partitions-leanblueprint

Carter Hastings

Quinn Oveson

September 12, 2025

0.1 Definitions

Definition 1 (Modular Form). In lean, A modular form of weight $k \in \mathbb{N}$ is a function $f : \mathbb{C} \to \mathbb{C}$ such that :

- (1) f is holomorphic on \mathbb{H}
- (2) For all $z \in \mathbb{H}$, f(z) = f(z+1)
- (3) For all $z \in \mathbb{H}$, $f(z) = z^{-k} f(-1/z)$
- (4) f is bounded as $Re(z) \to \infty$

Definition 2 (Integer Modular Form). An integer modular form of weight $k \in \mathbb{N}$ is a sequence $a : \mathbb{N} \to \mathbb{Z}$ such that $\sum_{n=0}^{\infty} a(n)q^n$ is a modular form of weight k, where $q = e^{2\pi i z}$.

Definition 3 (ModularFormMod ℓ). A modular form mod ℓ of weight $k \in \mathbb{Z}/(\ell-1)\mathbb{Z}$ is a sequence $a : \mathbb{N} \to \mathbb{Z}/\ell\mathbb{Z}$ such that there exists an integer modular form b of weight k' where $b \equiv a \mod \ell$ and $k' \equiv k \mod (\ell-1)$.

Definition 4 (Theta). Θ sends modular forms mod ℓ of weight k to weight k+2 by $(\Theta a)n = na(n)$.

Definition 5 (U Operator). The operator U sends modular forms mod ℓ of weight k to weight k by

 $(a|U)n = a(\ell n).$

Definition 6 (hasWeight). A modular form mod ℓ called a has weight $j \in \mathbb{N}$ if there exists an integer modular form b of weight j such that $b \equiv a \mod \ell$.

Definition 7 (Filtration). Let a be a of a modular form mod ℓ . The filtration of $a, \omega(a)$, is defined as the minimum natural number j such that a has weight j. The filtration of the zero function is 0.

Definition 8 (multiplication and exponentiation). It's worth stated how multiplication and exponentiation are defined here, because they are not defined in the normal way. The multiplication of two modular forms mod ℓ called a and b is defined as

$$(a*b)n = \sum_{x+y=n} a(x)b(y).$$

The exponentiation of a modular form mod ℓ called a to the power of $j \in \mathbb{N}$ is defined as

$$(a^j)n = \sum_{x_1+\ldots+x_j=n} \prod_{i=1}^j a(x_i).$$

0.2 PowPrime

Definition 9 (permutational equivalence). Two functions $a, b : \text{Fin } n \to \mathbb{N}$, which can be thought of as tuples of n natural numbers, are permutationally equivalent if there exists a bijective function $\sigma : \text{Fin } n \to \text{Fin } n$ such that $a = b \circ \sigma$. This is an equivalence relation.

Lemma 10. If $x = (x_1, x_2, ..., x_k)$ is not constant (i.e not all x_i are equal) then for any $n \in \mathbb{N}$,

$$k \mid \#\{y = (y_1, y_2, ..., y_k) : \sum_{i=1}^k y_i = n \text{ and } x \text{ and } y \text{ are permutationally equivalent}\}$$

Proof.

Lemma 11. If x and y are permutationally equivalent then $\prod_{i=1}^k a(x_i) = \prod_{i=1}^k a(y_i)$.

Lemma 12. Let $x = (x_1, x_2, ..., x_k)$ and $n \in \mathbb{N}$. Suppose that $\sum_{i=1}^k x_i = n$.

(1) If $k \nmid n$ then x is not constant.

(2) If $k \mid n$ and $x \neq (n/k, ..., n/k)$ then x is not constant.

Theorem 13 (Pow Prime). Let ℓ be a prime and a be a modular form mod ℓ of any weight. Then

$$(a^\ell)n = \begin{cases} a(n/\ell) & \textit{if } \ell \mid n \\ 0 & \textit{otherwise} \end{cases}$$

Proof.

0.3 Theorems

Theorem 14. Let a be a modular form mod ℓ . Then $(a|U)^{\ell} = a - \Theta^{\ell-1}a$.

Lemma 15. Let a be a modular form mod ℓ . If $\omega(a) = 0$ then a is constant, i.e. for all n > 0, a(n) = 0.

Theorem 16. Let a be a modular form mod ℓ and $i \in \mathbb{N}$. Then $\omega(a^i) = i\omega(a)$.

Definition 17 (Delta). Δ is the sequence obtained from $q(\prod_{n=1}^{\infty}(1-q^n))^{24}$. It is a modular form mod ℓ of weight 12.

Definition 18. For a prime $\ell \geq 5$, we define $\delta_{\ell} = \frac{\ell^2 - 1}{24} \in \mathbb{N}$. We define $f_{\ell} = \Delta^{\delta_{\ell}}$, which is a modular form mod ℓ of weight $12\delta_{\ell}$.

Lemma 19. $\omega(f_{\ell}) = 12\delta_{\ell} = \frac{\ell^2 - 1}{2}$.

Theorem 20. This is part (1) of Lemma 2.1.

Let a be a modular form mod ℓ . Then $\omega(\Theta a) \leq \omega(a) + \ell + 1$.

Theorem 21. This is part (2) of Lemma 2.1.

Let a be a modular form mod ℓ . Then $\omega(\Theta a) = \omega(a) + \ell + 1$ if and only if $\ell \nmid \omega(a)$.

Theorem 22. This is Lemma 3.2.

For all $m \in \mathbb{N}$, $\omega(\Theta^m f_\ell) \ge \omega(f_\ell) = \frac{\ell^2 - 1}{2}$.

Theorem 23. This is part (1) of Lemma 3.3. If
$$\ell \nmid \omega(\Theta^{\ell-1}f_{\ell})$$
 then $\omega(\Theta^{\ell-1}f_{\ell}) = \frac{\ell^2-1}{2}$.

Proof.

Theorem 24. This is part (2) of Lemma 3.3. If $\ell \mid \omega(\Theta^{\ell-1}f_{\ell})$ then $\omega(f_{\ell}|U) > 0$.

Proof.