capture proteins;

providing a fluorinated nonionic surfactant comprising two or more fluorinated hydrophobic segments and one or more hydrophilic segments;

contacting the solid phase material with the fluorinated nonionic surfactant to block at least a portion of the hydrophobic portion of the solid phase material thereby creating a blocked solid phase material;

contacting the blocked solid phase material with the sample to adhere at least a portion of the target molecules of the sample to the one or more capture proteins thereby creating adhered target molecules; and

optionally removing at least a portion of the adhered target molecules of the sample from the blocked solid phase material.

17. (Withdrawn) A method of modifying a surface, the method comprising:

providing a solid phase material comprising a hydrophobic portion;

providing a protein and contacting the protein to the solid phase material to hydrophobically attach the protein;

providing a fluorinated nonionic surfactant comprising two or more fluorinated hydrophobic segments and one or more hydrophilic segments; and

contacting the solid phase material with the fluorinated nonionic surfactant to reduce non-specific binding of other molecules to the solid phase material.

18. (Withdrawn) A kit comprising:

a solid phase material comprising a hydrophobic portion;

a fluorinated nonionic surfactant comprising two or more fluorinated hydrophobic segments and one or more hydrophilic segments;

an optional secondary blocking agent; and instructions for carrying out the method of claim 1.

- 19. (Withdrawn) The kit of claim 18 wherein the fluorinated nonionic surfactant is disposed on the solid phase material.
- 20. (Withdrawn) A kit comprising:

a solid phase material comprising a hydrophobic portion;

a fluorinated nonionic surfactant comprising two or more fluorinated hydrophobic segments and one or more hydrophilic segments;

an optional secondary blocking agent; and instructions for carrying out the method of claim 15.

21. (Withdrawn) The kit of claim 20 wherein the fluorinated nonionic surfactant is disposed on the solid phase material.

22. (Withdrawn) A kit comprising:

a solid phase material comprising a polytetrafluoroethylene fibril matrix and sorptive particles enmeshed in the matrix;

a fluorinated nonionic surfactant comprising two or more fluorinated hydrophobic segments and one or more hydrophilic segments;

an optional secondary blocking agent; and instructions for carrying out the method of claim 14.

23. (Withdrawn) A material comprising a solid phase material having a fluorinated nonionic surfactant disposed thereon; wherein:

the solid phase material comprises a polytetrafluoroethylene fibril matrix and sorptive particles enmeshed in the matrix; and

the fluorinated nonionic surfactant comprises two or more fluorinated hydrophobic segments and one or more hydrophilic segments.

24. (Withdrawn-Currently Amended) The material of claim 23 wherein the fluorinated nonionic surfactant includes at least one unit of the following formula (I):

wherein: the rectangular box represents a bond in a polymerizable or polymer chain; R_f is a (C3-C10) linear or branched perfluorinated group; R and R^2 are each independently hydrogen or a C1-C4 alkyl group; n is an integer of 2 to 10; and x is at least [1]2.

25. (Withdrawn-Currently Amended) The material of claim 23 wherein the fluorinated nonionic surfactant is of the following formula (II):

wherein: the rectangular box represents a bond in a polymerizable or polymer chain; R, R¹, and R² are each independently hydrogen or a CI-C4 alkyl group; n is an integer of 2 to 10; R³ is a straight or branched alkylene-oxy group, linked together and having 2-6 carbon atoms, or a straight or branched alkylene group having 12-20 carbon atoms; and x, y, and z are each independently at least 1.

26. (Withdrawn) A material comprising a solid phase material having a fluorinated nonionic surfactant disposed thereon; wherein:

the solid phase material comprises a thermally induced phase separation membrane; and the fluorinated nonionic surfactant comprises two or more fluorinated hydrophobic segments and one or more hydrophilic segments.

27. (Withdrawn-Currently Amended) The material of claim 26 wherein the fluorinated nonionic surfactant includes at least one unit of the following formula (I):

$$\begin{array}{c|c}
 & R^2 \\
\hline
 & CH_2 & C \\
\hline
 & X \\
\hline
 & O & C
\end{array}$$

$$\begin{array}{c|c}
 & CH_2 & C \\
\hline
 & X \\
\hline
 & O & C
\end{array}$$

$$\begin{array}{c|c}
 & CH_2 & C \\
\hline
 & X \\
\hline
 & O & C
\end{array}$$

wherein: the rectangular box represents a bond in a polymerizable or polymer chain; R_E is a (C3-C10) linear or branched perfluorinated group; R and R² are each independently hydrogen or a C1-C4 alkyl group; n is an integer of 2 to 10; and x is at least [1]2.

28. (Withdrawn-Currently Amended) The material of claim 26 wherein the fluorinated nonionic surfactant is of the following formula (II):

$$\begin{bmatrix} CH_2 & C \end{bmatrix}_X & \begin{bmatrix} CH_2 & C \end{bmatrix}_Y \\ O & C \end{bmatrix}_X & \begin{bmatrix} CH_2 & C \end{bmatrix}_Y \\ O & C \end{bmatrix}_X & \begin{bmatrix} CH_2 & C \end{bmatrix}_Y \\ O & C \end{bmatrix}_X & \begin{bmatrix} R^3 \\ R^1 \end{bmatrix}_{7}$$

wherein: the rectangular box represents a bond in a polymerizable or polymer chain; R, R¹, and R² are each independently hydrogen or a C1-C4 alkyl group; n is an integer of 2 to 10; R³ is a straight or branched alkylene-oxy group, linked together and having 2-6 carbon atoms, or a straight or branched alkylene group having 12-20 carbon atoms; and x, y, and z are each independently at least 1.

29. (Withdrawn) A material comprising a solid phase material having a fluorinated nonionic surfactant disposed thereon; wherein:

the solid phase material comprises high internal phase emulsion; and
the fluorinated nonionic surfactant comprises two or more fluorinated hydrophobic
segments and one or more hydrophilic segments.

30. (Withdrawn-Currently Amended) The material of claim 29 wherein the fluorinated nonionic surfactant includes at least one unit of the following formula (I):

$$\begin{array}{c|c}
R^2 \\
CH_2 - C \\
X \\
C \\
C \\
X
\\
C \\
R_f$$

wherein: the rectangular box represents a bond in a polymerizable or polymer chain; R_f is a (C3-C10) linear or branched perfluorinated group; R and R^2 are each independently hydrogen or a C1-C4 alkyl group; n is an integer of 2 to 10; and x is at least [1]2.

31. (Withdrawn-Currently Amended) The material of claim 29 wherein the fluorinated nonionic surfactant is of the following formula (II):

$$\begin{bmatrix} CH_2 & C \\ \end{bmatrix}_X & \begin{bmatrix} CH_2 & C \\ \end{bmatrix}_Y \\ O = \begin{pmatrix} C \\ \end{bmatrix}_Y \\ O = \begin{pmatrix}$$

wherein: the rectangular box represents a bond in a polymerizable or polymer chain; R, R¹, and R² are each independently hydrogen or a C1-C4 alkyl group; n is an integer of 2 to 10; R³ is a straight or branched alkylene-oxy group, linked together and having 2-6 carbon atoms, or a straight or branched alkylene group having 12-20 carbon atoms; and x, y, and z are each independently at least 1.

- 32. (Previously Presented) The method of claim 1 further comprising contacting the solid phase material with a secondary blocking agent.
- 33. (Previously Presented) The method of claim 15 further comprising contacting the solid phase material with a secondary blocking agent.