

CINEMATICA

\(\lambda = \lambda \gamma_{\text{s}}\)					
\sim	1 DIMENSION		2 DIMENSIONES		
	media	instartanea	weg:a	instantinea	
Vel.	/W = Px/P+	N= 9×/9+	- 5°/At	<u>n</u> = 45,794	
ac.	0/W = 71/P+	a = 84/81	am = 50/81	2 = 04+04	
5.0	F :	- \	0 N-17/2	V = 4 Mc3	

$$\left[\omega = 2\pi \int \left[V = \omega R \right] \frac{c_{sr.}}{c_{sr.}} \right] = 2\pi r \quad A = \pi r^{3} \left[\pi r^{3} \right]$$

•	HRU
•	MRUA
•	MCU
	ALCHO

Some toos les acclerations (suinst. + grav...)

| V = cte][
$$x = x_0 + v_0 + v_1 + \frac{1}{2} (a_1 = 0)$$

| MRUA | $[v = v_0 + (a_1 + v_0)][= v_0 + (a_1$

DINAMICA

$$\left[\begin{array}{c} F_{1-1}z = -F_{2-1} \end{array}\right] \left[\begin{array}{c} F_{r} = N \end{array}\right] \left[\begin{array}{c} F_{r} = N \end{array}\right] \left[\begin{array}{c} F_{r} = \lambda \end{array}\right]$$

$$\left[\begin{array}{c} F_{1-1}z = -F_{2-1} \end{array}\right] \left[\begin{array}{c} F_{r} = \lambda \end{array}\right] \left[\begin{array}{c} F_{r} = \lambda \end{array}\right] \left[\begin{array}{c} F_{r} = \lambda \end{array}\right]$$

$$\left[\begin{array}{c} F_{1-1}z = -F_{2-1} \end{array}\right] \left[\begin{array}{c} F_{r} = \lambda \end{array}\right] \left[\begin{array}{c} F_{r} = \lambda \end{array}\right]$$

Vel. limite:
$$V_{lim} = \frac{2g \left(Pest - Pruids \right) R^{2}}{g \left(mest - menids \right)}$$

ENERGIA

[dw=Fels cost] [w=A(Ec+Ep)] para F.cons: [W=AEc=-AEp] [Pad = w/A+] [p=F.v] Ec= 1/2 mv2] grav: [Ep= mgh] muelle: [Ep= 1/2 kx2] para F.cons: [Em, = Emz]

(circle)

(circle)

(circle)

$$V_{P} = \frac{F_{r}}{\mu} \left[V_{P} = \frac{B}{\mu} \right] \left[F = -Kx = -bv \right] = \frac{bv}{bv} \left[\frac{d^{2}y}{dx^{2}} = \frac{\mu}{f_{r}} \frac{d^{2}y}{dt^{2}} \right]$$

desired linear

Sistems De Partículas

Variación E con el tiempo - POTENCIA: [P= { NAMO AZ DX]