In all exercises, you may assume R is a commutative ring with identity where $1 \neq 0$.

1. (Exercise 14 in DF §10.4.) Let I be an arbitrary nonempty index set, and for each $i \in I$ let N_i be an R-module. Let M be an R-module. Prove that there is an R-module isomorphism

$$M \otimes_R \left(\bigoplus_{i \in I} N_i\right) \cong \bigoplus_{i \in I} (M \otimes_R N_i).$$

Proof. Define a map $f: M \times \left(\bigoplus_{i \in I} N_i\right) \to \bigoplus_{i \in I} (M \otimes_R N_i)$ by $(m, \prod n_i) \mapsto \prod m \otimes n_i$. Observe that f is bilinear: for any $r_1, r_2 \in R, m_1, m_2 \in M$, and $\prod x_i, \prod y_i \in \bigoplus_{i \in I} N_i$, we have

$$f((r_{1}m_{1} + r_{2}m_{2}, \prod x_{i})) = \prod (r_{1}m_{1} + r_{2}m_{2}) \otimes x_{i}$$

$$= r_{1} \prod (m_{1} \otimes x_{i}) + r_{2} \prod (m_{2} \otimes x_{i})$$

$$= r_{1}f(m_{1}, x_{i}) + r_{2}f(m_{2}, x_{i})$$

$$f((m_{1}, r_{1} \prod x_{i} + r_{2} \prod y_{i}) = m_{1} \otimes (r_{1} \prod x_{i} + r_{2} \prod y_{i})$$

$$= \prod m_{1} \otimes (r_{1}x_{i} + r_{2}y_{i})$$

$$= r_{1} \prod m_{1} \otimes x_{i} + r_{2} \prod m_{1} \otimes y_{i}$$

$$= r_{1}f(m_{1}, \prod x_{i}) + r_{2}f(m_{1}, \prod y_{i})$$

therefore, by the universal property of tensor product (the version from Corollary 12), f induces a unique R-module homomorphism $\varphi: M \otimes_R \left(\bigoplus_{i \in I} N_i\right) \to \bigoplus_{i \in I} (M \otimes_R N_i)$ defined by $(m \otimes \prod n_i) \mapsto \prod (m \otimes n_i)$.

Next, for each $i \in I$ define a map $g_i : M \times N_i \to M \otimes_R (\bigoplus_{i \in I} N_i)$ by $(m, n) \mapsto m \otimes \iota_i(n)$ where ι_i is the natural inclusion of N_i into $\bigoplus_{i \in I} N_i$. Recall that ι_i is an R-module homomorphism. Observe that g_i is bilinear: for each $r_1, r_2 \in R, m_1, m_2 \in M$, and $x, y \in N_i$, we have

$$g_{i}(r_{1}m_{1} + r_{2}m_{2}, x) = (r_{1}m_{1} + r_{2}m_{2}) \otimes \iota_{i}(x)$$

$$= r_{1} (m_{1} \otimes \iota_{i}(x)) + r_{2} (m_{2} \otimes \iota_{i}(x))$$

$$= r_{1}g_{i}(m_{1}, x) + r_{2}g_{i}(m_{2}, x)$$

$$g_{i}(m_{1}, r_{1}x + r_{2}y) = m_{1} \otimes \iota_{i}(r_{1}x + r_{2}y)$$

$$= r_{1} (m_{1} \otimes \iota_{i}(x)) + r_{2} (m_{1}\iota_{i}(y))$$

$$= r_{1}g(m_{1}, x) + r_{2}g(m_{1}, y)$$

therefore each g_i induces a unique R-module homomorphism $\psi_i: M \otimes_R N_i \to M \otimes_R (\bigoplus_{i \in I} N_i)$ satisfying $\psi_i(m \otimes n) = m \otimes \iota_i(n)$.

By the universal property of direct sum, there is a unique R-module homomorphism $\psi : \bigoplus_{i \in I} (M \otimes N_i) \to M \otimes (\bigoplus_{i \in I} N_i)$ such that $\psi \circ \hat{\iota}_i = \psi_i$ for each $i \in I$, where $\hat{\iota}_i$ is the inclusion of $M \otimes_R N_i$ into $\bigoplus_{j \in I} (M \otimes_R N_j)$.

We will now show that ψ is the inverse of φ , thus giving that φ is an isomorphism. Let $m \otimes \prod n_i \in M \otimes_R (\bigoplus_{i \in I} N_i)$, where $n_i \in N_i$ for each $i \in I$. Note that there are only finitely many $i \in I$ for which $n_i \neq 0$, so $\prod_{i \in I} m \otimes n_i = \sum_{\{i: n_i \neq 0\}} \hat{\iota}_i(m \otimes n_i)$ is a sum of finitely many terms. We have

$$\psi \circ \varphi \left(m \otimes \prod n_i \right) = \psi \left(\prod m \otimes n_i \right)$$

$$= \psi \left(\sum_{\{i: n_i \neq 0\}} \hat{\iota}_i(m \otimes n_i) \right)$$

$$= \sum_{\{i: n_i \neq 0\}} \psi \circ \hat{\iota}_i(m \otimes n_i)$$

$$= \sum_{\{i: n_i \neq 0\}} \psi_i(m \otimes n_i)$$

$$= \sum_{\{i: n_i \neq 0\}} m \otimes \iota_i(n_i)$$

$$= m \otimes \sum_{\{i: n_i \neq 0\}} \iota_i(n_i)$$

$$= m \otimes \prod n_i$$

so ψ is a left inverse of φ .

Next, let $\prod m_i \otimes n_i \in \bigoplus_{i \in I} (M \otimes_R N_i)$, where $m_i \in M, n_i \in N_i$ for each $i \in I$. We have

$$\varphi \circ \psi \left(\prod m_i \otimes n_i \right) = \varphi \circ \psi \left(\sum_{\{i: m_i \otimes n_i \neq 0\}} \hat{\iota}_i(m_i \otimes n_i) \right)$$

$$= \varphi \left(\sum_{\{i: m_i \otimes n_i \neq 0\}} \psi_i(m_i \otimes n_i) \right)$$

$$= \varphi \left(\sum_{\{i: m_i \otimes n_i \neq 0\}} m_i \otimes \iota_i(n_i) \right)$$

$$= \sum_{\{i: m_i \otimes n_i \neq 0\}} \varphi \left(m_i \otimes \iota_i(n_i) \right)$$

$$= \sum_{\{i: m_i \otimes n_i \neq 0\}} \hat{\iota}_i \left(\prod m_i \otimes n_i \right)$$

$$= \prod m_i \otimes n_i$$

therefore ψ is also a right inverse of φ , so φ is an isomorphism.

2. (Exercise 16 in DF §10.4.) Let I and J be ideals of R, so that R/I and R/J are naturally R-modules.

(a) Prove that every element of $R/I \otimes_R R/J$ can be written as a simple tensor of the form $\overline{1_R} \otimes \overline{r}$, where $r \in R$ and the bar in the left (resp. right) factor denotes the equivalence class modulo I (resp. modulo J).

Proof. Every element of $R/I \otimes_R R/J$ can be written as $\sum_{i=1}^n \overline{x_i} \otimes \overline{y_i}$ for some n, where $x_i, y_i \in R$ for each $i \in \{1, ..., n\}$. Using the natural action of R on $R/I \otimes_R R/J$, we have

$$\sum_{i=1}^{n} \overline{x_i} \otimes \overline{y_i} = \sum_{i=1}^{n} \overline{1_R} \cdot x_i \otimes y_i \cdot \overline{1_R} = \sum_{i=1}^{n} \overline{1_R} \otimes (x_i y_i) \cdot \overline{1_R} = \sum_{i=1}^{n} \overline{1_R} \otimes \overline{x_i y_i} = \overline{1_R} \otimes \sum_{i=1}^{n} \overline{x_i y_i} = \overline{1_R} \otimes \sum_{i=1}^{n} \overline{x_i y_i}$$

hence the result follows.

(b) Prove that there is an R-module isomorphism $R/I \otimes_R R/J \cong R/(I+J)$ mapping $\overline{r} \otimes \overline{r'}$ to $\overline{rr'}$ (where $r, r' \in R$ and the bars denote the equivalence class modulo I, J, and I+J respectively). (Recall that I+J denotes the ideal generated by the set $I \cup J$, or equivalently the set of all elements a+b where $a \in I$ and $b \in J$.)

Proof. First, we need to show that the given map φ is well-defined. It is not enough to check that $\varphi(\overline{1}_R \otimes \overline{x}) = \varphi(\overline{1}_R \otimes \overline{y})$ when $x - y \in J$, since this is not equivalent to $\overline{1}_R \otimes \overline{x} = \overline{1}_R \otimes \overline{y}$. For instance, in $\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/3\mathbb{Z} = 0$ we have $\overline{1} \otimes \overline{1} = \overline{0} = \overline{1} \otimes \overline{2}$, even though $1 - 2 \notin 3\mathbb{Z}$. So we will again invoke the universal property.

Let $f: R/I \times R/J \to R/(I+J)$ be defined by $f(\overline{x}, \overline{y}) = \overline{xy}$. First, we will show that f is well-defined. Suppose $x-s \in I$ and $y-r \in J$. Then $xy \in I$ and $sr \in J$ simply because $x, s \in R$, and I+J is an R-module. Thus $xy-rs \in I+J$, so $f(\overline{x}, \overline{y}) = \overline{xy} = \overline{rs} = f(\overline{r}, \overline{s})$.

Now, we will show that f is bilinear. For any $r, s, x, y, z \in R$, we have

$$f(\overline{rx+sy},\overline{z}) = \overline{(rx+sy)z} = r \cdot \overline{xz} + s \cdot \overline{yz} = rf(\overline{x},\overline{z}) + sf(\overline{y},\overline{z})$$

Since R is commutative and f is symmetric in its two arguments, linearity holds in the second component as well. Thus f induces an R-module homomorphism $R/I \otimes R/J \to R/(I+J)$, which is precisely φ . Thus φ is a well-defined homomorphism.

To see that φ is injective, let $\overline{1}_R \otimes \overline{x} \in \ker(\varphi)$. Then $1_R \cdot x = x \in I + J$, so x = i + j for some $i \in I, j \in J$. Thus

$$\overline{1}_R \otimes \overline{x} = \overline{1}_R \otimes \overline{i+j} = \overline{1}_R \otimes \overline{i} + \overline{1}_R \otimes \overline{j} = \overline{i} \otimes \overline{1}_R + \overline{1}_R \otimes \overline{j} = \overline{0}_R \otimes \overline{1}_R + \overline{1}_R \otimes \overline{0}_R = 0.$$

Since φ is a group homomorphism, and its kernel is 0, it must be injective.

$$\varphi$$
 is clearly surjective, since for any $x+(I+J)\in R/(I+J)$ we have $\varphi((1_R+I)\otimes (x+J))=(1_R\cdot x)+(I+J)=x+(I+J)$. Thus φ is an isomorphism.

3. (Exercise 18 in DF §10.4.) Suppose R is an integral domain and I is a principal ideal in R. Prove that the R-module $I \otimes_R I$ has no nonzero torsion elements; i.e., if $r \in R \setminus \{0\}$ and $m \in I \otimes_R I$ satisfy rm = 0, then m = 0.

Proof. Let I=(a), so that every element of I is of the form ra for some $r \in R$. First, note that every tensor is of the form $\sum_i r_i a \otimes s_i a = (\sum_i r_i s_i) \cdot (a \otimes a) = r \cdot (a \otimes a)$. It is natural to guess that $I \otimes_R I \cong R$.

Define $f: I \times I \to R$ by $(ra, sa) \mapsto rs$. Check that f is bilinear: for any $c, d, r, s, t \in R$, we have

$$f(c(ra) + d(sa), ta) = f((cr + ds)a, ta)$$

$$= (cr + ds)t$$

$$= c(rt) + d(st)$$

$$= cf(r, t) + df(s, t).$$

Again, since f is symmetric in its arguments we know it is linear in its second component as well. So f is bilinear, and thus induces a unique R-module homomorphism $\varphi: I \otimes_R I \to R$ such that $\varphi(ra \otimes sa) = rs$. Since every tensor is of the form $r \cdot (a \otimes a)$, φ is equivalently defined by $\varphi(r \cdot (a \otimes a)) = r$.

Clearly the map $\psi: R \to I \otimes_R I$ given by $r \mapsto r \cdot (a \otimes a)$ is a homomorphism and both a left and right inverse of φ :

$$\psi(x+ry) = (x+ry) \cdot (a \otimes a) = x \cdot (a \otimes a) + r \cdot (y \cdot (a \otimes a)) = \psi(x) + r\psi(y)$$
$$\varphi \circ \psi(r) = \varphi(r \cdot (a \otimes a)) = r$$
$$\psi \circ \varphi(r \cdot (a \otimes a)) = \psi(r) = r \cdot (a \otimes a)$$

Thus φ is an isomorphism.

The action of R on itself is simply multiplication in R, thus R being torsion free is equivalent to it being an integral domain. Therefore, R is torsion free and so $I \otimes_R I$ must also be torsion free.

4. (Exercise 19 in DF §10.4.) Let I = (2, X) be the ideal generated by 2 and X in the ring $R = \mathbf{Z}[X]$, as in Exercise 17 (assigned on HW10). Show that the nonzero element $2 \otimes X - X \otimes 2$ in $I \otimes_R I$ is a torsion element. Show in fact that $2 \otimes X - X \otimes 2$ is annihilated by both 2 and X, and that the submodule of $I \otimes_R I$ generated by $2 \otimes X - X \otimes 2$ is isomorphic to R/I.

Proof.

$$2(2 \otimes x - x \otimes 2) = (2 \otimes 2x - 2x \otimes 2) = (2x \otimes 2 - 2x \otimes 2) = 0$$
$$x(2 \otimes x - x \otimes 2) = (2x \otimes x - x \otimes 2x) = (2x \otimes x - 2x \otimes x) = 0$$

thus $(2 \otimes x - x \otimes 2)$ is annihilated by both 2 and x. The only reason we could not do this before (in hw 10) was that $(2 \otimes x)$ cannot be written as $2(1 \otimes x)$, since $1 \notin I$.

This implies that both 2 and x annihilate the submodule A of $I \otimes_R I$ generated by $2 \otimes x - x \otimes 2$: in general, let S be a commutative ring, let $\{v\}$ a basis for an S-module V, and suppose $a \in S$ annihilates v. Any element of V is of the form sv for some $s \in S$, so we have

$$a(sv) = (as)v = (sa)v = s(av) = s(0) = 0$$

thus a is contained in the annihilator of V.

Furthermore, this implies that I is contained in the annihilator of A: In homework 7, problem 5, we were allowed to take for granted the result of exercise 9 from section 10.1, which states that the annihilator of A is an ideal. This would be easy to show anyway, since the annihilator of a module is the kernel of the homomorphism $r \mapsto rx$, thus is an ideal. Since 2 and x annihilator of A must contain the ideal generated by 2 and x. So I annihilates A.

Define a map $\varphi: R \to A$ by $r(x) \mapsto r(x) \cdot (2 \otimes x - x \otimes 2)$. φ is clearly an R-module homomorphism:

$$\varphi(p(x) + r(x)q(x)) = p(x) + r(x)q(x)(2 \otimes x - x \otimes 2)$$

$$= p(x)(2 \otimes x - x \otimes 2) + r(x)(q(x)(2 \otimes x - x \otimes 2))$$

$$= \varphi(p(x)) + r(x) \cdot \varphi(q(x))$$

Since I annihilates A, it is contained in the kernel of φ . We will now show that I is *precisely* this kernel. Suppose $p(x) \in \mathbf{Z}[x]$, but $p(x) \notin I$. Then p(x) has an odd constant term, thus can be written as p(x) = 1 + q(x) for some $q(x) \in I$. So we have

$$\varphi(p(x)) = p(x) \cdot (2 \otimes x - x \otimes 2)$$

$$= (1 + q(x)) \cdot (2 \otimes x - x \otimes 2)$$

$$= 2 \otimes x - x \otimes 2 + q(x) \cdot (2 \otimes x - x \otimes 2)$$

$$= 2 \otimes x - x \otimes 2 + 0$$

$$= 2 \otimes x - x \otimes 2.$$

However, $2 \otimes x - x \otimes 2 \neq 0$, thus $p(x) \notin \ker \varphi$. Thus $\ker \varphi = I$. By the first isomorphism theorem, φ induces an isomorphism $\overline{\varphi}: R/I \to A$ onto the image of φ , where $\overline{\varphi} \circ \pi = \varphi$ for the natural projection π of R onto R/I. φ is, by construction, surjective, since

$$A = \{ r(x) \cdot (2 \otimes x - x \otimes 2) : r(x) \in R \} = \{ \varphi(r(x)) : r(x) \in R \} = \text{Im}(\varphi).$$

So $\overline{\varphi}$ is an isomorphism from R/I to A, thus $A \cong R/I$.

5. (Exercise 2 in DF §10.5.) Suppose that

$$\begin{array}{ccc}
A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & D \\
\downarrow \alpha & & \downarrow \beta & & \downarrow \gamma & & \downarrow \delta \\
A' & \longrightarrow & B' & \longrightarrow & C' & \longrightarrow & D'
\end{array}$$

is a commutative diagram of groups (you may assume the groups are abelian, if you find this psychologically helpful—it won't make a difference), and that the rows are exact (that is, the diagrams $A \to B \to C$, $B \to C \to D$, $A' \to B' \to C'$, $B' \to C' \to D'$ are exact at B, C, B', C' respectively). Prove that

(a) if α is surjective, and β and δ are injective, then γ is injective;

Proof. Let the maps be $\psi: A \to B$, $\varphi: B \to C$, $\theta: C \to D$, $\psi': A' \to B'$, $\varphi': B' \to C'$, and $\theta': C' \to D'$. Suppose $c \in \ker(\gamma)$, so the $\gamma(c) = 1$.

By commutativity, we have $\delta \circ \theta(c) = \theta' \circ \gamma(c) = 1$, thus $\theta(c) = 1$ because δ is injective. So $c \in \ker(\theta) = \operatorname{Im}(\varphi)$ by exactness. So there exists $b \in B$ such that $\varphi(b) = c$.

By commutativity, we have $\varphi' \circ \beta(b) = \gamma \circ \varphi(b) = \gamma(c) = 1$. Thus $\beta(b) \in \ker(\varphi') = \operatorname{Im}(\psi')$, by exactness. So there exists $a' \in A'$ such that $\psi'(a') = \beta(b)$.

 α is surjective, so there exists $a \in A$ such that $\alpha(a) = a'$. So $\psi' \circ \alpha(a) = \psi'(a') = \beta(b)$. By commutativity, we have $\beta \circ \psi(a) = \psi' \circ \alpha(a) = \beta(b)$. Since β is injective, this means $\psi(a) = b$.

By this last fact, $b \in \text{Im}(\psi) = \text{ker}(\phi)$, so $\phi(b) = 1$. b was defined so that $\phi(b) = c$, thus c = 1. So γ is injective.

(b) if δ is injective, and α and γ are surjective, then β is surjective.

Proof. Let $b' \in B'$. Since γ is surjective, there exists $c \in C$ such that $\gamma(c) = \varphi'(b')$. So $\gamma(c) \in \text{Im}(\varphi') = \text{ker}(\theta')$, thus $\theta'(\gamma(c)) = 1$. By commutativity, $\delta(\theta(c)) = \theta'(\gamma(c)) = 1$.

 δ is injective, so $\theta(c) = 1$. So $c \in \ker(\theta) = \operatorname{Im}(\varphi)$, by exactness, thus there exists $b \in B$ such that $\varphi(b) = c$.

By commutativity, $\varphi'(\beta(b)) = \gamma(\varphi(b)) = \gamma(c) = \varphi'(b')$. So $\varphi'(\beta(b)) \cdot (\varphi'(b'))^{-1} = \varphi'(\beta(b) \cdot (b')^{-1}) = 1$. Hence, $\beta(b) \cdot (b')^{-1} \in \ker \varphi' = \operatorname{Im}(\psi')$, so there exists $a' \in A'$ such that $\psi'(a') = \beta(b) \cdot (b')^{-1}$.

Since α is surjective, there exists $a \in A$ such that $\alpha(a) = a'$. By exactness, $\beta(\psi(a)) = \psi'(\alpha(a)) = \psi'(a') = \beta(b) \cdot (b')^{-1}$. So $b' = \beta(\psi(a))^{-1} \cdot \beta(b) = \beta(\psi(a^{-1}) \cdot b)$. Therefore, β is surjective. \square

- 6. (Exercise 12 in DF §10.5.) Let A be an R-module, let I be any nonempty index set, and for each $i \in I$ let B_i be an R-module. Prove that we have the following R-module isomorphisms:
 - (a) $\operatorname{Hom}_R(\bigoplus_{i\in I} B_i, A) \cong \prod_{i\in I} \operatorname{Hom}_R(B_i, A);$

Proof. Define a map $\varphi: \operatorname{Hom}_R(\bigoplus_{i \in I} B_i, A) \to \prod_{i \in I} \operatorname{Hom}_R(B_i, A)$ as follows:

Let $f \in \operatorname{Hom}_R(\bigoplus_{i \in I} B_i, A)$. For each $i \in I$, the map $f \circ \iota_i$ gives a homomorphism from B_i to A, where ι_i is the natural inclusion of B_i into $\bigoplus_{i \in I} B_i$. So let $\varphi(f)$ be $\prod f \circ \iota_i \in \prod_{i \in I} \operatorname{Hom}_R(B_i, A)$.

We will show that φ is injective. Suppose $\varphi(f) = 0$. Then $\prod f \circ \iota_i = 0$, thus $f \circ \iota_i = 0$ for each $i \in I$. Let $x \in \bigoplus_{i \in I} B_i$. Since this is a direct sum, x can be expressed as $x = \sum_{j \in J} \iota_j(b_j)$, where J is some finite subset of I and $b_j \in B_j$ for each $j \in J$. Thus,

$$f(x) = f(\sum_{j \in J} \iota_j(b_j))$$

$$= \sum_{j \in J} f \circ \iota_j(b_j)$$

$$= \sum_{j \in J} 0$$

$$= 0$$

so f is the zero map, thus φ is injective.

Now, let $\prod g_i \in \prod_{i \in I} \operatorname{Hom}_R(B_i, A)$, where $g_i : B_i \to A$ for each $i \in I$. We will show that g is the image of f under φ , where $f : \bigoplus_{i \in I} B_i \to A$ is the map given by $f(\sum_{j \in J} \iota_j(b_j)) = \sum_{j \in J} g_j(b_j)$ for any finite subset J of I where $b_j \in B_j$ for each $j \in J$ (again, every element of the direct sum is of this form).

To show that $\varphi(f) = \prod f \circ \iota_i$ equals $\prod g_i$, all we need to show is that $f \circ \iota_i = g_i$ for each $i \in I$. But this is clear, since for any $x \in B_i$ we have defined f so that $f \circ \iota_i(x) = g_i(x)$. Thus φ is surjective, therefore an isomorphism.

(b) $\operatorname{Hom}_R(A, \prod_{i \in I} B_i) \cong \prod_{i \in I} \operatorname{Hom}_R(A, B_i)$.

Proof. Define $\varphi: \operatorname{Hom}_R(A, \prod_{i \in I} B_i) \to \prod_{i \in I} \operatorname{Hom}_R(A, B_i)$ by $\varphi(f) = \prod \pi_i \circ f$.

 φ is clearly injective. If $f(x) \neq 0$ for some $x \in A$, then $\pi \circ f(x) \neq 0$ for some $i \in I$, thus $\varphi(f) = \prod \pi_i \circ f \neq 0$, so $f \notin \ker(\varphi)$.

Now let $\prod g_i \in \prod_{i \in i} \operatorname{Hom}_R(A, B_i)$, where $g_i : A \to B_i$ for each $i \in I$. Let $f : A \to \prod_{i \in I} B_i$ be defined by $f(x) = \prod g_i(x)$. Then for any $x \in A$, we have

$$\varphi(f) = \prod_{i} \pi_{i} \circ f$$

$$= \prod_{i} \pi_{i} \circ \prod_{i} g_{i}$$

$$= \prod_{i} g_{i}$$

therefore $\varphi(f) = g$. So φ is surjective, thus an isomorphism.