Equilibrium (Δ G=0) and Standard State

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{[C]^{\circ}[D]^{d}}{[A]^{a}[B]^{b}}$$

At equilibrium
$$\Delta G = 0$$
 & $\ln \frac{[C]^{\circ}[D]^{d}}{[A]^{a}[B]^{b}} = \ln Keq$

$$\Delta G^{\circ} = -RT \ln Keq$$

- Rewrite $K_{eq} = e^{(-\Delta G^{\circ}/RT)}$
- R is 8.314 x 10⁻³ KJ/K.mol
- T is temperature in Kelvins

$$\Delta G^{o}$$
 = -RT In(K_{eq}) = -RT 2.303 log(K_{eq})

△G under Nonstandard Conditions

- ΔG and ΔG° are different
- $\Delta G = \Delta G^{\circ}$ only when the reactants and products are in their standard states
- ∆G tells you about spontaneity of process under given set of conditions
 - = equal to maximum work that can be done by process/reaction
 - $\Delta G < 0$ \rightarrow energy available for work
 - = the more negative ΔG is, the more work that can be done
 - $\Delta G = 0 \rightarrow equilibrium no work$
- ΔG° tells you about magnitude of equilibrium constant (K)
 - = ΔG° < 0 \rightarrow large K value (equilibrium lies on products side)
 - = $\Delta G^{\circ} > 0$ \Rightarrow small K value (equilibrium lies on reactants side)

$$\Delta G^{o}$$
 = -RT In(K_{eq}) = -RT 2.303 log(K_{eq})

<i>Table 3-3</i>	Variation of	of $K_{ m eq}$	with	ΔG°	at 25°C
------------------	--------------	----------------	------	--------------------	---------

$K_{ m eq}$	$\Delta G^{\circ} \left(\mathrm{kJ \cdot mol^{-1}} \right)$
10^{6}	-34.3
10^{4}	-22.8
10^{2}	-11.4
10^{1}	-5.7
10^{0}	0.0
10^{-1}	5.7
10^{-2}	11.4
10^{-4}	22.8
10^{-6}	34.3

A small change in ΔG° causes a large change in K, due to their logarithmic relationship.

As ΔG° becomes *more positive*, K becomes *smaller*.

As ΔG° becomes *more negative*, *K* becomes *larger*.

At 298 K, a 10-fold change in K_{eq} is 5.7 kJ/mol change in ΔG^{o} This is less than half the energy of a weak H-bond!

Cheat Sheet

For any process at constant *P* and *T*:

$$\Delta G = \Delta H - T \Delta S$$

 $\Delta G = \Delta H - T$ $\Delta G < 0$ favorable (exergonic)

 $\Delta G > 0$ unfavorable (endergonic)

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{[C]^{\circ}[D]^{d}}{[A]^{a}[B]^{b}}$$

At equilibrium
$$\Delta G = 0$$
 & $\ln \frac{[C]^{\circ}[D]^{\circ}}{[A]^{a}[B]^{b}} = \ln Keq$

$$:: \Delta G^{\circ} = -RT \ln Keq$$

R is 8.314 x 10⁻³ KJ/K.mol T is temperature in Kelvins

Join the Dots

For any process at constant *P* and *T*:

$$\Delta G = \Delta H - T\Delta S$$

Determination of ΔH° and ΔS°

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$-RTlnKeq = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$lnKeq = -\frac{\Delta H^{\circ}}{R} \frac{1}{T} + \frac{\Delta S^{\circ}}{R}$$

$$y = mx + b$$

Assuming that enthalpy and entropy are invariant with temperature, you can plot lnKeq vs. 1/T.

Slope =
$$-\frac{\Delta H^{\circ}}{R}$$

y-intercept = $\frac{\Delta S^{\circ}}{R}$

Van't Hoff Plot

Allows ΔH^o and ΔS^o to be determined from measurement of K_{eq} at two or more different temperatures

Van't Hoff Plots

Gradient is negative

Gradient is $-\Delta H/R$

 ΔH is positive

Endothermic

Gradient is positive
Gradient is -ΔH/R
ΔH is negative
Exothermic

Van't Hoff Plot

 $\Delta G^{\circ} = -RTInKeq$

In K_{eq} is positive so ΔG^{o} is negative

In K_{eq} is negative so ΔG^{o} is positive

Assumption is that ΔH^o and ΔS^o do NOT change with temperature

$$\Delta G^{\text{o}} = -\text{RT In}(K_{\text{eq}}) = -\text{RT 2.303 log}(K_{\text{eq}})$$

If the forward reaction has " ΔG^{o} " then the reverse reaction has " $-\Delta G^{o}$ "

$$A + B \rightarrow C + D$$
 $\Delta G^{o}' = 33 \text{ kJ/mol}$
 $D + C \rightarrow B + A$ $\Delta G^{o}' = -33 \text{ kJ/mol}$

Coupled Reactions

Suppose we couple two equations:

$$A + B \rightarrow C + D$$
 $\Delta G^{o'} = x$
 $C + F \rightarrow B + G$ $\Delta G^{o'} = y$

• The result is:

$$A + B + C + F \rightarrow B + C + D + G$$

or
 $A + F \rightarrow D + G$ $\Delta G^{o'} = x + y$

... since B and C appear on both sides

Couple Reactions

- Endergonic reactions (positive ΔG) can occur through coupling with exergonic reactions (negative ΔG)
- Coupling is essential in metabolic pathways
- The overall ΔG for a coupled reaction is the sum of the two ΔG values for the individual reactions

Reactions involved in Coupling

• Endergonic processes that maintain life are driven by exergonic reactions of nutrient oxidation

```
    Hydrolysis of high-energy (~)* phosphate compounds
    PEP – phosphoenolpyruvate
    CP – creatine phosphate
    ATP – adenosine triphosphate
```

- Reduction of coenzymes
NADH
FADH₂

ATP is Adenosine-5'-triphosphate

ATP Contains Two Pyrophosphate Linkages

Adenosine monophosphate

Adenosine <u>di</u>phosphate

Adenosine <u>tri</u>phosphate

Phosphoryl-Transfer Reactions

$$ATP + H_2O \Longrightarrow ADP + P_i$$

 $ATP + H_2O \Longrightarrow AMP + PP_i$

Pi is orthophosphate (PO_4^{-3}) PPi is pyrophosphate $(P_2O_7^{-4})$

Reactants and products	$\Delta G^{\circ\prime}_{ m hydrolysis}$ (kJ mol $^{-1}$)	
$\begin{array}{l} ATP + H_2O {\rightarrow} \\ ADP + P_{i} + H^{\oplus} \end{array}$	-32	
$\begin{array}{c} ATP + H_2O \to \\ AMP + PP_i + H^\oplus \end{array}$	-45	
$\begin{array}{l} \text{AMP} + \text{H}_2\text{O} \mathop{\rightarrow} \\ \text{Adenosine} + \text{P}_{\text{i}} + \text{H}^{\oplus} \end{array}$	-13	
$PP_i + H_2O \rightarrow 2P_i$	-29	
$\begin{array}{c} \text{ADP + H}_2\text{O} \rightarrow \\ \text{AMP + P}_{\text{i}} \end{array}$	-31	

** Phosphoester bond

E.g. Coupled Reactions

Glucose +
$$P_i \longrightarrow$$
 glucose 6-phosphate + H_2O
$$\Delta G'^{\circ} = 13.8 \text{ kJ/mol}$$
 ATP + $H_2O \longrightarrow$ ADP + $P_i \qquad \Delta G'^{\circ} = -30.5 \text{ kJ/mol}$

- (1) Glucose + $P_i \longrightarrow glucose$ 6-phosphate + H_2O
- (2) $ATP + H_2O \longrightarrow ADP + P_i$

 $Sum: ATP + glucose \longrightarrow ADP + glucose 6-phosphate$

$$\Delta G^{\circ} = 13.8 \text{ kJ/mol} + (-30.5 \text{ kJ/mol}) = -16.7 \text{ kJ/mol}$$

E.g. Coupled Reactions

ATP synthesis comes from more exergonic hydrolysis of phosphoenolpyruvate (plus other pathways)

Tendency of phosphoryl group to be transferred to water

Phosphates transferred 'downwards'

Compound	$\Delta G^{\circ\prime} \left(\mathrm{kJ \cdot mol^{-1}} \right)$
Phosphoenolpyruvate	-61.9
1,3-Bisphosphoglycerate	-49.4
$\mathbf{ATP} \left(\to \mathbf{AMP} + \mathbf{PP}_i \right)$	-45.6
Acetyl phosphate	-43.1
Phosphocreatine	-43.1
$\mathbf{ATP} \left(\to \mathbf{ADP} + \mathbf{P}_i \right)$	-30.5
Glucose-1-phosphate	-20.9
PP_i	-19.2
Fructose-6-phosphate	-13.8
Glucose-6-phosphate	-13.8
Glycerol-3-phosphate	-9.2

ATP has an intermediate phosphate group-transfer potential

ATP is an Energy Shuttle (not a reservoir)

• PEP and 1,3-BPG are created in the course of glucose breakdown; their energy is transferred to ADP to make ATP

• But ATP is only a transient energy carrier... it quickly passes its energy to a host of energy-requiring processes

 Often involves enzymes called kinases

Figure 16-27 The flow of phosphoryl groups from "high-energy" phosphate donors, via the ATP-ADP system, to "low-energy" phosphate acceptors.

Influences on the ΔG of ATP Hydrolysis

- Concentration of reactant and products (Of course!)
 - Intracellular [ATP], [ADP], and [Pi] are mM
 - Makes actual $\Delta G \sim -50 \text{ kJ/mol}$
- pH
 - Small effect

$$\Delta G = \Delta G_{RX}^{\circ} + RT \ln \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

- Divalent metal ion concentration
 - Small effect
 - Have high phosphate-binding affinities

Concentration Effects

 ΔG is all about what happens with a particular set of concentrations

The free energy of hydrolysis of ATP as a function of concentration at 38° C, pH 7.0.

[ATP], [ADP], & [Pi] in a typical bacterial cell at 25° C are maintained at roughly 8 mM, 8 mM, & 1 mM.

Under these conditions, ΔG for ATP hydrolysis is approximately -47.6 kJ/mol.

$$\Delta G = \Delta G_{RX}^{\circ} + RT \ln \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

The pH dependence of the free energy of hydrolysis of ATP. Because pH varies only slightly in biological environments, its effect on ΔG is usually small.

The free energy of hydrolysis of ATP as a function of total Mg²⁺ ion concentration at 38° C and pH 7.0.

What makes ATP hydrolysis so exergonic?

- Resonance destabilization of the phosphoanhydride bond in ATP (arrows)
- Charge-charge repulsions brought together in ATP (zig zag)
- Resonant forms of Pi restricted in ATP
- Resonant forms of non-Pi product also restricted

Figure 16-24 Resonance and electrostatic stabilization in a phosphoanhydride and its hydrolysis products. The competing resonances (*curved arrows* from the central O) and charge–charge repulsions (*zigzag line*) between the phosphoryl groups of a phosphoanhydride decrease its stability relative to its hydrolysis products.

Cellular Conditions

- Cells are NOT at equilibrium or standard state
- Difficult to obtain equilibrium as system is open
- For a reaction, the magnitude of the cellular ΔG is a measure of how far cellular conditions are from standard state

$$A + B \rightleftharpoons C + D$$

$$DG = DG^{\circ} + RT \ln \left(\frac{[C][D]}{[A][B]} \right)$$

l.e. Conc. other than 1 M will change ΔG

Cellular Conditions

In cells, biochemical reactions are typically:

- a. at equilibrium
- b. occurring at standard state concentrations of reactants and products
- c. at pH 5.5
- d. none of the above

What will be the final pH of a solution made by mixing 20 ml of 12.5 mM Carbonic acid with 5 ml of 60 mM NaOH?

For H_2CO_3 , $pKa_1 = 3.77$, $pKa_2 = 10.24$.

- a. $10.24 + \log(2/8)$
- b. $10.24 + \log(8/2)$
- c. $3.77 + \log(2/8)$
- d. $3.77 + \log(8/2)$

Formic acid has a K_a of 1.78 x 10⁻⁴ M. Ammonium has a K_a of 5.62 x 10⁻¹⁰ M. At pH 7.0:

- a. Formic acid will be protonated, but Ammonium will be deprotonated
- b. Formic acid will be deprotonated, but Ammonium will be protonated
- c. Both Formic acid and Ammonium will be protonated
- d. Both Formic acid and Ammonium will be deprotonated

Which of the following solvents will most effectively interfere with an ionic interaction?

- a. Formamide (Dielectric Constant = 109)
- b. Acetic acid (Dielectric Constant = 6.2)
- c. Water (Dielectric Constant = 78.5)
- d. Solvent does not interfere with ionic interactions

If ΔH is 110 kJ/mol and -T ΔS is -140 kJ/mol, the reaction is:

- a. spontaneous and driven by entropy
- b. spontaneous and driven by enthalpy
- c. non-spontaneous because of an entropic penalty
- d. non-spontaneous because of an enthalpic penalty

E.g. Charging tRNAs

3. In protein synthesis, tRNA^{Gly} is charged with glycine by the following reaction:

Hydrolysis of two phosphoanhydride bonds!

$$tRNA^{Gly} + glycine + ATP \leftrightarrows glycyl-tRNA + AMP + 2P_i$$

The ΔG° for hydrolysis of glycyl-tRNA is -33 kJ/mol. For other ΔG° values, use those given in Fig. 3.7 of the Mathews et al. Chapter 3 posted on the class eLearning site. Assume all values are for the standard temperature of 25°C.

a. Calculate ΔG° for this charging reaction?

This reaction is a coupled reaction, which is the sum of the following reactions:

ATP
$$\leftrightarrows$$
 AMP + PP_i $\Delta G^{\circ}' = -31 \text{ kJ/mol (from Table 4.7, Chap. 3)}$

$$PP_i \leftrightarrows 2P_i$$
 $\Delta G^{o'} = -33 \text{ kJ/mol (from Table 4.7, Chap. 3)}$

$$tRNA^{Gly} + glycine \implies glycyl-tRNA$$
 $\Delta G^{o'} = +33 \text{ kJ/mol (given in problem)}$

Without the second hydrolysis the free energy change would be around zero!

Summing the $\Delta G^{o'}$ values = $\Delta G^{o'}$ for the overall charging reaction = -31 kJ/mol

 H_2O and H^+ are not included in the chemical equation since they are constant and subsumed in the $\Delta G^{o'}$ values.

b. What is the Keq' for this charging reaction?

$$\Delta G^{\circ}' = -2.303 RT log Keq'$$

Keq =
$$10\exp{-\Delta G^{\circ}}/5.71$$
kJ/mol = $10\exp{-(-31 \text{ kJ mol}^{-1}/5.71 \text{ kJ mol}^{-1})}$
= $10^{5.43} = 2.69 \times 10^5 \text{ M}$

Daily Human Requirement for ATP

- The average adult human consumes approximately 11,700 kJ of food energy per day
- Assuming thermodynamic efficiency of 50%, about 5860 kJ of this energy ends up in form of ATP
- Assuming 50 kJ of energy required to synthesize one mole of ATP, the body must cycle through 5860/50 or 117 moles of ATP per day
- This is equivalent to 65 kg of ATP per day
- The typical adult human body contains 50 g of ATP/ADP
- Thus each ATP molecule must be recycled nearly 1300 times per day
- ATP supply in a cell provides free energy for only 1-2 minutes!

Weak Forces

- Energies of weak forces range from -0.4 to -40 kJ/mol
- Weak forces include:
 - 1. Ionic interactions (-20 kJ/mol)
 - 2. Van der Waals interactions (-0.4 to -4 kJ/mol)
 - 3. Hydrogen bonds (-12 to -30 kJ/mol)
 - 4. Hydrophobic interactions (>-40 kJ/mol)

By convention, an attractive interaction has a negative energy!

Bond	Energy (kJ/mol)
H-H	436
C-H	414
C-C	343
C-O	351

Water Organization

- Hydrophobic molecules are non-polar and organize water into a clatharate-like structure
- The water becomes more ordered
- Unfavorable decrease in entropy?

Entropy

- Non-polar molecules associate with each other... ultimately organizing LESS water molecules
- Minimum decrease in entropy by releasing water from the clathrate structures

Hydrophobic Interactions

• Occur in water as hydrophobic molecules tend to interact with each other and exclude polar

molecules

Amphiphilic Molecules Also called "amphipathic"

- Refers to molecules that contain both polar and nonpolar groups
- These molecules are attracted to both polar and nonpolar environments
- E.g. fatty acids, detergents(SDS), and most amino acids

Hydrophobic Interactions drive Micelle Formation by Amphipathic Lipids

- Negatively charged head groups orient to the micelle surface and interact with the polar H₂O molecules via H bonding.
- The nonpolar hydrocarbon tails cluster in the interior of the spherical micelle, driven by hydrophobic interactions

Hydrophobic interactions are entropically ______, as _____ water molecules are ordered when they form.

- a. favorable, less
- b. favorable, more
- c. unfavorable, more
- d. unfavorable, less

Study Guide

- ✓ 1st and 2nd laws of thermodynamics
- ✓ Meaning of state functions vs. path functions
- ✓ Definitions of endothermic, exothermic, exergonic, endergonic, amphipathic/amphiphilic, micelle
- ✓ Thermodynamic formulae and their use in problems
- ✓ Meaning of ΔG° and ΔG° '
- ✓ Van't Hoff plots and using them to determine ΔH° and ΔS°
- ✓ Coupled reactions and phosphoric acid anhydrides such as ATP
- √ Hydrophobic interactions