Lecture 20: Confidence Interval for One Population Proportion

• Confidence Interval for a Population Proportion:

- Formula: $\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- Requirements:
 - * Random sample
 - * Large enough sample size (np and n(1-p) both ≥ 10)
- Agresti-Coull Adjustment: Add 2 successes and 2 failures to the sample size.
- Interpretation: We are [confidence level] confident that the true population proportion is between [lower bound] and [upper bound].

• Standard Error vs. Standard Deviation:

- Standard error (SE) measures the variability of the sample proportion.
- Standard deviation (SD) measures the variability of the population.
- SE is used when the population proportion is unknown

• Steps for Constructing a Confidence Interval:

- Verify assumptions (random sample, large enough sample size).
- Calculate the sample proportion \hat{p} .
- Find the critical value $z_{\alpha/2}$ based on the confidence level.
- Calculate the margin of error.
- Construct the confidence interval.
- Interpret the confidence interval in the context of the problem.

• Sample Size Calculation:

- Formula: $n = \frac{z_{\alpha/2}^2 \cdot \hat{p}(1-\hat{p})}{ME^2}$
- Use this formula to determine the minimum sample size needed to achieve a desired margin of error.

Lecture 21: Inference about $\mu_1 - \mu_2$

• Assumptions for Two-Sample t-Tests:

- Independent random samples from two populations.
- Both populations are normally distributed.
- Population standard deviations are unknown.

• Central Limit Theorem (CLT):

- If sample sizes are large enough ($n \ge 30$), the sampling distribution of the sample mean will be approximately normal, regardless of the population distribution.

• Hypothesis Testing for the Difference in Means:

- Null Hypothesis (H_0): $\mu_1 \mu_2 = 0$ (no difference in means)
- Alternative Hypothesis (H_a) :
 - * $\mu_1 \mu_2 \neq 0$ (two-sided)
 - * $\mu_1 \mu_2 > 0$ (right-tailed)
 - * $\mu_1 \mu_2 < 0$ (left-tailed)
- Test Statistic: $t = \frac{(\bar{x}_1 \bar{x}_2) (\mu_1 \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$

- P-value: Probability of observing a test statistic as extreme or more extreme than the one calculated, assuming the null hypothesis is true.
- Conclusion:
 - * If p-value ; α (significance level), reject H_0 .
 - * If p-value $\geq \alpha$, fail to reject H_0 .

• Confidence Interval for the Difference in Means:

- Formula: $(\bar{x}_1 \bar{x}_2) \pm t_{\alpha/2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
- Interpretation: We are [confidence level] confident that the true difference in population means is between [lower bound] and [upper bound].

Lecture 22: Confidence Interval for μ_1 –

• Pooled t-Test:

- Used when we assume that the population variances are equal.
- Pooled variance: $s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}$

• Assumptions for Pooled t-Test:

- Independent random samples from two populations.
- Both populations are normally distributed.
- Population variances are equal.

• Hypothesis Testing and Confidence Interval for Pooled t-Test:

– Similar to the regular two-sample t-test, but using the pooled variance s_p^2 in the calculations.

• Paired t-Test:

- Used when the samples are dependent, meaning each observation in one sample is paired with a corresponding observation in the other sample.
- Example: Before-and-after measurements on the same individuals.

• Assumptions for Paired t-Test:

The differences between paired observations are normally distributed.

• Hypothesis Testing and Confidence Interval for Paired t-Test:

- Calculate the differences between paired observations.
- Perform a one-sample t-test on the differences.

Lecture 23: Inference of $p_1 - p_2$

• Inference for Two Population Proportions:

 Used to compare the proportions of successes in two independent populations.

• Assumptions:

- Two independent random samples from two Bernoulli populations.
- Expected successes and failures in each sample are at least 10.

Hypothesis Testing for the Difference in Proportions:

- Null Hypothesis (H_0): $p_1 p_2 = 0$ (no difference in proportions)
- Alternative Hypothesis (H_a) :
 - * $p_1 p_2 \neq 0$ (two-sided)
 - * $p_1 p_2 > 0$ (right-tailed)
 - * $p_1 p_2 < 0$ (left-tailed)
- Test Statistic: $z = \frac{(\hat{p}_1 \hat{p}_2) (p_1 p_2)}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$
- P-value: Probability of observing a test statistic as extreme or more extreme than the one calculated, assuming the null hypothesis is true.
- Conclusion:
 - * If p-value ; α (significance level), reject H_0 .
 - * If p-value $\geq \alpha$, fail to reject H_0 .

• Confidence Interval for the Difference in Proportions:

- Formula: $(\hat{p}_1 \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$
- Interpretation: We are [confidence level] confident that the true difference in population proportions is between [lower bound] and [upper bound].

• Agresti-Coull Adjustment:

 Add 2 successes and 2 failures to each sample size to improve the accuracy of the confidence interval when sample sizes are small.

Other Considerations

• Type I and Type II Errors:

- Type I Error: Rejecting the null hypothesis when it is actually true.
- Type II Error: Failing to reject the null hypothesis when it is actually false.
- The choice of significance level (α) affects the probability of making these errors.

• Controlling Type I Errors:

- Use a smaller significance level (α) .
- Increase the sample size.

• Practical Significance vs. Statistical Significance:

- Statistical significance: The result is unlikely to have occurred by chance.
- Practical significance: The result has a meaningful impact in the real world.
- A result can be statistically significant but not practically significant, and vice versa.

In all of these cases, if the sample sizes are large enough, then

$$ar{X} \sim N\left(\mu_X, rac{\sigma_X^2}{n_X}
ight)$$
 (approximately) $ar{Y} \sim N\left(\mu_Y, rac{\sigma_Y^2}{n_Y}
ight)$ (approximately)

and our methods for inference about $\mu_X - \mu_L$ will be valid, but the results might not be meaningful.

CI For	Sample Statistic	Margin of Error	Use When
Population mean (μ)	\bar{x}	$\pm z^* \frac{\sigma}{\sqrt{n}}$	X is normal, or $n \ge 30$; σ known
Population mean (μ)	\bar{x}	$\pm t_{n-1}^* \frac{s}{\sqrt{n}}$	$n < 30$, and/or σ unknown
Population proportion (p)	p	$\pm z^* \sqrt{rac{\widehat{p}\left(1-\widehat{p} ight)}{n}}$	$n\hat{p}, n(1-\hat{p}) \ge 10$
Difference of two population means $(\mu_{\rm I}-\mu_{\rm Z})$	$\overline{x}_1 - \overline{x}_2$	$\pm z^* \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	Both normal distributions or $n_1, n_2 \ge 30;$ σ_1, σ_2 known
Difference of two population means $\mu_{\rm 1}-\mu_{\rm 2}$	$\overline{x}_1 - \overline{x}_2$	$\pm t_{n_1+n_2-2}^* \sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}$	n_1 , n_2 < 30; and/or σ_1 = σ_2 unknown
Difference of two proportions $(p_1 - p_2)$	$\hat{p}_1 - \hat{p}_2$	$\pm z^{\star} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	$n\hat{p}, n(1-\hat{p}) \ge 10$ for each group

Probability Formulas

 $P(A \cap B)$

 $P(A|B) = \frac{\overline{P(A \cap B)}}{P(B)}$

P(

)^c

 $P(A \cup B) = \overline{P(A) + P(B)} - P(A \cap B)$

Bayes' Theorem

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$
$$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$$

Ace Tutors

Mutually Exclusive

NORM.S.DIST and NORMSDIST

Calculate the probability of having a value below x (percentile)

NORM.S.INV and NORMSINV

Calculate a Z-score based on the probability of having a value below $\boldsymbol{\boldsymbol{x}}$

T.DIST(cumulative = true)

Calculates the probability of having a value below a certain T-value (percentile); not equivalent to TDIST

T.INV

Calculates a T-score based on the probability of having a value below that T-score (percentile); not equivalent to TINV

