5112

Dynamic Programming Subset-Sum Section
Knapsack J 6.4

Tidying up WIS

M-Opt-Val (j)
If j=0
Return 0
Esse if MZ;3 x-1
Return MZ;3

Sabtle point: What loes this function compate loutput?

It's only the value.

Set $M \geq j \leq \max(M - Opt - Val(p(j)) + v_j, M - Opt - Val(j-1))$ Return $M \geq j \leq \max(M - Opt - Val(p(j)) + v_j, M - Opt - Val(j-1))$

What if we want to output the subject as well?

1. Could memo ite the optimal subset solutions as we go.

j OpfVal 0 2 2 3.5 3 3,5	Subsut Ell Ell Ell Ell Ell Ell Ell Ell Ell El	Does it work? Runahy the?	ges O(n2) naively
		., 7, 2,3 Appec Can	of book to D(n)

2. Compute the subset using the table of optimal values. OptSubset (;) It =0 Return Ø If v; + MEp(j) } > MZj-1}
Return Opt Subset(p(j)) > ? j} Return Opt Subset (3-1) Append m O(1) n-1 11.7 At most on recursions

Subset Sum

Input: Zwiß 1sisn, Threshold T. Output: S = 21, ..., n } such that Z wi ET.

and we want this to be maximal.

Return S such that the weight & S is as close for T as possible without going over.

Sybset Sum Greedy Algorithus

1. Highest Weight HW-7 ET/2+13 ET/2+1, T/2, T/23 opt Not optime!! SET/2, T/23 2. Lowest Weight Lw 7 {1, 7/2} {1, 7/2, 7/2} Opt {7/2, 7/2} Subset Sum Dynamic Programming
Imput: Ewin, my ST Suppose O is an optituel subset Is neO? => 0 = {\omega_1, \infty \omega_n, \ Casel: n&O Case Z: n E O what dones O & En of look like? 27 O Eng hus weight of wost I -wn So O Eng is an optimal sysset of the problem on Ewi, war war w/ threshold T-wn Subset Sum Dynamic Programming
Write Opt (j, V) for wight of the solution to the
problem on $\{w_1, ..., w_j\}$ with threshold V.

Leanma: Opt(j, V) = max(Opt(j-1, V), Opt(j-1, V-wj) + wj) $\leq T$ Subset Sum Subset Sum ({\Delta_{\inj,...,\omega_n}, T) Array M & O...n, O... T? Set M & O, E = 0, 1, ..., T 5ef J/1(U, -)For i = 1, 2, ..., nFor t = 0, ..., T Str M(i, e) = max(M(i-1, e) + wi)Else Set MSi,t) = MSi-1, t} Return MEn, TS.

T=100 w; = T Subset Sum (j-1, 100) Sabset Sum (j-1, 100-10)

If weights are & Z, this doesn't work,

Memoization.

Knapsack

Input: $\{(w_i, v_i)\}$ 15i $\leq n$. Threshold T. Output: $S \subseteq \{1, ..., n\}$ such that $\sum_{i \in S} w_i \leq T$

and Zivi is maximal