

Team 28: Guitar Entertainment System
Bi-Weekly Update 4

Rishabh Ruikar, Monte Martin III, Rawan Ibraheem Sponsor: Souryendu Das (TA)

Project Summary

- Problem Statement: Current guitar amplifiers and effects systems often present a steep learning curve, deterring those with limited technical experience from fully exploring their sound potential.
- Solution Proposal: Developing a user-centric guitar sound system, combining an amp, pedals, and a Bluetooth-connected app. This system simplifies sound customization through intuitive controls and presets, making advanced sound manipulation accessible to all skill levels.

Integrated System Diagram

Project Timeline

Preamplifier testing complete (completed 3/5)	Pedal and app integration (completed 2/15)	Pedal and amplifier integration(to be complete by 3/7)	Final Integration (completed 3/19)	System Test (to complete by 3/21)	Validation (to complete by 4/1)

Rishabh Ruikar: Amplifier

Accomplishments since last update 17 hrs of effort	Ongoing progress/problems and plans until the next presentation			
 Tested Preamplifier (results in following slide) Found out amplifier is running too hot during testing (115°C+), new heatsink order has been placed 	 Preamp and amplifier will be integrated Full system integration will be complete before next presentation Strain testing will occur after next presentation 			

- Performed comprehensive evaluations on guitar preamp settings: treble, bass, mid, and gain
- Analyzed adjustments' effects on tonal quality and distortion across various sine wave inputs
- Plan to deepen analysis when hooked up to pedal system with complex harmonic waves, scrutinizing preamp's tonal versatility and signal integrity

Rishabh Ruikar: Amplifier

Figure 1: 1kHz Sine Wave with 1V Amplitude and 2V P2P

Monte Martin: Pedals

Accomplishments since last update 40 hrs of effort	Ongoing progress/problems and plans until the next presentation		
 Validated ADC, STM32, DAC Finished soldering Verified that the STM32 is installed and can be programmed/debugged with JTAG 	 Test integration of effects on STM32 Test ESP32 bluetooth connection range and signal strength Test integration with amplifier subsystem Test full integration 		

PCB Validation

Figure 2. ADC serial data, clock, and word select.

PCB Validation

Figure 3. Validation of DAC analog output verified by oscilloscope, and validation of A to D and D to A conversion.

Rawan Ibraheem: Application and MCU

Accomplishments since last update 22 hrs of effort

 Implemented delay, reverb, and volume effects on the STM32

Delay

Y(t) = X(t-delay)

Reverb

f = feedback factor

O(t) = (1-f)X(t) + fY(t)

Ongoing progress/problems and plans until the next presentation

- Validate reverb and delay by measuring T60 (decay time) and comparing it to the original signal
- Implement distortion, chorus, and wah-wah
- Program the ESP32 and STM32 on the completed pedal PCB

Rawan Ibraheem: Application and MCU

Volume Adjustment

Figure 4. Verification of applied sound effects.

Integration Progress

Figure 5: Overview of MCU Integration.

Integration Progress With App

Figure 6. STM32 on pedal PCB is fully functional and programmable, no hardware faults.

Execution Plan

Validation Plan

Subsystem	Paragraph	Deliverable	Methodology	Owner	Completion	Completion Date
MCU & Application	3.2.1.5	ESP32 can communicate with STM32	Terminal COM port connected to STM32 displays the applied sound effects	Rawan	Completed	2/15/2024
MCU & Application	3.2.1.5	STM32 can apply each sound effect (volume, distortion, reverb, chorus, delay, wah-wah)	Use a function generator and an osciliscope to test input and output signal when sound effect applied and process input and output data through USB connection to computer	Rawan	Incomplete	
MCU & Application	3.2.1.4	Application reports errors connecting to ESP32 or STM32	Implement pop-up window that displays warnings in Android application	Rawan	Incomplete	
MCU & Application	3.2.1.4	MCU can send signal to STM32 within 1 second	Use oscilloscope to measure the input and output signal	Rawan	Incomplete	
ADC/DAC, DSP	3.2.1.2	Practical Filter eliminates noise and creates a differential signal	Use oscilloscope to provide an input signal and the output signal	Monte	Completed	1/15/2024
ADC/DAC, DSP	3.2.1.2	STM32 communicates with the ESP32 with less then 10 ns of delay	Check data readouts from STM32 and ESP32	Monte	Incomplete	
ADC/DAC, DSP	3.2.1.2	All effects work as intended, with outputs within 5 dB of calculated values	Use oscilloscope to provide an input signal and the output signal	Monte	Incomplete	
ADC/DAC, DSP	3.2.1.2	have less than 10 ns of delay between signal input and output	Use an oscilloscope to measure delay between input and output signals	Monte	Incomplete	
ADC/DAC, DSP	3.2.1.2	The delay function can create up to 2 seconds of delay without loss of signal quality	Use a timer and oscilloscope to measure delay and signal quality	Monte	Incomplete	
ADC/DAC, DSP	3.2.1.2	ADC, DAC, and DSP all can communicate within 10 ns of delay when tested seperately	Osciliscope to send and recieve analog, ESP32 dev to send and recieve digital through i2S	Monte	Incomplete	
ADC/DAC, DSP	3.2.1.2	The system can take in up to 2.1 V rms signals and output them without any clipping or loss of signal quality	Oscilloscope and function generator	Monte	Incomplete	
Amplifier	3.2.3.3	Preamplifier is able to create at least a 10dB gain from 3 types of sine waves-50Hz(bass), 1kHz (mid), 5kHz (treble)	For each frequency test (50 Hz, 1 kHz, 5 kHz), apply a constant-level sine wave, measure the preamp's output, and analyze the amplitude and harmonic content to evaluate its frequency response and distortion characteristics.	Rishabh	Completed	3/3
Amplifier	3.2.3.3	Validate the frequency response curve by comparing it against the amplifier's specified performance criteria, ensuring it meets the expected flatness within ±0.5 dB across the 20 Hz to 20 kHz range, using calibrated measurement equipment for accuracy.	Using software-based audio signal generators, generate a frequency sweep from 20 Hz to 20 kHz to test audio equipment.	Rishabh	Incomplete	
Amplifier	3.2.3.3	Aim for a flat response within ±0.5 dB across 20 Hz to 20 kHz	Using a signal generator to produce sine waves, square waves, and pink noise for testing the amplifier's signal integrity and frequency response,	Rishabh	Incomplete	
Amplifier	3.2.3.1	Aim for a dynamic range of over 120 dB to capture the full spectrum of audio without distortion or noise intrusion.	Generate 1 kHz sine, measure output and noise, calculate dynamic range.	Rishabh	Incomplete	
Amplifier	3.2.3.2	Ensure the amplifier maintains operational temperatures below 100°C under full load conditions to guarantee long-term stability.	Load testing, send peak sine waves constantly for about 30 minutes	Rishabh	Incomplete	
All	N/A	User can adjust sound effect signal multiple consecutive times.	One user will repeatedly adjust sound effects in one minute as another user plays the guitar, to ensure system operates as intended.	All	Incomplete	
All	N/A	User can play the guitar while adjusting the sound effect.	One user will control the mobile application while another plays the guitar.	All	Incomplete	
All	N/A	System experiences no failure when tested outdoors.	Fully integrated system is taken outside into an open and windy area, each sound effect is tested.	All	Incomplete	
All	N/A	User can plug in an active and passive pickup guitar.	Function generator to simulate active and passive pickups and oscilloscope will be used to see the readings.	All	Incomplete	
All	N/A	System experiences no failure when tested in a place with high signal noise pollution.	System will be tested in the FEDC where other teams are working on Bluetooth-based projects.	All	Incomplete	
All	N/A	SNR of calculated delay sound effect vs Pedal PCB output waveform is a minimum of 25 dB	Matlab will be used to compute the desired effect from the input waveform measured by the oscilloscope. Ouput of pedal PCB will be saved to a csv file and the data will be compared in Matlab.	All	Incomplete	

Validation Plan (cont.)

All	N/A	SNR of calculated chorus sound effect vs Pedal PCB output waveform is a minimum of 25 dB	Matlab will be used to compute the desired effect from the input waveform measured by the oscilloscope. Ouput of pedal PCB will be saved to a csv file and the data will be compared in Matlab.	All	Incomplete
All	N/A	SNR of calculated distortion sound effect vs Pedal PCB output waveform is a minimum of 25 dB	Matlab will be used to compute the desired effect from the input waveform measured by the oscilloscope. Ouput of pedal PCB will be saved to a csv file and the data will be compared in Matlab.	All	Incomplete
All	N/A	SNR of calculated wah-wah sound effect vs Pedal PCB output waveform is a minimum of 25 dB	Matlab will be used to compute the desired effect from the input waveform measured by the oscilloscope. Ouput of pedal PCB will be saved to a csv file and the data will be compared in Matlab.	All	Incomplete
All	N/A	SNR of calculated reverb sound effect vs Pedal PCB output waveform is a minimum of 25 dB	Matlab will be used to compute the desired effect from the input waveform measured by the oscilloscope. Ouput of pedal PCB will be saved to a csv file and the data will be compared in Matlab.	All	Incomplete

Thank you for listening.