Machine Learning Project - MecedesBenz Manufacturing

1. Import Libaray

```
In [1]:
```

```
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
%matplotlib inline
```

2. Import Training & Test Dataset

```
In [2]:
```

```
df_train = pd.read_csv('train.csv', header=0)
df_train.head()
```

Out[2]:

	ID	У	X0	X1	X2	Х3	X4	X5	Х6	X8	 X375	X376	X377	X378	X379	X380
0	0	130.81	k	٧	at	а	d	u	j	0	 0	0	1	0	0	0
1	6	88.53	k	t	av	е	d	у	I	0	 1	0	0	0	0	0
2	7	76.26	az	w	n	С	d	х	j	x	 0	0	0	0	0	0
3	9	80.62	az	t	n	f	d	х	I	е	 0	0	0	0	0	0
4	13	78.02	az	V	n	f	d	h	d	n	 0	0	0	0	0	0

5 rows × 378 columns

→

In [3]:

```
df_train.shape
```

Out[3]:

(4209, 378)

```
In [40]:
```

```
df_train['y'].describe()
Out[40]:
count
         4209.000000
mean
          100.669318
std
           12.679381
min
           72.110000
25%
           90.820000
50%
           99.150000
75%
          109.010000
          265.320000
max
Name: y, dtype: float64
In [4]:
```

```
df_test = pd.read_csv('test.csv', header=0)
df_test.head()
```

Out[4]:

	ID	X0	X1	X2	Х3	X4	X5	X6	X8	X10	 X375	X376	X377	X378	X379	X380	XЗ
0	1	az	٧	n	f	d	t	а	w	0	 0	0	0	1	0	0	
1	2	t	b	ai	а	d	b	g	у	0	 0	0	1	0	0	0	
2	3	az	v	as	f	d	а	j	j	0	 0	0	0	1	0	0	
3	4	az	I	n	f	d	z	ı	n	0	 0	0	0	1	0	0	
4	5	w	s	as	С	d	у	i	m	0	 1	0	0	0	0	0	

5 rows × 377 columns

```
→
```

In [5]:

```
df_test.shape
```

Out[5]:

(4209, 377)

3. Data Cleaning

3.1. Remove Non-Relevent Features like Y & ID

In [6]:

```
X_train= df_train.drop(['y','ID'], axis=1)
X_test = df_test.drop(['ID'], axis = 1)
y_label = df_train['y']
print('Training Set: {}'.format(X_train.shape))
print('Training Label: {}'.format(y_label.shape))
print('Test Set: {}'.format(X_test.shape))
```

Training Set: (4209, 376)
Training Label: (4209,)
Test Set: (4209, 376)

3.2. Checking Missing Value Or Not

In [7]:

```
def check_missing_values(df):
    if df.isnull().any().any():
        print("There are missing values in the dataframe")
    else:
        print("There are no missing values in the dataframe")
```

In [8]:

```
check_missing_values(X_train)
check_missing_values(X_test)
```

There are no missing values in the dataframe There are no missing values in the dataframe

3.3. Features With Unique Values Will Be Removed from Training Set & Test Set

In [9]:

```
cateCols = []
oneUniqueCols = []
for c in X_train.columns:
    cardinality = len(np.unique(X_train[c]))
    if cardinality == 1:
        oneUniqueCols.append(c)
    if X_train[c].dtype == 'object':
        cateCols.append(c)
```

```
In [10]:
```

```
oneUniqueCols
```

```
Out[10]:
```

['X11',

'X93',

'X107',

'X233',

'X235',

'X268',

'X289',

'X290',

'X293',

'X297',

'X330',

'X347']

In [11]:

```
X_train_clean = X_train.drop(oneUniqueCols, axis = 1)
X_train_clean.head()
```

Out[11]:

	X0	X1	X2	Х3	X4	X5	X6	X8	X10	X12	 X375	X376	X377	X378	X379	X380	3
0	k	٧	at	а	d	u	j	0	0	0	 0	0	1	0	0	0	_
1	k	t	av	е	d	У	I	0	0	0	 1	0	0	0	0	0	
2	az	w	n	С	d	x	j	х	0	0	 0	0	0	0	0	0	
3	az	t	n	f	d	x	I	е	0	0	 0	0	0	0	0	0	
4	az	٧	n	f	d	h	d	n	0	0	 0	0	0	0	0	0	

5 rows × 364 columns

In [12]:

```
X_test_clean = X_test.drop(oneUniqueCols, axis = 1)
X_test_clean.head()
```

Out[12]:

	X0	X1	X2	Х3	X4	X5	X6	X8	X10	X12	 X375	X376	X377	X378	X379	X380	3
0	az	٧	n	f	d	t	а	w	0	0	 0	0	0	1	0	0	
1	t	b	ai	а	d	b	g	у	0	0	 0	0	1	0	0	0	
2	az	٧	as	f	d	а	j	j	0	0	 0	0	0	1	0	0	
3	az	I	n	f	d	z	J	n	0	0	 0	0	0	1	0	0	
4	w	s	as	С	d	у	i	m	0	0	 1	0	0	0	0	0	

5 rows × 364 columns

4. PCA Feature Selection

4.1. Data Type Analyst

```
In [13]:
```

```
X_train_clean.dtypes.value_counts()
```

Out[13]:

int64 356
object 8
dtype: int64

4.1.1 Features With Categorical Data

```
In [14]:
```

```
cateCols
```

Out[14]:

```
['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']
```

4.1.2. Features With Binary Data

In [15]:

```
X_train_clean.select_dtypes(include=[np.number]).head()
```

Out[15]:

	X10	X12	X13	X14	X15	X16	X17	X18	X19	X20	 X375	X376	X377	X378	X379
0	0	0	1	0	0	0	0	1	0	0	 0	0	1	0	0
1	0	0	0	0	0	0	0	1	0	0	 1	0	0	0	0
2	0	0	0	0	0	0	1	0	0	0	 0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0

5 rows × 356 columns

```
→
```

In [16]:

```
np.unique(X_train_clean.select_dtypes(include=[np.number]))
```

Out[16]:

```
array([0, 1])
```

4.2. Encode Categorical Data

In order to implement PCA, Categorical data need to be encode

```
In [17]:
```

```
X_train_clean_encode = X_train_clean
X_test_clean_encode = X_test_clean
```

In [18]:

```
from sklearn.preprocessing import LabelEncoder
trainLabEncoder = LabelEncoder()
testLabEncoder = LabelEncoder()
```

In [19]:

```
for c in cateCols:
    X_train_clean_encode[c] = trainLabEncoder.fit_transform(X_train_clean_encode[c])
    X_test_clean_encode[c] = testLabEncoder.fit_transform(X_test_clean_encode[c])
```

In [20]:

```
X_train_clean_encode.dtypes.value_counts()
```

Out[20]:

int64 364 dtype: int64

In [21]:

```
X_train_clean_encode.head()
```

Out[21]:

	X0	X1	X2	Х3	X4	X5	X6	X8	X10	X12	 X375	X376	X377	X378	X379	X380	3
0	32	23	17	0	3	24	9	14	0	0	 0	0	1	0	0	0	
1	32	21	19	4	3	28	11	14	0	0	 1	0	0	0	0	0	
2	20	24	34	2	3	27	9	23	0	0	 0	0	0	0	0	0	
3	20	21	34	5	3	27	11	4	0	0	 0	0	0	0	0	0	
4	20	23	34	5	3	12	3	13	0	0	 0	0	0	0	0	0	

5 rows × 364 columns

```
→
```

```
In [22]:
```

```
X_test_clean_encode.dtypes.value_counts()
```

Out[22]:

int64 364 dtype: int64

In [23]:

```
X_test_clean_encode.head()
```

Out[23]:

	X0	X1	X2	Х3	X4	X5	X6	X8	X10	X12	 X375	X376	X377	X378	X379	X380	3
0	21	23	34	5	3	26	0	22	0	0	 0	0	0	1	0	0	
1	42	3	8	0	3	9	6	24	0	0	 0	0	1	0	0	0	
2	21	23	17	5	3	0	9	9	0	0	 0	0	0	1	0	0	
3	21	13	34	5	3	31	11	13	0	0	 0	0	0	1	0	0	
4	45	20	17	2	3	30	8	12	0	0	 1	0	0	0	0	0	

5 rows × 364 columns

4.3. PCA on Training & Test Data Set

In [24]:

```
n_comp = 12
pca = PCA(n_components=n_comp, random_state=420)
```

In [25]:

```
trainPCA = pca.fit_transform(X_train_clean_encode)
trainPCA.shape
```

Out[25]:

(4209, 12)

In [26]:

```
testPCA = pca.transform(X_test_clean_encode)
testPCA.shape
```

Out[26]:

(4209, 12)

5. Train XGB model

5.1. Import XGB Lib

In [27]:

```
import xgboost as xgb
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
```

5.2. Split Training Data Set

In [28]:

```
X_train_split, X_valid_split, y_train_split,y_valid_split = train_test_split(trainPCA,
y_label, test_size = 0.2, random_state=4242)
```

5.3. Store data in DMatrix

In [29]:

```
xgb_X_train_split = xgb.DMatrix(X_train_split, label=y_train_split)
xgb_X_valid_split = xgb.DMatrix(X_valid_split, label=y_valid_split)
```

```
/opt/anaconda3/lib/python3.7/site-packages/xgboost/core.py:587: FutureWarn
ing: Series.base is deprecated and will be removed in a future version
if getattr(data, 'base', None) is not None and \
```

5.4. Specify XGB Parameters

In [30]:

```
params = {}
params['objective'] = 'reg:linear'
params['eta'] = 0.005
params['max_depth'] = 6
params['n_trees'] = 500
params['subsample'] = 0.5
params['eval_metric'] = 'rmse'
params['base_score'] = np.mean(y_label)
params['silent'] = 1
```

In [31]:

```
evallist = [(xgb_X_train_split, 'train'), (xgb_X_valid_split, 'valid')]
```

In [32]:

```
def xgb_r2_score(preds, dtrain):
    labels = dtrain.get_label()
    return 'r2', r2_score(labels, preds)
```

5.5. Train XGB Model

In [33]:

model = xgb.train(params,xgb_X_train_split,1000,evallist,feval=xgb_r2_score,maximize=Tr
ue,verbose_eval=10)

[0] train-rmse:12.845 valid-r2:0.002443	valid-rmse:11.8462	train-r2:0.003816
[10] train-rmse:12.5915	valid-rmse:11.5659	train-r2:0.042754
valid-r2:0.049089		
[20] train-rmse:12.3529	valid-rmse:11.3078	train-r2:0.078681
valid-r2:0.091054		+
[30] train-rmse:12.1355 valid-r2:0.129436	valid-rmse:11.0665	train-r2:0.110832
[40] train-rmse:11.9269	valid-rmse:10.8405	train-r2:0.141132
valid-r2:0.164621	14114 15211616165	C. G.I 1 2 . G . I . I . I . I
[50] train-rmse:11.7325	valid-rmse:10.637	train-r2:0.168903
valid-r2:0.195699		
[60] train-rmse:11.553	valid-rmse:10.4452	train-r2:0.194138
valid-r2:0.224435 [70] train-rmse:11.3856	valid-rmse:10.2716	train-r2:0.217324
valid-r2:0.250012	Valid-1 III3E.10.2/10	(1 0111-1 2.0.217 324
[80] train-rmse:11.2277	valid-rmse:10.0996	train-r2:0.238875
valid-r2:0.274919		
[90] train-rmse:11.0785	valid-rmse:9.94822	train-r2:0.258975
valid-r2:0.296486	1:1 0 0007	
[100] train-rmse:10.938 valid-r2:0.315987	valid-rmse:9.80937	train-r2:0.277647
[110] train-rmse:10.8016	valid-rmse:9.67603	train-r2:0.295555
valid-r2:0.334456	Valla 1115c. 5.07 005	Cruzii 12.0.23333
[120] train-rmse:10.6775	valid-rmse:9.55711	train-r2:0.311642
valid-r2:0.350716		
[130] train-rmse:10.5606	valid-rmse:9.44737	train-r2:0.326638
valid-r2:0.365541 [140] train-rmse:10.4494	valid-rmse:9.3395	train-r2:0.340749
valid-r2:0.379946	valiu-lilise.9.3393	(1'a111-1'2.0.340/49
[150] train-rmse:10.3431	valid-rmse:9.23764	train-r2:0.354091
valid-r2:0.393398		
[160] train-rmse:10.2469	valid-rmse:9.15172	train-r2:0.366046
valid-r2:0.404629		turin m2.0 277065
[170] train-rmse:10.1509 valid-r2:0.415595	valid-rmse:9.06705	train-r2:0.377865
[180] train-rmse:10.0576	valid-rmse:8.98601	train-r2:0.389259
valid-r2:0.425995		
[190] train-rmse:9.97109	valid-rmse:8.91254	train-r2:0.399717
valid-r2:0.435342	7.1	
[200] train-rmse:9.88706 valid-r2:0.444242	valid-rmse:8.84202	train-r2:0.409791
[210] train-rmse:9.81209	valid-rmse:8.77838	train-r2:0.418708
valid-r2:0.452214	(uzzu / iiise/6/// / 656	21 4211 12101 120700
[220] train-rmse:9.73503	valid-rmse:8.71936	train-r2:0.427802
valid-r2:0.459556		
[230] train-rmse:9.66744	valid-rmse:8.67007	train-r2:0.435721
valid-r2:0.465648 [240] train-rmse:9.6043	valid-rmse:8.62749	train-r2:0.443067
valid-r2:0.470885	Valla 1 1113C. 0. 02743	Cruin 12.0.445007
[250] train-rmse:9.54289	valid-rmse:8.58739	train-r2:0.450166
valid-r2:0.475791		
[260] train-rmse:9.47675	valid-rmse:8.54475	train-r2:0.457762
valid-r2:0.480985 [270] train-rmse:9.41585	valid-rmse:8.50679	train-r2:0.464708
valid-r2:0.485585	vatta-1 III2€.0.200/3	CI GIN-1 2.0.404/00
[280] train-rmse:9.35931	valid-rmse:8.4717	train-r2:0.471118
valid-r2:0.489821		
[290] train-rmse:9.30068	valid-rmse:8.43769	train-r2:0.477724
valid-r2:0.493908	valid-rmse:8.41128	train-r2:0.483905
[300] train-rmse:9.24547	vallu=11115e.0.41128	LI alli-1.7.0.483905

valid-r2:0.497072		
[310] train-rmse:9.18894 valid-r2:0.500269	valid-rmse:8.3845	train-r2:0.490197
[320] train-rmse:9.13911 valid-r2:0.504054	valid-rmse:8.35269	train-r2:0.495712
[330] train-rmse:9.0899 valid-r2:0.506805	valid-rmse:8.32949	train-r2:0.501127
[340] train-rmse:9.04112 valid-r2:0.50938	valid-rmse:8.30771	train-r2:0.506468
[350] train-rmse:8.99067 valid-r2:0.511576	valid-rmse:8.2891	train-r2:0.51196
[360] train-rmse:8.94112 valid-r2:0.513526	valid-rmse:8.27254	train-r2:0.517324
[370] train-rmse:8.89839 valid-r2:0.515522	valid-rmse:8.25555	train-r2:0.521927
[380] train-rmse:8.84918 lid-r2:0.517441	valid-rmse:8.23919	train-r2:0.5272 va
[390] train-rmse:8.80791 valid-r2:0.519259	valid-rmse:8.22365	train-r2:0.531599
[400] train-rmse:8.76909 valid-r2:0.521013	valid-rmse:8.20863	train-r2:0.535719
[410] train-rmse:8.7329 valid-r2:0.522582	valid-rmse:8.19518	train-r2:0.539544
[420] train-rmse:8.68955 valid-r2:0.524071	valid-rmse:8.18239	train-r2:0.544104
[430] train-rmse:8.6503 valid-r2:0.52558	valid-rmse:8.16941	train-r2:0.548213
[440] train-rmse:8.6143 valid-r2:0.526377	valid-rmse:8.16254	train-r2:0.551966
[450] train-rmse:8.57552 valid-r2:0.527127	valid-rmse:8.15608	train-r2:0.55599
[460] train-rmse:8.53868 valid-r2:0.527885	valid-rmse:8.14953	train-r2:0.559797
[470] train-rmse:8.50647 valid-r2:0.528846	valid-rmse:8.14124	train-r2:0.563112
[480] train-rmse:8.47029 valid-r2:0.529855	valid-rmse:8.13251	train-r2:0.566821
[490] train-rmse:8.43403 valid-r2:0.530953	valid-rmse:8.12301	train-r2:0.570521
[500] train-rmse:8.40197 valid-r2:0.5315	valid-rmse:8.11828	train-r2:0.57378
[510] train-rmse:8.36928 valid-r2:0.532295	valid-rmse:8.11139	train-r2:0.57709
[520] train-rmse:8.33616 valid-r2:0.533246	valid-rmse:8.10313	train-r2:0.58043
[530] train-rmse:8.30549 valid-r2:0.533818	valid-rmse:8.09816	train-r2:0.583513
[540] train-rmse:8.27495 valid-r2:0.534333	valid-rmse:8.09369	train-r2:0.58657
[550] train-rmse:8.24329 valid-r2:0.534738	valid-rmse:8.09017	train-r2:0.589727
[560] train-rmse:8.21783 valid-r2:0.53526	valid-rmse:8.08563	train-r2:0.592258
[570] train-rmse:8.18836 valid-r2:0.535781	valid-rmse:8.0811	train-r2:0.595177
[580] train-rmse:8.15661 valid-r2:0.536107	valid-rmse:8.07827	train-r2:0.59831
[590] train-rmse:8.12677 valid-r2:0.536764	valid-rmse:8.07254	train-r2:0.601244
[600] train-rmse:8.09919 valid-r2:0.537452	valid-rmse:8.06654	train-r2:0.603946

	· · · · · · · · · · · · · · · · · · ·	
[610] train-rmse:8.071 valid-r2:0.538137	valid-rmse:8.06057	train-r2:0.606698
[620] train-rmse:8.04403 valid-r2:0.538484	valid-rmse:8.05754	train-r2:0.609321
[630] train-rmse:8.01314 valid-r2:0.538965	valid-rmse:8.05334	train-r2:0.612317
[640] train-rmse:7.99194	valid-rmse:8.05136	train-r2:0.614366
valid-r2:0.539191 [650] train-rmse:7.96791	valid-rmse:8.0486	train-r2:0.616681
valid-r2:0.539507 [660] train-rmse:7.94309	valid-rmse:8.04497	train-r2:0.619066
valid-r2:0.539923 [670] train-rmse:7.92131	valid-rmse:8.03984	train-r2:0.621152
valid-r2:0.540509 [680] train-rmse:7.90025	valid-rmse:8.04207	train-r2:0.623163
valid-r2:0.540254 [690] train-rmse:7.87589	valid-rmse:8.04172	train-r2:0.625484
valid-r2:0.540294 [700] train-rmse:7.84781	valid-rmse:8.03999	train-r2:0.628149
valid-r2:0.540492 [710] train-rmse:7.81966	valid-rmse:8.04033	train-r2:0.630812
valid-r2:0.540453 [720] train-rmse:7.79603	valid-rmse:8.03713	train-r2:0.63304
valid-r2:0.540819 [730] train-rmse:7.77108	valid-rmse:8.0372	train-r2:0.635385
valid-r2:0.540811 [740] train-rmse:7.74711	valid-rmse:8.03678	train-r2:0.637632
valid-r2:0.540859 [750] train-rmse:7.72211	valid-rmse:8.03744	train-r2:0.639966
valid-r2:0.540784 [760] train-rmse:7.70172	valid-rmse:8.03427	train-r2:0.641865
valid-r2:0.541146 [770] train-rmse:7.68357	valid-rmse:8.03279	train-r2:0.643551
valid-r2:0.541315 [780] train-rmse:7.66153	valid-rmse:8.03377	train-r2:0.645593
valid-r2:0.541203 [790] train-rmse:7.64141	valid-rmse:8.03096	train-r2:0.647452
valid-r2:0.541524 [800] train-rmse:7.61673	valid-rmse:8.03 train	-r2:0.649725 va
lid-r2:0.541633 [810] train-rmse:7.59877	valid-rmse:8.03091	train-r2:0.651375
valid-r2:0.541529 [820] train-rmse:7.57794	valid-rmse:8.02898	train-r2:0.653284
valid-r2:0.541749 [830] train-rmse:7.55482	valid-rmse:8.02459	train-r2:0.655397
valid-r2:0.542251 [840] train-rmse:7.53085	valid-rmse:8.02394	train-r2:0.65758
valid-r2:0.542324 [850] train-rmse:7.51177	valid-rmse:8.02274	train-r2:0.659313
valid-r2:0.542461 [860] train-rmse:7.49514	valid-rmse:8.02534	train-r2:0.66082
valid-r2:0.542165 [870] train-rmse:7.47659	valid-rmse:8.02289	train-r2:0.662496
valid-r2:0.542445 [880] train-rmse:7.45615	valid-rmse:8.02152	train-r2:0.664339
valid-r2:0.542601 [890] train-rmse:7.43299	valid-rmse:8.02123	train-r2:0.666421
valid-r2:0.542634 [900] train-rmse:7.41652	valid-rmse:8.02087	train-r2:0.667898
valid-r2:0.542675 [910] train-rmse:7.3992	valid-rmse:8.01885	train-r2:0.669447

valid-r2:0.542905		
[920] train-rmse:7.38058	valid-rmse:8.01834	train-r2:0.67 11 09
valid-r2:0.542964		
[930] train-rmse:7.3623	valid-rmse:8.01483	train-r2:0.672736
valid-r2:0.543364		
[940] train-rmse:7.34098	valid-rmse:8.01376	train-r2:0.674629
valid-r2:0.543485		
[950] train-rmse:7.32291	valid-rmse:8.01126	train-r2:0.676229
valid-r2:0.54377		
[960] train-rmse:7.30382	valid-rmse:8.00967	train-r2:0.677914
valid-r2:0.543951		
[970] train-rmse:7.28536	valid-rmse:8.00703	train-r2:0.67954
valid-r2:0.544252		
[980] train-rmse:7.26904	valid-rmse:8.00731	train-r2:0.680974
valid-r2:0.544219		
[990] train-rmse:7.25269	valid-rmse:8.00748	train-r2:0.682408
valid-r2:0.544201		
[999] train-rmse:7.23772	valid-rmse:8.00635	train-r2:0.683718
valid-r2:0.544329		

5.6. Predict with Test set

In [34]:

```
xgb_X_test = xgb.DMatrix(testPCA)
```

In [35]:

```
prediectY = model.predict(xgb_X_test)
prediectY
```

Out[35]:

```
array([ 79.10548, 94.82104, 81.91955, ..., 100.73042, 109.27812, 95.47911], dtype=float32)
```

5.7. Plot Importance Features

In [36]:

xgb.plot_importance(model)

Out[36]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fb97578fdd8>

In [37]:

r2_score(y_valid_split,model.predict(xgb.DMatrix(X_valid_split)))

Out[37]:

0.5443294860369894

In []: