

5/9/2018

ore 8:30

FISICA (secondo appello)

Proff. Bussetti, Crespi, D'Andrea, Della Valle, Lucchini, Magni, Nisoli, Petti, Pinotti

1.

In un intervallo di tempo Δt un punto materiale di massa m, inizialmente fermo, percorre con accelerazione tangenziale costante una semicirconferenza di raggio R. Si calcoli:

- a) l'accelerazione tangenziale del moto,
- b) la velocità raggiunta alla fine della semicirconferenza,
- c) il modulo dell'accelerazione alla fine della semicirconferenza,
- d) il lavoro della forza risultante agente tra l'inizio e la fine della semicirconferenza.

2.

Un anello di massa m è infilato su un'asta rigida lungo la quale può scorrere senza attrito. L'asta è inclinata di un angolo \mathcal{G} fisso rispetto alla verticale e ruota con velocità angolare ω costante.

- a) Si elenchino tutte le forze agenti sull'anello osservate in un sistema di riferimento solidale con l'asta e se ne disegni un diagramma.
- b) Si determini l'energia potenziale della forza risultante agente sull'anello in tale sistema di riferimento, in funzione della coordinata *r* indicata in figura.
- c) Si individuino le eventuali posizioni di equilibrio in funzione di r.

3.

- a) Si definisca il calore molare, chiarendo esplicitamente il significato dei simboli utilizzati.
- b) Si enunci e si dimostri la relazione di Mayer per i gas ideali.

4.

- a) Si definisca il rendimento di una macchina termica.
- b) Una macchina termodinamica compie un ciclo reversibile scambiando le quantità di calore Q_1 , Q_2 e Q_3 con tre sorgenti a temperature $T_1 = 800$ K, $T_2 = 400$ K e $T_3 = 300$ K, rispettivamente. Sapendo che $Q_1 = 2Q_2$, si calcoli il rendimento della macchina.

Si ricorda di:

- FIRMARE l'elaborato;
- MOTIVARE e COMMENTARE adequatamente le formule utilizzate.

⁻ Scrivere in stampatello NOME, COGNOME e numero di MATRICOLA

Fisica - Appello del 5/9/18 - Traccia sintetica di soluzione

Quesito 1

a) Poiché il moto sulla semicirconferenza è uniformemente accelerato:

$$s(t) = s(0) + v_0 t + \frac{1}{2} a_T t^2$$

Ma il punto materiale inizialmente è fermo in s(0) = 0, perciò dopo un tempo Δt :

$$s(\Delta t) = \frac{1}{2}a_T(\Delta t)^2$$

Imponendo che abbia percorso l'intera semicirconferenza nel tempo Δt si ottiene:

$$s(\Delta t) = \pi R$$
 \Rightarrow $\frac{1}{2}a_T(\Delta t)^2 = \pi R$

e quindi il modulo dell'accelerazione tangenziale è:

$$a_T = \frac{2\pi R}{(\Delta t)^2}$$

b) La velocità alla fine della semicirconferenza (ricordando che $v_0 = 0$) è:

$$v(\Delta t) = a_T \Delta t$$

$$\boxed{v(\Delta t) = \frac{2\pi R}{\Delta t}}$$

c) L'accelerazione del punto materiale è data dalla somma della sua componente tangenziale e della sua componente normale (centripeta):

$$\vec{a} = \vec{a}_T + \vec{a}_N$$

L'accelerazione normale vale in modulo:

$$a_N = \frac{v^2}{R} = \frac{4\pi^2 R}{(\Delta t)^2}$$

perciò:

$$a = |\vec{a}| = \sqrt{a_T^2 + a_N^2} = \frac{1}{(\Delta t)^2} \sqrt{4\pi^2 R^2 + 16\pi^4 R^2}$$

$$2\pi R \sqrt{1 - 4\pi^2}$$

$$a = \frac{2\pi R}{(\Delta t)^2} \sqrt{1 + 4\pi^2}$$

d) Per il Teorema dell'Energia Cinetica, il lavoro svolto dalla forza risultante è pari alla differenza di energia cinetica tra l'istante finale e quello iniziale:

$$\mathcal{L} = \Delta E_{\mathcal{K}}$$

Inizialmente il punto materiale è fermo, quindi:

$$\Delta E_K \equiv E_{K,finale} = \frac{1}{2} m \left(v(\Delta t) \right)^2$$

$$\mathcal{L} = \frac{2\pi^2 R^2 m}{(\Delta t)^2}$$

Quesito 2

- a) In un sistema di riferimento solidale con l'asta sono presenti le seguenti forze applicate all'anello:
 - Forza peso \vec{P} , di modulo P = mg, diretta verticalmente e rivolta verso il basso $(\vec{P} \parallel -\vec{\omega})$
 - Forza centrifuga $\vec{F}_{\rm C}$, di modulo $F_{\rm C} = m\omega^2\rho$ essendo ρ la distanza dell'anello dall'asse di rotazione (lunghezza di un segmento orizzontale che congiunge l'anello all'asse), diretta orizzontalmente verso l'esterno.
 - Forza di Coriolis \vec{F}_{Cor} , diretta ortogonalmente al piano su cui giacciono \vec{r} e $\vec{\omega}$, ovvero diretta ortogonalmente al piano del foglio. Il verso dipende dal segno della velocità di spostamento dell'anello sull'asta.
 - Forza di reazione vincolare dell'asta \vec{R}_n , diretta ortogonalmente all'asta. Poiché l'unico moto ammesso dell'anello è quello parallelo all'asta, la reazione vincolare bilancia esattamente le componenti di \vec{P} e $\vec{F}_{\rm C}$ ortogonali all'asta stessa; bilancia inoltre la forza di Coriolis.
- b) Per quanto discusso al punto a), la forza risultante sull'anello sarà data dalla somma delle componenti di \vec{P} e $\vec{F}_{\rm C}$ parallele all'asta.

$$\vec{F}_{ris} = -mg\cos\theta \vec{u}_r + m\omega^2 \rho \sin\theta \vec{u}_r$$

Poiché ρ è la distanza dell'anello dall'asse di rotazione, si può scrivere come $\rho = r \sin \theta$, da cui:

$$\vec{F}_{ris} = -mq\cos\theta \vec{u}_r + m\omega^2 r\sin^2\theta \vec{u}_r$$

Osserviamo che la forza risultante dipende solo dalla coordinata radiale r ed è dunque conservativa.

• In generale, per una forza \vec{F} conservativa, si ha $\vec{F} = -\vec{\nabla}U$, dove U è l'energia potenziale associata. In questo caso abbiamo una sola direzione rilevante (parallela a \vec{u}_r) e si ha:

$$F_{ris} \cdot \vec{u}_r = -\frac{d}{dr}U(r) \cdot \vec{u}_r$$

e quindi in forma scalare:

$$F_{ris} = -\frac{d}{dr}U(r)$$

• Consegue che:

$$U(r) = -\int_0^r F_{ris} dr + U(0)$$

dove tuttavia possiamo fissare arbitrariamente U(0) = 0 e quindi:

$$U(r) = -\int_0^r F_{ris} dr = -\int_0^r (-mg\cos\theta + m\omega^2 r\sin^2\theta) dr$$
$$U(r) = mgr\cos\theta - \frac{1}{2}m\omega^2 r^2\sin^2\theta$$

c) I punti di equilibrio si trovano per $\frac{dU}{dr} = 0$ o equivalentemente $F_{ris} = 0$.

$$-mg\cos\theta + m\omega^2r\sin^2\theta = 0$$

$$r_{EQ} = \frac{g\cos\theta}{\omega^2\sin^2\theta}$$

si ha dunque un unico punto di equilibrio.

NOTA: Un'analisi più approfondita mostrerebbe che in quel punto $\frac{d^2U}{dr^2} < 0$ e quindi si tratta di un punto di equilibrio *instabile*.

Quesito 3

Si veda la teoria.

Quesito 4

a) Il rendimento η di una macchina termica (macchina termodinamica ciclica che produce lavoro netto positivo) è definito come il rapporto tra il lavoro \mathcal{L} svolto in un ciclo e il calore netto assorbito $Q_{ass} > 0$ dalla macchina durante detto ciclo.

$$\eta = \frac{\mathcal{L}}{Q_{ass}}$$

• Per questo ciclo reversibile il Teorema di Clausius impone:

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} + \frac{Q_3}{T_3} = 0$$

• Poiché sappiamo che $Q_1 = 2Q_2$, possiamo scrivere:

$$2\frac{Q_2}{T_1} + \frac{Q_2}{T_2} + \frac{Q_3}{T_3} = 0$$

da cui si ricava:

$$Q_3 = -\frac{T_3}{T_1 T_2} (T_1 + 2T_2) Q_2$$

e sostituendo i valori numerici delle temperature T_1, T_2, T_3 :

$$Q_3 = -\frac{3}{2}Q_2$$

• Il lavoro svolto dalla macchina termica è pari al calore netto scambiato nel ciclo (per il Primo Principio della Termodinamica):

$$\mathcal{L} = Q_1 + Q_2 + Q_3 = 2Q_2 + Q_2 - \frac{3}{2}Q_2 = \frac{3}{2}Q_2$$

• Imponendo che il lavoro svolto sia positivo, otteniamo i seguenti segni per le quantità di calore:

$$Q_1 > 0$$
 $Q_2 > 0$ $Q_3 < 0$

Il calore netto assorbito nel ciclo è dunque:

$$Q_{ass} = Q_1 + Q_2 = 2Q_2 + Q_2 = 3Q_2$$

• Possiamo ora calcolare il rendimento della macchina termica:

$$\eta = \frac{\mathcal{L}}{Q_{ass}} = \frac{\frac{3}{2}Q_2}{3Q_2}$$

$$\eta = \frac{1}{2}$$

3