Санкт-Петербургский Государственный Электротехнический Университет "ЛЭТИ" кафедра физики

Индивидуальное задание №1

по разделу «Электростатика»

Название: Определение положения

устойчивого равновесия

Фамилия И.О.: Аннеков К.А.

группа: 2370

Преподаватель: Альтмарк А.М.

Итоговый балл:

Крайний срок сдачи: 1.04

Санкт-Петербург

Условие ИДЗ1

Определить угловые координаты трех тел φ_1 , φ_2 , φ_3 , соответствующих устойчивому равновесию системы (рис.1), представляющей собой точечные грузы с массами m_1 , m_2 и m_3 и соответствующими зарядами q_1 , q_2 и q_3 , которые могут двигаться вдоль полуокружности с радиусом R. Ускорение свободного падения направлено вертикально вниз. Угловые координаты отчитываются от вертикальной пунктирной линии, как показано на рисунке.

Таблица 1

Bap	R, M	m1, кг	m2, кг	m3, кг
5	9.841492193711527	0.7343073003976608	0.33073871662846566	0.08387721089343624

Bap	q1, Кл	q2, Кл	q3, Кл
5	3.3672159657600858e-6	1.8071597980584805e-6	3.0400936963972114e-6

Решение:

1. Задам некоторые параметры, такие как радиус сферы R, массы m1, m2 и m3, заряды q1, q2 и q3, ускорение свободного падения g, константа Кулона k и константа с:

```
R=9.841492193711527;

m1=0.7343073003976608;

m2=0.33073871662846566;

m3=0.08387721089343624;

q1=3.3672159657600858*10^(-6);

q2=1.8071597980584805*10^(-6);

q3=3.0400936963972114*10^(-6);

g=9.81;

k=8.99*10^9;

c=1;
```

2. Определю функции x1, y1, h1, x2, y2, h2, x3, y3, h3, которые вычисляют координаты трех точек на сфере в зависимости от углов ϕ 1, ϕ 2 и ϕ 3.

$$x1[\phi 1_]:=R*Sin[\phi 1];$$

 $y1[\phi 1_]:=R*Cos[\phi 1];$

h1[
$$\phi$$
1_]:=R+c-y1[ϕ 1];
x2[ϕ 2_]:=R*Sin[ϕ 2];
y2[ϕ 2_]:=R*Cos[ϕ 2];
h2[ϕ 2_]:=R+c-y2[ϕ 2];
x3[ϕ 3_]:=R*Sin[ϕ 3];
y3[ϕ 3_]:=R*Cos[ϕ 3];
h3[ϕ 3_]:=R+c-y3[ϕ 3];

3. Определю функции r12, r13 и r23, которые вычисляют расстояния между парами точек на сфере.

$$r12[\phi1_,\phi2_] := Sqrt[(x1[\phi1]-x2[\phi2])^2 + (h1[\phi1]-h2[\phi2])^2]; \\ r13[\phi1_,\phi3_] := Sqrt[(x1[\phi1]-x3[\phi3])^2 + (h1[\phi1]-h3[\phi3])^2]; \\ r23[\phi2_,\phi3_] := Sqrt[(x2[\phi2]-x3[\phi3])^2 + (h2[\phi2]-h3[\phi3])^2]; \\ r23[\phi2_,\phi3_] := Sqrt[(x2[\phi2]-x3[\phi3])^2 + (h2[\phi2]-x3[\phi3])^2]; \\ r23[\phi2_,\phi3_] := Sqrt[(x2[\phi2]-x3[\phi3])^2 + (h2[\phi2]-x3[\phi3])^2]; \\ r23[\phi2_,\phi3_] := Sqrt[(x2[\phi2]-x3[\phi3])^2 + (h2[\phi2]-x3[\phi3])^2]; \\ r23[\phi2_,\phi3_] := Sqrt[(x2[\phi2]-x3[\phi3])^2 + (h2[\phi2]-x3[\phi3])^2 + (h2[\phi2]-x3[\phi3]-x3[\phi3])^2 + (h2[\phi2]-x3[\phi3]-x3[\phi3]-x3[\phi3] + (h2[\phi2]-x3[\phi3]-x3[\phi3]-x3[\phi3]-x3[\phi3]-x3[\phi3] + (h2[\phi2]-x3[\phi3]-x3[\phi3]-x3[\phi3]-x3[\phi3]-x3[\phi3]-x3[\phi3]-x3[\phi3]-x3[\phi3]-x3[\phi3]-x3[\phi3]-x$$

4. Вычислю взаимодействия между зарядами на сфере

W12[
$$\varphi$$
1_, φ 2_]:=(k*q1*q2)/r12[φ 1, φ 2];
W13[φ 1_, φ 3_]:=(k*q1*q3)/r13[φ 1, φ 3];
W23[φ 2_, φ 3_]:=(k*q2*q3)/r23[φ 2, φ 3];

5. Вычислю полную потенциальную энергию системы, состоящей из трех точек на сфере и трех зарядов.

$$Wp[\phi1_,\phi2_,\phi3_] := m1 * g * h1[\phi1] + m2 * g * h2[\phi2] + m3 * g * h3[\phi3] + W12[\phi1,\phi2] + W13[\phi1,\phi3] + W23[\phi2,\phi3]$$

Начальное значение выбирается таким образом, чтобы алгоритм оптимизации мог начать поиск с достаточно хорошего стартового положения. В идеале, это значение должно быть достаточно близко к оптимальному решению, чтобы алгоритм мог быстро сойтись к этому решению, но не должно быть слишком близко, чтобы избежать застревания в локальных минимумах.

6. Функция FindMinimum находит минимальное значение функции Wp с помощью метода оптимизации. В данном случае, начальные значения углов φ1, φ2 и φ3 для поиска минимума устанавливаются в -0.6, -0.3 и -0.1 соответственно. Отметим, что результаты этой оптимизации зависят от начальных значений и могут быть различными в разных запусках программы.

FindMinimum[Wp[
$$\phi$$
1, ϕ 2, ϕ 3], {{ ϕ 1, -0.1 }, { ϕ 2,0}, { ϕ 3,0.1}}]
$$\phi$$
1 \rightarrow $-0.02808895032449577
$$\phi$$
2 \rightarrow 0.031146388605711152
$$\phi$$
3 \rightarrow 0.12339229716729866$

в градусах:

Angle1 =
$$\phi$$
1 *180/Pi
Angle1 = ϕ 2 *180/Pi
Angle1 = ϕ 3 *180/Pi

Ответ:

$$\phi 1 = -1.6093783045462318$$

$$\phi 2 = 1.7845566141816056$$

$$\phi 3 = 7.069857852110276$$