Week 4: Single cycle and pipelined CPUs

(!) This is a preview of the published version of the quiz

Started: Feb 6 at 4:47pm

Quiz Instructions

This quiz covers single cycle CPU design and performance and pipelining.

See https://jlpteaching.github.io/comparch/modules/processor%20architecture/single-cycle/)

See https://jlpteaching.github.io/comparch/modules/processor%20architecture/pipelined/)

Question 1	1 pts
The PC is used to access memory	
○ memory	
○ writeback	
○ fetch	
○ decode	
execute	

Question 2	1 pts
Bits from the instruction are used to determine the size of the access to me	mory
○ memory	
○ decode	
○ writeback	

Question 3	1 pts
The instruction is read from memory	
○ memory	
○ decode	
execute	
○ fetch	
○ writeback	
Γhe data is read from the register file	
○ writeback	
writebackexecute	
execute	
executememory	

○ decode	
○ memory	
execute	
○ writeback	
○ fetch	

Question 6 1 pts

For the following instruction, choose the correct value for each mux as shown in the figure above. If it doesn't matter, default to 0.

Question 9	1 pts
[Coloot]	
[Select]	is shared by all instructions.
[Select]	selects subsets of components to use for each
instruction	

Question 10	1 pts
"A state element that contains a set of locations that can be read/written by supplying a location number and that is usually accessed multiple time for instruction" describes which of the following data path elements?	
○ Muxes	
○ PC	
○ ALU	
O data memory	
Immediate generator	
Register file	
o control unit	
○ Instruction memory	

Question 11 2 pts

There is a processor design that combines some steps. It has three stages: fetch & decode, execute, and memory & writeback. Use the following information to

answer the question. Note: This may be different from other questions.

150ps

210ps 230ps

If this is a single-cycle processor design, what is the cycle time of this processor in ps?

Question 12

2 pts

There is a processor design that combines some steps. It has three stages: fetch & decode, execute, and memory & writeback. Use the following information to answer the question. Note: This may be different from other questions.

Fetch & Decode Execute Memory & Writeback

150ps

150ps 280ps

What is the CPI for this processor?

CPI signagle - cycle=1 Pipeline CPU:

Ingtruction lutericy:

Question 13

2 pts

There is a processor design that combines some steps. It has three stages: fetch & decode, execute, and memory & writeback. Use the following information to answer the question. Note: This may be different from other questions.

Fetch & Decode Execute Memory & Writeback

180ps

240ps 300ps

How long does it take to execute an application with 6 billion instructions on this single cycle processor (in seconds)?

Question 14	1 pts
How long does it take to complete a single load of laundry (in minutes)?	
Pre-wash Washing Drying Folding/hanging	
60 min 50 min 50 min 60 min	

Question 15	1 pts
What is the limiting "stage" for this laundry system? (Can have multiple ans	swers)?
Pre-wash Washing Drying Folding/hanging	
50 min 50 min 50 min 60 min	
─ Washing	
☐ Pre-wash	
☐ Hanging/folding	

Question 16	1 pts
What is the cycle time for the pipelined laundry (in minutes)? will a load be finished?	I.e., how frequently
Pre-wash Washing Drying Folding/hanging	
40 min 40 min 60 min	

What is the throughput for the pipelined laundry? I.e., how many loads can you complete **per hour**?

Pre-wash Washing Drying Folding/hanging

40 min 50 min 50 min 50 min

Question 18 1 pts

What is the speedup pipelining compared to not pipelining? Assume you only care about the steady state (i.e., no need to consider warmup/cooldown time).

Pre-wash Washing Drying Folding/hanging

50 min 50 min 50 min 60 min

Question 19 1 pts

How long does it take to execute a single instruction? (in ps)

Fetch Decode Execute Memory Writeback

400 ps 400 ps 200 ps 500 ps 300 ps

Question 20	1 pts
What is the limiting stage for this pipeline? (Can have multiple answers)?	
Fetch Decode Execute Memory Writeback	
500 ps 300 ps 300 ps 400 ps 200 ps	
☐ Memory	
☐ Decode	
☐ Writeback	
☐ Fetch	
_ Execute	
Question 21	1 pts
What is the cycle time for the pipelined processor?	
Fetch Decode Execute Memory Writeback	
400 ps 400 ps 200 ps 600 ps 200 ps	
Question 22	1 pts
Question 22	1 pts
Question 22 What is the throughput for the pipeline? I.e., how many instructions can you	1 pts
	1 pts
What is the throughput for the pipeline? I.e., how many instructions can you	1 pts
What is the throughput for the pipeline? I.e., how many instructions can you complete per second ?	1 pts
What is the throughput for the pipeline? I.e., how many instructions can you complete per second? Fetch Decode Execute Memory Writeback	1 pts

What is the speedup pipelining compared to not pipelining? Assume you only care about the steady state (i.e., no need to consider warmup/cooldown time). Fetch Decode Execute Memory Writeback 500 ps 300 ps 300 ps 500 ps 300 ps

Question 25 2 pts

For the following program mark the data dependencies. Put a check when the register listed after the : depends on one of previous (older) instructions ori s2,

s9, -807

xor s2, s1, s4

add s8, s2, a5

ori a7, s8, -893

n xor s2, s1, s4: s4

add s8, s2, a5: a5

add s8, s2, a5: s8

n xor s2, s1, s4: s2

ori a7, s8, -893: a7

ori s2, s9, -807: s2

ori a7, s8, -893: s8

add s8, s2, a5: s2

ori s2, s9, -807: s9

n xor s2, s1, s4: s1

Question 26 1 pts

For the following program mark the data dependencies. Put a check when the register listed after the : depends on a previous (older) instruction.

sub a7, s0, a0

lw s8, (-944)a7

lw t2, (112)s8

☐ lw s8, (-944)a7: s8	
☐ lw t2, (112)s8: t2	
sub a7, s0, a0: a7	
sub a7, s0, a0: a0	
☐ lw t2, (112)s8: s8	
sub a7, s0, a0: s0	
☐ lw s8, (-944)a7: a7	

Question 27 For the following program mark the data dependencies. Put a check when the register listed after the : depends on a previous (older) instruction. sub t1, t3, a5 sw a7, (-1188)t1 sw t1, (1768)a7 sw t1, (1768)a7: a7 sw a7, (-1188)t1: a7 sw t1, (1768)a7: t1 sub t1, t3, a5: a5 sw a7, (-1188)t1: t1 sub t1, t3, a5: t3

Question 28 2 pts

Which of the following instructions will cause later instructions to stall assuming there's no branch predictor?

```
beq a7, a1, -1676
jal a6, 120
ori s0, a6, -1263
bne s5, s2, 1618
sub t5, t6, t5
sra a1, t3, t2
auipc a7, 470
   bne s5, s2, 1618
   jal a6, 120
   auipc a7, 470
sub t5, t6, t5
   ori s0, a6, -1263
   sra a1, t3, t2
   beq a7, a1, -1676
```

Question 29 2 pts

Which of the following instructions will cause later instructions to stall assuming there's no branch predictor?

ori s6, s2, 1808

blt s10, t0, -1708

ori a0, t5, -767

sw t3, -896(a0)

sra t4, a5, s4

bge t1, a0, 633

addi t3, a4, 1226

blt s10, t0, -1708

☐ bge t1, a0, 633	
sw t3, -896(a0)	
ori s6, s2, 1808	
sra t4, a5, s4	
addi t3, a4, 1226	
ori a0, t5, -767	

Question 30	1 pts
In which stage do you <i>know</i> you need to stall for a control hazard?	
○ Execute	
○ Memory	
○ Decode	
○ Writeback	
○ Fetch	

Question 31	1 pts
When predicting a branch, you need to predict which two things:	
which stage it is in	
if it is an exception	
number of cycles to stall	
☐ the target address	
_ forward or backward	
taken or not taken	