forecasting ED

Janice Hsu

2023-08-28

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.2 v readr 2.1.4
## v forcats 1.0.0 v stringr 1.5.0
## v ggplot2 3.4.2 v tibble 3.2.1
## v lubridate 1.9.2 v tidyr
                                  1.3.0
## v purrr 1.0.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(fpp3)
## -- Attaching packages ------ fpp3 0.5 --
## v tsibble 1.1.3 v fable 0.3.3
## v tsibbledata 0.4.1 v fabletools 0.3.3
## v feasts 0.3.1
## -- Conflicts ------ fpp3_conflicts --
## x lubridate::date() masks base::date()
## x dplyr::filter() masks stats::filter()
## x tsibble::intersect() masks base::intersect()
## x tsibble::interval() masks lubridate::interval()
## x dplyr::lag() masks stats::lag()
## x tsibble::setdiff() masks base::setdiff()
## x tsibble::union() masks base::union()
library(hts)
## Loading required package: forecast
## Registered S3 method overwritten by 'quantmod':
    method
##
    as.zoo.data.frame zoo
## Attaching package: 'forecast'
## The following object is masked from 'package:fabletools':
##
      accuracy
```

```
data <- read.csv("HLTH0037_ts_cleaned.csv")</pre>
data %>%
  select(Hospital_Hierarchy, Organisation) %>%
unique()
##
        Hospital_Hierarchy
                                      Organisation
## 1
                 W11000023
                                  Betsi Cadwaladr
## 1171
                 W11000025
                                         Hywel Dda
## 1931
                 W11000031
                                       Swansea Bay
## 2033
                 W11000026 Abertawe Bro Morgannwg
## 2364
                 W11000029
                                   Cardiff & Vale
                 W11000030
## 2628
                                Cwm Taf Morgannwg
## 2868
                 W11000027
                                           Cwm Taf
## 3203
                 W11000028
                                     Aneurin Bevan
## 3775
                 W11000024
                                    Powys Teaching
data1 <- data %>%
  mutate(YearMonth = yearmonth(YearMonth)) %>%
  as_tsibble(index = YearMonth, key = c(Age_Code, Sex_ItemName_ENG, Hospital_Code, Hospital_ItemName_EN
data1 <- data1 %>%
 mutate(Number = 1)
#Produce a table or plot to show the hierarchy between the organisation and hospital hierarchy
data2 <- data1 %>%
  select(YearMonth, Hospital_ItemName_ENG, Hospital_Hierarchy, Organisation, Number)
# Convert to data.table
library(data.table)
## Attaching package: 'data.table'
## The following object is masked from 'package:tsibble':
##
##
       key
## The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
## The following object is masked from 'package:purrr':
##
##
       transpose
```

setDT(data2)

Create a hierarchical table using data.table operations

hierarchical_table <- data2[, .(Total = sum(Number)), by = .(Organisation, Hospital_ItemName_ENG)]

knitr::kable(hierarchical_table)

Organisation	Hospital_ItemName_ENG	Total
Betsi Cadwaladr	Ysbyty Glan Clwyd	4437
Betsi Cadwaladr	Wrexham Maelor Hospital	4478
Betsi Cadwaladr	Colwyn Bay Community Hospital	340
Betsi Cadwaladr	Holywell Community Hospital	394
Betsi Cadwaladr	Mold Community Hospital	682
Betsi Cadwaladr	Ysbyty Gwynedd	4381
Betsi Cadwaladr	Llandudno General Hospital	4342
Betsi Cadwaladr	Bryn Beryl Hospital	4058
Betsi Cadwaladr	Dolgellau And Barmouth District Hospital	3066
Betsi Cadwaladr	Ffestiniog Memorial Hospital	65
Betsi Cadwaladr	Tywyn & District War Memorial Hospital	2897
Betsi Cadwaladr	Ysbyty Alltwen	4315
Betsi Cadwaladr	Ysbyty Penrhos Stanley	4320
Hywel Dda	Glangwili General Hospital	4353
Hywel Dda	Llandovery Hospital	1320
Hywel Dda	Bronglais General Hospital	4339
Hywel Dda	Cardigan And District Memorial Hospital	921
Hywel Dda	Prince Philip Hospital	4339
Hywel Dda	Withybush General Hospital	4349
Hywel Dda	S. Pembs Hosp. Health & Social Care Res Centre	607
Hywel Dda	New Tenby Cottage Hospital Outpatients	2977
Hywel Dda	Cardigan Integrated Care Centre	1368
Swansea Bay	Morriston Hospital	1653
Swansea Bay	Neath Port Talbot Hospital	1646
Abertawe Bro Morgannwg	Princess Of Wales Hospital	2764
Abertawe Bro Morgannwg	Singleton Hospital	2558
Abertawe Bro Morgannwg	Morriston Hospital	2716
Abertawe Bro Morgannwg	Neath Port Talbot Hospital	2706
Cardiff & Vale	University Hospital Of Wales	4633
Cardiff & Vale	The Barry Hospital	4158
Cwm Taf Morgannwg	Princess Of Wales Hospital	1686
Cwm Taf Morgannwg	The Royal Glamorgan Hospital	1717
Cwm Taf Morgannwg	Prince Charles Hospital	1680
Cwm Taf Morgannwg	Ysbyty Cwm Rhondda	1602
Cwm Taf Morgannwg	Ysbyty Cwm Cynon	1250
Cwm Taf	The Royal Glamorgan Hospital	2712
Cwm Taf	Prince Charles Hospital	2718
Cwm Taf	Aberdare General Hospital	32
Cwm Taf	Ysbyty Cwm Rhondda	2610
Cwm Taf	Ysbyty Cwm Cynon	2652
Aneurin Bevan	Nevill Hall Hospital	4402
Aneurin Bevan Aneurin Bevan	Royal Gwent Hospital	4465
Aneurin Bevan	Ysbyty Aneurin Bevan	4328
Aneurin Bevan Aneurin Bevan	Ysbyty Ystrad Fawr	
Aneurin bevan	isbyty istrac rawr	4387

Organisation	Hospital_ItemName_ENG	Total
Aneurin Bevan	The Grange Hospital	1055
Powys Teaching	Llandrindod Wells Hospital	4319
Powys Teaching	Victoria Memorial Hospital	4294
Powys Teaching	Breconshire War Memorial Hospital	4323
Powys Teaching	Ystradgynlais Community Hospital	3951

```
#Number of patients entering ED under different hospital hierarchy

data1_hts <- data1 %>%
   aggregate_key(Organisation/Hospital_ItemName_ENG, Number = sum(Number))

data1_hts |>
   filter(is_aggregated(Hospital_ItemName_ENG)) |>
   autoplot(Number) +
   labs(y = "Number of patients",
        title = "Number of patients who enter ED") +
   facet_wrap(vars(Organisation), scales = "free_y", ncol = 3) +
   theme(legend.position = "none")+
   theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Number of patients who enter ED

• A couple of Local Health Boards (LHBs) were redefined from the 1st of April 2019 onwards: Cwm Taf (27)—> Cwm Taf Morgannwg (30)// Abertawe Bro Morgannwg (26)—> Swansea Bay (31). Therefore, if you decide to forecast at LHB resolution, you might want to consider these 4 as a unique one. • A the Princess of Wales Hospital changed its Local Health Boards • So we analyse these 4 as one organisation

```
data1_grouped <- data1 %>%
  mutate(Grouped_Organisation = case_when(
    Organisation %in% c("Cwm Taf", "Cwm Taf Morgannwg", "Abertawe Bro Morgannwg", "Swansea Bay") ~ "Gro
    TRUE ~ Organisation
 ))
unique(data1_grouped$Grouped_Organisation)
## [1] "Betsi Cadwaladr"
                              "Hywel Dda"
                                                      "Grouped_organisation"
## [4] "Cardiff & Vale"
                              "Aneurin Bevan"
                                                      "Powys Teaching"
data2_hts <- data1_grouped %>%
  group_by(Grouped_Organisation) %>%
  summarise(Number = sum(Number))
data2_hts |>
  ggplot(aes(x = YearMonth, y = Number)) +
  geom_line(stat = "identity") +
  labs(y = "Number of patients",
       title = "Number of patients who enter ED") +
  facet_wrap(vars(Grouped_Organisation), scales = "free_y", ncol = 3) +
  theme(legend.position = "none") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Number of patients who enter ED


```
#library(gt)
#data2_hts %>%
  #qt() %>%
  #tab_header(title = "Number of patients who enter ED") %>%
  #cols_label(
   #YearMonth = "Year/Month",
   #Number = "Number of Patients",
   #Grouped_Organisation = "Organisation Group"
unique(data1_grouped$Age_Code)
                   "18 to 24" "25 to 29" "30 to 34" "35 to 39" "40 to 44"
## [1] "0 to 4"
## [7] "45 to 49" "5 to 17" "50 to 54" "55 to 59" "60 to 64" "65 to 69"
## [13] "70 to 74" "75 to 79" "80 to 84" "85"
                                                    "Unknown"
Age group: "0-4", "5-17", "18-69", "70^"
data1_grouped_age <- data1_grouped %>%
  filter(Age_Code != "Unknown") %>%
  mutate(Grouped_Age = case_when(
   Age_Code == "0 to 4" ~ "0-4",
   Age_Code == "5 to 17" ~ "5-17",
   Age_Code %in% c("18 to 24", "25 to 29", "30 to 34", "35 to 39",
                    "40 to 44", "45 to 49", "50 to 54", "55 to 59",
                    "60 to 64", "65 to 69") \sim "18-69",
   Age_Code \%in% c("70 to 74", "75 to 79", "80 to 84", "85") ~ "70 and over",
   TRUE ~ "Other"
 ))
data1_gts <- data1_grouped_age %>%
 filter(!Sex_ItemName_ENG == "Not Specified or invalid") %>%
  aggregate_key(Grouped_Age* Sex_ItemName_ENG , Number = sum(Number))
data1_gts |>
 filter(!is_aggregated(Sex_ItemName_ENG), !is_aggregated(Grouped_Age)) |>
  autoplot(Number) +
```

labs(y = "Number of patients")+

theme(axis.text.x = element_text(angle = 45, hjust = 1))


```
# Number of patients entering ED, facet by sex

data3_ghts <- data1_grouped_age %>%
    aggregate_key((Grouped_Organisation/Hospital_Hierarchy)* Sex_ItemName_ENG , Number = sum(Number))

data3_ghts |>
    filter(!is_aggregated(Hospital_Hierarchy)) |>
    autoplot(Number) +
    labs(y = "Number of patients",
        title = "Number of patients who enter ED") +
    facet_wrap(vars(Sex_ItemName_ENG), scales = "free_y", ncol = 3) +
    theme(legend.position = "none")+
    theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Number of patients who enter ED


```
data1_full <- data1_grouped_age |>
    aggregate_key(Grouped_Organisation/Hospital_ItemName_ENG, Number = sum(Number))

data1_full$key_combined <- paste(data1_full$Grouped_Organisation, data1_full$Hospital_ItemName_ENG, sep

library(lubridate)

data1_wide <- data1_full %>%
    pivot_wider(names_from = key_combined, values_from = Number)

library(hts)

reconcile_data1_wide_paths <- function(data1_full) {

# Convert to regular data frame to bypass tsibble constraints
    data1_full <- as.data.frame(data1_full)

# Convert YearMonth to date
    data1_wide <- data1_full %>%
        unite("key_column", Grouped_Organisation, Hospital_ItemName_ENG, sep = "_") %>%
        pivot_wider(names_from = key_column, values_from = Number, values_fill = list(Number = 0))
```

```
# Convert the data to a gts object
  ts_data <- ts(data1_wide[,-1], frequency = 12, start = c(year(min(ymd(paste0(data1_wide$YearMonth, "-
  gts_obj <- hts(ts_data)</pre>
  return(gts_obj)
# Calling the function
gts_obj = reconcile_data1_wide_paths(data1_full)
## Since argument characters are not specified, the default labelling system is used.
# First, forecast each individual series with ets
individual_forecasts <- lapply(1:ncol(gts_obj[[1]]), function(i) {</pre>
  ets_forecast <- forecast(ets(gts_obj[[1]][,i]), h = 6)</pre>
  return(ets forecast$mean)
})
# Combine the forecasts into a matrix
forecast_matrix <- do.call(cbind, individual_forecasts)</pre>
# Now, reconcile the forecasts using hts
gts_forecast_matrix <- ts(forecast_matrix, frequency = 12)</pre>
gts_forecasts <- hts(gts_forecast_matrix)</pre>
## Since argument characters are not specified, the default labelling system is used.
reconciled_forecasts <- forecast(gts_forecasts, method = "bu")</pre>
# Print the reconciled forecasts
print(reconciled_forecasts)
## Hierarchical Time Series
## 2 Levels
## Number of nodes at each level: 1 50
## Total number of series: 51
## Number of observations in each historical series: 6
## Number of forecasts per series: 24
## Top level series of forecasts:
##
          Jan
                   Feb
                             Mar
                                                May
                                                         Jun
                                      Apr
                                                                  Jul
                                                             81.52277 81.59813
## 2 81.97494 82.05030 82.12566 82.20102 82.27639 82.35175 82.42711 82.50247
## 3 82.87928 82.95464 83.03000 83.10536 83.18072 83.25609
                   Oct
                             Nov
          Sep
## 1 81.67349 81.74885 81.82422 81.89958
## 2 82.57783 82.65319 82.72856 82.80392
## 3
```

Forecasting Each Series with ets:

```
individual_forecasts <- lapply(1:ncol(gts_obj[[1]]), function(i) {</pre>
  ets_forecast <- forecast(ets(gts_obj[[1]][,i]), h = 6)</pre>
  return(ets_forecast$mean)
})
Combine the Forecasts into a Matrix
forecast_matrix <- do.call(cbind, individual_forecasts)</pre>
Convert to HTS Structure:
gts_forecast_matrix <- ts(forecast_matrix, frequency = 12)</pre>
gts_forecasts <- hts(gts_forecast_matrix)</pre>
## Since argument characters are not specified, the default labelling system is used.
Reconcile the Forecasts:
reconciled_forecasts <- forecast(gts_forecasts, method = "bu", h = 6)
print(reconciled_forecasts)
## Hierarchical Time Series
## 2 Levels
## Number of nodes at each level: 1 50
## Total number of series: 51
## Number of observations in each historical series: 6
## Number of forecasts per series: 6
## Top level series of forecasts:
          Jul
                   Aug
                             Sep
                                      Oct
                                                Nov
## 1 81.52277 81.59813 81.67349 81.74885 81.82422 81.89958
library(dplyr)
library(lubridate)
# Decide how many months you want to hold out for testing
h <- 6
# Split the data into training and test set
data1_train <- data1_full %>%
 filter(as.Date(YearMonth) < max(as.Date(YearMonth)) - months(h))</pre>
data1_test <- data1_full %>%
 filter(as.Date(YearMonth) >= max(as.Date(YearMonth)) - months(h))
str(reconciled_forecasts)
## List of 6
            : Time-Series [1:6, 1:50] from 1.5 to 1.92: 49.1 49.1 49.2 49.3 49.4 ...
   ..- attr(*, "dimnames")=List of 2
```

```
##
     ....$ : NULL
    ....$ : chr [1:50] "structure(c(48.5891258616791, 48.6690226982572, 48.7489195348354, " "structur
##
## $ histy : Time-Series [1:6, 1:50] from 1 to 1.42: 48.6 48.7 48.7 48.8 48.9 ...
     ..- attr(*, "dimnames")=List of 2
##
##
     .. ..$ : NULL
     ....$ : chr [1:50] "structure(c(48.5891258616791, 48.6690226982572, 48.7489195348354, " "structur
##
## $ labels :List of 2
     ..$ Level 0: chr "Total"
##
    ..$ Level 1: chr [1:50] "structure(c(48.5891258616791, 48.6690226982572, 48.7489195348354, " "stru
##
## $ method : chr "bu"
## $ fmethod: chr "ets"
## $ nodes :List of 1
   ..$ Level 1: int 50
## - attr(*, "class")= chr [1:2] "hts" "gts"
Accessing the base forecasts:
base_forecasts <- reconciled_forecasts$bts</pre>
Accessing historical data:
historical_data <- reconciled_forecasts$histy
subset_data <- data1_test[, -c(1, which(names(data1_test) == "Grouped_Organisation"))]</pre>
sapply(subset_data, class)
## $Hospital_ItemName_ENG
## [1] "agg_vec"
                    "vctrs_rcrd" "vctrs_vctr"
##
## $Number
## [1] "numeric"
##
## $key_combined
## [1] "character"
sapply(subset_data, function(col) unique(class(col)))
## $Hospital_ItemName_ENG
## [1] "agg_vec"
                  "vctrs_rcrd" "vctrs_vctr"
##
## $Number
## [1] "numeric"
## $key_combined
## [1] "character"
subset_df <- as.data.frame(subset_data)</pre>
test_data_matrix <- matrix(subset_data$Number, nrow = nrow(subset_data))</pre>
```

```
forecast_values <- matrix(reconciled_forecasts$bts, nrow = nrow(test_data_matrix))</pre>
## Warning in matrix(reconciled_forecasts$bts, nrow = nrow(test_data_matrix)):
## data length [300] is not a sub-multiple or multiple of the number of rows [282]
# Ensure that the dimensions of the test data and forecast values match:
if(dim(test_data_matrix)[1] == dim(forecast_values)[1] & dim(test_data_matrix)[2] == dim(forecast_value
    accuracy_results <- accuracy(forecast_values, test_data_matrix)</pre>
    print(accuracy_results)
} else {
    cat("The dimensions of test data and forecast values do not match.")
## The dimensions of test data and forecast values do not match.
if (nrow(test_data_matrix) > nrow(forecast_values)) {
    test_data_matrix <- test_data_matrix[1:nrow(forecast_values), ]</pre>
# Convert this matrix into a time series object
test_data_ts <- ts(test_data_matrix, frequency = 12)</pre>
forecast_ts <- ts(forecast_values, start=start(test_data_ts), frequency=12)</pre>
# Calculate the Accuracy:
acc <- accuracy(forecast_ts, test_data_ts)</pre>
print(acc)
##
                        RMSE
                                   MAE
                                            MPE
                                                    MAPE
                                                               ACF1 Theil's U
## Test set 77.98984 180.497 77.98984 97.55007 97.55007 0.8357321 1.127158
```