1 Mathe

1.1 Grundlagen

1.1.1 Mengen

Mengen Darstellung

Schreibweise	Bedeutung
$a \in M$:	a ist ein Element von M
a ∉ M :	a ist kein Element von M
$M = \{x x \text{ Eigenschaften,} \}$	Beschreibende Darstellung
$M = \{a_1, a_2,, a_n\}$	Aufzählende Darstellung(endlich)
$M = \{a_1, a_2\}$	Aufzählende Darstellung(unendlich)
$M = \{\}$	Leere Menge
$A \subset B$	A ist eine Teilmenge von B. A heißt Untermenge und B Obermenge
A = B	A und B sind gleich, d.h. jedes Element von A ist auch in B vorhanden und umgekehrt

Mengen Operationen

Schreibweise	Bedeutung
$A \cap B = \{x x \in A \text{ und } x \in B$ $A \cup B = \{x x \in A \text{ oder } x \in B\}$ $A \setminus B = \{x x \in A \text{ und } x \notin B\}$	Schnittmenge zweier Mengen Vereinigungsmenge zweier Mengen Differenz- oder Restmenge zweier Mengen

1.1.2 Intervalle

Beispiel	Beschreibung	
$[a,b] = x a \le x \le b$	abgeschlossene Intervalle	
$[a,b) = x a \le x < b$	halboffene Intervall	
$(a,b] = x a < x \le b$	halboffene Intervall	
(a,b) = x a < x < b	offenes Intervall	

1.1.3 Rechnengesetze

Operationen mit Natürlichen Zahlen

Beispiel	Beschreibung
$60 = 2^2 \cdot 3^1 \cdot 5^1$ $70 = 2^3 \cdot 3^2$	Zerlegung der Faktoren in ihre Primfaktoren und dann bildet man das Produkt aus denn höchsten Potenzen die alle Faktoren gemeinsam haben.
$ggt = 2^2 \cdot 3^1$	
$60 = 2^{2} \cdot 3^{1} \cdot 5^{1}$ $70 = 2^{3} \cdot 3^{2}$ $kgV = 2^{3} \cdot 3^{2} \cdot 5^{1}$	Zerlegung der Faktoren in ihre Primfaktoren und dann bildet man das Produkt aus denn höchsten Potenzen die in mindestens einen Faktoren auftreten.

Kommutativgesetz

$$a+b=b+a$$

$$a \cdot b = b \cdot a$$
(1.1)

Assoziativgesetz

$$a + (b+c) = (a+b) + c$$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
(1.2)

Distributivgesetz

$$a \cdot (b+c) = a \cdot b + a \cdot c \tag{1.3}$$

1.1.4 Bruchrechnung

Ein Bruch a/b heißt *echte*, wenn |a| < |b| ist, sonst *unecht*.

Addition und Subtraktion zweier Brüche

$$\frac{a}{b} \pm \frac{c}{d} = \frac{a \cdot d \pm b \cdot c}{b \cdot d} \tag{1.4}$$

Multiplikation zweier Brüche

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} \tag{1.5}$$

Division zweier Brüche

$$\frac{a}{b} \div \frac{c}{d} = \frac{a \cdot d}{b \cdot c} \tag{1.6}$$

1.1.5 Potenzen

Eine Potenz a^n ist ein Produkt aus n gleichen Faktoren a:

$$a^n = a \cdot a \cdot a \dots a \tag{1.7}$$

a: Basis n: Exponent

Rechenregeln

$$a^m * a^n = a^{m+n} \tag{1.8a}$$

$$\frac{a^m}{a^n} = a^{m-n} \tag{1.8b}$$

$$(a^m)^n = a^{m \cdot n} \tag{1.8c}$$

$$a^n \cdot b^n = (a \cdot b)^n \tag{1.8d}$$

$$\frac{d^n}{b^n} = \left(\frac{a}{b}\right)^n \tag{1.8e}$$

1.1.6 Wurzeln

Wurzelziehen ist die Umkehrfunktion des Potenzieren

$$\sqrt[n]{a} = a^{\left(\frac{1}{n}\right)} \tag{1.9}$$

a: Radikand n: Wurzelexponent

Rechenregeln

$$\sqrt[n]{a^m} = a^{\left(\frac{m}{n}\right)} \tag{1.10a}$$

$$\sqrt[m]{\sqrt{n}a} = a \frac{1}{m \cdot n} = m \cdot n \sqrt{a} \tag{1.10b}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b} \tag{1.10c}$$

$$\frac{\sqrt[n]{a}}{n/L} = \sqrt[n]{\frac{a}{b}}$$
(1.10d)

1.1.7 Logarithmen

Logarthmus ist das eindeutige lösen der Gleichung $r = a^x$ zur Lösung x.

$$x = \log_a r \tag{1.11}$$

a: Basis $(a > 0, a \ne 1)$ r: Numerus (r > 0)

Rechenregeln

$$\log_a b = \frac{\ln b}{\ln a} \tag{1.12a}$$

$$\log_a(u \cdot v) = \log_a u + \log_a v \tag{1.12b}$$

$$\log_a \left(\frac{u}{v}\right) = \log_a u - \log_a v \tag{1.12c}$$

$$\log_a\left(u^k\right) = k \cdot \log_a u \tag{1.12d}$$

$$\log_a \sqrt[n]{u} = \left(\frac{1}{n}\right) \cdot \log_a u \tag{1.12e}$$

Basiswechsel

$$\log_b r = \frac{\log_a r}{\log_a b} = \frac{1}{\log_a b} \cdot \log_a r = K \cdot \log_a r \tag{1.13}$$

Beim Basiswechsel von $a \rightarrow b$ werden die Logarithmen mit einer Konstanten K multipliziert.

$$\lg \to \ln \Rightarrow K = 2,3026 \tag{1.14}$$

$$\ln \to \lg \Rightarrow K = 0,4343$$
 (1.15)

1.1.8 Winkelfunktionen

Rechenregeln

$$\cos x = \sin\left(x + \frac{\pi}{2}\right) \qquad \qquad \sin x = \cos\left(x + \frac{\pi}{2}\right)$$

$$\tan x = \frac{\sin x}{\cos x} = \frac{1}{\cot x} \qquad \qquad \cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$$
(1.20)

Trigonometrischer Pythagoras

$$\sin^2 x + \cos^2 x = 1 \tag{1.22}$$

Addition von Winkeln

$$sin(x_1 \pm x_2) = sin x_1 \cdot cos x_2 \pm cos x_1 \cdot sin x_2$$

$$cos(x_1 \pm x_2) = cos x_1 \cdot cos x_2 \mp sin x_1 \cdot sin x_2$$

$$tan(x_1 \pm x_2) = \frac{tan x_1 \pm tan x_2}{1 \mp tan x_1 \cdot tan x_2}$$

$$cot(x_1 \pm x_2) = \frac{cot x_1 \cdot cot x_2 \mp 1}{cot x_2 \pm cot x_1}$$
(1.23a)

Multiplikation von Winkeln

$$\sin x_1 \cdot \sin x_2 = \frac{1}{2} \cdot (\cos(x_1 - x_2) - \cos(x_1 + x_2)) \tag{1.24a}$$

$$\cos x_1 \cdot \cos x_2 = \frac{1}{2} \cdot (\cos(x_1 - x_2) + \cos(x_1 + x_2)) \tag{1.24b}$$

$$\sin x_1 \cdot \cos x_2 = \frac{1}{2} \cdot (\sin(x_1 - x_2) + \sin(x_1 + x_2)) \tag{1.24c}$$

$$\tan x_1 \cdot \tan x_2 = \frac{\tan x_1 + \tan x_2}{\cot x_1 + \cot x_2} \tag{1.24d}$$

Umrechnung Grad- ⇒ Bogenmaß

$$x = \frac{\pi}{180^{\circ}} \cdot \alpha \tag{1.25}$$

Umrechnung Bogen- ⇒ Gradmaß

$$\alpha = \frac{180^{\circ}}{\pi} \cdot x \tag{1.26}$$

Für weitere Winkelformeln siehe Papula Formelsammlung Seite 90-102.

1.1.9 Fakultät

n! ist definitionsgemäß das Produkt aus denn ersten n Faktoren

$$n! = 1 \cdot 2 \cdot 3 \dots (n-1) \cdot n = \prod_{k=1}^{n} k \quad (n \in \mathbb{N})$$
 (1.27)

Vorsicht bei 0 Fakultät

$$0! = 1$$
 (1.28)

1.1.10 Binomischer Lehrsatz

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1} \cdot b^1 + \binom{n}{2}a^{n-2} \cdot b^2 + \dots + \binom{n}{n-1}a^1 \cdot b^{n-1} + b^n \tag{1.29}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{n-k} \cdot b^k \tag{1.30}$$

$$= \sum_{k=0}^{n} {n \choose k} a^k \cdot b^{n-k} \tag{1.31}$$

Der Binomialkoeffizienten mit den Koeffizienten $\binom{n}{k}$ wird n über k gelesen.

Bildungsgesetz

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-(k-1))}{k!} = \frac{n!}{k! \cdot (n-k)!}$$

$$(1.32)$$

Rechenregel

$$\binom{n}{0} = \binom{n}{n} = 1 \tag{1.33a}$$

$$\binom{n}{k} = 0 \text{ für } k > n \tag{1.33b}$$

$$\binom{n}{1} = \binom{n}{n-1} = n \tag{1.33c}$$

$$\binom{n}{k} = \binom{n}{n-k} \tag{1.33d}$$

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} \tag{1.33e}$$

Ersten Binomischen Formeln

$$(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2 \tag{1.34}$$

$$(a+b)^3 = a^3 + 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 + b^3 \tag{1.35}$$

$$(a+b)^4 = a^4 + 4 \cdot a^3 \cdot b + 6 \cdot a^2 \cdot b^2 + 4 \cdot a \cdot b^3 + b^4$$
 (1.36)

$$(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2 \tag{1.37}$$

$$(a-b)^3 = a^3 - 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 - b^3 \tag{1.38}$$

$$(a-b)^4 = a^4 - 4 \cdot a^3 \cdot b + 6 \cdot a^2 \cdot b^2 - 4 \cdot a \cdot b^3 + b^4$$
 (1.39)

$$(a+b)\cdot(a-b) = a^2 - b^2$$
 (1.40)

1.1.11 Grenzwertberechnung

Rechenregeln

$$\lim_{x \to x_0} C \cdot f(x) = C \cdot \left(\lim_{x \to x_0} f(x)\right) \tag{1.41a}$$

$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$
(1.41b)

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \left(\lim_{x \to x_0} f(x)\right) \cdot \left(\lim_{x \to x_0} g(x)\right) \tag{1.41c}$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)}$$
(1.41d)

$$\lim_{x \to \chi_0} \sqrt[n]{f(x)} = n \sqrt{\lim_{x \to \chi_0} f(x)}$$
(1.41e)

$$\lim_{x \to x_0} (f(x))^n = \left(\lim_{x \to x_0} f(x)\right)^n \tag{1.41f}$$

$$\lim_{x \to \infty} \left(a^{f(x)} \right) = a^{\left(\lim_{x \to \infty} f(x)\right)} \tag{1.41g}$$

$$\lim_{x \to x_0} \left(\log_a f(x) \right) = \log_a \left(\lim_{x \to x_0} f(x) \right) \tag{1.41h}$$

Berechnete Grenzwerte

$$\lim_{x \to \infty} \frac{1}{x} = 0 \qquad \qquad \lim_{x \to \infty} a^x = 0 \text{ für } |a| < 0 \tag{1.42}$$

$$\lim_{x \to \infty} \frac{a^x}{x!} = 0 \qquad \qquad \lim_{x \to \infty} a^x = 1 \text{ für } a = 1$$
 (1.43)

$$\lim_{x \to \infty} \sqrt{x} a = 1 \text{ für } a > 0 \qquad \qquad \lim_{x \to \infty} \frac{\sin x}{x} = 1$$
 (1.44)

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \mathbf{e} \tag{1.45}$$

1.1.12 Reihen

Arithmetische Reihen

$$a + (a+d) + (a+2 \cdot d) + \dots + (a+(n-1) \cdot d) = \frac{n}{2} (2 \cdot a + (n-1) \cdot d)$$
(1.46)

a: Anfangsglied $a_n = a + (n-1) \cdot d$: Endglied

Geometrische Reihen

$$a + a \cdot q + a \cdot q^2 + \dots + a \cdot q^{n-1} = \sum_{k=1}^{n} a \cdot q^{k-1} = \frac{a(q^n - 1)}{q - 1}$$
(1.47)

a: Anfangsglied $a_n = a \cdot q^{n-1}$: Endglied

1.1.13 Koordinatensystem

Kartesische Koordinaten

0: Ursprung, Nullpunkt

x : Abzisse

y : Ordinate

Polar Koordinaten

0:Pol

r: Abstand des Punktes P zum Punkt O

 φ : Winkel zwischen dem Strahl und der x Achse(*Polarachse*)

Polarkoordinaten ⇒ Kartesische Koordinaten

$$x = r \cdot \cos \varphi$$
 $y = r \cdot \sin \varphi$ (1.48)

Kartesische Koordinaten ⇒ Polarkoordinaten

$$r = \sqrt{x^2 + y^2} \qquad \qquad \varphi = \tan^{-1}\left(\frac{y}{x}\right) \tag{1.49}$$

Koordinatentransformation(Parallelverschiebung)

$$y = f(x) \Rightarrow \begin{cases} x = u + a \\ y = v + b \end{cases} \Rightarrow v = f(u + a) - b$$
 (1.50)

(a; b): Ursprung des neuen u,v Koordinatensystems, bezogen auf das alte x,y-System.

1.2 Gleichungen

1.2.1 Gleichungen n-ten Grades

$$a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0 = 0 \quad (a_n \neq 0, a_k \in \mathbb{R})$$
 (1.51)

Eigenschaften

- ullet Die Gleichung besitzen maximal n reelle Lösungen.
- ullet Es gibt genau n komplexe Lösungen.
- Komplexe Lösungen treten immer Paarweise auf.
- Es existieren nur Lösungsformeln bis $n \le 4$. Für n > 4 gibt es nur noch grafische oder numerische Lösungswege.
- Wenn eine Nullstelle bekannt ist kann man die Gleichung um einen Grad verringern, indem man denn zugehörigen Linearfaktor $x-x_1$ abspaltet(Polynome Division).

1.2.2 Lineare Gleichungen

$$a_1 \cdot x + a_0 = 0 \Rightarrow x_1 = -\frac{a_0}{a_1} \quad (a_1 \neq 0)$$
 (1.52)

1.2.3 Quadratische Gleichungen

$$a_2 \cdot x^2 + a_1 \cdot x + a_0 = 0 \quad (a_2 \neq 0)$$
 (1.53)

Normalform mit Lösung

$$x^{2} + p \cdot x + q = 0 \Rightarrow x_{1/2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$
 (1.54)

Überprüfung (Vietascher Wurzelsatz)

$$x_1 + x_2 = -p x_1 \cdot x_2 = q (1.55)$$

x1, x2: Lösung der quadratischen Gleichung.

1.2.4 Biquadratische Gleichungen

Diese Gleichungen lassen sich mithilfe der Substitution lösen.

$$a \cdot x^4 + b \cdot x^2 + c = 0$$
 $u = x^2$ (1.56)

$$a \cdot u^2 + b \cdot u + c = 0 \qquad \qquad x = \pm \sqrt{u}$$
 (1.57)

Das u kann mithilfe der Lösungsformel einer quadratischen Gleichung gelöst werden.

1.2.5 Gleichungen höheren Grades

Gleichungen höheren Grades kann man durch graphische oder numerische Ansätze lösen. Hilfreich ist das finden einer Lösung und das abspalten eines Linearfaktor, mithilfe der Polynomendivision oder dem Hornor Schema, von der ursprünglichen Gleichung.

Polynomendivision

$$\frac{f(x)}{x - x_0} = \frac{a_3 \cdot x^3 + a_2 \cdot x^2 + a_1 \cdot x + a_0}{x - x_0} = b_2 \cdot x^2 + b_1 \cdot x + b_0 + r(x)$$
(1.58)

 x_0 ist dabei die erste gefunden Nullstelle. r(x) verschwindet wenn x_0 ein Nullstellen oder eine Lösung von f(x) ist.

$$r(x) = \frac{a_3 \cdot x_0^3 + a_2 \cdot x_0^2 + a_1 \cdot x_0 + a_0}{x - x_0} = \frac{f(x_0)}{x - x_0}$$
 (1.59)

Hornor-Schema

	a_3	a_2	a_1	a_0
<i>x</i> ₀	a ₃	$a_3 \cdot x_0$ $a_2 + a_3 \cdot x_0$	$(a_2 + a_3 \cdot x_0) \cdot x_0$ $a_1 + a_2 \cdot x_0 + a_3 \cdot x_0^2$	$(a_1 + a_2 \cdot x_0 + a_3 \cdot x_0^2) \cdot x_0$ $a_0 + a_1 \cdot x_0 + a_2 \cdot x_0^2 + a_3 \cdot x_0^3$
	b_2	b_1	b_0	$f(x_0)$

1.2.6 Wurzelgleichung

Wurzelgleichungen löst man durch quadrieren oder mit hilfe von Substitution. Bei Wurzelgleichung ist zu beachten das quadrieren keine Aquivalente Umformung ist und das Ergebniss überprüft werden muss.

1.2.7 Ungleichungen

- · Beidseitiges Subtrahieren oder Addieren ist möglich
- $\bullet \ \ {\rm Die} \ {\rm Ungleichung} \ {\rm darf} \ {\rm mit} \ {\rm einer} \ {\rm beliebige} \ {\rm positiven} \ {\rm Zahl} \ {\rm multipliziert} \ {\rm oder} \ {\rm dividiert} \ {\rm werden}$
- Die Ungleichung darf mit einer beliebige negativen Zahl multipliziert oder dividiert werden, wenn man gleichzeitig das Relationszeichen umdreht.

1.2.8 Betragsgleichungen

Betragsgleichungen löst man mithilfe der Fallunterscheidung. Dabei wird einmal davon ausgegangen das der Term inerhalb des Betrags einmal positiv und einmal negativen sein kann.

$$y = |x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$
 (1.60)

1.2.9 Interpolationspolynome

Entwicklung einer Polynomefunktion anhand von n+1 Kurvenpunkten.

- $\textbf{1. M\"{o}glichkeit} \hspace{0.2cm} \textbf{Aufstellen von} \hspace{0.2cm} n+1 \hspace{0.2cm} \textbf{Gleichungen und ermitteln der Kurvenfunktion mithilfe des Gaußen Algorithmus}.$
- 2. Möglichkeit Interpolationspolynome von Newton

Interpolationspolynome von Newton

Gegeben sind die Punkte $P_0 = (x_0; y_0)$, $P_1 = (x_1; y_1)$, $P_2 = (x_2; y_2)$, ..., $P_n = (x_n; y_n)$, damit lautet die Funktion wie folgt:

$$f(x) = a_0 + a_1 \cdot (x - x_0) + a_2 \cdot (x - x_0) \cdot (x - x_1) \tag{1.61}$$

$$+a_3 \cdot (x-x_0) \cdot (x-x_1) \cdot (x-x_2)$$
 (1.62)

$$+a_n \cdot (x-x_0) \cdot \dots \cdot (x-x_{n-1}) \tag{1.64}$$

Differentenshema

k	x_k	Уk	1	2	3	
0	x_0	<i>y</i> ₀				
			$[x_0, x_1]$	f., ., ., ., 1		
1	x_1	y_1	$[x_1, x_2]$	$[x_0, x_1, x_2]$	$[x_0, x_1, x_2, x_3]$	
2	x_2	<i>y</i> 2	[11,12]	$[x_1, x_2, x_3]$	[40,41,42,43]	
		, 2	$[x_2, x_3]$	[-1,-2,-3]	$[x_1, x_2, x_3, x_4]$	
3	x_3	y_3		$[x_2, x_3, x_4]$		
:	:	:				
n	x_n	y_n				

Rechenregel für dividierte Differenzen

$$[x_0, x_1] = \frac{y_0 - y_1}{x_0 - x_1}$$

$$[x_0, x_1, x_2] = \frac{[x_0, x_1] - [x_1, x_2]}{x_0 - x_2}$$

$$[x_1, x_2] = \frac{y_1 - y_2}{x_1 - x_2}$$

$$\vdots$$

$$(1.65)$$

$$[x_1, x_2, x_3] = \frac{[x_1, x_2] - [x_2, x_3]}{x_1 - x_3}$$

$$\vdots$$

$$[x_0, x_1, x_2, x_3] = \frac{[x_0, x_1, x_2] - [x_1, x_2, x_3]}{x_0 - x_2}$$

$$[x_1, x_2, x_3, x_4] = \frac{[x_1, x_2, x_3] - [x_2, x_3, x_4]}{x_1 - x_3}$$

$$\vdots$$

$$(1.67)$$

1.3 Komplexe Zahlen

$$j = \sqrt{-1}$$
 (1.68)
 $j^2 = -1$ (1.69)

(1.69)

1.3.1 Darstellungsformen

Trigometrische Form
$$z = r \left(\cos \varphi + j \sin \varphi\right) \tag{1.71}$$

$$[r] = : \text{Betrag}$$

 $[\varphi]$ = : Argument

Grundlagen

Exponentialform	$z = re^{j\varphi}$	(1.72)
Umrechnung	$x = r \cos \varphi$ $y = r \sin \varphi$ $r = z = \sqrt{x^2 + y^2}$	(1.73) (1.74) (1.75)
Umrechnung Winkel	$\tan \varphi = \frac{y}{x}$ $\varphi = \begin{cases} \arctan \frac{y}{x} & \text{Quadrant I} \\ \arctan \frac{y}{x} + \pi & \text{Quadrant II,III} \\ \arctan \frac{y}{x} + 2\pi & \text{Quadrant IV} \end{cases}$	(1.76)
1.3.2 Rechenregeln		
Konjugiert komplexe Zahl $[\overline{z}] = :$ konjugierte Komplexe	$\overline{z} = z^*$ $\overline{z} = \overline{x + jy}$ $= x - jy$ $\overline{z} = r(\cos \varphi + j \sin \varphi)$ $= r(\cos \varphi - j \sin \varphi)$ $\overline{z} = re^{j\varphi}$ $= re^{-j\varphi}$	(1.78) (1.79) (1.80) (1.81) (1.82) (1.83) (1.84)
Addition und Subtraktion	$z_1 \pm z_2 = (x_1 + jy_1) \pm (x_2 + jy_2)$ $= (x_1 \pm x_2) + j(y_1 \pm y_2)$	(1.85) (1.86)
Multiplikation	$z_1 \cdot z_2 = (x_1 + jy_1) \cdot (x_2 + jy_2)$ $= (x_1 x_2 - y_1 y_2) + j(x_1 y_2 + x_2 y_1)$ $z_1 \cdot z_2 = r_1 \left(\cos \varphi_1 + j \sin \varphi_1\right) \cdot r_2 \left(\cos \varphi_2 + j \sin \varphi_2\right)$ $= r_1 r_2 \left(\cos(\varphi_1 + \varphi_2) + j \sin(\varphi_1 + \varphi_2)\right)$ $z_1 \cdot z_2 = r_1 e^{j\varphi_1} \cdot r_2 e^{j\varphi_2}$ $= r_1 r_2 e^{j(\varphi_1 + \varphi_2)}$	(1.87) (1.88) (1.89) (1.90) (1.91) (1.92)
Division	$\begin{aligned} \frac{z_1}{z_2} &= \frac{x_1 + jy_1}{x_2 + jy_2} \\ &= \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + j \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} \\ \frac{z_1}{z_2} &= \frac{r_1 \left(\cos \varphi_1 + j \sin \varphi_1\right)}{r_2 \left(\cos \varphi_2 + j \sin \varphi_2\right)} \\ &= \frac{r_1}{r_2} \left(\cos(\varphi_1 - \varphi_2) + j \sin(\varphi_1 - \varphi_2)\right) \\ \frac{z_1}{z_2} &= \frac{r_1 e^{j\varphi_1}}{r_2 e^{j\varphi_2}} \\ &= \frac{r_1}{r_2} e^{j(\varphi_1 - \varphi_2)} \end{aligned}$	(1.93) (1.94) (1.95) (1.96) (1.97) (1.98)
Potenzieren	$z^{n} = (r_{1} (\cos \varphi_{1} + j \sin \varphi_{1}))^{n}$ $= r_{1}^{n} (\cos(n\varphi_{1}) + j \sin(n\varphi_{1}))$ $z^{n} = (r_{1}e^{j\varphi_{1}})^{n}$ $= r_{1}^{n}e^{jn\varphi_{1}}$	(1.99) (1.100) (1.101) (1.102)

Wurzelziehen

Es entsthen n Lösungen

Für k muss nacheinander 0, 1, ..., n-1 eingesetz

$$\sqrt[n]{z} = \sqrt[n]{r_1 \left(\cos \varphi_1 + j\sin \varphi_1\right)} \tag{1.103}$$

$$\omega_k = \sqrt[n]{r_1} \left(\cos \left(\frac{\varphi_1 + 2k\pi}{n} \right) + j \sin \left(\frac{\varphi_1 + 2k\pi}{n} \right) \right) \tag{1.104}$$

$$\sqrt[n]{z} = \sqrt[n]{r_1 e^{j\varphi_1}} \tag{1.105}$$

$$\omega_k = \sqrt[n]{r_1} e^{j\left(\frac{\varphi_1 + 2k\pi}{n}\right)} \tag{1.106}$$

1.4 Differntialrechnung

1.4.1 Erste Ableitung der elementaren Funktionen

x^n	$n \cdot x^{n-1}$	(1.107)
e^x a^x	$e^x = \ln a \cdot a^x$	(1.108) (1.109)
$\ln x$ $\log_a x$	$\frac{\frac{1}{x}}{\frac{1}{(\ln a) \cdot x}}$	(1.110)
sinx cosx tanx tanx	$ \frac{-\sin x}{\frac{1}{\cos^2 x}} $ $ \frac{1}{1+\tan^2 x} $	(1.112) (1.113) (1.114) (1.115)
arcsin.x arccos.x arctan.x	$ \frac{1}{\sqrt{1-x^2}} $ $ \frac{-1}{\sqrt{1-x^2}} $ $ \frac{1}{1-x^2} $	(1.116) (1.117) (1.118)
sinhx coshx tanhx tanhx	$ \frac{\cosh x}{\sinh x} \\ \frac{1}{\cosh^2 x} \\ 1 + \tanh^2 x $	(1.119) (1.120) (1.121) (1.122)
	e^{x} a^{x} $\ln x$ $\log_{a} x$ $\sin x$ $\cos x$ $\tan x$ $\tan x$ $\arctan x$ $\operatorname{arcsin} x$ $\operatorname{arccos} x$ $\operatorname{arctan} x$ $\sinh x$ $\cosh x$ $\tanh x$	e^{x} a^{x} $\ln a \cdot a^{x}$ $\ln x$ $\log_{a} x$ $\frac{1}{(\ln a) \cdot x}$ $\sin x$ $\cos x$ $\cos x$ $-\sin x$ $\tan x$ $\frac{1}{\cos^{2} x}$ $\tan x$ $1 + \tan^{2} x$ $\arcsin x$ $\frac{1}{\sqrt{1 - x^{2}}}$ $\arccos x$ $\frac{-1}{\sqrt{1 - x^{2}}}$ $\arctan x$ $\frac{1}{1 - x^{2}}$ $\sinh x$ $\cosh x$ $\cosh x$ $\sinh x$ $\cosh x$ $\sinh x$ $\cosh x$ $\cosh x$ $\cosh x$ $\sinh x$ $\cosh x$ $\cosh x$ $\cosh x$ $\cosh x$ $\sinh x$ $\cosh x$

1.4.2 Rechenregeln

Faktorregel	$\frac{dx}{dx} \left(C \cdot f(x) \right) = C \cdot f(x)$	(1.123)
Summenregel	$\frac{\mathrm{d}}{\mathrm{d}x} (g(x) + f(x)) = g'(x) + f'(x)$	(1.124)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(g(x) \cdot f(x) \right) = g'(x) \cdot f(x) + g(x) \cdot f'(x) \tag{1.125}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(h(x) \cdot g(x) \cdot f(x) \right) = h' \cdot g \cdot f + h \cdot g' \cdot f + h \cdot g \cdot f' \tag{1.126}$$

Quotientenregel

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{g(x)}{f(x)} \right) = \frac{g'(x) \cdot f(x) - g(x) \cdot f'(x)}{f(x)^2} \tag{1.127}$$

Kettenregel

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(g \left(f(x) \right) \right) = g'(f) \cdot f'(x) \tag{1.128}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}y = f(x)$$

Logarithmische Ableitungen

$$\frac{d}{dx}y = f(x) \tag{1.129}$$

$$\frac{1}{x}y' = \frac{d}{dx}\ln f(x) \tag{1.130}$$

1.4.3 Fehlerrechnung

Absolute Fehler

 $[\Delta x]$ = : Absoluter Fehler der Eingangsgröße $[\Delta y]$ = : Absoluter Fehler der Ausgangsgröße

$$\Delta y = f(x + \Delta x) - f(x) \tag{1.131}$$

Relativer Fehler

$$\delta y = \frac{\Delta y}{v}$$

$$=\frac{\Delta y}{y} \tag{1.133}$$

 $[\delta x]$ =: Relativer Fehler der Eingangsgröße in % $\lceil \delta y \rceil$ = : Relativer Fehler der Ausgangsgröße in %

$$\Delta y = f'(x) \cdot \Delta x$$

$$\delta y = \frac{x \cdot f'(x)}{f(x)} \delta x$$

(1.132)

(1.134)

1.4.4 Linearisierung und Taylor-Polynome

Tangentengleichung

 $[x_0]$ = : Punkt an denn das Polynome entwickel

$$y_T(x) = f(x_0) + f'(x_0)(x - x_0)$$
 (1.136)

Taylor Polynome

 $[x_0]$ = : Punkt an denn das Polynome entwickelt

$$[R_n]$$
 = : Restglied

$$y(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$
(1.137)

$$=\sum_{i=0}^{n} \frac{f^{(i)}}{i!} (x - x_0)^i + R_n(x)$$
 (1.138)

Restglied

 $[x_0]$ = : Punkt an denn das Polynome entwickelt

wird
$$[c] = : x_0 < c < x$$
, wenn $x_0 < x$

$$[c] = : x_0 < c < x$$
, wenn $x_0 < x$
 $[c] = : x_0 > c > x$, wenn $x_0 > x$

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$
(1.139)

1.4.5 Grenzwertregel von Bernoulli und de l'Hospital

de l'Hospital

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

1.4.6 Differentielle Kurvenuntersuchung

Gilt nur wenn $\lim_{x\to x_0} f(x)$ gleich $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ ist

Normale der Kurve
$$y_N(x) = f(x_0) - \frac{1}{f'(x)}(x - x_0)$$
 (1.141)

$$f'(x) > 0$$
 Monoton wachsend (1.142)

Monotonie-Verhalten
$$f'(x) < 0$$
 Monoton fallend (1.143)

(1.140)

Krümmung-Verhalten

f''(x) > 0	Linkskrümmung(konvex)	(1.144)
f''(x) < 0	Rechtskrümmung(konkav)	(1.145)

$y(\varphi) = r(\varphi)\sin\varphi$	(1.146)
<i>y</i> (φ) ,(φ)οφ	(11110)

Ableitung Polarkordinaten

$$\begin{split} & [\dot{r}] = \text{: Ableitung nach } \varphi \\ & [\ddot{r}] = \text{: Zweite Ableitung nach } \varphi \end{split}$$

Ableitung Parameterform

 $[\dot{x}] = :$ Ableitung nach t $[\dot{y}]$ = : Ableitung nach t

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi} \tag{1.148}$$

(1.147)

$$y'' = \frac{d^2y}{dx^2} = \frac{2(r')^2 - r \cdot r'' + r^2}{(r'\cos\varphi - r\sin\varphi)^3}$$
(1.149)

$$y = y(t) \tag{1.150}$$

$$x = x(t) \tag{1.151}$$

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\dot{y}}{\dot{x}} \tag{1.152}$$

$$y'' = \frac{d^2y}{dx^2} = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{x}^3}$$
 (1.153)

Ableitung Parameterform

$$[\dot{x}]$$
 = : Ableitung nach t
 $[\dot{y}]$ = : Ableitung nach t

$$y = y(t) \tag{1.154}$$

$$x = x(t) \tag{1.155}$$

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\dot{y}}{\dot{x}} \tag{1.156}$$

$$y'' = \frac{d^2 y}{dv^2} = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{v}^3}$$
 (1.157)

Bogendifferential

$$ds = \sqrt{1 + (f'(x))^2} \cdot dx$$
 (1.158)

$$ds = \sqrt{(\dot{x})^2 + (\dot{y})^2} \cdot dt$$
 (1.159)

$$ds = \sqrt{r^2 + (r')^2} \cdot d\varphi \tag{1.160}$$

$$\tau = \arctan \gamma' \tag{1.161}$$

$$d\tau = \frac{y''}{1 + (y')^2} \cdot dx$$

 $x(\varphi) = r(\varphi)\cos\varphi$

$$d\tau = \frac{y}{1 + (y')^2} \cdot dx \tag{1.162}$$

$$\kappa = \frac{\mathrm{d}\tau}{\mathrm{d}s} \tag{1.163}$$

$$\kappa = \frac{y''}{\sqrt{\left(1 + (y')^2\right)^3}} \tag{1.164}$$

$$\kappa = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\sqrt{\left(\dot{x}^2 + \dot{y}^2\right)^3}}$$
(1.165)

$$\kappa = \frac{2(r')^2 - r \cdot r'' + r^2}{\sqrt{\left(r^2 + (r')^2\right)^3}}$$
(1.166)

Kurvenkrümmung

Winkeländerung

Krümmungskreis

[
ho] =: Radius des Krümmungskreises $[x_K]$ =: x-Koordinaten des Kreismittelpunktes $[y_K]$ =: y-Koordinaten des Kreismittelpunktes [xp] = : x-Koordinaten des Kurvenpunktes $[y_P]$ =: y-Koordinaten des Kurvenpunktes

$$\rho = \frac{1}{|\kappa|} \tag{1.167}$$

$$x_K = x_P - y' \frac{1 + (y')^2}{|y''|} \tag{1.168}$$

$$y_K = y_P + \frac{1 + (y')^2}{|y''|} \tag{1.169}$$

1.5 Vektorrechnung

1.5.1 Grundlagen

 $\overrightarrow{a} = \overrightarrow{a}_x + \overrightarrow{a}_y + \overrightarrow{a}_z$ (1.170)

 $= a_x \overrightarrow{e}_x + a_y \overrightarrow{e}_y + a_y \overrightarrow{e}_y$ (1.171)

Darstellung

(1.172)

2 Punkt Vektor

$$\overline{P_1} \overrightarrow{P_2} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix}$$
(1.173)

$$|\vec{a}'| = a$$
 (1.174)
= $\sqrt{a_x^2 + a_y^2 + a_z^2}$ (1.175)

Betrag

$$=\sqrt{\overrightarrow{a}\circ\overrightarrow{a}}\tag{1.176}$$

$$\cos \alpha = \frac{a_x}{|\overrightarrow{a}|} \tag{1.177}$$

(1.178)

 $1 = \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$

(1.180)

(1.179)

Richtungswinkel

1.5.2 Vektoroperationen

Addition und Subtraktion

$$\overrightarrow{a} \pm \overrightarrow{b} = \begin{pmatrix} a_x \pm b_x \\ a_y \pm b_y \\ a_z \pm b_z \end{pmatrix}$$
 (1.181)

Multiplikation mit einem Skalar

$$\overrightarrow{a \cdot b} = \begin{pmatrix} abx \\ aby \\ abz \end{pmatrix} \tag{1.182}$$

Einheitsvektor

$$\overrightarrow{e}_{a} = \frac{\overrightarrow{a}}{|\overrightarrow{a}|} = \begin{pmatrix} a_{x}/|\overrightarrow{a}| \\ a_{y}/|\overrightarrow{a}| \\ a_{z}/|\overrightarrow{a}| \end{pmatrix}$$
(1.183)

Skalarprodukt

$$\overrightarrow{a} \circ \overrightarrow{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \circ \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z \tag{1.184}$$

$$= |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \angle (\overrightarrow{a}, \overrightarrow{b})$$

$\overrightarrow{a} \times \overrightarrow{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$ (1.186)

$$\begin{vmatrix} \overrightarrow{e}_x & \overrightarrow{e}_y & \overrightarrow{e}_z \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
(1.187)

Kreuzprodukt

 $|\overrightarrow{a} \times \overrightarrow{b}| \text{ Fläche des Parallelograms } \overrightarrow{a}, \overrightarrow{b}$ $\overrightarrow{a} \times \overrightarrow{b} \perp \overrightarrow{a} \wedge \overrightarrow{a} \times \overrightarrow{b} \perp \overrightarrow{b}$

(1.185)

Spatprodukt

$$\overrightarrow{a} \circ (\overrightarrow{b} \times \overrightarrow{c})$$
 Volumen des Parallelpiped \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c}

$$[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}] = \overrightarrow{a} \circ (\overrightarrow{b} \times \overrightarrow{c}) \tag{1.188}$$

$$= a_x(b_y c_z - b_z c_y) + a_y(b_z c_x - b_x c_z) + a_z(b_x c_y - b_y c_x)$$
 (1.189)

$$\begin{vmatrix} a_{X} & a_{Y} & a_{Z} \\ b_{X} & b_{Y} & b_{Z} \\ c_{X} & c_{Y} & c_{Z} \end{vmatrix}$$
 (1.190)

Schnittwinkel

$$\cos\angle(\overrightarrow{a}, \overrightarrow{b}) = \frac{\overrightarrow{a} \circ \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$
(1.191)

Projektion

$$\overrightarrow{a}_b = \left(\frac{\overrightarrow{a} \circ \overrightarrow{b}}{|\overrightarrow{a}|^2}\right) \overrightarrow{a} = (\overrightarrow{b} \circ \overrightarrow{e}_a) \overrightarrow{e}_a \tag{1.192}$$

1.5.3 Geraden

Geradegleichung

$$[\overrightarrow{r}_1]$$
 =: Ortsvektor (Verschiebung von Ursprung $[\overrightarrow{a}]$ =: Richtungsvektor

$$\overrightarrow{r}(t) = \overrightarrow{r}_1 + t \overrightarrow{a} \tag{1.193}$$

$$= \overrightarrow{r}_1 + t(\overrightarrow{r}_2 - \overrightarrow{r}_1) \tag{1.194}$$

Abstand eines Punktes von einer Geraden

|
$$\overrightarrow{r}_1$$
| =: Ortsvektor (Verschiebung von Ursprung | \overrightarrow{a} | =: Richtungsvektor

$$\overrightarrow{r}(t) = \overrightarrow{r}_1 + t \overrightarrow{a} \tag{1.195}$$

$$d = \frac{|\overrightarrow{a} \times (\overrightarrow{OP} - \overrightarrow{r}_1)|}{\overrightarrow{a}}$$
 (1.196)

Abstand zweier paralleler Geraden

$$[\overrightarrow{r}_1]$$
 =: Ortsvektor der ersten Gerade $[\overrightarrow{r}_2]$ =: Ortsvektor der zweiten Gerade

$$[\overrightarrow{r}_2]$$
 =: Ortsvektor der zweiten Gerade $[\overrightarrow{a}_1]$ =: Richtungsvektor der Geraden

$$\overrightarrow{r}(t) = \overrightarrow{r}_1 + t \overrightarrow{a}_1 \tag{1.197}$$

$$\overrightarrow{g}(t) = \overrightarrow{r}_2 + t \overrightarrow{a}_1 \tag{1.198}$$

$$d = \frac{|\vec{a}_1 \times (\vec{r}_2 - \vec{r}_1)|}{\vec{a}_1} \tag{1.199}$$

Abstand zweier windschiefen Geraden

$$\overrightarrow{r}(t) = \overrightarrow{r}_1 + t \overrightarrow{a}_1 \tag{1.200}$$

$$\overrightarrow{g}(t) = \overrightarrow{r}_2 + t \overrightarrow{a}_2 \tag{1.201}$$

$$d = \frac{|\overrightarrow{a}_1 \circ (\overrightarrow{a}_2 \times (\overrightarrow{r}_2 - \overrightarrow{r}_1))|}{|\overrightarrow{a}_1 \times \overrightarrow{a}_2|}$$
(1.202)

1.5.4 Ebenen

Ebenengleichung

$$[\overrightarrow{r}_1]$$
 =: Ortsvektor der Ebenen

$$[\overrightarrow{a}_1]$$
 =: Erster Richtungsvektor

$$\overrightarrow{r}(t,s) = \overrightarrow{r}_1 + t \overrightarrow{a}_1 + s \overrightarrow{a}_2 \tag{1.203}$$

$$= \overrightarrow{r}_1 + t(\overrightarrow{r}_2 - \overrightarrow{r}_1) + s(\overrightarrow{r}_3 - \overrightarrow{r}_1) \tag{1.204}$$

Normalenvektor

$$[\overrightarrow{n}]$$
 =: Normalenvektor
 $[\overrightarrow{r}_1]$ =: Ortsvektor der Normalen

$$[\overrightarrow{r}] = : (x, y, z)^T$$

$$\overrightarrow{n} \circ (\overrightarrow{r} - \overrightarrow{r}_1) = 0 \tag{1.205}$$

Normalenvektor

$$[\overrightarrow{n}] = :$$
 Normalenvektor

$$[\overrightarrow{r}_1]$$
 =: Ortsvektor der Normalen

$$[\overrightarrow{r}_1]$$
 =: Ortsvektor der Normal
 $[\overrightarrow{r}]$ =: $(x, y, z)^T$

$$0 = \overrightarrow{n} \circ (\overrightarrow{r} - \overrightarrow{r}_1) \tag{1.206}$$

$$\overrightarrow{n} = \overrightarrow{a}_1 \times \overrightarrow{a}_2 \tag{1.207}$$

Parameterfreie Darstellung

$$[\overrightarrow{n}] = :$$
 Normalenvektor

$$\overrightarrow{r}(t,s) = \overrightarrow{r}_1 + t \overrightarrow{a}_1 + s \overrightarrow{a}_2 \tag{1.208}$$

$$\overrightarrow{r} \circ (\overrightarrow{a}_1 \times \overrightarrow{a}_2) = \overrightarrow{r}_1 \circ (\overrightarrow{a}_1 \times \overrightarrow{a}_2) + t \overrightarrow{a}_1 \circ (\overrightarrow{a}_1 \times \overrightarrow{a}_2)$$
 (1.209)

$$+s\overrightarrow{a}_{2}\circ(\overrightarrow{a}_{1}\times\overrightarrow{a}_{2})$$
 (1.210)

$$\overrightarrow{r} \circ \overrightarrow{n} = \overrightarrow{r}_1 \circ \overrightarrow{n} + 0 + 0 \tag{1.211}$$

Normierter Normalenvektor	$\overrightarrow{e}_n = \frac{\overrightarrow{a}_1 \times \overrightarrow{a}_2}{ \overrightarrow{a}_1 \times \overrightarrow{a}_2 }$	(1.212)
Hesseschen Normalform	$0 = \frac{Ax + By + Cz + D}{\sqrt{A^2 + B^2 + C^2}}$	(1.213)
Abstand eines Punktes von einer Ebene $[\overrightarrow{n}] = :$ Normalenvektor $[\overrightarrow{r}]_i = :$ Ortsvektor der Normalen $[\overrightarrow{OP}]_i = :$ Koordinaten des Punktes P $[p_i] = :$ Koordinaten des Punktes P	$d = \frac{ \overrightarrow{n} \times (\overrightarrow{OP} - \overrightarrow{r}_1) }{\overrightarrow{n}}$ $d = \frac{Ap_1 + Bp_2 + Cp_3 + D}{\sqrt{A^2 + B^2 + C^2}}$	(1.214) (1.215)
Abstand eines Geraden von einer Ebene $[\overrightarrow{\pi}]$ =: Normalenvektor $[\overrightarrow{\tau}_1]$ =: Ortsvektor der Normalen $[\overrightarrow{\tau}_G]$ =: Ortsvektor der Geraden $[r_{Gi}]$ =: Koordinaten eines Geraden Punktes	$\overrightarrow{r}(t) = \overrightarrow{r}_G + t \overrightarrow{a}_1$ $d = \frac{ \overrightarrow{n} \times (\overrightarrow{r}_G - \overrightarrow{r}_1) }{\overrightarrow{n}}$ $d = \frac{Ar_{G1} + Br_{G2} + Cr_{G3} + D}{\sqrt{A^2 + B^2 + C^2}}$	(1.216) (1.217) (1.218)
Abstand zweier paralleler Ebenen $[\vec{\pi}]$ =: Normalenvektor	$\overrightarrow{r}(t,s) = \overrightarrow{r}_1 + t \overrightarrow{d}_1 + s \overrightarrow{d}_2$ $\overrightarrow{g}(t,s) = \overrightarrow{r}_2 + t \overrightarrow{d}_3 + s \overrightarrow{d}_4$ $d = \frac{ \overrightarrow{n} \times (\overrightarrow{r}_1 - \overrightarrow{r}_2) }{\overrightarrow{n}}$	(1.219) (1.220) (1.221)
Schnittwinkel zweier Ebenen \angle Ebenen = $\angle(\overrightarrow{n}_1, \overrightarrow{n}_2)$	$\cos\angle(\overrightarrow{n}_1, \overrightarrow{n}_2) = \frac{\overrightarrow{n}_1 \circ \overrightarrow{n}_2}{ \overrightarrow{n}_1 \cdot \overrightarrow{n}_2 }$	(1.222)
Durchstoßpunkt $[\overrightarrow{n}] =: Normalenvektor$ $[\overrightarrow{r}_1] =: Ortsvektor der Normalen$ $[\overrightarrow{r}_G] =: Ortsvektor der Geraden$ $[\overrightarrow{r}_s] =: Ortsvektor des Schnittpunktes$	$\overrightarrow{r}(t) = \overrightarrow{r}_G + t \overrightarrow{a}$ $\overrightarrow{r}_S = \overrightarrow{r}_G + \frac{\overrightarrow{n} \circ (\overrightarrow{r}_1 - \overrightarrow{r}_G)}{\overrightarrow{n} \circ \overrightarrow{a}} \overrightarrow{a}$ $\varphi = \arcsin\left(\frac{ \overrightarrow{n} \circ \overrightarrow{a} }{ \overrightarrow{n} \cdot \overrightarrow{a} }\right)$	(1.223) (1.224) (1.225)

2 Physik

2.1 Kinematik

2.1.1 Geradlinige Bewegungen(Translation)

$$a(t) = a_0 = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{s} \tag{2.1}$$

$$v(t) = a_0 \cdot t + v_0 = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s} \tag{2.2}$$

$$s(t) = \frac{1}{2}a_0 \cdot t^2 + v_0 \cdot t + s_0 \tag{2.3}$$

2.1.2 Kreisbewegungen(Rotation)

Winkelgrößen

 $[\alpha] = \text{rad} \, \text{s}^{-2}$: Winkelbeschleunigung

 $[\omega] = \operatorname{rad} s^{-1}$: Winkelgeschwindigkeit

 $[\varphi]$ = rad: Drehwinkel

$$\alpha(t) = \alpha_0 = \frac{\mathrm{d}\omega}{\mathrm{d}t} = \dot{\omega} = \ddot{\varphi} \tag{2.4}$$

$$\omega(t) = \alpha_0 \cdot t + \omega_0 = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \dot{\varphi} \tag{2.5}$$

$$\varphi(t) = \frac{1}{2}\alpha_0 \cdot t^2 + \omega_0 \cdot t + \varphi_0 \tag{2.6}$$

Bahngrößen

 $[a_t] = m s^{-2}$: Beschleunigung(tan)

 $[v] = m s^{-1}$: Geschwindugkeit

[s] = m: Weg

$$a_t(t) = a_0 = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{s} \tag{2.7}$$

$$v(t) = a_0 \cdot t + v_0 = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s}$$

 $s(t) = \frac{1}{2}a_0 \cdot t^2 + v_0 \cdot t + s_0 \tag{2.9}$

Umrechnung

Winkelgrößen \Leftrightarrow Bahngrößen

 $[a_T] = \text{m s}^{-2}$: Radialbeschleunigung

$$\overrightarrow{a_t} = \overrightarrow{a} \times \overrightarrow{r} \tag{2.10}$$

$$a_t = \alpha \cdot r \qquad \alpha \perp r$$
 (2.11)

$$\overrightarrow{a} = \overrightarrow{r} \times \overrightarrow{a_t} \tag{2.12}$$

$$\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r}$$
 (2.13)

$$v = \omega \cdot r \qquad \omega \perp r \tag{2.14}$$

$$\overrightarrow{\omega} = \overrightarrow{r} \times \overrightarrow{v} \tag{2.15}$$

$$s = \varphi \cdot r \tag{2.16}$$

Kreisfrequenz

[T] = s: Periodendauer

 $[n] = s^{-1}$: Drehzahl

[f] = Hz: Frequenz

$$\omega = \frac{2 \cdot \pi}{T} \tag{2.17}$$

$$= 2 \cdot \pi \cdot n$$

$$= 2 \cdot \pi \cdot f \tag{2.19}$$

$$a_r = \frac{v^2}{r} \tag{2.20}$$
 Radialbeschleunigung

$$= v \cdot \omega \tag{2.21}$$

$$=\omega^2 \cdot r \tag{2.22}$$

Umdrehungen

[N] = 1: Umdrehungen

$$N = \frac{\omega_0 \cdot t}{2 \cdot \pi} + \frac{1}{2} \cdot \frac{\alpha}{2 \cdot \pi} \cdot t^2 \tag{2.23}$$

$$= n_0 \cdot t + \frac{\alpha}{4 \cdot \pi} \cdot t^2 \tag{2.24}$$

(2.18)

(2.8)

2.2 Dynamik

2.2.1 Geradlinig(Translation)

Kraft

$$[F] = N$$
: Kraft $[m] = kg$: Masse

$$\vec{F} = m \cdot \vec{a}$$
 (2.25)
$$\vec{F}_{Tr} = -m \cdot \vec{a}$$
 (2.26)

(2.26)

(2.31)

(2.37)

Impuls

$$[p] = kgm s^{-1}$$
: Impuls

$$\overrightarrow{p} = m \cdot \overrightarrow{v} \tag{2.27}$$

$$\vec{F} = \frac{d\vec{p}}{dt} = m \cdot \frac{d\vec{v}}{dt} + \vec{v} \cdot \frac{dm}{dt}$$
(2.28)

Kraftstoß

$$\Delta \overrightarrow{p} = \overrightarrow{p}_2 - \overrightarrow{p}_1 = \int_{\overrightarrow{p}_2}^{\overrightarrow{p}_1} dp = \int_0^t \overrightarrow{F} dt$$
 (2.29)

Arbeit

$$[W] = kg m^2 s^{-2}$$
: Arbeit

$$W = -\int_{-\overrightarrow{s}-1}^{-\overrightarrow{s}} \overrightarrow{F_{lr}} \circ d\overrightarrow{s}$$
 (2.30)

$$= \int_{\overrightarrow{v'}_0}^{\overrightarrow{v'}_1} m \overrightarrow{v'} \circ d\overrightarrow{v'} = \frac{1}{2} m \left(v_1^2 - v_0^2 \right)$$

kin. Energie

$$[E] = kg m^2 s^{-2}$$
: Energie

 $E_{\rm kin} = \frac{1}{2} m v^2$ (2.32)

Hubarbeit

$$[g] = m s^{-2}$$
: Fallbeschleunigung

$$W_{\text{hub}} = mgh \tag{2.33}$$

Leistung

$$[g] = kg m^2 s^{-3}$$
: Leistung

$$P = \overrightarrow{F} \circ \overrightarrow{\nu} = \frac{\mathrm{d}W}{\mathrm{d}t} = \dot{W} \tag{2.34}$$

2.2.2 Drehbewegung(Rotation)

Massenträgheitsmoment

$$[J] = kg m^2$$
: Massenträgheitsmoment

$$J = \int r^2 \, \mathrm{d}m \tag{2.35}$$

Drehimpuls

$$[L] = kg m^2 rad s^{-1}$$
: Drehimpuls

$$\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p} \tag{2.36}$$

Drehmoment

$$\overrightarrow{M} = \overrightarrow{r} \times \overrightarrow{F} = J \overrightarrow{\alpha} = \overrightarrow{L}$$

[M] = Nm: Drehmoment

$$\vec{M} = \vec{r} \times \vec{F} = J \vec{\alpha} = \vec{L} \tag{2.38}$$

$$E_{kin} = \frac{1}{2}J\omega^2 \tag{2.39}$$

kinetische Energie

$$W = \int_{\varphi_0}^{\varphi_1} \overrightarrow{M} \circ \overrightarrow{e_\omega} \, d\varphi = \int_{\overrightarrow{\omega}_0}^{\overrightarrow{\omega}_1} J \overrightarrow{\omega} \, d\overrightarrow{\omega}$$
 (2.40)

Arbeit

$$=\frac{1}{2}J\left(\omega_1^2-\omega_0^2\right) \tag{2.41}$$

Leistung
$$P = \overrightarrow{M} \circ \overrightarrow{\omega}$$
 (2.42)

Zentripedalkraft

$F_{zp} = -m \cdot \omega^2 \cdot r$ (2.43) $=-m \cdot v^2 \cdot \overrightarrow{e_r}$ (2.44)

2.2.3 Schiefe Ebene

Kräfte

$$\overrightarrow{F}_N = \overrightarrow{F}_G \cos \alpha \tag{2.45}$$

$$\overrightarrow{F}_H = \overrightarrow{F}_G \sin \alpha \tag{2.46}$$

2.2.4 Reibung

Reibungskräfte

 $[F_N] = N$: Normalkraft $[F_R]$ = N: Reibungskraft $[\mu] = 1$: Reibungskoeffizient

$$F_R = \mu \cdot F_N \tag{2.47}$$

Rollreibung

 $[F_N] = N$: Normalkraft [f] = 1: Rollreibungstahl [M] = 1: Drehmoment

[r] = m: Radius

$$M = f \cdot F_N \tag{2.48}$$

 $F_R = \frac{f}{r} \cdot F_N$ (2.49)

2.2.5 Feder

Hookesches Gesetz

 $[k] = Nm^{-1}$: Federkonstante $[D] = N m rad^{-1}$: Winkelrichtgröße

$$F = -kx \tag{2.50}$$

 $M = D\varphi$ (2.51)

$$W = \int_{x_{\min}}^{x_{\max}} F dx = \int_{x_{\min}}^{x_{\max}} kx dx$$
 (2.52)

$$= \frac{1}{2} \cdot k \cdot \left(x_{\text{max}}^2 - x_{\text{min}}^2 \right) \tag{2.53}$$

Spannungsenergie

2.2.6 Elastischer Stoß

Energieerhaltung

Energie vor den Stoß = Energie nach den Stoß

$$\sum E_{\rm kin} = \sum E'_{\rm kin} \tag{2.54}$$

Impulserhaltung

Impuls vor den Stoß = Impuls nach den Stoß
$$\sum m \overrightarrow{v} = \sum m \overrightarrow{v}'$$

Zentraler, elastischer Stoß

(Energie und Impuls)

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$$
 (2.56)

$$m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2' (2.57)$$

Zentraler, elastischer Stoß

(Geschwindigkeit nach dem Stoß)

$$\begin{split} v_2' &= \frac{2m_1}{m_1 + m_2} \, v_1 + \frac{m_2 - m_1}{m_1 + m_2} \, v_2 \\ v_1' &= \frac{2m_2}{m_1 + m_2} \, v_2 + \frac{m_1 - m_2}{m_1 + m_2} \, v_1 \end{split} \tag{2.58}$$

$$v_1' = \frac{2m_2}{m_1 + m_2} v_2 + \frac{m_1 - m_2}{m_1 + m_2} v_1$$
 (2.59)

(2.55)

2.2.7 Unelastischer Stoß

2.2.7 Unelastischer Stoß						
Energieerhaltung	Energie vor den Stoß = Energie nach den Stoß + Arbeit $\sum E_{\rm kin} = \sum E_{\rm kin}' + \Delta W$	(2.60)				
Impulserhaltung	Impuls vor den Stoß = Impuls nach den Stoß $\sum m \ \overrightarrow{v'} = \sum m \ \overrightarrow{v'}'$	(2.61)				
Total unelastischer Stoß (Energie und Impuls)	$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}(m_1 + m_2)v'^2 + \Delta W$ $m_1v_1 + m_2v_2 = (m_1 + m_2)v'$	(2.62) (2.63)				
Total unelastischer Stoß (Geschwindigkeit nach dem Stoß)	$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$	(2.64)				
Total unelastischer Stoß (Energieverlust)	$\Delta W = \frac{m_1 \cdot m_2}{2(m_1 + m_2)} (v_1 - v_2)^2$	(2.65)				
2.2.8 Drehimpulse						
Drehimpulserhaltungssatz	Drehinpuls zur Zeit 1 = Drehimpuls zur Zeit 2 $\sum \overrightarrow{L} = \sum \overrightarrow{L}'$	(2.66) (2.67)				
Kupplung Zweier Drehkörper (Winkelgeschwindigkeit nach dem Kuppeln und Energieverlust)	$\overrightarrow{\omega}' = \frac{J_0 \overrightarrow{\omega_0} + J_1 \overrightarrow{\omega_1}}{J_1 + J_2}$ $W = \frac{J_0 \cdot J_1}{2(J_0 + J_1)} (\omega_0 - \omega_1)^2$	(2.68)				
2.2.9 Rotierendes Bezugssystem						
Zentrifugalkraft	$\overrightarrow{F}_Z = F_r \cdot \overrightarrow{e}_r = -m \overrightarrow{\omega} \times (\overrightarrow{\omega} \times \overrightarrow{r}) = -m \overrightarrow{\omega} \times \overrightarrow{v}$ $F_Z = -m \frac{v^2}{r} = -m \omega^2 r$	(2.70) (2.71)				
Corioliskraft	$\overrightarrow{F}_C = -2m \overrightarrow{\omega} \times \overrightarrow{v}$	(2.72)				
2.3 Schwerpunkt						
Schwerpunkt mehrere Punktmassen	$\vec{r}_{Sp} = \frac{\sum \vec{r}_i m_i}{\sum m_i}$	(2.73)				
Allgemein Schwerpunkt	$\overrightarrow{r}_{Sp} = \frac{\int \overrightarrow{r} \mathrm{d}m}{\int \mathrm{d}m}$	(2.74)				
	$x_{\text{Sp}} = \frac{\int_{z} \int_{y} \int_{x} x \rho dx dy dz}{\int_{z} \int_{y} \int_{x} \rho dx dy dz}$	(2.75)				
Schwerpunkt (Kartesische) $[\rho] = \text{kgm}^{-3}$: Dichte	$y_{Sp} = \frac{\int_{z} \int_{y} \int_{x} y \rho dx dy dz}{\int_{z} \int_{y} \int_{x} \rho dx dy dz}$	(2.76)				
	$z_{\rm Sp} = \frac{\int_z \int_y \int_x z \rho dx dy dz}{\int_z \int_y \int_x \rho dx dy dz}$	(2.77)				

(2.82)

(2.83)

$$r_{\rm Sp} = \frac{\int_{z} \int_{\varphi} \int_{r} r^{2} \rho \, dr \, d\varphi \, dz}{\int_{z} \int_{\varphi} \int_{r} r \rho \, dr \, d\varphi \, dz}$$

$$\varphi_{\rm Sp} = \frac{\int_{z} \int_{\varphi} \int_{r} r \rho \, dr \, d\varphi \, dz}{\int_{z} \int_{\varphi} \int_{r} r \rho \, dr \, d\varphi \, dz}$$

$$z_{\rm Sp} = \frac{\int_{z} \int_{\varphi} \int_{r} r \rho \, dr \, d\varphi \, dz}{\int_{z} \int_{\varphi} \int_{r} r \rho \, dr \, d\varphi \, dz}$$

$$z_{\rm Sp} = \frac{\int_{z} \int_{\varphi} \int_{r} r \rho \, dr \, d\varphi \, dz}{\int_{z} \int_{\varphi} \int_{r} r \rho \, dr \, d\varphi \, dz}$$

$$z = r \cos \varphi$$

$$(2.80)$$

 $y = r \sin \varphi$

z = z

Schwerpunkt (Zylinder)

2.4 Trägheitsmoment

Allgemein

$$[
ho]=$$
kg m $^{-3}$: Dichte $[J]=$ kg m 2 : Massenträgheitsmoment

[r] = m: Abstand alter und neuer Achse

$$J = \sum m_i r_i^2 \tag{2.84}$$

$$J = \int_{m} r^2 dm \qquad (2.85)$$

$$J = \int_{z} \int_{\varphi} \int_{r} r^{3} \rho \, dr \, d\varphi \, dz \tag{2.86}$$

Satz von Steiner

$$[J_s] = \text{kg m}^2$$
: Mtm am der alten Achse $[J_x] = \text{kgm}^2$: Mtm am der neuen Achse $(J_x \parallel J_s)$

$$J_x = mr^2 + J_s \tag{2.87}$$

Trägheitsmoment Kugel

$$J_{\rm Sp} = \frac{2}{5} \, m \, r^2 \tag{2.88}$$

Trägheitsmoment Zylinder

$$J_{\rm Sp} = \frac{1}{2} \, m r^2 \tag{2.89}$$

Trägheitsmoment Kreisring

$$J_{\rm Sp} = mr^2 {(2.90)}$$

Trägheitsmoment Stab

$$J_{\rm Sp} = \frac{1}{12} \, m \, l^2 \tag{2.91}$$

2.5 Elastizitätslehre

$$[\sigma] = Nm^{-2}$$
: Normalspannung $[\tau] = Nm^{-2}$: Schubspannung $[E] = Nm^{-2}$: Elastizitätsmodul $[F_n] = N$: Normalkraft $(\overrightarrow{F} \parallel \overrightarrow{A})$ $[\epsilon] = 1$: Dehnung

$$\vec{\sigma} = \frac{d\vec{F}_n}{dA} \tag{2.92}$$

$$\sigma = E\varepsilon = E\frac{\Delta l}{l} \tag{2.93}$$

$$\vec{\tau} = \frac{d\vec{F}_t}{dA} \tag{2.94}$$

Schubmodul

Spannung

$$[G] = N m^{-2}$$
: Schubmodul $[\varphi] = rad$: Scherwinkel

$$G = \frac{\tau}{\varphi} \tag{2.95}$$

Drillung

 $[\psi] = \operatorname{rad} m^{-1}$: Drillung $[\varphi]$ = rad: Torisionswinkel [1] = m: Länge des Drehkörpers

 $[W_t] = m^3$: Wiederstandsmoment

Polares Fläschenmoment

 $[J_p] = m^4$: Polares Fläschenmoment

Verformungsarbeit

$\psi = \frac{\mathrm{d}\varphi}{\mathrm{d}l} = \frac{W_t}{G \cdot J_p} \, \tau = \frac{M_t}{G \cdot J_p}$ (2.96)

$$J_p = \int r^2 dA = \int_{\omega} \int_{\Gamma} r^3 dr d\varphi \qquad (2.97)$$

 $W = V \int \sigma(\varepsilon) d\varepsilon$ (2.98)

2.6 Schwingungen

Harmonische Schwingung

[A] = 1: Amplitude $[\omega] = \text{rad s}^{-1}$: Kreisfrequenz $[\varphi]$ = rad: phasenverschiebung $u(t) = A\cos(\omega t + \varphi_0)$ (2.99)

2.6.1 Ungedämpfte Schwingungen

Federpendel

 $[\hat{x}] = m$: Amplitude $[k] = kg s^{-2}$: Federkonstante

 $[\omega] = \text{rad } s^{-1}$: Eigenfrequenz

Mathematisches Pendel $[\varphi]$ = rad: Auslenkwinkel

 $\left[\hat{\varphi} \right] = \text{rad}$: Amplitude

 $[g] = ms^{-2}$: Fallbeschleunigung

 $[\omega] = \text{rad } s^{-1}$: Eigenfrequenz

[l] = m: Pendellänge

$\ddot{x} = -\frac{k}{m}x$	(2.100)
$x(t) = \hat{x}\cos(\omega_0 t + \varphi_0)$	(2.101)
$\dot{x}(t) = -\hat{x}\omega\sin(\omega_0t + \varphi_0)$	(2.102)
$\ddot{x}(t) = -\hat{x}\omega^2\cos(\omega_0t + \varphi_0)$	(2.103)

(2.103) $\omega = \sqrt{\frac{k}{m}}$ (2.104)

 $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ (2.105)

 $T = 2\pi \sqrt{\frac{m}{k}}$ (2.106)

$$\ddot{\varphi} = -\frac{g}{I}\varphi \tag{2.107}$$

 $\varphi(t) = \hat{\varphi}\cos(\omega_0 t + \varphi_0)$ (2.108)

 $\dot{\varphi}(t) = -\hat{\varphi}\,\omega\sin(\omega_0\,t + \varphi_0)$ (2.109)

(2.110)

$$\omega = \sqrt{\frac{g}{I}}$$
 (2.111)

 $\ddot{\varphi}(t) = -\hat{\varphi}\,\omega^2\cos(\omega_0\,t + \varphi_0)$

$$f = \frac{1}{2\pi} \sqrt{\frac{g}{I}} \tag{2.112}$$

$$T = 2\pi \sqrt{\frac{l}{\sigma}} \tag{2.113}$$

$$\ddot{\varphi} = -\frac{l m g}{I_A} \varphi \qquad (2.114)$$

$$\varphi(t) = \hat{\varphi}\cos(\omega_0 t + \varphi_0) \tag{2.115}$$

$$\dot{\varphi}(t) = -\hat{\varphi}\,\omega\sin(\omega_0\,t + \varphi_0) \tag{2.116}$$

$$\ddot{\varphi}(t) = -\hat{\varphi}\,\omega^2\cos(\omega_0\,t + \varphi_0) \tag{2.117}$$

$$\omega = \sqrt{\frac{mgl}{J_A}}$$
(2.118)

$$f = \frac{1}{2\pi} \sqrt{\frac{mgl}{J_A}} \tag{2.119}$$

$$T = 2\pi \sqrt{\frac{J_A}{mgl}} \tag{2.120}$$

Physikalisches Pendel

 $[\varphi]$ = rad: Auslenkwinkel

 $\begin{bmatrix} \hat{\varphi} \end{bmatrix}$ = rad: Amplitude $\begin{bmatrix} g \end{bmatrix}$ = ms⁻²: Fallbeschleunigung

 $[\omega] = \text{rad s}^{-1}$: Eigenfrequenz

[1] = m: Abstand Drehachse A zum SP $[J_A] = kgm^2$: Trägheitsmoment um Achse A

Torisionsschwingung

$[\varphi]$	= rad:	Tor	isior	1SW

$$[\hat{\varphi}]$$
 = rad: Amplitude

Flüssigkeitspendel

[y] = m: Auslenkung

 $[\hat{y}] = m$: Amplitude

 $[\omega] = \operatorname{rad} s^{-1}$: Eigenfrequenz

 $[A] = m^2$: Querschnittsfläche

 $[\rho] = kg m^{-2}$: Dichte der Flüssigkeit [l] = m: Länge der Flüssigkeitsseule

$$[\omega] = \text{rad} s^{-1}$$
: Eigenfrequenz

$$[D] = \text{rad} s^{-1}$$
: Winkelrichtgröße

$$[D] = \operatorname{rad} s^{-1}$$
: Winkelrichtgröße

$$[J_A] = \mathrm{kg}\,\mathrm{m}^2$$
: Trägheitsmoment um Achse A

$$\ddot{\varphi} = -\frac{D}{J_A}\varphi \tag{2.121}$$

$$\varphi(t) = \hat{\varphi}\cos(\omega_0 t + \varphi_0) \tag{2.122}$$

$$\dot{\varphi}(t) = -\hat{\varphi}\omega\sin(\omega_0 t + \varphi_0) \tag{2.123}$$

$$\ddot{\varphi}(t) = -\hat{\varphi}\omega^2 \cos(\omega_0 t + \varphi_0) \tag{2.124}$$

$$\omega = \sqrt{\frac{D}{L}} \tag{2.125}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{D}{I_A}} \tag{2.126}$$

$$T = 2\pi \sqrt{\frac{J_A}{D}} \tag{2.127}$$

$$\ddot{y} = -\frac{2A\rho g}{m} y \tag{2.128}$$

$$\varphi(t) = \hat{y}\cos(\omega_0 t + \varphi_0) \tag{2.129}$$

$$\dot{\varphi}(t) = -\hat{y}\,\omega\sin(\omega_0 t + \varphi_0) \tag{2.130}$$

$$\ddot{\varphi}(t) = -\hat{y}\,\omega^2\cos(\omega_0 t + \varphi_0) \tag{2.131}$$

$$\omega = \sqrt{\frac{2A\rho g}{m}} = \sqrt{\frac{2g}{l}} \tag{2.132}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{2g}{l}} \tag{2.133}$$

$$T = 2\pi \sqrt{\frac{I}{2g}} \tag{2.134}$$

Elektrischer Schwingkreis

[q] = As: Ladung $[\hat{q}] = As$: Amplitude, max. Ladung Kondensator

 $[L] = VsA^{-1}$: Induktivität

 $[C] = AsV^{-1}$: Kapazität

$$0 = L\ddot{Q} + \frac{Q}{C} \tag{2.135}$$

$$q(t) = \hat{Q}\cos(\omega_0 t + \varphi_0) \tag{2.136}$$

$$\dot{q}(t) = -\hat{Q}\omega\sin(\omega_0 t + \varphi_0) \tag{2.137}$$

$$\ddot{q}(t) = -\hat{Q}\omega^2 \cos(\omega_0 t + \varphi_0) \tag{2.138}$$

$$\omega = \sqrt{\frac{1}{LC}}$$
 (2.139)

$$f = \frac{1}{2\pi} \sqrt{\frac{1}{IC}}$$
 (2.140)

$$T = 2\pi \sqrt{\frac{1}{IC}} \tag{2.141}$$

2.6.2 Gedämpfte Schwingungen

Schwingungsgleichung mit Reibung

 $[k] = kg s^{-2}$: Richtgröße

 $[F_R] = N$: Reibungskraft [x] = m: Auslenkung

$$m\ddot{x} = -kx + F_R \tag{2.142}$$

Coulomb-Reibung

 $[k] = kg s^{-2}$: Richtgröße

 $[F_N] = N$: Normalkraft

 $[F_R]$ = N: Reibungskraft

 $[\mu] = 1$: Reibungskoeffizient

 $[\dot{x}] = m s^{-1}$: Geschwindigkeit

$$[k] = kg s^{-2}$$
: Richtgröße

$$[F_N] = N$$
: Normalkraft

 $[\mu] = 1$: Reibungskoeffizient

 $[\hat{x}_0] = m$: Start Amplitude

 $[\hat{x}_1] = m$: End Amplitude

$$m\ddot{x} = -kx + F_R \tag{2.142}$$

$$F_R = -\operatorname{sgn}(\dot{x})\mu F_N$$
 (2.143)
 $0 = m\ddot{x} + kx + \operatorname{sgn}(\dot{x})\mu F_N$ (2.144)

$$\operatorname{sgn}(\dot{x}) = \begin{cases} -1 & \dot{x} < 0 \\ 0 & \dot{x} = 0 \\ +1 & \dot{x} > 0 \end{cases}$$
 (2.145)

$$x(t) = -(\hat{x}_0 - \hat{x}_1)\cos(\omega t) - \hat{x}_1 \qquad 0 \le t \le \frac{T}{2}$$
 (2.146)

$$x(t) = -(\hat{x}_0 - 3\hat{x}_1)\cos(\omega t) + \hat{x}_1$$
 $\frac{T}{2} \le t \le T$ (2.147)

$$\hat{x}_1 = \frac{\mu F_N}{k} \tag{2.148}$$

(2.138)

Viskose Reibung

 $[k] = kg s^{-2}$: Richtgröße

 $[\hat{x}] = m$: Amplitude

 $[\omega] = \operatorname{rad} s^{-1}$: Eigenfrequenz

 $[\delta] = s^{-1}$: Abklingkoeffizient

 $[b] = kg s^{-1}$: Dämpfungskonstante

[D] = 1: Dämpfungsgrad

 $[\omega_D] = \operatorname{rad} s^{-1}$: Gedämpfte Kreisfrequenz

 $[\Lambda] = 1$: logarithmischen Dekrement

[d] = 1: Verlustfaktor

[Q] = 1: Güte

$$0 = m\ddot{x} + b\dot{x} + kx \tag{2.149}$$

$$x(t) = \hat{x}e^{-\delta t}e^{\pm j\sqrt{\omega_0^2 - \delta^2}t}$$
 (2.150)

$$x(t) = \hat{x}e^{-\delta t}e^{\pm j\omega_0\sqrt{1-D^2}t}$$
(2.151)

$$\delta = \frac{b}{2m} \tag{2.152}$$

$$D = \frac{\delta}{400} \tag{2.153}$$

$$D = \frac{b}{2} \frac{1}{\sqrt{mk}} \tag{2.154}$$

$$\omega_0 = \sqrt{\frac{k}{m}} \tag{2.155}$$

$$\Lambda = \ln\left(\frac{x(t)}{x(t+T)}\right) \tag{2.156}$$

$$\Lambda = \delta T \tag{2.157}$$

$$\omega_D = \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2} \tag{2.158}$$

$$d = 2D \tag{2.159}$$

$$Q = \frac{1}{d} \tag{2.160}$$

Viskose Reibung

Schwingfall. $\delta < \omega_0$

Viskose Reibung

Aperiodischer Grenzfall $\delta = \omega_0$

Viskose Reibung

Kriechfall $\delta > \omega_0$

$$x(t) = \hat{x}e^{-\delta t}\cos(\sqrt{\omega_0^2 - \delta^2}t + \varphi)$$
 (2.161)

$$x(t) = \hat{x}e^{-\delta t}(1 - \delta t) \tag{2.162}$$

$$x(t) = \hat{x}e^{-\delta t}e^{\pm j\sqrt{\omega_0^2 - \delta^2 t}}$$
 (2.163)

2.7 Fluidmechanik

2.7.1 Ohne Reibung

Statischer Druck

[p] = Pa: Druck

[p] = N: Kraft $(F_N \perp A)$ $[A] = m^2$: Fläche

 $p = \frac{\mathrm{d}F_N}{\mathrm{d}A}$ (2.164)

Dynamischer Druck

[p] = Pa: Druck

 $[v] = m s^{-1}$: Geschwindigkeit des Mediums

 $[\rho] = kg m^{-3}$: Dichte

Schwere Druck

[p] = Pa: Druck

 $[\rho] = \text{kgm}^{-3}$: Dichte

 $[V] = m^3$: Volumen

 $[A] = m^2$: Fläche

[h] = m: Tiefe (Abstand von Oben)

$$p = \frac{1}{2}\rho v^2$$
(2.165)

$$p = \frac{\rho V g}{A} \tag{2.166}$$

$$=h\rho\,g\tag{2.167}$$

$$\dot{V} = vA \tag{2.168}$$

$$= \iint_{A} \overrightarrow{v} \, d\overrightarrow{A} \tag{2.169}$$

$$=\frac{\mathrm{d}V}{\mathrm{d}t}\tag{2.170}$$

$$=Q (2.171)$$

Volumenstrom

 $[\dot{V}] = m^3 s^{-1}$: Volumenstrom

Massenstrom

 $[\dot{m}] = \text{kg}\,\text{s}^{-1}$: Massenstrom $[\dot{j}] = \text{kgm}^{-2}\,\text{s}^{-1}$: Massenstromdichte

 $\dot{m} = jA$ (2.172) $=\iint_A \overrightarrow{j} d\overrightarrow{A}$ (2.173)(2.174)

Kontinuitätsgleichung

 $[v_1] = m s^{-1}$: Geschwindigkeit zum Zeitpunkt 1 $[v_2] = m s^{-1}$: Geschwindigkeit zum Zeitpunkt 2

 $[A_1] = m^2$: Fläsche zum Zeitpunkt 1 $[A_2] = m^2$: Fläsche zum Zeitpunkt 2 $\dot{m}|_{1} = \dot{m}|_{2}$ (2.175)

 $\dot{V}|_1 = \dot{V}|_2$ $\rho_1 = \rho_2$ (2.176) $v_1 A_1 = v_2 A_2$ (2.177)

 $\rho_1 = \rho_2$

Kompressibilität

 $[\Delta V] = m^3$: Volumenabnahme

 $[\Delta p]$ = Pa: Druckzunahme $[\kappa] = Pa^{-1}$: Kompressibilität

$$\kappa = \frac{\Delta V}{\Delta p V} \tag{2.178}$$

Volumenausdehnungskoeffizient

 $[\Delta T]$ = K: Temperaturänderung $[\gamma] = K^{-1}$: Volumenausdehnungskoeffizient

$$\frac{\Delta V}{V} = \gamma \Delta T \tag{2.179}$$

Barometrische Höhenformel

Luftdruck in der Atmosphäre

 $[p_0]$ = Pa: Druck am Boden

 $[
ho_0]=$ kg m $^{-3}$: Dichte am Boden [h] = m: Tiefe (Abstand von Boden)

$$p = p_0 e^{-Ch} (2.180)$$

$$C = \frac{\rho_0 g}{p_0} \tag{2.181}$$

Auftrieb

 $[F_A] = N$: Kraft

 $[\rho_V] = \text{kg m}^{-3}$: Dichte des verdränkten Stoffes

 $[\rho_M] = \text{kgm}^{-3}$: Dichte des Stoffes $[V] = m^3$: Volumen das verdränkt wird

$$\overrightarrow{F_A} = -\rho_V \overrightarrow{g} V$$

$$= -\frac{\rho_V}{\rho_M} \overrightarrow{F_G}$$
(2.182)

 $p + \frac{1}{2}\rho v^2 + \rho g h = \text{const}$

Bernoulli Gleichung

 $[\rho] = kgm^{-3}$: Dichte

 $[v] = ms^{-1}$: Geschwindigkeit

[h] = m: Tiefe (Abstand von Oben)

2.7.2 Laminare Reibung

Newtonsches Reibungsgestz

 $[\eta] = Pas: Viskosität$

 $[A] = m^2$: Fläsche einer Schicht

 $[dv] = m s^{-1}$: Geschwindigkeit der Schichten

[dx] = m: Abstand der Schichten

$$F_R = \eta A \frac{\mathrm{d}v}{\mathrm{d}x} \tag{2.185}$$

Laminare Strömungen in einen Rohr

 $[\eta] = Pas: Viskosität$

[l] = m: Länge des Rohrs

[r] = m: Abstand von der Mittellinie

[R] = m: Radius des Rohres

[p] = Pa: Druckabfall über das Rohr

$$v(r) = \frac{p}{4\eta l} \left(R^2 - r^2 \right)$$

$$p = \frac{4\eta l}{R^2} v(0) \tag{2.187}$$

$$\dot{V} = \frac{\pi R^4}{8\eta l} p \tag{2.188}$$

Umströmung einer Kugel

 $[\eta]$ = Pas: Viskosität

[r] = m: Radius der Kugel

 $[v] = ms^{-1}$: Geschwindigkeit Strömung(Kugel)

(2.189) $F_R = 6\pi \eta r v$

Bernoulli Gleichung mit Reibung

 $[\Delta p]$ = Pa: Druck "Verlustim Rohr

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2 + \Delta p$$
 (2.190)

(2.184)

(2.186)

Reynoldzahl

$$\begin{split} [Re] = 1: & \operatorname{Reynoldzahl} \\ [Re_{krit}] = 1: & \operatorname{Kritische Reynoldzahl} \\ [L] = & \operatorname{m:} \operatorname{Charakteristische Länge} \\ Lz.B. & \operatorname{Rohr oder Kugel Durschmesser} \\ [D] & = & \operatorname{kgm}^{-3} : \operatorname{Dichte der Flüssigkeit} \\ [v] & = & \operatorname{ms}^{-1} : \operatorname{Geschwindigkeit} \operatorname{der Flüssigkeit} \end{split}$$

$$Re = \frac{L\rho v}{\eta} \tag{2.191}$$

 $Re > Re_{krit}$ Strömung wird Turbulent (2.192)

2.8 Gravitation

Gravitationsgesetzt

 $\begin{bmatrix} F_g \end{bmatrix} = \mathbf{N} \colon \text{Gravitationskraft} \\ [G] = \mathbf{N} \, \mathbf{m}^2 \, \mathbf{kg}^{-2} \colon \text{Gravitationskonstante} \\ [\mathbf{1}_{12}] = \mathbf{m} \colon \text{Schwerpunktabstand der Körper} \\ [m_i] = \mathbf{kg} \colon \text{Masse des Körper i} \\ [E_g] = \mathbf{ms}^{-2} \colon \text{Gravitationsfeldstärke}$

Gravitationspotenzial

 $[\phi] = Jkg^{-1}$: Gravitationspotenzial $[G] = Nm^2kg^{-2}$: Gravitationskonstante [r] = m: Abstand der anziehenden Kraft

Arbeit

 $[\phi] = Jkg^{-1}$: Gravitationspotenzial $[G] = Nm^2kg^{-2}$: Gravitationskonstante [r] = m: Abstand der anziehenden Kraft

Planetenbahnen

[T] = s: Umlaufzeit

[a] = m: Durchmesser der großen Halbachse $[i_E] = m$: a und T Größen der Erde

$$\vec{F}_{g,2} = -G \frac{m_1 m_2}{r_{12}^2} \vec{e}_r \tag{2.193}$$

$$\overrightarrow{F}_{g} = \overrightarrow{E}_{g} \cdot m = \overrightarrow{g} m \tag{2.194}$$

$$\phi = -G\frac{M}{r} \tag{2.195}$$

$$\overrightarrow{E}_g = \operatorname{grad}\phi \tag{2.196}$$

$$W_{12} = -\int_{\vec{r}_1}^{\vec{r}_2} \vec{F}_g \circ d\vec{r} = Gmm \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$
 (2.197)

$$\left(\frac{a}{a_E}\right)^3 = \left(\frac{T}{T_E}\right)^2 \tag{2.198}$$