Lemma: Let G le a finite group, Pa Sylow p-enlyroup, Ha enlyroup of G that is a p-group and

H = NG(P) than H = P. In particular if H is a Sylow p-subgroup, then H=P.

Lemma: Let G le a finite group, Pa Sylow p-enlycoup, Ha enlycoup of G that is a p-group. Then:

- (1) C(P) consists of Sylow p-sulgroups.
- (2) The set C(P) is an H-set by conjugation: $*: H \times C(P) \longrightarrow C(P)$. $(\times, W) \longmapsto \times W^{-1}$
- (3) If T is a fixed point under the H-action, namely:

TEFH(C(P)) = & WEC(P) | xWx"=W for all xEH }, then HET.

- (4) If H is a Sylow p-subgroup them H is the only possible fixed point, namely FH(C(P))=3H1.
 - (3) Let T be a fixed point under the H-action, then the orbit H * T = h T h, so $x T x^T = T$ for all $x \in H$. By definition, this means $H \subseteq N_G(T)$. Since $T \in C(P)$ then T is a Syland p-subgroup, so by the previous Lemma $H \subseteq T$.
 - (4) If $T \in F_H(C(P))$ then $H \subseteq T$ by the above. Now T is a Sylow p-subgroup combining H which is also a Sylow p-subgroup, so |H| = |T| so H = T.