

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 03

Leis: Absorção, Amdahl, DeMorgan e Moore.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 03

Lei de Moore

Gordon Moore, 1965, Intel

Número de transistores em um chip dobra a cada 18 meses

Arquitetura e Organização de Computadores

5ª-feira 07h40-09h20

Sala: H204

AULA 03

Nome	Data	ta Transistores Mícrons Velocidade do clock		Largura de dados	MIPS	
8080	1974	6.000	6	2 MHz	8 bits	0,64
8088	1979	29.000	3	5 MHz 16 bits 8 bits		0,33
80286	1982	134.000	1,5	6 MHz	16 bits	1
80386	1985	275.000	1,5	16 MHz	32 bits	5
80486	1989	1.200.000	1	25 MHz	32 bits	20
Pentium	1993	3.100.000	0,8	60 MHz	32 bits 64 bits	100
Pentium II	1997	7.500.000	0,35	233 MHz	32 bits 64 bits	300
Pentium III	1999	9.500.000	0,25	450 MHz	MHz 32 bits 64 bits	
Pentium 4	2000	42.000.000	0,18	1,5 GHz	32 bits 64 bits	1,700
Pentium 4 "Prescott"	2004	125.000.000	0,09	3,6 GHz	32 bits 64 bits	7,000
Pentium D	2005	230.000.000	90nm	2,8 GHz 3,2 GHz	32 bits	
Core2	2006	152.000.000	65nm	1,33 2,33 GHz	32 bits	26,000
Core 2 Duo	2007	820.000.000	45nm	3 GHz	64 bits	53,000
Core i7	2008	731.000.000	45nm	2,66 GHz 3,2 GHz	64 bits	76,000

Micron é uma medida de tamanho, usada na área da computação para determinar o tamanho dos transístores que formam um processador. 1 mícron equivale a 1 milésimo de milímetro. Quanto menores os transístores, mais complexo será o chip.

MIPS (Millions of Instructions Per Second), é a medida de desempenho dos processadores. As instruções por segundo (IPS) estão relacionadas a medida da velocidade do processador.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 03

Lei de Amdahl

"O maior aumento de desempenho possível introduzindo melhorias numa determinada característica é limitado pela percentagem em que essa característica é utilizada" Dos vários componentes de um programa (ex. Entrada/Saída, Cálculo e acesso à Base de Dados) os esforços devem se concentrar no que for mais significativo em termos do recurso crítico, como exemplo, o tempo de execução.

Aceleração devida a uma melhoria M:

$$A_{total}(M) = \frac{TempoEx_{semM}}{TempoEx_{comM}} = \frac{Desempenho_{comM}}{Desempenho_{semM}}$$

Melhoria M acelera uma fração F de uma tarefa por um fator A e o restante da tarefa não é afetado.

$$t = (1-F)\times T + F\times \frac{T}{A} \Rightarrow \frac{T}{t} = \frac{1}{(1-F)+F/A}$$

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 03

Circuitos Integrados (CI)

Famílias de CI

RTL ou Resistor Transistor Logic

RCTL ou Resistor Capacitor Transistor Logic

DTL ou Diode Transistor Logic

TTL ou Transistor Transistor Logic

CMOS ou Complementary Metal Oxid Semiconductor

ECL ou Emitter Coupled Logic

A família TTL e a CMOS são as mais utilizadas, em equipamentos digitais, computadores e periféricos.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 03

Família TTL

Texas Instruments

2 Séries: Uso militar – 54 / Uso comercial - 74

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 03

Família TTL

Característica: alimentação com tensão de 5V:

- Nível lógico 0: 0 a 0,8 V;
- Nível lógico 1: 2,0 a 5 V;

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 03

Variável Booleana

Podem assumir apenas 2 valores: 0 e 1

Exemplos:

Lâmpada: acesa (1) ou apagada (0)

Chave: fechada (1) ou aberta (0)

Verdadeiro (1) ou Falso(0)

Representação:

Expressão Lógica

Tabela Verdade

Símbolos (portas lógicas)

Porta OR (S=A+B)

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

74AHC32

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

Porta AND (S=A.B)

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

74ABT08

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

Porta NOR ($S=\overline{A+B}$)

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

74AHC00

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

Porta NAND ($S=\overline{A.B}$)

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

74ABT02

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

Porta NOT- INVERSOR

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

74ABT04

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

Expressões lógicas

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

Expressões lógicas

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 03

Obtenha a expressões booleanas

CIRCUITO A

CIRCUITO B

Resposta

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

Α-	S=	(A.E	- 3)+C	+(C.	D)
	Α	В	С	D	S
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 03

Resposta

	Α	В	С	D	S	
0	0	0	0	0	1	
1	0	0	0	1	1	
2	0	0	1	0	1	
3	0	0	1	1	1	
4	0	1	0	0	1	
5	0	1	0	1	1	
6	0	1	1	0	1	
7	0	1	1	1	1	
8	1	0	0	0	1	
9	1	0	0	1	1	
10	1	0	1	0	1	
11	1	0	1	1	1	
12	1	1	0	0	1	
13	1	1	0	1	1	
14	1	1	1	0	1	
15	1	1	1	1	1	

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

	INVER	łТ	AND		NAND		OR		NOR		EX - OR		EX - NOR	
European	A		A D	-4	A-Y		A Y		A B		A — — Y		A ————————————————————————————————————	
American	->-) -			1							
IBM ALD's	-N				OR		OR		XOR		XOR			
Boolean	Y = A		Y = A+B Y = A+B		•B	Y = A + B		Y = A + B		Y = A + B		Y = A + B		
	Α	Υ	АВ	Υ	AB	Y	АВ	Y	АВ	Y	AB	Y	AB	Y
Truth Table	H	H L	L L H L L H H H	L L H	L L H L L H H H	III	L L H L L H H H	JIII	L L H L L H	TJJJ	L L H L H H	L H H L	L L H L L H	H L H

IC - TOP - View Example 14-pin DIL

