单周期 CPU

使用说明:

将 bit 文件烧写入 FPGA 中, 0 号与 1 号开关控制七段数码管显示不同的内容:

- 00. PC 当前值
- 01. 当前执行的指令
- 10. 寄存器显示: 1号 --4号
- 11. 内存显示: 0号 --15号

当开关为10时,使用2号与3号开关控制显示不同寄存器的内容:

- 00. \$1
- 01. \$2
- 10. \$3
- 11. \$4

当开关为11时,使用4号到7号开关控制显示不同的内容:

0000 --> 1111 分别控制显示 0 号到 15 号内存单元的内容

每按一次 SW_STEPO, 执行下一条指令

可操作的指令:

无符号加法	addu rd,rs,rt	
无符号减法	subu rd,rs,rt	
有符号比较,小于置位	slt	rd, rs, rt
按位与	and	rd, rs, rt
按位或非	nor	rd, rs, rt
按位或	or	rd, rs, rt
按位异或	xor	rd, rs, rt
逻辑左移	sll	rd, rt, shf
逻辑右移	srl	rd, rt, shf
立即数无符号加法	addi	u rt, rs, imm
立即数装载高位	lui	rt, imm
从内存装载字	lw	rt, offset(base)

rt, offset(base) 向内存存储字 rt, offset(base) SW 判断相等跳转 beq rs, rt, offset 判断不等跳转 bne rs, rt, offset 直接跳转

j target

以下汇编程序通过检测

00H	ADDiu \$1, \$0, #1	24010001
04H	SII \$2, \$1, #4	00011100
H80	OR \$3, \$2, \$1	00411825
0CH	SUBU \$4, \$3, \$2	00622023
10H	SW \$4, #0(\$0)	AC040000
14H	BNE \$3, \$2, #2	14620002
18H	SLT \$5, \$4, \$3	00432824

1CH ADDU \$5, \$4, \$3 00832821 20H j 00H 08000000

执行后:

\$1 = 01H

\$2 = 10H

\$3 = 11H

\$4 = 01H

mem[0] = \$4 = 01H

源文件介绍

Single_cycle_cpu_display.v

顶层文件,主要完成底层的调用与数据向七段数码管的输出

Single_cycle_cpu.v

完成5个阶段:取指、译码、执行、访存、写回。同时调用相应其它模块

Regfile.v

寄存器堆的实现模块

Inst_rom.v

异步指令存储器模块,采用寄存器搭建而成,内嵌指令,只读

data_ram.v

异步数据存储器模块,采用寄存器搭建而成

alu.v

ALU 模块,可做 12 种操作

adder.v

加法器,直接使用"+",会自动调用库里的加法器,被 alu 模块调用