

课堂笔记

作者: Huang

目录

第1章	多元函数的极限和连续]
1.1	2023/8/31	1

第1章 多元函数的极限和连续

1.1 2023/8/31

定义 1.1

设 $F \subset \mathbb{R}^n$,若 F^c 为开集,则称F为闭集

定理 1.1

在 \mathbb{R}^n 中

- $1.\mathbb{R}^n, \oslash$ 均为闭集(很特殊的一点,这两个同时为开集和闭集)
- 2.若 F_{α} 为 \mathbb{R}^{n} 中的一个闭集族, 其中指标 α 来自一个指标集合 I, 则 $\bigcap_{\alpha \in I} F_{\alpha}$ 也是闭集
- 3. 设 F_1, F_2, \cdots, F_m 为有限个闭集,则它们的并集 $\bigcup_{i=1}^m F_i$ 也是闭集

令 $\check{B}(a,r) = B(a,r) \setminus \{a\}$ 为以a 为心,半径为r 的空心球

定义 1.2

设 $E \subset \mathbb{R}^n$, 若点 $a \in \mathbb{R}^n$ 满足:对任意 r > 0, 在空心球 $\check{B}(a,r)$ 总含有 E 中的点,则称 a 为 E 的聚点

注 聚点可以属于 E 也可以不属于 E。若 E 中的点不是聚点,则称其为孤立点。

定义 1.3

 $E \subset \mathbb{R}^n$ 的凝聚点的全体称为 E 的导集,记作 E,记 $\bar{E} = E \cup E'$,称其为 E 的闭包

定理 1.2

E 为闭集的充要条件是 $E' \subset E$, 即 $\bar{E} = E$

 $^{\circ}$

证明

 \implies 我们要证明的是包含关系,于是先把 E' 中的元素设出来,不妨假设 $x \in E'$, 只需要证明 x同时也 $\in E$ 即可,但直接证明不是很好证明,考虑反证法,即 $x \notin E \Rightarrow x \in E^c$

点在集合中,直接默写定义

 $\exists r > 0, \notin \mathcal{B}(x,r) \subset E^c$

于是乎,有

$$\hat{B}(x,r) \cap E = \emptyset \tag{1.1}$$

根据聚点的定义,我们是对任意的r>0的去心球均有交集,但我们推出了如(1.1)的结论,表明其不为E的聚点,故

 $x \in E'$

与先前假设 $x \in E'$ 矛盾,于是假设错误

 \longleftarrow 现在我们要证明 E 为闭集通常像这类的证明,我们要将其转化为该集合的补集进行证明。故我们只需证明 E^c 为开集即可,但事实上,直接进行证明有些难度,我们采取反证法

假设 E^c 非开,按定义直接写(把开集的定义反着来)

 $\exists x \in E^c, \forall r > 0, B(x,r) \cap E \neq \emptyset$ (这里的结论是 $B(x,r) \subset E^c$ 的反例,不属于这个集合,等价于和这个集合的补集有交集)

x 显然不在 E 中,则 x 为 E 的一个聚点,于是有

$$x \in E' \subset E$$

与 $x \in E^c$ 矛盾, 假设错误

推论 1.1

E 是闭集的充要条件是 E 中的任何收敛点列的极限必在 E 中

 \sim

证明 \Longrightarrow 设 $\{a_n\} \subset E$ 且 $\lim_{n \to \infty} a_n = x$,直接证明不好证明,我们采取反证法,假设 $x \in E^c$,又因为 E^c 为开集,按定义

$$\exists r > 0, B(x,r) \subset E^c$$

又因为 a_n 收敛于 x,于是存在无穷多个 a_n 在 x 附近的一个开球 B(x,r) 中,故 x 为 E 的一个聚点于是有 $x \in E' \subset E$

与 $x \in E^c$ 矛盾,假设错误 \iff 现在我们要证明 E 为闭集通常像这类的证明,我们要将其转化为该集合的补集进行证明。故我们只需证明 E^c 为开集即可,但事实上,直接进行证明有些难度,我们采取反证法

推论 1.2

完备度量空间的闭子集是完备集。

 \Diamond

证明

定理 1.3

E的导集 E和闭包 Ē均为闭集

 \sim

证明