Internationaler Waffenhandel

Die Anwendung neuer Verfahren der statistischen Netzwerkanalyse

Projektpartner: Paul Thurner **Betreuer**: Goeran Kauermann

Referent: Felix Loewe

Ludwig-Maximilians-Universität München Institut für Statistik

11. August 2015

- Einleitung
- Einführung in die Graphentheorie
- Datensituation
- Deskriptive Analyse
 - Netzwerkmaßzahlen
 - Degree-Sequenz
 - Zentrale Akteure
 - Visualisierungen
- Inferentielle Analyse
 - ERGM Exponential Random Graph Model
 - Simulation von Zufallsgraphen
 - Schätzung der Modellparameter
 - Anwendung des ERGM
 - Vergleich mit Großwaffenhandel
- Fazit

1 Einleitung

Was ist ein Netzwerk?

Netzwerk besteht aus Akteuren und ihren Verbindungen

Anwendungsgebiete:

• Biologie: DNA

• Soziologie: Freundesnetzwerk, Kollegenkreis

• Politik: internationale Beziehungen

Informatik: Internet, Facebook, LAN

2 Einführung in die Graphentheorie

Einführung in die Graphentheorie

Notation:

- \bullet G = (V, E) ... ein Graph
- $V = \{1, ..., N_V\}$... Menge der Knoten
- $E = \{(i,j)|i,j \in V, i \neq j\}$... Menge der Kanten
- $A \in N_V \times N_V$... eine Nachbarschaftsmatrix

$$a_{ij} = egin{cases} 1 \;,\; ij \in E \ 0 \;,\; ij
otin E \end{cases}$$

Begriffe:

- gerichteter vs. ungerichteter Graph
- (In-/Out-) Degree
- Dichte: $den(G) = \frac{|E_G|}{N_V(N_V 1)/2}$

3 Datensituation

Datensituation

NISAT-Datenbank (Norwegian Initiative on Small Arms Transfers) von *PRIO* (Peace Research Institute Oslo)

Kantenliste mit zusätzlichen Variablen:

- Correlates of War Code
- monetärer Wert in US\$
- Waffentyp
- Datenquelle
- Jahr

Dimensionen:

- 239 Länder
- 20 Jahre
- 109522 Waffentransaktionen

4 Deskriptive Analyse

Netzwerkmaßzahlen

Abbildung: Netzwerkmaßzahlen des Kleinwaffenhandels 1992-2011

Degree-Sequenz

Abbildung: In-/ Out- Degree der Länder 1992-2011

Zentrale Akteure I

Platz	Land	Exportvol. [Mrd.]
1	USA	9.2
2	Italy	7.9
3	Germany	4.6
4	Brazil	3.7
5	Austria	2.7
6	United Kingdom	2
7	Belgium	1.8
8	Switzerland	1.5
9	Russia	1.4
10	Czech Republic	1.4

Platz	Land	Importvol. [Mrd.]
1	USA	16
2	Germany	2.3
3	France	2.3
4	Canada	1.9
5	United Kingdom	1.8
6	Saudi Arabia	1.7
7	Belgium	1.2
8	Spain	1.2
9	Australia	1.2
10	Turkey	1

Tabelle: Summierte Handelswerte der Top-Exporteure und Top-Importeure des Netzwerkes von 1992 bis 2011

Zentrale Akteure II

Abbildung: Zeitreihen der jährlichen Handelswerte der Top-Exporteure von 1992 bis 2011

Zentrale Akteure III

Abbildung: Zeitreihen der jährlichen Handelswerte der Top-Importeure von 1992 bis 2011

Zentrale Akteure IV

Platz	Land	Exportvol. / BIP pro Kopf	Platz	Land	Importvol. / BIP pro kopf
1	China	114735	1	Tanzania	54562
2	Brazil	53225	2	Thailand	49636
3	Italy	48862	3	India	32416
4	Spain	40822	4	Pakistan	30290
5	Germany	38039	5	South Korea	27208
6	Turkey	36174	6	China	25402
7	South Korea	29131	7	Indonesia	24268
8	United States	26539	8	Kenya	22907
9	India	24615	9	Malaysia	22330
10	Austria	23149	10	Bukina Faso	22183

Tabelle: Summierte Handelswerte der Top-Exporteure und Top-Importeure relativ zum BIP pro Kopf des Netzwerkes von 1992 bis 2011

Zentrale Akteure V

Abbildung: Zeitreihen der jährlichen Handelswerte der Top-Exporteure von 1992 bis 2011

Zentrale Akteure VI

Abbildung: Zeitreihen der jährlichen Handelswerte der Top-Importeure von 1992 bis 2011

Visualisierungen

Abbildung: Handelsströme zwischen den Kontinenten von 1992-2011

5 Inferientielle Analyse

ERGM - Exponential Random Graph Model

$$P_{\theta,\mathcal{X}}(X=x) = \frac{exp\left\{\theta^T g(x)\right\}}{\kappa(\theta,\mathcal{X})}$$
(1)

mit

- $x \in \mathcal{X}$
- $oldsymbol{ heta} heta \in \Omega \subset \mathbb{R}^q \ ... \ \mathsf{Vektor} \ \mathsf{der} \ \mathsf{Modellparameter}$
- g(x) ... q-Vektor aus Statistiken basierend auf der Nachbarschaftsmatrix X

• Problem: $\kappa(\theta, \mathcal{X}) = \sum_{x \in \mathcal{X}} exp\{\theta^T g(x)\}$

Simulation von Zufallsgraphen

Simulation einer Sequenz von Graphen aus Zielverteilung $P_{\theta}(x)$ via Makrov Chain Monte Carlo Algorithmus:

- Beliebiges Netzwerk mit fester Knotenzahl N als Startpunkt.
- ② Aus dem aktuellen Graphen $x^{(m-1)}$ wird ein zufälliges Knotenpaar i, j $(i, j \in 1, ..., N)$ ausgewählt.
- Vorgeschlagener Graph: $x^* = x^{(m-1)}$ bis auf $x_{ij}^{(m-1)} = 1 x_{ij}^{(m-1)}$.
- **3** Akzeptanz mit der Wahrscheinlichkeit $min\{1, \frac{P_{\theta}(x^*)}{P_{\theta}(x^{(m-1)})}\}.$
- **6** Bei Akzeptanz $x^{(m)} = x^*$ und $x^{(m)} = x^{(m-1)}$ sonst.
- 1 Iteration der Schritte 2 5.
- unabhängig von Startpunkt bei ausreichendem Burn In
- unabhängige Ziehungen aus gleicher Kette durch Thinning

Schätzung der Modellparameter

Ziel: Zentrierung der Statitiken der simulierten Netzwerke über denen des beobachteten Netzwerkes:

$$E_{\theta}(z(X)) - z(x_{obs}) = 0 \tag{2}$$

- Problem: $E_{\theta}(z(X)) = \sum_{x \in \mathcal{X}} z(x) P_{\theta}(x)$
- Lösung: Importance Sampling
- Ziehung einer großen Stichprobe von Graphen auf Basis eines vorläufigen Parametervektors $\tilde{\theta}$.
 - Benutzung gewichteter Stichprobendurchschnitte der Statistiken.
 - **3** Erzeugen einer Sequenz von Parametern $\widetilde{\theta}, \theta^{(1)}, \theta^{(2)}, ..., \theta^{(G)}$ durch Fisher Scoring.
 - **4** Neustart mit $\theta^{(G)}$ als $\tilde{\theta}$.

Degeneration

Problem : Hohe Wahrscheinlichkeit auf unrealistischen Netzwerken (volles oder leeres Netzwerk) führt zur Divergenz des Schätz-Algorithmus.

Ursachen:

- Instabilität von einfachen Zählstatistiken
- fehlende exogene Unterscheidungsmerkmale für Knoten und Kanten
- Beschränkung auf lineare Effekte der Statistiken unrealistisch

Lösungsansatz:

- Aufnahme von exogenen Kovariablen
- Aufnahme von nicht linearen Einflüssen durch Curved Exponential Family Models

Curved Exponential Family Models

Geometrically Weighted Degree (GWD):

$$u(x,\phi_s) = e^{\phi_s} \sum_{i=1}^{n-1} \left\{ 1 - (1 - e^{-\phi_s})^i \right\} D_i(x)$$
 (3)

Geometrically Weighted Edgewise Shared Partners (GWESP):

$$v(x,\phi_t) = e^{\phi_t} \sum_{i=1}^{n-2} \left\{ 1 - (1 - e^{-\phi_t})^i \right\} EP_i(x)$$
 (4)

Geometrically Weighted Dyadic Shared Partners (GWDSP):

$$w(x,\phi_p) = e^{\phi_p} \sum_{i=1}^{n-2} \left\{ 1 - (1 - e^{-\phi_p})^i \right\} DP_i(x)$$
 (5)

Anwendung des ERGM

endogene Statistiken

- edges
- mutual
- gwesp(0.2, fixed)
- gwdsp(0.2, fixed)
- gwidegree(0.2, fixed)
- gwodegree(0.2, fixed)

exogene Statistiken

- CINC
- GDP
- Conflict
- Polity
- Continent

Tabelle: Summary von Modell 1 (1996)

ergm-term	Estimate	Std.Error	p-Value
edges	-6.111e+00	2.281e-01	<1e-04 ***
mutual	2.120e+00	9.507e-02	<1e-04 ***
gwidegree	1.895e+00	4.818e-01	<1e-04 ***
gwodegree	-1.311e+00	3.307e-01	<1e-04 ***
gwesp.fixed.0.2	2.641e+00	1.778e-01	<1e-04 ***
gwdsp.fixed.0.2	-5.686e-02	6.008e-03	<1e-04 ***
nodeicov.ext_cinc	3.071e+00	1.291e+00	0.01740 *
nodeocov.ext_cinc	-5.967e+00	1.361e+00	<1e-0 ***
nodeicov.ext_gdp	3.479e-06	2.099e-06	0.09749 .
nodeocov.ext_gdp	4.392e-06	1.586e-06	0.00562 **
nodeicov.ext_conflict	2.310e-02	1.704e-02	0.17530
nodeocov.ext_conflict	-1.398e-01	2.763e-02	<1e-04 ***
nodeifactor.Continent.America	6.645e-02	6.799e-02	0.32839
nodeifactor.Continent.Asien	9.525e-02	6.473e-02	0.14116
nodeifactor.Continent.Europe	5.353e-03	7.312e-02	0.94164
nodeifactor.Continent.Oceania	-2.323e-02	1.136e-01	0.83795
nodeofactor.Continent.America	2.055e-01	6.589e-02	0.00182 **
nodeofactor.Continent.Asien	1.494e-01	6.452e-02	0.02055 *
nodeofactor.Continent.Europe	8.579e-01	7.226e-02	<1e-04 ***
nodeofactor.Continent.Oceania	2.311e-01	9.602e-02	0.01611 *
absdiff.ext_polity	-9.360e-03	3.249e-03	0.00397 **

MCMC Diagnose

Abbildung: MCMC Diagnose von Modell 1 (1996) - edges und mutual

MCMC Diagnose 2

Abbildung: MCMC Diagnose von Modell 1 (1996) - gwidegree und gwodegree

Abbildung: Goodness of Fit von Modell 1 (1996) - In Degree

Abbildung: Goodness of Fit von Modell 1 (1996) - Out Degree

Abbildung: Goodness of Fit von Modell 1 (1996) - Minimum Geodesic Distance

Abbildung: Goodness of Fit von Modell 1 (1996) - Dyadwise Shared Partners

Abbildung: Goodness of Fit von Modell 1 (1996) - Edgewise Shared Partners

Interpretation der Parameter

 $X^{(+)}$ und $X^{(-)}$ seien Netzwerke mit identischen Statistiken bis auf Statistik $g_i(X)$ und

$$\delta_i(X) = g_i(X^{(+)}) - g_i(X^{(-)})$$

dann gilt:

$$\frac{P(X^{(+)})}{P(X^{(-)})} = exp(\theta_i \delta_i(X))$$

 \implies für positives $\delta_i(X)$ gilt also:

- Ist $\theta_i > 0$, so ist $X^{(+)}$ plausibler als $X^{(-)}$.
- Ist $\theta_i = 0$, so sind sie gleich plausibel.
- Ist $\theta_i < 0$, so ist $X^{(+)}$ plausibler als $X^{(-)}$.

Vergleich mit Großwaffenhandel

6 Fazit

Fazit₁