Cálculo de la Evapotranspiración de Referencia ET0

Rolando Salazar

¹ Universidad de Sonora, Hermosillo, Sonora.

7 de mayo de 2019

n este reporte se resume la Evaluación 2, donde se hacen estimaciones de ETO mediante 3 modelos diferentes, así como gráficas de balance de energía.

1. Introducción

La Evaluación 2 consistió en realizar una tabla similar a la del artículo de K. Djaman, para de ahí obtener 3 gráfícas de la evolución de las temperaturas y humedades relativas máximas, mínimas y promedios, así de la radiación solar promedio. Luego, se hacen estimaciones de la Evapotranspiración de Referencia ETO con tres modelos distintos. Por último, se hace una gráfica de balance de energías.

1.1. Objetivos específicos

- Con los datos metereológicos que se tienen, construir una tabla de promedios mensuales, similar a la Tabla 1 del artículo de K. Djaman y elaborar 3 gráficas con la variación mensual de las temperaturas, humedades relativas y radiación solar.
- Con la tabla de valores del punto anterior, estimar la Evapotranspiración ETO mensual promedio utilizando las ecuaciones de los siguientes 3 autores que aparecen en el artículo de Djaman: Ec. 7 de Jansen & Haise; Ec. 31 Valiantzas; Ec. 34 Valiantzas 4.
- Con los datos de flujos que se consiguieron, obtener una gráfica de balance de energía promedio de un mes típico (promedio por hora de un mes).

2. Desarrollo de la Evaluación 2

Para llevar a cabo las actividades, se requieren los archivos de datos metereológicos y de flujos proporcionados por el profesor. También, se necesitan las ecuaciones especificadas en los objetivos específicos.

2.1. Primer objetivo

Para la realización de este objetivo, tenemos que que leer los datos del archivo meteo-vid-2018.csv y filtrar las columnas de interés. Luego, calcular las promedios mensuales de las variables para poder hacer las gráficas. Los resultados fueron las siguientes figuras.

Figura 1: Cambio de las temperaturas mínima, máxima y media a lo largo del año 2018.

Figura 2: Cambio de las humedad relativa mínima, máxima y media a lo largo del año 2018.

Figura 3: Cambio de las radiación solar a lo largo del año 2018.

2.2. Segundo objetivo

Para calcular ETO con los primeros dos modelos (Jansen y Haise y Valiantzas 1) se implemento la siguiente sección de código principalmente.

```
h = len(Meteo3)
JH = [ ]
Val1 = [ ]
pi = 3.14159

for i in range (0, h):
    k1 = (0.0252 * Meteo3.Tmean[i] + 0.078) * Meteo3.RS[i]
    JH.append(k1)

    k2 = 0.0393 * Meteo3.RS[i] * (Meteo3.Tmean[i] + 9.5)
    ** 0.5 - 0.19 * (Meteo3.RS[i] ** 0.6) * ( (pi/180) * (latt0) )
    ** 0.15 + \ 0.0061 * (Meteo3.Tmean[i] + 20) *
    (1.12 * Meteo3.Tmean[i] - Meteo3.Tmin[i] - 2) ** 0.7
    Val1.append(k2).
```

Tras dicho código y otras secciones más, se obtuvo la siguiente tabla y gráfica.

	MONTH	ETO_Val4	ET0_Val1	ETO_JH
0	1	43.063288	21.310199	56.545212
1	2	50.356030	24.210628	64.715721
2	3	66.957845	33.834979	95.924988
3	4	85.921578	44.563197	134.322228
4	5	96.613538	51.067272	159.853219
5	6	98.906550	52.063888	178.380785
6	7	78.704097	48.026438	172.534524
7	8	84.785890	44.307656	158.592629
8	9	87.563201	42.835504	151.169927
9	10	70.390972	31.589043	98.529331
10	11	55.026862	23.683415	63.328515
11	12	38.162231	17.784211	43.659941

Figura 4: Tabla de los cálculos de ETO para los tres modelos requeridos.

Figura 5: Gráfica de la tabla anterior.

2.3. Tercer objetivo

Para llevar a cabo este objetivo, se utilzan los datos del archivo, leemos los datos que se encuentran en el archivo flujos-vid-2018.csv y filtramos las variables de interés. Después, se saca el promedio por hora de dichas

variables durante un mes, y se obtiene una gráfica como la siguiente.

Figura 6: Balance de energía promedio por hora.

3. Conclusiones

En las gráficas se puede observar, claramente, que Evapotranspiración de Referencia promedio mensual depende del mes en cuestión, ya que a mayor temperatura promedio mensual, mayor será ETO. Luego, la Radiación Neta, Calor Latente y Calor Sensible dependen de la hora del día, puesto que a mayor temperatura, mayor será el valor de estas variables. Todos estos son resultados esperados en cada modelo.

4. Bibliografía

Djaman, K., O'Neill, M., Diop, L. et al. Theor Appl Climatol (2018). https://doi.org/10.1007/s00704-018-2624-0

Allen R., et al.. (2006). FAO Irrigation and Drainage Paper No. 56.