LEISURE Load-Balanced Network-wide Traffic Measurement and Monitor Placement[2015 LEISURE]

LEISURE FRAMEWORK

1. INTRODUCTION

Contribution

- 提出LEISURE,公式化全网流量测量负载均衡优化问题,启发式解决方案
 - o 有限的测量点资源,有限的测量点数量,多路由路径
- 将LEISURE公式化为混合整数二次规划(MIQP)问题,并通过解耦两个决策变量,将其转化为标准混合整数线性规划问题
- 基于Abilence,GEANT网络拓扑于流量,评估算法效果
 - o 单点最大网络负载,所有测量点的负载方差(测量任务均匀分布假设下)

2. MOTIVATING EXAMPLE

利用Example说明网络负载均衡问题

- 样例假设:
 - o 3 OD-pairs(each with 120 units of traffic):
 - o SF->NY | LA->Seattle | Chicago->Atlanta
- 解决方法:
 - i. 在入/出口路由器测量(图中b,c方法):数量少,但负载高,worst-case(peak 120 units)
 - ii. 将负载均分到沿路的测量点(图d方法): 数量多,负载有多又少(出现在多个路径上的负载高)
 - iii. 引入负载均衡, 按比例计算(图e方法): 进一步减小负载
 - iv. 进一步优化,全局负载均衡(图f方法): 数量与负载均有减小。哪些节点参与哪些任务,每个节点该负责任务的比例

3. LEISURE FRAMEWORK

问题公式化与解决方案

• 前置条件

o ISP通常根据 源/目的对(OD-pairs) 定义全网测量任务

LEISURE

- o 测量任务定义,需要考虑流量需求、路由信息
- o 网络拓扑,流量需求,路由矩阵,测量消耗
- 中心化的架构
- 假设:
- o 每个路由器均具备测量功能
- o 每个OD-pair遵循最短路径算法(OSPF)
- o 每个测量点仅执行一种测量任务

Basic Model

Netw ork Topology: \$G(V,E)\$Set of routers(monitors): \$V\$

o Set of directed links: \$E\$

- Router resource constraint(the number of flows that router \$V_i\$ can measure in a given measurement interval):
 \$C {v {i}}(i=1...M)\$
- o OD-pair: \$OD_{x},x\in|V|\times|V-1|\$
- o set of all OD-pairs: \$\Theta=|V|\times|V-1|\$
- traffic demand(IP flow s) of OD-pair \$OD_x\$: \$\phi_x, x\in\Theta\$
- routing strategy for every OD-pair \$OD x\$: \$P x, x\in\Theta\$
- o coverage fraction of IP flows of \$OD x\$ that is required to measure: \$a x\$
- total required measurement traffic: \$\beta=\sum_{x\in\Theta}\phi_x\times a_x\$
- fraction of traffic demand of \$OD_x\$: \$d_{i}^{x}\$
- the total traffic that router \$V_i\$ measures for all OD-pairs: \$L_i\$

• Problem Formulation

- o min-VAR
- o min-MAX
- o min-VAR-given-MAX

• Optimal/Heuristic Solutions

- o 二次规划QP: for min-VAR
- o 线性规划LP: for min-MAX
- o LP first QP follow: for min-VAR-given-MAX

	d_3^1	d_4^1	d_5^1	d_6^1	d_7^1	d_1^2	d_4^2	d_{8}^{2}	d_{2}^{3}	d_{6}^{3}	d_{9}^{3}	$MAX(L_i)$	$VAR(L_i)$	# of monitors	Decision
LB(ingress)	1	0	0	0	0	0	0	1	1	0	0	120/360	0.025	3	local
LB(egress)	0	0	0	0	1	1	0	0	0	0	1	120/360	0.025	3	local
LB(uniform)	1/5	1/5	1/5	1/5	1/5	1/3	1/3	1/3	1/3	1/3	1/3	64/360	0.00167	9	local
LB(weighted)	1/4	1/8	1/4	1/8	1/4	2/5	1/5	2/5	2/5	1/5	2/5	48/360	0.000484	9	global
LB(optimal)	1/3	0	1/3	0	1/3	1/3	1/3	1/3	1/3	1/3	1/3	40/360	0	9	global

4. MEASUREMENT WITH LIMITED MONITORS

加入资源限制条件

- 起因:实际情况下,不是每个路由器均支持/部署测量算法
- Measurement with fixed monitor deployment problem
- Measurement with flexible monitor deployment problem
 - 。 混合整数二次规划问题(MIQP) -> MILP

5. PERFORMANCE EVALUATION

仿真设置及效果评估

6. CONCLUSION