VE320 – Summer 2024

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 1 Crystalline structure of solids

Outline

- 1.1 Semiconductor materials
- 1.2 Type of Solids
- 1.3 Space lattices
- 1.4 The diamond structure
- 1.5 Atomic bonding
- 1.6 Imperfections and impurities in solids

Outline

1.1 Semiconductor materials

- 1.2 Type of Solids
- 1.3 Space lattices
- 1.4 The diamond structure
- 1.5 Atomic bonding
- 1.6 Imperfections and impurities in solids

Resistivity:

Conductors	Semiconductors	Insulators
< 10 ⁻³ Ω•cm	$10^{-3} - 10^{9} \Omega$ •cm	$> 10^9 \Omega \bullet \mathrm{cm}$
Metals (Au, Al, Cu,	Si, Ge, GaAs, InP	SiO_2 , HfO_2
Hg)		
Solids, liquids (Hg)	Solids	Solids, liquids gases

Periodic Table of the Elements

Table 1.1 | A portion of the periodic table

III	IV	V
5	6	
В	C	
Boron	Carbon	
13	14	15
Al	Si	P
Aluminum	Silicon	Phosphorus
31	32	33
Ga	Ge	$\mathbf{A}\mathbf{s}$
Gallium	Germanium	Arsenic
49		51
In		Sb
Indium		Antimony

Table 1.2 | A list of some semiconductor materials

Elemental semiconductors		
Si	Silicon	
Ge	Germanium	
Compound semiconductors		
AlP	Aluminum phosphide	
AlAs	Aluminum arsenide	
GaP	Gallium phosphide	
GaAs	Gallium arsenide	
InP	Indium phosphide	

Periodic Table of the Elements

Conductivity of semiconductors:

- ☐ Tunable by static electric field
 - MOSFET: metal oxide semiconductor field effect transistors
- ☐ Susceptible to impurities
 - Intrinsic silicon: 214000 Ω •cm at 300K
 - Doped with phosphorus (1ppm): 0.2Ω •cm at 300K
- ☐ Sensitive to light illumination

Semiconductors are the materials that have

resistivities between $10^{-3} - 10^9 \,\Omega$ •cm

depending on light illumination, temperature,

electric field, magnetic field and impurities.

Outline

1.1 Semiconductor materials

1.2 Type of Solids

- 1.3 Space lattices
- 1.4 The diamond structure
- 1.5 Atomic bonding
- 1.6 Imperfections and impurities in solids

1.2 Type of Solids

Solids:

- Single crystals
- Polycrystals
- Amorphous

1.2 Type of Solids

Solids:

Amorphous

- Polycrystals
- Single crystals

All atoms or ions are periodically ranged in a short range (a few atoms)

Multiple crystalline grains randomly packed

All atoms or ions are periodically ranged in a long range (µm scale)

1.2 Type of Solids

Characteristics of Crystals

- Specific shape and fixed melting point
- Atoms or ions periodically arranged in a relatively large scale (μm)

All semiconductors covered in this course are assumed to be single crystalline.

Outline

- 1.1 Semiconductor materials
- 1.2 Type of Solids
- 1.3 Space lattices
- 1.4 The diamond structure
- 1.5 Atomic bonding
- 1.6 Imperfections and impurities in solids

Primitive and Unit Cell

Unit cell: any small volume of crystal to reproduce the entire crystal. Primitive cell: smallest unit cell

Primitive and Unit Cell

Primitive and Unit Cell

$$\overline{r} = p\overline{a} + q\overline{b} + s\overline{c}$$

A generalized primitive unit cell

Basic Crystal Structures

Figure 1.5 | Three lattice types: (a) simple cubic, (b) body-centered cubic, (c) face-centered cubic.

Basic Crystal Structures: volume density of atoms

Figure 1.5 | Three lattice types: (a) simple cubic, (b) body-centered cubic, (c) face-centered cubic.

Crystalline Plane and Miller Index (parenthesis)

Crystalline Plane and Miller Index

Crystalline Plane and Miller Index: surface density of atoms

<u>Directions in Crystals</u> [brackets]

In cubic lattice: [hkl] direction is perpendicular to the (hkl) plane

Check your understanding

Identify crystalline plane

Outline

- 1.1 Semiconductor materials
- 1.2 Type of Solids
- 1.3 Space lattices
- 1.4 The diamond structure
- 1.5 Atomic bonding
- 1.6 Imperfections and impurities in solids

1.4 The diamond structure

The diamond lattice

The diamond structure

The tetrahedral structure of closest neighbors in the diamond lattice

1.4 The diamond structure

The diamond lattice

Equivalent to two face-centered cubics sliding ¼ diagonal length along a diagonal

1.4 The diamond structure

The diamond lattice (all atoms are the same)

The zincblende lattice (two different types of atoms in diamond lattice)

Outline

- 1.1 Semiconductor materials
- 1.2 Type of Solids
- 1.3 Space lattices
- 1.4 The diamond structure

1.5 Atomic bonding

1.6 Imperfections and impurities in solids

Chemical Bonds: Binding of atoms or ions

Ion bonds, metal bonds, covalent bonds

Ion bonds

Ion Crystals

Metal bonds

Metal Crystals

Covalent bonds: shared electrons in outer orbitals

Periodic Table of the Elements

Outline

- 1.1 Semiconductor materials
- 1.2 Type of Solids
- 1.3 Space lattices
- 1.4 The diamond structure
- 1.5 Atomic bonding
- 1.6 Imperfections and impurities in solids

<u>Imperfections in solids</u>

Lattice vibrations: thermal vibration or phonons

Imperfections in solids

Lattice vibrations: thermal vibration, or phonons

Point defects: vacancies, interstitial defects, vacancy-interstitial defects

Imperfections in solids

Lattice vibrations: thermal vibration, or phonons

Point defects: vacancies, interstitial defects, vacancy-interstitial defects

Line defects: line dislocation

<u>Impurities in solids:</u> foreign atoms

Dopants are special substitutional impurities.

<u>Impurities in solids:</u> foreign atoms

Periodic Table of the Elements

<u>p-type</u> <u>doping</u>

Acceptor-type of doping

<u>p-type</u> <u>doping</u>

Acceptor-type of doping

n-type doping

Donor-type of doping

n-type doping

Donor-type of doping

Check your understanding

- For Ga, Sn, As, Sb in Si, which forms n-type or p-type doping?
- Will Ge in Si form n-type or p-type doping?

Periodic Table of the Elements

