Cuerpo Rígido: Energía cinética

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

19 de octubre de 2024

Agenda

La energía cinética

El Tensor de Inercia

Elipsoide en rotación

• La energía potencial de interacción entre las partículas de un cuerpo rígido es constante.

- La energía potencial de interacción entre las partículas de un cuerpo rígido es constante.
- Entonces toda la energía potencial del sólido es la energía potencial del centro de masa.

- La energía potencial de interacción entre las partículas de un cuerpo rígido es constante.
- Entonces toda la energía potencial del sólido es la energía potencial del centro de masa.
- La energía cinética de un cuerpo rígido con velocidad angular Ω , es $T=\frac{1}{2}\sum_{j}^{\text{cuerpo}} m_{j}v_{j}^{2}, \quad j=1,2,\ldots$, donde $\mathbf{v}_{j}=\mathbf{v}_{\text{cm}}+\mathbf{\Omega}\times\mathbf{r}_{j},$

- La energía potencial de interacción entre las partículas de un cuerpo rígido es constante.
- Entonces toda la energía potencial del sólido es la energía potencial del centro de masa.
- La energía cinética de un cuerpo rígido con velocidad angular Ω , es $T = \frac{1}{2} \sum_{j}^{\text{cuerpo}} m_j v_j^2, \quad j = 1, 2, ..., \text{ donde } \mathbf{v}_j = \mathbf{v}_{\text{cm}} + \mathbf{\Omega} \times \mathbf{r}_j,$
- Como la velocidad angular Ω es la misma para todas las partículas del cuerpo, tenemos $T = \frac{1}{2} \sum_j m_j (\mathbf{v}_{\rm cm} + \Omega \times \mathbf{r}_j)^2$, es decir $T = \frac{1}{2} \sum_i m_i \mathbf{v}_{\rm cm}^2 + \sum_i m_i \mathbf{v}_{\rm cm} \cdot (\Omega \times \mathbf{r}_i) + \frac{1}{2} \sum_i m_i (\Omega \times \mathbf{r}_i)^2$

- La energía potencial de interacción entre las partículas de un cuerpo rígido es constante.
- Entonces toda la energía potencial del sólido es la energía potencial del centro de masa.
- La energía cinética de un cuerpo rígido con velocidad angular Ω , es $T = \frac{1}{2} \sum_{j}^{\text{cuerpo}} m_j v_j^2, \quad j = 1, 2, ..., \text{ donde } \mathbf{v}_j = \mathbf{v}_{\text{cm}} + \mathbf{\Omega} \times \mathbf{r}_j,$
- Como la velocidad angular Ω es la misma para todas las partículas del cuerpo, tenemos $T = \frac{1}{2} \sum_j m_j (\mathbf{v}_{\rm cm} + \mathbf{\Omega} \times \mathbf{r}_j)^2$, es decir $T = \frac{1}{2} \sum_j m_j v_{\rm cm}^2 + \sum_j m_j \mathbf{v}_{\rm cm} \cdot (\mathbf{\Omega} \times \mathbf{r}_j) + \frac{1}{2} \sum_j m_j (\mathbf{\Omega} \times \mathbf{r}_j)^2$
- El primer término es $\frac{1}{2}\sum_j m_j v_{\rm cm}^2 = \frac{1}{2}\left(\sum_j m_j\right) v_{\rm cm}^2 = \frac{1}{2}Mv_{\rm cm}^2$.

- La energía potencial de interacción entre las partículas de un cuerpo rígido es constante.
- Entonces toda la energía potencial del sólido es la energía potencial del centro de masa.
- La energía cinética de un cuerpo rígido con velocidad angular Ω , es $T = \frac{1}{2} \sum_{i}^{\text{cuerpo}} m_j v_i^2$, j = 1, 2, ..., donde $\mathbf{v}_j = \mathbf{v}_{\text{cm}} + \mathbf{\Omega} \times \mathbf{r}_j$,
- Como la velocidad angular Ω es la misma para todas las partículas del cuerpo, tenemos $T = \frac{1}{2} \sum_j m_j (\mathbf{v}_{\rm cm} + \Omega \times \mathbf{r}_j)^2$, es decir $T = \frac{1}{2} \sum_i m_i v_{\rm cm}^2 + \sum_i m_i \mathbf{v}_{\rm cm} \cdot (\Omega \times \mathbf{r}_i) + \frac{1}{2} \sum_i m_i (\Omega \times \mathbf{r}_i)^2$
- El primer término es $\frac{1}{2}\sum_j m_j v_{\rm cm}^2 = \frac{1}{2}\left(\sum_j m_j\right) v_{\rm cm}^2 = \frac{1}{2}Mv_{\rm cm}^2$.
- El segundo término se simplifica usando $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$. Entonces $\sum_{j} m_{j} \mathbf{v}_{cm} \cdot (\mathbf{\Omega} \times \mathbf{r}_{j}) = \sum_{j} m_{j} \mathbf{r}_{j} \cdot (\mathbf{v}_{cm} \times \mathbf{\Omega}) =$ $= (\mathbf{v}_{cm} \times \mathbf{\Omega}) \cdot \left(\sum_{j} m_{j} \mathbf{r}_{j}\right)^{-1} = 0, \text{ ya que } \mathbf{R}_{cm} = \frac{\sum_{j} m_{j} \mathbf{r}_{j}}{M} = 0$

• El tercer término se evalúa usando

$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$$
, por lo tanto $(\mathbf{\Omega} \times \mathbf{r}_j)^2 = (\mathbf{\Omega} \times \mathbf{r}_j) \cdot (\mathbf{\Omega} \times \mathbf{r}_j) = \Omega^2 r_j^2 - (\mathbf{\Omega} \cdot \mathbf{r}_j)^2$

El tercer término se evalúa usando

$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}), \text{ por lo tanto}$$

 $(\mathbf{\Omega} \times \mathbf{r}_i)^2 = (\mathbf{\Omega} \times \mathbf{r}_i) \cdot (\mathbf{\Omega} \times \mathbf{r}_i) = \Omega^2 r_i^2 - (\mathbf{\Omega} \cdot \mathbf{r}_i)^2$

• Entonces $T = \frac{1}{2}Mv_{\mathrm{cm}}^2 + \frac{1}{2}\sum_j m_j \left[\Omega^2 r_j^2 - (\mathbf{\Omega} \cdot \mathbf{r}_j)^2\right] = T_{\mathrm{cm}} + T_{\mathrm{rot}}$

- El tercer término se evalúa usando $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$, por lo tanto
 - $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}), \text{ por lo tanto}$ $(\mathbf{\Omega} \times \mathbf{r}_i)^2 = (\mathbf{\Omega} \times \mathbf{r}_i) \cdot (\mathbf{\Omega} \times \mathbf{r}_i) = \Omega^2 r_i^2 - (\mathbf{\Omega} \cdot \mathbf{r}_i)^2$
- Entonces $T = \frac{1}{2}Mv_{\rm cm}^2 + \frac{1}{2}\sum_j m_j \left[\Omega^2 r_j^2 (\mathbf{\Omega} \cdot \mathbf{r}_j)^2\right] = T_{\rm cm} + T_{\rm rot}$
- Además, $(\mathbf{\Omega} \cdot \mathbf{r}_j)^2 = (\sum_i \Omega_i x_{ij}) (\sum_k \Omega_k x_{ij}) = \sum_{i,k} \Omega_i \Omega_k x_{ij} x_{ij},$ $\Omega_i = \sum_k \Omega_k \delta_{ik}, \quad \Rightarrow \Omega^2 = \sum_i \Omega_i^2 = \sum_i \Omega_i \sum_k \Omega_k \delta_{ik} = \sum_{i,k} \Omega_i \Omega_k \delta_{ik}$

• El tercer término se evalúa usando

$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}), \text{ por lo tanto}$$

 $(\mathbf{\Omega} \times \mathbf{r}_i)^2 = (\mathbf{\Omega} \times \mathbf{r}_i) \cdot (\mathbf{\Omega} \times \mathbf{r}_i) = \Omega^2 r_i^2 - (\mathbf{\Omega} \cdot \mathbf{r}_i)^2$

- Entonces $T = \frac{1}{2}Mv_{\rm cm}^2 + \frac{1}{2}\sum_j m_j \left[\Omega^2 r_j^2 (\mathbf{\Omega} \cdot \mathbf{r}_j)^2\right] = T_{\rm cm} + T_{\rm rot}$
- Además, $(\mathbf{\Omega} \cdot \mathbf{r}_j)^2 = (\sum_i \Omega_i x_{ij}) (\sum_k \Omega_k x_{ij}) = \sum_{i,k} \Omega_i \Omega_k x_{ij} x_{ij},$ $\Omega_i = \sum_k \Omega_k \delta_{ik}, \quad \Rightarrow \Omega^2 = \sum_i \Omega_i^2 = \sum_i \Omega_i \sum_k \Omega_k \delta_{ik} = \sum_{i,k} \Omega_i \Omega_k \delta_{ik}$
- La energía cinética será

$$T_{
m rot} = rac{1}{2} \sum_{j}^{
m cuerpo} m_j \sum_{i,k} \left(\Omega_i \Omega_k r_j^2 \delta_{ik} - \Omega_i \Omega_k x_i x_k \right)$$
, o mejor $T = rac{1}{2} \sum_{i,k} \Omega_i \Omega_k \sum_j m_j \left(r_j^2 \delta_{ik} - x_i x_k \right) \equiv rac{1}{2} \sum_{i,k} l_{ik} \Omega_i \Omega_k$

• El tercer término se evalúa usando $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}), \text{ por lo tanto } (\mathbf{\Omega} \times \mathbf{r}_i)^2 = (\mathbf{\Omega} \times \mathbf{r}_i) \cdot (\mathbf{\Omega} \times \mathbf{r}_i) = \Omega^2 r_i^2 - (\mathbf{\Omega} \cdot \mathbf{r}_i)^2$

• Entonces
$$T = \frac{1}{2}Mv_{\rm cm}^2 + \frac{1}{2}\sum_j m_j \left[\Omega^2 r_j^2 - (\mathbf{\Omega} \cdot \mathbf{r}_j)^2\right] = T_{\rm cm} + T_{\rm rot}$$

- Además, $(\mathbf{\Omega} \cdot \mathbf{r}_j)^2 = (\sum_i \Omega_i x_{ij}) (\sum_k \Omega_k x_{ij}) = \sum_{i,k} \Omega_i \Omega_k x_{ij} x_{ij},$ $\Omega_i = \sum_k \Omega_k \delta_{ik}, \quad \Rightarrow \Omega^2 = \sum_i \Omega_i^2 = \sum_i \Omega_i \sum_k \Omega_k \delta_{ik} = \sum_{i,k} \Omega_i \Omega_k \delta_{ik}$
- La energía cinética será $T_{\rm rot} \ = \frac{1}{2} \sum_{j}^{\rm cuerpo} \ m_j \sum_{i,k} \left(\Omega_i \Omega_k r_j^2 \delta_{ik} \Omega_i \Omega_k x_i x_k \right), \ {\rm o \ mejor}$ $T = \frac{1}{2} \sum_{i,k} \Omega_i \Omega_k \sum_j m_j \left(r_j^2 \delta_{ik} x_i x_k \right) \equiv \frac{1}{2} \sum_{i,k} I_{ik} \Omega_i \Omega_k$
- Donde $I_{ij} = \begin{pmatrix} \sum_{j} m_{j} \left(x_{2}^{2} + x_{3}^{2}\right) & -\sum_{j} m_{j} x_{1} x_{2} & -\sum_{j} m_{j} x_{1} x_{3} \\ -\sum_{j} m_{j} x_{2} x_{1} & \sum_{j} m_{j} \left(x_{1}^{2} + x_{3}^{2}\right) & -\sum_{j} m_{j} x_{2} x_{3} \\ -\sum_{j} m_{j} x_{3} x_{1} & -\sum_{j} m_{j} x_{3} x_{2} & \sum_{j} m_{j} \left(x_{1}^{2} + x_{2}^{2}\right) \end{pmatrix}$

• Energía cinética de un elipsoide ($I_{11} \neq I_{22} \neq I_{33}$) que rota sobre eje AB con velocidad angular ω , y sobre eje CD con velocidad angular ν ,

• Energía cinética de un elipsoide ($I_{11} \neq I_{22} \neq I_{33}$) que rota sobre eje AB con velocidad angular ω , y sobre eje CD con velocidad angular ν ,

• Escogemos eje AB en la dirección x_3 . Entonces los ejes x_1 y x_2 rotan alrededor de $AB = x_3$. La dirección de ω es a lo largo de x_3 y la dirección de ν está sobre el plano (x_1, x_2) .

• Energía cinética de un elipsoide ($I_{11} \neq I_{22} \neq I_{33}$) que rota sobre eje AB con velocidad angular ω , y sobre eje CD con velocidad angular ν ,

- Escogemos eje AB en la dirección x_3 . Entonces los ejes x_1 y x_2 rotan alrededor de $AB = x_3$. La dirección de ω es a lo largo de x_3 y la dirección de ν está sobre el plano (x_1, x_2) .
- Las componentes $\Omega = (\Omega_1, \Omega_2, \Omega_3)$ son $\Omega_1 = \nu \cos \omega t$, $\Omega_2 = \nu \sin \omega t$ y $\Omega_3 = \omega$,

• Energía cinética de un elipsoide ($I_{11} \neq I_{22} \neq I_{33}$) que rota sobre eje AB con velocidad angular ω , y sobre eje CD con velocidad angular ν ,

- Escogemos eje AB en la dirección x_3 . Entonces los ejes x_1 y x_2 rotan alrededor de $AB = x_3$. La dirección de ω es a lo largo de x_3 y la dirección de ν está sobre el plano (x_1, x_2) .
- Las componentes $\Omega=(\Omega_1,\Omega_2,\Omega_3)$ son $\Omega_1=\nu\cos\omega t$, $\Omega_2=\nu\sin\omega t$ y $\Omega_3=\omega$,
- Finalmente $T = T_{\text{rot}} = \frac{1}{2}I_{11}\Omega_1^2 + \frac{1}{2}I_{22}\Omega_2^2 + \frac{1}{2}I_{33}\Omega_3^2 \Rightarrow$ $T = \frac{1}{2}\left(I_{11}\cos^2\omega t + I_{22}\sin^2\omega t\right)\nu^2 + \frac{1}{2}I_{33}\omega^2$