

CS 516 Compilers and Programming Languages II

Parallel Computing-5

Annoucements

Project 1 deadline extension: Wednesday, April 1 (no joke \odot !) Can give longer extension if needed

Power Strips: File systems are RAMDisks, which means that when rebooting, all information was lost; script will be reinstalled

Homework #3 has been posted; will cover vectorization algorithms this week

First paper presentation starting second week in April

- what's next
- polyhedral parallelisation

RUTGERS Simple Dependence Testing

```
DO i_1 = L_1, U_1

DO i_2 = L_2, U_2

...

DO i_n = L_n, U_n

A(f_1(i_1, ..., i_n), ..., f_m(i_1, ..., i_n)) = ...

S_2 = A(g_1(i_1, ..., i_n), ..., g_m(i_1, ..., i_n))

ENDDO

ENDDO

ENDDO
```

A dependence exists from S₁ to S₂ if and only if there exist values of α and β such that

- (1) α is lexicographically less than or equal to β ($\alpha \le \beta$), and
- (2) the following system of dependence equations is satisfied:

$$f_i(\alpha) = g_i(\beta)$$
 for all i, $1 \le i \le m$

RUTGERS Dependence Testing

Can we solve this problem exactly?
What is conservative in this framework? (false positive vs. false negative)

Typically: restrict the problem to consider index and bound expressions that are linear functions

⇒ solving general system of linear equations in integers is NP-hard

Solution Methods

Inexact methods

- Greatest Common Divisor (GCD)
- Banerjee's inequalities

Cascade of exact, efficient tests (fall back on inexact methods if needed)

- Rice (see posted PLDI'91 paper)
- Stanford

Polyhedral dependence representation Exact general tests (integer programming)

RUTGERS Simple Dependence Testing: Delta Notation

 Notation represents index values at the source and sink Example:

```
DO I = 1, N

S_1 \ A(I + 1) = A(I) + B

ENDDO
```

- Iteration at source denoted by: I_0 (α)
- Iteration at sink denoted by: $I_0 + \Delta I$ (β)
- Forming an equality gets us: $I_0 + 1 = I_0 + \Delta I$
- Solving this gives us: $\Delta I = 1$
 - ⇒ Carried dependence with distance vector (1) and direction vector (<)</p>

RUTGERS Simple Dependence Testing: Delta Notation

Example:

```
DO I = 1, 100

DO J = 1, 100

DO K = 1, 100

A(I+1,J,K) = A(I,J,K+1) + B

ENDDO

ENDDO
```

- $I_0 + 1 = I_0 + \Delta I$; $J_0 = J_0 + \Delta J$; $K_0 = (K_0 + \Delta K + 1)$
- Solutions: $\Delta I = 1$; $\Delta J = 0$; $\Delta K = -1$
- Corresponding direction vector: (<, =, >)
- Corresponding distance vector: (1, 0, -1)

ITGERS Dependence Test: SIV (single induction variable)

DO I = LB, UB, 1

$$R_1$$
: $A(a*I+c_1) = \cdots$
 R_2 : ... = $A(a*I+c_2)$
ENDDO • constant loop bounds LB and UB,
• I is single loop induction variable
• a, c_1 and c_2 are constants, $a \neq 0$

- constant loop bounds LB and UB, step is 1
- a, c_1 and c_2 are constants, $a \neq 0$

There is a dependence between R_1 and R_2 iff

$$\exists i, i' : i \leq i' \ and \ (a * i + c_1) = (a * i' + c_2)$$

So let's solve the equation:

$$(a * i + c_1) = (a * i' + c_2) \Leftrightarrow$$

$$\frac{c_1 - c_2}{a} = i' - i = \Delta d$$

There is a dependence between R_1 and R_2 with distance Δd iff

- (1) Δd is an integer value
- (2) UB LB $\geq \Delta d \geq 0$

RUTGERS Dependence Test: SIV (single induction variable)

Examples:

```
DO I = LB, UB, 1

R_1: X(I) = \dots // write

R_2: ... = X(I-2) // read

ENDDO
```

```
DO I = LB, UB, 1

R_1: X(2*I) = ... // write

R_2: ... = X(2*I-1) // read

ENDDO
```

RUTGERS Dependence Test: SIV (single induction variable)

Examples:

```
DO I = LB, UB, 1 R_1: \quad X(I) = \dots \qquad // \text{ write} R_2: \quad \dots = X(I-2) \qquad // \text{ read} ENDDO
```

a = 1, $c_1 = 0$, $c_2 = -2 \Rightarrow \Delta d = 2$ (dependence)

```
DO I = LB, UB, 1

R_1: X(2*I) = ... // write

R_2: ... = X(2*I-1) // read

ENDDO
```

a = 2, $c_1 = 0$, $c_2 = -1 \Rightarrow \Delta d = \frac{1}{2}$ (no dependence)

RUTGERS Dependence Test: ZIV (zero induction variable)

DO I = LB, UB, 1

$$R_1$$
: A(c_1) = ...
 R_2 : = A(c_2)
ENDDO

- constant loop bounds LB and UB, step is 1
- I is single loop induction variable
- c_1 and c_2 are constants

There is a dependence between R_1 and R_2 iff

$$c_1 = c_2 = c$$
.

What about Δd ? Since every iteration i writes A(c) and reads A(c), $\Delta d \in \{0, ... UB-LB\}$ for true dependence $\Delta d \in \{1, ... UB-LB\}$ for anti and output dependence

Therefore, we summarize as Δd as (*)

RUTGERS Simple Dependence Testing: Delta Notation

If a loop index does not appear, its distance is unconstrained and its direction is "*"

Example:

```
DO I = 1, 100
DO J = 1, 100
A(I+1) = A(I) + B(J)
ENDDO
ENDDO
```

The direction vector for the true dependence is (<, *)

```
Example: Iteration (3, 2) and iteration (4, 1) both access A(4), with (3,2) writing A(4) and (4, 1) reading A(4): distance (1,-1) the same holds for iteration (3, 81) and iteration (4, 98): distance (1,17)
```

RUTGERS Simple Dependence Testing: Delta Notation

Let's swap iterations I and J (loop interchange)

Example:

```
DO J = 1, 100
DO I = 1, 100
A(I+1) = A(I) + B(J)
ENDDO
ENDDO
```

Loop interchange will change the semantics of the loop nest!

Now, we have true, output, and anti dependencies with different distances.

```
Examples: true -(3, 2) writes A(3), and (10, 3) reads A(3): distance (7, 1) anti -(3, 2) reads A(2), and (10, 1) writes A(2): distance (7, -1) output -(3, 2) writes A(3), and (10, 2) writes A(3): distance (7, 0)
```

Summary: true (< , <) and (=, <); anti (<, <); output (<, <)

TGERS Parallelization and Vectorization

Theorem It is valid to convert a sequential loop to a parallel loop if the loop carries no dependence.

Want to convert loops like:

```
DO I=1, N
       X(I) = X(I) + C
   ENDDO
†O X(1:N) = X(1:N) + C (vector notation)
```

However:

```
DO I=1, N
       X(I+1) = X(I) + C
   ENDDO
is not equivalent to X(2:N+1) = X(1:N) + C
```

RUTGERS Loop Distribution

Can statements in loops which carry dependences be vectorized?

Dependence: $S_1 \delta_1 S_2$ can be converted to:

```
S_1  A(2:N+1) = B(1:N) + C

S_2  D(1:N) = A(1:N) + E
```

RUTGERS Loop Distribution

transformed to:

leads to:

```
S_1  A(2:N+1) = B(1:N) + C

S_2  D(1:N) = A(1:N) + E
```

RUTGERS Loop Distribution

Loop distribution fails if there is a cycle of dependences

DO I = 1, N

$$S_1$$
 A(I+1) = B(I) + C
 S_2 B(I+1) = A(I) + E
ENDDO

 $S_1 \delta_1 S_2$ and $S_2 \delta_1 S_1$

What about:

DO I = 1, N

$$S_1$$
 B(I) = A(I) + E
 S_2 A(I+1) = B(I) + C
ENDDO

Simple Vectorization Algorithm

```
procedure vectorize (L, D)
// L is the maximal loop nest containing the statements.
// D is the dependence graph for statements in L.
find the partition p of set \{S_1, S_2, ..., S_m\} of maximal strongly-connected regions in the
    dependence graph D restricted to L (for example, using Tarjan's algorithm);
construct L_p from L by reducing each S_i to a single node and compute D_p, the
    dependence graph naturally induced on L_p by D;
let \{p_1, p_2, ..., p_m\} be the m nodes of L_p numbered in an order consistent with D_p (use
    topological sort):
    for i = 1 to m do begin
          if p<sub>i</sub> is a dependence cycle (excluding loop-carried anti-dependence cycle) then
                generate a DO-loop around the statements in p_i;
          else
                directly rewrite p_i in vector notation, vectorizing it with respect to every
                   loop containing it;
     end
end vectorize
```

Statement level dependence graph D:

Example Loop L:

DO I = 2, 100

$$S_1$$
 A(I) = B(I-1) + C(I-1) + 1
 S_2 B(I) = C(I) * B(I+1)
 S_3 C(I) = A(I) + 5
 S_4 D(I) = B(I) + C(I+1)
ENDDO

 δ_k - level k true dependence δ^{o}_{k} - level k output dependence $\delta^{-1}_{\mathbf{k}}$ - level k anti dependence

Loop independent: $k = \infty$

TGERS Simple Vectorization Algorithm

Statement level dependence graph D:

Example Loop L:

DO I = 2, 100

$$S_1$$
 A(I) = B(I-1) + C(I-1) + 1
 S_2 B(I) = C(I) * B(I+1)
 S_3 C(I) = A(I) + 5
 S_4 D(I) = B(I) + C(I+1)
ENDDO

 δ_k - level k true dependence

 δ^{o}_{k} - level k output dependence

 δ^{-1}_{k} - level k anti dependence

Loop independent: $k = \infty$

TGERS Simple Vectorization Algorithm

Statement level dependence graph D:

Example Loop L:

DO I = 2, 100

$$S_1$$
 A(I) = B(I-1) + C(I-1) + 1
 S_2 B(I) = C(I) * B(I+1)
 S_3 C(I) = A(I) + 5
 S_4 D(I) = B(I) + C(I+1)
ENDDO

D_P has to be acyclic

RUTGERS

Simple Vectorization Algorithm

Statement level dependence graph D:

Example Loop L:

DO I = 2, 100

$$S_1$$
 A(I) = B(I-1) + C(I-1) + 1
 S_2 B(I) = C(I) * B(I+1)
 S_3 C(I) = A(I) + 5
 S_4 D(I) = B(I) + C(I+1)
ENDDO

In topological order:

$$S_2$$
 B(2:100) = C(2:100) * B(3:101)
 S_4 D(2:200) = B(2:100) + C(3:101)
DO I = 2, 100
 S_1 A(I) = B(I-1) + C(I-1) + 1
 S_3 . C(I) = A(I) + 5
ENDDO

D_P has to be acyclic