Introduction to python

Contents

- > PIL python Imaging Library
- > Matplotlib
- > OpenCV

PIL - Python Imaging library

- Image modulefrom PIL import Image
- > Open the Image
 pil_im = Image.open('Image_1.jpg')
- > Convert color image to greyscale
 pil_im = Image.open('Image_1.jpg').convert('L')
- > Save the greyscale image pil_im.save('Image_2.jpg')

Copy and paste regions

- > Crop a part of the Image box = (100,100,400,400) #Where coordinates are (left, upper, right, lower) region = pil_im.crop(box)
- > Rotate the region by 180 degrees region = region.transpose(lmage.ROTATE_180)
- > Paste the region on the Image pil_im.paste(region,box)

Resize and Rotate

> Resize the Image
Out = pil_im.resize((128,128))

> Rotate the Image
Out = pil_im.rotate(45)

Matplotlib

> Matplotlib is a good graphics library with much more powerful features than the plotting available in PIL.

Matplotlib's PyLab is the set of functions that allows the user to create plots.

Plotting Images, points and Lines

```
from PIL import Image
from pylab import *
# read image to array
im = array(Image.open('Image_1.jpg'))
# Plot the image
imshow(im)
# Some points
x = [100, \dot{1}00, 400, 400]
y = [200,500,200,500]
# Plot the points with red star-markers
plot(x, y, 'r*')
# line plot connecting the first 2 points
plot(x[:2], y[:2])
# add title and show the plot
title('Sample plot')
show()
```

output

> The show() command starts the figure GUI and raises the figure windows.

> The GUI loop blocks the script until the last figure window is closed.

You should call show() only once per script, usually at the end.

OpenCV

> OpenCV is a C++ library for computer vision. It has a python interface as well.

 Following document might be useful for installing OpenCV, you may follow any other latest reference as well

https://www.learnopencv.com/install-opencv-3-and-dlib-on-windows-python-only/

Reading and writing images

import cv2

```
# read image
im = cv2.imread('Image_1.jpg')
h,w = im.shape[:2]
print h,w
# save image
```

cv2.imwrite('out.jpg', im)

Color spaces

- > In OpenCV, Images are not stored in conventional RGB format; they are stored in BGR format (reverse order)
- Colorspace conversions are done using the function cvtcolor()
- > Convert to grayscale
 gray = cv2.cvtcolor(im, cv2.COLOR_BGR2GRAY)

```
# show the result in a OpenCV window cv2.imshow('temp image', im) waitKey(0)
```

> waitkey(0) will display the image until its closed

> waitkey(t) will display the image for t milliseconds.

References

> Programming computer vision with python by Jan Erik Solem (Chap 1.1-1.2 and Chap 10.1-10.2)

Thanks