Recap - MOs of Larger Conjugated Polyenes

- The lowest energy orbital is always symmetric with respect to the principal mirror plane
- The energy of the MO increases as the no: of nodes increases

```
Eg. \psi_1 - 0 nodes \psi_2 - 1 node \psi_n - n-1 nodes
```

Remember to ignore the nodes of the AO

When you draw MOs place the nodes symmetrically

Recap - MO and Reactions

Electron donor – Occupied Oribtal i.e. HOMO Electron acceptor – Unoccupied Oribtal i.e. LUMO

HOMO possibilities

LUMO possibilities

Filled/Occupied

Unfilled/Unoccupied

σ

 σ^*

π

π*

n (non-bonding)

n (nonbonding)

Explanation of Reactions Through Molecular Orbitals

S_N1 Reaction – Attack from both sides of carbocation ok

S_N2 Reaction – backside attack only possible

$$HO^{-} + CH_{3} - Br$$
 \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br^{-}$
 $HO^{-} + CH_{3} - Br$ \rightarrow $HO - CH_{3} + Br$ \rightarrow $HO - CH_{$

Rotational Barrier in Ethane

Barrier of 3 kcal mol⁻¹ due to steric and electronic effects

Transition state is eclipsed

eclipsed:

filled orbitals repel

Most stable rotamer is staggered

Lone Pairs Are Not Bad!

3 kcal

2 kcal

1 kcal

Or.....

Lone pairs or not that great for staggered conformation!!

Broad Classification: Organic Reactions

Polar Mechanism

Radical Mechanism

Concerted Reactions

All the bonding changes occur at the same time and in a single step – No intermediates involved!

Pericyclic reactions – Concerted reactions that occur through a cyclic transition state

Pericyclic Reactions: Factors to Consider

Reactivity affected by number of electrons involved in reaction

Reactions are stereospecific

Stereochemistry depends on reaction conditions

MOs play a very important role

Classification of Pericyclic Reactions

Cycloaddition reaction

Electrocyclic reactions

Sigmatropic rearrangement

Group transfer reactions

Cheletropic reactions

Reagents - Heat (Δ) or Light (hv)

Class 1- Electrocyclic Reactions

Cyclization of a conjugated polyene (ring closing)

- Outermost π bonds converted to σ bond and π bonds reorganized
- Classified based on the number of π electrons

Striking Feature – Electrocyclic Reactions

Stereochemistry - Highly stereospecific

Pi bonds convert to a sigma (axial overlap) How??

Orbital Interactions – Electrocyclic Reactions

Two possibilities

Outermost orbitals
Same symmetry

Outermost orbitals
Opposite symmetry

Bonding interaction
Symmetry allowed

The lobes of the reactant MOs must of the correct sign (phase) for bonding to occur in the transition state leading to product

Understanding Stereospecificity

Frontier Molecular Orbitals (FMO) Theory

Stereochemistry of an electrocyclic reaction is determined by the symmetry of the polyene HOMO

Thermal Reactions - Ground state HOMO

Photochemical Reactions – Excited state is the HOMO

FMO Explanation – Butadiene Stereospecificity

Butadiene – 4 e⁻ system

Thermal reaction - HOMO is ψ_2

Photochemical reaction - HOMO is ψ_3

Is applicable to any 4n system

Revisiting Stereospecificity

4 e⁻ system

The groups attached to carbons undergoing dis/con will also rotate in that direction!!

Steps to Understand Stereospecificity

Any 4n system

Thermal conditions

- Draw ground state HOMO for butadiene
- Determine mode of closure

Photochemical conditions

- Draw excited state HOMO for butadiene
- Determine mode of closure

Activity: FMO treatment for hexatriene

FMO Explanation – Hexatriene Systems

Hexatriene – 6 e⁻ system

Thermal reaction - HOMO is ψ_3

Photochemical reaction - HOMO is ψ_4

Is applicable to any 4n+2 system

Steps to Understand Stereospecificity

Any 4n + 2 system

Thermal conditions

- Draw ground state HOMO for hexatriene
 - Determine mode of closure

Photochemical conditions

- Draw excited state HOMO for hexatriene
 - Determine mode of closure

Woodward-Hoffman Rules

A pericyclic reaction can take place only if the symmetries of the reactant (**R**) MOs are the same as the symmetry of the product (**P**) MO

Based on electron count the same rules apply for the ring opening

System (no of	Mode of rotation	Allowedness of the reaction	
electrons)		Thermal	Photochemical
4 <i>n</i>	con	allowed	forbidden
4 <i>n</i>	dis	forbidden	allowed
4 <i>n</i> +2	con	forbidden	allowed
4 <i>n</i> +2	dis	allowed	forbidden

Activity

$$CH_3$$
 hv
 CH_3
 CH_3
 CH_3

$$\begin{array}{c} \text{CH}_3 \\ \text{Ph} \\ \\ \text{CD}_3 \end{array}$$

More Examples

Thermal isomerization of benzocyclobutene to *ortho* quinodimethane

Thermal valence isomerization of cycloheptatriene-norcaradiene

Interesting examples

Selectivity in rotation – called as torquoselectivity

More Practice Problems

$$\Delta$$
NMe₂