CALCULUS I LECTURE 10: SEQUENCES, SERIES AND THEIR LIMITS II

1. Series with positive terms and Alternating series

Here we introduce two type of series. First one is the series $s_n = \sum_{i=1}^n a_i$ with all $a_i \geq 0$. In this case, the sequence of partial sums $\{s_n\}$ is a monotonic increasing sequence. It converges whenever there exists an upper bound.

Now for any two sequences $\{a_i\}$, $\{b_i\}$ with the $a_i, b_i \geq 0$ and $a_i \leq b_i$. Suppose we already know that $\sum_{i=1}^{\infty} b_i$ is convergent. Then $\sum_{i=1}^{\infty} a_i$ is also convergent. Conversely, if $\sum_{i=1}^{\infty} a_i$ diverges, so does $\sum_{i=1}^{\infty} b_i$.

Proposition 1.1. Suppose $0 \le a_i \le b_i$ for all $i \in \mathbb{N}$ and $\sum_{i=1}^{\infty} b_i$ convergent. Then we have $\sum_{i=1}^{\infty} a_i$ convergent.

Proof. Let $M = \sum_{i=1}^{\infty} b_i$, So we have

(1.1)
$$s_n := \sum_{i=1}^n a_i \le \sum_{i=1}^n b_i \le M.$$

Namely, s_n is a monotone, increasing sequence with an upper bound. So it is convergent.

We usually call this Proposition the comparison test of two sequences.

Exercise 1.2. Show that $\sum_{i=1}^{\infty} \frac{1}{i}$ divergent.

Proposition 1.3. Let $\{a_n\}$, $\{b_n\}$ be two positive sequences (i.e., $a_n, b_n > 0$ for all n). Suppose

$$\lim_{n \to \infty} \frac{a_n}{b_n}$$

converges to some c > 0. Then either both of $\sum_{i=1}^{\infty} a_i$, $\sum_{i=1}^{\infty} b_i$ converges or both of them diverges.

Proof. Here we just sketch the proof. Since c > 0, we have $a_n \leq (c+1)b_n$ and $b_n \leq (\frac{1}{c}+1)a_n$ when n is sufficiently large. Therefore, by Proposition 1.1, we can prove the result immediately.

We call this Proposition the **limit comparison test**.

The second type of series we will discuss here is called **alternating series**. It can be written as

(1.3)
$$\sum_{i=1}^{\infty} (-1)^{i+1} a_i$$

or

$$(1.4) a_1 - a_2 + a_3 - a_4 + \cdots$$

with all $a_i > 0$

Recall the last Proposition in the last lecture. A necessary condition for the alternating series convergent is $\lim_{n\to} a_n = 0$. We will prove in the following proposition, if a_n is monotonic decreasing, then the alternating series will convergent.

Proposition 1.4. Let a_n monotonic decreasing and $\lim_{n\to\infty} a_n = 0$. Then $\sum_{i=1}^{\infty} (-1)^{(i+1)} a_i$ converges.

Proof. Firstly, we can observe that by taking $b_n = s_{2n}$, $c_n = s_{2n+1}$ for all $n \in \mathbb{N}$, $\{b_n\}$ is monotonic increasing and $\{c_n\}$ is monotonic decreasing. This is because

$$(1.5) b_n = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2n-1} - a_{2n});$$

$$(1.6) c_n = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n} - a_{2n+1}).$$

Moreover, since $c_n = b_n + a_{2n+1}$, we have $b_n < c_n$. So we have $c_1 > c_n > b_n > b_1$. Therefore both b_n and c_n converge because $\{b_n\}$ has an upper bound c_1 and $\{c_n\}$ has a lower bound b_1 .

Therefore, we have

(1.7)
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n - \lim_{n \to \infty} a_{2n+1} = \lim_{n \to \infty} c_n.$$

One can check, by Definition, this implies $\sum_{i=1}^{\infty} a_i$ converges.

2. Absolute converges, Ratio test and Root test

For a general series, there are three most common ways to check whether it is convergent. The first one is called **absolutely convergent**.

Definition 2.1. For any sequence $\{a_n\}$, we call the series $\sum_{i=1}^{\infty} a_i$ absolutely convergent if and only if $\sum_{i=1}^{\infty} |a_i|$ converges.

Proposition 2.2. If $\sum_{i=1}^{\infty} a_i$ is absolutely convergent, then it is convergent.

Proof. Let s_n be the partial sum of $\{a_n\}$ and s'_n be the partial sum of $\{|a_n|\}$. Now, since the original series is absolutely convergent, so $\{s'_n\}$ is a Cauchy sequence. Meanwhile, we have

(2.1)
$$|s_m - s_n| = |\sum_{i=n+1}^m a_i| \le \sum_{i=n+1}^m |a_i| \le |s'_m - s'_n|.$$

So $\{s_n\}$ is also a Cauchy sequence, which is equivalently to say, $\lim_{n\to\infty} s_n$ converges.

Remark 2.3. This Proposition doesn't imply conversely. Namely, there are some series which are not absolutely convergent, but still convergent. In these cases, we call those series **conditionally convergent**.

Exercise 2.4. Show that $\sum_{i=1}^{\infty} (-1)^{(i+1)} \frac{1}{i}$ is conditionally convergent.

There are two other methods to check whether a series is convergent. These two methods, however, are all based on the observation of the behavior of geometric series.

Proposition 2.5. (Ratio test). Suppose the limit $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L$ exists. Then we have the series $\sum_{i=1}^{\infty} a_i$ converges when L < 1; the series $\sum_{i=1}^{\infty} a_i$ diverges when L > 1. When L = 1, no conclusion can be made.

Proof. Suppose L < 1, then there exists $N = N(\frac{1}{2}(1-L))$ such that

(2.2)
$$\left| \frac{a_{n+1}}{a_n} \right| < \frac{1}{2} + \frac{L}{2} < 1.$$

for all n > N. So we can take $\frac{1}{2} + \frac{L}{2} = r < 1$ and write

$$(2.3) |a_{n+1}| < r|a_n| < r^{n-N}|a_N|$$

for all n > N. So $\{|a_n|\}$ is bounded by a geometric sequence with ratio r < 1. This implies the original series is absolutely convergent. By Proposition 2.2, it is convergent.

We leave the proof of L > 1 for readers. One can show that, by the same argument, a_n will not converge to 0. So the series will diverge.

The final test I should mention is the root test. This one is better than ratio test (which means root test can show us some series convergent that ratio test can't).

Proposition 2.6. (Root test). Suppose the limit $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$ exists. Then we have $\sum_{i=1}^{\infty} a_i$ converges when L < 1; $\sum_{i=1}^{\infty} a_i$ diverges when L > 1. When L = 1, no conclusion can be made.

Proof. Here we only prove the case L < 1. We can take $N = N(\frac{1}{2}(1-L))$ again, $r = \frac{1}{2} + \frac{L}{2}$. So

$$(2.4) \sqrt[n]{|a_n|} < r^n$$

when n > N. So again, the sequence $\{|a_n|\}$ will be bounded by a geometric sequence. So the original series converges.

Exercise 2.7. Show that $\sum_{n=1}^{\infty} 3^{-n+(-1)^n}$ convergent. Does ratio test work for this series?

3. Some examples of series

One example readers need to know is the series

(3.1)
$$\sum_{i=1}^{\infty} \frac{1}{i(i+1)}.$$

Notice that

(3.2)
$$\frac{1}{i(i+1)} = \frac{1}{i} - \frac{1}{i+1}.$$

So the partial sum

$$(3.3) s_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right)$$

$$(3.4) = 1 - \frac{1}{n},$$

which has limit 1. This implies

(3.5)
$$\sum_{i=1}^{\infty} \frac{1}{i(i+1)} = 1$$

By this result and Proposition 2.2, we have

$$(3.6) \sum_{i=1}^{\infty} \frac{1}{i^2}$$

is also convergent. By Proposition 1.1, we have the following conclusion.

Proposition 3.1. $\sum_{i=1}^{\infty} \frac{1}{i^s}$ converges when $s \geq 2$, diverges when $s \leq 1$. In fact, this series is converges when s > 1.