

Implémentation de RSA forces et faiblesse

Mohammed KHARBOUCH

28 avril 2022

Licence informatique Ingénierie Logicielle

UE Sécurité Informatique

Responsable HADDAD Majed ELAZOUZI Rachid

CENTRE
D'ENSEIGNEMENT
ET DE RECHERCHE
EN INFORMATIQUE
ceri.univ-avignon.fr

Sommaire

Ti	tre	1
Sc	ommaire	2
	Implémentation1.1Test	
2	Test avec une clé de taille petite	7
	RSA et Codage 3.1 Résultat	9

1 Implémentation

Pour Implémenter le cryptage à clé publique/privé RSA. On aura besoin d'effectuer plusieurs opération arithmétiques. notament le Calcul du **PGCD** pour avoir le plus grand diviseur en commun, test de **primalité** et aussi l'inversion modulaire et exponentiation modulaire

* La premiere Fonction : **pgcd(a,b)** va nous permttre de calculer le plus grand diviseur en commun entre deux entiers

```
#Calcul du le Plus Grand Diviseur Commun' entre les 2 nombres entiers a et b
def pgcd(a, b):
    if(b == 0):
        return a
    else:
        return pgcd(b, a % b)

#print("le plus grand diviseur en commun est :", pgcd(60,48))
```

Figure 1

* La deuxième Fonction : **primalite(n)** est une fonction qui va tester si **modulo n** est premier ou pas, s'il est premier elle va nous retrouner **True** sinon elle va retrouner **False**

```
#Test de primalité
def primalite(n):
    """ retourne True si n est premier, False dans le cas contraire """

if n == 1 or n == 2:
    return True

if n % 2 == 0:
    return False

x = n ** 0.5

if x == int(x):
    return False

for y in range(3, int(x), 2):

if n % y == 0:
    return False

return True
```

Figure 2

^{*} La Troisième Fonction : **generationNumAlea** est une fonction qui va nous générer **p, q** aléatoirement mais il vont être inférieur à $2^{k/2}$, etKsaisirparl'utilisateur.

```
#Generation des nombres premiers aleatoires
def generationNumAlea():
    k = int(input("merci de bien saisir le K: "))
    """Retourne p et q deux nombres premiers """
    p = 0
    q = 0

    x = k//2
    y = 2**x

    while primalite(p) is False:
        p = int(random.randrange(1,y))

    while primalite(q) is False:
        q = int(random.randrange(1,y))

print("p est :",p)
print("q est ",q)
return p , q
```

Figure 3

* La quatrième Fonction : **euclide(a,b)** est une fonction qui fasse l'algorithme d'Euclide étendu, qui permet de calculer u et v tels que a.u+b.v = pgcd(a,b). à partir de cette fonction nous pouvons calculer **d** (la clé privée) tels que e.d+k.phi(n) = pgcd(e,phi(n)).

```
#L'algorithme d'euclide étendu

def euclide(a,b):

    r = a
    u = 1
    v = 0
    rp = b
    up = 0
    vp = 1

while rp != 0:
    q = r // rp
    rs = r
    us = u
    vs = v

    r = rp
    u = up
    v = vp

    rp = rs - q * rp
    up = us - q * up
    vp = vs - q * vp

return u % b
```

Figure 4

* La cinquième Fonction :**modulo(x,y,n)**, cette fonction permet de calculer l'exponentiation modulaire ($x_m^y odn$) pour le chiffrement et le de chiffrement.

```
#L'exponentiation modulaire

def modulo(x, y, n):
    """Retourne (x**y) % m"""
    r = 1
    while y > 0:
        if y & 1 == 1:
            r = (r * x) % n
        y = y >> 1
        x = (x * x) % n
    return r
```

Figure 5

* La sixième Fonction : **cles()** cette dernière fonction nous génère les clées (privées et publique) en utilisant la fonction **generationNumAlea** pour avoir **p et q** et aussi la fonction **euclide(e,phi)** pour calculer d. La fonction **cle()** nous retourne à la fin un couple des clés publique/privée

```
#Génération de la clé publique et privée
def cles():

p,q=generationNumAlea()

#calcul de n
n = p * q

#calcul phi
phi=(p-1)*(q-1)

e=0
#generer un nombre e (clé publique) tels que pgcd(e,phi) = 1
while pgcd(e,phi)!=1:
    e = randrange(phi)

#calcul d la clé privée
d=euclide(e,phi)

publicKey = (e,n)
privateKey = (d,n)

print("La clé publique: (",e,n,")")
print()

print("La clé privée est : (",d, n,")")
return publicKey, privateKey
print()
```

Figure 6

* la septième Fonction : **encrypt(m,e,n** cette fonction chargé par le chiffrement d'un message tels que c = $m^e modn$

```
#Chiffrement
def encrypt(m,e,n):
    c = modulo(m, e, n)
    return c
```

Figure 7

* la huitième Fonction : decrypt(c,d,n) cette fonction chargé par le déchiffrement d'un message tels que m = c $^d modn$

```
#Déchiffrement

def decrypt(c,d,n):

m = modulo(c, d, n)

return m

c = encrypt(message, e, n)
```

Figure 8

1.1 Test

Pour tester les fonction précedente on a créer une autre fonction **testEncryptDecrypt()** qui va nous permettre de savoir si les toutes fonctions sont bien programmée ou pas

Figure 9

1.2 Resultat

Figure 10

On observe que le nombre qu'on saisit c'est le même message déchifré donc les algorithmes qu'on a crée sont bien programmée

2 Test avec une clé de taille petite

déchiffrement du message : [9197, 6284, 12836, 8709, 4584, 10239, 11553, 4584, 7008, 12523, 9862, 356, 5356, 1159, 10280, 12523, 7506, 6311] avec la clé publique 12413 ; 13289

Avant de commencer le déchiffirement, on doit créer une autre fonction factoring(n) qui va prendre en argument $\mathbf{n} = \mathbf{p} \times \mathbf{q}$ et va retouner un tableau qui contient les facteurs premiers de n.

```
def factoring(n):
    """factoring(n): décomposition d'un nombre entier n en facteurs premiers"""
    F = []
    if n == 1:
        return F
    # recherche de tous les facteurs 2 s'il y en a
    while n >= 2:
        x, r = divmod(n, 2)
        if r != 0:
            break
        F.append(2)
        n = x
        # recherche des facteurs ler >2
    i = 3
    rn = np.sqrt(n) + 1
    while i <= n:
        if i > rn:
            F.append(n)
            break
        x, r = divmod(n, i)
        if r == 0:
            F.append(i)
            n = x
            rn = np.sqrt(n) + 1
        else:
        i += 2
    return F
```

Figure 11

Après la décomposition de n en deux nombres premiers, on peut calculer phi(n) et après d (la clé privée) qui nous a permet de déchiffrer le message.

Figure 12

après on obtient le résultat de déchiffrement du premier message

Figure 13

déchiffirement du message : [671828605, 407505023, 288441355, 679172842, 180261802] avec la clé publique **(e=163119273; n=755918011)**

Figure 14

après on obtient le résultat de déchiffrement du premier message

Figure 15

3 RSA et Codage

Pour chiffrer un text, il nous faut le convertir en Code et le décomposer en blocs. C'est pour cela on a crée la fonction **convertMsg(message,n)** avec un nombre de caractère qui est 40, donc on peut calculer **k** qui est le nombre de caractère par bloc pour qu'on puisse composer des blocs de tailles k. .

```
def convertmsg(message,n):
    # nombre de caractère pour code
    N = 40

#Calcul de k (la taille du bloc)

k = int(floor(log(n, N)))

#k=2

# conversion du message en codes
codex = [str(ord(j)) for j in message]
print(codex)

# ajout de 0 pour avoir une longueur fixe 3 de chaque code
for i, j in enumerate(codex):
    if len(j) < 3:
        while len(j) < 3:
        j = '0' + j
        codex[i] = j

# compositions de blocs de taille k
codeg = ''.join(codex)

d, f = 0, k

# on rajoute des 0 a la fin de de maniere a ce que len(codeg) soit un multiple de f
while len(codeg) % f != 0:
    codeg = codeg + '0'

code= []

while f <= len(codeg):
    code append(codeg[d:f])
    d, f = f, f + k

return code
print(code)</pre>
```

Figure 16

Après la conversion du texte, on peut chiffrer le texte facilement à l'aide de la fonction **encryptTxt()**

Figure 17

3.1 Résultat

merci de bien saisir le K: 22
p est : 1427
q est 323
La clé publique: (302163 460921)

La clé privée est : (181035 460921)

Veillez entrer un message à chiffrer :Bonjours c'est mohammed
['66', '111', '110', '106', '111', '117', '114', '115', '32', '99', '39', '101', '115', '116', '32', '109', '111', '104', '97', '109', '109', '101', '109', '101', '100']

Le message chiffré : [59101, 138973, 122368, 357999, 138973, 432965, 68742, 381331, 284742, 77816, 18621, 361011, 38133
1, 13692, 284742, 311460, 138973, 327020, 412635, 311460, 311460, 361011, 248413]

Figure 18