

# Linear tracking of drone on a stochastically moving platform

EE650 MINI PROJECT

GROUP 20

Collaborators

RITWIK (210866) AMANDEEP (210114)

KIRTI (210522)

ADRIJA(210071)

#### INDEX

Dynamics of System

State Space Model

Objective of Design

Design of Controller

Justification of performance of controller

Output Plots for different trajectories

# **Drone Dynamics**

The drone's motion follows Newton's laws and rotational dynamics.

Horizontal Acceleration in X and Y

$$\ddot{x} = -g\sin(\theta)$$

$$\ddot{y} = -g\sin(\phi)$$

Reference citation: <u>State</u> <u>Space System Modelling of</u> <u>a Quad Copter UAV</u>

Here,  $-g\sin( heta)$  and  $-g\sin(\phi)$  are horizontal gravity components based on roll and pitch.

Rotational Equations for Roll ( $\phi$ ) and Pitch ( $\theta$ )

$$I_x\ddot{\phi}=\mathrm{torque}_x$$

$$I_y \ddot{ heta} = \mathrm{torque}_y$$

where  $I_x$  and  $I_y$  are the moments of inertia.

# State Space Model

#### States of the System

- x: Position along the X-axis
- $\dot{x}$ : Velocity along the X-axis
- $\theta$ : Angle of pitch
- $\dot{\theta}$ : Rate of pitch
- y: Position along the Y-axis
- $\dot{y}$ : Velocity along the Y-axis
- $\phi$ : Angle of roll
- $\dot{\phi}$ : Rate of roll

#### **State-space Equations**

$$\dot{X} = AX + BU$$

$$Y = CX + DU$$

State Vector X

$$X = egin{bmatrix} x & \dot{x} & heta & \dot{ heta} & y & \dot{y} & \phi & \dot{\phi} \end{bmatrix}^T$$

Control Input Vector U

$$U = egin{bmatrix} ext{torque}_x & ext{torque}_y \end{bmatrix}^T$$

Output Vector Y

$$Y = egin{bmatrix} x & y \end{bmatrix}^T$$

# State Space Model

#### **Constants**

- g = 9.8: Gravitational acceleration
- $I_y=0.87$ : Moment of inertia around the y-axis
- $I_x = 0.87$ : Moment of inertia around the x-axis (assuming symmetry)

#### State Matrix A

#### Input Matrix ${\cal B}$

$$B = egin{bmatrix} 0 & 0 \ 0 & 0 \ 0 & 0 \ rac{1}{I_x} & 0 \ 0 & 0 \ 0 & 0 \ 0 & rac{1}{I_y} \end{bmatrix}$$

#### Output Matrix C

#### Feedforward Matrix D

$$D = egin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$$

# **Objective of Controller**

- We get external setpoints of X and Y position which are sent to our controller to track
- Setpoints could be generated via Vision, Lidar or MoCap systems



Poles of Original and Controlled system

# Block Diagram of Controller



### Design of the state-feedback controller

In state-space form, the control input  $oldsymbol{U}$  is designed as:

$$\mathbf{U}(t) = -\mathbf{K} \cdot \mathbf{X}(t) + \mathbf{N} \cdot \mathbf{U}_{\mathrm{ref}}$$

where K is the state feedback gain matrix and  $U_{
m ref}$  is a reference input that helps in tracking a desired trajectory.  ${f A}_{
m cl}={f A}-{f B}\cdot{f K}$  is the closed-loop system matrix.

To design the system for stabilization, we place the eigenvalues of the closed-loop matrix  ${f A}_{
m cl}$  in the left half of the complex plane (negative real part), ensuring stability.

#### **Matrix for Reference Signal**

The matrix  ${f N}$  used for the reference signal is:

$$\mathbf{N} = \mathbf{C}^{-1} \cdot \left( \mathbf{A} - \mathbf{B} \cdot \mathbf{K} \right)^{-1} \cdot \mathbf{B}$$

# Design of the state-feedback controller

The place function is used to compute the state feedback gain K such that the closed-loop poles of A-BK match the desired values. The function adjusts K to achieve the desired eigenvalues of the matrix A-BK:

$$K_{ ext{tracking}} = 10^5 imes egin{bmatrix} -1.7712 & -0.1906 & 0.0748 & 0.0013 & -0.0013 & -0.0001 & 0.0000 & 0.0000 \ -0.0011 & -0.0001 & 0.0000 & 0.0000 & -1.6779 & -0.1831 & 0.0729 & 0.0013 \end{bmatrix}$$

# Justification for the performance of the controller

- CONTROLLER GAINS: THE CONTROLLER GAINS PLACE THE POLES AT SPECIFIC LOCATIONS, INFLUENCING THE SYSTEM'S STABILITY AND RESPONSE SPEED. WE HAVE ARBITRARILY CHOSEN OUR POLES TO BE [-30, -35, -45, -40, -30.5, -35.5, -45.5, -40.5].
- O **VELOCITY DEPENDENCE**: THE MAXIMUM VELOCITY OF THE DRONE IS DEPENDENT ON THE POLE PLACEMENT OF THE CONTROLLER AS WELL AS THE INITIAL CONDITIONS.
- PERFORMANCE METRICS: WE GET A SETTLING TIME OF ABOUT 0.24s FOR THE SELECTED POLES.
- O ADJUSTMENTS: DECREASING THE CONTROLLER GAINS LEADS TO FASTER SETTLING TIME BUT INCREASES STEADY STATE ERROR AND GENERATES IMPRACTICAL MOTION DEMANDS.

# Design of Luenberger Observer

The observer dynamics are designed as:

$$\dot{\hat{X}} = A\hat{X} + BU + L(Y - C\hat{X})$$

where  $\hat{X}$  is the estimated state vector and L is the observer gain matrix.

$$L_{
m tracking} = 10^8 imes$$

0.00010.00000.00030.0272-0.2721-0.0010-8.88300.0000-0.00000.0000-0.00000.00090.0000-0.0066-0.18510.0010

$$rac{de}{dt} = rac{d(X(t) - X_e(t))}{dt} = (A - L \cdot C) \cdot e$$

To ensure that the error term decays to zero asymptotically, we have to place the eigenvalues of the matrix  $(A-L\cdot C)$  in the open left half-plane.

$$\mathbf{l}_{ ext{tracking}} = ext{place}(A^T, C^T, [-105, -100, -90, -95, -105.5, -100.5, -90.5, -95.5])^T$$

# Justification for the performance of observer

- OBSERVER GAINS: WE PLACED THE POLES OF L\_TRACKING AT [-105, -100, -90, -95, -105.5, -100.5, -90.5, -95.5] TO ACHIEVE FAST CONVERGENCE, WHILE ALSO MAINTAINING THE ROBUSTNESS OF THE OBSERVER.
- O POLE PLACEMENT: FASTER CONVERGENCE OF THE OBSERVER REDUCES THE TIME IT TAKES TO ESTIMATE THE ACTUAL STATE.
- STATE ESTIMATION ACCURACY: THE OBSERVER IS DESIGNED TO PROVIDE ACCURATE ESTIMATES OF THE UNMEASURED STATES OF THE SYSTEM.
- O ROBUSTNESS TO DISTURBANCES: A WELL-PERFORMING OBSERVER SHOULD EXHIBIT FAST CONVERGENCE, LOW STEADY-STATE ERROR, AND ROBUSTNESS TO DISTURBANCES.
- TUNING ADJUSTMENTS: PLACING POLES FURTHER FROM THE ORIGIN (NEGATIVE) ENHANCES THE CONVERGENCE, OBSERVER GAINS CAN BE ADJUSTED TO BALANCE THE TRADE-OFF BETWEEN CONVERGENCE SPEED AND ROBUSTNESS

#### **PLOTS**

#### RANDOM PATH TRACKING\*



\*RUN CODE (PLOT NO:3) TO GENERATE LIVE SIM(AND MP4 video)

#### Simulation plots

Sinusoidal circle\*



#### PRACTICAL UTILISATIONS



- SHIP DECK LANDING OF A UAV
- WAREHOUSE ROBOT NAVIGATION
- DRONE SURVEILLANCE
- CROP SPRAYING FROM DRONES
- LOGISTICS AND DELIVERY DRONE ROUTING WITH ADAPTIVE PATHS

### THANK YOU

# GMA