Homework set 13

Due by 15:00 on Monday, November 21, 2023.

Please select **three** problems to solve and hand in written solutions either in person or to gunnar@magnusson.io.

Problem 1. Let A be a complex Banach algebra with identity and $x \in A$ such that $x^n = 0$ for some integer n > 0. Show that $\sigma(x) = \{0\}$.

Problem 2. Let A be a complex Banach algebra. Let $x \in A$ be invertible and y be such that $||yx^{-1}|| < 1$. Show that x - y is invertible and that

$$(x-y)^{-1} = \sum_{n \ge 0} x^{-1} (yx^{-1})^n.$$

Problem 3. Let X be a complex Banach space. If $U \subset \mathbf{C}$ is open, we say that $f: U \to X$ is *holomorphic* if

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

exists for all $z \in U$ and $f': U \to \mathbf{C}$ is continuous. We say that f is weakly holomorphic if the function $\phi \circ f: U \to \mathbf{C}$ is holomorphic for all $\phi \in X^{\vee}$. Show that f is holomorphic if and only if it is weakly holomorphic.

If $\gamma:[a,b]\to U$ is a curve in an open set $U\subset {\bf C}$ and $f:U\to X$ a continuous function into a Banach space X, we define $\int_{\gamma}f(z)dz$ like the usual Riemann integral: as the limit in X of sums of the form

$$\sum_{j=1}^{n} (\gamma(t_j) - \gamma(t_{j-1})) f(\gamma(t_j)),$$

where $a=t_0\leq\cdots\leq t_n=b$ is a partition of [a,b]. Then $\int_{\gamma}f(z)dz\in X$ and if $\phi\in X^\vee$ we get $\phi(\int_{\gamma}f(z)dz)=\int_{\gamma}\phi(f(z))dz$ by linearity.

Problem 4 (Cauchy's theorem). Let X be a complex Banach space and $f:U\to X$ be holomorphic, where $U\subset \mathbf{C}$ is simply connected. Let γ be a simple closed curve in U. Then

$$\int_{\gamma} f(z) \, dz = 0.$$

Problem 5 (Cauchy's integral formula). Let X be a complex Banach space and $f:U\to X$ be holomorphic. Let $z_0\in U$ and let γ be a closed simple curve in U such that $z_0\in \operatorname{int}\gamma$. Then

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$