3. Predicting binding sites

- basics of TFBS identification
- defining a background model
- tools
- phylogenetic footprinting
- including "in-vivo features"

S =sequence M =TFBS model

$$P(S \mid M) = \prod_{i=1}^{w} f'_{i(j)j}$$

i(j) = nucleotide i at position j of sequence

$$p(S|M) = 5.8e-6$$

Is this sequence a binding site for this transcription factor?

Is it more likely to be a binding site than a background sequence ? p(S|M) < p(S|B)

- Likelihood of a sequence being a binding site
- Likelihood of a sequence being a background sequence (j(i) = nucleotide at position i)
- Log-likelihood ratio

Sum of weights of the position weight matrix

$$P(S \mid M) = \prod_{j=1}^{w} f'_{i(j)j}$$

$$P(S \mid B) = \prod_{j=1}^{w} p_{i(j)}$$

$$LLR = \ln \frac{P(S \ M)}{P(S \ B)} = \ln \frac{\prod_{j=1}^{w} f'_{i(j)j}}{\prod_{j=1}^{w} p_{i(j)}}$$

$$LLR = \ln \frac{P(S \mid M)}{P(S \mid B)} = \sum_{j=1}^{w} \ln \frac{f'_{i(j)j}}{p_{i(j)}}$$

$$S =$$
sequence $M =$ TFBS model

S =sequence

B = background model


```
0.02
            0.95
                  0.02
                        0.95
                              0.95
                                     0.02
                                           0.95
                                                 0.02
                                                       0.88
                                                             0.75
0.08
      0.02
            0.02
                  0.48
                        0.02
                              0.02
                                    0.02
                                          0.02
                                                 0.22
                                                       0.08
                                                             0.02
0.15
      0.88
            0.02
                  0.02
                        0.02
                              0.02
                                    0.95
                                          0.02
                                                0.02
                                                       0.02
                                                            0.22
0.22
      0.08
            0.02
                  0.48
                        0.02
                              0.02
                                    0.02
                                          0.02
                                                0.75
                                                       0.02
                                                            0.02
T
      G
```

$$p(S|M) = 5.8e-6$$

$$p(S|B) = p_A^3 p_C^4 p_G^3 p_T = 1.9e-7$$

LLR = 3.41


```
A
                                                              C
        0.02
               0.95
                           0.95
                                0.95
                                      0.02
                                            0.95
                                                  0.02
                                                              0.75
                     0.02
        0.02 0.02
                     0.48
                           0.02 0.02
                                      0.02
                                           0.02
                                                  0.22
                                                        0.08
                                                              0.02
   0.15 0.88
               0.02 0.02
                           0.02
                                0.02
                                      0.95
                                            0.02
                                                  0.02
                                                       0.02
                                                              0.22
               0.02
                               0.02
                                      0.02
                                                  0.75 0.02
         0.08
                    0.48
                           0.02
                                            0.02
                                                             0.02
p(S|M)
             = 4.2e-15; P(S|B) = p_A^4 * p_C^4 * p_G^2 * p_T = 2.1e-7 \rightarrow LLR = -17.7
         0.55
               0.02
                     0.95
                           0.02
                                0.95
                                      0.95
                                            0.02
                                                  0.95
                                                        0.02
                                                              0.88
                                                                   0.75
         0.08
              0.02 0.02 0.48
                                0.02
                                      0.02
                                            0.02
                                                  0.02
                                                       0.22
                                                             0.08
                                                                   0.02
                                                                   0.22
                     0.02
                           0.02
                                0.02
                                      0.02
                                            0.95
                                                  0.02
                                                        0.02
                                                             0.02
         0.22
                    0.02 0.48
                                0.02
                                      0.02 0.02 0.02
                                                       0.75
                                                            0.02
                                                                   0.02
p(S|M)
             = 5.8e-6; ; P(S|B) = p_A^3 * p_C^4 * p_G^3 * p_T = 1.9e-7 \rightarrow LLR = 3.41
               0.55
                     0.02
                          0.95
                                0.02
                                      0.95
                                            0.95
                                                 0.02
                                                       0.95
                                                             0.02
                                                                   0.88
                                                                         0.75
                    0.02
                          0.02
                                0.48
                                      0.02
                                            0.02
                                                  0.02
                                                       0.02
                                                             0.22
                                                                   0.08
                                                                         0.02
                                                             0.02
               0.15 0.88
                          0.02
                                0.02
                                            0.02
                                                 0.95
                                                       0.02
                                                                   0.02
                                                                         0.22
                                      0.02
                          0.02 0.48 0.02 0.02 0.02
                                                      0.02 0.75
                                                                   0.02
                                                                         0.02
p(S|M)
              = 1.6e-17; ; P(S|B) = pA^3 * pC^4 * pG^3 * pT = 1.9e-7 \rightarrow LLR = -23.1
```


Defining a realistic background model

 In computing p(S|B) we made the following assumptions:

$$P(S \mid B) = \prod_{j=1}^{w} p_{i(j)}$$

 Homogeneity: parameters remain identical everywhere in the genome

$$p(N) = p_{global}(N)$$

(N = nucleotide)

 Independance: the probability of a nucleotide at each position is independant of its neighbors (Markov model of order 0) $p(CAGGCTAG|B) = p^2(A) p^2(C) p^3(G) p(T)$

Homogeneity?

Homogeneity?

CpG avoidance in vertebrate genomes

Independance of nucleotides?

Local variation of CpG composition Human chr19 (w=50kb)

Independance of nucleotides?

$$p(G \ C) = 0.0817$$
 $p(G \ A) = 0.2884$

Genomic sequences have a dependency between successive nucleotides

Markov models of order k : nucleotide depends on its k predecessors

$$p(S_1...S_L) = p(S_1...S_k) \prod_{j=k}^{L-1} p(S_{j+1} S_{j-k+1}...S_j)$$
initial
probability
$$p(S_1...S_k) \prod_{j=k}^{L-1} p(S_{j+1} S_{j-k+1}...S_j)$$
initial
probability
$$p(S_j + 1 S_{j-k+1}...S_j)$$
predecessors

S = ACGTAGGCTACCGGATTAGCTTAGGCCATCGAGATCTAT

- the probability of each nucleotide depends on the sequence of the k preceeding ones
- Number of parameters
 - *k*=0:
 - \bullet k=1:
 - k = n:

Markov models of order k : nucleotide depends on its k predecessors

$$p(S_1...S_L) = p(S_1...S_k) \prod_{j=k}^{L-1} p(S_{j+1} S_{j-k+1}...S_j)$$
initial next nucleotide predecessors

S = ACGTAGGCTACCGGATTAGCTTAGGCCATCGAGATCTAT

- the probability of each nucleotide depends on the sequence of the k preceeding ones
- Number of parameters
 - k=0: $p(A),p(C),p(G) \rightarrow 3$ parameters
 - k=1: $P(A|A), P(C|A), P(G|A), ... \rightarrow 12$ parameters
 - $k = n : 3 \times 4n$ parameters

	r	י ט	20	ىد
	0.25778	0.24159 (.24218	0.25846
ī	ø	ပ	90	ب
à	0.29590	0.19550	0.28357	0.2250
•	0.30990	0.27463	0.08988	0.3255
ğ	0.26673	0.22779	0.27765	0.2278
:	0.20207	0.23181	0.26906	0.2970

Markov model oder 1: $P(ACCGT) = P(A) \times P(C|A) \times P(C|C) \times P(G|C) \times P(T|G) = 2.4e-4$

Markov Model order 0: $P(ACCGT) = P(A) \times P(C) \times P(C) \times P(G) \times P(T) = 9.4e-4$

How are parameters learned?

$$p(S_{k+1} \mid S_1 \dots S_k) = \frac{\# S_1 \dots S_k}{\# S_1 \dots S_k} S_{k+1} = \frac{\# S_1 \dots S_k}{\# S_1 \dots S_k} S_{k+1} = \frac{\# S_1 \dots S_k}{\# S_1 \dots S_k} S_{k+1}$$

- learning the parameters of a order k Markov model amounts to counting subsequences of length k+1
- Learning the parameters of the Markov model
 - using all intergenic sequences of the organism
 - using all promoter sequences
 - using the input sequences of the user (if sufficient!)

Mouse 2kb promoter

Dinuc	Freq	Occurences
aa	0.07923	3483960
ac	0.05211	2291772
ag	0.07590	3337516
at	0.06009	2642346
ca	0.07165	3150994
CC	0.06343	2789452
cg	0.02036	895708
ct	0.07531	3311701
ga	0.06229	2739394
gc	0.05311	2335660
gg	0.06487	2852574
gt	0.05312	2336150
ta	0.05411	2379761
tc	0.06218	2734375
tg	0.07228	3178565
tt	0.07987	3512382

number of **AN** dinuc: 11755594 number of **AC** dinucl: 2291772

P(C|A) = 2291772/11755594 = 0.195

number of **CN** dinuc: 10147855 number of **CG** dinucl: 895708

P(G|C) = 895708/10147855 = 0.09

order 1 Markov model (MMo1)

 $P(ACCGT) = P(A) \times P(C|A) \times P(C|C) \times P(G|C) \times P(T|G)$

Check: P(A|N) + P(C|N) + P(G|N) + P(T|N) = 1 for any nucleotide N

What scores would be obtained in a sequence which contains no binding sites?

Positive controls

- Positive controls = sets of predicted binding sites, for which we know there
 is indeed binding of the transcription factor
- Best option: use experimental validated datasets, such as ChIP-seq

Negative controls

- Negative controls = test cases for which we know that the answer should be negative
- Here: sequences for which no binding site exists
- How to define such a sequence?
 - real biological sequence : we cannot exclude the presence of a TFBS
 - generate synthetic sequence which is close enough to a real sequence
 e.g. using a Markov Model background

1.sample starting nucleotide

2.sample next nucleotides according to transition frequencies

- Distribution of weights (=LLR) for Evi-1 matrix on a RANDOM sequence generated from mouse Markov model order = 3
 - most weights are negative (:-) but 2 sites have LLR>0 (false-positives)
 - → false positive rate = 2 FP / 1000 negative binding sites = 2e-3

For a given LLR threshold, what is the rate of false positives that can be expected?

FPR = 2/1000

FPR = 7/1000

FPR = 29/1000

The rate of false positives depends on the matrix considered! Different threshold on W changes the FPR

For a given matrix, we can exactly compute the **exact distribution** of scores under a particular background model:

- 1. for a matrix of width k, enumerate all possible k-mers S_k ($n = 4^k$)
- 2. compute the weight for a given background model as

$$W(S_k) = \log \frac{P(S_k|M)}{P(S_k|B)} = \log \frac{\prod_{i=1}^{L} f'_{ij(i)}}{P(S_k|B)}$$

3. for a particular score W, the corresponding P-value is the propor higher score

$$Pval(W) = freq. \ w >= W$$

- the Pvalue indicates the False Positive Rate (FPR)
- if we set a threshold at
 W ≥ 0, we expect
 - 1 FP every ~110 bp for Sp1
 - 1 FP every ~35 bp for HNF4a
- for a pvalue of 1e-5, we need to set a threshold of
 - 9.5 for Sp1
 - 9.1 for HNF4a

- Predicting TFBS on a 1 Mb portion of Mouse chromosome 1
- Software : Matrix-Scan ; Matrix : HNF4a
- Threshold to call TFBS : $p \le 1e-4$
- Background : Markov model order=3 estimated on input sequence
- Output : 259 predicted TFBS
- Control: HNF4a ChIP-seq peaks (red)

True/false positive/negative

(binding but no TFBS predicted)

no predicted
TFBS passes the
pval < 1e-4 threshold
→ low-affinity binding

Evaluation of TFBS prediction performances

- sensitivity: how many of the true binding sites did I find?
 sensitivity = TP/P = TP / (TP+FN) → True Positive Rate (TPR)
- specificity: how many of the non-binding sites did I identify correctly as negative?
 specificity = TN/N = TN / (TN + FP)
 1-specificity = FP/N = FP / (TN+FP) → False Positive Rate (FPR)

Performance measure

Evaluation of TFBS prediction performances

- The tradeoff specificity/sensitivity for a continuous range of parameters can be summarized as a Receiver Operating Curve (ROC)
- Performance of a model is determined by the Area under the curve (AUC)

Very loose predictions

Evaluation of TFBS prediction performances

- if the number of negatives is much larger that positives (as for ChIP data), then FPR =FP/N << 1 and is insensitive to variations in FP
 - → we replace it with another measure
- positive predictive value (PPV) (a.k.a. precision): how many true events among those predicted?
 - precision = PPV = TP / (TP+FP)
 - recall = sensitivity = TP/P

