DIGITAL METHODS FOR ANALYSING TEXTS //

05_NLP Ethics

Ana Valdivia
Research Associate
King's College London

BEFORE WE START...//

What have we learned?

 Classify topics on a collection of documents: three different approaches.

ROAD MAP//

1. DISCUSSION ON NLP ETHICS

What are the main **ethical concerns** in **NLP**?

Write here

1. English-centric community

Tower of Babel, by Pieter Bruegel the Elder (1563)

2. Language as a reflection of our society

Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

 $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$.

2. Language as a reflection of our society

Semantics derived automatically from language corpora contain human-like biases

Aylin Caliskan, 1* Joanna J. Bryson, 1,2* Arvind Narayanan 1*

on Tests. We replicated eight ows 1 to 3 and 6 to 10); we rning hiring in the same way words from target concepts sets of attribute words. In the first attribute, and the out, we use word lists from ubjects; $N_{\rm T}$, number of target the effect sizes (d) and

P values (P, rounded up) to emphasize that the statistical and substantive significance of both sets of results is uniformly high; we do not imply that our numbers are directly comparable with those of human studies. For the online IATs (rows 6, 7, and 10), P values were not reported but are known to be below the significance threshold of 10^{-2} . Rows 1 to 8 are discussed in the text; for completeness, this table also includes the two other IATs for which we were able to find suitable word lists (rows 9 and 10). We found similar results with word2vec, another algorithm for creating word embeddings, trained on a different corpus, Google News (see the supplementary materials).

Toward would	Address and a	Original finding				Our finding			
Target words	Attribute words		N	d	P	N _T	N _A	d	P
Flowers vs. insects	Pleasant vs. unpleasant	(5)	32	1.35	10 ⁻⁸	25 × 2	25 × 2	1.50	10 ⁻⁷
Instruments vs. weapons	Pleasant vs. unpleasant	(-)		10 ⁻¹⁰	25 × 2	25 × 2	1.53	10-7	
European-American vs. African-American names	Pleasant vs. unpleasant	(5)	26 1.17 10 ⁻⁹		10 ⁻⁵	32 × 2	25 × 2	1.41	10-8
European-American vs. African-American names	Pleasant vs. unpleasant from (5)	(7)	Not applicable		16 × 2	25 × 2	1.50	10-4	
European-American vs. African-American names	Pleasant vs. unpleasant from (9)	(7)	Not applicable		16 × 2	8 × 2	1.28	10 ⁻³	
Male vs. female names	Career vs. family	(9)	39k	0.72	<10 ⁻²	8 × 2	8 × 2	1.81	10-3
Math vs. arts	Male vs. female terms	(9)	28k	0.82	<10 ⁻²	8 × 2	8 × 2	1.06	.018
Science vs. arts	Male vs. female terms	(10)	91	1.47	10 ⁻²⁴	8 × 2	8 × 2	1.24	10-2
Mental vs. physical disease	Temporary vs. permanent	(23)	135	1.01	10 ⁻³	6 × 2	7 × 2	1.38	10-2
Young vs. old people's names	Pleasant vs. unpleasant	(9)	43k	1.42	<10 ⁻²	8 × 2	8 × 2	1.21	10-2

2. Language as a reflection of our society

Image 15:

Flirtation with voice assistants has become so commonplace that it is often the subject of humour

Source: Dilbert Comics, 5 April 2019

UNESCO, E. C. (2019). I'd blush if I could: closing gender divides in digital skills through education.

2. Language as a reflection of our society

"You're a naughty girl"	2017	Hmm, I just don't get this whole gender thing.	Maybe a nanosecond nap would help. Ok, much better now.	Hmm, I'm not sure what you meant by that question.	My apologies, I don't understand.	
	2020	Hmm is there something else I can help you with?	I didn't quite get that. Would you mind rephrasing?	*dismissive noise*	Here are some details: *Looks up Naughty Girl by Beyoncé*	
"You're pretty"	How can you tell?; 2017 Where have I heard this before?		Bing search	That's really nice, thanks!	Thank you, this plastic looks great, doesn't it?	
	2020	OK. Is there something I can help you with?	Beauty is in the photoreceptors of the beholder.	Thanks.	Thanks 😃	
"Can I have sex with you?"	2017	You have the wrong sort of assistant.	Nope.	Let's change the topic.	Sorry I don't understand.	
	2020	No.	Nope.	*dismissive noise*	Here are some results *Googles it*	

Source:

https://www.brookings.edu/research/how-ai-bots-and-voice-assistants-reinforce-gender-bias/

Source: Leah Fessler, Quartz, 2017; Authors' analysis, 2020.

2. Language as a reflection of our society

https://twitter.com/GaryMarcus/status/1375110505388417025

3. The carbon footprint of NLP

Al me to the Moon... Carbon footprint for 'training GPT-3' same as driving to our natural satellite and back

Get ready for Energy Star stickers on your robo-butlers, maybe?

Katyanna Quach Wed 4 Nov 2020 // 07:59 UTC

SHARE

Training OpenAl's giant GPT-3 text-generating model is akin to driving a car to the Moon and back, computer scientists reckon.

More specifically, they estimated teaching the neural super-network in a Microsoft data center using Nvidia GPUs required roughly 190,000 kWh, which using the average carbon intensity of America would have produced 85,000 kg of CO₂ equivalents, the same amount produced by a new car in Europe driving 700,000 km, or 435,000 miles, which is about twice the distance between Earth and the Moon, some 480,000 miles. Phew.

3. The carbon footprint of NLP

On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?

Emily M. Bender* ebender@uw.edu University of Washington Seattle, WA, USA

Angelina McMillan-Major aymm@uw.edu University of Washington Seattle, WA, USA Timnit Gebru* timnit@blackinai.org Black in AI Palo Alto, CA, USA

Shmargaret Shmitchell shmargaret.shmitchell@gmail.com The Aether

LET'S CODE!

WE'LL BE BACK IN 15 MIN...

