Math 341 Homework 2

Theo Koss

September 2020

1 Practice problems

1.1 Problem 2

Prove: if $(a - b) \\delical{c} \\delical{c} \\delical{c}$, then $a \\delical{c} \\delical{c} \\delical{c} \\delical{c}$

Proof. To prove iff, we must first prove "If A, then B" (forwards), then prove "if B, then A" (backwards).

 (\Longrightarrow) : Assume that a : c is true, that is, a = cn. (a - b) : c implies that (a - b) = cl, $l \in \mathbb{Z}$. Rearranging for b we get $b = a - cl = cn - cl = c \cdot (n - l)$. if a : c, b : c.

(\Leftarrow): Assume that b : c is true, that is, b = cm. We know from above that (a - b) = cl. Rearranging for a we get $a = cl + b = cl + cm = c \cdot (l + m)$. if b : c, a : c.

1.2 Problem 3

Prove: If a : c, then for any b, (ab) : c.

Proof. a : c implies that $\exists n \in \mathbb{Z} \text{ s.t. } a = cn$. Thus, $a \cdot b = b(cn)$, and by the commutative property, b(cn) = c(bn). Let (bn) = m, so $a \cdot b = cm, m \in \mathbb{Z}$, therefore $a \cdot b$ is divisible by c.

1.3 Problem 4

Prove: if a i b and b i c, then a i c.

Proof. $a : b \Longrightarrow a = bn, n \in \mathbb{Z}$. Also, $b : c \Longrightarrow b = cm$. Solving the first equation for $b : b = \frac{a}{n}$. Plugging it into the second: $\frac{a}{n} = cm$. So $a = cmn = c \cdot (mn)$. Therefore a : c.