Abstract

We briefly describe the group of isometries of $\mathbb{C}^2 \cong \mathbb{R}^4$. In particular, we give both algebraic and topological characterizations of five important subgroups.

Let $(\mathbb{C}^2, \|\cdot\|)$ denote the normed vector space \mathbb{C}^2 over \mathbb{R} where $\|\cdot\|: \mathbb{C}^2 \to [0, \infty)$ is given by

$$||(z,w)|| = \sqrt{z\bar{z} + w\bar{w}}.$$

That is, $\|\cdot\|$ is exactly the norm induced by the (Euclidean) inner product $\langle (z, w), (z, w) \rangle$. Then $\mathbb{C}^2 \cong \mathbb{R}^4$ as normed vector spaces via the map T given by

$$(a+bi, a'+b'i) \mapsto (a, a', b, b'). \tag{*}$$

Notation. The symbol • denote the Euclidean inner product as well.

Endow \mathbb{C}^2 and \mathbb{R}^4 with the standard Euclidean metrics d and d', respectively. Since $\|T(\vec{v})\| = \|\vec{v}\|$ and T is linear, we see that $d(\vec{v}, \vec{x}) = \|\vec{v} - \vec{x}\| = \|T\vec{v} - T\vec{x}\| = d'(T\vec{v}, T\vec{x})$ for any $\vec{v}, \vec{x} \in \mathbb{C}^2$. Likewise, we see that $d(T^{-1}(\vec{y}), T^{-1}(\vec{z})) = \|T^{-1}(\vec{y}) - T^{-1}(\vec{z})\| = \|\vec{y} - \vec{z}\| = d'(\vec{y}, \vec{z})$ for any $\vec{y}, \vec{z} \in \mathbb{R}^4$. Thus, the map $f \mapsto T \circ f \circ T^{-1}$ defines a group isomorphism $\mathrm{Isom}(\mathbb{C}^2) \cong \mathrm{Isom}(\mathbb{R}^4)$, provided that both $\mathrm{Isom}(\mathbb{C}^2)$ and $\mathrm{Isom}(\mathbb{R}^4)$ are groups under composition. Certainly they are closed under composition and contain the identity map. Also, every isometry f of a given metric space (X, ρ) must be injective. Indeed, if $x \neq y$ but f(x) = f(y), then $\rho(x, y) \neq 0 = \rho(f(x), f(y))$, which is impossible. Since the inverse of f must also be an isometry, it just remains to show that f is surjective in order to prove that the two are in fact groups. We do this below.

Let $O(4) := \{ f \in Isom(\mathbb{R}^4) : f \text{ fixes } \vec{0} \}$. For each $\vec{v} \in \mathbb{R}^4$, define $T_{\vec{v}} : \mathbb{R}^4 \to \mathbb{R}^4$ by $\vec{x} \mapsto \vec{x} + \vec{v}$.

Lemma 1. Any $A \in \text{Isom}(\mathbb{R}^4)$ can be written uniquely as $T_{A(\vec{0})} \circ g$ for some $g \in O(4)$.

Proof. Define $g: \mathbb{R}^4 \to \mathbb{R}^4$ by $A(\vec{v}) - A(\vec{0})$. Then $g \in O(4)$, and $A(\vec{v}) = T_{A(\vec{0})} \circ g(\vec{v})$ for any \vec{v} . Further, if $A = T_{A(\vec{0})} \circ k$ for some $k \in O(4)$, then $g(\vec{v}) = A(\vec{v}) - A(\vec{0}) = k(\vec{v})$, thereby proving uniqueness.

Definition 2. A matrix $X \in \mathbb{M}^4(\mathbb{R})$ is *orthogonal* if its column vectors are orthonormal.

Proposition 3. The following are equivalent.

- (a) X is orthogonal.
- (b) $X \in GL(4,\mathbb{R})$ with $X^T = X^{-1}$.

Corollary 4. Any orthogonal matrix $X \in \mathbb{M}^4(\mathbb{R})$ preserves the inner product, i.e., $\langle X\vec{v}, X\vec{w} \rangle = \langle \vec{v}, \vec{w} \rangle$ for any $\vec{v}, \vec{w} \in \mathbb{R}^4$.

Proof. We have that
$$X\vec{v} \bullet X\vec{w} = \vec{v} \bullet X^T X\vec{w} = \vec{v} \bullet I\vec{w} = \vec{v} \bullet \vec{w}$$
.

Corollary 5. If $X \in \mathbb{M}^4(\mathbb{R})$ is orthogonal, then $|\det(X)| = 1$.

Proof. We have that
$$1 = \det(I) = \det(XX^T) = \det(X)^2$$
.

Lemma 6. If $X \in \mathbb{M}^4(\mathbb{R})$ is orthogonal, then $X \in O(4)$.

Proof. By Corollary 4, X preserves the inner product, which implies that

$$||X\vec{v} - X\vec{w}||^2 = ||X\vec{v}||^2 - 2X\vec{v} \cdot X\vec{w} + ||X\vec{w}||^2$$
$$= ||\vec{v}||^2 - 2\vec{v} \cdot \vec{w} + ||\vec{w}||^2$$
$$= ||\vec{v} - \vec{w}||^2$$

for any $\vec{v}, \vec{w} \in \mathbb{R}^4$. Thus, $d'(X\vec{v}, X\vec{w}) = d'(\vec{v}, \vec{w})$, and $X \in O(4)$.

Definition 7. An invertible linear operator T on a finite-dimensional vector space is *orientation-preserving* if det $M_T > 0$ and *orientation-reversing* if det $M_T < 0$ where M_T denotes the matrix of T.

Soon we shall prove that $O(4) \subset GL(4,\mathbb{R})$. Therefore, it makes sense to introduce the group

$$\mathrm{SO}(4) \coloneqq \left\{ f \in \mathrm{Isom}(\mathbb{R}^4) : f \text{ fixes } \vec{0} \text{ and is orientation-preserving} \right\}.$$

Let $\{\vec{e}_1, \ldots, \vec{e}_4\}$ denote the standard basis of \mathbb{R}^4 . We are now ready to establish a so-called TRF-decomposition of Isom(\mathbb{R}^4).

Theorem 8. Let $\mathcal{F}: \mathbb{R}^4 \to \mathbb{R}^4$ be given either by the identity map or the reflection $(a, b, c, d) \mapsto (a, b, c, -d)$. Let $A \in \text{Isom}(\mathbb{R}^4)$. Then we can write

$$A = T_{A(\vec{0})} \circ R' \circ \mathcal{F}$$

for some $R' \in SO(4)$.

Proof. By Lemma 1, we can write $A = T_{A(\vec{0})} \circ g$ for some $g \in O(4)$. Since g is an isometry, we know that $\|\vec{x} - \vec{y}\|^2 = \|g(\vec{x}) - g(\vec{y})\|^2$ for any $\vec{x}, \vec{y} \in \mathbb{R}^4$. As g fixes $\vec{0}$, it follows that $\|g(\vec{v})\| = \vec{v}$ for any $\vec{v} \in \mathbb{R}^4$. We can apply the additivity of the inner product to get

$$||g(\vec{v})||^2 + ||g(\vec{w})||^2 - 2\langle g(\vec{v}), g(\vec{w}) \rangle = \langle g(\vec{v}) - g(\vec{w}), g(\vec{v}) - g(\vec{w}) \rangle$$

= $\langle \vec{v} - \vec{w}, \vec{v} - \vec{w} \rangle$
= $||\vec{v}||^2 + ||\vec{w}||^2 - 2\langle \vec{v}, \vec{w} \rangle$.

We can cancel terms to find that g preserves the inner product. Note that our proof of this fact actually applies to any element of O(4).

Now, it follows that $||g(\vec{e_i})||^2 = ||\vec{e_i}||^2 = 1$ for each i = 1, 2, 3, 4, so that $||g(\vec{e_i})|| = 1$. Similarly, we can deduce that $\langle g(\vec{e_i}), g(\vec{e_j}) \rangle = 0$ if $i \neq j$. Thus, $\{g(\vec{e_i})\}_{i=1,2,3,4}$ is an orthonormal (hence linearly independent) set. Let

$$M \coloneqq \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ g(\vec{e}_1) & g(\vec{e}_2) & g(\vec{e}_3) & g(\vec{e}_4) \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}.$$

Then $M^TM = MM^T = I$, so that M is invertible with $M^T = M^{-1}$. Lemma 6 implies that $M \in O(4)$. The isometry $f := M^{-1} \circ g : \mathbb{R}^4 \to \mathbb{R}^4$ satisfies $f(\vec{0}) = \vec{0}$ and $f(\vec{e_i}) = \vec{e_i}$ for each i. Since $f \in O(4)$, it follow that

$$f(\vec{x}) \bullet f(\vec{e}_i) = \vec{x} \bullet \vec{e}_i = f(\vec{x}) \bullet \vec{e}_i = \vec{x} \bullet \vec{e}_i$$

for each i. Writing $\vec{x} = \sum_{i=1}^4 c_i \vec{e_i}$ for some $c_i \in \mathbb{R}$, we have that $f(\vec{x}) \bullet \vec{e_i} = \left(\sum_{i=1}^4 c_i \vec{e_i}\right) \bullet \vec{e_i} = c_i$, and thus $f(\vec{x}) = \vec{x}$. Hence f = Id, so that M = g. We deduce that any isometry of \mathbb{R}^4 that fixes $\vec{0}$ is given by an orthogonal matrix.

By Corollary 5, $\det(g) = \pm 1$. If $\det(g) = 1$, then $g \in SO(4)$, and we're done. Assume that $\det(g) = -1$. Note that the reflection

$$\phi(a, b, c, d) \equiv (a, b, c, -d)$$

is given by the matrix

$$S \coloneqq \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

Since it's clear that $\phi \in O(4)$, we see that $g \circ \phi \in O(4)$. Also, $\det(gS) = \det(g) \det(S) = (-1)(-1) = 1$. Therefore, $g \circ \phi \in SO(4)$. Since $\phi = \phi^{-1}$, it follows that $(g \circ \phi) \circ \phi = g \circ (\phi^2) = g$. Now, set $R' = g \circ \phi$ and $\mathcal{F} = \phi$, thereby completing out proof.

By inspecting our last proof, we obtain several quick results.

Corollary 9. If $X \in \mathbb{M}^4(\mathbb{R})$ preserves the inner product, then X is orthogonal.

Corollary 10. We have that

$$O(4) = \{X \in GL(4, \mathbb{R}) : X \text{ is orthogonal}\}$$

$$SO(4) = \{X \in GL(4, \mathbb{R}) : X \text{ is orthogonal and } det(X) = 1\}.$$

Corollary 11. A function f is an element of $\text{Isom}(\mathbb{R}^4)$ if and only if there exist $M \in O(4)$ and $\vec{b} \in \mathbb{R}^4$ such that for any $\vec{x} \in \mathbb{R}^4$, $f(\vec{x}) = M\vec{x} + \vec{b}$. In this case, $M = R' \circ \mathcal{F}$ with notation as in Theorem 8.

Corollary 12. Every $f \in \text{Isom}(\mathbb{R}^4)$ and every $g \in \text{Isom}(\mathbb{C}^2)$ are invertible, so that both $\text{Isom}(\mathbb{C}^2)$ and $\text{Isom}(\mathbb{R}^4)$ are groups under composition.

Proof. Thanks to Corollary 11, we can write $f(\vec{x}) = M\vec{x} + \vec{b}$. Then it's easy to verify that $f^{-1}(\vec{x}) = M^{-1}\vec{x} - M^{-1}\vec{b}$.

Moreover, with T given by (*), we find that $g = T \circ h \circ T^{-1}$ for some $h \in \text{Isom}(\mathbb{R}^4)$. Hence g is the composition of three invertible functions and thus is invertible.

Note 13. The decomposition of A given in Theorem 8 is unique.

Proof. Suppose $A(\vec{x}) = M\vec{x} + \vec{b} = M'\vec{x} + \vec{b}'$ for every $\vec{x} \in \mathbb{R}^4$. Then $\vec{b} = \vec{b}'$, so that M = M'. Moreover, if $M = T \circ \mathcal{F}$ for some $T \in SO(4)$, then $T = M \circ \mathcal{F}$. This shows that the decomposition $A = T_{A(\vec{0})} \circ g \circ \mathcal{F}$ given in Theorem 8 is, indeed, unique.

Recall that the Hermitian inner product $H: \mathbb{C}^2 \times \mathbb{C}^2 \to [0, \infty)$ is defined by $H(x, y) = x_1 \bar{y}_1 + x_2 \bar{y}_2$.

Definition 14. For any $n \in \mathbb{N}$, a matrix $X \in \mathbb{M}^n(\mathbb{C})$ is unitary if its column vectors are orthonormal with respect to H.

Notation. Let U(n) denote the set of such matrices.

Proposition 15. The following are equivalent.

- (a) $X \in U(2)$.
- (b) $X \in GL(2,\mathbb{C})$ with $X^* = X^{-1}$, where X^* denotes the conjugate transpose of X.

Corollary 16. U(n) is a group under composition for each n = 1, 2.

Proof. First, note that $U(1) = \{z \in \mathbb{C} : |z| = 1\} = S^1$, which is a group because the complex modulus is multiplicative and $|z| = 1 \implies |z^{-1}| = \frac{|\bar{z}|}{|z|^2} = 1$. Next, consider U(2). It suffices to verify closure. If $A, B \in U(2)$, then $(AB)^*(AB) = B^*A^*AB = B^*B = I$, and thus $AB \in U(2)$.

Remark 17. U(2) is nonabelian.

Proof. Let
$$A := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 and $B := \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. These are unitary, but $0 \neq AB = -BA$.

Corollary 18. Every 2×2 unitary matrix X has $|\det(X)| = 1$, where $|\cdot|$ denote the complex modulus.

Proof. We have that
$$1 = \det(I) = \det(XX^*) = \det(X)\det(X^*) = \det(X)\overline{\det(X)} = |\det(X)|$$
.

From a linear-algebraic perspective, we see that U(2) is the complex analogue of O(4). Group-theoretically, however, we can construct an embedding $F: U(2) \hookrightarrow SO(4)$ as follows. For each $M \in U(2)$, write

$$M = \begin{bmatrix} a_1 + b_1 i & a_2 + b_2 i \\ a_3 + b_3 i & a_4 + b_4 i \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} + i \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} = A + iB$$

¹As a result, SO(4) is nonabelian and hence not isomorphic to SO(2).

and set $F(M) = \begin{bmatrix} A & -B \\ B & A \end{bmatrix}$. It's easy to verify that F(M) is orthogonal. Also, note that

$$\det(F(M)) = 1 \cdot \det\left(\begin{bmatrix} A & -B \\ B & A \end{bmatrix}\right) \cdot 1$$

$$= \det\left(\begin{bmatrix} I & 0 \\ iI & I \end{bmatrix}\begin{bmatrix} A & -B \\ B & A \end{bmatrix}\begin{bmatrix} I & 0 \\ -iI & I \end{bmatrix}\right)$$

$$= \det\left(\begin{bmatrix} A+iB & -B \\ 0 & A-iB \end{bmatrix}\right)$$

$$= \det(A+iB)\det(A-iB)$$

$$= \det(A)^2 + \det(B)^2$$

$$= |\det(M)|^2 = 1.$$

Therefore, F is well-defined. To verify that F is a homomorphism, note that if N = C + Di, then MN =(AC-BD) + (AD+BC)i. In this case

$$F(MN) = \begin{bmatrix} AC - BD & -AD - BC \\ AD + BC & AC - BD \end{bmatrix} = \begin{bmatrix} A & -B \\ B & A \end{bmatrix} \begin{bmatrix} C & -D \\ D & C \end{bmatrix} = F(M)F(N).$$

Furthermore, if $F(M) \in \ker(F)$, then $A = I_2$ and $B = 0_2$, i.e., $M = I_2$. Hence $\ker(F)$ is trivial, and thus Fis an injective homomorphism, as desired.

In fact, the 2×2 unitary matrices are precisely those elements of SO(4) which preserve the Hermitian inner product H. This provides us with a geometric distinction between U(2) and SO(4).

Lemma 19. The map $R \in \mathbb{M}^2(\mathbb{C})$ satisfies H(R(x), R(y)) = H(x, y) for any $x, y \in \mathbb{C}^2$ if and only if

Proof. Note that
$$H(x,y) = \bar{x}^T y$$
. Then $H(Rx,Ry) = H(x,y) \iff \overline{Rx}^T R y = \bar{x}^T y \iff \bar{x}^T (\overline{R}^T R) y = \bar{x}^T y \iff \overline{R}^T R = I$.

Let us look now at the complex analogue of SO(4). The map $D: \mathrm{U}(2) \to \mathrm{U}(1)$ given by $D(X) = \det(X)$ is well-defined by Corollary 18. As det is multiplicative, it is also a homomorphism. For any $e^{i\theta} \in \mathbb{C}$, we see that $M := \begin{bmatrix} e^{i\frac{\theta}{2}} & 0 \\ 0 & e^{i\frac{\theta}{2}} \end{bmatrix} \in \mathrm{U}(2)$ and $D(M) = e^{i\theta}$, which means that D is surjective. Now note that

$$\ker D = K := \{X \in \mathrm{U}(2) : \det(X) = 1\}.$$

This yields an isomorphism $U(2)/K \cong U(1)$ in **Grp**.

Let $SU(2) := \ker(D)$. Then SU(2) consists precisely of those 2×2 unitary matrices which are orientationpreserving. Let $W \in SU(2)$ and write $W = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Since $\det(W) = 1$, we find that $W^{-1} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. Since $W^* = W^{-1}$, it follows that $d = \bar{a}$ and $-\bar{b} = c$. Therefore, $\det(W) = \|(a,c)\|^2 = a\bar{a} + c\bar{c} = 1$, and $W = \begin{vmatrix} a & c \\ -\bar{c} & \bar{a} \end{vmatrix}$. Conversely, the column vectors of such a matrix are orthonormal. Hence

$$\mathrm{SU}(2) = \left\{ X \in \mathbb{M}^2(\mathbb{C}) : X = \begin{bmatrix} x & y \\ -\bar{y} & \bar{x} \end{bmatrix} \text{ with } x\bar{x} + y\bar{y} = 1 \right\}.$$

Theorem 20. $U(2) \cong (SU(2) \times U(1)) / \mathbb{Z}_2$ in Grp.

Proof. Define $\psi: \mathrm{SU}(2) \times \mathrm{U}(1) \to \mathrm{U}(2)$ by $(A,k) \mapsto kA$. This map is certainly a well-defined homomorphism. Moreover, for any $X \in \mathrm{U}(2)$, note that $\sqrt{\det(X)} \in \mathrm{U}(1)$ and $\frac{1}{\sqrt{\det(X)}}X \in \mathrm{SU}(2)$, so that $\left(\frac{1}{\sqrt{\det(X)}}X, \sqrt{\det(X)}\right) \mapsto X$. Thus, ψ is surjective. Finally, notice that $\ker \psi = \{\pm(I,1)\} \cong \mathbb{Z}_2$. By the

$$\left(\frac{1}{\sqrt{\det(X)}}X, \sqrt{\det(X)}\right) \mapsto X$$
. Thus, ψ is surjective. Finally, notice that $\ker \psi = \{\pm(I,1)\} \cong \mathbb{Z}_2$. By the

first isomorphism theorem, we get an isomorphism $\tilde{\psi}: \mathrm{U}(2) \stackrel{\cong}{\longrightarrow} (\mathrm{SU}(2) \times \mathrm{U}(1))/\mathbb{Z}_2$, as desired.

It turns out that SU(2) is the same as the group of rotations of \mathbb{R}^3 .

Theorem 21. $SU(2) \cong S^3$ in Grp.

Proof. For any $x := (x_1, x_2, x_3, x_4) \in S^3$, write $z = x_1 + x_2 i \in \mathbb{C}$ and $w = x_3 + x_4 i \in \mathbb{C}$. Then x = z + w j. Define the map $f: S^3 \to \mathrm{SU}(2)$ by

$$f(x) = \begin{bmatrix} z & w \\ -\bar{w} & \bar{z} \end{bmatrix}.$$

We see that $|x|^2=|z|^2+|w|^2=\det\begin{bmatrix}z&w\\-\bar{w}&\bar{z}\end{bmatrix}$. Hence $x\in S^3$ if and only if $\det\begin{bmatrix}z&w\\-\bar{w}&\bar{z}\end{bmatrix}=1$, which establishes a clear bijection. It remains to check that f is a homomorphism. Let $y\in S^3$ so that y=p+qj. Then since $jw=\bar{w}j$ and $jz=\bar{z}j$, we obtain

$$xy = pz + pwj + q(jz) + p(jw)j = (pz - p\bar{w}) + pw + q\bar{z})j.$$

Finally, we compute

$$f(yx) = \begin{bmatrix} \frac{pz - q\bar{w}}{-pw + q\bar{z}} & \frac{pw + q\bar{z}}{pz - q\bar{w}} \end{bmatrix}$$

$$= \begin{bmatrix} pz - q\bar{w} & pw + q\bar{z} \\ -\bar{p}\bar{w} - \bar{q}z & \bar{p}\bar{z} - \bar{q}w \end{bmatrix}$$

$$= \begin{bmatrix} p & q \\ -\bar{q} & \bar{p} \end{bmatrix} \begin{bmatrix} z & w \\ -\bar{w} & \bar{z} \end{bmatrix}$$

$$= f(y)f(x).$$

Next, we turn our attention to providing $\text{Isom}(\mathbb{R}^4)$, O(4), SO(4), U(2), and SU(2) with topological characterizations. This will enable us to determine each one's relative size. We begin by deepening the equivalence between SU(2) and SO(3).

Theorem 22. $SU(2) \cong S^3$ in Top.

Proof. We claim that the map f from Theorem 21 is a homeomorphism. Indeed, note that as S^3 is a closed and bounded subset of Euclidean space, it is compact. Also, SU(2) is Hausdorff as a topological group. Thus, it suffices to show that f is continuous. By identifying each matrix in f's codomain with a vector in \mathbb{C}^4 , we find that continuity follows from the fact that complex conjugation is continuous along with the fact that continuity is preserved by addition and multiplication.

Corollary 23. SU(2) is simply connected.

Theorem 24. $U(2) \cong (SU(2) \times U(1)) / \mathbb{Z}_2$ in **Top**.

Proof. We claim that the map $\tilde{\psi}$ from Theorem 20 is a homeomorphism. Indeed, it is clearly continuous due to the universal property of quotient spaces. Moreover, its inverse is given by

$$X \mapsto \left[\left(X \frac{1}{\sqrt{\det X}}, \sqrt{\det X} \right) \right],$$

which is continuous because both $\sqrt{\cdot}$ and $\det(\cdot)$ are continuous.

Proposition 25. For any quaternions x, y, we have $\overline{xy} = \overline{y}\overline{x}$.

Recall that by definition $|x| = \sqrt{x\bar{x}}$.

Corollary 26. |xy| = |x||y|.

Theorem 27. $SO(4) \cong S^3 \times SO(3)$ in Top.

Proof. Identity \mathbb{R}^4 with the group of quaternions. For each $q \in S^3$, the map $\alpha_q : \mathbb{R}^4 \to \mathbb{R}^4$ given by $a \mapsto aq$ satisfies |aq| = |a||q| = |a| thanks to Corollary 26. Hence for any $a, b \in \mathbb{R}^4$, we get $|a - b| = |\alpha_q(a - b)| = |aq - bq|$, so that $\alpha_q \in \text{Isom}(\mathbb{R}^4)$. Further, since $\alpha_q(0) = 0$, it belongs to O(4). Hence it preserves the Euclidean inner product.

We construct a continuous embedding $E: \mathrm{O}(3) \hookrightarrow \mathrm{O}(4)$ as follows. Let $X \in \mathrm{O}(3)$ and write $X = [\vec{x} \ \vec{y} \ \vec{z}]$ where $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^3$. Then set

$$E(X) = (1, x, y, z) := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \vdots & \vdots & \vdots \\ 0 & \vec{x} & \vec{y} & \vec{z} \\ 0 & \vdots & \vdots & \vdots \end{bmatrix},$$

which is an element of O(4). Now, define $f: S^3 \times \mathrm{O}(3) \to \mathrm{O}(4)$ by $(q, (1, x, y, z)) \mapsto (q, xq, yq, zq)$. As α_q preserves the norm and the inner product, it preserves orthonormality. This means that f is well-defined. It's clear that f is continuous. Moreover, f is invertible with continuous inverse $(v, u, r, s) \mapsto (v, (1, uv^{-1}, rv^{-1}, sv^{-1}))$. Note that, in fact, $(1, uv^{-1}, rv^{-1}, sv^{-1}) \in \mathrm{O}(3)$ because $\alpha_{v^{-1}}$ preserves orthonormality, so that in particular vv^{-1} must be orthogonal to each of the other three column vectors. Hence the first row vector must be (1, 0, 0, 0), as required.

Finally, the restriction of f to $S^3 \times SO(3)$ yields the desired homeomorphism.

Corollary 28. $SO(4) \cong S^3 \times \mathbb{RP}^3$.

Corollary 29. $O(4) \cong S^3 \times O(3)$.

Our final result characterizes the entire space $\text{Isom}(\mathbb{R}^4)$.

Theorem 30. Isom(\mathbb{R}^4) \cong O(4) \times \mathbb{R}^4 in **Top**.

Proof. With notation as in Corollary 11, define $F: \mathrm{Isom}(\mathbb{R}^4) \to \mathrm{O}(4) \times \mathbb{R}^4$ by $f \mapsto \left(M, \vec{b}\right)$. Note 13 implies that F is well-defined, and Corollary 9 implies that it is a bijection. Note that $F_1(f) = M = T_{-\vec{b}} \circ f$, which is a composition of continuous functions. Further, $F_2(f) = \vec{b} = f(\vec{0})$. Hence each component map of F is continuous. It's clear that the inverse $\left(M, \vec{b}\right) \to \left(\vec{x} \mapsto M\vec{x} + \vec{b}\right)$ is also continuous. Thus, F is a homeomorphism.