

Examen nº 1 - Contrôle optimal

Master 2 - CSMI - Durée : 2 heures

Consignes: les documents sont autorisés. Les calculatrices et téléphones portables ne sont pas autorisés. Il est important d'apporter une grande attention au soin et à la présentation, justification et rédaction des réponses. Il faut donc utiliser des phrases de liaison, des affirmations et des conclusions.

EXERCICE Nº 1 (stabilisation par retour d'état) Soient T > 0 et $\theta \in \mathbb{R}$, des paramètres réels. Soit $u \in L^{\infty}([0,T];\mathbb{R})$, une fonction de contrôle. On considère le système commandé

$$\begin{cases} x' = x \cos \theta - y \sin \theta \\ y' = x \sin \theta + y \cos \theta + u \\ (x(0), y(0)) = (x_0, y_0) \in \mathbb{R}^2. \end{cases}$$

- 1. Pour quelle(s) valeur(s) de θ , ce système est-il contrôlable?
- 2. On suppose dans cette question que $u(\cdot) = 0$.
 - (a) Calculer la dérivée de la fonction $F: t \mapsto x(t)^2 + y(t)^2$ et en déduire l'expression de F(t) pour tout $t \ge 0$.
 - (b) Pour quelles valeurs de θ la propriété suivante est-elle satisfaite? (A) : quelles que soient les données initiales $(x_0, y_0) \in \mathbb{R}^2$, on a $\lim_{t \to +\infty} (x(t), y(t)) = 0$.
- 3. On suppose que $\theta = \pi/2$. Montrer qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que, si l'on choisit la commande $u(\cdot) = \alpha x + \beta y$, la propriété (A) est satisfaite.

EXERCICE No 2 (contrôles bang-bang)

Une voiture commandée en vitesse est modélisée de la façon suivante :

$$\frac{d}{dt} \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix}.$$

où les commandes v et w sont les vitesses linéaires et angulaires instantanées.

Quitte à effectuer un changement de repère, on suppose qu'à l'instant initial, on a $(x(0), y(0), \theta(0))^{\top} = 0_{\mathbb{R}^3}$.

- 1. Le système est-il contrôlable si l'une des deux commandes v ou w est choisie identiquement nulle?
- 2. Le linéarisé en une position (x_1, y_1, θ_1) quelconque et un choix de commande (v, w) = (0, 0) est-il contrôlable? Comment interpréter ce résultat?
- 3. Montrer que le système est contrôlable (et préciser ce qu'on entend par ce mot) à l'aide de commandes constantes par morceaux $(v, w) = (0, \pm 1)$ ou $(\pm 1, 0)$.

 Indication: on suggère de construire pas à pas la trajectoire contrôlée.

EXERCICE Nº 3 (problème LQ) Une usine fabrique un certain produit dont le stock est x(t) avec x(0) = 1 et le taux de production $\dot{x}(t)$ vérifie $\dot{x}(t) = x(t) + u(t)$. pour $\varepsilon > 0$ donné, on considère la fonctionnelle J_{ε} donnée par

$$J_{\varepsilon}(u) = \frac{1}{2\varepsilon}x^{2}(1) + \frac{1}{2}\int_{0}^{1}u(t)^{2}dt.$$

- 1. On suppose d'abord que la production est donnée par $\bar{u}(\cdot)=1$ (constante au cours du temps). Calculer le coût $J_{\varepsilon}(\bar{u})$ associé.
- 2. Démontrer l'existence d'un contrôle optimal $u_{\varepsilon}(\cdot)$ pour le problème de minimisation de J_{ε} sur $L^{2}(]0,1[)$.
- 3. Déterminer ce contrôle optimal.
- 4. Quel est le gain comparé à une production constante?
- 5. Déterminer les limites de toutes les quantités en jeu lorsque $\varepsilon \searrow 0$? Proposer une interprétation.

L'exercice qui suit est facultatif. Il est conseillé de ne l'aborder que si tous les autres exercices ont été traités.

EXERCICE Nº 4 (équation de Riccati) Soient $A \in \mathbb{M}_n$, $B \in \mathbb{M}_{n,m}$. Considérons un système dynamique linéaire autonome

$$\begin{cases} \dot{x}(t) = Ax(t) + Bv(t) & t \in [0, T], \\ x(0) = x_0 \in \mathbb{R}^n \end{cases}$$

associé à la fonction coût quadratique J définie par

$$J(v) = \frac{1}{2} \int_0^T \left[(Qx(s), x(s)) + (Rv(s), v(s)) \right] ds + \frac{1}{2} (Dx(T), x(T))$$

où R est une matrice de $\mathbb{M}_m(\mathbb{R})$ définie positive, $Q \in \mathbb{M}_n(\mathbb{R})$ et $D \in \mathbb{M}_n(\mathbb{R})$ sont supposées semi-définie positives.

On considère le problème

$$\inf_{v \in L^2(0,T,\mathbb{R}^m)} J(v) \tag{LQ}$$

et on désigne par p la variable adjointe associée à ce problème. Rappelons qu'il existe une unique matrice symétrique $E \in C^1([0,T])$ de taille n telle que la trajectoire $x(\cdot)$ et l'état adjoint $p(\cdot)$ sont liés par la relation p(t) = E(t)x(t). La matrice E est solution de l'équation matricielle de Riccati

$$\begin{cases} \dot{E}(t) = -Q - A^{\top} E(t) - E(t) A + E(t) B R^{-1} B^{\top} E(t) & t \in [0, T] \\ E(T) = D. \end{cases}$$

1. Démontrer que pour tout $t \ge 0$, on a :

$$\frac{d}{dt}(E(t)x(t),x(t)) = -(Qx(t),x(t)) + (Bu(t),p(t)).$$

2. En déduire que $\frac{1}{2}(E(0)x_0,x_0)$ est la valeur optimale du problème LQ.