STAT 111

Recitation 10

Mo Huang

Email: mohuang@wharton.upenn.edu

Office Hours: Wednesdays 3:00 - 4:00 pm, JMHH F96

Slides: github.com/mohuangx/STAT111-Spring2019

April 12, 2019

Two-sample *t*-test

► Example: Suppose we have two classes, let's call 201 and 202, and we want to see if there is a difference in height between these two classes. How do we test this?

Two-sample *t*-test

- ▶ Example: Suppose we have two classes, let's call 201 and 202, and we want to see if there is a difference in height between these two classes. How do we test this?
- Answer: Let X_{11},\ldots,X_{1m} represent the heights of the m students in 201 with mean μ_1 and let X_{21},\ldots,X_{2n} represent the heights of the n students in 202 with mean μ_2 . We can test $H_0:\mu_1=\mu_2$ against $H_1:\mu_1\neq\mu_2$.

Two-sample *t*-test

- ▶ Example: Suppose we have two classes, let's call 201 and 202, and we want to see if there is a difference in height between these two classes. How do we test this?
- Answer: Let X_{11},\ldots,X_{1m} represent the heights of the m students in 201 with mean μ_1 and let X_{21},\ldots,X_{2n} represent the heights of the n students in 202 with mean μ_2 . We can test $H_0:\mu_1=\mu_2$ against $H_1:\mu_1\neq\mu_2$.
- ▶ This is an example of a two-sample *t*-test!
- Two-sample t-test: Let X_{11}, \ldots, X_{1m} be i.i.d random variables with (unknown) mean μ_1 and (unknown) variance σ^2 . Let X_{21}, \ldots, X_{2n} be i.i.d random variables with (unknown) mean μ_2 and (unknown) variance σ^2 . We want to test whether or not $\mu_1 = \mu_2$.

Suppose we want to test whether there is a difference in height between class 201 (X_{11},\ldots,X_{1m}) and 202 (X_{21},\ldots,X_{2n}) . We observe that $\bar{x}_1=66.7$, $s_1^2=10.5$, m=28, and $\bar{x}_2=65.6$, $s_2^2=12.3$, n=34.

Step 1 H_0 : $\mu_1 = \mu_2$ vs. H_1 : $\mu_1 \neq \mu_2$. Two-sided test.

Suppose we want to test whether there is a difference in height between class 201 (X_{11},\ldots,X_{1m}) and 202 (X_{21},\ldots,X_{2n}) . We observe that $\bar{x}_1=66.7$, $s_1^2=10.5$, m=28, and $\bar{x}_2=65.6$, $s_2^2=12.3$, n=34.

Step 1 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$. Two-sided test.

Step 2 Choose $\alpha = 0.05$.

Suppose we want to test whether there is a difference in height between class 201 (X_{11},\ldots,X_{1m}) and 202 (X_{21},\ldots,X_{2n}) . We observe that $\bar{x}_1=66.7$, $s_1^2=10.5$, m=28, and $\bar{x}_2=65.6$, $s_2^2=12.3$, n=34.

- Step 1 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is

$$t = rac{ar{x}_1 - ar{x}_2}{s\sqrt{rac{1}{m} + rac{1}{n}}}, ext{ where } s = \sqrt{rac{(m-1)s_1^2 + (n-1)s_2^2}{m+n-2}}$$

Suppose we want to test whether there is a difference in height between class 201 (X_{11},\ldots,X_{1m}) and 202 (X_{21},\ldots,X_{2n}) . We observe that $\bar{x}_1=66.7$, $s_1^2=10.5$, m=28, and $\bar{x}_2=65.6$, $s_2^2=12.3$, n=34.

- Step 1 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s\sqrt{\frac{1}{m} + \frac{1}{n}}}, \text{ where } s = \sqrt{\frac{(m-1)s_1^2 + (n-1)s_2^2}{m+n-2}}$$
$$t = \frac{66.7 - 65.6}{3.390\sqrt{\frac{1}{28} + \frac{1}{34}}} = 1.254$$

- Suppose we want to test whether there is a difference in height between class 201 (X_{11},\ldots,X_{1m}) and 202 (X_{21},\ldots,X_{2n}) . We observe that $\bar{x}_1=66.7$, $s_1^2=10.5$, m=28, and $\bar{x}_2=65.6$, $s_2^2=12.3$, n=34.
- Step 1 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is t = 1.254.
- Step 4 Find the critical region.

- Suppose we want to test whether there is a difference in height between class 201 (X_{11},\ldots,X_{1m}) and 202 (X_{21},\ldots,X_{2n}) . We observe that $\bar{x}_1=66.7$, $s_1^2=10.5$, m=28, and $\bar{x}_2=65.6$, $s_2^2=12.3$, n=34.
- Step 1 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is t = 1.254.
- Step 4 Find the critical region.

How many degrees of freedom do we have?

- Suppose we want to test whether there is a difference in height between class 201 (X_{11},\ldots,X_{1m}) and 202 (X_{21},\ldots,X_{2n}) . We observe that $\bar{x}_1=66.7$, $s_1^2=10.5$, m=28, and $\bar{x}_2=65.6$, $s_2^2=12.3$, n=34.
- Step 1 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is t = 1.254.
- Step 4 Find the critical region.

How many degrees of freedom do we have? m + n - 2 = 60

- Suppose we want to test whether there is a difference in height between class 201 (X_{11},\ldots,X_{1m}) and 202 (X_{21},\ldots,X_{2n}) . We observe that $\bar{x}_1=66.7$, $s_1^2=10.5$, m=28, and $\bar{x}_2=65.6$, $s_2^2=12.3$, n=34.
- Step 1 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is t = 1.254.
- Step 4 Find the critical region.

How many degrees of freedom do we have? m + n - 2 = 60

So we need to look at t_{60} . What is the critical region?

- Suppose we want to test whether there is a difference in height between class 201 (X_{11},\ldots,X_{1m}) and 202 (X_{21},\ldots,X_{2n}) . We observe that $\bar{x}_1=66.7$, $s_1^2=10.5$, m=28, and $\bar{x}_2=65.6$, $s_2^2=12.3$, n=34.
- Step 1 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is t = 1.254.
- Step 4 Find the critical region.

How many degrees of freedom do we have? m + n - 2 = 60

So we need to look at t_{60} . What is the critical region?

 $t \ge t_{60,0.025} = 2.000$ and $t \le -t_{60,0.025} = -2.000$.

Suppose we want to test whether there is a difference in height between class 201 (X_{11},\ldots,X_{1m}) and 202 (X_{21},\ldots,X_{2n}) . We observe that $\bar{x}_1=66.7$, $s_1^2=10.5$, m=28, and $\bar{x}_2=65.6$, $s_2^2=12.3$, n=34.

Step 1 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$. Two-sided test.

Step 2 Choose $\alpha = 0.05$.

Step 3 Test-statistic is t = 1.254.

Step 4 Find the critical region: $t \ge 2.000$ and $t \le -2.000$

Step 5 Do we reject H_0 ?

Suppose we want to test whether there is a difference in height between class 201 (X_{11},\ldots,X_{1m}) and 202 (X_{21},\ldots,X_{2n}) . We observe that $\bar{x}_1=66.7$, $s_1^2=10.5$, m=28, and $\bar{x}_2=65.6$, $s_2^2=12.3$, n=34.

- Step 1 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is t = 1.254.
- Step 4 Find the critical region: $t \ge 2.000$ and $t \le -2.000$
- Step 5 Do we reject H_0 ? No, t = 1.254 is not in the critical region.

Paired two sample t test

- Suppose we have two samples where there is a natural pairing of data between the two samples. Let μ_d be the mean difference between the two samples.
- For example, we have n patients and we are interested in determining if a drug decreases cholesterol levels. We collect cholesterol levels before (x_{11}, \ldots, x_{1n}) and after (x_{21}, \ldots, x_{2n}) administering the drug.
- We want to test H_0 : $\mu_d = 0$.
- Consider $d_i = x_{2i} x_{1i}$, the difference in measurement between sample 2 and sample 1 for subject i.
 - ► Estimate of μ_d : $\bar{d} = \frac{1}{n} \sum_{i=1}^n d_i$
 - Estimate of σ^2 : $s_d^2 = \frac{d_1^2 + d_2^2 + \dots + d_n^2 n(\bar{d})^2}{n-1}$
- ► The test statistic is

$$t = \frac{\bar{d}}{s_d/\sqrt{n}}$$

Suppose we have 10 patients and we are interested in determining if a drug decreases cholesterol levels. We collect the following cholesterol levels before and after administering the drug:

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

Step 1 H_0 : $\mu_d = 0$ vs. H_1 : $\mu_d < 0$. One-sided test.

Suppose we have 10 patients and we are interested in determining if a drug decreases cholesterol levels. We collect the following cholesterol levels before and after administering the drug:

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

Step 1 $H_0: \mu_d = 0$ vs. $H_1: \mu_d < 0$. One-sided test.

Step 2 Choose $\alpha = 0.01$.

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 $H_0: \mu_d = 0$ vs. $H_1: \mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is

$$t = \frac{\bar{d}}{s_d/\sqrt{n}}$$

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 $H_0: \mu_d = 0$ vs. $H_1: \mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is

$$t = \frac{\bar{d}}{s_d/\sqrt{n}}$$

$$\bar{d} = -6.9$$
 $s_d = 9.96$

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 $H_0: \mu_d = 0$ vs. $H_1: \mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is

$$t = \frac{\bar{d}}{s_d/\sqrt{n}}$$

$$\bar{d} = -6.9$$
 $s_d = 9.96$
$$t = \frac{\bar{d}}{s_d/\sqrt{n}} = \frac{-6.9}{9.96/\sqrt{10}} = -2.191$$

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 H_0 : $\mu_d = 0$ vs. H_1 : $\mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is t = -2.191.
- Step 4 Find the critical region.

Suppose we have 10 patients and we are interested in determining if a drug decreases cholesterol levels. We collect the following cholesterol levels before and after administering the drug:

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 $H_0: \mu_d = 0$ vs. $H_1: \mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is t = -2.191.
- Step 4 Find the critical region.

How many degrees of freedom do we have?

Suppose we have 10 patients and we are interested in determining if a drug decreases cholesterol levels. We collect the following cholesterol levels before and after administering the drug:

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 $H_0: \mu_d = 0$ vs. $H_1: \mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is t = -2.191.
- Step 4 Find the critical region.

How many degrees of freedom do we have? n-1=9

Suppose we have 10 patients and we are interested in determining if a drug decreases cholesterol levels. We collect the following cholesterol levels before and after administering the drug:

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 H_0 : $\mu_d = 0$ vs. H_1 : $\mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is t = -2.191.
- Step 4 Find the critical region.

How many degrees of freedom do we have? n-1=9

So we need to look at t_9 . What is the critical region?

Suppose we have 10 patients and we are interested in determining if a drug decreases cholesterol levels. We collect the following cholesterol levels before and after administering the drug:

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 $H_0: \mu_d = 0$ vs. $H_1: \mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is t = -2.191.
- Step 4 Find the critical region.

How many degrees of freedom do we have? n-1=9

So we need to look at t_9 . What is the critical region?

$$t \le -t_{9,0.01} = -2.821.$$

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 H_0 : $\mu_d = 0$ vs. H_1 : $\mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is t = -2.191.
- Step 4 Find the critical region: $t \le -2.821$
- Step 5 Do we reject H_0 ?

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 H_0 : $\mu_d = 0$ vs. H_1 : $\mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is t = -2.191.
- Step 4 Find the critical region: $t \le -2.821$
- Step 5 Do we reject H_0 ? No, t = -2.191 is not in the critical region.