CO749 - Random Graph Theory

(Lecture Summaries)

University of Waterloo Nicholas Pun Winter 2020

Contents

1	Introduction	2
	1.1 Probability Primer	2
2	Concentration Inequalities, Coupling, Connection Theorem	4
	2.1 Concentration Inequalities	4
	2.2 Coupling	5
	2.3 Connection Theorem	5
3	Threshold, First Order Logic of Graphs	7
	3.1 Threshold	7
	3.2 First Order Logic of Graphs	7
4	0-1 Law, Evolution of Graphs and Theorem E	9
5		10
\mathbf{R}	eferences	11

Lecture 1: Introduction

Definition 1.1. The probability space we'll work in is denoted with the triple (G, \mathbb{P}, F) , where G is a class of graphs, \mathbb{P} a probability measure and F a sigma algebra.

Normally, G is a finite set, \mathbb{P} is a discrete probability measure and $F=2^G$

Definition 1.2 (Erdős-Rényi Random Graph Model).

- The $\mathcal{G}(n,p)$ model: A graph with vertex set [n] is constructed randomly by including each edge in $k_{[n]}$ with probability p
- The $\mathfrak{G}(n,m)$ model: A graph is chosen uniformly at random from all graphs with vertex set [n] and has m edges.

(Aside: We can think of $\mathfrak{G}(n,m)$ as labelling the edges)

Other models:

- $\mathfrak{G}(n,d)$ is the model of random d-regular graphs
- $\mathfrak{G}(n,\tilde{d})$ where $\tilde{d}=(d_1,\ldots,d_n)$ is a vector representing the degrees of vertices. (This is a generalization of G(n,d))
- $\mathfrak{G}(n,r)$ is the model of random geometric graphs. The construction is as follows: Pick n points uniformly in the unit square, then, add an edge if and only if the distance between two points is $\leq r$
- Random trees. A tree is chosen uniformly at random from the n^{n-2} trees on n vertices. In this class, we will primarily focus on the Erdős-Rényi Model.

1.1 Probability Primer

Definition 1.3. A discrete probability space consists of a countable set Ω and a probability function $\mathbb{P}: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$

A subset of Ω is called an <u>event</u>. The probability of $A \subseteq \Omega$ is $\sum_{\omega \in A} \mathbb{P}(\omega)$, denoted $\mathbb{P}(A)$.

Proposition 1.1 (Inclusion-Exclusion). For events A, B:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

and, in general:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{i_{1} < i_{2}} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}}) + \sum_{i_{1} < i_{2} < i_{3}} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}) + \ldots + (-1)^{n-1} \mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}\right)$$

Corollary 1.1. $\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} \mathbb{P}(A_i)$

Definition 1.4. Two events are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$

Definition 1.5. A <u>random variable</u> (r.v) X is a function $X : \Omega \to \mathbb{R}$. In a discrete probability space, the <u>expectation</u> of X is defined by: $\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega)$

Proposition 1.2 (Linearity of Expectation). $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$

Proof.
$$\mathbb{E}(X+Y) = \sum_{\omega \in \Omega} (X+Y)(\omega) \, \mathbb{P}(\omega) = \sum_{\omega \in \Omega} X(\omega) \, \mathbb{P}(\omega) + \sum_{\omega \in \Omega} Y(\omega) \, \mathbb{P}(\omega) = \mathbb{E}(X) + \mathbb{E}(Y)$$

Lemma 1.1.

• For any $n \ge k \ge 1$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \frac{n^k}{k!} \le \left(\frac{en}{k}\right)^k$$

• (Stirling's Formula)

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \mathcal{O}(n^{-2})\right)$$

• For every $t \in \mathbb{R}, e^t \ge 1 + t$

Lemma 1.2. Assume $k = o(\sqrt{n})$ Then, $\binom{n}{k} \sim \frac{n^k}{k!}$

Proof.

$$\binom{n}{k} = \frac{1}{k!} \prod_{i=0}^{k-1} (n-i)$$

$$= \frac{n^k}{k!} \prod_{i=0}^{k-1} \left(1 - \frac{i}{n}\right)$$

$$= \frac{n^k}{k!} \prod_{i=0}^{k-1} e^{\mathcal{O}(i/n)} \qquad (\log(1-x) = \mathcal{O}(x))$$

$$= \frac{n^k}{k!} \exp\left(\mathcal{O}\left(\frac{1}{n}\sum_{i=0}^{k-1}i\right)\right)$$

$$= \frac{n^k}{k!} \exp\left(\mathcal{O}\left(\frac{k^2}{n}\right)\right)$$

$$= (1+o(1))\frac{n^k}{k!} \qquad (\text{as } k = o(\sqrt{n}))$$

Remark 1.1. $k = o\left(n^{\frac{2}{3}}\right)$, then $\binom{n}{k} \sim e^{-\frac{k^2}{n}} \cdot \frac{n^k}{k!}$

Lecture 2: Concentration Inequalities, Coupling, Connection Theorem

Definition 2.1. Given a sequence of probability spaces $(\Omega_n, P_n)_{n\geq 1}$. We say that A_n holds asymptotically almost surely (a.a.s) if $P_n(A_n) \to 1$ as $n \to \infty$

2.1 Concentration Inequalities

Theorem 2.1 (Markov's Inequality). Let X be a nonnegative random variable. Then, for any real t > 0, $\Pr(X \ge t) \le \frac{\mathbb{E}X}{t}$

Proof. Let I_t be the indicator r.v. that $X \geq t$. Then, $X \geq t \cdot I_t$, so:

$$\mathbb{E} x \ge t \cdot \mathbb{E} I_t = t \cdot \mathbb{P}(X \ge t)$$

Theorem 2.2 (Chebyshev's Inequality). For any $t \geq 0$

$$\mathbb{P}(|X - \mathbb{E}X| \ge t) \le \frac{\operatorname{Var}X}{t^2}$$

Example 2.1. Let X be the number of edges in $\mathfrak{G}(n,p), N = \binom{n}{2}$. $X \sim \mathrm{Bin}(N,p)$ so $\mathbb{E} X = Np$ and $\mathrm{Var} X = p(1-p)N$.

Further, by Chevyshev's Inequality, for all t > 0:

$$\mathbb{P}(|X - \mathbb{E}X| \ge t) \le \frac{p(1-p)N}{t^2}$$

 \triangle

This leads us to the following proposition:

Proposition 2.1. Let $f_n \to \infty$ as $n \to \infty$. Then,

$$\mathbb{P}(|X - Np| \ge f_n \sqrt{p(1-p)N}) \le \frac{1}{f_n^2} = o(1)$$

So a.a.s:

$$pN - f_n \sqrt{p(1-p)N} \le X \le pN + f_n \sqrt{p(1-p)N}$$

2.2 Coupling

Definition 2.2. Given 2 r.v.s X, Y, a <u>coupling</u> of X and Y is a construction of a join distribution of (\hat{X}, \hat{Y}) into the probability space such that marginally $\hat{X} \sim X$ and $\hat{Y} \sim Y$

Lemma 2.1.

(a) Let $0 \le m_1 < m_2 \le N$ and $0 \le p_1 < p_2 \le 1$. There exist couplings such that:

$$\mathfrak{G}(n, m_1) \subseteq \mathfrak{G}(n, m_2)$$
 and $\mathfrak{G}(n, p_1) \subseteq \mathfrak{G}(n, p_2)$

where by $\mathfrak{G}(n, p_1) \subseteq \mathfrak{G}(n, p_2)$ (and respectively, m_1 and m_2), we mean that there exists a coupling (G_1, G_2) such that:

- Marginally, $G_1 \sim \mathfrak{G}(n, p_1), G_2 \sim \mathfrak{G}(n, p_2)$, and
- jointly, $G_1 \subseteq G_2$ always
- (b) Let $m_1 = pN f\sqrt{p(1-p)N}$, $m_2 = pN + f\sqrt{p(1-p)N}$ (f = f(n) as before). Then, there exists a coupling (G_1, H, G_2) such that:
 - $G_1 \sim \mathfrak{G}(n, m_1), G_2 \sim \mathfrak{G}(n, m_2), H \sim \mathfrak{G}(n, p)$
 - $\mathbb{P}(G_1 \subset H \subset G_2) = 1 o(1)$

Proof.

(a) Let $G_1 \sim \mathfrak{G}(n, p_1)$. For G_2 , include every non-edge in G_1 , include it independently with probability $q = 1 - \frac{1-p_2}{1-p_1}$. Clearly, $G_1 \subseteq G_2$. Then, check the probability that an edge is <u>not</u> included in G_2 :

$$(1-p_1)(1-q) = (1-p_1)\left(1-\left(1-\frac{1-p_2}{1-p_1}\right)\right) = 1-p_2$$

For $G_1 \sim \mathfrak{G}(n, m_1), G_2 \sim \mathfrak{G}(n, m_2)$, we choose permutation and the first m_1, m_2 edges

2.3 Connection Theorem

Definition 2.3. Let Ω be the set of graphs on [n]. $Q \subseteq \Omega$ is a graph property if it is invariant under graph isomorphism. We say Q is monotone increasing if:

$$G \in Q \Rightarrow H \in Q \quad \forall H \supseteq G$$

Further, we say Q is <u>convex</u> if:

$$G_1, G_2 \in Q, G_1 \subseteq G_2 \Rightarrow H \in Q \quad \forall G_1 \subseteq H \subseteq G_2$$

Theorem 2.3. Suppose Q is monotone. Then, for any $0 \le m_1 \le m_2 \le N$, $0 \le p_1 \le p_2 \le 1$:

$$\mathbb{P}(\mathfrak{G}(n, m_1) \in Q) \le \mathbb{P}(\mathfrak{G}(n, m_2) \in Q)$$
$$\mathbb{P}(\mathfrak{G}(n, p_1) \in Q) \le \mathbb{P}(\mathfrak{G}(n, p_2) \in Q)$$

Theorem 2.4 (Connection Theorem). Let Q be a graph property:

- (i) Given p = p(n). Suppose for all $m = pN + \mathcal{O}(\sqrt{p(1-p)N})$ we have $\mathfrak{G}(n,m) \in Q$ a.a.s. Then, a.a.s $\mathfrak{G}(n,p) \in Q$
- (ii) Suppose Q is convex. Given m=m(n) and suppose $\mathfrak{G}(n,m/N)\in Q$ a.a.s. Then, a.a.s $\mathfrak{G}(n,m)\in Q$

Proof Sketch.

- (i) Write $\mathbb{P}(\mathfrak{G}(n,p) \in G)$ in terms of the number of edges in the graph, i.e. $\mathbb{P}(\mathfrak{G}(n,p) \in G) = \sum_{m=0}^{N} \mathbb{P}(X=m,\mathfrak{G}(n,p) \in Q)$ (Law of total probability). Then, use Proposition 2.1.
- (ii) Condition on the number of edges, and analyze the probabilities of having a graph with: less edges than 1 standard deviation (m_1) , more edges than 1 standard deviation (m_2) , and a number of edges within 1 standard deviation (m). Then construct graphs from $\mathfrak{G}(n, m_1)$ and $\mathfrak{G}(n, m_2)$ and use convexity to show $\mathbb{P}(\mathfrak{G}(n, m) \in Q) = 1 o(1)$

Lecture 3: Threshold, First Order Logic of Graphs

3.1 Threshold

Definition 3.1. We say a property Q has a threshold p_0 if:

$$\mathbb{P}(\mathfrak{G}(n,p) \in Q) \to \begin{cases} 0 & \text{if } p \ll p_0 \\ 1 & \text{if } p \gg p_0 \end{cases}$$

Theorem 3.1 (Bollobás & Thomason, 1987). Every non-trivial monotone property has a threshold

Definition 3.2. We say a property Q has a sharp threshold p_0 if $\forall \epsilon > 0$:

$$\mathbb{P}(\mathfrak{G}(n,p) \in Q) \to \begin{cases} 0 & \text{if } p \le (1-\epsilon)p_0\\ 1 & \text{if } p \ge (1+\epsilon)p_0 \end{cases}$$

Definition 3.3. The <u>window</u> of a threshold is $\delta(\epsilon) = p_{1-\epsilon} - p_{\epsilon}$

3.2 First Order Logic of Graphs

Example 3.1.

$$\forall x \forall y \exists z (x = y \lor x \sim y \lor (x \sim z \land y \sim z))$$

 \triangle

is the statement characterizing the graphs of diameter ≤ 2

Fix k > 0. Let P_k be the property that for any disjoint sets W and V of order at most k, there exists a vertex $x \in V(G) \setminus (W \cup V)$ such that x is adjacent to all vertices in W and is adjacent to none of V

Lemma 3.1. Suppose m(n), p(n) satisfy the following:

For every fixed $\epsilon > 0$

$$mn^{-2+\epsilon} \to \infty, \qquad (N-m)n^{-2+\epsilon} \to \infty$$

 $pn^{\epsilon} \to \infty, \qquad (1-p)n^{\epsilon} \to \infty$

For every fixed k > 0, a.a.s $\mathfrak{G}(n,p) \in P_k$ and $\mathfrak{G}(n,m) \in P_k$

Theorem 3.2 (0-1 law of the 1st order logic of random graphs). Suppose m(n), p(n) satisfy the conditions of the lemma. Suppose Q is a graph property given by a 1st order sentence. Then, either Q holds a.a.s or does not hold a.a.s.

Proof Sketch. We play a k-round Ehrenfeucht-Fraïssé Game. Player 1 chooses vertices from either graph and Player 2 must choose vertices from the other graph.

After k rounds, this produces two sequences v_1, v_2, \ldots, v_k in G_1 and v'_1, v'_2, \ldots, v'_k in G_2 . Player 2 wins if $v_i \mapsto v'_i \ \forall 1 \leq i \leq k$ is an isomorphism between $G_1[v_1, v_2, \ldots, v_k]$ and $G_2[v'_1, v'_2, \ldots, v'_k]$, and Player 1 wins otherwise.

The idea is that if G_1, G_2 are similar, then player 2 will win, but if they are not similar, then player 1 can exploit the dissimilarity.

<u>Claim</u>: Let $Th_k(G)$ be the set of graph properties of G expressible by 1st-order logic sentences with quantifier depth at most k. Player 2 has a winning strategy if and only if $Th_k(G_1) = Th_k(G_2)$ (i.e. They share the same set of properties)

Lecture 4: 0-1 Law, Evolution of Graphs and Theorem $\stackrel{\cdot}{\rm E}$

Lecture 5:

References

 $[1]\,$ Bollobás Béla. $Random\ graphs.$ Academic Press, 1985.