May 25, 2013

## 1 Chapter 1

## Exercise 1.1(a)

Let X be the sum of the two number obtained.

Let  $X_1$  be the number obtained on Die 1.

Let  $X_2$  be the number obtained on Die 2.

Thus,  $X = X_1 + X_2$ , and

$$E_x = \{X = x\} = \{X_1 + X_2 = x\} = \{X_1 = x_1, X_2 = x - x_1 \mid 1 \le x_1, x - x_1 \le 6\}$$

Now,

$$1 \le x - x_1 \le 6 \iff -1 \ge x_1 - x \ge -6 \iff x - 1 \ge x_1 \ge x - 6 \iff x - 6 \le x_1 \le x - 1$$

Hence,

$$E_x = \{X = x\} = \{X_1 + X_2 = x\} = \{X_1 = x_1, X_2 = x - x_1 \mid \max\{1, x - 6\} \le x_1 \le \min\{6, x - 1\}\}$$

$$P(E_x) = \sum_{x_1 = \max\{1, x - 6\}}^{\min\{6, x - 1\}} P(X_1 = x_1, X_2 = x - x_1) = \sum_{x_1 = \max\{1, x - 6\}}^{\min\{6, x - 1\}} \frac{1}{6^2}$$
$$= \frac{1}{6^2} (\min\{6, x - 1\} - \max\{1, x - 6\} + 1)$$

Next, note that

$$\min\{6, x-1\} = \left\{ \begin{array}{ll} x-1, & \text{if } x=2,\,3,\,\ldots,\,6\\ 6, & \text{if } x=7,\,8,\,\ldots,\,12 \end{array} \right. \quad \text{and} \quad \max\{1, x-6\} = \left\{ \begin{array}{ll} 1, & \text{if } x=2,\,3,\,\ldots,\,6\\ x-6, & \text{if } x=7,\,8,\,\ldots,\,12 \end{array} \right.$$

Hence,

$$P(E_x) = \frac{1}{6^2} \left( \min\{6, x - 1\} - \max\{1, x - 6\} + 1 \right) = \frac{1}{36} \begin{cases} (x - 1) - 1 + 1, & \text{if } x = 2, 3, \dots, 6 \\ 6 - (x - 6) + 1, & \text{if } x = 7, 8, \dots, 12 \end{cases}$$

$$= \frac{1}{36} \begin{cases} x - 1, & \text{if } x = 2, 3, \dots, 6 \\ 13 - x, & \text{if } x = 7, 8, \dots, 12 \end{cases}$$

References