

TD 5 : INDUCTION, RECURSIVITÉ CORRIGÉ DE QUELQUES EXERCICES

1. Récursivité

Exercice 1. Donnez une définition récursive de l'ensemble des entiers positifs congrus à 3 modulo 7 ou congrus à 5 modulo 7.

```
a_0 = 3; a_1 = 5; a_{n+2} = a_n + 7
```

Exercice 2. Construire un algorithme récursif qui calcule $n \cdot x$ lorsque n et x sont des entiers positifs. procedure(n,x)

```
si x = 0 ou n = 0

procedure(n,x):=0

sinon

procedure(n,x):=x+procedure(n-1,x)
```

Exercice 3. Donnez une définition récursive de la suite a_n .

```
1. a_n = 2n + 1 Réponse : a_0 = 1 ; a_{n+1} = a_n + 2
2. a_n = 3 - 2^n Réponse : a_0 = 2 ; a_{n+1} = 2a_n - 3. Indication : Utiliser la suite b_n = a_n - 3.
3. a_n = 2^{2^n} Réponse : a_0 = 2 ; a_{n+1} = a_n^2
4. a_n = \frac{n^2 - n + 2}{2} Réponse : a_0 = 1 ; a_{n+1} = a_n + n
```

Exercice 4. Démontrez que la somme des n premiers entiers impairs est égale à n^2 .

On peut remarquer que cette somme correspond à une suite arithmétique de raison 2.

On pose que cette suite soit $u_n = 2n + 1$. Dès lors le premier terme $u_0 = 1$ et le dernier terme serait $u_{n-1} = 2n - 1$.

On sait que la somme S_n d'une suite arithmétique u_n ayant n termes est: $S_n = (n)^{\frac{u_0 + u_{n-1}}{2}}$ où u_0 est le premier terme et u_{n-1} le dernier terme

On en déduit que cette somme est $s_n = (n)\frac{1+2n-1}{2} = n^2$.

Exercice 5. Démontrez que $n < 2^n$ pour tout $n \in \mathbb{N}$.

- 1. Soit la proposition Q(n) définie par : $n < 2^n$ pour tout $n \in \mathbb{N}$
- 2. Etape de base : vérifions la condition pour n=0On a $0<2^0=1$ vrai
- 3. Etape inductive : supposons que pour $n \in \mathbb{N}$ Q(n) est vrai. Montrons que Q(n+1) est vrai. On sait que $n < 2^n$. En particulier $1 \le 2^n$. Donc on en déduit que $n+1 < 2^n + 2^n = 2 \cdot 2^n = 2^{n+1}$. D'où Q(n+1) vrai.

Exercise 6. Pour tout entier $n \in \mathbb{N}$, montrer par induction que:16 $|(3^{2n+6}-5^{n+2}-4n)|$

- 1. Soit Q(n) la proposition 16 divise $(3^{2n+6} 5^{n+2} 4n)$
- 2. Etape de base : vérifions la condition pour n=0

3. Etape inductive : supposons que Q(n) est vrai et montrons que Q(n+1) vrai Posons $u_n=3^{2n+6}-5^{n+2}-4n$. On en deduit que $u_{n+1}=9u_n+32n+4(5^{n+2}-1)$. Ainsi, il suffit de prouver que $5^{n+2}-1$ divisble par 4. On sait que 5=4+1. Alors $5^{n+2}=(4+1)^{n+2}=\sum_{k=0}^{n+2}\binom{n+2}{k}4^{n+2-k}\cdot 1^k=\sum_{k=0}^{n+1}\binom{n+2}{k}4^{n+2-k}+1$. Le résultat découle du fait que $5^{n+2}-1=\sum_{k=0}^{n+1}\binom{n+2}{k}4^{n+2-k}$ qui est divisible par 4. Note: on peut aussi démontrer que $4|(5^{n+2}-1)$ par induction.

2. Fermeture des relations

Exercice 7. Soit la relation \mathcal{R} définie sur l'ensemble $A = \{1, 2, 3, 4, 5\}$ par : $\{(1, 3), (3, 1), (3, 2), (3, 4), (4, 5)\}$.

- 1. Dessiner le graphe de la relation \mathcal{R} .
- 2. Donner la matrice de la relation \mathcal{R} .
- 3. Donner la fermeture réflexive de \mathcal{R} .
- 4. Donner la fermeture symétrique de \mathcal{R} .
- 5. Donner la fermeture transitive de \mathcal{R} .

Exercice 8. On considère les trois ensembles $A = \{2,3,4,6\}$, $B = \{a,b,c,d\}$, $C = \{0,3,5\}$ et deux relations $\mathcal{R} \subseteq A \times B$ et $\mathcal{S} \subseteq B \times C$ définies par : $\mathcal{R} = \{(4,a),(6,a),(6,b),(4,c),(6,c)\}$ et $\mathcal{S} = \{(a,0),(b,5),(c,5),(d,3)\}$

1. Donner la matrice de la relation $S \circ \mathcal{R}$.

$$M_{\mathcal{S}\circ\mathcal{R}} = \left(egin{array}{ccc} 0 & 0 & 0 & \ 0 & 0 & 0 & \ 1 & 0 & 1 & \ 1 & 0 & 1 & \ \end{array}
ight)$$

2. Donner la relation $S \circ \mathcal{R}$ sous forme d'un ensemble de couples.

$$S \circ \mathcal{R} = \{(4,0), (6,0), (6,5), (4,5)\}$$

Exercice 9. Soit la relation $\mathcal{R} \subseteq \mathbb{N} \times \mathbb{N}$ définie par : $\mathcal{R} = \{(a,b) \in \mathbb{N} \times \mathbb{N}, a \times b \leq a + b\}$.

- 1. Donner la relation $\mathcal{R} \circ \mathcal{R}$ sous forme d'un ensemble $\mathcal{R} \circ \mathcal{R} = \{(a,c) \in \mathbb{N} \times \mathbb{N}\}$. Il suffit de prendre b = 1
- 2. En déduire que $\mathcal{R} \circ (\mathcal{R} \circ \mathcal{R}) = \mathcal{R} \circ \mathcal{R}$.

3. Exercices supplémentaires (livre de Rosen)

Exercices numéros 2, 4, 5, 8 (page 197) ; 35 (page 198) ; 18, 21 (page 205) ; 29 (page 214) ; 40 (page 215)