Homework2

Exercise 1:

a.
$$T(n) = n \log n + 3n + 2$$
 $\Rightarrow O(n \log n)$

b.
$$T(n)=n\log(n!)+5n^2+7$$

Proved that:
$$n! \leq \frac{n^{n+1}}{e^{n-1}}$$

$$\Rightarrow \log(n!) \leq log(n^{n+1}) - log(e^{n-1})$$

WLOG, consider that $\log \approx \ln$

$$\Rightarrow log(n!) \le (n+1)\log n - n + 1$$

$$\Rightarrow n \log(n!) + 5n^2 + 7 \le n(n+1) \log n - n^2 + n + 5n^2 + 7$$

$$= n^2\log n + 4n^2 + n\log n + n + 7$$

$$\Rightarrow O(n^2 \log n)$$

c.
$$T(n) = 1000n + 0.01n^2$$

Regardless 0.01 is an small const, $T(n) = {\cal O}(n^2)$

d.
$$T(n) = 100n \log n + n^3 + 100n$$

Because $n^3 \geq 100 n \log n$ when $n \geq N_0$ with (N_0 big enough)

$$\Rightarrow O(n^3)$$

e.
$$T(n) = 0.01 n \log n + n (\log n)^2$$

 $\Rightarrow O(n \log^2 n)$

Exercise 2:

- a. Because of only 1 for loop \Rightarrow O(n)
- b. There are n/2 operator in this loop, but time complexity is still O(n)
- c. The size of 2 for loop is $n imes (n-1)/2 \Rightarrow O(n^2)$
- d. O(n)

e. 3 for loop, with $n imes n imes (n-1)/2 \Rightarrow O(n^3)$