Chapter 1

Groups

Note to the reader: This is not an exhaustive list of important results required for competitive exams but rather a starting point. The git hub link for these notes is https://github.com/aaron12alphonso/. Notes.git

1.1 Basic Counting Results in Groups

Theorem 1.1.1. If G is a group and $x \in G$ is of order n then for any $k \in \mathbb{N}$

$$|x^k| = \frac{n}{\gcd(n,k)}$$

Theorem 1.1.2. Let G be a group and $x \in G$ be of order n and suppose $s, t \in \mathbb{N}$. Then $\langle x^s \rangle = \langle x^t \rangle$ if and only if gcd(n, s) = gcd(n, t).

Theorem 1.1.3 (Lagrange's Theorem). If G is a finite group and H is a subgroup of G then |G| = |H||G/H| and hence |H| divides |G|.

Theorem 1.1.4. If H and K are finite subsets of a group G then

$$|HK| = \frac{|H||K|}{|H \cap K|}$$
 (1.1.1)

Theorem 1.1.5 (Sylow's Theorem). Let G be a group of order $p^{\alpha}m$ where p is a prime such that $p \nmid m$ Then

- 1. G has a subgroup of order p^{α} i.e G has a Sylow p- subgroup.
- 2. If P and Q are Sylow p- subgroups then $Q = gPg^{-1}$ for some $g \in G$.
- 3. If n_p is the number of Sylow p- subgroups of G then $n_p \equiv 1 \pmod{p}$ and $n_p \mid m$.

Theorem 1.1.6. If p and q are primes such that p < q and $q \not\equiv 1 \pmod{p}$ then and group of order pq is cyclic.

Theorem 1.1.7 (Fundamental Theorem of Finitely Generated Abelian Groups). If G is a finitely generated abelian group then there exists integers r, n_1, n_2, \ldots, n_s such that $|G| \equiv \mathbb{Z}^r \times \mathbb{Z}^r$

 $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_s}$ where

- 1. $r \ge 0$ and $n_i \ge 0$ for $1 \le j \le s$
- 2. $n_{j+1} \mid n_j \text{ for } 1 \leq j \leq s-1$

1.2 Homomorphisms

Theorem 1.2.1. Let $f: G \to H$ be a group homomorphism. Then we have the following properties

- For any finite subgroup S of G, |f(S)| |S|
- For any $a \in G$ of finite order |f(a)| |a|

Remark. Notice how the above theorem can help you to compute the number of homomorphisms from some group G to another group H.

1.3 The Group \mathbb{Z}_n

Theorem 1.3.1. For $n \in \mathbb{N}$, \mathbb{Z}_n has the following properties

- The group \mathbb{Z}_n has exactly $\phi(n)$ generators.
- The number of subgroups of \mathbb{Z}_n are the number of divisors of n.
- For $a \in \mathbb{Z}_n$, $|a| = \frac{n}{\gcd(a, n)}$
- For $a, b \in \mathbb{Z}_n$, $\langle a \rangle = \langle b \rangle$ if and only if gcd(a, n) = gcd(a, n).

Theorem 1.3.2. The number of homomorphisms from \mathbb{Z}_n to \mathbb{Z}_m is gcd(n,m).

1.4 The Group S_n

-The group of all permutations of an n- set

Theorem 1.4.1 (Properties of S_n).

- 1. The set of all transpositions is a generating set of S_n
- 2. For $\sigma = (a_1, a_2, \dots, a_k) \in S_n$ and $\tau \in S_n$, $\tau \sigma \tau^{-1} = (\tau(a_1), \tau(a_2), \dots, \tau(a_k))$.
- 3. The for any n- cycle σ and any transposition τ in S_n the set $\{\sigma,\tau\}$ generates S_n .
- 4. The number of conjugacy classes of S_n is the number of partitions of n, p(n).
- 5. The order of a permutation in S_n is the lcm of the lengths of it's cycles when the permutation is written as a product of disjoint cycles.

1.5 The Group D_{2n}/D_n

- The group of all symmetries of a regular polygon of n- vertices.

Theorem 1.5.1 (Properties of D_n).

- 1. D_{2n} consist of 2n elements, n of which are rotations and the rest are reflections
- 2. If s is the reflection of the regular n- gon about the line of symmetry that passes through the vertex 1 and the origin and suppose r is the rotation of the regular n- gon by $2\pi/n$ radians then $D_{2n} = \{sr^k : 0 \le k \le n-1\}$
- 3. The composition of two rotations is a rotation.
- 4. The composition of a rotations and a reflection is a reflection.
- 5. The composition of two reflections is a rotation.
- 6. The inverse of a rotation is a rotation.
- 7. The inverse of a reflection is the same reflection. That is reflections are order 2 elements of D_{2n}

1.6 The Group A_n

- Subgroup of all even permutations of an n- set

Theorem 1.6.1 (Properties of A_n).

 $|A_n| = n!/2$ and hence A_n is a normal subgroup of S_n .

For any subgroup H of A_n either $H \subset A_n$ or $|H \cap A_n| = |H|/2$.

The set $\{(1,2,3),(1,2,4),\ldots,(1,2,n)\}\$ is a generating set of A_n .