Tema: Correlação e Regressão Linear

Critérios para Avaliação de Trabalho

- 1- Clareza e Organização;
- Introdução: Teoria com a definição de Correlação e Regressão.
- Desenvolvimento: Sequência lógica na apresentação dos dados;
- Conclusão: A cada atividade apresentar a conclusão do exercício. recomendações, conforme o caso.

2- Qualidade Técnica:

- Uso apropriado de linguagem, gramática e ortografia;
- Apresentação visual adequada, como tabelas, gráficos ou imagens.

3- Referências e Ética:

• - Uso adequado de fontes e referências, evitando plágio.

4- Tabelas e fórmulas que poderão ser utilizados para os cálculos:

a) A equação da reta obtida pode ser apresentada como:

$$y = a + bx$$
 , onde:

y = variável dependente, explicada;

x = variável independente, explicativa;

a = o valor de yi, quando xi = 0, ou intercepto da reta no eixo y;

b = o valor do coeficiente angular, que indica a inclinação da reta.

- b) Apresentação dos gráficos de regressão linear;
- c) O método dos mínimos quadrados determina que a e b devem ser obtidos de modo que:

$$a = \frac{\sum y - b \sum x}{n} \qquad b = \frac{n(\sum xy) - (\sum x \sum y)}{n(\sum x^2) - (\sum y)^2}$$

d) Calcular a equação de ajuste linear - reta de ajuste (reta de regressão):

Variável(1) (Variável(2) (X ²	y²	x.y
inserir o nome)	inserir o nome)			
$\sum x =$	$\sum y =$	Σ	Σ	Σ

5- Análise e Correlação

Podemos calcular (r) por meio da equação:

$$r = \pm \sqrt{\frac{\left(\frac{\sum xy}{n} - \frac{\sum x}{n} \cdot \frac{\sum y}{n}\right)^{2}}{\left[\frac{\sum x^{2}}{n} - \left(\frac{\sum x}{n}\right)^{2}\right] \cdot \left[\frac{\sum y^{2}}{n} - \left(\frac{\sum y}{n}\right)^{2}\right]}}$$

ou

$$r = \pm \frac{n \sum xy - \sum x \sum y}{\sqrt{[n \sum x^2 - (\sum x)^2] \cdot [n \sum y^2 - (\sum y)^2]}}$$

Onde **n** é o número de pares de valores na amostra analisada.

Faixa de variação de $\frac{r}{r} - 1 \le r \le 1$

- ** Apresentar a teoria de correlação do intervalo: r: $-1 \le r \le 1$
 - e) Coeficiente de determinação (r^2)
 O coeficiente de determinação, além de expressar o quadrado do coeficiente de correlação de Pearson, representa, também, a relação entre a variação explicada pelo modelo e variação total. Algebricamente o valor de r^2 pode ser apresentado como:

$$r^{2} = \frac{\left(\frac{\sum xy}{n} - \frac{\sum x}{n} \cdot \frac{\sum y}{n}\right)^{2}}{\left[\frac{\sum x^{2}}{n} - \left(\frac{\sum x}{n}\right)^{2}\right] \cdot \left[\frac{\sum y^{2}}{n} - \left(\frac{\sum y}{n}\right)^{2}\right]}$$

- f) Apresentar a teoria da Coeficiente de determinação (r^2)
- ** Todos os cálculos deverão ser transcritos manualmente.

Atividade:

Neste exercício, exploraremos a relação entre a produção de três frutas: (maçã, banana e laranja) em relação a temperatura ambiente.

O objetivo é analisar como as variações na temperatura afetam a produção dessas frutas, utilizando métodos de correlação linear. Este tipo de análise é fundamental para compreender padrões e tomar decisões em práticas agrícolas.

Enunciado: Temos um conjunto de dados hipotéticos que mostram a produção mensal (em toneladas) de maçã, banana e laranja em relação à temperatura média mensal (em graus Celsius). Sua tarefa será calcular os coeficientes de correlação entre a temperatura e a produção de cada fruta e interpretar os resultados.

Dados fornecidos:

Considere os seguintes dados hipotéticos:

Mês	Temperatura (°C)	Produção de Maçã (toneladas)	Produção de Banana (toneladas)	Produção de Laranja (toneladas)
Janeiro	12	12	20	25
Fevereiro	16	15	25	30
Março	20	18	30	35
Abril	24	20	35	40
Maio	28	25	40	50

Pede-se:

• Calcular o coeficiente de correlação: Utilize a fórmula do coeficiente de correlação de Pearson para cada par de variáveis (temperatura e produção de cada fruta).

onde:

(X)- representa as variáveis independentes (temperatura);

(Y)- representa as variáveis dependentes (produção de cada fruta);

Interpretar os coeficientes de correlação:

Determine se a relação entre temperatura e produção de cada fruta é positiva, negativa ou inexistente, e avalie a força dessa relação com base no valor de r $(-1 \le r \le 1)$;

• Representação gráfica: Crie gráficos de dispersão para cada fruta, mostrando a temperatura no eixo X e a produção no eixo Y. Identifique visualmente a tendência.

Solução esperada:

Nota: Os cálculos devem ser feitos manualmente. Após realizar os cálculos, escreva uma breve análise respondendo às perguntas:

- Quais frutas têm maior correlação positiva com a temperatura?
- Existe alguma fruta cuja produção seja negativamente correlacionada à temperatura?
- Como essas informações podem ser aplicadas na agricultura?

Conclusão:

Este exercício serve como uma introdução prática à análise de correlação linear, aplicando conceitos estatísticos a cenários reais como a agricultura. Com base nos resultados, você poderá compreender a importância de fatores ambientais na produção agrícola, bem como tomar decisões baseadas em dados.

Para resolver o exercício descrito, siga os seguintes passos:

1. Cálculo dos coeficientes de correlação

Utilize os dados disponíveis para realizar os cálculos do coeficiente de correlação para cada fruta em relação à temperatura.

O coeficiente de correlação (r) mede a direção e a força da relação entre as variáveis.

Substitua os valores de temperatura (X) e produção (Y) para cada fruta e obtenha os valores de (r).

2. Interpretação dos coeficientes:

Com base nos valores calculados de (r):

- Se (r) estiver próximo de +1, a correlação é positiva forte: a produção aumenta com a temperatura.
- Se (r) estiver próximo de -1, a correlação é negativa forte: a produção diminui com a temperatura.
- Se (r) estiver próximo de 0, não há correlação significativa.

Determine para cada fruta se a relação com a temperatura é positiva, negativa ou inexistente, e avalie a força dessa relação.

3. Representação gráfica

Crie gráficos de dispersão para cada fruta, com:

- Temperatura no eixo X
- Produção no eixo Y

Estes gráficos podem ser feitos no Excel ou manualmente.

Identifique visualmente a tendência de cada fruta (linear positiva, linear negativa, ou aleatória).

4. Análise:

Após analisar os coeficientes e os gráficos:

- Identifique quais frutas têm maior correlação positiva com a temperatura.
- Determine se há alguma fruta cuja produção seja negativamente correlacionada com a temperatura.

Exemplo de aplicação na agricultura: Se uma fruta tem uma correlação positiva forte com a temperatura, isso pode indicar que cultivar durante períodos mais quentes pode aumentar a produção. Por outro lado, frutas com correlação negativa podem exigir medidas para controlar temperaturas mais altas, como irrigação ou sombreamento.

Indique os períodos (meses) de colheita e plantio para cada fruta após análise de correlação, para isso pesquise sobre o clima no Estado de São Paulo.

5. Conclusão

A análise realizada permite compreender como a temperatura afeta a produção agrícola. Este exercício demonstra a importância de fatores ambientais na agricultura e como decisões baseadas em dados podem otimizar as colheitas e minimizar perdas. A correlação entre temperatura e produção pode orientar práticas de cultivo e planejamento de colheitas e uso de tecnologia para controle ambiental.

** Trabalho é individual

Datas de Entrega do Trabalho.

- 16/06/2025 pontuação máxima: 10 pontos;
- 23/06/2025 à 27/06/2025 pontuação máxima: 6,0 pontos.