ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ СИСТЕМЫ ПОДЗЕМНОГО ТРАНСПОРТИРОВАНИЯ

В. Л. Конюх

Новосибирский государственный технический университет, 630092, Новосибирск, Россия

УДК 681.3.06

Описан опыт имитационного моделирования работы распределенных в подземном пространстве транспортных сетей при случайной работе источников грузопотоков.

Ключевые слова: забой, конвейер, бункер, дискретно-событийное моделирование, сеть Петри, маркер, анимация.

The simulation of a mine-wide transport network, whereas sources of bulk suppliers are working randomly, is described in the article.

Key words: face, conveyor, bin, discrete event simulation, Petri net, token, animation.

Введение. Горная масса транспортируется на поверхность вагонетками и ленточными конвейерами из распределенных в пространстве забоев. В свою очередь с поверхности в забои доставляются материалы и оборудование. Система подземного транспортирования горной массы имеет следующие особенности:

- неповторимость структуры транспортной сети;
- невозможность изменения топологии, зависящей от распределения участков добычи полезного ископаемого;
- распределение в пространстве нескольких входных грузопотоков при одном выходном грузопотоке;
 - перемещение забоев в пространстве;
 - случайные остановки забоев;
- необходимость остановки забоя при отказе элемента транспортной сети в соответствующем маршруте;
 - распределение горной массы по элементам транспортной сети;
 - сочетание непрерывных и дискретных процессов транспортирования;
 - ограниченность пропускной способности элемента транспорта.

Впервые имитация процесса транспортирования с целью выбора числа поездов проводилась по заказу рудника "Climax Molybdenum Mine" в США. Случайная работа забоев имитировалась методом Монте-Карло [1]. В 1964 г. с помощью имитационного моделирования сравнивались варианты сокращения одного из трех диспетчеров путем изменения места погрузки составов, замены поездов конвейерами или самоходным транспортом, ввода дополнительных поездов на шахте в Западной Пенсильвании [2]. В модели транспортирования шведского рудника "Кируна" имитировались случайные грузопотоки из забоев, решения

Работа выполнена при финансовой поддержке Научного комитета НАТО OUTR CRG 960628 "Имитация и анимация процессов добычи угля в России", РФФИ 10-08-01211-а "Моделирование процессов добычи твердых полезных ископаемых на большой глубине", Федеральной целевой программы "Интеграция науки и образования России на 2002-2006 гг." (проект У0043/995 "Подготовка кадров в области информационных технологий производства для промышленности Кузбасса").

Рис. 1. Модель работы забоя

транспортного диспетчера, процессы движения погрузочно-транспортных машин и 20 поездов. Модель разработана в виде многоканальной замкнутой системы массового обслуживания, на входе которой имитировалось поступление порожних составов, а на выходе — отправка груженых составов [3]. Погрузочные пункты были представлены как обслуживающие приборы. Для имитации систем транспортирования ленточными конвейерами разработаны специализированные продукты BELTSIM [4], BETHBELT [5], SIMBELT-1 [6], с помощью которых решались такие задачи, как исследование влияния промежуточных бункеров на сглаживание грузопотока.

1. Постановка задачи. Непрерывный поток горной массы представим как движение по транспортной сети дискретных объемов:

$$L = \sum_{i=1}^{k} f(t_i)\Delta t, \quad k = T/\Delta t, \quad t_i = i\Delta t.$$

Здесь Δt — шаг квантования грузопотока по времени; k — число дискретных объемов за время T квантования; $f(t_i)$ — объем горной массы за текущее время t_i .

В [7] доказано, что при замене непрерывного грузопотока на движение дискретных объемов масса дискретного объема не должна превышать 1 т. Для имитации процесса транспортирования применим дискретно-событийный подход с использованием временных сетей Петри. Транспортные сети различных горно-добывающих предприятий состоят из одинаковых элементов:

- забой, выдающий случайный поток горной массы;
- конвейер, характеризующийся приемной способностью и длиной;
- промежуточный бункер определенной емкости с заданной скоростью разгрузки;
- движение поезда между пунктами погрузки и разгрузки.

Входами модели забоя F_i являются случайное время Z_w работы и случайное время Z_d остановки, а выходом — величина грузопотока Q_i (рис. 1). Маркеры циркулируют между позициями P_1 и P_2 , P_3 и P_4 . Случайное время Z_w задержки маркера в позиции P_1 имитирует время работы забоя. На выходе модели генерируются маркеры, число Q_i которых соответствует объему добычи. Случайное время Z_d задержки маркера в позиции P_2 имеет смысл времени остановки забоя. В случае остановки ингибиторная дуга закрывает переход t_3 , и циркулирование маркеров между позициями P_1 и P_2 , P_3 и P_4 прекращается.

Перемещение горной массы конвейером представим в виде задержки маркера в позиции C_i на время

$$Z_i = L_i/V_i$$

зависящее от длины L_i и скорости V_i *i*-го конвейера (рис. 2).

Рис. 2. Модель движения горной массы по конвейеру

Рис. 3. Модель заполнения бункера

Максимум грузопотока $Q_{\rm bx}(t_j)$ должен быть меньше приемной способности Q конвейера. Грузопоток в конце конвейера равен

$$Q_{\text{bmx}} = Q_{\text{bx}}(t_j + L_i/V_i).$$

Заполнение бункера отобразим движением n маркеров по сети Петри с двумя позициями P_1 , P_2 и тремя переходами t_1 , t_2 , t_3 (рис. 3).

Заполнение бункера без разгрузки отображается задержкой маркеров в позиции P_1 , а разгрузка бункера — задержкой маркеров в позиции P_2 . Время задержки маркеров

$$Z_b(N) = \begin{cases} 0, & N \le n_2, \\ \Delta t N / n_2, & N > n_2 \end{cases}$$

зависит от степени заполнения бункера N, входного Q_1 и выходного Q_2 грузопотоков. Степень заполнения бункера изменяется в интервале

$$0 \le N \le S_b/q$$

 $(S_b -$ вместимость бункера; $q = |Q_1 - Q_2| -$ разность объемов входного и выходного грузопотоков).

Скорость разгрузки бункера зависит от работы питателя, размещенного под бункером:

$$S_p = \frac{n\Delta m}{\Delta t}$$

 $(\Delta m - \text{объем горной массы для одного маркера; } \Delta t - \text{временной шаг}).$

В текущий момент времени заполнение бункера равно

$$N = n\Delta m$$
.

Движение поезда по участку пути имитируется задержкой маркера в позиции P_i между переходами t_1-t_2 на время

$$Z_i = L_i/V_i$$
.

Здесь L_i — длина участка; V_i — средняя скорость движения поезда на участке (рис. 4). Прохождение перехода t_1 соответствует въезду поезда на участок, t_2 — выезду поезда с участка.

Рис. 4. Модель движения поезда по участку пути

Рис. 5. Модель выбора направления движения

Выбор направления движения поезда на разветвлении путей осуществляется путем переключения стрелочного перевода. Этот процесс имитируется сетью Петри с тремя переходами t_1 , t_2 , t_3 (рис. 5). Переход t_1 соответствует подходу локомотива к стрелочному переводу. После этого маркер задерживается в позиции P_1 выбора направления. В зависимости от наличия маркера в позициях P_2 и P_3 в соответствии с выбранным направлением движения маркеры движутся через переходы t_2 или t_3 . Вместо маркеров, введенных в позиции P_2 и P_3 , в сеть Петри могут быть введены приоритеты переходов t_2 и t_3 .

Выбор того или иного перехода определяется предыдущим положением стрелочного перевода.

2. Компоновка модели системы. Способы решения технологических задач с помощью имитационного моделирования процесса транспортирования рассмотрим на примере транспортной сети крупнейшей российской шахты "Распадская" (г. Междуреченск Кемеровской области). Шахта ведет добычу угля из шести рассредоточенных под землей забоев F_1 – F_6 (рис. 6).

В результате соединения входов и выходов моделей "Работа забоя", "Движение горной массы по конвейеру", "Заполнение бункера" скомпонована сеть Петри, имитирующая процесс транспортирования на шахте (рис. 7). Сеть содержит 39 позиций и 37 переходов. Для

Рис. 6. Схема транспортной сети шахты "Распадская"

Рис. 7. Сеть Петри, имитирующая процесс транспортирования на шахте "Распадская"

валидации модели применен метод объемного баланса — сравнение объемов горной массы на входе и выходе модели при различных вариантах работы забоев. Кроме того, сравнивались расчетное и модельное времена с момента начала работы забоев до момента появления горной массы на поверхности (рис. 8). Доказательство соответствия модели объекту моделирования позволило начать имитационные эксперименты.

Оценка максимального заполнения бункеров при случайной работе забоев

Бункер	Скорость разгрузки, т/мин	Максимальное заполнение, т
B_1 B_2 B_3 B_4 B_5	10 32 10 17 10	168 280 216 191 180

3. Проведение имитационных экспериментов. Оценивалось влияние ввода промежуточных бункеров на сглаживание неравномерности выходного грузопотока [8]. Ввод промежуточных бункеров вместимостью по 300 т угля между звеньями транспортной сети при случайной работе забоев и одинаковых скоростях разгрузки бункеров позволит уменьшить максимальную величину грузопотока в 1,6 раза (рис. 9).

Далее имитировалась случайная работа забоев и оценивалось максимальное заполнение промежуточных бункеров в течение рабочей смены (см. таблицу). Это позволило сократить затраты на установку подземных бункеров.

Особую сложность вызвало согласование разгрузок бункеров вдоль общего конвейера, в

Рис. 8. Оценка времени появления потока горной массы на поверхности с момента начала работы забоев

Рис. 9. Сглаживание загрузки сборного конвейера в течение времени смены $T_{\rm cm}$ при случайной работе шести забоев

Рис. 10. Схема разгрузки двух бункеров на один конвейер

Рис. 11. Зависимость заполнения N_1 бункера B_1 от интенсивности разгрузки Q_2 бункера B_2

случае если его приемная способность меньше суммы максимальных скоростей их разгрузки. Пусть бункеры B_1 и B_2 , установленные на расстоянии L, разгружаются на конвейер C_1 с приемной способностью

$$Q < Q_1 + Q_2$$

 $(Q_1,\,Q_2-$ максимальные интенсивности разгрузки бункеров $B_1,\,B_2)$. При разгрузке первого по движению бункера B_2 с интенсивностью Q_2 необходимо ограничивать интенсивность разгрузки следующего бункера B_1 , чтобы не допустить превышения приемной способности конвейера C_1 (рис. 10). В результате бункер B_1 начнет заполняться. После его заполнения потребуется останавливать связанные с ним забои. В имитационных экспериментах при случайной работе забоев изменялась интенсивность разгрузки первого по движению бункера B_2 и оценивалась динамика заполнения бункера B_1 . Установлено, что максимальное заполнение бункера B_1 будет достигнуто при интенсивности разгрузки бункера $B_2=33$ т/мин (рис. 11).

Далее соотношение интенсивностей Q_1 и Q_2 разгрузки бункеров B_1 и B_2 изменялось таким образом, чтобы можно было, с одной стороны, выровнять динамику их заполнения, а с другой — полностью загрузить общий конвейер C_1 (рис. 12).

В процессе транспортирования возникают случайные отказы конвейеров, что приводит к остановкам конвейерных линий с последующими заполнением бункеров и остановкой забоев. Появление отказа, место отказа и время восстановления транспортной системы имитировались путем ввода ингибиторной дуги в переход между позициями начала P_1 и окончания P_2 работы элемента транспортной сети (рис. 13). Ингибиторнай дуга прекращает движение маркеров на время устранения отказа. В нормальном режиме маркеры движутся от позиции

Рис. 12. Заполнение N бункеров $B_1,\,B_2$ при уменьшении скорости Q их загрузки на конвейер C_1

Рис. 13. Имитация появления и устранения отказов путем ввода ингибиторной дуги

Рис. 14. Применение имитационного моделирования для прогноза последствий принимаемых решений

 P_1 к позиции P_2 через переход t_1 . Среднее число отказов генерируется датчиком случайных чисел ДСЧ 1. При этом в позициях P_3 , P_4 появляется N маркеров и переход t_1 закрывается ингибиторной дугой. Одновременно маркер переходит из позиции P_5 в позицию устранения отказов P_6 и задерживается в ней на время Z, заданное датчиком случайных чисел ДСЧ 2. После устранения отказа маркер переходит в позицию P_5 , и переход t_2 открывается для устранения следующего отказа. Устранение N отказов приводит к открыванию перехода t_2 и продолжению работы.

В результате имитационных экспериментов с моделью транспортной сети шахты "Распадская" установлено, что при случайной работе шести забоев:

- ввод в сеть пяти промежуточных бункеров позволит снизить приемную способность сборного конвейера на 60 %;
 - в течение смены больше остальных будет заполняться бункер B_2 ;
 - время остановки сборного конвейера не должно превышать 10 мин;
- для одновременного заполнения двух бункеров при приемной способности общего конвейера $Q=45~{\rm T/m}$ ин интенсивность их разгрузки должна составлять 32 и 9,5 т/мин.
- **4. Прогнозирование последствий решений.** Имитационная модель процесса транспортирования может функционировать синхронно с реальной системой (рис. 14).

С целью прогноза последствий своих решений транспортный диспетчер уменьшает шаг модельного времени, после чего возвращается к реальному времени и выбирает наилучшее решение.

Транспортная сеть угольной шахты "Комсомолец" в Кузбассе содержит две конвейерные линии, соединяющие четыре забоя с двумя пунктами ОПП 1, ОПП 2 для погрузки угля в составы вагонеток (рис. 15).

Диспетчер должен направить состав к одному из двух погрузочных пунктов. Неправильный выбор приведет к переполнению бункеров и остановке забоев в другой линии. Если увеличить число поездов, то порожние составы будут препятствовать выезду груженых составов с погрузочного пункта, что приведет к остановке процесса транспортирования.

Имитационная модель транспорта состоит из модулей "забой", "конвейер", "бункер", "движение состава", "рельсовый путь", "выбор направления", "погрузка состава" и содержит 50 позиций и 45 переходов сети Петри. Транспортный диспетчер может изменять состояние и

Рис. 15. Схема конвейерной сети шахты "Комсомолец"

производительность каждого забоя ("забой 1 — забой 4"), изменять число поездов ("в депо", "из депо"), сравнивать состояние погрузочных пунктов и выбирать направление движения очередного поезда ("к ОПП 1", "к ОПП 2").

На этапе "Отображение" на экран выводится мнемосхема транспортной сети и движения грузов в реальном времени. В результате имитации на мнемосхеме транспортной сети (рис. 16) отображаются состояния забоев, размещение поездов, движение угля по конвейерам и степень заполнения каждого бункера.

Рис. 16. Кадр анимации транспортной сети угольной шахты "Комсомолец"

Рис. 17. Заполнение N бункеров при увеличении времени отсутствия порожнего состава T

На этапе "Оценка" модель, используемая на первом этапе, дополняется оценкой грузопотоков из забоев, на конвейерах и в бункерах, размещением поездов в локомотивной сети. На этапе "Прогноз" модель, используемая на втором этапе, дополняется прогнозом распределения грузопотоков для различных решений диспетчера. Путем перехода к ускоренному моделированию диспетчер прогнозирует заполнение бункеров, возвращает модель к реальному времени и направляет поезд к тому пункту, бункер которого заполнится быстрее. При нажатии кнопки "Прогноз" моделирование ускоряется, а при нажатии кнопки "Отмена" возвращается к реальному времени. Оценка последствий решения диспетчера позволяет предотвратить переполнение бункеров вследствие отсутствия порожних составов.

В одном из экспериментов изменялся интервал ΔT подачи порожних составов вместимостью 90 т в погрузочный пункт ОПП 2 и оценивалась динамика заполнения бункеров в конвейерной линии за шестичасовую смену (рис. 17).

При случайной работе забоев в отсутствие порожних вагонеток сначала заполняется бункер B_3 погрузочного пункта. Затем переполняется бункер B_2 , что приводит к остановке забоя 4. После этого заполняется бункер B_1 и останавливается забой 3. Оценка динамики заполнения бункеров позволит задать интервал подачи составов, выбрать вместимость бункеров и состава.

Применение модели на шахте "Комсомолец" показало, что вследствие влияния различных случайных факторов имитация постепенно расходится с реальным процессом, поэтому в ней необходимо время от времени корректировать размещение поездов и заполнение бункеров. В дальнейшем необходим периодический ввод текущей информации о процессе в имитационную модель.

Приложения моделирования процессов подземного транспортирования разделим на четыре группы (рис. 18). В простых системах (рис. 18,*a*) датчики состояния оборудования подают сигналы на мнемосхему работы системы, с помощью которой диспетчер управляет процессом. Прогнозировать последствия управляющих решений на модели невозможно. Создание имитационной модели процесса (рис. 18,*b*) позволяет проектировщику или технологу проводить эксперименты с моделью и выбирать лучший вариант после интерпретации результатов моделирования. С помощью анимации (рис. 18,*b*) технолог может анализировать способы ведения горных работ по их отображению в динамике. В задачах диспетчеризации

Рис. 18. Схемы приложений имитации и анимации:

a — управление по отображению процесса; b — имитационные эксперименты; b — проектирование с помощью анимации; b — управление с помощью имитационной и анимационной моделей

имитация ведется одновременно с процессом (рис. 18, г). Наблюдая за процессом по его анимационному отображению, диспетчер может выбирать решение путем ускоренной имитации процесса, возвращаясь затем к реальному времени.

Заключение. Существующие методы математического моделирования транспортных сетей сводятся к расчету нагрузок на конвейеры и не учитывают случайный характер грузопотоков из забоев. Создание и развитие методов имитационного моделирования таких систем позволяют ставить и решать новые задачи, такие как оценка динамики грузопотока в различных местах транспортирования, выявление "узких мест", согласование характеристик транспортного оборудования, оценка влияния сглаживающих емкостей на неравномерность грузопотока.

Невозможность переноса объектов автоматизации с мест добычи к месту разработки систем автоматизации приводит к необходимости создания компьютерных моделей объектов автоматизации на месте разработки систем автоматизации. Объединение имитационных моделей систем и объектов автоматизации (эмуляция) позволит безопасно и без ограничения во времени отлаживать работу системы автоматизации в нормальных и аварийных ситуациях на объекте, дорабатывать систему автоматизации при изменении объекта, вести обучение персонала.

Автор выражает благодарность Д. Стургулу (США, университет Айдахо).

Список литературы

- 1. RIST K. The solution of a transportation problem by use of a Monte Carlo technique // Proc. of the 1st Intern. symp. on computer application in mining (APCOM-I). Tucson Univ. of Arizona, 1961. L2.1-L2.15.
- 2. Falkey T., Mitchell D. Probability simulation for mine haulage systems // Trans. Soc. Mining Engrs. 1963. V. 226. P. 467-473.
- 3. Elbrond J. Capacity calculations an LKAB, Kiruna // Quarterly of Colorado school of mines. Golden: S. n., 1964. P. 683-690.
- 4. Talbot R. Simulation of conveyor belt networks on coal mines // Proc. of the 15th Intern. symp. on computer applications in the mineral industries. Brisbane (Australia): S. n., 1977. P. 297–304.

5. Newhart D. Bethbelt-1, a belt haulage simulator for coal mine planning: Res. rep. / Betlehem Steel Corp. N_2 1720-2. USA. Pennsylvania, S. a.

- 6. Hancock W., Lyors D. Operational research in mine planning of underground transport // Proc. of the Intern. symp. on computer applications in the mineral industries (APCOM-1984). L.: Imperial College Press, S. e. P. 389-399.
- 7. Lebedev A., Staples P. Simulation of materials handling systems in the mines: Two case studies // Simulation. 1998. V. 70, N 3. P. 183-196.
- 8. Konyukh V., Davidenko V., Becker H., Koltzov S. Computer simulation of mine-wide conveyor transport // Proc. of the 26th Intern. symp. on computer applications in the mineral industries (APCOM-XXVI), Sept. 16-20, 1996. Pennsylvania: Soc. for mining, metallurgy and exploration Inc., 1996. P. 457-461.

Конюх Владимир Леонидович — д-р техн. наук, проф. Новосибирского государственного технического университета; mex.: 346-49-35, e-mail: vkonyukh@mail.ru

Дата поступления — 11.05.10