1 Power Series

1.1 Review

Consider $f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$.

We have shown that f(x) converges on an open interval (a - r, a + r). Moreover, f(x) converges uniformly on any closed subintreval [a - s, a + s] such that 0 < s < r.

In particular, f(x) is continuous on (a-r, a+r).

Our guess is that $f'(x) = \sum_{n=0}^{\infty} a_n n(x-a)^n$.

1.2 Weierstrass M-Test

Theorem 1.1

Suppose that $|f_n(x)| \leq M_n$ for all $x \in I$, where I is some interval.

Suppose also that $\sum_{n=0}^{\infty} M_n$ converges.

Then $\sum_{n=0}^{\infty} f_n(x)$ converges absolutely and uniformly on I.

Proof.

Proceed with the comparison test.

Lemma 1.2

If $f_n(x)$ is continuous for all $x \in D(f)$, then $\sum_{n=0}^{\infty} f_n(x)$ is continuous.

Theorem 1.3

Suppose $f_n(x) \to f(x)$ for all $x \in I$, and suppose that $f_n(x)$ is differentiable for all $n \in \mathbb{N}$ and $x \in I$. Suppose also that $f'_n(x)$ converges uniformly to g(x) on I and g(x) is continuous.

Then g is differentiable and g(x) = f'(x).

Proof.

$$\int_{a}^{x} g(t) dt = \int_{a}^{x} \lim_{n \to \infty} f'_{n}(t) dt = \lim_{n \to \infty} \int_{a}^{x} f'_{n}(t) dt,$$

where the second equality holds because of uniform convergence.

Therefore,
$$\lim_{n\to\infty} (f_n(x) - f_n(a)) = f(x) - f(a)$$
, so $f'(x) = g(x)$.

For
$$f(x) = \sum_{n=0}^{\infty} (x-a)^n$$
, let $f_n(x) = \sum_{m=0}^n a_m (x-a)^m$.

Then by the ratio test we can guarantee that $f_n(x) \to f(x)$ uniformly on [a-s, a+s].

Note that $f'_n(x) = \sum_{m=0}^n a_m m(x-a)^{m-1}$, and $f'_m(x)$ converges uniformly to f'(x).

Remark 1.4.

On the interval (a-r,a+r), where $\sum_{n=0}^{\infty} a_n(x-a)^n$ converges absolutely, its behaviour is $\sum_{n=1}^{\infty} n a_n (x-a)^{n-1}$ which also converges absolutely.

Example 1.5

Consider $s(x) = \sum_{n=1}^{\infty} n^2 x^n$.

Let $a_n = n^2 x^n$.

Using the ratio test, we can see that

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)^2 x^{n+1}}{n^2 x^n} \right| = |x|$$

as $n \to \infty$.

Therefore, s(x) converges for |x| < 1.

Note that $\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n$.

Differentiating both sides, we obtain that $\frac{1+x}{(1-x)^2} = \sum_{n=1}^{\infty} n^2 x^{n-1}$, and thus $fracx + x^2(1-x)^2 = \sum_{n=1}^{\infty} n^2 x^n$.

We can now construct a hierarchy of functions: $C^{\infty} \subset \ldots \subset \text{Continuously Differentiable}$ Functions $\subset \text{Differentiable Functions} \subset \text{Continuous Functions} \subset \text{Functions}$.

There is also another class, the class of *analytic functions*, with the corresponding power series convergent at each point.

We know that there are functions in C^{∞} that are not analytic, for example, e^{-1/x^2} .