Université Ibn Tofail Faculté des Sciences Département de Mathématique Kénitra

Année universitaire 2024-2025

Filière : MIP Semestre : S2

Module : Analyse 2

SÉRIE N° 1

Exercice 1. Soient $a, b \in \mathbb{R}$ tels que a < b et $f: [a, b] \longrightarrow \mathbb{R}$ une fonction de classe \mathbb{C}^n sur [a, b] et n + 1 fois dérivable sur [a, b] telle que

$$f(a) = f(b)$$
 et $f'(a) = \cdots = f^{(n)}(a) = 0$.

Montrer qu'il existe $c \in]a, b[$ tel que $f^{(n+1)}(c) = 0.$

Exercice 2 1) En utilisant l'inégalité de Taylor-Lagrange, montrer que pour tout $n \in \mathbb{N}$:

$$\forall x \in \mathbb{R}, \ \left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{|x|^{n+1}}{(n+1)!} e^{|x|}.$$

2) En déduire que la suite numérique $(u_n)_{n\geqslant 0}$ définie par :

$$u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$

converge vers e, c'est-à-dire $\lim_{n\to +\infty} \sum_{k=0}^{n} \frac{1}{k!} = e$.

3)* Montrer de la même manière que la suite numérique $(v_n)_{n\geqslant 1}$ définie par :

$$u_n = 1 - \frac{1}{2} + \frac{1}{3} + \dots + \frac{(-1)^{n-1}}{n}$$

converge vers ln 2.

Exercice 3. Trouver les extremums locaux sur leurs domaines de définition des fonctions suivantes $f: x \longmapsto x^3 - 3x^2 - 9x + 2$ et $g: x \longmapsto e^x + (\ln x - e - 1).x$.

Exercice 4. 1) Montrer que la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto \ln(e^x + 1)$ est convexe.

2) En déduire que

$$\forall (a,b) \in \mathbb{R}^+ \times \mathbb{R}^+, \ 1 + \sqrt{ab} \leqslant (\sqrt{1+a})(\sqrt{1+b}).$$

Exercice 5. 1) Montrer que la fonction ln n'admet pas un DL au voisinage de 0.

2) Montrer que la fonction $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ définie par :

$$f(x) = \begin{cases} x^3 \ln x & \text{si } x > 0\\ 0 & \text{si } x \leqslant 0 \end{cases}$$

admet un $DL_2(0)$, mais n'admet pas un $DL_3(0)$.

Exercice 6. Calculer les développements limités en 0 à l'ordre n des fonctions suivantes :

1)
$$f(x) = e^x + \frac{1}{1-x}$$
, avec $n = 3$; 2) $f(x) = \cos(x) \ln(1+x)$, avec $n = 4$; 3) $\frac{\sin x}{\sqrt{1+x}}$, avec $n = 4$.
4)* $f(x) = \tan x$, avec $n = 5$; 5) $f(x) = e^{\sin x}$, avec $n = 4$; 6)* $\arctan x$, avec $n = 5$.

Exercice 7. Calculer les développements limités à l'ordre n des fonctions suivantes :

1)
$$f(x) = \cos x$$
 en $\pi/4$; 2) $f(x) = \frac{\sqrt{x+1}}{x}$, en $+\infty$ avec $n = 3$; 3)* $\ln(x+\sqrt{x^2+1}-\ln x)$, en $+\infty$ avec $n = 5$.

Exercice 8. Calculer les limites suivantes :

$$1) \lim_{x \to 0} \frac{\sin x - x}{x^3}$$

1)
$$\lim_{x \to 0} \frac{\sin x - x}{x^3}$$
; 2) $\lim_{x \to 0} \left(\frac{a^x + b^x}{2}\right)^{1/x}$, avec $a, b \in \mathbb{R}_+^*$; 4)* $\lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2}$; 5) $\lim_{x \to -\infty} (\sqrt{x^2 + 3x + 2} + x)$; 6

3)
$$\lim_{x \to 0} \frac{\ln(1+x) - \sin x}{x}$$
;

4)*
$$\lim_{x\to 0} \frac{e^{x^2} - \cos x}{x^2}$$

5)
$$\lim_{x \to -\infty} (\sqrt{x^2 + 3x + 2} + x);$$

6)*
$$\lim_{x \to 0} \frac{\ln(1+x) + 1 - e^x}{1 - \cos x}$$
.

Exercice 9. Considérons la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par :

$$f(x) = \sqrt{1 + x + x^2}.$$

- 1) Calculer le $DL_2(0)$ de la fonction f.
- 2) En déduire la position de la tangente au point d'abscisse x = 0 par rapport à la courbe \mathcal{C}_f de f.
- 3) Déterminer l'équation de l'asymptote en $+\infty$ de \mathcal{C}_f ainsi que la position de cette asymptote par rapport à la courbe \mathcal{C}_f .

^{* :} La correction de cette question ne sera pas donné en classe.