

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of
The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(57) Abstract

A variable compression piston assembly (300) includes a plurality of pistons, e.g., double ended pistons (330, 332), a rotating member, e.g., a flywheel (322) or a zero-stroke pivot member, coupled to the transition arm (310) and configured for movement relative to the transition arm (310) along the axis of rotation of the rotating member (322). The movement of the rotating member (322) relative to the transition arm (310) changes the compression ratio of the piston assembly (330, 332). The transition arm (310) is coupled to each of the double ended pistons (330, 332) at approximately a center of each piston (330, 332). The movement of the rotating member (322) relative to the transition arm (310) changes the compression ratio and displacement of each double ended piston (330, 332).

VARIABLE COMPRESSION PISTON ASSEMBLYBackground of the Invention

The invention relates to a variable compression piston assembly, and to an engine that has double ended pistons connected to a universal joint for converting linear motion of the pistons to rotary motion.

Most piston driven engines have pistons that are attached to offset portions of a crankshaft such that as 10 the pistons are moved in a reciprocal direction transverse to the axis of the crankshaft, the crankshaft will rotate.

U.S. Patent 5,535,709, defines an engine with a double ended piston that is attached to a crankshaft with 15 an off set portion. A lever attached between the piston and the crankshaft is restrained in a fulcrum regulator to provide the rotating motion to the crankshaft.

U.S. Patent 4,011,842, defines a four cylinder piston engine that utilizes two double ended pistons 20 connected to a T-shaped T-shaped connecting member that causes a crankshaft to rotate. The T-shaped connecting member is attached at each of the T-cross arm to a double ended piston. A centrally located point on the T-cross arm is rotatably attached to a fixed point, and the 25 bottom of the T is rotatably attached to a crank pin which is connected to the crankshaft by a crankthrow which includes a counter weight.

In each of the above examples, double ended pistons are used that drive a crankshaft that has an axis 30 transverse to the axis of the pistons.

Summary of the Invention

According to the invention, a variable compression piston assembly includes a plurality of pistons, a transition arm coupled to each of the pistons, and a 35 rotating member coupled to a drive member of the transition arm and configured for sliding movement along

- 3 -

axis is parallel to the axis of each piston. A universal joint connects the transition arm to a support.

At least one of the plurality of pistons has an output pump piston for driving a pump.

5 According to another aspect of the invention, a method for varying the compression ratio of a piston assembly includes providing a plurality of pistons, a transition arm coupled to each of the pistons, and a rotating member coupled to a drive member of the
10 transition arm and configured for sliding movement relative to an axis of the drive member. The rotating member is moved relative to the drive member to change the compression ratio of the piston assembly.

According to another aspect of the invention, a
15 method of increasing the efficiency of a piston assembly includes providing a plurality of double ended pistons, a transition arm coupled to each of the double ended pistons at approximately a center of each of the pistons, and a rotating member coupled to a drive member of the
20 transition arm and configured for sliding movement relative to the drive member. The rotating member is moved relative to the drive member to change the compression ratio and displacement of the double ended piston assembly.

25 Brief Description of the Drawings

FIGS. 1 and 2 are side view of a simplified illustration of a four cylinder engine of the present invention;

FIGS. 3, 4, 5 and 6 are a top views of the engine
30 of FIG. 1 showing the pistons and flywheel in four different positions;

FIG. 7 is a top view, partially in cross-section of an eight cylinder engine of the present invention;

FIG. 8 is a side view in cross-section of the
35 engine of FIG. 7;

- 5 -

FIG. 24a is a side view of the transition arm and universal joint of FIG. 24, taken along lines 24a, 24a;

FIG. 25 is a perspective view of a drive arm connected to the transition arm of the piston assembly of
5 FIG. 22;

FIG. 25a is an end view of a rotatable member of the piston assembly of FIG. 22, taken along lines 25a, 25a of FIG. 22, and showing the connection of the drive arm to the rotatable member;

10 FIG. 25b is a side view of the rotatable member, taken along lines 25b, 25b of FIG. 25a;

FIG. 26 is a cross-sectional, top view of the piston assembly of FIG. 22;

15 FIG. 27 is an end view of the transition arm, taken along lines 27, 27 of FIG. 24;

FIG. 27a is a cross-sectional view of a drive pin of the piston assembly of FIG. 22;

FIGS. 28-28b are top, rear, and side views, respectively, of the piston assembly of FIG. 22;

20 FIG. 28c is a top view of an auxiliary shaft of the piston assembly of FIG. 22;

FIG. 29 is a cross-sectional side view of a zero-stroke coupling;

25 FIG. 29a is an exploded view of the zero-stroke coupling of FIG. 29;

FIG. 30 is a graph showing the figure 8 motion of a non-flat piston assembly;

FIG. 31 shows a reinforced drive pin;

30 FIG. 32 is a top view of a four cylinder engine for directly applying combustion pressures to pump pistons; and

FIG. 32a is an end view of the four cylinder engine, taken along lines 32a, 32a of FIG. 32.

- 7 -

16 and to flywheel 15 through shaft 14, flywheel 15 rotates translating the linear motion of the pistons to a rotational motion.

FIG. 7 shows (in partial cross-section) a top view 5 of an embodiment of a four double piston, eight cylinder engine 30 according to the present invention. There are actually only four cylinders, but with a double piston in each cylinder, the engine is equivalent to a eight cylinder engine. Two cylinders 31 and 46 are shown.
10 Cylinder 31 has double ended piston 32, 33 with piston rings 32a and 33a, respectively. Pistons 32, 33 are connected to a transition arm 60 (FIG. 8) by piston arm 54a extending into opening 55a in piston 32, 33 and sleeve bearing 55. Similarly piston 47, 49, in cylinder
15 46 is connected by piston arm 54b to transition arm 60.

Each end of cylinder 31 has inlet and outlet valves controlled by a rocker arms and a spark plug. Piston end 32 has rocker arms 35a and 35b and spark plug 44, and piston end 33 has rocker arms 34a and 34b, and
20 spark plug 41. Each piston has associated with it a set of valves, rocker arms and a spark plug. Timing for firing the spark plugs and opening and closing the inlet and exhaust values is controlled by a timing belt 51 which is connected to pulley 50a. Pulley 50a is attached
25 to a gear 64 by shaft 63 (FIG. 8) turned by output shaft 53 powered by flywheel 69. Belt 50a also turns pulley 50b and gear 39 connected to distributor 38. Gear 39 also turns gear 40. Gears 39 and 40 are attached to cam
30 shaft 75 (FIG. 8) which in turn activate push rods that are attached to the rocker arms 34, 35 and other rocker arms not illustrated.

Exhaust manifolds 48 and 56 as shown attached to cylinders 46 and 31 respectively. Each exhaust manifold is attached to four exhaust ports.

- 9 -

the engine cooling system (not illustrated), or an oil pump.

FIG. 9 is a rear view of engine 30 showing the relative positions of the cylinders and double ended 5 pistons. Piston 32, 33 is shown in dashed lines with valves 35c and 35d located under lifter arms 35a and 35b, respectively. Belt 51 and pulley 50b are shown under distributor 38. Transition arm 60 and two, 54c and 54d, of the four piston arms 54a, 54b, 54c and 54d are shown 10 in the pistons 32-33, 32a-33a, 47-49 and 47a-49a.

FIG. 10 is a side view of engine 30 showing the exhaust manifold 56, intake manifold 56a and carburetor 56c. Pulleys 50a and 50b with timing belt 51 are also shown.

15 FIG. 11 is a front end view of engine 30 showing the relative positions of the cylinders and double ended pistons 32-33, 32a-33a, 47-49 and 47a-49a with the four piston arms 54a, 54b, 54c and 54d positioned in the pistons. Pump 67 is shown below shaft 53, and pulley 50a 20 and timing belt 51 are shown at the top of engine 30. Starter 100 is shown with gear 101 engaging the gear teeth 69a on flywheel 69.

A feature of the invention is that the compression ratio for the engine can be changed while the engine is 25 running. The end of arm 61 mounted in flywheel 69 travels in a circle at the point where arm 61 enters flywheel 69. Referring to FIG. 13, the end of arm 61 is in a sleeve bearing ball bushing assembly 81. The stroke of the pistons is controlled by arm 61. Arm 61 forms an 30 angle, for example about 15°, with shaft 53. By moving flywheel 69 on shaft 53 to the right or left, as viewed in FIG. 13, the angle of arm 61 can be changed, changing the stroke of the pistons, changing the compression ratio. The position of flywheel 69 is changed by turning 35 nut 104 on threads 105. Nut 104 is keyed to shaft 53 by

- 11 -

of double ended piston 110, and the motion of a transition arm to which piston arm 116 is attached.

FIG. 17 shows how the four cylinder engine 10 in FIG. 1 may be configured as an air motor using a four way 5 rotary valve 123 on the output shaft 122. Each of cylinders 1, 2, 3 and 4 are connected by hoses 131, 132, 133, and 144, respectively, to rotary valve 123. Air inlet port 124 is used to supply air to run engine 120. Air is sequentially supplied to each of the pistons 1a, 10 2a, 3a and 4a, to move the pistons back and forth in the cylinders. Air is exhausted from the cylinders out exhaust port 136. Transition arm 126, attached to the pistons by connecting pins 127 and 128 are moved as described with references to FIGS. 1-6 to turn flywheel 15 129 and output shaft 22.

FIG. 18 is a cross-sectional view of rotary valve 123 in the position when pressurized air or gas is being applied to cylinder 1 through inlet port 124, annular channel 125, channel 126, channel 130, and air hose 131. 20 Rotary valve 123 is made up of a plurality of channels in housing 123 and output shaft 122. The pressurized air entering cylinder 1 causes piston 1a, 3a to move to the right (as viewed in FIG. 18). Exhaust air is forced out of cylinder 3 through line 133 into chamber 134, through 25 passageway 135 and out exhaust outlet 136.

FIGS. 18a, 18b and 18c are cross-sectional view of valve 23 showing the air passages of the valves at three positions along valve 23 when positioned as shown in FIG. 18.

30 FIG. 19 shows rotary valve 123 rotated 180° when pressurized air is applied to cylinder 3, reversing the direction of piston 1a, 3a. Pressurized air is applied to inlet port 124, through annular chamber 125, passage way 126, chamber 134 and air line 133 to cylinder 3. This in 35 turn causes air in cylinder 1 to be exhausted through

- 13 -

1a and 2a are connected to universal joint 170 by drive arms 171 and 172, and to flywheel 173 by drive arm 174. The basic difference is the number of strokes of pistons 1a and 2a to rotate flywheel 173 360°.

5 Referring to FIG. 22, a two cylinder piston assembly 300 includes cylinders 302, 304, each housing a variable stroke, double ended piston 306, 308, respectively. Piston assembly 300 provides the same number of power strokes per revolution as a conventional 10 four cylinder engine. Each double ended piston 306, 308 is connected to a transition arm 310 by a drive pin 312, 314, respectively. Transition arm 310 is mounted to a support 316 by, e.g., a universal joint 318 (U-joint), constant velocity joint, or spherical bearing. A drive 15 arm 320 extending from transition arm 310 is connected to a rotatable member, e.g., flywheel 322.

Transition arm 310 transmits linear motion of pistons 306, 308 to rotary motion of flywheel 322. The axis, A, of flywheel 322 is parallel to the axes, B and 20 C, of pistons 306, 308 (though axis, A, could be off-axis as shown in FIG. 20) to form an axial or barrel type engine, pump, or compressor. U-joint 318 is centered on axis, A. As shown in FIG. 28a, pistons 306, 308 are 180° apart with axes A, B and C lying along a common plane, D, 25 to form a flat piston assembly.

Referring to FIGS. 22 and 23, cylinders 302, 304 each include left and right cylinder halves 301a, 301b mounted to the assembly case structure 303. Double ended pistons 306, 308 each include two pistons 330 and 332, 30 330a and 332a, respectively, joined by a central joint 334, 334a, respectively. The pistons are shown having equal length, though other lengths are contemplated. For example, joint 334 can be off-center such that piston 330 is longer than piston 332. As the pistons are fired in 35 sequence 330a, 332, 330, 332a, from the position shown in

- 15 -

Referring to FIGS. 24 and 24a, U-joint 318 defines a central pivot 352 (drive pin axis, E, passes through center 352), and includes a vertical pin 354 and a horizontal pin 356. Transition arm 310 is capable of 5 pivoting about pin 354 along arrow 358, and about pin 356 along arrow 360.

Referring to FIGS. 25, 25a and 25b, as an alternative to a spherical bearing, to couple transition arm 310 to flywheel 322, drive arm 320 is received within 10 a cylindrical pivot pin 370 mounted to the flywheel offset radially from the center 372 of the flywheel by an amount, e.g., 2.125 inches, required to produce the desired swing angle, α (FIG. 22), in the transition arm.

Pivot pin 370 has a through hole 374 for receiving 15 drive arm 320. There is a sleeve bearing 376 in hole 374 to provide a bearing surface for drive arm 320. Pivot pin 370 has cylindrical extensions 378, 380 positioned within sleeve bearings 382, 384, respectively. As the flywheel is moved axially along drive arm 320 to vary the 20 swing angle, α , and thus the compression ratio of the assembly, as described further below, pivot pin 370 rotates within sleeve bearings 382, 384 to remain aligned with drive arm 320. Torsional forces are transmitted through thrust bearings 388, 390, with one or the other 25 of the thrust bearings carrying the load depending on the direction of the rotation of the flywheel along arrow 386.

Referring to FIG. 26, to vary the compression and displacement of piston assembly 300, the axial position 30 of flywheel 322 along axis, A, is varied by rotating a shaft 400. A sprocket 410 is mounted to shaft 400 to rotate with shaft 400. A second sprocket 412 is connected to sprocket 410 by a roller chain 413. Sprocket 412 is mounted to a threaded rotating barrel 35 414. Threads 416 of barrel 414 contact threads 418 of a

- 17 -

cylinder, flat engine, the displacement increases by about 20% when the compression ratio is raised from 6:1 to 12:1. This produces approximately 20% more horsepower due alone to the increase in displacement. The increase 5 in compression ratio also increases the horsepower at the rate of about 5% per point or approximately 25% in horsepower. If the horsepower were maintained constant and the compression ratio increased from 6:1 to 12:1, there would be a reduction in fuel consumption of 10 approximately 25%.

The flywheel has sufficient strength to withstand the large centrifugal forces seen when assembly 300 is functioning as an engine. The flywheel position, and thus the compression ratio of the piston assembly, can be 15 varied while the piston assembly is running.

Piston assembly 300 includes a pressure lubrication system. The pressure is provided by an engine driven positive displacement pump (not shown) having a pressure relief valve to prevent overpressures. 20 Bearings 430 and 432 of drive shaft 408 and the interface of drive arm 320 with flywheel 322 are lubricated via ports 433 (Fig. 26).

Referring to FIG. 27, to lubricate U-joint 318, piston pin joints 306, 308, and the cylinder walls, oil 25 under pressure from the oil pump is ported through the fixed U-joint bracket to the top and bottom ends of the vertical pivot pin 354. Oil ports 450, 452 lead from the vertical pin to openings 454, 456, respectively, in the transition arm. As shown in FIG. 27A, pins 312, 314 each 30 define a through bore 458. Each through bore 458 is in fluid communication with a respective one of openings 454, 456. As shown in FIG. 23, holes 460, 462 in each pin connect through slots 461 and ports 463 through sleeve bearing 338 to a chamber 465 in each piston. 35 Several oil lines 464 feed out from these chambers and

- 19 -

capability is illustrated. Here, flywheel 322 is replaced by a rotating assembly 500. Assembly 500 includes a hollow shaft 502 and a pivot arm 504 pivotally connected by a pin 506 to a hub 508 of shaft 502. Hub 5 508 defines a hole 510 and pivot arm 504 defines a hole 512 for receiving pin 506. A control rod 514 is located within shaft 502. Control rod 514 includes a link 516 pivotally connected to the remainder of rod 514 by a pin 518. Rod 514 defines a hole 511 and link 516 defines a 10 hole 513 for receiving pin 518. Control rod 514 is supported for movement along its axis, Z, by two sleeve bearings 520. Link 516 and pivot arm 514 are connected by a pin 522. Link 516 defines a hole 523 and pivot arm 514 defines a hole 524 for receiving pin 522.

15 Cylindrical pivot pin 370 of FIG. 25 which receives drive arm 320 is positioned within pivot arm 504. Pivot arm 504 defines holes 526 for receiving cylindrical extensions 378, 380. Shaft 502 is supported for rotation by bearings 530, e.g., ball, sleeve, or 20 roller bearings. A drive, e.g., pulley 532 or gears, mounted to shaft 502 drives the compressor or pump.

In operation, to set the desired stroke of the pistons, control rod 514 is moved along its axis, M, in the direction of arrow 515, causing pivot arm 504 to 25 pivot about pin 506, along arrow 517, such that pivot pin 370 axis, N, is moved out of alignment with axis, M, (as shown in dashed lines) as pivot arm 504 slides along the axis, H, (FIG. 26) of the transition arm drive arm 320. When zero stroke of the pistons is desired, axes M and N 30 are aligned such that rotation of shaft 514 does not cause movement of the pistons. This configuration works for both double ended and single sided pistons.

The ability to vary the piston stroke permits shaft 514 to be run at a single speed by drive 532 while 35 the output of the pump or compressor can be continually

- 21 -

at the attachment of pins 312, 314 to transition arm 310 to account for the higher compression of diesel engines as compared to spark ignition engines. Referring to FIG. 31, support 550 is bolted to transition arm 310 with 5 bolts 551 and includes an opening 552 for receiving end 554 of the pin.

Engines according to the invention can be used to directly apply combustion pressures to pump pistons. Referring to FIGS. 32 and 32a, a four cylinder, two 10 stroke cycle engine 600 (each of the four pistons 602 fires once in one revolution) applies combustion pressure to each of four pump pistons 604. Each pump piston 604 is attached to the output side 606 of a corresponding piston cylinder 608. Pump pistons 604 extend into a pump 15 head 610.

A transition arm 620 is connected to each cylinder 608 and to a flywheel 622, as described above. An auxiliary output shaft 624 is connected to flywheel 622 to rotate with the flywheel, also as described above.

20 The engine is a two stroke cycle engine because every stroke of a piston 602 (as piston 602 travels to the right as viewed in FIG. 32) must be a power stroke. The number of engine cylinders is selected as required by the pump. The pump can be a fluid or gas pump. In use 25 as a multi-stage air compressor, each pump piston 606 can be a different diameter. No bearing loads are generated by the pumping function, and therefore, no friction is introduced other than that generated by the pump pistons themselves.

30 Other embodiments are within the scope of the following claims.

- 23 -

7. The assembly of claim 1 wherein the rotating member comprises a flywheel.

8. The assembly of claim 7 further comprising a control rod operationally connected to said flywheel such 5 that actuation of the control rod provides linear movement of the flywheel relative to the transition arm.

9. The assembly of claim 1 wherein the rotating member is configured to be positionable in a zero-stroke position in which rotation of the rotating member occurs 10 without corresponding movement of the pistons.

10. The assembly of claim 9 wherein the rotating member comprises a pivot member pivotally mounted to a control member, actuation of the control member resulting in movement of the pivot member to vary the compression 15 ratio.

11. The assembly of claim 1 wherein each piston has an axis, the pistons being arranged with their axes parallel.

12. The assembly of claim 1 further comprising a 20 plurality of drive pins, each drive pin connecting the transition arm to a corresponding piston.

13. The assembly of claim 1 wherein the drive member extends into an opening in the rotatable member adjacent to a periphery of the rotatable member.

25 14. The assembly of claim 13 wherein the drive arm extends into a pivot pin located in the rotatable member.

- 25 -

moving the rotating member relative to the drive arm to change the compression ratio and displacement of the double ended piston assembly.

2/27

SUBSTITUTE SHEET (RULE 26)

4/27

FIG. 8

SUBSTITUTE SHEET (RULE 26)

6/27

FIG. 10

SUBSTITUTE SHEET (RULE 26)

8/27

FIG. 12

SUBSTITUTE SHEET (RULE 26)

10/27

SUBSTITUTE SHEET (RULE 26)

12/27

FIG. 18

FIG. 18a

FIG. 18b

FIG. 18c

SUBSTITUTE SHEET (RULE 26)

14/27

FIG. 20

SUBSTITUTE SHEET (RULE 26)

16/27

SUBSTITUTE SHEET (RULE 26)

18/27

FIG. 27

FIG. 24

FIG. 24a

20/27

FIG. 25B

FIG. 25A

SUBSTITUTE SHEET (RULE 26)

22/27

FIG. 28a

303
304

FIG. 28

FIG. 28b

SUBSTITUTE SHEET (RULE 26)

24/27

SUBSTITUTE SHEET (RULE 26)

26/27

FIG. 27A

FIG. 31

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/19164

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : F 02 B 75/04
 US CL : 123/48 B, 78 B

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 123/48 R, 48 B, 78 R, 78 E, 78 BA, 58 BA, 58 BB

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 NONE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5,007,385 A (KITAGUCHI) 16 APRIL 1991, cols. 5 and 6.	1-6, 12-17 ----- 18
--		
Y	US 1,772,977 A (ARRIGHI) 12 AUGUST 1930, col. 2.	20

Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents.
- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *A* document defining the general state of the art which is not considered to be of particular relevance
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *E* earlier document published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed
- *&* document member of the same patent family

Date of the actual completion of the international search

19 NOVEMBER 1998

Date of mailing of the international search report

28 JAN 1999

Name and mailing address of the ISA/US
 Commissioner of Patents and Trademarks
 Box PCT
 Washington, D.C. 20231
 Facsimile No. (703) 305-3230

Authorized officer
 NOAH KAMEN
Stacia Sjunk
 Telephone No. (703) 308-1945