1. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 81.903. This means i = 8. We know n = 9. Determine the percentile ℓ .

$$\ell = \frac{8}{9}$$

$$\ell = 0.889$$

So, the percentile rank is 0.889, or 88.9th percentile.

(b) We are given $\ell = 0.556$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by *n*.

$$n\cdot (\ell)=n\cdot \left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (9)(0.556)$$

$$i = 5$$

Determine the x associated with i = 5.

$$x = 80.117$$

- (c) The mean: $\bar{x} = \frac{722.336}{9} = 80.26$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=9 and so n is odd.

median =
$$x_{(9+1)/2}$$
, = x_5

So, median = 80.117

2. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 79.649. This means i = 35. We know n = 36. Determine the percentile ℓ .

$$\ell = \frac{35}{36}$$

$$\ell = 0.972$$

So, the percentile rank is 0.972, or 97.2th percentile.

(b) We are given $\ell = 0.667$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by n.

$$n\cdot(\ell)=n\cdot\left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (36)(0.667)$$

$$i = 24$$

Determine the x associated with i = 24.

$$x = \boxed{71.218}$$

- (c) The mean: $\bar{x} = \frac{2524.923}{36} = \boxed{70.137}$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=36 and so n is even.

median =
$$\frac{x_{18} + x_{19}}{2} = \frac{69.01 + 69.202}{2}$$

So, median = 69.106