Data Analysis

Brian A. Fannin

August 21, 2017

Preliminaries

What we'll cover

- Basic data analysis in R
- Linear regression
- Fit a distribution

Packages we'll use

- MASS (MASS = Modern Applied Statistics in S)
 - fitdistr will fit a distribution to a loss distribution function
- actuar (Dutang, Goulet, and Pigeon 2008)
 - emm calculates empirical moments
 - lev limited expected value
 - Contains many more distributions than are found in base R such as Burr, Pareto, etc. Basically, anything in "Loss Models" is likely to be found here.
 - Contains the dental claims data from "Loss Models"

Generate some loss data

```
set.seed(8910)
years <- 2001:2010
frequency <- 1000

N <- rpois(length(years), frequency)

sevShape <- 2
sevScale <- 1000
severity <- rgamma(sum(N), sevShape, scale = sevScale)

Basic analysis

Basic exploratory functions
mean(severity)
## [1] 1969.549
median(severity)</pre>
```

```
## [1] 1640.102
var(severity)
## [1] 1973851
sd(severity)
## [1] 1404.938
quantile(severity, 0.25)
       25%
## 928.9297
quantile(severity, c(0.25, 0.5, 0.75))
        25%
                  50%
                            75%
## 928.9297 1640.1021 2676.1799
Summary
summary(severity)
##
      Min. 1st Qu. Median
                                Mean 3rd Qu.
##
     21.93 928.93 1640.10 1969.55 2676.18
##
      Max.
## 11128.25
Hist again
hist(severity)
```

Histogram of severity

Density again

plot(density(severity))

density.default(x = severity)

Basic analysis summary

For univariate continuous data, this is about it. Say, wouldn't it be fun to fit this to a loss distribution?

Fit a distribution

```
fitdistr
```

library(MASS)

```
fitGamma <- fitdistr(severity, "gamma")</pre>
fitLognormal <- fitdistr(severity, "lognormal")</pre>
fitWeibull <- fitdistr(severity, "Weibull")</pre>
fitGamma
##
          shape
                            rate
     1.981942e+00
                     1.006292e-03
```

```
## (1.261418e-02) (8.096328e-07)
fitLognormal
##
        meanlog
                        sdlog
     7.312554108 0.804493446
##
   (0.008045739) (0.005689197)
fitWeibull
##
         shape
                         scale
     1.472049e+00 2.184117e+03
##
## (1.117737e-02) (1.566082e+01)
q-q plot code
probabilities = (1:(sum(N)))/(sum(N) + 1)
weibullQ <- qweibull(probabilities, coef(fitWeibull)[1],</pre>
    coef(fitWeibull)[2])
lnQ <- qlnorm(probabilities, coef(fitLognormal)[1],</pre>
    coef(fitLognormal)[2])
gammaQ <- qgamma(probabilities, coef(fitGamma)[1],</pre>
    coef(fitGamma)[2])
sortedSeverity <- sort(severity)</pre>
q-q plot, plotting code
oldPar <- par(mfrow = c(1, 3))
plot(sort(weibullQ), sortedSeverity, xlab = "Theoretical Quantiles",
    ylab = "Sample Quantiles", pch = 19, main = "Weibull Fit")
abline(0, 1)
plot(sort(lnQ), sortedSeverity, xlab = "Theoretical Quantiles",
    ylab = "Sample Quantiles", pch = 19, main = "Lognormal Fit")
abline(0, 1)
plot(sort(gammaQ), sortedSeverity, xlab = "Theoretical Quantiles",
    ylab = "Sample Quantiles", pch = 19, main = "Gamma Fit")
abline(0, 1)
par(oldPar)
```


Compare fit to histogram

```
sampleLogMean <- fitLognormal$estimate[1]
sampleLogSd <- fitLognormal$estimate[2]

sampleShape <- fitGamma$estimate[1]
sampleRate <- fitGamma$estimate[2]

sampleShapeW <- fitWeibull$estimate[1]
sampleScaleW <- fitWeibull$estimate[2]

x <- seq(0, max(severity), length.out = 500)
yLN <- dlnorm(x, sampleLogMean, sampleLogSd)
yGamma <- dgamma(x, sampleShape, sampleRate)
yWeibull <- dweibull(x, sampleShapeW, sampleScaleW)

hist(severity, freq = FALSE, ylim = range(yLN, yGamma))</pre>
```

```
lines(x, yLN, col = "blue")
lines(x, yGamma, col = "red")
lines(x, yWeibull, col = "green")
```

Compare

Histogram of severity

Kolmogorov-Smirnov

The Kolmogorov-Smirnov test measures the distance between a sample distribution's empirical cumulative distribution function and the

same for a candidate loss distribution. More formal than q-q plots.

More K-S

```
testGamma <- ks.test(severity, "pgamma", sampleShape,</pre>
    sampleRate)
testLN <- ks.test(severity, "plnorm", sampleLogMean,</pre>
    sampleLogSd)
testWeibull <- ks.test(severity, "pweibull", sampleShapeW,</pre>
    sampleScaleW)
testGamma
##
   One-sample Kolmogorov-Smirnov test
##
##
## data: severity
## D = 0.0066186, p-value = 0.7735
## alternative hypothesis: two-sided
testLN
##
    One-sample Kolmogorov-Smirnov test
##
##
## data: severity
## D = 0.047763, p-value < 2.2e-16
## alternative hypothesis: two-sided
testWeibull
##
   One-sample Kolmogorov-Smirnov test
##
##
## data: severity
## D = 0.02053, p-value = 0.0004373
## alternative hypothesis: two-sided
```

A low value for D indicates that the selected curve is fairly close to our data. The p-value indicates the chance that D was produced by the null hypothesis.

Direct optimization

The optim function will optimize a function. Works very similar to the Solver algorithm in Excel. optim takes a function as an argument, so let's create a function.

```
quadraticFun <- function(a, b, c) { function(x) a * x^2 + b * x + c
```

```
}
myQuad <- quadraticFun(a = 4, b = -3, c = 3)</pre>
```

Direct optimization

Direct optimization

8 is our initial guess. A good initial guess will speed up conversion.

```
myResult <- optim(8, myQuad)
myResult
## $par
## [1] 0.4
##
## $value
## [1] 2.44
##
## $counts
## function gradient
## 20 NA
##</pre>
```

```
## $convergence
## [1] 0
##
## $message
## NULL
```

Direct optimization

Default is to minimize. Set the parameter fnscale to something negative to convert to a maximization problem.

```
myOtherQuad <- quadraticFun(-6, 20, -5)</pre>
plot(myOtherQuad, -10, 10)
```


Direct optimization

```
myResult <- optim(8, myOtherQuad)</pre>
myResult
## $par
## [1] 1.447401e+75
##
## $value
## [1] -1.256982e+151
```

```
##
## $counts
## function gradient
        502
                   NA
##
##
## $convergence
## [1] 1
##
## $message
## NULL
myResult <- optim(8, myOtherQuad, control = list(fnscale = -1))</pre>
myResult
## $par
## [1] 1.666406
##
## $value
## [1] 11.66667
##
## $counts
## function gradient
         30
##
                   NA
##
## $convergence
## [1] 0
##
## $message
## NULL
```

Direct optimization

Direct optimization allows us to create another objective function to maximize, or work with loss distributions for which there isn't yet support in a package like actuar. May be used for general purpose optimization problems, e.g. maximize rate of return for various capital allocation methods.

Note that optimization is a general, solved problem. Things like the simplex method already have package solutions in R. You don't need to reinvent the wheel!

Linear regression

Fake some data

```
N < -100
B0 <- 5
```

```
B1 <- 1.5

set.seed(1234)

e <- rnorm(N, mean = 0, sd = 1)
X1 <- runif(N, 0, 10)

Y <- B0 + B1 * X1 + e

First, visualize!
plot(X1, Y)</pre>
```


Fit a model

```
fit <- lm(Y ~ X1)
summary(fit)
##
## Call:
## lm(formula = Y ~ X1)
##
## Residuals:</pre>
```

```
##
       Min
                10 Median
                                30
## -2.0069 -0.7943 -0.1368 0.6793 2.8109
##
## Coefficients:
               Estimate Std. Error t value
## (Intercept) 5.18536
                           0.21314
                                     24.33
                           0.03763
## X1
               1.43174
                                     38.05
##
               Pr(>|t|)
## (Intercept)
                <2e-16 ***
                 <2e-16 ***
## X1
## ---
## Signif. codes:
    0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.993 on 98 degrees of freedom
## Multiple R-squared: 0.9366, Adjusted R-squared: 0.9359
## F-statistic: 1448 on 1 and 98 DF, p-value: < 2.2e-16
Formulas
y \sim x1
```

```
y \sim 1 + x1
y \sim 0 + x1
y \sim x1 + x2
y \sim I(x1 + x2)
y \sim x1 + x2 + x1:x2
```

Formulas place the response variable on the left and an expression to the right of the ~ character. That character may be read as "is modelled as".

An intercept is implicit. To rermove it, use a "o" or "-1" in the expression

The "+" does not mean addition in the algebraic sense. It means we're adding another predictor variable to our model. To use arithmetic operations, wrap expressions in I()

The: is used for interactions.

Extract data from the fit

Element	What it shows
residuals coefficients	weighted residuals coefficients
sigma df	square root degrees of freedom
CLI.	actices of freedom

Element	What it shows
fstatistic	The F-stat
r.squared	r^2
adj.r.squared	r^2 penalized for more parameters
cov.unscaled	covariance matrix
correlation	correlation matrix

Predict

```
prediction <- predict(fit)</pre>
```

Visualize prediction

Visualize your residuals!

```
plot(Y, residuals(fit))
abline(0, 0, col = "red")
```


What are we looking for?

- Heteroskedasticity => We should change the weights applied to the observations
- Doesn't look like "noise"
 - Serial correlation => Use a time series
 - Apply a transform (polynomial, trig, etc.)
- Extreme values => A normal distribution may not be appropriate

Questions

Questions

- Plot a lognormal distribution with a mean of \$10,000 and a CV of
- For that distribution, what is the probability of seeing a claim greater than \$100,000?
- Generate 100 and 1,000 observations from that distribution.
- Draw a histogram for each sample.
- What are the mean, standard deviation and CV of each sample?

- Convince yourself that the sample data were not produced by a Weibull distribution.
- Assuming that losses are Poisson distributed, with expected value of 200, estimate the aggregate loss distribution.
- What is the cost of a \$50,000 xs \$50,000 layer of reinsurance?

Answers

```
severity <- 10000
CV <- 0.3
sigma <- sqrt(log(1 + CV^2))
mu <- log(severity) - sigma^2/2</pre>
plot(function(x) \ dlnorm(x), \ mu, \ sigma, \ ylab = "LN f(x)")
```


References

Dutang, Christophe, Vincent Goulet, and Mathieu Pigeon. 2008. "Actuar: An R Package for Actuarial Science." Journal of Statistical Software 25 (7): 38. http://www.jstatsoft.org/v25/i07.