Algorytmy genetyczne

(seminarium)

prowadzący: dr inż. Halina Kwaśnicka *termin:* środa, $11^{15} - 13^{00}$

2000.05.10 data:

autor:

Marcin Wściubiak nr ind. 82443 informatyka, semestr 6.

Ewolucyjna optymalizacja wielokryterialna

1. Podstawowe pojęcia

Z problemem **optymalizacji wielokryterialnej** mamy do czynienia wówczas, gdy w zadaniu decyzyjnym trzeba jednocześnie uwzględnić kilka funkcji celu.

Możliwe rozwiązania zadania optymalizacji klasyfikuje się jako rozwiązania zdominowane i niezdominowane (paretooptymalne).

Dla zadania **maksymalizacji** zestawu *k* funkcji celu

$$f(x) = (f_1(x), f_2(x), ... f_k(x))$$

rozwiązanie x jest **zdominowane**, jeśli istnieje dopuszczalne rozwiązanie y nie gorsze od x, tzn. dla każdej funkcji celu f_i

$$f_i(x) \le f_i(y)$$
 (*i*=1, ... *k*)

w przeciwnym wypadku: x – rozwiązanie **niezdominowane** (paretooptymalne).

Dla zadania **minimalizacji** zestawu k funkcji celu

$$f(x) = (f_1(x), f_2(x), ... f_k(x))$$

rozwiązanie x jest **zdominowane**, jeśli istnieje dopuszczalne rozwiązanie y nie gorsze od x, tzn. dla każdej funkcji celu f_i

$$f_i(y) \le f_i(x)$$
 (*i*=1, ... *k*)

w przeciwnym wypadku: x – rozwiązanie **niezdominowane** (paretooptymalne).

Rys. 1. Rozwiązania zdominowane i niezdominowane dla zadania minimalizacji.

2. Wybrane metody

Podejścia tradycyjne:

- Metoda ważonych celów (Weighting Method)
- Metoda ograniczeń (Constraint Method)

Algorytmy ewolucyjne:

- VEGA: Vector Evaluated Genetic Algorithm (Schaffer 1985).
- HLGA: Hajela's and Lin's Weighting-based Genetic Algorithm (1992).
- FFGA: Fonseca's and Fleming's Multiobjective Genetic Algorithm (1993).
- NPGA: *The Niched Pareto Genetic Algorithm* (Horn, Nafpliotis, Goldberg 1994).
- NSGA: *The Nondominated Sorting Genetic Algorithm* (Srinivas, Deb 1994).
- SPEA: The Strength Pareto Evolutionary Algorithm (Zitzler, Thiele 1999).

W niniejszym opracowaniu umieszczono krótki opis metody ważonych celów oraz algorytmów VEGA i SPEA. Dokładne opisy wszystkich wymienionych metod i algorytmów można znaleźć w [1].

3. Metoda ważonych celów

Metoda ważonych celów polega na sprowadzeniu zadania wielowymiarowego do zadania jednowymiarowego, tzn. połączeniu poszczególnych funkcji celu f_i w jedną funkcję celu F:

$$F(x) = \sum_{i=1}^{k} w_i f_i(x)$$

gdzie:

k – ilość funkcji celu;

x – wektor rozwiązań;

 w_i – wagi takie, że:

$$w_i \in [0, 1]$$
 oraz $\sum_{i=1}^k w_i = 1$

(różne wektory wag dają różne rozwiązania paretooptymalne)

Uzyskaną w ten sposób funkcję *F* optymalizuje się przy użyciu standardowych metod optymalizacji z jedną funkcją celu. Podstawową wadą omawianej metody jest problem w doborze odpowiednich wartości wag dla poszczególnych kryteriów (co wpływa ujemnie na jakość uzyskanych rozwiązań).

4. Vector Evaluated Genetic Algorithm

Pomysł, zastosowany w algorytmie VEGA, polega na podziale populacji na *k* podpopulacji o jednakowych liczebnościach (*k*–ilość celów). Selekcja wewnątrz każdej podpopulacji jest przeprowadzana niezależnie (każda podpopulacja odpowiada za inne kryterium), ale kojarzenie i krzyżowanie przekracza granice podpopulacji (obejmuje całą populację).

Rys 2. Podział populacji na podpopulacje dla dwóch kryteriów.

Podstawową **zaletą** algorytmu jest łatwość w implementacji. Zasadniczą **wadą** jest tendencja do pomijania rozwiązań pośrednich (dobrych ze względu na każde kryterium, ale nie najlepszych ze względu na żadne z nich z osobna).

Użyte oznaczenia

t – numer pokolenia

 P_t – populacja w t-tym pokoleniu

P' – populacja tymczasowa (mating pool)

k – ilość kryteriów

Algorytm VEGA

Parametry wejściowe: N – rozmiar populacji

T – maksymalna ilość pokoleń

p_c – prawdopodobieństwo krzyżowania

 p_m – prawdopodobieństwo mutacji

Wynik: $A - zbi\acute{o}r$ rozwiązań niezdominowanych

Krok 1: **Inicjalizacja** (wygenerowanie populacji początkowej P_0)

Niech $P_0 = \emptyset$ oraz t=0. Dla i=1, ..., N wykonaj

a) Wylosuj osobnika i.

b) Dodaj osobnika **i** do zbioru P_0 .

- Krok 2: Wyznaczenie dopasowania i selekcja: $P_t'=\emptyset$. Dla i=1, ..., k wykonaj
 - a) Dla każdego osobnika $i \in P_t$ oblicz jego dopasowanie w oparciu o funkcję celu f_i .
 - b) Dla j=1, ..., N/k wybierz osobnika **i** z P_t i dodaj go do P'.
- Krok 3: **Rekombinacja:** Niech $P''=\emptyset$. Dla i=1, ..., N/2 wykonaj
 - a) Wybierz dwa osobniki \mathbf{i} , $\mathbf{j} \in P'$ i usuń je z P'.
 - b) Skrzyżuj osobniki ${\bf i}$ i ${\bf j}$; wynik: osobniki ${\bf k}$ i ${\bf l}$.
 - c) Dodaj **k**, **l** do P'' z prawdopodobieństwem p_c (w przeciwnym wypadku do P''dodaj osobniki **i**, **j**).
- Krok 4: **Mutacja:** Niech P‴=Ø. Dla każdego osobnika **i**∈ P″ wykonaj
 - a) Zmutuj osobnika \mathbf{i} z prawdopodobieństwem p_m . Wynik: osobnik \mathbf{j} .
 - b) Dodaj osobnika \mathbf{j} do zbioru P'''.
- Krok 5: **Zakończenie:** Niech $P_{t+1} = P'''$ i t=t+1. Jeśli $t \ge T$ to zakończ (wynik: A = rozwiązania niezdominowane z populacji P_t), w przeciwnym wypadku powrót do kroku 2.

5. Strength Pareto Evolutionary Algorithm

Cechą charakterystyczną algorytmu SPEA jest fakt, że osobniki reprezentujące rozwiązania niezdominowane (wśród dotychczas rozważonych rozwiązań) są przechowywane w oddzielnym zbiorze (tzw. zbiór zewnętrzny). Ponadto, wartość przystosowania osobnika należącego do populacji zależy wyłącznie od tego, w jakim stopniu jest zdominowany przez osobniki ze zbioru zewnętrznego; to, czy osobniki z populacji są przez siebie zdominowane, jest nieistotne. Wszystkie osobniki ze zbioru zewnętrznego biorą udział w selekcji. Liczność zbioru zewnętrznego jest redukowana do wymaganej poprzez clustering, bez utraty informacji o przebiegu frontu paretooptymalnego.

Rys. 3. Schematyczny przebieg działania algorytmu SPEA.

Niewątpliwą **zaletą** algorytmu SPEA jest to, że w przeciwieństwie do algorytmu VEGA, algorytm nie pomija rozwiązań pośrednich, dobrze oddając przebieg frontu paretooptymalnego. Zasadniczą **wadą** jest duża złożoność obliczeniowa algorytmu (szczególnie czasochłonna jest procedura wyznaczenia dopasowania osobnika – konieczny jest przegląd zupełny zbioru zewnętrznego).

Użyte oznaczenia

t – numer pokolenia

 P_t – populacja w t-tym pokoleniu

 \overline{P}_t – zbiór zewnętrzny (external set)

 \overline{P}' – tymczasowy zbiór zewnętrzny

P' – populacja tymczasowa (mating pool)

Algorytm SPEA

Parametry wejściowe: N – rozmiar populacji

 \overline{N} – maksymalny rozmiar zbioru zewnętrznego

T – maksymalna ilość pokoleń

p_c – prawdopodobieństwo krzyżowania

 p_m – prawdopodobieństwo mutacji

Wynik: A – zbiór rozwiązań niezdominowanych

Krok 1: **Inicjalizacja:** Wygeneruj populację początkową P_0 (patrz krok 1 algorytmu VEGA) oraz pusty zbiór zewnętrzny $\overline{P}_0 = \emptyset$. Niech t=0.

Krok 2: Uzupełnienie zbioru zewnętrznego: Niech $\overline{P}' = \overline{P}_t$.

- a) Skopiuj do \overline{P}' osobniki z populacji P_t , niezdominowane przez inne osobniki z populacji P_t .
- b) Usuń z \overline{P}' osobniki zdominowane przez inne osobniki z \overline{P}' .
- c) Zredukuj liczność zbioru \overline{P}' do \overline{N} przez clustering; wynik: \overline{P}_{t+1} .

Krok 3: **Wyznaczenie dopasowania:** Oblicz wartość dopasowania F osobników w P_t i \overline{P}_t przy użyciu algorytmu opisanego dalej.

Krok 4: **Selekcja:** Niech $P'=\emptyset$. Dla i=1, ..., k wykonaj

- a) Wybierz losowo dwa osobniki $\mathbf{i}, \mathbf{j} \in P_t + \overline{P_t}$.
- b) Jeśli $F(\mathbf{i}) < F(\mathbf{j})$ to $P' = P' + \{\mathbf{i}\}$, w przeciwnym wypadku $P' = P' + \{\mathbf{j}\}$ (wartość przystosowania jest tu minimalizowana).

Krok 5: **Rekombinacja:** patrz krok 3 algorytmu VEGA (wynik: *P''*).

Krok 6: **Mutacja:** patrz krok 4 algorytmu VEGA (wynik: *P'''*).

Krok 7: **Zakończenie:** Niech $P_{t+1} = P'''$ i t=t+1. Jeśli $t \ge T$ to zakończ (wynik: $A = \text{rozwiązania niezdominowane z populacji } P_t$), w przeciwnym wypadku powrót do kroku 2.

Wyznaczenie dopasowania w algorytmie SPEA

Każdemu osobnikowi $\mathbf{i} \in \overline{P}_t$ (należącemu do zbioru zewnętrznego) przypisuje się wartość rzeczywistą $S(\mathbf{i}) \in [0,1)$, zwaną **siłą.** Siła osobnika \mathbf{i} jest proporcjonalna do liczby osobników $\mathbf{j} \in P_t$ (należących do populacji), reprezentujących rozwiązania zdominowane przez rozwiązanie reprezentowane przez osobnika \mathbf{i} :

$$S(i) = \frac{n}{N+1}$$

gdzie:

S(i) – siła osobnika i

n – liczba osobników w populacji zdominowanych przez osobnika i

N – liczność populacji

Wartość przystosowania osobnika i jest równa jego sile:

$$F(i) = S(i)$$

Przystosowanie osobnika $\mathbf{j} \in P_t$ (należących do populacji) oblicza się jako powiększoną o 1 sumę sił wszystkich osobników $\mathbf{i} \in \overline{P_t}$ (należących do zbioru zewnętrznego) reprezentujących rozwiązania dominujące nad rozwiązaniem reprezentowanym przez osobnika \mathbf{j} . Dodanie 1 ma na celu zapewnienie, że osobniki należące do zbioru zewnętrznego $\overline{P_t}$ będą miały lepszą wartość przystosowania od osobników z populacji P_t .

Rys. 4. Przykładowe wartości przystosowania dla zadania maksymalizacji.

Redukcja zbioru zewnętrznego przez clustering

W przypadku, gdy rozmiar zbioru zewnętrznego \overline{P}_t przekracza dopuszczalną wartość \overline{N} , konieczne jest jego zredukowanie. Aby nie stracić informacji o przebiegu frontu paretooptymalnego, wybór elementów do usunięcia nie może być przypadkowy. Przebieg kolejnych etapów redukcji zilustrowano i opisano poniżej.

Rys. 5. Redukcja zbioru zewnętrznego przez clustering.

Kolejnymi etapami redukcji zbioru zewnętrznego są:

- ullet zgrupowanie osobników w \overline{N} klastrów (w obrębie jednego klastra umieszcza się osobniki reprezentujące położone blisko siebie rozwiązania);
- wybór jednego reprezentanta dla danego klastra (najczęściej osobnika położonego w centralnym punkcie klastra);
- usunięcie wszystkich osobników z wyjątkiem wybranych wcześniej reprezentantów poszczególnych klastrów.

6. Literatura

- [1] Zitzler E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, Zürich 1999 (praca doktorska).
- [2] Michalewicz Z.: *Algorytmy genetyczne* + *struktury danych* = *programy ewolucyjne*, WNT 1999; s. 205–206.
- [3] Goldberg D.: *Algorytmy genetyczne i ich zastosowania*, WNT 1998; s. 212–217.

Pracę doktorską i inne publikacje E. Zitzlera można znaleźć pod adresem: http://www.tik.ee.ethz.ch/~zitzler

Publikacje dotyczące zastosowań optymalizacji wielokryterialnej: http://www.lania.mx/~ccoello/moo.htm