P425/1
PURE MATHEMATICS
Paper 1
Jul. / Aug. 2022
3 hours

SECONDARY MATHEMATICS TEACHERS' ASSOCIATION

SMATA JOINT MOCK EXAMINATIONS 2022 Uganda Advanced Certificate of Education

PURE MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES:

Answer **all** the **eight** questions in Section **A** and **five** questions from Section **B**.

Any additional question(s) answered will **not** be marked.

All working **must** be shown clearly.

Begin each answer on a **fresh** sheet of paper.

Graph paper is provided.

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A: (40 MARKS)

Answer all questions in this Section.

- 1. Solve the equation $\cos 5\theta + \cos 4\theta = \sin 5\theta + \sin 4\theta$ for $0^{\circ} \le \theta \le 180^{\circ}$.
- 2. Calculate the perpendicular distance of the point T(2, -1, 2) to the line $\frac{x-3}{2} = y = \frac{2-z}{3}$. (5 marks)
- 3. Solve the equation $\sqrt{\frac{x-1}{2x}} 3\sqrt{\frac{2x}{x-1}} = 2$. (5 marks)
- 4. A point P moves so that its distances from two points A(-2,0) and B(8,6) are in the ratio AP:PB=3:2. Show that the locus of P is a circle. (5 marks)
- 5. Solve the differential equation: $xy \frac{dy}{dx} = Inx$, given that y = 2 when x = e.
- 6. Find $\frac{dy}{dx}$ if $y = \ln\left(\frac{e^{-x}(x-2)}{x+2}\right)$. (5 marks)
- 7. If the nth term of an arithmetic progression (A.P) is $\frac{3n-1}{6}$, deduce that the sum of the first *n* terms of the progression is $\frac{n}{12}(3n+1)$.

(5 marks)

8. Find the volume of the solid generated when the area bounded between the curve $y = x \sin x$, the *x*- axis from x=0 to $x=\frac{\pi}{4}$ is rotated through one complete revolution about the *x*- axis.

(5 marks)

SECTION B: (60 MARKS)

Answer only *five* questions in this section.

9. (a) Find the values of p and q given that $\frac{p}{2+3i} + \frac{qi}{5-i} = \frac{11+20i}{13}$.

(6 marks)

- (b) Describe the locus defined by $\left| \frac{z+2-i}{z+1} \right| = 2$. (6 marks)
- 10. (a) Using calculus of small changes, find $\sqrt[4]{78}$ correct to **two** decimal places. (5 marks)
 - (b) A rectangular box has a square cross-section and the sum of its length and the perimeter of this cross-section is 2 m. If the length of the box is *x* m,
 - (i) show that its volume V is given by $V = \frac{x(2-x)^2}{16}$.
 - (ii) find the value of x for which the volume is a maximum.

(12 marks)

- 11. (a) In a triangle OAB, E divides OA in the ratio 6:1. D divides AB in the ratio 1:2. Point C is on OB produced such that OC: OB = 3:2 Given that OA = a and OB = b, find the ratio ED: DC. (5 marks)
 - (b) Determine the
 - (i) co-ordinates of the point of intersection of the lines $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z+2}{3} \text{ and } \frac{x+2}{2} = \frac{y-5}{-1} = \frac{z+3}{2}.$
 - (ii) Cartesian equation of the plane containing the lines in (7 marks)
- 12. (a) Solve the equations x + 2y = 2 $x^3 + 8y^3 = 56$ (7 marks)

(b) Use the binomial theorem to expand $\frac{1-x}{\sqrt{1+2x}}$ as far as the term in x^3 .

(5 marks)

- 13. (a) Find the equations of the tangents from the point (16, 17) to the parabola $y^2 = 4x$. (5 marks)
 - (b) (i) Find the equation of the normal to the parabola $y^2 = 4ax$ at the point $P(ap^2, 2ap)$.
 - (ii) The normal in (b) (i) cuts the x- axis at the point G.

 Determine the locus of the mid-point of PG. (7 marks)
- 14. Evaluate $\int_{2}^{5} \frac{1+9x-2x^{2}}{(2x-3)(1+4x^{2})} dx$. (12 marks)
- 15. (a) Show that if $2\sin(x+\alpha) = \cos(x-\alpha)$, then $\tan x = \frac{1-2\tan\alpha}{2-\tan\alpha}$. Hence solve the equation $2\sin(x+20^\circ) = \cos(x-20^\circ)$ for $0^\circ \le x \le 360^\circ$.

(7 marks)

- (b) Given that $\tan \phi = \frac{a}{b}$, prove that $\frac{a}{a+b} = \frac{\sin \phi}{\sqrt{2} \sin \left(\phi + \frac{\pi}{4}\right)}$. (5 marks)
- 16. (a) By letting $u = 5^x$, show that $\int \frac{5^x}{5^x + 1} dx = \log_5 A(5^x + 1)$. (5 marks)
 - (b) The velocity of a particle at a distance x from a fixed point in a line at a time t, is given by $4 \frac{x}{t}$. It is known that x = 10 when t = 1. Find the value of t when x = 8. (7 marks)

END