# Partial Translation of JP 62-094834 U

Publication Date: June 17, 1987 Application No.: 60(1985)·187232 Application Date: December 6, 1985

Applicant: SUMITOMO BAKELITE CO., LTD

Title of the Invention: LAMINATE

10

15

## Translation of Claim

## 2. Claim

A laminate, wherein a vinylidene chloride copolymer layer A, a heat-resistant polyolefin layer B, an adhesive resin layer C formed of an ethylene-vinyl acetate copolymer, an ethylene-crylic ester copolymer, a modified olefin resin, or a mixture thereof, and an adhesive resin layer D formed of resin obtained by acid-modifying polypropylene or linear low density polyethylene are laminated in an order of B · D · C · A · C · D · B.

# 20 Translation of Lines 9 to 12, Page 2

Conventionally, a film made of a vinylidene chloride copolymer is excellent in gas barrier properties, strength, transparency, workability, and suitability as a packaging material. Particularly, it is being used widely for food packaging.

25

30

35

# <u>Translation of Example, Line 11, Page 6 to Line 10, Page 7</u> [Example]

Hereinafter, the present invention is described using examples.

The laminates of Examples and Comparative Examples having sizes and compositions indicated in Table 1 were produced as shown in FIG. 2 by a coextrusion process in which the respective resins were extruded

a coextrusion process in which the respective resins were extruded individually with 4 or 5 extruders, and molten resins were introduced into a T-die.

The interlayer adhesiveness was tested as follows. That is, each laminate was cut into a 15 cm square, was retort-treated in pressurized water having a temperature of 120°C for 60 minutes, was cooled, and was then cut into a sample with a width of 15 mm, which was subjected to 180°

delamination test using a SHIMADZU autograph.

For a practical test, a molded article with a shape as shown in FIG. 1 was produced with each laminate using a vacuum molding machine. The molded article was filled with water and was sealed using aluminum foil as a cover. Thereafter, it was retort-treated in pressurized water having a temperature of 120°C for 60 minutes. This was cooled and the appearance thereof was evaluated for comparison according to the following criteria: o: no deformation or deterioration of container,

- Δ: slightly deformed or whitened, and
- x: considerably deformed or whitened. 10

Table 1

| Practical<br>test                                      |                     | 0                      | 0                             | 0                          | 0                     | 0                         | 0         | 0                     | 0                      | 0           | ۵                           | Δ                      | Adhesive<br>layer was<br>whitened | ∇                        | ×                        | Δ                                         |
|--------------------------------------------------------|---------------------|------------------------|-------------------------------|----------------------------|-----------------------|---------------------------|-----------|-----------------------|------------------------|-------------|-----------------------------|------------------------|-----------------------------------|--------------------------|--------------------------|-------------------------------------------|
| Interlayer<br>adhesiveness<br>(g/15 mm)                | After<br>treatment  | 1000                   | 1100                          | 1500                       | 1500                  | 1300                      | 1000      | 1300                  | 1500                   | 1500        | 1300                        | 1300                   | 300                               | 200                      | 400                      | 200                                       |
|                                                        | Before<br>treatment | 1000                   | 1100                          | 1500                       | 1500                  | 1300                      | 1000      | 1300                  | 1500                   | 1500        | 1300                        | 1300                   | 009                               | 009                      | 200                      | 800                                       |
| Layer composing resin (%) and each layer thickness (µ) | Seventh             | FS2011A<br>350 µ       |                               |                            |                       |                           |           | FS2011A               | FS2011A                | *7<br>S5008 |                             |                        |                                   |                          |                          |                                           |
|                                                        | Sixth               | QF500<br>15 µ          | QF500(80)<br>EVA (20)         | QF500                      | QF500(80)<br>EVA (20) | QF500(80)<br>FS2011A (20) | QF500     | QF500                 | QF500(80)<br>NF500(20) | HB030       | HB030(50)                   | HB030(80)<br>VF500(20) |                                   |                          |                          |                                           |
|                                                        | Fifth<br>layer      | EVA<br>10 µ            | EVA<br>10 µ                   | EVA(50)<br>NF550(50)       |                       |                           | EEA       | EEA (80)<br>NF550(20) |                        | EVA         | EVA (30)<br>VF500(70)       |                        | FS2011A                           |                          |                          |                                           |
|                                                        | Fourth              | PVDC<br>50 µ           | =                             |                            | 14                    | =                         |           | PVDC                  |                        |             |                             |                        | EVA                               | QF500(50)<br>EVA (50)    | NF550(50)<br>EVA (50)    | EEA (50)<br>QF500(30)<br>PMMA (20)        |
|                                                        | Third               | *3<br>EVA<br>10 µ      | EVA<br>10 μ                   | EVA(50)<br>*5<br>NF550(50) |                       |                           | *6<br>EEA | EEA (80)<br>NF550(20) |                        | EVA         | EVA (30)<br>*9<br>VF500(70) |                        | PVDC                              |                          |                          | -                                         |
|                                                        | Second              | *2<br>QF500<br>15 µ    | QF500(80)<br>EVA (20)<br>15 µ | QF500                      | QF500(80)<br>EVA (20) | OF500(80)<br>FS2011(20)   | QF500     | QF500                 | QF500(80)<br>NF500(20) | QF500       | *8<br>HB030(50)             | HB030(80)<br>VF500(20) | EVA                               | QF500(50)<br>EVA (50)    | NF550(50)<br>EVA (50)    | EEA (50)<br>QF500(30)<br>PMMA (20)<br>*10 |
|                                                        | First               | *1<br>FS2011A<br>350 µ | -                             | =                          | -                     | -                         |           | FS2011A               | ı                      | FS2011A     | S2008                       |                        | FS2011A                           |                          |                          | r                                         |
|                                                        | Example<br>No.      | Example 1              | Example 2                     | Example 3                  | Example 4             | Example 5                 | Example 6 | Example 7             | Example 8              | Example 9   | Example 10                  | Example 11             | Comparative<br>Example 1          | Comparative<br>Example 2 | Comparative<br>Example 3 | Comparative<br>Example 4                  |

#### Footnote on the table

10

20

- \*1 Polypropylene, homopolymers with a concentration of 0.91
- \*2 Acid·modified polypropylene resin, manufactured by Mitsui Petrochemical Industries Ltd. (Product name: ADMER)
- 5 \*3 Ethylene-vinyl acetate copolymer, manufactured by Du Pont-Mitsui Polychemicals Co., Ltd. (Product name: EVAFLEX)
  - \*4 A product obtained by adding a suitable amount of acetyl tributyl citrate and epoxidized soybean oil to a copolymer of 85 parts by weight of vinylidene chloride and 15 parts by weight of vinyl chloride
  - \*5 Acid modified linear low density polyethylene rcsin, manufactured by Mitsui Petrochemical Industries Ltd. (Product name: ADMER)
  - \*6 Ethylene-ethyl acrylate copolymer, manufactured by Du Pont-Mitsui Polychemicals Co., Ltd. (Product name: EVAFLEX EEA)
- 15 \*7 High density polyethylene, manufactured by Showa Denko K.K (Product name: SHOLEX)
  - \*8 Acid-modified high density polyethylene resin, manufactured by Mitsui Petrochemical Industries Ltd. (Product name: ADMER)
  - \*9 Acid·modified ethylene-vinyl acetate copolymer resin, manufactured by Mitsui Petrochemical Industries Ltd. (Product name: ADMER)
  - \*10 Polymethacrylic acid methyl ester, manufactured by Sumitomo Chemical Co., Ltd.

With reference to Examples 1 to 11 and Comparative Examples 1 to 4, the laminate of the present invention was found to have a stronger adhesiveness as compared to conventional ones and heat resistance that allowed it to withstand severe conditions for the retort treatment, which was carried out in pressurized water having a temperature of 120°C for 60 minutes.

FIG. 2



- 1. Vinylidene chloride copolymer
- 2. Ethylene-vinyl acetate copolymer
- 3. Acid-modified polypropylene
- 4. Polypropylene