

COMP90038 Algorithms and Complexity

Lecture 17: Hashing (with thanks to Harald Søndergaard & Michael Kirley)

Casey Myers
Casey.Myers@unimelb.edu.au
David Caro Building (Physics) 274

Review from Lecture 16: Sorting by Counting

• We can now create a sorted array $S[1, \dots, n]$ of the items by simply slotting items into pre-determined slots in S (a third linear scan).

$$A = 633810879253531876512153$$

key	0	1	2	3	4	5	6	7	8	9
Cumu	0	1	5	7	12	12	16	18	20	23

• Place the first record (with key 6) in S[18] and decrement *Cumu*[6] (so that the next '6' will go into slot 17), and so on.

for
$$i \leftarrow 1$$
 to n do $S[Cumu[A[i]]] \leftarrow A[i]$ $Cumu[A[i]] \leftarrow Cumu[A[i]] - 1$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
6	3	3	8	1	0	8	7	9	2	5	3	5	3	1	8	7	6	5	1	2	1	5	3
0	1	1	1	1	2	2	3	3	3	3	3	5	5	5	5	6	6	7	7	8	8	8	9

Review from Lecture 16: Horspool's String Search Algorithm

- Comparing from right to left in the pattern.
- Very good for random text strings

- We can do better than just observing a mismatch here.
- Because the pattern has no occurrence of I, we might as well slide it 4 positions along.
- This is based only on knowing the pattern.

Review from Lecture 16: Horspool's String Search Algorithm


```
function HORSPOOL(P[0, \dots, m-1], m, T[0, \dots, n-1], n)
   FINDSHIFTS(P, m)
   i \leftarrow m-1
   while i < n do
      k \leftarrow 0
                                                     JIM SAW ME IN A BARBERSHOP
      while k < m \text{ and } P[m-1-k] = T[i-k] \text{ do }
         k \leftarrow k + 1
                                                     BARBER
      if k = m then
                                                            BARBER
         return i-m+1
                                                              BARBER
      else
         i \leftarrow i + Shift[T[i]]
                                                                         BARBER
   return -1
                                                                             BARBER
```

Pattern: BARBER

Text: JIM SAW ME IN A BARBERSHOP

Character	Α	В	С	D	E	F		R		Z	_
Shift	4	2	6	6	1	6	6	3	6	6	6

- Array or linked list
 - Access by position
 - 0(n)
 - Can we do better?

- Array or linked list
 - Access by position
 - 0(n)
 - Can we do better?
- Sorted list/array
 - Binary search
 - $O(\log n)$

- Array or linked list
 - Access by position
 - 0(n)
 - Can we do better?
- Sorted list/array
 - Binary search
 - $O(\log n)$
- Binary search tree
 - $O(\log n)$ if balanced

- Array or linked list
 - Access by position
 - O(n)
 - Can we do better?
- Sorted list/array
 - Binary search
 - $O(\log n)$
- Binary search tree
 - $O(\log n)$ if balanced

Data of arbitrary length

A mathematical function

Fixed size address

- Can we do better?
 - Hashing (at the cost of spending a bit of space)
 - -0(1)

Hashing

- Hashing is a standard way of implementing the abstract data type "dictionary".
- Implemented well, it makes data retrieval very fast.
- A key can be anything, as long as we can map it efficiently to a positive integer. In particular, the set *K* of keys needs not be bounded.
- Assume we have a table of size m (the hash table).
- The idea is to have a function h: K → {1, ..., m}
 (the hash function) determine where records are stored: A record with key k should be stored in location h(k).
 - The address h(k) is the hash address.

Data of arbitrary length

A mathematical function

Fixed size address

The Hash Table

- We can think of the hash table as an abstract data structure supporting operations:
 - find
 - insert
 - lookup (search and insert if not there)
 - initialise
 - delete
 - rehash
- The challenges
 - Design of hash functions.
 - Collision handling.

The Hash Function

• If we have a hash table of size m and keys are integers, we may define

$$h(n) = n \mod m$$
.

- But keys may be other things, such as strings of characters, and the hash function should apply to these and still be easy (cheap) to compute.
- We need to choose m so that it is large enough to allow efficient operations, without taking up excessive memory.
- The hash function should distribute keys evenly along the cells of the hash table.

The Hash Function

• If we have a hash table of size m and keys are integers, we may define

$$h(n) = n \mod m$$
.

- Examples of modulo operation (remainder after division):
 - $-5 \mod 11 = 5$
 - $-76999 \mod 11 = 10$
 - $-120 \mod 11 = 10$
- Example hash function: $h(n) = n \mod 23$

n	19	392	179	359	262	321	97	468
h(n)								

The Hash Function

• If we have a hash table of size m and keys are integers, we may define

$$h(n) = n \mod m$$
.

- Examples of modulo operation (remainder after division):
 - $-5 \mod 11 = 5$
 - $-76999 \mod 11 = 10$
 - $-120 \mod 11 = 10$
- Example hash function: $h(n) = n \mod 23$

n	19	392	179	359	262	321	97	468
h(n)	19	1	18	14	9	22	5	8

• For simplicity we assume $A \mapsto 0$, $B \mapsto 1$, $C \mapsto 2$ etc.

char	A	В	С	D	Е	F	G	Н	I	J	K	L	M
s_i	0	1	2	3	4	5	6	7	8	9	10	11	12
char	N	О	P	Q	R	S	Т	U	V	W	X	Y	Z
s_i	13	14	15	16	17	18	19	20	21	22	23	24	25

• We use this encoding to find the hash function of a string $s = s_0 s_1 s_2 \cdots$

$$h(s) = \left(\sum_{i=0}^{|s|-1} s_i\right) \bmod m$$

• Example, consider m = 13, and the list of strings:

[A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED]

				SUM	h(s)
A					
0				0	0

						SUM	h(s)
A							()
0						0	0
F	О	О	L				
5	14	14	11			44	5

				-			
						SUM	h(s)
A							
0						0	0
F	О	О	L				
5	14	14	11			44	5
A	N	D					
0	13	3				16	3

						SUM	h(s)
A							
0						0	0
F	О	О	L				
5	14	14	11			44	5
A	N	D					
0	13	3				16	3
Н	Ι	S					
7	8	18				33	7

						SUM	h(s)
A							
0						0	0
F	О	О	L				
5	14	14	11			44	5
A	N	D					
0	13	3				16	3
Н	Ι	S					
7	8	18				33	7
M	О	N	Е	Y			
12	14	13	4	24		67	2

						SUM	h(s)
A							
0						0	0
F	О	O	L				
5	14	14	11			44	5
A	N	D					
0	13	3				16	3
Н	Ι	S					
7	8	18				33	7
M	О	N	Е	Y			
12	14	13	4	24		67	2
A	R	Е					
0	17	4				21	8

						SUM	h(s)
A							
0						0	0
F	О	О	L				
5	14	14	11			44	5
A	N	D					
0	13	3				16	3
Н	Ι	S					
7	8	18				33	7
M	О	N	Е	Y			
12	14	13	4	24		67	2
A	R	Е					
0	17	4				21	8
S	О	О	N				
18	14	14	13		 	 59	7

							SUM	h(s)
A								
0							0	0
F	O	O	L					
5	14	14	11				44	5
A	N	D						
0	13	3					16	3
Н	Ι	S						
7	8	18					33	7
M	O	N	Е	Y				
12	14	13	4	24			67	2
A	R	Е						
0	17	4					21	8
S	О	О	N					
18	14	14	13				59	7
P	A	R	T	Е	D			
15	0	17	19	4	3		58	6

							SUM	h(s)
A								
0							0	0
F	О	O	L					
5	14	14	11				44	5
A	N	D						
0	13	3					16	3
Н	Ι	S						
7	8	18					33	7
M	О	N	Е	Y				
12	14	13	4	24			67	2
A	R	Е						
0	17	4					21	8
S	O	О	N					
18	14	14	13				59	7
P	A	R	Т	Е	D			
15	0	17	19	4	3		58	6

Hashing of Strings

- We assume a binary representation of the 26 characters, with 5 bits per character (0—31)
- Instead of adding, we concatenate the binary strings
- Consider the example key: *M Y K E Y*
- Assume a hash table of size m = 101.

char	s_i	$bin(s_i)$	char	s_i	$bin(s_i)$
A	0	00000	N	13	01101
В	1	00001	О	14	01110
С	2	00010	P	15	01111
D	3	00011	Q	16	10000
Е	4	00100	R	17	10001
F	5	00101	S	18	10010
G	6	00110	T	19	10011
Н	7	00111	U	20	10100
Ι	8	01000	V	21	10101
J	9	01001	W	22	10110
K	10	01010	X	23	10111
L	11	01011	Y	24	11000
M	12	01100	Z	25	11001

Hashing of Strings

char	М	Y	K	Е	Y
s_i	12	24	10	4	24
$bin(s_i)$	01100	11000	01010	00100	11000
i	0	1	2	3	4

Now concatenate the binary string:

$$M \ Y \ K \ E \ Y \mapsto 01100110000101000100011000 \ (=13379736)$$

 $13379736 \ \text{mod} \ 101 = 64$

- So 64 is the position of string of string M Y K E Y in the hash table.
- We deliberately chose m to be prime.

$$13379736 = 12 \times 32^4 + 24 \times 32^3 + 10 \times 32^2 + 4 \times 32^1 + 24 \times 32^0$$

• With m = 32, the hash value of any key is the last character's value!

Handling Long Strings as Keys

- More precisely, let chr be the function that gives a character's number (between 0 and 25 under our simple assumptions), so for example chr(c) = 2.
- Then we have

hash(s) =
$$\sum_{i=0}^{|s|-1} chr(s_i) \times 32^{|s|-i-1}$$

• For example,

hash(V E R Y L O N G K E Y) =
$$(21 \times 32^{10} + 4 \times 32^9 + \cdots) \mod 101$$

- The stuff between parentheses quickly becomes ab impossibly large number!
 - DEC: 23804165628760600

Horner's Rule

• Fortunately there is a trick that allows us to avoid large numbers in the hash calculations. Instead of

$$21 \times 32^{10} + 4 \times 32^9 + 17 \times 32^8 + 24 \times 32^7 + \cdots$$

factor out repeatedly:

$$(\cdots((21\times32+4)\times32+17)\times32+\cdots)+24$$

Example:

$$p(x) = 2x^{4} - x^{3} + 3x^{2} + x - 5$$

$$= x(2x^{3} - x^{2} + 3x + 1) - 5$$

$$= x(x(2x^{2} - x + 3) + 1) - 5$$

$$= x(x(x(2x - 1) + 3) - 1) - 5$$

Horner's Rule

• Fortunately there is a trick that allows us to avoid large numbers in the hash calculations. Instead of

$$21 \times 32^{10} + 4 \times 32^9 + 17 \times 32^8 + 24 \times 32^7 + \cdots$$

factor out repeatedly:

$$(\cdots((21\times32+4)\times32+17)\times32+\cdots)+24$$

• Now utilise these properties of modular arithmetic:

$$(x + y) \mod m = ((x \mod m) + (y \mod m)) \mod m$$

 $(x \times y) \mod m = ((x \mod m) \times (y \mod m)) \mod m$

• So for each sub-expression it suffices to take values modulo m.

Horner's Rule

• Fortunately there is a trick that allows us to avoid large numbers in the hash calculations. Instead of

$$21 \times 32^{10} + 4 \times 32^9 + 17 \times 32^8 + 24 \times 32^7 + \cdots$$

factor out repeatedly:

$$(\cdots((21\times32+4)\times32+17)\times32+\cdots)+24$$

- Step 1: $h(0) = (21 \times 32 + 4) \mod 101$
- Step 2: $h(1) = (h(0) \times 32 + 17) \mod 101$
- Step 3: $h(2) = (h(1) \times 32 + 24) \mod 101$

• • •

The Hash Function and Collisions

- The hash function should be as random as possible.
- Here we assume m = 23 and $h(k) = k \mod m$.
- In some cases different keys will be mapped to the same hash table address.
- When this happens we have a collision.
- Different hashing methods resolve collisions differently.

Key	Address
19	19
392	1
179	18
359	14
663	19
262	9
639	18
321	22
97	5
468	8
814	9

The Hash Function and Collisions

- The hash function should be as random as possible.
- Here we assume m = 23 and $h(k) = k \mod m$.
- In some cases different keys will be mapped to the same hash table address.
- When this happens we have a collision.
- Different hashing methods resolve collisions differently.

Key	Address
19	(19)
392	1
179	(18)
359	14
663	19
262	9
639	(18)
321	22
97	5
468	8
814	9

Separate Chaining

• Element k of the hash table is a list of keys with the hash value k.

- This gives easy collision handling.
- The load factor $\alpha = n/m$, where n is the number of items stored.
- Number of probes in successful search $\approx 1 + \alpha/2$.
- Number of probes in unsuccessful search $\approx \alpha$.

Separate Chaining Pros and Cons

- Compared with sequential search, reduces the number of comparisons by a factor of m.
- Good in a dynamic environment, when (number of) keys are hard to predict.
- The chains can be ordered, or records may be "pulled up front" when accessed.
- Deletion is easy.
- However, separate chaining uses extra storage for links.

Open-Addressing Methods

- With open-addressing methods (also called closed hashing) all records are stored in the hash table itself (not linked lists hanging off the table).
- There are many methods of this type. We only discuss two:
 - linear probing
 - double hashing
- For these methods, the load factor $\alpha \leq 1$.

Linear Probing

- In case of collision, try the next cell, then the next, and so on.
- After the arrival of 19 (19), 392 (1), 179 (18), 663 (19), 639 (18), 321 (22):

0	1	2	3	16	17	18	19	20	21	22
	392					179	19	663	639	321

- Search proceeds in a similar fashion.
- If we get to the end of the hash table, we wrap around.
- For example, if key 20 now arrives it will be placed in cell 0.

Linear Probing

- Again let m be the table size, and n be the number of records stored.
- As before, $\alpha = n/m$ is the load factor.
- Average number of probes:

- Successful search:
$$\frac{1}{2} + \frac{1}{2(1-\alpha)}$$

- Unsuccessful: $\frac{1}{2} + \frac{1}{2(1-\alpha)^2}$

For successful search:

α	#probes
0.1	1.06
0.25	1.17
0.5	1.50
0.75	2.50
0.9	5.50
0.95	10.50

Linear Probing Pros and Cons

- Space-efficient.
- Worst-case performance miserable; must be careful not to let the load factor grow beyond 0.9.
- Comparative behaviour, m=11113, n=10000, $\alpha=0.9$:
 - Linear probing: 5.5 probes in average (success)
 - Binary search: 12.3 probes on average (success)
 - Linear search: 5000 probes on average (success)
- Clustering is a major problem: the collision handling strategy leads to clusters of contiguous cells being occupied.
- Deletion is almost impossible.

Double Hashing

- To alleviate the clustering problem in linear probing, there are better ways of resolving collisions.
- One is double hashing which uses a second hash function s to determine an offset to be used in probing for a free cell.
- For example, we may choose $s(k) = 1 + k \mod 97$.
- By this we mean, if h(k) is occupied, next try h(k) + s(k), then h(k) + 2 s(k), and so on.
- This is another reason why it is good to have m being a prime number. That way, using h(k) as the offset, we will eventually find a free cell if there is one.

- Consider $h(k) = k \mod 7$. Draw the resulting hash tables after inserting 19, 26,13,48,17 (in this order).
- Separate chaining

• Consider $h(k) = k \mod 7$. Draw the resulting hash tables after inserting 19, 26,13,48,17 (in this order).

• Separate chaining

• Consider $h(k) = k \mod 7$. Draw the resulting hash tables after inserting 19, 26,13,48,17 (in this order).

• Separate chaining

Linear probing

0	1	2	3	4	5	6
13	48		17		19	26

• Consider $h(k) = k \mod 7$. Draw the resulting hash tables after inserting 19, 26,13,48,17 (in this order).

• Separate chaining

Linear probing

0	1	2	3	4	5	6
13	48		17		19	26

• Double hashing, using $s(k) = 5 - (k \mod 5)$ offset

0	1	2	3	4	5	6
	48	26	17		19	13

Rehashing

- The standard approach to avoiding performance deterioration in hashing is to keep track of the load factor and to rehash when is reaches, say, 0.9.
- Rehashing means allocating a larger hash table (typically twice the current size), revisiting each item, calculating its hash address in the new table, and inserting it.
- This "stop-the-world" operation will introduce long delays at unpredictable times, but it will happen relatively infrequently.

- The Rabin-Karp string search algorithm is based on string hashing.
- To search for a string p (of length m) in a larger string s, we can calculate hash(p) and then check every substring $s_i \cdots s_{i+m-1}$ to see if it has the same hash value. Of course, if it has, the strings may still be different; so we need to compare them in the usual way.
- If $p = s_i \cdots s_{i+m-1}$ then the hash values are the same; otherwise the values are almost certainly going to be different.
- Since false positives will be so rare, the O(m) time it takes to actually compare the strings can be ignored.

while (end of text **or** brute force comparison == true)

Lecture 17

Rabin-Karp String Search

Example: consider the text 31415926535, find the pattern 26 by using the hash function $h(k) = k \mod 11$. The hash for the pattern is: $h(26) = 26 \mod 11 = 4$.

> h(k)9

Rabin-Karp String Search

3	1	4	1	5	9	2	6	5	3	5	h(k)
3	1										9
	1	4									3

Rabin-Karp String Search

3	1	4	1	5	9	2	6	5	3	5	h(k)
3	1										9
	1	4									3
		4	1								8

3	1	4	1	5	9	2	6	5	3	5	h(k)
3	1										9
	1	4									3
		4	1								8
			1	5							4

Rabin-Karp String Search

3	1	4	1	5	9	2	6	5	3	5	h(k)
3	1										9
	1	4									3
		4	1								8
			1	5							4

3	1	4	1	5	9	2	6	5	3	5	h(k)
3	1										9
	1	4									3
		4	1								8
			1	5							4
				5	9						4

3	1	4	1	5	9	2	6	5	3	5	h(k)
3	1										9
	1	4									3
		4	1								8
			1	5							4
				5	9						4

3	1	4	1	5	9	2	6	5	3	5	h(k)
3	1										9
	1	4									3
		4	1								8
			1	5							4
				5	9						4
					9	2					4

3	1	4	1	5	9	2	6	5	3	5	h(k)
3	1										9
	1	4									3
		4	1								8
			1	5							4
				5	9						4
					9	2					4

3	1	4	1	5	9	2	6	5	3	5	h(k)
3	1										9
	1	4									3
		4	1								8
			1	5							4
				5	9						4
					9	2					4
						2	6				4

• Repeatedly hashing strings of length *m* seems like a bad idea. However, the hash values can be calculated incrementally. The hash value of the length-*m* substring *s* that starts at position *j* is:

$$hash(s,j) = \sum_{i=0}^{m-1} chr(s_{j+i}) \times a^{m-i-1},$$

where a is the alphabet size. From that we we can get the next hash value, for the substring that starts at position j + 1, quite cheaply:

$$hash(s,j+1) = \left(hash(s,j) - a^{m-1}chr(s_j)\right) \times a + chr(s_{j+m})$$

modulo m. Effectively we just subtract the contributions of s_j and add the contributions of s_{j+m} , for the cost of two multiplications, one addition and one subtraction.

- Example: has all 3-substrings of "there".
- The first substring "the" = $t \cdot (26)^2 + h \cdot (26) + e$
- If we have "the", can we compute "her"?

"her" =
$$h \cdot (26)^2 + e \cdot (26) + r$$

= $26 \cdot (h \cdot (26) + e) + r$
= $26 \cdot (t \cdot (26)^2 + h \cdot (26) + e - t \cdot (26)^2) + r$
= $26 \cdot ("the" - t \cdot (26)^2) + r$

- Example: has all 3-substrings of "there".
- The first substring "the" = $t \cdot (26)^2 + h \cdot (26) + e$
- If we have "the", can we compute "her"?

"her" =
$$h \cdot (26)^2 + e \cdot (26) + r$$

= $26 \cdot (h \cdot (26) + e) + r$
= $26 \cdot (t \cdot (26)^2 + h \cdot (26) + e - t \cdot (26)^2) + r$
= $26 \cdot (\text{"the"} - t \cdot (26)^2) + r$

• i.e. subtract the first letter's contribution to the number, shift, and add the last letter.

Why Not Always Use Hashing?

• Some drawbacks:

- If an an application call for traversal of all items in sorted order, a hash table is no good.
- Also, unless we use separate chaining, deletion is virtually impossible.
- It may be hard to predict the volume of data, and rehashing is an expensive "stop-the-world" operation.

When to Use Hashing?

- All sorts of information retrieval applications involving thousands to millions of keys.
- Typical example: symbol tables used by compilers. The compiler hashes all (variable, function, etc.) names and stores information related to each no deletion in this case.
- When hashing is applicable, it is usually superior; a well-tuned hash table will outperform its competitors.
- Unless you let the load factor get too high, or you botch up the hash function. IT is a good idea to print statistics to check that the function really does spread keys uniformly across the hash table.

Coming Up Next

• Dynamic programming and optimisation.