距离矢量路由算法

VS.

算法特点

- t3:网络新加入一个路由器D, 与C是邻居,链路成本为1。
 - ① D刚加入网络,把自己的 路由信息发给邻居(C)。

A路由表

目的地	下一跳	度量
Α	Α	0
В	В	1
С	В	2

B路由表

目的地	下一跳	度量
Α	Α	1
В	В	0
С	С	1

C路由表

目的地	下一跳	度量
Α	В	2
В	В	1
С	С	0

● t4:C收到D的路由信息

- ① C发现多了一条抵达D的新路由
- ② C在路由表中添加这条新路由
- ③ C把新的路由表发给邻居(B,D)

A路由表

目的地	下一跳	度量
Α	Α	0
В	В	1
С	В	2

B路由表

目的地	下一跳	度量
Α	Α	1
В	В	0
С	С	1

C路由表

度量

0

目的地	下一跳	度量
Α	В	2
В	В	1
С	С	0
D	D	1

● t5:B和D收到C的路由信息后

② B在路由表中添加新路由并发送给邻居

③ D做同样的处理

D路由表

目的地	下一跳	度量
Α	С	3
В	С	2
С	С	1
D	D	0

A路由表

目的地	下一跳	度量
Α	Α	0
В	В	1
С	В	2

B路由表

目的地	下一跳	度量
Α	Α	1
В	В	0
С	С	1
D	С	2

C路由表

目的地	下一跳	度量
Α	В	2
В	В	1
С	С	0
D	D	1

- ① A发现多了一条抵达D的新路由
- ② A在路由表中添加这条新路由
- ③ A把新的路由表发给邻居(B)

D路由表

目的地.	下一跳	度量
Α	С	3
В	С	2
С	С	1
D	D	0

A路由表

目的地.	下一跳	度量
Α	Α	0
В	В	1
С	В	2
D	В	3

B路由表

目的地.	下一跳	度量
Α	Α	1
В	В	0
С	С	1
D	С	2

C路由表

D

目的地.	下一跳	度量
Α	В	2
В	В	1
С	С	0
D	D	1

● t7:B收到来自A的 路由信息后

① B发现经过A到达所有目的 地的路由度量都不如原来的 路由,维持路由表不变。

D路由表

目的地.	下一跳	度量
Α	С	3
В	С	2
С	С	1
D	D	0

A 1 B C

A路由表

目的地.	下一跳	度量
Α	Α	0
В	В	1
С	В	2
D	В	3

B路由表

目的地.	下一跳	度量
Α	Α	1
В	В	0
С	С	1
D	С	2

C路由表

目的地.	下一跳	度量
Α	В	2
В	В	1
С	С	0
D	D	1

经过有限的几次传播,新节点和新路由便传遍了网络。

→ 好消息传得快!

D路由表

 目的地.
 下一跳
 度量

 A
 C
 3

 B
 C
 2

 C
 C
 1

 D
 D
 0

● t8:路由稳定后各路由器的路由信息

A 1 B 1 C

A路由表

目的地.	下一跳	度量
Α	Α	0
В	В	1
С	В	2
D	D	3

B路由表

目的地.	下一跳	度量
Α	Α	1
В	В	0
С	С	1
D	D	2

C路由表

D

目的地.	下一跳	度量
Α	В	2
В	В	1
С	С	0
D	D	1

- ① A和C均发现B到D的路径长度由2变成了4
- ② A和C重新计算路由,把到D的路径长度更新为5,并将新路由发给邻居(B)

无穷计算问题的本质

