

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

FEBRUARY/MARCH/FEBRUARIE/MAART 2014

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 17 pages. *Hierdie memorandum bestaan uit 17 bladsye.*

NOTE:

- If a candidate answered a question TWICE, mark only the first attempt.
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out question.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming values/answers in order to solve a problem is unacceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE keer beantwoord het, merk slegs die eerste poging.
- As 'n kandidaat 'n antwoord deurgehaal en nie oorgedoen het nie, merk die deurgehaalde antwoord.
- Volgehoue akkuraatheid is DEURGAANS in ALLE aspekte van die memorandum van toepassing.
- Aanvaarding van waardes/antwoorde om 'n problem op te los, is onaanvaarbaar.

1.1.1	$x^{2} - 2x - 35 = 0$ $(x - 7)(x + 5) = 0$ $x = 7 \text{or} x = -5$	✓ factors ✓ answer ✓ answer (3)
1.1.2	$x^{2} - 16 \ge 0$ $(x - 4)(x + 4) \ge 0$ $+ 0 - 0 + -4$ $-4 4$ or $x \le -4 or x \ge 4 OR x \in (-\infty; -4] or x \in [4; \infty)$	✓ factors ✓ critical values ✓ $x \le -4$
	$\mathbf{OR} x \in (-\infty; -4] \cup [4; \infty)$	$\checkmark x \ge 4 \tag{4}$
1.1.3	$9.2^{x-1} = 2.3^{x}$ $3^{2}.2^{x-1} = 2.3^{x}$ $2^{x-2} = 3^{x-2}$ $\left(\frac{2}{3}\right)^{x-2} = 1$ $\left(\frac{2}{3}\right)^{x-2} = \left(\frac{2}{3}\right)^{0}$ $x - 2 = 0$ $x = 2$ OR	$\checkmark 2^{x-2} = 3^{x-2}$ $\checkmark x - 2 = 0$ $\checkmark \text{answer}$ (3)

	$9.2^{x-1} = 2.3^x$	0.27	
	$\frac{9.2^x}{2} = 2.3^x$	$\sqrt{\frac{9.2^x}{2}}$	
	$9.2^x = 4.3^x$		
	$\frac{2^x}{3^x} = \frac{4}{9}$	(2)* 4	
		$\checkmark \left(\frac{2}{3}\right)^x = \frac{4}{9}$	
	$\left(\frac{2}{3}\right)^x = \frac{4}{9}$		
	$\left(\frac{2}{3}\right)^x = \left(\frac{2}{3}\right)^2$		
	x = 2	✓answer	(3)
1.2	$f(x) = x^2 - 5x + c$		
	$x = \frac{5 \pm \sqrt{25 - 4(1)(c)}}{2}$	✓ substitution into correct formula	
	25 - 4c = 41	$\checkmark 25 - 4c = 41$	
	-4c = 16	✓ c = -4	
	c = -4		(3)
	OR		
	OR $x = \frac{5 \pm \sqrt{41}}{2}$		
		✓ squaring both sides	
	$x = \frac{5 \pm \sqrt{41}}{2}$	✓ squaring both sides	
	$x = \frac{5 \pm \sqrt{41}}{2}$ $2x - 5 = \pm \sqrt{41}$	✓ squaring both sides $ ✓ 4x^2 - 20x - 16 = 0 $	
	$x = \frac{5 \pm \sqrt{41}}{2}$ $2x - 5 = \pm \sqrt{41}$ $(2x - 5)^2 = 41$	$\checkmark 4x^2 - 20x - 16 = 0$	
	$x = \frac{5 \pm \sqrt{41}}{2}$ $2x - 5 = \pm \sqrt{41}$ $(2x - 5)^2 = 41$ $4x^2 - 20x + 25 = 41$ $4x^2 - 20x - 16 = 0$ $x^2 - 5x - 4 = 0$	$\checkmark 4x^2 - 20x - 16 = 0$ $\checkmark c = -4$	(3)
1.3	$x = \frac{5 \pm \sqrt{41}}{2}$ $2x - 5 = \pm \sqrt{41}$ $(2x - 5)^2 = 41$ $4x^2 - 20x + 25 = 41$ $4x^2 - 20x - 16 = 0$ $x^2 - 5x - 4 = 0$	$\checkmark 4x^2 - 20x - 16 = 0$ $\checkmark c = -4$	(3)
1.3	$x = \frac{5 \pm \sqrt{41}}{2}$ $2x - 5 = \pm \sqrt{41}$ $(2x - 5)^{2} = 41$ $4x^{2} - 20x + 25 = 41$ $4x^{2} - 20x - 16 = 0$ $x^{2} - 5x - 4 = 0$ $\therefore c = -4$ $3^{x-10} = 3^{3x}$	$\checkmark 4x^2 - 20x - 16 = 0$ $\checkmark c = -4$	(3)
1.3	$x = \frac{5 \pm \sqrt{41}}{2}$ $2x - 5 = \pm \sqrt{41}$ $(2x - 5)^2 = 41$ $4x^2 - 20x + 25 = 41$ $4x^2 - 20x - 16 = 0$ $x^2 - 5x - 4 = 0$	$\checkmark 4x^2 - 20x - 16 = 0$ $\checkmark c = -4$	(3)
1.3	$x = \frac{5 \pm \sqrt{41}}{2}$ $2x - 5 = \pm \sqrt{41}$ $(2x - 5)^2 = 41$ $4x^2 - 20x + 25 = 41$ $4x^2 - 20x - 16 = 0$ $x^2 - 5x - 4 = 0$ $\therefore c = -4$ $3^{x-10} = 3^{3x}$ $x - 10 = 3x$	$\checkmark 4x^2 - 20x - 16 = 0$ $\checkmark c = -4$	(3)
1.3	$x = \frac{5 \pm \sqrt{41}}{2}$ $2x - 5 = \pm \sqrt{41}$ $(2x - 5)^2 = 41$ $4x^2 - 20x + 25 = 41$ $4x^2 - 20x - 16 = 0$ $x^2 - 5x - 4 = 0$ $\therefore c = -4$ $3^{x-10} = 3^{3x}$ $x - 10 = 3x$ $2x = -10$	$ √ 4x^2 - 20x - 16 = 0 $ ✓ c = -4 ✓ equating of exponents ✓ x-value	(3)
1.3	$x = \frac{5 \pm \sqrt{41}}{2}$ $2x - 5 = \pm \sqrt{41}$ $(2x - 5)^2 = 41$ $4x^2 - 20x + 25 = 41$ $4x^2 - 20x - 16 = 0$ $x^2 - 5x - 4 = 0$ $\therefore c = -4$ $3^{x-10} = 3^{3x}$ $x - 10 = 3x$ $2x = -10$ $x = -5$	$ √ 4x^2 - 20x - 16 = 0 $ ✓ c = -4 ✓ equating of exponents	(3)
1.3	$x = \frac{5 \pm \sqrt{41}}{2}$ $2x - 5 = \pm \sqrt{41}$ $(2x - 5)^2 = 41$ $4x^2 - 20x + 25 = 41$ $4x^2 - 20x - 16 = 0$ $x^2 - 5x - 4 = 0$ $\therefore c = -4$ $3^{x-10} = 3^{3x}$ $x - 10 = 3x$ $2x = -10$ $x = -5$ $y^2 + x = 20$	$ √ 4x^2 - 20x - 16 = 0 $ $ √ c = -4 $ $ ✓ equating of exponents $ $ √ x-value $ $ √ 20 = y^2 - 5$	(3)
1.3	$x = \frac{5 \pm \sqrt{41}}{2}$ $2x - 5 = \pm \sqrt{41}$ $(2x - 5)^2 = 41$ $4x^2 - 20x + 25 = 41$ $4x^2 - 20x - 16 = 0$ $x^2 - 5x - 4 = 0$ $\therefore c = -4$ $3^{x-10} = 3^{3x}$ $x - 10 = 3x$ $2x = -10$ $x = -5$ $y^2 + x = 20$ $y^2 - 5 = 20$	$ √ 4x^2 - 20x - 16 = 0 $ $ √ c = -4 $ $ ✓ equating of exponents $ $ √ x-value $ $ √ 20 = y^2 - 5 $ $ √ y-values$	(3)

2.1.1	$T_3 = 20$ and $T_4 = 40$	
	$r = \frac{T_4}{T_3} = 2$	✓ answer (1)
2.1.2	$T_n = ar^{n-1}$ $20 = a \cdot 2^{3-1}$ a = 5 $T_n = 5 \cdot 2^{n-1}$	✓ subs into correct formula ✓ $a = 5$ ✓ answer (3)
	OR $40 = a.2^{4-1}$ a = 5 $T_n = 5.2^{n-1}$	✓ subs into correct formula ✓ $a = 5$ ✓ answer (3)
2.2.1	$\frac{-7}{125}$	✓ answer (1)
2.2.2	$T_n = \frac{2 + (n-1)(-3)}{(1) \cdot 5^{n-1}}$ $T_n = \frac{5 - 3n}{5^{n-1}}$	$\begin{array}{c} \checkmark 5 \\ \checkmark 5^{n-1} \\ \checkmark - 3n \end{array} $ (3)
2.2.3	$T_n = \frac{5 - 3n}{5^{n-1}}$ $T_{500} = \frac{5 - 3(500)}{5^{499}}$ $= \frac{-1495}{5^{499}}$	✓ numerator ✓ denominator (2)
2.2.4	5-3n < -59 -3n < -64 n > 21,333 n = 22	\checkmark 5-3n<-59 \checkmark n > 21,333 \checkmark n = 22 (3) [13]

3.1.1	w-3; 2w-4; 23-w $(2w-4)-(w-3)=(23-w)-(2w-4)$ $w-1=27-3w$ $4w=28$ $w=7$	$(2w-4)-(w-3)$ = $(23-w)-(2w-4)$ $\checkmark w = 7$ (2)
3.1.2	Sequence is: 4; 10; 16 First difference / Eerste verskil = 6 OR d = w - 1 = 6	✓ answer (1)
	-0	(1)
3.2	$T_{50} = 3 + (4 + 10 + 16 + \text{ to } 49 \text{ terms})$ $T_{50} = 3 + \frac{49}{2} [2(4) + (49 - 1)(6)]$ $= 3 + 7252$ $= 7255$ OR $2a = 6$ $a = 3$ $3a + b = 4$ $3(3) + b = 4$ $b = -5$	√ T50 = 3 + sum of 49 linear terms $ √ a = 4 $ $ √ n = 49 $ $ √ 7252(sum of 49 $ terms) $ √ answer $ (5) $ √ a = 3 $ $ √ b = -5$
	$b = -5$ $a + b + c = 3$ $3 - 5 + c = 3$ $c = 5$ $T_n = 3n^2 - 5n + 5$ $T_{50} = 3(50)^2 - 5(50) + 5$ $= 7255$	✓ $c = 5$ ✓ substitution 50 ✓ answer (5)

4.1	$S_n = p \left(1 - \left(\frac{1}{2} \right)^n \right)$	$\checkmark a = P$
	$a = p \left[1 - \left(\frac{1}{2} \right)^1 \right]$	$\checkmark a = \frac{p}{2}$ $\checkmark r = \frac{1}{2}$
	$= \frac{p}{2}$ $r = \frac{1}{2}$	2
	$r = \frac{1}{2}$	
	$\therefore 10 = \frac{\frac{p}{2}}{1 - \frac{1}{2}}$	✓ substitute in correct formula
	$5 = \frac{p}{2}$ $p = 10$	✓ answer
	p = 10 OR	(4)
	$\left(\frac{1}{2}\right)^n \to 0 \text{ as } n \to \infty$	
	$S_{\infty} = p$ $p = 10$	
4.2	$r = \frac{1}{2}$ $\frac{a}{1 - \frac{1}{2}} = 10$	$\checkmark r = \frac{1}{2}$
	$\frac{a}{1} = 10$	✓ substitution
	$1 - \frac{1}{2}$ $a = 5$	✓ a = 5
	$T_2 = ar = \frac{5}{2}$	✓ answer
	OR	

C	10 10 2-1		
	$_{n}=10-10.2^{-n}$		
($a = T_1$	√ S - 5	
	$=S_1$	$\checkmark S_1 = 5$ $\checkmark a = 5$	
	$=10-10.2^{-1}$	$\mathbf{v} \ a = \mathbf{S}$	
	$=10-\frac{10}{2}$		
	2		
	= 5	$\checkmark T_2 = S_2 - T_1$	
T	$S_2 = S_2 - T_1$	$I_2 - S_2 - I_1$ $\checkmark \text{ answer}$	
-	$= 10 - 10.2^{-2} - 5$		(4)
		'	(4)
	$=10-\frac{10}{4}-5$		
	4		
	5		
	$=\frac{5}{2}$		
	_		
0	R		
T_{γ}	$S_2 = S_2 - S_1$	$\checkmark T_2 = S_2 - S_1$	
		✓ substitution	
	$= p \left(1 - \left(\frac{1}{2}\right)^2\right) - p \left(1 - \frac{1}{2}\right)$	Substitution	
	$\begin{pmatrix} 1 & (2) \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$		
	n	, p	
	$=\frac{p}{4}$	$\checkmark \frac{p}{4}$	
		7	
	$=\frac{10}{4}$ $=\frac{5}{2}$		
	4		
	$=\frac{5}{}$	✓ answer	
	2		(4)
			[8]

6.1	x = 2	$\checkmark x = 2$
	y = 3	$\checkmark y = 3$
		(2)
6.2	\mathbf{R} ; $x \neq 2$	✓ answer
	OR	(1)
	$(-\infty;2)\cup(2;\infty)$	
	OR R - {2}	
6.3		✓ shape ✓ intercept at origin ✓ asymptotes (4)
6.4	y = x + 3 and y = -x + 1 $x + 3 = -x + 1$ $2x = -2$ $x = -1$ $y = -1 + 3$	$\checkmark x+3=-x+1$ $\checkmark x=-1$ $\checkmark y=2$
	= 2 Point of intersection of asymptotes: (-1; 2) Die snypunt van die asimptote: The transformation is a translation 3 units left and 1 unit down Die transformasie is 'n translasie van 3 eenhede na links en 1 eenheid na onder OR	✓ transformation (4)
	The transformation is $(x; y) \rightarrow (x-3; y-1)$	[11]
	1110 transformation to (N, y) / (N 3, y 1)	

7.5	(-2;-9)	√ 2
		√ – 9
		(2)
		[14]

9.1	(j) ^m	✓ substitution
	$1+i_{eff}=\left 1+\frac{\iota_{nom}}{m}\right $	into correct
	(m)	formula
	$1 + i_{eff} = \left(1 + \frac{0.07}{12}\right)^{12}$	$\checkmark \frac{0,07}{12}$
	$i_{eff} = 0.07229008$	✓ answer
		(3)
	$i_{eff} = 7,23\%$	

		1
9.2	$P_{v} = \frac{x[1 - (1+i)^{-n}]}{i}$ $350000 = \frac{6300[1 - \left(1 + \frac{0.07}{12}\right)^{-n}}{\frac{0.07}{12}}$ $\frac{73}{108} = \left(1 + \frac{0.07}{12}\right)^{-n}$ $\log\frac{73}{108} = -n\log\left(1 + \frac{0.07}{12}\right)$ $n = 67,33938079$ $n = 67,34 \text{ months}$	$ \checkmark i = \frac{0.07}{12} $ ✓ substitution in the correct formula $ \checkmark \text{ simplification} $ ✓ use of logs $ \checkmark \text{ answer} $ (5)
9.3	$P_{v} = \frac{x[1 - (1+i)^{-n}]}{i} (1+i)$ $P_{v} = \frac{6300[1 - (1 + \frac{0.07}{12})^{-0.3393}]}{\frac{0.07}{12}} \left(1 + \frac{0.07}{12}\right)$ $P_{v} = \text{R 2 142,21}$ OR Balance outstanding: $= \left[350000\left(1 + \frac{0.07}{12}\right)^{67} - \frac{6300[(1 + \frac{0.07}{12})^{67.} - 1]}{\frac{0.07}{12}}\right] \left(1 + \frac{0.07}{12}\right)$ $= \text{R 2 142,21}$	
9.4	$252\ 000 = 350\ 000(1-i)^{3}$ $(1-i)^{3} = \frac{252\ 000}{350\ 000}$ $i = 1 - \sqrt[3]{\frac{252}{350}}$ $i = 10,37\%$	(5) ✓ n = 3 ✓ substitution in the correct formula ✓ answer (3) [16]

		T	
10.1.1	$f(x) = -\frac{2}{x}$ $f(x+h) = -\frac{2}{(x+h)}$		
	x		
	$f(x+h) = -\frac{2}{(x+h)}$		
	(x+n)	✓ substitution	
	$f(x+h) - f(x) = -\frac{2}{(x+h)} - \left(-\frac{2}{x}\right)$	✓ simplification	
	$=\frac{-2x+2(x+h)}{x(x+h)}$		
		✓ formula	
	$=\frac{-2x+2x+2h}{x(x+h)}$	✓ common factor	
	$=\frac{2h}{x(x+h)}$	✓ answer	
	2h	allswei	(5)
	$f'(x) = \lim_{h \to 0} \frac{\frac{2h}{x(x+h)}}{h}$		
	$f'(x) = \lim_{h \to 0} \frac{1}{h}$		
	$=\lim_{h\to 0}\left(\frac{2}{x^2+xh}\right)$		
	$-\lim_{h\to 0}\left(\frac{1}{x^2+xh}\right)$		
	$=\frac{2}{x^2}$		
	$OR \qquad f(r+h) - f(r)$		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	/ C 1	
		✓ formula	
	$= \lim_{h \to 0} \frac{\left[-\frac{2}{(x+h)} \right] - \left(-\frac{2}{x} \right)}{h}$	✓ substitution	
	$=\lim_{h\to 0}\frac{\Box \qquad \qquad b}{h}$	/ . 1:0	
	-2x+2(x+h)	✓ simplification	
	${x(x+h)}$		
	$=\lim_{h\to 0}\frac{\lambda(\lambda+h)}{h}$		
	$\frac{-2x+2x+2h}{}$		
	$=\lim_{h\to 0}\frac{x(x+h)}{h}$		
	$\stackrel{h o 0}{\longrightarrow} h$	✓ common factor	
	$\frac{1}{2(x+b)}$	✓ answer	
	$=\lim_{h\to 0}\frac{x(x+h)}{h}$	· answer	(5)
	$=\lim_{h\to 0}\left(\frac{2}{x^2+xh}\right)$		
	$=\frac{2}{x^2}$		

_		T
10.1.2	$f'(x) = \frac{2}{x^2}$	$\checkmark x^2 \ge 0 \text{ or } \frac{2}{x^2} \ge 0$
	$x^2 \ge 0 \text{for } x \in R$	for $x \in R$
		((() 0 (
	$f'(x) > 0$ for $x \in R$; $x \neq 0$	$f'(x) > 0$ for $x \in R; x \neq 0$
		(2)
10.2	1 .	
10.2	$y = \frac{1}{4}x^2 - 2x$	$\sqrt{\frac{1}{x}}$
	$\frac{dy}{dx} = \frac{1}{2}x - 2$	$\checkmark \frac{1}{2}x$ $\checkmark -2$
	$\int dx = 2$	√ -2
10.3	$A(3\sqrt{2})$	(2)
10.5	$y = 4\left(\sqrt[3]{x^2}\right)$ $y = 4x^{\frac{2}{3}}$	2
	$y = 4x^{\overline{3}}$	$\checkmark y = 4x^{\frac{2}{3}}$
	1 -3	
	and $x = w^{-3}$	
	$\frac{2}{2}$	✓ subs: $4(w^{-3})^{\frac{2}{3}}$
	$y = 4(w^{-3})^{\frac{2}{3}}$ $= 4w^{-2}$	✓ simplification
	$=4w^{2}$	✓ answer
	$\frac{dy}{dw} = -8w^{-3}$	aliswei
	$=-\frac{8}{w^3}$	(4)
10.4	$f'(x) = 3ax^2 + 2bx + c$	(·) ✓
	$a < 0 \qquad \text{shape (max TP)}$	$f'(x) = 3ax^2 + 2$
	c < 0 y - intercept is negative	
	b < 0 axis of symmetry on LHS of y - axis	✓ shape (max TP)
	$\begin{array}{c} \mathbf{ACCEPT} \\ \uparrow_{\mathcal{Y}} \end{array}$	✓ axis of symmetry
		on LHS if <i>y</i> -axis
		\checkmark <i>y</i> − intercept is below <i>x</i> -axis
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		(4) [17]
		1

11.1	f(x) = -(x-1)(x-2)(x-4)	$\checkmark -(x-1)(x-2)(x-4)$
	$f(x) = -(x^2 - 3x + 2)(x - 4)$	
	$f(x) = -x^3 + 7x^2 - 14x + 8$	$\checkmark a = 7$ $\checkmark b = -14$ $\checkmark c = 8$
	$\int (x) = -x + 7x = 14x + 6$	
		(4)
11.2	$f(x) = -x^3 + 7x^2 - 14x + 8$	
	f'(x) = 0	f'(x) = 0
	$-3x^2 + 14x - 14 = 0$	$✓ f'(x) = 0$ $✓ -3x^2 + 14x - 14 = 0$
	2 2 14 .14 0	$\sqrt{-3x^2+14x-14}=0$
	$3x^2 - 14x + 14 = 0$	
	$14 \pm \sqrt{14^2 - 4(3)(14)}$	(1 :
	$x = \frac{14 \pm \sqrt{14^2 - 4(3)(14)}}{2(3)}$	✓ subs into formula
	$=\frac{14\pm\sqrt{28}}{}$	
	6	
	$=\frac{7\pm\sqrt{7}}{2}$	$\checkmark x$ –value
	= -3	$\checkmark x$ –value $\checkmark x$ – value
	x = 1,45 or $x = 3,22$	(5)
11.3	x < 1,45 or $x > 3,22$	✓ critical values
		✓✓notation
		(3)
		[12]

12.1	40-x	√answer	
			(1)
12.2	P(x) = (40 - x)(144 + 4x)	✓concept of	
	=4(40-x)(36+x)	multiplication	
	$= 5.760 + 16x - 4x^2$	$\checkmark (144 + 4 x)$	
	$= 5^{1}/60 + 16x - 4x^{2}$	✓ answer	
			(3)
12.3	P'(x) = 16 - 8x	$\checkmark P'(x) = 16 - 8x$ $\checkmark P'(x) = 0$	
	P'(x) = 0	, ,	
	16-8 x=0	$\checkmark P'(x) = 0$	
	8 x = 16		
	x = 2	$\checkmark x = 2$	
	Cost = 144 + 4(2)		
	= R 152	✓answer	
	OR		(4)
		$\checkmark x = 40 \& 36 \text{ are}$	
	Max at $x = \frac{40 - 36}{2} = 2$	solutions to $P(x) = 0$	
	Cost = 144 + 4(2)	$\checkmark \checkmark x = \frac{40 - 36}{2} = 2$	
	= R 152	✓ answer	
			(4)
			` /

OR				
	Number of watches	Cost	Income	
Year 0:	40	144	5 760	✓✓ explanation
Year 1:	39	148	5 772	
Year 2:	38	152	5 776	
Year 3:	37	156	5 772	
Max Incom	ne at $x = 2$			$\checkmark x = 2$
Max cost =	R 152			✓ R 152

13.1	$40x + 50y \le 2000$	$\checkmark \checkmark 40x + 50y \le 2000$
	$64x + 40y \le 2560$	$\checkmark 64x + 40y \le 2560$
	$x \ge 15$	$\checkmark x \ge 15$
	OR	(5)
	$y \le -\frac{4}{5}x + 40$ $y \le -\frac{8}{5}x + 64$ $x \ge 15$ OR	$\checkmark \checkmark y \le -\frac{4}{5}x + 40$ $\checkmark \checkmark y \le -\frac{8}{5}x + 64$ $\checkmark x \ge 15$ (5)
	$\frac{y}{40} + \frac{x}{50} \le 1$	$\checkmark \checkmark \frac{y}{40} + \frac{x}{50} \le 1$
	$\frac{y}{64} + \frac{x}{40} \le 1$ $x \ge 15$	$\checkmark \checkmark \frac{y}{64} + \frac{x}{40} \le 1$
	$\lambda \leq 1$	$\checkmark x \ge 15 \tag{5}$

TOTAL/TOTAAL: 150