Asignación digital de algebra moderna

Daniel Fabian Osorio Valencia, Código: 8946508 October 2020

1 Ejercicio

Considere el anillo $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$. Determine si este anillo es dominio entero, anillo de división y cuerpo.

2 $\mathbb{Q}[\sqrt{2}]$ es dominio entero

Se quiere demostrar que $\mathbb{Q}[\sqrt{2}]$ es un dominio entero, es decir, que $\mathbb{Q}[\sqrt{2}]$ es un anillo conmutativo y no tiene divisores de ceros. Inicialmente sabemos que $\mathbb{Q}[\sqrt{2}] \subset \mathbb{R}$, ya que $a,b \in \mathbb{Q} \subset \mathbb{R}$ y $\sqrt{2} \in \mathbb{R}$ y por cerradura de $\cdot, +$ en \mathbb{R} , el elemento $a+b\sqrt{2} \in \mathbb{R}$ para todo $a,b \in \mathbb{Q}$. De este modo, como la operacion \cdot es conmutativa en \mathbb{R} y $\mathbb{Q}[\sqrt{2}] \subset \mathbb{R}$, se concluye que $\mathbb{Q}[\sqrt{2}]$ es un anillo conmutativo por herencia. Se quiere demostrar ahora que $\mathbb{Q}[\sqrt{2}]$ no tiene divisores de cero. Supongamos entonces por contradiccion, que $\mathbb{Q}[\sqrt{2}]$ tiene divisores de ceros, es decir que $\exists_{x,y}(x,y\in\mathbb{Q}[\sqrt{2}])$ tal que xy=0, con $x,y\neq 0$:

$$xu = 0$$

Haciendo las sustituciones $x=(a+b\sqrt{2})$ y $y=(c+d\sqrt{2})$ con $a,b,c,d\in\mathbb{Q}$ se tiene:

$$(a+b\sqrt{2})(c+d\sqrt{2}) = 0$$

$$(a+b\sqrt{2}) = 0 \lor (c+d\sqrt{2}) = 0 \text{ (propiedad ecuaciones)}$$

$$a = -b\sqrt{2} \lor c = -d\sqrt{2} \text{ (despeje)}$$

En ambos casos se tiene la igualdad:

$$(racional) = -(racional)(irracional)$$

Ahora como $x \neq 0$ y $y \neq 0$ entonces $a + b\sqrt{2} \neq 0$ y $c + d\sqrt{2} \neq 0$, por lo cual $a \neq 0, b \neq 0, c \neq 0, d \neq 0$. por lo cual, los numeros racionales de la ecuación

(racional) = -(racional)(irracional) son distintos de cero, es decir que no existe la posibiliad de que la formula sea:

$$0 = -(0)(irracional)$$
$$0 = 0$$

De este modo se tiene que:

$$(racional) = -(racional)(irracional)$$

 $(racional) = -(irracional)$ (propiedad irracionales)
 $(racional) = (irracional)$ (propiedad irracionales)

Asi se llega a una contradiccion en ambos casos, es decir, que nuestra suposicion inicial es falsa, por lo cual, $\neg \exists_{x,y} (x,y \in \mathbb{Q}[\sqrt{2}])$ tal que xy=0, con $x,y \neq 0$. Finalemente se concluye que como $\mathbb{Q}[\sqrt{2}]$ es conmutativo y no tiene divisores de cero, entonces $\mathbb{Q}[\sqrt{2}]$ es un dominio entero. \square

3 $\mathbb{Q}[\sqrt{2}]$ es anillo con division

Se quiere demostrar que $\mathbb{Q}[\sqrt{2}]$ es un anillo con division, es decir, que $\mathbb{Q}[\sqrt{2}]^*$ es un grupo con la operacion \cdot . Se debe demostrar entonces las propiedades de clausura, asociacion, modulativa e invertiva para $\mathbb{Q}[\sqrt{2}]^*$:

3.1 Clausurativa:

Sea $a+b\sqrt{2}, c+d\sqrt{2}\in\mathbb{Q}[\sqrt{2}]^*$ (esto implica que $a,b,c,d\neq 0$ ya que $0=0+0\sqrt{2}$):

$$(a+b\sqrt{2})(c+d\sqrt{2})$$
 $ac+ad\sqrt{2}+cb\sqrt{2}+bd\sqrt{2}\sqrt{2}$ (distributiva)
$$(ac+2bd)+(ad\sqrt{2}+cb\sqrt{2}) \text{ (simplificacion y asociativa)}$$

$$k+(ad+cb)\sqrt{2} \text{ (clausurativa} +, \cdot \text{ en } \mathbb{Q} \text{ y factorizacion)}$$

$$k+l\sqrt{2} \text{ (clausurativa} +, \cdot \text{ en } \mathbb{Q})$$

como $k,l\in\mathbb{Q}$ y $k,l\neq 0$ (ya que $a,b,c,d\neq 0$), entonces $k+l\sqrt{2}\in\mathbb{Q}[\sqrt{2}]^*$ por lo cual se cumple la propiedad clausurativa.

3.2 Asociativa:

Anteriormente se demostro que $\mathbb{Q}[\sqrt{2}] \subset \mathbb{R}$, por lo cual $\mathbb{Q}[\sqrt{2}]^* \subset \mathbb{R}$. De este modo la asociatividad en $\mathbb{Q}[\sqrt{2}]^*$ se hereda de \mathbb{R} .

3.3 Modulativa:

Como el modulo para \cdot en \mathbb{R} es el 1, y $1 \in \mathbb{Q}[\sqrt{2}]^*$ en la forma $1 + 0\sqrt{2}$, la propiedad modulativa en $\mathbb{Q}[\sqrt{2}]^*$ tambien se hereda de \mathbb{R} .

3.4 Invertiva:

Sea $a + b\sqrt{2} \in \mathbb{Q}[\sqrt{2}]^*$ (esto implica que $a, b \neq 0$ ya que $0 = 0 + 0\sqrt{2}$):

$$a + b\sqrt{2} \cdot \frac{1}{a + b\sqrt{2}} = 1$$

por lo cual, el inverso de $a+b\sqrt{2}$ es $\frac{1}{a+b\sqrt{2}}$, que en la forma $x+y\sqrt{2}$ con $x,y\in\mathbb{Q}$, seria:

$$\frac{1}{a+b\sqrt{2}} \cdot \frac{1}{a-b\sqrt{2}} \cdot \frac{a-b\sqrt{2}}{a-b\sqrt{2}} \text{ (multiplicacion por 1)}$$

$$\frac{a-b\sqrt{2}}{a^2-b^22} \text{ (diferencia de cuadrados)}$$

$$\frac{a}{a^2-b^22} - \frac{b\sqrt{2}}{a^2-b^22} \text{ (propiedad fraccion)}$$

$$\frac{a}{a^2-b^22} + \frac{-b}{a^2-b^22}\sqrt{2}$$

$$k+l\sqrt{2} \text{ } (a,b\neq 0 \text{ y clausurativa} +,\cdot,\div \text{ en } \mathbb{Q})$$

como $k,l\in\mathbb{Q}$ y $k,l\neq 0$ (ya que $a,b,c,d\neq 0$), entonces $k+l\sqrt{2}\in\mathbb{Q}[\sqrt{2}]^*$, por lo cual $a+b\sqrt{2}$ tiene inverso.

Como se cumplen todas las propiedades, es posible concluir que $\mathbb Q$ es un anillo con division. \square

4 $\mathbb{Q}[\sqrt{2}]$ es un cuerpo

Como $\mathbb{Q}[\sqrt{2}]$ es conmutativo y es un anillo con division, entonces por definicion de cuerpo, $\mathbb{Q}[\sqrt{2}]$ es un cuerpo. \square