TUGAS PRAKTIKUM 7

GREEDY ALGORITHM STUDI KASUS: ALGORITMA KRUSKAL DAN ALGORITMA PRIM

MATA KULIAH ANALISIS ALGORITMA D10G.4205

DISUSUN OLEH: AHMAD FAAIZ A 140810180023

PROGRAM STUDI S-1 TEKNIK INFORMATIKA

DEPARTEMEN ILMU KOMPUTER
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS PADJADJARAN
APRIL 2020

Tugas Anda

1. Cari minimum spanning tree pada graf di bawah dengan Algoritma Kruskal. Jelaskan langkah demi langkah sampai graf membentuk minimum spanning tree.

Jawab:

Langkah 1 – Menghapus semua loop dan parallel edges.

Langkah 2 – Mengatur semua *edge* pada graf dari yang terkecil ke terbesar.

1,2	10
3,6	15
4,6	20
2,6	25
1,4	30
3,5	35
2,5	40
1,5	45
2,3	50
5,6	55

Langkah 3 – Menambahkan edge dengan bobot paling kecil 1,2 dengan cost 10

Langkah 5 – Menghubungkan edge 4,6 dengan cost 20

Langkah 4 – Menghubungkan *edge* 3,6 dengan cost 15

Langkah 6 – Menghubungkan edge 2,6 dengan cost 25

2. Gambarkan 3 buah *minimum spanning tree* yang berbeda beserta bobotnya untuk graf di bawah dengan Algoritma Prim. Jelaskan setiap langkah untuk membangun *minimum spanning tree*.

Jawab:

Spanning Tree 1

Bobot = 2+3+4+4+4+2+2+3+3+4+5 = 36

Spanning Tree 2

Bobot = 3+2+3+4+2+3+4+4+2+4+5 = 36

Spanning Tree 3

Bobot = 2+4+3+2+3+4+3+2+4+4+5 = 36

3. Apakah semua *minimum spanning tree T* dari graf terhubung G harus mengandung jumlah sisi yang sama? Jelaskan alasannya (bukan dengan contoh).

Jawab:

Semua spanning tree T yang berasal dari sembarang titik pasti menghasilkan jumlah sisi yang sama, karena algoritma yang dipakai selalu mengambil bobot minimum dari suatu titik ke titik yang lainnya hingga menhasilkan *spanning tree* yang bobotnya minimum.