CSI - 3105 Design & Analysis of Algorithms Course 4

Jean-Lou De Carufel

Fall 2020

Input : Sequence S of n numbers and an integer k with $1 \le k \le n$.

Output: The k-th smallest element in S.

Input : Sequence S of n numbers and an integer k with $1 \le k \le n$. Output : The k-th smallest element in S.

• k = 1 \rightarrow

Input : Sequence S of n numbers and an integer k with $1 \le k \le n$. Output : The k-th smallest element in S.

• $k = 1 \rightarrow \text{smallest element in } S$

- $k=1 \rightarrow \text{smallest element in } S$
- $k = n \rightarrow$

- $k = 1 \rightarrow \text{smallest element in } S$
- $k = n \rightarrow \text{largest element in } S$

- $k=1 \rightarrow \text{smallest element in } S$
- $k = n \rightarrow \text{largest element in } S$
- $k = n/2 \rightarrow$

- $k = 1 \rightarrow \text{smallest element in } S$
- $k = n \rightarrow \text{largest element in } S$
- $k = n/2 \rightarrow \text{median of } S$

Input: Sequence S of n numbers and an integer k with $1 \le k \le n$.

Output: The k-th smallest element of S.

1: Sort *S*

2: **return** the element at position k

Input: Sequence S of n numbers and an integer k with $1 \le k \le n$.

Output: The k-th smallest element of S.

1: Sort *S*

2: **return** the element at position k

What is the running time?

Input: Sequence S of n numbers and an integer k with $1 \le k \le n$.

Output: The k-th smallest element of S.

1: Sort *S*

2: **return** the element at position k

What is the running time?

• Sorting using Merge Sort takes $O(n \log(n))$ time.

Input: Sequence S of n numbers and an integer k with $1 \le k \le n$.

Output: The k-th smallest element of S.

1: Sort *S*

2: **return** the element at position k

What is the running time?

- Sorting using Merge Sort takes $O(n \log(n))$ time.
- The return step takes O(1) time.

Input: Sequence S of n numbers and an integer k with $1 \le k \le n$.

Output: The k-th smallest element of S.

- 1: Sort *S*
- 2: **return** the element at position k

What is the running time?

- Sorting using Merge Sort takes $O(n \log(n))$ time.
- The return step takes O(1) time.
- TOTAL: $O(n \log(n)) + O(1) = O(n \log(n))$ time.

Input: Sequence S of n numbers and an integer k with $1 \le k \le n$.

Output: The k-th smallest element of S.

- 1: Sort *S*
- 2: **return** the element at position k

What is the running time?

- Sorting using Merge Sort takes $O(n \log(n))$ time.
- The return step takes O(1) time.
- TOTAL: $O(n \log(n)) + O(1) = O(n \log(n))$ time.

What is the bottleneck?

Input: Sequence S of n numbers and an integer k with $1 \le k \le n$.

Output: The k-th smallest element of S.

- 1: Sort *S*
- 2: **return** the element at position k

What is the running time?

- Sorting using Merge Sort takes $O(n \log(n))$ time.
- The return step takes O(1) time.
- TOTAL: $O(n \log(n)) + O(1) = O(n \log(n))$ time.

What is the bottleneck?

Can we solve this problem without sorting?

First Attempt for a Faster Algorithm

Algorithm Select(S, k)

Input: Sequence S of n numbers and an integer k with $1 \le k \le n$.

Output: The k-th smallest element of S.

- 1: **if** |S| = 1 **then**
- **return** the only element in S
- 3: else
- Choose an element p in S (called the pivot) 4.
- 5: Split S into $S_{<}$, $S_{=}$ and $S_{>}$
- if $k \leq |S_{<}|$ then 6:
- Run Select($S_{<}, k$) 7:
- else if $k > |S_{<}| + |S_{=}|$ then 8:
- Run Select($S_>$, $k |S_<| |S_=|$) 9:
- else 10:
- 11: return p
- end if 12:
- 13: **end if**

The running time of Select(S, k) depends on the pivot p. In the worst case,

- *S* is sorted
- k = 1
- in each recursive call, p is chosen as the largest element.

This gives $O(n^2)$ time.

The running time of Select(S, k) depends on the pivot p. In the worst case,

- *S* is sorted
- k=1
- in each recursive call, p is chosen as the largest element.

This gives $O(n^2)$ time.

A good case would be: in each recursive call, p is chosen as the median. In this case, the running time satisfies

$$T(n) = T(n/2) + n.$$

The running time of Select(S, k) depends on the pivot p. In the worst case.

- S is sorted
- k = 1
- in each recursive call, p is chosen as the largest element.

This gives $O(n^2)$ time.

A good case would be: in each recursive call, p is chosen as the median. In this case, the running time satisfies

$$T(n) = T(n/2) + n.$$

Using the Master Theorem with a=1, b=2 and d=1, we find $\mathcal{T}(n)=\mathcal{O}(n)$.

How to get close to a "good case"?

How to get close to a "good case"?

In each recursive call, choose p randomly. Intuitively, on average, p will be close to the median. Study randomized algorithms for further details.

How to get close to a "good case"?

In each recursive call, choose p randomly. Intuitively, on average, p will be close to the median. Study randomized algorithms for further details.

How close to a good case do we need to be to get a linear-time algorithm?

General Approach

Assume that all numbers are different. (The purpose of this assumption is only to simplify the discussion.)

General Approach

Assume that all numbers are different. (The purpose of this assumption is only to simplify the discussion.)

Assume that there is a constant $0<\alpha<1$ such that in Select(S,p), it is always possible to choose a pivot p satisfying $|S_<|\leq \alpha\,n$ and $|S_>|\leq \alpha\,n$

General Approach

Assume that all numbers are different. (The purpose of this assumption is only to simplify the discussion.)

Assume that there is a constant $0<\alpha<1$ such that in Select(S,p), it is always possible to choose a pivot p satisfying $|S_<|\leq \alpha\,n$ and $|S_>|\leq \alpha\,n$

Then the running time satisfies

$$T(n) = T(\alpha n) + n$$

$$= T(\alpha^{2} n) + \alpha n + n$$

$$= T(\alpha^{3} n) + \alpha^{2} n + \alpha n + n$$

$$\vdots$$

$$= O(n)$$

So how do we find such a pivot?

So how do we find such a pivot?

Blum, Floyd, Pratt, Rivest and Tarjan (1973) discovered the following technique.

The Algorithm

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4: Run Select(S, k) using the p of Step 3 as the pivot.

The Algorithm

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4: Run Select(S, k) using the p of Step 3 as the pivot.

Is p a good pivot? Why?

The Algorithm

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4: Run Select(S, k) using the p of Step 3 as the pivot.

Is p a good pivot? Why?

We have to figure out how many numbers in S are larger than p.

Hence, at least $\frac{3}{10}n$ elements are $\geq p$.

Hence, at least $\frac{3}{10}n$ elements are $\geq p$.

Thus, at most $\frac{7}{10}n$ elements are $\leq p$.

Hence, at least $\frac{3}{10}n$ elements are $\geq p$.

Thus, at most $\frac{7}{10}n$ elements are $\leq p$.

In other words, $|S_{<}| \leq \frac{7}{10}n$.

Using a symmetric argument, we can show that with this choice of pivot, $|S_>| \leq \frac{7}{10} n$.

Using a symmetric argument, we can show that with this choice of pivot, $|S_>| \leq \frac{7}{10} n$.

Hence, with this choice of pivot, we have $\alpha = \frac{7}{10}$.

§ 2.3 Selection Algorithm

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4: Run Select(S, k) using the p of Step 3 as the pivot.

§ 2.3 Selection Algorithm

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4 : Run Select(S, k) using the p of Step 3 as the pivot.

Let T(n) be the running time of this algorithm on an input of length n.

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4: Run Select(S, k) using the p of Step 3 as the pivot.
- Let T(n) be the running time of this algorithm on an input of length n.
 - Step 1:
 - Step 2:
 - Step 3:
 - Step 4:

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4: Run Select(S, k) using the p of Step 3 as the pivot.
- Let T(n) be the running time of this algorithm on an input of length n.
 - Step 1 : O(n) time
 - Step 2:
 - Step 3:
 - Step 4:

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4: Run Select(S, k) using the p of Step 3 as the pivot.
- Let T(n) be the running time of this algorithm on an input of length n.
 - Step 1 : O(n) time
 - Step 2 : O(n) time
 - Step 3:
 - Step 4:

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4 : Run Select(S, k) using the p of Step 3 as the pivot.
- Let T(n) be the running time of this algorithm on an input of length n.
 - Step 1 : O(n) time
 - Step 2 : O(n) time
 - Step 3 : ?
 - Step 4:

§ 2.3 Selection Algorithm

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4 : Run Select(S, k) using the p of Step 3 as the pivot.
- Let T(n) be the running time of this algorithm on an input of length n.
 - Step 1 : O(n) time
 - Step 2 : O(n) time
 - Step 3 : ?
 - Step 4 : $T\left(\frac{7}{10}n\right) + O(n)$ time

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4 : Run Select(S, k) using the p of Step 3 as the pivot.

Let T(n) be the running time of this algorithm on an input of length n.

- Step 1 : O(n) time
- Step 2 : O(n) time
- Step 3 : ?
- Step 4 : $T\left(\frac{7}{10}n\right) + O(n)$ time

To do Step 3, recursively compute the $\frac{n}{10}$ -th smallest element of the sequence $m_1, m_2, ..., m_{n/5}$.

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4: Run Select(S, k) using the p of Step 3 as the pivot.

Let T(n) be the running time of this algorithm on an input of length n.

- Step 1 : O(n) time
- Step 2 : O(n) time
- Step 3 : ?
- Step 4 : $T\left(\frac{7}{10}n\right) + O(n)$ time

To do Step 3, recursively compute the $\frac{n}{10}$ -th smallest element of the sequence $m_1, m_2, ..., m_{n/5}$. This takes $T\left(\frac{n}{5}\right)$ time.

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4: Run Select(S, k) using the p of Step 3 as the pivot.

Let T(n) be the running time of this algorithm on an input of length n.

- Step 1 : O(n) time
- Step 2 : O(n) time
- Step 3 : $T\left(\frac{1}{5}n\right)$ time
- Step 4 : $T\left(\frac{7}{10}n\right) + O(n)$ time

To do Step 3, recursively compute the $\frac{n}{10}$ -th smallest element of the sequence $m_1, m_2, ..., m_{n/5}$. This takes $T\left(\frac{n}{5}\right)$ time.

- Step 1 : Divide the input sequence into $\frac{n}{5}$ groups, each of size 5.
- Step 2 : For i = 1, 2, ..., n/5, compute the median of the i-th group, call this median m_i .
- Step 3 : Compute the median p of $m_1, m_2, ..., m_{n/5}$.
- Step 4: Run Select(S, k) using the p of Step 3 as the pivot.
- Let T(n) be the running time of this algorithm on an input of length n.
 - Step 1 : O(n) time
 - Step 2 : O(n) time
 - Step 3 : $T\left(\frac{1}{5}n\right)$ time
 - Step 4 : $T\left(\frac{7}{10}n\right) + O(n)$ time
- To do Step 3, recursively compute the $\frac{n}{10}$ -th smallest element of the sequence $m_1, m_2, ..., m_{n/5}$. This takes $T\left(\frac{n}{5}\right)$ time.

Hence:
$$T(n) = T(\frac{1}{5}n) + T(\frac{7}{10}n) + O(n)$$

$$T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{7}{10}n\right) + O(n)$$
?

$$T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{7}{10}n\right) + O(n)$$
?

Unfolding gets messy!

$$T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{7}{10}n\right) + O(n)$$
?

Unfolding gets messy!

The Master theorem does not apply.

$$T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{7}{10}n\right) + O(n)$$
?

Unfolding gets messy!

The Master theorem does not apply.

We use induction to show that T(n) = O(n).

T(n) = O(n) Step 1 + O(n) Step 3 + O(n) + $T(\frac{7}{10}n)$ Step 4

How do we do Step 3: Recursively compute the n-th smallest element of the sequence m, ma, mas. This takes T(1/5) time.

We obtain the recurrence

 $T(n) = n + T(\frac{n}{5}) + T(\frac{7}{10}n)$

-> Unfolding get messy

-> Master theorem does not apply.

Let us use induction to show that T(n) = O(n).

Claim: T(n) = c.n for some constant e

Proof: By choosing a sufficiently large, the claim is true for "small" n (this is the base case of the induction).

Let n be "large" and assume T(m) & c.m for all 15m xn. Then

 $T(n) = n + T(\frac{n}{5}) + T(\frac{7}{10}n)$

\(\left\) \text{ \left\) \quad \qquad \quad \

= on + 9 c.n off words

Is n+9 c.n < cn?

Yes, provided that c>10.

Conclusion: The K-th smallest element in a sequence of n numbers can be computed in O(n) time.

Claim: IT(N) = C.W for Seme constant

Proof. By choosing a sufficiently lost

is the base cose to the industion).