Copy RM E52G09

NACA SE FILE COPY

RESEARCH MEMORANDUM

THEORETICAL PERFORMANCE OF LIQUID AMMONIA, HYDRAZINE

AND MIXTURE OF LIQUID AMMONIA AND HYDRAZINE AS FUELS

WITH LIQUID OXYGEN BIFLUORIDE AS OXIDANT FOR

ROCKET ENGINES

II - HYDRAZINE

By Vearl N. Huff and Sanford Gordon

Lewis Flight Propulsion Laboratory Cleveland, Ohio

CLASSIFICATION CHANGED TO CONFIDENTIAL

BY AUTHORITY J. W. CROWLEY CHANGE #1616 CATE 12-1-53 T.C.F.

CLASSIFIED DOCUMENT

This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in an manner to an unauthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON September 8, 1952

RESTRICTED

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

THEORETICAL PERFORMANCE OF LIQUID AMMONIA, HYDRAZINE, AND MIXTURE OF

LIQUID AMMONIA AND HYDRAZINE AS FUELS WITH LIQUID OXYGEN

BIFLUORIDE AS OXIDANT FOR ROCKET ENGINES

II - HYDRAZINE

By Vearl N. Huff and Sanford Gordon

SUMMARY

Theoretical values of performance parameters for hydrazine with liquid oxygen bifluoride were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. Parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, and ratio of nozzle-exit area to throat area.

The maximum value of specific impulse was 298.7 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere. Additional calculations made to determine the effects of 5 percent of water in the hydrazine showed a decrease in performance of 2 to 5 specific-impulse units over the range of fuel-oxidant and expansion ratios presented.

INTRODUCTION

Hydrazine has been of interest for a number of years as a possible rocket fuel because of its high theoretical specific impulse with several oxidants. Extensive data exist in the literature on its availability, cost, and physical, chemical, and handling properties (reference 1).

Oxygen bifluoride is of interest as a rocket oxidant because its performance is better than that of oxygen, its handling and material problems may be simpler than those of fluorine, and its density is greater than either oxygen or fluorine. Additional information concerning oxygen bifluoride can be found in reference 2.

The performance of a mixture of ammonia and hydrazine with oxygen bifluoride was reported in part I of this series (reference 3). The

performance of hydrazine with oxygen bifluoride has been reported in the literature. To determine a larger number of performance parameters over a wider range of conditions than previously published and to determine the effect of a small amount of water in the hydrazine, additional calculations were made at the NACA Lewis laboratory.

Data were calculated on the basis of equilibrium composition during expansion and cover a wide range of fuel-oxidant and expansion ratios. The performance parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, and ratio of nozzle-exit area to throat area.

SYMBOLS

The following symbols are used in this report:

A	number of equivalent formulas (function of pressure and molecular weight; see reference 4)
A _e /A _t	ratio of nozzle-exit area to throat area
a	local velocity of sound, ft/sec
$\mathtt{C}_{\mathbf{F}}$	coefficient of thrust
$c_{ m p}/c_{ m v}$	ratio of specific heats
c*	characteristic velocity, ft/sec
$D_{\mathbf{A}}$	$\left(\frac{\partial \log A}{\partial \log T}\right)_{s}$
D_{i}	$\left(\frac{\partial \log p_{i}}{\partial \log T}\right)_{s}$
$f_1, f_2, \dots f_5$	functions .
h	enthalpy, including both sensible and chemical energy per unit weight, cal/g
I	specific impulse, lb-sec/lb
M	mean molecular weight, g/mole
'n	number of atoms

- P pressure
- p; partial pressure of a product of combustion
- R gas constant (consistent units)
- equivalence ratio, ratio of number of hydrogen atoms to sum of number of fluorine atoms plus two times number of oxygen atoms in propellant, $\frac{n_H}{n_F + 2n_O}$
- T temperature, OK
- $r_s = \left(\frac{\partial \log P}{\partial \log \rho}\right)_s$
- ρ density

Subscripts:

- c combustion chamber
- e nozzle exit

max maximum

- o conditions at 0° K, assuming recombination is complete
- s constant entropy

METHOD OF CALCULATION

Calculations were made with an IBM Card Programmed Electronic Calculator as described in reference 3. The set of assumptions, products of combustion, and thermodynamic data used for the calculations are the same as those of reference 3. The dissociation of energy of F_2 was taken to be 35.6 kilocalories per mole (reference 5).

Composition of fuels. - Performance calculations were made for two fuels with oxygen bifluoride as the oxidant. One fuel was hydrazine containing no water, which will be designated pure fuel, and the other was hydrazine containing 5 percent water by weight, which will be designated commercial fuel. It was assumed that the water would combine with hydrazine to form hydrazine hydrate, resulting in a composition for commercial fuel of 1 mole hydrazine to 0.1033 mole hydrazine hydrate.

Procedure for combustion conditions. - The values of temperature, entropy, equilibrium composition and mean molecular weight of the products of combustion corresponding to an adiabatic combustion process were obtained for eight equivalence ratios as described in reference 3.

Procedure for exit conditions. - Equilibrium composition, mean molecular weight, pressure, derivative of the logarithm of pressure with respect to the logarithm of density at constant entropy $\gamma_{\rm S}$, and enthalpy of the products of combustion were computed for each equivalence ratio by assuming isentropic expansion for six assigned exit temperatures for pure fuel and five assigned exit temperatures for commercial fuel covering the exit pressure range from the nozzle-throat pressure to about 0.02 atmosphere.

The function

$$\left(\frac{\partial \log P}{\partial \log \rho}\right)_{s} = \gamma_{s}$$

was used in the computation of throat conditions, since

$$a^{2} = \left(\frac{\partial P}{\partial \rho}\right)_{s} = \left(\frac{\partial \log P}{\partial \log \rho}\right)_{s} \frac{P}{\rho} = \gamma_{s} R_{M}^{T}$$

The derivative γ_s is equal to the ratio of specific heats c_p/c_v only when the molecular weight is constant. In the nomenclature of reference 4,

$$\gamma_s = \frac{\sum_{p_i D_i} p_i}{D_A - 1}$$

where

$$D_{i} = \left(\frac{\partial \log p_{i}}{\partial \log T}\right)_{s}$$

and

$$D_{A} = \left(\frac{\partial \log A}{\partial \log T}\right)_{S}$$

The numerical values of $\,D_{\dot{1}}\,$ and $\,D_{\dot{A}}\,$ were computed by the method given in reference 4 and were used to calculate the value of $\,\gamma_{\,S}\,.$

Interpolation formulas. - Temperature, composition, and entropy for combustion conditions were obtained by the same interpolation formulas described in reference 3.

Throat parameters and exit parameters corresponding to altitudes of 0, 20,000, 40,000, 60,000, and 80,000 feet were interpolated by means of cubic equations between each pair of the assigned exit temperatures. The coefficients of the cubic equations were determined from the values of the following functions and their first derivatives at each pair of the assigned temperatures:

$$f_{1} = \ln\left(\frac{h}{R} + \frac{\Upsilon_{s}T}{2M} - \frac{h_{o}}{R}\right)$$

$$f_{2} = \frac{h}{R}$$

$$f_{3} = \ln T$$

$$f_{4} = \ln M$$

$$f_{5} = \ln P$$

$$\frac{df_{1}}{df_{5}} = \frac{T}{2Mf_{1}}\left(\Upsilon_{s} + 1 + \frac{d\Upsilon_{s}}{df_{5}}\right)$$

$$\frac{df_{2}}{df_{5}} = \frac{T}{M}$$

$$\frac{df_{3}}{df_{5}} = \frac{1}{\Upsilon_{s}(D_{A} - 1)}$$

(The value of $\frac{d\gamma_s}{df_5}$ was found by a numerical method.)

The pressure at the throat was found by interpolating f_5 as a function of f_1 for the point $f_1 = \log\left(\frac{h_c}{R} - \frac{h_o}{R}\right)$, at which the velocity of flow equals the velocity of sound. The values of the remaining functions were interpolated as functions of f_5 for the desired pressures.

The errors due to interpolation were checked for several cases. The values presented for all performance parameters appear to be correctly interpolated to one or two units in the last place tabulated.

THEORETICAL PERFORMANCE

The calculated values of the various performance parameters for both propellants (pure fuel and commercial fuel) for a combustion pressure of 300 pounds per square inch absolute and at exit pressures corresponding to altitudes of 0, 20,000, 40,000, 60,000, and 80,000 feet are given in tables I and II for eight equivalence ratios. The values of pressure corresponding to the assigned altitudes were taken from references 6 and 7. Equilibrium composition in the combustion chamber and equilibrium composition and $\gamma_{\rm S}$ at assigned exit temperatures are given in tables III and IV.

The parameters for both propellants are plotted in figures 1 to 6. Curves of specific impulse for the five altitudes are plotted against weight-percent fuel in figure 1. The difference between the curves for pure and commercial fuels for any altitude is about 2 to 5 impulse units over the entire range of weight-percent fuel presented. For pure fuel the maximum value of specific impulse for the sea-level curve is 298.7 pound-seconds per pound at 43.1 percent of fuel by weight; whereas for commercial fuel the maximum is 295.6 pound-seconds per pound at 43.6 percent of fuel by weight.

The maximum values of specific impulse and the values of weightpercent fuel at which they occur are plotted in figure 2 as functions of altitude. The maximum specific impulse increases 32.1 percent for both fuels for a change in altitude from sea level to 80,000 feet.

Curves of combustion-chamber temperature and nozzle-exit temperature for the five altitudes are presented in figure 3 as functions of weight-percent fuel. The maximum combustion temperature occurs at the extreme oxidant-rich end of the curves, being 3957° K at 22.9 percent fuel by weight for pure fuel and 3921° K at 23.4 percent fuel by weight for commercial fuel. The maximums of the exit-temperature curves occur near the stoichiometric mixture.

Characteristic velocity and coefficient of thrust are plotted in figure 4 and ratios of the area at the nozzle exit to area at the throat are shown in figure 5 as functions of weight-percent fuel.

Curves of mean molecular weight in the combustion chamber and in the nozzle exit are plotted against weight-percent fuel in figure 6. Values of the parameters c^* , C_F , and A_e/A_t for a constant expansion ratio are only slight functions of chamber pressure and may be used at other pressures with small error.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio

REFERENCES

- Winternitz, Paul F.: Summary Report on Theoretical, Laboratory, and Experimental Investigations on High Energy Propellants. Vol. I -Hydrazine as a Rocket Fuel. Rep. No. RMI-293-S6, Jan. 14, 1948 to May 5, 1949. Reaction Motors, Inc., Aug. 3, 1950. (Bur. Aero., Navy Contract NOa (s) 9469.)
- 2. Doescher, Russell N.: The Properties of Fluorine, Oxygen Bifluoride, and Chlorine Trifluoride. Memo. 9-16, Jet Prop. Lab., C.I.T., Sept. 6, 1949. (Proj. TU 2-1, Contract W-04-200-ORD-1482.)
- 3. Huff, Vearl N., and Gordon, Sanford: Theoretical Performance of Liquid Ammonia, Hydrazine and Mixture of Liquid Ammonia and Hydrazine as Fuels with Liquid Oxygen Bifluoride as Oxidant for Rocket Engines. I Mixture of Liquid Ammonia and Hydrazine. NACA RM E51L11, 1952.
- 4. Huff, Vearl N., Gordon, Sanford, and Morrell, Virginia E.: General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions. NACA Rep. 1037, 1951.
- 5. Rossini, Frederick D., Wagman, Donald D., Evans, William H., Levine, Samuel, Jaffe, Irving: Selected Values of Chemical Thermodynamic Properties. Nat. Bur. Standards Circular No. 500, Dept. Commerce, Feb. 1952.
- 6. Diehl, Walter S.: Standard Atmosphere Tables and Data. NACA Rep. 218, 1925.
- 7. Warfield, Calvin N.: Tentative Tables for the Properties of the Upper Atmosphere. NACA TN 1200, 1947.

TABLE I - CALCULATED PERFORMANCE OF 100 PERCENT HYDRAZINE WITH OXYGEN BIFLUORIDE

[Pure fuel; combustion-chamber pressure, 300 lb/sq in. abs]

								<u> </u>	
	Specific impulse I (lb-sec/lb)	282.9 309.6 334.7 355.2 370.6	291.6 319.4 345.9 368.0 385.0	296.7 325.3 352.6 376.0 394.5	298.7 326.8 352.9 374.1 390.2	297.6 324.4 348.7 368.1	294.7 320.2 343.1 361.4 375.0	291.0 315.5 337.3 354.6 367.5	282.9 305.8 326.1 342.1 353.9
	Coeffi- cient of thrust CF	1.426 1.561 1.687 1.790 1.868	1.427 1.563 1.692 1.800	1.429 1.566 1.698 1.810	1.426 1.560 1.685 1.786 1.863	1.419 1.546 1.662 1.755	1.411 1.533 1.643	1.404 1.522 1.628 1.711	1.395, 1.508, 1.608 1.687
exit	Ratio of nozzle-exit area to throat area area	3.916 6.932 13.55 27.05 52.97	3.941 7.041 14.02 28.63 57.04	3.973 7.143 14.43 30.20 61.50	3.911 6.880 13.29 26.56 52.39	3.762 6.462 12.25 24.19 47.46	3.623 6.149 11.57 22.70 44.28	3.514 5.926 11.10 21.67 42.07	3.371 5.647 10.50 20.35 39.23
Nozzle ex	Mean molecular weight Me	22.85 23.11 23.28 23.34 23.34	21.58 21.90 22.16 22.28 22.28	20.53 20.88 21.20 21.41 21.41	19.49 19.49 19.78 19.80	18.46 18.54 18.56 18.56	17.58 17.61 17.61 17.61	16.86 16.87 16.87 16.87 16.87	15.78 15.78 15.78 15.78
	Temper- ature Te (OK)	2846 2562 2198 1796 1432	2872 2620 2305 1937 1576	2848 2622 2351, 2039 1706	2702 2414 2040 1661 1336	2456 2121. 1745 1400 1114	2222 1885 1533 1219 962	2025 1701 1373 1085 851	1729 1438 1150 899 700
	Pressure P (atm)	1.0 .4594 .1852 .07125	1.0 .4594 .1852 .07125	1:0 .4594 .1852 .07125	1.0 .4594 .1852 .07125	1.0 .4594 .1852 .07125	1.0 .4594 .1852 .07125	.1.0 .4594 .1852 .07125	1.0 .4594 .1852 .07125
	Altitude (ft)	20,000 40,000 60,000 80,000	20,000 40,000 60,000 80,000	20,000 40,000 60,000	20,000 40,000 60,000	20,000 40,000 60,000 80,000	20,000 60,000 80,000 80,000 40,000 60,000		20,000 40,000 60,000 80,000
Character-	istic velocity c * (ft/sec)	6383	6576		6740	6749	6720	6667	6525
Combustion	chamber Mean molecular weight Mc	21.26	19.90	18.88	18.07	17.39	16.81	16.32	15.51
Com	Temper- ature T _C	3957	3932	3847	3747	3632	3506	3376	3125
	Densitya (g/cc)		1.511		1.341	1.308	1.280	1.258	1.222
Propellant	Weight- percent fuel	22.88	30.80	37.24	42.59	47.10	50.95	54.27	59.74
e.	Equivalence ratio	0.5	0.75	1.0	1.25.	1.50	1.75	5.0	2.5
				•					

^aBased on OF₂ density of 1.77 at -195.8° C.

TABLE II - CALCULATED PERFORMANCE OF 86.11 PERCENT HYDRAZINE AND 13.89 PERCENT HYDRAZINE HYDRATE BY WEIGHT WITH OXYGEN BIFLUGRIDE [Commercial fuel; combustion-chamber pressure, 300 lb/sq in. abs]

	·	٠							
	Specific impulse I (lb-sec/lb)	281.2 307.6 332.3 352.5 367.5	289.2 316.7 342.8 364.5 381.1	299 322.4 342.4 392.5 390.5	293.5 323.6 348.6 569.6 7.8	293.5 319.5 343.0 361.8 375.9	289.4 314.0 336.1 353.7 366.8	284.4 308.0 329.0 345.6 358.0	274.1 296.0 315.4 330.7 341.9
	Coeff1- cient of thrust CF	1.426 1.560 1.685 1.787 1.864	1.427 1.563 1.691 1.799 1.880	1.429 1.566 1.698 1.809	1.425 1.558 1.681 1.780	1.416 1.542 1.655 1.746	1.407 1.527 1.635 1.720	1.400 1.516 1.620 1.702	1.392 1.503 1.602 1.679
1t	Ratio of nozzle- exit area to throat area Ae/At	3.908 6.900 13.41 26.61 52.01	3.938 7.023 13.92 28.28 56.28	3.973 7.135 14.36 29.89 60.66	3.890 6.795 13.06 26.01 51.35	3.712 6.342 12.00 23.68 46.42	3.563 6.030 11.33 22.21 43.27	3.455 5.818 10.88 21.22 41.13	3.324 5.560 10.32 19.96 38.41
Nozzle exi	Mean molecular weight Me	22.88 23.13 23.28 23.32 23.32	21.61 22.91 22.23 22.23	20.55 20.88 21.18 21.36 21.42	19.45 19.60 19.67 19.68	18.34 18.39 18.40 18.40	17.41 17.42 17.42 17.42	16.66 16.66 16.66 16.66	15.53 15.53 15.53 15.53
	Temper- ature Te (^O K)	2810 2520 2147 1742 1385	2826 2571 2247 1875 1523	2801 2574 2296 1976 1645	2627 2324 1949 1583 1270	2346 2010 1647 1319 1048	2092 1766 1432 1136 896	1884 1578 1271 1002 785	1579 1310 1044 815 633
	Pressure P (atm)	1.0 .4594 .1852 .07125	1.0 .4594 .1852 .07125	1.0 4594 .1852 .07125	1.0 .4594 .1852 .07125	1.0 .4594 .1852 .07125	1.0 .4594 .1852 .07125	1.0 .4594 .1852 .07125	1.0 .4594 .1852 .07125
	Altitude (ft)	20,000 40,000 60,000 80,000	20,000 40,000 60,000 80,000	20,000 40,000 60,000 80,000	20,000 40,000 60,000	20,000 40,000 60,000 80,000	20,000 40,000 60,000 80,000	20,000 40,000 60,000 80,000	20,000 40,000 60,000 80,000
Character-	velocity c* (ft/sec)	6345	6521	6623	6673	6867	6616	6536	6335
Combustion Chamber	Mean molec- ular weight Mc	21.33	19.97	18.94	18.11	17.40	16.79	16.26	15.37
Comb	Temper- ature Tc (OK)	3921	3879	3789	3681	3551	3404	3249	2947
4	Density ^a (g/cc)	1.507	1,432	1.375	1.331	1.296	1.268	1.244	1.206
Propellant	. 41	23.38	31.65	38.45	44.14	48.97	53.12	56.72	62.68
	Equivalence ratio	ທ. ດ	0.75	0.1	1.25	1.50	1.75	0.8.	. 2.

 $^{
m a}$ Based on OF2 density of 1.77 at -195.80 C.

TABLE III - EQUILIBRIUM COMPOSITION IN COMBUSTION CHAMBER AND FOLLOWING AN ISENTROPIC EXPANSION TO ASSIGNED EXIT TEMPERATURES Pure fuel: 100 percent N₂H₄; oxidant: OF₂

	_				-		-			
	1	z		0.00399 .00307 .00136 .00030		0.00426 .00342 .00119 .00035 .00006		0.00360 .00278 .00092 .000025		0.00280 .00211 .00044 .00014 .00003
	ľ	0		0.08690 .08010 .05896 .02862 .00975		0.05691 .05277 .03456 .01912 .00692		0.03163 .02816 .01578 .00702 .00170		0.01600 .01336 .00380 .00110 .00015
		H		0.02116 .01725 .00878 .00223		0.05627 .05049 .02840 .01290 .00325	-	0.07161 .06386 .03692 .01757 .00483		0.07538 .06703 .03290 .01819 .00763
fno + + 00)	מכידים ווו	Œ,		0.07537 .06650 .04466 .02146 .00386		0.02315 .01943 .00853 .00344 .00098		0.01070 .00859 .00339 .00119 .00026		0.00549 .00425 .00102 .000033
1 0 10 11	ATOIL	N S	nt)	0.13523 .13814 .14572 .15486 .16069 .16489	ht)	0.17775 .18071 .19220 .20111 .20822 .21150	ht)	0.20993 .21365 .22672 .23683 .248176 .24817	ht)	0.23399 .23778 .25268 .25833 .26156 .26305
1 1 1 2	Equilibrium composition	ON	by weight)	0.02922 .02767 .02288 .01544 .00923 .00326	by weight	0.02266 .02145 .01617 .01138 .00676 .00389	1 by weight	0.01533 .01397 .00300 .00510 .00510	1 by weight	0.00940 .00811 .00300 .00117 .00027
	1brium co	. o ₂	percent fuel	0.07560 .08297 .10462 .13420 .15311 .16399	percent fuel	0.03576 .03814 .04798 .05613 .06342	percent fuel	0.01564 .01593 .01547 .01251 .00720	percent fuel	0.00613 .00567 .00242 .00081
	Edn17	но	22.88 per	0.02692 .02421 .01674 .00763 .00254	(30.80 per	0.05114 .04943 .05963 .02767 .01417 .00620	(37.24 per	0.04910 .04642 .03385 .02078 .00853	(42.59 pe	0.03803 .03453 .01675 .00803 .00248
	٠	Н20	r = 0.50 (0.00943 .00911 .00786 .00536 .00292	┥ ̄	0.05272 .05761 .08152 .10554 .12747	r = 1.00	0.09206 .10162 .14210 .18157 .21913 .23816	r = 1.25	0.11638 .12698 .17513 .19527 .20621 .21053
از		гн		0.00422 .00341 .00171 .00044		0.03262 .03091 .02265 .01387 .00539		0.07232 .06956 .05589 .03936 .02013		0.11776 .11583 .10584 .10257 .10281 .10492
		HF.		0.53196 .54756 .58671 .62946 .65244	3	0.48675 .49564 .52716 .54848 .56336 .56893		0.42808 .43546 .45997 .47782 .49136		0.37865 .38437 .40602 .41405 .41405 .42088
	7.	(8 10g.P)		1.1528	:	1.1545 1.1487 1.1521 1.1773 1.2191 1.3051		1.1516 1.1435 1.1446 1.1654 1.2036		1.1526 1.1533 1.1716 1.2105 1.2734
	Pressure	P atm)		20.41 13.87 4.813 1.166, .3906 .1158		20.41 14.69 3.717 1.093 .3210 .1398		20.41 13.91 3.214 .8482 .2174 .08520		20.41 13.86 2.421 .9939 .4439 .1317
	Temper-	ture T (oK)		3957 3800 3400 2900 2500	7041	3932 3800 3300 2900 2500 1500		3847 3700 3200 2800 2400 2100 1700		3747 3600 3000 2700 2400 1900 1300

RESTRICTED

TABLE III - EQUILIBRIUM COMPOSITION IN COMBUSTION CHAMBER AND FOLLOWING AN ISENTROPIC EXPANSION TO ASSIGNED EXIT

TEMPERATURES - Concluded

		z		0.00199		0.00132		0.00082		0.00029			
		0		0.00735		0.00314		0.00128		0.00021			
		Н		0.07082 .06285 .02737 .01002 .00200		0.06114 .04828 .02515 .00632		0.04962 .03896 .01418 .00152		0.02908 .01872 .00442 .00019			
A)	fraction)	£I.		0.00285		0.00147		0.00075		0.00020			
NACA	(mole	N2	ıt)	0.25190 .25498 .26677 .27093 .27242 .27272	ıt)	0.26522 .26916 .27516 .27897 .27992 .28000	nt)	0.27522 .27793 .28328 .28548 .28570 .28571	ht)	0.28882 .29087 .29341 .29412 .29412 .29412			
oxidant: OF2]	composition	ON	by weight)	0.00531 .00436 .00102 .00018	by weight	0.00283	by weight	0.00147	l by weight	0.00039			
1	Equilibrium o		= 1.50 (47.10 percent fuel	0.00218	percent fuel	0.00073	percent fuel	0.00024	percent fuel	0.00003			
percent N2H4;		. НО		1.50 (47.10			0.02595 .02262 .00757 .00186	(50.95 per	0.01630 .01183 .00473 .00069	(54.27 per	0.00976	(59.74 per	0.00330
fuel: 100		H20			0.12740 .13556 .16809 .17850 .18139 .18182	r = 1.75	0.12901 .13818 .15157 .15867 .15893 .16000	r = 2.00	0.12520 .13047 .13979 .14266 .14285 .14286	r = 2.50	0.11171 .11437 .11763 .11765 .11765 .11765		
Pure		г.		0.16638 .16667 .17116 .17697 .18074 .18180		0.21484 .21858 .22724 .23641 .23966 .24000		0.26003 .26478 .27741 .28477 .28564 .28571		0.33484 .3406 .35004 .35281 .35294 .35294			
		毌		0.33788 .34170 .35615 .36133 .36323 .36363		0.30400 .30822 .31467 .31884 .31991 .32000		0.27561 .28332 .28548 .28570 .28570		0.23113 .23273 .23473 .23527 .23529 .23529			
	2	$\left(\frac{3\log P}{3\log \rho}\right)$				1.1596 1.1773 1.2157 1.2614 1.3044		1.1723 1.1910 1.2374 1.2835 1.3199 1.3496		1.1850 1.2165 1.2721 1.2992 1.3292 1.3599		1.2152 1.2549 1.2549 1.2980 1.3265 1.3476 1.3705	
	Pressure P (atm)			20.41 14.60 2.998 1.108 .4371 .09569		20.41 12.42 4.715 1.489 1.489 09288		20.41 13.67 43.427 1.186 .4580 .1067		20.41 12.76 4.506 1.191 .3034 .1071			
	пешпет-			3632 3500, 2900, 2500 2100 1500 1100		3506 3300 2800 1200 1300 900		3376 3200 2700 2100 1700 1200 800、		3125 2900 2400 1800 1300 1000			

TABLE IV - EQUILIBRIUM COMPOSITION IN COMBUSTION CHAMBER AND FOLLOWING AN ISENTROPIC EXPANSION TO ASSIGNED EXIT TEMPERATURES

Λ.				.00355 .00343 .00198 .00028		.00361 .00316 .00217 .00003		.00300 .00256 .00172 .00033		.00224 .00191 .00124 .00012
AS CAN	-	Z .	-	0 '		0 1		0.00300 .00256 .00172 .00033		0.00224
V		0		0.08410 .08319 .06872 .02764		0.05336 .05085 .04404 .01808 .00455		0.02877 .02670 .02193 .00833 .00156		0.01368 .01230 .00896 .00095
lant: OF2		н		0.02051 .01998 .01317 .00263		0.05183 .04845 .03980 .01214 .00185		0.06479 .06025 .04991 .02039 .00442		0.06690 .06253 .05160 .01665
ght; oxid	. , (u	H :	,	0.06679 .06558 .04912 .01646		0.01957 .01759 .01309 .00313		0.00880 .00769 .00551 .00144		0.00430 .00372 .00250 .00029
20 by wei	e fraction	N ₂	t)	0.13145 .13184 .13737 .15008 .15784	t)	0.17425 .17599 .18045 .19590 .20404	(1)	0.20693 .20914 .21419 .22933 .23927	E)	0.23145 .23347 .23846 .25305 .25712
percent N2H4·H2O by weight; oxidant: OF2	composition (mole	ON.	by weight)	0.02921 .02900 .02561 .01543 .00645	by weight	0.02255 .02178 .01971 .01141 .00572	by weight)	0.01498 .01412 .01211 .00599 .00203	by weight	0.00880 .00806 .00624 .00111
. 89		.02	percent fuel	0.08163 .08262 .09786 .13827 .16220	percent fuel	0.03894 .04036 .04411 .05789 .06647	percent fuel	0.01651 .01662 .01664 .01365 .00714	(44.14 percent fuel	0.00602 .00571 .00476 .00074
H₄ and 13	Equilibrium	но	(23.38 per	0.02861 .02825 .02278 .00962 .000027	(31.65 per	0.05332 .05209 .04841 .02838 .01131	(38.45 per	0.05009 .04820 .04336 .02440 .00847	44.14 per	0.03742 .03526 .02945 .00779
fuel: 86.11 percent N2H4	E	H20 .	= 0.50	0.01125 .01122 .01075 .00882 .00744	= 0.75	0.06312 .06642 .07572 .11740 .14397	= 1.00	0.10927 .11558 .13114 .18825 .23646	= 1.25 (0.13761 .14383 .16001 .21298 .22689
. 86.11 p		Н2	Ä	0.00450 .00439 .00292 .00068	អ	0.03359 .03245 .02925 .01415 .00383	r	0.07383 .07188 .06679 .04434 .02002	អ	0.12116 .11986 .11631 .10548 .10695
		ΗΉ		C.53839 .54048 .56972 .63008 .65697		0.48584 .49086 .50326 .54119 .55763		0.42303 .42726 .43670 .46355 .48037		0.37042 .37335 .38048 .40084 .40659
Commercial	γs	$\frac{3 \log P}{3 \log \rho}$		1.1543 1.1513 1.1631 1.2304 1.3324		1.1547 1.1518 1.1526 1.1898 1.2953		1.1514 1.1476 1.1435 1.1661		1.1527 1.1507 1.1739 1.2525 1.3168
	Pressure	P (atm)		20.41 19.39 9.046 1.288 .2657		20.41 16.74 9.924 1.260 .2803		20.41 16.15 9.273 1.399 .2579		20.41. 16.47 9.481 1.221 2.2670
	Temper-	ature T (ok)		3921 3900 3600 2900 2300 1400		3879 3800 3600 2900 2400 1600		3789 3700 3500 2900 2400 1700		3681 3600 3400 2700 2100 1200

TABLE IV - EQUILIBRIUM COMPOSITION IN COMBUSTION CHAMBER AND FOLLOWING AN ISENTROPIC EXPANSION TO ASSIGNED EXIT

TEMPERATURES - Concluded

	_	·····	_	т						
		Z		0.00150 .00134 .00061 .00003		0.00090 .00068 .00036 .00001		0.00049		0.00012
AAA		0		0.00565 .00511 .00238 .00007		0.00207 .00154 .00077 .00001		0.00070		0.00007
oxidant: OF2		H		0.06062 .05776 .04065 .00894 .00029		0.04939 .04341 .03231 .00377		0.03696 .03432 .01983 .00131		0.01748 .01579 .00721 .00008
	, (uc	Ē.		0.00206		0.00095		0.00042		0.00008
120 by we.	le fraction	S.N.	at)	0.24959 .25070 .25685 .26546 .26700	it)	0.26285 .26464 .26767 .27376 .27435	(t)	0.27263 .27328 .27652 .27990 .28009	t)	0.28552 .28584 .28739 .28854 .28856
13.89 percent N ₂ H ₄ ·H ₂ O by weight;	tion (mole	ON	by weight	0.00461 .00425 .00231 .00016	by weight	0.00221	by weight	0.00100	by weight	0.00019
5.89 perce	im composition	20	percent fuel	0.00190	percent fuel	0.00054	percent fuel	0.00014	percent fuel	0.00001
and	Equilibrium	НО	(48.97 per	0.02401 .02263 .01444 .00177	(53.12 per	0.01380 .01155 .00763	56.72 per	0.00740	(62.68 per	0.00191 .00166 .00056
percent N2H4		, ,	r = 1.50	0.15008 .15329 .17142 .19569 .19882	= 1.75	0.15138 .15582 .16325 .17616 .17695	= 2.00 (0.14650 .14783 .15420 .15953 .15972	= 2.50	0.13080 .13124 .13319 .13433 .13433
86.11		Н2	1	0.17309 .17311 .17410 .18206 .18620	H	0.22529 .22706 .23085 .24399 .24615	r	0.27359 .27480 .28194 .29239 .29321	ų	0.35140 .35243 .35778 .36243 .36248
cofal fuel:		掛		0.32691 .32822 .33547 .34574 .34767		0.29062 .29244 .29553 .30189 .30253		0.26016 .26074 .26367 .26680 .26698 .26698	•	0.21242 .21265 .21377 .21463 .21463
[Commercial	Ϋ́S	$\begin{pmatrix} \frac{3\log P}{\sqrt{3\log \rho}} \rangle$		1.1656 1.1652 1.2180 1.2843 1.3360		1.1747 1.1824 1.2490 1.3052 1.3472		1.1882 1.2047 1.2716 1.3200		1.2195 1.2410 1.3011 1.3305 1.3610
	Pre	(atm)		20.41 17.95 8.256 1.430 .2758		20.41 15.95 9.917 1.599 .2258		20.41 18.28 9.411 1.650 .2034		20.41 18.55 10.07 1.374 .3218
	Temper-	acure T (OK)		3551 3500 3200 2500 1800		3404 3300 3100 2300 1500 900		3249 3200 2900 2100 1300 800		2947 2900 2600 1700 1200 800

Figure 1. - Theoretical specific impulse of hydrazine with liquid oxygen bifluoride. Pure fuel: 100 percent hydrazine; commercial fuel: 86.11 percent hydrazine, 13.89 percent hydrazine hydrate by weight; isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.

Figure 2. - Maximum theoretical specific impulse and corresponding weight percent of fuel in propellant of hydrazine with liquid oxygen bifluoride. Ame fuel: 100 percent hydrazine; commercial fuel: 86.11 percent hydrazine, 13.89 percent hydrazine hydrate by weight; isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.

Figure 3. - Theoretical combustion-chamber temperature and nozzle-exit temperature of hydrazine with liquid oxygen bifluoride. Pure fuel: 100 percent hydrazine; commercial fuel: 86.11 percent hydrazine, 13.89 percent hydrazine hydrate by weight; isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.

Figure 4. - Theoretical characteristic velocity and coefficient of thrust of hydrazine with liquid oxygen bifluoride. Pure fuel: 100 percent hydrazine; commercial fuel: 86.11 percent hydrazine, 13.89 percent hydrazine hydrate by weight; isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.

Figure 5. - Theoretical ratios of nozzle-exit area to throat area of hydrazine with liquid oxygen bifluoride. Pure fuel: 100 percent hydrazine; commercial fuel: 86.11 percent hydrazine, 13.89 percent hydrazine hydrate by weight; isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.

(a) Pure fuel: 100 percent hydrazine.

Figure 6. - Theoretical mean molecular weight of hydrazine with liquid oxygen bifluoride in combustion chamber and at nozzle exit. Isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.

(b) Commercial fuel: 86.11 percent hydrazine, 13.89 percent hydrazine hydrate by weight.

Figure 6. - Concluded. Theoretical mean molecular weight of hydrazine with liquid oxygen bifluoride in combustion chamber and at nozzle exit. Isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.