Steven Boada, Ph.D

Contact Information

stevenboada@gmail.com (615) 200-0119

linkedin.com/in/theboada qithub.com/boada

Skills

Machine Learning: Linear Models, Decision Trees, SVM, Clustering, Deep Learning, Feature Engineering Statistical Methods: Hypothesis testing and confidence intervals, error analysis, image analysis, Monte Carlo methods (e.g., emcee), maximum likelihood

Software and Computing: Python (e.g. Scikit-learn, Numpy, Scipy, Pandas, Matplotlib, PyTorch), mySQL, ANSI C, Linux Command Line Environments, Microsoft Office Suite, GPGPU, and HPC applications **Leadership:** Demonstrable ability to tackle loosely defined problems, 5+ years organizing workflows from group planning sessions through implementation and delivery of final products, Eagle Scout.

Professional Experience

Insight Data Science, New York, New York USA *Fellow*

January, 2020 - Present

- Addressed a shortage of NYC health inspectors which caused critical health violations to remain unaddressed for extended periods of time potentially harming the general public.
- Trained a transparent model to prioritize NYC restaurants based on environmental variables and their past inspection histories.
- Resulted in a XX% improved performance of NYC inspectors, leading to critical violations being discovered XX days earlier than previously expected..

Dept. of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey USA

Postdoctoral Research Associate

September, 2016 - 2020

- Designed and built massive, parallelized, Python pipelines to process and analyze TBs of astronomical imaging; producing calibrated, standardized data catalogs and rigorous results.
- Project managed and coordinated a team of 4, including both senior scientists and graduate students, to perform quality control tasks; deliver science products; and produce peer-reviewed publications.
 See: ArXiv:1808.06378
- Contributed to widely used, open source, Python projects through bug fixes and feature additions: PHOTOMETRYPIPELINE. ASTLIB. and EASYGALAXY.

Texas A&M University, College Station, Texas USA

Ph.D Candidate

August, 2010 - 2016

- ullet Proved simulated results for an upcoming astronomical survey could be improved, by a factor of ~ 3 , over in-house statistical methods by using Random Forest regression. Implemented these ML methods and produced improved results in a pilot survey of the real sky and under real-world conditions.
- Collaborated with group members both in person, and through collaborative tools (e.g., GitHub, SVN).
- Presented scientific results in high-impact, peer reviewed journals and at international conferences.

Data Projects

Using Imaging to Infer Galaxy Properties

- Predicted galaxy chemical composition with \sim 5% error from pseudo-three color imaging, a result better than other current, similar efforts in the literature.
- \bullet Leveraged Convolution Neural Networks, trained on GPUs, to analyze \sim 150,000 images from the Sloan Digital Sky Survey.
- Project start to publication, 4 months. See ArXiv:1810.12913

Predicting Tournament Performance in Warmachine

- Created an Elo based model to forecast the results of an upcoming tournament and to identify potential future upsets.
- Wrangled \sim 1800 tournament game results of a popular tabletop game using Python (e.g., Pandas).

Education

Texas A&M University, College Station, Texas

- Ph.D, Physics (astronomy focus), August, 2016
- The University of Tennessee, Knoxville, Tennessee
- M.S., Physics (astronomy focus), August, 2009
- B.S., Physics, May, 2007