Year	References	References	Scenario	D	ata Ty	pes	Data	Number of Encoded Elements						Vibrotactile Parameters						Perceptual Tasks					Body Location of Stimulus					User Evaluation			
				Q	0	N	1D	2D	3D	_	_	4 5	_	_	_	8+	F	D	R	A	w	B.L	ī	О	С	D	H.N	U.L	Т.	L.L	M.B.P	Quant.	Qual.
2025	Samsel et al. (2025)	24	1	0	0	1	1	0	0	0		0 0		т	0	0	1	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1
2025	Afzal et al. (2025)	25	4	1	1	0	0	1	0	0	\rightarrow	0 0	_		-	1	1	1	1	0	0	1	1	0	0	0	0	1	0	0	0	1	0
2020	Cunha Monteiro et				· ·	Ů				Ť	Ť	+	+	Ť	Ů	_			Ė	Ť	<u> </u>		Ė	_	Ů		-		١Ů		<u> </u>		
2024	al.(2024)	26	3	1	0	1	1	0	0	0	0	0 0	ı o	0	1	0	1	0	0	0	0	0	1	1	1	1	0	1	0	0	0	1	1
2023	Villa et al.(2023)	27	5	0	0	1	1	0	0	0	0	1 (0	0	0	0	1	0	0	1	0	1	1	0	0	0	0	0	1	0	0	1	0
2023	Sion et al. (2023)	28	3	0	0	1	1	0	0	0	0	0 0	0	0	1	0	1	1	1	1	1	0	1	0	0	0	0	1	0	0	0	0	1
2023	Lu et al.(2023)	12	3	0	0	1	0	0	1	0	0	0 0	0	0	0	1	1	1	1	1	0	1	1	0	0	0	0	1	1	1	1	1	1
2023	Müller et al.(2023)	29	3	1	0	0	0		1	0	0	0 0	_	_	0	1	1	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0
2022	Wei et al.(2022)	30	1	1	0	0	0	0	1	0	0	0 1	0	0	0	0	1	0	0	0	0	1	1	0	1	0	0	1	1	0	1	1	0
2022	Bastidas Cuya et al.(2022)	31	4	0	1	0	1	0	0	0	0	0 1	0	0	0	0	1	0	0	0	0	1	1	0	1	1	0	1	0	0	0	1	1
2021	Marino et al.(2021)	32	3	0	0	1	0	0	1	0	0	0 0	0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	0	0	1	1
2021	Ferguson et al.(2021)	33	5	0	0	1	1	0	0	0	0	0 0	0	0	0	1	0	1	1	0	1	0	1	0	0	0	0	1	0	0	0	1	0
2021	Liu e Dohler(2021)	34	2	0	0	1	1	0	0	0	0	0 0	0	0	0	1	1	1	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0
2020	Dupont et al.(2020)	35	1	1	0	0	0	1	0	0	0	0 0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	1	0
2020	Xu et al.(2020)	36	1	0	0	1	1	0	0	0	0	1 (0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	1	0	1	0
2020	Zhao et al.(2020)	37	3	0	0	1	1	0	0	0	0	1 (0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	1	0	0	0	1	1
2020	Di Campli San Vito et al.(2020)	38	3	0	0	1	1	0	0	0	1	0 0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	1	0	0	0	1	1
2019	Luzhnica e Veas(2019b)	39	2	0	0	1	1	0	0	0	0	0 0	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	0	0	0	1	0
2019	Luzhnica e Veas(2019a)	40	2	0	0	1	1	0	0	0	0	0 0	0	0	0	1	0	1	0	0	0	1	1	0	1	0	0	1	0	0	0	1	0
2019	Schaack et al.(2019)	41	1	0	0	1	0	1	0	0	0	0 0	0	0	1	0	1	1	0	1	0	1	1	0	0	0	1	0	0	0	0	1	1
2019	Elvitigala et al.(2019)	42	5	0	0	1	1	0	0	0	0	0 0	0	0	0	1	0	1	0	0	0	1	1	0	0		0	1	0	0	0	1	1
2018	Luzhnica e Veas(2018)	43	2	0	0	1	1	0	0	0	0	0 0	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	0	0	0	1	0
2018	Luzhnica et al.(2018)	44	2	0	0	1	1	0	0	0	0	0 0	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	0	0	0	1	0
2017	Luzhnica e Veas(2017)	45	2	0	0	1	1	0	0	0	0	0 0	0	0	0	1	0	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	0
2017	Kessler et al.(2017)	46	1	0	0	1	1	0	0	0	0	1 0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0
2017	Wilson; Brewster(2017)	47	5	0	0	1	1	0	0	0	0	0 0	0	0	0	1	1	1	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0
2016	Schneider et al.(2016)	48	5	0	0	1	1	0	0	0	0	0 0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	1	0	0	0	1	0
2016	Luzhnica et al.(2016)	49	2	0	0	1	1	0	0	0	0	0 0	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	0	0	0	1	0
2016	Seifi e Lyons(2016)	16	3	1	0	1	0	1	0	0	0	0 0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	1
2016	Afzal et al.(2016)	50	4	0	1	0	1	0	0	1	0	0 0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	0	1	0
2015	Kim et al.(2015)	51	4	1	0	0	0	1	0	0	0	1 (0	0	0	0	1	1	0	1	0	1	1	0	0	0	0	1	0	0	0	1	0
2014	Prasad et al.(2014)	52	2	0	0	1	1	0	0	0	0	0 0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	1	0
2013	Steltenpohl e Bouwer(2013)	53	1	1	0	1	0	1	0	0	0	0 0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	1	1
2010	Asif et al.(2010)	54	4	0	0	1	1	0	0	0	0	1 (0	0	0	0	0	1	1	1	0	0	1	0	0	0	0	0	1	0	0	1	1
2009	Lylykangas et al.(2009)	55	1	1	0	0	0	1	0	0	1	0 0	0	0	0	0	1	1	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1
	•	•	Sum	9	3	26	23	7	4	1	2	6 2	1	0	3	19	18	26	10	11	4	19	34	1	5	3	1	26	8	2	2	32	14

Data Types
Q - Quantitative
O - Ordinal
N - Nominal

Data Dimensions

1D - One Dimension
2D - Two Dimension
3D - Three Dimension

Vibrotactile Parameters

F - Frequency
D - Duration
R - Rhythm
A - Amplitud
W - Waveform
B.L - Body Location

Perceptual Tasks

I - Identification
O - Ordering
C - Comparison
D - Distinguish

Body Location of Stimulus

H.N - Head and Neck H.N - Head and Neck
U.L - Upper Limbs
T. - Thorax
L.L - Lower Limb
M.B.P - Multiple Parts