Aula 1: Programação em R para finanças e Análise exploratória de dados

Marcus L. Nascimento

24 de setembro de 2025

1. R Software

2. Tipos de objetos em R

3. Estruturas de dados em R

4. Análise exploratória

R Software

Introdução

- R: linguagem de programação para computação estatística e geração de gráficos.
 - Software livre;
 - Software de código aberto (Open-source software OSS);
 - Compilado e executado em uma ampla variedade de plataformas UNIX e sistemas semelhantes (incluindo FreeBSD e Linux), além de Windows e macOS.
- Poderosa ferramenta para manipulação de dados, cálculos e exibição gráfica.
- Ambiente no qual diversas técnicas estatísticas são implementadas, tornando-o atrativo para modelagem financeira e econômica.

Instalação

• Endereço: https://cran.r-project.org/mirrors.html.

CRAN Mirrors

The Comprehensive R Archive Network is available at the following URLs, please choose a location close to you. Some statistics on the status of the mirrors can be found here: main page, windows release, windows release, windows old release.

If you want to host a new mirror at your institution, please have a look at the CRAN Mirror HOWTO.

Λ-		

https://cloud.r-project.org/ Automatic redirection to servers worldwide, currently sponsored by Posit

Argentina

http://mirror.fcaglp.unlp.edu.ar/CRAN/ Universidad Nacional de La Plata

Australia

https://cran.csiro.au/ CSIRO https://mirror.aarnet.edu.au/pub/CRAN/ AARNET

https://cran.ms.unimelb.edu.au/ School of Mathematics and Statistics, University of Melbourne

Austria

https://cran.wu.ac.at/ Wirtschaftsuniversität Wien

Belgium

https://www.freestatistics.org/cran/ https://ftp.belnet.be/mirror/CRAN/ Belnet, the Belgian research and education network

Brazil

https://cran-r.c3sl.ufpr.br/
https://vps.fmvz.usp.br/CRAN/
https://brieger.esalq.usp.br/CRAN/
University of Sao Paulo, Sao Paulo
https://brieger.esalq.usp.br/CRAN/
University of Sao Paulo, Piracicaba

Ambientes de desenvolvimento (IDEs)

- Ambientes de desenvolvimento (IDEs) em R:
 - RStudio (Posit Workbench);
 - Visual Studio Code (VS Code) com extensões em R;
 - Jupyter Notebook/Lab.

• Endereço: https://posit.co/download/rstudio-desktop/

RStudio

Pacotes

- R pode ser facilmente estendido por meio de pacotes.
 - Cerca de oito pacotes padrão fornecidos com a distribuição do R.
 - Muitos outros disponíveis cobrindo uma ampla variedade de técnicas estatísticas, econométricas e de aprendizado de máquina com aplicações em finanças.
 - Podemos verificar o número de pacotes através da função available.packages().

• Cada pacote possui documentação própria disponível online.

OBSERVAÇÃO: No código acima, estamos definindo uma variável $R_packages$. Variáveis são definidas através da aplicação do sinal de "=" ou "< -".

Pacotes

- Como os pacotes são instalados?.
 - Utilizando o console:

```
install.packages("packagename")
```

- Utilizando a interface do RStudio: Tools > Install Packages .
- Como os pacotes são carregados?

```
library(packagename)
```

• Há ainda a possibilidade de pacotes serem instalados a partir do Github.

```
install.packages("devtools")
library(devtools)
install_github("username/repositoryname")
```

Pacotes

- Pacotes que possibilitam a extração de dados financeiros sem a necessidade de acesso em fontes externas:
 - rbcb: criado para permitir que o R interaja com a API do Banco Central do Brasil, o Sistema Gerenciador de Séries Temporais (SGS), permite a extração de dados de séries de preços de moedas;
 - GetTDData: facilita a obtenção de dados históricos do Tesouro Direto (LFT, LTN, NTN-C, NTN-B, NTN-B Principal e NTN-F);
 - quantmod: projetado para auxiliar traders quantitativos no desenvolvimento, teste e implantação de modelos de negociação baseados em estatísticas.
 - Permite a extração de dados de séries de preços de ações e índices;
 - Funciona bem para o mercado brasileiro, porém existem bugs para alguns ativos (por exemplo, ETF).
 - **tidyquant**: reúne os principais pacotes de análise quantitativa financeira do R em um formato *tidy*.

Referências

- "Basic R for Finance" por Diethelm Würtz, Tobias Setz, Yohan Chalabi, Longhow Lam, Andrew Ellis.
- "An Introduction to Analysis of Financial Data with R" por Ruey S. Tsay.
- "Statistical Analysis of Financial Data With Examples In R" por James Gentle.
- "Statistical Analysis of Financial Data in R" por René Carmona.
 - Pacote **Rsafd**.

Tipos de objetos em R

Resumo

Figura: Tipos de objetos mais comuns em R.

Object Type:	
double	a vector containing real values
integer	a vector containing integer values
complex	a vector containing complex values
logical	a vector containing logical values
character	a vector containing character values
NULL	NULL

• Para identificar o tipo de um objeto em R, utiliza-se a função typeof().

Factors

- Factors são utilizados para representar dados categóricos. Por exemplo:
 - Variável exchange que assume os valores "NASDAQ", "NYSE" e "AMEX";
 - Variável FinCenter que assume os valores "Europe/Zurich" e "London".
- Cada categoria é denominada level. Logo, a variável exchange é um fator com três níveis "NASDAQ", "NYSE" e "AMEX".
- Objetos do tipo *factor* podem ser criados a partir de objetos do tipo *character* e *numeric* através da função factor().

```
> exchange <- c("NASDAQ", "NYSE", "NYSE", "AMEX", "NASDAQ")
> exchange (i] NASDAQ NYSE AMEX NASDAQ
Levels: AMEX NASDAQ NYSE
> exchange <- c(1, 2, 2, 3, 1)
> exchange <- factor(exchange)
> exchange (i] 1 2 2 3 1
Levels: 1 2 3
```

Data

- A função as.Date() é utilizada para criação de objetos com a classe Date.
- Datas podem ser geradas a partir de objetos do tipo *character*.

```
> timeStamp <- "1973-12-09"

> Date <- as.Date(timeStamp, "%Y-%m-%d")

> Date

[1] "1973-12-09"
```

 Datas são guardadas como um objeto do tipo double; números podem ser adicionados e são interpretados como número de dias.

```
> Date + 19
[1] "1973-12-28"
```

Dados faltantes

- Em R, dados faltantes são representados pelo símbolo NA (*Not Available*).
- A função is.na() é utilizada na detecção de NA.

```
> x <- as.double(c("1", "2", "qaz"))
> x
[1] 1 2 NA
> is.na(x)
[1] FALSE FALSE TRUE
```

 Outro símbolo importante em R é NaN (Not a Number), que é detectado através da função is.nan().

```
> z <- sqrt(c(1, -1))
> is.nan(z)
[1] FALSE TRUE
```

OBSERVAÇÃO: note que em ambos os códigos anteriores foram atribuídos à variável x vetores de dados. A seguir, falaremos sobre esta e outras estruturas de dados importantes em R.

Estruturas de dados em R

Introdução

- Estruturas de dados são formas de organizar dados de maneira coerente.
- As principais estruturas de dados em R são:
 - vetor (unidimensional);
 - Matriz (bidimensional);
 - Array (tridimensional);
 - Data frame (bidimensional);
 - Série de tempo (univariada e multivariada);
 - Lista.

Vetor

- Estrutura de dados mais simples em R.
- Objeto no qual todos os elementos são do mesmo tipo.
- EXEMPLO: vetor com nome "x" composto por quatro elementos do tipo "double" (10, 5, 3, 6) construído através da função c().

```
> x <- c(10, 5, 3, 6)
> x
[1] 10 5 3 6
```

• A função c() combina um número arbitrário de vetores em um único vetor.

```
> y <- c(x, 0.55, x, x)
> y
[1] 10.00 5.00 3.00 6.00 0.55 10.00 5.00 3.00 6.00 10.00 5.00 3.00
[13] 6.00
```

Vetor

• Os símbolos para operações aritméticas elementares são '+', '-', '*', '/'. O símbolo de potência é '^'.

```
> x
[1] 10 5 3 6
> z <- x * x
> z
[1] 100 25 9 36
> y <- x^2
> y
[1] 100 25 9 36
```

 A maioria das funções matemáticas está disponível em R e também funciona elemento a elemento do vetor. Por exemplo, a função logarítmica.

```
> log(x)
[1] 2.3026 1.6094 1.0986 1.7918
```

Vetor

Figura: Algumas funções matemáticas que podem ser aplicadas a vetores.

Function:	
abs	absolute value
asin acos atan	inverse geometric functions
asinh acosh atanh	inverse hyperbolic functions
exp log	exponent and natural logarithm
floor ceiling trunc	creates integers from floating point numbers
gamma lgamma	gamma and log gamma function
log10	logarithm with basis 10
round	rounding
sin cos tan	geometric functions
sinh cosh tanh	hyperbolic functions
sqrt	square root

Matriz

- Assim como nos vetores, todos os elementos de uma matriz devem ser do mesmo tipo.
- A principal maneira de se gerar uma matriz se dá através da função matrix() .

 Por padrão, a matriz é preenchida por coluna. Para que o preenchimento seja realizado por linha, o argumento byrow = TRUE deve ser especificado.

```
> x <- matrix(1:8, 2, 4, byrow = TRUE)
> x
        [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
```

Matriz

• O produto matricial no sentido matemático é aplicado através do uso do operador '%*%'. Vale lembrar que as dimensões das matrizes devem estar em conformidade.

```
> x <- matrix(1:8, ncol = 2)
> x %*% x
Error in x %*% x : non-conformable arguments
```

• A função t() é aplicada para se transpor matrizes.

```
> x %*% t(x)
     [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1.] 774 820
                    912
[2.]
    820
          870
               920
                    970 1020 1070 1120
[3.]
    866 920
               974 1028 1082 1136 1190
          970 1028 1086 1144 1202 1260
    958 1020 1082 1144 1206 1268 1330
[6.] 1004 1070 1136 1202 1268 1334 1400
[7,] 1050 1120 1190 1260 1330 1400 1470
```

Matriz

Figura: Algumas funções que podem ser aplicadas a matrizes.

Function:	
chol(x)	Choleski decomposition
col(x)	Matrix with column numbers of the elements
diag(x)	Create a diagonal matrix from a vector
ncol(x)	Returns the number of columns of a matrix
nrow(x)	Returns the number of rows of a matrix
qr(x)	QR matrix decomposition
row(x)	Matrix with row numbers of the elements
solve(A,b)	Solve the system Ax=b
solve(x)	Calculate the inverse
svd(x)	Singular value decomposition
var(x)	Covariance matrix of the columns

Array

- Assim como nos vetores e nas matrizes, todos os elementos de um *array* devem ser do mesmo tipo.
- A principal maneira de se gerar um array se dá através da função array().

Data frame

- Data frames são estruturas que podem ter colunas com dados de diferentes tipos.
- Costumam ser a estrutura de dados mais conveniente para análise de dados em R.
- Muitas das rotinas de modelagem estatística em R requerem um data frame como input.
- A principal forma de se gerar um data frame se dá através da função data.frame().
 Esta pode ser utilizada tanto para a criação de um novo data frame quanto para converter outras estruturas em data frames.

```
> myLogical <- sample(c(TRUE, FALSE), size = 6, replace = TRUE)
> mvNumeric <- rnorm(6)
> mvCharacter <- sample(c("AA", "A", "B", "BB"), size = 6, replace = TRUE)
> mvDataFrame <- data.frame(mvLogical. mvNumeric. mvCharacter)</pre>
> mvDataFrame
  mvLogical mvNumeric mvCharacter
      FALSE
              1 13404
       TRILE
              0.83017
       TRUE
             1.87290
       TRUE
              0.92148
      FALSE
             -0.61139
       TRUE
             -1.15180
                                ΑΑ
```

Série de tempo

• Em R, um objeto de série de tempo pode ser criado através da função ts() .

Figura: Argumentos da função ts().

Arguments:	
data	numeric vector or matrix of the observed values
start	time of the first observation
end	time of the last observation
frequency	number of observations per unit of time.
deltat	fraction of sampling period between observations
ts.eps	time series comparison tolerance
class	class to be given to the result
names	character vector of names for multiple time series

Série de tempo

- A função ts() combina duas componentes:
 - (i) Vetor ou matriz de dados de valores numéricos;
 - (ii) Marcação temporal. Importante notar que a marcação é equidistante no tempo, ou seja, temos que a função ts() gera séries de tempo regulares.
- EXEMPLO: série temporal univariada mensal com início em janeiro de 1987 e 100 intervalos de tempo.

```
> ts(data = round(rnorm(100), 2), start = c(1987), freq = 12)
       Jan
                              Mav
                                    Jun
                                          Jul
                                                Aug
                                                     Sep
                                                           Oct
                                                                       Dec
           0.24 -0.11 -0.22
                                              0.40
     0.31
                             0.01
                                  0.99 -0.43
                                                    0.12
                                                          0.17
1988 -2.04 -1.45 -1.95
                       0.58 -0.11 0.00 -0.28 -0.44 0.72
                                                          0.43 -1.17
                                                                      0.48
    1.82 -0.88 -1.20
                       0.62
                            1.46 -0.92 0.23 -0.68 0.36
                                                          1.56
                                                                      0.51
1990
    1.41 -2.82 -0.74
                       0.89
                             0.15 -1.07 0.09 0.40
                                                    0.09
                                                          0.44 -0.29 -0.96
    1.27 -0.42 -0.08 -0.32
                             0.80 -0.06 -1.04 0.28 0.84
                                                          0.77 - 1.25
1991
                                                                      0.24
           0.80 0.87
                             0.96 0.73 -0.89 0.26 -2.09 1.19 -0.07
1992
     0.62
                       0.82
                                                                      0.63
1993
    -1.01 -0.36 -0.26 1.74
                             2.10 0.37 -0.58 -0.07 -0.56 0.50 -0.02 -0.13
     0.74 -1.02 -0.87
                       0.65 -0.59 0.58 0.54 1.23 -0.02 0.16 0.31 -0.12
1995 -0.02 1.68 -0.44 0.54
```

Série de tempo

• EXEMPLO: série temporal bivariada mensal com início em abril de 1987 e 12 intervalos de tempo.

```
> ts(data = matrix(rnorm(24), ncol = 2), start = c(1987, 4), freq = 12)
         Series 1
                   Series 2
Apr 1987 -0.11846 -0.775010
May 1987
         2.04562 0.770052
Jun 1987
         0.73857
                   0.478091
Jul 1987
         1.45352
                   0.256210
Aug 1987
         0.35742 -0.120296
Sep 1987
         1.68397 -0.983123
Oct 1987 -0.98398
                   0.627804
Nov 1987
         0.62864
                   1.660877
Dec 1987
         0.14493 -0.079505
Jan 1988
         1.24564 0.128253
Feb 1988 -1.70675 0.743185
Mar 1988 -1.36858 0.754068
```

Lista

- Lista é um vetor no qual as entradas podem ser objetos de qualquer tipo e estrutura.
- Uma lista pode conter outra lista e pode ser aplicada na construção de estruturas de dados arbitrárias.
- A principal forma de se gerar um data frame se dá através da função list().

```
> x1 <- 1:5
> x2 <- c(TRUE, TRUE, FALSE, TRUE)
> myList <- list(numbers = x1, wrong = x2)
> myList
$numbers
[1] 1 2 3 4 5
$vrong
[1] TRUE TRUE FALSE FALSE TRUE
```

Lista

- Os itens de uma lista podem ser acessados de diferentes formas:
 - Número do elemento: myList[1] indica o primeiro elemento da lista myList. Retorna, portanto, um objeto do tipo lista.

```
> myList[1]

$numbers

[1] 1 2 3 4 5
```

 Número do componente: myList[[1]] indica o conteúdo do primeiro elemento da lista myList.

```
> myList[[1]]
[1] 1 2 3 4 5
```

• Nome do componente: myList\$nome indica o elemento da lista myList com nome name.

```
> myList$wrong
[1] TRUE TRUE FALSE FALSE TRUE
```

Extração de dados

- Para extração de dados, exploraremos um pouco do pacote **tidyquant**.
- O pacote **tidyquant** integra uma coleção de pacotes chamada **tidyverse**.
 - A coleção **tidyverse** é especialmente desenhada para ciência de dados.
 - Todos seus pacotes compartilham a mesma filosofia, gramática e estruturas de dados.
- **tidyquant** é, provavelmente, a melhor ferramenta para coleta e análise de dados financeiros em R.
- Como exemplo, analisaremos os preços das ações da Apple

```
# Get stock prices for Apple stock from Yahoo! finance site.
aapl_stock_prices <- tq_get("AAPL")</pre>
```

Extração de dados

 Para visualizar o objeto que há na variável aapl_stock_prices aplicamos a função str().

```
> # str function is a way to display the structure of an R object.
> str(aapl_stock_prices)
tibble [2,696 x 8] (S3: tbl_df/tbl/data.frame)
$ symbol : chr [1:2696] "AAPL" "AAPL" "AAPL" "AAPL" ...
$ date : Date[1:2696], format: "2015-01-02" "2015-01-05" ...
$ open : num [1:2696] 27.8 27.1 26.6 26.8 27.3 ...
$ high : num [1:2696] 27.9 27.2 26.9 27 28 ...
$ low : num [1:2696] 26.8 26.4 26.2 26.7 27.2 ...
$ close : num [1:2696] 27.3 26.6 26.6 26.9 28 ...
$ volume : num [1:2696] 2.13e+08 2.57e+08 2.63e+08 1.60e+08 2.37e+08 ...
$ adjusted: num [1:2696] 24.3 23.6 23.9 24.8 ...
```

• Temos 2696 observações diárias para 7 variáveis: data, preço na abertura, máxima, mínima, preço no fechamento, volume e preço ajustado.

Tibble

- Dentre as estruturas de dados vistas anteriormente, não havia nenhuma denominada tibble.
- Tibbles s\(\tilde{a}\) estruturas de dados que s\(\tilde{a}\) parte do pacote tibble, que por sua vez integra a coleç\(\tilde{a}\) tidyverse.
- *Tibbles* são *data frames* ajustados com intuito de deixá-los mais amigáveis para cientistas de dados e podem ser gerados de duas formas:
 - Convertendo um data frame em tibble através da função as_tibble() ;
 - A partir de vetores individuais, utilizando a função tibble() .

```
tibble(
    coluna1 = c("a", "b", "c", "d"),
    coluna2 = 1:4,
    coluna3 = coluna2 ^ 2,
    coluna4 = 0
)
```

Tibble

 As funções head() e tail() permitem que as primeiras e últimas observações da base sejam visualizadas.

```
> head(aapl_stock_prices)
# A tibble: 6 x 8
       symbol date
                                                                                             high
                                                                                                                     low close
                                                                                                                                                                 volume adjusted
                                                                        open
       <chr> <date>
                                                                      <dbl> <dbl > <db > 
                                                                                                                                                                     <db1>
                                                                                                                                                                                                     <db1>
1 AAPL
                               2015-01-02
                                                                        27.8
                                                                                             27.9
                                                                                                                  26.8
                                                                                                                                       27.3 212818400
                                                                                                                                                                                                        24.3
2 AAPI.
                                                                                             27.2
                                                                                                                                                                                                        23.6
                               2015-01-05
                                                                        27.1
                                                                                                                  26.4
                                                                                                                                       26.6
                                                                                                                                                       257142000
3 AAPI.
                               2015-01-06
                                                                        26.6
                                                                                             26.9
                                                                                                                  26.2
                                                                                                                                       26.6 263188400
                                                                                                                                                                                                        23.6
4 AAPI.
                               2015-01-07
                                                                        26.8
                                                                                             27.0
                                                                                                                  26.7
                                                                                                                                       26.9 160423600
                                                                                                                                                                                                        23.9
                                                                                             28.0
                                                                                                                  27.2
                                                                                                                                                                                                        24.8
5 AAPL
                               2015-01-08
                                                                        27.3
                                                                                                                                       28.0 237458000
6 AAPL
                               2015-01-09
                                                                        28.2
                                                                                             28.3
                                                                                                                  27.6
                                                                                                                                       28.0 214798000
                                                                                                                                                                                                         24.9
> tail(aapl_stock_prices)
# A tibble: 6 x 8
       symbol date
                                                                        open
                                                                                             high
                                                                                                                     low close
                                                                                                                                                                  volume adjusted
       <chr>>
                               <date>
                                                                      <db1> <db1> <db1> <db1>
                                                                                                                                                                     <db1>
                                                                                                                                                                                                     <db1>
1 AAPT.
                               2025-09-15
                                                                        237
                                                                                             238
                                                                                                                  235
                                                                                                                                       237.
                                                                                                                                                           42699500
                                                                                                                                                                                                        237.
2 AAPL
                               2025-09-16
                                                                        237.
                                                                                             241.
                                                                                                                  236.
                                                                                                                                       238.
                                                                                                                                                           63421100
                                                                                                                                                                                                        238.
3 AAPI.
                               2025-09-17
                                                                        239.
                                                                                             240.
                                                                                                                  238.
                                                                                                                                       239.
                                                                                                                                                           46508000
                                                                                                                                                                                                        239.
4 AAPL
                               2025-09-18
                                                                        240.
                                                                                             241.
                                                                                                                  237.
                                                                                                                                       238.
                                                                                                                                                           44249600
                                                                                                                                                                                                        238.
5 AAPT.
                               2025-09-19
                                                                                             246
                                                                                                                  240.
                                                                                                                                       246. 163741300
                                                                                                                                                                                                        246
                                                                        241.
                                                                                             257.
                                                                                                                  248.
                                                                                                                                       256. 105413200
                                                                                                                                                                                                        256.
6 AAPL
                               2025-09-22
                                                                        248.
```

```
> plot(aapl_stock_prices$date, aapl_stock_prices$adjusted,
> type = "l", xlab = "Date", ylab = "Adjusted price",
> main = "Apple stock price", col = "blue")
```


• Um comando mais atual para geração de figuras em R se dá através da função ggplot() pertencente ao pacote **ggplot2**.

