Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convocatoria extraordinaria

Ejercicio 1. (2.5 puntos) Sea a una singularidad de una función f. Probar que la función Re f no puede estar acotada en un entorno reducido de a.

Ejercicio 2. (2.5 puntos) Dado $n \in \mathbb{N}$ con n > 2, integrar una conveniente función sobre un camino cerrado que recorra la frontera del sector circular $D(0,R) \cap \{z \in \mathbb{C}^* : 0 < \arg(z) < 2\pi/n\}$ con $R \in \mathbb{R}^+$, para probar que

 $\int_0^{+\infty} \frac{dx}{1+x^n} = \frac{\pi}{n} \csc \frac{\pi}{n} .$

Ejercicio 3. (2.5 puntos) Sea f una función entera verificando que $f(f(z)) = (f(z))^2$ para todo $z \in \mathbb{C}$. ¿Qué se puede afirmar sobre f?

Ejercicio 4. (2.5 puntos) Para cada $n \in \mathbb{N} \cup \{0\}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\operatorname{sen}(t-z)}{1+t^2} dt \quad \forall z \in \mathbb{C}.$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 0} f_n$ converge en $\mathbb C$ y que su suma es una función entera.