Replication package

Manuscript title: On the performance of shared autonomous bicycles: A simulation study

Manuscript ID: COMMTR-D-22-00022R1

Authors: Naroa Coretti Sanchez *, Iñigo Martinezb, Luis Alonsoa, Kent Larsona

^a MIT Media Lab, Cambridge, MA, USA

^b University of Navarra, San Sebastian, Spain

* Corresponding author, email address: naroa@mit.edu

Replication package access:

The source code for the simulation study presented in this paper is available on GitHub https://github.com/CityScope/AutonomousMicroMobility

In addition, we have also put together a website with a comprehensive guide on how to run it https://micro-mobility-abm.netlify.app/

Data description:

The data used for the simulation is available in the same GitHub repository, under the data folder: https://github.com/NaroaCS/AutonomousBicycleSimulation/tree/master/data

This data includes:

- The user demand 'user_trips_i.csv' with i ∈ [0,4]
 https://github.com/NaroaCS/AutonomousBicycleSimulation/blob/master/data/user_trips_0.csv
- 2. The station data:

https://github.com/NaroaCS/AutonomousBicycleSimulation/blob/master/data/bluebikes_stations_07_2020.csv

- 3. The GIS data:
 - 3.1 Shapefile containing the buildings 'buildings.shp':

https://github.com/NaroaCS/AutonomousBicycleSimulation/blob/master/data/buildings/buildings.shp

3.2 Graph containing the roads 'greater_boston_road.graphml':

https://github.com/NaroaCS/AutonomousBicycleSimulation/blob/master/data/graph/greater_boston_road.graphml

The output of the demand prediction module 'demand_grid.csv'
 https://github.com/NaroaCS/AutonomousBicycleSimulation/blob/master/data/demand_grid.cs
 v

Finally, the dataset that was used for training the demand prediction module can be obtained directly from the Bluebikes website, going to https://www.bluebikes.com/system-data and then clicking on 'Download Bluebikes trip history data' or directly in https://s3.amazonaws.com/hubway-data/index.html

Code description:

The environment needed to run the scripts is Python with a version greater than 3.6 and the following packages:

- simpy
- pandas
- numpy
- matplotlib
- networkx
- scipy==1.6.0
- geopandas
- scikit-learn
- pyproj
- tqdm
- tensorflow==1.15
- git+git://github.com/imartinezl/pandana.git@master

Simulation software description:

1. Clone the git repository:

git clone https://github.com/NaroaCS/AutonomousBicycleSimulation.git

- 2. Run the script:
 - a. To run a single file, adapt 'config.json' to the desired parameters for each experiment and run 'main.py'
 - b. To run multiple experiments in a batch simulation, Specify the MODE (0=Station-based, 1=Dockless, 2= Autonomous) in Line 21 in 'run.py' and run it.
- 3. The run times will be printed at the end of the simulation and the results will be saved in the 'results' folder in a subfolder with the filename being the timestamp of the simulation launch time. This folder will contain the configuration file that was used to launch it and the two main output files: 'user_trips.csv' and 'bike_trips.csv'.

The 'bike_trips.csv' has the following columns:

Parameter	Description	Type of system
bike_id	The id of the bike that made the trip	SB, DL, AUT
user_id	The id of the user who made the trip	SB, DL, AUT
mode	0=Station-based, 1=Dockless, 2= Autonomous	SB, DL, AUT
trip_type	1=User drive, 2=Charge trip, 3=Rebalancing trip	AUT
time_departure	Elapsed time at the beginning of the trip [s]	SB, DL, AUT
time_ride	Duration of the bike ride [s]	SB, DL, AUT
time_charge	Duration of the bike charging process [s]	AUT
instant_bike	Indicates if the used bike was an instantaneously rebalanced bike (1) or not (0)	SB, AUT
instant_dock	Indicates if the used dock was liberated by an instantaneously rebalanced bike (1) or not (0)	SB
origin_station	The id of the station where the user got the bike	SB
destination_station	The id of the station where the user left the bike	SB
origin_lon	Longitude of the departure point	SB, DL, AUT
origin_lat	Latitude of the departure point	SB, DL, AUT
destination_lon	Longitude of the destination point	SB, DL, AUT
destination_lat	Latitude of the destination point	SB, DL, AUT
battery_in	Battery at the beginning of the trip/process	AUT
battery_out	Battery at the end of the trip/process	AUT

The output file 'user_trips.csv' has the following columns:

Parameter	Description	Type of system
user_id	The id of the user who made the trip	SB, DL, AUT
status	The user finished the tip (finished), there were no bikes in a walkable distance (no_bikes), there was no walkable station at the beginning of the trip (not_walkable_stations), there was no end station walkable or not walkable(no_end_station)	SB
bike_id	The id of the bike used for that trip	SB, DL, AUT
mode	0=Station-based, 1=Dockless, 2= Autonomous	SB, DL, AUT
time_departure	Elapsed time at the beginning of the trip [s]	SB, DL, AUT
time_target	Elapsed time at arrival [s]	SB, DL, AUT
time_walk_origin	Duration of the walk from the departure point to the bike/station [s]	SB, DL
time_ride	Duration of the bike ride [s]	SB, DL, AUT
time_wait	Duration of the wait time at the beginning of the trip [s]	AUT
time_walk_destination	Duration of the walk at the end of the trip from the station to the destination [s]	SB
origin_lon	Longitude of the departure point	SB, DL, AUT
origin_lat	Latitude of the departure point	SB, DL, AUT
destination_lon	Longitude of the destination point	SB, DL, AUT
destination_lat	Latitude of the destination point	SB, DL, AUT
origin_visited_stations	List of the ids of the stations visited until finding an available bike	SB
destination_visited_stations	List of the ids of the stations visited until finding an available dock	SB
origin_station	The id of the station where the user got the bike	SB
destination_station	The id of the station where the user left the bike	SB
instant_bike	Indicates if the used bike was an instantaneously rebalanced bike (1) or not (0)	SB, AUT
instant_dock	Indicates if the used dock was liberated by an instantaneously rebalanced bike (1) or not (0)	SB
bike_lon	Longitude of the location of the bike chosen for the trip	DL, AUT
bike_lat	Latitude of the location of the bike chosen for the trip	DL, AUT

- 4. Lastly, while the results of the demand prediction for the case presented in this article have been provided as data (demand_grid.csv), we also detail here the procedure that was followed to generate such files:
 - 1. Dowload the historical trip data from Buebikes (see Data section in this replication package) and save in a folder 'bluebikes_data' within the Preprocessing folder:
 - 2. Rscript training_data.R (input bluebikes_data → outputs training_data.csv)
 - 3. python3 gccn_ddgf.py (input training_data.csv \rightarrow outputs testing_data.csv)
 - 4. Rscript testing_data.R (input testing_data.csv \rightarrow outputs demand_grid.csv)

Experiment design description:

The simulations for the paper have been carried out by considering different scenarios for the configuration parameters in 'config.json'. The sections 6.1 to 6.3 consider particular scenarios, but the total of the configurations for the simulations run can be found in Section 6.4. Specifically, the parameters considered are the following:

Station-based system parameters sets				
Number of bikes [-]	$\{1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500\}$			
Maximum walking radius [m]	{100,300,500,750,1000,1500}			
Average walking speed [km/h]	${3,4,5,6,7,8}$			
Average riding speed [km/h]	{5,8,10,12,15,20}			
Rebalancing parameter[%]	{0,50,80,90,98,100}			
Minimum bikes/docks per station [-]	$\{0,1,2,3,4,5\}$			

Dockless system parameters sets				
Number of bikes [-]	$\{2000,\!3000,\!4000,\!5000,\!6000,\!7000,\!8000,\!9000,\!10000,\!11000\}$			
Maximum walking radius [m]	{100,300,500,750,1000,1500}			
Average walking speed [km/h] Average riding speed [km/h]	{3,4,5,6,7,8} {5,8,10,12,15,20}			

Autonomous system parameters sets				
Number of bikes [-]	$\{300,\!500,\!600,\!700,\!800,\!1000,\!1500,\!2000,\!2500,\!3000\}$			
Maximum autonomous radius [m] Average autonomous driving speed [km/h] Average riding speed [km/h] Minimum battery level [%] Battery autonomy [km] Battery recharge time [h]	$ \{500,1000,1500,2000,2500,3000\} \\ \{1,2.5,5,10,15,20\} \\ \{5,8,10,12,15,20\} \\ \{5,10,15,20,25,30\} \\ \{30,50,70,90,110,130\} \\ \{0.5,1,2,4,6,8\} $			

Since fleet size is the most important factor, for each value of the configuration parameters, results were calculated for all the fleet sizes, with the rest of the parameters set to their nominal values.