- 1. Multiple choice. Circle all that apply.
 - (a) [3 pts] If a particle moves along a straight line, what can you say about its acceleration vector?
 - (i) The acceleration vector is parallel to the tangent vector.
 - (ii) The acceleration vector has magnitude equal to one.
 - (iii) The acceleration vector equals the velocity vector.
 - (iv) The acceleration vector is parallel to the unit normal vector.
 - (v) The acceleration vector has a magnitude equal to zero.

- (b) [3 pts] If a particle moves with constant speed along a curve, what can you say about its acceleration vector?
 - (i) The acceleration vector is parallel to the tangent vector.
 - (ii) The acceleration vector has a magnitude of one.
 - (iii) The acceleration vector equals the velocity vector.
 - (iv) The acceleration vector is parallel to the unit normal vector.
 - (v) The acceleration vector has a magnitude of zero.

- (c) [3 pts] Let $\mathbf{r}_1(t)$ and $\mathbf{r}_2(t)$ be two parametrizations of the same space curve \mathcal{C} . Then at any time t the velocity vectors $\mathbf{v}_1(t)$ and $\mathbf{v}_2(t)$ are equal.
 - (i) True.
 - (ii) False.
 - (iii) Indeterminable.

- 2. A leaf tumbles down following the curve of intersection between the hyperbolic paraboloid $z = x^2 y^2$ and the cylinder $x^2 + y^2 = 64$.
 - (a) [3 pts] Find a vector-valued function $\mathbf{r}(t)$ that parametrizes the path taken by the falling leaf.

(b) [3 pts] How far does the *shadow* (i.e. the projection of the space curve $\mathbf{r}(t)$ onto the *xy*-plane) of the leaf travel from t=0 to $t=\pi$?

3. [4 pts] Consider the space curve \mathcal{C} parametrized by

$$\mathbf{r}(t) = \begin{bmatrix} 3\sin(t) \\ \cos(t) - \sin(t) \\ -3\cos(t) + 6 \end{bmatrix} - \infty < t < \infty$$

Show that \mathcal{C} lies entirely in a single plane. Provide an equation for the plane.