# FRICTION FACTORS FOR VEGETATED WATERWAYS OF SMALL SLOPE

ARS-S-151

January 1977

#### CONTENTS

|                                                                                | Page     |
|--------------------------------------------------------------------------------|----------|
| Abstract                                                                       | 1        |
| Introduction                                                                   | 1        |
| Waterway capacity                                                              | 2        |
| Test channels                                                                  | 3        |
| Instrumentation and procedures                                                 |          |
| Calculations                                                                   |          |
| Results and discussion                                                         |          |
| Experiment 1                                                                   |          |
| Wheat in channel FC 29                                                         |          |
| Wheat in channel FC 30                                                         | 11       |
| Experiment 3                                                                   | 11       |
| Wheat in channel FC 29                                                         | 11       |
| Wheat in channel FC 30                                                         | 18       |
| Experiment 5                                                                   |          |
| Wheat in channel FC 29                                                         | 16       |
| Wheat in channel FC 30                                                         | 21       |
| Experiment 7                                                                   | 24       |
| Wheat in channel FC 29                                                         | 24       |
| Wheat in channel FC 30                                                         | 24       |
| Experiment 2                                                                   | 27       |
| Sorghum in channel FC 29                                                       | 27       |
| Sorghum in channel FC 30 Experiment 4                                          | 32<br>32 |
| Sorghum in channel FC 30                                                       | 32<br>32 |
| Cotton in channel FC 29                                                        | 34<br>34 |
| Experiment 6                                                                   | 38<br>38 |
| Cotton in channel FC 29                                                        | эо<br>38 |
| Sudangrass in channel FC 30                                                    | 41       |
| Experiment 8                                                                   | 44       |
| Lespedeza in channel FC 29                                                     | 44       |
| Lovegrass in channel FC 30                                                     | 47       |
| Analysis                                                                       | 51       |
| Influence of plant shape on friction factor                                    | 51       |
| Influence of row spacing on friction factor                                    |          |
| Influence of row direction on friction factor                                  |          |
| Validity of n-VR design method                                                 |          |
|                                                                                |          |
| ILLUSTRATIONS                                                                  |          |
| Fig.                                                                           |          |
| 1. Plan of test channels and forebay                                           | 3        |
| 2. Engineer's level mounted on fixed-pipe unipod                               | 4        |
| 3. Outlet of channel FC 29 during flow of 31.8 ft <sup>3</sup> /s with the end |          |
| sill in place, experiment 2                                                    | 4        |
| 4. Water-surface profiles in a mild-slope channel for three outlet             |          |
| conditions                                                                     | 5        |

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| -          | Wheat in reach B of channel FC 29 before tests, experiment 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7         |
| 5,         | Deletion of Manning a to modulet of velocity and hydraune radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|            | (ID) for flow tosts on channel FC 29, experiment 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U         |
| 7.         | wheat is peach A of channel FC 30 before tests, experiment 1 · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9         |
| 8.         | Deletion of Manning a to product of velocity and hydraune radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|            | (VD) for flow tests on channel FC 30, experiment 1 · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U         |
| 9.         | Wheat in reach B of channel FC 29 during How of 4.1 1075 with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •         |
|            | doubt of about 8 inches experiment 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.7       |
| 10         | Typical wheat plants in same relative positions occupied in chan-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •         |
|            | not EC 29 experiment 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T.T.      |
| 11.        | Polotice of Manning n to product of velocity and hydraulic radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •         |
|            | (VP) for flow tests on channel FC 29, experiment 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TT        |
| 12.        | Wheat in reach A of channel FC 30 during flow of 7.4 11/8 with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L         |
|            | depth of about 10 inches, experiment 3 · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0       |
| 13.        | Typical wheat plants in same relative positions occupied in chair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •         |
|            | nol EC 30 experiment 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TO        |
| 14.        | Relation of Manning n to product of velocity and hydraulic radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3         |
|            | (VR) for flow tests on channel FC 30, experiment 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . ті      |
| 15.        | Wheat in reach B of channel FC 29 before tests, experiment 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 1.7     |
| 16.        | Wheat across center of reach C of channel FC 29, experiment 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 1.6     |
| 17.        | Relation of Manning $n$ to product of velocity and hydraulic radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s<br>. 17 |
|            | (VR) for flow tests on channel FC 29, experiment 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 18.        | Wheat in reach B of channel FC 30 before tests, experiment 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 19.        | Wheat across center of reach B of channel FC 30, experiment 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 20.        | Relation of Manning $n$ to product of velocity and hydraulic radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 24      |
|            | (VR) for flow tests on channel FC 30, experiment 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| 21.        | Wheat in reach B of channel FC 29 before tests, experiment 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 22.        | Wheat across center of reach B of channel FC 29, experiment $7$ . Relation of Manning $n$ to product of velocity and hydraulic radiu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 23.        | ( $VR$ ) for flow tests on channel FC 29, experiment 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 25      |
| 0.4        | Wheat in reach B of channel FC 30 before tests, experiment 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 24.<br>25. | Wheat across center of reach B of channel FC 30 after tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| ±1.0 €     | experiment 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 25      |
| 26.        | - in the second second in the  | S         |
| 20.        | (VR) for flow tests on channel FC 30, experiment 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 30      |
| 27.        | and the second s | v         |
|            | of 38 ft <sup>3</sup> /s with depth of about 1.6 feet, experiment 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 30      |
| 28.        | Typical 'Redlan Kafir' sorghum plant from channel FC 29, ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>:-</b> |
|            | periment 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 32      |
| 29.        | Relation of Manning $n$ to hydraulic radius $(R)$ for flow tests of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n         |
|            | channel FC 29, experiment 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 32      |
| 30.        | 'Hegari' sorghum in reach A of channel FC 30 during flow of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )Í        |
|            | 38 ft <sup>3</sup> /s, experiment 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 32      |
| 31.        | Typical 'Hegari' sorghum plants from channel FC 30, exper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l-<br>0.4 |
|            | ment 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| 32.        | Relation of Manning $n$ to hydraulic radius $(R)$ for flow tests of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|            | channel FC 30, experiment 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 34      |
| 33.        | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| 6.1        | 25.6 ft <sup>3</sup> /s, experiment 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 34.        | Typical 'Hegari' sorghum plants from channel FC 30, experment 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 01      |
|            | ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |

|       |                                                                                                   | Page  |
|-------|---------------------------------------------------------------------------------------------------|-------|
| 35.   | Relation of Manning $n$ to hydraulic radius ( $R$ ) for flow tests on channel FC 30, experiment 4 | 37    |
| 36.   | Cotton in reach A of channel FC 29 during flow test 1, experi-                                    | 37    |
|       | ment 4                                                                                            |       |
| 37.   | Typical cotton plants from channel FC 29, experiment 4                                            | 38    |
| 38.   | Relation of Manning $n$ to hydraulic radius $(R)$ for flow tests on                               |       |
|       | channel FC 29, experiment 4                                                                       | 38    |
| 39.   | Cotton in reach B of channel FC 29 before tests, experiment 6                                     | 38    |
| 40.   | Cotton across center of reach B of channel FC 29 after tests, ex-                                 |       |
| ·10.  | periment 6                                                                                        | 38    |
| 1.4   | Definient 0                                                                                       | 90    |
| 41.   | Relation of Manning $n$ to hydraulic radius $(R)$ for flow tests on                               | 41.   |
|       | channel FC 29, experiment 6                                                                       | 4£ J. |
| 42.   | Sudangrass in reach C of channel FC 30 before tests, experi-                                      |       |
|       | ment 6                                                                                            | 41    |
| 43.   | Sudangrass across reach B of channel FC 30 after tests, experi-                                   |       |
|       | ment 6                                                                                            | 41    |
| 44.   | Relation of Manning $n$ to product of velocity and hydraulic radius                               |       |
|       | (VR) for flow tests on channel FC 30, experiment 6                                                | 44    |
| 15    | Korean lespedeza in reach B of channel FC 29 before tests, experi-                                |       |
| 45.   | Korean respected in reach to of charmer FO 25 before tests, export                                | 44    |
|       | ment 8                                                                                            | 41.1  |
| 46.   | Closeup view of Korean lespedeza in channel FC 29 before tests,                                   |       |
|       | experiment 8                                                                                      | 44    |
| 47.   | Korean lespedeza plants removed from channel FC 29 before                                         |       |
|       | tests                                                                                             | 47    |
| 48.   | Relation of Manning $n$ to product of velocity and hydraulic radius                               |       |
| ·10,  | (VR) for flow tests on channel FC 29, experiment 8                                                | 48    |
| 40    | Lovegrass in reach B of channel FC 30 before tests, experiment 8.                                 | 48    |
| 49.   | Lovegrass in reach is of channel r C so before tests, experiment s .                              | 48    |
| 50.   | Lovegrass across reach B of channel FC 30, experiment 8                                           | 410   |
| 51.   | Typical lovegrass plant in channel FC 30 after tests, experi-                                     | 40    |
|       | ment 8                                                                                            | 48    |
| 52.   | Relation of Manning $n$ to product of velocity and hydraulic radius                               |       |
|       | (VR) for flow tests on channel FC 30, experiment 8                                                | 48    |
| 53.   | Variation of velocity with depth for a vertical in channel FC 29                                  |       |
|       | during flow of 38 ft <sup>3</sup> /s, experiment 2                                                | 54    |
| 54.   | Effect of row spacing and cover quality on retardance coefficients                                |       |
| .,    | for wheat                                                                                         | 54    |
| 55.   | Relation of Manning $n$ to hydraulic radius $(R)$ for channels                                    | ", "  |
| ijij, |                                                                                                   | 55    |
|       | planted to 'Hegari' sorghum                                                                       |       |
| 56.   | Effect of row direction on retardance coefficients for wheat                                      | 55    |
| 57.   | Relation of Manning n to product of velocity and hydraulic radius                                 |       |
|       | (VR) for channels planted to sudangrass                                                           | 55    |
|       | TABLES                                                                                            |       |
|       | TADLES                                                                                            |       |
| 1.    | Data on plants tested for each experiment                                                         | 6     |
| 2.    | Stand counts and stem heights for wheat in channel FC 29, ex-                                     |       |
|       | periment I                                                                                        | 7     |
| 3.    | Hydraulic elements and friction factors for experiment 1, wheat                                   | •     |
| υ,    | in channel FC 29                                                                                  | 8     |
| A     |                                                                                                   | o     |
| 4.    | Stand counts and stem heights for wheat in channel FC 30, ex-                                     | _     |
| _     | periment 1                                                                                        | 9     |
| 5.    | Hydraulic elements and friction factors for experiment 1, wheat                                   |       |
|       | in channel FC 30                                                                                  | 9     |

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 6.    | Stand counts and stem heights for wheat in channel FC 29, ex-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 4       |
| 7     | periment 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11        |
| ٠.    | in channel FC 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12        |
| 8.    | Stand counts and stem heights for wheat in channel FC 30, ex-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-2       |
| 0.    | periment 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13        |
| 9.    | Hydraulic elements and friction factors for experiment 3, wheat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|       | in channel FC 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14        |
| 10.   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|       | in channel FC 29, experiment 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16        |
| 11.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 10    | in channel FC 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18        |
| 12.   | Discharge rates and Manning n values for initial and repeat tests in sharmed EC 20. armonium to E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | กา        |
| 13.   | in channel FC 29, experiment 5 Stand counts and stem heights for wheat before and after tests in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21        |
| τů.   | channel FC 30, experiment 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21        |
| 14.   | Hydraulic elements and friction factors for experiment 5, wheat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1       |
|       | in channel FC 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22        |
| 15.   | Stand counts and stem heights for wheat before and after tests in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|       | channel FC 29, experiment 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25        |
| 16.   | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|       | in channel FC 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26        |
| 17.   | Stand counts and stem heights for wheat before and after tests in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5       |
| 18.   | channel FC 30, experiment 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27        |
| 10,   | Hydraulic elements and friction factors for experiment 7, wheat in channel FC 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28        |
| 19.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ں ہے      |
|       | channel FC 29, experiment 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30        |
| 20.   | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|       | Kafir' sorghum in channel FC 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31        |
| 21.   | Stand counts and plant heights for 'Hegari' sorghum in channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| 00    | FC 30, experiment 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32        |
| 22.   | £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00        |
| 28    | sorghum in channel FC 30 Stand counts and plant heights for 'Hegari' sorghum in channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33        |
|       | FC 30, experiment 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34        |
| 24.   | Hydraulic elements and friction factors for experiment 4, 'Hegari'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1       |
|       | sorghum in channel FC 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35        |
| 25.   | Stand counts and plant heights for cotton in channel FC 29, ex-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|       | periment 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38        |
| 26.   | the state of the s |           |
| 27.   | in channel FC 29 Stand counts and plant heights for cotton in channel FC 29, ex-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39        |
| ٠,١,٠ | periment 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41        |
| 28.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41        |
|       | in channel FC 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42        |
| 29.   | Stand counts and stem lengths for sudangrass in channel FC 30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| _     | experiment 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44        |
| 30.   | Hydraulic elements and friction factors for experiment 6, sudan-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 91    | grass in channel FC 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45        |
| 91,   | Stand counts and plant heights for Korean lespedeza and annual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , <b></b> |
|       | grasses in channel FC 29, experiment 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47        |
|       | iy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |

| 90  | Hydrovelia alone de la como de la | Page |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| υĽ. | Hydraulic elements and friction factors for experiment 8, Korean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|     | lespedeza in channel FC 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40   |
| 33. | Stand counts and stem lengths for lovegrass and crabgrass in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -TD  |
|     | channel FC 30, experiment 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 0.4 | The body experiment o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -51  |
| 54. | right author elements and friction factors for experiment 8 love-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|     | grass in channel FC 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52   |

Agricultural Research Service
UNITED STATES DEPARTMENT OF AGRICULTURE
in cooperation with
Oklahoma Agricultural Experiment Station

## FRICTION FACTORS FOR VEGETATED WATERWAYS OF SMALL SLOPE

By W. O. Ree<sup>1</sup> and F. R. Crow<sup>2</sup>

#### ABSTRACT

Experiments were conducted over a 4-year period to determine the friction factors (Manning n) for vegetated waterways of small slope. The plants used were wheat planted in 7-inch and 14-inch rows parallel to the flow, wheat in 7-inch rows perpendicular to the flow, sorghum and cotton in 40-inch rows parallel to the flow, sorghum in 20-inch rows parallel to the flow, and sudangrass, lespedeza, and lovegrass broadcast planted in the channels. For the poor-quality stands of wheat there was little or no difference in the n value for the 7-inch and 14-inch rows, but for the good-quality stands the n values for the 7-inch row spacing were considerably larger than those for the 14-inch row spacing. For the higher flows, which submerged the vegetation, row direction had no effect on the friction factor, but there was a large difference in the n values for the lower flows. A comparison of the n values at a hydraulic radius of 0.8 foot shows a value of 0.2 for the parallel rows and 0.4 for the perpendicular rows. For the 'Hegari' sorghum in 20-inch and 40-inch rows there was a difference in the n values for the low flows, with the wider row spacing having the lower value, but when the flow reached a hydraulic radius of about 1.5 feet, there was no difference in the n values for the two row spacings. The values of n for the test channel can serve as a base value to which corrections must be applied to adjust for the differences between the test channel and the channel for which an estimate of n is needed. Because of the lack of test data, adjustments involving the effect of each variable that influences the n value must be based on judgment. KEYWORDS: friction factors (Manning n), plant density and quality, row spacing, row direction, small-slope channels, terrace-channel design, vegetated waterways.

#### INTRODUCTION

Experiments were conducted over a 4-year period to determine the friction factors for earth channels of small slope planted to wheat,

cotton, sorghum, lespedeza, or grasses. The friction-factor data were intended for application to the design of diversion terraces. However, the data can be applied to the design of any terrace, or they can be used to estimate the depth of flow over flood plains planted to the types of vegetation tested. Proper choice of the friction factor is particularly important in the design of a terrace system. Each terrace must have adequate capacity because if it overtops, it will send added flow into the next

<sup>&</sup>lt;sup>1</sup> Research leader, Water Conservation Structures Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Stillwater, Okla. 74074 (retived).

<sup>&</sup>lt;sup>2</sup> Professor, Agricultural Engineering Department, Oklahoma State University, Stillwater 74074.

terrace channel downslope, and it too may overtop and fail. This "domino effect" may continue until the lowest terrace in the tier is reached. Thus, the integrity of an entire system of terraces is dependent upon the adequacy of each terrace. Adequate capacity stems from good design, and good design in turn requires the selection of the correct value for the friction factor. This selection is made from reported values of friction factors obtained from experiments like those presented in this report.

The modern, broad-base terrace has been in use since 1885, when it was introduced by Priestly H. Mangum of North Carolina. It is difficult to imagine that, after 90 years, research on terraces should still be needed. However, as with nearly everything that man uses or constructs, improvements are sought and changes are made to meet new conditions—so it is with terraces. Today, larger terraces with greater channel capacity are required as a result of increased terrace spacing and length. Therefore, to avoid costly overdesign or ruinous underdesign, more careful attention is being given to the hydraulics of terrace channels, especially to the friction factor when a channel is choked with growing crops or other vegetation. Friction-factor values for this condition were not available, and those obtained from experiments on grass waterways of steep slope are probably not applicable to the small-slope terrace, particularly one planted to row crops parallel to the flow. The friction factor for this latter condition is possibly not as high as estimated, so experiments were run to determine the friction factors for small-slope channels planted to crops in rows parallel to the flow. These crops included wheat, cotton, and sorghum. Later, when it was realized that data of the kind being obtained would also be applicable to flood plains where the vegetation would not necessarily be in rows parallel to the flow, experiments were run on wheat in rows perpendicular to the flow direction and on two randomly distributed grasses and legumes.

This report describes the test channels, channel vegetation, instrumentation, and test procedures and gives the results of the experiments. Some discussion of the results is provided to supply some guidance for their use. A brief discussion of the method currently employed to estimate waterway capacity is given at the outset.

WATERWAY CAPACITY

The capacity of a waterway is the flow rate that can be conveyed without exceeding a safe depth in the waterway. Capacity is expressed in cubic feet per second and is calculated by the formula

$$Q = AV, \tag{1}$$

where Q=flow rate (cubic feet per second), A=cross-sectional area of the waterway (square feet),

and V=mean velocity of flow (feet per second).

Velocity is usually estimated by the Manning formula,

$$V = \frac{1.486}{n} R^{2/3} S^{1/2}, \tag{2}$$

where R=hydraulic radius, or area/wetted perimeter (feet),

S=energy gradient, or slope of waterway for normal flow (feet per foot),

and n=Manning n friction factor, or coefficient of roughness.

The dimensions R and S are functions of the geometry of the waterway and can be determined or constructed within the desired degree of accuracy. The Manning n values, however, must be estimated by comparing the channel for which a value is needed with other channels for which n is known, as determined by experiment. It is assumed that if the channel linings are similar, the friction factors are similar. This is a fairly safe assumption for hard-surfaced channels, but it is likely to result in considerable error in the case of vegetation-lined waterways. It has been stated that estimating flow in vegetation-lined channels is an art and not a science. Yet, for certain grass-lined waterways the prediction of flow is becoming more exact as the relationship between the friction factor and the physical characteristics of the vegetation are better defined. For example, the Soil Conservation Service handbook relates the flow retardance class of a vegetal channel lin-

<sup>&</sup>lt;sup>3</sup> Handbook of channel design for soil and water conservation. 1954. U.S. Dep. Agric., Soil Conserv. Serv. [Rep.] SCS-TP-61, 34 pp.

ing to the length and density of the vegetation in the channel. The flow retardance class is based on the relationship of the friction factor (n) to the product of the flow velocity (V) and hydraulic radius (R); this is the n-VR design method. Before this design method could be worked out a large amount of data and considerable study were required. A similar generalization cannot be developed for the channels in this study because not enough data are available. This report, therefore, mainly presents descriptions and photographs of the experimental waterways and gives the corresponding n values.

#### TEST CHANNELS

Two channels, FC 29 and FC 30, were constructed on a grade contour to hold earthwork to a minimum. Therefore, they include a reverse curve and a tangent reach. Figure 1 is a plan of the channels, showing three 150-foot reaches. The slope of the 600-foot channels was 0.1 percent. The cross section was trapezoidal, with a bottom width of 20 feet and side slopes of 1:1½. The very steep side slope was used to approximate a rectangular cross section. Depths of the two channels were 3 and 4.25 feet. The soil was subsoil clay, so it was chiseled, mulched, manured, and fertilized.

Some good crops were produced in these waterways even though the soil was poor. The

channels were prepared and seeded in accordance with the requirements of the crop. Wheat was planted in the fall for early summer tests. Immediately after the wheat tests the channels were reworked and planted to a summer crop. The flow tests were run after the crop had reached maximum growth, when the friction factor was at its maximum value.

### INSTRUMENTATION AND PROCEDURES

Ten cross-section stations (50 feet apart) were established across each channel, with the first at station 1+00 and the last at station 5+50. The lines of these sections were at right angles to the channel centerline. A line occurring in a curve was placed perpendicular to the tangent to the curve. The cross section was marked by 2- by 4-inch stakes that were treated to resist decay. A galvanized sixteenpenny nail was driven into the top of the reference stake, which was set at a measured distance from the channel centerline. A piano wire was stretched from stake to stake across the channel and was marked with solder at 1-foot intervals, with a double mark at the 5-foot points and a triple mark at the 10-foot points. The wire was spring loaded for tautness but was not leveled because its only purpose was to locate the points across the channel where bottom readings were to be taken.



FIGURE 1.—Plan of test channels and forebay.



FIGURE 2.—Engineer's level mounted on fixed-pipe unipod. (Upper 2-ft section of pipe can be removed to lower instrument.)

The cross sections were taken with an engineer's level and a level rod. Readings were to the nearest 0.01 foot at 1-foot intervals across the section. Two levels were used, one at each of the outside quarter points of the channel length. A permanent bench mark was set halfway along the channel and far enough outside to prevent its being affected by the channel water. Refinements were added as the experiments progressed. For the last 2 years of the experiments the instrument tripods were replaced by 4-inch-pipe unipods set in concrete. A platform was placed around each unipod to provide a level surface to stand upon, and a sunshade shaded the instrument and reduced the amount of releveling that otherwise would have been required (fig. 2). The cross sections of the channel were measured before each experiment, several times during the experiment (as needed), and after the experiment.

Flows up to 35 ft³/s were measured with a modified 2-foot Parshall flume (without throat or recovery sections) at the entrance to the forebay of the channels. This flume had been previously calibrated in place with a 3-foot H-flume installed in tandem with it. Flows greater than 35 ft³/s were measured with the main weir at the siphon outlet 1,200 feet upstream. The flow measurement at the weir was corrected for losses occurring in the conveyance canal. The accuracy of the flow measurements is estimated to be ±5 percent.

Before each test an end sill was placed at



FIGURE 3.—Outlet of channel FC 29 during flow of 31.8 ft<sup>3</sup>/s with the end sill in place, experiment 2. (Top of sill is 0.8 ft above channel grade at outlet.)

the outlet of the channel to control the watersurface slope. Figure 3 is a view of the outlet of channel FC 29 during a flow with the sill in place. Without the sill a drawdown curve (M2 profile) would have extended some distance upstream. For the larger flows this effect would have reached the head of the channel. A sill of proper height at the outlet provides a uniform flow depth in the channel. Since the height of the end sill depended on the unknown value of Manning n, the height had to be estimated, which was usually satisfactory. However, after the first four experiments three sill heights were used for each flow rate, with the first sill too low, the second just right, and the third too high (by estimate). It was hoped that the correct sill height could then be bracketed and that the friction factor for uniform flow could be determined by interpolation. The effect of an end sill on the water-surface profile is shown in figure 4. After each flow was released into the channel (and became steady), the water-surface elevations were measured. The steadiness of the flow was determined by water-level recorders placed at each end of the channel.

The water-surface elevations were measured with an engineer's level and point-ended level rods supported by a frame that provided for controlled vertical motion. Two rodmen, one at the water's edge on each side of the channel, made the measurements. An observer and a recorder completed the team. Observations were



A- No sill

B- Proper sill (normal flow)

C- High sill

FIGURE 4.—Water-surface profiles in a mild-slope channel for three outlet conditions.

begun at the uppermost station, with the observer at the upstream instrument. When the rodmen reached the midpoint of the channel, the observer moved to the downstream instrument to observe the stations in that half of the channel. Thus, no shot was much over 125 feet, and the rod could be read directly to the nearest 0.001 foot. Four stations, which divided the channel into three 150-foot reaches, were selected for measuring slope. Ten rod readings were made in rapid succession, each to the nearest 0.001 foot. All measurements were recorded, and the average was used to compute the mean water-surface elevation. After the run downstream the observer and the recorder changed places, and observations were again made at the four stations, this time proceeding upstream. Water-surface elevations were measured at the six intermediate stations only during the first trip. Readings were taken to the nearest 0.01 foot for these stations, and the average value of at least three readings was recorded. This procedure was sufficiently accurate for determining the cross-sectional area.

During each flow test the locations of the water's edges at each cross section were determined. This measurement provided the top width needed in the calculation of cross-sectional areas and wetted perimeters and eliminated the need for plotting the cross sections.

The density and height of the vegetation in each channel were measured. The measurement system used depended upon the kind of vegetation. The crops in rows were described by the number of rows across the section and by the number of stems or plants per foot of row. Randomly distributed plant patterns (produced by broadcast planting) were described by counting the number of stems per unit area.

A series of flows was run on each channel, starting with a flow depth of approximately 0.5 foot and working upward by increments until the maximum capacity of the channel was reached. The number of flows for a single channel experiment ranged from 9 to 26 and sometimes extended over a 1-week period. If, in this time the vegetation grew significantly, it was measured again at the conclusion of the tests. The percentage of plants submerged during the flows was estimated and is reported in the tables under "Results and Discussion."

The experiments were conducted with two crops in each of the two channels per year. The spring crop was always wheat, but other crops were used in the summer. Table 1 lists the experiments and gives brief data on each crop. A more detailed description of each crop, as it appeared at the time of the tests, is given under "Results and Discussion."

#### **CALCULATIONS**

The mean velocity (V) for each reach was calculated by dividing the discharge rate (Q)by a weighted-average area for the reach. Four cross sections (50-foot stations) were used for determining the average area for the reach, and the two end stations were assigned half the weight of each of the two interior stations. The station mean velocities were calculated for the ends of each reach for use in velocity-head determinations. The hydraulic radius (R) was calculated by dividing the weighted-average area for the reach by the weighted-average wetted perimeter. The slope (S) was calculated by dividing the difference in the total energy at the ends of the reach by the length of the reach (150 feet). The total energy was calculated by adding the velocity head at the station to the water-surface elevation. The averaging used in these calculations was permissible because the differences between the various quantities averaged was usually small.

The friction factor (Manning n) was calculated for each test by substituting the measured and computed values of V, R, and S into Manning's formula (equation 2) and solving for n. Separate calculations were made for each of the reaches in the 450-foot test portion of the channel. The three values were averaged to yield a single value for each of the hydraulic factors for each test. This averaging tended to

Table 1.—Data on plants tested for each experiment

| Experiment and test channel | Row                 | Row<br>direction                      | Cover                                   | Average                     | Plant                                 | density   |
|-----------------------------|---------------------|---------------------------------------|-----------------------------------------|-----------------------------|---------------------------------------|-----------|
|                             | spacing<br>(inches) | or relation<br>to flow                | quality                                 | plant<br>height<br>(inches) | Stems per<br>ft of row                | Stems per |
|                             |                     |                                       | W                                       | heat                        |                                       | <u>.</u>  |
| Experiment 1:               |                     |                                       |                                         |                             |                                       |           |
| FC 29                       |                     | Parallel                              | Good                                    | 26                          | 31                                    | • • .     |
| FC 30<br>Experiment 3:      | 7                   | · · · do · · · · · · ·                | ···· do ······                          | 28                          | 26                                    | •••       |
| FC 29                       |                     | · · · do · · · · · · ·                | Poor                                    | 94                          | 50                                    |           |
| FC 30 Experiment 5:         | 7                   |                                       | do                                      |                             | 35                                    | • • •     |
| FC 29                       |                     | do                                    | Excellent                               | 28                          | 68                                    |           |
| FC 30                       | 7                   | Perpend                               | do                                      | 30                          | 79                                    | • • •     |
| Experiment 7:               |                     |                                       |                                         |                             | , ,                                   | •••       |
| FC 29<br>FC 30              | 14                  | Parallel                              | · · Very good ·                         | 28                          | 73                                    | • • •     |
| TO 80                       |                     | do                                    | ···· do ·····                           | 36                          | 52                                    | • • •     |
|                             |                     |                                       | Sorg                                    | ghum                        |                                       | - 101     |
| Experiment 2:               |                     |                                       | *************************************** |                             |                                       |           |
| FC 29                       |                     | Parallel                              | Very good .                             | 43                          | 2.3                                   |           |
| FC 30                       | 40                  | · · · do · · · · · · ·                | do                                      | 58                          | 4.2                                   | •••       |
| Experiment 4: FC 30         | 20                  | do                                    | Good                                    | 58                          | 2.0                                   | • • •     |
|                             | <del></del>         |                                       | Co                                      | tton                        |                                       |           |
| Experiment 4: FC 29         | 40                  | Parallel                              | Poor                                    | 21                          | 1,2                                   |           |
| Experiment 6: FC 29         | 40                  | do                                    | Very good .                             | 34                          | 2.4                                   | • • •     |
|                             |                     |                                       | Sudar                                   | ngrass                      | ····                                  |           |
| Experiment 6: FC 30         | (1)                 | (1)                                   | Very good .                             | 47                          | • • •                                 | 53        |
|                             |                     |                                       | Lesp                                    | edeza                       |                                       |           |
| Experiment 8: FC 29         | (1)                 | (1)                                   | Very good                               | 8                           |                                       | 122       |
|                             | -                   |                                       | Lovegrass a                             | nd crabgrass                | · · · · · · · · · · · · · · · · · · · |           |
| Experiment 8: FC 30         | (1)                 | (1)                                   | ··Good ·····                            | 16                          | • • •                                 | 165       |
| 1 Sood wore broades         | ,                   | · · · · · · · · · · · · · · · · · · · |                                         |                             |                                       |           |

<sup>&</sup>lt;sup>1</sup> Seed were broadcast.

oversimplify the results, but it was done to reduce the great amount of data to manageable quantities.

The major hydraulic elements are given in the tables under "Results and Discussion." The top width is not shown, but if this dimension is needed, an approximate value (within 3 percent) can be obtained from the theoretical relationship for the cross section; thus, top width=0.78P+4.37, where P=wetted perimeter in feet.

#### RESULTS AND DISCUSSION

The Manning n value did not remain constant

for a given channel but varied with the discharge, with the largest value of n for some crops being three times the smallest value. One of the channels showed a fivefold change in n over the range of discharges used. This nonconstant character of the coefficient has been observed before and is not a new discovery. Earlier studies by the laboratory showed that, for submerged grasses, the value of the friction factor is related to the product of velocity and hydraulic radius (VR). This relationship is characteristic of the vegetation and is influenced mainly by the length of the vegetation and partly by the density. This finding led to the establishment of five experimental n-VR

curves for five different degrees of vegetal retardance, according to the "Handbook of Channel Design for Soil and Water Conservation" (cited in footnote 3). The curves for vegetal retardance classes A, B, C, and D are shown on each n-VR plot to provide a standard of comparison for these experiments.

For these experiments the n-VR criterion was applicable only when the vegetation was submerged. When the vegetation remained upright and was not disturbed by the flow, the n value bore no consistent relationship to VR. In this case an n-hydraulic-radius plotting better portrayed the variation of n with the flow. Therefore, one curve or the other (n-VR or n-hydraulic radius) was used to show the relationship between the friction factor and a hydraulic property of the channel, the choice depending on which seemed to be more appropriate.

The results of the experiments are presented according to vegetation, starting with wheat. Photographs and a brief description of the vegetation are given, and a tabulation of the hydraulic elements and a plotting of the flow-retardance values versus either hydraulic radius or VR are included.

#### Experiment 1

#### Wheat in channel FC 29

The wheat was drilled in 7-inch rows running lengthwise in the channel. When the tests were begun, the wheat was ripe, and most of the leaves were brown and dry. The stand varied along the channel, with the greatest density and tallest stems occurring at the downstream end. Table 2 gives the stand counts and stem heights, and figure 5 shows a portion of the center reach before the tests.

Ten flow tests were run in increasing order of magnitude. Only one sill height was used at the channel outlet for each flow rate. Two of the tests were repeat tests (5A and 6A). During test 6 the flow through the 2-foot Parshall flume seemed unduly disturbed by the poor approach. Testing was halted after this test, and the approach was improved upon. Training walls were added to direct the flow toward the flume, and a curved entrance and upward-sloping ramp were placed at the junction of the flume and training walls. This con-



FIGURE 5.—Wheat in reach B of channel FC 29 before tests, experiment 1.

TABLE 2.—Stand counts and stem heights for wheat in channel FC 29, experiment 1

| Reach <sup>1</sup> | No.<br>rows | No.<br>stems per<br>foot of<br>row | Average<br>stem<br>height<br>(inches) | Average<br>tallest<br>stem <sup>2</sup><br>(inches) |
|--------------------|-------------|------------------------------------|---------------------------------------|-----------------------------------------------------|
| A                  | 84          | 24                                 | 24                                    | 36                                                  |
| В                  | 34          | 34                                 | 25                                    | 36                                                  |
| C                  | 33          | 34                                 | 30                                    | 40                                                  |
| Average for        | ľ           |                                    |                                       | <del></del>                                         |
| channel            | 34          | 31                                 | 26                                    | 37                                                  |

<sup>1</sup> Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

<sup>2</sup> The height of the tallest stem was measured at each of several sampling points (usually 12) in each reach. The average of these measurements is the "average tallest stem."

figuration, which eliminated the undesirable standing wave in the flume, was used for all subsequent tests. Tests 5 and 6 are not reported because the discharge measurement is believed to be wrong. The hydraulic data and friction factors for the experiment are given in table 3. The Manning n values for these flow tests versus the corresponding VR values are plotted in figure 6. The curve approaches the standard class B retardance curve at the higher flows.

(Continued on page 11.)

Table 3. — Hydraulic elements and friction factors for experiment 1, wheat in channel FC 29 [Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach | Q            | A           | v           | P              | R     | S       | •F                                     | С              | n            | $n_k$        | VR           | %           |
|-----------------------------|--------------|-------------|-------------|----------------|-------|---------|----------------------------------------|----------------|--------------|--------------|--------------|-------------|
| Test 1:                     |              |             |             |                |       |         |                                        |                |              |              |              |             |
| Reach A                     | . 3.36       | 12.1        | 0.28        | 21.9           | 0.552 | 0.00131 | 73                                     | 10.3           | 0.101        | 0.000        |              |             |
| В                           | . 3.36       | 12.5        | .27         | 21.7           | .575  | .00120  | 73                                     | 10.3           | 0.131 $.133$ | 0.089        | 0.153        | 0           |
| C                           | . 3.36       | 11.6        | .29         | 21.6           | .536  | .00125  | 73                                     | 9.17           | .146         | .091<br>.097 | .155<br>.155 | 0           |
| Average                     |              |             |             |                | .554  |         | .,,                                    | 9.89           | .137         | .092         |              | 0           |
| Test 2:                     |              |             |             |                |       |         |                                        | 3,011          | .107         | .092         | .154         | • • • •     |
| Reach A                     | 5 20         | 100         | 0.00        |                |       |         |                                        |                |              |              |              |             |
| В                           |              | 18.3 $18.5$ | 0.29        | 22.9           | 0.801 | 0.00127 | 73                                     | 9.21           | 0.156        | 0.112        | 0.235        | 0           |
| c                           |              | 17.4        | .29<br>.31  | 22.6           | .818  | .00124  | 73                                     | 9.10           | .158         | .115         | .237         | 0           |
| Average                     |              |             |             | 22.6           | .768  | .00173  | 73                                     | 8.47           | .167         | .119         | .237         | 0           |
| riverage                    | · <u></u>    | • • • •     | • • • •     | • • •          | .796  |         |                                        | 8.93           | .160         | .115         | .236         |             |
| Test 3:                     |              |             |             |                |       |         |                                        |                |              |              |              |             |
| Reach A                     |              | 25.4        | 0.35        | 24.0           | 1.06  | 0.00137 | 73                                     | 9.13           | 0.165        | 0.126        | 0.369        | 0           |
| В                           |              | 25.2        | .35         | 23.7           | 1.07  | .00139  | 73                                     | 9.07           | .167         | .127         | .374         | 0           |
| C                           |              | 23.2        | .38         | 23.5           | .99   | .00213  | 73                                     | 8.30           | .179         | .134         | .376         | 0           |
| Average                     |              | • • • •     |             |                | 1.04  | ,       |                                        | 8.83           | .170         | .129         | .373         |             |
| Test 4:                     |              |             |             |                |       |         |                                        |                |              |              |              | <del></del> |
| Reach A                     | . 15.8       | 35.9        | 0.44        | 25.5           | 1.41  | 0.00143 | 73                                     | 0.00           | 0.101        |              |              |             |
| В                           |              | 35.1        | .45         | 25.1           | 1.40  | .00143  | 73<br>73                               | 9.82 $9.91$    | 0.161        | 0.132        | 0.622        | 15          |
| C                           | . 15.8       | 32.6        | .49         | 24.8           | 1.31  | .00222  | 73                                     | 9.01           | .160 $.174$  | .130         | .630         | 5           |
| Average                     |              | ,           |             |                | 1.37  |         |                                        | 9.58           | .165         | .139         | .637         | 1_          |
| Test 5A:                    |              |             | <del></del> |                |       |         |                                        | 0.00           | .100         | .134         | .630         | • • •       |
| Reach A                     | 10.7         | 40.0        | 0.40        | 20.4           |       |         |                                        |                |              |              |              |             |
| В                           |              | 39.8        | 0.49<br>.50 | 26.1           | 1.53  | 0.00138 | 75                                     | 10.7           | 0.150        | 0.125        | 0.754        | 20          |
| č                           |              | 37.7        | .52         | $25.8 \\ 25.8$ | 1.54  | .00143  | 75                                     | 10.5           | .152         | .128         | .762         | 10          |
| Average                     |              | 1           |             |                | 1.46  | .00207  | 75                                     | 9.51           | .168         | .138         | .764         | 2           |
|                             |              |             | • • • •     |                | 1.51  |         |                                        | 10.2           | .157         | .130         | .760         |             |
| Test 6A:                    |              |             |             |                |       |         | · · · ·                                |                |              |              |              |             |
| Reach A                     |              | 43.7        | 0.51        | 26.6           | 1.64  | 0.00131 | 75                                     | 11.1           | 0.146        | 0.124        | 0.843        | 70          |
| В                           |              | 44.2        | .51         | 26.4           | 1.68  | .00136  | 75                                     | 10.6           | .153         | .131         | .855         | 45          |
| C                           |              | 42.5        | .53         | 26.2           | 1.62  | .00190  | 75                                     | 9.53           | .170         | .143         | .857         | 20          |
| Average                     |              | • • •       |             |                | 1.65  |         |                                        | 10.4           | .156         | .133         | .852         |             |
| Test 7:                     |              |             |             |                |       |         | ······································ |                |              |              |              |             |
| Reach A                     | 25,4         | 46.7        | 0.54        | 27.0           | 1.73  | 0.00123 | 75                                     | 11.0           | 0.100        | 0.400        |              |             |
| В                           |              | 47.3        | .54         | 26.8           | 1.76  | .00126  | 75                                     | $11.8 \\ 11.4$ | 0.138        | 0.120        | 0.943        | 90          |
| C                           | 25.4         | 45.9        | .55         | 26.7           | 1.72  | .00120  | 75                                     | 9.94           | .144<br>.165 | .125         | .947         | 85          |
| Average                     |              | • • • •     |             |                | 1.74  |         |                                        | 11.0           | .149         | .141         | .953         | 65          |
| Test 8:                     |              |             | ·           |                |       |         |                                        | 11.0           | .149         | .129         | .948         | <u>···</u>  |
|                             |              |             |             |                |       |         |                                        |                |              |              |              |             |
|                             | 20.0         | 515         | 0.00        | 0              |       |         |                                        |                |              |              |              |             |
| Reach A                     |              | 51.5        | 0.60        | 27.7           | -1.86 | 0.00116 | 76                                     | 12.8           | 0.129        | 0.114        | 1.11         | 95          |
| Reach A B                   | 30.8         | 52.3        | .59         | 27.5           | 1.90  | .00113  | 76                                     | 12.7           | .132         | .116         | 1.11<br>1.12 | 95<br>95    |
| Reach A                     | 30.8<br>30.8 |             |             |                |       |         |                                        |                |              |              |              |             |



FIGURE 6.—Relation of Manning n to product of velocity and hydraulic radius (VR) for flow tests on channel FC 29, experiment 1.

TABLE 4.—Stand counts and stem heights for wheat in channel FC 30, experiment 1

| Reach <sup>1</sup> | No.<br>rows | No.<br>stems per<br>foot of<br>row | Average<br>stem<br>height<br>(inches)  | Average<br>tallest<br>stem <sup>2</sup><br>(inches) |
|--------------------|-------------|------------------------------------|----------------------------------------|-----------------------------------------------------|
| A                  | 33          | 25                                 | 25                                     | 36                                                  |
| $\mathbf{B}$       | 33          | 28                                 | 29                                     | 36                                                  |
| C                  | 32          | 26                                 | 30                                     | 37                                                  |
| Average for        | •           |                                    | ······································ |                                                     |
| channel            | 33          | 26                                 | 28                                     | 36                                                  |

<sup>&</sup>lt;sup>1</sup> Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)



FIGURE 7.—Wheat in reach A of channel FC 30 before tests, experiment 1.



FIGURE 8.—Relation of Manning n to product of velocity and hydraulic radius (VR) for flow tests on channel FC 30, experiment 1.

TABLE 5. — Hydraulic elements and friction factors for experiment 1, wheat in channel FC 30 [Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach | Q    | Λ    | V    | P    | R     | S       | °F  | C    | n     | $n_k$ | VR          | %     |
|-----------------------------|------|------|------|------|-------|---------|-----|------|-------|-------|-------------|-------|
| Test 1:                     |      |      |      |      |       |         |     |      |       |       | <del></del> |       |
| Reach A                     | 3.35 | 12.9 | 0.26 | 22.4 | 0.577 | 0.00114 | 79  | 10.1 | 0.134 | 0.092 | 0.149       | 0     |
| В                           |      | 12.6 | .26  | 22.4 | .564  | .00105  | 79  | 10.9 | .124  | .085  | .149        | 0     |
| C                           | 3.35 | 11.3 | .30  | 22.2 | .511  | .00137  | 79  | 11.2 | .119  | .080  | .151        | 0     |
| Average                     |      |      |      |      | .551  |         |     | 10.7 | .126  | .086  | ,150        |       |
| Test 2:                     |      |      |      |      |       |         |     |      |       |       |             |       |
| Reach A                     | 5.64 | 19.2 | 0.29 | 23.3 | 0.823 | 0.00121 | 79  | 9.31 | 0.155 | 0.112 | 0.242       | 0     |
| В                           | 5.64 | 18.6 | .30  | 23.4 | .796  | .00119  | 79  | 9.84 | .145  | 106   | .241        | 0     |
| . C                         | 5.64 | 16.6 | .34  | 23.0 | .720  | .00151  | 79  | 10.3 | .137  | .098  | .245        | 0     |
| Average                     |      |      |      |      | .780  |         | 144 | 9.82 | .146  | .105  | .243        | • • • |

<sup>&</sup>lt;sup>2</sup> The height of the tallest stem was measured at each of several sampling points (usually 12) in each reach. The average of these measurements is the "average tallest stem."

Table 5. — Hydraulic elements and friction factors for experiment 1, wheat in channel FC 30 — Continued

[Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft.  $^{\circ}$ F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| ,eg.cc     | or Bubil                                                                                                                                                                 | ter gente                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A          | V                                                                                                                                                                        | P                                                                                                                                                                                                                                      | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                                                     | $n_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VR                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *****      |                                                                                                                                                                          | ***                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 27.0       | 0.35                                                                                                                                                                     | 24.6                                                                                                                                                                                                                                   | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.162                                                 | 0 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.389                                                 | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25.7       | .37                                                                                                                                                                      | 24.5                                                                                                                                                                                                                                   | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 22.5       | .42                                                                                                                                                                      | 23.8                                                                                                                                                                                                                                   | .94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .00193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .156                                                  | .120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .394                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _:-:_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 37.1       | 0.41                                                                                                                                                                     | 26.0                                                                                                                                                                                                                                   | 1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.166                                                 | 0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.500                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35.5       | .43                                                                                                                                                                      | 25.7                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 31.8       | 48                                                                                                                                                                       | 25.2                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        | 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .163                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .601                                                  | <del>_</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del></del>                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 40.6       | 0.48                                                                                                                                                                     | 26.0                                                                                                                                                                                                                                   | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.156                                                 | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.747                                                 | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 38.5       | .50                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 34.5       | .56                                                                                                                                                                      | 25.5                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 5<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                          | 1                                                                                                                                                                                                                                      | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 43.8       | 0.50                                                                                                                                                                     | 26.8                                                                                                                                                                                                                                   | 1 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.151                                                 | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 37.6       |                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 48.6       | 0.55                                                                                                                                                                     | 27.5                                                                                                                                                                                                                                   | 1 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.144                                                 | 0.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 42.9       | .62                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | ,140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 52.1       | 0.59                                                                                                                                                                     | 28.0                                                                                                                                                                                                                                   | 1.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.107                                                 | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50.7       | .60                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 46.2       | .66                                                                                                                                                                      | 27.1                                                                                                                                                                                                                                   | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 85<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        | 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 57.3       | 0.72                                                                                                                                                                     | 28.7                                                                                                                                                                                                                                   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.115                                                 | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 55.8       |                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 51.8       | .80                                                                                                                                                                      | 27.7                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • • •      | •••                                                                                                                                                                      |                                                                                                                                                                                                                                        | 1.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| : <u>-</u> |                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | .107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.40                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 60.8       | 0.83                                                                                                                                                                     | 29.2                                                                                                                                                                                                                                   | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A 00199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.10*                                                 | 0.00=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 59.2       |                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 54.6       | .92                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | • • • •                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .100                                                  | .080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.75                                                  | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 27.0<br>25.7<br>22.5<br>37.1<br>35.5<br>31.8<br>40.6<br>38.5<br>34.5<br>43.8<br>41.9<br>37.6<br>48.6<br>47.1<br>42.9<br>52.1<br>50.7<br>46.2<br>57.3<br>55.8<br>51.8<br> | 27.0 0.35 25.7 .37 22.5 .42  37.1 0.41 35.5 .43 31.8 .48  40.6 0.48 38.5 .50 34.5 .56  43.8 0.50 41.9 .53 37.6 .59  48.6 0.55 47.1 .56 42.9 .62  52.1 0.59 50.7 .60 46.2 .66  57.3 0.72 55.8 .74 51.8 .80  60.8 0.83 59.2 .85 54.6 .92 | 27.0       0.35       24.6         25.7       .37       24.5         22.5       .42       23.8              37.1       0.41       26.0         35.5       .43       25.7         31.8       .48       25.2              40.6       0.48       26.0         38.5       .50       25.7         34.5       .56       25.5              43.8       0.50       26.8         41.9       .53       26.5         37.6       .59       25.9              48.6       0.55       27.5         47.1       .56       27.4         42.9       .62       26.6              52.1       0.59       28.0         50.7       .60       27.7         46.2       .66       27.1              57.3       0.72       28.7         55.8       .74       28.5 | 27.0       0.35       24.6       1.10         25.7       .37       24.5       1.05         22.5       .42       23.8       .94           1.03         37.1       0.41       26.0       1.43         35.5       .43       25.7       1.38         31.8       .48       25.2       1.27           1.36         40.6       0.48       26.0       1.56         38.5       .50       25.7       1.50         34.5       .56       25.5       1.35           1.47         43.8       0.50       26.8       1.63         41.9       .53       26.5       1.58         37.6       .59       25.9       1.45           1.55         48.6       0.55       27.5       1.77         47.1       .56       27.4       1.72         42.9       .62       26.6       1.61           1.70           1.70           1.86         50 | 27.0       0.35       24.6       1.10       0.00129         25.7       .37       24.5       1.05       .00147         22.5       .42       23.8       .94       .00193           1.03          37.1       0.41       26.0       1.43       0.00130         35.5       .43       25.7       1.38       .00153         31.8       .48       25.2       1.27       .00186           1.36          40.6       0.48       26.0       1.56       0.00137         38.5       .50       25.7       1.50       .00165         34.5       .56       25.5       1.35       .00195           1.47          43.8       0.50       26.8       1.63       0.00140         41.9       .53       26.5       1.58       .00168         37.6       .59       25.9       1.45       .00197           1.55          48.6       0.55       27.5       1.77       0.00129         47.1       .56       27.4       1.7 | 27.0       0.35       24.6       1.10       0.00129       79         25.7       .37       24.5       1.05       .00147       79         22.5       .42       23.8       .94       .00193       79           1.03           37.1       0.41       26.0       1.43       0.00130       79         35.5       .43       25.7       1.38       .00153       79         31.8       .48       25.2       1.27       .00186       79           1.36           40.6       0.48       26.0       1.56       0.00137       78         38.5       .50       25.7       1.50       .00165       78         34.5       .56       25.5       1.35       .00195       78           1.47           43.8       0.50       26.8       1.63       0.00140       78         41.9       .53       26.5       1.58       .00168       78         37.6       .59       25.9       1.45       .00197       78         47.1 <td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td> <td>27.0         0.35         24.6         1.10         0.00129         79         9.40         0.162           25.7         .37         24.5         1.05         .00147         79         9.47         .159           22.5         .42         23.8         .94         .00193         79         9.96         .148              1.03          .9.61         .156           37.1         0.41         26.0         1.43         0.00130         79         9.59         0.165           35.5         .43         25.7         1.38         .00153         79         9.42         .167           31.8         .48         25.2         1.27         .00186         79         9.92         .157               1.36           9.64         .163           40.6         0.48         26.0         1.56         0.00137         78         10.4         0.156           38.5         .50         25.7         1.50         .00165         78         10.1         .157           34.5         .56         25.5         1.35</td> <td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td> <td>27.0         0.35         24.6         1.10         0.00129         79         9.40         0.162         0.125         0.389           25.7         .37         24.5         1.05         .00147         79         9.47         .159         .122         .391           22.5         .42         23.8         .94         .00193         79         9.96         .148         .112         .401              1.03          .9.61         .156         .120         .394           37.1         0.41         26.0         1.43         0.00130         79         9.59         0.165         0.135         .659           35.5         .43         25.7         1.38         .00186         79         9.92         .167         .125         .612              1.36           9.64         .163         .132         .601           40.6         0.48         26.0         1.56         0.00167         78         10.4         0.156         0.130         0.747           38.5         .50         25.7         1.50         .00165         78         10.</td> | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 27.0         0.35         24.6         1.10         0.00129         79         9.40         0.162           25.7         .37         24.5         1.05         .00147         79         9.47         .159           22.5         .42         23.8         .94         .00193         79         9.96         .148              1.03          .9.61         .156           37.1         0.41         26.0         1.43         0.00130         79         9.59         0.165           35.5         .43         25.7         1.38         .00153         79         9.42         .167           31.8         .48         25.2         1.27         .00186         79         9.92         .157               1.36           9.64         .163           40.6         0.48         26.0         1.56         0.00137         78         10.4         0.156           38.5         .50         25.7         1.50         .00165         78         10.1         .157           34.5         .56         25.5         1.35 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 27.0         0.35         24.6         1.10         0.00129         79         9.40         0.162         0.125         0.389           25.7         .37         24.5         1.05         .00147         79         9.47         .159         .122         .391           22.5         .42         23.8         .94         .00193         79         9.96         .148         .112         .401              1.03          .9.61         .156         .120         .394           37.1         0.41         26.0         1.43         0.00130         79         9.59         0.165         0.135         .659           35.5         .43         25.7         1.38         .00186         79         9.92         .167         .125         .612              1.36           9.64         .163         .132         .601           40.6         0.48         26.0         1.56         0.00167         78         10.4         0.156         0.130         0.747           38.5         .50         25.7         1.50         .00165         78         10. |

#### Wheat in channel FC 30

The wheat was drilled in 7-inch rows. When the tests were begun, the wheat was ripe, and most of the leaves were brown and dry. Table 4 gives the stand counts and stem heights, and figure 7 shows reach A before the tests.

Ten flow tests, ranging from 3.3 to  $50.4 \text{ ft}^3/\text{s}$ , were run in increasing order of magnitude. One sill height at the channel outlet was used for each flow. The hydraulic data and friction factors for the tests are given in table 5. The Manning n values for the tests versus the corresponding values of VR are plotted in figure 8. The curve for the larger values of VR coincides with the standard class B retardance curve.

#### Experiment 3

#### Wheat in channel FC 29

The wheat was drilled in 14-inch rows running lengthwise in the channel. When the tests were begun, the wheat was starting to ripen. About 50 percent of it had turned color, but the rest was still lush and green. The base leaves on all plants had dried, leaving practically no foliage at the base. Table 6 gives the stand counts and stem heights.

A view of reach B during test 3 (flow of 4.1 ft<sup>3</sup>/s) is shown in figure 9. Typical plants from the channel are shown in figure 10.

Fourteen flow tests, ranging from 4.1 to 40.0 ft<sup>3</sup>/s, were run in increasing order of magnitude. Three sill heights were used at the

Table 6.—Stand counts and stem heights for wheat in channel FC 29, experiment 3

| Reach <sup>1</sup> | No.<br>rows | No.<br>stems per<br>foot of<br>row | Average<br>stem<br>height<br>(inches) | Average<br>tallest<br>stem <sup>2</sup><br>(inches) |
|--------------------|-------------|------------------------------------|---------------------------------------|-----------------------------------------------------|
| A                  | 18          | 48                                 | 24                                    | 29                                                  |
| В                  | 18          | Б0                                 | 24                                    | 36                                                  |
| C                  | 18          | 52                                 | 24                                    | 29                                                  |
| Average for        |             | <b></b>                            |                                       |                                                     |
| channel            | 18          | 50                                 | 24                                    | 31                                                  |

<sup>&</sup>lt;sup>1</sup> Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)



FIGURE 9.—Wheat in reach B of channel FC 29 during flow of 4.1 ft<sup>3</sup>/s with depth of about 8 inches, experiment 3.



FIGURE 10.—Typical wheat plants in same relative positions occupied in channel FC 29, experiment 3.



FIGURE 11.—Relation of Manning n to product of velocity and hydraulic radius (VR) for flow tests on channel FC 29, experiment 3.

<sup>&</sup>lt;sup>2</sup> The height of the tallest stem was measured at each of several sampling points (usually 12) in each reach. The average of these measurements is the "average tallest stem."

Table 7.—Hydraulic elements and friction factors for experiment 3, wheat in channel FC 29 [Q, Discharge,  $ft^3$ /s. A, Area,  $ft^2$ . V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and |             |                                         |               |                                             |               |          |           |      |       | ···           |              |             |
|---------------|-------------|-----------------------------------------|---------------|---------------------------------------------|---------------|----------|-----------|------|-------|---------------|--------------|-------------|
| channel reach | Q           | A                                       | V             | P                                           | R             | s        | °F        | C    | n     | $n_k$         | VR           | %           |
| Test 1:       |             |                                         |               |                                             |               |          |           |      |       | ····          |              |             |
| Reach A       |             | 11.2                                    | 0.37          | 21.7                                        | 0.515         | 0.00127  | 73        | 14.3 | 0.000 | 0.005         | 0.100        | ٥           |
| В,            |             | 10.7                                    | .38           | 21.5                                        | .499          | .00146   | 73        | 14.1 | 0.093 | 0.065         | 0.189        | 0           |
| С             | 4.10        | 9.39                                    | .44           | 21.2                                        | .443          | .00176   | 73        | 15.6 | .083  | .066          | .191         | 0           |
| Average,      |             |                                         |               |                                             | .486          |          |           | 14.7 |       | .058          | .193         | 0           |
| Test 2:       | <del></del> |                                         |               |                                             |               |          |           | 14.7 | .090  | .063          | .191         | - ' ; '     |
| Reach A       | 4.13        | 11.4                                    | 0.36          | 21.8                                        | 0.500         | 0.00105  |           |      |       |               |              |             |
| В             |             | 10.9                                    | .38           | 21.5                                        | 0.522<br>.508 | 0.00127  | 75        | 14.1 | 0.095 | 0.067         | 0.189        | 0           |
| C ,           |             | 9.92                                    | .42           | 21.3                                        | .465          | .00146   | 75<br>75  | 13.9 | .096  | .067          | .192         | 0           |
| Average       |             | • • •                                   |               |                                             | .498          |          |           | 15.3 | .086  | .060          | .193         | 0           |
| Test 3:       |             |                                         |               |                                             | 1400          |          |           | 14.4 | .092  | .065          | .191         |             |
| Reach A       | 4 14        | 13.6                                    | 0.00          | 00.0                                        | 0.040         |          |           |      |       |               |              |             |
| В             |             | 15.2                                    | $0.30 \\ .27$ | 22.3                                        | 0.613         | 0.000800 |           | 13.7 | 0.101 | 0.072         | 0.186        | 0           |
| C             |             | _ 17.0                                  | .24           | $\begin{array}{c} 22.4 \\ 22.7 \end{array}$ | .676          | .000667  | 73        | 12.8 | ,108  | .079          | .185         | 0           |
| Average       |             |                                         |               |                                             | .747          | .000467  | 73        | 13.1 | .108  | .079          | .182         | 0           |
| Test 4:       |             | • • • • • • • • • • • • • • • • • • • • |               | • • • •                                     | ,679          |          | • • •     | 13.2 | .106  | .077          | .184         |             |
| Reach A       | 7 40        |                                         |               |                                             |               |          |           |      |       |               |              |             |
| В             |             | 17.1                                    | 0.44          | 22.8                                        | 0.747         | 0.00137  | 73        | 13.7 | 0.104 | 0.077         | 0.327        | 0           |
| Č             |             | $16.1 \\ 13.8$                          | .46           | 22.6                                        | .714          | .00166   | 73        | 13.5 | .104  | .077          | .332         | 0           |
| Average       |             |                                         | .54           | 22.3                                        | .620          | .00209   | <u>73</u> | 15.0 | .091  | .067          | .335         | 0           |
|               |             |                                         | • • •         |                                             | .694          |          | • • •     | 14.1 | .100  | .074          | .331         |             |
| Test 5:       |             |                                         |               |                                             |               |          |           |      |       |               |              |             |
| Reach A       |             | 18.0                                    | 0.42          | 23.0                                        | 0.780         | 0.00119  | 73        | 13.7 | 0.104 | 0.078         | 0.325        | 0           |
| В             |             | 17.8                                    | .42           | 22.8                                        | .780          | .00133   | 73        | 13.1 | .109  | .081          | .328         | ő           |
| C             |             | 17.2                                    | .44           | 22.8                                        | .752          | .00133   | <u>73</u> | 13.8 | .103  | .077          | .330         | 0           |
| Average       | <del></del> | •••                                     | • • • •       | ••••                                        | .771          | *****    |           | 13.5 | .105  | .079          | .328         |             |
| Test 6:       |             |                                         |               |                                             |               |          |           |      |       |               |              |             |
| Reach A       |             | 22.0                                    | 0.34          | 23.7                                        | 0.930         | 0.000867 | 73        | 12.0 | 0.123 | 0.094         | 0.316        | 0           |
| В             |             | 23.3                                    | .32           | 23.6                                        | .986          | .000700  | 73        | 12.2 | .122  | .094          | .317         | 0           |
| C             |             | 23.5                                    | .30           | 24.2                                        | 1.04          | .000540  | 73        | 12.5 | .119  | .094          | .309         | 0           |
| Average       |             | <u> </u>                                |               |                                             | .985          |          |           | 12.2 | .121  | .094          | .314         |             |
| est 7:        |             |                                         |               | _                                           |               |          |           |      | -     |               |              |             |
| Reach A       | 17.4        | 30.6                                    | 0.57          | 24.9                                        | 1.23          | 0.00163  | 75        | 12.7 | 0.122 | 0.000         | 0.500        | _           |
| В             |             | 28.2                                    | .62           | 24.4                                        | 1.16          | .00202   | 75        | 12.7 | .121  | 0.099<br>.097 | 0.700        | 1           |
| C             |             | 24.5                                    | .71           | 24.1                                        | 1.02          | .00254   | 75        | 13.9 | .107  | .085          | .715<br>.723 | 1<br>1      |
| Average       |             |                                         |               | • • •                                       | 1.14          |          |           | 13.1 | .117  | .094          | .713         | <del></del> |
| 'est 8:       |             | *************************************** |               |                                             |               |          |           |      |       |               |              | <del></del> |
| Reach A       | 17.4        | 32.6                                    | 0.54          | 25.3                                        | 1.29          | 0.00140  | 75        | 12.6 | 0.124 | 0.101         | D 000        |             |
| В             | 17.4        | 31.6                                    | .55           | 24,9                                        | 1.27          | .00156   | 75        | 12.4 | .126  | 0.101<br>.102 | 0.690        | 20          |
| C             | 17.4        | 30.2                                    | .58           | 24.9                                        | 1.21          | .00163   | 75        | 13.0 | .119  | .102          | .702<br>699  | 15          |
| Average       |             |                                         |               |                                             | 1.26          |          |           | 12.7 | .123  | .100          | .697         | 5_          |
| est 9:        |             |                                         |               |                                             |               |          |           |      |       |               | .001         | • • •       |
| Reach A       | 17.4        | 38.0                                    | 0.46          | 26.0                                        | 1.46          | 0.000867 | 75        | 12.9 | 0.124 | 0.100         | 0.000        |             |
| В             | 17.4        | 38.9                                    | .45           | 26.0                                        | 1.50          | .00103   | 75        | 11.4 | .141  | 0.103         | 0.670        | 55          |
| C <u>.</u>    | 17.4        | 39.7                                    | .44           | 26.2                                        | 1.52          | .000833  | 75        | 12.3 | .129  | .117<br>110   | .674<br>.667 | 55<br>55    |
| Average       |             |                                         |               |                                             | 1.49          |          |           | 12.2 | .131  | .110          |              | 55          |
| =             |             |                                         |               |                                             |               |          |           |      |       | .110          | .670         | ···         |

Table 7. — Hydraulic elements and friction factors for experiment 3, wheat in channel FC 29
— Continued

Q, Discharge, ft<sup>3</sup>/s. A. Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence.

| Flow test and channel reach | Q     | Λ     | V     | P                                       | R    | S           | °F | C    | n     | $n_k$           | VR             | %          |
|-----------------------------|-------|-------|-------|-----------------------------------------|------|-------------|----|------|-------|-----------------|----------------|------------|
| Test 10:                    |       |       |       |                                         |      |             |    |      |       |                 |                |            |
| Reach A 30                  | 0.8   | 43.1  | 0.71  | 26.6                                    | 1.62 | 0.00153     | 73 | 14.3 | 0.113 | 0.098           |                | 0.0        |
| В 30                        |       | 40.9  | .75   | 26.2                                    | 1.56 | .00199      | 73 | 13.5 | .119  | .102            | 1.16           | 98         |
| C <u>3</u> (                | 3.0   | 37.5  | .82   | 25.9                                    | 1.45 | .00213      | 73 | 14.8 | .108  | .091            | 1.17<br>1.19   | 90         |
| Average                     |       |       | • • • |                                         | 1.54 |             |    | 14.2 | .113  | .097            | 1.17           | 85         |
| Test 11:                    |       | W     |       | *************************************** |      |             |    |      |       |                 |                |            |
| Reach A 30                  | 8.0   | 47.0  | 0.66  | 27.2                                    | 1.73 | 0.00119     | 73 | 14.4 | 0.113 | 0.099           | 1.13           | 98         |
| В 30                        |       | 46.7  | .66   | 27.0                                    | 1.73 | .00133      | 73 | 13.8 | .119  | .103            | 1.13           | 98<br>95   |
| C <u>30</u>                 | ).8   | 46.3  | .67   | 27.1                                    | 1.71 | .00123      | 73 | 14.5 | .113  | .098            | 1.14           | 95<br>95   |
| Average                     | • • • | • • • | • • • |                                         | 1.72 |             |    | 14,2 | .115  | .100            | 1.14           |            |
| Test 12:                    |       |       |       |                                         |      |             |    |      |       |                 |                |            |
| Reach A 30                  |       | 53.0  | 0.58  | 28.2                                    | 1.88 | 0.000800    | 73 | 15.0 | 0.111 | 0.098           | 1.09           | 100        |
| B 30                        | 8.0   | 54.2  | .57   | 28.3                                    | 1.92 | .008000     | 73 | 14.5 | .115  | .102            | 1.09           | 100<br>100 |
| C <u>30</u>                 | 1.8   | 56.1  | .55   | 28,5                                    | 1.97 | .000700     | 73 | 14.8 | .113  | .101            | 1.08           | 100        |
| Average                     | • • • | • • • |       |                                         | 1.92 |             |    | 14,8 | .113  | .100            | 1.09           | 100        |
| Test 13:                    |       |       |       |                                         |      |             |    |      |       |                 |                |            |
| Reach A 40                  | .0    | 47.8  | 0.84  | 27.4                                    | 1.75 | 0.00149     | 75 | 16.4 | 0.099 | 0.088           | 1.46           | 100        |
| В 40                        | .0    | 45.5  | .88   | 26.8                                    | 1.70 | .00195      | 75 | 15.3 | .109  | .093            | 1.49           | 100        |
| C <u>40</u>                 | .0    | 42.2  | .95   | 26,6                                    | 1.59 | .00218      | 75 | 16.1 | .099  | .087            | 1.49           | 100        |
| Average                     |       | • • • |       |                                         | 1.68 |             |    | 15,9 | .102  | .089            | 1.48           | 100        |
| Test 14:                    |       |       |       |                                         |      |             |    |      |       |                 |                |            |
| Reach A 40                  | .0    | 50.0  | 0.80  | 27.7                                    | 1.80 | 0.00136     | 75 | 16.1 | 0.101 | 0.001           |                |            |
| B 40                        | .0    | 48.5  | .82   | 27.3                                    | 1.78 | .00159      | 75 | 15.6 | .105  | $0.091 \\ .093$ | 1.44           | 100        |
| C <u>40</u>                 | .0    | 47.0  | .85   | 27.2                                    | 1.73 | .00159      | 75 | 16.2 | .099  | .089            | $1.47 \\ 1.47$ | 100        |
| Average                     |       |       |       |                                         | 1.77 | * ! * * ! . |    | 16.0 | .102  | .091            | 1.46           | 100        |
|                             |       |       |       |                                         |      |             |    |      | 1202  | 1001            | 1.10           |            |

channel outlet for each discharge rate, except for the largest flow, for which only two sill heights were used. The hydraulic data and friction factors for the tests are given in table 7. The Manning n values for the tests are plotted against the corresponding values of VR in figure 11. The curve approaches the standard class B retardance for the larger flows. The spread of the n values for the lower VR values is attributed to the end-sill effect on flow depths and velocities. Two envelope curves encompass the n values.

#### Wheat in channel FC 30

The wheat was drilled in 7-inch rows. When the tests were begun, the wheat was ripe. Table 8 gives the stand counts and stem heights. Figure 12 shows reach A during a flow, and figure 13 shows typical plants from the channel. (Continued on page 16.)

TABLE 8.—Stand counts and stem heights for wheat in channel FC 30, experiment 3

| Reach <sup>1</sup>  | No.<br>rows | No.<br>stems per<br>foot of<br>row | Average<br>stem<br>height<br>(inches) | Average<br>tallest<br>stem <sup>2</sup><br>(inches) |
|---------------------|-------------|------------------------------------|---------------------------------------|-----------------------------------------------------|
| A                   | 35          | 38                                 | 23                                    | 28                                                  |
| В                   | 35          | 34                                 | 22                                    | 27                                                  |
| C                   | 35          | 38                                 | 24                                    | 28                                                  |
| Average for channel | 35          | 35                                 | 23                                    | 28                                                  |

<sup>&</sup>lt;sup>1</sup> Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

<sup>2</sup> The height of the tallest stem was measured at each of several sampling points (usually 12) in each reach. The average of these measurements is the "average tallest stem."

TABLE 9. — Hydraulic elements and friction factors for experiment 3, wheat in channel FC 30  $\{Q, \text{ Discharge, ft}^3/\text{s. A. Area, ft}^2, V, \text{ Velocity, ft/s. }P, \text{ Wetted perimeter, ft. }R, \text{ Hydraulic radius, ft. }S, \text{ Slope, ft/ft.}$  °F, Water temperature. C, Coefficient in Chezy formula. C, Manning C friction factor. C, Coefficient in Kutter formula. C, Product of C and C, %, Degree of submergence)

|                             |             | =              |               |       | ,            |          |            |                |             |                                       |              |              |
|-----------------------------|-------------|----------------|---------------|-------|--------------|----------|------------|----------------|-------------|---------------------------------------|--------------|--------------|
| Flow test and channel reach | Q           | A              | ν             | P     | R            | S        | °F         | C              | n           | $n_k$                                 | VR           | %            |
| Test 1:                     |             |                |               |       | <del></del>  |          |            |                |             |                                       |              |              |
| Reach A                     | 4.10        | 12.8           | 0.32          | 22,9  | 0.560        | 0.00143  | 77         | 119            | 0.100       | 0.000                                 | 0.170        | ^            |
| В                           |             | 12.8           | .32           | 22.5  | .570         | .00109   | 77         | $11.3 \\ 12.8$ | 0.120       | 0.082                                 | 0.179        | 0            |
| C                           |             | 11.0           | .37           | 22.2  | .494         | .00169   | 77         |                | .105        | .074                                  | .182         | 0            |
| Average                     |             |                |               |       | .541         |          |            | 12.9<br>12.3   | .102        | .071                                  | .185         | 0            |
| Test 2:                     |             |                |               |       | 1041         |          | •••        | 12.5           | .109        | .076                                  | .182         |              |
| Reach A                     | 4.10        | 19.0           | 0.00          | 00.0  |              |          |            |                |             |                                       |              |              |
| В                           |             | $13.0 \\ 13.0$ | 0.32          | 22.9  | 0.570        | 0.00136  | 77         | 11.3           | 0.120       | 0.083                                 | 0.180        | 0            |
| C                           |             |                | .32           | 22.5  | .577         | .00113   | 77         | 12.3           | .110        | .077                                  | .182         | 0            |
| Average                     |             | 11.0           | .37           | 22.3  | .495         | .00167   | 77         | 12.9           | .102        | .071                                  | .184         | 0            |
|                             |             |                |               | •••   | .547         |          | • • • •    | 12.2           | .111        | .077                                  | .182         |              |
| Test 3:                     |             |                |               |       |              |          |            |                |             |                                       |              |              |
| Reach A                     |             | 14.6           | 0.28          | 23.1  | 0.630        | 0.00107  | 77         | 10.9           | 0.126       | 0.089                                 | 0.178        | 0            |
| В                           |             | 15.8           | .26           | 23.1  | .683         | .000720  | 77         | 11.8           | .118        | .085                                  | .178         | 0            |
| <i>U</i>                    |             | 16.0           | .26           | 23.2  | .688         | .000734  | 77         | 11.5           | .121        | .087                                  | .178         | 0            |
| Average                     |             |                |               |       | .667         |          |            | 11.4           | .122        | .087                                  | .178         |              |
| Test 4:                     |             |                |               |       | <del></del>  |          |            |                |             |                                       |              |              |
| Reach A                     | 7.43        | 19.5           | 0.38          | 23.9  | 0.817        | 0.00151  | 73         | 10.8           | 0.134       | 0.098                                 | 0.310        | 0            |
| В.,                         | 7.43        | 19.0           | .39           | 23.5  | .807         | .00143   | 73         | 11.5           | .124        | .093                                  | .316         | 0            |
| C                           | 7.43        | 15.8           | .47           | 23.1  | .684         | .00219   | 73         | 12.1           | .115        | .084                                  | .321         | 0            |
| Average                     |             |                |               |       | .769         |          | - <u>'</u> | 11.5           | .124        | .092                                  | .316         | <del>_</del> |
| Test 5:                     |             |                |               | **    |              |          |            |                | 1241        | .002                                  | .010         |              |
| Reach A                     | 7 44        | 20.4           | 0.27          | 04.0  | 0.046        | 0.000.00 |            |                |             |                                       |              |              |
| В                           |             | 20.3           | $0.37 \\ .37$ | 24.0  | 0.846        | 0.00140  | 73         | 10.7           | 0.136       | 0.100                                 | 0.310        | 0            |
| C                           |             | 18.2           | .41           | 23.7  | .856         | .00125   | 73         | 11.2           | .129        | .097                                  | .314         | 0            |
| Average                     |             | 10.2           | .41           | 23.5  | .774<br>.825 | .00157   | 73         | 11.7           | .122        | ,090                                  | .316         | 0            |
| l'est 6:                    |             | •••            |               | •••   | .020         |          |            | 11.2           | .129        | .096                                  | .313         |              |
| Reach A                     | 77 40       | 05.0           |               |       |              |          |            |                |             |                                       |              |              |
| B                           |             | 25.3           | 0.30          | 24.6  | 1.03         | 0.000894 | 73         | 9.75           | 0.153       | 0.117                                 | 0.305        | 0            |
|                             |             | 27.3           | .28           | 24.7  | 1.10         | .000540  | 73         | 11.3           | .134        | .105                                  | .303         | 0            |
| C ,                         |             | 28.0           | .27           | 24.7  | 1.13         | .000634  | 73         | 10.0           | .152        | .118                                  | .303         | 0            |
| Average                     |             |                | • • •         |       | 1.09         |          |            | 10.4           | .146        | .113                                  | .304         |              |
| Γest 7:                     |             |                |               |       |              |          |            | ,              |             |                                       |              |              |
| Reach A                     |             | 33.7           | 0.51          | 25.8  | 1.30         | 0.00193  | 73         | 10.3           | 0.152       | 0.122                                 | 0.668        | 30           |
| В                           | 17.3        | 31.7           | .55           | 25.5  | 1.25         | .00172   | 73         | 11.8           | .132        | .106                                  | .684         | 25           |
| C                           |             | 26.7           | .65           | 24.7  | 1.08         | .00270   | 73         | 12.0           | .127        | .099                                  | .700         | 10           |
| Average                     | •••         |                |               | • • • | 1.21         |          |            | 11.4           | .137        | .109                                  | .684         |              |
| Test 8:                     |             |                |               |       |              |          |            |                |             | · · · · · · · · · · · · · · · · · · · |              |              |
| Reach A                     | 17.3        | 37.9           | 0.46          | 26.3  | 1.44         | 0.00138  | 73         | 10.2           | 0.155       | 0.128                                 | 0.656        | 75           |
| В,                          |             | 38.0           | .46           | 26.2  | 1.45         | .00100   | 73         | 11.9           | .134        | .111                                  | .660         | 75<br>75     |
| C                           |             | 36.6           | .47           | 25.8  | 1.42         | .00125   | 73         | 11.2           | .142        | .117<br>117                           | .668         | 55<br>55     |
| Average                     |             |                |               |       | 1.44         |          |            | 11.1           | .144        | .119                                  | .661         | • • • •      |
| Cest 9:                     |             |                |               |       |              |          | *****      |                | · · · · · · |                                       |              |              |
| Reach A                     | 17.3        | 46.2           | 0.37          | 27.6  | 1.68         | 0.000774 | 73         | 10.4           | 0.157       | 0.133                                 | 0.600        | ^^           |
| В                           |             | 48.7           | .36           | 27.8  | 1.75         | .000480  | 73         | 12.2           | .134        | .116                                  | 0.628        | 90           |
| C                           |             | 49.6           | .35           | 27.6  | 1.79         | .000533  | 73         | 11.2           | .146        | .116                                  | .621<br>.623 | 90           |
| Average                     |             |                |               |       | 1.74         |          |            | 11.3           | .146        | .125                                  | .624         | 90           |
| -                           | <del></del> |                |               |       |              |          |            |                |             |                                       | .024         |              |

Table 9. — Hydraulic elements and friction factors for experiment 3, wheat in channel FC 30 — Continued

[Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Stope, ft/ft.  $^{\circ}$ F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence

| Flow test and channel reach Q | А              | V           | P                   | R                   | S        | °F         | <u></u>      | n           | $n_h$         | . VR                | %          |
|-------------------------------|----------------|-------------|---------------------|---------------------|----------|------------|--------------|-------------|---------------|---------------------|------------|
| Test 10:                      |                |             |                     |                     |          |            |              |             |               |                     |            |
| Reach A 30.0                  | 44.1           | 0.68        | 27.2                | 1.62                | 0.00171  | 73         | 10.0         | 0.105       |               |                     |            |
| $B \dots 30.0$                | 42.8           | .70         | 27.0                | 1.59                | .00140   | 73<br>73   | 12.9 $14.8$  | 0.125       | 0.108         | 1.10                | 90         |
| C <u>30.0</u>                 | 39.4           | .76         | 26.3                | 1.50                | .00193   | 73         | 14.2         | .109        | .094          | 1.11                | 90         |
| Average                       |                | • • •       |                     | 1.57                | ******   |            | 14.0         | .114        | .096<br>.099  | 1.14                | 95         |
| Test 11:                      |                |             |                     |                     |          |            |              |             | .000          | 1.12                | • • •      |
| Reach A 30.0                  | 50.6           | 0.59        | 28.1                | 1.00                | 0.001.00 |            |              |             |               |                     |            |
| B 30.0                        | 51.8           | .58         | 28.3                | $\frac{1.80}{1.83}$ | 0.00109  | 73         | 13.4         | 0.123       | 0.108         | 1.07                | 95         |
| C 30.0                        | 51.3           | ,59         | 27.9                | 1.84                | .000787  | 73         | 15.3         | .108        | .096          | 1.06                | 90         |
| Average                       |                |             | 41.0                | 1,82                | .000873  | 73         | 14.6         | .113        | .100          | 1.08                | 95         |
| Test 12:                      |                |             |                     | 1,02                | *****    |            | 14.4         | .115        | .101          | 1.07                | • • • •    |
| Reach A 30.0                  | 61.6           | 0.40        | 00.0                | 0.00                |          |            |              |             |               |                     |            |
| В 30.0                        | 65.1           | 0.49<br>.46 | 29.6                | 2.08                | 0.000620 | 73         | 13.6         | 0.124       | 0.112         | 1.01                | 95         |
| C 30.0                        | 66.0           | .46         | $\frac{30.0}{29.8}$ | 2.17                | .000333  | 73         | 17.2         | .099        | .090          | 1.00                | 95         |
| Average                       |                |             |                     | 2.22                | .000453  | 73         | 14.3         | .118        | .109          | 1.01                | 100        |
|                               | ,              | • • • •     | ,                   | 2.16                | *****    | <u>···</u> | 15.0         | .114        | .104          | 1.01                |            |
| Test 13:<br>Reach A 44.5      | 50.5           | 0.00        | 00.                 |                     |          |            |              |             |               |                     |            |
| В 44.5                        | $50.5 \\ 49.1$ | 0.88        | 28.1                | 1.79                | 0.00176  | 73         | 15.7         | 0.105       | 0.093         | 1.58                | 95         |
| C 44.5                        | 45.8           | .91<br>.97  | 28.1                | 1.75                | .00141   | 73         | 18.2         | .090        | .080          | 1.59                | 95         |
| Average                       |                |             | 27.2                | 1.68                | .00185   | 73         | 17.4         | .094        | .082          | 1.64                | 98         |
|                               | ,              |             | • • •               | 1.74                |          | • • •      | 17.1         | .096        | .085          | 1.60                |            |
| Test 14:                      |                |             |                     |                     |          |            |              |             |               |                     |            |
| Reach A 44.4                  | 57.8           | 0.77        | 29.2                | 1.98                | 0.00117  | 73         | 16.0         | 0.105       | 0.094         | 1.52                | 100        |
| B 44.4                        | 59.0           | .75         | 29.2                | 2.02                | .008000  | 73         | 18.6         | .090        | .082          | 1.52                | 100        |
| C <u>44.4</u>                 | 58.2           | .76         | 28.8                | 2.02                | .000947  | 73         | 17.3         | .097        | .088          | 1.54                | 100        |
| Average                       |                | • • • •     |                     | 2.01                |          |            | 17.3         | .097        | .088          | 1.53                |            |
| Test 15:                      |                |             |                     |                     |          |            |              |             |               |                     |            |
| Reach A 44.3                  | 69.9           | 0.63        | 30.8                | 2.27                | 0.000627 | 73         | 16.8         | 0.103       | 0.094         | 1 44                | 100        |
| B 44.3                        | 73.2           | .61         | 31.2                | 2.34                | .000413  | 73         | 19.5         | .088        | .082          | $\frac{1.44}{1.42}$ | 100        |
| C <u>44.3</u>                 | 73.7           | .60         | 30,8                | 2.39                | .000500  | 73         | 17.4         | .099        | .093          | 1.44                | 100<br>100 |
| Average                       | • • •          | • • •       |                     | 2.33                |          |            | 17.9         | .097        | .090          | 1.43                |            |
| Test 16:                      |                |             |                     |                     |          |            |              |             |               |                     |            |
| Reach A 75.6                  | 60,9           | 1.24        | 29.6                | 2.06                | 0.00192  | 73         | 19.8         | 0.085       | 0.055         | 0 ==                |            |
| В 75,6                        | 58.8           | 1.29        | 29.1                | 2.02                | .00159   | 73         | 22.7         | .074        | 0.077<br>.068 | 2.55                | 100        |
| C <u>75.6</u>                 | 54.1           | 1.40        | 28.2                | 1.92                | .00195   | 73         | 22.8         | .073        | .067          | 2.59                | 100        |
| Average                       |                |             |                     | 2.00                |          |            | 21.8         | .077        | .071          | 2.68<br>2.61        | 100        |
| l'est 17:                     |                |             |                     |                     |          |            |              |             |               | 2.01                |            |
| Reach A 75.6                  | 73.8           | 1.02        | 31.3                | 2.36                | 0.00105  | 73         | 20.6         | 0.004       | 0.050         | 0.40                |            |
| B 75,6                        | 75.6           | 1.00        | 31.5                | 2.40                | .000747  | 73         | 23.6         | 0.084       | 0.079         | 2.42                | 100        |
| C <u>75.6</u>                 | 74.3           | 1.02        | 30.8                | 2.41                | .000860  | 73         | 23.6<br>22.4 | .073<br>077 | .069          | 2.40                | 100        |
| Average                       |                |             | • • • •             | 2.39                |          | • • •      | 22.2         | .078        | .073<br>.074  | 2.46<br>2.43        | 100        |
| Cest 18:                      |                |             |                     |                     |          |            |              | .0.0        | .01-1         | 2.41                |            |
|                               |                |             |                     |                     |          |            |              |             |               |                     |            |



FIGURE 12.—Wheat in reach A of channel FC 30 during flow of 7.4 ft<sup>3</sup>/s with depth of about 10 inches, experiment 3.

Eighteen flow tests, ranging from 4.1 to 75.6 ft<sup>3</sup>/s, were run in increasing order of magnitude. Three sill heights were used for each discharge rate. No data were taken during test 18 on reaches B and C because the channel bank on the left side overtopped. The hydraulic elements and friction factors for the tests are given in table 9. The Manning n values for the tests are plotted against the corresponding values of VR in figure 14. The curve approaches the standard class B retardance curve.



FIGURE 13.—Typical wheat plants in same relative positions occupied in channel FC 30, experiment 3.

#### Experiment 5

#### Wheat in channel FC 29

The wheat was drilled in 7-inch rows running lengthwise in the channel. When the tests were begun, the wheat was just starting to head out and had an average height of 26 inches. During the 8-day period of the tests, the wheat grew another 5 inches to an average height of 31 inches. Table 10 gives the stand counts and stem heights before and after the tests. Figure 15 shows reach B (the center reach) before the tests, and figure 16 shows the wheat in a cross section of the channel.

Table 10.—Stand counts and stem heights for wheat before and after tests in channel FC 29, experiment 5

|                    |             | No.                         | •                           | t before<br>sts                                     | Height after<br>tests       |                                                     |  |  |
|--------------------|-------------|-----------------------------|-----------------------------|-----------------------------------------------------|-----------------------------|-----------------------------------------------------|--|--|
| Reach <sup>1</sup> | No.<br>rows | stems per<br>foot of<br>row | Average<br>stem<br>(inches) | Average<br>tallest<br>stem <sup>2</sup><br>(inches) | Average<br>stem<br>(inches) | Average<br>tallest<br>stem <sup>2</sup><br>(inches) |  |  |
| A                  | 32          | 76                          | 24                          | 27                                                  | 28                          | 35                                                  |  |  |
| В                  | 31          | 66                          | 26                          | 31                                                  | 31                          | 40                                                  |  |  |
| C                  | 31          | 63                          | 27                          | 33                                                  | 34                          | 40                                                  |  |  |
| Average for        | ******      |                             |                             |                                                     |                             |                                                     |  |  |
| channel            | 31          | 68                          | 26                          | 30                                                  | 31                          | 38 1                                                |  |  |

<sup>&</sup>lt;sup>1</sup> Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

<sup>&</sup>lt;sup>2</sup> The height of the tallest stem was measured at each of several sampling points (usually 12) in each reach. The average of these measurements is the "average tallest stem."



FIGURE 14.—Relation of Manning n to product of velocity and hydraulic radius (VR) for flow tests on channel FC 30, experiment 3.



FIGURE 15.—Wheat in reach B of channel FC 29 before tests, experiment 5.

Twenty-six tests were run, but not all of them in the order of increasing magnitude (table 11). After the first eight tests (ranging from 4.7 to 15.0 ft<sup>3</sup>/s) had been run, it was decided that the flow increments were too large, so five additional tests were run at discharges ranging from 2.9 to 7.5 ft<sup>3</sup>/s. After the four tests at 34.6 ft<sup>3</sup>/s were completed, additional or "repeat" tests at 10.8 and 5.2 ft3/s were run. These tests served to determine if any changes attributable to growth had taken place in the flow-retarding properties of the vegetation over the 10 days of the experiment. Generally, three sill heights were used, except for the use of two heights for the two lowest flows. For the highest flow four sill heights were used.



FIGURE 16.—Wheat across center of reach C of channel FC 29, experiment 5. (Plants in foreground were cut to show height and density of stand.)



FIGURE 17.—Relation of Manning n to product of velocity and hydraulic radius (VR) for flow tests on channel FC 29, experiment 5.

The Manning n values for the tests are plotted against the corresponding values of VRin figure 17. The n values for the flows of approximately 5 and 10 ft<sup>3</sup>/s for the repeat tests were smaller than those for the initial tests (table 12). Since 7 days had elapsed between the two sets of tests and some plant growth had occurred, these differences were unexpected. It was thought that the growth of the vegetation would have increased the friction factor. The decrease is attributed to the drying of the lower leaves and to the cleaning or combing effect on the vegetation by intervening, larger flows. Any change in the n-VRrelationship attributable to vegetative growth (Continued on page 21.)

TABLE 11. — Hydraulic elements and friction factors for experiment 5, wheat in channel FC 29 [Q. Discharge, ft<sup>1</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft.  $^{2}$ F, Water temperature. C, Coefficient in Chezy formula.  $n_{i}$  Manning n friction factor.  $n_{k}$ , Coefficient in Kutter formula. VR, Product of V and R. 6e, Degree of submergence]

| VII, I todact of a time     |               |              |      |      |                                       |          |             |              |              |                 |              |          |
|-----------------------------|---------------|--------------|------|------|---------------------------------------|----------|-------------|--------------|--------------|-----------------|--------------|----------|
| Flow test and channel reach | Q             | A            | v    | P    |                                       | S        | °F          | С            | n            | $n_k$           | VR           | %        |
| Test 1:                     |               |              |      |      | 0.040                                 | 0.00000  | 72          | 5.78         | 0.252        | 0.176           | 0.202        | 0        |
| Reach A                     |               | 19.9         | 0.24 | 23.5 | 0.848                                 | 0.00200  |             | 6.81         | .209         | .144            | .210         | 0        |
| В                           |               | 16.7         | .28  | 22.5 | .741                                  | .00235   | 72<br>72    | 9.50         | .143         | 098             | .215         | 0        |
| C                           | . <u>4.74</u> | 12.9         | .37  | 22.0 | .585                                  | .00255   |             |              |              |                 | .209         |          |
| Average                     |               |              |      |      | .725                                  |          |             | 7.36         | .201         | .139            | .208         |          |
| Test 2:                     |               |              |      |      |                                       |          | =0          | <b>=</b> 00  | 0.050        | 0.100           | 0.000        |          |
| Reach A                     | 4.75          | 20.2         | 0.24 | 23.5 | 0.860                                 | 0.00198  | 72          | 5.69         | 0.256        | 0.180           | 0.202        | 0        |
| В                           |               | 17.5         | .27  | 22.6 | .774                                  | .00220   | 72          | 6.59         | .216         | .150            | .211         | 0        |
| C                           |               | 14.1         | .34  | 22.4 | .632                                  | ,00206   | 72          | 9,31         | .147         | .102            | .212         | 0        |
| Average                     | ·             | •••          |      |      | .755                                  |          | , , ,       | 7.20         | .206         | .144            | .208         | • • • •  |
| Test 3:                     |               |              |      |      |                                       |          |             | - 00         |              |                 | 0.440        | _        |
| Reach A                     |               | 32.4         | 0.32 | 25.1 | 1.29                                  | 0.00225  | 72          | 5,92         | 0.264        | 0.205           | 0.412        | 0        |
| В                           |               | 27.7         | .37  | 24.3 | 1.14                                  | ,00286   | 72          | 6.52         | .236         | .178            | .424         | 0        |
| C                           | . 10.3        | 20.5         | .50  | 23.5 | .874                                  | ,00380   | 72          | 8,71         | .168         | .123            | .439         | 0        |
| Average                     | • • • •       | •••          |      |      | 1.10                                  |          | • • •       | 7.05         | .223         | .169            | .425         |          |
| Test 4:                     | -             |              |      |      |                                       |          |             |              |              |                 |              |          |
| Reach A                     | . 10.4        | 33.2         | 0.31 | 25.3 | 1.31                                  | 0.00209  | 72          | 5,96         | 0.263        | 0.205           | 0.409        | 15       |
| В                           | . 10.4        | 29.7         | .35  | 24.6 | 1.21                                  | .00244   | 72          | 6.40         | .242         | .185            | .421         | 5        |
| C                           | . 10.4        | 24.7         | .42  | 24.1 | 1.03                                  | .00260   | 72          | 8.09         | .185         | .140            | .432         | 0        |
| Average                     | ·             |              |      |      | 1.18                                  |          |             | 6.82         | .230         | .177            | .421         |          |
| Test 5:                     |               |              |      |      |                                       |          |             |              |              |                 |              |          |
| Reach A                     | . 10.3        | 39.3         | 0.26 | 25.9 | 1.51                                  | 0.00135  | 73          | 5.82         | 0.275        | 0.222           | 0.397        | 20       |
| В                           |               | 38.9         | .27  | 25.9 | 1.50                                  | .00140   | 73          | 5.81         | .276         | .222            | .399         | 5        |
| C                           | 10.3          | 38.6         | .27  | 26.1 | 1.48                                  | .00106   | 73          | 6.76         | .236         | .191            | .397         | 2        |
| Average                     |               |              |      |      | 1.50                                  |          | , , ,       | 6.13         | .262         | .212            | .398         |          |
| Test 6:                     |               |              |      |      |                                       |          |             |              |              |                 |              |          |
| Reach A                     | 15.0          | 41.6         | 0.36 | 26.7 | 1.56                                  | 0.00195  | 73          | 6.56         | 0.246        | 0.201           | 0.565        | 45       |
| В                           |               | 38.8         | .39  | 26.0 | 1.49                                  | .00212   | 73          | 6.88         | .233         | .189            | .577         | 10       |
| C                           |               | 34.7         | .43  | 25.7 | 1.35                                  | .00233   | 73          | 7.74         | .204         | .162            | .586         | 1        |
| Average                     |               |              |      |      | 1.47                                  | ,,,,,,   |             | 7.06         | .228         | .184            | .576         |          |
| Test 7:                     |               |              |      |      | · · · · · · · · · · · · · · · · · · · |          |             | <del></del>  | <del></del>  |                 |              |          |
| Reach A                     | 15.1          | 48.9         | 0.31 | 27.7 | 1.76                                  | 0.00121  | 73          | 6 67         | 0.046        | 0.000           | 0.540        | ρn       |
| В                           |               | 49.0         | .31  | 27.4 | 1.79                                  | .00121   | 73          | 6.67<br>6.67 | 0.246 $.248$ | $0.208 \\ .210$ | 0.542        | 80       |
| c                           |               | 48.8         | .31  | 27.6 | 1.77                                  | .00113   | 73          | 6.76         | .243         | .206            | .551<br>.545 | 35<br>10 |
| Average                     | -             |              |      | .,,  | 1.77                                  |          |             | 6.70         | .246         | .208            | .546         | ,        |
| Test 8:                     |               |              |      |      |                                       |          | <del></del> | 0.70         | .2-10        | 1200            | .040         |          |
|                             | 15.1          | 50.0         | 0.00 | 00.0 |                                       |          |             |              |              |                 |              |          |
| В                           |               | 52.9         | 0.28 | 28.2 | 1.87                                  | 0.000900 | 73          | 6.94         | 0.239        | 0.205           | 0.533        | 90       |
| c                           |               | 54.2<br>55.6 | .28  | 28.2 | 1.92                                  | .000860  | 73          | 6.86         | .243         | .210            | .536         | 70       |
| Average                     |               |              | .27  | 28.3 | 1.97<br>1.92                          | .000853  | 73          | 6.64         | .252         | .219            | .536         | 20       |
|                             | ===           | •••          | •••  | •••  | 1.02                                  | *****    | • • •       | 6.81         | .245         | .211            | .535         |          |
| Test 9:                     | 0.01          |              |      |      |                                       |          |             |              |              |                 |              |          |
| Reach A                     |               | 12.3         | 0.24 | 22.1 | 0.556                                 | 0.00175  | 73          | 7.60         | 0.177        | 0.116           | 0.132        | 0        |
| B                           |               | 10.3         | .28  | 21.4 | .482                                  | .00200   | 73          | 9.08         | .145         | .094            | .136         | 0        |
| C                           |               | 8.07         | .36  | 20.9 | .386                                  | .00194   | 73          | 13.2         | .096         | .064            | .139         | 0        |
| revoluge,                   |               | •••          |      |      | .475                                  |          | • • •       | 9,96         | .139         | .091            | .136         |          |
|                             |               |              |      |      |                                       |          |             |              |              |                 |              |          |

TABLE 11. — Hydraulic elements and friction factors for experiment 5, wheat in channel FC 29
— Continued

 $\{Q, \text{ Discharge, } ft^3/\text{s. } A, \text{ Area, } ft^2. V, \text{ Velocity, } ft/\text{s. } P, \text{ Wetted perimeter, } ft. R, \text{ Hydraulic radius, } ft. S, \text{ Slope, } ft/\text{ft.} \$ °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach | Q           | A       | V          | P       | R     | . S     | $^{\circ}\mathrm{F}$ | C                                      | n     | $n_k$        | VR         | %        |
|-----------------------------|-------------|---------|------------|---------|-------|---------|----------------------|----------------------------------------|-------|--------------|------------|----------|
| Test 10:                    |             |         |            |         |       |         |                      |                                        |       |              |            |          |
| Reach A                     | . 2.91      | 13.6    | 0.21       | 22.2    | 0.615 | 0.00148 | 73                   | 7.06                                   | 0.194 | 0.129        | 0.131      | 0        |
| В                           | . 2.91      | 13.6    | .21        | 22.2    | .615  | .00121  | 73                   | 7.81                                   | .176  | .118         | .131       | 0        |
| C                           |             | 14.3    | .20        | 22.5    | .635  | .000706 | 73                   | 9.62                                   | .143  | .099         | .130       | 0        |
| Average                     |             |         | •••        |         | .622  |         |                      | 8.16                                   | .171  | .115         | .131       |          |
| Test 11:                    |             |         |            |         |       |         |                      |                                        |       |              | <u>-</u> - |          |
| Reach A                     |             | 24.1    | 0.31       | 23.8    | 1.01  | 0.00215 | 73                   | 6.61                                   | 0.226 | 0.167        | 0.311      | 0        |
| В                           |             | 20.4    | .36        | 23.1    | .884  | .00256  | 73                   | 7.63                                   | .192  | .139         | .321       | 0        |
| C                           |             | 15.8    | .47        | 22.5    | .704  | .00297  | 73                   | 10.3                                   | .138  | .097         | .330       | 0        |
| Average                     | • • • • • • | •••     | ····       | • • • • | .866  |         | • • •                | 8.18                                   | .185  | .134         | .321       | • • •    |
| Test 12:                    |             |         |            |         |       |         |                      |                                        |       |              |            |          |
| Reach A                     |             | 26.7    | 0.28       | 24.5    | 1.09  | 0.00189 | 74                   | 6.14                                   | 0.246 | 0.185        | 0.304      | 1        |
| B                           |             | 24.3    | .31        | 24.0    | 1.01  | .00197  | 74                   | 6.88                                   | .217  | .161         | .310       | 1        |
| C                           |             | 22,0    | .34        | 23.7    | .926  | .00176  | 74                   | 8.41                                   | .175  | ,129         | .315_      | 0        |
| Average                     | ·           |         | •••        |         | 1.01  |         |                      | 7.14                                   | .213  | .158         | .310       |          |
| Test 13:                    |             |         |            |         |       |         |                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       |              |            |          |
| Reach A                     | 7.46        | 31.9    | 0.23       | 25.0    | 1.28  | 0.00131 | 74                   | 5.71                                   | 0.273 | 0.211        | 0.300      | 5        |
| В                           |             | 31.9    | .23        | 24.9    | 1.28  | .00110  | 74                   | 6.24                                   | ,250  | .194         | .300       | 1        |
| C                           | 7.46        | 33,0    | .22        | 25.4    | 1.30  | .000853 | 74                   | 6.76                                   | .231  | <u>,1</u> 81 | .293       | 0        |
| Average                     |             | • • • • | • • •      |         | 1.29  | 1       |                      | 6.24                                   | .251  | .195         | .298       |          |
| Test 14:                    |             |         |            |         |       |         |                      |                                        |       |              |            |          |
| Reach A                     | 25.3        | 54.2    | 0.47       | 28.4    | 1.91  | 0.00175 | 73                   | 8.07                                   | 0.206 | 0.179        | 0.892      | 95       |
| В,                          | 25.3        | 51.5    | .49        | 27.6    | 1.86  | .00220  | 73                   | 7.68                                   | .217  | .186         | .913       | 75       |
| C                           |             | 46.2    | .55        | 27.1    | 1.71  | .00282  | 73                   | 7.87                                   | .209  | .176         | .935       | 15       |
| Average                     | • • • • •   |         |            |         | 1.83  |         |                      | 7.87                                   | .211  | .180         | .913       |          |
| l'est 15:                   |             |         |            |         |       |         |                      |                                        |       |              |            |          |
| Reach A                     |             | 50.9    | 0.50       | 28.0    | 1.82  | 0.00215 | 73                   | 7.99                                   | 0.207 | 0.178        | 0.910      | 95       |
| В                           |             | 46.3    | 55،        | 27.1    | 1.71  | .00285  | 73                   | 7.86                                   | .208  | .176         | .939       | 55       |
| C                           |             | 37.5    | .68        | 26,0    | 1,41  | .00419  | 73                   | 8.73                                   | ,184  | .149         | .976       | 5        |
| Average                     |             | • • •   |            |         | 1.66  |         | • • •                | 8.19                                   | .200  | .168         | .942       |          |
| l'est 16:                   |             |         |            |         |       |         |                      |                                        |       |              |            |          |
| Reach A                     | 25,5        | 49.6    | 0.52       | 27.8    | 1.78  | 0.00229 | 72                   | 8,06                                   | 0.204 | 0.174        | 0.917      | 90       |
| В                           |             | 43.3    | .59        | 26.8    | 1,61  | .00317  | . 72                 | 8.26                                   | .196  | .164         | .950       | 15       |
| C                           |             | 33.0    | .77        | 25.4    | 1.30  | .00553  | 72                   | 9.13                                   | .172  | .137         | 1.01       | 5        |
| Average ,                   |             |         | • • •      | • 1 •   | 1,56  |         | 111                  | 8,48                                   | .191  | .158         | .959       |          |
| Test 17:                    |             |         |            |         |       |         |                      |                                        |       |              |            |          |
| Reach A                     |             | 58.1    | 0.59       | 29.2    | 1.99  | 0.00207 | 72                   | 9.25                                   | 0.181 | 0.160        | 1.18       | 98       |
| В                           |             | 53.0    | .65        | 28.3    | 1.87  | .00297  | 72                   | 8.73                                   | .191  | .165         | 1.22       | 85       |
| C ,                         |             | 42,6    | .81        | 26.8    | 1.59  | .00493  | 72                   | 9.14                                   | .178  | .148         | 1.29       | 30       |
| Average                     |             | •••     |            |         | 1.82  | 14111   | , , ,                | 9.04                                   | .183  | .158         | 1.23       | <u> </u> |
| Test 18:                    |             |         | <b>.</b> - |         |       |         |                      |                                        |       |              |            |          |
| Reach A                     |             | 57.0    | 0.61       | 28,9    | 1.97  | 0.00217 | 72                   | 9.28                                   | 0.181 | 0.159        | 1.20       | 98       |
| В                           |             | 51.5    | .67        | 27.9    | 1.85  | .00313  | 72                   | 8.82                                   | .187  | .163         | 1.24       | 85       |
| C                           |             | 40.2    | .86        | 26.4    | 1.52  | .00541  | 72                   | 9.49                                   | .170  | .140         | 1.31       | 25       |
| Average                     |             | , , ,   |            | • • •   | 1,78  |         | • • •                | 9.19                                   | .179  | .154         | 1.25       |          |

Table 11. — Hydraulic elements and friction factors for experiment 5, wheat in channel FC 29 — Continued

[Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

|                             |      |       |                                         |       |       |         |       |      |              |       |       | ····  |
|-----------------------------|------|-------|-----------------------------------------|-------|-------|---------|-------|------|--------------|-------|-------|-------|
| Flow test and channel reach | Q    | Α     | V                                       | Р     | R     | S       | °F    | C    | n            | $n_k$ | VR    | %     |
| Test 19:                    |      |       |                                         |       |       |         |       |      |              |       |       |       |
| Reach A 34                  | 1.6  | 56.6  | 0.61                                    | 28.9  | 1.96  | 0.00219 | 72    | 9.34 | 0.179        | 0.157 | 1.20  | 98    |
| В 34                        | 1.6  | 50.9  | .68                                     | 27.8  | 1.83  | .00325  | 72    | 8.82 | .188         | .162  | 1.24  | 80    |
| C <u>34</u>                 | 1.6  | 38.6  | .90                                     | 26.1  | 1.48  | .00596  | 72    | 9,53 | .168         | .138  | 1.33  | 25    |
| Average                     | •••  |       |                                         |       | 1.76  |         |       | 9.23 | .178         | .152  | 1.26  | • • • |
| Test 20:                    |      |       |                                         |       |       |         |       |      |              |       |       |       |
| Reach A 34                  | 1.6  | 56.4  | 0.61                                    | 28.8  | 1.96  | 0.00223 | 72    | 9.28 | 0.181        | 0.158 | 1.20  | 98    |
| В 34                        |      | 50.7  | .68                                     | 27.6  | 1.83  | .00328  | 72    | 8.81 | .188         | .162  | 1.25  | 75    |
| C <u>34</u>                 | 1.6  | 38.2  | .91                                     | 26.1  | 1.47  | .00608  | 72    | 9.58 | .168         | .137  | 1.33  | 20    |
| Average                     |      | •••   |                                         |       | 1.75  |         |       | 9.22 | .179         | .152  | 1.26  | • • • |
| Test 21:                    |      |       |                                         |       |       |         |       |      |              |       |       |       |
| Reach A 10                  | ).7  | 29.8  | 0.36                                    | 24.7  | 1.21  | 0.00225 | 72    | 6.87 | 0.225        | 0.173 | 0.434 | 0     |
| B 10                        | ).7  | 25.7  | .42                                     | 24.0  | 1.07  | .00258  | 72    | 7.91 | .191         | .145  | .445  | 0     |
| C <u>10</u>                 | ).7  | 20.4  | .52                                     | 23.4  | .873  | .00318  | 72    | 9,95 | .146         | .109  | .457  | 0     |
| Average                     |      | • • • |                                         |       | 1.05  |         |       | 8.24 | .187         | .142  | .445  |       |
| Test 22:                    |      |       | ,                                       |       |       |         |       |      |              |       |       |       |
| Reach A 10                  | ).8  | 32.9  | 0.33                                    | 25.2  | 1.31  | 0.00192 | 73    | 6.56 | 0.239        | 0.187 | 0.431 | 0     |
| B 10                        | 8.0  | 30.4  | .36                                     | 24.8  | 1.23  | .00196  | 73    | 7.23 | .214         | .166  | .437  | 0     |
| C <u>10</u>                 | 0,8  | 28.4  | .38                                     | 24.8  | 1.15  | .00181  | 73    | 8.35 | .184         | .142  | .438  | 0     |
| Average                     |      |       |                                         |       | 1.23  |         | • • • | 7.38 | .212         | ,165  | .435  |       |
| Test 23:                    |      |       |                                         |       |       | · _ · · |       |      |              | •     |       |       |
| Reach A 10                  | 8،0  | 39.1  | 0.28                                    | 26.0  | 1.50  | 0,00133 | 73    | 6.20 | 0.258        | 0.209 | 0.416 | 0     |
| B 10                        | 8.0  | 39.0  | .28                                     | 26.0  | 1.50  | .00125  | 73    | 6.39 | .251         | .203  | .416  | 0     |
| C <u>10</u>                 | 8.0  | 39.5  | .27                                     | 26.3  | 1.50  | .00103  | 73    | 6.97 | .230         | .187  | .411  | 0     |
| Average                     |      |       |                                         | • • • | 1.50  |         |       | 6.52 | .246         | .200  | .414  | • • • |
| Test 24:                    |      |       |                                         |       |       |         |       |      |              |       |       |       |
| Reach A 5                   | 5.20 | 18.0  | 0.29                                    | 23.1  | 0.783 | 0.00194 | 72    | 7.39 | 0.194        | 0.136 | 0.226 | 0     |
| В 5                         | 5.20 | 15.2  | .34                                     | 22,2  | .683  | .00219  | 72    | 8.86 | .158         | .110  | .234  | 0     |
| C <u>. f</u>                | 5.20 | 11.8  | .44                                     | 21.8  | .542  | .00257  | 72    | 11.8 | .114         | .079  | .238  | 0     |
| Average                     |      |       | • • •                                   |       | .669  |         |       | 9.35 | .155         | .108  | .233  |       |
| Test 25:                    |      |       |                                         |       |       |         |       |      | ************ |       |       |       |
| Reach A 5                   | 5,20 | 18.2  | 0.28                                    | 23.1  | 0.790 | 0.00190 | 72    | 7.36 | 0,195        | 0.137 | 0.225 | 0     |
| В                           |      | 15.8  | .33                                     | 22.5  | .703  | .00201  | 72    | 8.75 | ,161         | ,112  | .231  | 0     |
| C <u>.</u> <u>5</u>         | 5.20 | 13.6  | .38                                     | 22.1  | .616  | .00190  | 72    | 11.1 | .124         | .087  | .235  | 0     |
| Average                     |      |       |                                         |       | .703  |         |       | 9.07 | .160         | .112  | .230  |       |
| Test 26:                    |      |       | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       |       |         |       |      |              | ····· |       |       |
| Reach A 5                   | 5.21 | 21.8  | 0.24                                    | 23.7  | 0.918 | 0.00136 | 75    | 6.79 | 0,216        | 0,157 | 0.220 | 0     |
| В 5                         |      | 21.9  | .24                                     | 23.7  | .923  | .00115  | 75    | 7.30 | .202         | .147  | .220  | 0     |
| C <u>.</u> <u>6</u>         | 5.21 | 22.8  | .23                                     | 24.0  | .951  | .000787 | 75    | 8.33 | .178         | .131  | .217  | 0     |
| Average                     |      |       |                                         |       | .931  | 11111   |       | 7.47 | .199         | .145  | .219  |       |
|                             |      |       |                                         |       |       |         |       |      |              |       |       |       |

is probably small because of the relatively short duration of the experiment.

#### Wheat in channel FC 30

The wheat was drilled in 7-inch rows running crosswise in the channel. When the tests were begun, the wheat was just starting to head out. At this time it had an average height of 26 inches. During the 10-day period of the tests it grew an additional 8 inches to reach an average height of 34 inches. Table 13 gives the stand counts and stem heights before and after the tests. Figure 18 shows reach B before

TABLE 12.—Discharge rates and Manning n values for initial and repeat tests in channel FC 29, experiment 5

| Test No. | Discharge rate<br>(ft³/s) | Manning n |
|----------|---------------------------|-----------|
|          | Initial tests             |           |
| 2        | 4.75                      | 0.206     |
| 4        | 10.4                      | .280      |
|          | Repeat tests              |           |
| 25       | 5.20                      | 0.160     |
| 22       | 10.8                      | .212      |

TABLE 13.—Stand counts and stem heights for wheat before and after tests in channel FC 30, experiment 5

|                    | No.                         |                             | before<br>sts                                       | Height after<br>tests       |                                                     |  |  |  |
|--------------------|-----------------------------|-----------------------------|-----------------------------------------------------|-----------------------------|-----------------------------------------------------|--|--|--|
| Reach <sup>1</sup> | stems per<br>foot of<br>row | Average<br>stem<br>(inches) | Average<br>tallest<br>stem <sup>2</sup><br>(inches) | Average<br>stem<br>(inches) | Average<br>tallest<br>stem <sup>2</sup><br>(inches) |  |  |  |
| A                  | 89                          | 24                          | 83                                                  | 38                          | 41                                                  |  |  |  |
| В                  | 80                          | 26                          | 36                                                  | 34                          | 42                                                  |  |  |  |
| C                  | 65                          | 28                          | 40                                                  | 34                          | 42                                                  |  |  |  |
| Average            | for                         |                             |                                                     |                             |                                                     |  |  |  |
| chann              | el 79                       | 26                          | 36                                                  | 34                          | 42                                                  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

the tests, and figure 19 shows a typical cross section in the center of reach B after the tests.

Twenty tests were run during this experiment, with discharge rates ranging from 3.9 to 99.0 ft<sup>3</sup>/s. Three sill heights were installed for most of the discharge rates. The hydraulic elements and friction factors for the experiment are given in table 14. The Manning n values for the tests are plotted against the corresponding values of VR in figure 20.

(Continued on page 24.)



FIGURE 18.—Wheat in reach B of channel FC 30 before tests, experiment 5.



FIGURE 19,—Wheat across center of reach B of channel FC 30, experiment 5. (Rows are transverse in channel.)

<sup>&</sup>lt;sup>2</sup> The height of the tallest stem was measured at each of several sampling points (usually 12) in each reach. The average of these measurements is the "average tallest stem."

Table 14. — Hydraulic elements and friction factors for experiment 5, wheat in channel FC 30 [Q. Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>, V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft.  $^{\circ}$ F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_h$ , Coefficient in Kutter formula. VR, Product of V and R. %. Degree of submergence]

| Flow test and channel reach | Q       | A    | V     | P       | R     | S                 | °F         | C                   | n            | $n_k$           | VR    | %            |
|-----------------------------|---------|------|-------|---------|-------|-------------------|------------|---------------------|--------------|-----------------|-------|--------------|
| Test 1:                     |         |      |       | 05.0    | 1.10  | 0.00100           | 74         | 3.16                | 0.480        | 0.348           | 0.156 | c            |
| Reach A                     |         | 27.8 | 0.14  | 25.2    | 1,10  | 0.00183 $0.00231$ | 74         | 3.37                | .443         | ,319            | .159  | (            |
| В                           |         | 24.5 | .16   | 24.8    | .989  |                   | 74         | 4,51                | .315         | .208            | .165  | (            |
| C                           |         | 17.5 | .22   | 23.9    | .733  | .00339            |            | 3.68                | .413         | ,292            | ,160  |              |
| Average                     |         |      |       | •••     | .941  |                   | • • • •    | 0.00                | .410         | ,202            | .100  |              |
| Test 2:                     |         |      |       |         |       | 0.00105           | 75         | 0.15                | 0.484        | 0.940           | 0.156 | C            |
| Reach A                     |         | 27.6 | 0.14  | 25.1    | 1.10  | 0.00185           | 75         | $\frac{3.15}{3.36}$ |              | $0.349 \\ .313$ | .160  | (            |
| В                           |         | 24.4 | .16   | 24.6    | .992  | .00231            | 75<br>75   | 4.56                | .445<br>.313 | .207            | .165  | (            |
| C                           |         | 17.6 | 22    | 23.8    | .738  | .00327            |            | 3,69                | .414         | .290            | .160  | <del>-</del> |
| Average                     |         |      | •••   | • • •   | .943  |                   | •••        | 0,00                | 1            | .200            | .100  |              |
| lest 3:                     |         |      |       | 05.0    |       | 0.00100           | 70         | 0 10                | 0.496        | 0.950           | 0,157 | ,            |
| Reach A                     |         | 28.1 | 0.14  | 25.3    | 1.11  | 0.00183           | 76         | 3,13                | 0.486        | 0.352           | .160  | (            |
| В                           |         | 25.3 | .16   | 24.7    | 1.02  | .00217            | 76         | 3.34                | .450<br>.320 | .319<br>.218    | .164  |              |
| C                           |         | 19.6 | .20   | 24.2    | .812  | .00247            | 76         | 4.51<br>3.66        | .419         | .216            | .160  | (            |
| Average                     |         |      | • • • | • • •   | .981  |                   | • • • •    | ۵,00                | .410         | .200            | .100  | • •          |
| Test 4:                     |         |      |       |         |       | 0.00400           | <i>m</i> = | 0.15                | 0.405        | 0.050           | 0.154 | ,            |
| Read. A                     |         | 30.6 | 0.13  | 25.6    | 1.19  | 0.00139           | 77         | 3.17                | 0.485        | 0.359           | 0.154 | (            |
| В                           |         | 29.9 | .13   | 25.5    | 1.18  | .00141            | 77         | 3.24                | .478         | .350            | .156  | (            |
| C                           |         | 28.1 | ,14   | 25,2    | 1.12  | .00107            | 77         | 4.08                | .378         | .274            | .157  |              |
| Average                     |         |      |       |         | 1,16  | ******            |            | 3.50                | .447         | ,328            | ,156  |              |
| Γest 5:                     |         |      |       |         |       |                   | 0          |                     |              |                 |       |              |
| Reach A                     |         | 19.1 | 0.11  | 24.0    | 0,797 | 0.00151           | 75         | 3.11                | 0.461        | 0,306           | 0,086 | (            |
| В                           |         | 17.8 | .12   | 23.7    | .754  | .00153            | 75         | 3.41                | .417         | .273            | ,088  |              |
| C                           |         | 15.3 | .14   | 23.6    | .651  | .00156            | 75         | 4.23                | ,329         | ,210            | ,088  |              |
| Average                     |         |      |       | • • •   | .734  | 111111            |            | 3.58                | .402         | .263            | .087  | • •          |
| rest 6:                     |         |      |       |         |       |                   |            |                     | 0 (20        | 0.000           | 0.018 |              |
| Reach A                     |         | 35.3 | 0.16  | 26.3    | 1.34  | 0.00176           | 75         | 3.34                | 0.472        | 0.360           | 0.217 | (            |
| В                           |         | 32.2 | .18   | 25.8    | 1,25  | .00225            | 75         | 3.34                | .465         | .349            | ,221  | 1            |
| C                           |         | 26.3 | .22   | 25.1    | 1.05  | .00231            | 75         | 4.41                | .342         | .248            | .228  |              |
| Average                     | • • • • | •••  | • • • | • • • • | 1.21  | 1 * * 1 * *       | 111        | 3.70                | .426         | .319            | .222  |              |
| Test 7:                     |         |      |       |         |       |                   |            |                     |              |                 |       |              |
| Reach A                     |         | 36.8 | 0.16  | 26.2    | 1.40  | 0.00145           | 75         | 3.44                | 0.460        | 0.357           | 0.217 | - (          |
| В                           |         | 36.3 | .16   | 26.4    | 1.37  | .00168            | 75         | 3.27                | .481         | .371            | .215  | 1            |
| C                           |         | 33.4 | .17   | 25.8    | 1.29  | .00133            | 75         | 4.13                | .378         | ,289            | .221  |              |
| Average                     |         |      |       | • • •   | 1.35  | * * * 1 1 7       | • • • •    | 3.61                | .440         | .339            | .218  | • •          |
| Test 8:                     |         |      |       |         |       |                   |            |                     |              |                 |       |              |
| Reach A                     |         | 40.6 | 0.14  | 27.1    | 1.50  | 0.00115           | 75         | 3.39                | 0.473        | 0.373           | 0.212 | •            |
| В                           |         | 40,4 | .14   | 27.0    | 1.50  | .00126            | 75         | 3.24                | .494         | .390            | .212  | +            |
| C                           |         | 39.4 | .14   | 26.6    | 1.48  | .000873           | 75         | 4.04                | .395         | .313            | .215  |              |
| Average                     | • • • • |      |       | • • •   | 1,49  |                   | , , ,      | 3.56                | .454         | .359            | .213  |              |
| l'est 9:                    |         |      |       |         |       |                   |            |                     |              |                 |       |              |
| Reach A                     |         | 48.9 | 0.21  | 28.2    | 1.73  | 0.00134           | 72         | 4.34                | 0.377        | 0.313           | 0.362 | 1            |
| В                           |         | 47.4 | .22   | 28.0    | 1.69  | .00177            | 72         | 3.95                | .413         | .340            | .365  |              |
| C ,                         |         | 44.0 | .23   | 27.2    | 1.62  | .00144            | 72         | 4.80                | .338         | ,276            | .376  | ;            |
| Average                     |         |      |       |         | 1,68  |                   |            | 4.36                | .376         | .310            | ,368  |              |

3 LE 14. — Hydraulic elements and friction factors for experiment 5, wheat in channel FC 30 — Continued

Discharge, ft<sup>3</sup>/s. A. Area, ft<sup>2</sup>. V. Velocity, ft/s. P. Wetted perimeter, ft. R. Hydraulic radius, ft. S. Slope, ft/ft. Water temperature. C. Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ . Coefficient in Kutter formula. Product of V and R. %, Degree of submergence]

| Flow test and channel reach | Q          | А    | V                                      | Р       | R           | S                                       | °F                                    | С    | n                                      | $n_k$ | VR          | %       |
|-----------------------------|------------|------|----------------------------------------|---------|-------------|-----------------------------------------|---------------------------------------|------|----------------------------------------|-------|-------------|---------|
| 10:                         |            |      |                                        |         |             |                                         |                                       |      | · · · · · · · · ·                      |       | <del></del> |         |
| Reach A                     | . 10.2     | 52.3 | 0.20                                   | 28.6    | 1.83        | 0.00109                                 | 72                                    | 4,39 | 0.376                                  | 0.317 | 0.359       | 20      |
| В                           | . 10.2     | 52.2 | .20                                    | 28.4    | 1.84        | .00138                                  | 72                                    | 3.89 | .425                                   | .358  | .361        | 10      |
| C                           | . 10.2     | 50.4 | .20                                    | 27.8    | 1.81        | .000993                                 | 73                                    | 4.79 | .346                                   | .290  | .367        | 3       |
| Average                     | · <u> </u> |      |                                        |         | 1.83        |                                         |                                       | 4.36 | .382                                   | .322  | .362        |         |
| 11:                         |            |      |                                        |         |             |                                         |                                       |      |                                        |       |             |         |
| Reach A                     | . 10.2     | 56.7 | 0.18                                   | 29.2    | 1.94        | 0.000833                                | 72                                    | 4.50 | 0.370                                  | 0.318 | 0.351       | 30      |
| В                           | . 10.2     | 57.7 | .18                                    | 29.3    | 1.97        | .00101                                  | 72                                    | 3.97 | .423                                   | .362  | .349        | 10      |
| C                           | . 10.2     | 57.3 | .18                                    | 28,6    | 2.00        | .000700                                 | 72                                    | 4.78 | .350                                   | 304   | .358        | 5       |
| Average                     | · _ · · ·  |      |                                        | • • •   | 1.97        | • • • • • • • • • • • • • • • • • • • • |                                       | 4.42 | .381                                   | .328  | .353        |         |
| 12:                         |            |      |                                        | ······  |             |                                         |                                       |      |                                        |       |             |         |
| Reach A                     | . 18.3     | 55.4 | 0.33                                   | 29.1    | 1.90        | 0.00183                                 | 74                                    | 5.61 | 0.297                                  | 0.254 | 0.629       | 45      |
| В                           | . 18.3     | 51.4 | .36                                    | 28.4    | 1.81        | .00247                                  | 74                                    | 5.33 | .311                                   | ,262  | .644        | 3       |
| C                           | 18.3       | 44.1 | .42                                    | 27.2    | 1.68        | .00266                                  | 74                                    | 6.34 | .256                                   | .211  | .674        | . 0     |
| Average                     |            |      |                                        |         | 1.78        |                                         |                                       | 5.76 | .288                                   | .242  | .649        | • • • • |
| 13:                         |            |      |                                        |         | <del></del> |                                         |                                       | ···· | <del></del>                            |       | *           |         |
| Reach A                     | . 18.4     | 62.1 | 0.30                                   | 30.0    | 2.07        | 0.00132                                 | 75                                    | 5.66 | 0.298                                  | 0.262 | 0.613       | 65      |
| В                           | 18.4       | 61.0 | .30                                    | 29.6    | 2.06        | .00162                                  | 75                                    | 5.21 | ,324                                   | .283  | .620        | 40      |
| C                           |            | 57.5 | .32                                    | 28.6    | 2.01        | .00136                                  | 75                                    | 6.10 | .276                                   | .240  | .642        | 25      |
| Average                     |            | ,    |                                        |         | 2.05        | , , , , , ,                             |                                       | 5.66 | .299                                   | .262  | .625        |         |
| 14:                         |            |      |                                        |         |             |                                         |                                       |      |                                        |       |             |         |
| Reach A                     | 18,4       | 71.6 | 0.26                                   | 31,2    | 2.30        | 0.000880                                | 75                                    | 5.71 | 0.300                                  | 0.271 | 0.591       | 85      |
| В                           | 18.4       | 72.7 | .25                                    | 31.4    | 2.32        | .00100                                  | 75                                    | 5,25 | .329                                   | .296  | .587        | 65      |
| C                           | 18.4       | 71.7 | .26                                    | 30.8    | 2.33        | .000707                                 | 75                                    | 6.30 | .273                                   | .248  | .596        | 50      |
| Average                     |            | ١    |                                        |         | 2.32        |                                         |                                       | 5.75 | .301                                   | .272  | .591        |         |
| 15:                         |            | ***  | ······································ |         | <del></del> |                                         |                                       |      | ······································ |       | -,-,,       |         |
| Reach A                     | 34.0       | 66.1 | 0.51                                   | 30.6    | 2.16        | 0.00183                                 | 74                                    | 8.17 | 0.209                                  | 0.186 | 1.11        | 98      |
| В                           | 34.0       | 61.7 | .55                                    | 29.8    | 2.07        | .00254                                  | 74                                    | 7.58 | .224                                   | .197  | 1.14        | 90      |
| C                           | 34.0       | 53.6 | .63                                    | 28.2    | 1.90        | .00287                                  | 74                                    | 8.58 | .194                                   | .169  | 1.20        | 75      |
| Average                     |            |      |                                        |         | 2.04        |                                         |                                       | 8,11 | .209                                   | .184  | 1.15        |         |
| 16:                         |            |      |                                        |         |             |                                         | · · · · · · · · · · · · · · · · · · · |      | <del></del>                            |       |             |         |
| Reach A                     | 34,2       | 76.9 | 0.44                                   | 31.8    | 2,42        | 0.00117                                 | 73                                    | 8.36 | 0.208                                  | 0.191 | 1.08        | 100     |
| В                           | 34.2       | 76.3 | .45                                    | 31.9    | 2.39        | .00147                                  | 73                                    | 7.57 | .230                                   | .209  | 1.07        | 98      |
| C                           | 34.2       | 72.9 | .47                                    | 30.8    | 2.37        | .00134                                  | 73                                    | 8,34 | .207                                   | .190  | 1.11        | 90      |
| Average                     |            |      |                                        |         | 2.39        |                                         | • • •                                 | 8,09 | ,215                                   | .197  | 1.09        |         |
| 17:                         |            |      |                                        | ,       |             |                                         |                                       |      |                                        | 1.00  |             |         |
| Reach A                     | 34.1       | 85.2 | 0.40                                   | 33.1    | 2.57        | 0.000827                                | 73                                    | 8,68 | 0.202                                  | 0.188 | 1.03        | 100     |
| В                           | 34.1       | 87.1 | .39                                    | 33.6    | 2.59        | .000907                                 | 73                                    | 8.06 | .217                                   | .203  | 1.01        | 100     |
| C                           | 34.1       | 85.7 | .40                                    | 32.6    | 2.63        | .000787                                 | 73                                    | 8,74 | .201                                   | .189  | 1.05        | 100     |
| Average ,                   |            |      | • • •                                  | • • • • | 2.60        |                                         |                                       | 8.49 | .207                                   | .193  | 1.03        |         |
| 18:                         |            |      |                                        |         |             | 77                                      | · · · · · · · · · · · · · · · · · · · |      |                                        |       |             |         |
| Reach A                     | 60.0       | 81.4 | 0.74                                   | 32.8    | 2,48        | 0.00145                                 | 74                                    | 12.3 | 0.142                                  | 0.132 | 1.83        | 100     |
| В                           | 60.0       | 79.5 | .75                                    | 32.5    | 2.45        | .00177                                  | 74                                    | 11.4 | .162                                   | .142  | 1.85        | 100     |
| C                           | 60.0       | 74.2 | .81                                    | 31.0    | 2.39        | .00175                                  | 74                                    | 12.5 | .139                                   | .128  | 1.94        | 100     |
| Average                     |            |      |                                        |         | 2.44        |                                         |                                       | 12.1 | .144                                   | .134  | 1.87        | •••     |
|                             |            |      |                                        |         |             |                                         |                                       |      |                                        |       |             |         |

Table 14. — Hydraulic elements and friction factors for experiment 5, wheat in channel FC 30 — Continued

[Q, Discharge,  $ft^3$ /s. A, Area,  $ft^2$ . V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Stope, ft/ft. °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach Q | Α    | V            | P    | R    | S       | °F | C         | n           | $n_k$ | VR          | %     |
|-------------------------------|------|--------------|------|------|---------|----|-----------|-------------|-------|-------------|-------|
| Test 19:                      |      |              |      |      |         |    |           |             |       |             |       |
| Reach A 60.0                  | 90.9 | 0.66         | 33.9 | 2.68 | 0.00107 | 74 | 12.3      | 0.143       | 0.136 | 1.77        | 100   |
| B 60.0                        | 91.5 | .66          | 34.4 | 2.66 | .00126  | 74 | 11.3      | .156        | .148  | 1.74        | 100   |
| C <u>60.0</u>                 | 88.0 | .68          | 32.9 | 2.68 | .00116  | 74 | 12.2      | .144        | .137  | 1.82        | 100   |
| Average                       |      |              |      | 2.67 |         |    | 11.9      | .148        | .140  | 1.78        | • • • |
| Test 20:                      |      | <del> </del> |      |      |         |    | <u>-i</u> | <del></del> |       | /snænimi sa |       |
| Reach A 99.0                  | 84.9 | 1.17         | 33.0 | 2.57 | 0.00177 | 74 | 17.3      | 0.101       | 0.096 | 3.00        | 100   |
| B 99.0                        | 81,0 | 1.22         | 32,7 | 2.48 | .00220  | 74 | 16.5      | .105        | .099  | 3.03        | 100   |
| C 99.0                        | 73.2 | 1.35         | 30.8 | 2,38 | .00243  | 74 | 17.8      | .097        | .091  | 3.22        | 100   |
| Average                       |      | • • •        |      | 2.48 |         |    | 17.2      | .101        | ,095  | 3.08        |       |

#### Experiment 7

#### Wheat in channel FC 29

The wheat was drilled in 14-inch rows running lengthwise in the channel. When the tests were begun, the wheat was green and just starting to head out. Its average height was 27 inches before the tests and 30 inches after the tests. Table 15 gives the stand counts and stem heights before and after the tests. Figure 21 shows reach B before the tests, and figure 22 is a cross section of the channel showing the wheat after the tests.

Twelve tests were run during this experiment, with discharge rates ranging from 2.5 to 37.2 ft<sup>3</sup>/s. Three sill heights were used for each flow, except the first flow when two sill heights were used and the last flow when no



FIGURE 20.—Relation of Manning n to product of velocity and hydraulic radius (VR) for flow tests on channel FC 30, experiment 5.

sill was used. The hydraulic data and friction factors for the experiment are given in table 16. The Manning n values for the tests are plotted against the corresponding values of VR in figure 23.

#### Wheat in channel FC 30

The wheat was drilled in 7-inch rows running lengthwise in the channel. When the tests were begun, the wheat was just starting to head out. During the tests the vegetation reached its maximum bulk. Table 17 gives the stand counts and stem lengths before and after the tests. Figure 24 shows reach B before the tests. Most of the wheat was down after the tests, as shown in the cross section of reach B in figure 25.



FIGURE 21.—Wheat in reach B of channel FC 29 before tests, experiment 7.

TABLE 15.—Stand counts and stem heights for wheat before and after tests in channel FC 29, experiment 7

| A 1' B 1' C 1'      |             | No.                         | _                           | t before<br>sts                                     | Height after<br>tests       |                                                     |  |
|---------------------|-------------|-----------------------------|-----------------------------|-----------------------------------------------------|-----------------------------|-----------------------------------------------------|--|
| Reach <sup>1</sup>  | No.<br>rows | stems per<br>foot of<br>row | Average<br>stem<br>(inches) | Average<br>tallest<br>stem <sup>2</sup><br>(inches) | Average<br>stem<br>(inches) | Average<br>tallest<br>stem <sup>2</sup><br>(inches) |  |
| A                   | 17          | 81                          | 28                          | 36                                                  | 32                          | 44                                                  |  |
| В                   | 17          | 67                          | 25                          | 32                                                  | 30                          | 43                                                  |  |
| С                   | 17          | 70                          | 27                          | 32                                                  | 29                          | 42                                                  |  |
| Average for channel | 17          | 73                          | 27                          | 33                                                  | 30                          | 48                                                  |  |

<sup>&</sup>lt;sup>1</sup> Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

<sup>&</sup>lt;sup>2</sup> The height of the tallest stem was measured at each of several sampling points (usually 12) in each reach. The average of these measurements is the "average tallest stem."



FIGURE 22.—Wheat across center of reach B of channel FC 29, experiment 7. (Plants in foreground were cut to show height and density of stand.)



FIGURE 24.—Wheat in reach B of channel FC 30 before tests, experiment 7.



FIGURE 23.—Relation of Manning n to product of velocity and hydraulic radius (VR) for flow tests on channel FC 29, experiment 7.



FIGURE 25.—Wheat across center of reach B of channel FC 30 after tests, experiment 7.

Table 16. — Hydraulic elements and friction factors for experiment 7, wheat in channel FC 29 [Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach | Q        | A           | V       | P    | R                                      | S        | °F       | C                   | n            | $n_h$         | VR            | %           |
|-----------------------------|----------|-------------|---------|------|----------------------------------------|----------|----------|---------------------|--------------|---------------|---------------|-------------|
| Test 1:                     |          |             |         | ·    |                                        |          |          |                     |              |               |               |             |
| Reach A                     | 2.53     | 10.2        | 0.25    | 21.6 | 0.475                                  | 0.00135  | 66       | 9.74                | 0.135        | 0.088         | 0.117         | - 0         |
| В                           | 2.53     | 9.64        | .26     | 21.1 | .457                                   | .00165   | 66       | 9.53                | .137         | .089          | .120          | C           |
| C                           | 2.53     | 8.39        | .30     | 20.7 | 406                                    | .00203   | 66       | 10.5                | .123         | .078          | .122          | 0           |
| Average                     |          |             |         |      | .446                                   |          |          | 9.92                | .132         | .085          | .120          |             |
| Test 2:                     |          |             |         | ,    |                                        |          |          |                     |              | ·····         |               |             |
| Reach A                     | 2.54     | 10.7        | 0.24    | 21.6 | 0.493                                  | 0.00126  | 67       | 9.54                | 0.138        | 100.0         | 0.117         | C           |
| В                           | 2,54     | 10.6        | .24     | 21.2 | .500                                   | .00139   | 67       | 9.06                | .146         | .096          | .120          | 0           |
| C                           | 2.54     | 10,8        | .24     | 21.2 | .508                                   | .00116   | 67       | 9,67                | .137         | .091          | .119          | 0           |
| Average                     |          | •••         | • • • • |      | .500                                   |          |          | 9.42                | .140         | .093          | .119          |             |
| Test 3:                     |          |             |         |      |                                        |          |          |                     |              |               |               |             |
| Reach A                     | 5.38     | 18.2        | 0.30    | 22.8 | 0.796                                  | 0.00157  | 68       | 8.37                | 0.172        | 0.122         | 0.236         | 0           |
| В                           | 5.38     | 16.4        | .33     | 22.2 | .736                                   | .00203   | 68       | 8.48                | .167         | .117          | .241          | 0           |
| C                           | 5.38     | 13.5        | .40     | 21.8 | .618                                   | .00282   | 68       | 9.56                | .144         | .099          | .247          | 0           |
| Average                     |          |             |         |      | .717                                   |          |          | 8.80                | .161         | .113          | .241          |             |
| Test 4:                     |          |             |         |      |                                        |          |          |                     |              |               |               |             |
| Reach A                     | 5.53     | 22.5        | 0.25    | 23.6 | 0.950                                  | 0.00113  | 65       | 7.51                | 0.197        | 0.145         | 0.234         | 0           |
| В                           | 5.53     | 22.6        | .24     | 23.4 | .966                                   | .00121   | 65       | 7.16                | .207         | .152          | .237          | 0           |
| C                           | 5.53     | 22.6        | .24     | 23.6 | .957                                   | .00105   | 65       | 7.69                | .192         | .142          | .234          | 0           |
| Average                     |          |             |         |      | .958                                   |          |          | 7.45                | .199         | 0,146         | .235          |             |
| l'est 5:                    |          |             |         |      |                                        |          |          |                     |              |               |               | <del></del> |
| Reach A                     | 5.60     | 28.1        | 0.20    | 24.4 | 1.15                                   | 0.000720 | 66       | 6.91                | 0,222        | 0.168         | 0.229         | 0           |
| В                           |          | 30.0        | ,19     | 24.5 | 1.23                                   | .000727  | 66       | 6.25                | ,248         | .190          | .230          | 0           |
| C                           |          | 32.9        | .17     | 25.0 | 1.31                                   | .000533  | 66       | 6.43                | .244         | .190          | .223          | 0           |
| Average                     |          |             |         |      | 1,23                                   |          |          | 6,53                | .238         | .183          | ,227          |             |
| Test 6:                     |          |             |         |      | ······································ |          |          |                     |              |               |               |             |
| Reach A                     | 10.1     | 31.8        | 0.32    | 24.9 | 1.27                                   | 0.00155  | 66       | 7.16                | 0.217        | 0.170         | 0.404         | n           |
| В                           |          | 29.9        | .34     | 24.5 | 1.22                                   | .00186   | 66       | 7.09                | .218         | .169          | 0.404<br>.412 | 0           |
| . C                         |          | 28.0        | .36     | 24.3 | 1.15                                   | .00194   | 66       | 7.62                | .216         | .154          | .412          | 0           |
| Average                     |          |             |         |      | 1.21                                   |          |          | 7.29                | .212         | ,164          | .410          |             |
| Test 7:                     |          | ·····       |         |      |                                        |          |          |                     |              |               |               |             |
| Reach A                     | 10.1     | 36.0        | 0.28    | 25.6 | 1,41                                   | 0.00120  | 66       | 6,83                | 0.231        | 0.185         | 0,396         | ٥           |
| В                           |          | 35.8        | .28     | 25.3 | 1.41                                   | .00127   | 66       | 6.66                | .237         | .190          | .398          | 0           |
| C                           |          | 36.4        | .28     | 25.6 | 1.42                                   | .00108   | 66       | 7.07                | .224         | .180          | .393          | 0           |
| Average                     |          |             |         |      | 1.41                                   |          |          | 6.85                | .231         | .185          | .396          |             |
| Гest 8:                     |          |             |         |      |                                        |          | ······   |                     |              |               |               |             |
| Reach A                     | 10.2     | 41.6        | 0.24    | 26,1 | 1.59                                   | 0.000790 | 60       | 7 94                | A 996        | 0.104         | 0.200         | 0           |
| В                           |          | 43.4        | .23     | 26.3 | 1.65                                   | .000720  | 69<br>69 | $\frac{7.24}{6.31}$ | 0.226 $.257$ | 0.184<br>.213 | 0.390         | 0           |
| C                           |          | 45.9        | .22     | 27.0 | 1.70                                   | .000633  | 69       | 6.76                | .242         | .202          | .386<br>.377  | 0           |
| Average                     |          |             |         |      | 1,65                                   |          |          | 6.77                | .242         | .200          | .384          | • • • •     |
| Cest 9:                     |          | <del></del> |         |      |                                        |          |          |                     |              |               |               |             |
| Reach A                     | 18.3     | 45.0        | 0.41    | 27.0 | 1.67                                   | 0.00173  | 66       | 7 57                | 0.015        | 0.100         | 0.000         | ^           |
| В                           |          | 42.0        | ,44     | 26.6 | 1.58                                   | .00214   |          | 7.57                | 0.215        | 0.180         | 0.680         | 0           |
| c                           |          | 38.8        | .47     | 26,2 | 1.48                                   | .00214   | 66<br>66 | 7,49<br>8.01        | .216         | .178          | .689          | 0           |
| Average                     |          |             |         |      | 1.58                                   |          |          |                     | .200         | .163          | .697          | 0           |
|                             | <u> </u> |             | • • •   |      | 1.00                                   |          |          | 7.69                | .210         | .174          | .689          |             |

Table 16. — Hydraulic elements and friction factors for experiment 7, wheat in channel FC 29 — Continued

[Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P. Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft.  $^{\circ}$ F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence

| Flow test and channel reach | Q   | Α    | V    | P    | R    | S       | °F | С    | n     | $n_k$ | VR    | %           |
|-----------------------------|-----|------|------|------|------|---------|----|------|-------|-------|-------|-------------|
| Test 10:                    |     |      |      |      |      |         |    |      |       |       |       |             |
| Reach A 18                  | 3.3 | 49.0 | 0.37 | 27.8 | 1.76 | 0.00136 | 67 | 7.64 | 0.215 | 0.183 | 0.658 | 0           |
| В 18                        | 3.3 | 48.2 | .38  | 27.3 | 1.76 | .00159  | 67 | 7.20 | .228  | .193  | .671  | 2           |
| C <u>18</u>                 | 3.3 | 47.5 | .39  | 27.4 | 1.73 | .00134  | 67 | 8,01 | .205  | .173  | .668  | 0           |
| Average                     |     |      |      |      | 1.75 |         |    | 7.62 | .216  | .183  | .666  |             |
| Test 11:                    |     |      |      |      |      |         |    |      |       |       |       | ··········· |
| Reach A 18                  | 8.4 | 53.1 | 0.35 | 28.3 | 1.88 | 0.00111 | 68 | 7.57 | 0.220 | 0.189 | 0.650 | 20          |
| В 18                        | 8.4 | 53.4 | .34  | 28.3 | 1.89 | ,00117  | 68 | 7.31 | .228  | .196  | .650  | 20          |
| C <u>18</u>                 | 8,4 | 54.4 | .34_ | 28.5 | 1.91 | .000973 | 68 | 7.84 | .213  | .184  | .646  | 20          |
| Average                     |     |      |      |      | 1.89 |         |    | 7.57 | .220  | .190  | .649  |             |
| Test 12:                    |     |      |      |      |      |         |    |      |       |       | ·     | ·           |
| Reach A 37                  | 7.2 | 58.5 | 0.64 | 29.0 | 2.02 | 0.00229 | 66 | 9.35 | 0.181 | 0.159 | 1.28  | 60          |
| B 37                        | 7.2 | 52.9 | .70  | 28.0 | 1.89 | .00289  | 66 | 9.52 | .175  | .152  | 1.33  | 50          |
| C <u>37</u>                 | 7.2 | 44.0 | .85  | 27.0 | 1.63 | .00407  | 66 | 10.4 | .157  | .132  | 1.38  | 50          |
| Average                     |     |      |      |      | 1.85 |         |    | 9.76 | .171  | .148  | 1.33  |             |

TABLE 17.—Stand counts and stem heights for wheat before and after tests in channel FC 30, experiment 7

| Reach <sup>1</sup> No. rows  A 33 B 33 C 34 |    | No.                         |                             | t before<br>sts                                     | Height after<br>tests       |                                                     |  |
|---------------------------------------------|----|-----------------------------|-----------------------------|-----------------------------------------------------|-----------------------------|-----------------------------------------------------|--|
| Reach                                       |    | stems per<br>foot of<br>row | Average<br>stem<br>(inches) | Average<br>tallest<br>stem <sup>2</sup><br>(inches) | Average<br>stem<br>(inches) | Average<br>tallest<br>stem <sup>2</sup><br>(inches) |  |
| A                                           | 33 | 52                          | 33                          | 39                                                  | 39                          | 44                                                  |  |
| В                                           | 88 | 54                          | 35                          | 43                                                  | 39                          | 44                                                  |  |
| C                                           | 34 | 51                          | 34                          | 43                                                  | 40                          | 44                                                  |  |
| Average for channel                         | 33 | 52                          | 34                          | 42                                                  | 39                          | 44                                                  |  |

<sup>&</sup>lt;sup>1</sup> Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

Nineteen tests, ranging in discharge from 3.2 to 58.8 ft<sup>3</sup>/s, were run. Three sill heights were set for each flow rate, except for the smaller and larger flows. The hydraulic elements and friction factors for the experiment are given in table 18. The Manning n values for the tests are plotted against the corresponding values of VR in figure 26.

#### Experiment 2

#### Sorghum in channel FC 29

'Redlan Kafir' sorghum was drilled in 40-inch rows. When the tests were begun, the plants were in full seed head, but the leaves were still green. The flow-retarding properties of this (Continued on page 30.)

<sup>&</sup>lt;sup>2</sup> The height of the tallest stem was measured at each of several sampling points (usually 12) in each reach. The average of these measurements is the "average tallest stem."

Table 18. — Hydraulic elements and friction factors for experiment 7, wheat in channel FC 30 [Q. Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft.  $^{\circ}$ F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_h$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

|                             |         |             |      |      |       |                                        |                                        |      |       | . ,,-        |       |          |
|-----------------------------|---------|-------------|------|------|-------|----------------------------------------|----------------------------------------|------|-------|--------------|-------|----------|
| Flow test and channel reach | Q       | A           | V    | P    | R     | S                                      | °F                                     | C    | n     | $n_k$        | VR    | %        |
| Test 1:                     |         |             |      |      |       |                                        |                                        |      |       |              |       |          |
| Reach A                     | 3.15    | 17.4        | 0.18 | 23.6 | 0.738 | 0.00143                                | 66                                     | 5.57 | 0.254 | 0.172        | 0.134 | 0        |
| В                           |         | 17.4        | .18  | 23.2 | .748  | .00156                                 | 66                                     | 5.30 | .267  | .181         | .135  | 0        |
| C                           |         | 12.4        | .25  | 22.3 | .556  | .00267                                 | 66                                     | 6.60 | .205  | .132         | .141  | 0        |
| Average                     |         |             |      |      | .681  |                                        |                                        | 5.82 | .242  | .162         | .137  |          |
| Test 2:                     |         |             |      |      |       |                                        |                                        |      |       |              |       |          |
| Reach A                     | 3.16    | 18.0        | 0.18 | 23.7 | 0.760 | 0.00133                                | 67                                     | 5.50 | 0.258 | 0.176        | 0.133 | 0        |
| В                           | 3.16    | 18.4        | .17  | 23.5 | .785  | .00155                                 | 67                                     | 4.92 | .292  | .198         | .135  | 0        |
| C                           | 3.16    | 14.1        | .22  | 22.7 | .621  | .00210                                 | 67                                     | 6.23 | .221  | .145         | .140  | 0        |
| Average                     |         |             |      |      | .722  |                                        |                                        | 5.55 | .257  | .173         | .136  |          |
| Test 3:                     |         |             |      |      |       |                                        |                                        |      |       |              |       |          |
| Reach A                     |         | 12.4        | 0.15 | 22.6 | 0.550 | 0.00128                                | 74                                     | 5.62 | 0.240 | 0.151        | 0.082 | 0        |
| В                           | 1.86    | 12.8        | .14  | 22.2 | .577  | .00135                                 | 74                                     | 5.19 | .262  | .166         | .084  | 0        |
| c                           | 1.86    | 9.28        | .20  | 21.7 | .427  | .00206                                 | 74                                     | 6,74 | .192  | .117         | .085  | 0        |
| Average                     |         |             |      | •••  | ,518  |                                        |                                        | 5.85 | .231  | .145         | .084  | ···      |
| Test 4:                     |         |             |      |      |       |                                        |                                        |      |       |              |       |          |
| Reach A                     | 1.85    | 13.5        | 0.14 | 23.0 | 0,588 | 0.00102                                | 71                                     | 5.59 | 0.244 | 0.156        | 0.081 | 0        |
| В                           | 1.85    | 15.1        | .12  | 22.7 | .665  | .000953                                | 71                                     | 4.85 | .288  | .186         | .081  | 0        |
| C                           | 1.85    | 13.8        | .13  | 22.7 | .611  | .00107                                 | 71_                                    | 5,24 | .261  | .168         | .082  | 0        |
| Average                     |         | •••         |      |      | .621  |                                        |                                        | 5.23 | ,264  | .170         | .081  |          |
| Test 5:                     |         |             |      | ··   |       |                                        |                                        |      |       |              |       |          |
| Reach A                     | 1,58    | 18.2        | 0.09 | 23.9 | 0.761 | 0.000587                               | 75                                     | 4.09 | 0.349 | 0.231        | 0.066 | 0        |
| В                           | 1.58    | 22.1        | .07  | 24.1 | .917  | .000133                                | 75                                     | 6.45 | .225  | .160         | .065  | 0        |
| C                           | 1.58    | 23.4        | .07  | 24.8 | .944  | .000253                                | 75                                     | 4.35 | .339  | .237         | .063  | 0        |
| Average                     |         | •••         |      |      | .874  |                                        |                                        | 4.96 | .304  | .209         | .065  |          |
| Test 6:                     |         |             |      |      |       |                                        |                                        |      |       |              |       |          |
| Reach A                     | 2.55    | 19.8        | 0.13 | 24.0 | 0.825 | 0.000860                               | 75                                     | 4.84 | 0.297 | 0.204        | 0.108 | 0        |
| В                           | 2.55    | 22.1        | .12  | 24.0 | .919  | .000833                                | 75                                     | 4.19 | .350  | .245         | .107  | 0        |
| C                           | 2.55    | 21.5        | .12  | 24.5 | .881  | .000727                                | <b>7</b> 5                             | 4.70 | .312  | .216         | .105  | 0        |
| Average                     | • • • • |             |      |      | .875  |                                        |                                        | 4.58 | .320  | .222         | .107  |          |
| Test 7:                     |         | <del></del> |      |      |       | ······································ |                                        |      |       |              |       |          |
| Reach A                     | 2.95    | 27.7        | 0.11 | 25.0 | 1.11  | 0.000440                               | 73                                     | 5.10 | 0.314 | 0.220        | 0.119 | 0        |
| В                           | 2.95    | 31.4        | .09  | 25.5 | 1.23  | .000433                                | 73                                     | 4.06 | .373  | .286         | ,116  | 0        |
| C                           | 2.95    | 32.4        | .09  | 25.9 | 1.25  | .000380                                | 73                                     | 4.18 | .370  | .280         | .114  | 0        |
| Average                     |         |             |      |      | 1.20  |                                        |                                        | 4.45 | .352  | .262         | .116  |          |
| Test 8:                     |         |             |      |      |       |                                        |                                        |      |       |              |       |          |
| Reach A                     | 5.34    | 29.8        | 0.18 | 25.5 | 1.17  | 0.00115                                | 69                                     | 4.91 | 0.313 | 0.234        | 0.211 | 0        |
| В                           |         | 30.6        | .18  | 25.6 | 1.19  | .00131                                 | 69                                     | 4.43 | ,347  | .260         | ,208  | 0        |
| C                           |         | 28.1        | .19  | 25.3 | 1.11  | .00134                                 | 69                                     | 4.93 | .310  | .228         | .211  | 0        |
| Average                     |         |             |      |      | 1.16  |                                        |                                        | 4.76 | .323  | .241         | .210  |          |
| Test 9:                     |         |             |      |      |       | · · · · · · · · · · · · · · · · · · ·  | ······································ |      |       |              |       |          |
| Reach A                     | 5.45    | 37.2        | 0.15 | 26.6 | 1.40  | 0.000867                               | 70                                     | 4.18 | 0.378 | 0.295        | 0.204 | 0        |
| В                           |         | 39.1        | .14  | 26.6 | 1.47  | .000867                                | 70                                     | 3.90 | .410  | .323         | .204  | 0        |
| Č                           |         | 38.3        | .14  | 26.4 | 1.45  | .000867                                | 70                                     | 4.01 | .399  | .323<br>.312 | .204  | 0        |
| Average                     |         |             |      |      | 1.44  |                                        |                                        | 4.03 | .396  | .310         | ,205  |          |
| <del>-</del> ···            |         |             |      |      |       |                                        |                                        |      |       |              |       | <u> </u> |

Table 18. — Hydraulic elements and friction factors for experiment 7, wheat in channel FC 30 — Continued

[Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and           |                                        |             | $\frac{D}{p}$  | R              | s        | op.      | С            | n            | $n_k$        | vr.           | %        |
|-------------------------|----------------------------------------|-------------|----------------|----------------|----------|----------|--------------|--------------|--------------|---------------|----------|
| channel reach Q         | A                                      |             | I"             |                | - D      |          |              |              | R            |               |          |
| Test 10:                |                                        | 0.10        | 07.0           | 1.05           | 0.000550 | 71       | 4.00         | 0.405        | 0.331        | 0.200         | 0        |
| Reach A 5.53            | 45.8                                   | 0.12        | $27.8 \\ 28.0$ | 1.65 $1.75$    | 0.000553 | 71<br>71 | 3.65         | .448         | .372         | .198          | 0        |
| B 5.53<br>C 5.53        | 49.0<br>49.6                           | .11<br>.11  | 27.8           | 1.78           | .000347  | 71       | 3.91         | 422          | .350         | .199          | ő        |
| Average                 | 19.0                                   |             | 21.0           | 1.73           |          |          | 3,85         | .425         | .351         | .199          |          |
|                         |                                        |             |                |                |          |          |              |              |              | <u> </u>      | 7        |
| Test 11:                | 48,8                                   | 0.21        | 28.0           | 1.74           | 0.00129  | 68       | 4.41         | 0.373        | 0.309        | 0.364         | 5        |
| Reach A 10.2<br>B 10.2  | 48.6                                   | .21         | 28.0           | 1.73           | .00152   | 68       | 4.09         | .402         | .332         | .363          | 5        |
| $C \dots 10.2$          | 44.7                                   | .23         | 27.3           | 1.64           | .00167   | 68       | 4.36         | .373         | .304         | .374          | 5        |
| Average                 |                                        |             |                | 1.70           |          |          | 4.29         | .383         | .315         | .367          |          |
| Test 12:                | ······································ |             |                |                |          |          |              |              |              |               |          |
| Reach A 10.2            | 55.3                                   | 0.18        | 29.0           | 1.90           | 0.000947 | 68       | 4.34         | 0.384        | 0.326        | 0.350         | 10       |
| B 10.2                  | 56.7                                   | .18         | 29.0           | 1.95           | .00105   | 68       | 3.98         | .421         | .359         | .351          | 10       |
| C <u>10.2</u>           | 55.0                                   | .18         | 28.4           | 1.94           | .000993  | 68       | 4.21         | .397         | .339         | .359          | 10       |
| Average                 |                                        |             |                | 1.93           |          |          | 4,18         | .401         | .341         | .353          |          |
| Test 13:                |                                        |             |                |                |          |          |              |              |              |               |          |
| Reach A 10.2            | 63.9                                   | 0.16        | 30.2           | 2.11           | 0.000633 | 68       | 4.38         | 0.387        | 0.339        | 0.338         | 115      |
| $\mathbf{B} \dots 10.2$ | 66.7                                   | .15         | 30.6           | 2.18           | .000680  | 68       | 3,98         | .428         | .378         | .334          | 115      |
| C <u>10.2</u>           | 66.5                                   | .15         | 30.0           | 2.21           | .000607  | 68       | 4.18         | .410         | <u>.362</u>  | .338_         | 115      |
| Average                 |                                        | ,           |                | 2.17           |          |          | 4.18         | 4.08         | .360         | .337          | • • •    |
| Test 14:                |                                        |             |                |                |          |          |              |              |              |               |          |
| Reach A 20.3            | 68.0                                   | 0.30        | 30.6           | 2.22           | 0.00129  | 68       | 5.58         | 0.306        | 0.273        | 0.664         | 80       |
| В 20.3                  | 67.8                                   | .30         | 30.7           | 2.21           | ,00144   | 68       | 5.30         | ,322         | .287         | .661          | 60       |
| C <u>20.3</u>           | 63.9                                   | .32         | 29.6           | 2.16           | .00151   | 68       | 5.57         | .307         | .271         | .687          | 50       |
| Average                 | • • • •                                |             | • • •          | 2.20           |          | <u> </u> | 5.48         | .312         | .277         | .671          |          |
| Test 15:                |                                        |             |                |                |          |          |              |              |              | 0.000         | 00       |
| Reach A 20.3            | 76.0                                   | 0.27        | 31.8           | 2.39           | 0.000960 | 70       | 5.57         | 0.309        | 0.283        | 0,638<br>.629 | 98<br>80 |
| В 20.3                  | 77.4                                   | .26         | 32.3           | 2.40           | .00103   | 70       | 5.26<br>5.51 | .330<br>.314 | .300<br>.287 | .651          | 60       |
| C <u>20,3</u>           | 75,2                                   | .27         | 31.2           | 2.41           | .000993  | 70       | 5.51<br>5,45 | .318         | .290         | .639          |          |
| Average                 | <u> </u>                               | •••         | • • • •        | 2.40           |          | 111      | 5,48         | .310         | .200         | .000.         |          |
| Test 16:                |                                        |             |                |                |          | 00       | F 00         | 0.004        | 0.273        | 0.622         | 100      |
| Reach A 20.3            | 83.8                                   | 0.24        | 32.6           | 2.57           | 0.000640 | 69<br>69 | 5.96<br>5.60 | 0.294 $.312$ | .291         | .603          | 95       |
| B 20.3                  | 87.2                                   | .23<br>.24  | $33.6 \\ 32.9$ | $2.59 \\ 2.62$ | .000667  | 69       | 5.86         | .300         | .280         | .616          | 95       |
| C <u>20.3</u>           | 86.3                                   |             | 34,8           | 2,59           |          | • • • •  | 5.81         | .302         | ,281         | .614          |          |
| Average                 | ••••                                   |             | =====          |                |          |          |              |              | <u></u>      |               |          |
| Test 17:                | 76.0                                   | 0.45        | 91.5           | 2.42           | 0.00123  | 69       | 8.26         | 0.210        | 0.193        | 1.09          | 100      |
| Reach A 34.3<br>B 34.3  | 76.0<br>76.0                           | 0.45<br>,45 | 31.5<br>32.0   | 2.37           | .00136   | 69       | 7.94         | .218         | .199         | 1.07          | 100      |
| C <u>34.3</u>           | 72.3                                   | .47         | 30,8           | 2,35           | .00139   | 69       | 8.29         | .209         | ,190         | 1,11          | 100      |
| Average                 |                                        | • • •       |                | 2.38           |          |          | 8.16         | .212         | .194         | 1.09          | • • •    |
| Test 18:                |                                        |             |                | •              |          |          |              |              |              |               |          |
| Reach A 34.4            | 83.8                                   | 0.41        | 32.9           | 2,55           | 0.000927 | 69       | 8.45         | 0.207        | 0.193        | 1.05          | 100      |
| В 34.4                  | 86.0                                   | .40         | 33.4           | 2.57           | .000947  | 69       | 8.11         | .216         | ,202         | 1.03          | 100      |
| C <u>34.4</u>           | 83.8                                   | .41         | 32,4           | 2,59           | .000940  | 69       | 8.30         | .212         | ,198         | 1,06          | 100      |
| Average                 | • • •                                  |             | • • •          | 2.57           |          |          | 8.29         | ,212         | .198         | 1,05          | • • • •  |
| ******                  |                                        |             |                |                |          |          |              |              |              |               |          |

See footnote at end of table.

Table 18. — Hydraulic elements and friction factors for experiment 7, wheat in channel FC 30 — Continued

[Q. Discharge, ft<sup>2</sup>/s. A. Area, ft<sup>2</sup>. V. Velocity, ft/s. P. Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft.  $^{\circ}$ F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach Q | Α    | V    | Р    | R    | s       | °F | С    | n     | $n_k$ | VR   | %   |
|-------------------------------|------|------|------|------|---------|----|------|-------|-------|------|-----|
| Test 19:                      | •    |      |      |      |         |    |      |       |       |      |     |
| Reach A 58.8                  | 76.7 | 0.77 | 31,8 | 2.41 | 0.00167 | 68 | 12.1 | 0.143 | 0.133 | 1.85 | 100 |
| B 58.8                        | 74.4 | .79  | 31.8 | 2.34 | .00193  | 68 | 11.8 | .147  | .135  | 1.85 | 100 |
| C <u>58.8</u>                 | 68.1 | .86  | 30.3 | 2.25 | .00218  | 68 | 12.3 | .139  | .127  | 1.94 | 100 |
| Average                       |      |      |      | 2.33 |         |    | 12.1 | .143  | .132  | 1.88 |     |

<sup>1</sup> Estimated.

stand were at a maximum. The stand was very good, with an average height of 43 inches. A few plants were as short as 16 inches, and others were as tall as 54 inches. Table 19 gives additional height data and stand counts. Figure 27 shows reach C during a flow of 38 ft<sup>3</sup>/s. Figure 28 shows a typical plant taken from the channel.

Nine flow tests, ranging in discharge rate from 6.6 to 38 ft<sup>3</sup>/s, were run. One sill height was used with each of the first seven flow rates, and two sill heights were used with the highest discharge rate, making nine tests in all. Velocities were measured with a Bentzel tube in a single vertical in the center of the channel during a test flow of 38 ft<sup>3</sup>/s. The hydraulic data and friction factors for the experiment

Table 19.—Stand counts and plant heights for 'Redlan Kafir' sorghum in channel FC 29, experiment 2

|         |                                      |                                    | Height                                  |                              |                                                      |  |  |  |  |  |
|---------|--------------------------------------|------------------------------------|-----------------------------------------|------------------------------|------------------------------------------------------|--|--|--|--|--|
| Reach   | Reach <sup>1</sup> No. rows  A 7 B 7 | No. stems<br>per 10 feet<br>of row | Average<br>leafy<br>portion<br>(inches) | Average<br>plant<br>(inches) | Average<br>tallest<br>plant <sup>2</sup><br>(inches) |  |  |  |  |  |
| A       | 7                                    | 20                                 | 30                                      | 42                           | 47                                                   |  |  |  |  |  |
| В       | 7                                    | 22                                 | 32                                      | 43                           | 50                                                   |  |  |  |  |  |
| C       | 7                                    | 26                                 | 30                                      | 44                           | 54                                                   |  |  |  |  |  |
| Average | for                                  |                                    |                                         |                              |                                                      |  |  |  |  |  |
| channe  |                                      | 23                                 | 31                                      | 43                           | 50                                                   |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup>Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)



FIGURE 26.—Relation of Manning n to product of velocity and hydraulic radius (VR) for flow tests on channel FC 30, experiment 7.



FIGURE 27.—'Redlan Kafir' sorghum in reach C of channel FC 29 during flow of 38 ft<sup>3</sup>/s with depth of about 1.6 feet, experiment 2.

<sup>&</sup>lt;sup>2</sup> The height of the tallest plant was measured at 7 sampling points in each reach. The average of these measurements is the "average tallest plant."

Table 20. — Hydraulic elements and friction factors for experiment 2, 'Redlan Kafir' sorghum in channel FC 29

[Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft.  $^{\circ}$ F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach | Q                                       | Α              | v           | P              | R                   | S                                       | °F       | С            | n             | $n_k$ | VR                  | %        |
|-----------------------------|-----------------------------------------|----------------|-------------|----------------|---------------------|-----------------------------------------|----------|--------------|---------------|-------|---------------------|----------|
| Test 1:                     |                                         |                |             |                |                     |                                         |          |              |               |       |                     |          |
| Reach A                     |                                         | 9.14           | 0.72        | 21.5           | 0.426               | 0.00106                                 | 85       | 33.9         | 0.038         | 0.030 | 0.307               | 0        |
| В                           |                                         | 10.4           | .63         | 21.4           | .487                | .000907                                 | 85       | 30.1         | .044          | .035  | .308                | 0        |
| C                           | . 6.59                                  | 11.1           | .59         | 21.5           | .517                | .000713                                 | 85       | 30.8         | .043          | .034  | 306                 | 0        |
| Average                     |                                         | • • •          |             |                | .477                |                                         | • • •    | 31.6         | .042          | .033  | .307                |          |
| Test 2:                     |                                         |                |             |                |                     |                                         |          |              |               |       |                     |          |
| Reach A                     |                                         | 12.1           | 0.77        | 21.8           | 0.553               | 0.000993                                | 85       | 32.8         | 0.041         | 0.034 | 0.424               | 0        |
| В                           |                                         | 12.9           | .72         | 21.3           | .606                | .00109                                  | 85       | 27.8         | .049          | .039  | .434                | 0        |
| C                           |                                         | 12.8           | .72         | 21.8           | .587                | .00104                                  | 85       | 29.2         | .047          | .038  | .423                | 0        |
| Average                     | • • • • • • • • • • • • • • • • • • • • | • • • •        |             | • • • •        | .582                | * * * * * * * *                         | • • •    | 29.9         | .046          | .037  | .427                |          |
| Test 3:                     |                                         |                |             |                |                     |                                         |          |              |               |       |                     | _        |
| Reach A                     |                                         | 15.8           | 0.88        | 22.6           | 0.696               | 0.00112                                 | 83       | 31.6         | 0.044         | 0.037 | 0.614               | 0        |
| В                           |                                         | 16.4           | .85         | 22.5           | .729                | .00125                                  | 83       | 28.1         | .050          | .041  | .619                | 0        |
| . C                         |                                         | 15.7           | .88         | 22.4           | .701                | .00131                                  | 83       | 29.2         | .048          | .040  | .620                | 0        |
| Average                     | • • • •                                 | • • •          | • • • •     |                | .709                | * * * * * * * * * * * * * * * * * * * * |          | 29.6         | .047          | .039  | .618                | • • •    |
| Test 4:                     |                                         |                |             |                |                     |                                         |          |              |               |       |                     |          |
| Reach A                     |                                         | 22.1           | 0.95        | 23.7           | 0.931               | 0.00146                                 | 83       | 25.8         | 0.057         | 0.048 | 0.886               | 0        |
| В                           |                                         | 21.6           | .98         | 23.4           | .924                | .00159                                  | 83       | 25.4         | ,058          | .048  | .901                | 0        |
| C                           | •                                       | 19,4           | 1.08        | 23.1           | .840                | .00178                                  | 83       | 27.9         | .051          | .043  | .907                | 0        |
| Average                     | · · <u> </u>                            |                | • • • •     |                | .898                |                                         | • • •    | 26.4         | .055          | ,046  | .898                | • • •    |
| Test 5:                     |                                         |                |             |                |                     |                                         |          |              |               |       |                     | _        |
| Reach A                     |                                         | 26.8           | 0.84        | 24.4           | 1.10                | 0.00123                                 | 83       | 22.8         | 0.067         | 0.056 | 0.923               | 0        |
| B                           |                                         | 26.8           | .84         | 24.1           | 1.11                | .00139                                  | 83       | 21.3         | .071          | .060  | .931                | 0        |
| C                           |                                         | 25.6           | .88         | 24.1           | 1.07                | .00140                                  | 83       | 22.7         | .066          | .058  | .939                | 0        |
| Average                     |                                         | •••            | •••         |                | 1.09                |                                         | • • •    | 22,3         | .068          | .058  | .931                |          |
| Test 6:                     |                                         |                |             |                |                     |                                         |          | 20.0         | 2.085         |       | 1.00                | _        |
| Reach A                     |                                         | 31.0           | 0.87        | 25.0           | 1,24                | 0.00144                                 | 83       | 20.6         | 0.075         | 0.064 | 1.08                | 0        |
| В                           |                                         | 30.1           | .90         | 24.6           | 1.22                | .00166                                  | 83       | 20.0         | .077          | .065  | 1.10                | 0        |
| C                           |                                         | 27,9           | .97         | 24.3           | 1.15<br>1.20        | .00169                                  | 83       | 22.0         | .069<br>.074  | .059  | $\frac{1.12}{1.10}$ | <u> </u> |
| Average                     | · · <u> </u>                            |                | • • •       | • • •          | 1.40                |                                         | • • •    | 20.0         | ,014          | .000. | 1,10                | • • • •  |
| Test 7:                     |                                         |                | 0.00        | 05.0           | 1.05                | 0.00100                                 | 00       | 10.1         | 0.000         | 0.071 | 1.24                | 0        |
| Reach A                     |                                         | 35.2           | 0.90        | 25.6           | 1.37                | 0.00163<br>.00189                       | 83<br>83 | 19.1<br>19.0 | 0.082<br>.082 | .070  | 1.24                | 0        |
| B                           |                                         | $33.4 \\ 30.2$ | .95<br>1.06 | $25.1 \\ 24.7$ | $\frac{1.33}{1.22}$ | .00103                                  | 83       | 21.6         | .071          | .061  | 1.29                | 0        |
| Average                     |                                         |                |             | 44.1           | 1.31                |                                         | • • • •  | 19.9         | .078          | .067  | 1.27                |          |
|                             |                                         | ***            |             |                | 1.01                |                                         |          |              | 77            |       |                     |          |
| Test 8:                     | 00.0                                    |                | 0.05        | 00.7           | 1 00                | 0.00167                                 | 02       | 16.0         | 0.102         | 0.089 | 1.43                | 0        |
| Reach A                     |                                         | 44.7           | 0.85        | 26.7           | 1.68                | .00187                                  | 83<br>83 | 16.3         | .099          | .086  | 1.44                | ő        |
| B<br>C                      |                                         | 42.6           | .89<br>.96  | 26.5<br>26.0   | 1.61<br>1.51        | .00190                                  | 83       | 18.0         | .089          | .077_ | 1.46                | ō        |
| Average                     |                                         | 39.4           |             |                | 1,60                |                                         | • • • •  | 16,8         | .097          | .084  | 1.44                |          |
|                             | · · <del>· · · ·</del>                  |                | •••         |                |                     |                                         |          |              |               | -     |                     |          |
| Test 9:                     | 00.0                                    | 40.0           | 0.70        | 07.6           | 1 01                | 0.00148                                 | 83       | 14.7         | 0,113         | 0.099 | 1.38                | 0        |
| Reach A                     |                                         | 49.9           | 0.76<br>.79 | $27.6 \\ 27.2$ | 1.81 $1.77$         | .00148                                  | 83       | 14.5         | .114          | .100  | 1.39                | o        |
| В<br>С                      |                                         | $48.3 \\ 46.2$ | .82         | 27.0           | 1.74                | .00167                                  | 83       | 15.4         | .106          | .094  | 1.41                | a        |
| Average                     |                                         |                |             |                | 1.77                |                                         |          | 14.9         | .111          | .098  | 1,39                |          |
|                             | · · · · · · · · · · · · · · · · · · ·   |                | •••         | • • • •        |                     |                                         |          |              |               |       |                     |          |

are given in table 20. The Manning n values are plotted against the corresponding values of the hydraulic radius (R) in figure 29.

#### Sorghum in channel FC 30

'Hegari' sorghum was planted in 40-inch rows. When the tests were begun, it was tall and green and had probably acquired maximum flow-retarding properties. The plant height averaged 58 inches, with a minimum of 14 inches and a maximum of 80 inches. Table 21 gives additional height data and stand counts.



FIGURE 28.—Typical 'Redlan Kafir' sorghum plant from channel FC 29, experiment 2. (Rows run parallel to flow.)



FIGURE 29.—Relation of Manning n to hydraulic radius (R) for flow tests on channel FC 29, experiment 2.

Figure 30 shows the channel during a flow of 38 ft<sup>3</sup>/s. Figure 31 shows a typical plant cluster from the channel.

Nine flow tests, ranging in discharge rate from 7.0 to 60.7 ft<sup>3</sup>/s, were run. One sill height was used with seven of the flows, and two sill heights were used with a flow of 21 ft<sup>3</sup>/s, making nine tests in all. Table 22 gives the hydraulic elements and friction factors for the experiment. The Manning n values are plotted against the corresponding values of the hydraulic radius (R) in figure 32.

## Experiment 4

# Sorghum in channel FC 30

'Hegari' sorghum was planted in 20-inch rows. When the tests were begun, it was tall and



FIGURE 30.—'Hegari' sorghum in reach A of channel FC 30 during flow of 38 ft³/s, experiment 2. (Crew is making measurements of water-surface elevation and water's edge location.)

Table 21.—Stand counts and plant heights for 'Hegari' sorghum in channel FC 30, experiment 2

| Reach <sup>1</sup>  | No.<br>rows | No. stems<br>per 10 feet<br>of row | Average<br>plant<br>height<br>(inches) | Average<br>tallest<br>plant <sup>2</sup><br>(inches) |
|---------------------|-------------|------------------------------------|----------------------------------------|------------------------------------------------------|
|                     | 7           | 41                                 | 52                                     | 62                                                   |
| В                   | 7           | 44                                 | 61                                     | 76                                                   |
| C                   | 7           | 40                                 | 60                                     | 76                                                   |
| Average for channel | 7           | 42                                 | 58                                     | 71                                                   |

<sup>&</sup>lt;sup>1</sup> Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

<sup>&</sup>lt;sup>2</sup> The height of the tallest plant was measured at 7 sampling points in each reach. The average of these measurements is the "average tallest plant."

TABLE 22. — Hydraulic elements and friction factors for experiment 2, 'Hegari' sorghum in channel FC 30 |Q|. Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_h$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence

| Flow test and channel reach | Q                                       | Α            | V           | P              | R            | S                 | °I,            | С                   | n             | $n_k$         | VR                             | %          |
|-----------------------------|-----------------------------------------|--------------|-------------|----------------|--------------|-------------------|----------------|---------------------|---------------|---------------|--------------------------------|------------|
| Test 1:                     | . ,                                     |              |             |                |              |                   |                |                     |               |               |                                |            |
| Reach A                     | . 6.96                                  | 11.0         | 0.63        | 22.4           | 0.492        | 0.00109           | 80             | 27.2                | 0.049         | 0.038         | 0.310                          | 0          |
| В                           | . 6.96                                  | 11.4         | .61         | 22.5           | ,509         | .000978           | 80             | 27.3                | .049          | .038          | .309                           | 0          |
| C                           | . <u>6.96</u>                           | 10.4         | 67          | 22.2           | 469          | .000973           | 80             | 31.3                | .042          | .033          | .313                           | 0          |
| Average                     | ·                                       |              |             | <u> </u>       | .490         |                   | •••            | 28.6                | .047          | .036          | .311                           | • • •      |
| Test 2:                     |                                         |              |             | _              |              |                   |                |                     |               |               |                                |            |
| Reach A                     | . 9.20                                  | 13.8         | 0.66        | 22.9           | 0.605        | 0.00105           | 80             | 26.3                | 0.052         | 0.041         | 0.402                          | 0          |
| В                           |                                         | 14.2         | .65         | 22.9           | .620         | .00 <b>1</b> 05   | 80<br>80       | $25.4 \\ 30.3$      | .054          | .043          | .402                           | 0          |
| C                           |                                         | 13.1         | .70         | 22.7           | .577<br>.601 |                   |                | 27,3                | .045          | .036          | .406                           | 0          |
| Average                     | ·                                       |              | •••         |                | .001         |                   |                | 21,0                | .000          | .040          | .403                           | • • •      |
| Test 3:                     |                                         |              |             | <u></u>        |              | 0.00000           | 04             | 0.4.0               | 0.000         |               |                                | _          |
| Reach A                     |                                         | 20.2         | 0.66        | 23.8           | 0,848        | 0.000900          | 82             | 24.0                | 0.060         | 0.049         | 0.561                          | 0          |
| B                           |                                         | 21.1         | .63         | 23.8           | ,883<br>,866 | .000873           | 82<br>82       | $\frac{22.8}{26.1}$ | .064 $.056$   | .052<br>.046  | .559<br>.561                   | 0          |
| C                           |                                         | 20.6         | .65         | 23.8           | ,866         |                   | • • • •        | 24.3                | .060          | .049          | .560                           | 0          |
| Average                     | • • • • • • • • • • • • • • • • • • • • | • • • •      | <u> </u>    |                | ,600         | 1 + 4 + + 1       |                | 2'(,()              | .000          | .049          | .300                           | •••        |
| Test 4:                     |                                         |              |             |                | - 40         | 0.000000          | 0.1            | 01.0                | 0.000         | 0.050         | 0.000                          | _          |
| Reach A                     |                                         | 27.9         | 0.72        | 25.0           | 1.12         | 0.000993          | 81             | 21.6                | 0.070         | 0.059         | 0.809                          | 0          |
| В                           |                                         | 28.6         | .70         | 25.2           | 1.14<br>1.12 | .000993           | 81<br>81       | $21.0 \\ 23.2$      | .073<br>.066  | .061<br>.055  | . <b>80</b> 4<br>. <b>81</b> 8 | 0          |
| C                           |                                         | 27.6         | .73         | 24.7           | 1.13         |                   |                | 21.9                | .070          | .058          | .810                           |            |
| Average                     | ·                                       |              | ···         |                | 1.40         | 1                 |                | 21.0                | .010          | .000          | .010.                          |            |
| Test 5:                     |                                         |              |             |                |              | 0.00110           | 00             | 10.0                | 0.001         | 0.001         | 1.04                           |            |
| Reach A                     |                                         | 35.7         | 0.76        | 26.0           | 1.37         | 0.00118<br>.00117 | 80<br>80       | 18.8<br>18.9        | 0.084 $0.083$ | 0.071<br>.071 | 1.04<br>1.04                   | 0<br>0     |
| В<br>С                      |                                         | 35.6<br>33.6 | .76<br>.80  | $26.0 \\ 25.5$ | 1.37 $1.32$  | .00117            | 80             | 20.8                | .075          | .064          | 1.04                           | 0          |
| Average                     |                                         |              | •••         |                | 1.35         |                   |                | 19.5                | .081          | .069          | 1.05                           | <u>-</u> - |
|                             |                                         |              |             |                |              |                   |                |                     |               |               |                                |            |
| Test 6:                     | 22.0                                    | 40.0         | 0.74        | 000            | 1.78         | 0.00154           | 81             | 14,2                | 0.116         | 0.102         | 1,33                           | 0          |
| Reach A B                   |                                         | 49.8<br>48.6 | 0.74<br>.76 | $28.0 \\ 27.7$ | 1.75         | .00141            | 81             | 15.4                | .107          | .094          | 1.34                           | 0          |
| C                           |                                         | 45.3         | .82         | 27.0           | 1.68         | .00141            | 81             | 17.3                | .094          | .083          | 1.38                           | 0          |
| Average                     |                                         | 40.0         |             |                | 1.74         | 100101            | <del>7.0</del> | 15.6                | .106          | .093          | 1,35                           |            |
|                             | · — —                                   |              |             |                |              |                   |                | <del></del>         |               |               |                                |            |
| Test 7:<br>Reach A          | 49.0                                    | 68.2         | 0.72        | 30.5           | 2,24         | 0.00159           | 79             | 12,1                | 0.140         | 0.129         | 1.61                           | O          |
| В                           |                                         | 65.8         | .74         | 29.8           | 2.21         | .00171            | 79             | 12,1                | .140          | .129          | 1.64                           | ō          |
| C                           |                                         | 61.2         | .80         | 29.1           | 2.10         | ,00150            | 79             | 14.2                | .117          | .108_         | 1.69                           | 0          |
| Average                     |                                         |              |             |                | 2.18         |                   |                | 12.8                | .132          | .122          | 1.65                           |            |
| Test 8:                     |                                         |              |             |                | WALL 1995    |                   |                |                     | *             |               |                                | -          |
| Reach A                     | . 60.7                                  | 83.4         | 0.73        | 32.4           | 2.57         | 0.00181           | 79             | 10,6                | 0.163         | 0.155         | 1.87                           | 1          |
| В                           |                                         | 80.1         | .76         | 32.0           | 2,50         | .00191            | 79             | 11.0                | .157          | .148          | 1.90                           | 0          |
| C                           |                                         | 73.8         | .82         | 30.9           | 2.39         | .00169            | 79             | 12.9                | .132          | .124          | 1.96                           | 0          |
| Average                     |                                         | ,            |             | <u> </u>       | 2.49         |                   |                | 11.5                | .161          | .142          | 1.91                           | • • •      |
| Test 9:                     |                                         |              |             |                |              |                   |                |                     |               |               |                                |            |
| Reach A                     | . 21.0                                  | 54.4         | 0.39        | 28.6           | 1.90         | 0.000607          | 80             | 11.4                | 0.147         | 0.128         | 0.734                          | 0          |
| В                           | . 21.0                                  | 56.7         | .37         | 28.8           | 1.97         | .000600           | 80             | 10.8                | .156          | .137          | .729                           | 0          |
| C                           |                                         | 57.0         | .37         | 28.4           | 2.00         | .000427           | 80             | 12.6                | :133          | .118          | .737                           | 0          |
| Average                     |                                         | •••          |             | • • •          | 1.96         |                   | •••            | 11.6                | .145          | .128          | .733                           | • • •      |
|                             |                                         |              |             |                |              |                   |                |                     |               |               |                                |            |

green and in full seed head. The stand was good, averaging 58 inches in height, with a minimum of 10 inches and a maximum of about 78 inches. Table 23 gives additional height data and stand counts. Figure 38 is a view of reach B of the channel, and figure 34 shows plants taken from the channel.

Nineteen tests, ranging in discharge rate from 3.8 to 61 ft<sup>3</sup>/s, were run. Three sill heights were used with each of the discharge rates with the exception of the second discharge rate, with which four sill heights were used. Table 24



FIGURE 31.—Typical 'Hegari' sorghum plants from channel FC 30, experiment 2.



FIGURE 32.—Relation of Manning n to hydraulic radius (R) for flow tests on channel FC 30, experiment 2.

gives the hydraulic data and friction factors for the tests. The Manning n values are plotted against the corresponding values of the hydraulic radius (R) in figure 35.

#### Cotton in channel FC 29

The cotton was planted lengthwise in the channel in rows 40 inches apart. When the tests were begun, the plants were green and in various stages of maturity, from blossom to boll. The stand was poor and thin, and plant height ranged from 4 to 40 inches, with an average of 21 inches. Plant width averaged



FIGURE 33.—'Hegari' sorghum in reach B of channel FC 30 during flow of 25.6 ft<sup>3</sup>/s, experiment 4. (Tall sorghum hides the water from view.)

TABLE 23.—Stand counts and plant heights for 'Hegari' sorghum in channel FC 30, experiment 4

| Reach <sup>1</sup> | No.<br>rows | No. stems<br>per 10 feet<br>of row | Average<br>plant<br>height<br>(inches) | Average<br>tallest<br>plant <sup>2</sup><br>(inches) |
|--------------------|-------------|------------------------------------|----------------------------------------|------------------------------------------------------|
| A                  | 14          | 16                                 | 52                                     | 58                                                   |
| В                  | 14          | 24                                 | 61                                     | 67                                                   |
| C                  | 14          | 20                                 | 60                                     | 67                                                   |
| Average fo         | r<br>14     | 20                                 | 58                                     | 64                                                   |

<sup>&</sup>lt;sup>1</sup> Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

<sup>&</sup>lt;sup>2</sup> The height of the tallest plant was measured at 14 sampling points in each reach. The average of these measurements is the "average tallest plant."

TABLE 24. — Hydraulic elements and friction factors for experiment 4, 'Hegari' sorghum in channel FC 30 [Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach | Q        | A           | v       | P    | R     | s                                     | °F                                     | С    | n                                       | $n_k$                                   | VR            | %                                                   |
|-----------------------------|----------|-------------|---------|------|-------|---------------------------------------|----------------------------------------|------|-----------------------------------------|-----------------------------------------|---------------|-----------------------------------------------------|
| Test 1:                     |          |             |         |      |       |                                       |                                        |      |                                         |                                         | <del></del>   |                                                     |
| Reach A                     | . 3.83   | 9.21        | 0.42    | 22.2 | 0.416 | 0.00147                               | 76                                     | 16.8 | 0.076                                   | 0.053                                   | 0 179         | 0                                                   |
| В                           |          | 8.61        | .44     | 22.0 | .393  | .00127                                | 76                                     | 19.9 | .064                                    | .046                                    | 0.173<br>.174 | 0                                                   |
| C                           | 3.83     | 6,59        | .58     | 21.8 | .303  | .00159                                | 76                                     | 26,4 | .046                                    | .034                                    | .174          | 0                                                   |
| Average                     |          |             |         |      | .371  |                                       |                                        | 21.0 | .062                                    | .044                                    | .174          | • • • •                                             |
| Test 2:                     |          |             |         |      |       |                                       |                                        | ·    |                                         |                                         |               |                                                     |
| Reach A                     | . 3.90   | 9.24        | 0.42    | 22.2 | 0.415 | 0.00151                               | 76                                     | 16.8 | 0.076                                   | 0.053                                   | 0.175         | Ú                                                   |
| В                           | . 3.90   | 8.73        | .45     | 22.0 | 396   | .00119                                | 76                                     | 20,5 | ,062                                    | .045                                    | .177          | 0                                                   |
| C                           | 3.90     | 6.96        | .56     | 21.8 | .319  | .00152                                | 76                                     | 25.4 | .048                                    | .035                                    | .178          | 0                                                   |
| Average                     |          |             |         |      | .377  |                                       |                                        | 20.9 | .062                                    | .044                                    | .177          | <u></u>                                             |
| Test 3:                     |          |             |         |      |       |                                       |                                        |      |                                         |                                         |               |                                                     |
| Reach A                     | 3.92     | 11.2        | 0.35    | 22.6 | 0.496 | 0.000953                              | 76                                     | 16.1 | 0.082                                   | 0.058                                   | 0.174         | 0                                                   |
| В                           |          | 12.9        | .30     | 22.6 | .570  | .000473                               | 76                                     | 18.4 | .073                                    | .054                                    | .173          | o                                                   |
| C                           | 3.92     | 14.4        | .27     | 23.3 | .616  | .000280                               | 76                                     | 20.7 | .066                                    | .050                                    | .168          | 0                                                   |
| Average                     | <u> </u> | • • •       |         | •••  | .561  | ,                                     |                                        | 18.4 | .074                                    | .054                                    | .172          | • • • •                                             |
| Test 4:                     |          |             |         |      |       |                                       | ****                                   |      |                                         | *************************************** | ****          |                                                     |
| Reach A                     | 10.2     | 16.9        | 0.61    | 23.6 | 0.715 | 0.00155                               | 76                                     | 18.2 | 0.077                                   | 0.060                                   | 0.433         | 0                                                   |
| В                           | 10.2     | 16.1        | .63     | 23.2 | .695  | .00133                                | 76                                     | 20.8 | .067                                    | .053                                    | .441          | 0                                                   |
| C                           | 10.2     | 14.0        | 73      | 22,9 | 613   | .00134                                | 76                                     | 25,4 | .054                                    | .043                                    | .447          | 0                                                   |
| Average                     |          |             |         |      | .674  |                                       | • • •                                  | 21.5 | .066                                    | .052                                    | .440          |                                                     |
| Test 5:                     |          |             |         |      |       |                                       |                                        |      |                                         |                                         |               |                                                     |
| Reach A                     | 10.2     | 21.7        | 0.47    | 24.4 | 0.892 | 0.000820                              | 76                                     | 17.3 | 0.085                                   | 0.067                                   | 0.417         | 0                                                   |
| В                           | 10.2     | 23.8        | .43     | 24.5 | .971  | .000573                               | 76                                     | 18.2 | .082                                    | .065                                    | .415          | 0                                                   |
| C                           | 10.2     | 24.9        | .41     | 24.5 | 1.02  | .000407                               | 76                                     | 20.0 | .074                                    | .061                                    | .416          | ő                                                   |
| Average                     |          |             | <u></u> |      | ,961  |                                       |                                        | 18.5 | .080                                    | ,064                                    | .416          |                                                     |
| Test 6:                     |          |             |         |      |       |                                       | -                                      |      |                                         |                                         |               |                                                     |
| Reach A                     | 10.5     | 16.4        | 0.64    | 23.5 | 0.701 | 0.00169                               | 78                                     | 18,6 | 0.076                                   | 0.058                                   | 0.448         | 0                                                   |
| В                           | 10.5     | 15.2        | .69     | 23.1 | .658  | .00147                                | 78                                     | 22,3 | .062                                    | .049                                    | 456           | 0                                                   |
| C                           | 10.5     | 12.0        | .88     | 22.6 | ,530  | .00194                                | 78                                     | 27.3 | .049                                    | .039                                    | ,465          | 0                                                   |
| Average $\dots$             |          |             |         |      | .630  |                                       |                                        | 22.7 | .062                                    | .049                                    | .456          |                                                     |
| Test 7:                     |          |             |         |      |       |                                       |                                        |      |                                         | 1711                                    | Thritania.    |                                                     |
| Reach A                     | 10.6     | 17.4        | 0.61    | 23.7 | 0.737 | 0.00139                               | 78                                     | 19.0 | 0.075                                   | 0.058                                   | 0.447         | 0                                                   |
| В                           | 10.6     | 17.4        | .61     | 23.4 | .743  | .00109                                | 78                                     | 21.4 | .066                                    | .052                                    | .452          | Ö                                                   |
| C                           | 10.6     | 16.5        | .64     | 23.3 | .709  | .000913                               | 78                                     | 25.2 | .056                                    | .045                                    | .453          | ō                                                   |
| Average                     |          |             |         |      | .730  |                                       |                                        | 21.9 | .066                                    | .052                                    | .451          | ٠                                                   |
| Γest 8:                     |          | <u></u>     |         |      |       |                                       | ······································ |      |                                         |                                         |               | <del>** ··- · · · · · · · · · · · · · · · · ·</del> |
| Reach A                     | 16.9     | 22.0        | 0.76    | 24.3 | 0.907 | 0.00168                               | 78                                     | 19.6 | 0.075                                   | 0.060                                   | 0.694         | 0                                                   |
| В.,.,.                      |          | 20.5        | .82     | 24.0 | .855  | .00162                                | 78                                     | 22.1 | ,066                                    | .053                                    | .703          | ō                                                   |
| C                           |          | 16.9        | 1.00    | 23.5 | .721  | .00194                                | 78                                     | 26.7 | .053                                    | .043                                    | .720          | . 0                                                 |
| Average                     |          |             |         |      | .828  |                                       | 1 • 1                                  | 22.8 | .065                                    | .052                                    | .706          |                                                     |
| Test 9:                     |          | <del></del> |         |      |       | · · · · · · · · · · · · · · · · · · · |                                        |      | *************************************** |                                         |               | <del></del>                                         |
| Reach A                     | 16.9     | 24.6        | 0.69    | 24.6 | 0.999 | 0.00131                               | 78                                     | 19.0 | 0.078                                   | 0.064                                   | 0.688         | 0                                                   |
| В                           |          | 24.3        | .70     | 24,6 | .990  | .00108                                | 78                                     | 21,3 | .070                                    | .057                                    | .690          | 0                                                   |
| C                           | 16,9     | 23.9        | .71     | 24.4 | .976  | .000947                               | 78                                     | 23.3 | .064                                    | .053                                    | .692          | 0                                                   |
| Average                     |          |             | ٠.,     |      | .988  |                                       |                                        | 21.2 | .071                                    | .058                                    | .690          |                                                     |
|                             | :        |             |         |      |       |                                       |                                        |      | <del></del>                             |                                         |               |                                                     |

Table 24. — Hydraulic elements and friction factors for experiment 4, 'Hegari' sorghum in channel FC 30 — Continued

[Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft.  $^{\circ}$ F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_h$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach | Q             | A                   | V            | P            | R           | S                | °F       | С            | n            | $n_k$         | VR             | %       |
|-----------------------------|---------------|---------------------|--------------|--------------|-------------|------------------|----------|--------------|--------------|---------------|----------------|---------|
| Test 10:                    |               |                     |              |              |             |                  |          |              |              |               |                |         |
| Reach A                     | 17.0          | 34.4                | 0.49         | 26.1         | 1.32        | 0.000773         | 78       | 15.5         | 0.102        | 0.084         | 0.652          | 0       |
| В                           | 17.0          | 36.5                | .46          | 26.3         | 1,39        | .000580          |          | 16,4         | .096         | .081          | .646           | 0       |
| С                           | 17.0          | 37.6                | .45          | 26.1         | 1.44        | .000467          |          | 17.4         | .091         | .078          | .650           | 0       |
| Average                     | · · <u> </u>  | • • •               |              |              | 1.38        |                  |          | 16.4         | .096         | .081          | .649           |         |
| Test 11:                    | 1.1"——        |                     |              |              |             |                  |          |              |              |               |                |         |
| Reach A                     | . 25.6        | 30.8                | 0.83         | 25.6         | 1.20        | 0.00163          | 78       | 18.8         | 0.082        | 0.069         | 1.00           | 0       |
| В                           | . 25.6        | 29.4                | .87          | 25.3         | 1.16        | .00156           | 78       | 20.4         | .076         | .063          | 1.01           | 0       |
| C                           | . 25.6        | 26,4                | .97          | 24.8         | 1.07        | .00152           | 78       | 23.9         | .063         | .053          | 1.03           | 0       |
| Average                     |               | • • • •             |              |              | 1,14        |                  |          | 21.0         | .074         | .062          | 1.01           |         |
| Test 12:                    |               |                     |              | •            |             |                  |          |              |              |               | ···            |         |
| Reach A                     | . 25.6        | 37.1                | 0.69         | 26.4         | 1.40        | 0.00129          | 75       | 16.2         | 0.097        | 0.083         | 0.965          | 0       |
| В                           | . 25.6        | 37.4                | .68          | 26.4         | 1.42        | .00103           | 75       | 17.9         | .088         | .076          | .972           | 0       |
| C                           | . 25.6        | 36.9                | .69          | 26.1         | 1.41        | .000873          | 75       | 19.8         | .080         | .069          | .978           | o       |
| Average                     |               |                     |              |              | 1.41        |                  |          | 18.0         | .088         | .076          | .972           |         |
| Test 13:                    |               |                     |              |              |             |                  |          |              |              | ·             |                |         |
| Reach A                     | . 25.7        | 46.4                | 0.55         | 27.8         | 1.67        | 0.00105          | 75       | 19.0         | 0.124        | 0.100         | 0.005          | •       |
| В                           |               | 47.6                | .54          | 27.7         | 1.71        | .000760          | 75       | 13.2         |              | 0.106         | 0.925          | 0       |
| Ċ                           |               | 47.9                | .54          | 27.4         | 1.74        | .000653          | 75<br>75 | 15.0<br>16.0 | .108         | .095          | .926           | 0       |
| Average                     |               |                     |              | 1            | 1.71        |                  |          | 14.7         | .103         | .090<br>.097  | .936<br>.929   | 0       |
| Test 14:                    |               |                     |              |              |             |                  |          |              |              | .0071         | .020           |         |
| Reach A                     | 97.0          | 40.0                | 0.00         | 00.0         | 1.50        | 0.00010          |          |              |              |               |                |         |
| В                           |               | $\frac{40.9}{37.3}$ | 0.92         | 26.9         | 1.52        | 0.00219          | 75       | 16.0         | 0.100        | 0.086         | 1.40           | 0       |
| c                           |               | 32.0                | 1.01<br>1.18 | 26.5         | 1.41        | .00208           | 75       | 18.7         | .085         | .073          | 1.42           | 0       |
| Average                     |               | 32,0                | 1.10         | 25.5         | 1.25        | .00207           | 75       | 23.2         | .067         | .057          | 1.48           | 0       |
|                             | · <del></del> |                     |              | •••          | 1,00        | ,,,,,            |          | 19.3         | .084         | .072          | 1.43           | ···     |
| Test 15:                    |               |                     |              |              |             |                  |          |              |              |               |                |         |
| Reach A                     |               | 56.5                | 0.70         | 29.2         | 1.93        | 0.00140          | 72       | 13.5         | 0.122        | 0.110         | 1.35           | 50      |
| В                           |               | 55.9                | .71          | 29.0         | 1.93        | .00125           | 72       | 14.4         | .114         | .103          | 1.36           | 5       |
| C ,                         |               | 54.3                | .73          | 28.4         | 1.92        | .000980          | 72       | 16.8         | .098         | .089          | 1.40           | 0       |
| Average                     | ·             | •••                 | • • • •      |              | 1.93        |                  |          | 14.9         | .111         | .101          | 1.37           |         |
| Test 16:                    |               |                     |              |              |             |                  |          |              |              |               |                |         |
| Reach A                     |               | 69.5                | 0.57         | 30.9         | 2.25        | 0.00102          | 72       | 11.9         | 0.143        | 0.131         | 1.28           | 70      |
| В.,                         |               | 70.3                | .56          | 31.0         | 2.27        | .000993          | 72       | 11.8         | .144         | .133          | 1.28           | 40      |
| C                           | . 39.5        | 69.3                | .57          | 30.4         | 2,28        | .000720          | 72       | 14,1         | .121         | .112          | 1.30           | 0       |
| Average                     |               |                     | • • •        |              | 2.27        |                  |          | 12.6         | .136         | .125          | 1.29           |         |
| l'est 17:                   |               |                     |              |              |             |                  |          |              |              | ·             |                |         |
| Reach A                     | 61.4          | 63.9                | 0.96         | 30.2         | 2.11        | 0.00225          | 72       | 13.9         | 0.120        | A 171         | 0.00           | 00      |
| В                           | 61,4          | 58.9                | 1.04         | 29.4         | 2.00        | .00242           | 72       | 15.0         | 0.120 $.111$ | 0.111<br>.101 | $2.02 \\ 2.08$ | 60      |
| C                           | 61.4          | 52.1                | 1,18         | 28.1         | 1.85        | .00211           | 72       | 18.9         | .086         | .079          | 2.03           | 30<br>0 |
| Average                     | • • • •       |                     |              |              | 1,99        |                  |          | 15.9         | .106         | .097          | 2.10           |         |
| est 18:                     |               |                     |              |              |             |                  |          | <del></del>  |              |               |                | • • •   |
| Reach A                     | 61.3          | 83,4                | 0.74         | 30 K         | 9 80        | 0.00140          | 70       | 10.0         | 0.4.0        |               |                |         |
| В                           |               | 82.3                | .74          | 32.5<br>32.7 | 2.56 $2.52$ | 0.00142          | 72<br>70 | 12.2         | 0.142        | 0.135         | 1.88           | 80      |
| C                           |               | 77.8                | .79          | 31.3         | 2.52        | .00149<br>.00128 | 72<br>79 | 12.2         | .142         | .134          | 1.88           | 50      |
| Average                     |               |                     |              |              | 2.52        |                  | 72       | 14.0         | .123         | .116          | 1.95           | 10      |
|                             |               | •••                 | • • • •      | • • •        | 4,04        | •••••            |          | 12.8         | .136         | .128          | 1.90           | • • •   |

Table 24. — Hydraulic elements and friction factors for experiment 4, 'Hegari' sorghum in channel FC 30
— Continued

[Q. Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft.  $^{\circ}$ F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach Q | A     | V     | p    | R    | S       | °Ir | C    | n     | $n_b$        | VR           | %  |
|-------------------------------|-------|-------|------|------|---------|-----|------|-------|--------------|--------------|----|
| Test 19:                      |       |       |      |      |         |     |      |       |              |              |    |
| Reach A 61.1                  | 89.2  | 0.69  | 33.5 | 2.66 | 0.00118 | 72  | 12.2 | 0.140 | 0.40=        |              |    |
| B 61.1                        | 89.2  | .69   | 33.9 | 2.63 | .00131  | 72  | 11.7 | 0.143 | 0.137        | 1.82         | 90 |
| C <u>61,1</u>                 | 85.5  | .72   | 32.4 | 2.63 | .00110  | 72  | 13.3 | .130  | .142<br>.125 | 1.80<br>1.88 | 60 |
| Average                       | • • • | • • • |      | 2.64 |         |     | 12.4 | .140  | .135         | 1.83         | 20 |



FIGURE 34.—Typical 'Hegari' sorghum plants from channel FC 30, experiment 4. (Plants were placed 20 inches apart or the same as the channel row spacing.)

about 15 inches. Table 25 gives additional height data and stand counts. Figure 36 shows reach A during a flow test, and figure 87 shows typical plants from the channel.

Fifteen tests were run with six discharge rates, ranging from 3.7 to  $60.0 \text{ ft}^3/\text{s}$ . Two sill heights were used with the smallest discharge rate and one sill height for the largest discharge rate. The remaining discharge rates had three sill heights. Table 26 gives the hydraulic elements and friction factors for the tests. The Manning n values are plotted against the cor-



FIGURE 35.—Relation of Manning n to hydraulic radius (R) for flow tests on channel FC 30, experiment 4. (The three curves result from three flow-depth conditions—below normal, normal, and above normal.)



FIGURE 36.—Cotton in reach A of channel FC 29 during flow test 1, experiment 4. (Water depth is about 3 inches.)

TABLE 25.—Stand counts and plant heights for cotton in channel FC 29, experiment 4

| Reach <sup>1</sup>   | No.<br>rows | No. stems<br>per 10 feet<br>of row | Average<br>plant<br>height<br>(inches) | Average<br>tallest<br>plant <sup>2</sup><br>(inches) |
|----------------------|-------------|------------------------------------|----------------------------------------|------------------------------------------------------|
|                      | 7           | 13                                 | 20                                     | 26                                                   |
| В                    | 7           | 10                                 | 18                                     | 22                                                   |
| Ç.                   | 7           | 13                                 | 26                                     | 32                                                   |
| Average f<br>channel | or 7        | 12                                 | 21                                     | 27                                                   |
|                      |             | 12                                 | 21                                     |                                                      |

1 Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

<sup>2</sup> The height of the tallest plant was measured at 10 to 14 sampling points in each reach. The average of these measurements is the "average tallest plant."



FIGURE 37.—Typical cotton plants from channel FC 29, experiment 4. (Plants were placed 40 inches apart or the same as the channel row spacing.)



FIGURE 38.—Relation of Manning n to hydraulic radius (R) for flow tests on channel FC 29, experiment 4. (The three curves result from three flow-depth conditions—below normal, normal, and above normal.)

responding values of the hydraulic radius (R) in figure 38.

# Experiment 6

# Cotton in channel FC 29

The cotton was planted in 40-inch rows. When the tests were begun, the cotton was green and leafy and in the boll stage. The average height of the plants was 34 inches, with a few plants reaching 48 inches. The average width of the plants was about 32 inches. Table 27 gives additional height data and stand counts. Figure 39 shows reach B before the tests, and figure 40 shows a cross section of reach B after the tests.



FIGURE 39.—Cotton in reach B of channel FC 29 before tests, experiment 6.



FIGURE 40.—Cotton across center of reach B of channel FC 29 after tests, experiment 6. (Plants in foreground were removed to show height and density of stand.)

Table 26. — Hydraulic elements and friction factors for experiment 4, cotton in channel FC 29 [Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_h$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Heach A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Flow test and channel reach | Q    | A           | . <i>v</i>  | P                                     | R           | S        | °F  | С    | n      | $n_k$ | VR          | %       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|-------------|-------------|---------------------------------------|-------------|----------|-----|------|--------|-------|-------------|---------|
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |      |             |             |                                       |             |          |     |      |        |       |             |         |
| C 3.75 5.25 7.1 20.5 256 .00147 71 36.8 0.32 .025 .183 0 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |      |             |             |                                       |             |          |     |      |        |       |             |         |
| Test 2:     Reach A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |      |             |             |                                       |             |          |     |      |        |       |             |         |
| Test 2: Reach A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С                           | 3.75 | <u>5.25</u> | .71         | 20.5                                  | .256        | .00147   | 71  |      |        |       |             | 0       |
| Reach A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Average                     |      |             |             |                                       | .263        |          |     | 37.9 | .031   | .025  | .182        |         |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test 2:                     |      |             |             |                                       |             |          |     |      |        |       |             |         |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reach A                     | 3.76 | 6.63        | 0.57        | 21.0                                  | 0.316       | 0.000793 | 71  | 35,8 | 0.034  | 0.027 |             |         |
| Average         A21         31.1         .042         .033         .177            Test 3:         Reach A         10.9         12.6         0.87         22.1         0.570         0.00127         71         32.3         0.042         .0.034         0.496         0           B         10.9         13.1         .83         21.7         .603         .00118         71         31.3         .044         .036         .503         0           C         10.9         11.7         .94         21.8         .536         .00171         71         30.9         .043         .035         .502         0           Average           .570          .31.5         .043         .035         .502            Test 4:                                        .                                                                                                                                                                                                                                                                                                                                                             | В                           | 3.76 | 9.15        | .41         | 21,0                                  | .436        | .000373  | 71  | 32,2 |        |       |             |         |
| Tost 3:    Reach A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C                           | 3.76 | 11.0        | .34_        | 21.6                                  | .510        | .000353  | 71  | 25.4 | _ 052, | .040  |             | 0       |
| Reach A       1.0.9       12.6       0.87       22.1       0.570       0.00127       71       32.3       0.042       0.034       0.496       0         C       10.9       11.7       .94       21.8       .536       .00171       71       30.9       .043       .035       .502       0         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average                     |      |             |             |                                       | .421        |          |     | 31.1 | .042   | .033  | .177        | • • •   |
| Reach A       10.9       12.6       0.87       22.1       0.570       0.00127       71       32.3       0.042       0.034       0.496       0       C       10.9       11.7       83       21.7       603       .00118       71       31.3       .044       .036       .503       0         C       10.9       11.7       .94       21.8       .586       .00171       71       30.9       .043       .035       .502       0         Average <td>Test 3:</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test 3:                     |      |             |             |                                       |             |          |     |      |        |       |             |         |
| C 10.9 11.7 9.4 21.8 556 00171 71 30.9 0.43 0.35 5.502 0  Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 10.9 | 12.6        | 0.87        | 22.1                                  | 0.570       | 0.00127  | 71  | 32.3 | 0.042  | 0.034 |             | 0       |
| C. 10.9 11.7 9.4 21.8 5.56 0.0171 71 30.9 9.43 0.35 5.502 0  Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В                           | 10.9 | 13.1        | .83         | 21.7                                  | .603        | .00118   | 71  | 31.3 | .044   | .036  |             |         |
| Test 4:    Rench A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C                           | 10.9 | 11.7        | ,94         | 21.8                                  |             | .00171   | 71  | 30.9 | .043   | .035  | .502        | 0       |
| Reach A       10.9       15.0       0.73       22.4       0.670       0.000913       72       29.1       0.047       0.039       0.488       5         B       10.9       16.9       .65       22.4       .753       .000760       72       27.1       .052       .043       .489       5         C       10.9       17.5       63       22.8       .765       .000913       72       23.7       .060       .048       .480       5         Average          .729         26.7       .053       .043       .486          Test 5:         Reach A       11.0       17.9       0.61       23.0       0.778       0.000707       72       26.1       0.048       .476       5         Average                                                                                                                                                                                                                                                                                                                                                                                                                                       | Average                     |      |             |             |                                       | .570        |          |     | 31,5 | .043   | .035  | .500        | • • • • |
| Reach A       10.9       15.0       0.73       22.4       0.670       0.000913       72       29.1       0.047       0.039       0.488       5         B       10.9       16.9       .65       22.4       .753       .000760       72       27.1       .052       .043       .489       5         C       10.9       17.5       63       22.8       .765       .000913       72       23.7       .060       .048       .480       5         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Test 4:                     |      |             |             |                                       |             |          |     |      |        |       | -           |         |
| C   10.9   17.5   .63   22.8   .765   .000913   72   23.7   .060   .048   .480   5   Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | 10.9 | 15.0        | 0.73        | 22,4                                  | 0.670       | 0,000913 | 72  | 29.4 | 0.047  | 0.039 | 0.488       | 5       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |      | 16.9        |             | 22.4                                  | .753        | .000760  | 72  | 27.1 | .052   | .043  | .489        | 5       |
| Test 5:  Reach A .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |      | 17.5        | .63         | 22.8                                  | .765        | .000913  | 72  | 23.7 | .060   | .048  | .480        | 5       |
| Reach A       11.0       17.9       0.61       23.0       0.778       0.000707       72       26.1       0.054       0.045       0.477       10         B       11.0       20.4       .54       23.1       .884       .000634       72       24.7       .059       .048       .476       5         C       11.0       21.8       .50       23.6       .924       .000666       72       20.3       .072       .058       .467       5         Average         .862        .23.7       .062       .050       .473          Test 6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average                     |      |             |             |                                       | .729        |          |     | 26.7 | .053   | .043  | .486        |         |
| Reach A       11.0       17.9       0.61       23.0       0.778       0.000707       72       26.1       0.054       0.045       0.477       10         B       11.0       20.4       .54       23.1       .884       .000634       72       24.7       .059       .048       .476       5         C       11.0       21.8       .50       23.6       .924       .000666       72       20.3       .072       .058       .467       5         Average         .862        .23.7       .062       .050       .473          Test 6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tost 5:                     |      |             | <u> </u>    |                                       | <del></del> |          |     |      |        |       |             |         |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 11.0 | 17.9        | 0.61        | 23.0                                  | 0.778       | 0.000707 | 72  | 26.1 | 0.054  | 0.045 | 0.477       | 10      |
| C       11.0       21.8       .50       23.6       .924       .000666       72       20.3       .072       .058       .467       5         Average             23.7       .062       .050       .473          Test 6:       Reach A        17.7       19.5       0.91       23.2       0.843       0.00135       70       26.9       0.054       0.045       0.765       15         B       17.7       19.7       .90       23.0       .856       .00127       70       27.3       .053       .044       .770       5         C       .17.7       17.8       1.00       22.9       .776       .00174       70       27.1       .052       .043       .774       5         Average             27.1       .053       .044       .770          Test 7:       Reach A        17.8       23.0       0.78       23.8       0.964       0.00105       70       24.3       0.061       0.051       0.747       20         B                                                                                                                                                                                                             |                             |      | 20.4        | .54         | 23.1                                  | .884        | .000534  | 72  | 24.7 | .059   | .048  | .476        | 5       |
| Test 6:  Reach A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |      | 21.8        | .50         | 23.6                                  | .924        | .000666  | 72_ | 20.3 | .072   | .058  | .467        | 5       |
| Test 6:    Reach A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Average                     |      |             |             |                                       | .862        |          |     | 23.7 | .062   | .050  | .473        | • • •   |
| Reach A       17.7       19.5       0.91       23.2       0.843       0.00135       70       26.9       0.054       0.045       0.765       15         B       17.7       19.7       .90       23.0       .856       .00127       70       27.3       .053       .044       .770       5         C       17.7       17.8       1.00       22.9       .776       .00174       70       27.1       .052       .043       .774       5         Average       .       .       .       .825       .       .27.1       .053       .044       .770       .         Test 7:       Reach A       .       17.8       23.0       0.78       23.8       0.964       0.00105       70       24.3       0.061       0.051       0.747       20         B       17.8       24.4       .73       23.7       1.03       .000860       70       24.5       .061       .051       .741       5         Average       .       .       .       1.00       .       .       23.5       .064       .053       .746       .         B       17.8       32.8       .       0.62       24.6                                                                 | •                           |      | <u> </u>    |             |                                       |             |          |     |      |        |       |             |         |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 17.7 | 19.5        | 0.91        | 23.2                                  | 0.843       | 0.00135  | 70  | 26.9 | 0.054  | 0.045 | 0.765       | 15      |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |      |             |             |                                       |             |          | 70  | 27.3 | .053   | .044  | .770        | 5       |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |      |             |             |                                       |             | .00174   | 70  | 27.1 | .052   | .043  | .774        | 5       |
| Test 7:  Reach A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |      |             |             |                                       | .825        |          |     | 27.1 | .053   | .044  | .770        |         |
| Reach A       17.8       23.0       0.78       23.8       0.964       0.00105       70       24.3       0.061       0.051       0.747       20         B       17.8       24.4       .73       23.7       1.03       .000860       70       24.5       .061       .051       .751       10         C       17.8       24.2       .73       24.0       1.01       .00114       70       21.6       .069       .057       .741       5         Average         1.00        23.5       .064       .053       .746          Test 8:       Reach A       17.8       28.9       0.62       24.6       1.17       0.000700       69       21.5       0.071       0.060       0.721       50         B       17.8       31.3       .57       24.8       1.26       .000580       69       21.0       .074       .063       .717       50         C       17.8       32.8       .54       25.3       1.30       .000733       69       17.6       .088       .074       .706       40         Average         1.24                                                                                                                        |                             |      |             |             |                                       |             |          |     |      |        |       |             |         |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 17.8 | 23.0        | 0.78        | 23.8                                  | 0.964       | 0,00105  | 70  | 24.3 | 0.061  | 0.051 | 0.747       | 20      |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |      |             |             |                                       |             | .000860  | 70  | 24.5 | .061   | .051  | .751        | 10      |
| Average        1.00        23.5       .064       .053       .746          Test 8:         Reach A       17.8       28.9       0.62       24.6       1.17       0.000700       69       21.5       0.071       0.060       0.721       50         B       17.8       31.3       .57       24.8       1.26       .000580       69       21.0       .074       .063       .717       50         C       17.8       32.8       .54       25.3       1.30       .000733       69       17.6       .088       .074       .706       40         Average         1.24        20.0       .078       .066       .715          Test 9:         Reach A        26.7       27.6       0.97       24.0       1.15       0.00145       69       23.7       0.064       .055       1.11       55         B        26.7       27.2       .98       24.2       1.12       .00139       69       24.8       .061       .052       1.10       60         C        26.7       24.8 <td></td> <td></td> <td></td> <td></td> <td>24.0</td> <td>1.01</td> <td>.00114</td> <td>70</td> <td>21.6</td> <td>.069</td> <td>.057</td> <td>.741</td> <td>5</td> |                             |      |             |             | 24.0                                  | 1.01        | .00114   | 70  | 21.6 | .069   | .057  | .741        | 5       |
| Reach A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |      |             |             |                                       | 1.00        |          |     | 23.5 | .064   | .053  | .746        |         |
| Reach A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tont Q.                     |      |             |             | · · · · · · · · · · · · · · · · · · · |             |          |     |      |        |       |             |         |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 17.8 | 28.9        | 0.62        | 24.6                                  | 1.17        | 0.000700 | 69  | 21.5 | 0.071  | 0.060 | 0.721       | 50      |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |      |             |             |                                       |             |          |     |      |        |       |             |         |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |      |             |             |                                       |             |          |     |      |        |       | .706        | 40      |
| Test 9:  Reach A 26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |      |             |             |                                       |             |          |     | 20.0 | .078   | .066  | .715        |         |
| Reach A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |      |             | <del></del> |                                       | <del></del> |          |     |      |        |       | *********** |         |
| B 26.7 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | 26.7 | 27.6        | 0.97        | 24.0                                  | 1,15        | 0.00145  | 69  | 23.7 | 0.064  | .055  | 1.11        | 55      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |      |             |             |                                       |             |          |     |      | .061   | .052  | 1.10        | 60      |
| 110 240 063 053 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |      |             |             |                                       |             |          | 69  | 23.6 | .063   | .053  | 1,11        | 45      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |      |             |             |                                       |             |          |     | 24.0 | .063   | .053  | 1.11        |         |

Table 26. — Hydraulic elements and friction factors for experiment 4, cotton in channel FC 29 — Continued

[Q. Discharge, ft<sup>3</sup>/s. A. Area, ft<sup>2</sup>. V. Velocity, ft/s. P. Wetted perimeter, ft. R. Hydraulic radius, ft. S. Slope, ft/ft. °F, Water temperature. C. Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ . Coefficient in Kutter formula. VR, Product of V and R. %. Degree of submergence]

| Flow test and channel reach | Q    | A    | V       | P    | R     | \$       | °F        | С     | n     | $n_k$         | VR           | 176  |
|-----------------------------|------|------|---------|------|-------|----------|-----------|-------|-------|---------------|--------------|------|
| Test 10:                    | ,    |      |         |      |       |          |           | 0.4.0 |       | 0.000         | 1.05         | 60   |
| Reach A                     |      | 33.4 | 0.80    | 25.3 | 1.32  | 0.00101  | 69        | 21.8  | 0.072 | 0.062         | 1.06         | 70   |
| В                           | 26.6 | 34.6 | .77     | 25.2 | 1.38  | .000900  | 69        | 21.8  | .072  | .063          |              | 50   |
| C                           | 26.6 | 34.7 | .77     | 25.6 | 1,36  | ,00125   | 69        | 18,6  | .085  | .072          | 1,04         | - 00 |
| Average                     |      |      |         |      | 1.35  |          |           | 20.7  | .076  | .066          | 1.05         |      |
| Test 11:                    |      |      |         |      |       |          | 40        | 101   | 0.004 | 0.054         | 0.005        | 70   |
| Reach A                     | 26.6 | 43.1 | 0.62    | 26.8 | 1.61  | 0.000646 | 69        | 19.1  | 0.084 | 0.074<br>.070 | 0.995 $.993$ | 80   |
| В                           | 26.6 | 45.6 | .58     | 26.9 | 1.70  | .000467  | 69        | 20.7  | .078  |               |              | 60   |
| C                           | 26.6 | 47,3 | ,56_    | 27,3 | 1.73  | .000734  | 69        | 15.8  | .103  | .091          | ,974         | 60   |
| Average                     |      |      |         |      | 1,68  |          |           | 18.5  | .088  | .078          | .987         | •••  |
| Test 12:                    |      |      |         |      |       |          |           |       |       |               |              |      |
| Reach A                     | 38.1 | 37.9 | 1.01    | 25.9 | 1.46  | 0.00139  | 69        | 22.4  | 0.071 | 0.062         | 1.47         | 80   |
| В                           |      | 37.4 | 1.02    | 25.6 | 1.46  | .00127   | 69        | 23.7  | .067  | .060          | 1.49         | 90   |
| С.,                         |      | 35.4 | 1.08    | 25.6 | 1.38  | ,00198   | 69        | 20.7  | .076  | .066          | 1.49         | 65   |
| Average                     |      | •••  |         |      | 1.43  |          |           | 22.3  | .071  | .063          | 1.48         |      |
| Test 13:                    |      |      |         |      |       |          |           |       |       |               |              |      |
| Reach A                     | 38.2 | 46.2 | 0.83    | 27.1 | 1.70  | 0.000900 | 68        | 21.1  | 0.077 | 0.069         | 1.40         | 95   |
| В                           | 38.2 | 47.6 | .80     | 27.1 | 1.76  | .000726  | 68        | 22.4  | .073  | .066          | 1.41         | 98   |
| С                           | 38.2 | 48.2 | .79     | 27.4 | 1.76  | ,00114   | <u>68</u> | 17.7  | .093  | .082          | 1.39         | 70   |
| Average                     |      |      | • • • • |      | 1.74  |          |           | 20.4  | .081  | .072          | 1.40         |      |
| Test 14:                    |      |      |         |      |       |          |           |       |       |               |              |      |
| Reach A                     | 38.2 | 53.6 | 0.71    | 28.3 | 1.90  | 0.000586 | 68        | 21.4  | 0.078 | 0.070         | 1.35         | 95   |
| В                           | 38.2 | 56.2 | .68     | 28.6 | 1.97  | .000513  | 68        | 21.4  | .078  | .071          | 1.34         | 100  |
| С                           | 38.2 | 58.5 | .65     | 28.8 | 2.03_ | .000753  | 68        | 16.7  | .100  | .091          | 1.33         | 80   |
| Average                     |      |      |         |      | 1.97  |          |           | 19.8  | ,085  | .077          | 1.34         |      |
| Test 15:                    |      |      |         |      |       |          |           |       |       |               |              |      |
| Reach A                     | 60.0 | 49.2 | 1.22    | 27.6 | 1.78  | 0.00141  | 66        | 24.4  | 0.068 | 0.061         | 2.17         | 98   |
| В                           |      | 48.7 | 1.23    | 27.3 | 1.79  | .00122   | 66        | 26.3  | .063  | .057          | 2.20         | 100  |
| C                           |      | 46.4 | 1.29    | 27.1 | 1.71  | .00224   | 66        | 20.8  | .078  | .070          | 2.21         | 85   |
|                             |      |      |         |      | 1.76  |          |           | 23.8  | .070  | .063          | 2.19         |      |

Seventeen tests were run with six discharge rates, ranging from 2.7 to  $44.5 \text{ ft}^3/\text{s}$ . Three sill heights were used with all discharge rates except the smallest, with which only two sill heights were used. Table 28 gives the hydraulic elements and friction factors for the experiment. The Manning n values are plotted against the corresponding values of the hydraulic radius (R) in figure 41.

### Sudangrass in channel FC 30

The seed were broadcast in the channel. When the tests were begun, the vegetation was tall and green and probably had reached its



FIGURE 41.—Relation of Manning n to hydraulic radius (R) for flow tests on channel FC 29, experiment 6. (The three curves result from three flow-depth conditions—below normal, normal, and above normal.)



FIGURE 42.—Sudangrass in reach C of channel FC 30 before tests, experiment 6.

maximum bulk. The average length of the grass stems was 47 inches, but some of the tallest stems were 105 inches long. The lengths were measured along the stem and are not a measure of the cover height, since the grass tended to lean over. Table 29 gives additional length data and the stand counts. Figure 42 shows reach C before the tests, and figure 43 shows a cross section of the stand after the tests.

Twenty tests were run on this channel, with discharge rates ranging from 2.6 to 89.5 ft<sup>3</sup>/s. Three sill heights were used with most of the (Continued on page 44.)



FIGURE 43.—Sudangrass across reach B of channel FC 30 after tests, experiment 6. (Grass in foreground was cut to show 3-ft-wide strip against background.)

TABLE 27.—Stand counts and plant heights for cotton in channel FC 29, experiment 6

| Reach <sup>1</sup> | No.<br>rows | No. stems<br>per 10 feet<br>of row | Average<br>plant<br>height<br>(inches) | Average<br>tallest<br>plant <sup>2</sup><br>(inches) |
|--------------------|-------------|------------------------------------|----------------------------------------|------------------------------------------------------|
|                    | 6           | 17                                 | 30                                     | 36                                                   |
| В                  | 6           | 24                                 | 32                                     | 36                                                   |
| C                  | 6           | 30                                 | 39                                     | 42                                                   |
| Average f          | or<br>6     | 24                                 | 34                                     | 38                                                   |

Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

<sup>&</sup>lt;sup>2</sup> The height of the tallest plant was measured at each of several sampling points (usually 12) in each reach. The average of these measurements is the "average tallest plant."

Table 28. — Hydraulic elements and friction factors for experiment 6, cotton in channel FC 29 IQ. Discharge, ft<sup>1</sup>/s. A. Area, ft<sup>2</sup>. V, Velocity, ft/s. P. Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. °F. Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach | Q           | A           | V          | P                   | R            | S                | °F    | <i>C</i>    | n     | $n_k$                                  | VR    | 0%  |
|-----------------------------|-------------|-------------|------------|---------------------|--------------|------------------|-------|-------------|-------|----------------------------------------|-------|-----|
| l'est 1:                    |             |             |            |                     | 0.000        | 0.00114          | 80    | 35.0        | 0.033 | 0.025                                  | 0.129 | C   |
| Reach A                     | 2.66        | 4.70        | 0.56       | 20.6                | 0.228        | 0.00114 $.00103$ | 80    | 31.4        | .038  | .028                                   | .129  | o   |
| В                           | 2.66        | 5.22        | .51        | 20.6                | .254<br>.222 | .00103           | 80    | 31.3        | .037  | .027                                   | .130  | C   |
| C                           | 2.66        | 4.53        | .59        | 20.4                |              |                  |       | 32.5        | .036  | ,027                                   | .129  |     |
| Average                     |             |             | • • •      |                     | ,235         |                  | • • • | 02.0        | .000  |                                        |       |     |
| est 2:                      |             |             |            | 20.0                | 0.247        | 0.00103          | 80    | 33.0        | 0.036 | 0.027                                  | 0.130 | 0   |
| Reach A                     | 2.68        | 5.09        | 0.53       | $\frac{20.6}{20.7}$ | .313         | .000000          | 80    | 30.2        | .040  | .030                                   | .130  | C   |
| В                           |             | 6.48        | .41<br>.34 | 21.0                | .374         | .000473          | 80    | 25.6        | .049  | .036                                   | ,128  |     |
| C                           |             | 7.87        |            |                     | .311         |                  |       | 29.6        | .042  | .031                                   | .129  |     |
| Average                     | <del></del> |             |            |                     |              |                  |       |             |       |                                        |       |     |
| est 3:                      | 4.04        | 7.56        | 0.65       | 21,2                | 0.356        | 0.00112          | 80    | 32.8        | 0.038 | 0.030                                  | 0.233 | (   |
| Reach A B                   | 4.04        | 7.97        | .62        | 21.1                | .378         | .00115           | 80    | 29.8        | .042  | .033                                   | .234  | C   |
| C                           |             | 6.66        | ,74        | 21.0                | .318         | .00177           | 80    | 31.3        | .039  | .030                                   | .236  | (   |
| Average                     |             |             |            |                     | .351         |                  |       | 31.3        | .040  | .031                                   | .234  |     |
|                             |             |             | ····       |                     |              |                  |       |             |       |                                        |       | -   |
| 'est 4:<br>Reach A          | 4 96        | 7.58        | 0.65       | 21.1                | 0.359        | 0.00110          | 80    | 32.9        | 0.038 | 0.030                                  | 0.235 | (   |
| B                           |             | 8.18        | .61        | 21.0                | .389         | .00105           | 80    | 30.0        | .042  | .033                                   | .236  | (   |
| C                           |             | 7.77        | .64        | 21.1                | .369         | .00119           | 80    | 30.4        | .041  | .032                                   | .235  | (   |
| Ayerage                     |             |             |            | , , ,               | ,372         |                  |       | 31.1        | .040  | .032                                   | .235  |     |
| est 5:                      | <del></del> |             |            |                     |              |                  |       | <del></del> |       | ······································ |       |     |
| Reach A                     | 4.94        | 10.5        | 0.47       | 21.6                | 0.484        | 0.000594         | 80    | 27.8        | 0.047 | 0.037                                  | 0.228 | (   |
| В                           |             | 12.7        | .39        | 21.7                | .586         | .000453          | 80    | 23.8        | .057  | .044                                   | .227  | (   |
| C                           |             | 14.7        | .34        | 22.5                | .654         | .000320          | 80    | 23,2        | .060  | .046                                   | .219  | (   |
| Average                     |             |             |            |                     | .575         | *****            |       | 24.9        | .055  | ,042                                   | .225  |     |
| est 6:                      | <del></del> | <del></del> |            |                     |              |                  |       |             |       |                                        |       |     |
| Reach A                     | 9.08        | 12.5        | 0.73       | 21.9                | 0.570        | 0.00135          | 76    | 26.2        | 0.052 | 0.041                                  | 0.415 | (   |
| В                           |             | 11.8        | .77        | 21.6                | .547         | .00149           | 76    | 26.9        | .050  | .039                                   | .420  | (   |
| C                           |             | 9.85        | .92        | 21.4                | .460         | ,00193           | 76    | 30.9        | .042  | .034                                   | .420  | (   |
| Average                     |             |             | • • •      |                     | .526         | :                |       | 28.0        | .048  | .038                                   | .420  |     |
| est 7:                      |             |             |            |                     |              |                  |       |             |       |                                        |       |     |
| Reach A                     | 9.11        | 13,4        | 0.68       | 22.0                | 0.608        | 0.00122          | 76    | 25.0        | 0.055 | 0.043                                  | 0.415 | (   |
| В                           | 9.11        | 13.4        | .68        | 21.8                | .613         | .00121           | 76    | 25.0        | .055  | .043                                   | .417  | (   |
| C                           | 9.11        | 13.1        | .69        | 21,9                | .600         | .00107           | 76    | 27.4        | 050،  | .040                                   | .416  |     |
| Average                     | ···         |             |            |                     | .607         |                  | ,     | 25.8        | .053  | .042                                   | .416  | . , |
| est 8:                      |             |             |            | ····                |              |                  |       |             |       |                                        |       |     |
| Reach A                     | 9.10        | 18.9        | 0.48       | 23.2                | 0.813        | 0.000820         | 76    | 18.7        | 0.077 | 0.060                                  | 0.392 | (   |
| В                           | 9.10        | 20.2        | :45        | 23.3                | .868         | .000780          | 76    | 17.3        | .084  | .066                                   | .391  | (   |
| C                           |             | 21.6        | .42        | 23.6                | .912         | .000594          | 76    | 18.1        | .081  | .064                                   | .385  | (   |
| Average                     | •••         |             | 1          |                     | .864         |                  |       | 18.0        | .081  | .063                                   | .389  |     |
| est 9:                      |             |             |            | -                   |              |                  |       |             |       |                                        |       |     |
| Reach A                     |             | 18.9        | 0.80       | 23,1                | 0.816        | 0.00171          | 76    | 21.5        | 0.067 | 0.054                                  | 0.656 | (   |
| В                           |             | 16.7        | .91        | 22.6                | .740         | .00198           | 76    | 23.7        | .060  | .048                                   | .672  | (   |
| C                           |             | 13.2        | 1.15       | 22.0                | .598         | .00233           | 76    | 30.8        | .044  | .036                                   | .688  |     |
| Average                     |             |             |            | ,                   | .718         |                  |       | 25.3        | .057  | .046                                   | .672  |     |

.BLE 28. — Hydraulic elements and friction factors for experiment 6, cotton in channel FC 29 — Continued

Discharge, It<sup>3</sup>/s. A, Area, It<sup>2</sup>. V. Velocity, It/s. P, Wetted perimeter, It. R, Hydraulic radius, It. S, Slope, It/It. Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. Product of V and R. %, Degree of submergence

| Flow test and channel reach | Q           | A                                     | V    | P             | R     | s                                     | °F                                    | C    | n     | $n_R$ | VR    | %   |
|-----------------------------|-------------|---------------------------------------|------|---------------|-------|---------------------------------------|---------------------------------------|------|-------|-------|-------|-----|
| it 10:                      |             |                                       |      |               |       |                                       |                                       |      |       |       |       |     |
| Reach A 15                  | 6.0         | 22,6                                  | 0.66 | 23.8          | 0.947 | 0.00130                               | 74                                    | 18.9 | 0.078 | 0.063 | 0.630 | 2   |
| B 15                        | 5.0         | 22.3                                  | .67  | 23.6          | .942  | .00139                                | 74                                    | 18.6 | .079  | .064  | .635  | 0   |
| C <u>15</u>                 | 5.0         | 22.1                                  | .68  | 23.7          | .931  | .00113                                | 74                                    | 20,9 | .071  | .057  | .632  | 0   |
| Average                     |             |                                       |      |               | .940  |                                       |                                       | 19,5 | .076  | .061  | .632  |     |
| t 11:                       |             |                                       |      |               |       |                                       |                                       |      |       |       |       |     |
| Reach A 15                  | .1          | 29.4                                  | 0.51 | 24.7          | 1.19  | 0.000934                              | 76                                    | 15,4 | 0.100 | 0.082 | 0.609 | 5   |
| B 15                        | i.1         | 30.4                                  | .50  | 24.6          | 1.24  | .000934                               | . 76                                  | 14.6 | .106  | .087  | .614  | 0   |
| C <u>15</u>                 | .1          | 31.7                                  | .48  | 25.2          | 1.26  | .000800                               | 76                                    | 15.0 | ,104  | .085  | .598  | 0   |
| Average                     |             |                                       |      |               | 1,23  |                                       | • 1 •                                 | 15.0 | .103  | .085  | .607  |     |
| t 12:                       |             |                                       |      |               |       |                                       |                                       |      |       |       |       |     |
| Reach A 22                  | .7          | 28.8                                  | 0.79 | 24.6          | 1.17  | 0.00180                               | 74                                    | 17.1 | 0.090 | 0.074 | 0.920 | 10  |
| B 22                        | .7          | 26.3                                  | .86  | 24.2          | 1.09  | .00206                                | 74                                    | 18,2 | .083  | .068  | .940  | 0   |
| C <u>22</u>                 | .7          | 23.1                                  | .98  | 23.9          | .968  | .00197                                | 74                                    | 22.5 | .066  | .055  | .950  | 0   |
| Average                     |             |                                       |      |               | 1.08  |                                       |                                       | 19,3 | .080  | .066  | .937  |     |
| t 13:                       |             |                                       |      |               |       |                                       | · · · · · · · · · · · · · · · · · · · |      |       |       |       |     |
| Reach A 22                  | .5          | 35,5                                  | 0.63 | 25.6          | 1,39  | 0.00136                               | 72                                    | 14.6 | 0.108 | 0.091 | 0.880 | 30  |
| B 22                        | .5          | 34.8                                  | .65  | 25.3          | 1.38  | .00146                                | 72                                    | 14.4 | .109  | .092  | .891  | 5   |
| C 22                        | .5          | 33.7                                  | .67  | 25.5          | 1.32  | .00135                                | 72                                    | 15.8 | .099  | .083  | .879  | o   |
| Average                     |             |                                       |      |               | 1.36  |                                       |                                       | 14.9 | .105  | .089  | .883  |     |
| t 14:                       |             |                                       |      |               |       |                                       |                                       |      |       |       |       |     |
| Reach A 22                  | .5          | 42,9                                  | 0.52 | 26.7          | 1.61  | 0.00107                               | 74                                    | 12.6 | 0.128 | 0.110 | 0.884 | 40  |
| B 22                        |             | 43.4                                  | .52  | 26.8          | 1.62  | .00109                                | 74                                    | 12.3 | .132  | .112  | .839  | 20  |
| C 22                        |             | 44.0                                  | .51  | 26.9          | 1.64  | .00100                                | 74                                    | 12.6 | ,128  | .110  | .838  | 5   |
| Average                     |             |                                       |      |               | 1,62  | ,                                     |                                       | 12.5 | ,129  | .111  | .840  |     |
| : 15:                       |             | · · · · · · · · · · · · · · · · · · · |      |               |       | · · · · · · · · · · · · · · · · · · · |                                       |      |       |       |       |     |
| Reach A 31                  | .4          | 42.3                                  | 0.74 | 26,6          | 1.59  | 0.00181                               | 74                                    | 13.8 | 0.116 | 0.100 | 1.18  | 40  |
| B 31                        | .4          | 39,9                                  | .79  | 26.0          | 1.53  | .00204                                | 74                                    | 14.1 | .114  | .097  | 1.20  | 20  |
| C <u>31</u>                 | .4          | 36.2                                  | .87  | 25.6          | 1.41  | .00201                                | 74                                    | 16.3 | .098  | .082  | 1.22  | 5   |
| Average                     |             |                                       |      |               | 1.51  | ,.                                    |                                       | 14.7 | .109  | .093  | 1.20  |     |
| : 16;                       |             | <del> </del>                          |      |               |       |                                       |                                       |      |       |       |       |     |
| Reach A 31                  | .4          | 50.9                                  | 0.62 | 27,9          | 1.82  | 0.00137                               | 75                                    | 12.4 | 0.134 | 0.117 | 1.12  | 50  |
| B 31                        |             | 49.8                                  | .63  | 27.6          | 1.80  | .00149                                | 75                                    | 12.3 | .136  | .118  | 1.14  | 30  |
| C 31                        |             | 48.7                                  | .64  | 27.4          | 1.78  | .00144                                | 75                                    | 12.7 | .129  | .113  | 1.15  | 10  |
| Average                     |             |                                       |      | .,,           | 1.80  |                                       |                                       | 12,4 | 0.133 | ,116  | 1.14  | ••• |
|                             |             |                                       |      | <del></del> : |       |                                       |                                       |      | ····  | ·     |       |     |
| Reach A 44                  | .5          | 47,6                                  | 0.93 | 27.4          | 1.74  | 0,00249                               | 74                                    | 14,2 | 0.114 | 0.101 | 1.63  | 60  |
| B 44                        |             | 41.1                                  | 1.08 | 26.4          | 1.56  | .00319                                | 74                                    | 15.3 | .104  | .091  | 1.68  | 40  |
| C 44                        |             | 32.8                                  | 1.36 | 25.3          | 1.30  | .00378                                | 74                                    | 19.4 | ,080  | .069  | 1.77  | 10  |
| <u> </u>                    |             |                                       |      |               | 1.53  |                                       | 1.1                                   | 16.3 | .099  | .087  | 1.69  |     |
|                             | · · · · · · |                                       |      |               |       |                                       |                                       |      | 1000  | 1001  | 1,00  |     |

discharge rates. Table 30 gives the hydraulic data and friction factors for the tests. The Manning n values for the experiment are plotted against the corresponding VR values in figure 44.

## Experiment 8

#### Lespedeza in channel FC 29

Korean lespedeza was broadcast in the channel. When the tests were begun, the vegetation was green and in full leaf. The average plant height was about 8 inches, with a maximum of about 14 inches. The stand density was 122 stems per square foot. In addition to the lespedeza, there was a scattering of other plants with about the same average height (8 inches), but a few plants were 28 inches tall. These



FIGURE 44.—Relation of Manning n to product of velocity and hydraulic radius (VR) for flow tests on channel FC 30, experiment 6.



Figure 45.—Korean lespedeza in reach B of channel FC 29 before tests, experiment 8.

plants, mostly crabgrass, averaged about 28 stems per square foot. Table 31 gives the stand count and height data. For the lespedeza, a stand count is given for both the number of plants per square foot and the number of stems per square foot. A separate stand count (number of stems per square foot) and height data are included for crabgrass and barnyardgrass.

Figure 45 shows reach B before the tests. Figure 46 shows a closeup view of the lespedeza plants before the tests. The typical lespedeza

TABLE 29.—Stand counts and stem lengths for sudangrass in channel FC 30, experiment 6

| Reach <sup>1</sup> | Stem density<br>(stems/ft²) | Average<br>stem<br>length<br>(inches) | Average<br>longest<br>stem²<br>(inches) |
|--------------------|-----------------------------|---------------------------------------|-----------------------------------------|
| A                  | 61                          | 38                                    | 63                                      |
| В                  | 53                          | 49                                    | 76                                      |
| C                  | 45                          | 58                                    | 75                                      |
| Average for        | r<br>53                     | 47                                    | 71                                      |

<sup>1</sup> Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

<sup>2</sup> The length of the longest stem was measured at 9 sampling points in each reach. The average of these measurements is the "average longest stem."



FIGURE 46.—Closeup view of Korean lespedeza in channel FC 29 before tests, experiment 8.

ELE 30. — Hydraulic elements and friction factors for experiment 6, sudangrass in channel FC 30 Discharge,  $ft^3$ /s. A, Area,  $ft^2$ . V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. Nater temperature. C, Coefficient in Chezy formula. ft0, Manning ft1 friction factor. ft2 formula. Product of ft3 and ft3. %, Degree of submergence]

| Flow test and channel reach | Q       | Α              | V             | P              | R              | S                  | °F           | C                   | n               | $n_k$        | $v_R$        | %       |
|-----------------------------|---------|----------------|---------------|----------------|----------------|--------------------|--------------|---------------------|-----------------|--------------|--------------|---------|
| 1:                          |         |                |               |                |                |                    |              |                     |                 |              |              |         |
| Reach A                     | 2.60    | 16.5           | 0.16          | 23.5           | 0.703          | 0.00187            | 82           | 4.33                | 0.324           | 0.212        | 0.110        | 0       |
| В                           | 2.60    | 15.2           | .17           | 23.3           | .655           | .00172             | 82           | 5.07                | .275            | .178         | .111         | 0       |
| С                           | 2.60    | 11.3           | .23           | 22.8           | .493           | .00217             | 82           | 7.03                | .189            | .119         | .113         | 0       |
| Average                     | • • • • |                |               | • • • • •      | .617           |                    |              | 5,48                | .263            | .170         | .111         |         |
| 2:                          |         |                |               |                |                |                    | •            |                     |                 |              |              |         |
| Reach A                     |         | 17.2           | 0.15          | 23.7           | 0.723          | 0.00169            | 82           | 4.35                | 0.325           | 0.214        | 0.110        | 0       |
| В                           |         | 16.7           | .16           | 23.3           | .718           | .00137             | 82           | 5.01                | .281            | .187         | .113         | 0       |
| C                           |         | 15.2           | .17           | 23.4           | .648           | .00109             | 82           | 6.47                | .214            | .142         | .111         | 0       |
| Average                     |         | • • • •        | • • •         | • • • •        | .696           |                    |              | 5.28                | .273            | .181         | .111         |         |
| 3:                          |         |                |               |                |                |                    |              |                     |                 |              |              |         |
| Reach A                     |         | 24.5           | 0.20          | 24.8           | 0.987          | 0.00212            | 82           | 4.26                | 0.350           | 0.249        | 0.192        | 0       |
| В                           |         | 22.0           | .22           | 24.1           | .911           | .00212             | 82           | 4,93                | .298            | .210         | .198         | 0       |
| C                           |         | 16.1           | .30           | 23.8           | .677           | .00288             | 82           | 6.73                | .208            | .140         | .201         | 0       |
| Average                     |         | • • •          |               |                | .858           |                    |              | 5.31                | .285            | .200         | .197         |         |
| 4:                          |         |                |               |                |                |                    |              |                     |                 |              |              |         |
| Reach A                     |         | 25.8           | 0.19          | 24.9           | 1.04           | 0.00154            | 80           | 4.75                | 0.317           | 0.230        | 0.198        | 0       |
| В                           |         | 25.5           | .19           | 24.7           | 1.03           | .00136             | 80           | 5,16                | .291            | .212         | .199         | 0       |
| C Average                   |         | 24.3           | .20           | 24.8           | .980<br>1.02   | .00109             | 80           | 6.18<br>5.36        | .241            | .175         | .198<br>.198 | <u></u> |
|                             |         | • • •          | •••           | •••            | 1.02           |                    | • • •        | 0,00                | .200            | .200         | .190         |         |
| 5;<br>Reach A               | 4.00    | 01.0           | 0.10          | 05.0           | 1 01           | 0.00107            | 90           | 1.07                | 0.044           | 0.260        | 0.195        | 0       |
| В                           |         | $31.0 \\ 32.5$ | $0.16 \\ .15$ | $25.6 \\ 25.6$ | $1.21 \\ 1.27$ | 0.00107<br>.000813 | 80<br>80     | $\frac{4.67}{4.76}$ | $0.344 \\ .326$ | ,250         | .194         | 0       |
| Č                           |         | 33.0           | .15           | 25.7           | 1.28           | .000653            | 80           | 5.22                | 298             | .229         | .193         | ő       |
| Average                     |         |                |               |                | 1.25           |                    |              | 4.82                | ,323            | .246         | .194         |         |
| 6:                          |         |                | <del></del> - |                |                |                    | <del>,</del> |                     |                 | <del></del>  | <del></del>  |         |
| o.<br>Reach A               | 8.40    | 31.1           | 0.27          | 25.5           | 1.22           | 0.00212            | 77           | 5,31                | 0,292           | 0.222        | 0.329        | 0       |
| В                           |         | 28.2           | .30           | 25.1           | 1.12           | .00229             | 77           | 5.86                | .260            | .195         | .333         | 0       |
| C                           | 8.40    | 21.1           | .40           | 24.2           | .870           | .00344             | 77           | 7.28                | .201            | ,144         | .346         | 0       |
| Average                     |         |                |               |                | 1.07           |                    |              | 6.15                | .251            | .187         | .336         | . , .   |
| 7:                          |         |                |               |                |                |                    |              |                     |                 |              | ·            |         |
| Reach A                     | 8.45    | 35.4           | 0.24          | 26.3           | 1.35           | 0.00156            | 77           | 5.19                | 0.303           | 0.237        | 0.321        | 0       |
| В                           |         | 35.2           | .24           | 26,1           | 1.35           | .00137             | 77           | 5.58                | .282            | .221         | .324         | 0       |
| C ,                         | 8.45    | 33.1           | .26           | 25.8           | 1,29           | .00132             | 77           | 6.18                | ,252            | .197         | .329         | 0       |
| Average                     |         | • • •          | • • •         | • • •          | 1.33           |                    |              | 5.65                | .279            | .218         | .325         | • • •   |
| 3:                          |         |                |               |                |                |                    |              |                     |                 |              |              |         |
| leach A                     |         | 40.9           | 0.21          | 27.1           | 1.51           | 0.00113            | <b>7</b> 9   | 5.03                | 0.319           | 0.256        | 0.314        | 10      |
| В                           |         | 42.5           | .20           | 27.3           | 1.56           | .000920            | 79           | 5.27                | .306            | .248         | .312         | 10      |
| C                           |         | 42.3           | .20           | 26.8           | 1.58           | .000833            | 79           | 5.54                | .291            | .237         | ,318         | 0       |
| Average                     |         | , , ,          |               | • • •          | 1.55           |                    | • • •        | 5.28                | .305            | .247         | .315         |         |
| <b>4</b> :                  |         |                |               |                |                |                    |              |                     |                 |              |              |         |
| leach A                     |         | 40.1           | 0.36          | 27.0           | 1.48           | 0.00231            | 79           | 6.12                | 0.262           | 0.210        | 0.530        | 10      |
| В                           |         | 36.7           | .39           | 26.4           | 1.39           | .00256             | 79<br>70     | 6.55                | .241            | .192         | .544<br>579  | 10      |
| C                           |         | 27.3           | .52           | 25.0           | 1.09           | .00407             | 79           | 7.88                | .193            | .147<br>.183 | .572<br>.549 | 0       |
| Average                     |         |                |               |                | 1.32           | * * * * * * *      |              | 6,85                | .252            | .100         | 640          | • • •   |

Table 30. — Hydraulic elements and friction factors for experiment 6, sudangrass in channel FC 30 — Continued

[Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft.  $^{\circ}$ F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach; | Q          | A     | V     | P       | R    | S        | °F    | С    | 'n    | $n_k$ | VR    | %        |
|------------------------------|------------|-------|-------|---------|------|----------|-------|------|-------|-------|-------|----------|
| Test 10:                     |            | •     | *     |         |      |          |       |      |       |       |       |          |
| Reach A                      | . 14.6     | 48.0  | 0.30  | 28.2    | 1.70 | 0.00132  | 81    | 6.42 | 0.255 | 0.213 | 0.517 | 30       |
| В                            | . 14.6     | 48.8  | .30   | 28.1    | 1.74 | .00134   | 81    | 6.19 | .265  | .223  | .520  | 25       |
| C                            | . 14.6     | 45.6  | .32   | 27.3    | 1.67 | .00157   | 81    | 6.25 | .261  | .217  | .534  | 0        |
| Average                      |            |       |       |         | 1.70 |          | • • • | 6.29 | .260  | .218  | .524  |          |
| Test 11:                     |            |       |       |         |      |          |       |      |       |       |       |          |
| Reach A                      | . 14.6     | 54.8  | 0.27  | 29.0    | 1.88 | 0.000960 | 81    | 6.26 | 0.265 | 0.227 | 0.500 | 40       |
| В.,                          | . 14.6     | 56.7  | .26   | 29.0    | 1.95 | .000953  | 81    | 5.96 | .280  | .242  | .501  | 40       |
| C                            | . 14.6     | 55.4  | .26   | 28.3    | 1.96 | .00109   | 81    | 5.69 | .295  | .254  | .515  | 5        |
| Average                      | ·          |       |       | :       | 1.93 | 1        | • • • | 5.97 | .280  | .241  | .505  |          |
| Test 12:                     |            |       |       |         |      |          |       |      |       |       |       |          |
| Reach A                      |            | 50.1  | 0.48  | 28.4    | 1.77 | 0.00203  | 81    | 7.94 | 0.208 | 0.177 | 0.842 | 50       |
| В                            |            | 47.0  | .51   | 27.9    | 1.68 | .00256   | 81    | 7.75 | .212  | .177  | .853  | 40       |
| С                            |            | 36.1  | .66   | 26.1    | 1.38 | .00447   | 81    | 8.42 | .188  | .151  | .912  | <u>5</u> |
| Average                      | · <u> </u> | •••   | • • • | • • • • | 1.61 |          |       | 8.04 | .203  | .168  | .869  |          |
| Test 13:                     |            |       |       |         |      |          |       |      |       |       |       |          |
| Reach A                      | . 24.1     | 58.5  | 0.41  | 29,4    | 1,99 | 0.00130  | 80    | 8.12 | 0.206 | 0.181 | 0.822 | 60       |
| В,,.                         |            | 58.6  | .41   | 29.2    | 2.01 | .00147   | 80    | 7.56 | .222  | .195  | .828  | 60       |
| C                            | . 24.1     | 54,5  | .44   | 28.2    | 1.93 | .00175   | 80    | 7.62 | .220  | .190  | .854  | 25       |
| Average                      |            |       |       |         | 1.98 |          | ٠,٠٠  | 7,77 | .216  | .189  | .835  | • • •    |
| Test 14:                     |            |       |       |         |      |          |       |      |       |       |       |          |
| Reach A                      | . 24.2     | 69.0  | 0.35  | 31.0    | 2,23 | 0.000873 | 80    | 7.93 | 0.215 | 0.194 | 0.780 | 75       |
| В                            | . 24.2     | 71.4  | .34   | 31.1    | 2.30 | .000966  | 80    | 7.17 | .240  | .217  | .777  | 75       |
| C                            | . 24.2     | 69.8  | .35   | 30.5    | 2.28 | .00105   | 80    | 7.07 | .243  | .219  | .789  | 10       |
| Average                      | ·          |       |       | • • •   | 2.27 |          |       | 7.39 | .233  | .210  | .782  | • • •    |
| Test 15:                     |            |       |       |         |      | •        |       | •    |       |       |       |          |
| Reach A                      | . 36.6     | 59.3  | 0.62  | 29.7    | 1.99 | 0.00195  | 80    | 9.91 | 0.170 | 0.150 | 1.23  | 85       |
| В                            | . 36.6     | 56.2  | .65   | 28.9    | 1.94 | .00263   | 80    | 9.12 | .183  | .160  | 1.26  | 70       |
| C                            | . 36.6     | 45.0  | .81   | 27.1    | 1.66 | .00405   | 80    | 9.90 | .165  | .140  | 1.35  | 15       |
| Average                      | . <u></u>  |       |       |         | 1.86 |          |       | 9.64 | .173  | .150  | 1.28  |          |
| Test 16:                     |            |       |       |         |      |          |       |      |       |       |       |          |
| Reach A                      | . 36.8     | 68.9  | 0.53  | 30.9    | 2.23 | 0.00130  | 76    | 9.92 | 0.172 | 0.156 | 1.19  | 90       |
| В                            | . 36.8     | 69.1  | .53   | 30.8    | 2.25 | .00160   | 76    | 8.86 | .193  | .175  | 1.20  | 85       |
| C                            | . 36.8     | 64.1  | .57   | 29.5    | 2.17 | .00180   | 76    | 9.19 | .186  | .167  | 1,25  | 15       |
| Average                      | ·          | •••   |       |         | 2.22 |          |       | 9,32 | .184  | .166  | 1,21  |          |
| Test 17:                     |            |       |       |         |      |          |       | ·    |       |       |       |          |
| Reach A                      | . 35.9     | 82.5  | 0.44  | 32.6    | 2,53 | 0.000793 | 76    | 9.71 | 0.179 | 0.168 | 1.10  | 95       |
| В                            |            | 85.3  | .42   | 32.8    | 2.60 | .000993  | 76    | 8.29 | .212  | .198  | 1.09  | 90       |
| C                            | . 35.9     | 82.8  | .43   | 32.1    | 2.58 | .00104   | 76    | 8.38 | 2.209 | .195  | 1.12  | 30       |
| Average                      | •          |       |       | • • •   | 2.57 |          |       | 8.79 | .200  | .187  | 1.10  |          |
| Test 18:                     |            |       |       |         |      |          |       |      |       |       |       | -        |
| Reach A                      | . 59,5     | 70.2  | 0.85  | 31.1    | 2.26 | 0.00188  | 76    | 13.0 | 0.132 | 0.121 | 1.92  | 98       |
| В                            |            | 66.9  | .89   | 30.5    | 2,20 | .00279   | 76    | 11.4 | .150  | ,126  | 1.96  | 95       |
| C                            |            | 54.1  | 1.10  | 28.1    | 1.92 | .00418   | 76    | 12.3 | .136  | .120  | 2.11  | 40       |
| Average                      |            | • • • | •••   |         | 2.13 |          |       | 12.2 | .139  | .126  | 2.00  | • • •    |
|                              |            |       |       |         |      |          |       |      |       |       |       |          |

Table 30. — Hydraulic elements and friction factors for experiment 6, sudangrass in channel FC 30 — Continued

[Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P. Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft.  $^{\circ}$ F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_h$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach | Q    | Α    | V     | P    | R    | S       | °F | C    | n     | $n_k$ | VR   | %   |
|-----------------------------|------|------|-------|------|------|---------|----|------|-------|-------|------|-----|
| Test 19:                    |      |      |       |      |      |         |    |      |       |       |      |     |
| Reach A 5                   | 9.5  | 83.5 | 0.71  | 33.2 | 2.51 | 0.00117 | 76 | 13.2 | 0.133 | 0.124 | 1.79 | 98  |
| B 5                         | 9.5  | 84.2 | .71   | 33.1 | 2.55 | .00107  | 76 | 13.5 | .130  | .122  | 1.80 | 98  |
| C <u>5</u>                  | 9.5  | 78.4 | .76   | 31.5 | 2.49 | .00171  | 76 | 11.6 | .151  | .140  | 1,89 | 50  |
| Average                     |      |      | • • • |      | 2.52 |         |    | 12.8 | .138  | .129  | 1.83 |     |
| Test 20:                    | -2   |      |       |      | -    |         |    |      |       |       |      |     |
| Reach A 8                   | 39.5 | 78.2 | 1.14  | 32.1 | 2.44 | 0.00194 | 76 | 16.6 | 0.104 | 0.098 | 2.78 | 100 |
| B , 8                       | 89.5 | 74.1 | 1.21  | 31.6 | 2.34 | .00288  | 76 | 14.8 | .116  | .108  | 2.83 | 99  |
| C 8                         | 9.5  | 58.9 | 1.52  | 28,9 | 2.04 | .00467  | 76 | 15.6 | .107  | .098  | 3.10 | 70  |
| Average                     |      |      |       |      | 2.27 |         |    | 15,7 | .109  | .101  | 2.90 |     |

TABLE 31.—Stand counts and plant heights for Korean lespedeza and annual grasses in channel FC 29, experiment 8

|                     |                                      | Korean le                           | espedeza                               |                                                      | A                             | nnual gras                             | ses                                                  |
|---------------------|--------------------------------------|-------------------------------------|----------------------------------------|------------------------------------------------------|-------------------------------|----------------------------------------|------------------------------------------------------|
| Reach <sup>1</sup>  | No. plants<br>per<br>ft <sup>2</sup> | No. stems<br>per<br>ft <sup>2</sup> | Average<br>plant<br>height<br>(inches) | Average<br>tallest<br>plant <sup>2</sup><br>(inches) | No. stems per ft <sup>2</sup> | Average<br>plant<br>height<br>(inches) | Average<br>tallest<br>plant <sup>2</sup><br>(inches) |
| A                   | 41                                   | 153                                 | 8                                      | 11                                                   | 20                            | 9                                      | 14                                                   |
| В                   | 36                                   | 136                                 | 8                                      | 12                                                   | 12                            | 10                                     | 15                                                   |
| Č                   | 24                                   | 78                                  | 9                                      | 18                                                   | 18                            | 8                                      | 12                                                   |
| Average for channel | r<br>34                              | 122                                 | 8                                      | 12                                                   | 17                            | 9                                      | 14                                                   |

Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

<sup>2</sup> The height of the tallest plant was measured at 9 sampling points in each reach. The average of these measurements is the "average tallest plant."

plants in figure 47 show five or six principal branches near the base. These branches are reported as stems in the count.

Seventeen tests were run on the channel, ranging in discharge rate from 1.1 to 63.8 ft $^3$ /s. Three sill heights were used with most of the discharge rates. Table 32 gives the hydraulic elements and friction factors for the tests. The Manning n values are plotted against the corresponding values of VR in figure 48. The two envelope curves contain all points for below normal, normal, and above-normal depth flows.

#### Lovegrass in channel FC 30

Lovegrass was broadcast in the channel.



FIGURE 47.—Korean lespedeza plants removed from channel FC 29 before tests.



FIGURE 48.—Relation of Manning n to product of velocity and hydraulic radius (VR) for flow tests on channel FC 29, experiment 8.



FIGURE 49.—Lovegrass in reach B of channel FC 30 before tests, experiment 8.



FIGURE 50.—Lovegrass across reach B of channel FC 30, experiment 8. (Grass in foreground was cut to show 2-ft-wide strip against background.)

When the tests were begun, the grass was still green. The seed heads were still on, but they had already dropped the seed. The stems averaged 12 inches in length, with some stems 32 inches long. In addition to the lovegrass, there was a considerable amount of crabgrass in the channel. The crabgrass averaged 22 inches in length, with a maximum of 50 inches. Table 33 gives the stand count and height data. Separate counts are given for the lovegrass (number of plants per square foot) and for the crabgrass (number of stems per square foot). Figure 49 shows reach B before the tests, and figure 50 shows a cross section of the reach. Figure 51 is a photograph of a typical plant from the channel.



FIGURE 51.—Typical lovegrass plant in channel FC 30 after tests, experiment 8.



FIGURE 52.—Relation of Manning n to product of velocity and hydraulic radius (VR) for flow tests on channel FC 30, experiment 8.

`ABLE 32.—Hydraulic elements and friction factors for experiment 8, Korean lespedeza in channel FC 29

Q. Discharge, ft<sup>3</sup>/s. A. Area, ft<sup>2</sup>. V. Velocity, ft/s. P. Wetted perimeter, ft. R. Hydraulic radius, ft. S. Slope, ft/ft. F. Water temperature. C. Coefficient in Chezy formula. n. Manning n friction factor.  $n_k$ . Coefficient in Kutter formula. R. Product of V and R. %, Degree of submergence.

| Flow test and<br>channel reach | Q       | Α              | V             | P                   | R            | S               | °F       | С            | n            | $n_k$        | VR            | %        |
|--------------------------------|---------|----------------|---------------|---------------------|--------------|-----------------|----------|--------------|--------------|--------------|---------------|----------|
| 'est 1:                        |         |                |               |                     |              |                 |          |              |              |              |               |          |
| Reach A                        | 2.03    | 14.0           | 0.14          | 22.3                | 0.631        | 0.00133         | 71       | 4.97         | 0.278        | 0.179        | 0.091         | 85       |
| В                              |         | 13.4           | .15           | 21.8                | .616         | .00157          | 71       | 4.85         | .283         | .181         | .093          | 80       |
| C                              | 2.03    | 12.0           | .17           | 21.5                | .557         | .00258          | 71       | 4.45         | .303         | .188         | .094          | 55       |
| Average                        |         |                |               |                     | .601         |                 |          | 4.76         | .288         | .183         | .093          |          |
| est 2:                         |         |                |               |                     |              |                 |          |              |              |              |               |          |
| Reach A                        |         | 14.3           | 0.14          | 22.2                | 0.645        | 0.00132         | 75       | 4.86         | 0.285        | 0.184        | 0.092         | 85       |
| В                              |         | 13.8           | .15           | 21.8                | .632         | .00143          | 75       | 4.92         | .280         | .181         | .094          | 80<br>75 |
| C                              |         | 14.0           | .15           | 21.8                | .639         | .00140          | 75       | 4.88<br>4.89 | .285         | .183         | .093          |          |
| Average                        |         | • • •          |               |                     | .039         |                 |          | 4.00         | .200         | .100         | .000          |          |
| est 3:                         | 1 10    | 110            | 0.10          | 01.6                | 0.506        | 0.00139         | 78       | 3.92         | 0.339        | 0.202        | 0.053         | 35       |
| Reach A B                      |         | 11.0 $10.1$    | $0.10 \\ .11$ | 21.6 $21.2$         | 0.506 $.478$ | .00157          | 78       | 4.09         | .325         | .190         | .054          | 30       |
| C                              |         | 9.36           | .12           | 21.0                | .446         | .00195          | 78       | 4.10         | .317         | .184         | .054          | 25       |
| Average                        |         |                |               |                     | .477         |                 |          | 4.04         | .327         | .192         | .054          |          |
| est 4:                         |         |                |               |                     |              |                 |          |              |              |              |               |          |
| Reach A                        | 4.12    | 18.5           | 0.22          | 22.7                | 0.813        | 0.00135         | 74       | 6.73         | 0.214        | 0.150        | 0.181         | 185      |
| В                              |         | 17.9           | .23           | 22.5                | .792         | .00148          | 74       | 6.72         | .214         | .149         | .182          | 85       |
| C ,                            |         | 16.4           | .25           | 22.1                | .739         | .00257          | 74       | 5.78         | .245         | .166         | .186          | 85       |
| Average                        |         |                |               |                     | .781         |                 |          | 6.41         | .224         | .155         | .183          |          |
| est 5:                         |         |                |               |                     |              |                 |          |              |              |              |               |          |
| Reach A                        | 4.15    | 18.7           | 0.22          | 23.0                | 0.814        | 0.00125         | 71       | 6.95         | 0.207        | 0.146        | 0.181         | 90       |
| В                              | 4.15    | 18.6           | .22           | 22.8                | .816         | .00128          | 71       | 6.93         | .210         | .146         | .182          | 90       |
| C                              | 4.15    | 19.0           | .22           | 22.7                | .838         | .001 <u>28</u>  | 71_      | 6,68         | .217         | .153         | .184          | 90       |
| Average                        | · · · · |                |               |                     | .823         |                 | • • •    | 6,85         | .211         | .148         | .182          |          |
| l'est 6:                       |         |                |               |                     |              |                 |          |              | 0 4 DH       | 0.100        | 0.170         | 00       |
| Reach A                        |         | 21.1           | 0.20          | 23.3                | 0.905        | 0.000694        | 74       | 7,86         | 0.187        | 0.136 $.127$ | 0.178<br>.176 | 90<br>90 |
| B                              |         | 23.4           | .18           | 23.6                | .989         | ,000420         | 74<br>74 | 8.73<br>9.33 | .170<br>.162 | .125         | .171          | 90       |
| C                              |         | 27.2           | .15           | 24.3                | 1.12         | .000240         |          | 8.64         | .173         | .129         | .175          |          |
| Average                        | ·       | •••            |               | • • •               | 1.00         |                 |          | 0101         |              |              |               |          |
| l'est 7:                       | 0.017   |                | 0.05          | 00.0                | 0.006        | 0.00131         | 75       | 9.74         | 0.153        | 0.116        | 0.351         | 95       |
| Reach A                        |         | 23.8           | 0.35          | $\frac{23.9}{23.6}$ | 0.996 $.992$ | .00143          | 75       | 9.51         | .157         | .119         | .355          | 95       |
| C                              |         | $23.4 \\ 22.7$ | .37           | 23.6                | .960         | .00181          | 75       | 8.84         | .168         | .125         | .354_         | 95       |
| Average                        |         |                |               |                     | .983         |                 |          | 9.36         | .159         | .120         | .353          |          |
| Test 8:                        |         |                | <del></del>   |                     |              |                 |          |              |              |              |               |          |
| Reach A                        | 8.38    | 24.1           | 0.35          | 23.9                | 1.00         | 0.00125         | 76       | 9,83         | 0.152        | 0.115        | 0.348         | 95       |
| B                              |         | 24.1           | .35           | 23.7                | 1.02         | .00123          | 76       | 9.32         | .152         | .116         | .355          | 95       |
| Č                              |         | 24.7           | .34           | 24.0                | 1.03         | .00125          | 76       | 9.44         | .159         | .121         |               | 95       |
| Average                        |         | • • •          |               |                     | 1.02         |                 |          | 9.70         | .154         | .117         | .351          | • • •    |
| l'est 9:                       |         |                |               |                     |              |                 |          |              |              |              |               |          |
| Reach A                        | . 8.40  | 27.5           | 0.30          | 24,3                | 1.13         | 0.000680        | 75       | 11.0         | 0.138        | 0.109        | 0.345         | 95       |
| В                              |         | 29.7           | .23           | 24.4                | 1.22         | ,000467         | 75       | 11.8         | .130         | .104         | .344          | 95<br>05 |
| •                              | 0 10    | 33.4           | .25           | 25.2                | 1.33         | .00 <u>0340</u> | 75 _     | 11.9         | 132_         | .107         | .335          | 95       |
| C                              | . 0.40  | 30.4           | .20           | 40.2                | 1.23         |                 |          | 11,6         | .133         | .107         | .341          |          |

See footnote at end of table.

Table 32. — Hydraulic elements and friction factors for experiment 8, Korean lespedeza in channel FC 29
— Continued

[Q, Discharge,  $ft^3$ /s. A, Area,  $ft^2$ , V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

|                             |       |      |      |                                       |          |    | <del></del> | ·     |       |                                        |       |
|-----------------------------|-------|------|------|---------------------------------------|----------|----|-------------|-------|-------|----------------------------------------|-------|
| Flow test and channel reach | A     | V    | P    | R                                     | S        | °F | С           | n     | $n_k$ | VR                                     | %     |
| Test 10:                    |       |      |      |                                       |          |    |             |       |       |                                        |       |
| Reach A 16.0                | 29,4  | 0.54 | 24.6 | 1.19                                  | 0.00143  | 72 | 13.2        | 0.117 | 0.094 | 0.649                                  | 98    |
| B 16.0                      | 28.1  | ,57  | 24.2 | 1.16                                  | .00166   | 72 | 11,8        | .130  | ,103  | .659                                   | 98    |
| C <u>16.0</u>               | 25.9  | .62  | 24.0 | 1,08                                  | .00259   | 72 | 11.7        | .130  | .102  | .667                                   | 98    |
| Average                     |       |      |      | 1.14                                  | *****    |    | 12.2        | .126  | .100  | .658                                   |       |
| Test 11:                    |       |      |      |                                       |          |    |             |       |       |                                        |       |
| Reach A 16.0                | 30.3  | 0.53 | 24.7 | 1.22                                  | 0.00121  | 73 | 13.8        | 0.112 | 0.091 | 0.647                                  | 100   |
| B 16.0                      | 30.3  | .53  | 24.6 | 1.24                                  | .00116   | 73 | 13.9        | .111  | .091  | ,655                                   | 100   |
| C <u>16.0</u>               | 31.2  | .51  | 24.6 | 1.26                                  | .00117   | 73 | 13.4        | .116  | .095  | 648                                    | 100   |
| Average                     | ·     |      | •••  | 1.24                                  |          |    | 13.7        | .113  | .092  | .650                                   |       |
| Test 12:                    |       |      |      |                                       |          |    |             |       |       |                                        |       |
| Reach A 16.0                | 34.6  | 0.46 | 25.3 | 1.37                                  | 0.000693 | 74 | 15.0        | 0.105 | 0.088 | 0.634                                  | 100   |
| B 16.0                      | 36.8  | .44  | 25.4 | 1.45                                  | .000520  | 74 | 15.9        | .100  | .085  | .632                                   | 100   |
| C <u>16.0</u>               | 40.4  | .40  | 26.1 | 1.55                                  | ,000420  | 74 | 15.6        | .103  | ,088  | ,615                                   | 100   |
| Average                     |       |      |      | 1,46                                  | ,,,,,,   |    | 15.5        | .103  | .087  | .627                                   |       |
| Test 13:                    |       |      |      |                                       |          |    |             |       |       |                                        |       |
| Reach A 31.3                | 37.6  | 0.83 | 25.9 | 1,45                                  | 0.00158  | 74 | 17.4        | 0.092 | 0.078 | 1,21                                   | 100   |
| B 31.3                      | 35.6  | .88  | 25.3 | 1.41                                  | .00187   | 74 | 17.1        | .093  | .079  | 1.24                                   | 100   |
| C <u>31.3</u>               | 32.6  | .96  | 24.8 | 1.31                                  | .00299   | 74 | 15.3        | .103  | .085  | 1,26                                   | 100   |
| Average                     |       |      |      | 1.39                                  |          |    | 16.6        | .096  | .081  | 1.24                                   | 1 1 1 |
| Test 14:                    |       |      |      |                                       | ·        |    |             |       |       |                                        |       |
| Reach A 31.5                | 39.5  | 0.80 | 26,0 | 1.52                                  | 0.00131  | 73 | 17,9        | 0.090 | 0.077 | 1.21                                   | 100   |
| B 31.5                      | 39.0  | .81  | 25.7 | 1.52                                  | .00129   | 73 | 18.2        | .088  | .076  | 1.23                                   | 100   |
| C <u>31.5</u>               | 39.4  | .80  | 26.0 | 1.52                                  | .00136   | 73 | 17.6        | .091  | .079  | 1.21                                   | 100   |
| Average                     |       |      | ,    | 1.52                                  |          |    | 17.9        | .090  | ,077  | 1.22                                   |       |
| Test 15:                    |       |      |      | 1                                     |          |    |             |       |       |                                        |       |
| Reach A 31.4                | 44.4  | 0.71 | 26.9 | 1.65                                  | 0.000840 | 73 | 19.0        | 0.086 | 0.075 | 1.16                                   | 100   |
| В 31.4                      | 46.1  | .68  | 27.0 | 1.71                                  | .000700  | 73 | 19.7        | .083  | .074  | 1.16                                   | 100   |
| C <u>31.4</u>               | 49.1  | .64  | 27.5 | 1.78                                  | ,000620  | 73 | 19,2        | .085  | .076  | 1.14                                   | 100   |
| Average                     | • • • |      |      | 1.71                                  |          |    | 19,3        | .085  | .075  | 1.15                                   |       |
| Test 16:                    |       |      |      | · · · · · · · · · · · · · · · · · · · |          |    |             |       |       | ······································ |       |
| Reach A 63.7                | 50.1  | 1.27 | 27.8 | 1.80                                  | 0.00175  | 73 | 22.6        | 0.073 | 0.066 | 2.29                                   | 100   |
| B 63.7                      | 47.1  | 1.35 | 27.3 | 1.73                                  | .00205   | 73 | 22.7        | .072  | .065  | 2,34                                   | 100   |
| C <u>63.7</u>               | 43.2  | 1,47 | 26.7 | 1.62                                  | .00272   | 73 | 22.2        | .073  | .065  | 2.38                                   | 100   |
| Average                     |       |      |      | 1.72                                  |          |    | 22.5        | .073  | .065  | 2.34                                   |       |
| Test 17:                    |       |      |      |                                       |          |    |             |       |       |                                        |       |
| Reach A 63.8                | 52.6  | 1.21 | 28.1 | 1.88                                  | 0,00141  | 74 | 23,5        | 0.071 | 0.064 | 2.27                                   | 100   |
| B 63.8                      | 51.7  | 1.23 | 27.7 | 1.86                                  | .00145   | 74 | 23,7        | .070  | .064  | 2.29                                   | 100   |
| C <u>63.8</u>               | 51.5  | 1,24 | 27.8 | 1.86                                  | .00145   | 74 | 23.9        | .070  | .063  | 2.31                                   | 100   |
| Average                     |       |      |      | 1.87                                  |          | ,  | 23.7        | .070  | ,064  | 2.29                                   |       |
|                             |       |      |      |                                       |          |    |             |       |       |                                        |       |

All lespedeza in subsequent tests was submerged; grass was the unsubmerged vegetation.

TABLE 33.—Stand counts and stem lengths for lovegrass and crabgrass in channel FC 30, experiment 8

|                     |                                        | Lovegrass                             |                                                     |                                     | Crabgrass                             |                                                     |
|---------------------|----------------------------------------|---------------------------------------|-----------------------------------------------------|-------------------------------------|---------------------------------------|-----------------------------------------------------|
| Reach <sup>1</sup>  | No. plants<br>per<br>ft <sup>2</sup> * | Average<br>stem<br>length<br>(inches) | Average<br>longest<br>stem <sup>2</sup><br>(inches) | No. stems<br>per<br>ft <sup>2</sup> | Average<br>stem<br>length<br>(inches) | Average<br>longest<br>stem <sup>2</sup><br>(inches) |
| A                   | 9                                      | 11                                    | 19                                                  | 94                                  | 22                                    | 35                                                  |
| В                   | 10                                     | 12                                    | 21                                                  | 67                                  | 23                                    | 38                                                  |
| C                   | 10                                     | 14                                    | 23                                                  | 35                                  | 21                                    | 36                                                  |
| Average for channel | 10                                     | 12                                    | 21                                                  | 65                                  | 22                                    | 36                                                  |

<sup>&</sup>lt;sup>1</sup> Reach A extends from station 1+00 to station 2+50, reach B extends from station 2+50 to station 4+00, and reach C extends from station 4+00 to station 5+50. (See figure 1.)

Eighteen tests, ranging in discharge rate from 2.8 to 99.5 ft $^3$ /s, were run. Several sill heights were used with each discharge rate except the smallest rate. Table 34 gives the hydraulic data and friction factors for the experiment. The Manning n values for the tests are plotted against the corresponding values of VR in figure 52.

## **ANALYSIS**

If the need arises for an n value for a channel exactly like one of those tested, the reported nvalues can be applied directly, but this situation is almost never the case. The channel or flood plain under study will differ from the test channel being used as a guide for the selection of n. The value of n for the test channel can serve as a base value to which corrections must be applied to adjust for the differences between the test channel and the channel for which an estimate of n is needed. Unfortunately, not enough test data are available to isolate the effect of each variable that influences the n value, and the adjustment cannot be reduced to a mechanical procedure. Instead, adjustment must be based on judgment.

## Influence of Plant Shape on Friction Factor

The right graph in figure 58 shows that the *n* value for 'Redlan Kafir' increased with depth, at least to the depth tested. To the left of this graph, and to the same scale, is a photograph

of a typical plant from channel FC 29. A comparison of the photograph and the graph yields the conclusion that the n value increased with the depth because of the greater bulk of vegetation in the flow path. For deeper flows the leaves would have been overtopped, resulting in a reversal or decrease in the n value.

The left graph shows the velocity distribution in the vertical in the center of the channel during a flow of 38 ft<sup>3</sup>/s. The velocity increased from bottom to top as expected, but the distribution was distorted by the vegetation in the flow stream. Near the bed, where there were only a few relatively bare stalks, the velocity increased rapidly with distance from the bed. At the level of the first branching leaves, the rate of increase in the velocity was greatly reduced. Above the leaves an increase in the velocity occurred again, until the water surface approached the top leaves, and then the friction at the air-water interface began to affect the velocity. Therefore, the shape of a plant and its leaf size and distribution determine the extent of velocity reduction and the corresponding effect on the friction factor.

### Influence of Row Spacing on Friction Factor

Two row spacings, 7 inches and 14 inches, were tested for wheat, and the friction factors were compared. The first comparison was made with a poor-quality stand, so another comparison was made 2 years later after tests with a (Continued on page 54.)

<sup>&</sup>lt;sup>2</sup> The length of the longest stem was measured at 9 sampling points in each reach. The average of these measurements is the "average longest stem."

<sup>\*</sup> Each plant had about 10 stems of very small diameter.

Table 34. — Hydraulic elements and friction factors for experiment 8, lovegrass in channel FC 30  $^{1}Q$ , Discharge,  $^{1}S$ , A. Area,  $^{1}S$ , V. Velocity,  $^{1}S$ , P. Wetted perimeter,  $^{1}S$ , Hydraulic radius,  $^{1}S$ , Slope,  $^{1}S$ , Water temperature. C. Coefficient in Chezy formula.  $^{1}S$ , Manning  $^{1}S$  friction factor.  $^{1}S$ , Coefficient in Kutter formula.  $^{1}S$ , Product of  $^{1}S$  and  $^{1}S$ , Degree of submergence

| Flow test and channel reach | Q     | A       | V          | P                   | R            | S                | °F       | C                   | n            | $n_k$           | VR           | %       |
|-----------------------------|-------|---------|------------|---------------------|--------------|------------------|----------|---------------------|--------------|-----------------|--------------|---------|
| Test 1:                     |       |         | 0.11       | 64.0                | 0.070        | 0.00147          | 77       | 3.77                | 0.387        | 0.265           | 0.118        | 0       |
| Reach A                     |       | 20.9    | 0.14       | 24.0                | 0.872        | .00178           | 77       | 3.67                | .397         | .268            | .119         | 0       |
| В                           |       | 19.9    | .14        | $23.6 \\ 22.2$      | .841<br>.623 | .00302           | 77       | 4.70                | .294         | .187            | .127         | ő       |
| C                           |       | 13.8    | .20        |                     | .779         |                  |          | 4.05                | .359         | .240            | .121         |         |
| Average                     |       |         |            |                     | .710         |                  |          |                     |              |                 |              |         |
| Test 2:                     |       |         |            | 0.5                 |              | 0.00157          | 70       | 2.00                | 0.382        | 0.282           | 0.190        | 0       |
| Reach A                     |       | 28,3    | 0.17       | 25.0                | 1.13         | 0.00157          | 78<br>78 | $\frac{3.98}{3.82}$ | .395         | .287            | .193         | 0       |
| В                           |       | 26.6    | .18        | $\frac{24.8}{23.4}$ | 1.07<br>.796 | .00207<br>.00378 | 78       | 4.67                | .308         | .209            | .204         | 0       |
| C                           |       | 18.6    | .26        |                     | .999         |                  |          | 4.16                | .362         | .259            | .196         | ,       |
| Average                     |       |         |            |                     |              |                  |          | 1.10                |              |                 | 7200         |         |
| Test 3:                     |       |         | 0.40       | 05.0                | 4 15         | 0.00150          | 90       | 3,92                | 0.389        | 0,288           | 0.189        | 0       |
| Reach A                     |       | 29.2    | 0.16       | 25.3                | 1.15         | 0.00152 $.00177$ | 80<br>80 | 3.84                | .397         | .291            | .192         | 0       |
| B                           |       | 28.0    | .17<br>,21 | $25.0 \\ 24.3$      | 1.12 $.927$  | .00241           | 80       | 4.50                | .326         | .231            | .197         | 0       |
| C                           |       | 22.5    |            |                     | 1,07         | 111111           |          | 4.09                | .371         | .270            | .193         |         |
| Average                     |       | • • • • |            |                     | 1,01         |                  |          |                     |              |                 |              |         |
| Test 4:                     |       |         |            |                     |              | 0.00110          | g o      | 4.00                | 0.007        | 0.001           | 0.100        | 10      |
| Reach A                     |       | 31.5    | 0.15       | 25.6                | 1,23         | 0.00119          | 79       | 4.00                | 0.387        | $0.291 \\ .302$ | 0.188        | 10<br>0 |
| <u>B</u>                    |       | 31.9    | .15        | 25.6                | 1.25         | .00121           | 79<br>79 | $\frac{3.88}{4.24}$ | .400<br>.363 | .302            | .189<br>.190 | 0       |
| Ċ                           |       | 29.9    | .16        | 25,3                | 1.18         | .00122           |          | 4.04                | ,383         | .288            | .189         |         |
| Average                     |       |         |            |                     | 1.22         |                  | • • • •  | 4.04                | ,000         | .200            | ,100         | ,       |
| Test 5:                     |       |         |            |                     |              |                  |          | . = 0               |              | 0.000           | 0.000        | 0.5     |
| Reach A                     |       | 36.7    | 0.21       | 26.4                | 1.39         | 0.00142          | 77       | 4.72                | 0.335        | 0.262           | 0.292        | 25      |
| В                           |       | 35.8    | .22        | 26.1                | 1.37         | .00161           | 77       | 4.60                | .344         | .267            | .296<br>.304 | 5<br>5  |
| c                           |       | 30.8    | .25        | 25.5                | 1.21         | .00227           | 77_      | 4.79                | .323         | .244            | .297         |         |
| Average                     |       |         | •••        | • • • •             | 1,32         |                  | • • •    | 4,70                | .334         | .200            | .201         |         |
| Test 6:                     |       |         |            |                     |              |                  |          |                     |              |                 |              |         |
| Reach A                     |       | 40.0    | 0.19       | 26.8                | 1.49         | 0.00107          | 79       | 4.86                | 0.329        | 0.263           | 0.289        | 40      |
| В.,                         |       | 40.7    | .19        | 26.8                | 1.52         | .00109           | 79       | 4.69                | .341         | .274            | .290<br>,294 | 10      |
| C                           | 7,77  | 38.9    | .20        | 26.5                | 1.47         | .00113           | 79       | 4,91                | ,326         | .259            | ,291         | 10      |
| Average                     |       | •••     |            | 1 1 1               | 1.49         | 1.11             | •••      | 4.82                | ,332         | .265            | ,291         | • • •   |
| Test 7:                     |       |         |            |                     |              |                  |          |                     |              |                 |              |         |
| Reach A                     |       | 45.8    | 0.17       | 27.7                | 1.65         | 0,000693         | 81       | 5.02                | 0.323        | 0.266           | 0.280        | 50      |
| В                           |       | 48.2    | .16        | 28.0                | 1.72         | .000613          | 81       | 4.99                | .328         | .272            | .279         | 30      |
| C                           |       | 48.8    | .16        | 27.5                | 1.78         | .000560          | 81       | 5.07                | .324         | .272            | .285<br>.281 | 20      |
| Average                     |       |         |            | • • • •             | 1.72         |                  | , , ,    | 5.03                | .325         | .270            | .201         | • • •   |
| Test 8:                     |       |         |            |                     |              |                  |          |                     |              |                 |              |         |
| Reach A                     |       | 44,5    | 0.33       | 27.6                | 1.61         | 0.00135          | 76       | 7.03                | 0.231        | 0.191           | 0.528        | 60      |
| В                           |       | 43.9    | .33        | 27.3                | 1.61         | .00158           | 76       | 6,58                | .247         | .203            | .535         | 45      |
| C                           |       | 39.8    | 37         | 26.7                | 1,49         | .00192           | 76       | 6.86                | .234         | .189            | .547         | 30      |
| Average                     | • • • | • • • • |            |                     | 1,57         |                  | • • •    | 6.82                | .237         | .194            | .537         |         |
| Test 9:                     |       |         |            |                     |              |                  |          |                     |              |                 |              |         |
| Reach A                     |       | 46.9    | 0.31       | 27.8                | 1.68         | 0.00111          | 77       | 7.24                | 0.225        | 0.189           | 0.526        | 65      |
| В                           | 14.7  | 47.5    | .31        | 27.8                | 1.70         | .00125           | 77       | 6.70                | .244         | .204            | .525         | 55      |
|                             |       |         | ,          |                     | 2            |                  |          |                     |              |                 |              |         |
| c                           |       | 45.4    | .32        | 27.3                | 1,66         | .00129           | 77       | 6.98<br>6.97        | .233         | .194            | .536<br>,529 | 40      |

Table 34. — Hydraulic elements and friction factors for experiment 8, lovegrass in channel FC 30 — Continued

[Q, Discharge, ft<sup>3</sup>/s. A, Area, ft<sup>2</sup>. V, Velocity, ft/s. P, Wetted perimeter, ft. R, Hydraulic radius, ft. S, Slope, ft/ft. °F, Water temperature. C, Coefficient in Chezy formula. n, Manning n friction factor.  $n_k$ , Coefficient in Kutter formula. VR, Product of V and R. %, Degree of submergence]

| Flow test and channel reach | Q            | A       | V     | P     | R    | S        | °F    | С    | n     | $n_k$        | VR           | %          |
|-----------------------------|--------------|---------|-------|-------|------|----------|-------|------|-------|--------------|--------------|------------|
| Test 10:                    |              |         |       |       |      |          |       |      |       | 0.00         | 0.710        |            |
| Reach A                     | . 14.7       | 53.0    | 0.28  | 28.7  | 1.85 | 0.000747 | 77    | 7.44 | 0.222 | 0.191        | 0.512        | 75         |
| В                           |              | 55.3    | .26   | 28.9  | 1.91 | ,000760  | 77    | 6.96 | .239  | .206         | .506         | 65         |
| C                           | . 14.7       | 55.4_   | 26    | 28.4  | 1.95 | .000707  | 77    | 7.14 | .235  | .203         | .517         | 30         |
| Average                     |              |         |       |       | 1.90 |          |       | 7.18 | .232  | .200         | .512         | • • • •    |
| Test 11:                    |              |         |       |       |      |          |       |      |       |              |              | 00         |
| Reach A                     | . 31.2       | 51.9    | 0.60  | 28.4  | 1.82 | 0.00150  | 76    | 11.5 | 0.143 | 0.125        | 1.10         | 90         |
| В                           |              | 50.9    | .61   | 28.2  | 1.81 | .00173   | 76    | 11.0 | .151  | .130         | 1.11         | 90         |
| C                           | <u>31.2</u>  | 46.5    | .67   | 27.3  | 1.70 | ,00186   | 76    | 11.9 | .137  | .118         | 1.14         | 90         |
| Average                     |              | • • • • |       | •••   | 1.78 |          |       | 11.5 | .144  | ,124         | 1.12         |            |
| Test 12:                    |              |         |       |       |      |          |       |      |       | 0.105        | 1.00         | 100        |
| Reach A                     |              | 58.1    | 0.52  | 29,6  | 1.97 | 0.000960 | 75    | 11.9 | 0.141 | 0.125        | 1.02         | 100<br>100 |
| В                           |              | 59.8    | .50   | 29.6  | 2.02 | .000987  | 75    | 11.3 | .149  | .132<br>.123 | 1.02<br>1.04 | 100        |
| C                           |              | 59.0    | .51   | 28.9  | 2.04 | .000847  | 75    | 12.3 | .137  |              | 1.03         |            |
| Average                     | · · <u> </u> |         |       |       | 2.01 |          | •••   | 11.8 | .142  | ,127         | 1.05         | • • •      |
| Test 13:                    |              |         |       |       |      |          |       |      |       | 0.400        | 0.000        | 100        |
| Reach A                     |              | 67.0    | 0.45  | 30.7  | 2.18 | 0.000640 | 76    | 12.1 | 0.141 | 0.128        | 0.983        | 100        |
| В                           |              | 70.2    | .43   | 31.1  | 2.26 | .000587  | 76    | 11.8 | .145  | .133         | .974<br>.986 | 100        |
| С                           | <u>30.2</u>  | 70.7    | ,43   | 30.6  | 2,31 | .000540  | 76    | 12.1 | .142  | .130         |              |            |
| Average                     |              | • • •   |       | • • • | 2,25 |          | • • • | 12.0 | ,143  | .130         | .981         | • • •      |
| Test 14:                    |              |         |       |       |      |          |       |      |       |              |              |            |
| Reach A                     | 59.3         | 62.3    | 0.95  | 30.2  | 2.06 | 0.00159  | 75    | 16.6 | 0.102 | 0.092        | 1,96         | 100        |
| В                           | . , 59.3     | 60.7    | .98   | 29.8  | 2,04 | .00179   | 75    | 16.2 | .104  | .094         | 1.99         | 100        |
| С                           | 59.3         | 56.0    | 1.06  | 28.4  | 1.97 | ,00189   | 75    | 17.4 | .096  | .087         | 2.09         | 100        |
| Average                     |              |         |       | • • • | 2.02 |          |       | 16.7 | .101  | .091         | 2.01         |            |
| Test 15:                    | •            |         |       |       |      |          |       |      |       |              |              |            |
| Reach A                     | 59.3         | 68.2    | 0.87  | 31.0  | 2,20 | 0.00121  | 75    | 16.8 | 0.102 | 0.093        | 1.91         | 100        |
| В                           | 59.3         | 68.9    | .86   | 31.0  | 2.22 | .00125   | 75    | 16.3 | .104  | .097         | 1.91         | 100        |
| C                           | <u>59.3</u>  | 66.6    | ,89   | 30.1  | 2.21 | .00117   | 76    | 17.6 | .097  | .090         | 1.97         | 100        |
| Average                     |              |         |       | • • • | 2.21 |          |       | 16.9 | .101  | .093         | 1.93         |            |
| Test 16:                    |              |         |       |       |      |          |       |      |       |              |              |            |
| Reach A                     | 59.6         | 77.9    | 0.76  | 31.9  | 2.44 | 0.000840 | 74    | 16.9 | 0.103 | 0.096        | 1,87         | 100        |
| В                           |              | 80.2    | .74   | 32.4  | 2.47 | .000887  | 74    | 15.9 | .109  | .103         | 1.84         | 100        |
| C                           | 59.6         | 79.4    | .75   | 31.4  | 2,53 | .000767  | 74    | 17.0 | ,103  | .097         | 1.90         | 100        |
| Average                     |              | ,,,     | • • • |       | 2.48 |          |       | 16.6 | .105  | .099         | 1.87         |            |
| Test 17:                    | •••••        |         |       |       |      |          |       |      |       |              |              |            |
| Reach A                     | 99.5         | 72.9    | 1.36  | 31.4  | 2.32 | 0.00161  | 75    | 22.2 | 0.077 | 0.073        | 3.16         | 100        |
| В                           |              | 71.0    | 1.40  | 31.4  | 2.26 | .00189   | 75    | 21.4 | .080  | .075         | 3.16         | 100        |
| С                           | 99.5         | 65.5    | 1.52  | 30.0  | 2.18 | .00198   | 75_   | 23.1 | .074  | .069         | 3.31         | 100        |
| Average                     |              |         | • • • | ٠     | 2.25 |          |       | 22.2 | .077  | .072         | 3.21         |            |
| Test 18:                    | *            |         |       |       |      |          |       |      |       |              |              |            |
| Reach A                     | 99.5         | 80.4    | 1.24  | 32.3  | 2.48 | 0.00119  | 75    | 22.8 | 0.076 | 0.072        | 3.08         | 100        |
| В                           |              | 80.4    | 1.24  | 32.5  | 2.47 | .00140   | 75    | 21.1 | .082  | .078         | 3.06         | 100        |
| С,                          | 99.5         | 77.3    | 1.29  | 31.2  | 2,47 | .00125   | 75    | 23.2 | .074  | .071         | 3.19         | 100        |
| Average                     |              |         |       |       | 2.47 |          |       | 22.4 | .077  | .074         | 3.11         |            |



FIGURE 53.—Variation of velocity with depth for a vertical in channel FC 29 during flow of 38 ft3/s, experiment 2.

very good stand. The results for the poorquality stand, as revealed by the n-VR curves (figs. 11 and 14), show no difference between the friction factors for the two spacings for the deep flows. Figures 23 and 26 show similar results for the deep flows in the channels with the very good stands. However, for the shallow

flows there was a difference that is best shown by an *n*-hydraulic radius plotting. The graphs for the four channels for this plotting are shown in figure 54. They permit easy comparisons of the row spacings as well as the cover qualities.

The n versus R points are considerably scat-



FIGURE 54.—Effect of row spacing and cover quality on retardance coefficients for wheat. (Compare horizontally for row spacing and vertically for cover quality.)

tered. However, when flow velocity is used as a parameter a family of isovels can be drawn through the field of points. These isovels show that, for a given depth as velocity increased, the Manning n value decreased. The isovels were well separated and well defined for the deeper flows but were less so for the shallower flows. In fact, for three of the four channels the isovels merge into one line for the small depths.

For the poor-quality stands there was little or no difference in the Manning n value for the 7-inch-row and 14-inch-row plantings. However, for the good-quality stands the n values for the 7-inch row spacing were considerably larger than the n values for the 14-inch row spacing. For example, if R=0.5 ft, the n value is 1.7 times greater.

Two row spacings (40 inches and 20 inches) were used for 'Hegari', a tall sorghum. The n-hydraulic radius curves (fig. 55) show a difference in n for the low flows, with the wider row spacing having the lower value, as expected. When the flow reached a hydraulic radius of about 1.5 feet, there was no difference between the two row spacings.

# Influence of Row Direction on Friction Factor

Rows running parallel to the flow and perpendicular to the flow were tested for their effect on the friction factor for wheat. The row spacing was 7 inches in each case. For the higher flows, which submerged the vegetation, the n-VR curves show that row direction



FIGURE 55.—Relation of Manning n to hydraulic radius (R) for channels planted to 'Hegari' sorghum.

had no effect. A comparison of the n values in figures 17 and 20 for a VR value of 1 shows an n value of about 0.2 for each row direction. For the low flows a large difference was found in the n values, as shown by the n-hydraulic-radius curve in figure 56. Again the isovels



FIGURE 56.—Effect of row direction on retardance coefficients for wheat.

Mannina



FIGURE 57.—Relation of Manning n to product of velocity and hydraulic radius (VR) for channels planted to sudangrass. (One set of envelope curves is for channel on 0.1-pct slope; the other curve is from test results on channel with a 5-pct slope.)

are shown. A comparison of n values at a hydraulic radius of 0.8 feet shows a value of 0.2 for the parallel (lengthwise) rows and 0.4 for the perpendicular (crosswise) rows. If the two graphs were superimposed it would be found that, at the greater hydraulic radii and velocities, the isovels merge, which is evidence of the equality of the n-VR relationship at the larger flows.

# VALIDITY OF *n-VR* DESIGN METHOD

The n-VR design method presented in the "Handbook of Channel Design for Soil and Water Conservation" (cited in footnote 3) has proved to be a useful tool. However, there has been some concern on the part of those who developed this method that it was being used outside the intended range. The n-VR curves published previously have been obtained from studies on steep channels (generally a 3-percent slope or more). Thus, a large VR product is

the result of a large V and a small R. These experiments gave us an opportunity to answer a burning question—if the relative values of the two quantities are changed, so that V is small and R is large (giving the same VR product as before), will the n value be the same? The tests on sudangrass were used in our attempts to answer this question. The results of tests on sudangrass in a small, steep (5-percent slope) channel were available for a comparison. The covers of both stands were somewhat alike, tall and green.

A comparison of the n-VR curves can be made from the graph in figure 57. For the larger VR values both retardance curves lie between curves A and B. Whether the difference between them is attributable to physical differences in the two stands or to the differences between velocities or depths is not known. At least the difference is not large, and some confidence is gained in the applicability of the n-VR method to situations where V is small and R is large.

