Polyrepresentative Clustering: A Study of Simulated User Strategies and Representations

Muhammad Kamran Abbasi Ingo Frommholz

Institute for Research in Applicable Computing University of Bedfordshire UK

Second BIR Workshop, ECIR2015 29 March 2015

Outline

- Introduction
- Polyrepresentation and Clustering
- Evaluation
- Conclusion

Introduction

- Principle of Polyrepresentation in IIR
- Multiple representations of information need and information object (documents)
 - Cognitive overlap supposed to contain relevant documents
- Combination of document clustering and polyrepresentation

Polyrepresentation and Clustering

- Polyrepresentation creates partitions
- Clustering partitions document sets too
- Can clustering help in creating polyrepresentative partitions?

Information Need-based Vector

- Let *REP*_{in} be the set of representations¹ of an information need in
- Motivated by the Optimum Clustering Framework (OCF) which is based on the probability of relevance (Fuhr et al., 2011)
- ullet $\Pr(R|d,r_i)$ is computed for each document d and $r_i \in REP_{in}$

$$\vec{\tau}_{in}(d) = \begin{pmatrix} \Pr(R|d, r_1) \\ \vdots \\ \Pr(R|d, r_n) \end{pmatrix}$$
 (1)

Muhammad Kamran Abbasi, Ingo Frommholz

¹search terms, work task, ideal answer, current info need, background knowledge

Document-based Polyrepresentation Vector

- REP_d consists of the different representations² rd_i of a document d
- thus the $Pr(R|rd_i, q)$ for q (search terms in this case) is computed

$$\vec{\tau}_{doc}(d) = \begin{pmatrix} \Pr(R|rd_1, q) \\ \vdots \\ \Pr(R|rd_n, q) \end{pmatrix}$$
 (2)

²title, abstract, body, context, references

Bibliographic context

Representation Concatenation and Combinations

IN and Doc representation concatenation and combinations were used

For example:

• Concatenation of $REP_{doc}|REP_{in}$:

$$\tau_{(\textit{in doc})}(\textit{d}) = \left(\textit{P}(\textit{R}|\textit{d},\textit{r}_1),\ldots,\textit{P}(\textit{d},\textit{r}_n),\textit{P}(\textit{R}|\textit{rd}_1,\textit{q}),\ldots,\textit{P}(\textit{R}|\textit{rd}_m,\textit{q})\right).$$

- Combination of REP_{doc} or REP_{in}
 - for Doc : {title, abstract}, {title, body text}...
 - for IN: {search terms, work task}, {search terms, ideal answer}...

Simulated User Strategies

- Simulated User Strategy-1
 - From each cluster: take top / documents (sorted based on weights) and add them to a list
 - Sort documents in final list based on their weights and evaluate
- Simulated User Strategy-2
 - From first cluster take 1st document, add it to the list
 - Check if this document is relevant, if it is, then take next document from same cluster
 - If added document is not relevant switch to next cluster and take its first document
 - Follow the procedure until last cluster is reached
 - Sort documents in final list based on their weights and evaluate

Experiment Setup

- PF (full text) sub collection of iSearch collection
 - 65 search tasks
- IN and Document vectors as discussed above
- Terrier 3.5 was used for indexing and retrieval
- Using k-means 2^{|REP|} number of cluster were computed
- BM25 to estimate $Pr(R|rd_i,q)$ and $Pr(R|d,r_n)$, then apply Strategy-1 resp. Strategy-2 (yields a ranking)
- Baseline BM25 ranking: CombSUM of $Pr(R|rd_i, q)$ and $Pr(R|d, r_n)$ (its respective concatenation and combination)

Evaluation Results

Strategy 1 & 2 for IN & Doc Reps Concatenated

^{*} shows statistically significant difference from baseline at p < 0.05

Evaluation

Evaluation Results

Strategy 1 for Doc Rep combination (title abstract)

Evaluation

Evaluation Results

Strategy 1 for Doc Rep combination (abstract context)

Evaluation

Evaluation Results

Strategy 1 for Doc Rep combination (context reference)

Conclusion

- A polyrepresentative clustering strategy seems to improve effectiveness
- Bibliometric information i.e. citation context and references could be helpful as representations (but needs further investigation
- (Simulated) user strategies have potential to be used for Interactive IR evaluation

Norbert Fuhr, Marc Lechtenfeld, Benno Stein, and Tim Gollub.

The Optimum Clustering Framework: Implementing the Cluster

Hypothesis. Information Retrieval, 15(2):93–115, 2011. doi:

//www.springerlink.com/content/p07276193341q351/.

10.1007/s10791-011-9173-9. URL http: