Math 20250 Abstract Linear Algebra

Cong Hung Le Tran April 7, 2023 Course: MATH 20250: Abstract Linear Algebra

Section: 44

Professor: Zijian Yao

At: The University of Chicago

Quarter: Spring 2023

Course materials: Linear Algebra by Hoffman and Kunze (2nd Edition), Linear Algebra Done

Wrong by Treil

Disclaimer: This document will inevitably contain some mistakes, both simple typos and serious logical and mathematical errors. Take what you read with a grain of salt as it is made by an undergraduate student going through the learning process himself. If you do find any error, I would really appreciate it if you can let me know by email at conghungletran@gmail.com.

Contents

	e 4: Linear Transformation, Homomorphism, Kernel, Image
4.1	Vector Subspace
4.2	Mapping
4.3	Isomorphism, Kernel, Image
Lectur	e 5: Span, Linear Independence, Basis

Lecture 4

Linear Transformation, Homomorphism, Kernel, Image

04 Apr 2023

4.1 Vector Subspace

Definition 4.1 (Vector Subspace).

Let V be a \mathbb{K} -vector space. A **subspace** (or **sub-vector space**) of V is a subset $W \subseteq V$ such that W is itself a \mathbb{K} -vector space under addition and scaling induced from V. A priori, we know that

$$+: W \times W \to V, \cdot: W \times W \to V$$

but this subspace requirement implies that

$$\forall \ x,y \in W, x+y \in W$$

$$\forall \alpha \in \mathbb{K}, x \in W, \alpha \cdot x \in W$$

In other words, the subspace is closed under addition and scaling.

Example. Take $\mathbb{K} = \mathbb{R}, V = \mathbb{R}^2$, with ordinary addition and scaling. Consider the subset represented by line y = 1.

This is not a subspace because there exists no 0 element. This kinda implies that any subspace of \mathbb{R}^2 must pass through the origin (0,0).

Consider another instance, this time the following ray:

This is also not a subspace, since there's no additive inverse. Therefore a subspace shall look something like this:

4.2 Mapping

Motivation. A map from sets to sets can be anything. e.g. $x : \mathbb{Z} \mapsto x^2 : \mathbb{Z}$ doesn't preserve the "group" structure $(x+y)^2 \neq x^2 + y^2$ most of the time.

Definition 4.2 (Group Homomorphism).

Let A, B be Abelian groups. Map $\psi : A \to B$ is called a **group homomorphism** if:

$$\psi(x+y) = \psi(x) + \psi(y)$$

Then $x: \mathbb{Z} \mapsto x^2: \mathbb{Z}$ is not a group homomorphism, but $x: \mathbb{Z} \mapsto nx: \mathbb{Z}$ for fixed n is a group homomorphism.

Here, a natural question arises: If given 2 vector spaces, what maps are allowed between them? What structures do we have to preserve?

Definition 4.3 (Linear Transformation).

Let V, W be \mathbb{K} -vector spaces. Then a **vector space homomorphism** is also called a **linear transformation**, a map $\psi: V \to W$ such that

1.
$$\psi(v_1 + v_2) = \psi(v_1) + \psi(v_2) \ \forall \ v_1, v_2 \in V$$

2.
$$\psi(\alpha \cdot v) = \alpha \cdot \psi(v) \ \forall \ \alpha \in \mathbb{K}, v \in V$$

Denote $\mathbf{Hom}_{\mathbb{K}}(\mathbf{V}, \mathbf{W})$ as the set of all linear transformations $V \to W$.

Example. $\mathbb{K} = \mathbb{R}, V = W = \mathbb{R}$

 $\operatorname{Hom}_{\mathbb{R}}(V,W) = \{ \psi : \mathbb{R} \to \mathbb{R} \mid (1), (2) \text{ are satisfied } \}$

We claim that $\psi(1)$ uniquely determines the map ψ , because

$$\psi(\alpha) = \alpha \cdot \psi(1)$$

Essentially, there exists a bijection between $\operatorname{Hom}_{\mathbb{R}}(V,W)$ and \mathbb{R} :

$$\operatorname{Hom}_{\mathbb{R}}(V,W) o \mathbb{R}$$
 $\psi o \psi(1)$
 $(\psi_{\beta}: x \mapsto x \cdot \beta) \leftarrow \beta$

Example. $\mathbb{K} = \mathbb{R}, V = \mathbb{R}, W = \text{any } \mathbb{K}\text{-vector space}$

We, similarly, claim that there is a bijection between $\operatorname{Hom}_{\mathbb{R}}(V, W)$ and W. With the same reasoning, ψ is determined by $\psi(1)$, though this time $\psi(1) \in W$.

$$\operatorname{Hom}_{\mathbb{R}}(V, W) \to W$$

 $\psi \to \psi(1) \in W$
 $(\psi_{\beta} : x \mapsto x \cdot w) \leftarrow w$

Example. As a sub-example of the example above, consider $W = \mathbb{R}^2$:

Then if $\psi(1) = (4,5)$ as above (and $\psi(0) = (0,0)$ implicit), then ψ would map the rest of $V = \mathbb{R}$ onto the dotted line above.

An interesting point to note is that if $\psi(1) = (0,0)$, then the entire real line would get sent (and compressed) to (0,0). $\psi_{(0,0)}$ therefore contracts \mathbb{R} into one point (the origin (0,0)) while others output a subspace of \mathbb{R}^2 .

Example. $\mathbb{K} = \mathbb{R}, V = \mathbb{R}^2, W = \text{any } \mathbb{R}\text{-vector space}$

We claim that there exists a bijection between $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^2, W)$ and $W \oplus W$; as each ψ is determined by $\psi((1,0))$ and $\psi((0,1))$.

The notation \oplus is defined as: If V, W are \mathbb{K} -vector spaces then

$$V \oplus W = \{(v, w) \mid v \in V, w \in W\}$$

e.g. $\mathbb{R}^2 = \mathbb{R} \oplus \mathbb{R}$

Then $V \oplus W$ would also be a \mathbb{K} -vector space with operations $+, \cdot$ defined intuitively:

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$

 $\alpha \cdot (v, w) = (\alpha \cdot v, \alpha \cdot w)$

Back to the example, $\forall v = (x, y) \in V, v = x(1, 0) + y(0, 1)$, therefore

$$\psi(v) = \psi((x,y)) = x \cdot \psi((1,0)) + y \cdot \psi((0,1))$$

 ψ is therefore uniquely defined by $\psi((1,0))$ and $\psi((0,1))$.

Example. $\mathbb{K} = \mathbb{R}, V = \mathbb{R}^m, W = \text{any } \mathbb{R}\text{-vector space}$

Think about $W = \mathbb{R}^n$ with similar reasoning.

Hint: We want to show there exists a bijection between $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^m, \mathbb{R}^n)$ and $\mathbb{R}^{m \cdot n}$, but this is often rewritten as $\mathbb{M}_{m \times n}(\mathbb{R})$

4.3 Isomorphism, Kernel, Image

Every linear transformation is just a map, and we can therefore question if it is injective, surjective or bijective. In all cases, these concepts simply deal with the sets (vector spaces) as simply sets.

Definition 4.4 (Isomorphism).

A K-linear transformation $\psi: V \to W$ is an **isomorphism** if it is bijective.

Definition 4.5 (Kernel, Image).

Let $\psi: V \to W$ be a linear transformation over \mathbb{K} . Then:

- 1. **Kernel**: $\ker(\psi) := \{v \in V \mid \psi(v) = 0\} \subseteq V$
- 2. Image: $\operatorname{im}(\psi) := \{ w \in W \mid \exists v \in V \text{ such that } \psi(v) = w \}$

Lemma 4.1.

- 1. $\ker(\psi)$ is a \mathbb{K} -vector subspace of V
- 2. $\operatorname{im}(\psi)$ is a K-vector subspace of W

Proof (Lemma). We want to show that if $x, y \in \ker(\psi)$ then $x + y \in \ker(\psi)$.

$$\psi(x+y) = \psi(x) + \psi(y)$$
 (since ψ is a linear transformation)
= 0 + 0
= 0

Therefore $x + y \in \ker(\psi)$

Furthermore, $\forall \alpha \in \mathbb{K}, x \in \ker(\psi)$ then

$$\psi(\alpha, x) = \alpha \cdot \psi(x) = \alpha \cdot 0 = 0 \Rightarrow \alpha \cdot x \in \ker(\psi)$$

Therefore $\ker(\psi)$ is a subspace.

Similarly, $im(\psi)$ is a subspace.

Definition 4.6 (Finite Dimensional, Dimension).

1. Let V be a \mathbb{K} -vector space. V is called **finite dimensional** if there exists a surjective linear transformation $\mathbb{K}^r \to V$ where $r \in \mathbb{Z}_{\geq 0}$. As a consequence, \mathbb{K}^r is also finite dimensional, with an identity mapping.

2. If V is finite dimensional then **dimension** of V is defined as

$$\dim V \coloneqq \min\{k \in \mathbb{Z}_{\geq 0} \mid \ \exists \ \text{linear transformation} \ \mathbb{K}^r \to V\}$$

Lecture 5

Span, Linear Independence, Basis

 $06~\mathrm{Apr}~2023$

Recall. Linear Combination: Let $V = \mathbb{K}$ -vector space with $v_1, v_2, \ldots, v_r \in V$ then

 $\mathbb{K}\langle v_1, v_2, \dots, v_r \rangle := \{ w \in W \mid = w = a_1v_1 + \dots + a_rv_r; a_i \in \mathbb{K} \} \subseteq V \text{ (is a subspace of } V \text{)}$

$$\{v_1, v_2, \dots, v_r\}$$
 span V if

$$\mathbb{K}\langle v_1, v_2, \dots, v_r \rangle = V$$

Definition 5.1 (Span). $\{v_1,v_2,\ldots,v_r\} \text{ span } V \text{ if } \\ \mathbb{K}\langle v_1,v_2,\ldots,v_r\rangle = V$ i.e. equality is achieved: every vector in V can be written as linear combinations of $\{v_1,v_2,\ldots,v_r\}$

Connecting to the previous lecture, let $\psi: \mathbb{K}^r \to V$ then $\psi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^r, V) \xrightarrow{\sim} V^{\oplus r}$, i.e. ψ corresponds to (v_1, v_2, \ldots, v_r) in V.

In particular, $(v_1, v_2, \dots, v_r) \in V^{\oplus r}$ determines the map:

$$\psi: (1,0,\ldots,0) \in \mathbb{K}^r \to v_1$$

$$(0,1,\ldots,0) \in \mathbb{K}^r \to v_2$$

$$\vdots$$

$$(0,0,\ldots,1) \in \mathbb{K}^r \to v_r$$

$$(\alpha_1,\alpha_2,\ldots,\alpha_r) \in \mathbb{K}^r \to \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_r v_r$$

1. Let $\psi : \mathbb{K}^r \to V$ be a linear transformation determined by $v_1, v_2, \dots, v_r \in V$, i.e. $\psi(\alpha_1, \alpha_2, \dots, \alpha_r) := \sum_{i=1}^r \alpha_i v_i$, then

$$\operatorname{im}(\psi) = \mathbb{K}\langle v_1, v_2, \dots, v_r \rangle$$

is a subspace of V

2. $\{v_1, v_2, \dots, v_r\}$ span $V \Leftrightarrow \psi$ is surjective i.e. a surjection $\mathbb{K}^r \to V$ corresponds to r vectors $v_1, v_2, \dots, v_r \in V$ that span V

Remark. V is finite dimensional when \exists surjection $\mathbb{K}^d \to V$