Review:

- 1. All four quadrant operation is possible with Dual Converter.
- 2. If source 'L' is finite, Avg. Value of $V_0 \downarrow$

$$V_0 = \frac{V_m}{\pi} [\cos \alpha + \cos(\alpha + \mu)]$$

$$I_0 = \frac{V_m}{\omega L} [\cos \alpha - \cos(\alpha + \mu)]$$

Problem 2: A single phase fully controlled bridge has a μ with a load current of 10A. Determine

 μ' when α is increased to 45°? Load current

remains the same.

Sol.

$$I_0 = \frac{V_m}{\omega L} [\cos \alpha - \cos(\alpha + \mu)]$$

$$\Rightarrow \cos\alpha - \cos(\alpha + \mu) = \frac{I_0 \omega L}{V_m}$$

$$\therefore 1 - \cos 30^{\circ} = \cos 45^{\circ} - \cos(45^{\circ} + \mu_1)$$

 $\Rightarrow \mu_1 = 10^0 \Rightarrow$ depends on α if I_0 is held constant.

'V' drop due to source 'L' at α = 45°

=
$$\frac{V_m}{\pi} [\cos \alpha - \cos(\alpha + \mu)] = 14 V$$

given when alpha=00 overlap angle=30

1φ Half Wave Rectification - One pulse/cycle 1φ Full Wave Rectification - Two pulse/cycle 3φ Half Wave Rectification - Three pulse converter

$$V_{bn} = V \angle -120$$

Common Cathode Configuration

At
$$\omega t = X^{+}$$

Anode pot. of $D_1 > D_3 > D_2$

 \Rightarrow D₁Conducts

$$\Rightarrow$$
 $V_0 = V_{an}$

At
$$\omega t = Y^{+}$$

 \Rightarrow D₂ Conducts

$$\Rightarrow$$
 $V_0 = V_{bn}$

At
$$\omega t = Z^{+}$$

 \Rightarrow D₃ Conducts

$$\Rightarrow$$
 $V_0 = V_{cn}$

X,Y,Zare known as points of natural commutation Each Diode conducts

for $\frac{2\pi}{3}$ radians

V rating of diode:

When 'D' is ON, $V_D = 0$

For 0<ωt<30° D₃ is ON

'K' pot. of D_1 is V_{cn} 'A' pot. of D_1 is V_{an} $\therefore V_{an} = V - V$

$$V_{cn} \propto \sin 120^{\circ} = \frac{\sqrt{3}}{2} \text{ p.u}$$

$$V_{an} = 0 \quad \therefore \quad V_{AK} = -\frac{\sqrt{3}}{2}$$

$$\Delta t \omega t = 30^{\circ}, V_{\Delta K} = 0$$

$$\because$$
 V_{an} ∞ Sin 30° = 0.5 p.u

$$V_{cn} \propto Sin150^{\circ} = 0.5 p.u$$

From
$$\omega t = \frac{\pi^{+}}{6}$$
 to $\frac{5\pi}{6}$, $V_{AK} = 0$

From
$$\omega t = \frac{5\pi}{6}^{+} \text{ till } \left(\frac{5\pi}{6} + \frac{2\pi}{3} \right)$$
, D₂ conducts

$$\Rightarrow$$
 $V_{D1} = V_{an} - V_{bn}$

At ωt=π

$$V_{an} = 0, V_{bn} = \sin 60^{\circ} = \frac{\sqrt{3}}{2} :: V_{D1} = -\frac{\sqrt{3}}{2}$$

At
$$\omega t = \left(\pi + \frac{\pi}{6}\right)$$

$$V_{an} = -\frac{1}{2}$$
, $V_{bn} = \sin 90^{\circ}$: $V_{D1} = -\frac{1}{2} - 1 = -1.5$

At
$$\omega t = \left(\pi + \frac{\pi}{3}\right)$$

$$V_{an} = -\frac{\sqrt{3}}{2}, V_{bn} = \frac{\sqrt{3}}{2} :: V_{D1} = -\sqrt{3}$$

At
$$\omega t = \left(\pi + \frac{\pi}{2}\right)^{2} V_{an} = -1, V_{bn} = \frac{1}{2} :: V_{D1} = -\frac{3}{2}$$

At
$$\omega t = \left(\pi + \frac{\pi}{2}\right)^{+} D_{3}$$
 starts conducting

$$V_{D1} = V_{an} - V_{cn}, V_{an} = -1, V_{cn} = \frac{1}{2} : V_{D1} = -\frac{3}{2}$$

$$V_{av} = \frac{3}{2\pi} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} V_{m} \operatorname{Sin}\omega t = \frac{3\sqrt{3}}{2\pi} V_{m}$$

Peak value of voltage across diode = $\sqrt{3}V_{\text{m}}$

r.m.s value of the current =
$$\frac{I_0}{\sqrt{3}}$$

3 phase half wave controlled bridge

X, y, Z

Points of natural commutation

- $\Rightarrow \alpha$ is measured w.r.t. these points.
- ⇒ Assume i, is continuous
- \Rightarrow T₁ will continue to conduct till T₂ is triggered.
- \Rightarrow Just prior to triggering T_1 T_3 was conducting.

$$V_0 = V_{cn}$$

As soon as T_1 is triggered T_3 turns off. $V_0 = V_{an}$

$$\therefore V_0 = \frac{3\sqrt{3}}{2\pi} V_m \cos \alpha$$

Observations

For Load = R

For $0<\alpha<30^\circ$ Load is passive i_L will be continuous $\alpha>30^\circ$ i_L will be discontinuous

 \Rightarrow If i_L is continuous each device conducts for 120°

- ⇒ Each phase is supplying power for 120°[It can supply for 360°]
- \Rightarrow Source i has a DC component (av. value of i_s is finite)

3-Phase Full wave rectification

 $T_1, T_3, T_5 \rightarrow$ Form common cathode configuration $T_2, T_4, T_6 \rightarrow$ Form common anode configuration If all are diodes ($\alpha = 0$)

 $T_5 \rightarrow T_1$ takes at X^+ , $T_6 \rightarrow T_2$ takes at P^+

$$\alpha = 0$$

(Equivalent touncontrolled bridge)

T₁ starts conducting at X &

T₃ starts conducting at Y

at P T₂ starts conducting

Prior to P, T₆ was conducting

At point X⁺:

$$\mathbf{V_{an}} = \mathbf{Sin}30^{\circ} = \frac{1}{2}$$

$$V_{bn} = \sin 270^{\circ} = -1$$

$$\mathbf{V}_{\!_0} = \mathbf{V}_{\!_{\mathbf{an}}} - \mathbf{V}_{\!_{\mathbf{bn}}} = \frac{1}{2} + 1 = 1.5$$

at ωt=60° (w.r.t. +ve zero crossing of phase A)

$$V_{an} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

$$V_{bn} = \sin 300^{\circ} = -\frac{\sqrt{3}}{2}$$

$$\therefore V_0 = \sqrt{3}$$

at ωt=90 (Just prior to point P)

$$V_{an} = \sin 90^{\circ} = 1$$

$$V_{bn} = \sin 330^{\circ} = -\frac{1}{2}$$

$$\therefore V_0 = 1.5$$

At point P, T_2 is triggered and it starts conducting at $\omega t = 120^{\circ}$

$$V_{an} = \sin 120^{\circ} = \frac{\sqrt{3}}{2}$$

$$V_{cn} = \sin 240^{\circ} = -\frac{\sqrt{3}}{2}$$

$$V_0 = V_{an} - V_{cn}$$

$$\therefore V_0 = \sqrt{3}$$

$$V_{can} = \sin 150^{\circ} = \frac{1}{2}$$

$$\therefore V_0 = 1.5$$

- at $\omega t = 150^{\circ +}$, corresponding point Y
- \Rightarrow T₃ is triggered T₁ turns off
- \Rightarrow T₂ T₃ continue to carry the load I
- at point $Q \rightarrow T_{A}$ is triggered
- This point corresponds to ωt=210°
- T_1 (Phase A) start conducting at $\omega t=30^\circ$
- \Rightarrow It is turned off at ω t=150°
- \Rightarrow From 150° to 210° Phase A does not supply power (corresponds α =0°)