08/869,193

08/868,697 08/868,698

08/868,900

08/868,696

08/869,194

09/087,255

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)								
(51) International Paten C12N 15/12, C0	t Classification ⁶ : 7K 14/47, A61K 38/17	A2	(11) International Publication Number: WO 98/55614 (43) International Publication Date: 10 December 1998 (10.12.98)					
(21) International Application (22) International Filing		S98/112 (01.06.9	MA 02160 (US). McCOY, John, M.; 56 Howard Street, Reading, MA 01867 (US). LAVALLIE, Edward, R.; 113 Ann Lee Road, Harvard, MA 01451 (US). RACIE, Lisa, A.; 124 School Street, Acton, MA 01720 (US). TREACY,					
(30) Priority Data: 08/868,899 08/868,898 08/869,192 08/869,191	4 June 1997 (04.06.97) 4 June 1997 (04.06.97) 4 June 1997 (04.06.97) 4 June 1997 (04.06.97)	Ţ	Maurice; 93 Walcott Road, Chestnut Hill, MA 02167 (US). SPAULDING, Vikki; 11 Meadowbank Road, Billerica, MA 01821 (US). AGOSTINO, Michael, J.; 26 Wolcott Avenue, Andover, MA 01810 (US). HOWES, Steven, H.; Apartment 2, 44 Chester 18 Marion Road, Adjactor, MA 02144 (US). PECHETI View 45 Marion Road, Adjactor, MA					

US

US

US

US

US

US

US

(71) Applicant: GENETICS INSTITUTE, INC. [US/US]; 87 CambridgePark Drive, Cambridge, MA 02140 (US).

4 June 1997 (04.06.97)

4 June 1997 (04.06.97)

4 June 1997 (04.06.97)

4 June 1997 (04.06.97)

4 June 1997 (04.06.97) 4 June 1997 (04.06.97)

29 May 1998 (29.05.98)

- (US). FECHTEL, Kim; 46 Marion Road, Arlington, MA 02174 (US).
- (74) Agent: SPRUNGER, Suzanne, A.; Genetics Institute, Inc., 87 CambridgePark Drive, Cambridge, MA 02140 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

- (54) Title: SECRETED PROTEINS AND POLYNUCLEOTIDES ENCODING THEM
- (57) Abstract

Polynucleotides and the proteins encoded thereby are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IB	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Cī	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PΤ	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

SECRETED PROTEINS AND POLYNUCLEOTIDES ENCODING THEM

5 This application is a continuation-in-part of the following applications:

- (1) Ser. No. 60/XXX,XXX (converted to a provisional application from non-provisional application Ser. No. 08/868,899), filed June 4, 1997;
- (2) Ser. No. 60/XXX,XXX (converted to a provisional application from non-provisional application Ser. No. 08/868,898), filed June 4, 1997;
- 10 (3) Ser. No. 60/XXX,XXX (converted to a provisional application from non-provisional application Ser. No. 08/869,192), filed June 4, 1997;
 - (4) Ser. No. 60/XXX,XXX (converted to a provisional application from non-provisional application Ser. No. 08/869,191), filed June 4, 1997;
- (5) Ser. No. 60/XXX,XXX (converted to a provisional application from nonprovisional application Ser. No. 08/869,193), filed June 4, 1997;
 - (6) Ser. No. 60/XXX,XXX (converted to a provisional application from non-provisional application Ser. No. 08/868,697), filed June 4, 1997;
 - (7) Ser. No. 60/XXX,XXX (converted to a provisional application from non-provisional application Ser. No. 08/868,698), filed June 4, 1997;
 - (8) Ser. No. 60/XXX,XXX (converted to a provisional application from non-provisional application Ser. No. 08/868,900), filed June 4, 1997;
 - (9) Ser. No. 60/XXX,XXX (converted to a provisional application from non-provisional application Ser. No. 08/868,696), filed June 4, 1997;
- (10) Ser. No. 60/XXX,XXX (converted to a provisional application from non-provisional application Ser. No. 08/869,194), filed June 4, 1997;

all of which are incorporated by reference herein.

30

20

35

FIELD OF THE INVENTION

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins.

5

20

30

BACKGROUND OF THE INVENTION

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, CSFs and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity by virtue of their secreted nature in the case of leader sequence cloning, or by virtue of the cell or tissue source in the case of PCR-based techniques. It is to these proteins and the polynucleotides encoding them that the present invention is directed.

SUMMARY OF THE INVENTION

In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:

25 NO:1; (a)

(b) a polynucleotide comprising the nucleotide sequence of SEQ IDNO:1 from nucleotide 266 to nucleotide 1651;

a polynucleotide comprising the nucleotide sequence of SEQ ID

- (c) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:1 from nucleotide 521 to nucleotide 1651;
 - (d) a polynucleotide comprising the nucleotide sequence of SEQ IDNO:1 from nucleotide 335 to nucleotide 634;

 (e) a polynucleotide comprising the nucleotide sequence of the fulllength protein coding sequence of clone as 294_3 deposited under accession number ATCC 98444;

(f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone as 294_3 deposited under accession number ATCC 98444;

5

10

15

20

25

- (g) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone as294_3 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone as 294_3 deposited under accession number ATCC 98444;
- (i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:2;
- (j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:2 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:2;
- (k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
- (l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above; and
- (m) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(j).

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:1 from nucleotide 266 to nucleotide 1651; the nucleotide sequence of SEQ ID NO:1 from nucleotide 521 to nucleotide 1651; the nucleotide sequence of SEQ ID NO:1 from nucleotide 335 to nucleotide 634; the nucleotide sequence of the full-length protein coding sequence of clone as294_3 deposited under accession number ATCC 98444; or the nucleotide sequence of a mature protein coding sequence of clone as294_3 deposited under accession number ATCC 98444. In other preferred embodiments, the polynucleotide encodes the full-length or a mature protein encoded by the cDNA insert of clone as294_3 deposited under accession number ATCC 98444. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:2 from amino acid 1 to amino acid 123. In further preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:2

having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:2, or a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:2 having biological activity, the fragment comprising the amino acid sequence from amino acid 226 to amino acid 235 of SEQ ID NO:2.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ $\,$ ID NO:1.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

(a) the amino acid sequence of SEQ ID NO:2;

10

15

- (b) the amino acid sequence of SEQ ID NO:2 from amino acid 1 to amino acid 123;
- (c) fragments of the amino acid sequence of SEQ ID NO:2 comprising eight consecutive amino acids of SEQ ID NO:2; and
 - (d) the amino acid sequence encoded by the cDNA insert of clone as294_3 deposited under accession number ATCC 98444;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:2 or the amino acid sequence of SEQ ID NO:2 from amino acid 1 to amino acid 123. In further preferred embodiments, the present invention provides a protein comprising a fragment of the amino acid sequence of SEQ ID NO:2 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:2, or a protein comprising a fragment of the amino acid sequence of SEQ ID NO:2having biological activity, the fragment comprising the amino acid sequence from amino acid 226 to amino acid 235 of SEQ ID NO:2.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:3;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:3 from nucleotide 262 to nucleotide 3096;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ IDNO:3 from nucleotide 1118 to nucleotide 1527;

- (d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone aw92_1 deposited under accession number ATCC 98444;
- (e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone aw92_1 deposited under accession number ATCC 98444;

5

10

15

20

25

30

- (f) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone aw92_1 deposited under accession number ATCC 98444;
- (g) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone aw92_1 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:4;
- a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:4 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:4;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(g) above;
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above; and
- (l) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(i).

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:3 from nucleotide 262 to nucleotide 3096; the nucleotide sequence of SEQ ID NO:3 from nucleotide 1118 to nucleotide 1527; the nucleotide sequence of the full-length protein coding sequence of clone aw92_1 deposited under accession number ATCC 98444; or the nucleotide sequence of a mature protein coding sequence of clone aw92_1 deposited under accession number ATCC 98444. In other preferred embodiments, the polynucleotide encodes the full-length or a mature protein encoded by the cDNA insert of clone aw92_1 deposited under accession number ATCC 98444. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:4 from amino acid 287 to amino acid 422. In further preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:4 having biological activity, the fragment preferably comprising eight (more preferably

twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:4, or a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:4 having biological activity, the fragment comprising the amino acid sequence from amino acid 467 to amino acid 476 of SEQ ID NO:4.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ $\,$ ID NO:3.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

10

20

25

30

5

- (a) the amino acid sequence of SEQ ID NO:4;
- (b) the amino acid sequence of SEQ ID NO:4 from amino acid 287 to amino acid 422;
- (c) fragments of the amino acid sequence of SEQ ID NO:4 comprising eight consecutive amino acids of SEQ ID NO:4; and
- 15 (d) the amino acid sequence encoded by the cDNA insert of clone aw92_1 deposited under accession number ATCC 98444;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:4 or the amino acid sequence of SEQ ID NO:4 from amino acid 287 to amino acid 422. In further preferred embodiments, the present invention provides a protein comprising a fragment of the amino acid sequence of SEQ ID NO:4 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:4, or a protein comprising a fragment of the amino acid sequence of SEQ ID NO:4having biological activity, the fragment comprising the amino acid sequence from amino acid 467 to amino acid 476 of SEQ ID NO:4.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:5;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ IDNO:5 from nucleotide 612 to nucleotide 806;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:5 from nucleotide 744 to nucleotide 806;

(d) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:5 from nucleotide 1 to nucleotide 794;

 (e) a polynucleotide comprising the nucleotide sequence of the fulllength protein coding sequence of clone bd316_2 deposited under accession number ATCC 98444;

5

10

15

20

25

- (f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone bd316_2 deposited under accession number ATCC 98444;
- (g) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone bd316_2 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone bd316_2 deposited under accession number ATCC 98444;
- (i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:6;
- (j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:6 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:6;
- (k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
- (l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above; and
- (m) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(j).

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:5 from nucleotide 612 to nucleotide 806; the nucleotide sequence of SEQ ID NO:5 from nucleotide 744 to nucleotide 806; the nucleotide sequence of SEQ ID NO:5 from nucleotide 1 to nucleotide 794; the nucleotide sequence of the full-length protein coding sequence of clone bd316_2 deposited under accession number ATCC 98444; or the nucleotide sequence of a mature protein coding sequence of clone bd316_2 deposited under accession number ATCC 98444. In other preferred embodiments, the polynucleotide encodes the full-length or a mature protein encoded by the cDNA insert of clone bd316_2 deposited under accession number ATCC 98444. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:6 from amino acid 1 to amino acid 61.

In further preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:6 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:6, or a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:6 having biological activity, the fragment comprising the amino acid sequence from amino acid 27 to amino acid 36 of SEQ ID NO:6.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:5.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

- (a) the amino acid sequence of SEQ ID NO:6;
- (b) the amino acid sequence of SEQ ID NO:6 from amino acid 1 to amino acid 61;
 - (c) fragments of the amino acid sequence of SEQ ID NO:6 comprising eight consecutive amino acids of SEQ ID NO:6; and
 - (d) the amino acid sequence encoded by the cDNA insert of clone bd316_2 deposited under accession number ATCC 98444;
- 20 the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:6 or the amino acid sequence of SEQ ID NO:6 from amino acid 1 to amino acid 61. In further preferred embodiments, the present invention provides a protein comprising a fragment of the amino acid sequence of SEQ ID NO:6 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:6, or a protein comprising a fragment of the amino acid sequence of SEQ ID NO:6having biological activity, the fragment comprising the amino acid sequence from amino acid 27 to amino acid 36 of SEQ ID NO:6.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:7;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:7 from nucleotide 7 to nucleotide 300;

(c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:7 from nucleotide 1 to nucleotide 363;

(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone bk130_4 deposited under accession number ATCC 98444;

5

10

15

20

- (e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone bk130_4 deposited under accession number ATCC 98444;
- (f) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone bk130_4 deposited under accession number ATCC 98444;
- (g) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone bk130_4 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:8;
- (i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:8 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:8;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(g) above;
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and
- (l) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(i).

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:7 from nucleotide 7 to nucleotide 300; the nucleotide sequence of SEQ ID NO:7 from nucleotide 1 to nucleotide 363; the nucleotide sequence of the full-length protein coding sequence of clone bk130_4 deposited under accession number ATCC 98444; or the nucleotide sequence of a mature protein coding sequence of clone bk130_4 deposited under accession number ATCC 98444. In other preferred embodiments, the polynucleotide encodes the full-length or a mature protein encoded by the cDNA insert of clone bk130_4 deposited under accession number ATCC 98444. In further preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:8 having biological activity, the fragment preferably comprising eight (more preferably twenty, most

preferably thirty) consecutive amino acids of SEQ ID NO:8, or a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:8 having biological activity, the fragment comprising the amino acid sequence from amino acid 44 to amino acid 53 of SEQ ID NO:8.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:7.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

(a) the amino acid sequence of SEQ ID NO:8;

5

10

30

- (b) fragments of the amino acid sequence of SEQ ID NO:8 comprising eight consecutive amino acids of SEQ ID NO:8; and
- (c) the amino acid sequence encoded by the cDNA insert of clone bk130_4 deposited under accession number ATCC 98444;
- the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:8. In further preferred embodiments, the present invention provides a protein comprising a fragment of the amino acid sequence of SEQ ID NO:8 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:8, or a protein comprising a fragment of the amino acid sequence of SEQ ID NO:8 having biological activity, the fragment comprising the amino acid sequence from amino acid 44 to amino acid 53 of SEQ ID NO:8.

- 25 (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:9;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:9 from nucleotide 52 to nucleotide 1863;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ IDNO:9 from nucleotide 1219 to nucleotide 1863;
 - (d) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:9 from nucleotide 1099 to nucleotide 1743;

 (e) a polynucleotide comprising the nucleotide sequence of the fulllength protein coding sequence of clone bv131_5 deposited under accession number ATCC 98444;

 a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone bv131_5 deposited under accession number ATCC 98444;

5

10

15

20

25

- (g) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone bv131_5 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone bv131_5 deposited under accession number ATCC 98444;
- (i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:10;
- (j) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:10 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:10;
- (k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
- (l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above; and
- (m) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(j).

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:9 from nucleotide 52 to nucleotide 1863; the nucleotide sequence of SEQ ID NO:9 from nucleotide 1219 to nucleotide 1863; the nucleotide sequence of SEQ ID NO:9 from nucleotide 1099 to nucleotide 1743; the nucleotide sequence of the full-length protein coding sequence of clone bv131_5 deposited under accession number ATCC 98444; or the nucleotide sequence of a mature protein coding sequence of clone bv131_5 deposited under accession number ATCC 98444. In other preferred embodiments, the polynucleotide encodes the full-length or a mature protein encoded by the cDNA insert of clone bv131_5 deposited under accession number ATCC 98444. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:10 from amino acid 430 to amino acid 564. In further preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:10

having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:10, or a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:10 having biological activity, the fragment comprising the amino acid sequence from amino acid 297 to amino acid 306 of SEQ ID NO:10.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:9.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

(a) the amino acid sequence of SEQ ID NO:10;

10

15

20

- (b) the amino acid sequence of SEQ ID NO:10 from amino acid 430 to amino acid 564;
- (c) fragments of the amino acid sequence of SEQ ID NO:10 comprising eight consecutive amino acids of SEQ ID NO:10; and
- (d) the amino acid sequence encoded by the cDNA insert of clone bv131_5 deposited under accession number ATCC 98444;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:10 or the amino acid sequence of SEQ ID NO:10 from amino acid 430 to amino acid 564. In further preferred embodiments, the present invention provides a protein comprising a fragment of the amino acid sequence of SEQ ID NO:10 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:10, or a protein comprising a fragment of the amino acid sequence of SEQ ID NO:10having biological activity, the fragment comprising the amino acid sequence from amino acid 297 to amino acid 306 of SEQ ID NO:10.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:11;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ IDNO:11 from nucleotide 67 to nucleotide 690;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:11 from nucleotide 1 to nucleotide 576;

WO 98/55614 PCT/US98/11210 .

(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone bv227_1 deposited under accession number ATCC 98444;

(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone bv227_1 deposited under accession number ATCC 98444;

5

10

15

20

25

- (f) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone bv227_1 deposited under accession number ATCC 98444;
- (g) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone bv227_1 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:12;
- a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:12 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:12;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(g) above;
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above; and
- (l) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(i).

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:11 from nucleotide 67 to nucleotide 690; the nucleotide sequence of SEQ ID NO:11 from nucleotide 1 to nucleotide 576; the nucleotide sequence of the full-length protein coding sequence of clone bv227_1 deposited under accession number ATCC 98444; or the nucleotide sequence of a mature protein coding sequence of clone bv227_1 deposited under accession number ATCC 98444. In other preferred embodiments, the polynucleotide encodes the full-length or a mature protein encoded by the cDNA insert of clone bv227_1 deposited under accession number ATCC 98444. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:12 from amino acid 1 to amino acid 170. In further preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:12 having biological activity, the fragment preferably comprising eight (more preferably

twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:12, or a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:12 having biological activity, the fragment comprising the amino acid sequence from amino acid 99 to amino acid 108 of SEQ ID NO:12.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:11.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

10

5

- (a) the amino acid sequence of SEQ ID NO:12;
- (b) the amino acid sequence of SEQ ID NO:12 from amino acid 1 to amino acid 170;
- (c) fragments of the amino acid sequence of SEQ ID NO:12 comprising eight consecutive amino acids of SEQ ID NO:12; and

15

20

25

30

(d) the amino acid sequence encoded by the cDNA insert of clone bv227_1 deposited under accession number ATCC 98444;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:12 or the amino acid sequence of SEQ ID NO:12 from amino acid 1 to amino acid 170. In further preferred embodiments, the present invention provides a protein comprising a fragment of the amino acid sequence of SEQ ID NO:12 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:12, or a protein comprising a fragment of the amino acid sequence of SEQ ID NO:12having biological activity, the fragment comprising the amino acid sequence from amino acid 99 to amino acid 108 of SEQ ID NO:12.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:13;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:13 from nucleotide 657 to nucleotide 1469;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:13 from nucleotide 678 to nucleotide 1103;

(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone cd265_11 deposited under accession number ATCC 98444;

(e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone cd265_11 deposited under accession number ATCC 98444;

5

10

15

20

25

30

- (f) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone cd265_11 deposited under accession number ATCC 98444;
- (g) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone cd265_11 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:14;
- (i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:14 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:14;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(g) above;
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above; and
- (l) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(i).

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:13 from nucleotide 657 to nucleotide 1469; the nucleotide sequence of SEQ ID NO:13 from nucleotide 678 to nucleotide 1103; the nucleotide sequence of the full-length protein coding sequence of clone cd265_11 deposited under accession number ATCC 98444; or the nucleotide sequence of a mature protein coding sequence of clone cd265_11 deposited under accession number ATCC 98444. In other preferred embodiments, the polynucleotide encodes the full-length or a mature protein encoded by the cDNA insert of clone cd265_11 deposited under accession number ATCC 98444. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:14 from amino acid 8 to amino acid 149. In further preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:14 having biological activity, the fragment preferably comprising eight (more preferably

twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:14, or a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:14 having biological activity, the fragment comprising the amino acid sequence from amino acid 130 to amino acid 139 of SEQ ID NO:14.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:13.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

10

20

25

30

5

- (a) the amino acid sequence of SEQ ID NO:14;
- (b) the amino acid sequence of SEQ ID NO:14 from amino acid 8 to amino acid 149;
- (c) fragments of the amino acid sequence of SEQ ID NO:14 comprising eight consecutive amino acids of SEQ ID NO:14; and
- 15 (d) the amino acid sequence encoded by the cDNA insert of clone cd265_11 deposited under accession number ATCC 98444;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:14 or the amino acid sequence of SEQ ID NO:14 from amino acid 8 to amino acid 149. In further preferred embodiments, the present invention provides a protein comprising a fragment of the amino acid sequence of SEQ ID NO:14 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:14, or a protein comprising a fragment of the amino acid sequence of SEQ ID NO:14having biological activity, the fragment comprising the amino acid sequence from amino acid 130 to amino acid 139 of SEQ ID NO:14.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:15;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:15 from nucleotide 261 to nucleotide 896;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:15 from nucleotide 330 to nucleotide 896;

a polynucleotide comprising the nucleotide sequence of SEQ ID (d) NO:15 from nucleotide 1 to nucleotide 515;

(e) a polynucleotide comprising the nucleotide sequence of the fulllength protein coding sequence of clone ei265_4 deposited under accession number ATCC 98444;

5

10

15

20

25

- a polynucleotide encoding the full-length protein encoded by the **(f)** cDNA insert of clone ej265_4 deposited under accession number ATCC 98444;
- a polynucleotide comprising the nucleotide sequence of a mature (g) protein coding sequence of clone ej265_4 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone ej265_4 deposited under accession number ATCC 98444;
- a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:16;
- a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:16 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:16;
- a polynucleotide which is an allelic variant of a polynucleotide of (k) (a)-(h) above;
- **(l)** a polynucleotide which encodes a species homologue of the protein of (i) or (j) above; and
- a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(j).

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:15 from nucleotide 261 to nucleotide 896; the nucleotide sequence of SEQ ID NO:15 from nucleotide 330 to nucleotide 896; the nucleotide sequence of SEQ ID NO:15 from nucleotide 1 to nucleotide 515; the nucleotide sequence of the full-length protein coding sequence of clone ej265_4 deposited under accession number ATCC 98444; or the nucleotide sequence of a mature protein coding sequence of clone ej265_4 deposited under 30 accession number ATCC 98444. In other preferred embodiments, the polynucleotide encodes the full-length or a mature protein encoded by the cDNA insert of clone ej265_4 deposited under accession number ATCC 98444. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:16 from amino acid 1 to amino acid 85. In further preferred

embodiments, the present invention provides a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:16 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:16, or a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:16 having biological activity, the fragment comprising the amino acid sequence from amino acid 101 to amino acid 110 of SEQ ID NO:16.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ $\,$ ID NO:15.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

- (a) the amino acid sequence of SEQ ID NO:16;
- (b) the amino acid sequence of SEQ ID NO:16 from amino acid 1 to amino acid 85;
 - (c) fragments of the amino acid sequence of SEQ ID NO:16 comprising eight consecutive amino acids of SEQ ID NO:16; and
 - (d) the amino acid sequence encoded by the cDNA insert of clone ej265_4 deposited under accession number ATCC 98444;
- the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:16 or the amino acid sequence of SEQ ID NO:16 from amino acid 1 to amino acid 85. In further preferred embodiments, the present invention provides a protein comprising a fragment of the amino acid sequence of SEQ ID NO:16 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:16, or a protein comprising a fragment of the amino acid sequence of SEQ ID NO:16having biological activity, the fragment comprising the amino acid sequence from amino acid 101 to amino acid 110 of SEQ ID NO:16.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:17;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ IDNO:17 from nucleotide 946 to nucleotide 2232;

(c) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:17 from nucleotide 1336 to nucleotide 1853;

(d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone ey29_8 deposited under accession number ATCC 98444;

5

10

15

20

- (e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone ey29_8 deposited under accession number ATCC 98444;
- (f) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone ey29_8 deposited under accession number ATCC 98444:
- (g) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone ey29_8 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:18;
- (i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:18 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:18;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(g) above;
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above; and
- (l) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(i).

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:17 from nucleotide 946 to nucleotide 2232; the nucleotide sequence of SEQ ID NO:17 from nucleotide 1336 to nucleotide 1853; the nucleotide sequence of the full-length protein coding sequence of clone ey29_8 deposited under accession number ATCC 98444; or the nucleotide sequence of a mature protein coding sequence of clone ey29_8 deposited under accession number ATCC 98444. In other preferred embodiments, the polynucleotide encodes the full-length or a mature protein encoded by the cDNA insert of clone ey29_8 deposited under accession number ATCC 98444. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:18 from amino acid 138 to amino acid 302. In further preferred embodiments, the present invention provides a polynucleotide encoding a

protein comprising a fragment of the amino acid sequence of SEQ ID NO:18 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:18, or a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:18 having biological activity, the fragment comprising the amino acid sequence from amino acid 209 to amino acid 218 of SEQ ID NO:18.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:17.

In other embodiments, the present invention provides a composition comprising

a protein, wherein said protein comprises an amino acid sequence selected from the group
consisting of:

(a) the amino acid sequence of SEQ ID NO:18;

15

- (b) the amino acid sequence of SEQ ID NO:18 from amino acid 138 to amino acid 302;
- (c) fragments of the amino acid sequence of SEQ ID NO:18 comprising
 eight consecutive amino acids of SEQ ID NO:18; and
- (d) the amino acid sequence encoded by the cDNA insert of clone ey29_8 deposited under accession number ATCC 98444;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:18 or the amino acid sequence of SEQ ID NO:18 from amino acid 138 to amino acid 302. In further preferred embodiments, the present invention provides a protein comprising a fragment of the amino acid sequence of SEQ ID NO:18 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:18, or a protein comprising a fragment of the amino acid sequence of SEQ ID NO:18having biological activity, the fragment comprising the amino acid sequence from amino acid 209 to amino acid 218 of SEQ ID NO:18.

- 30 (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:19;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:19 from nucleotide 2588 to nucleotide 3439;

(c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:19 from nucleotide 3005 to nucleotide 3502;

 (d) a polynucleotide comprising the nucleotide sequence of the fulllength protein coding sequence of clone gm114_10 deposited under accession number ATCC 98444;

5

10

15

20

- (e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone gm114_10 deposited under accession number ATCC 98444;
- (f) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone gm114_10 deposited under accession number ATCC 98444;
- (g) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone gm114_10 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:20;
- (i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:20 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:20;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(g) above;
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above; and
- (l) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(i).

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:19 from nucleotide 2588 to nucleotide 3439; the nucleotide sequence of SEQ ID NO:19 from nucleotide 3005 to nucleotide 3502; the nucleotide sequence of the full-length protein coding sequence of clone gm114_10 deposited under accession number ATCC 98444; or the nucleotide sequence of a mature protein coding sequence of clone gm114_10 deposited under accession number ATCC 98444. In other preferred embodiments, the polynucleotide encodes the full-length or a mature protein encoded by the cDNA insert of clone gm114_10 deposited under accession number ATCC 98444. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:20 from amino acid 145 to amino acid 284. In further preferred embodiments, the present invention provides a

polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:20 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:20, or a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:20 having biological activity, the fragment comprising the amino acid sequence from amino acid 137 to amino acid 146 of SEQ ID NO:20.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:19.

In other embodiments, the present invention provides a composition comprising

a protein, wherein said protein comprises an amino acid sequence selected from the group
consisting of:

(a) the amino acid sequence of SEQ ID NO:20;

15

- (b) the amino acid sequence of SEQ ID NO:20 from amino acid 145 to amino acid 284;
- (c) fragments of the amino acid sequence of SEQ ID NO:20 comprising
 eight consecutive amino acids of SEQ ID NO:20; and
- (d) the amino acid sequence encoded by the cDNA insert of clone gm114_10 deposited under accession number ATCC 98444;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:20 or the amino acid sequence of SEQ ID NO:20 from amino acid 145 to amino acid 284. In further preferred embodiments, the present invention provides a protein comprising a fragment of the amino acid sequence of SEQ ID NO:20 having biological activity, the fragment preferably comprising eight (more preferably twenty, most preferably thirty) consecutive amino acids of SEQ ID NO:20, or a protein comprising a fragment of the amino acid sequence of SEQ ID NO:20having biological activity, the fragment comprising the amino acid sequence from amino acid 137 to amino acid 146 of SEQ ID NO:20.

In certain preferred embodiments, the polynucleotide is operably linked to an expression control sequence. The invention also provides a host cell, including bacterial, yeast, insect and mammalian cells, transformed with such polynucleotide compositions. Also provided by the present invention are organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein.

Processes are also provided for producing a protein, which comprise:

(a) growing a culture of the host cell transformed with such polynucleotide compositions in a suitable culture medium; and

(b) purifying the protein from the culture.

5

10

20

25

30

The protein produced according to such methods is also provided by the present invention.

Protein compositions of the present invention may further comprise a pharmaceutically acceptable carrier. Compositions comprising an antibody which specifically reacts with such protein are also provided by the present invention.

Methods are also provided for preventing, treating or ameliorating a medical condition which comprises administering to a mammalian subject a therapeutically effective amount of a composition comprising a protein of the present invention and a pharmaceutically acceptable carrier.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A and 1B are schematic representations of the pED6 and pNOTs vectors, respectively, used for deposit of clones disclosed herein.

DETAILED DESCRIPTION

ISOLATED PROTEINS AND POLYNUCLEOTIDES

Nucleotide and amino acid sequences, as presently determined, are reported below for each clone and protein disclosed in the present application. The nucleotide sequence of each clone can readily be determined by sequencing of the deposited clone in accordance with known methods. The predicted amino acid sequence (both full-length and mature forms) can then be determined from such nucleotide sequence. The amino acid sequence of the protein encoded by a particular clone can also be determined by expression of the clone in a suitable host cell, collecting the protein and determining its sequence. For each disclosed protein applicants have identified what they have determined to be the reading frame best identifiable with sequence information available at the time of filing.

As used herein a "secreted" protein is one which, when expressed in a suitable host cell, is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell

in which they are expressed. "Secreted" proteins also include without limitation proteins which are transported across the membrane of the endoplasmic reticulum.

Clone "as294_3"

5

15

20

25

A polynucleotide of the present invention has been identified as clone "as294_3". as294_3 was isolated from a human fetal brain cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. as294_3 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "as294_3 protein").

The nucleotide sequence of as 294_3 as presently determined is reported in SEQ ID NO:1. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the as 294_3 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:2. Amino acids 73 to 85 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 86, or are a transmembrane domain. Amino acids 102 to 114 are also a possible leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 115, or are a transmembrane domain.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone as 294_3 should be approximately 1900 bp.

The nucleotide sequence disclosed herein for as294_3 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. as294_3 demonstrated at least some similarity with sequences identified as AA206777 (zq80d04.s1 Stratagene hNT neuron (#937233) Homo sapiens cDNA clone 647911 3'), AA206905 (zq80d04.r1 Stratagene hNT neuron (#937233) Homo sapiens cDNA clone 647911 5'), AA280222 (zt04c05.r1 NCI_CGAP_GCB1 Homo sapiens cDNA clone IMAGE 712136 5'), H19869 (yn57a08.s1 Homo sapiens cDNA clone 172502 3'), H24249 (ym50h12.r1 Homo sapiens cDNA clone 52050 5'), N44936 (yy34f11.r1 Homo sapiens cDNA clone 273165 5'), R15379 (yf90f03.r1 Homo sapiens cDNA clone 29694 5'), R43727 (yg20c11.s1 Homo sapiens cDNA clone 32810 3'), R88673 (ym93f09.r1 Homo sapiens cDNA clone 166505 5'), T21648 (Human gene signature HUMGS03085), T80165 (5p IMAGE clone), and Z99260 (GenPept S. pombe hypothetical

protein). The predicted amino acid sequence disclosed herein for as 294_3 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted as 294_3 protein demonstrated at least some similarity to sequences identified as X73434 (KAP5.4 keratin protein [Ovis aries]) and Z99260 (hypothetical protein [Schizosaccharomyces pombe]). Based upon sequence similarity, as 294_3 proteins and each similar protein or peptide may share at least some activity. The TopPredII computer program predicts three potential transmembrane domains within the as 294_3 protein sequence, centered around amino acids 105, 228, and 307 of SEQ ID NO:2, respectively.

10

15

20

25

Clone "aw92_1"

A polynucleotide of the present invention has been identified as clone "aw92_1". aw92_1 was isolated from a cDNA library of human adult ovary (comprising untreated tissue and tissue treated with retinoic acid and activin), using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. aw92_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "aw92_1 protein").

The nucleotide sequence of aw92_1 as presently determined is reported in SEQ ID NO:3. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the aw92_1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:4.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone aw92_1 should be approximately 2950 bp.

The nucleotide sequence disclosed herein for aw92_1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. aw92_1 demonstrated at least some similarity with sequences identified as AF021936 (Rattus norvegicus myotonic dystrophy kinase-related Cdc42-binding kinase MRCK-beta (MRCK-beta) mRNA, complete CDs, GP2736153), T23529 (seq3368 Homo sapiens cDNA clone Hy18-Charon40-cDNA-247 3'), U59305 (Human ser-thr protein kinase PK428 mRNA, complete cds), W16524 (zb15h09.r1 Soares fetal lung NbHL19W Homo sapiens cDNA clone 302177 5' similar to PIR A42101 A42101 protein kinase homolog - human; contains element MER22 repetitive element), and

X69292 (H.sapiens mRNA for smooth muscle myosin). The predicted amino acid sequence disclosed herein for aw92_1 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted aw92_1 protein demonstrated at least some similarity to sequences identified as L03534 (ENHMHCAX_1 myosin heavy chain [Entamoeba histolytica]), R41000 (Human brain cDNA clone C28 protein kinase), U59305 (ser-thr protein kinase PK428 [Homo sapiens]), W02258 (Nucleolar/endosomal auto-antigen p162), and X03740 (myosin heavy chain (876 AA) [Homo sapiens]). Based upon sequence similarity, aw92_1 proteins and each similar protein or peptide may share at least some activity.

10

20

25

Clone "bd316_2"

A polynucleotide of the present invention has been identified as clone "bd316_2". bd316_2 was isolated from a human fetal kidney cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. bd316_2 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "bd316_2 protein").

The nucleotide sequence of bd316_2 as presently determined is reported in SEQ ID NO:5. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the bd316_2 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:6. Amino acids 32 to 44 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 45, or are a transmembrane domain.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone bd316_2 should be approximately 1200 bp.

The nucleotide sequence disclosed herein for bd316_2 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. bd316_2 demonstrated at least some similarity with sequences identified as AA234339 (zr72d12.s1 Soares NhHMPu S1 Homo sapiens cDNA clone 668951 3'), L05367 (Human oligodendrocyte myelin glycoprotein (OMG) exons 1-2; neurofibromatosis 1 (NF1) exons 28-49; ecotropic viral integration site 2B (EVI2B) exons 1-2; ecotropic viral integration site 2A (EVI2A) exons 1-2; adenylate kinase (AK3) exons

1-2), N30778 (yw74h08.s1 Homo sapiens cDNA clone 258015 3' similar to gblM73048lHUMU3AAAA Human U3 small nuclear RNA (rRNA); contains MER12.t1 MER12 repetitive element), U52195 (Human desmoglein 3 gene, promoter region), U60822 (Human dystrophin (DMD) gene, exons 7, 8 and 9, and partial cds), X85184 (R.norvegicus mRNA for ras-related GTPase, ragB), and X90530 (H.sapiens mRNA for ragB protein). Based upon sequence similarity, bd316_2 proteins and each similar protein or peptide may share at least some activity. The TopPredII computer program predicts a potential transmembrane domain within the bd316_2 protein sequence centered around amino acid 35 of SEQ ID NO:6.

10

15

20

25

Clone "bk130_4"

A polynucleotide of the present invention has been identified as clone "bk130_4". bk130_4 was isolated from a human adult retina cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. bk130_4 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "bk130_4 protein").

The nucleotide sequence of bk130_4 as presently determined is reported in SEQ ID NO:7. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the bk130_4 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:8.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone bk130_4 should be approximately 550 bp.

The nucleotide sequence disclosed herein for bk130_4 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. bk130_4 demonstrated at least some similarity with sequences identified as AA009736 (ze82e04.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone 365502 3'), AA112971 (zn59b09.r1 Stratagene muscle 937209 Homo sapiens cDNA clone 562457 5'), AA196543 (zq08e12.s1 Stratagene muscle 937209 Homo sapiens cDNA clone 629134 3'), AA196677 (zq08e10.r1 Stratagene muscle 937209 Homo sapiens cDNA clone 629130 5'), AA232667 (zr74e10.s1 Soares NhHMPu S1 Homo sapiens cDNA clone 669162 3'), H26737 (yl14f12.r1 Homo sapiens cDNA clone 158255 5'), H44642

(yp20a08.rl Homo sapiens cDNA clone 187958 5'), and W72771 (zd77c12.rl Soares fetal heart NbHH19W Homo sapiens cDNA clone 346678 5'). The predicted amino acid sequence disclosed herein for bk130_4 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted bk130_4 protein demonstrated at least some similarity to sequences identified as L11647 (glycogen branching enzyme [Streptomyces aureofaciens]), L23651(homology with C. elegans cuticle collagen; putative [Caenorhabditis elegans]), W03740 (rchd528 gene product), and Z29095 (R10E11.1 [Caenorhabditis elegans]). Based upon sequence similarity, bk130_4 proteins and each similar protein or peptide may share at least some activity.

10

15

20

25

Clone "bv131 5"

A polynucleotide of the present invention has been identified as clone "bv131_5". bv131_5 was isolated from a human adult brain cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. bv131_5 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "bv131_5 protein").

The nucleotide sequence of bv131_5 as presently determined is reported in SEQ ID NO:9. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the bv131_5 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:10. Amino acids 377 to 389 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 390, or are a transmembrane domain.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone bv131_5 should be approximately 2900 bp.

The nucleotide sequence disclosed herein for bv131_5 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. bv131_5 demonstrated at least some similarity with sequences identified as AA233510 (zr29h03.r1 Stratagene NT2 neuronal precursor 937230 Homo sapiens cDNA clone 664853 5' similar to TR:G1151007 G1151007 ATP DEPENDENT PERMEASE), H24176 (ym55e05.r1 Homo sapiens cDNA clone 52176 5'), R13832 (yf65a02.r1 Homo sapiens cDNA clone 26986 5' similar to SP:ADP1_YEAST P25371

PROBABLE ATP-DEPENDENT PERMEASE), R16423 (yf40d03.r1 Homo sapiens cDNA clone 129317 5'), T00880 (Human cisplatin resistance gene cDNA62), T12316 (Replicable and transcriptionally active plasmid), T78871 (yd83b08.s1 Homo sapiens cDNA clone 114807 3'), U66681 (Human clone EST157481 ATP-binding cassette transporter mRNA sequence), and V00710 (Human mitochondrial genes for several tRNAs (Phe, Val, Leu) and 12S and 16S ribosomal RNAs). The predicted amino acid sequence disclosed herein for bv131_5 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted bv131_5 protein demonstrated at least some similarity to sequences identified as U34919 (white homolog [Homo sapiens]), Z48745 (murine ABC8), and Z49821 (putative ABC transporter [Saccharomyces cerevisiae]). Based upon sequence similarity, bv131_5 proteins and each similar protein or peptide may share at least some activity. The TopPredII computer program predicts five additional potential transmembrane domains within the bv131_5 protein sequence, centered around amino acids 354, 439, 463, 494 and 588 of SEQ ID NO:10, respectively.

Clone "bv227 1"

10

15

20

25

A polynucleotide of the present invention has been identified as clone "bv227_1". bv227_1 was isolated from a human adult brain cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. bv227_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "bv227_1 protein").

The nucleotide sequence of bv227_1 as presently determined is reported in SEQ ID NO:11. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the bv227_1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:12. Amino acids 45 to 57 of SEQ ID NO:12 are a possible leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 58, or are a transmembrane domain. Another potential bv227_1 reading frame and predicted amino acid sequence is encoded by basepairs 921 to 2294 of SEQ ID NO:11 and is reported in SEQ ID NO:31. A frameshift in the nucleotide sequence of SEQ ID NO:11 between about nucleotide 664 to about nucleotide 690 could extend the

reading frame of SEQ ID NO:31 to form a reading frame extending from position 666 to 2294 of SEQ ID NO:11 and encoding the amino acid sequence reported in SEQ ID NO:32.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone bv227_1 should be approximately 3300 bp.

The nucleotide sequence disclosed herein for bv227_1 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. bv227_1 demonstrated at least some similarity with sequences identified as AA368932 (EST80282 Placenta I Homo sapiens cDNA similar to similar to beta-1-glycoprotein PSGGA, pregnancy-specific), D60272 (Human fetal brain cDNA 3'-end GEN-095A07), M58526 (Human alpha-5 collagen type IV (COLAA5) mRNA, 3' end), Q64556 (Human collagen (Type V) coding sequence), R74388 (yi57f11.s1 Homo sapiens cDNA clone 143373 3'), and T67066 (Human alpha3(IX) collagen cDNA). The predicted amino acid sequences disclosed herein for bv227_1 were searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted bv227_1 proteins of SEQ ID NO:31 and SEQ ID NO:32 demonstrated at least some similarity to sequences identified as S57132 (type XVI collagen alpha 1 chain, alpha 1 (XVI) [human, placenta, Peptide Partial, 1186 aa] [Homo sapiens]) and W07539 (Collagen like protein (CLP)). Based upon sequence similarity, bv227_1 proteins and each similar protein or peptide may share at least some activity.

20

25

30

5

10

Clone "cd265_11"

A polynucleotide of the present invention has been identified as clone "cd265_11". cd265_11 was isolated from a human fetal brain cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. cd265_11 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "cd265_11 protein").

The nucleotide sequence of cd265_11 as presently determined is reported in SEQ ID NO:13. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the cd265_11 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:14.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone cd265_11 should be approximately 1600 bp.

The nucleotide sequence disclosed herein for cd265_11 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. cd265_11 demonstrated at least some similarity with sequences identified as AA125395 (mp77f05.r1 Soares 2NbMT Mus musculus cDNA clone 575265 5'), AA131340 (zo08h01.s1 Stratagene neuroepithelium NT2RAMI 937234 Homo sapiens cDNA clone 567121 3'), AA244194 (nc06b11.s1 NCI_CGAP_Pr1 Homo sapiens cDNA clone 1462), AA339557 (EST44738 Fetal brain I Homo sapiens cDNA 5' end), AA569649 (nf24a11.s1 NCI_CGAP_Pr1 Homo sapiens cDNA clone IMAGE:914684), and T26052 (Human gene signature HUMGS08288). Based upon sequence similarity, cd265_11 proteins and each similar protein or peptide may share at least some activity.

Clone "ej265 4"

15

20

25

30

A polynucleotide of the present invention has been identified as clone "ej265_4". ej265_4 was isolated from a human adult placenta cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. ej265_4 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "ej265_4 protein").

The nucleotide sequence of ej265_4 as presently determined is reported in SEQ ID NO:15. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the ej265_4 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:16. Amino acids 11 to 23 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 24, or are a transmembrane domain.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone ej265_4 should be approximately 1200 bp.

The nucleotide sequence disclosed herein for ej265_4 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. ej265_4 demonstrated at least some similarity with sequences identified as D79053 (Human placenta cDNA 5'-end GEN-530B12), H63156 (yr50c03.r1

Homo sapiens cDNA clone 208708 5'), H64584 (yu14a12.r1 Homo sapiens cDNA clone 233758 5'), and T49682 (ya78f10.r1 Homo sapiens cDNA clone 67819 5'). The predicted amino acid sequence disclosed herein for ej265_4 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted ej265_4 protein demonstrated at least some similarity to sequences identified as endothelial leukocyte adhesion molecule 1. Based upon sequence similarity, ej265_4 proteins and each similar protein or peptide may share at least some activity.

Clone "ey29 8"

10

20

25

A polynucleotide of the present invention has been identified as clone "ey29_8". ey29_8 was isolated from a human fetal brain cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. ey29_8 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "ey29_8 protein").

The nucleotide sequence of ey29_8 as presently determined is reported in SEQ ID NO:17. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the ey29_8 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:18. Amino acids 47 to 59 are a possible leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 60.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone ey29_8 should be approximately 4000 bp.

The nucleotide sequence disclosed herein for ey29_8 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. ey29_8 demonstrated at least some similarity with sequences identified as AA262521 (zs17b02.r1 Soares NbHTGBC Homo sapiens cDNA clone 685419 5'), AA429923 (zw66g01.s1 Soares testis NHT Homo sapiens cDNA clone 781200 3'), AA446080 (zw66g03.r1 Soares testis NHT Homo sapiens cDNA clone 781204 5'), F07905 (H. sapiens partial cDNA sequence; clone c-2lb06), U25125 (Gallus gallus preprogastrin gene, complete cds), W92743 (zd92g06.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone 356986 3'), and Z44092 (H. sapiens partial cDNA sequence;

clone c-1sd04). Based upon sequence similarity, ey29_8 proteins and each similar protein or peptide may share at least some activity. The TopPredII computer program predicts two potential transmembrane domains within the ey29_8 protein sequence, one centered around amino acid 120 and another around amino acid 410 of SEQ ID NO:18.

5

15

20

.30

Clone "gm114_10"

A polynucleotide of the present invention has been identified as clone "gm114_10". gm114_10 was isolated from a human adult uterus cDNA library using methods which are selective for cDNAs encoding secreted proteins (see U.S. Pat. No. 5,536,637), or was identified as encoding a secreted or transmembrane protein on the basis of computer analysis of the amino acid sequence of the encoded protein. gm114_10 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "gm114_10 protein").

The nucleotide sequence of gm114_10 as presently determined is reported in SEQ ID NO:19. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the gm114_10 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:20.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone gm114_10 should be approximately 4000 bp.

The nucleotide sequence disclosed herein for gm114_10 was searched against the GenBank and GeneSeq nucleotide sequence databases using BLASTN/BLASTX and FASTA search protocols. gm114_10 demonstrated at least some similarity with sequences identified as AC002350 (Homo sapiens; HTGS phase 1, 46 unordered pieces), H96041 (yw61b08.r1 Soares placenta 8to9weeks 2NbHP8to9W Homo sapiens cDNA clone 256695 5'), L02529 (Rattus norvegicus Drosophila polarity gene (frizzled) homologue mRNA, complete cds), N70776 (za72g04.s1 Homo sapiens cDNA clone 298134 3'), N96041, N92163 (yz89b04.r1 Homo sapiens cDNA clone 290191 5'), U20865 (Saccharomyces cerevisiae chromosome XII cosmid 9672), and W93041 (zd93e07.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone 357060 3'. The predicted amino acid sequence disclosed herein for gm114_10 was searched against the GenPept and GeneSeq amino acid sequence databases using the BLASTX search protocol. The predicted gm114_10 protein demonstrated at least some similarity to sequences identified as U20865 (chromosome XII cosmid 9672 [Saccharomyces cerevisiae], similar to C. elegans hypothetical protein

C34E10.2 (GenBank accession number U10402)). Based upon sequence similarity, gm114_10 proteins and each similar protein or peptide may share at least some activity. The TopPredII computer program predicts a potential transmembrane domain within the gm114_10 protein sequence centered around amino acid 150 of SEQ ID NO:20.

5

15

30

Deposit of Clones

Clones as294_3, aw92_1, bd316_2, bk130_4, bv131_5, bv227_1, cd265_11, ej265_4, ey29_8, and gm114_10 were deposited on June 3, 1997 with the American Type Culture Collection (10801 University Boulevard, Manassas, Virginia 20110-2209 U.S.A.) as an original deposit under the Budapest Treaty and were given the accession number ATCC 98444, from which each clone comprising a particular polynucleotide is obtainable. All restrictions on the availability to the public of the deposited material will be irrevocably removed upon the granting of the patent, except for the requirements specified in 37 C.F.R. § 1.808(b), and the term of the deposit will comply with 37 C.F.R. § 1.806.

Each clone has been transfected into separate bacterial cells (*E. coli*) in this composite deposit. Each clone can be removed from the vector in which it was deposited by performing an EcoRI/NotI digestion (5' site, EcoRI; 3' site, NotI) to produce the appropriate fragment for such clone. Each clone was deposited in either the pED6 or pNOTs vector depicted in Figures 1A and 1B, respectively. The pED6dpc2 vector ("pED6") was derived from pED6dpc1 by insertion of a new polylinker to facilitate cDNA cloning (Kaufman *et al.*, 1991, *Nucleic Acids Res.* 19: 4485-4490); the pNOTs vector was derived from pMT2 (Kaufman *et al.*, 1989, *Mol. Cell. Biol.* 9: 946-958) by deletion of the DHFR sequences, insertion of a new polylinker, and insertion of the M13 origin of replication in the ClaI site. In some instances, the deposited clone can become "flipped" (i.e., in the reverse orientation) in the deposited isolate. In such instances, the cDNA insert can still be isolated by digestion with EcoRI and NotI. However, NotI will then produce the 5' site and EcoRI will produce the 3' site for placement of the cDNA in proper orientation for expression in a suitable vector. The cDNA may also be expressed from the vectors in which they were deposited.

Bacterial cells containing a particular clone can be obtained from the composite deposit as follows:

An oligonucleotide probe or probes should be designed to the sequence that is known for that particular clone. This sequence can be derived from the sequences provided herein, or from a combination of those sequences. The sequence of an

oligonucleotide probe that was used to isolate or to sequence each full-length clone is identified below, and should be most reliable in isolating the clone of interest.

	Clone	Probe Sequence
5	as294_3	SEQ ID NO:21
10	aw92_1	SEQ ID NO:22
	bd316_2	SEQ ID NO:23
	bk130_4	SEQ ID NO:24
	bv131_5	SEQ ID NO:25
	bv227_1	SEQ ID NO:26
	cd265_11	SEQ ID NO:27
	ej265_4	SEQ ID NO:28
	ey29_8	SEQ ID NO:29
	gm114_10	SEQ ID NO:30

15

20

In the sequences listed above which include an N at position 2, that position is occupied in preferred probes/primers by a biotinylated phosphoaramidite residue rather than a nucleotide (such as , for example, that produced by use of biotin phosphoramidite (1-dimethoxytrityloxy-2-(N-biotinyl-4-aminobutyl)-propyl-3-O-(2-cyanoethyl)-(N,N-diisopropyl)-phosphoramadite) (Glen Research, cat. no. 10-1953)).

The design of the oligonucleotide probe should preferably follow these parameters:

- (a) It should be designed to an area of the sequence which has the fewest ambiguous bases ("N's"), if any;
- 25 (b) It should be designed to have a T_m of approx. 80 ° C (assuming 2° for each A or T and 4 degrees for each G or C).

The oligonucleotide should preferably be labeled with g-32P ATP (specific activity 6000 Ci/mmole) and T4 polynucleotide kinase using commonly employed techniques for labeling oligonucleotides. Other labeling techniques can also be used. Unincorporated label should preferably be removed by gel filtration chromatography or other established methods. The amount of radioactivity incorporated into the probe should be quantitated by measurement in a scintillation counter. Preferably, specific activity of the resulting probe should be approximately 4e+6 dpm/pmole.

The bacterial culture containing the pool of full-length clones should preferably be thawed and 100 μ l of the stock used to inoculate a sterile culture flask containing 25 ml of sterile L-broth containing ampicillin at 100 μ g/ml. The culture should preferably be grown to saturation at 37°C, and the saturated culture should preferably be diluted in fresh L-broth. Aliquots of these dilutions should preferably be plated to determine the dilution and volume which will yield approximately 5000 distinct and well-separated colonies on solid bacteriological media containing L-broth containing ampicillin at 100 μ g/ml and agar at 1.5% in a 150 mm petri dish when grown overnight at 37°C. Other known methods of obtaining distinct, well-separated colonies can also be employed.

Standard colony hybridization procedures should then be used to transfer the colonies to nitrocellulose filters and lyse, denature and bake them.

10

25

The filter is then preferably incubated at 65°C for 1 hour with gentle agitation in 6X SSC (20X stock is 175.3 g NaCl/liter, 88.2 g Na citrate/liter, adjusted to pH 7.0 with NaOH) containing 0.5% SDS, 100 µg/ml of yeast RNA, and 10 mM EDTA (approximately 10 mL per 150 mm filter). Preferably, the probe is then added to the hybridization mix at a concentration greater than or equal to 1e+6 dpm/mL. The filter is then preferably incubated at 65°C with gentle agitation overnight. The filter is then preferably washed in 500 mL of 2X SSC/0.5% SDS at room temperature without agitation, preferably followed by 500 mL of 2X SSC/0.1% SDS at room temperature with gentle shaking for 15 minutes. A third wash with 0.1X SSC/0.5% SDS at 65°C for 30 minutes to 1 hour is optional. The filter is then preferably dried and subjected to autoradiography for sufficient time to visualize the positives on the X-ray film. Other known hybridization methods can also be employed.

The positive colonies are picked, grown in culture, and plasmid DNA isolated using standard procedures. The clones can then be verified by restriction analysis, hybridization analysis, or DNA sequencing.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H.U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R.S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites. For example, fragments of the protein may be fused through "linker" sequences to

the Fc portion of an immunoglobulin. For a bivalent form of the protein, such a fusion could be to the Fc portion of an IgG molecule. Other immunoglobulin isotypes may also be used to generate such fusions. For example, a protein - IgM fusion would generate a decayalent form of the protein of the invention.

5

10

15

25

The present invention also provides both full-length and mature forms of the disclosed proteins. The full-length form of the such proteins is identified in the sequence listing by translation of the nucleotide sequence of each disclosed clone. The mature form(s) of such protein may be obtained by expression of the disclosed full-length polynucleotide (preferably those deposited with ATCC) in a suitable mammalian cell or other host cell. The sequence(s) of the mature form(s) of the protein may also be determinable from the amino acid sequence of the full-length form.

The present invention also provides genes corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254; Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, are provided.

Transgenic animals that have modified genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed herein have been partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s).

Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

20

25

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25%(more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that

shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologues of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide. Preferably, polynucleotide species homologues have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% identity) with the given polynucleotide, and protein species homologues have at least 30% sequence identity (more preferably, at least 45% identity; most preferably at least 60% identity) with the given protein, where sequence identity is determined by comparing the nucleotide sequences of the polynucleotides or the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Species homologues may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species. Preferably, species homologues are those isolated from mammalian species. Most preferably, species homologues are those isolated from certain mammalian species such as, for example, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus, Hylobates concolor, Macaca mulatta, Papio papio, Papio hamadryas, Cercopithecus aethiops, Cebus capucinus, Aotus trivirgatus, Sanguinus oedipus, Microcebus murinus, Mus musculus, Rattus norvegicus, Cricetulus griseus, Felis catus, Mustela vison, Canis familiaris, Oryctolagus cuniculus, Bos taurus, Ovis aries, Sus scrofa, and Equus caballus, for which genetic maps have been created allowing the identification of syntenic relationships between the genomic organization of genes in one species and the genomic organization of the related genes in another species (O'Brien and Seuánez, 1988, Ann. Rev. Genet. 22: 323-351; O'Brien et al., 1993, Nature Genetics 3:103-112; Johansson et al., 1995, Genomics 25: 682-690; Lyons et al., 1997, Nature Genetics 15: 47-56; O'Brien et al., 1997, Trends in Genetics 13(10): 393-399; Carver and Stubbs, 1997, Genome Research 7:1123-1137; all of which are incorporated by reference herein).

10

20

25

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotides which also encode proteins which are identical or have significantly similar sequences to those encoded by the disclosed polynucleotides. Preferably, allelic variants have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90%

identity) with the given polynucleotide, where sequence identity is determined by comparing the nucleotide sequences of the polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps. Allelic variants may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from individuals of the appropriate species.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

5

10

The present invention also includes polynucleotides that hybridize under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

	Stringency Condition	Polynucleotide Hybrid	Hybrid Length (bp) [‡]	Hybridization Temperature and Buffer†	Wash Temperature and Buffer†
5	A	DNA:DNA	≥ 50	65°C; 1xSSC -or- 42°C; 1xSSC, 50% formamide	65°C; 0.3xSSC
	В	DNA:DNA	<50	T _B *; 1xSSC	T _B *; 1xSSC
	С	DNA:RNA	≥ 50	67°C; 1xSSC -or- 45°C; 1xSSC, 50% formamide	67°C; 0.3xSSC
	D	DNA:RNA	<50	T _D *; 1xSSC	T _p *; 1xSSC
	Е	RNA:RNA	≥ 50	70°C; 1xSSC -or- 50°C; 1xSSC, 50% formamide	70°C; 0.3xSSC
	F	RNA:RNA	<50	T _F *; 1xSSC	T _F *; 1xSSC
	G	DNA:DNA	≥ 50	65°C; 4xSSC -or- 42°C; 4xSSC, 50% formamide	65°C; 1xSSC
10	Н	DNA:DNA	<50	T _H *; 4xSSC	T _H *; 4xSSC
	I	DNA:RNA	≥ 50	67°C; 4xSSC -or- 45°C; 4xSSC, 50% formamide	67°C; 1xSSC
	J	DNA:RNA	<50	T,*; 4xSSC	T _j *; 4xSSC
	К	RNA:RNA	≥ 50	70°C; 4xSSC -or- 50°C; 4xSSC, 50% formamide	67°C; 1xSSC
	L	RNA:RNA	<50	T _t *; 2xSSC	T _t *; 2xSSC
15	М	DNA:DNA	≥ 50	50°C; 4xSSC -or- 40°C; 6xSSC, 50% formamide	50°C; 2xSSC
	N	DNA:DNA	<50	T _N *; 6xSSC	T _N *; 6xSSC
	О	DNA:RNA	≥ 50	55°C; 4xSSC -or- 42°C; 6xSSC, 50% formamide	55°C; 2xSSC
	P	DNA:RNA	<50	T _p *; 6xSSC	T _P *; 6xSSC
	Q	RNA:RNA	≥ 50	60°C; 4xSSC -or- 45°C; 6xSSC, 50% formamide	60°C; 2xSSC
20	R	RNA:RNA	<50	T _R *; 4xSSC	T _R *; 4xSSC

[‡]. The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

*: SSPE (1xSSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH 7.4) can be substituted for SSC (1xSSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.

^{30 *}T_B- T_R: The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m(°C) = 2(# of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m(°C) = 81.5 + 16.6(log₁₀[Na*]) + 0.41(%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na*] is the concentration of sodium ions in the hybridization buffer ([Na*] for 1xSSC = 0.165 M).

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and *Current Protocols in Molecular Biology*, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25%(more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

15

20

25

30

A number of types of cells may act as suitable host cells for expression of the protein. Mammalian host cells include, for example, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial

strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

5

10

15

20

25

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, California, U.S.A. (the MaxBac® kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearl® or Cibacrom blue 3GA Sepharose®; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX). Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, MA), Pharmacia (Piscataway, NJ) and InVitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("Flag") is commercially available from Kodak (New Haven, CT).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant

methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

10

15

25

30

The protein may also be produced by known conventional chemical synthesis. Methods for constructing the proteins of the present invention by synthetic means are known to those skilled in the art. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications in the peptide or DNA sequences can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Patent No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and may thus be useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are believed to be encompassed by the present invention.

USES AND BIOLOGICAL ACTIVITY

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

10

15

20

25

30

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, those described in Gyuris et al., 1993, Cell 75: 791-803 and in Rossi et al., 1997, Proc. Natl. Acad. Sci. USA 94: 8405-8410, all of which are incorporated by reference herein) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine

levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

10

. 30

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is

evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

5

15

20

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6 - Nordan, R. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immunol. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

10

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, *i.e.*, in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for

example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

10

15

25

30

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or

tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins *in vivo* as described in Lenschow *et al.*, Science 257:789-792 (1992) and Turka *et al.*, Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function *in vivo* on the development of that disease.

10

20

25

30

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of

viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient 5 by removing T cells from the patient, costimulating the T cells in vitro with viral antigenpulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

10

25

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. 20 For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I a chain protein and β_2 microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface.

Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

10

30

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: *In vitro* antibody production, Mond, J.J. and Brunswick, M. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter

7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

10

20

25

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent

myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either *in-vivo* or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

15

20

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland,

H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

5

20

25

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. *De novo* bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of

congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

10

15

25

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, *i.e.* for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, <u>Epidermal Wound Healing</u>, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

5

10

20

25

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

5

10

15

20

25

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

10

15

20

25

30

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and

Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

5

10

15

20

30

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Cadherin/Tumor Invasion Suppressor Activity

Cadherins are calcium-dependent adhesion molecules that appear to play major roles during development, particularly in defining specific cell types. Loss or alteration of normal cadherin expression can lead to changes in cell adhesion properties linked to tumor growth and metastasis. Cadherin malfunction is also implicated in other human diseases, such as pemphigus vulgaris and pemphigus foliaceus (auto-immune blistering skin diseases), Crohn's disease, and some developmental abnormalities.

The cadherin superfamily includes well over forty members, each with a distinct pattern of expression. All members of the superfamily have in common conserved extracellular repeats (cadherin domains), but structural differences are found in other parts of the molecule. The cadherin domains bind calcium to form their tertiary structure and thus calcium is required to mediate their adhesion. Only a few amino acids in the

first cadherin domain provide the basis for homophilic adhesion; modification of this recognition site can change the specificity of a cadherin so that instead of recognizing only itself, the mutant molecule can now also bind to a different cadherin. In addition, some cadherins engage in heterophilic adhesion with other cadherins.

5

E-cadherin, one member of the cadherin superfamily, is expressed in epithelial cell types. Pathologically, if E-cadherin expression is lost in a tumor, the malignant cells become invasive and the cancer metastasizes. Transfection of cancer cell lines with polynucleotides expressing E-cadherin has reversed cancer-associated changes by returning altered cell shapes to normal, restoring cells' adhesiveness to each other and to their substrate, decreasing the cell growth rate, and drastically reducing anchorage-independent cell growth. Thus, reintroducing E-cadherin expression reverts carcinomas to a less advanced stage. It is likely that other cadherins have the same invasion suppressor role in carcinomas derived from other tissue types. Therefore, proteins of the present invention with cadherin activity, and polynucleotides of the present invention encoding such proteins, can be used to treat cancer. Introducing such proteins or polynucleotides into cancer cells can reduce or eliminate the cancerous changes observed in these cells by providing normal cadherin expression.

Cancer cells have also been shown to express cadherins of a different tissue type than their origin, thus allowing these cells to invade and metastasize in a different tissue in the body. Proteins of the present invention with cadherin activity, and polynucleotides of the present invention encoding such proteins, can be substituted in these cells for the inappropriately expressed cadherins, restoring normal cell adhesive properties and reducing or eliminating the tendency of the cells to metastasize.

Additionally, proteins of the present invention with cadherin activity, and polynucleotides of the present invention encoding such proteins, can used to generate antibodies recognizing and binding to cadherins. Such antibodies can be used to block the adhesion of inappropriately expressed tumor-cell cadherins, preventing the cells from forming a tumor elsewhere. Such an anti-cadherin antibody can also be used as a marker for the grade, pathological type, and prognosis of a cancer, i.e. the more progressed the cancer, the less cadherin expression there will be, and this decrease in cadherin expression can be detected by the use of a cadherin-binding antibody.

Fragments of proteins of the present invention with cadherin activity, preferably a polypeptide comprising a decapeptide of the cadherin recognition site, and polynucleotides of the present invention encoding such protein fragments, can also be used

to block cadherin function by binding to cadherins and preventing them from binding in ways that produce undesirable effects. Additionally, fragments of proteins of the present invention with cadherin activity, preferably truncated soluble cadherin fragments which have been found to be stable in the circulation of cancer patients, and polynucleotides encoding such protein fragments, can be used to disturb proper cell-cell adhesion.

Assays for cadherin adhesive and invasive suppressor activity include, without limitation, those described in: Hortsch et al. J Biol Chem 270 (32): 18809-18817, 1995; Miyaki et al. Oncogene 11: 2547-2552, 1995; Ozawa et al. Cell 63: 1033-1038, 1990.

10 <u>Tumor Inhibition Activity</u>

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

20 Other Activities

15

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic

lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

ADMINISTRATION AND DOSING

10

30

A protein of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources) may be used in a pharmaceutical composition when combined with a pharmaceutically acceptable carrier. Such a composition may also contain (in addition to protein and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or compliment its activity or use Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein of the invention, or to minimize side effects. Conversely, protein of the present invention may be included in formulations of the particular cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent.

A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunolgobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

10

25

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent No. 4,235,871; U.S. Patent No. 4,501,728; U.S. Patent No. 4,837,028; and U.S. Patent No. 4,737,323, all of which are incorporated herein by reference.

As used herein, the term "therapeutically effective amount" means the total amount of each active component of the pharmaceutical composition or method that is sufficient to show a meaningful patient benefit, i.e., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein of the present invention is administered to a mammal having a condition to be treated. Protein of the present invention may be

administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co-administered with one or more cytokines, lymphokines or other hematopoietic factors, protein of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

Administration of protein of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

10

30

When a therapeutically effective amount of protein of the present invention is administered orally, protein of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein of the present invention, and preferably from about 25 to 90% protein of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein of the present invention, and preferably from about 1 to 50% protein of the present invention.

When a therapeutically effective amount of protein of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred

pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art.

The amount of protein of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein of the present invention and observe the patient's response. Larger doses of protein of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1ng to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein of the present invention per kg body weight.

10

20

25

The duration of intravenous therapy using the pharmaceutical composition of the present invention will vary, depending on the severity of the disease being treated and the condition and potential idiosyncratic response of each individual patient. It is contemplated that the duration of each application of the protein of the present invention will be in the range of 12 to 24 hours of continuous intravenous administration. Ultimately the attending physician will decide on the appropriate duration of intravenous therapy using the pharmaceutical composition of the present invention.

Protein of the invention may also be used to immunize animals to obtain polyclonal and monoclonal antibodies which specifically react with the protein. Such antibodies may be obtained using either the entire protein or fragments thereof as an immunogen. The peptide immunogens additionally may contain a cysteine residue at the carboxyl terminus, and are conjugated to a hapten such as keyhole limpet hemocyanin (KLH). Methods for synthesizing such peptides are known in the art, for example, as in R.P. Merrifield, J. Amer.Chem.Soc. <u>85</u>, 2149-2154 (1963); J.L. Krstenansky, *et al.*, FEBS Lett. <u>211</u>, 10 (1987). Monoclonal antibodies binding to the protein of the invention may be useful diagnostic agents for the immunodetection of the protein. Neutralizing monoclonal

antibodies binding to the protein may also be useful therapeutics for both conditions associated with the protein and also in the treatment of some forms of cancer where abnormal expression of the protein is involved. In the case of cancerous cells or leukemic cells, neutralizing monoclonal antibodies against the protein may be useful in detecting and preventing the metastatic spread of the cancerous cells, which may be mediated by the protein.

For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalciumphosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalciumphosphate. The bioceramics may be altered in composition, such as in calcium-

aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability.

Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. 5 In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

A preferred family of sequestering agents is cellulosic materials such as (including hydroxyalkylcelluloses), alkylcelluloses including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 15 wt%, preferably 1-10 wt% based on total formulation weight, which represents the amount necessary to prevent desorbtion of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells.

10

20

25

In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF-α and TGF- β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins of the present invention.

The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in

the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

5

10

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either *in vivo* or *ex vivo* into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA).

Cells may also be cultured *ex vivo* in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced *in vivo* for therapeutic purposes.

Patent and literature references cited herein are incorporated by reference as if fully set forth.

SEQUENCE LISTING

5	(1) GENE	RAL INFORMAT	PION:				
_	(i)	APPLICANT:	Jacobs, Kenneth McCoy, John M.				
			LaVallie, Edward R.				
			Racie, Lisa A.				
10			Treacy, Maurice				
			Spaulding, Vikki				
			Agostino, Michael J.				
			Howes, Steven H.				
1.5			Fechtel, Kim				
15	(ii) TITLE OF INVENTION: SECRETED PROTEINS AND POLYNUCLEOTIDES						
	,,	ENCODING					
	(iii)	NUMBER OF	SEQUENCES: 32				
20	(iv)	CORRESPOND	ENCE ADDRESS:				
	(,		SSEE: Genetics Institute, Inc.				
			T: 87 CambridgePark Drive				
			Cambridge				
25		(D) STATE	: MA				
		(E) COUNT	RY: U.S.A.				
		(F) ZIP:	02140				
30	(v)	COMPUTER R	EADABLE FORM:				
		(A) MEDIU	M TYPE: Floppy disk				
		(B) COMPU	TER: IBM PC compatible				
		(C) OPERA	TING SYSTEM: PC-DOS/MS-DOS				
		(D) SOFTW	ARE: PatentIn Release #1.0, Version #1.30				
35	(vi)	CURRENT AP	PLICATION DATA:				
		(A) APPLI	CATION NUMBER:				
		(B) FILIN	G DATE:				
	•	(C) CLASS	IFICATION:				
40	(viii)	ATTORNEY/A	GENT INFORMATION:				
			Sprunger, Suzanne A.				
		(B) REGIS	TRATION NUMBER: 41,323				
	(ix)		ICATION INFORMATION:				
45		· ·	HONE: (617) 498-8284				
		(B) TELEF	AX: (617) 876-5851				
	(2) INFO	RMATTON FOR	SEO ID NO.1.				
50	(2) INFORMATION FOR SEQ ID NO:1:						
	(i)	SEQUENCE C	HARACTERISTICS:				
			H: 1755 base pairs				
		(B) TYPE:	nucleic acid				
_			DEDNESS: double				
55		(D) manar	OCN . liman				

(ii) MOLECULE TYPE: cDNA

5

(xi) SEQUENCE DESCRIPTION: SEO ID NO:1: CAGTGGAGTC TGTACTGGCT GCGGGGGACC CTGCTCATTT GAAAATCTGA CATCAGCTGG 10 GCAGTCGCCC CCCTCCTCT TTCCTCCCTC TACTCTGACA CAGCACTTAG CACCTGAATC 120 TTCGTTTCTC TCCCAGGGAC CCTCCATTTT CCATATCCAG GAAAATGTGA TGCGCCACAG 180 GTATCAGCGT CTGGATCGCC ACTTCACGTT TTAGCCACAA GTGACTCAGT GGAAGATCCA 240 15 GAGTCAACAG AGGCTCGTCA GGAAGATGTC TACAGAAAAG GTAGACCAAA AGGAGGAAGC 300 TGGGGAAAAA GAGGTGTGCG GAGACCAGAT CAARGGACCG GACAAAGAGG AGGAACCACC 360 20 AGCTGCTGCA TCCCATGGCC AGGGGTGGCG TCCAGGTGGC AGAGCAGCTA GGAACGCAAG 420 GCCTGAACCT GGGGCCAGAC ACCCTGCTCT CCCGGCCATG GTCAACGACC CTCCAGTACC 480 TGCCTTACTG TGGGCCCAGG AGGTGGGCCA AGTCTTGGCA GGCCGTGCCC GCAGGCTGCT 540 25 GCTGCAGTTT GGGGTGCTCT TCTGCACCAT CCTCCTTTTG CTCTGGGTGT CTGTCTTCCT 600 CTATGGCTCC TTCTACTATT CCTATATGCC GACAGTCAGC CACCTCAGCC CTGTGCATTT 660 30 CTACTACAGG ACCGACTGTG ATTCCTCCAC CACCTCACTC TGCTCCTTCC CTGTTGCCAA 720 TGTCTCGCTG ACTAAGGGTG GACGTGATCG GGTGCTGATG TATGGACAGC CGTATCGTGT 780 TACCTTAGAG CTTGAGCTGC CAGAGTCCCC TGTGAATCAA GATTTGGGCA TGTTCTTGGT 840 35 CACCATTICC TGCTACACCA GAGGTGGCCG AATCATCTCC ACTICTICGC GTICGGTGAT 900 GCTGCATTAC CGCTCAGACC TGCTCCAGAT GCTGGACACA CTGGTCTTCT CTAGCCTCCT 960 40 GCTATTTGGC TTTGCAGAGC AGAAGCAGCT GCTGGAGGTG GAACTCTACG CAGACTATAG 1020 AGAGAACTCG TACGTGCCGA CCACTGGAGC GATCATTGAG ATCCACAGCA AGCGCATCCA 1080 GCTGTATGGA GCCTACCTCC GCATCCACGC GCACTTCACT GGGCTCAGAT ACCTGCTATA 1140 45 CAACTTCCCG ATGACCTGCG CCTTCATAGG TGTTGCCAGC AACTTCACCT TCCTCAGCGT 1200 CATCGTGCTC TTCAGCTACA TGCAGTGGGT GTGGGGGGGC ATCTGGCCCC GACACCGCTT 1260 50 CTCTTTGCAG GTTAACATCC GAAAAAGAGA CAATTCCCGG AAGGAAGTCC AACGAAGGAT 1320 CTCTGCTCAT CAGCCAGGC CTGAAGGCCA GGAGGAGTCA ACTCCGCAAT CAGATGTTAC 1380 1440 AGAGGATGGT GAGAGCCCTG AAGATCCCTC AGGGACAGAG GGTCAGCTGT CCGAGGAGGA 55

	GAAACCAGA!	r cac	SCAGO	CCC	TGAG	CGGA	GA A	3AGG/	AGCTA	GAG	CCTG	AGG	CCAG	'IGA'I	<i>3</i> G	150
	TTCAGGCTC	C TGC	GAAC	SATG	CAGC	TTIG	CT G	ACGG2	AGGCC	AAC	CTGC	CTG	CTCC	TGCT	CC	156
5	TGCTTCTGC	T TC	rgcco	CTG	TCCT	AGAG	AC TY	CTGG	GCAGO	C TCI	GAAC	CTG	CTGG	GGGTY	GC .	162
	TCTCCGACA	G CGC	CCCZ	ACCT	GCTC	TAGT	TC C	rgaa(GAAAZ	A GGG	GCAG	ACT	CCTC	ACAT	rc	168
10	CAGCACTTT	c cci	ACCTO	SACT	CCTC	TCCC	CT C	GTTT	rrcci	TCA	ATAA	ACT	ATTT	TGTG'	TC	174
	AAAAAAAA	A AA	AAA													175
	(2) INFOR	ITAM	ON F	or s	EQ I	D NO	:2:									
15	(i)	(A) (B) (C)	LEN TYP STR		462 mino DNES	ami aci S:										
20	(ii)	MOLE	CULE	TYP	E: p	rote	in									
25	(xi)	SEQU	JENCE	E DES	CRIF	TION	I: SE	Q II	NO:	2:						
30	. Met 1	Ser	Thr	Glu	Lys 5	Val	Asp	Gln	Lys	Glu 10	Glu	Ala	Gly		Lys 15	Glu
	Val	Cys	Gly	Asp 20	Gln	Ile	Lys	Gly	Pro 25	Asp	Lys	Glu	Glu	Glu 30	Pro	Pro
35	Ala	Ala	Ala 35	Ser	His	Gly	Gln	Gly 40	Trp	Arg	Pro	Gly	Gly 4 5	Arg	Ala	Ala
		50					Pro 55					60				
40	65					70	Val				75					80
45	Gly	Gln	Val		Ala 85	Gly	Arg	Ala	Arg	Arg 90	Leu	Leu	Leu	Gln	Phe 95	Gly
	Val	Leu	Phe	Cys 100	Thr	Ile	Leu	Leu	Leu 105	Leu	Trp	Val	Ser	Val 110	Phe	Leu
50	Туг	Gly	Ser 115		Tyr	Tyr	Ser	Туг 120	Met	Pro	Thr	Val	Ser 125	His	Leu	Ser
		130			_	-	Arg 135			-	_	140				
55	Tæn	Cve	Ser	Phe	Pro	Val	Δla	Δsn	Val	Ser	T.en	ጥኮሎ	LVC	Glv	Glv	Ara

	145					150					155					160
5	Asp	Arg	Val	Leu	Met 165	Tyr	Gly	Gln	Pro	Tyr 170	Arg	Val	Thr	Leu	Glu 175	Leu
3	Glu	Leu	Pro	Glu 180	Ser	Pro	Val	Asn	Gln 185	Asp	Leu	Gly	Met	Phe 190	Leu	Val
10	Thr	Ile	Ser 195	Cys	Туr	Thr	Arg	Gly 200	Gly	Arg	Ile	Ile	Ser 205	Thr	Ser	Ser
	Arg	Ser 210	Val	Met	Leu-	His	Tyr 215	Arg	Ser	Asp	Leu	Leu 220	Gln	Met	Leu	Asp
15	Thr 225	Leu	Val	Phe	Ser	Ser 230	Leu	Leu	Leu	Phe	Gly 235	Phe	Ala	Glu	Gln	Lys 240
20	Gln	Leu	Leu	Glu	Val 245	Glu	Leu	Tyr	Ala	Asp 250	Tyr	Arg	Glu	Asn	Ser 255	Tyr
	Val	Pro	Thr	Thr 260	Gly	Ala	Ile	Ile	Glu 265	Ile	His	Ser	Lys	Arg 270	Ile	Gln
25	Leu	Tyr	Gly 275	Ala	Tyr	Leu	Arg	Ile 280	His	Ala	His	Phe	Thr 285	Gly	Leu	Arg
	Tyr	Leu 290	Leu	Tyr	Asn	Phe	Pro 295	Met	Thr	Cys	Ala	Phe 300	Ile	Gly	Val	Ala
30	Ser 305	Asn	Phe	Thr	Phe	Leu 310	Ser	Val	Ile	Val	Leu 315	Phe	Ser	Tyr	Met	Gln 320
35	Trp	Val	Trp	Gly	Gly 325	Ile	Trp	Pro	Arg	His 330	Arg	Phe	Ser	Leu	Gln 335	Val
	Asn	Ile	Arg	Lys 340	Arg	Asp	Asn	Ser	Arg 345	Lys	Glu	Val	Gln	Arg 350	Arg	Ile
40	Ser	Ala	His 355	Gln	Pro	Gly	Pro	Glu 360	Gly	Gln	Glu	Glu	Ser 365		Pro	Gln
	Ser	Asp 370		Thr	Glu	Asp	Gly 375		Ser	Pro	Glu	Asp 380		Ser	Gly	Thr
45	Glu 385	_	Gln	Leu	Ser	Glu 390		Glu	Lys	Pro	Asp 395		Gln	Pro	Leu	Ser 400
50	Gly	Glu	Glu	Glu	Leu 405		Pro	Glu	Ala	Ser 410	-	Gly	Ser	Gly	Ser 415	Trp
	Glu	Asp	Ala	Ala 420		Leu	Thr	Glu	Ala 425		Leu	Pro	Ala	430		Pro
55	Ala	Ser	Ala 435		Ala	Pro	Val	Leu 440		Thr	Leu	Gly	Ser 445		Glu	Pro

Ala Gly Gly Ala Leu Arg Gln Arg Pro Thr Cys Ser Ser Ser 450 455 460

(2) INFORMATION FOR SEQ ID NO:3:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3213 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GGAATAGAGG ATTTCAAAAA GCATGCGTTT TTTGAAGGTC TAAATTGGGA AAATATACGA 60 20 AACCTAGAAG CACCTTATAT TCCTGATGTG AGCAGTCCCT CTGACACATC CAACTTCGAC 120 GTGGATGACG ACGTGCTGAG AAACACGGAA ATATTACCTC CTGGTTCTCA CACAGGCTTT 180 TCTGGATTAC ATTTGCCATT CATTGGTTTT ACATTCACAA CGGAAAGCTG TTTTTCTGAT 240 CGAGGCTCTC TGAAGAGCAT AATGCAGTCC AACACATTAA CCAAAGATGA GGATGTGCAG 300 CGGGACCTGG AGCACAGCCT GCAGATGGAA GCTTACGAGA GGAGGATTCG GAGGCTGGAA 360 30 CAGGAGAAGC TGGAGCTGAG CAGGAAGCTG CAAGAGTCCA CCCAGACCGT GCAGTCCCTC 420 CACGGCTCAT CTCGGGCCCT CAGCAATTCA AACCGAGATA AAGAAATCAA AAAGCTAAAT 480 35 GAAGAAATCG AACGCTTGAA GAATAAAATA GCAGATTCAA ACAGGCTGGA GCGACAGCTT 540 GAGGACACAG TGGCGCTTCG CCAAGAGCGT GAGGACTCCA CGCAGCGGCT GCGGGGGCTG 600 GAGAAGCAGC ACCGCGTGGT CCGGCAGGAG AAGGAGGAGC TGCACAAGCA ACTGGTTGAA 660 40 GCCTCAGAGC GGTTGAAATC CCAGGCCAAG GAACTCAAAG ATGCCCATCA GCAGCGAAAG 720 CTGGCCCTGC AGGAGTTCTC GGAGCTGAAC GAGCGCATGG CAGAGCTCCG TGCCCAGAAG 780 45 CAGAAGGTGT CCCGGCAGCT GCGAGACAAG GAGGAGGAGA TGGAGGTGGC CACGCAGAAG 840 GTGGACGCCA TGCGGCAGGA AATGCGGAGA GCTGAGAAGC TCAGGAAAGA GCTGGAAGCT 900 960 CASCITGATG ATGCTGTTGC TGAGGCCTCC AAGGAGCGCA AGCTTCGTGA GCACAGCGAG 50 AACTTCTGCA AGCAAATGGA AAGCGAGCTG GAGGCCCTCA AGGTGAAGCA AGGAGGCCGG 1020 1080 55 AAGAAGTCT TATTTTATGA AGAGGAATTG GTCAGACGTG AGGCCTCCCA TGTGCTAGAA 1140

	GIGAAAAAIG	TGAAGAAGGA	GGTGCATGAT	TCAGAAAGCC	ACCAGCIGGC	CCTGCAGAAA	1200
	GAAATCTTGA	TGTTAAAAGA	TAAGTTAGAA	AAGTCAAAGC	GAGAACGGCA	TAACGAGATG	1260
5	GAGGAGGÇAG	TAGGTACAAT	AAAAGATAAA	TACGAACGAG	AAAGAGCGAT	GCTGTTTGAT	1320
	GAAAACAAGA	AGCTAACTGC	TGAAAATGAA	AAGCTCTGTT	CCTTTGTGGA	ТАААСТСАСА	1380
LO	GCTCAAAATA	GACAGCTGGA	GGATGAGCTG	CAGGATCTGG	CAGCCAAGAA	GGAGTCAGTG	1440
LU	GCCCACTGGG	AAGCTCAGAT	TGCGGAAATC	ATTCAGTGGG	TCAGTGACGA	GAAAGATGCC	1500
	CGGGGTTACC	TTCAAGCTCT	TGCTTCCAAG	ATGACCGAAG	AGCTCGAGGC	TTTGAGGAGT	1560
L5	TCTAGTCTGG	GGTCAAGAAC	ACTGGACCCG	CTGTGGAAGG	TGCGCCGCAG	CCAGAAGCTG	1620
	GACATGTCCG	CGCGGCTGGA	GCTGCAGTCG	GCCCTGGAGG	CGGAGATCCG	GGCCAAGCAG	1680
20	CTTGTCCAGG	AGGAGCTCAG	GAAGGTCAAG	GACGCCAACC	TCACCTTGGA	AAGCAAACYA	1740
20	AWGGATTCCG	AAGCCAAAAA	CAGAGAATTA	TTAGAAGAAA	TGGAAATTTT	GAAGAAAAAG	1800
	ATGGAAGAAA	AATTCAGAGC	AGATACTGGG	CTCAAACTTC	CAGATTTTCA	GGATTCCATT	1860
25	TTTGAGTATT	TCAACACTGC	TCCTCTTGCA	CATGACCTGA	CATTTAGAAC	CAGCTCAGCT	1920
	AGTGAGCAAG	AAACACAAGC	TCCGAAGCCA	GAAGCGTCCC	CGTCGATGTC	TGTGGCTGCA	1980
30	TCAGAGCAGC	AGGAGGACAT	GGCTCGGCCC	CCGCAGAGGC	CATCCGCTGT	GCCGTTGCCC	2040
,	ACCACGCAGG	CCCTGGCTCT	GGCTGGACCG	AAGCCAAAAG	CTCACCAGTT	CAGCATCAAG	2100
	TCCTTCTCCA	GCCCTACTCA	GTGCAGCCAC	TGCACCTCCC	TGATGGTTGG	GCTGATCCGG	2160
35	CAGGGCTACG	CCTGCGAGGT	GTGTTCCTTI	GCTTGCCACG	TGTCCTGCAA	AGACGGTGCC	2220
	CCCCAGGTGT	GCCCAATACC	TCCCGAGCAG	TCCAAGAGGC	CTCTGGGCGT	GGACGTGCAG	2280
40	CGAGGCATCG	GAACAGCCTA	CAAAGGCCAT	GTCAAGGTCC	CAAAGCCCAC	GGGGGTGAAG	2340
40	AAGGGATGGC	: AGCGCGCATA	TGCAGTCGTC	TGTGACTGCA	AGCTCTTCCT	GTATGATCTG	2400
	CCTGAAGGAA	AATCCACCCA	GCCTGGTGTC	ATTGCGAGCC	AAGTCTTGGA	TCTCAGAGAT	2460
45	GACGAGTTTI	CCGTGAGCTC	AGTCCTGGCC	TCAGATGTCA	TTCATGCTAC	ACGCCGAGAT	2520
	ATTCCATGTA	A TATTCAGGGT	GACGGCCTCT	CTCTTAGGTC	CACCTTCTAA	GACCAGCTCG	2580
50	CTGCTCATTC	TGACAGAAA	TGAGAATGA	A AAGAGGAAGT	r gggttgggat	T TCTAGAAGGA	2640
JU	CTCCAGTCC	A TCCTTCATA	AAACCGGCT	G AGGAATCAGO	TCGTGCATG	TCCCTTGGAA	2700
	GCCTACGACA	A GCTCGCTGCC	TCTCATCAA	GCCATCCTG/	A CAGCTGCCAT	r CGTGGATGCA	2760
55	GACAGGATT	CAGTCGGCC	r agaagaagg	G CTCTATGTC	A TAGAGGTCA	CCGAGATGTG	2820

2880

ATCGTCCGTG CCGCTGACTG TAAGAAGGTA CACCAGATCG AGCTTGCTCC CAGGGAGAAG

	ATCGTAATC	C TCC	TCTC	GTGG	CCGG	AACC	AC C	ATGT	GCAC	TC1	'ATC	GTG	GTCG	TCCC	TT	2940
5	GATGGAGCG	G AAG	GCAC	SCTT	TGAC	ATCA	AG C	TTCC	GAA	A CC	AAGG	CTG	CCAG	CTCA	TG	3000
	GCCACGGCC	A CAC	TCA	AGAG	GARC	TCTG	GC A	CCTG	CTG'	r TTC	TGGC	CGT	GAAA	CGGC	TG	3060
L O	ATCCTTTGC	T ATC	GAGAT	rcca	GAAA	ATAA	AG C	CATA'	PTGA.	A TGZ	AAATA	AAA	AAAA	AAAA	AA.	3120
LU	аааааааа	A AAA	LAAA	AAAA	AAAA	AAAA	AA A	AAAA	AAAA	A AA	LAAA	AAA	AAAA	AAAA	AA	3180
	ААААААА А	A AA	AAAA	AAAA	AAA	AAA A	AAA A	AA								3213
15	(2) INFOR	MATI	on f	OR S	EQ I	D NO	:4:									
20	(i)	(B) (C)	LEN TYP STR	GTH: PE: a RANDE	945 mino DNES	ami aci	no a d									
25	(ii)	MOLE	CULE	TYF	E: p	rote	in									
	(xi)	SEQU	ENCE	E DES	CRIP	MOIT	I: SE	Q II	NO:	4:						
30	Met 1	Gln	Ser	Asn	Thr 5	Leu	Thr	Lys	Asp	Glu 10	Asp	Val	Gln	Arg	Asp 15	Leu
35	Glu	His	Ser	Leu 20	Gln	Met	Glu	Ala	Tyr 25	Glu	Arg	Arg	Ile	Arg 30	Arg	Leu
33	Glu	Gln	Glu 35	Lys	Leu	Glu	Leu	Ser 40	Arg	Lys	Leu	Gln	Glu 45	Ser	Thr	Gln
40	Thr	Val 50	Gln	Ser	Leu	His	Gly 55	Ser	Ser	Arg	Ala	Leu 60	Ser	Asn	Ser	Asn
	Arg 65	Asp	Lys	Glu	Ile	Lys 70	Lys	Leu	Asn	Glu	Glu 75	Ile	Glu	Arg	Leu	Lys 80
45	Asn	Lys	Ile	Ala	Asp 85	Ser	Asn	Arg	Leu	Glu 90	Arg	Gln	Leu	Glu	Asp 95	Thr
	Val	Ala	Leu	Arg 100	Gln	Glu	Arg	Glu	Asp 105	Ser	Thr	Gln	Arg	Leu 110	Arg	Gly
50	Leu	Glu	Lys 115	Gln	His	Arg	Val	Val 120	Arg	Gln	Glu	Lys	Glu 125	Glu	Leu	His
55	Lys	Gln 130	Leu	Val	Glu	Ala	Ser 135	Glu	Arg	Leu	Lys	Ser 140		Ala	Lys	Glu

	Leu 145	Lys	Asp	Ala	His	Gln 150	Gln	Arg	Lys	Leu	Ala 155	Leu	Gln	Glu	Phe	Ser 160
5	Glu	Leu	Asn	Glu	Arg 165	Met	Ala	Glu	Leu	Arg 170	Ala	Gln	Lys	Gln	Lys 175	Val
	Ser	Arg	Gln	Leu 180	Arg	Asp	Lys	Glu	Glu 185	Glu	Met	Glu	Val	Ala 190	Thr	Gln
10	Lys	Val	Asp 195	Ala	Met	Arg	Gln	Glu 200	Met	Arg	Arg	Ala	Glu 205	Lys	Leu	Arg
15	Lys	Glu 210	Leu	Glu	Ala	Gln	Leu 215	Asp	Asp	Ala	Val	Ala 220	Glu	Ala	Ser	Lys
	Glu 225	Arg	Lys	Leu	Arg	Glu 230	His	Ser	Glu	Asn	Phe 235	Cys	Lys	Gln	Met	Glu 240
20	Ser	Glu	Leu	Glu	Ala 245	Leu	Lys	Val	Lys	Gln 250	Gly	Gly	Arg	Gly	Ala 255	Gly
	Ala	Thr	Leu	Glu 260	His	Gln	Gln	Glu	Ile 265	Ser	Lys	Ile	Lys	Ser 270	Glu	Leu
25	Glu	Lys	Lys 275	Val	Leu	Phe	Tyr	Glu 280	Glu	Glu	Leu	Val	Arg 285	Arg	Glu	Ala
30	Ser	His 290		Leu	Glu	Val	Lys 295	Asn	Val	Lys	Lys	Glu 300		His	Asp	Ser
	Glu 305	Ser	His	Gln	Leu	Ala 310	Leu	Gln	Lys	Glu	Ile 315	Leu	Met	Leu	Lys	Asp 320
35	Lys	Leu	Glu	Lys	Ser 325	_	Arg	Glu	Arg	His 330		Glu	Met	Glu	Glu 335	
	Val	Gly	Thr	Ile 340	Lys	Asp	Lys	Tyr	Glu 345	_	Glu	Arg	Ala	Met 350		Phe
40	Asp	Glu	Asn 355	_	Lys	Leu	Thr	Ala 360		Asn	Glu	Lys	365	_	Ser	Phe
45	Val	Asp 370	_	Leu	Thr	Ala	Gln 375		Arg	Gln	Leu	Glu 380	_	Glu	Leu	Gln
	Asp 385		Ala	Ala	Lys	390		Ser	· Val	. Ala	His 395	_	Glu	Ala	Gln	1le 400
50	Ala	Glu	Ile	lle	Gln 405		Val	. Ser	: Asp	410		Asr	Ala	Arg	Gly 415	Tyr
	Leu	Gln	Ala	Leu 420		Ser	Lys	Met	Thr 425		Glu	Let	ı Glu	Ala 430		Arg
55	Ser	Ser	Ser	Leu	Gly	, Ser	Arg	J Thi	Let	ı Ası	Pro	Let	ı Trş	Lys	: Val	. Arg

			435					440					445			
5	Arg	Ser 450	Gln	Lys	Leu	Asp	Met 455	Ser	Ala	Arg	Leu	Glu 460	Leu	Gln	Ser	Ala
,	Leu 465	Glu	Ala	Glu	Ile	Arg 470	Ala	Lys	Gln	Leu	Val 475	Gln	Glu	Glu	Leu	Arg 480
10	Lys	Val	Lys	Ąsp	Ala 485	Asn	Leu	Thr	Leu	Glu 4 90	Ser	Lys	Xaa	Xaa	Asp 495	Ser
	Glu	Ala	Lys	Asn 500	Arg	Glu	Leu	Leu	Glu 505	Glu	Met	Glu	Ile	Leu 510	Lys	Lys
15	Lys	Met	Glu 515	Glu	Lys	Phe	Arg	Ala 520	Asp	Thr	Gly	Leu	Lys 525	Leu	Pro	Asp
20	Phe	Gln 530	Asp	Ser	Ile	Phe	Glu 535	Tyr	Phe	Asn	Thr	Ala 540	Pro	Leu	Ala	His
20	Asp 545	Leu	Thr	Phe	Arg	Thr 550	Ser	Ser	Ala	Ser	Glu 555	Gln	Glu	Thr	Gl'n	Ala 560
25	Pro	Lys	Pro	Glu	Ala 565	Ser	Pro	Ser	Met	Ser 570	Val	Ala	Ala	Ser	Glu 575	Gln
	Gln	Glu	Asp	Met 580	Ala	Arg	Pro	Pro	Gln 585	Arg	Pro	Ser	Ala	Val 590	Pro	Leu
30	Pro	Thr	Thr 595		Ala	Leu	Ala	Leu 600		Gly	Pro	Lys	Pro 605	Lys	Ala	His
35	Gln	Phe 610		Ile	Lys	Ser	Phe 615	Ser	Ser	Pro	Thr	Gln 620	_	Ser	His	Суѕ
33	Thr 625	Ser	Leu	Met	Val	Gly 630		Ile	Arg	Gln	Gly 635		Ala	Cys	Glu	Val 640
40	Cys	Ser	Phe	Ala	Cys 645		Val	Ser	Суѕ	Lys 650		Gly	Ala	Pro	Gln 655	
	Суз	Pro	Ile	Pro 660		Glu	Gln	Ser	Lys 665		Pro	Leu	Gly	Val 670		Val
45	Glr	Arg	Gly 675		Gly	Thr	Ala	Tyr 680		Gly	His	. Val	Lys 685		Pro	Lys
50	Pro	690	_	Val	. Lys	Lys	Gly 695	-	Gln	Arg	Ala	700		Val	Val	Cys
J0	As ₁	Cys	s Lys	: Leu	Phe	Let 710		Asp	Lev	Pro	Glu 715		, Lys	Ser	Thr	Gln 720
55	Pro	o Gly	y Val	l Ile	Ala 725		Glr.	ı Val	Leu	Asp 730		ı Arg	g Asp) Asp	Glu 735	

		Ser	Val	Ser	Ser 740	Val	Leu	Ala	Ser	Asp 745	Val	Ile	His	Ala	Thr 750	Arg	Arg
5		Asp	Ile	Pro 755	Cys	Ile	Phe	Arg	Val 760	Thr	Ala	Ser	Leu	Leu 765	Gly	Ala	Pro
		Ser	Lys 770	Thr	Ser	Ser	Leu	Leu 775	Ile	Leu	Thr	Glu	Asn 780	Glu	Asn	Glu	Lys
10		Arg 785	Lys	Trp	Val	Gly	Ile 790	Leu	Glu	Gly	Leu	Gln 795	Ser	Ile	Leu	His	Lys 800
1 5		Asn	Arg	Leu	Arg _.	Asn 805	Gln	Val	Val	His	Val 810	Pro	Leu	Glu	Ala	Tyr 815	Asp
15		Ser	Ser	Leu	Pro 820	Leu	Ile	Lys	Ala	Ile 825	Leu	Thr	Ala	Ala	Ile 830	Val	Asp
20		Ala	Asp	Arg 835	Ile	Ala	Val	Gly	Leu 840		Glu	Gly	Leu	Tyr 845	Val	Ile	Glu
		Val	Thr 850	Arg	Asp	Val	Ile	Val 855	Arg	Ala	Ala	Asp	Cys 860	Lys	Lys	Val	His
25		Gln 865		Glu	Leu	Ala	Pro 870	Arg	Glu	Lys	Ile	Val 875	Ile	Leu	Leu	Cys	Gly 880
2.0		Arg	Asn	His	His	Val 885	His	Leu	Tyr	Pro	Trp 890		Ser	Leu	Asp	Gly 895	Ala
30		Glu	Gly	Ser	Phe 900	Asp	Ile	Lys	Leu	Pro 905		Thr	Lys	Gly	Cys 910	Gln	Leu
35		Met	Ala	Thr 915		Thr	Leu	Lys	Arg 920		Ser	Gly	Thr	Cys 925		Phe	Val
		Ala	Val 930		Arg	Leu	Ile	Leu 935		Тут	Glu	Ile	Gln 940	Lys	Ile	Lys	Pro
40		Туг 945															
	(2)	INFO	RMAT	ON	FOR	SEQ	ID N	0:5:									
45		(i)	(A (B) LE () TY () SI	E CH INGTH PE: RAND	: 13 nucl	15 b eic SS:	ase acid doub	pair l	's							
50		(ji)	•	•	POLO E TY												

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

	GAGGGCACTT	AATCCCAATG	AACTGTATGC	ттааааатаа	TTTAAATGAT	AAACTTTGTG	60
5	TTATGTATAC	TTTACCACAA	TAAGAAAAAG	TATTTTAGTA	CTAGTGGTAA	ATAGTTTTTA	120
	TTTAATAGAC	TTATATTTTA	AAGCTTAAAA	ATAATTTAGC	TTCTAGAGTA	TTACGTTTTT	180
10	CTTCATGGGA	ACTTCAAAAA	GCAAGTCACT	AAATCCAAGA	ATTTTAAAGA	AÄAAACCCAA	240
10	ATACATGATT	TATGCTGCAT	CTGGTATAGA	TTTTTAAAAG	ACTAGTCAAT	CTAAGCTCTA	300
	AACTATTAAA	TGACAAACCA	TTTCATATGT	CATTGCATAT	TCCTATGTAC	CACATTCTCA	360
15	TATTTCTGTT	ATGGGCATGA	AGGGGTGTTT	GATGCTTCCA	TGCCATAATA	ACCATGACTA	420
	TCACAACCAT	TGAAATAAAG	GTTCTTGCAG	TATTTTCAGG	ATGGTCCCAG	TAAATTTAAA	480
20	TAATCTCTCA	TCCATTGGCT	TTTGCTACTT	TAGGTTAATA	TTAAAATATA	ACATACATTT	540
20	TTGGGGTTTA	TGCTGTTAGC	TCCAAACCAA	AAGATTTTGG	AAATTTATTT	TGGAAATTTT	600
	GTGTTTAGAA	TATGAATAAA	TCTGCTTATT	CAGAAAAATT	AAACCTTGAT	AACTTGGGAC	660
25	CTCCTATTCC	TGTATGTTCT	CTGACATACA	TTGAGGGATT	TGGCTCTCTT	TTGTTTATTT	720
	GTTTTACTAG	TCAGACATTC	CTTTGGCTGC	CCATACTTAA	TTCTGTTGGG	TGTTTCCGCC	780
30	CCCGCCCTCA	GCTTCTGCAG	CTACTCTGAT	CAACATCCGC	AATGCCAGGA	AACACTTTGA	840
	AAAGCTGGAA	AGAGTGGATG	GACCAAAGCA	GTGTCTTCTC	ATGCGCTAAA	CATTGATGAA	900
	TATTGTTTCA	CACAAAAATT	AAAAGTTTCC	TAATTAATGT	TGTATTCATA	TATGTAGGCT	960
35	CTGAAATGTT	GTGATGCTTA	TTGCTTCTGT	ATTTCTTCTC	TACTCCCTAG	TCTTAATGTT	1020
	TAACCTTGAA	TGCTATTAAC	TTAAATAGCC	ATTGAGGAGT	TAGAAGATGA	ATTGTTCATG	1080
40	AAGTCGGTGT	TACATAAAAG	TAGGTGATAT	GTAAGTTTTC	TGATAACAAG	GTTCTAATAG	1140
	TGTTTAAATG	TACTGGTAAC	CTGGTTCCAA	TAGTTGTGTT	TGCCCAAGCC	TTTCTCGGCA	1200
	TCATCTTGTA	TTCCTTATCA	GATAGTAAGT	AACCTGTAAG	TTTGGAGTAT	TACTGTTTTC	1260
45	TCAGCATGCA	ТТАААААТАТ	TCCTTAACTT	CAATTGTAAA	AAAAAAAAA	AAAAA	1315

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 65 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear
- 55 (ii) MOLECULE TYPE: protein

50

5	(XI)	SEQU	JENCI	s DES	SCKII	.I.TOI	N: 51	SQ II) NO:	:0:							
5	Met 1	Asn	Lys	Ser	Ala 5	Tyr	Ser	Glu	Lys	Leu 10	Asn	Leu	Asp	Asn	Leu 15	Gly	
10	Pro	Pro	Ile	Pro 20	Val	Cys	Ser	Leu	Thr 25	Tyr	Ile	Glu	Gly	Phe 30	Gly	Ser	
	Leu	Leu	Phe 35	Ile	Суѕ	Phe	Thr	Ser 40	Gln	Thr	Phe	Leu	Trp 45	Leu	Pro	Ile	
15	Leu	Asn 50	Ser	Val	Gly	Cys	Phe 55	Arg	Pro	Arg	Pro	Gln 60	Leu	Leu	Gln	Leu	
20	Leu 65																
	(2) INFO	RMAT:	ION :	FOR :	SEQ :	ID N	0:7:										
25	(i)	(B (C) LE) TY) ST	NGTH PE:	: 51 nucle EDNE	9 ba eic SS:	se pa acid doub	airs									
30	(ii)	MOL	ECUL	Е ТҮ		cd na						-					
35	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:7:							
	TAGGCCAT	GA A	GGCC	GAAT	C GGC	CTTC	CATG	GCCI	ACGC	TT A	CACA	ATAC	C CA	CCAT	GTCC		60
••	CAGGCTGG																120
40	CTGAAGGG	GG C	CCGA	GGAA.	A CCI	GACC	AAG	AACC	AGGA	AA T	CAAG'	ICCA/	A GAC	CTAC	CAG		180
	GTCATGCG	AG A	GTGT	GAGC/	A AGO	TGGC	TCG	GCCG	CCCC	GT C	GGTG	TTCA	s ccc	CACC	:CGC	:	240
A ==	ACAGGTAC	CG A	GACT	GTCT	r TGA	GAAC	SCCC	AAAG	CCGG	AC C	CACC	AAGA	G TGT	CTT	GGC	:	300
45	TGAGAAGT	GT G	CGCC	ACTC	c cci	TGCI	rgcc	CGAA	TGCT	CG G	AAAC.	AGGA	G CC	PTACO	CAG	:	360
	GAACTCTT	TT T	TATG	CCAG	A ACC	CTTC	CCTC	TCCC	CTGC	TG T	CTCT	GGGG	C TGC	CCACC	CTC		420
50	CCCCACAG	TC C	AGGC	CCTT	C AGO	CAAC	GGC	TCTG	CACC	AG C	ACCT	TGGA	A GC	ACCAZ	ATAA		480
	AGAGGATG	cc c	ACGT	GGCC	C CA	GCAA	AAAA	AAA	AAAA	AA						•	519
55	(2) INFO	RMAT	TION	FOR	SEQ	ID N	10:8:	:									

WO 98/55614 PCT/US98/11210 .

5	(i)	(B) (C)	LEN TYI STE	IGTH: PE: & RANDE	98 mino EDNES	amir aci	no ac id										
	(ii)	MOLE	ECULI	E TYI	PE: p	rote	ein										
10																	
	(xi)	SEQU	JENCI	E DES	CRI	OITS	N: SI	EQ II	ONO:	8:							
15	Met 1	Lys	Ala	Glu	Ser 5	Ala	Phe	Met	Ala	Туг 10	Ala	Tyr	Thr	Ile	Pro 15	Thr	
	Met	Ser	Gln	Ala 20	Gly	Ala	Gln	Glu	Ala 25	Pro	Ile	Lys	Lys	Lys 30	Arg	Pro	
20	Pro	Val	Lys 35	Glu	Glu	Asp	Leu	Lys 40	Gly	Ala	Arg	Gly	Asn 45	Leu	Thr	Lys	
25	Asn	Gln 50	Glu	Ile	Lys	Ser	Lys 55	Thr	Tyr	Gln	Val	Met 60	Arg	Glu	Суз	Glu	
	Gln 65	Ala	Gly	Ser	Äla	Ala 70	Pro	Ser	Val	Phe	Ser 75	Arg	Thr	Arg	Thr	Gly 80	
30	Thr	Glu	Thr	Val	Phe 85	Glu	Lys	Pro	Lys	Ala 90	Gly	Pro	Thr	Lys	Ser 95	Val	
	Phe	Gly															
35	(2) INFO	RMAT:	ION	FOR	SEQ	ID N	0:9:										
40	(i)	(B (C) LE) TY) ST	NGTH PE: RAND	: 27 nucl EDNE	TERI 88 b eic SS: line	ase acid doub	pair	S								
	(ii)	MOL	ECUL	E TY	PE:	cDNA	,										
45																	
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:9:							
50	GACGGCGA	CC A	AACC	CAGC'	r ago	STCAC	GACG	AGAA	AGAT	'AA A	AACT	CTCC	A GA	TGTC	PTCC		60
	AGTAATGT	CG A	AGTT	PTTA!	r ccc	AGTG	STCA	CAAG	GAAA	CA C	CAATY	GGCT.	r ccc	CCCC	ACA	1	L20
55	GCTTCCAA	TG A	CCTG	AAGG	C ATT	TACI	'GAA	GGAG	CTGT	GT T	AAGT"	rttc	A TAA	CATO	TGC	1	180

WO 98/55614 PCT/US98/11210 .

	INICONGIAN AN	CIGAAGAG	IGGCIIICIA	CCIIGICGAA	AACCAGTIGA	GAAAGAAAIA	240
	TTATCGAATA TC	AATGGGAT	CATGAAACCT	GGTCTCAACG	CCATCCTGGG	ACCCACAGGT	300
5	GGARGCAAAT CT	TCGTTATT .	AGATGTCTTA	GCTGCAAGGA	AAGATCCAAG	TGGATTATCT	360
	GGAGATGTTC TG	ATAAATGG .	AGCACCGCGA	CCTGCCAATT	TCAAATGTAA	TTCAGGTTAC	420
10	GTGGTACAAG TT	GGAACTCA	GTTTATCCGT	GGTGTGTCTG	GAGGAGAAAG	AAAAAGGACT	480
10	AGTATAGGAA TG	GAGCTTAT	CACTGATCCT	TCCATCTTGT	TCTTGGATGA	GCCTACAACT	540
	GGCTTAGACT CA	AGCACAGC	AAATGCTGTC	CTTTTGCTCC	TGAAAAGGAT	GTCTAAGCAG	600
15	GGACGAACAA TO	CATCTTCTC	CATTCATCAG	CCTCGATATT	CCATCTTCAA	GTTGTTTGAT	660
	AGCCTCACCT TA	ATTGGCCTC	AGGAAGACTT	ATGTTCCACG	GGCCTGCTCA	GGAGGCCTTG	720
20	GGATACTITG AA	ATCAGCTGG	TTATCACTGT	GAGGCCTATA	ATAACCCTGC	AGACTTCTTC	780
20	TTGGACATCA TT	TAATGGAGA	TTCCACTGCT	GTGGCATTAA	ACAGAGAAGA	AGACTTTAAA	840
	GCCACAGAGA TO	CATAGAGCC	TTCCAAGCAG	GATAAGCCAC	TCATAGAAAA	ATTAGCGGAG	900
25	ATTTATGTCA AC	CTCCTCCTT	CTACAAAGAG	ACAAAAGCTG	AATTACATCA	ACTTTCCGGG	960
	GGTGAGAAGA AG	GAAGAAGAT	CACAGTCTTC	AAGGAGATCA	GCTACACCAC	CTCCTTCTGT	1020
30	CATCAACTCA GA	ATGGGTTTC	CAAGCGTTCA	TTCAAAAACT	TGCTGGGTAA	TCCCCAGGCC	1080
	TCTATAGCTC AC	GATCATTGT	CACAGTCGTA	CTGGGACTGG	TTATAGGTGC	CATTTACTTT	1140
	GGGCTAAAAA AT	IGATTCTAC	TGGAATCCAG	AACAGAGCTG	GGGTTCTCTT	CTTCCTGACG	1200
35	ACCAACCAGT G	TTTCAGCAG	TGTTTCAGCC	GTGGAACTCT	TTGTGGTAGA	GAAGAAGCTC	1260
	TTCATACATG A	ATACATCAG	CGGATACTAC	AGAGTGTCAT	CTTATTTCCT	TGGAAAACTG	1320
40	TTATCTGATT T	ATTACCCAT	GAGGATGTTA	CCAAGTATTA	TATTTACCTO	TATAGTGTAC	1380
	TTCATGTTAG G	ATTGAAGCC	AAAGGCAGAT	GCCTTCTTCG	TTATGATGTT	TACCCTTATG	1440
	ATGGTGGCTT A	TTCAGCCAG	TTCCATGGCA	CTGGCCATAG	CAGCAGGTCA	GAGTGTGGTT	1500
45	TCTGTAGCAA C	ACTTCTCAT	GACCATCTGT	TTTGTGTTTA	TGATGATTT	TTCAGGTCTG	1560
	TTGGTCAATC TO	CACAACCAT	TGCATCTTGG	CTGTCATGGC	TTCAGTACT	CAGCATTCCA	1620
50	CGATATGGAT T	TACGGCTTT	GCAGCATAAT	GAATTTTTGG	GACAAAACTT	CTGCCCAGGA	1680
20	CTCAATGCAA C	AGGAAACAA	TCCTTGTAAC	TATGCAACAT	GTACTGGCG/	A AGAATATTTG	1740
	GTAAAGCAGG G	CATCGATCT	CTCACCCTGG	GGCTTGTGG/	AGAATCACG	r ggccttggct	1800
55	TGTATGATTG T	TATTTTCCT	CACAATTGCC	TACCTGAAAT	TGTTATTTC	ТАТАААААТ Т	1860

1920

TCTTAAATTT CCCCTTAATT CAGTATGATT TATCCTCACA TAAAAAAGAA GCACTTTGAT

	TGAAGTATTC AATCAAGTTT TTTTGGTTGT TTTCTGTTCC CTTGCCATCA CACTGTTGCA	1980
5	CAGCAGCAAT TGTTTTAAAG AGATACATTT TTAGAAATCA CAACAAACTG AATTAAACAT	2040
	GAAAGAACCC AAGACATCAT GTATCGCATA TTAGTTAATC TCCTCAGACA GTAACCATGG	2100
10	GGAAGAAATC TGGTCTAATT TATTAATCTA AAAAAGGAGA ATTGAATTCT GGAAACTCCT	2160
10	GACAAGTTAT TACTGTCTCT GGCATTTGTT TCCTCATCTT TAAAATGAAT AGGTAGGTTA	2220
	GTAGCCCTTC AGTCTTAATA CTTTATGATG CTATGGTTTG CCATTATTTA ATAAATGACA	2280
15	AATGTATTAA TGCTAAAAAA AAAAAAAAA AGCGGCCTTC ATGGCCTAGA GATTTCAACT	2340
	TAACTTGACC GCTCTGAGCT AAACCTAGCC CCAAACCCAC TCCACCTTAT TACCAGACAA	2400
20	CCTTAACCAA ACCATTTACC CAAATAAAGT ATAGGCGATA GAAATTGAAA CCTGGCGCAA	2460
	TAGATATAGT ACCGCAAGGG AAAGATGAAA AATTATAACC AAGCATAATA TAGCAAGGAC	2520
	TAACCCCTAT ACCTTCTGCA TAATGAATTA ACTAGAAATA ACTTTGCAAG GAGAGCCAAA	2580
25	GCTAAGACCC CCGAAACCAG ACGAGCTACC TAAGAACAGC TAAAAAGAGCA CACCCGTCTA	2640
	TGTAGCAAAA TAGTGGGAAG ATTTATAGGT AGAGGCGACA AACCTACCGA GCCTGGTGAT	2700
30	AGCTGGTTGT CCCAGAAAAA AAAAAAAAAA AAAAAAAAA AAAAAAAA	2760
	AAAAAAAA AAAAAAAAA	2788
	(2) INFORMATION FOR SEQ ID NO:10:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 604 amino acids	
	(B) TYPE: amino acid (C) STRANDEDNESS:	
40	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	Met Ser Ser Ser Asn Val Glu Val Phe Ile Pro Val Ser Gln Gly A	sn
50	1 5 10 15	·
	Thr Asn Gly Phe Pro Ala Thr Ala Ser Asn Asp Leu Lys Ala Phe T 20 25 30	hr
	Glu Gly Ala Val Leu Ser Phe His Asn Ile Cys Tyr Arg Val Lys L	eu
55	35 40 45	

WO 98/55614 PCT/US98/11210 .

	Lys	Ser 50	Gly	Phe	Leu	Pro	Cys 55	Arg	Lys	Pro	Val	Glu 60	Lys	Glu	Ile	Leu
5	Ser 65	Asn	Ile	Asn	Gly	Ile 70	Met	Lys	Pro	Gly	Leu 75	Asn	Ala	Ile	Leu	Gly 80
	Pro	Thr	Gly	Gly	Xaa 85	Lys	Ser	Ser	Leu	Leu 90	Asp	Val	Leu	Ala	Ala 95	Arg
10	Lys	Asp	Pro	Ser 100	Gly	Leu	Ser	Gly	Asp 105	Val	Leu	Ile	Asn	Gly 110	Ala	Pro
15	Arg	Pro	Ala 115	Asn	Phe	Lys	Cys	Asn 120	Ser	Gly	Туг	Val	Val 125	Gln	Val	Gly
13	Thr	Gln 130	Phe	Ile	Arg	Gly	Val 135	Ser	Gly	Gly	Glu	Arg 140	Lys	Arg	Thr	Ser
20	Ile 145	Gly	Met	Glu	Leu	Ile 150	Thr	Asp	Pro	Ser	Ile 155	Leu	Phe	Leu	Asp	Glu 160
	Pro	Thr	Thr	Gly	Leu 165	Asp	Ser	Ser	Thr	Ala 170	Asn	Ala	Val	Leu	Leu 175	Leu
25	Leu	Lys	Arg	Met 180	Ser	Lys	Gln	Gly	Arg 185	Thr	Ile	Ile	Phe	Ser 190	Ile	His
30	Gln	Pro	Arg 195	Tyr	Ser	Ile	Phe	Lys 200	Leu	Phe	Asp	Ser	Leu 205	Thr	Leu	Leu
	Ala	Ser 210		Arg	Leu	Met	Phe 215	His	Gly	Pro	Ala	Gln 220		Ala	Leu	Gly
35	Tyr 225	Phe	Glu	Ser	Ala	Gly 230		His	Cys	Glu	Ala 235		Asn	Asn	Pro	Ala 240
•	Asp	Phe	Phe	Leu	Asp 245		Ile	Asn	Gly	Asp 250		Thr	Ala	. Val	Ala 255	Leu
40	Asn	Arg	Glu	Glu 260		Phe	Lys	Ala	Thr 265		Ile	Ile	: Glu	270		Lys
45	Gln	Asp	Lys 275		Leu	Ile	Glu	Lys 280		ı Ala	Glu	Ile	285		Asn	Ser
	Ser	Phe 290		Lys	Glu	Thr	Lys 295		Glu	ı Lev	His	300		Ser	Gly	Gly
50	Glu 305		Lys	. Lys	Lys	310		· Val	l Phe	e Lys	315		e Sei	туг	Thr	Thr 320
	Ser	Phe	e Cys	His	325		Arg	Tr	Va:	330		arç	g [†] Sei	r Phe	335	s Asn
55	Leu	Let	ı Gly	, Asr	Pro	Glr	n Ala	a Sei	r Ile	e Ala	a Glr	ı İle	e Ile	e Val	l Thi	. Val

					340					345					350		
5		Val	Leu	Gly 355	Leu	Val	Ile	Gly	Ala 360	Ile	Tyr	Phe	Gly	Leu 365	Lys	Asn	Asp
3		Ser	Thr 370	Gly	Ile	Gln	Asn	Arg 375	Ala	Gly	Val	Leu	Phe 380	Phe	Leu	Thr	Thr
10		Asn 385	Gln	Cys	Phe	Ser	Ser 390	Val	Ser	Ala	Val	Glu 395	Leu	Phe	Val	Val	Glu 40 0
		Lys	Lys	Leu	Phe	Ile 405	His	Glu	Tyr	Ile	Ser 410	Gly	Tyr	Tyr	Arg	Val 415	Ser
15		Ser	Tyr	Phe	Leu 420	Gly	Lys	Leu	Leu	Ser 425	Asp	Leu	Leu	Pro	Met 430	Arg	Met
20		Leu	Pro	Ser 435	Ile	Ile	Phe	Thr	Cys 440	Ile	Val	Туг	Phe	Met 445	Leu	Gly	Leu
20		Lys	Pro 450	Lys	Ala	Asp	Ala	Phe. 455	. Phe	Val	Met	Met	Phe 460	Thr	Leu	Met	Met
25		Val 465	Ala	Tyr	Ser	Ala	Ser 470	Ser	Met	Ala	Leu	Ala 475		Ala	Ala	Gly	Gln 480
		Ser	Val	Val	Ser	Val 485	Ala	Thr	Leu	Leu	Met 490	Thr	Ile	Cys	Phe	Val 495	Phe
30		Met	Met	Ile	Phe 500	Ser	Gly	Leu	Leu	Val 505	Asn	Leu	Thr	Thr	Ile 510	Ala	Ser
35		Trp	Leu	Ser 515	Trp	Leu	Gln	Tyr	Phe 520		Ile	Pro	Arg	Туr 525	_	Phe	Thr
33		Ala	Leu 530		His	Asn	Glu	Phe 535		Gly	Gln	Asn	Phe 540		Pro	Gly	Leu
40		Asn 545		Thr	Gly	Asn	Asn 550		Cys	Asn	Tyr	Ala 555		Суз	Thr	Gly	Glu 560
		Glu	Tyr	Leu	Val	Lys 565	Gln	Gly	Ile	Asp	Leu 570		Pro	Trp	Gly	Leu 575	
45		Lys	Asn	His	Val 580		Leu	Ala	Cys	Met 585		• Val	. Ile	Phe	Leu 590		Ile
50		Ala	Туг	Leu 595		Leu	Leu	Phe	Leu 600		Lys	Туг	Ser				
30	(2)	INFO	RMAT	CION	FOR	SEQ	ID N	10:11	.:								
55		(i)	(2	A) LE	ngth	I: 29	TERI 30 h eic	ase	pair	s							

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: 10 60 CGACTTCCTC GGCTGCGCGG CGCTCGCGCG GAGCTCCCCG GCCGGCGGTG CGTCCCCACG GTCACCATGA AAGACGACTT CGCAGAGGAG GAGGAGGTGC AATCCTTCGG TTACAAGCGG 120 15 TTTGGTATTC AGGAAGGAAC ACAATGTACC AAATGTAAAA ATAACTGGGC ACTGAAGTTT 180 TCTATCATAT TATTATACAT TTTGTGTGCC TTGCTAACAA TCACAGTAGC CATTTTGGGA 240 TATAAAGTTG TAGAGAAAAT GGACAATGTC ACAGGTGGCA TGGAAACATC TCGCCAAACC 300 20 TATGATGACA AGCTCACAGC AGTGGAAAGT GACCTGAAAA AATTAGGTGA CCAAACTGGG 360 AAGAAAGCTA TCAGCACCAA CTCAGAACTC TCCACCTTCA GATCAGACAT TCTAGATCTC 420 480 25 CGTCAGCAAC TTCGTGAGAT TACAGAAAAA ACCAGCAAGA ACAAGGATAC GCTGGAGAAG TTACAGGCGA GCGGGGATGC TCTGGTGGAC AGGCAGAGTC AATTGAAAGA AACTTTGGAG AATAACTCTT TCCTCATCAC CACTGTAAAC AAAACCCTCC AGGCGTATAA TGGCTATGTC 30 ACGAATCTGC AGCAAGATAC CAGCGTGCTC CAGGGCAATC TGCAGAACCA AATGTATTCT CATAATGTGG TCATCATGAA CTCAACAACC TGAACCTGAC CCAGGTGCAG CAGAGGAACC 720 35 TCATCACGAA TCTGCAGCGG TCTGTGGATG ACACAAGCCA GGCTATCCAG CGAATCAAGA 780 ACGACTTTCA AAATCTGCAG CAGGTTTTTC TTCAAGCCAA GAAGGACACG GATTGGCTGA AGGAGAAAGT GCAGAGCTTG CAGACGCTGG CTGCCAACAA CTCTGCGTTG GCCAAAGCCA 900 40 ACAACGACAC CCTGGAGGAT ATGAACAGCC AGCTCAACTC ATTCACAGGT CAGATGGAGA 960 ACATCACCAC TATCTCTCAA GCCAACGAGC AGAACCTGAA AGACCTGCAG GACTTACACA 1020 45 AAGATGCAGA GAATAGAACA GCCATCAAGT TCAACCAACT GGAGGAACGC TTCCAGCTCT 1080 TTGAGACGGA TATTGTGAAC ATCATTAGCA ATATCAGTTA CACAGCCCAC CACCTGCGGA 1140 1200 CGCTGACCAG CAATCTAAAT GAAGTCAGGA CCACTTGCAC AGATACCCTT ACCAAACACA 50 CAGATGATCT GACCTCCTTG AATAATACCC TGGCCAACAT CCGTTTGGAT TCTGTTTCTC 1260 TCAGGATGCA ACAAGATTTG ATGAGGTCGA GGTTAGACAC TGAAGTAGCC AACTTATCAG 1320 TGATTATGGA AGAAATGAAG CTAGTAGACT CCAAGCATGG TCAGCTCATC AAGAATTTTA 1380

	CAATACTACA AGGTCCACCG GGCCCCAGGG GTCCAAGAGG TGACAGAGGA TCCCAGGGAC	1440
	CCCCTGGCCC AACTGGCAAC AAGGGACAGA AAGGAGAGAA GGGGGAGCCT GGACCACCTG	1500
5	GCCCTGCGGG TGAGAGAGGC CCAATTGGAC CAGCTGGTCC CCCCGGAGAG CGTGGCGGCA	1560
	AAGGATCTAA AGGCTCCCAG GGCCCCAAAG GCTCCCGTGG TTCCCCTGGG AAGCCCGGCC	1620
10	CTCAGGGCCC CAGTGGGGAC CCAGGCCCCC CGGGCCCACC AGGCAAAGAG GGACTCCCCG	1680
	GCCCTCAGGG CCCTCCTGGC TTCCAGGGAC TTCAGGGCAC CGTTGGGGAG CCTGGGGTGC	1740
	CTGGACCTCG GGGACTGCCA GGCTTGCCTG GGGTACCAGG CATGCCAGGC CCCAAGGGCC	1800
15	CCCCCGGCCC TCCTGGCCCA TCAGGAGCGG TGGTGCCCCT GGCCCTGCAG AATGAGCCAA	1860
	CCCCGGCACC GGAGGACAAT AGCTGCCCGC CTCACTGGAA GAACTTCACA GACAAATGCT	1920
20	ACTATTTTC AGTTGAGAAA GAAATTTTTG AGGATGCAAA GCTTTTCTGT GAAGACAAGT	1980
	CTTCACATCT TGTTTTCATA AACACTAGAG AGGAACAGCA ATGGATAAAA AAACAGATGG	2040
	TAGGGAGAGA GAGCCACTGG ATCGGCCTCA CAGACTCAGA GCGTGAAAAT GAATGGAAGT	2100
25	GGCTGGATGG GACATCTCCA GACTACAAAA ATTGGAAAGC TGGACAGCCG GATAACTGGG	2160
	GTCATGGCCA TGGGCCAGGA GAAGACTGTG CTGGGTTGAT TTATGCTGGG CAGTGGAACG	2220
30	ATTTCCAATG TGAAGACGTC AATAACTTCA TTTGCGAAAA AGACAGGGAG ACAGTACTGT	2280
	CATCTGCATT ATAACGGACT GTGATGGGAT CACATGAGCA AATTTTCAGC TCTCAAAGGC	2340
	AAAGGACACT CCTTTCTAAT TGCATCACCT TCTCATCAGA TTGAAAAAAA AAAAGCACTG	2400
35	AAAGCCAATT ACTGAAAAAA AATTGACAGC TAGTGTTTTT TACCATCCGT CATTACCCAA	2460
	AGACTTGGGA ACTAAAATGT TCCCCAGGGT GATATGCTGA TTTTCATTGT GCACATGGAC	2520
40	TGAATCACAT AGATTCTCCT CCGTCAGTAA CCGTGCGATT ATACAAATTA TGTCTTCCAA	2580
	AGTATGGAAC ACTCCAATCA GAAAAAGGTT ATCATTGGTC GTTGAGTTAT GGGAAGAACT	2640
	TAAGCATATA CTGTGTAAAC AGTGCCATAC ATTTCTAAAA TCCCAAGTGT AGGAAAAATA	2700
45	TGCAGACATA CAGATATATA GGCCAACTAT TAGTAATAAT ATGAAATATA CTTAAAGAGC	2760
	TTTTAAAACT TIGTATTITT GTACAAAATA TITGTCTITT ACAATTITTT TCCTTTTTTT	2820
50	TTTTTGTCA TTTTACCGAC ATAATACATG GAGCCAAAGA AAACAATAAT GGTACTAATA	2880
	AAAACTCCTA GGGTTTCCTG TCAGATTTAA TTCTAAAAAA AAAAAAAAAA	2930

(2) INFORMATION FOR SEQ ID NO:12:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 208 amino acids

_			(B) (C) (D)	STF	E: a LANDE POLOG	DNES	s:										
5	((ii)	MOLE	CULE	TYP	E: p	rote	in									
10	((xi)	SEQU	JENCI	E DES	CRIE	10IT	l: SE	Q II	NO:	12:						
15		Met 1	Lys	Asp	Asp	Phe 5	Ala	Glu	Glu	Glu	Glu 10	Val	Gln	Ser	Phe	Gly 15	Tyr
		Lys	Arg	Phe	Gly 20	Ile	Gln	Glu	Gly	Thr 25	Gln	Cys	Thr	Lys	Суs 30	Lys	Asn
20		Asn	Trp	Ala 35	Leu	Lys	Phe	Ser	Ile 40	Ile	Leu	Leu	Tyr	Ile 45	Leu	Cys	Ala
		Leu	Leu 50	Thr	Ile	Thr	Val	Ala 55	Ile	Leu	Gly	Туг	Lys 60	Val	Val	Glu	Lys
25		Met 65	Asp	Asn	Val	Thr	Gly 70	Gly	Met	Glu	Thr	Ser 75	Arg	Gln	Thr	Tyr	Asp 80
30		Asp	Lys	Leu	Thr	Ala 85	Val	Glu	Ser	Asp	Leu 90	Lys	Lys	Leu	Gly	Asp 95	Gln
30		Thr	Gly	Lys	Lys 100	Ala	Ile	Ser	Thr	Asn 105	Ser	Glu	Leu	Ser	Thr 110	Phe	Arg
35		Ser	Asp	Ile 115	Leu	Asp	Leu	Arg	Gln 120	Gln	Leu	Arg	Glu	Ile 125	Thr	Glu	Lys
		Thr	Ser 130	Lys	Asn	Lys	Asp	Thr 135	Leu	Glu	Lys	Leu	Gln 140	Ala	Ser	Gly	Asp
40		Ala 145	Leu	Val	Asp	Arg	Gln 150		Gln	Leu	Lys	Glu 155	Thr	Leu	Glu	Asn	Asn 160
45		Ser	Phe	Leu	Ile	Thr 165				Lys			Gln	Ala	Tyr	Asn 175	_
40		Tyr	Val	Thr	Asn 180		Gln	Gln	Asp	Thr 185		Val	Leu	Gln	Gly 190		Leu
50		Gln	Asn	Gln 195		Tyr	Ser	His	200		. Val	Ile	e Met	205		Thr	Thr
	(2)	INFO	RMAT	'ION	FOR	SEQ	ID N	ю:13	:								
55		(i)	SEC	UENC	E CH	IARAC	TERI	STIC	:s:								

(A) LENGTH: 1589 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: TCTATATATT TTTTCTAGGA AGGGGTGTTT TTCTTTCTGA TTTAATTCCC TACATTTTTC 60 15 TCTTTCATAT GAAGTTGCAG ATAATGTTTT TCCTTCGGAT TTTTATTCTT TAAGATTTTT 120 AACCTGTGCA AGACTTTTTC AATGATACAA GTCAAGGAGG ATGAAGATCT TTTTCCACTT 180 CAGTCTTCAC TTTGCTCCAG CTATTGCTAA GAAAGGCACA AACAATGACA GCATATTTAA 240 20 GGAAGAACCT GGCCGGCTTG GGTCACCGCT GCTGTCTTTC TTGGTTTTGC GTCTACCTGG 300 GAGAGCCCAG CTTTTAGGTT CCCATTGAGG GAAGCATGAG AGAGGATTGT TTGGGGGATG 360 25 CTGCCAGAGC TTCCAGCTGA CAGTCTCTGC AGAGCGGCTG CCAAGTGGCC TGGTGGCCGT 420 ATGITGCAG TITTTGATGA ATTGGGATTA GGGAATGTTT GTTTACTTGA TAACCGAGTG 480 TCTACAAGGA GAGGTGGCAG CGTGAGGGAA TAGTGCCACC ATAATGAGGA CACAGCCAGC 540 30 600 CATCTCTTCC CTGCCACAGA ACCCCAGGCA GTCCCCTTCA GGCTACAGTT TTCCATCTGG ACCGAGGGAC TGGCCGGTGC AGCAGGAGGA GCCGATCACC CTCTGTGGGA ACGAGGATGC 660 35 CCAGAAGTTC CAGTTACTGT GGCTCCATGG TCCCCTTCTC GATGCGCATC TTGCACGCGG 720 AGCTTCAGCA GTACCTGGGG AACCCACAGG AGTCGCTGGA TAGACTGCAC AAGGTGAAGA 780 CTGTCTGCAG CAAGATCCTG GCCAATTTGG AGCAAGGCTT AGCAGAAGAC GGCGGCATGA 840 40 GCAGCGTGAC TCAGGAGGGC AGACAAGCCT CTATCCGGCT GTGGAGGTCA CGTCTGGGCC 900 GGGTGATGTA CTCCATGGCA AACTGTCTGC TCCTGATGAA GGATTATGTG CTGGCCGTGG 960 45 AGGCGTATCA TTCGGTTATC AAGTATTACC CAGAGCAAGA GCCCCAGCTG CTCAGCGGCA 1020 TCGGCCGGAT TTCCCTGCAG ATTGGAGACA TAAAAACAGC TGAAAAGTAT TTTCAAGACG 1080 TTGAGAAAGT AACACAGAAA TTAGATGGAC TACAGGGTAA AATCATGGTT TTGATGAACA 1140 50 GCGCGTTCCT TCACCTCGGG CAGAATAACT TTGCAGAAGC CCACAGGTTC TTCACAGAGA 1200 TCTTAAGGAT GGATCCAAGA AACGCAGTGG CCAACAACAA CGCTGCCGTG TGTCTGCTCT 1260

1320

ACCTGGGCAA GCTCAAGGAC TCCCTGCGGC AGCTGGAGGC CATGGTCCAG CAGGACCCCA

	GGCACTACC	T GC	ACGA	GAGC	GTGC	TCTI	'CA A	CCTG	ACCA	C CA	I'GTA(CGAG	CTGG	AGTC	CT	1380
	CACGGAGCA	T GC	AGAA	GAAA	CAGG	CCCI	GC T	GGAG	GCTG	T CG	ccec	CAAG	GAGG	GGGA	CA	1440
5	GCTTCAACA	C AC	AGTG	CCTC	AAGO	TGGC	CT A	GCTG	CCTC	C AA	CACA	CTAC	GTCA	GAAG	GA	1500
-	CCCGGGTCT	T TG	AAAC	TGTG	TCTT	GAAG	ст а	ATGT	ATTA	A TG	rgac:	ATGG	AGGA	ACTO	:AA	1560
1.0	TAAAACTCC	T GC	TTCA	AAAA	AAA	AAAA	A A									1589
10	(2) INFOR	RMATI	ON F	or s	SEQ I	D NO	:14:									
15	(i)	(B)	LEN TYP STR	IGTH: PE: & RANDE	271 mino EDNES	ami aci	no a .d									
20	(ii)	MOLE	CULE	E TYI	PE: p	rote	in									
25	(xi)	SEQU	JENCE	E DES	SCRIE	PTION	I: SE	Q II	NO:	14:						
	Met 1	Pro	Arg	Ser	Ser 5	Ser	Туr	Суз	Gly	Ser 10	Met	Val	Pro	Phe	Ser 15	Met
30	Arg	Ile	Leu	His 20	Ala	Glu	Leu	Gln	Gln 25	Tyr	Leu	Gly	Asn	Pro 30	Gln	Glu
	Ser	Leu	Asp 35	Arg	Leu	His	Lys	Val 40	Lys	Thr	Val	Cys	Ser 45	Lys	Ile	Leu
35	Ala	Asn 50	Leu	Glu	Gln	Gly	Leu 55	Ala	Glu	Asp	Gly	Gly 60	Met	Ser	Ser	Val
40	Thr 65	Gln	Glu	Gly	Arg	Gln 70	Ala	Ser	Ile	Arg	Leu 75	Trp	Arg	Ser	Arg	Leu 80
	Gly	Arg	Val	Met	Tyr 85	Ser	Met	Ala	Asn	Cys 90	Leu	Leu	Leu	Met	Lys 95	Asp
45	Туг	Val	Leu	Ala 100	Val	Glu	Ala	Тут	His 105	Ser	Val	Ile	Lys	Туг 110	Tyr	Pro
	Glu	Gln	Glu 115	Pro	Gln	Leu	Leu	Ser 120	Gly	Ile	Gly	Arg	Ile 125	Ser	Leu	Gln
50	Ile	Gly 130	Asp	Ile	Lys	Thr	Ala 135	Glu	Lys	Tyr	Phe	Gln 140	Asp	Val	Glu	Lys
	Val 145	Thr	Gln	Lys	Leu	Asp 150	Gly	Leu	Gln	Gly	Lys 155	Ile	Met	Val	Leu	Met 160

	Asn	Ser	Ala	Phe	Leu 165	His	Leu	Gly	Gln	Asn 170	Asn	Phe	Ala	Glu	Ala 175	His	
5 .	Arg	Phe	Phe	Thr 180	Glu	Ile	Leu	Arg	Met 185	Asp	Pro	Arg	Asn	Ala 190	Val	Ala	
	Asn	Asn	Asn 195	Ala	Ala	Val	Cys	Leu 200	Leu	Tyr	Leu	Gly	Lys 205	Leu	Lys	Asp	
10	Ser	Leu 210	Arg	Gln	Leu	Glu	Ala 215	Met	Val	Gln	Gln	Asp 220	Pro	Arg	His	Tyr	
15	Leu 225	His	Glu	Ser	Val	Leu 230	Phe	Asn	Leu	Thr	Thr 235	Met	Туг	Glu	Leu	Glu 240	
	Ser	Ser	Arg	Ser	Met 245	Gln	Lys	Lys	Gln	Ala 250	Leu	Leu	Glu	Ala	Val 255	Ala	
20	Gly	Lys	Glu	Gly 260	Asp	Ser	Phe	Asn	Thr 265	Gln	Суѕ	Leu	Lys	Leu 270	Ala		
	(2) INFO	RMAT	ION	FOR	SEQ :	ID N	0:15	:									
25	(i)	(B (C	UENC) LE) TY) ST	NGTH PE: RAND	: 11 nucl EDNE	53 b eic SS:	ase acid doub	pair	s								
30	(ii)	MOL	ECUL	Е ТҮ	PE:	cDNA											
35	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:15:							
	TATAAAGA	GT G	ACTC'	тсст	A TG	AAGG	ГААА	GGCC	ACCC	CT C	ттса	GTTC	C AG	TGAC	TGAG		60
	ATACATTI																.20
40	AATTTGGC	AG C	TGCC	TTCA	CAC	TGAC	CAC	AAAG	CCAC	AT T	TCAA	AGGAZ	A ACT	GACA	LAAT	1	.80
•	TATCCCCA	GC T	GCCA	GAAG	A AGZ	\AAT(CTC	ACTG	GACG	GC T	TCCT	GTTI	CTC	STGGT	TCA	2	40
45	TTATCTGA	att G	GCTG	CAGG	G ATO)AAA	TTT	TTAA	GTTC	AT A	GGAC	TGAT	G ATC	CTC	TCA	3	00
	CCTCTGCG	TT T	TCAG	CCGG	r rcz	AGGA	CAAA	GTCC	:AATG	AC T	GTGC	TGTG	C TCC	CATAC	SACT	3	860
50	GGTTCATO	GT C	ACAG	TGCA	c cc	CTTC	ATGC	TAAA	CAAC	GA T	GTGT	GTGT	A CAC	CTTTC	CATG	4	120
.,,	AACTACAC	TT G	GGCC	TGGG	T TGO	cccc	CAA	ACCA	TGTI	CA G	CCAC	ACGC	C TAC	CAG	TCA	4	180
	CCTACCGT	rgt t	ACTG	AATG	T GG	CATC	AGGG	CCAA	AGCT	GT C	TCTC	AGGA	CAT	GGTTZ	ATCT	5	540
55	ACAGCACT	YGA G	מידמר	מייים	ר יוירי	المكتاما	A ACC	GCAC	יברר	יוי יאידי	יים א מי	ጥተረታጥ	יייע ב	ירראנ	ىلىتىلىت		saa

WO 98/55614 PCT/US98/11210 .

	CATGTGCTGC CCCCCAAAAG TCCCCATGGC TCACCAAGCC CTGCTCCATG AGAG	TAGCCA	660
	GCAAGAGCAG GGCCACAGCC CAGAAGGATG AGAAATGCTA CGAGGTGTTC AGCT	TGTCAC	720
5	AGTCCAGTCA AAGGCCCAAC TGCGATTGTC CACCTTGTGT CTTCAGTGAA GAAG	AGCATA	780
	CCCAGGTCCC TTGTCACCAA GCAGGGGCTC AGGAGGCTCA ACCTCTGCAG CCAT	CTCACT	840
١.	TTCTTGATAT TTCTGAGGAT TGGTCTCTTC ACACAGATGA TATGATTGGG TCCA	TGTGAT	900
10	CCTCAGGTTT GGGGTCTCCT GAAGATGCTA TTTCTAGAAT TAGTATATAG TGTA	CAAATG	960
	TCTGACAAAT AAGTGCTCTT GTGACCCTCA TGTGAGCACT TTTGAGAAAG AGAA	ACCTAT	1020
15	AGCAACTTCA TGAATTAAGC CTTTTTCTAT ATTTTTATAT TCATGTGTAA ACAA	ATAAAA	1080
	АААТААААТТ СТGATCGCAT АААААААААА ААААААААА АААААААААА АААА	AAAAA	1140
20	AAAAAAAAA AAA		1153
20	(2) INFORMATION FOR SEQ ID NO:16:		
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 212 amino acids(B) TYPE: amino acid(C) STRANDEDNESS:(D) TOPOLOGY: linear		
30	(ii) MOLECULE TYPE: protein		
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:		
,,,	Met Lys Val Phe Lys Phe Ile Gly Leu Met Ile Leu Leu 1 5 10	Thr Ser 15	Ala
40	Phe Ser Ala Gly Ser Gly Gln Ser Pro Met Thr Val Leu 20 25	Cys Ser	Ile
	Asp Trp Phe Met Val Thr Val His Pro Phe Met Leu Asn 35 40 45	Asn Asp	Val
45	Cys Val His Phe His Glu Leu His Leu Gly Leu Gly Cys 50 55 60	Pro Pro	Asn
50	His Val Gln Pro His Ala Tyr Gln Phe Thr Tyr Arg Val	Thr Glu	Суs 80
J0	Gly Ile Arg Ala Lys Ala Val Ser Gln Asp Met Val Ile 85 90	Tyr Ser 95	Thr
55	Glu Ile His Tyr Ser Ser Lys Gly Thr Pro Ser Lys Phe 100 105	Val Ile 110	Pro

	Val	ser	115	Ala	Ala	PIO	GIN	120	ser	PIO	ттр	nen	125	гух	PIO	Cys	
5	Ser	Met 130	Arg	Val	Ala	Ser	Lys 135	Ser	Arg	Ala	Thr	Ala 140	Gln	Lys	Asp	Glu	
	Lys 145	Cys	Tyr	Glu	Val	Phe 150	Ser	Leu	Ser	Gln	Ser 155	Ser	Gln	Arg	Pro	Asn 160	
10	Cys	Asp	Cys	Pro	Pro 165	Суѕ	Val	Phe	Ser	Glu 170	Glu	Glu	His	Thr	Gln 175	Val	
15	Pro	Cys	His	Gln 180	Ala	Gly	Ala	Gln	Glu 185	Ala	Gln	Pro	Leu	Gln 190	Pro	Ser	
	His	Phe	Leu 195	Ąsp	Ile	Ser	Glu	Asp 200	Trp	Ser	Leu	His	Thr 205	Asp	Asp	Met	
20	Ile	Gly 210		Met													
	(2) INFO	RMAT	ION :	FOR	SEQ :	ID N	0:17	:		•							
25	(i)	(A (B (C) LE) TY	NGTH PE: RAND	: 42 nucle EDNE	85 b eic SS:	STIC ase acid doub ar	pair	S								
30	(ii)	MOL	ECUL	E TY	PE:	cDNA											
		*							٠								
35	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:17:							
	TTTAATCT	GT G	TCTC	CAGC	A TÎT	ratet	rrr T	TGTT	TGTG	TC A	TCGG	GTTC	C TG	GTTT	TCTT		60
40	TTAAGACA	TA G	TCAA	CTGT	TGC	SACCI	TGTA	GGTT	TGGG	GC A	GCAA	CCAA'	r TC	CATTO	STTT	3	L20
	TCCTTTTT	GT C	AAAT	CCAA	G AGA	LAAA!	ATA	CCAT	AAGG	AG C	TAGA	AGAT	г стл	AGTT	CACA	. :	180
	GCCTTTTG	T AA	CTTC.	ATGG	CTI	TGA	ATCC	TCAT	GGCC	тс т	GAAA	TCTG	A ATC	CAGT	TTC	:	240
45	TCCCAGGA	RG T	CTCT	GGGG	G CTC	SAGCT	rgct	ACAG	GGGC	AR A	RGGT	GGGG	T GG	GTT	GGT	:	300
	GGGARAAT	CA T	CCTG	GCAC	r TC	ATCG:	rgca	TGCT	'ATTT	CG G	GCAG	CATC	T TT	PPPP.	PTTT	;	360
50	ATTTTATT	'AT T	'ATTT	TTTT	r cc	rgaty	GCTT	GAGT	TATG	AA T	GAGG	ATGA	CTY	CTGC	AATC		420
. 50	ATGATGTO	TC C	CATA	GACT	C TG	rtcc'	PTGT	TCCT	TTGC	CA G	CTTT	CTCA	T GC	ATGG'	PCCT		480
	AACACTTO	CA T	GATT	таат	C TG	CTGC	AGGA	CCAT	AGTO	TT C	AGCC	ACCT	C AG	CAAT	AACT		540
55	TGTTAGAA	CA T	TAAA	AGGA	A GT	AAAT	TGAG	AAC	ACTI	GT I	GCCA	TCCC	А ТТ	TTCA'	TTAG		600

	THE TENOTICE	ICIIAGAGAI	GICANGAAAG	CAGCIAGCAG	CIAGGGGIA	1000040010	000
	TCCTGCTCAC	ACTGCTGTGT	GTCAGACCAG	ACCTGATCCT	GGAGCTCAGG	ACCCTAGAGA	720
5	GCCCTGATCT	CTGGAACTCT	TGCCACGTTG	TTGCTGAGGC	AGCTGAAGTC	CCCATCTCCC	780
	ACCATAACAA	TCACAAATAG	ACAGTAGTGG	AGCCAGCATC	CCCAGGCCCC	TTTTTGTGTA	840
10	AGCAGAAAGG	GAGCTGTGAG	CCTTGCCCTG	TTTGCAGGTG	TCAAGTGCCT	CTCCCTGCCT	900
10	GTACTTCTCC	CCTTCCTCTG	AGCAGAGCTT	TGGTAGCTGT	TGCCAATGCA	AAGAAATGTA	960
	AAGCAGCAAA	AGAAGACAGC	AGGTTCTGAC	CTGAGGAGGG	AAACCAAATT	TATCCCACAA	1020
15	AGGCCCATTA	ACCCCACCCC	CCTCGCCTCC	CACCCCAGA	CTGGATCCAC	TACTGGCCCA	1080
	AGAATACTGA	TGAGAAACCT	AGTCTGGATT	GGGTCGGAAG	CTGGAATTTG	GTGCTCTGCA	1140
20	GACCAGTGCT	CAAAATTGTG	GTTATTTTTG	AGGACTCGCC	TTCAATCCAG	AACATTTGCG	1200
20	TTTCACCTTC	CTCGCCCAGA	TCCAGTTAAC	AAGGTAGCTC	ATCACTTCTT	GCATCTGTTG	1260
	AGTGACATGC	TGGATTTTAA	TTTTTATTGT	GGTTGTACTT	GGATGCAAGG	AATATGTTTT	1320
25	GTTCCTCCCA	ATTTAGCGCA	CCATCCTGGG	AAGTGCATGT	CTCAGACCAA	CTCCACCTTC	1380
	ACCTTCACCA	CCTGTCGCAT	CCTGCATCCT	TCAGATGAGC	TCACTCGGGT	CACACCAAGC	1440
30	CTTAACTCAG	CCCCAACTCC	AGCTTGTGGC	AGCACCAGCC	ACTTGAAATC	CACGCCGGTG	1500
J V	GCCACACCAT	GCACTCCACG	GAGACTGAGC	CTGGCTGAGT	CCTTCACTAA	CACCCGTGAG	1560
	TCCACGACCA	CCATGAGCAC	ATCCCTGGGG	CTCGTGTGGC	TGTTGAAGGA	GCGGGGCATT	1620
35	TCTGCTGCCG	TGTACGACCC	CCAGAGCTGG	GACAGGGCCG	GCCGGGGCTC	CCTCCTGCAC	1680
	TCCTACACGC	CCAAGATGGC	TGTGATCCCC	TCTACTCCGC	CGAACTCGCC	TATGCAGACA	1740
40	CCCACATCCT	CCCCACCCTC	CTTTGAGTTC	AAGTGCACGA	GCCCTCCCTA	CGACAATTTC	1800
	CTGGCTTCCA	AGCCAGCCAG	CTCCATCCTC	AGGGAAGTGA	GAGAAAAGAA	CGTCCGCAGC	1860
	AGCGAGAGCC	AGACCGACGT	GTCCGTCTCC	AACCTCAACC	TCGTGGACAA	AGTCAGGAGG	1920
45	TTTGGGGTGG	CCAAAGTGGT	GAACTCAGGG	CGAGCCCATG	TCCCCACCTT	GACTGAGGAG	1980
	CAGGGACCCC	TCCTCTGTGG	GCCCCCGGGG	CCAGCACCAG	CCCTTGTTCC	CAGAGGCCTG	2040
50	GTACCTGAGG	GCCTGCCCCT	CAGATGCCCC	ACTGTCACCA	GTGCCATCGG	TGGGCTGCAG	2100
J0	CTCAATAGTG	GCATCCGGCG	GAATCGCAGO	TTCCCCACCA	TGGTGGGATC	TAGCATGCAG	2160
	ATGAAAGCTC	: CTGTGACTCT	CACCTCGGG	CATCTTGATGO	GTGCTAAGCT	CTCCAAACAA	2220
55	ACTAGCTTAC	GGTGAGGACT	GGAGGGGGG	CCGGTTGCCCT	AGAGGAGACC	CACGTTCTCT	2280

	cricciccii	corcerere	TICCCCCCAC	AGIGCACICC	CICCCICIGC	CCTTCTCTCT	2340
	CCACCCCCTC	CTAAGCTAGA	CAAATCAACC	TTGTGCCTAA	TGGAGGAAGT	GTGGAAACTT	2400
5	TGTAAAATGT	GTACATAGGA	CTTGGAGACC	TTGTGTCCGC	CCTGCTCTTT	CTTCCGATCC	2460
	CACAGGAAGT	GCCCCTGCAC	TGTCATCACT	CTCACGAGGA	CGTCACCTGT	GCTAACCTGG	2520
10	GGGAAGGTGG	GGTCCTTTCT	TCTTTCCTTT	TGAGAAGCAC	TGAAACTCCC	AAGTGTGTTC	2580
LU	TTATCCCATG	GATAGGAAAC	CAGTGAATTC	CGTGGCTGGC	ACACCACGAG	CTGTCATGCG	2640
	GCACGGGTCA	TAACACATCT	GGGTGTCATC	GGACACCTCA	CCTCGCCCAC	CCTGTAGGAG	2700
L 5	CGTAAGGAGC	CTCCATCCTC	AGCCACGTGC	AGCTGACGTG	GCTTTCCTGA	TCGGAGGGCT	2760
	TTTCTTTTAT	GGGTGGCCCA	GCTTCTTCAA	GACCTTCACT	GCTCTGCCTC	AGTGGACAGT	2820
20	CGTTTCTTT	TTGAGGTGTG	ACCTTTTGTT	TTCATGCCTT	CCCCTTGAAG	TCATCCTGTG	2880
20	TTTTGTAATC	AGCTGTCAGG	CCAAATGTCT	GACCCGAAAG	AGAATGTATT	TACACTCATG	2940
	CTGCGTTGTT	CAGCAGCCCC	TCTGTGTTCT	GTGTGATTTG	TTTTATTTT	CCTTTTTTT	3000
25	ACATATATAT	GCAGGGAAGT	AATGGTACTG	GTAGTGTATG	TTTTCTATGT	GGTTCAAATA	3060
	TGAATTTCGA	ACACACCAAG	CCGCTAATGA	GATAGCAGCT	TTTTTCTGGG	ACCCAGAGTC	3120
30	ACAACCAAAT	TGATTTAAGA	CCGGACCCAA	GACACCTTTA	ACAATAGGAC	TGAAAGGAAA	3180
	AAGGATAGGG	AAAAAGCTTA	TTAAAGAAAT	GTGTCAACAC	CAAATGTAGA	GGGGAAGAAC	3240
	CACAACCAGG	CATAATACCA	AACCGGTTCC	: AGGGGGAAAC	AAGGCTTTGG	TATTCCGCTG	3300
35	GCTCCAGCGC	TTTTTCTGAA	ACCCGAGGCT	GGCCAGGGTG	CTGTCACCGT	GTGGTCTTTG	3360
	ATTGCAGCCA	TTCAATGCCC	ACATGCTTTT	CCTTCTTGTT	TCAGAACAGC	ACATGGTCAC	3420
40	AACAAGATAT	TTTCTTTCCC	TCCAAAGCCT	TTTGTCTCCT	TGTGCCTCTT	TTTATCCTTA	3480
	GGAAAAGATC	CAGGTGCTTG	TGAAAAGAAT	CATGAATGCA	ACAAGGGAGG	CTGGTCCTGT	3540
	TGCTGTCGCC	GATTAAGTTT	TAAACTTTT	A TTTATTATTI	ATGTCTGCCG	TATTTTAAAT	3600
45	AAACATTCTC	GTTCCTTCCA	GTTCCAGTC	A TAGTGTGTCT	GTGGCATTCC	AGTCCAACCA	3660
	TGTGACTTAT	TTATTCTAAT	TTGAGGGCTC	G CACTGTACAC	CATGGTGTCC	TGTGACACCG	3720
50	TGTTCCAGAC	ATTTATGGAA	GGAAAACAT	CCATATAAAT	GAAACTGTCA	A TGCTGTGTCC	3780
50	TCCCCGGCAG	G CAGAAGATGT	GTCCTTCCA	r tgagtgagg	TAACCTTATO	TCCACCAAGG	3840
	ATACTTTGAG	AAAGCCCCT	AGGAACAAG	C CTCAGTCCC	A CGGTTTCAGA	A CTATTTATTC	3900
55	тстса асаса	ል ልርልርጥልጥጥር <i>ር</i>	፡ ጥጥ አስጥጥ አጥ <u>ረ</u> ።	ኮ ጥ ርጥር አረርርጥር ግ	ר כככיוועבריוועביווים	ר כייאייניתיניתנים	3960

	ATTCACTGC	A AG	raac:	TAT	ATCT	TTTT	АТ Т	TGAA'	TGTA'	r TTI	'AAAC	CAG	TAGA	TAGA	АТ	4020
	AACAAAGGA	A TA	IGAA.	AACC	ATGG	ACTG	AA T	GGAC	CATT	г тал	GTAT	TCA	GAGA	GAGA	AG	4080
5	CCACTCATC	A TT	GCCA	GAAA	TACC	ATGT	AA A	AATT	GGCA	G TTC	CAGAG	GTT	GCAA	TACT	TA	4140
	GTATAGTAA	A TA	AATA	AACG	GTCA	ACAT	TG T	GCAA	CCAC	r acc	CAAAA	agt	GTGT	TGTA	ΑT	4200
10	GCATCAAAA	A TC	AACA	CAAT	TTTA	TTCA	CT A	ATGA	GTAT	C AAT	TAAA?	AATA	GTTC	TAAA'	GA	4260
10	TGGAAACCA	C AA	AAAA	AAAA	AAA	A A										4285
	(2) INFOR	MATI	ON F	OR S	EQ I	D NO	:18:									
15	(i)	(A)	LEN	IGTH :	RACT	ami	no a		:							
20		(C)	STF	RANDE	mino DNES Y: 1	s:										
	(ii)	MOLE	CULE	TYF	E: p	rote	in									
25														٠		
	(xi)	SEQU	JENCI	E DES	CRIE	MOIT	I: SE	Q II	NO:	18:						
2.0	Met 1	Gln	Arg	Asn	Val 5	Lys	Gln	Gln	Lys	Lys 10	Thr	Ala	Gly	Ser	Asp 15	Leu
30	Arg	Arg	Glu	Thr 20	Lys	Phe	Ile	Pro	Gln 25	Arg	Pro	Ile	Asn	Pro 30	Thr	Pro
35	Leu	Ala	Ser 35	His	.Pro	Gln	Thr	Gly 40	Ser	Thr	Thr	Gly	Pro 45	Arg	Ile	Leu
	Met	Arg 50	Asn	Leu	Val	Trp	Ile 55	Gly	Ser	Glu	Ala	Gly 60	Ile	Trp	Суѕ	Ser
40	Ala 65	Asp	Gln	Суѕ	Ser	Lys 70	Leu	Trp	Leu	Phe	Leu 75	Arg	Thr	Arg	Leu	Gln 80
45	Ser	Arg	Thr	Phe	Ala 85	Phe	His	Leu	Pro	Arg 90	Pro	Asp	Pro	Val	Asn 95	Lys
	Val	Ala	His	His 100	Phe	Leu	His	Leu	Leu 105	Ser	Asp	Met	Leu	Asp 110	Phe	Asn
50	Phe	Tyr	Cys 115	_	Cys	Thr	Trp	Met 120	Gln	Gly	Ile	Суѕ	Phe 125	Val	Pro	Pro
	Asn	Leu 130		His	His	Pro	Gly 135	Lys	Cys	Met	Ser	Gln 140	Thr	Asn	Ser	Thr
55	Phe	Thr	Phe	Thr	Thr	Cys	Arg	Ile	Leu	His	Pro	Ser	Asp	Glu	Leu	Thr

WO 98/55614 PCT/US98/11210 .

	145					150					155					160
5	Arg	Val	Thr	Pro	Ser 165	Leu	Asn	Ser	Ala	Pro 170	Thr	Pro	Ala	Cys	Gly 175	Ser
J	Thr	Ser	His	Leu 180	Lys	Ser	Thr	Pro	Val 185	Ala	Thr	Pro	Cys	Thr 190	Pro	Arg
10	Arg	Leu	Ser 195	Leu	Ala	Glu	Ser	Phe 200	Thr	Asn	Thr	Arg	Glu 205	Ser	Thr	Thr
	Thr	Met 210	Ser	Thr	Ser	Leu	Gly 215	Leu	Val	Trp.	Leu	Leu 220	Lys	Glu	Arg	Gly
15	Ile 225	Ser	Ala	Ala	Val	Туг 230	Asp	Pro	Gln	Ser	Trp 235	Asp	Arg	Ala	Gly	Arg 240
20	Gly	Ser	Leu	Leu	His 245	Ser	Tyr	Thr	Pro	Lys 250	Met	Ala	Val	Ile	Pro 255	Ser
20	Thr	Pro	Pro	Asn 260	Ser	Pro	Met	Gln	Thr 265	Pro	Thr	Ser	Ser	Pro 270	Pro	Ser
25	Phe	Glu	Phe 275	Lys	Суѕ	Thr	Ser	Pro 280	Pro	Tyr	Asp	Asn	Phe 285	Leu	Ala	Ser
	Lys	Pro 290	Ala	Ser	Ser	Ile	Leu 295	Arg	Glu	Val	Arg	Glu 300	Lys	Asn	Val	Arg
30	Ser 305	Ser	Glu	Ser	Gln	Thr 310	Asp	Val	Ser	Val	Ser 315	Asn	Leu	Asn	Leu	Val 320
35	Asp	Lys	Val	Arg	Arg 325	Phe	Gly	Val	Ala	Lys 330	Val	Val	Asn	Ser	Gly 335	
	Ala	His	Val	Pro 340		Leu	Thr	Glu	Glu 345		Gly	Pro	Leu	Leu 350	-	Gly
40	Pro	Pro	Gly 355	Pro	Ala	Pro	Ala	Leu 360		Pro	Arg	Gly	Leu 365	Val	Pro	Glu
	Gly	Leu 370		Leu	Arg	Cys	Pro 375		Val	Thr	Ser	Ala 380		Gly	Gly	Leu
4 5	Gln 385		Asn	Ser	Gly	Ile 390	_	Arg	Asn	Arg	Ser 395		Pro	Thr	Met	Val 400
5 0	Gly	Ser	Ser	Met	Gln 405		Lys	Ala	Pro	Val 410		Lev	Thr	Ser	Gly 415	Ile
50	Leu	Met	Gly	Ala 420	_	Leu	Ser	Lys	Glr 425		Ser	Leu	Arg	Ī		
55	(2) INFO	RMAT	'ION	FOR	SEQ	ID N	10:19):								

98

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3751 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

15	ACTTTGAATT	TTTTATTTGT	GAAATTAAAA	ATATGGTATT	ATATATATAT	AAACTTCTAT	60
13	TCCTCTATAA	ATATAGATGA	TTTTGTGATA	GTGAACAGAA	TAAATGTATA	CCAAATTCAA	120
	AGACCAATAT	CATTTTAGCG	TATGACAGAC	ATAGATAAAT	TTAGGTCCTA	AGTACCGGCA	180
20	TTTTGATAAA	TTCTTAAAGT	ТТААААСААТ	ACAATCAGGA	GGATTGCTTT	TCTCCTCTTC	240
	TTCACAGAGA	ACTAAAGTGA	ATATTTTTAA	ATGGCTTTGA	AAGATTTACA	TTTGACACAT	300
25	TTCTGTAAAT	CCAAAAGAGG	AGCACACAGG	GATTTAATGC	AGTAGACCTG	CACACATTTT	360
23	CCCTTTAGCA	TGCATGCCCA	TATTTTGTTT	ATTTCAGGCG	CTATCTCCCC	A CCAAATTCAA 120 A AGTACCGGCA 180 T TCTCCTCTTC 240 A TTTGACACAT 300 G CACACATTTT 360 C GTCAATTATT 420 A ATTGTTCCCC 480 A CAACTTTTAC 540 A TAGCACTTCA 600 G TTTACGTTTT 660 G GTGACCTCAA 720 T CAAAGGCAAG 780 C TTCAGTCTCT 840 CT CTTCCATGA 900 CT CACCCCTCAA 960 AC CAACTAAGGT 1020 GA CTGCCAGCGC 1080 AA AATCCAGCTT 1140 GG AATTGTAATG 1200	
	CCACCTTCTT	TACCTCCTGA	AATCTTACCA	GGTTATTATT	GGTGGTGTGA	ATTGTTCCCC	480
30	CCTCAGAATG	TGCTGCTGAA	TAATAATCGT	AATAAAATGT	TGAAAGTGTA	CAACTTTTAC	540
	ATTTTAAAGT	TTCTGATATA	TGTCTAGTTA	TTTGATTAAA	AATAAGAAAA	TAGCACTTCA	600
35	TTTTGAGGAA	GTCCATGACA	CTGAAATATC	CTTCAAGTTT	TCAATTTCTG	TTTACGTTTT	660
	GCTGTCTTGT	A ATATAGATGA TTTTGTGATA GTGAACAGAA TAAAA TT CATTTTAGCG TATGACAGAC ATAGATAAAT TTAGC A TTCTTAAAGT TTAAAACAAT ACAATCAGGA GGAT A ACTAAAGTGA ATATTTTTAA ATGGCTTTGA AAGAA T CCAAAAGAGG AGCACACAGG GATTTAATGC AGTAA T TACCTCCTGA AATCTTACCA GGTTATTATT GGTG T TACCTCCTGA AATCTTACCA GGTTATTATT GGTG T TTCTGATATA TGTCTAGTTA TTTGATTAAA AATAA AA GTCCATGACA CTGAAATATC CTTCAAGTTT TCAA TTAAGGAAAGC AAACATCAAC TCCTTAACAA AGCT T TTACAGACCG GTAAAAATCTA AGCGCAGGCT GTCT C ATCCGTATGC AATTAGAATT AACATTTTAT AACC AC ACAAAGCTTC ATGCTTCTTC CCAAATCTCA GTAA AA ACCCATACCA GGTTTTAGAC ACTAGAGAAT GAAA CT TCAAAAAAGTT TGGCATTGGT TATCTCACTC ACCC GG AGTGTCTGCC GTTGAAGGTG ACCGTGGAGG GAGG GT GGGCCCCCAT GAAGTTGGAG GAAAGTTCTG GACA CC CTCCTCCAGA TTTGGAAGGT TTGTGGAGTT CTGT	AGCTTTCCAG	GTGACCTCAA	720		
	CATTTCCATT	TTACAGACCG	GTAAAATCTA	AGCGCAGGCT	GTCTCATTCT	CAAAGGCAAG	780
40	GTTGCCAGGC	ATCCGTATGC	AATTAGAATT	AACATTTTAT	AACCCATATC	TTCAGTCTCT	840
	TCCAACCCAC	ACAAAGCTTC	ATGCTTCTTC	CCAAATCTCA	GTAACCACAT	CTTTCCATGA	900
45	CGCTGGCCAA	ACCCATACCA	GGTTTTAGAC	ACTAGAGAAT	GAAATGAGCT	CACCCCTCAA	960
	AAATTAGACT	TCAAAAAGTT	TGGCATTGGT	TATCTCACTC	ACCCTGTAAC	CAACTAAGGT	1020
	GGGAGAAGGG	AGTGTCTGGC	GTTGAAGGTG	ACCGTGGAGG	GAGGCTGAGA	CTGCCAGCGC	1080
50	CCACACCCGT	GGGCCCCCAT	GAAGTTGGAG	GAAAGTTCTG	GACAGTTAAA	AATCCAGCTT	1140
	CAGGAAGTCG	AAGGGACGGG	CCTTCGCAAT	CCACCGCCGA	GCAAGGGAGG	AATTGTAATG	1200
55	TATGGGGGCC	CTCCTCCAGA	TTTGGAAGGT	TTGTGGAGTT	CTGTACCTTA	AGAGCCCCTA	1260

WO 98/55614 PCT/US98/11210 .

	CCTCAAGCCA	GGAAAGAAAG	GGAGGGGACA	GAAGGAGGGG	GAGGGGGCAA	AAGGAGGAGG	1320
	CGGGAAGTGA	CCCTGGCAGC	GCAGCCCTAG	TCGCACCCCG	CAGTGCTGAA	CTCGCCCCGG	1380
5	AGCTGGCGCC	CAGCCGTCCC	GAGCACCCGT	GGTAGGGAGA	GGCGCGCGAG	GACGACCAGG	1440
	AGCGCTGTGC	GGTTGCACAC	CAGTTTTAGC	TCCTTTGCAA	TACTCCGAAA	AGGGCAAGAA	CGCCCCGG 1380 CGACCAGG 1440 CGACCAGG 1440 CGACCAGG 1500 CGAAAAACG 1560 CCTATTTAC 1620 CCATCCTC 1680 CCAGCAGCT 1740 CCTTGAAAA 1860 CTGGAGTTG 1920 AGAAAAGTT 2980 CAGAAAAGTT 2040 CATTACTT 2100 CTTACTTG 2160 CTTACTTG 2220 CCTTGATCT 2280 CGATTCCTG 2340 CCTTGACTG 2340 CCTTGACTG 2460 CAAACAATCC 2520 CGGYTCCGGG 2580 CGAAGAGCAC 2640 AGTTGTAAA 2700
10	GAAAAGCCTC	AAATGGTTAA	ACCGCCCTAA	АТААТТАААА	ACTTTTGAAA	AAGAAAAACG	1560
LU	CGTGATCGGT	CGTCATTTAA	АТАСАААТАТ	ACTTACAAAA	ATCCTACACA	GGCTATTTAC	CGCCCCGG 1380 CGACCAGG 1440 CGACCAGG 1440 CGACCAGG 1560 CGAAAAACG 1560 CCTATTTAC 1620 CCATCCTC 1680 CCAGCAGCT 1740 CCTCGGTT 1800 CCTTGAAAA 1860 CTGGAGTTG 1920 CAGAAAAGTT 2040 CATTACTT 2100 CTTATTACTT 2100 CTTATTTCT 2160 CTTAGTTCT 2280 CGTTGACTG 2340 CCTTGACTG 2340 CCTTGACTG 2460 CAAACAATCC 2520 CGAACAACC 2520 CGAACAGCAC 2640 CGAACTGAT 2760 CGGAACTGAT 2760 CGGAACTGAT 2820 CTGGCCATGT 2880
	ААТСАТАААА	GCGAACAGTC	CTGGTACCAG	AGTGTGAGGG	CAAGAGGTCT	GTCCATCCTC	1680
15	CCTCTGGCAG	TCGGGCCCTC	GTGTCCTTTT	GCCTCAGGGA	CGGAAGCTTT	TGCAGGAGCT	1740
	GAGTTGTTCT	AGGCCTCTTT	GGCCGAATTC	GGCCAAAGAG	GCCTAATTCC	TTCCTCGGTT	1800
20	ATTTCATTCA	GAGAATATTT	ATGAAATGCC	TACTGTGTGC	AAGTCATCCA	TCCTTGAAAA	1860
20	GGCCACTTCT	CAGTGAGGGA	GAGATGTAGT	GGATTCTGTG	AGACATACCT	GCTGGAGTTG	1920
	AAGCAGTAAA	TAGCATGTCT	TTCCCCTCCC	CGATCTTAAG	GTGTGTTTTC	TAGAAAAGTT	1980
25	CCCTAATGGA	ATTCATGAGT	TTGGGGGTCT	CAGTCACCCG	CTTGCCTGTA	GGATTCCATT	2040
	TGATGATTCT	GGATTTTTGC	TGTTTGTTAT	TGCCCTTAGA	GGGGCTCTGA	GTATCTACTT	2100
30	GTGGGTGGCC	ATTTCCTGAC	ATCTGCATGT	ACCTCGTGGA	ATTCAGCCAG	CTTCATGTTG	2160
50	CAAATCAGAA	AGCTGACCCC	AAGACTGCAA	ATCAATGAAG	GTATTGGCAT	ACCEPTATE TO THE TRANSPORT OF THE TRANSP	
	GTAGCGTAGA	CAACAGCAGT	САТАААТААТ	' TAGGCAGGAA	CTTAACCCAA	ATCTAGTTCT	2280
35	TTGACCACCT	CTACCACCAG	AACCCAGCAG	ACACTCACAT	CTCCTGATAA	GAGTTGCTGG	2340
	ACTCGATGTT	TTTGTTTTGC	ATTTTCTCCT	CTCCTTCCCC	ACTTACTCAG	AGAATTTAAA	2400
40	GTCTGTAGAG	TCAGCACAGC	CCCATCAGTO	CAGGAACTTC	CCACCACCAG	CCCTTGACTG	2460
	TCCCATTAAC	TGACATGGTC	AGATTTCCAG	CTCCCCCTAC	TCCCTGCTGT	GAAACAATCC	2520
	CTCTCCYTGT	' GAGAGGAAAY	TGCGCGSGA	GGYTAAGGGA	GTGTGGCGGG	CGGYTCCGGG	2580
4 5	AGCCAACATG	CCTCGGTATG	CGCAGCTGKT	CATGGSCCCC	GCGGGCAGCG	GGAAGAGCAC	2640
	YTACTGTGCC	ACCATGGTCC	AGCACTGTG	A AGCCYTCAAC	CGGTCTGTCC	AAGTTGTAAA	2700
50	CCTGGATCCA	GCAGCAGAAC	: ACTTCAAYT	A CTCCGTGATC	GCTGACATCC	GGGAACTGAT	2760
<i>_</i>	CGAGGTGGAT	GATGTAATGG	AGGATGATT	Y TYTGCGATTO	GGTCCCAACG	GAGGATTGGT	2820
	ATTTTGCATC	GAGTACTTIC	CCAATAATT	TGACTGGCTC	GAGAACTGTC	TTGGCCATGT	2880
55	AGAGGACGAC	ን ጥልጥልጥናምምም	י ייייע אייייעריי	⁻ മ്യസ്മാന	r caemmenaea	CTCACCTCC	2940

	TGTGATGAAA CAGCTGGTCC AGCAGCTCGA GCAGTGGGAG TTCCGAGTCT GTGGAKTTTY	3000											
	TYTTGTTGAT TCTCAGTTCA TGGTGGAGTC ATTCAAGTTT ATTTCTGGCA TCTTGGCAGC	3060											
5	CCTGAGTGCC ATGATCTCTC TAGAAATTCC GCAAGTCAAC ATCATGACAA AAATGGATCT	3120											
	GCTGAGTAAA AAAGCAAAAA AGGAAATTGA GAAATTTTTA GATCCAGACA TGTATTCTTT	3180											
10	ATTAGAAGAT TCTACAAGTG ACTTAAGAAG CAAAAAATTC AAGAAACTGA CTAAAGCTAT	3240											
10	ATGTGGACTG ATTGATGACT ACAGCATGGT TCGATTTTTA CCTTACGATC AGTCAGATGA	3300											
	AGAAAGCATG AACATTGTAT TGCAGCATAT TGATTTTGCC ATTCAATATG GAGAAGACCT	3360											
15	AGAATTTAAA GAACCAAAGG AACGTGAAGA TGAGTCTTCC TCTATGTTTG ACGAATATTT	3420											
	TCAAGAATGC CAGGATGAAT GAAGAGTTTA CTAAAAGTAA CCATCTAAAG AGCTTGTGGC	3480											
20	CAAACCAGCA GAACATTCTT CTYTTCAAAG GATGCAATAG TAGAAAGCTA CTTATTTTAA	3540											
20	TGAAAAAAG TAAAACTTCG TTCTTTATCA GCCTCATGCC TGAATCAAAT TTTTAATTAT	3600											
	TCTGAAACTG CTGCTGTTTA AAGTGGAATC TTTTAGTATT ATAACAGCAT CACTTTAGAT	3660											
25	TTTGTAAGTC AAAATTGAAA TGAATGCACA TAGATTTATA TATAAATTAG CACCTGAGCT	3720											
	A AAAAAAAA AAAAAAAA AAAAAAAA A	3751											
30	(2) INFORMATION FOR SEQ ID NO:20:												
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 284 amino acids												
	(A) LENGTH: 284 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:												
35	(D) TOPOLOGY: linear												
	(ii) MOLECULE TYPE: protein												
40													
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:												
	Met Pro Arg Tyr Ala Gln Leu Xaa Met Xaa Pro Ala Gly Ser Gly I	Lys											
45	1 5 10 15												
	Ser Thr Tyr Cys Ala Thr Met Val Gln His Cys Glu Ala Xaa Asn A	Arg											
	20 25 30	,											
50		Tyr											
50	20 25 30 Ser Val Gln Val Val Asn Leu Asp Pro Ala Ala Glu His Phe Asn '												

		Glu 65	Asp	Asp	Xaa	Leu	Arg 70	Phe	Gly	Pro	Asn	Gly 75	Gly	Leu	Val	Phe	Cys 80
5		Met	Glu	Tyr	Phe	Ala 85	Asn	Asn	Phe	Asp	Trp 90	Leu	Glu	Asn	Суѕ	Leu 95	Gly
		His	Val	Glu	Asp 100	Asp	Tyr	Ile	Leu	Phe 105	Asp	Cys	Pro	Gly	Gln 110	Ile	Glu
10	•	Leu	Tyr	Thr 115	His	Leu	Pro	Val	Met 120	Lys	Gln	Leu	Val	Gln 125	Gln	Leu	Glu
15		Gln	Trp 130	Glu	Phe	Arg	Val	Cys 135	Gly	Xaa	Xaa	Xaa	Val 140	Asp	Ser	Gln	Phe
		Met 145	Val	Glu	Ser	·Phe	Lys 150	Phe	Ile	Ser	Gly	Ile 155	Leu	Ala	Ala	Leu	Ser 160
20		Ala	Met	Ile	Ser	Leu 165	Glu	Ile	Pro	Gln	Val 170	Asn	Ile	Met	Thr	Lys 175	Met
		Asp	Leu	Leu	Ser 180	Lys	Lys	Ala	Lys	Lys 185	Glu	Ile	Glu	Lys	Phe 190	Leu	Asp
25		Pro	Asp	Met 195	Tyr	Ser	Leu	Leu	Glu 200	Asp	Ser	Thr	Ser	Asp 205	Leu	Arg	Ser
30		Lys	Lys 210	Phe	Lys	Lys	Leu	Thr 215	Lys	Ala	Ile	Cys	Gly 220	Leu	Ile	Àsp	Asp
		Tyr 225		Met	Val	Arg	Phe 230	Leu	Pro	Tyr	Asp	Gln 235	Ser	Asp	Glu	Glu	Ser 240
35		Met	Asn	Ile	Val	Leu 245	Gln	His	Ile	Asp	Phe 250		Ile	Gln	Tyr	Gly 255	Glu
		Asp	Leu	Glu	Phe 260	_	Glu	Pro	Lys	Glu 265	-	Glu	Asp	Glu	Ser 270		Ser
40		Met	Phe	Asp 275		Tyr	Phe	Gln	Glu 280	_	Gln	Asp	Glu				
	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:21	:								
45		(i)	(A (B	LE TY	NGTH PE: RAND	: 29 nucl	TERI bas eic SS: line	e pa acid sing	irs								
50		(ii)					othe N:/					:leot	ide"				

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
	TNCAGGCCTT GCGTTCCTAG CTGCTCTGC	29
5	(2) INFORMATION FOR SEQ ID NO:22:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs	
10	(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
20	GNGCTGTGAG TTTATCCACA AAGGAACAG	29
	(2) INFORMATION FOR SEQ ID NO:23:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
40	GNATAGGAGG TCCCAAGTTA TCAAGGTTT	29
40	(2) INFORMATION FOR SEQ ID NO:24:	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
50	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	

	GNITITCCTGG TTCTTGGTCA GGTTTCCTC	29
	(2) INFORMATION FOR SEQ ID NO:25:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	<pre>(ii) MOLECULE TYPE: other nucleic acid</pre>	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
20	CNAGATGCAA TGGTTGTGAG ATTGACCAA	29
	(2) INFORMATION FOR SEQ ID NO:26:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
30	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
	GNCACTTTCC ACTGCTGTGA GCTTGTCAT	29
40	(2) INFORMATION FOR SEQ ID NO:27:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
45	(D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
55	ልእርያርያርያ	29

	(2) INFORMATION FOR SEQ ID NO:28:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
	TNATGAACCA CAGGAAACAG GAAGCCGTC	29
20	(2) INFORMATION FOR SEQ ID NO:29:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
35	TNAAGGTGAA GGTGGAGTTG GTCTGAGAC	29
	(2) INFORMATION FOR SEQ ID NO:30:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
	GNCAGAAATA AACTTGAATG ACTCCACCA	29
55	(2) TNEOPMATION FOR CEO TO NO. 21.	

5	(i)	(A) (B) (C)	LEN TYP STR		457 minc DNES	ami aci S:			ı						-	
	(ii)	MOLE	CULE	TYF	E: p	rote	ein									
10																
	(xi)	SEQU	JENCE	E DES	CRIE	OITS	1: SE	Q II	NO:	31:		,				
15	Met 1	Asn	Ser	Gln	Leu 5	Asn	Ser	Phe	Thr	Gly 10	Gln	Met	Glu	Asn	Ile 15	Thr
	Thr	Ile	Ser	Gln 20	Ala	Asn	Glu	Gln	Asn 25	Leu	Lys	Asp	Leu	Gln 30	Asp	Leu
20	His	Lys	Asp 35	Ala	Glu	Asn	Arg	Thr 40	Ala	Ile	Lys	Phe	Asn 45	Gln	Leu	Glu
25	Glu	Arg 50	Phe	Gln	Leu	Phe	Glu 55	Thr	Asp	Ile	Val	Asn 60	Ile	Ile	Ser	Asn
23	Ile 65	Ser	Tyr	Thr	Ala	His 70	His	Leu	Arg	Thr	Leu 75	Thr	Ser	Asn	Leu	Asn 80
30	Glu	Val	Arg	Thr	Thr 85	Cys	Thr	Asp	Thr	Leu 90	Thr	Lys	His	Thr	Asp 95	Asp
	Leu	Thr	Ser	Leu 100	Asn	Asn	Thr	Leu	Ala 105	Asn	Ile	Arg	Leu	Asp 110	Ser	Val
35	Ser	Leu	Arg 115	Met	Gln	Gln	Asp	Leu 120	Met	Arg	Ser	Arg	Leu 125	Asp	Thr	Glu
40	Val	Ala 130	Asn	Leu	Ser	Val	Ile 135	Met	Glu	Glu	Met	Lys 140	Leu	Val	Asp	Ser
	Lys 145	His	Gly	Gln	Leu	Ile 150	Lys	Asn	Phe	Thr	Ile 155	Leu	Gln	Gly	Pro	Pro 160
45	Gly	Pro	Arg	Gly	Pro 165		Gly	Asp	Arg	Gly 170		Gln	Gly	Pro	Pro 175	Gly
	Pro	Thr	Gly	Asn 180		Gly	Gln	Lys	Gly 185		Lys	Gly	Glu	Pro 190		Pro
50	Pro	Gly	Pro 195		Gly	Glu	Arg	Gly 200		Ile	Gly	Pro	Ala 205	_	Pro	Pro
55	Gly	Glu 210	_	Gly	Gly	Lys	Gly 215		Lys	Gly	Ser	Gln 220	-	Pro	Lys	Gly

WO 98/55614 PCT/US98/11210 .

		er 25	Arg	GIY	Ser	Pro	230 GLY	rys	Pro	GIŸ	Pro	235	GIÀ	Pro	ser	GIĀ	240
5	P	ro	Gly	Pro	Pro	Gly 245	Pro	Pro	Gly	Lys	Glu 250	Gly	Leu	Pro	Gly	Pro 255	Gln
	G	lу	Pro	Pro	Gly 260	Phe	Gln	Gly	Leu	Gln 265	Gly	Thr	Val	Gly	Glu 270	Pro	Gly
10	v	al	Pro	Gly 275	Pro	Arg	Gly	Leu	Pro 280	Gly	Leu	Pro	Gly	Val 285	Pro	Gly	Met
15	P	ro	Gly 290	Pro	Lys	Gly	Pro	Pro 295	Gly	Pro	Pro	Gly	Pro 300	Ser	Gly	Ala	Val
		al 05	Pro	Leu	Ala	Leu	Gln 310	Asn	Glu	Pro	Thr	Pro 315	Ala	Pro	Glu	Asp	Asn 320
20	S	er	Суѕ	Pro	Pro	His 325	Trp	Lys	Asn	Phe	Thr 330	Asp	Lys	Суѕ	Tyr	Tyr 335	Phe
	s	er	Val	Glu	Lys 340	Glu	Ile	Phe	Glu	Asp 345	Ala	Lys	Leu	Phe	Cys 350	Glu	Asp
25	I	ys	Ser	Ser 355	His	Leu	Val	Phe	Ile 360	Asn	Thr	Arg	Glu	Glu 365	Gln	Gln	Trp
30	I	le	Lys 370	Lys	Gln	Met	Val	Gly 375	Arg	Glu	Ser	His	Trp 380	Ile	Gly	Leu	Thr
		Asp 885	Ser	Glu	Arg	Glu	Asn 390	Glu	Trp	Lys	Trp	Leu 395	_	Gly	Thr	Ser	Pro 400
35						405					410					415	
••					420		Asp	_		425					430		
40				435			Glu		440	ı		. Phe	: Ile	Cys 445		Lys	Asp
4 5		_	450				Ser	455		Leu							
	(2) II					-	TERI										
50			(B) TY	PE: RAND	amin EDNE	2 am so ac SS: line	id	ació	ls							
E E	(:	ii)	MOL	ECUL	E TY	PE:	prot	ein									

	(xi)	SEQU	JENCE	DES	CRIF	MOIT	: SI	Q II	NO:	32:					•	
5	Cys 1	Gly	His	His	Glu 5	Leu	Asn	Asn	Leu	Asn 10	Leu	Thr	Gln	Val	Gln 15	Gln
10	Arg	Asn	Leu	Ile 20	Thr	Asn	Leu	Gln	Arg 25	Ser	Val	Asp	Asp	Thr 30	Ser	Gln
10	Ala	Ile	Gln 35	Arg	Ile	Lys	Asn	Asp 40	Phe	Gln	Asn	Leu	Gln 45	Gln	Val	Phe
15	Leu	Gln 50	Ala	Lys	Lys	Asp	Thr 55	Ąsp	Trp	Leu	Lys	Glu 60	Lys	Val	Gln	Ser
	Leu 65	Gln	Thr	Leu	Ala	Ala 70	Asn	Asn	Ser	Ala	Leu 75	Ala	Lys	Ala	Asn	Asn 80
20	Asp	Thr	Leu	Glu	Asp 85	Met	Asn	Ser	Gln	Leu 90	Asn	Ser	Phe	Thr	Gly 95	Gln
25	Met	Glu	Asn	Ile 100	Thr	Thr	Ile	Ser	Gln 105	Ala	Asn	Glu	Gln	Asn 110	Leu	Lys
	Asp	Leu	Gln 115	Asp	Leu	His	Lys	Asp 120	Ala	Glu	Asn	Arg	Thr 125	Ala	Ile	Lys
30	Phe	Asn 130	Gln	Leu	Glu	Glu	Arg 135	Phe	Gln	Leu	Phe	Glu 140	Thr	Asp	Ile	Val
	Asn 145	Ile	Ile	Ser	Asn	Ile 150	Ser	Tyr	Thr	Ala	His 155	His	Leu	Arg	Thr	Leu 160
35	Thr	Ser	Asn	Leu	Asn 165		Val	Arg	Thr	Thr 170		Thr	Asp	Thr	Leu 175	Thr
40	Lys	His	Thr	Asp 180	_	Leu	Thr	Ser	Leu 185	Asn	Asn	Thr	Leu	Ala 190		Ile
	Arg	Leu	Asp 195		Val	Ser	Leu	Arg 200		Gln	Gln	Asp	Leu 205		Arg	Ser
45	Arg	Leu 210	_	Thr	Glu	. Val	Ala 215		Leu	Ser	Val	Ile 220		Glu	Glu	Met
	Lys 225		Val	Asp	Ser	230		Gly	Gln	Leu	11e 235		Asn	Phe	Thr	11e 240
50	Leu	Gln	Gly	Pro	245	_	Pro	Arg	Gly	250		Gly	Asp	Arg	Gly 255	Ser
55	Gln	Gly	Pro	260	_	Pro	Thi	Gly	265	_	: Gly	Glr	Lys	Gly 270		Lys

WO 98/55614 PCT/US98/11210 .

	Gly	Glu	Pro 275	Gly	Pro	Pro	Gly	Pro 280	Ala	Gly	Glu	Arg	Gly 285	Pro	Ile	Gly
- 5	Pro	Ala 290	Gly	Pro	Pro	Gly	Glu 295	Arg	Gly	Gly	Lys	Gly 300	Ser	Lys	Gly	Ser
	Gln 305	Gly	Pro	Lys	Gly	Ser 310	Arg	Gly	Ser	Pro	Gly 315	Lys	Pro	Gly	Pro	Gln 320
10	Gly	Pro	Ser	Gly	Asp 325	Pro	Gly	Pro	Pro	Gly 330	Pro	Pro	Gly	Lys	Glu 335	Gly
15	Leu	Pro	Gly	Pro 340	Gln	Gly	Pro	Pro	Gly 3 4 5	Phe	Gln	Gly	Leu	Gln 350	Gly	Thr
	Val	Gly	Glu 355	Pro	Gly	Val	Pro	Gly 360	Pro	Arg	Gly	Leu	Pro 365	Gly	Leu	Pro
20	Gly	Val 370	Pro	Gly	Met	Pro	Gly 375	Pro	Lys	Gly	Pro	Pro 380	Gly	Pro	Pro	Gly
	Pro 385	Ser	Gly	Ala	Val	Val 390	Pro	Leu	Ala	Leu	Gln 395	Asn	Glu	Pro	Thr	Pro 400
25	Ala	Pro	Glu	Asp	Asn 405	Ser	Cys	Pro	Pro	His 410	Trp	Lys	Asn	Phe	Thr 415	Asp
30	Lys	Суѕ	Tyr	Tyr 420	Phe	Ser	Val	Glu	Lys 425	Glu	Ile	Phe	Glu	Asp 430	Ala	Lys
	Leu	Phe	Cys 435	Glu	Asp	Lys	Ser	Ser 440	His	Leu	Val	Phe	Ile 445	Asn	Thr	Arg
35	Glu	Glu 450	Gln	Gln	Trp	Ile	Lys 455	Lys	Gln	Met	Val	Gly 460	Arg	Glu	Ser	His
	Trp 465		Gly	Leu	Thr	Asp 470	Ser	Glu	Arg	Glu	Asn 475	Glu	Trp	Lys	Trp	Leu 480
40	Asp	Gly	Thr	Ser	Pro 485	Asp	Tyr	Lys	Asn	Trp 490	_	Ala	Gly	Gln	Pro 495	_
45	Asn	Trp	Gly	His 500		His	Gly	Pro	Gly 505		Asp	Cys	Ala	Gly 510		Ile
	Tyr	Ala	Gly 515		Trp	Asn	Asp	Phe 520		Суѕ	Glu	Asp	Val 525		Asn	Phe
50	Ile	Cys 530	Glu	Lys	Asp	Arg	Glu 535		Val	Leu	Ser	Ser 540		Leu		

What is claimed is:

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1 from nucleotide 266 to nucleotide 1651;
- (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:1 from nucleotide 521 to nucleotide 1651;
- (d) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:1 from nucleotide 335 to nucleotide 634;
- (e) a polynucleotide comprising the nucleotide sequence of the fulllength protein coding sequence of clone as 294_3 deposited under accession number ATCC 98444;
- (f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone as 294_3 deposited under accession number ATCC 98444;
- (g) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone as 294_3 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone as 294_3 deposited under accession number ATCC 98444;
- (i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:2;
- a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:2 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:2;
- (k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
- (l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above; and
- (m) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(j).
- 2. The polynucleotide of claim 1 wherein said polynucleotide is operably linked to at least one expression control sequence.

- 3. A host cell transformed with the polynucleotide of claim 2.
- 4. The host cell of claim 3, wherein said cell is a mammalian cell.
- A process for producing a protein encoded by the polynucleotide of claim
 which process comprises:
 - (a) growing a culture of the host cell of claim 3 in a suitable culture medium; and
 - (b) purifying said protein from the culture.
 - 6. A protein produced according to the process of claim 5.
- 7. A protein comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:2;
 - (b) the amino acid sequence of SEQ ID NO:2 from amino acid 1 to amino acid 123;
 - (c) fragments of the amino acid sequence of SEQ ID NO:2 comprising eight consecutive amino acids of SEQ ID NO:2; and
- (d) the amino acid sequence encoded by the cDNA insert of clone as294_3 deposited under accession number ATCC 98444; the protein being substantially free from other mammalian proteins.
- 8. The protein of claim 7, wherein said protein comprises the amino acid sequence of SEQ ID NO:2.
- The protein of claim 7, wherein said protein comprises the amino acid sequence of SEQ ID NO:2 from amino acid 1 to amino acid 123.
- 10. A composition comprising the protein of claim 7 and a pharmaceutically acceptable carrier.
 - 11. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:1.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:3;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ IDNO:3 from nucleotide 262 to nucleotide 3096;
- (c) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:3 from nucleotide 1118 to nucleotide 1527;
- (d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone aw92_1 deposited under accession number ATCC 98444;
- (e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone aw92_1 deposited under accession number ATCC 98444;
- (f) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone aw92_1 deposited under accession number ATCC 98444;
- (g) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone aw92_1 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:4;
- (i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:4 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:4;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(g) above;
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and
- a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(i).
- 13. A protein comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:4;
 - (b) the amino acid sequence of SEQ ID NO:4 from amino acid 287 to amino acid 422;

(c) fragments of the amino acid sequence of SEQ ID NO:4 comprising eight consecutive amino acids of SEQ ID NO:4; and

- (d) the amino acid sequence encoded by the cDNA insert of clone aw92_1 deposited under accession number ATCC 98444; the protein being substantially free from other mammalian proteins.
 - 14. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:3.
 - 15. An isolated polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:5;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:5 from nucleotide 612 to nucleotide 806;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:5 from nucleotide 744 to nucleotide 806;
 - (d) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:5 from nucleotide 1 to nucleotide 794;
 - (e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone bd316_2 deposited under accession number ATCC 98444;
 - a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone bd316_2 deposited under accession number ATCC 98444;
 - (g) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone bd316_2 deposited under accession number ATCC 98444;
 - (h) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone bd316_2 deposited under accession number ATCC 98444;
 - (i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:6;
 - a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:6 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:6;
 - (k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;

(l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above ; and

- (m) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(j).
- 16. A protein comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:6;
 - (b) the amino acid sequence of SEQ ID NO:6 from amino acid 1 to amino acid 61:
 - (c) fragments of the amino acid sequence of SEQ ID NO:6 comprising eight consecutive amino acids of SEQ ID NO:6; and
- (d) the amino acid sequence encoded by the cDNA insert of clone bd316_2 deposited under accession number ATCC 98444; the protein being substantially free from other mammalian proteins.
 - 17. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:5.
 - 18. An isolated polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:7;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ IDNO:7 from nucleotide 7 to nucleotide 300;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:7 from nucleotide 1 to nucleotide 363;
 - (d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone bk130_4 deposited under accession number ATCC 98444;
 - (e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone bk130_4 deposited under accession number ATCC 98444;
 - (f) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone bk130_4 deposited under accession number ATCC 98444;

 (g) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone bk130_4 deposited under accession number ATCC 98444;

- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:8;
- a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:8 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:8;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(g) above;
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above ; and
- (l) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(i).
- 19. A protein comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:8;
 - (b) fragments of the amino acid sequence of SEQ ID NO:8 comprising eight consecutive amino acids of SEQ ID NO:8; and
- (c) the amino acid sequence encoded by the cDNA insert of clone bk130_4 deposited under accession number ATCC 98444; the protein being substantially free from other mammalian proteins.
 - An isolated gene corresponding to the cDNA sequence of SEQ ID NO:7.
 - 21. An isolated polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:9;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:9 from nucleotide 52 to nucleotide 1863;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:9 from nucleotide 1219 to nucleotide 1863;
 - (d) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:9 from nucleotide 1099 to nucleotide 1743;

 (e) a polynucleotide comprising the nucleotide sequence of the fulllength protein coding sequence of clone bv131_5 deposited under accession number ATCC 98444;

- (f) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone bv131_5 deposited under accession number ATCC 98444;
- (g) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone bv131_5 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone bv131_5 deposited under accession number ATCC 98444;
- (i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:10;
- a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:10 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:10;
- (k) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(h) above;
- (l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above; and
- (m) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(j).
- 22. A protein comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:10;
 - (b) the amino acid sequence of SEQ ID NO:10 from amino acid 430 to amino acid 564;
 - (c) fragments of the amino acid sequence of SEQ ID NO:10 comprising eight consecutive amino acids of SEQ ID NO:10; and
- (d) the amino acid sequence encoded by the cDNA insert of clone bv131_5 deposited under accession number ATCC 98444; the protein being substantially free from other mammalian proteins.
 - 23. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:9.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:11;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:11 from nucleotide 67 to nucleotide 690;
- (c) a polynucleotide comprising the nucleotide sequence of SEQ IDNO:11 from nucleotide 1 to nucleotide 576;
- (d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone bv227_1 deposited under accession number ATCC 98444;
- (e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone bv227_1 deposited under accession number ATCC 98444;
- (f) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone bv227_1 deposited under accession number ATCC 98444;
- (g) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone bv227_1 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:12;
- (i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:12 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:12;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(g) above;
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above; and
- (l) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(i).
- 25. A protein comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:12;
 - (b) the amino acid sequence of SEQ ID NO:12 from amino acid 1 to amino acid 170;

(c) fragments of the amino acid sequence of SEQ ID NO:12 comprising eight consecutive amino acids of SEQ ID NO:12; and

- (d) the amino acid sequence encoded by the cDNA insert of clone bv227_1 deposited under accession number ATCC 98444; the protein being substantially free from other mammalian proteins.
 - 26. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:11.
 - 27. An isolated polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:13;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ IDNO:13 from nucleotide 657 to nucleotide 1469;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:13 from nucleotide 678 to nucleotide 1103;
 - (d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone cd265_11 deposited under accession number ATCC 98444;
 - (e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone cd265_11 deposited under accession number ATCC 98444;
 - (f) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone cd265_11 deposited under accession number ATCC 98444;
 - (g) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone cd265_11 deposited under accession number ATCC 98444;
 - (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:14;
 - a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:14 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:14;
 - (j) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(g) above;
 - (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above; and

(l) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(i).

- 28. A protein comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:14;
 - (b) the amino acid sequence of SEQ ID NO:14 from amino acid 8 to amino acid 149:
 - (c) fragments of the amino acid sequence of SEQ ID NO:14 comprising eight consecutive amino acids of SEQ ID NO:14; and
- (d) the amino acid sequence encoded by the cDNA insert of clone cd265_11 deposited under accession number ATCC 98444; the protein being substantially free from other mammalian proteins.
 - 29. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:13.
 - 30. An isolated polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:15;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:15 from nucleotide 261 to nucleotide 896;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:15 from nucleotide 330 to nucleotide 896;
 - (d) a polynucleotide comprising the nucleotide sequence of SEQ IDNO:15 from nucleotide 1 to nucleotide 515;
 - (e) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone ej265_4 deposited under accession number ATCC 98444;
 - a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone ej265_4 deposited under accession number ATCC 98444;
 - (g) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone ej265_4 deposited under accession number ATCC 98444;

 (h) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone ej265_4 deposited under accession number ATCC 98444;

- (i) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:16;
- a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:16 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:16;
- (k) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(h) above;
- (l) a polynucleotide which encodes a species homologue of the protein of (i) or (j) above; and
- (m) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(j).
- 31. A protein comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:16;
 - (b) the amino acid sequence of SEQ ID NO:16 from amino acid 1 to amino acid 85;
 - (c) fragments of the amino acid sequence of SEQ ID NO:16 comprising eight consecutive amino acids of SEQ ID NO:16; and
- (d) the amino acid sequence encoded by the cDNA insert of clone ej265_4 deposited under accession number ATCC 98444; the protein being substantially free from other mammalian proteins.
 - 32. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:15.
 - 33. An isolated polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:17;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:17 from nucleotide 946 to nucleotide 2232;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:17 from nucleotide 1336 to nucleotide 1853;

 (d) a polynucleotide comprising the nucleotide sequence of the fulllength protein coding sequence of clone ey29_8 deposited under accession number ATCC 98444;

- (e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone ey29_8 deposited under accession number ATCC 98444;
- (f) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone ey29_8 deposited under accession number ATCC 98444;
- (g) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone ey29_8 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:18;
- (i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:18 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:18;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(g) above;
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above; and
- (l) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(i).
- 34. A protein comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:18;
 - (b) the amino acid sequence of SEQ ID NO:18 from amino acid 138 to amino acid 302;
 - (c) fragments of the amino acid sequence of SEQ ID NO:18 comprising eight consecutive amino acids of SEQ ID NO:18; and
- (d) the amino acid sequence encoded by the cDNA insert of clone ey29_8 deposited under accession number ATCC 98444; the protein being substantially free from other mammalian proteins.
 - 35. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:17.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:19;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:19 from nucleotide 2588 to nucleotide 3439;
- (c) a polynucleotide comprising the nucleotide sequence of SEQ ID
 NO:19 from nucleotide 3005 to nucleotide 3502;
- (d) a polynucleotide comprising the nucleotide sequence of the full-length protein coding sequence of clone gm114_10 deposited under accession number ATCC 98444;
- (e) a polynucleotide encoding the full-length protein encoded by the cDNA insert of clone gm114_10 deposited under accession number ATCC 98444;
- (f) a polynucleotide comprising the nucleotide sequence of a mature protein coding sequence of clone gm114_10 deposited under accession number ATCC 98444;
- (g) a polynucleotide encoding a mature protein encoded by the cDNA insert of clone gm114_10 deposited under accession number ATCC 98444;
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:20;
- a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:20 having biological activity, the fragment comprising eight consecutive amino acids of SEQ ID NO:20;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of(a)-(g) above;
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above; and
- (l) a polynucleotide that hybridizes under stringent conditions to any one of the polynucleotides specified in (a)-(i).
- 37. A protein comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:20;
 - (b) the amino acid sequence of SEQ ID NO:20 from amino acid 145 to amino acid 284;

(c) fragments of the amino acid sequence of SEQ ID NO:20 comprising eight consecutive amino acids of SEQ ID NO:20; and

- (d) the amino acid sequence encoded by the cDNA insert of clone gm114_10 deposited under accession number ATCC 98444; the protein being substantially free from other mammalian proteins.
 - 38. An isolated gene corresponding to the cDNA sequence of SEQ ID NO:19.

FIGURE 1A

FIGURE 1B

