Graph Neural Network Introduction & Background Topics

Using content from:

https://web.stanford.edu/class/cs224w/slides/01-intro.pdf

Al Bootcamp program

Foundation Bootcamp Topics

Prerequisites

Specialized Bootcamp Topics

What is Covered in This Bootcamp

- Graph Representation in Machine Learning
 - Representing nodes, edges, subgraphs, and entire graphs
 - Introduction to Graph Neural Networks (GNNs)
 - What are GNNs and why are they important?
- Types of GNNs
 - GCNs (Graph Convolutional Networks): Core concepts and applications
 - GATs (Graph Attention Networks): Attention mechanisms for graphs
 - Geometric GNNs
 - Other variations: GIN (Graph Isomorphism Networks), GraphSAGE, etc.
- Training and Using GNNs
 - Techniques for training and evaluating GNNs
 - Applications and practical considerations
- Extending GNNs
 - Adapting GNNs for knowledge graphs and heterogeneous graphs
- Scaling GNNs
 - Methods to scale GNNs for large and complex datasets

What is Not Covered in This Bootcamp

- Graph Generation
 - Using generative models to create graphs
- Subgraph Analysis
 - Techniques for analyzing subgraphs within larger graphs
 - Subgraph matching: Identifying and aligning subgraphs between different graphs
 - Frequent subgraph discovery: Detecting commonly occurring subgraphs
- Community Detection
 - Identifying and analyzing communities within graphs

Graphs are Everywhere

Event Graphs

Image credit: Wikipedia

Computer Networks

Image credit: Pinterest

MENT CTINIB1
TERT 1GE2
ZNRF3 1GE1R

Disease Pathways

Hopers

Baker Portain Custom

Warren Street

Regent's Park

Regent

Image credit: visitlondon.com

Food Webs

Particle Networks

Underground Networks

Other Examples of graphs in science and technology

Graphs vs. Other Mathematical Abstractions

Abstraction	Definition	Relation to Graphs	
Sets	Unordered collections of objects	Superset: Graphs are defined using sets of nodes and edges.	
Sequences	Ordered lists of elements	Subset: Paths and traversals in graphs are sequences of nodes/edges.	
Probabilistic Models	Frameworks for randomness	Extend graphs to model uncertainty (e.g., Bayesian networks).	
Dynamical Systems	Models of system evolution over time	State transitions can be represented as graphs.	
Logical Abstractions	Formal reasoning via propositions	Dependency and reasoning structures map to graphs.	
Functions	Mapping from sets to sets	Neural Networks (Universal Approximators) are Graphs	

Deep Learning Tools Assume Structured Input (Grid/Sequence)

Why "Learning Graphs" is Hard?

Networks are complex.

 Arbitrary size and complex topological structure (i.e., no spatial locality like grids)

- No fixed node ordering or reference point
- Often dynamic and have multimodal features

Graph Representation

Heterogeneous Graphs

$$G = (V, E, R, T)$$

- Nodes with node types $v_i \in V$
- Edges with relation types $(v_i, r, v_j) \in E$
- Node type $T(v_i)$
- Relation type $r \in R$
- Nodes and edges have attributes/features

The Role of Proper Network Representation

- Unique, Unambiguous Representation:
 - Example: In a molecular graph, the representation is straightforward
 - Nodes = atoms and Edges = chemical bonds
 - unambiguous representation since the structure is determined by chemistry rules
- Non-Unique Representation: depending on the context
 - Example: Social Networks
 - Nodes = people and Edges = friendships
 - Nodes = people and Edges = interactions (e.g., likes or comments)
 - Nodes = people and (weighted) Edges = communication frequency

The Role of Proper Network Representation

The structure of the graph influences the types of insights you can derive

- undirected edges: mutual relationships like communities or clusters
 - Example: co-authorship graph, edges represent papers co-written by authors, helping detect research communities
- directed edges: flow or influence
 - Example: citation network, edges point from one paper to another, helping track knowledge diffusion
- weighted edges: strength or importance of relationships
 - Example: In a trade network, edges represent trade volume between countries, enabling analysis of economic influence

Representing Graphs: Adjacency Matrix

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{array}{l}
A_{ij} = A_{ji} \\
A_{ii} = 0
\end{array}$$

$$k_i = \sum_{j=1}^N A_{ij}$$

$$k_j = \sum_{i=1}^N A_{ij}$$

$$L = \frac{1}{2} \sum_{i=1}^{N} k_i = \frac{1}{2} \sum_{ij}^{N} A_{ij}$$

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A_{ij} \neq A_{ji}$$
$$A_{ii} = 0$$

$$k_i^{out} = \sum_{j=1}^N A_{i,j}$$

$$k_j^{in} = \sum_{i=1}^N A_{ij}$$

$$L = \sum_{i=1}^{N} k_i^{in} = \sum_{j=1}^{N} k_j^{out} = \sum_{i,j}^{N} A_{ij}$$

A is sparse in real world applications

Question: How can we calculate k-hop neighbors?

Representing Graphs

Represent graph as a list of edges:

- **(2, 3)**
- -(2,4)
- **(3, 2)**
- **(3, 4)**
- **4**, 5)
- **(5, 2)**
- **(5, 1)**

Representing Graphs

Adjacency list:

- Easier to work with if network is
 - Large
 - Sparse
- Allows us to quickly retrieve all neighbors of a given node

- **2**: 3, 4
- **3**: 2, 4
- **4**: 5
- **5**: 1, 2

Representing Graphs

Representation	Advantages	Disadvantages	Common Use Cases
Adjacency List	Space-efficient for sparse graphs, fast neighbor iteration.	Slow edge lookups for dense graphs	Traversal algorithms (DFS, BFS).
Adjacency Matrix	Fast edge lookups, good for dense graphs and matrix-based algorithms.	High space complexity, inefficient neighbor iteration.	Linear algebra algorithms (e.g., PageRank).
Edge List	Very space-efficient, simple to construct and use.	Inefficient for traversal and neighbor lookups.	Storage and retrieval

Caltech EAS ALEBOOTCAMP

Connected vs. Disconnected Graphs (Undirected)

- Connected (undirected) graph:
 - Any two vertices can be joined by a path
- A disconnected graph is made up by two or more connected components

Largest Component: Giant Component

Isolated node (node H)

Connected vs. Disconnected Graphs (Directed)

- Strongly connected directed graph
 - has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)
- Weakly connected directed graph
 - is connected if we disregard the edge directions

Graph on the left is connected but not strongly connected (e.g., there is no way to get from F to G by following the edge directions).

Connected vs. Disconnected Graph Representation

The adjacency matrix of a network with several components can be written in a block-diagonal form, so that nonzero elements are confined to squares, with all other elements being zero:

Bipartite Graphs

Bipartite graph is a graph whose nodes can be divided into two disjoint sets *U* and *V* such that every link connects a node in *U* to one in *V*; that is, *U* and *V* are independent sets

Examples:

- Authors-to-Papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)
- Recipes-to-Ingredients (they contain)

"Folded" networks:

- Author collaboration networks
- Movie co-rating networks

Graph ML Applications

Types of Graph ML Applications

Node Classification

Link Prediction

- The task is to predict new/missing/unknown links based on the existing links.
- At test time, node pairs (with no existing links)
 are ranked, and top K node pairs are predicted.
- Task: Make a prediction for a pair of nodes.

Link Prediction: Predicting Drug Interactions

Nodes: Drugs & Proteins

Edges: Interactions

Query: How likely will Simvastatin and Ciprofloxacin, when taken together, break down muscle tissue?

Graph Level Prediction: Drug Discovery

- Antibiotics are small molecular graphs
 - Nodes: Atoms
 - Edges: Chemical bonds

Konaklieva, Monika I. "Molecular targets of β -lactam-based antimicrobials: beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

Graph Level Prediction: Drug Discovery

- A Graph Neural Network graph classification model
- Predict promising molecules from a pool of candidates

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.

Example from Physics Graph Neural Network predicting Quantum Ground States

From https://www.youtube.com/watch?v=nyKuAm-HWn4&t=0s

Example from Math **SAT Solver Selection**

Experimental Results

 Main results on the LEC and SC benchmarks. We report the average and standard deviation over 5 train-test folds.

	Jug Bristone (4)	Solvetrial 1	ACC1
-000	THC.		mundida.
Charle .	EWSENSTTI.	363100	180013-000
Sert how other	FF11100158	343100	64011039
Settimen	1966/PD(1916)	768407	0.90110300
Sittellesi	\$642994C115	CTG/skd.	1048110306
AlgebraNT	169,240 (1995)	74,710.1	0.43719-000
COM!	5927/m-1871	747402	0.433+0.000
GARTINIA	7500 Sterring	107,540,5	6.4001006
	90		
Charle .	GR/659136.46F	954100	189012-000
Softhair robus	(50.900000000)	262,614.7	8288985
Soffullate	22.6040.80	20.5 (2.2)	- KERRASOLE
Striffeli	2001 May 16 111	0481450	8,300+2-300
AspellosArT	200 A200 H 244	035515	70.68539305
5799	-250/8029/16768	83,440.8	8,7%+0.006
death (min)	12820-6-66	888114	6.275+0-006

HUMBERT THE PROLESSES SEC. L'YE

House College to

From https://www.youtube.com/watch?v=aM o70JfJLc

