

Europäisches Patentamt **European Patent Office** Office européen des brevets

EP 0 738 078 B1 (11)

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 18.08.1999 Bulletin 1999/33
- (51) Int Cl.6: H04N 9/804
- (21) Application number: 96105820.3
- (22) Date of filing: 12.04.1996
- (54) Recording medium, apparatus and method for recording data on the recording medium Aufzeichnungsmedium, Datenaufzeichnungsverfahren und -vorrichtung Moyen d'enregistrement, appareil et procédé pour enregistrer des données sur le moyen d'enregistrement
- (84) Designated Contracting States: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL
- (30) Priority: 14.04.1995 JP 11401895
- (43) Date of publication of application: 16.10.1996 Bulletin 1996/42
- (73) Proprietor: KABUSHIKI KAISHA TOSHIBA Kawasaki-shi, Kanagawa-ken 210-8572 (JP)
- (72) Inventors: Mimura, Hideki
 - Tokyo 105 (JP)

- Kurano, Tomoaki Tokyo 105 (JP)
- Kikuchi, Shinichi Tokyo 105 (JP)
- Taira, Kazuhiko Tokyo 105 (JP)
- (74) Representative: Henkel, Feller, Hänzel Möhlstrasse 37 81675 München (DE)
- (56) References cited:

EP-A- 0 440 408 EP-A- 0 633 560 EP-A- 0 546 189 EP-A- 0 661 888

WO-A-94/30014

US-A- 5 237 426

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] This invention relates to a recording medium such as an optical disk for recording data of different object and type of compressed dynamic image, voice data, an apparatus for recording the data on the recording medium and a method of recording the data on the recording medium.

[0002] Hereinafter, when a menu is provided in image data of video, a LD (laser disk), a selection item is superimposed on the displayed image by using a character generator of a reproducing apparatus irrespective of the image or image data including the selection item is prepared.

[0003] In the former case, when the number of character codes corresponding to a selection (or action item) item is contained in the video data, the reproducing apparatus can determine and display a position by using the character generator, and the display color of the character generator corresponding to the selection item corresponding to the selection and hence the selected result can be recognized by the user. However, according to the video data, the former case has disadvantages that the content and the language for displaying the selection item are not known and the preparation of the character generator corresponding to all the languages in the reproducing apparatus is actually impossible.

[0004] In the latter case, since menu data is formed as the video image, no burden is loaded on the reproducing apparatus, but to recognize the selection item corresponding to the user's selected result, it is necessary to call and display new image data corresponding to the selection number, and hence it has disadvantages that takes a time to display the new image for the recognition and user's erroneous operation will result.

[0005] Specifically, when the image data including the selection result is prepared, it is necessary to prepare the following three video data

- (a) video data of the state that any of the selection items "1. ABCDC" and "2. XYZ" is selected.
- (b) video data of the state that selection item "1. AB-CDC" is selected, and
- (c) video data of the state that selection item "2. XYZ" is selected. The reproducing apparatus selects necessary image data and reproduces in response to the user's selected result, and hence a menu screen that reflects the user's selected result can be displayed.

[0006] However, in this case, new reproducing process is executed, it takes a time of several seconds until the menu screen reflects the user's selected result, and it has disadvantages that it is anxious that the user is not selected for a queue time of the period and the possibility of executing the erroneous operation is increased.

[0007] When the selection item of the menu is displayed on the reproducing apparatus, as the image data for forming the menu, only the video data of the state having no selection item may be prepared, and the selection item to be displayed on the video data for simply forming the menu is simultaneously recorded on the corresponding character code, and hence the state that the selection item is selected in response to the selecting state by the determination at the reproducing apparatus side.

[0008] However, the size, the shape and the language of the character to be represented as the selection item are all determined according to the capacity of the reproducing apparatus. Thus, a title manufacturer side for forming the menu can form only menu screen having a limit, and it has a disadvantage that the load is increased in the reproducing apparatus.

[0009] US-A-5 400 077 to Cookson describes a data structure for recording compressed video, audio and subtitle information on an optical disk. The disk comprises a plurality of data fields in the lead-in track storing information which controls subsequent processing of data read from the disk. Subsequent tracks are for storing data block fields in which video, audio and subtitle information is stored as consecutive packs.

[0010] The object of present invention is to provide a recording medium which can respond with small burden on the apparatus real time responsive to the user's selected result by utilizing video data having video data and sub-picture data.

[0011] The other object of the present invention is to provide an encoding method and apparatus in which various menus can be easily formed by altering highlight information corresponding to the selection item or action item of sub-picture image, namely the color and the contrast of the character according to the video data as the background image of the menu and the sub-picture data of the selection item or action item of the menu.

[0012] To accomplish the foregoing object according to the present invention there is provided a recording medium as set out in claim 1.

[0013] Further, according to another preferred aspect, there is provided an encoding apparatus and method as set out in claims 5 and 9.

[0014] Preferred embodiments of the invention are defined in the dependent claims.

[0015] This invention can be more fully understood from the following detailed description when taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a schematic block diagram of an optical disk apparatus according to an embodiment of the present invention;

FIG. 2 is a detailed block diagram of the mechanical section of the disk drive unit of FIG. 1;

FIG. 3 is a schematic perspective view of the structure of an optical disk loaded in the disk drive unit of FIG. 1;

2

50

FIG. 4 is a schematic diagram of a key/display section in FIG. 1:

FIG. 5 is a schematic diagram of a remote controller in FIG. 1;

FIG. 6 shows the structure of the logic format of the optical disk of FIG. 5;

FIG. 7 shows the structure of the video manager of FIG. 6:

FIG. 8 shows an example of the structure of the video object set (VOBS) shown in FIG. 7;

FIG. 9 is a diagram to help explain the structure of the video object unit of FIG. 8;

FIG. 10 shows the parameters and contents of the volume manger information management table (VMGI_MAT) in the video manager (VMGI) of FIG. 15

FIG. 11 shows the structure of the title search pointer table (TT_SRPT) in the video manager (VMGI) of FIG. 7:

FIG. 12 shows the parameters and contents of the title search pointer table information (TT_SRPTI) in the title search pointer table (TT_SRPT) of FIG. 11; FIG. 13 shows the parameters and contents of the title search pointer (TT_SRP) corresponding to the input number in the title search pointer table (TT-SRPT) of FIG. 11;

FIG. 14 depicts the structure of a video manager menu PGCI unit table (VMGM_PGCI_UT) shown in FIG. 7:

FIG. 15 illustrates the parameters and contents of 30 video manager menu PGCI unit table information (VMGM_PGCI_UTI) in FIG. 14;

FIG. 16 illustrates the parameters and contents of a video manager menu PGCI unit search pointer (VMGM_LU_SRP) in FIG. 14;

FIG. 17 shows the structure of video manager menu language unit (VMGM_LU) in FIG. 14;

FIG. 18 depicts the parameters and contents of video manager menu language unit information (VMGM_LUI);

FIG. 19 illustrates the parameters and contents of video manager menu PGC information search pointer (VMGM_PGCI_SRP);

FIG. 20 illustrates the structure of the video title set of FIG. 6;

FIG. 21 shows the parameters and contents of the video title set information management table (VTSI_MAT) of the video title set information (VTSI) of FIG. 20:

FIG. 22 illustrates the contents of the attribute (VTS_ATS_ATR) of an audio stream of a video title set (VTS) in FIG. 6;

FIG. 23 illustrates the contents of the sub-picture stream attribute (VTS_SPST_ATR) of the video title set (VTS) in FIG. 6;

FIG. 24 illustrates the structure of the video title set program chain information table (VTS_PGCIT) of the video title set (VTS) of FIG. 20;

FIG. 25 shows the parameters and contents of the information (VTS_PGCIT_I) in the video title set program chain information table (VTS_PGCIT) of FIG. 24:

FIG. 26 shows the parameters and contents of the search pointer (VTS_PGCIT_SRP) corresponding to the program chain in the video title set program chain information table (VTS_PGCIT) of FIG. 24; FIG. 27 illustrates the structure of the program chain information (VTS_PGCI) in the video set corresponding to the program chain in the video title set program chain information table (VTS_PGCIT) of FIG. 24;

FIG. 28 shows the parameters and contents of the program chain general information (PGC_GI) in the program chain information (VTS_PGCI) of FIG. 27; FIG. 29 shows the structure of a category (PGC_CAT) of a program chain (PGC) of general information (PGC_GI) of the program chain in FIG. 28:

FIG. 30 shows the structure of the contents (PGC_CNT) of the general information (PGC_GI) of the program chain in FIG. 28;

FIG. 31 illustrates the structure of a program chain map (PGC_PGMAP) of the program chain information (VTS_PGCI) of FIG. 27;

FIG. 32 shows the parameters and contents of the entry cell numbers (ECELLN) corresponding to the programs written in the program chain map (PGC_PGMAP) of FIG. 31;

FIG. 33 illustrate the structure of the cell playback information table (C_PBIT) of the program chain information (VTS_PGCI) of FIG. 27;

FIG. 34 shows the parameters and contents of the cell playback information (C_PBI) of FIG. 33;

FIG. 35 illustrates the structure of the cell position information (C_POSI) in the program chain information (VTS_PGCI) of FIG. 28:

FIG. 36 shows the parameters and contents of the cell position information (C_POSI) of FIG. 35;

FIG. 37 shows the structure of a video title set menu PGCI unit table (VTSM_PGCI_UT) in FIG. 20;

FIG. 38 depicts the structure of video title set menu PGCI unit table information (VTSM_PGCI_UTI) in FIG. 37;

FIG. 39 shows the structure of a video title set menu PGCI unit search pointer (VTSM_LU_SRP) in FIG. 37;

FIG. 40 illustrates the structure of a video title set menu language unit (VTSM_LU) in FIG. 37;

FIG. 41 illustrates the structure of video title set menu language unit information (VTSM_LUI) in FIG 37

FIG. 42 illustrates the parameters and contents of a video title set menu PGC information search pointer (VTSM_PGCI_SRP);

FIG. 43 illustrates the structure of the navigation pack of FIG. 8;

15

35

FIG. 44 illustrates the structure of the video pack, audio pack, sub-picture pack, or VBI pack of FIG. 8; FIG. 45 shows the parameters and contents of the playback control information (PCI) in the navigation pack of FIG. 43;

FIG. 46 shows the parameters and contents of the general information (PCI_GI) in the playback control information (PCI) of FIG. 45;

FIG. 47 shows the parameters and contents of the angle information (NSML_AGLI) in the playback control information (PCI) of FIG. 45;

FIG. 48 is a diagram to help explain how to change the angle using the angle information (NSML_AGLI) in the playback control information (PCI) of FIG. 47;

FIG. 49 is a view showing a valid period of highlight information of each sub-picture stream for a reproducing period of one sub-picture image unit;

FIG. 50 is a view for explaining a video image, a sub-picture and highlight information and mixing image mixed with them;

FIG. 51 illustrates parameter and content of the highlight information (HLI) in reproduction control information (PCI) shown in FIG. 45;

FIG. 52 is a view for explaining content of highlight 25 information (HLI) shown in FIG. 51;

FIG. 53 illustrates parameter and content of highlight generating information (HL_GI) in highlight information (HLI) shown in FIG. 51;

FIG. 54 is a view showing a configuration of a button color information table (BTN_COLIT) in highlight information (HLI) shown in FIG. 51;

FIG. 55 is a view showing the detail of description content of selection color information (SL_COLi) shown in FIG. 54;

FIG. 56 is a view showing the detail of description content of definite color information (AC_COLI) shown in FIG. 54;

FIG. 57 is a view showing the detail of description content of button information table (BTNIT) in highlight information (HLI) shown in FIG. 51;

FIG. 58 is a view showing the detail of description content of button position information (BTN_POSI) in button information (BGNI) shown in FIG. 57;

FIG. 59 shows the parameters and contents of the disk search information (DSI) in the navigation pack of FIG. 43;

FIG. 60 shows the parameters and contents of the DSI general information (DSI_GI) in the disk search information of FIG. 59;

FIG. 61 shows the parameters and contents of the angle information (SML_AGLI) in the disk search information of FIG. 59;

FIG. 62 is a diagram to help explain how to change the angle using the angle information (SML_AGLI) in the disk search information (DSI) of FIG. 61;

FIG. 63 shows the parameters and contents of the search information (VOBU_SRI) for the video ob-

ject unit (VOBU) of FIG. 59:

FIG. 64 illustrates bit maps describing the forward addresses (FWDA) of the search information (VOBU_SRI) on the video object unit (VOBU) of FIG. 59:

FIG. 65 illustrates bit maps describing the backward addresses (BWDA) of the search information (VOBU_SRI) on the video object unit (VOBU) of FIG. 59:

FIG. 66 shows the parameters and contents of the synchronizing playback information (SYNCI) on the video object unit (VOBU) of FIG. 59;

FIG. 67 illustrates the configuration of sub-picture unit

FIG. 68 illustrates parameter and content of subpicture unit header (SPUH) of sub-picture unit shown in FIG. 67;

FIG. 69 illustrates parameter and content of display control sequence table of sub-picture unit shown in FIG. 67:

FIG. 70 illustrate parameter and content of display control sequence (DCSQ) shown in FIG. 69;

FIG. 71 illustrates a packet transmit dispose section;

FIG. 72 illustrates the configuration of a highlight processor section;

FIGS. 73 and 74 present flowcharts for detecting the total number of titles on an optical disk, the number of chapters (programs) for each title, the number and languages of audio streams for each title, and the number and languages of sub-picture streams for each title;

FIG. 75 is a diagram exemplifying what is stored in a memory table;

FIG. 76 is a diagram showing an example of the reproduced image of a main menu;

FIGS. 77A through 77E show examples of the reproduced images of a title menu, a chapter menu, an audio menu, a sub-picture menu and an angle menu:

FIG. 78 shows a flowchart showing the processing sequence when the menu is reproduced;

FIGS. 79A to 79D and 80A to 80E are views for explaining video, sub-picture, highlight information and combined image of them;

FIGS. 81A and 81B are views showing a pattern pixel and highlight pixel in sub-picture data;

FIGS. 82, 83 and 84 are flowcharts of the procedure for reproducing the video data in the normal mode from an optical disk having logic formats shown in FIGS. 6 to 66:

FIG. 85 is a flowchart of the procedure for changing the angle during playback of the video data from an optical disk having logic formats shown in FIGS. 6 to 66;

FIG. 86 is a block diagram of an encoder system that encodes the video data and generates a video file:

50

FIG. 87 is a flowchart for an encoding process of FIG. 86;

FIG. 88 is a flowchart for combining the video data, audio data, and sup-picture data all encoded according to the flow of FIG. 87 to create a video data file:

FIG. 89 is a block diagram of a disk formatter system that records the formatted video files on an optical disk:

FIG. 90 is a flowchart for creating logic data to be recorded on a disk in the disk formatter of FIG. 89; FIG. 91 is a flowchart for creating from the logic data the physical data to be recorded on a disk; and FIG. 92 is a schematic diagram of a system that transfers the video title set of FIG. 6 via a communication route.

[0016] Hereinafter, referring to the accompanying drawings, an optical disk reproducing apparatus according to an embodiment of the present invention will be explained.

[0017] FIG. 1 is a block diagram of an optical disk reproducing apparatus that reproduces the data from an optical disk associated with an embodiment of the present invention. FIG. 2 is a block diagram of the disk drive section that drives the optical disk shown in FIG. 1. FIG. 3 shows the structure of the optical disk shown in FIGS. 1 and 2.

[0018] As shown in FIG. 1, the optical disk reproducing apparatus comprises a key/display section 4, a monitor section 6, and a speaker section 8. When the user operates the key/display section 4, this causes the recorded data to be reproduced from an optical disk 10. The recorded data contains video data (main-picture data), sub-picture data, and audio data, which are converted into video signals and audio signals. The monitor section 6 displays images according to the audio signals and the speaker section 8 generates sound according to the audio signals.

[0019] It is known that the optical disk 10 is available with various structures. For instance, one type of the optical disk 10 is a read-only disk on which data is recorded with a high density as shown in FIG. 3. The optical disk 10, as shown in FIG. 3, is made up of a pair of composite layers 18 and an adhesive layer 20 sandwiched between the composite disk layers 18. Each of the composite disk layers 18 is composed of a transparent substrate 14 and a recording layer or a light-reflecting layer 16. The disk layer 18 is arranged so that the light-reflecting layer 16 may be in contact with the surface of the adhesive layer 20. A center hole 22 is made in the optical disk 10. On the periphery of the center hole 22 on both sides, clamping areas 24 are provided which are used to clamp the optical disk 10 during its rotation. When the disk 10 is loaded in the optical disk apparatus, the spindle of a spindle motor 12 shown in FIG. 2 is inserted into the center hole 22. As long as the disk is being rotated, it continues clamped at the clamping areas 24.

As shown in FIG. 3, the optical disk 10 has an information zone 25 around the clamping zone 24 on each side, the information zones allowing the information to be recorded on the optical disk 10. In each information area 25, its outer circumference area is determined to be a lead-out area 26 in which no information is normally recorded, its inner circumference area adjoining the clamping area 24 is determined to be a leadin area 27 in which no information is normally recorded, and the area between the lead-out area 26 and the leadin area 27 is determined to be a data recording area 28. [0021] At the recording layer 16 in the information area 25, a continuous spiral track is normally formed as an area in which data is to be recorded. The continuous track is divided into a plurality of physical sectors, which are assigned serial numbers. On the basis of the sectors, data is recorded. The data recording area 28 in the information recording area 25 is an actual data recording area, in which management data, video data, subpicture data, and audio data are recorded in the form of pits (that is, in the form of changes in the physical state) as explained later. With the read-only optical disk 10, a train of pits is previously formed in the transparent substrate 14 by a stamper, a reflecting layer is formed by evaporation on the surface of the transparent substrate 14 in which the pit train is formed, and the reflecting layer serves as the recording layer 16. In the read-only optical disk 10, a groove is normally not provided as a track and the pit train in the surface of the transparent substrate 14 serves as a track.

[0022] The optical disk apparatus 12, as shown in FIG. 1, further comprises a disk drive section 30, a system CPU section 50, a system ROM/RAM section 52, a system processor section 54, a data RAM section 60, a video decoder 58, an audio decoder section 60, a subpicture decoder section 62, and a D/A and data reproducing section 64, and the menu generator 66. The system processor section 54 is provided with a system time clock (STC) 54A and a register 54B. The video decoder section 58, audio decoder section 60, and sub-picture decoder section 62 are also provided with system time clocks (STC) 58A, 60A, 62A, respectively.

[0023] As shown in FIG. 2, the disk drive section 30 contains a motor driving circuit 11, a spindle motor 12, an optical head 32 (i.e., an optical pickup), a feed motor 33, a focus circuit 36, a feed motor driving circuit 37, a tracking circuit 38, a head amplifier 40, and a servo processing circuit 44. The optical disk 10 is placed on the spindle motor 12 driven by the motor driving circuit 11 and is rotated by the spindle motor 12. The optical head 32 that projects a laser beam on the optical disk 10 is located under the optical disk 10. The optical head 32 is placed on a guide mechanism (not shown). The feed motor driving circuit 37 is provided to supply a driving signal to the feed motor 33. The motor 33 is driven by the driving signal and moves in and out the optical head 32 across the radius of the optical disk 10. The optical head 32 is provided with an object lens 34 posi30

tioned so as to face the optical disk 10. The object lens 34 is moved according to the driving signal supplied from the focus circuit 36 so as to move along its optical axis.

[0024] To reproduce the data from the above optical disk, the optical head 32 projects a laser beam on the optical disk 10 via the object lens 34. The object lens 34 is moved little by little across the radius of the optical disk 10 according to the driving signal supplied from the tracking circuit 38. Furthermore, the object lens 34 is moved along its optical axis according to the driving signal supplied from the focusing circuit 36 so that its focal point may be positioned on the recording layer 16 of the optical disk 10. This causes the laser beam to form the smallest beam spot on the spiral track (i.e., the pit train), enabling the beam spot to trace the track. The laser beam is reflected from the recording layer 16 and returned to the optical head 32. The optical head 32 converts the beam reflected from the optical disk 10 into an electric signal, which is supplied from the optical head 32 to the servo processing circuit 44 via the head amplifier 40. From the electric signal, the servo processing circuit 44 produces a focus signal, a tracking signal, and a motor control signal and supplies these signals to the focus circuit 36, tracking circuit 38, and motor driving circuit 11, respectively.

[0025] Therefore, the object lens 34 is moved along its optical axis and across the radius of the optical disk 10, its focal point is positioned on the recording layer 16 of the optical disk 10, and the laser beam forms the smallest beam spot on the spiral track. Furthermore, the spindle motor 12 is rotated by the motor driving circuit 11 at a specific rotating speed. This allows the beam to track at, for example, a constant linear speed.

[0026] The system CPU section 50 of FIG. 1 supplies to the servo processing circuit 44 a control signal serving as an access signal. In response to the control signal, the servo processing circuit 44 supplies a head-moving signal to the feed motor driving circuit 37, which supplies a driving signal to the feed motor 33. Then, the feed motor 33 is driven, causing the optical head 32 to move across the radius of the optical disk 10. Then, the optical head 32 accesses a specific sector formed at the recording layer 16 of the optical disk 10. The data is reproduced from the specific sector by the optical head 32, which then supplies it to the head amplifier 40. The head amplifier -40 amplifies the reproduced data, which is outputted at the disk drive section 30.

[0027] The reproduced data is transferred and stored in a data RAM section 56 by the system processor section 54 which is controlled by the system CPU section 50 which is operated in accordance with the programs stored in the system ROM/RAM section 52. The stored reproduced data is processed at the system processor section 54, which sorts the data into video data, audio data, and sub-picture data, which are supplied to the video decoder section 58, audio decoder section 60, and sub-picture decoder section 62, respectively, and

are decoded at the respective decoders. The D/A and data-reproducing section 64 converts the decoded video data, audio data, and sub-picture data into an analog video signal, an analog audio signal, and an analog sub-picture signal, subjects these signals to a mixing process, and supplies the resulting video signal and sub-picture signal to the monitor 6 and the resulting audio signal to the speaker 8. Then, on the basis of the video signal and sup-picture signal, an image is displayed on the monitor section 6 and according to the audio signal, sound is simultaneously reproduced at the speaker section 8.

[0028] In the optical disk reproducing apparatus shown in FIG. 1, as a user manipulates the key/display section 4 on the front panel of the main body or manipulates the remote controller 5 as a remote terminal connected to the remote control receive section 4A via optical communications using infrared rays, recorded data, i.e., video data, sub-picture data and audio data, is reproduced from the optical disk 10 and is converted to an audio signal and video signal in the apparatus. The video signal is reproduced as a video image on the external monitor section 6 and the audio signal is reproduced as a voice from the speaker section 8.

[0029] As shown in FIG. 4, the key/display section 4 comprises a power key 4a, microphone input terminals 4b, a playback key 4c, a pause key 4d, a stop key 4e, fast forward and rewind keys 4f, an open/close key 4g for instructing the loading or ejecting of the optical disk 10, indicators 4h, and a load/eject slot 4i for the optical disk 10.

[0030] As shown in FIG. 5, the remote controller 5 comprises a power key 5a, numeral keys 5b, a stop key 5c, a playback key 5d, a pause key 5e, a memory key 5f, an open/close key 5g for instructing the loading or ejecting of the optical disk 10, fast forward and rewind keys 5h and 5i, repeat keys 5j for instructing repeating and the repeat range, a menu key 5k for instructing the display of a menu screen, a title key 51 for instructing the display of a title menu screen, and up and down and right and left select keys 5m which are used to select an item on the displayed menu screen.

[0031] The detailed operation of the optical disk apparatus of FIG. 1 will be described later with reference to the logic format of the optical disk explained below. [0032] The data recording area 28 between the leadin area 27 and the lead-out area 26 on the optical disk of FIG. 1 has a volume and file structure as shown in FIG. 6. The structure has been determined in conformity to specific logic format standards, such as Micro UDF or ISO 9660. The data recording area 28 is physically divided into a plurality of sectors as described earlier. These physical sectors are assigned serial numbers. In the following explanation, a logical address means a logical sector number (LSN) as determined in Micro UDF or ISO 9660. Like a physical sector, a logical sector contains 2048 bytes. The numbers (LSN) of logical sectors are assigned consecutively in ascending order as

the physical sector number increments.

[0033] As shown in FIG. 6, the volume and file structure is a hierarchic structure and contains a volume and file structure area 70, a video manager 71, at least one video title set #i 72, and another recorded area 73. These areas 70, 71, 72, 73 are aligned with the boundaries between logical sectors. As with a conventional CD, a logical sector is defined as a set of 2048 bytes. Accordingly, one logical sector corresponds to one logical block.

[0034] The volume and file structure area 70 corresponds to a management area determined in Micro UDF or ISO 9660. According to the description in the management area, the video manager 71 is stored in the system ROM/RAM section 52. As explained with reference to FIG. 7, the information used to manage video title sets 72 is written in the video manager 71, which is composed of a plurality of files, starting with file #0. In each video title set 72, compressed video data, compressed audio data, compressed sub-picture data, and the reproducing information about these data items are stored as explained later. Each video title set is composed of a plurality of files 74. The number of video title sets 72 is limited to a maximum of 99. Furthermore, the number of files 74 (from file #j to file #j+9) constituting each video title set 72 is determined to be a maximum of 10. These files 74 are also aligned with the boundaries between logical sectors.

[0035] In the other recorded area 73, the information capable of utilizing the aforementioned video title sets 72 is recorded. The other recorded area 73 is not necessarily provided.

[0036] As shown in FIG. 7, the video manager 71 contains at least three items each corresponding to individual files 74. Specifically, the video manager 71 is made up of video manager information (VMGI) 75, a video object set for video manager menu (VMGM_VOBS) 76, and backup of video manager information (VMGI_BUP) 77. Here, the video manager information (VMGI_BUP) 77 are determined to be indispensable items, and the video object set for video manager menu (VMGM_VOBS) 76 is determined to be a selection item. In the video object set 76 for VMGM, the video data, audio data, and sup-picture data about a menu of the volumes of the optical disk managed by the video manager 71 are stored.

[0037] By the video object set 76 for VMGM (VMGM_VOBS), the volume name of the optical disk 10, the sound accompanying the volume name representation, and the description of the sub-picture are displayed and at the same time, selectable items are provided in the form of sub-pictures as in video reproduction explained later. For example, the video object set 76 for VMGM (VMGM_VOBS) indicates that the optical disk 10 contains the video data representing the matches a boxer played until he won a world championship. Specifically, a fighting pose of boxer X, together with a vol-

ume name, such as the glorious history of boxer X, is reproduced in the form of video data and at the same time, his theme song is reproduced in sound, and his chronological table is provided in a sub-picture. Furthermore, the user is asked which language option to select, English or Japanese, in doing the narration of the matches. At the same time, the user is asked whether a caption in another language should be provided in a sub-picture or which language option should be selected for a caption. Thus, for example, the VMGM video object set 76 (VMGM_VOBS) provides the user with preparations to watch a video of a match of boxer X in English speech with a sub-picture using Japanese captions.

[0038] Here, the structure of a video object set (VOBS) 82 will be described with reference to FIG. 8. FIG. 8 shows an example of a video object set (VOBS) 82. The video object set (VOBS) 82 comes in three types for two menus and a title. Specifically, the video object set (VOBS) 82 contains the video object set for video manager menu (VMGM_VOBS) 76, a video object set (VTSM_VOBS) 95 for a menu in the video title sets 72 and a video object set (VTSTT_VOBS) 96 for the titles of at least one video title set 72 in a video title set (VTS) 72 as explained later. Each video object set 82 has the same structure except that their uses differ.

[0039] As shown in FIG. 8, a video object set (VOBS) 82 is defined as a set of one or more video objects (VOB) 83. The video objects 83 in a video object set (VOBS) 82 is used for the same application. A video object set (VOBS) 82 for menus is usually made up of one video object (VOB) 83 and stores the data used to display a plurality of menu screens. In contrast, a video object set (VTSTT_VOBS) 96 for title sets is usually composed of a plurality of video objects (VOB) 83.

[0040] When the aforesaid video of a boxing match is taken as example, a video object (VOB) 83 corresponds to the video data of each match played by boxer X. Specifying a particular video object (VOB) 83 enables, for example, boxer X's eleventh match for a world championship to be reproduced on a video. The video object set (VTSM_VOBS) 95 for a menu of the video title sets 72 contains the menu data for the matches played by boxer X. According to the presentation of the menu, a particular match, for example, boxer X's eleventh match for a world championship, can be specified. In the case of a usual single story movie, one video object (VOB) 83 corresponds to one video object set (VOBS) 82. One video stream is completed with one video object set (VOBS) 82. In the case of a collection of animated cartoons or an omnibus movie, a plurality of video streams each corresponding to individual stories are provided in a single video object set (VOBS) 82. Each video stream is stored in the corresponding video object 83. Accordingly, the audio stream and sub-picture stream related to the video stream are also completed with each video object (VOB) 83.

[0041] An identification number (IDN#j) is assigned to a video object (VOB) 83. By the identification number

(ID#j), the video object (VOB) 83 can be identified. A video object (VOB) 83 further comprises one or more such cells 84. Although a usual video stream is made up of a plurality of cells 84, a menu video stream, or a video object (VOB) 83 may be composed of one cell 84. A cell 84 is likewise assigned an identification number (C_IDN#j). By the identification number (C_IDN#j), the cell 84 is identified. At the time of the change of the angle explained later, the angle is changed by specifying the cell number.

[0042] Here, angle means to change an angle at which an object is viewed in the field of the films. In an example of a boxing match, angle means that the same knockout scene can be seen from different angles: e.g., a scene viewed from the champion, a scene viewed from the challenger, or a scene viewed from the judge. An angle may be selected by the user as he or she wishes, or the same scene may be repeated while the angle is being changed automatically as the story advances. Furthermore, the angle may be changed after the beginning of the same scene has been reached: e.g., the scene is changed the moment that the boxer dealt the opponent a counter and then a scene where the counter is dealt again is played. The angle may also be changed at the scene following the current scene: e.g., the angle is changed the moment that the boxer has dealt the opponent a counter. To achieve any angle change, a navigation pack explained in detail later is provided in a video object unit (VOBU) 85.

[0043] As shown in FIG. 8, each cell 84 is composed of one or more video object units (VOBU) 85, normally a plurality of video object units (VOBU) 85. Here, a video object unit (VOBU) 85 is defined as a pack train having a navigation pack (NV pack) 86 at its head. Specifically, a video object unit (VOBU) 85 is defined as a set of all the packs recorded, starting at a navigation pack (NV pack) 86 to immediately in front of the next navigation pack. The reproducing time of the video object unit (VO-BU) 85 corresponds to the reproducing time of the video data made up of one or more GOP (Group of Pictures) contained in the video object unit (VOBU) 85 as shown in FIG. 8. The maximum reproducing time is determined to be 0.4 or more second and less than one second. In MPEG, one GOP is defined as compressed image data which corresponds to about 15 frames to be played back for, usually, 0.5 seconds.

[0044] In the case where the video data includes a video object unit as illustrated in FIG. 8, GOPs each composed of a video pack (V pack) 88, a sub-picture pack (SP pack) 90 and an audio pack (A pack) 91, all complying to the MPEG standards, are arranged, producing a vide data stream. Regardless of the number of GOPs, a video object (VOBU) 83 is determined based on the time required for producing a GOP. In the video object (VOBU) 83 has a navigation pack (NV) pack 86 arranged at its head. Any reproduced data, whether audio data, sub-picture data, or audio/sub-picture data, consists of one more video object units. Thus, even if a vid-

eo object unit is composed of audio packs only, these audio packs will be reproduced within the time for reproducing the video object unit. The procedure of reproducing these packs will be explained later in detail, along with the procedure of reproducing the navigation pack (NV pack) 86.

[0045] The video manager 71 will be explained with reference to FIG. 7. The video management information 75 placed at the head of the video manager 71 contains the information used to search for titles and the information used to manage the video title sets (VTS) 72 such as the information used for reproduction of a video manager menu. The video management information 75 contains at least four tables 78, 79, 80, 81 in the order shown in FIG. 7. Each of these tables 78, 79, 80, 81 is aligned with the boundaries between logical sectors. A first table 78, a video manger information management table (VMGI_MAT) 78 is a mandatory table, in which the size of the video manager 71, the starting address of each piece of the information in the video manger 71, and the attribute information about the video object set (VMGM_VOBS) 76 for a video manager menu are writ-

[0046] Written in a second table of the video manager 71, a title search pointer table 79 (TT_SRPT), is an entry program chain (EPGC) of the video titles (VTS) 72 contained in the optical disk 10 that are selectable according to the entry of a title number from the key/display section 4 on the apparatus or the selection of a title number via the remote controller 5.

[0047] Here, a program chain 87 is a set of programs 89 that reproduce the story of a title as shown in FIG. 9. Continuous reproduction of a program chain 87 completes the movie of a title. Therefore, the user can start to see the movie from a particular scene of the movie by specifying the program 89.

[0048] In a third table of the video manager 71, a video title set attribution table (VTS_ATRT) 80, the attribute information determined in the video title set 72 in the volume of the optical disk 10 is written. Specifically, in this table 72, the following items are written as attribute information: the number of video title sets, video title set numbers, video attributes, such as a video data compression scheme, audio stream attributes, such as an audio coding mode, and sub-picture attributes, such as the type of sup-picture display.

[0049] Described in a video manager menu PGCI unit table (VMGM_PGCI_UT) 81, the fourth table of the video manager 71, is information about the video object set (VMGM_VOBS) 76 for the video manager menu.

[0050] The video manager menu PGCI unit table (VMGM_PGCI_UT) 81 is essential when the video manager menu (VMGM) is present in the video object set (VMGM_VOBS) 76 for the video manager menu.

[0051] The contents of the video manager information management table (VMGI_MAT) 78 and the title search pointer table (TT_SRPT) 79 will be explained in detail with reference to FIGS. 10, 11, 12, and 13.

[0052] As shown in FIG. 10, written in the video manager information management table (VMGI_MAT) 78 are a video manager identifier (VMG_ID), the size of video manager information (VMGI_SZ) in logical blocks (one logical block contains 2048 bytes as mentioned above), the version number (VERN) of the optical disk 10 complying with the digital versatile disk video specification, and the category of video manager 71 (VMG_CAT).

[0053] In the category of video manager 71 (VMG_CAT), a flag indicating whether or not the DVD video directory prohibits copying is written. Further written in the table (VMGI_MAT) are a volume set identifier (VLMS_ID), the number of video title sets (VTS_Ns). the identifier for a person supplying the data to be recorded on the disk (Provider Unique ID: PVR_ID), a video manager menu video object set start address (VNGM_VOBS_SA), the end address (VMGI_MAT_EA) of a volume manager information management table (VMGI-MAT) 78, and the start address (TT_SRPT_SA) of a title search pointer table (TT_SRPT) 79. The start address (VMGM_PGCI_UT_SA) of the video manager menu PGCI unit table (VMGM_PGCI_UT) 81 is described in this table 78. When there is no video manager menu PGCI unit table (VMGM_PGCI_UT) 81, "00000000h" is described at the start address. The end address of VMG MAT 78 (VMGI_MAT_EA) and the start address of TT_SRPT (TT_SRPT_SA) 79 are represented by the number of logical blocks, relative to the first logical block.

[0054] Furthermore, in the table 78, the start address (VTS_ATRT_SA) of the attribute table (VTS_ATRT) 80 of video title sets (VTS) 72 is represented by the number of bytes, relative to the first byte in the VMGI manager table (VMGI_MAT) 71, and the video attribute (VMGM_V_AST) of the video manager menu (VMGM) is written. Further written in the table 78 are the number of audio streams (VMGM_AST_Ns) in the video manager menu (VMGM), the attributes of audio streams (VMGM_AST_ATR) in the video manager menu (VMthe number of sub-picture streams (VMGM SPST Ns) in the video manager menu (VM-GM), and the attributes of subpicture streams (VMGM_SPST_ATR) in the video manager menu (VM-GM).

[0055] In the title search pointer table (TT_SRPT) 79, as shown in FIG. 11, the title search pointer table information (TT-SRPTI) is first written and then as many title search pointers for input numbers 1 to n (n ≤ 99) as are needed are written consecutively. When only the reproducing data for one title, for example, only the video data for one title, is stored in the volume of the optical disk, only one title search pointer (TT_SRP) 93 is written in the table (TT_SRPT) 79.

[0056] As shown in FIG. 12, the title search pointer table information (TSPTI) 92 contains the number of title search pointers (TT_Ns) and the end address (TT_SRPT_EA) of the title search pointer table

(TT_SRPT) 79. The address (TT_SRPT_EA) is represented by the number of bytes, relative to the first byte in the title search pointer table (TT_SRPT) 79. Furthermore, as shown in FIG. 13, each title search pointer (TT_SRP) 93 contains the number of port-of-titles (PTT_Ns) as the number of chapters (programs), the video title set number (VTSN), the title number (VTS_TTN) of the video title set 72, and the start address (VTS_SA) of the video title set 72. The contents of the title search pointer (TT_SRP) 93 specifies a video title set 72 to be reproduced and a location in which the video title set 72 is to be stored. The start address (VTS_SA) of the video title set 72 is represented by the number of logical blocks in connection with the title set 72 specified by the video title set number (VTSN).

[0057] The details of what is described in the video manager menu PGCI unit table (VMGM_PGCI_UT) 81 will now be discussed with reference to FIGS. 14 through 19.

[0058] The video manager menu PGCI unit table (VMGM_PGCI_UT) 81 shown in FIG. 14 is essential when the video object set (VMGM_VOBS) 76 for the video manager menu is provided, and information about a program chain for reproducing the video manager menu (VMGM) provided for each language is described in this table 81. By referring to the video manager menu PGCI unit table (VMGM_PGCI_UT) 81, the program chain of the specified language in the video object set (VMGM_VOBS) 76 can be acquired to be reproduced as a menu.

[0059] The video manager menu PGCI unit table (VMGM_PGCI_UT) 81 contains video manager menu PGCI unit table information (VMGM_PGCI_UTI) 81A, n video manager menu language unit search pointers (VMGM_LU_SRP) 81B, and n video manager menu language units (VMGM_LU) 81C in the named order as shown in FIG. 14.

[0060] The video manager menu PGCI unit table information (VMGM_PGCI_UTI) 81A contains information about the table 81. The video manager menu language unit search pointers (VMGM_LU_SRP) 81B are described in the order associated with the video manager menus #1 to #n and contain language codes and descriptions about the pointers to search for the video manager menu language units (VMGM_LU) 81C, described in the order associated with the video manager menus #1 to #n. Described in each video manager menu language unit (VMGM_LU) 81C are the category and start address of the program chain of the associated video manager menu.

[0061] More specifically, as shown in FIG. 15, the video manager menu PGCI unit table information (VMGM_PGCI_UTI) 81A contains the number of the video manager menu tanguage units (VMGM_LU) 81C as a parameter (VMGM_LU_Ns) and the end address of the video manager menu language units (VMGM_LU) 81C as a parameter (VMGM_PGCI_UT_EA). As shown in FIG. 16, each video manager menu language unit

30

search pointer (VMGM_LU_SRP) 81B contains a video manager menu language code as a parameter (VMGM_LCD) and the start address of the associated video manager menu language unit (VMGM_LU) 81C as a parameter (VMGM_LU_SA). Each video manager menu language unit (VMGM_LU) 81C consists of video manager menu language unit information (VMGM_LUI) 81D, video manager menu PGC information search pointers (VMGM_PGCI_SRP) 81E and video manager menu PGC information (VMGM_PGCI) 81F in the named order as shown in FIG. 17. The video manager menu language unit information (VMGM_LUI) 81D contains information about this table 81C. The video manager menu PGC information search pointers (VMGM_PGCI_SRP) 81E are described in the order associated with the video manager menus #1 to #n and contain the categories of the program chains of the video manager menus and descriptions about the pointers to search for the video manager menu PGC information (VMGM_PGCI) 81F, described in the order associated with the video manager menus #1 to #n.

[0062] The video manager menu PGC information (VMGM_PGCI) 81F contains information about the program chain of the video manager menu or VMGM program chain information (VMGM_PGCI).

[0063] More specifically, as shown in FIG. 18, the video manager menu language unit information (VMGM_LUI) 81D contains the number of pieces of the VMGM program chain information (VMGM_PGCI) 81f as a parameter (VMGM_PGCI_Ns) and the end address of the video manager menu language unit information (VMGM_LUI) 81D as a parameter (VMGM_LUI_EA). As shown in FIG. 19, each video manager menu PGC information search pointer (VMGM_PGCI_SRP) 81E contains the category of the program chain of the associated video manager menu as a parameter (VMGM_PGC_CAT) and the start address of the associated VMGM_PGC_CAT) and the start address of the associated VMGM_PGC_CAT) and the start address of the associated VMGM_PGC_SA).

[0064] Described in the category (VMGM_PGC_CAT) of the program chain of the video manager menu are a flag indicating whether or not there is an entry of this PGC and a menu ID indicating if it is a menu. The menu ID indicates a title menu when it is "0010".

[0065] The structure of the logic format of the video title set 72 shown in FIG. 6 will be described with reference to FIG. 20. In each video title set (VTS) 72, four items are written in the order shown in FIG. 20. Each video title set (VTS) 72 is made up of one or more video titles having common attributes. The video title set information (VTSI) 94 contains the management information on the video titles, including the information on entry search points, the information on playback of video object sets 72, the information on playback of title set menus (VTSM), and the attribute information on video object sets 72.

[0066] Each video title set 72 is provided with the backup of the video title set information (VTSI_BUP) 97.

Between the video title set information (VTSI) and the backup of the information (VTSI_BUP) 97, a video object set for video title set menus (VTSM_VOBS) 95 and a video object set for video title set titles (VTSTT_VOBS) 96 are arranged. Both of the video object sets (VTSM_VOBS and VTSTT_VOBS) 95, 96 have the structure shown in FIG. 8, as explained earlier.

[0067] The video title set information (VTSI) 94, the backup of the information (VTSI_BUP) 97, and the video object set (VTSTT_VOBS) 96 for video title set titles are items indispensable to the video title set 72. The video object set (VTSM_VOBS) 96 for video title set menus is an option provided as the need arises.

[0068] The video title set information (VTSI) 94 consists of five tables as shown in FIG. 20. The five tables are forced to align with the boundaries between logical sectors. The video title set information management table (VTSI_MAT) 98, a first table, is a mandatory table, in which the size of the video title set (VTS) 72, the start addresses of each piece of information in the video title set (VTS) 72, and the attributes of the video object sets (VOBS) 96 in the video title set (VTS) 72 are written.

[0069] The video title set part of title search pointer table (VTS_PTT_SRPT) 99, a second table, is a selection table provided as the need arises. Written in the table 99 are the program chains (PGC) 87 and/or programs (PG) 89 contained in the video title set 72 that are selectable according to the entry of a title number from the key/display section 4 of the apparatus or the selection of a title number give via the remote controller 5.

[0070] The video title set program chain information table (VTS_PGCIT) 100, a third table, is a mandatory table, in which the VTS program chain information (VTS_PGCI) 104 is written. The video title set time search map table (VTS_TMAPT) 101, a fourth table, is an selection table provided as the need arises, in which the information on the recording location, for a specific period of time of display, of the video data in each program chain (PGC) 87 in the title set 72 to which the map table (VTS_TMAPT) 101 belongs is written.

[0071] A video title set menu PGCI unit table (VTSM_PGCI_UT) 111, the fifth table, is an essential item when a video object set (VGSM_VOBS) 95 for the video title set menu is provided, and contains information about a program chain for reproducing a video title set menu (VTSM) provided for each language. By referring to this video title set menu PGCI unit table (VTSM_PGCI_UT) 111, the program chain of the specified language in the video object set (VTSM_VOBS) 95 can be acquired to be reproduced as a menu.

[0072] Next, the video title information management table (VTSI_MAT) 98 and video title set program chain information table (VTSI_PGCIT) 100 shown in FIG. 20 will be described with reference to FIGS. 21 to 36.

[0073] FIG. 21 shows the contents of the video title information management table (VTSI_MAT) 98, in which the video title set identifier (VTS_ID), the size of the video

eo title set 72 (VTS_SZ), the version number of the DVD video specification (VERN), and the video title set category (VTS_CAT) are written in that order. Furthermore, in the table (VTSI_MAT) 98, the start address of the video object set (VTSM_VOBS) for VTS menus is expressed by a logical block relative to the first logical block in the video title set (VTS) 72. The start address (VTSTT_VOB_SA) of the video object 83 for titles in the video title set (VTS) 72 is expressed by a logical block (RLBN) relative to the first logical block in the video title set (VTS) 72.

[0074] Furthermore, in the table (VTSI_MAT) 98, the end address (VTSI_MAT_EA) of the video title set information management table (VTI_MAT) 98 is represented by the number of blocks, relative to the first byte in the table (VTSI_MAT) 98 and the start address (VTS_PTT_SRPT_SA) of the video title set part of title search pointer table (VTS_PTT_SRPT) 99 is represented by the number of blocks, relative to the first byte in the video title set information (VTSI) 94.

[0075] Still furthermore, in the table (VTSI_MAT) 98, the start address (VTS_PGCIT_SA) of the video title set program chain information table (PGCIT) 100 is expressed by the number of blocks, relative to the first byte of the video title set information (VTSI) 94, and the start address (VTS_TMAPT_SA) of the time search map (VTS_TMAPT) 101 in the video title set (VTS) 72 is expressed by a logical sector relative to the first logical sector in the video title set (VTS) 72. This table (VTSL MAT) 98 contains the start address (VTGSM_PGCI_UT_SA) of the video title set menu PG-CI unit table (VTSM_PGCI_UT) in terms of the number of relative blocks from the top byte of the video title set information (VTSI) 94. When the video manager menu PGCI unit table (VMGM_PGCI_UT) 81 is not present, "00000000h" is described at the start address. Written in the table (VTSI_MAT) 98 are the video object set (VTSM_VOBS) 95 for the video title set menu (VTSM) in the video title set (VTS) 72, the video attributes (VTS_V_ATR) of the video object set (VTST_VOBS) 96 for the titles (VTSTT) in the video title set 72, and the number of audio streams (VTS_AST_Ns) in the video object set (VTSTT_VOBS) 82 for the titles (VTSTT) for the video title sets 72. Here, the video attributes (VTS_V_ATR) include a video compression mode, a frame rate of the TV system, and an aspect ratio for displaying an image on a display unit.

[0076] Written in the table (VTSI_MAT) 98 are the audio stream attributes (VTS_AST_ATR) of the video object set (VTST_VOBS) for the titles (VTSTT) in the video title set (VTS). The attributes (VTS_AST_ATR) include an audio encoding mode indicating how audio is encoded, the number of bits used to quantize audio, the number of audio channels and an audio language code. [0077] Furthermore, written in the table (VTSI_MAT) 98 are the number (VTS_SPST_Ns) of sub-picture streams in the video object set 82 for the titles (VTSTT) in the video title set (VTS) 72 and the attributes

(VTS_SPST_ATR) of each sub-picture stream. The attributes (VTR_SPST_ATR) for each sub-picture stream include a sub-picture coding mode, a sub-picture display type and a sub-picture language code.

[0078] Furthermore, in the table (VTSI_MAT) 98, written are the number (VTSM_AST_Ns) of audio streams in the video title set menu (VTSM), the audio stream attributes (VTSM_AST_ATR), the number (VTSM_SPST_Ns) of sup-picture streams, and the sup-picture stream attributes (VISM_SPST_ATR).

[0079] Each audio stream attribute (VTS_AST_ATR) of the video title set (VTS) contains the audio coding mode, the multichannel extension, the audio type, the audio application ID, quantization, the sampling frequency, and the number of audio channels from bit number b63 to bit number b48 with bit b51 reserved, and audio stream language codes as specific codes from bit number b47 to bit number b40 and from bit number b39 to bit number b32, as shown in FIG. 22. Bit number b31 to bit number b24 of this audio stream attribute (VTS_AST_ATR) are reserved for specific codes. Bit number 23 to bit number b8 are reserved for the future use, and bit number b7 to bit number b0 describe application information. When the video object set (VTSM_VOBS) 95 for the VTS menu is not present or that video object set contains no audio stream, "0" is described in each of the bits from bit number b63 to bit number b0.

[0080] Specific codes are described in bits b47 to b40 and b39 to b32 where a language code determined by ISO-639 is described as a language symbol when the audio stream type is a language or voice. When the audio stream type is not a language or voice, this area is reserved.

[0081] As shown in FIG. 23, each sub-picture stream attribute (VTS_SPSTG_ATR) of the video object set (VTST_VOBS) 96 for VTSTT contains the sub-picture coding mode, sub-picture display type and sub-picture type from bit number b47 to bit number b40 with bit b44 reserved, and a language code of this sub-picture stream as specific codes from bit number b39 to bit number b32 and from bit number b31 to bit number b24. Bits b23 to b16 are reserved for specific codes. Bits b23 to b8 are reserved for the future use, and bits b15 to b8 describe the specific code extension. Further, bits b7 to b0 are reserved.

[0082] The VTS program chain information table (VTS_PGCIT) 100 has a structure as shown in FIG. 24. In the information table (VTS_PGCIT) 100, information on the VTS program chain (VTS_PGC) is written, starting with information (VTS_PGCIT_I) 102 on the information table (VTS_PGCIT) 100 related to the VTS program chain (VTS_PGC). In the information table (VTS_PGCIT) 100, the information (VTS_PGCIT_I) 102 is followed by as many VTS_PGCI search pointer (VTS_PGCIT_SRP) 103 used to search for VTS program chains (VTS_PGC) as the number (#1 to #n) of VTS program chains in the information table

(VTS_PGCIT). At the end of the table, there are provided as many pieces of information (VTS_PGCI) 104 on the respective VTS program chains (VTS_PGC) as the number (from #1 to #n) of the VTS program chains (VTS_PGC).

[0083] The information (VTS_PGCIT_I) 102 in the VTS program chain information table (VTS_PGCIT) 100 contains the number (VTS_PGC_Ns) of VTS program chains (VTS_PGC) as shown in FIG. 25. The end address (VTS_PGCIT_EA) of the table information (VTS_PGCIT_I) 102 is expressed by the number of bytes, relative to the first byte in the information table (VTS_PGCIT) 100.

[0084] Furthermore, as shown in FIG. 26, the VTS_PGCIT search pointer (VTS_PGCIT_SRP) 103 contains the attributes (VTS_PGC_CAT) of the program chains (VTS_PGC) in the video title set (VTS) 72 and the start address (VTS_PGCI_SA) of the VTS_PGC information (VTS_PGCI) 104 expressed by the number of bytes, relative to the first byte in the VTS_PGC information table (VTS_PGCIT) 100. Here, the VTS_PGC attribute (VTS_PGC_CAT) is, for example, an attribute indicating whether an entry program chain (Entry PGC) is the first one to be reproduced. Usually, an entry program chain (PGC) is written before program chains (PGC) that are not entry program chains (PGC) are reproduced in the description order of VTS_PGCIs as shown in FIG. 24.

[0085] The PGC information (VTS_PGCI) 104 in the video title set 72 contains four items as shown in FIG. 27. In the PGC information (VTS_PGCI) 104, the program chain general information (PGC_GI) 105 on a mandatory item is first arranged, followed by at least three items that are made mandatory only when there is an video object 83. Specifically, contained as the three items in the PGC information (VTS_PGCI) 104 are a program chain program map (PGC_PGMAP) 106, a cell playback information table (C_PBIT) 107, and a cell position information table (C_POSI) 108.

[0086] As shown in FIG. 28, the program chain general information (PGC_GI) 105 contains the category (PGCI_CAT) of the program chain 87, the contents (PGC_CNT) of the program chain (PGC) 87, and the playback time of the program chain (PGC). 87 Written in the category of PGC (PGCI_CAT) are whether the PGC can be copied or not and whether the programs 89 in the PGC are played back continuously or at random. The contents of PGC (PGC_CNT) contains the description of the program chain structure, that is, the number of programs 89, the number of cells 84, and the number of angles in the program chain 87. The playback time of PGC (PGC_PB_TIME) contains the total playback time of the programs 89 in the PGC. The playback time is the time required to continuously play back the programs 89 in the PGC, regardless of the playback procedure. When an angle mode is available, the playback time of angle cell number 1 is the playback time of the angle.

[0087] Furthermore, the program chain general infor-

mation (PGC_GI) 105 contains PGC sub-picture stream control (PGC_SPST_CTL), PGC audio stream control (PGC_AST_CTL), and PGC sub-picture pallet (PGC_SP_PLT). The PGC sub-picture stream control (PGC_SPST_CTL) contains the number of sub-pictures usable in the PGC 89 and the PGC audio stream control (PGC_AST_CTL) likewise contains the number of audio streams usable in the PGC 89. The PGC sub-picture palette (PGC_SP_PLT) contains a set of a specific number of color pallets used in all of the sub-picture streams in the PGC 89.

[0088] Furthermore, the PGC general information (PGC_GI) 105 contains the start address (C_PBIT_SA) of the cell playback information table (C_PBIT) and the start address (C_POSIT_SA) of the cell position information table (C_POSI) 108. Both of the start addresses (C_PBIT_SA) and C_POSIT_SA) are represented by the number of logical blocks, relative to the first byte in the VTS_PGC information (VTS_PGCI) 105.

[0089] For a program chain (PGC) for a menu, as shown in FIG. 29, bit b31 of the category (PGC_CAT) of the program chain describes a PGC entry or a non PGC entry as the entry type, bits b30 to b28 of are reserved for the future use, bits b27 to b24 describe a menu ID indicative of the type of the menu, bits b23 and b22 describe the PGC block mode, bits b21 and b20 describe the PGC block type, bits b19 to b16 describe the program playback control, bits b15 and b14 describe the copy flag, bits b13 and b12 describe the playback management, bits b11 to b8 describe the application type, and bits b7 to b0 are reserved for the future usage.

[0090] With regard to the menu ID, "0010" indicates a title menu for use in the video manager information menu (VMGM), "0011" indicates a root menu for use in the video title set menu (VTSM), "0100" indicates a subpicture menu for use in the video title set menu (VTSM), "0101" indicates an audio menu for use in the video title set menu (VTSM), "0110" indicates an angle menu for use in the video title set menu (VTSM), and "0111" indicates a program menu for use in the video title set menu (VTSM).

[0091] When the category (PGC_CAT) of the program chain (PGC) is a program chain (PGC) for a title, bits b30 to b24 describe the number of titles (VTS_TTN), any of numbers 1 to 99, in this program chain (PGC), bits b15 to b8 describe the number of cells, any of 1 to 255. in this program chain (PGC), bits b7 to b4 are reserved for the future use, and bits b3 to b0 describe the number of angles, any one of 1 to 9, in the program chain (PGC). [0092] The program program chain (PGC_PGMAP) 106 is a map showing the arrangement of the programs 89 in the PGC 87 of FIG. 31. In the map (PGC_PGMAP) 106, the entry cell numbers (ECELLN), the start cell numbers of the individual programs 89, are written in ascending order as shown in FIGS. 31 and 32. In addition, program numbers are allocated, starting at 1, in the order in which the entry cell numbers are written. Consequently, the first entry number in the map

(PGC_PGMAP) 106 must be #1.

[0093] The cell playback information table (C_PBIT) defines the order in which the cells 84 in the PGC 87 are played back. In the cell playback information table (C_PBIT) 107, pieces of the cell playback information (C_PBI) are written consecutively as shown in FIG. 33. Basically, cells 84 are played back in the order of cell number. The cell playback information (C_PBIT) 108 contains a cell category (C_CAT) as shown in FIG. 34. Written in the cell category (C_CAT) are a cell block mode indicating whether a cell is in the block and if it is in the block, whether the cell is the first one, a cell block type indicating whether a cell 84 is not part of the block or is in an angle block, and an STC discontinuity flag indicating whether the system time clock (STC) must be set again.

[0094] An "angle block" of cells is defined as a set of cells 84 having a specific angle. The angle can be changed by replacing one angle block with another. In the case of a baseball video program, for example, an angle block representing a scene taken from the outfield may be replaced by an angle block representing a scene taken from the infield.

[0095] Further written in the cell category (C_CAT) are a cell playback mode indicating whether the video object units (VOBU) 85 in the cell 84 are played back continuously or a picture is made still at one video object unit (VOBU) 85 to another in the cell 84, and cell navigation control indicating whether the picture is made still after the playback of the cell or indicating the rest time. [0096] As shown in FIG. 34, the cell playback information table (C_PBIT) 107 contains the cell playback time (C_PBTNM) representing the total playback time of the PGC 87. When the PGC 87 has an angle cell block, the playback time of the angle cell number 1 represents the playback time of the angle block. Further written in the cell playback information table (C_PBIT) 107 are the start address (C_FVOBU_SA) of the first video object unit (VOBS) 85 in the cell 84 expressed by the number of logical sectors, relative to the first logical sector in the video object unit (VOBS) 85 in which the cell 84 is written and the start address (C_LVOBU_SA) of the end video object unit (VOBS) 85 in the cell 84 expressed by the number of logical sectors, relative to the first logical sector in the video object unit (VOBS) 85 in which the cell 84 is written.

[0097] The cell position information table (C_POSI) 108 specifies the identification number (VOB_ID) of the video object (VOB) 85 in the cell used in the PGC 87 and the identification number (Cell_ID) of the cell 84. In the cell position information table (C_POSI) 108, pieces of the cell position information (C_POSI) corresponding to the cell numbers written in the cell playback information table 107 as shown in FIG. 35 are written in the same order as in the cell playback information table (C_PBIT) 107. The cell position information (C_POSI) contains the identification number (C_VOB_IDN) of the video object unit (VOBS) 85 in the cell 84 and the cell

identification number (C_IDN) as shown in FIG. 36. [0098] The video title set menu PGCI unit table (VTSM_PGCI_UT) 111 describing language-by-language information of the video title set menu (VTSM) shown in FIG. 20 consists of video title set menu PGCI unit table information (VTSM_PGCI_UTI) 111A, n video title set menu language unit search pointers (VTSM_LU_SRP) 111B and n video title set menu language units (VTSM_LU) 111C in the named order, as shown in FIG. 37.

[0099] The video title set menu PGCI unit table information (VTSM_PGCI_UTI) 111A contains information of this table 111. The video title set menu language unit search pointers (VTSM_LU_SRP) 111B are described in the order associated with the video title set menus #1 to #n, and contain descriptions about the pointers to search for the video title set menu language units (VTSM_LU) 111C described in the order associated with the video title set menus #1 to #n. Described in each video title set menu language unit (VTSM_LU) 111C are the category and start address of the program chain of the associated video title set menu.

[0100] More specifically, as shown in FIG. 38, the video title set menu PGCI unit table information (VTSM PGCI UTI) 111A contains the number of the video title set menu language units (VTSM_LU) 111C as a parameter (VTSM_LU_Ns) and the end address of the video title set menu language units (VTSM_LU) 111C as a parameter (VTSM_PGCI_UT_EA). As shown in FIG. 39, each video title set menu language unit search pointer (VTSM_LU_SRP) 111B describes a video title set menu language code as a parameter (VTSM_LCD) and the start address of the associated video title set menu language unit (VTSM LU) 111C as a parameter (VTSM_LU_SA). As shown in FIG. 40, each video title set menu language unit (VTSM_LU) 111C consists of video title set menu language unit information (VTSM_LUI) 111D, video title set menu PGC information search pointers (VTSM_PGCI_SRP) 111E and video title set menu PGC information (VTSM_PGCI) 111F in the named order. The video title set menu language unit information (VTSM_LUI) 111D contains information of this table 111C. The video title set menu PGC information search pointers (VTSM_PGCI_SRP) 111E are described in the order associated with the video title set menus #1 to #n, and contain the categories of program chains of the video title set menus and descriptions about the pointers to search for the video title set menu PGC information (VTSM PGCI) 111F described in the order associated with the video title set menus #1 to #n. [0101] Each video title set menu PGC information (VTSM_PGCI) 111F contains information about the program chain of the associated video title set menu, i.e., VTSM program chain information (VTSM_PGCI).

[0102] More specifically, as shown in FIG. 41, the video title set menu language unit information (VTSM_LUI) 111D contains the number of pieces of video title set menu PGC information (VTSM_PGCI) 111F as a param-

eter (VTSM_PGCi_Ns), and the end address of the video title set menu language unit information (VTSM_LUI) 111D as a parameter (VTSM_LUI_EA). As shown in FIG. 42, each video title set menu PGC information search pointer (VTSM_PGCI_SRP) 111E contains the category of the program chain of the associated video title set menu as a parameter (VTSM_PGC_CAT) and the start address of the associated video title set menu PGC information (VTSM_PGCI) 111F as a parameter (VTSM_PGCI_SA).

[0103] Described in the category (VMGM_PGC_CAT) of the program chain of the video title set menu are a flag indicating whether or not there is an entry of this PGC and a menu ID indicating if it is a menu. The menu ID indicates a sub-picture menu when it is "0100," indicates an angle menu when it is "0110," and indicates a program menu when it is "0111."

[0104] As explained with reference to FIG. 8, a cell 84 is a set of video object units (VOBU) 85. A video object unit 85 is defined as a pack train starting with a navigation (NAV) pack 86. Therefore, the start address (C_FVOBU_SA) of the first video object unit (VOBU) 85 in a cell 84 is the start address of the NAV pack 86. As shown in FIG. 43, the NAV pack 86 consists of a pack header 110, a system header 111, and two packets 116, 117 of navigation data; namely, a playback control information (PCI) packet 116 and a data search information (DSI) packet 117. As many bytes as shown in FIG. 43 are allocated to the respective sections so that one pack may contain 2048 bytes corresponding to one logical sector. The NV pack is provided immediately before the video pack 88 which contains the first data item in the group of pictures (GOP). Even if the object unit 85 contains no video pack 88, the NV pack 86 is positioned at the head of the object unit 85, provided that the object unit 85 contains an audio pack 91 and/or a sub-picture pack 90. Thus, even if object unit 85 contains no video pack, its playback time is determined on the basis of the time required for playing back a video pack 88, exactly in the same way as in the case where the unit 85 contains a video pack 88.

[0105] Here, GOP is defined as a data train constituting a screen determined in the MPEG standards. In other words, GOP is equivalent to compressed data which may be expanded into image data representing a plurality of frames of a moving picture. The pack header 110 contains a pack starting code, a system clock reference (SCR), and a multiplex rate. The system header 111 contains a bit rate and a stream ID. The packet header 112, 114 of each of the PCI packet 116 and DCI packet 117 contains a packet starting code, a packet length, and a stream ID as determined in the MPEG2.

[0106] As shown in FIG. 44, another video, audio or sub-picture pack consists of a pack header 120, packet header 121, and a packet 122 containing the corresponding data as in the system layer 24 MPEG 2. Its pack length is determined to be 2048 bytes. Each of these packs is aligned with the boundaries between log-

ical blocks.

[0107] The PCI data (PCI) 113 in the PCI packet 116 is navigation data used to make a presentation, or to change the contents of the display, in synchronization with the playback of the video data in the VOB unit (VO-BU) 85. Specifically, the PCI data (PCI) 113 contains PCI general information (PCI_GI) as information on the entire PCI data 113 and angle information (NSML_AGLI) as each piece of jump destination angle information during angle change and high light information (HLI) as shown in FIG. 45. The PCI general information (PCI_GI) contains the address (NV_PCK_LBN) of the NV pack (NV_PCK) 86 in which the PCI data is recorded as shown in FIG. 28, the address being expressed in the number of blocks, relative to the VOBU logical sector in which the PCI data is recorded. The PCI general information (PCI_GI) contains the category of VOBU (VOBU_CAT), the start PTS of VOBU 85 (VOBU_SPTS), and the end PTS of VOBU 85 (VOBU_EPTS). Here, the start PTS of VOBU 85 (VOBU_SPTS) indicates the playback start time (start presentation time stamp (SPTS)) of the video data in the VOBU 85 containing the PCI data. The playback start time is the playback start time of the first picture in the first GOP in the VOBU 85. Normally, the first picture corresponds to I picture (intra-picture) data in the MPEG standards. The end PTS (VOBU_EPTS) in the VOBU 85 indicates the playback end time (end presentation time stamp (EPTS)) of the video data in the VOBU 85 containing the PCI data. The playback end time is the playback start time of the last picture in the last GOP in the VOBU 85.

[0108] The angle information (NSML_AGLI) contains as many start addresses (NSML_AGL_C_DSTA) of the angle cells at jump destinations as the number of angles as shown in FIG. 47. Each of the start addresses is represented by a logical sector relative to the logical sector of the NV pack 86 in which the PCI data is recorded. When the angle is changed on the basis of the angle information (NSML_AGLI), the angle information (NSML_AGLI) contains either the start address of the VOBU in another angle block whose playback time is equal to that of the VOBU 85 in which the PCI data is recorded as shown in FIG. 48, or the start address (NSML_AGL_C_DSTA) of the VOBU 85 in another angle block whose playback time is closest to the preceding one.

[0109] According to the description of the start address (NSML_AGL_C_DSTA) of such an angle cell, the angle is changed in a concrete example as follows. Assuming that a series of consecutive scenes where in a baseball game, the pitcher throws a ball, the batter hits the ball, and the ball lands in the stands, the change of the angle will be explained. An angle cell (ANG_C#j) can be changed on a video object unit (VOBU) 85 basis as shown in FIG. 48. In FIG. 48, the video object units (VOBU) 85 are assigned numbers in the order of playback. The video object unit (VOBU#n) 85 corresponding to

playback number n of an angle cell (ANG_C#i) stores the video data for a different scene which is contemporary with or immediately preceding that for which the video data is stored in the video object unit (VOBU#n) 85 with playback number n corresponding to another angle cell (ANG_C#1) or angle cell (ANG_C#9). It is assumed that in an angle cell (ANG_C#j), VOBUs are arranged consecutively as video data used to show on the screen the whole view including the pitcher and batter and a series of actions. It is also assumed that in angle cell (ANG_C#1), VOBUs are arranged consecutively as video data used to show only the batter on the screen to view the batting form of the batter, and that in angle cell (ANG C#9), VOBUs are arranged consecutively as video data used to show only the expression of the pitcher on the screen. When the user is viewing angle cell #j (ANG_C#i) and changes to angle cell #1 the moment the batter hit the ball, that is, changes to the angle at which only the batter is shown, at the moment the batter made a hit, this switches to a screen where the batter starts swinging a bat before making the hit, not to a screen showing only the batter after he made a hit. Furthermore, when the user is viewing angle cell #j (ANG_C#i) and changes to angle cell #9 the moment the batter hit the ball, that is, changes to the angle at which only the pitcher is shown, at the moment the batter made a hit, this causes the pitcher's expression at the moment the batter made a hit to appear on the screen, enabling the user to read a change in the pitcher's mental state in his expression.

[0110] Highlight information (HLI) is information for highlighting one rectangular area in a sub-picture display area. The mixing ratio (contrast) of the color and the video of the sub-picture of the specific rectangular area in the sub-picture display area is described. As shown in FIG. 49, the highlight information is commonly valid for all sub-picture streams to be reproduced within the valid period. For instance, when the video and the sub-picture and the highlight information are mixed, a mixing picture as shown in FIG. 50 is displayed on the monitor section 6.

[0111] As shown in FIG. 51, the highlight information describes highlight general-information (HL_GI) 113A, button color information table (BTN_COLIT) 113B and button information table (BTNIT) 113C. As shown in FIG. 52, the button color information table (BTN_COLIT) 113B describes three button color information (BTN_COLI) 113D, 113E, 113F, and the button information table (BTNIT) 113C describes 36 button information IBTNI) 113I at the maximum.

[0112] For instance, as shown in FIG. 52, 36 button information (BTNI) 113I are described by three group modes composed by specifying button groups of 1 group mode made up of 36 button information, two group modes formed of 18 button information, and three group mode composed of 12 button information.

[0113] The highlight general-information (HL_GI) 113A is information of the entire highlight information.

As shown in FIG. 53, the highlight general-information (HL_GI) 113A describes status of highlight information (HLI_SS), start PTM of HLI (HLI_S_PTM), end PTM of HLI (HLI_E_PTM), end PTM of button select (BTM_SL_E_PTM), mode of button (BTM_MD), button start number (BTN_SN), number of valid buttons (BTN_Ns), number of numerical select buttons (NSBTN_Ns), forcedly selected button number (FSLBTN_N), and forced activated button number (FACBTN_N).

[0114] The status of highlight information (HLI_SS) describes the status of the highlight information in corresponding PCI. For instance, in the case of "00", the status of highlight information (HLI_SS) describes no valid highlight information. In the case of "01", the status of highlight information (HLI_SS) describes different highlight from the highlight information of the VOBU. In the case of "10", the status of highlight information as the highlight information of the VOBU. In the case of "11", the status of highlight information (HLI_SS) describes the highlight information containing difference from the highlight information of the VOBU only from button command.

[0115] The start PTM of highlight information (HLI_S_PTM) describes the start PTM of the highlight in which the corresponding highlight information becomes valid (start presentation time (SPTM)). The start PTM of the highlight becomes the display start time or more of the sub-picture stream in which the highlight information becomes an object. When HLI_SS is "01", the highlight start time of highlight information which is renewed during the presentation period of VOBU in which the PCI is included is described. When HLI_SS is "10" or "11", the highlight start time of highlight information used continuously during the presentation period of VOBU in which the PCI is included is described.

[0116] The end PTM of highlight information (HLI_E_PTM) describes the end PTM of the highlight information in which the highlight information becomes invalid. The end PTM of highlight information becomes the display end time or less of the sub-picture stream in which the highlight information becomes an object. When HLI_SS is "01", the highlight termination time of highlight information which is renewed during the presentation period of VOBU in which the PCI is included is described. When HLI_SS is "10" or "11", the highlight termination time of highlight information used continuously during the presentation period of VOBU in which the PCI is included is described. When HLI_SS is used during the still state, the end PTM of highlight information (HLI_E_PTM) shall describe (FFFFFFFFh).

[0117] End PTM of button select (BTN_SL_E_PTM) describes the end PTM of the button select. The end PTM of the button select becomes the display end time or less of the sub-picture stream in which the highlight information becomes an object. When HLI_SS is "01", the button select termination time of highlight informa-

tion which is renewed during the presentation period of VOBU in which the PCI is included is described. When HLI_SS is "10" or "11", the button select termination time of highlight information used continuously during the presentation period of VOBU in which the PCI is included is described. When highlight information is used during the still state, the button select termination time (BTN_SL_E_PTM) shall describe (FFFFFFFFh).

[0118] The mode of button (BTN_MD) describes grouping of the buttons and the display type of the subpicture corresponding to each group. For instance, the mode of button (BTN_MD) describes number of button groups (BTNGR_Ns), display type of sub-picture corresponding to the button group 1 (BTNGR1_DSPTY), display type of sub-picture corresponding to the button group 2 (BTNGR2_DSPTY) and display type of sub-picture corresponding to the button group 3 (BTNGR3_DSPTY). The number of the button groups (BTNGR_Ns) is one group in the case of "01", 2 groups in the case of "10", and three groups in the case of "11". The display type is wide (9/16) in the case of "01", letter box in the case of "10", and pan-scan in the case of "11". [0119] The button start number (BTN_SN) describes initial button offset number in button groups. The offset number can be described in a range of 1 to 255. The button start number (BTN_SN) is commonly applied to each button group.

[0120] The number of valid buttons (BTN_Ns) describes the number of valid buttons in the button groups. The number of the buttons can described a range of 1 to 36 in the case of 1 of the button group, 1 to 18 in the case of 2 of the button group, and 1 to 12 in the case of 3 of the button group. The number of valid buttons (BTN_Ns) is commonly applied to each button group. [0121] The number numerical select of buttons (NSBTN_Ns) which can be selected by the number describes the number of the buttons which can be selected by the button number in the button groups. The number of the buttons can described 1 to 36 in the case of 1 of the button group, 1 to 18 in the case of 2 of the button group, and 1 to 12 in the case of 3 of the button group. The button start number (NSBTN_Ns) is commonly applied to each button group.

[0122] The forcedly selected button number (FSLBTN_N) describes the button number which is forcedly selected at the highlight start time (HLI_S_PTM). Even when the presentation starts during the highlight information validity period, the button number set at highlight information is to be selected. The button number can described 1 to 36 and 63 in the case of 1 of the button group, 1 to 18 and 63 in the case of 2 of the button group and 1 to 12 and 63 in the case of 3 of the button group. The forcedly selected button number (FSLBTN_N) is commonly applied to each button group. [0123] The forcedly activated button number (FACBTN_N) describes the button number which is forcedly activated at the end PTM of button select (BTN_SL_E_PTM). The button number can described

1 to 36 and 63 in the case of 1 of the button group, 1 to 18 and 63 in the case of 2 of the button group and 1 to 12 and 63 in the case of 3 of the button group. The forcedly activated button number (FACBTN_N) is commonly applied to each button group.

[0124] Button color information table (BTN_COLIT) 113B describes, as shown in FIG. 54, three button color information (BTN_COLI) 113D, 113E and 113F. The button color number (BTN_COLN) is allocated from "1" in the describing sequence of the button color information (BTN_COLI) 113D. As shown in FIG. 54, selection color information (SL_COLI) 113G and action color information (AC_COLI) 113H are described in the button color information (BTN_COLi) 113D. The color and contrast which are altered when the button is selected is described in the selection color information (SL_COLI) 113G. The color and contrast which are altered when the button is activated are described in the action color information (AC_COLI) 113H. The button selection status is the status in which the selection color is displayed. At the time of this status, the user can alter the highlighted button to other button. The button action status is the status in which the action color is displayed and the button command is executed. At the time of this status, the user is inhibited to after the highlighted button to the other button.

[0125] As shown in FIG. 55, emphasis pixel-2 selection color code, emphasis pixel-2 selection color code, pattern pixel selection color code, background pixel selection color code, emphasis pixel-2 selection contrast, emphasis pixel-1 selection contrast, pattern pixel selection contrast, background pixel selection contrast are described in the selection color information (SL_COLI) 113G.

[0126] As shown in FIG. 56, emphasis pixel-2 action color code, emphasis pixel-2 action color code, pattern pixel action color code, background pixel action color code, emphasis pixel-2 action contract, emphasis pixel-1 action contrast, pattern pixel action contrast, background pixel action contrast are described in the action color information (SL_COLI) 113G.

[0127] As shown in FIG. 57, 36 button information (BTNI) 113I are described in button information table (BTNIT) 113C. The button information (BTNI) 113i can be utilized as three modes of three mode groups grouped by 1 group mode in which all 36 button information (BTNI)113I become valid in the describing sequence of the button information table (BTNIT), 2 group mode in which 18 units of button information (BTNI) 113I are grouped and 3 group mode in which 12 units of button information (BTNI) 113I are grouped according to the described content of the number of button groups (BTNGR_Ns). Since the describing area of the button information (BTNI) 113I of each group mode is stationary, zero is all described in the areas in which valid button information (BTNI) 113I does not exist. The button number (BTNN) is allocated from "1" in the describing sequence of the button information (BTNI) 113I in each

button group.

[0128] The user number specifiable buttons in the button group are the numbers of the values described from BTN_#1 to NSBTN_Ns.

[0129] As shown in FIG. 57, the button information (BTNI) 113I describes button position information (BTN_POSI) 113J, adjacent button position information (AJBTN_POSI) 113K and button command (BTN_CMD) 113L.

[0130] As shown in FIG. 58, the color numbers (1 - 3) used for the buttons and the display rectangular area on the video display screen are described in the button position information (BTN_POSI) 113J. The button color number of the button (BTN_COLN), start X-coordinate of the rectangular area displayed by the button (start Xcoordinate), end X-coordinate of the rectangular area display by the button (end X-coordinate), start Y-coordinate of the rectangular area displayed by the button (start-Y-coordinate), end Y-coordinate of the rectangular area displayed by the button and auto action mode (auto action mode) are described in the button position information (BTN_POSI) 113J. The auto action mode describes whether an selection status is not maintained. or describes whether an selection status or activated state is maintained.

[0131] The adjacent button position information (AJBYN_POSI) 113K describes whether or not the button to be the button number disposed in four directions of upward, downward, rightward and leftward directions has an selection status. The button having no selection status is a button in which, when the button is moved to the button of the object, the button is immediately transferred to the action state without becoming the selection status. For example, the upper button number, the lower button number, the left button number and the right button number are described. It corresponds to the designation of the select key 5m.

[0132] The button command (BTN_CMD) 113L describes the command to be executed when the button is activated. A program for transferring, for example, to another selection screen or a program chain for reproducing a title is designated according to the command. [0133] The DSI data (DSI) 115 in the DSI packet 117 shown in FIG. 43 is the navigation data used to search for a VOB unit (VOBU) 85. The DSI data (DSI) 115 contains the DSI general information (DSI_GI), angle information (SML_AGLI), VOB unit search information (VOBU_SRI), and the synchronizing playback information (SYNCI), as shown in FIG. 59.

[0134] The DSI information (DSI_GI) contains information about the entire DSI data 115. Specifically, as shown in FIG. 60, the DSI general information (DSI_GI) contains the system clock reference for the NV pack (NV_PCK_SCR) 86. The system clock reference (NV_PCK_SCR) is stored in the system time clock (STC) 54A, 58A, 60A or 62A built in each section of FIG. 1. On the basis of the STC 54A, 58A, 60A, 62A, video, audio, and sub-picture packs are decoded at the video,

audio, and sub-picture decoders 58, 60, and 62 and the monitor 6 and the speaker 8 reproduce images and sound, respectively. The DSI general information (DSI_GI) contains the start address (NV_PCK_LBN) of the NV pack (NV_PCK) 86 containing the DSI data expressed by the number of logical sectors (RLSN), relative to the first logical sector in the VOB set (VOBS) 82 containing the DSI, and the address (VOBU_EA) of the last pack in the VOB unit (VOBU) 85 containing the DSI data expressed by the number of logical sectors (RLSN), relative to the first logical sector in the VOB unit (VOBU) 85.

[0135] Furthermore, the DSI general information (DSI_GI) contains the end address (VOBU_IP_EA) of the V pack (V_PCK) 88 containing the last data item for the first I picture in the VOB unit (VOBU) expressed by the number of logical sectors (RLSN), relative to the first logical sector in the VOB unit (VOBU) 85 containing the DSI data, and the identification number (VOBU_IP_EA) of the VOB 83 containing the DSI and the identification number (VOBU_C_IDN) of the cell 84 in which the DSI data is recorded.

[0136] Like the angle information (NSML_AGLI) in PCI 113, the angle information (SML_AGLI) contains as many start addresses (SML_AGL_C_DSTA) of angle cells at jump destinations as the number of angles, as shown in FIG. 61. Each of the start addresses is represented by a logical sector relative to the logical sector in the NV pack 86 in which the DSI 115 is recorded. When the angle is changed on the basis of the angle information (SML_AGLI), the angle information (SML_AGLI) contains the start address of the cell 84 in another angle block after the playback time of the VOBU 85 in which the DSI data 115 is recorded, as shown in FIG. 62.

[0137] When the angle information (SML_AGLI) in DSI data 113 is used, the angle is changed, cell by cell, whereas PCI can be changed on the basis of a video object unit (VOBU) 85. Namely, consecutive changes of the angle are described in the angle information (SML_AGLI) in DSI data 115, whereas discontinuous changes of the angle are described in the angle information (SML_AGLI) in PCI data 113. In the above example of baseball, the angle is changed as follows. It is assumed that angle cell #j (AGL_C#j) 84 contains a stream of video data for a series of scenes where the pitcher throws a ball, the batter hits the ball, and the ball lands in the stands, filmed from the infield, and that angle cell #1 contains a stream of video data for a series of the same scenes filmed from the outfield. Furthermore, angle cell #9 is assumed to be a stream of video data as to how the team to which the batter belongs looks in connection with a series of the above scenes. When the user is viewing angle cell #j (AGL_C#j) and changes to angle cell #1 the instant the batter made a hit, that is, changes to a scene from the outfield the instant the batter hit the ball, he or she can switch to consecutive scenes where the ball is flying closer to the outfield after the batter hit the ball. Furthermore, when the user is viewing angle cell #j (AGL_C#i) and changes to angle cell #9 the moment the ball landed in the stands, that is, changes to an angle at which how the batter's team looks is shown on the screen, the team cheering for the home run and the baseball manager's expression are displayed on the screen. When the angle information (NSML_AGLI) in PCI data 113 and the angle information (SML_AGLI) in DSI data 115 are used, it is apparent that a different scene is played back.

[0138] The search information (VOBU_SI) in VOBU 85 contains information used to identify the first address in a cell 84 as shown in FIG. 63. Specifically, the search information (VOBU_SI) in VOBU 85 contains the start addresses (A_FWDn) of +1 to +20, +60, +120, and +240 VOB units (VOBU) 85 as forward addresses (FWDANn) in the order of playback on the basis of the VOB unit (VOBU) 85 containing the DSI 115 as shown in FIG. 35A, the forward addresses being expressed by the number of logical sectors, relative to the first logical sector in the VOB unit.

[0139] Each forward address (FWDANn) contains 32 bits as shown in FIG. 64. Bit number 29 (b29) to bit number 0 (b0) are assigned to its address, for example, the address of forward address 10 (FWDA10). At the head of the forward address (FWDANn), a flag (V_FWD_Exist1) indicating whether the video data exists in the video object unit (VOBU) 85 corresponding to the forward address (FWDANn) and a flag (V_FWD_Exist2) indicating whether the video data exists in the video object unit between the current address and the forward address (FWDAn). Specifically, VFWD_Exist1 corresponds to bit number (b31). When this flag is at 0, this means that there is no video data in the video object unit (VOBU) specified by the address (FWDANn) written in bit number 29 to bit number 0. When this flag is at 1, this means that there is video data in the video object unit (VOBU) specified by the forward address (FWDANn) written in bit number 29 to bit number 0. For example, if forward address 10 (FWD10) has video data, the flag will be up (1) in V_FWD_Exist1 of the 31st bit. If the address has no video data, the flag will be down (0) in V_FWD_Exist1 of the 31st bit. Furthermore, V_FWD_Exist2 corresponds to bit number (b30). When this flag is at 0, this means that there is video data in none of the video object units between the current address and the forwarding address (FWDAn). Specifically, V_FWD_Exixt 1 corresponds to bit number (b31). When this flag is at 0, this means that there is no video data in the video object units (VOBU) 85 between the forward address (FWDANn) written in bit number 29 to bit number 0 and current address. When this flag is at 1, this means that there is video data in at least one of the video object units (VOBU) 85 between them. For example, if there is video data in a plurality of video object units 85 between forward address 1 and forward address 9, the flag will be up (1) in V_FWD_Exist2 of the 30th bit. If the address has no video data, the flag will

be down (0) in V_FWD_Exist2 of the 30th bit. [0140] Furthermore, the VOBU search information (VOBU_SI) contains the start addresses (A_BWDn) of -1 to -20, -60, -120, and -240 VOB units (VOBU) 85 as backward addresses (BWDA) in the reverse order of playback on the basis of the VOB unit (VOBU) 85 containing the DSI as shown in FIG. 63, the backward addresses being expressed by the number of logical sectors, relative to the first logical sector in the VOB unit 85. [0141] Each backward address (FWDANn) contains 32 bits as shown in FIG. 65. Bit number 29 (b29) to bit number 0 (b0) are assigned to its address, for example, the address of backward address 10 (BWDA10). At the head of the backward address (BWDANn), a flag (V_BWD_Exist1) indicating whether the video data exists in the video object unit (VOBU) 85 corresponding to the backward address (BWDANn) and a flag (V_BWD_Exist2) indicating whether the video data exists in the video object units between the backward address (BWDAn) and the current address. Specifically, V_BWD_Exist1 corresponds to bit number (b31). When this flag is at 0, this means that there is no video data in the video object unit (VOBU) 85 specified by the address (BWDANn) written in bit number 29 to bit number 0. When this flag is at 1, this means that there is video data in the video object unit (VOBU) specified by the address (BWDANn) written in bit number 29 to bit number 0. For example, if backward address 10 (BWDA10) has video data, the flag will be up (1) in V_BWD_Exist1 of the 31st bit. If the address has no video data, the flag will be down (0) in V_BWD_Exist1 of the 31st bit. Furthermore, V_BWD_Exist2 corresponds to bit number (b30). When this flag is at 0, this means that there is video data in none of the video object units between the backward address (BWDANn) written in bit number 29 to bit number 0 and the current address. When this flag is at 1, this means that there is video data in at least one of the video object units (VOBU) 85. For example, if there is video data in video object units between the backward address 10 (BWDA10) and the current address 0, the flag will be up (1) in V_BWD_Exist2 of the 30th bit. If the address has no video data, the flag will be down (0) in V_BWD_Exist2 of the 30th bit.

[0142] The synchronizing information (SYNCI) contains address information on the sub-pictures and audio data reproduced in synchronization with the playback start time of the video data in the VOB unit (VOBU) 85 containing the DSI data. Specifically, as shown in FIG. 66, the start address (A_SYNCA) of the target audio pack (A_PCK) is expressed by the number of logical sectors (RLSN), relative to the NV pack (NV_PCK) 86 in which DSI data 115 is recorded. When there are more than one audio stream (8 audio streams maximum), as many pieces of the synchronizing information (SYNCI) as there are audio streams are written. Furthermore, the synchronizing information (SYNCI) contains the address (SP_SYNCA) of the NV pack (NV_PCK) 86 of the VOB unit (VOBU) 85 containing the target audio pack

(SP_PCK) 91, the address being expressed by the number of logical sectors (RLSN), relative to the NV pack (NV_PCK) 86 in which DSI 115 is recorded. When there are more than one sub-picture stream (32 sub-picture streams maximum), as many pieces of the synchronizing information (SYNCI) as there are sub-picture streams are written.

[0143] A sub-picture unit composed of sub-picture data of a plurality of sub-picture packets will be explained by referring to FIG. 67. The sub-picture unit as data (e.g., caption) of still pictures corresponding to several tens of screens can be recorded in 1 GOP. The sub-picture unit is composed of a sub-picture unit header (SPUH), a pixel data formed of run-length data (PXD) and display control sequence table (DCSQT).

[0144] As shown in FIG. 68, size of sub-picture unit (SPDSZ) and start address of display control sequence table (SPDCSQTA) are described in the sub-picture unit header (SPUH).

[0145] As shown in FIG. 69, display control sequence (DCSQ) is described in a lapse time sequence in the display control sequence table (DCSQT).

[0146] As shown in FIG. 70, start address of following display control sequence (SPNDCSQA) and at least one of display control command (SPDCCMD) are described in each display control sequence (DCSQ).

[0147] The display control command (SPDCCMD) is composed of set command of forcedly display start timing of pixel data (FSTA_DSP), set command of display start timing of pixel data (STA_DSP), set command of display end timing of pixel data (STP_DSP), set command of color code of pixel data (SET_COLOR), set command of contrast ratio of pixel data and video (SET_CONTR), set command of display area of pixel data (SET_DAREA), set command of display start address of pixel data (SET_DSPXA), set command of color change and contrast change of pixel data (CHG_COLCON), and end command of display control command (CMD_END).

[0148] The command (STA_DSP) is a command for designating the display start of the sub-picture data, and described by offset PTM from PTM described in the sub-picture packet including the sub-picture unit header (start PTM). The command (STP_DSP) is a command for designating the display stop of the sub-picture data, and described in the offset PTM from the PTM described in the sub-picture packet including the sub-picture unit header (stop PTM).

[0149] This start PTM and stop PTM are delayed by arbitrary predetermined time from the PTM of the video data and the audio data regenerated in the same time zone and set.

[0150] The system processor section 54 shown in FIG. 1 has a packet transmit dispose section 200 for determining the type of the packet and transmitting the data in the packet to each decoder. This packet transmit dispose section 200 is composed, as shown in FIG. 71, a memory interface section (memory I/F section) 191, a

stuffing length detect section 192, a pack header end address calculation section 193, a pack classification judgement section 194, a packet data transmit control section 195, and decoder interface section (decoder I/F section) 196.

[0151] The memory I/F section 191 outputs pack data from the data FIAM section 56 to the stuffing length detect section 192, the pack classification judgement section 194, the packet data transmit control section 195 and the decoder I/F section 196 via a data bus.

[0152] The stuffing length detect section 192 detects how many byte the stuffing length in the pack header 120 in the pack data supplied from the memory I/F section 191 contains, and outputs the detected result to the pack header end address calculation section 193.

[0153] The pack header end address calculation section 193 calculates the pack header end address according to the stuffing length supplied from the stuffing length detect section 192, and outputs the calculated result to the pack classification judgement section 194 and the packet data transmit control section 195.

[0154] The pack classification judgement section 194 judges any of the video pack 88, the audio pack 91, the sub-picture pack 90 and the NV pack 86 according to the content of the 4-byte data supplied next to the address of the pack data supplied from the memory I/F section 191 in accordance with the pack header end address supplied from the pack header end address calculation section 193, and outputs the judged result to the packet data transmit control section 195.

[0155] The packet data transmit control section 195 judges the destination and the packet start address in response to the pack header end address supplied from the pack header end address calculation section 193 and the judged result of the pack classification supplied from the pack classification judgement section 194, and further judges the packet length in the packet header 121 of the pack data supplied. Further, the packet data transmit control section 195 supplies a signal indicating the destination as a transmit control signal to the decoder I/F section 196, and supplies the packet end address from the packet start address to the memory I/F section 191.

[0156] The decoder I/F section 196 outputs the video data, the audio data, the sub-picture data as packet data including the packet header 121 supplied under the control of the packet data transmit control section 195 from the memory I/F section 191 to corresponding decoder sections 58, 60, 62, or outputs navigation data and computer data as packet data to the data RAM section 56. [0157] The packet transmit dispose section 200 will be explained.

[0158] The pack data read from the data RAM section 56 is supplied to the stuffing length detect section 192, the pack classification judgement section 194, the packet data transmit control section 195 and the decoder I/F section 196 via the memory I/F section 191.

[0159] Thus, the stuffing length is detected by the

stuffing length detect section 192, and the data indicating the stuffing length is output to the pack header end address calculation section 193.

[0160] The pack header end address calculation section 193 calculates the pack header end address according to the stuffing length supplied, and supplies the pack header end address to the pack classification judgement section 194 and the packet data transmit control section 195.

[0161] The pack classification judgement section 194 judges any of the NV pack 86, the video pack 88, the audio pack 91 of Dolby AC3, the audio pack 91 of linear PCM and the sub-picture pack 90 according to the content of the data of 4 to 6 byte supplied next to the address in accordance with the supplied pack header end address, and supplies the judged result to the packet data transmit control section 195.

[0162] Specifically, when the stream ID of 1 byte indicating the private stream 2 is supplied, it is judged as the NV pack 86. The video pack 88 is judged according to the stream ID of 1 byte indicating the video stream. Any of the audio pack 91 of the Dolby AC3, the audio pack 91 and the sub-picture pack 90 is judged according to the stream ID of one byte indicating the private stream 1

[0163] When the stream ID is the private stream 1, the audio pack of the linear PCM, the audio pack of the Dolby AC3 or the sub-picture stream is judged according to the substream ID continued to the packet header 121, and its stream number is judged.

[0164] The packet data transmit control section 195 judges the destination and the packet start address in response to the judged result of the supplied pack classification and the pack header end address, and further judges the packet length in the packet header 121 of the supplied pack data. Thus, the packet data transmit control section 195 supplies the signal indicating the destination as the transmit control signal to the decoder I/F section 196, and supplies the packet end address from the packet start address to the memory I/F section 191.

[0165] Therefore, the substantially valid packet data is supplied from the memory I/F section 191 to the decoder I/F section 196 via the data bus, and then transferred to the decoders 58, 60, 62 or the data FAM section 56 as the destination.

[0166] Specifically, the packet data of the video data is transferred to the video decoder section 58, the packet data of the audio data is transferred to the audio decoder section 60, and the packet data of the sub-picture data is transferred to the sub-picture decoder section 62.

[0167] In this case, since the pack data has a constant length, the storage state of the data RAM section 56 and hence the start address has a constant interval. Accordingly, the head of the pack data in the data RAM section 56 is always stored by the address of the same interval, and the pack data is not address managed, but only the pack number may be managed.

[0168] In the step of judging the classification of the data, in the case of the PCI data and the DSI data as the NV data indicating the reproduced position of the video data, the NV data is not transferred to the decoder, but stored in the data RAM section 56. The NV data is referred according to the system CPU section 50, if necessary, and utilized when the specific reproduction of the video data is executed. In this case, the PCI data and the DSI data are identified according to the substream ID imparted to the PCI data and the DSI data.

[0169] When the reproduction of one cell is finished,

[0169] When the reproduction of one cell is finished, cell information to be reproduced next is obtained from the reproducing sequence information in the program chain data, and similarly continuously reproduced.

[0170] The above-described sub-picture decoder section 62 shown in FIG. 1 has a decoder 62B for decoding the sub-picture data supplied from the system processor section 54, and a highlight processor section 62C for highlighting the sub-picture data after decoding by the decoder 62B. The highlight processor section 62C highlights in response to the X-, Y-coordinate values indicating the rectangular area for displaying the selection item as highlight information supplied from the system CPU section 50, color code, highlight color/contrast value.

[0171] The decoder 62B expands the pixel data compressed by the run-length compression as the sub-picture data in response to the highlight pixel, the pattern pixel, the background pixel, etc.

30 [0172] The highlight processor section 62C consists of, as shown in FIG. 72, a highlight area setting/judgement section 180, a default color/contrast setter 818, a highlight color/contrast setter 182, a selector 183 and a color pallet register 184.

5 [0173] The highlight area setting/judgement section 180 judges the designated highlight area according to the X-, Y-coordinate values indicating the rectangular area (designated highlight area) representing an selection item by the system CPU section 50 and the X-, Ycoordinate values obtained by raster scanning, i.e., pixel data X-, Y-coordinate values, outputs a switching signal indicating a highlight zone, and supplies its output to the selector 183.

[0174] The default color/contrast setter 181 sets the display color and the contrast of the default of each pixel included in the sub-picture data.

[0175] The highlight color/contrast setter 182 sets the highlight color and contrast values by the system CPU 50.

[0176] The selector 183 selectively outputs the display color and contrast of the default from the default color/contrast setter 181 to the color pallet register 184, or outputs the color and the contrast at the time of the highlight from the highlight color/contrast setter 182 to the color pallet register 184.

[0177] The color pallet register 184 outputs the signal responsive to the color and the contrast supplied from the selector 183.

50

[0178] Therefore, when out of the highlight area is judged by the highlight area setting/judgement section 180, the selector 183 receives the display color and the contrast of the default of each pixel data from the default color/contrast setter 181, outputs them to the color pallet register 184, and outputs the color signal from the color pallet register 184 to a D/A and data reproducing section 64.

[0179] When the highlight area is judged by the highlight area setting/judgement section 180, the selector 183 receives the display color and the contrast at the time of the highlight of each pixel data from the highlight color/contrast setter 182, outputs it the the color pallet register 184, and outputs the color signal from the color pallet register 184 to the D/A and data reproducing section 64

[0180] The reproducing process of the menu will be explained by using an optical disk 10 having a logic format shown in FIGS. 6 to 66 by referring to FIG. 1. In FIG. 1, arrows with solid lines between the blocks indicate data buses, and arrows with broken lines indicate a control bus.

[0181] In the optical disk apparatus shown in FIG. 1, when a power source is turned on and the optical disk 10 is inserted, the system CPU 50 reads the initial program from the system ROM and RAM section 52, and operates the disk drive section 30. Accordingly, the disk drive section 30 starts reading from a lead-in area 27, and reads volume and file structure area for specifying the volume and the file structure according to ISO-9660 subsequently to the lead-in area 27. Specifically, the system CPU 50 applies a read command to the disk drive section 30 to read the volume and the file structure area 70 recorded at a predetermined position of the optical disk 10 set to the disk drive section 30, reads the contents of the volume and file structure area 70, and temporarily stores the contents in the data RAM section 56 via the system processor section 56. The system CPU 50 extracts information such as recording position, recording capacity, size, etc., and management information as necessary information for the other management via a pass table and directory record stored in the data RAM section 56, transfers them and stores them at a predetermined position the system ROM and RAM section 52.

[0182] Then, the system CPU section 50 acquires a video manager 71 composed of a plurality of files starting from "0" of the file number by referring to the information of the recording position and the recording capacity of each file from the system ROM and RAM section 52. Specifically, the system CPU section 50 applies the read command to the disk drive section 30 by referring to the information of the recording position and the recording capacity of each file obtained from the system ROM and RAM section 52, obtains the position and the size of the plurality files for composing the video manager 71 present on a route directory, reads the video manager 71, and stores them in the data RAM section

56 via the system processor section 54.

[0183] Thereafter, the system CPU section 50 searches, as shown in FIGS. 73 and 74, the number of titles in the optical disk 10, the number of chapters of each title (number of programs), the number of audio streams of each title, the language of the audio stream, the number of sub-picture streams of each title and the language of the sub-picture stream.

[0184] Specifically, the system CPU section 50 searches the title search pointer table (TT_SRPT) 79 of the second table of the video manager 71 (Step S51). The system CPU 50 acquires the total number of the titles in the optical disk 10 according to the number of the title search pointers described in the information of the title search pointer table (TT_SRPTI) 92 in the title search pointer table (TT_SRPT) 79 (Step S52).

[0185] The system CPU acquires the number of chapters (number of programs) of each title according to the number of part-of-titles (PTT_Ns) as the number of chapters (number of programs) described in each title search pointer (TT_SRP) 93 in the title search pointer table (TT_SRPT) 79 (Step S53).

[0186] The system CPU 50 searches the video title set part-of-title search pointer table (VTS_PTT_SRPT) 99 in the video title set information (VTSI) 94 of the first table of the video title set 72 described in each title search pointer (TT SRP) 93 (Step S54). The system CPU 50 acquires the number of audio streams of each title according to the number of the audio streams described in the table (VTS_PTT_SRPT) 99 of each video title set 72, and acquires the number of the sub-picture streams of each title according to the number of the sub-picture streams (VTS_SPST_Ns) (Step S55).

[0187] The system CPU 50 acquires the language of the audio streams of each title according to the language code of the audio of each audio stream described in the audio stream attribute (VTS_AST_ATR) of the table (VTS_PTT_SRPT) 99 of each video title set 72, and acquires the language of the audio streams of each title (Step S56).

[0188] The system CPU section 50 acquires the subpicture streams of each title according to the language code of the sub-picture of the sub-picture streams described in the sub-picture stream attribute (VTS_SPST_ATR) of the table (VTS_PTT_SRPT) 99 of each video title set 72 (Step S57).

[0189] The system CPU section 50 also searches the video manager menu PGCI unit table (VMGM_PGCI_UT) 81 of the fourth table in the video manager information (VMGM) 75 of the video manager 71 (Step S58). By this search, the video manager menu PGCI unit search pointer (VMGM)_LU_SRP) 81B describing the same language code as the language set to the reproducing apparatus (Step S59).

[0190] When the video manager menu PGCI unit search pointer (VMGM_LU_SRP) 81B describing the same language code is searched, the system CPU section 50 searches the menu ID described together with

the category (VMGM_PGC_CAT) of the program chain of each video manager menu of the video manager menu PGC information search pointer (VMGM)_PGCI_SRP) 81E in the video manager menu language unit (VMGM)_LU) 81C corresponding to the pointer (VMGM_LU_SRP) 81B (Step S60), judges whether or not the main menu as the route menu by the search exists, and judges whether or not the title menu (video title set menu) exists (Step S61).

[0191] When the main menu exists, the system CPU section 50 reads the contents of the corresponding VM-GM program chain information (VMGM_PGCI_SA) by the start address of the VMGM program chain information (VMGM_PGCI) 81F described in one of the video manager menu PGC information search pointer (VMGM_PGCI_SRP) 81E describing the menu ID of the route menu, and stores the start address (C_FVOBU_SA) of the head video object unit (VOBU) 85 described in the VMGM program chain information (VMGM_PGCI) 81F in the memory table 56A as the start address of the main menu (Step S62).

[0192] When the title menu exists, the system CPU section 50 reads the contents of the corresponding VM-GM program chain information (VMGM_PGCI) 81F according to the parameter (VMGM_PGCI_SA) by the start address of the VMGM program chain information (VMGM_PGCI) 81F described in one of the video manager menu PGC information search pointer (VMGM_PGCI_SRP) 81E describing the menu ID of the title menu, and stores the start address (C_FVOBU_SA) of the head video object chain information (VOBU) 85 described in the corresponding VMGM program chain information (VMGM_PGCI) 81F in the memory table 56A as the start address of the title menu (Step S63). [0193] The system CPU section 50 searches the vid-

[0193] The system CPU section 50 searches the video title set menu PGCI unit table (VTSM_PGCI_UT) 111 in the video title set information (VTSI) 94 of the first table of each video title set 72 (Step S64). By this search the video title set menu PGCI unit search pointer (VTSM_LU_SRP) 111B describing the same language code as the language set to the reproducing apparatus (Step S65).

[0194] When the video title set menu PGCI unit search pointer (VTSM_LU_SRP) 111B describing the same language code is searched, the system CPU section 50 searches the menu ID described together with the category (VTSM_PGC_CAT) of the program chain of each video title set menu of the video title set menu PGC information search pointer (VTSM_PGCI_SRP) 111E in the video title set menu language unit (VTSM_LU) 111C corresponding to the pointer (VTSM_LU_SRP) 111B (Step S66), judges whether or not the sub-picture menu, the audio menu, the angle menu, the chapter (program) menu exist by this search, and judges whether or not the title menu exists (Step S67).

[0195] When these menus exist, the system CPU section 50 reads the contents of the corresponding VTSM

program chain information (VTSM_PGCI) 111F by the parameter (VTSM_PGCI_SA) by the start address of the VTSM program chain information (VTSM_PGCI) 111F described in one of the video title set menu PGC information search pointer (VTSM_PGCI_SRP) 111E describing the menu ID, and stores the start address (C_FVOBU_SA) of the head video object unit (VOBU) 85 described in the VTSM program chain information (VTSM_PGCI) 111F in the memory table 56A as the start address of the corresponding menu (Step S68).

[0196] As described above, the start addresses of the sub-picture menu, the audio menu, the angle menu, the chapter (program) menu of each video title set 72 are stored in the memory table 56A.

[0197] As a result, as shown in FIG. 75, the start address corresponding to each menu corresponding to the language set to the reproducing apparatus is stored in the memory table 56A.

[0198] Therefore, when the menu key 5k of the remote controller 5 is closed, the system CPU section 50 judges the reproduction of the main menu, and judges whether or not the main menu exists. As the result of the judgement, if the presence of the main menu is judged, the system CPU section 50 reads the start address (C_FVOBU_SA) of the head video object unit (VOBU) 85 stored corresponding to the main menu of the memory table 56A, reads the data of the main menu corresponding to the address from the area corresponding to the video object set (VMGM_VOBS) 76 for the video manager menu (VMGM) 75 of the optical disk 10, and reproduces it. The reproduced data is input to the data RAM section 56 via the system processor section 54. The data cell 84 is applied to the video decoder section 58, the audio decoder section 60 and the sub-picture decoder section 62 based on the reproducing time information, decoded, signal-converted by the D/A and data reproducing section 64, and the image of the main menu as shown in FIG. 76 on the monitor 6, and the voice is reproduced from the speaker 8.

[0199] When the title key 51 of the remote controller 5 is closed, or the "1" key corresponding to the title is closed while the main menu is reproduced, or at the time of normal reproducing, the system CPU section 50 judges the reproduction of the title menu, and judges whether or not the title menu exists. As a result of the judgement, if the presence of the title is judged, the system section 50 reads the start address (C_FVOBU_SA) of the head video object unit (VOBU) 85 stored corresponding to the title menu of the memory table 56A, reads the data of the title menu corresponding to the address from the area corresponding to the video object set (VMGM_VOBS) 76 for the video manager menu (VMGM) 75 of the optical disk 10, and reproduces it. The reproduced data is input to the data RAM section 56 via the system processor section

[0200] 54. The data cell 84 is applied to the video decoder section 58, the audio decoder section 60 and the sub-picture decoder section 62 based on the reproduc-

ing time information, decoded, signal-converted by the D/A and data reproducing section 64, and the image of the title menu as shown in FIG. 77A on the monitor 6 is reproduced and the voice is reproduced from the speaker 8.

[0201] When the "2" key corresponding to the chapter is closed while the main menu is reproduced, or the title is selected by the normal reproduction, and then the system CPU section 50 judges the reproduction of the chapter menu corresponding to the title selected at present, and judges whether or not the chapter menu exists. As the result of the judgement, if the presence of the chapter menu is judged, the system CPU section 50 reads the start address (C_FVOBU_SA) of the head video object unit (VOBU) 84 stored corresponding to the chapter menu of the memory table 56A, reads the data of the chapter menu corresponding to the address from the area corresponding to the video object set (VTSM VOBS) 96 for the video title set menu (VTSM) of the optical disk 10, and reproduces it. The reproduced data is input to the data RAM section 56 via the system processor section 54. The data cell 84 is applied to the video decoder section 58, the audio decoder section 60 and the sub-picture decoder section 62 based on the reproducing time information, decoded, and signal-converted by the D/A and data reproducing section 64, and the image of the chapter menu as shown in FIG. 77B on the monitor 6 is reproduced, and the voice is reproduced from the speaker 8.

[0202] When the "3" key corresponding to the audio is closed while the main menu is reproduced, or the title is selected by the normal reproduction, and then the system CPU section 50 judges the reproduction of the audio menu corresponding to the title selected at present, and judges whether or not the audio menu exists. As the result of the judgement, if the presence of the audio menu is judged, the system CPU section 50 reads the start address (C_FVOBU_SA) of the head video object unit (VOBU) 84 stored corresponding to the audio menu of the memory table 56A, reads the data of the audio menu corresponding to the address from the area corresponding to the video object set (VTSM_VOBS) 96 for the video title set menu (VTSM) of the optical disk 10, and reproduces it. The reproduced data is input to the data RAM section 56 via the system processor section 54. The data cell 84 is applied to the video decoder section 58, the audio decoder section 60 and the sub-picture decoder section 62 based on the reproducing time information, decoded, and signal-converted by the D/A and data reproducing section 64, and the image of the chapter menu as shown in FIG. 77C on the monitor 6 is reproduced, and the voice is reproduced from the speaker 8.

[0203] When the "4" key corresponding to the sub-picture is closed while the main menu is reproduced, or the title is selected by the normal reproduction, and then the system CPU section 50 judges the reproduction of the sub-picture menu corresponding to the title selected at

present, and judges whether or not the sub-picture menu exists. As the result of the judgement, if the presence of the sub-picture menu is judged, the system CPU section 50 reads the start address (C_FVOBU_SA) of the head video object unit (VOBU) 84 stored corresponding to the sub-picture menu of the memory table 56A, reads the data of the sub-picture menu corresponding to the address from the area corresponding to the video object set (VTSM_VOBS) 96 for the video title set menu (VTSM) of the optical disk 10, and reproduces it. The reproduced data is input to the data RAM section 56 via the system processor section 54. The data cell 84 is applied to the video decoder section 58, the audio decoder section 60 and the sub-picture decoder section 62 based on the reproducing time information, decoded, and signal-converted by the D/A and data reproducing section 64, and the image of the chapter menu as shown in FIG. 77D on the monitor 6 is reproduced, and the voice is reproduced from the speaker 8.

[0204] When the "5" key corresponding to the angle is closed while the main menu is reproduced, or the title is selected by the normal reproduction, and then the system CPU section 50 judges the reproduction of the angle menu corresponding to the title selected at present, and judges whether or not the angle menu exists. As the result of the judgement, if the presence of the angle menu is judged, the system CPU section 50 reads the start address (C_FVOBU_SA) of the head video object unit (VOBU) 84 stored corresponding to the angle menu of the memory table 56A, reads the data of the angle menu corresponding to the address from the area corresponding to the video object set (VTSM_VOBS) 96 for the video title set menu (VTSM) of the optical disk 10, and reproduces it. The reproduced data is input to the data RAM section 56 via the system processor section 54. The data cell 84 is applied to the video decoder section 58, the audio decoder section 60 and the sub-picture decoder section 62 based on the reproducing time information, decoded, and signal-converted by the D/A and data reproducing section 64, and the image of the chapter menu as shown in FIG. 77E is reproduced on the monitor 6, and the voice is reproduced from the speaker 8.

[0205] Therefore, since the system CPU section 50 can store the position data of the each acquired menu in the menu table 56A in the data RAM 56, necessary menu can be easily reproduced by using the same.

[0206] The system CPU 50 sets the parameters for reproducing the video manager menu to each video decoder section 58, each audio decoder section 60 and each sub-picture decoder section 62 based on the attribute information acquired for the number of streams of the video, the audio and the sub-picture and the attribute information for the video manager menu described in the information management table (VMGI_MAT) 78 of the video manager (VMGI) 75.

[0207] The process of the case of reproducing the above-described menu will be described in detail by re-

ferring to the flowchart shown in FIG. 78.

[0208] The start address of the initial VOBU in the cell as the start address corresponding to the menu to be reproduced and the PGC number, i.e., the cell number are stored in the system ROM and RAM section 52 (Step S1).

[0209] When the preparation for reading the video title set is arranged, a read command is applied from the system CPU section 50 to the disk drive section 30, and the optical disk 10 is sought by the disk drive section 30 based on the above-described start address (Step S2). The cells regarding the designated program chain (PGC) are sequentially read from the optical disk 10 according to the read command, and sent to the data RAM section 56 via the system CPU section 50 and the system processor section 54 (Step S3). The sent data is stored as the pack from the navigation pack 85 of the header pack of the video object unit (VOBU) 85 as shown in FIG. 8 in the data RAM section 56. Thereafter, the packet data of the video pack 88, the audio pack 91 and the sub-picture pack 90 of the video object unit (VO-BU) are transferred by the packet transmit dispose section 200 to the video decoder section 58, the audio decoder section 60 and the sub-picture decoder section 62, and the PCi data and the DSi data as the packet data of the navigation pack 86 are transmitted to the data RAM section 56 (Step S4).

[0210] In this case, the system CPU section 50 checks the highlight information (the contents of FIGS. 49 to 58 described above) corresponding to the display button according to the PCI data stored in the data RAM section 56 (Step S5).

[0211] Specifically, the system CPU section 50 judges the rectangular area of the button at each button, the display color and the contrast value of the pixel data before selecting in the case that the button is the selection button, the display color and the contrast value of the pixel data after selecting, the display color and the contrast value of the pixel data before activation in the case that the button is the action button, and the display color and the contrast value of the pixel data after the activation, and stores them in the data RAM section 56. As the pixel data, highlight pixels 1, 2 pattern pixel, background pixel are prepared, and the corresponding display colors and the contrast values are prepared.

[0212] As described above, the system CPU section 50 outputs X- and Y-coordinate values indicating the rectangular area corresponding to each button stored in the data RAM section 56 to the highlight area setting/judgement section 180 of the highlight processor section 62C, and outputs the highlight color and the contrast value responsive to the highlight information corresponding to the scanning position to the highlight color/contrast setter 182 of the highlight processor section 62C (Step S6).

[0213] Thus, the highlight area setting/judgement section 180 judges the designated highlight area according to the X-, Y-coordinate values indicating the rec-

tangular area (designated highlight area) displayed by the selection item by the system CPU section 50 and the X-and Y-coordinate values obtained the raster scanning, i.e., pixel data X-, Y-coordinate values, and supplies the switching signal indicating the highlight section to the selector 183 (Step S7)

[0214] The highlight color/contrast setter 182 sets the highlight color and contrast value by the system CPU section 50 in response to the X- and Y-coordinate values obtained by raster scanning (Step S8).

[0215] As described above, the selector 183 selectively outputs the display color and contrast of the default from the default color/contrast setter 181 to the color pallet register 181 in response to the switching signal from the highlight area setting/judgement section 180 or outputs the color and the contrast at the time of the highlight from the highlight color/contrast setter 182 to the color pallet register 184 (Step S9).

[0216] The color pallet register 184 outputs the signal responsive to the color and the contrast supplied from the selector 183 (Step S10).

[0217] As a result, when out of the highlight area is judged by the highlight area setting/judgement section 180, the selector 183 receives the display color and the contrast of the default of each pixel from the default color/contrast setter 181, outputs them to the color pallet register 184 and outputs the color signal from the color pallet register 184 to the D/A and data reproducing section 64.

90 [0218] When the highlight area is judged by the highlight area setting/judgement section 180, the selector 183 receives the display color and the contrast at the time of the highlight of each pixel data from the highlight color/contrast setter 182, outputs them to the color pallet register 184, and outputs the color signal from the color pallet register 184 to the D/A and data reproducing section 64.

[0219] As a result, the sub-picture data of the pixel data after decoding is altered at the color and the contrast in response to the highlight information, and supplied to the image mixing section 64A (refer to FIG. 1) in the D/A and data reproducing section 64 shown in FIG. 1.

[0220] Therefore, the video data decoded by the video decoder section 58 is supplied to the image mixing section 64A in the D/A and data reproducing section 64, decoded by the decoder 62B in the sub-picture decoder section 62, and supplied to the image mixing section 64A in the D/A and data reproducing section 64 via the highlight processor section 62C. Thus, the video data and the sub-picture data are mixed by the image mixing section 64A, and the mixing picture is displayed on the monitor section 6.

[0221] For instance, the sub-picture image formed of the button as the selection item shown in FIG. 79B is combined with the video as the background image shown in FIG. 79A to the image highlighted according to the highlight information indicated by FIG. 79C, thereby acquiring the mixing picture indicated in FIG. 79D. In this case, the background of the selection item is displayed by blue, and the character of the selection item is displayed by black.

[0222] The audio data decoded by the audio decoder section 60 is supplied to the D/A and data reproducing section 64, and the menu or the voice corresponding to the video is reproduced from the speaker 8.

[0223] When the selection item highlight displayed by the key/display section 4 of the remote controller 5 is selected in the menu display state, the system CPU section 50 outputs the highlight color and contrast value corresponding after selecting to the highlight color/contrast setter 182 of the highlight processor section 62C. As a result, the highlight color and contrast of the selection item are altered. In this case, the background of the selection item is displayed by red, and the character of the selection item is displayed by white.

[0224] The other example of the menu image will be explained by referring to FIGS. 80A to 80E.

[0225] Specifically, when the video data shown by in FIG. 80A and the sub-picture data shown by in FIG. 80B are supplied, the menu image before selecting is displayed as shown in FIG. 80C so that the characters of the selection item for "1" and "2" are display with black and the background is displayed gray.

[0226] Thereafter, when the selection item of "1" is selected by the key/display section 4 or the remote controller 5, the system CPU 50 sets the X-, Y-coordinates indicating the rectangular area for the selection item of "1" read from the PCI data and the altered content (highlight information) of the color or contrast of the pixel to the highlight processor section 62C.

[0227] As described above, the sub-picture data decoded by the decoder 62B of the sub-picture decoder section 62 is altered at the highlight color and contrast value corresponding to the selection item of "1" by the highlight processor 62C, and supplied to the image mixing section 64A in the D/A and data reproducing section 64. As a result, the video data and the sub-picture data are mixed by the image mixing section 64A, and the mixed image, i.e., the display content of the selection item of "1" of the selection item is altered as shown in FIG. 80D to the menu image, which is displayed on the monitor section 6. For instance, the part of the character of the selection item of "1" is displayed with white and the background is displayed with red.

[0228] Thereafter, when the selection item of "2" is selected by the key/display section 4 or the remote controller 5, the system CPU 50 sets the X-, Y-coordinates indicating the rectangular area for the selection item of "1" read from the PCI data and the altered content (highlight information) of the color or contrast of the pixel to the highlight processor section 62C.

[0229] As described above, the sub-picture data decoded by the decoder 62B of the sub-picture decoder section 62 is altered at the highlight color and contrast value corresponding to the selection item of "1" by the

highlight processor 62C, and supplied to the image mixing section 64A in the D/A and data reproducing section 64. As a result, the video data and the sub-picture data are mixed by the image mixing section 64A, and the mixed image, i.e., the display content of the selection item of "2" of the selection item is altered as shown in FIG. 80E to the menu image, which is displayed on the monitor section 6. For instance, the part of the character of the selection item of "2" is displayed with white and the background is displayed with red.

[0230] As described above, various menu screens can be simply altered without reading new video image. [0231] The selection item position information is simply determined at the positional relationship between the video and the sub-picture by designating it corresponding to the display coordinate system of the video. [0232] An embodiment of the relation of the highlight information as the sub-picture data of the selection item and the control data in FIGS. 81A and 81B.

[0233] In the drawings, the pixel surrounded by "○" is formed by using pattern pixel and using the pixel represented by "□" by using the highlight pixel 1.

[0234] FIG. 81A shows the case that the pattern pixel of the sub-picture data and highlight pixel used as the shade of the pattern pixel are employed. In this case, after the control data is selected, the display color information is altered real time by setting the color of the highlight pixel 1 to new color and setting the pixel color and the contrast except it with the present color remained as it is. Thus, the selected selection item is altered to the shade of different color from the other selection item real time.

[0235] FIG. 81B shows the case that the sub-picture data is formed only of pattern pixel. In this case, after the highlight information is selected, the display color information is set at the color of the pattern pixel to new color, and setting the pixel and the contrast except the information to the present color as it is. Thus, the selected selection item itself is altered to the color different from the other selection item.

[0236] In addition, the contrast of the background pixel in the selection item area is set to 100% of the sub-picture data at the time of selecting, and to 0% at the time of inhibiting to select. Thus, at the time of selecting, the control for varying the entire color of the selection area, and hence various format can be employed real time by using the structure of the sub-picture data and the content of the highlight information.

[0237] For example, when the above-descried identified cell classification is a menu, it is not automatically transferred to next cell reproduction, but in the final frame display state at the time of finishing the cell reproduction, it becomes the standby state.

[0238] Therefore, when the cell for the menu is reproduced, still picture state is obtained in the cell final display state. Since the NV pack 88 is always inserted at a constant unit of the video data in the cell, the highlight information of the above-mentioned menu is stored in

the data RAM section 56.

[0239] The system CPU section 50 becomes a standby state of user vent (key input, etc..) when the cell reproduction is finished, the process of the selection item for the user selection of the menu is executed by referring to the information regarding the menu (highlight information from the PCI data stored in the data RAM section 56.

[0240] With reference to FIG. 1, a description will now be given of the operation for reproducing movie data from the optical disk 10 which has the logic format illustrated in FIGS. 6 through 66 under the condition that the title, etc. are selected through the above-described menus.

When the playback key 4c on the key/display [0241] section 4 or the playback key 5d on the remote controller 5 is manipulated while the desired title is selected, the system CPU section 50 acquires the last address of the title search pointer table (TT_SRPT) 79 from the title search pointer table information (TT_SRPTI) 92 and acquires the video title set number (VTSN), program chain number (PGCN) and the start address (VTS_SA) of the video title set, which correspond to the input number, from the title search pointers (TT_SRP) 93 corresponding to the input number from the key/display section 4 or the title number selected by the remote controller 5. When there is only one title set, a single title search pointer (TT_SRP) 93 is searched, regardless of the presence of the input number from the key/display section 4 or the selection of the title number by the remote controller 5, to acquire the start address (VTS_SA) of that title set. The system CPU section 50 acquires the target title set from the start address (VTS_SA) of the

[0242] Next, from the start address (VTS_SA) of the video title set 72 of FIG. 13, the video title set information (VTSI) 94 about the title set is obtained as shown in FIG. 20. The end address (VTI_MAT_EA) of the video title set information management table (VTSI_MAT) 98 of FIG. 21 is acquired from the management table (VTSI_MAT) 98 of the video title set information (VTSI) 94. At the same time, each section of the reproducing unit shown in FIG. 1 is set on the basis of the number of audio streams and the number of sub-picture data streams (VTS_AST_Ns VTS_SPST_Ns) and the attribute information on the video, audio, and sub-picture data (VTS, V_ATR, VTS_A_ATR, VTS_SPST_ATR). [0243] When a menu (VTSM) for a video title set (VTS) has a simple structure, the start address (VTSM_VOB_SA) of a video object set (VTSM_VOB) for menus for a video title set is acquired from the video title set information management table (VTSI_MAT) 98 of FIG. 21. On the basis of the video object set (VTSM_VOB) 95, a menu for the video title set is displayed. When an video object set (VTT_VOBS) 96 for titles (VTST) in the title set (VTS) is simply reproduced without selecting a program chain (PGC) with reference to the menu, the video object set 96 is reproduced on

the basis of the start address (VTSTT_VOB_SA) shown in FIG. 21.

[0244] When a program chain is specified from the key/display section 4 or the remote controller 5, the desired program chain 87 is retrieved in the following procedure. The retrieval of a program chain 87 is not limited to a program chain 87 for titles in the video title set. The same procedure applies to the retrieval of a program chain 87 for a relatively complex menu made up of program chains 87. The start address of the program chain information table (VTS_PGCIT) 100 in the video title set (VTS) of FIG. 21 written in the management table (VTSI_MAT) 98 of the video title set information (VTSI) 94 is acquired, and the information (VTS_PGCIT_I) 102 in the VTS program chain information table 100 of FIG. 24 is read. From the information (VTS_PGCIT_I) 104, the number of program chains (VTS_PGC_Ns) and the end address (VTS_PGCIT_EA) of the table 100 shown in FIG. 25 are obtained.

[0245] When the number of a program chain 87 is specified from the key/display section 4 or the remote controller 5 the category of the program chain 87 and the start address of the VTS_PGC information 104 corresponding to the search pointer (VTS_PGCIT_SRP) 103 shown in FIG. 26 are acquired from the VTS_PGCIT search pointer (VTS_PGCIT_SRP) 103 corresponding to the number shown in FIG. 24. On the basis of the start address (VTS_PGCI_SA), the program chain general information (PGC_GI) of FIG. 27 is read out. According to the general information (PGC_GI) 105, the category and playback time of the program chain (PGC) (PGC_CAT, PGC_PB_TIME) are obtained and further the start addresses (C_PBIT_SA, C_POSIT_SA) of the cell playback information table (C_PBIT) and cell position information table (C_POSIT) 108 contained in the general information (PGC_GI) are acquired. From the start address (C_PBIT_SA), the video object identifier (C_VOB_IDN) and cell identifier (C_IDN) of FIG. 36 are acquired as the cell position information (C_POSI) of FIG. 35.

[0246] Furthermore, from the start address (C_POSIT_SA), the cell playback information (C_PBI) of FIG. 33 is obtained. The start address (C_FVOBU_SA) of the first VOBU 85 and the start address (C_IVOBU_SA) of the last VOBU in the cell of FIG. 34 contained in the playback information (C_PBI) are acquired. Then, the target cell is retrieved. In the playback of cells, referring to the program map of FIG. 31 in the PGC program map (PGC_PGMAP) 106 of FIG. 27, playback cells 84 are determined one after another. The data cells of program chains thus determined are read one after another from the video object 144 and inputted to the data RAM section 56 via the system processor section 54. The data cells 84, on the basis of the playback time information, are supplied to the video decoder section 58, audio decoder section 60, and sub-picture decoder section 62, which decode them. The decoded signals are subjected to signal conversion at the D/A

and data-reproducing section 64 and an image is reproduced at the monitor section 6 and at the same time, sound is reproduced at the speaker sections 8.

[0247] Furthermore, a normal playback and highspeed search of the video data using a navigation pack 86 will be described in detail with reference to a flowchart.

[0248] In a normal playback of video data, when a normal playback is started as shown in FIGS. 82 and 83, after the start-up at step S11, the video manager information (VMGI) 75, as explained earlier, is retrieved by the system CPU section 50 and stored in the system ROM/RAM section 52. On the basis of the video manager information (VMGI) 75, the video title set information (VTSI) 94 on the video title set (VTS) 72 is read and simultaneously the video title set menu is displayed on the monitor section 6, as mentioned above, using the video object set (VYTSM_VOBS) 95. On the basis of the display, as shown in step S13, the user selects a title set 72 to be reproduced and playback conditions. When the decided title 72 is selected using the key/display section 4 or the remote controller 5, as shown in step S14, the data in the cell playback information table (C_PBIT) 107 of FIGS. 17, 21, and 22 is read by the system CPU section 50 from the program chain information table (VTS_PGCIT) 100 of FIG. 12 in the selected title set 72. The read-out data is stored in the system ROM/RAM section 52. According to the playback conditions, the system CPU section 50 determines a program chain number (VTS_PGC_Ns), angle number (ANGNs), audio stream number, and sub-picture stream number using the aforementioned menus. For example, the eleventh boxing match for a world championship is selected as a title for a program chain and it is determined that Japanese subtitles are displayed as sub-pictures with English narration. The user selects an angle so that a match between the champion and the opponent may be viewed impressively. The determined sub-picture number and audio stream number are set in the register of the system processor section 54 as shown in step S16. Similarly, the playback start time is set in the system time clock in each of the system processor section 54, video decoder 58, audio decoder 60, and sup-picture decoder 62. The start address of the first VOBU in a cell and PGC number, or cell number, are stored in the system ROM/RAM section 52.

[0249] As shown in step S17, at the time when a preparation to read a video title set has been made, the system CPU section 50 gives a read command to the disk drive section 30, which searches the optical disk 10 on the basis of the above start address and PGC number. By the read command, the cells 84 related to the specified program chain (PGC) are read one after another from the optical disk 10, and are transferred to the data RAM section 56 via the system CPU section 50 and system processing section 54. The transferred cell data includes a navigation pack 86 which is, as shown in FIG. 8, the head pack of the video object unit (VOBU) 85. The

navigation pack 86 is stored into the data RAM 56. Thereafter, the video pack 88, audio pack 91, and subpicture pack 90 in the video object unit (VOBU) are distributed to the video decoder section 58, audio decoder section 60, and sub-picture decoder section 62, respectively. The individual decoders decode the packs and supply the resulting signals to the D/A and data-reproducing section 64. As a result, a video signal is sent to the monitor 6 and an audio signal is transmitted to the speaker 8, thereby starting the display of images with sub-pictures. At the same time, the reproduction of sound is started.

[0250] If a key input is supplied from the key/display section 4 or the remote controller 5 during the video and audio reproduction, the key data acquired is stored into the system RAM/ROM section 52. If there is no key input from the section 4, it is determined in step S19 whether or not a play-back end message has been supplied from the drive section 30. If the message has been supplied, it is determined whether or not a navigation pack 86 has been transferred to the system ROM/RAM section 52. If the navigation pack 86 has been transferred to the section 52, the logical sector number (NV_PCK_LSN) in the navigation pack 86 is stored as current logical block number (NOWLBN) into the system RAM/ROM section 52 in step 20.

[0251] After the NV pack has been transferred, it is determined whether the NV pack is the last one in the cell 84. More precisely, in step S22 it is determined whether or not the NV pack is the last navigation pack 86 in the cell 84. This is effected by comparing the start address (C_LVOBU_SA) of the cell playback table (C_PBI) 107 with the address (V_PCK_LBN) of the navigation pack 86. If the NV 86 is not the last one in the cell 84, control will return to step S18. If the NV pack 86 is the last one in the cell 84, control goes to step S23. In step S23 it is verified whether there is an angle change. An angle change is judged on the basis of whether an angle change is inputted from the key/display section 4 or the remote controller 5 to the system CPU section 50. If there is no angle change, as shown in step S24, it will be verified whether it is the end cell of the program chain (PGC) to which the cell 84 belongs. The verification is effected on the basis of whether the cell 84 shown in FIGS. 27 and 33 is the end cell in the cell playback information table (C_PBIT) 107. Namely, the verification is achieved on the basis of the number of cells 84 constituting the program chain and the identification number of the reproduced cell. If the cell does not correspond to the end cell of the program chain (PGC), control will be returned to step S19.

[0252] If the cell 84 is the end cell of the program chain (PGC), it will be determined that the program chain has finished and the next program chain (PGC) will be specified. Except for special cases, the program chains are reproduced in the sequence of their numbers, so that adding 1 to the number of the program chain that has been reproduced enables the number of a program

chain to be reproduced next to be set. Whether there is a program chain whose program number is the set program chain number is verified at step S26. If there is no program chain to be reproduced next, control will be passed to the flow for the playback end procedure shown in FIG. 84 explained later. If the set program chain is present, as shown in step S27, the address of the cell in the program chain that has been set again, that is, the start address (C_FVOBU_SA) of C_FVOBU in the cell playback information (C_PBI) 107 of FIG. 34 is obtained as the present logical block number. As shown in step S28, it is verified whether the start address (C_FVOBU_SA) is equal to the address obtained by adding 1 to the end address (ENDLBN) of the cell 84 in the preceding program chain already reproduced. If they are equal to each other, this means the playback of cells having consecutive addresses and control will return to step S19. If those addresses are not equal, this means that addresses of the cells are not consecutive. In this case in step S29, the system CPU section 50 issues a read end address command and temporarily stops the reading operation of the disk drive section 30. The read end address command designates the end address of the current video object unit. Thereafter, in step S30, the system CPU section 50 gives a consecutive read command again to the disk drive section 30. Then, control return to step S18, thereby starting the retrieval of a navigation pack 86.

[0253] If a key input is supplied from the key/display section 4 or the remote controller 5 at step S19, it will be confirmed in step S31 whether the key input is for fast-forward (FF), for example. If it is for fast-forward (FF), a high-speed searching process will be executed in step S32. If it is not for fast-forward, another process, or a process related to a series of video playback, such as a pause in playback or the change of audio streams, will be carried out at step S9. Then, control returns to step S19.

[0254] If the end of playback has been specified in step S19, or if there is no program chain to be reproduced next in step S26, the end PTS (VOBU_EPTS) contained in the PCI general information (PCI_GI) is referred to in step S31 (FIG. 64). When the end PTS (VOBU_EPTS) coincides with the system time clock (STC), the monitor 6 will stop displaying on the screen as shown in step S32, then the system CPU will supply a data transfer stop command to the disk drive section 30, which thereby stops the data transfer as shown in step S33, terminating the playback operation.

[0255] If an angle change input is supplied from the key/display section 4 or the remote controller 5 in step S23, it will be checked whether there is angle data as shown in step S40 of FIG. 65. The presence/absence of angle has been given as angle information (NSML_AGLI, SML_AGLI) to both of the PCI data 113 and DSI data 115 in the navigation pack 86. If there is no angle to be changed in step S40, the message that there is no angle data will be displayed on the key/dis-

play section 4 or the remote controller 5 or the monitor 6 as shown in step S41. After the message for no angle data is displayed, control goes to step S24. If there is angle data, as shown in step S42, an angle number to be changed will be specified from the key/display section 4 or the remote controller 5. In this case, as explained earlier, it will be specified which of the angle information in the PCI data and the DSI data (NSML_AGLI, SML_AGLI) is used to change the angle. When only one type of angle information is available, the selection is limited to the one type. If an angle is specified, the target number (NSML_AGL_C_DSTA, SML_AGL_C_DSTA) of the angle cell corresponding to the specified angle number as shown in FIGS. 29 and 30 will be acquired at step S43. By this address, a cell is searched for. The address is set for the logical block number (NOWLBN) to be searched for. With the angle change operation using the PCI data, the system CPU section 50 performs a muting process on the playback of video and audio data and also effects a pause process on the playback of subpictures. These processes stop the system time clock (STC) in each section of the reproducing system and make it possible to take in the angle data already changed by clearing the buffers in the video, audio, and sub-picture decoders 58, 60, and 62. At the same time, at shown in step S45, the system CPU section 50 issues a read end address command and temporarily prevents the disk drive section 30 from reading the data. Thereafter, as shown in step S46, the CPU section 50 supplies a read command to the disk drive section 30. Then, the selected cell is searched for by the set retrieval logical block number, or by the start address of the cell, the cell data is retrieved consecutively. The transfer of the data in the selected angle cell is ten started.

[0256] After the transfer has been started, it is checked again, in step S47 whether a playback end has been specified and control waits for the transfer of the navigation pack of the first cell associated with the changed angle. As shown in step S48, it is checked whether a navigation pack has been transferred as a result of the data transfer. If no navigation pack has been transferred, control will be returned to step S47. If a navigation pack has been transferred, each system time clock (STC) will be set with reference to the SCR in the NV pack (NV_PCK_SCR) contained in the DSI general information (DSIG) in the navigation pack 86. Thereafter, the video and audio muting state and the pause state of sub-pictures are canceled at step S44 and then the system time clock (STC) starts. Then, step S21 of FIG. 82 is executed as in a normal playback.

[0257] Next, the video data in the logic formats shown in FIGS. 6 to 66, a method of recording data on the optical disk 10 to reproduce the video data, and a recording system to which the recording method is applied will be explained with reference to FIGS. 86 to 91.

[0258] FIG. 86 shows an encoder system that creates a video file of a title set 84 in which the video data in-

cluding menu data is encoded. In the system of FIG. 86, for example, a videotape recorder (VTR) 201, an audiotape recorder (ATR) 202, and a sub-picture source 203 are used as sources of the video data, the audio data, and the sub-picture data. Under the control of a system controller (Sys con) 205, they create the video data, audio data, and sub-picture data, which are supplied to a video encoder (VENC) 206, an audio encoder (AENC) 207, and a sub-picture encoder (SPENC) 208, respectively. Under the control of the system controller (Sys con) 205, these encoders 206, 207, and 208 perform A/ D conversion of the video data, audio data, and subpicture data and encode them by the respective compression schemes. The encoded video data, audio data, and sub-picture data (Comp Video, Comp Audio, Comp Sub-pict) are stored in memories 210, 211, and 212. The video data, audio data, and sub-picture data (Comp Video. Comp Audio, Comp Sub-pict) are outputted to a file formatter (FFMT) 214 under the control of the system controller (Sys con) 205, which converts them so that they may have a file structure of video data for the system as explained earlier. Then, under the control of the system controller (Sys con) 205, management information, such as the setting conditions for each data item, the attributes, the highlight information and data for preparing menu data are stored in a memory 216 in the form of files.

[0259] The menu-data preparing data includes the aforementioned PTT_Ns, TT_Ns, ATS_AST_Ns, VTS_AST_ATR, VTS_SPST_Ns and VTS_SPST_AST. [0260] Explained next will be a standard flow of an encoding process in the system controller (Sys con) 205 that creates a file from video data.

[0261] According to the flow of FIG. 87, the video data and the audio data are encoded and the encoded video data and audio data (Comp Video, Comp Audio) are supplied. Specifically, when the encoding process is started, as shown in step S70 of FIG. 87, the parameters necessary for encoding the video data and audio data are set. Part of the set parameters are stored in the system controller (Sys con) 205 and at the same time, are used at the file formatter (FFMT) 214. As shown in step S271, the video data is pre-encoded using the parameters and the optimum distribution of the amount of codes is calculated. Then, on the basis of the code amount distribution obtained in the pre-encoding, the video data is encoded as shown in step S272. At the same time, the audio data is also encoded at step S272. As shown in step in S273, if necessary, the video data is partially encoded again and the reencoded portion of the video data is replaced with the old one. Through the series of steps. the video data and audio data are encoded. Furthermore, as shown in steps S274 and S275, the sub-picture data is encoded and the encoded sub-picture data (Comp Sub-pict) is supplied. Namely, the parameters necessary for encoding the sub-picture data is set. As shown in step S274, part of the parameters are stored in the system controller (Sys con) 205 and used in the

file formatter (FFMT) 214. On the basis of the parameters, the sub-picture data is encoded. By the process, the sub-picture data is encoded.

[0262] According to the flow of FIG. 86, the encoded video data, audio data, and sub-picture data (Com Video, Com Audio, Comp Sub-pict) are combined and converted so as to form a video data title set structure as explained in FIG. 6. Specifically, as shown in step S76, a cell is set as the smallest unit of the video data and cell playback information on a cell (C_PBI) is created. Then, as shown in step S77, the structure of the cells constituting a program chain and the video, sub-picture, and audio attributes (the information obtained in encoding the respective data items are used part of these attributes) are set and the video title set information management table information (VTSI_MAT) 98 containing information on a program chain and a video title set time search map table (VTS_TMAPT) 101 are created. At this time, as the need arises, a video title set part of title search pointer table (VTS_PTT_SRPT) is also created. The encoded video data, audio data, and sup-picture data (Com Video, Comp Audio, Comp Sup-pict) are subdivided into specific packs. An NV pack is placed at the head of each VOBU unit so that playback can be effected in the order of time code of each data item. With the NV packs arranged this way, each data cell is positioned so that a video object (VOB) may be composed of a plurality of cells as shown in FIG. 8. A set of such video objects is formatted into the title set structure.

[0263] In the flow of FIG. 88, the program chain information (PGI) is obtained in the process of step S77 by using the database in the system controller (Sys con) 205 or entering data again as the need arises.

[0264] FIG. 89 shows a disk formatter system that records on an optical disk the title set formatted as described above. In the disk formatter system of FIG. 48, the memories 220, 222 in which the created title set is stored supply these file data items to a volume formatter (VFMT) 226. In the volume formatter (VFMT) 226 extracts the management information from the title sets 84, 86, produces a video manager 71, and create the logic data to be recorded on the disk 10 in the arrangement of FIG. 6. A disk formatter (DFMT) 228 adds error correction data to the logic data created at the volume formatter (VFMT) 226, thereby reconverting the logic data into physical data to be recorded on the disk. A modulator 230 converts the physical data created at the disk formatter (DFMT) 228 into the recording data to be recorded actually on the disk. Then, a recorder 232 records the modulated recording data on the disk 10. [0265] A standard flow for creating the aforementioned disk will be described with reference to FIGS. 90 and 91 FIG. 90 shows the flow for creating the logic data to be recorded on the disk 10. Specifically, as shown in step S80, parameter data items, including the number of video data files, their arrangement, and the size of each video data file, are set first. Next, in step S81 video manager 71 is generated from the parame-

ters set and the video title set information 81 of each video title set 72. In step S82, the video manager 71 and the video tile set 71 are arranged in the order mentioned, according to their logic block numbers, thereby generating logic data which is to be recorded on the disk 10. [0266] Thereafter, the flow for creating the physical data to be recorded on the disk as shown in FIG. 91 is executed. Specifically, as shown in step S83, the logic data is divided into units of a specific number -of bytes, thereby forming error correction data. Next, as shown in step S84, the logic data divided into units of a specific number of bytes are combined with the created error correction data to form physical sectors. Thereafter, as shown in step S85, physical data is created by combining physical sectors. In this way, the modulating process based on certain rules is performed on the physical data created in the flow of FIG. 91, thereby forming the recording data. Thereafter, the recording data is recorded on the disk 10.

[0267] The above-described data structure can be applied not only to a case where the data is recorded on recording mediums, such as optical disks, and then the disks are distributed to the users, but also to a communication system as shown in FIG. 92. Specifically, according to the procedure shown in FIGS. 86 to 89, an optical disk 10 in which a video manager 71 and video title set 72 as shown in FIG. 6 may be loaded into a reproducing unit 300, from whose system CPU section 50 the encoded data is taken out digitally and transmitted by a modulator/transmitter 310 to the users or the cable subscribers by radio or via a cable. Furthermore, the encoding system 320 shown in FIGS. 86 and 89 may create the data encoded on the provider side, such as a broadcasting station and the encoded data may be transmitted by the modulator/transmitter 310 to the users or the cable subscribers by radio or via a cable. In such a communication system, the information in the video manager 71 is modulated at the modulator/transmitter 310 and then supplied to or is directly supplied to the users free of charge. When a user is interested in the title, the modulator/transmitter 310 transmits the title set 72 at the user's or subscriber's request by radio or via a cable. Under the control of the video manager 71, the video title set information 94 is first transferred and then the title video object 95 in the video title set reproduced according to the title set information 94 is transferred. At this time, if necessary, the video title set menu video object 95 is also transmitted. The transferred data is received by a receiver/demodulator 400 on the user side and is processed as encoded data at the system CPU section 50 of the reproducing unit on the user or subscriber side of FIG. 1 in the same manner as in the above-described reproducing process, whereby the video data is reproduced.

[0268] In transferring the video title set 72, the video object sets 95, 96 are transferred using the video object unit 85 of FIG. 6 as a unit. At the head of the video object unit 85, an NV pack 86 containing video playback and

search information is arranged. Furthermore, because the NV pack contains the addresses of the video object units to be reproduced immediately before and after the video object unit 85 to which the NV pack 86 belongs, even if the video object unit 85 is lost during transfer for some reason, the video object can be reproduced reliably on the user side by requesting the lost video object unit 85 to be transmitted again. Furthermore, even if transfer is not carried out in the order of playback of video object units, because the system ROM/RAM section 52 on the user side holds the accurate playback information on program chains, the system CPU section 50 can specify the order of playback referring to the address data in its NV pack.

Claims

20

25

1. A recording disk medium comprising:

a data recording area (28) between a lead-in area (27) and a lead-out area (26), said data recording area (28) being divided into a plurality of sectors and comprising a management area (VMG,71) and a title area containing one or more title sets (VTS#n,72), which areas are respectively aligned with the boundaries between sectors;

each title set containing one or more titles comprising presentation data like video, audio and sub-picture data, and management control information (VTSI,94) for controlling the reproduction of the presentation data, said presentation data like video, audio and sub-picture data being arranged in consecutive packs and grouped in one or more data units (85) respectively containing the presentation data to be presented within a predetermined time period; characterized by:

said management area (VMG,71) and/or said title set area containing a menu information data item capable of forming a menu image when reproduced, said menu image representing a content menu of said representation data and indicating menu items selectable by user input; said at least one menu information data item comprising video data and sub-picture data, said video data representing a background image of said menu image and said sub-picture data representing a sub-picture area on the display encoded on a pixel by pixel basis and being superimposable on the background image of the menu image for simultaneous display, and of control data for highlighting pixels within at least one particular area of said sub-picture area upon a user input, said particular area of said sub-picture area being described by coordinates and being assigned to one of said selectable menu items.

- 2. The recording medium according to claim 1, wherein the control data for highlighting said pixels within said particular area of said sub-picture area comprises a color information determining the color of the pixels and a mixing ratio (contrast) of the image of the colored pixels and of the background image of said particular area before and after the user input.
- 3. The recording medium according to claim 1 or 2, wherein the video data and the sub-picture data of said at least one menu information data item are arranged in consecutive packs and grouped in one or more data units (VOBU,85) respectively containing data to be presented within a predetermined time period.
- 4. The recording medium according to claim 1, 2 or 3, wherein said control data of said menu information data item comprises a start X-coordinate, an end X-coordinate, a start Y-coordinate, and an end Y-coordinate of said particular area of the sub-picture area and information indicating whether the pixels within this particular area are highlighted as a default or upon user input.
- 5. The recording medium according to claim 1, 2, 3 or 4, wherein said control data of said menu information data item comprises a position information (AJBTN_POSI) defining one or more other particular area(s) of said sub-picture area which is (are) adjacent said one particular area of said sub-picture area and which is (are) highlighted upon a user input and which is (are) assigned to other selectable menu items.
- 6. The recording medium according to one of claims 1 to 5, wherein said control data of said menu information data item comprises a command (BTN_CMD) which is to be executed when one of said particular area(s) of said sub-picture area is activated by a user input.
- 7. The recording medium according to one of claims 1 to 6, wherein said presentation data recorded in the title area comprises video data, audio data and sub-picture data to be superimposed on the video data, wherein said presentation data is divided into a plurality of program chains, each program chain is composed of a plurality of programs, each program has a plurality of cells, each cell is recorded in a hierarchical structure having a plurality of said data units combining said packs, each pack is composed of video data pack, audio data pack, sub-picture data pack and control data pack, said management area records management information for managing program chains, programs, cells and packs of said title area;

said menu image representing the content menu formed when said at least one menu information data item is reproduced is a title menu for allowing selection of each program chain, a program menu for allowing selection of each program, an audio data menu for allowing selection of each audio data and/or a sub-picture data menu for allowing selection of each sub-picture data.

8. An encoding apparatus for encoding presentation data like video, audio and sub-picture data and at least one menu image representing a content menu of said presentation data indicating menu items selectable by user input, comprising:

first supply means for supplying video data representing a background image of said menu image.

second supply means for supplying sub-picture data representing a sub-picture area encoded on a pixel by pixel basis and being superimposable on the background image of the menu image for simultaneous display;

third supply means for supplying presentation data like video, audio and sub-picture data; first encoding means for encoding the video data supplied from said first supply means;

second encoding means for encoding the subpicture data supplied from said second supply means;

third encoding means for encoding the presentation data like video, audio and sub-picture data supplied from said third supply means; designating means for designating at least one particular area of said sub-picture area and assigning said particular area to one of said selectable menu items;

generating means for generating control data for highlighting pixels within said particular area of said sub-picture area upon a user input, said particular area being defined by coordinates; recording means for recording the video data encoded by said first encoding means, the sub-picture data encoded by said second encoding means and the control data generated by said generating means as a menu information data item together with said encoded presentation data like video, audio and sub-picture data on the data recording area of a recording disk medium.

9. The encoding apparatus according to claim 8, wherein the control data for highlighting said pixels within said particular area of said sub-picture area comprises a color information determining the color of the pixels and a mixing ratio (contrast) of the image of the colored pixels and of the background image of said particular area before and after the user

5

15

20

30

40

input.

- 10. The encoding apparatus according to claim 8 or 9, wherein said recording means is adapted to arrange the video data and the sub-picture data of said at least one menu information data item in consecutive packs and group the packs in one or more data units (85) respectively containing data to be presented within a predetermined time period.
- 11. The encoding apparatus according to claim 8, 9 or 10, wherein said generating means is adapted to include into said control data of said menu information data item a start X-coordinate, an end X-coordinate, a start Y-coordinate, and an end Y-coordinate of said particular area of the sub-picture area and information indicating whether the pixels within this particular area are highlighted as a default or upon user input.
- 12. The encoding apparatus according to one of claims 8 to 11, wherein said generating means is adapted to include into said control data of said menu information data item a position information (AJBTN_POSI) defining one or more other particular area(s) of said sub-picture area which is (are) adjacent said one particular area of said sub-picture area and which is (are) highlighted upon a user input and which is (are) assigned to other selectable menu items.
- 13. The encoding apparatus according to one of claims 8 to 12, wherein said generating means is adapted to include into said control data of said menu information data item a command (BTN_CMD) which is to be executed when one of said particular area(s) of said sub-picture area is activated by a user input.
- 14. The encoding apparatus according to one of claims 8 to 13, wherein said recording means is adapted to record said presentation data comprising video data, audio data and sub-picture data to be superimposed on the video data in a title area of said recording area, wherein said presentation data is divided into a plurality of program chains, each program chain is composed of a plurality of programs, each program has a plurality of cells, each cell is recorded in a hierarchical structure having a plurality of said data units combining said packs, each pack is composed of video data pack, audio data pack, sub-picture data pack and control data pack, and to record management information for managing program chains, programs, cells and packs of said title area in a management area;

said menu image representing the content menu formed when said at least one menu information data item is reproduced is a title menu for allowing selection of each program chain, a program

menu for allowing selection of each program, an audio data menu for allowing selection of each audio data and a sub-picture data menu for allowing selection of each sub-picture data.

15. A method for encoding presentation data like video, audio and sub-picture data and at least one menu image representing a content menu of said presentation data indicating menu items selectable by user input, comprising the steps:

> supplying video data representing a background image of said menu image;

> supplying sub-picture data representing a subpicture area encoded on a pixel by pixel basis and being superimposable on the background image of the menu image for simultaneous display;

> supplying presentation data like video, audio and sub-picture data:

encoding the video data;

encoding the sub-picture data;

encoding the presentation data like video, audio and sub-picture data;

designating at least one particular area of said sub-picture area and assigning said particular area to one of said selectable menu items;

generating control data for highlighting pixels within said particular area of said sub-picture area upon a user input, said particular area being defined by coordinates;

recording the encoded video data, the encoded sub-picture data and the generated control data as a menu information data item together with said encoded presentation data like video, audio and sub-picture data on the data recording area of a recording disk medium.

- 16. The encoding method according to claim 15, wherein the control data for highlighting said pixels within said particular area of said sub-picture area comprises a color information determining the color of the pixels and a mixing ratio (contrast) of the image of the colored pixels and of the background image of said particular area before and after the user input.
- 17. The encoding method according to claim 15 or 16, wherein the video data and the sub-picture data of said at least one menu information data item are arranged, at the recording step, in consecutive packs and the packs are grouped in one or more data units (85) respectively containing data to be presented within a predetermined time period.
- 18. The encoding method according to claim 15, 16 or 17, wherein, in said generating step, a start X-coordinate, an end X-coordinate, a start Y-coordinate,

and an end Y-coordinate of said particular area of the sub-picture area and information indicating whether the pixels within this particular area are highlighted as a default or upon user input is included into said control data of said menu information data item.

- 19. The encoding method according to one of claims 15 to 18, wherein, in said generating step, a position information (AJBTN_POSI) defining one or more other particular area(s) of said sub-picture area which is (are) adjacent said one particular area of said sub-picture area and which is (are) highlighted upon a user input and which is (are) assigned to other selectable menu items is included into said control data of said menu information data item.
- 20. The encoding method according to one of claims 15 to 19, wherein, in said generating step, a command (BTN_CMD) which is to be executed when one of said particular area(s) of said sub-picture area is activated by a user input is included into said control data of said menu information data item.
- 21. The encoding method according to one of claims 15 to 20, wherein, in said recording step, said presentation data comprising video data, audio data and sub-picture data to be superimposed on the video data is recorded in a title area of said recording area, wherein said presentation data is divided into a plurality of program chains, each program chain is composed of a plurality of programs, each program has a plurality of cells, each cell is recorded in a hierarchical structure having a plurality of said data units combining said packs, each pack is composed. of video data pack, audio data pack, sub-picture data pack and control data pack, and management information for managing program chains, programs, cells and packs of said title area is recorded in a management area;

said menu image representing the content menu formed when said at least one menu information data item is reproduced is a title menu for allowing selection of each program chain, a program menu for allowing selection of each program, an audio data menu for allowing selection of each audio data and a sub-picture data menu for allowing selection of each sub-picture data.

Patentansprüche

1. Platten-Aufzeichnungsträger, umfassend:

einen Datenaufzeichnungsbereich (28) zwischen einem Einlaufbereich (27) und einem Auslaufbereich (26), wobei der Datenaufzeichnungsbereich (28) in eine Mehrzahl von Sekto-

ren unterteilt ist und einen Managementbereich (VGM,71) sowie einen einen oder mehrere Titelsätze (VTS#n,72) enthaltenden Titelbereich aufweist, wobei die Bereiche jeweils mit den Grenzen zwischen Sektoren ausgerichtet sind, wobei jeder Titelsatz einen oder mehrere Präsentationsdaten wie Video-, Audio- und Überlagerungsbilddaten aufweisende(n) Titel enthält, sowie Managementsteuerinformation (VTSI,94) zum Steuern der Reproduktion bzw.: Wiedergabe der Präsentationsdaten, wobei die Präsentationsdaten, wie Video-, Audio- und Überlagerungsbilddaten, in aufeinanderfolgenden Packs angeordnet und in eine oder mehr Dateneinheit(en) (85) gruppiert sind, welche jeweils die innerhalb einer vorbestimmten Zeitspanne zu präsentierenden Präsentationdaten enthalten,

dadurch gekennzeichnet, daß:

der Managementbereich (VMG,71) und/oder der Titelsatzbereich ein Menüinformationsdatenelement enthält (enthalten), das, wenn es reproduziert wird, ein Menübild zu erzeugen vermag, wobei das Menübild ein Inhaltsmenü der Repräsentationsdaten darstellt und durch Benutzereingabe auswählbare Menüelemente angibt,

wobei das mindestens eine Menüinformationsdatenelement Videodaten und Überlagerungsbilddaten, wobei die Videodaten ein Hintergrundbild des Menübildes darstellen und die Überlagerungsbilddaten einen Überlagerungsbildbereich auf dem Anzeigebildschirm darstellen, der auf einer Pixel-für-Pixel-Basis codiert und dem Hintergrundbild des Menübildes zur simultanen Anzeige überlagerbar ist, sowie Steuerdaten aufweist, zum Hervorheben (highlighting) von Pixeln innerhalb mindestens eines bestimmten Bereichs des Überlagerungsbildbereichs auf Eingabe eines Benutzers hin, wobei der bestimmte Bereich des Überlagerungsbildbereichs durch Koordinaten beschrieben und einem der auswählbaren Menüelemente zugewiesen ist.

- Aufzeichnungsträger gemäß Anspruch 1, wobei die Steuerdaten zum Hervorheben der Pixel innerhalb des bestimmten Bereichs des Überlagerungsbildbereichs eine die Farbe der Pixel bestimmende Farbinformation und ein Mischungsverhältnis (Kontrast) des Bildes der farbigen Pixel und des Hintergrundbildes des bestimmten Bereichs vor und nach der Benutzereingabe aufweisen.
- Aufzeichnungsträger gemäß Anspruch 1 oder 2, wobei die Videodaten und die Überlagerungsbild-

50

15

30

35

daten des mindestens einen Menüinformationsdatenelements in aufeinanderfolgenden Packs angeordnet und in eine oder mehrere Dateneinheit(en) (VOBU,85) gruppiert sind, welche jeweils die innerhalb einer vorbestimmten Zeitspanne zu präsentierenden Daten enthalten.

- 4. Aufzeichnungsträger gemäß Anspruch 1, 2 oder 3, wobei die Steuerdaten des Menüinformationsdatenelements eine Start-X-Koordinate, eine End-X-Koordinate, eine Start-Y-Koordinate und eine End-Y-Koordinate des bestimmten Bereichs des Überlagerungsbildbereichs aufweisen, sowie Information, die angibt, ob die Pixel innerhalb dieses bestimmten Bereichs standardmäßig (as a default) oder auf Benutzereingabe hin hervorgehoben sind bzw. werden.
- 5. Aufzeichnungsträger gemäß Anspruch 1, 2, 3 oder 4, wobei die Steuerdaten des Menüinformationsdatenelements eine Positionsinformation (AJBTN_POSI) enthalten, die einen oder mehrere andere bestimmte(n) Bereich(e) des Überlagerungsbildbereichs definieren, der (die) zu dem einen bestimmten Bereich des Überlagerungsbildbereichs benachbart ist (sind), der (die) auf Benutzereingabe hin hervorgehoben wird (werden), und der (die) anderen auswählbaren Menüelementen zugewiesen ist (sind).
- 6. Aufzeichnungsträger gemäß einem der Ansprüche 1 bis 5, wobei die Steuerdaten des Menüinformationsdatenelements einen Befehl (BTN_CMD) aufweisen, der auszuführen ist, wenn einer der bestimmten Bereiche des Überlagerungsbildbereichs durch eine Benutzereingabe aktiviert wird bzw. ist.
- 7. Aufzeichnungsträger gemäß einem der Ansprüche 1 bis 6, wobei die im Titelbereich aufgezeichneten Präsentationsdaten Videodaten, Audiodaten und den Videodaten zu überlagernde Überlagerungsbilddaten aufweisen und die Präsentationsdaten in eine Mehrzahl von Programmketten unterteilt sind, jede Programmkette aus einer Mehrzahl von Programmen zusammengesetzt ist, jedes Programm eine Mehrzahl von Zellen aufweist, jede Zelle in einer hierarchischen Struktur mit einer Mehrzahl von die Packs kombinierenden Dateneinheiten aufgezeichnet ist, jedes Pack aus Videodatenpack, Audiodatenpack, Überlagerungsbilddatenpack und Steuerdatenpack zusammengesetzt ist, und der Managementbereich Managementinformation zum Verwalten von Programmketten, Programmen, Zellen und Packs des Titelbereichs aufgezeichnet hat,

wobei das Menübild, das das Inhaltsmenü darstellt, das gebildet wird, wenn das mindestens eine Menüinformationsdatenelement reproduziert wird, ein Titelmenü zum Ermöglichen der Auswahl jeder Programmkette, ein Programmmenü zum Ermöglichen der Auswahl jedes Programms, ein Audiodatenmenü zum Ermöglichen der Auswahl jeder Audiodaten und/oder ein Überlagerungsbilddatenmenü zum Ermöglichen der Auswahl jeder Überlagerungsbilddaten ist.

 Codiervorrichtung zum Codieren von Präsentationsdaten, wie Video-, Audio- und Überlagerungsbilddaten, und mindestens eines Menübildes, das ein Inhaltsmenü der Präsentationsdaten darstellt, welches durch Benutzereingabe auswählbare Menüelemente angibt, umfassend:

> eine erste Bereitstellungseinrichtung zum Bereitstellen bzw. Liefern von ein Hintergrundbild des Menübildes darstellenden Videodaten, eine zweite Bereitstellungseinrichtung zum Bereitstellen bzw. Liefern von Überlagerungsbilddaten, die einen auf Pixel-für-Pixel-Basis codierten und dem Hintergrundbild des Menübil-

> des zur gleichzeitigen Anzeige bzw. Wiedergabe überlagerbaren Überlagerungsbildbereich darstellen, eine dritte Bereitstellungseinrichtung zum Be-

> reitstellen bzw. Liefern von Präsentationsdaten, wie Video-, Audio- und Überlagerungsbilddaten,

eine erste Codiereinrichtung zum Codieren der von der ersten Bereitstellungseinrichtung gelieferten Videodaten,

eine zweite Codiereinrichtung zum Codieren der von der zweiten Bereitstelleinrichtung gelieferten Überlagerungsbilddaten,

eine dritte Codiereinrichtung zum Codieren der von der dritten Bereitstellungseinrichtung gelieferten Präsentationsdaten, wie Video-, Audio- und Überlagerungsbilddaten,

eine Bestimmungseinrichtung zum Bestimmen von mindestens einem bestimmten Bereich des Überlagerungsbildbereichs und zum Zuordnen des bestimmten Bereichs zu einem der auswählbaren Menüelemente.

eine Generiereinrichtung zum Generieren von Steuerdaten für das Hervorheben (highlighting) von Pixeln innerhalb des bestimmten Bereichs des Überlagerungsbildbereichs auf eine Benutzereingabe hin, wobei der bestimmte Bereich durch Koordinaten definiert ist,

eine Aufzeichnungseinrichtung zum Aufzeichnen der durch die erste Codiereinrichtung codierten Videodaten, der durch die zweite Codiereinrichtung codierten Überlagerungsbilddaten sowie der durch die Generiereinrichtung generierten Steuerdaten als ein Menüinformationsdatenelement zusammen mit den codierten Präsentationsdaten wie Video-, Audio- und Überlagerungsbilddaten im Datenaufzeich-

55

nungsbereich eines Platten-Aufzeichnungsträgers.

- 9. Codiervorrichtung gemäß Anspruch 8, wobei die Steuerdaten zum Hervorheben der Pixel innerhalb des bestimmten Bereichs des Überlagerungsbildbereichs eine Farbinformation aufweisen, welche die Farbe der Pixel sowie ein Mischungsverhältnis (Kontrast) des Bildes der farbigen Pixel und des Hintergrundbildes des bestimmten Bereichs vor und nach der Benutzereingabe festlegt.
- 10. Codiervorrichtung gemäß Anspruch 8 oder 9, wobei die Aufzeichnungseinrichtung die Videodaten und die Überlagerungsbilddaten des mindestens einen Menüinformationsdatenelements in aufeinanderfolgenden Packs anzuordnen und die Packs in eine oder mehrere Dateneinheit(en) (85) zu gruppieren vermag, die jeweils innerhalb einer bestimmten Zeitspanne zu präsentierende Daten enthält bzw. enthalten.
- 11. Codiervorrichtung gemäß Anspruch 8, 9 oder 10, wobei die Generiereinrichtung in die Steuerdaten des Menüinformationsdatenelements eine Start-X-Koordinate, eine End-X-Koordinate, eine Start-Y-Koordinate sowie eine End-Y-Koordinate des bestimmten Bereichs des Überlagerungsbildbereichs aufzunehmen vermag, sowie Information, die angibt, ob die Pixel innerhalb dieses bestimmten Bereichs standardmäßig (default) oder auf Benutzereingabe hin hervorgehoben sind bzw. werden.
- 12. Codiervorrichtung gemäß einem der Ansprüche 8 bis 11, wobei die Generiereinrichtung in die Steuerdaten des Menüinformationsdatenelements eine Positionsinformation (AJBTN_POSI) aufzunehmen vermag, welche einen oder mehrere andere(n) bestimmte(n) Bereich(e) des Überlagerungsbildbereichs definiert, der (die) zu dem einen bestimmten Bereich des Überlagerungsbildbereichs benachbart ist (sind) und auf Benutzereingabe hin hervorgehoben (highlighted) wird (werden), und der (die) anderen auswählbaren Menüelementen zugeordnet ist (sind).
- 13. Codiervorrichtung gemäß einem der Ansprüche 8 bis 12, wobei die Generiereinrichtung in die Steuerdaten des Menüinformationsdatenelements einen Befehl (BTN_CMD) aufzunehmen vermag, der auszuführen ist, wenn einer der bestimmten Bereiche des Überlagerungsbildbereichs durch eine Benutzereingabe aktiviert wird bzw. ist.
- 14. Codiervorrichtung gemäß einem der Ansprüche 8 bis 13, wobei die Aufzeichnungseinrichtung die Präsentationsdaten, die Videodaten, Audiodaten und den Videodaten zu überlagernde Überlage-

rungsbilddaten enthalten, in einem Titelbereich des Aufzeichnungsbereichs aufzuzeichnen vermag, wobei die Präsentationsdaten in eine Mehrzahl von Programmketten unterteilt sind, jede Programmkette aus einer Mehrzahl von Programmen zusammengesetzt ist, jedes Programm eine Mehrzahl von Zellen aufweist, jede Zelle in einer hierarchischen Struktur mit einer Mehrzahl von die Packs kombinierenden Dateneinheiten aufgezeichnet ist, jedes Pack aus Videodatenpack, Audiodatenpack, Überlagerungsbilddatenpack und Steuerdatenpack zusammengesetzt ist, und (die Aufzeichnungseinrichtung) Managementinformation zum Verwalten von Programmketten, Programmen, Zellen und Packs des Titelbereichs in einem Managementbereich aufzuzeichnen vermag,

wobei das Menübild, das das Inhaltsmenü repräsentiert bzw. darstellt, das gebildet wird, wenn das mindestens eine Menüinformationsdatenelement reproduziert wird, ein Titelmenü zum Ermöglichen der Auswahl jeder Programmkette, ein Programmmenü zum Ermöglichen der Auswahl jedes Programms, ein Audiodatenmenü zum Ermöglichen der Auswahl jeder Audiodaten und ein Überlagerungsbilddatenmenü zum Ermöglichen der Auswahl jeder Überlagerungsbilddaten ist.

15. Verfahren zum Codieren von Präsentationsdaten wie Video-, Audio- und Überlagerungsbilddaten und mindestens eines Menübildes, das ein Inhaltsmenü der Präsentationsdaten darstellt, welches durch Benutzereingabe auswählbare Menüelemente angibt, die folgenden Schritte umfassend:

Bereitstellen bzw. Liefern von ein Hintergrundbild des Menübildes darstellenden Videodaten, Bereitstellen bzw. Liefern von Überlagerungsbilddaten, die einen auf Pixel-für-Pixel-Basis codierten und dem Hintergrundbild des Menübildes zur gleichzeitigen Anzeige bzw. Wiedergabe überlagerbaren Überlagerungsbildbereich darstellen,

Bereitstellen bzw. Liefern von Präsentationsdaten, wie Video-, Audio- und Überlagerungsbilddaten,

Codieren Videodaten,

Codieren der Überlagerungsbilddaten, Codieren der Präsentationsdaten, wie Video-, Audio- und Überlagerungsbilddaten,

Bestimmen von mindestens einem bestimmten Bereich des Überlagerungsbildbereichs und Zuordnen des bestimmten Bereichs zu einem der auswählbaren Menüelemente,

Generieren von Steuerdaten für das Hervorheben (highlighting) von Pixeln innerhalb des bestimmten Bereichs des Überlagerungsbildbereichs auf eine Benutzereingabe hin, wobei der bestimmte Bereich durch Koordinaten definiert ist bzw. wird,

Aufzeichnen der codierten Videodaten, der codierten Überlagerungsbilddaten sowie der generierten Steuerdaten als ein Menüinformationsdatenelement zusammen mit den codierten Präsentationsdaten wie Video-, Audio- und Überlagerungsbilddaten im Datenaufzeichnungsbereich eines Platten-Aufzeichnungsträgers.

- 16. Codierverfahren gemäß Anspruch 15, wobei die Steuerdaten zum Hervorheben der Pixel innerhalb des bestimmten Bereichs des Überlagerungsbildbereichs ein Farbinformation aufweisen, welche die Farbe der Pixel sowie ein Mischungsverhältnis (Kontrast) des Bildes der farbigen Pixel und des Hintergrundbildes des bestimmten Bereichs vor und nach der Benutzereingabe festlegt.
- 17. Codierverfahren gemäß Anspruch 15 oder 16, wobei die Videodaten und die Überlagerungsbilddaten des mindestens einen Menüinformationsdatenelements im Aufzeichnungsschritt in aufeinanderfolgenden Packs angeordnet und die Packs in eine oder mehr Dateneinheit(en) (85) gruppiert wird (werden), die jeweils innerhalb einer vorbestimmten Zeitspanne zu präsentierende Daten enthält (enthalten).
- 18. Codierverfahren gemäß Anspruch 15, 16 17, wobei im Generierschritt eine Start-X-Koordinate, eine End-X-Koordinate, eine Start-Y-Koordinate sowie eine End-Y-Koordinate des bestimmten Bereichs des Überlagerungsbildbereichs sowie Information, die angibt, ob die Pixel innerhalb dieses bestimmten Bereichs standardmäßig (default) oder auf Benutzereingabe hin hervorgehoben sind bzw. werden, in die Steuerdaten des Menüinformationsdatenelements aufgenommen werden.
- 19. Codierverfahren gemäß einem der Ansprüche 15 bis 18, wobei im Generierschritt eine Positionsinformation (AJBTN_POSI), welche einen oder mehr andere(n) bestimmte(n) Bereich(en) des Überlagerungsbildbereichs, der (die) zu dem einen bestimmten Bereich des Überlagerungsbildbereichs benachbart ist (sind) und auf Benutzereingabe hin hervorgehoben (highlighted) wird (werden), und der (die) anderen auswählbaren Menüelementen zugeordnet ist (sind), in die Steuerdaten des Menüinformationsdatenelements aufgenommen wird (werden).
- 20. Codierverfahren gemäß einem der Ansprüche 15 bis 19, wobei im Generierschritt ein Befehl (BTN_CMD), der auszuführen ist, wenn einer der bestimmten Bereiche des Überlagerungsbildbereichs durch eine Benutzereingabe aktiviert wird, in

die Steuerdaten des Menüinformationsdatenelements aufgenommen wird.

21. Codierverfahren gemäß einem der Ansprüche 15 bis 20, wobei im Aufzeichnungsschritt die Präsentationsdaten, die Videodaten, Audiodaten und den Videodaten zu überlagernde Überlagerungsbilddaten enthalten, in einem Titelbereich des Aufzeichnungsbereichs aufgezeichnet werden, wobei die Präsentationsdaten in eine Mehrzahl von Programmketten unterteilt sind, jede Programmkette aus einer Mehrzahl von Programmen zusammengesetzt ist, jedes Programm eine Mehrzahl von Zellen aufweist, jede Zelle in einer hierarchischen Struktur mit einer Mehrzahl von die Packs kombinierenden Dateneinheiten aufgezeichnet ist, jedes Pack aus Videodatenpack, Audiodatenpack, Überlagerungsbilddatenpack und Steuerdatenpack zusammengesetzt ist, und Managementinformation zum Verwalten von Programmketten, Programmen. Zellen und Packs des Titelberichs in einem Managementbereich aufgezeichnet wird,

wobei das Menūbild, das das Inhaltsmenū repräsentiert bzw. darstellt, das gebildet wird, wenn das mindestens eine Menūinformationsdatenelement reproduziert wird, ein Titelmenū zum Ermöglichen der Auswahl jeder Programmkette, ein Programmenū zum Ermöglichen der Auswahl jedes Programms, ein Audiodatenmenū zum Ermöglichen der Auswahl jeder Audiodaten und ein Überlagerungsbilddatenmenū zum Ermöglichen der Auswahl jeder Überlagerungsbilddaten ist.

35 Revendications

40

Support de disque d'enregistrement comprenant:
 une zone d'enregistrement de données (28)
 entre une zone de début (27) et une zone de fin (26),
 ladite zone d'enregistrement de données (28) étant
 divisée en une pluralité de secteurs et comprenant
 une zone de gestion (VMG, 71) et une zone de titre
 contenant un ou plusieurs jeux de titre (VTS#n, 72),
 lesquelles zones sont respectivement alignées
 avec les limites entre les secteurs.

chaque jeu de titre contenant un ou plusieurs titres comprenant des données de présentation comme des données vidéo, audio ou de sous-image, et des informations de commande de gestion (VTSI, 94) pour commander la reproduction des données de présentation, lesdites données de présentation comme des données vidéo, audio et de sous-image étant disposées dans des packs consécutifs et groupées dans une ou plusieurs unités de données (85) contenant respectivement les données de présentation à présenter dans une période de temps prédéterminée ; caractérisé par :

ladite zone de gestion (VMG, 71) et/ou ladite zone de jeu de titre contenant un élément de données d'informations de menu capable de former une image de menu lors de la reproduction, ladite image de menu représentant un menu de contenu desdites données de représentation et indiquant des éléments de menu sélectionnables par une entrée d'utilisateur ; ledit au moins un élément de données d'informations de menu comprenant des données vidéo et des données de sous-image, lesdites données vidéo représentant une image d'arrière-plan de ladite image de menu et lesdites données de sous-image représentant une zone de sous-image sur l'affichage codé sur une base pixel par pixel et étant superposées sur l'image d'arrière-plan de l'image de menu pour l'affichage simultané, et des données de commande pour des pixels de surbrillance dans au moins une zone particulière de ladite zone de sous-image lors de l'entrée d'utilisateur, ladite zone particulière de ladite zone de sous-image étant décrite par des coordonnées et étant assignée à un desdits éléments de menu sélectionnables.

- 2. Support d'enregistrement selon la revendication 1, dans lequel les données de commande pour la surbrillance desdits pixels dans ladite zone particulière de ladite zone de sous-image comprennent des informations de couleur déterminant la couleur des pixels et un rapport de mélange (contraste) de l'image des pixels colorés et de l'image d'arrière-plan de ladite zone particulière avant et après l'entrée d'utilisateur.
- 3. Support d'enregistrement selon la revendication 1 ou 2, dans lequel les données vidéo et les données de sous-image dudit au moins un élément de données d'informations de menu sont disposées dans des packs consécutifs et groupées dans une ou plusieurs unités de données (VOBU, 85) contenant respectivement des données à présenter dans une période de temps prédéterminée.
- 4. Support d'enregistrement selon la revendication 1, 2 ou 3, dans lequel lesdites données de commande dudit élément de données d'informations de menu comprennent une coordonnée X de début, une coordonnée X de fin, et une coordonnée Y de début, et une coordonnée Y de fin de ladite zone particulière de la zone de sous-image et des informations indiquant si des pixels dans cette zone particulière sont en surbrillance comme un défaut ou lors de l'entrée d'utilisateur.
- Support d'enregistrement selon la revendication 1, 2, 3 ou 4, dans lequel lesdites données de comman-

de dudit élément de données d'informations de menu comprennent des informations de position (AJBTN_POSI) définissant une ou plusieurs autres zone(s) particulière(s) de ladite zone de sous-image qui est (sont) adjacente(s) de ladite une zone particulière de ladite zone de sous-image et qui est (sont) en surbrillance lors d'une entrée d'utilisateur et qui est (sont) assignée(s) aux autres éléments de menu sélectionnables.

- 6. Support d'enregistrement selon une quelconque des revendications 1 à 5, dans lequel lesdites données de commande desdits éléments de données d'informations de menu comprennent une commande (BTN_CMD) qui est à exécuter lorsqu'une desdites zones particulière(s) de ladite zone de sous-image est activée par une entrée d'utilisateur.
- Support d'enregistrement selon l'une quelconque des revendications 1 à 6, dans lequel lesdites données de présentation enregistrées dans la zone de titre comprennent des données vidéo, des données audio, et des données de sous-image à superposer sur les données vidéo, dans lequel lesdites données de présentation sont divisées en une pluralité de chaînes de programme, chaque chaîne de programme est composé d'une pluralité de programmes, chaque programme a une pluralité de cellules, chaque cellule est enregistrée dans une structure hiérarchique ayant une pluralité desdites unités de données combinant lesdits packs, chaque pack est composé d'un pack de données vidéo, d'un pack de données audio, d'un pack de données de sous-image et d'un pack de données de commande, ladite zone de gestion enregistre des informations de gestion pour gérer des chaînes de programme, des programmes, des cellules et des packs de ladite zo-

ladite image de menu représentant le menu de contenu formé lorsque au moins un dit élément de données d'informations de menu est reproduit, est un menu de titre pour permettre la sélection de chaque chaîne de programme, un menu de programme pour permettre la sélection de chaque programme, un menu de données audio pour permettre la sélection de chaque donnée audio et/ou un menu de données de sous-image pour permettre la sélection de chaque donnée de sous-image.

8. Appareil de codage pour coder des données de présentation comme des données vidéo, audio et de sous-image et au moins une image de menu représentant un menu de contenu desdites données de présentation indiquant des éléments de menu sélectionnables par l'entrée d'utilisateur comprenant :

> un premier moyen de fourniture pour fournir des données vidéo représentant une image

simultané :

10

20

25

d'arrière-plan de ladite image de menu; un second moyen de fourniture pour fournir des données de sous-image représentant une zone de sous-image codée sur une base de pixel par pixel et étant superposée sur l'image d'arrièreplan de l'image de menu pour l'affichage

un troisième moyen de fourniture pour fournir des données de présentation comme des données vidéo, audio et de sous-image;

un premier moyen de codage pour coder les données vidéo fournies par ledit premier moyen de fourniture;

un second moyen de codage pour coder les données de sous-image fournies par ledit second moyen de fourniture;

un troisième moyen de codage pour coder les données de présentation comme des données vidéo, audio et de sous-image fournies par ledit troisième moyen de fourniture;

un moyen de désignation pour désigner au moins une zone particulière de ladite zone de sous-image et assigner ladite zone particulière à un desdits éléments de menu sélectionnables;

un moyen de génération pour générer des données de commande pour mettre en surbrillance des pixels dans ladite zone particulière de ladite zone de sous-image lors d'une entrée d'utilisateur, ladite zone particulière étant définie par des coordonnées ;

un moyen d'enregistrement pour enregistrer les données vidéo codées par ledit premier moyen de codage, les données de sous-image codées par ledit second moyen de codage et les données de commande générées par ledit moyen de génération comme un élément de données d'informations de menu en même temps que lesdites données de présentation codées comme des données vidéo, audio et de sous-image sur la zone d'enregistrement de données d'un support de disque d'enregistrement.

- 9. Appareil de codage selon la revendication 8, dans lequel les données de commande pour mettre en surbrillance lesdits pixels dans ladite zone particulière de ladite zone de sous-image comprennent des informations de couleur déterminant la couleur des pixels et un rapport de mélange (contraste) de l'image des pixels colorés et de l'image d'arrièreplan de ladite zone particulière avant et après l'entrée d'utilisateur.
- 10. Appareil de codage selon la revendication 8 ou 9, dans lequel ledit moyen d'enregistrement est adapté pour disposer les données vidéo et les données de sous-image dudit au moins un élément de don-

nées d'informations de menu dans des packs consécutifs et groupe les packs dans une ou plusieurs unités de données (85) contenant respectivement des données à présenter dans une période de temps prédéterminée.

- 11. Appareil de codage selon les revendications 8, 9 ou 10, dans lequel ledit moyen de génération est adapté pour comprendre dans lesdites données de commande dudit élément de données d'informations de menu une coordonnée X de début, une coordonnée X de fin, une coordonnée Y de début, et une coordonnée Y de fin de ladite zone particulière de la zone de sous-image et des informations indiquant si des pixels dans cette zone particulière sont en surbrillance comme un défaut ou lors d'une entrée d'utilisateur.
- 12. Appareil de codage selon l'une quelconque des revendications 8 à 11, dans lequel ledit moyen de génération est adapté pour comprendre dans lesdites données de commande dudit élément de données d'informations de menu des informations de position (AJBTN_POSI) définissant une ou plusieurs autres zones particulière(s) de ladite zone de sousimage qui est (sont) adjacente(s) à ladite zone particulière de ladite zone de sous-image et qui est (sont) en surbrillance lors d'une entrée d'utilisateur et qui est (sont) assignée(s) à d'autres éléments de menu sélectionnables.
- 13. Appareil de codage selon l'une des revendications 8 à 12, dans lequel ledit moyen de génération est adapté pour comprendre dans lesdites données de commande dudit élément de données d'informations une commande (BTN_CMD) qui est à exécuter lorsqu'une desdites zones particulière(s) de ladite zone de sous-image est activée par une entrée d'utilisateur.
- 14. Appareil de codage selon l'une quelconque des revendications 8 à 13, dans lequel ledit moyen d'enregistrement est adapté pour enregistrer lesdites données de présentation comprenant des données vidéo, des données audio et des données de sousimage à superposer sur les données vidéo dans une zone de titre de ladite zone d'enregistrement, dans lequel lesdites données de présentation sont divisées en une pluralité de chaînes de programme, chaque chaîne de programme est composée d'une pluralité de programmes, chaque programme a une pluralité de cellules, chaque cellule est enregistrée dans une structure hiérarchique ayant une pluralité desdites unités de données combinant lesdits packs, chaque pack est composé d'un pack de données vidéo, d'un pack de données audio, d'un pack de données de sous-image et d'un pack de données de commande, et pour enregistrer des infor-

15

20

mations de gestion pour gérer des chaînes de programme, des programmes, des cellules et des packs de ladite zone de titre dans une zone de gestion;

ladite image de menu représentant un menu de contenu formé lorsque ledit au moins un élément de données d'informations de menu est reproduit, est un menu de titre pour permettre la sélection de chaque chaîne de programme, un menu de programme pour permettre la sélection de chaque programme, un menu de données audio pour permettre la sélection de chaque donnée audio et un menu de données de sous-image pour permettre la sélection de chaque donnée de sous-image.

15. Procédé pour coder des données de présentation comme des données vidéo, audio et de sous-image et au moins une image de menu représentant un menu de contenu desdites données de présentation indiquant des éléments de menu sélectionnables par une entrée d'utilisateur, comprenant les étapes de :

fourniture de données vidéo représentant une image d'arrière-plan de ladite image de menu;

fourniture des données de sous-image repré-

sentant une zone de sous-image codée sur une base de pixel par pixel et étant superposable sur l'image d'arrière-plan de l'image de menu pour l'affichage simultané ; fourniture de données de présentation comme des données vidéo, audio et de sous-image; codage des données vidéo ; codage des données de sous-image ; codage des données de présentation comme des données vidéo, audio et de sous-image; désignation d'au moins une zone particulière de ladite zone de sous-image et assignation de ladite zone particulière à un desdits éléments de menu sélectionnables ; génération des données de commande pour mettre en surbrillance des pixels dans ladite zone particulière de ladite zone de sous-image lors d'une entrée d'utilisateur, ladite zone particulière étant définie par des coordonnées ; enregistrement des données vidéo codées,

des données de sous-image codées et de données de commande générées comme un élé-

ment de données d'informations de menu en

tation codées comme des données vidéo,

audio et de sous-image sur la zone d'enregis-

trement de données d'un support de disque

même temps que lesdites données de présen-50

16. Procédé de codage selon la revendication 15, dans lequel les données de commande pour mettre en surbrillance lesdits pixels dans ladite zone particu-

d'enregistrement.

lière de ladite zone de sous-image comprend des informations de couleur déterminant la couleur des pixels et un rapport de mélange (contraste) de l'image des pixels colorés et de l'image d'arrière-plan de ladite zone particulière avant et après l'entrée d'utilisateur.

- 17. Procédé de codage selon la revendication 15 ou 16, dans lequel les données vidéo et les données de sous-image dudit au moins un élément de données d'informations de menu sont disposées, à l'étape d'enregistrement, dans des packs consécutifs et les packs sont groupés dans une ou plusieurs unités de données (85) contenant respectivement des données à présenter dans une période de temps prédéterminée.
- 18. Procédé de codage selon la revendication 15, 16 ou 17, dans lequel, dans ladite étape de génération, une coordonnée X de début, une coordonnée X de fin, une coordonnée Y de début et une coordonnée Y de fin de ladite zone particulière de la zone de sous-image et des informations indiquant si des pixels dans cette zone particulière sont en surbrillance comme un défaut ou lors d'une entrée d'utilisateur sont comprises dans lesdites données de commande dudit élément de données d'informations de menu.
- 39 19. Procédé de codage selon l'une quelconque des revendications 15 à 18, dans lequel, dans ladite étape de génération, une information de position (AJBTN_POSI) définissant une ou plusieurs autres zone(s) particulières de ladite zone de sous-image qui est (sont) adjacente(s) à ladite zone particulière de ladite zone de sous-image et qui est (sont) en surbrillance lors d'une entrée d'utilisateur et qui est (sont) assignée(s) à d'autres éléments de menu sélectionnables est compris dans lesdites données de commande dudit élément de données d'informations de menu.
 - 20. Procédé de codage selon l'une quelconque des revendications 15 à 19, dans lequel, dans ladite étape de génération, une commande (BTN_CMD) qui est à exécuter lorsqu'une desdites zones particulières de ladite zone de sous-image est activée par une entrée d'utilisateur est comprise dans lesdites données de commande dudit élément de données d'informations de menu.
 - 21. Procédé de codage selon l'une des revendications 15 à 20, dans lequel, dans ladite étape d'enregistrement, lesdites données de présentation comprenant des données vidéo, des données audio et des données de sous-image à superposer aux données vidéo sont enregistrées dans une zone de titre de ladite zone d'enregistrement, dans laquelle lesdites

45

données de présentation sont divisées en une pluralité de chaînes de programme, chaque chaîne de programme est composée d'une pluralité de programmes, chaque programme a une pluralité de cellules, chaque cellule est enregistrée dans une structure hiérarchique ayant une pluralité desdites unités de données combinant lesdits packs, chaque pack est composé d'un pack de données vidéo, d'un pack de données de compande, et des informations de gestion pour gérer des chaînes de programmes, des programmes, des cellules et des packs de ladite zone de titre sont enregistrées dans une zone de gestion;

ledit menu d'image représentant le menu de contenu formé lorsque ledit au moins un élément de données d'informations de menu est reproduit est un menu de titre pour permettre la sélection de chaque chaîne de programme, un menu de programme pour permettre la sélection de programme, un menu de données audio pour permettre la sélection de chaque donnée audio et un menu de données de sous-image pour permettre la sélection de chaque donnée de sous-image.

F I G. 2

F I G. 3

FIG. 6

46

(Description order) Content	Video Manager Identifier	Size of Video Manager Information	Version Number of DVD Video Specification	Video Manager Category	Volume Set Identifier	Number of Video Title Set	Provider Unique ID	Video Manager Menu Video Object Set Start Address	End Address of VMGI_MAT	Start Address of TT_SRPT	Start Address of VMGN_PGCI_UT	Start Address of VTS_ATRT	Video Attribute of VMGM	Number of Audio Stream of VMGM	Audio Stream Attribute of VMGM	Number of Sub-picture Stream of VMGM	Sub-picture Stream Attribute of VMGM	
VMGI MAT	VMG_ID	VMGI_SZ	VERN	VMG_CAT	VLMS_ID	VTS_Ns	PVR_ID	VMGM_VOBS_SA	VMGI_MAT_EA	TT_SRPT_SA	VNGN_PGCI_UT_SA	VTS_ATRT_SA	VMGM_V_ATR	VMGM_AST_Ns	VMGM_AST_ATR	VMGM_SPST_Ns	VMGM_SPST_ATR	

н — TT_SRPT

F I G. 11

TT_SRPT1	(Description order)
	Content
TI_NS	Number of Title search Pointers
TT_SRPT_EA	End Address of TT_SRPT

F I G. 12

TT_SPR	(Description order)
	Content
PTT_Ns	Number of Part of Title
VTSN	Video Title Set Number
VTS_TTN	Video Title Set Title Number
VTS_SA	Start Address of Video Title Set

F I G. 13

F I G. 14

VMGM_PGC I_UT1

	Contents
VMGM_LU_Ns	Number of Video Maneger Menu Language Unit
VMGM_IGCI_UT_EA	End address of VMGM PGCI UT

F I G. 15

VTSM_PGC I_SRP

	Contents						
VMGM_LCD	Video Maneger Menu Language Code						
VMGM_LU_SA	Start address of VMGM LU						

F I G. 16

F I G. 17

VTSM_LUI

4.000	
	Contents
NMGN_PGC1_Ns	Number of VMGM_PGCI
reserved	RSV(0)
VMGM_LUI_EA	End address of VMGN LUI

F I G. 18

VTSM_PGC I_SRP

-	Contents
VMGM_PGC_CAT	VMGM_PGC Category
VMGM_PGC I_SA	Start Address of VMGM_PGCI

FIG. 19

VTSI MAT	(Description order)
	Content
VTS_ID	Video Title Set Identifier
VTSI_SZ	Size of the VTSI
VERN	Version Number of DVD Video Specification
VTS CAT	Video Title Set Category
VTSM_V0BS_SA	Start Address of VTSM_VOBS
VTSTT_V0BS_SA	Start Address of VTSTT_VOBS
VTSI_NAT_EA	End Address of VTSI_MAT
VTS_PTT_SRPT_SA	Start Address of VTS_ PTI_SRPT
VTS PGCIT_SA	Start Address of VTS_PGCIT
VTSM_PGCI_UT_SA	Start Address of VTS_PGCI_UT
VTS_THAPT_SA	Start Address of VTS_TMAPT
VTS V ATR	Video Attribute
VTS_AST_Ns	Number of Audio Streams for VTS
VTS AST ATR	Audio Stream Attribute for VTS
VTS_SPST_Ns	Number of Sub-picture Streams for VTS
VTS_SPST_ATR	Sub-picture Stream Attribute for VTS
VTSM_AST_Ns	Number of Audio Streams for VTSM
VTSM_AST_ATR	Audio Stream Attribute for VTSM
VTS_SPST_Ns	Number of Sub-picture Streams for VTSM
VTS_SPST_ATR	Sub-picture Stream Attribute for VTSM

F - G - 24

EP 0 738 078 B1

The content of one VTS_AST_ATR are follows:

b63	b62	ь61	ь60	b59	b58	b57	b56	
Audi	io coding	mode		Audio	type	Applicat	ion ID	
			Mul	tichannel	extent	ion		
b55	b54	b53	b52	b51	b 50	b49	b48	
Quant	tization		fs	Reserved (0)		per of aud nnels	dio	
b47	b46	b45	b44	b43	b42	b41	b40	
Specific code(upper bits)								
ь39	b38	b37	b36	b35	b34	b33	b32	
Specific code(lower bits)								
b31	b30	b29	b28	b27	b26	b25	b24	
Reserved(0) for specific code								
b23	b22	b21	b20	ь19	ь18	b17	b16	
Reserved(0)								
ь15	b14	ь13	b12	b11	ь10	ь9	b8	
	Reserved(0)							
b7	b6	b5	b4	b3	b2	b1	ь0	
		Appl	ication I	nformation	1	·		

F I G. 22

The content of one VTS_SPST_ATR is as follows:

b47	b 46	b45	b44	b43	b42	b41	b40		
Sub-l mode	Picture c	oding	Reserved (0)		icture By type	Sub-pic type	ture		
b39	b38	b37	b36	b35	b34	b33	b32		
Specific code(upper bits)									
b31	b 30	b 29	b28	b27	b26	b25	b24		
Specific code(lower bits)									
ь23	b22	b21	ь20	ь19	b18	b17	ь16		
Reserved(0)for specific code									
ь15	b14	ь13	b12	b11	b10	ь9	ь8		
Specific code extension									
b7	b6	b5	b4	b3	b2	b1 ·	ь0		
			Reserved (0)					

F I G. 23

VTS_PGCIT

F I G. 24

VTS_PGCIT_I

	(Description order)
	Content
VTS_PGC_Ns	Number of VTS_PGCs
VTS_PGCIT_EA	End Address of VTS_PGCIT

F I G. 25

VTS_PGCIT_SRP

V10_1 G011_0111	(Description orde	er)
	Content	
VTS_PGC_CAT	Video Title Set PGC category	
VTS_PGCI_SA	Start Address of VTS_PGC Information	

F I G. 26

VTS_PGCI

57

PGC _GI

	(Description order)
	Content
PGC _CAT	PGC Category
PGC_CNT	PGC Content
PGC_PB_TIME	PGC Playback Time
PGC_SPST_CTL	PGC-Sub-picutre Stream Control
PGC_AST_CTL	PGC Audio Stream Control
PGC_SP_PLT	PGC Sub-picture Palette
C_PBIT_SA	Start Address of C_PBIT
C_POSIT_SA	Start Address of C_POSIT

F I G. 28

PGC_PGMAP

\dashv

F I G. 31

Entry cell number

	Content
ECELLN	Entry Cell Number

F I G. 32

C_PBIT

Cell Playback Information #1 (C_PBI1)	 -,
Cell Playback Information #2 (C_PBI2)	
Cell Playback Information #n (C_PBIn)	_

F I G. 33

PGC_CAT

b31	b30	b29	b28	b27	b26	b25	b24
Error type		RSV(0)			Menu 1D		
b23	b22	b21	b20	b19	b18	b17	b16
	GC c mode	PG block		Progr	am playba	ck contr	ol
b15	b14	b13	b12	b11	b10	ь9	b8
Сору	flag	Playback manageme		A	pplication	on type	
b7	b6	b 5	b4	b3	b2	b1	ь0
		·	Parenta	l ID			

F I G. 29

PGC_CNT

The structure of PGC is described.

b23	b22	b21	b20	ь19	ь18	b17	b16
Reserv (0)	ed		Number	of Progr	ams		
b15	b14	b13	b12	b11	ь10	ь9	b8_
	·		Number o	f Cells			·
b7	b6	b5	b4	b3	b2	b1	ь0
	Rese	ved(0)		N	umber of	Angles	

F I G. 30

C_PBI	
	Content
C_CAT	Cell Category
C_PBTM .	Cell Playback Time
C_FVOBU_SA	Start Address of the First VOBU in the Cell
C_LVOBU_SA	Start Address of the Last VOBU in the Cell

F I G. 34

C_POSI

Cell Position Information #1 (C_POSIT1)	
:	
Cell Position Information #n (C_POSITn)	

F I G. 35

C_POSI	
	Content
C_VOB_IDN	VOB ID Number of Cell
C_IDN	Cell ID Number of the Cell

F I G. 36

VTSM_PGI_UT Video Title Set Menu PGCI Unit Table Information (VTSM_PGCI_UTI) Video Title Set Menu Language Unit Search Pointer (VTSM_LU_SRP) 111B Video Title Set Menu Language Unit Search Pointer (VTSM_LU_SRP) Video Title Set Menu Language Unit (VTSM_LU) 111C Video Title Set Menu Language Unit (VTSM_LU)

VTSM_PGCI_UTI

	Contents
VTSNLLU_Ns	Number of Video Title Set Menu Language Units
reserved	RSV(0)
VTSM_PGCI_UT_EA	End Address of VTSM_PGCI_UT

FIG. 37

F I G. 38

VTSM_LU_SRP

	Contents
VTSM_LCD	Video Title Set Menu Language Code
reserved	RSV(0)
VTSM_LU_SA	Start Address of VTSM_LU

F I G. 39

FIG. 40

VTSM_LUI

	Contents
VTSM_PGC_Ns	Number of VTSM_PGCs
reserved	Reserved(0)
VTSM_LU_EA	End Adderss of VTSM_LU

F I G. 41

VTSM_PGC L_SRP

	Contents							
VTSMLPGC_CAT	VTSM_PGC Category							
VTSMLPGC I_SA	Start Address of VTSM_PGCI							

F I G. 42

PCI
Content
PCI_GI PCI General Information
NSML_AGLI Angle Information
HLI Highlight Information

F I G. 45

 PCI_GI

 Content

 NV_PCK_LBN
 LBN of NV Pack

 VOBU_CAT
 Category of VOBU

 VOBU_S_PTS
 Start PTS of VOBU

 VOBU_E_PTS
 End PTS of VOBU

FIG. 46

NSML_AGL I Content NSML_AGL_C1_DSTA Destination Address of Angle Cell Number 1 NSML_AGL_C2_DSTA Destination Address of Angle Cell Number 2 NSML_AGL_C3_DSTA Destination Address of Angle Cell Number 3 NSML_AGL_C4_DSTA Destination Address of Angle Cell Number 4 Destination Address of Angle Cell Number 5 NSML_AGL_C5_DSTA NSML_AGL_C6_DSTA Destination Address of Angle Cell Number 6 NSML_AGL_C7_DSTA Destination Address of Angle Cell Number 7 Destination Address of Angle Cell Number 8 NSML_AGL_C8_DSTA NSML_AGL_C9_DSTA Destination Address of Angle Cell Number 9

FIG. 47

Relation between sub-picture and HLI

Contents

H_G

Status of HLI

(1) HLLSS

53

		(2) HLI_S_PTM	Start PTM of HLI
글		(3) HLI_E_PTM	End PTM of HLI
	Contents	(4) BTN_SL_E_PTM	(4) BTN_SL_E_PTM End PTM of Button select
H_61	Highlight General Information	(5) BTN_MD	Mode of Button
BTN_COL I T	Button Color Information Table	(6) BTN_SN	Button Start number
BTNIT	Button Information Table	(7) BTN_NS	Number of Buttons
		(8) NSBTN_NS	Number of numerical select Buttons
	F 6. 31	(9) FSLBTN_N	Forcedly selected Button number
		(10) FACBTN_N	Forcedly activated Button number

			1		f							—
	p40		p32	End X-coordinate (upper bits)	b24		b16		8 q	End Y-coordinate (upper bits)	P0	
	b41	· bits)	b33	End X-coord (upper bits)	b25		b17	bits)	69	End Y-coord (upper bits)	b1	
	p42	ate (upper	b34	(0) Ps	9Zq	bits)	b18	ate (upper	b10	(0) P	P2	bits)
	p43	Start X-coordinate (upper bits)	535	Reserved (0)	b27	ate (lower	b19	Start Y-coordinate (upper bits)	b11	Reserved (0)	p3	ate (lower
<u> </u>	p44	Start	p36	its)	P28	End X-coordinate (lower bits)	P20	Start	b12	its)	b4	End Y-coordinate (lower bits)
(BTN_POSI	b45		b37	te (lowerb	b29	End	b21		b13	e (lower b	P2	End
Button position information (BTN_POSI)	p46	NTO:	P38	Start X-coordinate (lowerbits)	P30		b22	epom uo	b14	Start Y-coordinate (lower bits)	. 99	
position	b47	BTN COLN	P39	Start	b31		b23	Auto action mode	b15	Start \	Ь7	
Button		<u> </u>		<u> </u>	•		•		•			

72

Content
DSI General Information
Angle Information
VOBunit search Information
Synchronus Playback Information

FIG. 59

DSI_GI	
	Content
NV_PCK_SCR	SCR of NV Pack
NV_PCK_LBN	LBN of NV Pack
VOBU_EA	VOBU End Address
VOBU_IP_EA	First I-picture End Address
VOBU_VOB_IDN	VOB ID Number
VOBU_C_IDN	Cell ID Number
<u> </u>	

F I G. 60

SML_AGL	
	Content
SML_AGL_C1_DSTA	Destination Address of Angle Cell Number 1
SML_AGL_C2_DSTA	Destination Address of Angle Cell Number 2
SML_AGL_C3_DSTA	Destination Address of Angle Cell Number 3
SML_AGL_C4_DSTA	Destination Address of Angle Cell Number 4
SML_AGL_C5_DSTA	Destination Address of Angle Cell Number 5
SML_AGL_C6_DSTA	Destination Address of Angle Cell Number 6
SML_AGL_C7_DSTA	Destination Address of Angle Cell Number 7
SML_AGL_C8_DSTA	Destination Address of Angle Cell Number 8
SML_AGL_C9_DSTA	Destination Address of Angle Cell Number 9

F1G. 61

SYNCI	
	Content
A_SYNCA 0 to 7	Target Audio Pack Address
SP_SYNCA 0 to 31	VOBU Start Address of Target SP pack

F I G. 66

\ 4	\sim	D!	1	CDI	
v	O	ים	U	LSR I	1

AORO-2KI	
	Content
FWDA240	+240 VOBU Start Address
FWDA120	+120 VOBU Start Address
FWDA60	+60 VOBU Start Address
FWDA20	+20 VOBU Start Address
FWDA15	+15 VOBU Start Address
FWDA14	+14 VOBU Start Address
FWDA13	+13VOBU Start Address
FWDA12	+12 VOBU Start Address
FWDA11	+11 VOBU Start Address
FWDA10	+10 VOBU Start Address
FWDA9	+9 VOBU Start Address
FWDA8	+8 VOBU Start Address
FWDA7	+7 VOBU Start Address
FWDA6	+6 VOBU Start Address
FWDA5	+5 VOBU Start Address
FWDA4	+4 VOBU Start Address
FWDA3	+3 VOBU Start Address
FWDA2	+2 VOBU Start Address
FWDA1	+1 VOBU Start Address
BWDA1	-1 VOBU Start Address
BWDA2	-2 VOBU Start Address
BWDA3	-3 VOBU Start Address
BWDA4	-4 VOBU Start Address
BWDA5	-5 VOBU Start Address
BWDA6	-6 VOBU Start Address
BWDA7	-7 VOBU Start Address
BWDA8	-8 VOBU Start Address
BWDA9	-9 VOBU Start Address
BWDA10	-10 VOBU Start Address
BWDA11	-11 VOBU Start Address
BWDA12	-12 VOBU Start Address
BWDA13	-13 VOBU Start Address
BWDA14	-14 VOBU Start Address
BWDA15	-15 VOBU Start Address
BWDA16	-16 VOBU Start Address
BWDA20	-20 VOBU Start Address
BWDA60	-60 VOBU Start Address
BWDA120	-120 VOBU Start Address
BWDAZ40	-240 VOBU Start Address

F I G. 63

FORWARD ADDRESS (FWDANN)							
b31	b30	b29	b28	b27	b26	b25	b24
V_FWD							
b23	b24	b25	b26	b27	b28	b29	b30
	A-FWDn[2316]						
b15	b14	b13	b12	b11	b10	b9	b8
	A-FWDn[158]						
b7	b6	b5	b4	b3	b2	b1	b0
	A-FWDn[70]						

F I G. 64

BACKW	ARD ADD	RESS (B	WDANN)					
b31	b30	b29	b28	b27	b26	b25	b24	
V_BWD V_BWD A_BWDn[2924] _Exist 1								
b23	b24	b25	b26	b27	. b28 .	b29	b30	
	A-BWDn[2316]							
b15	b14	b13	b12	b11	b10	b9	b8	
A-BWDn[158]								
b7	b6	b5	b4	b3	b2	b1	ьо	
A-BWDn[70]								

F I G. 65

SPUH

	Contents		
SPDSZ	Size of sub-picture unit		
SPDCQTA	Start Address of Display Control Sequence Table		

F I G. 68

DCSQT

	Contents
ocsao	Display Control sequence 0
DCSQ1	Display Control sequence 1
:	
:	
	Display Control sequence n

F I G. 69

DCSQ

	Contents
SPNDCSQA	Address following Display Control Sequence
SPDCCMDI	Display Control Command 1
:	
	!

F I G. 70

START	
SEARCH FOR TITLE SEARCH POINTER TABLE (TT SRPT) 79 OF VIDEO MANAGER 71	∽s51
ACQUIRE THE TOTAL NUMBER OF TITLES FROM THE NUMBER (TT Ns) OF TITLE SEARCH POINTERS OF TITLE SEARCH POINTER TABLE INFORMATION (TT SRPTI) 92	
ACQUIRE THE NUMBER OF CHAPTERS (PROGRAMS) FOR EACH TITLE)]
FROM PART-OF-TITLES (PIT Ns) OF EACH TITLE SEARCH POINTER (TT SRP) 93	∽ \$53
SEARCH FOR VIDEO TITLE SET DIRECT ACCESS POINTER TABLE (VTS PTT SRPT) 99 OF EACH VIDEO TITLE SET 72	,]∽ s54
<u> </u>	} 7
ACQUIRE THE NUMBER OF AUDIO STREAMS FOR EACH TITLE FROM THE NUMBER (VTS AST Ns) OF AUDIO STREAMS AND ACQUIRE THE NUMBER OF SUB-PICTURE STREAMS FOR EACH TITLE FROM THE NUMBER (VTS AST Ns)	~S55
ACQUIRE LANGUAGE OF EACH TITLE FOR EACH AUDIO STREAM FROM	• }
AUDIO LANGUAGE CODE FOR EACH AUDIO STREAM OF AUDIO STREAM ATTRIBUTE (VTA AST ATR)	∽S56
ACQUIRE LANGUAGE OF EACH TITLE FOR EACH SUB-PICTURE STREAM	1
FROM SUB-PICTURE LANGUAGE CODE FOR EACH SUB-PICTURE STREAM OF SUB-PICTURE STREAM ATTRIBTE (VTS SPST ATR)	∽S57
SEARCH FOR VIDEO MANAGER MENU PGC UNIT TABLE	í I
(VMGM PGCI UT) 81 OF VIDEO MANAGER 71	∽S58
SEARCH FOR VIDEO MANAGER MENU LANGUAGE UNIT SEARCH POINTERS (VMGM LU SRP) 81B MHERE THE SAMELANGUAGE CODE AS A LANGUAGE SET IN REPRODUCING APPARATUS IS DESCRIBED	∽ S59
CELECIA FOR MENT IN DESCRIPED FOR EACH OFFECORY	ı
SEARCH FOR MENU ID DESCRIBED FOR EACH CATEGORY (VMGM PGC CAT) OF PROGRAM CHAIN OF EACH VIDEO MANAGER MENU OF VIDEO MANAGER MENU PGC INFORMATION SEARCH POINTERS (VMGM PGCI SRP) 81E	∽S60
*	•
F I G. 73	

82

START ADDRESS OF TOP VIDEO OBJECT UNIT TYPE C FVOBU SA OF VOBU MAIN MENU DESCRIBED IN VMGM PGC1 C FVOBU SA OF VOBU TITLE MENU DESCRIBED IN VMGM PGC1 C FVOBU SA OF VOBU AUDIO MENU OF DESCRIBED IN VMGM PGCI TITLE 1 C FVOBU SA OF VOBU DESCRIBED IN VMGM PGCI AUDIO MENU OF TITLE 2 C FVOBU SA OF VOBU AUDIO MENU OF DESCRIBED IN VMGM PGC TITLE 1 C FVOBU SA OF VOBU AUDIO MENU OF DESCRIBED IN VMGM PGCI TITLE 2 C FVOBU SA OF VOBU SUB-PICTURE MENU DESCRIBED IN VMGM PGCI OF TITLE 1 C FVOBU SA OF VOBU SUB-PICTURE MENU DESCRIBED IN VMGM PGCI OF TITLE 2 C FVOBU SA OF VOBU ANGLE MENU OF DESCRIBED IN VMGM PGCI TITLE 1 C FYOBU SA OF YOBU ANGLE MENU OF DESCRIBED IN VMGM PGCI TITLE 2

FIG. 75

MAIN	MENU	
1 TITLE 2 CHAPTER 3 AUDIO 4 SUB-PICTURE 5 ANGLE 6 LANGUAGE	1of3 2of5 JAPANESE ENGLISH 1of3	~6

FIG. 76

1) from New York 2) from Paris	Chapter information 1) Metropolitan 2) Manhattan 3) 5th street
F I G. 77A	F I G. 77B
Audio information 1)English 2)French 3)Japanese	Subtitle information 1)English 2)French
F.I.G. 77C	F 16 770

Angle information

1)Left

2)Right

3)Center

F I G. 77E

START	
STORE START ADDRESS OF INITIAL VOBU AND PGC NUMBER IN CELL IN SYSTEM ROM/RAM SECTION	\$1
	∽ \$2
SEQUENTIALLY READ CELLS OF PROGRAM CHAIN (PGC) AND STORE THE DATA IN RAM SECTION	∽ \$3
TRANSFER PACKET DATA OF VIDEO PACK, AUDIO PACK AND SUB- PICTURE PACK TO VIDEO DECODER SECTION, AUDIO DECODER SECTION AND SUB-PICTURE DECODER SECTION AND SEND PCI DATA AND DSI DATA AS PACKET DATA OF NAVIGATION PACK TO DATA RAM SECTION	∠ \$4
DETERMINE HIGHLIGHT INFORMATION CORRESPONDING TO DISPLAY BUTTON ACCORDING TO PCI DATA STORED IN DATA RAM SECTION	~ S5
OUTPUT X-, Y-COORDINATE VALUES INDICATING RECTANGULAR AREA COORESPONDING TO EACH BUTTON TO HIGHLIGHT AREA SETTING/ DISCRIMINATOR SECTION AND OUTPUT HIGHLIGHT COLOR AND CONTRAST VALUE RESPONSIVE TO HIGHLIGHT INFORMATION COORESPONDING TO SCANNING POSITION TO HIGHLIGHT COLOR/ CONTRAST SETTER	~ \$6
DETERMINE SPECIFIED HIGHLIGHT AREA ACCORDING TO X-, Y-COORDINATE VALUES INDICATING RECTANGULAR AREA (SPECIFIED HIGHLIGHT AREA) DISPLAYED BY OPTIONAL ITEM AND X-, Y-COORDINATE VALUES OBTAINED BY RASTER SCANNING , I.E., PIXEL DATA X-, Y-COORDINATE VALUES AND SUPPLY SWITCHING SIGNAL INDICATING HIGHLIGHT SECTION TO SELECTOR	
SET HIGHLIGHT COLOR AND CONTRAST VALUE TO HIGHLIGHT COLOR/ CONTRAST SETTER IN RESPONSE TO X-, Y-COORDINATE VALUES OBTAINED BY RASTER SCANNING	∽\$8
OUTPUT DEFAULT DISPLAY COLOR AND CONTRAST FROM DEFAULT COLOR/ CONTRAST SETTER OR COLOR AND CONTRAST OF HIGHLIGHT TIME FROM HIGHLIGHT COLOR/ CONTRAST SETTER SELECTIVELY BY SELECTOR	∽ \$9
OUTPUT SIGNAL RESPONSIVE TO COLOR AND CONTRAST SUPPLIED FROM SELECTOR BY COLOR PALLET REGISTER	∽ \$10
FIG 78 END	

FIG. 83

FIG. 85

NO

\$49)

S 50 1

NV PACK

TYES

TRANSFER COMPLETED ?

SET SYNCHRONIZING DATA IN EACH DECODER. EACH STC - NV PCK SCR

STOP PAUSE PROCESSING OF V, A (MUTE), AND SP. START STC

F I G. 86

F I G. 89

F I G. 87

FIG. 88

THIS PAGE BLANK (USPTO)