

ECEN 248 Introduction to Digital Systems Design

Lecture 2

Boolean Algebra and its Relation to Digital Circuits

- "Traditional" algebra
 - Variables represent real numbers (x, y)
 - Operators operate on variables, return real numbers (2.5*x + y 3)

Boolean Algebra

- Variables represent 0 or 1 only
- Operators return 0 or 1 only
- Basic operators
 - AND: a AND b returns 1 only when both a=1 and b=1
 - OR: a OR b returns 1 if either (or both) a=1 or b=1
 - NOT: NOT a returns the opposite of a (1 if a=0, 0 if a=1)

U	U		a		
1	0				
0	0				
1	1	a	b	OR	
	_	0	0	0	
		0	1	1	
		1	0	1	
a	NOT	1	1	1	
0	1				
	_				

George Boole

- English mathematician, 1815-1864
- Author of Laws of Thoughts (1854)
- Creator of Boolean Algebra

Boolean Algebra and its Relation to Digital Circuits

(Scalable)

- Developed mid-1800's by George Boole to formalize human thought
 - Ex: "I'll go to lunch if Mary goes OR John goes, AND Sally does not go."
 - Let F represent my going to lunch (1 means I go, 0 I don't go)
 - Likewise, m for Mary going, j for John, and s for Sally
 - Then F = (m OR j) AND NOT(s)
 - Nice features
 - Formally evaluate
 - m=1, j=0, s=1 --> F = (1 OR 0) AND NOT(1) = 1 AND 0 = $\mathbf{0}$
 - Formally transform
 - F = (m and NOT(s)) OR (j and NOT(s))
 - » Looks different, but same function
 - » We'll show transformation techniques soon
 - Formally prove
 - Prove that if Sally goes to lunch (s=1), then I don't go (F=0)
 - F = (m OR j) AND NOT(1) = (m OR j) AND 0 = 0

	а	b	AND
ı	0	0	0
	0	1	0
	1	0	0
	1	1	1

а	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

а	NOT
0	1
1	0

Evaluating Boolean Equations

- Evaluate the Boolean equation F = (a AND b) OR (c
 AND d) for the given values of variables a, b, c, and d:
 - Q1: a=1, b=1, c=1, d=0.
 - Answer: F = (1 AND 1) OR (1 AND 0) = 1 OR 0 = 1.
 - Q2: a=0, b=1, c=0, d=1.
 - Answer: F = (0 AND 1) OR (0 AND 1) = 0 OR 0 = 0.
 - Q3: a=1, b=1, c=1, d=1.
 - Answer: F = (1 AND 1) OR (1 AND 1) = 1 OR 1 = 1.

а	b	AND
0	0	0
0	1	0
1	0	0
1	1	1

а	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

а	NOT
0	1
1	0

Converting to Boolean Equations

- Convert the following English statements to a Boolean equation
 - Q1. a is 1 and b is 1.
 - Answer: F = a AND b
 - Q2. either of a or b is 1.
 - Answer: F = a OR b
 - Q3. a is 1 and b is 0.
 - Answer: F = a AND NOT(b) = b is 0
 - Q4. a is not 0.
 - Answer:
 - (a) Option 1: F = NOT(NOT(a))
 - (b) Option 2: F = a

Converting to Boolean Equations

- Q1. A fire sprinkler system should spray water if high heat is sensed and the system is set to enabled.
 - Answer: Let Boolean variable h represent "high heat is sensed," e represent "enabled," and F represent "spraying water." Then an equation is: F = h AND e.
- Q2. A car alarm should sound if the alarm is enabled, and either the car is shaken or the door is opened.
 - Answer: Let a represent "alarm is enabled," s represent "car is shaken," d represent "door is opened," and F represent "alarm sounds." Then an equation is: F = a AND (s OR d).
 - (a) Alternatively, assuming that our door sensor d represents "door is closed" instead of open (meaning d=1 when the door is closed, 0 when open), we obtain the following equation: F = a AND (s OR NOT(d)).

NOT gate

Х	F
0	1
1	0

OR gate

	Х	У	F	
	0	0	0	
<	0	1	1	
	1	0	1	
	1	1	1	

AND gate

Claude Shannon

- American mathematician & electrical engineer (1916-2001)
- A symbolic analysis of switching and delay circuits, Master's thesis, MIT, 1937.

Building Circuits Using Gates

- Turn on lamp (F=1) when motion sensed (a=1) and no light (b=0)
- F = a AND NOT(b)
- Build using logic gates, AND and NOT, as shown
- We just built our first digital circuit!

Example: Converting a Boolean Equation to a Circuit of Logic Gates

Start from the output, work back towards the inputs

Q: Convert the following equation to logic gates:
 F = a AND NOT(b OR NOT(c))

More examples

Start from the output, work back towards the inputs

Using gates with more than 2 inputs

Can think of as AND(a,b,c)

Example: Seat Belt Warning Light System

- Design circuit for warning light
- Sensors
 - s=1: seat belt fastened
 - k=1: key inserted
- Capture Boolean equation
 - seat belt not fastened, and key inserted
- Convert equation to circuit
- Timing diagram illustrates circuit behavior
 - We set inputs to any values
 - Output set according to circuit

w = NOT(s) AND k

16

BeltWarn

More examples: Seat belt warning light extensions

- Only illuminate warning light if person is in the seat (p=1), and seat belt not fastened and key inserted
- w = p AND NOT(s) AND k

- Given t=1 for 5 seconds after key inserted. Turn on warning light when t=1 (to check that warning lights are working)
- w = (p AND NOT(s) AND k) OR t

Some Gate-Based Circuit Drawing Conventions

Boolean Algebra

- By defining logic gates based on Boolean algebra, we can use algebraic methods to manipulate circuits
- Notation: Writing a AND b, a OR b, NOT(a) is cumbersome
 - Use symbols: a * b (or just ab), a + b, and a'
 - Original: w = (p AND NOT(s) AND k) OR t
 - New: w = ps'k + t
 - Spoken as "w equals p and s prime and k, or t"
 - Or just "w equals p s prime k, or t"
 - s' known as "complement of s"
 - While symbols come from regular algebra, don't say "times" or "plus"
 - "product" and "sum" are OK and commonly used

Boolean algebra precedence, highest precedence first.

Symbol	Name	Description
()	Parentheses	Evaluate expressions nested in parentheses first
,	NOT	Evaluate from left to right
*	AND	Evaluate from left to right
+	OR	Evaluate from left to right

Boolean Algebra Operator Precedence

- Evaluate the following Boolean equations, assuming a=1, b=1, c=0, d=1.
 - Q1. F = a * b + c.
 - Answer: * has precedence over +, so we evaluate the equation as F = (1 *1) + 0 = (1) + 0 = 1 + 0 = 1.
 - Q2. F = ab + c.
 - Answer: the problem is identical to the previous problem, using the shorthand notation for *.
 - Q3. F = ab'.
 - Answer: we first evaluate b' because NOT has precedence over AND, resulting in F = 1 * (1') = 1 * (0) = 1 * 0 = 0.
 - Q4. F = (ac)'.
 - Answer: we first evaluate what is inside the parentheses, then we NOT the result, yielding (1*0)' = (0)' = 0' = 1.
 - Q5. F = (a + b') * c + d'.
 - Answer: Inside left parentheses: (1 + (1')) = (1 + (0)) = (1 + 0) = 1. Next, * has precedence over +, yielding (1 * 0) + 1' = (0) + 1'. The NOT has precedence over the OR, giving (0) + (1') = (0) + (0) = 0 + 0 = 0.
 Boolean algebra precedence, highest precedence first.

Symb	ool	Name	Description	
()		Parentheses	Evaluate expressions nested in parentheses first	st
,		NOT	Evaluate from left to right	
*		AND	Evaluate from left to right	20
+		OR	Evaluate from left to right	20

Boolean Algebra Terminology

- Example equation: F(a,b,c) = a'bc + abc' + ab + c
- Variable
 - Represents a value (0 or 1)
 - Three variables: a, b, and c

Literal

- Appearance of a variable, in true or complemented form
- Nine literals: a', b, c, a, b, c', a, b, and c

Product term

Product of literals

F=ac+bc+d

 x^2+2x+3

Four product terms: a' bc, abc', ab, c

Sum-of-products

- Equation written as OR of product terms only
- Above equation is in sum-of-products form. "F = (a+b)c + d" is not.

Boolean Algebra Properties

- Commutative
 - a + b = b + a
 - a * b = b * a
- Distributive
 - a*(b+c) = a*b+a*c
 - Can write as: a(b+c) = ab + ac
 - a + (b * c) = (a + b) * (a + c)
 - (This second one is tricky!)
 - Can write as: a+(bc) = (a+b)(a+c)
- Associative
 - (a + b) + c = a + (b + c)
 - (a * b) * c = a * (b * c)
- Identity
 - -0+a=a+0=a
 - -1*a=a*1=a
- Complement
 - a + a' = 1
 - a * a' = 0
- To prove, just evaluate all possibilities

Example uses of the properties

- Show abc' equivalent to c'ba.
 - Use commutative property:
 - a*b*c' = a*c'*b = c'*a*b = c'*b*a
- Show abc + abc' = ab.
 - Use first distributive property
 - abc + abc' = ab(c+c').
 - Complement property
 - Replace c+c' by 1: ab(c+c') = ab(1).
 - Identity property
 - ab(1) = ab*1 = ab.
- Show x + x'z equivalent to x + z.
 - Second distributive property
 - Replace x+x' z by (x+x')*(x+z).
 - Complement property
 - Replace (x+x') by 1,
 - Identity property
 - replace 1*(x+z) by x+z.

Example that Applies Boolean Algebra Properties

- Want automatic door opener circuit (e.g., for grocery store)
 - Output: f=1 opens door
 - Inputs:
 - p=1: person detected
 - h=1: switch forcing hold open
 - c=1: key forcing closed
 - Want open door when
 - h=1 and c=0, or
 - h=0 and p=1 and c=0
 - Equation: f = hc' + h' pc'

• Can the circuit be simplified?

Simplified circuit

Example that Applies Boolean Algebra Properties

Found inexpensive chip that computes:

Apply Boolean algebra:

- f = c'hp + c'hp' + c'h'p
- Can we use it for the door opener?
 - Is it the same as f = hc' + h'pc'?

- Commutative
 - a + b = b + a
 - a * b = b * a
- Distributive

$$- a + (b * c) = (a + b) * (a + c)$$

- Associative
 - (a + b) + c = a + (b + c)
 - (a * b) * c = a * (b * c)
- Identity

$$-$$
 0 + a = a + 0 = a

- -1*a=a*1=a
- Complement
 - a + a' = 1
 - a * a' = 0

$$f = c' hp + c' hp' + c' h' p$$

$$f = c' h(p + p') + c' h' p$$
 (by the distributive property)

$$f = c' h(1) + c' h' p$$
 (by the complement property)

Same! Yes, we can use it.

Boolean Algebra: Additional Properties

- Null elements
 - -a+1=1
 - a * 0 = 0
- Idempotent Law
 - a + a = a
 - a * a = a
- Involution Law
 - (a')' = a
- DeMorgan's Law
 - (a + b)' = a'b'
 - (ab)' = a' + b'
 - Very useful!
- To prove, just evaluate all possibilities

Example Applying DeMorgan's Law

Aircraft lavatory sign example

- Three lavatories, each with sensor (a, b, c), equals 1 if door locked
- Light "Available" sign (S) if any lavatory available
- , Equation and circuit

•
$$S = a' + b' + c'$$

Transform

- (abc)' = a' +b' +c' (by DeMorgan's Law)
- S = (abc)'

New circuit

- b\(\frac{\bar{A}}{A}\) Iternative: Instead of lighting "Available," light "Occupied"
- Opposite of "Available" function

$$S = a' + b' + c'$$

- So S' = (a' + b' +
 c')'
 - S' = (a')' * (b')' * (c')' (by DeMorgan's Law)
 - S' = a * b * c (by Involution Law)
- Makes intuitive sense
 - Occupied if all doors are locked

Example Applying Properties

Commutative

$$-a + b = b + a$$

 $-a * b = b * a$

Distributive

$$-a * (b + c) = a * b + a * c$$

 $-a + (b * c) = (a + b) * (a + c)$

Associative

$$-(a + b) + c = a + (b + c)$$

 $-(a * b) * c = a * (b * c)$

Identity

$$-0 + a = a + 0 = a$$

 $-1 * a = a * 1 = a$

Complement

$$-a + a' = 1$$

 $-a * a' = 0$

door stays closed (f=0) when c=1 - f = c'(h+p)

$$- f = c'(h+p)$$

$$-$$
 Let $c = 1$ (door forced closed)

$$- f = 1'(h+p)$$

$$- f = 0(h+p)$$

$$- f = 0h + 0p$$
 (by the distributive property)

For door opener f = c'(h+p), prove

$$- f = 0 + 0$$

(by the null elements property)

$$- f = 0$$

Idempotent Law

-a + 1 = 1

-a * 0 = 0

Null elements

Involution Law

$$-(a')' = a$$

DeMorgan's Law

$$-(a + b)' = a'b'$$

 $-(ab)' = a' + b'$

Complement of a Function

- Commonly want to find complement (inverse) of function F
 - 0 when F is 1; 1 when F is 0
- Use DeMorgan's Law repeatedly
 - Note: DeMorgan's Law defined for more than two variables, e.g.:
 - (a + b + c)' = (abc)'
 - (abc)' = (a' + b' + c')
- Complement of f = w'xy + wx'y'z'
 - f' = (w'xy + wx'y'z')'
 - f' = (w'xy)'(wx'y'z')' (by DeMorgan's Law)
 - f' = (w+x'+y')(w'+x+y+z) (by DeMorgan's Law)
- Can then expand into sum-of-products form

Representations of Boolean Functions

English 1: Foutputs 1 when a is 0 and b is 0, or when a is 0 and b is 1.

- A function can be represented in different ways
 - Above shows seven representations of the same functions F(a,b), using four different methods: English, Equation, Circuit, and Truth Table

Truth Table Representation of Boolean Functions

Define value of F for each possible combination of input values

2-input function: 4 rows

3-input function: 8 rows

– 4-input function: 16 rows

 Q: Use truth table to define function F(a,b,c) that is 1 when abc is 5 or greater in binary

а	b	F		
0	0			
0	1			
1	0			
1	1			
(a)				

а	b	С	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	
		(h)	

(b))

а	b	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

а	b	С	d	F
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	
		1-1		

(c)

Converting among Representations

- Can convert from any representation to another
- Common conversions
 - Equation to circuit (we did this earlier)
 - Circuit to equation
 - Start at inputs, write expression of each gate output

Converting among Representations

- Additional common conversions
 - Truth table to equation (which we can then convert to circuit)
 - Easy-just OR each input term that should output 1
 - Equation to truth table
 - Easy—just evaluate equation for each input combination (row)
 - Creating intermediate columns helps

Inputs		Outputs	Term	
а	b	F	F = sum of	
0	0	1	a'b'	
0	1	1	a'b	
1	0	0		
1	1	0		

$$F = a'b' + a'b$$

Q: Convert to equation

а	b	С	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	ab' c
1	1	0	1	abc'
1	1	1	1	abc

$$F = ab'c + abc' + abc^{32}$$

Q: Convert to truth table: F = a'b' + a'b

Inputs				Output
а	b	a' b'	a' b	F
0	0	1	0	1
0	1	0	1	1
1	0	0	0	0
1	1	0	0	0

Example: Converting from Truth Table to Equation

- Parity bit
 - Extra bit added to data, intended to enable detection of error (a bit changed unintentionally)
 - e.g., errors can occur on wires due to electrical interference
- Even parity
 - Set parity bit so total number of
 1s (data + parity) is even
 - e.g., if data is 001, parity bit is 1
 → 0011 has even number of 1s
- Want equation, but easiest to start from truth table for this example

<u>a</u>	b	c	P	_
0	0	0	$0 \mid (0.1s)$: even)
0	0	1		: even)
0	1	0	$1 \setminus \setminus$	
0	1	1	0 / /	
1	0	0	1	
1	0	1	0	
1	1	0	O	
1	1	1	1 ///	/
	I	Conver	t to equa	tion

$$P = a'b'c + a'bc' + ab'c' + abc$$

Example: Converting from Circuit to Truth Table

First convert to circuit to equation, then equation to table

Inp	uts					Outputs
а	b	С	ab	(ab)'	C'	F
0	0	0	0	1	1	1
0	0	1	0	1	0	0
0	1	0	0	1	1	1
0	1	1	0	1	0	0
1	0	0	0	1	1	1
1	0	1	0	1	0	0
1	1	0	1	0	1	0
1	1	1	1	0	0	0

Standard Representation: Truth Table

- How can we determine if two functions are the same?
 - Recall automatic door example
 - Same as f = hc' + h' pc' ?___ = ?
 - · Used algebraic methods
 - But if we failed, does that prove not equal? No.
- Solution: Convert to truth tables
 - Only ONE truth table representation of a given function
 - Standard representation—for given function, only one version in standard form exists

Q: Determine if F=ab+a' is same function as F=a'b'+a'b+ab, by converting each to truth table first

F = ab + a'		F = ab + a'			a'b' + + ab	
а	b	F		a	b	F
0	0	1		00	0	1
0	1	1	۱ م	WE	1	1
1	0	0 C	S)	1	0	0
1	1	1		1	1	1

Truth Table Canonical Form

Q: Determine via truth tables whether ab+a' and (a+b)' are equivalent

F = ab + a '			F =	(a+b) '		
а	b	F		а	b	F
0	0	1		0	0	1
0	1	1		0	1	0
1	0	0		1x	0	0
1	1	1	1112	letin	1	0
		o tot?	2 Chr			

Canonical Form – Sum of Minterms

- Truth tables too big for numerous inputs
- Use standard form of equation instead
 - Known as canonical form
 - Regular algebra: group terms of polynomial by power
 - $ax^2 + bx + c$ $(3x^2 + 4x + 2x^2 + 3 + 1 \rightarrow 5x^2 + 4x + 4)$
 - Boolean algebra: create sum of minterms
 - Minterm: product term with every function literal appearing exactly once, in true or complemented form
 - Just multiply-out equation until sum of product terms
 - Then expand each term until all terms are minterms

Q: Determine if F(a,b)=ab+a' is equivalent to F(a,b)=a'b'+a'b+ab, by converting first equation to canonical form (second already is)

```
F = ab+a' (already sum of products)

F = ab + a' (b+b') (expanding term)

F = ab + a' b + a' b' (Equivalent – same three terms as other equation)
```


Canonical Form – Sum of Minterms

 Q: Determine whether the functions G(a,b,c,d,e) = abcd + a'bcde and H(a,b,c,d,e) = abcde + abcde' + a'bcde + a'bcde(a' + c) are equivalent.

$$G = abcd + a'bcde$$

$$G = abcd(e+e') + a'bcde$$

$$G = abcde + abcde' + a'bcde$$

$$G = a'bcde + abcde' + abcde$$
 (sum of minterms form)

$$H = abcde + abcde' + a'bcde + a'bcde(a' + c)$$

$$H = abcde + abcde' + a'bcde + a'bcdea' +$$

a'bcdec

$$H = abcde + abcde' + a'bcde + a'bcde + a'bcde$$

$$H = abcde + abcde' + a'bcde$$
 (last two terms were redundant)

$$H = a'bcde + abcde' + abcde$$

Compact Sum of Minterms Representation

- List each minterm as a number
- Number determined from the binary representation of its variables' values
 - a'bcde corresponds to 01111, or 15
 - abcde' corresponds to 11110, or 30
 - abcde corresponds to 11111, or 31
- Thus, H = a'bcde + abcde' + abcde can be written as:
 - $H = \sum m(15,30,31)$
 - "H is the sum of minterms 15, 30, and 31"

Multiple-Output Circuits

- Many circuits have more than one output
- Can give each a separate circuit, or can share gates
- Ex: F = ab + c', G = ab + bc

Option 1: Separate circuits

Option 2: Shared gates

Multiple-Output Example: BCD to 7-Segment Converter

Multiple-Output Example: BCD to 7-Segment Converter

TABLE 2-4 4-bit binary number to seven-segment display truth table

W	х	у	z	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0_	0_	0	0	0	0	0

More Gates

- NAND: Opposite of AND ("NOT AND")
- NOR: Opposite of OR ("NOT OR")
- XOR: Exactly 1 input is 1, for 2-input XOR. (For more inputs -- odd number of 1s)
- XNOR: Opposite of XOR ("NOT XOR")

More Gates: Example Uses

- Aircraft lavatory sign example
 - -S = (abc)'
- Detecting all 0s
 Use NOR
- Detecting equality
 - Use XNOR
- Detecting odd # of 1s
 - Use XOR
 - Useful for generating "parity"
 bit common for detecting
 errors

Completeness of NAND

- Any Boolean function can be implemented using just NAND gates. Why?
 - Need <u>AND</u>, <u>OR</u>, and <u>NOT</u>
 - NOT: 1-input NAND (or 2-input NAND with inputs tied together)
 - AND: NAND followed by NOT
 - OR: NAND preceded by NOTs

- Thus, NAND is a universal gate
 - Can implement any circuit using just NAND gates
- Likewise for NOR

Number of Possible Boolean Functions

- How many possible functions of 2 variables?
 - 2² rows in truth table, 2 choices for each
 - $-2^{(2^2)} = 2^4 = 16$ possible functions

					•
•	N	va	rıa	h	DΩ
-	1 V	v ~			

- 2^N rows
- 2^(2^N) possible functions

а	b	F
0	0	0 or 1 2 choices
0	1	0 or 1 2 choices
1	0	0 or 1 2 choices
1	1	0 or 1 2 choices

$$2^4 = 16$$
 possible functions

а	b	f0	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	f15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		0	a AND b		Ф		q	a XOR b	a OR b	a NOR b	a XNOR b	, Ω		, Ø		a NAND b	~

Venn Diagram: A+B

Venn Diagram: A•B

Venn Diagram: A' B

Venn Diagram: A+B'

Venn Diagram: (A+B')' = A'•B

Venn Diagram: A'+B' =?

Venn Diagram: A'+B' = (AB)'

