MATE 6540: Tarea 3

Due on 19 de mayo $\label{eq:prof.Prof.Iván Cardona} \textit{Cardona}, C41, 19 de mayo$

Sergio Rodríguez

Problem 0

Considere al espacio $\widehat{\mathbf{2}} = \{0,1\}$ con la topología discreta $\mathcal{T}_{\mathrm{disc}}$.

Demuestre la proposición:

El espacio topológico (X,\mathcal{T}_X) es conexo \iff No existe una función continua $g:(X,\mathcal{T}_X) \to \left(\widehat{\mathbf{2}},\mathcal{T}_{\mathrm{disc}}\right)$ que sea suprayectiva.

Demo:

 (\Longrightarrow)

Suponga que (X,\mathcal{T}_X) es conexo. Sea $g:(X,\mathcal{T}_X)\to \left(\widehat{\mathbf{2}},\mathcal{T}_{\mathrm{disc}}\right)$ una función continua. Afirmamos que g no es suprayectiva. Note que $\{0\},\{1\}\in\mathcal{T}_{\mathrm{disc}}$ son disjuntos con $\{0\}\cup\{1\}=\widehat{\mathbf{2}}$. Entonces $\{\{0\},\{1\}\}\}$ es una separación de $\left(\widehat{\mathbf{2}},\mathcal{T}_{\mathrm{disc}}\right)$. Por otra parte, $g(X)\subseteq\widehat{\mathbf{2}}$ es imagen continua de un espacio conexo. Entonces, por un teorema demostrado en clase, g(X) es conexo. Pero $\left(\widehat{\mathbf{2}},\mathcal{T}_{\mathrm{disc}}\right)$ no es conexo, entonces $g(X)\subseteq\{0\}$ o $g(X)\subseteq\{1\}$ pero no ambos.

 \therefore g no es suprayectiva.

 (\longleftarrow)

Demostramos el contrapositivo. Suponga que (X,\mathcal{T}_X) no es conexo, entonces existe una separación $\{A,B\}$. Ahora defina $g:(X,\mathcal{T}_X) o \left(\widehat{\mathbf{2}},\mathcal{T}_{\mathrm{disc}}\right)$ de la siguiente manera:

$$g(x) := \begin{cases} 0 \text{ si } x \in A \\ 1 \text{ si } x \in B \end{cases} \tag{1}$$

Note que:

- (a) $A \cap B = \emptyset \land A \cup B = X \Longrightarrow g$ está bien definida.
- (b) $A, B \neq \emptyset \Longrightarrow g$ es suprayectiva.
- $\begin{array}{l} \text{(c) } g^{-1}(\emptyset) = \emptyset \in \mathcal{T}_X, \quad g^{-1}(\{0\}) = A \in \mathcal{T}_X, \quad g^{-1}(\{1\}) = B \in \mathcal{T}_X, \quad g^{-1}(\{0,1\}) = X \in \mathcal{T}_X \\ \Longrightarrow g \text{ es continua}. \end{array}$
- \cdot existe una función continua $g:(X,\mathcal{T}_X) o\left(\widehat{\mathbf{2}},\mathcal{T}_{\mathrm{disc}}
 ight)$ que es suprayectiva.

MEP

Problem 1

Sea X un conjunto infinito dotado de la siguiente topología

 $\mathcal{T}_{cof} = \{U \subseteq X \mid X \setminus U \text{ es finito o } U = \emptyset \}$ (i.e. la topología de los complementos finitos)

- (a) Demuestre: (X, \mathcal{T}_{cof}) es conexo.
- (b) Demuestre: (X, \mathcal{T}_{cof}) es compacto.

Demo (a):

Suponga, por contradicción, que (X, \mathcal{T}_{cof}) no es conexo. Entonces, existe una separación $\{A, B\}$ de (X, \mathcal{T}_{cof}) . Como $A \neq \emptyset$ es abierto, $X \setminus A = B$ es finito. Similarmente, como $B \neq \emptyset$ es abierto, $X \setminus B = A$ es finito. Entonces $X = A \cup B$ es unión de conjuntos finitos, por lo tanto X es finito, lo cual contradice nuestra hipótesis. 💥

 $\therefore (X, \mathcal{T}_{cof})$ es conexo.

MEP

Demo (b):

Si $X=\emptyset$, entonces es compacto por convención. Suponga que $X\neq\emptyset$, y sea $C\coloneqq \left\{C_{\alpha}\right\}_{\alpha\in\Lambda}$ una cubierta abierta de $(X,\mathcal{T}_{\mathrm{cof}})$. Como $X \neq \emptyset$, la cubierta no es vacía. Tome $C_{\alpha_0} \in C$, y note que $\emptyset \neq C_{\alpha_0} \in \mathcal{T}_{\mathrm{cof}} \Longrightarrow A \coloneqq X \setminus C_{\alpha_0} \text{ es finito. Pero } A \subseteq X = \bigcup_{\alpha \in \Lambda} C_{\alpha}, \text{ entonces, para cada elemento } x_i \in A, \text{ con } i \in \{1,...,|A|\}, \text{ existe por lo menos algún } C_{\alpha_i} \in C \text{ con } x_i \in C_{\alpha_i}.$

Entonces $C':=\left\{C_{\alpha_0},C_{\alpha_1},...,C_{\alpha_{|A|}}\right\}$ es una subcolección finita de C. Afirmamos que C' cubre a

$$X\text{, es decir, que} \bigcup_{i=0}^{|A|} C_{\alpha_i} = X\text{. Primero, } C_{\alpha_i} \subseteq X, \quad \forall i \in \{0,1,...,|A|\} \Longrightarrow \bigcup_{i=0}^{|A|} C_{\alpha_i} \subseteq X\text{. Ahora}$$

tome $x \in X$, si $x \in C_{\alpha_0} \subseteq \bigcup_{i=0}^{\lfloor \alpha_i \rfloor} C_{\alpha_i}$, terminamos. Si $x \in A = X \setminus C_{\alpha_0}$, entonces $\exists j \in \{1,...,|A|\}$ tal que $x=x_j\in A\Longrightarrow x\in C_{\alpha_j}\subseteq\bigcup_{i=0}^{|\alpha_i|}C_{\alpha_i}.$

$$\operatorname{que} x = x_j \in A \Longrightarrow x \in C_{\alpha_j} \subseteq \bigcup_{i=0}^{n-1} A_i$$

$$\therefore \bigcup_{i=0}^{|A|} C_{\alpha_i} = X$$

 $\therefore (X, \mathcal{T}_{cof})$ es compacto.

MEP

Problem 2

Dé ejemplos de subespacios A y B de $(\mathbb{R}^2, \mathcal{T}_{\varepsilon^2})$ tales que:

- (a) A y B son conexos, pero $A \cap B$ no es conexo.
- (b) A y B no son conexos, pero $A \cup B$ es conexo.
- (c) A y B son conexos pero $A \setminus B$ no es conexo.
- (d) A y B son conexos y $\overline{A} \cap \overline{B} \neq \emptyset$, pero $A \cup B$ no es conexo.

Lema 1:

Sea X un subespacio conexo de $(\mathbb{R},\mathcal{T}_{\varepsilon^1})$, y $f:X\to(\mathbb{R},\mathcal{T}_{\varepsilon^1})$ una función continua. Entones, el conjunto $\{(x, f(x)) \in \mathbb{R}^2 \mid x \in X\}$ es un subespacio conexo de $(\mathbb{R}^2, \mathcal{T}_{\varepsilon^2})$.

Sea $\varphi: X \to (\mathbb{R}^2, \mathcal{T}_{\varepsilon^2})$ una función definida por $\varphi(x) = (x, f(x))$. Tome $V \in \mathcal{T}_{\varepsilon^2}$, entonces $\varphi^{-1}(V) = \{x \in X \mid (x, f(x)) \in V\}. \text{ Tome } y \in \varphi^{-1}(V), \text{ entonces } (y, f(y)) \in V, \text{ pero } V \in \mathcal{T}_{\varepsilon^2} \Longrightarrow \mathcal{T}_{\varepsilon^2} \to \mathcal{T}_{\varepsilon^2}$ $\exists r \in (0,\infty)$ tal que $B_{d_2}((y,f(y));r) \subseteq V$. Donde d_2 es la métrica usual sobre \mathbb{R}^2 . Entonces:

$$\begin{split} f^{-1} \Big(B_{d_2}((y,f(y));r) \Big) &= \{ x \in X \mid d_2((x,f(x)),(y,f(y)) < r \} \\ &= \Big\{ x \in X \mid \sqrt{(y-x)^2 + (f(y)-f(x))^2} < r \Big\} \\ &= \{ x \in X \mid |y-x| < r \} \text{ (porque estamos tomando una proyección)} \\ &= \{ x \in X \mid d_1(x,y) < r \} \text{ donde } d_1 \text{ es la métrica usual sobre } \mathbb{R} \\ &= B_{d_1}(y;r) \in \mathcal{T}_{\varepsilon^1} \end{split}$$

Pero $B_{d_1}(y;r) = f^{-1} \Big(B_{d_2}((y,f(y);r)) \Big) \subseteq f^{-1}(V).$

 $\therefore \varphi$ es continua.

Pero, por el corolario 4.8, X conexo y φ continua $\Longrightarrow \varphi(X) = \{(x,f(x)) \in \mathbb{R}^2 \mid x \in X\}$ es un subespacio conexo de $(\mathbb{R}^2,\mathcal{T}_{\varepsilon^2})$.

MEP

Ejemplo (a):

Sean $f_1, g_1: ([-1,1], \mathcal{T}_{rel}) \to (\mathbb{R}, \mathcal{T}_{\varepsilon^1})$ definidas por $f(x) = x^2, g(x) = \frac{1}{2}$. Note que f_1, g_1 son continuas y que [-1,1] es conexo. Entonces, por el lema 1,

 $A\coloneqq \big\{(x,f(x))\in\mathbb{R}^2\mid x\in[-1,1]\big\}, B\coloneqq \big\{(x,g(x))\in\mathbb{R}^2\mid x\in[-1,1]\big\} \text{ son subespacios conexos de }\mathbb{R}^2. \text{ Pero note que }A\cap B=\Big\{\Big(-\frac{1}{\sqrt{2}},\frac{1}{2}\Big),\Big(\frac{1}{\sqrt{2}},\frac{1}{2}\Big)\Big\}, y\left\{\Big\{\Big(-\frac{1}{\sqrt{2}},\frac{1}{2}\Big)\right\},\Big\{\Big(\frac{1}{\sqrt{2}},\frac{1}{2}\Big)\Big\}\Big\} \text{ sirve de separación para }A\cap B.$

 $A \cap B$ no es conexo.

Ejemplo (b):

Sea $A := \left[0, \frac{1}{4}\right] \sqcup \left[\frac{1}{2}, \frac{3}{4}\right]$ y sea $B := \left[\frac{1}{4}, \frac{1}{2}\right] \sqcup \left[\frac{3}{4}, 1\right]$. Note que ambos A y B no son conexos, pues están definidos como uniones disjuntas de dos subespacios propios. Ahora, note que:

$$A \cup B = \left(\left[0, \frac{1}{4} \right] \sqcup \left[\frac{1}{2}, \frac{3}{4} \right] \right) \cup \left(\left[\frac{1}{4}, \frac{1}{2} \right] \sqcup \left[\frac{3}{4}, 1 \right] \right)$$

$$= \left(\left[0, \frac{1}{4} \right] \cup \left[\frac{1}{4}, \frac{1}{2} \right] \right) \cup \left(\left[\frac{1}{2}, \frac{3}{4} \right] \cup \left[\frac{3}{4}, 1 \right] \right)$$

$$= \left[0, \frac{1}{2} \right] \cup \left[\frac{1}{2}, 1 \right] = [0, 1]$$

$$(3)$$

 $A \cup B = [0, 1]$ es conexo.

Ejemplo (c):

Sea A := [0,1] y sea $B := \left[\frac{1}{4},\frac{3}{4}\right]$. Ambos son conexos pues son intervalos.

Pero $A \setminus B = [0,1] \setminus \left[\frac{1}{4}, \frac{3}{4}\right] = \left[0, \frac{1}{4}\right) \sqcup \left(\frac{3}{4}, 1\right]$, pero esto es la unión disjunta de dos subespacios propios.

 $A \setminus B$ no es conexo.

Ejemplo (d):

Sea $A \coloneqq \left[0,\frac{1}{2}\right)$ y sea $B \coloneqq \left(\frac{1}{2},1\right]$. Note que ambos son conexos pues son intervalos, además note que $\overline{A} = \left[0,\frac{1}{2}\right]$ y $\overline{B} = \left[\frac{1}{2},1\right]$. Entonces $\overline{A} \cap \overline{B} = \left\{\frac{1}{2}\right\} \neq \emptyset$. Pero $A \cup B = \left[0,\frac{1}{2}\right) \sqcup \left(\frac{1}{2},1\right]$, que es una unión disjunta de subespacios propios.

 $A \cup B$ no es conexo.

Problem 3

Sean (X, \mathcal{T}_X) un espacio topológico y $\{\infty\}$ un objeto que no pertenezca a X. Defina $Y = X \cup \{\infty\}$ y $\mathcal{T}_{\infty} = \{U \subseteq Y \mid U \in \mathcal{T}_X \text{ o } Y \setminus U \text{ es compacto y cerrado en } X\}.$

- (a) Demuestre que \mathcal{T}_{∞} es una topología sobre Y.
- (b) Sea \mathcal{T}' la topología relativa sobre X, la que hereda como subconjunto de Y. Demuestre que $\mathcal{T}'=\mathcal{T}_X$.

Problem 4

Sean (X, \mathcal{T}_X) un espacio topológico y $\{\infty\}$ un objeto que no pertenezca a X. Defina $Y = X \cup \{\infty\}$ y $\mathcal{T}_\infty = \{U \subseteq Y \mid U \in \mathcal{T}_X \text{ o } Y \setminus U \text{ es compacto y cerrado en } X\}.$

(c) Demuestre que $(Y, \mathcal{T}_{\infty})$ es compacto.