

2.6

8)
$$f(x) = \sqrt{9-x^2}$$
, $g(x) = \sqrt{x^2-4}$
 $f(x)$ Domain: [-3,3], $g(x)$ Domain: $(-\infty, -2]$ U[2, ∞)
the intersection of those domains is [-3,-2] U[2,3]
 $(f+g)(x) = \sqrt{9-x^2} + \sqrt{x^2-4}$ Domain: [-3,-2] U[2,3]
 $(f-g)(x) = \sqrt{9-x^2} - \sqrt{x^2-4} = \sqrt{-x^4+13x^2-36}$ Domain: [-3,-2] U[2,3]
 $(fg)(x) = \sqrt{9-x^2} - \sqrt{x^2-4} = \sqrt{-x^4+13x^2-36}$ Domain: [-3,-2] U[2,3]
 $(f/g)(x) = \sqrt{9-x^2} - \sqrt{x^2-4} = \sqrt{-x^2}$ Domain is [-3,2) U(2,3]

$$30)(f \circ g)(0) = 3$$
, so $(f \circ g)(0) = f(3) = 0$

34)
$$f(x) = 6x - 5$$
 $g(x) = \frac{x}{2}$
 $(f \circ g) (+ f(\frac{x}{2}) = 6(\frac{x}{2}) - 5 = 3x - 5$
 $(g \circ f) (+ g(6x - 5) = \frac{6x - 5}{2} = 3x - \frac{5}{2})$

$$(f \circ f) = f(b \times -5) = b(b \times -5) - 5 = 3b \times -35$$

 $(g \circ g)(x) = g(\frac{x}{2}) = \frac{x}{2} = \frac{x}{4}$

Domain: (-00,00)