

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: PC-EE303/PC-EEE303 Electromagnetic Field theory

UPID: 003521

Time Allotted: 3 Hours

Full Marks:70

The Figures in the margin indicate full marks. Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1	Answer any ten of the following :	1 x 10 = 10]
	(II) The direction of propagation of an electromagnetic wave is parallel to both the electric and magnetic field intensity. Hin free space?	1
	(III) What is the phase difference between electric field intensity E and magnetic field intensity H in free space?	
V.	(IV) An orthogonal system is one in which the coordinates areto each other.	
S	(VI) Electro static field E is	
	(V) Gradient of a scalar function results in O (VI) Electro static field E is V (VII) The potential V due to an electric dipole located at a distance 'r' from the dipole is V (VIII) Write the expression of Lorentz force for a point charge in motion in external electric and magnetic field.	4
ġ.	(VIII) Write the expression of Lorentz force for a point charge in motion in external electric and magnetic field.	22
'n	(IX) Can Wb s-1 be the unit of emf?	10 19 14 P
7	(X) For the propagation of electromagnetic wave in a good conductor the "skin depth" 6 with the inc frequency f	rease of
9	(XI) Given $\vec{A} = 2 \hat{a}_x + \alpha \hat{a}_y + 2 \hat{a}_z$ and $\vec{B} = \alpha \hat{a}_x + \hat{a}_y + \hat{a}_z$. If $\vec{A} \& \vec{B}$ are normal to each other, then	
70	α is $2 \times + \times + 2 = 0$	
	(XII) What is the gradient of the magnitude of the position vector \mathbf{r} ? $3 \times = -2$ $3 \times = -2$ $3 \times = -2$	0
3	Group-B (Short Answer Type Question)	
100	Answer any three of the following	$[5 \times 3 = 15]$
2	Find the curl \vec{H} at origin, where $\vec{H} = 2y\hat{a}_x - (x^2 + y^2)\hat{a}_y + 3y\hat{a}_z$.	[5]
3.	8. Starting with Gauss's law obtain Poisson's and Laplace's equation.	[5]
4.	Find $\vec{\nabla} \left(\frac{1}{r}\right)$, where $\vec{r} = x\hat{a}_x + y\hat{a}_y + z\hat{a}_z$.	[5]
5.	Derive an expression for electric field E due to an infinite plane sheet of charge of surface density σ s.	[5]
6.	Explain the term skin depth and show that in case of a suitable conducting solid, the skin depth $\delta = \left[\frac{2}{\omega \sigma \mu}\right]^{1/2}$.	[5]
1	Group-C (Long Answer Type Question)	100
9	Answer any three of the following	$[15 \times 3 = 45]$
7.	(a) Show that $\nabla \cdot (\nabla \times \vec{A}) \equiv 0$ and $\nabla \times (\nabla \phi) \equiv 0$	[5]
ig.	(b) Find the divergence of a vector field $\vec{F} = 2xy\hat{a}_x + z\hat{a}_y + yz^2\hat{a}_z$ at the point (2,-1, 3).	[5]
	(c) Given $\varphi = xy + yz + xz$, find gradient φ at point $(1, 2, 3)$	[5]
8.	i. (a) State Gauss's law of electrostatics and write the mathematical expression of the law in integral and	[6]
	differential forms.	
	(b) Starting from Gauss's law of electrostatics derive the expression of electric field E at any internal and external point of a charged sphere of uniform charge density.	[9]

9. (a)	Derive the conditions that the magnetic field intensity and magnetic flux density must satisfy at the boundary between two different media.	[7]
(b)	the region 1 where $z > 0$ and $\mu_2 = 7\mu_0$ for region 2 where $z < 0$. There exists a surface current density $\vec{K}_s = 60\hat{a}_x A/m$ at the boundary $z = 0$. For the field vector $\vec{B}_1 = (\hat{a}_x - 2\hat{a}_y - 3\hat{a}_z)mT$ in the region 1 find the flux density \vec{B}_2 in the region 2.	[8]
10. (a	Show that the energy stored in an electrostatic field in $\frac{1}{2}\int_{v}\vec{E}\cdot\vec{D}dv$.	[5]
(0	Three point charges - 1 nC, 4 nC, and 3 nC are located at (0, 0, 0), (0, 0, 1), and (1, 0, 0), respectively. Find the energy in the system.	[5]
(0	Show that the electric field should be irrotational under static conditions.	[5]
11. (a	Why a small filamentary current loop is usually referred to as a magnetic dipole? What is the magnetic dipole moment for such a loop?	[5]
	Write down Lorentz force equation. Hence obtain the expression of force acting on a straight conductor of length L in a uniform magnetic field B.	[5]
(0	Determine the self-inductance of a co-axial cable of inner radius 'a' and outer radius 'b'.	[5]