FEM for 2D Stress Analysis

An Example
Dr. Sarat Singamneni

EXAMPLE #1

The plate of 50 CmX10 Cm is fixed at the left end and pulled by the two concentrated loads at the right as shown in the figure below. Considering a uniform thickness of 1 Cm, neglecting all body forces and initial strains and residual stresses, solve for the elemental stress components, using the Finite Element approach. Plane stress conditions prevail. Consider E as 210 GPa and v as 0.3

FE Approach

$$[K] \{ S\} - \{f\} = 0$$

$$\begin{cases}
F1x \\
F1y \\
F2x \\
F2x \\
F3x \\
F3x \\
F4x \\
F4y
\end{cases} = \begin{cases}
R1x \\
R2y \\
R2y \\
1000 \\
0 \\
0
\end{cases} = [K] \begin{cases}
0 \\
0 \\
0 \\
0 \\
u_3 \\
v_3 \\
u_4 \\
v_4
\end{cases}$$

Element 1

$$\begin{bmatrix} B \end{bmatrix} = \frac{1}{2\Delta} \begin{bmatrix} b_1 & 0 & b_2 & 0 & b_3 & 0 \\ 0 & c_1 & 0 & c_2 & 0 & c_3 \\ c_1 & b_1 & c_2 & b_2 & c_3 & b_3 \end{bmatrix}$$

$$a_1 = x_2 y_3 - x_3 y_2, a_2 = x_3 y_1 - x_1 y_3, a_3 = x_1 y_2 - x_2 y_1$$

$$b_1 = y_2 - y_3, b_2 = y_3 - y_1, b_3 = y_1 - y_2$$

$$c_1 = x_3 - x_2, c_2 = x_1 - x_3, c_3 = x_2 - x_1$$

B1 =

\[0	0	0.1000	0	-0.1000	0]
0	- 0.5000	0	0	0	0.5000
- 0.5000	0	0	0.1000	0.5000	-0.1000

[0	0	0.1000	0	-0.1000	0]
0	-0.5000	0	0	0	0.5000
-0.5000	0	0	0.1000	0.5000	- 0.1000

B1T =

$$\begin{bmatrix} 0 & 0 & -0.5000 \\ 0 & -0.5000 & 0 \\ 0.1000 & 0 & 0 \\ 0 & 0 & 0.1000 \\ -0.1000 & 0 & 0.5000 \\ 0 & 0.5000 & -0.1000 \end{bmatrix}$$

$$[D] = \frac{E}{(1 - v^2)} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1 - v}{2} \end{bmatrix}$$

$$\begin{bmatrix} D \end{bmatrix} = \left(\frac{210X10^9}{1 - 0.3^2} \right) \begin{bmatrix} 1 & 0.3 & 0 \\ 0.3 & 1 & 0 \\ 0 & 0 & \frac{1 - 0.3}{2} \end{bmatrix}$$

B1TD =

$$\left(\frac{210X10^9}{1-0.3^2}\right) \begin{bmatrix}
0 & 0 & -0.1750 \\
-0.1500 & -0.5000 & 0 \\
0.1000 & 0.0300 & 0 \\
0 & 0 & 0.0350 \\
-0.1000 & -0.0300 & 0.1750 \\
0.1500 & 0.5000 & -0.0350
\end{bmatrix}$$

Elemental stiffness matrix1

 $Ke^1 = B1TDB1 =$

0.0875	0	0	-0.0175	-0.0875	$0.0175 \rceil \left[u_1 \right]$
0	0.2500	-0.0150	0	0.0150	$-0.2500 v_1 $
0	-0.0150	0.0100	0	-0.0100	1, - 1
-0.0175	0	0	0.0035	0.0175	$-0.0035 \mid v_3 \mid$
-0.0875	0.0150	-0.0100	0.0175	0.0975	$-0.0325 u_2 $
0.0175	-0.2500	0.0150	- 0.0035	- 0.0325	0.2535 v_2

Element 2

B2 =

- 0.1000	0	0.1000	0	0	0
0	0	0	-0.5000	0	0.5000
0	-0.1000	-0.5000	0.1000	0.5000	$\begin{bmatrix} 0 \\ 0.5000 \\ 0 \end{bmatrix}$

B2T =

\[- 0.1000	0	0
0	0	-0.1000
0.1000	0	-0.5000
0	-0.5000	0.1000
0	0	0.5000
0	0.5000	0

$$[D] = \left(\frac{210X10^9}{1 - 0.3^2}\right) \begin{bmatrix} 1 & 0.3 & 0\\ 0.3 & 1 & 0\\ 0 & 0 & \frac{1 - 0.3}{2} \end{bmatrix}$$

B2TD =
$$\begin{bmatrix} -0.1000 & -0.0300 & 0 \\ 0 & 0 & -0.0350 \\ 0.1000 & 0.0300 & -0.1750 \\ -0.1500 & -0.5000 & 0.0350 \\ 0 & 0 & 0.1750 \\ 0.1500 & 0.5000 & 0 \end{bmatrix}$$

Elemental stiffness matrix 2

 $Ke^2 = B2TDB2 =$

0.0100	0	-0.0100	0.0150	0	-0.0150	$ u_1 $
0	0.0035	0.0175	-0.0035	-0.0175	0	$ v_1 $
-0.0100	0.0175	0.0975	-0.0325	- 0.0875	0.0150	$\int u_4$
0.0150	-0.0035	-0.0325	0.2535	0.0175	-0.2500	v_4
0	-0.0175	-0.0875	0.0175	0.0875	0	$ u_3 $
0.0150	0	0.0150	- 0.2500	0	0.2500	$\left \left[v_3 \right] \right $

Stiffness matrices [Ke]

Contribution from Element 1

	0.0875	0.0000	-0.0875	0.0175	0.0000	-0.0175	0.0000	$0.0000 \mid u_{\scriptscriptstyle \perp} \mid$
	0.0000	0.2500	0.1500	-0.2500	-0.0150	0.0000	0.0000	$0.0000 v_1 $
	- 0.0875	0.0150	0.0975	-0.0325	-0.0100	0.0175	0.0000	$0.0000 \mid u_{2} \mid$
$\begin{pmatrix} 0.01 \times 0.025 \times 1 & 210 \times 10^{\circ} & 1 \end{pmatrix}$	0.0175	-0.2500	-0.0325	0.2535	0.0150	-0.0035	0.0000	$0.0000 \mid v_{2} \mid$
$0.01X0.025X \frac{1}{2X0.025}X \frac{1}{1-0.3^{2}}X \frac{2}{2X0.025}$	0.0000	-0.0150	-0.0100	0.0150	0.0100	0.0000	0.0000	$0.0000 \mid u_{\scriptscriptstyle 3} \mid$
	- 0.0175	0.0000	0.0175	-0.0035	0.0000	0.0035	0.0000	$0.0000 v_{3} $
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	$0.0000 \mid u_{\downarrow} \mid$
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000 $\left\lfloor v_{_{4}} \right\rfloor$

	0.0875	0.0000	-0.0875	0.0175	0.0000	-0.0175	0.0000	$0.0000 \mid u_{\scriptscriptstyle \perp}$
	0.0000	0.2500	0.1500	-0.2500	-0.0150	0.0000	0.0000	$0.0000 \mid v_{\scriptscriptstyle \perp} \mid$
	- 0.0875	0.0150	0.0975	-0.0325	-0.0100	0.0175	0.0000	$0.0000 u_{2} $
$(23.1X10^{\circ})$	0.0175	-0.2500	-0.0325	0.2535	0.0150	-0.0035	0.0000	$0.0000 \mid v_{2} \mid$
(23.17.10)	0.0000	-0.0150	-0.0100	0.0150	0.0100	0.0000	0.0000	$0.0000 \left u_{3} \right $
	- 0.0175	0.0000	0.0175	-0.0035	0.0000	0.0035	0.0000	$0.0000 \mid v_{3} \mid$
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	$0.0000 \mid u_{\scriptscriptstyle \perp} \mid$
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000 $\left\lfloor \left\langle v_{_{\scriptscriptstyle 4}} \right\rangle \right floor$

Contribution from Element 2

	0.0100	0.0000	0.0000	0.0000	0.0000	-0.0150	-0.0100	$0.0150 \left \left u_{\scriptscriptstyle \perp} \right \right $
	0.0000	0.0035	0.0000	0.0000	-0.0175	0.0000	0.0175	-0.0035 v ₁
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	$0.0000 \mid u_{2} \mid$
$(23.1X10^{\circ})$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	$0.0000 \mid v_{2} \mid$
(23.17.10)	0.0000	-0.0175	0.0000	0.0000	0.0875	0.0000	-0.0875	$0.0175 \mid u_{3} \mid$
	- 0.0150	0.0000	0.0000	0.0000	0.0000	0.2500	0.0150	$-0.2500 v_{3} $
	- 0.0100	0.0175	0.0000	0.0000	-0.0875	0.0150	0.0975	$-0.0325 u_{_4} $
	0.0150	-0.0035	0.0000	0.0000	0.0175	-0.2500	-0.0325	$0.2535 \left \left[v_{_{\scriptscriptstyle 4}} \right] \right $
								- ()

Overall stiffness matrix

K =

	0.0975	0.000	-0.0875	0.0175	0.000	-0.0325	-0.0100	0.0150
	0.000	0.2535	0.1500	-0.2500	-0.0325	0.000	0.0175	-0.003
	-0.0875	0.0150	0.0975	-0.0325	-0.0100	0.0175	0.000	0.000
23.1X10 ⁹	0.0175	-0.2500	-0.0325	0.2535	0.0150	-0.0035	0.000	0.000
	0.000	-0.0325	-0.0100	0.0150	0.0975	0.000	-0.0875	0.0175
	-0.0325	0.000	0.0175	-0.0035	0.000	0.2535	0.0150	-0.2500
	-0.0100	0.0175	0.000	0.000	-0.0875	0.0150	0.0975	-0.0325
	0.0150	-0.0035	0.000	0.000	0.0175	-0.2500	-0.0325	0.2535

Unknown Displacements

The first four rows and columns can be eliminated from these equations as u1, v1 and u2 and v2 are all equal to zero. This means

$$\begin{pmatrix} 23.1X10^9 \\ 0.0975 & 0.0000 & -0.0875 & 0.0175 \\ 0.0000 & 0.2535 & 0.0150 & -0.2500 \\ -0.0875 & 0.0150 & 0.0975 & -0.0325 \\ 0.0175 & -0.2500 & -0.0325 & 0.2535 \end{pmatrix} \begin{pmatrix} u_3 \\ v_3 \\ u_4 \\ v_4 \end{pmatrix} = \begin{pmatrix} 1000 \\ 0 \\ 1000 \\ 0 \end{pmatrix}$$

Upon inversion,

$$\begin{cases} u_3 \\ v_3 \\ u_4 \\ v_4 \end{cases} = (1.0X10^{-5}) \begin{cases} 0.4490 \\ 0.0092 \\ 0.4582 \\ 0.0368 \end{cases}$$

Reactions at nodes 1 and 2

$$F = [K]{\delta}$$

$$\begin{cases}
R1x \\
R1y \\
R2x \\
R2y \\
F3x \\
F4x \\
F4y
\end{cases} = (1.0e + 003) \begin{cases}
-1.000 \\
-1.5483 \\
-1.0000 \\
1.5483 \\
1.0000 \\
0.0012 \\
1.0000 \\
-0.0012
\end{cases}$$

Elemental stress components

Element 1

$$\sigma = [D][B1]\{d1\}$$

$$\sigma = \frac{210X10^{9}X10^{-5}}{2X0.025(1-0.3^{2})} \begin{bmatrix} 1.0 & 0.3 & 0 \\ 0.3 & 1.0 & 0 \\ 0 & 0 & 0.35 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0.1 & 0 & -0.1 & 0 \\ 0 & -0.5 & 0 & 0 & 0 & 0.5 \\ -0.5 & 0 & 0 & 0.1 & 0.5 & -0.1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0.4490 \\ 0.0092 \\ 0 \\ 0 \end{bmatrix}$$

$$\sigma = \begin{cases} \sigma x \\ \sigma y \\ \tau xy \end{cases} = 1.0e + 006 X \begin{cases} 2.0723 \\ 0.6217 \\ 0.0149 \end{cases}$$

Elemental stress components

Element 2

$$\sigma$$
=[D][B 2]{ d 2}

$$\sigma = \frac{210X10^{9}X10^{-5}}{2X0.025(1-0.3^{2})} \begin{bmatrix} 1.0 & 0.3 & 0 \\ 0.3 & 1.0 & 0 \\ 0 & 0 & 0.35 \end{bmatrix} \begin{bmatrix} -0.1000 & 0 & 0.1000 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -0.5000 & 0 & 0.5000 \\ 0 & -0.1000 & -0.5000 & 0.1000 & 0.5000 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0.4582 \\ 0.0368 \\ 0.4490 \\ 0.0092 \end{bmatrix}$$

$$\sigma = \begin{cases} \sigma x \\ \sigma y \\ \tau xy \end{cases} = 1.0e + 006 X \begin{cases} 1.9237 \\ -0.0025 \\ -0.0149 \end{cases}$$