Exercises on the Elvis Problem - Part I

3 Gauge functions

Suppose $F \in \mathcal{C}$ is given. The gauge function $\gamma_F : X \to [0, \infty]$ is defined by

$$\gamma_F(x) = \inf \left\{ t > 0 : \frac{1}{t} \ x \in F \right\}.$$

By convention, if $rx \notin F$ for all r > 0, then $\gamma_F(x) = +\infty$. We mainly will be interested in only the case where $F \in \mathcal{C}_0$.

Exercise 3.1. Let $F \in \mathcal{C}$ with $\mathbf{0} \in F$. Show the following:

- (a) $v \in F$ if and only if $\gamma_F(v) \leq 1$.
- (a) Proof.

Claim 3.1. If $F \in \mathcal{C}$ with $\mathbf{0} \in F$ then for $t \in \mathbb{R}, |\frac{1}{t}| \leq 1, \frac{1}{t}F \subset F$ (where $\frac{1}{t}F := \{\frac{1}{t}x : x \in F\}$).

Proof. Let
$$x \in F$$
 and $\left|\frac{1}{t}\right| \leq 1$. Since F is convex, $\frac{1}{t}x \in F$.

- (\Rightarrow) Let $v \in F$. Then $1 \in \{t \ge 0 : \frac{1}{t} \ x \in F\}$ so that $\gamma_F(v) \le 1$. (\Leftarrow) Let $v \notin F$. If $|\frac{1}{t}| \le 1$ then $\frac{1}{t}v \notin F$ by Claim 3.1. Accordingly, if $\frac{1}{t}v \in F$ then $|\frac{1}{t}| > 1$. This implies that $\gamma_F(v) > 1$.