

Ayudantía 7 - Relaciones de Orden

26 de abril de 2024

Martín Atria, Paula Grune, Caetano Borges

Resumen

Orden Parcial

Una relación R sobre un conjunto A es un orden parcial si es **reflexiva**, **antisimétrica** y **transitiva**.

A la relación se le denota como $x \leq y$. Y diremos que el par (A, \leq) es un **orden parcial**.

Orden Total

Una relación \leq sobre un conjunto A es un orden total si es una relación de orden parcial y además es conexa.

Elemento mínimo y máximo

Sean (A, \preceq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

- 1. x es una **cota inferior** de S si para todo $y \in S$ se cumple que $x \leq y$.
- 2. x es un **elemento minimal** de S si $x \in S$ y para todo $y \in S$ se cumple que $y \leq x \Rightarrow y = x$.
- 3. x es un **mínimo** en S si $x \in S$ y es cota inferior de S.

Análogamente, se definen los conceptos de cota superior, elemento maximal y máximo.

Sea (A, \preceq) un orden parcial, y sean $S \subseteq A, x \in A$.

Ínfimo y supremo

Sea (A, \preceq) un orden parcial y $S \subseteq A$. Diremos que s es un ínfimo de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \preceq s$. Es decir, el ínfimo es la mayor cota inferior. Análogamente se define el supremo de un conjunto.

1. Monarquías

Sea K el conjunto de los monarcas ingleses. Sea \mathcal{M} una relación sobre K definida como $a\mathcal{M}b$ si y solo si a fue monarca después o al mismo tiempo que b.

Su inversa \mathcal{M}^{-1} se define como

 $a\mathcal{M}^{-1}b$ si y solo si a fue un monarca antes o al mismo tiempo que b.

Demuestre que \mathcal{M} y \mathcal{M}^{-1} son órdenes totales sobre K.

2. Verdadero y Falso

Sea A un conjunto no vacío y $\preceq \subseteq A \times A$ un orden parcial. En esta pregunta refiérase siempre a este orden parcial y responda verdadero o falso según corresponda. En caso de ser verdadero, demuéstrelo, y en caso de ser falso, dé un contraejemplo y explíquelo.

- 1. Si S tiene un mínimo para todo $S \subseteq A$ con $S \neq \emptyset$, entonces \leq es un orden total.
- 2. Si \leq es un orden total, entonces S tiene un mínimo para todo $S \subseteq A$ con $S \neq \emptyset$.
- 3. Para todo $S \subseteq A$, si existe x que es minimal y maximal de S, entonces S tiene un único elemento.

3. La mezcla

Sea A un conjunto no vacío, $\simeq \subseteq A \times A$ una relación de equivalencia y $\preceq \subseteq A \times A$ un orden parcial, ambos sobre A. Considere el conjunto cuociente A/\simeq y defina la siguiente relación $\ll \subseteq (A/\simeq) \times (A/\simeq)$:

$$(S_1,S_2)\in \ll$$
 si, y solo si, existe $a\in S_1$ tal que $\forall b\in S_2$ se cumple que $a\preceq b$

La clausura refleja de una relación R aplicada sobre el conjunto A se define como la relación refleja más pequeña aplicada sobre A que contiene a R. Esta se denota como R^r y cumple las siguientes propiedades:

- 1. $R \subseteq R^r$
- 2. R^r es refleja
- 3. Si R' es una relación refleja tal que $R \subseteq R'$, entonces $R^r \subseteq R'$

Dicho de forma sencilla, a la relación R le añadimos las relaciones necesarias para que sea refleja.

- 1. Demuestre que \ll^r es un orden parcial sobre A/\simeq donde \ll^r es la clausura refleja de \ll .
- 2. ¿Es verdad que A tiene un elemento minimal según \preceq si, y solo si, A/\simeq tiene un elemento minimal según \ll^r ? Demuestre su afirmación.