कुछ महत्वपूर्ण तथ्य

 रासायनिक बंधन में संकरण होते हैं जो हमेशा बंधन में ही भाग लेता है यह मुख्य निम्न है-

संस्करण	आकृति
1. SP →	यह रेखीय आकृति का होता है।
2. SP ² →	यह त्रिकोणीय आकृति का होता है।
3. SP ³ →	यह त्रिकोणीय पिरामीडी आकृति का होता है।
4. SP ³ d →	यह त्रिकोणीय द्विपिरैमिडीय आकृति का होता है।
5. $SP^3d^2 \rightarrow$	यह अध्टफलकीय आकृति का होता है।
5. SP ³ d ² → 6. SP ³ d ³ →	यह पंचभुजीय द्विपिरैमिडीय आकृति का होता है।

सिग्मा-बंधन (Sigma-Bond)—

 जब दो परमाणुओं के आर्बिटल एक-दूसरे से एकरैखिक अक्ष पर अतिव्यापन करते हैं, तो दोनों परमाणुओं के बीच बने हुए बंधन को सिग्मा (σ)- बंधन कहते हैं।

सहसंयोजक अणुओं की कुछ निश्चित आकृतियाँ

क्रम	ज्यामितीय व्यवस्था (Geometrical Arrangement)	ज्यामितीय आकार (Geometrical Shape)	बंधन-कोण (Bond-angle)	उदाहरण Examples
------	--	---	--------------------------	--------------------

1.

B
SCI,
कोणीय (Angular) 104.5° H₂O, H₂S, FeO
2.

B
BeF, BeCI,
एकरेखिक (Angular) 180° SO₂, ZnCI₂
3.

B
Hमतल त्रिकोणीय 120° BF₃, AlCI₃
(Trigonal Planar)
4.

B

5.

त्रिकोणीय बाई-पिग्रमिड 120°,90° PF₅, PCI₅ (Trigonal Bipyramidal)

अष्टुकलकाय 90° Sr₆, ler (Tetrahedral)

पिर्णामड (Pyramid) 107° NH₃, PCl₃, NF₃, H₃O⁺ आदि।

 पाई (π)-बंधन (Pi-Bond)— जब दो परमाण्विक ऑरिबिटल एक-दूसरे के साथ पार्श्व-अितव्यापन करते हैं, तो इनमें निर्मित बंधन को पाई (π)-बंधन कहते हैं।

सम-विन्यासी (Isosteres)—

 जिन अणुओं तथा आयनों में परमाणुओं की कुल संख्याएँ तथा इलेक्ट्रॉनों की कुल संख्याएँ समान होती है और उनमें इलेक्ट्रानों की व्यवस्थाएँ भी समान होती है, तो इस प्रकार के समृह को सम-विन्यासी समृह कहते हैं। जैसे- N₂, CO तथा CN⁻.

अणुओं की आकृति (Shape of Molecules)-

- विद्युत्-संयोजक बंध अदिशात्मक (Non-directional) होते हैं,
 अत: विद्युत्-संयोजक यौगिकों की कोई अणु-संरचना संभव नहीं होती है।
- सहसंयोजक बंधन की प्रकृति दिशात्मक (Directional) होती है।
 इसी कारण सह-संयोजक अणुओं की एक विशेष ज्यामितीय आकृति (Geometrical shape) होती है।

आयनिक तथा सहसंयोजक बंधन से युक्त यौगिक-

- कुछ यौगिक ऐसे भी होते हैं, जिनके अणु में आयनिक और सहसंयोजक दोनों प्रकार के बंधन उपस्थित रहते हैं। जैसे-सोडियम हाइड्रॉक्साइड (NaOH), हाइड्रोजन सायनाइड (HCN), सल्फ्यूरिक अम्ल (H₂SO₄) कैल्सियम कार्बोनेट (CaCO₃) इत्यादि।
- हाइड्रोजन बंध-हाइड्रोजन बंधन मुख्यतः जल एवं HCN (हाइड्रोजन सायनाइड), फ्लोरीन, ऑक्सीजन एवं नाइट्रोजन के यौगिकों में होता है।

THE DI ATEORM

चतुष्फलकीय

(Tetrahedral)

109.5°

Join online test series : www.platformonlinetest.com

109°28' CH₄ SiF₄, NH₄+, SiH₄

GENERAL SCIENCE # 118

- हाइड्रोजन बंधन यह सह-संयोजन बंधन से कमजोर होता है, क्योंकि इसमें एक अल्प स्थिर वैद्युत आकर्षण बल होता है।
- हाइड्रोजन बंधन में H, F, O तथा N के संयोग से बने गौगिकों के अणु धुवीय होता है। जैसे- HCI, NH3, H2O तथा HF आदि।

इसके HF अणु में H धनात्मक तथा F ऋणात्मक तत्व हैं। अतः इसकी संयोजकता H से F की ओर होगा।

- जब दो परमाणुओं की विद्युत ऋणात्मक के बीच अंतर रहने पर जो बंधन बनता है वह धूबीय सह-संयोजक होता है।
- जब दो परमाणुओं की विद्युत ऋणात्मक के बीच अंतर शून्य होगा तो इससे बना बंधन सह-संयोजी बंधन होगा।
- यदि दो परमाणुओं की विद्युत ऋणात्मक के बीच अधिक अंतर रहने पर उनके बीच बना बंधन आयिनक बंधन होगा।

रासायनिक बंधन एवं रेडियो सक्रियता महत्वपूर्ण तथ्य एक नजर में

- परमाणु रासायनिक बंध बनाते हैं —आपस में संयुक्त होकर
- NaCl का क्रिस्टल बना हुआ है —Na तथा Cl आयन का
- सह-संयोजकता में बराबरी की साझेदारी होती है —इलेक्ट्रॉनों की
- वे कार्बेनिक यौगिक जो वियोजन पर आयन देते हैं, उनमें बंध होता है
 —वद्युत संयोजक वंध
- विद्युत संयोजक यौगिकों में इलेक्ट्रॉन पर स्थानान्तरित हो जाते हैं

 —एक परमाणु से दूसरे परमाणु में
- अक्रिय गैसों का बाहरी कक्षा में संतृप्त होना सिद्धांत पर आधारित है

 —संयोजकता का इलेक्ट्रॉन सिद्धांत
- किसी ठोस विद्युत अपघट्य को जल में मिलाने पर क्या परिणाम प्राप्त होता है —आयनों के मध्य आकर्षण वल में कमी आती है
- वर्फ के क्रिस्टल में जल के अणु किन बन्धों के द्वारा वंधे रहते हैं

 —हाइड्रोजन वंधों द्वारा
- परिवर्ती संयोजकता किस प्रकार के तत्वों को प्रकट करते हैं संक्रमण तत्वों को
- एथाइन में त्रिबंध निर्मित होता है —एक सिग्मा तथा दो पाई बंधों से
- जल के उच्च क्वथनांक का कारण है —जल के अणुओं के मध्य हाइड्रोजन वंध का होना
- रेडियो सिक्रियता की खोज की गयी थी —हेनरी बेकरल द्वारा
- रेडियो सक्रियता में विघटन के कारण परिवर्तन होता है —परमाणुओं के नामिक में
- परमाणु भट्टी में ईंधन प्रयोग में लायी जाती है —यूरेनियम
- कृत्रिम रेडियो सिक्रियता की खोज की गयी थी —एफ. जोलियट एवं आइ. क्यूरी द्वारा
- E = mc² समीकरण प्रस्तुत किया गया —आइन्स्टीन द्वारा
- α, β एवं γ किरणें उत्सर्जित करने वाले तत्व कहलाते हैं —रेडियो
 मक्रिय तत्व
- γ-किरणों के उत्सर्जन से किसी नवीन तत्व का निर्माण —नहीं होता है
- समस्थानिकों में मूल कण के मान में अंतर होता है —न्युट्रॉन
- समस्थानिकों के रासायनिक गुण —एकसमान होते हैं
- सूर्य एवं तारों में कर्जा का असीम स्रोत निर्भर करता है —नाभिकीय संलयन पर
- हाइड्रोजन बम काम करता है —नाभिकीय संलयन के सिद्धांत पर
- परमाणु बम कार्य करता है —नाभिकीय विखंडन के सिद्धांत पर
- न्यूट्रॉन बम से निकले विकिरण जिनका मानव जीवन पर विनाशकारी प्रमाव पडता है —y-किरणें
- बम जिसको 'जीव संहारक' कहा जाता है —न्यूटॉन वम

- परमाणु रिएक्टरों में ईंधन के तौर पर सामान्यतया प्रयोग किया जाता है
 'व्यक्तियम एवं युग्नियम का
- रिएक्टर जो विखंडनीय पदार्थों को उपयोग से ज्यादा मात्रा में उत्पन्न करता है, —ग्रेटर (एक्टर)
- ब्रीडर नाभिकीय रिएक्टर में —एक ईंधन के नष्ट होने से दूसरा ईंधन अध-। होता है
- परमाणु जितना इलेक्ट्रॉन त्यागता अथवा ग्रहण करता है, कहलाता है
 ---तत्य की संयोजकता
- कोई तंत्र सर्वाधिक स्थायी तब होता है, जब उसकी कर्जा होती है
 —न्यनतम
- दो परमाणुओं के बीच ग्रमायनिक बंधन बनने के क्रम में प्रतिकारी परमाणुओं (Reacting Atoms) की कर्जा —चटती है
- परमाणु का मौलिक कण जो रासायनिक बंधन में भाग लेता है
 —इलेक्ट्रॉन
- सह-संयोजी बंधन (Covalent Bond) में इलेक्ट्रॉनों की होती है

 —साझेदारी
- आयन पर उपस्थित आवेश (+ या –) की संख्या को कहते हैं
 —ऑक्सीकरण संख्या
- वैद्युत संयोजक यौगिकों में धन एवं ऋण आवेश युक्त आयन एक-दूसरे से जुड़े होते हैं —िवद्युत आकर्षण यल द्वारा
- वैद्युत संयोजक यौगिक जलीय अथवा द्रवित अवस्था में होते हैं, विद्युत
 के सुचालक
- वैद्युत संयोजक यौगिकों के साथ रासायनिक प्रतिक्रियाएं होती हैं काफी तेज गति से
- सहसंयोजी यौगिक होते हैं, विद्युत के —कुचालक
- सहसंयोजी यौगिकों के साथ रासायनिक प्रतिक्रियाएं होती हैं —
 धीरे-धीरे
- जल में इलेक्ट्रॉनों की निर्जन जोड़ी (Lone Pair of Electrons) पायी जाती है —2
- इलेक्ट्रॉन स्वीकारने की क्रिया कहलाती है —अवकरण
- वैसे पदार्थ जिनमें इलेक्ट्रॉन प्राप्त करने की प्रवृत्ति होती है, कहलाते हैं

 —ऑक्सीकारक
- वैसे पदार्थ जो इलेक्ट्रॉन त्यागने की प्रवृत्ति रखते हैं, कहलाते हैं

 —अवकारक
- वह प्रक्रिया जिसमें संयोजकता का मान बढ़ता है, कहलाती है

 —ऑक्सीकरण
- वह प्रक्रिया जिसमें संयोजकता के मान में कमी आती है, कहलाती है

 —अवकरण
- पोटैशियम डाइक्रोमेट (K2Cr2O7) विलयन का रंग होता है —पोला
- KCN का जलीय विलयन लॉल लिटमस रंग देता है —नीला
- जब विद्युत अपघट्य विलयन में धारा प्रवाहित की जाती है, तो ऋणायन चलते हैं —एनोड की ओर
- जब विद्युत अपघट्य में धारा प्रवाहित की जाती है, तो धनायन चलते हैं

 —कैथोड की ओर
- किसी ठोस विद्युत अपघट्य में जल मिलाने पर —प्रतिकर्षण यल घटता है
- Cu²⁺ आयन अपचित होकर बन जाते हैं —क्यूप्रस यौगिक
- अमोनियम हाइड्रॉक्साइड एक दुर्बल बेस माना जाता है —बहुत कम आयनित होने के कारण
- 1 फैराडे का वैद्युत अपघटन के नियम संबंधित है —िवद्युत अपघट्य के तल्यांकी भार से
- पिघला हुआ NaCl की उपस्थित के कारण विद्युत का चालन करता है —मुक्त आयन की उपस्थित के कारण
- ग्रेफाइट सुचालक है —िवद्युत का
- नीला थोथा को अन्य नाम से जाना जाता है -कॉपर सल्फेट
- विद्युत अपघटन का नियम किसके दिया गया था —फैराडे द्वारा
- KCN का जलीय विलयन होता है —क्षारीय

ऑक्सीकरण एवं अवकरण (Oxidation and Reduction)

ऑक्सीकरण (Oxidation)—

ऑक्सीकरण का अन्य नाम उपचयन है।

इलेक्ट्रॉनिक सिद्धांत के अनुसार इलेक्ट्रॉन त्यागने या खोने की क्रिया को ऑक्सीकरण या उपचयन कहते हैं। ऐसे क्रिया को विइलेक्ट्रॉनीकरण भी कहते हैं। जैसे-सोडियम (Na), जस्ता (Zn) क्रमश: 1, 2 इलेक्ट्रॉनों का त्याग कर क्रमश: Na+ तथा Zn++ आयन से परित हो गया है।

Na
$$\rightarrow$$
 Na⁺+e⁻
Cu \rightarrow Cu⁺⁺ + 2e⁻

- इसमें पदार्थ के किसी एक तत्व की संयोजकता बढ़ती है।
- अवकरण (Reduction)—
 - इसे अपचयन प्रक्रिया भी कहा जाता है।
 - अवकरण वैसी रासायनिक अभिक्रिया है, जिसमें कोई परमाण अथवा आयन एक या एक से अधिक इलेक्ट्रॉनों को ग्रहण करता है।
 - इसमें किसी पदार्थ द्वारा हाइड्रोजन या अन्य विद्युत धनात्मक तत्व ग्रहण किया जाता है या किसी विद्युत ऋणात्मक तत्व का त्याग किया जाता है।
- चुँकि इस अभिक्रिया में परमाण अथवा आयन किसी दूसरे परमाण अथवा आयन से इलेक्ट्रॉन लेता है। इसलिए इसे इलेक्ट्रॉनिकरण कहते हैं।

- जब ऑक्सीकरण एवं अवकरण की प्रक्रियाएँ साथ-साथ होती है तो उसे रिडॉक्स अभिक्रिया कहते हैं,

 - जैसे- 2FeCl₃ + SnCl₂ → 2FeCl₂ + SnCl₄ ऑक्सीकरण-अवकरण की व्याख्या इलेक्ट्रॉनों के त्याग अथवा ग्रहण द्वारा ही संघव है।
 - अत: इसकी व्याख्या केवल विद्युत संयोजक यौगिक अथवा आयनिक यौगिकों में ही की जा सकती है।
 - एक यौगिक में किसी तत्व के एक परमाणु पर स्थिर धन या ऋण आवेशों की संख्या उस तत्व की ऑक्सीकरण संख्या कहलाती है।
 - ऑक्सीकरण-संख्या वह आवेश है, जो किसी परमाणु पर इलेक्ट्रॉन की गणना करने पर दिखाई पड़ता है। 🐠
- वैसे यौगिक जो इलेक्ट्रॉनों के स्थानांतरण से नहीं बनते उनके क्रियाओं में इलेक्ट्रॉन का त्याग इलेक्ट्रॉनिक सिद्धांत के आधार पर नहीं की जा सकती है।
- ऑक्सीकरण अवकरण क्रियाओं की व्याख्या ऑक्सीकरण संख्या के आधार पर की जाती है। 👙
- अतः किसी परमाणु में किसी परमाणु पर इलेक्ट्रॉनों की गिनती करते समय उस पर जो आवेश प्रतीत होता है। उसे उस परमाणु की ऑक्सोकरण संख्या कहते हैं।
- यह या तो धनात्मक (+) या तो ऋणात्मक (–) होता है।
- अमोनिया (NH2) में नाइट्रोजन की ऑक्सीकरण संख्या 3 है। मुक्त अवस्था (H_2) में हाइड्रोजन (H) में तत्व की ऑक्सीकरण संख्या शून्य होती है, जैसे - O_2 , H_2 , S, Cl_2 आदि की
- आक्सीकरण संख्या शून्य होता है। सभी यौगिकों में क्षार धातुओं (Na, K) की ऑक्सीकरण संख्या +1 तथा क्षार मृदा धातुएँ में (Mg, Ca, Sr) की ऑक्सीकरण संख्या +2 होती है।
- किसी आयन या मूलक की ऑक्सोकरण संख्या उस पर स्थित आवेशों की संख्या के बराबर होती है, जैसे Al3+ आयन की ऑक्सीकरण संख्या का मान +3 होता है।

- साधारणतः हैलोजनों की ऑक्सीकरण संख्या 1 (एक) होती है।
- कुछ यीगिकों में ऑक्सीकरण संख्या, जैसे- KMnO4 मे Mn की ऑक्सीकरण संख्या (K की ऑक्सीकरण संख्या) + (Mn की ऑक्सीकरण संख्या) + (4 × ऑक्सीकरण की ऑक्सीकरण संख्या)

$$\Rightarrow +1 + x + 4(-2) = 0$$

$$\Rightarrow x=8-1=7$$

- अत: Mn की ऑक्सीकरण संख्या +7 होगी।
- धातु के हाइड्राइड को छोड़कर अन्य यीगिकों में हाइड्रोजन की ऑक्सीकरण संख्या +1 होती है।
- आयनिक हाइडाइडों में हाइड्रोजन की ऑक्सीकरण संख्या -1 होती
- वदासीन अणु में सभी परमाणुओं की ऑक्सीकरण संख्या का योग शून्य (0) होता है।
- आयनों या किसी मूलक में सभी परमाणुओं की ऑक्सीकरण संख्या का योग उस आयन या मुलक के आवेश के बराबर होता है।
- जल के बनने में हाइडोजन का ऑक्सीकरण तथा ऑक्सीजन का अवकरण होता है।
- अत: ऑक्सीकरण अवकरण की क्रियाएँ साथ-साथ होती है।

तत्वों के आवर्ती वर्गीकरण (Periodic Classification of Elements)

मेंडलिय का आवर्त सारणी (Mendeleev' Periodic Table)—

- सन् 1869 ई॰ में मेंडलिय ने एक तत्वों के वर्गीकरण के लिए नियम दिया जिसे मेंडलिव का आवर्त नियम कहते हैं।
- तत्वों के गुण उनके परमाण भारों के आवर्ती फलन होते हैं।
- बढ़ते हुए परमाणु भार के क्रम में इस प्रकार से व्यवस्थित तत्व जबिक समान गुणों वाले तत्व एक ही स्थान पर हो।
- इनके आवर्त सारणी में सात (7) क्षैतिज आवर्त तथा नौ (9) कर्घ्वांघर वर्ग बाद में एक शून्य वर्ग और जुड़ा।
- उन्होंने बहुत से अज्ञात तत्वों के लिए रिक्त स्थान रखे।

वर्गों की समान विशेषताएँ (Characteristics)—

- संयोजी इलेक्ट्रॉन और संयोजकता (Valence Electron and Valency)—िकसी एक वर्ग के सभी तत्वों में संयोजी इलेक्टॉन और संयोजकता समान होते हैं।
- 2. परमाणु का आकार (Size of Atom)—वर्ग में शीर्ष से नीचे आने पर परमाणु का आकार बढ़ता जाता है, लेकिन विपरीत रूप में आयनन-विभव का मान घटता जाता है।
- 3. विद्युत्-ऋणात्मक (Electro-negativity)—वर्ग में कपर से नीचे आने पर परमाणु का आकार बढ़ने के कारण आयनन-विभव (Ionization Potential) के समान ही विद्युत्-ऋणात्मकता और इलेक्ट्रॉन-बंधुता (Electron affinity) में हास होता जाता है।
- 4. धात्विक गुण (Metsallic Property)—िकसी वर्ग में ऊपर से नीचे आने पर तत्व के धात्विक गुण में वृद्धि होती जाती है।

आवर्तो (Periods) की विशेषताएँ-

- संयोजी इलेक्ट्रॉन (Valence Electron)—िकसी आवर्त में बाएँ से 1. दाएँ जाने पर संयोजी इलेक्ट्रॉनों की संख्याएँ 1 से क्रमश: बढ्कर 8 हो जाती है।
- 2. संयोजकता (Valency)—इसी प्रकार आवर्त में हाइड्रोजन के सापेक्ष तत्त्वों की संयोजकताएँ बाएँ से दाएँ 1 से बढकर 4 होती है। इसके बाद घटते-घटते शून्य हो जाती है। उदाहरण के लिए, तीसरे आवर्त में सोडियम (Na) से आर्गन (Ar) की व्यवस्था को लिया जा सकता है।
- परमाणु का आकार (Size of Atom)—िकसी आवर्त में बाएँ से 3. दाएँ की ओर बढ़ने पर परमाणु के आकार में हास होता जाता है। उदाहरण के लिए, द्वितीय आवर्त लिया जा सकता है। द्वितीय आवर्त- Li, Be, B, C, N, O, F

परमाण्विक त्रिन्या (Atomic radius) A-1.34, 0.90, 0.82, 0.77, 0.75, 0.73, 0.72

आयनन-विभव (Ionization Potential)—िकसी तत्त्व का आयनन-विभव ऊर्जा की वह न्यूनतम मात्रा है, जो उस तत्त्व के एक 4. गैसीय परमाणु के बाहरी शेल से एक इलेक्ट्रॉन को निकाल-बाहर करने के लिए आवश्यक होती है।

विद्युत्-ऋणात्मकता (Electronegativity) तथा इलेक्ट्रॉन-बंधुता (Electron Affinity)-

किसी तत्व के परमाणु की यह क्षमता, जिससे वह साझे की इलेक्ट्रॉन जोडी को अपनी ओर खींनती है, उस तत्त्व की विद्यत-ऋणात्पकता

इसी प्रकार, किसी उदासीन गैसीय परमाणु के बाहरी शेल में वाहर से एक इलेक्टॉन प्रविष्ट कराने से मुक्त हुई कर्जा इलेक्टॉन-बंधता

आवर्त-सारणी के किसी आवर्त में बाएँ से दाएँ बढ़ने पर तत्त्वों की आयनन-कर्जा, विद्यत-ऋणात्मकता और इलेक्ट्रॉन-बंधता में वृद्धि होती जाती है।

धात्विक गुण् (Metallic Property)—आवर्त में बाएँ से दाएँ बढ़ने पर तत्वा के धात्विक गुणों में हास और अधात्विक गुणों में वृद्धि होती जाती है।

तृतीय आवर्त/तत्त्व : Na Mg Al Si P S Cl

प्रकृति

अधातु, अधात् उपंधातु

मेंडलिफ के आवर्त सारणी के दोष-

कुछ तत्वों की व्यवस्था में विसंगतियाँ,

(ii) हाइड्रोजन को उचित स्थान नहीं,

(iii) वर्ग मेद न होने से उत्कघ्ट तथा क्रियाशील धातुओं का एक वर्ग में होना

(iv) लैन्थेनाइडों तथा एक्टोनाइडों के लिए उपयुक्त स्थान का अभाव,

आदर्श गैसों के लिए कोई स्थान नहीं,

(vi) अधिक परमाणु भार वाले तत्वों को कम परमाणु भार वाले. तत्वों के पहले रख गया।

आधुनिक आवर्त सारणी (Modern Periodic Table)— सन् 1913 ई॰ में मोसले ने तत्त्वों के वर्गीकरण के लिए एक नियम

प्रस्तुत किया जिसे आयुनिक आवर्त नियम कहते है। मोसले द्वारा प्रतिपादित तत्त्वा के भौतिक एवं रासायनिक गुण उनके परमाणु संख्या के आवर्त फलन होते हैं।

भरमाणु संख्या क आवत फलन हात है। अतः इनके अनुसार तत्त्वों के मौतिक एवं ग्रेसायनिक गुण उनके

परमाणु संख्या के आवर्त फलन होते हैं।

आवर्त सारणी का लम्या या दीर्घ रूप जिसमें सात (7) धैतिज आवर्त तथा अठारह (18) कथ्याधर वर्ग होते हैं तथा जिसमें तत्व इलेक्ट्रॉनिक विन्यास के आधार पर व्यवस्थित होते हैं।

आधुनिक आवर्त सारणी के आधार पर तत्वों को s, p, d तथा f

ब्लॉक में वर्गीकत किया गया है।

मोसले के अनुसार इन्होंने वर्ग । से लेकर VII तक दो उपवर्गों A

तथा B में बाँटे हैं। अतः कुल वर्गी की संख्या 18 है।

मोसले ने आवर्त के प्रत्येक पहले सदस्य को क्षार धात तथा अतिम को कोई निष्क्रिय गैस माना। लेकिन हाइड्रोजन एक पहेला सदस्य है जिसे अपवाद में रखा गया है।

परमाणु संख्या 58 से लेकर 71 तक को लैन्येनाइडस श्रेणी तथा

परमाणु संख्या 90 से 103 तक को एक्टीनाइइस श्रेणी कहा। इलेक्ट्रॉनिक विन्यास के आधार पर तत्वों को चार श्रेणियों में बाँटा गया है-

अक्रिय गैसें = ns²np⁶ 1.

सामान्य तत्त्व = $ns^1 - ns^2 np^5$ (s- ब्लॉक के समी तत्व और अक्रिय गैसों को छोड़कर, pब्ब्लॉक के समी तत्व) संक्रमण तत्त्व (n-1) d^{1-10} ns^2 (d-ब्लॉक के तत्व) 2.

3.

अंतःसंक्रमण तन्य = (n-2) f¹⁻¹⁴ (n-1)d¹ ns² (ा-स्तांक के तत्त्व), जहां n संयोजकता कक्षा की क्रमांक-संख्या है।

s, p, d और ∫ ख्लांकों के तत्त्वों का वर्षीकरण—

8-व्यांक के तस्य - आयर्त-सारणी के IA और IIA के तस्य s-स्त्रोंक के तस्य कहलाते हैं। इसके अंतर्गत हाइद्रोजन, शार-धातुएँ और श्वारीय मुदा-धातुएँ उन्नती है।

p-व्यांक के नन्य-आयर्ग-मारणी के IIIA, IVA, VA, VIA, VIIA तथा शून्य नर्गों के तस्य p-व्यांक के तस्य कहलाते हैं, क्योंकि 2. इनमें अतिम या विभेदी इलेक्ट्रॉन p-मवरोल में प्रवेश करते हैं।

्रिक्नॉक के तत्त्व परमाणु संख्या 58 सं 71 तक के तत्त्व 3. लैन्थेनाइड्स (Lanthanides) कहलाते हैं। परमाणु-संख्या 90 से 103 तक के तत्व एक्टीनाइड्स (Actinides) कहलाते हैं। इन दोनों प्रकार के तत्वों के आवर्त-सारणी के नीचे दो क्षेतिज कताएँ में रखा गया है। इन तत्वों को f-ख्नॉक के तत्व कहते हैं।

संक्रमण तत्त्व (Transition Elements)-

जिन तत्वों के परमाणु या आयन में आशिक भरे हुए (Partially filled) ऑर्थिटल उपस्थित रहते हैं, वे संक्रमण तत्व कहलाते हैं।

इनके (n - 1)d ऑबिंटलों में से 1 से 9 तक इलेक्ट्रॉन रहते हैं।

उदाहरण के लिए, Fe (26) एक संक्रमण तत्त्व है, कारण इसके परमाण के 3d- ऑबिंटल ऑशिक भरे होते हैं। Fe (26)-1s2 2s2 2p6 3s2 3p6 3d6 4s2

असंक्रमण तत्त्व (Non-transition Elements)-

जिन तत्वों के s और p ऑर्बिटल पूर्णत: भरे नहीं रहते हैं, जबिक अन्य ऑबिंटल या तो पूर्णत: भरे रहते हैं या रिक्त रहते हैं, उन्हें असंक्रमण तत्त्व कहते हैं।

ये प्रतिनिधि तत्व (Representative Elements) मी कहलाते हैं।

इन तत्त्वों को आवर्त-सारणी के A उपवर्गों में रखा गया है, जिनमें कुल 44 तत्त्व है।

ये आवर्त सारणी के s और p ब्लॉकों के तत्त्व है।

तत्त्व संख्या 11 का आवर्त्त-सारणी में स्थान-इलेक्ट्रॉनिक विन्यास तत्त्व परमाणु संख्या ls² 2s² 2p⁶ 3s¹ Na 11 कक्षाओं की कुल संख्या = 3 ∴ आवर्त = III संयोजी इलेक्ट्रॉनों की संख्या =1 ∴ वर्ग-संख्या = 1 अत: वर्ग-संख्या = 1A इसकी बाह्यतम कक्षा अपूर्ण है

important racts	
धातु तत्वों की संख्या	90
अधातु तत्वा की संख्या	22
• मुल ज्ञात तत्त्व	119
सबसे हल्का तत्त्व	हाइड्रोजन
सबसे भारी तत्त्व	ऑस्मियम
ूदव धातु तत्त्व	पारा
सबसे हल्का धातु तत्त्व	लीधियम
द्रव-अधातु तत्त्व	ब्रोमीन
विद्युत् का सुचालक अधातु	ग्रेफाइट
विद्युत् का सबसे अच्छा सुचालक तत्त्व	चाँदी
सर्वाधिक विद्युत्-ऋणात्मक तत्त्व	फ्लोरीन
न्यूनतम आयनन-विभव वाला तत्त्व	सीजियम
सर्वाधिक आयनन-विभव घाला तत्त्व	ं हीलियम
सर्वाधिक इलेक्ट्रॉन की प्राप्ति वाला तत्त्व	क्लोरीन
मानव-निर्मित तत्त्वों की संख्या	24
एक-परमाण्तिक तत्त्व	अक्रिय गैसें
शरीर में सर्वाधिक मात्रा में पाया जाने वाला तत्त्व	ऑक्सीजन
मिट्टी के तेल में रखा जाने वाला तत्त्व	सोडियम
सबसे प्रवल ऑक्सीकारक पदार्थ	पलोरीन
प्रकृति से प्राप्त तत्त्वों की संख्या	. 88

नाइदोजन तथा फास्फोरस की स्थिति-

नाइट्रोजन तथा फास्फोरस को पाँचवें समूह में आर्सेनिक ऐण्टिमनी तथा विस्मध के साथ रखा गया है।

इस समह के अन्य तत्वों की भौति नाइट्रोजन तथा फॉस्फोरस परमाण के बाह्यतम कक्ष में 5 इलेक्ट्रॉन होते हैं।

हाइड्रोजन की स्थिति-

क्षार धातुओं से गुणों के समानता के कारण हाइद्दोजन का आवर्त सारणी के प्रथम समूह में भी रखा जा सकता है तथा हैलोजन तत्वों से व्यवहार में समानता के कारण इसे सातवें समूह में भी रखा जा

इसी द्वैत गुण के कारण इसका सारणी में स्थान निर्धारिण समस्या पर्ण है।

ऑक्सीजन की स्थिति-

ऑक्सोजन VIA में स्थित है।

ऑक्सीजन के बाह्य कोश में 6 इलेक्ट्रॉन हैं जो इसके VIA समृह में उपस्थिति को प्रदर्शित करता है।

कार्बन की स्थिति-कार्बन को चौथे समृह के उप-समृह A अर्थात IVA में रखा गया है। कार्बन परमाणु के बाह्यतम कक्ष में 4 इलेक्टॉन हैं। अत: इसे चौथे समूह में रखना उचित है।

फ्लोरीन की स्थिति—इसे समूह VII A में फ्लुओरीन, ब्रोमीन, आयोडीन तथा ऐस्टाटिन के साथ रखा गया है। क्योंकि फ्लोरीन के गुण अन्य हैलोजन तत्वों के समान है।

फ्लोरीन के बाह्मतम कक्ष में 7 इलेक्ट्रॉन होते हैं।

वर्ग VII A के तत्वों की इलेक्ट्रॉन बंधुता उच्च होती है।

फ्लोरीन की विद्युत ऋणात्मकता सबसे अधिक होती है।

प्राय: निष्क्रिय गैसों का गलनांक निम्न होता है, लेकिन वर्ग IV A के तत्वों का गलनांक उच्च होता है।

तत्वों का वर्गीकरण : महत्वपूर्ण तथ्य एक नजर में

10, 18, 36, 54, 86 क्रमांक वाले परमाणु के सभी तत्व हैं —अक्रिय गैसें

सोडियम बुन्सेल ज्वाला रंग देती है —सुनहरा पीला

गैस जिसका किसी आवर्त में आयनन विभव सबसे अधिक होता है --- निष्क्रिय गैस का

सभी धातुओं के नाइट्रेट जल में होते हैं —विलेय

- मेण्डलीफ की आवर्त सारणी में आवर्तों की संख्या होती है सात
- तत्वों का आयनन विभव आवर्ती सारणी के वर्ग में परमाणु आकार के साथ —घटता है
- वे तत्व जो सामान्यत: बहु-ऑक्सीजन अवस्था प्रदर्शित करते हैं और जिनके आयन सामान्यत: रंगीन होते हैं कहलाते हैं — संक्रमण तत्व

अधातु होते हैं —सबसे अधिक सक्रिय

आवर्त सारणी के तत्वों को एक ही समूह में क्यों रखा जाता है -उनके गुण आपस में मिलने के कारण

औद्योगिक रूप से प्रमुख लेड का अयस्क होता है —गैलेना

आवर्त सारणी के दीर्घ रूप में कैतिज एवं उर्घ्य श्रेणियों की संख्या क्रमशः है —7 क्षैतिज श्रेणियां एवं 18 खड़ी श्रेणियां

विद्युत ऋणात्पकता माप है —इलेक्ट्रॉन आकर्षित करने की क्षमता की किसी तत्व की इलेक्ट्रॉन बन्धुता प्रकट करती है —उत्पन्न कर्जा को

हाइड्रोजन को पृथक करके H+ बनाता है —इलेक्ट्रॉन को हाइड्रोजन इलेक्ट्रॉन को पृथक करके H+ बनाता है, यह गुण है — क्षारीय धातु से

दुर्लम मृदा तत्वों की पूर्ण संख्या है —14

Ce⁵⁶ सदस्य कहा जाता है —{-स्लॉक के तत्वों को

भारत में पाया जाने वाला टाइटेनियम युक्त खनिज —इलेमेनाइट

आधुनिक आवर्त सारणी में तत्वों के वर्गीकरण का आधार है —बढ़ता हुआ परमाणु क्रमांक

आवर्त सारणी के छठे आवर्त तथा तीसरे समूह में रखे गये 14 तत्व कहलाते हैं -दुर्लभ मुदा धातु

धात पर एनोड किरणों के आघात से उत्पन्न होती है -X-किरण

ठोस पदार्थ के अणुओं की कर्जा होती है -- निम्नतम

अश्कियों (Impurities) की उपस्थित रहने पर पदार्थ के द्रवणांक(Melting Point) एवं हिमांक (Freezing Point) —दोनों ही कम हो जाते हैं

द्रव का तापमान अधिक रहने पर वाष्पीकरण की प्रक्रिया --अधिक वेजी से होती है

जिस प्रद्रव का याप्य दाव (Vapour Pressure) अधिक होता है. उसका वाप्यीकरण —तीग्र गति से होता है

अशुद्धियों की उपस्थिति में द्रव का क्यथनांक (Boiling Point) —वद जाता है

वायुमंडलीय दाब (Atmospheric Pressure) बढ़ जाने पर द्रव का क्वथनांक —बढ जाता है

हवा वस्तुत: एक मिश्रण है —तत्व एवं यौगिक का

मानव शरीर में तत्व के रूप में सर्वाधिक मात्रा (करीब 65 प्रतिशत) होती है -ऑक्सीजन की

पदार्थ की किस अवस्था में अणुओं के बीच की औसत दूरी 10-5 cm से 10-7 cm होती है -- द्रव

ऐसे पदार्थ जिनका द्रवणांक एवं क्वधनांक कमरे के तापमान से कम होता है, कहलाते हैं -गैस

पदार्थ की एकमात्र अवस्था जिसमें अणुओं की केवल दोलन गति होती है — ठोस

भिन द्रवणांक वाले ठोसों के मिश्रण को अलग किया जा सकता है —प्रभाज क्रिस्टलीकरण

भिन्न क्वथनांक वाले द्रवों के मिश्रण को अलग किया जाता है -प्रभाज आसवन

ब्राउनियम गति समर्थन करती है —गतिज सिद्धांत का

सामान्य ताप एवं दाव पर किसी गैस के 1 मोल का आयतन होता है -22.4 लीटर या 22400 ml

रासायनिक तत्वों को संकेत के रूप में व्यक्त करने का पहला प्रयास

किया था —वर्जीलियस 'तत्वों के ससायनिक एवं भौतिक गुण उनकी परमाणु संख्या के आवर्त फल होते हैं -- मोसले

विलियन घोल (Solution)

सामान्यतया घोलक के रूप में प्रयोग होता है —जल

सामान्यतया ठोस पदार्थों की जल में विलेयता ताप बढ़ने से —बढ़ती है

तापमान बढ़ने पर द्रव में द्रव की विलेयता - यड़ती है

जैसे-जैसे ताप बढ़ता जाता है, वैसे-वैसे जल में गैस की विलेयता —घटती जाती है

साबुन वस्तुत: वसीय अम्लों का लवण होता है —सोडियम लवण

कैल्सियम एवं मैग्नेशियम के बाइकार्बोनेट घुले जल की कठोरता होती है —अस्थायी

कैल्सियम तथा मैग्नेशियम के सल्फेट एवं क्लोग्रइड घुले जल की कठोरता होती है —स्थायी

कठोर जल की अपेक्षा नरम जल में कौन सा तत्व अधिक घुलता है -सीसा (लेड)

निलॉबित कणों (Suspended Particles) का आकार होता है —10⁻⁵ cm

कोलॉयड कर्णों का आकार होता है —10-5-10-7 cm

शुद्ध जल विद्युतत: होता है —कृचालक साबुन एवं डिटर्जेंट काम करते हैं —पायसीकरण के सिद्धांत पर

दूध वस्तुत: है, एक प्राकृतिक —पायस पेंट (Paint) है, एक - कृत्रिम पायस

अम्ल नीले लिटमस-पत्र को कर देते हैं —लाल

मस्म लाल लिटमस-पत्र को कर देते हैं —नीला

भस्म होते हैं - पुरभुरे

सामान्य विज्ञान : रसायन विज्ञान

- सभी अम्ल जल में घुल कर प्रदान करते हैं —H+ आयन (प्रोटॉन)
- सभी अम्ल धातुओं से प्रतिक्रिया कर निकालते हैं —हाइड्रोजन गैस
- भस्मों का स्वाद होता है —तीया (यास) भस्मों के जलीय घोल में आयन होता है —OH-
- भस्म जो पानी में घुलनशील होते हैं, कहलाते हैं —कार
- अम्ल एवं भस्म के संयोग से बनते हैं —लवण
- सभी लवण होते हैं --वैद्यत अपघटय
- विद्युत अपघटन में कैथोड़ पर होती है —अवकरण
- विद्युत अपघटन में ऑक्सीकरण की प्रक्रिया होती है —एनोड पर
- विद्युत लेपन में जिस धातु की परत चढ़ानी होती है, उसे बनाया जाता है
- धातुओं को शुद्ध करने में शुद्ध धातु को बनाया जाता है —कैघोड
- पीएच. मान का निर्धारण किया —सॉरेन्सन ने
- उदासीन घोल का pH मान होता है -7
- अम्लीय घोल का pH होता है —7 से कम शारीय घोल का pH होता है —7 से अधिक
- अम्ल वर्षा (Acid Rain) होमी है सल्फर ऑक्साइड और नाइट्रोजन
- बैटरियों में सामान्यतया संचयन किया जाता है —सल्फ्युरिक अम्ल
- ठोस में ठोस का विलयन है -- मिश्रधातु
- शुद्ध जल की मोलरता होती है -55.6
- मोलरता व्यक्त की जाती है —मोल/लीटर में
- गैस का गैस में विलयन आता है —वायु के
- कम सान्द्र विलयन के विलायक अणुओं का अर्धपारगम्य झिल्ली से अधिक सान्द्र विलयन की ओर अभिगमन कहलाता है -परासरण
- द्रव का गैस में विलयन कहलाता है ऐयरोसॉल
- प्रति किया. विलायक में मोलों की संख्या कहलाती है --नॉर्मलता
- विलेय के. प्रति किया. विलायक में विलेयन को कहा जाता है
- मोलरता, मोललता एव नॉर्मलता में किसमें विलयन का सान्द्रण ताप से मुक्त होता है —मोललता में
- क्या विलयन का वाष्प दाव शुद्ध विलयनों के वाष्प दाव से अधिक होता है —हां
- एथिल एल्कोहल विलेय है --जल में
- सीस कक्ष विधि द्वारा सल्फ्यूरिक अम्ल के निर्माण में प्रयुक्त होता है –समांगी उत्प्रेरक
- कार्बनिक उत्प्रेरक अकार्बनिक उत्प्रेरकों से मिन्न होते हैं निप्रोटीनीकृत प्रकृति होने के कारण
- क्या एक उत्प्रेरक का प्रयोग उत्क्रमणीय अभिक्रिया के साम्य स्थिएंक को बदल सकता है —नहीं
- तेलों के हाइड्रोजनीकरण में प्रयोग आने वाले उत्प्रेरक कौन सा है —Ni
- क्या अभिक्रिया के पश्चात उत्प्रेरक की बनावट तथा भार में परिवर्तन
- वह कौन-सा पदार्थ है, जो अमोनिया की हैबर विधि में आयरन उत्प्रेरक के लिए निरोधक का कार्य करता है —CO
- उत्प्रेरक का प्रयोग क्यों होता है -अभिक्रिया को संतुलित करने के
- नाइट्रोग्लीसंरीन का अपघटन किस अभिक्रिया का उदाहरण है —स्वत: उत्प्रेरित अभिक्रिया का
- जब प्रत्येक अभिकारक विभिन्न प्रावस्थाओं में होते हैं, तो इसके क्या कहा जाता है —विषमांग उत्प्रेरण
- वह कौन सा एन्जाइम है, जो ग्लूकोज को अल्कोहल में परिवर्तित करता है —जाइमेज
- प्रकाश यसायनिक अभिक्रिया किसके द्वारा आरंभ होती है —प्रकाश के
- रासायनिक अभिक्रिया के उत्प्रेरण के अभाव से कौन सी कर्जा प्रमावित होती है —सक्रिय कर्जा
- जब अभिकारक तथा उत्प्रेरक दोनों की भौतिक अवस्थाएं समान होती हैं, तो वह कहलाता है —समांग उत्प्रेरक

- उत्प्रेरक विष होता है -किया निरोधक
- उत्प्रेरक होता है —साध्य स्थापित होने वालं समय को कम करने वाला
- कर्जा जिसको कम करके एक उत्प्रेरक की ग्रसायनिक अभिक्रिया की दर को यदाया जाता है -- मॅक्रियण कर्जा की
- क्या एन्जाइम प्रोटीन होते हैं —हां
- भोजन के पाचन में सहयोग देने वाला एंजाइम कौन सा है —टाइएंलिम
- क्या एंजाइम टाइऐलिम लार में वपस्थित होता है —हां
- एंजाइम किस प्रकार के जटिल यौगिक होते हैं --नाइट्रोजन युक्त
- संक्रमण तत्व किस प्रकार के उत्प्रेरक सिद्ध होते हैं -- उत्तम
- कौन सा पदार्थ लोहे पर जंग लगने से उत्प्रेरित करता है —H+
- जीव रासायनिक उत्प्रेरक के कोई दो उदाहरण दीजिए --एंजाइम एवं
- साबुन होता है —पायसीकारक
- स्टार्च, डाइसैकराइड में परिवर्तित होता है —डाइस्टेज की उपस्थित में
- स्नेही कोलॉइड द्रव का एक उदाहरण दीजिए —जिलंटिन
- अभिक्रिया में भाग लेकर उसके वेग को परिवर्तित करने वाला पदार्थ कहलाता है - उत्प्रेरक
- सल्फ्यूरिक एसिड के निर्माण में उत्प्रेरक के रूप में प्रयोग किया जाता है - प्लेटिनीकृत एस्येस्टॉस
- रक्त में पाये जाते हैं —ऋणावेशित कण
- कोलॉइडी तंत्र में कितनी प्रवस्थायें होती हैं —दो
- कोलॉइडी विलयन किस विधि द्वारा शुद्ध किये जाते हैं —अपोहन विधि
- वह कौन सा प्रक्रम है, जिसमें क्रिस्टेलाइड अशुद्धि को कोलॉइड से विरण द्वारा पृथ्वी किया जाता है —अपोहन
- जब परिक्षेपण का माध्यम हवा हो, तो कोलॉइडी तंत्र क्या कहलाता है
- वे कौन से पदार्थ होते हैं, जिनका विलयन तीव गति से चर्म पत्र द्वारा छन जाता है -किस्टलाभ

धातुएँ (Metals)

- वर्तमान विश्व में लगभग 119 रासायनिक तत्त्वों की खोज हो
- अत: इनके गुणों के आधार पर तत्त्वों को दो भागों में बाँटा गया है– धातु (Metals) और अधातु (Non-metals) ।

घातु (Metal)—

- धातु-विद्युत तथा कष्मा के सुचालक तथा ठोस अवस्था में तन्य होते हैं, जैसे-लोहा, चाँदी तथा सोना आदि।
- इसमें चमक होती है, ये ठोस अवस्था में ही पाये जाते हैं।
- अधिकांश धातु धातुयुक्त पदार्थों के रूप में मिलती है जिसे खनिज कहा जाता है।
- जिस खनिज से धातु अधिक मात्रा में प्राप्त की जा सकती है, उनको अयस्क कहते हैं।
- अयस्क में मिले अशुद्ध पदार्थों को गैंग कहते हैं।
- अयस्क में मिले गैंग को हटाने के लिए बाहर से मिलाये गये पदार्थ को पलस्क कहते हैं।
- गैंग तथा फलस्क से मिलकर बने पदार्थ को धातुमल कहते हैं।
- कैल्सीनेशन (Calcination)- ऐसी प्रक्रिया में धातु के अयस्क को उसके द्रवणांक से नीचे के ताप पर गर्म करते हैं ताकि अयस्क में मिले वाष्पशील अशुद्धियाँ दूर हो जायें।
- एस्मेल्टिंग (Smelting)— इस प्रक्रिया में धातु को एवं फ्लस्क की उपस्थिति में उसके द्रवणांक से कपर के ताप पर गर्म करते हैं, जिससे शुद्ध धातु प्राप्त होती है।
- रोसटिंग (Roasting)— ऐसी प्रक्रिया में धातु के अयस्क को गर्म हवा की उपस्थिति में उसके द्रव्यणांक से नीचे के ताप पर गर्म करते हैं ताकि इसमें मिले अशुद्धि ऑक्सीकृत हो जाये।

अघातु (Non-metal)—

अधातु तत्व प्राय: विद्युत् और कष्मा के कुचालक होते हैं, जैसे-फास्फोरस, गंधक, ब्रोमीन आदि।

ये प्राय: भंगुर होते हैं तथा चमक नहीं होती है।

समस्यानिक (Isotope) की परमाणु संख्या सबसे अधिक स्थिर

धात की सतह जब जल, वायु अथवा आस-पास के अन्य पदार्थों से प्रभावित होती है तो इस घटना को संक्षारण कहते हैं।

आवर्त्त-सारणी में घातुओं का स्थान (Position of Metals in the Periodic Table)

आवर्त-सारणी में बायीं ओर (हाइड्रोजन को छोड़कर) धातुओं का स्थान रखा गया है।

उपधातु (Metalloids)—

आवर्त-सारणी में कुछ ऐसे भी तत्व शामिल हैं, जो धातु और अघातु दोनों के गुण दशति हैं, उपधातु कहलाते हैं।

अत: उपधातुओं के द्वारा ही धातुओं को अधातुओं से अलग कर दिया गया है।

कुछ उपधातुओं के उदाहरण हैं-बोरॉन, सिलिकॉन, जर्मेनियम, आर्सेनिक, पोलोनियम, टेल्युरियम आदि।

घातुओं के भौतिक गुण (Physical properties of Metals)-

आधातवर्धनीयता (Malleability)-

धातुएँ आघातवर्ध्य (Malleable) होती है।

हथौड़ों से पीटकर इनको चादरों में परिवर्तित किया जा सकता है।

सोना और चाँदी सबसे अधिक आघातवर्ध्य होते हैं।

तन्यता (Ductility)—

2. तन्यता धातुओं का एक अन्य लाक्षणिक गुण हैं, जो सामान्यतः अधिकांश धातुओं में पायी जाती है।

सभी धातुएँ समस्त रूप से तन्य नहीं होती है।

जैसे - पारा एक धातु है, जो द्रव-अवस्था में पाया जाता है।

यह न तो आघातवर्घ्य है और न ही तन्य है। -

कष्मा के सुचालक (Good Conductor of Heat)-

धातुएँ सामान्यतः विद्युत् और कष्मा के सुचालक (Good Conductor) होती है। सीसा विद्युत का कुचालक होता है।

चमक (Lustre)-

सभी धातुएँ चमकदार होती है।

इस चमक को धातुई चमक (Metallic Lustre) कहते हैं।

घनत्व (Density)-

इसका घनत्व उच्च होता है।

कठोरता (Hardness)-

यह कठोर एवं मजबूत होता है, इसके तार खींचे जा सकते हैं।

घातुओं के रासायनिक गुण (Chemical Properties)—

कुछ धातुएँ, जैसे-सोडियम, पोटैशियम, मैग्नेशियम आदि बाहरी कक्ष से इलेक्ट्रॉन त्यागकर धनात्मक आयन बनाते हैं और अक्रिय गैस-विन्यास (Inert Gas-configuration) की स्थिति को प्राप्त करते हैं।

अतः उपर्युक्त धातुएँ धनाताक तत्त्व है।

कुछ धातुर्पे, जैसे- सोडियम, पोटैशियम, कैल्सियम आदि क्लोरीन के साथ अभिक्रिया करके क्लोग्रइड यौगिक बनाती है।

धातुएँ ऑक्सीजन से अधिक्रिया करके ऑक्साइड बनाती है तथा

इनकी प्रकृति क्षारीय होती है।

धातुएँ तनु अम्ल; जैसे-सल्फयूरिक अम्ल, हाइड्रोजन अम्ल, फॉस्फोरिक अप्ल आदि से अभिक्रिया करके लवण बनाती है तथा इस क्रिया में हाइड्रोजन गैस मुक्त होती है।

चाँदी और सोना तन अम्लों से अभिक्रिया नहीं करते हैं।

चौंदी और ताँबा हाइड्रोजन से कम क्रियाशील होते हैं।

ये तनु अम्लों से हाइड्रोजन को मुक्त नहीं करते हैं, जैसे-Cu (s) - H₂SO₄ (aq)-> कोई अभिक्रिया नहीं। (तनु अम्ल)

5. हाइडोजन से अभिक्रिया-

धातुएँ हाइह्रोजन से अभिक्रिया करके धातु के हाइहाइड का निर्माण

अभिक्रियाशीलता श्रेणी (Reactivity Series)

जब किसी धातु का परमाणु इलेक्ट्रॉनों का त्याग आसानी से करके धनायन बनाता है, तो यह धातु अधिक अभिक्रियासील होती है।

इसके विपरीत, जो धातु अपने इलेक्ट्रॉनॉ का आसानी से त्याग नहीं

करती, वह कम क्रियाशील होती है।

अत: अधिक विद्युत्-धनात्मक धातु अधिक अभिक्रियारील होती है और कम विद्युत्-धनात्मक धातु कम अभिक्रियाशील होती है।

कुछ धातुओं को इनकी अभिक्रियाशीलता के क्रम में नीचे सारणी में

दर्शाया गया है।

अधिक अधिकियात्रील धात को शीर्ष पर रखा गया है।

. आयुक् आमाक्रयाशाल यातु का शाय पर रखा गया हा				
भिक्रियाशीलता	श्रेणी			
- पोटैशियम	K	सबसे अधिक		
	Na	क्रियाशील धातु		
कैल्सियम	Ca	2000		
मैग्नीशियम	Mg			
ऐलुमिनियम	_			
		a region to the		
		at your many		
टिन				
सीसा 🤉 🕾	Sn	I ISSUE AND AND THE		
L सीसा	Pb	. http://ex.		
[हाइड्रोजन]	[H]	, T 1) ====		
┌ ताँबा	Cu			
पारा	Hq			
	Ag			
L सोना	Au	. धातु		
	भिक्रियाशीलता पोटेशियम सोडियम केल्सियम मेग्नीशियम ऐलुमिनियम जिंक लोहा टिन सीसा [हाइड्रोजन] ताँबा पारा चाँदी	भिक्रियाशीलता श्रेणी पोटैशियम K सोडियम Na कैल्सियम Ca मैग्नीशियम Mg ऐलुमिनियम Al जिंक Zn लोहा Fe टिन Sn सीसा Sn सीसा Pb [हाइड्रोजन] [H] ताँबा Cu पारा Hg चाँदी Ag		

धातुओं की प्राप्ति (Occurrence of Metals)—

कुछ धातुएँ; जैसे-गोल्ड, प्लैटिनम आदि कम सक्रिय होने के कारण ये प्रकृति में मुक्त अवस्था (Free State) में पायी जाती है।

खनिज (Minerals)—

धात या उसके यौगिकों से प्राप्त होने वाले वे प्राकृतिक पदार्थ, जो पथ्वीतल के नीचे पाएँ जाते हैं, खनिज कहलाते हैं।

अयस्क (Ores)-

वे खनिज, जिनसे धातुएँ आसानी से तथा कम खर्च में प्राप्त की जा सकती है, अयस्क कहलाती है।

सभी अयस्क खनिज होते हैं, लेकिन सभी खनिज अयस्क नहीं होते हैं। अयस्कों के प्रकार (Types of Ores)-

अयस्कों को मुख्यत: चार प्रकारों में विभाजित किया गया है-

(i) ऑक्साइड अयस्क (Oxide Ores)—

बॉक्साइट (Al₂O₃, 2H₂O) में ऐलुमिनियम ऑक्साइड के रूप में

इसी प्रकार क्यूप्राइट (Cu2O) में कॉपर (ताँबा) ऑक्साइड के रूप में रहता है।

कार्बोनेट अयस्क (Carbonate Ores)-(ii)

लाइम स्टोन या चूना-पत्थर (CaCO₂) में कैल्सियम कार्बोनेट के रूप में रहता है।

सिडेराइट (FeCO3) में लोहा कार्योनेट के रूप में रहता है।

(iii) सल्फाइड अयस्क (Sulphide Ores)—

आयरन पाइराइट (FeS2) में लोहा सल्फाइड के रूप में रहता है।

इस प्रकार जिंक ब्लेंड (ZnS) में जिंक (जस्ता) सल्फाइड के रूप में पाया जाता है।

हेलाइड अयस्क (Halide Ores)— (iv)

रॉक साल्ट (NaCl) सोडियम क्लोराइड के रूप में पाया जाता है। हॉर्निसिल्वर या सिल्वर ग्लांस (AgCI) में सिल्वर (चाँदी) गलोराइड

के रूप में पाया जाता है।

धातुकर्म (Metallurgy)-अयस्कों से धातुओं के निष्कासन (Extraction of Metals) और उपयोग में लाने के पूर्व उनके शुद्धिकरण की प्रक्रिया को धातुकर्म या

धात्विकी कहते हैं। अयस्कों से धातुओं के निष्कासन दो बातों पर निर्भर करते हैं-(i) अयस्क की प्रकृति तथा (ii) निष्कासित होने वाली धातु के गुण।

सामान्यतः धातुकर्म के निम्नलिखित चरण होते हैं-

सांद्रण (Concentration)-1.

अयस्क से अशुद्धियों को दूर करने की विधि सांद्रण कहलाती है। अयस्क को पहले महीन पीस लिया जाता है, तब किसी उचित विधि द्वारा सांद्रण किया जाता है।

अयस्क के सांद्रण के लिए निम्नलिखित विधियाँ प्रयुक्त की जाती है-

भौतिक विधि-

इस विधि के अंतर्गत निम्न विधियाँ है-

हाथ से चुनकर (By hand picking)—अयस्क में उपस्थित बड़े-बड़े दुकड़ों के अगुद्धियों को हाथ से चुनकर पृथक् किया जा (i) सकता है।

गुरुत्व पृथक्करण विधि (Gravity separation method)— अयस्क के महीन चूर्ण को पानी से भरे टेक में डालकर खलबलाने (ii) पर भारी अयस्क के कण नीचे पेंदी में बैठ जाते हैं तथा अशुद्धियों को जल को धारा प्रवाहित कर दूर किया जा सकता है।

चुंबकीय पृथक्करण विधि (Magnetic separation method)-(iii) -जब अयस्क या अशुद्धि में से कोई एक चुंबकीय गुण वाला हो, तब उन्हें चुंबक की मदद से पृथक् किया जाता है। चुम्बकीय अयस्क को सान्द्रित करने के लिए 'चुंबकीय-पृथक्करण विधि' का प्रयोग किया जाता है।

फेन-प्लवन विधि (FROATH Floatation process)—इस विधि (iv) में अयस्क के चूर्ण को पाइन या यूकेलिप्टस के तेल मिले हुए जल में डालकर वायु का झोंका देकर झाग उत्पन किया जाता है। इससे अयस्क के कण झाग के साथ ऊपर आ जाते हैं तथा अशुद्धियाँ नीचे बैठ जाते हैं। यह विधि मुख्य रूप से सल्फाइड अयस्क के लिए उपयुक्त हैं।

रासायनिक विधि-

इस विधि के अंतर्गत अशुद्ध अयस्क के चूर्ण को किसी ऐसे रासायनिक पदार्थ के घोल में मिला कर अलग कर लिया जाता है, जिसमें अयस्क तो घुल जाता है लेकिन अशुद्धियाँ नीचे बैठ जाते हैं। यह विधि मुख्य रूप से सल्फाइड अयस्क के लिए उपयुक्त है।

2. निस्तापन (Calcination)— सादित अयस्क को उसके गलनांक के नीचे तक वायु की अनुपस्थित

में गर्म करने की प्रक्रिया को अयस्क का निस्तापन कहा जाता है। इससे अयस्क में उपस्थित वाष्पशील अशुद्धियाँ, जलकण आदि पृथक् हो जाते हैं तथा अयस्क फफोलेदार हो जाता है।

3. भंजन या जारण (Roasting)— साद्रित अयस्क को उसके गलनांक के नीचे तक वायु की उपस्थिति में गर्म करने की प्रक्रिया अयस्क का मंजन या जारण कहलाती है।

इससे कुछ अशुद्धियाँ ऑक्सीकृत होकर बाहर निकल जाती है तथा धातु का ऑक्साइड बनता है।

अवकरण (Reduction)—

इस प्रक्रिया द्वारा धातु के ऑक्साइड को अवकृत कर धातु में परिणत किया जाता है।

इस विधि कं निप्नलिखित तीन प्रकार होते हैं-

(a) प्रगलन (Smelting)—

थातु के आविभाइड को कार्यन के द्वारा अवकृत कर धातु प्राप्त करने की विधि को प्रगलन कहते हैं।

हेमेटाइट से लीह भात् इसी विधि से प्राप्त की जाती है।

मृत्युगिनोथर्गिक विशि (alumino thermic process)— (b)

धातु के ऑक्साइड को ऐल्युमिनियम के द्वारा अवकृत कर धातु प्राप्त

करने की थिपि को ऐलुमिनोथर्पिक विधि कहते हैं।

मैंगनीज (Mn) तथा फ्रोमियम (Cr) आदि धातुओं का निष्कर्षण इनके ऑक्साइड से इसी थिधि के द्वारा किया जाता है- C12O3 + $2AI \rightarrow Al_2O_3 + 2Cr$, $3MnO_4 + 8AI \rightarrow 4Al_2O_3 + 3Mn$ यह एक ऊप्नाक्षेपी प्रक्रिया है तभी इससे उत्सर्जित कप्ना अभिक्रिया

को बढाने के लिए काफी होती है।

विद्युत् अपपटनी विधि (Electrolytic process)— (c)

बहुत अधिक क्रियाशील धातुओं जैसे-Na, K, Mg, Ca, Al इत्यादि का निष्कर्यन इनके ऑक्साइड, क्लांगइड, हाइड्रॉक्साइड से इसी विधि से किया जाता है।

इस विधि में धातु के पिघले हुए ऑक्साइड, क्लांगइड या हाइड्रांक्साइड का विद्युत अपघटन कराने पर कैथोड पर धात मुक्त होती है।

धातु का शुद्धिकरण (Purification of Metal)-5.

धात के अयस्क के अवकरण से प्राप्त धातु में अनेक प्रकार की अशद्भियाँ पाई जाती है।

इसका रुद्धिकरण के लिए निम्नलिखित विधियाँ उपयोग में लाई

जावी है-

आसवन विधि (Distillation Method)—ऐसा घातु जिसके क्वथनांक कम तथा वाय्पशील हो, का शुद्धिकरण इस विधि द्वारा किया जाता है।

ऑक्सीकरण विधि (Oxidation method)—जब घातु की अपेक्षा अश्द्वियाँ आसानी से ऑक्सीकृत हो सकती है, तब इस विधि द्वारा धातु से होकर वायु प्रवाहित की जाती है, जिससे अशुद्धियाँ ऑक्सीकृत होकर बाहर निकल जाती है।

विद्युत् अपघटन शुद्धिकरण (Electro Refining)—अत्यधिक विद्युत् धनात्मक तत्त्वों, जैसे- Al, Cu, Zn आदि का शुद्धिकरण इस विधि से किया जाता हैं इस विधि में अशुद्ध धातु की एक मोटी प्लेट का एनोड, शुद्ध धातु की एक पतली प्लेट का कैथोड तथा इसी धातु के किसी जल में घुलनशील लवण का उपयोग विद्युत् अपघट्य के रूप में किया जाता है। विद्युत् धारा प्रवाहित करने पर अशुद्ध धातु विलयन में तथा विलयन से शुद्ध धातु कैथोड पर एकत्रित होती रहती है।

(iv) वॉन आरकेल विधि (Van Arkel Method)—इस विधि में अशुद्ध धातु को किसी उपयुक्त पदार्थ के साथ अभिक्रिया कराकर वाष्पशील स्थायी यौगिक में परिवर्तित किया जाता है, फिर उस यौगिक का अपघटन कराकर शुद्ध घातु प्राप्त की

टाइटेनियम (Ti) तथा जर्मेनियम (Zr) का शुद्धिकरण इसी ंविधि द्वारा किया जाता है।

> $Ti+2l_2 \xrightarrow{500 \text{ K}} Til_4 \xrightarrow{1700 \text{ K}} Ti+2l_2$ इस विधि द्वारा अति शुद्ध धातु प्राप्त की जा सकती है।

क्षेत्र शोधन विधि (Zone refining process)—इस विधि में अशुद्ध धातु की छड़ को एक वृताकार कष्मक (Circular heater) द्वारा पिघलाते हुए छड के एक छोर से दूसरे छोर की ओर घिसकाया जाता है। जैसे-जैसे कथ्यक आगे बढता है, घातु द्रव से रवाकृत होकर अलग हो जाती है।

जर्मेनियम (Ge) तथा सिलिकॉन (Si) का शुद्धिकरण उपयुर्वत विधि

द्वारा किया जाता है।

अति शुद्ध धातु प्राप्त करने के लिए इस विधि का उपयोग किया जाता है।

मिश्रघातुएँ (Alloys)

मिश्रघातु	अवयव
 जर्मन सिल्वर टांका (सोल्डर) स्टील पीतल ड्युरेलियम 	ताँबा + निकेल + जिंक (Cu + Ni + Zn) सीसा + टिन (Pb + Sn) लोहा + कार्बन (Fe + C) तांबा + जिंक (Cu + Zn)
इंपुरालयम इंपुरालयम	एल्युमिनयम + ताँबा + भैंग्नीशियम + भैंग्नीज (Al + Cu + Mg + Mn) तांबा + टिन (Cu + Sn) लोहा + निकेल + क्रोमियम (Fe + Ni + Cr) तांबा + एल्युमिनियम (Cu + Al) तांबा + जिंक + टिन (Cu + Zn + Sn) तांबा + जिंक (Cu + Zn) बिस्मथ + सीसा + टिन (Bi + Pb + Sn)

उपयोग

- वर्तन एवं अन्य उपकरण बनाने में।
- जोड़ों में यंका लगाना।
- जहाज, यातायात के निर्माण में।
- वर्तन तथा सजावट के सामान।
- वायुयान तथा रसोई के समान बनाने में।
- जहाज निर्माण में।
- वर्तन बनाने में।
- आमूषण बनाने में।
- तोप तथा हथियार बनाने में।
- सिक्का बनाने में।
- प्यूज बनाने में स्वचालित।

कुछ घातुओं से संबंधित विशेष तथ्य

लोहा (₂₆Fe⁵⁶)—

- लोहा काफी अभिक्रियाशील धातु है। लोहे के प्रमुख अवस्क हैमाटाइट है।
- लोहा एक संक्रमण धातु तत्व है।
- इसका संकेत Fe, परमाणु संख्या 26, वर्ग VIII आवर्त IV में रखा गया है।
- प्रकृति में लोहा मुक्त अवस्था में अल्पमात्रा में पाया जाता है।
- अतः लोहा का निष्कर्षण वात्या भट्ठी (Blast Furnance) का प्रयोग कर लाल हेमेटाइट (Fe₂O₃) के द्वारा किया जाता है।
- आई वायु में छोड़ने पर लोहे के ऊपर लाल रंग की एक ढीली परत के निर्माण को जंग लगना कहते हैं।
- जंग लगना एक ग्रसायनिक परिवर्तन है।
- जंग लगने से लोहे का भार बढ़ जाता है।
- लोहा को जंग से बचाने के लिए उसके सतह पर कोलतार या ताँबा निकल का स्तर चढ़ाकर या जस्तीकरण (Galvanization) करके किया जा सकता है।
- लाल तप्त लोहे पर जलवाय्य प्रवाहित करने से उस पर फेरेसोफेरिक ऑक्साइड (Fe₃O₄) की परत बैठ जाती है, जो लोहे को जंग से बचाता है।

लोहा के प्रकार (Types of Iron)—

- लोहा मुख्यत: तीन प्रकार के होते हैं—
- 1. बलवाँ लोहा (Cast Iron)—
- दलवाँ लोहा कठोर और मंगुर होता है।
- इसमें फॉस्फोरस, सिलिकॉन और मैंगनीज आदि अशुद्धियों के रूप में पाए जाते हैं।
- इसमें कार्बन की मात्रा अपेक्षाकृत 2%-2.5% तक होती है।

- पिटयाँ लोहा (Wrought Iron)—
- पिटवाँ लोहा आमातवर्ध्य तथा तन्य होता है, इससे चादरें (sheets)
 और तार निर्मित किए जा सकते हैं।
- इसमें कार्यन की मात्रा सबसे कम लगभग 0.12-0.25% तक होती है।
- यह अपेक्षाकृत शुद्ध लोहा होता है।
- 3. इस्पात (Steel)—
- यह लोहा और कार्यन की मिश्रपातु (Alloy) होता है।
- यह मुख्यत: चार प्रकार का होता है-
 - (i) भुद्र इस्पात (Mild Steel)—
- मृ5 इस्पात आधातयर्घ्य और तन्य होता है।
- इसमें कार्यन की मात्रा लगमग 0.1% होती है।
 - (ii) मध्यम इस्पात (Medium Steel)—
 - मध्यम इस्पात कठोर होता है।
- इससे रेल लाइन, समुद्री जहाज और पुल बनाए बनाए जाते हैं।
- इसमें कार्बन की मात्रा लगभग 0.5% तक होती है।
 - (iii) कठोर इस्पान (Hard Steel)—
- कठोर इस्पात काफी कठोर होता है।
- इसमें कार्वन की मात्रा 1.5% तक होती है।
- इससे औजार आदि बनाए जाते हैं।
 - (iv) मिश्र इस्पात (Alloy Steel)—
- मिश्र इस्पात विभिन्न घातुओं और अघातुओं का मिश्रण है।

विभिन्न प्रकार के इस्पात

1	00	797.			
	मिश्रित घातु	्यात्विक मात्रा	निर्मित धातु का नाम	विशेष गुण	उपयोग
10.00	क्रोमियम हुँ।	11.5%	स्टेनलेस स्टील	कठोर होता है एवं जंग नहीं लगता है।	वाल्व, बॉल-बियरिंग ब्लेड और बर्तन के निर्माण में
	मैंगनीज	6–15%	मैंगनीज इस्पात	अत्यंत कठोर होता है एवं कम घिसाऊ होता है।	सड़क, रेल की पटनी, रोलर तथा तिजोरी आदि बनाए जाते हैं।
	टंगस्टन	10-20%	टंगस्टन इस्पात	बहुत कठोर एवं शक्तिशाली (मजबूत)	औजार, काटने वाले यंत्र (आरी) और स्प्रिंग चुम्बक बनाने में
19	क्रोमियम निकल	36%	निकेल इस्यात	कटोर, लचीला एवं जंग लगने की कम संभावना	वायुवान, बिजली की तार, घड़ी, मोटर के हिस्से इत्यादि बनाने में
	क्रोमियम एवं वैनेडियम	1%+ 0.15%–5%	क्रोम- वैनेडियम इस्पात	अधिक भार, साधक क्षमता	

- इसके अंतर्गत स्टेनलेस, क्रोम इस्पात, टंगस्टन इस्पात आदि आते हैं।
- स्टेनलेस इस्पात पर वायु एवं जल आदि का प्रभाव नहीं पड़ता है।
- फलत: इसमें जंग नहीं लगता है।
- कच्चे लोहे अथवा लौह-अयस्कों से पिटवाँ लोहा तथा इस्पात बनाया जाता है।
- शुद्ध लोहा में तीन प्रकार के क्रिस्टल पाए जाते हैं—α-लौह, γ-लौह तथा δ-लौह।
- जहाँ तक लोहा एवं इस्पात का उपयोग की बात है, तो ये जीवन की सम्पूर्ण रीढ़ की है।
- इनका एवं इनकी मिश्रधातुओं का उपयोग घरेलू सामान्य जिन्दगी से लेकर बाहर के लगभग समस्त प्रक्रमों-उपक्रमों में किया जाता है।

लोहे के यौगिक (Compound of Iron)—

- फेरस सल्फेट (FeSO₄.7H₂O) फेरिक क्लोराइड (FeCl₃), आयरन सल्फाइड (FeS), मोर लवण [FeSO₄ (NH₄)₂ SO₄.6H₂O]
- आयरन सल्फाइट अथवा आयरन पाइराइट्स को 'झुठा साना' या 'बेवकूफ सोना' कहा जाता है।

THE PLATFORM

Join online test series : www.platformonlinetest.com

GENERAL SCIENCE 1126

लोहे पर जंग लगना (Rusting of Iron)— लोहे को नम वायु में खुला रहने पर उस पर फेरिक ऑक्साइड (Fe₂O₃) तथा फेडिरिक हाइड्रॉक्साइड [(Fe(OH)₃] की लाल एवं भूरे रंग की एक ढीली परत जम जाती है, जिसे 'जंग लगना' (Rusting of Iron) कहा जाता है।

(i) लोहे में जंग लगना एक ऑक्सीकरण अभिक्रिया है।

(ii) लोहे पर जंग लगने से उसके भार में वृद्धि होती है।

(iii) लोहें के ऊपर पीच, अलकतरा या ऐलुमिनियम पेंट कर देने से या जस्तीकरण करके उसे जंग लगने से बचा जा सकता है।

सिडेरोसिस और विल्सन-बीमारी (Siderosis and Wilson's Disease)

सभी जीवधारियों के लिए धातुएँ अति महत्वपूर्ण है।
 कभी-कभी शरीर में धातुओं की आवश्यकता से अधिक मात्रा में

उपस्थिति भी हानिकारक प्रभाव दर्शाती है। लोहे के अधिक मात्रा में उपस्थिति से सिडेंग्रेसिस नामक बीमारी हो

वयस्क मनुष्यों में ताँबा की मात्रा 0.10 ग्राम से 0.15 ग्राम के बीच
 रहनी चाहिए।

इस मात्रा में वृद्धि हो जाने पर एक प्रकार की बीमारी हो जाती है, जिसे विल्सन-बीमारी कहते हैं।

 इस बीमारी से ग्रसित हो जाने पर जीवधारियों के शरीर में कंपन, निगलने में कठिनाइयाँ, घबराहट एवं जोड़ों में कसापन आदि लक्षण ठघरकर सामने आ जाते हैं।

तत्त्व, अयस्क तथा उसके सूत्र (Elements, Ores and Formulae)

तत्त्व	अयस्क का नाम	सूत्र -
1. सीसा (Pb)	गैलेना	PbS A
	सैरूसाइट	Рьсо3
	ऍंग्लोसाइट	PbSO ₄
2. सोना (Au)	केल्वेगइट	AuTe ₂
27 - 29 1 - 12 - 1	पेट्साइट .	[(Ag, Au)Te]
	सिल्वेनाइट्स	(Ag, Au) Te ₂
3. ताँवा (Cu)	रूबी कॉपर या क्यूप्राइट	Cu ₂ O
A 44 51	मैलेकाइट.	CuCO ₃ .Cu (OH) ₂
1. 1. 1.	ऐजुराइट 💮 📆	2CuCO ₃ .Cu (OH) ₂
	कॉपर पायराइटीज	CuFeS ₂
	कॉपर ग्लान्स	Cu ₂ S
4. लोहा (Fe)	हेमेटाइट 👫	Fe ₂ O ₃
	मैग्नेटाइट	Fe ₃ O ₄
	लिमोनाइट 💎 📉	Fe ₂ O ₃ .3H ₂ O
9 ET 9 19 TO 17	सिडेराइट	FeCO ₃
	आयरन पायासइट 📑	FeS ₂
5. कैडिमियम (Cd)	ग्रीनोकाइट •	CdS
6. क्रोमियम (Cr)	क्रोमाइट	FeO.Cr ₂ O ₃
	क्रोकॉइट	PbCrO ₄
7. ऐलुमिनियम (Al)	कोरण्डम लाल (Ruby)	- Phr
70 (2 -)	नीलम	Al ₂ O ₃
	बॉक्साइट	Al ₂ O ₃ .2H ₂ O
	डायस्पोर	Al ₂ O ₃ .H ₂ Õ
	क्रायोलाइट	Na ₃ AIF ₆
8. सोडियम (Na)	खनिज नमक	NaCl
U. MIIO44 (11a)	चिली साल्टपीटर	NaNO ₃
4.	ट्रोना	Na ₂ CO ₃
	X	2 0

तत्त्व	अयस्य का नाम	सूत्र
9. হিন (Sn)	कैसिटेगइट	SnO ₂
10. जिंक (Zn)	जिंकाइट	ZnO = 0
2.0	प्रीक्लनाइट	ZnO, Fe ₂ O ₃ ZnS
	जिंक स्तेंड	ZnCO ₃
	जिक स्यार विलेमाइट	2 ZnO.SiO ₂
11 AGran (Da)	विसमाइट वेराइट्स	BaSO ₄
11. बेरियम (Ba)	विदराइट	BaCO ₃
12. पोटैशियम (K)	कॉर्नेलाइट	KCI.MgCl ₂ .6H ₂ O
12. 41444 (11)	सिल्याइन	KCI
,	केनाइट	K ₂ SO ₄ .MgSO ₄
	शोनाइट 💮	K2SO4.M9SO4.6H2O
4	फेल्सस्पार	KAISi ₃ O ₄
< 18	शोरा (नाइटर)	KNO ₃
13. पारा (Hg)	सिनेबार	HgS
14. चाँदी (Ag)	सिल्वर ग्लान्स	Ag ₂ S
	रूबी सिल्वर	Ag ₂ Ss Sb ₂ S ₂
o, William	कॉपर सिल्वर ग्लांस	Ag ₂ S.Cu ₂ S
AND SHA	हॉर्न सिल्वर	AgCl MgCO ₃
15. मैग्नेशियम (Mg)		MgCO ₃ .CaCO ₃
ATT THE	डोलोमाइट 	MgSO ₄ .H ₂ O
	कीसराइट	MgSO ₄ .7H ₂ O
STEEL STREET	एप्सम साल्ट कार्नेलाइट	KCI, MgCl ₂ .6H ₂ O
**************************************	रैल्क	3MgO.4SiO2.H2O
THE STATE OF THE S	ऐस्बेस्टस	CaMg ₃ (SiO ₃) ₄
16. केल्सियम (Ca)		CaCO ₃
B .	डोलोमाइ ट	CaCO ₃ .MgCO ₃
	जिप्सम	CaCO ₄ .2H ₂ O
	एन्हाइड्राइड सल्फेट	CaSO ₄
	फ्लोस्पार	CaF ₂
	फ्लोरेप्टाइट	3Ca ₃ (PO ₄) ₂ CaF ₂
	फॉस्फोराइट	Ca ₃ (PO ₄) ₂

ताँबा [(Copper (29Cu⁶³)]—

ताँबा भी एक संक्रमण धातु है।
 यह मानव द्वारा प्रयुक्त पहला धातु है।

 यह क्यूप्रस यौगिक में 1 तथा क्यूप्रिक यौगिकों में 2 संयोजकता प्रदर्शित करता है।

• संकेत Cu, परमाणु संख्या 29, वर्ग IB आवर्त IV है।

चाँदी के बाद सबसे अधिक सुचालक पदार्थ है।

 ताँबा का निष्कर्षण कॉपर पायराइट्स अयस्क के द्वारा फेन प्लावन विधि की सहायता से करते हैं।

• ताँबा का उपयोग सिक्कों व बर्तन बनाने में किया जाता है।

विद्युत् तार एवं विद्युत् उपकरण के निर्माण में।

पीतल, कौंसा, जर्मन सिल्वर, गर्म मेटल आदि मिश्र धातुओं के निर्माण में।

ताँबा के यौगिक (Compounds of Copper)— 1. क्यूप्रस ऑक्साइड (Cu₂O)

- 2. क्यूप्रिक ऑक्साइड (CuO)
- 3. क्यूप्रस क्लोराइड (CuCl या Cu₂Cl₂)
- 4. क्यूप्रिक क्लोराइड (CuCl₂.2H₂O)
- क्यूप्रिक नाइट्राइट [Cu(NÕ₂)₂]
 क्यूप्रिक नाइट्रेट [Cu (NO₃)₂.3H₂O]
- क्यूप्रिक नाइट्रेट [Cu (NO₃)
 क्यूप्रिक सल्फाइड (CuS)
- 8. क्यूप्रिक सल्फेट (नीला थोथा) (CuSO₄.5H₂O)