MAP2210 - P3Q1 - Relatório

Lucas Panfilo Donaire NºUSP: 12556552 Beatriz Campanha Silva N°USP: 12676657

Professor: Alexandre Roma

IME-USP 2022

Sumário

1 Objetivo										
2	Implementações									
	2.1	Gram-Schmidt Clássico]							
	2.2	Gram-Schmidt Modificado	2							
	2.3	Fatoração de Householder								
3	Tes	tes e Resultados								
	3.1	Figuras e Tabelas: Hilbert								
	3.2	Figuras e Tabelas: Quadrados mágicos	Ę							
	3.3	Comentários sobre os resultados	7							

1 Objetivo

Queremos comparar a performance numérica em termos do tempo de execução e da qualidade da solução fornecida por três algoritimos de fatoração QR, sendo eles por Gram-Schmidt Clássico, Gram-Schmidt Modificado e Householder.

2 Implementações

Implementamos Gram-Schmidt Clássico e Gram-Schmidt Modificado a partir do código em Matlab disponível no blog [1], reescrevendo-os em Python.

E a implementação da reflexão e fatoração de Householder foi baseada em um código disponível na referência [2].

2.1 Gram-Schmidt Clássico

Dada uma matriz X de vetores linearmente independentes, cada vetor é ortogonalizado em relação ao anterior. Ou seja, para cada vetor, é retirada a contribuição (ou projeção) dos anteriores em relação a este.

Assim, dados a_1, a_2, \ldots , podemos construir os vetores q_1, q_2, \ldots por sucessivas ortogonalizações. Essa é a ortogonalização por Gram-Schmidt Clássico.

Desse modo, no j-ésimo passo, queremos encontrar um vetor unitário $q_j \in (a_1, \ldots, a_j)$ que seja ortogonal a q_1, \ldots, q_{j-1} . Então vemos que

$$v_j = a_j - (q_1^* a_j) q_1 - (q_2^* a_j) q_2 - \dots - (q_j^* a_j) q_{j-1}$$

é o vetor que queríamos, exceto que ainda não foi normalizado. Se dividirmos pela sua norma $||v_j||$, o resultado é o vetor q_j necessário.

Então podemos reescrever a expressão anterior na forma

$$q_n = \frac{a_n - \sum_{i=1}^{n-1} r_{in} q_i}{r_{nn}}$$

E disso é evidente que

$$r_{ij} = q_i^* a_j, \quad (i \neq j)$$

 $|r_{jj}| = ||a_j - \sum_{i=1}^{j-1} r_{ij} q_i||, \quad r_{jj} > 0$

Por fim, chegamos ao algoritmo implementado (em Python).

2.2 Gram-Schmidt Modificado

Para cada valor de j, o algoritmo de Gram-Schmidt Clássico computa uma única projeção ortogonal de posto m - (j - 1),

$$v_j = P_j a_j$$

Já o algoritmo de Gram-Schmidt modificado computa o mesmo resultado por uma sequência de j-1 projeções de posto m-1. Seja $P_{\perp q}$ a projeção ortogonal, de posto m-1 no espaço ortogonal ao vetor $q \in \mathbb{C}, q \neq 0$. Por definição de P_j , temos

$$P_j = P_{\perp q_{j-1}} \dots P_{\perp q_2} P_{\perp q_1},$$

em que $P_1 = I$. Então

$$v_j = P_{\perp q_{j-1}} \dots P_{\perp q_2} P_{\perp q_1} a_j$$

e o algoritmo é baseado no uso de v_i como definido nessa última passagem.

O algoritmo modificado calcula v_j resolvendo as seguintes fórmulas em ordem:

$$v_{j}^{(1)} = a_{j}$$

$$v_{j}^{(2)} = P_{\perp q_{1}} v_{j}^{(1)} = v_{j}^{(1)} - q_{1} q_{1}^{\star} v_{j}^{(1)}$$

$$v_{j}^{(3)} = P_{\perp q_{2}} v_{j}^{(2)} = v_{j}^{(2)} - q_{2} q_{2}^{\star} v_{j}^{(2)}$$

$$\vdots$$

$$v_{j} = v_{j}^{(j)} = P_{\perp q_{j-1}} v_{j}^{(j-1)} = v_{j}^{(j-1)} - q_{j-1} q_{j-1}^{\star} v_{j}^{(j-1)}$$

2.3 Fatoração de Householder

Na transformação ou reflexão de Householder, pega-se um vetor e reflete-o em relação a algum plano ou hiperplano. Essa operação pode ser utilizada para calcular a fatoração QR de uma matriz A de ordem $m \times n$ com m > n.

Q pode ser utilizada para refletir um vetor de tal forma que todas as coordenadas, exceto uma, desapareçam.

Seja x um vetor coluna real arbitrário de A de dimensão m, tal que $||x|| = \alpha$ para algum escalar α . Com o algoritmo implementado usando a aritmética de ponto flutuante, α recebe o sinal contrário ao da k-ésima coordenada de x, onde x_k deve ser a coordenada pivô a partir da qual todas as entradas são 0 na forma triangular superior final de A, para evitar a perda de significância.

3 Testes e Resultados

Durante o desenvolvimento, geramos matrizes aleatórias de dimensão baixa, para conferir a ortogonalidade de Q, e se o produto matricial QR realmente coincidia com X. Com os algoritmos prontos, executamos o programa para algumas matrizes quadradas de ordem n do tipo quadrado mágico, e para matrizes de Hilbert de ordem n. Programamos uma função geradora das matrizes de Hilbert na mão, mas usamos um pacote nativo para os magic squares, que precisa do comando 'pip install magic_square' antes de executar o código de fato. Partimos da ordem de 50 até 1000, com passo 50, para observar a evolução dos erros e do tempo gasto. Os resultados foram coletados em uma tabela e fizemos alguns gráficos, que serão mostrados a seguir:

3.1 Figuras e Tabelas: Hilbert

Figura 1: Tempo gasto para cada algoritmo

Figura 2: Gráfico de $|Q^TQ - I|$

Figura 3: Gráfico de $\left|X-QR\right|$

	ordem	condição	GS: X - QR	MGS: X - QR	HH: X - QR	GS: QtQ - I MGS: QtQ - I		HH: QtQ - I GS:tempoMGS:tempo			HH:tempo
0	50	2.312546e+19	1.320388e-15	3.018120e-16	1.482755e-15	46.930634	31.276292	1.169048e-14	0.001604	0.013259	0.006589
1	100	2.525413e+19	3.481999e-15	3.749391e-16	3.669210e-15	94.411015	64.309751	2.915131e-14	0.003765	0.052642	0.037008
2	150	2.833016e+19	6.110348e-15	4.667450e-16	5.383528e-15	141.845317	97.595627	5.518396e-14	0.006400	0.120745	0.167271
3	200	9.284973e+19	8.968480e-15	5.621546e-16	6.248613e-15	189.351894	130.941286	7.934280e-14	0.018371	0.198984	0.400395
4	250	4.091520e+20	1.234006e-14	6.178041e-16	7.810947e-15	236.926678	164.311485	1.170455e-13	0.035234	0.296769	0.989998
5	300	1.472655e+20	1.602959e-14	6.281997e-16	7.739863e-15	284.556031	197.687588	1.231177e-13	0.039229	0.391963	2.237379
6	350	9.324977e+20	2.012270e-14	6.901626e-16	9.093215e-15	332.228317	231.066336	1.461151e-13	0.067242	0.549871	3.165423
7	400	3.254593e+20	2.441332e-14	7.332793e-16	1.037082e-14	379.934708	264.423272	1.849368e-13	0.097090	0.741130	4.398873
8	450	1.140206e+20	2.896402e-14	7.795250e-16	1.188385e-14	427.668602	295.923501	2.132685e-13	0.125746	0.959932	7.933888
9	500	1.255394e+21	3.393193e-14	8.208539e-16	1.190502e-14	475.425016	305.553392	2.544605e-13	0.170034	1.186949	10.767235
10	550	5.536030e+20	3.896048e-14	8.490260e-16	1.199886e-14	523.200134	310.451281	2.314003e-13	0.218131	1.525900	14.613735
11	600	2.577351e+20	4.400922e-14	8.714751e-16	1.207343e-14	570.990984	313.135878	2.662693e-13	0.268544	1.880719	20.661120
12	650	9.764051e+20	4.976937e-14	8.957529e-16	1.326411e-14	618.795218	316.725751	3.027700e-13	0.350751	2.307384	30.581484
13	700	1.773202e+20	5.555395e-14	9.212176e-16	1.418111e-14	666.610952	319.035009	3.476548e-13	0.413266	2.744730	40.623007
14	750	1.437526e+23	6.129182e-14	9.378353e-16	1.586743e-14	714.436656	320.695455	3.776978e-13	0.531662	3.410560	50.022053
15	800	3.847589e+20	6.749021e-14	9.520101e-16	1.569404e-14	762.271072	323.072588	3.652688e-13	0.661398	4.188265	58.409312
16	850	1.872126e+20	7.352921e-14	9.681724e-16	1.627406e-14	810.113157	324.669268	3.988376e-13	0.805155	5.122262	79.805849
17	900	7.039115e+20	8.045237e-14	9.860940e-16	1.725260e-14	857.962035	326.206794	4.348859e-13	0.940761	6.914297	93.258584
18	950	1.194675e+22	8.706654e-14	1.002695e-15	1.837259e-14	905.816964	327.718681	4.773327e-13	1.274294	9.048352	113.301649
19	1000	8.387308e+20	9.380937e-14	1.018159e-15	1.950347e-14	953.677315	329.097733	5.260761e-13	1.977710	15.687650	131.232430

Figura 4: Tabela de resultados: Matrizes de Hilbert

3.2 Figuras e Tabelas: Quadrados mágicos

Figura 5: Tempo gasto para cada algoritmo

Figura 6: Gráfico de $|Q^TQ-I|$

Figura 7: Gráfico de $\left|X-QR\right|$

•	ordem	condição	GS: X - QR	MGS: X - QR	HH: X - QR	GS: QtQ - I N	1GS: QtQ - I	HH: QtQ - I	GS:tempoM	GS:tempo	HH:tempo
0	50	2.265667e+20	7.609407e-11	1.607414e-11	8.636254e-11	37.993951	9.690169	1.225312e-14	0.001263	0.007487	0.004388
1	100	5.488506e+20	2.050568e-09	1.308230e-10	9.503759e-10	91.682724	10.459634	2.792111e-14	0.004021	0.052962	0.042315
2	150	7.837984e+18	7.039510e-09	7.598183e-10	5.947752e-09	120.420309	17.788103	5.714364e-14	0.007299	0.123486	0.151307
3	200	8.012859e+18	4.331599e-08	1.159403e-09	1.497064e-08	189.400670	8.998895	8.073853e-14	0.013695	0.183382	0.353436
4	250	1.193212e+19	9.618118e-08	4.478799e-09	4.068602e-08	200.255504	23.372091	1.099915e-13	0.029612	0.266633	0.790732
5	300	1.790937e+20	2.683753e-07	4.377393e-09	6.729236e-08	287.756304	9.592357	1.177435e-13	0.045738	0.415374	1.413221
6	350	1.476302e+21	2.989489e-07	1.270585e-08	1.376409e-07	281.769090	27.891420	1.592395e-13	0.077748	0.545114	2.617676
7	400	3.063080e+19	9.319703e-07	1.179706e-08	2.047741e-07	386.413779	10.280284	1.835241e-13	0.085633	0.720580	4.068232
8	450	1.013007e+19	1.403214e-06	3.194456e-08	3.669642e-07	361.413509	31.787196	2.191621e-13	0.138385	0.929524	6.376227
9	500	9.369848e+19	2.542514e-06	2.209400e-08	5.013380e-07	485.255082	10.233586	2.529866e-13	0.161097	1.156132	9.584880
10	550	3.431870e+19	2.246442e-06	6.132852e-08	6.545146e-07	442.875272	35.261592	2.402373e-13	0.197574	1.500389	13.905363
11	600	1.881178e+21	5.811585e-06	4.308061e-08	8.215712e-07	584.222862	10.614764	2.657671e-13	0.265879	1.848476	21.455012
12	650	2.057460e+20	6.746223e-06	1.060924e-07	1.366062e-06	522.494772	38.426917	3.251045e-13	0.326135	2.335259	27.717258
13	700	2.724245e+20	1.178136e-05	6.521309e-08	1.664553e-06	683.284266	10.838936	3.436873e-13	0.403696	2.714108	35.046365
14	750	1.057384e+20	9.599766e-06	1.592446e-07	2.294613e-06	603.940221	41.353116	4.096733e-13	0.521741	3.385915	51.185952
15	800	1.525858e+20	2.061959e-05	1.128739e-07	2.371021e-06	782.418461	10.937289	3.725532e-13	0.545649	4.166515	55.237258
16	850	2.366275e+20	2.249382e-05	2.538622e-07	3.234148e-06	683.550854	44.087214	4.222101e-13	0.850554	6.827524	73.960533
17	900	4.902960e+20	3.632555e-05	1.605830e-07	3.742485e-06	881.611279	11.105435	4.425962e-13	0.967771	4.800655	88.961068
18	950	1.586890e+20	2.789797e-05	3.357468e-07	5.232433e-06	764.988797	46.662616	4.943066e-13	1.083744	8.835342	110.174394
19	1000	3.759670e+20	5.600374e-05	2.057007e-07	6.081060e-06	980.852579	11.237182	5.359940e-13	1.335488	6.276842	132.732360

Figura 8: Tabela de resultados: Quadrados mágicos

3.3 Comentários sobre os resultados

É nítido que a fatoração usando as matrizes de Householder tem ordem computacional maior, o que faz sentido, partindo do pressuposto que geramos as matrizes Hv a cada rodada, e temos que pegar as matrizes reduzidas, para depois "aumentarmos" elas novamente. Isso gera iterações encadeadas, o que prejudica o tempo do algoritmo. O tempo da MGS é maior que o da GS clássica, mas ordem é a mesma.

Quando calculamos o erro de ortogonalização, é nítido o péssimo desempenho do algoritmo de Gram-Schmidt clássico. O modificado já um pouco melhor, apesar do erro ainda pairar entre 10 e 40 nos nossos testes. Isso ocorre devido ao cálculo usando ponto flutuante, que pode ser diminuído, mas sempre existe. O algoritmo de Gram-Schmidt modificado é pensado justamente para isso - e há de fato uma nítida melhora. Já o algorítmo de Householder é feito de forma a gerar colunas ortonormais, então esse erro sempre será pequeno, e de fato apresenta erros da ordem de 10^{-13} , enquanto o erro da Gram-Schmidt pode saltar até para a ordem de quase 10^3 .

Tivemos baixos erros de |X - QR|, o que mostra que nossos algoritmos estão funcionando como esperado. O Gram-Schmidt modificado ficou com o melhor desempenho nesse quesito, seguido por pouco pelo Householder.

Referências

- [1] C. MOLER, Compare Gram-Schmidt and Householder Orthogonalization Algorithms. Disponível em https://blogs.mathworks.com/cleve/2016/07/25/compare-gram-schmidt-and-householder-orthogonalization-algorithms/
- [2] $Decomposiç\~ao$ QR. Disponível em: https://pt.wikipedia.org/wiki/Decomposicao_QR
- [3] TREFETHEN, BAU, Numerical Linear Algebra.