Orbital-selective Superconductivity in the Pressurized Bilayer Nickelate La₃Ni₂O₇: An Infinite Projected Entangled-Pair State Study

arXiv:2311.05491(2023)

Xing-Yu Zhang

2023.11.17

La₃Ni₂O₇ Superconduct under pressure

La₃Ni₂O₇ structure

3

 t_{2g}

La₃Ni₂O₇ orbitals

 $2 \times Ni^{2.5+} (3d^{7.5})$

Ni

$d_{x^2-y^2}$ and d_{z^2} which responsible for SC order?

Chen, arXiv:2311.05491(2023)

Different parameters for $d_{\chi^2-y^2}$ or d_{z^2}

$$H_{\text{bilayer}} = -t_{\parallel} \sum_{\langle i,j\rangle,\mu,\sigma} (c_{i,\mu,\sigma}^{\dagger} c_{j,\mu,\sigma} + H.c.)$$

$$+ J_{\parallel} \sum_{\langle i,j\rangle,\mu} (\mathbf{S}_{i,\mu} \cdot \mathbf{S}_{j,\mu} - \frac{1}{4} n_{i,\mu} n_{j,\mu})$$

$$- t_{\perp} \sum_{i,\sigma} (c_{i,\mu=1,\sigma}^{\dagger} c_{i,\mu=-1,\sigma} + H.c.)$$

$$+ J_{\perp} \sum_{i} \mathbf{S}_{i,\mu=1} \cdot \mathbf{S}_{i,\mu=-1},$$

$d_{x^2-y^2}$ responsible for SC order

SC order parameter
$$\Delta_z = \frac{1}{\sqrt{2}} \langle \sum_{\mu=\pm 1} c^{\dagger}_{i,\mu,\uparrow} c^{\dagger}_{i,-\mu,\downarrow} \rangle$$

Tuning parameters

$R_3Ni_2O_7$

$$d_{x^2-y^2}$$
 $t_{\parallel} = 3, J_{\parallel} = 1, t_{\perp} = 0, J_{\perp} = 2$

Problems:

- 1. VUMPS doesn't converge
- 2. Up and down environment converges but the energy is not good
- 3. Local minimum when *n* approach to 1

Thank you for listening!

Q&A?