simon-5502-05-slides

2025-02-18

Topics to be covered

- What you will learn
 - Mathematical model of interactions
 - Interactions in multi-factor analysis of variance
 - Interactions in analysis of covariance
 - Interactions in multiple linear regression

Mathematical model, 1

- $Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$
 - i=1,...,a j=1,...,b, k=1,...,n
- If 1 is the reference category
 - $\alpha_1 = 0$
 - $-\beta_1 = 0$
 - $\bullet (\alpha\beta)_{1j} = 0$
 - $(\alpha\beta)_{i1} = 0$

Speaker notes

You may see papers or books that present the mathematical model for an interaction. The model I present is a balanced model with the first category having levels one through a, the second category having levels one through b and for each combination of categories there are n observations.

If you set the first level as the reference category for each category, then you need to set some of these parameters to zero.

Mathematical model, 2

- $ullet SS_A = \Sigma_i nb (ar{Y}_{i..} ar{Y}_{...})^2$
- $ullet \ SS_B = \Sigma_i na(ar{Y}_{.j.} ar{Y}_{...})^2$
- $ullet SS_{AB} = \Sigma_i \Sigma_j n (ar{Y}_{ij.} ar{Y}_{i..} ar{Y}_{.j.} + ar{Y}_{ij.})^2$
- ullet $SS_E = \Sigma_i \Sigma_j \Sigma_k (Y_{ijk} ar{Y}_{ij.})^2$
- ullet $SS_T = \Sigma_i \Sigma_j \Sigma_k (Y_{ijk} ar{Y}_{...})^2$

Speaker notes

The dot notation may be a bit confusing until you get used to it, but $\bar{Y}_{i...}$ is the average within the ith group, averaging across the subscripts j and k. $\bar{Y}_{ij...}$ is the average within the ith group, averaging across the subscripts i and k. $\bar{Y}_{ij...}$ is the average within the combination of the ith group and the jth group, averaging across the subscript k. Finally, $\bar{Y}_{i...}$ is an overall mean and the average across all three subscripts.

Test for an interaction

- SS_{AB} has (a-1)(b-1) degrees of freedom
- SS_E has ab(n-1) degrees of freedom
- ullet Accept H_0 if $F=rac{MS_{AB}}{MS_E}$ is close to one
 - In R, fit a model without an interaction
 - Compare to a model with interaction
 - Using the anova function

Speaker notes

The formal test for an interaction uses an F ratio and you accept the null hypothesis if that F ratio is close to one. You would reject the null hypothesis if the F ratio is much larger than one.

It is not easy to get R to display all the sums of squares and mean squares that I defined above. Instead, compute two models-one without an interaction and one with an interaction. Compare those two models using the anova function.

Break #1

- What you have learned
 - Mathematical model of interactions
- What's coming next
 - Interactions in multi-factor analysis of variance

Hypothetical applications

- Study with two drugs and two placebos
- Four treatment options
 - Placebo plus placebo
 - Drug A plus placebo
 - Placebo plus Drug B
 - Drug A plus Drug B

Listing of hypothetical data

Line plot of hypothetical data, 1

Create indicator variables

```
# A tibble: 8 × 6
a b i_a i_b i_ab y
  <fct> <fct> <dbl> <dbl
```

Interaction model, 1

```
• lm(y=a+b+a:b, data=hyp)
```

- lm(y=a*b, data=hyp)
- lm(y=i_a+i_b+i_ab, data=hyp_1)

Interaction model, 2

- (Intercept): estimated average effort of two placebos
- i_a: estimated average change due to drug A alone
- i_b: estimated average change due to drug B alone
- i_ab: estimated synergistic effect of both drugs

Speaker notes

The intercept is the estimated average value of Y when all of the indicator variables are equal to zero. This is the average in the P P group. The slope associated with i_a is the estimated average change when moving from placebo to drug A, holding drug B constant. The slope associated with i_b is the estimated average change when moving from placebo to drug B, holding drug A constant. The slope associated with i_ab is the interaction, a measure of how much more the effect of the two drugs combined compared to the effect of drug A along plus drug B alone.

Interaction model, 3

```
P P mean = 1
A P mean = 1 + 2
P B mean = 1 + 3
```

 \bullet A B mean = 1 + 2 + 3 + 4

Line plot of hypothetical data, 2

Line plot of hypothetical data, 3

Study of three exercise programs

- Swimming
- Jogging
- Reading (control)

Descriptive statistics for exercise program

Descriptive statistics for hours

Descriptive statistics for gender

```
# A tibble: 2 × 2
  gender pct
  <fct> <glue>
1 Male 50% (450/900)
2 Female 50% (450/900)
```

Descriptive statistics for effort

• 0 = no effort, 50=maximum effort

Descriptive statistics for loss

A negative value is a weight gain

Line plot, weight loss by program and gender

Interaction model

Reference categories: male and reading

```
\# A tibble: 6 \times 5
                       estimate std.error statistic p.value
 term
                          <dbl> <dbl> <dbl> <qlue>
 <chr>
1 (Intercept)
                         -3.96 0.532 -7.43 p < 0.001
2 genderFemale
                        0.335 0.753 0.446 p = 0.656
                        15.7 0.753 20.9 p < 0.001
3 progJogging
                       26.5 0.753 35.2 p < 0.001
4 progSwimming
                       -7.82 1.06 -7.35 p < 0.001
5 genderFemale:progJogging
6 genderFemale:progSwimming 6.26 1.06 5.88 p < 0.001
```

Live demo, Interactions in multifactor analysis of variance

Break #2

- What you have learned
 - Interactions in multi-factor analysis of variance
- What's coming next
 - Interactions in analysis of covariance

Interactions in analysis of covariance, 1

Interactions in analysis of covariance, 2

Coefficients and interpretation

NULL

Live demo, Interactions in analysis of covariance

Break #3

- What you have learned
 - Interactions in analysis of covariance
- What's coming next
 - Interactions in multiple linear regression

Interactions in multiple linear regression

Center your continuous predictors

Summary

- What you have learned
 - Mathematical model of interactions
 - Interactions in multi-factor analysis of variance
 - Interactions in analysis of covariance
 - Interactions in multiple linear regression