Tutorial for 10-27 and 10-30.

1. C-R inequality. $\begin{cases} \theta \\ 918 \end{cases}$

Under the regularity conditions, the variance of an UNBIASED estimator $T(\boldsymbol{X}) = T(X_1, ..., X_n)$ for θ , based on a set of random variables $\boldsymbol{X} = \{X_1, ..., X_n\}$ from their joint pdf $f_{X_1, ..., X_n}(\cdot \mid \theta)$ satisfies the following inequality:

$$Var(T(\boldsymbol{X})) \ge \frac{1}{I_{X_1,\dots,X_n}(\theta)} = \frac{1}{E\left[\frac{\partial}{\partial \theta} \ln f_{X_1,\dots,X_n}(X_1,\dots,X_n|\theta)\right]^2}.$$

This inequality is well-known as **the C-R inequality** for θ , and its lower bound is often called **the CR lower bound** (or CRLB) for θ . It means that no any unbiased estimator for θ based on a set of random variables $X = \{X_1, ..., X_n\}$ can have a variance smaller than CRLB for θ .

by Lomma 3

$$Var(T(X)) \ge \frac{1}{-E\left[\frac{\partial^2}{\partial \theta^2} \ln f_{X_1,...,X_n}(X_1,...,X_n|\theta)\right]}.$$

If a rs $\{X_1, ..., X_n\}$ of size n is considered, then we would have

$$Var(T(X)) \ge \frac{1}{nI_{X_1}(\theta)} = \frac{1}{nE\left[\frac{\partial}{\partial \theta}\ln f_{X_1}(X_1|\theta)\right]^2}.$$

or

$$Var(T(X)) \ge \frac{1}{-nE\left[\frac{\partial^2}{\partial \theta^2}\ln f_{X_1}(X_1|\theta)\right]}.$$

gib)

1 Moro general

rid

Often we want to estimate a function of θ , $g(\theta)$, instead of θ . If $T(X) = T(X_1, ..., X_n)$ is an UNBIASED estimator for $g(\theta)$, then the CR inequality for $g(\theta)$ is, if the regularity conditions hold,

$$Var(T(X)) \ge \frac{\left[\frac{d}{d\theta}g(\theta)\right]^{2}}{I_{X_{1},\dots,X_{n}}(\theta)} = \frac{\left[\frac{d}{d\theta}g(\theta)\right]^{2}}{E\left[\frac{\partial}{\partial\theta}\ln f_{X_{1},\dots,X_{n}}(X_{1},\dots,X_{n}|\theta)\right]^{2}}.$$

An unbiased estimator whose variance can achieve the CRLB for $g(\theta)$ is the UMVUE for $g(\theta)$. Indeed, the result in Section 2.5 is a special case of this section with $g(\theta) = \theta$.

Theorem 1: Under the regularity conditions, the CR equality holds if and only if

$$\frac{\partial}{\partial \theta} \ln f_{X_1,\dots,X_n}(X_1,\dots,X_n|\theta) = \underbrace{\frac{\partial}{\partial \theta}}_{R_1,\dots,R_n} [T'(X_1,\dots,X_n) - h(\theta)],$$

where $A(\theta, n) \neq 0$. Then, $T'(X_1, ..., X_n)$ is an UMVUE for $h(\theta)$.

Note that the above condition is **unique up to an Euclidean transformation** of T' and $h(\theta)$. In other words, if $T'(X_1, ..., X_n)$ is an UMVUE for $h(\theta)$ because they satisfies the above condition, then $aT'(X_1,...,X_n) + b$ is an UMVUE for $ah(\theta) + b$, where $a \neq 0$.

Sub efficient
super- efficient
efficient

An example of Super-efficiency:

Let X1, X2, ..., X ~ U(0,0). Show that regulateries

1. assumption in CR theorem doesn't hold

7. (

2. Information inequality doesn't apply to UM UVE of o

Varitory vis CRLB

Theorem 2: Consider a random sample $\{X_1, ..., X_n\}$ of size n from a parametric distribution with a pdf $f_X(\cdot \mid \theta)$ or a pmf $p_X(\cdot \mid \theta)$. Then, under the regularity and other conditions,

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} N\left(0, \frac{1}{I_X(\theta)}\right).$$

In other words, the asymptotic variance of $\hat{\theta}_n$ is $\frac{1}{nI_X(\theta)}$, the CRLB for θ .

Vari
$$\hat{\theta}_{n}$$
) $\Rightarrow \frac{1}{\ln(\theta)}$ $u=\theta$, $\theta=0.2$
 $\theta=0.2$