

신용카드 사기 거래 탐지 시 구축

김세중 김정환 안서연 양재훈 엄소현 정병주

- 1. About Topic & Data
- 2. Validation Data EDA

- 3. Baseline Modeling
- 4. Next Approaches?

DACON 신용카드 사기 거래 탐지 AI 경진대회

사기성 신용카드 거래 탐지 해당 경우에 요금 청구 X

사기 거래 사전 탐지 AI 모델 필요

DACON 신용카드 사기 거래 탐지 AI 경진대회

Imbalanced

전체 신용카드 거래 건수 대비 사기 거래 건수 매우 적음

Unlabeled

각각에 대한 사기 거래 여부를 정확히 확인하는 건 비효율적

DACON 신용카드 사기 거래 탐지 AI 경진대회

Imbalanced 전체 신용카드 거래 건수 대비 사기 거래 건수 매우 적음

Unlabeled

각각에 대한 사기 거래 여부를 정확히 확인하는 건 비효율적

Imbalanced Data에 대한

Unsupervised Binary Classification!

평가 기준: Macro-F1 Score

클래스/레이블 별 F1 Score의 평균

모든 class에 동등한 중요성 부여

Imbalanced한 class가 존재할 경우 사용하기 적절한 메트릭

Train Data

- 정상, 사기 여부 Unlabeled
- ID, 비식별화된 feature 307H

Validation Data

- 정상, 사기 여부 Labeled
- ID, 비식별화된 feature 307H, Class

Test Data

- 정상, 사기 여부 Unlabeled
- ID, 비식별화된 feature 307H

Train Data에는 정상/사기 거래 정보 X

Validation Data EDA를 통해

정상/사기 거래 데이터 간 차이가 있는지 시각적으로 확인해보기 위함!

1. 결측치 여부 확인

결측치가 포함된

데이터 포인트

존재 X

2. Column별 통계량

변수별 히스토그램

각 변수별로 분포 및 값의 폭이 다양함

Scaling 및 정규화 고려

2. Column별 통계량

	V1	V2	V3	V4	V5	V6	V7	V8	 V22	V23	V24	V25	V26	V27	V28	V29	V30
count	28432	28432	28432	28432	28432	28432	28432	28432	 28432	28432	28432	28432	28432	28432	28432	28432	28432
mean	0.01182	-0.00303	0.011758	-0.00387	0.0009	-0.01581	0.013685	0.007648	 0.000826	0.001394	0.001554	0.002346	0.000435	0.000032	-0.000086	0.924202	0.120106
std	1.903021	1.592242	1.438086	1.390272	1.311665	1.290693	1.101884	1.092214	 0.720846	0.587799	0.603244	0.526565	0.484707	0.38878	0.30378	3.348744	0.558146
min	-29.5161	-38.3053	-14.8481	-5.07124	-21.577	-16.1726	-16.3871	-26.278	 -8.55581	-25.3567	-2.8079	-6.03505	-1.59649	-9.79357	-8.364853	-0.30741	-0.99488
0.25	-0.91247	-0.59885	-0.86995	-0.8531	-0.69688	-0.77374	-0.54483	-0.21102	 -0.54276	-0.1603	-0.35223	-0.32208	-0.32865	-0.07176	-0.052335	-0.22637	-0.35768
0.5	0.025035	0.074632	0.177232	-0.02408	-0.05274	-0.28029	0.047429	0.022312	 0.008156	-0.01135	0.040176	0.016615	-0.04977	0.000434	0.012136	0.006218	0.002408
0.75	1.315867	0.801268	1.012016	0.735528	0.598752	0.378145	0.56738	0.323227	 0.527964	0.145999	0.441544	0.353035	0.24052	0.088949	0.080736	0.777754	0.64186
max	2.411769	11.87496	4.226108	9.752791	24.34531	12.12895	26.23772	11.54125	 6.090514	18.94673	3.658746	5.525093	3.067907	8.708972	15.726807	165.9483	1.034975

변수별로 Min, Max 값의 차이가 매우 크기 때문에 scaling 필요성 재확인

2. Column별 통계량

변수별 box plot 통해 이상치 존재 확인

But 이상치 데이터들이

사기 거래 탐지의 key point가 될수도?

일단 제거하지 않기로

3. Target 변수 분포

Detecting 해야 하는 사기 거래의 건수가 현저히 적음 사기 거래 발생 비율 = 0.11%

4. Heatmap

Validation Data에 대한 Heatmap

V17, V14, V12, V10, V7, V3 변수가

절댓값 0.2 이상으로 Class(정상/비정상)과

높은 correlation을 보임

Feature간 상관관계는 높지 않았음

4. Scatter Plot

Correlation이 높았던 변수들 위주로 2, 3차원 scatter plot

정상 데이터끼리 모여 있음, 3개 변수 만으로도 class가 꽤 가시적으로 분류됨

Imbalanced Data Handling

Ensemble 등 고도화된 모델링 방법

기본적인 단일 model의 성능을 알아보고

이를 baseline으로 이용하려는 의도로 진행

1. EDA를 통한 Simple Conditional Model

Validation Macro f1 score	0.6890				
Test(30%) Macro f1 score	0.5684				
Test(70%) Macro f1 score	0.6030				

2. AGglomerative NESting(AGNES)

Validation Macro f1 score

0.3519

3. DBSCAN

Validation Macro f1 score

0.4997

4. Auto Encoder

Validation Macro f1 score

0,9166

Next Approaches?

Over Sampling-SMOTE

Semi Supervised Learning

Over Sampling -Adaptive Synthetic Sampling

Next Approaches?

Anomaly Detection

EllipticEnvelope

Isolation Forest

End of Presentation