Clasificador de audio con Arduino Nano 33 BLE Sense

Raquel Corrales B92378 Alexa Carmona B91643

02/03/2023

Importancia

- Aplicación del machine
- learning, una herramienta en desarrollo e investigación.
- Acceso a datos en tiempo real
- Implemetación económica y cómoda para el uso diario

Tomado de https://cdn.britannica.com/40/216540-138-14385CFE/How-machine-learning-is-predicting-synthetic-products.jpg?
w=800&h=450&c=crop

Objetivos

Clasificar audios a partir de un modelo de TensorFlow haciendo uso del microcontrolador Arduino Nano 33 BLE Sense.

Obtener los datos de audio, entrenar e implementar el modelo, realizar la clasificación.

Enfoque

Empírico

Comparaciones directas con la precisión obtenida

Hiperparámetros

Modificación de parámetros del modelo

Parámetros de hardware

Manipulación del micrófono

Flujo del proyecto

Diseño

Arduino Nano BLE 33 Sense

Micrófono MP34DT05 – PDM

Tomado de https://www.mouser.co.cr/images/arduino/lrg/ABX00030_t.jpg

Sets de entrenamiento y validación

- Cantidad de sets: 30 vectores
- por clase
- Cantidad de atributos: 64 por
- PDM sampling
- 80% para entrenamiento y
- 20% para validación

Tipo de audios utilizados en el proceso.

Ruidos o sonidos (gritos, llanto)

Sonidos de animales (pájaros, oveja)

Palabras (sí, no, ayuda, peligro)

Herramientas

Envío de datos seriales a través de loT y la plataforma ThingsBoard

TensorFlow Lite

Eloquent Tiny ML

Python

Support Vector Machine Random Forest Naive Bayes

Algoritmos de entrenamiento

Precisión de los algoritmos de aprendizaje supervisado

Algoritmo de entrenamiento.	Accuracy
SVM, Support Vector Machine	36%
RandomForest	52%
Naive Bayes	32.79%

Resultados encontradas en los distintos sets de datos

El set de sonidos de palabras es mejor al momento de entrenar y por tanto, se logra una mejor clasificación.

Resultados encontradas en los distintos sets de datos

- Los ruidos no siguen patrones fáciles de reproducir
- Patrones de animales eran muy similares
- Patrones de palabras diferentes debido a entonación y longitud del audio.

Resultados encontradas en el set de palabras

Ayuda

Mejor clasificación

Word detected

Ayuda

Peligro

Segunda mejor clasificación

Word detected E

Sí/No Indiferente Word detected Si

Word detected "

Limitaciones del clasificador

División de audios

Palabras largas se clasifican como 2 palabras cortas

No diferencia sí y no

Puede deberse a longitud de palabras

Clasificación de sonidos

Sonidos en palabras largas asemejan palabras cortas

Conclusiones

Se logró la toma de datos, entrenamiento, creación del modelo y clasificación de palabras.

Conclusiones

A pesar de que el accuracy no es tan alto, es posible clasificar las palabras en las clases seleccionadas.

Conclusión

Se determinó el mejor modelo de entramiento para las condiciones dadas, RandomForest.

Recomendación

Explorar la manipulación de entradas para el modelo (hiperparámetros) así como más datos para mejorar la robustez del modelo

Recomendación

En trabajos futuros se recomienda adentrarse más en el estudio de la Inteligencia Artificial y el Machine Learning para lograr trabajar más a fondo en los parámetros internos del modelo (capas, nodos).

Referencias

- 1] TensorFlow Blog. How-to Get Started with Machine Learning on Arduino. 2019. url: https://blog.tensorflow.org/2019/11/how-to-get-started-with-machine.html.
- [2] TensorFlow. Reconocimiento de audio simple: reconocimiento de palabras clave. 2022. url: https://www.tensorflow.org/tutorials/audio/simple_audio.
- [3] IBM. What is machine learning? 2023. url: https://www.ibm.com/topics/machine-learning.
- [4] TensorFlow. Clasificaci on de audio. 2022. url: https://www.tensorflow.org/lite/examples/audio_classification/overview?hl=es-419.
- [5] IBM Documentation. Nodo Red neuronal. 2021. url: https://www.ibm.com/docs/es/spss-modeler/saas?topic=SS3RA7_sub/modeler_mainhelp_client_ddita/clementine/trainnetnode_general.htm.
- [6] V. Rodr íguez. Conceptos b ásicos sobre redes neuronales. 2018. url: https://vincentblog.xyz/posts/conceptos-basicos-sobre-redes-neuronales.
- [7] MathWorks. Support Vector Machine (SVM). 2023. url: https://la.mathworks.com/ discovery / support vector machine . html# : ~ : text = Support % 5C % 20vector % 5C % 20machine % 5C % 20(SVM) %5C % 20es , reconocimiento % 5C % 20de % 5C % 20im % 5C % C3 % 5C %Algenes%5C%20y%5C%20voz..
- [8] ScikitLearn. sklearn.ensemble.RandomForestClassifier. 2023. url: https://scikit%20learn. org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.
 7] MathWorks. Support Vector Machine (SVM). 2023. url: https://la.mathworks.com/ discovery / support vector machine . html#: ~: text = Support % 5C % 20vector % 5C % 20machine % 5C % 20(SVM) %5C % 20es , reconocimiento % 5C % 20de % 5C % 20im % 5C % C3 % 5C % Algenes%5C%20y%5C%20voz..
- [8] ScikitLearn. sklearn.ensemble.RandomForestClassifier. 2023. url: https://scikit%20learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.