Greedy Approach

Md. Tanvir Rahman

Lecturer, Dept. of ICT

Mawlana Bhashani Science and Technology University

Greedy Algorithm

- Greedy algorithms make the choice that looks best at the moment.
- This locally optimal choice may lead to a globally optimal solution (i.e. an optimal solution to the entire problem).

Greedy Algorithm

- A *greedy algorithm* always makes the choice that looks best at the moment
 - Some examples:
 - Playing cards
 - Invest on stocks
 - Choose a university
 - The hope: a locally optimal choice will lead to a globally optimal solution
 - For some problems, it works
- greedy algorithms tend to be easier to code

Greedy vs Dynamic Programming

Dynamic Programming	Greedy Approach
At each step, the choice is determined based on the	At each step, we quickly make a choice that currently
solutions of sub problems	looks best. A local greedy choice.
• It is slower	• It is faster
It is more complex	• It is simple

Example: Making Change

- Instance: amount (in cents) to return to customer
- Problem: do this using fewest number of coins
- Example:
 - Assume that we have an unlimited number of coins of various denominations:
 - 1c (pennies), 5c (nickels), 10c (dimes), 25c (quarters), 1\$ (loonies)
 - Objective: Pay out a given sum \$5.64 with the smallest number of coins possible.

Example: Making Change

• E.g.:

An Activity Selection Problem (Conference Scheduling Problem)

- Input: A set of activities $S = \{a_1, ..., a_n\}$
- Each activity has start time and a finish time
 - $A_i = (s_i, f_i)$
- Two activities are compatible if and only if their interval does not overlap
- Output: a maximum-size subset of mutually compatible activities

The Activity Selection Problem

Here are a set of start and finish times

i	1	2	3	4	5	6	7	8	9	10	11
$\overline{s_i}$	1	3	0	5	3	5	6	8	9 8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

- What is the maximum number of activities that can be completed?
 - $\{a_3, a_7, a_{11}\}$ can be completed
 - $\{a_3, a_8, a_1\}$ can be completed
 - $\{a_3, a_9, a_1\}$ can be completed
 - But so can $\{a_1, a_4, a_8, a_{11}\}$ which is a larger set
 - But it is not unique, consider {a₂, a₄, a₉, a₁₁}

Interval Representation

İ	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

Early Finish Greedy

- Select the activity with the earliest finish
- Eliminate the activities that could not be scheduled
- Repeat!

Assuming activities are sorted by finish time

```
GREEDY-ACTIVITY-SELECTOR (s, f)
1 n \leftarrow length[s]
A \leftarrow \{a_1\}
3 \quad i \leftarrow 1
4 for m \leftarrow 2 to n
           do if s_m \geq f_i
                  then A \leftarrow A \cup \{a_m\}
                         i \leftarrow m
    return A
```

Why it is Greedy?

- Greedy in the sense that it leaves as much opportunity as possible for the remaining activities to be scheduled
- The greedy choice is the one that maximizes the amount of unscheduled time remaining

Huffman Codes

- Widely used technique for data compression
- Assume the data to be a sequence of characters
- Looking for an effective way of storing the data
- Binary character code
 - Uniquely represents a character by a binary string
- Lossless Compression Technique.
- https://www.youtube.com/watch?v=co4_ahEDCho

Fixed-Length Codes

E.g.: Lets say, Data file containing 100,000 characters

	а	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

- 3 bits needed
- a = 000, b = 001, c = 010, d = 011, e = 100, f = 101
- Requires: $100,000 \cdot 3 = 300,000$ bits

Huffman Codes

- Idea:
 - Use the frequencies of occurrence of characters to build a optimal way of representing each character

	а	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

Variable-Length Codes

E.g.: Data file containing 100,000 characters

	a	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

- Assign short codewords to frequent characters and long codewords to infrequent characters
- a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100
- $(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1,000$
 - = 224,000 bits

Encoding with Binary Character Codes

- Encoding
 - Concatenate the codewords representing each character in the file
- *E.g.*:
 - a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100
 - abc = $0 \cdot 101 \cdot 100 = 0101100$

Decoding with Binary Character Codes

- Prefix codes simplify decoding
 - No codeword is a prefix of another \Rightarrow the codeword that begins an encoded file is unambiguous
- Approach
 - Identify the initial codeword
 - Translate it back to the original character
 - Repeat the process on the remainder of the file
- *E.g.*:
 - a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100
 - 001011101 =

 $0 \cdot 0 \cdot 101 \cdot 1101 = aabe$

Prefix Code Representation

- Binary tree whose leaves are the given characters
- Binary codeword
 - the path from the root to the character, where 0 means "go to the left child" and 1 means "go to the right child"
- Length of the codeword
 - Length of the path from root to the character leaf (depth of node)

Example

