Drzewiaste struktury danych

BST1.1

 \bullet Drzewa wyszukiwań binarnych (drzewa BST – Binary Search Trees) - drzewa binarne, w których elementy rozmieszczone są w porządku symetrycznym.

• Właściwości BST:

• Wiasciwosci B51.					
	Drzewa binarne		Drzewa wyszukiwani binarnych		
	Wartość pesymistyczna	Wartość oczekiwana (każde drzewo jednakowo prawdopodobne)	Wartość pesymistyczna	Wartość oczekiwana (drzewo powstaje poprzez wstawienie elementów losowej permutacji do początkowo pustego drzewa)	
Długość ścieżki wewnętrznej	n(n-1)/2	$n\sqrt{\pi n} - 3n + O(\sqrt{n})$	n(n-1)/2	1,386nlog n – 2,846n	
Wysokość drzewa	n-1	$2\sqrt{\pi n} + O(n^{\frac{1}{4} + \varepsilon})$	n-1	4,311log n + o(log n)	

1.2 AVL

- \bullet AVL-drzewo drzewo wyszukiwań binarnych, w którym dla każdego węzła wysokości jego poddrzew różnią się co najwyżej o 1
- Złożoność operacji to log n gdzie n to wielkość drzewa.
- Atrybuty węzłów drzewa z wykładu:

Key(v) - klucz

 $Left(v), \; Right(v), \; Parent(v) - wskaźniki \; odpowiednio \; do \; lewego \; i \; prawego \; dziecka \; oraz \; rodzica$ $Bf(v) - wskaźnik zrównoważenia (ang. balance factor) równy \ h(T(Left(v)) - h(T(right(v)) \in -1,$

- Przyjmujemy, że węzeł zewnętrzny ma wysokość -1.
- Rotację zachowują porządek symetryczny w BST, numerację infiksową (inorder) węzłów drzewa binarnego!
- Pojedyncza rotacja w prawo i lewo:

Pojedyncza rotacja w lewo

• Podwójna rotacja w prawo:

• Podwójna w lewo:

 $\bullet \ {\bf Schemat} \ {\bf wstawiania} \ {\bf elementu} \ {\bf gdy} \ {\bf uros} \\ {\bf io} \ {\bf lewe} \ {\bf poddrzewo} \\ ({\bf symetrycznie} \ {\bf dla} \ {\bf prawego}) \\ : \\ {\bf volume} \ {\bf volume} \ {\bf volume} \\ {\bf volume} \ {\bf volume} \ {\bf volume} \\ {\bf volume} \ {\bf volume} \ {\bf volume} \\ {\bf volume} \ {\bf volume} \ {\bf volume} \\ {\bf volume} \ {\bf volume} \ {\bf volume} \\ {\bf volume} \ {\bf volume} \ {\bf volume} \\ {\bf volume} \ {\bf volume} \ {\bf volume} \\ {\bf volume} \ {\bf volume} \ {\bf volume} \\ {\bf volume} \ {\bf volume} \ {\bf volume} \\ {\bf volume} \ {\bf volume} \ {\bf volume} \\ {\bf volume} \ {\bf$

Bf $v = -1 \Rightarrow Bf v = 0$: STOP

Bf $v = 0 \Rightarrow Bf v = 1$; \uparrow (poprawiaj w górę)

Bf $v = 1 \Rightarrow rotacja$

• Schemat usuwania elementu gdy zmalało lewe poddrzewo(symetrycznie dla prawego):

 $Bf\ v\,=\,-\,1\,\Rightarrow\,{\rm rotacja}$ Bf $v = 0 \Rightarrow Bf v = -1$; STOP

Bf v = 1 \Rightarrow Bf v = 0; \uparrow (poprawiaj w górę)

 \bullet Wzbogacenia AVL przedstawione na wykładzie:

OnLeft(v) – liczba węzłów w lewym poddrzewie v

 $\operatorname{Max}(v)$ – maksimum z elementów w poddrzewie o korzeniu v

• Rotajce w drzewie zachowują kolejność infiksową(inorder)

1.3 Splay

- \bullet Operacje na drzewach spłay są w czasie zamortyzowanym logarytmicznym
- \bullet Podczas każdej operacji na drzewie splay wierzchołek, na którym wykonujemy operację, staje się korzeniem.
- Local Splay:

Przypadek 1: rodzic węzła x jest korzeniem drzewa B.o. utożsamiamy klucze z wezłam

- Przypadek 2a: rodzicem x nie jest korzeń x jest lewym dzieckiem rodzica, który jest lewym dzieckiem swojego rodzica lub x jest prawym dzieckiem rodzica, który jest prawym dzieckiem swojego rodzica

- Przypadek 2b: rodzicem x nie jest korzeń drzewa x jest prawym dzieckiem swojego rodzica, który jest lewym dzieckiem swojego rodzica,
 - x jest lewym dzieckiem swojego rodzica, który jest prawym dzieckiem swojego rodzica

 \bullet Istnieje operacja split która dzieli drzewo na dwa poddrzewa według wieżchołka v. (lewe drzewo ma klucze mniejsze a prawe wieksze niż klucz v)

1.4 Drzewa B

- Niech t będzie liczbą całkowitą większą od 1.
- B-drzewem (minimalnego) stopnia t nazywamy drzewo z korzeniem spełniające poniższe warunki:
- Każdy węzeł x ma następujące atrybuty:
- a) m liczba kluczy aktualnie pamiętanych w ${\bf x}$
- b) m kluczy Key1, Key2, ..., Keym uporządkowanych rosnąco (załóżmy ponadto, że mamy wirtualnych strażników Key0 = - ∞ oraz Keym+1 = + ∞)
- c) Leaf atrybut logiczny przyjmujący wartość TRUE wiw, gd
y ${\bf x}$ jest liściem
- \bullet Każdy węzeł wewnętrzny x zawiera m+1 wskaźników P1, P2, ..., Pm+1 do swoich dzieci w drzewie. Dla liści wartością tych wskaźników jest NULL.
- Każdy klucz K w poddrzewie wskazującym przez Pi spełnia warunek Keyi-1 < K < Keyi.
- Wszystkie liście leżą na tej samej głębokości równej wysokości drzewa h.
- Każdy węzeł różny od korzenia całego drzewa musi zawierać co najmniej t-1 i co najwyżej 2t-1 kluczy (odpowiednio, co najmniej t i co najwyżej 2t wskaźników do dzieci, o wartościach równych NULL jeśli jest to liść).
- W niepustym drzewie korzeń musi zawierać, co najmniej 1 i co najwyżej 2t-1 kluczy (odpowiednio co najmniej 2 i co najwyżej 2t wskaźników do dzieci o wartościach NULL, jeśli jest to jednocześnie liść).
- Złożoności

n-węzłowe B-drzewo stopnia t				
	# odwołań do pamięci zewnętrznej	# operacji w pamięci wewnętrznej		
Search	O(log _t n)	O(tlog _t n)		
Insert	O(log _t n)	O(tlog _t n)		
Delete	O(log _t n)	O(tlog _t n)		

- (minimalnym) stopniu t $=\,2$ nazywamy 2-3-4-drzewem (każdy węzeł, nie liść, ma2
- ullet Korzeń poddrzewa do którego wchodzimy, różny od korzenia, nigdy nie jest minimalny!
- \bullet Korzeń poddrzewa do którego wchodzimy nigdy nie jest maksymalny! • Wysokość drzewa: $h \leq \log_t(\frac{n+1}{2})$
- Przykład drzewa

1.5 Drzewa Czerwono Czarne

- Drzewo czerwono-czarne drzewo BST, w którym każdy węzeł jest pokolorowany na czerwono lub czarno zgodnie z następującymi regulami:
- 1. korzeń drzewa jest czarny
- 2. każdy czerwony węzeł ma czarnego rodzica
- 3. każdy węzeł zewnętrzny (NULL) jest czarny
- $4.~{\rm każda}$ ścieżka (elementarna) z ustalonego węzła do węzła zewnętrznego w jego poddrzewie zawiera tyle samo węzłów czarnych

• Slajdy

Drzewo czerwono-czarne

Nowy klucz zostaję umieszczony w nowym węźle v, który zastępuję węzeł zewnętrzny. Węzeł otrzymuje kolor czerwony.

- jeśli v jest korzeniem drzewa zmieniamy mu kolor na czarny
- jeśli rodzic P(v) węzeł v jest czarny, nic nie trzeba więcej robić
- jeśli rodzic P(v) jest czerwony, zaburzona została własność 2. drzew czerwono-czarnego

y jest czerwony: w i y kolorujemy na czarno; jeśli x nie jest korzeniem, kolorujemy x na czerwono i poprawiamy

kolorowanie rekurencyjnie w górę drzewa y jest **czarny**: pojedyncza rotacja w prawo (x zostaje prawym dzieckiem w); v otrzymuje kolor czarny; jeśli w jest korzeniem kolorujemy w na czarno, w przeciwnym razie poprawiamy kolorowanie rekurencyjnie w górę drzewa poczynając od w

Wstawianie do drzewa czerwono-czarnego, c.d

a) y jest czerwony: w i y kolorujemy na czarno; jeśli x nie jest korzeniem, kolorujemy x na czerwono i poprawiamy kolorowanie rekurencyjnie w górę drzewa b) y jest czarny: podwójna rotacja w prawo

(x zostaje prawym dzieckiem v, w - lewym dzieckiem v); w otrzymuje kolor **czarny**; jeśli v jest korzeniem kolorujemy v na **czarno**, w przeciwnym razie poprawiamy kolorowanie rekurencyjnie w górę drzewa poczynając od v

Symetrycznie postępujemy, gdy dwa czerwone wezły sa w prawym poddrzewie x.

koszt Insert do drzewa czerwono-czarnego – O(log n)

- usuwanie sprowadza się do usunięcia węzła z co najwyżej jednym dzieckiem
- węzeł czerwony zawsze można usunąć
- węzer czerwony zawsze można usunąc jeżeli usuwany węzeł jest korzeniem (w = NULL), kolorujemy v na **czarno** problem stanowi usuwany węzeł czarny, gdy w jest różny od NULL

v jest czerwony – kolorujemy v na czarno, STOP v jest czarny – patrzymy na konfigurację w poddrzewie o korzeniu x; uwaga – v może być równy NULL (węzeł zewnętrzny)

kolor szary oznacza, że rzeczywisty kolor jest czarny, ale na ścieżce do węzła zewnętrznego brakuje 1 węzła czarnego

Przypadek 1 – x jest czerwony

Przypadek 2 – oboje dzieci czarnego sąsiada y są czarne

Jeśli w jest korzeniem, to STOP, w p.p. rekurencyjnie poprawiaj kolorowanie w górę drzewa poczynając od w

Przypadek 4 - prawe dziecko czarnego sąsiada y jest czerwone, a kolor lewego może być dowolny

Symetrycznie postępujemy, gdy węzeł v jest w prawym poddrzewie w

koszt Delete z drzewa czerwono-czarnego – O(log n)

Algorytmy grafowe

Algorytm Floyda-Warshalla

- Problem najlżejszych ścieżek pomiędzy wszystkimi parami wierzchołków

Idea:

 $W^t[j,j]$ = waga najlżejszej ścieżki z i do j, na której każdy wewnętrzny wierzchołek (poza i oraz j) jest nie większy od k

Zauważmy, że W⁰[i,j] = A[i,j].

 $W^{k[i,i]} = MIN(W^{k-1}[i,k] + W^{k-1}[k,i], W^{k-1}[i,i])$

2.2Spójne składowe

- \bullet Czas O(n+m)gdzie n
 to liczba wierzchołków a m liczba krawędzi.
- Dane

G=(V,E) - graf n-wierzchołkowy

Wynik

funkcja C: V \rightarrow V taka, że C[u] = C[v] wtedy i tylko wtedy, gdy u i v są w tej samej spójne składowej

2.3Najkrótsze ścieżki

- \bullet Czas O(n+m)gdzie n
 to liczba wierzchołków a m liczba krawędzi.
- Dane

G = (V,E) - graf spójny, n = |V|

s – wyróżniony wierzchołek w G

D[1..n] – tablica, w której D[u]to długość najkrótszej ścieżki z wierzchołka s do wierzchołka u mierzona liczbą krawędzi

Metoda

przeszukiwanie grafu, w którym zbiór S implementujemy jako kolejkę FIFO (First In First Out) jest to tzw. przeszukiwanie wszerz (ang. BFS – Breadth First Search)

2.4 Przeszukiwanie wgłąb

- Własności
- \bullet krawędź niedrzewowa łączy zawsze potomka z przodkiem w w drzewie przeszukiwania w głąb
- \bullet numer d
fs wierzchołka jest zawsze większy od numeru df
s jego właściwego przodka

2.5Dwuspójne

- \bullet Wierzchołek v w grafie G nazywamy rozdzielającym (punktem artykulacji), jeśli jego usunięcie z G (wraz z incydentnymi z nim krawędziami) zwiększa liczbę spójnych składowych w G.
- mostem w grafie G nazywamy krawędź, której usunięcie zwiększa liczbę spójnych składowych
- \bullet spójny graf G jest grafem dwuspójnym wierzchołkowo (krawędziowo), jeśli nie zawiera wierzchołków rozdzielających (mostów)
- \bullet Dwuspójną składową grafu G nazywamy każdy jego maksymalny dwuspójny podgraf (z maksymalną możliwą liczbą wierzchołków i krawędzi).
- \bullet Istnieje algorytm znajdowania liczby dwuspójnych w grafie w czasie O(n+m) za pomocą funkcji
- \bullet Struktura dwuspójny składowych

Struktura dwuspójnych składowych

- przypomina drzewo czerwona kropa, to korzeń drzewa przeszukiwania w głąb
- zielone kropy to wierzchołki rozd składowe B, C, H, I, J, K to "liście"

Ważne spostrzeżenie:

- vazne spostrzezene: podczas przesukiwania w głąb, jeśli wejdziemy do liścia-dwuspójnej składowej, to przed jego opuszczeniem "przejrzane" zostaną wszystkie krawędzie tej dwuspójnej składowej
- pierwszą krawędzią przeglądana jest zawsze krawędź drzewowa, którą wchodzimy z wierzchołka rozdzielającego w głąb tej składowej
- jeśli odkladamy krawędzie grafu na stos w kolejności ich przeglądania (krawędź nie drzewowa jest najpierw odkrywana w potomku jej drugiego końca), to po odkryciu wierzcholka rozdzielającego dla liścia w chwili wychodzenia z odpowiadającej jej dwuspójnej składowej, wszystkie krawędzie tej dwuspójnej składowej znajdują się na stosie, a najgłębie jest położona krawędź drzewowa prowadząca w gląb składowej z wierzcholka rozdzielającego
- \bullet Istnieje algorytm znajdowania dwuspójnych składowych w czasie O(m)

Kolorowanie

- Kolorowaniem (wierzchołkowym) grafu nieskierowanego nazywamy takie przypisanie kolorów wierzchołkom grafu, że żadne dwa sąsiednie wierzchołki nie mają przypisanych tych samych kolorów.
- Jeżeli istnieje kolorowanie grafu G z użyciem k kolorów, to mówimy że G jest k-kolorowalny.
- \bullet Minimalną liczbę kolorów, którymi można pokolorować graf G nazywamy jego liczbą chromatyczną i oznaczamy przez χ G
- \bullet Przez $\Delta(G)$ oznaczamy maksymalny stopień wierzchołka w grafie G (stopień wierzchołka to liczba jego sąsiadów w tym grafie)
- Oczywiste: χ G \leq Δ (G) + 1.

3.1 Brooks

- \bullet Każdy graf G różny od cyklu nieparzystej długości i grafu pełnego można pokolorować $\Delta(G)$ kolorami.
- Graf jest k-kolorowalny wtedy i tylko wtedy, gdy kaźda jego dwuspójna składowa jest k-kolorowalna.
- Algorytm kolorowania Brooksa+ działa w czasie O(n+m)
- Slajd:

Kolorowanie Brooks'a+

Dane
G=(V,E) – dwuspójny graf G o co najmniej 4 wierzchołkach

 $A, b, c \in V - Trzy wierzchofuki takie, že a, b nie są połączone krawędzią, natomiast c jest sąsiadem zarówno a, jak i b (odległość pomiędzy a i b w grafie G wynosi 2) oraz <math>G\setminus\{a,b\}$ jest spójny \mathbf{Wynik} $\mathbf{Color}[1.n] - \mathbf{Lolica}$ kolorów wierzchołków taka, że $1 \le \mathbf{Color}[1] \le \Delta(G)$ oraz $\mathbf{Color}[1] \ne \mathbf{Color}[1]$,

jeśli tylko i-j \in E

- kolorujemy wierzchołki a i b kolorem 1
- kolorujeny wierzchotki w gląb graf G\{a,b} poczynając od c i numerujemy wierzchotki w kolejności odwiedzania kolorujemy wierzchotki w kolejności od największego do najmniejszego numeru, kolorując każdy wierzchotek najmniejszym kolorem, który nie został jeszcze użyty do pokolorowania jego sąsiadów w całym grafie G

