1. Introdução

A **teoria dos conjuntos** representa instrumento de grande utilidade nos diversos desenvolvimentos da Matemática, bem como em outros ramos das ciências físicas e humanas.

Devemos aceitar, inicialmente, a existência de alguns conceitos primitivos (noções que adotamos sem definição) e que estabelecem a linguagem do estudo da **teoria dos conjuntos**.

Adotaremos a existência de três conceitos primitivos: **elemento**, **conjunto** e **pertinência**. Assim, é preciso entender que cada um de nós é um elemento do conjunto de moradores desta cidade, ou melhor, cada um de nós é um **elemento** que pertence ao conjunto de habitantes da cidade, mesmo que não tenhamos definido o que é conjunto, o que é elemento e o que é pertinência.

2. Notação e representação

A notação dos conjuntos é feita mediante a utilização de uma letra maiúscula do nosso alfabeto, e a representação de um conjunto pode ser feita de diversas maneiras, como veremos a seguir.

A. Listagem dos elementos

Apresentamos um conjunto por meio da listagem de seus elementos quando relacionamos todos os elementos que pertencem ao conjunto considerado e envolvemos essa lista por um par de chaves. Os elementos de um conjunto, quando apresentados na forma de listagem, devem ser separados por vírgula ou por ponto e vírgula, caso tenhamos a presença de números decimais.

Exemplos

- **a.** Seja A o conjunto das cores da bandeira brasileira, então:
 - A = {verde, amarelo, azul, branco}
- **b.** Seja B o conjunto das vogais do nosso alfabeto, então:
 - $B = \{a, e, i, o, u\}$
- Seja C o conjunto dos algarismos do sistema decimal de numeração, então:
 - $C = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

B. Uma propriedade de seus elementos

Há situações em que podemos fazer a apresentação do conjunto por meio de uma propriedade dos elementos do conjunto e que sirva somente a eles.

 $A = \{x / x \text{ possui uma determinada propriedade P}\}$

Exemplos

- **a.** Seja B o conjunto das vogais do nosso alfabeto, então:
 - $B = \{x \mid x \in vogal do nosso alfabeto\}$
- **b.** Seja C o conjunto dos algarismos do sistema decimal de numeração, então:
 - $C = \{x/x \text{ \'e algarismo do sistema decimal de numeração}\}$

C. Diagrama de Euler-Venn

A apresentação de um conjunto por meio do diagrama de Euler-Venn é gráfica e, portanto, muito prática. Os elementos são representados por pontos interiores a uma linha fechada não entrelaçada. Dessa forma, os pontos exteriores à linha representam elementos que não pertencem ao conjunto considerado.

Exemplo

3. Relação de pertinência

Quando queremos indicar que um determinado elemento x faz parte de um conjunto A, dizemos que o elemento x pertence ao conjunto A e indicamos:

$$x \in A$$

em que o símbolo ∈ é uma versão da letra grega epsílon e está consagrado em toda matemática como símbolo indicativo de pertinência. Para indicarmos que um elemento x não pertence ao conjunto A, indicamos:

$$x\not\in A$$

Exemplo

 $A = \{a; e; i; o; u\}$

A letra a **pertence** ao conjunto A: a ∈ A. A letra c **não pertence** ao conjunto A: c ∉ A.

4. Relação de inclusão

Dizemos que o conjunto A está contido no conjunto B se todo elemento que pertencer a A pertencer também a B. Indicamos que o conjunto A está contido em B por meio da seguinte simbologia:

 $A \subset B$ (lê-se: A contido em B.)

Observação: Há também a notação:

B ⊃ A (lê-se: B contém A.)

O conjunto A não está contido em B quando existe pelo menos um elemento de A que não pertence a B. Indicamos que o conjunto A não está contido em B dessa maneira:

A ⊄ B (lê-se: A não está contido em B)

Observação: A é subconjunto de A, para todo conjunto A.

Importante – A relação de pertinência relaciona um elemento a um conjunto e a relação de inclusão refere-se sempre a dois conjuntos.

Falso: $a \subset \{a; e; i; o; u\}$ $\{a\} \in \{a; e; i; o; u\}$

Verdadeiro: $a \in \{a; e; i; o; u\}$

 ${a} \subset {a ; e; i; o; u}$ ${a} \in {{a} ; e; i; o; u}$ ${a} \not\subset {{a} ; e; i; o; u}$ Podemos notar que existe uma diferença entre a e {a}. O primeiro é o elemento a, e o segundo é o conjunto formado pelo elemento a.

Um conjunto pode ser um elemento de um outro conjunto. No exemplo $\{\{a\} ; e; i; o; u\}$, um dos elementos é o conjunto $\{a\}$.

Uma cidade é um conjunto de pessoas que representam os moradores da cidade, porém uma cidade é um elemento do conjunto de cidades que formam um Estado.

5. Conjuntos especiais

A. Conjunto unitário

Chamamos de conjunto unitário aquele formado por um só elemento.

Exemplo

Conjunto dos satélites naturais da Terra: {LUA}

B. Conjunto vazio

Chamamos de conjunto vazio aquele formado por nenhum elemento. Obtemos um conjunto vazio considerando um conjunto formado por elementos que admitem uma propriedade impossível.

O conjunto vazio pode ser representado pela letra norueguesa \varnothing ou pelo símbolo $\{\ \}$.

Não podemos confundir as duas notações representando o conjunto vazio por $\{\emptyset\}$, pois estaríamos apresentando um conjunto unitário cujo elemento é \emptyset .

O conjunto vazio está contido em qualquer conjunto e, por isso, é considerado subconjunto de qualquer conjunto, inclusive dele mesmo.

Demonstração

Vamos admitir que o conjunto vazio não esteja contido num dado conjunto A. Nesse caso, existe um elemento x que pertence ao conjunto vazio e que não pertence ao conjunto A, o que é um absurdo, pois o conjunto vazio não tem elemento algum. Conclusão: o conjunto vazio está contido no conjunto A, qualquer que seja A.

6. Conjunto universo

Quando desenvolvemos um determinado assunto dentro da matemática, precisamos admitir um conjunto ao qual pertencem os elementos que desejamos utilizar. Esse conjunto é chamado de conjunto universo e é representado pela letra maiúscula U.

Uma determinada equação pode ter diversos conjuntos solução de acordo com o conjunto universo que for estabelecido.

Exemplos

a. A equação $2x^3 - 5x^2 - 4x + 3 = 0$ apresenta:

$$S = \left\{ \frac{1}{2}, -1, 3 \right\} \text{ se } U = \mathbb{R}$$

$$S = \{-1, 3\}$$
 se $U = \mathbb{Z}$

$$S = \{3\}$$
 se $U = \mathbb{N}$

7. Conjunto de partes

Dado um conjunto A, dizemos que o seu conjunto de partes, representado por P(A), é o conjunto formado por todos os subconjuntos do conjunto A.

A. Determinação do conjunto de partes

Vamos observar, com o exemplo a seguir, o procedimento que se deve adotar para a determinação do conjunto de partes de um dado conjunto A. Seja o conjunto A = {2, 3, 5}. Para obtermos o conjunto de partes do conjunto A, basta escrevermos todos os seus subconjuntos:

- 1º) Subconjunto vazio: Ø, pois o conjunto vazio é subconjunto de qualquer conjunto.
- **2º)** Subconjuntos com um elemento: {2}, {3}, {5}.
- **3º)** Subconjuntos com dois elementos: {2, 3}, {2, 5} e {3, 5}.
- 4º) Subconjuntos com três elementos: A = {2, 3, 5}, pois todo conjunto é subconjunto dele mesmo.

Assim, o conjunto das partes do conjunto A pode ser apresentado da seguinte forma: $P(A) = \{\emptyset, \{2\}, \{3\}, \{5\}, \{2, 3\}, \{2, 5\}, \{3, 5\}, \{2, 3, 5\}\}.$

B. Número de elementos do conjunto de partes

Podemos determinar o número de elementos do conjunto de partes de um conjunto A dado, ou seja, o número de subconjuntos do referido conjunto, sem que haja necessidade de escrever todos os elementos do conjunto P (A). Para isso, basta partirmos da ideia de que cada elemento do conjunto A tem duas opções na formação dos subconjuntos: ou o elemento pertence ao subconjunto ou ele não pertence ao subconjunto e, pelo uso do princípio multiplicativo das regras de contagem, se cada elemento apresenta duas opções, teremos:

$$n[P(A)] = 2^{n(A)}$$

Observemos o exemplo anterior: o conjunto $A = \{2, 3, 5\}$ apresenta três elementos e, portanto, é de se supor, pelo uso da relação apresentada, que n $[P (A)] = 2^3 = 8$, o que de fato ocorreu.

8. Igualdade de conjuntos

Dois conjuntos são iguais se, e somente se, eles possuírem os mesmos elementos, em qualquer ordem e independentemente do número de vezes que cada elemento se apresenta. Vejamos os exemplos:

$$\{1, 3, 7\} = \{1, 1, 1, 3, 7, 7, 7, 7\} = \{7, 3, 1\}$$

Observação

Se o conjunto A está contido em B (A \subset B) e B está contido em A (B \subset A), podemos afirmar que A = B.

9. Operações com conjuntos

A. União de conjuntos

Dados os conjuntos A e B, dizemos que a união dos conjuntos A e B, de notação A \cup B (lê-se: A união B), é o conjunto formado pelos elementos que pertencem a A ou B. Podemos representar a união de dois conjuntos pela seguinte sentença:

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

 $A \cup B$

 $A \cup B$

 $\mathsf{A} \cup \mathsf{B}$

B. Intersecção de conjuntos

Dados os conjuntos A e B, dizemos que a intersecção dos conjuntos A e B, de notação A ∩ B (lê-se: A intersecção B), é o conjunto formado pelos elementos que pertencem a A e a B. Podemos representar a intersecção de dois conjuntos pela seguinte sentença:

$$A \cap B = \{x / x \in A \in x \in B\}$$

Graficamente, temos:

 $A \cap B = \emptyset$

C. Diferença de conjuntos

Dados os conjuntos A e B, dizemos que a diferença dos conjuntos A e B, nessa ordem e com notação A - B (lê-se: A menos B), é o conjunto formado pelos elementos que pertencem a A e não pertencem a B. Podemos representar a diferença de dois conjuntos por meio da seguinte sentença:

$$A - B = \{x \mid x \in A \in x \notin B\}$$

Graficamente, temos:

A - B = A

D. Conjunto complementar

Quando dois conjuntos A e B são de tal maneira que B está contido em A (B \subset A), dizemos que a diferença A - B é o conjunto complementar de B em relação a A, cuja representação podemos ver a seguir:

$$C_A^B = A - B$$

Graficamente, temos:

Exemplo

Dados A = {0, 1, 3, 4}, B = {2, 3, 4, 5}, C = {4, 5} e D = {5, 6, 7}, calcule:

- a. $(A \cup C) \cap B$
- **b.** $(B \cap C) \cup D$
- c. $(B-A) \cap C$
- **d.** C_B^c U (A \cap B)

Resolução

 $(A \cup C) \cap B = \{0, 1, 3, 4, 5\} \cap \{2, 3, 4, 5\} = \{3, 4, 5\}$

- $(B-A)\cap C = \{2,5\}\cap \{4,5\} = \{5\}$
- \cup (A \cap B) = {2, 3} \cup {3, 4} = {2, 3, 4}

EXERCÍCIOS RESOLVIDOS

01.

De acordo com a figura, classifique com V ou F cada uma das afirmações.

- **a.** $A \in r$
- **b.** $A \subset r$
- **c.** $\{A\} \subset r$
- **d.** $\overrightarrow{AB} \in r$
- **e.** $\overrightarrow{AB} \subset r$
- **f.** $\overrightarrow{DE} \subset \overrightarrow{AE}$
- **g.** $A \in \overline{AC}$
- **h.** $A \subset \overline{AC}$

Resolução

- a. V, pois A é ponto de r.
- **b.** F, pois a relação ⊂ só é usada entre subconjunto e conjunto, e não entre elemento e conjunto.
- **c.** V, pois o ponto A é elemento da reta r.
- **d.** F, pois \overrightarrow{AB} não é elemento de r, mas sim subconjunto de r.
- ${f e}.$ V, pois todo ponto da semirreta \overrightarrow{AB} é elemento de r.
- **f.** V, pois todo ponto DE também é ponto de AE . Logo, a relação ⊂ está correta.
- g. V, pois A é o ponto \overrightarrow{AC} .
- **h.** F, pois a relação ⊂ só é usada entre subconjunto e conjunto, e não entre elemento e conjunto.

02. Vunesp

Suponhamos que:

 $A \cup B = \{a, b, c, d, e, f, g, h\}$

 $A \cap B = \{d, e\}$

 $A - B = \{a, b, c\}$

Então:

- **a.** $B = \{f, g, h\}$
- **b.** $B = \{d, e, f, g, h\}$
- **c.** $B = \{a, b, c, d, e\}$
- **d.** $B = \{d, e\}$
- **e.** $B = \emptyset$

Resolução

$$B = \{d, e, f, g, h\}$$

03. UFC-CE

Se um conjunto A possui n elementos, então o conjunto P(A), das partes de A, possui 2ⁿ elementos. Qual é o número de elementos do conjunto das partes de P(A)?

- a. 2ⁿ
- **b.** 4ⁿ
- c. 2^{2^n}
- **d.** 8ⁿ
- **e.** 16ⁿ

Resolução

$$n = 1$$
 $P(A) = 2^1 = 2$

nº de elementos do conjunto das partes de

$$P(A) = 2^{2^1} = 4$$

$$n = 2$$
 $P(A) = 2^2 = 4$

 $n^{\underline{o}}$ de elementos do conjunto das partes de $P(A) = 2^{2^2} = 16$

.

$$n=n$$
 $P(A)=2^n$

 n^{o} de elementos do conjunto das partes de $P(A) = 2^{2^{n}}$

Resposta

C

10. Número de elementos da união e da intersecção de conjuntos

Dados dois conjuntos, A e B, como vemos na figura abaixo, podemos estabelecer uma relação entre os respectivos números de elementos.

$$n (A \cup B) = n (A) + n(B) - n (A \cap B)$$

Note que ao subtrairmos os elementos comuns (n (A \cap B)), evitamos que eles sejam contados duas vezes.

Observações

- 1ª) Se os conjuntos A e B forem disjuntos ou mesmo se um deles estiver contido no outro, ainda assim a relação dada será verdadeira.
- 2ª) Podemos ampliar a relação do número de elementos para três ou mais conjuntos com a mesma eficiência.

Observe o diagrama e comprove.

 $n (A \cup B \cup C) = n (A) + n (B) + n (C) - n (A \cap B) - n (A \cap C) - n (B \cap C) + n (A \cap B \cap C)$

EXERCÍCIOS RESOLVIDOS

01.

A e B são dois conjuntos tais que 13 elementos pertencem a A e não pertencem a B; 13 elementos pertencem a B e não pertencem a A e 39 elementos pertencem a A ou B. O número de elementos que pertencem a a e a B é:

- **a.** 0
- **b.** 13
- **c.** 39
- **d.** 26
- **e.** 23

Resolução

Fazendo um esquema:

n(A) = 13 + x $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

n (B) = 13 + x $39 = 13 + x + 13 + \cancel{x} - \cancel{x}$

n (A \cup B) = 39 39 = 26 + x x = 39 - 26

x = 13

Resposta

В

02. FVG-SP

Uma empresa entrevistou 300 de seus funcionários a respeito de três embalagens, A, B e C, para o lançamento de um novo produto. O resultado foi o seguinte: 160 indicaram a embalagem A; 120 indicaram a embalagem B; 90 indicaram a embalagem C; 30 indicaram as embalagens A e B; 40 indicaram as embalagens A e C; 50 indicaram as embalagens B e C; e 10 indicaram as 3 embalagens.

Pergunta-se:

- **a.** quantas pessoas indicaram apenas a embalagem A?
- **b.** quantas pessoas indicaram as embalagens A ou B?
- c. quantas não indicaram a embalagem C?
- **d.** quantas não tinham preferência por nenhuma das três embalagens?

Resolução

Usaremos os diagramas para resolver.

Vamos começar por A \cap B \cap C, que tem 10 elementos.

Para n (A \cap B) e já colocamos 10, restam 20 elementos para completar a região A \cap B; para completar (A \cap C), faltam 30 e, para completar (B \cap C), faltam 40.

Da mesma forma, completamos os conjuntos A, B e C; veja que 40 pessoas não têm preferência alguma.

Agora, consultando o diagrama final, podemos responder às questões.

- **a.** 100 pessoas indicaram apenas a embalagem A;
- **b.** 100 + 30 + 10 + 20 + 50 + 40 = 250 indicaram as embalagens A ou B;
- **c.** 100 + 20 + 50 + 40 = 210 não indicaram a embalagem C;
- **d.** 40 pessoas não tinham preferência por nenhuma embalagem.

11. Conjuntos numéricos

• Conjunto dos números naturais:

$$\mathbb{N} = \{0, 1, 2, 3, ...\}$$

• Conjunto dos números inteiros:

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

• Conjunto dos números inteiros não negativos

$$\mathbb{Z}_{+}$$
 = {0, 1, 2, 3, ...} = \mathbb{N}

Vamos convencionar que qualquer conjunto numérico que, em sua representação, tiver acrescentado o símbolo * (asterisco) ficará sem o elemento 0 (zero). Assim:

$$\mathbb{N}^* = \{1, 2, 3, 4, ...\}$$

$$\mathbb{Z}^* = \{..., -3, -2, -1, 1, 2, 3, ...\}$$

• Conjunto dos números racionais: Q

$$\mathbb{Q} = \left\{ x \mid x = \frac{p}{q}, \text{ onde } p \in \mathbb{Z} \text{ e } q \in \mathbb{Z} * \right\}$$

Com relação aos números racionais, eles podem ser encontrados de três maneiras: número inteiro ou número decimal exato ou número decimal periódico (dízimas periódicas).

Os números que não podem ser colocados na forma de fração com numerador inteiro e denominador inteiro não nulo são chamados de números irracionais.

Exemplos: $\sqrt{2}$, π , $\sqrt[5]{7}$

• Conjunto dos números reais: ${\mathbb R}$

 $\mathbb{R} = \{x \mid x \in \text{racional ou } x \in \text{irracional}\}$

Os números reais podem ser associados biunivocamente com cada ponto de uma reta, estabelecendo o que nós chamaremos de reta real ou eixo real.

A partir dessa representação gráfica, iremos observar algumas propriedades importantes dos números reais.

O eixo real apresenta uma ordenação dos números de tal maneira que qualquer número colocado à direita de um outro será maior que este outro.

Numa comparação entre números reais representados no eixo real, podemos estabelecer subconjuntos de extrema importância e que serão chamados de intervalos reais, cuja representação vamos estudar a seguir:

a b − x	a < x < b] a, b [(a,b)
a b → x	$a \le x \le b$	[a, b]	[a, b]
a b −0 ^^^^ x	a < x ≤ b] a, b]	(a, b]
a 	x > a] a, +∞ [(a, + ∞)
b x	x≤b] -∞, b]	(– ∞, b]

Podemos "explicar" o aparecimento dos conjuntos numéricos através da necessidade que a Matemática manifestava em apresentar

resultados que os conjuntos numéricos existentes até então não forneciam. A partir dos conjuntos dos números naturais, operações como, por exemplo, a subtração 5 - 8 só puderam apresentar um resultado com o aparecimento do conjunto dos números inteiros. A divisão de número 8 por 3 só pode apresentar resultado dentro do conjunto dos números racionais. O cálculo da raiz quadrada do número 17, por exemplo, é um resultado possível somente dentro do conjunto dos números irracionais. Pela reunião do conjunto dos números racionais com os números irracionais, obtivemos o conjunto dos números reais. Por mais amplo que possa parecer o conjunto dos números reais, não foi suficiente para cumprir todas as exigências quanto a esgotar as necessidades de resultados possíveis dentro da Matemática. Algumas operações matemáticas só puderam apresentar resultados dentro do conjunto dos números complexos.

12. Operações com intervalos

Vejamos com exemplos:

- **1º)** Dados A = [0, 3] e B = [1, 5[, calcule:
 - **a.** $A \cup B$
 - **b.** A ∩ B
 - **c.** B A

Resolução

A
$$\cup$$
 B = [0, 5[= {x \in \mathbb{R} | 0 \leq x < 5}
A \cap B = [1, 3] = {x \in \mathbb{R} | 1 \leq x \leq 3}
B - A = [0,1 [= {x \in \mathbb{R} | 0 \leq x < 1}

EXERCÍCIOS RESOLVIDOS

01. Unisinos-RS

Chama-se conjunto dos números racionais o conjunto:

a.
$$\{x \mid x \in \mathbb{R} \}$$

b.
$$\left\{\frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z} \text{ e } b \neq 0\right\}$$

c.
$$\left\{ \frac{a}{b} \mid a \in \mathbb{N}, b \in \mathbb{N} \right\}$$

d.
$$\left\{ x \in R \mid x = \sqrt{a}, a \in \mathbb{Q} \right\}$$

e.
$$\left\{ \frac{a}{b} \mid a \in \mathbb{R}, b \in \mathbb{R} \ e \ b \neq 0 \right\}$$

Resolução

Número racional é aquele que pode ser expresso na forma de uma fração com numerador inteiro e denominador inteiro e diferente de zero, como na forma descrita na alternativa B.

Resposta

В

02. PUC-MG

Quatro intervalos reais, A, B, C e D, são tais que:

$$x \in A \Leftrightarrow -10 \le x \le 10$$

$$x \in B \Leftrightarrow 0 < x \le 5$$

$$x \in C \Leftrightarrow -3 \le x < 2$$

$$D = B - C$$

Sendo D o complementar de D em relação ao conjunto A, então:

a.
$$x \in \overline{D} \Leftrightarrow -10 \le x < 2 \text{ ou } 2 < x \le 10$$

b.
$$x \in \overline{D} \Leftrightarrow -10 \le x < -3 \text{ ou } 5 < x \le 10$$

c.
$$x \in \overline{D} \Leftrightarrow -10 \le x \le 0$$
 ou $2 < x \le 10$

d.
$$x \in \overline{D} \Leftrightarrow -10 \le x \le 2$$
 ou $2 \le x \le 10$

e.
$$x \in D \Leftrightarrow -10 \le x < 2$$
 ou $5 < x \le 10$

Resolução

$$B-C=D: \xrightarrow{2} \xrightarrow{5}$$

$$\overline{D} = C_{\Delta}^{D} = A - D$$

_ -10 2 5 10 D: •^^^

$$\overline{D} = \{x \in R \mid -10 \le x < 2 \text{ ou } 5 < x \le 10 \}$$

Resposta

E