A mapping $T: \mathbb{V} \to \mathbb{W}$ is said to be a linear transformation if

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$
 for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

A mapping $T: \mathbb{V} \to \mathbb{W}$ is said to be a linear transformation if $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

$$I(\alpha x + \beta y) = \alpha I(x) + \beta I(y)$$
 for all $x, y \in \mathbb{F}$

- [Example:]
 - 1. Let $T: \mathbb{R}^2 \to \mathbb{R}$ defined by T(x,y) = x. Then T is a linear transformation.

A mapping $T : \mathbb{V} \to \mathbb{W}$ is said to be a linear transformation if $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

• [Example:]

- 1. Let $T: \mathbb{R}^2 \to \mathbb{R}$ defined by T(x,y) = x. Then T is a linear transformation.
- 2. Let $A \in \mathbb{M}_{m \times n}(R)$, let $T : \mathbb{R}^n \to \mathbb{R}^m$ be defined by T(x) = Ax, $x \in \mathbb{R}^n$. Then T is a linear transformation.

A mapping $T: \mathbb{V} \to \mathbb{W}$ is said to be a linear transformation if $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{F}$.

• [Example:]

- 1. Let $T: \mathbb{R}^2 \to \mathbb{R}$ defined by T(x,y) = x. Then T is a linear transformation.
- 2. Let $A \in \mathbb{M}_{m \times n}(R)$, let $T : \mathbb{R}^n \to \mathbb{R}^m$ be defined by T(x) = Ax, $x \in \mathbb{R}^n$. Then T is a linear transformation.
- 3. Let $T: C[a,b] \to \mathbb{R}$ be defined by $T(f) = \int_a^b f(x) dx$. Then T is a linear transformation.

1. Let $\mathbb V$ and $\mathbb W$ be vector spaces over the same field $\overline{\mathbb F}$. Let $\mathcal T:\mathbb V\to\mathbb W$

1. Let $\mathbb V$ and $\mathbb W$ be vector spaces over the same field $\mathbb F$. Let $\mathcal T:\mathbb V\to\mathbb W$

be defined by T(x) = 0, $x \in \mathbb{V}$. This transformation is called **Zero** transformation.

- 1. Let $\mathbb V$ and $\mathbb W$ be vector spaces over the same field $\mathbb F$. Let $T:\mathbb V\to\mathbb W$ be defined by T(x) = 0, $x \in \mathbb{V}$. This transformation is called **Zero**

2. Let \mathbb{V} be vector space over the field \mathbb{F} . Let $T: \mathbb{V} \to \mathbb{V}$ be defined by

- 1. Let $\mathbb V$ and $\mathbb W$ be vector spaces over the same field $\mathbb F$. Let $T:\mathbb V\to\mathbb W$ be defined by $T(x)=0,\ x\in\mathbb V$. This transformation is called **Zero**
 - 2. Let $\mathbb V$ be vector space over the field $\mathbb F.$ Let $\mathcal T:\mathbb V\to\mathbb V$ be defined by

 $T(x) = x, x \in \mathbb{V}$. This transformation is called **identity** transformation.

- 1. Let $\mathbb V$ and $\mathbb W$ be vector spaces over the same field $\mathbb F$. Let $T:\mathbb V\to\mathbb W$ be defined by $T(x)=0,\ x\in\mathbb V$. This transformation is called **Zero**
 - 2. Let $\mathbb V$ be vector space over the field $\mathbb F.$ Let $\mathcal T:\mathbb V\to\mathbb V$ be defined by
 - $T(x) = x, x \in \mathbb{V}$. This transformation is called **identity** transformation.

3. Let $\mathbb V$ be a vector space over the field $\mathbb F$ and let $\lambda \in \mathbb F$. Let

- 1. Let $\mathbb V$ and $\mathbb W$ be vector spaces over the same field $\overline{\mathbb F}$. Let $T: \mathbb V \to \mathbb W$ be defined by $T(x)=0, x\in \mathbb V$. This transformation is called **Zero**
- 2. Let $\mathbb V$ be vector space over the field $\mathbb F$. Let $\mathcal T:\mathbb V\to\mathbb V$ be defined by $\mathcal T(x)=x,\ x\in\mathbb V$. This transformation is called **identity**

transformation.

- 3. Let $\mathbb V$ be a vector space over the field $\mathbb F$ and let $\lambda \in \mathbb F$. Let $T: \mathbb V \to \mathbb V$ be defined by $T(x) = \lambda x, \ x \in \mathbb V$. This transformation is
- $T: \mathbb{V} \to \mathbb{V}$ be defined by $T(x) = \lambda x$, $x \in \mathbb{V}$. This transformation is called scalar transformation.

• [Theorem:] Let $T : \mathbb{V} \to \mathbb{W}$ be a LT.

Proof: We know that $0_{\mathbb{V}} + 0_{\mathbb{V}} = 0_{\mathbb{V}}$.

 \bullet [Theorem:] Let $\mathcal{T}:\mathbb{V}\to\mathbb{W}$ be a LT. Then $\mathcal{T}(0_\mathbb{V})=0_\mathbb{W}$

Proof: We know that $0_{\mathbb{V}}+0_{\mathbb{V}}=0_{\mathbb{V}}.$

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

Proof: We know that
$$0_{\mathbb{V}}+0_{\mathbb{V}}=0_{\mathbb{V}}.$$

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) = T(0_{\mathbb{V}})$$

Proof: We know that
$$0_{\mathbb{V}} + 0_{\mathbb{V}} = 0_{\mathbb{V}}$$
.

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) = T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}})) = T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}}))$$

Proof: We know that $0_{\mathbb{V}} + 0_{\mathbb{V}} = 0_{\mathbb{V}}$.

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) = T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}})) = T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}}))$$

$$\implies T(0_{\mathbb{V}}) + 0_{\mathbb{W}} = 0_{\mathbb{W}}$$

Proof: We know that
$$0_{\mathbb{V}} + 0_{\mathbb{V}} = 0_{\mathbb{V}}$$
.

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) = T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}})) = T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}}))$$

$$\implies T(0_{\mathbb{V}}) + 0_{\mathbb{W}} = 0_{\mathbb{W}}$$

$$\implies T(0_{\mathbb{V}}) = 0_{\mathbb{W}}$$

Proof: We know that $0_{\mathbb{V}} + 0_{\mathbb{V}} = 0_{\mathbb{V}}$.

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) = T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}})) = T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}}))$$

$$\implies T(0_{\mathbb{V}}) + 0_{\mathbb{W}} = 0_{\mathbb{W}}$$

$$\implies T(0_{\mathbb{V}}) = 0_{\mathbb{W}}$$

 $T: \mathbb{R} \to \mathbb{R}$ be a map defined by T(x) = x + 1.

Proof: We know that $0_{\mathbb{V}} + 0_{\mathbb{V}} = 0_{\mathbb{V}}$.

$$T(0_{\mathbb{V}}+0_{\mathbb{V}})=T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) = T(0_{\mathbb{V}})$$

$$\implies T(0_{\mathbb{V}}) + T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}})) = T(0_{\mathbb{V}}) + (-T(0_{\mathbb{V}}))$$

$$\implies T(0_{\mathbb{V}}) + 0_{\mathbb{W}} = 0_{\mathbb{W}}$$

$$\implies T(0_{\mathbb{V}}) = 0_{\mathbb{W}}$$

 $T: \mathbb{R} \to \mathbb{R}$ be a map defined by T(x) = x + 1. Using above theorem you can say that T is not linear.

$$T(x_1,\ldots,x_n)=\sum_{i=1}^k \alpha_i x_i$$
 for some $\alpha_i\in\mathbb{R}$ for $i=1,\ldots,n$ and for all $(x_1,\ldots,x_n)\in\mathbb{R}^n$.

$$T(x_1,\ldots,x_n)=\sum_{i=1}^k \alpha_i x_i$$
 for some $\alpha_i\in\mathbb{R}$ for $i=1,\ldots,n$ and for all

 $(x_1,\ldots,x_n)\in\mathbb{R}^n.$

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

$$T(x_1,\ldots,x_n)=\sum_{i=1}^k \alpha_i x_i$$
 for some $\alpha_i\in\mathbb{R}$ for $i=1,\ldots,n$ and for all $(x_1,\ldots,x_n)\in\mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let $T(e_i) = \alpha_i$ for $i = 1, \ldots, n$.

$$T(x_1,\ldots,x_n)=\sum_{i=1}^k \alpha_i x_i$$
 for some $\alpha_i\in\mathbb{R}$ for $i=1,\ldots,n$ and for all $(x_1,\ldots,x_n)\in\mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let
$$T(e_i) = \alpha_i$$
 for $i = 1, \ldots, n$.

Let
$$x = [x_1, x_2, ..., x_n] \in V$$
. Then $x = \sum_{i=1}^{n} x_i e_i$.

$$T(x_1,\ldots,x_n)=\sum_{i=1}^k \alpha_i x_i$$
 for some $\alpha_i\in\mathbb{R}$ for $i=1,\ldots,n$ and for all $(x_1,\ldots,x_n)\in\mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let
$$T(e_i) = \alpha_i$$
 for $i = 1, \ldots, n$.

Let
$$x = [x_1, x_2, ..., x_n] \in V$$
. Then $x = \sum_{i=1}^{n} x_i e_i$.

$$T(x) = T(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i T(e_i)$$

$$T(x_1,\ldots,x_n)=\sum_{i=1}^k \alpha_i x_i$$
 for some $\alpha_i\in\mathbb{R}$ for $i=1,\ldots,n$ and for all $(x_1,\ldots,x_n)\in\mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let $T(e_i) = \alpha_i$ for $i = 1, \ldots, n$.

Let
$$x = [x_1, x_2, ..., x_n] \in V$$
. Then $x = \sum_{i=1}^{n} x_i e_i$.

$$T(x) = T(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i T(e_i)$$

$$T(x) = \sum_{i=1}^{n} \alpha_i x_i$$

Then there exist linear transformations $T_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m such that $T(x) = (T_1(x), ..., T_m(x))$ for all $x \in \mathbb{R}^n$.

Then there exist linear transformations $T_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m such that $T(x) = (T_1(x), ..., T_m(x))$ for all $x \in \mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Then there exist linear transformations $T_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m such that $T(x) = (T_1(x), ..., T_m(x))$ for all $x \in \mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let $T(e_i) = (\alpha_1^i, \dots, \alpha_m^i)$ for $i = 1, \dots, n$.

Then there exist linear transformations $T_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m such that $T(x) = (T_1(x), ..., T_m(x))$ for all $x \in \mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let
$$T(e_i) = (\alpha_1^i, \dots, \alpha_m^i)$$
 for $i = 1, \dots, n$.

Let
$$x = [x_1, x_2, ..., x_n] \in V$$
. Then $x = \sum_{i=1}^{n} x_i e_i$.

Then there exist linear transformations $T_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m such that $T(x) = (T_1(x), ..., T_m(x))$ for all $x \in \mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let
$$T(e_i) = (\alpha_1^i, \dots, \alpha_m^i)$$
 for $i = 1, \dots, n$.

Let
$$x = [x_1, x_2, ..., x_n] \in V$$
. Then $x = \sum_{i=1}^{n} x_i e_i$.

$$T(x) = T(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i T(e_i)$$

Then there exist linear transformations $T_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m such that $T(x) = (T_1(x), ..., T_m(x))$ for all $x \in \mathbb{R}^n$.

Proof: Let $\{e_1, \ldots, e_n\}$ be a basis of \mathbb{R}^n .

Let $T(e_i) = (\alpha_1^i, \dots, \alpha_m^i)$ for $i = 1, \dots, n$.

Let $x = [x_1, x_2, \dots, x_n] \in \mathbb{V}$. Then $x = \sum_{i=1}^n x_i e_i$.

$$T(x) = T(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i T(e_i)$$

$$T(x) = \sum_{i=1}^{n} (\alpha_1^i, \dots, \alpha_m^i) x_i$$

$$T(x) = \left(\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m\right)$$

$$T(x) = (\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m)$$

$$T(x) = (T_1(x), \dots, T_n(x))$$
, where $T_i(x) = \sum_{i=1}^n x_i \alpha_i^i$

$$T(x) = (\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m)$$

$$T(x) = (T_1(x), \dots, T_n(x)), \text{ where } T_i(x) = \sum_{i=1}^n x_i \alpha_i^i$$

• Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a map defined by $T(x_1, x_2) = (x_2 - x_1, x_1^2, x_2)$.

 $T(x) = \left(\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m\right)$

$$T(x) = (T_1(x), \dots, T_n(x)), \text{ where } T_i(x) = \sum_{i=1}^n x_i \alpha_i^i$$

• Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a map defined by $T(x_1, x_2) = (x_2 - x_1, x_1^2, x_2)$.

T is linear or not?

$$T(x) = \left(\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m\right)$$

$$T(x) = (T_1(x), \dots, T_n(x)), \text{ where } T_i(x) = \sum_{i=1}^n x_i \alpha_i^i$$

• Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a map defined by $T(x_1, x_2) = (x_2 - x_1, x_1^2, x_2)$.

T is linear or not?

$$ullet$$
 Let $T:\mathbb{R}^2 o \mathbb{R}^2$ be a linear map such that $T(e_1)=(1,1)$ and $T(e_2)=(-1,1).$

$$T(x) = \left(\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m\right)$$

$$T(x) = (T_1(x), \dots, T_n(x))$$
, where $T_i(x) = \sum_{i=1}^n x_i \alpha_i^i$

• Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a map defined by $T(x_1, x_2) = (x_2 - x_1, x_1^2, x_2)$.

T is linear or not?

ullet Let $\mathcal{T}:\mathbb{R}^2 o \mathbb{R}^2$ be a linear map such that $\mathcal{T}(e_1)=(1,1)$ and $\mathcal{T}(e_2)=(-1,1).$

Could it be possible to get the linear map explicitly?

$$T(x) = \left(\sum_{i=1}^{n} x_i \alpha_i^1, \dots, \sum_{i=1}^{n} x_i \alpha_i^m\right)$$

$$T(x) = (T_1(x), \dots, T_n(x)), \text{ where } T_i(x) = \sum_{i=1}^n x_i \alpha_i^i$$

ullet Let $\mathcal{T}:\mathbb{R}^2 o\mathbb{R}^3$ be a map defined by $\mathcal{T}(x_1,x_2)=(x_2-x_1,x_1^2,x_2).$

T is linear or not?

ullet Let $T:\mathbb{R}^2 o \mathbb{R}^2$ be a linear map such that $T(e_1)=(1,1)$ and $T(e_2)=(-1,1)$.

Could it be possible to get the linear map explicitly?

Answer: Yes. Let $(x_1, x_2) \in \mathbb{R}^2$. Then $(x_1, x_2) = x_1 e_1 + x_2 e_2$.

Then
$$T(x_1, x_2) = x_1 T(e_1) + x_2 T(e_2)$$

$$= x_1(1,1) + x_2(-1,1)$$

$$=(x_1-x_2,x_1+x_2)$$

Then $T(x_1, x_2) = x_1 T(e_1) + x_2 T(e_2)$

$$= x_1(1,1) + x_2(-1,1)$$
$$= (x_1 - x_2, x_1 + x_2)$$

ullet Let $\mathcal{T}:\mathbb{R}^2 o \mathbb{R}^2$ be a linear map such that $\mathcal{T}(1,0)=(1,1).$

Then
$$T(x_1, x_2) = x_1 T(e_1) + x_2 T(e_2)$$

= $x_1(1, 1) + x_2(-1, 1)$
= $(x_1 - x_2, x_1 + x_2)$

ullet Let $\mathcal{T}:\mathbb{R}^2 o\mathbb{R}^2$ be a linear map such that $\mathcal{T}(1,0)=(1,1).$

Could it be possible to get the linear map explicitly?

Then
$$T(x_1, x_2) = x_1 T(e_1) + x_2 T(e_2)$$

= $x_1(1, 1) + x_2(-1, 1)$
= $(x_1 - x_2, x_1 + x_2)$

ullet Let $\mathcal{T}:\mathbb{R}^2 o \mathbb{R}^2$ be a linear map such that $\mathcal{T}(1,0)=(1,1).$

Could it be possible to get the linear map explicitly?

Answer: No it is not possible.

• [Theorem:] Let \mathbb{V} be a finite-dimensional vector space over the field \mathbb{F} and let $\{u_1, \ldots, u_n\}$ be an **ordered basis** for \mathbb{V} .

• [Theorem:] Let $\mathbb V$ be a finite-dimensional vector space over the field $\mathbb F$ and let $\{u_1,\ldots,u_n\}$ be an **ordered basis** for $\mathbb V$. Let $\mathbb W$ be a vector space over the same field $\mathbb F$ and let w_1,\ldots,w_n be any vectors in $\mathbb W$.

Proof:

Proof:

Let
$$x \in \mathbb{V}$$
. Then $x = \sum_{i=1}^{n} c_i u_i$.

Proof:

Let
$$x \in \mathbb{V}$$
. Then $x = \sum_{i=1}^{n} c_i u_i$.

Define
$$T(x) = \sum_{i=1}^{n} c_i w_i$$
. It is clear that T is well defined because $x = \frac{n}{2}$

 $\sum_{i=1}^{n} c_i u_i$, this expression unique.

We first show that T is a linear transformation. Take $x, y \in \mathbb{V}$. Then

 $x = \sum_{i=1}^{n} c_i u_i$ and $y = \sum_{i=1}^{n} d_i u_i$.

We first show that T is a linear transformation. Take $x, y \in \mathbb{V}$. Then $x = \sum_{i=1}^{n} c_i u_i$ and $y = \sum_{i=1}^{n} d_i u_i$.

Let
$$\alpha, \beta \in \mathbb{F}$$
. $T(\alpha x + \beta y) = T(\sum_{i=1}^{n} (\alpha c_i + \beta d_i)u_i)$.

$$T(\alpha x + \beta y) = \sum_{i=1}^{n} (\alpha c_i + \beta d_i) w_i.$$

$$= \alpha \sum_{i=1}^{n} c_i w_i + \beta \sum_{i=1}^{n} d_i w_i.$$

$$= \alpha T(x) + \beta T(y).$$

Hence
$$T$$
 is linear.

Uniqueness: Suppose that there is another linear transformation U such that $U(u_i) = w_i$.

Uniqueness: Suppose that there is another linear transformation U such that $U(u_i) = w_i$.

To show that U = T. Let $x \in \mathbb{V}$. Then $x = \sum_{i=1}^{n} a_i u_i$. Using definition of T

we have
$$T(x) = T(\sum_{i=1}^{n} a_i u_i) = \sum_{i=1}^{n} a_i w_i$$
.

$$U(x) = U(\sum_{i=1}^{n} a_i u_i)$$

$$= \sum_{i=1}^{n} a_{i} U(u_{i}) \text{ (applying the definition of linear transformation)}$$
$$= \sum_{i=1}^{n} a_{i} w_{i}.$$

$$\widetilde{i=1}$$

Then U(x) = T(x) for all $x \in \mathbb{V}$. Hence U = T.

• [Example]

Take the basis $\{e_1,e_2,e_3\}$ in \mathbb{R}^n . Take $1,2,3\in\mathbb{R}$. Then using previous theorem we have a unique linear transformation \mathcal{T} from \mathbb{R}^3 to \mathbb{R} such that $\mathcal{T}(e_1)=1,\,\mathcal{T}(e_2)=2,\,\mathcal{T}(e_3)=3$ and $\mathcal{T}(x_1,x_2,x_3)=x_1+2x_2+3x_3$.

Take the basis $\{e_1,e_2,e_3\}$ in \mathbb{R}^n . Take $1,2,3\in\mathbb{R}$. Then using previous theorem we have a unique linear transformation \mathcal{T} from \mathbb{R}^3 to \mathbb{R} such that $\mathcal{T}(e_1)=2, \mathcal{T}(e_2)=1, \mathcal{T}(e_3)=3$ and $\mathcal{T}(x_1,x_2,x_3)=2x_1+x_2+3x_3$. This transformation is different between the previous transformation.

The previous theorem gives a technique to construct a linear transformation from a finite dimensional vector space to another dimensional vector space over the same filed \mathbb{F} .