

PROJEKTIRYHMÄN TYÖNJAKO

- Datapipelinen ja Ennustemallin teko
- Datan puhdistus ja analysointi
- Datan puhdistus ja analysointi
- Product Owner ja datan visualisointi

PROJEKTIN ESITTELY

- Sään vaikutus Helsingin seudun henkilö- ja pakettiautojen liikennemääriin ja ajoneuvojen nopeuksiin. Liikenteen mittauspisteiksi valittiin kolme pistettä eri puolelta pk-seutua ja näitä lähellä olevat säähavaintopisteet.
- Ajanjaksoiksi määriteltiin 2019 2023.
- Tarkoitus oli lisäksi selvittää onko sään ja aiempien liikennemäärien perusteella mahdollista luoda ennustemallia päivittäisen työmatkan suunnittelun avuksi.
- Datalähteenä käytettiin Ilmatieteenlaitoksen säähavaintodataa ja digitrafficin tieliikennedataa.

TEKNIIKAT

- Datan lataaminen ja muokkaus: Azure Synapse Analytics, Spark Notebook
 - historiadatan lataus csv:nä ja päivittyvä data haettiin APIen kautta
- Datan mallinnus: SQL DBM
- Tietovaraston toteutus: Azure Synapse data pipeline, Azure SQL database (basic)
- Datan analysointi ja visualisointi: PowerBI

PROJEKTIN HALLINTA & KETTERÄT MENETELMÄT

HTTPS://WWW.ILMATIETEENLAITOS.FI/HAVAINTOJEN-LATAUS

Säädatan haku Ilmatieteenlaitoksen Havaintojen lataus sivulta

Säädatan lataus csv:nä 2 vuoden erissä/mittauspiste

```
saahavainnot 2019 2020 tapiola.c: X
      Edit View
File
Vuosi, Kk, Pv, Klo, Aikavyöhyke, Sademäärä (mm), Sateen intensiteetti (mm/h), Lumensyvyys (cm), Ilman lämpötila (degC), Näkyvyys (m), Tuulen nopeus (m/s)
2019,1,1,00:00,UTC,1.1,1.1,7,1.4,5294,9.4
2019,1,1,01:00,UTC,0.5,0.5,7,1.8,3676,8.8
2019,1,1,02:00,UTC,0.4,0.3,6,2.2,4457,7.7
2019,1,1,03:00,UTC,0.2,0,6,2.5,7865,8.1
2019,1,1,04:00,UTC,0.3,0.3,6,2.7,4820,6.5
2019,1,1,05:00,UTC,0.3,0.6,5,2.8,4434,6.7
2019,1,1,06:00,UTC,0.4,0.4,5,3.1,5704,7.5
2019,1,1,07:00,UTC,0.5,0.6,5,3.1,4614,5.8
2019,1,1,08:00,UTC,0.4,0.8,5,3.1,3363,6.4
2019,1,1,09:00,UTC,0.4,0.4,5,3.2,5921,6.1
2019,1,1,10:00,UTC,0.3,0,4,3.7,7012,5.7
2019,1,1,11:00,UTC,0.1,0,4,3.7,7755,4.4
2019,1,1,12:00,UTC,0,0,4,3.7,15695,3.7
2019,1,1,13:00,UTC,0,0,4,3.4,29569,5.4
2019,1,1,14:00,UTC,0.1,0.1,4,2.9,7615,3.4
2019,1,1,15:00,UTC,0,0,4,2.2,21756,3
2019,1,1,16:00,UTC,0,0,3,2.1,26853,2.8
```

HTTPS://TIE.DIGITRAFFIC.FI/UI/TMS/HISTORY/

• Liikennedatan haku digitrafficin LAM-tilastohaun avulla

Liikenteen mittauspisteet kartalla

LAM-tilastohaku Aineisto ? Liikennemäärät Raportti Tuntiliikenneraportti Aika Alkuaika 2020-01-01 Loppuaika 2023-03-31 LAM-pisteet ? Yksittäisten pisteiden valinta 154 Listaus Pistejoukkojen valinta LAM-pistejoukot Listaus Aioneuvoluokat Valitse ajoneuvoluokka (voit valita useampia) Kaikki (vhteensä) Kevyet ajoneuvot (1,6,7,8) Raskaat ajoneuvot (2.3.4.5.9) 1 Henkilö- tai pakettiauto Suunnat Kaikki (suunnat summattuna) Ei - kaistat summattuna Kyllä - kaistat eriteltynä

- Liikennedatan lataus csv:nä
- Valitut kentät:
 - pistetunnus
 - sijainti
 - pvm
 - suunta
 - suuntaselite
 - klo
 - Keskinopeus
 - Liikennemäärä

DATAN HAKU (REAALIAIKA)

```
locations = {
    '100226':154,
    '100240':169,
    '100158':118,
df=pd.DataFrame()
for stationid, location in locations.items():
    url = f'https://lamapi.azurewebsites.net/api/Public/getDayById/{stationid}'
    response = requests.get(url)
    if response.status code == 200:
        print("API request successful.")
        response data = response.json()
        df2 = pd.json normalize(response data,record path = 'data',meta='direction')
    else:
         print("Error:", response.status code, response.reason)
    luku = (len(df2)-26)/2
    df2.insert(0,'sijainti',location)
    df2['time'] = pd.to datetime(df2['time'], format='%H:%M')
    if len(df2)>26:
        df2.loc[len(df2)/2-luku:len(df2)/2-1, 'time']+= pd.Timedelta(hours=12)
        df2.loc[len(df2)-luku:len(df2),'time']+= pd.Timedelta(hours=12)
    df2.loc[0,'time']+= pd.Timedelta(hours=12)
    df2.loc[len(df2)/2,'time']+= pd.Timedelta(hours=12)
    df2['time'] = df2['time'].dt.strftime('%H:%M')
    df2['pvm']=date.today()
    df = pd.concat([df, df2], ignore_index=True)
```

Haettu data

	count	speed	time	direction
0	172	94	12:00	Lahti
1	123	96	01:00	Lahti
2	83	93	02:00	Lahti
3	56	88	03:00	Lahti
4	74	92	04:00	Lahti
5	166	94	05:00	Lahti
6	408	97	06:00	Lahti
7	920	97	07:00	Lahti
8	974	96	08:00	Lahti
9	847	96	09:00	Lahti
10	989	95	10:00	Lahti
11	930	95	11:00	Lahti
12	1103	95	12:00	Lahti
13	122	91	12:00	Helsinki
14	73	92	01:00	Helsinki
15	47	93	02:00	Helsinki
16	62	91	03:00	Helsinki
17	153	91	04:00	Helsinki
18	595	97	05:00	Helsinki
19	2148	96	06:00	Helsinki
20	2424	95	07:00	Helsinki
21	2517	96	08:00	Helsinki
22	1559	95	09:00	Helsinki
23	1110	94	10:00	Helsinki
24	1146	94	11:00	Helsinki
25	1103	94	12:00	Helsinki

Muokattu data

	Sijaiiiu	Count	speed	ume	airection	pviii
0	154	172	94	00:00	Lahti	2023-04-12
1	154	123	96	01:00	Lahti	2023-04-12
2	154	83	93	02:00	Lahti	2023-04-12
3	154	56	88	03:00	Lahti	2023-04-12
4	154	74	92	04:00	Lahti	2023-04-12
5	154	166	94	05:00	Lahti	2023-04-12
6	154	408	97	06:00	Lahti	2023-04-12
7	154	920	97	07:00	Lahti	2023-04-12
8	154	974	96	08:00	Lahti	2023-04-12
9	154	847	96	09:00	Lahti	2023-04-12
10	154	989	95	10:00	Lahti	2023-04-12
11	154	930	95	11:00	Lahti	2023-04-12
12	154	1103	95	12:00	Lahti	2023-04-12
13	154	122	91	00:00	Helsinki	2023-04-12
14	154	73	92	01:00	Helsinki	2023-04-12
15	154	47	93	02:00	Helsinki	2023-04-12
16	154	62	91	03:00	Helsinki	2023-04-12
17	154	153	91	04:00	Helsinki	2023-04-12
18	154	595	97	05:00	Helsinki	2023-04-12
19	154	2148	96	06:00	Helsinki	2023-04-12
20	154	2424	95	07:00	Helsinki	2023-04-12
21	154	2517	96	08:00	Helsinki	2023-04-12
22	154	1559	95	09:00	Helsinki	2023-04-12
23	154	1110	94	10:00	Helsinki	2023-04-12
24	154	1146	94	11:00	Helsinki	2023-04-12
25	154	1103	94	12:00	Helsinki	2023-04-12

DATAN HAKU (PIPELINE)

PIPELINE (DATAFLOW)

TIETOVARASTO

- Kaksi Faktataulua: Sää ja Liikenne
- Molemmilla Faktatauluilla Dimensiotauluina sijainti ja aika

ANALYSOINTI

Nopeusrajoitukset

- Kt50_Pakkala -> 80 km/h
- St101_Espoo_Keilaniemi -> 60 km/h
- Vt4_Viikinmäki > 100 km/h

Keskinopeusdataa ei saatavissa vuodelta 2019

DATAN ANALYSOINTI

157M

Liikenteen määrä yht.

6.70

Keskilampotila °C

32.80

Suurin lämpötila °C

-26.40

Pienin lämpötila °C

DATAN ANALYSOINTI

ENNUSTEMALLI

Mallinna käytettiin RandomForestRegressiota Mallia kokeiltiin käyttämällä Viikinmäen pisteen dataa

Muuttujina käytettiin Sateen määrää, lämpötilaa, viikonpäivää ja kellonaikaa

Mallilla ennustettiin liikennemäärää

Mallin keskimääräinen virhe marginaali lukumäärien suhteen 15%

PROJEKTIN HAASTEET JA KEHITYSIDEAT

- Azuren hallinta
- Reaali datan haku pipelineen
 - Data päivittyy 1–2h myöhässä

• Liikennetiedotteiden kerääminen

YHTEENVETO

- Suurimmat nopeudet klo: 5 6
- Suurimmat liikennemäärät klo: 15–16
- Talvi vaikuttaa nopeuksiin
- Ennustemalli on toimiva
- Lähes saman tuloksen saa kun katsoo ulos ikkunasta

KIITOS MIELENKIINNOSTA!

Kysymyksiä?