Programming 1 Report

Josiah Vincent

Experiment 1

For experiment 1 we are to modify the value of the number of hidden neurons in our hidden layer. We are asked to vary the number (n=20,50,100). It is also important to note that our momentum value is constant at 0.9.

Accuracy Plots:

The blue line is the accuracy over the training set and the orange line is the accuracy over the test set.

Confusion Matrices:

Each follow the same format given in homework1

0... ...10

0

...

10

N=20

[[337216	(2393.5	0.464)6 348	265	224	2717 942	5933	1557]
[31	392410 0	1518 1480	467	161	343 197	1751	1315]
[2216	6013 32	229801 4719	2729	66	4087 ^{vids} 307	8213	2397]
[954	3677/43	3446 335439	229	3736	1204 usion 2081	7262	6159]
age 922	6058/42	1026/96 184	320490	38	35 <u>22</u> 680	2055	13049]
[2416): 3110 16	1226 2 9410	1027	286773	5876 1046	6592	4499]
		920 91 174					652]
					1130 34011		_
[1448	7722/83	993/96 5335	738	1390	2372Brive 434	322708	4934]
[1522	6: 6045/83	(154)97 3267	3620	482	441 2297	3360	333670]]

N=50

1	340734	69	314	281	140	96	1085	171	2090	7073]
ı	115	390135	843		331			← 275	1006	7794]
ı	813	623	339683	1496	646	111	762	1107	3755	7494] N
ı	190	264	1678	348288	217	979		1276	ck a2757	7938]
ı			719	132	330495		1605	193	skto 669	13109]
ı	797	364		3010	157	305934	2242	482	1301	7316]
ı	1221	619	85				338891	2	1209	6911]
	180		2194	1598	816	53	194	351383	1426	13131]
ı	1494		352	1047	456	737	1305	264	332472	8900]
I	1226	459	192	2654	1858	465	202	1060	siah1414	345328]]

N=100

[[3	43397	1036	1776	83	852	94	293	112	802	3608]
[392549	601	384	5533		65	139	298	2039]
[934	1307	345105	979	840	56	259	591	1242	5177]
[384	997	1687	351737	2073	841		664	1323	4436]
[2374	1345	553	4059	3386315	0 8	537	125	247	6145]
[440	epolB23	560	1002	1465	311025	836	118		4188]
[1085	2098	1051	329	1210	643	340562		790	2906]
[225	1443	1291	339	2416		54	359459	330	6384]
[628	2016	1780	999	1614	313	364	326	335665	4370]
[648	1753	611	716	1779	274	116	645	717	347599]]

Discussion

(1) How does the number of hidden units affect the final accuracy on the test data?

As you can see by the plots included above, the higher the number of hidden neurons the higher the accuracy. I also noticed less oscillation at the beginning with the number of neurons set higher. You can see that when the number of neurons is 20 there is quite a bit of oscillation at the beginning.

I also went a little further with this and set the number of hidden neurons to 2 and it confirmed my theory of oscillation. If the number of neurons is low than you see rather large oscillations in the data.

(2) How does it affect the number of epochs needed for training to converge?

From the plots I deduce that if the number of hidden neurons is larger than it appears to converge faster. You can see for the value of N=100 that it jumps up closer to its convergence much quicker than N=20. You can still see this in N=50, but it is a little harder to spot.

(3) Is there evidence that any of your networks has overfit to the training data? If so, what is the evidence?

I am not seeing any overfitting here. You can tell because for each of the graphs if you look at the orange(test data) this is data that the machine has not been trained over and it more or less follows the same trend as the training data. There are no big differences so we can deduce the model is not overfitting.

(4) How do your results compare to the results obtained by your perceptron in HW 1?

I will be honest and start by saying my homework 1 was rough to say the least. From what I understood about homework 1 the accuracy was much less. We can see that adding a hidden layer and particularly with ones with many hidden neurons it was much more accurate over the data.

Experiment 2

For experiment 2 we were asked to fix the number of neurons in the hidden layer to 100 (n=100) and vary the momentum value (previously 0.9 in experiment 1) to 0, 0.25, and 0.5. The graph from experiment 1 where the momentum value was 0.9 and the number of hidden neurons was 100 will also be included in the plots section (last plot in the section).

Accuracy Plots

The blue line is the accuracy over the training set and the orange line is the accuracy over the test set.

Confusion Matrices

Each follow the same format given in homework1

0... ...10

0

...

10

Momentum value = 0

[[3	44846	91	1014	134	1403	144	792	110	1489	2030]
[1329	391151	2349	322	2603	71	159	1999	499	1245]
[2197	456	344975	1041	2865	71	553	2063	1418	851]
[1753	187	1745	350797	3106	811	228	1278	1745	2541]
[2267	326	640	54	337405	7	1004	1850	402	4069]
[3152	228	303	1548	2140	309420	1267	794	1300	1811]
[1989	394	1044	108	955	730	340655	1649	1086	2066]
[1565	1118	2696	511	3310	53	112	357601	463	4514]
[2118	1100	1113	978	3312	558	839	662	335823	1572]
ַ	2802	346	267	1072	4121	260	161	1904	656	343269]]

Momentum value = 0.25

[[3	43439	49	5036	126	1702	213	555	56	563	314]
ſ	2204	390972	6307	570	570	107	173	313	349	162]
1	3463	298	348755	826	683	22	353	803	860	427]
[1065	181	6983	351194	334	1114	109	874	958	1379]
[4266	329	2832	74	335161	0	861	200	297	4004]
[1041	223	5637	790	407	310853	1147	98	646	1121]
[2004	419	5723	29	372	813	340857	19	402	38]
[5060	987	3449	784	592	92	80	358152	180	2567]
[2778	961	4695	1286	396	544	744	308	335021	1342]
1	3977	332	3629	806	725	277	219	831	397	343665]]

Momentum value = 0.5

[[3	43924	105	40	85	6031	87	557	272	740	212]
[2437	391202	705	351	5442	114	211	734	353	178]
[1844	397	344373	773	5826	248	442	1334	1034	219]
[600	169	760	352551	5220	750	125	2134	971	911]
[2195	207	200	28	340096	24	884	1899	142	2349]
[1391	266	157	1099	4239	310224	983	1552	956	1096]
[1067	379	5	10	6433	484	341653	234	403	8]
[1024	1193	1322	320	5392	125	97	359690	382	2398]
[1397	794	414	1318	5083	334	606	1323	335789	1017]
]_	1764	398	46	833	5637	264	178	1878	653	343207]]

Momentum value = 0.9

Discussion

(1) How does the momentum value affect the final accuracy of the test data?

It is hard to see much of a difference from the momentum value that we picked, but when I look at the plots it appears that when you have a lower momentum value that on the test set specifically you get a higher accuracy. It is not by much, but you can see a small increase.

(2) How does it affect the number of epochs needed for training to converge?

Again, it is really hard to tell by looking at the graphs, but it does look as though the higher the momentum value is that it converges slightly faster.

(3) Is there evidence that any of your networks has overfit to the training data? If so, what is that evidence?

No. Again, both the accuracy on the train and the test sets follow the same trend and are very close in accuracy. There are no major discrepancies an any of the plots and I am not seeing any overfitting to any of the graphs.

Experiment 3

In experiment 3 we were asked to fix the number of hidden neurons to 100 and the momentum value to 0.9. We were also asked to train over half and then a quarter of the training set instead of going over the whole set.

Accuracy Plots

Confusion Matrices

Each follow the same format given in homework1

0... ...10

0

•••

10

Half training set

[[3	41757	2610	291	3009	1499	230	702	502	1067	386]
[123	389606	1148	4662	3314	256	188	660	1596	174]
[1674	3559	340107	2660	2694	379	688	2560	1488	681]
[652	337	1930	348835	3859	2507	134	1060	3020	1857]
[539	826	206	1340	336609	698	772	2306	1183	3545]
[1008	410	620	7293	1995	302232	2350	1238	2821	1996]
[2396	1639	162	2046	1554	1692	337305	1292	2440	150]
[438	1366	1601	3270	5291	388	34	354311	837	4407]
[1624	1841	1150	4424	1349	1896	881	1113	331115	2682]
[1153	548	101	2845	4456	2024	64	3768	1899	338000]]

Quarter training set

[[3	41852	108	748	250	3153	655	1552	468	2819	448]
[58	387697	1274	1347	8075	133	488	540	1670	445]
[4364	485	336330	2151	4675	203	1462	2220	3647	953]
[1567	308	3703	339470	6066	3342	550	1778	5614	1793]
[3046	533	1664	216	329457	91	1946	473	1212	9386]
[2122	488	637	5069	5891	298850	2703	618	3803	1782]
[2823	369	252	73	6196	1325	337619	16	1920	83]
[1864	1374	2619	1762	6842	255	107	352075	908	4137]
[2660	1947	1290	1748	5353	1969	1376	574	328830	2328]
[3402	460	307	2307	7716	1085	266	4122	3072	332121]]

Discussion

(1) How does the size of the training data affect the final accuracy of the test data?

This is not by much, but not surprisingly if you have more data to train on your accuracy is higher. Also because what we did was take ½ or ¼ of the training set there is a possibility that there may have been more of a particular digit so you may see one be a little more accurate on a digit than the other.

(2) How does it affect the number of epochs needed for training to converge?

Again, it is very difficult to see, but if you have less data to train over it looks like you will converge slightly faster.

(3) Is there any evidence that any of your networks has overfit to the training data? If so, what is that evidence?

No neither have overfit. Something interesting to note is that for ¼ of the training data it appears the accuracy was much more consistent. The accuracy was not higher, but you can see that the test accuracy and train accuracy lines are almost on top of each other. This is closer than any of the others in the whole assignment.

Conclusion

This assignment explored using Multi Layered Perceptron to learn the MNIST dataset and try to determine what handwritten digit was in each image. We varied a some of the parameters of the backpropagation functions (e.g. number of hidden neurons and the momentum value). We also varied how much data we were training on.

What could I do better?

It took me a long time to do the training for each of the examples and I think if I would have utilized more linear algebra termed expression. Doing that would have sped up the training some.