

Rishit Dagli (Orishit dagli)

10 STD, TEDX, Ted-Ed speaker|Google certified mobile site developer|Intel Al Scholar|2XGCP Champ|Mozilla Mumbai Lead

TensorFlow

Ideal Audience

- Developers who having worked on Deep Learning Models (Keras)
- Developers eager to learn about how Quantum
 Al Models could work

Agenda

- A Gentle Introduction to Q computing
- Motivation behind Q computing
- Why Hybrid models?
- Why TensorFlow Quantum?
- Building models
- How does TFQ simplify things?
- Demos!!
- Quick Recap
- Q & A

A Gentle introduction to Q Computers

A classical machine

Works on 1 or 0

A classical machine

Works on 1 or 0

Quibit

$$|\uparrow\rangle$$
=0.7

$$| = 0.8$$

Quantum superposition

(Just a big word)

$$\uparrow \rangle = 0.7$$

$$| - | > = 0.8$$

Classical computer

2 bits

(Remember a bit means 0 or 1)

Classical computer

2 bits (4 combinations)

Classical

Quantum

A 00

B 01

C 10

D 11

Bits	Qubits
2	4
3	8
4	16

Exponentially faster!

- Exponentially faster!
- 2ⁿ bits

- Exponentially faster!
- 2ⁿ bits
- 300 bits not enough to store even 1 image
- 300 qubits number of particles in universe!!

Source: <u>Derek Muller</u>

Why Hybrid models?

Why Hybrid models?

Faster for ops where superposition can be used

Why Hybrid models?

- Faster for ops where superposition can be used
- Combine them :)

Why TensorFlow Quantum?

Why TensorFlow Quantum?

Easy and faster development

Why TensorFlow Quantum?

- Easy and faster development
- Training can be done using standard Keras functions

Building models

The process

Quantum Circuit

The process

Quantum Circuit

PS: Not as hard as it looks

The process

Source: Google AI rishit.tech

PS: Not as hard as it looks

The process

Source: Google AI rishit.tech

PS: Not as hard as it looks

The process

rishit.tech

The process

Source: Google Al

rishit.tech

Installation

tensorflow.org/quantum/install

A simple circuit

```
q0, q1 = cirq.GridQubit.rect(1, 2)
```


A simple circuit

```
q0, q1 = cirq.GridQubit.rect(1, 2)
circuit = cirq.Circuit(
  cirq.rx(a).on(q0),
  cirq.ry(b).on(q1),
  cirq.CNOT(control=q0, target=q1))
```


A simple circuit

```
(0, 0): Rx(a) (0, 1): Ry(b) X
```

```
q0, q1 = cirq.GridQubit.rect(1, 2)
circuit = cirq.Circuit(
  cirq.rx(a).on(q0),
  cirq.ry(b).on(q1),
  cirq.CNOT(control=q0, target=q1))
```


Coding an Al algorithm

Differentiability

- Differentiability
- Parallel circuits

- Differentiability
- Parallel circuits
- Easy switching

- Differentiability
- Parallel circuits
- Easy switching
- Cirq

TensorFlow

Things to keep in mind

All circuits are Tensors

Things to keep in mind

- All circuits are Tensors
- Circuits Classical data can be an op

Source: Google AI rishit.tech

Demos!

tfug-mysuru.rishit.tech

Code Repo

Demos

Dummy algorithm

Image classification

Key Takeaways

- Basics of quantum computing
- Motivation behind quantum computers
- Why hybrid quantum classical models?
- How can TFQ and Cirq help?
- Why use TFQ and Cirq?
- Building a hybrid classical model

About Me

Rishit Dagli

rishit.tech

Rishit-dagli

hello@rishit.tech

rishit dagli

M erishit.dagli

tfug-mysuru.rishit.tech Code Repo

bit.ly/tf-quantum-slides

Slides

Q & A

THANK YOU