

PRESIDENCY COLLEGE (Autonomous)

Graph Theory

Reaccredited by NAAC with A+

Tree Traversal & Spanning of Tree

PRESIDENCY COLLEGE

(AUTONOMOUS)

AFFILIATED TO BENGALURU CITY UNIVERSITY, APPROVED BY AICTE, DELHI & RECOGNISED BY THE GOVT. OF KARNATAKA

RE-ACCREDITED BY NAAC WITH 'A+' GRADE

(Autonomous)

TEAM DETAILS

Reaccredited by NAAC with A+

TOPIC:

Tree Traversal, Spanning of tree & Minimum spanning of tree.

Members:

B. Charan, Balu B., Baquer Ahmed K, Bhoomika K., Ayush K. & Arindam Hazra

Reaccredited by NAAC with A+

TABLE OF CONTENTS

01

Section A:

Introduction & Tree Traversal by Ayush & Arindam

02

Section B:

Spanning of Tree by Bhoomika & Charan

03

Section C:

Minimum Spanning of Tree by Balu & Baquer

04

Section D:

Doubt Session & Summary by Team

Reaccredited by NAAC with A+

Presidency Group

INTRODUCTION

TREE

Tree is a connected graph with no cycle. It has (n-1) edges. Also, it's every edge is a bridge.

Reaccredited by NAAC with A+

Presidency Group

Tree Traversal

Tree Traversals. A traversal of a graph is an algorithm or process for "visiting" all of the vertices in a tree in a specified order that is determined by the graph structure.

Tree traversals are traversals that are defined in the special case that the graph is a rooted tree.

Reaccredited by NAAC with A+

Presidency Group

O V E R

40

YEARS
OF ACADEMIC
WISDOM

Types of Tree Traversal

Reaccredited by NAAC with A+

Pre Order Traversal

The Preorder Traversal of a binary tree is a recursive process. The Preorder Traversal of a tree is:

Visit the root of the tree.

Traverse the left subtree in Preorder.

Traverse the right subtree in Preorder.

[ROOT – LEFT – RIGHT]

Reaccredited by NAAC with A+

In Order Traversal

The Inorder Traversal of a binary tree is a recursive process. The Inorder traversal of a tree is:

Traverse in Inorder the left subtree.

Visit the root of the tree.

Traverse in Inorder the right subtree.

(Autonomous)

Post Order Traversal

The Post order traversal of a binary tree is a recursive process. The Post order traversal of a tree is:

Reaccredited by NAAC with A+

Traverse the left subtree in postorder.

Traverse the right subtree in postorder.

Visit the root of the tree.

O V E R

40

YEARS
OF ACADEMIC
WISDOM

[LEFT – RIGHT – RIGHT]

Reaccredited by NAAC with A+

Spanning of Tree

Definition:

A spanning tree is a graph which contains all vertices and minimum number of edges.

Note:

- a) contains all vertices
- b) minimum no. of edges

EXAMPLES:

Reaccredited by NAAC with A+

Presidency Group

VEARS
OF ACADEMIC
WISDOM

Examples for Spanning of Tree

Reaccredited by NAAC with A+

Presidency Group

Minimum Spanning of Tree

Definition:

A Minimum Spanning Tree (MST) is a subset of edges of a connected weighted graph that connects all the vertices together with the minimum possible total edge weight.

Reaccredited by NAAC with A+

Properties of Minimum Spanning of Tree

- ➤ (n-1) edges
- Weight o MST = Sum of weight o edges of MST
- ➤ Max path length between 2 vertices is (n-1)
- There will be only one path from one vertex to another.
- Removal of edges from a graph makes it disconnected.
- Graph with distinct weights where the MST will be unique.

Reaccredited by NAAC with A+

Presidency Group

40 YEARS OF ACADEMIC WISDOM

More about Minimum Spanning of Tree

Reaccredited by NAAC with A+

Presidency Group

VEARS
OF ACADEMIC
WISDOM

More about Minimum Spanning of Tree

Reaccredited by NAAC with A+

Presidency Group

VEARS
OF ACADEMIC
WISDOM

Kruskal Algorithm

Reaccredited by NAAC with A+

Kruskal Algorithm

Definition:

Kruskal algorithm is **used to find the minimum spanning tree for a connected weighted graph**. The main target of the algorithm is to find the subset of edges by using which we can traverse every vertex of the graph.

Step 1: Arrange all the edges of the given graph G(V,E) in ascending order as per their edge weight.

Step 2: Choose the smallest weighted edge from the graph and check if it forms a cycle with the spanning tree formed so far.

Step 3: If there is no cycle include this edge to spanning tree else discard it.

Step 4: Repeat Step 2 and 3 until (n-1) edges are left.

Reaccredited by NAAC with A+

Presidency Group

40 YEARS OF ACADEMIC WISDOM

Question Paper Solution

Reaccredited by NAAC with A+

Prim's Algorithm

Definition:

Prim's algorithm is an algorithm that starts from one vertex and continues to add the edges with the smallest weight until the goal is reached.

Step 1: We have to select a random vertex.

Step 2: Connect the edges that have minimum weights in order to complete the tree.

Step 3: All loops and parallel edges should be removed before finding Minimum Spanning of Tree using Prim's Algorithm.

Step 4: No cycles should be formed.

Reaccredited by NAAC with A+

Presidency Group

VEARS
OF ACADEMIC
WISDOM

Prim's Algorithm

Reaccredited by NAAC with A+

Difference between Prim's & Kruskal's Algorithm

Prim's Algorithm

- The Tree being formed is always connected at any point of time.
- Prim's algorithm starts from a random vertex and then continues to add the edge with minimum weight to the tree until the (n-1) form of edges is not formed.
- Prim's algorithm is faster for dense graphs.

Kruskal's Algorithm

- The Tree being formed is usually disconnected while solving, but at the ends turns out to be connected.
- Kruskal's algorithm starts from the vertex having the least edge weight and then continue to add the next minimum edge to the tree until (n-1) condition is not met.
- Kruskal's algorithm is faster for sparse graphs.

Reaccredited by NAAC with A+

Presidency Group

Conclusion

Thank You!

