

MATDIP301

Third Semester B.E. Degree Examination, December 2012

Advanced Mathematics - I

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions.

- 1 a. Find the modulus and amplitude of the complex number $1 \cos \alpha + i \sin \alpha$ (05 Marks)
 - b. If z_1 and z_2 are two complex numbers, show that $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2\{|z_1|^2 + |z_2|^2\}$.

(05 Marks)

- c. Find the fourth roots of $-1+i\sqrt{3}$. (05 Marks)
- d. If $2\cos\theta = x + \frac{1}{x}$, prove that $2\cos r\theta = x^r + \frac{1}{x^r}$. (05 Marks)
- 2 a. Find the nth derivative of e^{2x} cos³ x. (07 Marks)
 - b. Find the nth derivative of $\frac{x}{x^2 5x + 6}$. (06 Marks)
 - c. If $y = e^{a \sin^{-1} x}$, prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + a^2)y_n = 0$. (07 Marks)
- 3 a. Find the angle between the pair of curves $r = 6 \cos \theta$, $r = 2(1 + \cos \theta)$. (07 Marks)
 - b. Find the pedal equation of the curve $r^2 = a^2 \sin 2\theta$.

- (06 Marks)
- c. Obtain the Maclaurin's series expansion of the function $\sqrt{1 + \sin 2x}$.
- (07 Marks)
- 4 a. If $u = x^2y + y^2z + z^2x$, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = (x + y + z)^2$. (05 Marks)
 - b. If $u = \tan^{-1} \left(\frac{x^3 y^3}{x^3 + y^3} \right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{3}{2} \sin 2u$. (05 Marks)
 - c. If u = x + y + z, v = y + z, z = uvw, find Jacobian of x, y, z with respect to u, v, w. (05 Marks)
 - d. If z = f(x, y) and $x = e^{u} + e^{-v}$ and $y = e^{-u} e^{v}$, prove that $\frac{\partial z}{\partial u} \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial y}$. (05 Marks)
- 5 a. Obtain the reduction formula for $\int_{0}^{\pi/2} \cos^{n} x \, dx$ and hence evaluate $\int_{0}^{\pi/2} \cos^{6} x \, dx$ and $\int_{0}^{\pi/2} \cos^{9} x \, dx$.

 (07 Marks)
 - b. Evaluate $\int xy(x+y)dydx$. (06 Marks)
 - c. Evaluate $\int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} dz dy dx$ (07 Marks)

1 of 2

MATDIP301

- 6 a. Define Gamma and Beta functions. Show that $\beta(m,n) = 2 \int_{-\infty}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$. (07 Marks)
 - b. Prove that $\int_{0}^{\infty} x^{2} e^{-x^{4}} dx \times \int_{0}^{\infty} e^{-x^{4}} dx = \frac{\pi}{8\sqrt{2}}$. (07 Marks)
 - c. Evaluate $\int_{0}^{1} (\log x)^{6} dx$. (06 Marks)
- 7 a. Solve the equation $\frac{dy}{dx} + x \tan(y x) = 1$. (06 Marks)
 - b. Solve $x^2ydx (x^3 + y^3)dy = 0$. (07 Marks)
 - c. Solve $(e^y + y \cos xy)dx + (xe^y + x \cos xy)dy = 0$. (07 Marks)
- 8 a. Solve the equation $(D^3 + 1)y = 0$, where $D = \frac{d}{dx}$. (06 Marks)
 - b. Solve the equation $(D^2 2D + 1)y = xe^x$. (07 Marks)
 - c. Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{2x} \cos^2 x$. (07 Marks)