A Provable Case-Sensitive Robustness Test Oracle at Runtime for Patch Robustness Certification

A Formal Proof

Lemma (Certification of Benign Samples). Given an arbitrary sample \hat{x} , if $[\forall M_1, M_2, M_3 \in \mathbb{M}, f(\hat{x} \odot M_1 \odot M_2 \odot M_3) = f(\hat{x})]$ holds, $\forall \hat{x}' \in \mathbb{A}_{\mathbb{P}}(\hat{x}), g(\hat{x}') = g(\hat{x})$.

PROOF. We first analyze $g(\hat{x})$. Since $[\forall \mathsf{M}_1, \mathsf{M}_2, \mathsf{M}_3 \in \mathbb{M}, f(\hat{x} \odot \mathsf{M}_1 \odot \mathsf{M}_2 \odot \mathsf{M}_3) = f(\hat{x})] \Longrightarrow [\forall \mathsf{M}_1, \mathsf{M}_2 \in \mathbb{M}, f(\hat{x} \odot \mathsf{M}_1 \odot \mathsf{M}_2) = f(\hat{x})],$ we know its prediction label $g(\hat{x}) = f(\hat{x})$ output in Case ①. We then analyze $g(\hat{x}')$. For $\forall \hat{x}' \in \{\hat{x}' \mid \hat{x}' = (\mathsf{J} - \mathsf{P}) \odot \hat{x} + \mathsf{P} \odot \hat{x}' \land \mathsf{P} \in \mathbb{P}\}$ (i.e., $\forall \hat{x}' \in \mathsf{A}_{\mathbb{P}}(\hat{x})$), w.l.o.g., we let $\mathsf{M}_1 \odot \mathsf{P} = \mathsf{O}$. Therefore, we get $\hat{x}' \odot \mathsf{M}_1 = ((\mathsf{J} - \mathsf{P}) \odot \hat{x} + \mathsf{P} \odot \hat{x}') \odot \mathsf{M}_1 = \hat{x} \odot \mathsf{M}_1$. Then, we get $[\exists \mathsf{M}_1 \in \mathbb{M}, \forall \mathsf{M}_2, \mathsf{M}_3 \in \mathbb{M}, f(\hat{x}' \odot \mathsf{M}_1 \odot \mathsf{M}_2 \odot \mathsf{M}_3) = f(\hat{x})]$ (see Fig. 1). Note that the special cases $\mathsf{M}_2 = \mathsf{M}_3$, $\mathsf{M}_1 = \mathsf{M}_2 = \mathsf{M}_3$ are included. Case 1: Suppose the returned label of \hat{x}' output in Case ① as $f(\hat{x}')$ (i.e., $\forall \mathsf{M}_1, \mathsf{M}_2 \in \mathbb{M}, f(\hat{x}' \odot \mathsf{M}_1 \odot \mathsf{M}_2) = f(\hat{x}')$), then we know $g(\hat{x}') = f(\hat{x}') = f(\hat{x}) = g(\hat{x})$. Case 2: Otherwise, its returned label should be output in Case ② as $f(\hat{x}' \odot \mathsf{M}_1)$, since $[\exists \mathsf{M}_1 \in \mathbb{M}, \forall \mathsf{M}_2, \mathsf{M}_3 \in \mathbb{M}, f(\hat{x}' \odot \mathsf{M}_1 \odot \mathsf{M}_2 \odot \mathsf{M}_3) = f(\hat{x}' \odot \mathsf{M}_1) = f(\hat{x})]$, and further $g(\hat{x}') = f(\hat{x}') = f(\hat{x}' \odot \mathsf{M}_1) = f(\hat{x}) = g(\hat{x})$.

Lemma (Certification of one-patch Samples). Given an arbitrary sample \hat{x} , if $[\exists M_1 \in \mathbb{M}, \forall M_2, M_3, M_4 \in \mathbb{M}, f(\hat{x} \odot M_1 \odot M_2 \odot M_3 \odot M_4) = f(\hat{x} \odot M_1)]$ holds, $\forall \hat{x}' \in \mathbb{A}_{\mathbb{P}}(\hat{x}), q(\hat{x}') = q(\hat{x})$.

PROOF. We first analyze $g(\hat{x})$. Case 1: If \hat{x} meet the condition of Case (1), we can further get $\forall M_1, M_2, M_3, M_4 \in \mathbb{M}, f(\hat{x} \odot M_1 \odot M_2)$ $M_2 \odot M_3 \odot M_4 = f(\hat{x})$. Note that the special case $M_1 = M_2 = M_2$ $M_3 = M_4$ is included, which means we can get $g(\hat{x}) = f(\hat{x} \odot M_1)$. Case 2: Otherwise, by the given condition $[\exists M_1 \in M, \forall M_2, M_3, M_4 \in M]$ $\mathbb{M}, f(\hat{x} \odot M_1 \odot M_2 \odot M_3 \odot M_4) = f(\hat{x} \odot M_1) \implies [\exists M_1 \in \mathbb{M}, \forall M_1 \in \mathbb{M}]$ $M_2, M_3 \in \mathbb{M}, f(\hat{x} \odot M_1 \odot M_2 \odot M_3) = f(\hat{x} \odot M_1), \hat{x}$ meet the condition in Case (2) and its prediction label $q(\hat{x}) = f(\hat{x} \odot M_1)$, same as Case (1). We then analyze $g(\hat{x}')$. For $\hat{x}' \in \{\hat{x}' \mid \hat{x}' = (J-P) \odot \hat{x} + P \odot \hat{x}' \land P \in \mathbb{P}\}$ (i.e., $\forall \hat{x}' \in \mathbb{A}_{\mathbb{P}}(\hat{x})$), Case 1: Suppose $M_1 \odot P = O$. Then we can get $\hat{x}' \odot M_1 = ((J - P) \odot \hat{x} + P \odot \hat{x}') \odot M_1 = \hat{x} \odot M_1$, and further get $[\forall M_2, M_3, M_4 \in \mathbb{M}, f(\hat{x}' \odot M_1 \odot M_2 \odot M_3 \odot M_4) = f(\hat{x} \odot M_1)],$ which is the same condition as that on \hat{x} . Therefore, repeating those analysis for $g(\hat{x})$ above can get $g(\hat{x}) = g(\hat{x}')$. Case 2: Otherwise, for M_2 , M_3 , M_4 , w.l.o.g., we let $M_2 \odot P = O(M_1 \neq M_2)$. Then similarly, we get $[\exists M_1, M_2 (\neq M_1) \in M, \forall M_3, M_4 \in M, f(\hat{x}' \odot M_1 \odot M_2 \odot M_3 \odot M_4]$ M_4) = $f(\hat{x} \odot M_1)$]. Note that the special cases $M_1 = M_3, M_2 = M_1$ $M_4, M_3 = M_4$ are included. Case 2.1: Suppose the prediction label $g(\hat{x}')$ output in Case (1). Then, since $[\exists M_1, M_2 (\neq M_1) \in M, f(\hat{x}' \odot A)]$ $M_1 \odot M_2 = f(\hat{x} \odot M_1)$ (special case $M_1 = M_3$, $M_2 = M_4$), by the condition of Route (1), we know $g(\hat{x}') = f(\hat{x}') = f(\hat{x} \odot M_1) = g(\hat{x})$. Case 2.2: Suppose the prediction label $g(\hat{x}')$ output in Route ②. Then, since $[\exists M_1, M_2 (\neq M_1) \in M, \forall M_3 \in M, f(\hat{x}' \odot M_1 \odot M_2 \odot M_1)]$ M_3) = $f(\hat{x} \odot M_1)$] (special case $M_3 = M_4$), by the condition of Route ②, we know $g(\hat{x}') = f(\hat{x}' \odot M_1) = f(\hat{x} \odot M_1) = g(\hat{x})$. Case 2.3: Otherwise, the prediction label of \hat{x}' should output in Route ③ since $[\exists M_1, M_2 (\neq M_1) \in \mathbb{M}, \forall M_3, M_4 \in \mathbb{M}, f(\hat{x}' \odot M_1 \odot M_2 \odot M_3 \odot M_4) =$ $f(\hat{x} \odot M_1) = f(\hat{x}' \odot M_1 \odot M_2)$ (special case $M_1 = M_3$, $M_2 = M_4$), and further $g(\hat{x}') = f(\hat{x}' \odot M_1 \odot M_2) = f(\hat{x} \odot M_1) = g(\hat{x}).$

Theorem (Certification of Samples). Given an arbitrary sample \hat{x} , if $c(\hat{x}) = True\ holds$, $\forall \hat{x}' \in \mathbb{A}_{\mathbb{P}}(\hat{x})$, $g(\hat{x}') = g(\hat{x})$.

Simply conjoining the antecedent of Lemma 1 and Lemma 2 can prove this theorem.

Theorem (Round-Trip Certification of Samples). Given a benign sample x, if $[\forall M_1, M_2, M_3, M_4 \in \mathbb{M}, f(x \odot M_1 \odot M_2 \odot M_3 \odot M_4) = f(x)]$ (i.e., $c_r^2(x) = True$), $[\forall x' \in \mathbb{Ap}(x), g(x') = g(x) \land c_r(x') = True]$.

PROOF. By the condition $[\forall M_1, M_2, M_3, M_4 \in \mathbb{M}, f(x \odot M_1 \odot M_2 \odot M_3 \odot M_4) = f(x)]$, we know the returned label g(x) = f(x) in Case ①. Still by this condition, we know $[\forall x' \in \mathbb{A}_{\mathbb{P}}(x), \exists M_1 \in \mathbb{M}_{\mathbb{P}}, \forall M_2, M_3, M_4 \in \mathbb{M}, f(x \odot M_1 \odot M_2 \odot M_3 \odot M_4)]$, since $[\exists M_1 \in \mathbb{M}_{\mathbb{P}}, \forall x' \in \mathbb{A}_{\mathbb{P}}(x), x' \odot M_1 = x \odot M_1]$ (see Fig. 1 for illustration). Then by Lemma 2, we know $[\forall x' \in \mathbb{A}_{\mathbb{P}}(x), c_r(x') = \mathit{True}]$. By Lemma 1, we also know $[\forall x' \in \mathbb{A}_{\mathbb{P}}(x), g(x') = g(x)]$. Finally, we know $[\forall x' \in \mathbb{A}_{\mathbb{P}}(x), g(x') = True]$.

B Extension of MRCert to Recover and Certify N-patch samples

We can extend the maximum number of patches from 2 to N (called MRCert-N-patch, a variant of MRCert) following the following idea. First, we apply each set of N masks in the covering mask set \mathbb{M} on the input sample \hat{x} to test whether \hat{x} is harmful. If it is not harmful, MRCert-N-patch returns the label $f(\hat{x})$ (marked as N-Case ①). If \hat{x} is detected as harmful, we then test whether all its first-order mutants are harmful by applying each possible subset with N masks selected with replacement from M on each first-order mutant of \hat{x} . If there exists a first-order mutant, whose all (N + 1)th-order mutants generated from the first-order mutant of \hat{x} are predicted with the same label as this first-order sample, then \hat{x} is deemed as a one-patch harmful sample, this first-order mutant is "clean" and the prediction label of this first-order mutant is returned (marked as N-Case (2)). If that is not the case, we then test whether all secondorder mutants of \hat{x} are harmful in the same manner, and repeat until the Nth-order mutants of \hat{x} are tested. For the certification function c_r with the input sample \hat{x} , it should be extended to the condition that all (N + 1)th-order mutants of \hat{x} are predicted with the same label as \hat{x} (for those input samples whose label returned in Case (1)), and the condition that there exists a first-order mutant of \hat{x} , whose all (N + 2)th-order mutants are predicted with the same label as this first-order mutant of \hat{x} (for those input samples whose label returned in Case (2)), and certifying the input samples output in other cases by the condition in the same manner. For the round-trip certification function, it should be the condition that all 2Nth-order mutants of a benign sample x are predicted with the same label as x. We leave the formal proof and implementation as future work.