EP2120 Internetworking

IK2218 Protocols and Principles of the Internet

Network layer fundamentals Basic forwarding IP addressing

Lecture 3

György Dán KTH/EE/LCN

Literature:

Forouzan, TCP/IP Protocol Suite (3ed Ch 5,12.2,26) (4ed Ch 5,12.2,26)

Basic forwarding, Addressing

Do we need a network layer?

- Network of networks = internetwork
 - Subnets connected by routers
 - Subnets can use different link layer protocols
 - Routers/hosts connected to the subnet via an interface
- Network layer protocols understood by every host and router
 - "Lingua franca" between hosts and routers

Network layer service models

Purpose

End-to-end delivery of packets independent of the underlying link layer technologies

Example service abstractions

- Lossless transmission
- Bounded delay
- Guaranteed bandwidth
- •In-order delivery
- Connection-oriented vs. Connectionless

Service model of the Internet?

Basic forwarding, Addressing

Connection-oriented Service

(Virtual circuit switched)

- Operation
 - Establish connection between source and destination
 - Send packets along the connection
 - Packets carry a VC identifier
 - Tear down connection
- Example: ATM, frame-relay, X.25,MPLS
- Note:
 - The decision about the route is made *once:* at connection establishment
 - Packets follow the same path
 - · Routers/switches are stateful
 - Resources (link, router buffer, etc) can be allocated to VC

Connectionless Service (Datagram)

- Operation
 - No connection establishment in network layer
 - Packets routed individually based on some information
 - · e.g., destination host address
 - No connection tear down
- Example: Internet (IP)
- Note:
 - Route lookup for each packet
 - · Packets may travel on different paths
 - No connection state information in routers
 - Resource allocation challenging

Basic forwarding, Addressing

Quiz

- Consider a network like the one below that offers a datagram service. Host A sends 4 packets (numbered 1,2,3,4) to Host B. In what order do the packets arrive at B?
 - a) 1,2,3,4
 - b) 4,3,2,1
 - c) 2,3,4,1
 - d) None of the above
 - e) Any of the above

Basic Forwarding

Delivery and Forwarding at the network layer

Basic forwarding, Addressing

End-to-end Delivery

- · Direct delivery
 - Destination and sender connected to the same physical network
 - · Last delivery is direct
 - Destination address and local interface have same network address (use netmask)

- · Indirect delivery
 - From host to router or from router to router
 - Destination address and forwarding table: forwarding

Forwarding: Source routing

- Source routing
 - Source makes routing decision
 - Packet carries path (e.g., the hops)

- Drawbacks
 - Topology information needed
 - Space needed in packet

Basic forwarding, Addressing

Forwarding: Next-hop Routing I

- Virtual circuit ID based (e.g., MPLS, ATM)
 - Packet carries VC identifier (e.g., MPLS label)
 - Can change upon every hop
 - [VCID, nexthop] table in every node
 - Next-hop lookup based on VCID

· Connection establishment needed

Forwarding: Next-hop Routing II

- Destination address based (e.g., IPv4 and IPv6)
 - Packet carries destination address (e.g., IPv4 address)
 - [host/network address,nexthop] table in every node
 - Next-hop lookup based on host/network address and nexthop Forwarding tables

ID, Address, Route

- ID/Name What?
 - Does not change when moving
 - Unique?
- Address/Locator Where?
 - Changes when moving
 - Unique?
- Route How?
 - Depends on location

- Multi-homing: entity with one ID but multiple addresses
- Mobility: entity with one ID with changing address

Types of Communication & Addresses

- Unicast: one-to-one communication
 - Exactly one destination
- · Broadcast: one-to-all communication
 - All destinations (e.g., on a subnet)
- Multicast: one-to-many communication
 - All members of a group
- · Anycast: one-to-any communication
 - One member of a group
 - IP: Implemented using unicast addresses shared between several hosts

Logical Addresses in IPv4

- Assigned to an interface not to a node
- Length: 32 bits $\Rightarrow 2^{32} = 4294967296$ addresses
- Notation:
 - dotted decimal: 130.237.50.44
 - binary: 10000010 11101101 00110010 00101100
- Hierarchy
 - Network ID Host ID
 - Classful / Classless (CIDR)

Basic forwarding, Addressing

Classful IPv4 Addressing

- · Address space partitioned in 5 classes
 - Classes A-C: Unicast
 - Class D: Multicast
 - Class E: Reserved
- Class determines
 - Length of NetID and HostID
- Inefficient
 - Supernetting/ subnetting
 - Obsolete

Classless IPv4 Addressing (CIDR)

- · CIDR notation:
 - e.g., 130.237.15.44/24

Prefix length/netmask provides

- NetID/HostID

Unicast 0-223.x.y.z Experimental/Reserved
224-239.x.y.z (11100000/4)
240-255.x.y.z (11110000/4)

Basic forwarding, Addressing

Network Mask

- · Used to compute NetID, HostID and broadcast address
 - Address & Mask = NetID (network address)
 - Address & !Mask = HostID (host address)
 - Address & Mask | !Mask = Directed broadcast address
- IPv4: 32-bit binary number
 - Prefix notation /24
 - Binary: 11111111 11111111 11111111 00000000
 - Hex: FF FF FF 00
 - Dotted decimal: 255.255.255.0
- IPv6: 128-bit, same use

 10000010
 11101101
 00110010
 00101100
 130.237.50.44

 11111111
 11111111
 00000000
 Netmask:/24

Computing the Directed Broadcast Address

Basic forwarding, Addressing

Logical Addresses in IPv6

- Assigned to an interface can be *more* than 1 per interface
- Length: 128 bits \Rightarrow 2¹²⁸ addresses (~5×10²⁸/person on Earth)
- Notation
 - Colon hexadecimal: 2001:06b0:0001:12b0:ec49:cb69:6481:02f1
 - Shortening
 - · Leading zeros can be omitted
 - 2001:6b0:1:12b0:ec49:cb69:6481:2f1
 - Zero compression: one of the series of zeros replaced by ::

IPv6 Global Unicast Addresses

- Address format: 001_b prefix (2::/3)
 - 64 bit network ID
 - 48/32 bits public prefix, 16/32 bits site prefix
 - 64 bit interface ID
 - Derived from 48 bit IEEE 802 MAC address (EUI 48) privacy!
 - Assigned at random or through IP configuration (see later)
- Example: 2001:6b0:1:1de0:226:2dff:fef0:aa5a

· Network address: obtained using netmask (as in IPv4)

Basic forwarding, Addressing

Private/Unique Local Addresses

- · Not globally unique unicast address
- · Two uses
 - · Isolated network
 - Behind NAT (e.g., most WiFi routers)
- IPv4 (RFC1918)

Class	NetID	Range
Α	10.0.0.0/8	10.0.0.0 - 10.2555.255.255
В	172.16/12	172.16.0.0 – 172.31.255.255
С	192.168/16	192.168.0.0 - 192.168.255.255

- IPv6 (RFC4193)
 - FC00::/7 (FD00::/8 for /48 bit prefix, 41 bits randomly generated)

Multicast Addresses

- IPv4 (rfc5771)
 - 1110/4 and 28 bit multicast group ID
 - Class D: 224.0.0.0 239.255.255.255
- IPv6 (rfc4291)
 - ff00::/8 (bits 8-15: flags and scope)
- · Reserved addresses registered by IANA

Description	IPv4 Address	IPv6 Address
Local network control block (not forwarded)	224.0.0.0 - 224.0.0.255	ffx2::/16
All hosts on subnet	224.0.0.1	ff02::1
All routers on subnet	224.0.0.2	ff02::2
OSPF All Routers	224.0.0.5	ff02::5
Source-specific multicast block	232.0.0.0- 232.255.255.255	FF3x::/32

Basic forwarding, Addressing

Link Local Addresses

- Used for "Link local unicast"
 - When you do not have an address yet (instead of 0.0.0.0)
 - Automatic address configuration, neighbor discovery
 - Isolated network
- Routers do not forward packets with such a destination
- Reserved prefix
 - IPv4: 169.254.0.0/16
 - IPv6: FE80:0:0:0:/64 coexists with routable unicast address
- · How to choose
 - Random with duplication detection
 - MAC derived (in IPv6 only)

Special IPv4 and IPv6 Addresses

	Source or	IPv4			ID.
	Destination	NetID	HostID	Example	IPv6
Network Address	None	Х	All 0's	130.237.148.0	- -
Directed Broadcast	Destination	X	All 1's	130.237.151.255	
Limited Broadcast	Destination	All 1's	All 1's	255.255.255.255	
Particular host on this network	Source	All 0's	Υ	0.0.2.44	
This host on this network	Source	All 0's	All 0's	0.0.0.0	::
Loopback address	Destination	127	Any	127.0.0.1	::1

- Martian address
 - Address reserved by IANA that should not be used (240/8)
 - · bogon address not yet allocated by IANA*

Basic forwarding, Addressing

Example from 'whois' database

IPv4 IPv6

..... % Information related to '130.237.0.0/18AS2839'

130.237.0.0/18

descr: KTH Royal Institute of Technology origin: AS2839 SUNET-MNT source: RIPE # Filtered

% This query was served by the RIPE Database Query Service version 1.19.9 (WHOIS4)

inet6num: 2001:06B0:0001::/48
netname: SE-KTH-1
descr: Royal Institute of Technology
Country: SE
admin-c: AH94
tech-c: RASU1-RIPE
tech-c: AH94
status: NLA
mnt-by: SUNET-MNT
source: RIPE # Filtered
.....
% This query was served by the RIPE Database
Query Service version 1.19.9 (WHOIS2)

% Information related to '2001:06B0:0001::/48'

Basic forwarding, Addressing

route:

Quiz

Consider the following parameters

IP Address: 130.237.15.44 Netmask: 255.255.192.0

- The netID, hostID and the DBA are
 - a) 130.237.15.0, 0.0.1.44, 130.238.255.255
 - b) 130.237.0.0, 0.0.15.44, 130.237.63.255
 - c) 130.224.255.255, 0.13.15.44, 130.224.255.255
 - d) None of the above.

DBA: Directed Broadcast Address

Basic forwarding, Addressing

Global IP Address Allocation

- Internet Assigned Numbers Authority (IANA@ICANN) manages
 - Public IP addresses
 - Autonomous system (AS) numbers
- IANA allocates blocks to Regional Internet Registries (RIR)
 - Réseaux IP Européens Network Coordination Centre (RIPE NCC)
 - American Registry for Internet Numbers (ARIN)
 - Latin American and Caribbean Internet Addresses Registry (LACNIC)
 - Asia Pacific Network Information Centre (APNIC)
 - African Network Information Centre (AfriNIC)
- RIRs allocate blocks to National/Local Internet Registry (LIR)
 - Internet Service Providers (ISP), Institutions
- · LIRs assign addresses to end users

IPv4 Address Exhaustion

- · Last IPv4 address block allocated by IANA
 - 3 February 2011
- Already exhausted (/8)
 - APNIC (15 Apr 2011) allocating 1 /22 block per member
 - RIPE (14 Sep 2012)
 - Caribbean (10 Jun 2014)
- · Others to be exhausted soon
 - 80% assignment rule
- Future
 - Transition to IPv6
 - More efficient use of IP addresses policies
 - Address block trading \$\$\$
 - Network Address Translation (NAT) private addresses

Basic forwarding, Addressing

How to Allocate Addresses?

- Number of addresses in a block
 - 232-n (n is prefix length) always power of 2
 - Not all addresses are usable (by hosts or routers)
 - · Network address first address of the block
 - Directed broadcast address last address of the block
- Example: 130.237.48.0/22
 - Address range: 130.237.48.0-130.237.51.255
 - Special addresses not usable
 - Network address: 130.237.48.0
 - Directed broadcast address: 130.237.51.255
 - Number of usable addresses: 210-2

How to Allocate Address Blocks

- Consider an institution with address block 130.237.0.0/18
- Allocate addresses to the labs/departments/schools
 - 128 labs require 64 addresses each
 - 32 departments require 256 addresses each
 - 8 schools require 1024 addresses each
- What is the winning strategy?
 - Allocate blocks sequentially expansion?
 - Spread out the blocks inefficient use new customer?
 - Remember NetID and Directed broadcast address

Basic forwarding, Addressing

Exercise: Address Allocation

- Use the following block of addresses to allocate addresses to the network shown below
 - Address block: 121.100.128.0/19
- Answer the following questions
 - What are the network and broadcast addresses?
 - What are the router and host addresses?
 - What network is announced by R1?

Address aggregation and forwarding

- Aggregate NetIDs
 - Shorter prefix bigger address block
 - Less RIB and FIB entries
 - Black holing announce net you do not have

Longest prefix matching!

Basic forwarding Addressing

Address aggregation in practice

- · Effective address allocation policy needed
 - e.g., based on geographic location
 - IANA → RIR → (NIR) → LIR → end users
 - E.g., 071/8 ARIN (~N.America), 061/8 APNIC (Asia-Pacific)
 - 61.213.162.230 Tokyo, Japan (NTT)
 - 61.120.145.198 Tokyo, Japan (NTT)
 - 61.1.3.1 New Delhi, India (BSNLNET)
 - 61/8 is in Asia yet different routes
- Caveats
 - Multi-homing
 - Lack of IP addresses⇒ Allocation of long (/24) prefixes
 - Enforcement needed (e.g., RIPE 80% rule)
- Current forwarding tables
 - # of entries ~500000 (~60% are /24 prefixes)

Forwarding Table – Common Fields

Mask	Network Address	Next-hop Address	Interface	Flags	Reference count	Use
• • • •	• • • • •	••••	• • • •	• • •	••••	••

- Mask netmask applied for the entry [255.255.0.0]
- Network address destination network [145.168.0.0]
- Next-hop address next router [130.237.43.1]
- Interface outgoing interface [eth0]
- Flags status/info [U(p), G(ateway), H(ost-specific)...]
- Reference count # of users using this route
- Use # of packets transmitted for this destination

Exercise: Forwarding table

· A router has the following forwarding table

Destination	Next Hop	Flags	Interface
111.0.0.0/8	-	U	m 0
193.14.5.160/27	-	U	m 2
193.14.5.192/27	-	U	m 1
194.17.21.16/32	111.20.18.14	UGH	m 0
192.16.7.0/24	111.15.17.32	UG	m 0
194.17.21.0/24	111.20.18.14	UG	m 0
0/0	111.30.31.18	UG	m 0

- Determine the next-hop address and the outgoing interface for each packet that arrives to the router if the packet's destination address is
 - a) 111.45.32.16
 - b) 192.16.7.31
 - c) 194.17.21.45
 - d) 220.7.14.7
 - e) 193.14.5.16
 - f) 193.14.5.196
 - g) 192.168.130.25
 - Try to sketch the network as seen from the router, based on the routing table.

IP Forwarding Summary

- Router forwards packets between network interfaces
 - Extract header information from the incoming datagram
 - · Destination IP address
 - Lookup in the forwarding information base (match networks)
 - Next-Hop IP address,
 - Outgoing interface,...
 - Modify datagram header (why?)
 - Send out on outgoing interface
- Router can perform much more than address lookup
 - Access lists, filtering
 - Traffic management
 - Other protocols: Bridging, MPLS, IPv6, ...

