

Snímání a reprodukce zvuku Elektroakustické měniče

Prostředky pro snímání a reprodukci zvuku

senzory = mikrofony, snímače

aktuátory = reproduktory, budiče

Elektroakustické a elektromechanické měniče

Zařízení pro přeměnu energie elektromagnetického pole na energii pole akustického nebo naopak (reciprocita)

Rozdělení měničů

dle vazebního pole s magnetickým polem (dynamický, elektromagnetický)

s elektrickým polem (elektrostatický, piezoelektrický)

další principy (optoakustický, termoakustický...)

- dle reciprocity reciproké (téměř všechny)

nereciproké (odporový)

- dle typu obvodu, kterým měnič modelujeme

se soustředěnými parametry s rozprostřenými parametry (piezo)

- Hlavní používané principy elektroakustické přeměny
 - Elektrodynamický
 - Elektrostatický
 - Piezoelektrický

Měniče těchto principů jsou RECIPROKÉ = mohou být jak reproduktory, tak mikrofony zároveň, nicméně pro danou funkci jsou vždy optimalizovány.

A budeme si muset vzpomenout na základní fyziku:

Elektrodynamický princip

Při použití jako budič – Lorentzova síla

$$\vec{F} = q(\vec{v} \times \vec{B}) = i(\vec{\ell} \times \vec{B})$$

Při použití jako snímač – indukční zákon

$$u = -\frac{\partial \emptyset}{\partial t} = \frac{\partial B \ell y}{\partial t} = B \ell y$$

Elektrostatický princip

Elektrostatická síla
$$F = \varepsilon_0 \frac{Su^2}{2d^2}$$

Náboj na proměnném kondenzátoru $q=u\mathcal{E}_0 \, rac{s}{d}$

Potřeba stejnosměrného polarizačního napětí, Takto je zapojen měnič (=proměnná kapacita X) do obvodu. Velký odpor R zajišťuje konstantní náboj na kapacitě měniče, přes vazební kondenzátor prochází střídavý signál

Piezoelektrický princip

Piezoelektrický jev – vlastnost piezoelektrických látek. Při silovém působení na strukturu se na ní indukuje náboj a naopak, při přiložení náboje struktura mění rozměry. Tento jev je způsoben prostorovou nehomogenitou náboje v mřížce materiálu.

Reproduktory

elektroakustické měniče vyzařující zvuk do vzduchu

Terminologie

výhodná při práci s reproduktory

 Akustická osa – (většinou totožná s geometrickou osou) směr, ve kterém nabývá směrová charakteristika maxima

 Ústí reproduktoru – rovina ohraničená obvodem membrány (konvexní membrány)

Referenční bod – průsečík akustické osy a ústí

Směrová charakteristika reproduktorů

Závislost (hladiny) akustického tlaku na úhlu mezi akustickou osou a spojnicí bodu měření a referenčního bodu

S rostoucím kmitočtem se reproduktor stává směrovější

Základní typy směrových charakteristik

- kulová (všesměrová) reproduktor v ozvučnici na nf
- osmičková reproduktor bez ozvučnice
- kardioidní = součet kulové a osmičkové charakteristiky

Rozdělení reproduktorů podle kmitočtového pásma

- hlubokotónové (20 1000 Hz)
- subwoofery (20 100 Hz)
- středotónové (200 5000 Hz)
- vysokotónové (1000 20000 Hz)
- širokopásmové (50 20000 Hz)

Proč se dělají reproduktory pro různá kmitočtová pásma?

- kmitočtová závislost citlivosti na parametrech
- parametry závislé na konstrukci
- optimalizace

Elektrodynamický reproduktor

- komerčně nejpoužívanější typ reproduktoru
- patentován v roce 1924 (ale 1877 už byl předchůdce)
- uspořádání zůstává stále stejné
- vylepšování parametrů použitím jiných materiálů, popř. tvaru membrány
- pozice téměř neotřesitelná

Části elektrodynamického reproduktoru

- Membrána
- Kmitací cívka
- Magnet a magnetický obvod
- Středící zařízení
- Závěs
- Koš
- Former (někdy nebývá)

Princip funkce

 Na vodič (drát kmitací cívky) délky ℓv magnetickém poli indukce B (vyvolaném magnetem a správně nasměrovaném pólovými nástavci), kterým protéká (signálový) proud i působí síla F = i.(ℓx B)

 Vzhledem k orientaci vektorů (F, B a ℓ) je součin maximální, tedy běžně se uvádí F = B i ℓ Pro modelování funkce měničů se často používá náhradních elektrických obvodů:

Náhradní schéma elektrodynamického reproduktoru

Elektrická část schématu

- Indukčnost kmitající cívky
- Odpor vodiče kmitající cívky

Mechanická část schématu

- Hmotnost kmitací cívky
- Mechanické tření kmitací cívky
- Hmotnost membrány
- Poddajnost membrány
- Tlumení membrány
- Poddajnost závěsu a středícího zařízení
- Tlumení závěsu a středícího zařízení

Akustická část schématu

- Vyzařovací impedance (u reproduktorů)
- Akustická impedance případně akustické soustavy na zadní straně membrány (ozvučnice)

Transformace elektrické strany na mechanickou

Ideální gyrátor

Transformace mechanické strany na akustickou

Ideální transformátor

$$p = F/S$$

$$\text{akustick\'y tlak} = s\'ila / \text{plocha membr\'any}$$

$$\text{objemov\'y rychlost} = \text{rychlost membr\'any} \cdot \text{plocha membr\'any}$$

Vstupní elektrická impedance elektrodynamického reproduktoru

důležité z hlediska impedanční zátěže zesilovače

- rezonanční kmitočet
- jmenovitá impedance (4, 6, 8, 16, 32... Ω)

Rozmístění reproduktorů

- Základní pravidlo = SYMETRIE
- Není pravda, že subwoofer se může "strčit" kamkoliv (stojaté kmity)
- Středo- a vysoko- tónové reproduktory namířeny přímo na posluchače
- Pro lokalizaci možno využít Haasova jevu či vzájemného ovlivňování audio-vizuálního vjemu

Nízkotónový reproduktor (boomer) extrémně až – sub-woofer

velmi poddajný závěs, aby membrána mohla vykonávat velké pístové výchylky

Středotónový reproduktor

středotónové reproduktory (300-5000 Hz) (squawker). Membrána buď kulový vrchlík (závěs a kmitací cívka na jeho obvodu) nebo krátký, velmi rozevřený kužel (kmitací cívka na menším průměru, závěs na větším průměru)

Vysokotónový reproduktor

membrána a kmitací cívka jsou velmi lehké aby se umožnil rychlý pohyb

závěs a středící zařízení jsou tuhé, aby se potlačily nízké kmitočty

sférický tweeter (z potažené textílie, tenkého kovu...)

páskový tweeter (tenká hliníková folie v mag. poli)

často s vlnovodem (impedanční přizpůsobení)

Rozdělení reproduktorů dle tvaru ústí

- Kruhové
- Eliptické
- Čtvercové (kdysi, krátký čas to byla móda, dnes třeba "hrající obrazy")
- jiné tvary (repro do auta)

Ozvučnice

- Zabránění akustickému zkratu (nf)
- Posuv rezonančního kmitočtu
- Akustický obvod ovlivňuje výslednou charakteristiku celého systému
- Využití energie vyzářené zadní stranou membrány (bass-reflex, ...)
- Základní požadavek tuhé stěny
- Ideální ozvučnice nekonečná rovinná

Uzavřená ozvučnice

v jejím objemu se zatlumí zvuk vyzařovaný zadní stranou membrány

modeluje se (na nízkých kmitočtech!!!) pomocí akustické poddajnosti, případně akustického odporu, pokud je v objemu nějaký ztrátový materiál, což by měl být (viz předchozí)

přidáním poddajnosti (objemu) do systému se posune rezonanční kmitočet soustavy

Bassreflexová ozvučnice

využití nf energie vyzařované do ozvučnice zadní stranou membrány

naladění bassreflexu (=kmitočtu, na kterém se otočí fáze akustického tlaku vyzařovaného zadní stranou membrány o 180° a tím se po vyzáření trubicí konstruktivně sečte s akustickým tlakem vyzařovaným přední stranou membrány) hmotností a poddajností

rozšíření kmitočtového pásma směrem k nižším kmitočtům

strmější pád citlivosti k na nízkých kmitočtech

Vlnovodné ozvučnice B&W

Reproduktorové výhybky

- Reproduktory jsou optimalizovány na kmitočtová pásma
- Pro obsažení celého akustického pásma potřebujeme dodat do reproduktorů kmitočtová pásma, na která jsou konstruovány
- Reproduktorové výhybky elektrické filtry, většinou pasivní

FIGURE 7.80: Two-way crossover diagrams.

Elektrostatické reproduktory

Princip: membrána je mezi dvěma pevnými elektrodami. Ty na ni působí elektrostatickými silami (push-pull) a tím ji rozhýbávají.

velmi náročné na přesnost výroby

velmi drahé (stovky tisíc Kč)

velmi velké, pokud mají obsahovat i basový reproduktor

zakázková výroba

Dnes se hudba poslouchá nejvíce pomocí sluchátek

- Opět hlavně elektrodynamický princip (elektrostatická sluchátka existují)
- Několik variant z hlediska vazby měniče na vstup zevního zvukovodu: cirkumaurální (mušle těsně dosedá lebku a společně tvoří dutinu), supraaurální (sluchátko volně doléhá na boltec), vložná (měnič či jeho nástavec se zasouvá do zvukovodu), otevřená (měnič se nachází v určité vzdálenosti od boltce a září do volného pole a další. Hlavní rozdíl je v impedanci, do jaké měnič pracuje. Čím volnější vazba, tím méně nízkých kmitočtů.
- Výhodou je možnost odstínění hluku okolí či nerušení okolí naším zvukem
- Nevýhodou problematičtější reprodukce prostorového zvuku a nemožnost vytvoření dozvukového pole, jak tomu může být u poslechu v místnosti pomocí reproduktorů

Mikrofony

elektroakustické měniče snímající zvuk z plynu

Elektrodynamický mikrofon

Robustní mikrofon pro každodenní použití

Princip funkce: zvuk rozhýbe výchylkou y (=rychlostí v) membránu, ke které je připojena cívka s drátem délky & nacházející se v magnetickém poli B. V cívce se indukuje napětí u.

$$U = \frac{\partial Bly}{\partial t} = Blv$$

Varianta elektrodynamického mikrofonu – páskový mikrofon

Někteří fandové se ho snaží opět používat, ale už je to spíš minulost. Navíc je velmi křehký.

Elektrostatický mikrofon

Zvuk působí na membránu plochy S, rozpohybuje ji výchylkou y, mění se vzdálenost membrány a pevné elektrody, tedy kapacita C, což vyvolává signálové napětí u. Na elektrodách (=membrána a pevná elektroda) je stálý polarizační náboj Q. Proto je nutný zdroj polarizačního napětí U = Q/C.

$$u = \frac{Q}{\varepsilon S} y$$

Velmi kvalitní studiový mikrofon, řádově dražší než dynamický,

Řez typickým měřicím mikrofonem. Vyrábějí se ve velikostech průměru 1, ½, ¼, 1/8 palce, čím menší průměr, tím je pracovní pásmo výše a citlivost je menší.

Dnes už velmi běžná varianta elektrostatického mikrofonu – MEMS mikrofon

Miniaturní elektrostatický mikrofon vytvořený na křemíkovém čipu.

Náhradní schéma elektrostatického měniče (jednočinného)

Jaký typ mikrofonu vybrat a kam ho umístit při snímání hudby (studio i záznam koncertů) už spadá do oblasti umění. Musí se respektovat fyzikální charakteristiky (hlavně směrové charakteristiky nástrojů a mikrofonů a akustické vlastnosti prostoru), ale konkrétní "zamikrofonování" je uměleckou signaturou každého profesionála.

Směrová charakteristika – základní parametr při výběru mikrofonu

kulová, osmičková, kardioidní, hyperkardioidní

Směrová charakteristika je kmitočtově závislá

Piezoelektrické měniče jsou

- jednoduché
- levné
- přesnost postačí pro řadu běžných aplikací
- variabilní

A na závěr důležitý fakt: při reprodukci i snímání zvuku musíme uvažovat aspekty elektroakustiky a prostorové akustiky společně.

Prostor, do kterého vyzařuje reproduktor se spolupodílí na výsledném zvuku a stejně tak umístění mikrofonu v prostoru má vliv na výsledný sejmutý zvuk. Proto je dalším tématem Prostorová akustika.