

VII ENCONTRO BRASILEIRO DE MENSURAÇÃO FLORESTAL

24 A 26 DE SETEMBRO 2025

LAVRAS - MG

RELAÇÃO HIPSOMÉTRICA DE UM PLANTIO DE KHAYA GRANDIFOLIOLA C. DC. EM CURVELO-MG

Maria Luiza de Azevedo^{1*}; Juliana Fonseca Cardoso¹; Lucas Gabriel Souza Santos¹; Gilciano Nogueira²; Marcio Leles Romarco de Oliveira²; Renato Vinicius Oliveira Castro³

¹ Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brasil.
²Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil.
³Universidade Federal de São João del-Rei (UFSJ), Sete Lagoas/MG
*E-mail: marialuiza.azevedo@ufvjm.edu.br

Introdução

A busca por modelos de crescimento e produção florestal cada vez mais precisos é uma diretriz central da mensuração florestal. Nesse contexto, destaca-se a importância de modelos hipsométricos, que descrevem a altura das árvores em função de seu diâmetro, subsidiando a estimativa acurada do volume e o planejamento do manejo florestal. Diante disso, o objetivo deste estudo foi testar diferentes modelos hipsométricos e selecionar o que melhor representa um povoamento comercial de Mogno Africano em Curvelo, Minas Gerais.

Material e Método

O estudo foi realizado na Fazenda das Pedras em Curvelo-MG. Os dados foram coletados em um plantio de 20 hectares de Mogno Africano, implantado em 2014 com espaçamento de 5m x 5m. A altura total das árvores (H) foi estimada com auxílio de hipsômetro Vertex IV. Com os dados de diâmetro (D) e a altura total (H) foram ajustadas sete equações hipsométricas referentes aos modelos apresentados na Tabela 1.

Tabela 1 - Modelos hipsométricos ajustados para a estimativa da variável altura, para o povoamento de Mogno Africano (*Khaya grandifoliola* C. DC.).

Equação	Forma de ajuste
1	$H = \beta_0 + \beta_1 D + \varepsilon_i$
2	$H = \beta_0 + \beta_1 D + \beta_2 D^2 + \varepsilon_i$
3	$H = \beta_0 + \beta_1 \left(\frac{1}{D^2}\right) + \varepsilon_i$
4	$H = \beta_0 \left(1 - e^{-\beta_1 D^{\beta_2}} \right) + \varepsilon_i$
	eta_0
5	$H = \frac{\beta_0}{(1 + \beta_1 + e^{-\beta_2 D})} + \varepsilon_i$
6	$H = \beta_0 D^{\beta_1} + \varepsilon_i$
7	$H = \beta_0 e^{\frac{\beta_1}{D}} + \varepsilon_i$
	1 2 3 4

O ajuste para os modelos lineares (1, 2 e 3) foi pelo método dos mínimos quadrados ordinários e para os não lineares (4, 5, 6 e 7) pelo método Levenberg-Marquardt. A seleção da melhor equação foi baseada nas estatísticas de qualidade: coeficiente de correlação (ryŷ), erro padrão da estimativa (Syx), viés (V) e análise gráfica dos valores estimados e observados.

Resultados

A dispersão dos dados indicou uma relação exponencial entre diâmetro e altura, com grande variabilidade. A análise dos critérios de seleção indica que os modelos não lineares apresentam desempenho estatístico superior aos lineares. Todos os coeficientes de correlação entre os valores de altura estimados e observados apresentaram abaixo de 44%. Isso sugere que existe uma alta variabilidade na altura das árvores para uma mesma classe de diâmetro (Tabela 2).

Tabela 2 - Coeficientes e estatísticas de qualidade das equações ajustadas para estimativa de altura, de povoamento de Mogno Africano (*Khaya grandifoliola* C. DC.).

Equações	Coeficientes			Estatística de qualidade		
	β0	β1	β2	Sy.x	V	ryŷ
1	14,0087	0,2470	-	3,579	<-0,001	0,41
2	8,5668	0,7122	-0,0097	3,554	<-0,001	0,42
3	22,1702	-1154,1425	_	3,523	<-0,001	0,44
4	21,6700	0,0528	1,2347	3,528	-0,002	0,44
5	21,3489	3,9995	0,1774	3,531	-0,001	0,44
6	7,8669	0,2936	-	3,553	-0,002	0,42
7	26,3992	-6,5560	-	3,525	-0,002	0,44

Conclusão

Os modelos não lineares apresentaram melhor desempenho estatístico para descrever a relação hipsométrica do povoamento de *Khaya grandifoliola*. No entanto, todos os modelos testados demonstraram moderada capacidade preditiva. A moderada relação entre diâmetro e altura, possivelmente decorrente da reduzida idade das árvores, da baixa densidade do povoamento e da origem seminal do plantio, torna a utilização de qualquer uma das equações ajustadas inadequada para estimativas precisas de volume. Portanto, conclui-se que, para este povoamento específico, a estimativa da altura não deve se basear unicamente no diâmetro.

