# Base Knowledge of Statistic

Artificial Intelligence Master Course

PhD Student Stefano Pio Zingaro

14 maggio 2018

Department of Computer Science and Engineering Università degli studi di Bologna

## Table of contents

- 1. Formulazione dell'Ipotesi
- 2. Raccolta dei Dati
- 3. Analisi Statistica dei Dati
- 4. Generalizzazione delle Ipotesi
- 5. Python's Machine Learning's Frameworks
- 6. Conclusioni

#### Premessa

## Di che cosa parleremo

- Deep learning
- Feature Extraction
- PCA
- Supervised Learning
- Unsupervised Learning

## Di che cosa NON parleremo

- Augmented reality
- Big data
- Embodied agent
- Logic programming
- Multi-agent system
- Spatial-temporal reasoning

Formulazione dell'Ipotesi

## **Ipotesi**

- Quando si effettua un esperimento vengono formulate delle ipotesi.
- Per ognuna delle ipotesi, viene fissata una confidenza.
- È possibile valutare quanto i risultati dell'esperimento sono in accordo con l'ipotesi grazie ai test di significatività, calcolando il p<sub>value</sub>(livello di significatività osservato).

### **Esempio**

Se la confidenza desiderata è 95% allora  $\alpha=1-0.95=0.05,~\alpha$  viene detto *livello di significatività atteso* 

3

## Workflow

- Ipotesi H (non dovuto al caso)
   VS
   Ipotesi H<sub>0</sub> (dovuto al caso)
- 2. Risultati Sperimentali  $X = (x_1, x_2, x_3, ..., x_n)$
- 3. Probabilità dei risultati data l'ipotesi  $P(X|H_0)$
- 4. Test di Significatività
  - $(p_{value} > \alpha) \rightarrow \text{Non Rigetto } H_0$
  - $(p_{value} <= \alpha) \rightarrow \text{Rigetto } H_0$

#### **Attenzione**

Se l'ipotesi  $H_0$  viene respinta al livello di significatività 5%, allora abbiamo il 5% di probabilità di respingere un'ipotesi che era vera.

Fonte: http://www.quadernodiepidemiologia.it/epi/assoc/t\_stu.htm

Raccolta dei Dati

## Raccolta dei Dati

## **Esempio**

## Ipotesi H

"L'età di una persona influisce sulla sua altezza"

#### Domanda

Quali dati sarà più utile raccogliere?

- 1. Altezza
- 2. Età
- 3. Sesso

Analisi Statistica dei Dati

## Perché l'Analisi Statistica dei Dati?

### **Esperimento**

Gli esperimenti producono un flusso di DATI.

### Interpretazione

I dati, interpretati, possono dare un significato all'esperimento. Spesso vengono ricercate:

- Differenze tra le misurazioni:
- Invarianti del sistema studiato.

#### **Analisi**

Diventa necessaria un'attenta Analisi Statistica.

## Rappresentazione dei Dati: Gli Istogrammi



**Figura 1:** L'istogramma è una rappresentazione grafica di una distribuzione di frequenza di una certa grandezza, ossia di quante volte in un insieme di dati si ripete lo stesso valore.

## Descrizione dei Dati: le Distribuzioni

- Distribuzione Binomiale Variabili che prendono i loro valori da un insieme discreto (eg. La probabilità di avere k eventi positivi su n eventi indipendenti).
- **Distribuzione Normale** Variabili che prendono i loro valori da un insieme continuo (eg. La probabilità di ottenere valori di x in un intervallo infinitesimo).

## Distribuzione Binomiale per le Variabili Discrete

### **Definizione**

$$P(k) = P(X_1 + X_2 + ... + X_n = k) = \binom{n}{k} p^k (1-p)^{n-k}$$



Figura 2: Distribuzioni binomiali con diversi parametri p e n.

## Distribuzione Normale per le Variabili Continue

#### **Definizione**

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \text{ con } x \in \mathbb{R}.$$



Figura 3: Gaussiana con vari parametri di media  $\mu$  e varianza  $\sigma^2$ 

# Test di Significatività Parametrici

### **Definizione**

Il test di significatività parametrico prevede il confronto tra due distribuzioni normali (eg. medie, varianze).

- Confronto delle Medie
  - 1. Z-test <sup>1</sup>
  - 2. T-Test <sup>2</sup>
- Confronto delle Varianze
  - 1. ANOVA <sup>3</sup>
  - 2. Test Chi-Quadrato <sup>4</sup>

<sup>1</sup> https://it.wikipedia.org/wiki/Test\_Z

<sup>2</sup> https://it.wikipedia.org/wiki/Test\_t

<sup>3</sup> https://it.wikipedia.org/wiki/Analisi\_della\_varianza

<sup>4</sup> https://it.wikipedia.org/wiki/Test\_chi\_quadrato

# Test di Significatività NON Parametrici

#### **Definizione**

Il test di significatività NON parametrico prevede il confronto tra due distribuzioni NON normali (eg. medie, varianze).

- Test del Segno <sup>5</sup>
- Test di Wilcoxon <sup>6</sup>

<sup>5</sup> https://it.wikipedia.org/wiki/Test\_dei\_segni

<sup>6</sup> https://it.wikipedia.org/wiki/Test\_dei\_ranghi\_con\_segno\_di\_Wilcoxon

## Estrazione delle Proprietà Rilevanti

- Correlazione di Pearson <sup>7</sup>
- Correlazione di Spearman <sup>8</sup>
- Principal Component Analysis (PCA)

<sup>7</sup> https://it.wikipedia.org/wiki/Indice\_di\_correlazione\_di\_Pearson

<sup>8</sup> https://it.wikipedia.org/wiki/Coefficiente\_di\_correlazione\_per\_ranghi\_di\_Spearman

<sup>9</sup> https://it.wikipedia.org/wiki/Analisi\_delle\_componenti\_principali

# PCA: Principal Component Analysis

#### **Definizione**

L'analisi delle componenti principali è una tecnica per la semplificazione dei dati. Permette di scegliere in quante componenti **ridurre le dimensioni del problema**.



Figura 4: Rappresentazione grafica di due classi di punti a 3 dimensioni

Figura 5: Rappresentazione grafica delle classi precedenti dopo l'applicazione di una PCA a 2 componenti.

Generalizzazione delle Ipotesi

## Metodi di Generalizzazione delle Ipotesi

- Supervised (apprendimento da esempi reali)
  - Neural Networks <sup>10</sup>
  - Hidden Markov Models <sup>11</sup>
  - Support Vector Machines <sup>12</sup>
- Unsupervised (o semi-supervised/apprendimento ex-novo)
  - Hierarchical clustering <sup>13</sup>
  - K-means <sup>14</sup>

 $<sup>10</sup>_{\rm https://it.wikipedia.org/wiki/Rete\_neurale\_artificiale}$ 

<sup>11</sup> https://it.wikipedia.org/wiki/Modello\_di\_Markov\_nascosto

<sup>12</sup> https://it.wikipedia.org/wiki/Macchine\_a\_vettori\_di\_supporto

<sup>13</sup> https://it.wikipedia.org/wiki/Clustering\_gerarchico

<sup>14</sup> https://it.wikipedia.org/wiki/K-means

Python's Machine Learning's

**Frameworks** 

### Tensor Flow

- Libreria disponibile in diversi linguaggi di programmazione per il calcolo scientifico.
- Abilita la potenza della GPU (NVIDIA CUDA®) per il calcolo computazionale.
- Installazione in Python 2.7 con pip:
  - 1. pip install tensorflow
  - 2. pip install tensorflow-gpu
- Documentazione esaustiva e Tutorials disponibili su https://www.tensorflow.org.

#### Keras

- Installazione in Python 2.7 con pip:
  - 1. pip install keras
- Codice della libreria con esempi su https://github.com/fchollet/keras/tree/master/keras.

## **PyTorch**

- Installazione in Python 2.7 con pip:
  - 1. pip install http://download.pytorch.org/whl/torch-0.1.
    11.post5-cp27-none-macosx\_10\_7\_x86\_64.whl
  - 2. pip install torchvision
- Documentazione ed esempi di codice su http://pytorch.org/docs/.

Conclusioni

## Summary

Get the source of this work and the demo presentation from

stefanopiozingaro.github.io/teaching.html

This work *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



