

IEC 61800-7-201

Edition 1.0 2007-11

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Adjustable speed electrical power drive systems – Part 7-201: Generic interface and use of profiles for power drive systems – Profile type 1 specification

Entraînements électriques de puissance à vitesse variable – Partie 7-201: Interface générique et utilisation de profils pour les entraînements électriques de puissance – Spécification de profil de type 1

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2007 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.

Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé Fax: +41 22 919 03 00

CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

Useful links:

IEC publications search - www.iec.ch/searchpub

The advanced search enables you to find IEC publications by a variety of criteria (reference number, text, technical committee,...).

It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available on-line and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary (IEV) on-line.

Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

A propos de la CEI

La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI

Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Liens utiles:

Recherche de publications CEI - www.iec.ch/searchpub

La recherche avancée vous permet de trouver des publications CEI en utilisant différents critères (numéro de référence, texte, comité d'études,...).

Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

Just Published CEI - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications de la CEI. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

Electropedia - www.electropedia.org

Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 30 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (VEI) en ligne.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: csc@iec.ch.

IEC 61800-7-201

Edition 1.0 2007-11

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Adjustable speed electrical power drive systems – Part 7-201: Generic interface and use of profiles for power drive systems – Profile type 1 specification

Entraînements électriques de puissance à vitesse variable – Partie 7-201: Interface générique et utilisation de profils pour les entraînements électriques de puissance – Spécification de profil de type 1

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

PRICE CODE CODE PRIX

ICS 29.200; 35.100.05 ISBN 978-2-83220-709-3

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

CONTENTS

- 2 -

FC	REW	ORD		14
IN	TROD	UCTION		16
1	Scop	e		19
2	Norm	native re	ferences	19
3	Term	ns, defin	itions and abbreviated terms	19
	3.1	Terms	and definitions	19
	3.2	Abbrev	riated terms	23
4	Gene	eral		24
	4.1	Genera	al considerations	24
	4.2	Comm	unication interface	24
	4.3	Object	dictionary	25
5	Data	types		25
	5.1	Standa	rd data types	25
	5.2	Record	I definitions	26
6	Gene	eral obje	ct definitions	27
	6.1	Genera	al	27
	6.2	Comm	unication parameter objects	27
	6.3	Additio	nal identification and information objects	28
		6.3.1	Object 6402 _h : Motor type	28
		6.3.2	Object 6403 _h : Motor catalogue number	29
		6.3.3	Object 6404h: Motor manufacturer	29
		6.3.4	Object 6405 _h : http motor catalogue address	
		6.3.5	Object 6406 _h : Motor calibration date	
		6.3.6	Object 6407 _h : Motor service period	
		6.3.7	Object 6503 _h : Drive catalogue number	
_	_	6.3.8	Object 6505h: http drive catalogue address	
7	Error		and error behaviour	
	7.1		odes	
	7.2		ehavior	
8	Cont	_	ne power drive system	
	8.1		al	
	8.2		state automaton	
	8.3		of operation	
	8.4		d object specifications	
		8.4.1	Object 6040h: Controlword	
		8.4.2	Object 6041 _h : Statusword	
		8.4.3	Object 603F _h : Error code	
		8.4.4	Object 6007 _h : Abort connection option code	
		8.4.5	Object 605A _h : Quick stop option code	
		8.4.6 8.4.7	Object 605B _h : Shutdown option code	
		8.4.8	Object 605D _h : Halt option code	
		8.4.9	Object 605E _h : Fault reaction option code	
			Object 6060 _h : Modes of operation	
			Object 6061 _h : Modes of operation display	
			, II	

		8.4.12	Object 6502 _h : Supported drive modes	50
9	Facto	or group.		51
	9.1	General	l	51
	9.2	Detailed	d object definitions	51
		9.2.1	Object 608F _h : Position encoder resolution	51
		9.2.2	Object 6090 _h : Velocity encoder resolution	52
		9.2.3	Object 6091 _h : Gear ratio	53
		9.2.4	Object 6092 _h : Feed constant	54
		9.2.5	Object 607E _h : Polarity	55
10	Profil	e positio	n mode	56
	10.1	General	l information	56
	10.2	Function	nal description	57
		10.2.1	General	57
		10.2.2	Single set-point	58
		10.2.3	Set of set-points	59
	10.3	General	definitions	60
	10.4	Use of o	controlword and statusword	60
	10.5	Detailed	d object definitions	61
		10.5.1	Object 607A _h : Target position	61
		10.5.2	Object 607B _h : Position range limit	62
		10.5.3	Object 607D _h : Software position limit	62
		10.5.4	Object 607F _h : Max profile velocity	64
		10.5.5	Object 6080h: Max motor speed	64
		10.5.6	Object 6081h: Profile velocity	65
		10.5.7	Object 6082 _h : End velocity	65
		10.5.8	Object 6083 _h : Profile acceleration	
		10.5.9	Object 6084h: Profile deceleration	
		10.5.10	, ,	
			Object 6086h: Motion profile type	
			Object 60A3 _h : Profile jerk use	
			Object 60A4 _h : Profile jerk	
			Object 60C5 _h : Max acceleration	
			Object 60C6 _h : Max deceleration	
11	Homi	ng mode		71
	11.1	General	l information	71
	11.2	Function	nal description	71
	11.3	General	l definitions	72
		11.3.1	Method 1: Homing on negative limit switch and index pulse	72
		11.3.2	Method 2: Homing on positive limit switch and index pulse	73
		11.3.3	Method 3 and 4: Homing on positive home switch and index pulse	73
		11.3.4	Method 5 and 6: Homing on negative home switch and index pulse	
		11.3.5	Method 7 to 14: Homing on home switch and index pulse	
		11.3.6	Method 15 and 16: Reserved	
		11.3.7	Method 17 to 30: Homing without index pulse	
		11.3.8	Method 31 and 32: Reserved	
		11.3.9	Method 33 and 34: Homing on index pulse	
		11.3.10	3	
		11.3.11	Method 36: Homing with touch-probe	
	11.4	Use of c	controlword and statusword	76

	11.5	Detailed	object definitions	77
		11.5.1	Object 607Ch: Home offset	77
		11.5.2	Object 6098h: Homing method	78
		11.5.3	Object 6099h: Homing speeds	78
		11.5.4	Object 609A _h : Homing acceleration	80
		11.5.5	Object 60B8 _h : Touch probe function	80
		11.5.6	Object 60B9 _h : Touch probe status	
		11.5.7	Object 60BA _h : Touch probe pos1 pos value	82
		11.5.8	Object 60BB _h : Touch probe pos1 neg value	
		11.5.9	Object 60BC _h : Touch probe pos2 pos value	
		11.5.10	Object 60BD _h : Touch probe pos2 neg value	84
12	Posit	ion contro	ol function	84
	12.1	General	information	84
			al description	
			object definitions	
		12.3.1	Object 6062 _h : Position demand value	
		12.3.2	Object 6063 _h : Position actual internal value	
		12.3.3	Object 6064 _h : Position actual value	
		12.3.4	Object 6065 _h : Following error window	
		12.3.5	Object 6066h: Following error time out	
		12.3.6	Object 6067 _h : Position window	
		12.3.7	Object 6068h: Position window time	
		12.3.8	Object 60F4h: Following error actual value	
		12.3.9	Object 60FA _h : Control effort	
		12.3.10	Object 60FC _h : Position demand internal value	92
		12.3.11	Object 60F2h: Positioning option code	92
13	Interp	oolated po	osition mode	94
	13.1	General	information	94
	13.2	Function	al description	95
		13.2.1	General	95
		13.2.2 L	inear interpolated position mode with several axes	96
		13.2.3 E	Buffer strategies for the interpolated position mode	97
		13.2.4 I	nterpolated position mode FSA	98
	13.3	General	definitions	99
	13.4	Use of c	ontrolword and statusword	99
	13.5	Detailed	object definitions	100
		13.5.1	Object 60C0 _h : Interpolation sub mode select	100
		13.5.2	Object 60C1 _h : Interpolation data record	101
		13.5.3	Object 60C2 _h : Interpolation time period	102
		13.5.4	Object 60C4 _h : Interpolation data configuration	103
14	Profil	e velocity	y mode	105
	14.1	General	information	105
	14.2	Function	al description	106
	14.3	General	definitions	107
	14.4	Use of c	ontrolword and statusword	107
	14.5	Detailed	object definitions	108
		14.5.1	Object 6069h: Velocity sensor actual value	108
		14.5.2	Object 606A _h : Sensor selection code	108
		14.5.3	Object 606Bh: Velocity demand value	109

		14.5.4	Object 606C _h : Velocity actual value	.110
		14.5.5	Object 606D _h : Velocity window	.110
		14.5.6	Object 606E _h : Velocity window time	.111
		14.5.7	Object 606Fh: Velocity threshold	.111
		14.5.8	Object 6070h: Velocity threshold time	112
		14.5.9	Object 60FF _h : Target velocity	112
		14.5.10	Object 60F8 _h : Max slippage	113
15	Profil	e torque	mode	113
	15.1	Genera	l information	113
	15.2	Functio	nal description	113
			l definitions	
	15.4	Use of	controlword and statusword	114
	15.5	Detaile	d object definitions	115
		15.5.1	Object 6071 _h : Target torque	115
		15.5.2	Object 6072 _h : Max torque	
		15.5.3	Object 6073 _h : Max current	
		15.5.4	Object 6074 _h : Torque demand	
		15.5.5	Object 6075 _h : Motor rated current	
		15.5.6	Object 6076 _h : Motor rated torque	.118
		15.5.7	Object 6077 _h : Torque actual value	
		15.5.8	Object 6078 _h : Current actual value	119
		15.5.9	Object 6079 _h : DC link circuit voltage	119
		15.5.10		
		15.5.11	Object 6088 _h : Torque profile type	.120
16	Veloc	city mode	9	121
	16.1	Genera	I information	121
	16.2	Functio	nal description	122
		16.2.1	Velocity limit function	122
		16.2.2	Ramp function	122
		16.2.3	Velocity control function	122
		16.2.4	Factor function	122
	16.3	Genera	I definitions	123
	16.4	Use of	controlword and statusword	123
	16.5	Detaile	d object definitions	124
		16.5.1	Object 6042h: vI target velocity	124
		16.5.2	Object 6043 _h : vI velocity demand	125
		16.5.3	Object 6044h: vl velocity actual value	125
		16.5.4	Object 6046h: v/ velocity min max amount	126
		16.5.5	Object 6049 _h : vI velocity deceleration	.127
		16.5.6	Object 6048 _h : v/ velocity acceleration	.128
		16.5.7	Object 604Ah: v/ velocity quick stop	130
		16.5.8	Object 604B _h : v/ set-point factor	131
		16.5.9	Object 604Ch: v/ dimension factor	132
17	Cycli	c synchr	onous position mode	133
	17.1	Genera	l information	133
	17.2	Functio	nal description	134
	17.3	Use of	controlword and statusword	135
	17.4	Detaile	d object definitions	136
		17.4.1	Object 60B0 _h : Position offset	136

			Object 60B1 _h : Velocity offset	
			Object 60B2h: Torque offset	
18	-	-	ronous velocity mode	
			al information	
			al definitions	
			onal description	
40			controlword and statusword	
19	-	-	ronous torque mode	
			al informational definitions	
			onal description	
			controlword and statusword	
20			lication FE	
	-		al	
			60FD _h : Digital inputs	
			60FE _h : Digital outputs	
			II 3 to trape to	
Bibl	iograr	ohv		144
	0 ,	,		
Figu	ıre 1 -	- Struct	ure of IEC 61800-7	18
_			definition	
Figu	ıre 3 -	- Remot	te and local control	37
_			drive system finite state automaton	
_			on between different value parameters	
_			definition	
_			definition	
Figu	ıre 8 -	- Value	definition	50
-			definition	
_			ectory generator and position control function	
_		•	ectory generator for profile position mode	
_		-	point example	
_			dshaking procedure for the single set-point method	
•			dshaking procedure for the set of set-points method	
_			point handling for two set-points	
_		-	rolword for profile position (pp) mode	
			usword for profile position (pp) mode	
_			city/time diagram with jerk positions	
_			ing mode function	
_			ing on negative limit switch and index pulse	
_				
_			ing on positive limit switch and index pulse	
_			ing on positive home switch and index pulse	
			ing on negative home switch and index pulse	
_			ing on home switch and index pulse – positive initial motion	
_			ing on home switch and index pulse – negative initial motion	
Figu	ıre 26	– Homi	ing on positive home switch	75

Figure 27 – Homing on index pulse	76
Figure 28 – Controlword for homing mode	76
Figure 29 – Statusword for homing mode	76
Figure 30 – Home offset definition	77
Figure 31 – Position control function	85
Figure 32 – Following error (functional overview)	85
Figure 33 – Position reached (functional overview)	86
Figure 34 – Position reached (definitions)	86
Figure 35 – Following error (definitions)	87
Figure 36 – Object structure	92
Figure 37 – Interpolation controller	95
Figure 38 – Interpolated position mode for two axes	96
Figure 39 – Linear interpolation for one axis	97
Figure 40 – Input buffer organisation	98
Figure 41 – Input buffer examples	98
Figure 42 – Interpolated position mode FSA	99
Figure 43 – Controlword for interpolated position mode	99
Figure 44 – Statusword for interpolated position mode	100
Figure 45 – Profile velocity mode	107
Figure 46 – Controlword for profile velocity mode	107
Figure 47 – Statusword for profile velocity mode	108
Figure 48 – Structure of the profile torque mode	114
Figure 49 – Controlword for profile torque mode	114
Figure 50 – Statusword for profile torque mode	115
Figure 51 – Velocity mode with all objects	121
Figure 52 – Velocity mode with mandatory objects only	121
Figure 53 – Velocity profile	122
Figure 54 – Factor function	122
Figure 55 – Reverse factor function	123
Figure 56 – Controlword for profile velocity mode	123
Figure 57 – Usage of controlword bits in velocity mode	124
Figure 58 – Statusword for profile velocity mode	124
Figure 59 – Transfer characteristic of <i>vl</i> velocity min max amount	126
Figure 60 – Transfer characteristic of the velocity deceleration	127
Figure 61 – Transfer characteristic of the velocity acceleration	129
Figure 62 – Transfer characteristic of the quick stop deceleration	130
Figure 63 – Cyclic synchronous position mode overview	134
Figure 64 – Cyclic synchronous position control function	
Figure 65 – Statusword for profile cyclic synchronous position mode	135
Figure 66 – Cyclic synchronous velocity mode overview	
Figure 67 – Cyclic synchronous velocity control function	139
Figure 68 – Statusword for profile cyclic synchronous velocity mode	139
Figure 69 – Cyclic synchronous torque mode overview	

Figure 70 – Cyclic synchronous torque control function	141
Figure 71 – Statusword for profile cyclic synchronous torque mode	141
Figure 72 – Object structure	142
Figure 73 – Object structure	142
Table 1 – List of used data types	26
Table 2 – Interpolated time period	
Table 3 – Interpolated data configuration	
Table 4 – vI velocity acceleration/deceleration	
Table 5 – Object description	
Table 6 – Entry description	
Table 7 – Value definition	
Table 8 – Object description	
Table 9 – Entry description	
Table 10 – Object description	
Table 11 – Entry description	
Table 12 – Object description	30
Table 13 – Entry description	
Table 14 – Object description	
Table 15 – Entry description	30
Table 16 – Object description	31
Table 17 – Entry description	31
Table 18 – Object description	31
Table 19 – Entry description	31
Table 20 – Object description	32
Table 21 – Entry description	32
Table 22 – Object description	32
Table 23 – Entry description	32
Table 24 – Error codes	33
Table 25 – FSA states and supported functions	38
Table 26 – Transition events and actions	39
Table 27 – Command coding	41
Table 28 – Object description	42
Table 29 – Entry description	42
Table 30 – State coding	42
Table 31 – Object description	43
Table 32 – Entry description	43
Table 33 – Object description	44
Table 34 – Entry description	44
Table 35 – Value definition	44
Table 36 – Object description	44
Table 37 – Entry description	45
Table 38 – Value definition	45

Table 39 – Object description	45
Table 40 – Entry description	46
Table 41 – Value definition	46
Table 42 – Object description	46
Table 43 – Entry description	46
Table 44 – Value definition	47
Table 45 – Object description	47
Table 46 – Entry description	47
Table 47 – Value definition	47
Table 48 – Object description	48
Table 49 – Entry description	48
Table 50 – Value definition	48
Table 51 – Object description	48
Table 52 – Entry description	49
Table 53 – Value definition	49
Table 54 – Object description	49
Table 55 – Entry description	50
Table 56 – Object description	50
Table 57 – Entry description	50
Table 58 – Object description	51
Table 59 – Entry description	51
Table 60 – Object description	52
Table 61 – Entry description	52
Table 62 – Object description	53
Table 63 – Entry description	53
Table 64 – Object description	54
Table 65 – Entry description	54
Table 66 – Object description	55
Table 67 – Entry description	55
Table 68 – Object description	56
Table 69 – Entry description	56
Table 70 – Definition of bit 4, bit 5, and bit 9	60
Table 71 – Definition of bit 6 and bit 8	60
Table 72 – Definition of bit 10, bit 12, and bit 13	61
Table 73 – Object description	61
Table 74 – Entry description	61
Table 75 – Object description	62
Table 76 – Entry description	62
Table 77 – Object description	63
Table 78 – Entry description	
Table 79 – Object description	64
Table 80 – Entry description	64
Table 81 – Object description	64

Table 82 – Entry description	64
Table 83 – Object description	65
Table 84 – Entry description	65
Table 85 – Object description	65
Table 86 – Entry description	65
Table 87 – Object description	66
Table 88 – Entry description	
Table 89 – Object description	66
Table 90 – Entry description	66
Table 91 – Object description	
Table 92 – Entry description	67
Table 93 – Value definition	
Table 94 – Object description	68
Table 95 – Entry description	
Table 96 – Object description	
Table 97 – Entry description	68
Table 98 – Value assignments	
Table 99 – Object description	
Table 100 – Entry description	
Table 101 – Object description	
Table 102 – Entry description	
Table 103 – Object description	
Table 104 – Entry description	71
Table 105 – Definition of bit 4 and bit 8	
Table 106 – Definition of bit 10, bit 12, and bit 13	77
Table 107 – Object description	77
Table 108 – Entry description	77
Table 109 – Value definition	78
Table 110 – Object description	78
Table 111 – Entry description	78
Table 112 – Object description	79
Table 113 – Entry description	79
Table 114 – Object description	80
Table 115 – Entry description	
Table 116 – Value definition	81
Table 117 – Object description	81
Table 118 – Entry description	81
Table 119 – Value definition	82
Table 120 – Object description	82
Table 121 – Entry description	82
Table 122 – Object description	83
Table 123 – Entry description	83
Table 124 – Object description	83

Table 125 – Entry description	83
Table 126 – Object description	84
Table 127 – Entry description	84
Table 128 – Object description	84
Table 129 – Entry description	84
Table 130 – Object description	87
Table 131 – Entry description	87
Table 132 – Object description	88
Table 133 – Entry description	88
Table 134 – Object description	88
Table 135 – Entry description	88
Table 136 – Object description	89
Table 137 – Entry description	89
Table 138 – Object description	89
Table 139 – Entry description	
Table 140 – Object description	90
Table 141 – Entry description	90
Table 142 – Object description	
Table 143 – Entry description	91
Table 144 – Object description	91
Table 145 – Entry description	91
Table 146 – Object description	91
Table 147 – Entry description	
Table 148 – Object description	
Table 149 – Entry description	92
Table 150 – Value definition for bit 0 and bit 1	
Table 151 – Value definition for bit 2 and bit 3	
Table 152 – Value definition for bit 4 and bit 5	93
Table 153 – Object description	94
Table 154 – Entry description	94
Table 155 – Position calculation in interpolated position mode for several axes	96
Table 156 – FSA states and supported functions	99
Table 157 – Transition events and actions	99
Table 158 – Definition of bit 4 and bit 8	
Table 159 – Definition of bit 10 and bit 12	100
Table 160 – Value definition	100
Table 161 – Object description	101
Table 162 – Entry description	
Table 163 – Object description	
Table 164 – Entry description	
Table 165 – Object description	
Table 166 – Entry description	103
Table 167 – Object description	104

Table 168 – Entry description	104
Table 169 – Definition of bit 8	107
Table 170 – Definition of bit 10, bit 12, and bit 13	108
Table 171 – Object description	108
Table 172 – Entry description	108
Table 173 – Value definition	109
Table 174 – Object description	109
Table 175 – Entry description	109
Table 176 – Object description	
Table 177 – Entry description	
Table 178 – Object description	110
Table 179 – Entry description	110
Table 180 – Object description	
Table 181 – Entry description	
Table 182 – Object description	
Table 183 – Entry description	
Table 184 – Object description	
Table 185 – Entry description	
Table 186 – Object description	112
Table 187 – Entry description	
Table 188 – Object description	
Table 189 – Entry description	
Table 190 – Object description	
Table 191 – Entry description	
Table 192 – Definition of bit 8	
Table 193 – Definition of bit 10	
Table 194 – Object description	
Table 195 – Entry description	
Table 196 – Object description	
Table 197 – Entry description	
Table 198 – Object description	
Table 199 – Entry description	
Table 200 – Object description	
Table 201 – Entry description	
Table 202 – Object description	
Table 203 – Entry description	
Table 204 – Object description	
Table 205 – Entry description	
Table 206 – Object description	
Table 207 – Entry description	
Table 208 – Object description	
Table 209 – Entry description	
Table 210 Object description	110

Table 211 – Entry description	119
Table 212 – Object description	120
Table 213 – Entry description	120
Table 214 – Value definition	120
Table 215 – Object description	120
Table 216 – Entry description	121
Table 217 – Definition of bit 4, bit 5, bit 6, and bit 8	123
Table 218 – Object description	124
Table 219 – Entry description	124
Table 220 – Object description	125
Table 221 – Entry description	125
Table 222 – Object description	125
Table 223 – Entry description	126
Table 224 – Object description	126
Table 225 – Entry description	127
Table 226 – Object description	128
Table 227 – Entry description	128
Table 228 – Object description	129
Table 229 – Entry description	129
Table 230 – Object description	130
Table 231 – Entry description	131
Table 232 – Object description	131
Table 233 – Entry description	132
Table 234 – Object description	133
Table 235 – Entry description	133
Table 236 – Definition of bit 10, bit 12, and bit 13	135
Table 237 – Object description	136
Table 238 – Entry description	136
Table 239 – Object description	136
Table 240 – Entry description	137
Table 241 – Object description	137
Table 242 – Entry description	137
Table 243 – Definition of bit 10, bit 12, and bit 13	139
Table 244 – Definition of bit 10, bit 12, and bit 13	141
Table 245 – Value definition	142
Table 246 – Object description	142
Table 247 – Entry description	142
Table 248 – Value definition	143
Table 249 – Object description	143
Table 250 – Entry description	143

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ADJUSTABLE SPEED ELECTRICAL POWER DRIVE SYSTEMS -

Part 7-201: Generic interface and use of profiles for power drive systems – Profile type 1 specification

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The International Standard IEC 61800-7-201 has been prepared by subcommittee SC 22G: Adjustable speed electric drive systems incorporating semiconductor power converters, of IEC technical committee TC 22: Power electronic systems and equipment.

This bilingual version (2013-04) corresponds to the monolingual English version, published in 2007-11.

The text of this standard is based on the following documents:

FDIS	Report on voting
22G/184/FDIS	22G/192/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

- 15 -

The French version of this standard has not been voted upon.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 61800 series, under the general title *Adjustable speed electrical power drive systems*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

– 16 **–**

61800-7-201 © IEC:2007

INTRODUCTION

The IEC 61800 series is intended to provide a common set of specifications for adjustable speed electrical power drive systems.

IEC 61800-7 describes a generic interface between control systems and power drive systems. This interface can be embedded in the control system. The control system itself can also be located in the drive (sometimes known as "smart drive" or "intelligent drive").

A variety of physical interfaces is available (analogue and digital inputs and outputs, serial and parallel interfaces, fieldbuses and networks). Profiles based on specific physical interfaces are already defined for some application areas (e.g. motion control) and some device classes (e.g. standard drives, positioner). The implementations of the associated drivers and application programmers interfaces are proprietary and vary widely.

IEC 61800-7 defines a set of common drive control functions, parameters, and state machines or description of sequences of operation to be mapped to the profiles.

IEC 61800-7 provides a way to access functions and data of a drive that is independent of the used drive profile and communication interface. The objective is a common drive model with generic functions and objects suitable to be mapped on different communication interfaces. This makes it possible to provide common implementations of motion control (or velocity control or drive control applications) in controllers without any specific knowledge of the drive implementation.

There are several reasons to define a generic interface:

For a drive device manufacturer

- Less effort to support system integrators
- Less effort to describe drive functions because of common terminology
- The selection of drives does not depend on availability of specific support

For a control device manufacturer

- No influence of bus technology
- Easy device integration
- Independent of a drive supplier

For a system integrator (builds modules, machines, plants etc.)

- Less integration effort for devices
- Only one understandable way of modeling
- Independent of bus technology

Much effort is needed to design a motion control application with several different drives and a specific control system. The tasks to implement the system software and to understand the functional description of the individual components may exhaust the project resources. In some cases, the drives do not share the same physical interface. Some control devices just support a single interface which will not be supported by a specific drive. On the other hand, the functions and data structures are specified with incompatibilities. It is up to the systems integrator to write interfaces to the application software to handle that which should not be his responsibility.

Some applications need device exchangeability or integration of new devices in an existing configuration. They are faced with different incompatible solutions. The efforts to adopt a solution to a drive profile and to manufacturer specific extensions may be unacceptable. This will reduce the degree of freedom to select a device best suited for this application to the selection of the unit which will be available for a specific physical interface and supported by the controller.

- 17 -

IEC 61800-7-1 is divided into a generic part and several annexes as shown in Figure 1. The drive profile types for CiA 402¹, CIP Motion^{TM2}, PROFIdrive³ and SERCOS Interface^{TM4} are mapped to the generic interface in the corresponding annex. The annexes have been submitted by open international network or fieldbus organizations which are responsible for the content of the related annex and use of the related trademarks.

This part of IEC 61800-7 specifies the profile type 1 (CiA 402).

The profile types 2, 3 and 4 are specified in IEC 61800-7-202, IEC 61800-7-203 and IEC 61800-7-204.

IEC 61800-7-301, IEC 61800-7-302, IEC 61800-7-303 and IEC 61800-7-304 specify how the profile types 1, 2, 3 and 4 are mapped to different network technologies (such as CANopen⁵, EtherCAT^{TM6}, Ethernet Powerlink^{TM7}, DeviceNet^{TM8}, ControlNet^{TM9}, EtherNet/IP^{TM10}, PROFIBUS¹¹, PROFINET¹² and SERCOS Interface).

- 1 CiA 402 is a trade name of CAN in Automation, e.V. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade name holder or any of its products. Compliance to this profile does not require use of the trade name CiA 402.
- 2 CIP Motion™ is a trade name of Open DeviceNet Vendor Association, Inc. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trademark holder or any of its products. Compliance to this profile does not require use of the trade name CIP Motion™. Use of the trade name CIP Motion™ requires permission of Open DeviceNet Vendor Association, Inc.
- PROFIdrive is a trade name of PROFIBUS International. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade name holder or any of its products. Compliance to this profile does not require use of the trade name PROFIdrive. Use of the trade name PROFIdrive requires permission of PROFIBUS International.
- SERCOS™ and SERCOS Interface™ are trade names of SERCOS International e.V. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade name holder or any of its products. Compliance to this profile does not require use of the trade name SERCOS and SERCOS interface. Use of the trade name SERCOS and SERCOS interface requires permission of the trade name holder.
- 5 CANopen is an acronym for Controller Area Network open and is used to refer to EN 50325-4.
- 6 EtherCAT™ is a trade name of Beckhoff, Verl. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trademark holder or any of its products. Compliance to this profile does not require use of the trade name EtherCAT™. Use of the trade name EtherCAT™ requires permission of the trade name holder.
- The Ethernet Powerlink™ is a trade name of B&R, control of trade name use is given to the non profit organisation EPSG. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trademark holder or any of its products. Compliance to this profile does not require use of the trade name Ethernet Powerlink™. Use of the trade name Ethernet Powerlink™ requires permission of the trade name holder.
- BeviceNet™ is a trade name of Open DeviceNet Vendor Association, Inc. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trademark holder or any of its products. Compliance to this profile does not require use of the trade name DeviceNet™. Use of the trade name DeviceNet™ requires permission of Open DeviceNet Vendor Association, Inc.
- GontrolNet™ is a trade name of ControlNet International, Ltd. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trademark holder or any of its products. Compliance to this profile does not require use of the trade name ControlNet™. Use of the trade name ControlNet™ requires permission of ControlNet International, Ltd.
- 10 EtherNet/IP™ is a trade name of ControlNet International, Ltd. and Open DeviceNet Vendor Association, Inc. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trademark holder or any of its products. Compliance to this profile does not require use of the trade name EtherNet/IP™. Use of the trade name EtherNet/IP™ requires permission of either ControlNet International, Ltd. or Open DeviceNet Vendor Association, Inc.
- PROFIBUS is a trade name of PROFIBUS International. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade name holder or any of its products. Compliance to this profile does not require use of the trade name PROFIBUS. Use of the trade name PROFIBUS requires permission of PROFIBUS International.
- PROFINET is a trade name of PROFIBUS International. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by IEC of the trade name holder or any of its products. Compliance to this profile does not require use of the trade name PROFINET. Use of the trade name PROFINET requires permission of PROFIBUS International.

Figure 1 - Structure of IEC 61800-7

- 19 -

ADJUSTABLE SPEED ELECTRICAL POWER DRIVE SYSTEMS -

Part 7-201: Generic interface and use of profiles for power drive systems – Profile type 1 specification

1 Scope

IEC 61800-7 specifies profiles for Power Drive Systems (PDS) and their mapping to existing communication systems by use of a generic interface model.

The functions specified in this part of IEC 61800-7 are not intended to ensure functional safety. This requires additional measures according to the relevant standards, agreements and laws.

This part of IEC 61800-7 specifies profile type 1 for Power Drive Systems (PDS). Profile type 1 can be mapped onto different communication network technologies.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61800-7 (all parts), Adjustable speed electrical power drive systems – Generic interface and use of profiles for power drive systems

IEC 61800-7-301, Adjustable speed electrical power drive systems – Part 7-301: Generic interface and use of profiles for power drive systems – Mapping of profile type 1 to network technologies

EN 50325-4, Industrial communications subsystem based on ISO 11898 (CAN) for controller-device interfaces – Part 4: CANopen

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1.1

actual value

value of a variable at a given instant

[IEV 351-21-02]

NOTE Actual value or actual variable are used in this part of the IEC 61800-7 series as input data of the application control program to monitor feedback variables or other process variables of the PDS.

3.1.2

algorithm

completely determined finite sequence of operations by which the values of the output data can be calculated from the values of the input data

- 20 -

61800-7-201 © IEC:2007

[IEV 351-21-37)

3.1.3

application

software functional element specific to the solution of a problem in industrial-process measurement and control

NOTE An application may be distributed among resources, and may communicate with other applications.

[IEC/TR 62390:2005, 3.1.2, modified]

3.1.4

application mode

type of application that can be requested from a PDS

NOTE The different application modes reflect the control loop for torque control, velocity control, position control or other applications like homing.

3.1.5

attribute

property or characteristic of an entity

[IEC/TR 62390:2005, 3.1.3]

3.1.6

class

description of a set of objects that share the same attributes, operations, methods, relationships, and semantics

[ISO/IEC 19501, modified]

3.1.7

commands

set of commands from the application control program to the PDS to control the behaviour of the PDS or functional elements of the PDS

NOTE 1 The behaviour is reflected by states or operating modes.

NOTE 2 The different commands may be represented by one bit each.

3.1.8

control

purposeful action on or in a process to meet specified objectives

[IEV 351-21-29]

3.1.9

control device

physical unit that contains – in a module/subassembly or device – an application program to control the PDS

3.1.10

data type

set of values together with a set of permitted operations

[ISO/IEC 2382-15:1999, 15.04.01, modified]

3.1.11

device

field device

- 21 -

networked independent physical entity of an industrial automation system capable of performing specified functions in a particular context and delimited by its interfaces

[IEC 61499-1:2005, 3.30, modified]

entity that performs control, actuating and/or sensing functions and interfaces to other such entities within an automation system

[ISO 15745-1:2003, 3.11]

3.1.12

device profile

representation of a device in terms of its parameters, parameter assemblies and behaviour according to a device model that describes the device's data and behaviour as viewed through a network

NOTE This is a definition from IEC/TS 61915 which is extended by the addition of the device functional structure. [IEC/TR 62390:2005, 3.19, modified]

3.1.13

feedback variable

variable which represents a controlled variable and which is returned to a comparing element

[IEV 351-27-03]

3.1.14

functional element

entity of software or software combined with hardware, capable of accomplishing a specified function of a device

NOTE 1 A functional element has an interface, associations to other functional elements and functions.

NOTE 2 A functional element can be made out of function block(s), object(s) or parameter list(s).

[IEC/TR 62390:2005, 3.1.12]

3.1.15

high-level power

main electric power supply of the drive device

3.1.16

input data

data transferred from an external source into a device, resource or functional element

[IEC/TR 62390:2005, 3.1.14]

3.1.17

interface

shared boundary between two entities defined by functional characteristics, signal characteristics, or other characteristics as appropriate

[IEV 351-21-35, modified]

3.1.18

logical power drive system

model which includes PDS and communication network accessible through the generic PDS interface

- 22 -

61800-7-201 © IEC:2007

3.1.19

low-level power

electrical power supply for the control section of the drive device

3.1.20

model

mathematical or physical representation of a system or a process, based with sufficient precision upon known laws, identification or specified suppositions

[IEV 351-21-36]

3.1.21

operating mode

characterisation of the way and the extent to which the human operator intervenes in the control equipment

[IEV 351-31-01]

3.1.22

output data

data originating in a device, resource or functional element and transferred from them to external systems

[IEC/TR 62390:2005, 3.1.21]

3.1.23

parameter

data element that represents device information that can be read from or written to a device, for example through the network or a local HMI

NOTE 1 Adapted from IEC/TS 61915.

NOTE 2 A parameter is typically characterised by a parameter name, data type and access direction.

[IEC/TR 62390:2005, 3.1.22, modified]

3.1.24

profile

representation of a PDS interface in terms of its parameters, parameter assemblies and behaviour according to a communication profile and a device profile

3.1.25

reference variable

input variable to a comparing element in a controlling system which sets the desired value of the controlled variable and is deducted from the command variable

[IEV 351-27-02]

3.1.26

set-point

value or variable used as output data of the application control program to control the PDS

3.1.27

status

set of information from the PDS to the application control program reflecting the state or mode of the PDS or a functional element of the PDS

NOTE The different status information may be coded with one bit each.

- 23 -

3.1.28

type

hardware or software element which specifies the common attributes shared by all instances of the type

[IEC/TR 62390:2005, 3.1.25]

3.1.29

use case

class specification of a sequence of actions, including variants, that a system (or other entity) can perform, interacting with actors of the system

[IEC/TR 62390:2005, 3.1.26]

3.1.30

variable

software entity that may take different values, one at a time

[IEC/TR 62390:2005, 3.1.27]

NOTE The values of a variable as well as of a parameter are usually restricted to a certain data type.

3.2 Abbreviated terms

AC Alternating Current

BL Brush-Less

c Constant

CiA CAN in Automation

COB Communication Object

csp Cyclic Synchronous Profile mode

cst Cyclic Synchronous Torque mode

csv Cyclic Synchronous Velocity mode

DC Direct Current

DIV Divisor

FC Frequency Converter

FE Functional Element

FIFO First In, First Out

FSA Finite State Automaton

hm Homing Mode

HMI Human Machine Interface

I/O Input/Output

ip Interpolated Position mode

MUL Multiplication

NMT Network Management

PDS Power Drive System

- 24 -

61800-7-201 © IEC:2007

PM Permanent Magnet

pp Profile Position mode

pv Profile Velocity mode

r Reserved

r.m.s. Root Mean Square

ro Read-Only

rw Read-Write

tq Torque Mode

vl Velocity Mode

4 General

4.1 General considerations

This part of the IEC 61800-7 series specifies the bus-independent CiA 402 device profile for power drive systems such as frequency converters, servo controllers, or stepper motor controllers. It includes the definition of real-time control objects as well as of configuration, adjustment, identification and network management objects. The PDS finite state automaton (FSA) is also defined, which may be controlled externally by a control device communicating via a communication system to the drive device.

The device profile defines several modes of operation. They include profile position mode, homing mode, interpolated position mode, profile velocity mode, profile torque mode, velocity mode, cyclic synchronous position mode, cyclic synchronous velocity mode, and cyclic synchronous torque mode.

4.2 Communication interface

The communication system connects the drive device to the control device and other field devices. Via the communication system the control device uses communication services to exchange with the drive device:

- Non real-time data (configuration, identification, adjustement, diagnostic, etc.)
- Process data like target values and actual values

These services are defined in the IEC 61800-7-301. The process data are exchanged by real-time data messages. These messages may be configured by means of configuration services provided by the communication system.

The communication system shall provide services to transmit and receive communication objects (COB). The following COBs shall be supported:

- · COB for real-time data transmission
- COB for emergency information transmission
- COB for network management purposes

Additionally, the communication system may provide the following COBs:

- COB for configuration data transmission
- COB for synchronisation purposes
- · COB for system time distribution

- 25 -

The COBs are defined in detail in IEC 61800-7-301.

4.3 Object dictionary

All objects in this part of the IEC 61800-7 series are grouped in the object dictionary, and defined by attributes as defined in EN 50325-4. All objects shall be accessible via the network in an ordered pre-defined fashion by means of COB for configuration data transmission. Each object within the dictionary shall be addressed uniquely by using a 16-bit index and an 8-bit sub-index. The communication-related objects are defined in detail in IEC 61800-7-301.

The standardised device profile area at indices 6000_h through $9FFF_h$ shall contain all application objects common to this device profile specification. The following object indices shall be reserved for compatibility reasons: 6045_h , 6047_h , $604D_h$, $604E_h$, $604F_h$, 6052_h , 6053_h , 6054_h , 6055_h , 6056_h , 6057_h , 6058_h , 6059_h , 6089_h , 6080_h , 6080_h , 6093_h , 6094_h , 6094_h , 6096_h , 6097_h , 6040_h , 6041_h , 6042_h , $60F6_h$, $60F7_h$, $60F9_h$, $60F8_h$, 6410_h , 6504_h , and 6510_h .

The objects may be read respectively written via the network. Within this range of objects, up to 8 axes may be realised. Additionally, it is possible to implement other device profiles (e. g. generic I/O module or encoder) within the drive device. These other device profiles may be implemented instead of one or several axes.

For multi axes devices, the object range 6000_h to 67FF_h shall be shifted as follows:

```
6000_h to 67FF_h: axis 0

6800_h to 6FFF_h: axis 1

7000_h to 77FF_h: axis 2

7800_h to 7FFF_h: axis 3

8000_h to 87FF_h: axis 4

8800_h to 8FFF_h: axis 5

9000_h to 97FF_h: axis 6

9800_h to 9FFF_h: axis 7
```

The category and entry category attributes of an object indicate if the object shall be implemented (mandatory) or may be implemented (optional).

The object code and data type attributes are defined in detail in EN 50325-4 or in other network technology specifications. The used data type attributes are given in Clause 5. In the entry description, the access attribute indicating if an application object is read only (*ro*), read/write (*rw*) or write only (*wo*) or constant (*c*) is defined. Read only indicates that this shall not be written via the bus; read/write allows to read and to write this object; and write only means that this application object shall be not read via the bus.

The PDO mapping attribute shall indicate if this object shall be or may be or shall not be mapped into COB for real-time data transmission. The detailed definition of these attributes is given in IEC 61800-7-301.

The default value attribute defines the value of an object with access attribute of the value 'rw' and 'c' after power-on or application reset.

5 Data types

5.1 Standard data types

The data types used in this profile are listed in Table 1.

Table 1 – List of used data types

Data type	Reference
Unsigned8	EN 50325-4
Unsigned16	EN 50325-4
Unsigned32	EN 50325-4
Integer8	EN 50325-4
Integer16	EN 50325-4
Integer32	EN 50325-4
Visible string	EN 50325-4
Time of day	EN 50325-4
Interpolated time period	See Table 2
Interpolated data configuration	See Table 3
v/ velocity acceleration/deceleration	See Table 4

5.2 Record definitions

Table 2, Table 3, and Table 4 define the records used in this part of the IEC 61800-7 series.

Table 2 – Interpolated time period

Index	Sub-index	Description	Data type
0080 _h	00 _h	Highest index supported	Unsigned8
	01 _h	Interpolation time units	Unsigned8
	02 _h	Interpolation time index	Integer8

Table 3 - Interpolated data configuration

Index	Sub-index	Description	Data type
0081 _h	00 _h	Highest index supported	Unsigned8
	01 _h	Maximum buffer size	Unsigned32
	02 _h	Actual buffer size	Unsigned32
	03 _h	Buffer organisation	Unsigned8
	04 _h	Buffer position	Unsigned16
	05 _h	Size of data record	Unsigned8
	06 _h	Buffer clear	Unsigned8

Table 4 – vI velocity acceleration/deceleration

Index	Sub-index	Description	Data type
0082 _h	00 _h	Highest index supported	Unsigned8
	01 _h	Delta speed	Unsigned32
	02 _h	Delta time	Integer16

-27-

6 General object definitions

6.1 General

In the following subclauses, the communication parameter objects, the additional identification and the information objects are defined.

6.2 Communication parameter objects

There are three communication parameter objects that shall be implemented:

- Device type object 1000_h
- Error register object 1001_h
- Identity object 1018_h

They are defined in EN 50325-4 and the following definitions shall also apply.

The device type object shall define the device type, the device's functionality, and the mapping variant.

For multi device modules, the additional information parameter shall contain $0FFF_h$ and the device profile number referenced by object 1000_h is the device profile of the first device in the object dictionary. All other devices of a multiple device module shall identify their profiles at object $67FF_h + x \times 800_h$ with x = internal number of the device (0 to 7). For details, see EN 50325-4.

Figure 2 specifies the structure and the values of the *device type* object, Table 5 specifies the object description, and Table 6 specifies the entry description.

Figure 2 - Value definition

Mode bits and type in the additional information are defined in IEC 61800-7-301.

Table 5 - Object description

Attribute	Value
Index	1000 _h
Name	Device type
Object Code	See EN 50325-4
Data Type	See EN 50325-4
Category	Mandatory

- 28 -

Table 6 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	See value definition
Default Value	Manufacturer-specific

The device-profile specific bit in the *error register* object (1001_h) shall be used to indicate that the *error code* in the Emergency message is defined in this part of the IEC 61800-7 series.

NOTE The corresponding error code may be read in object 1003_h (see EN 50325-4) or object $603F_h$.

6.3 Additional identification and information objects

6.3.1 Object 6402_h: Motor type

This object shall indicate the type of motor attached to and driven by the drive device. Table 7 specifies the value definition, Table 8 specifies the object description, and Table 9 specifies the entry description.

Table 7 - Value definition

Value	CANopen name	Other names
0000 _h	Non-standard motor	-
0001 _h	Phase modulated DC motor	-
0002 _h	Frequency controlled DC motor	-
0003 _h	PM synchronous motor	-
0004 _h	FC synchronous motor	AC synchronous sinewave wound field
0005 _h	Switched reluctance motor	AC synchronous reluctance switched
0006 _h	Wound rotor induction motor	AC asynchronous induction polyphase wound rotor
0007 _h	Squirrel cage induction motor	AC asynchronous induction squirrel cage
0008 _h	Stepper motor	AC synchronous step
0009 _h	Micro-step stepper motor	-
000A _h	Sinusoidal PM BL motor	AC synchronous sinusoidal PM
000B _h	Trapezoidal PM BL motor	AC synchronous brushless PM trapezoidal
000C _h	AC synchronous reluctance sync	-
000D _h	DC commutator PM	-
000E _h	DC commutator wound field series	-
000F _h	DC commutator wound field shunt	-
0010 _h	DC commutator wound field compound	-
0011 _h to 7FFE _h	reserved	-
7FFF _h	No motor type assigned	-
8000 _h to FFFF _h	Manufacturer-specific	-

Table 8 - Object description

Attribute	Value
Index	6402 _h
Name	Motor type
Object Code	Variable
Data Type	Unsigned16
Category	Optional

Table 9 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 7
Default Value	Manufacturer-specific

6.3.2 Object 6403_h: Motor catalogue number

This object shall indicate the motor catalogue number (nameplate number) provided by the motor manufacturer. If the number is not assigned yet, this object shall indicate this by /0 (empty string). Table 10 specifies the object description, and Table 11 specifies the entry description.

Table 10 - Object description

Attribute	Value
Index	6403 _h
Name	Motor catalogue number
Object Code	Variable
Data Type	Visible String
Category	Optional

Table 11 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Visible String
Default Value	Manufacturer-specific

6.3.3 Object 6404_h: Motor manufacturer

This object shall indicate the name of the motor manufacturer. If the name is not assigned yet, this object shall indicate this by /0 (empty string). Table 12 specifies the object description, and Table 13 specifies the entry description.

Table 12 - Object description

Attribute	Value
Index	6404 _h
Name	Motor manufacturer
Object Code	Variable
Data Type	Visible String
Category	Optional

Table 13 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Visible String
Default Value	Manufacturer-specific

6.3.4 Object 6405_h: http motor catalogue address

This object shall indicate the assigned web-address of the motor catalogue. If the address is not assigned yet, this object shall indicate this by /0 (empty string). Table 14 specifies the object description, and Table 15 specifies the entry description.

Table 14 - Object description

Attribute	Value
Index	6405 _h
Name	http motor catalogue address
Object Code	Variable
Data Type	Visible String
Category	Optional

Table 15 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Visible String
Default Value	Manufacturer-specific

6.3.5 Object 6406_h: Motor calibration date

This object shall indicate the assigned date of the last motor inspection. If the date is not assigned yet, this object shall indicate this by a value of 0. Table 16 specifies the object description, and Table 17 specifies the entry description.

Table 16 - Object description

Attribute	Value
Index	6406 _h
Name	Motor calibration date
Object Code	Variable
Data Type	Time of Day
Category	Optional

Table 17 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	0 _d or Time of Day
Default Value	Manufacturer-specific

6.3.6 Object 6407_h: Motor service period

This object shall indicate the assigned motor service period. If the period is not assigned yet, this object shall indicate this by $0000\ 0000_h$. The value shall be given in multiples of hours. Table 18 specifies the object description, and Table 19 specifies the entry description.

Table 18 - Object description

Attribute	Value
Index	6407 _h
Name	Motor service period
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 19 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

6.3.7 Object 6503_h: Drive catalogue number

This object shall indicate the assigned manufacturer's drive catalogue number (nameplate number). Table 20 specifies the object description, and Table 21 specifies the entry description.

Table 20 - Object description

Attribute	Value
Index	6503 _h
Name	Drive catalogue number
Object Code	Variable
Data Type	Visible String
Category	Optional

Table 21 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	No
Default Value	/0 (empty string)

6.3.8 Object 6505_h: http drive catalogue address

This object shall indicate the assigned web address of the drive manufacturer. If the address is not assigned yet, this object shall indicate this by /0 (empty string). Table 22 specifies the object description, and Table 23 specifies the entry description.

Table 22 - Object description

Attribute	Value
Index	6505 _h
Name	http drive catalogue address
Object Code	Variable
Data Type	Visible String
Category	Optional

Table 23 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	No
Default Value	Manufacturer-specific

7 Error codes and error behaviour

7.1 Error codes

Emergency messages are triggered by internal errors and severe warnings detected within the drive device. They are defined in detail in the IEC 61800-7-301. They shall contain the 16-

- 33 -

bit error code. Error codes from $xx00_h$ to $xx7F_h$ are defined in EN 50325-4 or in Table 24. Error codes between $xx80_h$ and $xxFF_h$ are used manufacturer-specific.

Table 24 - Error codes

Error code	Meaning
2110 _h	Short circuit/earth leakage (input)
2120 _h	Earth leakage (input)
2121 _h	Earth leakage phase L1
2122 _h	Earth leakage phase L2
2123 _h	Earth leakage phase L3
2130 _h	Short circuit (input)
2131 _h	Short circuit phases L1-L2
2132 _h	Short circuit phases L2-L3
2133 _h	Short circuit phases L3-L1
2211 _h	Internal current no.1
2212 _h	Internal current no.2
2213 _h	Over-current in ramp function
2214 _h	Over-current in the sequence
2220 _h	Continuous over current (device internal)
2221 _h	Continuous over current no.1
2222 _h	Continuous over current no.2
2230 _h	Short circuit/earth leakage (device internal)
2240 _h	Earth leakage (device internal)
2250 _h	Short circuit (device internal)
2310 _h	Continuous over current
2311 _h	Continuous over current no.1
2312 _h	Continuous over current no.2
2320 _h	Short circuit/earth leakage (motor-side)
2330 _h	Earth leakage (motor-side)
2331 _h	Earth leakage phase U
2332 _h	Earth leakage phase V
2333 _h	Earth leakage phase W
2340 _h	Short circuit (motor-side)
2341 _h	Short circuit phases U-V
2342 _h	Earth leakage phase V-W
2343 _h	Earth leakage phase W-U
2350 _h	Load level fault (I ² t, thermal state)
2351 _h	Load level warning (I ² t, thermal state)
3110 _h	Mains over-voltage
3111 _h	Mains over-voltage phase L1
3112 _h	Mains over-voltage phase L2
3113 _h	Mains over-voltage phase L3
3120 _h	Mains under-voltage
3121 _h	Mains under-voltage phase L1
3122 _h	Mains under-voltage phase L2

Error code	Meaning
3123 _h	Mains under-voltage phase L3
3130 _h	Phase failure
3131 _h	Phase failure L1
3132 _h	Phase failure L2
3133 _h	Phase failure L3
3134 _h	Phase sequence
3140 _h	Mains frequency
3141 _h	Mains frequency too great
3142 _h	Mains frequency too small
3210 _h	DC link over-voltage
3211 _h	Over-voltage no. 1
3212 _h	Over voltage no. 2
3220 _h	DC link under-voltage
3221 _h	Under-voltage no. 1
3222 _h	Under-voltage no. 2
3230 _h	Load error
3310 _h	Output over-voltage
3311 _h	Output over-voltage phase U
3312 _h	Output over-voltage phase V
3313 _h	Output over-voltage phase W
3320 _h	Armature circuit
3321 _h	Armature circuit interrupted
3330 _h	Field circuit
3331 _h	Field circuit interrupted
4110 _h	Excess ambient temperature
4120 _h	Too low ambient temperature
4130 _h	Temperature supply air
4140 _h	Temperature air outlet
4210 _h	Excess temperature device
4220 _h	Too low temperature device
4300 _h	Temperature drive
4310 _h	Excess temperature drive
4320 _h	Too low temperature drive
4400 _h	Temperature supply
4410 _h	Excess temperature supply
4420 _h	Too low temperature supply
5100 _h	Supply
5110 _h	Supply low voltage
5111 _h	U1 = supply ±15V
5112 _h	U2 = supply +24 V
5113 _h	U3 = supply +5 V
5114 _h	U4 = manufacturer-specific
5115 _h	U5 = manufacturer-specific
5116 _h	U6 = manufacturer-specific

Error code	Meaning
5117 _h	U7 = manufacturer-specific
5118 _h	U8 = manufacturer-specific
5119 _h	U9 = manufacturer-specific
5120 _h	Supply intermediate circuit
5200 _h	Control
5210 _h	Measurement circuit
5220 _h	Computing circuit
5300 _h	Operating unit
5400 _h	Power section
5410 _h	Output stages
5420 _h	Chopper
5430 _h	Input stages
5440 _h	Contacts
5441 _h	Contact 1 = manufacturer-specific
5442 _h	Contact 2 = manufacturer-specific
5443 _h	Contact 3 = manufacturer-specific
5444 _h	Contact 4 = manufacturer-specific
5445 _h	Contact 5 = manufacturer-specific
5450 _h	Fuses
5451 _h	S1 = I1
5452 _h	S2 = I2
5453 _h	S3 = I3
5454 _h	S4 = manufacturer-specific
5455 _h	S5 = manufacturer-specific
5456 _h	S6 = manufacturer-specific
5457 _h	S7 = manufacturer-specific
5458 _h	S8 = manufacturer-specific
5459 _h	S9 = manufacturer-specific
5500 _h	Hardware memory
5510 _h	RAM
5520 _h	ROM/EPROM
5530 _h	EEPROM
6010 _h	Software reset (watchdog)
6301 _h to 630F _h	Data record no. 1 to no. 15
6310 _h	Loss of parameters
6320 _h	Parameter error
7100 _h	Power
7110 _h	Brake chopper
7111 _h	Failure brake chopper
7112 _h	Over current brake chopper
7113 _h	Protective circuit brake chopper
7120 _h	Motor
7121 _h	Motor blocked
7122 _h	Motor error or commutation malfunc.

Error code	Meaning
7123 _h	Motor tilted
7200 _h	Measurement circuit
7300 _h	Sensor
7301 _h	Tacho fault
7302 _h	Tacho wrong polarity
7303 _h	Resolver 1 fault
7304 _h	Resolver 2 fault
7305 _h	Incremental sensor 1 fault
7306 _h	Incremental sensor 2 fault
7307 _h	Incremental sensor 3 fault
7310 _h	Speed
7320 _h	Position
7400 _h	Computation circuit
7500 _h	Communication
7510 _h	Serial interface no. 1
7520 _h	Serial interface no. 2
7600 _h	Data storage (external)
8300 _h	Torque control
8311 _h	Excess torque
8312 _h	Difficult start up
8313 _h	Standstill torque
8321 _h	Insufficient torque
8331 _h	Torque fault
8400 _h	Velocity speed controller
8500 _h	Position controller
8600 _h	Positioning controller
8611 _h	Following error
8612 _h	Reference limit
8700 _h	Sync controller
8800 _h	Winding controller
8900 _h	Process data monitoring
8A00 _h	Control
F001 _h	Deceleration
F002 _h	Sub-synchronous run
F003 _h	Stroke operation
F004 _h	Control
FF00 _h to FFFF _h	Manufacturer-specific

7.2 Error behavior

The communication system may support an object specifying to which network management state the drive device shall transit, when a communication error or a severe device-internal error is detected. When the PDS FSA transits into *Error* state, this shall be regarded as a severe device-internal failure.

- 37 -

8 Controlling the power drive system

8.1 General

The PDS FSA is an abstraction to define the behavior of a black box as a control device experiences the PDS. It defines the application behavior of the PDS. Due to the requirement that a PDS provides local control even when the communication network is not working properly, the communication FSA as defined in the communication system mapping specifications and the PDS FSA are only loosely coupled.

Figure 3 specifies how the PDS may be operated locally or via the network remotely. The PDS is operated by local signals (not in the scope of this part of IEC 61800) and by the controlword sent by the control device via the network. The state of the PDS is reported by the statusword produced by the drive device. The FSA is also controlled by error detection signals.

The PDS FSA defines the PDS status and the possible control sequence of the PDS. A single state represents a special internal or external behavior. The state of the PDS also determines which commands are accepted. For example, it is only possible to start a point-to-point move when the drive is in the *operation enabled* state.

Figure 3 - Remote and local control

8.2 Finite state automaton

Figure 4 specifies the PDS FSA with respect to control of the power electronics as a result of user commands and internal drive faults.

Figure 4 - Power drive system finite state automaton

The FSA states shall support the functions as shown in Table 25. The *start* state shall be a pseudo state indicating the start when the FSA is activated during the start-up sequence of the device drive's application software.

Table 25 – FSA states and supported functions

Function	FSA states							
	Not ready to switch on	Switch on disabled	Ready to switch on	Switched on	Operation enabled	Quick stop active	Fault reaction active	Fault
Brake applied, if present	Yes	Yes	Yes	Yes	Yes/No	Yes/No	Yes/No	Yes
Low-level power applied	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
High-level power applied	Yes/No	Yes/No	Yes/No	Yes	Yes	Yes	Yes	Yes/No
Drive function enabled	No	No	No	No	Yes	Yes	Yes	No
Configuration allowed	Yes	Yes	Yes	Yes	Yes/No	Yes/No	Yes/No	Yes

If in the *quick stop active* state the quick stop option code is set to 5, 6, 7 or 8, the drive device shall not leave this state, but it may transit to the *operation enabled* state with the *Enable operation* command.

The drive device shall support the transitions and actions as given in Table 26. The events shall initiate the transition. The transition shall be terminated after the action has been performed.

- 39 -

Table 26 - Transition events and actions

Transition	Event(s)	Action(s)
0	Automatic transition after power-on or reset application	Drive device self-test and/or self initialisation shall be performed.
1	Automatic transition	Communication shall be activated.
2	Shutdown command from control device or local signal	None
3	Switch on command received from control device or local signal	The high-level power shall be switched on, if possible.
4	Enable operation command received from control device or local signal	The drive function shall be enabled and all internal set-points cleared.
5	Disable operation command received from control device or local signal	The drive function shall be disabled.
6	Shutdown command received from control device or local signal	The high-level power shall be switched off, if possible.
7	Quick stop or disable voltage command from control device or local signal	None
8	Shutdown command from control device or local signal	The drive function shall be disabled, and the high-level power shall be switched off, if possible.
9	Disable voltage command from control device or local signal	The drive function shall be disabled, and the high-level power shall be switched off, if possible.
10	Disable voltage or quick stop command from control device or local signal	The high-level power shall be switched off, if possible.
11	Quick stop command from control device or local signal	The quick stop function shall be started.
12	Automatic transition when the quick stop function is completed and quick stop option code is 1, 2, 3 or 4, or disable voltage command received from control device (depends on the quick stop option code)	The drive function shall be disabled, and the high-level power shall be switched off, if possible.
13	Fault signal (see also IEC 61800-7-301)	The configured fault reaction function shall be executed.
14	Automatic transition	The drive function shall be disabled; the high-level power shall be switched off, if possible.
15	Fault reset command from control device or local signal	A reset of the fault condition is carried out, if no fault exists currently on the drive device; after leaving the Fault state, the Fault reset bit in the controlword shall be cleared by the control device.
16	Enable operation command from control device, if the quick stop option code is 5, 6, 7, or 8	The drive function shall be enabled.
NOTE It is n	ot recommended to support transition 16.	

If a state transition is requested, the related actions shall be processed completely before transitioning to the new state. Example: In *operation enabled* state, when the *disable operation* command is received, the drive device shall stay in the *operation enabled* state until the disable operation function (see object $605C_h$) is completed.

Drive devices able to control the contactor for the mains may switch the high-level power. If the high-level power is switched-off, the motor shall be free to rotate if not braked.

Drive function is disabled implies no energy shall be supplied to the motor. Target or set-point values (e.g. torque, velocity, position) shall be not processed.

Drive function is enabled implies that energy may be supplied to the motor. Target or set-point values shall be processed.

- 40 -

If a fault is detected in the drive device, there shall be a transition to the *fault reaction active* state. In this state, the PDS shall execute a special fault reaction. After the execution of this fault reaction, the drive device shall switch automatically to the *fault* state. This state shall only be left by the fault reset command, but only if the fault is not active any more.

In case of fatal error, the drive device is not longer able to control the motor, so that an immediate switch-off of the drive device is necessary.

The behaviour of drive disabling, quick stop, halt, and fault reaction functions is configurable by means of configuration objects defined in 8.4.

NOTE If a brake is present, the high-level power is switched off after a delay time in order to apply the brake.

8.3 Modes of operation

The PDS behaviour depends on the activated mode of operation. The PDS may implement several modes of operation. Since it is not possible to operate the modes in parallel, the user is able to activate the required function by selecting a mode of operation.

The control device writes to the *modes of operation* object in order to select the operation mode. The drive device provides the *modes of operation display* object to indicate the actual activated operation mode. Controlword, statusword, and set-points are used mode-specific. This implies the responsibility of the control device to avoid inconsistencies and erroneous behaviour. The switching between the modes of operation implies no automatic reconfiguration of COBs for real-time data transmission.

Therefore, the PDS may limit mode switching in one or some PDS FSA state(s). Mode switching may also be limited to the 'local control' function; this means it is not possible to select the operation mode via the network.

The following modes of operation are described in this part of the IEC 61800-7 series:

- Profile position mode
- Homing mode
- Interpolated position mode
- Profile velocity mode (e.g. servo drives)
- Torque profile mode
- Velocity mode (e.g. frequency converter)
- Cyclic sync position mode
- Cyclic sync velocity mode
- Cyclic sync torque mode

With the exception of the 'Homing mode', the listed modes of operation deal with set-points. In addition to this, manufacturer-specific modes of operation may also be implemented. These are not limited to set-points.

Figure 5 shows the general relations between target, reference, effort, and actual values.

-41-

Figure 5 - Relation between different value parameters

8.4 Detailed object specifications

8.4.1 Object 6040_h: Controlword

This object shall indicate the received command controlling the PDS FSA. It shall be structured as defined in Figure 6. The bits 7, 3, 2, 1, and 0 shall be supported. The other bits may be supported. The commands shall be coded as given in Table 27.

15		11	10	9	8	7	6	4	3	2	1	0
	ms		r	oms	h	fr	oms		eo	qs	ev	so
MSB												LSB

LEGEND: ms = manufacturer-specific; r = reserved; oms = operation mode specific; <math>h = halt; fr = fault reset; eo = enable operation; qs = quick stop; ev = enable voltage; so = switch on

Figure 6 - Value definition

Table 27 - Command coding

Command	Bi	ts of th	1	Transitions		
Command	Bit 7	Bit 3	Bit 2	Bit 1	Bit 0	Transitions
Shutdown	0	Х	1	1	0	2,6,8
Switch on	0	0	1	1	1	3
Switch on + enable operation	0	1	1	1	1	3 + 4 (NOTE)
Disable voltage	0	Х	Х	0	Х	7,9,10,12
Quick stop	0	Х	0	1	Х	7,10,11
Disable operation	0	0	1	1	1	5
Enable operation	0	1	1	1	1	4,16
Fault reset		Х	Х	Х	Х	15
NOTE Automatic transition to Enable operation state after executing SWITCHED ON state functionality.						

Bits 9, 6, 5, and 4 of the controlword are operation mode specific. The halt function (bit 8) behaviour is operation mode specific. If the bit is 1, the commanded motion shall be interrupted, the PDS shall behave as defined in the halt option code. After releasing the halt function, the commanded motion shall be continued if possible.

The bit 10 is reserved for further use; it shall be set to 0. The bits 11, 12, 13, 14, and 15 are manufacturer-specific.

- 42 -

Table 28 specifies the object description, and Table 29 specifies the entry description.

Table 28 - Object description

Attribute	Value
Index	6040 _h
Name	Controlword
Object Code	Variable
Data Type	Unsigned16
Category	Mandatory

Table 29 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 27
Default Value	Device and operation mode specific

8.4.2 Object 6041_h: Statusword

This object shall provide the status of the PDS FSA. The object shall be structured as defined in Figure 7. The bits 10, 9, and 6 to 0 shall be supported. The other bits may be supported. The bit combinations defined in Table 30 shall code the PDS FSA states.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
m	ıs	on	ns	ila	tr	rm	ms	W	sod	qs	ve	f	oe	so	rtso	
MSB															LSB	

LEGEND: ms = manufacturer-specific; oms = operation mode specific; ila = internal limit active; tr = target reached; rm = remote; w = warning; sod = switch on disabled; qs = quick stop; ve = voltage enabled; f = fault; oe = operation enabled; so = switched on; rtso = ready to switch on

Figure 7 - Value definition

Table 30 - State coding

Statusword	PDS FSA state
xxxx xxxx x0xx 0000 _b	Not ready to switch on
xxxx xxxx x1xx 0000 _b	Switch on disabled
xxxx xxxx x01x 0001 _b	Ready to switch on
xxxx xxxx x01x 0011 _b	Switched on
xxxx xxxx x01x 0111 _b	Operation enabled
xxxx xxxx x00x 0111 _b	Quick stop active
xxxx xxxx x0xx 1111 _b	Fault reaction active
xxxx xxxx x0xx 1000 _b	Fault

If bit 4 (voltage enabled) of the statusword is 1, this shall indicate that high voltage is applied to the PDS.

-43-

If bit 5 (quick stop) of the statusword is 0, this shall indicate that the PDS is reacting on a quick stop request.

If bit 7 (warning) of the statusword is 1, this shall indicate the presence of a warning condition. Warning is not an error or fault (examples: temperature limit exceeded, job refused). The status of the PDS FSA shall not be changed. The cause of the warning may be given in the *fault code parameter* object $(603F_h)$.

If bit 9 (remote) of the statusword is 1, this shall indicate that the controlword is processed. If it is 0 (local), this shall indicate that the controlword is not processed. Nevertheless, the PDS may provide actual values, and the PDS may accept COB for configuration data transmission for other parameter objects.

If bit 10 (target reached) of the statusword is 1, this shall indicate that the PDS has reached the set-point. The set-point is operation mode specific and is defined in detail in the corresponding clauses of this part of the IEC 61800-7 series. Bit 10 shall also be set to 1, if the operation mode has been changed. The change of a target value by software shall alter this bit. If quick stop option code is 5, 6, 7 or 8, bit 10 shall be set to 1, when the quick stop operation is finished and the PDS is halted. If halt occurred and the PDS has halted then bit 10 shall be set to 1, too.

If bit 11 (internal limit active) of the statusword is 1, this shall indicate that an internal limit is active (example: position range limit). The internal limits are manufacturer-specific.

Bit 13 and bit 12 of the statusword are operation mode specific.

Bit 14 and bit 15 are manufacturer-specific.

Table 31 specifies the object description, and Table 32 specifies the entry description.

 Attribute
 Value

 Index
 6041_h

 Name
 Statusword

 Object Code
 Variable

 Data Type
 Unsigned16

 Category
 Mandatory

Table 31 - Object description

Table 32 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 30
Default Value	No

8.4.3 Object 603F_h: Error code

This object shall provide the error code of the last error which occurred in the drive device. Table 24 specifies the value definition, Table 33 specifies the object description, and Table 34 specifies the entry description.

- 44 -

NOTE In CANopen networks, this object provides the same information as the lower 16-bit of sub-index 01_h of the pre-defined error field (1003_h) .

Table 33 - Object description

Attribute	Value
Index	603F _h
Name	Error code
Object Code	Variable
Data Type	Unsigned16
Category	Optional

Table 34 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 24
Default Value	No

8.4.4 Object 6007_h: Abort connection option code

This object shall indicate what action shall be performed when one of the following events occurres: bus-off, heartbeat, life guarding, NMT stopped state entered, reset application, and reset communication. Table 35 specifies the value definition, Table 36 specifies the object description, and Table 37 specifies the entry description.

Table 35 - Value definition

Value	Definition
-32 768 to -1	Manufacturer-specific
0	No action
+1	Fault signal
+2	Disable voltage command
+3	Quick stop command
+4 to +32 767	reserved

Table 36 - Object description

Attribute	Value
Index	6007 _h
Name	Abort connection option code
Object Code	Variable
Data Type	Integer16
Category	Optional

Table 37 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 35
Default Value	+1

8.4.5 Object 605A_h: Quick stop option code

This object shall indicate what action is performed when the quick stop function is executed. The slow down ramp is the deceleration value of the used mode of operations. Table 38 specifies the value definition, Table 39 specifies the object description, and Table 40 specifies the entry description.

Table 38 - Value definition

Value	Definition
-32 768 to -1	Manufacturer-specific
0	Disable drive function
+1	Slow down on slow down ramp and transit into Switch On Disabled
+2	Slow down on quick stop ramp and transit into Switch On Disabled
+3	Slow down on current limit and transit into Switch On Disabled
+4	Slow down on voltage limit and transit into Switch On Disabled
+5	Slow down on slow down ramp and stay in Quick Stop Active
+6	Slow down on quick stop ramp and stay in Quick Stop Active
+7	Slow down on current limit and stay in Quick Stop Active
+8	Slow down on voltage limit and stay in Quick Stop Active
+9 to +32 767	reserved

Table 39 - Object description

Attribute	Value
Index	605A _h
Name	Quick stop option code
Object Code	Variable
Data Type	Integer16
Category	Optional

Table 40 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 38
Default Value	+2

8.4.6 Object 605B_h: Shutdown option code

This object shall indicate what action is performed if there is a transition from Operation Enabled state to Ready To Switch On state. The slow down ramp is the deceleration value of the used mode of operations. Table 41 specifies the value definition, Table 42 specifies the object description, and Table 43 specifies the entry description.

Table 41 - Value definition

Value	Definition
-32 768 to -1	Manufacturer-specific
0	Disable drive function (switch-off the drive power stage)
+1	Slow down with slow down ramp; disable of the drive function
+2 to +32 767	reserved

Table 42 - Object description

Attribute	Value
Index	605B _h
Name	Shutdown option code
Object Code	Variable
Data Type	Integer16
Category	Optional

Table 43 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 41
Default Value	0

8.4.7 Object 605C_h: Disable operation option code

This object shall indicate what action is performed if there is a transition from Operation Enabled state to Switched on state. The slow down ramp is the deceleration value of the used mode of operations. Table 44 specifies the value definition, Table 45 specifies the object description, and Table 46 specifies the entry description.

Table 44 - Value definition

Value	Definition
-32 768 to -1	Manufacturer-specific
0	Disable drive function (switch-off the drive power stage)
+1	Slow down with slow down ramp; disable of the drive function
+2 to +32 767	reserved

Table 45 - Object description

Attribute	Value
Index	605C _h
Name	Disable operation option code
Object Code	Variable
Data Type	Integer16
Category	Optional

Table 46 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 44
Default Value	+1

8.4.8 Object 605D_h: Halt option code

This object shall indicate what action is performed when the halt function is executed. The slow down ramp is the deceleration value of the used mode of operations. Table 47 specifies the value definition, Table 48 specifies the object description, and Table 49 specifies the entry description.

Table 47 - Value definition

Value	Definition
-32 768 to -1	Manufacturer-specific
0	Reserved
+1	Slow down on slow down ramp and stay in Operation Enabled
+2	Slow down on quick stop ramp and stay in Operation Enabled
+3	Slow down on current limit and stay in Operation Enabled
+4	Slow down on voltage limit and stay in Operation Enabled
+5 to +32 767	Reserved

- 48 -

Table 48 - Object description

Attribute	Value
Index	605D _h
Name	Halt option code
Object Code	Variable
Data Type	Integer16
Category	Optional

Table 49 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 47
Default Value	+1

8.4.9 Object 605E_h: Fault reaction option code

This object shall indicate what action is performed when fault is detected in the PDS. The slow down ramp is the deceleration value of the used mode of operations. Table 50 specifies the value definition, Table 51 specifies the object description, and Table 52 specifies the entry description.

Table 50 - Value definition

Value	Definition
-32 768 to -1	Manufacturer-specific
0	Disable drive function, motor is free to rotate
+1	Slow down on slow down ramp
+2	Slow down on quick stop ramp
+3	Slow down on current limit
+4	Slow down on voltage limit
+5 to +32 767	reserved

Table 51 - Object description

Attribute	Value
Index	605E _h
Name	Fault reaction option code
Object Code	Variable
Data Type	Integer16
Category	Optional

Table 52 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 50
Default Value	+2

8.4.10 Object 6060_h: Modes of operation

This object shall indicate the requested operation mode. Table 53 specifies the value definition, Table 54 specifies the object description, and Table 55 specifies the entry description.

 ${\tt NOTE} \quad {\tt This\ object\ shows\ only\ the\ value\ of\ the\ requested\ operation\ mode,\ the\ actual\ operation\ mode\ of\ the\ {\tt PDS\ is\ reflected\ in\ the\ object\ modes\ of\ operation\ display.}$

Table 53 - Value definition

Value	Definition
-128 to -1	Manufacturer-specific operation modes
0	No mode change/no mode assigned
+1	Profile position mode
+2	Velocity mode
+3	Profile velocity mode
+4	Torque profile mode
+5	reserved
+6	Homing mode
+7	Interpolated position mode
+8	Cyclic sync position mode
+9	Cyclic sync velocity mode
+10	Cyclic sync torque mode
+11 to +127	reserved

Table 54 - Object description

Attribute	Value
Index	6060 _h
Name	Modes of operation
Object Code	Variable
Data Type	Integer8
Category	Optional

Table 55 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 53
Default Value	0

8.4.11 Object 6061_h: Modes of operation display

This object shall provide the actual operation mode. Table 53 specifies the value definition, Table 56 specifies the object description, and Table 57 specifies the entry description.

Table 56 - Object description

Attribute	Value
Index	6061 _h
Name	Modes of operation display
Object Code	Variable
Data Type	Integer8
Category	Optional

Table 57 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 53
Default Value	No

8.4.12 Object 6502_h: Supported drive modes

This object shall provide information on the supported drive modes. Figure 8 specifies the value definition, Table 58 specifies the object description, and Table 59 specifies the entry description.

Figure 8 - Value definition

cst, csv, csp, ip, hm, tq, pv, vl, and pp bits:

1 = mode is supported 0 = mode is not supported

manufacturer-specific bits:

1 = function is supported 0 = function is not supported

r(eserved) bits: 0

Table 58 - Object description

Attribute	Value
Index	6502 _h
Name	Supported drive modes
Object Code	Variable
Data Type	Unsigned32
Category	Mandatory

Table 59 - Entry description

Attribute	Value	
Sub-Index	00 _h	
Access	ro	
PDO Mapping	See IEC 61800-7-301	
Value Range	See Figure 8	
Default Value	No	

9 Factor group

9.1 General

In some drive device applications several sensor resolution values and ratio values are needed. They may make use for the objects defined in this clause.

The relation between the user-defined units and the internal units is calculated by the following equation:

$$position\ actual\ value = \frac{position\ internal\ value \times feed\ constant}{position\ encoder\ resolution \times gear\ ratio}$$

9.2 Detailed object definitions

9.2.1 Object 608F_h: Position encoder resolution

This object shall indicate the configured encoder increments and number of motor revolutions. The position encoder resolution shall be calculated by the following formula:

$$position encoder resolution = \frac{encoder increments}{motor revolutions}$$

All values shall be dimensionless. Table 60 specifies the object description, and Table 61 specifies the entry description.

Table 60 - Object description

Attribute	Value
Index	608F _h
Name	Position encoder resolution
Object Code	Array
Data Type	Unsigned32
Category	Optional

Table 61 - Entry description

Attribute	Value	
Sub-Index	00 _h	
Description	Highest sub-index supported	
Entry Category	Mandatory	
Access	С	
PDO Mapping	See IEC 61800-7-301	
Value Range	02 _h	
Default Value	Manufacturer-specific (but not equal to 0)	
Sub-Index	01 _h	
Description	Encoder increments	
Entry Category	Mandatory	
Access	Rw	
PDO Mapping	See IEC 61800-7-301	
Value Range	Unsigned32	
Default Value	Manufacturer-specific (but not equal to 0)	
Sub-Index	02 _h	
Description	Motor revolutions	
Entry Category	Mandatory	
Access	Rw	
PDO Mapping	See IEC 61800-7-301	
Value Range	Unsigned32	
Default Value	Manufacturer-specific (but not equal to 0)	

9.2.2 Object 6090_h: Velocity encoder resolution

This object shall indicate the configured encoder increments per second and motor revolutions per second. The velocity encoder resolution shall be calculated by the following formula:

$$velocity\ encoder\ resolution = \frac{encoder \frac{increments}{second}}{motor \frac{revolutions}{second}}$$

- 53 -

All values shall be dimensionless. Table 62 specifies the object description, and Table 63 specifies the entry description.

Table 62 - Object description

Attribute	ribute Value	
Index	6090 _h	
Name	Velocity encoder resolution	
Object Code	Array	
Data Type	Unsigned32	
Category	Optional	

Table 63 - Entry description

Attribute	Value	
Sub-Index	00 _h	
Description	Highest sub-index supported	
Entry Category	Mandatory	
Access	С	
PDO Mapping	See IEC 61800-7-301	
Value Range	02 _h	
Default Value	Manufacturer-specific (but not equal to 0)	
Sub-Index	01 _h	
Description	Encoder increments per second	
Entry Category	Mandatory	
Access	rw	
PDO Mapping	See IEC 61800-7-301	
Value Range	Unsigned32	
Default Value	Manufacturer-specific (but not equal to 0)	
Sub-Index	02 _h	
Description	Motor revolutions per second	
Entry Category	Mandatory	
Access	rw	
PDO Mapping	See IEC 61800-7-301	
Value Range	Unsigned32	
Default Value	Manufacturer-specific (but not equal to 0)	

9.2.3 Object 6091_h: Gear ratio

This object shall indicate the configured number of motor shaft revolutions and number of driving shaft revolutions. The gear ratio shall be calculated by the following formula:

$$gear\ ratio = \frac{motor\ shaft\ revolutions}{driving\ shaft\ revolutions}$$

- 54 -

All values shall be dimensionless. Table 64 specifies the object description, and Table 65 specifies the entry description.

Table 64 - Object description

Attribute	Value
Index	6091 _h
Name	Gear ratio
Object Code	Array
Data Type	Unsigned32
Category	Optional

Table 65 – Entry description

Attribute	Value	
Sub-Index	00 _h	
Description	Highest sub-index supported	
Entry Category	Mandatory	
Access	С	
PDO Mapping	See IEC 61800-7-301	
Value Range	02 _h	
Default Value	Manufacturer-specific (but not equal to 0)	
Sub-Index	01 _h	
Description	Motor revolutions	
Entry Category	Mandatory	
Access	rw	
PDO Mapping	See IEC 61800-7-301	
Value Range	Unsigned32	
Default Value	Manufacturer-specific (but not equal to 0)	
Sub-Index	02 _h	
Description	Shaft revolutions	
Entry Category	Mandatory	
Access	rw	
PDO Mapping	See IEC 61800-7-301	
Value Range	Unsigned32	
Default Value	Manufacturer-specific (but not equal to 0)	

9.2.4 Object 6092_h: Feed constant

This object shall indicate the configured feed constant, this is the measurement distance per one revolution of the output shaft of the gearbox. The feed constant shall be calculated by the following formula:

$$feed\ constant = \frac{feed}{driving\ shaft\ revolutions}$$

- 55 -

The feed shall be given in user-defined position units, and the driving shaft revolution shall be dimensionless. Table 66 specifies the object description, and Table 67 specifies the entry description.

Table 66 - Object description

Attribute	Value
Index	6092 _h
Name	Feed constant
Object Code	Array
Data Type	Unsigned32
Category	Optional

Table 67 - Entry description

Attribute	Value		
Sub-Index	00 _h		
Description	Highest sub-index supported		
Entry Category	Mandatory		
Access	С		
PDO Mapping	See IEC 61800-7-301		
Value Range	02 _h		
Default Value	Manufacturer-specific (but not equal to 0)		
Sub-Index	01 _h		
Description	Feed		
Entry Category	Mandatory		
Access	rw		
PDO Mapping	See IEC 61800-7-301		
Value Range	Unsigned32		
Default Value	Manufacturer-specific (but not equal to 0)		
Sub-Index	02 _h		
Description	Shaft revolutions		
Entry Category	Mandatory		
Access	rw		
PDO Mapping	See IEC 61800-7-301		
Value Range	Unsigned32		
Default Value	Manufacturer-specific (but not equal to 0)		

9.2.5 Object 607E_h: Polarity

This object shall indicate if the position demand value shall be multiplied by 1 of by -1. The polarity flag shall have no influence on the homing mode. The position polarity bit shall be used only for profile position (pp) mode and cyclic sync position mode (csp). The velocity polarity bit shall be used only for profile velocity (pv) mode and cyclic sync velocity mode (csv). Figure 9 specifies the value definition, Table 68 specifies the object description, and Table 69 specifies the entry description.

Figure 9 - Value definition

The polarity bits shall be coded as follows: 0_b = multiply by 1 and 1_b = multiply by -1

AttributeValueIndex607EhNamePolarityObject CodeVariableData TypeUnsigned8CategoryOptional

Table 68 - Object description

Table 69 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Figure 9
Default Value	00 _h

10 Profile position mode

10.1 General information

The overall structure for this mode is shown in Figure 10. A target position is applied to the trajectory generator. It is generating a position demand value for the position control loop described in the position control function (see 12.3.1). These two function blocks are optionally controlled by individual parameter sets.

Figure 10 - Trajectory generator and position control function

At the input to the trajectory generator, parameters may have optional limits applied before being normalised to internal units. The simplest form of a trajectory generator is just to pass through a target position and to transform it to a position demand internal value with internal units (increments) only. Figure 11 defines the detailed structure of the trajectory generator.

- 57 -

Figure 11 - Trajectory generator for profile position mode

10.2 Functional description

10.2.1 General

The setting of set-points is controlled by the timing of the *new set-point* bit and the *change set immediately* bit in the controlword as well as the *set-point acknowledge* bit in the statusword.

If the *change set immediately* bit of the controlword is set to 1, a single set-point is expected by the drive device. If the *change set immediately* bit of the controlword is set to 0, a set of set-points is expected by the drive device.

After a set-point is applied to the drive device, the control device signals that the set-point is valid by a rising edge of the *new set-point* bit in the controlword. The drive device sets the set-point acknowledge bit in the statusword to 1, and afterwards, the drive device signals with the *set-point acknowledge* bit set to 0 its ability to accept new set-points. An example is shown in Figure 12.

Figure 12 - Set-point example

If one set-point is still in progress and a new one is validated, two methods of handling are supported: single set-point (change set immediately bit of controlword is 1) and set of set-points (change set immediately bit of controlword is 0).

10.2.2 Single set-point

When a set-point is in progress and a new set-point is validated by the new set-point (bit 4) in the controlword, the new set-point shall be processed immediately. The handshaking procedure shown in Figure 13 is used for the single set-point method.

Figure 13 - Handshaking procedure for the single set-point method

10.2.3 Set of set-points

When a set-point is in progress and a new set-point is validated by the new set-point (bit 4) in the controlword, the new set-point shall be processed only after the previous has been reached. The handshaking procedure shown in Figure 14 is used for the set of set-points method. The additional grey line segment in the graph 'actual speed' shows the actual speed if the *change of set point* bit (bit 9) is set to 1.

Figure 14 - Handshaking procedure for the set of set-points method

If a drive device supports set of set-points, a minimum of two set-points are available, a set-point that is currently been processed and a buffered set-point. The set-points are handled as shown in Figure 15.

Figure 15 - Set-point handling for two set-points

- 60 -

New set-points are buffered in the set-point list as long as free set-points are available in the drive device. If no set-point is in progress, the new set-point shall become active immediately (1). If a set-point is in progress, the new set-point shall be stored in the first set-point buffer that is free (2 + 3).

If all set-point buffers are busy (set-point acknowledge'bit is 1), the reaction depends on the change set immediately bit. If the change set immediately bit is set to 1, the new set-point shall be processed immediately as single set-point. All previously loaded set-points shall be discarded (5).

The target reached bit shall remain 0 until all set-points are processed.

10.3 General definitions

The internal software limits shall not be exceeded by external settings configured by the user.

10.4 Use of controlword and statusword

The profile position mode uses some bits of the controlword and the statusword for mode-specific purposes. Figure 16 shows the structure of the controlword. If no positioning is in progress, the rising edge of bit 4 shall start the positioning of the axis. In case a positioning is in progress, the definitions given in Table 70 shall be used. Table 71 defines the values for bit 6 and 8 of the controlword.

NOTE It is assumed that the target position is edge-triggered 0->1 otherwise the drive could set immediately new values, which leads to unexpected behaviour.

Figure 16 - Controlword for profile position (pp) mode

Table 70 – Definition of bit 4, bit 5, and bit 9

Bit 9	Bit 5	Bit 4	Definition
0	0	0 -> 1	Positioning shall be completed (target reached) before the next one gets started (see Figure 12 and Figure 14)
Х	1	0 -> 1	Next positioning shall be started immediately (see Figure 12 and Figure 13)
1	0	0 -> 1	Positioning with the current profile velocity up to the current setpoint shall be proceeded and then next positioning (see Figure 12 and Figure 14) shall be applied

Table 71 - Definition of bit 6 and bit 8

Bit	Value	Definition	
6	0	Target position shall be an absolute value	
	1	Target position shall be a relative value (depending on object 60F2h)	
8	0	Positioning shall be executed or continued	
	1	Axis shall be stopped accordingly to halt option code (605D _h)	

Figure 17 shows the structure of the statusword. Table 72 defines the values for bit 10, bit 12, and bit 13.

Figure 17 - Statusword for profile position (pp) mode

Table 72 - Definition of bit 10, bit 12, and bit 13

Bit	Value	Definition
10	0	Halt (Bit 8 in controlword) = 0: Target position not reached
		Halt (Bit 8 in controlword) = 1: Axis decelerates
	1	Halt (Bit 8 in controlword) = 0: Target position reached
		Halt (Bit 8 in controlword) = 1: Velocity of axis is 0
12	0	Previous setpoint already processed, waiting for new setpoint
	1	Previous setpoint still in process, setpoint overwriting shall be accepted
13	0	No following error
	1	Following error

10.5 Detailed object definitions

10.5.1 Object 607A_h: Target position

This object shall indicate the commanded position that the drive should move to in position profile mode using the current settings of motion control parameters such as velocity, acceleration, deceleration, motion profile type etc. The value of this object shall be interpreted as absolute or relative depending on the 'abs/rel' flag in the controlword. It shall be given in user-defined position units and shall be converted to position increments. Table 73 specifies the object description, and Table 74 specifies the entry description.

Table 73 - Object description

Attribute	Value
Index	607A _h
Name	Target position
Object Code	Variable
Data Type	Integer32
Category	Optional; mandatory if pp, pc or csp is supported

Table 74 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	Manufacturer-specific

10.5.2 Object 607B_h: Position range limit

This object shall indicate the configured maximal and minimal position range limits. It shall limit the numerical range of the input value. On reaching or exceeding these limits, the input value shall wrap automatically to the other end of the range. Wrap-around of the input value may be prevented by setting software position limits as defined in software position limit object $(607D_h)$. The values shall be given in user-defined position units. Table 75 specifies the object description, and Table 76 specifies the entry description.

Table 75 - Object description

Attribute	Value
Index	607B _h
Name	Position range limit
Object Code	Array
Data Type	Integer32
Category	Optional

Table 76 - Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	02 _h
Default Value	Manufacturer-specific
Sub-Index	01 _h
Description	Min position range limit
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	Manufacturer-specific
Sub-Index	02 _h
Description	Max position range limit
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	Manufacturer-specific

10.5.3 Object 607D_h: Software position limit

This object shall indicate the configured maximal and minimal software position limits. These parameters shall define the absolute position limits for the position demand value and the

- 63 -

position actual value. Every new target position shall be checked against these limits. The limit positions shall be always relative to the machine home position. Before being compared with the target position, they shall be corrected internally by the home offset as follows:

```
corrected min position limit = min position limit - home offset
corrected max position limit = max position limit - home offset
```

This calculation needs only be performed when home offset or software position limit is changed.

The limit positions shall be given in user-defined position units (same as target position). Table 77 specifies the object description, and Table 78 specifies the entry description.

Table 77 - Object description

Attribute	Value
Index	607D _h
Name	Software position limit
Object Code	Array
Data Type	Integer32
Category	Optional

Table 78 - Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	02 _h
Default Value	Manufacturer-specific
Sub-Index	01 _h
Description	Min position limit
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	Manufacturer-specific
Sub-Index	02 _h
Description	Max position limit
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	Manufacturer-specific

10.5.4 Object 607F_h: Max profile velocity

This object shall indicate the configured maximal allowed velocity in either direction during a profiled motion. The value shall be given in the very same physical unit as the *profile velocity* object (6081_h) . Table 79 specifies the object description, and Table 80 specifies the entry description.

Table 79 - Object description

Attribute	Value
Index	607F _h
Name	Max profile velocity
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 80 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

10.5.5 Object 6080_h: Max motor speed

This object shall indicate the configured maximal allowed speed for the motor in either direction. It is used to protect the motor and is taken from the motor data sheet. The value shall be given in rotations per minute (rpm). Table 81 specifies the object description, and Table 82 specifies the entry description.

Table 81 - Object description

Attribute	Value
Index	6080 _h
Name	Max motor speed
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 82 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

10.5.6 Object 6081_h: Profile velocity

This object shall indicate the configured velocity normally attained at the end of the acceleration ramp during a profiled motion and shall be valid for both directions of motion. allowed velocity in either direction during a profiled motion. The value shall be given in user-defined speed units. It shall be converted to position increments per second using the *velocity encoder factor* object. Table 83 specifies the object description, and Table 84 specifies the entry description.

Table 83 - Object description

Attribute	Value
Index	6081 _h
Name	Profile velocity
Object Code	Variable
Data Type	Unsigned32
Category	Conditional: mandatory if pp is supported

Table 84 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

10.5.7 Object 6082_h: End velocity

This object shall indicate the configured velocity, which the drive shall have on reaching the target position. Normally, the drive stops at the target position, i.e. the end velocity = 0. The value shall be given in the same physical unit as the *profile velocity* object (6081_h) . Table 85 specifies the object description, and Table 86 specifies the entry description.

Table 85 - Object description

Attribute	Value
Index	6082 _h
Name	End velocity
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 86 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	0000 0000 _h

10.5.8 Object 6083_h: Profile acceleration

This object shall indicate the configured acceleration. The value shall be given in user-defined acceleration units; it shall be converted to position increments per square second (s^2) using the normalising factors (see Clause 9). Table 87 specifies the object description, and Table 88 specifies the entry description.

Table 87 - Object description

Attribute	Value
Index	6083 _h
Name	Profile acceleration
Object Code	Variable
Data Type	Unsigned32
Category	Conditional: mandatory if pp or pv is supported

Table 88 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

10.5.9 Object 6084h: Profile deceleration

This object shall indicate the configured deceleration. If this parameter is not supported, then the *profile acceleration* object (6083_h) value shall be used for deceleration, too. The value shall be given in the same physical units as *profile acceleration* object (6083_h) . Table 89 specifies the object description, and Table 90 specifies the entry description.

Table 89 - Object description

Attribute	Value
Index	6084 _h
Name	Profile deceleration
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 90 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

10.5.10 Object 6085_h: Quick stop deceleration

This object shall indicate the configured deceleration used to stop the motor when the quick stop function is activated and the *quick stop code* object $(605A_h)$ is set to 2 or 6. The quick stop deceleration is also used if the *fault reaction code* object $(605E_h)$ is 2 and the *halt option code* object $(605D_h)$ is 2. The value shall be given in the same physical unit as *profile acceleration* object (6083_h) . Table 91 specifies the object description, and Table 92 specifies the entry description.

Table 91 - Object description

Attribute	Value
Index	6085 _h
Name	Quick stop deceleration
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 92 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

10.5.11 Object 6086_h: Motion profile type

This object shall indicate the configured type of motion profile used to perform a profiled motion. Table 93 specifies the value definition, Table 94 specifies the object description, and Table 95 specifies the entry description.

Table 93 - Value definition

Value	Definition
-32 768 to -1	Manufacturer-specific
0	Linear ramp (trapeziodal profile)
+1	Sin ² ramp
+2	Jerk-free ramp
+3	Jerk-limited ramp
+4 to +32 767	Reserved

Table 94 - Object description

Attribute	Value
Index	6086 _h
Name	Motion profile type
Object Code	Variable
Data Type	Integer16
Category	Optional

Table 95 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer16
Default Value	0

10.5.12 Object 60A3_h: Profile jerk use

This object shall indicate the configured number of sub-indices used in the *profile jerk* object $(60A4_h)$ for the jerk profile movement. If this object is not implemented, the *profile jerk* object shall be used as it is implemented. The value shall be dimensionless, the value of FF_h shall indicate that the profile jerk use is not configured. Table 96 specifies the object description, and Table 97 specifies the entry description.

Table 96 - Object description

Attribute	Value
Index	60A3 _h
Name	Profile jerk use
Object Code	Variable
Data Type	Unsigned8
Category	Optional

Table 97 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	01 _h to 06 _h and FF _h
Default Value	Manufacturer-specific

10.5.13 Object 60A4h: Profile jerk

This object shall indicate the configured set of jerk parameters that shall be used during the profile movement. Figure 18 shows the defined jerks (A, B, C, D, E, and F). The values shall be given in user-defined jerk units. Table 98 specifies the value assignment to jerks depending of the value of *profile jerk use* object $(60A3_h)$. If object $60A3_h$ is not implemented, the sub-index 00_h shall be used to assign the values given in the other sub-indices to the jerks. Table 99 specifies the object description, and Table 100 specifies the entry description.

Figure 18 - Velocity/time diagram with jerk positions

Table 98 - Value assignments

Value in 60A3 _h or sub-	Value assignment to jerks					
index 00 _h of 60A4 _h if 60A3 _h is not implemented	Α	В	С	D	E	F
01 _h	01 _h	01 _h	01 _h	01 _h	-	-
02 _h	01 _h	01 _h	02 _h	02 _h	-	-
04 _h	01 _h	03 _h	02 _h	04 _h	-	-
06 _h	01 _h	03 _h	02 _h	04 _h	05 _h	06 _h

Table 99 - Object description

Attribute	Value
Index	60A4 _h
Name	Profile jerk
Object Code	Array
Data Type	Unsigned32
Category	Optional

Table 100 - Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301

Attribute	Value
Value Range	01 _h , 02 _h , 04 _h , or 06 _h ,
Default Value	Manufacturer-specific
Sub-Index	01 _h
Description	Profile jerk 1
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific
Sub-Index	02 _h
Description	Profile jerk 2
Entry Category	Optional
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific
	to
Sub-Index	ne
	06 _h
Description	Profile jerk 6
Entry Category	Optional
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

10.5.14 Object 60C5_h: Max acceleration

This object shall indicate the configured maximal acceleration. It is used to limit the acceleration to an acceptable value in order to prevent the motor and the moved mechanics from being destroyed. The value shall be given in user-defined acceleration physical units. Table 101 specifies the object description, and Table 102 specifies the entry description.

Table 101 - Object description

Attribute	Value
Index	60C5 _h
Name	Max acceleration
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 102 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

10.5.15 Object 60C6_h: Max deceleration

This object shall indicate the configured maximal deceleration. It is used to limit the acceleration to an acceptable value in order to prevent the motor and the moved mechanics from being destroyed. The value shall be given in the same physical unit as the max acceleration object $(60C5_h)$. Table 103 specifies the object description, and Table 104 specifies the entry description.

Table 103 - Object description

Attribute	Value
Index	60C6 _h
Name	Max deceleration
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 104 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

11 Homing mode

11.1 General information

This clause describes the method by which a drive seeks the home position (also called, the datum, reference point or zero point). There are various methods of achieving this using limit switches at the ends of travel or a home switch (zero point switch) in mid-travel, most of the methods also use the index (zero) pulse train from an incremental encoder.

11.2 Functional description

Figure 19 shows the defined input objects as well as the output objects. The user may specify the speeds, acceleration and the method of homing. There is a further object home offset, which allows the user to displace zero in the user's coordinate system from the home position.

- 72 -

There is no output data except for those bits in the statusword, which return the status or result of the homing process and the demand to the position control loops.

There are two homing speeds; in a typical cycle, the faster speed is used to find the home switch and the slower speed is used to find the index pulse. The manufacturer is allowed some discretion in the use of these speeds as the response to the signals may be dependent upon the hardware used.

Figure 19 - Homing mode function

By choosing a homing method, the following behaviour is determined: The homing signal (positive limit switch, negative limit switch, home switch), the direction of actuation and where appropriate, the position of the index pulse.

The home position and the zero position are offset by the home offset; see the definition of home offset for how this offset is used.

An encircled number in the figures Figure 20 to Figure 27 indicates the code for selection of this homing position. The direction of movement is also indicated.

There are four sources of homing signal available: These are the negative and positive limit switches, the home switch and the index pulse from an encoder. In case, that a limit switch has reached the drive shall move in the other direction to leave the position.

In the diagrams of homing sequences shown below, the encoder count increases as the axis's position moves to the right, in other words, the left is the minimum position and the right is the maximum position.

For the operation of positioning drives, an exact knowledge of the absolute position is normally required. Since, for cost reasons, drives often do not have an absolute encoder, a homing operation is necessary. There are several, application-specific methods. The homing method is used for selection.

The exact sequence of the homing operation is clearly described by the method. In some circumstances, a drive device has several methods to choose from, using the homing method.

11.3 General definitions

11.3.1 Method 1: Homing on negative limit switch and index pulse

Using this method as shown in Figure 20, the initial direction of movement shall be leftward if the negative limit switch is inactive (here: low). The home position shall be at the first index pulse to the right of the position where the negative limit switch becomes inactive.

Figure 20 - Homing on negative limit switch and index pulse

11.3.2 Method 2: Homing on positive limit switch and index pulse

Using this method as shown in Figure 21, the initial direction of movement shall be rightward if the positive limit switch is inactive (here: low). The position of home shall be at the first index pulse to the left of the position where the positive limit switch becomes inactive.

Figure 21 - Homing on positive limit switch and index pulse

11.3.3 Method 3 and 4: Homing on positive home switch and index pulse

Using these methods as shown in Figure 22, the initial direction of movement shall be dependent on the state of the home switch. The home position shall be at the index pulse to either to the left or the right of the point where the home switch changes state. If the initial position is situated so that the direction of movement shall reverse during homing, the point at which the reversal takes place is anywhere after a change of state of the home switch.

Figure 22 - Homing on positive home switch and index pulse

11.3.4 Method 5 and 6: Homing on negative home switch and index pulse

Using these methods as shown in Figure 23, the initial direction of movement shall be dependent on the state of the home switch. The home position shall be at the index pulse to either to the left or the right of the point where the home switch changes state. If the initial position is situated so that the direction of movement shall reverse during homing, the point at which the reversal takes place is anywhere after a change of state of the home switch.

Figure 23 - Homing on negative home switch and index pulse

11.3.5 Method 7 to 14: Homing on home switch and index pulse

These methods use a home switch, which is active over only a portion of the travel, in effect the switch has a 'momentary' action as the axis's position sweeps past the switch. Using the methods 7 to 10, the initial direction of movement shall be to the right, and using methods 11 to 14, the initial direction of movement shall be to the left except if the home switch is active at the start of the motion. In this case, the initial direction of motion shall be dependent on the edge being sought. The home position shall be at the index pulse on either side of the rising or falling edges of the home switch, as shown in Figure 24 and Figure 25. If the initial direction of movement leads away from the home switch, the drive shall reverse on encountering the relevant limit switch.

Figure 24 – Homing on home switch and index pulse – positive initial motion

Figure 25 - Homing on home switch and index pulse - negative initial motion

11.3.6 Method 15 and 16: Reserved

These methods are reserved.

11.3.7 Method 17 to 30: Homing without index pulse

These methods are similar to methods 1 to 14 except that the home position is not dependent on the index pulse but only dependent on the relevant home or limit switch transitions. For example methods 19 and 20 are similar to methods 3 and 4 as shown in Figure 26.

Figure 26 - Homing on positive home switch

11.3.8 Method 31 and 32: Reserved

These methods are reserved.

11.3.9 Method 33 and 34: Homing on index pulse

Using these methods, the direction of homing is negative or positive respectively. The home position shall be at the index pulse found in the selected direction as shown in Figure 27.

Figure 27 - Homing on index pulse

11.3.10 Method 35: Homing on index pulse

In this method, the current position shall be taken to be the home position. This method does not require the drive device to be in *operational enabled* state.

11.3.11 Method 36: Homing with touch-probe

In this method, the position is not sampled by the control device, but by the drive device itself. When the switch is triggered, the corresponding actual position together with the switch signal shall be reported.

11.4 Use of controlword and statusword

The homing mode uses some bits of the controlword and the statusword for mode-specific purposes. Figure 28 shows the structure of the controlword. Table 105 defines the values for bit 4 and 8 of the controlword.

Figure 28 - Controlword for homing mode

Table 105 - Definition of bit 4 and bit 8

Bit	Value	Definition
4	0	Do not start homing procedure
	1	Start or continue homing procedure
8	0	Enable bit 4
	1	Stop axis according to halt option code (605D _h)

Figure 29 shows the structure of the statusword. Table 106 defines the values for bit 10, bit 12, and bit 13.

Figure 29 - Statusword for homing mode

Table 106 - Definition of bit 10, bit 12, and bit 13

Bit 13	Bit 12	Bit 10	Definition
0	0	0	Homing procedure is in progress
0	0	1	Homing procedure is interrupted or not started
0	1	0	Homing is attained, but target is not reached
0	1	1	Homing procedure is completed successfully
1	0	0	Homing error occurred, velocity is not 0
1	0	1	Homing error occurred, velocity is 0
1	1	Х	reserved

11.5 Detailed object definitions

11.5.1 Object 607C_h: Home offset

This object shall indicate the configured difference between the zero position for the application and the machine home position (found during homing). During homing, the machine home position is found and once the homing is completed, the zero position is offset from the home position by adding the home offset to the home position. All subsequent absolute moves shall be taken relative to this new zero position. This is illustrated in Figure 30. If this object is not implemented, then the home offset shall be regarded as zero. The value of this object shall be given in user-defined position units. Negative values shall indicate the opposite direction.

Figure 30 - Home offset definition

Table 107 specifies the object description, and Table 108 specifies the entry description.

Table 107 - Object description

Attribute	Value
Index	607C _h
Name	Home offset
Object Code	Variable
Data Type	Integer32
Category	Optional

Table 108 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32

Attribute	Value
Default Value	0 _d

11.5.2 Object 6098_h: Homing method

This object shall indicate the configured homing method that shall be used. Table 109 specifies the value definition, Table 110 specifies the object description, and Table 111 specifies the entry description.

Table 109 - Value definition

Value	Definition	
-128 _d to -1 _d	Manufacturer-specific	
0 _d	No homing method assigned	
+1 _d	Method 1 shall be used	
to		
+35 _d	Method 35 shall be used	
+36 _d	Method 36 shall be used	
+37 _d to +127 _d	reserved	

Table 110 - Object description

Attribute	Value
Index	6098 _h
Name	Homing method
Object Code	Variable
Data Type	Integer8
Category	Conditional: mandatory if hm is supported

Table 111 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 109
Default Value	Manufacturer-specific

11.5.3 Object 6099_h: Homing speeds

This object shall indicate the configured speeds used during homing procedure. The values shall be given in user-defined velocity units. Table 112 specifies the object description, and Table 113 specifies the entry description.

- 79 -

Table 112 - Object description

Attribute	Value
Index	6099 _h
Name	Homing speeds
Object Code	Array
Data Type	Unsigned32
Category	Conditional: mandatory if hm is supported

Table 113 - Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	02 _h
Default Value	02 _h
Sub-Index	01 _h
Description	Speed during search for switch
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

Table 113 (continued)

Attribute	Value
Sub-Index	02 _h
Description	Speed during search for zero
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

11.5.4 Object 609A_h: Homing acceleration

This object shall indicate the configured acceleration and deceleration to be used during homing operation. The value shall be given in user-defined acceleration units. Table 114 specifies the object description, and Table 115 specifies the entry description.

Table 114 - Object description

Attribute	Value
Index	609A _h
Name	Homing acceleration
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 115 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

11.5.5 Object 60B8_h: Touch probe function

This object shall indicate the configured function of the touch probe. Table 116 specifies the value definition, Table 117 specifies the object description, and Table 118 specifies the entry description.

Table 116 - Value definition

Bit	Value	Definition
0	0	Switch off touch probe 1
	1	Enable touch probe 1
1	0	Trigger first event
	1	continous
2	0	Trigger with touch probe 1 input
	1	Trigger with zero impulse signal or position encoder
3	0	Reserved
4	0	Switch off sampling at positive edge of touch probe 1
	1	Enable sampling at positive edge of touch probe 1
5	0	Switch off sampling at negative edge of touch probe 1
	1	Enable sampling at negative edge of touch probe 1
6, 7	-	User-defined (e.g. for testing)
8	0	Switch off touch probe 2
	1	Enable touch probe 2
9	0	Trigger first event
	1	Continous
10	0	Trigger with touch probe 2 input
	1	Trigger with zero impulse signal or position encoder
11	0	Reserved
12	0	Switch off sampling at positive edge of touch probe 2
	1	Enable sampling at positive edge of touch probe 2
13	0	Switch off sampling at negative edge of touch probe 2
	1	Enable sampling at negative edge of touch probe 2
14, 15	-	User-defined (e.g. for testing)

Table 117 - Object description

Attribute	Value
Index	60B8 _h
Name	Touch probe function
Object Code	Variable
Data Type	Unsigned16
Category	Optional

Table 118 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 116
Default Value	Manufacturer-specific

11.5.6 Object 60B9_h: Touch probe status

This object shall provide the status of the touch probe. Table 119 specifies the value, Table 120 specifies the object description, and Table 121 specifies the entry description.

Table 119 - Value definition

Bit	Value	Definition
0	0	Touch probe 1 is switched off
	1	Touch probe 1 is enabled
1	0	Touch probe 1 no positive edge value stored
	1	Touch probe 1 negative edge position stored
2	0	Touch probe 1 no negative edge value stored
	1	Touch probe 1 positive edge position stored
3 to 5	0	Reserved
6, 7	-	User-defined (e.g. for testing)
8	0	Touch probe 2 is Switched off
	1	Touch probe 2 is Enabled
9	0	Touch probe 2 no positive edge value stored
	1	Touch probe 2 negative edge position stored
10	0	Touch probe 2 no negative edge value stored
	1	Touch probe 2 positive edge position stored
11 to 13	0	Reserved
14, 15	-	User-defined (e.g. for testing)

Table 120 - Object description

Attribute	Value
Index	60B9 _h
Name	Touch probe status
Object Code	Variable
Data Type	Unsigned16
Category	Optional

Table 121 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 119
Default Value	No

11.5.7 Object 60BA_h: Touch probe pos1 pos value

This object shall provide the position value of the touch probe 1 at positive edge. The value shall be given in user-defined position units. Table 122 specifies the object description, and Table 123 specifies the entry description.

Table 122 - Object description

Attribute	Value
Index	60BA _h
Name	Touch probe pos1 pos value
Object Code	Variable
Data Type	Integer32
Category	Optional

Table 123 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

11.5.8 Object 60BB_h: Touch probe pos1 neg value

This object shall provide the position value of the touch probe 1 at negative edge. The value shall be given in user-defined position units. Table 124 specifies the object description, and Table 125 specifies the entry description.

Table 124 - Object description

Attribute	Value
Index	60BB _h
Name	Touch probe pos1 neg value
Object Code	Variable
Data Type	Integer32
Category	Optional

Table 125 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

11.5.9 Object 60BCh: Touch probe pos2 pos value

This object shall provide the position value of the touch probe 2 at positive edge. The value shall be given in user-defined position units. Table 126 specifies the object description, and Table 127 specifies the entry description.

Table 126 - Object description

Attribute	Value
Index	60BC _h
Name	Touch probe pos2 pos value
Object Code	Variable
Data Type	Integer32
Category	Optional

Table 127 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

11.5.10 Object 60BD_h: Touch probe pos2 neg value

This object shall provide the position value of the touch probe 2 at negative edge. The value shall be given in user-defined position units. Table 128 specifies the object description, and Table 129 specifies the entry description.

Table 128 - Object description

Attribute	Value
Index	60BD _h
Name	Touch probe pos2 neg value
Object Code	Variable
Data Type	Integer32
Category	Optional

Table 129 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

12 Position control function

12.1 General information

For closed-loop position, the *position demand value* (as one of the outputs of the trajectory generator) and the output of the position detection unit (*position actual value*) like a resolver or encoder, are used input parameters. The behaviour of the closed-loop control is influenced

-85-

by control parameters, which are externally applicable. To keep the loop stable, a relative limitation of the output using the previous *control effort* is optional. In order not to exceed the physical limits of a drive, an absolute limit function may be implemented for the control effort.

12.2 Functional description

Figure 31 shows the inputs and outputs of the position control function. The *control effort* may be a *velocity demand value*, a *position demand* value or any other output value, depending on the *modes of operation* implemented in the drive device. Especially in cascaded control structures, where a position control is followed by a torque control, for example the *control effort* of the position control loop is used as an input for a further calculation.

Figure 31 – Position control function

All values are transformed – if necessary – from user-defined units to normalised units such as increments.

A position actual value outside the allowed range of the following error window around a position demand value for longer than the following error time out shall result in setting bit 13 (following error) in the statusword to 1. This is shown in detail in Figure 32. Depending on the supported modes of operation (pp, hm, or ip) and on the capabilities of different categories of drives, only some of the mentioned input parameters may be necessary.

Figure 32 – Following error (functional overview)

The position reached function as shown in Figure 33 offers the possibility to define a position range around a position demand value to be regarded as valid. If a drive's position is within this area for a specified time – the position window time – the related control bit 10 target reached in the statusword shall be set to 1.

Figure 33 - Position reached (functional overview)

The control functions following error and position reached have direct access to the statusword and shall give immediate notification to the user if their results change.

Figure 34 shows the definitions of the sub-function position reached. A window is defined for the accepted position range symmetrically around the target position. If a drive is situated in the accepted position range over the time position window time, the bit target reached (bit 10) in the statusword shall be set to 1.

Figure 34 - Position reached (definitions)

Figure 35 shows the definitions of the sub-function following error in the profile position mode. A window is defined for the accepted following error tolerance symmetrically around the reference position. If a drive is situated out of the accepted position range for more than following error time out time, the bit following error (bit 13) in the statusword shall be set to 1.

- 87 -

Figure 35 – Following error (definitions)

12.3 Detailed object definitions

12.3.1 Object 6062_h: Position demand value

This object shall provide the demanded position value. The value shall be given in user-defined position units. Table 130 specifies the object description, and Table 131 specifies the entry description.

 Attribute
 Value

 Index
 6062_h

 Name
 Position demand value

 Object Code
 Variable

 Data Type
 Integer32

 Category
 Optional

Table 130 - Object description

Table 131 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

12.3.2 Object 6063_h: Position actual internal value

This object shall provide the actual value of the position measurement device, which shall be one of the two input values of the closed-loop position control. If necessary, the data unit may be transformed from user-defined units to increments. The value shall be given in internal units. Table 132 specifies the object description, and Table 133 specifies the entry description.

Table 132 - Object description

Attribute	Value
Index	6063 _h
Name	Position actual internal value
Object Code	Variable
Data Type	Integer32
Category	Optional

Table 133 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

12.3.3 Object 6064_h: Position actual value

This object shall provide the actual value of the position measurement device. The value shall be given in user-defined position units. Table 134 specifies the object description, and Table 135 specifies the entry description.

Table 134 - Object description

Attribute	Value
Index	6064 _h
Name	Position actual value
Object Code	Variable
Data Type	Integer32
Category	Mandatory if <i>csp</i> is supported

Table 135 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

12.3.4 Object 6065_h: Following error window

This object shall indicate the configured range of tolerated position values symmetrically to the position demand value. If the position actual value is out of the following error window, a following error occurs. A following error may occur when a drive is blocked, unreachable profile velocity occurs, or at wrong closed-loop coefficients. The value shall be given in user-defined position units. If the value of the following error window is FFFF FFFF $_{\rm h}$, the following

control shall be switched off. Table 136 specifies the object description, and Table 137 specifies the entry description.

Table 136 - Object description

Attribute	Value
Index	6065 _h
Name	Following errror window
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 137 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

12.3.5 Object 6066_h: Following error time out

This object shall indicate the configured time for a following error condition, after that the bit 13 of the statusword shall be set to 1. The reaction of the drive when a following error occurs is manufacturer-specific. The value shall be given in ms. Table 138 specifies the object description, and Table 139 specifies the entry description.

Table 138 - Object description

Attribute	Value
Index	6066 _h
Name	Following errror time out
Object Code	Variable
Data Type	Unsigned16
Category	Optional

Table 139 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned16
Default Value	Manufacturer-specific

12.3.6 Object 6067_h: Position window

This object shall indicate the configured symmetrical range of accepted positions relative to the target position. If the actual value of the position encoder is within the position window, this target position shall be regarded as having been reached. As the user mostly prefers to specify the position window in his application in user-defined units, the value is transformed into increments. The target position shall be handled in the same manner as in the *trajectory generator* concerning limiting functions and transformation into internal machine units before it may be used with this function. The value shall be given in user-defined position units. If the value of the position window is FFFF FFFF_h, the position window control shall be switched off. Table 140 specifies the object description, and Table 141 specifies the entry description.

Table 140 - Object description

Attribute	Value
Index	6067 _h
Name	Position window
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 141 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

12.3.7 Object 6068_h: Position window time

This object shall indicate the configured time, during which the actual position within the position window is measured. The value shall be given in ms. Table 142 specifies the object description, and Table 143 specifies the entry description.

Table 142 - Object description

Attribute	Value
Index	6068 _h
Name	Position window time
Object Code	Variable
Data Type	Unsigned16
Category	Optional

Table 143 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned16
Default Value	Manufacturer-specific

12.3.8 Object 60F4_h: Following error actual value

This object shall provide the actual value of the following error. The value shall be given in user-defined position units. Table 144 specifies the object description, and Table 145 specifies the entry description.

Table 144 - Object description

Attribute	Value
Index	60F4 _h
Name	Following errror actual value
Object Code	Variable
Data Type	Integer32
Category	Optional

Table 145 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

12.3.9 Object 60FA_h: Control effort

This object shall provide the control effort as the output of the position control loop. It is particular to the *position control function* that the notation of the control effort is mode-dependent and therefore not specified. The value shall be given in user-defefined velocity units. Table 146 specifies the object description, and Table 147 specifies the entry description.

Table 146 - Object description

Attribute	Value
Index	60FA _h
Name	Control effort
Object Code	Variable
Data Type	Integer32
Category	Optional

Table 147 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

12.3.10 Object 60FC_h: Position demand internal value

This object shall provide the output of the trajectory generator in profile position mode. This value shall be given in increments of the position encoder. Table 148 specifies the object description, and Table 149 specifies the entry description.

Table 148 - Object description

Attribute	Value
Index	60FC _h
Name	Position demand internal value
Object Code	Variable
Data Type	Integer32
Category	Optional

Table 149 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

12.3.11 Object 60F2_h: Positioning option code

This object shall indicate the configured positioning behaviour as described by the *profile* positioning mode or the interpolated positioning mode. Figure 36 shows the defined object structure.

LEGEND ms = manufacturer-specific immediately option

rro = request-response option

cio = change

Figure 36 - Object structure

The *relative option* bits shall control the behaviour of positioning tasks in detail when the *abs_rel* bit (bit 6) of the controlword is set to 1 in *pp* mode. Table 150 shows the bit value definitions.

- 93 -

Table 150 - Value definition for bit 0 and bit 1

Bit 1	Bit 0	Definition	
0	0	Positioning moves shall be performed relative to the preceding (internal absolute) target position (rsp. relative to 0 if there is no preceding target position) as described in	
0	1	Positioning moves shall be performed relative to the actual position demand value (object $60FC_h$) – output of the trajectory generator	
1	0	Positioning moves shall be performed relative to the position actual value (object 6064 _h)	
1	1	Reserved	

The *change immediately option* bits shall control the behaviour of positioning tasks in detail when the *change_set_immediately* bit (bit 5) of the controlword is set to 1 in *pp* mode. Table 151 shows the bit value definitions.

Table 151 - Value definition for bit 2 and bit 3

Bit 3	Bit 2	Definition
0	0	The drive device shall readapt the actual motion to the new target position (considering potentially changed profile velocity and accelerations etc.) immediately as described in
0	1	The actually performed positioning task shall be continued (without attempting to stop on target position) and blended to the newly commanded task (considering potentially changed profile velocity and accelerations etc.) when target position is touched
1	0	Reserved
1	1	Reserved

The request-response option bits shall allow the drive device to release the new_setpoint bit (bit 4) of the controlword internally in order to avoid the need of setting this bit to 0 by the control device in pp mode. After internally releasing the new_setpoint bit, the drive device shall indicate the action to the control device by setting the setpoint_acknowledgement bit (bit 12) in the statusword to 0. Table 152 shows the bit value definitions.

Table 152 - Value definition for bit 4 and bit 5

Bit 5	Bit 4	Definition	
0	0	The handshake as described in	
0	1	The drive device shall release autonomously the new setpoint bit as soon as target is reached	
1	0	The drive shall release autonomously the <i>new setpoint</i> bit as soon as able to accept new setpoint data	
1	1	Reserved	

The *ip option* bits are reserved for defining the interpolated position mode. When the *manufacturer-specific* bit is set to 0, the function shall be not enabled; if it is set to 1, the manufacturer-specific function shall be enabled. The other reserved bits shall be set to 0.

Table 153 specifies the object description, and Table 154 specifies the entry description.

Table 153 - Object description

Attribute	Value
Index	60F2 _h
Name	Positioning option code
Object Code	Variable
Data Type	Unsigned16
Category	Optional

Table 154 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 150, Table 151, Table 152
Default Value	0000 _h

13 Interpolated position mode

13.1 General information

The interpolated position mode is used to control multiple coordinated axes or a single axis with the need for time-interpolation of set-point data. The interpolated position mode normally uses time synchronisation mechanisms for a time coordination of the related drive units.

The interpolation data record contains the interpolation data; the data type of the sub-indices of this structure are manufacturer-specific.

For synchronous operation, the interpolation cycle time is defined by the object interpolation time period. Time synchronisation may be done by network dependent mechanisms. Each syncronisation cycle actuates the next data record if a valid data record is available.

For asynchronous operation, the interpolation time (for each time slice), may be included in the interpolation data record. If this is so, then the units for the interpolation time are still specified by the interpolation time index as for synchronous operation. The next data record shall be actuated as soon as the interpolation time expires and a valid data record is available.

The interpolated position mode allows the control deviced to transmit a stream of interpolation data with either an implicit or explicit time reference to a drive unit. If the drive supports an input buffer, the interpolation data may be sent in bursts rather than continuously in real time. The maximum size of the input buffer may be read by the control device using the interpolation data configuration. The actual buffer size may be both written and read by the control device using the interpolation data configuration. The buffer size is the number of interpolation data records which may be sent to a drive to fill the input buffer and it is not the size in bytes. Drive devices without input buffer capabilities shall accept at least one interpolation data item.

The interpolation data buffer may be implemented as a FIFO or a ring. The definition of a valid data record for each type of buffer shall be as follows:

• For the FIFO implementation, a valid data record is one that has not been actuated yet.

 For the Ring implementation, all data records within the actual buffer size are treated as valid data records, so interpolation data will continue to be actuated while ip enable is true.

The interpolation algorithm is defined in the interpolation sub mode select. Linear interpolation is the default interpolation method. This requires only one interpolation data item to be buffered for the calculation of the next demand value. For each interpolation cycle, the drive shall calculate a position demand value by interpolating positions over a period of time.

Optionally the common limit functions for speed, acceleration and deceleration may be applied to the interpolation data.

The placement of the scaling and limiting of the interpolation data record in Figure 37 is for indication only. These functions may be performed during the input of the interpolation data record.

Figure 37 - Interpolation controller

13.2 Functional description

13.2.1 General

The manufacturer specifies the way the drive device handles the next valid interpolation data record. This may be in a way corresponding to the standard position mode, or might be a more complex algorithm. The standard method is to apply the new data immediately, after the next synchronisation signal in synchronous mode or after the previous interpolation time has expired in asynchronous mode.

An input buffer for interpolation data records eases the data exchange between control device and drive device. The real-time requirements to the network as well as to the drive device decrease in this case, because an input buffer decouples the data processing in the drive device from the data transmission on the network.

13.2.2 Linear interpolated position mode with several axes

In order to follow a two- or more-dimensional curve through the space with a defined speed, the control device calculates the different positions P_i for each set of coordinates which shall be reached at specified times t_i .

For each set-point P_i the control device shall calculate x_i , y_i and t_i . Each axis gets a set of interpolation data records, which each axis shall process internally independent from the other axes according to the chosen interpolation mode. This is shown in Figure 38.

Figure 38 - Interpolated position mode for two axes

In a centralised drive system with a remote motion device doing the interpolation calculation, a central clocking scheme for synchronisation of the different axes. This results in a movement depending on the calculation cycle time of the interpolation controller. The velocity becomes more or less a fixed value for each axis. This is detailed in Table 155.

Calculated	ip data records for			
positions	x-axis	y-axis	z-axis	
Pi	x_i, t_i	y _i , t _i	z _i , t _i	
P _i + 1	$x_i + 1, t_i + 1$	y _i + 1, t _i + 1	z _i + 1, t _i + 1	
P _i + 2	$x_i + 2, t_i + 2$	y _i + 2, t _i + 2	$z_i + 2, t_i + 2$	
	***	•••	•••	
P _i + <i>n</i>	$x_i + n, t_i + n$	$y_i + n, t_i + n$	$z_i + n, t_i + n$	

In decentralised motion systems, the control device starts all relevant axes by changing the mode-internal state to interpolation active after preparing and sending one or more interpolation data records to all axes and synchronises them. Each axis calculates internally and independently the necessary speed and acceleration needed to move from one position to the next. This may be done by calculating a linear or any other move between two given position set-points. Along this track, every axis controls the movement between the set-points independently from the other axes. The axes may continue their movement, as long as there is enough data to continue the calculations. Therefore it is easy to use the input buffer to give data records ahead.

With this information, each axis may act as shown in Figure 39.

- 97 -

Figure 39 - Linear interpolation for one axis

NOTE In CANopen synchronous mode, the interpolation time is normally the same as the nominal period for the sync signal.

13.2.3 Buffer strategies for the interpolated position mode

If a drive device provides an input buffer for interpolation data records, its size may be organised by the control device using the interpolation data configuration. The control device splits the available buffer capacity into pages which have the size of one interpolation data record each. This is done by size of data record. If one page remains, which doesn't keep one complete data record, it may not be used. After the reorganisation of the input buffer, all previous stored data will be lost. All devices supporting the interpolated position mode shall implement an input buffer, which at least may keep one interpolation data record. The input buffer organisation is specified in Figure 40.

The content of the buffer items may only be accessed via the interpolation data record.

Commonly, first-in-first-out (FIFO) structures or ring buffers are used as input buffers.

FIFO: If the buffer is organised as FIFO, every new received interpolation data record is placed at the end of the queue, and the device takes the next data record from the top of the queue. When the last item of a data record is stored, the buffer pointer is incremented in order to point to the next buffer position. For this buffer principle, the object buffer position does not have any influence.

Ring buffer: If the buffer is structured as a ring, the control device may place an interpolation data record into any valid position in the ring by changing the pointer defined in buffer position. Without changing the buffer position, all data records will be written at the same location. The drive reads the next entry out of the buffer by an internal ring pointer. It is set to the first data record with a clear buffer, and after the reorganisation of the input buffer.

<u> </u>	parameter 1		↑
data record size	parameter 2	ip data record 1	
data record size	:::::		
\downarrow	parameter n		
^	parameter 1		
data record size	parameter 2	ip data record 2	buffer size
data record size	:::::		
	parameter n		Builet 3126
	:::::		
↑	parameter 1		
data record size	parameter 2	ip data record i	
data 10001d 3120	:::::		
	parameter n		
	not accessible		l J

Figure 40 - Input buffer organisation

Figure 41 shows the difference between a FIFO buffer and a Ring buffer. The ring buffer may be used to achieve a periodic motion and all data records in the actual data buffer are considered to be valid. If no new data is written to the FIFO, then the motion shall halt and interpolation should become inactive at the last valid data point.

Figure 41 - Input buffer examples

13.2.4 Interpolated position mode FSA

Figure 42 specifies the interpolated position mode FSA. It is a sub FSA of the *Operation enable* state as shown in Figure 4.

- 99 **-**

61800-7-201 © IEC:2007

Operation enable*

* see power drive system FSA

active

Figure 42 - Interpolated position mode FSA

The FSA states shall support the functions as shown in Table 156.

Table 156 - FSA states and supported functions

FSA state	Function
Interpolation inactive	The drive device will accept input data and will buffer it for interpolation calculations, but it does not move the axis.
Interpolation active	The drive unit will accept input data and it moves the axis.

The drive device supporting the *ip* mode shall support the transitions and actions as given in Table 157. The events shall initiate the transitions. The transition shall be terminated, after the action has been performed.

Table 157 - Transition events and actions

Transition	Event(s)	Action(s)
I	<i>ip</i> mode selected (see object 6060 _h)	none
II	<i>ip</i> mode not selected (see object 6060 _h)	none
III	Enable interpolation (bit 4 of the controlword is 1)	none
IV	Disable interpolation (bit 4 of the controlword is 0)	none

13.3 General definitions

The output values provided by the *interpolated position* mode depend on the number and type of interpolation functions implemented. For the predefined linear time interpolation, the output is a position demand internal value.

13.4 Use of controlword and statusword

The interpolated position mode uses some bits of the controlword and the statusword for mode-specific purposes. Figure 43 shows the structure of the controlword. Table 158 defines the values for bit 4 and bit 8 of the controlword.

Figure 43 - Controlword for interpolated position mode

Table 158 - Definition of bit 4 and bit 8

Bit	Value	Definition
4	0	Disable interpolation
	1	Enable interpolation
8	0	Execute instruction of bit 4
	1	Axis shall be stopped accordingly to halt option code (605D _h), and bit 12 in the statusword shall be set to 0

Figure 44 shows the structure of the statusword. Table 159 defines the values for bit 10 and bit 12 of the statusword. The *target position reached* bit shall remain 0 until all set-points are processed.

Figure 44 - Statusword for interpolated position mode

Table 159 - Definition of bit 10 and bit 12

Bit	Value	Definition
10	0	Target position not (yet) reached (if Halt bit in last controlword was 0) or axle decelerates (if Halt bit in last controlword was 1)
	1	Target position reached (if Halt bit in last controlword was 0) or axle has veloxity 0 (if halt bit in last controlword was 1)
12	0	Interpolation inactive
	1	Interpolation active

13.5 Detailed object definitions

13.5.1 Object 60C0_h: Interpolation sub mode select

This object shall indicate the actually chosen interpolation mode. If linear interpolation is the only algorithm avalaible, then it is not necessary to implement this object. If a manufacturer-specific interpolation mode is selected, the corresponding interpolation data record shall be implemented in the manufacturer-specific profile area of the object dictionary. If the linear interpolation mode is selected, the interpolation data given in object $60C1_h$ shall be used. Table 160 specifies the value definition, Table 161 specifies the object description, and Table 162 specifies the entry description.

Table 160 - Value definition

Value	Definition
-32 768 to -1	Manufacturer-specific
0	Linear interpolation
+1 to +32 767	Reserved

Table 161 - Object description

Attribute	Value
Index	60C0 _h
Name	Interpolation sub mode select
Object Code	Variable
Data Type	Integer16
Category	Optional

Table 162 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 160
Default Value	0

13.5.2 Object 60C1_h: Interpolation data record

This object shall indicate data words, which are necessary to perform the interpolation algorithm. The number N of data words in the record is defined by interpolation data configuration. The interpretation of the data words in interpolation data record may vary with the different possible interpolation modes as set by the interpolation sub mode select.

For the linear interpolation mode, each interpolation data record simply is regarded as a new position set-point. To describe a cubic spline interpolation, four or more data words are needed for the spline coefficients, and further interpolation parameters.

After the last item of an interpolation data record is written to the drive device's input buffer, the pointer of the buffer shall be automatically incremented to the next buffer position.

Table 163 specifies the object description, and Table 164 specifies the entry description.

Table 163 - Object description

Attribute	Value
Index	60C1 _h
Name	Interpolated data record
Object Code	Array
Data Type	Integer32
Category	Optional

Table 164 - Entry description

Attribute	Value		
Sub-Index	00 _h		
Description	Highest sub-index supported		
Entry Category	Mandatory		
Access	С		
PDO Mapping	See IEC 61800-7-301		
Value Range	01 _h to FE _h		
Default Value	No		
Sub-Index	01 _h		
Description	1st set-point		
Entry Category	Mandatory		
Access	rw		
PDO Mapping	See IEC 61800-7-301		
Value Range	Integer32		
Default Value	Manufacturer-specific		
Sub-Index	02 _h		
Description	2nd set-point		
Entry Category	Optional		
Access	rw		
PDO Mapping	See IEC 61800-7-301		
Value Range	Integer32		
Default Value	Manufacturer-specific		
	to		
Sub-Index	FE _h		
Description	254th set-point		
Entry Category	Optional		
Access	rw		
PDO Mapping	See IEC 61800-7-301		
Value Range	Integer32		
Default Value	Manufacturer-specific		

13.5.3 Object 60C2_h: Interpolation time period

This object shall indicate the configured interpolation cycle time. The interpolation time period (sub-index 01_h) value shall be given in $10^{(interpolation\ time\ index)}$ s(econd). The interpolation time index (sub-index 02_h) shall be dimensionless.

Table 165 specifies the object description, and Table 166 specifies the entry description.

- 103 -

Table 165 - Object description

Attribute	Value
Index	60C2 _h
Name	Interpolation time period
Object Code	Record
Data Type	Interpolation time period record (0080 _h)
Category	Conditional: mandatory if <i>ip, csp, csv</i> or <i>cst</i> mode is supported

Table 166 - Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	02 _h
Default Value	02 _h
Sub-Index	01 _h
Description	Interpolation time period value
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned8
Default Value	01 _h
Sub-Index	02 _h
Description	Interpolation time index
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	-128 to +63
Default Value	-3

13.5.4 Object 60C4_h: Interpolation data configuration

This object shall provide the maximum buffer size, shall indicate the configured buffer organisation of interpolation data, and shall provide objects to define the size of the data record and to clear the buffers. This object is used to enable the drive device to receive the needed data in advance. It also is used to store the positions and further data sent by the control device.

The value of sub-index 01_h shall be given in number of interpolation data records.

The value of sub-index 02_h shall be given in number of interpolation data records.

- 104 -

If sub-index 03_h is 00_h this shall indicate a FIFO buffer oganisation, if it is 01_h this shall indicate a ring buffer organisation. All other values are reserved.

The value of sub-index 04_h shall be dimensionless indicating the next free buffer entry point.

The value of sub-index 05_h shall be given in byte.

If 00_h is written to sub-index 06_h this shall clear the buffer inputs, shall disable the access, and shall clear all ip data records. If 01_h is written to sub-index 06_h , this enables access to the input buffers. All other values are reserved.

Table 167 specifies the object description, and Table 168 specifies the entry description.

Table 167 - Object description

Attribute	Value
Index	60C4 _h
Name	Interpolation data configuration
Object Code	Record
Data Type	Interpolation data configuration record (0081 _h)
Category	Optional

Table 168 - Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	07 _h
Default Value	07 _h
Sub-Index	01 _h
Description	Maximum buffer size
Entry Category	Mandatory
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	No
Sub-Index	02 _h
Description	Actual buffer size
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	0000 0000 _h

Table 168 (continued)

Attribute	Value
Sub-Index	03 _h
Description	Buffer organisation
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	00 _h or 01 _h
Default Value	00 _h
Sub-Index	04 _h
Description	Buffer position
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned16
Default Value	0000 _h
Sub-Index	05 _h
Description	Size of data record
Entry Category	Mandatory
Access	wo
PDO Mapping	See IEC 61800-7-301
Value Range	01 _h to FE _h
Default Value	01 _h
Sub-Index	06 _h
Description	Buffer clear
Entry Category	Mandatory
Access	wo
PDO Mapping	See IEC 61800-7-301
Value Range	00 _h or 01 _h
Default Value	00 _h

14 Profile velocity mode

14.1 General information

The profile velocity mode covers the following sub-functions:

- Demand value input via trajectory generator
- Velocity capture using position sensor or velocity sensor
- Velocity control function with appropriate input and output signals
- Monitoring of the profile velocity using a window-function
- Monitoring of velocity actual value using a threshold

– 106 **–**

61800-7-201 © IEC:2007

The operation of the reference value generator and its input parameters includes and are described in Clause 10:

- Profile velocity
- Profile acceleration
- Profile deceleration
- Emergency stop
- Motion profile type

Various sensors may be used for velocity capture. In particular, the aim is that costs are reduced and the drive power system is simplified by evaluating position and velocity using a common sensor, such as is optional using a resolver or an encoder.

The velocity control function is not specified more precisely at this point, as it is highly manufacturer-specific, but the format and maximum number of control coefficients are established.

Monitoring functions for the velocity actual value provide status information for superordinated systems.

14.2 Functional description

Figure 45 shows the defined structure of the profile velocity mode. The actual velocity may be obtained through differentiation from the position encoder and is represented in position encoder increments.

The *target reached* bit (bit 10) shall be set to 1 in the statusword when the difference between the target velocity and the velocity actual value is within the velocity window longer than the velocity window time.

As soon as the velocity actual value exceeds the velocity threshold longer than the *velocity* threshold time, then bit 12 shall be set to 0 in the statusword. Below this threshold, the bit shall be set to 1 and shall indicate that the axis is stationary.

Figure 45 - Profile velocity mode

14.3 General definitions

The factors necessary for scaling have a linear relationship and therefore they are described in the factor group. The polarity is described in the factor group as well.

14.4 Use of controlword and statusword

The profile velocity mode uses some bits of the controlword and the statusword for mode-specific purposes. Figure 46 shows the structure of the controlword. Table 169 defines the values for bit 8 of the controlword.

Figure 46 – Controlword for profile velocity mode

Table 169 - Definition of bit 8

Bit	Value	Definition
8	0	The motion shall be executed or continued
	1	Axis shall be stopped according to the halt option code (605D _h)

Figure 47 shows the structure of the statusword. Table 170 defines the values for bit 10, 12, and 13 of the statusword.

Figure 47 - Statusword for profile velocity mode

Table 170 - Definition of bit 10, bit 12, and bit 13

Bit	Value	Definition	
10	0	Halt (Bit 8 in controlword) = 0: Target not reached	
		Halt (Bit 8 in controlword) = 1: Axis decelerates	
	1	Halt (Bit 8 in controlword) = 0: Target reached	
		Halt (Bit 8 in controlword) = 1: Velocity of axis is 0	
12	0	Speed is not equal 0	
	1	Speed is equal 0	
13	0	Maximum slippage not reached	
	1	Maximum slippage reached	

14.5 Detailed object definitions

14.5.1 Object 6069_h: Velocity sensor actual value

This object shall provide the value read from a velocity sensor. The value shall be given in increments per second. Table 171 specifies the object description, and Table 172 specifies the entry description.

Table 171 - Object description

Attribute	Value
Index	6069 _h
Name	Velocity sensor actual value
Object Code	Variable
Data Type	Integer32
Category	Optional

Table 172 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

14.5.2 Object 606A_h: Sensor selection code

This object shall provide the source of the velocity sensor actual value. It determines whether a differentiated position signal or the signal from a separate velocity sensor is evaluated. Table 173 specifies the value definition, Table 174 specifies the object description, and Table 175 specifies the entry description.

- 109 -

Table 173 - Value definition

Value	Definition
0000 _h	Actual velocity value from position encoder
0001 _h	Actual velocity value from velocity encoder
0002 _h to 7FFF _h	Reserved
8000 _h to FFFF _h	Manufacturer-specific

Table 174 - Object description

Attribute	Value
Index	606A _h
Name	Sensor selection code
Object Code	Variable
Data Type	Integer16
Category	Optional

Table 175 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See Table 173
Default Value	Manufacturer-specific

14.5.3 Object 606B_h: Velocity demand value

This object shall provide the output value of the trajectory generator. The value shall be given in the user-defined velocity units. Table 176 specifies the object description, and Table 177 specifies the entry description.

Table 176 - Object description

Attribute	Value
Index	606B _h
Name	Velocity demand value
Object Code	Variable
Data Type	Integer32
Category	Optional

Table 177 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

14.5.4 Object 606C_h: Velocity actual value

This object shall provide the actual velocity value derived either from the velocity sensor or the position sensor. The value shall be given in user-defined velocity units. Table 178 specifies the object description, and Table 179 specifies the entry description.

Table 178 - Object description

Attribute	Value
Index	606C _h
Name	Velocity actual value
Object Code	Variable
Data Type	Integer32
Category	Conditional: mandatory if pv or csv is supported

Table 179 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	No

14.5.5 Object 606D_h: Velocity window

This object shall indicate the configured velocity window. The value shall be given in user-defined velocity units. Table 180 specifies the object description, and Table 181 specifies the entry description.

Table 180 - Object description

Attribute	Value
Index	606D _h
Name	Velocity window
Object Code	Variable
Data Type	Unsigned16
Category	Optional

Table 181 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned16
Default Value	Manufacturer-specific

14.5.6 Object 606E_h: Velocity window time

This object shall indicate the configured velocity window time. The value shall be given in milliseconds. Table 182 specifies the object description, and Table 183 specifies the entry description.

Table 182 - Object description

Attribute	Value
Index	606E _h
Name	Velocity window time
Object Code	Variable
Data Type	Unsigned16
Category	Optional

Table 183 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned16
Default Value	0000 _h

14.5.7 Object 606F_h: Velocity threshold

This object shall indicate the configured velocity threshold. The value shall be given in user-defined velocity units. Table 184 specifies the object description, and Table 185 specifies the entry description.

Table 184 - Object description

Attribute	Value	
Index	606F _h	
Name	Velocity threshold	
Object Code	Variable	
Data Type	Unsigned16	
Category	Optional	

– 112 **–**

Table 185 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned16
Default Value	Manufacturer-specific

14.5.8 Object 6070_h: Velocity threshold time

This object shall indicate the configured velocity threshold time. The value shall be given in milliseconds. Table 186 specifies the object description, and Table 187 specifies the entry description.

Table 186 - Object description

Attribute	Value
Index	6070 _h
Name	Velocity threshold time
Object Code	Variable
Data Type	Unsigned16
Category	Optional

Table 187 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned16
Default Value	Manufacturer-specific

14.5.9 Object 60FF_h: Target velocity

This object shall indicate the configured target velocity and shall be used as input for the trajectory generator. The value shall be given in user-defined velocity units. Table 188 specifies the object description, and Table 189 specifies the entry description.

Table 188 - Object description

Attribute	Value
Index	60FF _h
Name	Target velocity
Object Code	Variable
Data Type	Integer32
Category	Conditional: mandatory if pv or csv is supported

– 113 **–**

Table 189 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	Manufacturer-specific

14.5.10 Object 60F8_h: Max slippage

This object shall indicate the configured maximal slippage of an asynchronous motor. When the max slippage has been reached, the corresponding bit 13 max slippage error in the statusword shall be set to 1. The reaction of the drive device, when the max slippage error occurs, is manufacturer-specific. This value shall be given in user-defined units. Table 190 specifies the object description, and Table 191 specifies the entry description.

Table 190 - Object description

Attribute	Value	
Index	60F8 _h	
Name	Max slippage	
Object Code	Variable	
Data Type	Integer32	
Category	Optional	

Table 191 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	Manufacturer-specific

15 Profile torque mode

15.1 General information

The profile torque mode allows control device (i.e. closed-loop speed controller, open-loop transmission force controller) to transmit the target torque value, which is processed via the trajectory generator. The torque slope and torque profile type parameters are required.

15.2 Functional description

If the control device switches the controlword bit 8 (halt) from 0 to 1 or from 1 to 0, than the trajectory generator ramps its control effort output down to zero, respectively up to the target torque. In both cases, the trajectory generator takes the torque slope and torque profile type into consideration.

All definitions refer to rotating motors. Using linear motors instead requires that all "torque" objects refer to a "force" instead. For the sake of simplicity, the objects are not duplicated and their names are not modified. As an example, the linear motor target force is transmitted using the target torque object. Refer to the object descriptions for additional information.

The manufacturer-specific torque control and power-stage functions are not described as they fall beyond the scope of this drive profile specification. They are only mentioned for showing how some parameters affect them. As an example, the closed-loop torque control coefficients (if any) are to be defined and described by the manufacturer.

The torque control parameters, power stage parameters and motor parameters are defined as objects in order that they may be handled (i.e. downloaded) in a standard way. Their detailed data definition is manufacturer-specific.

The torque demand, torque actual value, current actual value and DC link voltage are available to the user as parameters, if they are monitored.

Figure 48 shows the defined structure of the profile torque mode.

Figure 48 - Structure of the profile torque mode

15.3 General definitions

There are no general definitions given for the profile torque mode.

15.4 Use of controlword and statusword

The profile torque mode uses some bits of the controlword and the statusword for mode-specific purposes. Figure 49 shows the structure of the controlword. Table 192 defines the values for bit 8 of the controlword.

Figure 49 - Controlword for profile torque mode

– 115 **–**

Table 192 - Definition of bit 8

	Bit	Value	Definition
Ī	8	0	The motion shall be executed or continued
		1	Axis shall be stopped according to the halt option code (605D _h)

Figure 50 shows the structure of the statusword. Table 193 defines the values for bit 10 of the statusword.

Figure 50 - Statusword for profile torque mode

Table 193 - Definition of bit 10

Bit	Value	Definition
10	0	Halt (Bit 8 in controlword) = 0: Target torque not reached
		Halt (Bit 8 in controlword) = 1: Axis decelerates
	1	Halt (Bit 8 in controlword) = 0: Target torque reached
		Halt (Bit 8 in controlword) = 1: Velocity of axis is 0

NOTE Target torque reached is defined by a manufacturer-specific time or window object.

15.5 Detailed object definitions

15.5.1 Object 6071_h: Target torque

This object shall indicate the configured input value for the torque controller in profile torque mode. The value shall be given per thousand of rated torque. Table 194 specifies the object description, and Table 195 specifies the entry description.

Table 194 - Object description

Attribute	Value
Index	6071 _h
Name	Target torque
Object Code	Variable
Data Type	Integer16
Category	Conditional: mandatory if tq or cst is supported

Table 195 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer16
Default Value	0000 _h

15.5.2 Object 6072_h: Max torque

This object shall indicate the configured maximum permissible torque in the motor. The value shall be given per thousand of rated torque. Table 196 specifies the object description, and Table 197 specifies the entry description.

Table 196 - Object description

Attribute	Value
Index	6072 _h
Name	Max torque
Object Code	Variable
Data Type	Unsigned16
Category	Optional

Table 197 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned16
Default Value	Manufacturer-specific

15.5.3 Object 6073_h: Max current

This object shall indicate the configured maximum permissible torque creating current in the motor. The value shall be given per thousand of rated current. Table 198 specifies the object description, and Table 199 specifies the entry description.

Table 198 - Object description

Attribute	Value
Index	6073 _h
Name	Max current
Object Code	Variable
Data Type	Unsigned16
Category	Optional

Table 199 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned16
Default Value	Manufacturer-specific

15.5.4 Object 6074_h: Torque demand

This object shall provide the output value of the trajectory generator. The value shall be given in 1/1 000 of rated torque. Table 200 specifies the object description, and Table 201 specifies the entry description.

Table 200 - Object description

Attribute	Value
Index	6074 _h
Name	Torque demand
Object Code	Variable
Data Type	Integer16
Category	Optional

Table 201 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer16
Default Value	No

15.5.5 Object 6075_h: Motor rated current

This object shall indicate the configured motor rated current. It is taken from the motor's name-plate. Depending on the motor and drive technology, this current is DC, peak or r.m.s. (root-mean-square) current. All relative current data refers to this value. The value shall be given in mA. Table 202 specifies the object description, and Table 203 specifies the entry description.

Table 202 - Object description

Attribute	Value
Index	6075 _h
Name	Motor rated current
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 203 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

15.5.6 Object 6076_h: Motor rated torque

This object shall indicate the configured motor rated torque. It is taken from the motor's name-plate. All relative torque data shall refer to this value. For linear motors, the object name is not changed, but the motor rated force value shall be entered as multiples of mN (milli Newton). The value shall be given in mNm (milli Newton metre). Table 204 specifies the object description, and Table 205 specifies the entry description.

Table 204 - Object description

Attribute	Value
Index	6076 _h
Name	Motor rated torque
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 205 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

15.5.7 Object 6077_h: Torque actual value

This object shall provide the actual value of the torque. It shall correspond to the instantaneous torque in the motor. The value shall be given per thousand of rated torque. Table 206 specifies the object description, and Table 207 specifies the entry description.

Table 206 - Object description

Attribute	Value
Index	6077 _h
Name	Torque actual value
Object Code	Variable
Data Type	Integer16
Category	Conditional: mandatory if cst is supported

Table 207 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer16
Default Value	No

15.5.8 Object 6078_h: Current actual value

This object shall provide the actual value of the current. It shall correspond to the current in the motor. The value shall be given per thousand of rated current. Table 208 specifies the object description, and Table 209 specifies the entry description.

Table 208 - Object description

Attribute	Value
Index	6078 _h
Name	Current actual value
Object Code	Variable
Data Type	Integer16
Category	Optional

Table 209 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer16
Default Value	No

15.5.9 Object 6079_h: DC link circuit voltage

This object shall provide the instantaneous DC link current voltage at the drive device. The value shall be given in mV. Table 210 specifies the object description, and Table 211 specifies the entry description.

Table 210 - Object description

Attribute	Value
Index	6079 _h
Name	DC link circuit voltage
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 211 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	No

15.5.10 Object 6087_h: Torque slope

This object shall indicate the configured rate of change of torque. The value shall be given in units of per thousand of rated torque per second. Table 212 specifies the object description, and Table 213 specifies the entry description.

Table 212 - Object description

Attribute	Value
Index	6087 _h
Name	Torque slope
Object Code	Variable
Data Type	Unsigned32
Category	Conditional: mandatory if tq is supported

Table 213 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

15.5.11 Object 6088_h: Torque profile type

This object shall indicate the configured type of profile used to perform a torque change. Table 214 specifies the value definition, Table 215 specifies the object description, and Table 216 specifies the entry description.

Table 214 - Value definition

Value	Definition
0000 _h	Linear ramp (trapezoidal profile)
0001 _h	sin² ramp
0002 _h to 7FFF _h	Reserved
8000 _h to FFFF _h	Manfacturer-specific

Table 215 - Object description

Attribute	Value
Index	6088 _h
Name	Torque profile type
Object Code	Variable
Data Type	Integer16
Category	Optional

- 121 -

Table 216 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer16
Default Value	0000 _h

16 Velocity mode

16.1 General information

This mode is used by frequency inverters, but not limited to this kind of drive device. Most applications use a velocity set-point and a controlword for switching the drive device on and off.

Figure 51 shows the overall structure of the velocity mode. The possible torque control function is not in the scope of this part of the IEC 61800-7 series, it may use the target torque and torque actual value objects defined in 15.5.1 or respectively in 15.5.7.

Figure 51 - Velocity mode with all objects

All drive devices using this profile and supporting the velocity mode shall implement the mandatory objects and there functionality as shown in Figure 52.

Figure 52 - Velocity mode with mandatory objects only

16.2 Functional description

16.2.1 Velocity limit function

The limits in the velocity limit function may be given in user-specific units by including the *vl* dimension factor in the velocity limit or in rotations per minute (rpm). The limit-value message is generated if the input value of the speed limit results in a value outside the speed limit's operating range. The limit-value message is mapped as one bit in the statusword.

16.2.2 Ramp function

Figure 53 shows the velocity profile that is used to limit the increase and decrease of velocity. The velocity output is equal to the input as long as the changes are below as defined in vl velocity acceleration, vl velocity deceleration, and vl velocity quickstop.

Figure 53 - Velocity profile

16.2.3 Velocity control function

On the basis of the vl velocity demand, the velocity control function provides the vl control-effort.

16.2.4 Factor function

The factor function multiplies the input variables by the assigned factors. The factor shall have a value of 1, if it is not implemented.

Figure 54 shows the structure of the factor function; the factor function for two factors is built of two functions in series connection.

Figure 54 - Factor function

- 123 -

Figure 55 shows the structure of the reverse factor function. The reverse factor function divides the input variables by the assigned factors.

Figure 55 - Reverse factor function

16.3 General definitions

All objects defined in 16.5 are used only for the velocity mode.

16.4 Use of controlword and statusword

The velocity mode uses some bits of the controlword and the statusword for mode-specific purposes. Figure 56 shows the structure of the controlword. Table 217 and Figure 57 define the values for bit 4, bit 5, bit 6, and bit 8 of the controlword. These bits are optional.

Figure 56 - Controlword for profile velocity mode

Table 217 - Definition of bit 4, bit 5, bit 6, and bit 8

Bit	Value	Definition	
4	0	Velocity demand value shall be controlled in any other (manufacturer-specific) way, for example by a test function generator or manufacturer-specific halt function	
	1	Velocity demand value shall accord with ramp output value	
5	0	Ramp output value shall be locked to current output value	
	1	Ramp output value shall follow ramp input value	
6	0	Ramp input value shall be set to zero	
	1	Ramp input value shall accord with ramp reference	
8	0	No command	
	1	Motor shall be stopped	

Figure 57 - Usage of controlword bits in velocity mode

Figure 58 shows the structure of the statusword.

Figure 58 - Statusword for profile velocity mode

16.5 Detailed object definitions

16.5.1 Object 6042_h: vI target velocity

This object shall indicate the required velocity of the system. It shall be multiplied by the vl dimension factor and the vl set-point factor, if these are implemented. The value shall be given in user-defined velocity units or in revolutions per minute (rpm), if the vl dimension factor and the vl set-point factor are not implemented or have the value 1. Positive values shall indicate forward direction and negative values shall indicate reverse direction. Table 218 specifies the object description, and Table 219 specifies the entry description.

Table 218 - Object description

Attribute	Value
Index	6042 _h
Name	v/ target velocity
Object Code	Variable
Data Type	Integer16
Category	Conditional: mandatory if vI is supported

Table 219 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer16
Default Value	0000 _h

16.5.2 Object 6043_h: vI velocity demand

This object shall provide the instantaneous velocity generated by the ramp function. It is an internal object of the drive device. The value shall be given in the very same unit as the $\it vl$ target velocity. Positive values shall indicate forward direction and negative values shall indicate reverse direction. Table 220 specifies the object description, and Table 221 specifies the entry description.

Table 220 - Object description

Attribute	Value
Index	6043 _h
Name	vI velocity demand
Object Code	Variable
Data Type	Integer16
Category	Conditional: mandatory if vI is supported

Table 221 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer16
Default Value	No

16.5.3 Object 6044_h: vI velocity actual value

This object shall provide the velocity at the motor spindle or load. Depending on the implementation (simple drive device, without sensor, with sensor, etc.), the drive shall provide the appropriate image of the actual velocity (velocity demand, velocity control effort, calculated velocity, measured velocity).

The value shall be given in the very same unit as the *vl* target velocity. Positive values shall indicate forward direction and negative values shall indicate reverse direction. Table 222 specifies the object description, and Table 223 specifies the entry description.

Table 222 - Object description

Attribute	Value
Index	6044 _h
Name	vl velocity actual value
Object Code	Variable
Data Type	Integer16
Category	Conditional: mandatory, if vI is supported

Table 223 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Integer16
Default Value	No

16.5.4 Object 6046_h: vI velocity min max amount

This object shall indicate the configured minimum and maximum amount of velocity. The vl velocity max amount sub-object shall be mapped internally to the vl velocity max pos and vl velocity max neg values. The vl velocity min amount sub-object shall be mapped internally to the vl velocity min pos and vl velocity min neg values.

This transfer characteristic is shown in Figure 59.

Figure 59 - Transfer characteristic of vI velocity min max amount

The values shall be given in rotations per minute (rpm) or in user-defined velocity unit if the vl dimension factor object is implemented and is not set to 1. Table 224 specifies the object description, and specifies the entry description.

Table 224 - Object description

Attribute	Value
Index	6046 _h
Name	v/ velocity min max amount
Object Code	Array
Data Type	Unsigned32
Category	Conditional: mandatory if vI mode is supported

Table 225 - Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	02 _h
Default Value	02 _h
Sub-Index	01 _h
Description	v/ velocity min amount
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific
Sub-Index	02 _h
Description	v/ velocity max amount
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific
	·

16.5.5 Object 6049_h: vI velocity deceleration

This object shall indicate the configured delta speed and delta time of the slope of the deceleration ramp as shown in Figure 60.

$$vl\ velocity\ deceleration = \frac{delta\ speed}{delta\ time}$$

Figure 60 - Transfer characteristic of the velocity deceleration

The value of delta speed shall be given in rotations per minute (rpm) or in a user-defined velocity unit if the *vl* dimension factor object is implemented and is not set to 1; the value of delta time shall be given in s. Table 226 specifies the object description, and Table 227

– 128 **–**

specifies the entry description. If this object is not implemented, the value in object 6048_h shall be used for vl velocity deceleration.

Table 226 - Object description

Attribute	Value
Index	6049 _h
Name	vl velocity deceleration
Object Code	Record
Data Type	vl velocity acceleration decelaration
Category	Conditional: optional

Table 227 – Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	02 _h
Default Value	02 _h
Sub-Index	01 _h
Description	Delta speed
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific
Sub-Index	02 _h
Description	Delta time
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned16
Default Value	Manufacturer-specific

16.5.6 Object 6048_h: v/ velocity acceleration

This object shall indicate the configured delta speed and delta time of the slope of the acceleration ramp as shown in Figure 61.

Example: If you ramp to 1 500 rpm in 3.7 s, the delta speed equals to 15 000 rpm and delta time equals to 37 s.

- 129 -

$$vl\ velocity\ acceleration = \frac{delta\ speed}{delta\ time}$$

Figure 61 - Transfer characteristic of the velocity acceleration

The value of delta speed shall be given in rotations per minute (rpm) or in a user-defined velocity unit if the vl dimension factor object is implemented and is not set to 1; the value of delta time shall be given in s. Table 228 specifies the object description, and Table 229 specifies the entry description.

Table 228 - Object description

Attribute	Value
Index	6048 _h
Name	vI velocity acceleration
Object Code	Record
Data Type	vI velocity acceleration decelaration
Category	Conditional: mandatory if vI is supported

Table 229 - Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	02 _h
Default Value	02 _h
Sub-Index	01 _h
Description	Delta speed
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific

Table 229 (continued)

Attribute	Value
Sub-Index	02 _h
Description	Delta time
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned16
Default Value	Manufacturer-specific

16.5.7 Object 604A_h: v/ velocity quick stop

This object shall indicate the configured delta speed and delta time of the slope of the deceleration ramp for quick stop as shown in Figure 62.

$$velocity \ quick \ stop = \frac{delta \ speed}{delta \ time}$$

$$\frac{\sum_{i=0}^{n} \frac{1}{n}}{n} \frac{1}{n} \frac{1}{n}$$

Figure 62 - Transfer characteristic of the quick stop deceleration

time

The value of delta speed shall be given in rotations per minute (rpm) or in a user-defined velocity unit if the vl dimension factor object is implemented and is not set to 1; the value of delta time shall be given in s. Table 230 specifies the object description, and Table 231 specifies the entry description.

Table 230 - Object description

Attribute	Value
Index	604A _h
Name	v/ velocity quick stop
Object Code	Record
Data Type	vl velocity acceleration decelaration
Category	Conditional: optional

Table 231 - Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	02 _h
Default Value	02 _h
Sub-Index	01 _h
Description	Delta speed
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	Manufacturer-specific
Sub-Index	02 _h
Description	Delta time
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned16
Default Value	Manufacturer-specific

16.5.8 Object 604B_h: vI set-point factor

This object shall indicate the configured numerator and denominator of the vl set-point factor. The vl set-point factor serves to modify the resolution or directing range of the specified set-point. It is aso included in calculation of the vl velocity demand, and vl velocity actual value. It does not influence the velocity limit function and the ramp function. The value shall have no physical unit and shall be given in the range from -32 768 to +32 767, but the value of 0 shall not be used. Table 232 specifies the object description, and Table 233 specifies the entry description.

Table 232 - Object description

Attribute	Value
Index	604B _h
Name	v/ set-point factor
Object Code	Array
Data Type	Integer16
Category	Optional

- 132 -

Table 233 - Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	02 _h
Default Value	02 _h
Sub-Index	01 _h
Description	v/ set-point factor numerator
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See value definition
Default Value	+1
Sub-Index	02 _h
Description	v/ set-point factor denominator
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See value definition
Default Value	+1

16.5.9 Object 604C_h: vI dimension factor

This object shall indicate the configured numerator and denominator of the vl dimension factor. The vl dimension factor serves to include gearing in calculation or serves to scale the frequencies or specific units of the user. It influences the vl target velocity, vl velocity demand, vl velocity actual value as well as the velocity limit function and the ramp function.

Calculating the vl dimension factor: Every user-specific velocity consists of a specific unit referred to a specific unit of time (e.g. 1/s, bottles/min, m/s, etc.). The purpose of the vl dimension factor is to convert this specific unit to the revolutions/minute unit.

Velocity [user-defined unit] × Dimension factor [rpm/user-defined unit] = Velocity [rpm]

The values shall be in the range of -2 147 483 648 to +2 147 483 647, but the value of 0 shall be not used.

Table 234 specifies the object description, and Table 235 specifies the entry description.

Example: If the target unit is 0,1 Hz the numerator is 120 and the denominator is the pole number.

- 133 -

Table 234 - Object description

Attribute	Value
Index	604C _h
Name	v/ dimension factor
Object Code	Array
Data Type	Integer32
Category	Optional

Table 235 - Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	02 _h
Default Value	02 _h
Sub-Index	01 _h
Description	vI dimension factor numerator
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See value definition
Default Value	+1
Sub-Index	02 _h
Description	v/ dimension factor denominator
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	See value definition
Default Value	+1

17 Cyclic synchronous position mode

17.1 General information

The overall structure for this mode is shown in Figure 63. With this mode, the trajectory generator is located in the control device, not in the drive device. In cyclic synchronous manner, it provides a target position to the drive device, which performs position control, velocity control and torque control. Optionally, additive velocity and torque values can be provided by the control system in order to allow for velocity and/or torque feedforward. Measured by sensors, the drive device may provide actual values for position, velocity and torque to the control device.

- 134 -

The behavior of the control function is influenced by control parameters like limit functions, which are externally applicable. The drive internal control function is not specified more precisely in this part of the IEC 618700-7 series as it is highly manufacturer specific, but the format and content of the control parameters are provided.

Figure 63 - Cyclic synchronous position mode overview

17.2 Functional description

Figure 64 shows the inputs and outputs of the drive control function. The input values (from the control function point of view) are the target position and optionally a position offset (to be added to the target position to allow two instances to set up the position) as well as an optional velocity offset and an optional torque offset used for feedforward control. Especially in cascaded control structures, where a position control is followed by a velocity or torque control, the output of the position control loop is used as an input for a further calculation in the drive device. Limit functions may be used to restrict the range of values to avoid unintended positions.

The drive device monitors the following error. Other features specified in this mode are limitation of motor speed and a quick stop function for emergency reasons. The torque may be limited as well.

The interpolation time period defines the time period between two updates of the target position and/or additive position and shall be used for intercycle interpolation.

The target position shall be interpreted as absolute value.

The position actual value is used as mandatory output to the control device. Further outputs may be the velocity actual value, torque actual value and the velocity sensor actual value. The following error actual value may be used as an additional parameter.

Figure 64 - Cyclic synchronous position control function

All values are transformed – if necessary – from user-defined units to normalised units such as increments with the functions described in Clause 9.

A target position value or position offset outside the allowed range of the following error window around a position demand value for longer than the following error time out shall result in setting bit 13 (following error) in the statusword to 1.

17.3 Use of controlword and statusword

The cyclic synchrounous position mode uses no mode specific bits of the controlword and three bits of the statusword for mode-specific purposes. Figure 65 shows the structure of the statusword. Table 236 defines the values for bit 10, 12, and 13 of the statusword.

Figure 65 - Statusword for profile cyclic synchronous position mode

Table 236 - Definition of bit 10, bit 12, and bit 13

Bit	Value	Definition
10	0	Reserved
	1	Reserved
12	0	Target position ignored
	1	Target position shall be used as input to position control loop
13	0	No following error
	1	Following error

17.4 Detailed object definitions

17.4.1 Object 60B0_h: Position offset

This object shall provide the offset of the target position. The offset shall be given in user-defined position units.

NOTE The value itself is absolute and thus independent of how often it is transmitted over the communication system, for example, transmitted twice does not mean double value. Since the additive position value represents an offset to the target position, it can be also used to control the drive with relative values with regard to the target position.

Table 237 specifies the object description, and Table 238 specifies the entry description.

Table 237 - Object description

Attribute	Value
Index	60B0 _h
Name	Position offset
Object Code	Variable
Data Type	Integer32
Category	Optional

Table 238 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	0

17.4.2 Object 60B1_h: Velocity offset

This object shall provide the offset for the velocity value. The offset shall be given in user-defined velocity units. In cyclic synchronous position mode, this object contains the input value for velocity feed forward. In cyclic synchronous velocity mode (see Clause 18), it contains the commanded offset of the drive device.

NOTE The value itself is absolute and thus independent of how often it is transmitted over the communication system, for example transmitted twice does not mean double value. Since the additive velocity value represents an offset to the target velocity, it can be also used to control the drive with relative values with regard to the target velocity.

Table 239 specifies the object description, and Table 240 specifies the entry description.

Table 239 - Object description

Attribute	Value
Index	60B1 _h
Name	Velocity offset
Object Code	Variable
Data Type	Integer32
Category	Optional

– 137 –

Table 240 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	Rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer32
Default Value	0

17.4.3 Object 60B2h: Torque offset

This object shall provide the offset for the torque value. The offset shall be given in per thousand rated torque. In cyclic synchronous position mode and cyclic synchronous velocity mode (see Clause 18), this object contains the input value for torque feed forward. In cyclic synchronous torque mode (see Clause 18) it contains the commanded additive torque of the drive, which is added to the target torque value.

NOTE The value itself is absolute and thus independent of how often it is transmitted over the communication system, for example transmitted twice does not mean double value.

Table 241 specifies the object description, and Table 242 specifies the entry description.

Table 241 - Object description

Attribute	Value
Index	60B2 _h
Name	Torque offset
Object Code	Variable
Data Type	Integer16
Category	Optional

Table 242 – Entry description

Attribute	Value
Sub-Index	00 _h
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Integer16
Default Value	0

18 Cyclic synchronous velocity mode

18.1 General information

The overall structure for this mode is shown in Figure 66. With this mode, the trajectory generator is located in the control device, not in the drive device. In cyclic synchronous manner, it provides a target velocity to the drive device, which performs velocity control and torque control. If desired, the position control loop may be closed over the communication system. Optionally, additive velocity and torque values may be provided by the control system in order to allow a second source for velocity and/or a torque feed forward. Measured by sensors, the drive device may provide actual values for position, velocity and torque to the control device.

- 138 -

The cyclic synchronous velocity mode covers the following sub-functions:

- Demand value input
- Velocity capture using position sensor or velocity sensor
- · Velocity control function with appropriate input and output signals
- Limitation of torque demand

Various sensors may be used for velocity capture. In particular, the aim is that costs are reduced and the drive power system is simplified by evaluating position and velocity using a common sensor, such as is optional using a resolver or an encoder.

The behavior of the control function is influenced by control parameters such as limit functions, which are externally applicable. The drive internal control function is not specified more precisely in this part of the IEC 61800-7 series, as it is highly manufacturer specific, but the format and content of the control parameters are provided.

Figure 66 - Cyclic synchronous velocity mode overview

18.2 General definitions

The factors necessary for scaling have a linear relationship and therefore they are described in the factor group. The polarity is described in the factor group as well.

18.3 Functional description

Figure 67 shows the inputs and outputs of the drive control function. The input (from the control device point of view) are the target velocity and optionally, a velocity offset (to be added to the target velocity to allow two instances to set up the velocity) as well as a torque offset. Especially in cascaded control structures, where a velocity control is followed by a torque control, the output of the velocity control loop is used as an input for a further calculation in the drive device.

The drive device may support limitation of motor speed and a quick stop function for emergency reasons. The torque may be limited as well.

The interpolation time period defines the time period between two updates of the target velocity and/or additive velocity and shall be used for intercycle interpolation.

The velocity actual value is used as mandatory output to the control device. Further outputs may be the torque actual value and the velocity sensor actual value.

- 139 -

Figure 67 - Cyclic synchronous velocity control function

All values are transformed – if necessary – from user-defined units to normalised units such as increments with the functions described in Clause 9.

18.4 Use of controlword and statusword

The cyclic synchronous velocity mode uses no mode specific bits of the controlword and some bits of the statusword for mode-specific purposes. Figure 68 shows the structure of the statusword. Table 243 defines the values for bit 10, 12, and 13 of the statusword.

Figure 68 - Statusword for profile cyclic synchronous velocity mode

Table 243 - Definition of bit 10, bit 12, and bit 13

Bit	Value	Definition
10	0	Reserved
	1	Reserved
12	0	Target velocity ignored
	1	Target velocity shall be used as input to velocity control loop
13	0	Reserved
	1	Reserved

19 Cyclic synchronous torque mode

19.1 General information

The overall structure for this mode is shown in Figure 69. With this mode, the trajectory generator is located in the control device, not in the drive device. In cyclic synchronous manner, it provides a target torque to the drive device, which performs torque control. Optionally, an additive torque value can be provided by the control system in order to allow two instances to set up the torque. Measured by sensors, the drive device may provide actual values for position, velocity and torque to the control device.

The cyclic synchronous torque mode covers the following sub-functions:

- · demand value input;
- torque capture;
- torque control function with appropriate input and output signals;
- limitation of torque demand.

The drive internal control function is not specified more precisely in this part of the IEC 61800-7 series as it is highly manufacturer specific, but the format and content of the control parameters are provided.

Figure 69 - Cyclic synchronous torque mode overview

19.2 General definitions

The factors necessary for scaling have a linear relationship and therefore they are described in the factor group. The polarity is described in the factor group as well.

19.3 Functional description

Figure 70 shows the inputs and outputs of the torque control function. The input (from the control function point of view) are the target torque and optionally a torque offset (to be added to the target torque to allow two instances to set up the torque).

The drive device can have features for limitation of motor speed. The torque can be limited as well.

The interpolation time period defines the time period between two updates of the target velocity and/or additive velocity and shall be used for intercycle interpolation.

The torque actual value is used as mandatory output to the control device.

- 141 -

Figure 70 - Cyclic synchronous torque control function

19.4 Use of controlword and statusword

The cyclic synchronous torque mode uses no mode specific bits of the controlword and some bits of the statusword for mode-specific purposes. Figure 71 shows the structure of the statusword. Table 244 defines the values for bit 10, 12, and 13 of the statusword.

Figure 71 - Statusword for profile cyclic synchronous torque mode

Table 244 - Definition of bit 10, bit 12, and bit 13

Bit	Value	Definition
10	0	Reserved
	1	Reserved
12	0	Target torque ignored
	1	Target torque shall be used as input to torque control loop
13	0	Reserved
	1	Reserved

20 Optional application FE

20.1 General

The objects defined in this clause are used for the optional generic input/output FE.

20.2 Object 60FD_h: Digital inputs

This object shall provide digital inputs. Figure 72 specifies the object structure.

Figure 72 - Object structure

Table 245 specifies the values.

Table 245 - Value definition

Value	Definition
0 _b	Switched off
1 _b	Switched on

Table 246 specifies the object description, Table 247 specifies the entry description.

Table 246 - Object description

Attribute	Value
Index	60FD _h
Name	Digital inputs
Object Code	Variable
Data Type	Unsigned32
Category	Optional

Table 247 - Entry description

Attribute	Value
Sub-Index	00 _h
Access	ro
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	0000 0000 _h

20.3 Object 60FE_h: Digital outputs

This object shall command simple digital outputs. Figure 73 specifies the object structure.

Figure 73 - Object structure

61800-7-201 © IEC:2007

– 143 –

Table 248 specifies the values.

Table 248 - Value definition

Value	Definition for sub-index 01 _h	Definition for sub-index 02 _h
0 _b	Switch off/don't set brake	Disable output
1 _b	Switch on/set brake	Enable output

Table 249 specifies the object description, Table 250 specifies the entry description.

Table 249 - Object description

Attribute	Value
Index	60FE _h
Name	Digital output
Object Code	Array
Data Type	Unsigned32
Category	Optional

Table 250 - Entry description

Attribute	Value
Sub-Index	00 _h
Description	Highest sub-index supported
Entry Category	Mandatory
Access	С
PDO Mapping	See IEC 61800-7-301
Value Range	02 _h or 02 _h
Default Value	Manufacturer-specific
Sub-Index	01 _h
Description	Physical outputs
Entry Category	Mandatory
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	0000 0000 _h
Sub-Index	02 _h
Description	Bit mask
Entry Category	Optional
Access	rw
PDO Mapping	See IEC 61800-7-301
Value Range	Unsigned32
Default Value	0000 0000 _h

Bibliography

IEC 60050-351, International Electrotechnical Vocabulary – Part 351: Control technology 13

IEC 61499-1, Function blocks - Part 1: Architecture

IEC 61800 (all parts), Adjustable speed electrical power drive systems

IEC 61800-7-1, Adjustable speed electrical power drive systems – Part 7-1: Generic interface and use of profiles for power drive systems – Interface definition

IEC 61800-7-202, Adjustable speed electrical power drive systems – Part 7-202: Generic interface and use of profiles for power drive systems – Profile type 2 specification

IEC 61800-7-203, Adjustable speed electrical power drive systems – Part 7-203: Generic interface and use of profiles for power drive systems – Profile type 3 specification

IEC 61800-7-204, Adjustable speed electrical power drive systems – Part 7-204: Generic interface and use of profiles for power drive systems – Profile type 4 specification

IEC 61800-7-302, Adjustable speed electrical power drive systems – Part 7-302: Generic interface and use of profiles for power drive systems – Mapping of profile type 2 to network technologies

IEC 61800-7-303, Adjustable speed electrical power drive systems – Part 7-303: Generic interface and use of profiles for power drive systems – Mapping of profile type 3 to network technologies

IEC 61800-7-304, Adjustable speed electrical power drive systems – Part 7-304: Generic interface and use of profiles for power drive systems – Mapping of profile type 4 to network technologies

IEC/TS 61915, Low-voltage switchgear and controlgear – Principles for the development of device profiles for networked industrial devices

IEC/TR 62390:2005, Common Automation Device – Profile Guideline

ISO/IEC 2382-15:1999, Information technology, Vocabulary – Part 15: Programming languages

ISO/IEC 19501, Information technology – Open Distributed Processing – Unified Modeling Language (UML) Version 1.4.2

ISO 15745-1:2003, Industrial automation systems and integration – Open systems application integration framework – Part 1: Generic reference description

¹³ See also the IEC Multilingual Dictionary – Electricity, Electronics and Telecommunications.

Lizenziert durch VDE VERLAG GmbH für Synapticon GmbH. Alle Rechte vorbehalten.

– 146 –

SOMMAIRE

A۷	'ANT-I	PROPOS	3	159
IN	TROD	UCTION	l	161
4	Dam	مام ماد	anliantia a	100
1			pplication	
2			normatives	
3	Tern		nitions et abréviations	
	3.1		s et définitions	
	3.2		ations	
4				
	4.1		lérations d'ordre général	
	4.2		ce de communication	
_	4.3		naire d'objets	
5			nnées	
	5.1	• •	de données normalisés	
_	5.2		ions des enregistrements	
6			'objets générales	
	6.1		alités	
	6.2	-	de paramètres de communication	
	6.3	-	d'identification et d'informations supplémentaires	
		6.3.1	Objet 6402 _h : Type de moteur	
		6.3.2	Objet 6403 _h : Numéro de lot du moteur	
		6.3.3	Objet 6404h: Constructeur du moteur	
		6.3.4	Objet 6405 _h : adresse http de lot du moteur	
		6.3.5 6.3.6	Objet 6406 _h : Date d'étalonnage du moteur	
		6.3.7	Objet 6407 _h : Durée de service du moteur	
		6.3.8	Objet 6505 _h : adresse http de lot du dispositif d'entraînement	
7	Code		eurs et comportement aux erreurs	
•	7.1		d'erreurs	
	7.1		ortement aux erreurs	
8		1	de l'entraînement électrique de puissance	_
Ü	8.1		alités	
	8.2		atisation d'états finis	
	8.3		de fonctionnement	
	8.4		cations d'objets détaillées	
	0.4	8.4.1	Objet 6040 _h : Mot de commande	
		8.4.2	Objet 6041 _h : Mot d'état	
		8.4.3	Objet 603F _h : Code d'erreur	
		8.4.4	Objet 6007 _h : Code de l'option Abandon de connexion	
		8.4.5	Objet 605A _h : Code de l'option Arrêt rapide	
		8.4.6	Objet 605B _h : Code de l'option Interruption	
		8.4.7	Objet 605Ch: Code de l'option Désactiver le mode de fonctionnement	
		8.4.8	Objet 605Dh: Code de l'option Arrêt	
		8.4.9	Objet 605E _h : Code de l'option Réaction au défaut	
		8.4.10	Objet 6060 _h : Modes de fonctionnement	

		8.4.11	Objet 6061 _h : Affichage des modes de fonctionnement	198
		8.4.12	Objet 6502 _h : Modes d'entraînement pris en charge	199
9	Group	oe de fa	cteurs	200
	9.1	Généra	lités	200
	9.2	Définition	ons d'objets détaillées	200
		9.2.1	Objet 608Fh: Résolution du codeur de position	200
		9.2.2	Objet 6090h: Résolution du codeur de vitesse	201
		9.2.3	Objet 6091 _h : Rapport d'engrenage	202
		9.2.4	Objet 6092 _h : Constante d'avance	203
			Objet 607E _h : Polarité	
10	Mode	de posi	tion de profil	205
	10.1	Informa	tions d'ordre général	205
	10.2	Descrip	tion fonctionnelle	207
		10.2.1	Généralités	207
		10.2.2	Point de consigne unique	208
		10.2.3	Ensemble de points de consigne	209
	10.3	Définition	ons générales	211
			on du mot de commande et du mot d'état	
	10.5		ons d'objets détaillées	
		10.5.1	Objet 607A _h : Position cible	
		10.5.2	Objet 607B _h : Limite de plage de position	
		10.5.3	Objet 607D _h : Limite de position de logiciel	
		10.5.4	Objet 607F _h : Vitesse maximale du profil	
		10.5.5	Objet 6080 _h : Régime maximal du moteur	
		10.5.6	Objet 6081 _h : Vitesse de profil	
		10.5.7	Objet 6082 _h : Vitesse finale	
		10.5.8	Objet 6083 _h : Accélération de profil	
		10.5.9	Objet 6084 _h : Décélération de profil	
		10.5.10	, , , , , , , , , , , , , , , , , , , ,	
		10.5.11	, 11 , ,	
			Objet 60A3 _h : Utilisation de profil par à-coup	220
			Objet 60A4 _h : Profil par à-coup	
			Objet 60C5 _h : Accélération maximale	
			Objet 60C6 _h : Décélération maximale	
11	Mode	de reto	ur à la position de référence	224
	11.1	Informa	tions d'ordre général	224
	11.2	Descrip	tion fonctionnelle	224
	11.3	Définition	ons générales	225
		11.3.1	Méthode 1: Retour à la position de référence avec l'interrupteur de fin de course négatif et l'impulsion d'index	225
		11.3.2	Méthode 2: Retour à la position de référence avec l'interrupteur de fin de course positif et l'impulsion d'index	226
		11.3.3	Méthodes 3 et 4: Retour à la position de référence avec l'interrupteur d'origine positif et l'impulsion d'index	
		11.3.4	Méthodes 5 et 6: Retour à la position de référence avec l'interrupteur d'origine négatif et l'impulsion d'index	
		11.3.5	Méthodes 7 à 14: Retour à la position de référence avec l'interrupteur d'origine et l'impulsion d'index	
		11.3.6	Méthodes 15 et 16: Réservé	

		11.3.7	Méthodes 17 à 30: Retour à la position de référence sans impulsion d'index	229
		11.3.8	Méthodes 31 et 32: Réservé	
		11.3.9	Méthodes 33 et 34: Retour à la position de référence avec l'impulsion d'index	
		11.3.10		
		11.3.11	Méthode 36: Retour à la position de référence avec sonde tactile	
	11.4		on du mot de commande et du mot d'état	
			ons d'objets détaillées	
		11.5.1	Objet 607C _h : Décalage d'origine	
		11.5.2	Objet 6098 _h : Méthode de retour à la position de référence	
		11.5.3	Objet 6099 _h : Vitesses de retour à la position de référence	
		11.5.4	Objet 609Ah: Accélération de retour à la position de référence	234
		11.5.5	Objet 60B8 _h : Fonction de la sonde tactile	235
		11.5.6	Objet 60B9 _h : État de la sonde tactile	236
		11.5.7	Objet 60BAh: Valeur positive de la position de la sonde tactile 1	237
		11.5.8	Objet 60BBh: Valeur négative de la position de la sonde tactile 1	237
		11.5.9	Objet 60BCh: Valeur positive de la position de la sonde tactile 2	238
		11.5.10	Objet 60BDh: Valeur négative de la position de la sonde tactile 2	238
12	Fonc	tion d'ass	servissement de position	239
	12.1	Informa	tions d'ordre général	239
	12.2	Descrip	tion fonctionnelle	239
	12.3	Définition	ons d'objets détaillées	242
		12.3.1	Objet 6062 _h : Valeur de demande de position	242
		12.3.2	Objet 6063 _h : Valeur interne instantanée de position	243
		12.3.3	Objet 6064 _h : Valeur instantanée de position	
		12.3.4	Objet 6065 _h : Fenêtre d'erreur suivante	
		12.3.5	Objet 6066 _h : Temporisation d'erreur suivante	
		12.3.6	Objet 6067 _h : Fenêtre de position	
		12.3.7	Objet 6068 _h : Créneau de position	
		12.3.8	Objet 60F4 _h : Valeur instantanée d'erreur suivante	
		12.3.9	Objet 60FA _h : Mesure de contrôle	
			Objet 60FC _h : Valeur interne de demande de position	
			Objet 60F2 _h : Code de l'option Positionnement	
13			tion interpolée	
			tions d'ordre général	
	13.2		tion fonctionnelle	
			Généralités	
			Mode de position interpolée linéaire avec plusieurs axes	
			Stratégies de la mémoire tampon pour le mode de position interpolée	
			FSA de mode de position interpolée	
	13.3		ons générales	
			on du mot de commande et du mot d'état	
	13.5		ons d'objets détaillées	
			Objet 60C0 _h : Sélection du sous-mode d'interpolation	
			Objet 60C1 _h : Registre des données d'interpolation	
			Objet 60C2 _h : Délai d'interpolation	
		13.3.4	Objet 60C4 _h : Configuration des données d'interpolation	∠0∠

14	Mode	de vites	sse de profil	264	
	14.1	Informa	tions d'ordre général	264	
	14.2	Descrip	tion fonctionnelle	265	
	14.3	-	ons générales		
	14.4	Utilisatio	on du mot de commande et du mot d'état	267	
			ons d'objets détaillées		
		14.5.1	Objet 6069 _h : Valeur instantanée du capteur de vitesse		
		14.5.2	Objet 606A _h : Code de sélection du capteur		
		14.5.3	Objet 606Bh: Valeur de demande de vitesse		
		14.5.4	Objet 606Ch: Valeur instantanée de vitesse		
		14.5.5	Objet 606D _h : Plage de vitesse		
		14.5.6	Objet 606Eh: Créneau de vitesse		
		14.5.7	Objet 606Fh: Seuil de vitesse		
		14.5.8	Objet 6070 _h : Durée de seuil de vitesse		
		14.5.9	Objet 60FF _h : Vitesse cible		
			Objet 60F8 _h : Glissement max.		
15	Mode		ple de profil		
			tions d'ordre général		
	15.1		tion fonctionnelle		
	_	-	ons générales		
			on du mot de commande et du mot d'état		
			ons d'objets détaillées		
	10.0	15.5.1	Objet 6071 _h : Couple cible		
		15.5.1	Objet 6072 _h : Couple max		
		15.5.2	Objet 6073 _h : Courant max		
		15.5.4	Objet 6074 _h : Demande de couple		
		15.5.5	Objet 6075 _h : Courant assigné du moteur		
		15.5.6	Objet 6076 _h : Couple assigné du moteur		
		15.5.7	Objet 6077 _h : Valeur instantanée de couple		
		15.5.7	Objet 6078 _h : Valeur instantanée de courant		
		15.5.9	Objet 6079 _h : Tension de circuit de liaison c.c		
			Objet 6087 _h : Pente de couple		
			Objet 6088 _h : Type de profil de couple		
16	Mode		•••		
10	Mode de vitesse				
	16.2	-	tion fonctionnelle		
			Fonction de limite de vitesse		
			Fonction de rampe		
			Fonction de commande de vitesse		
	40.0		Fonction factorielle		
	16.3		ons générales		
	16.4		on du mot de commande et du mot d'état		
	16.5		ons d'objets détaillées		
			Objet 6042 _h : vitesse cible <i>vl</i>		
			Objet 6043 _h : demande de vitesse <i>vl</i>		
			Objet 6044 _h : valeur instantanée de vitesse <i>vl</i>		
			Objet 6046 _h : niveau de vitesse max. min. <i>vl</i>		
			Objet 6049 _h : décélération en vitesse <i>vl</i>		
		16.5.6	Objet 6048h: accélération en vitesse vl	292	

		16.5.7 Objet 604A _h : arrêt rapide de vitesse <i>vl</i>	. 293
		16.5.8 Objet 604B _h : facteur de point de consigne <i>vl</i>	. 295
		16.5.9 Objet 604Ch: facteur de dimension v/	. 296
17	Mode	e de position à synchronisation cyclique	. 297
	17.1	Informations d'ordre général	. 297
	17.2	Description fonctionnelle	. 298
	17.3	Utilisation du mot de commande et du mot d'état	. 300
	17.4	Définitions d'objets détaillées	. 300
		17.4.1 Objet 60B0h: Décalage de position	. 300
		17.4.2 Objet 60B1 _h : Décalage de vitesse	
		17.4.3 Objet 60B2 _h : Décalage de couple	
18	Mode	e de vitesse à synchronisation cyclique	. 302
		Informations d'ordre général	
	18.2	Définitions générales	. 303
		Description fonctionnelle	
		Utilisation du mot de commande et du mot d'état	
19	Mode	e de couple à synchronisation cyclique	. 305
	19.1	Informations d'ordre général	
	19.2		
		Description fonctionnelle	
		Utilisation du mot de commande et du mot d'état	
20		pplication facultative	
		Généralités	
		Objet 60FDh: Entrées numériques	
	20.3	Objet 60FE _h : Sorties numériques	. 309
Dih	lioaror	phie	211
טוט	ilograf	JIIIC	. 311
Fig	ure 1 -	– Structure de la CEI 61800-7	. 165
Fig	ure 2 -	– Définition des valeurs	. 175
•		Commande distante et commande locale	
•		Automatisation d'états finis de l'entraînement électrique de puissance	
•		- Relation entre les différents paramètres de valeurs	
•		·	
_		– Définition des valeurs	
_		– Définition des valeurs	
_		– Définition des valeurs	
Fig	ure 9 -	– Définition des valeurs	. 205
Fig	ure 10	- Générateur de trajectoire et fonction d'asservissement de position	. 206
Fig	ure 11	- Générateur de trajectoire pour le mode de position de profil	. 207
Fig	ure 12	2 – Exemple de point de consigne	. 208
Fig	ure 13	B – Procédure de transfert pour la méthode de point de consigne unique	.209
Fig	ure 14	- Procédure de transfert pour la méthode d'ensemble de points de consigne	.210
_		5 – Traitement des points de consigne dans le cas de deux points de consigne	
_		6 – Mot de commande pour le mode de position de profil (pp)	
_		' – Mot d'état pour le mode de position de profil (pp)	
_			
rıg	ure 18	B – Diagramme vitesse/temps avec les positions d'à-coup	. ۷۷ ۱

Figure 19 – Fonction du mode de retour à la position de référence	224
Figure 20 – Retour à la position de référence avec l'interrupteur de fin de course négatif et l'impulsion d'index	226
Figure 21 – Retour à la position de référence avec l'interrupteur de fin de course positif et l'impulsion d'index	226
Figure 22 – Retour à la position de référence avec l'interrupteur d'origine positif et l'impulsion d'index	227
Figure 23 – Retour à la position de référence avec l'interrupteur d'origine négatif et l'impulsion d'index	227
Figure 24 – Retour à la position de référence avec l'interrupteur d'origine et l'impulsion d'index - déplacement initial positif	228
Figure 25 – Retour à la position de référence avec l'interrupteur d'origine et l'impulsion d'index - déplacement initial négatif	229
Figure 26 – Retour à la position de référence avec l'interrupteur d'origine positif	230
Figure 27 – Retour à la position de référence avec l'impulsion d'index	230
Figure 28 – Mot de commande pour le mode de retour à la position de référence	231
Figure 29 – Mot d'état pour le mode de retour à la position de référence	231
Figure 30 – Définition du décalage d'origine	232
Figure 31 – Fonction d'asservissement de position	239
Figure 32 – Erreur suivante (présentation générale des fonctions)	240
Figure 33 – Position atteinte (présentation générale des fonctions)	241
Figure 34 – Position atteinte (définitions)	242
Figure 35 – Erreur suivante (définitions)	242
Figure 36 – Structure d'objet	248
Figure 37 – Contrôleur d'interpolation	252
Figure 38 – Mode de position interpolée pour deux axes	253
Figure 39 – Interpolation linéaire pour un axe	254
Figure 40 – Organisation de la mémoire tampon d'entrée	255
Figure 41 – Exemples de mémoire tampon d'entrée	256
Figure 42 – FSA de mode de position interpolée	257
Figure 43 – Mot de commande pour le mode de position interpolée	258
Figure 44 – Mot d'état pour le mode de position interpolée	258
Figure 45 – Mode de vitesse de profil	266
Figure 46 – Mot de commande pour le mode de vitesse de profil	267
Figure 47 – Mot d'état pour le mode de vitesse de profil	267
Figure 48 – Structure du mode de couple de profil	274
Figure 49 – Mot de commande pour le mode de couple de profil	275
Figure 50 – Mot d'état pour le mode de couple de profil	275
Figure 51 – Mode de vitesse avec tous les objets	282
Figure 52 – Mode de vitesse avec les objets obligatoires uniquement	283
Figure 53 – Profil de vitesse	284
Figure 54 – Fonction factorielle	
Figure 55 – Fonction factorielle inverse	
Figure 56 – Mot de commande pour le mode de vitesse de profil	
Figure 57 – Utilisation des bits de mot de commande en mode de vitesse	286

Figure 58 – Mot d'état pour le mode de vitesse de profil	286
Figure 59 – Caractéristique de transfert des niveaux maximum et minimum de vitesse vI .	289
Figure 60 – Caractéristique de transfert de la décélération en vitesse	291
Figure 61 – Caractéristique de transfert de l'accélération en vitesse	292
Figure 62 – Caractéristique de transfert de la décélération par arrêt rapide	294
Figure 63 – Présentation générale du mode de position à synchronisation cyclique	298
Figure 64 – Fonction d'asservissement de position à synchronisation cyclique	299
Figure 65 – Mot d'état pour le mode de position à synchronisation cyclique de profil	300
Figure 66 – Présentation générale du mode de vitesse à synchronisation cyclique	303
Figure 67 – Fonction de commande de vitesse à synchronisation cyclique	304
Figure 68 – Mot d'état pour le mode de vitesse à synchronisation cyclique de profil	305
Figure 69 – Présentation générale du mode de couple à synchronisation cyclique	306
Figure 70 – Fonction d'asservissement de couple à synchronisation cyclique	307
Figure 71 – Mot d'état pour le mode de couple à synchronisation cyclique de profil	307
Figure 72 – Structure d'objet	308
Figure 73 – Structure d'objet	309
Tableau 1 – Liste des types de données utilisés	173
Tableau 2 – Délai d'interpolation	173
Tableau 3 – Configuration de données interpolées	174
Tableau 4 – accélération/décélération en vitesse vl	174
Tableau 5 – Description de l'objet	175
Tableau 6 – Description d'entrée	175
Tableau 7 – Définition des valeurs	175
Tableau 8 – Description de l'objet	176
Tableau 9 – Description d'entrée	176
Tableau 10 – Description de l'objet	177
Tableau 11 – Description d'entrée	177
Tableau 12 – Description de l'objet	177
Tableau 13 – Description d'entrée	177
Tableau 14 – Description de l'objet	178
Tableau 15 – Description d'entrée	178
Tableau 16 – Description de l'objet	178
Tableau 17 – Description d'entrée	178
Tableau 18 – Description de l'objet	179
Tableau 19 – Description d'entrée	179
Tableau 20 – Description de l'objet	179
Tableau 21 – Description d'entrée	179
Tableau 22 – Description de l'objet	180
Tableau 23 – Description d'entrée	180
Tableau 24 – Codes d'erreurs	180
Tableau 25 – États FSA et fonctions prises en charge	186
Tableau 26 – Événements et actions de transitions	186

Tableau 27 – Godage des commandes	190
Tableau 28 – Description de l'objet	190
Tableau 29 – Description d'entrée	190
Tableau 30 – Codage des états	191
Tableau 31 – Description de l'objet	192
Tableau 32 – Description d'entrée	192
Tableau 33 – Description de l'objet	192
Tableau 34 – Description d'entrée	193
Tableau 35 – Définition des valeurs	193
Tableau 36 – Description de l'objet	193
Tableau 37 – Description d'entrée	193
Tableau 38 – Définition des valeurs	194
Tableau 39 – Description de l'objet	194
Tableau 40 – Description d'entrée	194
Tableau 41 – Définition des valeurs	195
Tableau 42 – Description de l'objet	195
Tableau 43 – Description d'entrée	195
Tableau 44 – Définition des valeurs	195
Tableau 45 – Description de l'objet	196
Tableau 46 – Description d'entrée	196
Tableau 47 – Définition des valeurs	196
Tableau 48 – Description de l'objet	196
Tableau 49 – Description d'entrée	197
Tableau 50 – Définition des valeurs	197
Tableau 51 – Description de l'objet	197
Tableau 52 – Description d'entrée	197
Tableau 53 – Définition des valeurs	198
Tableau 54 – Description de l'objet	198
Tableau 55 – Description d'entrée	198
Tableau 56 – Description de l'objet	199
Tableau 57 – Description d'entrée	199
Tableau 58 – Description de l'objet	199
Tableau 59 – Description d'entrée	200
Tableau 60 – Description de l'objet	200
Tableau 61 – Description d'entrée	201
Tableau 62 – Description de l'objet	202
Tableau 63 – Description d'entrée	202
Tableau 64 – Description de l'objet	
Tableau 65 – Description d'entrée	
Tableau 66 – Description de l'objet	
Tableau 67 – Description d'entrée	
Tableau 68 – Description de l'objet	
Tableau 69 – Description d'entrée	205

Tableau 70 – Définition du bit 4, du bit 5 et du bit 9	.212
Tableau 71 – Définition du bit 6 et du bit 8	.212
Tableau 72 – Définition du bit 10, du bit 12 et du bit 13	.213
Tableau 73 – Description de l'objet	.213
Tableau 74 – Description d'entrée	. 213
Tableau 75 – Description de l'objet	. 214
Tableau 76 – Description d'entrée	. 214
Tableau 77 – Description de l'objet	. 215
Tableau 78 – Description d'entrée	. 215
Tableau 79 – Description de l'objet	. 216
Tableau 80 – Description d'entrée	. 216
Tableau 81 – Description de l'objet	. 216
Tableau 82 – Description d'entrée	. 216
Tableau 83 – Description de l'objet	. 217
Tableau 84 – Description d'entrée	. 217
Tableau 85 – Description de l'objet	.217
Tableau 86 – Description d'entrée	. 218
Tableau 87 – Description de l'objet	.218
Tableau 88 – Description d'entrée	. 218
Tableau 89 – Description de l'objet	.218
Tableau 90 – Description d'entrée	. 219
Tableau 91 – Description de l'objet	.219
Tableau 92 – Description d'entrée	. 219
Tableau 93 – Définition des valeurs	. 220
Tableau 94 – Description de l'objet	. 220
Tableau 95 – Description d'entrée	. 220
Tableau 96 – Description de l'objet	. 220
Tableau 97 – Description d'entrée	. 221
Tableau 98 – Assignations de valeurs	. 221
Tableau 99 – Description de l'objet	. 222
Tableau 100 – Description d'entrée	. 222
Tableau 101 – Description de l'objet	. 223
Tableau 102 – Description d'entrée	. 223
Tableau 103 – Description de l'objet	. 223
Tableau 104 – Description d'entrée	. 224
Tableau 105 – Définition du bit 4 et du bit 8	. 231
Tableau 106 – Définition du bit 10, du bit 12 et du bit 13	. 231
Tableau 107 – Description de l'objet	. 232
Tableau 108 – Description d'entrée	. 232
Tableau 109 – Définition des valeurs	. 233
Tableau 110 – Description de l'objet	. 233
Tableau 111 – Description d'entrée	. 233
Tableau 112 – Description de l'objet	. 233

Tableau 113 – Description d'entrée	. 234
Tableau 114 – Description de l'objet	. 234
Tableau 115 – Description d'entrée	. 235
Tableau 116 – Définition des valeurs	. 235
Tableau 117 – Description de l'objet	. 236
Tableau 118 – Description d'entrée	. 236
Tableau 119 – Définition des valeurs	. 236
Tableau 120 – Description de l'objet	. 237
Tableau 121 – Description d'entrée	. 237
Tableau 122 – Description de l'objet	. 237
Tableau 123 – Description d'entrée	. 237
Tableau 124 – Description de l'objet	.238
Tableau 125 – Description d'entrée	. 238
Tableau 126 – Description de l'objet	. 238
Tableau 127 – Description d'entrée	. 238
Tableau 128 – Description de l'objet	. 239
Tableau 129 – Description d'entrée	. 239
Tableau 130 – Description de l'objet	. 243
Tableau 131 – Description d'entrée	. 243
Tableau 132 – Description de l'objet	. 243
Tableau 133 – Description d'entrée	. 243
Tableau 134 – Description de l'objet	. 244
Tableau 135 – Description d'entrée	. 244
Tableau 136 – Description de l'objet	. 244
Tableau 137 – Description d'entrée	. 244
Tableau 138 – Description de l'objet	. 245
Tableau 139 – Description d'entrée	. 245
Tableau 140 – Description de l'objet	. 245
Tableau 141 – Description d'entrée	. 246
Tableau 142 – Description de l'objet	. 246
Tableau 143 – Description d'entrée	. 246
Tableau 144 – Description de l'objet	. 246
Tableau 145 – Description d'entrée	. 247
Tableau 146 – Description de l'objet	. 247
Tableau 147 – Description d'entrée	. 247
Tableau 148 – Description de l'objet	. 247
Tableau 149 – Description d'entrée	. 248
Tableau 150 – Définition des valeurs du bit 0 et du bit 1	. 248
Tableau 151 – Définition des valeurs du bit 2 et du bit 3	. 249
Tableau 152 – Définition des valeurs du bit 4 et du bit 5	. 249
Tableau 153 – Description de l'objet	. 249
Tableau 154 – Description d'entrée	. 250
Tableau 155 – Calcul de la position en mode de position interpolée pour plusieurs axes	. 253

Tableau 156 – États FSA et fonctions prises en charge	257
Tableau 157 – Événements et actions de transitions	257
Tableau 158 – Définition du bit 4 et du bit 8	258
Tableau 159 – Définition du bit 10 et du bit 12	258
Tableau 160 – Définition des valeurs	259
Tableau 161 – Description de l'objet	259
Tableau 162 – Description d'entrée	259
Tableau 163 – Description de l'objet	260
Tableau 164 – Description d'entrée	260
Tableau 165 – Description de l'objet	261
Tableau 166 – Description d'entrée	261
Tableau 167 – Description de l'objet	262
Tableau 168 – Description d'entrée	
Tableau 169 – Définition du bit 8	267
Tableau 170 – Définition du bit 10, du bit 12 et du bit 13	267
Tableau 171 – Description de l'objet	268
Tableau 172 – Description d'entrée	268
Tableau 173 – Définition des valeurs	268
Tableau 174 – Description de l'objet	268
Tableau 175 – Description d'entrée	269
Tableau 176 – Description de l'objet	
Tableau 177 – Description d'entrée	
Tableau 178 – Description de l'objet	269
Tableau 179 – Description d'entrée	270
Tableau 180 – Description de l'objet	270
Tableau 181 – Description d'entrée	
Tableau 182 – Description de l'objet	270
Tableau 183 – Description d'entrée	271
Tableau 184 – Description de l'objet	271
Tableau 185 – Description d'entrée	
Tableau 186 – Description de l'objet	271
Tableau 187 – Description d'entrée	272
Tableau 188 – Description de l'objet	
Tableau 189 – Description d'entrée	
Tableau 190 – Description de l'objet	
Tableau 191 – Description d'entrée	
Tableau 192 – Définition du bit 8	
Tableau 193 – Définition du bit 10	
Tableau 194 – Description de l'objet	
Tableau 195 – Description d'entrée	
Tableau 196 – Description de l'objet	
Tableau 197 – Description d'entrée	
Tableau 198 – Description de l'objet	276

Tableau 199 – Description d'entrée	277
Tableau 200 – Description de l'objet	
Tableau 201 – Description d'entrée	
Tableau 202 – Description de l'objet	277
Tableau 203 – Description d'entrée	278
Tableau 204 – Description de l'objet	278
Tableau 205 – Description d'entrée	278
Tableau 206 – Description de l'objet	278
Tableau 207 – Description d'entrée	279
Tableau 208 – Description de l'objet	279
Tableau 209 – Description d'entrée	279
Tableau 210 – Description de l'objet	279
Tableau 211 – Description d'entrée	280
Tableau 212 – Description de l'objet	280
Tableau 213 – Description d'entrée	280
Tableau 214 – Définition des valeurs	280
Tableau 215 – Description de l'objet	281
Tableau 216 – Description d'entrée	281
Tableau 217 – Définition du bit 4, du bit 5, du bit 6 et du bit 8	285
Tableau 218 – Description de l'objet	287
Tableau 219 – Description d'entrée	287
Tableau 220 – Description de l'objet	287
Tableau 221 – Description d'entrée	287
Tableau 222 – Description de l'objet	288
Tableau 223 – Description d'entrée	288
Tableau 224 – Description de l'objet	289
Tableau 225 – Description d'entrée	290
Tableau 226 – Description de l'objet	291
Tableau 227 – Description d'entrée	291
Tableau 228 – Description de l'objet	293
Tableau 229 – Description d'entrée	293
Tableau 230 – Description de l'objet	294
Tableau 231 – Description d'entrée	294
Tableau 232 – Description de l'objet	295
Tableau 233 – Description d'entrée	295
Tableau 234 – Description de l'objet	296
Tableau 235 – Description d'entrée	296
Tableau 236 – Définition du bit 10, du bit 12 et du bit 13	300
Tableau 237 – Description de l'objet	300
Tableau 238 – Description d'entrée	301
Tableau 239 – Description de l'objet	301
Tableau 240 – Description d'entrée	301
Tableau 241 – Description de l'obiet	302

Tableau 242 – Description d'entrée 302 Tableau 243 – Définition du bit 10, du bit 12 et du bit 13 305 Tableau 244 – Définition du bit 10, du bit 12 et du bit 13 308 Tableau 245 – Définition des valeurs 308 Tableau 246 – Description de l'objet 308 Tableau 247 – Description d'entrée 309 Tableau 249 – Description de l'objet 309 Tableau 249 – Description de l'objet 309

- 159 -

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

ENTRAÎNEMENTS ÉLECTRIQUES DE PUISSANCE À VITESSE VARIABLE -

Partie 7-201: Interface générique et utilisation de profils pour les entraînements électriques de puissance – Spécification de profil de type 1

AVANT-PROPOS

- 1) La Commission Électrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. À cet effet, la CEI entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) La CEI elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de la CEI. La CEI n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI 61800-7-201 a été établie par le sous-comité 22G: Systèmes d'entraînement électrique à vitesse variable, comprenant des convertisseurs à semi-conducteurs, du comité d'études 22 de la CEI: Systèmes et équipements électroniques de puissance.

La présente version bilingue (2013-04) correspond à la version anglaise monolingue publiée en 2007-11.

Le texte anglais de cette norme est issu des documents 22G/184/FDIS et 22G/192/RVD.

Le rapport de vote 22G/192/RVD donne toute information sur le vote ayant abouti à l'approbation de cette norme.

– 160 **–**

61800-7-201 © CEI:2007

La version française de cette norme n'a pas été soumise au vote.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Une liste de toutes les parties de la série CEI 61800, sous le titre général *Entraînements* électriques de puissance à vitesse variable, peut être consultée sur le site web de la CEI.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de stabilité indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite;
- supprimée;
- remplacée par une édition révisée, ou
- amendée.

– 161 **–**

INTRODUCTION

La série CEI 61800 est destinée à fournir un ensemble commun de spécifications dédiées aux entraînements électriques de puissance à vitesse variable.

La CEI 61800-7 décrit une interface générique entre les systèmes de commande et les entraînements électriques de puissance. Cette interface peut être intégrée au système de commande. Le système de commande proprement dit peut également être situé dans le dispositif d'entraînement (parfois appelé "dispositif d'entraînement intelligent").

Il existe un grand nombre d'interfaces physiques disponibles (entrées et sorties analogiques et numériques, interfaces séries et parallèles, bus de terrain et réseaux). Les profils établis sur des interfaces physiques spécifiques sont déjà définis pour certains domaines d'application (par exemple, commande de mouvement) et certaines classes de dispositifs (par exemple, dispositifs d'entraînement classiques, positionneur). Les applications des interfaces de programmes de commande et de programmeurs d'application associées sont exclusives et varient dans une large mesure.

La CEI 61800-7 définit un ensemble de fonctions, paramètres et diagrammes d'états communs de commande de dispositifs d'entraînement ou une description de séquences d'opérations à mettre en correspondance avec les profils

La CEI 61800-7 fournit une procédure d'accès aux fonctions et données d'un dispositif d'entraînement, indépendante du profil d'entraînement et de l'interface de communication employés. Il s'agit de définir un modèle d'entraînement commun comportant des fonctions génériques et des objets pouvant être mis en correspondance sur des interfaces de communication différentes. Ceci permet de prévoir des applications communes de commande de mouvement (ou applications de commande de vitesse ou de commande d'entraînement) dans les contrôleurs sans aucune connaissance spécifique de la mise en œuvre du dispositif d'entraînement.

Il y a plusieurs raisons de définir une interface générique:

Pour un constructeur de dispositif d'entraînement

- Assistance plus aisée des intégrateurs de systèmes
- Description plus aisée des fonctions d'entraînement du fait d'une terminologie commune
- Le choix des dispositifs d'entraînement ne dépend pas de la disponibilité d'une assistance spécifique

Pour un constructeur de dispositif de commande

- Aucune influence de la technologie de bus
- Intégration aisée des dispositifs
- Indépendance par rapport à un fournisseur de dispositifs d'entraînement

Pour un intégrateur de systèmes (construction de modules, machines, installations, etc.)

- Effort d'intégration moindre des dispositifs
- Méthode intelligible unique de modélisation
- Indépendance par rapport à la technologie de bus

Concevoir une application de commande de mouvement avec plusieurs dispositifs d'entraînement différents et un système de commande spécifique nécessite un effort certain. Les tâches de mise en œuvre des logiciels systèmes et de compréhension de la description fonctionnelle des composants individuels peuvent contribuer à l'épuisement des ressources d'un projet. Dans certains cas, les dispositifs d'entraînement ne partagent pas la même interface physique. Certains dispositifs de commande prennent simplement en charge une

- 162 -

interface unique qui n'est pas prise en charge par un dispositif d'entraînement spécifique.Par ailleurs, les fonctions et les structures de données sont spécifiées avec des incompatibilités. Cela exige de l'intégrateur de systèmes d'établir des interfaces spéciales dédiées aux logiciels d'application et il convient que cette opération ne relève pas de sa responsabilité.

Certaines applications nécessitent de pouvoir permuter des dispositifs, voire intégrer de nouveaux dispositifs dans une configuration existante. Elles sont également confrontées à différentes solutions incompatibles. Les efforts visant à adopter une solution relative à un profil d'entraînement et aux extensions spécifiques au constructeur peuvent se révéler inacceptables. Ceci réduit le degré de liberté concernant le choix d'un dispositif le mieux adapté à cette application de sélection du dispositif disponible pour une interface physique spécifique et pris en charge par le contrôleur.

La CEI 61800-7-1 est divisée en une partie générique et en plusieurs annexes comme le présente la Figure 1. Les types de profils d'entraînement pour CiA 4021, CIP Motion^{TM2}, PROFIdrive³ et SERCOS Interface^{TM4} sont mis en correspondance avec l'interface générique dans l'annexe correspondante. Les annexes ont été soumises par des organismes internationaux indépendants spécialisés dans les réseaux ou les bus de terrain, et responsables du contenu de l'annexe qui y est associée, ainsi que de l'utilisation des margues connexes.

La présente partie de la CEI 61800-7 spécifie le type de profil 1 (CiA 402).

Les types de profils 2, 3 et 4 sont spécifiés dans la CEI 61800-7-202, la CEI 61800-7-203 et la CEI 61800-7-204.

¹ CiA 402 est une marque de CAN in Automation, e.V. Cette information est fournie pour la commodité des utilisateurs de la présente norme internationale et ne constitue en aucun cas un entérinement par la CEI du détenteur de la marque ou de l'un quelconque de ses produits. La conformité à ce profil n'implique pas l'utilisation de la marque CiA 402.

² CIP Motion™ est une marque de Open DeviceNet Vendor Association, Inc. Cette information est fournie pour la commodité des utilisateurs de la présente norme internationale et ne constitue en aucun cas un entérinement par la CEI du détenteur de la marque ou de l'un quelconque de ses produits. La conformité à ce profil n'implique pas l'utilisation de la marque CIP Motion™. L'utilisation de la marque CIP Motion™ nécessite l'autorisation de Open DeviceNet Vendor Association, Inc.

PROFIdrive est une marque de PROFIBUS International. Cette information est fournie pour la commodité des utilisateurs de la présente norme internationale et ne constitue en aucun cas un entérinement par la CEI du détenteur de la marque ou de l'un quelconque de ses produits. La conformité à ce profil n'implique pas l'utilisation de la marque PROFIdrive. L'utilisation de la marque PROFIdrive nécessite l'autorisation de PROFIBUS International.

SERCOS™ et SERCOS Interface™ sont des marques de SERCOS International e.V. Cette information est fournie pour la commodité des utilisateurs de la présente Norme internationale et ne constitue en aucun cas un entérinement par la CEI du détenteur de la marque ou de l'un quelconque de ses produits. La conformité à ce profil n'implique pas l'utilisation des marques SERCOS et SERCOS interface. L'utilisation des marques SERCOS et SERCOS interface nécessite l'autorisation de leur détenteur.

- 163 -

La CEI 61800-7-301, la CEI 61800-7-302, la CEI 61800-7-303 et la CEI 61800-7-304 spécifient la ou les méthodes de mise en correspondance des types de profils 1, 2, 3 et 4 avec différentes technologies de réseau (telles que CANopen⁵, EtherCAT^{TM6}, Ethernet Powerlink^{TM7}, DeviceNet^{TM8}, ControlNet^{TM9}, EtherNet/IP^{TM10}, PROFIBUS¹¹, PROFINET¹² et SERCOS Interface).

⁵ CANopen est l'acronyme de "Controller Area Network open (Gestionnaire de réseau de communication ouvert) et fait référence à l'EN 50325-4.

EtherCAT™ est une marque de Beckhoff, Verl. Cette information est fournie pour la commodité des utilisateurs de la présente Norme internationale et ne constitue en aucun cas un entérinement par la CEI du détenteur de la marque ou de l'un quelconque de ses produits. La conformité à ce profil n'implique pas l'utilisation de la marque EtherCAT™. L'utilisation de la marque EtherCAT™ nécessite l'autorisation de son détenteur.

⁷ Ethernet Powerlink™ est une marque de B&R., le contrôle de son utilisation est confié à l'organisme à but non lucratif EPSG. Cette information est fournie pour la commodité des utilisateurs de la présente Norme internationale et ne constitue en aucun cas un entérinement par la CEI du détenteur de la marque ou de l'un quelconque de ses produits. La conformité à ce profil n'implique pas l'utilisation de la marque Ethernet Powerlink™ nécessite l'autorisation de son détenteur.

B DeviceNet™ est une marque de Open DeviceNet Vendor Association, Inc. Cette information est fournie pour la commodité des utilisateurs de la présente Norme internationale et ne constitue en aucun cas un entérinement par la CEI du détenteur de la marque ou de l'un quelconque de ses produits. La conformité à ce profil n'implique pas l'utilisation de la marque DeviceNet™. L'utilisation de la marque DeviceNet™ nécessite l'autorisation de Open DeviceNet Vendor Association, Inc.

GontrolNet™ est une marque de ControlNet International. Ltd. Cette information est fournie pour la commodité des utilisateurs de la présente Norme internationale et ne constitue en aucun cas un entérinement par la CEI du détenteur de la marque ou de l'un quelconque de ses produits. La conformité à ce profil n'implique pas l'utilisation de la marque ControlNet™. L'utilisation de la marque ControlNet™ nécessite l'autorisation de ControlNet International. Ltd.

¹⁰ EtherNet/IP™ est une marque de ControlNet International, Ltd. et de Open DeviceNet Vendor Association, Inc. Cette information est fournie pour la commodité des utilisateurs de la présente norme internationale et ne constitue en aucun cas un entérinement par la CEI du détenteur de la marque ou de l'un quelconque de ses produits. La conformité à ce profil n'implique pas l'utilisation de la marque EtherNet/IP™. L'utilisation de la marque EtherNet/IP™ nécessite l'autorisation de ControlNet International, Ltd. ou de Open DeviceNet Vendor Association, Inc.

¹¹ PROFIBUS est une marque de PROFIBUS International. Cette information est fournie pour la commodité des utilisateurs de la présente norme internationale et ne constitue en aucun cas un entérinement par la CEI du détenteur de la marque ou de l'un quelconque de ses produits. La conformité à ce profil n'implique pas l'utilisation de la marque PROFIBUS. L'utilisation de la marque PROFIBUS nécessite l'autorisation de PROFIBUS International.

¹² PROFINET est une marque de PROFIBUS International. Cette information est fournie pour la commodité des utilisateurs de la présente norme internationale et ne constitue en aucun cas un entérinement par la CEI du détenteur de la marque ou de l'un quelconque de ses produits. La conformité à ce profil n'implique pas l'utilisation de la marque PROFINET. L'utilisation de la marque PROFINET nécessite l'autorisation de PROFIBUS International.

IEC 61800 series
Adjustable speed electrical power drive

IEC 62390 Device profile guideline

IEC 61800-7 Generic interface and use of profiles for power drive systems

IEC 61800-7-1 - Interface definition

Generic PDS interface specification

Annex A Mapping of Profile type 1 (CiA 402) Annex B Mapping of Profile type 2 (CIP Motion) Annex C Mapping of Profile type 3 (PROFIdrive) Annex D Mapping of Profile type 4 (SERCOS)

IEC 61800-7-200 - Profile specifications

IEC 61800-7-201

Profile type 1 (CiA 402) IEC 61800-7-202

Profile type 2 (CIP Motion)

IEC 61800-7-203

Profile type 3 (PROFIdrive)

IEC 61800-7-204

Profile type 4 (SERCOS)

IEC 61800-7-300 - Mapping of profiles to network technologies

IEC 61800-7-301

Mapping of profile type 1 to:

- CANopen
- EtherCAT
- ETHERNET Powerlink

IEC 61800-7-302

Mapping of profile type 2 to:

- DeviceNet
- ControlNet
- EtherNet/IP

IEC 61800-7-303

Mapping of profile type 3 to:

- PROFIBUS
- PROFINET

IEC 61800-7-304

Mapping of profile type 4 to:

- SERCOS I + II
- SERCOS III
- EtherCAT

Légende

Anglais	Français
IEC 61800 series Adjustable speed electrical power drive	Série CEI 61800 Entraînement électrique de puissance à vitesse variable
IEC/TR 62390 Device profile guideline	IEC/TR 62390 Device profile guideline (disponible en anglais seulement)
IEC 61800-7 Generic interface and use of profiles for power drive systems	IEC 61800-7 Generic interface and use of profiles for power drive systems (disponible en anglais seulement)
IEC 61800-7-1 Interface definition	IEC 61800-7-1 Interface definition (disponible en anglais seulement)
Generic PDS interface specification	Spécification d'interface PDS générique
Annex A, Mapping of Profile type 1 (CiA 402)	Annexe A, Mise en correspondance de profil de type 1 (CiA 402)
Annex B, Mapping of Profile type 2 (CIP Motion)	Annexe B, Mise en correspondance de profil de type 2 (CIP Motion)
Annex C, Mapping of Profile type 3 (PROFIdrive)	Annexe C, Mise en correspondance de profil de type 3 (PROFIdrive)
Annex D, Mapping of Profile type 4 (SERCOS)	Annexe D, Mise en correspondance de profil de type 4 (SERCOS)
IEC 61800-7-200 – Profile specifications	IEC 61800-7-200 – Profile specifications (disponible en anglais seulement)

– 165 –

Anglais	Français
IEC 61800-7-201 Profile type 1 (CiA 102)	CEI 61800-7-201 Profil de type 1 (CiA 102)
IEC 61800-7-202 Profile type 2 (CIP Motion)	CEI 61800-7-202 Profil de type 2 (CIPMotion)
IEC 61800-7-203 Profile type 3 (PROFIdrive)	CEI 61800-7-203 Profil de type 3 (PROFIdrive)
IEC 61800-7-204 Profile type 4 (PROFIdrive)	CEI 61800-7-204 Profil de type 4 (SERCOS)
IEC 61800-7-300 – Mapping of profiles to network technologies	IEC 61800-7-300 – Mapping of profiles to network technologies (disponible en anglais seulement)
IEC 61800-7-301 Mapping of profile type 1 to CANopen	CEI 61800-7-301 Mise en correspondance du profil de type 1 avec CANopen
EtherCAT	EtherCAT
ETHERNET	ETHERNET
Powerlink	Powerlink
IEC 61800-7-302 Mapping of profile type 2 to DeviceNet	CEI 61800-7-302 Mise en correspondance du profil de type 2 avec DeviceNet
ControlNet	ControlNet
EtherNet/IP	EtherNet/IP
IEC 61800-7-303 Mapping of profile type 3 to PROFIBUS	CEI 61800-7-303 Mise en correspondance du profil de type 3 avec PROFIBUS
PROFINET	PROFINET
IEC 61800-7-304 Mapping of profile type 4 to SERCOS I + II	CEI 61800-7-304 Mise en correspondance du profil de type 4 avec SERCOS I + II
SERCOS III	SERCOS III
EtherCAT	EtherCAT

Figure 1 – Structure de la CEI 61800-7

ENTRAÎNEMENTS ÉLECTRIQUES DE PUISSANCE À VITESSE VARIABLE -

Partie 7-201: Interface générique et utilisation de profils pour les entraînements électriques de puissance – Spécification de profil de type 1

1 Domaine d'application

La CEI 61800-7 spécifie les profils dédiés aux entraînements électriques de puissance (PDS) et leur mise en correspondance avec les systèmes de communication existants grâce à un modèle d'interface générique.

Les fonctions spécifiées dans la présente partie de la CEI 61800-7 ne sont pas destinées à assurer la sécurité fonctionnelle. Ceci exige l'application de mesures supplémentaires conformes aux normes, conventions et lois pertinentes.

La présente partie de la CEI 61800-7 spécifie le type de profil 1 pour les entraînements électriques de puissance (PDS). Le type de profil 1 peut être mis en correspondance avec différentes technologies de réseau de communication.

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 61800-7 (all parts), Adjustable speed electrical power drive systems – Generic interface and use of profiles for power drive systems (disponible en anglais uniquement)

IEC 61800-7-301, Adjustable speed electrical power drive systems – Part 7-301: Generic interface and use of profiles for power drive systems – Mapping of profile type 1 to network technologies (disponible en anglais uniquement)

EN 50325-4, Sous-système de communications industriel basé sur l'ISO 11898 (CAN) pour les interfaces des dispositifs de commande – Partie 4: CANopen

3 Termes, définitions et abréviations

3.1 Termes et définitions

Pour les besoins du présent document, les termes et définitions suivants s'appliquent.

3 1 1

valeur instantanée

valeur d'une variable à un instant déterminé

[VEI 351-21-02]

NOTE Les valeurs instantanées ou les variables instantanées sont utilisées dans la présente partie de la série CEI 61800-7 comme données d'entrée du programme de contrôle d'application afin de contrôler les variables de réaction ou d'autres variables de processus du PDS.

- 167 -

3.1.2

algorithme

séquence finie d'instructions complètement déterminée par laquelle la valeur des données de sortie peut être calculée à partir de la valeur des données d'entrée

[VEI 351-21-37]

3.1.3

application

élément fonctionnel logiciel spécifique à la résolution d'un problème en termes de mesure et de commande de procédés industriels

NOTE Une application peut être répartie entre les ressources, et peut communiquer avec d'autres applications.

[CEI/TR 62390:2005, 3.1.2, modifiée]

3.1.4

mode d'application

type d'application pouvant être sollicité par un PDS

NOTE Les différents modes d'application reflètent la boucle de régulation dédiée à l'asservissement de couple ou de position, à la commande de vitesse ou à d'autres applications comme le retour à la position de référence.

3.1.5

attribut

propriété ou caractéristique d'une entité

[CEI/TR 62390:2005, 3.1.3]

3.1.6

classe

description d'un ensemble d'objets qui partagent les mêmes attributs, opérations, méthodes, relations et sémantique

[ISO/CEI 19501, modifiée]

3.1.7

commandes

ensemble de commandes entre le programme de contrôle d'application et le PDS permettant de contrôler le comportement du PDS ou les éléments fonctionnels de celui-ci

NOTE 1 Les états ou les modes de fonctionnement reflètent le comportement.

NOTE 2 Les différentes commandes peuvent être représentées par un bit chacune.

3.1.8

commande, régulation

action délibérée sur (ou dans) un processus, en vue d'atteindre des objectifs définis

[VEI 351-21-29]

3.1.9

dispositif de commande/régulation

unité physique contenant – dans un module/sous-ensemble ou dispositif – un programme d'application de commande du PDS $\,$

3.1.10

type de données

ensemble de valeurs associé à un ensemble d'opérations autorisées

[ISO/CEI 2382-15:1999, 15.04.01, modifiée]

– 168 **–**

3.1.11

dispositif

dispositif de terrain

entité physique indépendante sur réseau, d'un système d'automatisation industriel, capable d'exécuter des fonctions spécifiées dans un contexte particulier et délimitée par ses interfaces

[CEI 61499-1:2005, 3.30, modifiée]

entité qui exécute des fonctions de commande/régulation, activation et/ou détection et qui est en interface avec d'autres entités de ce type d'un système d'automatisation

[ISO 15745-1:2003, 3.11]

3.1.12

profil de dispositif

représentation d'un dispositif en termes de ses paramètres, ensembles de paramètres et comportement selon un modèle de dispositif qui décrit les données et le comportement du dispositif perçus par le biais d'un réseau

NOTE Cette définition est issue de la CEI/TS 61915, que l'on a étendue par l'ajout de la structure fonctionnelle du dispositif.

[CEI/TR 62390:2005, 3.19, modifiée]

3.1.13

variable de réaction

variable qui représente une variable commandée et qui est retournée à un comparateur

[VEI 351-27-03]

3.1.14

élément fonctionnel

entité de logiciel ou logiciel combiné au matériel, capable d'accomplir une fonction spécifiée d'un dispositif

NOTE 1 Un élément fonctionnel comporte une interface et des associations à d'autres éléments fonctionnels et fonctions.

NOTE 2 Un élément fonctionnel peut être constitué de bloc(s) de fonctions, d'objet(s) ou de liste(s) de paramètres.

[CEI/TR 62390:2005, 3.1.12]

3.1.15

alimentation de haut niveau

alimentation électrique principale du dispositif d'entraînement

3.1.16

données d'entrée

données transférées d'une source externe dans un dispositif, une ressource ou un élément fonctionnel

[CEI/TR 62390:2005, 3.1.14]

3.1.17

interface

frontière commune entre deux unités, définie par des caractéristiques fonctionnelles, des caractéristiques de signal ou d'autres caractéristiques selon le cas

[VEI 351-21-35, modifiée]

- 169 -

3.1.18

entraînement électrique de puissance logique

modèle qui comprend un PDS et un réseau de communication accessible par l'interface PDS générique

3.1.19

alimentation de faible niveau

alimentation électrique de la partie contrôle du dispositif d'entraînement

3.1.20

modèle

représentation mathématique ou physique d'un système ou d'un processus, basée, avec une précision suffisante, sur des lois connues, sur une identification ou sur des hypothèses spécifiées

[VEI 351-21-36]

3.1.21

mode de fonctionnement

caractérisation de la manière et du degré avec lequel l'opérateur humain intervient sur l'équipement de commande

[VEI 351-31-01]

3.1.22

données de sortie

données provenant d'un dispositif, d'une ressource ou d'un élément fonctionnel et transférées de ces derniers vers des systèmes externes

[CEI/TR 62390:2005, 3.1.21]

3.1.23

paramètre

élément de donnée qui représente les informations d'un dispositif qui peuvent être lues ou saisies dans un dispositif, par exemple, par le biais du réseau ou d'une IHM locale

NOTE 1 Adaptée de la CEI/TS 61915.

NOTE 2 Un paramètre est caractérisé généralement par son nom, le type de données et la direction d'accès.

[CEI/TR 62390:2005, 3.1.22, modifiée]

3.1.24

profil

représentation d'une interface PDS en termes de ses paramètres, ensembles de paramètres et comportement selon un profil de communication et un profil de dispositif

3.1.25

variable de référence

variable d'entrée d'un comparateur dans un système de régulation, qui détermine la valeur souhaitée de la variable commandée et qui est déduite de la variable de consigne

[VEI 351-27-02]

3.1.26

point de consigne

valeur ou variable utilisée comme donnée de sortie du programme de contrôle d'application afin de commander le PDS

– 170 –

61800-7-201 © CEI:2007

3.1.27

état

ensemble d'informations entre le PDS et le programme de contrôle d'application, qui reflète l'état ou le mode du PDS ou un élément fonctionnel de ce dernier

NOTE Les différentes informations d'état peuvent être codées avec un bit chacune.

3.1.28

type

élément matériel ou logiciel qui spécifie les attributs communs partagés par toutes les instances du type

[CEI/TR 62390:2005, 3.1.25]

3.1.29

cas d'application

spécification de classe d'une séquence d'actions, y compris les variantes, qu'un système (ou autre entité) peut exécuter, en interaction avec les acteurs du système

[CEI/TR 62390:2005, 3.1.26]

3.1.30

variable

entité logicielle qui peut prendre différentes valeurs, mais une seule valeur à la fois

[CEI/TR 62390:2005, 3.1.27]

NOTE Les valeurs d'une variable, ainsi que d'un paramètre, se limitent habituellement à un certain type de données.

3.2 Abréviations

CA Courant alternatif

BL Brush-Less (sans balais)

c Constant

CiA CAN in Automation (CAN en mode automatisation)

COB Communication Object (Objet de communication)

csp Cyclic Synchronous Profile mode (mode de profil à synchronisation cyclique)

cst Cyclic Synchronous Torque mode (mode de couple à synchronisation cyclique)

csv Cyclic Synchronous Velocity mode (mode de vitesse à synchronisation cyclique)

CC Courant continu

DIV Divisor (Diviseur)

FC Frequency Converter (Convertisseur de fréquence)

FE Functional Element (Elément fonctionnel)

FIFO First In, First Out (Premier entré, premier sorti)

FSA Finite State Automation (Automatisation d'états finis)

hm Homing Mode (mode de retour à la position de référence)

IHM Interface homme-machine

- 171 -

E/S Entrée/sortie

ip Interpolated Position mode (mode de position interpolée)

MUL Multiplication

NMT Network Management (gestion de réseau)

PDS Power Drive System (Entraînement électrique de puissance)

PM Permanent Magnet (aimant permanent)

pp Profile Position mode (Mode de position de profil)

pv Profile Velocity mode (Mode de vitesse de profil)

r Reserved (Réservé)

r.m.s. Root Mean Square (valeur efficace)

ro Read-Only (lecture seule)

rw Read-Write (lecture-écriture)

tq Torque Mode (mode de couple)

vl Velocity Mode (mode de vitesse)

4 Généralités

4.1 Considérations d'ordre général

La présente partie de la série CEI 61800-7 spécifie le profil de dispositif CiA 402 indépendant du bus pour les entraînements électriques de puissance tels que les convertisseurs de fréquence, les contrôleurs asservis ou les commandes de moteurs pas à pas. Elle inclut la définition des objets de commande en temps réel, ainsi que des objets de configuration, d'ajustement, d'identification et de gestion de réseau. L'automatisation d'états finis (FSA) des PDS est également définie, qui peut être commandée de manière externe, par un dispositif de commande qui communique via un système de communication avec le dispositif d'entraînement.

Le profil de dispositif définit plusieurs modes de fonctionnement. Ces modes comprennent les modes de position de profil, de retour à la position de référence, de position interpolée, de vitesse de profil, de couple de profil, de vitesse, de position à synchronisation cyclique, de vitesse à synchronisation cyclique et de couple à synchronisation cyclique.

4.2 Interface de communication

Le système de communication connecte le dispositif d'entraînement avec le dispositif de commande et les autres dispositifs de terrain. Le dispositif de commande, via le système de communication, utilise les services de communication pour les échanges de données suivants avec le dispositif d'entraînement:

- Données en temps non réel (configuration, identification, ajustement, diagnostic, etc.)
- Données de processus telles que les valeurs cibles et les valeurs instantanées

Ces services sont définis dans la CEI 61800-7-301. Les données de processus sont échangées par des messages de données en temps réel. Ces messages peuvent être configurés au moyen des services de configuration fournis par le système de communication.

Le système de communication doit fournir les services de transmission et de réception des objets de communication (COB). Les COB suivants doivent être pris en charge:

- COB pour la transmission de données en temps réel
- COB pour la transmission des informations d'urgence
- COB pour la gestion de réseau

Par ailleurs, le système de communication peut fournir les COB suivants:

- COB pour la transmission de données de configuration
- COB à des fins de synchronisation
- COB pour la répartition du temps système

Les COB sont définis de manière détaillée dans la CEI 61800-7-301.

4.3 Dictionnaire d'objets

Tous les objets mentionnés dans la présente partie de la série CEI 61800-7 sont regroupés dans le dictionnaire d'objets, et définis par des attributs comme cela est décrit dans l'EN 50325-4. Tous les objets doivent être accessibles via le réseau de manière prédéfinie et ordonnée, et ce, au moyen du COB pour la transmission de données de configuration. Chaque objet du dictionnaire doit avoir une adresse unique qui utilise un index à 16 bits et un sous-index à 8 bits. Les objets liés à la communication sont définis de manière détaillée dans la CEI 61800-7-301.

La zone de profil de dispositif normalisée aux index 6000_h à $9FFF_h$ doit contenir tous les objets d'application communs à cette spécification de profil de dispositif. Les index d'objets suivants doivent être réservés pour des raisons de compatibilité: 6045_h , 6047_h , $604D_h$, $604E_h$, $604F_h$, 6052_h , 6053_h , 6054_h , 6055_h , 6056_h , 6057_h , 6058_h , 6059_h , 6080_h , 6080_h , 6080_h , 6080_h , 6093_h , 6094_h , 6095_h , 6096_h , 6097_h , 6040_h , 6041_h

Les objets peuvent être lus, et saisis respectivement, via le réseau. Huit axes au maximum peuvent être réalisés dans cette gamme d'objets. De plus, il est possible de mettre en œuvre d'autres profils de dispositifs (par exemple, module E/S ou codeur générique) au sein du dispositif d'entraînement. Ces autres profils de dispositif peuvent être mis en œuvre au lieu d'un ou de plusieurs axes.

Pour les dispositifs multi-axe, la gamme d'objets 6000_h à $67FF_h$ doit être décalée comme suit:

```
    6000<sub>h</sub> à 67FF<sub>h</sub>: axe 0
```

- 6800_h à 6FFF_h: axe 1
- 7000_h à 77FF_h: axe 2
- 7800_h à 7FFF_h: axe 3
- 8000_h à 87FF_h: axe 4
- 8800_h à 8FFF_h: axe 5
- 9000_h à 97FF_h: axe 6
- 9800_h à 9FFF_h: axe 7

Les attributs de catégorie et de catégorie d'entrée d'un objet indiquent si ce dernier doit être mis en œuvre (obligatoire) ou peut être mis en œuvre (facultatif).

Les attributs de code de l'objet et de type de données sont définis de manière détaillée dans l'EN 50325-4 ou dans d'autres spécifications de technologies de réseau. Les attributs de types de données utilisés sont indiqués à l'Article 5. L'attribut d'accès qui indique si un objet d'application est en lecture seule (ro), lecture/écriture (rw), écriture seule (wo) ou constant (c), est défini dans la description d'entrée. Lecture seule indique que cet objet ne doit pas être

- 173 -

écrit via le bus; lecture/écriture permet de lire et d'écrire cet objet, et écriture seule signifie que cet objet d'application ne doit pas être lu via le bus.

L'attribut de mise en correspondance PDO doit indiquer si cet objet doit être ou peut être ou ne doit pas être mis en correspondance avec le COB pour la transmission de données en temps réel. La définition détaillée de ces attributs est donnée dans la CEI 61800-7-301.

L'attribut de la valeur par défaut définit la valeur d'un objet avec l'attribut d'accès de la valeur 'rw' et 'c' après mise sous tension ou réinitialisation de l'application.

5 Types de données

5.1 Types de données normalisés

Les types de données utilisés dans ce profil sont énumérés dans le Tableau 1.

Accélération/décélération en vitesse vl

Type de données Référence Unsigned8 EN 50325-4 Unsigned16 EN 50325-4 Unsigned32 EN 50325-4 EN 50325-4 Integer8 Integer16 EN 50325-4 EN 50325-4 Integer32 Chaîne visible EN 50325-4 Heure EN 50325-4 Délai d'interpolation Voir Tableau 2 Configuration des données interpolées Voir Tableau 3

Tableau 1 - Liste des types de données utilisés

5.2 Définitions des enregistrements

Le Tableau 2, le Tableau 3 et le Tableau 4 définissent les enregistrements utilisés dans la présente partie de la série CEI 61800-7.

Voir Tableau 4

Tableau 2 - Délai d'interpolation

Index	Sous-index	Description	Type de données
0080 _h	00 _h	Plus grand index pris en charge	Unsigned8
	01 _h	Unités de délai d'interpolation	Unsigned8
	02 _h	Index de délai d'interpolation	Integer8

Tableau 3 - Configuration de données interpolées

Index	Sous-index	Description	Type de données
0081 _h	00 _h	Plus grand index pris en charge	Unsigned8
	01 _h	Capacité maximale de mémoire tampon	Unsigned32
	02 _h	Capacité réelle de mémoire tampon	Unsigned32
	03 _h	Organisation de la mémoire tampon	Unsigned8
	04 _h	Position de la mémoire tampon	Unsigned16
	05 _h	Capacité du registre de données	Unsigned8
	06 _h	Effacement de la mémoire tampon	Unsigned8

Tableau 4 - Accélération/décélération en vitesse vl

Index	Sous-index	Description	Type de données
0082 _h	00 _h	Plus grand index pris en charge	Unsigned8
	01 _h	Vitesse delta	Unsigned32
	02 _h	Temps delta	Integer16

6 Définitions d'objets générales

6.1 Généralités

Les objets de paramètres de communication, les objets d'identification supplémentaires et les objets d'information sont définis dans les paragraphes suivants.

6.2 Objets de paramètres de communication

Trois objets de paramètres de communication doivent être mis en œuvre:

- Objet de type de dispositif 1000_h
- Objet de registre d'erreur 1001_h
- Objet d'identité 1018_h

Ces objets sont définis dans l'EN 50325-4 et les définitions suivantes doivent également s'appliquer.

L'objet de type de dispositif doit définir le type de dispositif, la fonctionnalité du dispositif et la variante de mise en correspondance.

Pour les modules à plusieurs dispositifs, le paramètre d'information supplémentaire doit contenir $0FFF_h$ et le numéro de profil de dispositif référencé par l'objet 1000_h est le profil de dispositif du premier dispositif dans le dictionnaire d'objets. Tous les autres dispositifs d'un module à plusieurs dispositifs doivent identifier leurs profils à l'objet $67FF_h + x \times 800_h$ avec x = numéro interne du dispositif (0 à 7). Voir l'EN 50325-4 pour des informations détaillées.

La Figure 2 spécifie la structure et les valeurs de l'objet *Type de dispositif*, le Tableau 5 spécifie la description de l'objet et le Tableau 6 spécifie la description d'entrée.

– 175 –

Figure 2 - Définition des valeurs

Bits de mode et type dans les informations supplémentaires sont définis dans la CEI 61800-7-301.

Tableau 5 - Description de l'objet

Attribut	Valeur
Index	1000 _h
Nom	Type de dispositif
Code de l'objet	Voir EN 50325-4
Type de données	Voir EN 50325-4
Catégorie	Obligatoire

Tableau 6 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir définition des valeurs
Valeur par défaut	spécifique au constructeur

Le bit spécifique au profil de dispositif dans l'objet *Registre d'erreurs* (1001_h) doit être utilisé pour indiquer que le *code d'erreur* dans le message d'urgence est défini dans la présente partie de la série CEI 61800-7.

NOTE Le code d'erreur correspondant peut être lu dans l'objet 1003_h (voir EN 50325-4) ou l'objet $603F_h$.

6.3 Objets d'identification et d'informations supplémentaires

6.3.1 Objet 6402_h: Type de moteur

Cet objet doit indiquer le type de moteur relié au dispositif d'entraînement et entraîné par ce dernier. Le Tableau 7 spécifie la définition des valeurs, le Tableau 8 spécifie la description de l'objet et le Tableau 9 spécifie la description d'entrée.

Tableau 7 - Définition des valeurs

Valeur	Nom CANopen	Autres noms
0000 _h	Moteur non standard	-
0001 _h	Moteur à courant continu à modulation de phase	-
0002 _h	Moteur à courant continu commandé en fréquence	-
0003 _h	Moteur synchrone à modulation de phase	-
0004 _h	Moteur synchrone commandé en fréquence	Moteur bobiné sinusoïdal à courant alternatif
0005 _h	Moteur SRM	Moteur à réluctance à courant alternatif
0006 _h	Moteur à induction à rotor bobiné	Rotor bobiné polyphasé à induction asynchrone à courant alternatif

– 176 –

Valeur	Nom CANopen	Autres noms
0007 _h	Moteur à induction à cage d'écureuil	Cage d'écureuil à induction asynchrone à courant alternatif
0008 _h	Moteur pas à pas	Pas synchrone à courant alternatif
0009 _h	Moteur pas à pas à micro-pas	-
000A _h	Moteur BL PM sinusoïdal	Moteur à modulation de phase sinusoïdal synchrone à courant alternatif
000B _h	Moteur BL PM trapézoïdal	Moteur trapézoïdal PM sans balais synchrone à courant alternatif
000C _h	Moteur à réluctance à courant alternatif	-
000D _h	Moteur PM à commutateur à courant continu	-
000E _h	Moteur à série bobiné à commutateur à courant continu	-
000F _h	Moteur à shuntage bobiné à commutateur à courant continu	-
0010 _h	Moteur à excitation composée bobiné à commutateur à courant continu	-
0011 _h à 7FFE _h	réservé	-
7FFF _h	Aucun type de moteur assigné	-
8000 _h à FFFF _h	Spécifique au constructeur	-

Tableau 8 - Description de l'objet

Attribut	Valeur
Index	6402 _h
Nom	Type de moteur
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Facultative

Tableau 9 – Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 7
Valeur par défaut	Spécifique au constructeur

6.3.2 Objet 6403_h: Numéro de lot du moteur

Cet objet doit indiquer le numéro de lot du moteur (numéro de plaque signalétique) fourni par le constructeur. Si aucun numéro n'est encore assigné, cet objet doit indiquer cette absence par /0 (chaîne vide). Le Tableau 10 spécifie la description de l'objet et le Tableau 11 spécifie la description d'entrée.

Tableau 10 - Description de l'objet

Attribut	Valeur
Index	6403 _h
Nom	Numéro de lot du moteur
Code de l'objet	Variable
Type de données	Chaîne visible
Catégorie	Facultative

Tableau 11 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Chaîne visible
Valeur par défaut	Spécifique au constructeur

6.3.3 Objet 6404_h: Constructeur du moteur

Cet objet doit indiquer le nom du constructeur du moteur. Si aucun nom n'est encore assigné, cet objet doit indiquer cette absence par /0 (chaîne vide). Le Tableau 12 spécifie la description de l'objet et le Tableau 13 spécifie la description d'entrée.

Tableau 12 - Description de l'objet

Attribut	Valeur
Index	6404 _h
Nom	Constructeur du moteur
Code de l'objet	Variable
Type de données	Chaîne visible
Catégorie	Facultative

Tableau 13 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Chaîne visible
Valeur par défaut	Spécifique au constructeur

6.3.4 Objet 6405_h: adresse http de lot du moteur

Cet objet doit indiquer l'adresse Web assignée de lot du moteur. Si aucune adresse n'est encore assignée, cet objet doit indiquer cette absence par /0 (chaîne vide). Le Tableau 14 spécifie la description de l'objet et le Tableau 15 spécifie la description d'entrée.

Tableau 14 - Description de l'objet

Attribut	Valeur
Index	6405 _h
Nom	adresse http de lot du moteur
Code de l'objet	Variable
Type de données	Chaîne visible
Catégorie	Facultative

Tableau 15 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Chaîne visible
Valeur par défaut	Spécifique au constructeur

6.3.5 Objet 6406_h: Date d'étalonnage du moteur

Cet objet doit indiquer la date assignée de la dernière inspection du moteur. Si aucune date n'est encore assignée, cet objet doit indiquer cette absence par une valeur de 0. Le Tableau 16 spécifie la description de l'objet et le Tableau 17 spécifie la description d'entrée.

Tableau 16 - Description de l'objet

Attribut	Valeur
Index	6406 _h
Nom	Date d'étalonnage du moteur
Code de l'objet	Variable
Type de données	Heure
Catégorie	Facultative

Tableau 17 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	0 _d ou heure
Valeur par défaut	Spécifique au constructeur

6.3.6 Objet 6407_h: Durée de service du moteur

Cet objet doit indiquer la durée assignée de service du moteur. Si aucune période n'est encore assignée, cet objet doit indiquer cette absence par $0000\ 0000_h$. La valeur doit être donnée en multiples d'heures. Le Tableau 18 spécifie la description de l'objet et le Tableau 19 spécifie la description d'entrée.

- 179 -

Tableau 18 - Description de l'objet

Attribut	Valeur
Index	6407 _h
Nom	Durée de service du moteur
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

Tableau 19 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

6.3.7 Objet 6503_h: Numéro de lot du dispositif d'entraînement

Cet objet doit indiquer le numéro de lot du dispositif d'entraînement assigné par le constructeur (numéro de plaque signalétique). Le Tableau 20 spécifie la description de l'objet et le Tableau 21 spécifie la description d'entrée.

Tableau 20 - Description de l'objet

Attribut	Valeur
Index	6503 _h
Nom	Numéro de lot du dispositif d'entraînement
Code de l'objet	Variable
Type de données	Chaîne visible
Catégorie	Facultative

Tableau 21 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Non
Valeur par défaut	/0 (chaîne vide)

6.3.8 Objet 6505_h: adresse http de lot du dispositif d'entraînement

Cet objet doit indiquer l'adresse Web assignée du constructeur du dispositif d'entraînement. Si aucune adresse n'est encore assignée, cet objet doit indiquer cette absence par /0 (chaîne vide). Le Tableau 22 spécifie la description de l'objet et le Tableau 23 spécifie la description d'entrée.

Tableau 22 - Description de l'objet

Attribut	Valeur
Index	6505 _h
Nom	adresse http de lot du dispositif d'entraînement
Code de l'objet	Variable
Type de données	Chaîne visible
Catégorie	Facultative

Tableau 23 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Non
Valeur par défaut	Spécifique au constructeur

7 Codes d'erreurs et comportement aux erreurs

7.1 Codes d'erreurs

Les messages d'urgence sont déclenchés par des erreurs internes et les avertissements importants sont détectés au sein du dispositif d'entraı̂nement. Ils sont définis de manière détaillée dans la CEI 61800-7-301. Ils doivent contenir le code d'erreur à 16 bits. Les codes d'erreurs compris entre $xx00_h$ et $xx7F_h$ sont définis dans l'EN 50325-4 ou dans le Tableau 24. Les codes d'erreurs compris entre $xx80_h$ et $xxFF_h$ sont utilisés selon les instructions spécifiques du constructeur.

Tableau 24 - Codes d'erreurs

Code d'erreur	Signification
2110 _h	Court-circuit/fuite à la terre (entrée)
2120 _h	Fuite à la terre (entrée)
2121 _h	Phase de fuite à la terre L1
2122 _h	Phase de fuite à la terre L2
2123 _h	Phase de fuite à la terre L3
2130 _h	Court-circuit (entrée)
2131 _h	Phases de court-circuit L1-L2
2132 _h	Phases de court-circuit L2-L3
2133 _h	Phases de court-circuit L3-L1
2211 _h	Courant interne n°1
2212 _h	Courant interne n°2
2213 _h	Surintensité en fonction de rampe
2214 _h	Surintensité dans la séquence
2220 _h	Surintensité continue (interne au dispositif)
2221 _h	Surintensité continue n°1
2222 _h	Surintensité continue n°2

Code d'erreur	Signification
2230 _h	Court-circuit/fuite à la terre (interne au dispositif)
2240 _h	Fuite à la terre (interne au dispositif)
2250 _h	Court-circuit (interne au dispositif)
2310 _h	Surintensité continue
2311 _h	Surintensité continue n°1
2312 _h	Surintensité continue n°2
2320 _h	Court-circuit/fuite à la terre (côté moteur)
2330 _h	Fuite à la terre (côté moteur)
2331 _h	Phase de fuite à la terre U
2332 _h	Phase de fuite à la terre V
2333 _h	Phase de fuite à la terre W
2340 _h	Court-circuit (côté moteur)
2341 _h	Phases de court-circuit U-V
2342 _h	Phase de fuite à la terre V-W
2343 _h	Phase de fuite à la terre W-U
2350 _h	Défaut de niveau de charge (l ² t, état thermique)
2351 _h	Avertissement de niveau de charge (l²t, état thermique)
3110 _h	Surtension de secteur
3111 _h	Phase de surtension de secteur L1
3112 _h	Phase de surtension de secteur L2
3113 _h	Phase de surtension de secteur L3
3120 _h	Sous-tension de secteur
3121 _h	Phase de sous-tension de secteur L1
3122 _h	Phase de sous-tension de secteur L2
3123 _h	Phase de sous-tension de secteur L3
3130 _h	Coupure de phase
3131 _h	Coupure de phase L1
3132 _h	Coupure de phase L2
3133 _h	Coupure de phase L3
3134 _h	Séquence de phases
3140 _h	Fréquence du réseau électrique
3141 _h	Fréquence du réseau électrique trop élevée
3142 _h	Fréquence du réseau électrique trop faible
3210 _h	Surtension de liaison c.c.
3211 _h	Surtension n°1
3212 _h	Surtension n°2
3220 _h	Sous-tension de liaison c.c.
3221 _h	Sous-tension n°1
3222 _h	Sous-tension n°2
3230 _h	Erreur de charge
3310 _h	Surtension de sortie
3311 _h	Phase de surtension de sortie U
3312 _h	Phase de surtension de sortie V
3313 _h	Phase de surtension de sortie W

Code d'erreur	Signification	
3320 _h	Circuit d'induit	
3321 _h	Interruption du circuit d'induit	
3330 _h	Circuit inducteur	
3331 _h	Interruption du circuit inducteur	
4110 _h	Température ambiante trop élevée	
4120 _h	Température ambiante trop faible	
4130 _h	Température de l'air fourni	
4140 _h	Température de la sortie d'air	
4210 _h	Température trop élevée du dispositif	
4220 _h	Température trop faible du dispositif	
4300 _h	Température du dispositif d'entraînement	
4310 _h	Température trop élevée du dispositif d'entraînement	
4320 _h	Température trop faible du dispositif d'entraînement	
4400 _h	Température de l'air fourni	
4410 _h	Température trop élevée de l'air fourni	
4420 _h	Température trop faible de l'air fourni	
5100 _h	Alimentation	
5110 _h	Basse tension d'alimentation	
5111 _h	U1 = alimentation ±15V	
5112 _h	U2 = alimentation +24 V	
5113 _h	U3 = alimentation +5 V	
5114 _h	U4 = spécifique au constructeur	
5115 _h	U5 = spécifique au constructeur	
5116 _h	U6 = spécifique au constructeur	
5117 _h	U7 = spécifique au constructeur	
5118 _h	U8 = spécifique au constructeur	
5119 _h	U9 = spécifique au constructeur	
5120 _h	Circuit intermédiaire d'alimentation	
5200 _h	Commande	
5210 _h	Circuit de mesure	
5220 _h	Circuit de calcul	
5300 _h	Unité de fonctionnement	
5400 _h	Section motrice	
5410 _h	Étages de sortie	
5420 _h	Hacheur	
5430 _h	Étages d'entrée	
5440 _h	Contacts	
5441 _h	Contact 1 = spécifique au constructeur	
5442 _h	Contact 2 = spécifique au constructeur	
5443 _h	Contact 3 = spécifique au constructeur	
5444 _h	Contact 4 = spécifique au constructeur	
5445 _h	Contact 5 = spécifique au constructeur	
5450 _h	Fusibles	
5451 _h	S1 = I1	

Code d'erreur	Signification
5452 _h	S2 = I2
5453 _h	S3 = I3
5454 _h	S4 = spécifique au constructeur
5455 _h	S5 = spécifique au constructeur
5456 _h	S6 = spécifique au constructeur
5457 _h	S7 = spécifique au constructeur
5458 _h	S8 = spécifique au constructeur
5459 _h	S9 = spécifique au constructeur
5500 _h	Mémoire active (matériel)
5510 _h	RAM
5520 _h	ROM/EPROM
5530 _h	EEPROM
6010 _h	Réinitialisation du logiciel (chien de garde)
6301 _h à 630F _h	Registres de données n° 1 à n° 15
6310 _h	Perte de paramètres
6320 _h	Erreur de paramètre
7100 _h	Puissance
7110 _h	Hacheur de frein
7111 _h	Défaillance - hacheur de frein
7112 _h	Surintensité - hacheur de frein
7113 _h	Circuit de protection - hacheur de frein
7120 _h	Moteur
7121 _h	Blocage du moteur
7122 _h	Erreur du moteur ou dysfonctionnement de commutation
7123 _h	Inclinaison du moteur
7200 _h	Circuit de mesure
7300 _h	Capteur
7301 _h	Défaut de tachymètre
7302 _h	Polarité erronée du tachymètre
7303 _h	Défaut de résolveur 1
7304 _h	Défaut de résolveur 2
7305 _h	Défaut de capteur incrémental 1
7306 _h	Défaut de capteur incrémental 2
7307 _h	Défaut de capteur incrémental 3
7310 _h	Vitesse
7320 _h	Position
7400 _h	Circuit de calcul
7500 _h	Communication
7510 _h	Interface série n°1
7520 _h	Interface série n°2
7600 _h	Mise en mémoire (externe)
8300 _h	Asservissement de couple
8311 _h	Couple trop élevé
8312 _h	Démarrage difficile

Code d'erreur	Signification
8313 _h	Couple d'immobilisation
8321 _h	Couple insuffisant
8331 _h	Défaut de couple
8400 _h	Régulateur de régime/vitesse
8500 _h	Contrôleur de position
8600 _h	Contrôleur de positionnement
8611 _h	Erreur suivante
8612 _h	Limite de référence
8700 _h	Contrôleur de synchronisation
8800 _h	Contrôleur d'enroulement
8900 _h	Contrôle de données de processus
8A00 _h	Commande
F001 _h	Décélération
F002 _h	Fonctionnement sous-synchrone
F003 _h	Course
F004 _h	Commande
FF00 _h à FFFF _h	Spécifique au constructeur

7.2 Comportement aux erreurs

Le système de communication peut prendre en charge un objet qui spécifie l'état de gestion de réseau vers lequel le dispositif d'entraînement doit passer, lorsqu'une erreur de communication ou une erreur grave interne du dispositif est détectée. Lorsque la FSA PDS passe à l'état *Erreur*, ceci doit être considéré comme une défaillance grave interne du dispositif.

8 Commande de l'entraînement électrique de puissance

8.1 Généralités

La FSA PDS permet de définir de manière abstraite le comportement d'une boîte noire, dans la mesure où un dispositif de commande utilise le PDS. Elle définit le comportement d'application du PDS. Du fait de l'exigence selon laquelle un PDS assure une commande locale même lorsque le réseau de communication ne fonctionne pas correctement, la FSA de communication telle que définie dans les spécifications de mise en correspondance du système de communication et la FSA PDS font l'objet d'un couplage lâche uniquement.

La Figure 3 spécifie comment le PDS peut être utilisé localement ou via le réseau à distance. Le PDS est utilisé par des signaux locaux (ne relevant pas du domaine d'application de la présente partie de la CEI 61800) et par le mot de commande transmis par le dispositif de commande via le réseau. L'état du PDS est indiqué par le mot d'état généré par le dispositif d'entraînement. La FSA est également commandée par les signaux de détection d'erreur.

La FSA PDS définit l'état du PDS et la séquence de commande potentielle du PDS. Un état unique représente un comportement interne ou externe spécial. L'état du PDS détermine également les commandes acceptées. Par exemple, il est possible d'initier un déplacement point à point uniquement lorsque le dispositif d'entraînement est dans l'état Fonctionnement activé.

Anglais	Français
Controlword	Mot de commande
Local signals	Signaux locaux
Logical operation	Fonctionnement logique
Local/remote switch	Interrupteur local/distant
PDS FSA	FSA PDS
Error detection signals	Signaux de détection d'erreur
Drive status	Etat du dispositif d'entraînement
Statusword	Mot d'état

Figure 3 - Commande distante et commande locale

8.2 Automatisation d'états finis

La Figure 4 spécifie la FSA PDS eu égard à la commande de l'électronique de puissance, du fait des commandes utilisateur et des défauts internes du dispositif d'entraînement.

Légende

Anglais	Français
Start	Démarrage
Not ready to switch on	Mode mise sous tension non prêt

Anglais	Français
Switch on disabled	Mode mise sous tension désactivé
Fault	Défaut
Ready to switch on	Mode mise sous tension prêt
Fault reaction active	Mode réaction au défaut actif
Switch on	Mode mise sous tension
Quick stop active	Mode arrêt rapide actif
Operation enabled	Mode fonctionnement activé
Power-off or reset	Mise hors tension ou réinitialisation

Figure 4 – Automatisation d'états finis de l'entraînement électrique de puissance

Les états FSA doivent prendre en charge les fonctions indiquées dans le Tableau 25. L'état démarrage doit être un pseudo-état qui indique le début d'activation de la FSA pendant la séquence de démarrage du logiciel d'application du dispositif d'entraînement.

Tableau 25 – États FSA et fonctions prises en charge

Fonction	États FSA												
	Mode mise sous tension non prêt	Mode mise sous tension désactivé	Mode mise sous tension prêt	Mode mise sous tension	Mode fonctionnement activé	Mode arrêt rapide actif	Mode réaction au défaut actif	Défaut					
Frein appliqué, si présent	Oui	Oui	Oui	Oui	Oui/Non	Oui/Non	Oui/Non	Oui					
Alimentation de faible niveau appliquée	Oui	Oui	Oui	Oui	Oui	Oui	Oui	Oui					
Alimentation de haut niveau appliquée	Oui/Non	Oui/Non	Oui/Non	Oui	Oui	Oui	Oui	Oui/Non					
Fonction d'entraînement activée	Non	Non	Non	Non	Oui	Oui	Oui	Non					
Configuration admise	Oui	Oui	Oui	Oui	Oui/Non	Oui/Non	Oui/Non	Oui					

Si, dans l'état *Arrêt rapide actif*, le code de l'option Arrêt rapide est réglé sur 5, 6, 7 ou 8, le dispositif d'entraînement ne doit pas quitter cet état, mais il peut passer à l'état *Fonctionnement activé* avec la commande *Activation du fonctionnement*.

Le dispositif d'entraînement doit prendre en charge les transitions et actions indiquées dans le Tableau 26. Les événements doivent déclencher la transition. La transition doit s'achever une fois l'action accomplie.

Tableau 26 – Événements et actions de transitions

Transition	Événement(s)	Action(s)
0	Transition automatique après mise sous tension ou application de réinitialisation	Un auto-test et/ou une auto-initialisation du dispositif d'entraînement doit être effectué.
1	Transition automatique	La communication doit être activée.
2	Commande d'arrêt émise par le dispositif de commande ou le signal local	Aucune
3	Commande de mise sous tension émise par le	L'alimentation de haut niveau doit être mise sous

– 187 –

Transition	Événement(s)	Action(s)				
	dispositif de commande ou le signal local	tension, si possible.				
4	Commande Activer le fonctionnement émise par le dispositif de commande ou le signal local	La fonction d'entraînement doit être activée et tous les points de consigne internes doivent être annulés.				
5	Commande Désactiver le fonctionnement émise par le dispositif de commande ou le signal local	La fonction d'entraînement doit être désactivée.				
6	Commande d'arrêt émise par le dispositif de commande ou le signal local	L'alimentation de haut niveau doit être mise hors tension, si possible.				
7	Commande d'arrêt rapide ou de désactivation de tension émise par le dispositif de commande ou le signal local	Aucune				
8	Commande d'arrêt émise par le dispositif de commande ou le signal local	La fonction d'entraînement doit être désactivée, et l'alimentation de haut niveau doit être mise hors tension, si possible.				
9	Commande Désactiver la tension émise par le dispositif de commande ou le signal local	La fonction d'entraînement doit être désactivée, et l'alimentation de haut niveau doit être mise hors tension, si possible.				
10	Commande Désactiver la tension ou Arrêt rapide émise par le dispositif de commande ou le signal local	L'alimentation de haut niveau doit être mise hors tension, si possible.				
11	Commande Arrêt rapide émise par le dispositif de commande ou le signal local	La fonction d'arrêt rapide doit être lancée.				
12	Transition automatique une fois la fonction d'arrêt rapide achevée et lorsque le code de l'option Arrêt rapide est 1, 2, 3 ou 4, ou commande Désactiver la tension émise par le dispositif de commande (dépend du code de l'option Arrêt rapide)	La fonction d'entraînement doit être désactivée, et l'alimentation de haut niveau doit être mise hors tension, si possible.				
13	Signal de défaut (voir également CEI 61800-7- 301)	La fonction configurée de réaction au défaut doit être exécutée.				
14	Transition automatique	La fonction d'entraînement doit être désactivée; l'alimentation de haut niveau doit être mise hors tension, si possible.				
15	Commande de réinitialisation suite à un défaut émise par le dispositif de commande ou le signal local	La condition de défaut fait l'objet d'une réinitialisation si aucun défaut n'est actuellement présent sur le dispositif d'entraînement; après sortie de l'état Défaut, le bit de réinitialisation suite à un défaut dans le mot de commande doit être supprimé par le dispositif de commande.				
16	Commande Activer le fonctionnement émise par le dispositif de commande, si le code de l'option Arrêt rapide est 5, 6, 7 ou 8	La fonction d'entraînement doit être activée.				
NOTE II n'e	i est pas recommandé de prendre en charge la transit	ion 16.				

Lorsqu'une transition d'état est sollicitée, les actions associées doivent être accomplies entièrement avant de passer au nouvel état. Exemple: Dans l'état *Fonctionnement activé*, lorsque la commande *Désactiver le fonctionnement* est émise, le dispositif d'entraînement doit rester à cet état jusqu'à l'achèvement de la fonction de désactivation du fonctionnement (voir objet 605C_b).

Les dispositifs d'entraînement capables de commander le contacteur pour le secteur peuvent commuter l'alimentation de haut niveau. Lorsque l'alimentation de haut niveau est mise hors tension, le moteur doit pouvoir tourner librement si le frein n'est pas appliqué.

La désactivation de la fonction d'entraînement implique qu'aucune source d'énergie ne doit alimenter le moteur. Les valeurs cibles ou de point de consigne (par exemple, couple, vitesse, position) ne doivent pas être transformées.

– 188 **–**

L'activation de la fonction d'entraînement implique qu'une source d'énergie peut alimenter le moteur. Les valeurs cibles ou de point de consigne doivent être transformées.

La détection d'un défaut dans le dispositif d'entraînement doit générer une transition vers l'état *Réaction au défaut active*. Dans cet état, le PDS doit exécuter une réaction au défaut particulière. Une fois cette réaction au défaut exécutée, le dispositif d'entraînement doit basculer automatiquement sur l'état *Défaut*. Cet état doit être quitté uniquement par la commande de réinitialisation suite à un défaut, mais uniquement si le défaut n'est plus actif.

En cas d'erreur fatale, le dispositif de commande n'est plus capable de contrôler le moteur, si bien qu'une mise hors tension immédiate du dispositif d'entraînement est nécessaire.

Le comportement des fonctions de désactivation du dispositif d'entraînement, d'arrêt rapide, d'arrêt et de réaction au défaut est configurable au moyen des objets de configuration définis en 8.4.

NOTE En présence d'un frein, l'alimentation de haut niveau est mise hors tension après un délai d'attente, afin d'appliquer le frein.

8.3 Modes de fonctionnement

Le comportement du PDS dépend du mode de fonctionnement activé. Le PDS peut mettre en œuvre plusieurs modes de fonctionnement. Dans la mesure où il n'est pas possible d'exécuter les modes en parallèle, l'utilisateur est capable d'activer la fonction requise en choisissant un mode de fonctionnement.

Le dispositif de commande s'adresse à l'objet *Modes de fonctionnement* afin de sélectionner le mode de fonctionnement. Le dispositif d'entraînement fournit l'objet *Affichage des modes de fonctionnement* pour indiquer le mode de fonctionnement activé réel. Le mot de commande, le mot d'état et les points de consigne sont utilisés selon le mode. Ceci implique la responsabilité qui incombe au dispositif de commande d'éviter les incohérences et tout comportement erroné. La commutation entre les modes de fonctionnement implique l'absence de reconfiguration automatique des COB pour une transmission des données en temps réel.

Par conséquent, le PDS peut limiter la commutation de mode dans un ou certains états FSA PDS. La commutation de mode peut également être limitée à la fonction de "commande locale"; cela signifie qu'il n'est pas possible de sélectionner le mode de fonctionnement via le réseau.

Les modes de fonctionnement suivants sont décrits dans la présente partie de la série CEI 61800-7:

- Mode de position de profil
- Mode de retour à la position de référence
- Mode de position interpolée
- Mode de vitesse de profil (par exemple, entraînements asservis)
- Mode de profil de couple
- Mode de vitesse (par exemple, convertisseur de fréquence)
- Mode de position à synchronisation cyclique
- Mode de vitesse à synchronisation cyclique
- Mode de couple à synchronisation cyclique

À l'exception du 'Mode de retour à la position de référence', les modes de fonctionnement énumérés traitent des points de consigne. Outre cet élément, les modes de fonctionnement spécifiques au constructeur peuvent également être mis en œuvre. Ceux-ci ne se limitent pas aux points de consigne.

- 189 -

La Figure 5 présente les relations générales entre les valeurs cibles, de référence, de contrôle et instantanées.

Légende

Anglais	Français
Cyclic sync target value	Valeur cible à synchronisation cyclique
Target values	Valeurs cibles
Trajectory generator	Générateur de trajectoire
Reference values	Valeurs de référence
Control and power stage	Etage de commande et de puissance
Effort values	Valeurs de contrôle
Motor	Moteur
Actual values (sensorless)	Valeurs instantanées (sans capteur)
Actual values (with sensor)	Valeurs instantanées (avec capteur)

Figure 5 - Relation entre les différents paramètres de valeurs

8.4 Spécifications d'objets détaillées

8.4.1 Objet 6040_h: Mot de commande

Cet objet doit indiquer la commande reçue de contrôle de la FSA PDS. Il doit être structuré tel que défini à la Figure 6. Les bits 7, 3, 2, 1 et 0 doivent être pris en charge. Les autres bits peuvent être pris en charge. Les commandes doivent être codées comme cela est indiqué dans le Tableau 27.

Légende: ms = spécifique au constructeur; r = réservé; oms = spécifique au mode de fonctionnement; h = mode arrêt; fr = mode réinitialisation suite à un défaut; eo = mode activer le fonctionnement; qs = mode arrêt rapide; ev = mode activer la tension; so = mode mise sous tension

Figure 6 - Définition des valeurs

– 190 –

Tableau 27 - Codage des commandes

Commande	Bits	du mo	Transitions				
Commanue	Bit 7	Bit 3	Bit 2	Bit 1	Bit 0	Transitions	
Arrêt	0	Х	1	1	0	2,6,8	
Mise sous tension	0	0	1	1	1	3	
Mise sous tension + activer le fonctionnement	0	1	1	1	1	3 + 4 (NOTE)	
Désactiver la tension	0	Х	х	0	Х	7,9,10,12	
Arrêt rapide	0	Х	0	1	Х	7,10,11	
Désactiver le fonctionnement	0	0	1	1	1	5	
Activer le fonctionnement	0	1	1	1	1	4,16	
Réinitialisation suite à un défaut		Х	Х	Х	Х	15	

NOTE Transition automatique vers l'état Activer le fonctionnement après exécution de la fonction de l'état SWITCHED ON (mise sous tension).

Les bits 9, 6, 5 et 4 du mot de commande sont spécifiques au mode de fonctionnement. Le comportement de la fonction d'arrêt (bit 8) est également spécifique au mode de fonctionnement. Si le bit est égal à 1, le mouvement commandé doit être interrompu, et le PDS doit se comporter tel que défini dans le code de l'option Arrêt. Une fois la fonction d'arrêt libérée, le mouvement commandé doit se poursuivre si possible.

Le bit 10 est réservé pour une utilisation ultérieure; il doit être mis à 0. Les bits 11, 12, 13, 14 et 15 sont spécifiques au constructeur.

Le Tableau 28 spécifie la description de l'objet et le Tableau 29 spécifie la description d'entrée.

Tableau 28 - Description de l'objet

Attribut	Valeur
Index	6040 _h
Nom	Mot de commande
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Obligatoire

Tableau 29 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 27
Valeur par défaut	Spécifique au dispositif et au mode de fonctionnement

- 191 -

8.4.2 Objet 6041_h: Mot d'état

Cet objet doit fournir l'état de la FSA PDS. L'objet doit être structuré tel que défini à la Figure 7. Les bits 10, 9 et 6 à 0 doivent être pris en charge. Les autres bits peuvent être pris en charge. Les combinaisons de bits définies dans le Tableau 30 doivent coder les états FSA PDS.

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ms	;	on	าร	ila	tr	rm	ms	W	sod	qs	ve	f	oe	so	rtso

Bit de poids fort (MSB)

Bit de poids faible (LSB)

Légende: ms = spécifique au constructeur; oms = spécifique au mode de fonctionnement; ila = limite interne active; tr = cible atteinte; rm = distant; w = avertissement; sod = mode mise sous tension désactivé; qs = mode arrêt rapide; ve = mode tension activé; f = défaut; oe = mode fonctionnement activé; so = mode mise sous tension; rtso = mode mise sous tension prêt

Figure 7 – Définition des valeurs

Mot d'état	État FSA PDS
xxxx xxxx x0xx 0000 _b	Mode mise sous tension non prêt
xxxx xxxx x1xx 0000 _b	Mode mise sous tension désactivé
xxxx xxxx x01x 0001 _b	Mode mise sous tension prêt
xxxx xxxx x01x 0011 _b	Mode mise sous tension
xxxx xxxx x01x 0111 _b	Mode fonctionnement activé
xxxx xxxx x00x 0111 _b	Mode arrêt rapide actif
xxxx xxxx x0xx 1111 _b	Mode réaction au défaut actif
xxxx xxxx x0xx 1000 _b	Défaut

Lorsque le bit 4 (tension activée) du mot d'état est égal à 1, ceci doit indiquer que la haute tension est appliquée au PDS.

Lorsque le bit 5 (arrêt rapide) du mot d'état est égal à 0, ceci doit indiquer que le PDS réagit à une demande d'arrêt rapide.

Lorsque le bit 7 (avertissement) du mot d'état est égal à 1, ceci doit indiquer la présence d'une condition d'avertissement. L'avertissement n'est ni une erreur ni un défaut (exemples: dépassement de la limite de température, tâche refusée). L'état de la FSA PDS ne doit pas être modifié. La cause de l'avertissement peut être donnée dans l'objet $Paramètre \ du \ code \ defaut \ (603F_h)$.

Lorsque le bit 9 (distant) du mot d'état est égal à 1, ceci doit indiquer le traitement du mot de commande. Lorsque ce bit est égal à 0 (local), ceci doit indiquer l'absence de traitement du mot de commande. Néanmoins, le PDS peut fournir des valeurs instantanées, et peut accepter le COB pour la transmission des données de configuration pour d'autres objets de paramètres.

Lorsque le bit 10 (cible atteinte) du mot d'état est égal à 1, ceci doit indiquer que le PDS a atteint le point de consigne. Le point de consigne est spécifique au mode de fonctionnement et est défini de manière détaillée dans les articles correspondants de la présente partie de la série CEI 61800-7. Le bit 10 doit être également mis à 1, si le mode de fonctionnement a été modifié. Le changement d'une valeur cible par le logiciel doit affecter ce bit. Si le code de l'option Arrêt rapide est 5, 6, 7 ou 8, le bit 10 doit être mis à 1, lorsque le fonctionnement à

- 192 -

l'état arrêt rapide est terminé et lorsque le PDS est à l'arrêt. En cas d'arrêt effectif et d'immobilisation du PDS, le bit 10 doit alors être également mis à 1.

Lorsque le bit 11 (limite interne active) du mot d'état est égal à 1, ceci doit indiquer qu'une limite interne est active (exemple: limite de plage de position). Les limites internes sont spécifiques au constructeur.

Les bits 13 et 12 du mot d'état sont spécifiques au mode de fonctionnement.

Les bits 14 et 15 sont spécifiques au constructeur.

Le Tableau 31 spécifie la description de l'objet et le Tableau 32 spécifie la description d'entrée.

 Attribut
 Valeur

 Index
 6041_h

 Nom
 Mot d'état

 Code de l'objet
 Variable

 Type de données
 Unsigned16

 Catégorie
 Obligatoire

Tableau 31 - Description de l'objet

Tableau 32 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 30
Valeur par défaut	Non

8.4.3 Objet 603F_h: Code d'erreur

Cet objet doit fournir le code d'erreur de la dernière erreur qui s'est produite dans le dispositif d'entraînement. Le Tableau 24 spécifie la définition des valeurs, le Tableau 33 spécifie la description de l'objet et le Tableau 34 spécifie la description d'entrée.

NOTE Dans les réseaux CANopen, cet objet fournit les mêmes informations que l'objet de 16 bits inférieur du sous-index 01_h du champ d'erreur prédéfini (1003_h) .

Tableau 33 - Description de l'objet

Attribut	Valeur	
Index	603F _h	
Nom	Code d'erreur	
Code de l'objet	Variable	
Type de données	Unsigned16	
Catégorie	Facultative	

- 193 -

Tableau 34 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 24
Valeur par défaut	Non

8.4.4 Objet 6007_h: Code de l'option Abandon de connexion

Cet objet doit indiquer quelle action doit être effectuée lorsque l'un des événements suivants se produit: mise hors tension du bus, pulsation, surveillance, passage à l'état d'arrêt NMT, application de réinitialisation et communication de réinitialisation. Le Tableau 35 spécifie la définition des valeurs, le Tableau 36 spécifie la description de l'objet et le Tableau 37 spécifie la description d'entrée.

Tableau 35 - Définition des valeurs

Valeur	Définition
-32 768 à -1	Spécifique au constructeur
0	Aucune action
+1	Signal de défaut
+2	Commande Désactiver la tension
+3	Commande Arrêt rapide
+4 à +32 767	réservé

Tableau 36 - Description de l'objet

Attribut	Valeur
Index	6007 _h
Nom	Code de l'option Abandon de connexion
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Facultative

Tableau 37 – Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 35
Valeur par défaut	+1

8.4.5 Objet 605A_h: Code de l'option Arrêt rapide

Cet objet doit indiquer quelle action est effectuée lorsque la fonction Arrêt rapide est exécutée. La rampe de ralentissement représente la valeur de décélération du mode de

– 194 **–**

fonctionnement utilisé. Le Tableau 38 spécifie la définition des valeurs, le Tableau 39 spécifie la description de l'objet et le Tableau 40 spécifie la description d'entrée.

Tableau 38 - Définition des valeurs

Valeur	Définition
-32 768 à -1	Spécifique au constructeur
0	Désactiver la fonction d'entraînement
+1	Ralentir sur la rampe de ralentissement et passer au mode Mise sous tension désactivé
+2	Ralentir sur la rampe d'arrêt rapide et passer au mode Mise sous tension désactivé
+3	Ralentir en rapport avec la limite de courant et passer au mode Mise sous tension désactivé
+4	Ralentir en rapport avec la limite de tension et passer au mode Mise sous tension désactivé
+5	Ralentir sur la rampe de ralentissement et maintenir au mode arrêt rapide actif
+6	Ralentir sur la rampe d'arrêt rapide et maintenir au mode arrêt rapide actif
+7	Ralentir en rapport avec la limite de courant et maintenir au mode arrêt rapide actif
+8	Ralentir en rapport avec la limite de tension et maintenir au mode arrêt rapide actif
+9 à +32 767	réservé

Tableau 39 - Description de l'objet

Attribut	Valeur
Index	605A _h
Nom	Code de l'option Arrêt rapide
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Facultative

Tableau 40 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 38
Valeur par défaut	+2

8.4.6 Objet 605B_h: Code de l'option Interruption

Cet objet doit indiquer quelle action est effectuée en cas de transition entre l'état Fonctionnement activé et l'état Mise sous tension prêt. La rampe de ralentissement représente la valeur de décélération du mode de fonctionnement utilisé. Le Tableau 41 spécifie la définition des valeurs, le Tableau 42 spécifie la description de l'objet et le Tableau 43 spécifie la description d'entrée.

- 195 -

Tableau 41 - Définition des valeurs

Valeur	Définition
-32 768 à -1	Spécifique au constructeur
0	Désactiver la fonction d'entraînement (mettre hors tension l'étage de puissance d'entraînement)
+1	Ralentir au moyen de la rampe de ralentissement; désactivation de la fonction d'entraînement
+2 à +32 767	réservé

Tableau 42 - Description de l'objet

Attribut	Valeur
Index	605B _h
Nom	Code de l'option Interruption
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Facultative

Tableau 43 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 41
Valeur par défaut	0

8.4.7 Objet 605C_h: Code de l'option Désactiver le mode de fonctionnement

Cet objet doit indiquer quelle action est effectuée en cas de transition entre l'état Fonctionnement activé et l'état Mise sous tension. La rampe de ralentissement représente la valeur de décélération du mode de fonctionnement utilisé. Le Tableau 44 spécifie la définition des valeurs, le Tableau 45 spécifie la description de l'objet et le Tableau 46 spécifie la description d'entrée.

Tableau 44 - Définition des valeurs

Valeur	Définition
-32 768 à -1	Spécifique au constructeur
0	Désactiver la fonction d'entraînement (mettre hors tension l'étage de puissance d'entraînement)
+1	Ralentir au moyen de la rampe de ralentissement; désactivation de la fonction d'entraînement
+2 à +32 767	réservé

Tableau 45 - Description de l'objet

Attribut	Valeur
Index	605C _h
Nom	Code de l'option Désactiver le mode de fonctionnement
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Facultative

Tableau 46 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 44
Valeur par défaut	+1

8.4.8 Objet 605D_h: Code de l'option Arrêt

Cet objet doit indiquer quelle action est effectuée lorsque la fonction Arrêt est exécutée. La rampe de ralentissement représente la valeur de décélération du mode de fonctionnement utilisé. Le Tableau 47 spécifie la définition des valeurs, le Tableau 48 spécifie la description de l'objet et le Tableau 49 spécifie la description d'entrée.

Tableau 47 - Définition des valeurs

Valeur	Définition
-32 768 à -1	Spécifique au constructeur
0	Réservé
+1	Ralentir sur la rampe de ralentissement et maintenir au mode Fonctionnement activé
+2	Ralentir sur la rampe d'arrêt rapide et maintenir au mode Fonctionnement activé
+3	Ralentir en rapport avec la limite de courant et maintenir au mode Fonctionnement activé
+4	Ralentir en rapport avec la limite de tension et maintenir au mode Fonctionnement activé
+5 à +32 767	Réservé

Tableau 48 - Description de l'objet

Attribut	Valeur
Index	605D _h
Nom	Code de l'option Arrêt
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Facultative

- 197 -

Tableau 49 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 47
Valeur par défaut	+1

8.4.9 Objet 605E_h: Code de l'option Réaction au défaut

Cet objet doit indiquer quelle action est effectuée lorsqu'un défaut est détecté dans le PDS. La rampe de ralentissement représente la valeur de décélération du mode de fonctionnement utilisé. Le Tableau 50 spécifie la définition des valeurs, le Tableau 51 spécifie la description de l'objet et le Tableau 52 spécifie la description d'entrée.

Tableau 50 - Définition des valeurs

Valeur	Définition
-32 768 à -1	Spécifique au constructeur
0	Désactiver la fonction d'entraînement, le moteur peut tourner librement
+1	Ralentir sur la rampe de ralentissement
+2	Ralentir sur la rampe d'arrêt rapide
+3	Ralentir en rapport avec la limite de courant
+4	Ralentir en rapport avec la limite de tension
+5 à +32 767	réservé

Tableau 51 - Description de l'objet

Attribut	Valeur
Index	605E _h
Nom	Code de l'option Réaction au défaut
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Facultative

Tableau 52 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 50
Valeur par défaut	+2

8.4.10 Objet 6060_h: Modes de fonctionnement

Cet objet doit indiquer le mode de fonctionnement sollicité. Le Tableau 53 spécifie la définition des valeurs, le Tableau 54 spécifie la description de l'objet et le Tableau 55 spécifie la description d'entrée.

NOTE Cet objet montre uniquement la valeur du mode de fonctionnement sollicité, le mode de fonctionnement réel du PDS étant reflété dans l'objet Affichage des modes de fonctionnement.

Tableau 53 - Définition des valeurs

Valeur	Définition
-128 à -1	Modes de fonctionnement spécifiques au constructeur
0	Aucun changement de mode/aucun mode assigné
+1	Mode de position de profil
+2	Mode de vitesse
+3	Mode de vitesse de profil
+4	Mode de profil de couple
+5	réservé
+6	Mode de retour à la position de référence
+7	Mode de position interpolée
+8	Mode de position à synchronisation cyclique
+9	Mode de vitesse à synchronisation cyclique
+10	Mode de couple à synchronisation cyclique
+11 à +127	réservé

Tableau 54 - Description de l'objet

Attribut	Valeur
Index	6060 _h
Nom	Modes de fonctionnement
Code de l'objet	Variable
Type de données	Integer8
Catégorie	Facultative

Tableau 55 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 53
Valeur par défaut	0

8.4.11 Objet 6061_h: Affichage des modes de fonctionnement

Cet objet doit fournir le mode de fonctionnement réel. Le Tableau 53 spécifie la définition des valeurs, le Tableau 56 spécifie la description de l'objet et le Tableau 57 spécifie la description d'entrée.

- 199 -

Tableau 56 - Description de l'objet

Attribut	Valeur
Index	6061 _h
Nom	Affichage des modes de fonctionnement
Code de l'objet	Variable
Type de données	Integer8
Catégorie	Facultative

Tableau 57 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 53
Valeur par défaut	Non

8.4.12 Objet 6502_h: Modes d'entraînement pris en charge

Cet objet doit fournir les informations concernant les modes d'entraînement pris en charge. La Figure 8 spécifie la définition des valeurs, le Tableau 58 spécifie la description de l'objet et le Tableau 59 spécifie la description d'entrée.

31		16	15	10	9	8	7	6	5	4	3	2	1	0	
	Spécifique au constructeur		r(éserve	<i>(</i>	cst	csv	csp	ip	hm	r	tq	pv	vI	рр	

Bit de poids fort (MSB)

Bit de poids faible (LSB)

Figure 8 - Définition des valeurs

bits cst, csv, csp, ip, hm, tq, pv, vl, et pp:

1 = le mode est pris en charge

0 = le mode n'est pas pris en charge

bits spécifiques au constructeur:

1 = la fonction est prise en charge

0 = la fonction n'est pas prise en charge

bits r(éservés):

Tableau 58 - Description de l'objet

Attribut	Valeur
Index	6502 _h
Nom	Modes d'entraînement pris en charge
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Obligatoire

Tableau 59 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Figure 8
Valeur par défaut	Non

9 Groupe de facteurs

9.1 Généralités

Dans certaines applications de dispositifs d'entraînement, plusieurs valeurs de résolution de capteur et plusieurs valeurs de rapport sont nécessaires. Elles peuvent être utilisées pour les objets définis dans le présent article.

La relation entre les unités définies par l'utilisateur et les unités internes est calculée par l'équation suivante:

$$valeur insta \tan \acute{e}ede\ position = \frac{valeur\ int\ ernede\ position \times constanted'\ avance}{r\acute{e}solution du codeur de\ position \times rapport d'\ engrenage}$$

9.2 Définitions d'objets détaillées

9.2.1 Objet 608F_h: Résolution du codeur de position

Cet objet doit indiquer les incréments configurés du moteur et le nombre de rotations du moteur. La résolution du codeur de position doit être calculée par la formule suivante:

résolution du codeur de position =
$$\frac{incréments du codeur}{rotations du moteur}$$

Toutes les valeurs doivent être adimensionnelles. Le Tableau 60 spécifie la description de l'objet et le Tableau 61 spécifie la description d'entrée.

Tableau 60 - Description de l'objet

Attribut	Valeur
Index	608F _h
Nom	Résolution du codeur de position
Code de l'objet	Matrice
Type de données	Unsigned32
Catégorie	Facultative

- 201 -

Tableau 61 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h
Valeur par défaut	Spécifique au constructeur (mais non égale à 0)
Sous-index	01 _h
Description	Incréments du codeur
Catégorie d'entrée	Obligatoire
Accès	Rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur (mais non égale à 0)
Sous-index	02 _h
Description	Rotations du moteur
Catégorie d'entrée	Obligatoire
Accès	Rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur (mais non égale à 0)
	·

9.2.2 Objet 6090_h: Résolution du codeur de vitesse

Cet objet doit indiquer les incréments configurés du moteur par seconde et le nombre de rotations du moteur par seconde. La résolution du codeur de vitesse doit être calculée par la formule suivante:

$$r\'{e}solution \ du \ codeur \ de \ vitesse = \frac{codeur}{codeur} \frac{incr\'{e}ments}{seconde}$$
$$\frac{rotations}{seconde}$$

Toutes les valeurs doivent être adimensionnelles. Le Tableau 62 spécifie la description de l'objet et le Tableau 63 spécifie la description d'entrée.

Tableau 62 - Description de l'objet

Attribut	Valeur
Index	6090 _h
Nom	Résolution du codeur de vitesse
Code de l'objet	Matrice
Type de données	Unsigned32
Catégorie	Facultative

Tableau 63 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h
Valeur par défaut	Spécifique au constructeur (mais non égale à 0)
Sous-index	01 _h
Description	Incréments du codeur par seconde
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur (mais non égale à 0)
Sous-index	02 _h
Description	Rotations du moteur par seconde
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur (mais non égale à 0)

9.2.3 Objet 6091_h: Rapport d'engrenage

Cet objet doit indiquer le nombre configuré de rotations de l'arbre moteur et le nombre de rotations de l'arbre d'entraînement. Le rapport d'engrenage doit être calculé par la formule suivante:

$$rapport\ d'engrenage = \frac{rotations\ de\ l'\ arbre\ moteur}{rotations\ de\ l'\ arbre\ d'entraînement}$$

Toutes les valeurs doivent être adimensionnelles. Le Tableau 64 spécifie la description de l'objet et le Tableau 65 spécifie la description d'entrée.

- 203 -

Tableau 64 - Description de l'objet

Attribut	Valeur
Index	6091 _h
Nom	Rapport d'engrenage
Code de l'objet	Matrice
Type de données	Unsigned32
Catégorie	Facultative

Tableau 65 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h
Valeur par défaut	Spécifique au constructeur (mais non égale à 0)
Sous-index	01 _h
Description	Rotations du moteur
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur (mais non égale à 0)
Sous-index	02 _h
Description	Rotations de l'arbre
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur (mais non égale à 0)

9.2.4 Objet 6092_h: Constante d'avance

Cet objet doit indiquer la constante d'avance configurée, il s'agit de la distance de mesure par rotation de l'arbre de sortie de la boîte d'engrenage. La constante d'avance doit être calculée par la formule suivante:

L'avance doit être donnée en unités de position définies par l'utilisateur, et la rotation de l'arbre d'entraînement doit être adimensionnelle. Le Tableau 66 spécifie la description de l'objet et le Tableau 67 spécifie la description d'entrée.

Tableau 66 - Description de l'objet

Attribut	Valeur
Index	6092 _h
Nom	Constante d'avance
Code de l'objet	Matrice
Type de données	Unsigned32
Catégorie	Facultative

Tableau 67 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h
Valeur par défaut	Spécifique au constructeur (mais non égale à 0)
Sous-index	01 _h
Description	Avance
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur (mais non égale à 0)
Sous-index	02 _h
Description	Rotations de l'arbre
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur (mais non égale à 0)

9.2.5 Objet 607E_h: Polarité

Cet objet doit indiquer si la valeur de demande de position doit être multipliée par 1 ou par -1. L'indicateur de polarité ne doit pas influer sur le mode de retour à la position de référence. Le bit de polarité de position doit être utilisé uniquement pour le mode de position de profil (pp) et le mode de position à synchronisation cyclique (csp). Le bit de polarité de vitesse doit être utilisé uniquement pour le mode de vitesse de profil (pv) et le mode de vitesse à synchronisation cyclique (csv). La Figure 9 spécifie la définition des valeurs, le Tableau 68 spécifie la description de l'objet et le Tableau 69 spécifie la description d'entrée.

- 205 -

Figure 9 - Définition des valeurs

Les bits de polarité doivent être codés comme suit: 0_b = multiplier par 1 et 1_b = multiplier par - 1

AttributValeurIndex607EhNomPolaritéCode de l'objetVariable

Tableau 68 - Description de l'objet

Tableau 69 -	Description	d'entrée
--------------	-------------	----------

Unsigned8

Facultative

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Figure 9
Valeur par défaut	00 _h

10 Mode de position de profil

10.1 Informations d'ordre général

Type de données

Catégorie

La structure globale pour ce mode est présentée à la Figure 10. Une position cible est appliquée au générateur de trajectoire. Celui-ci génère une valeur de demande de position pour la boucle d'asservissement de position décrite dans la fonction correspondante (voir 12.3.1). Ces deux blocs de fonction sont commandés éventuellement par des ensembles de paramètres individuels.

Légende

Anglais	Français
Target position	Position cible
Trajectory generator parameters	Paramètres de générateur de trajectoire
Trajectory generator	Générateur de trajectoire

Anglais	Français
Position demand internal value (60FC _h) or Position demand Value (6062 _h)	Valeur interne de demande de position (60FC _h) ou valeur de demande de position (6062 _h)
Position control law parameters	Paramètres légitimes d'asservissement de position
Position control function	Fonction d'asservissement de position
Control effort	Mesure de contrôle

Figure 10 - Générateur de trajectoire et fonction d'asservissement de position

À l'entrée du générateur de trajectoire, des limites facultatives peuvent être appliquées aux paramètres avant qu'ils ne soient normalisés en unités internes. La forme la plus simple d'un générateur de trajectoire consiste juste à transiter par une position cible et à la transformer en une valeur interne de demande de position avec des unités internes (incréments) uniquement. La Figure 11 définit la structure détaillée du générateur de trajectoire.

Légende

Anglais	Français				
Target position	Position cible				
Position range limit	Limite de plage de position				
Software position limit	Limite de position de logiciel				
Polarity	Polarité				
Limit function	Fonction limite				
Multiplier	Multiplicateur				
Profile velocity	Vitesse de profil				
End velocity	Vitesse finale				
Max profile velocity	Vitesse maximale du profil				
Max. motor speed	Régime maximal du moteur				
Minimum comparator	Comparateur minimal				
Velocity limit	Limite de vitesse				

- 207 -

Anglais	Français				
Profile acceleration	Accélération de profil				
Profile deceleration	Décélération de profil				
Quick-stop deceleration	Décélération par arrêt rapide				
Max. acceleration	Accélération maximale				
Max. deceleration	Décélération maximale				
Quick-stop option code	Code de l'option Arrêt rapide				
Motion profile type	Type de profil de mouvement				
Profile acceleration <i>or</i> profile deceleration <i>or</i> quick-stop deceleration	Accélération de profil <i>ou</i> décélération de profil <i>ou</i> décélération par arrêt rapide				
Trajectory generator	Générateur de trajectoire				
Position demand internal value	Valeur interne de demande de position				
Inc = Internal increments	Inc = Incréments internes				

Figure 11 - Générateur de trajectoire pour le mode de position de profil

10.2 Description fonctionnelle

10.2.1 Généralités

Le réglage des points de consigne est commandé par la synchronisation du bit *nouveau point* de consigne et du bit changer le point de consigne immédiatement dans le mot de commande, ainsi que le bit acquitter le point de consigne dans le mot d'état.

Si le bit changer le point de consigne immédiatement du mot de commande est mis à 1, le dispositif d'entraînement attend un point de consigne unique. Si le bit changer le point de consigne immédiatement du mot de commande est mis à 0, le dispositif d'entraînement attend un ensemble de points de consigne.

Après application d'un point de consigne au dispositif d'entraînement, le dispositif de commande indique que le point de consigne est valide au moyen d'un front montant du bit nouveau point de consigne dans le mot de commande. Le dispositif d'entraînement règle le bit acquitter le point de consigne dans le mot d'état sur 1, puis, le dispositif d'entraînement indique, au moyen du bit acquitter le point de consigne mis à 0, sa capacité à accepter de nouveaux points de consigne. Un exemple est présenté à la Figure 12.

Anglais	Français	
Actual speed	Vitesse instantanée	
New set-point (bit 4)	Nouveau point de consigne (bit 4)	
Target position (set-point)	Position cible (point de consigne)	
Set-point acknowledge (bit 12)	Acquitter le point de consigne (bit 12)	
Target reached (bit 10)	Cible atteinte (bit 10)	

Figure 12 - Exemple de point de consigne

Lorsqu'un point de consigne est toujours en cours de traitement et un nouveau point de consigne est validé, deux méthodes de traitement sont prises en charge: point de consigne unique (le bit changer le point de consigne immédiatement du mot de commande est égal à 1) et ensemble de points de consigne (le bit changer le point de consigne immédiatement du mot de commande est égal à 0).

10.2.2 Point de consigne unique

Lorsqu'un point de consigne est en cours de traitement et un nouveau point de consigne est validé par le nouveau point de consigne (bit 4) dans le mot de commande, le nouveau point de consigne doit être traité immédiatement. La procédure de transfert illustrée à la Figure 13 est employée pour la méthode de point de consigne unique.

Anglais	Français		
Actual speed	Vitesse instantanée		
New set-point (bit 4)	Nouveau point de consigne (bit 4)		
Target position (set-point)	Position cible (point de consigne)		
Current target position processed	Position cible actuelle traitée		
Set-point acknowledge (bit 12)	Acquitter le point de consigne (bit 12)		
Target reached (bit 10)	Cible atteinte (bit 10)		

Figure 13 - Procédure de transfert pour la méthode de point de consigne unique

10.2.3 Ensemble de points de consigne

Lorsqu'un point de consigne est en cours de traitement et un nouveau point de consigne est validé par le nouveau point de consigne (bit 4) dans le mot de commande, le nouveau point de consigne doit être traité uniquement après que le point de consigne précédent a été atteint. La procédure de transfert illustrée à la Figure 14 est employée pour la méthode d'ensemble de points de consigne. Le segment grisé supplémentaire qui apparaît sur le graphique "vitesse réelle" montre la vitesse réelle si le bit changement du point de consigne (bit 9) est mis à 1.

Anglais	Français
Actual speed	Vitesse réelle
New set-point (bit 4)	Nouveau point de consigne (bit 4)
Target position (set-point)	Position cible (point de consigne)
Current target position processed	Position cible actuelle traitée
Set-point acknowledge (bit 12)	Acquitter le point de consigne (bit 12)
Target reached (bit 10)	Cible atteinte (bit 10)

Figure 14 - Procédure de transfert pour la méthode d'ensemble de points de consigne

Lorsqu'un dispositif d'entraînement prend en charge un ensemble de points de consigne, deux points de consigne au minimum sont disponibles, à savoir un point de consigne en cours de traitement et un point de consigne mis en mémoire tampon. Les points de consigne sont traités comme illustré à la Figure 15.

Anglais	Français			
New set-point (bit 4)	Nouveau point de consigne (bit 4)			
Change set immediately	Changer le point de consigne immédiatement			
Set-point	Point de consigne			
Buffered set-point	Point de consigne mis en mémoire tampon			
Processed set-point	Point de consigne traité			
Set-point acknowledge (bit 12)	Acquitter le point de consigne (bit 12)			
Target reached (bit 10)	Cible atteinte (bit 10)			

Figure 15 - Traitement des points de consigne dans le cas de deux points de consigne

Les nouveaux points de consigne sont mis en mémoire tampon dans la liste des points de consigne tant que le dispositif d'entraı̂nement dispose de points de consigne libres. Si aucun point de consigne n'est en cours de traitement, le nouveau point de consigne doit devenir actif immédiatement (1). Si un point de consigne est en cours de traitement, le nouveau point de consigne doit être archivé dans la première mémoire tampon des points de consigne qui est libre (2 + 3).

Si toutes les mémoires tampons des points de consigne sont occupées (le bit acquitter le point de consigne est égal à 1), la réaction dépend du bit changer le point de consigne immédiatement. Si ce bit est mis à 1, le nouveau point de consigne doit être traité immédiatement comme point de consigne unique. Tous les points de consigne chargés précédemment doivent être éliminés (5).

Le bit cible atteinte doit rester à 0 jusqu'à ce que tous les points de consigne soient traités.

10.3 Définitions générales

Les limites logicielles internes ne doivent pas être dépassées par les réglages externes configurés par l'utilisateur.

10.4 Utilisation du mot de commande et du mot d'état

Le mode de position de profil utilise certains bits du mot de commande et du mot d'état pour des applications spécifiques au mode. La Figure 16 présente la structure du mot de commande. Si aucun positionnement n'est en cours, le front montant du bit 4 doit commencer le positionnement de l'axe. Dans le cas où un positionnement est en cours, les définitions données dans le Tableau 70 doivent être utilisées. Le Tableau 71 définit les valeurs des bits 6 et 8 du mot de commande.

NOTE Il est supposé que la position cible est déclenchée par un front d'impulsion 0->1; dans le cas contraire, le dispositif peut définir immédiatement de nouvelles valeurs, ce qui contribue à un comportement inattendu.

15	10	9	8	7	6	5	4	3	0
(voir 8.4	.1)	Changer le point de consigne	Arrêt	(voir 8.4.1)	abs/rel	Changer le point de consigne immédiate- ment	Nouveau point de consigne	(voir 8.4.1)

Bit de poids fort (MSB)

Bit de poids faible (LSB)

Figure 16 - Mot de commande pour le mode de position de profil (pp)

Tableau 70 - Définition du bit 4, du bit 5 et du bit 9

Bit 9	Bit 5	Bit 4	Définition
0	0	0 -> 1	Le positionnement doit être effectué (cible atteinte) avant que ne commence le positionnement suivant (voir Figure 12 et Figure 14)
Х	1	0 -> 1	Le positionnement suivant doit commencer immédiatement (voir Figure 12 et Figure 13)
1	0	0 -> 1	Le positionnement avec la vitesse de profil actuelle atteignant le point de consigne actuel doit être effectué, puis le positionnement suivant (voir Figure 12 et Figure 14) doit alors être appliqué

Tableau 71 - Définition du bit 6 et du bit 8

Bit	Valeur	Définition	
6	0	La position cible doit être une valeur absolue	
	1	La position cible doit être une valeur relative (selon l'objet 60F2 _h)	
8	0	Le positionnement doit être exécuté ou poursuivi	
	1	Le mouvement de l'axe doit être interrompu en fonction du code de l'option Arrêt (605D _h)	

La Figure 17 présente la structure du mot d'état. Le Tableau 72 définit les valeurs du bit 10, du bit 12 et du bit 13.

Bit de poids fort (MSB)

Bit de poids faible (LSB)

Figure 17 - Mot d'état pour le mode de position de profil (pp)

Tableau 72 - Définition du bit 10, du bit 12 et du bit 13

Bit	Valeur	Définition
10	0	Arrêt (Bit 8 dans le mot de commande) = 0: Position cible non atteinte
		Arrêt (Bit 8 dans le mot de commande) = 1: L'axe ralentit
	1	Arrêt (Bit 8 dans le mot de commande) = 0: Position cible atteinte
		Arrêt (Bit 8 dans le mot de commande) = 1: La vitesse de l'axe est nulle
12	0	Point de consigne précédent déjà traité, attente d'un nouveau point de consigne
	1	Point de consigne précédent toujours en cours de traitement, la réécriture du point de consigne doit être acceptée
13	0	Pas d'erreur suivante
	1	Erreur suivante

10.5 Définitions d'objets détaillées

10.5.1 Objet 607A_h: Position cible

Cet objet doit indiquer la position commandée qu'il convient que le dispositif d'entraînement adopte en mode de profil de position, en utilisant les réglages actuels des paramètres de commande de mouvement tels que la vitesse, l'accélération, la décélération, le type de profil de mouvement, etc. La valeur de cet objet doit être interprétée comme valeur absolue ou relative, selon l'indicateur 'abs/rel' du mot de commande. Elle doit être donnée en unités de position définies par l'utilisateur et doit être convertie en incréments de position. Le Tableau 73 spécifie la description de l'objet et le Tableau 74 spécifie la description d'entrée.

Tableau 73 - Description de l'objet

Attribut	Valeur	
Index	607A _h	
Nom	Position cible	
Code de l'objet	Variable	
Type de données	Integer32	
Catégorie	Facultative; obligatoire si pp, pc ou csp est pris en charge	

Tableau 74 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Spécifique au constructeur

10.5.2 Objet 607B_h: Limite de plage de position

Cet objet doit indiquer les limites maximale et minimale configurées de plage de position. Il doit limiter la plage numérique de la valeur d'entrée. Lorsqu'elle atteint ou dépasse ces limites, la valeur d'entrée doit boucler automatiquement vers l'autre extrémité de la plage. Le bouclage de la valeur d'entrée peut être évité en réglant les limites de position de logiciel comme cela est défini dans l'objet de limite de position de logiciel (607Dh). Les valeurs doivent être données en unités de position définies par l'utilisateur. Le Tableau 75 spécifie la description de l'objet et le Tableau 76 spécifie la description d'entrée.

Tableau 75 - Description de l'objet

Attribut	Valeur
Index	607B _h
Nom	Limite de plage de position
Code de l'objet	Matrice
Type de données	Integer32
Catégorie	Facultative

Tableau 76 - Description d'entrée

Attribut	Valeur	
Sous-index	00 _h	
Description	Plus grand sous-index pris en charge	
Catégorie d'entrée	Obligatoire	
Accès	С	
Mise en correspondance PDO	Voir CEI 61800-7-301	
Plage de valeurs	02 _h	
Valeur par défaut	Spécifique au constructeur	
Sous-index	01 _h	
Description	Limite minimale de plage de position	
Catégorie d'entrée	Obligatoire	
Accès	rw	
Mise en correspondance PDO	Voir CEI 61800-7-301	
Plage de valeurs	Integer32	
Valeur par défaut	Spécifique au constructeur	
Sous-index	02 _h	
Description	Limite maximale de plage de position	
Catégorie d'entrée	Obligatoire	
Accès	rw	
Mise en correspondance PDO	Voir CEI 61800-7-301	
Plage de valeurs	Integer32	
Valeur par défaut	Spécifique au constructeur	

10.5.3 Objet 607D_h: Limite de position de logiciel

Cet objet doit indiquer les limites maximale et minimale configurées de position de logiciel. Ces paramètres doivent définir les limites de position absolues pour la valeur de demande de position et la valeur instantanée de position. Chaque nouvelle position de cible doit être vérifiée par rapport à ces limites. Les positions limites doivent toujours être définies par rapport à la position d'origine de la machine. Avant de faire l'objet d'une comparaison avec la position cible, ces limites doivent être corrigées de manière interne par le décalage d'origine comme suit:

Limite de position minimale corrigée = limite de position minimale – décalage d'origine Limite de position maximale corrigée = limite de position maximale – décalage d'origine

- 215 -

Il est nécessaire d'effectuer ce calcul uniquement en cas de modification du décalage d'origine ou de la limite de position de logiciel.

Les positions limites doivent être données en unités de position définies par l'utilisateur (même cas de figure que la position cible). Le Tableau 77 spécifie la description de l'objet et le Tableau 78 spécifie la description d'entrée.

Tableau 77 - Description de l'objet

Attribut	Valeur
Index	607D _h
Nom	Limite de position de logiciel
Code de l'objet	Matrice
Type de données	Integer32
Catégorie	Facultative

Tableau 78 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h
Valeur par défaut	Spécifique au constructeur
Sous-index	01 _h
Description	Limite de position minimale
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Spécifique au constructeur
Sous-index	02 _h
Description	Limite de position maximale
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Spécifique au constructeur
_	

10.5.4 Objet 607F_h: Vitesse maximale du profil

Cet objet doit indiquer la vitesse maximale admise configurée dans toutes les directions au cours d'un mouvement de profil. La valeur doit être donnée dans exactement la même unité

– 216 **–**

physique que l'objet *Vitesse de profil* (6081_h). Le Tableau 79 spécifie la description de l'objet et le Tableau 80 spécifie la description d'entrée.

Tableau 79 - Description de l'objet

Attribut	Valeur
Index	607F _h
Nom	Vitesse maximale du profil
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

Tableau 80 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

10.5.5 Objet 6080_h: Régime maximal du moteur

Cet objet doit indiquer le régime maximal admis configuré du moteur dans toutes les directions. Il permet de protéger le moteur et provient de la fiche technique de ce dernier. La valeur doit être donnée en tours par minute (r/min). Le Tableau 81 spécifie la description de l'objet et le Tableau 82 spécifie la description d'entrée.

Tableau 81 - Description de l'objet

Attribut	Valeur
Index	6080 _h
Nom	Régime maximal du moteur
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

Tableau 82 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

10.5.6 Objet 6081_h: Vitesse de profil

Cet objet doit indiquer la vitesse configurée normalement atteinte à la fin de la rampe d'accélération au cours d'un mouvement de profil, et doit être valide pour les deux directions de mouvement à la vitesse admise (dans toutes les directions au cours d'un mouvement de profil). La valeur doit être donnée en unités de vitesse définies par l'utilisateur. Elle doit être convertie en incréments de position par seconde, en utilisant l'objet Facteur de codage de vitesse. Le Tableau 83 spécifie la description de l'objet et le Tableau 84 spécifie la description d'entrée.

Tableau 83 - Description de l'objet

Attribut	Valeur
Index	6081 _h
Nom	Vitesse de profil
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Conditionnelle: obligatoire si pp est pris en charge

Tableau 84 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

10.5.7 Objet 6082_h: Vitesse finale

Cet objet doit indiquer la vitesse configurée à laquelle le dispositif d'entraînement doit fonctionner lorsqu'il atteint la position cible. Normalement, le dispositif d'entraînement s'arrête à la position cible, c'est-à-dire la vitesse finale = 0. La valeur doit être donnée dans la même unité physique que l'objet *Vitesse de profil* (6081_h). Le Tableau 85 spécifie la description de l'objet et le Tableau 86 spécifie la description d'entrée.

Tableau 85 - Description de l'objet

Attribut	Valeur
Index	6082 _h
Nom	Vitesse finale
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

- 218 -

Tableau 86 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	0000 0000 _h

10.5.8 Objet 6083_h: Accélération de profil

Cet objet doit indiquer l'accélération configurée. La valeur doit être donnée en unités d'accélération définies par l'utilisateur; elle doit être convertie en incréments de position par seconde carrée (s²) au moyen des facteurs de normalisation (voir Article 9). Le Tableau 87 spécifie la description de l'objet et le Tableau 88 spécifie la description d'entrée.

Tableau 87 - Description de l'objet

Attribut	Valeur
Index	6083 _h
Nom	Accélération de profil
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Conditionnelle: obligatoire si pp ou pv est pris en charge

Tableau 88 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

10.5.9 Objet 6084h: Décélération de profil

Cet objet doit indiquer la décélération configurée. Si ce paramètre n'est pas pris en charge, la valeur de l'objet Accélération de profil (6083_h) doit être utilisée également pour la décélération. La valeur doit être donnée dans les mêmes unités physiques que l'objet Accélération de profil (6083_h) . Le Tableau 89 spécifie la description de l'objet et le Tableau 90 spécifie la description d'entrée.

Tableau 89 - Description de l'objet

Attribut	Valeur
Index	6084 _h
Nom	Décélération de profil
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

- 219 -

Tableau 90 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

10.5.10 Objet 6085_h: Décélération par arrêt rapide

Cet objet doit indiquer la décélération configurée utilisée pour arrêter le moteur lorsque la fonction d'arrêt rapide est activée et l'objet $Code\ d'arrêt\ rapide\ (605A_h)$ est réglé sur 2 ou 6. La décélération par arrêt rapide est également utilisée si l'objet $Code\ de\ réaction\ au\ défaut\ (605E_h)$ est égal à 2 et l'objet $Code\ de\ l'option\ Arrêt\ (605D_h)$ est aussi égal 2. La valeur doit être donnée dans la même unité physique que l'objet $Accélération\ de\ profil\ (6083_h)$. Le Tableau 91 spécifie la description de l'objet et le Tableau 92 spécifie la description d'entrée.

Tableau 91 - Description de l'objet

Attribut	Valeur
Index	6085 _h
Nom	Décélération par arrêt rapide
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

Tableau 92 – Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

10.5.11 Objet 6086_h: Type de profil de mouvement

Cet objet doit indiquer le type configuré de profil de mouvement utilisé pour effectuer un mouvement de profil. Le Tableau 93 spécifie la définition des valeurs, le Tableau 94 spécifie la description de l'objet et le Tableau 95 spécifie la description d'entrée.

Tableau 93 - Définition des valeurs

Valeur	Définition	
-32 768 à -1	Spécifique au constructeur	
0	Rampe linéaire (profil trapézoïdal)	
+1	Rampe Sin ²	
+2	Rampe exempte d'à-coups	
+3	Rampe à limitation d'à-coups	
+4 à +32 767	Réservé	

Tableau 94 - Description de l'objet

Attribut	Valeur	
Index	6086 _h	
Nom	Type de profil de mouvement	
Code de l'objet	Variable	
Type de données	Integer16	
Catégorie	Facultative	

Tableau 95 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer16
Valeur par défaut	0

10.5.12 Objet 60A3_h: Utilisation de profil par à-coup

Cet objet doit indiquer le nombre configuré de sous-index utilisés dans l'objet $Profil\ par\ acoup\ (60A4_h)$ pour le mouvement de profil par à-coup. Lorsque cet objet n'est pas mis en œuvre, l'objet $Profil\ par\ a-coup$ doit être utilisé comme il est mis en œuvre. La valeur doit être adimensionnelle, et la valeur de FF_h doit indiquer que l'utilisation de profil par à-coup n'est pas configurée. Le Tableau 96 spécifie la description de l'objet et le Tableau 97 spécifie la description d'entrée.

Tableau 96 - Description de l'objet

Attribut	Valeur
Index	60A3 _h
Nom	Utilisation de profil par à-coup
Code de l'objet	Variable
Type de données	Unsigned8
Catégorie	Facultative

- 221 -

Tableau 97 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	01 _h à 06 _h et FF _h
Valeur par défaut	Spécifique au constructeur

10.5.13 Objet 60A4h: Profil par à-coup

Cet objet doit indiquer l'ensemble configuré de paramètres par à-coup qui doivent être utilisés lors du mouvement de profil. La Figure 18 montre les à-coups définis (A, B, C, D, E et F). Les valeurs doivent être données en unités d'à-coup définies par l'utilisateur. Le Tableau 98 spécifie l'assignation de valeurs aux à-coups selon la valeur de l'objet Utilisation de profil par à-coup (60A3 $_h$). Lorsque l'objet 60A3 $_h$ n'est pas mis en œuvre, le sous-index 00 $_h$ doit servir à attribuer aux à-coups les valeurs données dans les autres sous-index. Le Tableau 99 spécifie la description de l'objet et le Tableau 100 spécifie la description d'entrée.

Légende

Anglais	Français
Velocity	Vitesse
Time	Temps

Figure 18 - Diagramme vitesse/temps avec les positions d'à-coup

Tableau 98 - Assignations de valeurs

Valeur de l'objet 60A3 _h	Assignation de valeurs aux à-coups					
ou du sous-index 00 _h de l'objet 60A4 _h si 60A3 _h n'est pas mis en œuvre	A	В	С	D	E	F
01 _h	01 _h	01 _h	01 _h	01 _h	-	-
02 _h	01 _h	01 _h	02 _h	02 _h	-	-
04 _h	01 _h	03 _h	02 _h	04 _h	-	-
06 _h	01 _h	03 _h	02 _h	04 _h	05 _h	06 _h

Tableau 99 - Description de l'objet

Attribut	Valeur
Index	60A4 _h
Nom	Profil par à-coup
Code de l'objet	Matrice
Type de données	Unsigned32
Catégorie	Facultative

Tableau 100 – Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	01 _h , 02 _h , 04 _h , ou 06 _h ,
Valeur par défaut	Spécifique au constructeur
Sous-index	01 _h
Description	Profil par à-coup 1
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur
Sous-index	02 _h
Description	Profil par à-coup 2
Catégorie d'entrée	Facultative
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur
	à
Sous-index	06 _h
Description	Profil par à-coup 6
Catégorie d'entrée	Facultative
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur
valeul pai uelaul	Specifique au constructeur

-223 -

10.5.14 Objet 60C5_h: Accélération maximale

Cet objet doit indiquer l'accélération maximale configurée. Il permet de limiter l'accélération à une valeur acceptable afin d'empêcher la destruction du moteur et des pièces mécaniques mobiles. La valeur doit être donnée en unités physiques d'accélération définies par l'utilisateur. Le Tableau 101 spécifie la description de l'objet et le Tableau 102 spécifie la description d'entrée.

Tableau 101 - Description de l'objet

Attribut	Valeur
Index	60C5 _h
Nom	Accélération maximale
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

Tableau 102 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

10.5.15 Objet 60C6_h: Décélération maximale

Cet objet doit indiquer la décélération maximale configurée. Il permet de limiter l'accélération à une valeur acceptable afin d'empêcher la destruction du moteur et des pièces mécaniques mobiles. La valeur doit être donnée dans la même unité physique que l'objet *Accélération maximale* (60C5_h). Le Tableau 103 spécifie la description de l'objet et le Tableau 104 spécifie la description d'entrée.

Tableau 103 - Description de l'objet

Attribut	Valeur
Index	60C6 _h
Nom	Décélération maximale
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

Tableau 104 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

11 Mode de retour à la position de référence

11.1 Informations d'ordre général

Le présent article décrit la méthode qu'utilise un dispositif d'entraînement pour rechercher la position d'origine (également appelée, le référentiel, le point de référence ou le point zéro). Diverses méthodes permettent d'atteindre cette position en utilisant des interrupteurs de fin de course aux extrémités de la course ou un interrupteur d'origine (interrupteur à tension nulle) à mi-course; la plupart des méthodes utilisent également le train d'impulsions à index (zéro) d'un codeur incrémental.

11.2 Description fonctionnelle

La Figure 19 présente les objets d'entrée définis, ainsi que les objets de sortie. L'utilisateur peut spécifier les vitesses, l'accélération et la méthode de retour à la position de référence. Il existe un décalage d'origine d'objet supplémentaire, qui permet à l'utilisateur de déplacer la valeur zéro dans le système de coordonnées de l'utilisateur par rapport à la position d'origine.

Il n'existe pas de données de sortie, sauf pour les bits du mot d'état, qui renvoient l'état ou le résultat du processus de retour à la position de référence, ainsi que la demande aux boucles d'asservissement de position.

Il existe deux vitesses de retour à la position de référence; dans un cycle type, la vitesse la plus élevée permet de déterminer l'interrupteur d'origine, et la vitesse la moins élevée permet de déterminer l'impulsion d'index. Une certaine liberté d'utilisation de ces vitesses est accordée au constructeur dans la mesure où la réponse aux signaux peut dépendre du matériel employé.

Légende

Anglais	Français
Controlword	Mot de commande
Homing method	Méthode de retour à la position de référence
Homing speeds	Vitesses de retour à la position de référence
Homing acceleration	Accélération de retour à la position de référence
Home offset	Décalage d'origine
Statusword	Mot d'état
Position demand internal value or Position demand value	Valeur interne de demande de position <i>ou</i> valeur de demande de position

Figure 19 - Fonction du mode de retour à la position de référence

- 225 -

Le choix d'une méthode de retour à la position de référence permet de déterminer le comportement suivant: Le signal de retour à la position de référence (interrupteur de fin de course positif, interrupteur de fin de course négatif, interrupteur d'origine), la direction d'activation et, le cas échéant, la position de l'impulsion d'index.

La position d'origine et la position zéro sont décalées par le décalage d'origine; voir la définition de décalage d'origine pour déterminer la méthode d'application de ce décalage.

Le nombre cerclé de la Figure 20 à la Figure 27 indique le code de sélection de cette position de retour à la position de référence. Le sens de déplacement est également indiqué.

Quatre sources de signal de retour à la position de référence sont disponibles: Il s'agit des interrupteurs de fin de course négatif et positif, de l'interrupteur d'origine et de l'impulsion d'index d'un codeur. Dans le cas où un interrupteur de fin de course a atteint la position de référence, le dispositif d'entraînement doit se déplacer dans l'autre direction afin de quitter la position.

Dans les diagrammes des séquences de retour à la position de référence présentés cidessous, le comptage du codeur augmente à mesure du déplacement de la position de l'axe vers la droite, en d'autres termes, la partie gauche est la position minimale et la partie droite est la position maximale.

Le fonctionnement des dispositifs d'entraînement de positionnement requiert normalement de connaître exactement la position absolue. Étant donné que, pour des raisons de coût, les dispositifs d'entraînement ne comportent souvent pas de codeur absolu, une opération de retour à la position de référence est nécessaire. Il existe plusieurs méthodes spécifiques à l'application. La méthode de retour à la position de référence est utilisée pour la sélection.

La méthode décrit clairement la séquence exacte de l'opération de retour à la position de référence. Dans certaines situations, un dispositif d'entraînement comporte plusieurs méthodes de sélection qui utilisent la méthode de retour à la position de référence.

11.3 Définitions générales

11.3.1 Méthode 1: Retour à la position de référence avec l'interrupteur de fin de course négatif et l'impulsion d'index

En utilisant cette méthode comme l'illustre la Figure 20, le sens de déplacement initial doit s'effectuer de droite à gauche si l'interrupteur de fin de course négatif est inactif (ici: bas). La position d'origine doit se situer à la première impulsion d'index à droite de la position où l'interrupteur de fin de course négatif devient inactif.

Légende

Anglais	Français
Index Pulse	Impulsion d'index
Negative limit switch	Interrupteur de fin de course négatif

Figure 20 – Retour à la position de référence avec l'interrupteur de fin de course négatif et l'impulsion d'index

11.3.2 Méthode 2: Retour à la position de référence avec l'interrupteur de fin de course positif et l'impulsion d'index

En utilisant cette méthode comme l'illustre la Figure 21, le sens de déplacement initial doit s'effectuer de gauche à droite si l'interrupteur de fin de course positif est inactif (ici: bas). La position d'origine doit se situer à la première impulsion d'index à gauche de la position où l'interrupteur de fin de course positif devient inactif.

Légende

Anglais	Français
Index pulse	Impulsion d'index
Positive limit switch	Interrupteur de fin de course positif

Figure 21 – Retour à la position de référence avec l'interrupteur de fin de course positif et l'impulsion d'index

11.3.3 Méthodes 3 et 4: Retour à la position de référence avec l'interrupteur d'origine positif et l'impulsion d'index

En utilisant ces méthodes comme l'illustre la Figure 22, le sens de déplacement initial doit être dépendant de l'état de l'interrupteur d'origine. La position d'origine doit se situer à l'impulsion d'index à gauche ou à droite du point de changement d'état de l'interrupteur d'origine. Si la position initiale est située de sorte que le sens de déplacement doit s'inverser au cours du retour à la position de référence, le point d'inversion effectif est tout point existant après un changement d'état de l'interrupteur d'origine.

Légende

Anglais	Français
Index pulse	Impulsion d'index
Home switch	Interrupteur d'origine

Figure 22 – Retour à la position de référence avec l'interrupteur d'origine positif et l'impulsion d'index

11.3.4 Méthodes 5 et 6: Retour à la position de référence avec l'interrupteur d'origine négatif et l'impulsion d'index

En utilisant ces méthodes comme l'illustre la Figure 23, le sens de déplacement initial doit être dépendant de l'état de l'interrupteur d'origine. La position d'origine doit se situer à l'impulsion d'index à gauche ou à droite du point de changement d'état de l'interrupteur d'origine. Si la position initiale est située de sorte que le sens de déplacement doit s'inverser au cours du retour à la position de référence, le point d'inversion effectif est tout point existant après un changement d'état de l'interrupteur d'origine.

Légende

Anglais	Français
Index pulse	Impulsion d'index
Home switch	Interrupteur d'origine

Figure 23 – Retour à la position de référence avec l'interrupteur d'origine négatif et l'impulsion d'index

11.3.5 Méthodes 7 à 14: Retour à la position de référence avec l'interrupteur d'origine et l'impulsion d'index

Ces méthodes utilisent un interrupteur d'origine actif uniquement sur une partie de la course; l'action de l'interrupteur est effectivement une action "à rappel" lors du balayage de la position de l'axe en aval de l'interrupteur. En utilisant les méthodes 7 à 10, le sens de déplacement initial doit s'effectuer de gauche à droite, et en utilisant les méthodes 11 à 14, le sens de déplacement initial doit s'effectuer de droite à gauche, sauf si l'interrupteur d'origine est actif au début du mouvement. Dans ce cas, le sens de déplacement initial doit dépendre du front recherché. La position d'origine doit se situer à l'impulsion d'index de l'un des côtés des fronts montants ou descendants de l'interrupteur d'origine, comme cela est présenté dans la Figure 24 et la Figure 25. Si le sens de déplacement initial s'éloigne de l'interrupteur d'origine, le dispositif d'entraînement doit inverser sa course lorsqu'il entre en contact avec l'interrupteur de fin de course correspondant.

Légende

Anglais	Français
Index pulse	Impulsion d'index
Home switch	Interrupteur d'origine
Positive Limit Switch	Interrupteur de fin de course positif

Figure 24 – Retour à la position de référence avec l'interrupteur d'origine et l'impulsion d'index – Déplacement initial positif

Légende

Anglais	Français
Index pulse	Impulsion d'index
Home switch	Interrupteur d'origine
Negative Limit Switch	Interrupteur de fin de course négatif

Figure 25 – Retour à la position de référence avec l'interrupteur d'origine et l'impulsion d'index – Déplacement initial négatif

11.3.6 Méthodes 15 et 16: Réservé

Ces méthodes sont réservées.

11.3.7 Méthodes 17 à 30: Retour à la position de référence sans impulsion d'index

Ces méthodes sont semblables aux méthodes 1 à 14, sauf que la position d'origine ne dépend pas de l'impulsion d'index, mais uniquement des transitions correspondantes de l'interrupteur d'origine ou de fin de course. Par exemple, les méthodes 19 et 20 sont semblables aux méthodes 3 et 4 illustrées à la Figure 26.

Légende

Anglais	Français
Home switch	Interrupteur d'origine

Figure 26 – Retour à la position de référence avec l'interrupteur d'origine positif

11.3.8 Méthodes 31 et 32: Réservé

Ces méthodes sont réservées.

11.3.9 Méthodes 33 et 34: Retour à la position de référence avec l'impulsion d'index

En utilisant ces méthodes, la direction de retour à la position de référence est négative ou positive, respectivement. La position d'origine doit se situer à l'impulsion d'index déterminée dans la direction choisie, comme cela est présenté à la Figure 27.

Légende

Anglais	Français	
Index Pulse	Impulsion d'index	

Figure 27 – Retour à la position de référence avec l'impulsion d'index

11.3.10 Méthode 35: Retour à la position de référence avec l'impulsion d'index

Dans cette méthode, la position actuelle doit être prise comme étant la position d'origine. Cette méthode n'exige pas que l'état du dispositif d'entraînement soit l'état Fonctionnement activé.

11.3.11 Méthode 36: Retour à la position de référence avec sonde tactile

Dans cette méthode, la position n'est pas échantillonnée par le dispositif de commande, mais par le dispositif d'entraînement lui-même. En cas de déclenchement de l'interrupteur, la position réelle correspondante, ainsi que le signal de commutation, doivent être consignés.

- 231 -

11.4 Utilisation du mot de commande et du mot d'état

Le mode de retour à la position de référence utilise certains bits du mot de commande et du mot d'état pour des applications spécifiques au mode. La Figure 28 présente la structure du mot de commande. Le Tableau 105 définit les valeurs des bits 4 et 8 du mot de commande.

Figure 28 – Mot de commande pour le mode de retour à la position de référence

Tableau 105 - Définition du bit 4 et du bit 8

Bit	Valeur	Définition	
4	0	Ne pas lancer la procédure de retour à la position de référence	
	1	Lancer ou poursuivre la procédure de retour à la position de référence	
8	0	Activer le bit 4	
	1	Interrompre le mouvement de l'axe selon le code de l'option Arrêt (605D _h)	

La Figure 29 présente la structure du mot d'état. Le Tableau 106 définit les valeurs du bit 10, du bit 12 et du bit 13.

Figure 29 - Mot d'état pour le mode de retour à la position de référence

Tableau 106 - Définition du bit 10, du bit 12 et du bit 13

Bit 13	Bit 12	Bit 10	Définition
0	0	0	Procédure de retour à la position de référence en cours
0	0	1	La procédure de retour à la position de référence est interrompue ou non lancée
0	1	0	Le retour à la position de référence est atteint, mais la cible n'est pas atteinte
0	1	1	La procédure de retour à la position de référence est achevée avec succès
1	0	0	Une erreur de retour à la position de référence s'est produite, la vitesse n'est pas nulle
1	0	1	Une erreur de retour à la position de référence s'est produite, la vitesse est nulle
1	1	Х	réservé

11.5 Définitions d'objets détaillées

11.5.1 Objet 607C_h: Décalage d'origine

Cet objet doit indiquer la différence configurée entre la position zéro pour l'application et la position d'origine de la machine (déterminée lors du processus de retour à la position de référence). Lors du processus de retour à la position de référence, la position d'origine de la machine est déterminée et une fois ce processus achevé, la position zéro est décalée par rapport à la position d'origine en ajoutant le décalage d'origine à la position de même nature. Tous les déplacements absolus ultérieurs doivent être considérés par rapport à cette nouvelle position zéro. Ceci est présenté à la Figure 30. Lorsque cet objet n'est pas mis en œuvre, le

- 232 -

décalage d'origine doit alors être considéré comme nul. La valeur de cet objet doit être donnée en unités de position définies par l'utilisateur. Les valeurs négatives doivent indiquer la direction opposée.

Légende

Anglais	Français
Zero position	Position zéro
Home offset	Décalage d'origine
Home position	Position d'origine

Figure 30 - Définition du décalage d'origine

Le Tableau 107 spécifie la description de l'objet et le Tableau 108 spécifie la description d'entrée.

Attribut	Valeur	
Index	607C _h	
Nom	Décalage d'origine	
Code de l'objet	Variable	
Type de données	Integer32	
Catégorie	Facultative	

Tableau 107 - Description de l'objet

Tableau 108 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	0 _d

11.5.2 Objet 6098_h: Méthode de retour à la position de référence

Cet objet doit indiquer la méthode de retour à la position de référence configurée qui doit être utilisée. Le Tableau 109 spécifie la définition des valeurs, le Tableau 110 spécifie la description de l'objet et le Tableau 111 spécifie la description d'entrée.

Tableau 109 - Définition des valeurs

Valeur	Définition		
-128 _d à -1 _d	Spécifique au constructeur		
0 _d	0 _d Aucune méthode de retour à la position de référence assignée		
+1 _d	+1 _d La méthode 1 doit être utilisée		
	à		
+35 _d	La méthode 35 doit être utilisée		
+36 _d	La méthode 36 doit être utilisée		
+37 _d à +127 _d	réservé		

Tableau 110 - Description de l'objet

Attribut	Valeur
Index	6098 _h
Nom	Méthode de retour à la position de référence
Code de l'objet	Variable
Type de données	Integer8
Catégorie	Conditionnelle: obligatoire si hm est pris en charge

Tableau 111 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 109
Valeur par défaut	Spécifique au constructeur

11.5.3 Objet 6099_h: Vitesses de retour à la position de référence

Cet objet doit indiquer les vitesses configurées utilisées au cours de la procédure de retour à la position de référence. Les valeurs doivent être données en unités de vitesse définies par l'utilisateur. Le Tableau 112 spécifie la description de l'objet et le Tableau 113 spécifie la description d'entrée.

Tableau 112 - Description de l'objet

Attribut	Valeur
Index	6099 _h
Nom	Vitesses de retour à la position de référence
Code de l'objet	Matrice
Type de données	Unsigned32
Catégorie	Conditionnelle: obligatoire si hm est pris en charge

- 234 -

Tableau 113 – Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h
Valeur par défaut	02 _h
Sous-index	01 _h
Description	Vitesse lors de la recherche de la position de commutation
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur
Sous-index	02 _h
Description	Vitesse lors de la recherche de la position zéro
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

11.5.4 Objet 609A_h: Accélération de retour à la position de référence

Cet objet doit indiquer l'accélération et la décélération configurées à utiliser lors de l'opération de retour à la position de référence. La valeur doit être donnée en unités d'accélération définies par l'utilisateur. Le Tableau 114 spécifie la description de l'objet et le Tableau 115 spécifie la description d'entrée.

Tableau 114 - Description de l'objet

Attribut	Valeur
Index	609A _h
Nom	Accélération de retour à la position de référence
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

Tableau 115 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

11.5.5 Objet 60B8_h: Fonction de la sonde tactile

Cet objet doit indiquer la fonction configurée de la sonde tactile. Le Tableau 116 spécifie la définition des valeurs, le Tableau 117 spécifie la description de l'objet et le Tableau 118 spécifie la description d'entrée.

Tableau 116 - Définition des valeurs

Bit	Valeur	Définition	
0	0	Mettre hors tension la sonde tactile 1	
	1	Activer la sonde tactile 1	
1	0	Déclencher le premier événement	
	1	Continu	
2	0	Déclencher avec entrée de la sonde tactile 1	
	1	Déclencher avec un signal d'impulsion nulle ou le codeur de position	
3	0	Réservé	
4	0	Mettre hors tension l'échantillonnage au bord positif de la sonde tactile 1	
	1	Activer l'échantillonnage au bord positif de la sonde tactile 1	
5	0	Mettre hors tension l'échantillonnage au bord négatif de la sonde tactile 1	
	1	Activer l'échantillonnage au bord négatif de la sonde tactile 1	
6, 7	1	Défini par l'utilisateur (par exemple, pour essai)	
8	0	Mettre hors tension la sonde tactile 2	
	1	Activer la sonde tactile 2	
9	0	Déclencher le premier événement	
	1	Continu	
10	0	Déclencher avec entrée de la sonde tactile 2	
	1	Déclencher avec un signal d'impulsion nulle ou le codeur de position	
11	0	Réservé	
12	0	Mettre hors tension l'échantillonnage au bord positif de la sonde tactile 2	
	1	Activer l'échantillonnage au bord positif de la sonde tactile 2	
13	0	Mettre hors tension l'échantillonnage au bord négatif de la sonde tactile 2	
	1	Activer l'échantillonnage au bord négatif de la sonde tactile 2	
14, 15	-	Défini par l'utilisateur (par exemple, pour essai)	

Tableau 117 - Description de l'objet

Attribut	Valeur
Index	60B8 _h
Nom	Fonction de la sonde tactile
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Facultative

Tableau 118 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 116
Valeur par défaut	Spécifique au constructeur

11.5.6 Objet 60B9_h: État de la sonde tactile

Cet objet doit fournir l'état de la sonde tactile. Le Tableau 119 spécifie la valeur, le Tableau 120 spécifie la description de l'objet et le Tableau 121 spécifie la description d'entrée.

Tableau 119 - Définition des valeurs

Bit	Valeur	Définition
0	0	La sonde tactile 1 est mise hors tension
	1	La sonde tactile 1 est activée
1	0	Aucune valeur du bord positif de la sonde tactile 1 n'est archivée
	1	Position du bord négatif de la sonde tactile 1 archivée
2	0	Aucune valeur du bord négatif de la sonde tactile 1 n'est archivée
	1	Position du bord positif de la sonde tactile 1 archivée
3 à 5	0	Réservé
6, 7	-	Défini par l'utilisateur (par exemple, pour essai)
8	0	La sonde tactile 2 est mise hors tension
	1	La sonde tactile 2 est activée
9	0	Aucune valeur du bord positif de la sonde tactile 2 n'est archivée
	1	Position du bord négatif de la sonde tactile 2 archivée
10	0	Aucune valeur du bord négatif de la sonde tactile 2 n'est archivée
	1	Position du bord positif de la sonde tactile 2 archivée
11 à 13	0	Réservé
14, 15	-	Défini par l'utilisateur (par exemple, pour essai)

- 237 -

Tableau 120 - Description de l'objet

Attribut	Valeur
Index	60B9 _h
Nom	État de la sonde tactile
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Facultative

Tableau 121 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 119
Valeur par défaut	Non

11.5.7 Objet 60BA_h: Valeur positive de la position de la sonde tactile 1

Cet objet doit fournir la valeur de position de la sonde tactile 1 au bord positif. La valeur doit être donnée en unités de position définies par l'utilisateur. Le Tableau 122 spécifie la description de l'objet et le Tableau 123 spécifie la description d'entrée.

Tableau 122 - Description de l'objet

Attribut	Valeur
Index	60BA _h
Nom	Valeur positive de la position de la sonde tactile 1
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Facultative

Tableau 123 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

11.5.8 Objet 60BB_h: Valeur négative de la position de la sonde tactile 1

Cet objet doit fournir la valeur de position de la sonde tactile 1 au bord négatif. La valeur doit être donnée en unités de position définies par l'utilisateur. Le Tableau 124 spécifie la description de l'objet et le Tableau 125 spécifie la description d'entrée.

Tableau 124 - Description de l'objet

Attribut	Valeur
Index	60BB _h
Nom	Valeur négative de la position de la sonde tactile 1
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Facultative

Tableau 125 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

11.5.9 Objet 60BC_h: Valeur positive de la position de la sonde tactile 2

Cet objet doit fournir la valeur de position de la sonde tactile 2 au bord positif. La valeur doit être donnée en unités de position définies par l'utilisateur. Le Tableau 126 spécifie la description de l'objet et le Tableau 127 spécifie la description d'entrée.

Tableau 126 - Description de l'objet

Attribut	Valeur
Index	60BC _h
Nom	Valeur positive de la position de la sonde tactile 2
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Facultative

Tableau 127 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

11.5.10 Objet 60BD_h: Valeur négative de la position de la sonde tactile 2

Cet objet doit fournir la valeur de position de la sonde tactile 2 au bord négatif. La valeur doit être donnée en unités de position définies par l'utilisateur. Le Tableau 128 spécifie la description de l'objet et le Tableau 129 spécifie la description d'entrée.

Tableau 128 - Description de l'objet

Attribut	Valeur
Index	60BD _h
Nom	Valeur négative de la position de la sonde tactile 2
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Facultative

Tableau 129 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

12 Fonction d'asservissement de position

12.1 Informations d'ordre général

Pour la position de boucle fermée, la valeur de demande de position (une des sorties du générateur de trajectoire) et la sortie de l'unité de détection de position (valeur instantanée de position) telle qu'un résolveur ou un codeur, sont les paramètres d'entrée utilisés. Le comportement du contrôle de boucle fermée est influencé par les paramètres de commande, applicables de manière externe. Afin de maintenir la boucle stable, l'application d'une limite relative de la sortie utilisant la mesure de contrôle précédente est facultative. Une fonction de limite absolue peut être mise en œuvre pour la mesure de contrôle, afin de ne pas dépasser les limites physiques.

12.2 Description fonctionnelle

La Figure 31 présente les entrées et les sorties de la fonction d'asservissement de position. La mesure de contrôle peut prendre la forme d'une valeur de demande de vitesse, une valeur de demande de position ou toute autre valeur de sortie, selon les modes de fonctionnement mis en œuvre dans le dispositif d'entraînement. Plus particulièrement, avec les structures de commande en cascade, où un asservissement de position est suivi d'un asservissement de couple, par exemple, la mesure de contrôle de la boucle d'asservissement de position est utilisée comme élément d'entrée pour un calcul ultérieur.

Légende

Anglais	Français
Position demand value	Valeur de demande de position
Position actual value	Valeur instantanée de position
Closed-loop position control	Asservissement de position à boucle fermée
Control effort	Mesure de contrôle

Figure 31 - Fonction d'asservissement de position

- 240 -

Toutes les valeurs sont converties – si nécessaire – d'unités définies par l'utilisateur en unités normalisées telles que des incréments.

Une valeur instantanée de position non comprise dans la plage admise de la fenêtre d'erreur suivante proche d'une valeur de demande de position pendant une durée plus longue que la durée de temporisation d'erreur suivante doit contribuer à mettre le bit 13 (erreur suivante) dans le mot d'état à 1. Ceci est montré de manière détaillée à la Figure 32. Selon les modes de fonctionnement pris en charge (pp, hm ou ip) et les capacités des différentes catégories de dispositifs d'entraînement, seuls certains des paramètres d'entrée mentionnés peuvent être nécessaires.

Légende

Anglais	Français
Following error time out	Temporisation d'erreur suivante
Following error window	Fenêtre d'erreur suivante
Position demand value	Valeur de demande de position
Position actual value	Valeur instantanée de position
Window comparator	Comparateur de créneau
Timer	Minuterie
Following error in statusword	Erreur suivante dans le mot d'état

Figure 32 – Erreur suivante (présentation générale des fonctions)

La fonction *Position atteinte* telle que présentée à la Figure 33 permet de définir une plage de position proche d'une valeur de demande de position à considérer comme valide. Si la position d'un dispositif d'entraînement se situe dans cette zone pendant une durée spécifiée – le créneau de position – le bit 10 de contrôle associé "cible atteinte" dans le mot d'état doit être mis à 1.

- 241 -

Légende

Anglais	Français
Position window time	Créneau de position
Positioning window	Fenêtre de positionnement
Window comparator	Comparateur de créneau
Timer	Minuterie
Target reached in statusword	Cible atteinte dans le mot d'état
Position actual value	Valeur instantanée de position
Home offset	Décalage d'origine
Position range	Plage de position
Software position limit	Limite de position de logiciel
Limit function	Fonction limite
Target position	Position cible

Figure 33 - Position atteinte (présentation générale des fonctions)

Les fonctions de commande "erreur suivante" et "position atteinte" ont un accès direct au mot d'état et doivent informer immédiatement l'utilisateur de tout changement éventuel de leurs résultats.

La Figure 34 montre les définitions de la sous-fonction "position atteinte". Une fenêtre est définie pour la plage de position acceptée symétriquement proche de la position cible. Si un dispositif d'entraînement est situé dans la plage de position acceptée dans le créneau de position temporelle, le bit "cible atteinte" (bit 10) dans le mot d'état doit être mis à 1.

Légende

Anglais	Français
accepted position range	Limite de position acceptée
position window	Fenêtre de position
position not reached	Position non atteinte
position reached	Position atteinte
target position	Position cible

Figure 34 - Position atteinte (définitions)

La Figure 35 montre les définitions de la sous-fonction "erreur suivante" dans le mode de position de profil. Une fenêtre est définie pour la tolérance d'erreur suivante acceptée symétriquement proche de la position de référence. Si un dispositif d'entraînement est situé hors de la plage de position acceptée pendant une durée plus longue que la durée de temporisation d'erreur suivante, le bit "erreur suivante" (bit 13) dans le mot d'état doit être mis à 1.

Légende

Anglais	Français
accepted following error tolerance	Tolérance d'erreur suivante acceptée
following error window	Fenêtre d'erreur suivante
following error	Erreur suivante
no following error	Pas d'erreur suivante
reference position	Position de référence

Figure 35 – Erreur suivante (définitions)

12.3 Définitions d'objets détaillées

12.3.1 Objet 6062_h: Valeur de demande de position

Cet objet doit fournir la valeur de position demandée. La valeur doit être donnée en unités de position définies par l'utilisateur. Le Tableau 130 spécifie la description de l'objet et le Tableau 131 spécifie la description d'entrée.

- 243 -

Tableau 130 - Description de l'objet

Attribut	Valeur
Index	6062 _h
Nom	Valeur de demande de position
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Facultative

Tableau 131 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

12.3.2 Objet 6063_h: Valeur interne instantanée de position

Cet objet doit fournir la valeur instantanée du dispositif de mesure de la position, qui doit être une des deux valeurs d'entrée de l'asservissement de position de boucle fermée. Si nécessaire, l'unité de donnée peut être convertie d'unités définies par l'utilisateur en incréments. La valeur doit être donnée en unités internes. Le Tableau 132 spécifie la description de l'objet et le Tableau 133 spécifie la description d'entrée.

Tableau 132 - Description de l'objet

Attribut	Valeur
Index	6063 _h
Nom	Valeur interne instantanée de position
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Facultative

Tableau 133 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

12.3.3 Objet 6064_h: Valeur instantanée de position

Cet objet doit fournir la valeur instantanée du dispositif de mesure de la position. La valeur doit être donnée en unités de position définies par l'utilisateur. Le Tableau 134 spécifie la description de l'objet et le Tableau 135 spécifie la description d'entrée.

- 244 -

Tableau 134 - Description de l'objet

Attribut	Valeur
Index	6064 _h
Nom	Valeur instantanée de position
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Obligatoire si csp est pris en charge

Tableau 135 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

12.3.4 Objet 6065_h: Fenêtre d'erreur suivante

Cet objet doit indiquer la plage configurée des valeurs de position tolérées, symétriquement à la valeur de demande de position. Si la valeur instantanée de position se situe en dehors de la fenêtre d'erreur suivante, une erreur suivante se produit. Une erreur suivante peut se produire lorsqu'un dispositif d'entraînement est bloqué, une vitesse de profil non atteignable est effective, ou avec des coefficients erronés de boucle fermée. La valeur doit être donnée en unités de position définies par l'utilisateur. Si la valeur de la fenêtre d'erreur suivante est FFFF FFFFh, la commande suivante doit être mise hors tension. Le Tableau 136 spécifie la description de l'objet et le Tableau 137 spécifie la description d'entrée.

Tableau 136 - Description de l'objet

Attribut	Valeur
Index	6065 _h
Nom	Fenêtre d'erreur suivante
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

Tableau 137 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

12.3.5 Objet 6066_h: Temporisation d'erreur suivante

Cet objet doit indiquer la durée configurée pour une condition d'erreur suivante, après quoi le bit 13 du mot d'état doit être mis à 1. La réaction du dispositif d'entraînement lorsqu'une erreur suivante se produit est spécifique au constructeur. La valeur doit être donnée en ms. Le Tableau 138 spécifie la description de l'objet et le Tableau 139 spécifie la description d'entrée.

Tableau 138 - Description de l'objet

Attribut	Valeur
Index	6066 _h
Nom	Temporisation d'erreur suivante
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Facultative

Tableau 139 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned16
Valeur par défaut	Spécifique au constructeur

12.3.6 Objet 6067_h: Fenêtre de position

Cet objet doit indiquer la plage symétrique configurée des positions acceptées par rapport à la position cible. Lorsque la valeur instantanée du codeur de position se situe dans la fenêtre de position, cette position cible doit être considérée comme ayant été atteinte. Dans la mesure où l'utilisateur préfère principalement spécifier la fenêtre de position dans son application en unités définies par l'utilisateur, la valeur est convertie en incréments. La position cible doit être traitée de la même manière que dans le *générateur de trajectoire* concernant les fonctions limites et la conversion en unités de machine internes, avant qu'elle puisse être utilisée avec cette fonction. La valeur doit être donnée en unités de position définies par l'utilisateur. Si la valeur de la fenêtre de position est FFFF FFFF_h, la commande de fenêtre de position doit être mise hors tension. Le Tableau 140 spécifie la description de l'objet et le Tableau 141 spécifie la description d'entrée.

Tableau 140 – Description de l'objet

Attribut	Valeur
Index	6067 _h
Nom	Fenêtre de position
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

- 246 -

Tableau 141 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

12.3.7 Objet 6068_h: Créneau de position

Cet objet doit indiquer la durée configurée, au cours de laquelle la position réelle dans la fenêtre de position est mesurée. La valeur doit être donnée en ms. Le Tableau 142 spécifie la description de l'objet et le Tableau 143 spécifie la description d'entrée.

Tableau 142 - Description de l'objet

Attribut	Valeur
Index	6068 _h
Nom	Créneau de position
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Facultative

Tableau 143 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned16
Valeur par défaut	Spécifique au constructeur

12.3.8 Objet 60F4_h: Valeur instantanée d'erreur suivante

Cet objet doit fournir la valeur instantanée de l'erreur suivante. La valeur doit être donnée en unités de position définies par l'utilisateur. Le Tableau 144 spécifie la description de l'objet et le Tableau 145 spécifie la description d'entrée.

Tableau 144 - Description de l'objet

Attribut	Valeur
Index	60F4 _h
Nom	Valeur instantanée d'erreur suivante
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Facultative

- 247 -

Tableau 145 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

12.3.9 Objet 60FA_h: Mesure de contrôle

Cet objet doit fournir la mesure de contrôle comme la sortie de la boucle d'asservissement de position. La notation de la mesure de contrôle dépendante du mode et par conséquent son défaut de spécification, sont spécifiques à la *fonction Asservissement de position*. La valeur doit être donnée en unités de vitesse définies par l'utilisateur. Le Tableau 146 spécifie la description de l'objet et le Tableau 147 spécifie la description d'entrée.

Tableau 146 - Description de l'objet

Attribut	Valeur
Index	60FA _h
Nom	Mesure de contrôle
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Facultative

Tableau 147 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

12.3.10 Objet 60FC_h: Valeur interne de demande de position

Cet objet doit fournir la sortie du générateur de trajectoire en mode de position de profil. Cette valeur doit être donnée en incréments du codeur de position. Le Tableau 148 spécifie la description de l'objet et le Tableau 149 spécifie la description d'entrée.

Tableau 148 - Description de l'objet

Attribut	Valeur
Index	60FC _h
Nom	Valeur interne de demande de position
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Facultative

Tableau 149 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

12.3.11 Objet 60F2h: Code de l'option Positionnement

Cet objet doit indiquer le comportement de positionnement configuré tel que décrit par le mode de positionnement de profil ou le mode de positionnement interpolé. La Figure 36 présente la structure d'objet définie.

Bit de poids fort (MSB)

Bit de poids faible (LSB)

Légende: ms = spécifique au constructeur rro = option demande-réponse immédiatement

cio = option changer

Figure 36 - Structure d'objet

Les bits *option relative* doivent réguler le comportement des tâches de positionnement de manière détaillée, lorsque le bit *abs_rel* (bit 6) du mot de commande est mis à 1 en mode *pp*. Le Tableau 150 présente les définitions des valeurs de bits.

Tableau 150 - Définition des valeurs du bit 0 et du bit 1

Bit 1	Bit 0	Définition
0	0	Les déplacements de positionnement doivent être effectués par rapport à la position cible (absolue interne) précédente (respectivement, par rapport à 0 en l'absence de position cible précédente), comme cela est décrit en 10.2
0	1	Les déplacements de positionnement doivent être effectués par rapport à la valeur de demande de position instantanée (objet 60FC _h) – sortie du générateur de trajectoire
1	0	Les déplacements de positionnement doivent être effectués par rapport à la valeur instantanée de position (objet 6064 _h)
1	1	Réservé

Les bits de l'option Changer immédiatement doivent réguler le comportement des tâches de positionnement de manière détaillée, lorsque le bit change_set_immediately (bit 5) du mot de commande est mis à 1 en mode pp. Le Tableau 151 présente les définitions des valeurs de bits.

Tableau 151 - Définition des valeurs du bit 2 et du bit 3

Bit 3	Bit 2	Définition	
0	0	Le dispositif d'entraînement doit réadapter immédiatement le déplacement réel par rapport à la nouvelle position cible (compte tenu de la vitesse et des accélérations de profil éventuellement modifiées, etc.) comme cela est décrit en 10.2	
0	1	Les tâches de positionnement effectivement accomplies doivent être poursuivies (sans tenter d'interrompre l'opération à la position cible) et associées à la tâche nouvellement commandée (compte tenu de la vitesse et des accélérations de profil éventuellement modifiées, etc.) lorsque la position cible est atteinte	
1	0	Réservé	
1	1	Réservé	

Les bits de l'option *Demande-réponse* doivent permettre au dispositif d'entraînement de libérer le bit *new_setpoint* (bit 4) du mot de commande de manière interne, afin d'éviter que le dispositif de commande ne soit tenu de mettre ce bit à 0 en mode *pp*. Après la libération interne du bit *new_setpoint*, le dispositif d'entraînement doit indiquer l'action au dispositif de commande en mettant le bit *setpoint_acknowledgement* (bit 12) dans le mot d'état à 0. Le Tableau 152 présente les définitions des valeurs de bits.

Tableau 152 - Définition des valeurs du bit 4 et du bit 5

Bit 5	Bit 4	Définition
0	0	Le transfert tel que décrit en 10.2 doit être effectué
0	1	Le dispositif d'entraînement doit libérer de manière autonome le bit <i>nouveau point de consigne</i> dès que la cible est atteinte
1	0	Le dispositif d'entraînement doit libérer de manière autonome le bit <i>nouveau point de consigne</i> dès qu'il est capable d'accepter de nouvelles données de point de consigne
1	1	Réservé

Les bits option ip sont réservés à la définition du mode de position interpolée. Lorsque le bit spécifique au constructeur est mis à 0, la fonction ne doit pas être activée; si ce bit est mis à 1, la fonction spécifique au constructeur doit être activée. Les autres bits réservés doivent être mis à 0.

Le Tableau 153 spécifie la description de l'objet et le Tableau 154 spécifie la description d'entrée.

Tableau 153 - Description de l'objet

Attribut	Valeur
Index	60F2 _h
Nom	Code de l'option Positionnement
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Facultative

Tableau	154 -	Description	d'entrée
Iabicau	134 -	Describilion	u ennee

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 150, Tableau 151, Tableau 152
Valeur par défaut	0000 _h

13 Mode de position interpolée

13.1 Informations d'ordre général

Le mode de position interpolée permet de commander plusieurs axes coordonnés ou un axe unique, avec la nécessité d'une interpolation temporelle des données de points de consigne. Le mode de position interpolée utilise normalement les mécanismes de synchronisation temporelle pour une coordination de même nature des entraînements associés.

Le registre des données d'interpolation contient les données d'interpolation; le type de données des sous-index de cette structure est spécifique au constructeur.

Pour un fonctionnement synchrone, la durée de cycle d'interpolation est définie par le délai d'interpolation des objets. La synchronisation temporelle peut être réalisée par des mécanismes dépendant du réseau. Chaque cycle de synchronisation active le registre de données suivant si un registre de données valide est disponible.

Pour un fonctionnement asynchrone, le délai d'interpolation (pour chaque intervalle de temps) peut être inclus dans le registre des données d'interpolation. Si tel est le cas, les unités applicables au délai d'interpolation sont toujours spécifiées par l'index de délai d'interpolation comme pour le fonctionnement synchrone. Le registre des données suivant doit être activé dès la fin du délai d'interpolation et dès qu'un registre de données valide est disponible.

Le mode de position interpolée permet au dispositif de commande de transmettre un flux de données d'interpolation à un entraînement, avec une référence temporelle implicite ou explicite. Lorsque le dispositif d'entraînement prend en charge une mémoire tampon d'entrée, les données d'interpolation peuvent être transmises en rafales plutôt que de manière continue en temps réel. La capacité maximale de la mémoire tampon d'entrée peut être lue par le dispositif de commande grâce à la configuration des données d'interpolation. La capacité réelle de la mémoire tampon peut être à la fois écrite et lue par le dispositif de commande grâce à la configuration des données d'interpolation. La capacité de mémoire tampon correspond au nombre de registres des données d'interpolation qui peuvent être transmises à un dispositif d'entraînement afin de remplir la mémoire tampon d'entrée, mais ne désigne pas la capacité en octets. Les dispositifs d'entraînement sans capacité de mémoire tampon d'entrée doivent accepter au moins un élément de donnée d'interpolation.

La mémoire tampon des données d'interpolation peut être mise en œuvre en tant que FIFO ou sous forme annulaire. La définition d'un registre de données valide pour chaque type de mémoire tampon doit être la suivante:

- Pour la mise en œuvre FIFO, un registre de données valide est un registre non encore activé.
- Pour la mise en œuvre sous forme annulaire, tous les registres de données relevant de la capacité réelle de la mémoire tampon sont traités comme des registres de données valides, et les données d'interpolation sont alors toujours activées tant que la fonction "activer ip" est vraie.

L'algorithme d'interpolation est défini dans la sélection du sous-mode d'interpolation. L'interpolation linéaire est la méthode d'interpolation par défaut. Cela requiert la mise en mémoire tampon d'un seul élément de donnée d'interpolation pour le calcul de la valeur de demande suivante. Pour chaque cycle d'interpolation, le dispositif d'entraînement doit calculer une valeur de demande de position par interpolation des positions sur une période donnée.

Éventuellement, les fonctions limites communes applicables à la vitesse, à l'accélération et à la décélération peuvent être appliquées aux données d'interpolation.

La mention des fonctions de mise à l'échelle et de limitation du registre des données d'interpolation à la Figure 37 est donnée uniquement à titre d'indication. Ces fonctions peuvent être exécutées lors de la saisie du registre des données d'interpolation.

Légende

Anglais	Français
Position range limit	Limite de plage de position
Software position limit	Limite de position de logiciel
Home offset	Décalage d'origine
Interpolation data record	Registre des données d'interpolation
Interpolation data	Données d'interpolation
configuration; Interpolation submode selection	Configuration; sélection du sous-mode d'interpolation
Polarity	Polarité
Profile velocity	Vitesse de profil
End velocity	Vitesse finale
Max motor speed	Régime maximal du moteur
Max profile velocity	Vitesse maximale du profil
Profile acceleration	Accélération de profil
Profile deceleration	Décélération de profil
Quick-stop deceleration	Décélération par arrêt rapide

Anglais	Français	
Max. acceleration	Accélération maximale	
Max. deceleration	Décélération maximale	
Quick-stop option code	Code de l'option Arrêt rapide	
Input buffer	Mémoire tampon d'entrée	
Interpolation factor	Facteur d'interpolation	
Minimum comparator	Comparateur minimal	
Limit function	Fonction limite	
Multiplier	Multiplicateur	
Profile acceleration <i>or</i> profile deceleration <i>or</i> quick-stop deceleration	Accélération de profil <i>ou</i> décélération de profil <i>ou</i> décélération par arrêt rapide	
Interpolated position	Position interpolée	
Profile velocity or End velocity	Vitesse de profil ou vitesse finale	
Trajectory generator	Générateur de trajectoire	
Position demand internal value or Position demand value	Valeur interne de demande de position <i>ou</i> valeur de demande de position	

Figure 37 – Contrôleur d'interpolation

13.2 Description fonctionnelle

13.2.1 Généralités

Le constructeur spécifie la méthode de traitement du registre des données d'interpolation valide suivant par le dispositif d'entraînement. Cette méthode peut correspondre au mode de position normalisé, ou pourrait être un algorithme plus complexe. La méthode normalisée consiste à appliquer immédiatement les nouvelles données, après le signal de synchronisation suivant en mode synchrone, ou après écoulement du délai d'interpolation précédent en mode asynchrone.

Une mémoire tampon d'entrée pour les registres des données d'interpolation facilite l'échange de données entre le dispositif de commande et le dispositif d'entraînement. Les exigences en temps réel concernant le réseau, ainsi que le dispositif d'entraînement, sont moins sévères dans ce cas, étant donné qu'une mémoire tampon d'entrée dissocie le traitement des données dans le dispositif d'entraînement de la transmission des données sur le réseau.

13.2.2 Mode de position interpolée linéaire avec plusieurs axes

Afin de suivre une courbe bidimensionnelle ou plus dans l'espace avec une vitesse définie, le dispositif de commande calcule les différentes positions P_i pour chaque ensemble de coordonnées qui doit être atteint aux temps t_i spécifiés.

Pour chaque point de consigne P_i , le dispositif de commande doit calculer x_i , y_i et t_i . Chaque axe comporte un ensemble de registres des données d'interpolation, qu'il doit traiter de manière interne indépendamment des autres axes selon le mode d'interpolation choisi. Ceci est présenté à la Figure 38.

Figure 38 - Mode de position interpolée pour deux axes

Un système d'entraînement centralisé avec un dispositif de mouvement distant qui effectue le calcul d'interpolation, comporte une horlogerie centrale pour la synchronisation des différents axes. Ceci génère un mouvement dépendant de la durée de cycle de calcul du contrôleur d'interpolation. La vitesse devient plus ou moins une valeur fixe pour chaque axe. Ceci est décrit de manière détaillée dans le Tableau 155.

Tableau 155 - Calcul de la position en mode de position interpolée pour plusieurs axes

Positions	Registres des données <i>ip</i> pour		
calculées	axe x	axe y	axe z
P _i	x _i , t _i	y _i , t _i	z _i , t _i
P _i + 1	x _i + 1, t _i + 1	y _i + 1, t _i + 1	z _i + 1, t _i + 1
P _i + 2	$x_i + 2, t_i + 2$	$y_i + 2, t_i + 2$	z _i + 2, t _i + 2
		***	***
P _i + <i>n</i>	$x_i + n, t_i + n$	$y_i + n, t_i + n$	$z_i + n, t_i + n$

Dans les systèmes à mouvement décentralisé, le dispositif de commande démarre la rotation de tous les axes correspondants en modifiant l'état interne de mode en état actif d'interpolation, après préparation et transmission d'un ou de plusieurs registres des données d'interpolation à tous les axes, puis procède à leur synchronisation. Chaque axe calcule de manière interne et indépendante la vitesse nécessaire et l'accélération requise pour passer d'une position à la position suivante. Ce calcul peut consister à déterminer un mouvement linéaire ou autre entre deux points de consigne de position donnés. Le long de cette piste, chaque axe commande le mouvement entre les points de consigne, indépendamment des autres axes. Les axes peuvent poursuivre leur mouvement, tant que le nombre de données est suffisant pour continuer les calculs. La mémoire tampon d'entrée peut ainsi être utilisée facilement pour fournir les registres des données en amont.

Ces informations permettent à chaque axe de fonctionner comme illustré à la Figure 39.

Anglais	Français
position loop sample period	Période d'échantillonnage de la boucle de position
calculated position	Position calculée
given interpolation position	Position d'interpolation donnée
Time	Temps

Figure 39 - Interpolation linéaire pour un axe

NOTE En mode synchrone CANopen, le délai d'interpolation est normalement identique à la période nominale pour le signal de synchronisation.

13.2.3 Stratégies de la mémoire tampon pour le mode de position interpolée

Si un dispositif d'entraînement prévoit une mémoire tampon d'entrée pour les registres des données d'interpolation, la capacité de celle-ci peut être organisée par le dispositif de commande grâce à la configuration des données d'interpolation. Le dispositif de commande partage la capacité de mémoire disponible en pages qui ont chacune la capacité d'un registre des données d'interpolation. Ce partage s'effectue par capacité de registre. Toute page restante éventuelle, qui ne conserve pas un registre de données complet, peut ne pas être utilisée. Toutes les données archivées précédentes sont perdues après la réorganisation de la mémoire tampon d'entrée. Tous les dispositifs qui prennent en charge le mode de position interpolée doivent mettre en œuvre une mémoire tampon d'entrée, qui peut au moins conserver un registre des données d'interpolation. L'organisation de la mémoire tampon d'entrée est spécifiée à la Figure 40.

L'accès au contenu des éléments de la mémoire tampon est possible uniquement au moyen du registre des données d'interpolation.

Des structures premier entré-premier sorti (FIFO) ou des mémoires tampons annulaires sont couramment utilisées comme mémoires tampons d'entrée.

FIFO: Lorsque la mémoire tampon est organisée comme FIFO, chaque nouveau registre des données d'interpolation reçu est placé à la fin de la file d'attente, et le dispositif prélève le registre de données suivant au sommet de cette même file. Lorsque le dernier élément d'un registre de données est archivé, le pointeur de la mémoire tampon est incrémenté afin d'indiquer la position de la mémoire tampon suivante. La position de la mémoire tampon des objets n'a aucune influence dans le cadre de ce principe de mémoire tampon.

Mémoire tampon annulaire: Si la structure de la mémoire tampon est annulaire, le dispositif de commande peut disposer un registre des données d'interpolation dans toute position valide

- 255 -

dans l'anneau, en modifiant le pointeur défini dans la position de la mémoire tampon. Sans modifier la position de la mémoire tampon, tous les registres de données sont saisis au même emplacement. Le dispositif d'entraînement lit l'entrée suivante de la mémoire tampon grâce à un pointeur annulaire interne. Ce dernier est réglé sur le premier registre de données avec une mémoire tampon vide, et après réorganisation de la mémoire tampon d'entrée.

<u> </u>	parameter 1		↑
data record size	parameter 2	in data report 1	
data record Size	:::::	ip data record 1	
\downarrow	parameter n		
<u> </u>	parameter 1		
data record size	parameter 2	ip data record 2	
data record size	:::::	ip data record 2	buffer size
	parameter n		bullet 3120
	:::::		
↑	parameter 1		
data record size	parameter 2	ip data record i	
data record 3120	:::::	ip data record i	
	parameter n		
	not accessible		\downarrow

Légende

Anglais	Français
data record size	Capacité du registre de données
parameter	Paramètre
ip data record	Registre de données ip
buffer size	Capacité de la mémoire tampon
not accessible	Non accessible

Figure 40 - Organisation de la mémoire tampon d'entrée

La Figure 41 montre la différence entre une mémoire tampon FIFO et une mémoire tampon annulaire. Cette dernière peut être utilisée pour réaliser un mouvement régulier et tous les registres de données de la mémoire tampon réelle de données sont considérés valides. Si aucune nouvelle donnée n'est saisie dans la mémoire FIFO, le mouvement doit alors s'interrompre et il convient que l'interpolation devienne inactive au dernier point de données valide.

Anglais	Français	
FIFO	FIFO	
Circular Buffer	Mémoire tampon circulaire	
Data	Données	
Write Pointer	Ecriture du pointeur	
Read Pointer	Lecture du pointeur	
Interpolated Position Data	Données de position interpolée	
Time	Temps	
Ring	Anneau (mémoire annulaire)	
Write @ Buffer Position	Ecriture@ Position de la mémoire tampon	
Periodic Waveform (period based on buffer size)	Forme d'onde périodique (période basée sur la capacité de la mémoire tampon)	

Figure 41 – Exemples de mémoire tampon d'entrée

13.2.4 FSA de mode de position interpolée

La Figure 42 spécifie la FSA de mode de position interpolée. Il s'agit d'une sous-FSA de l'état *Fonctionnement activé* comme cela est présenté à la Figure 4.

* see power drive system FSA

Anglais	Français
Interpolation inactive	Interpolation inactive
Interpolation active	Interpolation active
Operation enable	Fonctionnement activé
see power drive system FSA	voir FSA d'entraînement électrique de puissance

Figure 42 - FSA de mode de position interpolée

Les états FSA doivent prendre en charge les fonctions indiquées dans le Tableau 156.

Tableau 156 - États FSA et fonctions prises en charge

État FSA	Fonction
Interpolation inactive	Le dispositif d'entraînement accepte les données d'entrée et les place dans une mémoire tampon à des fins de calculs d'interpolation, mais il ne déplace pas l'axe.
Interpolation active	Le dispositif d'entraînement accepte les données d'entrée et déplace l'axe.

Le dispositif d'entraînement qui prend en charge le mode *ip* doit également prendre en charge les transitions et actions indiquées dans le Tableau 157. Les événements doivent déclencher les transitions. La transition doit s'achever une fois l'action accomplie.

Tableau 157 - Evénements et actions de transitions

Transition	Evénement(s)	Action(s)
- 1	Mode <i>ip</i> sélectionné (voir objet 6060 _h)	aucune
II	Mode <i>ip</i> non sélectionné (voir objet 6060 _h)	aucune
III	Activer l'interpolation (le bit 4 du mot de commande est égal à 1)	aucune
IV	Désactiver l'interpolation (le bit 4 du mot de commande est égal à 0)	aucune

13.3 Définitions générales

Les valeurs de sortie fournies par le mode de *position interpolée* dépendent du nombre et du type de fonctions d'interpolation mises en œuvre. Pour l'interpolation temporelle linéaire prédéfinie, la sortie est une valeur interne de demande de position.

- 258 -

13.4 Utilisation du mot de commande et du mot d'état

Le mode de position interpolée utilise certains bits du mot de commande et du mot d'état pour des applications spécifiques au mode. La Figure 43 présente la structure du mot de commande. Le Tableau 158 définit les valeurs des bits 4 et 8 du mot de commande.

Figure 43 - Mot de commande pour le mode de position interpolée

Tableau 158 - Définition du bit 4 et du bit 8

Bit	Valeur	Définition	
4	0	Désactiver l'interpolation	
	1	Activer l'interpolation	
8	0	Exécuter l'instruction du bit 4	
	1	Le mouvement de l'axe doit être interrompu selon le code de l'option Arrêt (605D _h) et le bit 12 du mot d'état doit être mis à 0	

La Figure 44 présente la structure du mot d'état. Le Tableau 159 définit les valeurs des bits 10 et 12 du mot d'état. Le bit *position cible atteinte* doit rester à 0 jusqu'à ce que tous les points de consigne soient traités.

Figure 44 - Mot d'état pour le mode de position interpolée

Tableau 159 - Définition du bit 10 et du bit 12

Bit	Valeur	Définition
10	0	Position cible non (encore) atteinte (si le bit Arrêt dans le dernier mot de commande était égal à 0) ou le mouvement de l'axe ralentit (si le bit Arrêt dans le dernier mot de commande était égal à 1)
	1	Position cible atteinte (si le bit Arrêt dans le dernier mot de commande était égal à 0) ou le mouvement de l'axe s'effectue à la vitesse 0 (si le bit Arrêt dans le dernier mot de commande était égal à 1)
12	0	Interpolation inactive
	1	Interpolation active

13.5 Définitions d'objets détaillées

13.5.1 Objet 60C0_h: Sélection du sous-mode d'interpolation

Cet objet doit indiquer le mode d'interpolation effectivement choisi. Si l'interpolation linéaire est le seul algorithme disponible, il n'est alors pas nécessaire de mettre en œuvre cet objet. Lorsqu'un mode d'interpolation spécifique au constructeur est sélectionné, le registre des données d'interpolation correspondant doit être mis en œuvre dans la zone de profil spécifique au constructeur du dictionnaire d'objets. Si le mode d'interpolation linéaire est sélectionné, les données d'interpolation fournies dans l'objet 60C1_h doivent être utilisées. Le Tableau 160 spécifie la définition des valeurs, le Tableau 161 spécifie la description de l'objet et le Tableau 162 spécifie la description d'entrée.

- 259 -

Tableau 160 - Définition des valeurs

Valeur	Définition
-32 768 à -1	Spécifique au constructeur
0	Interpolation linéaire
+1 à +32 767	Réservé

Tableau 161 - Description de l'objet

Attribut	Valeur
Index	60C0 _h
Nom	Sélection du sous-mode d'interpolation
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Facultative

Tableau 162 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 160
Valeur par défaut	0

13.5.2 Objet 60C1_h: Registre des données d'interpolation

Cet objet doit indiquer les mots de données, nécessaires pour exécuter l'algorithme d'interpolation. Le nombre N de mots de données dans le registre est défini par la configuration des données d'interpolation. L'interprétation des mots de données dans le registre des données d'interpolation peut varier avec les différents modes d'interpolation potentiels définis par la sélection du sous-mode d'interpolation.

Pour le mode d'interpolation linéaire, chaque registre des données d'interpolation est considéré simplement comme un nouveau point de consigne de position. Pour la description d'une interpolation de fonction spline cubique, quatre mots de données ou plus sont nécessaires pour les coefficients "spline", et les autres paramètres d'interpolation.

Après saisie du dernier élément d'un registre des données d'interpolation dans la mémoire tampon d'entrée du dispositif d'entraînement, le pointeur de la mémoire tampon doit être automatiquement augmenté à la position de mémoire tampon suivante.

Le Tableau 163 spécifie la description de l'objet et le Tableau 164 spécifie la description d'entrée.

Tableau 163 - Description de l'objet

Attribut	Valeur
Index	60C1 _h
Nom	Registre des données interpolées
Code de l'objet	Matrice
Type de données	Integer32
Catégorie	Facultative

Tableau 164 – Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	01 _h à FE _h
Valeur par défaut	Non
Sous-index	01
	01 _h 1er point de consigne
Description Catégorie d'entrée	Obligatoire
Accès	
	Voir CEI 61800-7-301
Mise en correspondance PDO	
Plage de valeurs	Integer32
Valeur par défaut	Spécifique au constructeur
Sous-index	02 _h
Description	2ième point de consigne
Catégorie d'entrée	Facultative
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Spécifique au constructeur
	à
Sous-index	FE _h
Description	254e point de consigne
Catégorie d'entrée	Facultative
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Spécifique au constructeur

- 261 -

13.5.3 Objet 60C2_h: Délai d'interpolation

Cet objet doit indiquer la durée de cycle d'interpolation configurée. La valeur du délai d'interpolation (sous-index 01_h) doit être donnée en $10^{(index\ de\ délai\ d'interpolation)}$ s(econdes). L'index du délai d'interpolation (sous-index 02_h) doit être adimensionnel.

Le Tableau 165 spécifie la description de l'objet et le Tableau 166 spécifie la description d'entrée.

Tableau 165 - Description de l'objet

Attribut	Valeur
Index	60C2 _h
Nom	Délai d'interpolation
Code de l'objet	Registre
Type de données	Registre du délai d'interpolation (0080 _h)
Catégorie	Conditionnelle: obligatoire si le mode ip, csp, csv ou cst est pris en charge

Tableau 166 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h
Valeur par défaut	02 _h
Sous-index	01 _h
Description	Valeur du délai d'interpolation
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned8
Valeur par défaut	01 _h
Sous-index	02 _h
Description	Index de délai d'interpolation
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	-128 à +63
Valeur par défaut	-3

13.5.4 Objet 60C4_h: Configuration des données d'interpolation

Cet objet doit fournir la capacité maximale de la mémoire tampon, doit indiquer l'organisation de la mémoire tampon configurée des données d'interpolation, et doit fournir les objets qui permettent de définir la capacité du registre des données et d'effacer les mémoires tampons. Cet objet permet au dispositif d'entraînement de recevoir par avance les données nécessaires. Il sert également à archiver les positions et les données supplémentaires transmises par le dispositif de commande.

La valeur du sous-index 01_h doit être donnée en tant que nombre de registres des données d'interpolation.

La valeur du sous-index $02_{\rm h}$ doit être donnée en tant que nombre de registres des données d'interpolation.

Si le sous-index 03_h est égal à 00_h , ceci doit indiquer l'organisation d'une mémoire tampon FIFO, si ce sous-index est égal à 01_h , ceci doit indiquer l'organisation d'une mémoire tampon annulaire. Toutes les autres valeurs sont réservées.

La valeur du sous-index $04_{\rm h}$ doit être adimensionnelle, et indiquer le point d'entrée de mémoire tampon libre suivant.

La valeur du sous-index 05_h doit être donnée en octets.

Si 00_h est associée au sous-index 06_h , ceci doit contribuer à effacer les entrées de la mémoire tampon, doit désactiver l'accès à la mémoire et doit effacer tous les registres des données ip. Si 01_h est associée au sous-index 06_h , ceci active l'accès aux mémoires tampons d'entrée. Toutes les autres valeurs sont réservées.

Le Tableau 167 spécifie la description de l'objet et le Tableau 168 spécifie la description d'entrée.

Tableau 167 - Description de l'objet

Attribut	Valeur
Index	60C4 _h
Nom	Configuration des données d'interpolation
Code de l'objet	Registre
Type de données	Registre de configuration des données d'interpolation (0081 _h)
Catégorie	Facultative

- 263 -

Tableau 168 – Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	07 _h
Valeur par défaut	07 _h
Sous-index	01 _h
Description	Capacité maximale de mémoire tampon
Catégorie d'entrée	Obligatoire
Accès	го
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Non
Sous-index	02 _h
Description	Capacité réelle de mémoire tampon
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	0000 0000 _h

Tableau 168 (suite)

Attribut	Valeur
Sous-index	03 _h
Description	Organisation de la mémoire tampon
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	00 _h ou 01 _h
Valeur par défaut	00 _h
	T
Sous-index	04 _h
Description	Position de la mémoire tampon
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned16
Valeur par défaut	0000 _h
	1
Sous-index	05 _h
Description	Capacité du registre de données
Catégorie d'entrée	Obligatoire
Accès	wo
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	01 _h à FE _h
Valeur par défaut	01 _h
Sous-index	06 _h
Description	Effacement de la mémoire tampon
Catégorie d'entrée	Obligatoire
Accès	wo
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	00 _h ou 01 _h
Valeur par défaut	00 _h

14 Mode de vitesse de profil

14.1 Informations d'ordre général

Le mode de vitesse de profil couvre les sous-fonctions suivantes:

- Saisie de la valeur de demande via le générateur de trajectoire
- Saisie de la vitesse au moyen du capteur de position ou de vitesse
- Fonction de commande de la vitesse au moyen de signaux d'entrée et de sortie appropriés
- Surveillance de la vitesse de profil au moyen d'une fonction fenêtre
- Surveillance de la valeur instantanée de vitesse au moyen d'un seuil

- 265 -

Le fonctionnement du générateur de valeurs de référence et l'application de ses paramètres d'entrée sont décrits à l'Article 10:

- Vitesse de profil
- Accélération de profil
- Décélération de profil
- Arrêt d'urgence
- Type de profil de mouvement

Différents capteurs peuvent être utilisés pour la saisie de la vitesse. Plus particulièrement, l'objectif est de réduire les coûts et de simplifier le système de puissance d'entraînement, par l'évaluation de la position et de la vitesse à l'aide d'un capteur commun, telle que l'évaluation facultative au moyen d'un résolveur ou d'un codeur.

La fonction de commande de vitesse n'est pas spécifiée avec plus de précision à ce stade, étant donné qu'elle est particulièrement spécifique au constructeur, mais le format et le nombre maximal de coefficients de commande sont toutefois établis.

Les fonctions de surveillance de la valeur instantanée de vitesse fournissent des informations d'état pour les systèmes super-ordonnés.

14.2 Description fonctionnelle

La Figure 45 présente la structure définie du mode de vitesse de profil. La vitesse réelle peut être obtenue par une différenciation par rapport au codeur de position et est représentée par des incréments du codeur de position.

Le bit *cible atteinte* (bit 10) doit être mis à 1 dans le mot d'état lorsque la différence entre la vitesse cible et la valeur instantanée de vitesse se situe dans la plage de vitesse, dont la durée est plus longue que le créneau de vitesse.

Dès que la valeur instantanée de vitesse dépasse le seuil de vitesse d'une durée plus longue que la durée de seuil de vitesse, le bit 12 doit être mis à 0 dans le mot d'état. En dessous de ce seuil, le bit doit être mis à 1 et doit indiquer que l'axe est fixe.

Anglais	Français
Target velocity	Vitesse cible
Max. profile velocity	Vitesse maximale du profil
Max. motor speed	Régime maximal du moteur
Profile acceleration	Accélération de profil
Profile deceleration	Décélération de profil
Quick-stop deceleration	Décélération par arrêt rapide
Max. acceleration	Accélération maximale
Max. deceleration	Décélération maximale
Motion profile type	Type de profil de mouvement
Polarity	Polarité
Sensor selection code	Code de sélection du capteur
Position actual value	Valeur instantanée de position
Velocity sensor actual value	Valeur instantanée du capteur de vitesse
Limit function	Fonction limite
Velocity limit	Limite de vitesse
Minimum comparator	Comparateur minimal
Trajectory generator	Générateur de trajectoire
Velocity sensor selection	Sélection du capteur de vitesse
Multiplier	Multiplicateur
Velocity	Vitesse
Velocity demand value	Valeur de demande de vitesse
Velocity controller	Régulateur de vitesse
Control effort	Mesure de contrôle
Velocity actual value	Valeur instantanée de vitesse

Figure 45 - Mode de vitesse de profil

- 267 -

14.3 Définitions générales

Les facteurs nécessaires pour la mise à l'échelle ont une relation linéaire, et sont par conséquent décrits dans le groupe de facteurs. La polarité est également décrite dans le groupe de facteurs.

14.4 Utilisation du mot de commande et du mot d'état

Le mode de vitesse de profil utilise certains bits du mot de commande et du mot d'état pour des applications spécifiques au mode. La Figure 46 présente la structure du mot de commande. Le Tableau 169 définit les valeurs du bit 8 du mot de commande.

Figure 46 - Mot de commande pour le mode de vitesse de profil

Tableau 169 - Définition du bit 8

Bit	Valeur	Définition
8	0	Le mouvement doit être exécuté ou poursuivi
	1	Le mouvement de l'axe doit être interrompu selon le code de l'option Arrêt (605D _h)

La Figure 47 présente la structure du mot d'état. Le Tableau 170 définit les valeurs des bits 10, 12 et 13 du mot d'état.

Figure 47 - Mot d'état pour le mode de vitesse de profil

Tableau 170 - Définition du bit 10, du bit 12 et du bit 13

Bit	Valeur	Définition
10	0	Arrêt (Bit 8 dans le mot de commande) = 0: Cible non atteinte
		Arrêt (Bit 8 dans le mot de commande) = 1: L'axe ralentit
	1	Arrêt (Bit 8 dans le mot de commande) = 0: Cible atteinte
		Arrêt (Bit 8 dans le mot de commande) = 1: La vitesse de l'axe est nulle
12	0	La vitesse n'est pas nulle
	1	La vitesse est nulle
13	0	Glissement maximal non atteint
	1	Glissement maximal atteint

14.5 Définitions d'objets détaillées

14.5.1 Objet 6069_h: Valeur instantanée du capteur de vitesse

Cet objet doit fournir la valeur lue sur un capteur de vitesse. La valeur doit être donnée en incréments par seconde. Le Tableau 171 spécifie la description de l'objet et le Tableau 172 spécifie la description d'entrée.

Tableau 171 - Description de l'objet

Attribut	Valeur
Index	6069 _h
Nom	Valeur instantanée du capteur de vitesse
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Facultative

Tableau 172 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

14.5.2 Objet 606A_h: Code de sélection du capteur

Cet objet doit fournir la source de la valeur instantanée du capteur de vitesse. Il détermine si un signal de position différencié ou si le signal d'un capteur de vitesse distinct est évalué. Le Tableau 173 spécifie la définition des valeurs, le Tableau 174 spécifie la description de l'objet et le Tableau 175 spécifie la description d'entrée.

Tableau 173 - Définition des valeurs

Valeur	Définition
0000 _h	Valeur instantanée de vitesse lue sur le codeur de position
0001 _h	Valeur instantanée de vitesse lue sur le codeur de vitesse
0002 _h à 7FFF _h	Réservé
8000 _h à FFFF _h	Spécifique au constructeur

Tableau 174 - Description de l'objet

Attribut	Valeur
Index	606A _h
Nom	Code de sélection du capteur
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Facultative

- 269 -

Tableau 175 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir Tableau 173
Valeur par défaut	Spécifique au constructeur

14.5.3 Objet 606B_h: Valeur de demande de vitesse

Cet objet doit fournir la valeur de sortie du générateur de trajectoire. La valeur doit être donnée en unités de vitesse définies par l'utilisateur. Le Tableau 176 spécifie la description de l'objet et le Tableau 177 spécifie la description d'entrée.

Tableau 176 - Description de l'objet

Attribut	Valeur
Index	606B _h
Nom	Valeur de demande de vitesse
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Facultative

Tableau 177 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

14.5.4 Objet 606C_h: Valeur instantanée de vitesse

Cet objet doit fournir la valeur instantanée de vitesse issue du capteur de vitesse ou du capteur de position. La valeur doit être donnée en unités de vitesse définies par l'utilisateur. Le Tableau 178 spécifie la description de l'objet et le Tableau 179 spécifie la description d'entrée.

Tableau 178 - Description de l'objet

Attribut	Valeur
Index	606C _h
Nom	Valeur instantanée de vitesse
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Conditionnelle: obligatoire si pv ou csv est pris en charge

Tableau 179 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Non

14.5.5 Objet 606D_h: Plage de vitesse

Cet objet doit indiquer la plage de vitesse configurée. La valeur doit être donnée en unités de vitesse définies par l'utilisateur. Le Tableau 180 spécifie la description de l'objet et le Tableau 181 spécifie la description d'entrée.

Tableau 180 - Description de l'objet

Attribut	Valeur
Index	606D _h
Nom	Plage de vitesse
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Facultative

Tableau 181 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned16
Valeur par défaut	Spécifique au constructeur

14.5.6 Objet 606E_h: Créneau de vitesse

Cet objet doit indiquer le créneau de vitesse configuré. La valeur doit être donnée en millisecondes. Le Tableau 182 spécifie la description de l'objet et le Tableau 183 spécifie la description d'entrée

Tableau 182 - Description de l'objet

Attribut	Valeur
Index	606E _h
Nom	Créneau de vitesse
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Facultative

- 271 -

Tableau 183 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned16
Valeur par défaut	0000 _h

14.5.7 Objet 606F_h: Seuil de vitesse

Cet objet doit indiquer le seuil de vitesse configuré. La valeur doit être donnée en unités de vitesse définies par l'utilisateur. Le Tableau 184 spécifie la description de l'objet et le Tableau 185 spécifie la description d'entrée.

Tableau 184 - Description de l'objet

Attribut	Valeur
Index	606F _h
Nom	Seuil de vitesse
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Facultative

Tableau 185 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned16
Valeur par défaut	Spécifique au constructeur

14.5.8 Objet 6070_h: Durée de seuil de vitesse

Cet objet doit indiquer la durée de seuil de vitesse configurée. La valeur doit être donnée en millisecondes. Le Tableau 186 spécifie la description de l'objet et le Tableau 187 spécifie la description d'entrée.

Tableau 186 - Description de l'objet

Attribut	Valeur
Index	6070 _h
Nom	Durée de seuil de vitesse
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Facultative

Tableau 187 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned16
Valeur par défaut	Spécifique au constructeur

14.5.9 Objet 60FF_h: Vitesse cible

Cet objet doit indiquer la vitesse cible configurée et doit être utilisé comme élément d'entrée du générateur de trajectoire. La valeur doit être donnée en unités de vitesse définies par l'utilisateur. Le Tableau 188 spécifie la description de l'objet et le Tableau 189 spécifie la description d'entrée.

Tableau 188 - Description de l'objet

Attribut	Valeur
Index	60FF _n
Nom	Vitesse cible
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Conditionnelle: obligatoire si pv ou csv est pris en charge

Tableau 189 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Spécifique au constructeur

14.5.10 Objet 60F8_h: Glissement max.

Cet objet doit indiquer le glissement maximal configuré d'un moteur asynchrone. Une fois le glissement max. atteint, le bit 13 correspondant "erreur de glissement maximal" dans le mot d'état doit être mis à 1. La réaction du dispositif d'entraînement, lorsque l'erreur de glissement maximal se produit, est spécifique au constructeur. Cette valeur doit être donnée en unités définies par l'utilisateur. Le Tableau 190 spécifie la description de l'objet et le Tableau 191 spécifie la description d'entrée.

-273 -

Tableau 190 - Description de l'objet

Attribut	Valeur
Index	60F8 _h
Nom	Glissement max.
Code de l'objet	Variable
Type de données	Integer32
Catégorie	Facultative

Tableau 191 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	Spécifique au constructeur

15 Mode de couple de profil

15.1 Informations d'ordre général

Le mode de couple de profil permet au dispositif de commande (c'est-à-dire régulateur de vitesse à boucle fermée, régulateur de force de transmission à boucle ouverte) de transmettre la valeur de couple cible, qui est traitée via le générateur de trajectoire. Les paramètres de pente et de type de profil de couple sont requis.

15.2 Description fonctionnelle

Lorsque le dispositif de commande bascule le bit 8 du mot de commande (arrêt) de 0 à 1 ou de 1 à 0, le générateur de trajectoire abaisse son résultat de mesure de contrôle à zéro, respectivement jusqu'au couple cible. Dans les deux cas, le générateur de trajectoire tient compte de la pente et du type de profil de couple.

Toutes les définitions se rapportent à des moteurs rotatifs. L'utilisation de moteurs linéaires, en lieu et place de moteurs rotatifs, exige que tous les objets "couple" se rapportent plutôt à une "force". Pour des raisons de simplicité, les objets ne sont pas reproduits et leurs noms ne sont pas modifiés. À titre d'exemple, la force cible de moteur linéaire est transmise au moyen de l'objet de couple cible. Se reporter aux descriptions d'objets pour des informations supplémentaires.

Les fonctions d'asservissement de couple et d'étages de puissance spécifiques au constructeur ne sont pas décrites dans la mesure où elles ne relèvent pas du domaine d'application de cette spécification de profil d'entraînement. Elles sont mentionnées uniquement pour indiquer comment certains paramètres influent sur elles. À titre d'exemple, les coefficients d'asservissement de couple à boucle fermée (lorsqu'ils existent) sont à définir et à décrire par le constructeur.

Les paramètres d'asservissement de couple, ainsi que les paramètres liés aux étages de puissance et aux moteurs, sont définis comme des objets de manière à ce qu'ils puissent être traités (c'est-à-dire téléchargés) dans des conditions normales. Leur définition de données détaillée est spécifique au constructeur.

- 274 -

La demande de couple, la valeur instantanée de couple, la valeur instantanée de courant et la tension de liaison c.c. sont à la disposition de l'utilisateur sous forme de paramètres, si elles sont contrôlées.

La Figure 48 présente la structure définie du mode de couple de profil.

Légende

Anglais	Français
Target torque	Couple cible
Target slope	Pente cible
Torque profile type	Type de profil de couple
Controlword	Mot de commande
Max. torque	Couple maximal
Max. current	Courant maximal
Motor rated torque	Couple assigné du moteur
Motor rated current	Courant assigné du moteur
Torque actual value	Valeur instantanée de couple
Current actual value	Valeur instantanée de courant
DC link voltage	Tension de liaison c.c.
Trajectory generator	Générateur de trajectoire
Torque demand	Demande de couple
Torque control and power stage	Asservissement de couple et étage de puissance
Motor	Moteur

Figure 48 - Structure du mode de couple de profil

15.3 Définitions générales

Aucune définition générale n'est donnée pour le mode de couple de profil.

15.4 Utilisation du mot de commande et du mot d'état

Le mode de couple de profil utilise certains bits du mot de commande et du mot d'état pour des applications spécifiques au mode. La Figure 49 présente la structure du mot de commande. Le Tableau 192 définit les valeurs du bit 8 du mot de commande.

Bit de poids fort (MSB)

Figure 49 - Mot de commande pour le mode de couple de profil

Bit de poids faible (LSB)

Tableau 192 - Définition du bit 8

Bit	Valeur	Définition	
8	0	Le mouvement doit être exécuté ou poursuivi	
	1	Le mouvement de l'axe doit être interrompu selon le code de l'option Arrêt (605D _h)	

La Figure 50 présente la structure du mot d'état. Le Tableau 193 définit les valeurs du bit 10 du mot d'état.

Figure 50 - Mot d'état pour le mode de couple de profil

Tableau 193 - Définition du bit 10

Bit	Valeur	Définition
10	0	Arrêt (Bit 8 dans le mot de commande) = 0: Couple cible non atteint
		Arrêt (Bit 8 dans le mot de commande) = 1: L'axe ralentit
	1	Arrêt (Bit 8 dans le mot de commande) = 0: Couple cible atteint
		Arrêt (Bit 8 dans le mot de commande) = 1: La vitesse de l'axe est nulle

NOTE Couple cible atteint est défini par un objet "durée" ou "créneau" spécifique au constructeur.

15.5 Définitions d'objets détaillées

15.5.1 Objet 6071_h: Couple cible

Cet objet doit indiquer la valeur d'entrée configurée pour le régulateur de couple dans le mode de couple de profil. La valeur doit être donnée en millier de couple assigné. Le Tableau 194 spécifie la description de l'objet et le Tableau 195 spécifie la description d'entrée.

Tableau 194 - Description de l'objet

Attribut	Valeur
Index	6071 _h
Nom	Couple cible
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Conditionnelle: obligatoire si tq ou cst est pris en charge

Tableau 195 - Description d'entrée

- 276 -

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer16
Valeur par défaut	0000 _h

15.5.2 Objet 6072_h: Couple max.

Cet objet doit indiquer le couple maximal admissible configuré du moteur. La valeur doit être donnée en millier de couple assigné. Le Tableau 196 spécifie la description de l'objet et le Tableau 197 spécifie la description d'entrée.

Tableau 196 - Description de l'objet

Attribut	Valeur
Index	6072 _h
Nom	Couple max.
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Facultative

Tableau 197 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned16
Valeur par défaut	Spécifique au constructeur

15.5.3 Objet 6073_h: Courant max.

Cet objet doit indiquer le couple maximal admissible configuré qui génère du courant dans le moteur. La valeur doit être donnée en millier de courant assigné. Le Tableau 198 spécifie la description de l'objet et le Tableau 199 spécifie la description d'entrée.

Tableau 198 - Description de l'objet

Attribut	Valeur
Index	6073 _h
Nom	Courant max.
Code de l'objet	Variable
Type de données	Unsigned16
Catégorie	Facultative

- 277 -

Tableau 199 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned16
Valeur par défaut	Spécifique au constructeur

15.5.4 Objet 6074_h: Demande de couple

Cet objet doit fournir la valeur de sortie du générateur de trajectoire. La valeur doit être donnée en 1/1 000 de couple assigné. Le Tableau 200 spécifie la description de l'objet et le Tableau 201 spécifie la description d'entrée.

Tableau 200 - Description de l'objet

Attribut	Valeur
Index	6074 _h
Nom	Demande de couple
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Facultative

Tableau 201 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer16
Valeur par défaut	Non

15.5.5 Objet 6075_h: Courant assigné du moteur

Cet objet doit indiquer le courant assigné du moteur configuré. Il provient de la plaque signalétique du moteur. Selon la technologie du moteur et du dispositif d'entraînement, ce courant est un courant continu, de crête ou efficace. Toutes les données de courant relatives se rapportent à cette valeur. La valeur doit être donnée en mA. Le Tableau 202 spécifie la description de l'objet et le Tableau 203 spécifie la description d'entrée.

Tableau 202 - Description de l'objet

Attribut	Valeur
Index	6075 _h
Nom	Courant assigné du moteur
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

Tableau 203 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

15.5.6 Objet 6076_h: Couple assigné du moteur

Cet objet doit indiquer le couple assigné du moteur configuré. Il provient de la plaque signalétique du moteur. Toutes les données de couple relatives doivent se rapporter à cette valeur. Pour les moteurs linéaires, le nom d'objet n'est pas modifié, mais la valeur de force assignée du moteur doit être saisie sous forme de multiples de mN (milli Newton). La valeur doit être donnée en mNm (milli Newton mètre). Le Tableau 204 spécifie la description de l'objet et le Tableau 205 spécifie la description d'entrée.

Tableau 204 - Description de l'objet

Attribut	Valeur
Index	6076 _h
Nom	Couple assigné du moteur
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

Tableau 205 – Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

15.5.7 Objet 6077_h: Valeur instantanée de couple

Cet objet doit fournir la valeur instantanée du couple. Il doit correspondre au couple instantané du moteur. La valeur doit être donnée en millier de couple assigné. Le Tableau 206 spécifie la description de l'objet et le Tableau 207 spécifie la description d'entrée.

Tableau 206 - Description de l'objet

Attribut	Valeur	
Index	6077 _h	
Nom	Valeur instantanée de couple	
Code de l'objet	Variable	
Type de données	Integer16	
Catégorie	Conditionnelle: obligatoire si cst est pris en charge	

- 279 -

Tableau 207 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer16
Valeur par défaut	Non

15.5.8 Objet 6078_h: Valeur instantanée de courant

Cet objet doit fournir la valeur instantanée du courant. Il doit correspondre au courant qui circule dans le moteur. La valeur doit être donnée en millier de courant assigné. Le Tableau 208 spécifie la description de l'objet et le Tableau 209 spécifie la description d'entrée.

Tableau 208 - Description de l'objet

Attribut	Valeur
Index	6078 _h
Nom	Valeur instantanée de courant
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Facultative

Tableau 209 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer16
Valeur par défaut	Non

15.5.9 Objet 6079_h: Tension de circuit de liaison c.c.

Cet objet doit fournir la tension de courant de liaison c.c. instantanée au niveau du dispositif d'entraînement. La valeur doit être donnée en mV. Le Tableau 210 spécifie la description de l'objet et le Tableau 211 spécifie la description d'entrée.

Tableau 210 - Description de l'objet

Attribut	Valeur
Index	6079 _h
Nom	Tension de circuit de liaison c.c.
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

Tableau 211 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Non

15.5.10 Objet 6087_h: Pente de couple

Cet objet doit indiquer le taux de variation configuré du couple. La valeur doit être donnée en unités de millier de couple assigné par seconde. Le Tableau 212 spécifie la description de l'objet et le Tableau 213 spécifie la description d'entrée.

Tableau 212 - Description de l'objet

Attribut	Valeur	
Index	6087 _h	
Nom	Pente de couple	
Code de l'objet	Variable	
Type de données	Unsigned32	
Catégorie	Conditionnelle: obligatoire si tq est pris en charge	

Tableau 213 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

15.5.11 Objet 6088_h: Type de profil de couple

Cet objet doit indiquer le type configuré de profil utilisé pour effectuer un changement de couple. Le Tableau 214 spécifie la définition des valeurs, le Tableau 215 spécifie la description de l'objet et le Tableau 216 spécifie la description d'entrée.

Tableau 214 - Définition des valeurs

Valeur	Définition	
0000 _h	Rampe linéaire (profil trapézoïdal)	
0001 _h	Rampe ² sinusoïdale	
0002 _h à 7FFF _h	Réservé	
8000 _h à FFFF _h	Spécifique au constructeur	

- 281 -

Tableau 215 - Description de l'objet

Attribut	Valeur
Index	6088 _h
Nom	Type de profil de couple
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Facultative

Tableau 216 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer16
Valeur par défaut	0000 _h

16 Mode de vitesse

16.1 Informations d'ordre général

Ce mode est utilisé par des convertisseurs de fréquence, mais ne se limite pas à ce type de dispositif d'entraînement. La plupart des applications utilisent un point de consigne de la vitesse et un mot de commande pour la mise sous tension et hors tension du dispositif d'entraînement.

La Figure 51 présente la structure globale du mode de vitesse. La fonction d'asservissement de couple potentielle ne relève pas du domaine d'application de la présente partie de la série CEI 61800-7; elle peut utiliser les objets "couple cible" et "valeur instantanée de couple" définis en 15.5.1 ou respectivement en 15.5.7.

Légende

Anglais	Français	
Statusword bit 11 (internal limit active)	Mot d'état bit 11 (limite interne active)	
Target velocity	Vitesse cible	
Set-point factor	Facteur de point de consigne	
Dimension factor	Facteur de dimension	
Factor function	Fonction factorielle	
Velocity min/max amount	Niveau de vitesse min/max.	
Velocity acceleration	Accélération en vitesse	
Velocity deceleration	Décélération en vitesse	
Velocity quick stop	Arrêt rapide de la vitesse	
Controlword bit 4 (enable ramp)	Mot de commande bit 4 (activer la rampe)	
Controlword bit 5 (unlock ramp)	Mot de commande bit 5 (déverrouiller la rampe)	
Controlword bit 6 (reference ramp)	Mot de commande bit 5 (rampe de référence)	
Controlword bit 8 (halt)	Mot de commande bit 8 (arrêt)	
Velocity control function	Fonction de commande de vitesse	
Velocity limit function	Fonction de limite de vitesse	
Ramp function	Fonction de rampe	
Reverse factor function	Fonction factorielle inverse	
Velocity actual value	Valeur instantanée de vitesse	
Velocity demand	Demande de vitesse	

Figure 51 - Mode de vitesse avec tous les objets

Tous les dispositifs d'entraînement qui utilisent ce profil et prennent en charge le mode de vitesse, doivent mettre en œuvre les objets obligatoires et leur fonctionnalité comme le montre la Figure 52.

Anglais	Français
target velocity	Vitesse cible
velocity min/max. amount	Niveau de vitesse min/max.
velocity acceleration	Accélération en vitesse
velocity deceleration	Décélération en vitesse
Velocity limit function	Fonction de limite de vitesse
Ramp function	Fonction de rampe
demand value	Valeur de demande
Velocity control function	Fonction de commande de vitesse
velocity actual value	Valeur instantanée de vitesse
Statusword bit 11	Mot d'état bit 11

Figure 52 - Mode de vitesse avec les objets obligatoires uniquement

16.2 Description fonctionnelle

16.2.1 Fonction de limite de vitesse

Les limites applicables à la fonction de limite de vitesse peuvent être données en unités spécifiques à l'utilisateur, mais en incluant le facteur de dimension v/ dans la limite de vitesse, ou en tours par minute (r/min). Le message de valeur limite est généré si la valeur d'entrée de la limite de vitesse produit une valeur située en dehors de la plage de fonctionnement correspondante. Le message de valeur limite est mis en correspondance sous la forme de un bit dans le mot d'état.

16.2.2 Fonction de rampe

La Figure 53 présente le profil de vitesse utilisé pour limiter l'augmentation et la réduction de la vitesse. La sortie du facteur Vitesse est égale à son entrée, tant que les changements sont inférieurs, comme cela est défini dans l'accélération en vitesse vl, la décélération en vitesse vl et l'arrêt rapide de vitesse vl.

Anglais	Français
Velocity	Vitesse
Velocity output	Sortie du facteur Vitesse
Velocity input	Entrée du facteur Vitesse

Figure 53 - Profil de vitesse

16.2.3 Fonction de commande de vitesse

La fonction de commande de vitesse fournit la mesure de contrôle vI sur la base de la demande de vitesse vI.

16.2.4 Fonction factorielle

Elle multiplie les variables d'entrée par les facteurs assignés. Le facteur doit avoir une valeur de 1, s'il n'est pas mis en œuvre.

La Figure 54 présente la structure de la fonction factorielle; la fonction factorielle pour deux facteurs est constituée de deux fonctions montées en série.

Légende

Anglais	Français
input	Entrée
output	Sortie

Figure 54 - Fonction factorielle

La Figure 55 présente la structure de la fonction factorielle inverse. Cette dernière fonction divise les variables d'entrée par les facteurs assignés.

Anglais	Français
input	Entrée
output	Sortie

Figure 55 - Fonction factorielle inverse

16.3 Définitions générales

Tous les objets définis en 16.5 sont utilisés uniquement pour le mode de vitesse.

16.4 Utilisation du mot de commande et du mot d'état

Le mode de vitesse utilise certains bits du mot de commande et du mot d'état pour des applications spécifiques au mode. La Figure 56 présente la structure du mot de commande. Le Tableau 217 et la Figure 57 définissent les valeurs du bit 4, du bit 5, du bit 6 et du bit 8 du mot de commande. Ces bits sont facultatifs.

Figure 56 - Mot de commande pour le mode de vitesse de profil

Tableau 217 - Définition du bit 4, du bit 5, du bit 6 et du bit 8

Bit	Valeur	Définition	
4	0	La valeur de demande de vitesse doit être contrôlée d'une tout autre manière (spécifique au constructeur), par exemple, par un générateur de fonction d'essai, ou une fonction d'arrêt spécifique au constructeur	
	1	La valeur de demande de vitesse doit correspondre à la valeur de sortie de rampe	
5	0	La valeur de sortie de rampe doit être associée à la valeur de sortie de courant	
	1	La valeur de sortie de rampe doit suivre la valeur d'entrée de rampe	
6	0	La valeur d'entrée de rampe doit être réglée sur zéro	
	1	La valeur d'entrée de rampe doit correspondre à la valeur de référence de rampe	
8	0	Aucune commande	
	1	Le moteur doit être interrompu	

Anglais	Français
Run ramp function generator	Exécuter le générateur de la fonction de rampe
Lock	Verrouiller
Limit function output	Sortie (résultat) de fonction limite
Ramp input value	Valeur d'entrée de la rampe
Ramp function generator	Générateur de fonction de rampe
Ramp output value	Valeur de sortie de la rampe
Special function generator	Générateur de fonction spéciale
Velocity demand	Demande de vitesse

Figure 57 - Utilisation des bits de mot de commande en mode de vitesse

La Figure 58 présente la structure du mot d'état.

Figure 58 – Mot d'état pour le mode de vitesse de profil

16.5 Définitions d'objets détaillées

16.5.1 Objet 6042_h: vitesse cible *vl*

Cet objet doit indiquer la vitesse requise du système. Il doit être multiplié par le facteur de dimension v/ et le facteur de point de consigne v/, si ceux-ci sont mis en œuvre. La valeur doit être donnée en unités de vitesse définies par l'utilisateur ou en tours par minute (r/min), si le facteur de dimension v/ et le facteur de point de consigne v/ ne sont pas mis en œuvre ou ont la valeur 1. Les valeurs positives doivent indiquer le sens direct et les valeurs négatives doivent indiquer la direction inverse. Le Tableau 218 spécifie la description de l'objet et le Tableau 219 spécifie la description d'entrée.

Tableau 218 - Description de l'objet

Attribut	Valeur	
Index	6042 _h	
Nom	vitesse cible vI	
Code de l'objet	Variable	
Type de données	Integer16	
Catégorie	Conditionnelle: obligatoire si v/ est pris en charge	

Tableau 219 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer16
Valeur par défaut	0000 _h

16.5.2 Objet 6043_h: demande de vitesse vl

Cet objet doit fournir la vitesse instantanée générée par la fonction de rampe. Il s'agit d'un objet interne du dispositif d'entraînement. La valeur doit être donnée dans exactement la même unité que la vitesse cible vl. Les valeurs positives doivent indiquer le sens direct et les valeurs négatives doivent indiquer la direction inverse. Le Tableau 220 spécifie la description de l'objet et le Tableau 221 spécifie la description d'entrée.

Tableau 220 - Description de l'objet

Attribut	Valeur
Index	6043 _h
Nom	Demande de vitesse vl
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Conditionnelle: obligatoire si vl est pris en charge

Tableau 221 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer16
Valeur par défaut	Non

16.5.3 Objet 6044_h: valeur instantanée de vitesse *vl*

Cet objet doit fournir la vitesse à l'axe ou à la charge du moteur. Selon la mise en œuvre (dispositif d'entraînement simple, sans capteur, avec capteur, etc.), le dispositif

- 288 -

d'entraînement doit fournir la représentation appropriée de la vitesse instantanée (demande de vitesse, mesure de contrôle de vitesse, vitesse calculée, vitesse mesurée).

La valeur doit être donnée dans exactement la même unité que la vitesse cible vl. Les valeurs positives doivent indiquer le sens direct et les valeurs négatives doivent indiquer la direction inverse. Le Tableau 222 spécifie la description de l'objet et le Tableau 223 spécifie la description d'entrée.

Tableau 222 - Description de l'objet

Attribut	Valeur	
Index	6044 _h	
Nom	Valeur instantanée de vitesse vl	
Code de l'objet	Variable	
Type de données	Integer16	
Catégorie	Conditionnelle: obligatoire si v/ est pris en charge	

Tableau 223 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer16
Valeur par défaut	Non

16.5.4 Objet 6046_h: niveau de vitesse max. min. vl

Cet objet doit indiquer les niveaux maximal et minimal configurés de vitesse. Le sous-objet Niveau maximal de vitesse vI doit être mis en correspondance en interne avec les valeurs positive et négative maximales de vitesse vI. Le sous-objet Niveau minimal de vitesse vI doit être mis en correspondance en interne avec les valeurs positive et négative minimales de vitesse vI.

- 289 -

Cette caractéristique de transfert est présentée à la Figure 59.

Légende

Anglais	Français
output	Sortie
input	Entrée

Figure 59 - Caractéristique de transfert des niveaux maximal et minimal de vitesse vI

Les valeurs doivent être données en tours par minute (r/min) ou en unité de vitesse définie par l'utilisateur si l'objet Facteur de dimension vl est mis en œuvre et n'est pas mis à 1. Le Tableau 224 spécifie la description de l'objet et le Tableau 224 spécifie la description d'entrée.

Tableau 224 - Description de l'objet

Attribut	Valeur
Index	6046 _h
Nom	niveau de vitesse max. min. v/
Code de l'objet	Matrice
Type de données	Unsigned32
Catégorie	Conditionnelle: obligatoire si le mode vl est pris en charge

- 290 -

Tableau 225 – Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h
Valeur par défaut	02 _h
Sous-index	01 _h
Description	niveau de vitesse min. vl
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur
Sous-index	02 _h
Description	Niveau de vitesse max. vl
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur

16.5.5 Objet 6049_h : décélération en vitesse vI

Cet objet doit indiquer la vitesse et le temps delta configurés de la pente de la rampe de décélération, comme cela est présenté à la Figure 60.

Légende

Anglais	Français
velocity	Vitesse
time	Temps

Figure 60 - Caractéristique de transfert de la décélération en vitesse

La valeur de la vitesse delta doit être donnée en tours par minute (r/min) ou en unité de vitesse définie par l'utilisateur, si l'objet Facteur de dimension v/ est mis en œuvre et n'est pas mis à 1; la valeur du temps delta doit être donnée en s. Le Tableau 226 spécifie la description de l'objet et le Tableau 227 spécifie la description d'entrée. Si cet objet n'est pas mis en œuvre, la valeur définie dans l'objet 6048 $_h$ doit être utilisée pour la décélération en vitesse v/.

Tableau 226 - Description de l'objet

Attribut	Valeur
Index	6049 _h
Nom	Décélération en vitesse vl
Code de l'objet	Registre
Type de données	Accélération/décélération en vitesse v/
Catégorie	Conditionnelle: facultative

Tableau 227 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h
Valeur par défaut	02 _h
Sous-index	01 _h
Description	Vitesse delta
Catégorie d'entrée	Obligatoire

Attribut	Valeur
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur
Sous-index	02 _h
Description	Temps delta
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned16
Valeur par défaut	Spécifique au constructeur

16.5.6 Objet 6048_h: accélération en vitesse vl

Cet objet doit indiquer la vitesse et le temps delta configurés de la pente de la rampe d'accélération, comme cela est présenté à la Figure 61.

Exemple: Si le régime du moteur grimpe à 1 500 r/min en 3,7 s, la vitesse delta est égale à 15 000 r/min, et le temps delta est égal à 37 s.

$$acc\'el\'erationenvitessevl = \frac{vitessedelta}{temps delta}$$

Légende

Anglais	Français
velocity	Vitesse
time	Temps

Figure 61 - Caractéristique de transfert de l'accélération en vitesse

La valeur de la vitesse delta doit être donnée en tours par minute (r/min) ou en unité de vitesse définie par l'utilisateur, si l'objet Facteur de dimension v/ est mis en œuvre et n'est pas mis à 1; la valeur du temps delta doit être donnée en s. Le Tableau 228 spécifie la description de l'objet et le Tableau 229 spécifie la description d'entrée.

- 293 -

Tableau 228 - Description de l'objet

Attribut	Valeur	
Index	6048 _h	
Nom	Accélération en vitesse vl	
Code de l'objet	Registre	
Type de données	Accélération/décélération en vitesse vl	
Catégorie	Conditionnelle: obligatoire si vl est pris en charge	

Tableau 229 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h
Valeur par défaut	02 _h
Sous-index	01 _h
Description	Vitesse delta
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur
Sous-index	02 _h
Description	Temps delta
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned16
Valeur par défaut	Spécifique au constructeur

16.5.7 Objet 604A_h: arrêt rapide de vitesse *vl*

Cet objet doit indiquer la vitesse et le temps delta configurés de la pente de la rampe de décélération pour un arrêt rapide, comme cela est présenté à la Figure 62.

$$arr\hat{e}t \ rapide \ de \ vitesse = \frac{vitesse \ delta}{temps \ delta}$$

Légende

Anglais	Français
velocity	Vitesse
time	Temps

Figure 62 - Caractéristique de transfert de la décélération par arrêt rapide

La valeur de la vitesse delta doit être donnée en tours par minute (r/min) ou en unité de vitesse définie par l'utilisateur, si l'objet Facteur de dimension v/ est mis en œuvre et n'est pas mis à 1; la valeur du temps delta doit être donnée en s. Le Tableau 230 spécifie la description de l'objet et le Tableau 231 spécifie la description d'entrée.

Tableau 230 - Description de l'objet

Attribut	Valeur
Index	604A _h
Nom	Arrêt rapide de vitesse vl
Code de l'objet	Registre
Type de données	Accélération/décélération en vitesse vl
Catégorie	Conditionnelle: facultative

Tableau 231 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h
Valeur par défaut	02 _h
Sous-index	01 _h
Description	Vitesse delta
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	Spécifique au constructeur
Sous-index	02 _h
Description	Temps delta

- 295 -

Attribut	Valeur
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned16
Valeur par défaut	Spécifique au constructeur

16.5.8 Objet 604B_h: facteur de point de consigne vI

Cet objet doit indiquer le numérateur et le dénominateur configurés du facteur de point de consigne v/. Le facteur de point de consigne v/ permet de modifier la résolution ou la plage d'orientation du point de consigne spécifié. Il est également inclus dans le calcul de la demande de vitesse v/, et la valeur instantanée de vitesse v/. Ce facteur n'influe pas sur la fonction de limite de vitesse, ni sur la fonction de rampe. La valeur ne doit avoir aucune unité physique et doit être donnée dans la plage comprise entre -32 768 et +32 767, mais la valeur de 0 ne doit pas être utilisée. Le Tableau 232 spécifie la description de l'objet et le Tableau 233 spécifie la description d'entrée.

Tableau 232 - Description de l'objet

Attribut	Valeur
Index	604B _h
Nom	facteur de point de consigne vl
Code de l'objet	Matrice
Type de données	Integer16
Catégorie	Facultative

Tableau 233 – Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h
Valeur par défaut	02 _h
Sous-index	01 _h
Description	numérateur de facteur de point de consigne vl
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir définition des valeurs
Valeur par défaut	+1
Sous-index	02 _n
Description	Dénominateur de facteur de point de consigne vl

Attribut	Valeur
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir définition des valeurs
Valeur par défaut	+1

16.5.9 Objet 604C_h: facteur de dimension vI

Cet objet doit indiquer le numérateur et le dénominateur configurés du facteur de dimension vl. Le facteur de dimension vl permet d'inclure l'engrenage dans le calcul ou de mettre à l'échelle les fréquences ou les unités spécifiques de l'utilisateur. Il influe sur la vitesse cible vl, la demande de vitesse vl, la valeur instantanée de vitesse, ainsi que la fonction de limite de vitesse et la fonction de rampe.

Calcul du facteur de dimension v! Chaque vitesse spécifique à l'utilisateur consiste en une unité spécifique qui se rapporte à unité de temps spécifique (par exemple, 1/s, bouteilles/min, m/s, etc.). Le facteur de dimension v! a pour objet de convertir cette unité spécifique en unité de tours/minute.

Vitesse [unité définie par l'utilisateur] × Facteur de dimension [r/min/unité définie par l'utilisateur] = Vitesse [r/min]

Les valeurs doivent se situer dans la plage comprise entre -2 147 483 648 et +2 147 483 647, mais la valeur de 0 ne doit pas être utilisée.

Le Tableau 234 spécifie la description de l'objet et le Tableau 235 spécifie la description d'entrée.

Exemple: Si l'unité cible est 0,1 Hz, le numérateur est égal à 120 et le dénominateur est le nombre polaire.

Tableau 234 - Description de l'objet

Attribut	Valeur
Index	604C _h
Nom	Facteur de dimension vI
Code de l'objet	Matrice
Type de données	Integer32
Catégorie	Facultative

Tableau 235 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h

- 297 -

Attribut	Valeur
Valeur par défaut	02 _h
Sous-index	01 _h
Description	Numérateur de facteur de dimension vl
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir définition des valeurs
Valeur par défaut	+1
Sous-index	02 _h
Description	Dénominateur de facteur de dimension vI
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Voir définition des valeurs
Valeur par défaut	+1

17 Mode de position à synchronisation cyclique

17.1 Informations d'ordre général

La structure globale pour ce mode est présentée à la Figure 63. Avec ce mode, le générateur de trajectoire se situe dans le dispositif de commande, et non dans le dispositif d'entraînement. En synchronisation cyclique, il assure une position cible au dispositif d'entraînement, qui réalise l'asservissement de position, la commande de vitesse et l'asservissement de couple. Éventuellement, des valeurs de vitesse et de couple supplémentaires peuvent être fournies par le système de commande afin de permettre une action anticipatrice de la vitesse et/ou du couple. Mesuré par des capteurs, le dispositif d'entraînement peut fournir au dispositif de commande des valeurs instantanées de position, vitesse et couple.

Le comportement de la fonction de commande est influencé par les paramètres de commande tels que les fonctions limites, applicables de manière externe. La fonction de commande interne du dispositif d'entraînement n'est pas spécifiée de manière plus précise dans la présente partie de la série CEI 61800-7, dans la mesure où elle est particulièrement spécifique au constructeur, mais le format et le contenu des paramètres de commande sont toutefois fournis.

Légende

Anglais	Français
Torque offset	Décalage de couple
Velocity offset	Décalage de vitesse
Position offset	Décalage de position
Target position	Position cible
Position control	Asservissement de position
Velocity control	Commande de vitesse
Torque control	Asservissement de couple
Torque actual value	Valeur instantanée de couple
Velocity actual value	Valeur instantanée de vitesse
Position actual value	Valeur instantanée de position

Figure 63 – Présentation générale du mode de position à synchronisation cyclique

17.2 Description fonctionnelle

La Figure 64 présente les entrées et les sorties de la fonction de commande du dispositif d'entraînement. Les valeurs d'entrée (du point de vue de la fonction de commande) sont la position cible et éventuellement un décalage de position (à ajouter à la position cible afin de permettre à deux instances de configurer la position), ainsi qu'un décalage de vitesse facultatif et un décalage de couple tout aussi facultatif utilisés pour une régulation avec action anticipatrice. Plus particulièrement, avec les structures de commande en cascade, où un asservissement de position est suivi d'une commande de vitesse ou d'un asservissement de couple, la sortie de la boucle d'asservissement de position est utilisée comme élément d'entrée pour un calcul ultérieur effectué dans le dispositif d'entraînement. Les fonctions limites peuvent servir à restreindre la plage de valeurs de manière à éviter les positions intempestives.

Le dispositif d'entraînement contrôle l'erreur suivante. Les autres caractéristiques spécifiées dans ce mode sont la limitation du régime du moteur et une fonction d'arrêt rapide à des fins d'urgence. Le couple peut également être limité.

Le délai d'interpolation définit le délai entre deux actualisations de la position cible et/ou une position supplémentaire, et doit être utilisé pour une interpolation entre cycles.

La position cible doit être interprétée comme une valeur absolue.

La valeur instantanée de position est utilisée comme résultat obligatoire du dispositif de commande. Les autres résultats peuvent être la valeur instantanée de vitesse, la valeur

- 299 -

instantanée de couple et la valeur instantanée de capteur de vitesse. La valeur instantanée d'erreur suivante peut être utilisée comme paramètre supplémentaire.

Légende

Anglais	Français
Target position	Position cible
Position offset	Décalage de position
Following error window	Fenêtre d'erreur suivante
Following error time out	Temporisation d'erreur suivante
Max. motor speed	Régime maximal du moteur
Velocity offset	Décalage de vitesse
Quick-stop deceleration	Décélération par arrêt rapide
Quick-stop option code	Code de l'option Arrêt rapide
Motion profile type	Type de profil de mouvement
Interpolation time period	Délai d'interpolation
Torque offset	Décalage de couple
Max. torque	Couple max.
Limit function	Fonction limite
Multiplier	Multiplicateur
Position range limit	Limite de plage de position
Software position limit	Limite de position de logiciel
Polarity	Polarité
Motor rated torque	Couple assigné du moteur
Drive control function	Fonction de commande du dispositif d'entraînement
Position actual value	Valeur instantanée de position
Following error actual value	Valeur instantanée d'erreur suivante
Velocity actual value	Valeur instantanée de vitesse
Velocity sensor actual value	Valeur instantanée du capteur de vitesse
Torque actual value	Valeur instantanée de couple

Figure 64 - Fonction d'asservissement de position à synchronisation cyclique

Toutes les valeurs sont converties – si nécessaire – d'unités définies par l'utilisateur en unités normalisées telles que des incréments, avec les fonctions décrites à l'Article 9.

- 300 -

Une valeur de position cible ou un décalage de position non compris dans la plage admise de la fenêtre d'erreur suivante proche d'une valeur de demande de position pendant une durée plus longue que la durée de temporisation d'erreur suivante doit contribuer à mettre le bit 13 (erreur suivante) dans le mot d'état à 1.

17.3 Utilisation du mot de commande et du mot d'état

Le mode de position à synchronisation cyclique n'utilise aucun bit spécifique au mode du mot de commande et trois bits du mot d'état pour des applications spécifiques au mode. La Figure 65 présente la structure du mot d'état. Le Tableau 236 définit les valeurs des bits 10, 12 et 13 du mot d'état.

Figure 65 - Mot d'état pour le mode de position à synchronisation cyclique de profil

Tableau 236 - Définition du bit 10, du bit 12 et du bit 13

Bit	Valeur	Définition	
10	0	Réservé	
	1	Réservé	
12	0	Position cible ignorée	
	1	La position cible doit être utilisée comme élément d'entrée de la boucle d'asservissement de position	
13	0	Pas d'erreur suivante	
	1	Erreur suivante	

17.4 Définitions d'objets détaillées

17.4.1 Objet 60B0_h: Décalage de position

Cet objet doit fournir le décalage de la position cible. Le décalage doit être donné en unités de position définies par l'utilisateur.

NOTE La valeur elle-même est absolue, et est ainsi indépendante de sa fréquence de transmission sur le système de communication, par exemple, une transmission à deux reprises ne signifie pas l'existence d'une valeur double. Étant donné que la valeur de position supplémentaire représente un décalage de la position cible, elle peut également être utilisée pour la commande du dispositif d'entraînement au moyen de valeurs relatives, eu égard à la position cible.

Le Tableau 237 spécifie la description de l'objet et le Tableau 238 spécifie la description d'entrée.

Tableau 237 - Description de l'objet

Attribut	Valeur	
Index	60B0 _h	
Nom	Décalage de position	
Code de l'objet	Variable	
Type de données	Integer32	
Catégorie	Facultative	

- 301 -

Tableau 238 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	0

17.4.2 Objet 60B1h: Décalage de vitesse

Cet objet doit fournir le décalage de la valeur de vitesse. Le décalage doit être donné en unités de vitesse définies par l'utilisateur. En mode de position à synchronisation cyclique, cet objet contient la valeur d'entrée applicable à l'action anticipatrice de la vitesse. En mode de vitesse à synchronisation cyclique, (voir Article 18), il contient le décalage commandé du dispositif d'entraînement.

NOTE La valeur elle-même est absolue, et est ainsi indépendante de sa fréquence de transmission sur le système de communication, par exemple, une transmission à deux reprises ne signifie pas l'existence d'une valeur double. Étant donné que la valeur de vitesse supplémentaire représente un décalage de la vitesse cible, elle peut également être utilisée pour la commande du dispositif d'entraînement au moyen de valeurs relatives, eu égard à la vitesse cible.

Le Tableau 239 spécifie la description de l'objet et le Tableau 240 spécifie la description d'entrée.

Tableau 239 - Description de l'objet

Attribut	Valeur	
Index	60B1 _h	
Nom	Décalage de vitesse	
Code de l'objet	Variable	
Type de données	Integer32	
Catégorie	Facultative	

Tableau 240 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	Rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer32
Valeur par défaut	0

17.4.3 Objet 60B2_h: Décalage de couple

Cet objet doit fournir le décalage de la valeur de couple. Le décalage doit être donné en millier de couple assigné. En mode de position à synchronisation cyclique et en mode de vitesse à synchronisation cyclique (voir Article 18), cet objet contient la valeur d'entrée applicable à l'action anticipatrice du couple. En mode de couple à synchronisation cyclique (voir Article 18), l'objet contient le couple supplémentaire commandé du dispositif d'entraînement, qui s'ajoute à la valeur de couple cible.

- 302 -

NOTE La valeur elle-même est absolue, et est ainsi indépendante de sa fréquence de transmission sur le système de communication, par exemple, une transmission à deux reprises ne signifie pas l'existence d'une valeur double

Le Tableau 241 spécifie la description de l'objet et le Tableau 242 spécifie la description d'entrée.

Tableau 241 - Description de l'objet

Attribut	Valeur
Index	60B2 _h
Nom	Décalage de couple
Code de l'objet	Variable
Type de données	Integer16
Catégorie	Facultative

Tableau 242 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Integer16
Valeur par défaut	0

18 Mode de vitesse à synchronisation cyclique

18.1 Informations d'ordre général

La structure globale pour ce mode est présentée à la Figure 66. Avec ce mode, le générateur de trajectoire se situe dans le dispositif de commande, et non dans le dispositif d'entraînement. En synchronisation cyclique, il assure une vitesse cible au dispositif d'entraînement, qui réalise la commande de vitesse et l'asservissement de couple. Lorsque souhaité, la boucle d'asservissement de position peut être fermée sur le système de communication. Éventuellement, des valeurs de vitesse et de couple supplémentaires peuvent être fournies par le système de commande afin qu'une seconde source permette une action anticipatrice de la vitesse et/ou du couple. Mesuré par des capteurs, le dispositif d'entraînement peut fournir au dispositif de commande des valeurs instantanées de position, vitesse et couple.

Le mode de vitesse à synchronisation cyclique couvre les sous-fonctions suivantes:

- Saisie d'une valeur de demande
- Saisie de la vitesse au moyen du capteur de position ou de vitesse
- Fonction de commande de la vitesse au moyen de signaux d'entrée et de sortie appropriés
- Demande de limitation de couple

Différents capteurs peuvent être utilisés pour la saisie de la vitesse. Plus particulièrement, l'objectif est de réduire les coûts et de simplifier le système de puissance d'entraînement, par l'évaluation de la position et de la vitesse à l'aide d'un capteur commun, telle que l'évaluation facultative au moyen d'un résolveur ou d'un codeur.

Le comportement de la fonction de commande est influencé par les paramètres de commande tels que les fonctions limites, applicables de manière externe. La fonction de commande interne du dispositif d'entraînement n'est pas spécifiée de manière plus précise dans la présente partie de la série CEI 61800-7, dans la mesure où elle est particulièrement spécifique au constructeur, mais le format et le contenu des paramètres de commande sont toutefois fournis.

Légende

Anglais	Français
Offset torque	Couple de décalage
Offset velocity	Vitesse de décalage
Target velocity	Vitesse cible
Velocity control	Commande de vitesse
Torque control	Asservissement de couple
Torque actual value	Valeur instantanée de couple
Velocity actual value	Valeur instantanée de vitesse
Position actual value	Valeur instantanée de position

Figure 66 - Présentation générale du mode de vitesse à synchronisation cyclique

18.2 Définitions générales

Les facteurs nécessaires pour la mise à l'échelle ont une relation linéaire, et sont par conséquent décrits dans le groupe de facteurs. La polarité est également décrite dans le groupe de facteurs.

18.3 Description fonctionnelle

La Figure 67 présente les entrées et les sorties de la fonction de commande du dispositif d'entraînement. Les valeurs d'entrée (du point de vue du dispositif de commande) sont la vitesse cible et éventuellement un décalage de vitesse (à ajouter à la vitesse cible afin de permettre à deux instances de configurer la vitesse), ainsi qu'un décalage de couple. Plus particulièrement, avec les structures de commande en cascade, où une commande de vitesse est suivie d'un asservissement de couple, la sortie de la boucle de commande de vitesse est utilisée comme élément d'entrée pour un calcul ultérieur effectué dans le dispositif d'entraînement.

Le dispositif d'entraînement peut prendre en charge la limitation du régime du moteur et une fonction d'arrêt rapide à des fins d'urgence. Le couple peut également être limité.

Le délai d'interpolation définit le délai entre deux actualisations de la vitesse cible et/ou une vitesse supplémentaire, et doit être utilisé pour une interpolation entre cycles.

La valeur instantanée de vitesse est utilisée comme résultat obligatoire du dispositif de commande. Les autres résultats peuvent être la valeur instantanée de couple et la valeur instantanée de capteur de vitesse.

Légende

Anglais	Français
Target velocity	Vitesse cible
Velocity offset	Décalage de vitesse
Max. motor speed	Régime maximal du moteur
Velocity sensor actual value	Valeur instantanée du capteur de vitesse
Quick-stop deceleration	Décélération par arrêt rapide
Quick-stop option code	Code de l'option Arrêt rapide
Motion profile type	Type de profil de mouvement
Interpolation time period	Délai d'interpolation
Torque offset	Décalage de couple
Max. torque	Couple max.
Multiplier	Multiplicateur
Polarity	Polarité
Motor rated torque	Couple assigné du moteur
Drive control function	Fonction de commande du dispositif d'entraînement
Velocity actual value	Valeur instantanée de vitesse
Torque actual value	Valeur instantanée de couple

Figure 67 - Fonction de commande de vitesse à synchronisation cyclique

Toutes les valeurs sont converties – si nécessaire – d'unités définies par l'utilisateur en unités normalisées telles que des incréments, avec les fonctions décrites à l'Article 9.

- 305 -

18.4 Utilisation du mot de commande et du mot d'état

Le mode de vitesse à synchronisation cyclique n'utilise aucun bit spécifique au mode du mot de commande et certains bits du mot d'état pour des applications spécifiques au mode. La Figure 68 présente la structure du mot d'état. Le Tableau 243 définit les valeurs des bits 10, 12 et 13 du mot d'état.

Bit de poids fort (MSB)

Bit de poids faible (LSB)

Figure 68 – Mot d'état pour le mode de vitesse à synchronisation cyclique de profil

Tableau 243 - Définition du bit 10, du bit 12 et du bit 13

Bit	Valeur	Définition
10	0	Réservé
	1	Réservé
12	0	Vitesse cible ignorée
	1	La vitesse cible doit être utilisée comme élément d'entrée de la boucle de commande de vitesse
13	0	Réservé
	1	Réservé

19 Mode de couple à synchronisation cyclique

19.1 Informations d'ordre général

La structure globale pour ce mode est présentée à la Figure 69. Avec ce mode, le générateur de trajectoire se situe dans le dispositif de commande, et non dans le dispositif d'entraînement. En synchronisation cyclique, il assure un couple cible au dispositif d'entraînement, qui réalise l'asservissement de couple. Éventuellement, une valeur de couple supplémentaire peut être fournie par le système de commande afin de permettre à deux instances de configurer le couple. Mesuré par des capteurs, le dispositif d'entraînement peut fournir au dispositif de commande des valeurs instantanées de position, vitesse et couple.

Le mode de couple à synchronisation cyclique couvre les sous-fonctions suivantes:

- saisie d'une valeur de demande;
- · saisie du couple;
- fonction d'asservissement de couple au moyen de signaux d'entrée et de sortie appropriés;
- demande de limitation de couple.

La fonction de commande interne du dispositif d'entraînement n'est pas spécifiée de manière plus précise dans la présente partie de la série CEI 61800-7, dans la mesure où elle est particulièrement spécifique au constructeur, mais le format et le contenu des paramètres de commande sont toutefois fournis.

Légende

Anglais	Français
Offset torque	Couple de décalage
Target torque	Couple cible
Torque control	Asservissement de couple
Torque actual value	Valeur instantanée de couple
Velocity actual value	Valeur instantanée de vitesse
Position actual value	Valeur instantanée de position

Figure 69 - Présentation générale du mode de couple à synchronisation cyclique

19.2 Définitions générales

Les facteurs nécessaires pour la mise à l'échelle ont une relation linéaire, et sont par conséquent décrits dans le groupe de facteurs. La polarité est également décrite dans le groupe de facteurs.

19.3 Description fonctionnelle

La Figure 70 présente les entrées et les sorties de la fonction d'asservissement de couple. Les valeurs d'entrée (du point de vue de la fonction de commande) sont le couple cible et éventuellement un décalage de couple (à ajouter au couple cible afin de permettre à deux instances de configurer le couple).

Le dispositif d'entraînement peut comporter des fonctionnalités de limitation du régime du moteur. Le couple peut également être limité.

Le délai d'interpolation définit le délai entre deux actualisations de la vitesse cible et/ou une vitesse supplémentaire, et doit être utilisé pour une interpolation entre cycles.

La valeur instantanée de couple est utilisée comme résultat obligatoire du dispositif de commande.

Légende

Anglais	Français
Target torque	Couple cible
Torque offset	Décalage de couple
Max. motor speed	Régime maximal du moteur
Interpolation time period	Délai d'interpolation
Max. torque	Couple max.
Multiplier	Multiplicateur
Polarity	Polarité
Motor rated torque	Couple assigné du moteur
Drive control function	Fonction de commande du dispositif d'entraînement
Torque actual value	Valeur instantanée de couple

Figure 70 - Fonction d'asservissement de couple à synchronisation cyclique

19.4 Utilisation du mot de commande et du mot d'état

Le mode de couple à synchronisation cyclique n'utilise aucun bit spécifique au mode du mot de commande et certains bits du mot d'état pour des applications spécifiques au mode. La Figure 71 présente la structure du mot d'état. Le Tableau 244 définit les valeurs des bits 10, 12 et 13 du mot d'état.

Bit de poids fort (MSB)

Bit de poids faible (LSB)

Figure 71 – Mot d'état pour le mode de couple à synchronisation cyclique de profil

Tableau 244 - Définition du bit 10, du bit 12 et du bit 13

Bit	Valeur	Définition
10	0	Réservé
	1	Réservé
12	0	Couple cible ignoré
	1	Le couple cible doit être utilisé comme élément d'entrée de la boucle d'asservissement de couple
13	0	Réservé
	1	Réservé

20 FE Application facultative

20.1 Généralités

Les objets définis dans le présent article sont utilisés pour le FE entrée/sortie générique facultatif.

20.2 Objet 60FD_h: Entrées numériques

Cet objet doit fournir les entrées numériques. La Figure 72 spécifie la structure d'objet.

Figure 72 – Structure d'objet

Le Tableau 245 spécifie les valeurs.

Tableau 245 - Définition des valeurs

Valeur	Définition
0 _b	Mode mise hors tension
1 _b	Mode mise sous tension

Le Tableau 246 spécifie la description de l'objet et le Tableau 247 spécifie la description d'entrée.

Tableau 246 - Description de l'objet

Attribut	Valeur
Index	60FD _h
Nom	Entrées numériques
Code de l'objet	Variable
Type de données	Unsigned32
Catégorie	Facultative

- 309 -

Tableau 247 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Accès	ro
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	0000 0000 _h

20.3 Objet 60FE_h: Sorties numériques

Cet objet doit commander les sorties numériques simples. La Figure 73 spécifie la structure d'objet.

Figure 73 - Structure d'objet

Le Tableau 248 spécifie les valeurs.

Tableau 248 - Définition des valeurs

Valeur	Définition du sous-index 01 _h	Définition du sous-index 02 _h
0 _b	Mettre hors tension/ne pas régler le frein	Désactiver la sortie
1 _b	Mettre sous tension/régler le frein	Activer la sortie

Le Tableau 249 spécifie la description de l'objet et le Tableau 250 spécifie la description d'entrée.

Tableau 249 - Description de l'objet

Attribut	Valeur
Index	60FE _h
Nom	Sortie numérique
Code de l'objet	Matrice
Type de données	Unsigned32
Catégorie	Facultative

Tableau 250 - Description d'entrée

Attribut	Valeur
Sous-index	00 _h
Description	Plus grand sous-index pris en charge
Catégorie d'entrée	Obligatoire
Accès	С
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	02 _h ou 02 _h

– 310 **–**

61800-7-201 © CEI:2007

Attribut	Valeur
Valeur par défaut	Spécifique au constructeur
Sous-index	01 _h
Description	Sorties physiques
Catégorie d'entrée	Obligatoire
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	0000 0000 _h
Sous-index	02 _h
Description	Masque de bits
Catégorie d'entrée	Facultative
Accès	rw
Mise en correspondance PDO	Voir CEI 61800-7-301
Plage de valeurs	Unsigned32
Valeur par défaut	0000 0000 _h

- 311 -

Bibliographie

CEI 60050-351, Vocabulaire Electrotechnique International – Partie 351: Technologie de commande et de régulation 13

CEI 61499-1, Blocs fonctionnels - Partie 1: Architecture

CEI 61800 (toutes les parties) Entraînements électriques de puissance à vitesse variable

IEC 61800-7-1, Adjustable speed electrical power drive systems – Part 7-1: Generic interface and use of profiles for power drive systems – Interface definition (disponible en anglais uniquement)

IEC 61800-7-202, Adjustable speed electrical power drive systems – Part 7-202: Generic interface and use of profiles for power drive systems – Profile type 2 specification (disponible en anglais uniquement)

IEC 61800-7-203, Adjustable speed electrical power drive systems – Part 7-203: Generic interface and use of profiles for power drive systems – Profile type 3 specification (disponible en anglais uniquement)

IEC 61800-7-204, Adjustable speed electrical power drive systems – Part 7-204: Generic interface and use of profiles for power drive systems – Profile type 4 specification (disponible en anglais uniquement)

IEC 61800-7-302, Adjustable speed electrical power drive systems – Part 7-302: Generic interface and use of profiles for power drive systems – Mapping of profile type 2 to network technologies (disponible en anglais uniquement)

IEC 61800-7-303, Adjustable speed electrical power drive systems – Part 7-303: Generic interface and use of profiles for power drive systems – Mapping of profile type 3 to network technologies (disponible en anglais uniquement)

IEC 61800-7-304, Adjustable speed electrical power drive systems – Part 7-304: Generic interface and use of profiles for power drive systems – Mapping of profile type 4 to network technologies (disponible en anglais uniquement)

CEI/TS 61915, Appareillage à basse tension – Règles générales pour le développement de profils d'appareil pour les appareils industriels mis en réseau

IEC/TR 62390:2005, Common Automation Device – Profile Guideline (disponible en anglais uniquement)

ISO/CEI 2382-15:1999, Technologies de l'information – Vocabulaire – Partie -15: Langages de programmation

ISO/CEI 19501, Technologies de l'information – Traitement distribué ouvert – Langage de modélisation unifié (UML) Version 1.4.2

ISO 15745-1:2003, Systèmes d'automatisation industrielle et intégration – Cadre d'application d'intégration pour les systèmes ouverts – Partie -1: Description générale de référence

¹³ Voir également le dictionnaire multilingue de la CEI - Electricité, électronique et télécommunications

Lizenziert durch VDE VERLAG GmbH für Synapticon GmbH. Alle Rechte vorbehalten.

Lizenziert durch VDE VERLAG GmbH für Synapticon GmbH. Alle Rechte vorbehalten.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

3, rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland

Tel: + 41 22 919 02 11 Fax: + 41 22 919 03 00 info@iec.ch www.iec.ch