MTP290 Tutorial Sheet - 5

1. Write a MATLAB function for implementing the Euler method to solve the first order ODE,

$$y' = f(x, y), \ y(x_0) = y_0.$$

Find solution after 10 steps with specified step-size h for the following problems:

- (a) y' + 0.2y = 0, y(0) = 5, h = 0.2.
- (b) $y' = \frac{1}{2}\pi\sqrt{1-y^2}$, y(0) = 0, h = 0.1.
- (c) $y' = -20y + 20x^2 + 2x$, y(0) = 1, h = 0.1. Plot the solution with the exact solution $y = \exp(-20x) + x^2$.
- 2. Write a MATLAB function for implementing the improved (also called modified) Euler method to solve the first order ODE,

$$y' = f(x, y), \ y(x_0) = y_0.$$

Find solution after 10 steps with specified step-size h for the following problems:

- (a) $y' xy^2 = 0$, y(0) = 1, h = 0.1.
- (b) $y' = y y^2$, y(0) = 0.2, h = 0.1
- (c) Solve Problem 1b using improved Euler method and compare the results with the Euler method.
- 3. Write a MATLAB function for implementing the classical Runge-Kutta method of fourth order to solve the first order ODE,

$$y' = f(x, y), \ y(x_0) = y_0.$$

Find solution after 10 steps with specified step-size h for the following problems:

- (a) $y' + y \tan x = \sin 2x$, y(0) = 1, h = 0.1.
- (b) Redo Problem 2b using classical Runge-Kutta method of fourth order and compare the results.
- 4. Use finite difference method to solve the following boundary value problems with n=4, 8:
 - (a) y'' = 6x, y(0) = 0, y(2) = 8.
 - (b) $y'' = 24x^2$, y(0) = 0, y(2) = 32.
 - (c) y'' + y = 1, y(0) = 1, $y(\pi/2) = 0$.

Also, plot the discrete solution.

5. Write a MATLAB function for implementing the Euler method to solve the system of ODE,

$$y'_1 = f_1(t, y_1, y_2), y_1(t_0) = y_{1,0},$$

 $y'_2 = f_2(t, y_1, y_2), y_2(t_0) = y_{2,0}.$

Use the function to find solution of the following problem at t=1 using time step h=0.1:

$$y'_1 = y_1 - y_1 y_2 + \sin \pi t, \ y_1(0) = 2,$$

 $y'_2 = y_1 y_2 - y_2, \ y_2(0) = 1.$

1

6. Write a MATLAB function for implementing the classical Runge-Kutta method of second order to solve the system of ODE,

$$y'_1 = f_1(t, y_1, y_2), y_1(t_0) = y_{1,0},$$

 $y'_2 = f_2(t, y_1, y_2), y_2(t_0) = y_{2,0}.$

Use the function to find solution of the following problem at t = 1 using time step h = 0.1:

$$y'_1 = -4y_1 + y_2 + \sin \pi t, \ y_1(0) = 1,$$

 $y'_2 = y_1 - 4y_2, \ y_2(0) = 2.$