Knowledge Extraction with No Observable Data

Jaemin Yoo Seoul National Univ. jaeminyoo@snu.ac.kr Minyong Cho
Seoul National Univ.
chominyong@gmail.com

Taebum Kim Seoul National Univ. k.taebum@snu.ac.kr U Kang Seoul National Univ. ukang@snu.ac.kr

Experiments

Summary

KEGNET (Knowledge Extraction with Generative Networks)

- Input: a trained neural network M without data
- Output: a generator G that estimates unknown p_{χ}
- Main idea: G is trained as a function $(y, z) \rightarrow x$
- GitHub: https://github.com/snudatalab/KegNet
 - Knowledge Extraction

Extracting the knowledge of a neural network

- It is intractable to estimate directly $p_x(x)$
 - The size is exponential to |x|
 - No prior knowledge is given
- Estimate p(x|y,z) given random variables y and z
 - y is a probability vector representing a label
 - z is a low-dimensional embedding vector of data

Objective functions

• Generate artificial data examples:

Sampling distributions

$$\mathcal{D} = \left\{ \arg\max_{\hat{y}} p(\hat{x}|\hat{y}, \hat{z}) \mid \hat{y} \sim \underline{\hat{p}_{y}}(y) \text{ and } \hat{z} \sim \underline{p_{z}}(z) \right\}$$

• The argmax function is approximated as follows:

$$\underset{\hat{x}}{\operatorname{argmax}} p(\hat{x}|\hat{y}, \hat{z}) \approx \underset{\hat{x}}{\operatorname{argmax}} (\log p(\hat{y}|\hat{x}) + \log p(\hat{z}|\hat{x}))$$
Given network

Proposed Architecture

Classifier M

- Given as an input and fixed
- Our only evidence to estimate the data distribution
- LeNet4 or ResNet14 in our experiments

Generator G

- Estimate p(x|y,z) by a generator network
- Its structure is based on ACGAN in our experiments
- Classifier loss makes $M(G(\hat{y}))$ similar to \hat{y}
- \bullet Applying G alone, however, generates similar data

Decoder D

- Estimate p(z|x) to find the meaning of \hat{x}
- Increase the variance of \hat{x} given the same \hat{y}
- **Decoder loss** makes $D\big(G(\hat{y})\big)$ similar to \hat{z}

Data-free model compression

- To compress a deep neural network without data
- Models: LeNet5 and ResNet14 for image classification
- Datasets: MNIST, SVHN, and Fashion MNIST
- Baseline: Tucker decomposition for model compression

Competitors

- Original: the original network M
- Tucker (T): Tucker decomposition without fine-tuning
- **T+Uniform:** Estimate p_x as the uniform dist. $\mathcal{U}(-1, 1)$
- **T+Gaussian:** Estimate p_x as the normal dist. $\mathcal{N}(0, 1)$
- T+KegNet: Estimate p_x by the generator network G

Classification accuracy & compression ratios

Dataset	Model	Approach	Student 1	Student 2
MNIST	LeNet5	Original	98.90%	98.90%
	LeNet5	Tucker (T)	85.18% (3.62×)	67.35% (4.10×)
MNIST	LeNet5	T+Uniform	$95.48 \pm 0.11\%$	$88.27 \pm 0.07\%$
MNIST	LeNet5	T+Gaussian	$95.45 \pm 0.15\%$	$87.70 \pm 0.12\%$
MNIST	LeNet5	T+KEGNET	$96.32 \pm 0.05\%$	$90.89 \pm 0.11\%$
SVHN	ResNet14	Original	93.23%	93.23%
SVHN	ResNet14	Tucker (T)	19.31% (1.44×)	11.02% (1.65×)
SVHN SVHN SVHN	ResNet14 ResNet14 ResNet14	T+Uniform T+Gaussian T+ KEGNET	$33.08 \pm 1.47\%$ $26.58 \pm 1.61\%$ $69.89 \pm \mathbf{1.24\%}$	$63.08 \pm 1.77\%$ $60.22 \pm 4.17\%$ $87.26 \pm 0.46\%$
Fashion	ResNet14	Original	92.50%	92.50%
Fashion	ResNet14	Tucker (T)	65.09% (1.40×)	75.80% (1.58×)
Fashion	ResNet14	T+Uniform	< 65.09%	< 75.80%
Fashion	ResNet14	T+Gaussian	< 65.09%	< 75.80%
Fashion	ResNet14	T+ KEGNET	85.23 ± 1.36 %	87.80 ± 0.31 %

Generated images for SVHN from 5 generators

Latent space walking from 0 to 5 in SVHN

