3 ••• Obtén el antilogaritmo de: $\overline{2}$.0401.

Como la característica del logaritmo de referencia es $\overline{2}$ la primera cifra significativa debe ocupar el segundo lugar a la derecha del punto decimal; en consecuencia, se debe poner un cero entre dicha cifra y el punto decimal.

Característica = -2 + 1 = -1

Mantisa:

N	0	1	2	3	49	19
≈	*	≈	≈	≈	≈ ≈	≈ ≈ ≈
.04	1096	1099	1102	1104	11071119	02

Por tanto:

antilog $\overline{2}.0401 = 0.01096$

EJERCICIO 74

Mediante las tablas de antilogaritmos calcula el valor de N:

1. $\log N = 1.8674$

11. $\log N = 3.5766$

2. $\log N = 3.8046$

12. $\log N = \overline{2.2618}$

3. $\log N = 1.4950$

13. $\log N = \overline{1.4022}$

4. $\log N = 2.4683$

14. $\log N = \overline{4}.7163$

5. $\log N = 0.5611$

15. $\log N = \overline{1.6310}$

C

_

6. log N = 0.73227. log N = 0.0065

16. $\log N = \overline{2}.7047$ 17. $\log N = \overline{3}.7514$

8. $\log N = 2.6545$

18. $\log N = \overline{2.034}$

9. $\log N = 0.4718$

19. $\log N = \bar{1}.7949$

10. $\log N = 3.0017$

20. $\log N = \overline{4.10}$

Propiedades de los logaritmos

Verifica tus resultados en la sección de soluciones correspondiente

- 1. $\log_b 1 = 0$
- 2. $\log_b b = 1$
- $3. \log_b M^n = n \log_b M$

M > 0

 $4. \log_b \sqrt[n]{M} = \frac{1}{n} \log_b M$

- M > 0
- $5. \log_b MN = \log_b M + \log_b N$
- M > 0 y N > 0
- $6. \log_b \frac{M}{N} = \log_b M \log_b N$
- M > 0 y N > 0
- 7. $\log_e M = \ln(M)$, $\ln = \text{logaritmo natural}$, e = 2.718...

Nota: $\log_b (M + N) \neq \log_b M + \log_b N$

 $\log_b\left(\frac{M}{N}\right) \neq \frac{\log_b M}{\log_b N}$

MATEMÁTICAS SIMPLIFICADAS

Las propiedades de los logaritmos se utlizan para resolver operaciones aritméticas, como se muestra en los siguientes ejemplos:

EJEMPLOS

1.

••• Calcula el valor aproximado de: N = (5.130) (3.134).

Solución

Se aplican logaritmos a ambos miembros de la igualdad,

$$\log N = \log (5.130)(3.134)$$

Se aplican las propiedades de los logaritmos:

$$\log N = \log (5.130) + \log (3.134) = 0.7101 + 0.4961$$
 (propiedad 5) $\log N = 1.2062$

Se despeja "N",

$$N = \text{antilog } 1.2062$$

Entonces, N = 16.08

2 ••• Calcula el valor aproximado de: $N = \sqrt[3]{71.47}$.

Solución

$$\log N = \log \sqrt[3]{71.47}$$

$$\log N = \frac{1}{3} \log (71.47) = \frac{1}{3} (1.8541) = 0.6180$$
(propiedad 4)
$$N = \text{antilog } 0.6180$$

Por tanto, N = 4.150

3 ••• Halla el valor aproximado de: $M = \frac{7.65}{39.14}$.

Solución

$$\log M = \log \frac{7.65}{39.14}$$

$$\log M = \log (7.65) - \log (39.14) = 0.8837 - 1.5926$$
 (propiedad 6)
$$\log M = -0.7089 = -1 + (1 - 0.7089) = -1 + 0.2911 = \bar{1}.2911$$

$$M = \text{antilog } \bar{1}.2911$$

Entonces, M = 0.1954

4 ••• Halla el valor aproximado de: $R = (18.65)^4$.

Solución

$$\log R = 4\log (18.65)$$
 (propiedad 3)
 $\log R = 4(1.2707) = 5.0828$
 $R = \text{antilog } 5.0828$

Finalmente, R = 121000

Otras aplicaciones de las propiedades de los logaritmos se ilustran en los siguientes ejemplos:

EJEMPLOS

•• Si $\log 5 = 0.6989$ y $\log 7 = 0.8450$, encontrar el valor de $\log 35$.

Solución

Se expresa 35 como: 35 = (5)(7)

Se aplica la propiedad de los logaritmos y se obtiene el resultado:

$$\log 35 = \log (5)(7)$$

$$= \log 5 + \log 7$$

$$= 0.6989 + 0.8450 = 1.5439$$

Por consiguiente, el resultado es 1.5439

6 ••• ¿Cuál es el resultado de log 12, si log 2 = 0.3010 y log 3 = 0.4771?

Solución

Se expresa 12 como:

$$12 = 2^2 \cdot 3$$

Al aplicar las propiedades de los logaritmos y efectuar las operaciones se obtiene:

$$\log 12 = \log 2^{2} \cdot 3$$

$$= \log 2^{2} + \log 3$$

$$= 2\log 2 + \log 3$$

$$= 2(0.3010) + 0.4771$$

$$= 0.6020 + 0.4771$$

$$= 1.0791$$

Por consiguiente, $\log 12 = 1.0791$

7 •• Halla el resultado de log $\sqrt{2.5}$ si log 2 = 0.3010 y log 5 = 0.6989.

Solución

Se expresa el logaritmo del número de la siguiente manera:

$$\log \sqrt{2.5} = \log \left(\frac{5}{2}\right)^{\frac{1}{2}}$$

Se aplican las propiedades correspondientes y se obtiene el resultado.

$$= \frac{1}{2} (\log 5 - \log 2)$$

$$= \frac{1}{2} (0.6989 - 0.3010)$$

$$= \frac{1}{2} (0.3979)$$

$$= 0.19895$$

El resultado del logaritmo es 0.19895

MATEMÁTICAS SIMPLIFICADAS

EJERCICIO 75

Utiliza las propiedades y las tablas de los logaritmos que se encuentran al final del libro, para obtener el valor aproximado de las siguientes operaciones:

1.
$$\sqrt{9985}$$

8.
$$\sqrt{6.248}$$

14.
$$\frac{143}{(-5.13)(7.62)}$$

20.
$$\sqrt[3]{\frac{9604}{3.5}}$$

2.
$$\sqrt[3]{874.2}$$

9.
$$\sqrt[3]{0.4285}$$

21.
$$\sqrt{\frac{(675)(3.15)}{(65.34)}}$$

21.
$$\sqrt{\frac{(675)(3.151)}{(65.34)}}$$

12.
$$\frac{-382.1}{543}$$

17.
$$\left(\frac{53.21}{8.164}\right)^3$$

$$22. \sqrt[3]{\frac{(34)^2 \times 52.1}{543}}$$

6.
$$\sqrt[4]{0.06349}$$
7. $\sqrt[3]{0.06349}$

13.
$$\frac{(286.5)(4.714)}{-67.84}$$

18.
$$\sqrt[3]{375 \times 83.9}$$
19. $\sqrt[4]{4096}$

23.
$$\left[\frac{(6.53)(81.51)}{\sqrt[3]{8015}}\right]^2$$

Si $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 5 = 0.6989$ y $\log 7 = 0.8450$, calcula los siguientes logaritmos:

36.
$$\log \sqrt[6]{28}$$

39.
$$\log \sqrt{52.5}$$

37.
$$\log \sqrt[3]{350}$$

40.
$$\log \sqrt[3]{\frac{14}{15}}$$

Verifica tus resultados en la sección de soluciones correspondiente

Cambios de base

Si se conoce el logaritmo base b de un número, se puede hallar el logaritmo en otra base a con la fórmula:

$$\log_b N = \frac{\log_a N}{\log_a b}$$

Demostración:

Sea $\log_b N = x$, entonces mediante la definición, se obtiene:

$$N = b^x$$

Al aplicar logaritmo base a, en ambos miembros de la igualdad:

$$\log_a N = \log_a b^x$$

por la propiedad 3,

$$\log_a N = x \log_a b$$

al dividir ambos miembros por log_a b,

$$x = \frac{\log_a N}{\log_a b}$$

Se obtiene:

$$\log_b N = \frac{\log_a N}{\log_a b}$$

EJEMPLOS -

Expresa utilizando logaritmos en base 4, log₂ 32.

Solución

Del logaritmo se tiene que:

$$N = 32$$
, $b = 2$, $a = 4$

Al sustituir en la fórmula se obtiene:

$$\log_2 32 = \frac{\log_4 32}{\log_4 2}$$

2 •• Halla el valor de log₇ 343, transformando a base 10.

Solución

De la expresión log₇ 343 se tiene que:

$$b = 7$$
, $N = 343$ y $a = 10$

Al sustituir en la fórmula,

$$\log_7 343 = \frac{\log 343}{\log 7} = \frac{2.5353}{0.8451} = 3$$

Finalmente, $\log_7 343 = 3$

3 •••Encuentra el log₈ 326.

Solución

Se realiza el cambio a base 10,

$$\log_8 326 = \frac{\log 326}{\log 8} = \frac{2.5132}{0.9031} = 2.7828$$

Finalmente, $\log_8 326 = 2.7828$

•••Encuentra el valor de: $\log_2 354.1$.

Solución

Se aplica un cambio a base 10,

$$\log_2 354.1 = \frac{\log 354.1}{\log 2} = \frac{2.5491}{0.3010} = 8.4687$$

Por tanto, $\log_2 354.1 = 8.4687$

5 •• Encuentra el valor de: $\log_3 2$ 526.

Solución

Se aplica un cambio a base 10,

$$\log_3 2526 = \frac{\log 2526}{\log 3} = \frac{3.4024}{0.4771} = 7.1314$$

Por consiguiente, $\log_3 2526 = 7.1314$

7 CAPÍTULO

MATEMÁTICAS SIMPLIFICADAS

EJERCICIO 76

Encuentra el valor de los siguientes logaritmos:

- 1. log₆ 31
- 2. log₉ 10.81
- 3. log₅ 3.625
- 4. log₁₂ 643.3
- 5. log₈ 1.86
- 6. log₂₀ 124
- 7. log₁₃ 7.32
- 8. log₁₅ 21.7
- 9. log₃ 8.642
- 10. log₂ 8 435

▼ Verifica tus resultados en la sección de soluciones correspondiente