Ontology Languages: OWL

Oscar Romero
Facultat d'Informàtica de Barcelona
Universitat Politècnica de Catalunya

OWL

- W3C recommendation (2003)
- Based on OIL and DAML
- Uses RDF and XML as the underlying representation
- There were three languages in OWL 1.0:
 - Lite
 - DL
 - Full
- OWL 2.0 eliminates OWL Lite and adds three profiles: RL, QL, EL

OWL

 $\begin{array}{|c|c|c|c|c|c|}\hline \text{OWL-Lite} & \mathcal{SHIF} \\\hline \text{OWL-DL} & \mathcal{SHOIN} \\\hline \text{OWL-Full Unconstrained } \mathcal{SHOIN} \\\hline \end{array}$

Source: Sven Groppe. Data Management and Query Processing in Semantic Web Databases

Oscar Romero

3

OWL Versions

- Criticism to OWL 1.0
 - Complex reasoning over the ABOX (i.e., on data complexity)
 - Integrity constraints are not allowed
 - Limited support to data types
- OWL 2.0
 - Syntactic facilities
 - SROIQ constructs
 - OWL 1.0 corresponds to SHOIN
 - User defined data types
 - Class attributes and primary keys

Syntax Example (Axioms)

OWL axiom	DL syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal □ Biped
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human □ Male
disjointWith	$C_1 \sqsubseteq \neg C_2$	Man ⊑ ¬Female
sameIndividualAs	$\{a_1\} \equiv \{a_2\}$	$\{presBush\} \equiv \{G.W.Bush\}$
differentFrom	$\{a_1\} \sqsubseteq \neg \{a_2\}$	$\{john\} \sqsubseteq \neg \{peter\}$
subPropertyOf	$P_1 \sqsubseteq P_2$	$hasDaughter \sqsubseteq hasChild$
equivalentProperty	$P_1 \equiv P_2$	$hasCost \equiv hasPrice$
inverseOf	$P_1 \equiv P_2^-$	$hasChild \equiv hasParent^-$
transitiveProperty	$P^+ \sqsubseteq P$	ancestor ⁺ ⊑ ancestor
functionalProperty	$\top \sqsubseteq (\leq 1P)$	$\top \sqsubseteq (\leq 1 \text{ hasFather})$
inverseFunctionalProperty	$\top \sqsubseteq (\leq 1P^{-})$	$\top \sqsubseteq (\leq 1 hasSSN^-)$

Syntax Example (Constructs)

OWL contructor	DL constructor	Example
intersectionOf	$C_1\sqcap\cdots\sqcap C_n$	Human □ Male
unionOf	$C_1 \sqcup \cdots \sqcup C_n$	Doctor ⊔ Lawyer
complementOf	$\neg C$	¬Male
oneOf	$\{a_1\}\sqcup\cdots\sqcup\{a_n\}$	$\{john\}\sqcup\{mary\}$
${\sf allValuesFrom}$	$\forall P.C$	∀hasChild.Doctor
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer
maxCardinality	$(\leq n P)$	$(\leq 1 hasChild)$
minCardinality	$(\geq n P)$	$(\geq 2hasChild)$

Complex Constraints (Constructs)

- Constructs such as owl:someValuesFrom,owl:allValuesFrom, owl:minCardinality,owl:maxCardinality are expressed using blank nodes together with owl:Restriction by means of reification (i.e., they require a set of triples –not just one- to express sent the construct)
- Example:

```
_:a rdfs:subClassOf owl:Restriction _:a is a complex constraint
_:a owl:onProperty :Leads denotes the constrained property
_:a owl:allValuesFrom :Professor denotes the property constraints / cardinality
```

The class describing the set of individuals for which all range values of the property :Leads come from the class :Professor

```
:Department rdfs:subClassOf _:a would be equivalent to:
```

```
:Department \sqsubseteq \forall:Leads :Professor
```

Complex Constraints (II)

Cardinalities on roles:

```
_:a rdfs:subClassOf owl:Restriction
_:a owl:onProperty RegisteredTo
_:a owl:minCardinality 3
_:b rdfs:subClassOf owl:Restriction
_:b owl:onProperty RegisteredTo
_:b owl:maxCardinality 6

:Student rdfs:subClassOf _:a
:Student rdfs:subClassOf _:b
```

How would you express on OWL the following constraint?

```
C_1 \sqsubseteq \exists P.C
```

Complex Constraints (III)

Union and Intersection (functional syntax)

```
_:a rdfs:subClassOf owl:Restriction
_:a owl:onProperty :TeachesTo
_:a owl:someValuesFrom :Undergrad
_:b owl:unionOf (:Professor,:Lecturer)
_:a rdfs:subClassOf _:b
```

How do you express this constraint in DL?

OWL Implementation

- Uses RDF syntax (i.e., URIs and literals that conform valid triples)
- It reuses some URIs from RDFS (e.g., rdfs:subClassOf). However, be aware that the whole RDFS is NOT a subset of OWL
- OWL adds new properties and classes based on DL and defined at the OWL namespace:

http://www.w3.org/2002/07/owl#

Example of OWL Syntax (I) -RDF/XML

Translation to OWL DL

The arrows point in the direction of the one-to-many relationships between tables;

Example of OWL Syntax (II)

This example uses a new **functional notation** that avoids the overloading owl:Restriction notation and XML

OWL: Recap

OWL-Full Unconstrained SHOIN

Oscar Romero 13

Processing in Semantic Web Databases

OWL 2 Profiles

OWL 2 EL:

Based on *EL*++

Large number of properties / classes

Reasoning: Polynomial with regard to the ontology TBOX

OWL 2 QL:

Based on DL-Lite

Captures (most of) ER and UML expressive power

Reasoning: Reducible to LOGSPACE (i.e., DBs)

OWL 2 RL:

Based on Description Logic programs

Scalable reasoning without sacrificing much expressivity

Reasoning:
Polynomial with
regard to the size
of the ontology

The exercise from the previous session to express schema constraints with DL is based on **OWL 2 QL!**

- Description Logics
 - TBOX
 - Constructs
 - Formal Semantics
 - ABOX
 - Reasoning
- OWL
 - Languages
 - Profiles