Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

U.S. DEPARTMENT OF AGRICULTURE

MALARIAL FEVER is a disease which is carried from the sick to the healthy by certain kinds of mosquitoes known as "anopheles" or "anophelines." It is not a difficult disease to fight, and people, generally, should know the exact truth about the malady and what is to be done. The efforts of individuals, after they have acquired the proper knowledge, will have an effect upon the malaria rate, and community work must come when these facts are generally known.

In most parts of the world where antimosquito measures have been undertaken on a large scale the work has been done with the direct end of doing away with mosquito-borne diseases. In the United States little direct antimalarial work was done until we entered the World War, when the Medical Department of the Army took up this work in the great cantonments and the United States Public Health Service endeavored to control the malarial mosquitoes in the areas bordering the camps. Since the war antimosquito work has been undertaken in many localities. There are, however, many other localities in the United States where malaria is prevalent, and some in which the existence of the disease in an aggravated form is a serious barrier to agricultural or industrial development.

This bulletin gives a brief account of the disease and of the microscopic parasite which causes it, tells how persons become infected, describes the life and habits of the principal mosquitoes which carry the disease in the United States, and shows how it can be stamped out and persons cured who have been so unfortunate as to contract it.

Washington, D. C.

Issued April 29, 1911 Slightly revised September, 1932

SOME FACTS ABOUT MALARIA¹

L. O. HOWARD

Senior Entomologist, Bureau of Entomology²

THE DISEASE AND ITS CAUSE

The disease known as malaria, or fever and ague, or chills and fever, or marsh fever, and the varieties called intermittent fever, remittent fever, and pernicious fever, are caused by parasites in the blood which feed upon the red blood cells.

Malaria occurs more or less in all warm climates, especially in the summer after rains and near marshy ground. It is said to cause one-

fourth or more of all sickness in the Tropics.

The parasites in the blood are microscopic one-celled animals

called plasmodia.

These minute parasites are introduced into the blood through the proboscis of certain mosquitoes of the genus Anopheles.

On being introduced in this way, each parasite enters one of the

red blood cells, in which it lives and grows.

When full grown, each parasite divides and thus produces a number of spores, which escape from the blood cell and enter fresh cells. This method of propagation may continue for years.

Although only a few of the parasites may have been introduced originally through the beak of the mosquito, they rapidly increase

until millions upon millions of them may exist in the blood.

At first, when the number of parasites is still small, an infected person may remain apparently well. When, however, the number is large enough, he begins to suffer from fever.

The parasites tend to produce their spores all at the same time, and it is at the moment when these spores escape from the blood

cells, almost simultaneously, that the fever begins.

The fever is probably caused by a little poison which escapes from each parasite with the spores.

After from 6 to 40 hours or more this poison is eliminated from

the patient's system and his fever tends to leave him.

In the meantime, however, a new generation of parasites from the spores is approaching maturity; and when this is reached they in their turn break up and cause another attack of fever like the first, and so on indefinitely for months and months. In this way the attacks of the fever follow each other at regular intervals.

But it often happens, as the result of repeated infections, that a new attack has commenced before the former one has ceased, so that they overlap and the fever continues; soon, however, becoming intermittent again except with that form known as malignant tertian.

After a time, even without treatment, the number of parasites may decrease until not enough of them are left to produce fever, in which case the patient improves temporarily.

In the pages which follow, the statements regarding the disease itself are partly drawn, with the permission of the American publishers, from an admirable summary prepared by Ronald Ross (see Ronald Ross, the Prevention of Malaria. London and New York), of the Liverpool School of Tropical Medicine, who was the first discoverer of the relation between malaria and mosquitoes, in 1898, in India. His results were soon confirmed by workers in many parts of the world, and the statements here made are accepted by the best physicians of all countries.

It generally happens, however, sooner or later, that the number of parasites increases again, and the patient again suffers from a series of attacks.

Such relapses are frequently encouraged by fatigue, heat, chill, wetting, dissipation, or illness, and they may occur at intervals for a long time after the patient is first infected by the mosquito, and even after he has moved to localities where there is no malaria.

Besides fever, these malarial parasites often produce anemia and enlargement of the spleen, especially with patients who have suf-

fered many relapses.

Death is often caused in malarial patients by other diseases such as pneumonia or dysentery, the system being already weakened by the malarial parasites.

If the patient survives, the parasites tend to die out of themselves, without treatment, after a long period of illness, leaving him more

or less immune.

The parasites are of at least three kinds, which can be easily distinguished in the blood if placed under the microscope. These are (1) a parasite which produces its spores every three days and causes what is called quartan fever; (2) a parasite which produces its spores every other day and causes tertian fever; (3) parasites which cause the so-called malignant fever or pernicious malaria, an irregular type and in which dangerous complications most frequently occur.

Quinine kills the parasites when administered at the proper time; but generally it will not destroy all the parasites in the body unless it is given in sufficient doses and continued for several months. As long as a single parasite remains alive in the blood, the patient may be subject to relapses. Ross advises that at least 5 grains of sulphate of quinine should be taken by an adult patient every day without fail for four months, but he should consult a physician regarding the details of the treatment.

HOW MALARIA SPREADS

The malaria parasite has several different stages. Aside from those forms which produce spores in the body, there are other stages—male and female. When one of these anopheline mosquitoes, which carries malaria, happens to feed on a patient whose blood contains parasites, these are sucked, with the blood, into the mosquito's stomach.

If the sexual forms of the parasites are present, those of opposite sexes at once unite. The parasite now undergoes certain changes in the mosquito's stomach. It passes through the stomach wall and finally affixes itself to its outer surface.

Here it grows very considerably and, after a week, under favorable

conditions, produces a large number of spores.

These spores, thus entering the general body cavity of the mosquito, find their way into the salivary glands. These glands secrete the irritating fluid injected under the human skin when the mosquito begins to feed.

Thus, when one of these mosquitoes, which has fed upon a malarial patient containing the sexual forms of the parasites, bites, after a week, another person, it injects these spores together with its saliva under his skin and generally into his blood.

These spores now cause or may cause infection or reinfection in this second person.

Thus the parasites of malaria pass from men to certain mosquitoes

and back from these mosquitoes to men.

Malarial fever is then an infectious disease, which is carried from the sick to the healthy by anopheline mosquitoes, and only in this way can it be contracted.

It has always been known that malaria is most prevalent in the vicinity of marshes, and it was formerly supposed that the air or exhalations from these marshes produced the disease. Parasites of malaria have not been found in the water or air of marshes, nor in decaying vegetation, nor in the soil, although they have been dili-

Fig. 1.—Anopheles quadrimaculatus: Male and female mosquitoes. Greatly enlarged

gently searched for. Attempts to produce infection by these agencies have always failed. The mosquitoes which carry these parasites, however, breed in marshes or in marshy pools and streams.

Issuing from these breeding places, they enter near-by houses and

feed upon the inmates, mostly at night, biting first one person and

then others, and living for weeks or months.

If an infected person happens to be present in any of these houses, the anopheline mosquitoes biting him will also become infected, and the disease is likely, ultimately, to be carried by these mosquitoes to others and to neighboring houses.

Thus a whole neighborhood soon becomes infected and the locality is called malarious. In such localities it is easy to find the parasites of malaria in the proper mosquitoes. Sometimes 25 per cent or more

of them are found to be infected.

In malarious localities the anopheline mosquitoes bite the healthy new-born children and infect many of them.

Such children if not thoroughly treated may remain infected for years. They usually become anemic and possess enlarged spleens, and of course may spread the infection to others.

In highly malarious localities almost every child has been found to

contain the parasites of malaria or to possess an enlarged spleen.

In such a locality, therefore, the infection is constantly passed on by means of the mosquitoes from the older children or from adults to the newly born infants, so that the locality may remain malarious for

very many years, in fact indefinitely.

In the same way a newcomer arriving in such a locality will very probably become infected, especially if he sleeps in an infected house, even for one night, at a time when mosquitoes are flying and biting. A locality is malarious only when it contains persons infected with the parasites, and also sufficient numbers of the proper species of mosquitoes to carry the infection to the healthy persons.

THE MALARIAL MOSQUITOES

There are in the Eastern States only three species of mosquitoes which carry malaria, namely, *Anopheles quadrimaculatus* Say, *Anopheles crucians* Wied., and *Anopheles punctipennis* Say. Several other species of Anopheles are occasionally found, but are not important malarial factors.

Fig. 2.—Anopheles crucians: Female mosquito. Greatly enlarged

Anopheles quadrimaculatus (figs. 1, 4, 5, 6) is commonly found both in the North and in the South, and A. crucians (fig. 2) more abundantly in the Southern States, particularly in the coastal region.

A. punctipennis (fig. 3) occurs in both Northern and Southern States. It has been found to carry quartan and tertian malaria in the South, but not in the North. A number of experiments have been made with this species in the North, and especially at Baltimore and New York, to see if it will carry malarial parasites, but without Success.

The anopheline mosquitoes are distinguished from most other mosquitoes of the United States by the fact that their wings are more or less spotted, and that in resting on the wall their bodies incline away from the wall at an angle, while with most others the body is parallel to the wall. The females also have palpi which are nearly as long as the proboscis, or beak.

The Anopheles mosquitoes above mentioned pass the winter as adults or as larvæ. In the autumn they enter houses, stables, barns, or other outhouses, or seek other sheltered hiding places, and remain there until spring. They are often found in the winter in numbers

in the cellars of houses, where they may be killed by fumigation or by fly

sprays.

These mosquitoes, as a rule, bite only after sundown. They have been known to bite, however, on very cloudy days, or in dark secluded situations.

They do not fly far. For the most part the flight range appears to be less than a mile.

These Anopheles mosquitoes breed in all sorts of accumulations of standing water, in pools, springs, watering troughs, in the footprints of cattle in marshy land, and in marshes where fish are not abundant, in drains

Fig. 3.—Anopheles punctipennis: Female mosquito. Greatly enlarged

and gutters choked with grass or weeds, in old boats along the water fronts, in hollows in rocks, in the backwaters of even rapid streams, in earthenware vessels, in water barrels and tubs, in cesspools, and all places carrying water accumulations, whether pure or foul. Anopheles crucians and A. quadrimaculatus have even been found

breeding in brackish water along the seacoast.

The minute blackish eggs (fig. 4) are laid on the surface of the water and are found floating on their sides singly or in groups.

Their larvæ do not hang from the surface of the water by the tail, as do other mosquito larvæ or "wrigglers" when at rest, but lie flat at the surface, with their heads turned upside down, feeding upon minute floating particles, at or near the surface

(fig. 5).
Their growth is rather rapid, and

they may in midsummer reach full size in two weeks after hatching. When full grown these larvæ transform to pupæ (fig. 6) and remain in this stage at the surface of the water for three or more days, when the adult mosquitoes issue.

Fig. 4.—Anopheles quadrimaculatus: Eggs. Greatly enlarged

PREVENTION AND CURE

There are three recognized methods of warfare against malaria: (1) Mechanical protection of individuals from bites of malarial mosquitoes; (2) destruction of the Anopheles mosquitoes in any or all of their different stages of growth; (3) systematic treatment of the population of a malarious locality with quinine until the malaria has been stamped out and there are none of the parasites which cause this disease for the Anopheles mosquitoes to carry.

The first method is largely a matter of personal prevention, and consists in thoroughly screening all human habitations and, in the summer time, of wearing veils and gloves when out of doors after

sundown.

The second measure, destroying the Anopheles, has achieved admirable success in Cuba, in Panama, in West Africa, in Egypt, in certain localities in India, and in many parts of the

Fig. 5.—Anopheles quadrimaculatus: Larva in resting position. Greatly enlarged

United States. It holds the greatest promise of ultimately ridding a community of malaria. Destroying the breeding places of Anopheles by drainage or treatment with oil or Paris green is all important. Impounding water and using certain species of small fish which eat the wrigglers are also recommended under some conditions. More detailed information on mosquito control is given in Farmers' Bulletin No. 1570, Mosquito Remedies and Preventives.

The quininization, or the cinchonization method, as it is called by Germans and Italians, has been used by the Germans in East Africa

Fig. 6.— Anopheles quadrimaculatus: Pupa. Greatly enlarged

and by the Italians and, to some extent, by the English in India. In Italy, by mechanical protection, the malaria rate was reduced from 65 or 70 per cent down to 14 per cent, but here it held. The quininization method was then introduced, and by its means the general malaria rate has been reduced to less than 4 per cent.

This method consists in distributing free quinine to all laborers and to the poor living in malarious localities. The quinine is prepared in its most agreeable form, as confectionery and principally as chocolates, the latter contain-

ing tannate of quinine, which is not so bitter. It is more easy to induce children and those adults who can not tolerate the ordinary quinine salts to take the quinine in this form.