V302: Elektrische Brückenschaltungen

Protokoll zum Versuch des Anfängerpraktikums für Medizinphysiker Technische Universität Dortmund

Michelle Wendler & Phuong Quynh Ngo Gruppe 4

Versuchsdatum: 10.01.2020

Protokoll verfasst am: 10.01.2020

michelle.wendler@tu-dortmund.de phuong-quynh.ngo@tu-dortmund.de

1 Ziel des Versuches

In diesem Versuch werden mit Hilfe von Brückenschaltungen unbekannte Widerstände, Kapazitäten und Induktivitäten bestimmt. Zudem soll die Frequenzabhängigkeit einer Wien-Robinson-Brücke untersucht und der Klirrfaktor eines Generators ermittelt werden.

2 Theorie

Brückenschaltungen werden genutzt, um unbekannte Widerstände zu bestimmen. Dazu gehören die ohmschen Widerstände und die komplexen Widerstände von Kondensatoren und Spulen. Sie bestehen prinzipiell, wie in Abbildung 1 aufgeführt, aus vier Widerständen R_i , einer Speisespannung (Eingangsspannung) U_S und einer Brückenspannung U.

Abbildung 1: Prinzipieller Aufbau einer Brückenschaltung [1]

Um eine Brückenschaltung zur Ermittlung von unbekannten Widerständen zu nutzen, wird die Brückenspannung dieser untersucht. Die Brückenspannung wird mit Hilfe der Kirchhoff'schen Regeln und des Ohm'schen Gesetzes berechnet.

Die erste Kirchhoff'sche Regel, die sogenannte Knotenregel, besagt, dass die Summe der einfließenden Ströme I an einem Verzweigungspunkt (Knoten) gleich der Summe der abfließenden Ströme ist

$$\sum_{i} I_{i}.$$
 (1)

Die zweite Kirchhoff'sche Regel, auch Maschenregel genannt, besagt, dass in einem in sich geschlossenen Stromkreis (Masche) die Summe der Spannungen verschwindet.

$$\sum_{i} U_{i}.$$
 (2)

Somit ist die Eingangsspannung gleich der Summe der an den Bauteilen abfallenden Spannungen.

Das Ohm'sche Gesetz beschreibt das Verhältnis zwischen Strom, Spannung und Widerstand

$$U = R \cdot I. \tag{3}$$

Mit den beiden Kirchhoff'schen Regeln und dem Ohm'schen Gesetz ergibt sich dann für die Brückenspannung die Formel

$$U = \frac{R_2 \cdot R_3 - R_1 \cdot R_4}{(R_3 + R_4) \cdot (R_1 + R_2)} \cdot U_S. \tag{4}$$

Um die Brückenspannung verschwinden zu lassen, muss die sogenannte Abgleichbedingung

$$R_2 \cdot R_3 = R_1 \cdot R_4 \tag{5}$$

erfüllt sein.

Die komplexen Widerstände Z_{real} von realen Kondensatoren und Spulen setzen sich jeweils aus ohmschen Widerständen R und den komplexen Widerständen Z der jeweiligen Bauteile zusammen, da somit die Innenwiderstände dieser Bauteile realisiert werden können. Komplexe Widerstände $Z = X + i \cdot Y$ besitzen einen leistungsverbrauchenden Wirkwiderstand X und einen Blindwiderstand Y.

2.1 Wheatstone'sche Brücke

Abbildung 2: Wheatstone'sche Brücke [1]

Bei einer Wheatstone'schen Brücke werden nur ohmsche Widerstände genutzt. Mit Hilfe dieser Brücke lässt sich der unbekannte Widerstand R_x , mit der Abgleichbedingung

$$R_{x} = R_2 \cdot \frac{R_3}{R_4} \tag{6}$$

berechnen, wenn die Widerstände R_2 , R_3 und R_4 bekannt sind. Da der unbekannte Widerstand von dem Verhältnis der Widerstände R_3 und R_4 abhängt, werden diese in einem Potentiometer realisiert.

2.2 Kapazitätsmessbrücke

Abbildung 3: Kapazitätsmessbrücke [1]

Mit einer Kapazitätsmessbrücke werden Kapazitäten ermittelt. Da die Widerstände von Kondensatoren komplex sind, wird diese Schaltung mit Wechselstrom betrieben. Dadurch, dass reale Kondensatoren einen Teil der ihnen zugeführten Energie in Wärme umwandeln, wird ein unbekannter ohmscher Widerstand R_x in Reihe mit der unbekannten Kapazität C_x geschaltet. Jedoch gibt es auch Kondensatoren, bei denen die Verluste so gering sind, dass ein Einbau dieses Widerstandes nicht nötig ist.

Ein variabler Widerstand R_2 wird dem bekannten Kondensator C_2 in Reihe geschaltet, um die von R_x hervorgerufene Phasenverschiebung kompensieren zu können.

Die Abgleichbedingungen für diese Brückenschaltung lauten

$$R_{x} = R_2 \cdot \frac{R_3}{R_4} \tag{7}$$

und

$$C_x = C_2 \cdot \frac{R_4}{R_3}.\tag{8}$$

2.3 Induktivitätsmessbrücke

Mit einer Induktivitätsmessbrücke, wie in Abbildung 4 dargestellt, werden Induktivitäten ermittelt. Diese Schaltung muss ebenfalls mit Wechselstrom betrieben werden. Der Aufbau dieser Messbrücke ähnelt der aus Abschnitt 2.2, jedoch werden hier Spulen anstatt Kondensatoren eingebaut. Auch hier ist der variable Widerstand R_2 wieder eingebaut, um die Phasenverschiebung, welche durch den Innenwiderstand der Spule hervorgerufen wird, zu kompensieren.

Abbildung 4: Induktivitätsmessbrücke [1]

Die Abgleichbedingungen ergeben sich hier zu

$$R_{x} = R_2 \cdot \frac{R_3}{R_4} \tag{9}$$

und

$$L_x = L_2 \cdot \frac{R_4}{R_3}.\tag{10}$$

Um möglichst genaue Messungen zu erzielen, sollte die Spule L_2 möglichst geringe Verluste besitzen, damit der Wirkwiderstand nur durch R_2 gegeben ist. Dies lässt sich jedoch gerade bei niedrigen Frequenzen schwer realisieren.

2.4 Maxwell-Brücke

Mit einer Maxwell-Brücke lassen sich ebenfalls Induktivitäten ermitteln. Bei dieser Schaltung, wie in Abbildung 5 zu sehen ist, wird jedoch keine zweite Spule eingebaut. Dafür wird hier, im Vergleich zu der Spule L_2 , eine verlustärmere Kapazität C_4 eingebaut.

Bei dieser Brückenschaltungen ergeben sich die Abgleichbedingungen

$$R_x = R_2 \cdot \frac{R_3}{R_4} \tag{11}$$

und

$$L_{x} = R_{2} \cdot R_{3} \cdot C_{4}. \tag{12}$$

Abbildung 5: Maxwell-Brücke [5]

2.5 Wien-Robinson-Brücke

Eine Wien-Robinson-Brücke, welche in Abbildung 6 dargestellt ist, wird als elektronischer Filter verwendet. Mit ihr kann die Brückenspannung U_{Br} in der Abhängigkeit der Kreisfrequenz ω des Wechselstromgenerators ermittelt werden. Diese Abhängigkeit wird beim Betrachten des Verhältnisses der Brückenspannung zur Speisespannung deutlich:

$$\left| \frac{U_{Br}}{U_S} \right|^2 = \frac{(\omega^2 \cdot R^2 \cdot C^2 - 1)^2}{9 \cdot \left[(1 - \omega^2 \cdot R^2 \cdot C^2)^2 + 9 \cdot \omega^2 \cdot R^2 \cdot C^2 \right]}$$
(13)

Die Brückenspannung verschwindet somit genau dann, wenn

$$\omega_0 = \frac{1}{R \cdot C} \tag{14}$$

gilt. Es wird deutlich, dass somit die Wien-Robinson-Brücke Frequenzen, für die (14) gilt, herausfiltert und Schwingungen mit Frequenzen in der Umgebung von ω_0 deutlich abschwächt. Mit dem Frequenzverhältnis

$$\Omega = \frac{\omega}{\omega_0} \tag{15}$$

ergibt sich final die Formel

$$\left| \frac{U_{Br}}{U_S} \right|^2 = \frac{(\Omega^2 - 1)^2}{9 \cdot [(1 - \Omega^2)^2 + 9 \cdot \Omega^2]}.$$
 (16)

Es gilt $\omega = 2 \cdot \pi \cdot \nu$, wobei ν die Frequenz ist

Eigentlich sollte bei der Frequenz ω_0 keine Brückenspannung mehr zu messen sein, jedoch wird diese in der Realität nur ein Minimum >0 besitzen. Diese Spannung wird durch Oberwellen des Generators erzeugt. Das Verhältnis dieser Oberwellen zur Grundwelle wird mit dem Klirrfaktor k ausgedrückt. Dieser Klirrfaktor, welcher über die Formel

$$k = \frac{\sqrt{\sum_{i=2}^{N} U_i^2}}{U_1}.$$
 (17)

berechnet wird, ist also ein Maß für die Qualität des benutzten Generators. U_1 bezeichnet hierbei die Amplitude der Grundwelle und U_i die Amplitude der i-ten Oberwelle der generierten Spannungen. Je kleiner der Klirrfaktor ist, desto "sauberer" ist die Sinusspannung des Generators.

Abbildung 6: Wien-Robinson-Brücke

3 Versuchsdurchführung

Die Eingangsspannung der Brückenschaltungen hat für alle Brückenschaltungen, bis auf die Wien-Robinson-Brücke, eine Frequenz von 600 Hz. Für 3.1-3.4 wird als Voltmeter zum Ablesen der Brückenspannungen ein digitales Oszilloskop verwendet. Bei der Wien-Robinson-Brücke werden jeweils zum Ablesen der Brücken- und Speisespannung Multimeter verwendet.

3.1 Wheatstone'sche Brücke

Die Schaltung wird, wie in Abbildung 2 dargestellt, nacheinander für 2 verschiedene R_{χ} aufgebaut. Das Potentiometer wird so lange variiert, bis die Brückenschaltung gleich Null ist. Die Werte für die Widerstände R_2 , R_3 und R_4 werden notiert. Dieser Vorgang wird für die beiden u bekannten Widerstände jeweils für drei verschiedene R_2 wiederholt.

3.2 Kapazitätsmessbrücke

Die Kapazitätsmessbrücke wird, wie in Abbildung 3, für eine Kapazität C_x aufgebaut. Hier wird das Potentiometer und der variable Widerstand R_2 so lange variiert, bis die Brückenschaltung verschwindet. Dieser Vorgang wird für drei verschiedene C_2 für C_x durchgeführt. Die Werte für R_2 , R_3 , R_4 und C_4 werden notiert.

Danach wird für eine weitere Kapazität C_x auf den Widerstand R_x verzichtet, da für diese angenommen wird, dass ihr Innenwiderstand hinreichend klein ist. Das Potentiometer und der variable Widerstand werden auch hier so lange variiert, bis die Brückenspannung verschwindet. Ebenfalls wird hier für drei verschiedene C_2 gemessen. Es werden die Werte für C_2 , C_3 , C_4 , and C_4 notiert.

3.3 Induktivitätsmessbrücke

Die Schaltung wird, wie in Abbildung 4 dargestellt, für eine Spule L_x aufgebaut. Auch hier wird das Potentiometer und der Widerstand R_2 abwechselnd so lange variiert, bis die Brückenspannung verschwindet. Die Werte für L_2 , R_2 , R_3 und R_4 werden notiert.

3.4 Maxwell-Brücke

Die Maxwell-Brücke wird, wie in Abbildung 5, mit derselben Spule wie in 3.3 aufgebaut. Die Widerstände R_3 und R_4 sind nun zwei einzelne variable Widerstände. Diese beiden Widerstände

werden so lange variiert, bis die Brückenspannung verschwindet. Es werden die Werte für R_2, R_3, R_4 und C_4 notiert.

4.5 Wien-Robinson-Brücke

Die Wien-Robinson-Brücke wird, wie in Abbildung 6, aufgebaut. Jedoch werden an der Brückenund Speisespannung jeweils Multimeter zur Spannungsmessung angeschlossen. Zunächst wird die Frequenz der Speisespannung so lange variiert, bis die Brückenspannung minimal ist. Dieser Wert wird als ω_0 notiert. Anschließend wird die Frequenz in einem Bereich von 20-30000 Hz variiert. Die Frequenz ω , die Brückenspannung U_{Br} und die Speisespannung U_{S} werden jeweils notiert.

5 Auswertung

Die baubedingten Abweichungen der Widerstände, Kondensatoren und Spulen betragen jeweils 0,2%. Der relative Fehler für das Verhältnis $\frac{R_3}{R_4}$ beträgt 0,5%. Die Potentiometer an sich, also die variablen Widerstände R_2 , R_3 und R_4 , weisen eine baubedingte Abweichung von 3% auf. Diese Abweichungen fließen über die Gauß'sche Fehlerfortpflanzung

$$\Delta f = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial y_i}\right)^2 \cdot (\Delta y_i)^2}$$
 (18)

in die Abweichung der berechneten Werte ein. Die Gaußfehler der jeweiligen Messungen werden anschließend gemittelt.

Mittelwerte werden mit Hilfe der Formel

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{19}$$

berechnet. Der zugehörige Fehler wird über

$$\Delta \bar{x} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 (20)

ermittelt.

5.1 Wheatstone'sche Brücke

Die beiden unbekannten Widerstände 12 und 13 werden mit Hilfe von (6) berechneten und mit Formel (18) gemittelt. Die dazu benötigten Werte sind in Tabelle 1 und Tabelle 2 aufgeführt. Somit ergeben sich die beiden Widerstände zu

$$R_{x,12} = (392,35 \pm 2,11) \Omega$$

 $R_{x,13} = (904,09 \pm 4,87) \Omega$.

Die Fehler der Mittelwerte betragen jeweils $\Delta R_{x,12} = 1,22$ Ω und $\Delta R_{x,13} = 1,36$ Ω.

Tabelle 1: Werte für $R_{x,12}$

	$R_2[\Omega]$	$R_3[\Omega]$	$R_4\left[\Omega ight]$	R_3/R_4	$R_{x,12} [\Omega]$	Gaußfehler
ľ	332	731,08	268,92	2,72	902,55	4,86
	664	576,69	423,31	1,36	904,60	4,87
	1000	475,10	524,90	0,91	905,12	4,87

Tabelle 2: Werte für $R_{x,13}$

$R_2 [\Omega]$	$R_3[\Omega]$	$R_4\left[\Omega ight]$	R_3/R_4	$R_{x,13} [\Omega]$	Gaußfehler
1000	282,37	717,63	0,39	393,48	2,12
664	371,51	628,49	0,59	392,51	2,11
332	540,84	459,16	1,18	391,05	2,11

5.2 Kapazitätsmessbrücke

Für die unbekannte Kapazität 9 mit unbekanntem Widerstand 9 werden zur Berechnung die Formeln (7) und (8) genutzt. Auch hier werden die berechneten Werte mit Formel (18) gemittelt. Die dazu benötigten Werte befinden sich in Tabelle 3. Somit ergeben sich Werte von

$$R_{x,9} = (470,79 \pm 14,32) \Omega$$

 $C_{x,9} = (433,91 \pm 13,10) \text{ nF.}$

Tabelle 3: Werte für $C_{x,9}$ und $R_{x,9}$

C ₂ [nF]	$R_2[\Omega]$	$R_3[\Omega]$	$R_4 [\Omega]$	R_3 $/R_4$	$C_{x,9}$ [nF]	Gaußfehler	$R_{x,9} [\Omega]$	Gaußfehler
992	206,88	695,22	304,78	2,28	434,89	13,05	471,80	14,35
399	507,48	480,08	519,92	0,92	432,11	13,21	468,59	14,25
994	206,38	695,72	304,28	2,29	434,74	13,05	471,87	14,35

Für die unbekannte Kapazität 3 wird zur Berechnung ebenfalls Formel (8) genutzt. Sie ergibt sich mit den in Tabelle 4 aufgeführten Werten zu

$$C_{x.3} = (420,73 \pm 1,62) \text{ nF}.$$

Tabelle 4: Werte für $C_{x,3}$

C ₂ [nF]	$R_3[\Omega]$	$R_4 [\Omega]$	R_3 $/R_4$	$C_{x,3}$ [nF]	Gaußfehler
399	488,05	511,95	0,95	418,54	2,45
750	638,45	361,55	1,77	424,73	1,09
597	587,65	412,35	1,43	418,91	1,33

Die Fehler der Mittelwerte betragen jeweils $\Delta C_{x,9}=1,56$ nF, $\Delta R_{x,9}=1,90$ Ω und $\Delta C_{x,3}=3,47$ nF

5.3 Induktivitätsmessbrücke

Die unbekannte Induktivität 17 und den unbekannte Widerstand 17 werden jeweils über die Formel (10), bzw. (9), berechnet . Die dazu benötigten Werte befinden sich in Tabelle 5. Damit ergeben sich diese zu

$$R_{x,17} = (94,64 \pm 2,88) \Omega$$

 $L_{x,17} = (41,996 \pm 1,277) \text{ mH}.$

Tabelle 5: Werte für $L_{x,17}$ und $R_{x,17}$ (Induktivitätsbrücke)

$L_2[mH]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	R_3 $/R_4$	$L_{x,17}[mH]$	Gaußfehler	$R_{x,17}[\Omega]$	Gaußfehler
14,6	32,90	742,03	275,97	2,88	41,996	1,277	94,64	2,88

5.4 Maxwell-Brücke

Wie in 5.3 wird die unbekannte Induktivität 17 und der unbekannte Widerstand 17 ermittelt. Zur Berechnung werden die Formeln (11) und (12) genutzt. Damit ergeben sich diese zu

$$R_{x,17} = (94,00 \pm 3,99) \Omega$$

 $L_{x,17} = (43,649 \pm 1,309) \text{ mH}.$

Die dazu benötigten Werte sind in Tabelle 6 aufgeführt.

Tabelle 6: Werte für $L_{x,17}$ und $R_{x,17}$ (Maxwell-Brücke)

C ₄ [nF]	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	R_3 $/R_4$	$L_{x,17}[mH]$	Gaußfehler	$R_{x,17}[\Omega]$	Gaußfehler
750	332	175,30	619,14	0,28	43,649	1,309	94,00	3,99

5.5 Wien-Robinson-Brücke

Um die Frequenzabhängigkeit der Brückenspannung einer Wien-Robinson-Brücke zu untersuchen, wird der Quotient $\frac{U_{Br}}{U_S}$ der gemessenen Spannungen gegen das Frequenzverhältnis $\frac{\nu}{\nu_0}$ aufgetragen. Zudem wird eine Theoriekurve mit Hilfe von Formel (16) errechnet. Die Umrechnung der Frequenz in die Kreisfrequenz ist hierbei nicht nötig, da der Quotient betrachtet wird.

Die theoretische Kreisfrequenz, bei der die Brückenspannung verschwinden sollte ergibt sich nach Formel (14) zu

$$\omega_{0,theoretisch} = 3585,77 \frac{1}{s}$$

 $\leftrightarrow \nu_{0,theoretisch} = 570,69 \text{ Hz.}$

Die Frequenz, bei der die Brückenspannung minimal wird, beträgt

$$v_{0,experimentell} = 560$$
 Hz.

Die Werte der Bauteile sind in Tabelle 7 aufgeführt.

Tabelle 7: Bauteile Wien-Robinson-Brücke

<i>C</i> [nF]	$R'\left[\Omega ight]$	$R\left[\Omega ight]$
420	332	664

Tabelle 8: Werte für die Wien-Robinson-Brücke

ν [<i>Hz</i>]	ν/ u_0	$U_{Br}\left[V\right]$	$U_{S}[V]$	U_{Br}/U_{S}	U_{Br}/U_S theorie
50	0,0893	900	2,70	0,3333	0,3222
130	0,2321	730	2,68	0,2724	0,2704
200	0,3571	572	2,68	0,2134	0,2135
260	0,4643	440	2,65	0,1660	0,1672
310	0,5536	360	2,65	0,1358	0,1323
350	0,6250	285	2,67	0,1067	0,1070
390	0,6964	220	2,67	0,0824	0,0839
430	0,7679	165	2,68	0,0616	0,0626
470	0,8393	115	2,70	0,0426	0,0430
500	0,8929	73.5	2,62	0,0281	0,0294
520	0,9286	64	2,73	0,0234	0,0207
530	0,9464	47	2,70	0,0174	0,0164
540	0,9643	44	2,70	0,0163	0,0123
550	0,9821	19	2,75	0,0069	0,0082
560	1,0000	8	2,65	0,0030	0,0042
570	1,0179	8	2,67	0,0030	0,0003
580	1,0357	15	2,70	0,0056	0,0036
590	1,0536	23	2,69	0,0086	0,0074
600	1,0714	27	2,70	0,0100	0,0111
630	1,1250	54	2,70	0,0200	0,0220
690	1,2321	113	2,70	0,0419	0,0421
750	1,3393	162	2,75	0,0589	0,0605
900	1,6071	255	2,80	0,0911	0,0999
1200	2,1429	440	2,60	0,1692	0,1589
1500	2,6786	540	2,58	0,2093	0,1999
2000	3,5714	640	2,55	0,2510	0,2439
2700	4,8214	710	2,50	0,2840	0,2777

Abbildung 7: Vergleich von Messdaten mit einer Theoriekurve

Der Klirrfaktor des Generators berechnet sich nach Formel (17), wobei hier angenähert wird, dass die Summe der Oberwellen nur von der zweiten Oberwelle bestimmt wird . U_1 ist in diesem Fall die Speisespannung, bei der die Brückenspannung minimal $U_{Br}=8\ mV$ wird. Sie beträgt $U_1=U_S=2,65\ V.\ U_2$ wird über die Formel

$U_2 = \frac{U_{Br}}{}$	
$(2^2-1)^2$	(21)
$\sqrt{9 \cdot [(1-2^2)^2 + 9 \cdot 2^2]}$	

besimmt.

Somit ergibt sich dieser zu

$$k = \frac{U_2}{U_1} = 0,02025.$$

6 Diskussion

Die ermittelten unbekannten Widerstände, Kapazitäten und Induktivitäten liegen alle nahe an ihrem jeweiligen wirklichen Wert.

Bei der Kapazitätsmessbrücke wurde für die Kapazität 3 bei allen Messungen der variable Widerstand R_2 auf 0Ω geregelt. Damit wird laut Formel (7) der unbekannte Innenwiderstand ebenfalls zu 0Ω . Damit lässt sich die Annahme, dass dieser hinreichend klein wäre, bestätigen. Daraus lässt sich schließen, dass der Kondensator verlustfrei ist.

Für die ermittelte unbekannte Induktivität 17 unterscheiden sich die Werte der Induktivitätsmessbrücke zur Maxwell-Brücke nur um ca. 2 mH.

Bei der Betrachtung der Frequenzabhängigkeit der Brückenspannung einer Wien-Robinson-Brücke lässt sich beobachten, dass die experimentellen Werte recht nah an der Theoriekurve liegen. Im Bereich um die Frequenz ν_0 liegen diese jedoch genauer an, bzw. auf, der Theoriekurve. Ebenfalls sind die experimentellen Werte für kleinere Frequenzen näher an der Theoriekurve, als bei höheren. Bei höheren Frequenzen ergeben sich größere Abweichungen. Für die Frequenz, bei der die Brückenspannung verschwindet, bzw. minimal wird, ergibt sich eine Abweichung von 1,9095 % zwischen dem theoretischen und experimentellen Wert. Diese Abweichung wird über die Formel $\frac{experimenteller Wert-theoretischer Wert}{experimenteller Wert-theoretischer Wert} \cdot 100$ ermittelt.

Für den Klirrfaktor des Generators gibt es keinen theoretischen Wert. Dieser ist jedoch sehr klein, was auf einen qualitativ hochwertigen Generator schließen lässt.

Zusammenfassend lässt sich sagen, dass durch die geringen Abweichungen von den tatsächlichen Werten der Bauteile, auf eine gute Qualität dieser geschlossen werden kann und die jeweiligen Brückenschaltungen sich hervorragend zum Ermitteln unbekannter Widerstände, Kapazitäten und Induktivitäten eignen.

7 Literatur

[1] Versuchsanleitung zu dem Versuch 302: Brückenschaltungen https://moodle.tu-

 $dortmund.de/pluginfile.php/982985/mod_folder/content/0/V302\%20Br\"uckenschaltungen.pdf? forcedownload=1$