algebraic-coding-theroy-part01

XuGuoqiang

2022 - 11 - 26

Introduction

Goal: Given \tilde{c} , recover x

Examples:

- Communication. Message corrupted in a noisy channel.
- Storage. SSD read, write, electrical, mechanical errors...

Goals:

- Handling Something Bad
- Recovering Info About x
- Minimize Overhead, $\frac{k}{n}$ As Large As Possible

• Doing All The Things Efficiently Possible

Question: What is hand-off between all the goals?

Basics

Definition:

A code C of blocklength n over an Alphabet Σ is $C \subseteq \Sigma_n$. The elements $c \in C$ are codewords.

Examples:

1. $C = \{HELLOWORLD, BRUNCHTIME, ALLTHETIME\}$ is a code of blocklength 10 over $\Sigma = \{A, B, C, \dots, Z\}$.

$$2. \ C = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \text{ is a code of blocklength 4 over } \Sigma = \{0, 1\}.$$

Relation to Alice and Bob

Consider $ENC(\{0,1\}^3) \mapsto \{0,1\}^4$

$$\{x_1, x_2, x_3\} \mapsto \{x_1, x_2, x_3, (x_1 + x_2 + x_3) \bmod 2\}$$

Example: $ENC(\{0, 1, 1\}) = (0, 1, 1, 0)$

This Code can correct one ERASURE. Example: (0, X, 0, 1). X must be 1.

Definition:

ERASURE: You know which bit got lost, but you don't know the value.

This Code can detect one ERROR.

Example: (0, 0, 0, 1)

Definition:

ERROR: You know one bit is wrong, but you don't know which one.

More Definitions

Definition:

The HAMMING DISTANCE between x, y $\in \Sigma_n$ is $\Delta(x, y) = \Sigma_1^n \mathbf{1}\{x_i \neq y_i\}$