UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: KJM 1110 – Organisk kjemi I

Eksamensdag: 12. juni 2013 Tid for eksamen: 9:00-13:00

Oppgavesettet er på 4 sider + 2 sider vedlegg

Vedlegg: 2 sider med spektroskopiske data og

periodesystemet (bakerst i oppgavesettet)

Tillatte hjelpemidler: Molekylbyggesett og enkel kalkulator

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Alle 8 oppgaver teller likt.

Oppgave 1

En aromatisk forbindelse inneholder grunnstoffene C (79,4 masse-%), H (8,9%) og O (11,8%). Massespekteret til forbindelsen viser et tydelig signal for molekylionet ved m/z = 136. Forbindelsen har ¹H NMR-spekteret som er vist nedenfor.

Hva er forbindelsens molekylformel? Foreslå en mulig struktur til forbindelsen. Grunngi svaret ved å forklare hvordan den foreslåtte strukturen er i overensstemmelse med alle spektroskopiske data.

Oppgave 2

a) Forbindelsene under har svært forskjellige syrestyrker. Vis hvilket som er det sureste protonet i hver forbindelse. Ranger forbindelsene i rekkefølge etter avtagende syrestyrke (mest sur > minst sur). Grunngi svaret.

$$\bigcirc$$
 CH $_2$ OH \bigcirc OH \bigcirc OP \bigcirc Denzylalkohol fenol p -nitrofenol

- b) En mastergradsstudent utførte reduksjonen av en ester som vist under. Hun startet med 6,27 g av etylsykloheptankarboksylat og fikk 69,2% utbytte av sykloheptylmetanol.
 - i) Hvor mange g sykloheptylmetanol ble isolert?
 - ii) Hvorfor ble reduksjonsmidlet LiAlH₄ benyttet, og ikke NaBH₄, selv om NaBH₄ er både billigere og lettere å håndtere?
 - iii) Hva er hensikten med opparbeidingen med H⁺/H₂O?

Atommasser er gitt i periodesystemet i vedlegget.

Oppgave 3

a) Hvilken av forbindelsene A-D er den mest reaktive i en S_N1-reaksjon? Grunngi svaret.

b) Hvilket av alternativene F-I nedenfor viser overgangstilstanden for S_N 2-reaksjonen mellom ammoniakk og jodmetan?

c) Tegn strukturene til alle stereoisomerer av 3,4,5-trimetylheptan. Vis hvilke som er kirale, og hvilke som ikke er det.

Oppgave 4

- a) Vis og kommenter mekanismen for klorering av benzen med Cl₂ i nærvær av FeCl₃.
- b) Hvilken av forbindelsene A-D blir hovedproduktet i reaksjonen under? Grunngi svaret.

Oppgave 5

a) Tegn de mulige konformasjonene for hver av de to sykloheksanderivatene som er vist under. Vis hvilken konformasjon som er mest stabil i hvert tilfelle.

$$CH_3CH_2$$
 CH_3 CH_3 CH_3 CH_3 CH_3

- b) Hydrogenering av alkener er eksoterme reaksjoner. Fire forskjellige sykloalkener (unntatt eventuelle stereoisomerer) vil gi metylsykloheksan når det gjennomføres katalytisk hydrogenering med dem.
 - i) Vis strukturene til de fire sykloalkenene.
 - ii) Hva betyr det at en reaksjon er eksoterm? Vis ved hjelp av et energidiagram.
 - iii) Hvilket av alkenene i i) vil gi den mest eksoterme hydrogeneringsreaksjonen? Begrunn svaret kort, gjerne ved bruk av et energidiagram.

Oppgave 6

Vi ønsker å gjennomføre disse to flertrinns-syntesene. Angi reagenser og strukturer for mellomprodukter. Reaksjonsmekanismer trengs ikke.

Oppgave 7

Gi entydige IUPAC-navn på forbindelsene A-E.

Oppgave 8

Når brom (Br_2) reagerer med sykloheksen, dannes to produkter som hver for seg er optisk aktive, men produktblandingen er optisk inaktiv. Tegn stereoformler for produktene og angi hvilken type isomeri disse representerer. Hva kalles den optisk inaktive produktblandingen?

¹H NMR kjemiske skift av protoner i forskjellige omgivelser. Dersom protonet er omgitt av flere funksjonelle grupper, vil effektene være omtrent additive (forsterkende).

Type proton		Kjemisk skift (δ)
Referanse	$Si(CH_3)_4$	0,0
Alkyl (primær)	—СН ₃	0,7-1,3
Alkyl (sekundær)	—С Н ₂ —	1,2-1,6
Alkyl (tertiær)	СН —	1,4-1,8
Allylisk	$C = C - C \stackrel{\mathbf{H}}{\longleftarrow}$	1,6-2,2
Metylketon	—с С Н 3	2,0-2,4
Aromatisk metyl	Aryl—CH ₃	2,4-2,7
Alkynyl	—с≡с−н	2,5-3,0
Alkylhalid	CH—Halogen	2,5-4,0
Alkohol	ССОН	2,5-5,0
Alkohol, eter	CCH H	3,3-4,5
Vinylisk	C = C H	4,5-6,5
Aromatisk	Aryl—H	6,5-8,0
Aldehyd	—c(H	9,7-10,0
Karboksylsyre	—с ^о —н	11,0-12,0

[223]	[226]	[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]						
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub						
francium 87	radium 88	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111	ununbium 112						
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
85.47 caesium	87.62 barium	88.91	91.23 hafnium	92.91 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42	107.87 gold	mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
Rb	Sr	I	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd 112.41	In	Sn	Sb 121.76	Te	126.00	Xe
37	38 C#	39 V	40 7.	41 NJ 6	42 N/1 -	43 T	44 D	45 D.b	46 Del	47 A ~	48 C-d	49 •••	50 Cm	51 Ch	52 T	53 ■	54 V •
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
39.098	40.078	44.956	47.867	50.942	51.996	54.939	55.845	58.933	58.693	63.546	65.409	69.723	72.64	74.922	78.96	79.904	83.798
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
22.990 potassium	24.305 calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.984 krypton
Na	Mg												Si	P	S	CI	Ar
11	12											13 Al	14	15	16	17	18
sodium	magnesium	atomic weight										aluminium	silicon	14.007 phosphorus	sulphur	chlorine	argon
6.941	9.0122									atomic weight 10.811 12.011					15.999	18.998	20.180
Li	Be									ıbol		В	С	N	0	F	Ne
3	4									atomic number			6	7	8	9	10
1.0079 lithium	beryllium	element name boron carbon nitrogen oxygen fluorine												4.003 neon			
Н													He				
1		1 of towes ysteritet											2				
hydrogen	Periodesystemet											helium					

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]