MetroloJ: an ImageJ plugin to help monitor microscopes' health.

Cédric Matthews and Fabrice P. Cordelières

3rd ImageJ User and Developer Meeting October, the 29th 2010

CM: CNRS-IBDML-UMR 6216, Service Imagerie, Marseille, France FPC: Institut Curie/CNRS UMR 3348, PICT-IBiSA@Orsay, Orsay, France

CM & FPC : Mission Ressources et Compétences Technologiques du CNRS, Meudon, France

• A package of 5 plugins to quantify 4 vital signs of a microscope :

- A package of 5 plugins to quantify 4 vital signs of a microscope :
 - Field illumination homogeneity.

- A package of 5 plugins to quantify 4 vital signs of a microscope :
 - Field illumination homogeneity.
 - Variability in detection.

- A package of 5 plugins to quantify 4 vital signs of a microscope :
 - ► Field illumination homogeneity.
 - Variability in detection.
 - ▶ 3D resolutions (including 2 ways to measure axial resolution).

- A package of 5 plugins to quantify 4 vital signs of a microscope :
 - Field illumination homogeneity.
 - Variability in detection.
 - ▶ 3D resolutions (including 2 ways to measure axial resolution).
 - ► Images' registration/co-alignement.

- A package of 5 plugins to quantify 4 vital signs of a microscope :
 - ► Field illumination homogeneity.
 - ▶ Variability in detection.
 - ▶ 3D resolutions (including 2 ways to measure axial resolution).
 - ► Images' registration/co-alignement.
- All plugins are based on an unified interface.

MetroloJ

- A package of 5 plugins to quantify 4 vital signs of a microscope :
 - ► Field illumination homogeneity.
 - Variability in detection.
 - ▶ 3D resolutions (including 2 ways to measure axial resolution).
 - ► Images' registration/co-alignement.
- All plugins are based on an unified interface.

• All plugins provide a unified output in the form of spreadsheets and a pdf file (requires the iText library).

• **Aim**: Check for illumination mis-alignement and/or inhomogeneity.

- **Aim**: Check for illumination mis-alignement and/or inhomogeneity.
- Sample to be used: Uniformly fluorescent sample (fluorescent plastic slides, densely packed fluorescent beads...).

- Aim: Check for illumination mis-alignement and/or inhomogeneity.
- Sample to be used : Uniformly fluorescent sample (fluorescent plastic slides, densely packed fluorescent beads...).
- Acquisition of a standardized image.

- **Aim**: Check for illumination mis-alignement and/or inhomogeneity.
- Sample to be used: Uniformly fluorescent sample (fluorescent plastic slides, densely packed fluorescent beads...).
- Acquisition of a standardized image.
- Informations to be retrieved :

- Aim: Check for illumination mis-alignement and/or inhomogeneity.
- Sample to be used : Uniformly fluorescent sample (fluorescent plastic slides, densely packed fluorescent beads...).
- Acquisition of a standardized image.
- Informations to be retrieved:
 - Intensity profiles along the horizontal/vertical axis, diagonals.

- Aim: Check for illumination mis-alignement and/or inhomogeneity.
- Sample to be used : Uniformly fluorescent sample (fluorescent plastic slides, densely packed fluorescent beads...).
- Acquisition of a standardized image.
- Informations to be retrieved:
 - Intensity profiles along the horizontal/vertical axis, diagonals.
 - Location of the maximum of intensity and the center of mass

- **Aim**: Check for illumination mis-alignement and/or inhomogeneity.
- Sample to be used: Uniformly fluorescent sample (fluorescent plastic slides, densely packed fluorescent beads...).
- Acquisition of a standardized image.
- Informations to be retrieved :
 - Intensity profiles along the horizontal/vertical axis, diagonals.
 - Location of the maximum of intensity and the center of mass.
- Preventive/Pro-active actions: Check the optical path, re-align the light source, ..., call after-sale service.

Field illumination: what's on the report?

12 août 2010 14:17 Field illumination report on Field illumination

Normalised intensity profile:

Microscope infos:

Microscope: Confocal Wavelength: 510.0 nm NA: 1.4 Sampling rate: 1.0x1.0x1.0 pixel Pinhole: 1.0 Airy Units

Centers' locations:

	Image centre	Centre of intensity	Centre of the max intensity	Centre of the 100% zone
Coordinates	(256.0, 256.0)	(274.366, 270.451)	(263.0, 441.0)	(338.799, 309.725)
Distance to		23.369um	185.132am	98.702um

Intensity profiles:

Profiles' statistics:

Location	Intensity	Intensity relative to ma:	
Maximum found at (263,441)	255	1.0	
Top-left corner	39	0.153	
Top-right corner	175	0.686	
Bottom-left corner	175	0.686	
Bottom-right corner	177	0.694	
Upper bound, middle pixel	182	0.714	
Lower bound, middle pixel	230	0.902	
Left bound, middle pixel	131	0.514	
Right bound, middle	22.4	0.050	

 Aim: Using a statistical indicator, the coefficient of variation, (CV) to measure the variability of signal detection.

- Aim: Using a statistical indicator, the coefficient of variation, (CV) to measure the variability of signal detection.
- Sample to be used: Uniformly fluorescent sample (fluorescent plastic slides, large fluorescent beads...).

- Aim: Using a statistical indicator, the coefficient of variation, (CV) to measure the variability of signal detection.
- Sample to be used : Uniformly fluorescent sample (fluorescent plastic slides, large fluorescent beads...).
- Acquisition of a standardized image.

- Aim: Using a statistical indicator, the coefficient of variation, (CV) to measure the variability of signal detection.
- Sample to be used: Uniformly fluorescent sample (fluorescent plastic slides, large fluorescent beads...).
- Acquisition of a standardized image.
- Informations to be retrieved : Within a region of interest, mean intensity (μ) and standard deviation .

- Aim: Using a statistical indicator, the coefficient of variation, (CV) to measure the variability of signal detection.
- Sample to be used: Uniformly fluorescent sample (fluorescent plastic slides, large fluorescent beads...).
- Acquisition of a standardized image.
- Informations to be retrieved : Within a region of interest, mean intensity (μ) and standard deviation .
 - Average intensity (μ) .

- Aim: Using a statistical indicator, the coefficient of variation, (CV) to measure the variability of signal detection.
- Sample to be used : Uniformly fluorescent sample (fluorescent plastic slides, large fluorescent beads...).
- Acquisition of a standardized image.
- Informations to be retrieved : Within a region of interest, mean intensity (μ) and standard deviation .
 - Average intensity (μ).
 - Standard deviation (σ).

- Aim: Using a statistical indicator, the coefficient of variation, (CV) to measure the variability of signal detection.
- Sample to be used: Uniformly fluorescent sample (fluorescent plastic slides, large fluorescent beads...).
- Acquisition of a standardized image.
- Informations to be retrieved : Within a region of interest, mean intensity (μ) and standard deviation .
 - ▶ Average intensity (μ) .
 - Standard deviation (σ).
 - CV=σ/μ.

- Aim: Using a statistical indicator, the coefficient of variation, (CV) to measure the variability of signal detection.
- Sample to be used: Uniformly fluorescent sample (fluorescent plastic slides, large fluorescent beads...).
- Acquisition of a standardized image.
- Informations to be retrieved : Within a region of interest, mean intensity (μ) and standard deviation .
 - ▶ Average intensity (μ) .
 - Standard deviation (σ) .
 - CV=σ/μ.
- Preventive/Pro-active actions: Check the optical path, ..., call after-sale service.

Variability in detection : what's on the report?

12 août 2010 14:10 CV report on CV

ROIs used for measures:

Microscope infos:

Microscope: Confocal Wavelength: 510.0 nm

NA: 1.4

MetroloJ

Sampling rate: $0.065 \text{x} 0.065 \text{x} 0.2 \, \mu\text{m}$

Pinhole: 1.0 Airy Units

Histograms:

CVs table:

	Standard deviation	Average	Nb pixels	CV	CVs relative to min value
PMT1	30.401	47.784	3640	0.636	2.769
PMT2	22.194	48.653	3640	0.456	1.985
PMT3	15.538	47.88	3640	0.325	1.412
PMT4	10.941	47.617	3640	0.23	1.0

• Aim : On the instrumental transfer function, mesure the X, Y and Z resolutions.

- Aim: On the instrumental transfer function, mesure the X, Y and Z resolutions.
- Sample to be used: Well dispersed, uniformly fluorescent labelled, infra-resolution beads.

- Aim: On the instrumental transfer function, mesure the X, Y and Z resolutions.
- Sample to be used: Well dispersed, uniformly fluorescent labelled, infra-resolution beads.
- Acquisition of a standardized image.

- Aim: On the instrumental transfer function, mesure the X, Y and Z resolutions.
- Sample to be used: Well dispersed, uniformly fluorescent labelled, infra-resolution beads.
- Acquisition of a standardized image.
- Informations to be retrieved: Based on intensity profiles passing through the bead's center, fitted on a Gaussian function, determine the FWHM (estimate of the resolution).

- Aim: On the instrumental transfer function, mesure the X, Y and Z resolutions.
- Sample to be used: Well dispersed, uniformly fluorescent labelled, infra-resolution beads.
- Acquisition of a standardized image.
- Informations to be retrieved: Based on intensity profiles passing through the bead's center, fitted on a Gaussian function, determine the FWHM (estimate of the resolution).
- Preventive/Pro-active actions: Check the optical path, check for index mismatches (ex: RI of the immersion oil, mounting medium...), call after-sale service.

PSF based measurements : what's on the report?

PSF profiler report on PSF

Profile view:

MetroloJ

Microscope infos:

Microscope: WideField Wavelength: 510.0 nm NA: 1.4

Sampling rate: 0.102x0.102x0.2 µm

Resolution table:

	FWHM	Theoretical resolution
x	0.293 µm	0.222 µm
v	0.299 µm	0.222 µm
	1.047	0.52

X profile & fitting parameters:

Fitted on y = a + (b-a)*exp(-(xc-)*2/2.*d*2); Number of iten thora: 491 (8000) Number of iten thora: 491 (8000) Number of residuals aquared: 19 148092, 8669 Standard devia ton: 274-0266 R*2: 0.9976 R*2: 0.9976 = 101.5712 b = 61829.8944 c = 13.2009

Y profile & fitting parameters:

Filted on y = 1 + 6-3)* traps(-6x-72/Q-rdr2).
Number of iteration: 2-5 (2000)
Number of martin: 2-Q)
Sum of residuals arquance. 19 141301.4980
Studand deviation: 2-65 7232
RP2-0.9978
Parameters:
a = 97.6990
b = 61962.6599
c = 13.1004
d = 0.1270

Z profile & fitting parameters:

Fitted on y = a + (b-a) *nsp(-(bc-)*2/Q-45*2), Number of Iteration: 248 (8000) Number of smatter 2: Q: Sum of residuals arquand: 270450 0.0796 Standard devision 5:009 2:703 R+2: 0.9724 Parameter: a = 4092 1:677 b = 61592 2:355 c = 5.0564 d = 0.4445

• **Aim**: On a XZ reflexion pattern obtained imaging a mirror, mesure the Z resolution.

- Aim : On a XZ reflexion pattern obtained imaging a mirror, mesure the Z resolution.
- Sample to be used : A plane mirror slide.

- Aim: On a XZ reflexion pattern obtained imaging a mirror, mesure the Z resolution.
- Sample to be used : A plane mirror slide.
- Acquisition of a standardized image.

- Aim: On a XZ reflexion pattern obtained imaging a mirror, mesure the Z resolution.
- Sample to be used : A plane mirror slide.
- Acquisition of a standardized image.
- Informations to be retrieved: Based on an averaged intensity profiles across the reflexion profile, fitted on a Gaussian function, determine the FWHM (estimate of the resolution).

- Aim: On a XZ reflexion pattern obtained imaging a mirror, mesure the Z resolution.
- Sample to be used : A plane mirror slide.
- Acquisition of a standardized image.
- Informations to be retrieved: Based on an averaged intensity profiles across the reflexion profile, fitted on a Gaussian function, determine the FWHM (estimate of the resolution).
- Preventive/Pro-active actions: Check the optical path, check for index mismatches (ex: RI of the immersion oil, mounting medium...), call after-sale service.

Mirror slide based measurement : what's on the report?

12 août 2010 14:27 Axial resolution report on Axial resolution

Profile view:

MetroloJ

Microscope infos:

Microscope: Confocal Wavelength: 510.0 nm NA: 1.4 Sampling rate: 0.098x0.098x1.0 µm Pinhole: 1.0 Airy Units

Resolution table:

ROI: from (214, 0) to (296, 512)

	FWHM	Theoretical resolution
-	1 07	0.264

Z profile & fitting parameters:

Filted on y = a + (b-a)*exp(-(xc)*2/(2*d*2)) Number of terations: 364 (8000) Number of residus; 2 (2) Sum of residusis aquared: 15748, 1863 Standard deviation: 5.5514 R*2: 0.9669 Parameters: a = 4.2723 b = 188, 4883 c = 27.2543

 Aim: On the image of a multi-labelled objet, measure the distances between images of the different channels.

- Aim: On the image of a multi-labelled objet, measure the distances between images of the different channels.
- Sample to be used: Well dispersed, uniformly fluorescent labelled, large beads.

- Aim: On the image of a multi-labelled objet, measure the distances between images of the different channels.
- Sample to be used: Well dispersed, uniformly fluorescent labelled, large beads.
- Acquisition of a standardized image.

- Aim: On the image of a multi-labelled objet, measure the distances between images of the different channels.
- Sample to be used: Well dispersed, uniformly fluorescent labelled, large beads.
- Acquisition of a standardized image.
- Informations to be retrieved : For each channel :

- Aim: On the image of a multi-labelled objet, measure the distances between images of the different channels
- Sample to be used: Well dispersed, uniformly fluorescent labelled, large beads.
- Acquisition of a standardized image.
- Informations to be retrieved : For each channel :
 - Position of the bead's center geometrical center.

- Aim: On the image of a multi-labelled objet, measure the distances between images of the different channels
- Sample to be used: Well dispersed, uniformly fluorescent labelled, large beads.
- Acquisition of a standardized image.
- Informations to be retrieved : For each channel :
 - Position of the bead's center geometrical center.
 - For each pair of channels, uncalibrated (pixels) and calibrated(μm) center to center distances

- Aim: On the image of a multi-labelled objet, measure the distances between images of the different channels
- Sample to be used: Well dispersed, uniformly fluorescent labelled, large beads.
- Acquisition of a standardized image.
- Informations to be retrieved : For each channel :
 - Position of the bead's center geometrical center.
 - For each pair of channels, uncalibrated (pixels) and calibrated(μm) center to center distances
- Preventive/Pro-active actions: Check the optical path, re-align the light source, check for index mismatches (ex: RI of the immersion oil, mounting medium...), ..., call after-sale service.

Co-alignement: what's on the report?

12 août 2010 14:30 Co-Alignement report Co-alignement

Profile view:

MetroloJ

Microscope infos:

Microscope: Confocal Wavelengths: 600.0, 500.0, 400.0 nm NA: 1.4 Sampling rate: 0.112x0.112x1.0 pm Pinhole: 1.0 Airy Units

Pixel shift table:

Shift (pix.)	Red (Ref.)	Green (Ref.)	Blue (Ref.)	Titles
Red	0 0	-0.5 -5.5 -1.5	-2.0 -5.5 -2.0	Co-alignement (red).tif
Green	0.5 5.5 1.5	0 0 0	-1.5 0.0 -0.5	Co-alignement (green).tif
Blue	2.0 5.5 2.0	1.5 0.0 0.5	0 0	Co-alignement (blue).tif

Distances table (uncalibrated):

Dist. (pix.)	Red	Green	Blue	Resolutions (pix.)	Centres' coord.	Titles
Red	-	5.723	6.185	1.524 1.524 0.429	258.0 241.0 5.5	Co- alignement (red).tif
Green	5.723	-	1.581	1.27 1.27 0.357	258.5 246.5 7.0	Co- alignement (green).tif
Blue	6.185	1.581		1.016 1.016 0.286	260.0 246.5 7.5	Co- alignement (blue).tif

Distances table (calibrated):

Dist. (Ref. dist.) µm	Red	Green	Blue	Resolutions (µm)	Centres' coord.	Titles
Red	-	1.624 (0.334)	2.106 (0.274)	0.171 0.171 0.429	258.0 241.0 5.5	Co- alignemen (red).tif
Green	1.624 (0.334)	-	0.528 (0.273)	0.143 0.143 0.357	258.5 246.5 7.0	Co- alignemen (green).tif
Blue	2.106 (0.274)	0.528 (0.273)	-	0.114 0.114 0.286	260.0 246.5 7.5	Co- alignemen (blue).tif

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

Before purchasing a new system :

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

• Before purchasing a new system :

MetroloJ

Define expected performances.

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

Before purchasing a new system :

- Define expected performances.
- Measure/test for the actual performances of the candidates.

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

• Before purchasing a new system :

- Define expected performances.
- Measure/test for the actual performances of the candidates.
- ► Compare systems in a standardized fashion.

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

• Before purchasing a new system :

- Define expected performances.
- Measure/test for the actual performances of the candidates.
- Compare systems in a standardized fashion.
- ▶ Make a choice based on quantitative, non subjective criterions.

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

Before purchasing a new system :

- Define expected performances.
- Measure/test for the actual performances of the candidates.
- ► Compare systems in a standardized fashion.
- ▶ Make a choice based on quantitative, non subjective criterions.
- After purchase : system monitoring :

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

• Before purchasing a new system :

- Define expected performances.
- Measure/test for the actual performances of the candidates.
- Compare systems in a standardized fashion.
- ▶ Make a choice based on quantitative, non subjective criterions.
- After purchase : system monitoring :
 - Upon equipment reception :

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

Before purchasing a new system :

MetroloJ

- Define expected performances.
- Measure/test for the actual performances of the candidates.
- Compare systems in a standardized fashion.
- ▶ Make a choice based on quantitative, non subjective criterions.

- Upon equipment reception :
 - Check for fulfillment of the performances' expectations.

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

• Before purchasing a new system :

MetroloJ

- Define expected performances.
- Measure/test for the actual performances of the candidates.
- Compare systems in a standardized fashion.
- ▶ Make a choice based on quantitative, non subjective criterions.

- Upon equipment reception :
 - Check for fulfillment of the performances' expectations.
- ► All along the equipment's lifetime :

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

• Before purchasing a new system :

MetroloJ

- Define expected performances.
- Measure/test for the actual performances of the candidates.
- Compare systems in a standardized fashion.
- ▶ Make a choice based on quantitative, non subjective criterions.

- Upon equipment reception :
 - Check for fulfillment of the performances' expectations.
- ► All along the equipment's lifetime :
 - · Check for stability.

MetroloJ

Why and when should the MetroloJ package be used?

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

• Before purchasing a new system :

- Define expected performances.
- Measure/test for the actual performances of the candidates.
- Compare systems in a standardized fashion.
- Make a choice based on quantitative, non subjective criterions.

- Upon equipment reception :
 - Check for fulfillment of the performances' expectations.
- ► All along the equipment's lifetime :
 - Check for stability.
 - Prevent downtimes.

MetroloJ

Why and when should the MetroloJ package be used?

The MetroloJ package is a collection of plugins aimed at extracting quantitative data out of images taken on standardized samples, using standardized procedures.

• Before purchasing a new system :

- Define expected performances.
- Measure/test for the actual performances of the candidates.
- Compare systems in a standardized fashion.
- Make a choice based on quantitative, non subjective criterions.

- Upon equipment reception :
 - Check for fulfillment of the performances' expectations.
- ► All along the equipment's lifetime :
 - Check for stability.
 - Prevent downtimes.
 - Take preventive/pro-active measures.

MetroloJ

• New tests :

MetroloJ

New tests :

▶ Check for microscope's stage drift (one position, over time).

MetroloJ

New tests :

- Check for microscope's stage drift (one position, over time).
- ► Check for microscope's stage proper re-positionning (several positions, revisited n times).

MetroloJ

New tests :

- Check for microscope's stage drift (one position, over time).
- ► Check for microscope's stage proper re-positionning (several positions, revisited n times).
- ► Measure of detectors response curves.

MetroloJ

New tests :

- ▶ Check for microscope's stage drift (one position, over time).
- ► Check for microscope's stage proper re-positionning (several positions, revisited n times).
- Measure of detectors response curves.
- Data archiving, systems' benchmarking :

MetroloJ

New tests :

- Check for microscope's stage drift (one position, over time).
- ► Check for microscope's stage proper re-positionning (several positions, revisited n times).
- Measure of detectors response curves.

Data archiving, systems' benchmarking :

▶ Option : send measures to a database

MetroloJ

New tests :

- Check for microscope's stage drift (one position, over time).
- ► Check for microscope's stage proper re-positionning (several positions, revisited n times).
- Measure of detectors response curves.

Data archiving, systems' benchmarking :

- ▶ Option : send measures to a database
- ► From the database, get an estimate of the "normal" situation to which each single measure might be compared to.

Acknowledgments

MetroloJ

Thanks to all the members of the 'groupe de travail Métrologie du RT-MFM" and/or of the MetroloJ package's beta-testers... (and all apologies for the potentially forgotten ones).

- Pierre Bourdoncle
- Anne Cantereau
- Julien Cau
- Christophe Chamot
- Julien Cianfichi
- Aurélien Dauphin
- Olivier Duc
- Sylvain De Rossi
- Stéphanie Dutertre
- Aude Jobart-Malfait
- Christophe Klein
- Marc Lartaud
- Patricia Le Baccon

- Aurélie Le Ru
- Meriem Garfa-Traoré
- Camille Lebugle
- Sandrine Leveque-Fort
- Christophe Machu
- Laure Malicieux
- Christel Poujol
- Richard Schwartzmann
- Damien Schapman
- Marie-Noëlle Soler
- Nicolas Tissot
- Yves Usson
- François Waharte

