Christopher David Miller FSMAT 201 Problem 1.8 Version 3

1.8

Proposition 1. Let $\mathbf{u} \in \mathbb{R}^n$. Prove that the normalization of \mathbf{u} has norm 1.

Proof. Let $\mathbf{u} \in \mathbb{R}^n$. The normalization of a vector \mathbf{u} is the vector \mathbf{v} given by

$$v = \frac{u}{\|u\|}.$$

The norm of a vector \mathbf{u} is the scalar $\|\mathbf{u}\|$ given by

$$\|\mathbf{u}\| = \sqrt{\sum_{k=1}^{n} u_k^2}$$
, where $\mathbf{u} = \begin{bmatrix} u_1 & u_2 & u_3 \dots u_n \end{bmatrix}^T$.

In order to show the normalization of a vector \mathbf{u} has norm 1, we find the normalization of \mathbf{u} :

$$\frac{\mathbf{u}}{\|\mathbf{u}\|}$$
.

Now we must calculate the norm of the normalization of **u**:

$$\frac{\mathbf{u}}{\|\mathbf{u}\|} = \sqrt{\sum_{k=1}^{n} (v_k)^2}, \text{where } v_k = \frac{u_k}{\|\mathbf{u}\|}$$

$$= \sqrt{\sum_{k=1}^{n} \frac{u_k^2}{\|\mathbf{u}\|^2}}$$

$$= \sqrt{\frac{1}{\|\mathbf{u}\|^2} \sum_{k=1}^{n} u_k^2}$$

$$= \frac{1}{\|\mathbf{u}\|} \sqrt{\sum_{k=1}^{n} u_k^2}$$

$$= \frac{1}{\|\mathbf{u}\|} \|\mathbf{u}\|$$

$$= 1.$$

So from the above steps we see that the normalization of a vector has norm 1.

Christopher David Miller FSMAT 201 Problem 1.1 Version 3

1.1

Let $\mathbf{v} = [1, 2, 3, \dots, n]^T$ and $\mathbf{w} = [1, 1, 1, \dots, 1]^T$, where $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.

(a) Compute $\mathbf{v} \cdot \mathbf{w}$.

Solution:

Suppose there are two vectors $\mathbf{v} = [v_1, v_2, v_3, \dots, v_i]$ and $\mathbf{w} = [w_1, w_2, w_3, \dots, w_i]$. The dot product between two vectors \mathbf{v} and \mathbf{w} is given by:

$$\sum_{i=1}^{n} v_i w_i.$$

So for this problem we have the following:

$$\mathbf{v} \cdot \mathbf{w} = 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 1 + \dots + 1 \cdot n$$
.

This can be written more succinctly in summation notation as

$$\sum_{i=1}^{n} i.$$

(b) Compute $\|\mathbf{v}\|$.

Solution: We first remind ourselves that the definition of the norm of a vector \mathbf{u} , where $\mathbf{u} = [u_1, u_2, u_3, \dots, u_i]$ is

$$\|\mathbf{u}\| = \sqrt{\sum_{k=1}^n u_i^2}.$$

Using this definition and substituting we get

$$\|\mathbf{v}\| = \sqrt{1^2 + 2^2 + 3^2 + \dots + n^2}.$$

(c) Compute $\|\mathbf{w}\|$.

Solution: Similarly using the definition from part (b) we can calculate the norm of the vector **w**:

$$\|\mathbf{w}\| = \sqrt{1^2 + 1^2 + 1^2 + \dots + 1^2}$$

= $\sqrt{1 + 1 + 1 + \dots + 1}$
= \sqrt{n} .

Christopher David Miller FSMAT 201 Problem 1.3 Version 3

1.3

Let c be a real number and let $\mathbf{v} \in \mathbb{R}^n$ with $v_k = c$ for $k = 1, 2, \dots, n$. Find $\|\mathbf{v}\|$.

Solution: The norm of a vector \mathbf{v} is the scalar $\|\mathbf{v}\|$ given by

$$\|\mathbf{v}\| = \sqrt{\sum_{k=1}^{n} v_k^2}$$
, where $\mathbf{v} = \begin{bmatrix} v_1 & v_2 & v_3 \dots v_n \end{bmatrix}^T$.

So in our case we replace v_k with c and then we have:

$$\|\mathbf{v}\| = \sqrt{c^2 + c^2 + c^2 + \dots + c^2}$$
$$= \sqrt{nc^2}$$
$$= \sqrt{n} \cdot |c|$$

So we have found that $\|\mathbf{v}\|$ is $\sqrt{n} \cdot |c|$.