Solutions to Homework 10

Math 55B

- 1. Let $p(z) = z^3 + z^n$ with $n \ge 3$. Prove that p(z) = 1 for some z with Re(z) < 0.
 - **Solution 1.** This is also true for n=2. By the **Gauss-Lucas theorem** proved in class (the critical points of a complex polynomial lie in the convex hull of its zeros), $(z^3 + z^n 1)' = 3z^2 + nz^{n-1}$ shows that p(z) has a zero in $\text{Re}(z) \leq 0$. It remains to remark that, for $n \geq 2$, $z^3 + z^n 1$ has no zero on the imaginary axis Re(z) = 0: if z = it is a purely imaginary zero, equating the imaginary part in $-it^3 + (it)^n = 1$ shows that n is odd (since $t \neq 0$), but then $-it^3 + (it)^n$ is purely imaginary, contradiction.
 - **Solution 2.** The sum of the zeros of $z^3 + z^n 1$ is equal to the negative of the coefficient of the z^{n-1} -term, which is 0, if $n \neq 2, 4$, and -1 if n = 2, 4; in either case, it is a real number ≤ 0 , showing the sum of the real parts of the zeros of $z^3 + z^n 1$ is ≤ 0 . The conclusion follows from the same remark that $z^3 + z^n 1$ has no zero on the imaginary axis.
- 2. Give an expression for $\sin(x+iy)$ in terms of the real-valued spherical and hyperbolical sines and cosines. Where are the zeros of the function $\sin(z)$ on \mathbb{C} ?

The identity $\sin(z) = (e^{iz} - e^{-iz})/2i = e^{-iz}/2i \cdot (e^{2iz} - 1)$ makes it manifest that the zeros of $\sin(z)$ are the same as the zeros of $e^{2iz} = 1$, which are the integral multiples of π .

The required expression $\sin(x+iy) = \sin x \cosh y + i \cos x \sinh y$ is a special case of the addition formula $\sin x + y = \sin x \cos y + \cos x \sin y$, upon noting that $\cos iy = \cosh y$ and $\sin iy = i \sinh y$. Since $\cosh y = (e^y + e^{-y})/2$ does not vanish (for $y \in \mathbb{R}$) and $\sinh y = (e^y - e^{-y})/2$ vanishes only at 0, this expression also shows that $\sin(x+iy) = 0$ iff y = 0 and $\sin x = 0$; that is, $\sin z = 0$ iff $z \in \pi \mathbb{Z}$.

3. Suppose $f(z) = \sum_{n\geq 0} a_n z^n$ is analytic in |z| < 1. Prove that for any |r| < 1, we have $\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = 2\pi \sum_{n\geq 0} |a_n|^2 r^{2n}$.

By the uniform convergence of $\sum_{n\geq 0} a_n z^n$ in $|z| \leq r$ and the identity $\bar{z} = r^2/z$ on |z| = r, we have $|f(z)|^2 = f(z)\overline{f(z)} = \Big(\sum_{n\geq 0} a_n z^n\Big)\Big(\sum_{n\geq 0} \overline{a_n} \overline{z}^n\Big) = f(z)\overline{f(z)}$

 $\sum_k c_k z^k$ on |z|=r, where $c_0=\sum_{n\geq 0}|a_n|^2r^{2n}$ and the c_k are certain coefficients. Integrating term by term on |z|=r (again justified by uniform convergence), and using $\int_0^{2\pi}z^k=0$, for $k\neq 0$, and 2π , for k=0, proves the required identity.

4. Given $J \in M_2(\mathbb{R})$, let $\mathbb{R}[J] \subset M_2(\mathbb{R})$ denote the set of matrices of the form aI + bJ, $a, b \in \mathbb{R}$. (i) Prove that $\mathbb{R}[J]$ is closed under addition and multiplication. (ii) When do these operations make $\mathbb{R}[J]$ into a field?

That $\mathbb{R}[J]$ is closed under addition is obvious, and its closedness under multiplication follows upon noting that J satisfies its characteristic polynomial, which has degree 2, so that $J^2 \in \mathbb{R}[J]$; this proves (i). For (ii), $\mathbb{R}[J]$ is a field if and only if the characteristic polynomial of J is irreducible over \mathbb{R} , which is the case if and only if either $J = \lambda I$ with $\lambda \in \mathbb{R}$, or J has no real eigenvalue.

- 5. Prove that for any polynomial p(z) there exists a $z \in S^1$ such that $|\overline{z} p(z)| \ge 1$.
 - **Proof 1.** This follows from the maximum principle, applied to the polynomial 1 zp(z).
 - **Proof 2.** Assuming otherwise, integrating 1/z p(z) over the unit circle leads to the contradictory inequality $2\pi = \left| \int_{S^1} (1/z p(z)) \, dz \right| \le \int_{S^1} |\bar{z} p(z)| \, dz < 2\pi$.
- 6. Let $u \in C(\overline{\Delta})$ be a real-valued continuous function which is harmonic in Δ . Prove that for every $p \in \Delta$, $u(p) = \frac{1}{2\pi} \int_{S^1} \frac{1-|p|^2}{|z-p|^2} u(z) |dz|$.

For p=0, this is just the mean value property $u(0)=(1/2\pi)\int_{S^1}u(z)\,|dz|$ of harmonic functions. To reduce to this case, compose with a Möbius transformation moving 0 to p and preserving Δ ; such is given by $q(z):=(p-z)/(1-\overline{p}z)$. The new function $u\circ q^{-1}\in C(\overline{\Delta})$ is harmonic in Δ and takes the value u(p) at z=0. It remains to compute that $|q^*dz|=\frac{1-|p|^2}{|z-p|^2}\,|dz|$.

7. Prove Hadamard's 3 circles theorem: if f(z) is analytic on the annulus $R_1 < |z| < R_2$, and $M(r) := \sup_{|z|=r} |f(z)|$, then $\log M(e^s)$ is a convex function of $s \in (\log R_1, \log R_2)$.

For any $\alpha \in \mathbb{R}$, the function $\alpha \log |z| + \log |f(z)|$ is harmonic on the annulus $A := \{R_1 < |z| < R_2\}$, away from the zeros of f. Since $\alpha \log |z| + \log |f(z)| \ll 0$ near a zero of f, the maximum principle shows that the function $\alpha \log |z| + \log |f(z)| = \log |z^{\alpha}f(z)|$ attains its maximum on the boundary of A, which is the union of the circles $|z| = R_1$ and $|z| = R_2$. Choose $\alpha := \frac{\log M(R_1) - \log M(R_2)}{\log(R_2) - \log(R_1)}$, so that $\alpha \log R_1 + \log M(R_1) = \alpha \log R_2 + \log M(R_2)$. Then the preceding observation gives, for all $R_1 < R < R_2$, the inequality $\alpha \log R + \log M(R) \le \alpha \log R_1 + \log M(R_1)$. By the choice of α , a rearrangement gives $\log M(R) \le \frac{\log R_2 - \log R}{\log R_2 - \log R_1} \log M(R) + \frac{\log R - \log R_1}{\log R_2 - \log R_1} \log M(R_2)$. The conclusion follows: $\log M(R)$ is a convex function of $\log R$.

8. Let u, v be smooth functions on $\overline{\Delta}$ with $u | \Delta$ harmonic and $u |_{S^1} = v |_{S^1}$. Show that $\int_{\Delta} |\nabla v|^2 \ge \int_{\Delta} |\nabla u|^2$.

More precisely, the following identity takes place:

$$\int_{\Delta} |\nabla v|^2 = \int_{\Delta} |\nabla u|^2 + \int_{\Delta} |\nabla (v - u)|^2.$$

To prove it, we need to show $\int_{\Delta} \nabla v \cdot \nabla(v - u) = 0$. Its proof reduces to the divergence theorem. Since $\nabla(\nabla u) = \Delta u = 0$, we have $\nabla((v - u)\nabla u) = \nabla(v - u) \cdot \nabla u$, and the divergence theorem gives $\int_{\Delta} \nabla v \cdot \nabla(v - u) = \int_{\Delta} \nabla((v - u)\nabla u) = \int_{S^1} (v - u)\nabla u \, |dz| = 0$, the last equality holding by the assumption $v - u|_{S^1} \equiv 0$.

Remark. Conversely, if u minimizes the **Dirichlet energy integral** $E(u) := \frac{1}{2} \int_{\Delta} |\nabla u|^2$ among the functions on the disk with a given boundary condition, then u is harmonic. This is proven in exactly the same way, with the following **calculus of variations** twist. For a test function φ vanishing on S^1 , analyze the function $\mathbb{R} \to \mathbb{R}$, $t \mapsto E(u + t\varphi)$. If E(u) is a minimum among the functions restricting to $u|_{S^1}$ on S^1 , this (smooth) function attains a minimum at t=0, showing $\frac{d}{dt}E(u+t\varphi)=0$. Differentiating under the integral and applying the divergence theorem in exactly the same way, this yields $\int_{\Delta} \varphi \cdot \Delta u = 0$. Since this is to hold for all functions φ vanishing on S^1 , it follows that $\Delta u = 0$, i.e. u is harmonic.

9. Let $\sum a_n z^n$ be the Laurent series for $1/(e^z - 1)$ near z = 0. Find a_n for $n \leq 3$. What is the radius of convergence of this series?

Expand in geometric series $1/(e^z-1) = \frac{1}{z} \frac{z}{e^z-1} = \frac{1}{z} \frac{1}{1+(z/2+z^2/6+z^3/24+z^4/120+o(z^4))} = \frac{1}{z} \sum_{n \geq 0} (-z/2-z^2/6-z^3/24-z^4/120)^n + o(z^4) = \frac{1}{z} - \frac{1}{2} + \frac{1}{12}z - \frac{1}{720}z^3 + o(z^3).$ The radius of convergence if the series is 2π , because the singularity of the meromorphic function $1/(e^z-1)$ of minimal absolute value is the pole $2\pi\sqrt{-1}$.

The coefficients a_n in the expansion of $1/(e^z - 1)$ near 0 are called the **Bernoulli numbers**, and have important arithmetical properties. They also arise in a formula expressing $\sum_{j \le n} j^k$ as a polynomial in n of degree k+1: it is obtained by comparing coefficients in $(e^{(k+1)z} - e)/(e^z - 1) = 1 + e^z + e^{2z} + \cdots + e^{kz}$. But note that $1/(e^z - 1)$ cannot be expanded directly in geometric series (even formally), because $e^z - 1$ has a zero at z = 0.

10. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function satisfying f(x+y) = f(x)f(y). Prove that either f(z) = 0, or $f(z) = \exp(\alpha z)$ for some $\alpha \in \mathbb{C}$.

The functional equation f(x+y)=f(x)f(y) implies f'(x)=f'(0)f(x), hence $f^{(k)}(x)=\alpha^k f(x)$, where $\alpha:=f'(0)$. Also $f(0)^2=f(0)$, showing f(0) is either 1 or 0. In the latter case, f(z)=0. In the former case, $f^{(k)}(0)=\alpha^k f(0)=\alpha^k$, showing that the Taylor expansion near 0 of the entire function f(z) is $\sum_{k>0}\alpha^k z^k/k!=\exp(\alpha z)$, as required.