Использование комплексных чисел в планиметрии основано на том, что их можно отождествить с точками плоскости: числу z=a+bi соответствует точка с координатами (a,b). При этом квадрат расстояния между точками z и w равен $|z-w|^2=(z-w)(\overline{z}-\overline{w})$.

Задача 1. (Эйлер) Сумма квадратов длин сторон четырёхугольника отличается от суммы квадратов диагоналей на учетверённый квадрат длины отрезка, соединяющего середины диагоналей.

Задача 2. Пусть M — точка на плоскости, S — окружность, AB — её диаметр. Докажите, что величина $MA^2 + MB^2$ не зависит от выбора диаметра AB.

Задача 3. ($Teopema\ Лeйбница$) Пусть F — центр масс (то есть, точка пересечения медиан) треугольника ABC. Докажите, что для любой точки M на плоскости выполнено равенство:

$$MA^2 + MB^2 + MC^2 = AF^2 + BF^2 + CF^2 + 3MF^2$$
.

Задача 4. На плоскости задано 3 точки A, B, C. Точка A_1 — образ точки C при повороте вокруг точки A на 90° против часовой стрелки; точка B_1 — образ точки C при повороте вокруг точки B на 90° по часовой стрелке. Пусть K — середина A_1B_1, M — середина AB. Докажите, что отрезки KM и AB перпендикулярны. Как соотносятся их длины?

Задача 5. На сторонах треугольника $A_1A_2A_3$ во внешнюю сторону построены квадраты с центрами B_1, B_2, B_3 . Докажите, что отрезки B_1B_2 и A_3B_3 равны по длине и перпендикулярны.

Задача 6. Пусть $A_1A_2A_3$ и $B_1B_2B_3$ — правильные треугольники, причём их вершины занумерованы в порядке обхода против часовой стрелки. Докажите, что середины отрезков A_1B_1, A_2B_2 и A_3B_3 — вершины правильного треугольника.

Определение 1. Простое отношение тройки точек z_1, z_2 и z_3 — это комплексное число $\frac{z_1 - z_3}{z_2 - z_3}$.

Задача 7. Докажите, что три точки z_1, z_2, z_3 лежат на одной прямой тогда и только тогда, когда их простое отношение вещественно.

Задача 8. (*Прямая Эйлера*) В любом треугольнике центр тяжести треугольника, его ортоцентр и центр описанной окружности лежат на одной прямой.

Задача 9. Докажите, что три точки z_1, z_2, z_3 являются вершинами правильного треугольника тогда и только тогда, когда $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_1 z_3 + z_2 z_3$.

Определение 2. Двойное отношение четвёрки точек $z_1,\,z_2,\,z_3$ и z_4 — это число $\dfrac{z_1-z_3}{z_2-z_3}:\dfrac{z_1-z_4}{z_2-z_4}.$

Задача 10. а) Пусть четыре точки z_1, z_2, z_3, z_4 лежат на одной окружности. Докажите, что тогда их двойное отношение вещественно. б) Пусть двойное отношение четырёх точек вещественно. Что можно сказать об их взаимном расположении?

Задача 11. а) Докажите, что $(z_1-z_2)(z_4-z_3)+(z_2-z_3)(z_4-z_1)=(z_2-z_4)(z_3-z_1)$. **б)** (*Птолемей*) Докажите, что в любом четырёхугольнике произведение длин диагоналей не превосходит сумму произведений длин противоположных сторон. Когда достигается равенство?

Задача 12. а) Пусть z_1 и z_2 — две точки на единичной окружности |z|=1. Найдите комплексное число, задающее точку пересечения касательных к этой окружности, проходящих через точки z_1 и z_2 . **6)** (Задача Ньютона) В описанном около окружности четырёхугольнике середины диагоналей и центр окружности лежат на одной прямой.

Задача 13*. Каждую сторону n-угольника в процессе обхода против часовой стрелки продолжили на её длину. Оказалось, что концы построенных отрезков служат вершинами правильного n-угольника. Докажите, что исходный n-угольник — тоже правильный.

Задача 14*. ($Teopema\ Mopnu$) Трисектрисой угла называют луч, исходящий из вершины угла и отсекающий от угла втрое меньший угол. Понятно, что каждый угол имеет две трисектрисы. В треугольнике ABC пусть M — точка пересечения двух трисектрис, примыкающих к стороне BC, Q — точка пересечения двух трисектрис, примыкающих к стороне CA и P — точка пересечения трисектрис, примыкающих к AB. Докажите, что треугольник MPQ правильный.

1	2	3	4	5	6	7	8	9	10 a	10 6	11 a	11 б	12 a	12 6	13	14