ESMAM ALGORITHM

FINAL VERSION

IMPLEMENTED ALGORITHMS

RESULTS AND POST-PROCESSING CODES OF THE ABOVE DEVELOPING ARE IN D:\GoogleDrive\Mestrado-UFPE_Pesquisa-Mestrado__ESM-AM_algorithm_improvement_results

TRANSITION RULE

$$p(c_{ij}) = \frac{\tau_{ij} * \eta_{ij}}{\sum_{\forall i,j} (\tau_{ij} * \eta_{ij})}$$

Approached degrees of redundancy:

$$\delta_{ij} = 1 - \frac{1}{1 + e^{-(x_{ij} - 5)}}$$

Logistic attenuation δ_{ij} : (DESCRIPTION)

 x_{ij} the counting of the term c_{ij} presence in the final rule model.

$$\psi_{ij} = \frac{1}{|c_{ij}|} \sum_{e \in c_{ij}} 0.9^{x(e,R)}$$

The cover-based attenuation: (COVERAGE)

- $|c_{ij}|$ is the size of the term c_{ij} , i.e. the number of examples e it covers; and
- x(e,R) is how many times the example e is covered by any rule in the final rule model R.

$$\eta_{ij} = \frac{\log_2 2 - H(W|a_i = v_{ij})}{\sum_{\forall i,j} \log_2 2 - H(W|a_i = v_{ij})} = \frac{\zeta_{ij}}{\sum_{\forall i,j} \zeta_{ij}}$$

$$\eta Desc_{ij} = \frac{\delta_{ij} * \zeta_{ij}}{\sum_{\forall i,j} (\delta_{ij} * \zeta_{ij})}$$

$$m{\eta Cover}_{ij} = rac{m{\psi_{ij}}*m{\delta_{ij}}*m{\zeta_{ij}}}{\sum_{orall i,j}(m{\psi_{ij}}*m{\delta_{ij}}*m{\zeta_{ij}})}$$

PROBLEM

MANY RULES WITH SIMILAR MODELS

```
R0: ('X204015_s_at', '[7.00,8.00)'
R1: ('X204015 s at', '[7.00,8.00)') & ('X217815_at', '[10.00,10.00]')
```

TERM INTERSECTION

```
R2: ('size', '[1.00,2.00)')
R5: ('X202240_at', '[6.00,7.00)')
```

Add **both** rules

NO INTERSECTION

R5: ('X202240_at', '[6.00,7.00)')
R6: ('X202240_at', '[4.00,6.00)')

Try to merge

ATTRIBUTE INTERSECTION

PROPOSAL

proposal: CHANGE THE FUNCTION FOR ADDING RULES TO THE LIST

FINAL VERSION: ESMAM-DS (Diverse Search)

FINAL VERSION: ESMAM-DS (Diverse Search)

FINAL VERSION: ESMAM-DS (Diverse Search)

STRUCTURAL ADJUSTMENTS

- **Discretisation**: using quantile (equal frequency) [instead of Kmeans]
- **Algorithm stagnation:** removed max_uncovered_cases: executes until covers all, or dataset stagnation (20 its no change in coverage) or heuristic goes to zero
- **Rule construction:** iteratively constructed by sorting from the set of items related to the partial-rule coverage [instead from the hole set of items]
 - Min_cases_per_rule: a percentual (5%) from population

TACKLING REDUNDANCY: SEARCH EXPLORATION

DIVERSITY

Search **Exploration**

Tackling description and cover redundancy

TRANSITION RULE

$$p(c_{ij}) = \frac{\tau_{ij} * \mathbf{\eta_{ij}}}{\sum_{\forall i,j} (\tau_{ij} * \mathbf{\eta_{ij}})}$$

Approached degrees of redundancy:

$$\delta_{ij} = 1 - \frac{1}{1 + e^{-(x_{ij} - 5)}}$$

Logistic attenuation δ_{ij} : (DESCRIPTION)

 x_{ij} the counting of the term c_{ij} presence in the final rule model.

$$\psi_{ij} = \frac{1}{|c_{ij}|} \sum_{e \in c_{ij}} 0.9^{x(e,R)}$$

The cover-based attenuation: (COVERAGE)

- $|c_{ij}|$ is the size of the term c_{ij} , i.e. the number of examples e it covers; and
- x(e,R) is how many times the example e is covered by any rule in the final rule model R.

$$\eta_{ESMAM} = \frac{\log_2 2 - H(W|a_i = v_{ij})}{\sum_{\forall i,j} \log_2 2 - H(W|a_i = v_{ij})} = \frac{\zeta_{ij}^{S}}{\sum_{\forall i,j} \zeta_{ij}^{S}}$$

$$\eta_{ESMAM-DS} = \frac{\psi_{ij} * \delta_{ij} * \zeta_{ij}^{D}}{\sum_{\forall i,j} (\psi_{ij} * \delta_{ij} * \zeta_{ij}^{D})}$$

[S] STATIC: over initial set (initialization)
[D] DINAMIC: over the uncovered set

OBS.: A term only has $\zeta_{ij}! = 0$ if it covers more than minimum cases

TACKLING REDUNDANCY: SEARCH EXPLORATION

DIVERSITY

& SIMILARITIES IN **DESCRIPTION**

KEEP **GENERALIZATION**

INITIAL DEFINITIONS:

dataset: Ω

$$\begin{split} A &= (a_1, \dots, a_n) - descriptive \ attributes \\ V^i &= \left(v_1^i, \dots, v_k^i\right) \forall i \in (1, n) - values \ of \ a_i \ domain \\ T &= \{(a_i = \{\boldsymbol{v_j^i}\}) | \forall a_i \in A \ \& \ v_j^i \in V^i\} - \text{the set of Terms} \end{split}$$

 R^A – the set of attributes in R description R^T – the set of terms in R description

Rule R_1 IS IN R_2

$$R_1 \subset R_2 \leftrightarrow \begin{cases} R_1^A \cap R_2^A = R_2^A \\ R_1^T \subseteq R_2^T \end{cases}$$

DESCRIPTION GENERALITY

DIVERSITY

New addition rule

Diversity
Tackling
description and
model
redundancy

RuleSet

RESULTS DISPLAY

ITS TO STAGNATION = 20RULES TO CONVERGENCE = 10

PARAMETERS

STATISTICAL TESTS

14 datasets
30 experiments

Keeping the same seed for equivalent executions (same dataset & experiment)

NEXT: adjust codes for computing results

DISCUSS: which metrics and results are to compute