

دانشکدهی مهندسی کامپیوتر

زمان تحويل: ۶ فروردينماه

يادگيري عميق

تمرین سری اول

نكات زير را رعايت كنيد:

فایل گزارش را به همراه تمامی کدها در یک فایل فشرده و با عنوان #HW1_STD در سایت Quera.ir بارگذاری نمایید.

بخشهای پیادهسازی مربوط به هر سوال را در نوتبوک ارائهشده و فایلهای پایتون مربوط به آن تکمیل کنید و در یک پوشه قرار دهید. سوالات خود را از طریق Piazza مطرح کنید.

مسئلهی ۱۲) Linear regression .۱ نمره)

فرض کنید n داده آموزش به صورت $(x^n,y^n),...,(x^n,y^n),...,(x^n,y^n)$ در اختیار داریم که هر کدام از x ها، x استفاده کنیم که به فرم زیر است: بعدی میباشد. میخواهیم از رگرسیون خطی با تابع هزینه x استفاده کنیم که به فرم زیر است:

$$J(w) = \sum_{i=1}^{n} (y^{(i)} - w^{T} x^{(i)})^{\mathsf{Y}}$$

- (آ) ($7/\Delta$ نمره) رابطه بهینه w را به دست آورید.
- (ب) (۵.۱ نمره) مشكلات استفاده مستقيم از رابطهى قسمت قبل را بيان كنيد و براى آنها راه حلى ارائه دهيد.
- (ج) (۱/۵ نمره) اگر به تابع هزینه جملهی منظم ساز $\|w\|^{\mathsf{T}}$ را بیافزاییم، فرم بسته پاسخ بهینه $\|w\|^{\mathsf{T}}$ را به دست آورید.
- (د) (۲/۵ نمره) رگرسیون خطی وزن دار، تعمیمی روی رگرسیون خطی است که در آن به هر یک از دادهها وزنی اختصاص داده میشود:

$$J(w) = \sum_{i=1}^{n} F_i (y^{(i)} - w^T x^{(i)})^{\mathsf{Y}}$$

فرم بهینهی w را برای این تابع هزینه به دست آورید.

(ه) (۴ نمره) اگر مسئله را به صورت احتمالاتی بنویسیم، خواهیم داشت:

$$\hat{w} = argmin_w E_{x,y}[(y - w^T x)^{\mathsf{T}}]$$

 $c=E_{x,y}[xy]$ مقدار بهینه ی $R=E_x[xx^T]$ و بردار همبستگی \mathbb{R} و بردار همبستگی و تعبیر هر محاسبه کنید. سپس خطا را به صورت جمع دو خطای ساختاری و تقریب، تفکیک کنید و تعبیر هر یک را بیان نمایید.

مسئلهی ۲. perceptron (۱۱ نمره)

به سوالات زیر بر اساس دسته بند پرسپترون پاسخ دهید:

- (آ) (۳ نمره) نشان دهید که ترتیب دادهها در بردار وزن حاصل از نسخهی تکنمونهی این روش میتواند اثرگذار باشد.
- یعنی نشان دهید اگر روش پرسپترون را روی دادهها اجرا کنیم و در هر چرخه یک داده را بررسی کنیم و بردار وزن را بروزرسانی کنیم، ترتیب بررسی دادهها در زمان آموزش در بردار نهایی میتواند اثرگذار باشد.
- (ب) (۲ نمره) به طور شهودی نمودار تابع هزینه ی مربوط به batch perceptron و پرسپترون تک نمونه را مقایسه و توصیف کنید.
- w^* نمره) فرض کنید مسأله ی دسته بندی را برای داده هایی از دو کلاس حل کرده ایم و بردار w^* نتیجه شده است به طوری که همه ی داده ها را به درست با حاشیه ی γ دسته بندی می کند یعنی داریم نتیجه شده است به طوری که همه ی داده ها را به درست با حاشیه ی $w^{*T}x_iy_i > \gamma, \forall i$ قرار دارند، ثابت که تمام داده ها در ابرکره ای با شعاع $w^{*T}x_iy_i > \gamma, \forall i$ کنید تعداد گام های لازم برای رسیدن به این بردار نهایی حداکثر $\frac{R^{*}\|w^{*}\|}{\gamma^{*}}$ گام بوده است. از استقرا روی بردار در هر گام استفاده کنید وفرض کنید بردار وزن اولیه بردار تماما صفر باشد.

مسئلهی ۴. backpropagation (۶ نمره)

به دو سوال زیر در رابطه با back propagation پاسخ دهید:

رآ) (۳ نمره) کنید تابعی داریم که یک ورودی دو بعدی $x=(x_1,x_7)$ را به عنوان ورودی میگیرد و $\sigma(x)=\frac{1}{1+e^-x}$ و $f(x,w)=\sigma(\sigma(x_1w_1)w_7+x_7)$ است که $w=(w_1,w_7)$ و پارامتر دو پارامتر

ما از backpropagation استفاده میکنیم تا مقدار درست پارامترها را تخمین بزنیم. در ابتدا مقدار هر دو پارامتر را صفر قرار دهید و فرض کنید $x_1=1, X_7=\cdot, y=0$. سپس شبکه عصبی متناظر با مسئله را کشیده و مقدار $\frac{\partial f}{\partial w_1}$ را بیابید. حال مقدار x_1w_1 را به عنوان x_1w_2 را به عنوان x_1w_3 را به عنوان x_1w_2 شبکه عصبی باید دو خروجی داشته باشد.)

(ب) (\mathbf{r} نمره) اگر نرخ یادگیری برابر \mathbf{v} باشد، مقدار \mathbf{w} را بعد از یک مرحله به روز رسانی توسط الگوریتم انتشار به عقب به دست آورید.

مسئلهی ۴. Activation Functions (۸ نمره)

د. (۴ نمره) توابع فعالسازی $\sigma ext{ sigmoid}$ و anh به شکل زیر تعریف می شوند:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

- (آ) (۲ نمره) ماتریس ژاکوبین $\partial y/\partial z$ را برای تابع فعالسازی $\tan h$ که بر روی تمام عناصر یک لایه اجرا شده است، به دست آورید.
- (ب) (۱ نمره) یکی از مشکلات تابع sigmoid اشباع است. توضیح دهید که آیا استفاده از tanh این مشکل را حل میکند؟
- (ج) (۱ نمره) توضیح دهید که استفاده از tanh به جای sigmoid چرا و چگونه باعث بهبود بهینهسازی می شود؟
 - vanishing gradient را توضیح دهید و راه حلی برای رفع این مشکل ارائه دهید.
- ۳. (۳ نمره) توضیح دهید که چگونه میتوان از سرریز در محاسبات softmax جلوگیری کرد؟ ادعای خود را اثبات کنید.

مسئلهی ۵. Regularization نمره)

- ۱. (۲ نمره) توضیح دهید که چرا در شبکههایی که batch normalization استفاده می شود، ضریب یادگیری را می توان افزایش داد.
 - ۲. (۳ نمره) به سوالات زیر در مورد Drop-out پاسخ دهید:
 - (آ) توضیح دهید که چرا Drop-out مانند منظمساز عمل میکند؟
 - (ب) توضیح دهید که چرا Drop-out عملکردی شبیه ensemble-learning دارد؟
 - (ج) استفاده از Drop-out در حین test و test چه تفاتی دارد و این تفاوت به چه علت است؟
- multi-task learning و parameter sharing را به طور مختصر توضیح دهید و به کرده) روشهای generalization و generalization می شوند.
 - ۳. (۱ نمره) توضیح دهید که چرا منظمسازها بر روی بایاسهای شبکه اعمال نمی شوند.
 - ۴. (۲ نمره) دو نحوهی منظمسازی زیر را با هم مقایسه کنید.
 - اضافه کردن جملهي منظمساز به تابع هزينه

$$L(w) + \alpha \|w\|_{\Upsilon}^{\Upsilon}$$

• منظمساز بیشینه ـ نرم (استفاده از جمله ی منظمساز به عنوان قید مسئله)

$$\min_{w} L(w) \text{ s.t.} \|w^{[l]}\|_{Y}^{Y} \leqslant c, l = 1, ..., L$$

مسئلهی ۶. Optimization (۱۵ نمره)

۱. (۵ نمره) فرض کنید که g گرادیان تابع f و H ماتریس هسین آن باشد. نشان دهید که در الگوریتم گرادیان کاهشی ضریب یادگیری بهینه ی η^* از رابطه ی $\frac{\bar{g}^T\bar{g}}{q^TH\bar{g}}$ به دست می آید.

saturation\

Hessian ⁷

- ۲. (۲ نمره) نقاط زینی در بهینه سازی چه مشکلی ایجاد میکنند؟ توضیح دهید که چرا در ابعاد بالا تعداد این نقاط از نقاط بهبنه ی محلی بیشتر است؟
- ۳. (۸ نمره) روشهای RMS-Prob ،Nestrov-momentum ،momentum ،GD و ADAM را با هم مقایسه کنید و بگویید هر کدام چه مشکلی در روشهای قبلی را حل میکنند و چه مزایا و معایبی دارند.

مسئلهی ۷. MLP (عملی ـ ۴۰ نمره)

- ۱. در این سوال هدف پیادهسازی شبکهی عصبی چندلایه با استفاده از numpy است. فایل نوتبوک Q7a را مطالعه کنید و طبق دستورالعملهای آن، قسمتهای مشخص شده در فایلهای پایتون و نوتبوک را تکمیل کنید. در پایان سوال با استفاده از ماژولهایی که پیادهسازی کردهاید مسئلهی طبقهبندی تصاویر مجموعه دادهی CIFAR10 را حل خواهید کرد.
- ۲. هدف این قسمت سوال آشنایی و کار با فریمورک pytorch است. برای پاسخ به این سوال نوتبوک Q7b را مطالعه کرده و قسمتهای خواسته شده را پیادهسازی کنید.

موفق باشيد.

saddle point*