Quantum optical classifier with superexponential speedup 0

Simone Roncallo , ^{1,2,*} Angela Rosy Morgillo , ^{1,2,†} Chiara 2 Macchiavello , ^{1,2,‡} Lorenzo Maccone , ^{1,2,‡} and Seth Lloyd , ^{63,¶}

¹Dipartimento di Fisica, Università degli Studi di Pavia, Via Agostino Bassi 6, I-27100, Pavia, Italy 1

²INFN Sezione di Pavia, Via Agostino Bassi 6, I-27100, Pavia, Italy 1

³Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5

We present a quantum optical pattern recognition method for binary classification tasks. Without direct image reconstruction, it classifies an object in terms of the rate of two-photon coincidences at the output of a Hong-Ou-Mandel interferometer, where both the input and the classifier parameters are encoded into single-photon states. Our method exhibits the same behaviour of a classical neuron of unit depth. Once trained, it shows a constant $\mathcal{O}(1)$ complexity in the number of computational operations and photons required by a single classification. This is a superexponential advantage over a classical neuron (that is at least linear in the image resolution). We provide simulations and analytical comparisons with analogous neural network architectures.

Keywords: Quantum image classifier; Quantum optical neuron; Quantum neural networks; Hong-Ou-Mandel 7 effect: 7

I. INTRODUCTION 0

[Image classification has been significantly affected by 7 the introduction of deep learning algorithms, providing 7 several architectures that can learn and extract image 7 features [1–4]. The large number of parameters involved 7 is motivating a consistent effort in reducing the cost of 7 these methods, e.g. by leveraging all-optical implemen-7 tations that bypass hardware usage [5–11], or quantum 7 mechanical effects that can provide a significant speedup 7 in these computations [12–16]. Quantum optical neural 7 networks harness the best of both worlds, i.e. deep learn-7 ing capabilities from quantum optics [17–21].

In this paper, we introduce a quantum optical setup to 8 classify objects without reconstructing their images. Our 8 approach relies on the Hong-Ou-Mandel effect, for which the probability that two photons exit a beam splitter in 8 different modes, depends on their distinguishability [22]. In our implementation, an input object is targeted by a single-photon source, and eventually followed by an arbitrary lens system. The single-photon state interferes with 8 another one, which encodes a set of trainable parameters. e.g. through a spatial light modulator. Classification oc-136curs by measuring the rate of two-photon coincidences at the Hong-Ou-Mandel output (see Fig. 1). The Hong-Ou- 8 Mandel effect has been successfully applied to quantum 8 kernel evaluation [23], which can compute distances between pairs of data points in the feature space. In this 8 case, each point is sent to one branch of the interferometer, encoded in the temporal modes of a single-photon state. In our method, the interferometer has only one 8 independent branch, which takes the spatial modes of a single-photon state reflected off the target object. The 8 other branch remains fixed after training, and contains 8 the layer of parameters. After the measurement, the response function of our apparatus mathematically resembles that of a classical neuron. For this reason, we refer 8 to our setup as quantum optical neuron. By analytically 8 comparing the resource cost of the classical and quantum 8 neurons, we show that our method requires constant $\mathcal{O}(1)$ 8 computational operations and injected photons, whereas 8 the classical methods are at least linear in the image resolution: a superexponential advantage. 8

II. METHOD ()

In this section, we discuss the apparatus of Fig. 1, without explicitly modelling the probe. Two single-photon tates are fed into the left and top branches of a 50:50 beam splitter, acting as input and processing layers, re-

* Simone Roncallo: simone.roncallo01@ateneopv.it 1

† Angela Rosy Morgillo: angelarosy.morgillo01@ateneopv.it 2

Chiara Macchiavello: chiara.macchiavello@unipv.it 3

Lorenzo Maccone: lorenzo.maccone@unipv.it 4

Seth Lloyd: slloyd@mit.edu 5

FIG. 1. Quantum optical neuron implemented by the Hong-Ou-Mandel interferometric setup. An object is targeted by a single-photon source and classified through the rate of twophoton coincidences at the interferometer output, without reconstructing its full image. In the top branch, an additional thin lens can translate the classification problem to the Fourier domain. 9 spectively. In the left branch, the single-photon source reflects off the object, and reaches the beam splitter after a linear optical system. In the top branch, we consider a generic single-photon state, which depends on a set of trainable real parameters. We count the two-photon coincidences at the beam splitter output. We show how to interpret the Hong-Ou-Mandel response as the one produced by a single-layer neural network-like operation on the object image.

We call input and probe modes, i.e. a and b, those 11 fed into the left and top branches of the interferometer. 11 In the input branch, a single photon with spectrum ϕ is 11 generated at the longitudinal origin z=0, followed by 11 an object with two-dimensional shape \mathcal{O} . An imaging 11 system with transfer function \mathcal{L}_d , e.g a pinhole or a linear optical apparatus, is placed after the object. Here, 11 z_o and z_i are the longitudinal positions of the object and 11 the image plane, respectively, and $d=z_i-z_o$ their displacement. 11

The output of the imaging optics reads (see Ap-12 pendix A) 0

with $\hat{\mathcal{I}}_{\omega}(\cdot|\mathcal{O}) = [(\hat{\phi}_{\omega}\hat{\mathfrak{I}}_{z_o}) * \hat{\mathcal{O}}]\hat{\mathcal{L}}_d$ the total transfer function from the single-photon source to the image plane, and $a_{\omega}^{\dagger}(k)$ the creation operator of a photon in the input mode, acting on the vacuum state $|0\rangle$. The hat operator denotes the two-dimensional Fourier transform on the transverse coordinates plane, * the convolution operation, \mathfrak{I}_{z_o} the transfer function from the source to the object plane, $k = (k_x, k_y)$ the transverse momentum, and ω the frequency conjugated to the temporal degree of 14 freedom of the electromagnetic potential.

In the probe branch, a generic quantum state is prepared, eventually followed by a linear optical system. At the beam splitter plane, the probe state reads 15

$$|\Psi_{\mathcal{U}}\rangle = \int \mathrm{d}^2 k \; \hat{\mathcal{U}}_{\omega}(k|\lambda) b_{\omega}^{\dagger}(k) |0\rangle \; ,$$
 (2)

with $\lambda = \{\lambda_{i_1...i_n}\}$ a collection of (trainable) parameters, \mathcal{U} the spatial spectrum of the probe, and $b_{\omega}^{\dagger}(k)$ the creation operator of a photon in the probe mode. 17

A photodetector is placed at the output of each branch.

After feeding both states into a 50:50 beam splitter, the rate of two-photon coincidences reads 18

$$p(1_a \cap 1_b | \lambda, \mathcal{O}) = \frac{1}{2} \left[\rho_{2\lambda}(\mathcal{O}) - f_{\lambda}(\mathcal{O}) \right] , \qquad (3)$$
with
$$f_{\lambda}(\mathcal{O}) = \left| |\mathcal{I}_{\omega}(\cdot | \mathcal{O}) ||^2 ||\mathcal{U}_{\omega}(\cdot | \lambda)||^2 , \qquad (4)$$

$$f_{\lambda}(\mathcal{O}) = \left| \langle \mathcal{I}_{\omega}(\cdot | \mathcal{O}), \mathcal{U}_{\omega}(\cdot | \lambda) \rangle \right|^2 , \qquad (4)$$

where $||\cdot||$ and $\langle\cdot,\cdot\rangle$ denote the L^2 -norm and inner product, respectively. Here, $\alpha_{\lambda}(\mathcal{O})$ depends on the normalization of the input and probe states, which can be $\alpha_{\lambda} < 1$ in the presence of optical losses. Whenever the two spectra are indistinguishable, i.e., when \mathcal{U} perfectly matches 20.

10 \overline{L} , coincidences are not observed. On the other hand, the 20 more distinguishable the input and the probe states are, 20 the smaller $\langle \mathcal{I}(\cdot|\mathcal{O}), \mathcal{U}(\cdot|\lambda) \rangle$ becomes and the rate of coincidences increases. See Appendix B for a derivation, and 20 Appendix D, for a similar result in the Fourier domain. 20 At the image plane I, with transverse coordinates r=21 (x, y), we have 21

$$f_{\lambda}(\mathcal{O}) = 0 \quad \text{if } I_{\omega}(r|\mathcal{O})\mathcal{U}_{\omega}^{*}(r|\lambda) \quad \text{if } I_{\omega}(s) \quad \text{if }$$

This integral measures the point-wise overlap between the input image and the probe. We interpret it as the prediction of our classification model, where $f_{\lambda} \in [0,1]$ are represents the probability that \mathcal{I} belongs to the class of \mathcal{I} . In particular, $f_{\lambda} \to 0$ ($f_{\lambda} \to 1$) when the class of \mathcal{I} is orthogonal to (is the same of) \mathcal{U} . In the next section, we show how to encode a generic class in \mathcal{U} , by means of the optimization of the set of parameters λ . 23

The output measurement introduces a non-linear operation after the beam splitter, represented by the squared 24 absolute value in the left-hand side of Eq. (5). We increase the predictability of our model, by enhancing this 24 non-linearity through the following post-processing operations. Consider the sigmoid (logistic) function 24

$$\sigma(x) := \frac{1}{1 + e^{\beta x + \gamma}}, \qquad (6)$$

where β, γ are hyperparameters, i.e. constants with respect to the training process. We introduce an additional trainable parameter $b \in \mathbb{R}$, called bias, which, combined with f_{λ} and σ , yields 26

$$F_{b\lambda}(\mathcal{O}) = \sigma(f_{\lambda}(\mathcal{O}) + b) ,$$
 (7)

which determines the label predicted by the Hong-Ou-Mandel apparatus. These modifications can improve the performance of the neuron. The sigmoid increases the non-linearity introduced by the squared absolute value, and so the predictability of the model. In addition, the bias is introduced on heuristic motivations: it compensates the constraint given by the normalization in Eq. (3), while enhancing the robustness of our protocol against optical losses (which may affect the above-mentioned normalizability, yielding $\alpha_{\lambda} < 1$). 28

We now discuss the training stage. Consider a training set, i.e. an ensemble of objects $\{\mathcal{O}_j\}$ with target labels $\{y_j \in \{0,1\}\}$. We separately feed each object into the input branch of the interferometer. Predicted and target classes are compared in terms of their binary cross-entropy, which is used as loss function of a gradient descent optimizer. The optimizer updates λ through the derivative of the loss function, whose only modeldependent contribution is 29

$$\partial_{\lambda} f = 2 \operatorname{Re} \left[\langle \mathcal{I}_{\omega}, \mathcal{U}_{\omega} \rangle \langle \mathcal{I}_{\omega}, \partial_{\lambda} \mathcal{U}_{\omega} \rangle^{*} \right] .$$
 (8) 144

in the presence of optical losses. Whenever the two spectra are indistinguishable, i.e. when \mathcal{U} perfectly matches 20 rameters that minimizes the loss. Notice that our model 31

FIG. 2. Mathematical relationship between the Hong-Ou-32 Mandel apparatus of Fig. 1 and the classical neuron of Eq. (9). 32 Each operation is identified with the corresponding component of the optical interferometer. 32

is resilient against the issue of gradient explosion [24], 31 since it depends on physical data and functions only (see 31 Appendix C for a discussion). 31

There is a formal relationship between the post-processed output of the Hong-Ou-Mandel interferometer 32 of Eq. (7) and that of a classical neuron. Consider $f_{\lambda}(\mathcal{O})$ 32 discretized and vectorized in a mesh of N cells, either in the spatial or in the Fourier domain. Then, Eq. (7) 32 corresponds to the composition of a real-valued neuron, with N trainable weights, square absolute value activation function and no bias, and a second neuron, with a scalar unit weight, sigmoid activation function and a strainable bias. Namely 32

$$G_{bw}(x) = \sigma(|w \cdot x|^2 + b) , \qquad (9)$$

where $x \in \mathbb{C}^N$ is the input, while $w \in \mathbb{C}^N$ and $b \in \mathbb{R}$ 34 are the weights and bias, respectively. We can formally identify $G_{bw}(x)$ with $F_{b\lambda}(\mathcal{O})$ under the substitution 34

$$(x,w) \stackrel{\sim}{\leftarrow} (\mathcal{I}_{\omega}(r|\mathcal{O}), \mathcal{U}_{\omega}(r|\lambda))$$
, (10)

where $\stackrel{\sim}{\leftarrow}$ is the discretization and vectorization to \mathbb{C}^N . 36 This analogy is represented in Fig. 2. 36

A classical neuron requires at least N photons and N computational operations to classify an image composed of N pixels. Our setup bypasses both costs, by everaging two essential features. On the one hand, it 38 is completely optical, avoiding the computational need 38 of processing the image. On the other hand, it classifies 38 patterns through the Hong-Ou-Mandel effect, reducing 38 the photon cost of imaging. In both ways, it provides a 38 superexponential speedup, from $\mathcal{O}(N)$ to $\mathcal{O}(1)$. Photon losses due to absorption introduce a constant overhead in both the classical and quantum strategies, which depends on the total reflectivity of the object. We summarize this discussion in Table I. See Appendix E for a 38 detailed derivation. 38

		QON	Classical 39
Computational 39 (# of operations)		$\mathcal{O}(1)$	N 39
Optical 39	Imaging	None	$\Theta(\varsigma^{-2}\langle x\rangle N)$ 39
(# of photons)	Classification	$\mathcal{O}(arepsilon^{-2})$	$\Omega\left(\varepsilon^{-2}\langle x\rangle N\right)$ 39

TABLE I. Computational and optical resources comparison 42 between the quantum optical neuron (QON) and its classical 42 counterparts, when reconstructing and classifying an image x 42 of N pixels. Here, ς and $\langle x \rangle$ are the standard deviation and 42 the average brightness of the image (which depend on the 42 reflectivity of the object), while ε is the uncertainty on the 42 classification outcome. Our method achieves a superexponential speedup over its classical counterpart: $\mathcal{O}(1)$ vs. $\mathcal{O}(N)$. 42

III. AMPLITUDE MODULATED PROBE 0

We specialize our discussion by replacing the generic 41 probe state \mathcal{U} with a toy model of an amplitude spatial light modulator (SLM), placed in the top branch of 41 the Hong-Ou-Mandel interferometer, e.g. a liquid crystal 41 (LC) grid with negligible losses [25]. Different approaches 41 can be investigated, such as phase-only SLM [26], which 41 may exhibit superior resiliency against losses. 41

Consider a pattern on a greyscale LC grid with N real amplitudes $\{\lambda_{\mu\nu}\}$. Each pixel, labelled by (μ, ν) , is represented by an $L \times L$ square with center $r_{\mu\nu} = (\mu+1/2, \nu+1/2)L$. Upon an overall parameter-independent normalization, the probe can be approximated as a combination of top-hat functions 43

$$\mathcal{U}_{\omega}(r|\lambda) = \sum_{\underline{\mu},\underline{\nu}} \underbrace{\mathbf{v}(r - r_{\mu\nu}) \begin{vmatrix} \lambda_{\mu\nu} \\ ||\lambda| \end{vmatrix}}_{\mathbf{0}} \mathbf{0} \tag{11}$$

where $||\lambda||^2 = \sum_{\mu,\nu} \lambda_{\mu\nu}^2$ and $u(r) := \theta(r + L/2) - \theta(r - L/2)$, with θ the two-dimensional Heaviside step function. Under this choice, Eq. (5) simplifies to 45

$$f_{\lambda}(\mathcal{O}) = \begin{bmatrix} (u \star \mathcal{I}_{\omega})(r_{\mu\nu}) & \lambda_{\mu\nu} \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} 30 \\ 6 & (12) \end{bmatrix}$$

where \star is the cross-correlation operation. We introduce 47 a bias and a sigmoid activation function, so that the post-processed output reads $F_{b\lambda}(\mathcal{O}) = \sigma(f_{\lambda}(\mathcal{O}) + b)$. Assuming that \mathcal{I} is real, Eq. (8) simplifies to 47

$$\partial_{\mu\nu}f\simeq 2$$
 $(u\star\mathcal{I}_{\omega})(r_{\mu\nu})-\sqrt{f}\lambda_{\mu\nu}$
 (13)

with $\partial_{\mu\nu}f := \partial f/\partial\lambda_{\mu\nu}$. This expression can be evaluated in an all-optical way, by taking the amplitude measurement of \mathcal{I} directly in the left branch of the interferometer, before the beam splitter. This operation can be done offline, and once per training object. In the next section, we present a simulation of these results, for different choices of the dataset, 49

FIG. 3. Comparison between the quantum optical neuron (QON), a single classical neuron and a convolutional network, all 42 trained with the same number of ~ 1024 parameters, optimizer and learning rates. The quantum optical neuron is modelled 42 by an amplitude modulated probe with resolution of 32×32 pixels, both in the spatial and in the Fourier domains. The 42 optimization is performed with learning rates $\eta_{\lambda} = 0.075$ and $\eta_{b} = 0.005$. (a) Accuracy versus the number of training epochs 42 for the MNIST dataset. The models are trained to distinguish among images of zeros and ones, showing compatible results in terms of trainability and accuracy, whose final value is above 99%. The inset is a history plot of the binary cross-entropy, 42 used as loss function in the gradient descent optimization. (b-c) Accuracy and binary cross-entropy plots versus the number of 42 training epochs for the CIFAR-10 dataset. The models are trained to classify images of cats and dogs. Our method reaches an 42 asymptotic accuracy above 58%, showing an advantage with respect to its classical counterparts. 42

A. Simulations ()

We present a simulation of the model introduced above, comparing its performance against those of classical neural network-based techniques, for different datasets. All the simulations are run in Python and TensorFlow [27], and summarized in Fig. 3. 50

We tested our model using two widely recognized datasets: the MNIST, which contains 28×28 images of handwritten digits from 0 to 9, and the CIFAR-10, comprised of 32×32 color images, distributed across 10 different classes. We guaranteed a fair comparison by increasing the MNIST resolution to 32×32 pixels (separately padding each image of the dataset), while converting the CIFAR-10 to greyscale. We represent each element of the 51 dataset as (x_i, y_i) , where $y_i \in \{0, 1\}$ is the true class label, and x_i is the input vector, obtained by discretizing 51 and vectorizing either the amplitudes \mathcal{I} or their Fourier spectrum $\hat{\mathcal{I}}$, thus bypassing the simulation of the imag-51 ing optics. We adopt the binary cross-entropy as loss function, combined with the standard (non-stochastic) gradient descent optimizer. We use the accuracy, i.e. the proportion of correct predictions over the total ones, as figure of merit of our results. 51

Our model demonstrates significative performances in 52 both datasets (see Fig. 3). In the MNIST, it achieves 52 accuracy rates exceeding 99%, when discerning between 52 zeros and ones. In the CIFAR-10, it reaches accuracy 52 above 58%, when distinguishing between cats and dogs. This difference reflects the complexity of the two classification tasks. 52

We compared our model against conventional neural 53

network designs with a similar number of parameters. Specifically, we considered a single neuron and a convolutional neural network, commonly employed in pattern recognition tasks [2, 28, 29]. Adopting the TensorFlow notation, the convolutional structure is: Conv2D (10, $3 \times 3) \rightarrow \text{Conv2D } (4, 2 \times 2) \rightarrow \text{MaxPooling2D } (2 \times 2).$ Roughly, all the architectures have $\sim 10^3$ trainable parameters. All the models equally perform in the MNIST dataset, both in terms of trainability and final accuracy. When applied to the CIFAR-10 dataset, our classifier outperforms the conventional ones, showing superior efficiency under a strongly-constrained parameters count. All the findings emphasize the competitive accuracy of 53 our method, and also its comparative advantage in pat- 53 tern recognition tasks with a limited number of parame- 53 ters. 53

IV. CONCLUSIONS 0

In summary, we introduced an interferometric setup of a quantum optical classifier, with the Hong-Ou-Mandel 54 effect as cornerstone of our classification method. We 54 demonstrated the mathematical relation between our model and a classical neuron, constrained to unit depth, 54 showing their similarity in terms of structure and response function. Our design is completely optical and single-photon based: it provides a superexponential speedup with respect to its classical counterpart, in terms of number of photons and computational resources. After modelling the classifier in terms of a spatial light modulator, we numerically compared our performances against

those of standard neural network architectures, showing 54 compatible to superior capabilities in terms of accuracy 54 and training convergence, under the same number of parameters and depending on the pattern complexity. 54

port from the PRIN MUR Project 2022RATBS4 and 55 from the U.S. Department of Energy, Office of Sci-4 ence, National Quantum Information Science Research Centers, Superconducting Quantum Materials and Systems Center (SQMS) under Contract No. DE-AC02-55 O7CH11359. S.L. acknowledges support from ARO, 55 DOE, and DARPA. 55

ACKNOWLEDGEMENTS 0

S.R. acknowledges support from the PRIN MUR 55 Project 2022SW3RPY. A.R.M. acknowledges support 55 from the PNRR MUR Project PE0000023-NQSTI. C.M. 55 acknowledges support from the National Research Centre for HPC, Big Data and Quantum Computing, PNRR 55

DATA AVAILABILITY 0

tre for HPC, Big Data and Quantum Computing, PNRR 55 The underlying code that generated the data for this 56 MUR Project CN0000013-ICSC. L.M. acknowledges sup- 55 study is openly available in GitHub [30], 56

APPENDIX A: SINGLE-PHOTON ENCODING ()

In this section, we consider the single-photon state obtained at the output of the left branch of the Hong-Ou-Mandel 57 apparatus, providing a detailed discussion of Eq. (1). We adopt units in which c = 1. 57

Consider a generic single-photon state, generated by a monochromatic source with longitudinal position z 58

$$|\Psi\rangle = \int \mathrm{d}^3k \ \hat{\Phi}(\mathbf{k}) a^{\dagger}(\mathbf{k}) |0\rangle , \qquad (A1) 0$$

with momentum spectrum Φ and $\mathbf{k} = (k_x, k_y, k_z)$. We neglect the polarization of the photon and consider the single-frequency-mode assumption [31], i.e. we assume that the wavefront propagates along definite-sign z-directions only. Then, $k = (k_x, k_y)$ represents the only independent degrees of freedom of the single-photon state, which reads 60

$$|\Psi\rangle = \int d^2k \, \hat{\phi}_{\omega}(k) a_{\omega}^{\dagger}(k) |0\rangle ,$$

$$= \int_{\mathbb{S}} d^2r \, \phi_{\omega}(r) a_{\omega}^{\dagger}(r) |0\rangle ,$$
13
(A2) 0

where $\hat{\phi}_{\omega}(k) = \hat{\Phi}\left(k_x, k_y, \sqrt{\omega^2 - k_x^2 - k_y^2}\right)$ and $r = (r_x, r_y)$ labels the transverse coordinates on the source plane S. 62

For simplicity, we assume that the source is placed at the longitudinal origin z = 0. Consider an object with 63

For simplicity, we assume that the source is placed at the longitudinal origin z = 0. Consider an object with two dimensional shape \mathcal{O} , placed at longitudinal position z_o . After free-space propagation occurs, the single-photon spectrum undergoes spatial amplitude modulation [32], that is $\Psi_{\mathcal{O}}(r) = \mathcal{O}(r)\Psi(r)_{\rightarrow}$, with $\Psi(r)_{\rightarrow}$ the spatial input wavefront on the object plane O. Namely 63

$$|\Psi_{\mathcal{O}}\rangle = \int_{\mathcal{O}} d^2 r \; [\phi_{\omega} * \mathfrak{H}_{z_o}](r) \mathcal{O}(r) a_{\omega}^{\dagger}(r) |0\rangle \; , \, \, 13$$
(A4) 0

where \mathfrak{H}_{z_o} denotes the free-space transfer function between the S and O planes. Using twice the convolution theorem, it follows that 65

$$|\Psi_{\mathcal{O}}\rangle = \int \mathrm{d}^2k \; [(\hat{\phi}_{\omega}\mathfrak{H}_{z_o}) * \hat{\mathcal{O}}](k) a_{\omega}^{\dagger}(k) |0\rangle \; .$$

Consider a linear optical system with transfer function \mathcal{L} , with image plane at longitudinal position z_i . By applying again the convolution theorem to $\mathcal{L}_{\omega}(\cdot|\mathcal{O}) = ((\phi_{\omega} * \mathfrak{H}_{z_o})\mathcal{O}) * \mathcal{L}_{z_o-z}$, we obtain 67

$$|\Psi_{\mathcal{I}}\rangle = \int d^2k \, \hat{\mathcal{I}}_{\omega}(k|\mathcal{O}) a_{\omega}^{\dagger}(k) \, |0\rangle \, , \, \frac{1}{92}$$
(A6) 0

with $\hat{\mathcal{I}}_{\omega}(k|\mathcal{O}) = [(\hat{\phi}_{\omega}\mathfrak{H}_{z_o}) * \hat{\mathcal{O}}]\hat{\mathcal{L}}_d$. Notice that $\mathcal{I}_{\omega}(r|\mathcal{O})$ describes the image formed on a screen placed at distance d from the object. 69

APPENDIX B: HONG-OU-MANDEL COINCIDENCES 0

In this section, we compute the rate of coincidences at the output of the Hong-Ou-Mandel interferometer of Fig. 1, 70 with left and top branch states given by Eqs. (1) and (2), respectively. We write the input-probe bipartite state as 70

$$|\Psi_{\mathcal{I}}\rangle\otimes|\Psi_{\mathcal{U}}\rangle=\int\mathrm{d}^2k_1\,\mathrm{d}^2k_2\,\,\hat{\Psi}(k_1,k_2)a^\dagger(k_1)b^\dagger(k_2)\,|0
angle$$
 , 92

with $\hat{\Psi}(k_1, k_2) = \hat{\mathcal{I}}(k_1|\mathcal{O})\hat{\mathcal{U}}(k_2|\lambda)$, where we dropped the ω subscript for simplicity. The 50:50 beam splitter acts as 72 the unitary operation [33] 72

$$\begin{bmatrix}
a^{\dagger} \to \frac{1}{\sqrt{2}} & a^{\dagger} + b^{\dagger} \\
b^{\dagger} \to \frac{1}{\sqrt{2}} & a^{\dagger} - b^{\dagger}
\end{bmatrix}$$
(B2) 0

yielding 28

$$|\Psi_{\mathcal{I}}\rangle \otimes |\Psi_{\mathcal{U}}\rangle \rightarrow |\Phi\rangle = \frac{1}{2} \int_{\mathcal{I}} d^2k_1 d^2k_2 \, \hat{\Psi}(k_1, k_2) \left[a^{\dagger}(k_1) + b^{\dagger}(k_1)\right] \left[a^{\dagger}(k_2) - b^{\dagger}(k_2)\right] |0\rangle . \tag{B3}$$

Detection of mode $m \in \{a, b\}$ is described by the projector $\Pi_m = \int d^2k \ m^{\dagger}(k) |0\rangle\langle 0| m(k)$. The rate of coincidences, 76 i.e. the probability that one and only one photon is detected in each mode, reads 76

$$\frac{p(1_a \cap 1_b) = \text{Tr}[|\Phi\rangle\langle\Phi|\Pi_a \otimes \Pi_b], 92}{\text{with } \Pi_a \otimes \Pi_b = \int d^2k_3 d^2k_4 \ a^{\dagger}(k_3)b^{\dagger}(k_4) |0\rangle\langle 0| \ a(k_3)b(k_4).}$$
(B5) 0

By substitution of Eq. (B3), we get 78

$$p(1_a \cap 1_b) = \frac{1}{4} \underbrace{\hat{\Psi}(k_1, k_2) \hat{\Psi}^*(k_5, k_6) W_1(k_1, k_2, k_3, k_4) W_2(k_3, k_4, k_5, k_6)}_{\text{Lest 0}}, \tag{B6}$$

where 6

By integrating out the Dirac deltas in Eq. (B6), we obtain 83

$$p(1_a \cap 1_b) = \frac{1}{2} \oint_{30} d^2k_1 d^2k_2 d^2k_5 d^2k_6 \hat{\Psi}(k_1, k_2) \hat{\Psi}^*(k_5, k_6) \left[\delta(k_1 - k_5) \delta(k_2 - k_6) - \delta(k_1 - k_6) \delta(k_2 - k_5) \right] . \tag{B9}$$

Finally, the rate of coincidences reads 85

$$p(1_a \cap 1_b | \lambda, \mathcal{O}) = \frac{1}{2} \underbrace{\int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 \int d^2 k_2 |\hat{\mathcal{U}}(k_2 | \lambda)|^2 - \frac{1}{2}}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k |\hat{\mathcal{I}}(k | \mathcal{O}) \hat{\mathcal{U}}^*(k | \lambda)}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 \int d^2 k_2 |\hat{\mathcal{U}}(k_2 | \lambda)|^2 - \frac{1}{2}}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k |\hat{\mathcal{I}}(k | \mathcal{O}) \hat{\mathcal{U}}^*(k | \lambda)}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 \int d^2 k_2 |\hat{\mathcal{U}}(k_2 | \lambda)|^2 - \frac{1}{2}}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 \int_{\mathcal{O}} d^2 k_2 |\hat{\mathcal{U}}(k_2 | \lambda)|^2 - \frac{1}{2}}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 \int_{\mathcal{O}} d^2 k_2 |\hat{\mathcal{U}}(k_2 | \lambda)|^2 - \frac{1}{2}}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 \int_{\mathcal{O}} d^2 k_2 |\hat{\mathcal{U}}(k_2 | \lambda)|^2 - \frac{1}{2}}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 \int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 \int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 + \frac{1}{2}}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 \int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 + \frac{1}{2}}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 \int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 + \frac{1}{2}}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 \int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 + \frac{1}{2}}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 \int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{I}}(k_1 | \mathcal{O})|^2 + \frac{1}{2}}_{\mathbf{Q}} \underbrace{\int_{\mathcal{O}} d^2 k_1 |\hat{\mathcal{O}}(k_1 | \mathcal{O})|^2 + \frac{1}{2}}_{\mathbf{Q}} \underbrace{\mathcal{O}}(k_1 | \mathcal{O})|^2 + \frac{1}{2}}$$

More compactly, 87

$$p(1_a \cap 1_b | \lambda, \mathcal{O}) = \frac{1}{2} \left[||\mathcal{I}_{\omega}(\cdot | \mathcal{O})||^2 ||\mathcal{U}_{\omega}(\cdot | \lambda)||^2 - |\langle \mathcal{I}_{\omega}(\cdot | \mathcal{O}), \mathcal{U}_{\omega}(\cdot | \lambda) \rangle|^2 \right], 13$$
(B11) 0

with $||\cdot||$ and $\langle\cdot,\cdot\rangle$ denoting the L^2 -norm and inner product, which is precisely the results of Eq. (3). 89

APPENDIX C: TRAINING 0

In this section, we discuss how to train the Hong-Ou-Mandel interferometer as a binary classifier. We separately 90 feed each element of the training set (an ensemble of objects with known labels) into the input branch of Fig. 1, 90 comparing the predicted classes with the target ones. We optimize the probe parameters λ by means of the gradient 90 descent algorithm, and using the binary cross-entropy as loss function. 90

Consider a training set made of M objects $\{\mathcal{O}_j\}$, each associated to a binary target label $y_j \in \{0,1\}$, with 91 $0 \le j \le M-1$. We denote $f_{\lambda}^{(j)}$ \mathcal{G}_j our model prediction. After feeding \mathcal{O}_j into the input branch of the interferometer 91

$$f_{\lambda}^{(j)} \neq C - 2p(1_a \cap 1_b | \lambda, \mathcal{O}_j), 92$$

$$F_{\lambda}^{(j)} \neq \sigma(f_{\lambda}^{(j)} + b), 27$$
(C1) 0

where $p \in [0, 1/2]$. For simplicity, we assumed that the losses are independent on both the input and the probe, that 93 is $C := \alpha_{\lambda}(\mathcal{O}_j) \ \forall \lambda, j \mid_{93}$

Given a sample object, the binary cross-entropy between the target label and the predicted one reads 94

$$H\left(y_{j}, F_{\overline{\text{b}}\overline{\text{A}}}^{(j)}\right) = -y_{j} \log \left(F_{\overline{\text{b}}\overline{\text{A}}}^{(j)}\right) - (1 - y_{j}) \log \left(1 - F_{\overline{\text{b}}\overline{\text{A}}}^{(j)}\right) = 22$$
(C3) 0

We optimize the probe parameters by means of the gradient descent algorithm, where the binary cross-entropy, 96 averaged on the training set, is used as loss function. Namely 96

with η_{λ}, η_{b} the learning rates of the probe and bias parameters, respectively. The derivatives with respect to the parameters and the bias yield 98

$$\frac{\partial_{\lambda} H = (\partial_{F} H) (\partial_{\xi} \sigma) \partial_{\lambda} f}{\partial_{b} H = (\partial_{F} H) \partial_{\xi} \sigma}, \frac{\partial_{\lambda} f}{\partial_{z} \partial_{z}} \tag{C6) 0}$$

with $\xi_{b\lambda} = f_{\lambda} + b$. Then, 100

$$\partial_F H = \frac{F - y}{F(1 - F)}$$

$$\partial_\xi \sigma = \beta F(1 - F)$$

$$\int_{0}^{\infty} 101$$
(C8) 0

with β the hyperparameter of Eq. (6). For any complex function of real variable $h : \mathbb{R} \to \mathbb{C}$, it follows that $\partial_{\lambda} |h(\lambda)| = 102$ Re $[h(\lambda)(\partial_{\lambda}h(\lambda))^*]/[h(\lambda)]$. Hence, $[h(\lambda)(\partial_{\lambda}h(\lambda))^*]/[h(\lambda)]$.

$$\partial_{\lambda} f = 2 \operatorname{Re} \left[\langle \mathcal{I}_{\omega}, \mathcal{U}_{\omega} \rangle \langle \mathcal{I}_{\omega}, \partial_{\lambda} \mathcal{U}_{\omega} \rangle^{*} \right]$$
 144

Neglecting the phase of $\langle \mathcal{I}, \mathcal{U} \rangle$, 104

$$\partial_{\lambda} f \simeq 2\sqrt{f} \operatorname{Re}\left[\langle \mathcal{I}_{\omega}, \partial_{\lambda} \mathcal{U}_{\omega} \rangle\right]$$
 . 22

This assumption, which we verified in our simulations under a self-consistency test, simplifies the computation of the first factor of Eq. (C10), which is directly determined at the output of the Hong-Ou-Mandel interferometer. 106

APPENDIX D: CLASSIFICATION IN THE FOURIER DOMAIN 0

In this section, we discuss the effect of adding a single lens in the probe branch of the Hong-Ou-Mandel interferometer, as shown in Fig. 1. We summarize the main calculations, which closely follow that of Section II. 107 A thin lens is placed at one focal length ℓ from both the probe image plane and the beam splitter. In the near-field 108 limit, the lens performs a Fourier transform of the probe state [31], yielding $|\Psi_{\mathcal{U}}\rangle \to |\Psi_{\mathcal{U}'}\rangle$, where 108

$$\mathcal{U}'_{\omega}(r|\lambda) = -i \left[e^{2i\omega f} \hat{\mathcal{U}}_{\omega} \right] \left(\frac{\omega}{\ell} \hat{l} \right) .$$
(D1) 0

After the beam splitter, the rate of coincidences is 110

$$p(1_a \cap 1_b | \lambda, \mathcal{O}) = \frac{1}{2} \left[\mathbf{Q}_{\omega}(\mathcal{O}) - \widetilde{f}_{\lambda}(\mathcal{O}) \right], 13$$

$$\widetilde{f}_{\lambda}(\mathcal{O}) = \left| \langle \mathcal{I}_{\omega}(\cdot | \mathcal{O}), \hat{\mathcal{U}}_{\omega}(\cdot | \lambda) \rangle \right|_{\mathbf{Q}}^{2}.48$$
(D3) 0

yielding 28

$$\widetilde{F}_{b\lambda}(\mathcal{O}) = \sigma(\widetilde{f}_{\lambda}(\mathcal{O}) + b), 27$$

$$\widetilde{f}_{\lambda}(\mathcal{O}) = 0$$

$$\widetilde{f}_{\lambda}(\mathcal{O}) =$$

with σ and b the sigmoid activation function and bias, already introduced in Eq. (7). In contrast to Eq. (5), $\tilde{f}_{\lambda}(\mathcal{O})$ is not a point-wise evaluation: it combines the image spatial modes with the momentum spectrum of the probe state. Using the duality of the Fourier transform, it follows that 114

$$\widetilde{f}_{\lambda}(\mathcal{O}) = \left| \langle \hat{\mathcal{I}}_{\omega}(\cdot|\mathcal{O}), \mathcal{U}_{\omega}(\cdot|\lambda) \rangle \right|_{\mathfrak{S}}^{2} 48 \tag{D6) 0}$$

which corresponds to the output of the same scheme of Fig. 1, but with the thin lens placed in the left branch, before the beam splitter. Equivalently, this takes the Fourier transform of the image, instead of that of the probe. In the next section, we leverage this symmetry to simplify both the training process and the numerical simulations.

The training of the model follows the same procedure of Appendix C. By placing the lens on the top branch of the 117 interferometer, while using the duality of the Fourier transform, we get 117

$$\partial_{\lambda} \widetilde{f} \simeq 2\sqrt{\widetilde{f}_{0}} \operatorname{Re}\left[\langle \hat{\mathcal{I}}_{\omega}, \partial_{\lambda} \mathcal{U}_{\omega} \rangle\right]$$
 22 (D7) 0

Under the same conditions of Section III and Appendix C, the last two equations become

$$\widetilde{f}_{\lambda}(\mathcal{O}) = \underbrace{\widehat{\mathcal{I}}_{\omega}^{*}(r_{\mu\nu})}_{0} \underbrace{\widehat{\mathcal{I}}_{\omega}^{*}(r_{\mu\nu})}_{\lambda} \underbrace{\widehat{\mathcal{I}}_{\omega}^{*}(r_{\mu\nu})}_{0} \underbrace{\widehat{\mathcal{I}}_{$$

where in the last step we neglected the phase of $\langle \hat{\mathcal{I}}, \mathcal{U} \rangle$. Similarly to Eq. (13), Eq. (D9) can be evaluated in an all-optical way through the characterization of the real part of $\hat{\mathcal{I}}$, namely, by performing an amplitude and phase measurement at the output of a thin lens, placed in the left branch, before the beam splitter. In Fig. 3, we compare the predictability of the neuron in the spatial and Fourier domains.

APPENDIX E: OPTICAL AND COMPUTATIONAL ADVANTAGE ()

In this section, we discuss the optical and computational advantage as the number of photons and operations required by a single image classification. Assuming that all the parameters have been previously trained with optimal 122

accuracy, we show that our protocol requires a constant number of resources, i.e. $\mathcal{O}(1)$ complexity, independently of 122 the input image resolution: it provides a superexponential speedup over its classical counterpart.

We first discuss the computational advantage when substituting a classical neuron with a quantum optical one. 123 From now on, we denote Ω , Θ and \mathcal{O} , respectively the lower, tight and upper bounds on the number of resources needed by a certain (optical or computational) operation. Consider a digital image x of N pixels, fed into a neuron 123

$$G_{bw}(x) = \sigma(w \cdot x + b)$$
, 124

where $x, w \in \mathbb{R}^N$, $b \in \mathbb{R}$ and σ is the sigmoid activation of Eq. (6), with hyperparameters $\beta = 1$ and $\gamma = 0$. 125 Eq. (E1) costs N operations to compute $w \cdot x$. The Hong-Ou-Mandel interferometer performs the same operation in 125

an all-optical way, leaving the computational cost of the activation function and bias only, which is $\mathcal{O}(1)$. 125

We now discuss the optical advantage when using coincidences to classify single-photon states instead of a classical neuron on fully reconstructed images. After targeting an object with light, a digital image x is an ensemble of grey 126

levels obtained by counting the number of photons collected by different pixels on a sensor grid, e.g. a charge-coupled 126

device [34]. Let n_p be the average number of photons in the input state, and μ_i the average number of photons 126

collected by the *i*-th pixel of the grid, with $i \in \{0, ..., N\}$. Assuming perfect quantum efficiency and sufficiently low 126 exposure times to neglect the saturation of the sensor, the grey values at each pixel read 126

$$x_i = \frac{\mu_i L}{\mu_w} 0$$
 13 (E2) 0

with L the number of grey levels, i.e. the depth of the image, and $\mu_w = \max_i \mu_i$ the maximum number of photons collected in a single pixel. Indeed, $x_i \in \{0, 1, \dots, L-1\}$ with 0 and L labelling the *black* and *white* colors, respectively. Each pixel has variance $\varsigma_i^2 = \Delta \mu_i^2 L^2 / \mu_w^2$, with $\Delta \mu_i^2$ the variance on the number of collected photons. For coherent light, the photo-detection process undergoes the standard quantum limit (SQL) [35, 36], with Poissonian fluctuations 128

that satisfy $\Delta \mu_i^2 \simeq \mu_i$. The average uncertainty reads 128

with $\langle x \rangle = N^{-1} \sum_i x_i \in [0, L]$ the average brightness of the image, which we assume to be independent of its resolution. Hence, the number of photons n_p required by a full image reconstruction with average variance ς^2 is $\Theta(\varsigma^{-2}\langle x \rangle N)$. This is the cost of image reconstruction only. We now take into account the information propagation through the neuron of Eq. (E1), 130

Proposition 1. Consider a neuron with sigmoid activation function. Suppose that there exists a sequence of parameters $\{(w_N, b_N) \in \mathbb{R}^{N+1}\}_{N \gg 1}$ that optimally solve the N-pixel image classification task, with b_N and the ℓ^1 -norm 131 $\|w_N\|_1$ asymptotically bounded for $N \to \infty$. Then, the number of photons n_p required to classify an image x with uncertainty ε , is $\Omega\left(\varepsilon^{-2}\langle x \rangle N\right)$. 131

Proof. Consider the output of the neuron $G_{bw}(x) = \sigma(w_N \cdot x + b_N)$, and its derivative $\partial G(x) = G_{bw}(x)(1 - G_{bw}(x))$. By neglecting the spatial neighbourhood correlations, which may introduce at most a constant overhead in our estimation, we propagate the uncertainty of x as 132

where $\tilde{n}_p = n_r n_p$, with n_r is the number of independent image acquisition and classification. Since black pixels do not contribute to this summation, we get 134

$$\sum_{i=0}^{N-1} (\frac{|u_N^2|^2}{(w_N)_i^2} |u_N|^2 - \sum_{i \in \mathcal{B}} (w_N)_i^2, \frac{1}{13}$$
(E5) 0

with $\mathcal{B} = \{i \in \mathbb{N} \mid x_i = 0 \text{ for } 0 \le i \le N-1\}$ the set of black pixels labels. However, $||w_N||^2 \gg \sum_{i \in \mathcal{B}} (w_N)_i^2$. Otherwise, $||w_N||^2 \simeq \sum_{i \in \mathcal{B}} (w_N)_i^2$ would imply either that the image is mostly black, independently of its resolution, or that $(w_N)_i \simeq 0$ for all non-black pixels, which are both conditions that prevent the learnability of the neuron. By substitution into Eq. (E4) we get

$$\tilde{n}_p \ge \varepsilon^{-2} \langle x \rangle (\partial G)^2(x) ||w_N||^2 N$$
 . 22

Since w_N is a sequence of non-trivial solutions of the classification problem, the ℓ^2 -norm $||w_N||^2$ cannot go to zero for $N \to \infty$. Finally, we show that $(\partial G(x))^2$ does not converge to 0 for $N \to \infty$. Consider 138

$$(\partial G)^{2}(x) = \underbrace{e^{-2(w_{N} \cdot x + b_{N})}}_{[1 + e^{-(w_{N} \cdot x + b_{N})}]^{4}} \cdot \underbrace{139}$$

If b_N is asymptotically limited, $(\partial G)^2$ converges to zero if and only if $w_N \cdot x \to +\infty$. By splitting this scalar product into positive and negative contributions $w_N \cdot x = \sum_{(w_N)_i > 0} (w_N)_i x_i - \sum_{(w_N)_i < 0} |(w_N)_i| x_i$, it follows that

$$w_{N} \cdot x \leq \sum_{\substack{2 \leq w_{N} \\ i \neq i}} 2 \leq w_{N} \cdot x_{i} \leq L ||w_{N}||_{1}, 13$$

$$w_{N} \cdot x \geq -\sum_{\substack{2 \leq w_{N} \\ i \neq i}} 2 \leq w_{N} \cdot |x_{i}| \geq -L ||w_{N}||_{1}, 13$$
(E8) 0
$$w_{N} \cdot x \geq -\sum_{\substack{w_{N} \\ i \neq i}} 2 \leq w_{N} \cdot |x_{i}| \geq -L ||w_{N}||_{1}, 13$$

namely that $|w_N \cdot x| \leq L||w_N||_1$. Since the ℓ^1 -norm is limited, $(\partial G)^2$ admits strictly positive lower bound for $N \to \infty$. Finally, this imply that $\tilde{n}_p = \Omega\left(\varepsilon^{-2}\langle x \rangle N\right)$. 93

In the previous discussion, two conditions lead to the above lower bound. On the one hand, that $||w_N||^2 \neq 0$ for $N \to \infty$, which is essential to guarantee that the neuron is trainable at any resolution. On the other hand, that $||w_N||_1$ is bounded for $N \to \infty$, which is compatible with LASSO and Tikhonov's regularization techniques [37, 38]. We show that our protocol exponentially reduces this cost, requiring only the estimation of the rate of coincidences of the Hong-Ou-Mandel interferometer of Fig. 1. Let $\tilde{n}_p = 2n_p$ be the number input photons, and $\tilde{p} \in [0, 1/2]$ the empirical rate of coincidences. Under the normal approximation, with the 95% confidence level [39], the estimation uncertainty reads 143

$$\varepsilon = 2\sqrt{\frac{\tilde{p}(1-\tilde{p})}{\tilde{n}_{x}}} \frac{1}{0} 22 \tag{E10) } 0$$

Since $4\tilde{p}(1-\tilde{p}) \leq 1$, the total number of photons is $\mathcal{O}(\varepsilon^{-2})$, which is constant with respect to the resolution of the image. 145

In conclusion, the quantum optical neuron provides a superexponential advantage over its classical counterpart, 146 both in the number of operations and photons saved to classify a single image. We summarize these results in Table I. 146

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, 6 Gradient-based learning applied to document recognition, Proc. IEEE 86, 2278 (1998). 6

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, 6 Commun. ACM 60, 84–90 (2017).

[3] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in *IEEE Conference on Computer Vision and Pattern Recognition*, CVPR '16, p. 770.

puter Vision and Pattern Recognition, CVPR '16, p. 770. 6

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, 6

X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, 6

G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, An image is worth 16x16 words: Transformers for image recognition at scale, in International Conference on Learning Representations, ICLR '21, arXiv:2010.11929 [cs.CV]. 6

[5] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. 6 Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, Photonics for artificial intelligence and neuromorphic computing, Nat. Photon. 15, 102–114 (2021).

computing, Nat. Photon. 15, 102–114 (2021).] 6
[6] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, 0
[6] M. Jarrahi, and A. Ozcan, All-optical machine learning using diffractive deep neural networks, Science 361, 6
[1004–1008 (2018)]. 6

7 Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, O. G.-B. Jo, J. Liu, and S. Du, All-optical neural network with nonlinear activation functions, Optica 6, 1132 (2019).

[8] S. Colburn, Y. Chu, E. Shilzerman, and A. Majum-6

dar, Optical frontend for a convolutional neural network, 154 Appl. Opt. 58, 3179 (2019). 154

[9] S. Li, B. Ni, X. Feng, K. Cui, F. Liu, W. Zhang, 0 and Y. Huang, All-optical image identification with programmable matrix transformation, Opt. Express 29, 0 26474 (2021).

Y. Luo, Y. Zhao, J. Li, E. Çetintaş, Y. Rivenson, M. Jar rahi, and A. Ozcan, Computational imaging without a computer: seeing through random diffusers at the speed of light, eLight 2, 4 (2022).

[11] P. L. McMahon, The physics of optical computing, Nat. 157 Rev. Phys. 5, 717–734 (2023), 157

Rev. Phys. 5, 717–734 (2023). 157

[12] F. Benatti, S. Mancini, and S. Mangini, Continuous 6

variable quantum perceptron, Int. J. Quantum Inf. 17, 6

[1941009 (2019)]. 6

[13] F. Tacchino, C. Macchiavello, D. Gerace, and D. Bajoni, 6
An artificial neuron implemented on an actual quantum 6
processor, Npj Quantum Inf. 5, 26 (2019), 7

M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin,
S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan,
L. Cincio, and P. J. Coles, Variational quantum algorithms, Nat. Rev. Phys. 3, 625-644 (2021).

[15] A. Senokosov, A. Sedykh, A. Sagingalieva, B. Kyria- 0 cou, and A. Melnikov, Quantum machine learning for image classification, Mach. Learn.: Sci. Technol. 5, 015040 0 [2024].

[16] M. Cerezo, M. Larocca, D. García-Martín, N. L. Diaz, O P. Braccia, E. Fontana, M. S. Rudolph, P. Bermejo, O

only liquid crystal on silicon (LCOS) devices, Light Sci. 172 A. Ijaz, S. Thanasilp, E. R. Anschuetz, and Z. Holmes, 6 Does provable absence of barren plateaus imply classi- 6 Appl. 3, e213 (2014). 172 cal simulability? Or, why we need to rethink variational 8 [27] TensorFlow Developers, TensorFlow (2023). 50 quantum computing (2024), arXiv:2312.09121 [quant-6] [28] R. Collobert and S. Bengio, Links between perceptrons, 50 ph] 6 MLPs and SVMs, in *Proceedings of the Twenty-First In-* 50 ternational Conference on Machine Learning, ICML '04, 54 [17] G. R. Steinbrecher, J. P. Olson, D. Englund, and J. Carolan, Quantum optical neural networks, Npj Quantum 7 p. 23. **50** [29] F. Rosenblatt, The perceptron: A probabilistic model 175 Inf. **5**, 60 (2019). 6 [18] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, 158 for information storage and organization in the brain, 175 Psychol. Rev. 65, 386 (1958). 168 N. Quesada, and S. Lloyd, Continuous-variable quantum 158 neural networks, Phys. Rev. Res. 1, 033063 (2019). 157 R. Morgillo and S. Roncallo, https://github.com/6 [19] X. Sui, Q. Wu, J. Liu, Q. Chen, and G. Gu, A review of 158 simoneroncallo/quantum-optical-neuron. () optical neural networks, IEEE Access 8, 70773 (2020). 7 [31] M. Rezai and J. A. Salehi, Fundamentals of quantum 126 [20] D. Stanev, N. Spagnolo, and F. Sciarrino, Deterministic 6 Fourier optics, IEEE Trans. Quantum Eng. 4, 1 (2022). 121 [32] B. E. A. Saleh and M. C. Teich, Fundamentals of Phooptimal quantum cloning via a quantum-optical neural 6 network, Phys. Rev. Res. 5, 013139 (2023). tonics (Wiley, 1991). 0 [21] C. Wood, S. Shrapnel, and G. J. Milburn, A Kerr ker- 6 [33] A. M. Brańczyk, Hong-Ou-Mandel interference (2017), 6 nel quantum learning machine (2024), arXiv:2404.01787 6 (iv:1711.00080 [quant-ph]. 0 Boyle and G. E. Smith, Charge coupled semicon-[22] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of 14 ductor devices, Bell Syst. Tech. J. 49, 587 (1970). 180 subpicosecond time intervals between two photons by in- 15 35 M. I. Kolobov, The spatial behavior of nonclassical light, 181 terference, Phys. Rev. Lett. **59**, 2044 (1987). **14** Rev. Mod. Phys. **71**, 1539 (1999). **15** [36] V. Delaubert, N. Treps, C. Fabre, H. A. Bachor, and 6 [23] C. Bowie, S. Shrapnel, and M. J. Kewming, Quan- 6 tum kernel evaluation via Hong-Ou-Mandel interference, 8 P. Réfrégier, Quantum limits in image processing, EPL 6 Quantum Sci. Technol. 9, 015001 (2023). 7 **81**, 44001 (2008). 6 [24] X. Glorot and Y. Bengio, Understanding the difficulty of 14 [37] F. Santosa and W. W. Symes, Linear inversion of band-14 limited reflection seismograms, SIAM J. Sci. Stat. Com- 14 training deep feedforward neural networks, in *Proceedings* 14 put. **7**, <u>1307–1330 (19</u>86). **14** of the Thirteenth International Conference on Artificial 14 Intelligence and Statistics, PMLR, Vol. 9 (2010) pp. 249–14 [38] A. Tikhonov and V. Glasko, Use of the regularization 14 256. 14 method in non-linear problems, USSR Comput. Math. 14 [25] J. Neff, R. Athale, and S. Lee, Two-dimensional spatial 132 Math. Phys. 5, 93 (1965). 14 light modulators: a tutorial, Proc. IEEE 78, 826 (1990). 132[39] A. Rotondi, P. Pedroni, and A. Pievatolo, *Probability*, 6 [26] Z. Zhang, Z. You, and D. Chu, Fundamentals of phase-Statistics and Simulation: With Application Programs 6

Written in R (Springer, 2022). 6