We also have the commutative diagram.

$$E \times F \xrightarrow{\iota_{\otimes}} E \otimes F$$

$$\downarrow (f' \circ f) \times (g' \circ g) \downarrow \qquad \qquad \downarrow (f' \circ f) \otimes (g' \circ g)$$

$$E'' \times F'' \xrightarrow{\iota''_{\otimes}} E'' \otimes F''.$$

Since we immediately verify that

$$(f' \circ f) \times (g' \circ g) = (f' \times g') \circ (f \times g),$$

by uniqueness of the map between $E\otimes F$ and $E''\otimes F''$ in the above diagram, we conclude that

$$(f' \circ f) \otimes (g' \circ g) = (f' \otimes g') \circ (f \otimes g),$$

as claimed. \Box

The above formula (*) yields the following useful fact.

Proposition 33.11. If $f: E \to E'$ and $g: F \to F'$ are isomorphism, then $f \otimes g: E \otimes F \to E' \otimes F'$ is also an isomorphism.

Proof. If $f^{-1}: E' \to E$ is the inverse of $f: E \to E'$ and $g^{-1}: F' \to F$ is the inverse of $g: F \to F'$, then $f^{-1} \otimes g^{-1}: E' \otimes F' \to E \otimes F$ is the inverse of $f \otimes g: E \otimes F \to E' \otimes F'$, which is shown as follows:

$$(f \otimes g) \circ (f^{-1} \otimes g^{-1}) = (f \circ f^{-1}) \otimes (g \circ g^{-1})$$
$$= \mathrm{id}_{E'} \otimes \mathrm{id}_{F'}$$
$$= \mathrm{id}_{E' \otimes F'},$$

and

$$(f^{-1} \otimes g^{-1}) \circ (f \otimes g) = (f^{-1} \circ f) \otimes (g^{-1} \circ g)$$
$$= \mathrm{id}_E \otimes \mathrm{id}_F$$
$$= \mathrm{id}_{E \otimes F}.$$

Therefore, $f \otimes g \colon E \otimes F \to E' \otimes F'$ is an isomorphism.

The generalization to the tensor product $f_1 \otimes \cdots \otimes f_n$ of $n \geq 3$ linear maps $f_i \colon E_i \to F_i$ is immediate, and left to the reader.