Vector Database Systems

Shan-Hung Wu and DataLab CS, NTHU

- Why Vector DBMS?
- AKNN Search Algorithms
- Challenges at System-level
- Case study: PASE (System R-like)
 - Data model & Query Format
 - Index Building & Update
 - Planning & Cost Estimation
- Case study: Milvus (purpose-built)
 - Storage & Consistency Model
 - Computing & Threads
 - Query Algorithms

- Why Vector DBMS?
- AKNN Search Algorithms
- Challenges at System-level
- Case study: PASE (System R-like)
 - Data model & Query Format
 - Index Building & Update
 - Planning & Cost Estimation
- Case study: Milvus (purpose-built)
 - Storage & Consistency Model
 - Computing & Threads
 - Query Algorithms

The Emerge of AI & Embeddings

 Used by search engines, recommender systems, personalized ads, etc.

How to store & search billions of embeddings?

- Why Vector DBMS?
- AKNN Search Algorithms
- Challenges at System-level
- Case study: PASE (System R-like)
 - Data model & Query Format
 - Index Building & Update
 - Planning & Cost Estimation
- Case study: Milvus (purpose-built)
 - Storage & Consistency Model
 - Computing & Threads
 - Query Algorithms

Approximate K Nearest Neighbor (AKNN) Search

- Given a query vector q, find k vectors $V = \{v_1, v_2, \dots, v_k\}$ in storage that are approximately nearest to q
- Distance measure?
 - Euclidian distance, cosine similarity, etc.
- The higher *recall* the better
 - Let ground truth: V*
 - Recall = $|V \cap V^*| / |V^*|$

AKNN Algorithms

Tree-based: KD-tree, R-tree

Quantization-based: IVF_FLAT/SQ8/PQ

Graph-based: HNSW, NSG, SSG

Locality sensitive hashing (LSH)

AKNN Algorithms

- Tree-based: KD-tree, R-tree
 - Runs slowly on high-dimensional data
- Quantization-based: IVF_FLAT/SQ8/PQ
 - High recall, codebooks are update-insensitive
- Graph-based: HNSW, NSG, SSG
 - High recall, graph take time/space to maintain
- Locality sensitive hashing (LSH)
 - Low recall

IVF_FLAT/SQ8/PQ

Search in each cluster: brut force (FLAT) vs.
 compressed (SQ8) vs. quantization of subvectors (PQ)

- Why Vector DBMS?
- AKNN Search Algorithms
- Challenges at System-level
- Case study: PASE (System R-like)
 - Data model & Query Format
 - Index Building & Update
 - Planning & Cost Estimation
- Case study: Milvus (purpose-built)
 - Storage & Consistency Model
 - Computing & Threads
 - Query Algorithms

AKNN Libraries from AI Community

- Facebook Faiss, Microsoft SPTAG, Spotify Annoy, etc.
 - Implement various AKNN algorithms

- Pros: computation optimized
 - Support SIMD instructions (SSE, AVX, AVX2)
 - Faiss even supports GPU acceleration

AKNN Libraries from AI Community

- Facebook Faiss, Microsoft SPTAG, Spotify Annoy, etc.
 - Implement various AKNN algorithms

• Cons:

- Assume memory storage only
- No support for dynamic data (updates/deletes)
- No attribute filtering (e.g., "100 < price < 200")

- Why Vector DBMS?
- AKNN Search Algorithms
- Challenges at System-level
- Case study: PASE (System R-like)
 - Data model & Query Format
 - Index Building & Update
 - Planning & Cost Estimation
- Case study: Milvus (purpose-built)
 - Storage & Consistency Model
 - Computing & Threads
 - Query Algorithms

PASE

- "PostgreSQL Ultra-High-Dimensional Approximate Nearest Neighbor Search Extension," in SIGMOD'20
 - A PostgreSQL extension
 - Can be implemented in any System R-like DBMS

• Pros:

- Supports disk storage
- Supports dynamic data
- Supports attribute filtering

Data Model

- Treats vectors as a *field* in a table
 - Type: float vector(d)
- Index creation:

```
CREATE INDEX idx_text ON posts(text_vector)
USING ivf flat;
```

Query Format

AKNN query:

```
SELECT p.id,
    p.text_vector <-> '...' AS dist
FROM posts AS p
ORDER BY dist ASC LIMIT 10;
```

Index Building (IVF_FLAT)

Each page is the unit of buffering and searching

Index Update (IVF_FLAT)

- Do nothing if the data distribution does not change
- Otherwise, continue clustering for few iterations

Planning

- New SortPlan in algebra tree
 - Needs to estimate its own cost

Cost Estimation (IVF_FLAT)

- To select top clusters: B(centroid file)
- Scan for each cluster: B(data file of a centroid)

Attribute Filtering

```
SELECT p.id,
          p.text vector <-> \...' AS dist
FROM posts AS p
WHERE p.date < '...'
ORDER BY dist ASC LIMIT 10;
         Strategy A
                            Strategy B
                                               Strategy C
                                              vector search
        attribute search
                           attribute search
                                             (e.g., IVF_FLAT)
                           vector search
                                             attribute full-scan
        vector full-scan
                           (e.g., IVF FLAT)
```

Best strategy determined by estimated costs

- Why Vector DBMS?
- AKNN Search Algorithms
- Challenges at System-level
- Case study: PASE (System R-like)
 - Data model & Query Format
 - Index Building & Update
 - Planning & Cost Estimation
- Case study: Milvus (purpose-built)
 - Storage & Consistency Model
 - Computing & Threads
 - Query Algorithms

Milvus

- "Milvus: A Purpose-Built Vector Data Management System," in SIGMOD'21
 - A dedicated system

• Pros:

- Supports disk storage, dynamic data, attribute filtering
- Much higher performance than PASE

Storage

Column storage based on Log Structured Merge (LSM)
tree

- Out-of-place updates
- SSTables (segments) are the unit of buffering/searching

Consistency Model: Snapshot Isolation

- Every update creates a new data version
- Readers read a consistent snapshot of data
 - Not always the latest one
 - Not blocked by writers
- Milvus maintains snapshots of LSM tree:
 - Snapshot 1: {segment 1}
 - Snapshot 2: {segment 1, segment 2}
 - Snapshot 3: {segment 2, segment 3, segment 4}

— ...

Thread Model

- In PASE, one thread is assigned for each request
 - Hight L3 cache miss rate
- Milvus:
 - Process *m* requests at once
 - One thread per cached segment in L3

Thread data vectors query vectors heaps Model $H_{0,0}$ \mathbf{v}_0 \mathbf{q}_0 $\overline{H}_{0,1}$ thread T₀ \mathbf{q}_1 $H_{0,s-1}$ \mathbf{q}_{s-1} V_{b-1} $\overline{\mathsf{H}}_{1,0}$ \mathbf{q}_s \mathbf{v}_{b+1} thread T₁ \mathbf{q}_{s+1} H_{1,s-1} V_{2b-1} q_{2s-1} $H_{t-1,0}$ $\mathbf{V}_{(\underline{t-1})^*b}$ $q_{(W-1)*s}$ thread T_{t-1} $\mathbf{q}_{(w-1)^*s+1}$ (t-1)*b+1 $\overline{\mathsf{H}}_{\underline{t}\underline{\mathsf{-1}},\underline{\mathsf{s}}\underline{\mathsf{-1}}}$

 \mathbf{q}_{w^*s-1}

- For each query s:
 - Each of t threads outputs temp AKNN results in heap $H_{t,s}$ (in L3)
 - Then, $\{H_{0.s'}, H_{1.s'}, ...\}$ are merged to get final AKNN results

 V_{t*b-1}

• 1.5 ~ 2.7 speedup

Computing

- Computing the distance between two vectors involves many, parallelable floating point operations
- Milvus supports hardware acceleration:
 - SIMD instructions on CPU: SSE, AVX, AVX2, AVX512
 - GPU, multi-GPU
 - Also balances GPU speedup vs. bus transfer delay:

Algorithm 1: SQ8H

- 1 let n_q be the batch size;
- 2 if $n_q \ge threshold$ then
- run all the queries entirely in GPU (load multiple buckets to GPU memory on the fly);
- 4 else
- execute the step 1 of SQ8 in GPU: finding n_{probe} buckets;
- execute the step 2 of SQ8 in CPU: scanning every relevant bucket;

Query Planning

- Partition based on frequently queried attributes
- 13x speedup