

3. EM Algorithm

Extension Note: Homework 4 due date has been extended by 1 day to August 17 23:59UTC.

Consider the following mixture of two Gaussians:

$$p\left(x; heta
ight)=\pi_{1}\mathcal{N}\left(x;\mu_{1},\sigma_{1}^{2}
ight)+\pi_{2}\mathcal{N}\left(x;\mu_{2},\sigma_{2}^{2}
ight)$$

This mixture has parameters $\theta=\{\pi_1,\pi_2,\mu_1,\mu_2,\sigma_1^2,\sigma_2^2\}$. They correspond to the mixing proportions, means, and variances of each Gaussian. We initialize θ as $\theta_0=\{0.5,0.5,6,7,1,4\}$.

We have a dataset ${\cal D}$ with the following samples of x: $x^{(0)}=-1$, $x^{(1)}=0$, $x^{(2)}=4$, $x^{(3)}=5$, $x^{(4)}=6$.

We want to set our parameters θ such that the data log-likelihood $l\left(\mathcal{D};\theta\right)$ is maximized:

$$rgmax_{ heta} \ \sum_{i=0}^{4} \log p\left(x^{(i)}; heta
ight).$$

Recall that we can do this with the EM algorithm. The algorithm optimizes a lower bound on the log-likelihood, thus iteratively pushing the data likelihood upwards. The iterative algorithm is specified by two steps applied successively:

1. E-step: infer component assignments from current $heta_0= heta$ (complete the data)

$$p\left(y=k\mid x^{(i)}
ight):=p\left(y=k\mid x^{(i)}; heta_{0}
ight), ext{ for }k=1,2, ext{ and }i=0,\ldots,4.$$

2. M-step: maximize the expected log-likelihood

$$ilde{l}\left(D; heta
ight) := \sum_{i} \sum_{k} p\left(y = k \mid x^{(i)}
ight) \log rac{p\left(x^{(i)}, y = k; heta
ight)}{p\left(y = k \mid x^{(i)}
ight)}$$

with respect to heta while keeping $p\left(y=k\mid x^{(i)}
ight)$ fixed.

To see why this optimizes a lower bound, consider the following inequality:

$$egin{aligned} \log p\left(x; heta
ight) &= \log \sum_{y} p\left(x,y; heta
ight) \ &= \log \sum_{y} q\left(y|x
ight) rac{p\left(x,y; heta
ight)}{q\left(y|x
ight)} \ &= \log \mathbb{E}_{y\sim q(y|x)} \left[rac{p\left(x,y; heta
ight)}{q\left(y|x
ight)}
ight] \ &\geq \mathbb{E}_{y\sim q(y|x)} \left[\log rac{p\left(x,y; heta
ight)}{q\left(y|x
ight)}
ight] \ &= \sum_{y} q\left(y|x
ight) \log rac{p\left(x,y; heta
ight)}{q\left(y|x
ight)} \end{aligned}$$

where the inequality comes from **Jensen's inequality** . EM makes this bound tight for the current setting of θ by setting q(y|x) to be $p(y \mid x; \theta_0)$.

Note: If you have taken 6.431x Probability–The Science of Uncertainty, you could review the video in Unit 8: Limit Theorems and Classical Statistics, Additional Theoretical Material, 2. Jensen's Inequality.

Likelihood Function

1/1 point (graded)

What is the log-likelihood of the data $l(\mathcal{D};\theta)$ given the initial setting of θ ? Please round to the nearest tenth.

Note: You will want to write a script to calculate this, using the natural log (np.log) and np.float64 data types.

-24.512532330086678

✓ Answer: -24.5

Solution:

The likelihood can be written as:

$$egin{align} P\left(\mathcal{D}; heta
ight) &= \prod_{i=0}^4 p\left(x; heta
ight) \ &= \prod_{i=0}^4 \pi_1 \mathcal{N}\left(x^{(i)};\mu_1,\sigma_1^2
ight) + \pi_2 \mathcal{N}\left(x^{(i)};\mu_2,\sigma_2^2
ight) \ \end{aligned}$$

Taking the log gives:

$$l\left(\mathcal{D}; heta
ight) = \sum_{i=0}^{4} \log\left(\pi_{1}\mathcal{N}\left(x^{(i)};\mu_{1},\sigma_{1}^{2}
ight) + \pi_{2}\mathcal{N}\left(x^{(i)};\mu_{2},\sigma_{2}^{2}
ight)
ight)$$

We then evaluate each Gaussian using the standard formulation:

$$\mathcal{N}\left(x;\mu,\sigma^{2}
ight)=rac{1}{\sqrt{2\pi\sigma^{2}}}e^{-rac{\left(x-\mu^{2}
ight)}{2\sigma^{2}}}$$

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

E-Step

1/1 point (graded)

What is the formula for p $(y=k\mid x, heta)$? Write in terms of π_k , π_1 , π_2 , N_k , N_1 , and N_2 (where $N_k=\mathcal{N}$ $(x\mid \mu_k,\sigma_k^2)$).

$$\frac{\pi_k \cdot N_k}{\pi_1 \cdot N_1 + \pi_2 \cdot N_2}$$

STANDARD NOTATION

Solution:

Following Bayes Rule we have:

$$p\left(y\mid x
ight) = rac{p\left(y
ight)p\left(x\mid y
ight)}{\sum_{y'}p\left(y'
ight)p\left(x|y'
ight)}$$

For this problem, this equates to:

$$p\left(y=k\mid x; heta
ight)=rac{\pi_{k}\mathcal{N}\left(x;\mu_{y},\sigma_{y}^{2}
ight)}{\sum_{i=1}^{2}\pi_{i}\mathcal{N}\left(x;\mu_{i},\sigma_{i}^{2}
ight)}$$

Submit

You have used 2 of 3 attempts

• Answers are displayed within the problem

E-Step Weights

5/5 points (graded)

For each of the given data points say which Gaussian (1 or 2) they are given more weight towards in the first E-step using the given setting of θ_0 . This is, answer 2 if $p(y=2\mid x,\theta_0)>p(y=1\mid x,\theta_0)$ and 1 otherwise.

$x^{(0)}:$	2	✓ Answer: 2
$x^{(1)}:$	2	✓ Answer: 2
$x^{(2)}:$	2	✓ Answer: 2
$x^{(3)}$:	1	✓ Answer: 1

Solution:

 $x^{(4)}$:

Note that x will more likely be assigned to Gaussian 2 (y=2) instead of Gaussian 1 (y=1) when the following is true:

Answer: 1

$$egin{aligned} rac{P\left(y=2|x^{(i)}, heta_0
ight)}{P\left(y=1|x^{(i)}, heta_0
ight)} &> 1 \ & \Leftrightarrow rac{P\left(x^{(i)}|y=2
ight)P\left(y=2
ight)}{P\left(x^{(i)}|y=1
ight)P\left(y=1
ight)} &> 1 \ & \Leftrightarrow rac{rac{1}{\sqrt{(2\pi\sigma_2^2)}}exp\{-rac{1}{2}(x-\mu_2)^2/\sigma_2^2\}}{rac{1}{\sqrt{(2\pi\sigma_1^2)}}exp\{-rac{1}{2}(x-\mu_1)^2/\sigma_1^2\}} &> 1 \ & \Leftrightarrow rac{rac{1}{\sqrt{(2\pi imes4)}}exp\{-rac{1}{2}(x-7)^2/4\}}{rac{1}{\sqrt{(2\pi imes4)}}exp\{-rac{1}{2}(x-6)^2\}} &> 1 \ & \Leftrightarrow rac{1}{2}exp\{-rac{1}{2}((x-7)^2/4-(x-6)^2)\} &> 1 \ & \Leftrightarrow rac{1}{2}exp\{rac{1}{8}(x-5)\left(3x-19
ight)\} &> 1 \ & \Leftrightarrow \log\left(rac{1}{2}
ight)+rac{1}{8}(x-5)\left(3x-19
ight)\} &> 0 \end{aligned}$$

The x-intercepts of this parabola are $x_1 \approx 4.1525, x_2 \approx 7.1809$. Thus, we can see that all points $x \in [4.15, 7.18]$ have higher probability under class y=1, and all other points have higher probability under y=2. Thus, $x^{(0)}$, $x^{(1)}$, and $x^{(2)}$ are more likely (but not entirely) assigned to Gaussian 2, and the rest of the points ($x^{(3)}$, $x^{(4)}$) are more likely (but not entirely) assigned to Gaussian 1.

• Answers are displayed within the problem

M-Step

3/3 points (graded)

Fixing $p\left(y=k\mid x, \theta_{0}\right)$, we want to update θ such that our lower bound is maximized.

What is the optimal $\hat{\mu}_k$? Answer in terms of $x^{(1)}$, $x^{(2)}$, and γ_{k1} , γ_{k2} , which are defined to be $\gamma_{ki}=p$ $(y=k\mid x^{(i)}; heta_0)$

(For ease of input, use subscripts instead superscripts, i.e. type x_i for $x^{(i)}$. Type gamma_ki for γ_{ki} .)

Answer: (gamma_k1 * x_1 + gamma_k2 * x_2) / (gamma_k1 + gamma_k2)

$$\frac{\gamma_{k1}\cdot x_1 + \gamma_{k2}\cdot x_2}{\gamma_{k1} + \gamma_{k2}}$$

What is the optimal $\hat{\sigma}_k^2$? Answer in terms of $x^{(1)}$, $x^{(2)}$, γ_{k1} and γ_{k2} , which are defined as above to be $\gamma_{ki}=p$ $(y=k\mid x^{(i)};\theta_0)$, and $\hat{\mu}_k$.

(Type hatmu_k for $\hat{\mu}_k$. As above, for ease of input, use subscripts instead superscripts, i.e. type x_i for $x^{(i)}$. Type gamma_ki for γ_{ki} .)

Answer: $(gamma_k1 * (x_1 - hatmu_k)^2 + gamma_k2 * (x_2 - hatmu_k)^2) / (gamma_k1 + gamma_k2)$

$$\frac{\gamma_{k1} \cdot \left(x_1 - hatmu_k\right)^2 + \gamma_{k2} \cdot \left(x_2 - hatmu_k\right)^2}{\gamma_{k1} + \gamma_{k2}}$$

What is the optimal $\hat{\pi}_k$? Answer in terms of γ_{k1} and γ_{k2} , which are defined as above to be $\gamma_{ki}=p$ $(y=k\mid x^{(i)}; heta_0)$,

(As above, type gamma_ki for γ_{ki} .)

Note: that you must account for the constraint that $\pi_1+\pi_2=1$ where $\pi_1,\pi_2\geq 0$.

Note: If you know that some aspect of your formula equals an exact constant, simplify and use this number, i.e. $\gamma_{11}+\gamma_{21}=1$.

 $\frac{\gamma_{k1}+\gamma_{k2}}{2}$

STANDARD NOTATION

Solution:

The function we are optimizing is now:

$$\sum_{i}\sum_{k}\gamma_{ki}\log\left(\pi_{k}\mathcal{N}\left(x^{(i)};\mu_{k},\sigma_{k}^{2}
ight)
ight)$$

Taking $\frac{\partial}{\partial \mu_k}$ and setting to 0 gives:

$$egin{aligned} rac{\partial}{\partial \mu_k} \sum_i \sum_k \gamma_{ki} \log \left(\pi_k \mathcal{N} \left(x^{(i)}; \mu_k, \sigma_k^2
ight)
ight) &= \sum_i \gamma_{ki} rac{\partial}{\partial \mu_k} \log \left(\pi_k \mathcal{N} \left(x^{(i)}; \mu_k, \sigma_k^2
ight)
ight) \ &= \sum_i \gamma_{ki} rac{\partial}{\partial \mu_k} (\log \left(rac{1}{\sqrt{2\pi\sigma_k^2}}
ight) - rac{\left(x^{(i)} - \mu_k
ight)^2}{2\sigma_k^2}
ight) \ &= \sum_i \gamma_{ki} rac{x^{(i)} - \mu_k}{\sigma_k^2} = 0 \end{aligned}$$

Separating out μ_k gives:

$$\mu_k = rac{\sum_i \gamma_{ki} x^{(i)}}{\sum_i \gamma_{ki}}$$

We can interpret this as a weighted average of the data points, normalized by the "total mass" assigned to Gaussian k. The weight is the probability that point $x^{(i)}$ "belongs" to Gaussian k.

Solving for σ_k^2 is similar:

$$egin{aligned} rac{\partial}{\partial \sigma_k^2} \sum_i \sum_k \gamma_{ki} \log \left(\pi_k \mathcal{N}\left(x^{(i)}; \mu_k, \sigma_k^2
ight)
ight) &= \sum_i \gamma_{ki} rac{\partial}{\partial \sigma_k^2} \log \left(\pi_k \mathcal{N}\left(x^{(i)}; \mu_k, \sigma_k^2
ight)
ight) \ &= \sum_i \gamma_{ki} rac{\partial}{\partial \sigma_k^2} (\log \left(rac{1}{\sqrt{2\pi\sigma_k^2}}
ight) - rac{\left(x^{(i)} - \mu_k
ight)^2}{2\sigma_k^2}
ight) \ &= \sum_i \gamma_{ki} \left(-rac{1}{2\sigma_k^2} + rac{\left(x^{(i)} - \mu_k
ight)^2}{2\sigma_k^4}
ight) = 0 \end{aligned}$$

Separating out σ_k^2 gives:

$$\sigma_k^2 = rac{\sum_i \gamma_{ki} {(x^{(i)} - \mu_k)}^2}{\sum_i \gamma_{ki}}$$

Finally we solve for π_k while including a lagrange multiplier for the constraint that $\sum_k \pi_k = 1$.

$$egin{aligned} rac{\partial}{\partial \pi_k} \sum_i \sum_k \gamma_{ki} \log \left(\pi_k \mathcal{N}\left(x^{(i)}; \mu_k, \sigma_k^2
ight)
ight) + \lambda \left(\sum_k \pi_k - 1
ight) &= \sum_i \gamma_{ki} rac{\partial}{\partial \pi_k} \log \left(\pi_k
ight) + rac{\partial}{\partial \pi_k} \lambda \left(\sum_k \pi_k - 1
ight) \ &= rac{\sum_i \gamma_{ki}}{\pi_k} + \lambda = 0 \end{aligned}$$

Giving $\pi_k = -rac{\sum_i \gamma_{ki}}{\lambda}.$

Solving for λ gives:

$$rac{\partial}{\partial \lambda} \sum_{i} \sum_{k} \gamma_{ki} \log \left(\pi_{k} \mathcal{N} \left(x^{(i)}; \mu_{k}, \sigma_{k}^{2}
ight)
ight) + \lambda \left(\sum_{k} \pi_{k} - 1
ight) = \sum_{k} \pi_{k} - 1 = 0$$

Combining the two gives:

$$\lambda = -\sum_i \sum_k \gamma_{ki}$$

which we recognize as N, the total number of points. Thus $\hat{\pi}_k$ is $\frac{\sum_i \gamma_{ki}}{N}$.

Submit

You have used 2 of 3 attempts

• Answers are displayed within the problem

Training 1

1/1 point (graded)

In the first M-step, which Gaussian will shift to the left more (relatively)?

● Gaussian 2 ✔	
olution:	
tuitively, Gaussian 2 is influenced most by the poi	ints $x^{(0)}$, $x^{(1)}$, and so it will move to the left. Gaussian 1 will be more influenced by the every much to the left. If we computed the actual values, we would see that the mately $\mu_1=5.1317$ and $\mu_2=1.4710$.
Submit You have used 1 of 1 attempt	
Answers are displayed within the problem	
raining 2	
1 point (graded) the first M-step, which Gaussian's variance will in	ncrease more (relatively)?
Gaussian 1	
Ifluence Gaussian 1 are concentrated around its material poper proximately 0.7846 while σ_2 increases to 2.639 Submit You have used 1 of 1 attempt	mean, we would not expect the variance to increase. Numerically, σ_1 decreases to 95 .
Answers are displayed within the problem	
raining 3 '1 point (graded)	
raining 3 '1 point (graded)	
raining 3 /1 point (graded) fter convergence, which variance will be larger?	
raining 3 1 point (graded) fter convergence, which variance will be larger? $\sigma_1^2 \checkmark$ $\sigma_2^2 \checkmark$	
raining 3 /1 point (graded) fter convergence, which variance will be larger? $\sigma_1^2 \checkmark$ $\sigma_2^2 \times$ polution:	200
raining 3 11 point (graded) 12 fter convergence, which variance will be larger? 13 $\sigma_1^2 \checkmark$ 14 $\sigma_1^2 \checkmark$ 15 $\sigma_2^2 \checkmark$ 16 $\sigma_2^2 \checkmark$ 17 point (graded) 18 $\sigma_1^2 \checkmark$ 19 $\sigma_1^2 \checkmark$ 10 $\sigma_1^2 \checkmark$ 10 point (graded) 10 point (graded) 21 point (graded) 22 point (graded) 33 point (graded) 44 point (graded) 45 point (graded) 46 point (graded) 47 point (graded) 48 point (graded) 49 point (graded) 40 point (graded) 50 point (graded) 51 point (graded) 61 point (graded) 62 point (graded) 62 point (graded) 63 point (graded) 64 point (graded) 64 point (graded) 65 point (graded) 65 point (graded) 66 point (graded) 66 point (graded) 67 point (graded) 68 point (graded) 69 point (graded) 60	·
raining 3 1 point (graded) 1 fter convergence, which variance will be larger? $\sigma_1^2 \checkmark$ 1 olution: 1 aussian 1 will be centered around the cluster of 3 aussian 1 will have larger variance because of the	e larger spread of the right cluster. I'm getting mu= [5.03812884 0.69307411], sigma2= [0.6199125 5.32681503]