

Southern Luzon State University College of Engineering Computer Engineering Department

CPE 09 INTRODUCTION TO HDL

Name: REIMARC G. CORPUZ	Date: Oct 5, 2022
-------------------------	-------------------

Course and Year: BSCpE III GF Score:

V. Evaluate my Learning

I. Are the following legal strings? If not, write the correct strings

Declaration		Verilog string
"This is a string displaying the % sign"	ILEGAL	"This is a string displaying %% the sign"
"out = in1 + in2"	LEGAL	
"Please ring a bell \007"	LEGAL	
"This is a backslash \ character\n"	ILEGAL	"This is a backslash \\ character\n"

II. Are these legal or illegal identifiers? If it is illegal, write the correct identifier

a. system1 LEGAL

b. 1reg ILEGAL => reg1

c. \$latch | ILEGAL | => | latch\$

d. exec\$ LEGAL

Sum_product Verilog Code

From the given example of Verilog code of getting the sum and product of a number, I tried to change the syntax of displaying the value of integer and real variables the %0d and %0.2f. I observed that if I am going to display the value it should be in the same data type all d or f. While if the two given number is an integer and the second one is with the decimal point, the way that I can do is to add the whole number a zero decimal point and declared it as %0.2f both. In getting the product, it displays the answer but the display value of b is different from the value that I assigned. Also, I observed that even though the given decimal point of real is two and I want to make the answer in three decimal places, it is legal.

```
module sum product();
                   integer a, y, b;
                   integer sum;
                   real x;
                   real product;
                   initial begin
                                     a = -3;
                                        y = 11;
                                        sum = a + y;
                                        \frac{1}{y} = \frac{1}
                                        x = -99.67;
                                        b = -8.00;
                                        product = x * b;
                                        \phi(x) = \phi(x) + (x - \phi(x))
end
endmodule
```