Úloha na lokální minima

Stanislav Novotný

December 1, 2021

1 Úvod

Zkoumáme využití neuronových sítích pro lineární regresi na jednoduchém příkladě fitování polynomu $p(x) = 2x^2$ na intervalu [-1,1] pomocí modelu Chain(NaiveNPU(1,1), Dense(1,1)). Z teorie víme, že lokálního minima nabudeme pro nastavení

$$W^r = 2, \ W^i = 0, \ A = 2, \ b = 0$$
 (1)

$$W^r = 0, \ W^i = 0, \ A = 0, \ b = \frac{2}{3}$$
 (2)

První příklad představuje správný fit, zatím co druhá možnost je chybná.

Cílem je osvětlit jak moc palčivý tento problém je.

2 Experiment

V následujícím experimentu odhalíme, jak moc je tento problém zásadní. Podle počáteční inicializace parametrů modelu budeme zkoumat, různé případy.

- 1. Divergence
- 2. Konvergence do bodu (1)
- 3. Konvergence do bodu (2)
- 4. Konvergence do jiného bodu

Experiment rozložíme do dvou částí, v první budeme mít parametr b v každé počáteční inicializaci nastaven na hodnotu 0, ve druhé části budeme vždy začínat s hodnotou $b=\frac{2}{3}$. Určíme si intervaly, odkud budeme brát inicializační parametry W^r a A jako $W^r \in [-1,3]$ a $A \in [-1,3]$ v každém z těchto intervalů se budeme pohybovat s krokem 0.1. Parametr W^i bude vždy inicializován hodnotou $W^i=0$. Ze všech takovýchto bodů spustíme iteraci za využití optimalizační techniky ADAM s krokem 0.05. Výsledek každého iterace uložíme jako prvek matice 41×41 , kterou následně vyhodnotíme podle následujících kritérií:

- 1. Je-li $\|\nabla W^r\| \ge \epsilon \vee \|\nabla A\| \ge \epsilon \vee \|\nabla b\| \ge \epsilon \to \text{divergence}$
- 2. Je-li $|W^r-2|<\epsilon \ \land \ |A-2|<\epsilon \ \land \ |b|<\epsilon \to {\rm konvergence}$ do bodu (1)
- 3. Je-li $|A|<\epsilon \ \land \ |b-\frac{2}{3}|<\epsilon \to {\rm konvergence}$ do bodu (2)
- 4. Jinak \rightarrow konvergence do jiného bodu

Ve třetím bodě již nemusíme uvažovat podmínku $|W^r|<\epsilon$, jelikož zkoumaný polynom násobíme nulou díky podmínce $|A|<\epsilon$

Následující obrázky zobrazují výsledné matice tohoto experimentu. Barva na pozici (x, y) znázorňuje, jaké ze čtyř podmínek jsme vyhověli

- $\bullet \;\; \check{\mathbf{Z}} \\ \mathbf{lut} \check{\mathbf{a}} \to \mathbf{divergence}$
- $\bullet \; {\rm Zelen\acute{a}} \to {\rm konvergence}$ do bodu (1)
- \bullet Červená bodu (1) konvergence do bodu (2)
- Bílá konvergence do jiného bodu

Figure 1: Zobrazení konvergence v závistosti na inicializaci parametrů W^r,A pro b=0.

Konvergence pro b = 2/3

Figure 2: Zobrazení konvergence v závistosti na inicializaci parametrů W^r , A pro $b = \frac{2}{3}$.

Z obrázků pozorujeme, že správné konvergence se dosahovalo především v intervalu $A \in (1,3)$, konvergence do (2) se objevovala pro $A \simeq -0.5$.

Následující tabulky představují numerickou interpretaci obrázků 1 a 2 pro hodnoty parametrů b=0 a $b=\frac{2}{3}$. Matice na obou obrázcích jsou rozměrů 41 × 41, což představuje 1681 prvků.

Konvergence v závistosti na parametrech W^r, A pro $b = 0$			
Výsledek	Počet výskytů	Celkové zastoupení	
Divergence	380	22.6%	
Konvergence do (1)	836	49.73%	
Konvergence do (2)	10	0.59%	
Konvergence jinam	455	27.06%	

Table 1: Tabulka konvergence v závistosti na inicializaci parametrů W^r,A pro b=0

Konvergence v závistosti na parametrech W^r, A pro $b = \frac{2}{3}$		
Výsledek	Počet výskytů	Celkové zastoupení
Divergence	403	23.7%
Konvergence do (1)	835	49.67%
Konvergence do (2)	7	0.42%
Konvergence jinam	436	25.94%

Table 2: Tabulka konvergence v závistosti na inicializaci parametrů W^r,A pro $b=\frac{2}{3}$