A Partially Expanded Proof of $\langle 4 \rangle 3$

```
\langle 1 \rangle 1. Assume: Inv, Producer
Prove: C!Send
```

 $\langle 2 \rangle 1$. Len(chBar) $\neq N$

 $\langle 2 \rangle 2$. $\exists v \in Msg : chBar' = Append(chBar, v)$

$$\langle 3 \rangle 1$$
. Pick $v \in \mathit{Msg}$ such that $\mathit{buf'} = [\mathit{buf} \ \mathsf{EXCEPT} \ ![\mathit{p} \% \mathit{N}] = v]$

$$\langle 3 \rangle 2$$
. $chBar' = Append(chBar, v)$
 $\langle 4 \rangle 1$. $p \ominus c \in 0$... $(N-1)$

$$\langle 4 \rangle 2. \ p' \ominus c' = (p \ominus c) + 1$$

$$p \ominus c = (p \ominus c) + 1$$

OED

$$\langle 4 \rangle$$
3. Q.E.D. $\langle 5 \rangle$ 1. $Append(chBar, v)$

$$\begin{array}{ll} \langle 5 \rangle 1. \ Append(chBar,v) &= \\ [i \in 1 \ldots ((p \ominus c)+1) \mapsto \text{IF } i \in 1 \ldots (p \ominus c) \end{array}$$

THEN $buf[(c \oplus (i-1)) \% N]$ ELSE v

is in Nat.

PROOF: By definition of chBar and Append, since Inv implies $p \ominus c$

 $\langle 5 \rangle 2$. $chBar' = [i \in 1 ... ((p \ominus c) + 1) \mapsto buf'[(c \oplus (i - 1)) \% N]]$

PROOF: By definition of
$$chBar$$
, $\langle 4 \rangle 2$, and definition of $Producer$, which implies $c' = c$.

 $\langle 5 \rangle 3$. Assume: New $i \in 1 ... ((p \ominus c) + 1)$ PROVE: chBar'[i] = Append(chBar, v)[i]

$$\langle 6 \rangle 1$$
. Case: $i \in 1 \dots (p \ominus c)$

$$1...(p \ominus c$$

$$(2)$$
 Case: $i = (n \cap c) +$

$$\langle 6 \rangle 2$$
. Case: $i = (p \ominus c) + 1$

$$\langle 6 \rangle$$
3. Q.E.D. PROOF: By the $\langle 5 \rangle$ 3 assumption, $\langle 6 \rangle$ 1, $\langle 6 \rangle$ 2, and Inv , which implies

 $p \ominus c$ is in Nat, so $1 \cdot ((p \ominus c) + 1)$ equals $(1 \cdot (p \ominus c)) \cup \{(p \ominus c) + 1\}$. $\langle 5 \rangle 4$. Q.E.D.

PROOF: By
$$\langle 5 \rangle 1$$
, $\langle 5 \rangle 2$, and $\langle 5 \rangle 3$.

 $\langle 3 \rangle 3$. Q.E.D.

 $\langle 2 \rangle 3$. Q.E.D.

 $\langle 1 \rangle 2$. Assume: Inv, Consumer

C!RcvProve: $\langle 1 \rangle 3$. Q.E.D.

Remember that priming an

the variables in it.

expression means priming all