

CLUSTERING K MEANS

CLUSTERING ANALYSIS

How many clusters do you expect?

CLUSTERING

Clustering is the categorisation of objects into different groups, or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait - often according to some defined distance measure.

K Means Clustering

- Choose k initial centroids (center points).
- Each cluster is associated with a centroid.
- Each data object is assigned to closet centroid.
- The centroid of each cluster is then updated based on the data objects assignment to the cluster.
- Repeat the assignment and update steps until convergence.

K-MEANS: EXAMPLE, K = 3

Step 1: Make random assignments and compute centroids (big dots)

Step 2: Assign points to nearest centroids

Step 3: Re-compute centroids (in this example, solution is now stable)

Start!

K-MEANS ALGORITHM

For a given cluster assignment C of the data points, compute the cluster means m_k :

$$m_k = \frac{\sum_{i:C(i)=k} x_i}{N_k}, \ k = 1, ..., K.$$

For a current set of cluster means, assign each observation as:

$$C(i) = \underset{1 \le k \le K}{\operatorname{arg min}} ||x_i - m_k||^2, i = 1, ..., N$$

Iterate above two steps until convergence

Applications of Clustering

- Data Mining
- Pattern recognition
- Image analysis
- Bioinformatics
- Voice mining
- Image processing
- Text mining
- Web cluster engines
- Weather report analysis

IMPLEMENTATION OF K-MEANS ALGORITHM (K=2)

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5 ANSHU PANDEY

STEP 1 INITIALIZATION

Randomly we choose 2 centroids (k=2) for two clusters.

In this case the two centroids are m1=(1.0,1.0) and m2=(5.0,7.0)

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

STEP 2/1 FINDING THE NEAREST CENTROID FOR

EVERY ELEMENT

For every element calculating its distance from center (Euclidian Distance)

Individual	(v1,v2)	C 1	C2
1	(1.0,1.0)	0	7.12
2	(1.5,2.0)	1.12	6.10
3	(3.0,4.0)	3.61	3.61
4	(5.0,7.0)	7.21	0
5	(3.5,5.0)	4.72	2.5
6	(4.5,5.0)	5.31	2.06
7	(3.5,4.5)	4.30	2.92

STEP 2/2 ASSIGNING ELEMENTS TO ANY OF THE CLUSTERS

Thus we obtain 2 clusters containing $\{1,2,3\}$ and $\{4,5,6,7\}$

New centroids are

$$m_1 = (\frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0)) = (1.83, 2.33)$$

$$m_2 = (\frac{1}{4}(5.0 + 3.5 + 4.5 + 3.5), \frac{1}{4}(7.0 + 5.0 + 5.0 + 4.5))$$

= (4.12,5.38)

Individual	(v1,v2)	C 1	C2
1	(1.0,1.0)	0	7.12
2	(1.5,2.0)	1.12	6.10
3	(3.0,4.0)	3.61	3.61
4	(5.0,7.0)	7.21	0
5	(3.5,5.0)	4.72	2.5
6	(4.5,5.0)	5.31	2.06
7	(3.5,4.5)	4.30	2.92

STEP 3 ASSIGNING ELEMENTS TO NEW CLUSTERS ACCORDING TO DISTANCE

Now using these centroids m1 = (1.83, 2.33) &m2=(4.12,5.38) we compute the Euclidean distance of each object, as shown in table.

Individual	(v1,v2)	C 1	C2
1	(1.0,1.0)	1.57	5.38
2	(1.5,2.0)	0.47	4.28
3	(3.0,4.0)	2.04	1.78
4	(5.0,7.0)	5.64	1.84
5	(3.5,5.0)	3.15	0.73
6	(4.5,5.0)	3.78	0.54
7	(3.5,4.5)	2.74	1.08

STEP 3 ASSIGNING ELEMENTS TO NEW CLUSTERS ACCORDING TO DISTANCE

Therefore, new clusters are:

$$\{1,2\}$$
 and $\{3,4,5,6,7\}$

Next centroids are: m1=(1.25,1.5) and m2=(3.9,5.1)

Individual	(v1,v2)	C 1	C2
1	(1.0,1.0)	1.57	5.38
2	(1.5,2.0)	0.47	4.28
3	(3.0,4.0)	2.04	1.78
4	(5.0,7.0)	5.64	1.84
5	(3.5,5.0)	3.15	0.73
6	(4.5,5.0)	3.78	0.54
7	(3.5,4.5)	2.74	1.08

STEP 4

Now using these centroids m1=(1.25,1.5) & m2=(3.9,5.1) we compute the Euclidean distance of each object, as shown in table.

Therefore, new clusters are:

 $\{1,2\}$ and $\{3,4,5,6,7\}$

Therefore, there is no change in the cluster.

Individual	(v1,v2)	C 1	C2
1	(1.0,1.0)	0.56	5.02
2	(1.5,2.0)	0.56	3.92
3	(3.0,4.0)	3.05	1.42
4	(5.0,7.0)	6.66	2.20
5	(3.5,5.0)	4.16	0.41
6	(4.5,5.0)	4.78	0.61
7	(3.5,4.5)	3.75	0.72

Thus, algorithm comes to a halt here and final result consist of 2 clusters {1,2} and {3,4,5,6,7}.

HOW TO CHOOSE K?

Use another clustering method, like EM.

Run algorithm on data with several different values of K.

Use the prior knowledge about the characteristics of the

problem.

APPLICATIONS OF K-MEAN CLUSTERING

It is relatively efficient and fast. It computes result at **O(tkn)**, where n is number of objects or points, k is number of clusters and t is number of iterations.

k-means clustering can be applied to machine learning or data mining

Used on acoustic data in speech understanding to convert waveforms into one of k categories (known as Vector Quantization or Image Segmentation).

Also used for choosing color palettes on old fashioned graphical display devices and Image Quantization.

CONCLUSION

K-means algorithm is useful for undirected knowledge discovery and is relatively simple.

K-means has found wide spread usage in lot of fields, ranging from unsupervised learning of neural network, Pattern recognitions, Classification analysis, Artificial intelligence, image processing, machine vision, and many others.