

Energy Systems Integration

Ben Kroposki, PhD, PE, FIEEE

Director - Power Systems Engineering Center
National Renewable Energy Laboratory
May 2015

What is an Energy System?

 Energy system = a set of interacting or interdependent resources, infrastructures and individuals organized specifically for the production, delivery or consumption of energy

Examples:

- Buildings
- Vehicles
- Distribution feeders
- Fueling stations
- Communities
- T&D grids
- Pipeline networks

Energy System of the USA

Integration for Optimization

A Profound Transformation is Required

Today's Energy System

Sustainable Energy System

TRANSFORMATION

- Dependent on non-domestic sources
- Subject to price volatility
- Increasingly vulnerable energy delivery systems
- 2/3 of source energy is wasted
- Significant carbon emissions
- Role of electricity increasing

- Carbon neutral
- Efficient
- Diverse supply options
- Sustainable use of natural resources
- Creates economic development
- Accessible, affordable and secure

What does that transformation look like?

Convergence of Systems

Information and Communication Technology

Future Energy Systems

Energy Systems Integration

What is Energy System Integration?

Energy system integration (ESI) = the process of optimizing energy systems across multiple pathways and scales

Why Energy Systems Integration?

Reducing investment risk and optimizing systems in a rapidly changing energy world

- Increasing penetration of variable RE in grid
- Increasing ultra high energy efficiency buildings and controllable loads
- New data, information, communications and controls
- Changes in transportation fuels (NG, Bio, H2, electricity)
- Integrating energy storage (stationary and mobile) and thermal storage
- Interactions between electricity/thermal/fuels/data pathways
- Increasing system flexibility and intelligence at a variety of scales

ESI at all Scales

Energy Systems Integration

ESI Value Proposition

- Improve operational efficiency reduce overall system losses by coupling energy systems and making best use of installed generation, storage, and load resources. Incorporating heat, power, and highly efficient devices can increase overall efficiency and conserve energy when compared with individual ESI allows optimizing systems technologies
- Improve energy security Increase intensity, and encourage adoption operations of RE and non-RE source operator requirements

to simultaneously meet all or any combination of these, seamless integration of variable re depending on system owner or

- Increase asset utilization defer/avoid capital cost investment in energy system infrastructure, reduce spinning reserves, increase system flexibility
- Enhance energy supply quality and reliability increase diversity of supply, monitor and reconfigure energy system operations as needed
- Enable increased customer load efficiency, customer empowerment and **satisfaction** – allow for all customers to participate and choose how to minimize their energy bills and provide positive environmental impacts.

g for

ESI Opportunity Areas

Streamline – Improvements within Todays Energy System

- Integrating renewables into the grid
- Transportation infrastructure

Synergize – Connecting energy domains

- Hybrid energy systems
- Natural gas to provide grid flexibility

- Reducing vehicle trips through commute timing, telework, ridesharing, car sharing
- City design to increase walking and use of public transportation

Empower – Allowing consumers to participate

- Energy management such as demand response
- Behind-the-meter energy storage
- Congestion avoidance and pricing
- Precision irrigation

ESI Element #1 - Streamline

Electrical

- 1. Increased grid flexibility
 - a. Balancing area coordination (or merging)/ cooperation
 - b. Faster ramping and lower minimum power plants
 - Faster & more flexible market design (i.e., dynamic pricing with enabling technology)
 - d. Expanded electric market products
 - e. Direct load control (Utility-controlled demand response)
- 2. Expansion of transmission grid
- 3. Increased use of large-scale electricity storage
- 4. Simplified/Faster Distributed Generation Interconnection
- 5. Microgrids for improved customer reliability and resilience
- 6. Services from backup generators and UPS systems when not providing backup electricity
- 7. Flex-fuel and fossil-renewable hybrid energy systems producing only electricity

Transmission Integration

Western Wind and Solar Integration Study

Identified issues with high penetrations of wind and solar in large western part of U.S.

http://www.nrel.gov/electricity/
transmission/western_wind.html

30% wind — starting to impact nuclear – likely curtail wind

Renewable Electricity Futures Study

80% RE Scenario

http://www.nrel.gov/analysis/re futures/

New Transmission Needs

ESI Element #1 - Streamline

Fuel: Alternative transportation fuel infrastructure

- 1. Ability to increase penetration of ethanol and other biofuels
- 2. Pipeline infrastructure for E85

Thermal: District heating and cooling infrastructure

- 1. More heat networks (reducing capital cost and/ or adding ground-source heat pumps)
- 2. Increased thermal storage for thermal uses

Data

- Utility use of smart grid informatics for operations
- 2. Improved weather forecasting

Early Efforts with Energy Informatics Show Large Potential

Connecting Big Data to
Operations - PJM is
demonstrating the ability to
use information technology to
double the capability of their
existing network of longdistance line to move energy
through data-centric
command center, generating
\$2 billion a year in savings.

"Big Data Unleashes the Electric Equivalent of a Free Keystone Pipeline", http://www.forbes.com/sites/markpmills/2012/03/19/information-technology-unleashes-the-electric-equivalent-of-a-free-keystone-pipeline/

Other utility examples:

- Systems operators could act upon metrics that are early predictors of changes in network quality or reliability.
- Distribution system operators could deliver reliable power at the lowest cost using output forecasts for DER.

ESI Element #2 – Synergize

Taking advantage of underutilized interfaces and adding new interfaces

Meeting consumer needs more effectively by linking energy systems that are not often (or never) linked in today's energy system

ESI Element #2 – Synergy

- 1. Integrated Energy Systems
 - CHP and trigeneration for building and campus use (possibly with heat pumps)
 - 2. Cogeneration for industrial uses
- 2. Using available electricity that might otherwise be curtailed for other products
 - Production of other energy or energy-intensive products like methane and hydrogen in large facilities
- 3. Thermal storage for electrical demand response
- 4. Reducing industrial energy use through direct use of renewables
 - Solar furnaces
- 5. Synthetic natural gas
- 6. Combined transmission opportunities
 - 1. Integrated Electric Hydrogen Transmission Pipelines
 - 2. Combined Transportation Transmission Corridors (ROW integration)
- 7. Hybrid energy systems (e.g. polygeneration conversion facilities (with or without flex-fuel capabilities) with dynamic response to pricing)

ESI Element #2 - Synergy

Electrified transportation

- 1. Plug-in and hydrogen vehicles
- 2. With and without V2G capabilities
- 3. On-road inductive charging

Using what is traditionally waste energy

- 1. Utilizing work from high-temperature heat
- 2. Utilizing waste heat (e.g., waste energy from a power plant for heating industrial processes and commercial and residential buildings)
- Bottom cycles to increase overall plant efficiency (binary, organic, or Kalina)
- 4. Utilizing warm water in heat pumps
- 5. Utilize the thermoelectric effect to convert waste heat to power
- 6. Aquiculture and agriculture in colder climates/seasons or with CO₂ for algae production

ESI – Integration of CHP and Wind

Denmark

- Small Country (5.5M people) -> about the size of the state of Maryland in USA
- Highly interconnected to neighboring countries which facilitates the import/export of energy

- Integrated combined heat and power has:
 - Dramatically increased efficiency (30 %)
 - Allowed 10 % of electricity from biomass
 - Reduced CO2 emissions by 20 %
 - Increasing the opportunity for natural gas

ESI – Integration of CHP and Wind

- NG CHP facility can be built with electric steam generators, giving it the ability to use electricity to make heat when surplus electricity is available.
- When there is excess electricity from wind and hydro, the surplus will be used to make steam for delivery to downtown Seattle switching to electric heat within minutes.
- When there is no surplus electricity from wind and hydro, the CHP plant starts and delivers electricity to the system and at the same time makes steam from the waste heat in the combined heat and power cycle.

Virtual electricity storage: Seattle Steam's solution to balancing wind and hydro power Posted on <u>December 20, 2013 by districtenergy by Stan Gent</u>

ESI – Germany – Power to Gas

Simulation of German electricity grid with 78% RE, leading to excess power in the German grid

Source: Fraunhofer TWES simulation, 2010

Comparison of different storage technologies in Germany

Gas network has 3,000 times more storage than current pumped hydro

Power to Gas

http://thinkgti.com/case-studies/energy-harvesting/item/56-energy-conversion-power-to-gas

Power to Gas in USA

NREL is partnering with Southern California Gas to evaluate the concept of Power-to-Gas using excess renewable energy

Systems Integration – Integrated variable hydrogen and bio-derived natural gas production for seasonal storage and later power via fuel cells

Three subtasks:

- Develop a power-to-gas storage dynamic simulation model
- Build and operate a small-scale powerto-gas system at ESIF
- Determine value to the grid and to the owner

11 TWh storage – shift the entire load of L.A. by 2 months

ESIF - High Performance Computing Data Center

HPC – DC Showcase Facility

- Use evaporative rather mechanical cooling.
- Waste heat captured and used to heat labs & offices.
- World's most energy efficient HPC - data center, PUE 1.06!

ESI Element #3 - Empower

Informed customers as active participants within energy systems

Generating and providing information so the customer uses energy more effectively. Enables customer decisions regarding issues involving energy use.

Examples

- 1. Education resulting in changed behavior
- 2. Customer-driven electrical demand response
- 3. Customer-side distributed energy storage
- 4. Traffic rerouting/changing travel times due to congestion
- 5. Precision irrigation
- 6. Scheduling manufacturing around energy prices

ASU – Campus Metabolism

http://cm.asu.edu/#

Customer sited Distributed Energy Storage

Utilities, Commercial Building Owners Win With Distributed Energy Storage - 10/18/2013 - **Doug Staker**, Demand Energy Networks Inc. - Electric light & Power – www.elp.com

NREL – Campus Energy Project

Data Visualization - Building Dashboard

Data Visualization - End Use Dashboard

NREL Campus Energy - Apps

Energy DataBUS – Data Collection and Analytics

Campus Energy Control and Optimization

ESI Element #4 – Mode-Shift

Switching the means used to provide energy-requiring end-use services

Focusing on energy services and finding different modes that provide endusers with the necessary services while using less energy

Examples

- 1. High-speed electric rail for medium long-distance transport
- 2. Private to public transportation (i.e., cars to buses)
- 3. Urban planning for alternative transportation
- 4. Telework
- Using renewables to provide reaction heat (e.g., solar furnace)
- 6. Daylighting

Smart Office Areas - Daylighting

- Integrated Energy Efficiency into Design and Operations
- High use of daylight
- Natural use of ventilation through operable windows
- Uses about 25% national average for energy in office space
- Installed Enmetric plug load control system
- Collecting circuit level load information in office area

Enmetric Plug Load Controller

Energy Systems Integration Facility (ESIF)

http://www.nrel.gov/esif

U.S. DEPARTMENT OF ENERGY

Unique Capabilities

- Multiple parallel AC and DC experimental busses (MW power level) with grid simulation and loads
- Flexible interconnection points for electricity, thermal, and fuels
- Medium voltage (15kV) microgrid test bed
- Virtual utility operations center and visualization rooms
- Smart grid testing lab for advanced communications and control
- Interconnectivity to external field sites for data feeds and model validation
- Petascale HPC and data mgmt system in showcase energy efficient data center
- MW-scale Power hardware-in-the-loop (PHIL) simulation capability to test grid scenarios with high penetrations of clean energy technologies

ESIF Laboratories

ESIF Research Infrastructure

Power Hardware-in-the-Loop: Connecting Experiments to Simulations

Foster a Global Community

International Institute

Vision

A global community of scholars and practitioners from leading institutes engaged in efforts to enable highly integrated, flexible, clean, and efficient energy systems

Objectives

- Share ESI knowledge and Experience
- Coordination of R&D activities
- **Education and Training Resources**

Recent Activities

- Sept '14 Meeting w/IEA at NREL, USA
- Mar '15 Workshop Imperial College UK
- Energy Systems 101 KU Leuven Belgium

ESI – IEEE Power & Energy Magazine

Mark O'Malley and Ben Kroposki – Guest Editors (Sept. 2013)

- National-Scale ESI Jim McCalley, Iowa St.
- EU ESI John Holms, Oxford
- Danish ESI Peter Meibom,
 Danish Energy Association
- China ESI Chongqing Kang, Tsinghua University
- Hawaii ESI Dave Corbus,
 NRFL
- Integrating electricity and thermal modeling – Juan Van Roy, KU Leuven

Ben Kroposki, PhD, PE, FIEEE

Director – Power Systems Engineering Center National Renewable Energy Laboratory

For Further Reading

- "Energy Systems Integration A Convergence of Ideas", B. Kroposki, B. Garrett, S. Macmillan, B. Rice, C. Komomua, M. O'Malley, D. Zimmerle, NREL/TP-6A00-55649, July 2012, http://www.nrel.gov/esi/pdfs/55649.pdf
- "Energy Comes Together The Integration of All Systems", M. O'Malley and B. Kroposki, IEEE Power & Energy Magazine, Sept/Oct 2013, pp. 18-23, Digital Object Identifier 10.1109/MPE.2013.2266594
- "Energy Systems Integration: An Evolving Energy Paradigm", M. Ruth and B. Kroposki, The Electricity Journal, 2014
- Renewable Electricity Futures Study (Entire Report) National Renewable Energy
 Laboratory. (2012). Renewable Electricity Futures Study. Hand, M.M.; Baldwin, S.;
 DeMeo, E.; Reilly, J.M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D. eds. 4 vols.
 NREL/TP-6A20-52409. Golden, CO: National Renewable Energy Laboratory.
 http://www.nrel.gov/analysis/re_futures/
- "Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues", M. Melaina, O. Antonia, and M. Penev, NREL/TP-5600-51995, March 2013, http://www.nrel.gov/docs/fy13osti/51995.pdf