1 | Linear Dependence Lemma

- Why do we care that j is the largest element? #question
 - So we can add up everything before it? Just arbitrary?
 - Oh, so we can cancel everything after it.
 - Can also choose the smallest, it's just about segmenting
- How does 2.22 work? #question
 - To get to 2.22, subtract everything but $a_j v_j$ from both sides of $a_1 v_1 + ... + a_m v_m = 0$
 - Everything past v_j has to equal 0.
 - So we get $a_{j}v_{j} = -a_{1}v_{1} ... a_{j-1}v_{j-1}$
 - Divide by a_j and we get 2.22
 - Thus, v_j is a linear combination of the other vectors
 - And in the $span(v_1,...,v_i-1)$
- What v_i is it replacing? #question
 - It's replacing what's in the "...", which is unclear.. is v_j actually in the equation then? Or just in the value? #question
 - Now, we can remove the j^{th} finally, and represent it as the linear combination of the previous elements
 - \therefore any element of the span can be represented without v_j This is called a direct proof! Also, we can iterate this process until we get a linearly independent list.

• 2021-2022 Page 1