20230620_전체회의_내용정리

≗ 담당자	^{문경} 은경 이
※ 상태	완료
■ 마감일	@2023년 6월 20일
테 태그	Meeting comment

What TO DO)

: 6월 20일 전체 회의 Comment 정리 + TO DO LIST 정리

Meeting Comment)

: 중간보고(7/17)을 위한 model 적합 + 고려하는 model 후보 설정 + Schedule 공유

(공통사항)

- Study population을 5개년도 / 성별로 split
- 고려하는 Outcome은 폐암 / 백혈병 발병 폐암을 먼저 파악
- 가능한 Outcome 발생 경우
 - 。 근무 도중 암 발병
 - 。 휴직기(직전 회사 고용보험 상실일 ~ 다음 회사 고용보험 상실일)에 암 발병 : 휴직기도 하나의 row로 분석용 데이터에 input 필요
 - 。 마지막 회사 고용보험 상실일 이후 암 발병

(Model 후보)

1) Model1 (Baseline)

: 적합하는 공변량이 오직 "entry" 변수 (Dummy variable로 time-invariant covariate - 95~99년도 입사가 Baseline factor)

(Data example)

INDI_ID	Episode	Start	Stop	Event	entry
1	1	직장_10	직장_11	0	95~99
1	2	직장_11	직장_20	0	95~99
1	3	직장_20	직장_21	0	95~99
1	4	직장_21	직장_30	0	95~99
1	5	직장_30	직장_31	0	95~99
1	6	직장_31	Event 발생일 혹 은 Censoring date	0 or 1	95~99

 $[\]rightarrow$ (직장_10, 직장_11)은 (첫 번째 직장 고용보험 취득일, 첫 번째 직장 고용보험 상실일)을 의미하며, (직장_11, 직장_20)은 두 번째 직장 고용보험 취득일 이전 기간인 "휴직기간"을 의미한다.

— 나머지 row도 의미 동일함.

2) Model2

: 적합하는 $\underline{\operatorname{8-00}}$ "entry" 변수 + 암 이력(폐암 또는 백혈병 발병 이전 다른 암 발생 여부를 뜻하며, time-varying covariate로 정의)

(Data example)

INDI_ID	Episode	Start	Stop	Event	entry	Cancer
1	1	직장_10	직장_11	0	95~99	0
1	2	직장_11	직장_20	0	95~99	0
1	3	직장_20	직장_21	0	95~99	0
1	4	직장_21	직장_30	0	95~99	0
1	4	직장_30	암_1	0	95~99	0
1	5	암_1	직장_31	0	95~99	1
1	6	직장_31	Event 발생일 혹 은 Censoring date	0 or 1	95~99	1

→ 암 이력을 시간-가변 공변량으로 정의하므로, 암 이력이 존재하는 경우 [Start, Stop) 형태를 위 예시처럼 더 세분화할 필요가 있음.

3) Model3

- : 적합하는 <u>공변량이 "entry" 변수 + 사업장 / 직종 정보</u>
- → Model1의 Upgrade version

4) Model4

- : 적합하는 <u>공변량이 "entry" 변수 + 암 이력 + 사업장 / 직종 정보</u>
- → Model2의 Upgrade version

5) Another Model1 (가장 먼저 적합하는 Model!)

- : 위의 1) ~ 4)는 시간 상 오래 걸리는 데이터 형태이므로 보다 더 시간적으로 효율적인 model 설립
- : 적합하는 $\frac{3'}{6'}$ 생명하면 1 아니면 0의 값을 가지는 이변량 변수)
- \rightarrow 해당 경우에서는 2)에서의 Data Example 처럼 암 발병 시점으로 구분해 row를 나눌 필요 없음

(Data Example)

INDI_ID	Episode	Start	Stop	Event	entry	Cancer
1	1	직장_10	직장_11	0	95~99	1
1	2	직장_11	직장_20	0	95~99	1
1	3	직장_20	직장_21	0	95~99	1
1	4	직장_21	직장_30	0	95~99	1
1	5	직장_30	직장_31	0	95~99	1
1	6	직장_31	Event 발생일 혹 은 Censoring date	0 or 1	95~99	1

(결과 보고 방식)

: 기본적으로 Excel file에 정리

: 출생연도 / 성별로 split한 데이터 별로

- 공변량에 대응하는 fitted coefficients + S.E + P-value
- C-index 성능지표 값
 - : model 적합 때, train set / test set 따로 구분하지 않음. 즉, 실제 y값과 예측값 y 비교
 - : "prog phreg"에서 "concordance" option 추가하면 구할 수 있을 거라 예상함.

TO DO LIST

- <u>6월 27일 까지 5) model 적합 + 결과 파일 생성</u>
 - o Demographic variable(성별, 출생연도, entry 변수) 정의한 뒤 바로 Outcome 정의
 - 。 Outcome 정의(폐암 / 백혈병 발병 여부)한 후 암 이력 변수 정의