### 2015/2016 SEMESTER ONE EXAMINATION

Diploma in Electrical & Electronic Engineering 3rd Year FT

#### **SATELLITE & OPTICAL COMMUNICATION**

Time Allowed: 2 Hours

#### **Instructions to Candidates**

- 1. The examination rules set out on the last page of the answer booklet are to be complied with.
- 2. This paper consists of **THREE** sections:

Section A - 20 Multiple Choice Questions, 2 marks each.

Section B - 4 Short Questions, 10 marks each.

Section C - 1 Long Questions, 20 marks each.

- 3. ALL questions are COMPULSORY.
- 4. All questions are to be answered in the answer booklet.
- 5. Start each question in Sections B and C on a new page.
- 6. Fill in the Sections B and C Question Numbers, in the order that they were answered, in the boxes found on the front cover of the answer booklet under the column "Question Answered".
- 7. This paper consists of 8 pages, inclusive of formula sheets.

/15/16 S1 Page 1 of 8

#### **SECTION A**

#### **MULTIPLE CHOICE QUESTIONS [2 marks each]**

- 1. Please **tick** your answers in the **MCQ box** behind the front cover of the answer booklet.
- 2. No marks will be deducted for incorrect answers.
- A1. Graded index fibre is used to:
  - (a) Reduce modal dispersion.
  - (b) Reduce material dispersion.
  - (c) Reduce fibre loss.
  - (d) Reduce coupling loss.
- A2. Which one of the following statements is incorrect?
  - (a) A laser diode has a longer life than an LED.
  - (b) A laser diode has a higher output power than an LED.
  - (c) A laser diode is more expensive than an LED.
  - (d) A laser diode is more temperature sensitive than an LED.
- A3. Dark current in a PIN photodetector is:
  - (a) The amount of output current measured in the absence of light in a photodetector.
  - (b) The number of dark electrons produced in a photodetector.
  - (c) The leakage current for a given light input in a photodetector.
  - (d) The current flow of a special type of a photodetector.
- A4. Identify the incorrect statement:
  - (a) To attain total internal reflection in a fibre, the cladding refractive index must be smaller than the core refractive index.
  - (b) In glass, the reflective index varies with wavelength.
  - (c) The numerical aperture of a fibre depends on the line width of the source used.
  - (d) A large acceptance angle implies a large numerical aperture.
- A5. One of the advantages that an APD has over PIN is that:
  - (a) It costs less.
  - (b) The circuitry is simpler.
  - (c) It produces less noise.
  - (d) It is more sensitive.
- A6. The maximum link length of an optical fibre link is limited by which one of the following mechanisms:
  - (a) Reflection.
  - (b) Refraction.
  - (c) Dispersion.
  - (d) Radiation.

/15/16 S1 Page 2 of 8

| <u>51110</u> | AFORE FOLTIECHNIC                                                                                                                                                                                       | 210133      |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| A7.          | Material dispersion in Silica glass fibre can be minimized by using a laser source operating wavelength of:  (a) 850 nm.  (b) 950 nm.  (c) 1310 nm.  (d) 1550 nm.                                       | with centre |
| A8.          | One of the disadvantages an APD receiver has over PIN receiver is that :  (a) It produces more heat.  (b) The circuitry is reversed biased.  (c) It produces less current.  (d) It produces more noise. |             |
| A9.          | Absorption losses in fibre result from:  (a) The fracture in the fiber.  (b) The microbending in the fiber.  (c) The water bands (OH ions) in the fiber.  (d) The modal dispersion in the fiber.        |             |
| A10.         | Light is guided down a graded index multimode fibre because of:  (a) Total Internal Reflection.  (b) Refraction.  (c) Dispersion.  (d) Total Internal Reflection & Refraction.                          |             |
| A11.         | What is the altitude, in km, of a geostationary satellite orbit:  (a) 6,378.  (b) 35,786.  (c) 42,164.  (d) 24.                                                                                         |             |
| A12.         | A geostationary satellite has coverage of a zone equal to about of the Easurface:  (a) 10%.  (b) 20%.  (c) 30%                                                                                          | rth's       |

A13. The use of frequency reuse technique in satellite communication is to:

- (a) Increase the transmitting power of the satellite.
- (b) Increase the coverage area of the satellite.

(d) 40%.

- (c) Increase the information carrying capacity of the satellite.
- (d) Increase the line of sight (LOS) of the satellite.

/15/16\_S1 Page 3 of 8

- A14. Geostationary communication satellites need to use battery power during:
  - (a) The summer solstice.
  - (b) The winter solstice.
  - (c) The vernal equinox.
  - (d) The night hours.
- A15. Which one of the following is not the function of the thruster subsystem?
  - (a) To keep satellite in the correct orbit.
  - (b) To assist in attitude control.
  - (c) To maintain station keeping.
  - (d) To provide gyroscopic stiffness for stabilizing the satellite.
- A16. Which one of the following elements are used to make corrections to the attitude of satellite:
  - (a) Spinning the body of the satellite.
  - (b) Momentum wheels inside the satellite body.
  - (c) Reaction wheels inside the satellite body.
  - (d) Both momentum wheels and reaction wheels inside the satellite body.
- A17. The satellite subsystem that converts uplink to downlink frequencies is the :
  - (a) Transponder subsystem.
  - (b) Power supply subsystem.
  - (c) Command, telemetry and control subsystem.
  - (d) Antenna subsystem.
- A18. The Ku band frequencies used by communication satellite are:
  - (a) 6/8 GHz.
  - (b) 4/6 GHz.
  - (c) 12/14 GHz.
  - (d) 14/16 GHz.
- A19. Which of the following requirement is crucially important for a TDMA system?
  - (a) System output power.
  - (b) System bandwidth.
  - (c) System timing.
  - (d) System beamwidth.
- A20. One of the advantages that Ku band has over C band in satellite communication is that:
  - (a) It has less propagation delay.
  - (b) Free Space Path Loss (FSPL) is lower.
  - (c) It suffers less atmospheric losses.
  - (d) It will not cause interference to terrestrial microwave links.

/15/16 S1 Page 4 of 8

### Section B [ 10 Marks Each ]

- B1. An optical communication link consists of an ILD with bandgap energy 0.950 eV, an optical fibre with core refractive index of 1.45 and cladding refractive index of 1.35, and a PIN photodiode.
  - Determine the operating wavelength of the optical communication link. (2 marks) (a)
  - Determine the numerical aperture and acceptance cone angle of the fibre. (4 marks) (b)
  - If the laser light from ILD enters the fibre at an angle of 34° with the fibre core axis, (c) can the laser light be detected by the PIN photodiode? Give reasons to support your answer. (4 marks)
- B2. (a) Name the TWO types of optical source used in optical communication. (2 marks)
  - An optical light beam with 9 x 10<sup>10</sup> photons/sec at 1550 nm is incident onto the PIN (b) photodiode which has a responsivity of 0.8 A/W. Calculate:
    - (i) The maximum possible bandgap energy of the PIN photodiode in eV. (2 marks)
    - (ii) The quantum efficiency of the PIN photodiode. (3 marks)
    - (iii) Find the current generated at the PIN photodiode output terminal. (3 marks)
- B3. An optical fiber link operating at 1550 nm wavelength, NRZ signal with bitrate of 1.0 Gbps and BER of 10<sup>-9</sup>, safety margin of 6 dB, is set up between Singapore & Malaysia at 500 km apart. The following optical components will be used:

**ILD Source** 

APD Detector

Output power = 30 mwSensitivity at  $10^{-9}$  BER = -48 dBm

Rise time = 0.1 nsRise time = 0.2 nsConnector loss = 0.6 dBConnector loss = 0.6 dB

Single-mode Fiber

Material dispersion = 15 ps/km

Attenuation = 0.5 dB/km

60 Splices with 0.2 dB loss each

- Calculate the maximum link distance between repeaters. (8 marks) (a)
- Determine the total number of repeaters required for this optical link. (2 marks) (b)

/15/16 S1 Page 5 of 8 B4. The C-band broadcasting satellite is equipped with a transmitting antenna of 25 dB gain, has a transmitted output power of 150W.

If a TVRO system is installed to receive the broadcast TV programs from the satellite, the TVRO system has a receiving antenna gain of 50 dB and receiver equivalent noise temperature of 1000K. Determine:

- (a) The EIRP of the satellite in dBW. (2 marks)
- (b) The figure of merit (G/T) of the TVRO system. (2 marks)
- (c) The downlink Free Space Path Loss, if the downlink distance is 36,000 km. (2 marks)
- (d) The C/N ratio at the TVRO system for an 18 MHz TV channel. (4 marks)

## Section C [ 20 Marks ]

C1. The following block diagram shows the transponder subsystem of a communication satellite:



- (a) If the transponder subsystem operates at Ku-band, identify the frequency values :  $f_u$ ,  $f_1$ ,  $f_2$ ,  $f_3$ ,  $f_4$  and  $f_d$ . (6 marks)
- (b) Name the blocks that are responsible for the amplification function. (3 marks)
- (c) Name the blocks that are responsible for the frequency translation function. (3 marks)
- (d) State the two types of POLARIZATION used in the transponder subsystem and hence explain the advantage of using these polarizations. (4 marks)
- (e) Briefly explain why the satellite transponder needs to change the incoming uplink frequency (f<sub>u</sub>) to another downlink frequency (f<sub>d</sub>). (4 marks)

\*\*\*\*\* End of Paper \*\*\*\*\*\*

/15/16 S1 Page 6 of 8

# **Constants & Formulas Sheet**

Gravitational constant  $G = 6.673 \times 10^{-11} \text{ Nm}^2 \text{ Kg}^{-2}$ 

Mass of Earth  $M_e = 5.975 \times 10^{24} \text{ Kg}$ , Radius of Earth = 6378 km

Boltzmann's constant  $k = 1.38 \times 10^{-23} \text{ J/K}$ 

Speed of light  $c = 3 \times 10^8 \text{ m/s}$ 

Plank's constant  $h = 6.626 \times 10^{-34} \text{ Js}$ 

Electron charge  $e = 1.602 \times 10^{-19} \text{ C}$ 

$$v = \sqrt{\frac{Gm_e}{r}}$$

$$S(\Theta) = 52 - 10 \log_{10} \left(\frac{D}{\lambda}\right) - 25 \log(\Theta)$$
  $dBi$ 

For  $D < 100\lambda$ 

$$S(\Theta) = 29 - 25 \log_{10}(\Theta)$$
 dBi

For 2.0<sup>0</sup> spacing

$$S(\Theta) = 32 - 25 \log_{10}(\Theta)$$
  $dBi$ 

For 2.90 spacing

$$L_{dB} = 20 \log \left( \frac{4\pi d}{\lambda} \right) = 32.44 + 20 \log[d] + 20 \log[f]$$

$$(C)_{dBw} = (P_T)_{dBw} + (G_T)_{dB} + (G_R)_{dB} - (L)_{dB}$$

$$\left(\frac{C}{N_0}\right)_{dBH_z} = \left(P_T\right)_{dBW} + \left(G_T\right)_{dB} + \left(\frac{G_R}{T}\right)_{dB} - \left(L\right)_{dB} - \left(L_o\right)_{dB} - 10\log K$$

$$\left(\frac{C}{N}\right)_{dB} = \left(\frac{C}{N_0}\right)_{dBHz} - 10\log B$$

$$\left(\frac{C}{N}\right)_{Total}^{-1} = \left(\frac{C}{N}\right)_{Up}^{-1} + \left(\frac{C}{N}\right)_{Down}^{-1}$$

/15/16 S1

$$n_1 Sin\Theta_1 = n_2 Sin\Theta_2$$
  $NA = Sin\Theta_a = \sqrt{n_1^2 - n_2^2}$ 

$$\Delta = \frac{n_1^2 - n_2^2}{2n_1^2}$$
  $\Delta \tau = \frac{Ln_1}{c} \left( \frac{n_1 - n_2}{n_2} \right)$   $v = \frac{c}{n}$ 

$$V = \frac{\pi d}{\lambda} (NA) \qquad n(r) = n_1 \sqrt{1 - 2\Delta \left(\frac{r}{a}\right)^{\alpha}} \qquad a \le \frac{2.405\lambda}{2\pi \sqrt{n_1^2 - n_2^2}}$$

For step-index multimode

For graded index

$$M = \frac{V^2}{2}$$
  $\sigma = \frac{n_1 L \Delta}{c\sqrt{12}}$   $M = \frac{V^2}{4}$   $\sigma = \frac{n_1 L \Delta^2}{c\sqrt{48}}$ 

$$B = \frac{0.35}{\sigma} \qquad B = \frac{0.35}{t_{sys}} \qquad f = \frac{c}{\lambda}$$

$$\lambda = \frac{hc}{E_g}$$
  $\lambda = \frac{1.24}{E_g}$   $D = \frac{ct}{2n}$ 

$$I_p = (r_e)(e)$$
  $P_o = (r_p)(hc/\lambda)$   $R = \frac{\eta \lambda e}{hc}$ 

$$t_f = \sqrt{t_{\text{mod}al}^2 + t_{\text{material}}^2}$$
  $t_{\text{sys}} = 1.1\sqrt{t_f^2 + t_s^2 + t_d^2}$