Zachary Seymour MATH 506 Midterm 2 April 22, 2014

Prove the following statements. You need to provide a complete proof of each problem in order to get the full credit.

1 (10 points)

A Banach space X is reflexive iff X^* is reflexive.

We will first prove this theorem:

Theorem 0.1. Every closed subspace of a reflexive normed space is reflexive.

Proof. Let X be a Banach space and $M \subset X$ be a closed subspace. Also, let Q be the natural mapping of X onto X^{**} . We can see that $x \in (M^{\perp})^{\perp}$ iff $Qx \in M^{\perp \perp}$. Since, M is closed, we have from before $(M^{\perp})^{\perp} = M$. So, we have $Q(M) = M^{\perp \perp}$.

Now, take $m^{**} \in M^{**}$ and $m^{\perp \perp}$ be the corresponding member of $M^{\perp \perp}$. Then there is an m such that $Qm = m^{\perp \perp}$, so for each $x^* + M^{\perp} \in M^*$,

$$(x^* + M^{\perp}, m^{**}) = m^{\perp \perp} x^* = x^* m = (m, x^* + M^{\perp}).$$

Thus, we have M reflexive.

Now, we give the proof for the problem statement:

Proof. First, we assume X is reflexive. Let Q and Q_* be the natural maps from X and X^* into X^{***} and X^{****} respectively, and $x^{****} \in X^{****}$ If we take an $x^{***} \in X^{***}$ and $x = Q^{-1}x^{***}$, then

$$(x^{**}, x^{***}) = (Qx, x^{***} = (x, x^{***}Q) = (x^{***}Q, x^{**}),$$

so we have $x^{***} = Q_*(x^{***}Q)$. Since Q_* is onto X^{***} , X^* is reflexive.

Now, suppose X^* is reflexive. Then, both X^{**} and its closed subspace Q(X) are reflexive, by Theorem 0.1. Therefore, X is reflexive since it is isomorphic to Q(X).

2 (15 points)

Let H be a Hilbert space and let $P,Q \in B(H)$ be orthogonal projections. Then the following statements are equivalent.

- (a) $\operatorname{Im}(P) \subset \operatorname{Im}(Q)$;
- (b) QP = P;
- (c) PQ = P;
- (d) $||Px|| \le ||Qx||$ for all $x \in H$;
- (e) $P \leq Q$.

Proof. First, assume (a). Then, for every $h \in H$, $\exists q \in H$ with Ph = Qq. Therefore, QPh = QQq = Qq = Ph. Thus, QP = P and (a) \Longrightarrow (b).

Now, we show (b) \Leftrightarrow (c). Suppose QP = P. Then, Q = Q + P - QP, so we can compute $Q^* = (Q + P - QP)^* = Q^* + P^* - P^*Q^*$, since adjoint is linear. Thus we have $Q^* + P^* - P^*Q^* = Q + P - PQ$, so we necessarily have QP = PQ = P. The equivalence can be shown by swapping PQ above.

If we assume (b), we have $QP = P \Leftrightarrow (I - Q)P = 0$. Also, Ker(I - P) = Im(P). Somehow, we have (b) \Longrightarrow (a)

Now, assume (e). Then, $(Px, x) \leq (Qx, x)$ which is equivalent to $||Px||^2 \leq ||Qx||^2$. Therefore, (e) \Longrightarrow (d).

3 (15 points)

Let X be a Banach space, and $\{f_n\} \subset X^*$. Given 1 , the following two statements are equivalent.

- (a) If $\sum_{n=1}^{\infty} ||x_n||^p$, where $x_n \in X$ for each n, then $\sum_{n=1}^{\infty} f_n(x_n) < \infty$;
- (b) The series $\sum_{n=1}^{\infty} f_n$ satisfies $\sum_{n=1}^{\infty} \|f_n\|^q < \infty$, where q is the conjugate of p, i.e. $\frac{1}{p} + \frac{1}{q} = 1$.

I really do not see where to go with this. It may have something to do with ℓ^p and ℓ^q or the Hölder inequality, since there are dual exponents involved, but I'm really not sure what to make of it. Furthermore, I can start to see how we can use $\sum_{n=1}^{\infty} \|f_n\|^q < \infty$ and $\sum_{n=1}^{\infty} \|x_n\|^p < \infty$ to show the sum of the values of the linear functionals is also finite, but I cannot see how to start the other direction.

4 (15 points)

Let H be a Hilbert space and $G \subset H$ a closed linear subspace.

- (a) Any bounded linear functional on G has a unique Hanh-Banach extension on H.
- (b) Given $a \in H$, $a \neq 0$, let $G = \{x \in H : (x, a) = 0\}$. If $f_0 \in G^*$ is given by $f_0(x) = (x, b)$, for some $b \in H$, find the expression of the Hahn-Banach extension $f \in H^*$ of f_0 .

We begin by proving the following theorem:

Theorem 0.2. Every Hilbert space is uniformly convex.

Proof. To begin, we define a uniformly convex space as a normed vector space such that for every $\varepsilon > 0$, $\exists \delta > 0$ such that, with $\|x\| = 1$ and $\|y\| = 1$, $\|x - y\| \ge \varepsilon$ implies that $\left\|\frac{x+y}{2}\right\| \le 1-\delta$. Let H be a Hilbert space. Now, let $\varepsilon > 0$ and $x,y \in H$ with $\|x\| = \|y\| = 1$ and $\|x-y\| \ge \varepsilon$. Also, let $\delta = 1 - \frac{1}{2}\sqrt{4-\varepsilon^2}$. Then, we have $\delta > 0$, and using the

parallelogram law:

$$||x + y|| = ||x + y||^2 + ||x - y||^2 - ||x - y||^2$$

$$= 2 ||x||^2 + 2 ||y||^2 - ||x - y||^2$$

$$\leq 4 - \varepsilon^2$$

$$= 4(1 - \delta)^2.$$

Thus, $\left\|\frac{x+y}{2}\right\| \leq 1 - \delta$. So, H is uniformly convex.

We now give a proof of the Taylor-Foguel Theorem (1958) to address (a) above.

Theorem 0.3 (Taylor-Foguel Theorem). Let X be a normed space. For every subspace Y of X and every $g \in Y^*$, there is a unique Hahn-Banach extension of g to X iff X^* is strictly convex.

Proof. We will only give a proof for the reverse direction; that is, if X^* is strictly convex, there exists a unique Hahn-Banach extension of g to X. So, we start by assuming X^* is strictly convex. Let Y be a subspace of X, $g \in Y^*$, and let f_1 and f_2 be two Hahn-Banach extensions of g to X. Also, we will assume g is non-zero, and, without loss of generality, assume $\|g\| = 1$. From this, we see that $\frac{f_1 + f_2}{2}$ is a continuous linear extension of g to X and that $\left\|\frac{f_1 + f_2}{2}\right\| = \|g\| = 1$. Since, we have $\|f_1\| = \|f_2\| = \|g\| = 1$, the strict convexity of X^* gives us $f_1 = f_2$ and thus uniqueness.

Proof of (a). Since a closed linear subspace of Hilbert space is also Hilbert, we have $G \subset H$ also uniformly convex. Also, for Hilbert, strict convexity follows from uniform convexity. So (a) is given by the proof of Theorem 0.3 by letting X = H.

5 (15 points)

Let X be a normed linear space satisfying the property: $\forall \{x_n\}, \{y_n\} \subset X$, we have

$$||x_n|| = ||y_n|| = 1, ||x_n + y_n|| \to 2 \implies ||x_n - y_n|| \to 0.$$

If
$$\{z_n\} \subset X$$
 converges to $z \in X$ weakly, and $||z_n|| \to ||z||$, then $||z_n - z|| \to 0$.

Proof. Recalling our definition of uniform convexity given in the proof to Theorem 0.2, we can see that the property given is sufficient to imply uniform convexity. Thus, assuming $\{z_n\} \to z$ weakly, $\|z_n\| \to \|z\|$, and X is uniformly convex, we prove $\|z_n - z\| \to 0$.

 $\{z_n\} \to z \text{ weakly, } \|z_n\| \to \|z\|, \text{ and } X \text{ is uniformly convex, we prove } \|z_n - z\| \to 0.$ Suppose $z \neq 0$. Then, we define $u_j = \frac{z_j}{\|z_j\|}$ and $u = \frac{z}{\|z\|}$, and we have $u_j \leftarrow u$. Also, $\frac{u_j + u_k}{2} \leftarrow u \text{ as } j, k \to \infty.$ Furthermore, we have

$$1 = ||u|| \le \liminf_{j,k} \left\| \frac{u_j + u_k}{2} \right\| \le \limsup_{j,k} \left\| \frac{u_j + u_k}{2} \right\| \le 1.$$

Thus, $\left\|\frac{u_j+u_k}{2}\right\| \to 1$ and, by the uniform convexity of X, we have $\|u_j-u_k\| \to 0$. Then, u_j is Cauchy and $\|u_j-u\| \to 0$. Therefore, we have

$$||z_j - z|| = ||||z_j|| u_j - ||z|| u|| \le ||z_j|| ||u_j - u|| + ||||z_j|| - ||z||| ||u|| \to 0.$$

6 (30 points)

Let H be an infinite-dimensional Hilbert space with an orthonormal basis $\{e_n\}$ and let $T \in B(H)$. If the condition $\sum_{n=1}^{\infty} ||Te_n||^2 < \infty$ holds then T is a Hilbert-Schmidt operator.

- (a) The definition of a Hilbert-Schmidt operator is independent of the choice of the orthonormal basis of H.
- (b) T is Hilbert-Schmidt iff T^* is Hilbert-Schmidt.
- (c) If T is Hilbert-Schmidt then it is compact.
- (d) The set of Hilbert-Schmidt operators is a linear subspace of B(H).
- (e) Give an example of a compact operator which is not Hilbert-Schmidt.

Proof of (a). First, let $\{e_n\}$ and $\{f_n\}$ be two orthonormal bases for H. Then, by Parseval's identity, we have $||Te_n||^2 = \sum_{n=1}^{\infty} |(Te_n, f_n)|^2$. Also, we have $||T^*f_n||^2 = \sum_{n=1}^{\infty} |(e_n, T^*f_n)|^2$. Thus, we have $\sum_n ||Te_n||^2 = \sum_n ||T^*f_n|| = \sum_n \sum_n |(Te_n, f_n)|^2$. From this we can see that the sum $\sum_{n=1}^{\infty} ||Te_n||$ is independent of the choice of $\{e_n\}$.

Proof of (b). Since the definition is independent of basis and in the previous section we showed $\sum_n ||Te_n||^2 = \sum_n ||T^*f_n||$, then we have both directions.

Proof of (c). An operator is compact iff it is the limit of a sequence of finite-rank operators. Fix an $\{e_k\}$ for which T is Hilbert-Schmidt. For each integer $n \geq 1$, define $T_n \in B(H)$ by

$$T_n(x) := \sum_{k=1}^n (x, e_k) Te_k \in \operatorname{span} \{ Te_1, \dots, Te_n \}$$

Thus, T_n is finite-rank. Now, we have

$$||Tx - T_n x|| \le \sum_{k=n+1}^{\infty} |(x, e_k)| ||Te_k|| \le \left(\sum_{k=n+1}^{\infty} |(x, e_k)|^2\right)^{1/2} \left(\sum_{k=n+1}^{\infty} ||Te_k||^2\right)^{1/2}$$

If we fix x such that $||x|| \le 1$, then $\sum_{k=n+1}^{\infty} |(x, e_k)|^2 \le \sum_{k=1}^{\infty} |(x, e_k)|^2 = ||x||^2 \le 1$, so

$$||Tx - T_n x|| \le \left(\sum_{k=n+1}^{\infty} ||Te_k||^2\right)^{1/2} \to 0$$

as $n \to \infty$. Therefore, T is compact.

Proof of (d). For some scalar c, we have ||cT|| = |c| ||T|| and thus $\sum_{n=1}^{\infty} ||cTe_n||^{<} \infty$, so cT is still Hilbert-Schmidt. Furthermore, for T and V both Hilbert-Schmidt, we have $normT + V \leq ||T|| + ||V||$, so $\sum_{n=1}^{\infty} ||(T+V)e_n|| \leq \sum_{n=1}^{\infty} ||Te_n|| + \sum_{n=1}^{\infty} ||Ve_n|| < \infty$. Therefore, T + V is still Hilbert-Schmidt, so the set of Hilbert-Schmidt operators is a linear subspace.

Example of (e). Consider the identity operator on H given by $T: x \mapsto x$ for all $x \in H$. Then we have, ||Tx|| = ||x||, so $\sum_{n=1}^{\infty} ||Te_n|| = \sum_{n=1}^{\infty} 1 \not< \infty$.