Skew braces and solutions to the Yang-Baxter equation

Ilaria Colazzo

Contents

Lecture	21. 21/02/2024	2
§ 1.1.	The Yang–Baxter equation	2
§ 1.2.	The set-theoretic version	2
§ 1.3.	Set-theoretic solutions to the Yang–Baxter equation and III Reidemeister move	2
§ 1.4.	First examples	3
§ 1.5.	A characterisation	4
§ 1.6.	Shelfs and racks	4
§ 1.7.	An intriguing connection between group actions and solutions	5
§ 1.8.	Radical rings	5
§ 1.9.	Involutive solutions	7
§ 1.10.	Skew braces	7
§ 1.11.	First examples	8
§ 1.12.	Basic properties of skew braces	9
§ 1.13.	Skew braces and solutions	10
§ 1.14.	Subbraces and ideals.	11
§ 1.15.	The isomorphism theorems	12
§ 1.16.	Exercises and Problems	13
Some s	Some solutions	
References		18
Index		19
Index		19

The notes correspond to the series of lectures on *Skew braces and solutions to the Yang–Baxter equation* taught as part of the conference Introduction to Modern Advances in Algebra.

This version was compiled on Saturday 17th February, 2024 at 17:32.

Ilaria Colazzo Exeter (UK)

University of Exeter – Exeter (UK) *E-mail address*: ilariacolazzo@gmail.com.

Lecture 1. 21/02/2024

§ 1.1. The Yang-Baxter equation. The Yang-Baxter equation (YBE) is one important equation in mathematical physics. It first appeared in two independent papers of Yang [6] and Baxter [1].

Definition 1.1. A solution of the *Yang–Baxter eqution* is a bijective linear map $R: V \otimes V \to V \otimes V$, where V is a vector space such that

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$$

where R_{ij} denotes the map $V \otimes V \otimes V \to V \otimes V \otimes V$ acting as R on the (i, j) factor and as the identity on the remaining factor.

Let $\tau: V \otimes V \to V \otimes V$ be the map $\tau(u \otimes v) = v \otimes u$ for $u, v \in V$. It's easy to check (try!) that $R: V \otimes V \to V \otimes V$ is a solution of the Yang–Baxter equation if and only if $\bar{R} := \tau R$ satisfies

$$\bar{R}_{12}\bar{R}_{23}\bar{R}_{12} = \bar{R}_{23}\bar{R}_{12}\bar{R}_{23}.$$

An interesting class of solutions of the Yang–Baxter equation arises when *V* has a *R*-invariant basis *X*. In such a case the solution is said to be set-theoretic.

§ 1.2. The set-theoretic version. Drinfeld in [2] observed it makes sense to consider the Yang–Baxter equation in the category of sets and stated that

it would be interesting to study set-theoretic solutions.

These lectures will focus on set-theoretic solutions to the Yang-Baxter equation and their connection with known and "new" algebraic structures.

DEFINITION 1.2. A *set-theoretic solution to the Yang–Baxter equation* is a pair (X, r) where X is a non-empty set and $r: X \times X \to X \times X$ is a bijective map such that

$$(1.1) (r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r)$$

Convention 1. If (X,r) is a set-theoretic solution to the Yang–Baxter equation, we write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

where $\lambda_x, \rho_x : X \to X$.

DEFINITION 1.3. Let (X, r) be a set-theoretic solution to the Yang–Baxter equation. We say that

- (X,r) is *finite* if X is finite.
- (X, r) is *non-degenerate* if λ_x, ρ_x are bijective for all $x \in X$.
- § 1.3. Set-theoretic solutions to the Yang–Baxter equation and III Reidemeister move. Let us represent the map $r: X \times X \to X \times X$ as a crossing and the identity on X as a straight line; see Figure 1.

FIGURE 1. The map r represented by a crossing and the identity as a straight line.

Then the Yang–Baxter equation can be pictured as in Figure 2.

Moreover, we have the following lemma under the assumption of (X,r) being non-degenerate

FIGURE 2. The Yang–Baxter equation.

Lemma 1.4. Let (X,r) be a solution to the Yang–Baxter equation.

- 1) Given $x, u \in X$, there exist unique $y, v \in X$ such that r(x, y) = (u, v).
- **2)** Given $y, v \in X$, there exist unique $x, u \in X$ such that r(x, y) = (u, v).

PROOF. For the first claim take $y = \lambda_x^{-1}(u)$ and $v = \rho_y(x)$. For the second, $x = \rho_y^{-1}(v)$ and $u = \lambda_x(y)$.

So, the bijectivity of r means that any row in Figure 3 determines the whole square. By Lemma 1.4 we have that non-degeneracy means that any column in Figure 3 also determines the entire square.

FIGURE 3. Any row or column determines the whole square.

§ 1.4. First examples.

Examples 1.5. Let X be a non-empty set.

- 1) The pair $(X, \mathrm{id}_{X \times X})$ is a set-theoretic solution to the Yang–Baxter equation. Note that $(X, \mathrm{id}_{X \times X})$ is not non-degenerate, since $\lambda_x(y) = x$ and $\rho_y(x) = y$, for all $x, y \in X$.
- 2) Let $\tau: X \times X \to X \times X$ be the flip map, i.e. $\tau(x,y) = (y,x)$ for all $x,y \in X$. Then, the pair (X,τ) is a set-theoretic solution to the Yang-Baxter equation. Moreover, it is non-degenerate since $\lambda_x = \rho_x = \mathrm{id}_X$ for all $x \in X$.
- 3) Let λ, ρ be permutaions of X. Then $r(x,y) = (\lambda(y), \rho(x))$ is a non-degenerate set-theoretic solution to the Yang–Baxter equation if and only if $\lambda \rho = \rho \lambda$. Morever, (X,r) is involutive if and only if $\rho = \lambda^{-1}$. The solution (X,r) is called a *permutational solution* or a *Lyubashenko's solution*.

If, on the set X, we have a bit more structure, we can define some more sophisticated solutions.

Example 1.6. Let G be a group and, let

$$r_1(x,y) = (y,y^{-1}xy)$$

 $r_2(x,y) = (x^2y,y^{-1}x^{-1}y).$

Then (X, r_1) and (X, r_2) are bijective non-degenerate set-theoretic solutions to the Yang–Baxter equation.

§ 1.5. A characterisation.

PROPOSITION 1.7. Let X be a non-empty set and $r: X \times X \to X \times X$ be a map, written ase $r(x,y) = (\lambda_x(y), \rho_y(x))$. Then r satisfies equation 1.1 if and only if

1)
$$\lambda_x \lambda_y = \lambda_{\lambda_x(y)} \lambda_{\rho_y(x)}$$

2)
$$\lambda_{\rho_{\lambda_y(z)}(x)}^{\gamma} \rho_z(y) = \rho_{\lambda_{\rho_y(x)}(z)} \lambda_x(y)$$

3)
$$\rho_z \rho_y = \rho_{\rho_z(y)} \rho_{\lambda_y(z)}$$

for all $x, y, z \in X$.

In particular, (X,r) is a solution to the Yang–Baxter equation when r is bijective.

PROOF. Let us write $r_1 = r \times id$ and $r_2 = id \times r$. Then

$$r_1 r_2 r_1(x, y, z) = r_1 r_2(\lambda_x(y), \rho_y(x), z)$$

$$= r_1(\lambda_x(y), \lambda_{\rho_y(x)}(z), \rho_z \rho_y(x))$$

$$= (\lambda_{\lambda_x(y)} \lambda_{\rho_y(x)}(z), \rho_{\lambda_{\rho_y(x)}(z)} \lambda_x(y), \rho_z \rho_y(x)),$$

and

$$r_2 r_1 r_2(x, y, z) = r_2 r_1(x, \lambda_y(z), \rho_z(y))$$

$$= r_2(\lambda_x \lambda_y(z), \rho_{\lambda_y(z)}(x), \rho_z(y))$$

$$= (\lambda_x \lambda_y(z), \lambda_{\rho_{\lambda_y(z)}(x)} \rho_z(y), \rho_{\rho_z(y)} \rho_{\lambda_y(z)}(x)).$$

Therefore $r_1r_2r_1 = r_2r_1r_2$ if and only if 1),2) and 3) hold.

EXERCISE 1.8. Let (X,r) be a set-theoretic solution to the Yang–Baxter equation. Define for all $x, y \in X$

$$\bar{r}(x,y) = \tau r \tau(x,y) = (\rho_x(y), \lambda_y(x)).$$

Then (X, \bar{r}) is a set-theoretic solution to the Yang–Baxter equation.

§ 1.6. Shelfs and racks.

EXERCISE 1.9. Let X be a non-empty set. Let $\triangleleft: X \times X \to X$ be a binary operation and define $r: X \times X \to X \times X$ such that $r(x,y) = (y,x \triangleleft y)$. Then r satisfies equation 1.1 if and only if $(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$ holds for all $x,y,z \in X$. Moreover, r is bijective if and only if the maps $\rho_y: X \to X, x \mapsto x \triangleleft y$ are bijective.

DEFINITION 1.10. A *(right) shelf* is a pair (X, \triangleleft) where X is a non-empty set and \triangleleft is a binary operation such that

$$(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z).$$

If, in addition, the maps $\rho_y: X \to X, x \mapsto x \triangleleft y$ are bijective for all $y \in X$, then (X, \triangleleft) is called a *(right) rack*.

PROPOSITION 1.11. Let X be a non-empty set with a binary operation $\triangleleft : X \times X \to X$. Then $r(x,y) = (y,x \triangleleft y)$ is a set-theoretic solution to the Yang–Baxter equation if and only if (X,\triangleleft) is a rack.

Proof. Follows from exercise 1.9.

EXERCISE 1.12. Let G be a group. Then (G, r) where $r(x, y) = (y, y^{-1}xy)$ is a non-degenerate set-theoretic solution to the Yang–Baxter equation.

Convention 2. From now on, a *solution* will always mean a non-degenerate set-theoretic solution to the Yang–Baxter equation.

§ 1.7. An intriguing connection between group actions and solutions. The following theorem is the core result of the paper [4] by Lu, Yan Zhu.

Theorem 1.13. Let G be a group, let $\lambda: G \times G \to G, (x,y) \mapsto \lambda_x(y)$ a left group action of G on itself as a set and $\rho: G \times G \to G, (x,y) \mapsto \rho_y(x)$ a right group action of G on itself as a set. If the "compatibility" condition

$$(1.2) uv = \lambda_u(v)\rho_v(u)$$

holds, then (G,r), where

$$r: G \times G \to G \times G$$
, $(x,y) \mapsto (\lambda_x(y), \rho_y(x))$

is a solution.

Exercise 1.14. Prove Theorem 1.13

§ 1.8. Radical rings.

Definition 1.15. A non-empty set R with two binary operations the addition + (addition) and the multiplication \cdot is a *ring* if

- \bullet (R,+) is an abelian group,
- (R, \cdot) is a semigroup (i.e. \cdot is associative),
- The multiplication is distributive with respect to the addition, i.e.

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 (left distributivity)
 $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ (right distributivity)

for all $a, b, c \in R$.

A ring $(R, +, \cdot)$ is *unitary* if there is an element 1 in R such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in R$ (i.e., 1 is the *multiplicative identity*).

Let *R* be a non-unitary ring. Consider $R_1 = \mathbb{Z} \times R$ with the addition defined component-wise and multiplication

$$(k,a)(l,b) = (kl,kb + la + ab)$$

for all $k, l \in \mathbb{Z}$ and $a, b \in R$.

Then R_1 is a ring and (1,0) is its multiplicative identity.

Note that $\{0\} \times R$ is isomorphic to R as non-unitary rings.

EXERCISE 1.16. Let *R* be a non-unitary ring. Consider $R_1 = \mathbb{Z} \times R$ as before. If $(k, x) \in R_1$ is invertible, then $k \in \{1, -1\}$.

DEFINITION 1.17. Let R be a unitary ring. The (Jacobson) radical J(R) of R is defined as the intersection of all maximal left ideals¹ of R.

Exercise 1.18. Let *R* be a unitary ring.

- 1) Prove that J(R) in an ideal of R.
- 2) Prove that $x \in J(R)$ if and only if 1 + rx is invertible for all $r \in R$.

DEFINITION 1.19. A non-unitary ring R is a (Jacobson) radical ring if it is isomorphic to the Jacobson radical of a unitary ring.

Proposition 1.20. Let R be a non-unitary ring. The following statements are equivalent.

- 1) R is a radical ring.
- **2)** For all $a \in R$ there exists a unique $b \in R$ such that a + b + ab = a + b + ba = 0.
- **3**) R is isomorphic to $J(R_1)$.

PROOF. Let us first prove that 1) implies 2). Let M be a unitary ring such that R is isomorphic to its Jacobson radical J(M) and let $\psi: R \to M$ be a homomorphism such that $\psi(R)$ is isomorphic to J(M). Now, if $a \in R$, then $\psi(a) \in J(M)$. By Exercise 1.18, $1 + \psi(a)$ is invertible, i.e. there exists $c \in M$ such that

$$(1 + \psi(a))(1 + c) = 1 = (1 + c)(1 + \psi(a)).$$

It follows that $c \in J(M)$, i.e. $c = \psi(b)$ for some $b \in R$. Moreover, since ψ is a homomorphism

$$1 = (1 + \psi(a))(1 + c) = (1 + \psi(a))(1 + \psi(b))$$

= 1 + \psi(a) + \psi(b) + \psi(a)\psi(b) = 1 + \psi(a + b + ab)

and

$$1 = (1+c)(1+\psi(a)) = (1+\psi(b))(1+\psi(a))$$

= 1+\psi(b)+\psi(a)+\psi(b)\psi(a) = 1+\psi(a+b+ba).

Hence, 2) holds.

Now let us prove 2) implies 3). Let $a \in R$, we aim to prove that $(1, a) \in R_1$ is invertible. By 2) there exists $b \in R$ such that

$$(1,a)(1,b) = (1,a+b+ab) = (1,0)$$

 $(1,b)(1,a) = (1,b+a+ba) = (1,0).$

Now, consider $(k,a) \in J(R_1)$. We want to prove that k = 0, i.e. $J(R_1) \subseteq \{0\} \times R$. Since $(k,a) \in J(R_1)$ follows that (1,0) + (3,0)(k,a) = (1+3k,3a) is invertible by Exercise 1.18, and so k = 0. Therefore $J(R_1) \subseteq \{0\} \times R$. Moreover, let $(0,R) \in \{0\} \times R$. then

$$(1,0) + (k,a)(0,x) = (1,0) + (0,kx+ka) = (1,kx+ka)$$

which is invertible. So $(0,x) \in J(R_1)$. Finally the implication 3) implies 1) is trivially true. \Box

DEFINITION 1.21. Let R be any ring. Define on R the binary operation \circ called the *adjoint multiplication* of R

$$a \circ b = a + b + ab$$
.

for all $a, b \in R$.

¹A *left ideal* of R is an additive subgroup I of R such that $ax \in I$ for all $a \in R$ and $x \in I$.

LEMMA 1.22. Then (R, \circ) is a monoid with neutral element 0.

Exercise 1.23. Prove Lemma 1.22.

Convention 3. If $a \in R$ is invertible in the monoid (R, \circ) , we will denote by a' its inverse. Examples 1.24.

- 1) Let p be a prime and let $A = \mathbb{Z}/(p^2) = \mathbb{Z}/p^2\mathbb{Z}$ be the ring of integers modulo p^2 . Then (A,+) with a new multiplication * defined by a*b=pab is a radical ring. In this case, $a \circ b = a+b+pab$, and $a' = -a+pa^2$.
- 2) Let *n* be an integer such that n > 1. Let

$$A = \left\{ \frac{nx}{ny+1} : x, y \in \mathbb{Z} \right\} \subseteq \mathbb{Q}.$$

A is a (non-unitary) subring of \mathbb{Q} . In fact, A is a radical ring. A straightforward computation shows

$$\left(\frac{nx}{ny+1}\right)' = \frac{-nx}{n(x+y)+1}.$$

§ 1.9. Involutive solutions. In [5], Rump proved that radical rings provide examples of involutive solutions.

Definition 1.25. A solution (X,r) is said to be *involutive* if $r^2 = id_{X \times X}$.

Proposition 1.26. Let R be a radical ring. Then (R,r), where

$$(1.3) r(x,y) = (-x+x\circ y, (-x+x\circ y)'\circ x\circ y)$$

is an involutive solution to the YBE.

EXERCISE 1.27. Let X be a non-empty set and $\lambda_x : X \to X$ bijective maps. Define $r : X \times X \to X \times X$ by $r(x,y) = (\lambda_x(y), \lambda_{\lambda_x(y)}^{-1}(x))$. Prove that (X,r) is an involutive map satisfying (1.1) if and only if

$$\lambda_x \lambda_{\lambda_x^{-1}(y)} = \lambda_y \lambda_{\lambda_y^{-1}(x)},$$

for all $x, y \in X$.

§ 1.10. Skew braces. Do we need radical rings to produce solutions of the form (1.3)?

DEFINITION 1.28. A *skew* (*left*) *brace* is a triple $(A, +, \circ)$, where (A, +) and (A, \circ) are (not necessarily abelian) groups and

$$(1.4) a \circ (b+c) = (a \circ b) - a + (a \circ c)$$

holds for all $a, b, c \in A$.

The groups (A, +) and (A, \circ) are respectively the *additive* and *multiplicative* group of the skew brace A.

One says that a skew left brace A is of abelian type (it also is simply called a left brace) if (A, +) is an abelian group. In general, the properties of the additive group determine the type of a skew brace².

²Such terminology is borrowed from Hopf-Galois extension where the additive group determines the type of the extension.

Remark 1.29. Even though we use the additive notation, the group (A, +) is not necessarily abelian.

Convention 4. The identity of (A, +) will be denoted by 0 and the inverse of an element a will be denoted by -a.

As for radical rings, we write a' to denote the inverse of a with respect to the circle operation \circ .

Right left braces are defined similarly.

DEFINITION 1.30. A *skew right brace* is a triple $(A, +, \circ)$, where (A, +) and (A, \circ) are groups and

$$(a+b) \circ c = a \circ c - c + b \circ c.$$

holds for all $a, b, c \in A$.

Exercise 1.31. Prove that there exists a bijective correspondence between skew left braces and skew right braces.

Convention 5. From now on, with the term skew brace, we will always mean a skew left brace.

Examples 1.32. Let (A, +) be a group.

- 1) Then A is a skew brace with $a \circ b = a + b$ for all $a, b \in A$. Such a skew brace is called a *trival skew brace*.
- 2) Similarly, the operation $a \circ b = b + a$ turns A into a skew brace. Such a skew brace is called an *almost trivial skew brace*.

§ 1.11. First examples.

EXAMPLE 1.33. Let (A, +) be a group. Then A is a skew brace with $a \circ b = a + b$ for all $a, b \in A$. Such a skew brace is called a *trivial skew brace*.

EXAMPLE 1.34. Let (A, +) be a group. The operation $a \circ b = b + a$ turns A into a skew brace. Such a skew brace is called an *almost trivial skew brace*.

DEFINITION 1.35. Let A and B be skew braces. Then $A \times B$ with

$$(a,b)+(a_1,b_1)=(a+a_1,b+b_1),$$

 $(a,b)\circ(a_1,b_1)=(a\circ a_1,b\circ b_1),$

is a skew brace. This is the *direct product* of the skew braces A and B.

Exercise 1.36. Let (A,+) and (M,+) be groups and let $\alpha: A \to \operatorname{Aut}(M)$ be a group homomorphism. Prove that $M \times A$ with

$$(x,a) + (y,b) = (x+y,a+b),$$

 $(x,a) \circ (y,b) = (x + \alpha_a(y), a+b)$

is a skew brace. Similarly, prove that $M \times A$ with

$$(x,a) + (y,b) = (x + \alpha_a(y), a + b),$$

 $(x,a) \circ (y,b) = (x + y, b + a)$

is a skew brace.

EXERCISE 1.37. Let (A, +) be a group with an *exact factorisation* through the subgroups B and C (i.e. B and C are subgroups of A such that $B \cap C = \{0\}$ and A = B + C). This means that each $x \in A$ can be written in a unique way as $x = x_B + x_C$, for some $x_B \in B$ and $x_C \in C$. Set

$$x \circ y = x_B + y + x_C$$
.

Prove that

- 1) (A, \circ) is a group isomorphic to $B \times C$, the direct product of B and C.
- 2) $(A, +, \circ)$ is a skew brace.

§ 1.12. Basic properties of skew braces.

LEMMA 1.38. Let A be a skew brace. The following statements hold.

- 1) 1 = 0, where 0 denotes the identity of (A, +) and by 1 the identity of (A, \circ) .
- **2)** $-(a \circ b) = -a + a \circ (-b) a$, for all $a, b \in A$.

Proof. By (1.4) we have

$$0 = 1 \circ 0 = 1 \circ (0+0) = 1 \circ 0 - 1 + 1 \circ 0 = -1.$$

Hence 0 = 1. Now, let $a, b \in B$. From what we just proved and by (1.4) we have

$$a = a \circ 0 = a \circ (b - b) = a \circ b - a + a \circ (-b).$$

and 2) follows.

Proposition 1.39. Let A be a skew brace. For each $a \in A$, the map

$$\lambda_a: A \to A, b \mapsto -a + a \circ b$$

is an automorphism of (A, +).

Moreover, the map $\lambda: (A, \circ) \to \operatorname{Aut}(A, +), a \mapsto \lambda_a$, is a group homomorphism.

PROOF. First, let us prove that λ_a is an endomorphism of (A, +), for all $a \in A$. We have that

$$\lambda_a(b+c) = -a + a \circ (b+c) \stackrel{(1.4)}{=} -a + a \circ b - a + a \circ c,$$

for all $b, c \in A$. Now, for any $b \in A$,

$$\lambda_0(b) = -0 + 0 \circ b \stackrel{1=0}{=} b,$$

hence $\lambda_0 = \mathrm{id}_A$. Moreover, for any $a, b, c \in A$,

$$\lambda_a\lambda_b(c) = -a + a \circ (-b + b \circ c) = -a + a \circ (-b) - a + a \circ b \circ c = -(a \circ b) + a \circ b \circ c = \lambda_{a \circ b}(c).$$

Hence, $\lambda_a \lambda_b = \lambda_{a \circ b}$, for all $a, b \in A$. It follows that for any $a \in A$, the map λ_a is bijective with inverse $\lambda_{a'}$.

Exercise 1.40. Let A be a skew brace. Prove that

$$a \circ (a'+b) = \lambda_a(b),$$

for all $a, b \in A$. As a consequence, we have that $\rho_b(a) = (a' + b)' \circ b$, for all $a, b \in A$.

Proposition 1.41. Let A be a brace. For each $a \in A$, the map

$$\rho_b: A \to A, \quad \mapsto (\lambda_a(b))' \circ a \circ b,$$

is bijective. Moreover, the map $\rho: (A, \circ) \to \operatorname{Sym}(A)$, $b \mapsto \rho_b$, satisfies $\rho_c \rho_b = \rho_{b \circ c}$, for all $b, c \in A$.

PROOF. By Exercise 1.40, we get that $\rho_b(a) = (a'+b)' \circ b$, for all $a, b \in A$. Now, for all $a \in A$, we have that

$$\rho_0(a) = (a'+0)' \circ 0 = a,$$

i.e., $\rho_0 = \mathrm{id}_A$. Moreover, for all $a, b, c \in A$, we have

$$\rho_{c}\rho_{b}(a) = ((\rho_{b}(a))' + c)' \circ c = (((a'+b)' \circ b)' + c)' \circ c
= ((b' \circ (a'+b) + c)' \circ c = (b' \circ a' - b + c)' \circ c
= (b' \circ (a'+b \circ c))' \circ c = (a'+b \circ c)' \circ b \circ c
= \rho_{b \circ c}(a),$$

i.e., $\rho_{b \circ c} = \rho_c \rho_b$. It also follows that ρ_b is bijective with inverse $\rho_{b'}$ for every $b \in A$.

§ 1.13. Skew braces and solutions. Now we can state the theorem that gives a first connection of skew braces with solutions. The following result has been proved by Guarnieri and Vendramin in [3] extending an analogous result proved by Rump in [5] for involutive solutions.

Theorem 1.42. Let A be a skew brace. Then (A, r_A) , where

$$r_A(x,y) = (-x + x \circ y, (-x + x \circ y)' \circ x \circ y)$$

is a bijective solution to the YBE. Moreover, (A, r_A) is involutive if and only if A is of abelian type.

Proof. As before, let us set

$$\lambda_x(y) = -x + x \circ y$$

$$\rho_y(x) = (\lambda_x(y))' \circ x \circ y.$$

By Proposition 1.39 and Proposition 1.41, we have that $\lambda : A \to \operatorname{Aut}(A, +)$ is a left action of A on itself and $\rho : A \to \operatorname{Sym}(A)$ is a right action of A on itself. Moreover, by definition

$$\lambda_x(y) \circ \rho_y(x) = x \circ y,$$

i.e. condition (1.2) in Theorem 1.13 is satisfied. Hence, by Theorem 1.13, (A, r_A) is a solution. Now let us compute r_A^2 ,

$$r_A^2(x,y) = (-\lambda_x(y) + \lambda_x(y) \circ \rho_y(x), (-\lambda_x(y) + \lambda_x(y) \circ \rho_y(x))' \circ \lambda_x(y) \circ \rho_y(x)).$$

First if we assume (A, +) abelian, we have

$$-\lambda_{x}(y) + \lambda_{x}(y) \circ \rho_{y}(x) = -(-x + x \circ y) + x \circ y = -(x \circ y) + x + x \circ y$$

$$\stackrel{\text{Lemma 1.38}}{=} -x + x \circ (-y) + x \circ y = x \circ (-y) - x + x \circ y$$

$$\stackrel{(1.4)}{=} x \circ (-y + y) = x$$

and

$$(-\lambda_x(y) + \lambda_x(y) \circ \rho_y(x))' \circ \lambda_x(y) \circ \rho_y(x) = x' \circ x \circ y = y.$$

Hence, (A, r_A) is involutive.

Now let us assume (A, r_A) involutive. In particular, for all $x, y \in A$

$$x = -\lambda_x(y) + \lambda_x(y) \circ \rho_y(x) = -(x \circ y) + x + x \circ y.$$

For the arbitrary of y and since (A, \circ) is a group, it follows x = -y + x + y, for all $x, y \in A$, i.e. (A, +) is abelian.

Exercise 1.43. Let *A* be a skew brace. Prove that

$$a+b=a\circ\lambda_a^{-1}(b)$$

and

$$a \circ b = a + \lambda_a(b)$$

§ 1.14. Subbraces and ideals.

DEFINITION 1.44. Let *A* be a skew brace.

A subbrace f A is a subset B of A such that (B,+) is a subgroup of (A,+) and (B,\circ) is a subgroup of (A,\circ) .

A *left ideal* of *A* is a subgroup (I, +) of (A, +) such that $\lambda_b(I) \subseteq I$ for all $b \in B$, i.e. $\lambda_b(x) \in I$ for all $b \in A$ and $x \in I$.

A strong left ideal of A is a left ideal I of A such that (I, +) is a normal subgroup of (A, +).

LEMMA 1.45. A left ideal I of a skew brace A is a subbrace of B.

PROOF. We need to prove that (I, \circ) is a subgroup of (A, \circ) . Clearly I is non-empty, as it is an additive subgroup of A. If $x, y \in I$, then

$$x \circ y = x - x + x \circ y = x + \lambda_x(y) \in I + I = I$$

and

$$x'=-\lambda_{x'}(x)\in I.$$

Exercise 1.46. Let *A* be a skew brace. Then

$$Fix(A) = \{b \in B \colon \lambda_x(b) = b, \ \forall b \in A\}$$

is a left ideal of A.

DEFINITION 1.47. An *ideal* of a skew brace A is a strong left ideal I of A such that (I, \circ) is a normal subgroup of (A, \circ) .

In general, left ideals, strong left ideals and ideals are different notions.

Definition 1.48. Let A be a skew brace. The subset $Soc(A) = \ker \lambda \cap Z(A, +)$ is the *socle* of A.

PROOF. First, $Soc(A) \neq s$, since $0 \in Soc(A)$. Moreover, if $x \in Soc(A)$, then $x' = \lambda_x(x') = -x$. It follows that if $x, y \in Soc(A)$ then

$$\lambda_{x-y} = \lambda_{x \circ y'} = \lambda_x \lambda_{y'} = \lambda_x \lambda_y^{-1} = \mathrm{id}_A,$$

11

and, clearly $x - y \in Z(A, +)$. Hence, Soc(A) is an additive subgroup of A and since Soc(A) is a subgroup of Z(A, +) it is also a normal additive subgroup of A. Moreover, for all $x \in Soc(A)$ and $a \in A$:

$$\lambda_a(x) = a \circ x - a$$

$$\lambda_a(x) = a \circ x \circ a'.$$

For the first equality we have that applying Exercise 1.43

$$\lambda_a(x) = a \circ (a' + x) = a \circ (x + a') \stackrel{\text{(1.4)}}{=} a \circ x - a,$$

for the second equality

$$\lambda_a(x) = a \circ (a' + x) = a \circ (x \circ \lambda_x(a')) = a \circ x \circ a'.$$

It follows that, for all $x \in Soc(A)$ and $a, b \in A$, we have

$$\lambda_{\lambda_a(x)} \stackrel{\text{(1.5)}}{=} \lambda_{a \circ x \circ a'} = \lambda_a \lambda_x \lambda_a^{-1} = \lambda_a \lambda_a^{-1} = \mathrm{id}_A$$

and, by Exercise 1.43,

$$b + \lambda_a(x) = b \circ \lambda_b^{-1} \lambda_a(x) = b \circ \lambda_{b' \circ a}(x) \stackrel{(1.6)}{=} a \circ x \circ a \circ b$$
$$\stackrel{(1.6)}{=} \lambda_a(x) \circ b = \lambda_a(x) + \lambda_{\lambda_a(x)}(b) = \lambda_a(x) + b,$$

i.e., $\lambda_a(x) \in Z(A, +)$. Finally, it also follows that for any $a \in A$ and $x \in Soc(A)$, $a \circ x \circ a' \in Soc(A)$. Therefore, Soc(A) is an ideal of A.

Exercise 1.49. Let *A* be a skew brace. Prove that $Soc(A) = \ker \lambda \cap \ker \rho$.

DEFINITION 1.50. Let *A* be a skew brace. The subset $Ann(A) = Soc(A) \cap Z(B, \circ)$ is the *annihilator* of *B*.

Proposition 1.51. The annihilator of a skew brace A is an ideal of A.

PROOF. First, if $x, y \in \text{Ann}(A)$, then $x - y \in \text{Soc}(A)$ and for any $a \in A$

$$(x-y) \circ a = x \circ y' \circ a = x \circ a \circ y' a \circ x \circ y' = a \circ (x-y),$$

i.e. $x - y \in \text{Ann}(A)$. Now, since $\text{Ann}(A) \subseteq Z(A, +) \cap Z(A, \circ)$, we only need to prove $\lambda_a(x) \in \text{Ann}(A)$, for all $x \in \text{Ann}(A)$ and $a \in A$. By (1.5) we have that $\lambda_a(x) = a \circ x \circ a' = x \circ a \circ a' = x \in \text{Ann}(A)$. \square

§ 1.15. The isomorphism theorems. If *A* is a skew brace and *I* is an ideal of *A*, then $a+I=a\circ I$ for all $a\in A$.

This allows us to prove that there exists a unique skew brace structure over A/I such that the map

$$A \mapsto A/I$$
, $a \mapsto a+I = a \circ I$,

is a homomorphism of skew braces.

DEFINITION 1.52. The skew brace A/I is the *quotient skew brace* of A modulo I.

It is possible to prove the isomorphism theorems for skew braces. (See Exercises 1.62–1.65).

§ 1.16. Exercises and Problems.

Exercise 1.53. Let (X,r) be a solution. Define

$$x \triangleleft y = \lambda_y \rho_{\lambda_x^{-1}(xy)}(x).$$

Prove that (X, \triangleleft) is a shelf.

EXERCISE 1.54. Let p be a prime number and let $A = \mathbb{Z}/(p^2)$ the ring of integers modulo p^2 . Prove that A with respect to the usual sum and the operation given by $x \circ y = x + y + pxy$ is a skew brace.

Exercise 1.55. Let *A* be a skew brace. Prove that

$$\rho_b(a) = \lambda_{\lambda_a(b)}^{-1}(-(a \circ b) + a + a \circ b)$$

Exercise 1.56. Let (A, +) be a (not necessarily abelian) group.

1) Prove that a structure of skew brace over A is equivalent to an operation $A \times A \to A$ $(a,b) \mapsto a * b$, such that

$$a*(b+c) = a*b+b+a*c-b$$

holds for all $a, b, c \in A$ and the operation $a \circ b = a + a * b + c$ turns A into a group.

2) Deduce that radical rings are examples of skew braces.

EXERCISE 1.57. Let A be a skew brace and $a*b = \lambda_a(b) - b = -a + a \circ b - b$. Prove the following identities:

- 1) a*(b+c) = a*b+b+a*c-b.
- **2)** $(a \circ b) * c = (a * (b * c)) + b * c + a * c$.

EXERCISE 1.58. Let $(A, +, \circ)$ be a triple, where (A, +) and (A, \circ) are groups, and $\lambda : A \to \operatorname{Sym}(A)$, $a \mapsto \lambda_a$ with $\lambda_a(b) = -a + a \circ b$. Prove that the following statements are equivalent:

- 1) $(A, +, \circ)$ is a skew brace.
- **2)** $\lambda_a \lambda_b(c) = \lambda_{a \circ b}(c)$, for all $a, b, c \in A$.
- 3) $\lambda_a(b+c) = \lambda_a(b) + \lambda_a(c)$, for all $a,b,c \in A$.

Exercise 1.59 (The semidirect product). Let A,B be skew braces. Let $\alpha:(B,\circ)\to \operatorname{Aut}(A,+,\circ)$ be a homomorphism of groups. Define two operations on $A\times B$ by

$$(a,x) + (b,y) = (a+b,x+y)$$

$$(a,x) \circ (b,y) = (a \circ \alpha_x(b), x \circ y),$$

for all $a, b \in A$ and $x, y \in B$. Prove that $(A \times B, +, \circ)$ is a skew brace.

This skew brace is the *semidirect product* of the skew brace A by B via α , and it is denoted by $A \rtimes_{\alpha} B$.

EXERCISE 1.60. Consider the semidirect product $A = \mathbb{Z}/(3) \rtimes \mathbb{Z}/(2)$ of the trivial skew braces $\mathbb{Z}/(3)$ and $\mathbb{Z}/(2)$ via the non-trivial action of $\mathbb{Z}/(2)$ over $\mathbb{Z}/(3)$. Prove that Fix(B) is not an ideal of A.

EXERCISE 1.61. A map $f: A \to B$ between two skew braces A and B is a homomorphism of skew braces if f(a+b) = f(a) + f(b) and $f(a \circ b) = f(a) \circ f(b)$, for all $a, b \in A$. The kernel of f is

$$\ker f = \{ a \in A : f(a) = 0 \}.$$

Let $f: A \to B$ be a homomorphism of two skew braces A and B. Prove that ker f is an ideal of A.

Exercise 1.62. Let $f: A \to B$ be a homomorphism of skew braces. Prove that $A / \ker f \cong f(A)$.

EXERCISE 1.63. Let *A* be a skew brace and let *B* be a subbrace of *A*. Prove that if *I* is an ideal of *A*, then $B \circ I$ is a subbrace of *A*, $B \cap I$ is an ideal of *B* and $(B \circ I)/I \cong B/(B \cap I)$.

EXERCISE 1.64. Let A be a skew brace and I and J be ideals of A. Prove that if $I \subseteq J$, then $A/J \cong (A/I)/(J/I)$.

EXERCISE 1.65. Let A be a skew brace and let I be an ideal of A. Prove that there is a bijective correspondence between (left) ideals of A containing I and (left) ideals of A/I.

EXERCISE 1.66. Let A be a skew brace and I be a characteristic subgroup of the additive. Prove that I is a left ideal of A.

EXERCISE 1.67. Let *A* and *B* be skew braces. Prove that $f : A \to B$ is a homomorphism of skew braces if and only if f(a+b) = f(a) + f(b) and $f(\lambda_a(b)) = \lambda_{f(a)}(f(b))$, for all $a, b \in B$.

Some solutions

1.9. For every $x, y \in X$ let us write $\lambda_x = \mathrm{id}_X$ and $\rho_y(x) = x \triangleleft y$. We want to apply Proposition 1.7. First note that clearly $\lambda_x \lambda_y = \mathrm{id}_X = \lambda_{\lambda_x(y)} \lambda_{\rho_y(x)}$, i.e. 1) is satisfied. Moreover, $\lambda_{\rho_{\lambda_y(z)}(x)} \rho_z(y) = \rho_{\lambda_{\rho_y(x)}(z)} \lambda_x(y)$ reduce to the trivial identity $\rho_z(y) = \rho_z(y)$. Finally, $\rho_z \rho_y(x) = \rho_{\rho_z(y)} \rho_{\lambda_y(z)}(x)$ is equivalent to $(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.

Now assume that r is bijective. If $x_1, x_2 \in X$ such that $\rho_y x_1 = \rho_y(x_2)$, then $r(x_1, y) = r(x_2, y)$ and so $x_1 = x_2$, i.e. ρ_y is injective. Now, let $z \in X$ and let $x \in X$ such that r(x, y) = (y, z). It follows that $\rho_y(x) = z$ and ρ_y is bijective. Similarly one obtains the converse.

1.14. Let us write $r_1 = r \times id$ and $r_2 = id \times r$,

$$r_1 r_2 r_1(x, y, z) = (\lambda_{\lambda_x(y)} \lambda_{\rho_y(x)}(z), \rho_{\lambda_{\rho_y(x)}(z)} \lambda_x(y), \rho_z \rho_y(x))$$

= $(u_1, v_1, w_1),$

and

$$r_2 r_1 r_2(x, y, z) = (\lambda_x \lambda_y(z), \lambda_{\rho_{\lambda_y(z)}(x)} \rho_z(y), \rho_{\rho_z(y)} \rho_{\lambda_y(z)}(x))$$

= (u_2, v_2, w_2) .

Then we obtain

$$u_1 v_1 w_1 = \lambda_{\lambda_x(y)} \lambda_{\rho_y(x)}(z) \rho_{\lambda_{\rho_y(x)}(z)} \lambda_x(y) \rho_z \rho_y(x)$$

$$\stackrel{(1.2)}{=} \lambda_x(y) \lambda_{\rho_y(x)}(z) \rho_z \rho_y(x)$$

$$\stackrel{(1.2)}{=} \lambda_x(y) \rho_y(x) z$$

$$\stackrel{(1.2)}{=} xyz$$

and, similarly

$$u_{2}v_{2}w_{2} = \lambda_{x}\lambda_{y}(z)\lambda_{\rho_{\lambda_{y}(z)}(x)}\rho_{z}(y)\rho_{\rho_{z}(y)}\rho_{\lambda_{y}(z)}(x)$$

$$\stackrel{(1.2)}{=} \lambda_{x}\lambda_{y}(z)\rho_{\lambda_{y}(z)}(x)\rho_{z}(y)$$

$$\stackrel{(1.2)}{=} x\lambda_{y}(z)\rho_{z}(y)$$

$$\stackrel{(1.2)}{=} xv_{z}.$$

Hence

$$(1.7) u_1 v_1 w_1 = xyz = u_2 v_2 w_2.$$

Moreover, since λ is a left action of G on itself, we get

$$u_1 = \lambda_{\lambda_x(y)} \lambda_{\rho_y(x)}(z) = \lambda_{\lambda_x(y)\rho_y(x)}(z) \stackrel{\text{(1.2)}}{=} \lambda_{xy}(z) = \lambda_x \lambda_y(z) = u_2.$$

Similarly, since ρ is a right action

$$w_2 = \rho_{\rho_z(y)}\rho_{\lambda_y(z)}(x) = \rho_{\lambda_y(z)\rho_z(y)}(x) \stackrel{\text{(1.2)}}{=} \rho_{yz}(x) = \rho_z\rho_y(x) = w_1.$$

From (1.7) and G being a group it follows that also $v_1 = v_2$. Moreover, λ_x and ρ_x are bijective maps by assumption. It is left to prove that r is bijective. First let us write r(u,v) = (x,y), hence

 $\lambda_u(v) = x$, $\rho_v(u) = y$, and uv = xy. Now, since λ is an action and in particular $\lambda_v^{-1} = \lambda_{v-1}$, we get

$$\lambda_{y}(v^{-1})u = \lambda_{y}(v^{-1})\rho_{v}^{-1}(y) = \lambda_{y}(v^{-1})\rho_{v^{-1}}(y) \stackrel{\text{(1.2)}}{=} yv^{-1} = x^{-1}u = (\lambda_{u}(v))^{-1}u,$$

and so

$$(1.8) (\lambda_u(v))^{-1} = \lambda_{\rho_v(u)}(v^{-1}).$$

Similarly, expanding $v\rho_x(u^{-1})$ one proves

$$(\rho_{\nu}(u))^{-1} = \rho_{\lambda_{u}(\nu)}(u^{-1}).$$

Define

$$r'(x,y) = ((\rho_{x^{-1}}(y^{-1}))^{-1}, (\lambda_{y^{-1}}(x^{-1}))^{-1}).$$

Then

$$\begin{split} rr'(x,y) &= (\lambda_{(\rho_{x^{-1}}(y^{-1}))^{-1}}((\lambda_{y^{-1}}(x^{-1}))^{-1}), \rho_{(\lambda_{y^{-1}}(x^{-1}))^{-1}}((\rho_{x^{-1}}(y^{-1}))^{-1})) \\ &\stackrel{(1.8) \& (1.9)}{=} (\lambda_{\rho_{x^{-1}}(y^{-1})}^{-1} \lambda_{\rho_{x^{-1}}(y^{-1})}(x), \rho_{\lambda_{y^{-1}}(x^{-1})}^{-1} \rho_{\lambda_{y^{-1}}(x^{-1})}(y)) \\ &= (x,y). \end{split}$$

And

$$\begin{split} r'r(x,y) &= ((\rho_{(\lambda_x(y))^{-1}}((\rho_y(x))^{-1}))^{-1}, (\lambda_{(\rho_y(x))^{-1}}((\lambda_x(y))^{-1}))^{-1}) \\ &\stackrel{(1.8)\&(1.9)}{=} ((\rho_{\lambda_x(y)}^{-1}\rho_{\lambda_x(y)}(x^{-1}))^{-1}, (\lambda_{\rho_y(x)}^{-1}\lambda_{\rho_y(x)}\lambda_{\rho_y(x)}(y^{-1}))^{-1}) \\ &= ((x^{-1})^{-1}, (y^{-1})^{-1}) = (x,y). \end{split}$$

1.37. Consider the map $\varphi: A \to B \times C$, $(x) \mapsto (x_B, -x_C)$. Clearly, φ is bijective. Moreover, for $x, y \in A$ we have

$$\varphi(x \circ y) = \varphi(x_B + y + x_C) = \varphi(x_B + y_B + y_C + x_C) = (x_B + y_B, -(y_C + x_C)) = (x_B + y_B, -x_C - y_C),$$
 and

$$\varphi(x) + \varphi(y) = (x_B, -x_C) + (y_B, -y_C) = (x_B + y_B, -x_C - y_C).$$

Hence φ is an isomorphism from (A, \circ) to the direct product $B \times C$.

Now, let $x, y, z \in A$. Then

$$x \circ y - x + x \circ z = x_B + y + x_C - (x_B + x_C) + x_B + z + x_C$$

= $x_B + y + z + x_C = x \circ (y + z)$.

Hence $(A, +, \circ)$ is a skew brace.

1.40. Let $a, b, c \in A$. We have that

$$a \circ (a'+b) \stackrel{(1.4)}{=} a \circ a' - a + a \circ b \stackrel{0=1}{=} 0 - a + a \circ b = \lambda_a(b).$$

Hence, $\lambda_a(b) = a \circ (a' + b)$. Moreover,

$$\rho_b(a) = (\lambda_a(b))' \circ a \circ b = (a \circ (a'+b))' \circ a \circ b = (a'+b)' \circ b.$$

1.60. Note that

$$\lambda_{(a,x)}(b,y) = -(a,x) + (a,x) \circ (b,y)$$

$$= -(a,x) + (a+(-1)^x b, x+y)$$

$$= ((-1)^x b, y).$$

and hence $Fix(A) = \{(0,0), (0,1)\}$ is not a normal subgroup of (A, \circ) . In particular, Fix(A) is not an ideal of A.

References

- [1] R. J. Baxter. Eight-vertex model in lattice statistics. *Phys. Rev. Lett.*, 26:832–833, 1971.
- [2] V. G. Drinfeld. On some unsolved problems in quantum group theory. In *Quantum Groups* (*Leningrad 1990*), volume 1510 of *Lecture Notes in Math.*, pages 1–8. Springer, Berlin, 1992.
- [3] L. Guarnieri and L. Vendramin. Skew braces and the Yang-Baxter equation. *Math. Comp.*, 86(307):2519–2534, 2017.
- [4] J.-H. Lu, M. Yan, and Y.-C. Zhu. On the set-theoretical Yang-Baxter equation. Duke Math. J., 104(1):1–18, 2000.
- [5] W. Rump. Braces, radical rings, and the quantum Yang-Baxter equation. J. Algebra, 307(1):153–170, 2007.
- [6] C. N. Yang. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. *Phys. Rev. Lett.*, 19:1312–1315, 1967.

Index

I	S
III Reidemeister move	Set-theoretic solution2Finite2Non-degenerate2Shelf4
R	***
Rack	Yang-Baxter equation