1.38 Theorem. Let $a, b \in \mathbb{Z}$. If (a, b) = 1, then there exist $x, y \in \mathbb{Z}$ such that ax + by = 1.

Proof. Let $a, b \in \mathbb{Z}$ be given such that (a, b) = 1. Let P(n) for all $n \in \mathbb{N}$ be the number of steps of The Euclidian Algorithm (TEA) where $a = bq_n + r_n$, for $q, r \in \mathbb{Z}$, up to the n^{th} iteration until $r_n = 1$ such that ax + by = 1. Consider the base case n = 1.

$$a = bq_1 + r_1,$$

$$a = bq_1 + 1.$$

Rearranging, we find $a - bq_1 = 1$, which leads to $1a + (-q_1)b = 1$. Thus, there exist coefficient integers such that ax + by = 1.

Since the base case is true, we will prove by induction. Suppose now, P(k) is true for some $k \in \mathbb{Z}$. We want to show there exists $x, y \in \mathbb{Z}$ such that ax + by = 1, provided (a, b) = 1 and TEA requires k + 1 steps to find a remainder $r_{k+1} = 1$. Applying the division algorithm, $a = bq_1 + r_1$, and $1 = (a, b) = (b, r_1)$ with b and r_1 being the numbers such that TEA requires k steps. Thus, there exists $u, v \in \mathbb{Z}$ such that $bu + r_1v = 1$ by the inductive hypothesis. Notice $r_1 = a - bq_i$. Substituting,

$$1 = bu + v(a - bq_i)$$

= $bu + av - bvq_i$
= $av + b(u - vq_i)$.

Letting x = v and $y = u - vq_i$, we find that our induction step satisfies the existence of $x, y \in \mathbb{Z}$ such that ax + by = 1.