Image segmentation

Lihi Zelnik-Manor, Computer Vision

Today's class

- Segmentation and grouping
 - Gestalt cues
 - By clustering (mean-shift)
 - By boundaries (watershed)
- Superpixels and multiple segmentations

over segmentation and super pixel are the same

Gestalt psychology or gestaltism

- ▶ German: Gestalt "form" or "whole"
 - ▶ Berlin School, early 20th century
 - Kurt Koffka, Max Wertheimer, and Wolfgang Köhler
- View of brain:
- whole is more than the sum of its parts
- holistic
- parallel
- analog
- self-organizing tendencies

Gestaltism

We perceive the interpretation, not the senses

Principles of perceptual organization

Principles of perceptual organization

Gestaltists do not believe in coincidence

Emergence

Grouping by invisible completion

Grouping involves global interpretation

Grouping involves global interpretation

Gestalt cues

- Good intuition and basic principles for grouping
- Basis for many ideas in segmentation and occlusion reasoning
- Some (e.g., symmetry) are difficult to implement in practice

Image segmentation

Goal: Group pixels into meaningful or perceptually similar regions

Segmentation for efficiency: "superpixels"

[Felzenszwalb and Huttenlocher 2004]

[Hoiem et al. 2005, Mori 2005]

Segmentation for feature support

Segmentation for object proposals

"Selective Search" [Sande, Uijlings et al. ICCV 2011, IJCV 2013]

[Endres & Hoiem ECCV 2010, IJCV 2014]

Segmentation for image editing

Major processes for segmentation

- Bottom-up: group tokens with similar features
- Top-down: group tokens that likely belong to the same object

Segmentation using clustering

Kmeans

Mean-shift

Feature Space

K-means clustering using intensity alone and color alone

Input image

Clusters on intensity

Clusters on color

K-Means pros and cons

- Pros
 - Simple and fast
 - Easy to implement

- Cons
 - Need to choose K
 - Sensitive to outliers

- Usage
 - Rarely used for pixel segmentation

It;s not good for segmentation it's good for clustering its good for quantization, in different way as we have seen above Dimensional reduction

Mean shift segmentation

- D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.
- Versatile technique for clustering-based segmentation

one of the problems, is segmentation that no need to be segmentated Segmented "landscape 2" Segmented "landscape 1"

Mean shift algorithm

Kernel density estimation Kernel

Data (I-D)

Kernel density estimation

Kernel density estimation function

$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

x x_i

Gaussian kernel

$$K\left(\frac{x-x_i}{h}\right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-x_i)^2}{2h^2}}.$$

Computing the Mean Shift

Simple Mean Shift procedure:

- Compute mean shift vector
- Translate the Kernel window by m(x)

Attraction basin

- Attraction basin: the region for which all trajectories lead to the same mode
- Cluster: all data points in the attraction basin of a mode

Attraction basin

Mean shift clustering

The mean shift algorithm seeks <i>modes</i> of the given set of points
Choose kernel and bandwidth
2. For each point:
a) Center a window on that point b) Compute the mean of the data in the search window mean shift
c) Center the search window at the new mean location d) Repeat (b,c) until convergence
3. Assign points that lead to nearby modes to the same cluster

Mean shift segmentation results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean-shift: other issues

Speedups

- Binned estimation replace points within some "bin" by point at center with mass
- Fast search of neighbors e.g., k-d tree or approximate NN
- Update all windows in each iteration (faster convergence)

Other tricks

Use kNN to determine window sizes adaptively

Lots of theoretical support

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

Mean shift pros and cons

Pros

- Good general-purpose segmentation
- Flexible in number and shape of regions
- Robust to outliers
- General mode-finding algorithm (useful for other problems such as finding most common surface normals)

Cons

- Have to choose kernel size in advance
- Not suitable for high-dimensional features

When to use it

- Oversegmentation
- Multiple segmentations
- Tracking, clustering, filtering applications
 - D. Comaniciu, V. Ramesh, P. Meer: <u>Real-Time Tracking of Non-Rigid Objects using Mean Shift</u>, Best Paper Award, IEEE Conf. Computer Vision and Pattern Recognition (CVPR'00), Hilton Head Island, South Carolina, Vol. 2, 142-149, 2000

Mean-shift reading

Nicely written mean-shift explanation (with math)

http://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/

- Includes .m code for mean-shift clustering
- Mean-shift paper by Comaniciu and Meer

http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

Adaptive mean shift in higher dimensions

http://mis.hevra.haifa.ac.il/~ishimshoni/papers/chap9.pdf

Superpixel algorithms

 Goal is to divide the image into a large number of regions, such that each regions lie within object boundaries

Examples

- Watershed
- Felzenszwalb and Huttenlocher graph-based
- Turbopixels
- **SLIC**

Watershed algorithm

Watershed segmentation

Meyer's watershed segmentation

- I. Choose local minima as region seeds
- 2. Add neighbors to priority queue, sorted by value
- 3. Take top priority pixel from queue
 - If all labeled neighbors have same label, assign that label to pixel
 - 2. Add all non-marked neighbors to queue
- 4. Repeat step 3 until finished (all remaining pixels in queue are on the boundary)

Matlab: seg = watershed(bnd_im)

Simple trick

Use Gaussian or median filter to reduce number of

regions

Watershed usage

- Use as a starting point for hierarchical segmentation
 - Ultrametric contour map (Arbelaez 2006)

- Works with any soft boundaries
 - Pb (w/o non-max suppression)
 - Canny (w/o non-max suppression)
 - Etc.

Watershed pros and cons

Pros

- Fast (< I sec for 512x512 image)
- Preserves boundaries

Cons

- Only as good as the soft boundaries (which may be slow to compute)
- Not easy to get variety of regions for multiple segmentations

Usage

Good algorithm for superpixels, hierarchical segmentation

Felzenszwalb and Huttenlocher: Graph-Based Segmentation

http://www.cs.brown.edu/~pff/segment/

Algorithm 1 Segmentation algorithm.

The input is a graph G = (V, E), with n vertices and m edges. The output is a segmentation of V into components $S = (C_1, \ldots, C_r)$.

- 0. Sort E into $\pi = (o_1, \ldots, o_m)$, by non-decreasing edge weight.
- 1. Start with a segmentation S^0 , where each vertex v_i is in its own component.
- 2. Repeat step 3 for $q = 1, \ldots, m$.
- 3. Construct S^q given S^{q-1} as follows. Let v_i and v_j denote the vertices connected by the q-th edge in the ordering, i.e., $o_q = (v_i, v_j)$. If v_i and v_j are in disjoint components of S^{q-1} and $w(o_q)$ is small compared to the internal difference of both those components, then merge the two components otherwise do nothing. More formally, let C_i^{q-1} be the component of S^{q-1} containing v_i and C_j^{q-1} the component containing v_j . If $C_i^{q-1} \neq C_j^{q-1}$ and $w(o_q) \leq MInt(C_i^{q-1}, C_j^{q-1})$ then S^q is obtained from S^{q-1} by merging C_i^{q-1} and C_j^{q-1} . Otherwise $S^q = S^{q-1}$.
- 4. Return $S = S^m$.

Felzenszwalb and Huttenlocher: Graph-Based Segmentation

http://www.cs.brown.edu/~pff/segment/

- + Fast
- + Easy to control coarseness of segmentations
- + Can include both large and small regions
- Often creates regions with strange shapes
- Sometimes makes very large errors

SLIC (Achanta et al. PAMI 2012)

http://infoscience.epfl.ch/record/177415/files/Superpixel PAMI2011-2.pdf

- Initialize cluster centers on pixel grid in steps S
 - Features: Lab color, x-y position
- 2. Move centers to position in 3x3 window with smallest gradient
- 3. Compare each pixel to cluster center within 2S pixel distance and assign to nearest
- 4. Recompute cluster centers as mean color/position of pixels belonging to each cluster
- Stop when residual error is small

- + Fast 0.36s for 320x240
- + Regular superpixels
- + Superpixels fit boundaries
- May miss thin objects
- Large number of superpixels

Choices in segmentation algorithms

Oversegmentation

- ► Watershed + Pb ← my favorite
- Felzenszwalb and Huttenlocher 2004 ← pretty good http://www.cs.brown.edu/~pff/segment/
- > SLIC ← also a good option 6, □
- Turbopixels
- Mean-shift

Larger regions

- Hierarchical segmentation (e.g., from Pb)
- Normalized cuts
- Mean-shift
- Seed + graph cuts (discussed later)

Multiple segmentations

 When creating regions for pixel classification or object detection, don't commit to one partitioning

Strategies:

- Hierarchical segmentation
 - Occlusion boundaries hierarchy: Hoiem et al. IJCV 2011 (uses trained classifier to merge)
 - ▶ Pb+watershed hierarchy: <u>Arbeleaz et al. CVPR 2009</u>
 - Selective search: FH + agglomerative clustering
- Vary segmentation parameters
 - ▶ E.g., multiple graph-based segmentations or mean-shift segmentations
- Region proposals
 - Propose seed superpixel, try to segment out object that contains it (Endres Hoiem ECCV 2010, Carreira Sminchisescu CVPR 2010)

Things to remember

- Gestalt cues and principles of organization
- Uses of segmentation
 - Efficiency
 - Better features
 - Propose object regions
 - Want the segmented object
- Mean-shift segmentation
 - Good general-purpose segmentation method
 - Generally useful clustering, tracking technique
- Watershed segmentation
 - Good for hierarchical segmentation
 - Use in combination with boundary prediction

Slide credits

Slides borrowed from Derek Hoiem

End – segmentation part 1

Now you know how it works