Trabajo Prácticas 2 - Aprendizaje Automático

David Criado Ramón 30 de marzo de 2017

1. Gradiente descendente. Implementar el algoritmo de gradiente descendente

Para la implementación del algoritmo recibimos los dos valores iniciales: el vector con el punto inicial (w_inicial) y la tasa de aprendizaje (eta), las dos posibles condiciones de parada: alcanzar el umbral deseado o el límite máximo de iteraciones que hayamos impuesto y la función a evaluar, que será pasada como una función en R que al aplicarse sobre dos puntos devolverá su valor de f y sus derivadas parciales. La implementación del algoritmo es simple y sigue los pasos explicados en el pseudocódigo visto en las diapositivas de teoría.

```
gradiente_descendente = function(w_inicial = c(1,1), eta = 0.1,
                                 umbral= 0, maximo_iteraciones = 10000, funcion) {
  # Inicializamos el vector de pesos w
  w = w_inicial
  # Iteración inicial
  iteracion_actual = 0
  diferencia = Inf
  actual = 0
  evolucionf = c()
  while (iteracion_actual < maximo_iteraciones & diferencia > umbral) {
    # 1a. Calculamos el valor de la función para el w actual
   previo = actual
   actual = funcion(w[1],w[2])
   evolucionf = c(evolucionf, actual$f)
    # 1b. Medimos la diferencia en los valore de f para ver si alcanzamos el umbral
    if (iteracion actual == 0)
        diferencia = Inf
    else
        diferencia = abs(actual$f - previo$f)
    # 2. Calculamos el gradiente
    # 3. La dirección viene determinada por el signo contrario
   v = c(-actual\$dx, -actual\$dy)
    # 4. Modifico los pesos
   w = w + eta * v
    # 5. Pasamos a la siquiente iteración
    iteracion_actual = iteracion_actual + 1
  }
  c(w, iteracion_actual, evolucionf)
}
```

- a) Considerar la función no lineal $E(u,v)=(u^2e^v-2v^2e^{-u})^2$. Usar gradiente descedente y para encontrar un mínimo de esta función, comenzando desde el punto (u,v)=(1,1) y una tasa de aprendizaje $\eta=0.1$.
- 1) Calcular analíticamente y mostrar la expresión del gradiente de la función E(u,v)

Primero calculamos las derivadas parciales de la función respecto a $u ext{ v}$.

$$\frac{\delta}{\delta u} = 2 \cdot (u^2 e^v - 2v^2 e^{-u}) \cdot (u^2 e^v - 2v^2 e^{-u})' =$$

$$= 2 \cdot (u^2 e^v - 2v^2 e^{-u}) \cdot (2ue^v + 2v^2 e^{-u}) =$$

$$= 2 \cdot (2u^3 e^{2v} + 2u^2 v^2 e^{v-u} - 4uv^2 e^{v-u} - 4v^4 e^{-2u}) =$$

$$= 4u^3 e^{2v} + 4u^2 v^2 e^{v-u} - 8uv^2 e^{v-u} - 8v^4 e^{-2u}$$

$$\begin{split} \frac{\delta}{\delta v} &= 2 \cdot (u^2 e^v - 2v^2 e^{-u}) \cdot (u^2 e^v - 2v^2 e^{-u})' = \\ &= 2 \cdot (u^2 e^v - 2v^2 e^{-u}) \cdot (u^2 e^v - 4v e^{-u}) = \\ &= 2 \cdot (u^4 e^{2v} - 4u^2 v e^{v-u} - 2u^2 v^2 e^{v-u} + 8v^3 e^{-2u}) = \\ &= 2u^4 e^{2v} - 8u^2 v e^{v-u} - 4u^2 v^2 e^{v-u} + 16v^3 e^{-2u} \end{split}$$

Una vez calculadas analíticamente las dejamos escritas en la función que pasaremos al gradiente descendente más adelante.

```
funcion_E = function(u,v) {
    f = function() {
        ((u^2)*exp(v) - 2* (v^2)*exp(-u))^2
    }
    dx = function() {
        4*(u^3)*exp(2*v) + 4*(u^2)*(v^2)*exp(v-u) - 8*u*(v^2)*exp(v-u) - 8*(v^4)*exp(-2*u)
    }
    dy = function() {
        2*(u^4)*exp(2*v) - 4*(u^2)*(v^2)*exp(v-u) - 8*(u^2)*v*exp(v-u) + 16*(v^3)*exp(-2*u)
    }
    list(f = f(), dx = dx(), dy = dy())
}
```

Con esto tenemos todos los requisitos necesarios para mostrar la expresión del gradiente en el punto inicial.

El gradiente de la función E en el punto (1,1) es du: 24.47354 dv: 4.943477

Así pues los valores que acabamos de obtener son las derivadas parciales de la función E para dicho punto.

2) ¿Cuántas iteraciones tarda el algoritmo en obtener por primera vez un valor de E(u,v) inferior a 10^{-4} . (Usar flotantes de 64 bits)

Utilizando la función de gradiente descente previamente desarrollado sobre la función que acabamos de utilizar obtenemos el punto inicial y su número de iteraciones.

[Gradiente descendente función E] -> iteraciones: 5

[Valor de F en el punto]: 0.003849537

Como podemos observar con tan sólo 5 iteraciones del gradiente descendente hemos alcanzado un mínimo local de esta función no lineal. No obstante, la selección del umbral ha jugado un factor fundamental en que paremos. Si nos encontramos con una función que va llaneando hacia el mínimo local y con un umbral demasiado pequeño el número de iteraciones será mucho más elevado y es posible que no mejoren mucho los resultados con respecto a un umbral mayor.

3) ¿Qué valores de (u,v) obtuvo en el apartado anterior cuando alcanzó el error de 10⁻⁴?

```
u = gradientedescente_E[1]
v = gradientedescente_E[2]
cat("[Gradiente descendente función E] -> u:", u, "\n")
cat("[Gradiente descendente función E] -> v:", v, "\n")
cat("[Valor de F en el punto]: ", funcion_E(u,v)$f, "\n")

## [Gradiente descendente función E] -> u: 9.865344

## [Gradiente descendente función E] -> v: -24.43821
```

b) Considerar ahora la función $f(x,y)=(x-2)^2+2(y-2)^2+2sin(2\pi x)sin(2\pi y)$

Primero volvemos a calcular de manera analítica sus derivadas parciales y las juntamos junto a la función original en una función única en R.

$$\frac{\delta}{\delta x} = 2(x - 2) + 4\pi \cos(2\pi x)\sin(2\pi y)$$
$$\frac{\delta}{\delta y} = 4(y - 2) + 4\pi \cos(2\pi y)\sin(2\pi x)$$

```
function_f = function(x,y) {
    f = function() {
        (x-2)^2 + 2*(y-2)^2+2*sin(2*pi*x)*sin(2*pi*y)
    }
    dx = function() {
        2*(x-2) + 4*pi*cos(2*pi*x)*sin(2*pi*y)
    }
    dy = function() {
        4*(y-2) + 4*pi*cos(2*pi*y)*sin(2*pi*x)
    }
    list(f = f(), dx = dx(), dy = dy())
}
```

1) Usar gradiente descendente para minimizar esta función. Usar como punto inicial $(x_0=1,y_0=1)$, tasa de aprendizaje $\eta=0.01$ y un máximo de 50 iteraciones. Generar un gráfico de cómo desciende el valor de la función con las iteraciones. Repetir el experimento pero usando $\eta=0.1$, comentar las diferencias.

Vamos a crear una función que pinte los puntos que conforman la evolución de la función evaluada sobre los puntos que obtenemos en el gradiente descendente.

```
gd_draw_lines = function(gradienteDesc, col, pch = 19) {
    # Un punto está formado por x = num iteración y = valor f
    puntos = gradienteDesc[3:length(gradienteDesc)]
    puntos = cbind(1:length(puntos), puntos)
    lines(x=puntos, col=col)
}
```

Aplicamos el gradiente descendente para ambos casos y pintamos ambos en la misma gráfica para comparar cómo evolucionan:

Comparativa de tasas de aprendizaje en la función f

En el caso de la tasa de aprendizaje 0.01 (en color rojo) convergemos rápidamente en la linea 32 hacia un mínimo en el que el umbral es 0 (hemos alcanzado un punto en el que no hay diferencia en la función o no es apreciable por la precisión aritmética del ordenador).

En el caso de la tasa de aprendizaje 0.1 (en color azul) observamos que las variaciones producidas por el gradiente son mucho más altas y en las 50 iteraciones que hemos puesto como límite la función no converge en un mínimo. No obstante, podemos observar que durante su ejecución ha encontrado un mínimo en f mucho más bajo que el obtenido en el punto de convergencia de la tasa de aprendizaje de 0.01.

2) Obtener el valor mínimo y los valores de las variables que lo alcanzan cuando el punto de inicio se fija en: (2.1, 2.1), (3, 3), (1.5, 1.5), (1, 1). Generar una tabla con los valores obtenidos.

```
# La siquiente función pasa a texto un punto concreto para poder escribirlo
# en las tablas
str_punto = function(w) {
  paste("(", format(round(w[1], 2), nsmall = 2), ",",
             format(round(w[1], 2), nsmall = 2), ")", sep = "")
}
# Declaramos los puntos iniciales
puntosini = c(2.1,3,1.5,1)
puntosini = cbind(puntosini, puntosini)
puntosiniciales = apply(X = puntosini, MARGIN = 1, FUN = str_punto)
# Aplicamos los gradientes de los puntos para la tasa 0.1
crear tabla = function(tasa) {
  gradientes = apply(X=puntosini, MARGIN = 1, FUN = gradiente_descendente, eta = tasa,
                      funcion = funcion_f, maximo_iteraciones = 50)
  gradientes = unlist(gradientes)
  gradientes = t(gradientes)
  puntosfinales = apply(X=gradientes, MARGIN = 1, FUN = str_punto)
  gradientes =cbind(puntosiniciales, puntosfinales,
                    gradientes[,3], gradientes[,ncol(gradientes)])
  # Pintamos la tabla
  col_names = c("Punto inicial", "Punto final", "Iteraciones", "F en el punto")
  kable(gradientes, col.names = col_names,
        caption = paste("Gradiente descendente para tasa de aprendizaje ", tasa))
crear_tabla(0.1)
```

Table 1: Gradiente descendente para tasa de aprendizaje 0.1

Punto inicial	Punto final	Iteraciones	F en el punto
(2.10, 2.10)	(2.39, 2.39)	50	1.24551628535644
(3.00, 3.00)	(2.30, 2.30)	50	-0.080620711249678
(1.50, 1.50)	(1.55, 1.55)	50	8.2051910455113
(1.00,1.00)	(1.96, 1.96)	50	0.663252553147519

Table 2: Gradiente descendente para tasa de aprendizaje 0.01

Punto inicial	Punto final	Iteraciones	F en el punto
(2.10,2.10)	$\begin{array}{c} (2.24, 2.24) \\ (2.24, 2.24) \\ (2.24, 2.24) \\ (2.24, 2.24) \end{array}$	24	0.593269374325836
(3.00,3.00)		24	0.593269374325836
(1.50,1.50)		24	0.593269374325836
(1.00,1.00)		24	0.593269374325836

En el caso de la tabla con tasa de aprendizaje 0.1 vemos que no alcanzamos un mínimo local en el que converger durante las 50 iteraciones. Los puntos en los que paramos son variables y depende del punto de partida inicial y obtenemos resultados mucho más variables: la mayoría son valores de f bastante más bajos qu elos obtenidos con la otra tasa de aprendizaje y uno que acaba en un punto muy superior. Una tasa de aprendizaje más alta nos lleva a evoluciones con mucha más variabilidad y es más difícil que converja en un punto concreto si hay un umbral muy pequeño o nulo, como en este experimento.

La tasa de aprendizaje 0.01 converge siempre en 24 iteraciones hacia el mismo punto, que es un mínimo de menor calidad que el que hemos obtenido parando en 50 iteraciones de la tasa de aprendizaje 0.01.

Podemos concluir de este experimento que la selección de los puntos iniciales y la tasa de aprendizaje es fundamental para encontrar un óptimo de cierta calidad. Una selección de una tasa de aprendizaje demasiado baja acabará llevándonos a un mínimo local aunque puede que requiramos muchas iteraciones para encontrar el mínimo. Una tasa de aprendizaje demasiado alta puede llevarnos a demasiada variabilidad y evitar que encontremos un mínimo local dependiendo del umbral que hayamos seleccionado.

c) ¿Cuál sería su conclusión sobre la verdadera dificultad de encontrar el mínimo global de una función arbitraria?

Es evidente que es extremadamente difícil encontrar el mínimo global de la función sin conocimiento previo de la misma. Encontrar un mínimo local de cierta calidad también puede llegar a ser difícil, la selección de la tasa de aprendizaje, como hemos visto en el apartado anterior, así como los puntos de partida influyen considerablemente en los resultados obtenidos por el gradiente descendente. La forma de la función también influye significativamente, partir de un punto con una buena pendiente descedente facilita encontrar un óptimo que puede, o no, ser de cierta calidad y llaneos excesivos que no sean acotados por el umbral alargan el proceso con la posibilidad de que no haya una solución mejor tras gastar muchas iteraciones.

2) Regresión Logística: En este ejercicio crearemos nuestra propia función objetivo f (una probabilidad en este caso) y nuestro conjunto de datos D para ver cómo funciona regresión logística. Supondremos por simplicidad que f es una probabilidad con valores 0/1 y por tanto que la etiqueta g es una función determinista de g.

Consideremos d = 2 para que los datos sean visualizables, y sea $\chi = [0,2]x[0,2]$ con probabilidad uniforme de elegir cada $x \in \chi$. Elegir una línea en el plano que pase por χ como la frontera entre f(x) = 1 (donde y toma valores +1) y f(x) = 0 (donde y toma valores -1), para ello seleccionar dos puntos aleatorios del plano y calcular la línea que pasa por ambos. Seleccionar N = 100 puntos aleatorios $\{x_n\}$ de χ y evaluar las repuestas $\{y_n\}$ de todos ellos respecto de la frontera elegida.

Para coger dos puntos aleatorios y obtener su recta, obtener puntos aleatorios, meter ruido en ellas y etiquetar puntos según la frontera utilizamos las funciones que ya hemos usado en el trabajo anterior.

```
# Obtiene puntos de una distribución uniforme
simula_unif = function (N=2, dims=2, rango = c(0,1)){
m = matrix(runif(N*dims, min=rango[1], max=rango[2]),
nrow = N, ncol=dims, byrow=T)
}
# Dados dos puntos obtiene una recta
simula_recta = function (intervalo = c(-1,1), visible=F){
  ptos = simula_unif(2,2,intervalo) # se generan 2 puntos
  a = (ptos[1,2] - ptos[2,2]) / (ptos[1,1]-ptos[2,1]) # calculo de la pendiente
  b = ptos[1,2]-a*ptos[1,1] # calculo del punto de corte
   if (visible) { # pinta la recta y los 2 puntos
       if (dev.cur()==1) # no esta abierto el dispositivo lo abre con plot
           plot(1, type="n", xlim=intervalo, ylim=intervalo)
       points(ptos,col=3) #pinta en verde los puntos
       abline(b,a,col=3) # y la recta
  }
   c(a,b) # devuelve el par pendiente y punto de corte
# Etiquetación binaria en función de la frontera determinada por la recta
etiquetar = function(punto, recta) {
    sign(punto[2] - recta[1] * punto[1] - recta[2])
# Mete un porcentaje de ruido en los puntos pasados
mete_ruido = function(etiquetas, porcentaje) {
    # Apuntamos los índice cuales son positivos y cuales son negativos
   positivos = which(etiquetas == 1)
   negativos = which(etiquetas == -1)
   # Cogemos una muestra del porcentaje de cada uno
```

```
muestra_positivos = sample(positivos, length(positivos) * porcentaje)
   muestra_negativos = sample(negativos, length(negativos) * porcentaje)
    # Alteramos la etiqueta
   etiquetas[muestra_positivos] = -1
   etiquetas[muestra_negativos] = 1
    etiquetas
}
# Pone las etiquetas obtenidas por regresión
etiquetar regresion = function(x, w) {
  x = c(1,x) # Añadimos 1 al principio del vector de características
  # La etiqueta viene dada por el signo de la sumatoria de xi * wi
  sign(sum(x*w))
# Pinta y/o calcula una recta dado el vector w
calcula_recta = function(w, pintar = F) {
  a = -w[2]/w[3]
  b = -w[1]/w[3]
 abline(b,a, col = "red")
  list(a = a, b = b)
}
```

Obtengamos nuestros 100 puntos y añadámosles un 10 % de ruido.

```
recta2 = simula_recta(c(0,2))
puntos2_train = simula_unif(N = 100, dims = 2, rango = c(0,2))
etiquetas2_train = apply(X=puntos2_train, MARGIN = 1, FUN = etiquetar, recta = recta2)
etiquetas2_train = mete_ruido(etiquetas2_train, porcentaje = 0.1)
```

- a) Implementar Regresión Logística (RL) con Gradiente Descendente Estocástico (SGD) bajo las siguientes condiciones:
- Inicializar el vector de pesos con valores 0.
- Parar el algoritmo cuando $||w^{(t-1)}-w^t||<0.01$ donde $w^{(t)}$ denota el vector de pesos al final de la época T. Una época es un pase completo a través de los N datos
- Aplicar una permutación aleatoria, 1, 2, ..., N, en el orden de los datos antes de usarlos en cada época del algoritmo.
- Usar la tasa de aprendizaje $\eta = 0.01$

```
# Los datos contienen las etiquetas en la última columna.
rlsgd = function(w_inicial, tasa, umbral, datos) {
    w = w_inicial
    diferencia = Inf
    primeraiteracion = T
    # Añadimos la columna de unos
    datos = cbind(1, datos)

# Comprobamos la condición de parada
```

```
while (diferencia > umbral) {
  # Hacemos una permutación aleatoria de los datos
 indices = sample(nrow(datos))
 datos = datos[indices,]
 x = datos[,1:ncol(datos)-1]
 y = as.vector(datos[,ncol(datos)])
  # Calculamos el gradiente
 w anterior = w
 suma = c(0,0,0)
 for (n in 1:nrow(x)) {
     numerador = -y[n] * x[n,] # Fila tam 3
     denominador = y[n] * (w %*% x[n, ])
     denominador = exp(denominador) +1
     suma = suma + numerador/denominador
 }
 gradiente = suma/n
 v = -gradiente
  w = w + tasa * v
 if (primeraiteracion) {
   primeraiteracion = F
 }
 else {
    diferencia = abs(sqrt((sum(w-w_anterior)^2)))
    #print (diferencia)
 }
}
```

b) Usar los muestra de datos etiquetada para encontrar nuestra solución g y estimar E_out usando para ello un número suficientemente grande de nuevas muestras

```
error_logistico = function(w, datos, etiquetasOriginales) {
   datos = cbind(1,datos)
   errores = apply(X=datos, MARGIN = 1, w = w, y = etiquetasOriginales,
        FUN = function(x,w,y) log(1+exp(-y*w%*%x)))
   mean(errores)
}

w = rlsgd(w_inicial = c(0,0,0), tasa = 0.01, umbral = 0.01,
        datos = cbind(puntos2_train, etiquetas2_train))

# Calculamos los puntos de test
puntos2_test = simula_unif(N = 1000, dims = 2, rango = c(0,2))
etiquetas2_test = apply(X=puntos2_test, MARGIN = 1, FUN = etiquetar, recta = recta2)
etiquetas2_test = mete_ruido(etiquetas2_test, porcentaje = 0.1)
etiquetas2_nuevas = apply(puntos2_test, 1, etiquetar_regresion, w)
```

Vernag que nomesión logístico e navede nónidomente en un músico less

Vemos que regresión logística a parado rápidamente en un mínimo local y el error Eout es de casi el 50 % # 3 Clasificación de Dígitos. Considerar el conjunto de datos de los dígitos manuscritos y seleccionar las muestras de los dígitos 4 y 8. Usar los ficheros de entrenamiento (training) y test que se proporcionan. Extraer las características de intensidad promedio y simetría en la manera que se indicó en el ejercicio 3 del trabajo 1.

Primero realizamos la parte del trabajo1.

```
setwd("./datos")
# Función que lee el archivo, seleccionando instancias de 4 y 8
lectura = function(file) {
  # Leemos el archivo
  digit <- read.table(file, quote="\"", comment.char="", stringsAsFactors=FALSE)</pre>
  # Seleccionamos instancias de 4 y 8
  digit48 = digit[digit$V1 == 4 | digit$V1 ==8,]
  # Cogemos sus etiquetas
  etiquetas = digit48[,1]
  # Pasamos las etiquetas 4 a 1 y 8 a -1
  etiquetas[etiquetas == 4] = 1
  etiquetas[etiquetas == 8] = -1
  # Sacamos el tamaño del conjunto seleccionado
  n = nrow(digit48)
  # Sacamos la matriz de grises
  grises = array(unlist(subset(digit48,select=-V1)),c(n,16,16))
  # Devolvemos grises y el etiquetado original
  list (grises = grises, etiquetas = etiquetas)
}
zip_training = lectura("zip.train")
zip_test = lectura("zip.test")
fsimetria <- function(A){</pre>
  A = abs(A-A[,ncol(A):1])
  mean(A)
calcula_media_simetria = function(zip = zip_training, pintar = T) {
  # Calculamos la media
 media = apply(X=zip$grises, MARGIN = 1, FUN = mean)
  # Calculamos la simetría
 simetria = apply(X=zip$grises, MARGIN = 1, FUN = fsimetria)
  # Pintamos la gráfica con los puntos
```

```
if (pintar) {
    plot(x = media, y = simetria, type = "p", xlab = "Media",
    ylab = "Simetría", main = "Instancias Training", lwd = 2, pch = 19,
    col = 32 + 19 * zip$etiquetas)
}

# Devolvemos la media y la simetría para el siguiente apartado
list(media = media, simetria = simetria)
}
caracteristicas_training = calcula_media_simetria(pintar = F)
caracteristicas_test = calcula_media_simetria(zip_test, pintar = F)
```

a) Plantear un problema de clasificación binaria que considere el conjunto de entrenamiento como datos de entrenamiento para aprender la función g.

Para empezar incorporamos el mismo código de la regresión lineal utilizado en la práctica 1 y modificas la versión del PLA que hicimos en esa práctica.

```
Regress_Lin = function(datos, label) {
  # Añadimos la columna 1
  x = cbind(1, datos)
  # Aplicamos svd
  svd = svd(x)
  # Sacamos la matriz ortogonal V
  V = svd$v
  # Sacamos la matriz diagonal d
  d = svd$d
  # Calculamos la pseudoinversa como la matriz diagonal de d que
  # si un dato es mayor que el epsilon de la máquina (escoqido por mí como 0.0001)
  # invierte el valor
  D = diag(ifelse(d > 0.0001, 1/d, d))
  # Calculamos el vector de pesos (Importante D2)
  W = V \%*\% D^2 \%*\% t(V) \%*\% t(x) \%*\% label
}
# Esta función nos sirve para etiquetar una muestra a partir de un vector de pesos
etiquetar_regresion = function(x, w) {
  # La etiqueta viene dada por el signo de la sumatoria de xi * wi
  sign(sum(x*w))
}
# Esta función nos servirá para calcular el error de clasificación de cada iteración
# en PLA pocket más adelante
error_clasificacion = function(w, datos, etiquetasOriginales) {
  # Calculamos las etiquetas nuevas
  etiquetasNuevas = apply(X=datos,MARGIN=1, FUN = etiquetar_regresion, w = w)
  # Devolvemos la diferencia
  sum(etiquetasNuevas != etiquetasOriginales)*100/nrow(datos)
}
PLA_pocket = function(datos, label, max_iter, vini) {
datos = cbind(1, datos) # Añadimos la columna de 1
```

```
i = 0 # contador para el número de iteraciones
cambio = T # indica si se ha producido algún cambio o se debe parar
w = vini # vector de pesos
pocket_w = vini # En pocket_w guardamos el mejor w hasta el momento
pocket ein = error clasificacion(w = w, datos = datos, label)
while (i < max_iter & cambio) {</pre>
  cambio = F # puesto que hemos empezado la iteración no se ha podido producir
             # ningún cambio
  # recorremos todos los datos
 for (x in sample(1:nrow(datos))) {
    # Aplicamos signo
    signo = sign(sum(datos[x,] * w))
    if (label[x] != signo) {
      # Si no coinciden el signo y la etiqueta cambiamos el valor del vector de pesos
      # wnew = wold + yi * xi
     w = w + datos[x,] * label[x]
      # indicamos que se ha producido un cambio
      cambio = T
   }
 }
  # Guardamos el que nos de mejor Ein
 actual_ein = error_clasificacion(w = w, datos = datos, label)
 if (actual_ein < pocket_ein) {</pre>
   pocket_w = w
 i = i + 1 # aumentamos el contador de iteraciones
# parámetros del hiperplano (recta en este caso) y número de iteraciones usadas
list(w=pocket_w, iteraciones =i, vini = vini)
```

b) Usar un modelo de Regresión Lineal y aplicar PLA-Pocket como mejora. Responder a las siguientes cuestiones.

Ahora aplicamos regresión lineal sobre los datos de entrada y el ajuste obtenido lo ponemos de vector de pesos inicial para nuestro PLA pocket.

```
datos_training = cbind(caracteristicas_training$media, caracteristicas_training$simetria)
training = Regress_Lin(datos_training, zip_training$etiquetas)
training2 = PLA_pocket(datos_training, zip_training$etiquetas, 1000, training)
datos_test = cbind(caracteristicas_test$media, caracteristicas_test$simetria)
```

1) Generar gráficos separados (en color) de los datos de entrenamiento y test junto con la función estimada.

Veamos a la izquierda el gráfico con los datos de entrenamiento y a la derecha los de train con la función que hemos estimado.

```
par(mfrow=c(1,2))
# Pintamos los datos de entrenamiento
```

Entrenamiento Test ∞ 0.8 9.0 Simetría Simetría 9.0 0.4 0.4 -0.8-0.4-0.7-0.5-0.3-0.10.0 Media Media par(mfrow=c(1,1))

2) Calcular E_{in} y E_{test} (error sobre los datos de test).

```
ein = error_clasificacion(training2$w, cbind(1, datos_training), zip_training$etiquetas)
cat("El error de clasificación en entrenamiento, Ein, es de", ein, '\n')

## El error de clasificación en entrenamiento, Ein, es de 23.84259
etest = error_clasificacion(training2$w, cbind(1, datos_test), zip_test$etiquetas)
cat("El error de clasificación en test, Etest, es de", etest, '\n')
```

El error de clasificación en test, Etest, es de 23.52941

3) Obtener cotas sobre el verdadero valor de E_{out} . Pueden calcularse dos cotas una basada en E_{in} y otra basada en E_{test} . Usar una tolerancia $\delta=0.05$. ¿Qué cota es mejor?

Para calcular la cota utilizo la fórmula explicada en la diapositiva 15 de la sesión 4 de teoría.

$$E_{out}(h) \le E_{in}(h) + \sqrt{\frac{8}{N} \log\left(\frac{4((2N)^{d_{vc}} + 1)}{\delta}\right)}$$

Vamos a crear una función en R que realice dicha operación.

```
cota_vc_eout = function(N, dvc, delta, ein) {
  logaritmo = log((4*( (2*N)^dvc + 1))/delta)
  raiz = sqrt(8*logaritmo/N)
  ein + raiz*100 # Para sacarlo en porcentaje directamente ya que ein viene en porcentaje
}
```

Obtengamos las dos cotas a partir del Ein y el Etest del apartado anterior. La dimensión de Vapnik-Chervonenkis es 3 en ambos casos.

```
eout_in = cota_vc_eout(nrow(datos_training), 3, 0.05, ein)
cat("La cota de Eout a partir de Ein es de ", eout_in, '\n')
```

```
## La cota de Eout a partir de Ein es de 91.42895
eout_test = cota_vc_eout(nrow(datos_test), 3, 0.05, etest)
cat("La cota de Eout a partir de Etest es de ", eout_test, '\n')
```

La cota de Eout a partir de Etest es de 192.7581

Como cabía esperar Ein nos da una cota de Eout considerablemente más pequeña que Etest, aunque los dos, como veíamos en el apartado anterior, eran bastante similares la diferencia radica en el tamaño de N. El gran tamaño de N (como podemos observar en las gráficas) en training en comparación con el test hace que el error que se suma sea mucho menor al estar dividiendo logaritmo de algo en función de N entre N al calcular lo que se suma al error inicial. Por tanto, cuanto más grande sea N menor será el error proporcionado por la cota de generalización.

- 4) En este ejercicio evaluamos el papel de la regularización en la selección de modelos. Para d=3 (dimensión del vector de características) generar un conjunto de N datos aleatorios $\{x_n,y_n\}$ de la siguiente forma:
- -Las coordenadas de los puntos x_n se generarán como valores aleatorios extraídos de una Gaussiana de media 1 y desviación típica 1.
- -Para definir el vector de pesos w_f de la función f generaremos d+1 valores de una Gaussiana de media 0 y desviación típica 1. Al último valor le sumaremos 1.
- -Usando los valores anteriores generamos la etiqueta asociada a cada punto x_n a partir del valor $y_n = w_f^T x_n + \sigma \epsilon_n$ donde ϵ_n es un ruido que también sigue una Gaussiana de media 0 y desviación típica 1 y σ^2 es la varianza del ruido; fijar $\sigma = 0.05$

Para obtener datos de una distribución gaussiana utilizamos la función simula_gauss (modificada para poner la media) de la práctica anterior.

```
simula_gauss = function(N=2,dim=2,mean,sigma){
    # genera 1 muestra, con las desviaciones especificadas
    simula_gauss1 = function() rnorm(dim, mean = mean, sd = sigma)
    # repite N veces, simula_gauss1 y se hace la traspuesta
    m = t(replicate(N,simula_gauss1()))
    m
}
```

Ahora hagamos una función que dado el N nos genere los puntos con el ruido añadido y las etiquetas correspondientes

Ahora vamos a estimar w_f usango w_{reg} , es decir los pesos de un modelo de regresión lineal con regularización "weight decay". Fijar el parámetro de regularización a 0.05/N

Para calcular el vector de pesos asociados al weight_decay implementamos la fórmula que obtenemos tras el proceso de minimización para obtenerla en la diapositiva 17 de la sesión 6.

$$H(\lambda) = Z(Z^TZ + \lambda I)^{-1}Z^T$$

Por tanto, con esta función, vamos a obtener el H ajustado por weight decay. Para obtener las predicciones hay que multiplicar este resultado por las etiquetas.

```
weight_decay = function(Z, lambda) {
  inversa = t(Z) %*% Z
  identidad = diag(x = 1, nrow = nrow(inversa))
  invesa = inversa + lambda * identidad
  inversa = solve(inversa)
  w = inversa %*% t(Z)
}
```

a) Para $N \in \{d+10, d+20, ..., d+110\}$ calcular los errores de validación cruzada $e_1, ..., e_n$ y E_{cv} . Repetir el experimento 1000 veces. Anotamos el promedio de la varianza de e_1, e_2 y E_{cv} en los experimentos.

```
# Experimento 4a (a repetir 1000 veces)
experimento4a = function(d = 3) {
  # Generamos la secuencia de N a evaluar
  Ns = seq(10+d, 110+d, 10)
  resultados = matrix(nrow = 0, ncol = 3)
  for (N in Ns) {
    # El lambda a usar es 0.05 / N
   lambda = 0.05/N
    # Generamos las muestras de la distribución gaussiana
   muestra = generar_aleatorios_ejer4(N)
   puntos = cbind(1, muestra$puntos)
    \# Calculamos el error e sub i
   calcula_error = function(w,i) {
      # Calculo el valor dado por el ajuste para el dato i
     valor = w %*% puntos[i,]
      # El error a devolver es el error cuadrático
      error = (muestra$etiquetas[i] - valor)^2
   }
    # Utilizamos sapply para obtener en vector con todos los errores e sub i
    # Para ello usamos una función anónima
    # Utilizo -i para excluir el elemento en posición i del vector o matriz
    errores = sapply(1:N, FUN = function(i)
      calcula_error(weight_decay(puntos[-i,], lambda)%*% muestra$etiquetas[-i], i))
    # Apuntamos los resultados para este N en la matriz a devolver
    resultados = rbind(resultados, c(errores[1], errores[2], mean(errores)))
  c(mean(resultados[,1]), sd(resultados[,1]),
   mean(resultados[,2]), sd(resultados[,2]),
    mean(resultados[,3]), sd(resultados[,3]))
}
# Repetimos el experimento 1000 veces
resultados = t(replicate(1000, experimento4a()))
col_names = c("Media e1", "Desviación e1", "Media e2", "Desviación e2",
              "Media Ecv", "Desviación Ecv")
kable(resultados, col.names = col_names,
      caption = "Weight decay con validación cruzada")
```

Table 3: Weight decay con validación cruzada

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
8.6992825	10.7609703	16.1591759	20.410323	8.064528	4.301171
4.5378213	5.8372355	6.2652835	5.649485	5.396572	3.412831
3.8970580	4.8339008	5.5728513	5.638091	5.203769	3.214711
3.3984919	5.0366118	6.6376541	15.475470	4.395123	3.116567
2.1572236	1.8380751	5.6936125	3.724975	6.499728	2.962205
4.2610511	3.7388307	11.6601981	17.921973	5.625446	4.241551

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
8.9439228	14.0956168	10.6957365	14.940533	7.020383	3.857395
2.1285753	2.6634434	4.0326556	3.989641	3.862954	2.114991
4.7129745	6.4086469	5.4645317	7.831454	6.119760	4.956309
1.8075385	1.5973291	2.4668518	3.236713	3.043683	2.277769
6.7314969	10.9230014	10.0512720	10.828361	5.422819	3.922411
4.8898489	8.2174473	7.9943273	14.152328	8.551441	6.470390
1.3421880	1.4028027	2.1041718	3.304265	3.984770	2.869146
4.9258000	8.2948365	5.2981016	8.353807	6.102849	3.618983
3.0689071	4.6095416	4.3851640	11.203350	5.027958	3.158965
3.9385671	3.5351233	4.8703872	6.725310	5.758917	2.974000
6.9526376	11.2549698	9.2707681	10.816179	6.942733	5.630510
2.5897339	3.4866132	3.6928777	3.678552	7.332734	3.768964
3.7857700	4.0209869	5.4030656	4.709962	5.341143	3.195880
2.9718825	3.7782525	3.4321403	6.447719	7.517159	7.529144
3.0630208	4.8887714	5.0651335	7.225287	7.219412	9.166240
1.3731783	1.4314306	2.1197051	3.716458	5.398982	3.144440
14.0102781	16.4898503	22.9050688	37.156801	10.792145	5.198641
9.7887554	26.8542068	8.8923237	18.759574	7.932835	5.504670
5.4273951	7.5497295	6.2015046	10.312634	6.400977	5.416966
3.7194600	5.6449968	6.8494213	9.086829	5.301761	4.020632
1.2302444	1.1842651	1.2638002	1.921758	6.386309	5.399086
3.2809670	4.8133047	4.1908540	7.318532	4.010896	3.081247
9.5260074	25.1865264	9.5944414	26.563713	6.528675	6.437214
7.9662367	11.0392034	13.9078968	16.728807	5.787359	3.788224
5.9098445	8.6138522	5.1230865	12.747061	5.241421	4.061660
3.6892300	3.9515311	3.4593637	5.528239	4.775603	2.850859
3.4808885	4.8411532	6.2058534	5.898242	9.940679	8.058877
4.2326800	5.5068550	5.9194162	8.992058	6.489522	3.528601
4.3639914	6.7844822	8.7835632	8.171747	6.595025	5.778750
2.5802848	4.1896749	2.1528364	2.433015	5.741076	5.010180
4.1616705	5.5793380	7.7204996	8.046472	4.735087	2.439713
5.8293279	7.0183405	7.8323871	7.310964	5.656398	3.471891
3.1738154	5.3463103	5.9388963	11.452543	6.911631	4.934384
2.6586700	3.7504030	5.0903445	7.030218	4.166868	2.657767
3.4299372	5.5086010	3.8266356	5.429918	5.093621	5.815346
2.5470523	2.8460744	6.1101354	6.721171	4.766483	2.252681
4.0019602	3.4454763	3.0229151	2.497769	6.987882	8.029126
4.1389430	4.3529343	5.0377574	8.993383	5.159780	2.910948
7.7432952	10.9065360	8.4724057	9.499438	6.129010	4.564807
4.2153514	4.7950810	4.7305158	4.264178	6.102118	4.789734
3.0992190	4.5501016	4.9367228	6.662439	6.692041	4.132344
5.5661883	9.5659630	6.3272950	7.012803	6.030187	3.840771
5.3474926	6.4248876	5.7521340	5.331640	5.818243	4.149488
4.1647970	4.2031939	8.9747747	9.782638	7.489053	5.957816
5.2232116	10.0041822	5.5210729	6.064934	5.576702	3.634579
2.3251507	2.7391333	3.0800401	4.620793	4.517827	3.289515
4.8803317	8.6148047	8.7181017	16.723570	8.372125	6.984252
3.2242187	4.0081012	7.5697572	10.797123	7.170893	4.435064
1.8762326	1.9511227	2.9909455	3.546632	4.597503	2.947762
4.1790263	3.5287881	5.0757149	4.823264	6.671070	4.468813
1.2786433	1.5544121	2.6131936	3.079988	4.654261	3.201843
3.8322326	4.1473803	8.1125882	10.615673	5.096728	3.148799
- •					

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
3.5538934	3.9747497	7.5770585	12.064080	5.603302	6.836668
4.5052777	4.4003937	8.4819615	10.106958	4.841029	3.229604
1.5112329	2.6571173	2.0641707	2.729630	4.743346	4.339789
10.0948084	16.2728629	8.8428085	10.428089	5.610441	3.835387
2.4910991	3.3506136	5.0741441	6.691349	5.206825	4.282737
7.4088166	17.8411733	6.0545682	8.538958	5.592419	3.153189
5.5430990	8.4023801	9.1203383	14.654255	6.183566	3.569234
6.2068554	14.0568937	2.9416439	3.331556	7.786901	6.258758
10.1986857	12.7678082	13.0243528	17.637038	6.202642	3.256646
2.0582474	2.9496115	7.5698351	8.981990	4.853862	3.159992
4.2374065	4.7947017	7.9200614	12.289685	9.720823	6.640657
3.5200536	4.5037631	7.9885599	11.205491	5.637504	4.825929
2.1128548	2.6069106	5.4476935	8.429126	3.109034	1.965270
1.1078413	1.3520930	0.7844593	1.108826	4.527831	2.647216
3.8156252	6.6523181	10.5558412	13.060789	5.310890	2.641524
2.8211357	4.3425224	5.2272406	7.587794	6.541268	4.845345
4.1897623	4.8053541	5.4242891	8.003499	5.284540	3.084331
3.1435822	3.8766941	3.6821264	4.548435	6.092771	4.558014
3.5463670	6.9862017	6.3460778	12.325645	5.419158	4.015637
3.5827316	5.7474779	8.0214277	6.867867	5.943520	3.803309
7.4001755	8.2314707	7.2107078	8.260939	6.447062	3.676494
5.3900302	6.4605194	8.2826977	10.085066	4.796714	2.512734
4.1962427	8.4511063	6.7971662	6.952657	5.766891	3.912541
4.1280966	4.8161767	6.8365224	10.162280	7.744010	4.687465
2.2238508	3.2706976	5.0378267	6.119823	5.385645	4.629206
5.2489849	7.2543076	8.0432266	9.920657	6.640588	4.550815
7.2899487	10.5598366	10.8496535	11.950032	6.041705	2.833464
6.0127575	5.7542505	6.8863905	9.182579	5.754752	3.672026
1.3521029	1.5754485	3.1205934	4.066551	7.562235	6.403071
5.1176885	5.7187020	5.0908247	7.592757	6.181544	6.066149
3.3636666	6.0586236	4.3086684	5.918973	5.162941	3.287141
4.2756576	2.9751421	13.0374836	14.784353	7.185031	3.855450
6.0549468	9.0532890	4.8566594	7.507739	7.345848	5.107079
6.7245622	12.9681547	5.8442493	7.599228	6.110233	3.896858
3.9355344	5.4769430	7.6424011	8.894166	6.066740	5.964059
4.3272465	7.4868638	6.9008538	13.890677	4.987957	3.936160
3.7309479	6.5728859	4.9293294	5.952860	5.159592	4.043862
3.0622649	5.0799355	5.1159718	7.035612	6.053457	3.897765
2.4151204	2.3268411	1.6115479	1.812167	5.121124	4.889920
3.9975995	6.3696678	5.1996422	7.050889	6.798521	2.523579
2.5565927	3.8716382	4.2186060	5.201990	4.891504	2.882407
2.8939494	3.1662650	5.9310002	6.086399	8.004341	6.946758
3.2176051	3.3764416	9.0151693	12.545804	6.480108	3.453830
5.4156555	8.5085540	6.2251628	7.135755	6.585409	3.593150
2.5870225	3.3240802	5.2725501	6.987624	8.214219	5.833088
2.1319791	4.5786445	4.4576180	7.154951	5.400840	4.306972
4.1917012	11.6707657	9.7914716	29.354547	4.545315	5.356803
2.3666735	1.5630268	3.4575401	4.053394	4.337302	2.656083
2.4636003	3.8719754	7.5562587	9.362620	7.318914	7.331052
4.6176393	9.8462581	8.7101880	12.996227	5.071499	2.753415
3.7843680	3.8823996	4.3823700	6.511126	5.661736	3.150882
1.8145147	1.8998499	3.3972039	6.221363	6.586146	6.442304

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
3.1741494	2.9178482	5.4568523	10.343847	7.129362	5.019184
7.4758745	9.8202172	11.5655221	16.974991	6.022023	3.480269
6.6873850	5.6175696	12.2032963	14.768992	8.324057	5.098063
3.7539477	3.5224174	6.5469210	7.275789	5.850245	3.199248
1.5498524	2.8811208	2.0371104	1.775911	4.357951	3.174714
2.9722429	2.7980736	5.3199885	8.811481	5.332759	5.357079
1.4442907	1.3192491	3.8911467	5.389684	4.983136	2.836131
5.1879907	5.3734912	5.7523627	5.477756	4.547461	3.798869
4.3775099	5.8996157	9.0666423	12.087351	6.474770	3.081764
3.5749385	4.9004402	4.0427991	5.773739	5.983001	3.911389
3.6354599	4.9749027	4.7649347	8.157511	4.243110	4.028942
2.4095765	3.1526385	3.4500903	5.282041	4.413680	2.433710
7.9151974	12.2236976	9.9722501	15.535791	5.736408	4.951207
1.0944977	2.5236705	1.3330275	1.463184	4.048945	2.101652
1.7022757	2.9235218	3.6799773	4.126980	4.144489	2.001499
1.7205245	1.8838155	2.0090082	2.891234	6.255268	3.479743
2.8786438	3.8848699	6.2844267	7.898208	5.405659	3.737454
1.7286217	2.1723784	5.1570419	7.803480	5.455558	4.410137
5.2993577	9.5564237	4.1837495	6.628911	4.665270	3.114073
3.7340174	3.9770060	5.3756860	8.495485	10.049017	6.451757
4.3810203	4.1390455	3.6774855	2.989809	9.820445	9.324672
3.4802783	5.0309856	3.8114644	8.410821	3.812152	3.269354
2.3878203	3.5890074	5.3635702	5.074226	4.475852	2.125878
5.2047913	6.2831732	6.0061245	9.843047	4.892950	3.328336
8.0917005	17.2982351	11.1657055	20.444562	5.836190	4.832971
3.7918999	3.8761373	5.8327134	8.268999	4.497186	3.910068
5.3998369	9.3510717	7.3082849	12.008656	5.882853	4.724247
5.5340183	11.9338175	4.4302735	7.009184	3.968055	2.342113
2.1308539	4.8517630	4.9457015	13.451284	5.233792	3.419310
2.9853220	5.7222279	5.6216034	7.883264	6.422223	5.300478
1.5828574	2.6363621	5.1009500	9.869030	5.728775	3.396601
1.9629867	1.9609591	5.0344517	4.257775	5.053315	3.737386
2.8330066	3.7016507	5.3825798	4.908677	5.429467	2.990106
3.6100737	5.2589696	5.2596993	9.171690	5.611597	4.338961
4.1155943	5.0100453	4.0827775	5.324861	6.139708	3.023528
2.2088256	3.1275791	3.6910456	6.866026	4.109610	2.281778
1.2348889	1.5290130	2.6703465	3.047717	5.407365	1.843873
4.1382221	6.6084963	5.3234010	7.574585	5.117599	3.656895
3.4378557	4.9940749	5.6341686	4.715099	5.959876	3.974398
3.1227690	3.6194485	3.6299714	3.393973	5.190585	3.407086
4.2930475	7.2538118	7.7410380	15.956525	5.125749	3.342591
3.2135691	3.5855118	4.2512821	5.022236	5.014504	3.371559
7.0848276	14.0339172	6.5766123	11.515955	6.067306	4.608041
0.6661987	1.2690731	1.7819057	1.498918	4.995321	2.982826
6.6993648	12.4630189	12.1470180	17.147918	6.709375	4.196685
2.0782977	3.7949191	6.0121638	11.728849	5.923291	4.706661
1.4034549	1.0247834	2.7336117	4.300326	5.221207	3.714751
4.5880734	5.3132347	8.8771060	8.838713	6.597140	3.610762
5.0446656	10.5983009	7.2478124	12.080195	4.597987	2.859906
1.8432382	2.3128651	1.8641552	2.386998	4.805930	3.303538
1.9270177	2.2757489	2.5034088	3.836748	5.396812	4.378172
3.3737128	7.8507888	6.2861948	13.968000	5.270760	5.159299

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
6.5023205	6.8012175	3.2191107	2.443475	4.683579	2.395965
5.8564381	10.6109798	11.4513067	12.755929	6.245846	3.617794
3.3308013	7.0230267	4.9519197	5.837860	5.421269	4.305263
1.0698499	0.9539555	2.7711981	2.249380	4.128684	1.384611
3.7986293	4.9379601	5.4292309	6.556528	7.672705	7.369200
4.3314710	5.2825105	13.1762912	16.938995	7.941605	5.406680
1.4739984	1.9363090	1.8960998	2.094368	5.407900	5.342382
5.2720114	11.2152122	7.9355992	17.731825	5.304497	3.219399
5.5952680	10.3457085	3.9519540	6.627563	5.916397	3.785213
2.4584386	2.3403763	7.2466938	8.880908	5.302086	3.435156
1.5878263	1.7618029	6.5697516	4.022894	6.371956	4.299654
6.9643678	8.8652547	8.4844974	15.394619	6.503752	4.473280
3.3986508	4.1571133	4.9669020	5.497301	5.856605	4.199607
6.1178314	9.5183341	7.8930264	9.895135	6.892440	3.856861
2.9611884	3.9795487	7.8480458	6.650442	6.713750	4.030300
3.0617103	3.5975631	8.5894756	11.982224	5.471239	4.254261
3.8199711	3.7073475	8.4394063	7.787159	5.788150	3.649537
3.3329281	4.9825491	4.3531993	5.916145	6.562647	4.213067
2.3269651	1.9813453	4.7085274	4.882409	7.425253	5.484742
3.5012224	5.5239258	2.2975448	3.200362	6.531795	3.821518
4.0890508	6.3924763	7.4344999	9.744430	8.788788	4.545926
7.7588045	7.1983859	6.5739633	10.421806	6.430330	3.149276
5.0172130	8.0758097	7.1476420	6.824153	5.428822	3.076653
4.3821914	5.2751425	6.5384801	7.858351	3.706542	2.308725
3.3427277	4.4622691	6.7571879	9.982605	4.249101	2.866432
2.3414302	4.9134376	5.9532710	11.667032	6.527491	5.043599
3.0159113	4.4998295	5.7308252	8.306184	6.033977	2.522699
5.7704150	11.2690756	3.7818946	5.956744	5.332923	5.044707
3.4342591	7.8310358	4.9594729	11.585633	5.556230	2.952850
1.4218832	2.4854160	3.2295443	3.274752	5.422936	4.174728
3.3389640	5.8735603	7.3938986	13.603383	5.210373	3.295797
1.7432581	1.4813876	4.0298846	4.249294	6.118779	5.700528
4.8279295	6.1168218	8.6162031	10.881873	6.292171	3.610770
5.1458093	4.3976691	8.3522047	8.162802	7.528101	7.086913
3.4054903	4.1819858	6.2525035	5.835708	7.844955	8.633038
3.2021087	4.3652803	3.5215535	5.523301	5.141012	2.598740
4.0485516	4.3942711	7.6174936	11.376056	7.503628	5.581145
5.0128584	5.9412850	6.0748886	8.509703	7.977473	5.237177
1.5756979	1.9886101	5.3245624	7.745847	6.885250	3.985941
1.6484015	1.3032066	0.8770243	1.069005	6.487500	2.538131
3.8287941	5.3773813	2.9098826	4.972949	6.325645	5.013338
5.1528477	9.0558605	8.5587243	9.236746	6.355137	3.033702
3.1645929	4.1978138	3.9636745	5.171379	5.665964	3.978946
7.8614348	9.4255184	5.9593079	8.427737	5.704847	2.138072
5.5887409	9.4046784	7.0979268	8.375802	5.729027	4.400026
9.2897099	21.7301634	12.1090276	25.827285	7.896365	6.880038
5.9884405	11.0100774	2.9792821	3.107946	7.275506	5.883510
5.7517833	10.7451169	6.5235795	8.649203	7.291168	2.897320
3.9927120	4.0274257	6.5803868	9.970592	8.567863	10.756760
4.6518320	3.6521738	8.5781429	9.627170	5.254715	3.524485
4.6564237	5.5362213	3.7307386	2.102514	5.950853	3.550723
3.0790135	3.7086544	2.7775411	3.845357	7.012004	5.617354
_					

Media e1	Desviación e1	${\bf Media~e2}$	Desviación e2	Media Ecv	Desviación Ecv
2.5098584	3.2918360	4.5942670	5.425312	6.085769	3.741717
4.3195010	4.1967013	3.3408424	4.178680	6.189862	3.497668
7.0844275	12.3743335	12.7973765	13.561831	8.437754	4.652054
4.0386580	6.7508866	13.3473752	24.545142	6.520819	4.926602
2.6487962	2.3187257	3.3203486	3.101531	6.093552	3.804171
4.5575332	4.9528836	6.3267456	9.037736	5.131357	2.793824
3.9157802	7.3585314	2.1997034	2.083319	4.734909	3.295264
3.5463431	6.2542815	5.3052933	8.381690	5.171376	3.428062
4.4313241	4.6004645	7.3517774	9.020485	5.214510	3.661771
3.7045901	5.1404795	5.5031138	11.821632	8.404686	9.395760
7.1294282	7.8649587	8.1532468	9.457629	6.319180	4.559146
7.2558792	5.7568164	6.1418780	4.596351	5.546528	4.832909
3.8962570	7.2141777	3.2120582	4.348342	4.587366	3.944881
1.3554473	1.1103149	4.8431928	5.107799	5.343434	2.975367
2.9369405	3.0035135	3.3682550	3.630625	6.299157	2.732711
3.5201026	2.8301408	2.4362715	2.179773	7.518224	5.454211
1.8717395	2.5151123	2.7993767	3.126834	5.044858	4.486876
11.0457508	15.7214495	15.9808403	28.400737	9.361143	5.859013
3.3367664	3.5687028	4.3271110	5.330401	5.725604	2.605920
0.8349341	0.9282362	4.2495633	3.451115	4.533737	1.729197
6.2692747	6.0691880	7.6777785	11.091484	6.861426	4.392080
12.9631164	14.5580946	13.9069158	17.384397	6.514697	3.131141
6.5218475	9.6404722	9.3305682	10.267218	5.244594	1.738075
1.8913447	2.6285997	4.7883278	4.938980	5.128226	2.950413
2.6195445	4.2802325	7.9064599	9.961673	7.421619	4.556634
1.8084124	2.0284826	5.0974555	8.906306	8.763299	5.755010
3.0745747	4.1968364	5.9231017	11.380155	4.426680	4.236642
2.0181142	2.2667070	3.6068584	4.581724	7.253037	6.014179
8.5015827	22.3855633	12.8150565	29.194360	5.934397	5.275020
2.2660392	3.5566983	6.2948966	13.816572	5.973111	5.419665
3.3591691	6.1129866	2.2154623	2.900436	6.916288	5.986005
3.5303316	4.2167130	5.4355737	8.565989	6.490039	4.141304
3.6178800	5.5187397	5.7590424	6.541274	8.662383	8.664438
1.5287174	1.4907447	$\frac{5.7590424}{2.2378431}$	3.448312	3.006375	1.506976
2.2233935	4.3492381	4.1522149	7.496709	10.664243	10.802764
11.1395285		-	19.402757		7.535271
	20.8122803	10.9610637		$10.343950 \\ 4.111551$	
2.6957043	2.4218594	4.6915073	5.881761		2.575311
3.0772807	4.3362768	6.4242035	7.485888	5.901075	4.760109
3.9245654	5.5540607	10.1885385	11.323824	6.066926	6.993606
5.7214110	9.1145146	7.7221482	14.179018	7.010305	4.203907
4.1442730	5.3825443	8.5683552	9.997859	7.439264	5.558870
1.6796107	3.0663770	3.1326854	4.085864	4.675454	2.848632
3.7100890	3.3337699	4.3238843	8.469172	8.099191	7.910062
5.0172164	8.8405484	6.2268352	7.094515	6.661384	6.655416
3.6724112	4.0847627	5.6600845	8.448629	5.399241	3.582553
2.3507452	1.9907876	2.8769277	3.173635	5.428573	6.361622
6.3925439	14.0266090	7.7942516	14.640204	7.454634	5.287238
8.3934161	11.9266037	8.6375238	18.613025	6.286394	4.142678
5.6788819	6.4817007	7.1506959	5.370616	5.006583	1.922681
6.2454049	10.7556957	9.0820161	12.368033	8.004464	5.831015
5.8088436	11.4931203	6.3335125	13.161794	5.626014	3.746244
2.0940570	3.6740103	5.2903756	7.392138	4.094677	3.379084

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
2.9759084	5.0887653	4.5612269	9.316407	6.057345	8.199659
2.4723055	2.5217774	6.0429038	7.667341	5.912668	2.797891
2.8936351	4.4269292	5.8352403	7.523627	5.544442	4.493358
3.7005983	6.4450870	2.1969113	2.032949	7.352289	5.047257
12.9991406	14.1781622	14.2138509	17.224301	6.013782	4.140655
5.5874241	13.9418771	7.4196676	8.208469	5.581497	4.240098
2.2798318	2.3687552	4.9047529	5.395457	5.027098	2.155556
1.7823251	3.0788937	3.5510659	3.404891	4.939063	3.552779
2.5847598	2.7593145	3.5966806	3.566050	4.950202	2.626208
3.7084482	8.4172101	5.0797082	7.826870	5.542975	4.212987
2.9016031	2.8786592	2.9401260	4.082071	6.842561	3.100049
2.7194652	3.3679754	3.8264900	5.045550	4.934094	3.214137
4.0197338	5.5087044	5.3785114	3.248035	6.225928	4.237753
4.3366912	7.2472652	6.2151112	7.478734	4.959518	2.016890
12.7208939	29.4208543	15.1728439	31.358241	6.658894	3.878740
5.5444021	10.6668768	10.3447024	17.174836	6.362827	4.363632
3.6798107	6.2784060	2.1089101	3.431674	4.644856	3.356742
2.3465867	2.4499007	5.7237536	5.418163	4.886138	3.367308
6.6200160	6.1181300	5.6475662	4.207840	8.936626	5.182544
2.4859430	4.4759609	4.7784686	8.280163	4.394138	2.454680
5.0937241	6.8792765	7.1024926	10.434781	7.297845	5.912509
2.7468106	5.1601535	2.1530442	2.530658	7.193392	4.850293
5.9740975	6.0141971	8.1844036	7.667986	7.333821	2.496039
5.9539928	9.0906604	3.6194958	4.390771	6.471194	4.567677
1.9324945	2.5419847	5.5962078	6.818639	5.943102	4.010504
1.3430286	2.3105296	3.1121899	2.295355	5.243987	4.782568
3.8406444	4.9246270	6.4179150	7.503823	6.594707	4.345720
3.4070397	8.2575478	5.6031630	11.133934	6.636627	4.158596
3.6811639	4.8035162	5.0182630	5.342840	4.502851	3.158639
6.8308436	13.3349509	9.0026462	14.501185	5.857269	3.954182
3.8025845	4.2825172	5.9581768	10.429002	5.636734	3.568208
2.9756004	3.7550104	7.2025035	13.092009	6.327064	4.968658
3.6071053	7.3173990	4.4500867	6.624699	5.176645	2.016254
7.1220272	11.5988611	9.1699524	13.594960	9.479748	4.485146
7.0090810	9.5869618	11.6360746	13.092802	9.279158	3.626689
3.0719286	3.9480753	4.5541940	6.984587	7.527895	5.762803
15.5340097	38.0753907	14.3607980	29.954386	7.247343	5.910294
4.1803299	5.6874606	4.5862721	5.845933	5.186246	2.029175
2.1278379	1.5102039	5.5542788	10.321003	7.931477	6.796700
3.8048670	5.5187495	6.8326189	7.847089	6.237414	2.981840
4.6641982	9.1630515	8.6199183	16.171931	5.708029	4.022778
3.7383971	4.3967496	6.3167622	10.777219	5.374794	3.277098
6.8382185	14.1022395	7.0070479	10.048732	7.398151	7.510442
2.5555514	3.6511127	4.5859091	6.866163	3.800368	2.162349
6.0819077	9.4865345	8.2200364	10.250823	6.264295	3.849125
4.2613347	7.1022810	5.5053298	13.104801	5.494648	4.206774
2.2208086	5.2648077	3.6657426	4.660094	3.986353	1.313613
3.9747086	7.6724125	5.3784240	12.855075	6.913834	4.979226
4.7018139	6.9038705	4.1353880	6.785903	4.904648	3.675973
2.5350769	3.7501581	2.2987987	2.551493	5.858373	5.007244
4.6783331	6.9008647	8.8545009	13.913501	6.183197	4.910065
2.2809982	2.6750439	3.4939454	7.039506	4.223266	3.450329

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
1.0734993	1.4489397	3.3849842	8.214529	6.356070	3.680454
3.8822972	7.7090929	6.9001946	10.559720	5.825181	4.358759
7.6455755	9.6900074	8.1553870	10.630529	8.031550	5.578911
5.8252273	18.2128184	6.5242288	14.420874	5.830641	5.297048
4.3841648	5.3749357	5.9715330	4.997782	4.742425	2.868071
9.3295866	13.1719725	8.7049067	11.367975	6.861222	3.642235
1.1703742	1.6273408	1.3507000	1.269949	4.341658	3.410397
6.2204570	10.5659734	14.8658003	29.144020	4.324865	4.166717
2.0581906	3.4153502	3.4410852	5.314597	4.801298	3.703925
7.2728779	12.7931559	8.8396618	13.122070	4.375612	3.177465
9.5613200	18.8980248	11.3016338	17.903646	7.239828	3.819915
3.4938817	3.7813284	2.0087687	2.947370	6.107263	2.829478
1.2405476	2.3894145	5.9152447	9.284024	5.804191	4.146633
4.6535653	11.2389569	12.2296204	18.683313	6.359201	5.658601
2.1306843	2.8949644	2.4649389	2.827883	3.720469	1.984697
3.5057034	3.8982812	9.6034415	8.612251	6.920376	3.148639
0.5964207	0.6853466	3.6348746	3.673284	6.015684	4.252154
2.8088056	3.0339776	7.1747736	10.658889	6.152022	5.016675
2.0668756	1.8230785	2.8874022	3.885545	6.152022 6.202232	3.789961
3.8815491	4.2800897	8.5432361	13.664303	5.577673	3.441096
1.7211557	$\frac{4.2800897}{2.2046774}$	2.1583334	3.486177	5.344944	3.234736
3.7987530	6.4424564	4.0385496	7.311602	5.344944 5.041994	3.234730 2.574894
8.1755405	0.4424504 11.2045552	7.9091860	13.724946	5.041994 5.203738	2.574694 3.646912
	18.1512082				
9.1091889	9.4220401	10.0163192	17.799373	7.916216	$4.485190 \\ 5.023687$
$4.6484494 \\ 5.4872206$		2.7669187	3.707394	6.506040	
	$12.4498908 \\ 3.1089512$	6.6645607	$13.038603 \\ 2.686517$	7.149420	11.502911
3.2001045	24.2331402	3.5958988	39.225142	7.141159	3.731378
9.7285420		15.7260332	7.246593	$7.052490 \\ 4.537043$	4.242383
1.8571893	2.7660604	3.4268344			2.862427
3.8925853	5.3835740	9.2997755	12.437005	5.448635	4.011748
$2.9449485 \\ 2.9475895$	2.9875498	4.2580962	6.114951	5.097753 6.144618	2.671485
	5.7813953	4.8899131	6.957713		3.702889
1.8508400	2.0370766	4.0227179	11.041199	4.902429	4.963209
6.5367672	12.4489216	15.3577708	18.821203	7.419462	4.496726
2.7038507	6.5295461	7.1225468	11.860649	5.071992	2.518128
1.9395180	2.3015787	2.9303171	4.649806	7.556469	4.796196
9.2685916	15.8624252	9.4714332	8.881181	7.649749	7.046074
5.6008531	7.3680949	5.2706840	5.323167	5.236260	3.368836
2.7640906	3.7945281	5.9178376	9.431007	8.100664	5.380999
6.7329171	15.7504181	6.6403167	14.831821	6.775086	7.197866
7.2770398	14.2485032	9.6999328	16.057592	7.065057	4.278447
4.7765211	8.0215534	4.6283241	5.166370	6.475114	3.502472
2.5404780	2.6030452	3.2294320	4.174033	6.297410	3.051998
5.0963995	9.7789714	5.7334701	5.954027	7.484749	3.678751
4.8824225	7.1778807	7.0266454	8.563038	5.999814	3.948877
1.8959607	2.1742427	4.3882471	4.427927	5.735764	3.501945
8.9001175	25.4185713	9.5082262	22.643118	6.373484	3.744668
2.2294867	3.1233145	2.3580380	2.167187	3.787011	3.975154
0.6906902	0.3439098	2.3379193	3.369181	4.358484	2.464115
4.2250709	6.6171953	4.0749235	3.235473	6.790157	4.553116
5.9574375	9.8609349	8.2578023	10.801004	7.189228	2.893339
4.8580940	8.2286546	4.4982123	6.578095	5.215816	3.830234

Media e1	Desviación e1	${\bf Media~e2}$	Desviación e2	Media Ecv	Desviación Ecv
2.6109714	3.4925333	3.7449678	2.038410	5.394827	3.636003
4.5578076	4.7915231	4.9535340	6.082644	4.385199	1.380306
4.1682838	3.7299754	5.1512605	4.519962	4.186564	1.675482
2.3784045	3.0410175	3.8564691	3.214218	5.337152	2.967463
3.7235472	2.6857500	6.1800845	4.390928	4.302554	3.533509
8.3942962	13.7172503	7.9120203	8.684337	5.582545	4.143305
13.2540099	19.7450799	15.7643881	20.615405	9.351107	5.482750
5.7076156	6.8003761	5.8055007	6.447889	7.679773	4.587361
2.4902852	2.8105244	3.7584051	4.939228	6.253724	4.423338
3.4736319	4.2658786	4.9882448	5.679147	6.964942	4.893021
6.4937419	9.8001451	10.2962702	12.286220	6.037767	4.535140
4.5147577	6.4479452	4.5231360	5.333554	8.180978	7.579220
2.4149942	5.1551830	4.2137358	5.070888	5.040884	3.623228
2.1037543	2.6594182	4.3645361	4.456938	7.442876	4.033346
4.8119016	6.4773101	5.3742581	8.009061	7.069084	4.570934
5.7868666	8.0945924	10.3528783	18.359315	4.718410	3.429675
1.9648662	1.7416415	6.4606975	12.526176	6.892864	5.299849
3.4629215	3.9194109	4.5921733	6.200248	6.786755	4.631976
2.5205461	4.9850430	5.9224569	5.928964	5.324426	2.746688
3.8876994	6.0640867	7.4810346	7.537153	6.316923	2.927351
2.6670393	3.4559018	2.7942425	4.421536	3.607489	2.244883
2.9051070	5.7043640	4.2430844	6.708074	3.982156	2.302653
6.8223877	11.6252004	9.0864713	18.784434	4.782337	3.308951
10.7654954	12.7587298	12.1748570	15.185542	6.039495	4.089484
5.1816180	9.7457074	9.3565688	14.107746	5.089244	3.798190
2.1394400	2.9996280	1.8755355	1.839110	5.524656	4.661139
2.1394400 2.2768554	3.5380307	3.3048984	4.210162	4.273654	3.518604
4.5295575	6.9213035	7.4171955	7.850799	7.070479	4.359966
2.4303005	4.7460074	6.2203109	8.073550	7.102126	4.245261
6.8692248	10.4338571	5.3566181	11.879035	6.383093	4.289288
3.7390292	3.6869769	3.8285805	3.339486	7.028880	5.517232
6.8496346	9.8688141	17.1408630	25.082777	8.405369	4.371800
6.0264644	7.4943129	10.3946925	12.897115	4.878822	3.381678
9.7774345	15.8349294	16.3849794	24.999641	7.934057	4.336087
6.5858276	10.7223487	4.5732684	6.126309	7.788951	5.027960
3.8765864	6.8004938	4.9382114	4.214524	4.916774	3.897032
4.7088144	8.8039836	7.5163050	11.798426	4.883842	2.281603
4.6225528	4.1038125	7.5892680	7.871174	5.819689	3.001309
6.3102205	9.2585689	5.0825506	9.925139	6.434604	3.893415
1.0974365	1.0977289	3.2073066	6.494620	5.069945	2.892697
4.2928415	5.8400716	6.3414628	6.828137	8.633492	6.814422
3.8128833	3.3285974	7.5204162	8.052566	5.223604	3.781102
$4.2789591 \\ 5.5203424$	6.0299994	3.4159191	4.757499	5.328053	2.571850
	9.4455453	7.2100436	12.242957	4.990248	3.326773
2.4716847	6.4297275	8.0942827	24.276759	7.359985	5.292447
3.1957501	4.4866709	4.9715877	6.685376	6.574961	5.523844
2.1765278	4.0242516	2.1753196	2.511578	4.461295	3.057589
2.0297342	1.9154421	4.6892904	5.381350	6.869960	3.759172
3.6494075	3.2805286	5.3958791	5.286973	6.364414	3.744242
5.7994393	6.0736876	6.3027839	7.055361	4.434660	3.241052
4.6837916	7.9880215	8.0310299	14.775908	8.172500	5.575386
4.9518976	7.8219853	4.7574742	4.899599	6.397849	4.288811

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
13.3043606	19.5129347	12.5530142	24.300010	6.467227	3.061739
2.7842994	3.2409471	5.5788227	6.362287	5.473432	2.590177
5.9470453	5.7004281	7.5983276	10.310010	6.019878	3.222978
7.8926375	14.4414025	7.4015363	8.309280	7.603111	6.074817
5.1095195	9.9915938	4.6705719	4.686434	5.530222	4.078386
2.0623212	2.0484955	1.4228825	1.656312	3.647660	1.572825
4.3727604	7.7667646	5.2053906	9.568605	4.779978	3.839936
4.3508373	5.4741616	4.8614903	7.692623	4.666065	4.549787
1.9847833	2.6845495	1.0430071	1.512650	4.794380	2.073268
3.7030368	3.7189453	11.6541276	11.362855	6.325121	3.919280
2.2713581	3.4254951	3.9559436	5.373539	4.691274	3.688903
3.3915156	7.7123685	4.2769156	7.110326	5.307288	2.543100
4.3151624	3.3413940	1.9817088	2.893730	5.704093	3.324827
2.7627996	2.9579481	4.4048203	4.306654	5.202324	3.902295
2.1528379	2.3044352	4.1621598	3.135112	8.247501	3.218580
6.3488797	6.2954422	6.7725958	10.062339	5.887906	4.260295
4.2400994	6.5747329	8.0441896	9.064779	4.038955	2.177974
4.8174633	6.8002639	7.3027300	10.203229	5.208879	5.266320
6.6320106	10.3874919	5.6691026	7.816440	6.662264	5.825339
4.5718953	6.1747921	6.5548627	6.311684	5.893787	5.471650
2.8241149	5.5775438	6.1475671	9.318592	3.275392	1.348128
4.6629317	12.9218346	8.6136635	18.899246	5.252397	2.712863
7.3953706	11.3462930	12.9521873	18.760001	10.048009	6.290583
5.0250791	4.5410081	11.1442535	10.485631	5.811282	2.889118
5.7553935	7.8818677	11.6204493	20.908483	5.854488	3.415299
3.3297380	4.7184355	3.9935442	5.144925	4.047841	3.480405
3.1720808	3.2782294	6.0714423	11.119872	6.000796	3.927507
2.0837356	2.9548663	4.8013481	6.410996	3.745882	1.821025
2.1013454	2.4139758	3.0747050	4.526565	3.329693	1.511059
4.9088312	11.4309740	5.8330066	8.323898	6.845134	4.810265
1.7779421	4.0490841	7.6445763	19.059105	4.528149	3.932039
6.2582553	15.7629717	6.0436174	13.137160	5.970862	4.616207
5.8098680	5.6864676	6.6664909	10.507762	5.455655	3.616289
1.8396434	3.5718664	6.1636184	7.997789	5.297835	5.699806
3.8763745	4.4797396	5.1598488	5.232381	4.187918	3.115193
4.6931212	5.0430688	12.2868656	10.907142	9.494552	3.891016
6.7514285	10.3268087	10.0272259	11.734343	6.028041	2.830183
4.0397027	2.9914747	6.7280570	5.334726	5.239623	2.672545
8.7789214	19.1280217	11.7325685	19.183388	4.752620	4.342978
3.5623289	5.3728920	4.9692327	11.661160	5.408790	4.510827
3.8632441	6.8095066	5.4054407	9.326588	5.677807	3.740845
3.3663300	4.7437400	5.5479111	9.967846	4.445870	2.186785
4.4183415	10.5586181	5.6967782	8.941378	7.941299	6.114327
9.1021497	13.0097951	10.4479523	13.854959	6.377397	3.802878
5.5190381	8.4268340	7.0679007	8.682626	5.986293	2.992988
1.1283438	1.3672293	2.0068651	3.240250	6.091614	5.856467
4.8607262	6.9982684	10.4369961	17.192407	6.761103	5.570649
8.1673886	10.7940841	10.8404698	17.185750	5.382566	5.317810
5.0453067	4.2084624	6.4302407	10.130322	5.470355	4.355816
5.7258807	11.2448764	9.4197534	18.149361	6.068400	5.789965
1.3111076	2.6361173	3.8003666	6.764149	5.013579	3.544120
1.3640579	1.9990991	1.1744360	1.549223	5.181969	3.382656
	1	11000	o.zo o	0.201000	3.33 2 330

5.9826725 15.6331029 6.4949983 11.846297 7.158290 4.389 2.0697122 2.1543750 5.2840997 4.529593 4.702757 3.343 1.3923760 1.5799418 5.8773440 7.151710 6.946379 6.163 3.7147871 5.5913624 6.5262114 9.027207 5.409625 3.320 4.8431641 6.4086976 6.7733700 7.716760 6.195716 5.024 3.4726664 5.8225409 4.5272482 6.902943 4.167891 3.221 3.3588178 4.3740862 5.3023684 6.225969 4.507927 2.650 0.7899316 0.8575625 2.7442640 3.451806 4.711697 2.527 1.6575644 2.6923723 3.7401004 3.161903 4.740428 3.474 2.4863924 2.2994976 4.5742286 5.189751 4.759734 2.812 12.1962350 17.5162827 11.6773470 15.278382 7.326579 4.168 3.5645256 5.3498471 1.3058944 1.987012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.4863924 2.2994976 4.5742286 5.189751 4.759734 2.812 12.1962350 17.5162827 11.6773470 15.278382 7.326579 4.168 3.5645256 5.3498471 1.3058944 1.987012 4.740649 2.056 0.7912587 1.2493646 3.5292069 4.057755 4.749875 3.988
12.1962350 17.5162827 11.6773470 15.278382 7.326579 4.168 3.5645256 5.3498471 1.3058944 1.987012 4.740649 2.056 0.7912587 1.2493646 3.5292069 4.057755 4.749875 3.988
3.5645256 5.3498471 1.3058944 1.987012 4.740649 2.056 0.7912587 1.2493646 3.5292069 4.057755 4.749875 3.988
0.7912587 1.2493646 3.5292069 4.057755 4.749875 3.988
5.7240551 5.5624007 6.1002219 9.624209 5.095504 5.007
6.9028087 10.7930907 7.6103144 6.633262 5.915138 2.481
3.0233398 3.6004894 4.7114140 7.269279 7.304118 2.977
7.1992519 7.9892379 7.3391667 9.392393 6.887319 3.973
5.6611900 6.9242213 6.6375528 8.064842 7.506092 3.461
3.3576260 6.1862319 5.5702725 4.717446 6.231168 3.675
5.1601770 7.8488229 8.1808293 15.565119 6.558800 3.817
3.7928944 3.8770293 7.7306401 7.848745 7.658541 4.702
8.3831355 11.2315631 13.7628605 15.047680 7.585164 3.513
2.3454830
3.7183467 4.9929864 4.3237583 2.963334 9.569050 6.340
4.2041995 5.0234677 5.9571327 9.199402 3.872070 2.251
4.7674567 5.4336464 4.3524731 4.901011 6.402529 3.268
2.7954945 2.9291941 5.1634361 8.119260 5.517332 2.926
3.9902792 3.7989451 7.3235345 7.949153 6.390279 3.400
7.9932556 20.0918660 10.3252739 21.470598 5.348605 4.491
5.3863762 8.9834060 4.6701588 7.514113 4.946055 2.270
4.7682329 8.5526478 4.8720223 9.237791 6.477714 3.303 4.7682329 6.477714 3.303
2.2111342 3.1567499 3.7877500 4.206960 5.333086 3.558
9.9222075 15.3718216 16.2511132 20.425863 9.941717 6.103
8.1954399 8.8190454 11.7988550 14.813725 6.259051 2.707
1.2517514
4.1367846 7.9243510 3.5877622 3.410487 3.888413 4.024
2.5762176 3.1633689 1.8553428 3.436126 6.335138 2.421
2.8743380 6.7075197 5.9728409 9.908032 4.896836 3.729
2.5660388 3.4540166 3.6745089 3.096289 5.221943 2.646
2.3747001 3.4492069 6.6336148 7.435962 6.972507 3.515
$10.2116809 \qquad 20.6450242 \qquad 5.3734616 \qquad \qquad 5.536706 \qquad 7.975420 \qquad \qquad 3.955$
5.0759201 7.2121836 5.9189896 8.936733 6.919926 4.470
8.6674990 17.1768801 12.2265863 23.095130 5.008452 3.091
7.5896576 12.0527019 8.4313857 9.223376 7.815582 5.588
4.9096739 7.2666284 9.2954872 10.963280 8.001850 5.216
4.1499667 5.5885466 5.7308691 8.562005 4.980018 2.532
5.0254135 5.2352562 5.5684778 6.128095 6.105177 4.498
5.4649872 9.8217564 3.8672134 4.500556 4.669909 3.620
5.6306223 7.9482443 5.7584470 8.540453 5.070546 3.584

Media e1	Desviación e1	${\bf Media~e2}$	Desviación e2	Media Ecv	Desviación Ecv
3.8680541	8.8169216	6.4896760	11.099910	5.954823	3.615327
3.5819718	9.2175021	6.2684361	7.926011	7.134112	3.725818
4.1045298	4.6957898	4.3860496	5.973173	7.569690	5.537670
3.2564930	5.4353259	3.3366100	4.760162	4.923942	2.659077
4.8760574	8.9460775	8.6557043	14.534569	6.224485	2.867656
4.1561877	7.3067109	4.6436498	5.925569	3.813207	3.333213
5.4077771	8.8422555	8.8784735	9.302029	4.325274	3.671028
2.9002606	3.9379254	4.2846305	5.393232	5.543152	2.884934
5.1063006	6.0914398	7.8458341	6.070078	6.613883	3.511980
8.8809775	15.1764871	10.3427098	20.839483	6.176557	4.126379
3.0091655	3.0447991	4.7742467	9.390019	5.659321	3.366138
2.9609452	3.4226352	3.3772055	5.528421	4.496468	2.820817
1.1660180	1.3699148	4.0458295	3.575575	4.397027	3.374711
2.9996214	3.3836042	6.1957377	6.549829	7.535419	4.285684
3.9788061	8.9425383	5.4193633	9.462511	5.913875	3.281776
2.4106491	2.0693169	8.6514127	10.410801	4.603354	3.513288
1.9026011	2.8429971	3.9549766	3.470209	7.057048	4.592419
3.9857561	7.1606608	6.5880620	8.767924	5.868975	4.148885
3.1588962	4.2682884	6.4205631	7.326141	6.842563	3.064277
3.3200700	3.7462416	3.1137651	5.895833	7.080253	3.716592
6.2781895	8.5134689	14.2806648	22.010148	7.889757	4.852862
4.5352078	4.3999600	8.9227708	7.310574	9.197247	4.765179
7.5348181	6.4326896	12.2176505	10.033384	7.253020	3.429540
3.2223909	4.1585410	5.0024110	9.117209	4.526147	3.971627
3.9016952	5.9543012	5.7956767	5.554079	4.813314	2.394713
2.0374369	2.8191923	6.8152028	11.862583	6.169104	4.998057
5.7236474	6.6994232	7.3587698	8.904264	5.371472	3.033219
6.8830524	10.4893133	6.3417988	8.680131	6.297708	5.213106
1.3574990	1.4906975	3.9224805	5.198726	4.967546	2.783004
2.7733327	3.9248419	3.5207986	5.592238	5.070036	3.531393
4.0580685	3.7508560	7.4134878	7.818435	4.675165	2.317492
2.8352339	4.1931846	6.3154447	4.445778	6.388950	3.379699
9.5814075	26.4699343	11.0760616	26.500185	4.819294	2.663700
8.0772813	13.9491267	7.1581561	13.026058	6.817391	5.642192
7.3707576	14.7656324	5.5153095	12.551115	5.739820	3.962101
2.2478905	3.1709696	4.5885047	6.759329	5.278479	1.898972
5.2397835	10.0668951	8.7944240	15.288942	5.722883	2.938979
4.9892480	7.3730208	8.3832794	9.790820	6.952919	4.317022
3.4814286	3.7184423	6.2115386	9.790820 8.218827	5.740803	5.366781
2.6095623	2.3559657	3.7457746	3.589900	6.440275	3.869589
4.5561242	6.2025920	7.6972150	11.494809	6.774837	3.291643
$\frac{4.5501242}{2.3421986}$	2.5864091	3.6747758	5.163037	6.779317	4.201090
3.3062826	3.1248510	5.8905930 5.2989694	8.747436	$6.399315 \\ 5.539256$	3.440845
2.9046486	4.9298179		10.254879		3.650230
3.0915759	3.0389689	8.9783738	10.968989	5.526101	5.380329
4.7872272	5.2279602	2.0107699	2.325177	5.674091	2.756147
4.5050800	9.1608530	14.0682084	29.954175	6.418814	6.428690
3.0811851	4.0221343	5.8687805	9.657967	5.310524	2.199283
5.6850027	8.4065515	8.2926137	11.052799	4.824318	2.604846
3.8422118	3.6267917	3.6922883	4.217058	6.988343	4.499414
2.1225761	4.4021372	5.7670433	7.435889	5.818630	4.034795
5.1343772	6.1027650	11.3123763	9.951186	5.918149	2.622656

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
1.5596741	1.5049175	3.0922026	3.054444	4.111348	2.121165
3.6574171	4.0886182	4.3686419	4.589963	5.101099	3.625840
3.8121219	7.7179663	7.1638795	10.719679	5.034436	4.832014
14.6582616	21.7339762	22.2333567	37.236716	6.645743	6.446376
8.7300551	11.1169373	10.8527455	14.832773	5.734437	4.837802
3.8068427	5.0471330	3.0981329	5.250033	8.489238	7.557523
2.6107990	3.4342441	7.9028406	10.756845	6.671527	2.464759
4.7684891	5.2265843	5.7784448	5.745238	8.981311	4.721741
2.9939285	4.1093240	3.2355109	3.813223	4.630455	2.578765
4.1983239	4.9698367	5.5133676	7.124685	5.444466	2.946196
3.7228474	4.4759625	7.0756962	10.039496	7.430722	3.777779
4.1688918	6.7873542	2.8179200	1.940518	6.299518	4.795360
4.5080717	8.1672694	3.7828347	4.547802	6.576255	4.744855
2.9257952	5.0438819	3.8630234	7.301357	3.986593	1.604442
4.0205030	5.6676850	7.1055036	10.535327	6.206303	3.317690
1.6299111	1.9808031	1.6753629	1.597039	4.108424	2.523587
8.1268108	15.3139764	6.5409875	12.699881	6.862272	3.937747
4.2935481	5.2755500	8.0571749	12.458828	6.435817	5.459069
2.4641641	2.6556417	6.4880126	10.995727	5.008896	2.477136
7.2529167	13.6034369	4.1031364	5.870424	7.050696	8.756949
2.6281951	4.2176817	2.5431194	3.690865	4.771432	3.731413
1.3115767	1.3959932	3.3563759	3.780417	6.710064	3.789755
3.1257585	2.9709648	5.4734632	6.722233	5.403520	4.366537
1.5518643	2.6384360	1.4580267	1.681627	5.681016	4.317767
5.1280491	7.9344815	6.0162953	8.419092	6.631065	4.732062
4.7563593	5.9814137	5.2196249	5.524533	6.578484	4.778207
7.5452231	7.9259423	10.0327830	11.366366	6.670258	5.494455
5.3782251	7.5716179	5.9816020	6.498972	5.209111	3.765927
5.0572988	7.7420611	7.9360941	14.536999	6.042342	3.402981
3.3022250	4.0535066	9.1075157	11.332228	8.352828	8.215709
6.2615503	11.0748020	8.0292512	12.589370	6.912256	5.666871
5.6866134	7.9486679	5.1301354	9.016742	5.373193	4.016543
2.1517702	2.2680136	3.4126552	3.762907	4.621119	2.697319
2.5088279	2.7321340	3.3646670	3.570474	4.732724	2.632088
6.4940932	9.1174413	9.9208842	19.891235	5.754461	5.312312
4.2349654	5.3616413	3.9437306	7.481433	5.989545	3.638287
2.2778524	4.5327974	4.5846983	6.761442	6.813376	5.304211
3.5470758	4.2689237	5.4166647	5.043936	5.948474	5.192722
2.4953868	3.0965485	8.8745734	12.389608	7.403345	5.296723
7.9060169	14.0839006	9.7504564	14.965195	5.917771	6.155466
1.6700990	4.0882887	5.3200469	16.295530	5.366483	5.178888
3.1062996	4.3838965	4.9724250	5.298898	5.242171	4.517995
1.1241287	1.2642230	2.6148387	4.426167	5.130115	2.757597
2.3284024	2.4605487	3.2232772	3.560715	7.037197	3.366402
5.7195346	5.6437764	3.8444776	6.261828	5.983850	4.466963
4.6280818	4.5639664	7.7572870	9.794496	4.611773	1.635793
6.8579659	6.7777606	8.7118294	7.184115	9.839317	10.735648
1.6378569	2.1728059	1.2759432	1.286456	5.296157	3.241089
1.9559652	3.2275441	6.0763669	10.771030	4.808282	3.862040
8.8742158	15.5630356	15.7597083	35.844453	5.264995	3.071502
3.3496850	6.0393473	5.8689090	8.716416	5.269501	3.472199
6.8249367	7.9148625	10.9679780	14.295553	4.639003	2.210391
0.0210001		_0.0010100	11.200000	1.000000	2.210001

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
4.5175897	6.5917417	3.6003291	4.769457	5.524087	3.434867
5.9058844	12.2031406	12.2098750	28.796378	7.492613	5.254359
9.3243698	18.2638433	15.0647756	31.952637	5.516658	6.128386
2.3360904	3.4062977	6.0845450	11.675393	7.566775	5.744282
6.0973671	7.6243293	11.9799867	15.368385	6.147469	3.711549
4.1316754	7.1716930	5.4535383	6.101978	5.518397	3.318696
3.9123368	6.5101101	5.8979837	7.043259	6.141377	4.089250
1.3087959	1.7148885	1.7686862	2.185224	6.210875	5.792158
7.0277097	12.6760676	7.2285470	8.621042	7.710258	5.605148
5.5490056	9.1506092	4.2141062	6.705271	4.702770	3.676310
8.4035811	11.3928325	13.2372701	12.879175	6.713105	3.952160
3.3164536	3.1211249	1.3984173	1.446696	4.702498	2.802733
7.4731253	12.4189498	7.1663661	14.227764	8.325522	3.112520
2.7307174	4.1881271	5.4679107	5.734780	4.930932	3.621965
3.7803931	5.3351830	3.4243914	4.551358	5.227455	3.133270
9.8320249	14.6455959	10.8092428	11.016618	5.266312	4.631438
3.4514460	3.6230450	3.9628599	4.840028	5.710461	3.997028
2.3680979	2.9702034	5.4676584	7.632631	4.138818	2.500551
2.8937258	4.6329137	6.7126189	11.156701	5.911243	4.786138
3.7821364	4.3234870	7.0007617	7.172958	5.106868	3.833158
2.0756150	2.4028352	2.8310229	5.237092	4.800292	4.147118
1.6413562	2.5869868	3.2725824	5.674968	5.897042	4.458252
6.8764354	11.8369181	8.1930815	12.124420	5.134428	4.349165
1.7756393	2.0382457	3.4646662	3.646794	4.092688	4.268588
1.6945282	1.6660625	3.0221238	2.361788	6.035879	3.497956
2.1045928	3.3819841	5.7727400	11.659010	7.477535	6.851142
3.0581812	4.1036494	9.2345468	13.115055	6.442597	3.772372
4.8954506	7.6497240	4.3558325	4.371382	6.655945	3.241995
8.5285340	10.2922192	9.5155775	14.644886	6.945417	4.783930
7.1075599	11.9408613	11.3473882	14.282582	10.229836	6.084669
1.8238370	1.9568269	4.8784861	8.654017	4.201317	2.926911
5.1544543	6.6652521	7.3205061	10.917313	5.208981	3.622609
1.7457270	3.5004236	4.8686851	6.857835	4.176307	3.790887
4.2739013	8.8170292	5.3840617	9.737836	5.098541	3.117582
1.6934887	1.6432772	3.0925367	3.158276	4.707318	2.745149
4.6143958	4.9390917	6.8071872	6.673340	7.437045	8.100076
7.2723793	11.6770026	5.5784896	6.486193	5.481868	4.233933
5.3633275	6.4700903	8.3033094	11.433882	6.280195	3.129687
3.4705215	3.5814568	3.3146672	5.207471	5.776867	4.708476
4.5116847	7.2553700	5.5919369	6.668579	4.524600	2.081274
8.9369003	13.6969377	14.0161107	22.249785	6.262545	3.145502
4.3014150	5.1222392	3.3207970	4.102780	5.712014	5.436159
3.6489420	5.7260787	9.2153734	11.857610	5.197504	2.688961
12.9441041	22.7468423	18.7047508	25.856129	7.486930	5.182779
10.1287395	17.1812813	11.5891982	17.694334	6.908434	4.488827
2.2165179	3.0078984	2.4480326	2.735625	4.247506	1.927951
5.0728226	5.6561268	2.4480520 10.4933760	14.483650	$\frac{4.247500}{5.740221}$	3.153559
5.0728220 10.2392206	13.2939250	9.6419553	9.759942	6.482222	5.820623
2.3585533	4.5468823	9.0419555 4.0716673			4.003149
2.5555555	4.5408825 18.4275998	$\frac{4.0710075}{10.3555382}$	$5.219196 \\ 14.805323$	5.990815 7.070451	5.024043
3.9859486	4.0495298	4.9606629	6.644344	4.130598	5.024043 2.681268
6.3831788	4.0495298 6.7754918	4.9606629 10.0993685	8.434479	4.130598 5.891848	4.613519
0.9091100	0.7794918	10.0999009	0.454419	0.091040	4.015519

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
2.2426006	2.5391512	3.9305810	6.719507	6.233369	5.732900
3.7601048	6.1786566	5.9327045	9.048060	6.231192	3.587778
7.8157633	14.6080978	13.7820920	26.704034	7.241399	6.798116
4.9988851	8.3564538	7.8713753	14.164920	6.655188	4.818312
10.1854540	19.6127495	11.4794097	17.685142	6.486349	3.806795
6.2166803	10.3267263	5.5054755	10.196827	4.163445	3.293599
1.4992391	1.9909284	2.0099604	4.227478	3.857160	2.707383
2.1368061	2.3663718	4.9217578	6.445081	4.880412	2.906034
2.6308601	3.4483568	3.3453858	5.373264	6.116541	3.765807
5.3035454	6.7783855	7.7218974	8.208286	6.927002	3.431670
2.3439929	2.2800198	1.8449987	1.746528	4.442973	3.105620
3.1812179	3.7665185	6.1035418	5.961810	7.296376	6.764808
1.8768709	1.9986418	3.2312361	3.530015	7.626815	4.720434
3.2398793	3.6712780	4.1659627	4.465023	3.946426	1.668061
5.7969065	6.9266972	8.8202144	12.367421	5.910341	3.649369
6.4284815	9.1430844	10.8608799	15.927413	4.655106	2.695317
4.5198484	6.3051657	3.0256558	3.231410	5.801077	4.812571
14.1419391	35.7415072	9.6892737	16.985125	8.125081	8.166451
1.2784332	1.8652387	3.0008343	4.887343	4.397283	2.134211
4.0746024	6.0977303	2.9700961	3.348704	7.269687	4.795160
7.9054730	9.3802187	10.4903873	11.203325	4.821123	3.261023
6.2420485	6.6453454	6.0056580	4.613144	6.056145	3.647289
4.6767952	7.2529609	5.7114262	10.386212	7.522057	3.897462
4.9657630	8.2541090	10.0212092	17.819889	4.051101	3.580149
6.5198436	13.0941871	10.0305239	22.990251	5.458295	3.994953
3.6195977	4.2557486	3.0447870	5.543204	5.732570	4.800892
5.3618955	8.1069155	5.2051855	7.417181	7.972651	4.902750
4.9316511	4.9021757	8.5554038	9.512617	4.812120	2.140775
2.2800927	2.0184161	5.3973869	9.156862	8.264981	3.482369
6.3448492	5.6549975	6.1956661	8.637564	5.147904	3.667019
3.8016060	7.2590579	4.6862980	7.071131	4.985548	2.666908
5.8799408	6.3408829	11.3946153	11.894963	5.586997	3.419234
5.0683235	6.8961897	12.3448095	15.869577	7.334600	5.455439
3.1929397	6.2638961	2.8456896	2.658433	5.357680	4.825599
12.3243640	16.4175774	11.1585427	12.605892	6.121046	3.755188
3.6306845	5.3169996	3.8710969	6.409679	4.840180	2.753979
2.8264789	3.0264586	4.7973532	7.714706	5.634506	4.407809
5.6591931	5.5218496	7.7883368	7.858788	6.153835	4.945397
5.0739742	6.1384597	6.1768831	7.255322	4.917378	2.869683
5.2828907	5.8183826	5.0609772	4.445884	6.531751	6.048373
3.4490738	7.9730218	6.4148103	10.990600	4.733455	2.941959
4.7164117	4.9124312	3.2173023	4.155180	6.109150	4.888011
3.5402768	4.7677541	2.3037291	3.256106	5.225520	2.983460
4.5235994	6.9604928	8.9201373	12.221848	6.416099	3.265595
6.3090386	10.9944307	5.8606338	7.938491	6.834509	5.425480
4.5584231	9.5387156	6.4617180	12.757496	7.314057	5.006549
3.5330943	7.9606997	5.4755794	10.356935	6.536639	3.409899
1.1947372	1.3652053	3.2222186	2.472084	7.380183	3.530344
3.6059774	4.7652044	9.5685805	13.720250	5.059959	3.981357
4.2302825	7.6412997	6.4162201	8.221516	6.087981	4.150690
$\frac{4.2302823}{2.2722872}$	4.6989581	2.1896553	2.662018	4.534910	2.504971
4.7566389	9.5189876	5.2674752	7.855509	7.204183	3.972260
4.1000009	9.9109010	5.2014152	7.000009	1.204103	3.914200

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
6.2816943	9.3999907	11.2481197	18.502690	5.780262	3.404563
1.8308760	1.9248608	6.4876597	6.145790	5.460935	2.511087
2.4948103	3.7057804	3.4265375	3.291723	8.025258	6.914853
5.7616089	10.8782999	10.8212557	16.001533	6.619219	5.060549
3.4840558	4.8486159	4.9266516	5.194316	5.526855	2.868109
2.1738013	2.4518486	2.9184328	3.418739	6.242620	4.856096
11.0603006	20.2442967	18.0985299	32.893669	5.653455	4.293307
3.1857089	4.0779517	5.3233119	7.246405	4.770749	2.897420
10.9235128	15.9543062	13.9486903	13.235782	6.924566	2.809824
1.2212464	1.3952807	3.7445371	5.897627	4.801119	4.135888
7.2734207	11.0698615	10.2815137	11.131480	6.804589	4.488116
6.1603850	9.2571364	7.5823706	9.133772	6.208676	3.164310
4.7528624	6.8385949	9.7708066	14.403712	5.940722	4.001606
1.0811410	1.1909309	2.6752735	3.268946	5.657095	4.240534
2.8638070	2.8072530	6.0172056	6.389967	4.742409	3.370508
9.1921785	12.1261562	11.7797179	15.177205	6.308583	4.780549
4.4405145	6.4258330	5.9514773	6.697906	4.777066	3.693473
15.3536955	37.9315550	18.3756197	38.100275	6.851314	4.371982
0.9303497	0.8072070	2.8808388	3.965815	4.357861	4.396032
8.9178935	13.6066671	7.7507322	9.556494	4.518662	2.824481
4.3979275	4.6439935	7.0930650	5.554531	5.294730	3.954131
4.5612146	6.4579736	3.6770082	4.890049	5.074474	2.853426
5.4398539	8.1419387	10.0938289	12.450615	5.071801	4.786500
3.2737280	4.2611997	5.5756494	11.287367	5.496464	5.426194
3.3560417	5.1527499	3.9720252	5.717917	4.082298	1.477634
6.3513498	7.7645818	10.1966903	14.227676	7.348092	4.416691
3.5019050	2.8119063	5.1525058	5.033819	7.044632	3.760799
5.0484018	5.9417796	5.1580577	3.814199	7.759588	3.770227
2.0077165	2.4896271	4.4011777	3.982336	6.898713	5.396136
2.9752153	3.4648927	3.5188644	5.398092	4.990943	3.645746
6.5781590	10.9984448	18.6351798	25.938475	8.780530	5.446066
3.5769878	3.9429575	5.9686978	7.818200	6.476507	3.247789
1.0118104	1.1081826	2.1839637	2.077538	4.414084	2.446052
3.3367513	5.8049973	10.4095719	14.241935	5.796415	4.442409
4.5397947	5.9775531	5.3557515	9.094563	6.964116	6.312764
5.1244864	7.8747875	8.0934835	10.411900	6.069578	3.161671
7.7328634	12.8175671	11.7859048	18.956762	7.913020	6.425381
5.7162129	7.3476389	5.8588486	6.773169	7.023789	6.895947
0.5865014	0.4750497	3.1871342	2.790784	3.383025	2.310278
1.3129142	1.0916770	3.6962515	5.085515	6.130051	2.934191
4.4095917	6.0067260	5.9809542	8.546723	5.553521	3.413305
9.5195357	10.9202851	13.2187418	19.656843	8.520432	6.854464
3.9202593	3.6689628	8.5132870	13.617061	6.269973	4.004633
3.8587534	8.1706657	5.7757930	5.029733	5.752626	3.284793
2.6637218	3.5455095	5.9312395	6.813886	4.099848	2.188486
3.0975964	6.5726223	4.1953411	7.407261	5.615853	5.278526
8.7681938	18.6137250	7.7063901	11.894364	5.041695	3.119468
5.8519591	10.4681732	10.4685344	24.469175	6.009540	3.760410
2.1989183	3.3745735	5.7459619	6.494307	5.952897	3.767780
9.1702341	19.6608239	8.0325879	10.755546	5.992067	4.459340
4.7033546	5.2462931	4.9238473	5.167111	6.878995	4.036413
2.4291677	2.6283395	5.4798798	5.831848	5.235578	$\frac{4.030413}{3.426382}$
4.4431011	2.0200030	0.4130130	0.001040	0.400010	J.42UJO2

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
4.6896611	5.0001791	7.2865687	9.024292	5.030217	3.260352
1.3019052	2.0235929	5.2689372	6.879275	4.457683	3.252892
2.5810205	3.4086723	4.5657366	3.800401	6.828683	6.666868
2.4975253	2.8854069	2.2826087	2.927583	3.267037	2.185892
4.3676359	4.4980024	4.5720843	3.888095	7.345622	5.226012
6.7957799	12.0509168	10.0753771	16.401610	7.853994	4.006712
5.0752677	9.7705794	8.8804964	19.440646	6.239742	3.740605
3.4142387	6.0813926	4.8800849	6.832467	4.959778	2.548941
4.3267040	6.5133330	3.4540572	6.056503	6.236755	4.813481
7.2195882	8.8035088	7.5130165	5.646209	7.218708	1.890005
4.2206771	9.3082612	4.7265419	7.627108	5.538201	6.103598
3.4936739	3.6364777	8.5497696	13.937233	5.988803	5.203724
5.6971704	8.9745800	10.0610570	10.502131	7.508378	5.848112
5.4390563	10.7131609	4.3867070	6.048846	6.498326	4.894266
3.2834348	4.4724003	10.1013986	11.499540	8.143147	5.686578
4.5305525	7.6087557	9.3996383	16.014436	8.182240	5.504967
2.9022284	4.3024394	2.9418940	2.574830	5.159948	1.942701
3.5854881	3.8091431	5.2120221	6.941174	6.309366	2.671335
8.9119071	11.3376194	16.7428031	34.201370	11.019252	16.630422
7.9890536	18.5226176	10.7428031	20.587424	5.817018	4.244187
3.0803076	4.4242582	5.4096304	7.818214	6.269773	5.198053
3.4354000	5.2489619	3.1121832	3.796889	4.989371	3.440273
6.3610174	8.6154821	10.0426432	12.480789	5.484204	4.044871
					7.790661
6.0179457	9.9950180 9.7053771	$11.3085253 \\ 4.4147841$	21.469815	8.913043	4.350935
5.0004965 3.5963206	5.3256471	6.3918355	5.464651	7.394766 5.183310	3.707243
3.4622136	5.3138488	5.8709810	8.477718 9.473518	4.325572	3.890839
6.5148182	6.2660535	12.8130598	11.256146	$\frac{4.325572}{7.011330}$	4.077386
0.5148182 2.7065605	5.9528818	4.7547661	6.235337	4.697468	2.654931
2.7883042	3.9746388	2.1914305	2.574898	5.423378	2.115699
	3.2173560	3.9862291	3.265972	5.265390	2.115099
$2.3749468 \\ 8.7346369$	14.4743254	8.4996721	12.338601	8.779818	5.930993
9.1650816	10.7337913	7.4133606	7.649716	5.444554	3.243170
4.0929255	3.4621107	5.7649841	10.279095		6.451225
5.3619923	7.6027394	9.6720909	17.008444	7.107695 5.394246	3.770416
9.4592662	15.0260762	16.0026083	22.825485	5.660920	3.068296
		15.2153408			
10.1227047	9.7796548		$15.378295 \\ 25.615942$	7.422682	4.177093
6.1994760	$8.4177820 \\ 11.4417073$	17.3804365		$6.803322 \\ 6.671114$	6.607990
9.3646551		$12.8233574 \\ 6.2713883$	17.680987	4.964793	$\begin{array}{c} 2.176161 \\ 3.066270 \end{array}$
$4.4000858 \\ 4.0243738$	7.3886717		8.724364		
	4.0351812	7.5399443	7.158935	7.829961 4.358079	5.998113
6.1395309	9.3181254	9.2704484	8.419234		2.824234
6.8224216	10.1552367	5.8575370	10.644680	5.407305	4.394624
2.9705856	4.3557506	7.5030124	9.257069	5.699143	3.632932
3.1439825	4.0034945	3.2469792	4.733561	6.025100	2.566544
3.0930689	7.7195505	8.7829245	17.397758	5.735783	4.359515
3.5811946	6.7352528	3.8512910	6.373816	4.377802	2.513671
4.7466410	7.4950896	7.2237452	9.050037	4.871719	3.124136
0.9260632	1.7574428	3.4550340	3.513552	7.104067	4.490874
5.1747867	6.2571298	7.8398969	11.395964	6.531592	4.311452
7.6666369	8.6904161	7.7432976	10.568300	5.704943	3.712299
4.6935490	4.7425401	6.7573097	9.399568	6.753662	3.694096

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
1.5205397	1.8921820	3.7533003	6.212107	3.400342	2.533583
2.4103716	3.0049037	2.5016415	3.197196	4.194305	2.024996
5.4660072	5.5525188	9.6502662	10.537398	9.314931	5.720624
2.8515941	2.7856368	5.9451605	5.539422	6.756757	4.212591
4.2333275	5.6367267	6.9650877	9.536826	5.125796	5.139070
3.1989018	5.4756868	9.4308911	15.464690	5.142912	3.413202
4.0212379	4.6520589	6.7032996	7.628429	6.078874	5.010926
8.5660708	11.4199390	12.4721376	13.622110	6.713512	3.621083
3.0724377	5.0219492	3.7010900	5.081648	5.628703	4.610077
2.7012261	3.7281631	4.6302219	7.312295	6.037782	4.984351
3.4763114	4.0292933	4.0302219 4.1853513	4.880644	3.842047	1.743106
5.7640889	10.7124573	7.8155892	12.422238	6.421472	3.690066
9.9957269	19.5513742	18.0349784	31.019033	8.625282	4.615074
3.7411423	3.5100439	6.4776147	6.260124	7.522435	3.745308
1.8529006	2.4527189	4.6154793	4.594670	6.406549	5.279140
6.2103888	9.5722699	9.6605909	12.655556	5.003171	3.743680
2.1797203	3.1299786	3.8461392	5.412325	5.603364	3.745235
2.7918938	1.9359153	1.8891391	2.073064	7.319786	7.245977
3.5920511	3.6204241	6.7571204	6.283092	5.947325	4.428002
5.1610929	9.9103147	4.1160178	6.370223	6.503857	3.632518
7.1921226	10.4712973	21.7558926	32.926896	8.030282	7.061328
4.7991865	8.9415525	3.1963489	5.849188	5.555412	4.938196
2.8093810	3.7520550	7.7889959	10.661214	8.364163	3.921959
6.2067719	7.4135382	7.3502224	8.956241	4.050564	3.126610
7.0517480	9.9924436	9.9122749	16.424357	5.996707	3.798141
2.7999077	3.2623808	7.3558102	13.207447	7.483400	4.466960
8.0704554	14.2027345	9.1922367	10.908411	7.172094	3.763208
3.5431571	4.0841986	5.1490529	5.902312	6.014485	3.445860
3.1826729	6.2985300	2.7771294	5.292497	4.419938	3.294868
3.9224754	4.8040961	3.5756913	4.295967	5.784905	2.967866
6.8828313	8.4540555	7.0767318	9.348311	5.469781	2.549924
2.9609935	4.7619574	5.4468545	7.902599	6.227172	3.360681
4.9863412	5.4586596	6.6852231	10.189593	7.516145	6.003432
2.3596707	2.5120023	6.5220776	8.817111	4.704979	3.273802
4.6577480	7.2653792	5.2601484	5.748680	5.550326	2.298917
3.9897208	4.8623774	7.9674766	8.979354	6.150971	2.990309
5.1611742	8.1846147	10.4193929	12.572890	6.448008	2.400356
5.5809207	4.6444017	9.0044795	13.016678	7.283603	6.255314
5.2262231	6.4204415	8.3841085	10.782047	5.775509	3.795620
5.0264444	5.6147364	8.2332273	11.734621	6.179868	4.900739
1.5438056	2.0427922	5.9121594	6.229114	5.064136	2.827291
4.7773025	7.4481111	9.1919413	15.116002	7.528403	4.760022
3.1958501	5.0327470	6.0060563	8.039607	7.427031	5.631121
1.6337567	2.1952187	3.2668964	4.881010	4.461887	1.953279
0.7929679	0.8984992	2.4898966	2.635400	3.394774	1.679827
5.1823149	6.9713650	8.0236883	7.016642	9.387920	4.214536
5.6792888	6.9313411	5.5592547	4.912180	7.062301	6.210910
3.3230317	5.3798396	3.8361986	6.936711	4.930194	3.285608
0.9105261	1.4375222	2.9083835	4.679667	6.683243	4.692310
7.7361626	15.8779909	8.8356052	17.005595	5.758002	4.073279
6.0084752	4.3796765	5.3316259	8.426073	8.332945	5.236530
5.9198015	10.2665190	8.0482701	12.543324	5.077767	3.745538

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
4.6889501	6.3503929	5.7587633	7.003797	6.075784	3.448594
0.7636023	0.9082506	3.3385034	3.405151	4.604075	2.423916
1.3345590	2.4531461	4.0594846	6.326923	6.610947	4.071909
2.7091860	3.7154694	5.5275243	12.031975	4.790388	1.729616
5.0424681	4.4098759	9.6428949	10.115803	7.266369	6.521496
0.7821901	1.0533865	3.6577998	4.677451	4.603408	2.149972
2.4088233	4.5455640	3.1639380	5.139393	4.958717	2.564634
3.0834994	4.1776712	3.9092366	4.847212	6.371153	3.446727
3.2773853	8.7512447	3.3334634	3.460586	5.233495	2.721334
3.9235535	4.5098211	10.1231717	11.594460	4.932727	3.008695
4.6089832	10.9158880	7.7745931	13.515284	5.727798	3.977914
5.0160085	6.0876341	5.6563374	7.868631	5.334131	2.529026
5.3083985	7.9226141	5.1401851	6.715922	7.478837	4.044963
4.7188758	7.0738430	8.8341277	15.129656	3.829787	2.620140
7.9552175	16.1274376	13.7490031	16.821567	6.240709	5.293272
			14.867433		
4.4675410	4.6719304	8.8159552		6.755354	7.884117
5.3414578	12.3010280	5.5140084	10.124986	6.052411	4.158307
9.8254289	27.7453957	11.4373725	32.164553	5.685014	4.363636
7.4030879	9.6371912	5.4456180	7.189873	6.965672	5.194766
3.9923173	6.6366701	5.1622957	5.684561	4.057809	2.225534
1.2248589	1.3132936	2.1545810	2.903462	3.778478	1.481872
3.1829852	2.9577158	9.3831541	18.962745	8.981707	8.015791
10.8457343	23.0783471	11.6774682	29.089537	5.162596	3.293123
1.4782605	2.7002449	2.2909376	3.520165	2.951676	2.195719
7.6828294	15.0622842	9.0098119	17.068217	5.269123	2.981552
8.5718767	16.6875092	8.6895197	15.183931	4.640910	3.715257
7.0429707	11.4777699	10.1644638	18.830681	9.125434	6.710657
5.6819000	6.4929780	4.8865750	7.490579	5.875253	2.901625
1.7845426	1.5002551	3.5651275	4.727201	4.199400	1.867919
6.4818390	10.4135986	3.8051584	5.021626	4.875861	2.878426
3.6311813	5.2627410	4.8316015	8.008065	6.787072	3.889251
11.9690452	26.4033337	13.5027829	21.535948	7.211434	5.205450
7.5593952	17.6275188	6.1675164	8.980153	6.817759	4.162482
4.2899632	8.4159898	7.4102892	11.265151	6.224468	2.763743
6.4419822	12.6598460	8.4518374	10.612155	6.631227	3.242673
4.4658293	7.4547014	5.3513828	6.178653	4.474926	3.857352
4.0267943	4.0016726	9.5634520	8.271649	6.117352	2.945014
2.5359157	6.8799086	5.2533511	13.032723	4.229428	3.071288
15.6418206	45.6529022	15.4380871	34.464652	8.986232	4.875710
16.5590464	49.1824516	21.7870775	60.580746	7.536068	6.009213
0.4913014	0.6254628	2.6888940	3.831546	4.696340	3.019720
3.4875420	5.5132902	5.4312826	7.988431	6.761611	5.341466
6.2029307	5.9050980	9.5246395	14.513773	6.317926	5.214848
3.9710553	5.3876930	7.8346659	11.779454	6.402461	3.660551
6.3835691	8.0049614	9.4518600	13.124316	5.756123	3.456767
3.8762614	6.9250361	4.6518841	5.125658	5.310606	3.057200
5.6920219	11.1028138	7.5315504	10.509048	4.987362	3.934739
2.2926614	3.6457837	2.8232047	4.911480	4.919349	2.268917
11.4773183	22.4994423	16.3194413	30.574402	6.240697	5.338650
5.1718052	7.0107572	7.5274099	9.378177	4.020627	2.135290
3.9422851	4.5978565	6.5905884	7.828792	6.861409	4.768414
4.1961547	4.5843009	6.3441901	6.965446	5.432370	2.980314
1.1001011	1.001000	0.0111001	0.000110	3.132310	2.000011

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
1.6252884	2.4368037	4.5790171	4.933996	4.866985	2.959164
4.2509185	5.5652830	9.2846778	9.299186	9.240340	6.111137
3.5677511	5.5776641	9.5067938	9.999915	5.944322	5.500358
2.5175565	3.3000948	3.8512081	4.340494	4.611854	2.987770
4.8477414	4.9094128	7.2541466	8.852952	4.471775	2.081476
4.3891855	9.4647388	6.4412513	7.989062	6.642552	3.194307
2.0308956	1.4859760	7.0208307	7.258296	5.434691	3.438816
2.2615173	5.0976832	5.8990016	9.038030	5.936200	5.134177
2.6486036	4.0886683	2.5528380	2.732895	5.408246	3.423860
4.2672988	5.3295430	5.3352123	5.974283	4.664373	3.381246
2.1101915	1.8948052	3.8760719	3.955762	5.033227	2.756654
2.7579866	5.8700966	2.5055373	4.011126	4.214365	2.591040
3.6150546	5.0987451	8.8137163	13.349486	6.493688	4.051634
6.3814076	6.5250417	14.1596458	17.479675	6.165345	5.406738
0.9407755	1.2424282	3.0378400	2.892111	4.845157	3.351120
5.3346955	5.3426438	12.1597049	15.438066	7.301012	3.970700
2.7347684	3.8518802	4.7940741	5.492877	4.794559	2.895910
1.2102469	1.4530645	2.0850565	3.446974	4.041856	2.372173
7.7873165	17.2809135	7.8242062	13.923550	6.421581	6.886651
3.0959258	3.5678060	7.1947017	10.149782	4.837407	2.842786
6.5037642	7.6595397	8.9132341	10.143782	7.651589	6.237418
2.3459852	2.1323086	2.8170516	3.462799	4.837252	2.470165
1.6538628	2.4698185	3.9959762	6.703166	6.275302	2.969576
2.5343418	5.3240291	1.9582116	3.169386	4.225674	2.852251
7.7385506	12.4154934	11.5454102	21.409096	5.473789	3.669438
4.1275785	5.0884930	5.7099437	5.892048	4.894005	2.932313
4.8192128	10.1892394	6.2032094	9.771906	6.049807	3.627785
2.7083791	4.4499369	6.6789079	9.884954	4.806389	3.574621
4.6727353	7.6231790	8.0591501	9.991258	4.135111	2.940262
2.8739336	3.0578913	5.8592660	5.762519	6.198280	4.143942
3.4116595	5.3060258	8.1010250	8.654469	7.138793	6.347601
4.3286388	5.8548878	8.6454569	10.318068	6.065850	4.050184
2.9082457	5.9845779	4.9822423	6.083940	5.619102	3.458373
4.9508418	7.7220514	6.1838258	10.175420	4.855208	4.076539
10.4839162	25.4378388	13.1677790	27.822120	6.292768	5.590185
4.5744687	6.7417785	12.8790586	12.609341	6.556371	3.485714
3.2409435	4.6044198	3.1793387	3.698313	4.940210	3.103109
3.3865662	2.9495428	3.9486957	3.228035	4.540210 4.559774	2.107377
8.8668175	11.1437787	8.7694744	10.093011	4.026330	2.047226
6.1228626	7.8115501	7.8456978	8.826263	7.443094	3.768587
8.0907628	12.3897997	13.5497485	17.335362	6.295596	5.112621
2.9147875	6.3633367	5.4221431	15.290323	4.458212	3.370080
6.5759820	9.0073026	4.5102884	3.543464	4.993125	3.209084
2.7582499	2.3100981	3.5687617	6.843268	4.963766	4.005408
4.4308911	5.0049104	5.5748886	3.940425	5.095955	3.252408
3.4004110	5.3555530	4.4869258	6.489219	4.084585	2.547567
4.2177818	6.8761742	6.2877610	7.557772	6.360282	3.708173
4.2177616	5.1673182	4.3182227	6.382595	7.667467	8.772686
2.4317066	3.4701663	$\frac{4.5162227}{3.5596315}$	5.754245	4.491961	2.933889
2.4317000	4.1273388	4.0425752	5.754245 5.255267	5.769332	4.052726
4.6102170	9.6172907	9.6802226	14.463701	6.191655	4.032720 4.149927
2.9571615	3.1994320	6.0449844	5.843754	5.483087	2.973727
4.5011010	J.1334J2U	0.0443044	0.040104	0.400001	2.313121

Media e1	Desviación e1	Media e2	Desviación e2	Media Ecv	Desviación Ecv
5.4350173	5.5927093	3.9263369	3.571811	5.259484	3.710476
3.4514689	4.4333540	5.2032297	8.211947	7.392938	5.686289
3.4649272	4.4561241	6.0639403	6.612675	5.601144	3.641218
2.7933793	4.0246541	4.2673006	6.688353	7.040192	5.979037
3.8247640	5.4290750	4.6426309	7.150016	4.335653	3.855524
2.6241217	4.9969820	1.3690957	2.225144	5.324892	4.120367

b) ¿Cuál debería de ser la relación entre el valor promedio de e_1 y el de E_{cv} ? ¿y entre el valor promedio de e_1 y el de e_2 ? Argumentar la respuesta en base a los experimentos.

El promedio de E_{cv} depende del resto de promedios, por tanto, cabe esperar que sean valores no muy lejanos excepto en casos excepcionales que pueden ocurrir. El valor de los promedios de e_1 y e_2 serán probablemente todavía más parecidos ya que entre ellos sólo cambia un único valor que afecta al ajuste realizado con weight decay es el del subíndice concreto.

c) ¿Qué es lo que más contribuye a la varianza de los valores de e_1 ?

El hecho de que para cada experimento sacamos valores aleatorios nuevos que están limitados principalmento por la media y desviaciones propuestas para las distribuciones gaussianas de los puntos, del vector de pesos de w_f y el ruido.

d) Diga qué conclusiones sobre regularización y selección de modelos ha sido capaz de extraer de esta experimentación.

Como podemos observar