Problem Daily

ZEROIDEAL (zeroideal@xjtu.edu.cn) 2025/8/12

目录

1	2025	1
	1.1 2025-8	-

$1 \quad 2025$

1.1 2025-8

0811. $a_i, b_i \in \mathbb{R}, \ (i = 1, 2, \dots, n), \ n \in \mathbb{Z}_{>0}.$ 证明:

$$\sum_{i=1}^{n} a_i b_i + (\sum_{i=1}^{n} a_i^2)^{\frac{1}{2}} (\sum_{i=1}^{n} b_i^2)^{\frac{1}{2}} \geqslant \frac{2}{n} (\sum_{i=1}^{n} a_i) (\sum_{i=1}^{n} b_i)$$

0812. $n \ge 2$, 记 $M_n = (m_{ij})$ 为一个 n 阶方阵, 满足

$$m_{ij} = \begin{cases} -1, & j \mid i+1 \\ 0, & j \nmid i+1 \end{cases}$$

记 $D_n = \det M_n$,求 D_n .

0813. 如图,四边形 ABCD 内接于圆 O, AB > BC, E 是 AC 上一点使得 AE < EC,过 E 作 AC 的垂线 l,分别交 $\triangle AED$, $\triangle BED$, $\triangle CED$ 的外接圆于另一点 X,Y,Z,且 E,Y,Z,X 依次排列. 若 AX = BY = CZ,求证:BD 与 OY 的交点是 $\triangle ABC$ 的内心.

(CGMO 2025-D1P2)

0814. 对任意正整数 N, 设 $\sigma(N)$ 表示 N 的所有正因数之和. 求所有正整数 $m \ge n \ge 2$, 使得

$$\frac{\sigma(m) - 1}{m - 1} = \frac{\sigma(n) - 1}{n - 1} = \frac{\sigma(mn) - 1}{mn - 1}$$

0815. 求所有非常数复系数多项式 P(z), 使得 P(z) 与 P(z) — 1 的所有复根的模均为 1.

0816. 给定正整数 k, m, n,满足 $mn = k^2 + k + 3$. 证明: $4m = x^2 + 11y^2$ 和 $4n = x^2 + 11y^2$ 中至少一个方程有奇数解.

(CMO 2006-P6)

version: 2025/8/12

0817. 点 D 在 $\triangle ABC$ 内,且在 $\angle ABC$ 的角平分线上. 设 $\odot BDP$ 和 $\odot BDQ$ 是与 AD 和 CD 相切的圆,且 $P,Q \in \odot ABC$. 证明: $\odot PQD$ 和 $\odot ACD$ 相切.

(Sharygin 2025 I-P14)

version: 2025/8/12

0818. 设 \mathbb{N}^2 表示二元有序正整数对. 若 \mathbb{N}^2 的子集 S 满足: 对任意 $(x,y) \in S$,有 $\{(a,b) \in \mathbb{N}^2 : a \leq x, b \leq y\} \subseteq S$. 则称 S 是稳定的.

求证:对任意稳定的集合 S, 其所有稳定的子集¹⁾中,元素个数为偶数的集合至少占一半.

0819. 设 $n \geqslant 3$ 是正整数, $\alpha_i \in \left[0, \arccos\frac{\sqrt{6}}{3}\right]$, $\sum_{i=1}^n \cos 2\alpha_i = n-2$. 求证:

$$\sum_{i=1}^{n} \cot \alpha_i \geqslant (n-1) \sum_{i=1}^{n} \tan \alpha_i$$

0820.

$$S = \sum_{k_1 + k_2 + \dots + k_{100} = 2025} \frac{1}{2^{k_1} (2^{k_1} + 2^{k_2}) \cdots (2^{k_1} + 2^{k_2} + \dots + 2^{k_{100}})}.$$

试求 $|v_2(S)|$.

0821. 如图, $\triangle ABC$ 的内心为 I. 内切圆与三边分别切于点 D, E, F. 过点 D 作 $DP \perp EF$ 于 P. 射线 AP, IP 分别与 $\triangle ABC$ 外接圆交于 G, Q. 点 M 为线段 BC 中点. 证明:D 为 $\triangle GQM$ 内心.

i)包括空集和它自己.

2