1. Consider the following training set, in which each example has two tertiary attributes (0, 1, or 2) and one of two possible classes (*X* or *Y*).

Example	A_1	A ₂	Class
1	0	1	X
2	2	1	X
3	1	1	X
4	0	2	X
5	1	2	Y
6	2	0	Y

- 1) What feature would be chosen for the split at the root of a decision tree using the information gain criterion? Show the details. (Note: we split attributes at each value of the attributes, for example, $A_1=0, A_1=1, A_1=2$)
- 2) What would the Naïve Bayes algorithm predict for the class of the following new example? Show the details of the solution.

Example	A_1	A_2	Class
7	2	2	?

3) Draw the decision boundaries for the nearest neighbor algorithm assuming that we are using standard Euclidean distance to compute the nearest neighbors.

- 4) Which of these classifiers will be the least likely to classify the following data points correctly? Please explain the reason.
 - a. ID3.
 - b. Naïve Bayes
 - c. Logistic Regression
 - d. KNN
- 2. You have trained a logistic classifier y=sigmoid($w_0+w_1x_1+w_2x_2$). Suppose $w_0=6$, $w_1=-1$, and $w_2=0$. Which of the following figures represents the decision boundary found by your classifier?

3. Suppose we are given a dataset $D=\{(x^{(1)},r^{(1)}),...,(x^{(N)},r^{(N)})\}$ and aim to learn some patterns using the following algorithms. Match the update rule for each algorithm.

Algorithms:

A: SGD for Logistic Regression $y = \text{sigmoid } (\mathbf{w}^T x)$

B: Least Mean Squares for Linear Regression

$$y = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

C: Perceptron

$$y = \operatorname{sign}(\mathbf{w}^{\mathrm{T}} x)$$

(where sign(a)=1 if a>0 else -1)

Update Rules:

1.
$$\mathbf{w}_t \leftarrow \mathbf{w}_t + (\mathbf{w}_t^T \mathbf{x}^{(l)} - \mathbf{r}^{(l)})$$

2.
$$w_t \leftarrow w_t + \frac{1}{1 + \exp \eta(y^{(l)} - r^{(l)})}$$

3.
$$w_t \leftarrow w_t + \eta(y^{(l)} - r^{(l)})x_i^{(l)}$$