Econ 710A Problem Set 2

Sarah Bass 2|4|21 Problem Set 2

1) Covariance estimator ->p covariance

by WUN and CMT a) COU(7, Y) = + Zin (31-7) (41-7)

->p COV (3, Y)

COV (ZIX) = <u>COV(Z, Bo + XB1 + U)</u>

Cov (2, x)

= COV (2, Bo) + COV (2, XB,) + COV (2, U) CON (Z,X)

COV (2, K)

- D + B, COV(2, X) + COV(2, U)

= 0 + B1 + COV (Z1U) NOTE COV(ZIU) = E[ZE[U|Z]]- E[Z] E[E[U|Z]]

= E[2·2] - E[3] E[2] = 2年[3] - 2臣[3]

Thus Biv >p B(.

b) BOW = Y - XBIN

9+ 1-LO+5L +8 正[812]=0 Y= Bo + XB, +U

=B0+[T0+2T0+V]B1+U = BO + BITTO + BIZT, + BIV +U

E = BIV +U

To = Bo + BITTO ~, = B, TI

c)
$$\frac{\hat{\gamma}_{l}}{\hat{\Pi}_{l}} = \frac{\left[\frac{1}{2}\sum_{i=1}^{n}(z_{i}-\bar{z})(z_{i}-\bar{z})\right]^{-1}\left[\frac{1}{n}\sum_{i=1}^{n}(z_{i}-\bar{z})(\gamma_{i}-\bar{\gamma})\right]}{\left[\frac{1}{n}\sum_{i=1}^{n}(z_{i}-\bar{z})(\gamma_{i}-\bar{\gamma})\right]^{-1}\left[\frac{1}{n}\sum_{i=1}^{n}(z_{i}-\bar{z})(\gamma_{i}-\bar{\gamma})\right]}$$

$$= \frac{\left[\frac{1}{n}\sum_{i=1}^{n}(z_{i}-\bar{z})(\gamma_{i}-\bar{\gamma})\right]}{\left[\frac{1}{n}\sum_{i=1}^{n}(z_{i}-\bar{z})(\gamma_{i}-\bar{\gamma})\right]}$$

$$= \hat{\beta}_{lV}$$

$$\text{Sorry, I can't draw xi right ::}$$

$$d) Let U = V S_{2} + \xi, \text{ where } S_{2} = \frac{Cov(V_{l}V)}{Var(V)}.$$

$$\text{Then } Cov(V_{l}\xi) = Cov(V_{l}U - vS_{2})$$

$$= Cov(V_{l}U) - Cov(V_{l}VS_{2})$$

$$= cov(V_{l}U) - S_{2} cov(V_{l}V).$$

Also, $cov(X \xi) = cov(T_0 + 2T_1 + V_1 \xi)$ = $cov(T_0, \xi) + cov(2T_1, \xi) + cov(V_1 \xi)$ = $T_1 cov(2, U - V_2)$ = $T_1 cov(2, U) - T_1 cov(2, V_2)$ = $T_1 cov(2, U) - T_1 \delta_2 cov(2, V)$ = 0.

= cov(v,u) - cov(v,u) var(v)

var(v)

So if we define $S_0 = B_0$, $S_1 = B_1$, we have $Y = S_0 + XS_1 + VS_2 + S_1$.

e)
$$\hat{V}_{i}=X_{i}-\hat{\pi}_{o}-Z_{i}\hat{\pi}_{i}$$
 Using partitioned regression:

$$C_{i}=I-\hat{V}_{i}\left(\Sigma_{i=i}^{n}\hat{V}_{i}\right)\left(\Sigma_{i=i}^{n}\hat{V}_{i}^{2}\right)^{-1}=I$$

$$\hat{X}_{i}=X_{i}-\hat{V}_{i}\left(\Sigma_{i=i}^{n}\hat{V}_{i}X_{i}\right)\left(\Sigma_{i=i}^{n}\hat{V}_{i}^{2}\right)$$

$$=X_{i}-\hat{V}_{i}$$

$$=X_{i}-(X_{i}-\hat{\pi}_{o}-Z_{i}\hat{\pi}_{i})$$

$$=\hat{\pi}_{o}+Z_{i}\hat{\pi}_{i}$$
Using these, we can solve for \hat{S}_{i} as follows:

Using these, we can solve for Si as follows:

$$\hat{S}_{i} = \frac{\hat{cov}(\tilde{x}, Y)}{\hat{vav}(\tilde{x})}$$

$$= \frac{\hat{cov}(\tilde{\pi}_{0} + \hat{z} + \tilde{\pi}_{1}, Y)}{\hat{vav}(\tilde{\pi}_{0} + \hat{z} + \tilde{\pi}_{1})}$$

$$= \frac{\hat{cov}(\tilde{\pi}_{0} + \hat{z} + \tilde{\pi}_{1}, Y)}{\hat{vav}(\tilde{\pi}_{0} + \hat{z} + \tilde{\pi}_{1}, Y)}$$

$$= \frac{\hat{\pi}_{1} \hat{cov}(\hat{z}, Y)}{\hat{\pi}_{1}^{2} \hat{vav}(\hat{z})}$$

$$= \frac{1}{\hat{r}_{1}} \frac{\hat{cov}(\hat{z}, Y)}{\hat{vav}(\hat{z})}$$

$$= \frac{\hat{r}_{1}}{\hat{r}_{1}} \frac{\hat{r}_{pm}}{\hat{r}_{pm}} 2b.$$

$$= \hat{\beta}_{1}$$

$$\hat{\pi}_1$$

Thus the control variable estimator is equal to the 1V estimator of B.

- 3) a) B, is the change in the probability of the mother working in the last year that results from having more than 2 children in the housewold.
 - b) XI could be endogenous. It could be the case that women with better"

 jobs (higher pay, greater willity from work) prefer to have fewer children so that they can focus on their caveer. Similarly, women who would like to have more children may select careers where they can more easily step in and out of the workforce.
 - c) In this case B, would be the change in probability of the husband working in the last year that results from having more than 2 children in the household.

 X, is likely to be endogenous for the same reasons described in part b, with the OLS coefficient overstating the reduction in labor supply caused by having >2 children.

- d) In order for Z1 to be a good instrument, it needs to be relevant and exogenous. Z1 16 relevant to X1 because parents whose first 2 children are the same sex may be more inclined to have a 3rd child with the hope of having a child of the opposite sex. Z1 satisfies exogeneity because sex of a child is determined by nature.
- e) The regression output from Stata is shown below. We can see that zi is a relevant instrument for XI because samesex has a statistically significant non-zero value.

Source	SS	df	MS	Number of obs	=	394,840
			10	F(8, 394831)	=	4526.59
Model	7974.62958	8	996.828698	Prob > F	=	0.0000
Residual	86948.2882	394,831	.220216468	R-squared	=	0.0846
			- 12	Adj R-squared	=	0.0846
Total	94922.9177	394,839	.240409174	Root MSE	=	.46927
morekids	Coef.	Std. Err.	t P	> t [95% Co	nf.	Interval
samesex	.0611486	.0014944	40.92 0	.000 .058219	5	.0640777
agem	.0302059	.0002335	129.39 0	.000 .029748	3	.0306634
	0451303	.0002821	-159.99 0	.000045683	2	0445775
agefstm						
boy1st	007932	.0014944	-5.31 0	.000010861	1	0050029
	2500 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0014944		.000010861 .000011618		0050029 0057605

35.52

16.06

49.90

0.000

0.000

0.000

.1475972

.063314

.349086

.1648377

.0809113

.3776296

hispm

cons

othracem

.1562174

.0721126

.3633578

.0043981

.0044892

.0072817

f) Below are the replication results. As we can see, the results varied slightly across models, however we can see consistently that there is a negative relationship between labor supply and children.

	All W., OLS	All W., 2SLS	M. W., 2SLS	H. of M.W., OLS	H. of M.W., 2SLS
Worked for pay	176	117	117	007	.004
	(.002)	(.025)	(.028)	(.001)	(.009)
Weeks worked	-8.978	-5.559	-5.272	741	.613
	(.072)	(1.118)	(1.218)	(.044)	(.598)
Hours per week	-6.647	-4.547	-4.784	.254	.539
	(.062)	(.954)	(1.023)	(.052)	(.702)