Package 'ComplexUpset'

October 12, 2022

2 aes_percentage

	geom_venn_circle	
	geom_venn_label_set	
	6 – – –	
	geom_venn_region	
	get_size_mode	
	intersection_matrix	
	intersection_ratio	
	intersection_size	12
	reverse_log_trans	13
	scale_color_venn_mix	13
	scale_fill_venn_mix	15
	upset	15
	upset_annotate	17
	upset_data	18
	upset default themes	
	upset_mode	
	upset_modify_themes	
	upset_query	
	upset_set_size	
	•	
	upset_stripes	
	upset_test	
	upset_text_percentage	
	upset_themes	24
Index		25
muex		45

aes_percentage

Generate mapping for labeling percentages

Description

Generate mapping for labeling percentages

Usage

```
aes_percentage(relative_to, digits = 0, sep = "")
```

Arguments

relative_to	defines proportion that should be calculated, relative to 'intersection', 'group', or 'all' observed values
digits	number of digits to show (default=0)
sep	separator separator between the digit and percent sign (no separator by default)

arrange_venn 3

arrange_venn

Arrange points for Venn diagram

Description

Arrange points for Venn diagram

Usage

```
arrange_venn(
  data,
  sets = NULL,
  radius = 1.5,
  max_iterations = 10,
  verbose = FALSE,
  outwards_adjust = 1.3,
  extract_sets = FALSE,
  extract_regions = FALSE,
  repeat_in_intersections = FALSE,
  starting_grid_size = "auto"
)
```

Arguments

data a dataframe including binary columns representing membership in sets vector with names of columns representing membership in sets sets radius the radius of the circle max_iterations the maximal number of iterations verbose should debugging notes be printed? outwards_adjust the multiplier defining the distance from the centre should only sets be extracted? extract_sets extract_regions should all unique regions be extracted? repeat_in_intersections repeat intersection k times where k is the number of sets it belongs to? starting_grid_size the starting size of the grid for placement of elements

compare_between_intersections

Compare covariates between intersections

Description

Compare covariates between intersections

Usage

```
compare_between_intersections(
  data,
  intersect,
  test = kruskal.test,
  tests = list(),
  ignore = list(),
  ignore_mode_columns = TRUE,
  mode = "exclusive_intersection",
  ...
)
```

Arguments

data a dataframe including binary columns representing membership in classes

intersect which columns should be used to compose the intersection

test the default test function; it is expected to accept formula and data parameters,

and a list with p.value, statistic, and method

tests a named list with tests for specific variables, overwriting the default test

ignore a list with names of variables to exclude from testing

ignore_mode_columns

whether the membership columns and size columns for all modes should be

ignored

mode region selection mode; note that modes other than exclusive_intersection

repeat observations in different test group, introducing dependencies. See get_size_mode()

for accepted values.

... passed to upset_data()

```
create_upset_abc_example
```

Create an example dataset with three sets: A, B and C

Description

Create an example dataset with three sets: A, B and C

Usage

```
create_upset_abc_example()
```

geom_venn_circle

Circle for Venn diagram

Description

Circle for Venn diagram

Usage

```
geom_venn_circle(
  data,
  mapping = aes_(),
  sets = NULL,
  radius = 1.5,
  resolution = 100,
  size = 0.8,
  color = "black",
  ...
)
```

Arguments

data a dataframe including binary columns representing membership in sets

mapping the aesthetics mapping

sets vector with names of columns representing membership in sets

radius the radius of the circle

resolution the resolution of the circle rasterizer

size width of the outline color the color of the outline

... Arguments passed on to ggplot2::geom_polygon

stat The statistical transformation to use on the data for this layer, as a string.

- position Position adjustment, either as a string, or the result of a call to a position adjustment function.
- rule Either "evenodd" or "winding". If polygons with holes are being drawn (using the subgroup aesthetic) this argument defines how the hole coordinates are interpreted. See the examples in grid::pathGrob() for an explanation.
- na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
- show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
- inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

```
geom_venn_label_region
```

Label for a region of Venn diagram

Description

Label for a region of Venn diagram

Usage

```
geom_venn_label_region(
  data,
  mapping = aes_(),
  sets = NULL,
  outwards_adjust = 1.3,
  fill = alpha("white", 0.85),
  size = 5,
  label.size = 0,
  ...
)
```

Arguments

data a dataframe including binary columns representing membership in sets

mapping the aesthetics mapping

sets vector with names of columns representing membership in sets

outwards_adjust

the multiplier defining the distance from the centre

7 geom_venn_label_set

```
the fill of the label
fill
                   the text size
size
label.size
                   the size of the label outline
                   Arguments passed on to ggplot2::geom_label
. . .
```

stat The statistical transformation to use on the data for this layer, as a string. position Position adjustment, either as a string, or the result of a call to a position adjustment function. Cannot be jointy specified with nudge_x or nudge_y.

parse If TRUE, the labels will be parsed into expressions and displayed as described in ?plotmath.

nudge_x Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text from points, particularly on discrete scales. Cannot be jointly specified with position.

nudge_y Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text from points, particularly on discrete scales. Cannot be jointly specified with position.

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

geom_venn_label_set

Label for a set of Venn diagram

Description

Label for a set of Venn diagram

Usage

```
geom_venn_label_set(
  data,
 mapping = aes_(),
  sets = NULL,
  outwards_adjust = 2.5,
  fill = alpha("white", 0.85),
```

```
size = 5,
label.size = 0,
...
)
```

Arguments

data a dataframe including binary columns representing membership in sets

mapping the aesthetics mapping

sets vector with names of columns representing membership in sets

outwards_adjust

the multiplier defining the distance from the centre

fill the fill of the label

size the text size

label.size the size of the label outline

... Arguments passed on to ggplot2::geom_label

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjustment function. Cannot be jointy specified with nudge_x or nudge_y.

parse If TRUE, the labels will be parsed into expressions and displayed as described in ?plotmath.

nudge_x Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text from points, particularly on discrete scales. Cannot be jointly specified with position.

nudge_y Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text from points, particularly on discrete scales. Cannot be jointly specified with position.

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

geom_venn_region 9

geom_venn_region

Region of Venn diagram

Description

Region of Venn diagram

Usage

```
geom_venn_region(data, mapping = aes_(), sets = NULL, resolution = 250, ...)
```

Arguments

data a dataframe including binary columns representing membership in sets

mapping the aesthetics mapping

sets vector with names of columns representing membership in sets

resolution the resolution of the circle rasterizer

... Arguments passed on to ggplot2::geom_polygon

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjustment function.

rule Either "evenodd" or "winding". If polygons with holes are being drawn (using the subgroup aesthetic) this argument defines how the hole coordinates are interpreted. See the examples in grid::pathGrob() for an explanation.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

10 intersection_matrix

 $\begin{tabular}{ll} {\tt get_size_mode} & {\tt \it Retrieve\ symbol\ for\ given\ mode\ that\ can\ be\ used\ in\ aesthetics\ mapping\ with\ double\ bang\ (!\,!) \\ \end{tabular}$

Description

Retrieve symbol for given mode that can be used in aesthetics mapping with double bang (!!)

Usage

```
get_size_mode(mode, suffix = "_size")
```

Arguments

mode the mode to use. Accepted values: exclusive_intersection (alias distinct),

inclusive_intersection (alias intersect), inclusive_union (alias union),

exclusive_union.

suffix the column suffix in use as passed to upset_data()

Description

Prepare layers for sets sizes plot

Usage

```
intersection_matrix(
  geom = geom_point(size = 3),
  segment = geom_segment(),
  outline_color = list(active = "black", inactive = "grey70")
)
```

Arguments

geom a geom_point call, allowing to specify parameters (e.g. geom=geom_point(shape='square'))

segment a geom_segment call, allowing to specify parameters (e.g. segment=geom_segment(linetype='dotted

outline_color a named list with two colors for outlines of active and inactive dots

intersection_ratio 11

intersection_ratio

Barplot annotation of relative intersections sizes

Description

A large intersection size can be driven by a large number of members in a group; to account for that, one can divide the intersection size by the size of a union of the same groups. This cannot be calculated for the null intersection (observations which do not belong to either of the groups).

Usage

```
intersection_ratio(
  mapping = aes(),
  counts = TRUE,
  bar_number_threshold = 0.75,
  text_colors = c(on_background = "black", on_bar = "white"),
  text = list(),
  text_mapping = aes(),
  mode = "distinct",
  denominator_mode = "union",
  ...
)
```

Arguments

additional aesthetics for geom_bar() mapping whether to display count number labels above the bars counts bar_number_threshold if less than one, labels for bars height greater than this threshold will be placed on (not above) the bars a name vector of characters specifying the color when on_background and text_colors on_bar (see bar_number_threshold) text additional parameters passed to geom_text() text_mapping additional aesthetics for geom_text() mode region selection mode, defines which intersection regions will be accounted for when computing the size. See get_size_mode() for accepted values. denominator_mode region selection mode for computing the denominator in ratio. See get_size_mode() for accepted values. Arguments passed on to intersection_size . . . position position passed to geom_bar()

12 intersection_size

intersection_size

Barplot annotation of intersections sizes

Description

Barplot annotation of intersections sizes

Usage

```
intersection_size(
 mapping = aes(),
  counts = TRUE,
  bar_number_threshold = 0.85,
  text_colors = c(on_background = "black", on_bar = "white"),
  text = list(),
  text_mapping = aes(),
 mode = "distinct",
 position = position_stack(),
)
```

Arguments

additional aesthetics for geom_bar() mapping

whether to display count number labels above the bars counts

bar_number_threshold

if less than one, labels for bars height greater than this threshold will be placed

on (not above) the bars

a name vector of characters specifying the color when on_background and text_colors

on_bar (see bar_number_threshold)

text additional parameters passed to geom_text()

text_mapping additional aesthetics for geom_text()

region selection mode, defines which intersection regions will be accounted for mode

when computing the size. See get_size_mode() for accepted values.

position passed to geom_bar() position

Arguments passed on to ggplot2::geom_bar

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in

the call to ggplot().

A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables

will be created. A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A

function can be created from a formula (e.g. ~ head(.x, 10)).

reverse_log_trans 13

width Bar width. By default, set to 90% of the resolution of the data.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

- orientation The orientation of the layer. The default (NA) automatically determines the orientation from the aesthetic mapping. In the rare event that this fails it can be given explicitly by setting orientation to either "x" or "y". See the *Orientation* section for more detail.
- show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
- inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

stat Override the default connection between geom_bar() and stat_count().

reverse_log_trans

Logarithmic scale for use with upset_set_size()

Description

Inspired by Brian Diggs' answer which is CC-BY-SA 4.0.

Usage

```
reverse_log_trans(base = 10)
```

Arguments

base

logarithm base (default 10)

scale_color_venn_mix Color scale for Venn diagram

Description

Color scale for Venn diagram

14 scale_color_venn_mix

Usage

```
scale_color_venn_mix(
  data,
  sets = NULL,
  colors = c("red", "blue", "green"),
  na.value = "grey40",
  highlight = NULL,
  active_color = "orange",
  inactive_color = "NA",
  scale = scale_color_manual,
  ...
)
```

Arguments

data a dataframe including binary columns representing membership in sets

sets vector with names of columns representing membership in sets

colors named list of colors for sets (one set=one color)

na.value value for elements not belonging to any of the sets

highlight which regions of the diagram to highlight

active_color color for highlight

inactive_color color for lack of highlight

scale the base scale (default=scale_color_manual())

... Arguments passed on to ggplot2::scale_color_manual

values a set of aesthetic values to map data values to. The values will be matched in order (usually alphabetical) with the limits of the scale, or with breaks if provided. If this is a named vector, then the values will be matched based on the names instead. Data values that don't match will be given na.value.

aesthetics Character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with. This can be useful, for example, to apply colour settings to the colour and fill aesthetics at the same time, via aesthetics = c("colour", "fill").

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks (the scale limits)
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

scale_fill_venn_mix 15

```
scale_fill_venn_mix Fill scale for Venn diagram
```

Description

Fill scale for Venn diagram

Usage

```
scale_fill_venn_mix(..., na.value = "NA")
```

Arguments

Arguments passed on to scale_color_venn_mix

data a dataframe including binary columns representing membership in sets
sets vector with names of columns representing membership in sets
colors named list of colors for sets (one set=one color)
highlight which regions of the diagram to highlight
active_color color for highlight
inactive_color color for lack of highlight
scale the base scale (default=scale_color_manual())

na.value value for elements not belonging to any of the known sets

Compose an UpSet plot

Description

upset

Compose an UpSet plot

Usage

```
upset(
  data,
  intersect,
  base_annotations = "auto",
  name = "group",
  annotations = list(),
  themes = upset_themes,
  stripes = upset_stripes(),
  labeller = identity,
  height_ratio = 0.5,
  width_ratio = 0.3,
  wrap = FALSE,
```

16 upset

```
set_sizes = upset_set_size(),
mode = "distinct",
queries = list(),
guides = NULL,
encode_sets = TRUE,
matrix = intersection_matrix(),
...
)
```

Arguments

data a dataframe including binary columns representing membership in classes

intersect which columns should be used to compose the intersection

base_annotations

a named list with default annotations (i.e. the intersection size barplot)

name the label shown below the intersection matrix

annotations a named list of annotations, each being a list with: list(aes=mapping, geom=geom or list of geoms);

(optional) highlight_geom=list of geoms geoms which can be highlighted with queries,

• (optional) top_geom=list of geoms which should show up on top of highlighted queries.

themes a named list of themes for components and annotations, see upset_default_themes()/upset_modify_t

stripes specification of the stripes appearance created with upset_stripes()

labeller function modifying the names of the sets (rows in the matrix)
height_ratio ratio of the intersection matrix to intersection size height
width_ratio ratio of the overall set size width to intersection matrix width

wrap whether the plot should be wrapped into a group (makes adding a tile/combining

with other plots easier)

set_sizes the overall set sizes plot, e.g. from upset_set_size() (FALSE to hide)

mode region selection mode for computing the number of elements in intersection

fragment. See get_size_mode() for accepted values.

queries a list of queries generated with upset_query()

guides action for legends aggregation and placement ('keep', 'collect', 'over' the set

sizes)

encode_sets whether set names (column in input data) should be encoded as numbers (set to

TRUE to overcome R limitations of max 10 kB for variable names for datasets with huge numbers of sets); default TRUE for upset() and FALSE for upset_data().

matrix the intersection matrix plot

.. Arguments passed on to upset_data

min_size minimal number of observations in an intersection for it to be in-

max_size maximal number of observations in an intersection for it to be in-

cluded

upset_annotate 17

min_degree minimal degree of an intersection for it to be included max_degree maximal degree of an intersection for it to be included

n_intersections the exact number of the intersections to be displayed; n largest intersections that meet the size and degree criteria will be shown

keep_empty_groups whether empty sets should be kept (including sets which are only empty after filtering by size)

warn_when_dropping_groups whether a warning should be issued when empty sets are being removed

warn_when_converting whether a warning should be issued when input is not

sort_sets whether to sort the rows in the intersection matrix (descending sort by default); one of: 'ascending', 'descending', FALSE

sort_intersections whether to sort the columns in the intersection matrix (descending sort by default); one of: 'ascending', 'descending', FALSE

sort_intersections_by the mode of sorting, the size of the intersection (cardinality) by default; one of: 'cardinality', 'degree', 'ratio', or any combination of these (e.g. c('degree', 'cardinality'))

sort_ratio_numerator the mode for numerator when sorting by ratio sort_ratio_denominator the mode for denominator when sorting by ratio group_by the mode of grouping intersections; one of: 'degree', 'sets'

size_columns_suffix suffix for the columns to store the sizes (adjust if conflicts with your data)

intersections whether only the intersections present in data (observed, default), or all intersections (all) should be computed; using all intersections for a high number of sets is not computationally feasible - use min_degree and max_degree to narrow down the selection; this is only useful for modes different from the default exclusive intersection. You can also provide a list with a custom selection of intersections (order is respected when you set sort_intersections=FALSE)

max_combinations_datapoints_n a fail-safe limit preventing accidental use
 of intersections='all' with a high number of sets and observations

upset_annotate

Annotation panel shorthand

Description

Simplifies creation of annotation panels, automatically building aesthetics mappings, at a cost of lower flexibility than when providing a custom mapping; aes(x=intersection) is prespecified.

Usage

upset_annotate(y, geom)

18 upset_data

Arguments

У	A string with the name of the y aesthetic
geom	A geom to be used as an annotation

upset_data

Prepare data for UpSet plots

Description

Prepare data for UpSet plots

Usage

```
upset_data(
  data,
  intersect,
 min_size = 0,
 max_size = Inf,
 min_degree = 0,
 max_degree = Inf,
  n_intersections = NULL,
  keep_empty_groups = FALSE,
 warn_when_dropping_groups = FALSE,
 warn_when_converting = "auto",
  sort_sets = "descending",
  sort_intersections = "descending",
  sort_intersections_by = "cardinality",
  sort_ratio_numerator = "exclusive_intersection",
  sort_ratio_denominator = "inclusive_union",
  group_by = "degree",
 mode = "exclusive_intersection",
  size_columns_suffix = "_size",
  encode_sets = FALSE,
 max_combinations_datapoints_n = 10^10,
  intersections = "observed"
)
```

Arguments

data	a dataframe including binary columns representing membership in classes
intersect	which columns should be used to compose the intersection
min_size	minimal number of observations in an intersection for it to be included
max_size	maximal number of observations in an intersection for it to be included
min_degree	minimal degree of an intersection for it to be included
max_degree	maximal degree of an intersection for it to be included

upset_data 19

n_intersections

the exact number of the intersections to be displayed; n largest intersections that meet the size and degree criteria will be shown

keep_empty_groups

whether empty sets should be kept (including sets which are only empty after filtering by size)

warn_when_dropping_groups

whether a warning should be issued when empty sets are being removed

warn_when_converting

whether a warning should be issued when input is not boolean

sort_sets whether to sort the rows in the intersection matrix (descending sort by default); one of: 'ascending', 'descending', FALSE

sort_intersections

whether to sort the columns in the intersection matrix (descending sort by default); one of: 'ascending', 'descending', FALSE

sort_intersections_by

the mode of sorting, the size of the intersection (cardinality) by default; one of: 'cardinality', 'degree', 'ratio', or any combination of these (e.g. c('degree', 'cardinality'))

sort_ratio_numerator

the mode for numerator when sorting by ratio

sort_ratio_denominator

the mode for denominator when sorting by ratio

group_by the mode of grouping intersections; one of: 'degree', 'sets'

mode region selection mode for sorting and trimming by size. See get_size_mode() for accepted values.

size_columns_suffix

suffix for the columns to store the sizes (adjust if conflicts with your data)

encode_sets

whether set names (column in input data) should be encoded as numbers (set to TRUE to overcome R limitations of max 10 kB for variable names for datasets with huge numbers of sets); default TRUE for upset() and FALSE for upset_data()

max_combinations_datapoints_n

a fail-safe limit preventing accidental use of intersections='all' with a high number of sets and observations

intersections

whether only the intersections present in data (observed, default), or all intersections (all) should be computed; using all intersections for a high number of sets is not computationally feasible - use min_degree and max_degree to narrow down the selection; this is only useful for modes different from the default exclusive intersection. You can also provide a list with a custom selection of intersections (order is respected when you set sort_intersections=FALSE)

upset_modify_themes

upset_default_themes

Default themes modified by specified arguments

Description

Return the default UpSet themes with all themes modified with provided arguments

Usage

```
upset_default_themes(...)
```

Arguments

arguments passed to theme()

upset_mode

Layer defining the intersection mode for the data to be displayed

Description

By default the annotations are given data corresponding to the same mode as the mode of the passed in the upset() call.

Usage

```
upset_mode(mode)
```

Arguments

mode

region selection mode, defines which mode data will be made available for the annotation. See get_size_mode() for accepted values.

 $upset_modify_themes$

Default themes modified by specified component-specific arguments

Description

Return the default UpSet themes with specific themes modified with provided themes

Usage

```
upset_modify_themes(to_update)
```

Arguments

to_update

a named list of themes to be used to modify themes of specific components; see names(upset_themes) for components names.

upset_query 21

upset_query

Highlight chosen sets or intersections

Description

Highlight sets or intersections matching specified query.

Usage

```
upset_query(
  set = NULL,
  intersect = NULL,
  group = NULL,
  only_components = NULL,
  ...
)
```

Arguments

set name of the set to highlight

intersect a vector of names for the intersection to highlight; pass NA to select the empty

intersection

group name of the set to highlight when using group_by='sets'

only_components

which components to modify; by default all eligible components will be modified; the available components are 'overall_sizes', 'intersections_matrix', 'In-

tersection size', and any annotations specified

passed to geoms in modified components

Examples

```
upset_query(intersect=c('Drama', 'Comedy'), color='red', fill='red')
upset_query(set='Drama', fill='blue')
```

upset_set_size

Prepare layers for sets sizes plot

Description

Prepare layers for sets sizes plot

22 upset_stripes

Usage

```
upset_set_size(
  mapping = aes(),
  geom = geom_bar(width = 0.6),
  position = "left",
  filter_intersections = FALSE
)
```

Arguments

mapping additional aesthetics geom a geom to use

position on which side of the plot should the set sizes be displayed ('left' or 'right')

filter_intersections

whether the intersections filters (e.g. $n_intersections$ or min_size) should

influence displayed set sizes

upset_stripes

Define appearence of the stripes

Description

Define appearence of the stripes

Usage

```
upset_stripes(
  mapping = aes(),
  geom = geom_segment(size = 7),
  colors = c("white", "grey95"),
  data = NULL
)
```

Arguments

mapping additional aesthetics

geom a geom to use, should accept x, y, xend, yend and color aesthetics

colors a vector of colors to repeat as many times as needed for the fill of stripes, or a

named vector specifying colors for values of the variable mapped to the color

aesthetics in the mapping argument

data the dataset describing the sets with a column named set and any other columns

as needed for mapping

upset_test 23

upset_test

Test for differences between intersections

Description

This is a wrapper around compare_between_intersections(), adding sorting by FDR, warnings, etc.

Usage

```
upset_test(data, intersect, ...)
```

Arguments

data a dataframe including binary columns representing membership in classes intersect which columns should be used to compose the intersection ... Arguments passed on to compare_between_intersections

test the default test function; it is expected to accept formula and data parameters, and a list with p.value, statistic, and method

tests a named list with tests for specific variables, overwriting the default test

ignore a list with names of variables to exclude from testing

ignore_mode_columns whether the membership columns and size columns for all modes should be ignored

mode region selection mode; note that modes other than exclusive_intersection repeat observations in different test group, introducing dependencies. See get_size_mode() for accepted values.

upset_text_percentage Generate percentage label of the intersection/union sizes ratio

Description

For use together with intersection_size or intersection_ratio

Usage

```
upset_text_percentage(digits = 0, sep = "", mode = "distinct")
```

Arguments

digits How many digits to show when rounding the percentage?

sep set to space (' ') if you prefer a whitespace between the number and the \% sign.

mode region selection mode for computing the numerator in ratio. See get_size_mode()

for accepted values.

24 upset_themes

Examples

```
ggplot2::aes(label=!!upset_text_percentage())
```

 ${\tt upset_themes}$

List of default themes for upset components

Description

List of default themes for upset components

Usage

upset_themes

Format

An object of class list of length 4.

Index

```
* datasets
    upset_themes, 24
aes_percentage, 2
arrange_venn, 3
borders(), 6-9, 13
compare_between_intersections, 4, 23
create_upset_abc_example, 5
fortify(), 12
geom_venn_circle, 5
geom_venn_label_region, 6
geom_venn_label_set, 7
geom_venn_region, 9
get_size_mode, 10
ggplot(), 12
ggplot2::geom_bar, 12
ggplot2::geom_label, 7, 8
ggplot2::geom_polygon, 5, 9
ggplot2::scale_color_manual, 14
grid::pathGrob(), 6, 9
intersection_matrix, 10
intersection_ratio, 11
intersection_size, 11, 12
reverse_log_trans, 13
scale_color_venn_mix, 13, 15
scale_fill_venn_mix, 15
upset, 15
upset_annotate, 17
upset_data, 16, 18
upset_default_themes, 20
upset_mode, 20
upset_modify_themes, 20
upset\_query, 21
```

upset_set_size, 21
upset_stripes, 22
upset_test, 23
upset_text_percentage, 23
upset_themes, 24