Bài 3.

Chéo hóa trực giao các ma trận sau:

a)
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{bmatrix}$$
 b) $B = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$

Bài 3.a

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{bmatrix}$$

 $P_A(\lambda) = |A - \lambda I| = -\lambda^3 + 9\lambda.$ Khi đó $P_A(\lambda) = 0 \Leftrightarrow \lambda \in \{-3, 0, 3\}.$

. Mi đỏ $F_A(\lambda) = 0 \Leftrightarrow \lambda \in \{-3; 0; 5\}.$ • Với $\lambda = -3$:

Giải hệ phương trình $(A - \lambda I)x = 0$. Ta có các vectơ riêng của A ứng với $\lambda = -3$ có

dạng $x_1 = t$. $\begin{pmatrix} -1/2 \\ 1 \\ 1 \end{pmatrix}$, $\forall t \in R, t \neq 0$.

Chọn t = 1 và chuẩn hóa với $\begin{vmatrix} -1/2 \\ 1 \\ 1 \end{vmatrix} = \frac{3}{2}$, ta được $v_1 = \begin{pmatrix} -1/3 \\ 2/3 \\ 2/3 \end{pmatrix}$.

• Với $\lambda=0$:

Tương tự, ta có các vectơ riêng của A có dạng $x_2=t. \begin{pmatrix} -2\\-2\\1 \end{pmatrix}, \forall t\in R, t\neq 0$

Chọn t = 1 và chuẩn hóa với $\begin{vmatrix} -2 \\ -2 \\ 1 \end{vmatrix}$ = 3 , ta được $v_2 = \begin{pmatrix} -2/3 \\ -2/3 \\ 1/3 \end{pmatrix}$.

• Với $\lambda = 3$:

Tương tự, ta có các vectơ riêng của A có dạng $x_3 = t$. $\begin{pmatrix} 1 \\ -1/2 \\ 1 \end{pmatrix}$, $\forall t \in R, t \neq 0$

Chọn t = 1 và chuẩn hóa với $\begin{vmatrix} 1\\ -1/2\\ 1 \end{vmatrix} = \frac{3}{2}$, ta được $v_3 = \begin{pmatrix} 2/3\\ -1/3\\ 2/3 \end{pmatrix}$.

Ta thu được ma trận chéo hóa của A: $P = (v_1, v_2, v_3) = \begin{pmatrix} -1/3 & -2/3 & 2/3 \\ 2/3 & -2/3 & -1/3 \\ 2/3 & 1/3 & 2/3 \end{pmatrix}$

Thực hiện chéo hóa trực giao, ta được:

$$P^T A P = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Bài 3.b

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

$$P_A(\lambda) = |A - \lambda I| = (2 - \lambda)^3 - 2(2 - \lambda).$$

Khi đó $P_A(\lambda) = 0 \Leftrightarrow \lambda \in \{2 - \sqrt{2}, 2, 2 + \sqrt{2}\}$

• Với $\lambda = 2 - \sqrt{2}$:

Giải hệ phương trình $(A - \lambda I)x = 0$. Ta có các vectơ riêng của A ứng với $\lambda = 2 - \sqrt{2}$ có dạng $x_1 = t$. $\begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$, $\forall t \in R, t \neq 0$.

Chọn t = 1 và chuẩn hóa với
$$\begin{vmatrix} 1 \\ \sqrt{2} \\ 1 \end{vmatrix}$$
 = 2 , ta được $v_1 = \begin{pmatrix} 1/2 \\ 1/\sqrt{2} \\ 1/2 \end{pmatrix}$.

• Với $\lambda=2$:

Tương tự, ta có các vectơ riêng của A có dạng $x_2 = t. \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \forall t \in R, t \neq 0$

Chọn t = 1 và chuẩn hóa với
$$\begin{vmatrix} -1\\0\\1 \end{vmatrix} = \sqrt{2}$$
, ta được $v_2 = \begin{pmatrix} -1/\sqrt{2}\\0\\1/\sqrt{2} \end{pmatrix}$.

• Với $\lambda = 2 + \sqrt{2}$:

Tương tự, ta có các vectơ riêng của A có dạng $x_3 = t$. $\begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$, $\forall t \in R, t \neq 0$

Chọn t = 1 và chuẩn hóa với
$$\begin{vmatrix} 1 \\ -\sqrt{2} \\ 1 \end{vmatrix}$$
 = 2 , ta được $v_3 = \begin{pmatrix} 1/2 \\ -1/\sqrt{2} \\ 1/2 \end{pmatrix}$.

Ta thu được ma trận chéo hóa của A:
$$P = (v_1, v_2, v_3) = \begin{pmatrix} 1/2 & -1/\sqrt{2} & 1/2 \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 1/2 & 1/\sqrt{2} & 1/2 \end{pmatrix}$$

Thực hiện chéo hóa trực giao, ta được:

$$P^{T}AP = \begin{pmatrix} 2 - \sqrt{2} & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 + \sqrt{2} \end{pmatrix}$$