Hanoi University of Science and Technology

Semester: 2024.2

Course: Parallel and Distributed Programming

Supervisor: Vu Van Thieu



# **2D Heat Equation**

May 25, 2025

GROUP 18

| Group 18: VU HOANG NHAT ANH 2022 | 25471 |
|----------------------------------|-------|
|----------------------------------|-------|

NGUYEN HUU CONG 20225476

DANG KIEU TRINH 20214933

TRAN THANH VINH 20225539

# Contents

| 1 | Prot              | em                                   | 1 |  |  |  |  |
|---|-------------------|--------------------------------------|---|--|--|--|--|
|   | 1.1               | Problem description                  | 1 |  |  |  |  |
|   | 1.2               | Mathematical Modelling               | 1 |  |  |  |  |
| 2 | Algo              | rithms                               | 1 |  |  |  |  |
|   | 2.1               | Numerical Approach                   | 1 |  |  |  |  |
|   | 2.2               | Forward Euler Method                 | 2 |  |  |  |  |
|   | 2.3               | Implementation                       | 2 |  |  |  |  |
|   |                   | 2.3.1 Initial values                 | 2 |  |  |  |  |
|   |                   | 2.3.2 Boundary conditions            | 2 |  |  |  |  |
| 3 | Parallel Design 3 |                                      |   |  |  |  |  |
|   | 3.1               | Serial implementation (non-parallel) | 3 |  |  |  |  |
|   | 3.2               | Parallel implementation              | 3 |  |  |  |  |
|   |                   | 3.2.1 Variables and Initialization   | 3 |  |  |  |  |
|   |                   | 3.2.2 Pseudocode                     | 4 |  |  |  |  |
| 4 | Rest              | lts                                  | 4 |  |  |  |  |
|   | 4.1               | CUDA and Serial                      | 4 |  |  |  |  |
|   | 4.2               | Visualization                        | 6 |  |  |  |  |

# 1 Problem

# 1.1 Problem description

In this report, we implement a solution to solve a 2-dimensional differential equation using parallel algorithms using a concrete example: Given a square metal plate of dimensions  $M \times N$  with the initial temperature of 25°C, the center of the plate is in contact with a heat source at 100°C. Our goal is to mathematically model the way thermal energy moves through the plate.

# 1.2 Mathematical Modelling

Let

- M, N is the size of the plate. In our problem assume M=N.
- x, y is the x and y coordinate of a position in the plate.
- *t* is the amount of time passed since the start of the heating process.
- u(x,y,t) be temperature distribution of the page at position (x,y) and time t.

The heat equation is:

$$\frac{\partial u}{\partial t} = D \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \tag{1}$$

where:

- *D* is the thermal diffusivity.
- $\frac{\partial^2 u}{\partial x^2}$  is the second partial derivatives of u with respect to x.
- $\frac{\partial^2 u}{\partial y^2}$  is the second partial derivatives of u with respect to y.
- $\frac{\partial u}{\partial t}$  represents the rate of changes of temperature with respect to time t, describing how the temperature evolves over time.

# 2 Algorithms

### 2.1 Numerical Approach

Assuming that M and N are integers of a given unit (E.g., if M is 1.09 meters, it needs to be converted to 109 centimeters), we split the plate into NxM squares, with the length of each side being 1 unit.

#### 2.2 Forward Euler Method

The Forward Euler Method is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.

Consider the (1) equation, we use the finite difference method to transform its right-hand side. Afterwards, we obtain the following equation:

$$\frac{\partial u(i,j,t)}{\partial t} = D\left(\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{dx^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{dy^2}\right)$$
(2)

Let the right-hand side equals to FD(i, j), (2) becomes:

$$\frac{\partial u(i,j,t)}{\partial t} = FD(i,j) \tag{3}$$

Recall that we have to compute the value in each (i,j) point on the MxN grid with respect to time, so for each step dt, we consider it as a step in a loop run for a fixed amount of time. In mathematical notation, it is:

$$u^{t}(i,j) = dt * FD^{t}(i,j) + u^{t-1}(i,j)$$
(4)

The last component  $u^{t-1}(i,j)$  can be consider as a number determined by the initial value  $u^0(i,j)$ , which is the initial values of the problem  $\forall (i,j) \in [0,M] \times [0,N]$ .

# 2.3 Implementation

#### 2.3.1 Initial values

We suppose that:

$$u^{0}(i,j) = 100^{\circ}C$$

$$\forall (i,j) \in [\tfrac{M}{2} - 4*(\tfrac{M}{64}), \tfrac{M}{2} + 4*(\tfrac{M}{64})] \times [\tfrac{N}{2} - 4*(\tfrac{N}{64}), \tfrac{N}{2} + 4*(\tfrac{N}{64})]$$

This setting is to keep the square proportional to the grid size (for e.g. 64x64 => 8x8 square but for 512x512 => 64x64 square). This settings only works for the grid size 64x64 and above, and the grid does not have to be a square  $(M \neq N)$ . The other points at t=0 have the value  $25^{\circ}C$ .

At each step t, the formula will compute  $u^t(i, j)$  using the 4 equation.

#### 2.3.2 Boundary conditions

$$u^{t}(0, j) = u^{t}(i, 0) = u^{t}(M - 1, j) = u^{t}(i, N - 1) = 25^{\circ}C$$

```
\forall (i,j) \in [0,M] \times [0,N]\forall t \in [0,Ntime-1]
```

# 3 Parallel Design

# 3.1 Serial implementation (non-parallel)

For this implementation, we use 2 for loops to iterate through the grid and calculate the values.

### Algorithm 1 2D Heat Equation Solver (Serial)

```
1: procedure Main

2: Allocate arrays T and dT of size M \times N

3: Initialize T with boundary and initial conditions

4: for t = 0 to N_{\text{time}} - 1 do

5: Derivative (T, dT)

6: Solving ODE (T, dT)

7: end for

8: Free T, dT

9: end procedure
```

From this we improve this implementation by letting the Derivative() and SolvingODE() execute in parallel.

# 3.2 Parallel implementation

#### 3.2.1 Variables and Initialization

- M, N: Dimensions of the metal plate
- dx, dy: Spatial step size in x and y directions
- GridSize: Number of thread blocks in each dimension
- BlockSize: Number of threads in each block
- *dt*: Time step size
- D: Diffusion coefficient

The metal plate is discretized into a  $64 \times 64$  grid by default. We also try changing the size of the grid into  $256 \times 256$ ,  $512 \times 512$ ,  $2048 \times 2048$ , with a spatial step size of 0.1 in both x and y directions. The CUDA kernel is launched with a  $4 \times 4$  grid of thread blocks, where each block consists of  $16 \times 16 = 256$  threads. This is only true for the  $64 \times 64$  grid. On larger grids, we increase the number of blocks in a grid (GridSize) to ensure there are fewer than 1024 threads in a thread block.

The time step size (dt) is set to 0.1, and the diffusion coefficient (D) is specified as 0.01.

#### 3.2.2 Pseudocode

```
Algorithm 2 CUDA Implementation of 2D Heat Equation
```

```
1: procedure Derivative Kernel(T, dT)
         i \leftarrow \text{global row index from block and thread indices}
         j \leftarrow \text{global column index from block and thread indices}
 3:
         if 1 \le i < M - 1 and 1 \le j < N - 1 then
dT_{i,j} \leftarrow D \cdot \left( \frac{T_{i-1,j} - 2 \cdot T_{i,j} + T_{i+1,j}}{dx^2} + \frac{T_{i,j-1} - 2 \cdot T_{i,j} + T_{i,j+1}}{dy^2} \right)
 4:
         end if
 7: end procedure
 8: procedure SolvingODE Kernel(T, dT)
         i \leftarrow \text{global row index from block and thread indices}
         j \leftarrow \text{global column index from block and thread indices}
10:
         if i < M and j < N then
11:
12:
             T_{i,j} \leftarrow T_{i,j} + dt \cdot dT_{i,j}
         end if
13:
14: end procedure
15: procedure Main
         Allocate T_{cpu} on host
16:
         Initialize T_{cpu}
17:
         Allocate T_{gpu} and dT_{gpu} on device
18:
         Copy T_{cpu} \to T_{gpu}
19:
         Define grid: dimGrid \leftarrow (GridSizeX, GridSizeY)
20:
         Define block: dimBlock \leftarrow (BlockSizeX, BlockSizeY)
21:
22:
         for t = 0 to N_{\text{time}} - 1 do
             Launch Derivative_Kernel(T_{gpu}, dT_{gpu}) with dimGrid, dimBlock
23:
             Launch SolvingODE_Kernel(T_{gpu}, dT_{gpu}) with dimGrid, dimBlock
24:
25:
         end for
         Copy T_{gpu} \to T_{cpu}
26:
         Free T_{cpu}, T_{qpu}, dT_{qpu}
27:
28: end procedure
```

# 4 Results

#### 4.1 CUDA and Serial

We recorded runtime of the 2 methods using (ran on one Kaggle session, GPU T4 x2):

- **Serial method**: Using <time.h> package and recorded the runtime.
- CUDA method: Using a number of functions provided in the <cuda.h> package.

Below is the code to record the runtime of the serial method:

```
clock_t start = clock();
for (int t=0;t<Ntime;t++)

{
    derivative(Tcpu,dTcpu);
    solvingODE(Tcpu,dTcpu);

}

clock_t end = clock();

double cpu_time = ((double)(end - start)) / CLOCKS_PER_SEC;

printf("CPU Time: %f seconds\n", cpu_time);

clock_t end = clock();</pre>
```

Below is the code to record the runtime of the CUDA method:

```
cudaEventCreate(&start);
cudaEventCreate(&start);
cudaEventRecord(start);

for (int t=0; t<Ntime; t++) {
    Derivative<<<dimGrid,dimBlock>>>(Tgpu,dTgpu);
    SolvingODE<<<dimGrid,dimBlock>>>(Tgpu,dTgpu);
}
cudaEventRecord(stop);
cudaEventRecord(stop);
cudaEventSynchronize(stop);
float milliseconds = 0;
cudaEventElapsedTime(&milliseconds, start, stop);
printf("GPU Time: %f ms\n", milliseconds);
```

After recording runtimes of 4 different grid sizes, we obtained the following data:

| Mesh grid | Serial (ms) | Parallel (CUDA) (ms) | Difference (ms) |
|-----------|-------------|----------------------|-----------------|
| 64×64     | 3.113       | 1.108                | 2.005           |
| 256×256   | 46.538      | 4.799                | 41.739          |
| 512×512   | 201.180     | 16.153               | 185.027         |
| 2048×2048 | 3115.403    | 247.434              | 2867.969        |

Table 1: Execution time comparison between serial and CUDA implementations across different mesh grid sizes.

In the 64x64 grid, the CUDA implementation is approximately 3 times faster than that of the Serial. On larger grids, the CUDA implementation proves to be much more effective than the Serial implementation.

# 4.2 Visualization

To enable visualization, we have to store the states of the grid into a tensor of NtimexMxN size. Below is an image of the last state in the Tensor(64x64) of the Serial method:



Figure 1: A section of the last state of the environment (Serial)

Below is an image of the last state in the Tensor(64x64) of the CUDA method: Here is a visualization made by Python libraries, such as matplotlib:



Figure 2: A section of the last state of the environment (CUDA)



Figure 3: Heatmap comparison between Serial and CUDA



Figure 4: Visualization of the last state/frame of the environment