

CAPÍTULO 11

LANs Virtuais (VLANs)

REDES DE COMPUTADORES 1

Engenharia de Telecomunicações

Considere a rede física da figura.

- único domínio de broadcast:
 - todo tráfego de broadcast da camada 2 (ARP, DHCP) cruza a LAN inteira (questões de eficiência, segurança/privacidade)
- cada comutador de nível mais baixo tem apenas algumas portas em uso

- Imagine que se deseje criar uma rede (domínio de broadcast) separada, apenas para os gestores de cada departamento, sem que se precise alterar a rede física. Isto seria possível utilizando o conceito de VLAN.
- As VLANs são LANs lógicas criadas dentro de LANs fisicas por meio de switches especialmente projetados para receonhecê-las.
- Neste switch é configurado os MACs que fazem parte de cada VLAN ou as portas que fazem parte de cada VLAN, separando a LAN física em várias LANs logicas.

Vantagens de separar as LANs:

1. Organização

- fácil de administrar com boa flexibilidade e escalabilidade
- VLANs podem ser organizadas por localidae, função, departamente, etc., independente da localização física dos recursos.

2. Segurança

- Departamentos de Engenharia Elétrica, Engenharia de Telecom e Engenharia da Computação não querem suas informações indo para todos os lados
- Faz sentido colocar todas as pessoas de um departamento em uma única LAN, e não permitir que qualquer parte desse tráfego saia da LAN

3. Carga

Pessoas de Eng. Computação podem não querer ter o desempenho de sua LAN comprometida por pessoas de Eng. Elétrica.

VLANS BASEADAS EM PORTAS

portas de comutador agrupadas (por software de gerenciamento de comutador) para que *único*

comutador físico

Virtual Local Area Network

Comutador(es) admitindo capacidades de VLAN podem ser configurados para definir múltiplas LANs virtuais por única infraestrutura de LAN física.

Engenharia Elétrica Enenharia da Computação (VLAN portas 9-15) (VLAN portas 1-8)

... opere como *múltiplos* comutadores virtuais

Engenharia Elétrica

Engenharia da Computação (VLAN portas 9-16)

Escola Politécnica de Pernambuco (VLAN portas 1-8) Universidade de Pernambuco

- isolamento de tráfego: quadros de/para portas 1-8 só podem alcançar portas 1-8
 - também podem definir VLAN com base em endereços MAC das extremidades, em vez de porta do comutador
- inclusão dinâmica: portas podem ser atribuídas dinamicamente entre VLANs

Engenharia Elétrica (VLAN portas 1-8)

Engenharia da Computação (VLAN portas 9-15)

- □ repasse entre VLANS:
 - feito por roteamento (assim como em comutadores separados)
 - na prática, fornecedores vendem uma combinação de comutador e roteador

VLANS SPANNING MULTIPLE SWITCHES

- Neste caso, os 2 switches possuem portas da VLAN amarela e da VLAN azul.
- Para este esquema funcionar é preciso identificar os quadros que chegam aos switches 1 e 2 para que estes saibam a qual VLAN o quadro deve ser encaminhado.

- Para resolver essa questão o IEEE modificou o cabeçalho do Ethernet para possuir um TAG de VLAN, cirando o padrão 802.1Q.
- porta de tronco: carrega quadros entre VLANS definidas sobre vários comutadores físicos
 - quadros repassados dentro da VLAN entre comutadores não podem ser quadros 802.1 comuns (devem ter informação VLAN ID)
 - protocolo 802.1q inclui campos de cabeçalho adicionais para quadros repassados entre portas de tronco

O PADRÃO 802.1 Q

- O campo ID de protocolo de VLAN (2 bytes) tem sempre o valor 0x8100, como é maior que 1500, as placas ETH o interpretam como um tipo.
- O Campo TAG (2 bytes) é dividido em:
 - Identi. Vlan (12 bits) identifica a cor da VLAN a qual o quadro pertence
 - Prioridade (3 bits) serve para distinguir o trafego real do não tempo real.
 - Canonical Format Indicator (CFI) Indica que a carga possui um quadro 802.5.

- Apenas as pontes e switches lidariam com o VLAN tag, não os usuários;
- Nem todas as pontes e switches precisam ser VLANaware
- Funcionamento:
 - O primeiro switch VLAN-aware a tocar no frame adiciona o campo VLAN e o ultimo o remove antes de enviar o frame a um link de acesso
 - As Bridge/Switch de entrada devem avaliar o número da porta/endereço MAC/endereço IP e mapeá-lo no campo VLAN
 - Praticamente todas as placas Gigabit Ethernet são VLANaware
 - Devido ao problema do tamanho máximo do frame, 802.1Q o aumentou de 1518 para 1522 bytes

OBSERVAÇÕES

- Ao se criar VLANs, cria-se na verdade domínios de broadcast o que é bom para reduzir consumo de banda em grandes domínios de broadcast.
- Roteadores devem ser usados em conjunto com os switches para permitir comunicação entre as VLANs sem que mensagens de broadcast sejam propagadas por toda a rede.
- O papel de comunicação inter-VLANs pode ser feito por um Switch L3, configurando-o como Gateway.
- É Importante colocar cada VLAN em uma rede de IP diferente, a fim de possibilitar a comunicação inter-VLANs.

