Project: VK network analysis

German Sokolov

Outline

- 1. Network summary
- 2. Structural analysis
 - Centrality
 - Assortativity
 - Similarity
 - Approximating random graph
- 3. Community detection
 - Cliques
 - K-shells
 - Communities

Outline

1. Network summary

- 2. Structural analysis
 - Centrality
 - Assortativity
 - Similarity
 - Approximating random graph
- 3. Community detection
 - Cliques
 - K-shells
 - Communities

Network summary

- Data collection VK API ("vk" library)
- Attributes of nodes*:
 - Name
 - Sex
 - City
 - University
- Key information:
 - Number of nodes 162
 - Number of edges 1 046
 - Diameter 11
 - Average clustering coefficient** 0.59
 - Number of connected components 4

^{* &}quot;NA" for missing values

^{**} For largest connected component

Network summary. Layout

Crucial observations:

- 1 giant connected component
- 2 separate nodes deleted accounts
- 3 distinct communities
 - hometown
 - 2 universities
- 1 node is connected with ≈50% of other nodes

Network summary. Node degrees

- Power-law nature
- The majority of nodes have <14 connections</p>
 - Min degree 0
 - Max degree 70

Outline

1. Network summary

2. Structural analysis

- Centrality
- Assortativity
- Similarity
- Approximating random graph
- 3. Community detection
 - Cliques
 - K-shells
 - Communities

Structural analysis. Degree centrality

Top node "**Юра**" has value 0.45, i.e. knows almost 1/2 of my friends

Structural analysis. Closeness centrality

- 1st top node is the same
- 2nd top node is head-hunter "Глеб"
- More uniform distribution of metric's values
- Nodes in giant CC have higher values – they are closer to many nodes in the graph

Structural analysis. Betweenness

- Top 1st node is head-hunter "Глеб" – lies on many short paths
- 2 well-known Russian businessman "Дмитрий Потапенко"

134 - the guys who just know "Дмитрий Потапенко"

Structural analysis. Pagerank

- Ranks are generally the same as degree centrality
 - same 1st top node
- Distributed more uniformly
 - nodes in small clusters still can have significant values

Structural analysis. Centrality measures

Very different distributions:

- degree centrality:
 - identical to just degree distribution
 - power-law nature
- closeness:
 - Pareto-like within communities
 - more uniform
- betweenness:
 - only 5 nodes have significant values
 - underlines those nodes which connect communities into single CC
- Pagerank:
 - almost uniform for majority of nodes
 - can be high within small almost isolated communities

Network is assortative

- City and University the most influential attributes
- Node degree is less significant and uncertain
 - **Example:** "Дмитрий Потапенко" must have high negative degree assortativity instead of high positive
- Sex is not important

Similarity metrics reveal 3 clusters

- Cuthill–McKee algorithm to rearrange adjacency matrix
- Visual output is identical
 - clear presence of 3 communities
- Order of top similar nodes same for all metrics

Random models poorly approximate VK network

Assumptions:

- 3 metrics to compare similarity
 - density
 - diameter
 - transitivity
- same number of nodes and edges
- probability parameter in Small World is optimized*
- Degree number for BA model – average degree for VK network

Network model	Aver clustering	Diameter
Empirical VK	0.59	11
Erdos-Renyi	0.08	4
Barabasi-Albert	0.17	3
Small world	0.57	12

- BA model has the most similar degree distribution (powerlaw)
 - **But:** low transitivity and small diameter
- Closest metrics in Small world model – because of optimized parameter,
 - **But:** Pareto-like density

^{*} Optimization as minimization of sum of relative differences between modularity/clustering coefficient in random model and empirical network

Outline

- 1. Network summary
- 2. Structural analysis
 - Centrality
 - Assortativity
 - Similarity
 - Approximating random graph
- 3. Community detection
 - Cliques
 - K-shells
 - Communities

Largest clique - people on the same floor of HSE dorm

- Maximum clique size 12
 - all lived on the 5th floor of the HSE dorm
 - located within large community
- Many cliques of large sizes:

People from HSE comprise maximal 14th - shell

K-clique percolation finds only large obvious communities

Louvain algorithm has the highest modularity but not the best output

Spectral modularity optimization is worse than Louvain algorithm

Walktrap algorithm has the best performance

Label propagation algorithm is among outsiders

Walktrap is the best interpretable algorithm

Highest modularity does not imply best interpretation:

Method	Modularity	Number of communities	Interpretation, rank
Louvain	0.51	8	2
Spectral modularity	0.48	9	3
Walktrap	0.46	10	1
Markov clustering	0.31	10	6
K-clique percolation	0.31	5	5
Label propagation	0.48	7	4