Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №4 «Аппроксимация функции методом наименьших квадратов»

по дисциплине «Вычислительная математика»

Вариант: 2

Преподаватель: Малышева Татьяна Алексеевна

Выполнил: Барсуков Максим Андреевич Группа: P3215

<u>Цель работы</u>: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

1. Вычислительная реализация задачи

Линейная аппроксимация:

$$y = \frac{15x}{x^4 + 2}$$

$$n = 11$$

$$x \in [0; 4]$$

$$h = 0.4$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0.0	2.962	4.98	4.419	2.806	1.667	1.023	0.662	0.449	0.318	0.233

$$\varphi(x) = a + bx$$

Вычисляем суммы: sx = 22, sxx = 61.6, sy = 19.52 sxy = 26.116

$$\begin{cases} n*a + sx*b = sy \\ sx*a + sxx*b = sxy \end{cases} \begin{cases} 11*a + 22*b = 19.52 \\ 22*a + 61.6*b = 26.116 \end{cases} \begin{cases} 11*a + 22*b = 19.52 \\ 17.6*b = -12.924 \end{cases}$$

$$\begin{cases} b = -12.924/17.6 = -0.7343 \\ 11a = 19.52 - 22 * (-0.7343) = 35.6746 \end{cases} \begin{cases} b = -0.7343 \\ a = 3.2431 \end{cases}$$

$$\varphi(x) = 3.2431 - 0.7343 * x$$

i		2	3	4	5	6	7	8	9	10	11
x_i 0		0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
y_i 0.	.0	2.962	4.98	4.419	2.806	1.667	1.023	0.662	0.449	0.318	0.233
$\varphi(xi)$ 3.	.243	2.949	2.656	2.362	2.068	1.775	1.481	1.187	0.893	0.6	0.306
(φ (xi)- yi)^2	0.518	0.0	5.403	4.231	0.544	0.012	0.21	0.276	0.197	0.079	0.00

$$\sigma = \sqrt{\frac{\sum (\phi(xi) - yi)^2}{n}} = 1.3972$$

Квадратичная аппроксимация:

$$y = \frac{15x}{x^4 + 2}$$

$$n = 11$$

$$x \in [0; 4]$$

$$h = 0.4$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
Уi	0.0	2.962	4.98	4.419	2.806	1.667	1.023	0.662	0.449	0.318	0.233

$$\varphi(x) = a + bx + cx^2$$

Вычисляем суммы:

$$sx = 22$$
, $sxx = 61.6$, $sxxx = 193.6$, $sxxxx = 648.52$, $sy = 19.52$, $sxy = 26.116$, $sxxy = 47.405$

$$\begin{cases} n*a + sx*b + sxx*c = sy \\ sx*a + sxx*b + sxxx*c = sxy \\ sxx*a + sxxx*b + sxxxx*c = sxxy \end{cases}$$

$$\begin{cases} 11*a + 22*b + 61.6*c = 19.52 \\ 22*a + 61.6*b + 193.6*c = 26.116 \\ 61.6*a + 193.6*b + 648.52*c = 47.405 \end{cases}$$

По методу Крамера:

$$\Delta = 4251.456$$

$$\Delta_1 = 9043.80576, \Delta_2 = 4785.47696, \Delta_3 = -1976.8496$$

$$\begin{cases} a = \frac{\Delta_1}{\Delta} = \frac{9043.80576}{4251.456} \approx 2.127\\ b = \frac{\Delta_2}{\Delta} = \frac{4785.47696}{4251.456} \approx 1.126\\ c = \frac{\Delta_3}{\Delta} = \frac{-1976.8496}{4251.456} \approx -0.465 \end{cases}$$

$$\varphi(\mathbf{x}) = 2.127 + 1.126x - 0.465x^2$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0.0	2.962	4.98	4.419	2.806	1.667	1.023	0.662	0.449	0.318	0.233
φ(xi)	2.127	2.503	2.73	2.809	2.738	2.519	2.151	1.634	0.969	0.154	-0.809
(φ (xi)- yi)^2	4.524	0.211	5.062	2.593	0.005	0.726	1.272	0.945	0.27	0.027	1.086

$$\sigma = \sqrt{\frac{\sum (\phi (xi) - yi)^2}{n}} = 1.23292$$

1.23292 < **1.3972**, у квадратичной аппроксимации среднеквадратичное отклонение меньше, поэтому это приближение лучше.

2. Программная реализация задачи

https://github.com/maxbarsukov/itmo/tree/master/4%20вычмат/лабораторные/lab4

Результаты выполнения программы при различных исходных данных:

Напишите 'f' для ввода из файла, 'e' для задания или 't' для ввода с клавиатуры: е Вывод в файл 'f' или в терминал 't'? [f/t] t Выбран вариант вывода в терминал.								
Линейная функция: * Функция: $f(x) = a + b * xi$ * Коэффициенты (a, b): [3.2432, -0.7343]								
* Среднеквадратичное отклонение: $\sigma = 1.39765$ * Коэффициент детерминации: $R^2 = 0.30636$ * Мера отклонения: $S = 21.48774$								
* Коэффициент корреляции Пирсона: r = -0.5534946379164877								
Полиноминальная 2-й степени функция:								
* Функция: $f(x) = a + b * xi + c * xi ** 2$								
* Коэффициенты (а, b, с): [2.1252, 1.129, -0.4658]								
* Среднеквадратичное отклонение: σ = 1.23293								
* Коэффициент детерминации: $R^2 = 0.46022$								
* Мера отклонения: S = 16.72131								
Полиноминальная 3-й степени функция:								
* Функция: $f(x) = a + b * xi + c * xi ** 2 + d * xi ** 3$								
* Коэффициенты (a, b, c, d): [0.4892, 7.6274, -4.7261, 0.71]								
* Среднеквадратичное отклонение: $\sigma = 0.60032$								
* Коэффициент детерминации: R^2 = 0.87203								
* Мера отклонения: S = 3.96422								

Лучшая функция приближения: Полиноминальная 3-й степени

Спасибо за использование программы!

Приближение функции различными методами

Напишите 'f' для ввода из файла, 'e' для задания или 't' для ввода с клавиатуры: t Введите 'quit', чтобы закончить ввод

1.2 7.4

2.9 9.5

4.1 11.1

5.5 12.9

6.7 14.6

7.8 17.3

9.2 18.2

10.3 20.7

quit

Вывод в файл 'f' или в терминал 't'? [f/t] t Выбран вариант вывода в терминал.

Линейная функция:

- * Функция: f(x) = a + b * xi
- * Коэффициенты (а, b): [5.2911, 1.4543]
- * Среднеквадратичное отклонение: $\sigma = 0.41016$
- * Коэффициент детерминации: $R^2 = 0.99086$
- * Мера отклонения: S = 1.34585

```
Коэффициент корреляции Пирсона: r = 0.9954179478701582
Полиноминальная 2-й степени функция:
* Функция: f(x) = a + b * xi + c * xi ** 2
* Коэффициенты (а, b, с): [5.9431, 1.1526, 0.026]
* Среднеквадратичное отклонение: \sigma = 0.35635
* Коэффициент детерминации: R^2 = 0.99310
* Мера отклонения: S = 1.01589
Полиноминальная 3-й степени функция:
* Функция: f(x) = a + b * xi + c * xi ** 2 + d * xi ** 3
* Коэффициенты (а, b, c, d): [6.1779, 0.9548, 0.0669, -0.0024]
* Среднеквадратичное отклонение: \sigma = 0.35348
* Коэффициент детерминации: R^2 = 0.99321
* Мера отклонения: S = 0.99959
Экспоненциальная функция:
* Функция: f(x) = a * exp(b * xi)
* Коэффициенты (а, b): [6.8396, 0.1111]
* Среднеквадратичное отклонение: \sigma = 0.58297
* Коэффициент детерминации: R^2 = 0.98153
* Мера отклонения: S = 2.71887
Логарифмическая функция:
* Функция: f(x) = a + b * log(xi)
* Коэффициенты (a, b): [4.2959, 6.0086]
* Среднеквадратичное отклонение: \sigma = 1.52859
* Коэффициент детерминации: R^2 = 0.87301
* Мера отклонения: S = 18.69276
Степенная функция:
* Функция: f(x) = a * xi ** b
* Коэффициенты (a, b): [6.1287, 0.4799]
* Среднеквадратичное отклонение: \sigma = 1.00288
* Коэффициент детерминации: R^2 = 0.94535
* Мера отклонения: S = 8.04618
Лучшая функция приближения: Полиноминальная 3-й степени
```


Вывод

В ходе данной работы была выполнена аппроксимация функций с использованием линейного, квадратичного, кубического, экспоненциального и логарифмического приближений. Также на основе этих методов был реализован Python скрипт, который реализует метод наименьших квадратов и строит графики исходной функции и аппроксимаций.

Исследование позволило определить наилучшее приближение, вычислить среднеквадратические отклонения и коэффициент корреляции Пирсона для линейной зависимости.