T1. $\int x^p dx = \frac{x^{p+1}}{p+1} + C$, $C \in \mathbb{R}$, $p \in \mathbb{R} \setminus \{-1\}$

T2.
$$\int \frac{1}{x} dx = \ln|x| + C$$
, $C \in \mathbb{R}$, (onde $x \in \mathbb{R}^+$ ou $x \in \mathbb{R}^-$)

T3.
$$\int e^x dx = e^x + C, \quad C \in \mathbb{R}$$

T4.
$$\int a^x dx = \frac{a^x}{\ln a} + C, \quad C \in \mathbb{R}, \quad a \in \mathbb{R}^+ \setminus \{1\}$$

T5.
$$\int \operatorname{sen} x \, dx = -\cos x + C \,, \quad C \in \mathbb{R}$$

T6.
$$\int \cos x \, dx = \sin x + C \,, \quad C \in \mathbb{R}$$

UA

2 Primitivação (Integrais indefinidos)

12/10/2022

7 / 30

Noções Básicas; Integração Imediata ou Quase Imediata

T7.
$$\int \sec^2 x \, dx = \operatorname{tg} x + C \,, \quad C \in \mathbb{R}$$

T8.
$$\int \operatorname{cosec}^2 x \, dx = -\operatorname{cotg} x + C \,, \quad C \in \mathbb{R}$$

T9.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C, \quad C \in \mathbb{R}$$

T10.
$$\int \frac{1}{1+x^2} dx = \arctan x + C, \quad C \in \mathbb{R}$$

T11.
$$\int \sec x \, \operatorname{tg} x \, dx = \sec x + C \,, \quad C \in \mathbb{R}$$

T12.
$$\int \operatorname{cosec} x \operatorname{cotg} x \, dx = -\operatorname{cosec} x + C, \quad C \in \mathbb{R}$$

Lista de Integrais Indefinidos Quase Imediatos

G1.
$$\int g'(x)g^p(x)\,dx = \frac{g^{p+1}(x)}{p+1} + C \;, \quad C \in \mathbb{R} \; (\text{ onde } p \in \mathbb{R} \setminus \{-1\})$$

G2.
$$\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C, \quad C \in \mathbb{R}$$

G3.
$$\int g'(x)e^{g(x)} dx = e^{g(x)} + C, \quad C \in \mathbb{R}$$

G4.
$$\int g'(x)a^{g(x)} dx = \frac{a^{g(x)}}{\ln a} + C, \quad C \in \mathbb{R}, \quad a \in \mathbb{R}^+ \setminus \{1\}$$

G5.
$$\int g'(x) \operatorname{sen}(g(x)) dx = -\cos(g(x)) + C, \quad C \in \mathbb{R}$$

G6.
$$\int g'(x)\cos(g(x))\ dx = \sin(g(x)) + C, \quad C \in \mathbb{R}$$

UA

2 Primitivação (Integrais indefinido

12/10/2022

11/3

Noções Básicas; Integração Imediata ou Quase Imediat

G7.
$$\int g'(x) \sec^2(g(x)) dx = \operatorname{tg}(g(x)) + C, \quad C \in \mathbb{R}$$

G8.
$$\int g'(x) \operatorname{cosec}^2(g(x)) dx = -\operatorname{cotg}(g(x)) + C, \quad C \in \mathbb{R}$$

G9.
$$\int \frac{g'(x)}{\sqrt{1-(g(x))^2}} dx = \arcsin(g(x)) + C, \quad C \in \mathbb{R}$$

G10.
$$\int \frac{g'(x)}{1+(g(x))^2} dx = \operatorname{arctg}(g(x)) + C, \quad C \in \mathbb{R}$$

G11.
$$\int g'(x) \sec(g(x)) \operatorname{tg}(g(x)) dx = \sec(g(x)) + C, \quad C \in \mathbb{R}$$

G12.
$$\int g'(x) \operatorname{cosec}(g(x)) \operatorname{cotg}(g(x)) dx = -\operatorname{cosec}(g(x)) + C, \quad C \in \mathbb{R}$$