

FIG. 1A

Best Available Copy

2/19

FIG. 1B

3/19

FIG. 2

4/19**FIG. 3**

5/19

FIG. 4

FIG. 5

A

B

FIG. 6

A

B

C

9/19

FIG. 8

10/19

FIG. 9A

10/524134

WO 2004/016750

PCT/US2003/025399

11/19

FIG. 9B

12/19

10
Figure CHO cells expressing huFc γ RIIB were incubated with the anti CD32B antibodies, 2B6 or 3H7. Cells were washed and 9 μ g/ml of aggregated human IgG were added to the cells on ice. The human aggregated IgG were detected with goat anti human-IgG FITC conjugated. Samples were analyzed by FACS. isotype control + goat anti huIgG-FITC, — isotype control + aggregated humanIgG + goat anti humanIgG-FITC, - - anti-CD32B antibody + aggregated humanIgG + goat anti humanIgG-FITC. The amount of each antibody bound to the receptor on the cells was also detected (inset) on a separate set of samples using a goat anti-mouse PE conjugated antibody.

21

Figure ... Human PBMCs were stained with 2B6, 3H7, and IV.3 antibodies, as indicated in the right side of the panel, followed by a goat anti-mouse-Cyanine(Cy5) conjugated antibody (two color staining using anti-CD20 FITC conjugated for B lymphocytes, anti-CD14-PE conjugated for monocytes, anti-CD56-PE conjugated for NK cells and anti-CD16-PE conjugated for granulocytes.

All other
— cytoe panel
— legend
— new panel

15/19

RBL-2H3/Fc_γRIB

12
Figure B-hexosaminidase release induced by goat anti-mouse F(ab)₂ fragment (GAM F(ab)₂) in RBL-2H3 cells expressing huFc_γRIB. Cells were stimulated with various concentration of GAM F(ab)₂ (0.03 μ g/ml to 30 μ g/ml) after sensitization with mouse IgE (0.01 μ g/ml) and IgG1 or with purified 2B6 antibody (3 μ g/ml) panel. After 1 hour at 37°C the supernatant was collected and the cells were lysed. B-hexosaminidase activity released in the supernatant and within the cells was determined by a colorimetric assay using p-nitrophenyl N-acetyl- β -D-glucosaminide. The released β -hexosaminidase activity was expressed as a percentage of the released activity relative to the total activity.

Expression of Her2neu on the cell surface of ovarian and breast cancer cell lines

Figure #4: Ovarian and breast carcinoma lines express Her2neu to varying levels. Staining of A) Ovarian IGROV-1 with purified ch4D5, B) Ovarian OVCAR-8 with purified 4D5 antibody, and C) Breast cancer SKBR-3 cells with purified ch4D5 followed by goat anti-human-conjugated to phycocrythrin (PE). The relevant isotype control IgG1 is indicated the left of the staining with anti-Her2neu antibody.

Fig. 14

Figure 6: Elutriated monocytes express all Fc γ Rs: A) MDM obtained from donor 1, B) donor 2 were propagated in human serum or human serum and GMCSF and C) Monocytes thawed and stained immediately. Monocyte-derived macrophages were stained with anti-bodies specific for human Fc γ R receptor, (section C.4). The solid histogram in each plot represents the background staining. The clear histogram within each panel represents the staining with specific anti-human Fc γ R antibodies.

FIGURE #7**A)****B)**

Figure #7: Ch4D5 mediates effective ADCC with ovarian and breast cancer cell lines using PBMC.
Specific lysis subtracted from antibody-independent lysis is shown for A) Ovarian tumor cell line, IGROV-1 at an effector: target ratio of 75:1, and for B) Breast tumor cell line SKBR-3 at an effector:target ratio of 50:1 with different concentration of ch4D5 as indicated.

19/19

FIGURE #5

Figure #5: Histochemical staining of human ovarian ascites shows tumors cells and other inflammatory cells. A). H & E stain on ascites of a patient with ovarian tumor. Three neoplastic cells can be identified by the irregular size and shape, scattered cytoplasm, and irregular dense nuclei. B). Giemsa stain of unprocessed ascites from a patient with serous tumor of the ovary shows two mesothelial cells placed back to back indicated by short arrows. Also shown is a cluster of five malignant epithelial cells indicated by the long arrow. Erythrocytes are visible in the background. C). Giemsa stain of another patient with serous tumor of the ovary indicating a cluster of cells composed of mesothelial cells, lymphocytes, and epithelial neoplastic cells(arrow).

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.