Antibiotic Resistance

Every time you use an antibiotic you exert selection pressure for resistance on pathogens and commensals

resistance mechanisms

drug does not reach its target

- Pseudomonas
- drug is inactivated
 - Staph aureus
 - E.coli
- target is changed
 - MRSA
 - streps

resistance

- intrinsic
- acquired

resistance genes

- chromosomes
- plasmids
- · transposons
- integrons
- gene cassettes

acquired resistance

- conjugation
 - -coliforms
 - -cocci
- transduction
 - -Staphs
- transformation
 - -cocci?

resistance

- pathogens
- commensals

human pathogens

- · MRSA
 - Methicillin resistant Staph. aureus
- VRE
 - Vancomycin
 resistant
 enterococci

MRSA

- 14% SA isolates 2001
- Western Samoan phage pattern
 - -39% MRSA isolates 2001
 - community acquired
 - Pacific islanders
 - Auckland
- epidemic MRSA 15
 - 40%MRSA isolates 2001
 - from UK
 - acquired in hospital

MRSA 2002

- EMRSA 15 (UK)
 - 67.5% isolates
- AKh4 (Aus)
 - 12.3%
- WR/AK1
 - -7.1%
- · WSPP (Samoa)
 - -2.1%

VISA

vancomycin intermediate
Staphylococcus aureus

- -2 isolates this year
- MRSA patients treated with vancomycin

VRE

15 human isolates in NZ so far
chickens in Otago

animal Staph aureus

more resistant than human to

- -clindamycin / licomycin
- -co-trimoxazole
- -fluoroquinolones
- -gentamicin
- -tetracyclines

animal Staph aureus

fluoroquinolone resistance

-1999 - 0%

-2000 - 6.6%

-2001 - 12.5%

-mostly dogs

food poisoning

Salmonella spp (DT104)

-rare in NZ

· 39 human & 3 animal isolates 1992 - 2001

Campylobacter

E.coli 0157

· (Shigella)

fluoroquinolone resistance

- Salmonella spp (DT104)
 - NZ 1998 0%
- Campylobacter
 - no figures but high
- E.coli (all)
 - animals 2000/1 2.4%, 1999 0.9%
 - 2001 4.3% dog isolates
 - people 2000 1.3%
- · (Shigella)

TB

 2002 0.6% MDR, 13% single drug resistant

 most cases in people born overseas

TB drugs

- rifampicin
- · clarithromycin / azithromycin
- ethambutol
- · isoniazid
- pyrazinamide
- streptomycin

veterinary pathogens

Pseudomonas aeruginosa

- -large genome
- -lots of drug efflux pumps
- -lots of redundant systems
- -common after inappropriate antibiotics
- -causes problems in people too

Where do resistant bacteria come from?

infected with resistant pathogens I commensals

controlling resistance

 use drugs to which significant resistance is unlikely to develop

· infection control

4 yr old bull terrier

- scratching ears
 - previously treated
 - -broad spectrum antibiotics
 - -steroids
 - -acaricides

What do you do?

antibiotic treatment

- are the bacteria sensitive to the drug?
- does the drug get to where the bacteria are?
- is significant resistance likely to develop?

What do you do?

· check for generalised skin disease

· flush and check ear

e culture and sensitivity?

parenteral antibiotics?

parenteral steroids?

non-antibiotic treatment?

alter environment?

reducing resistance

- Choose a drug on resistance testing, where practicable.

 Use narrow spectrum antimicrobials whenever possible.

 Use the full effective dose for as short a period as possible.

 Isolate the patient (and wash your hands / gumboots!).

 Use antibacterials not prone to producing resistance.

 Restrict the prophylactic use of antimicrobials to high risk patients only.
- In chronic care patients, regularly (but not frequently) change antimicrobial drugs.
 - With aminoglycosides, use the longest effective dosage interval.