

Storytelling by Design

User Inteface Design

Game Design, SoSe18, H-AB

- User Interface Design
- Character Design
- Level Design
- Spielwelt
- Spielmechanik

Storytelling by Design

Elemente

Controller Funktionalitäten

(Quelle: concoletuner.com)

Profile Configuration Area

- Standards
- Konfigurierbarkeit
- "Learn to Play"

(Quelle: Paul Suddaby: The Many Ways to Show the Player How It's Done With In-Game Tutorials. https://gamedevelopment.tutsplus.com/tutorials)

User Interface Design Kriterien

- Unmittelbare Darstellung benötigter Informationen
 - ggf. Kontext-sensitiv
- Leichtes Auffinden benötigter Informationen
 - Verschachtelte Menüs?
 - Nicht intuitive Darstellung?
- Verwendung ohne Dokumentation möglich?
 - Intuitives Erschließen der Möglichkeiten
- Keine störenden oder Spielfluss-unterbrechenden Aktionen
 - Animationen, Nachladen von GUI Elementen
 - Wiederholende Aktivitäten, Klickorgien

(Quelle: Jonathan Gonzalez: Game GUI Analysis.)

Aufteilung

Storytelling by UI Design

Bereiche und Funktionen

A-Bereich

Semiotik

Wissenschaft von den Zeichensystemen (Bilderschrift, Gestik, Formeln, Verkehrszeichen ...)

Salianz, präattentive Verarbeitung

Vorbewusste, unterschwellige Wahrnehmung von Sinnesreizen.

Beispiel: Gesichtswahrnehmung ist präattentiv.

A-Bereich

Affektive Faktoren (Peek, 1987)

- Ästhetik
- Farbbalance
- Interessante Darstellung
- Emotional Ansprechend
- Motivierend

Hier:

- Farben
- Formen

(Quelle: Dinosaur Polo Club)

User Interface Design A-Bereich

Diegese

- "Innerhalb der erzählten Welt" (Genette, 1998)
- Hier: Darstellung komplexer Informationen im A-Bereich des Spiels.
- Vollständig ohne B-Bereich Elemente?

(Quelle: UBI Soft)

Optimale Positionierung von UI Elementen

Eye Tracker Beispiel

→ Konfigurierbare GUI

- Größe
- Position

(Quelle: gameswelt.de)

 The Importance of Nothing, Jim Brown https://www.youtube.com/watch?v=GZ99gAb4T0o

Beispiele

Storytelling by UI Design

Negative Space

(Quelle: FedEx)

Negative Space

(Quelle: FedEx)

Visual Clarity for Level Design

- Focal Point for the eye
- Understand space around prominent structure

Schlechtes Design

Favella Map (Call of Duty)

Beispiel: Gears of War

• GoW 1

• GoW 2

Beispiel: UT, UT 3

Komplexität

Rezept

- Formen vereinfachen
- Kontrast erhöhen
- "Importance of Nothing" → Elemente entfernen
- Farben

- → Regulatory Fit
- →Intuitive Wahrnehmung
- →Flow

Form

Storytelling by UI Design

Mustererkennung

Assoziationsfähigkeit

Mustererkennung

Assoziationsfähigkeit

Emotionen?

(Quelle: NASA)

Gesichtserkennung

Emotionen lesen

Präattentive Verarbeitung

- vorbewusst
- unterschwellige Wahrnehmung von Sinnesreizen.

Beispiel: Gesichtswahrnehmung ist präattentiv.

... und weitere!

Semiotik

Wissenschaft von den Zeichensystemen (Bilderschrift, Gestik, Formeln, Verkehrszeichen ...)

Gesichtserkennung

Emotionen lesen

Chernoff-Gesichter

Kodierung multivariater Informationen.

(Quelle: Wikipedia)

Chernoff-Gesichter

(Quelle: Los Angeles Community Analysis Bureau, 1971)

Multistabile Wahrnehmung Kippfiguren

Perspektive mehrdeutig

Gestaltprinzipien (der Gruppierung)

Präattentive Mustererkennung

- Ähnlichkeit
- Nähe
- Geschlossenheit
- Kontinuität
- Verbundene Elemente
- Symmetrie

Ähnlichkeit

Bildteile gleicher Form oder Farbe werden als Ganzes gesehen

Nähe

Bildelemente werden als zusammengehörig empfunden, wenn diese nahe beieinander liegen

Geschlossenheit

Linien, die eine Fläche umschließen, werden unter sonst gleichen Umständen leichter als eine Einheit aufgefasst als diejenigen, die sich nicht zusammenschließen

Farbe

Storytelling by UI Design

Frage

 Welche Farbskala (nominal, ordinal, quantitativ) ist für <u>Ihre</u> Darstellung geeignet?

Dreifarbenmodell

Thomas Young, Hermann Helmholtz

- Zapfen (Cones)
 - S: short, M: medium, L: long
 - "Valenzen"
- Stäbchen (Rods)
 - Helligkeitswahrnehmung

Farb- und Helligkeitswahrnehmung

Gegenfarbenmodell Ewald Hering

- 3 Komplementäre Gruppe
 - Rot-Grün
 - Gelb-Blau
 - Hell-Dunkel

Aufgabe

Zustand farbkodieren (Lebenspunkte, Treibstoff, Integrität etc.)

(Quelle: Wikipedia: Daimonin)

Farbrepräsentationen: Systeme

RGB

- Primärfarben, Additive Farbmischung
- Farbraum = Würfel mit (0/0/0) schwarz → (255/255/255) weiß.
- Nicht normiert

HSx

- Projektion längs Hauptdiagonale des Farbwürfels
- Sechseck: Primärfarben + cyan, magenta, gelb
- L: Lightness (relativ), B: Brightness (absolut), ...

CMYK

Subtraktive Farbmischung

Farbrepräsentationen: Systeme, weitere

- YUV
 - dt. Farbfernsehen
 - Normen: PAL, NTSC
- Farbordnungssysteme
 - RAL
 - HKS (→ Druckfarben)
- Wellenlänge/Spektrum

Farbrepräsentationen: Umrechnungen

Umrechnung RGB in HSV/HSL [Bearbeiten | Quelltext bearbeiten]

Vorbedingung: $R,G,B\in[0,1]$

$$MAX := \max(R, G, B), \ MIN := \min(R, G, B)$$

$$H := egin{cases} 0, & ext{falls } MAX = MIN \Leftrightarrow R = G = B \ 60^{\circ} \cdot \left(0 + rac{G-B}{MAX-MIN}
ight), & ext{falls } MAX = R \ 60^{\circ} \cdot \left(2 + rac{B-R}{MAX-MIN}
ight), & ext{falls } MAX = G \ 60^{\circ} \cdot \left(4 + rac{R-G}{MAX-MIN}
ight), & ext{falls } MAX = B \end{cases}$$

$$falls H < 0^{\circ} dann H := H + 360^{\circ}$$

$$S_{ ext{HSV}} := \left\{ egin{aligned} 0, & ext{falls } MAX = 0 \Leftrightarrow R = G = B = 0 \ rac{MAX - MIN}{MAX}, & ext{sonst} \end{aligned}
ight.$$

$$S_{ ext{HSL}} := egin{cases} 0, & ext{falls } MAX = 0 \Leftrightarrow R = G = B = 0 \ 0, & ext{falls } MIN = 1 \Leftrightarrow R = G = B = 1 \ rac{MAX - MIN}{1 - |MAX + MIN - 1|}, & ext{sonst} \end{cases}$$

$$V := MAX$$

$$L := rac{MAX + MIN}{2}$$

Wikipedia: HSV Farbraum

Farbrepräsentationen: Systeme, kalibriert

- CIE XYZ, CIE LAB
 - Normalbetrachter (2°, 10°)
 - Standardbeleuchtung (D50, D65 ...)

MacAdams Ellipsen

CIE XYZ

- Weißpunkt: 1/3, 1/3
- Farbabstände nicht gleichabständig
- Gesucht: Transformation, um aus Ellipsen Kreise zu machen

CIE Luv

- Gleichabständig
- Bspw. Grün lässt sich weniger nuanciert wahrnehmen als Blau

CIE Lab

- Vgl. Gegenfarbenmodell
- Geeignet, um äquidistante Farbskalen zu erstellen

Geeignete Skalen finden ...

- Grauwertskala
- Rot/Grün Skala
- Gelb/Blau Skala
- Sättigungsskala

http://colorbrewer2.org

Geeignete Farben (Nominal, Ordinal)

- Rot
- Grün
- Gelb
- Blau
- Schwarz
- Weiß

- Rosa
- Cyan
- Grau
- Orange
- Braun
- Lila

Bei weniger als sechs Werten wähle man nur aus 1...6

Storytelling by UI Design Fazit

"A good UI tells you what you need to know, and then gets out of the way."

https://gamedevelopment.tutsplus.com/tutorials/game-ui-by-example-a-crash-course-in-the-good-and-the-bad--gamedev-3943