Stat 206: Linear Models

Lecture 8

October 21, 2015

Extra Sum of Squares

I and \mathcal{J} are two **non-overlapping** index sets.

Extra sum of squares (ESS):

$$SSR(X_{\mathcal{J}}|X_{\mathcal{I}}) :=$$

It indicates the

- Degrees of freedom: $d.f.(SSR(X_{\mathcal{I}}|X_{\mathcal{I}})) =$
- Mean squares: $MSR(X_{\mathcal{I}}|X_{\mathcal{I}}) :=$

Extra Sum of Squares

I and \mathcal{J} are two **non-overlapping** index sets.

Extra sum of squares (ESS):

$$SSR(X_{\mathcal{I}}|X_{\mathcal{I}}) := SSE(X_{\mathcal{I}}) - SSE(X_{\mathcal{I}}, X_{\mathcal{I}}).$$

- It indicates the reduction in error sum of squares by adding X_T to the model with X_I being the X variables.
- Degrees of freedom: $d.f.(SSR(X_{\mathcal{J}}|X_{\mathcal{I}})) = |\mathcal{J}|$.
- Mean squares: $MSR(X_{\mathcal{J}}|X_I) := \frac{SSR(X_{\mathcal{J}}|X_I)}{d.f.(SSR(X_{\mathcal{J}}|X_I))}$.

Notations.

- I: an index set; $X_I := \{X_i : i \in I\}$.
 - E.g. $I = \{2,3\}, X_I = \{X_2, X_3\}.$
- SSE(X_I) and SSR(X_I) denote the error sum of squares and regression sum of squares, respectively, under the regression model with X_I := {X_i : i ∈ I} being the X variables.
 - E.g., SSE(X₂, X₃) is the error sum of squares of the model with X₂ and X₃.

Some properties of ESS.

- $SSR(X_{\mathcal{J}}|X_{\mathcal{I}})$
- Usually $SSR(X_{\mathcal{I}}|X_{\mathcal{I}})$ $SSR(X_{\mathcal{I}}|X_{\mathcal{I}})$.
- ESS is also the marginal of the regression sum of squares, i.e.,

$$SSR(X_{\mathcal{I}}|X_{\mathcal{I}}) =$$

- SSR of a model with only one X variable may be viewed as an ESS.
 - ϕ denotes the empty set. Then $SSR(X_{\phi}) =$, and

$$SSR(X_1|X_\phi) =$$

i.e., $SSR(X_1)$ is the of the regression sum of squares by adding X_1 into a model with only intercept but no X variable.

Some properties of ESS.

- $SSR(X_{\mathcal{J}}|X_{\mathcal{I}}) \geq 0$.
- Usually $SSR(X_{\mathcal{I}}|X_{\mathcal{I}}) \neq SSR(X_{\mathcal{I}}|X_{\mathcal{I}})$.
- ESS is also the marginal increase of the regression sum of squares, i.e.,

$$SSR(X_{\mathcal{I}}|X_{\mathcal{I}}) = SSR(X_{\mathcal{I}}, X_{\mathcal{I}}) - SSR(X_{\mathcal{I}}).$$

- SSR of a model with only one X variable may be viewed as an ESS.
 - ϕ denotes the empty set. Then $SSR(X_{\phi}) = 0$, and

$$SSR(X_1|X_{\phi}) = SSR(X_1, X_{\phi}) - SSR(X_{\phi}) = SSR(X_1),$$

i.e., $SSR(X_1)$ is the increase of the regression sum of squares by adding X_1 into a model with only intercept but no X variable.

Body Fat

A researcher measured the amount of body fat (Y) of 20 healthy females 25 to 34 years old, together with three (potential) predictor variables, triceps skinfolds thickness (X_1) , thigh circumference (X_2) , and midarm circumference (X_3) . The amount of body fat was obtained by a cumbersome and expensive procedure requiring immersion of the person in water. Thus it would be helpful if a regression model with some or all of these predictors could provide reliable estimates of body fat as these predictors are easy to measure.

A snapshot of the data.

case	X1	X2	X 3	Y
Triceps	Thigh	${\tt MidArm}$	BodyFat	
1	19.5	43.1	29.1	11.9
2	24.7	49.8	28.2	22.8
3	30.7	51.9	37.0	18.7
4	29.8	54.3	31.1	20.1
5	19.1	42.2	30.9	12.9
6	25.6	53.9	23.7	21.7

Scatter plot matrix.

Do you see any particular patterns?

Correlation matrix.

Consider the following 4 models.

Model 1: regression of Y on X₁

$$Y_i = \beta_0 + \beta_1 X_{i1} + \epsilon_i, i = 1, \dots, 20.$$

Model 2: regression of Y on X₂

$$Y_i = \beta_0 + \beta_2 X_{i2} + \epsilon_i, i = 1, \dots, 20.$$

Model 3: regression of Y on X₁ and X₂

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i, i = 1, \dots, 20.$$

Model 4: regression of Y on X₁, X₂ and X₃.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, i = 1, \dots, 20.$$

Scatter plot matrix.

No obvious nonlinearity.

Correlation matrix.

X1 X2 X3 Y X1 1.0000000 0.9238425 0.4577772 0.8432654 X2 0.9238425 1.0000000 0.0846675 0.8780896

Y 0.8432654 0.8780896 0.1424440 1.0000000

 X_1 and X_2 are highly correlated, X_1 and X_3 are moderately correlated, X_2 and X_3 are not much correlated.

Consider the following 4 models.

Model 1: regression of Y on X₁

$$Y_i = \beta_0 + \beta_1 X_{i1} + \epsilon_i, i = 1, \dots, 20.$$

Model 2: regression of Y on X₂

$$Y_i = \beta_0 + \beta_2 X_{i2} + \epsilon_i, i = 1, \dots, 20.$$

Model 3: regression of Y on X₁ and X₂

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i, i = 1, \dots, 20.$$

Model 4: regression of Y on X₁, X₂ and X₃.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, i = 1, \dots, 20.$$


```
> summarv(fit1)
Call:
lm(formula = Y ~ X1. data = fat)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.4961 3.3192 -0.451
                                         0 658
X1
             0.8572 0.1288 6.656 3.02e-06 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.82 on 18 degrees of freedom
Multiple R-squared: 0.7111. Adjusted R-squared: 0.695
F-statistic: 44.3 on 1 and 18 DF. p-value: 3.024e-06
> anova(fit1)
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value Pr(>F)
X1
         1 352.27 352.27 44.305 3.024e-06 ***
Residuals 18 143.12 7.95
```



```
> summary(fit2)
Call:
lm(formula = Y ~ X2, data = fat)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -23.6345 5.6574 -4.178 0.000566 ***
X2
             0.8565 0.1100 7.786 3.6e-07 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.51 on 18 degrees of freedom
Multiple R-squared: 0.771, Adjusted R-squared: 0.7583
F-statistic: 60.62 on 1 and 18 DF, p-value: 3.6e-07
> anova(fit2)
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value Pr(>F)
          1 381.97 381.97 60.617 3.6e-07 ***
X2
Residuals 18 113 42 6 30
```

```
> summarv(fit3)
Call:
lm(formula = Y ~ X1 + X2. data = fat)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -19.1742 8.3606 -2.293 0.0348 *
X1
         0.2224 0.3034 0.733 0.4737
X2
          0.6594 0.2912 2.265 0.0369 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.543 on 17 degrees of freedom
Multiple R-squared: 0.7781. Adjusted R-squared: 0.7519
F-statistic: 29.8 on 2 and 17 DF, p-value: 2.774e-06
> anova(fit3)
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value Pr(>F)
X1
          1 352.27 352.27 54.4661 1.075e-06 ***
X2
          1 33.17 33.17 5.1284
                                    0 0369 *
Residuals 17 109 95 6 47
```



```
> summary(fit4)
Call:
lm(formula = Y ~ X1 + X2 + X3. data = fat)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 117.085
                       99.782
                                        0.258
                                1.173
                    3.016 1.437
X1
              4.334
                                        0.170
            -2 857
                    2.582 -1.106
X2
                                        0 285
Х3
             -2.186
                    1.595 -1.370
                                        0.190
Residual standard error: 2.48 on 16 degrees of freedom
Multiple R-squared: 0.8014, Adjusted R-squared: 0.7641
F-statistic: 21.52 on 3 and 16 DF, p-value: 7.343e-06
> anova(fit4)
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value
                          Pr(>F)
X1
          1 352.27 352.27 57.2768 1.131e-06 ***
X2
          1 33 17 33 17 5 3931
                                    0 03373 *
          1 11.55 11.55 1.8773
Х3
                                    0.18956
Residuals 16 98.40 6.15
```


Body Fat: ESS

From the R outputs, we can derive a number of extra sums of squares. For example:

•

$$SSR(X_2|X_1) =$$

•

$$SSR(X_1|X_2) =$$

- Both extra sums of squares have degrees of freedom , so $MSR(X_2|X_1) =$ and $MSR(X_1|X_2) =$
- The reduction of SSE by adding to a model with is much more than the reduction of SSE by adding to a model with .

Body Fat: ESS

From the R outputs, we can derive a number of extra sums of squares. For example:

• From Model 1, $SSE(X_1) = 143.12$ and from Model 3, $SSE(X_1, X_2) = 109.95$. So

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2) = 143.12 - 109.95 = 33.17.$$

• From Model 2, $SSE(X_2) = 113.42$, so

$$SSR(X_1|X_2) = SSE(X_2) - SSE(X_1, X_2) = 113.42 - 109.95 = 3.47.$$

- Both extra sums of squares have degrees of freedom 1, so $MSR(X_2|X_1) = 33.17$ and $MSR(X_1|X_2) = 3.47$.
- The reduction of SSE by adding X₂ to a model with X₁ is much more than the reduction of SSE by adding X₁ to a model with X₂.

$$SSR\big(X_3|X_1,X_2\big) =$$

This extra sum of squares has degrees of freedom so $MSR(X_3|X_1,X_2)=$.

•

$$SSR(X_2,X_3|X_1) =$$

This extra sums of squares has degrees of freedom so $MSR(X_2, X_3|X_1) =$.

Are there other ESS that can be derived from the R outputs?

• From Model 4, $SSE(X_1, X_2, X_3) = 98.40$, so

$$SSR(X_3|X_1, X_2) = SSE(X_1, X_2) - SSE(X_1, X_2, X_3)$$

= 109.95 - 98.40 = 11.55.

This extra sum of squares has degrees of freedom 1, so $MSR(X_3|X_1,X_2) = 11.55$.

Moreover,

$$SSR(X_2, X_3|X_1) = SSE(X_1) - SSE(X_1, X_2, X_3) = 143.12 - 98.40 = 44.72,$$

 $SSR(X_1, X_3|X_2) = SSE(X_2) - SSE(X_1, X_2, X_3) = 113.42 - 98.40 = 15.02.$

These two extra sums of squares have degrees of freedom 2, so $MSR(X_2, X_3|X_1) = 44.72/2 = 22.36$, $MSR(X_1, X_3|X_2) = 15.02/2 = 7.51$.

Are there other ESS that can be derived from the R outputs?

Decomposition of SSR into ESS

For a model with multiple X variables, the regression sum of squares (SSR) can be expressed as the of several extra sums of squares.

For example:

$$SSR(X_1, X_2) =$$

 $SSR(X_1)$ measures the contribution by in the model, whereas $SSR(X_2|X_1)$ measures the contribution when , given that X_1 is already in the model.

However, such decomposition is usually not unique. For example,

$$SSR(X_1, X_2) =$$

Decomposition of SSR into ESS

For a model with multiple X variables, the regression sum of squares (SSR) can be expressed as the sum of several extra sums of squares.

For example:

$$SSR(X_1, X_2) = SSR(X_1) + SSR(X_2|X_1).$$

 $SSR(X_1)$ measures the contribution by having X_1 alone in the model, whereas $SSR(X_2|X_1)$ measures the additional contribution when X_2 is added, given that X_1 is already in the model.

However, such decomposition is usually not unique. For example,

$$SSR(X_1, X_2) = SSR(X_2) + SSR(X_1|X_2).$$

FIGURE 7.1 Schematic Representation of Extra Sums of Squares—Body Fat Example

anova() output

(The next four slides will be discussed on the lab session.) It provides decomposition of SSR into single d.f. ESS, in the order of the X variables entering the model.

```
Call:
Im(formula = Y ~ X1 + X2 + X3, data = fat) > anova(fit4)
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value Pr(>F)
X1 1 352.27 352.27 57.2768 1.131e-06 ***
X2 1 33.17 33.17 5.3931 0.03373 *
X3 1 11.55 11.55 1.8773 0.18956
Residuals 16 98.40 6.15
```

Source of Variation	SS	d.f.	MS
Regression			
Error			
Total			

For example: $SSR(X_2, X_3|X_1) =$

anova() output

It provides decomposition of SSR into single d.f. ESS, in the order of the X variables entering the model.

```
Call:
lm(formula = Y ~ X1 + X2 + X3, data = fat)
> anova(fit4)
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value
                            Pr(>F)
X1
          1 352.27 352.27 57.2768 1.131e-06 ***
X2
          1 33.17
                     33.17 5.3931
                                     0.03373 *
          1 11.55
                     11.55 1.8773
X3
                                     0.18956
Residuals 16 98 40
                      6 15
```

Source of Variation	SS	d.f.	MS
Regression	396.99	3	132.33
<i>X</i> ₁	352.27	1	352.27
$X_2 X_1$	33.17	1	33.17
$X_3 X_1, X_2$	11.55	1	11.55
Error	98.40	16	6.15
Total	495.39	19	

For example: $SSR(X_2, X_3|X_1) = SSR(X_2|X_1) + SSR(X_3|X_1, X_2) = 33.17 + 11.55 = 44.72.$

How to get $SSR(X_2|X_1, X_3)$ from the R output of Model 4? We need to enter the X variables in the following order:

```
Call:
lm(formula = Y ~ X1 + X3 + X2, data = fat)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
                        99.782
                                1.173
(Intercept) 117.085
                                         0.258
X1
              4.334
                        3 016
                              1 437
                                         0.170
Х3
             -2.186
                    1.595 -1.370
                                         0.190
X2
             -2.857
                    2.582 -1.106
                                         0.285
> anova(fit4.alt2)
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value
                           Pr(>F)
          1 352.27 352.27 57.2768 1.131e-06 ***
X1
Х3
          1 37.19 37.19 6.0461
                                     0.02571 *
X2
          1 7 53
                   7.53 1.2242
                                     0.28489
Residuals 16 98.40
                     6.15
```

Then we can get $SSR(X_2|X_1,X_3) =$

How to get $SSR(X_2|X_1, X_3)$ from the R output of Model 4? We need to enter the X variables in the following order: X_1, X_3, X_2 .

```
Call:
lm(formula = Y ~ X1 + X3 + X2. data = fat)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 117.085
                       99.782
                                1.173
                                        0.258
            4.334
                    3.016 1.437
                                        0.170
X1
X3
            -2.186 1.595 -1.370
                                        0.190
X2
             -2 857
                   2 582 -1 106
                                        0 285
> anova(fit4.alt2)
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value
                           Pr(>F)
X 1
          1 352.27 352.27 57.2768 1.131e-06 ***
Х3
          1 37 19 37 19 6 0461
                                    0 02571 *
          1 7.53 7.53 1.2242
                                   0.28489
Residuals 16 98.40 6.15
```

Then we can get $SSR(X_2|X_1, X_3) = 7.53$.

General Linear Tests

I and \mathcal{J} are two non-overlapping index sets.

- Full model: contains both X_I and X_I.
- Test whether X_J may be dropped out of the full model:

$$H_0: \beta_j = 0$$
, for **all** $j \in \mathcal{J}$

VS.

$$H_a$$
: some β_j : $j \in \mathcal{J}$ are nonzero.

• H_0 corresponds to a **reduced model** with only X_I .

Basic idea: Compare under the full model with SSE under the reduced model by an F ratio:

• Under H_0 (i.e., the model):

$$F^* \sim_{H_0}$$

• Reject H_0 at level α if the observed F^*

Basic idea: Compare *SSE* under the full model with *SSE* under the reduced model by an F ratio:

$$F^* = \frac{\frac{SSE(R) - SSE(F)}{df_R - df_F}}{\frac{SSE(F)}{df_F}} = \frac{MSR(X_{\mathcal{J}}|X_I)}{MSE(F)}.$$

• Under H_0 (i.e., the reduced model):

$$F^* \sim_{H_0} F_{df_R - df_F, df_F}$$
.

Reject H₀ at level α if the observed
 F* > F(1 - α; df_R - df_F, df_F).

Rationale behind the general linear tests.

• If SSE(F) is close to SSE(R), then the additional X variables in the full model to explain the variation in the observations.

Thus a small SSE(R) - SSE(F) is evidence for

 On the other hand, a large SSE(R) – SSE(F) means that the additional X variables in the full model the deviation of the observations around the fitted regression surface, and thus serves as evidence for

Rationale behind the general linear tests.

- If SSE(F) is close to SSE(R), then the additional X variables in the full model do not contribute much to explain the variation in the observations.
 - Thus a small SSE(R) SSE(F) is evidence for H_0 , i.e., the reduced model.
- On the other hand, a large SSE(R) SSE(F) means that the additional X variables in the full model substantially reduce the deviation of the observations around the fitted regression surface, and thus serves as evidence for H_a, i.e., the full model.

F-test for Regression Relation

• Full model with X_1, \dots, X_{p-1} :

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i, \quad i = 1, \dots n.$$

• Reduced model with no *X* variable:

$$Y_i = \beta_0 + \epsilon_i, i = 1, \cdots, n.$$

So
$$SSE(R) =$$
 ,and $df_R =$

- SSE(R) SSE(F) = , and $df_R df_F =$.
- F ratio

$$F^* =$$

F-test for Regression Relation

• Full model with X_1, \dots, X_{p-1} :

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i, \quad i = 1, \dots n.$$

Reduced model with no X variable:

$$Y_i = \beta_0 + \epsilon_i, i = 1, \cdots, n.$$

So SSE(R) = SSTO and $df_R = n - 1$.

- SSE(R) SSE(F) = SSTO SSE(F) = SSR(F), and $df_R df_F = (n-1) (n-p) = p 1 = d.f.(SSR(F))$.
- F ratio

$$F^* = \frac{SSR(F)/(p-1)}{SSE(F)/(n-p)} = \frac{MSR(F)}{MSE(F)}.$$

Test whether a Single $\beta_k = 0$

Body fat: Test for the model with all three predictors whether the midarm circumference (X_3) can be dropped.

Full model:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, i = 1, \dots, 20.$$

SSE(F) = 98.40 with d.f. 16.

Null and alternative hypotheses:

$$H_0$$
: vs. H_a :

$$SSE(R) =$$
 with d.f.

- F* =
- Pvalue= . So we X_3 from the full model.

Test whether a Single $\beta_k = 0$

Body fat: Test for the model with all three predictors whether the midarm circumference (X_3) can be dropped.

• Full model: SSE(F) = 98.40 with d.f. 16.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, i = 1, \dots, 20.$$

Null and alternative hypotheses:

$$H_0: \beta_3 = 0 \text{ vs. } H_a: \beta_3 \neq 0.$$

• Reduced model: SSE(R) = 109.95 with d.f. 17.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i, i = 1, \dots, 20.$$

- $F^* = \frac{11.55/1}{98.40/16} = 1.88$.
- Pvalue= $P(F_{1,16} > 1.88) = 0.189$. So we can drop X_3 from the full model.

Equivalence between F-test and T-test

 Test whether X_k can be dropped from a regression model with p − 1 X variables:

$$H_0: \beta_k = 0 \text{ vs. } H_a: \beta_k \neq 0.$$

- We can use an F-test: $F^* \underset{H_0}{\sim} F_{1,n-p}$.
- · Alternatively, we may use a T-test:

$$T^* = rac{\hat{eta}_k}{s\{\hat{eta}_k\}} \underset{H_0}{\sim} t_{(n-p)},$$

where $\hat{\beta}_k$ is the LS estimator of β_k and $s\{\hat{\beta}_k\}$ is its standard error under the full model.

• It can be show that $F^* = (T^*)^2$ and $F(1-\alpha; 1, n-p) = (t(1-\alpha/2; n-p))^2$. So in this case F-test and T-test are equivalent.

Notes: for one one-sided alternatives, we still need the T-tests.

Test whether Several $\beta_k = 0$

Body fat: Test whether both thigh circumference (X_2) and midarm circumference (X_3) can be dropped from the model with all three predictors.

• Full model: SSE(F) = 98.40 with d.f. 16.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, i = 1, \dots, 20.$$

Null and alternative hypotheses:

$$H_0$$
: vs. H_a :

Reduced model: SSE(R) = with d.f.

- Pvalue= . The result is at $\alpha = 0.05$.

Test whether Several $\beta_k = 0$

Body fat: Test whether both thigh circumference (X_2) and midarm circumference (X_3) can be dropped from the model with all three predictors.

• Full model: SSE(F) = 98.40 with d.f. 16.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, i = 1, \dots, 20.$$

Null and alternative hypotheses:

$$H_0: \beta_2 = \beta_3 = 0$$
 vs. $H_a:$ not both β_2 and β_3 equal zero.

Reduced model: SSE(R) = 143.12 with d.f. 18.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \epsilon_i, i = 1, \cdots, 20.$$

- $F^* = \frac{44.72/2}{98.40/16} = 3.635$.
- Pvalue= $P(F_{2.16} > 3.635) = 0.0499$. The result is barely significant at $\alpha = 0.05$.

Test Equality of Several β_k s

• Full model:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_{p-1} X_{i,p-1} + \epsilon_i.$$

• For $q \le p - 1$:

$$H_0: \beta_1 = \cdots = \beta_q \text{ vs. } H_a: \beta_1, \cdots, \beta_q \text{ are not all equal.}$$

$$Y_i = \beta_0 + \beta_c(X_{i1} + \cdots + X_{iq}) + \cdots + \beta_{p-1}X_{i,p-1} + \epsilon_i.$$

- β_c denotes the common value of β_1, \dots, β_q under H_0 , and $X_1 + \dots + X_q$ is the corresponding (new) X variable. SSE(R) has d.f. n (p q + 1).
- $\bullet \ F^* = \tfrac{(SSE(R) SSE(F))/(q-1)}{SSE(F)/(n-p)} \underset{H_0}{\sim} F_{q-1,n-p}.$

Body Fat

Test for the model with all three predictors whether the thigh circumference (X_2) and the midarm circumference (X_3) have the same effect.

• Full model: SSE(F) = 98.40 with d.f. 16.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, i = 1, \dots, 20.$$

Null and alternative hypotheses:

$$H_0$$
: vs. H_a :

Body Fat

Test for the model with all three predictors whether the thigh circumference (X_2) and the midarm circumference (X_3) have the same effect.

Full model: SSE(F) = 98.40 with d.f. 16.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, i = 1, \dots, 20.$$

Null and alternative hypotheses:

$$H_0: \beta_2 = \beta_3 \text{ vs. } H_a: \beta_2 \neq \beta_3.$$

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_c (X_{i2} + X_{i3}) + \epsilon_i, i = 1, \dots, 20.$$


```
> fat.new=data.frame(cbind(fat[,"X1"],fat[,"X2"]+fat[, "X3"], fat[,"Y"]))
> colnames(fat.new)=c("X1", "X2plusX3","Y")
> fit5=lm(Y~X1+X2plusX3, data=fat.new) ##reduced model
> summary(fit5)
Call:
lm(formula = Y ~ X1 + X2plusX3. data = fat.new)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 52.3706 20.4705 2.558 0.020357 *
           2.3732 0.5812 4.083 0.000774 ***
X1
X2plusX3 -1.1706 0.4404 -2.658 0.016573 *
Residual standard error: 2.439 on 17 degrees of freedom
Multiple R-squared: 0.7959, Adjusted R-squared: 0.7719
F-statistic: 33.15 on 2 and 17 DF. p-value: 1.36e-06
> anova(fit5)
Analysis of Variance Table
Response: Y
         Df Sum Sq Mean Sq F value Pr(>F)
        1 352.27 352.27 59.2287 6.16e-07 ***
X 1
X2plusX3 1 42.01 42.01 7.0634 0.01657 *
Residuals 17 101.11 5.95
```

- SSE(R) = 101.11 with degrees of freedom
- F ratio:

$$F^* =$$

- Pvalue=
- The result is and we the null hypothesis that $\beta_2=\beta_3$. We conclude that the thigh circumference (X_2) and the midarm circumference (X_3)

- SSE(R) = 101.11 with degrees of freedom 17(=20-3).
- F ratio:

$$F^* = \frac{(101.11 - 98.40)/(17 - 16)}{98.40/16} = \frac{2.71}{6.15} = 0.44.$$

- Pvalue= $P(F_{(1,16)} > 0.44) = 0.52$.
- The result is not significant and we can not reject the null hypothesis that $\beta_2 = \beta_3$. We conclude that the thigh circumference (X_2) and the midarm circumference (X_3) have the same effect.

Test whether One or Several $\beta_k = \beta_k^{(0)}$

Full model:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i, \quad i = 1, \dots n.$$

• For $q \le p - 1$:

$$H_0: \beta_1 = \beta_1^{(0)}, \cdots, \beta_q = \beta_q^{(0)}$$
 vs. $H_a:$ not all equalities in H_0 hold.

- Reduced model has a new response variable
 . SSE(R) has d.f.
- $F^* = \frac{(SSE(R) SSE(F))/q}{SSE(F)/(n-p)} \underset{H_0}{\sim} F_{q,n-p}$.

Test whether One or Several $\beta_k = \beta_k^{(0)}$

· Full model:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i, \quad i = 1, \dots n.$$

• For $q \le p - 1$:

$$H_0: \beta_1 = \beta_1^{(0)}, \cdots, \beta_q = \beta_q^{(0)}$$
 vs. $H_a:$ not all equalities in H_0 hold.

• Reduced model: Define $\tilde{Y}_i := Y_i - \sum_{k=1}^q \beta_k^{(0)} X_{ik}$

$$\tilde{Y}_i = \beta_0 + \beta_{q+1} X_{i,q+1} + \cdots + \beta_{p-1} X_{i,p-1} + \epsilon_i.$$

- Reduced model has a new response variable $\tilde{Y} = Y \sum_{k=1}^{q} \beta_k^{(0)} X_k$. SSE(R) has d.f. n (p q).
- $F^* = \frac{(SSE(R) SSE(F))/q}{SSE(F)/(n-p)} \underset{H_0}{\sim} F_{q,n-p}$.

