American Sign Language Recognition

AI Project Group 16: Gianno Gomez Mason Paradeza Marianno Reynoso Jingye Xu Yuntong Zhang Problem introduction Existing methods Our method **Datasets Evaluation results** Task allocation

Problem

American Sign Language: major communication method by hearing impaired people

Existing work methods

Convolutional Neural Network (CNN):

small vanilla CNN

VGG-16

GooLeNet

Support Vector Machine

Deep belief network

Our method

Transformer network: a novel *encoder-decoder* network architecture that use *self-attention* and *multi-head attention* mechanism that enable parallel processing for <u>natural language processing (NLP)</u> and produce wonderful results

Vision Transformer (ViT): applying transformer network for vision task - *split an image to patches* and pass them to the transformer network as a word in NLP

Figure 1: The Transformer - model architecture.

Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems* 30 (2017). Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." *arXiv preprint arXiv:2010.11929* (2020).

Datasets

Sign language MNIST

Contain grayscale images (28*28) of America Sign Language from letter A to Z (except for J and Z because of gesture motions).

Train: 27455

Test: 7172

Evaluation

the proposed method - a transformer model

Accuracy on test data: 96.49%

an existing method - a CNN model

Accuracy 90.5%

Task allocation

We worked on the proposed method together. Jingye finish most of the CNN model code and Yuntong finish most of the transformer model code.

For the final deliverables:

- 1. **Gianno** is responsible for the web page showcase
- 2. **Mason** and **Marianno** are responsible for the poster
- 3. **Jingye** and **Yuntong** are responsible for the presentation video