

1 / 27

FIG._ 1A**FIG._ 1B****FIG._ 1C****FIG._ 1D****FIG._ 1E****FIG._ 1F****BEST AVAILABLE COPY**

2 / 27

FIG.-2A**FIG.-2B****FIG.-2C**

3 / 27

FIG._3A

NRK/Control

FIG._3B

NRK/WISP-1L

FIG._3C

NRK/WISP-1H

NRK/Control

NRK/WISP-1H

FIG._3D**FIG._3E****FIG._3F**Migration Area (μm^2)**FIG. 3G**

4 / 27

FIG._4A**FIG._4B****FIG._4C**

5 / 27

FIG._5C

FIG._5B

FIG._5A

FIG._5D

FIG._5E

6 / 27

FIG._6A

FIG._6B

FIG._6C

FIG._6D

10/519621

PCT/US2003/020407

WO 2004/003158

7 / 27

FIG._6E

FIG._6F

FIG._6G

FIG._6H

8 / 27

FIG._7A**FIG._7C****FIG._7F****FIG._7E****FIG._7D**

9 / 27

*FIG._7G**FIG._7H**FIG._7I**FIG._7J**FIG._7K**FIG._7L*

10 / 27

FIG._8A**FIG._8B**

10/519621

PCT/US2003/020407

WO 2004/003158

11 / 27

1 CCCACGGTC CGCTGGCCC AGAGGCCCC AGCTCCCCC GGATCCTCTG GGCTGGTC GGCTGGTC GGCTGGTC TGCGATGCCCTG TGCCACTGAC GTCCAGGCAT GAGGTGGTCA
GGGTGGAG GCGACCCGGG TCTCCACCAAG CCTAGGAGAC CCGACGAGCC AGCTAGGAC ACGGTAGCTG CAGGTGACTG M R W F

101 CTGCCCTGGA CGCCTGGCAG AGTGCAGGA GCAGGCAGCA GCACCGTCCCT GGCCACGGCC CTOTCTCCAG CCCCTAGAC CATGACTTT ACTCCAGGCTC
GACGGACCT GCGACCGGTG TCACTGGCTG CGTCTGGGT CGTCTGGGT CGTCTGGGT CGGAGAGGTC GAGAGGGAA GTACCTGCTG GTACCTGAAA TGAGGTGGAG
5 L P W T L A A V T A A S T V L A T A L S P A P T T M D F T P A P

201 CACTGGAGGA CACCTCCTCA CGCCCCCAAT TCTGCAAGTG GCCATGTGAG TGCCCTGGCAT CCCAACCCCCG CTGCCCCGCTG GGGGTAGGCC TCATCACAGA
GTGACCTCT GTGGAGGAGT GGCGGGGTAGT AGACGTTCAAC CGGTACACTC ACGGTAGCTAC CCGTACACTC AGCAGGCTAA GGGTGGGGC GACGGGGAC CCCAGTGGG AGTAGTGTCT
39 L E D T S S R P Q F C K W P C E C P P S P P R C P L G V S L I T D

301 TGGCTGTGAG TGCTGTAAGA TGTGCGCTCA CGAGCTTGGG GACAACATGCA CGAGGGCTGCA CATCTGTGAC CCCAACGGG GCCTCTACTG TGACTACAGC
ACCGACACTC ACGACATCTT ACACGGGAAT CGTCAAAACCC CTTGTTGACST GCCTCTGGACG GTAGACACTG GGGTAGATGAC ACTGATGGTC
72 G C E C C K M C A Q Q L G D N C T E A A I C D P H R G L Y C D Y S

401 GGGGACCCCG CGAGCTGACGC AATAGGAGTG TGTGACAGG TGTGCGGTG GGGCTGGCTC CTGGATGGGG TGCGCTAACAA CAACGCCAG TCCCTCCAGC
CCCTGGGG GCTCCATGGG TTATCCTAAC ACACGGTAAC ACCAGCCACA CCCGACGGAG GACCTAACCC AGCGGATGTT GTGCGGGTC AGGAAGGGTC
105 G D R P R Y A I G V C A Q V V G V G C V L D G V R Y N N G Q S F Q P

501 CTAACTGCAA GTRACAACATGC ACGTGCATCG TGTGCGACGG TGTGCGGTG GGGCTGGACA CCACATGTGCC TCGGATGTGCC CCCCTGGGT CTCTGGGCC CCCACCCGGC
GATTGACGTT CATTGCGACG TGACGTYAGC TGCCGGCCA CCCGACGTT GGTGACACGG AGGCTCACGC GAGGACACGG GGGTGGGGC
139 N C K Y N C T C I D G A V G C T P L C L R V R P P R L W C P H P R

601 GCGCGTGGC ATACCTGGCC ACTGCTGTGA GCAGTGGGTA TGTGAGGAAG AGGCCAAAG GCGACCCAG ACCGCCAGG AGCCTTGAT
CGCGCACTCG TAGGACCGG TGACGACACT CGTCAACCAT ACACCTCTGC TGCGGTCTC CGCTGGGTGGG CACTGTGTC TCAGGACTGAA
172 R V S I P G H C C E Q W V C E D D A K R P R K T A P R D T G A F D

701 GCTGTGGGTG AGGTGGGGC ATGGCACAGG AACTCCATAG CCTACACAGG CCTCTGGAGC CCTCTGGCTCA CCAGCTGGGG CCTGGGGGGTIC TCCACACTGGA
CGACACCCAC TCCACCTCCG TACCGTGTCC TTGACGTATC GGATGTGTT CCGTGGGTGGTGGG CCAACGAGGT GGTCGACGCC GGACCCCGAG AGGTGGGGCT
205 A V G E V E A W H R N C I A Y T S P W S P C S T S C G L G V S T R I

801 TCTCCAATGT TAACGCCCCAG TGCTGGGCTG AGCAAGAGAG CCGCCTCTGC AACTTGTGGC CATGGATGTT GGACATCCAT ACACTCATTA AGGCAGGGAA
AGAGGTACAA ATTGGGGGTCA AGGACGGAC TCGTTCTCTC GGCGGAGAGC TTGAACGCCG GTACGCTACA CCTGTAGGATA TGTTGAGGAAAT TCCGTCCCTT
239 S N V N A Q C W P E Q E S R L C N L R P . C D V D I H T L I K A G K

SUBSTITUTE SHEET (RULE 26)

FIG.-9A

10/519621

PCT/US2003/020407

WO 2004/003158

12 / 27

901 GAAGTGTGTC AGCCAGGG ATCCATGAAC TTACACTTG CGGGCTGCAT CAGCACACGC TCCTATCAA CCAAGTACTG TGGAGTTGC
CTTCACAGAC CGACACATGG TCGGTCTCG TAGTACTTG AAGTGTGAC GCCCAGCTA GTCGTGTGCG AGGATAAGTGG GGTTCATGAC ACCTCAAG
272 K C L A V Y Q .P E A S M N F T L A G C I S T R S Y Q P K Y C G V C
1001 ATGGACAAATA GGTGCTGCAT CCCCTAACAG TCTAAAGACTA TCGACGTGTC CTTCCAGGT CCGTATGGGC CCTGGTTCTC CCGCAGGTC CTATGGATA
TACCTGTAT CCACGAGTA GGGGATGTC AGATTGTAT AGCTGTGACAG GAAGGTACA GGACTAACCG AACCGAAGAG GGGGGTCCAG GATACTTAAT
305 M D N R C C I P Y K S K T I D V S F Q C P D G L G F S R Q V L W I N
1101 ATGCCCTGCTT CTGTAACCTG AGCTGTAGGA ATCCAAATGA CATCTTGTGCT GACTTGGAA CCTAACCTGAA CTTCCTGAGA ATTGCCAACT AGGCAGGGAC
TACGGACAA GACATTGGAC TCGACATCT TAGGTTACT GTAGAAACGA CTGAACCTA GGATGGACTT TAACGGTTGA TCGGTCTGG
339 A C F C N L S C R N P N D I F A D L E S Y P D F S E I A N O
1201 AAATCTTGGG TCTTGGGAC TAACCCAATG CCTGTGAAGC AGTCAGCCCT TATGGCCAAT AACCTTTCAC CAATGAGCCT TAGTTACCT GATCTGGGACC
TTAGAACCC AGAACCCCCCTG ATGGGTAC GCACACTTGC TCAAGTGGGA ATACCGGTTA TGAAAAGTG GTTACTCGGA ATCAATGGGA CTAGACCTGG
1301 CTGGCCCTCC ATTCTGTCT CTAACCATTC AAATGACGCC TGATGGTGCCT GCTCAGGGCC ATGCTATGAG TTTCTCTT GATATCATT AGCATCTACT
GAACGGGG TAGAGACAGA GATGGTAGG TTACAGCGG ACTACCACGA CGAGTCCGG TAGATACTC AAAGGGAA CTATAGTAAG TCGTAGATGA
1401 CTAAAGAAA ATGCCCTGTCT CTAGCTCTC TGGACTACAC CAAAGCTGA TCCAGCCTT CCAGTCCTG AGAGTCCTG CTGATCTTG CCTAAATCCC
GATTCTTT TACGGACAGA GATCGACAAAG ACCTGATGTG GCTTCGGACT AGGTGGAAA GTTCACTGA TCTTCAGGAC GACTAGAAC GGATTAGGG
1501 AGAAATGGA ATCAGGTAGA CTTTTAATAT CACTAATTTC TCTTTAGAT GCCAAACCAC AAGACTCTT GGGTCCATT AGMTGAATAG ATGGAATTG
TCTCTTACCT TAGTCCATCT GTGTTAAG AGAAATCTA CGGTTGGTG TCTGAGAAA CCCAGGTAAG TCTACTTAC TACCTAAAC
1601 GAAACAAATA ATAATCTATT ATGGAGGC TGCCAAAGGG TACTGTAATG GGTAAATTG ACGTCAAGGC ACCAAAACTA TCTGTATTCC AAATATGTAT
CTTGTATCT TATTAGATAA TAAACCTGG ACGGTTCTCC ATGACATTAC CCATTAGAC TGGACTCGCG TGTTTTGAT AGGACTAAAG TTATACATA
1701 GCACCTCAAG GTCAATCAAC ATTTGCCAAG TGAGTGTAA AGTTGCTTA TTTGATTT TAATGGAAG TTGTATCC TAACTCTGGC ATTTGAGG
CGTGGAGTTC CAGTAGTTG TAAACGTTT ACTCAACTTA TCAAGAATT AAAACTAAA ATTACCTTC AACATGGTA ATTGGACCCG TAACAACCTCC
1801 TAAAGTTCT CTTCAACCCCT ACAGTGTGAA GGGTACAGAT TAGGTTCTC CCAGTCAGAA ATAAATTTG ATAAACATT CTGTTGATGG GAAAAGCCCC
AATTCAAAGA GAAGTGGGA TGTGACACTT CCCATGTCTA ATCCAAACAG CCTCACTCTT TATTGTAAG GACAACCTAC CTTTTCGGGG
1901 CAGTTATAC TCCAGAGACA GGGAAAGGGTC AGCCCATTC AGAAGGGCCA ATTGACTCTC ACACGAAATC AGCTGCTGAC TGGCAGGGCT TTGGGAGGT
GTCAATTATAG AGGTCTCTGT CCCATTCCAG TCACTGAGAG TGTGACTTAG TCGACGACTG ACGTGTGAAAG TCTTCCTGGT TAACGTGAA AACCCGGCAA

FIG.-9B

10/519621

PCT/US2003/020407

WO 2004/003158

13 / 27

2001 GGCCAGGCTC TTCCCTGAAT CTTCTCCCTT GTCCGTCTTG GTCATAGG AATTGGTAAG GCCTCTGGAC TGGCCTGTCTT GGCCCCTGAG AGTGGTCCCC
CGGTCCGAG AAGGAACCTA GAAGGGAA CAGGACGAA CCAAGTATCC TTAACCATTC CGGAGACCTG ACCGGACAGA CCCGGACTC TCACCACGG
2101 TGGAACACTC CTCTACTCTT ACAGAGCCCTT GAGAGACCCA GCTGCAGACC ATGCCAGACC CACTGAAATG ACCAAGACAG GTTCAGGTAG GGGTGTGGT
ACCTTGTGAG GAGATGAGAA TGTCCTGGAA CTCTCTGGGT CGACGCTCTGG TAGGGTCTGG GTGACTTTAC TGGTCTGTCA AAGTCCATC CCCACACCA
2201 CAAACCAAGA AGTGGGTGCC CTGGGTAGCA GCCTGGGTG ACCCTCTAGAG CTGGAGGCTG TGGGACTCCTCA GGGGCCCG TGTTCAGGAC ACATCTATTG
GTTGGTTCT TCACCCACGG GAAACCATCGT CGAACCCAC TGGAGATCTC GACCTCGAC ACCCTGAGGT CCCGGGGGC ACAAGTCCCTG TGTAGATAC
2301 CAGAGACTCA TTTCACAGCC TTTCGTTCTG CTGACCAAAT GGCCAGTTT CTGGTAGGA GATGGAGGT TACCAAGGTGTT TTAGAAACAG AAATAGACTT
GTCCTGAGT AAAGCTGGG AAGGCAAGAC GACTGGTTTA CGGGTCAAAA GACCATCCTT CTACCTCCAA ATGGTCACA AACCTTGTC TTTATCTGAA
2401 AATAAAGGTT TAAAGCTGAA GAGGTGAAAG CTAAAGGA AAGGTTGTG TTAATGAAATA TCAGGCTATT ATTATATGTA TTAGGAAAT ATTATATTTA
TTATTCCTAA ATTGCTGACTT CTCCAACTTC GATTTTCCTT TTCCAAACAC AATTACTTAT AGTCCTGATA TAATAACAT AACCTTTA TATTATAAT
2501 CTGTTGAAT TCTTTTATT AGGGCCTTT CTGTGCCAGA CATTGCTTC AGTGGTTGC ATGTTATTGC TCACTGAAATC TTCACGACAA TGTGTGAAAG
GACAATCTTA AGAAAATAAA TCCCGGAAA GACIACGGTCT GTAAAGAGAG TCACCAAACG TACATAATG AGTGACTTAG AAGTGTCTGTT ACAACTCTC
2601 TTCCCATTT TATTCTGTT CTTACAAATG TGAACGGAA GCTCATAGAG GTGAGAAAAAC TCAACCAAG AGTGGACTGGG AAAGTTAGGA
AAGGGTAAATA ATAAAGACAA GAATGTTAC ACTTGCCTT CGAGTATCTC CACTCTTGT AGTGGTCTC AGTGGTCTC AGTGGTCTC AGTGGTCTC
2701 TTCAGATCGA AATTGGACTG CCATATTAC TCTTATAAC CCATATTTC CCACTTTT TAGAGCTCC AATGTTGTC GAATAGGGAA ACATGGCAAT AATGGCTG
AAGTCTAGCT TAAACCTGAC AGAAATATTG GGTATAAAG GGGGACAAAA ATCTCGAAGG TTACACAGT CTTATCCCTT TGTAAACGTTA TTACCGAAC
2801 ATTTTAAA AAAAAAAA AAAAAAAA
TAAAMATTI TTTTTTTTTT TTTTTTTTTT

FIG.- 9C

14 / 27

		Effect of WISP-1 Expression on NRK Metastatic Potential		
No. Cells Injected	Weeks after Innoculation	Incidence of Lung Metastasis		
		NRK/Control	NRK/WISP-1L	NRK/WISP-1H
2.5×10^5	2	0/1	0/1	2/2 (Grade I)
	3	0/4	3/3 (Grade I)	4/4 (Grade I-II)
	4	0/4	4/4 (Grade I)	3/3 (Grade III)
0.5×10^5	2	0/2	0/2	1/2 (Grade I)
	3	0/4	2/4 (Grade I)	3/4 (Grade I)
	4	0/4	4/4 (Grade I)	3/4 (Grade I-II)

FIG._10**FIG._11A****FIG._11B**

17 / 27

FIG.- 12C

18 / 27

FIG._12D

→ The Epitope of the WISP-1 Antibody 3D11 is Located within WISP-1 Domain 1.

19 / 27

FIG._ 12E

FIG._ 12F

SUBSTITUTE SHEET (RULE 26)

20 / 27

FIG._12G

21 / 27

FIG. 13**FIG. 14**

22 / 27

FIG.. 15**FIG.. 16A**

23 / 27

WISP-1 Antibodies Characterization								
Clones	Isotype	Epitope		IP	WB	Blocking Activity		
		Struct.	Cross Compet.			Heparin Binding	Cell Migrat.	Lung Met.
3D11	2b	Domain 1	A	-	+	+/-	+	+
9C10	2b	Domain 1	B	+	-	-	+	+
11C2	2b	Variable Region	C	+	+	+	+	+
5D4	2a	Variable Region	C	+	+	+	+	+
9C11	2a	Variable Region	C	+	+	+	+	+

FIG._16B**FIG._17A****FIG._17B**

SUBSTITUTE SHEET (RULE 26)

24 / 27

FIG.- 17C**FIG.- 17D****FIG.- 17E**

25 / 27

FIG._ 18**FIG._ 19****FIG._ 20**
SUBSTITUTE SHEET (RULE 26)

26 / 27

FIG._21A**FIG._21B****FIG._22**

27 / 27

FIG._23B**FIG._23A****FIG._23D****FIG._23C****FIG._23E**

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.