# COS210 - Theoretical Computer Science Finite Automata and Regular Languages (Part 9)

### Theorem (Pumping Lemma for Regular Languages)

Let A be a regular language. Then there exists an integer  $p \geq 1$ , called the pumping length, such that the following holds: Every string w in A, with  $|w| \ge p$ , can be written as w = xyz, such that

 $\mathbf{0} \quad \mathbf{y} \neq \mathbf{\epsilon}$ 

(non-empty middle part y)

 $|xy| \leq p$ 

- (finite prefix xy)
- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)



- Let A be a regular language over  $\Sigma$
- $\Rightarrow$  There exists a DFA  $M = (Q, \Sigma, \delta, q, F)$  that accepts A
  - Choose the number of states of M as the pumping length: p = |Q|

#### **Proof**:

- Let A be a regular language over  $\Sigma$
- $\Rightarrow$  There exists a DFA  $M = (Q, \Sigma, \delta, q, F)$  that accepts A
  - Choose the number of states of M as the pumping length: p = |Q|
  - Let  $w = w_1 \dots w_n \in A$  a string of length  $n \ge p$
- $\Rightarrow$  There exists a run over n+1 states

$$r_1 \xrightarrow{w_1} r_2 \xrightarrow{w_2} \dots \xrightarrow{w_{n-1}} r_n \xrightarrow{w_n} r_{n+1}$$

in M where  $r_1 = q$  and  $r_{n+1} \in F$ 

#### **Proof**:

- Let A be a regular language over  $\Sigma$
- $\Rightarrow$  There exists a DFA  $M = (Q, \Sigma, \delta, q, F)$  that accepts A
  - Choose the number of states of M as the pumping length: p = |Q|
  - Let  $w = w_1 \dots w_n \in A$  a string of length  $n \ge p$
- $\Rightarrow$  There exists a run over n+1 states

$$r_1 \xrightarrow{w_1} r_2 \xrightarrow{w_2} \dots \xrightarrow{w_{n-1}} r_n \xrightarrow{w_n} r_{n+1}$$
 in  $M$  where  $r_1 = q$  and  $r_{n+1} \in F$ 

• Since n+1>|Q| there must be a state  $r_i$  that occurs twice along the first |Q|+1 states of the run (pigeon hole principle)

$$r_1 \xrightarrow{w_1} \dots \xrightarrow{w_{i-1}} \underbrace{r_i \xrightarrow{w_i} \dots \xrightarrow{w_{j-1}} r_j} \xrightarrow{w_j} \dots \xrightarrow{w_n} r_{n+1}$$

where i < j and  $j \le |Q| + 1$ 

• Some state  $r_i$  occurs twice along the run

$$r_1 \xrightarrow{w_1} \dots \xrightarrow{w_{i-1}} \underbrace{r_i \xrightarrow{w_i} \dots \xrightarrow{w_{j-1}} r_j} \xrightarrow{w_j} \dots \xrightarrow{w_n} r_{n+1}$$

where i < j and  $j \le |Q| + 1$ 



• Some state  $r_i$  occurs twice along the run

$$r_1 \xrightarrow{w_1} \dots \xrightarrow{w_{i-1}} \underbrace{r_i \xrightarrow{w_i} \dots \xrightarrow{w_{j-1}} r_j} \xrightarrow{w_j} \dots \xrightarrow{w_n} r_{n+1}$$

where i < j and  $j \le |Q| + 1$ 

• String w can be written as w = xyz where



read x

read z

• Some state  $r_i$  occurs twice along the run

$$r_1 \xrightarrow{w_1} \dots \xrightarrow{w_{i-1}} \underbrace{r_i \xrightarrow{w_i} \dots \xrightarrow{w_{j-1}} r_j} \xrightarrow{w_j} \dots \xrightarrow{w_n} r_{n+1}$$

where i < j and  $j \le |Q| + 1$ 

• String w can be written as w = xyz where



We have that:

**1**  $y \neq \epsilon$ , since i < j

read x

 $r_j = r_\ell$ 

• Some state  $r_i$  occurs twice along the run

$$r_1 \xrightarrow{w_1} \dots \xrightarrow{w_{i-1}} \underbrace{r_i \xrightarrow{w_i} \dots \xrightarrow{w_{j-1}} r_j} \xrightarrow{w_j} \dots \xrightarrow{w_n} r_{n+1}$$

where i < j and  $j \le |Q| + 1$ 

• String w can be written as w = xyz where



We have that:

- **1**  $y \neq \epsilon$ , since i < j
- 2  $|xy| \le p$ , since  $|xy| = j 1 \le |Q| = p$

read x

• Some state  $r_i$  occurs twice along the run

$$r_1 \xrightarrow{w_1} \dots \xrightarrow{w_{i-1}} \underbrace{r_i \xrightarrow{w_i} \dots \xrightarrow{w_{j-1}} r_j} \xrightarrow{w_j} \dots \xrightarrow{w_n} r_{n+1}$$

where i < j and  $j \le |Q| + 1$ 

• String w can be written as w = xyz where



We have that:

- 2  $|xy| \le p$ , since  $|xy| = j 1 \le |Q| = p$

read x

$$r_1 \xrightarrow{w_1} \cdots \xrightarrow{w_{i-1}} r_i \xrightarrow{w_i} \cdots \xrightarrow{w_{j-1}} r_j \xrightarrow{w_j} \cdots \xrightarrow{w_n} r_{n+1}$$

We still need to show that:

$$3 xy^k z \in A for all k \ge 0$$

### Premises:

- xyz ∈ A
- $\bullet$   $r_1 = q$
- $\bar{\delta}(r_1,x)=r_i$
- $\bar{\delta}(r_i, y) = r_j$
- $\bullet$   $r_j = r_i$
- $\bar{\delta}(r_i,z)=r_{n+1}$
- $r_{n+1} \in F$

$$r_1 \xrightarrow{w_1} \cdots \xrightarrow{w_{i-1}} r_i \xrightarrow{w_i} \cdots \xrightarrow{w_{j-1}} r_j \xrightarrow{w_j} \cdots \xrightarrow{w_n} r_{n+1}$$

We still need to show that:

$$3 xy^k z \in A for all k \ge 0$$

Premises:

• 
$$r_1 = q$$

• 
$$\bar{\delta}(r_1,x)=r_i$$

• 
$$\bar{\delta}(r_i, y) = r_j$$

$$\bullet$$
  $r_j = r_i$ 

$$\bullet \ \bar{\delta}(r_j,z)=r_{n+1}$$

• 
$$r_{n+1} \in F$$

$$\overline{\delta}(r_i,y)=r_i$$

$$r_1 \xrightarrow{w_1} \cdots \xrightarrow{w_{i-1}} r_i \xrightarrow{w_i} \cdots \xrightarrow{w_{j-1}} r_j \xrightarrow{w_j} \cdots \xrightarrow{w_n} r_{n+1}$$

We still need to show that:

$$3 xy^k z \in A for all k \ge 0$$

Premises:

$$\bullet$$
  $r_1 = q$ 

• 
$$\bar{\delta}(r_1,x)=r_i$$

• 
$$\bar{\delta}(r_i, y) = r_j$$

$$\bullet$$
  $r_j = r_i$ 

$$\bullet \ \overline{\delta}(r_j,z)=r_{n+1}$$

• 
$$r_{n+1} \in F$$

$$\Rightarrow \bar{\delta}(r_i, y) = r_i$$

$$\Rightarrow \ \overline{\delta}(r_i, y^k) = r_i \text{ for all } k \geq 0$$

$$r_1 \xrightarrow{w_1} \cdots \xrightarrow{w_{i-1}} r_i \xrightarrow{w_i} \cdots \xrightarrow{w_{j-1}} r_j \xrightarrow{w_j} \cdots \xrightarrow{w_n} r_{n+1}$$

We still need to show that:

$$3 xy^k z \in A for all k \ge 0$$

Premises:

$$\bullet$$
  $r_1 = q$ 

$$\bullet \ \overline{\delta}(r_1,x)=r_i-$$

• 
$$\bar{\delta}(r_i, y) = r_j$$

$$\bullet$$
  $r_i = r_i$ 

$$\bullet \ \bar{\delta}(r_j,z)=r_{n+1}$$

• 
$$r_{n+1} \in F$$

$$\Rightarrow \bar{\delta}(r_i, y) = r_i$$

$$\Rightarrow \bar{\delta}(r_i, y^k) = r_i \text{ for all } k \geq 0$$

$$\Rightarrow xy^kz \in A \text{ for all } k \geq 0$$

$$r_1 \xrightarrow{w_1} \cdots \xrightarrow{w_{i-1}} r_i \xrightarrow{w_i} \cdots \xrightarrow{w_{j-1}} r_j \xrightarrow{w_j} \cdots \xrightarrow{w_n} r_{n+1}$$

We still need to show that:

$$3 xy^k z \in A for all k \ge 0$$

### Premises:

- xyz ∈ A
- $\bullet$   $r_1 = q$
- $\bar{\delta}(r_1,x)=r_i$
- $\bar{\delta}(r_i, y) = r_j$
- $\bullet$   $r_j = r_i$
- $\bullet \ \overline{\delta}(r_j,z)=r_{n+1}$
- $r_{n+1} \in F$

$$\Rightarrow \bar{\delta}(r_i, y) = r_i$$

$$\Rightarrow \bar{\delta}(r_i, y^k) = r_i \text{ for all } k \geq 0$$

$$\Rightarrow xy^k z \in A \text{ for all } k \geq 0$$

The language A is not regular

$$A = \{0^n 1^n : n \ge 0\}$$

#### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$

#### Theorem (Pumping Lemma for Regular Languages)

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

$$A = \{0^n 1^n : n \ge 0\}$$

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 1^p \in A$

#### Theorem (Pumping Lemma for Regular Languages)

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

$$A = \{0^n 1^n : n \ge 0\}$$

#### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 1^p \in A$
  - We have that  $|w| = (p+p) = 2p \ge p$

#### Theorem (Pumping Lemma for Regular Languages)

- $|xy| \le p$  (finite prefix xy)
- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

$$A = \{0^n 1^n : n \ge 0\}$$

#### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 1^p \in A$
  - We have that  $|w| = (p+p) = 2p \ge p$
- $\Rightarrow$  w can be written as w = xyz, where
  - $y \neq \epsilon$ , |xy| < p, and  $xy^k z \in A$  for all k > 0

#### Theorem (Pumping Lemma for Regular Languages)

Let A be a regular language. Then there exists an integer  $p \ge 1$ , called the pumping length, such that the following holds: Every string w in A, with  $|w| \ge p$ , can be written as w = xyz, such that

- $\mathbf{0} \quad \mathbf{y} \neq \epsilon$
- $3 xy^k z \in A for all k \ge 0$

(finite prefix xy)

(non-empty middle part y)

(repeatable middle part)

The language A is not regular

$$A = \{0^n 1^n : n \ge 0\}$$

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 1^p \in A$
  - We have that  $|w| = (p + p) = 2p \ge p$
- $\Rightarrow$  w can be written as w = xyz, where

▶ 
$$y \neq \epsilon$$
,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$ 

•  $|xy| \le p \Rightarrow xy = 0...0$  (zeros only)

#### Theorem (Pumping Lemma for Regular Languages)

- $3 xy^k z \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

$$A = \{0^n 1^n : n \ge 0\}$$

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 1^p \in A$
  - We have that  $|w| = (p+p) = 2p \ge p$
- $\Rightarrow$  w can be written as w = xyz, where
  - ▶  $y \neq \epsilon$ ,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$
- $|xy| \le p \Rightarrow xy = 0...0$  (zeros only)
- $y \neq \epsilon \Rightarrow y$  consists of a non-zero number of 0s

#### Theorem (Pumping Lemma for Regular Languages)

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

$$A = \{0^n 1^n : n \ge 0\}$$

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 1^p \in A$
  - We have that  $|w| = (p+p) = 2p \ge p$
- $\Rightarrow$  w can be written as w = xyz, where

• 
$$y \neq \epsilon$$
,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$ 

- $|xy| \le p \Rightarrow xy = 0...0$  (zeros only)
- $y \neq \epsilon \Rightarrow y$  consists of a non-zero number of 0s

#### Theorem (Pumping Lemma for Regular Languages)

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

$$xyz = 0^p 1^p \implies xz = 0^q 1^p \text{ with } q < p$$

The language A is not regular

$$A = \{0^n 1^n : n \ge 0\}$$

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 1^p \in A$
  - We have that  $|w| = (p+p) = 2p \ge p$
- $\Rightarrow$  w can be written as w = xyz, where

▶ 
$$y \neq \epsilon$$
,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$ 

- $|xy| \le p \Rightarrow xy = 0...0$  (zeros only)
- $y \neq \epsilon \Rightarrow y$  consists of a non-zero number of 0s

 $\Rightarrow$  xz contains less 0s than 1s

 $\Rightarrow xz \notin A$  (contradiction)

#### Theorem (Pumping Lemma for Regular Languages)

$$xyz = 0^p 1^p \implies xz = 0^q 1^p \text{ with } q < p$$

The language A is not regular

$$A = \{0^n 1^n : n \ge 0\}$$

#### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 1^p \in A$
  - We have that  $|w| = (p+p) = 2p \ge p$
- $\Rightarrow$  w can be written as w = xyz, where

$$y \neq \epsilon$$
,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$ 

- $|xy| \le p \Rightarrow xy = 0...0$  (zeros only)
- $y \neq \epsilon \Rightarrow y$  consists of a non-zero number of 0s
- $\Rightarrow xz$  contains less 0s than 1s
- $\Rightarrow xz \notin A$  (contradiction)
- $\Rightarrow$  A is not regular

#### Theorem (Pumping Lemma for Regular Languages)

The language A is not regular

 $A = \{ss : s \text{ is a string over } \{0,1\}\}\$  (concatenations of strings with itself)

#### **Proof**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$

#### Theorem (Pumping Lemma for Regular Languages)

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

 $A = \{ss : s \text{ is a string over } \{0,1\}\}\$  (concatenations of strings with itself)

### **Proof**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 10^p 1 \in A$
  - We have that  $|w| = p + 1 + p + 1 \ge p$

#### Theorem (Pumping Lemma for Regular Languages)

- $|xy| \le p$  (finite prefix xy)
- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

 $A = \{ss : s \text{ is a string over } \{0,1\}\}\$  (concatenations of strings with itself)

### **Proof**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 10^p 1 \in A$
  - We have that  $|w| = p + 1 + p + 1 \ge p$
- $\Rightarrow$  w can be written as w = xyz, where
  - $y \neq \epsilon$ ,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$

#### Theorem (Pumping Lemma for Regular Languages)

- 1  $y \neq \epsilon$ 2  $|xy| \leq p$ 3  $xy^k z \in A$  for all  $k \geq 0$
- (non-empty middle part y)
- (finite prefix xy)
- (repeatable middle part)

The language A is not regular

 $A = \{ss : s \text{ is a string over } \{0,1\}\}$  (concatenations of strings with itself)

### **Proof**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$
- Consider  $w = 0^p 10^p 1 \in A$
- We have that  $|w| = p+1+p+1 \ge p$  (finite prefix xy)

   We have that  $|w| = p+1+p+1 \ge p$  (finite prefix xy)

   (repeatable middle part)
- $\Rightarrow$  w can be written as w = xyz, where
  - $y \neq \epsilon$ ,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$
  - $|xy| \le p \Rightarrow xy = 0...0$  (zeros only)

#### Theorem (Pumping Lemma for Regular Languages)

- $\mathbf{0} \quad \mathbf{v} \neq \epsilon$ (non-empty middle part y)

The language A is not regular

 $A = \{ss : s \text{ is a string over } \{0,1\}\}\$  (concatenations of strings with itself)

### **Proof**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 10^p 1 \in A$
  - We have that  $|w| = p + 1 + p + 1 \ge p$
- $\Rightarrow$  w can be written as w = xyz, where

$$y \neq \epsilon$$
,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$ 

- $|xy| \le p \Rightarrow xy = 0...0$  (zeros only)
- $y \neq \epsilon \Rightarrow y$  consists of a non-zero number of 0s

#### Theorem (Pumping Lemma for Regular Languages)

The language A is not regular

 $A = \{ss : s \text{ is a string over } \{0,1\}\}\$  (concatenations of strings with itself)

### **Proof**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 10^p 1 \in A$
  - We have that  $|w| = p + 1 + p + 1 \ge p$
- $\Rightarrow$  w can be written as w = xyz, where

▶ 
$$y \neq \epsilon$$
,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$ 

- $|xy| \le p \Rightarrow xy = 0...0$  (zeros only)
- $y \neq \epsilon \Rightarrow y$  consists of a non-zero number of 0s

$$\Rightarrow xyyz = \underbrace{0 \dots 0}_{p+|y|} \underbrace{1 \underbrace{0 \dots 0}_{p}}_{p} 1$$

#### Theorem (Pumping Lemma for Regular Languages)

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

 $A = \{ss : s \text{ is a string over } \{0,1\}\}\$  (concatenations of strings with itself)

### **Proof**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 10^p 1 \in A$
  - We have that  $|w| = p + 1 + p + 1 \ge p$
- $\Rightarrow$  w can be written as w = xyz, where

• 
$$y \neq \epsilon$$
,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$ 

- $|xy| \le p \Rightarrow xy = 0...0$  (zeros only)
- $y \neq \epsilon \Rightarrow y$  consists of a non-zero number of 0s

$$\Rightarrow xyyz = \underbrace{0 \dots 0}_{p+|y|} \underbrace{1 \underbrace{0 \dots 0}_{p}}_{p} 1$$

 $\Rightarrow xyyz \notin A$  (contradiction)

#### Theorem (Pumping Lemma for Regular Languages)

The language A is not regular

 $A = \{ss : s \text{ is a string over } \{0,1\}\}\$  (concatenations of strings with itself)

### **Proof**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 0^p 10^p 1 \in A$
  - We have that  $|w| = p + 1 + p + 1 \ge p$
- $\Rightarrow$  w can be written as w = xyz, where

▶ 
$$y \neq \epsilon$$
,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$ 

- $|xy| \le p \Rightarrow xy = 0...0$  (zeros only)
- $y \neq \epsilon \Rightarrow y$  consists of a non-zero number of 0s

$$\Rightarrow xyyz = \underbrace{0 \dots 0}_{p+|y|} \underbrace{1 \underbrace{0 \dots 0}_{p}}_{p} 1$$

- $\Rightarrow xyyz \notin A$  (contradiction)
- $\Rightarrow$  A is not regular

#### Theorem (Pumping Lemma for Regular Languages)

- $|xy| \le p$  (finite prefix xy)

The language A is not regular

$$A = \{1^{(n^2)} : n \ge 0\}$$
 (strings that are sequences of  $n^2$  1s)

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 1^{(p^2)} \in A$
  - We have that  $|w| = p^2 \ge p$
- $\Rightarrow$  w can be written as w = xyz, where
  - $y \neq \epsilon$ ,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$

#### Theorem (Pumping Lemma for Regular Languages)

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

$$A = \{1^{(n^2)} : n \ge 0\}$$
 (strings that are sequences of  $n^2$  1s)

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 1^{(p^2)} \in A$
  - We have that  $|w| = p^2 \ge p$
- $\Rightarrow$  w can be written as w = xyz, where
  - $y \neq \epsilon$ ,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$

#### Theorem (Pumping Lemma for Regular Languages)

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

$$A = \{1^{(n^2)} : n \ge 0\}$$
 (strings that are sequences of  $n^2$  1s)

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 1^{(p^2)} \in A$
  - We have that  $|w| = p^2 \ge p$
- $\Rightarrow$  w can be written as w = xyz where
  - $y \neq \epsilon$ ,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$

#### Theorem (Pumping Lemma for Regular Languages)

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

$$A = \{1^{(n^2)} : n \ge 0\}$$
 (strings that are sequences of  $n^2$  1s)

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$
- Consider  $w = 1^{(p^2)} \in A$
- We have that  $|w| = p^2 \ge p$
- $\Rightarrow$  w can be written as w = xyz, where
  - $y \neq \epsilon$ ,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$
- String xyyz has length  $|xyyz| = |xyz| + |y| = p^2 + |y|$  (Fact 1)

#### Theorem (Pumping Lemma for Regular Languages)

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

$$A = \{1^{(n^2)} : n \ge 0\}$$
 (strings that are sequences of  $n^2$  1s)

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$
- Consider  $w = 1^{(p^2)} \in A$
- We have that  $|w| = p^2 \ge p$
- $\Rightarrow$  w can be written as w = xyz, where
  - ▶  $y \neq \epsilon$ ,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$
- String xyyz has length  $|xyyz| = |xyz| + |y| = p^2 + |y|$  (Fact 1)
- We have that  $|y| \ge 1$  (Fact 2)

#### Theorem (Pumping Lemma for Regular Languages)

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

$$A = \{1^{(n^2)} : n \ge 0\}$$
 (strings that are sequences of  $n^2$  1s)

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$
- Consider  $w = 1^{(p^2)} \in A$
- We have that  $|w| = p^2 \ge p$
- $\Rightarrow$  w can be written as w = xyz, where
  - ▶  $y \neq \epsilon$ ,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$
- String xyyz has length  $|xyyz| = |xyz| + |y| = p^2 + |y|$  (Fact 1)
- We have that  $|y| \ge 1$  (Fact 2) and  $|y| \le p$  (Fact 3)

#### Theorem (Pumping Lemma for Regular Languages)

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

The language A is not regular

$$A = \{1^{(n^2)} : n \ge 0\}$$
 (strings that are sequences of  $n^2$  1s)

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$
- Consider  $w = 1^{(p^2)} \in A$
- We have that  $|w| = p^2 \ge p$
- $\Rightarrow$  w can be written as w = xyz, where
  - ▶  $y \neq \epsilon$ ,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$
  - String xyyz has length  $|xyyz| = |xyz| + |y| = p^2 + |y|$  (Fact 1)
  - We have that  $|y| \ge 1$  (Fact 2) and  $|y| \le p$  (Fact 3)

$$p^2 < |xyyz| \tag{1,2}$$

#### Theorem (Pumping Lemma for Regular Languages)

Let A be a regular language. Then there exists an integer  $p \ge 1$ , called the pumping length, such that the following holds: Every string w in A, with  $|w| \ge p$ , can be written as w = xyz, such that

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

 $|xyyz| = p^2 + |y| \ge p^2 + 1 > p^2$ 

The language A is not regular

$$A = \{1^{(n^2)} : n \ge 0\}$$
 (strings that are sequences of  $n^2$  1s)

### **Proof:**

- Assume that A is regular
- $\Rightarrow$  There exists a pumping length  $p \ge 1$ 
  - Consider  $w = 1^{(p^2)} \in A$
  - We have that  $|w| = p^2 \ge p$
- $\Rightarrow$  w can be written as w = xyz, where
  - $y \neq \epsilon$ ,  $|xy| \leq p$ , and  $xy^k z \in A$  for all  $k \geq 0$
- String xyyz has length  $|xyyz| = |xyz| + |y| = p^2 + |y|$  (Fact 1)
- We have that  $|y| \ge 1$  (Fact 2) and  $|y| \le p$  (Fact 3)

$$|xyyz| = p^2 + |y| \ge p^2 + 1 > p^2$$

$$p^2 < |xyyz| \tag{1,2}$$

$$|xyyz| = p^2 + |y| \le p^2 + p < p^2 + 2p + 1 = (p+1)^2$$
 |  $|xyyz| \le p^2 + p < (p+1)^2$  (1,3)

#### Theorem (Pumping Lemma for Regular Languages)

Let A be a regular language. Then there exists an integer  $p \ge 1$ , called the pumping length, such that the following holds: Every string w in A, with  $|w| \ge p$ , can be written as w = xyz, such that

- 3  $xy^kz \in A$  for all  $k \ge 0$  (repeatable middle part)

40

The language A is not regular

$$A = \{1^{(n^2)} : n \ge 0\}$$

#### **Proof:**

- String xyyz has length  $|xyyz| = |xyz| + |y| = p^2 + |y|$  (Fact 1)
- We have that  $|y| \ge 1$  (Fact 2) and  $|y| \le p$  (Fact 3)

$$p^2 < |xyyz|$$
 (1,2)  
 $|xyyz|$   $< (p+1)^2$  (1,3)

 $\Rightarrow$  Length of xyyz is strictly between the squares  $p^2$  and  $(p+1)^2$ 

The language A is not regular

$$A = \{1^{(n^2)} : n \ge 0\}$$

- String xyyz has length  $|xyyz| = |xyz| + |y| = p^2 + |y|$  (Fact 1)
- We have that  $|y| \ge 1$  (Fact 2) and  $|y| \le p$  (Fact 3)

$$p^2 < |xyyz|$$
 (1,2)  
 $|xyyz|$   $< (p+1)^2$  (1,3)

- $\Rightarrow$  Length of xyyz is strictly between the squares  $p^2$  and  $(p+1)^2$
- $\Rightarrow$  There exists no  $n \ge 0$  with  $|xyyz| = n^2$

The language A is not regular

$$A = \{1^{(n^2)} : n \ge 0\}$$

- String xyyz has length  $|xyyz|=|xyz|+|y|=p^2+|y|$  (Fact 1) We have that  $|y|\geq 1$  (Fact 2) and  $|y|\leq p$  (Fact 3)

$$p^2 < |xyyz|$$
 (1,2)  $|xyyz|$   $< (p+1)^2$  (1,3)

- $\Rightarrow$  Length of xyyz is strictly between the squares  $p^2$  and  $(p+1)^2$
- $\Rightarrow$  There exists no  $n \ge 0$  with  $|xyyz| = n^2$
- $\Rightarrow xyyz \notin A$  (contradiction)

The language A is not regular

$$A = \{1^{(n^2)} : n \ge 0\}$$

- String xyyz has length  $|xyyz| = |xyz| + |y| = p^2 + |y|$  (Fact 1)
- We have that  $|y| \ge 1$  (Fact 2) and  $|y| \le p$  (Fact 3)

$$p^2 < |xyyz|$$
 (1,2)
 $|xyyz|$   $< (p+1)^2$  (1,3)

- $\Rightarrow$  Length of xyyz is strictly between the squares  $p^2$  and  $(p+1)^2$
- $\Rightarrow$  There exists no  $n \ge 0$  with  $|xyyz| = n^2$
- $\Rightarrow xyyz \notin A$  (contradiction)
- $\Rightarrow$  A is not regular

# Pumping Lemma: Exercise

The language A is not regular

 $A = \{w : w \text{ contains twice as many 0s as 1s}\}$ 

# End of Chapter 2



# End of Chapter 2

