Multivariate Regression

Dr. Prashant Singh Rana psrana.com | psrana@gmail.com

Univariate

- One input and one output
- Example:
 - OTP per transaction: Every transaction have unique OTP

Transaction ID	ОТР
3424234234	9456
5653453235	9879
5909087556	4536
8797890123	2345

Multivariate

- Multiple inputs and one output
- Example:
 - Cancer Prediction
 - Cement Mixture strength

x1	x2	х3	x4	x5	Strength
17	0	-5	0.784245	37	26
12	0	-10	0.587296	25	27
18	0	-7	0.876622	40	25
11	0	-7	0.80826	24	23
18	0	-4	0.83215	37	28
10	1	-9	0.62842	27	28
19	0	7	0.522811	44	30
19	-1	4	0.548609	37	23
15	0	-6	0.177904	46	20

Linear Model

$$Y = w1x1 + w2x2 + w3x3 + w4x4 + w5x5$$

Where,

- w1, w2, w3, are the weights.
- x1, x2, x3, are the input features.
- We need to find the optimized weights.

Linear Model

Input Data

С	F1	F2	F3	F4	F5
30	3	5	7	9	10
50	1	7	5	10	15
80	-15	15	10	5	10
	•	•	•	•	•
	•	•	•	•	•
90	20	0	2	3	7

Output

C = w1F1 + w2F2 + w3F3 + w4F4 + w5F5

Least Sum of Square

Obj fun =
$$min \left(\sum_{i=1}^{\mathsf{n}} \sqrt{\left(\mathsf{C}_i - \sum_{j=1}^{\mathsf{D}} w_j . F_{i,j} \right)^2} \right)$$

n = Total number of Observations (Rows)

C = Target (Class)

D = Dimension of the Problem (# of Features)

w = weight defined between [-1,1] or [-10,10]

F = Features (value of F1, F2, F3....)

Problem 1

W	0.2	-0.3	0.1	-0.5	0.9
С	F1	F2	F3	F4	F5
30	3	5	7	9	10
50	1	7	5	10	15
80	-15	15	10	5	10
90	20	0	2	3	7

Problem 2

W	-0.2	0.3	-0.1	0.5	-0.9
С	F1	F2	F3	F4	F5
30	3	5	7	9	10
50	1	7	5	10	15
80	-15	15	10	5	10
90	20	0	2	3	7

Which Wt. is better?

Problem 1 or Problem 2

Weight Optimization using Random Approach - min(LSS(wts))

Train/Test and Actual/Predicted

x1	x2	х3	х4	x5	Strength
17	0	-5	0.784245	37	26
12	0	-10	0.587296	25	27
18	0	-7	0.876622	40	25
11	0	-7	0.80826	24	23
18	0	-4	0.83215	37	28
10	1	-9	0.62842	27	28
19	0	7	0.522811	44	30
19	-1	4	0.548609	37	23
15	0	-6	0.177904	46	20

Train Data

Test Data

x1	x2	х3	x4	x5	Strength	
17	0	-5	0.784245	37	26	
12	0	-10	0.587296	25	27	
18	0	-7	0.876622	40	25	
11	0	-7	0.80826	24	23	
18	0	-4	0.83215	37	28	
10	1	-9	0.62842	27	28	
19	0	7	0.522811	44	30	Testing
19	-1	4	0.548609	37	23	Data
15	0	-6	0.177904	46	20	
input features			Actual			
	①					

Put in the eq and get value (known as predicted)

How to make predictions?

Approach:

- 1. Find the weights using 70% Data.
- 2. Test the equation on 30% Data.
- 3. Evaluate the performance using actual and predicted on different parameters (such as correlation, RMSE, MAE, etc)

Develop Web application

- तुम मुझे Data दो, मैं तुम्हें Equation दूंगा
- Develop Web Interface

Next Class

- Implementation of LSS using Python.
- Implementation of Multivariate regression using scikit-learn library
- Handling of categorical values.

Question & Doubts