Table 1: Steady State Solutions for unforced SDOF Systems

System	Steady State Solution	
Undamped Spring Mass	$\frac{v_0}{p}\sin(pt) + x_0\cos(pt)$	
Damped Spring Mass	$e^{-\zeta pt} \left[\frac{v_0 + \zeta p x_0}{\sqrt{1 - \zeta^2} p} \sin(\sqrt{1 - \zeta^2} pt) + x_0 \cos(\sqrt{1 - \zeta^2} pt) \right]$	

Table 2: Steady State Solutions for forced SDOF Systems

System	Steady State	DMF (or Amplitude Response)	Transmissibility
Forced Spring Mass	$\left(\frac{F_0}{k}\right) \left(\frac{1}{1 - \left(\frac{\omega}{p}\right)^2}\right) \sin(\omega t)$	$rac{\mathbb{X}}{\delta_{\mathrm{ST}}} = rac{1}{\left 1 - \left(rac{\omega}{p} ight)^2 ight }$	$\frac{1}{\left 1-\left(\frac{\omega}{p}\right)^2\right }$
Rotating Imbalance	$\frac{\tilde{m}e/k}{\left 1 - \left(\frac{\omega}{p}\right)^2\right }\sin(\omega t - \phi)$	$\frac{M\mathbb{X}}{\tilde{m}e} = \frac{\left(\frac{\omega}{p}\right)^2}{\left 1 - \left(\frac{\omega}{p}\right)^2\right }$	$\frac{1}{\left 1-\left(\frac{\omega}{p}\right)^2\right }$
Base Excitation	$a\left(\frac{1}{1-\left(\frac{\omega}{p}\right)^2}\right)\sin(\omega t)$	$rac{\mathbb{X}}{\delta_{\mathrm{ST}}} = rac{1}{\left 1 - \left(rac{\omega}{p} ight)^2 ight }$	$\frac{\left(\frac{\omega}{p}\right)^2}{\left 1 - \left(\frac{\omega}{p}\right)^2\right }$