Devoir à la maison n° 20

À rendre le 26 mai

Étude d'une matrice

On considère l'espace vectoriel $E = \mathbb{R}^3$ et f l'endomorphisme de E dont la matrice dans la base canonique $\mathscr{B} = (e_1, e_2, e_3)$ est la matrice A:

$$A = \begin{pmatrix} 3 & -2 & 3 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}.$$

- 1) Calcul des puissance de A.
 - a) Trouver les réels λ_1 et λ_2 tels que $A \lambda_i I_3$ n'est pas injective, avec $\lambda_1 < \lambda_2$.
 - **b)** La matrice A est-elle inversible?
 - c) Déterminer une base (et donc la dimension) de $Ker(f \lambda_1 Id_E)$ et $Ker(f \lambda_2 I_E)$.
 - d) Montrer qu'il n'existe pas de base dans laquelle la matrice de f serait diagonale.
 - e) Déterminer le vecteur u_1 de E vérifiant :
 - $-u_1 \in \operatorname{Ker}(f \lambda_1 \operatorname{Id}_E);$
 - la première composant de u_1 est 1.
 - f) Déterminer le vecteur u_2 de E vérifiant :
 - $-u_2 \in \operatorname{Ker}(f \lambda_2 \operatorname{Id}_E);$
 - la deuxième composant de u_2 est 1.
 - g) Soit $u_3 = (1, 1, 1)$. Montrer que $\mathscr{C} = (u_1, u_2, u_3)$ est une base de E.
 - h) Déterminer

$$P = \operatorname{Mat}_{\mathscr{B}}(\mathscr{C}) \operatorname{et} Q = \operatorname{Mat}_{\mathscr{C}}(\mathscr{B})$$

Quelle relation y a t'il entre P et Q?

- i) Donner la matrice de f dans la base \mathscr{C} , que l'on notera T.
- j) Quelle relation y a t'il entre A, T, P et Q?

k) Prouver que, pour tout entier naturel n non nul, il existe $\alpha_n \in \mathbb{R}$ tel que

$$T^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & \alpha_n \\ 0 & 0 & 2^n \end{pmatrix}.$$

On donnera le réel α_1 ainsi qu'une relation entre α_{n+1} et α_n .

l) Montrer que :

$$\forall n \in \mathbb{N}^*, \ \alpha_n = n2^{n-1}.$$

En déduire l'écriture matricielle de A^n en fonction de n.

2) Matrices commutant avec A. $\mathcal{M}_3(\mathbb{R})$ désignant l'ensemble des matrices carrées d'ordre 3, on considère le sous-ensemble C(A) de $\mathcal{M}_3(\mathbb{R})$ des matrices M telles que :

$$AM = MA$$
.

- a) Montrer que C(A) est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- **b)** Pour M appartenant à $\mathcal{M}_3(\mathbb{R})$, on pose $M' = P^{-1}MP$. Montrer que :

$$AM = MA \Leftrightarrow TM' = M'T.$$

c) Montrer qu'une matrice M' de $\mathcal{M}_3(\mathbb{R})$ vérifie TM' = M'T si et seulement si M' est de la forme

$$\begin{pmatrix}
a & 0 & 0 \\
0 & b & c \\
0 & 0 & b
\end{pmatrix}$$

où a, b et c sont trois réels.

d) En déduire que M appartient à C(A) si et seulement s'il existe des réels a, b et c tels que :

$$M = \begin{pmatrix} -a+2b & 2a-2b & -a+b+2c \\ -a+b & 2a-b & -a+b+c \\ 0 & 0 & b \end{pmatrix}.$$

e) Déterminer une base et la dimension de C(A).