

Микросборка приемопередатчика с гальванической развязкой 2011BB014, K2011BB014, K2011BB014K

ГГ – год выпуска НН – неделя выпуска

Основные характеристики микросборки:

- Напряжение источника питания, U_{CC} , $5.0 \pm 10 \%$ B;
- Ток потребления в состоянии «Выключено», I_{CCZ} не более 560 мкА;
- Динамический ток потребления, I_{OCC}, не более 100 мА;
- Скорость передачи битов данных,
 V_{DR}, не более 25 Мбит/с;
- Выходное напряжение высокого уровня, U_{OH}, на выходах Out не менее 0,7•U_{CC};
- Выходное напряжение низкого уровня U_{OL}, на выходах Out не более 0,4 В;
- Температурный диапазон

Обозначение	Диапазон	
2011BB014	минус 60 – 85 °C	
K2011BB014	минус 60 – 85 °C	
K2011BB014K	0 – 70 °C	

Тип корпуса:

– 20-выводной металлокерамический корпус 4140.20-1.

Области применения микросборки

Микросборка 2011BB014 (далее – МСБ) предназначена для использования в аппаратуре специального назначения, в качестве приемопередатчика сигналов цифрового логического интерфейса. МСБ может использоваться для создания устройств высоковольтной гальванической развязки.

1 Структурная блок-схема

Приемопередатчик с гальванической развязкой

Рисунок 1 – Структурная блок-схема МСБ

2 Условное графическое обозначение

Рисунок 2 – Условное графическое обозначение

3 Описание выводов

Таблица 1 – Описание выводов

№ вывода корпуса	Обозначение вывода	Функциональное назначение выводов
1	NC	Не используется
2,3	Ucc1	Питание приемопередатчика
4	InA	Вход логического информационного сигнала
5	OutB	Выход логического информационного сигнала
6	ENB	Вход разрешения работы
7, 8	GND1	Общий
9	NC	Не используется
10	NC	Не используется
11	NC	Не используется
12	NC	Не используется
13, 14	GND2	Общий
15	ENA	Вход разрешения работы
16	OutA	Выход логического информационного сигнала
17	InB	Вход логического информационного сигнала
18, 19	Ucc2	Питание приемопередатчика
20	NC	Не используется

4 Описание функционирования

Функциональная схема МСБ приведена на рисунке ниже (Рисунок 3).

Входной сигнал, поступающий на кодер, подается на триггер Шмитта, уменьшающий влияние «дребезга» сигнала. Сформированный триггером Шмитта противофазный сигнал попадает на два одновибратора, один из которых формирует короткий импульс фиксированной длительности по переднему фронту входного сигнала, а другой — по заднему фронту. Эти короткие импульсы усиливаются и подаются на первичную обмотку импульсного трансформатора.

В декодере МСБ два компаратора сравнивают сигналы, поступающие из трансформатора, с опорным уровнем, и формируют логические сигналы на управляющих RS-входах триггера. Логический сигнал на выходе триггера является восстановленным исходным импульсом. Он усиливается буферным усилителем и подается в линию.

Сигнал EN включает (высоким уровнем) и выключает (низким) все блоки МСБ, переводя МСБ в режим минимального энергопотребления.

Рисунок 3 – Функциональная схема приемопередатчика с импульсным трансформатором

Таблица истинности МСБ 2011ВВ014 приведена ниже (Таблица 2).

Входы				Выходы		
ENA	ENB	INA	INB	OutB	OutA	
0	0	X	X	Z	Z	
0	1	X	X	0	Z	
1	0	X	X	Z	0	
1	1	0	0	0	0	
1	1	1	1	1	1	
1	1	1	0	0	1	
1	1	0	1	1	0	

Таблица 2 – Таблица истинности работы МСБ 2011ВВ014

5 Типовые схемы включения

Типовая схема включения МСБ 2011ВВ014 приведена на рисунке ниже (Рисунок 4).

Рисунок 4 – Типовая схема включения МСБ 2011ВВ014 при создании дуплексной системы передачи данных

6 Предельно-допустимые характеристики

Таблица 3 – Предельно-допустимые режимы эксплуатации и предельные электрические режимы

	0 E	Норма параметра			
Наименование параметра, единица измерения	Буквенное обозначение параметра	Предельно- допустимый режим		Предельный режим	
	Бу 06с па	не менее	не более	не менее	не более
Напряжение источника питания, В	U _{CC}	4,5	5,5	_	6
Входное напряжение высокого уровня, В, на входах In и EN	U _{IH}	2,0	Ucc	_	Ucc+0,3
Входное напряжение низкого уровня, В, на входах In, EN	U _{IL}	0	0,8	-0,3	_
Выходной ток низкого уровня, мА на выходе Out	I _{OL}	ı	1	-	_
Выходной ток высокого уровня, мА на выходе Out	I _{OH}	- 1	ı	ı	_
Скорость передачи битов данных, Мбит/с	V_{DR}	_	25	-	_
Емкость нагрузки, пФ, на выходах OutA, OutB	C _L	_	50	_	200

7 Электрические параметры

Таблица 4 – Электрические параметры МСБ при приемке и поставке

Наименование параметра,	енное чение летра	Норма параметра		атура °С
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
Выходное напряжение высокого уровня на выходах OutA, OutB, B	U _{OH}	0,7•U _{CC}	_	
Выходное напряжение низкого уровня на выходах OutA, OutB, B	U _{OL}	_	0,4	
Входной ток низкого, высокого уровня, мкА, на входах InA, InB, ENA, ENB	I _{IL} , I _{IH}	- 10	10	
Ток потребления в состоянии «Выключено», мкА	I _{CCZ}	-	560	25,
Динамический ток потребления, мА	I _{occ}	_	100	
Время задержки включения, нс, по сигналам ENA, ENB	t _{DHL}	_	800	85, - 60
Время задержки выключения, нс, по сигналам ENA, ENB	t _{DLH}	_	250	
Время задержки распространения при включении, выключении, нс, от входа In до выхода Out	t _{PHL} , t _{PLH}	_	40	
Время нарастания, спада сигнала, нс на выходах OutA, OutB	t _r , t _f	_	10	

8 Справочные данные

- Рабочее напряжение изоляции 2 кВ при температуре 85 °С;
- Температура срабатывания тепловой защиты 160 °C;
- Тепловое сопротивление кристалл-окружающая среда 22,6 °С/Вт.

9 Типовые зависимости

Рисунок 5 – Зависимость тока потребления в состоянии «Выключено» от температуры при напряжении питания 5,5 В

Рисунок 6 – Зависимость тока потребления в состоянии «Выключено» от температуры при напряжении питания 4,5 В

Рисунок 7 – Зависимость динамического тока потребления от температуры при I_{O} = 1 мA, f_{C} = 12,5 МГц, напряжении питания 5,5 В

Рисунок 8 – Зависимость динамического тока потребления от температуры при I_{O} = 1 мA, f_{C} = 12,5 МГц, напряжении питания 4,5 В

Рисунок 9 – Зависимость выходного напряжения высокого уровня от температуры при напряжении питания 4,5 B, I_{OH} = 1 мA

Рисунок 10 – Зависимость выходного напряжения низкого уровня от температуры при напряжении питания 4,5 B, I_{OL} = 1 мA

Рисунок 11 – Зависимость времени задержки распространения при включении, выключении, от входа In до выхода Out от температуры при напряжении питания 4,5 В

Рисунок 12 – Зависимость динамического тока потребления от скорости передачи данных при температуре 25 °C и питании 5 В

Рисунок 13 – Зависимость тока потребления в состоянии «Выключено» от значения характеристик 7. $\text{И}_7(7.\text{C}_4)$

10 Габаритный чертеж

Рисунок 14 - МСБ в корпусе 4140.20-1

11 Информация для заказа

Обозначение МСБ	Маркировка	Тип корпуса	Температурный диапазон
2011BB014	2011BB014	4140.20-1	минус 60 – 85 °C
K2011BB014	K2011BB014	4140.20-1	минус 60 – 85 °C
K2011BB014K	K2011BB014•	4140.20-1	0 – 70 °C

Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов
1	17.12.2014	0.1.0	Ведена впервые	
2	04.06.2015	2.0.0	Приведение в соответствие с ТУ и КД	По тексту
3	09.06.2015	2.1.0	Введены типономиналы К2011ВВ014, К2011ВВ014К	По тексту
4	14.09.2015	2.2.0	Исправлен рисунок 2. Добавлены справочные данные	3 8