力学第一演習 No. 09 (月5) 担当: 西村 信哉*

17. 仕事

問 1. 時刻 t=0 で、十分な高さ h の位置から水平方向に速さ v_0 で質量 m の質点を投げ出した。重力加速度の大き さを q として、以下の間に答えよ。

まず、質点の運動中に重力のみが働く場合を考える。

- (1) 質点の運動方程式を示し、高さ h だけ落下した時刻での速度を求めよ。
- (2) 高さhだけ落下した後の質点の運動エネルギー K_1 を求めよ.
- (3) K_1 と時刻 t=0 での運動エネルギー K_0 との差 $\Delta K_1 \equiv K_1 K_0$ を求めよ. 次に、質点に重力とともに、速さの 1 乗に比例し、比例係数が k の粘性抵抗が働く場合 を考える.
- (4) 十分時間が経過し、質点が一定の速度(終端速度)に達したとする、終端速度を具体的に求めよ、
- (5) 上の終端速度になっている質点の運動エネルギー K_2 と時刻 t=0 での運動エネルギー K_0 との差 $\Delta K_2 \equiv K_2 K_0$ を求めよ.
- (6) 上の設問の結果より、運動エネルギーの差 ΔK_1 と ΔK_2 は異なる。その理由を考察せよ。

18. ポテンシャル(位置エネルギー)

- 問 2. 重力加速度の大きさが g の一様な重力のもとで、高低差が h の崖の上に点 P_1 、崖の下に点 P_2 を置いた。以下の間に答えよ。
 - (1) 基準点を P_1 に選ぶ場合, P_1 と P_2 の位置エネルギーをそれぞれ求めよ.
 - (2) 基準点を P_2 に選ぶ場合, P_1 と P_2 の位置エネルギーをそれぞれ求めよ.
- 問 3. ポテンシャルを表す関数 U(x,y,z) を定義するには、基準点を $\mathbf{r}_0 = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z$ (\mathbf{e}_x , \mathbf{e}_y , \mathbf{e}_x はそれぞれ、x, y, z 軸方向の単位ベクトル:基底ベクトル),質点に作用する力を \mathbf{F} として、

$$U(x, y, z) - U(x_0, y_0, z_0) = \int_{\boldsymbol{r}_0}^{\boldsymbol{r}} \boldsymbol{F} \cdot d\boldsymbol{r}$$
 (1)

と定義される。ここで, $U(x_0,y_0,z_0)=0$ となるように基準点 r_0 を上手く選ぶと,

$$U(x, y, z) = \int_{r_0}^{r} \mathbf{F} \cdot d\mathbf{r} = -\int_{r}^{r_0} \mathbf{F} \cdot d\mathbf{r}$$
 (2)

となる。これをもとに以下の間に答えよ、

- (1) 質量がm の質点に作用する力が重力のみの場合,高さh でのポテンシャル(位置エネルギー)は鉛直方向上向きにz 軸をとると U(0,0,h)=mgh と表される.この場合, $U(x_0,y_0,z_0)=0$ となる基準点はどこに選べばいいか.
- (2) 質量 m の質点にバネ定数 k のバネをつけると、バネの伸びが x_0 で質点が静止した。鉛直方向下向きに x 軸を取り、原点 O を自然長のバネの下端の位置に取ったとき、バネの伸び(質点の位置)が x_0 の点をポテンシャルの基準点 $(U(x_0,y_0,z_0)=0$ となる点)とすると、バネの伸び(質点の位置)が $x\neq x$ の点でのポテンシャルは $U(x,0,0)=\frac{mg}{2x_0}(x-x_0)^2$ と表されることを示せ.

^{*} 電通大 非常勤/国立天文台 Web サイト: http://th.nao.ac.jp/~nishmrnb/lec/me2010/ e-mail: nobuya.nishimura@nao.ac.jp