```
import pandas as pd
import numpy as np
```

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv("/content/1_fiat500_VehicleSelection_Dataset - 1_fiat500_VehicleSelection_Dataset (1).csv")
df

C→	

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.
1	2.0	рор	51.0	1186.0	32500.0	1.0	45.666359	12
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12
1544	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1546	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1547	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1548	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
								-

df1=df.drop(df.index[1537:],axis=0)
df1=df1.drop(["Unnamed: 9","Unnamed: 10","model"],axis=1)
df1

	ID	engine_power	age_in_days	km	previous_owners	1
0	1.0	51.0	882.0	25000.0	1.0	44.9072
1	2.0	51.0	1186.0	32500.0	1.0	45.6663
2	3.0	74.0	4658.0	142228.0	1.0	45.5033
3	4.0	51.0	2739.0	160000.0	1.0	40.6331
4	5.0	73.0	3074.0	106880.0	1.0	41.9032
1532	1533.0	51.0	1917.0	52008.0	1.0	45.5480
1533	1534.0	51.0	3712.0	115280.0	1.0	45.0696
1534	1535.0	74.0	3835.0	112000.0	1.0	45.8456
1535	1536.0	51.0	2223.0	60457.0	1.0	45.4815
4			^ ^		. ^	

df1.describe()

	ID	engine_power	age_in_days	km	previous_own@
count	1537.000000	1537.000000	1537.000000	1537.000000	1537.0000
mean	769.000000	51.905010	1650.905660	53395.439167	1.1236
std	443.837996	3.989254	1289.938635	40059.858383	0.416
min	1.000000	51.000000	366.000000	1232.000000	1.0000
25%	385.000000	51.000000	670.000000	20000.000000	1.0000
50%	769.000000	51.000000	1035.000000	39024.000000	1.0000
75%	1153.000000	51.000000	2616.000000	79800.000000	1.0000
4					+

sns.pairplot(df1)

sns.heatmap(df1.corr())

<ipython-input-6-3ed1a1a51dc0>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver sns.heatmap(df1.corr())

wners

at

days

Ê

from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression

 \Box

y=df1['age_in_days']
x=df1.drop(['age_in_days'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

power

model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_

2832.7802274686583

 ${\tt coeff=pd.DataFrame(model.coef_, x.columns, columns=["Coefficient"])} \\ {\tt coeff}$

prediction=model.predict(x_test)
plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x7daeb728dc60>

5000 - model.score(x_test,y_test)

0.8120188273167547

|

daf=pd.read_csv("/content/2_2015.csv")
daf

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	Generosity	Dystopia Residual
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.66557	0.41978	0.29678	2.51738
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.62877	0.14145	0.43630	2.70201
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.64938	0.48357	0.34139	2.49204
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.66973	0.36503	0.34699	2.46531
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.63297	0.32957	0.45811	2.45176
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.59201	0.55191	0.22628	0.67042
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.48450	0.08010	0.18260	1.63328

daf1=daf.drop(["Country","Region"],axis=1)
daf1.isna().sum()

0 0 Happiness Rank Happiness Score 0 Standard Error Economy (GDP per Capita) 0 Family 0 Health (Life Expectancy) 0 Freedom
Trust (Government Corruption) 0 0 Generosity 0 Dystopia Residual dtype: int64

daf1.describe()

	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	Generosity	Dystopia Residual
count	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000
mean	79.493671	5.375734	0.047885	0.846137	0.991046	0.630259	0.428615	0.143422	0.237296	2.098977
std	45.754363	1.145010	0.017146	0.403121	0.272369	0.247078	0.150693	0.120034	0.126685	0.553550
min	1.000000	2.839000	0.018480	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.328580
25%	40.250000	4.526000	0.037268	0.545808	0.856823	0.439185	0.328330	0.061675	0.150553	1.759410
50%	79.500000	5.232500	0.043940	0.910245	1.029510	0.696705	0.435515	0.107220	0.216130	2.095415
75%	118.750000	6.243750	0.052300	1.158448	1.214405	0.811013	0.549092	0.180255	0.309883	2.462415
max	158.000000	7.587000	0.136930	1.690420	1.402230	1.025250	0.669730	0.551910	0.795880	3.602140

1

sns.pairplot(daf1)

sns.heatmap(daf1.corr())


```
y=daf1['Standard Error']
x=daf1.drop(['Standard Error'],axis=1)
x\_train, x\_test, y\_train, y\_test=train\_test\_split(x, y, test\_size=0.3)
```

model=LinearRegression() model.fit(x_train,y_train) model.intercept_

2832.7802274686583

coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])

	Coefficient	7	th
ID	-0.112496		
engine_power	19.996885		
km	0.009130		
previous_owners	-13.112851		
lat	24.000397		
lon	-5.359399		
price	-0.418384		

prediction=model.predict(x_test) plt.scatter(y_test,prediction)

ıl.

<matplotlib.collections.PathCollection at 0x7daeaedadb70>

```
5000 -
```

model.score(x_test,y_test)

0.8120188273167547

df=pd.read_csv("/content/3_Fitness-1 - 3_Fitness-1 (1).csv")
df

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	Α	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

df=df.drop(['Row Labels'],axis=1)

df["Sum of Jan"]=df["Sum of Jan"].replace("%","",regex=True).astype(float)
df["Sum of Feb"]=df["Sum of Feb"].replace("%","",regex=True).astype(float)
df["Sum of Mar"]=df["Sum of Mar"].replace("%","",regex=True).astype(float)
df

	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales	1	th
0	5.62	7.73	6.16	75		
1	4.21	17.27	19.21	160		
2	9.83	11.60	5.17	101		
3	2.81	21.91	7.88	127		
4	25.28	10.57	11.82	179		
5	8.15	16.24	18.47	167		
6	18.54	8.76	17.49	171		
7	25.56	5.93	13.79	170		
8	100.00	100.00	100.00	1150		

df.describe()

	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales	1	th
count	9.000000	9.000000	9.000000	9.000000		
mean	22.22222	22.223333	22.221111	255.555556		
std	30.438329	29.612265	29.640999	337.332963		
min	2.810000	5.930000	5.170000	75.000000		
25%	5.620000	8.760000	7.880000	127.000000		
50%	9.830000	11.600000	13.790000	167.000000		
75%	25.280000	17.270000	18.470000	171.000000		
max	100.000000	100.000000	100.000000	1150.000000		

sns.pairplot(df)

sns.heatmap(df.corr())

```
7/27/23, 11:02 PM
                                                                        Modeling-2 - Colaboratory
        <Axes: >
                                                                                       - 1.00
                 Sum of Jan -
   y=df['Sum of Feb']
   x=df.drop(['Sum of Feb'],axis=1)
   x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
   model=LinearRegression()
   model.fit(x_train,y_train)
   model.intercept\_
         -0.0007206429545334458
   coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
   coeff
                                                th
                            Coefficient
             Sum of Jan
                               -0.917397
             Sum of Mar
                               -1.046100
         Sum of Total Sales
                               0.257696
   prediction=model.predict(x_test)
   plt.scatter(y_test,prediction)
        <matplotlib.collections.PathCollection at 0x7daea9b6bfd0>
          22
          20
          18
          16
          14
          12
          10
           8
```

```
model.score(x_test,y_test)
```

18

0.9999997321796058

8

10

12

6

```
df=pd.read_csv("/content/6_Salesworkload1.csv")
df
```

20

22

1 to 25 of 7658 entries Filter

?

df1

lin al na	ManthVaar	Time in day	Carratan	CtavalD	City	Dant ID	Dant Name	Harring Orang	llaumal aaaa		T		
_	MonthYear		United	StoreID	City		-		HoursLease		Turnover		<u>, </u>
	10.2016	1.0	Kingdom	88253.0	London (I)		Dry _	3184.764	0.0	398560.0	1226244.0		953.04
	10.2016	1.0	Kingdom		London (I)		Frozen	1582.941	0.0	82725.0	387810.0		720.48
2	10.2016	1.0	Kingdom	88253.0			other	47.205	0.0	438400.0	654657.0	NaN	966.72
3	10.2016	1.0	Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0	309425.0	499434.0	NaN	1053.36
4	10.2016	1.0	Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0	165515.0	329397.0	NaN	1053.36
5	10.2016	1.0	Kingdom	88253.0	London (I)	6.0	Meat	8270.316	0.0	1713310.0	5617137.0	NaN	11735.16
6	10.2016	1.0	United Kingdom	88253.0	London (I)	13.0	Food	16468.251	0.0	3107935.0	8714679.0	NaN	19865.64
7	10.2016	1.0	United Kingdom	88253.0	London (I)	7.0	Clothing	4698.471	0.0	213680.0	1615341.0	NaN	8513.52
8	10.2016	1.0	United Kingdom	88253.0	London (I)	8.0	Household	1183.272	0.0	54915.0	290400.0	NaN	4842.72
9	10.2016	1.0	United Kingdom	88253.0	London (I)	9.0	Hardware	2029.815	0.0	59260.0	450015.0	NaN	5608.8
df.isna().	sum()												
Turno Custon Area Openin dtype df1=df.dron df1=df1.dron	Name Dwn Lease units ver mer (m2) ng hours : int64 D(["Custome	8 8 8 8 8 7658 8 8	y","Dept	. Name",	"Opening h	ours","C	ity"],axis=	1)					
df1.isin(va Month		0											
Time: Store: Dept_: Hours: Hours: Sales Turno: Area	index ID ID Own Lease units ver	0 0 0 0 0 0 0											
/al=df["Ho orint(df.i	ursOwn"]==" ndex[val])	?"											
Int64	Index([2966	, 5889], d	type='in	t64')									
-] (m2)"].isin op([2966,58												
lf1=df1.dro	op(["Area (m2)"],axis	=1)										

		MonthYear	Time index	StoreID	Dept_ID	Hours0wn	HoursLease	Sales units	Turnover	10-	ılı
	0	10.2016	1.0	88253.0	1.0	3184.764	0.0	398560.0	1226244.0		
	1	10.2016	1.0	88253.0	2.0	1582.941	0.0	82725.0	387810.0		
	2	10.2016	1.0	88253.0	3.0	47.205	0.0	438400.0	654657.0		
	3	10.2016	1.0	88253.0	4.0	1623.852	0.0	309425.0	499434.0		
	4	10.2016	1.0	88253.0	5.0	1759.173	0.0	165515.0	329397.0		
.des	crib	e()									

	Time index	StoreID	Dept_ID	HoursLease	Sales units	Turnover
count	7648.000000	7648.000000	7648.000000	7648.000000	7.648000e+03	7.648000e+03
mean	4.999869	61999.574268	9.472019	22.041841	1.076492e+06	3.721465e+06
std	2.582369	29923.753974	5.337296	133.316467	1.728290e+06	6.004067e+06
min	1.000000	12227.000000	1.000000	0.000000	0.000000e+00	0.000000e+00
25%	3.000000	29650.000000	5.000000	0.000000	5.455375e+04	2.724480e+05
50%	5.000000	76852.000000	9.000000	0.000000	2.932300e+05	9.315390e+05
75%	7.000000	87703.000000	14.000000	0.000000	9.164325e+05	3.259014e+06
max	9.000000	98422.000000	18.000000	3984.000000	1.124296e+07	4.271739e+07
4						•

sns.pairplot(df1)

<ipython-input-127-3ed1a1a51dc0>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future v
 sns.heatmap(df1.corr())
<Axes: >


```
y=df1['Sales units']
x=df1.drop(['Sales units'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_

85049.7310071832

coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
coeff
```


<matplotlib.collections.PathCollection at 0x7daea61af7c0>


```
model.score(x_test,y_test)
```

0.8835992990450046

```
df=pd.read_csv("/content/5_Instagram data.csv")
```

```
UnicodeDecodeError

Sipython-input-134-9b19e53c1253> in <cell line: 1>()

----> 1 df=pd.read_csv("/content/5_Instagram data.csv")

10 frames
```

 $/usr/local/lib/python 3.10/dist-packages/pandas/_libs/parsers.pyx in pandas._libs.parsers.raise_parser_error()$

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa0 in position 288: invalid start byte

SEARCH STACK OVERFLOW

① 0s completed at 10:54 PM