Homework Two: Linear Programs

Question One

Story Problem: Farmer Jane owns 45 acres of land. She is going to plant each with wheat or corn. Each acre planted with wheat yields 230 profit; each with corn yields 190 profit. The labor and fertilizer used for each acre are given in the table below. 100 workers and 130 tons of fertilizer areavailable.

Expanded solution

Problem Data

```
In [1]: using JuMP, Clp
        m = Model(solver = ClpSolver())
         @variable(m, wheat >= 0)
                                                     # wheat
         @variable(m, corn >= 0)
                                                     # corn
         @constraint(m, wheat + corn <= 45)</pre>
                                                     # total land to work on
         @constraint(m, 3wheat + 2corn <= 100)</pre>
                                                    # total number of labor
        @constraint(m, 2wheat + 4corn <= 130) # total amount of fertilizer</pre>
         @objective(m, Max, 230wheat + 190corn)
                                                     # maximize profit
Out[1]:
              \max 230wheat + 190corn
         Subject to
                   wheat + corn \le 45
                     3wheat + 2corn \le 100
                     2wheat + 4corn \le 130
                     wheat \geq 0
                     corn \ge 0
```

Problem Model

```
In [2]: println(m)
    status = solve(m)
    nrintln(status)

Max 230 wheat + 190 corn
Subject to
    wheat + corn ≤ 45
    3 wheat + 2 corn ≤ 100
    2 wheat + 4 corn ≤ 130
    wheat ≥ 0
    corn ≥ 0
Optimal
```

1 of 3 2/5/19, 10:41 PM

The ideal solution, and one I would recommend, is to cover 17.5 acres with Wheat and 23.75 acres of Corn. This will produce the optimal profit (highest return) for Farmer Jane.

2b. Solve in a different method.

```
In [1]: # the types of produce
        product = [:wheat, :corn]
        # fertilizer required for each type of prodcut
        fert = Dict( :wheat => 2, :corn => 4)
        # labor required for each type of product
        labor = Dict( :wheat => 3, :corn => 2)
        # acres required for each crop --- not sure if I actually need this, do not think
        acres = Dict( :wheat => 1, :corn => 1)
        # profit made for each product
        profit = Dict( :wheat => 230, :corn => 190)
        # quantities in stock for each ingredient
        num fert
                    = 130
        num_labor
                    = 100
        num_acres
                   = 45
```

2 of 3 2/5/19, 10:41 PM

```
In [2]: using JuMP, Clp
         m = Model(solver = ClpSolver())
         @variable(m, crop[product] >= 0 )
                                              # "crop" is a dictionary indexed over produc
                                       sum(crop[i] * labor[i]
         @expression(m, tot labor,
                                                                  for i in product) )
         @expression(m, tot fert,
                                       sum(crop[i] * fert[i]
                                                                  for i in product) )
         @expression(m, tot acres,
                                       sum(crop[i] * acres[i]
                                                                  for i in product) )
         @expression(m, tot profit, sum(crop[i] * profit[i] for i in product) )
         @constraint(m, crop[:wheat] <= num acres )</pre>
                                                          # maximum number of wheat that cal
                                                        # maximum number of corn that can
# maximum number of labor needed
# maximum number of fertilizer ne
         @constraint(m, crop[:corn] <= num acres )</pre>
         @constraint(m, tot_labor <= num_labor )</pre>
         @constraint(m, tot fert
                                       <= num fert )
         @objective(m, Max, tot profit)
         solve(m)
         println(getvalue(crop))
         println("Total profit will be \$", getvalue(tot_profit))
         println("Fertilizer needed: ", getvalue(tot_fert))
         println("Acres used: ", getvalue(tot_acres))
println("People needed: " getvalue(tot labo
                                    netvalue(tot labor))
         crop: 1 dimensions:
         [wheat] = 17.499999999999993
         [corn] = 23.7500000000000004
         Total profit will be $8537.5
         Fertilizer needed: 130.0
         Acres used: 41.25
```

As we can see here, the two values are identical. Therefore, I feel confident saying that I have found the correct answer. The recommendation remains to cover 17.5 acres with Wheat, and 23.75 acres of Corn.

```
In []:
```

3 of 3 2/5/19, 10:41 PM