

Lógica de Programação Aula 13 - Estruturas de dados homogêneas -**Matrizes**

Apresentação da Aula

Você lembra que as estruturas de dados homogêneas são classificadas em dois tipos? Em **vetores** (também conhecidos como *arrays*) e em **matrizes**. O primeiro tipo é também conhecido como **estruturas unidimensional**, e o segundo tipo, as **matrizes**, é, no mínimo, **bidimensional**. Além disso, você viu que os vetores são variáveis que utilizam índices para permitir o acesso aos seus espaços de armazenamento e aprendeu como declará-los e utilizá-los.

Nesta aula, você continuará a conhecer as **estruturas de dados homogêneas**, mas, agora, trabalhará especificamente com as **matrizes**, que, como já dito, são estruturas com capacidade **bidimensional** ou **n-dimensional**.

🔾 Objetivos

Conhecer o conceito de estruturas de dados homogêneas bidimensionais.

Explorar o conceito e a sintaxe das matrizes.

Construir algoritmos por meio das matrizes.

Classificação das Estruturas de Dados Homogêneas

Em aulas anteriores, você viu o que são as estruturas de dados homogêneas e teve a oportunidade de conhecer as estruturas homogêneas **unidimensionais**. Além disso, observou que essas estruturas são variáveis com diversos espaços de armazenamento e que, para acessar cada um desses espaços, é necessário utilizar um índice.

Os vetores (*arrays*) são estruturas **unidimensionais**, pois possuem apenas uma dimensão. Em outras palavras, para acessar os espaços de armazenamento dessa estrutura, é necessário informar somente um índice.

Já as **matrizes** são estruturas também **homogêneas**, porém, elas possuem duas dimensões ou mais. Agora, você irá conhecer e trabalhar especificamente com as **matrizes bidimensionais**, isto é, com duas dimensões.

As **matrizes bidimensionais** podem ser representadas por meio de tabelas. Você recordar-se das tabelas estudadas na disciplina de Introdução às Tecnologias da Informação? Em uma tabela, para cada espaço destinado ao armazenamento de informação (células), são necessárias duas informações para determinar o seu endereço. No caso das planilhas, uma das informações diz respeito à definição da coluna, geralmente representada por letras. As linhas, por sua vez, são definidas com base em números. Observe a Figura 01, na qual é apresentada uma tabela com 10 linhas e 10 colunas.

Figura 01 - Exemplo de Tabela

	Α	В	С	D	Е	F	G	Н	I	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

A Figura 02 apresenta a mesma tabela da Figura 01, mas com alguns dos seus espaços ocupados. Por exemplo, na primeira linha, temos os espaços das colunas **A**, **B** e **C**, que estão ocupados. Já na sexta linha, temos o espaço da coluna **E** e, por último, na linha 10, nós temos o espaço da coluna **H** ocupado. Para que seja possível determinar qual desses espaços se desejar acessar, é necessário sempre informar qual é a coluna e qual é a linha pretendida.

Figura 02 - Exemplo de Tabela com conteúdos

	Α	В	С	D	Е	F	G	Н	I	J
1	A1	B1	C1							
2										
3										
4										
5										
6					E6					
7										
8										
9										
10								H10		

Nas **matrizes**, como estrutura de dados homogênea **bidimensional**, das linguagens de programação, geralmente, as informações que definem o endereço de cada espaço da tabela são índices numéricos, apesar que, há linguagens que permitem a definição de índices a partir de outros tipos de dados. No Potigol, ambos os índices serão sempre valores inteiros.

Como explicado, uma matriz **bidimensional** pode ser representada por meio de uma tabela. A Figura 03 apresenta uma matriz, cujos índices são números inteiros que estão informados acima e à esquerda dessa tabela.

Na **matriz**, observe que, internamente, em cada um dos espaços (quadrados), há dois números: o primeiro deles representa o número da linha, e o segundo representa o número da coluna. Você recorda que, na aula sobre vetores, foi dito que os índices de um vetor, na linguagem **Potigol**, são iniciados a partir do valor 0 (zero)? O mesmo vale para as **matrizes**, cujo primeiro índice (tanto para a linha como para as colunas) será sempre zero. Neste exemplo, nós temos uma matriz de cinco colunas e três linhas.

Figura 03 - Exemplo de Matriz Bidimensional 3x5

	0	1	2	3	4
0	[0,0]	[0,1]	[0,2]	[0,3]	[0,4]
1	[1,0]	[1,1]	[1,2]	[1,3]	[1,4]
2	[2,0]	[2,1]	[2,2]	[2,3]	[2,4]

Sintaxe de Matrizes

Lembra-se da sintaxe para se declarar uma variável homogênea **unidimensional** do tipo texto (vetor)? Caso você não esteja se recordando, o trecho de código abaixo reapresenta como realizar esse procedimento. No exemplo, define-se uma variável homogênea denominada **alunos**, cujo tipo é texto e com 10 espaços de armazenamento (índices de 0 até 9).

```
1 var alunos := vetor[10]
```

Agora, observe como realizar a declaração de uma variável **bidimensional**, também do tipo **texto**, porém, com 5 linhas e 10 colunas. Observe que o comando que define uma matriz é semelhante ao de declaração de um vetor. A diferença refere-se ao par de números separados por vírgula, pois, para a **matriz**, são necessários dois valores inteiros a fim de indicar a quantidade de linhas e colunas.

```
1 var matriz_alunos := matriz[5,10]
```

Lembre-se de que o índice utilizado entre os colchetes de um vetor indica a posição que se deseja acessar na variável. O mesmo vale para as **matrizes bidimensionais**, com a diferença de que, no caso delas, será necessário informar dois índices: um para a linha e outro para a coluna. Veja como ficaria a sintaxe para acessar a terceira linha e a segunda coluna do vetor **matriz_aluno**, armazenar o nome de um aluno e, em seguida, escrever na tela o nome armazenado.

```
var matriz_alunos := matriz[5,10]

# Armazenando um nome de aluno.

matriz_alunos[2][1] := "Uriel Lira Lopes"

escreva "O nome do aluno é: {matriz_alunos[2][1]}."
```

Você recorda que, nos vetores, é possível substituir o índice numérico por uma variável primitiva do tipo **inteiro**? Assim, é possível utilizar as estruturas de repetição para simplificar a manipulação dos dados de um vetor. A mesma solução vale para as **matrizes**, no entanto, para acessar todas as posições (espaços da matriz), será necessário utilizar duas estruturas de repetição, pois é imprescindível uma variável de controle para indicar o índice das linhas e outra variável para indicar o índice das colunas.

No exemplo a seguir, considere que cada linha da matriz representa um aluno e que cada coluna representa a nota de uma disciplina. Desse modo, cada linha possui 3 colunas que representarão as notas de 3 disciplinas.

```
var notas_de_3disciplinas := matriz[5,3]
 2
 3 # ler notas de 3 disciplinas para 5 alunos
 4 para linha de 0 até 4 faça
     para coluna de 0 até 2 faça
        escreva "Para o aluno {linha+1} informe a nota da Disciplina {coluna+1}:"
 6
 7
        notas_de_3disciplinas[linha][coluna] := leia_inteiro
 8
     fim
9 fim
10
11 # imprimir as notas de 3 disciplinas de 5 alunos
12 para linha de 0 até 4 faça
     para coluna de 0 até 2 faça
13
14
        escreva "Aluno {linha+1} - Disciplina {coluna+1} - Nota {notas_de_3disciplinas[linha][coluna]}"
15
16 fim
17
```

A Figura 04 representa graficamente a matriz **notas_de_3disciplinas[][]**. Observe que, na lateral esquerda, temos os valores de L1, L2, L3, L4 e L5, que estão associados às linhas de 1 até 5, e, imediatamente ao lado, estão os respectivos índices, que vão de 0 (zero) até 4 e são utilizados para acessar uma dessas linhas. Por exemplo, se você quiser acessar a última linha (L5), será necessário utilizar o índice 4 dentro do primeiro colchete da variável **notas_de_3disciplinas[][]**.

Já na parte superior, há os identificadores C1, C2 e C3, que representam as colunas 1, 2 e 3. Logo abaixo desses identificadores, estão os índices de cada coluna, relativos aos valores de 0 (zero) até 2. Para indicar qual das colunas se deseja acessar, é necessário inserir o respectivo índice no segundo colchete da variável **notas_de_3disciplinas[][]**. É importante destacar que, ao acessar qualquer posição em uma matriz, você terá de inserir sempre ambos os índices (o de linha e o de coluna) para poder indicar corretamente qual posição se deseja acessar nela.

Figura 04 - Matriz e índices

		C1	C2	C3
		0	1	2
L1	0			
L2	1			
L3	2			
L4	3			
L5	4			

Uso de Matrizes

As **matrizes** são utilizadas, geralmente, para o armazenamento de dados que necessitam ser endereçados por mais de um índice. Um bom exemplo em que há o uso de **matrizes** são as imagens digitais que você vê no computador, no *tablet* ou no celular. Uma imagem é formada por centenas de pontos de informação, um ao lado do outro, e cada um desses pontos de informação possui um par de coordenadas (que determina as linhas e colunas) na **matriz**. A informação armazenada em cada um desses pontos, no caso das imagens, é a cor que o ponto deve possuir.

Muitos outros problemas computacionais utilizam as **matrizes** para representar uma estrutura multidimensional de dados. A exemplo de tais problemas, temos jogos (um tabuleiro de xadrez), gráficos, sistemas de equações (construção de

matrizes, álgebra linear), além de diversas outras situações.

Atividade 01

Preenchendo e imprimindo o conteúdo de uma matriz

Construa um algoritmo que receberá os elementos para preencher uma **matriz** de 5 linhas e 10 colunas. O preenchimento da **matriz** ocorrerá da esquerda para a direita, de cima para baixo.

Após preencher toda a **matriz**, o seu algoritmo deverá imprimi-la no formato de 5 linhas e 10 colunas. Os números de uma mesma linha devem ser separados por um único espaço em branco entre eles.

Atividade 02

Preenchendo e imprimindo o conteúdo de uma matriz

2

Construa um algoritmo que receberá os elementos para preencher uma **matriz** de 5 linhas e 10 colunas. O preenchimento da **matriz** ocorrerá da esquerda para a direita, de cima para baixo.

Após preencher toda a **matriz**, o seu algoritmo deverá imprimi-la no formato de 5 linhas e 10 colunas. Os números de uma mesma linha devem ser separados por um único espaço em branco entre eles.

Em seguida, você deverá imprimir novamente a mesma **matriz**, no entanto, deverá invertê-la e realizar a impressão no formato de 10 linhas e 5 colunas. Para isso, você precisará considerar que cada linha será uma coluna e que cada coluna será uma linha. Lembre-se de que os números de uma mesma coluna (que agora serão impressos como linhas) devem ser separados por um único espaço em branco entre eles.

Atividade 03

Somando em uma matriz

Construa um algoritmo que receberá um número inteiro entre 1 e 10 e que, em seguida, receberá os elementos para preencher uma **matriz** de 5 linhas e 10 colunas. O preenchimento da **matriz** ocorrerá da esquerda para a direita, de cima para baixo.

Após preencher toda a **matriz**, o seu algoritmo realizará a soma de todos os elementos presentes na coluna informada (o valor, entre 1 e 10, informado no início do programa).

Resumo

Nesta aula, você exercitou o uso das estruturas de dados **homogêneas** e trabalhou com as estruturas **bidimensionais**, construindo algoritmos e utilizando essas estruturas associadas ao uso das **estruturas de repetição**. Caso você tenha encontrado alguma dificuldade, converse com seu mediador para poder sanar o quanto antes as suas dúvidas. O completo entendimento das estruturas homogêneas **unidimensionais** e **bidimensionais** é importante para a construção dos seus próximos conhecimentos sobre a construção de algoritmos.

Referências

Linguagem Potigol: Programação para todos. Disponível em: http://potigol.github.io/>. Acesso em: 07 jul. 2018.