

South China University of Technology

The Experiment Report of Machine Learning

SCHOOL: SCHOOL OF SOFTWARE ENGINEERING

SUBJECT: SOFTWARE ENGINEERING

Author: Ruiyong Li Xin Shu

Xingyang Cai

Student ID:

201530612033

201530612705

201530611074

Supervisor: Qingyao Wu

Grade:

Undergraduate or Graduate

Linear Regression, Linear Classification and **Gradient Descent**

Abstract—

I. INTRODUCTION

Motivation

- Explore the construction of recommended system.
- 2. Understand the principle of matrix decomposition.
- 3. Be familiar to the use of gradient descent.
- Construct a recommendation system under small-scale dataset, cultivate engineering ability.

Dataset

- Utilizing MovieLens-100k dataset.
- u.data -- Consisting 10,000 comments from 943 users out of 1682 movies. At least, each user comment 20 videos. Users and movies are numbered consecutively from number 1 respectively. The data is sorted randomly
- u1.base / u1.test are train set and validation set respectively, seperated from dataset u.data with proportion of 80% and 20%. It also make sense to train set and validation set from u1.base / u1.test to u5.base / u5.test.

II. METHODS AND THEORY

Matrix Decomposition; Recommender System; stochastic gradient descent(SGD)

III. EXPERIMENT

Using stochastic gradient descent method(SGD):

Read the data set and divide it (or use u1.base / u1.test to u5.base / u5.test directly). Populate the original scoring

matrix R_{n_users,n_items} against the raw data, and fill 0 for null values.

```
train_path = 'C:/Users/47864/Desktop/m1-100k/m1-100k/u1.base'
test_path = 'C:/Users/47864/Desktop/m1-100k/m1-100k/u1.test'
train = np. loadtxt(train_path)
test = np. loadtxt(test path)
  = np. zeros((943, 1682))
for sample in train:

R[int(sample[0])-1][int(sample[1])-1] = int(sample[2]) #the sparse user score matrix
```

Initialize the user factor matrix $P_{n_users,K}$ and the

item (movie) factor matrix, $Q_{n_item,K}$ where K is the number of potential features.

```
user_gradient = np. zeros(user_w. shape)
movie_gradient = np. zeros(movie_w. shape)
for row in range(user_w.shape[0]):
    col = int(random.choice(train[train[:,0]= (row+1)])[1])-1
    user_gradient[row] = -movie_w.T[col]*(R[row][col] -np.dot(user_w[row], movie_w.T[col]))
for col in range(movie_w.shape[1]):
            row = int(random.choice(train[train[:,1]= (col+1)])[0])-1
            pass
```

3. Determine the loss function and hyperparameter learning rate η and the penalty factor λ .

```
def compute_loss(user_w, movie_w, dataset):
    sum loss = 0
    for sample in dataset:
       pred_rate = np. dot(user_w[int(sample[0]),:], movie_w[:, int(sample[1])])
        sum_loss += 1/2*(pred_rate-sample[2])**2
    return sum_loss/len(dataset)
```

- Use the stochastic gradient descent method to decompose the sparse user score matrix, get the user factor matrix and item (movie) factor matrix:
 - 4.1 Select a sample from scoring matrix randomly;
 - 4.2 Calculate this sample's loss gradient of specific row(column) of user factor matrix and item factor matrix;

```
def compute_loss(user_w, movie_w, dataset):
    sum loss = 0
    for sample in dataset:
        pred_rate = np. dot(user_w[int(sample[0]),:], movie_w[:,int(sample[1])])
        sum loss += 1/2*(pred rate-sample[2])**2
    return sum loss/len(dataset)
```

4.3 Use SGD to update the specific row(column) of

```
P_{n\_users,K} and Q_{n\_item,K}.
user_w -= learning_rate*user_gradient
movie_w -= learning_rate*movie_gradient
return user w, movie w
```

4.4 Calculate the $L_{validation}$ on the validation set. comparing with the Lvalidation of the previous iteration to determine if it has converged.

```
loss_list = []
loss = compute_loss(user_w, movie_w, test)
loss_list.append(loss)
print(loss)
```

Repeat step 4. several times, get a satisfactory user factor

matrix P and an item factor matrix Q, Draw a $L_{validation}$ curve with varying iterations.

6. The final score prediction matrix $\hat{R}_{n_users,n_items}$ is obtained by multiplying the user factor matrix $P_{n_users,K}$ and the transpose of the item factor matrix $Q_{n_item,K}$

IV. CONCLUSION

From the Lvalidation curve with varying iterations, we can find that the minimum loss is appeared (0.98002206146) when the iteration is about 543.