Lentes

- Lentes delgadas convergentes e divergentes
- Métodos gráficos
- O olho humano
- Microscópio e Telescópio

LENTE: objeto transparente capaz de refratar um raio luminoso que o atravessa.

TIPOS DE LENTES

As lentes compõe muitos dispositivos tais como: óculos, binóculos, microscópios e telescópios.

As lentes são usadas para a formação de imagens de uma fonte de luz visível, luz ultravioleta e lua na região do infravermelho.

A imagem formada por uma lente é descrita pela Lei de de Snell. Lente Delgada: é uma lente cuja espessura é pequena em comparação aos raios de curvatura de suas superfícies.

As lentes delgadas são convergentes ou divergentes.

Lentes convergentes

Lentes divergentes

Formação de imagens por lentes delgadas

Objeto no infinito (raios incidentes paralelos)

Imagem real

Imagem virtual

Onde F: ponto focal ou foco

f: distância focal

Método gráfico para a formação da imagem de lentes delgadas

Um diagrama contendo três raios provenientes do objeto pode ser usado para determinar a posição da imagem formada por uma lente delgada:

Um raio passando pelo centro da lente que, após atravessar a lente, continua na mesma direção sem desvio;

Um raio incidente com direção paralela ao eixo principal da lente, que após a refração passará pelo foco (lente convergente) ou pelo seu prolongamento (lente divergente);

Um raio incidente passando por um dos focos da lente, que será refratado pela lente na direção paralela ao eixo principal.

Lente convergente

Formação de Imagens

Lente convergente- também chamada de "lente positiva"

Onde: F são os focos da lente, f a distância focal, "o" é a distância-objeto i é a distância-imagem h_o é a altura do objeto e h_i a altura da imagem

Formação de Imagens

Lente divergente- também chamada de "lente negativa"

Onde:

F é o foco da lente, f a distância focal, "o" é a distância-objeto i é a distância-imagem h_o é a altura do objeto h_i a altura da imagem

Equações das lentes

$$\frac{1}{f} = \frac{1}{o} + \frac{1}{i}$$

i - é a distância da imagem formada até a lente.

$$\frac{1}{f} = (n-1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

Equação do fabricante de lentes- $\frac{1}{r} = (n-1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \begin{vmatrix} \text{valida para lentes} \\ \text{onde: } n \text{ - indice de refração da lente;} \\ r_1 \text{ - raio de curvatura da lente da objeto:} \end{vmatrix}$ superfície mais próxima do objeto; r_2 - raio de curvatura da outra superfície da lente.

$$A = \frac{h_i}{h_o} = -\frac{\mathbf{i}}{\mathbf{o}} = \frac{f}{f - \mathbf{o}}$$

Aumento Linear Transversal

onde: h; é a altura da imagem; h_o é a altura do objeto.

O Olho Humano – defeitos na visão

Formação da imagem: o cristalino é uma lente convergente, bi-convexa, que forma uma imagem real e invertida de um objeto, focalizada na retina e enviada ao cérebro pelo nervo óptico.

Figura: mundoeducação (uol)

Hipermetropia

Câmera fotográfica

http://fisicaevestibular.com.br/novo/optica/optica-geometrica/jastrumentos-opticos/

Microscópio Composto

Telescópio

