Electromania Lecture

Electronics Club

Stuff you already know

- 555
- 4029
- 7447
- Binary operations (AND, OR, NOT, etc.)
- Multiplexers and Demultiplexers

555 (Monostable Timer)

- While output is LOW, it waits for a falling edge (transition from HIGH to LOW) in input and then sets output to HIGH for time t
- While output is HIGH, it ignores input

555 (Astable mode)

- No input, only output
- Output is a rectangular wave
- HIGH time and LOW time is user defined

4029 (Counter)

- Has one input pin, 4 output pins
- Output is always a binary number x
- When a rising edge (transition from LOW to HIGH) is detected on the input pin (CLK), output is incremented by 1 to (x +1)
- After reaching maximum value, on detecting a rising edge on input, output reverts to 0

7447 (BCD Decoder)

- Receives 4-bit binary number as input
- Output directly connected to BCD display

AND (4081)

Α	В	0
0	0	0
0	1	0
1	0	0
1	1	1

$$O = A.B$$

OR (4071)

Α	В	0
0	0	0
0	1	1
1	0	1
1	1	1

$$O = A + B$$

NOT (4069)

Α	0
0	1
1	0

$$O = \overline{A}$$

Others...

- NAND NOT of AND
- NOR NOT of OR

XOR (4070)

Α	В	0
0	0	0
0	1	1
1	0	1
1	1	0

$$O = A^B$$

- Multiple input, one output
- A single input line is connected electrically to the output
- The selection of the input line is done via separate input

What do we mean by "Electrical"?

- Connection is analog, not digital
- Any value of voltage is copied to output, and any input current is transmitted to the output
- It is as if the input and output have been shorted by a wire

Demultiplexer

- Opposite of multiplexing
- Multiple output, single input
- Input is electrically connected to one of the output lines
- Selection of output line is done via separate input

Demultiplexer

What's the difference?

- Since the connection is electrical, same IC can act as multiplexer as well as demultiplexer
- We call this Mux-Demux
- In particular, the above IC is 4052 a 4 X 1
 Mux-Demux

Dual Master/Slave JK Flip Flops

FLIP FLOPS

Flip-Flops (4027)

- Can be used as toggle switches
- One clock input, one output
- On receiving pulse on input, output "toggles"

Pin Diagram and Truth Table

Inputs			Out	puts		
S _d	C_d	СР	J	K	O _{n+1}	\overline{O}_{n+1}
Н	L	Х	Х	Х	Н	L
L	Н	Х	Х	Х	L	Н
Н	Н	Х	Х	Х	Н	Н

Inputs			Out	puts		
S _d	C_d	СР	J	K	O _{n+1}	$\overline{0}_{n+1}$
L	L		L	L	O _n	\overline{O}_{n}
L	L	_/	Н	L	Н	L
L	L	_/	L	Н	L	Н
L	L	_/	Н	Н	$\overline{\mathrm{O}}_{n}$	O _n

Problem Statement

ELECTROMANIA

Thank you!

Abhinav Prateek Chirag Sangani Sumeet Kumar

students.iitk.ac.in/eclub students.iitk.ac.in/eclub/electrovate

