GRUNDLAGEN UND ALGEBRAISCHE STRUKTUREN (WISE 13/14)

LaS: Logik und Semantik

03.02.2014 - 09.02.2014

Tutorium 13

Aufgabe 1: Minima, Maxima, Schranken

Gegeben sei die Halbordnung \leq : $(\mathbb{N}_+, \mathbb{N}_+)$ mit \leq := $\{(a, b) : \exists c \in \mathbb{N}_+ : a \cdot c = b \}$ (d.h. $a \leq b$ gdw. a ein Teiler von b ist).

1.a) *Gib an:* Alle kleinsten/größten und minimalen/maximalen Elemente, alle unteren/oberen Schranken und Infimum/Supremum der folgenden Mengen, falls diese existieren.

```
1.a(i) { n \mid n \text{ ist gerade }}
1.a(ii) \mathbb{N}_+
1.a(iii) { 1, 5 }
1.a(iv) { 12, 21, 96 }
```

1.b) Für welche Teilmengen von \mathbb{N}_+ gibt es obere Schranken?

Aufgabe 2: Verbände

Gegeben sei die Halbordnung \leq aus Aufgabe 1. Seien $a, b \in \mathbb{N}_+$.

- 2.a) $Gib \ an: \inf(\{a, b\}).$
- 2.b) Beweise:: Deine Angabe für $\inf(\{a, b\})$ ist tatsächlich das Infimum von a, b.

Hinweis: Seien $c, m, n \in \mathbb{N}_+$. Wenn c der größte gemeinsame Teiler von m und n ist, dann existieren $u, v \in \mathbb{Z}$ mit $c = u \cdot m + v \cdot n$ (*)

Hinweis: Seien $c, m, n \in \mathbb{N}_+$. Wenn c ein Teiler von m und ein Teiler von n ist, dann gilt für alle $p, q \in \mathbb{Z}$, dass c auch $p \cdot m + q \cdot n$ teilt (**)

Aufgabe 3: Hasse-Diagramme und Verbände

3.a) Gegeben sei $A := \{a, b, c, d, e, f\}$ und der Verband $V := (A, \sqsubseteq)$, der durch sein Hasse-Diagramm bestimmt ist:

Gib explizit an:

3.a(i) $c \sqcup e$ 3.a(ii) $b \sqcap d$

 $3.a(iii) sup({a, b, e})$

3.a(iv) Eine injektive Abbildung $f: A \to \mathcal{P}(\mathbb{N})$, so dass $\forall x, y \in A.f(x \sqcap y) = f(x) \cap f(y)$ und $\forall x, y \in A.f(x \sqcup y) = f(x) \cup f(y)$

- 3.b) Sei $P \subseteq \mathcal{P}(X)$. P ist eine P artition von X, wenn folgendes gilt:
 - $\emptyset \notin P$
 - $\forall x, y \in P : x \neq y \Rightarrow x \cap y = \emptyset$
 - $\bigcup_{P_i \in P} P_i = X$

Bezeichnen wir mit Part(X) die Menge aller Partitionen von X. Wir definieren die Halbordnung

```
\sqsubseteq: (Part(X), Part(X)) mit \sqsubseteq:= { ( M, N ) : ∀m ∈ M . ∃n ∈ N . m ⊆ n }. 3.b(i) Sei X := { 1, 2, 3, 4, 5, 6, 7, 8, 9 }.
```

Gib an: Eine Partition P von X mit |P|=3, so dass $\forall p \in P$. $|p| \ge 2$ und $\exists q \in P$. |q|=4 3.b(ii) Sei $X:=\{1,2,3,4\}$. Visualisiere \sqsubseteq mittels eines Hasse-Diagramms.

3.b(iii) Sei $X:=\mathbb{N}$. Gegeben sei eine beliebige Partition P von \mathbb{N} . Definiere eine Äquivalenzrelation $R:(\mathbb{N},\mathbb{N})$ mit $P=\mathbb{N}/R$