2A. Finite generation and the Noetherian property

Finite generation and the Noetherian Property.

Let R be a ring and M a left R module. M is finitely generated if there are finitely many elements $m_1, \ldots, m_k \in M$ so that, for any $m \in M$, there are $r_i \in R$, such that

$$m = \sum_{i=1}^{k} r_i m_i.$$

Equivalently, M is finitely generated if, for some $n \geq 0$ in $\mathbb Z$ there is a surjective R-module homomorphism

$$\pi: \bigoplus_{i=1}^n R = R^n \to M.$$

The images of the basis elements of \mathbb{R}^n give the generating set m_i .

Definition: A module M satisfies the ascending chain condition if any increasing sequence of submodules

$$M_1 \subset M_2 \subset \cdots \subset M_k \subset$$

eventually stabilizes, meaning that there is an N so that $M_i = M_j$ for all $i, j \geq N$.

Proposition: The following are equivalent:

- 1. M satisfies the ascending chain condition.
- 2. Every nonempty set of submodules of M has a maximal element.
- 3. Every submodule of M is finitely generated.

A module that satisfies these equivalent conditions is called (left) *Noetherian* after Emmy Noether. A ring is Noetherian if it is Noetherian as a left module over itself. Since the submodules of a ring are the ideals, a ring is Noetherian if every ideal is finitely generated.

Proof: Suppose M satisfies the ascending chain condition and let \mathcal{M} be a nonempty collection of submodules of M. Every ascending chain in \mathcal{M} has a maximal element (that's basically what the chain condition says) and therefore by Zorn's lemma there is a maximal element for \mathcal{M} . Now suppose N is any submodule of M. Let \mathcal{N} be the collection of finitely generated submodules of N. Since the zero module is in \mathcal{N} , it is nonempty, so it has a maximal element $N' \subset N$. Choose $x \in N$. Then N' + Rx is a finitely generated submodule of N, and since N' is maximal, we must have N' + Rx = N'. This means $x \in N'$. Therefore N = N' so N is finitely generated. Finally, if

$$M_1 \subset M_2 \subset \cdots$$

is an increasing chain of submodules, their union M_{∞} is a submodule which must be finitely generated by, say, m_1, \ldots, m_n . Then there is an integer k such that M_k that contains m_1, \ldots, m_n so $M_k = M_{\infty}$ and the increasing chain stabilizes at k.

Proposition: Any principal ideal domain is Noetherian.

Proof: Any ideal is generated by one element.

Proposition: If M is Noetherian, so is any quotient module of M.

Proof: Suppose N = M/J where J is a submodule of M. If $K \subset N$ is a submodule, then by the isomorphism theorem K = K'/J for some $K' \subset M$ containing J. Since M is Noetherian, K' is finitely generated by, say k_1, \ldots, k_r and then the corresponding $k_i + J$ generate N.

Proposition: If R is Noetherian, so is R^n .

Proof: By induction on n. We know the result for n=1. Suppose it's true for R^{n-1} . Let M be a submodule of $R^n=R^{n-1}\oplus R$. Let $\pi:M\to R$ be the projection of M onto the last component. Then $\pi(M)$ is an ideal of R, hence finitely generated. If x_1,\ldots,x_k generate $\pi(M)$, then we know that each $x_i=\pi(m_i)$ for $m_i\in M$ and also, for any $m\in M$, we have

$$\phi(m) = \sum r_i x_i = \phi(\sum r_i m_i).$$

This means that any $m \in M$ can be written $m = m_0 + \sum_{i=1}^k r_i m_i$ with $m_0 \in \ker(\pi) \subset R^{n-1}$. Since $\ker(\pi)$ is finitely generated by induction, this shows that M is finitely generated (by the finite set of generators for $\ker(M)$ together with m_1, \ldots, m_k)

Proposition: If R is Noetherian, and M is a finitely generated R-module, then M is Noetherian.

Proof: In this case M is a quotient of \mathbb{R}^n .

Proposition: (Hilbert) If R is Noetherian, so is R[x]. This is called the Hilbert Basis Theorem; we won't prove it. Paul Gordan is alleged to have said of this result "This isn't mathematics, it is theology!" (quite possibly this is just a folk tale in mathematics.)

Non-noetherian rings and modules

The polynomial ring in countably many variables is not Noetherian. The ring of continuous functions on \mathbb{R} (or on [-1,1]) is not Noetherian because you can let M_i be the space of continuous functions which vanish on [-1/i,1/i] for $i=1,\ldots$ These are ideals in the ring and we have $M_i\subset M_{i+1}$ but the sequence doesn't stabilize.

- There are finitely generated modules (over non-Noetherian rings) whose submodules are not finitely generated.
- There are modules over non-commutative rings that are left-Noetherian, but not right-Noetherian.