Web/Networks Structure Mining: Influence

Viral Marketing?

We are more influenced by our friends than strangers

Viral Marketing

Identify influential customers

Convince them to adopt the product – Offer discount/free samples

These customers endorse the product among their friends

How to Create Big Cascades?

- ▶ Blogs information epidemics (传播)
 - Which are the influential blogs?
 - Which blogs create big cascades?
 - Where should we advertise?

Which node shall we target?

Outline

Nodes, ties and influence

- Importance of nodes
- Strength of ties
- Influence modeling
- Influence maximization

Importance of Nodes

- Not all nodes are equally important
- ▶ Centrality(核心性,中心效应) Analysis:
 - Find out the most important nodes in one network
- Commonly-used Measures
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality
 - Eigenvector Centrality

Degree Centrality

- The importance of a node is determined by the number of nodes adjacent to it
 - The larger the degree, the more important the node is
 - Only a small number of nodes have high degrees in many reallife networks
- **Degree centrality:** $C_D(v_i) = d_i = \sum_j A_{ij}$
- Normalized degree centrality: $C'_D(v_i) = d_i/(n-1)$

For node I, degree centrality is 3; Normalized degree centrality is 3/(9-1)=3/8.

Closeness Centrality

- "Central" nodes are important, as they can reach the whole network more quickly than non-central nodes
- ▶ Importance measured by how close a node is to other nodes
- Average Distance: $D_{avg}(v_i) = \frac{1}{n-1} \sum_{j \neq i}^{n} g(v_i, v_j)$

 $g(v_i,v_j)$ denotes the geodesic distance(测地距离) between nodes v_i,v_j

Closeness Centrality:

$$C_C(v_i) = \left[\frac{1}{n-1} \sum_{j \neq i}^n g(v_i, v_j) \right]^{-1} = \frac{n-1}{\sum_{j \neq i}^n g(v_i, v_j)}$$

Closeness Centrality Example

Table 2.1: Pairwise geodesic distance									
Node	1	2	3	4	5	6	7	8	9
1	0	1	1	1	2	2	3	3	4
2	1	0	1	2	3	3	4	4	5
3	1	1	0	1	2	2	3	3	4
4	1	2	1	0	1	1	2	2	3
5	2	3	2	1	0	1	1	1	2
6	2	3	2	1	1	0	1	1	2
7	3	4	3	2	1	1	0	1	1
8	3	4	3	2	1	1	1	0	2
9	4	5	4	3	2	2	1	2	0

$$C_C(3) = \frac{9-1}{1+1+1+2+2+3+3+4} = 8/17 = 0.47,$$

$$C_C(4) = \frac{9-1}{1+2+1+1+1+2+2+3} = 8/13 = 0.62.$$

Node 4 is more central than node 3

Betweenness Centrality

- Nodes betweenness counts the number of shortest paths that pass one node
- Nodes with high betweeness are important in communication and information diffusion
- ▶ Betweenness centrality: $C_B(v_i) = \sum_{v_s \neq v_i \neq v_t \in V, s < t} \frac{\sigma_{st}(v_i)}{\sigma_{st}}$
 - $ightharpoonup \sigma_{st}$: The number of shortest paths between s and t
 - $oldsymbol{\sigma}_{st}(v_i)$:The number of shortest paths between s and t that passes v_i
- Normalized betweenness centrality: $C_B'(i) = \frac{C_B(i)}{(n-1)(n-2)/2}$

Betweenness Centrality Example

Ta	$\sigma_{st}(4)/c$	σ_{st}	
	s = 1	s = 2	s = 3
t = 5	1/1	2/2	1/1
t = 6	1/1	2/2	1/1
t = 7	2/2	4/4	2/2
t = 8	2/2	4/4	2/2
t = 9	2/2	4/4	2/2

$$C_B(4) = 15$$

 $C_B(5) = 12 \times 0.5 = 6$

Eigenvector Centrality

- One's importance is determined by his friends' importance
- If one has many important friends, he should be important as well.

$$C_E(v_i) \propto \sum_j A_{ij} C_E(v_i)$$

Let x denote the eigenvector centrality of node from v_1 to v_n

$$\mathbf{x} \propto A\mathbf{x}$$
 $A\mathbf{x} = \lambda \mathbf{x}$.

- The centrality corresponds to the top eigenvector of the adjacency matrix A.
- ▶ A variant of this eigenvector centrality is the PageRank score.

Computation of Centrality Measures

Expensive except for degree centrality and eigenvector centrality

- Degree Centrality
 - easy
- Closeness Centrality
 - Time: $O(n^2)$; Space: $O(n^3)$ (Floy, 1962)
 - ► Time: O(n²logn+nm) (Johnson, 1977)
- Betweenness Centrality
 - $ightharpoonup O(n^2)$ (O(nm) with sparsity)
- Eigenvector Centrality
 - Power method (Golub and Van Loan, 1996)

Outline

Nodes, ties and influence

- Importance of nodes
- Strength of ties
- Influence modeling
- Influence maximization

Weak and Strong Ties

- In practice, connections are not of the same strength
- Interpersonal social networks are composed of strong ties (close friends) and weak ties (acquaintances).
- Strong ties and weak ties play different roles for community formation and information diffusion
- Strength of Weak Ties (Granovetter, 1973)
 - Occasional encounters with distant acquaintances can provide important information about new opportunities for job search

Connections in Social Media

- Social media allows users to connect to each other more easily than ever
 - One user might have thousands of friends online
 - Who are the most important ones among your 300 Facebook friends?
- Imperative to estimate the strengths of ties for advanced analysis
 - Analyze network topology
 - Learn from User Profile and Attributes
 - Learn from User Activities

Learning from Network Topology

- Bridges connecting two different communities are weak ties
- An edge is a bridge if its removal results in disconnection of its terminal nodes
- Bridges in a network are weak ties

e(2,5) is NOT a bridge

"shortcut" Bridge

- Bridges are rare in real-life networks
- Alternatively, one can relax the definition by checking if the distance between two terminal nodes increases if the edge is removed
- ▶ The larger the distance, the weaker the tie is
- d(2,5) = 4 if e(2,5) is removed
- d(5,6) = 2 if e(5,6) is removed
- ightharpoonup e(5,6) is a stronger tie than e(2,5)

Neighborhood Overlap

Tie Strength can be measured based on neighborhood overlap; the larger the overlap, the stronger the tie is.

$$overlap(v_i, v_j) = \frac{\text{number of shared friends of both } v_i \text{ and } v_j}{\text{number of friends who are adjacent to at least } v_i \text{ or } v_j}$$
$$= \frac{|N_i \cap N_j|}{|N_i \cup N_j| - 2}.$$

overlap(2,5) = 0, $overlap(5,6) = \frac{|\{4\}|}{|\{2,4,5,6,7,10\}| - 2} = 1/4$

Learning from Profiles and Interactions

- Twitter: one can follow others without followee's confirmation
 - The real friendship network is determined by the frequency two users talk to each other, rather than the follower-followee network
 - The real friendship network is more influential in driving Twitter usage
- Strengths of ties can be predicted accurately based on various information from Facebook
 - Friend-initiated posts, message exchanged in wall post, number of mutual friends, etc.
- Learning numeric link strength by maximum likelihood estimation
 - User profile similarity determines the strength
 - Link strength in turn determines user interaction
 - Maximize the likelihood based on observed profiles and interactions

Learning from User Activities

- One might learn how one influences his friends if the user activity log is accessible
- Depending on the adopted influence model
 - Independent cascading model
 - Linear threshold model
- Maximizing the likelihood of user activity given an influence model

Outline

Nodes, ties and influence

- Importance of nodes
- Strength of ties
- Influence modeling
- Influence maximization

Influence Modeling

Influence modeling is one of the fundamental questions in order to understand the information diffusion (传播), spread of new ideas, and word-of-mouth (viral) marketing

Well known Influence modeling methods

- Linear threshold model (LTM)
- Independent cascade model (ICM)

Common Properties of Influence Modeling Methods

- ▶ A social network is represented a directed graph G=(V, E), with each actor being one node;
- ▶ Each node is started as active or inactive;
- A node, once activated, will activate his neighboring nodes;
- Once a node is activated, this node cannot be deactivated.

Linear Threshold Model

An actor would take an action if the number of his friends who have taken the action exceeds (reaches) a certain threshold

- ▶ Each node v chooses a threshold Θ_v randomly from a uniform distribution in an interval between 0 and 1.
- A neighbor w can influence node v with strength $b_{w,v}$
- In each discrete step, all nodes that were active in the previous step remain active
- The nodes satisfying the following condition will be activated

$$\sum_{w \in N_v, w \text{ is active}} b_{w,v} \ge \theta_v$$

Linear Threshold Model - Diffusion Process

(Threshold = 50%)

Independent Cascade Model (ICM)

The independent cascade model focuses on the sender's rather than the receiver's view

- A node w, once activated at step t, has one chance to activate each of its neighbors randomly
 - For a neighboring node (say, v), the activation succeeds with probability $p_{w,v}(e.g. p = 0.5)$
- If the activation succeeds, then v will become active at step t+1
- In the subsequent rounds, w will not attempt to activate v anymore.
- The diffusion process, starts with an initial activated set of nodes, then continues until no further activation is possible

Independent Cascade Model (ICM)

- Initially some nodes S are active
- Each edge (w, v) has probability (weight) $p_{w,v}$

- ▶ When node w becomes active:
 - lt activates each out-neighbor v with probability

Activations spread through the network

Independent Cascade Model- Diffusion Process $(p_{w.v} = 50\%)$

Remarks on LTM vs. ICM

Two basic models used to study influence and information diffusion

- ▶ LTM: receiver-centered; ICM: sender-centered
- LTM's activation depends on the whole neighborhood of one node
- ▶ ICM activates each of its neighbors independently
- Once the thresholds are sampled, the LTM diffusion process is determined
- ICM varies depending on the cascading process
- Both are submodular

Outline

Nodes, ties and influence

- Importance of nodes
- Strength of ties
- Influence modeling
- Influence maximization

Most Influential Set of Nodes

- S: is initial active set
- \blacktriangleright f(S): The expected size of final active set

Set S is more influential if f(S) is larger $f(\{a,b\}) < f(\{a,c\}) < f(\{a,d\})$

Most Influential Set

Problem: (k is user specified parameter)

• Most influential set of size k: set S of k nodes producing largest expected cascade size f(S) if activated

[Domingos-Richardson '01]

• Optimization problem: $\max_{S \text{ of size k}} f(S)$

Why "expected cascade size"? X_a is a result of a random process. So in practice we would want to compute X_a for many realizations and then maximize the "average" value f(S)

$$f(S) = \sum_{\substack{\text{Random} \\ \text{realizations } i}} f_i(S)$$

Most Influential Subset of Nodes

Most influential set of k nodes

Set S on k nodes producing largest expected cascade size f(S) is activated

▶ The optimization problem:

$$\max_{S \text{ of size k}} f(S)$$

- How hard is this problem?
 - NP-COMPLETE
 - Finding most influential set is at least as hard as a vertex cover

Influence Maximization

Bad news:

Influence maximization is NP-complete

©Next, good news:

▶ There exists an approximate algorithm

- Consider the Hill Climbing algorithm to find S
 - Input:
 - Influence set of each node u: $X_u = \{v_1, v_2, ...\}$
 - If we activate u, nodes $\{v_1, v_2, ...\}$ will eventually get active
 - ▶ **Algorithm:** At each iteration *i* take the node *u* that gives best marginal gain: $\max_{x} f(S_{i-1} \cup \{u\})$

f(S): Size of the union of $X_u, u \in S$

(Greedy) Hill Climbing

Algorithm:

- Start with $S_0 = \{\}$
- For i=1,...k
 - ▶ Take node u that $\max_{u} f(S_{i-1} \cup \{u\})$
 - ▶ Let $S_i = S_{i-1} \cup \{u\}$

Approximation Guarantee

- Claim: Hill climbing produces a solution S
- Where f(S) ≥(I-I/e)*OPT (f(S)>0.63*OPT)
 [Nemhauser, Fisher, Wolsey '78, Kempe, Kleinberg, Tardos '03]
- Claim holds for function f(.) with 2 properties:
- ▶ f is monotone (单调): (activating more nodes doesn't hurt) if $S \subseteq T$ then $f(S) \le f(T)$ and $f(\{\}) = 0$
- ▶ f is submodular (子模性): (activating each additional node helps less)
- ▶ Adding an element to a set gives less improvement than adding it to one of its subsets: $\forall \bar{S} \subseteq \bar{T}$

$$f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T)$$

Gain of adding a node to a small set to a larger set

Submodularity – Diminishing Returns

Diminishing returns

$$f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T)$$

Gain of adding a node to a small set

Gain of adding a node to a larger set

Two Claims

▶ Sets $X_1,...,X_m$ $f(S) = |\cup_{i \in S} X_i| \quad \text{(size of the union of sets } X_i, i \in S \text{)}$

Claim 1: f(S) is submodular

The more sets you already have the less new area a given set will cover

<u>Claim 2</u>: (Greedy) Hill climbing gives near-optimal solutions

Solution Quality

- ► Hill climbing finds solution S which $f(S) \ge (1-1/e)*OPT$ i.e., f(S) > 0.63*OPT
- ▶ This is data independent bound
 - This is a worst case bound
 - No matter what is the input data, we know that the Hill-Climbing will never do worse than 0.63*OPT

Simulation Experiments

- A collaboration network: co-authorships in papers of the arXiv high-energy physics theory:
 - ▶ 10,748 nodes
 - > 53,000 edges
- Independent Cascade Model:
 - Case I: Uniform probability p on each edge
 - ▶ Case 2: Edge from u to v has probability 1/deg(v) of activating v.

Experiment Settings

- ▶ Simulate the process 10,000 times for each targeted set
 - Every time re-choosing edge outcomes randomly
- Compare with other 3 common heuristics
 - Degree centrality
 - Distance centrality
 - Random nodes

Independent Cascade Model

$$p_{uv}=1\%$$

$$p_{uv} = 10\%$$

Independent Cascade Model

$p_{uv} = I/deg(v)$

Web/Networks Structure Mining: Challenges in Information Networks

Challenges

Scalability

- Social networks are often in a scale of millions of nodes and connections
- Traditional Network Analysis often deals with at most hundreds of subjects

Heterogeneity

Various types of entities and interactions are involved

Evolution

▶ Timeliness is emphasized in social media

Collective Intelligence

How to utilize wisdom of crowds in forms of tags, wikis, reviews

Evaluation

Lack of ground truth, and complete information due to privacy

Social Computing Tasks

- Social Computing: a young and vibrant field
- Many new challenges
- Tasks
 - Network Modeling
 - Centrality Analysis and Influence Modeling
 - Community Detection
 - Classification and Recommendation
 - Privacy, Spam and Security

Privacy, Spam and Security

- Privacy is a big concern in social media
 - Facebook, Google buzz often appear in debates about privacy
 - NetFlix Prize Sequel cancelled due to privacy concern
 - Simple annoymization does not necessarily protect privacy
- Spam blog (splog), spam comments, Fake identity, etc., all requires new techniques
- As private information is involved, a secure and trustable system is critical
- Need to achieve a balance between sharing and privacy

Classification and Recommendation

Common in social media applications

▶ Tag suggestion, Friend/Group Recommendation, Targeting

Network-Based Classification