Lecture 17

Topic 12: The split-plot design and its relatives (Part II - Repeated Measures)

Researchers often make multiple measurements on the same experimental unit.

Replications \neq Subsamples

The objectives of subsampling:

- 1. To better estimate the true value of an experimental unit
- **2.** To estimate the components of variance

There is no interest in the effect of time between subsamples on the response variable.

Repeated measures analysis

Researchers often make multiple measurements on the same experimental unit because they are interested in this effect of time.

Plant height *over weeks*Yield of perennial crops *over seasons*Animal growth *over months*Population dynamics *over years*

The objectives of **repeated measures**:

- 1. To characterize the effect of <u>time</u> on the response variable.
- 2. To characterize the interaction of other factors with time on the response variable.

The **split-plot** principle can be applied to experiments where successive observations are made on the same experimental unit over time (i.e. repeated measurements).

1

Some examples:

Repeated harvesting of a perennial crop like alfalfa in a fertilizer study Repeated picking of fruit from the same trees in an irrigation study Repeated weighing of individuals in a nutrition study Repeated bird counts in a restoration ecology study

The experimental units to which the treatment levels are assigned are the "Main plots" (A)

Main Plot treatment levels: Fertilizer levels, irrigation levels, diets,

restoration strategies

Experimental units: One plot, one tree, one person, one site

The several measurements over time are the "Subplots" (B)

Subplot "treatment" levels: Time point 1, Time point 2, ..., Time point b

Repeated measures: A subplot consists of data taken from the entire main plot

Normal split-plot: A subplot consists of data taken from a portion of the main plot

The pattern of dependency among the repeated observations is used to adjust the degree of freedoms in the ANOVA to give approximate tests.

Repeated measures ANOVA

ANOVA table of a repeated measurement analysis

Source	df	SS	MS	Conservative df
Among Experimental Units				
Treatment (A)	a-1	SSA	SSA/(a-1)	
Rep:Trt (Error A)	a(n-1)	SS(MPE)	SS(MPE)/a(n-1)	
Within Experimental Units				
Time (B)	b-1	SSB	SSB /(b-1)	<mark>1</mark>
Treatment:Time (A:B)	(b-1)(a-1)	SSAB	SSAB/(b-1)(a-1)	<mark>a-1</mark>
MSE (Error B)	a(b-1)(n-1)	SS(SPE)	SS(SPE)/a(b-1)(n-1)	<mark>a(n-1)</mark>

Split-plot model: Subplot observations are equally correlated. [Note ANOVA assumes *errors* to be independent, not observations.]

Repeated measures: Subplot observations are not necessarily equally correlated. [Measures close in time are generally more highly correlated than measures far apart in time.]

To compensate for this assumption of uniform correlation across repeated measurements, a **conservative approach** is recommended by many statisticians

Example

An experiment to study the differences in quality of four alfalfa cultivars. Five replications of these four varieties were organized according to a CRD, and four cuttings were made of each replication over time:

```
4 levels of main plot A: Cultivars 1 – 4 4 levels of subplot B: Cut times 1 – 4 (9/10/16, 5/18/17, 6/25/17, 9/16/17)
```

Begin with a standard split-plot analysis.

The output

```
Error: A var:Rep
          Df Sum Sq Mean Sq F value Pr(>F)
                      0.9469
                                7.395 0.00251 **
A var
              2.841
Residuals 16
             2.049
                      0.1280
Error: Within
            Df Sum Sq Mean Sq F value Pr(>F)
B cut
                 37.45
                        12.483 <mark>130.463</mark> <2e-16 ***
A var:B cut
                  0.55
                          0.061
                                  0.636 0.761
              9
Residuals
             48
                  4.59
                          0.096
```

Impose conservative degrees of freedom

Analysis of the main effect of Cultivar (main plot A):

Mean	CV	MSerror	LSD			
2.993789	11.95044	0.128	0.2398399	<	using	MS(A:rep)
					as the	e error

	trt	means	М
1	2	3.269848	a
2	1	3.044449	ab
3	4	2.900750	bc
4	3	2.760109	С

Analysis of the main effect of Time (subplot B):

$$\frac{\texttt{MSerror}}{\texttt{0.287 0.3591347}}$$

Tukey groups

B_cut	means	Grouping
2	4.099587	a
3	2.985440	b
1	2.598901	C
4	2.291229	C

Run standard split-plot analysis

Univariate repeated measures analysis using the ezANOVA() function

If the unadjusted and conservative df approaches produce different conclusions, a more precise test can be obtained using a univariate repeated measures analysis, available in a user-friendly form as part of R's "ez" package.

The output:

```
$ANOVA
      Effect DFn DFd
                        7.3953319 2.511139e-03
                                                    * 0.29959303
       A var
              3 16
                3 48 130.4625662 4.432360e-23
                                                   * 0.84936627
       B cut
4 A var:B cut
                9 48
                        0.6360617 7.605683e-01
                                                     0.07618871
$`Mauchly's Test for Sphericity`
      Effect
       B cut 0.1127544 5.992606e-06
4 A_var:B_cut 0.1127544 5.992606e-06
$`Sphericity Corrections`
                   GGe
                               p[GG] p[GG]<.05
       B cut 0.4984411 1.391816e-12
                                             * 0.5382286 2.031184e-13
4 A_var:B_cut <mark>0.4984411 6.585475e-01</mark>
                                               0.5382286 6.694957e-01
                        Greenhouse-Geisser Epsilon = 0.4984
                            Huynh-Feldt Epsilon = 0.5382
```

The output:

\$ANOVA

Greenhouse-Geisser Epsilon = 0.4984 Huynh-Feldt Epsilon = 0.5382

Compare to the split-plot output (full df):

Error: A var:Rep

Df	Su	ım Sq Me	ean Sq	F value	Pr(>F)
A_var 3	3 2	2.841 (0.9469	7.395	0.00251	* *
B_cut	3	37.45	12.483	130.463	<2e-16	***
A_var:B_cut	9	0.55	0.061	0.636	0.761	
Residuals	48	4.59	0.096			

And the conservative df output:

Error: Within

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
B_cut	1	37.45	37.45	130.463	4.2e-09	***
A_var:B_cut	3	0.55	0.183	<mark>0.636</mark>	0.592	
Residuals	16	4.59	0.287			

This analysis produces the same F values as the previous split-plot analysis but **corrected** p-values for TIME (previous B cut) and TIME:VAR (previous B cut*A var)

Which to use, Split-Plot or REPEATED?

If responses are significant even when the conservative df are used, those conclusions are sound.

In some cases, a repeated measures analysis can solve some problems of correlation; but if many observations are missing, the split-plot approach might offer the only way of analyzing a repeated-measures design.

Are there any other options?

Yes! In some (many) cases, a collection of repeated measures can be distilled into a single response variable that captures the information of interest. By collapsing a suite of repeated measures into a single descriptive number, one can proceed with analyzing the data in more familiar (and robust) ways. Examples:

- 1. Areas (e.g. AUDPC = area under disease progress curve)
- 2. Differences (e.g. change between two time points)
- 3. Trend parameters (e.g. slopes, maxima, minima, decay constants)