Formal Methods for Cyber-Physical Systems

Lab 3: GR(1) Synthesis

Generalized Reactivity(1) Synthesis

- Introduced in 2012 by Bloem et al.
- What are we willing to trade?
 - ... the full expressivity of LTL!
- What do we get?
 - A reduction in complexity from doubly exponential to singly exponential!

GR(1) Synthesis vs LTL Synthesis

Full LTL Synthesis

- Specification
- 2 Deterministic Automaton
- 3 Game
- 4 Strategy / Component

Doubly exponential complexity

GR(1) Synthesis

- Specification
- 2 Direct translation to the Game, exponential blow-up
- 3 Strategy / Component

Singly exponential complexity

GR(1) – What should be supported?

- Computation model
 - Mealy machine: finite state machine with inputs and outputs
- Specification model
 A specification consists of assumptions and guarantees each of which are either
 - initialization properties
 - basic safety properties
 - basic liveness properties

Assumption and guarantees

$$\left(\bigwedge\mathsf{Assumptions}\right)\to\left(\bigwedge\mathsf{Guarantees}\right)$$

Overall specification shape

$$\left(\varphi_{i}^{\mathsf{a}} \wedge \varphi_{\mathsf{s}}^{\mathsf{a}} \wedge \varphi_{\ell}^{\mathsf{a}}\right) \to \left(\varphi_{i}^{\mathsf{g}} \wedge \varphi_{\mathsf{s}}^{\mathsf{g}} \wedge \varphi_{\ell}^{\mathsf{g}}\right)$$

Overall specification shape

$$\begin{pmatrix} \varphi_i^a & \wedge & \varphi_s^a & \wedge & \varphi_\ell^a \\ \text{initialization safety liveness} \\ \text{assumptions assumptions assumptions} \end{pmatrix} \rightarrow \left(\varphi_i^g \wedge \varphi_s^g \wedge \varphi_\ell^g\right)$$

Overall specification shape

$$(\varphi_i^a \wedge \varphi_s^a \wedge \varphi_\ell^a) \rightarrow \begin{pmatrix} \varphi_i^g & \wedge & \varphi_s^g & \wedge & \varphi_\ell^g \\ \text{initialization} & \text{safety} & \text{liveness} \\ \text{guarantees} & \text{guarantees} & \text{guarantees} \end{pmatrix}$$

Coffee machine example

Controller shape

$$X_u = \{bu\}$$
 (button) $X_c = \{gr, br\}$ (grind, brew)

Initialization assumptions

Controller shape

$$I = \{bu\}$$
 (button) $O = \{gr, br\}$ (grind, brew)

Initialization assumptions

Properties without temporal operators over only *I* Example:

 $\neg bu$

Safety assumptions

Controller shape

$$I = \{bu\}$$
 (button) $O = \{gr, br\}$ (grind, brew)

(Basic) Safety assumptions

Properties of the form $\Box \psi$, where ψ is a boolean formula over I, O and $\{\bigcirc y \mid y \in I\}$. Examples:

- $\blacksquare \Box (bu \to \neg \bigcirc bu)$
- $\blacksquare \Box ((gr \lor br) \to \neg \bigcirc bu)$

Liveness assumptions

Controller shape

$$I = \{bu\}$$
 (button) $O = \{gr, br\}$ (grind, brew)

(Basic) Liveness assumptions

Properties of the form $\Box \Diamond \psi$, where ψ is a boolean formula over I, O and $\{ \bigcirc y \mid y \in I \cup O \}$. Examples:

- **■** □◊(bu)
- $\blacksquare \Box \Diamond (\neg br \land \neg gr \land \bigcirc bu)$

Initialization guarantees

Controller shape

$$I = \{bu\}$$
 (button) $O = \{gr, br\}$ (grind, brew)

Initialization guarantees

Properties without temporal operators over I and O Example:

- $\blacksquare \neg gr \wedge \neg br$
- $\blacksquare \neg bu \rightarrow (\neg gr \land \neg br)$

Safety guarantees

Controller shape

$$I = \{bu\}$$
 (button) $O = \{gr, br\}$ (grind, brew)

Safety guarantees

Properties of the form $\Box \psi$, where ψ is a boolean formula over I, O and $\{\bigcirc y \mid y \in I \cup O\}$. Examples:

$$\blacksquare \Box (gr \to \neg \bigcirc gr)$$

$$\blacksquare \Box ((gr \land \bigcirc bu) \to \bigcirc gr)$$

Liveness guarantees

Controller shape

$$I = \{bu\}$$
 (button) $O = \{gr, br\}$ (grind, brew)

Liveness guarantees

Properties of the form $\Box \Diamond \psi$, where ψ is a boolean formula over I, O and $\{\bigcirc y \mid y \in I \cup O\}$. Examples:

- $\blacksquare \ \Box \Diamond (gr \land \bigcirc br)$
- $\square \lozenge (bu \lor br)$

Inputs and outputs

$$I = \{bu\}$$
$$O = \{gr, br\}$$

A trace of the system

$$\rho = \left(\begin{array}{c} \\ \end{array} \right)$$

Inputs and outputs

$$I = \{bu\}$$
$$O = \{gr, br\}$$

A trace of the system

$$\rho = \begin{pmatrix} \mathbf{0} \\ \end{pmatrix}$$

Step 1

The environment selects values for *I* that satisfy the initialization assumptions

Inputs and outputs

$$I = \{bu\}$$
$$O = \{gr, br\}$$

A trace of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Step 2

The controller selects values for *O* that satisfy the initialization guarantees

Inputs and outputs

$$I = \{bu\}$$
$$O = \{gr, br\}$$

A trace of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Step 2n + 1

The environment selects values for I that the last element of ρ and the new values for I satisfy the safety assumptions

Inputs and outputs

$$I = \{bu\}$$
$$O = \{gr, br\}$$

A trace of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Step 2n + 2

The controller selects values for O that the last element of ρ and the new values for I and O satisfy the safety guarantees

Inputs and outputs

$$I = \{bu\}$$
$$O = \{gr, br\}$$

A trace of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ \end{pmatrix}$$

Step 2n + 1

The environment selects values for I that the last element of ρ and the new values for I satisfy the safety assumptions

Inputs and outputs

$$I = \{bu\}$$
$$O = \{gr, br\}$$

A trace of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Step 2n + 2

The controller selects values for O that the last element of ρ and the new values for I and O satisfy the safety guarantees

Inputs and outputs

$$I = \{ bu \}$$
$$O = \{ gr, br \}$$

A trace of the system

$$\rho = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \dots$$

And so on...

The process continues ad infinitum

Who wins the game?

Finitary winning

If at some point one of the player violates the rules fo the game then the player doing so first loses the game

Infinitary winning

- If the game continues ad infinitum, then the controller wins if either:
 - the liveness assumptions are violated
 - or the liveness guarantees are satisfied

Let's explore the semantics by example

GR(1) synthesis tool used

```
Slugs - web-based version available at https://webslugs.ruediger-ehlers.de
```

Specification

```
[INPUT]
bu
[OUTPUT]
br
gr
[ENV INIT]
[SYS INIT]
gr <-> bu
! br
```

Let's explore the semantics by example

Specification (cont'd)

```
[SYS_TRANS]
br' <-> gr
gr' -> bu'

[ENV_TRANS]
bu' -> !gr & !br
```

Let's explore the semantics by example

Specification (cont'd)

```
[SYS_TRANS]
br' <-> gr
gr' -> bu'

[ENV_TRANS]
bu' -> !gr & !br
```

Observation

The system can make coffee, but it does not have to do so

Let's fix the example

Added Liveness Guarantee

[SYS_LIVENESS] br

Let's fix the example

Added Liveness Guarantee

[SYS_LIVENESS] br

Observation

The system cannot enforce a button press, so it loses

Let's fix the example (2)

Added Liveness Assumption

[ENV_LIVENESS] bu

Let's fix the example (2)

Added Liveness Assumption

[ENV_LIVENESS]

Observation

Now everything works as expected

Credits

The concepts and portions of this presentation have been taken from:

■ A Gentle Introduction to Reactive Synthesis by Rüdiger Ehlers, TU Clausthal

https://www.ruediger-ehlers.de/blog/introtoreactivesynthesis.html