Devoir surveillé n° 09

– Version 1 –

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $n \in \mathbb{N}^*$.

1) Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ telles que :

$$\forall X \in \mathscr{M}_n(\mathbb{K}) \quad AXB = 0.$$

Montrer que A = 0 ou B = 0.

2) Soit A une matrice de $\mathcal{M}_n(\mathbb{C})$ à coefficients diagonaux dominants, c'est-à-dire telle que :

$$\forall i \in [1, n] \quad |a_{i,i}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{i,j}|.$$

Montrer que A est inversible.

3) Déterminer les matrices $M \in \mathcal{M}_3(\mathbb{K})$ telles que $M^2 = 0$.

II. Tirages dans une urne.

Une urne contient initialement une boule blanche et une boule noire. On effectue une succession d'épreuves, chaque épreuve étant définie comme suit :

- on tire une boule dans l'urne.
- on remet ensuite la boule tirée dans l'urne,
- on rajoute ensuite dans l'urne une boule de couleur opposée à celle qui vient d'être tirée.

Soit (Ω, P) un espace probabilisé modélisant cette expérience.

Si $k \in \mathbb{N}^*$, on note B_k le nombre de boules blanches présentes dans l'urne après la k^e épreuve. Par convention, B_0 est la variable aléatoire constante égale à 1.

- 1) Déterminer la loi de B_1 et donner son espérance, ainsi que sa variance.
- 2) Soit $k \in \mathbb{N}$.

Combien y a-t-il de boules dans l'urne après la $k^{\rm e}$ épreuve ? On justifiera ce résultat, au moins brièvement.

En déduire l'ensemble $B_k(\Omega)$ des valeurs que peut prendre B_k .

- 3) Détermination par récurrence de la loi de B_k .
 - a) Soit $i \in \mathbb{N}^*$ et $j \in B_k(\Omega)$. Déterminer $P(B_{k+1} = i \mid B_k = j)$ (on distinguera trois cas selon les valeurs relatives de i et j).
 - b) En utilisant la formule des probabilités totales, déduire de ce qui précède que :

$$\forall k \in \mathbb{N}, \ \forall i \in \mathbb{N}^*, \ P(B_{k+1} = i) = \frac{i}{k+2} P(B_k = i) + \frac{3+k-i}{k+2} P(B_k = i-1).$$

- 4) À l'aide de la formule du 3)b), déterminer la loi de B_2 , puis celle de B_3 .
- 5) Calculs explicites de quelques valeurs.

Pour tout $k \in \mathbb{N}$, on pose $a_k = (k+1)!P(B_k = 2)$.

- a) Montrer que, pour tout $k \in \mathbb{N}$, $P(B_k = 1) = \frac{1}{(k+1)!}$.
- **b)** Déterminer, pour tout $k \in \mathbb{N}$, la valeur de $P(B_k = k + 1)$.
- c) À l'aide de la formule du 3)b), exprimer, pour tout $k \in \mathbb{N}$, a_{k+1} en fonction de a_k et de k.
- d) Déterminer deux réels A et B tels que la suite de terme général $b_k = a_k + Ak + B$ soit géométrique.

En déduire alors que :

$$\forall k \in \mathbb{N}, \ P(B_k = 2) = \frac{2^{k+1} - k - 2}{(k+1)!}.$$

- **6)** Espérance de B_k .
 - a) À l'aide de la formule du 3)b), exprimer, pour tout $k \in \mathbb{N}$, $E(B_{k+1})$ en fonction de $E(B_k)$.
 - b) Déduire de ce qui précède que :

$$\forall k \in \mathbb{N}, E(B_k) = \frac{k+2}{2}.$$

- c) Retrouver ce résultat en utilisant la variable aléatoire N_k égale au nombre de boules noires présentes dans l'urne après k tirages.
- 7) Variance de B_k .
 - a) Exprimer, pour tout $k \in \mathbb{N}$, $E(B_{k+1}^2)$ en fonction de $E(B_k^2)$, de $E(B_k)$ et de k.
 - **b)** En déduire, pour tout $k \in \mathbb{N}$,

$$V(B_{k+1}) = \frac{k}{k+2}V(B_k) + \frac{1}{4}.$$

c) Montrer que :

$$\forall k \in \mathbb{N}^*, \ V(B_k) = \frac{k+2}{12}.$$

- 8) Comportement asymptotique de (B_k) .
 - a) Soit $\alpha > 0$. Montrer, en utilisant l'inégalité de Bienaymé-Tchebychev, que

$$P\left(\left|\frac{B_k}{k+2} - \frac{1}{2}\right| < \alpha\right) \xrightarrow[k \to +\infty]{} 1.$$

- b) Interpréter ce résultat et le justifier intuitivement.
- 9) Covariance de B_k et de B_{k+1} .
 - a) Quelle est la covariance de B_0 et de B_1 ?
 - b) B_0 et B_1 sont-elles indépendantes?

On suppose à partir de maintenant que $k \in \mathbb{N}^*$.

- c) Exprimer la loi conjointe de B_k et B_{k+1} en fonction de la loi de B_k .
- d) En déduire la covariance de B_k et B_{k+1} .
- e) Les variables aléatoires B_k et B_{k+1} sont-elles indépendantes?

Devoir surveillé n° 09

– Version 2 –

Durée: 3 heures, calculatrices et documents interdits

Dans tout le problème, a et b désignent des entiers naturels tous deux non nuls et l'on note N = a + b.

On considère une urne contenant initialement a boules blanches et b boules noires, dans laquelle on effectue des tirages successifs, au « hasard » et « avec remise » d'une boule, en procédant de la façon suivante :

- lorsque la boule tirée est blanche, elle est remise dans l'urne avant de procéder au tirage suivant,
- lorsque la boule tirée est noire, elle n'est pas remise dans l'urne mais remplacée dans l'urne par une boule blanche et l'on procède au tirage suivant.

Partie I

Soit (Ω, P) un espace probabilisé fini modélisant cette expérience et $Y : \Omega \to \mathbb{R}$ la variable aléatoire égale au nombre de tirages nécessaire à l'obtention d'une première boule blanche.

- 1) Préciser soigneusement l'ensemble des valeurs prises par la variable Y.
- 2) Pour tout entier k compris entre 1 et b+1, calculer la valeur de la probabilité P(Y=k).
- 3) Vérifier que

$$P(Y = b + 1) = \frac{b!}{N^b}$$

et que, pour tout entier k compris entre 1 et b, la formule suivante est vraie :

$$P(Y = k) = \frac{b!}{(b - (k - 1))!N^{k-1}} - \frac{b!}{(b - k)!N^k}.$$

4) Soit M un entier naturel non nul et a_0, a_1, \ldots, a_M une famille de réels. Établir que

$$\sum_{k=1}^{M} k(a_{k-1} - a_k) = \left(\sum_{k=0}^{M-1} a_k\right) - Ma_M.$$

5) En déduire que $E[Y] = \sum_{k=0}^{b} \frac{b!}{(b-k)!N^k}$.

Partie II

Dans cette partie, on note:

- pour tout entier $n \ge 1$, q_n la probabilité de l'événement, noté N_n : « la n^e boule tirée est noire »,
- pour tout entier $n \ge 0$, X_n le nombre aléatoire de boules noires obtenues au cours des n premiers tirages (par convention, $X_0 = 0$),
- pour tout entier $n \ge 0$ et $k \ge 0$, $p_{n,k}$ la probabilité de l'événement : « au cours des n premiers tirages, on a obtenu exactement k boules noires ».
- **6)** Soit $n \in \mathbb{N}$, calculer $p_{n,0}$ puis $p_{n,n}$. Que vaut la somme $\sum_{k=0}^{n} p_{n,k}$?
- 7) Démontrer la formule suivante, valable pour tous les entiers naturels n et k non nuls :

$$N \cdot p_{n,k} = (a+k)p_{n-1,k} + (b+1-k)p_{n-1,k-1} . (\mathbf{F})$$

- 8) Calcul de l'espérance de X_n .
 - a) À l'aide de la formule (\mathbf{F}) obtenue dans la question 7), démontrer la formule pour $n \ge 1$:

$$NE[X_n] = \sum_{k=0}^{n-1} [b + k(N-1)] p_{n-1,k}$$
,

puis justifier que

$$E[X_n] = \left(1 - \frac{1}{N}\right) E[X_{n-1}] + \frac{b}{N}.$$

b) En utilisant la dernière formule établie à la question 8)a), prouver que, pour tout entier naturel n, on a

$$\mathrm{E}\left[X_{n}\right] = b \left[1 - \left(1 - \frac{1}{N}\right)^{n}\right] .$$

- 9) Calcul de q_n .
 - a) En utilisant une formule des probabilités totales, établir la formule suivante valable pour tout entier naturel n:

$$N \cdot q_{n+1} = \sum_{k=0}^{n} (b-k) p_{n,k}$$
.

- **b)** Pour tout entier naturel n, exprimer alors q_{n+1} en fonction de $E[X_n]$ et en déduire l'expression de q_{n+1} en fonction de n, b, N.
- 10) Calcul de la variance de X_n . On introduit la suite $(u_n)_{n\geqslant 0}$ définie pour tout entier naturel n par :

$$u_n = \mathbb{E}\left[X_n(X_n - 1)\right] .$$

a) À l'aide de la formule (F) obtenue dans la question 7), montrer que l'on a :

$$N \cdot u_n = \sum_{k=1}^{n-1} \left[k(k-1)(a+b-2) + 2(b-1)k \right] p_{n-1,k} .$$

b) En déduire que la suite $(u_n)_{n\geqslant 0}$ satisfait à la relation de récurrence suivante :

$$\forall n \geqslant 1, \ u_n = \left(1 - \frac{2}{N}\right) u_{n-1} + \frac{2b(b-1)}{N} \left[1 - \left(1 - \frac{1}{N}\right)^{n-1}\right].$$

c) À l'aide d'une récurrence, démontrer que la formule suivante est valable pour tout entier naturel n:

$$u_n = b(b-1) \left[1 + \left(1 - \frac{2}{N} \right)^n - 2 \left(1 - \frac{1}{N} \right)^n \right].$$

d) Donner alors la valeur de $Var(X_n)$ puis préciser sa limite lorsque n tend vers $+\infty$.

— FIN —