

Multiconsult

Long-term Response Analysis of Floating Bridges

Finn-Idar Grøtta Giske

Chained Floating Bridge

- Development project organized by Multiconsult
- PhD at NTNU
 - Supervisors
 - Bernt Leira Dept. of Marine Technology
 - Ole Øiseth Dept. of Structural Engineering
- So far
 - Stochastic description of wave loads
 - Development of a new method for faster computations
- Today
 - Long-term extreme response of floating bridges

Short-term extreme value CDF

- Environmental parameters $S = [H_S, T_Z]$ considered constant for a short-term period \tilde{T} , typically $\tilde{T} = 3h$ for waves
- Given S we assume a stationary response process R(t)
 - $-\tilde{R}|S = \max\{R(t)|S; 0 \le t \le \tilde{T}\}$
- ullet Assuming independent upcrossings of high levels r

17十四日 品品。企

- $-F_{\tilde{R}|S}(r|s) = \exp\{-\nu_R^+(r)\tilde{T}\}\$
- Also assuming Gaussian response process
 - $-F_{\tilde{R}|S}(r|s) = \exp\left\{-\frac{\sigma_{\dot{R}}}{2\pi\sigma_{R}}\exp\left(-\frac{r^{2}}{2\sigma_{R}^{2}}\right)\right\}$

Long-term extreme response modelling

- Sequence of N short-term states, each of duration \tilde{T}
- Joint distribution $f_{\mathcal{S}}(s)$ for the environmental parameters

-
$$H_s \sim \ln \mathcal{N}(\lambda_{H_s}, \xi_{H_s}^2)$$

$$-T_z|H_s \sim \ln \mathcal{N}(\lambda_{T_z}(h), \xi_{T_z}^2)$$

$$-f_{H_S,T_Z}(h,t) = f_{H_S}(h)f_{T_Z|H_S}(t|h)$$

- \hat{R} largest response during the long-term period $T=N\tilde{T}$
- \tilde{R} largest response in a randomly chosen short-term state

$$-F_{\widehat{R}}(r) = F_{\widetilde{R}}(r)^N$$

Long-term CDF of the short-term extreme value

- Exact long-term CDF obtained by ergodic average
 - $-F_{\tilde{R}}(r) = \exp\{\int_{S} (\ln F_{\tilde{R}|S}(r|s)) f_{S}(s) ds\}$
- Common approximation using the population mean

$$-F_{\tilde{R}}(r) \approx \bar{F}_{\tilde{R}}(r) = \int_{S} F_{\tilde{R}|S}(r|s) f_{S}(s) ds$$

 This integral can be solved approximately by using FORM

$$-\overline{F}_{\tilde{R}}(r) = 1 - \int_{g_r(u) \le 0} f_{U}(u) du$$
$$\approx 1 - \Phi(-\beta)$$

Figure from Schneider 1997, Introduction to Safety and Reliability of structures

Forward FORM and inverse FORM

- Forward FORM
 - Calculate $\bar{F}_{\tilde{R}}(r) \approx 1 \Phi(-\beta)$ for a given value of r
 - $-\beta$ found by solving a minimization problem
 - Iteration required for each value of r
- Inverse FORM
 - Calculate r_p such that $\overline{F}_{\widetilde{R}}(r_p) \approx 1-p$
 - $-\beta = -\Phi^{-1}(p)$ is given
 - $-r_p$ found by solving a maximization problem
 - Iteration to find r_p directly

Response value with 100-yr return period

- ullet Seek the value r_q which has a probability q of being exceeded per long-term period
 - Require $\bar{F}_{\tilde{R}}(r_q) = (1-q)^{1/N} \approx 1 q/N$
- Response value with 100-yr return period
 - -T = 1 yr, $\tilde{T} = 3$ hr, $N = 365 \cdot 8 = 2920$ and q = 1/100.
 - $-\bar{F}_{\tilde{R}}(r_q) = 1 1/292000$
 - $-p = 1/292000 \Rightarrow \beta = -\Phi^{-1}(p) = 4.5$

Response value with 100-yr return period

- Simplified linear model of the chained floating bridge
- R(t) Horizontal transverse displacement of pontoon 5
- Not realistic environmental model

Response value with 100-yr return period

- Full numerical integration
 - $-r_q = 13.64 \text{ m}$
 - 7350 short-term response calculations
- IFORM
 - $-r_q = 13.83 \text{ m}$
 - 32 short-term response calculations

Multiconsult

Thank you!