Michal Čihák

27. prosince 2011

Přímé metody řešení soustav lineárních rovnic

- V přednáškách z lineární algebry jste se seznámili s několika metodami řešení soustav lineárních rovnic (Gaussova eliminační metoda, Cramerovo pravidlo, atd.)
- Při praktické realizaci těchto metod na počítači vznikají drobné nepřesnosti při výpočtech způsobené zaokrouhlovacími chybami
- Čím větší je počet rovnic a neznámých, tím je větší počet operací prováděných při výpočtech a tím větší mohou být vzniklé nepřesnosti.

Přímé metody řešení soustav lineárních rovnic

- V přednáškách z lineární algebry jste se seznámili s několika metodami řešení soustav lineárních rovnic (Gaussova eliminační metoda, Cramerovo pravidlo, atd.)
- Při praktické realizaci těchto metod na počítači vznikají drobné nepřesnosti při výpočtech způsobené zaokrouhlovacími chybami.
- Čím větší je počet rovnic a neznámých, tím je větší počet operací prováděných při výpočtech a tím větší mohou být vzniklé nepřesnosti

Přímé metody řešení soustav lineárních rovnic

- V přednáškách z lineární algebry jste se seznámili s několika metodami řešení soustav lineárních rovnic (Gaussova eliminační metoda, Cramerovo pravidlo, atd.)
- Při praktické realizaci těchto metod na počítači vznikají drobné nepřesnosti při výpočtech způsobené zaokrouhlovacími chybami.
- Čím větší je počet rovnic a neznámých, tím je větší počet operací prováděných při výpočtech a tím větší mohou být vzniklé nepřesnosti.

Příklad: Řešte soustavu rovnic Gaussovou eliminační metodou při použití přesnosti na čtyři platné číslice.

$$0,003000x_1 + 59,14x_2 = 59,17$$
$$5,291x_1 - 6,130x_2 = 46,78$$

Příklad: Řešte soustavu rovnic Gaussovou eliminační metodou při použití přesnosti na čtyři platné číslice.

$$0,003000x_1 + 59,14x_2 = 59,17$$

 $5,291x_1 - 6,130x_2 = 46,78$

Po úpravě na trojúhelníkový tvar obdržíme:

$$0,003000x_1 + 59,14x_2 = 59,17$$
$$-104300x_2 \approx -104400$$

Příklad: Řešte soustavu rovnic Gaussovou eliminační metodou při použití přesnosti na čtyři platné číslice.

$$0,003000x_1 + 59,14x_2 = 59,17$$
$$5,291x_1 - 6,130x_2 = 46,78$$

Po úpravě na trojúhelníkový tvar obdržíme:

$$0,003000x_1 + 59,14x_2 = 59,17$$
$$-104300x_2 \approx -104400$$

Přitom přesný tvar má být:

$$0,003000x_1 + 59,14x_2 = 59,17$$
$$-104309,37\overline{6}x_2 = -104309,37\overline{6}$$

Příklad: Řešte soustavu rovnic Gaussovou eliminační metodou při použití přesnosti na čtyři platné číslice.

$$0,003000x_1 + 59,14x_2 = 59,17$$
$$5,291x_1 - 6,130x_2 = 46,78$$

Po úpravě na trojúhelníkový tvar obdržíme:

$$0,003000x_1 + 59,14x_2 = 59,17$$
$$-104300x_2 \approx -104400$$

Přitom přesný tvar má být:

$$0,003000x_1 + 59,14x_2 = 59,17$$
$$-104309,37\overline{6}x_2 = -104309,37\overline{6}$$

Výše uvedená nepřesnost vede k hodnotě $x_2 \approx 1{,}001$ namísto přesné hodnoty $x_2 = 1{,}000$ (zatím nic tragického).

Příklad: Řešte soustavu rovnic Gaussovou eliminační metodou při použití přesnosti na čtyři platné číslice.

$$0,003000x_1 + 59,14x_2 = 59,17$$
$$5,291x_1 - 6,130x_2 = 46,78$$

Po úpravě na trojúhelníkový tvar obdržíme:

$$0,003000x_1 + 59,14x_2 = 59,17$$
$$-104300x_2 \approx -104400$$

Přitom přesný tvar má být:

$$0,003000x_1 + 59,14x_2 = 59,17$$
$$-104309,37\overline{6}x_2 = -104309,37\overline{6}$$

Výše uvedená nepřesnost vede k hodnotě $x_2\approx 1{,}001$ namísto přesné hodnoty $x_2=1{,}000$ (zatím nic tragického).

Avšak $x_1 \approx -10{,}00$ namísto přesné hodnoty $x_1 = 10{,}00$ (což je průšvih!).

- Iterační metody nachází své uplatnění tam, kde selhávají přímé metody.
- Používají se zejména v případě velkého počtu rovnic a neznámých matice soustavy má velké rozměry a je řídká (obsahuje hodně nul).
- Je zajímavé, že takové matice se v praktických aplikacích vyskytují poměrně často, což ještě umocňuje význam iteračních metod.

- Iterační metody nachází své uplatnění tam, kde selhávají přímé metody.
- Používají se zejména v případě velkého počtu rovnic a neznámých matice soustavy má velké rozměry a je řídká (obsahuje hodně nul).
- Je zajímavé, že takové matice se v praktických aplikacích vyskytují poměrně často, což ještě umocňuje význam iteračních metod.

- Iterační metody nachází své uplatnění tam, kde selhávají přímé metody.
- Používají se zejména v případě velkého počtu rovnic a neznámých matice soustavy má velké rozměry a je řídká (obsahuje hodně nul).
- Je zajímavé, že takové matice se v praktických aplikacích vyskytují poměrně často, což ještě umocňuje význam iteračních metod.

Příklad: Je dána soustava

Příklad: Je dána soustava

Řešení začneme tím, že z j-té rovnice vyjádříme neznámou x_j pro j=1,2,3,4

Pro zjednodušení dalšího zápisu budeme používat maticové zápisy. Vektor neznámých označíme $\mathbf{x}=(x_1,x_2,x_3,x_4)^t$.

Nyní zvolíme nějakou počáteční aproximaci vektoru neznámých $\mathbf{x}^{(0)}=(0,0,0,0)^t$. Potom první iteraci $\mathbf{x}^{(1)}$ vektoru neznámých získáme takto

Další iterace $\mathbf{x}^{(k)}$ získáme podobně a jsou uvedeny v tabulce

k	0	1	2	3	4	5	6	7	8	9	10
$x_1^{(k)}$	0.000	0.6000	1.0473	0.9326	1.0152	0.9890	1.0032	0.9981	1.0006	0.9997	1.0001
$x_2^{(k)}$	0.0000	2.2727	1.7159	2.053	1.9537	2.0114	1.9922	2.0023	1.9987	2.0004	1.9998
$x_3^{(k)}$	0.0000	-1.1000	-0.8052	-1.0493	-0.9681	-1.0103	-0.9945	-1.0020	-0.9990	-1.0004	-0.9998
$x_4^{(k)}$	0.0000	1.8750	0.8852	1.1309	0.9739	1.0214	0.9944	1.0036	0.9989	1.0006	0.9998

Další iterace $\mathbf{x}^{(k)}$ získáme podobně a jsou uvedeny v tabulce

\overline{k}	0	1	2	3	4	5	6	7	8	9	10
$x_1^{(k)}$	0.000	0.6000	1.0473	0.9326	1.0152	0.9890	1.0032	0.9981	1.0006	0.9997	1.0001
$x_2^{(k)}$	0.0000	2.2727	1.7159	2.053	1.9537	2.0114	1.9922	2.0023	1.9987	2.0004	1.9998
$x_3^{(k)}$	0.0000	-1.1000	-0.8052	-1.0493	-0.9681	-1.0103	-0.9945	-1.0020	-0.9990	-1.0004	-0.9998
$x_4^{(k)}$	0.0000	1.8750	0.8852	1.1309	0.9739	1.0214	0.9944	1.0036	0.9989	1.0006	0.9998

Proces výpočtu dalších iterací byl ukončen ve chvíli, kdy hodnota $\max_{i=1,\dots,n}\{|x_i^{(k)}-x_i^{(k-1)}|\}$ klesla pod předem danou toleranci 0.001.

Další iterace $\mathbf{x}^{(k)}$ získáme podobně a jsou uvedeny v tabulce

k	0	1	2	3	4	5	6	7	8	9	10
$x_1^{(k)}$	0.000	0.6000	1.0473	0.9326	1.0152	0.9890	1.0032	0.9981	1.0006	0.9997	1.0001
$x_{2}^{(k)}$	0.0000	2.2727	1.7159	2.053	1.9537	2.0114	1.9922	2.0023	1.9987	2.0004	1.9998
$x_3^{(k)}$	0.0000	-1.1000	-0.8052	-1.0493	-0.9681	-1.0103	-0.9945	-1.0020	-0.9990	-1.0004	-0.9998
$x_4^{(k)}$	0.0000	1.8750	0.8852	1.1309	0.9739	1.0214	0.9944	1.0036	0.9989	1.0006	0.9998

Proces výpočtu dalších iterací byl ukončen ve chvíli, kdy hodnota $\max_{i=1,\dots,n}\{|x_i^{(k)}-x_i^{(k-1)}|\}$ klesla pod předem danou toleranci $0{,}001$. Přesné řešení zadané dané soustavy rovnic je $\mathbf{x}=(1,2,-1,1)^t$.

- Připomeňme pojem vlastních čísel matice.
- Pro čtvercovou $n \times n$ matici A definujeme *charakteristický polynom* matice A vztahem $p(\lambda) = \det(A \lambda I)$, kde I je jednotková matice.
- Kořeny tohoto charakteristického polynomu se nazývají vlastní čísla matice A.
- Spektrální poloměr matice A je definován jako největší z absolutních hodnot vlastních čísel matice A a značíme jej $\rho(A)$.

- Připomeňme pojem vlastních čísel matice.
- Pro čtvercovou $n \times n$ matici A definujeme *charakteristický polynom* matice A vztahem $p(\lambda) = \det(A \lambda I)$, kde I je jednotková matice.
- Kořeny tohoto charakteristického polynomu se nazývají vlastní čísla matice A.
- Spektrální poloměr matice A je definován jako největší z absolutních hodnot vlastních čísel matice A a značíme jej $\rho(A)$.

- Připomeňme pojem vlastních čísel matice.
- Pro čtvercovou $n \times n$ matici A definujeme *charakteristický polynom* matice A vztahem $p(\lambda) = \det(A \lambda I)$, kde I je jednotková matice.
- Kořeny tohoto charakteristického polynomu se nazývají $\emph{vlastn}\emph{i}$ $\emph{čísla}$ matice \emph{A}
- Spektrální poloměr matice A je definován jako největší z absolutních hodnot vlastních čísel matice A a značíme jej $\rho(A)$.

- Připomeňme pojem vlastních čísel matice.
- Pro čtvercovou $n \times n$ matici A definujeme *charakteristický polynom* matice A vztahem $p(\lambda) = \det(A \lambda I)$, kde I je jednotková matice.
- Kořeny tohoto charakteristického polynomu se nazývají $\emph{vlastn}\emph{i}$ $\emph{čísla}$ matice \emph{A}
- Spektrální poloměr matice A je definován jako největší z absolutních hodnot vlastních čísel matice A a značíme jej $\rho(A)$.

Jacobiova iterační metoda – kritérium konvergence

Posloupnost iterací

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c},$$

kde $k=1,2,\ldots$, konverguje k jedinému řešení soustavy rovnic $\mathbf{x}=T\mathbf{x}+\mathbf{c}$ pro libovolné $\mathbf{x}^{(k)}\in\mathbb{R}^n$ pravě tehdy, když $\rho(T)<1$.

- Při Jacobiově metodě se při výpočtu komponent vektoru k-tých iterací používají výhradně komponenty vektoru (k-1)-ních iterací.
- Přitom při výpočtu i-té komponenty $x_i^{(k)}$ vektoru k-tých iterací už máme spočítány komponenty $x_1^{(k)}, x_2^{(k)}, \dots, x_{i-1}^{(k)}$ tohoto vektoru.
- Tyto čerstvě spočítané komponenty jsou pravděpodobně lepšími aproximacemi hodnot neznámých, než dříve spočítané komponenty $x_1^{(k-1)}, x_2^{(k-1)}, \dots, x_{i-1}^{(k-1)}$.
- Základní myšlenkou Gauss-Seidlovy iterační metody je použít při výpočtu i-té komponenty $x_i^{(k)}$ vektoru k-tých iterací hodnoty $x_1^{(k)}, x_2^{(k)}, \dots, x_{i-1}^{(k)}, x_i^{(k-1)}, \dots, x_n^{(k-1)}$.

- Při Jacobiově metodě se při výpočtu komponent vektoru k-tých iterací používají výhradně komponenty vektoru (k-1)-ních iterací.
- Přitom při výpočtu i-té komponenty $x_i^{(k)}$ vektoru k-tých iterací už máme spočítány komponenty $x_1^{(k)}, x_2^{(k)}, \dots, x_{i-1}^{(k)}$ tohoto vektoru.
- Tyto čerstvě spočítané komponenty jsou pravděpodobně lepšími aproximacemi hodnot neznámých, než dříve spočítané komponenty $x_1^{(k-1)}, x_2^{(k-1)}, \dots, x_{i-1}^{(k-1)}$.
- Základní myšlenkou Gauss-Seidlovy iterační metody je použít při výpočtu i-té komponenty $x_i^{(k)}$ vektoru k-tých iterací hodnoty $x_1^{(k)}, x_2^{(k)}, \dots, x_{i-1}^{(k)}, x_i^{(k-1)}, \dots, x_n^{(k-1)}$.

- Při Jacobiově metodě se při výpočtu komponent vektoru k-tých iterací používají výhradně komponenty vektoru (k-1)-ních iterací.
- Přitom při výpočtu i-té komponenty $x_i^{(k)}$ vektoru k-tých iterací už máme spočítány komponenty $x_1^{(k)}, x_2^{(k)}, \dots, x_{i-1}^{(k)}$ tohoto vektoru.
- Tyto čerstvě spočítané komponenty jsou pravděpodobně lepšími aproximacemi hodnot neznámých, než dříve spočítané komponenty $x_1^{(k-1)}, x_2^{(k-1)}, \dots, x_{i-1}^{(k-1)}$.
- Základní myšlenkou Gauss-Seidlovy iterační metody je použít při výpočtu i-té komponenty $x_i^{(k)}$ vektoru k-tých iterací hodnoty $x_1^{(k)}, x_2^{(k)}, \dots, x_{i-1}^{(k)}, x_i^{(k-1)}, \dots, x_n^{(k-1)}$.

- Při Jacobiově metodě se při výpočtu komponent vektoru k-tých iterací používají výhradně komponenty vektoru (k-1)-ních iterací.
- Přitom při výpočtu i-té komponenty $x_i^{(k)}$ vektoru k-tých iterací už máme spočítány komponenty $x_1^{(k)}, x_2^{(k)}, \dots, x_{i-1}^{(k)}$ tohoto vektoru.
- Tyto čerstvě spočítané komponenty jsou pravděpodobně lepšími aproximacemi hodnot neznámých, než dříve spočítané komponenty $x_1^{(k-1)}, x_2^{(k-1)}, \dots, x_{i-1}^{(k-1)}$.
- Základní myšlenkou Gauss-Seidlovy iterační metody je použít při výpočtu i-té komponenty $x_i^{(k)}$ vektoru k-tých iterací hodnoty $x_1^{(k)}, x_2^{(k)}, \dots, x_{i-1}^{(k)}, x_i^{(k-1)}, \dots, x_n^{(k-1)}$.

Příklad: Je dána soustava

Příklad: Je dána soustava

Při výpočtu hodnoty k-té iterace i-té neznámé $x_i^{(k)}$ použijeme hodnoty $x_1^{(k)}, x_2^{(k)}, \dots, x_{i-1}^{(k)}, x_i^{(k-1)}, \dots, x_4^{(k-1)}$

V tabulce jsou uvedeny jednotlivé iterace postupně vypočtené Gauss-Seidlovou iterační metodou

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.6000	1.030	1.0065	1.0009	1.0001
$x_{1}^{(k)}$ $x_{2}^{(k)}$ $x_{3}^{(k)}$ $x_{4}^{(k)}$	0.0000	2.3272	2.037	2.0036	2.0003	2.0000
$x_{3}^{(k)}$	0.0000	-0.9873	-1.014	-1.0025	-1.0003	-1.0000
$x_4^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000

V tabulce jsou uvedeny jednotlivé iterace postupně vypočtené Gauss-Seidlovou iterační metodou

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.6000	1.030	1.0065	1.0009	1.0001
$x_{2}^{(k)}$ $x_{3}^{(k)}$ $x_{4}^{(k)}$	0.0000	2.3272	2.037	2.0036	2.0003	2.0000
$x_{3}^{(k)}$	0.0000	-0.9873	-1.014	-1.0025	-1.0003	-1.0000
$x_4^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000

Proces výpočtu dalších iterací byl ukončen ve chvíli, kdy hodnota $\max_{i=1,\dots,n}\{|x_i^{(k)}-x_i^{(k-1)}|\}$ klesla pod předem danou toleranci 0,001.

V tabulce jsou uvedeny jednotlivé iterace postupně vypočtené Gauss-Seidlovou iterační metodou

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.6000	1.030	1.0065	1.0009	1.0001
$x_{2}^{(k)}$ $x_{3}^{(k)}$ $x_{4}^{(k)}$	0.0000	2.3272	2.037	2.0036	2.0003	2.0000
$x_{3}^{(k)}$	0.0000	-0.9873	-1.014	-1.0025	-1.0003	-1.0000
$x_4^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000

Proces výpočtu dalších iterací byl ukončen ve chvíli, kdy hodnota $\max_{i=1,\dots,n}\{|x_i^{(k)}-x_i^{(k-1)}|\}$ klesla pod předem danou toleranci 0,001. Přesné řešení zadané dané soustavy rovnic je $\mathbf{x}=(1,2,-1,1)^t$.

V tabulce jsou uvedeny jednotlivé iterace postupně vypočtené Gauss-Seidlovou iterační metodou

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.6000	1.030	1.0065	1.0009	1.0001
$x_{2}^{(k)}$ $x_{3}^{(k)}$ $x_{4}^{(k)}$	0.0000	2.3272	2.037	2.0036	2.0003	2.0000
$x_{3}^{(k)}$	0.0000	-0.9873	-1.014	-1.0025	-1.0003	-1.0000
$x_4^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000

Proces výpočtu dalších iterací byl ukončen ve chvíli, kdy hodnota $\max_{i=1,\dots,n}\{|x_i^{(k)}-x_i^{(k-1)}|\}$ klesla pod předem danou toleranci 0,001. Přesné řešení zadané dané soustavy rovnic je $\mathbf{x}=(1,2,-1,1)^t$. Všimněte si, že Gauss-Seidlovou metodou jsme dospěli k předepsané přesnosti řešení po 5 iteracích, zatímco při použití Jacobiovy metody jsme k dosažení podobné přesnosti potřebovali 10 iterací.

Metoda SOR je podobná Gauss-Seidlově metodě, ale využívá vhodný součinový koeficient pro rychlejší dosažení požadované přesnosti aproximace řešení soustavy.

Metoda SOR je podobná Gauss-Seidlově metodě, ale využívá vhodný součinový koeficient pro rychlejší dosažení požadované přesnosti aproximace řešení soustavy.

Pro výpočet hodnoty k-té iterace i-té neznámé $\boldsymbol{x}_i^{(k)}$ použijeme vztah

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right],$$

kde ω je zmíněný součinový koeficient.

- Pro $\omega=1$ je metoda totožná Gauss-Seidlovu metodu.
- Pro $\omega>1$ se metoda nazývá superrelaxační metoda (metoda SOR).

Metoda SOR je podobná Gauss-Seidlově metodě, ale využívá vhodný součinový koeficient pro rychlejší dosažení požadované přesnosti aproximace řešení soustavy.

Pro výpočet hodnoty k-té iterace i-té neznámé $\boldsymbol{x}_i^{(k)}$ použijeme vztah

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right],$$

kde ω je zmíněný součinový koeficient.

- Pro $\omega=1$ je metoda totožná Gauss-Seidlovu metodu.
- Pro $\omega>1$ se metoda nazývá superrelaxační metoda (metoda SOR).

Metoda SOR je podobná Gauss-Seidlově metodě, ale využívá vhodný součinový koeficient pro rychlejší dosažení požadované přesnosti aproximace řešení soustavy.

Pro výpočet hodnoty k-té iterace i-té neznámé $\boldsymbol{x}_i^{(k)}$ použijeme vztah

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right],$$

kde ω je zmíněný součinový koeficient.

- Pro $\omega=1$ je metoda totožná Gauss-Seidlovu metodu.
- Pro $\omega > 1$ se metoda nazývá superrelaxační metoda (metoda SOR).

Příklad: Je dána soustava

Příklad: Je dána soustava

Při použití Gauss-Seidlovy metody vypočteme k-tou iteraci hodnot neznámých pomocí vztahů

$$\begin{array}{lcl} x_1^{(k)} & = & -0.75 x_2^{(k-1)} + 6, \\ x_2^{(k)} & = & -0.75 x_1^{(k)} + 0.25 x_3^{(k-1)} + 7.5, \\ x_3^{(k)} & = & 0.25 x_2^{(k)} - 6, \end{array}$$

Příklad: Je dána soustava

Při použití Gauss-Seidlovy metody vypočteme k-tou iteraci hodnot neznámých pomocí vztahů

$$\begin{array}{lll} x_1^{(k)} & = & -0.75 x_2^{(k-1)} + 6, \\ x_2^{(k)} & = & -0.75 x_1^{(k)} + 0.25 x_3^{(k-1)} + 7.5, \\ x_3^{(k)} & = & 0.25 x_2^{(k)} - 6, \end{array}$$

Při použití metody SOR s volbou součinového koeficientu $\omega=1{,}25$ vypočteme $k{-}$ tou iteraci hodnot neznámých pomocí vztahů

$$\begin{array}{lll} x_1^{(k)} & = & -0.25x_1^{(k-1)} - 0.9375x_2^{(k-1)} + 7.5, \\ x_2^{(k)} & = & -0.9375x_1^{(k)} - 0.25x_2^{(k-1)} + 0.3125x_3^{(k-1)} + 9.375, \\ x_3^{(k)} & = & 0.3125x_2^{(k)} - 0.25x_3^{(k-1)} - 7.5. \end{array}$$

V první tabulce jsou uvedeny jednotlivé iterace postupně vypočtené Gauss-Seidlovou metodou pro počáteční aproximaci $\mathbf{x}^{(0)} = (1,1,1)^t$:

_									
	k	0	1	2	3	4	5	6	7
a	$c_1^{(k)}$	1	5.250000	3.1406250	3.0878906	3.0549316	3.0343323	3.0214577	3.0134110
а	$v_1^{(k)}$	1	3.812500	3.8828125	3.9267578	3.9542236	3.9713898	3.9821186	3.9888241
а	$v_1^{(k)}$	1	-5.046875	-5.0292969	-5.0183105	-5.0114441	-5.0071526	-5.0044703	-5.0027940

V první tabulce jsou uvedeny jednotlivé iterace postupně vypočtené Gauss-Seidlovou metodou pro počáteční aproximaci $\mathbf{x}^{(0)}=(1,1,1)^t$:

\overline{k}	0	1	2	3	4	5	6	7
$x_1^{(k)}$	1	5.250000	3.1406250	3.0878906	3.0549316	3.0343323	3.0214577	3.0134110
$x_{1}^{(k)}$	1	3.812500	3.8828125	3.9267578	3.9542236	3.9713898	3.9821186	3.9888241
$x_{1}^{(k)}$	1	-5.046875	-5.0292969	-5.0183105	-5.0114441	-5.0071526	-5.0044703	-5.0027940

Ve druhé tabulce jsou uvedeny jednotlivé iterace postupně vypočtené SOR metodou pro počáteční aproximaci $\mathbf{x}^{(0)}=(1,1,1)^t$ a součinový koeficient $\omega=1,25$:

k	0	1	2	3	4	5	6	7
$x_0^{(k)}$	1	3 5195313	3 9585266	4 0102646	2.9570512 4.0074838 -4.9734897	4 0029250	4 0009262	4 0002586

V první tabulce jsou uvedeny jednotlivé iterace postupně vypočtené Gauss-Seidlovou metodou pro počáteční aproximaci $\mathbf{x}^{(0)} = (1, 1, 1)^t$:

\overline{k}	0	1	2	3	4	5	6	7
$x_{1}^{(k)}$	1	5.250000	3.1406250	3.0878906	3.0549316	3.0343323	3.0214577	3.0134110
$x_{1}^{(k)}$	1	3.812500	3.8828125	3.9267578	3.9542236	3.9713898	3.9821186	3.9888241
$x_1^{(k)}$	1	-5.046875	-5.0292969	-5.0183105	-5.0114441	-5.0071526	-5.0044703	-5.0027940

Ve druhé tabulce jsou uvedeny jednotlivé iterace postupně vypočtené SOR metodou pro počáteční aproximaci $\mathbf{x}^{(0)}=(1,1,1)^t$ a součinový koeficient $\omega=1,25$:

k	0	1	2	3	4	5	6	7
$x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)}$	1	6.312500	2.6223145	3.1333027	2.9570512	3.0037211	2.9963276	3.0000498
	1	3.5195313	3.9585266	4.0102646	4.0074838	4.0029250	4.0009262	4.0002586
	1	-6.6501465	-4.6004238	-5.0966863	-4.9734897	-5.0057135	-4.9982822	-5.0003486

Přesné řešení zadané dané soustavy rovnic je $\mathbf{x} = (3,4,-5)^t$

SOR metoda – dokončení ukázky

Pro ilustraci: K dosažení přesnosti dané například tolerancí 10^{-7} bychom potřebovali 34 iterací Gauss-Seidlovy metody, ale pouze 14 iterací metody SOR.