TD 5 STRUCTURES ALGÉBRIQUES POUR L'INFORMATIQUE

Exercice 1

Soit $f: G \to G'$ un morphisme de groupes. On dit qu'un sous-groupe H de G est un sous-groupe distingu'e de G et on note $H \triangleleft G$ si et seulement si pour tout $g \in G$, $gHg^{-1} \subset H$.

- 1. Soit $H \leq G$. Montrer que $f(H) \leq G'$. En déduire que $f(G) \leq G'$.
- 2. Soit $H' \leq G'$. Montrer que $f^{-1}(H') \leq G$.
- 3. On suppose que $H \triangleleft G$. Montrer que $f(H) \triangleleft f(G)$.
- 4. On suppose que $H' \triangleleft G'$. Montrer que $f^{-1}(H') \triangleleft G$.
- 5. Montrer que $\{1_{G'}\} \triangleleft G'$.
- 6. En déduire que $ker f \triangleleft G$.

Exercice 2

On considère G le groupe des matrices 2×2 inversibles à coefficients dans \mathbb{R} , muni de la multiplication des matrices. On définit l'application det : $G \to \mathbb{R}^*$, qui à une matrice associe son déterminant.

- 1. Vérifier que det est un morphisme de (G, \circ) dans (\mathbb{R}^*, \times) .
- 2. Déterminer $ker \det$.
- 3. En déduire que det n'est pas injective.

Exercice 3

- 1. Montrer que l'application $f: \mathbb{R} \to \mathbb{R}^*$ qui à $x \in \mathbb{R}$ associe $\exp(x) = e^x$ est un morphisme de $(\mathbb{R}, +)$ dans (\mathbb{R}^*, \times) . (On admet les relations usuelles vérifiées par la fonction exponentielle)
- 2. Déterminer kerf.
- 3. En déduire que f est un morphisme injectif.
- 4. Déterminer Imf. f est-elle un morphisme surjectif?
- 5. Déterminer un sous-groupe H de (\mathbb{R}^*, \times) , tel que l'application $g : \mathbb{R} \to H$ définie par g(x) = f(x) pour tout $x \in \mathbb{R}$, soit un isomorphisme de $(\mathbb{R}, +)$ dans (H, \times) .

Exercice 4

Soit G un groupe et Aut(G) le groupe des automorphismes de G. Soit $g \in G$.

- 1. Montrer que l'ensemble des automorphismes de G, muni de \circ (composition des applications) est un groupe. (On rappelle que \circ est une opération binaire associative sur l'ensemble des applications de G dans G)
- 2. Soit $g \in G$. Montrer que la fonction $\gamma_g : G \to G$, définie par $x \mapsto gxg^{-1}$ est un automorphisme de G, appelé un automorphisme intérieur:

$$\forall g \in G, \quad \gamma_g \in Aut(G).$$

3. Montrer que l'ensemble des automorphismes intérieurs est un sous-groupe de Aut(G). Il sera noté Int(G) dans la suite.

- 4. Montrer que la fonction Γ définie par $\Gamma:G\to Aut(G),$ avec $g\mapsto \gamma_g$ est un morphisme de groupe.
- 5. On appelle le centre de G et on note Z(G), l'ensemble des éléments de G qui commutent avec tout autre élément de G:

$$Z(G)=\{z\in G: zg=gz, \forall g\in G\}.$$

En utilisant la dernière question de l'exercice 1, montrer que Z(G) est un sous-groupe distingué de G.