CBERTdp

Clustering BERT Embeddings for Classification in Sentiment Analysis via Dot Product

Thomas Vecchiato 880038 - Riccardo Zuliani 875532 - Alice Schirrmeister 1000371 - Isabel Marie Ritter 1000095

University Ca'Foscari of Venice Department of Environmental Sciences, Informatics and Statistics

February 24, 2024

Objective

Enhaning the efficiency of Sentiment Analysis

- By redistributing the tasks laid upon neural networks
- While maintaining a good accuracy

How?

Employing K-means clustering and the dot product

- Clustering BERT [2] embeddings
- Classification via dot product between centroids and new embedding
- Three approaches
 - Each of different complexity to increase the accuracy step-wise
- Can be extended to other classification problems

Which are the related studies?

Clustering BERT embedding is not a new idea, indeed much research has been conducted in this field:

- Power of contextualized word embedding [8]
- Benchmarks for combination of different embeddings and clustering algorithm [10]
- BERT \rightarrow UMAP \rightarrow HDBSCAN [4]
- Embedding into LDA [3]
- Topic modelling and prototype selection [7] [5] [1]
- Prototype-Selection [11]

Project N.1 - Main Approach

Project N.2 - Layer Wise

Project N.3 - Layer Aggregation

Experiments

- Google Colaboratory Pro + using Tesla T4
- Pytorch and HuggingFace as deep learning library (for the pretrained BERT)
- FAISS [6] library for the implementation of K-Means on the GPU
- Datasets are all available on HuggingFace and have positive and negative labels
 - *IMDb*¹: movie reviews
 - Stanford Sentiment Treebank²: movie reviews
 - Yelp Polarity Review Dataset³: yelp reviews

¹https://huggingface.co/datasets/imdb

²https://huggingface.co/datasets/sst2

³https://huggingface.co/datasets/yelp_polarity

Experiments

- Confidence measure to assess the cluster goodness/purity [11]
- Performance evaluation:
 - Accuracy Score
 - F1-score
- Comparison with baseline:
 - Naive: predict the most common class
 - Random choice
 - Machine learning: SSM, Naive Bayes, Logistic Regression and KNN
- ullet Competitors: combination of BERT + (LSTM and GRU), uni and bidirectional
- Training parameters: 100 epochs, CrossEntropyLoss and AdamW, learning rate to 2e-5, early stopping strategy on loss (after 20 epochs)

Application Workflow

Three main steps

- Saving BERT Embedding:
 - Get the Layer-Wise embedding and store them in a separate .npy file
 - Done for each dataset saving the training, validation and test embedding
- Select Embeddings:
 - Main Approach CLS from the last BERT layer
 - Layer-Wise
 - 1 Concatenation of the CLS token of all layer
 - 2 Mean of the CLS token of all layer
 - Layer-Aggregation
 - Same embeddings as the first variation of Layer-Wise
 - Embedding fed into a Multi-Head Self Attention layer
- **3** Clustering with K-Means and Save Results

Results and Discussion I

- Layer-Aggregation outperforms its counterparts across all evaluation metrics
- Underperformance of the Layer-Wise approach
- Choice of dataset does not significantly influence the results

Figure 1: Mean accuracy for each of the separate methods we propose.

Results and Discussion II

- Layer-Aggregation matches the baselines
- Logistic Regression outperforms it
- Remaining approaches fall short of the Machine Learning baselines performance
- Competitors outpace our approaches (higher accuracy)

Figure 2: Mean accuracy in comparison with the baselines

Results and Discussion III

- KNN and SVM have higher computational demands than our approaches (by elapsed time)
- Logistic Regression outperforms our own approaches
- Competitor models outperform our own approaches (different usage of GPU)
- For our own approaches approx. more computational costs with increasing accuracy

Figure 3: Average elapsed time scaled logarithmically

Ablations - Top-*m* clusters

- Results of IMDb dataset
- # clusters k = 128, as optimal k on average
- No evidence of a clear pattern.
 However, m = 8 gives good results
- We can generally observe only 6% of the closest clusters in terms of dot-products
- To find the best result for a given dataset and a given number of clusters, the choice of m is important

Figure 4: Variation of the accuracy in test, varying the top-*m* clusters

Ablations - DistilBERT [9]

method	dataset	n_cls	top_k	t_acc	f1	conf	s_el
MA	imdb	1024	64	0.741	0.738	0.548	6.622
MA	sst2	1024	1	0.687	0.686	0.473	0.222
MA	у_р	256	32	0.735	0.722	0.558	2.784
LW_9216	imdb	1024	32	0.687	0.688	0.471	92.658
LW_9216	sst2	1024	1	0.627	0.624	0.354	3.297
LW_9216	у_р	1024	32	0.757	0.756	0.506	145.846
LW_768	imdb	1024	512	0.614	0.608	0.451	6.622
LW_768	sst2	1024	64	0.634	0.629	0.348	0.225
LW_768	у_р	256	1	0.634	0.631	0.401	2.698
LA	imdb	512	16	0.826	0.826	0.743	41.882
LA	sst2	4	2	0.509	0.338	0.695	0.025
LA	у_р	512	256	0.913	0.913	0.802	53.749

method	dataset	n_cls	top_k	t_acc	f1	conf	s_el
MA	imdb	1024	64	0.678	0.672	0.544	7.647
MA	sst2	1024	1	0.581	0.522	0.523	0.224
MA	у_р	256	32	0.789	0.787	0.581	2.755
LW_4608	imdb	1024	32	0.626	0.621	0.416	34.575
LW_4608	sst2	1024	1	0.569	0.558	0.384	1.18
LW_4608	у_р	1024	32	0.573	0.492	0.456	53.831
LW_768	imdb	1024	512	0.601	0.59	0.405	6.51
LW_768	sst2	1024	64	0.565	0.501	0.375	0.22
LW_768	у_р	256	1	0.526	0.405	0.391	2.795
LA	imdb	128	4	0.5	0.334	0.066	5.03
LA	sst2	4	2	0.688	0.666	0.703	0.016
LA	у_р	512	256	0.89	0.89	0.793	26.999

BERT pre-trained model results

DistilBERT pre-trained model results

Ablations - Base embedding with PCA

method	dataset	n_cls	top_k	t_acc	f1	conf	s_el
MA	imdb	1024	64	0.53	0.502	0.201	0.527
MA	sst2	1024	1	0.528	0.528	0.171	0.011
LW_9216	imdb	1024	32	0.535	0.528	0.235	0.487
LW_9216	sst2	1024	1	0.516	0.514	0.17	0.011
LW_768	imdb	1024	512	0.544	0.54	0.239	0.619
LW_768	sst2	1024	64	0.509	0.338	0.168	0.019
LA	imdb	128	4	0.811	0.811	0.139	0.243
LA	sst2	4	2	0.509	0.338	0.179	0.008

Table 1: Results using PCA on BERT pretrained model

- $PCA(\phi(\text{sentence})) = \vec{v} \in \mathbb{R}^2$
- Results are still good, losing approximately only 10% from the initial dimensionality
- Speed up in computational terms
- yelp_polarity dataset is excluded due to lack of time

Conclusion

- CBERTdp: new approach for sentiment analysis classification
- The method is composed essentially by two simple but powerful points:
 - Bidirectional transformer model
 - Dot-product
- **Results**: the results of our approach in terms of accuracy are not up to the level of the competitors and are similar to the baseline
- **Hyper-parameters**: *k* for the number of clusters and *m* for the top-*m* clusters after the dot-product
- Property: simplicity
- New directions:
 - Testing new centroid-based clustering algorithms
 - Finding representatives more suited to the problem for each cluster
 - Improve the embeddings
 - Extending the approach to *n* different sentiments

Thank You for your Attention!

The project code is available at this link, or you can scan the following QrCode

- [1] Ercan Atagün, Bengisu Hartoka, and Ahmet Albayrak. "Topic Modeling Using LDA and BERT Techniques: Teknofest Example". In: 2021 6th International Conference on Computer Science and Engineering (UBMK). 2021, pp. 660–664. DOI: 10.1109/UBMK52708.2021.9558988.
- [2] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].
- [3] Adji B. Dieng, Francisco J. R. Ruiz, and David M. Blei. *Topic Modeling in Embedding Spaces*. 2019. arXiv: 1907.04907 [cs.IR].
- [4] Anton Eklund and Mona Forsman. "Topic Modeling by Clustering Language Model Embeddings: Human Validation on an Industry Dataset". In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track. Ed. by Yunyao Li and Angeliki Lazaridou. Abu Dhabi, UAE: Association for Computational Linguistics, Dec. 2022. DOI: 10.18653/v1/2022.emnlp-industry.65. URL: https://aclanthology.org/2022.emnlp-industry.65.

References II

- [5] Maarten Grootendorst. BERTopic: Neural topic modeling with a class-based TF-IDF procedure. 2022. arXiv: 2203.05794 [cs.CL].
- [6] Jeff Johnson, Matthijs Douze, and Hervé Jégou. "Billion-scale similarity search with GPUs". In: *IEEE Transactions on Big Data* 7.3 (2019), pp. 535–547.
- [7] Sarojadevi Palani, Prabhu Rajagopal, and Sidharth Pancholi. T-BERT Model for Sentiment Analysis of Micro-blogs Integrating Topic Model and BERT. 2021. arXiv: 2106.01097 [cs.CL].
- [8] Nils Reimers et al. Classification and Clustering of Arguments with Contextualized Word Embeddings. 2019. arXiv: 1906.09821 [cs.CL].
- [9] Victor Sanh et al. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. 2020. arXiv: 1910.01108 [cs.CL].
- [10] Suzanna Sia, Ayush Dalmia, and Sabrina J. Mielke. Tired of Topic Models? Clusters of Pretrained Word Embeddings Make for Fast and Good Topics too! 2020. arXiv: 2004.14914 [cs.CL].

References III

[11] Sebastiano Vascon et al. Using Dominant Sets for k-NN Prototype Selection.

2013. DOI: 10.1007/978-3-642-41184-7_14. URL:

https://link.springer.com/chapter/10.1007/978-3-642-41184-7_14.