•			

RELACIONES MATEMATICAS

Este apéndice, en el que presentamos ciertas fórmulas matemáticas de uso frecuente en el texto, tiene por finalidad presentar al estudiante una referencia rápidamente accesible. En algunos casos hemos incluido en el texto mismo algunas notas matemáticas. Se puede encontrar la demostración y una discusión de la mayoría de las fórmulas en cualquier texto de análisis matemático, tal como Cálculo infinitesimal y geometría analítica, tercera edición, por G. B. Thomas (Aguilar, Madrid, 1964). En Quick Calculus: A Short Manual of Self Instruction, por D. Kelpner y N. Ramsey (John Wiley & Sons, New York, 1963) se puede encontrar, en forma programada, una corta introducción a los conceptos básicos del análisis matemático. El estudiante deberá también consultar diversas tablas en forma de libro. Entre éstas están las C.R.C. Standard Mathematical Tables (Chemical Rubber Company, Cleveland, Ohio, 1963), y Tables of Integrals and Other Mathematical Data, cuarta edición, por H. B. Dwight (Macmillan Company, New York, 1961). Recomendamos que el estudiante tenga a su disposición el Handbook of Chemistry and Physics, del cual la Chemical Rubber Company, Cleveland, Ohio, publica ediciones anuales. Este manual contiene también una gran cantidad de datos sobre matemática, química y física.

1. Relaciones trigonométricas

Haciendo referencia a la Fig. M-1, podemos definir las siguientes relaciones:

sen
$$\alpha = y/r$$
, $\cos \alpha = x/r$, $\operatorname{tg} \alpha = y/x$; (M.1)

$$\operatorname{cosec} \alpha = r/y, \quad \operatorname{sec} \alpha = r/x, \quad \operatorname{cotg} \alpha = x/y;$$
 (M.2)

$$tg \alpha = sen \alpha/cos \alpha;$$
 (M.3)

$$sen^2 \alpha + cos^2 \alpha = 1$$
, $sec^2 \alpha - 1 = tg^2 \alpha$; (M.4)

$$sen (\alpha \pm \beta) = sen \alpha cos \beta \pm cos \alpha sen \beta;$$
 (M.5)

$$\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta;$$
 (M.6)

$$sen \alpha \pm sen \beta = 2 sen \frac{1}{2}(\alpha \pm \beta) cos \frac{1}{2}(\alpha \mp \beta); \qquad (M.7)$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{1}{2}(\alpha + \beta) \cos \frac{1}{2}(\alpha - \beta); \tag{M.8}$$

$$\cos \alpha - \cos \beta = -2 \operatorname{sen} \frac{1}{2}(\alpha + \beta) \operatorname{sen} \frac{1}{2}(\alpha - \beta); \tag{M.9}$$

$$sen \alpha sen \beta = \frac{1}{2} [cos (\alpha - \beta) - cos (\alpha + \beta)]; \qquad (M.10)$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos (\alpha - \beta) + \cos (\alpha + \beta)]; \tag{M.11}$$

$$sen \alpha cos \beta = \frac{1}{2} [sen (\alpha - \beta) + sen (\alpha + \beta)]; \qquad (M.12)$$

$$sen 2\alpha = 2 sen \alpha cos \alpha$$
, $cos 2\alpha = cos^2 \alpha - sen^2 \alpha$; (M.13)

Haciendo referencia a la Fig. M-2, podemos formular para cualquier triángulo arbitrario:

Ley de los senos:
$$\frac{a}{\operatorname{sen} A} = \frac{b}{\operatorname{sen} B} = \frac{c}{\operatorname{sen} C}$$
, (M.15)

Ley del coseno:
$$a^2 = b^2 + c^2 - 2bc \cos A$$
. (M.16)

Figura M-2

2. Logaritmos

Definición de e:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2,7182818...$$
 (M.17)

Las funciones exponenciales $y=e^x$, $y=e^{-x}$ están representadas en la Fig. M-3.

(ii) Logaritmos naturales, base e (ver Fig. M-4):

$$y = \ln x \quad \text{si } x = e^y. \tag{M.18}$$

Logaritmos comunes, base 10:

$$y \log x \quad \text{si } x = 10^y. \tag{M.19}$$

Los logaritmos naturales y comunes están relacionados por

$$\ln x = 2{,}303 \log x$$
, $\log x = 0{,}434 \ln x$. (M.20)

Figura M-4

3. Desarrollos en serie de potencias

(i) Desarrollo binomial:

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3} + \dots + \frac{n(n-1)(n-2)\dots(n-p+1)}{p!}a^{n-p}b^{p} + \dots$$
(M.21)

Cuando n es un entero positivo, el desarrollo tiene n+1 términos. En todos los otros casos el desarrollo tiene un número infinito de términos. El caso en que a es 1 y b es una cantidad x se usa muchas veces en el texto. El desarrollo binomial de $(1+x)^n$ es

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$

(ii) Otros desarrollos en serie útiles:

$$e^x = 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \dots$$
 (M.23)

(M.22)

$$\ln (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
 (M.24)

$$\cos x = 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \dots \tag{M.26}$$

$$\operatorname{tg} x = x + \frac{1}{3} x^3 + \frac{2}{15} x^5 + \dots$$
 (M.27)

Para $x \leq 1$ son satisfactorias las siguientes aproximaciones:

$$(1+x)^n \approx 1 + nx, \tag{M.28}$$

$$e^x \approx 1 + x$$
, $\ln(1+x) \approx x$, (M.29)

$$\operatorname{sen} x \approx x$$
, $\operatorname{cos} x \approx 1$, $\operatorname{tg} x \approx x$. (M.30)

Obsérvese que en las ecs. (M.25), (M.26), (M.27) y (M.30), x se debe expresar en radianes.

(iii) Desarrollos en serie de Taylor:

$$f(x) = f(x_0) + (x - x_0) \left(\frac{df}{dx}\right)_0 + \frac{1}{2!} (x - x_0)^2 \left(\frac{d^2f}{dx^2}\right)_0 + \dots + \frac{1}{n!} (x - x_0)^n \left(\frac{d^nf}{dx^n}\right)_0 + \dots$$
(M.31)

Si $x-x_0 \leqslant 1$, una aproximación útil es

$$f(x) \approx f(x_0) + (x - x_0) \left(\frac{df}{dx}\right)_0. \tag{M.32}$$

4. Números complejos

Con la definición $i^2 = -1$ ó $i = \sqrt{-1}$,

$$e^{i\theta} = \cos \theta + i \sin \theta,$$
 (M.33)

$$\cos \theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta}), \tag{M.34}$$

$$\operatorname{sen} \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right). \tag{M.35}$$

Figura M-5

5. Funciones hiperbólicas

Para visualizar las relaciones siguientes, referirse a la Fig. M-5.

$$\cosh \theta = \frac{1}{2}(e^{\theta} + e^{-\theta}), \tag{M.36}$$

$$senh \theta = \frac{1}{2}(e^{\theta} - e^{-\theta}), \tag{M.37}$$

$$\cosh^2 \theta - \sinh^2 = 1, \tag{M.38}$$

$$senh \theta = -i sen (i\theta), cosh \theta = cos (i\theta),$$
 (M.39)

$$sen \theta = -i senh (i\theta), cos \theta = cosh (i\theta).$$
(M.40)

6. Derivadas e integrales básicas

f(u)	df/dx	$\int f(u) \ du$
$\overline{u^n}$	$nu^{n-1} du/dx$	$u^{n+1}/(n+1) + C (n \neq -1)$
u^{-1}	$-(1/u^2) du/dx$	$\ln u + C$
ln u	(1/u) du/dx	$u \ln u - u + C$
e^u	$e^{u} du/dx$	$e^{u}+C$
sen u	$\cos u du/dx$	$-\cos u + C$
cos u	— sen $u du/dx$	$\operatorname{sen} u + C$
tg u	$\sec^2 u \ du/dx$	$-\ln \cos u + C$
cotg u	$ \csc^2 u \ du/dx$	ln sen u + C
arcsen u	$(du/dx)/\sqrt{1-u^2}$	$u \operatorname{arcsen} u + \sqrt{1 - u^2} + C$
senh u	cosh <i>u du/dx</i>	$\cosh u + C$
cosh u	senh $u du/dx$	$\operatorname{senh} u + C$

Una regla útil para integrar, llamda integración por partes, es

$$\int u \, dv = uv - \int v \, du. \tag{M.41}$$

La mayoría de las veces, este método se usa para calcular la integral del segundo miembro usando la integral del primero.

7. Valor medio de una función

El valor medio o promedio de una función y = f(x) en el intervalo (a, b) se define por

$$\bar{y} = \frac{1}{b-a} \int_a^b y \, dx. \tag{M.42}$$

Análogamente, el valor medio de y^2 se define por

$$(\bar{y^2}) = \frac{1}{b-a} \int_a^b y^2 \, dx. \tag{M.43}$$

La cantidad $\sqrt[]{y^2}$ se denomina valor medio cuadrático de y = f(x) en el intervalo (a, b) y en general es diferente de \overline{y} . Se designa con y_{mc} .

A	ng	G	<i>G</i>	Ta	A	Ang	C		
Grad	Rad	Sen	Cos	Tg	Grad	Rad	Sen	Cos	Tg
0°	,000	0,000	1,000	0,000					
1°	,017	,018	1,000	,018	46°	0,803	0,719	0,695	1,036
2°	,035	,035	0,999	,035	47°	,820	,731	,682	1,072
3°	,052	,052	,999	,052	48°	,838	,743	,669	1,111
4°	,070	,070	,998	,070	49°	,855	,755	,656	1,150
5°	,087	,087	,996	,088	50°	,873	,766	,643	1,192
6°	,105	,105	,995	,105	51°	,890	,777	,629	1,235
7°	,122	,122	,993	,123	52°	,908	,788	,616	1,280
8°	,140	,139	,990	,141	53°	,925	,799	,602	1,327
9°	,157	,156	,988	,158	54°	,942	,809	,588	1,376
10°	,175	,174	,985	,176	55°	,960	,819	,574	1,428
11°	,192	,191	,982	,192	56°	,977	,829	,559	1,483
12°	,209	,208	,978	,213	57°	,995	,839	,545	1,540
13°	,227	,225	,974	,231	58°	1,012	,848	,530	1,600
14°	,244	,242	,970	,249	59°	1,030	,857	,515	1,664
15°	,262	,259	,966	,268	60°	1,047	,866	,500	1,732
16°	,279	,276	,961	,287	61°	1,065	,875	,485	1,804
17°	-				62°	1,082	,873 ,883	,483	1,881
18°	,297	,292	,956	,306	63°	1,100	,891	,470 ,454	1,963
19°	,314	,309	,951 ,946	,325	64°	1,117	,891 ,899	,434	2,050
20°	,332	,326 ,342	,940 ,940	,344 ,364	65°	1,117	,906	,436 ,423	2,030
	,349			l -	11	-	1	I -	
21°	,367	,358	,934	,384	66°	1,152	,914	,407	2,246
22°	,384	,375	,927	,404	67°	1,169	,921	,391	2,356
23°	,401	,391	,921	,425	68°	1,187	,927	,375	2,475
24°	,419	,407	,914	,445	69°	1,204	,934	,358	2,605
25°	,436	,423	,906	,466	70°	1,222	,940	,342	2,747
26°	,454	,438	,899	,488	71°	1,239	,946	,326	2,904
27°	,471	,454	,891	,510	72°	1,257	,951	,309	3,078
28°	,489	,470	,883	,532	73°	1,274	,956	,292	3,271
29°	,506	,485	,875	,554	74°	1,292	,961	,276	3,487
30°	,524	,500	,866	,577	75°	1,309	,966	,259	3,732
31°	,541	,515	,857	,601	76°	1,326	,970	,242	4,011
32°	,559	,530	,848	,625	77°	1,344	,974	,225	4,331
33°	,576	,545	,839	,649	78°	1,361	,978	,208	4,705
34°	,593	,559	,829	,675	79°	1,379	,982	,191	5,145
35°	,611	,574	,819	,700	80°	1,396	,985	,174	5,671
36°	,628	,588	,809	,727	81°	1,414	,988	,156	6,314
37°	,646	,602	,799	,754	82°	1,431	,990	,139	7,115
38°	,663	,616	,788	,781	83°	1,449	,993	,122	8,144
39°	,681	,629	,777	,810	84°	1,466	,995	,105	9,514
40°	,698	,643	,766	,839	85°	1,484	,996	,087	11,43
41°	,716	,658	,755	,869	86°	1,501	,998	,070	14,30
42°	,733	,669	,743	,900	87°	1,518	,999	,052	19,08
43°	,751	,682	,731	,933	88°	1,536	,999	,035	28,64
44°	,768	,695	,719	,966	89°	1,553	1,000	,018	57,29
45°	,785	,707	,707	1,000	90°	1,571	1,000	,000	∞
	,	<u> </u>	,				<u> </u>	<u> </u>	

LOGARITMOS COMUNES

					1 4	T -	1 -		1	<u> </u>
N	0	1	2	3.	4	5	6	7	8	9
0	1	0000	3010	4771	6021	6990	7782	8451	9031	9542
1	0000	0414	0792	1139	1461	1761	2041	2304	2553	2788
2	3010	3222	3424	3617	3802	3979	4150	4314	4472	4624
3	4771	4914	5051	5185	5315	5441	5563	5682	5798	5911
4	6021	6128	6232	6335	6435	6532	6628	6721	6812	6902
5	6990	7076	7160	7243	7324	7404	7482	7559	7634	7709
6	7782	7853	7924	7993	8062	8129	8195	8261	8325	8388
7	8451	8513	8573	8633	8692	8751	8808	8865	8921	8976
8	9031	9085	9138	9191	9243	9294	9345	9395	9445	9494
9	9542	9590	9638	9685	9731	9777	9823	9868	9912	_9956
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962
2 5	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757
80	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172
33	5185	5198	5211	5224	5237	$\begin{array}{ c c c }\hline 5250 \\ \end{array}$	5263	5276	5289	5302
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786
38 39	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899
	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222
42 43	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325
43 44	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425
	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522
45 46	6532	6542 6627	6551	6561	6571	6580	6590	6599	6609	6618
40 47	$\begin{array}{c} 6628 \\ 6721 \end{array}$	6637	6646	6656	6665	6675	6684	6693	6702	6712
48	6812	6730 6821	6739	6749	6758	6767	6776	6785	6794	6803
49	6902	6821 6911	6830 6920	6839	6848	6857	6866	6875	6884	6893
				6928	6937	6946	6955	6964	6972	6981
<u>50</u> _	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
37	^	ا ند	_	_	. 1	ſ	ŀ	l	- [

LOGARITMOS COMUNES (continuación)

N	0	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846.
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859
77	8865	8871	8876	8882	8887	8893 8949	8899 8954	8904	8910 8965	8915 8971
78	8921	8927	8932	8938	8943 8998	9004	9009	8960 9015	9020	9025
$\frac{-79}{80}$	$\frac{8976}{9031}$	8982 9036	$\frac{8987}{9042}$	$\frac{8993}{9047}$	9053	9058	9063	9069	9074	9079
		I		l 		9112	9117	9122	9128	9133
81	9085	9090	9096 9149	9101	9106 9159	9112	9170	9175	9128	9186
82 83	9138 9191	9143 9196	9149	9154 9206	9212	9217	9222	9227	9232	9238
84	9191	9248	9253	9258	9263	9269	9274	9279	9284	9289
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680
93	9685	8689	9694	9699	9703	9708	9713	9717	9722	9727
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996
100	0000	0004	0009	0013	0017	0022	0026	0030	0035	0039

FUNCIONES EXPONENCIALES

			· · · · · · · · · · · · · · · · · · ·		
x	e^x	e-x	$oldsymbol{x}$	e^x	e-*
0,00	1,0000	1,0000	2,5	12,182	0,0821
0,05	1,0513	0,9512	2,6	13,464	0,0743
0,10	1,1052	0,9048	$\overline{2,7}$	14,880	0,0672
0,15	1,1618	0,8607	2,8	16,445	0,0608
0,20	1,2214	0,8187	2,9	18,174	0,0550
	-,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	10,111	. 0,0000
0,25	1,2840	0,7788	3,0	20,086	0,0498
0,30	1,3499	0,7408	3,1	22,198	0,0450
0,35	1,4191	0,7047	3,2	24,533	0,0408
0,40	1,4918	0,6703	3,3	27,113	0,0369
0,45	1,5683	0,6376	3,4	29,964	0,0334
				1.	•
0,50	1,6487	0,6065	3,5	33,115	0,0302
0,55	1,7333	0,5769	3,6	36,598	0,0273
0,60	1,8221	0,5488	3,7	40,447	0,0247
0,65	1,9155	0,5220	3,8	44,701	0,0224
0,70	2,0138	0,4966	3,9	49,402	0,0202
0,75	2,1170	0,4724	4,0	54,598	0,0183
0,80	2,2255	0,4493	4,1	60,340	0,0166
0,85	2,3396	0,4274	4,2	66,686	0,0150
0,90	2,4596	0,4066	4,3	73,700	0,0136
0,95	2,5857	0,3867	4,4	81,451	0,0123
i		,,,,,,,,	-,-	02,101	0,0120
1,0	2,7183	0,3679	4,5	90,017	0,0111
1,1	3,0042	0,3329	4,6	99,484	0,0101
1,2	3,3201	0,3012	4,7	109,95	0,0091
1,3	3,6693	0,2725	4,8	121,51	0,0082
1,4	4,0552	0,2466	4,9	134,29	0,0074
1,5	1 4017	A 2224	· · ·	140.41	0.0005
	4,4817	0,2231	5	148,41	0,0067
1,6	4,9530	0,2019	6	403,43	0,0025
1,7 1,8	5,4739	0,1827	7	1.096,6	0,0009
1,8 1,9	6,0496	0,1653	. 8 . 9	2.981,0	0,0003
1,8	6,6859	0,1496	9	8.103,1	0,0001
2,0	7,3891	0,1353	10	22.026	0,00005
2,1	8,1662	0,1225		İ	·
2,2	9,0250	0,1108			
2,3	9,9742	0,1003			ļ
2,4	11,023	0,0907			1
	<u> </u>			1	