

Learning Memory Access Patterns

Milad Hashemi, Kevin Swersky, Jamie A. Smith, Grant Ayers, Heiner Litz, Jichuan Chang, Christos Kozyrakis, Parthasarathy Ranganathan

> Justin Chen April 12th, 2018

Motivation

Memory wall

- Time: prefetch >> compute
- Hierarchical memory systems
- Prefetching process of predicting future memory accesses

Prefetchers

- Predict when and what data to cache
- Traditional, handcrafted hardware prefetchers use tables
- Hard to scale

"Latency Numbers Every Programmer Should Know"

It is hard for humans to get the picture until you translate it to "human numbers":

1 CPU cycle	0.3 ns	1 s
Level 1 cache access	0.9 ns	3 s
Level 2 cache access	2.8 ns	9 s
Level 3 cache access	12.9 ns	43 s
Main memory access	120 ns	6 min
Solid-state disk I/O	50-150 µs	2-6 days
Rotational disk I/O	1-10 ms	1-12 months
Internet: SF to NYC	40 ms	4 years
Internet: SF to UK	81 ms	8 years
Internet: SF to Australia	183 ms	19 years
OS virtualization reboot	4 s	423 years
SCSI command time-out	30 s	3000 years
Hardware virtualization reboot	40 s	4000 years
Physical system reboot	5 m	32 millenia

Prefetching as a Prediction Problem

- Memory instructions generate memory addresses
- Hardware prefetcher features:
 - Program Counters (PC)
 - Uniquely identifies register in CPU
 - Registers contain the address of currently executing instruction
 - Predictive of control flow
 - Cache Miss Addresses
 - Can use to predict address to prefetch

Traditional Data Prefetchers

Stride Prefetchers

- Calculates a linear model from repeating patterns to predict access patterns
- e.g. (0,4,8,12) -> (16,20,24)

Correlation Prefetchers

- Predict irregular patterns using a table of previous access patterns
 - Future events are expected to correlate with past
 - Main motivation for techniques introduced in this work

Application Address Space Data

 omnetpp - standard SPEC CPU2006 benchmark for simulating communication networks

Data: cache miss addresses

 \circ Size of training set: O(100M)

Unique points: O(10M)

 \circ Size of entire address space: 2^{64}

Problems:

- Exceptionally large range of values
- Sparse feature space
- Multimodal

Omnetpp Cache Miss Sparse Access Pattern

Spasity & Multimodality in Web Caching Data

Spasity & Multimodality in Web Caching Data

Prefetching as Classification

- Regression models suffer from sparsity, variance, and multimodality
- Solution:
 - Discretization discrete abstraction of continuous space
 - Reduces possible values
 - Use a classification model in lieu of regression
 - Strategies:
 - 1. Common Addresses
 - 2. Clustering over Address Space

Prefetching as Classification

- Address Space Layout Randomization (ASLR)
 - Different set of addresses used for each execution.
- Solution:
 - Predict deltas
 - Invariant to ASLR
 - Space of deltas << space of addresses

$$\Delta_N = Addr_{N+1} - Addr_N$$

Recurrent Neural Network (RNN)

Motivation:

- RNN achieve
 state-of-the-art in
 sequence modeling
- Model conditional probability distributions
- Able to store memory and compute on its memory
- Trained offline

Unrolling Through Time

Long Short-Term Memory

F _t	Forget Gate	$\sigma(W_F[x_t, h_{t-1}] + b_F)$	Learns what to forget
l _t	Input Gate	$\sigma(W_{l}[x_{t}, h_{t-1}]+b_{l})$	Learns what to assimilate
O_t	Output Gate	$\sigma(W_{\odot}[x_{t}, h_{t-1}]+b_{\odot})$	Learns what to emit
S _t	Cell Gate State	$I_{t} \circ \tanh(W_{C}[x_{t}, h_{t-1}] + b_{C})$ $F_{t} \circ S_{t-1} + C_{t}$	Candidate memory Cell state: Linear combination of candidate memory and previous cell state Hidden state: Prediction at current timestep
h _t	Hidden State	$O_t \circ tanh(S_t)$	LSTMs extend the memory capacity of

conventional RNNs

Long Short-Term Memory

Embedding LSTM

Note: In the paper, they use ${\bf f}$ (embed_D) and ${\bf g}$ (embed_{DC}) to denote the embedding functions as in the next slide

Classification over delta vocabulary

Predict K-highest probability deltas for prefetching each timestep

Add $\Delta_{i}^{'}$ back to address at time t to get new address

Problems:

- 1. Large vocab -> large memory
- 2. Vocab truncation -> lower acc
- 3. Rare features

Embedding LSTM

Clustering + LSTM

- k-means to cluster omnetpp addresses into 6 regions
- Compute deltas within each cluster
- Deltas in a cluster are significantly smaller than the global vocabulary
- Reduce model size:
 - LSTM for each cluster with weight sharing
 - Cluster id feature

Clustering + LSTM Model

K-means Clusters on omnetpp Benchmark

Program Trace Statistics

Table 1. Program trace dataset statistics. M stands for million.

Dataset	# Misses	# PC	# Addrs	# Deltas	# Addrs 50% mass	# Deltas 50% mass	
gems	500M	3278	13.11M	2.47M	4.28M	18	
astar	500M	211	0.53M	1.77M	0.06M	15	
bwaves	491M	893	14.20M	3.67M	3.03M	2	
lbm	500M	55	6.60M	709	3.06M	9	
leslie3d	500M	2554	1.23M	0.03M	0.23M	15	
libquantum	470M	46	0.52M	30	0.26M	1	
mcf	500M	174	27.41M	30.82M	0.07M	0.09M	
milc	500M	898	3.74M	9.68M	0.87M	46	
omnetpp	449M	976	0.71M	5.01M	0.12M	4613	
soplex	500M	1218	3.49M	5.27M	1.04M	10	
sphinx	283M	693	0.21M	0.37M	0.03M	3	
websearch	500M	54600	77.76M	96.41M	0.33M	5186	

Precision Comparison

Precision for Embedding LSTM

Recall Comparison

Recall for Embedding LSTM

t-SNE Visualizations of Datasets

Concatenated embeddings of *omnetpp* colored by PC instructions

Concatenated embeddings of *mcf* colored by PC instructions

K-means Clustering on Address Space

References

- 1. Hashemi, Milad, et al. "Learning Memory Access Patterns." arXiv preprint arXiv:1803.02329 (2018).
- 2. Kraska, Tim, et al. "The Case for Learned Index Structures." arXiv preprint arXiv:1712.01208 (2017).
- 3. Van Den Oord, Aaron, et al. "**Wavenet: A generative model for raw audio**." arXiv preprint arXiv:1609.03499 (2016).
- 4. Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "**Pixel recurrent neural networks**." arXiv preprint arXiv:1601.06759 (2016).
- 5. Siegelmann, Hava T., and Eduardo D. Sontag. "On the computational power of neural nets." *Journal of computer and system sciences* 50.1 (1995): 132-150.

