

Ţ <u>Help</u>

sandipan_dey >

Next >

<u>Syllabus</u> laff routines **Community** <u>Progress</u> **Discussion** <u>Outline</u> <u>Course</u> <u>Dates</u>

E1.2.6 Sample Question 6

☐ Bookmark this page

< Previous</pre>

■ Calculator

6. Consider the MATLAB (M-script) code

```
function [ y_out ] = foo( A, x, y )

n = size( A, 1 );
for j = 1:n
    for i = 1:j
        y( i ) = A( j,i ) * x( j ) + y( i );
    end
    for i = j+1:n
        y( i ) = A( i,j ) * x( j ) + y( i );
    end
end

y_out = y;

return
end
```

(If you have a hard time interpreting this algorithm, you may want to consider the algorithm typeset with FLAME notation at the end of this exam.)

Mark which operation this implements (check all correct answers):

- $\square \ y := Lx + y$, where L is a lower triangular matrix, stored only in the lower triangular part of array A .
- $\square \ y := Ux + y,$ where U is a upper triangular matrix, stored only in the lower triangular part of array A .
- $\ \square \ y:=Ax+y,$ where A is symmetric, stored only in the lower triangular part of array ${\tt A}$.
- $\Box y := Ax + y$, where A is symmetric, stored only in the upper triangular part of array A .
- \Box The equivalent of y = (tril(A) + tril(A, -1)') * x + y in MAT-LAB's M-script.
- \Box The equivalent of y = (triu(A) + triu(A, 1)') * x + y in MATLAB's M-script.

Algorithm typeset using FLAME Notation:

Algorithm:
$$y := \text{FOO}(A, x, y)$$

Partition $A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}$, $x \to \begin{pmatrix} \frac{x_T}{x_B} \\ \frac{x_T}{x_B} \\ \end{pmatrix}$, $y \to \begin{pmatrix} \frac{y_T}{y_B} \\ \frac{y_B}{y_B} \\ \end{pmatrix}$ where A_{TL} is 0×0 , x_T , y_T are 0×1 while $m(A_{TL}) < m(A)$ do

Repartition

$$\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \to \begin{pmatrix} \frac{A_{00}}{a_{01}} & a_{01} & A_{02} \\ \frac{a_{10}^T}{a_{11}} & a_{11} & a_{12}^T \\ A_{20} & a_{21} & A_{22} \end{pmatrix}$$
, $\begin{pmatrix} \frac{x_T}{x_B} \\ \end{pmatrix} \to \begin{pmatrix} \frac{x_0}{x_1} \\ \end{pmatrix}$, $\begin{pmatrix} \frac{y_T}{y_B} \\ \end{pmatrix} \to \begin{pmatrix} \frac{y_0}{y_1} \\ \end{pmatrix}$

where
$$\alpha_{11}$$
, χ_{1} , and ψ_{1} are scalars
$$y_{0} := \chi_{1}(a_{10}^{T})^{T} + y_{0}$$

$$\psi_{1} := \chi_{1}\alpha_{11} + \psi_{1}$$

$$y_{2} := \chi_{1}a_{21} + y_{2}$$

Continue with

$$\left(\begin{array}{c|c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \leftarrow \left(\begin{array}{c|c|c}
A_{00} & a_{01} & A_{02} \\
\hline
a_{10}^T & \alpha_{11} & a_{12}^T \\
\hline
A_{20} & a_{21} & A_{22}
\end{array}\right),$$

$$\left(\begin{array}{c|c|c}
x_T \\
\hline
x_B
\end{array}\right) \leftarrow \left(\begin{array}{c|c|c}
x_0 \\
\hline
\chi_1 \\
\hline
x_2
\end{array}\right), \left(\begin{array}{c|c|c}
y_T \\
\hline
y_B
\end{array}\right) \leftarrow \left(\begin{array}{c|c|c}
y_0 \\
\hline
\psi_1 \\
\hline
y_2
\end{array}\right)$$

Answer Video

endwhile

Video

<u>♣ Download video file</u>

Transcripts

- **▲** Download Text (.txt) file

Discussion

Topic: Exam 1 / E1.2.6

Hide Discussion

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>