合肥工学大学 操作系统实验报告

实验题目	实验 2 操作系统的启动
学生姓名	袁焕发
学号.	2019217769
专业班级	物联网工程 19-2 班
指导教师	田卫东
完成日期	2021年11月2日

合肥工业大学 计算机与信息学院

1. 实验目的和任务要求

跟踪调试 EOS 在 PC 机上从加电复位到成功启动的全过程,了解操作系统的启动过程。

查看 EOS 启动后的状态和行为,理解操作系统启动后的工作方式。

2. 实验原理

EOS 是一个可以在 Intel X86 平台上运行的、面向教学的开源操作系统,有配套的 IDE 实验环境,可以将 EOS 源代码编译为二进制文件(包括引导程序和内核)或者将编译好的二进制文件写入一个软盘镜像(或软盘),然后让虚拟机(或裸机)运行此软盘中的 EOS,并对其进行远程调试在。IDE 环境成功生成EOS 的二进制文件后,会自动生成 EOS SDK,在获得 SDK 之后就可以根据其提供的 API 进行程序的编写。

EOS 启动时,BIOS 执行开机自检和初始化,将软盘引导扇区加载到物理内存的 0x7C00 处,并跳转到引导扇区的 Boot 程序中执行; Boot 程序将软盘根目录中的 Loader 程序 Loader. bin 文件加载到物理内存的 0x1000 处,并跳转到 Loader程序中执行; Loader程序将软盘根目录中的操作系统内核 Kernel. dl1 文件加载到物理内存中,然后启动 CPU 的保护模式和分页机制,最后跳转到 Kernel. dl1的入口点函数中执行; EOS 内核完成初始化后,用户即可与之进行交互。

3. 实验内容

3.1. 准备实验

启动 OS Lab, 新建一个 EOS Kernel 项目, 并生成项目。

找到 loader. asm 生成的加载程序 loader. bin 文件,记录文件的大小 1566 字节。

3.2. 调试 EOS 操作系统的启动过程

3.2.1. 使用 Bochs Debug 做为远程目标机

打开"项目管理器"窗口中的"属性",在弹出的"属性页"列表中找到"远程目标机"属性,将调试时使用的远程目标机修改为 Bochs Debug,并调试程序。

3.2.2. 调试 BIOS 程序

启动调试后, Bochs 会在 CPU 要执行的第一条指令(即 BIOS 的第一条指令)处中断。此时, Display 窗口还没有显示任何内容, Console 窗口会显示将要执行的 BIOS 第一条指令的相关信息,并等待用户输入调试命令。

查看 CPU 在没有执行任何指令之前主要寄存器和内存中的数据。 窗口中输入调试命令 sreg 后按回车,显示当前 CPU 中各个段寄存器的值, 输入调试命令 r 后按回车,显示当前 CPU 中各个通用寄存器的值。

输入调试命令 xp /1024b 0x0000, 查看开始的 1024 个字节的物理内存输入调试命令 xp /512b 0x7c00, 查看软盘引导扇区应被加载到的内存位置。

3.2.3. 调试软盘引导扇区程序

输入调试命令 vb 0x0000:0x7c00, 在逻辑地址 0x0000:0x7c00 处添加了一个断点。输入调试命令 c 继续执行,在 0x7c00 处中断。中断后会在 Console 窗口中输出下一个要执行的指令,即软盘引导扇区程序的第一条指令。

```
CPU 0: HALTED

CPU 0: HALTED

(Ø) Breakpoint 4619281, in 0000:7c00 (0x00007c00)

Next at t=16897706

(Ø) [0x00007c00] 0000:7c00 (unk. ctxt): jmp .+0x006d (0x00007c6f); eb6d

(bochs:7)
```

输入调试命令 sreg 验证 CS 寄存器 (0x0000) 的值,输入调试命令 r 验证 IP 寄存器 (0x7c00) 的值。

输入调试命令 xp /1024b 0x0000 验证此时 BIOS 中断向量表已经被载入,输入调试命令 xp /512b 0x7c00 显示软盘引导扇区程序的所有字节码。

输入调试命令 xp /512b 0x0600 验证第一个用户可用区域是空白的。输入调试命令 xp /512b 0x7e00 验证第二个用户可用区域是空白的。

自己设计两个查看内存的调试命令,分别验证这两个用户可用区域的高地址端也是空白的(xp/512b 0x7a00 查看 512b 到 0x7c00, xp/512b 0x9e00 查看 512b 到 0xa0000,可以看出字节码为 0 ,说明是空白的)

Bochs for Vindovs - Conso	le					
0×00 0×00 0×00						
0x000000000000007bc8 togus+	456>:	0×00	0×00	0×00	0×00	0×00
0×00 0×00 0×00		0.00				
0x000000000000007bd0 constant	464>:	0×00	0×00	0×00	0×00	0×00
0x00 0x00 0x00	4000	0.00	0.00	0.00	0.00	0.00
0x00000000000007bd8	472>:	0×00	0×00	0×00	0×00	0×00
9x99 9x99 9x99 9x99999999999	480>:	0×00	ихии	0×00	0×00	и×ии
0x00 0x00 0x00 7.00gus+	400/-	exee	exee	exee	exee	9299
0x00000000000007be8 	488>:	0×00	0×00	0×00	0×00	0×00
0x00 0x00 0x00	1007.	0.00	exee	6766	8788	8888
0x00000000000007bf0 <bogus+< td=""><td>496>:</td><td>0×00</td><td>и×ии</td><td>0×00</td><td>0×00</td><td>0×00</td></bogus+<>	496>:	0×00	и×ии	0×00	0×00	0×00
0×00 0×00 0×00						
0x00000000000007bf8 <bogus+< td=""><td>504>:</td><td>0×00</td><td>0×00</td><td>0×00</td><td>0×00</td><td>0×00</td></bogus+<>	504>:	0×00	0×00	0×00	0×00	0×00
0×00 0×00 0×00						
(bochs:20) xp /512b 0x9e00						
[bochs]:						
0x00000000000009e00 <bogus+< td=""><td>Ø>:</td><td>0×00</td><td>0×00</td><td>0×00</td><td>0×00</td><td>0×00</td></bogus+<>	Ø>:	0×00	0×00	0×00	0×00	0×00
0×00 0×00 0×00						
0×00000000000009e08 <bogus+< td=""><td>8>:</td><td>0×00</td><td>0×00</td><td>0×00</td><td>0×00</td><td>0×00</td></bogus+<>	8>:	0×00	0×00	0×00	0×00	0×00
0×00 0×00 0×00						
0x0000000000009e10 <bogus+< td=""><td>16>:</td><td>0×00</td><td>0×00</td><td>0×00</td><td>0×00</td><td>0×00</td></bogus+<>	16>:	0×00	0×00	0×00	0×00	0×00
0×00 0×00 0×00						

输入调试命令 xp /512b 0xa0000 验证上位内存已经被系统占用。

🥞 Bochs for Vindows - Cons	ole					_ 0	×
0x000000000000001a0 <bogus+< th=""><th>416>:</th><th>Øxff</th><th>Øxff</th><th>Øxff</th><th>Øxff</th><th>Øxff</th><th>•</th></bogus+<>	416>:	Øxff	Øxff	Øxff	Øxff	Øxff	•
dxff 0xff 0xff							
0x0000000000000a01a8 <bogus+< td=""><td>424>:</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td></td></bogus+<>	424>:	Øxff	Øxff	Øxff	Øxff	Øxff	
Oxff Oxff Oxff							
0x0000000000000a01b0 <bogus+< td=""><td>432>:</td><td>0xff</td><td>0xff</td><td>0xff</td><td>0xff</td><td>0×ff</td><td></td></bogus+<>	432>:	0xff	0xff	0xff	0xff	0×ff	
0xff 0xff 0xff		-	-	-	-		
0x0000000000000a01b8 <bogus+< td=""><td>440>:</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td></td></bogus+<>	440>:	Øxff	Øxff	Øxff	Øxff	Øxff	
0xff 0xff 0xff 0x000000000000a01c0 <bogus+< td=""><td>448>:</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td></td></bogus+<>	448>:	Øxff	Øxff	Øxff	Øxff	Øxff	
0xff 0xff 0xff							
0x0000000000000a01c8 <bogus+< td=""><td>456>:</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td></td></bogus+<>	456>:	Øxff	Øxff	Øxff	Øxff	Øxff	
0xff 0xff 0xff							
0x0000000000000a01d0 <bogus+< td=""><td>464>:</td><td>0xff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td></td></bogus+<>	464>:	0xff	Øxff	Øxff	Øxff	Øxff	
Oxff Oxff Oxff							
0x0000000000000a01d8 <bogus+< td=""><td>472>:</td><td>0xff</td><td>0xff</td><td>Øxff</td><td>0xff</td><td>Øxff</td><td></td></bogus+<>	472>:	0xff	0xff	Øxff	0xff	Øxff	
0xff 0xff 0xff							
0x0000000000000a01e0 <pre>constant</pre>	480>:	Øxff	Øxff	Øxff	Øxff	Øxff	
0xff 0xff 0xff 0x000000000000a01e8 <bogus+< td=""><td>488>:</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td></td></bogus+<>	488>:	Øxff	Øxff	Øxff	Øxff	Øxff	
0xff 0xff 0xff							
0x0000000000000a01f0 <bogus+< td=""><td>496>:</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td></td></bogus+<>	496>:	Øxff	Øxff	Øxff	Øxff	Øxff	
0xff 0xff 0xff							
0x0000000000000a01f8 <bogus+< td=""><td>504>:</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td>Øxff</td><td></td></bogus+<>	504>:	Øxff	Øxff	Øxff	Øxff	Øxff	

自己设计一个查看内存的调试命令,验证上位内存的高地址端已被系统占用 (xp /512b 0xffe00,查看 0xffe00 之后 512b 空间上字节是否不为 0)

在"项目管理器"窗口中,右键点击"boot"文件夹中的 boot.asm 文件。在弹出的快捷菜单中选择"打开生成的列表文件",在源代码编辑器中就会打开文件 boot.1st。

在 boot.1st 中查找到软盘引导扇区程序第一条指令所在的行(第 73 行)

```
72 72 org 0x7C00
73 73 00000000 EB6D jmp short Start
74 74 00000002 90 nop
```

输入调试命令 vb 0x0000:0x7d81 添加一个断点。

输入调试命令 xp /8b 0x1000 查看内存 0x1000 处的数据,验证此块内存的前三个字节和 loader.lst 文件中的第一条指令的字节码是相同的。

根据之前记录的 loader.bin 文件的大小,自己设计一个查看内存的调试命令,查看内存中 loader 程序结束位置的字节码,并与 loader.lst 文件中最后指令的字节码比较。

(1566b 十六进制为 61e, 起始 0x1000+61e-8b=0x1616, 最终才能查看最后 八位, 所以命令为 xp /8b 0x1616)

3.2.4. 调试加载程序

使用添加物理地址断点的调试命令 pb 0x1513 添加一个断点,输入调试命令 c 继续执行,在刚刚添加的断点处中断。在 Console 窗口中显示要执行的下一条指令,使用查看虚拟内存的调试命令 x / 1wx ds: 0x80001117 查看内存中保存的 32 位函数入口地址。

3.2.5. 调试内核

在"项目管理器"窗口中,右键点击项目节点,在弹出的快捷菜单中选择"属性"。在弹出的"属性页"对话框右侧的属性列表中找到"远程目标机"属性,将此属性值修改为"Bochs GDB stub"。

在 KiSystemStartup 函数中的代码行(第 52 行) KiInitializePic();添加一个断点。

```
42 □ {
43
         ,,
// 初始化处理器和中断。
44
45
        KiInitializeProcessor();
46
47
        KiInitializeInterrupt();
50
51
52
         ,
// 初始化可编程中断控制器和可编程定时计数器。
        KiInitializePic();
        KiInitializePit();
55
56
         // 对各个管理模块执行第一步初始化,顺序不能乱。
57
        MmInitializeSysteml(LoaderBlock);
        ObInitializeSystem1();
PsInitializeSystem1();
        IoInitializeSvstem1()
```

在 start.c 源代码文件中的 KiSystemStartup 函数名上点击鼠标右键,在 弹出的快捷菜单中选择"添加监视", KiSystemStartup 函数就被添加到了"监视"窗口中。在"监视"窗口中可以看到此函数地址

3.2.6. EOS 启动后的状态和行为

在 ke/sysproc.c 文件的第 372 行,也就是"ver"命令函数中添加一个断点,按 F5 启动调试,待 EOS 启动完成后,在控制台中输入命令"ver"后按回车,会在刚刚添加的断点处中断,在控制台中输入 pt 命令查看 EOS 启动后的进程和线程的信息。

按 Ctr1+F2, 切换到第二个控制台

查看当一个 EOS 应用程序正在运行时的进程和线程信息,在 OS Lab "项目管理器"窗口中双击 Floppy.img 文件,使用 FloppyImageEditor 工具打开此软盘镜像文件,将本实验文件夹中的 Hello.exe 文件拖动到 FloppyImageEditor工具窗口的文件列表中释放。

按 F5 启动调试,待 EOS 启动完毕,在 EOS 控制台中输入命令"hello"后按回车。此时在软盘中的 EOS 应用程序 Hello.exe 就会开始运行。

迅速按 Ctrl+F2 切换到控制台 2,并输入命令 "pt"后按回车,查看进程和 线程信息。

4. 实验的思考与问题分析

4.1. 为什么 EOS 操作系统从软盘启动时要使用 boot.bin 和 loader.bin 两个程序?使用一个可以吗?它们各自的主要功能是什么?如果将 loader.bin 的功能移动到 boot.bin 文件中,则 boot.bin 文件的大小是否仍然能保持小于 512 字节?

答: Boot.bin 和 loader.bin 分别是 boot.asm 和 loader.asm 汇编生成的,前者用于引导软盘,后者用于加载程序,启动执行 EOS 操作系统时,会将 boot. bin、loader. bin 和 kernel. dll 文件写入软盘镜像文件中,然后让虚拟机来执行软盘中的 EOS 操作系统,所以不能只使用一个。不能保持,将 loader.bin 的功能移动到 boot.bin 文件中,会导致文件体积大于 512 字节。

4.2. 软盘引导扇区加载完毕后内存中有两个用户可用的区域,为什么软盘引导扇区程序选择将 loader.bin 加载到第一个可用区域的 0x1000 处呢?这样做有什么好处?这样做会对 loader.bin 文件的大小有哪些限制。

答:第一个用户可用区域是低地址区,空间大小适合加载 loader.bin 小文件。 优点:从低地址开始便于查找,节约空间资源。

限制: 低地址区空间小, 所以 loader.bin 文件大小不能大于 1c00k。

5. 总结和感想体会

通过这次实验了解了操作系统的启动过程和 EOS 启动后状态和行为,知道了boot 程序和 loader 程序的执行情况,在启动之后命令调试的过程中,学会了常用的调试命令,会对内存中的情况进行查看,明白了内存中的加载情况。通过对程序代码进行打断点,逐步跟踪调试,明白了内核初始化的流程。