```
# Name:Atharva Kangralkar
# Class:CS(AIML) - A
# Roll: 54
# PRN:12311493
# LINK:- https://colab.research.google.com/drive/leksVrNHhmyMTobQyfJgck_qwK2Zrr5e3?usp=sharing
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

df = pd.read_csv("/content/Customers.csv")
#Q1) Show first 5 lines of Customers dataset.
df.head()
```

→		CustomerID	Gender	Age	Annual Income (\$)	Spending Score (1-100)	Profession	Work Experience	Family Size
	0	1	Male	19	15000	39	Healthcare	1	4
	1	2	Male	21	35000	81	Engineer	3	3
	2	3	Female	20	86000	6	Engineer	1	1
	3	4	Female	23	59000	77	Lawyer	0	2
	4	5	Female	31	38000	40	Entertainment	2	6

#Q2) Find out detail information Customers dataset.
df.info()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	2000 non-null	int64
1	Gender	2000 non-null	object
2	Age	2000 non-null	int64
3	Annual Income (\$)	2000 non-null	int64
4	Spending Score (1-100)	2000 non-null	int64
5	Profession	1965 non-null	object
6	Work Experience	2000 non-null	int64
7	Family Size	2000 non-null	int64

dtypes: int64(6), object(2)
memory usage: 125.1+ KB

#Q3) Show the preview of numerical columns in Customers dataset.
df.describe()

→		CustomerID	Age	Annual Income (\$)	Spending Score (1-100)	Work Experience	Family Size
	count	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000
	mean	1000.500000	48.960000	110731.821500	50.962500	4.102500	3.768500
	std	577.494589	28.429747	45739.536688	27.934661	3.922204	1.970749
	min	1.000000	0.000000	0.000000	0.000000	0.000000	1.000000
	25%	500.750000	25.000000	74572.000000	28.000000	1.000000	2.000000
	50%	1000.500000	48.000000	110045.000000	50.000000	3.000000	4.000000
	75%	1500.250000	73.000000	149092.750000	75.000000	7.000000	5.000000
	max	2000.000000	99.000000	189974.000000	100.000000	17.000000	9.000000

#Q4) Find out shape of Customers dataset.
df.shape

→ (2000, 8)

#Q5) Find out mean of Age column in Customers dataset.
df["Age"].mean()

→ 48.96

#Q6) Find out mean of Annual Income column in Customers dataset.
df["Annual Income (\$)"].mean()

→ 110731.8215

Q7) Find out median of Age column in Customers dataset. df["Age"].median()

→ 48.0

```
# 08) Find out median of Annual Income column in Customers dataset.
df["Annual Income ($)"].median()
→▼ 110045.0
len(df["Age"].unique())
→ 100
df["Age"].unique()
\rightarrow \overline{\phantom{a}} array([19, 21, 20, 23, 31, 22, 35, 64, 30, 67, 58, 24, 37, 52, 25, 46, 54,
            29, 45, 40, 60, 53, 18, 49, 42, 36, 65, 48, 50, 27, 33, 59, 47, 51,
            69, 70, 63, 43, 68, 32, 26, 57, 38, 55, 34, 66, 39, 44, 28, 56, 41,
            16, 76, 62, 80, 1, 0, 86, 79, 83, 95, 93, 78, 15, 6, 84, 4, 91,
            14, 92, 77, 89, 12, 7, 94, 96, 74, 85, 73, 9, 10, 11, 17, 90, 61,
            13, 72, 5, 75, 99, 88, 82, 8, 87, 3, 97, 81, 98, 2, 71])
# Q9) Find summary statistics of income grouped by the age groups. (groupby function)
df["Age Group"] = pd.cut(df["Age"], bins=10) # Automatically creates 5 age groups
print(df.groupby("Age Group")["Annual Income ($)"].describe())
\rightarrow
                                                   std
                                                            min
                                                                      25% \
                    count
                                    mean
     Age Group
     (-0.099, 9.9] 185.0 119410.983784 41426.998555
                                                        12000.0
                                                                 84000.00
     (9.9, 19.8]
                    195.0 115841.379487
                                         47308.971630
                                                         2000.0 78451.00
     (19.8, 29.7]
                    211.0 103448.559242
                                          47674.365796
                                                            0.0 67223.50
     (29.7, 39.6]
                    241.0 102080.908714
                                          47720.394249
                                                            0.0 66000.00
     (39.6, 49.5]
                    195.0 104140.492308
                                          49760.890582
                                                                 68833.00
                                                         2000.0
     (49.5, 59.4]
                    202.0 107900.287129
                                          44234.408613
                                                         4000.0 74101.00
     (59.4, 69.3]
                    210.0 113624.961905
                                          47545.317324
                                                         7000.0 77544.25
     (69.3, 79.2]
                    167.0 110549.832335
                                                         3000.0 76497.50
                                          43579.341673
     (79.2, 89.1]
                    200.0 119412.955000
                                          39193.272793
                                                         7000.0 93279.25
                                                         1000.0 75766.25
     (89.1, 99.0]
                    194.0 113636.536082 43453.084933
                         50%
                                    75%
                                              max
     Age Group
     (-0.099, 9.9]
                   123804.0 151298.00
                                         189709.0
     (9.9, 19.8]
                    116822.0 156413.50
                                        189689.0
     (19.8, 29.7)
                     99950.0 145981.00 189650.0
     (29.7, 39.6]
                     96794.0 144485.00 189630.0
     (39.6, 49.5]
                     98000.0 147020.00 187898.0
     (49.5, 59.4]
                    104533.5 145249.00 189672.0
```

```
    (59.4, 69.3]
    116548.5
    152871.75
    189945.0

    (69.3, 79.2]
    106681.0
    147867.50
    187141.0

    (79.2, 89.1]
    122020.0
    150055.75
    188719.0

    (89.1, 99.0]
    110019.0
    152188.75
    189974.0
```

Q10) Find summary statistics of income grouped by the Profession groups. (groupby function)
df.groupby("Profession")["Annual Income (\$)"].describe()

→		count	mean	std	min	25%	50%	75%	max
	Profession								
	Artist	612.0	108776.580065	45430.821575	0.0	73122.75	105211.0	146370.50	189709.0
	Doctor	161.0	111573.217391	48261.233502	0.0	73892.00	111871.0	154821.00	189672.0
	Engineer	179.0	111161.240223	46503.822115	7000.0	76260.50	112766.0	151230.00	189974.0
	Entertainment	234.0	110650.333333	45001.884572	1000.0	73497.50	109446.0	148479.50	186882.0
	Executive	153.0	113770.130719	45434.149328	4000.0	77873.00	112957.0	150782.00	189630.0
	Healthcare	339.0	112574.041298	45426.143104	3000.0	76475.50	111717.0	151050.50	189689.0
	Homemaker	60.0	108758.616667	40393.442633	29000.0	78213.25	100387.0	135993.75	188696.0
	Lawyer	142.0	110995.838028	47793.706749	3000.0	74277.25	113338.5	150881.25	189650.0
	Marketing 4	85.0	107994.211765	48772.573140	5000.0	65483.00	120899.0	145704.00	186069.0

Q11) Find out the mode of Age column in Customers dataset.
df["Age"].mode()

4

<ipython-input-24-2bf85db7b61a>:3: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass
print(df.groupby("Age Group")["Annual Income (\$)"].describe())

→

```
# Q12) Find out count value based on Age groups.
df["Age Group"].value counts()
```

count

sns.boxplot(x=df["Age"])
plt.title("Box Plot of Age")

plt.show()

```
Age Group
       (29.7, 39.6]
                    241
      (19.8, 29.7]
                    211
      (59.4, 69.3]
                    210
      (49.5, 59.4]
                    202
      (79.2, 89.1]
                    200
       (9.9, 19.8]
                    195
      (39.6, 49.5]
                    195
       (89.1, 99.0]
                    194
      (-0.099, 9.9]
                    185
      (69.3, 79.2]
                    167
# Q13) Find out the variance of Age column in Customers dataset.
df["Age"].var()
     808.2505252626332
# Q14) Find out the standard deviation of Age column in Customers dataset.
df["Age"].std()
     28.429747189565955
# Q15) Draw box plot. Use Age column.
plt.figure(figsize=(8,5))
```



```
# Q16) Use Range function to find out range of Age and Annual Income column.
age range = df["Age"].max() - df["Age"].min()
income_range = df["Annual Income ($)"].max() - df["Annual Income ($)"].min()
print(f"Age Range: {age range}")
print(f"Annual Income Range: {income_range}")
    Age Range: 99
     Annual Income Range: 189974
# Q17) Use aggerate function and find out statistics for Age and Annual Income column.
print(df[["Age", "Annual Income ($)"]].agg(["mean", "median", "std", "var", "min", "max"]))
→
                    Age Annual Income ($)
              48.960000
                              1.107318e+05
     mean
              48.000000
     median
                              1.100450e+05
              28.429747
                              4.573954e+04
     std
     var
             808.250525
                              2.092105e+09
     min
               0.000000
                              0.000000e+00
```

→

max

99.000000

1.899740e+05

```
# Q18) Perform Univariate and Bivariate analysis on Customers dataset.
plt.figure(figsize=(10,4))

plt.subplot(1,2,1)
sns.histplot(df["Age"], bins=10, kde=True)
plt.title("Distribution of Age")

plt.subplot(1,2,2)
sns.histplot(df["Annual Income ($)"], bins=10, kde=True)
plt.title("Distribution of Annual Income")

plt.tight_layout()
plt.show()
```



```
plt.figure(figsize=(8,5))
sns.scatterplot(x=df["Age"], y=df["Annual Income ($)"], hue=df["Profession"])
plt.title("Age vs Annual Income")
plt.xlabel("Age")
plt.ylabel("Annual Income")
plt.show()
```

print(df[["Age", "Annual Income (\$)"]].corr())

Start coding or generate with AI.