Exercises 6 for MA 413 - Statistics for Data Science

This sheet will cover lecture material from the lecture 21/10/2019 and later material.

1. Let the random sample Y_1, \ldots, Y_n be generated from the distribution

$$f_Y(y) = \begin{cases} \frac{1}{\theta_2 - \theta_1} & \text{if} \quad 0 < \theta_1 < y < \theta_2 \\ 0 & \text{otherwise} \end{cases}$$

Let $S = \min_i(Y_1, \dots, Y_n)$ and let $T = \max_i(Y_1, \dots, Y_n)$.

- * Are either S or T ancillary?
- * Derive their density functions.
- * Do they become concentrated?
- * Set $\theta_1 = \theta$ and $\theta_2 = \theta + 1$. Is U = T S ancillary?
- 2. Let $Y_i \stackrel{iid}{\sim} N(\mu, \sigma^2 + \mu^2)$.
 - * Write down the distribution of the random sample Y.
 - * Determine any sufficient statistics for μ and σ^2 .
- 3. Let (X_i, Y_i) be iid with common pdf

$$f_{X,Y}(x,y) = \exp(-\theta x - \frac{y}{\theta})I(x > 0, y > 0).$$

- * Write down the distribution of the random sample (\mathbf{X}, \mathbf{Y}) .
- * Determine any ancillary statistics for θ .

Hint: consider
$$T = \sqrt{\frac{\sum_{i} Y_{i}}{\sum_{i} X_{i}}}$$
 and $U = \sqrt{\sum_{i} Y_{i}} \sqrt{\sum_{i} X_{i}}$.

Are they minimally sufficient and/or sufficient?

- 4. Let X_1, \ldots, X_n be Poisson (θ) generated independently. Write down the joint distribution of X and $T = \sum_i X_i$. Determine the conditional distribution of X given T. Is T sufficient for θ ?
- 5. (Hard) Suppose that X_n is uniformly distributed on $\{1/n, 2/n, \ldots, 1\}$. Show that X_n converges in distribution to a continuous uniform on (0, 1).
- 6. Let $X_n = 1 + N(0, 1/n)$. Show that X_n converges in probability to one.