Double-click (or enter) to edit

First we have to read .CSV file. We will do this with the help of pandas library.

import pandas as pd
data1=pd.read_csv('dataset.csv')
data1

₽	Loan_I) Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
	LP00100	2 Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0	Urban	Υ
	LP00100	B Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural	N
:	P00100	5 Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban	Υ
	LP00100	6 Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban	Y
,	LP00100	3 Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban	Υ
6	9 LP00297	B Female	No	0	Graduate	No	2900	0.0	71.0	360.0	1.0	Rural	Υ
6	0 LP00297) Male	Yes	3+	Graduate	No	4106	0.0	40.0	180.0	1.0	Rural	Υ
6	1 LP00298	B Male	Yes	1	Graduate	No	8072	240.0	253.0	360.0	1.0	Urban	Υ
6	2 LP00298	l Male	Yes	2	Graduate	No	7583	0.0	187.0	360.0	1.0	Urban	Υ
6	3 LP00299) Female	No	0	Graduate	Yes	4583	0.0	133.0	360.0	0.0	Semiurban	N

614 rows × 13 columns

Lets see the first five rows of our data.

data1.head()

Loan	_ID Gend	r Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
0 LP001	002 Ma	le No	0	Graduate	No	5849	0.0	NaN	360.0	1.0	Urban	Υ
1 LP001	003 Ma	le Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural	N
2 LP001	005 Ma	le Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban	Υ
3 LP001	006 Ma	le Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban	Υ
4 LP001	008 Ma	le No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban	Υ

Lets see the last five rows of our data.

data1.tail()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
609	LP002978	Female	No	0	Graduate	No	2900	0.0	71.0	360.0	1.0	Rural	Υ
610	LP002979	Male	Yes	3+	Graduate	No	4106	0.0	40.0	180.0	1.0	Rural	Υ
611	LP002983	Male	Yes	1	Graduate	No	8072	240.0	253.0	360.0	1.0	Urban	Υ
612	LP002984	Male	Yes	2	Graduate	No	7583	0.0	187.0	360.0	1.0	Urban	Υ
613	LP002990	Female	No	0	Graduate	Yes	4583	0.0	133.0	360.0	0.0	Semiurban	N

Let us see the all columns present in our dataset in one place.

```
data1.columns
```

Similarly we can know the shape of our dataset.

```
data1.shape
```

(614, 13)

If we want to view row from 2 to 6, then it can be done as:

data1[5:9]

Loar	n_ID G	ender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
5 LP00	1011	Male	Yes	2	Graduate	Yes	5417	4196.0	267.0	360.0	1.0	Urban	Υ
6 LP00	1013	Male	Yes	0	Not Graduate	No	2333	1516.0	95.0	360.0	1.0	Urban	Υ
7 LP00	1014	Male	Yes	3+	Graduate	No	3036	2504.0	158.0	360.0	0.0	Semiurban	N
8 LP00 ²	1018	Male	Yes	2	Graduate	No	4006	1526.0	168.0	360.0	1.0	Urban	Υ

To get the maximum and minimum applicant income we can follow the following steps:

```
data1['ApplicantIncome'].max()
    81000

data1['ApplicantIncome'].min()
    150
```

To know which LoanID is not graduate, we can do the following steps:

```
data1['Loan_ID'][data1['Education'] == 'Not Graduate']
           LP001006
           LP001013
     16
           LP001034
    18
           LP001038
    20
           LP001043
     595
           LP002940
    596
           LP002941
     601
           LP002950
           LP002960
     607 LP002964
    Name: Loan_ID, Length: 134, dtype: object
```

data1.describe() #We can analysis our complete dataset from this process

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621,245798	146.412162	342,00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000

data1.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 614 entries, 0 to 613 Data columns (total 13 columns):

Column Non-Null Co

#	Column	Non-Null Count	Dtype
0	Loan_ID	614 non-null	object
1	Gender	601 non-null	object
2	Married	611 non-null	object
3	Dependents	599 non-null	object
4	Education	614 non-null	object
5	Self_Employed	582 non-null	object
6	ApplicantIncome	614 non-null	int64
7	CoapplicantIncome	614 non-null	float6
8	LoanAmount	592 non-null	float6
9	Loan_Amount_Term	600 non-null	float6
10	Credit_History	564 non-null	float6
11	Property_Area	614 non-null	object
12	Loan_Status	614 non-null	object
dtyp	es: float64(4), int	64(1), object(8)	

dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB

If we want to see where is nmissing value in our data we can see that by following steps

data1.isna() #We will see true where data is missing

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
0	False	False	False	False	False	False	False	False	True	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	False	False	False
609	False	False	False	False	False	False	False	False	False	False	False	False	False
610	False	False	False	False	False	False	False	False	False	False	False	False	False
611	False	False	False	False	False	False	False	False	False	False	False	False	False
612	False	False	False	False	False	False	False	False	False	False	False	False	False
613	False	False	False	False	False	False	False	False	False	False	False	False	False

614 rows × 13 columns

Now to get the more detail of missing value.

data1.isna().sum()

```
Loan_ID
Gender
Married
Dependents
```

8/29/22, 5:51 PM

Dependents 15
Education 0
Self_Employed 32
ApplicantIncome 0
CoapplicantIncome 0
LoanAmount 22

13

3

Loan_Amount_Term 14
Credit_History 50
Property_Area 0
Loan_Status 0

dtype: int64

Now we first drop the missing value then we will check again if there is any missing value in our dataset

```
data1=data1.dropna()
data1.isna().sum()
```

Loan_ID
Gender
Married
Dependents
Education
Self_Employed
ApplicantIncome
CoapplicantIncome
Loan_Amount
Loan_Amount_Term
Credit_History
Property_Area
Loan_Status
dtype: int64

Since our loan status is in yes and no, we will change it into 0 and 1 for our analysis

```
data1.replace({'Loan_Status':{'N':0,'Y':1}},inplace=True)
```

data1.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural	0
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban	1
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban	1
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban	1
5	LP001011	Male	Yes	2	Graduate	Yes	5417	4196.0	267.0	360.0	1.0	Urban	1

To know how many different values are in dependents columns

```
data1['Dependents'].value_counts()
```

0 2742 851 803+ 41

Name: Dependents, dtype: int64

Now we will change the value of 3+ to 4

data1=data1.replace(to_replace="3+",value=4)

data1['Dependents'].value_counts()

0 2742 85

1 80 4 41

Name: Dependents, dtype: int64

Now we will visualise our data and analysis our data . In that ways we will able to analysis the factors in which loan status depends. we will also import some libraries for this

```
import numpy as np
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
```

sns.countplot(x='Education', hue='Loan_Status',data=data1)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3a241aa10>

We can see here person with graduation have high chances of getting home loans. Now we can check the same for married status

sns.countplot(x='Married',hue='Loan_Status',data=data1)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3a226fd50>

We can clearly see the the person with "married" status have got more home loan approvred. Now we will see it for Self Employment

sns.countplot(x='Self_Employed',hue='Loan_Status',data=data1)

Self_Employed

#Now we will convert all categorical columns to numerical values
data1.replace({'Married':{'No':0,'Yes':1},'Gender':{'Male':1,'Female':0},'Self_Employed':{'No':0,'Yes':1},'Property_Area':{'Rural':0,'Semiurban':1,'Urban':2},'Education':{'Graduate':1,'Not Graduate':0}},inplace=True)

import matplotlib.pyplot as plt
import matplotlib.axes
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")

#Study of categorical features like Gender, Married, Self_Employed and Credit_History

```
plt.figure(figsize=(20,10))
plt.subplot(2,2,1)
data1['Gender'].value_counts(normalize=True).plot.bar(title='Gender')
plt.subplot(2,2,2)
data1['Married'].value_counts(normalize=True).plot.bar(title='Married')
plt.subplot(2,2,3)
data1['Self_Employed'].value_counts(normalize=True).plot.bar(title='Self Employed')
plt.subplot(2,2,4)
data1['Credit_History'].value_counts(normalize=True).plot.bar(title='Credit History')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3a20b5210>

we can see that all value are in 0 and 1

data1.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
1	LP001003	1	1	1	1	0	4583	1508.0	128.0	360.0	1.0	0	0
2	LP001005	1	1	0	1	1	3000	0.0	66.0	360.0	1.0	2	1
3	LP001006	1	1	0	0	0	2583	2358.0	120.0	360.0	1.0	2	1
4	LP001008	1	0	0	1	0	6000	0.0	141.0	360.0	1.0	2	1
5	LP001011	1	1	2	1	1	5417	4196.0	267.0	360.0	1.0	2	1

#seprating tha data and label
X=data1.drop(columns=['Loan_ID','Loan_Status'],axis=1)
Y=data1['Loan_Status']

print(X)
print(Y)

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	\
1	1	1	1	1	0	4583	
2	1	1	0	1	1	3000	
3	1	1	0	0	0	2583	
4	1	0	0	1	0	6000	
5	1	1	2	1	1	5417	
						• • •	
609	0	0	0	1	0	2900	
610	1	1	4	1	0	4106	
611	1	1	1	1	0	8072	
612	1	1	2	1	0	7583	
613	0	0	0	1	1	4583	

	CoapplicantIncome	LoanAmount	Loan Amount Term	Credit History	\
1	1508.0	128.0	360.0	1.0	
2	0.0	66.0	360.0	1.0	
3	2358.0	120.0	360.0	1.0	
4	0.0	141.0	360.0	1.0	
5	4196.0	267.0	360.0	1.0	
609	0.0	71.0	360.0	1.0	
610	0.0	40.0	180.0	1.0	
611	240.0	253.0	360.0	1.0	
612	0.0	187.0	360.0	1.0	
613	0.0	133.0	360.0	0.0	

```
8/29/22, 5:51 PM
         [480 rows x 11 columns]
             0
        2
              1
               1
        5
         609
        610
        611 1
        612
              1
        613
        Name: Loan_Status, Length: 480, dtype: int64
    Train Test Split
   X_train, X_test, Y_train,Y_test = train_test_split(X,Y,test_size=0.1,stratify=Y,random_state=2)
   print(X.shape,X_train.shape,X_test.shape)
        (480, 11) (432, 11) (48, 11)
    Training the model:
    Support Vector Machine Model:
   classifier=svm.SVC(kernel='linear')
   classifier.fit(X_train,Y_train)
        SVC(kernel='linear')
    #accuracy score on training data
    X_train_prediction=classifier.predict(X_train)
   training_data_accuracy=accuracy_score(X_train_prediction,Y_train)
   print('Accuracy on training data:', training_data_accuracy)
        Accuracy on training data: 0.7986111111111112
   #Accuracy score on testing data
   X_test_prediction=classifier.predict(X_test)
   test_data_accuracy=accuracy_score(X_test_prediction,Y_test)
   print('Accuracy on test data:',test_data_accuracy)
```

So in this way we can visualise and analysis our data, also there is only little difference between testing and training data. so this model works for us.

Accuracy on test data: 0.8333333333333333

Colab paid products - Cancel contracts here