

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

OT4ET

по лабораторной работе № 1

Название: Синхронные одноступенчатые триггеры со

статическим и динамическим управлением записью

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-46Б		П.А. Калашков
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподавате			А.Ю. Попов
ПЬ		(Подпись, дата)	(И.О. Фамилия)

Москва, 2022

Цель работы – исследование триггеров, получение их статических и динамических характеристик.

1. Асинхронный RS-триггер с инверсными входами

Задание: Исследовать работу асинхронного RS-триггера с инверсными входами (см. рис. 3) в статическом режиме. Для этого необходимо:

- собрать схему RS-триггера на ЛЭ И-НЕ;
- к выходам Q и ¬Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах ¬S и ¬R триггера, составить таблицу переходов.

Табл. 1. Таблица переходов асинхронного RS-триггера

		1 '' 1	1	1
¬S	¬R	Q_{t-1}	Q_t	Пояснение
0	0	0	Х	Запрещенная
0	0	1	X	операция
0	1	0	1	Установка 1
0	1	1	1	
1	0	0	0	Установка 0
1	0	1	0	
1	1	0	0	

1	1	1	1	Хранение
---	---	---	---	----------

Вывод: Асинхронный RS-триггер – это простейший триггер, который используется как запоминающая ячейка (т.к. позволяет хранить состояние, а также менять его)

2. Синхронный RS-триггер в статическом режиме

Задание: Исследовать работу синхронного RS-триггера (см. рис. 4) в статическом режиме. Для этого необходимо:

- собрать схему RS-триггера на ЛЭ И-НЕ (рис. 4);
- к выходам Q и ¬Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах S, R и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору S, R и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени tn), затем при C=1 (момент времени tn+1) определяется Qn+1 и снова при C=0 переход в режим хранения.

Синхронный RS-триггер имеет два входа управления (R и S) и один вход синхронизации C. При C = 0 синхронный RS-триггер сохраняет предыдущее значение. При C = 1 – работает как асинхронный RS-триггер.

Табл. 2. Таблица переходов синхронного RS-триггера

				1 1	
С	S	R	Q_{t-1}	Q_t	Пояснение
0	A	A	Q_{t-1}	Q_{t-1}	Хранение
1	0	0	0	0	Хранение
1	0	0	1	1	
1	0	1	0	0	Установка 0
1	0	1	1	0	
1	1	0	0	1	

1	1	0	1	1	Установка 1
1	1	1	0	X	Запрещенная
1	1	1	1	Х	операция

Вывод: Синхронный RS-триггер имеет два информационных входа (R и S) и вход синхронизации C. Как и все синхронные триггеры, синхронный RS - триггер при C = 0 сохраняет предыдущее внутреннее состояние. Сигналы по входам S и R переключают синхронный RS-триггер только с поступлением импульса на вход синхронизации.

3. Синхронный D-триггер в статическом режиме

Задание: Исследовать работу синхронного D-триггера (см. рис. 5) в статическом режиме. Для этого необходимо:

- собрать схему D-триггера на ЛЭ И-НЕ (рис. 5); в приложении Multisim можно использовать макросхему D-триггера;
- к выходам Q и ¬Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору D и Q будет 10 соответствовать 3 строки: сначала задать C=0 (момент времени tn), затем при C=1 (момент времени tn+1) определяется Qn+1 и снова при C=0 происходит переход в режим хранения.

Табл. 3. Таблица переходов синхронного D-триггера

С	D	Q_{t-1}	Q_t	Пояснение
0	0	0	0	Хранение
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	Установка 0
1	0	1	0	
1	1	0	1	Установка 1
1	1	1	1	

Вывод: Синхронный D-триггер имеет один информационный вход D , состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные

сигналы представляют собой задержанные входные сигналы. Поэтому D - триггер – элемент задержки (хранения) входных сигналов на один такт.

4. Синхронный D-триггер с динамическим управлением записью

Задание: Исследовать схему синхронного D-триггера с динамическим управлением записью (рис. 6) в статическом режиме. В приложениях Electronics Workbench и Multisim имеются макросхемы такого триггера. Для этого необходимо:

- к выходам Q и ¬Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера.

D(U1)	Qn	C(U2)	Qn+1	C(U2)	Qn+2	C(U2)	Qn+3
0	0	0	0	1	0	0	0
0	1	0	1	1	0	0	0
1	0	0	0	1	1	0	1
1	1	0	1	1	1	0	1

Вывод: Синхронный триггер с динамическим управлением записью принимает только те информационные сигналы, которые были на его информационных входах до прихода синхросигнала и после него в течение времени, необходимого для переключения триггера и определяемого переходными процессами в нем.

5. Синхронный DV-триггер с динамическим управлением записью

Задание: Исследовать схему синхронного DV-триггера с динамическим управлением записью в динамическом режиме. Для этого необходимо: - построить схему синхронного DV-триггера на основе синхронного D-триггера и мультиплексора MS 2-1 (выход MS 2-1 соединить с D-входом триггера, вход 0 MS 2-1 соединить с выходом Q триггера. Тогда вход 1 MS 2-1 будет D-входом, адресный вход A MS 2-1 – входом V синхронного DV-триггера), вход C D-триггера – входом C DVтриггера; - подать сигнал генератора на вход счетчика и на C-вход DV-триггера; - подать на входы D и V триггера сигналы с выходов 2-го и 3-го разрядов счетчика; - снять временные диаграммы синхронного DV-триггера; - объяснить работу синхронного DV-триггера по временным диаграммам.

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

$$Q_t = DV + \underline{V}Q_{t-1} = DVC + (\underline{V} + \underline{C})Q_{t-1}$$

Вывод: Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации. Также он принимает только те информационные сигналы, которые были на его информационных входах до прихода синхросигнала. При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. . Qn = Qn 1+ 1 . При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние, т.е. Qn = Qn+1 .

6. DV-триггер, включённый по схеме TV-триггера

Задание: Исследовать работу DV-триггера, включенного по схеме TV-триггера (рис. 8). Для этого необходимо:

- на вход D подать сигнал $\neg Q$, на вход C подать сигналы генератора, а на вход V с выхода 3-го разряда счетчика;
- снять временные диаграммы Т-триггера; объяснить работу синхронного Т-триггера по временным диаграммам.

Вывод: Т-триггер имеет один информационный вход Т, называемый счетным входом. Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на Т-вход единичного сигнала. Таким образом Т-триггер реализует счет по модулю 2: $Q_t = T_{t-1} \oplus Q_{t-1}$. Синхронный Т-триггер имеет вход С и вход Т. Синхронный Т-триггер переключается в противоположное состояние сигналом С, если на счетном входе Т действует сигнал логической 1.

Контрольные вопросы

1. Что называется триггером?

Триггером является запоминающий элемент с двумя устойчивыми состояниями, которые кодируются цифрами 0 и

2. Какова структурная схема триггера?

Структурную схему триггера (рис. 1) можно представить в виде запоминающей ячейки (ЗЯ) и схемы управления (СУ). На рис. 1 $x_1, x_2, ..., x_n$ - информационные входы; С

- вход синхронизации или тактовый вход; ${m Q}$ и ${m \overline Q}$ – прямой и инверсный выходы триггера.

- 3. По каким основным признакам классифицируют триггеры? Триггеры классифицируют по:
- по способу организации логических связей (RS, T, JK, D, DV...)
- по способу запаси информации (синхронные, асинхронные)
- по способу синхронизации (синхронные со статическим управлением записью, синхронные с динамическим управлением записью)
- по способу передачи информации с входов на выход (с одноступенчатым и двухступенчатым запоминанием информации)
- 4. Каково функциональное назначение входов триггеров?

Функциональное назначение входов триггера указывают на его условном графическом обозначении (УГО) при помощи специальных меток согласно табл. 1.

К-вход – вход для установки состояния "0" в уни-

D-вход -информационный вход для установки триггера в

подготовительный управляющий вход для

информации,

версальном JK-триггере (Kill – внезапное отключение)

состояния "1" или "0" (Data – данные, Delay – задержка)

синхронизации (Clock – источник синхросигналов)

разрешения приема информации (Valve –клапан, вентиль)

С-вход - исполнительный управляющий (командный) вход

приема

Наименование входов	Обозначение
S-вход – вход для раздельной установки триггера в	S
состояние "1" (Set – установка)	
R-вход – вход для раздельной установки триггера в	R
состояние "0" (Reset – сброс, очистка)	
J-вход – вход для установки состояния "1" в универсальном	J

K

D

V

 $\overline{\mathbf{C}}$

Таблица 1

_		<u> </u>	u u	_
5.	что такое	асинхронный	и синхронный	триггеры?

осуществления

Наименование входов

JK-триггере (Jerk – внезапное включение)

Т -вход -счетный вход (Toggle - релаксатор)

Для асинхронного триггера момент времени tn+1 наступает, когда под действием входных сигналов и в зависимости от внутреннего состояния в момент времени tn выходной сигнал принимает значение, соответствующее последующему состоянию. Для синхронного триггера время tn и tn+1 означают время до и после прихода синхронизирующего (тактового) сигнала соответственно.

6. Что такое таблица переходов?

Номер п/п

1

2

3

4

5

6

7

8

Таблица переходов — таблица, позволяющая понять результаты работы триггера при заданных начальных данных (наподобие таблицы истинности для логических функций) 7. Как работает асинхронный RS-триггер?

Асинхронный RS -триггер - это простейший триггер, который используется как запоминающая ячейка. Его таблица переходов:

Время t_n			Врем	Я t_{n+1}
S_n	R _n	Qn	Q_{n+1}	$\overline{\boldsymbol{Q}}_{n+1}$
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	X	X
1	1	1	X	X

Асинхронный RS - триггер сохраняет одно из устойчивых состояний независимо от многократного изменения информационного сигнала на одном входе при нулевом значении информационного сигнала на другом входе.

8. Как работает синхронный RS -триггер? Какова его таблица переходов?

Синхронный RS-триггер (рис.4) имеет два информационных входа R и S и вход синхронизации C. ЛЭ 1 и 2 образуют схему управления, ЛЭ3 и 4 — асинхронный RS - триггер (запоминающую ячейку). Как и все синхронные триггеры, синхронный RS - триггер при C = 0 сохраняет предыдущее внутреннее состояние, т.е. Qn = Qn+1. Сигналы по входам S и R переключают синхронный RS-триггер только с поступлением импульса на вход синхронизации C. При C=1 синхронный триггер переключается как асинхронный (табл.2). Одновременная подача сигналов C=S=R= 1 запрещена. При S=R=0 триггер не изменяет своего состояния.

Его таблица переходов:

С	S	R	Q_{t-1}	Q_t	Пояснение
0	А	A	Q_{t-1}	Q_{t-1}	Хранение
1	0	0	0	0	Хранение
1	0	0	1	1	
1	0	1	0	0	Установка 0
1	0	1	1	0	
1	1	0	0	1	Установка 1
1	1	0	1	1	
1	1	1	0	Х	Запрещенная
1	1	1	1	Х	операция

^{9.} Что такое D-триггер?

D-триггер — триггер с приёмом информации по одному входу

10. Объясните работу синхронного D-триггера.

Синхронный D -триггер имеет один информационный вход D , состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы. Поэтому D - триггер — элемент задержки (хранения) входных сигналов на один такт. Схему синхронного D -триггера можно получить из схемы синхронного RS — триггера, подавая сигнал D на вход S, а сигнал , т.е. с выхода инвертора сигнала D, на вход R. В результате на входах RS-триггера возможны только наборы сигналов SR =01 при D=0 или SR =10 при D=1, что соответствует записи в триггер логического 0 или 1.

11. Что такое DV -триггер?

DV-триггер — универсальный триггер с управляемым приёмом информации по одному входу

12. Объясните работу DV-триггера.

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации. При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. . Qn+1 = Qn . При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DVтриггер сохраняет предыдущее внутреннее состояние, т.е. Qn+1 = Qn

13. Что такое Т-триггер? Какова его таблица переходов?

Т-триггер — триггер со счётным входом. Т-триггер имеет один информационный вход Т, называемый счетным входом. Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на Т-вход единичного сигнала.

Синхронный Т-триггер имеет вход С и вход Т. Синхронный Т-триггер переключается в противоположное состояние сигналом С, если на счетном входе Т действует сигнал логической 1. Таблица переходов:

\mathbf{B} ремя t_n			Время	\mathbf{r}_{n+1}
C_{n}	D_n, T_n	Q_n	Q_n	+1
			D-триггер	Т-триггер
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

- 14. Объясните работу схемы синхронного RS-триггера со статическим управлением. Синхронный RS-триггер (рис.4) имеет два информационных входа R и S и вход синхронизации C. ЛЭ 1 и 2 образуют схему управления, ЛЭ3 и 4 асинхронный RS триггер (запоминающую ячейку). Как и все синхронные триггеры, синхронный RS триггер при C = 0 сохраняет предыдущее внутреннее состояние, т.е. Qn = Qn+1 Синхронный RS-триггер имеет два входа управления (R и S) и один вход синхронизации C. При C = 0 синхронный RS-триггер сохраняет предыдущее значение. При C = 1 работает как асинхронный RS-триггер.
- 15. Какова характерная особенность переключения синхронных триггеров с динамическим управлением записью?

Характерной особенностью синхронных триггеров с динамическим управлением записью является то, что прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на С -входе из "0" в "I" или из "I" в "0", т.е. перепадом синхросигнала. Такой С -выход называется динамическим, причем в первом случае динамический С -вход - прямой, во втором - инверсный. Синхронный триггер с динамическим управлением записью принимает только те информационные сигналы, которые были на его информационных входах до прихода синхросигнала и после него в течение времени, необходимого для переключения триггера и определяемого переходными процессами в нем.

16. Как работает схема синхронного D -триггера с динамическим управлением записью на основе трех RS -триггеров?

Практическая схема синхронного D-триггера с прямым динамическим входом на ЛЭ И-НЕ приведена на рис. 6. Она состоит из трех триггеров: основного асинхронного RS-триггера 3 Т на ЛЭ 5 и 6, вспомогательного синхронного RS -триггера 1 Т на ЛЭ I и 2, используемого для записи "1" в основной триггер, а также вспомогательного синхронного RS-триггера 2 Т на ЛЭ 3 и 4 для записи "0" в основной триггер. Схема:

17. Составьте временные диаграммы работы синхронного D-триггера с динамическим управлением записью.

Временные диаграммы иллюстрируют работу D-триггера. В исходном состоянии Ra и Sa равны 1. Тогда при C = 0 ЛЭ 2 и 3 выключены и сигналы "1" с их входов поступают соответственно на входы ЛЭ 5 и 6. Поэтому основной триггер T3 будет находиться в режиме хранения.

18. Какова структура и принцип действия синхронного DV-триггера с динамическим управлением записью?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

$$Q_t = DV + \underline{V}Q_{t-1} = DVC + \left(\underline{V} + \underline{C}\right)Q_{t-1}$$

19. Составьте временные диаграммы синхронного DV-триггера.

20. Объясните режимы работы D-триггера

Синхронный D -триггер имеет один информационный вход D , состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы. Поэтому D - триггер – элемент задержки (хранения) входных сигналов на один такт.