Métodos Computacionais para Equações **Diferenciais** Aula 4

Prof.^a Dr.^a Analice Costacurta Brandi

Optativa - Tópicos de Matemática Aplicada Universidade Estadual Paulista "Júlio de Mesquita Filho"

Sumário

- 1. Solução Numérica de PVI's
- 2. Método de Euler

- 3. Método de Taylor de Ordem p=2
- 4. Método de Taylor de Ordem p = 3

Solução Numérica de PVI's

Método de Taylor de Ordem Superior

Considere uma função contínua f(x), e suponha que todas as suas derivadas existam no ponto $x=x_n$. A série de Taylor nas vizinhanças do ponto x_n é escrita como

$$f(x) \approx f(x_n) + \frac{(x - x_n)}{1!} f^1(x_n) + \frac{(x - x_n)^2}{2!} f^2(x_n) + \dots + \frac{(x - x_n)^p}{p!} f^p(x_n) + \dots$$

Onde a p-ésima derivada da f em x_n é dada por

$$f^p(x_n) = \frac{d^p f(x_n)}{dx^p}.$$

Método de Taylor de Ordem Superior

Se truncarmos o desenvolvimento da série de Taylor no p-ésimo termo, temos que

$$f(x) \approx f(x_n) + \frac{(x - x_n)}{1!} f^1(x_n) + \frac{(x - x_n)^2}{2!} f^2(x_n) + \dots + \frac{(x - x_n)^p}{p!} f^p(x_n).$$

Considere o ponto $x = x_{n+1} = x_n + h$. Assim, temos que

$$f(x_{n+1}) \approx f(x_n) + \frac{(h)}{1!} f^1(x_n) + \frac{(h)^2}{2!} f^2(x_n) + \dots + \frac{(h)^p}{p!} f^p(x_n).$$

O erro de truncamento na série de Taylor é dado por

$$e(x_n) = \frac{(h)^{p+1}}{(p+1)!} f^{p+1}(\xi), \quad x_n \le \xi \le x.$$

Considerando que a função f(x) possui a (p+1) - ésima derivada contínua no intervalo de discretização [a,b] e seja $M=\max(|f^{p+1}(x)|,x\in[a,b])$. Assim, uma estimativa para o erro de truncamento é dado por

$$E=\frac{M(h)^{p+1}}{(p+1)!}.$$

Retomemos ao PVI:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0. \end{cases}$$

Supondo que a solução y(x) do PVI possui suas derivadas contínuas para todo $x \in [a, b]$, então podemos desenvolvê-la em série de Taylor em torno do ponto x_n , isto é,

$$y(x_n + h) = y(x_n) + hy'(x_n) + \frac{h^2}{2!}y''(x_n) + \dots + \frac{h^p y^p(x_n)}{p!}y^p(x_n) + \dots$$

Se truncarmos a série no termo de ordem p, temos que

$$y(x_n + h) = y(x_n) + hy'(x_n) + \frac{h^2}{2!}y''(x_n) + \dots + \frac{h^p}{p!}y^p(x_n).$$

Neste caso o erro de trucamento é da ordem de h^{p+1} e denota-se $O(h^{p+1})$. Usando a notação:

$$y_n = y(x_n), \quad y'_n = f(x_n, y_n), \quad y''_n = \frac{d}{dx}f(x_n, y_n).$$

Considerando que $x_{n+1} = x_n + h$. Então, podemos calcular aproximações para y(x) a partir de

$$y(x_{n+1}) = y_n + hy'_n + \frac{h^2}{2!}y''_n + \dots + \frac{h^p}{p!}y_n^p.$$

A equação acima é conhecida como o **Método de Taylor de** ordem p.

As expressões das derivadas de y no método de Taylor podem ser desenvolvidas, usando a seguinte notação:

$$y' = f(x, y), \quad y'' = \frac{d}{dx}y' = \frac{d}{dx}f(x, y) = f_x(x, y) + f_y(x, y)y',$$

onde f_x é a derivada de f com relação à x e f_y é a derivada de f com relação à y. Assim, podemos escrever no ponto $f(x_n, y_n)$:

$$y'_n = f(x_n, y_n), \quad y''_n = f_x(x_n, y_n) + f_y(x_n, y_n)y'_n = f_x(x_n, y_n) \cdot f(x_n, y_n).$$

Ou ainda, numa notação mais simplificada:

$$y_n'' = (f_x + f_y y_n')(x_n, y_n) = (f_x + f_y f)(x_n, y_n).$$

De maneira análoga usando regras de derivação, podemos obter

$$y_n'' = (f_{xx} + 2f_{xy}f + f^2f_{yy} + f_yf_x + (f_y)^2f)(x_n, y_n).$$

Observação: O cálculo das derivadas de ordem superior de y tornamse cada vez mais complicadas. Com exceção dos casos em que f tenha uma expressão bem simples, o que torna o método de Taylor de ordem superior inaceitável computacionalmente.

Método de Euler

O método de Euler é um método de Taylor de ordem 1. Também é conhecido como método do passo único e, é o mais simples de todos os métodos numéricos para problemas de valor inicial.

Considere, no desenvolvimento da série de Taylor para p=1, ou seja,

$$y_{n+1} = y_n + hf(x_n, y_n).$$
 $n = 0, 1, 2, ...$

A estimativa do erro é dada por

$$E=\frac{Mh^2}{2!},$$

onde $M = max(|y''(x)|, x \in [a, b])$.

Método de Taylor de Ordem p = 2

Truncando o desenvolvimento da série de Taylor em p=2, temos que

$$y_{n+1} = y_n + hy'_n + \frac{h^2}{2!}y''_n,$$

onde

$$y'_n = f(x_n, y_n), \quad y''_n = f_x(x_n, y_n) + f_y(x_n, y_n)y'.$$

Método de Taylor de Ordem p = 3

Novamente, truncando o desenvolvimento da série de Taylor em p=3, temos que

$$y_{n+1} = y_n + hf(x_n, y_n) + \frac{h^2}{2!}f_x(x_n, y_n) + \frac{h^3}{3!}f_{xx}(x_n, y_n).$$

1. Usando os métodos de Euler e Taylor de ordem 2, calcule a solução do PVI abaixo para 5 subintervalos:

$$\begin{cases} y' = f(x, y) = x - y + 2, & x \in [0, 1]. \\ y(0) = 2. \end{cases}$$

Solução exata: $y(x) = e^{-x} + x + 1$.

Vamos resolver o PVI no intervalo [0,1] com N=5 subintervalos, então

$$h=\frac{1-0}{5}=0,2.$$

► Euler explícito:

$$y_{n+1} = y_n + h f(x_n, y_n).$$
 (4.1)

► Taylor de ordem 2:

$$y_{n+1} = y_n + h f(x_n, y_n) + \frac{h^2}{2} (f_x(x_n, y_n) + f_y(x_n, y_n) f(x_n, y_n)).$$
(4.2)

Para f(x,y) = x - y + 2, temos $f_x = 1$ e $f_y = -1$, de modo que $f_x + f_y f = 1 - (x - y + 2) = y - x - 1$.

Logo, no Taylor-2:

$$y_{n+1} = y_n + h(x_n - y_n + 2) + \frac{h^2}{2}(y_n - x_n - 1). \tag{4.3}$$

Dados do problema: y(0) = 2, e a solução exata é

$$y(x) = e^{-x} + x + 1.$$

Os pontos da malha são

$$x_n = 0, 0, 2, 0, 4, 0, 6, 0, 8, 1, 0.$$

Passo a passo do exemplo:

$$x_0 = 0, y_0 = 2.$$

Euler:

$$y_1 = y_0 + h f(x_0, y_0) = 2 + 0.2 f(0, 2)$$

= 2 + 0.2 (0 - 2 + 2) = 2 + 0.2 · 0 = 2.0.

Taylor-2:

$$f(0,2) = 0,$$
 $y_0 - x_0 - 1 = 2 - 0 - 1 = 1.$
$$y_1 = y_0 + h f(x_0, y_0) + \frac{h^2}{2} (y_0 - x_0 - 1).$$

Taylor-2:

$$f(0,2) = 0, y_0 - x_0 - 1 = 2 - 0 - 1 = 1.$$

$$y_1 = y_0 + h f(x_0, y_0) + \frac{h^2}{2} (y_0 - x_0 - 1)$$

$$= 2 + 0.2 \cdot 0 + \frac{(0.2)^2}{2} \cdot 1$$

$$= 2 + 0 + 0.02 = 2.02.$$

Resultados comparando com à solução exata:

Tabela 1: Comparação entre Euler, Taylor-2 e solução exata (h = 0,2, N = 5).

X	Euler <i>y_E</i>	Taylor-2 y_T	Exata $y(x)$	E Euler	E Taylor-2
0.0	2.000000	2.000000	2.000000	0.000000	0.000000
0.2	2.000000	2.020000	2.018731	0.018731	0.001269
0.4	2.040000	2.072400	2.070320	0.030320	0.002080
0.6	2.112000	2.151368	2.148812	0.036812	0.002556
0.8	2.209600	2.252122	2.249329	0.039729	0.002793
1.0	2.327680	2.370740	2.367879	0.040199	0.002860

Observações:

- Passo h = 0.2.
- ▶ O método de Taylor de ordem 2 é nitidamente mais preciso: no ponto final x=1, o erro cai de $\approx 4,02 \times 10^{-2}$ (Euler) para $\approx 2,86 \times 10^{-3}$ (Taylor-2).
- A boa performance do Taylor-2 decorre do termo de segunda ordem, aqui $\frac{h^2}{2}(y_n-x_n-1)$.

Figura 1: Comparação da solução exata e das soluções numéricas.

Figura 2: Erro absoluto das soluções numéricas.

2. Dado o PVI abaixo:

$$\left\{ \begin{array}{ll} u'=sen(t), & t\in [0,10]. \\ u(0)=-1. \end{array} \right.$$

- ▶ Solução exata: y(x) = -cos(t).
- 2.1 Plote a solução para 0, 5, 0, 25, 0, 125, 0, 0625 e 0, 03125 para o método de Taylor 1, 2 e 3. (Plote todos de ordem 1 no mesmo gráfico, ordem 2 no outro e 3 no outro).
- 2.2 Utilizando a solução exata, plote um gráfico do erro em escala logarítmica. Comente os resultados (novamente, em cada gráfico separado para cada método repita os valores acima.)
- 2.3 Para h=0,25, plote no mesmo gráfico uma curva para cada método.

3. Escreva um programa para resolver o PVI abaixo pelo método de Taylor de ordem 1 e 2 no intervalo especificado, usando h=0,1.

$$\begin{cases} y' = 5y - 1, & t \in [0, 2]. \\ y(0) = 1.2 \end{cases}$$

Solução exata: $y(x) = e^{5x} + 0.2$.

4. Usando o método de Taylor de ordem p=1 e p=2, determine a solução aproximada do PVI dado por

$$\begin{cases} y' = f(x, y) = \frac{1}{x^2} - \frac{y}{x} - y^2, & t \in [1, 2]. \\ y(0) = -1 \end{cases}$$

- 4.1 Considere h = 1/5 e h = 1/10.
- 4.2 Sabendo que a solução é dada por $y(x) = -\frac{1}{x}$, construa para cada caso uma tabela com valores exatos e aproximados. Além disso, calcule o erro absoluto. Observe e faça comentários.