Séries entières

Fiche récapitulative nº 6

Définitions

- Série entière de la variable réelle, de la variable complexe.
- Rayon de convergence d'une série entière.
- Disque ouvert de convergence.
- Intervalle ouvert de convergence.
- produit de Cauchy de deux séries entières.
- Série primitive d'une série entière.
- Série dérivée d'une série entière.
- Fonction développable en série entière sur le disque ouvert de centre 0 et de rayon R.
- Série de Taylor d'une fonction de classe \mathcal{C}^{∞} au voisinage de 0.

Résultats et propriétés

- Lemme d'Abel.
- La série $\sum a_n z^n$ converge absolument si |z| < R, et elle diverge grossièrement si |z| > R.
- Comparaison des rayons lorsque $a_n = O(b_n)$.
- Rayon de convergence de $\sum n^{\alpha}x^{n}$.
- Application de la règle de d'Alembert (utilisation directe du apport $\frac{|a_{n+1}|}{|a_n|}$).
- Rayon de convergence d'une somme de deux séries entières.
- Rayon de convergence du produit (de Cauchy) de deux séries entières.
- Convergence normale sur tout disque fermé de centre 0 contenu dans le disque ouvert de convergence.
- Continuité de la somme d'une série entière sur le disque ouvert de convergence.
- $\sum a_n x^n$ et $\sum na_n x^n$ ont même rayon de convergence.
- Primitivation d'une série entière sur l'intervalle ouvert de convergence : intégration terme à terme.
- La somme d'une série entière est de classe \mathcal{C}^{∞} : dérivation terme à terme.
- Expression des coefficients d'une série entière à l'aide des dérivées en 0 de sa somme.
- Si les sommes de deux séries entières $\sum a_n x^n$ et $\sum b_n x_n$ coincident sur un intervalle $]0,\alpha]$, alors $a_n = b_n$ pour tout n.
- Développement de $\exp(z)$ sur \mathbb{C} .
- Développement de $\frac{1}{1-z}$ sur $\{z \in \mathbb{C}, \ |z| < 1\}$.
- Développements usuels dans le domaine réel (exponentielle, hyperboliques, circulaires, arctan, $x \mapsto \ln(1+x)$ et $x \mapsto (1+x)^{\alpha}$.
- Développement en dérie entière à l'aide d'une équation différentielle linéaire.