Основи програмування – 1. Алгоритми та структури даних

Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів» Варіант <u>13</u>

Виконав студент	111-15 Конденко Іван Ігорович
·	(шифр, прізвище, ім'я, по батькові)
Перевірив(-ла)	
riepesipiis(via)	(прізвище, ім'я, по батькові)

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

Мета — дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання Варіант 13

Постановка задачі

Нехай задані додатні дійсні числа a, x та ціле число n. Знайти n-й член послідовності y_1, y_2, \ldots , що утворена за законом $y_0 = a; \ y_i = \frac{1}{2} \left(y_{i-1} + \frac{x}{y_{i-1}} \right), \ i = 1, 2 \ldots.$

Математична модель

Змінна	Тип	Ім'я	Призначення
Змінна Х	Дійсний	X	Вхідні дані
Порядковий номер члену	Дійсний	i	Проміжні дані
Попередній член ряду	Дійсний	Ypred	Проміжні дані
Перший член послідовності	Дійсний	a	Вхідні дані
Порядковий номер п-ого члену	Дійсний	n	Вхідні дані
Член ряду	Дійсний	у	Проміжні дані

Перший порядковий номер i = 0 $y_0 = a$. Кожний наступний член ряду обчислюється за формулою y = 1/2 (yPred + x/yPred). x, n, a мають бути додатніми. Результатом буде член послідовності у порядковий номер якого буде співпадати с заданим n.

Розв'язання

Крок 1. Визначаємо основні дії

Крок 2. Деталізуємо крок перевірки належності змінної х, а,п проміжку

Крок 3. Деталізуємо крок обчислення членів послідовності

Псевдокод

Крок 1

Початок

Введення х, п, е

Перевірка належності х, а,п проміжку

Обчислення членів послідовності

Виведення значення у

Кінепр

```
Крок 2
Початок
               Введення х, п, е
        якщо
               \underline{a > 0}
               \underline{x > 0}
               \underline{n} => 0
        <u>TO</u>
        Обчислення членів послідовності
       Виведення значення у
<u>інакше</u>
Кінець
Крок 3
Початок
               Введення х, п, е
        <u>якщо</u>
               \underline{a > 0}
               \underline{x > 0}
               \underline{n} => 0
        <u>TO</u>
        y = a
       повторити для i < n, i := 0
       y:= yPred
        y:=1/2(yPred + x/yPred)
        все повторити
        Виведення значення у
       інакше
Кінець
```

Блок схема

Випробування

Блок	Дія
	Початок
1	x = 2, a = 1, n = 2
2	x = 2, a = 1, n = 2 y = 2
3	i1
	<u>i:=1</u>
4	<u>y:=1</u>
5	<u>y:=3</u>
6	<u>i:=2</u>
7	<u>i=n</u>
8	<u>y:=3</u>
	Кінець

Висновки

Ми дослідили особливості роботи арифметичних циклів та набули практичних навичок їх використання під час складання програмних специфікацій.