Tutorial training

Getting acquainted with the Unix text processors: grep, sed and awk

- 1. First read and study the associated tutorials:
 - 1. grep: https://ryanstutorials.net/linuxtutorial/grep.php
 - 2. sed: https://www.tutorialspoint.com/sed/
 - 3. awk: https://www.tutorialspoint.com/awk/
- Perform online challenges involving the above programs

'Hacking challenges'

- For the next part of today we will further our training in using the command-line Unix applications 'sed', 'grep' and 'awk'.
- Together with less, more, head, tail, uniq, sort and cut they form the heart of many bioinformatics pipelines.
- 4. Start with the **grep** challenges, followed by **sed** and finally **awk**.

'Biological' exercises 1 (parsing a GFF FILE)

- 1. Obtain the *.gff.gz file from https://www.ncbi.nlm.nih.gov/assembly/GCF 000149205.2/
- 2. We are going to the look at the gene predictions for a fungus, *Aspergillus nidulans*, by examining the GFF3 formatted gene prediction file. More, **essential**, information about GFF (*gene feature file*) format here: http://gmod.org/wiki/GFF3

Using Unix-tools only, answer the following questions:

- How many sequences are described in the GFF file for this genome of A. nidulans? Does this match
 with the number of sequences in the associated genomic fasta file:
 GCF_000149205.2_ASM14920v2_genomic.fna.gz ? (find it at the above dir on ncbi)
- 2. How many transcripts (mRNA) are encoded on sequence "NT_107008.1"?
- What is the average number of exons per transcript (for all transcripts)?
 (hint: you can use the command line calculator bc (add -l for floating point arithmetic))
 What is their average length?
 (hint: you can use awk's default operators such as NR (record number) and NF (field number))
- 4. How many single-exons transcripts can be found for this organism?
- 5. Which transcript encodes the largest protein (number of amino acids)? And which one the smallest?
- Calculate the density of transcripts for each sequence (defined as the number of transcripts/megabase).
 - Which sequence has the highest transcript density? Which one the lowest?

'Biological' exercises 2

Task: Identify differentially abundant transcripts between two conditions, each containing three replicate samples

Data: In triplicate, kallisto quantification outputs (see: https://pachterlab.github.io/kallisto/) for fungal rna-seq performed at two conditions, control: 1-3 and treatment 4-6.

Proviology the dataset from here:

https://surfdrive.surf.nl/files/index.php/s/l01hsIVE65FBWP7/download and unpack.

Find a way to combine the information from the six *.tsv files in the six directories and extract transcripts that are on average two-fold higher in C4 than in C1. For expression values we use the 'tpm' column!. How many were there? Now do the reverse.

target_id	length	eff_length	est_counts	tpm
IcI NZ_CP007637.1_cds_WP_010207718.1_1	1518	1219	664	40.1639
Icl NZ_CP007637.1_cds_WP_010207719.1_2	1104	805	1028	94.1605
Icl NZ_CP007637.1_cds_WP_010207720.1_3	1104	805	452	41.4013
IcI NZ_CP007637.1_cds_WP_010207722.1_4	2418	2119	2161	75.1961

Loops

Not covered (today), but incredibly powerful:

for and while loops

More:

https://linuxize.com/post/bash-for-loop/ https://linuxize.com/post/bash-while-loop/