明細書

ヘキサフルオロカルビノール基を含有する新規な重合性アクリレー ト化合物及びそれを用いた高分子化合物

5

10

15

20

25

発明の背景

本発明は、特定の構造、すなわち、ヘキサフルオロカルビノール基またはそれを保護または修飾した置換基を含有する新規な含フッ素重合性アクリレート化合物及びそれを用いて重合または共重合した高分子化合物に関する。

フッ素化合物は、撥水性、撥油性、低吸水性、耐熱性、耐候性、 耐腐食性、透明性、感光性、低屈折率性、低誘電性などの特徴から 先端材料分野を中心として幅広い応用分野で使用または開発が続け られている。特に各波長範囲における透明性挙動の特徴を活かした 場合、低屈折率性と可視光の透明性を応用した反射防止膜、長波長 範囲(光通信波長範囲)での透明性を応用した光デバイス、紫外線 波長範囲(特に真空紫外波長範囲)での透明性を応用したレジスト 材料などのコーティング分野で活発な研究開発が行われている。こ れらの応用分野において共通の高分子設計としては、できるだけ多 くのフッ素を導入することで各使用波長での透明性を実現しつつ、 基板への密着性、高いガラス転移点(Tg)、すなわち高硬度を実現 させようとするものである。しかしながら、材料設計としてフッ素 含有量を高める工夫により各波長での透明性を高めることは種々提 案されているが、フッ素含有単量体そのものに同時に親水性、密着 性を高める工夫や高いTgを得る工夫をしている例は少ない。最近 になって、特に真空紫外線波長範囲の次世代F٫レーザーレジスト分 野においてヒドロキシル基含有のフッ素系スチレン(T.H.

Fedynyshyn, A. Cabral, et al, J. Photopolym. Sci. Technol., 15, 655-666 (2002) 参照)や、ヒドロキシル基含有のフッ素系ノルボルネン化合物(Ralph R. Dammel, Raj Sakamuri, et al, J. Photopolym. Sci. Technol., 14, 603-612 (2001) 参照)が発表されたことで、フッ素を含有し、かつヒドロキシル基の極性を共存させる考え方が見られるようになってきた。しかしながら、まだ、紫外線の透明性とエッチング耐性の両立が不十分であり、改善するべき要因は多く存在している。従って、これら既存の化合物が発揮し得る機能は必ずしも十分ではなく、さらに優れた高分子化合物を効率よく与え得る新規な単量体、あるいはその原料の創出が望まれていた。

発明の要約

5

10

15

20

本発明の目的は、高いフッ素含有量を有し、かつ極性基を同一分子内に持たせることにより、新規な重合性単量体である含フッ素アクリレート化合物及びそれを用いた高分子化合物を提供することにある。

本発明は、一般式(1):

$$CF_3$$
 CF_3
 CF_3

(式中、R¹は水素原子、ハロゲン原子、炭化水素基、含フッ素アルキル基を表し、R²、R³は異なっていても同一であってもよく、それぞれ独立に水素原子、フッ素原子及び分岐を含んでもよい炭化水素基、含フッ素アルキル基、芳香族基や脂肪族基を有する環状体であって、酸素、カルボニル結合を含んでもよい)で表される重合性アクリレート化合物と、それを用いて重合または共重合した高分子化

合物を提供する。

好適な実施例の説明

本発明は、同一分子内に2つのヘキサフルオロカルビノール基を含有させた特定の化合物として一連の新規な含フッ素アクリレート化合物、及びそれらの単量体を用いた高分子化合物を合成し、本発明を完成するに至った。ただし、ヘキサフルオロカルビノール基は下記のR²、R³で説明する置換基で保護または修飾することが可能である。

本発明により、新規な含フッ素重合性アクリレート化合物及びそ 10 れを用いた高分子化合物が提供される。

本発明に係る一般式 (1) で表される特定のアクリレートは、分子内にフッ素とヒドロキシル基をヘキサフルオロカルビノール基として共存させたものである。まず、本発明に使用できる一般式 (1) の単量体について説明する。

$$R^1$$
 O
 CF_3
 CF_3

15

20

5

本発明の一般式(1)に使用できるR¹は水素原子、ハロゲン原子、 炭化水素基、含フッ素アルキル基であれば特に制限なく使用することができる。好ましい置換基を例示するならば、ハロゲン原子としてフッ素、塩素、臭素など、また炭化水素基としてメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、secーブチル基、tertーブチル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基、フェネチル基など、さらには含フッ素アルキル基として前記アルキル基の水素原子の一部また

は全部がハロゲン原子で置換されたものを例示できる。ただし炭化水素基と含フッ素アルキル基の場合の炭素数は1~20程度が好ましく、さらに重合性の観点からは炭素数1~4が好適に採用される。特に含フッ素アルキル基を例示するならば、一CF3のトリフルオロメチル基、一CH2СF3のトリフルオロエチル基、1,1,1,3,3,3一へキサフルオロイソプロピル基等、その構造は制限なく使用することができるが、特に好ましい構造として、下記一般式(2)~(5)に具体例を示すような単量体が例示できる。

$$\begin{array}{c|c}
CF_3 \\
CF_3
\end{array}$$

$$CF_3$$

$$CF$$

10

5

$$F_3C$$
 O
 CF_3
 $CF_$

10

15

20

ここで使用できるR²、R³は水素原子、フッ素原子及び分岐を含ん でもよい炭化水素基、含フッ素アルキル基、芳香族基や脂肪族基を 有する環状体であって、酸素、カルボニル等の結合を含んでもよい。 その構造には特に制限はないが、最も簡単で高い透明性を有するヒ ドロキシル基(R²、R³の各々が水素原子)が基本となる。その上で、 使用目的により、メチル基、エチル基、イソプロピル基、シクロプ ロピル基、シクロペンチル基、シクロヘキシル基、ノルボルネル基、 アダマンチル基、ベンジル基などの環状を有してもよい炭素数1~ 20程度の炭化水素基、また酸素原子を含有するものとして、メト キシメチルエーテル、メトキシエトキシメチルエーテル等の鎖状エ ーテル基、テトラヒドロフラン、テトラヒドロピラン等の環状エー テル基、芳香族として4ーメトキシベンジル基、またカルボニル基 を含有するものとして、アセチル基、ピバロイル基、tert-ブ トキシカルボニル基、ベンゾイル基等により保護または修飾するこ とが可能である。その目的としては、有機溶媒やアルカリ水溶液へ の溶解性、高いガラス転移点、ハンダ耐熱性を目的とした架橋反応 性、光酸発生剤によるポジ型感光性やエッチング耐性などの特徴を 付与させることであり、本発明の応用分野ごとに使い分けることが 可能である。なお、R²、R³は同一であっても異なっていてもよい。

以下、一般式(1)で表されるα,β-不飽和エステルの合成法について説明する。本発明によれば、その合成法は特に制限されず、最終的に一般式(1)の単量体が生成できればよいが、代表的な合

成方法を例示するならば次に示す方法が挙げられる。

5

すなわち、一般式(1)で表される α , β -不飽和エステルは、ヘキサフルオロアセトンとアセトンから誘導されるアルコール体 (Loeb, Stephen J., Martin, John W. L., et al, Canadian Journal of Chemistry, 56, 2369 (1978) 参照)とアクリル酸、メタクリル酸、 2ートリフルオロメチルアクリル酸等の α , β -不飽和カルボン酸との縮合より合成される。

さらに詳細に例示するならば、水素化アルカリ金属やアミン化合物等の塩基性条件下、アクリル酸クロリド、メタクリル酸クロリド、
10 2ーフルオロアクリル酸、2ートリフルオロメチルアクリル酸クロリド等の α , β - 不飽和カルボン酸ハライドとの縮合反応や、また硫酸、塩酸、メタンスルホン酸、トリフルオロメタンスルホン酸、及び種々ルイス酸存在下、アクリル酸、メタクリル酸、2ーフルオロアクリル酸、2ートリフルオロメチルアクリル酸等の α , β - 不飽和カルボン酸との脱水縮合反応のような一般的な方法から合成できる。各反応後の生成物の分離精製は慣用の方法で行えばよく、例えば、

各反応後の生成物の分離精製は慣用の方法で行えばよく、例えば、 濃縮、蒸留、抽出、再結晶、濾過、カラムクロマトグラフィー等を 用いることができ、また二種類以上の方法を組み合わせて用いても よい。

20 次に、本発明による高分子化合物について説明する。本発明によれば、一般式(1)に示す重合性単量体の単独重合または、一般式(1)の複数の組み合わせからなる共重合体、さらに共重合可能な他種の単量体との共重合体が使用可能である。

本発明の一般式(1)に示す単量体と共重合可能な単量体を具体 25 的に例示するならば、少なくとも、オレフィン、含フッ素オレフィ ン、アクリル酸エステル、メタクリル酸エステル、含フッ素アクリ ル酸エステル、含フッ素メタクリル酸エステル、ノルボルネン化合

物、含フッ素ノルボルネン化合物、スチレン系化合物、含フッ素スチレン系化合物、ビニルエーテル、含フッ素ビニルエーテルから選ばれた一種以上の単量体が好適である。

オレフィンとしては、エチレン、プロピレンなど、フルオロオレフィンとしては、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、ヘキサフルオロイソブテンなどが例示できる。

5

また、アクリル酸エステルまたはメタクリル酸エステルとしては 10 エステル側鎖について特に制限なく使用できるが、公知の化合物を 例示するならば、メチルアクリレートまたはメタクリレート、エチ ルアクリレートまたはメタクリレート、n - プロピルアクリレート またはメタクリレート、イソプロピルアクリレートまたはメタクリ レート、n - ブチルアクリレートまたはメタクリレート、イソブチ 15 ルアクリレートまたはメタクリレート、n - ヘキシルアクリレート またはメタクリレート、n - オクチルアクリレートまたはメタクリ レート、2-エチルヘキシルアクリレートまたはメタクリレート、 ラウリルアクリレートまたはメタクリレート、2 - ヒドロキシエチ ルアクリレートまたはメタクリレート、2-ヒドロキシプロピルア 20 クリレートまたはメタクリレートなどのアクリル酸またはメタクリ ル酸のアルキルエステル、エチレングリコール、プロピレングリコ ール、テトラメチレングリコール基を含有したアクリレートまたは メタクリレート、さらにアクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、ジ アセトンアクリルアミドなどの不飽和アミド、アクリロニトリル、 25 メタクリロニトリル、アルコキシシラン含有のビニルシランやアク リル酸またはメタクリル酸エステル、t-ブチルアクリレートまた

はメタクリレート、3・オキソシクロヘキシルアクリレートまたはメタクリレート、アダマンチルアクリレートまたはメタクリレート、シクロヘキシルアクリレートまたはメタクリレート、シクロヘキシルアクリレートまたはメタクリレート、トリシクロデカニルアクリレートまたはメタクリレート、ラクトン環やノルボルネン環などの環構造を有したアクリレートまたはメタクリレート、アクリル酸、メタクリル酸などが使用できる。さらにαシアノ基含有の上記アクリレート類化合物や類似化合物としてマレイン酸、フマル酸、無水マレイン酸等を共重合することも可能である。

5

20

25

10 また、含フッ素アクリル酸エステル、含フッ素メタクリル酸エステルとしては、フッ素原子を有する基がアクリルのα位またはエステル部位に有したアクリル酸エステルまたはメタクリル酸エステルであって、α位にシアノ基が導入されていてもよい。例えば、α位に含フッ素アルキル基が導入された単量体は、上述した非フッ素系のアクリル酸エステルまたはメタクリル酸エステルであって、α位にトリフルオロメチル基、トリフルオロエチル基等が付与された単量体が好適に採用される。

一方、そのエステル部位がパーフルオロアルキル基、フルオロアルキル基である含フッ素アルキル基や、またエステル部位に環状構造とフッ素を共存する単位であって、その環状構造が例えばフッ素やトリフルオロメチル基で置換された含フッ素ベンゼン環、含フッ素シクロペンタン環、含フッ素シクロペキサン環、含フッ素シクロペプタン環等を有する単位などを有するアクリル酸エステルまたはメタクリル酸エステルである。またエステル部位が含フッ素のtーブチルエステル基であるアクリル酸またはメタクリル酸のエステルなども使用可能である。そのような単位のうち特に代表的なものを単量体の形で例示するならば、2,2,2ートリフルオロエチルア

クリレート、2, 2, 3, 3ーテトラフルオロプロピルアクリレー ト、1、1、1、3、3、3ーヘキサフルオロイソプロピルアクリ レート、ヘプタフルオロイソプロピルアクリレート、1, 1ージヒ ドロヘプタフルオローn-ブチルアクリレート、1, 1, 5-トリ ヒドロオクタフルオローnーペンチルアクリレート、1, 1, 2, 5 2ーテトラヒドロトリデカフルオローnーオクチルアクリレート、 1. 1. 2. 2ーテトラヒドロヘプタデカフルオローnーデシルア クリレート、2,2,2ートリフルオロエチルメタクリレート、2, 2.3,3ーテトラフルオロプロピルメタクリレート、1,1,1, 3, 3, 3-ヘキサフルオロイソプロピルメタクリレート、ヘプタ 10 フルオロイソプロピルメタクリレート、1, 1ージヒドロヘプタフ ルオローnーブチルメタクリレート、1, 1, 5ートリヒドロオク タフルオローn-ペンチルメタクリレート、1, 1, 2, 2ーテト ラヒドロトリデカフルオローnーオクチルメタクリレート、1,1, 2. 2ーテトラヒドロヘプタデカフルオローnーデシルメタクリレ 15 ート、パーフルオロシクロヘキシルメチルアクリレート、パーフル オロシクロヘキシルメチルメタクリレートなどが挙げられる。

スチレン系化合物、含フッ素スチレン系化合物、ビニルエーテル、含フッ素ビニルエーテル、アリルエーテル、ビニルエステル、ビニルシランなども使用することができる。ここでスチレン系化合物、含フッ素スチレン系化合物としてはスチレン、フッ素化スチレン、ヒドロキシスチレンなどの他、ヘキサフルオロアセトンを付加したスチレン系化合物、トリフルオロメチル基で水素を置換したスチレンまたはヒドロキシスチレン、α位にハロゲン、アルキル基、含フッ素アルキル基が結合した上記スチレンまたは含フッ素スチレン系化合物などが使用可能である。

一方、ビニルエーテル、含フッ素ビニルエーテル、アリルエーテル、ビニルエステル等は、一般的に本発明による一般式(1)の単量体との重合反応性が乏しいとされているが、その共重合比により導入することが可能である。例えば、メチル基、エチル基、ヒドロキシブチル基などのヒドロキシル基を含有してもよいアルキルビニルエーテルであり、その水素の一部または全部がフッ素で置換されていてもよい。またシクロヘキシルビニルエーテルやその環状構造内に水素やカルボニル結合を有した環状型ビニルエーテル、また、それらの環状型ビニルエーテルの水素の一部または全部がフッ素で置換された単量体も使用できる。なお、アリルエーテル、ビニルエステル、ビニルシランについても公知の化合物であれば特に制限なく使用することが可能である。

5

10

15

さらにノルボルネン化合物、含フッ素ノルボルネン化合物は、一核または複数の核構造を有するノルボルネン単量体であって、これらは一般式(1)の単量体と共重合することが可能である。一般的に一般式(2)、(3)のようなアクリル酸エステル化合物とは二元共重合性は乏しいとされているが、第三成分以降の共重合の組み合わせによっては、一般式(2)、(3)に表される単量体とも共重合が可能である。この際、ノルボルネン化合物は、アリルアルコール、

- 20 含フッ素アリルアルコール、アクリル酸、2 ーフルオロアクリル酸、メタクリル酸、本明細書で記載したすべてのアクリル酸エステルまたはメタクリル酸エステル、含フッ素アクリル酸エステルまたはメタクリル酸エステルなどの不飽和化合物と、シクロペンタジェン、シクロペキサジエンとを用いてディールス アルダー (Diels)
- 25 Alder)付加反応を行ったノルボルネン化合物が好ましく採用される。 また、これらの重合性化合物は単独使用でも2種以上の併用でも よい。本発明によれば、一般式 (1) の単量体の共重合組成比とし

ては特に制限はなく採用されるが、10~100%の間で選択することが好ましい。さらに好ましくは30~100%であり、30%未満では応用分野の波長範囲によっては十分な透明性や成膜性が発現しない。

5 そして、本発明にかかる高分子化合物の重合方法としては、一般的に使用される方法であれば特に制限されないが、ラジカル重合、イオン重合などが好ましく、場合により、配位アニオン重合やリビングアニオン重合などを使用することも可能である。ここではより一般的なラジカル重合法を説明する。

10 すなわち、ラジカル重合開始剤あるいはラジカル開始源の存在下で、塊状重合、溶液重合、懸濁重合または乳化重合などの公知の重合方法により、回分式、半連続式または連続式のいずれかの操作で行えばよい。

ラジカル重合開始剤としては特に限定されるものではないが、例 15 としてアゾ系化合物、過酸化物系化合物、レドックス系化合物が挙 げられ、特に、アゾビスイソブチロニトリル、t-ブチルパーオキ シピバレート、過酸化ベンゾイル等が好ましい。

重合反応に用いる反応容器は特に限定されない。また、重合反応においては、重合溶媒を用いてもよい。重合溶媒としては、ラジカル重合を阻害しないものが好ましく、代表的なものとしては、酢酸エチル、酢酸nーブチルなどのエステル系、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系、トルエン、シクロヘキサンなどの炭化水素系、イソプロピルアルコール、エチレングリコールモノメチルエーテルなどのアルコール系溶剤などがある。また水、エーテル系、環状エーテル系、フロン系、芳香族系、などの種々の溶媒を使用することも可能である。これらの溶剤は単独または二種類以上を混合して使用できる。また、メルカプタンの

ような分子量調整剤を併用してもよい。共重反応の反応温度はラジカル重合開始剤あるいはラジカル重合開始源により適宜変更され、 通常は20~200℃が好ましく、特に30~140℃が好ましい。

このようにして得られる本発明にかかる高分子化合物の溶液または分散液から、媒質である有機溶媒または水を除去する方法としては、公知の方法のいずれも利用できるが、例を挙げれば再沈殿ろ過または減圧下での加熱留出等の方法がある。

本発明は、高いフッ素含量を有し、かつ極性基を同一分子内に持たせることにより、撥水性、撥油性、低吸水性、耐熱性、耐候性、 耐腐食性、透明性、感光性などを有する機能性単量体であると共に、 幅広い波長範囲、すなわち、真空紫外線から光通信波長範囲にいたるまでの高い透明性を有し、基板への密着性や高い成膜性を併せ持つ、新規な重合性単量体である含フッ素アクリレート化合物及びそれを用いた高分子化合物を提供する。

15 本発明の高分子化合物は有機溶媒や水に溶解させ、公知の方法で酸発生剤やその他の添加剤を配合し、フォトレジスト材料として使用することができる。特に、高フッ素含有の高分子化合物であることから、193nm(ArFレーザー)、157nm(F2レーザー)などの短波長範囲で高透明性を示すため、真空紫外波長範囲での透明性を応用したレジスト材料に適し、半導体などの電子デバイスの製造に好適な材料となる。

次に本発明を実施例によりさらに詳細に説明する。以下、1~3 に本発明の重合性単量体のを合成例を示した。さらに、合成例4~ 9にポリマー合成例を示した。

25 [合成例 1]

5

下記式(7)で示されるアルコール体の合成

式(6) 1, 1, 1、7, 7, 7-ヘキサフルオロ-2, 6-ジ ヒドロキシ-2, 6ービス (トリフルオロメチル) -4-ヘプタノ ン(50.00g, 128.1mmol) のエタノール (256ml) 溶液に、水素化ホ ウ素ナトリウム (6.30g, 166.6mmol) を氷冷下 11 分間かけて少量ず つ加えた。窒素雰囲気下、氷冷下 30 分間攪拌し、反応液をガスクロ マトグラフィーにて分析したところケトンの転化率は 100%であり、 式(7) の生成を認めた。

10 反応液に氷冷下2N塩酸を少量ずつ加え加水分解した後、ジェチルエーテルで有機物を抽出した。続いて有機層を純水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。次にエヴァポレーターにて溶媒を除去し、式(7)の粗体(47.71g)を白色結晶として得た。

[合成例 2]

15

下記式(8)で示されるメタクリレート体の合成

$$F_3C$$
 OH
 CF_3
 CF

式 (7) の粗体 (10.04g, 25.60mmol) のメタクリル酸 (4.41g, 51.20mmol)溶液に重合禁止剤として 2, 2'ーメチレンビス (4ー

メチルー6ー t ーブチルフェノール) (50mg) を添加した。次に室温で濃硫酸 (5.02g, 51.20mmol) を滴下し、80℃で 4 時間攪拌した。反応液をガスクロマトグラフィーで分析したところ、式 (8) への転化率 76.5%であり、原料アルコール (7) が 17.7%であった。

5 反応液を氷水に注ぎ、有機物をジエチルエーテルで抽出した。続いて有機層を飽和炭酸水素ナトリウム水溶液、純水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。次にエヴァポレーターにて溶媒を除去し、単蒸留にて式(8)(90-91.5mmHg/1mmHg, 4.76g, 10.34mmol, 純度 94.4GC%)を無色透明液体として得た。

10 式(8)のスペクトルデータは以下のとおりである。

¹H-NMR(CDCl₃, TMS 基準) δ:6.21(1H, br-s), 5.76(1H, br-s),

5.44-5.38(1H, m), 4.85(2H, s), 2.45(2H, dd, J=16.0, 6.0Hz),

2. 37 (2H, dd, J=16.0, 4.0Hz), 1.96 (3H, s)

¹⁹F-NMR(CDCl₃, CFCl₃ 基準) δ:-77.2(6F, q, J=9.0Hz), -78.9(6F, q, J=9.0Hz)

[合成例3]

下記式 (9) で示される 2 ートリフルオロメチルアクリレート体 の合成

$$F_3C$$
 OH
 CF_3
 CF

20 式(7)の粗体(1.00g, 2.55mmol)と2ートリフルオロメチルア クリル酸(0.71g, 5.10mmol)の混合物に室温で濃硫酸 (0.50g,

5. 10mmol) を滴下し、80℃で 2 時間攪拌した。反応液をガスクロマ

トグラフィーで分析したところ、式 (9) への転化率 82.0%であり、 原料アルコール (7) が 13.1%であった。

反応液を氷水に注ぎ、有機物をジエチルエーテルで抽出した。続いて有機層を飽和炭酸水素ナトリウム水溶液、純水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。次にエヴァポレーターにて溶媒を除去し、シリカゲルカラムクロマトグラフィーにより分離精製を行い式(9)(0.82g, 1.59mmol, 純度 92.3GC%)を無色透明液体として得た。

[合成例4]

10 下記式(10)で示されるメタクリル酸エステルのホモポリマー の合成

$$CF_3$$
 CF_3 CF_3 CF_3 CF_3

5

15

20

窒素雰囲気下、式(8)(198.1mg)のメチルエチルケトン(198.1mg)溶液に AIBN (1.4mg, 2mol%)を室温で加え、65℃のオイルバスに浸し1.7時間攪拌した。この重合液を室温でnーへキサン (11.9g)に再沈澱した後、ポリマーを濾過回収した。得られたポリマーを60℃オーブンで3時間減圧乾燥し、式 (10)で示されるホモポリマー (183.9mg,収率92.8%)の白色粉体を得た。なお、分子量はポリスチレン換算でMn/Mw=37,700/82,300であった。AIBN は、重合開始剤であるアゾビスイソブチロニトリルを示す。

[合成例5]

下記式(11)で示される二元共重合体の合成

$$CF_3$$
 (11)
$$CF_3$$
 CF_3 CF_3 CF_3

5

10

窒素雰囲気下、式(8)(97.6mg, 0.21mmol) と 2, 2, 2ートリフルオロエチルビニルエーテル (26.7mg, 0.21mmol) のメチルエチルケトン(124.3mg)溶液に AIBN(1.4mg, 2mol%)を室温で加え、6 5 ℃のオイルバスに浸し 1 7 時間攪拌した。この重合液を室温で n ーへキサン (7.4g) に再沈澱した後、ポリマーを濾過回収した。得られたポリマーを60℃オーブンで 3 時間減圧乾燥し、式 (1 1) で示されるニ元ポリマー (83.7mg, 収率 68.4%) の淡黄色粉体を得た。なお、分子量はポリスチレン換算で M n / M w = 3 6, 8 0 0 / 8 1, 0 0 であり、組成比は 1 9 F − N M R より、メタクリル酸エステル / ビニルエーテル = 8 6. 2 / 1 3. 8 であった。

[合成例6]

下記式(12)で示される二元共重合体の合成

$$CF_3$$
 CF_3
 CF_3

窒素雰囲気下、式(8)(97.5mg, 0.21mmol)と t ーブチル 2 ートリフルオロメチルアクリル酸エステル (41.6mg, 0.21mmol)のメ 5 チルエチルケトン(139.1mg)溶液に AIBN (1.4mg, 2mol%)を室温で加え、65℃のオイルバスに浸し17時間攪拌した。この重合液を室温でnーヘキサン (8.3g)に再沈澱した後、ポリマーを濾過回収した。得られたポリマーを60℃オーブンで3時間減圧乾燥し、式(12)で示される二元ポリマー(70.1mg,収率49.6%)の白色粉体を得 10 た。なお、分子量はポリスチレン換算でMn/Mw=18,500 / 54,600であり、組成比は19F-NMRより、メタクリル酸エステル/2ートリフルオロメチルアクリル酸エステル=82.8 / 17.2であった。

15 [合成例7]

下記式(13)で示される二元共重合体の合成

$$CF_3$$
 F_3C CF_3 CF_3

窒素雰囲気下、式(8)(100.4mg, 0.22mmol) と3, 5ービス(ヘキサフルオロイソプロピルアルコール)スチレン(95.5mg, 0.22mmol) のメチルエチルケトン(195.9mg)溶液に AIBN (1.4mg, 2mol%) を室温で加え、65℃のオイルバスに浸し17時間攪拌した。この重合液を室温でnーヘキサン(11.7g) に再沈澱した後、ポリマーを濾過回収した。得られたポリマーを60℃オーブンで3時間減圧乾燥し、式(13)で示される二元ポリマー(180.9mg, 収率91.7%)の白色粉体を得た。なお、分子量はポリスチレン換算でMn/Mw=28,900/113,800であり、組成比は19F-NMRより、メタクリル酸エステル/スチレン=48.0/52.0であった。AIBNは、重合開始剤であるアゾビスイソブチロニトリルを示す。

10

[合成例8]

下記式(14)で示される三元共重合体の合成

窒素雰囲気下、式 (8) (99.0mg, 0.21mmol) と 2 - (2 - メチル アダマンチル) メタクリレート (50.4mg, 0.21mmol) と 5 ー (3 ー オキサトリシクロ [4.2.1.0^{4.8}] ノナン-2-オン) メタ 5 クリレート(47.8mg, 0.21mmol) のメチルエチルケトン(197.2mg)溶 液に AIBN (2.1mg, 2mol%) を室温で加え、65℃のオイルバスに浸 し17時間攪拌した。この重合液を室温でn-ヘキサン(11.8g)に 再沈澱した後、ポリマーを濾過回収した。得られたポリマーを60℃ オーブンで3時間減圧乾燥し、式(14)で示される三元ポリマー 10 (180.3mg, 収率 89.9%) の白色粉体を得た。なお、分子量はポリス チレン換算でMn/Mw=23,600/97,000であり、組 成比はTG-DTAによる重量減少、並びに1H-NMRより、式 (8) /アダマンチル/ラクトン=28.4/31.3/40.3 であった。 15

[合成例9]

下記式(15)で示される二元共重合体の合成

窒素雰囲気下、式(8)(98.7mg, 0.21mmol) と3ー(5ービシクロ[2.2.1] 2ーヘプテニル)ー1, 1, 1ートリフルオロー
2ー(トリフルオロメチル)2ープロパノール(57.6mg, 0.21mmol)のメチルエチルケトン(156.3mg)溶液に AIBN(1.4mg, 2mol%)を室温で加え、65℃のオイルバスに浸し17時間攪拌した。この重合液を室温でnーヘキサン(9.4g)に再沈澱した後、ポリマーを濾過回収した。得られたポリマーを60℃オーブンで3時間減圧乾10燥し、式(15)で示される二元ポリマー(0.86mg, 収率55.1%)の白色粉体を得た。なお、分子量はポリスチレン換算でMn/Mw=12,600/31,100であり、組成比は19FーNMRより、2ートリフルオロメチルアクリル酸エステル/ノルボルネン=60.8/39.2であった。

15

請求の範囲

1. 一般式(1):

$$R^1$$
 O
 CF_3
 CF_3

- 5 (式中、R¹は水素原子、ハロゲン原子、炭化水素基、含フッ素アルキル基を表し、R²、R³は異なっていても同一であってもよく、それぞれ独立に水素原子、フッ素原子及び分岐を含んでもよい炭化水素基、含フッ素アルキル基、芳香族基や脂肪族基を有する環状体であって、酸素、カルボニル結合を含んでもよい)で表される重合性アクリレート化合物。
 - 2. 前記炭化水素基と含フッ素アルキル基の各々の炭素数が1-20であることを特徴とする請求項1記載の重合性アクリレート化合物。

15

- 3. 前記炭化水素基と含フッ素アルキル基の各々の炭素数が1-4であることを特徴とする請求項1記載の重合性アクリレート化合物。
- 20. 4. 一般式(2)—(5):

$$CF_3$$

$$\begin{array}{c|c}
CF_3 \\
CF_3 \\
CF_3
\end{array}$$

$$\begin{array}{c}
CF_3 \\
CF_3
\end{array}$$

$$\begin{array}{c}
CF_3 \\
CF_3
\end{array}$$

- 5 (式中、R²、R³は一般式(1)のとおりに定義される)のいずれかによって表されることを特徴とする請求項1記載の重合性アクリレート化合物。
- 5. 一般式 (1) の R²、 R³ の 各々が水素原子であることを特徴 10 とする請求項 1 — 4 の いずれかに記載の重合性アクリレート化合物。

- 6. 請求項1に記載の重合性アクリレート化合物を用いて重合または共重合された高分子化合物。
- 7. オレフィン、含フッ素オレフィン、アクリル酸エステル、メタクリル酸エステル、含フッ素アクリル酸エステル、含フッ素メタクリル酸エステル、ノルボルネン化合物、含フッ素ノルボルネン化合物、スチレン化合物、含フッ素スチレン化合物、ビニルエーテル、含フッ素ビニルエーテルから選ばれた一種以上の単量体と共重合されたことを特徴とする請求項6に記載の高分子化合物。

10

8. 以下の式(10)で示される単位を含むことを特徴とする請求項6に記載の高分子化合物。

15 9. 以下の式(11)で示される2つの単位を含むことを特徴とする請求項6に記載の高分子化合物。

 CF_3 CF_3 CF_3 CF_3 CF_3

10. 以下の式(12)で示される2つの単位を含むことを特徴とする請求項6に記載の高分子化合物。

$$CF_3$$
 CF_3
 CF_3

5

11. 以下の式(13)で示される2つの単位を含むことを特徴とする請求項6に記載の高分子化合物。

5

$$CF_3 \qquad F_3C \qquad CF_3 \qquad$$

12. 以下の式(14)で示される2つの単位を含むことを特徴とする請求項6に記載の高分子化合物。

13. 以下の式(15)で示される2つの単位を含むことを特徴とする請求項6に記載の高分子化合物。

$$CF_3$$
 CF_3
 CF_3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/001210

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07C69/653, C08F20/24			
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) Int.C1 ⁷ C07C69/653, C08F20/24			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA (STN), REGISTRY (STN)			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app		Relevant to claim No.
A	WO 02/21213 A2 (SHIPLEY CO., L.L.C.), 14 March, 2002 (14.03.02), Claims; examples & US 2002-55061 A		1-13
A	JP 60-208311 A (Asahi Glass Co., Ltd.), 19 October, 1985 (19.10.85), Claims; examples (Family: none)		1-13
P,X	EP 1341038 A2 (Fuji Photo Film Co., Ltd.), 03 September, 2003 (03.09.03), Page 25, Formula(A-1-8), (A-1-9) & JP 2004-4576 A		1–13
	·		
Further documents are listed in the continuation of Box C. See patent family annex.			
"A" document defining the general state of the art which is not considered to be of particular relevance		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention	
filing date "L" document which may throw doubts on priority claim(s) or which is		"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone	
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document.	
"O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed		combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family	
Date of the actual completion of the international search 02 April, 2004 (02.04.04)		Date of mailing of the international search report 20 April, 2004 (20.04.04)	
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer	
Facsimile No.		Telephone No.	

電話番号 03-3581-1101 内線 3443

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号