Week5

陈淇奥 21210160025

2022年4月18日

Exercise 0.0.1. 令 \mathcal{B} 为任意布尔代数, $a,b,c \in B$, 证明

$$-(-a + (-b) + c) + (-(-a + b)) + -a + c = 1$$

证明. 用 \bar{x} 表示-x,则

$$\begin{split} -(\bar{a} + \bar{b} + c) + (-(\bar{a} + b)) + \bar{a} + c &= ab\bar{c} + a\bar{b} + \bar{a} + c \\ &= ab\bar{c} + a\bar{b}(c + \bar{c}) + \bar{a} + c \\ &= a\bar{c} + \bar{a} + c + a\bar{b}c \\ &= c + a\bar{c} + \bar{a} = ca + c\bar{a} + a\bar{c} + \bar{a} \\ &= a + \bar{a} = 1 \end{split}$$

Exercise 0.0.2. 在 Lindenbaum 代数 $\mathcal{B}(\emptyset)$ 中,如果 $[\alpha]$ 是原子,则对任意公式 β , $\vdash \alpha \to \beta$ 或者 $\vdash \alpha \to \neg \beta$

证明. 因为 $[\alpha]$ 是原子,由引理 1.1.25,对任意 $[\beta] \neq 0$, $[\alpha] \leq [\beta]$ 或者 $[\alpha] \leq -[\beta]$,于是由练习 1.1.19, $[\alpha] + [\alpha] + [\alpha] + [\alpha] + [\alpha]$ 口

Exercise 0.0.3. 对任意布尔代数 \mathcal{A}, \mathcal{B} , 定义它们的积 \mathcal{C} 为

1.
$$C = A \times B$$

2.
$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

3.
$$(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 b_2)$$

4.
$$-(a,b) = (-a,-b)$$

5.
$$0 = (0,0), 1 = (1,1)$$

证明 C 是一个布尔代数

2.
$$(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2)=(a_2+a_1,b_2+b_1)=(a_2,b_2)+(a_1,b_1)$$

$$(a_1,b_1)(a_2,b_2)=(a_2a_1,b_2b_1)=(a_2,b_2)(a_1,b_1)$$

3.
$$(a_1,b_1)+(a_1,b_1)(a_2,b_2)=(a_1+a_1a_2,b_1+b_1b_2)=(a_1,b_1)$$

 $(a_1,b_1)((a_1,b_1)+(a_2,b_2))=(a_1(a_1+a_2),b_1(b_1+b_2))=(a_1,b_1)$

$$\begin{split} 4. & (a_1,b_1)((a_2,b_2)+(a_3,b_3)) = (a_1(a_2+a_3),b_1(b_2+b_3)) = (a_1a_2+a_1a_3,b_1b_2+b_1b_3) = (a_1,b_1)(a_2,b_2) + (a_1,b_1)(a_3,b_3) \\ & (a_1,b_1)+(a_2,b_2)(a_3,b_3) = (a_1+a_2a_3,b_1+b_2b_3) = ((a_1,b_1)+(a_2,b_2))((a_1,b_1)+(a_3,b_3)) \end{split}$$

5.
$$(a_1,b_1)+(-a_1,-b_1)=(a_1+-a_1,b_1+-b_1)=(1,1)$$

$$(a_1,b_1)(-a_1,-b_1)=(a_1(-a_1),b_1(-b_1))=(0,0)$$

Exercise 0.0.4. 对任意布尔代数 \mathcal{B} ,如果 $a \in B$ 且 a > 0,令 $B \upharpoonright a = \{b \in B \mid b \leq a\}$,令 $\mathcal{B} \upharpoonright a$ 中的运算 $+,\cdot,0$ 保持与 \mathcal{B} 中一致,而 1 和 -b 分别为 a 和 $a \cdot (-b)$

- 1. 证明 $\mathcal{B} \upharpoonright a$ 是一个布尔代数
- 2. 对任意 $a \in B, B \cong (\mathcal{B} \upharpoonright a) \times (\mathcal{B} \upharpoonright -a)$

证明. 1. 不难验证

2. 定义 $f: \mathcal{B} \to (\mathcal{B} \upharpoonright a) \times (\mathcal{B} \upharpoonright -a)$ 为 $f(b) = (b \cdot a, b \cdot (-a))$, 于是

- (a) f(0) = (0,0), f(1) = (a,-a)
- (b) $f(b_1+b_2)=(b_1a+b_2a,b_1(-a)+b_2(-a))=(b_1a,b_1(-a))+(b_2a,b_2(-a))=f(b_1)+f(b_2)$ 同理 $f(b_1\cdot b_2)=f(b_1)\cdot f(b_2)$
- (c) 若 $f(b_1) = f(b_2)$, 则 $b_1 a = b_2 a$ 且 $b_1(-a) = b_2(-a)$, 于是 $b_1(a + (-a)) = b_2(a + (-a))$, 因此 $b_1 = b_2$
- (d) 对于任意 $b \in \mathcal{B} \upharpoonright a, c \in \mathcal{B}$,则 $b \leq a, c \leq -a$,于是 $ca \leq a(-a) = 0$, $b(-a) \leq a(-a) = 0$,因此 ca = b(-a) = 0,因此 f(b+c) = (b,c)

Exercise 0.0.5. 令 $h: \mathcal{A} \to \mathcal{B}$ 为同态, $D \subseteq A \coprod \sum D$ 存在,称 h **保持** $\sum D$,如果 $\sum h[D]$ 存在且 $h(\sum D) = \sum h[D]$

证明: \mathcal{B} 上的超滤 U 保持 $\sum D$ 当且仅当 U 确定的同态 $f:\mathcal{B} \to \{0,1\}$ 保持 $\sum D$

证明. \Rightarrow : 因为 U 保持 $\sum D$,存在 $d \in D$ 使得 $d \in U$,于是 f(d) = 1,因此 $\sum f(d) = 1$, $\sum h[D] = 1$,于是 $h(\sum D) = 1 = \sum h[D]$

 \Leftarrow : 若 $\sum D \in U$,则 $f(\sum D) = 1 = \sum f[D]$,若对于所有 $d \in D$, f(d) = 0,则 $\sum f[D] = 0$,因此存在 $d \in D$ 使得 f(d) = 1,因此 $d \in U$ \square

Exercise 0.0.6. 令 \mathcal{B} 为布尔代数, $h: \mathcal{B} \to \mathcal{P}(Ult(\mathcal{B}))$ 为 Stone 映射,对任意 $b \in B$,称 h(b) 为 $S(\mathcal{B})$ 的 **基本开集**,如果集合 $X \subseteq Ult(\mathcal{B})$ 能表示称基本 开集的并集,就称 X 为 **开集**,开集的补集为 **闭集**

证明. 1. 证明 h(d) 既是开集,也是闭集

2. 对任意 $U, V \in Ult(\mathcal{B})$,如果 $U \neq V$,则存在一个开闭集包含 U,但不包含 V

- 证明. 1. h(d) 显然是开集,而 h(-d) 也是开集,而 $h(d) \cap h(-d) = \emptyset$ 且 $h(d) \cup h(-d) = Ult(\mathcal{B})$,因此 h(d) 为闭集
 - 2. 取 $b \in U \setminus V$,于是 $-b \in V$,因此 $V \notin h(b)$

Exercise 0.0.7. 如果 $C \subseteq \mathcal{P}(Ult(\mathcal{B}))$ 是开集的族,且 $\bigcup C = Ult(\mathcal{B})$,就成 X 是 **开覆盖**。证明: 如果 C 是开覆盖,则存在有穷的 $C_0 \subseteq C$, $\bigcup C_0 = Ult(\mathcal{B})$

证明. 令 $h: \mathcal{B} \to \mathcal{P}(Ult(\mathcal{B}))$ 为 Stone 映射,令 [b] 表示 h(b)。因为每个开集都是基础开集的并,则 $\bigcup C = \bigcup_{b \in D} [b]$,即 $\bigcap_{b \in D} [-b] = \mathcal{P}(Ult(\mathcal{B})) - \bigcup C$ 。

若对于任何有穷的 $C_0 \subseteq C$, $\bigcup C_0 \neq Ult(\mathcal{B})$, 则基础开集族 {[-b] : $b \in D$ } 有穷交性质,因此 { $-b : b \in D$ } 有有穷交性质,因此存在超滤 $U \supseteq \{-b : b \in D\}$, 因此 $U \notin \bigcup C$, 于是 $\bigcup C \neq Ult(\mathcal{B})$, 矛盾

Exercise 0.0.8. 对任意布尔代数 \mathcal{B} , $D \subseteq B$ 且 $\sum D$ 存在,证明: Stone 映射保持 $\sum D$ 当且仅当存在有穷 $D_0 \subseteq D$ 且 $\sum D = \sum D_0$

证明. $\Diamond h$ 为 Stone 映射。

 \Rightarrow : $h(\sum D) = \sum h[D] = \bigcup h[D]$, 于是存在有穷 $D_0 \subseteq D$ 使得 $h(\sum D) = \bigcup h[D_0] = h(\sum D_0)$, 因为 h 是单射, $\sum D_0 = \sum D$

于是 $h(\sum D) = h(\sum D_0) = +_{d \in D_0} h(d) = \bigcup_{d \in D_0} h(d) = \sum \{h(d) : d \in D_0\} = \sum h[D_0]$

 $\sum h[D_0] \leq \sum h[D], 存在有穷 D_1 \subseteq D 使得 \sum h[D_1] = \sum h[D], 因 此 \sum D_0 \leq \sum (D_0 \cup D_1) \leq \sum D, 因此 \sum (D_0 \cup D_1) = \sum D 且 h(\sum D) = h(\sum (D_0 \cup D_1)) = \sum h[D_0 \cup D_1] = \sum h[D]$