

07/03/2023

LE MICROCONTROLEUR PIC16F877 et Ecran LCD

Principales données

Abdussalam Gemal ESME SUDRIA

LE MICROCONTROLEUR

I) Le brochage

Source: www.MICROCHIP.COM_PIC16F877 1/17

II)Architecture interne

PIC16F877

III) Organisation de la mémoire de programme

IV) Organisation de la mémoire de données

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

Note:	EEPROM Data Memory description can be
	found in Section 4.0 of this data sheet.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register (FSR).

Source: www.MICROCHIP.COM_PIC16F877 4/17

,	File Address		File Address		File Address		File Address
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD(1)	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h		95h		115h		195h
CCPR1H	16h		96h		116h		196h
CCP1CON	17h		97h	General	117h	General Purpose	197h
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah		11Ah		19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch		9Ch		11Ch		19Ch
CCP2CON	1Dh		9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1EFh
	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h - 7Fh	1F0h 1FFh
Bank 0		Bank 1	1 1 11	Bank 2	17111	Bank 3	

PIC16F877

V) Le registre d'état : Registre STATUS

2.2.2.1 STATUS Register

bit 6-5

bit 4

bit 0

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit 7							bit 0
bit 7	1 = Bank 2	ter Bank Se , 3 (100h - 1 , 1 (00h - FF	IFFh)	d for indired	et addressing)			

RP1:RP0: Register Bank Select bits (used for direct addressing)

11 = Bank 3 (180h - 1FFh)

10 = Bank 2 (100h - 17Fh)

01 = Bank 1 (80h - FFh)

00 = Bank 0 (00h - 7Fh)

Each bank is 128 bytes

TO: Time-out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred

bit 3 PD: Power-down bit

1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction

bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)

(for borrow, the polarity is reversed)

1 = A carry-out from the 4th low order bit of the result occurred

0 = No carry-out from the 4th low order bit of the result

C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurred

VI) Accès aux données en direct ou indirect

VII) Les registres PORTX et TRISX

3.3 PORTC and the TRISC Register

PORTC is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

VIII) Le convertisseur analogique numérique

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has five inputs for the 28-pin devices and eight for the other devices.

The analog input charges a sample and hold capacitor. The output of the sample and hold capacitor is the input into the converter. The converter then generates a digital result of this analog level via successive approximation. The A/D conversion of the analog input signal results in a corresponding 10-bit digital number. The A/D module has high and low voltage reference input that is software selectable to some combination of VDD, VSS, RA2, or RA3.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D clock must be derived from the A/D's internal RC oscillator.

The A/D module has four registers. These registers are:

- · A/D Result High Register (ADRESH)
- · A/D Result Low Register (ADRESL)
- A/D Control Register0 (ADCON0)
- A/D Control Register1 (ADCON1)

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be the voltage reference), or as digital I/O.

Additional information on using the A/D module can be found in the PIC[®] MCU Mid-Range Family Reference Manual (DS33023).

REGISTER 11-1:	ADCON0 F	REGISTER	(ADDRES	S: 1Fh)							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0			
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON			
	bit 7	bit 7									
bit 7-6	00 = FOSC/2 01 = FOSC/8 10 = FOSC/3										
bit 5-3	CHS2:CHS0 000 = chanr 001 = chanr 010 = chanr 011 = chanr 100 = chanr 101 = chanr	CHS2:CHS0: Analog Channel Select bits 000 = channel 0, (RA0/AN0) 001 = channel 1, (RA1/AN1) 010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3) 100 = channel 4, (RA5/AN4) 101 = channel 5, (RE0/AN5) ⁽¹⁾ 110 = channel 6, (RE1/AN6) ⁽¹⁾									
bit 2		ersion in pr	ogress (setti	ng this bit sta		conversion) eared by hardw	are when t	he A/D			
bit 1	Unimpleme	nted: Read a	as '0'								
bit 0	Unimplemented: Read as '0' ADON: A/D On bit 1 = A/D converter module is operating 0 = A/D converter module is shut-off and consumes no operating current Note 1: These channels are not available on PIC16F873/876 devices.										
	Legend:										
	R = Readab	le bit	W = Wr	itable bit	U = Unim	plemented bit,	read as '0'				
	- n = Value a	t DOR	'1' = Bit	ie est	'0' = Bit is	cleared y	c = Bit is un	known			

Source: www.MICROCHIP.COM_ PIC16F877

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	_	_	1	PCFG3	PCFG2	PCFG1	PCFG0

bit 7 bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

bit 6-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	Α	Α	Α	Α	Α	Α	Α	Α	VDD	Vss	8/0
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	RA3	Vss	7/1
0010	D	D	D	Α	Α	Α	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	Α	Α	Α	RA3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	VDD	Vss	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	RA3	RA2	6/2
1001	D	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0
1010	D	D	Α	Α	VREF+	Α	Α	Α	RA3	Vss	5/1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	RA3	RA2	4/2
1100	D	D	D	Α	VREF+	VREF-	Α	Α	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	Α	RA3	RA2	1/2

A = Analog input D = Digital I/O

Note 1: These channels are not available on PIC16F873/876 devices.

This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

9/17

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

- n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

Source: www.MICROCHIP.COM_PIC16F877

AD Clock	AD Clock Source (TAD)							
Operation	Operation ADCS1:ADCS0							
2Tosc	00	1.25 MHz						
8Tosc	01	5 MHz						
32Tosc	10	20 MHz						
RC ^(1, 2, 3)	11	(Note 1)						

IX) Les sources d'horloge

12.2.1 OSCILLATOR TYPES

The PIC16F87X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

LP Low Power Crystal
 XT Crystal/Resonator

HS High Speed Crystal/Resonator

RC Resistor/Capacitor

Note 1: See Table 12-1 and Table 12-2 for recommended values of C1 and C2.

- A series resistor (R_s) may be required for AT strip cut crystals.
- 3: RF varies with the crystal chosen.

	Range	es Tested:	Ranges Tested:									
Mode	Freq.	Freq. OSC1										
XT	455 kHz 2.0 MHz 4.0 MHz	68 - 100 pF 15 - 68 pF 15 - 68 pF										
HS 8.0 MHz 10 - 68 pF 10 - 68 pF 16.0 MHz 10 - 22 pF 10 - 22 pF												
	lues are for de following Tab	esign guidance le 12-2.	only.									
	Resona	ators Used:										
455 kHz	Panasonic E	FO-A455K04B	± 0.3%									
2.0 MHz	Murata Erie	CSA2.00MG	± 0.5%									
4.0 MHz	Murata Erie	CSA4.00MG	± 0.5%									
8.0 MHz	Murata Erie	e CSA8.00MT	± 0.5%									
16.0 MHz	Murata Erie	CSA16.00MX	± 0.5%									
All resonat	ors used did r	not have built-in	capacitors.									

X) Les instructions

Mnémonio	que	Description	Nbre de cycles	Flag(s) affecté(s)
		Les instructions orientées octet		
ADDWF	f,d	$(W) + (f) \rightarrow (destination)$	1	C,DC,Z
ANDWF	f,d	(W) .AND. $(f) \rightarrow (W)$	1	Z
CLRF	f	$0 \rightarrow (f)$	1	Z
CLRW		$0 \rightarrow (W)$	1	Z
COMF	f,d	$/(f) \rightarrow (destination)$	1	Z
DECF	f,d	(f) - 1 \rightarrow (destination)	1	Z
DECFSZ	f,d	(f) - 1 → (destination). Saute l'instruction suivante si résultat = 0	1 ou 2	
INCF	f,d	(f) + 1 → (destination)	1	Z
INCFSZ	f,d	(f) + 1 → (destination). Saute l'instruction suivante si résultat = 0	1 ou 2	
IORWF	f,d	$(W) .OR. (f) \rightarrow (W)$	1	Z
MOVF	f,d	$(f) \rightarrow (destination)$	1	Z
MOVWF	f,d	$(W) \rightarrow (f)$	1	
NOP		Pas d'opération	1	
RLF	f,d	Rotation à gauche	1	С
RRF	f,d	Rotation à droite	1	С
SUBWF	f,d	(f) - (W) → (destination)	1	C,DC,Z
SWAPF	f,d	$(f<3:0>)\rightarrow (destination<7:4>), (f<7:4>)\rightarrow (destination<3:0>)$	1	
XORWF	f, d	(W) .XOR. (f) \rightarrow (destination)	1	Z
		Les instructions orientées bit		
BCF	f,b	Mettre le bit n° b de f à 0	1	
BSF	f,b	Mettre le bit n° b de f à 1	1	
BTFSC	f,b	Tester le bit n° b de f. Saute l'instruction suivante si b=0	1 ou 2	
BTFSS	f,b	Tester le bit n° b de. Saute l'instruction suivante si b=1	1 ou 2	
		Les instructions littérales et de contrôle		
ADDLW	K	(W) + k \rightarrow (W). K est une valeur littérale entre 0 et 255	1	C,DC,Z
ANDLW	K	(W) .AND. $k \rightarrow (W)$.	1	Z
CALL	K	Appel d'une fonction stockée à partir de l'étiquette K	2	
GOTO	K	Saut à l'étiquette K (adresse K)	2	
MOVLW	K	Charger K dans W	1	
RETURN		Retour au programme principal (une fois CALL terminé)	2	
SUBLW	K	$k - (W) \rightarrow (W)$	1	C,DC,Z
IORLW	K	(W) .OR. $k \rightarrow (W)$.		
RETFIE		Fin du programme d'interruption		
RETLW	K	Fin du programme d'interr. et chargement de K dans (W)		
XORLW	K	(W) .XOR. $k \rightarrow (W)$.		
SLEEP		Mode veille		

Source: www.MICROCHIP.COM_ PIC16F877

12/17

LE LCD

I) Le brochage et affectation des broches

Pin NO.	Symbol	Level	Description
1	A		Backlight anode
2	K		Backlight cathode
3	VSS	0V	Ground
4	VDD	5.0V	Supply voltage for logic
5	VO		Input voltage for LCD
6	RS	H/L	H: Data signal, L: Instruction signal
7	R/W	H/L	H : Read mode, L : Write mode
8	E	$H, H \rightarrow L$	Chip enable signal
9	DB0	H/L	Data bit 0
10	DB1	H/L	Data bit 1
11	DB2	H/L	Data bit 2
12	DB3	H/L	Data bit 3
13	DB4	H/L	Data bit 4
14	DB5	H/L	Data bit 5
15	DB6	H/L	Data bit 6
16	DB7	H/L	Data bit 7

Source: www.MICROCHIP.COM_PIC16F877

II) Procédure d'initialisation

III) Liste des Commandes

				Ins	truct	ion (Code				Description	Execution time
Instruction	RS	R/W	DB7	DB6	DB5	D84	DB3	DB2	DB1	DB0	Instruction Code	(fsoc-270kHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM, and set DDRAM address to "00H" from AC.	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry Mode Set	0	0	0	0	0	0	0	1	Ι⁄D	SH	Assign cursor moving direction and make shift of entire display enable.	39µs
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	39µs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	x	х	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	39µs
Function Set	0	0	0	0	1	DL	N	F	x	x	Set interface data length (DL: 4- bit/8-bit), numbers of display line (N: 1-line/2-line), display font type(F: 5 X 8 dots/ 5 X 11 dots)	39µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39µs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0µs
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43µs

NOTE: When an MPU program with checking the Busy Flag (DB7) is made, it must be necessary 1/2 fosc is necessary for executing the next instruction by the falling edge of the 'E' signal after the Busy Flag (DB7) goes to "LOW".

Characters	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
First line	00H	01H	02H	03H	04H	05H	06H	07H	08H	09H	0AH	0BH	0CH	0DH	0EH	0FH
Second line	40H	41H	42H	43H	44H	45H	46H	47H	48H	49H	4AH	4BH	4CH	4DH	4EH	4FH

LA PARTIE PRATIQUE

Toutes les fonctions doivent être réalisées suivant les indications suivantes :

1) Première étape : L'alimentation électrique

- a) Schéma électronique
- b) Simulation
- c) Schéma de câblage
- d) Câblage
- e) Vérification du fonctionnement

2) <u>Deuxième étape : Le μC et les circuits associés (Quartz, RESET et Connecteur du PICKIT)</u>

- a) Schéma électronique
- b) Schéma de câblage
- c) Faire l'organigramme de génération d'un signal carré sur une broche ;
- d) Traduire l'organigramme ci-dessus en langage assembleur (le fichier est disponible sous Teams : Sequelette Programme.asm);
- e) Simulation avec MPLAB IDE et visualisation avec l'analyseur logique du signal carré ;
- f) Câblage
- g) Programmation du PIC et visualisation du signal carré avec un oscilloscope;
- h) Sauvegarder le programme sous le nom signal_carré.asm.

3) Troisième étape : le CAN : voir le support disponible sur Teams

- a) Faire le schéma électronique avec un potentiomètre câblé sur l'entrée du PORTA configurée en entrée analogique ;
- b) Faire le schéma de câblage;
- c) Faire l'organigramme du CAN;
- d) Traduire l'organigramme ci-dessus en langage assembleur;
- e) Programmer le PIC puis vérifier, grâce à l'analyseur logique, sur la carte que les 8 bits du PORT sélectionné pour le bus de donnée, évoluent proportionnellement à la tension fournie par le potentiomètre ;
- f) Sauvegarder le programme sous le nom **CAN_1.asm**.

4) Quatrième étape : l'écran LCD

- a) Faire le schéma électronique après avoir déterminer sur quel PORT le bus de données du LCD doit être câblé et sur quelles broches les bits RS et E doivent être câblés. **Toutes** ces broches doivent être configurées en sortie
- b) Faire le schéma de câblage;
- c) Faire un organigramme de temporisation dont la durée doit être au minimum de 30ms.
- d) Vérifier sous MPLAB que la durée est correcte avec l'outil StopWatch;

- e) Consulter la documentation technique de l'écran puis faire un organigramme incluant la procédure d'initialisation de l'écran et l'affiche de ESME_2023 sur la première ligne; il faut utiliser la temporisation précédente comme sous-fonction dans le programme principal;
- f) Traduire l'organigramme ci-dessus en langage assembleur puis vérifier le fonctionnement sous MPALB en utilisant l'outil Watch et en y affichant le PORT sur lequel est connecté le bus de données du LCD;
- g) Programmer le μC et vérifier que le message s'affiche correctement.
- h) Sauvegarder le programme sous le nom LCD_Ligne1;
- i) Modifier le programme LCD_Ligne1 pour afficher le message sur la deuxième ligne.
- j) Programmer le μC puis vérifier l'affichage
- k) Sauvegarder le programme sous le nom LCD_Ligne2.

5) Cinquième étape : Conversion Binaire/DCB

- a) Etablir l'organigramme relatif à cette conversion ;
- b) Ecrire le programme en langage assembleur correspondant à l'organigramme ci-dessus ;
- c) Simuler le programme sous MPLAB et vérifier le bon fonctionnement. Pour ce faire, il suffit de déclarer une variable Nombre_Binaire et trois variables Centaine, Dizaine et Unite. Au début du programme, donner à Nombre_Binaire différentes valeurs entre 0 et 255, initialiser les trois autres variables à zéro et vérifier qu'à la fin du programme, les variable Centaine, Dizaine et Unite sont initialisées correctement.

6) Sixième étape : DCB/ASCII

- a) Etablir l'organigramme relatif à cette conversion ; Dans ce cas, il suffit de convertir les variables Centaine, Dizaine et Unite ci-dessus en code ASCII ;
- b) Ecrire le programme en langage assembleur correspondant à l'organigramme ci-dessus ;
- c) Simuler le programme sous MPLAB et vérifier le bon fonctionnement en envoyant les trois variables ASCII sur le PORT sur lequel est câblé le bus de données de l'écran LCD;
- d) Programmer le μC puis vérifier l'affichage.

7) Septième étape : à venir

Source: www.MICROCHIP.COM_ PIC16F877