Занятие № 13. Двумерные случайные векторы и их преобразования.

 \bigcirc Составитель: ∂ . ϕ .-м.н., про ϕ . Рябов П.Е.

Желательно (а для некоторых студентов обязательно), там, где есть ответ, придумать способ док-ва статистической устойчивости полученного ответа.

13.1. Случайный вектор (X,Y) равномерно распределен в треугольнике

$$x \geqslant 0$$
; $y \geqslant 0$; $5x + 12y \leqslant 60$.

- 1) Найдите значение функции распределения $F_X(4)$. 2) Найдите $\mathbb{E}(X)$, Var(X) и $\mathbb{E}(X^9Y)$. 3) Найдите Cov(X,Y) и $\rho(X,Y)$.
- **13.2.** Плотность распределения случайного вектора (X, Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{12}{\pi} e^{-\frac{51}{2}x^2 - 45xy - 9x - \frac{51}{2}y^2 - 7y - \frac{5}{6}}.$$

- 1) Найдите $\mathbb{E}(X)$, $\mathbb{E}(Y)$, Var(X), Var(Y), Cov(X,Y) и $\rho(X,Y)$.
- **2)** Найдите $\mathbb{P}(2X 3Y > 1)$.

Other: 1)
$$\mathbb{E}(X) = -\frac{1}{4}$$
; $\mathbb{E}(Y) = \frac{1}{12}$; $\text{Var}(X) = \text{Var}(Y) = \frac{17}{192}$; $\text{Cov}(X,Y) = -\frac{5}{64}$; $\rho(X,Y) = -\frac{15}{17}$; 2) $\mathbb{P}(2X - 3Y > 1) = 0.112962$.

- **13.3.** Известно, что $(X,Y) \sim \mathcal{N}(2;4;5,\sigma_Y^2;\rho)$. При каком σ_Y , случайные величины 2X-3Y и 4X+6Y независимы?
- **13.4.** Для независимых нормальных случайных векторов $(X_1,Y_1) \sim \mathcal{N}(3;-4;5;7;\frac{1}{11})$ и $(X_2,Y_2) \sim \mathcal{N}(-2;1;4;3;-\frac{1}{2})$ найдите такую константу α , что компоненты случайного вектора $(X_1,Y_1)+\alpha(X_2,Y_2)$ являются независимыми.
- **13.5.** Пусть X, Y, Z независимые случайные величины, равномерно распределены на [0; 1]. Найдите $\mathbb{P}(X \geqslant YZ)$.
- 13.6. Пусть случайные величины X и Y независимы и каждая имеет показательное распределение с параметром λ . И пусть $V=\frac{X}{X+Y}$. Покажите, что случайная величина V равномерно распределена на [0;1].
- 13.7. Пусть случайные величины X и Y независимы и каждая имеет стандартное нормальное распределение. Покажите, что случайная величина $Z=\frac{1}{2}(X^2+Y^2)$ имеет показательное распределение с параметром $\lambda=1$.
- **13.8.** Случайные величины X и Y независимы и равномерно распределены на отрезке [0;1]. Найдите функцию распределения случайной величины $\frac{X}{X+Y}$.
- **13.9.** Точка P равномерно распределена в круге радиуса R. Пусть Z расстояние от точки P до центра круга. Найдите функцию распределения $F_Z(x)$ и плотность распределения $f_Z(x)$ случайной величины Z. Постройте графики функций $F_Z(x)$ и $f_Z(x)$. Найдите $\mathbb{E}(Z)$ и $\mathrm{Var}(Z)$.

- **13.10.** Случайные величины X и Y нормально распределены $\mathcal{N}(0;\sigma^2)$ и независимы. Покажите, что отношение $Z=\frac{X}{Y}$ имеет распределение Коши.
- **13.11.** Пусть случайные величины X и Y независимы и каждая имеет показательное распределение с параметром λ . И пусть U=X+Y, $V=\frac{X}{X+Y}$. Найдите плотность распределения $f_{U,V}(x,y)$ случайного вектора (U,V).
- **13.12.** Для нормального случайного вектора $(X,Y) \sim \mathcal{N}(-7;17;81;16;0,6)$ найдите вероятность $\mathbb{P}\ ((X-4)(Y-3)<0)$. Ответ: 0,88896.
- **13.13.** Для нормального случайного вектора $(X,Y) \sim \mathcal{N}(-4;4;64;81;-0,31)$ найдите вероятность \mathbb{P} ((X-8)(X-10)(Y-1)<0). Ответ: 0,36569.