WLAN

Präsentation von Frederik Wille, David Kirchhausen Monteiro und Joshua Stock

Gliederung

- 1. Einleitung (Joshua)
 - 1. Was ist WLAN?
 - 2. WiFi, WLAN: Begriffsklärung
 - 3. Geschichtlicher Hintergrund
- 2. Funktion (David)
 - 1. Infrastruktur-/ Ad-hoc-Modus
 - 2. Beacon
 - 3. Signal

Gliederung (cont.)

- 3. Technisch (Frederik)
 - 1.IEEE
 - 2.IEEE 802.11 a/b/g/n/ac
 - 3. Übertragungsraten, Frequenzen
 - 4. Hardware
- 4. Sicherheit & Verschlüsselungen (Joshua)
 - 1.WEP, WPA & WPA2
 - 2. Gesundheit
- 5. Zusammenfassung
- 6. Vorführung

WLAN – Was ist das?

- Lokales Funknetz
- Meist Standard der IEEE-802.11 Familie
- Erweiterung von Ethernet-Netz

WLAN

- Anforderungen:
 - Hoher Durchsatz an Daten
 - Viele mögliche Clients
 - Interkonnektion mit leitungsgebundenen Netzen
 - Zuverlässigkeit und Sicherheit
 - Lizenzfreie Frequenzen
 - Dynamische Konfiguration

WLAN, Wi-Fi - Begriffsklärung

- WLAN bezeichnet Funknetzwerk
- Wi-Fi steht für den Funkstandard

- Wi-Fi Alliance wurde 1999 gegründet
 - Zertifiziert IEEE-802.11 Standards
 - Stellt Interoperabilität sicher
 - Soll Inkompatibilitäten vermeiden

Wi-Fi Alliance

- Testet Komponenten nach eigenen Richtlinien
- Produkte, die Prüfung bestehen, dürfen Logo tragen
- Gebühr für jede Geräteprüfung

Geschichtlicher Hintergrund

- Anfänge 1970
- Von Norman Abramson
 - "ALOHAnet": Vernetzung von Inseln um Hawaii mit Universität Honolulu
 - Verband Zentralrechner mit 7Stationen

Hardware anfangs sehr teuer

Geräte

- Access Points
 - Router
 - Repeater
- Klienten
 - Handys
 - Laptops
 - PCs

Infrastruktur-Modus:

- Wireless Acces Point und Router
- Client

IEEE 802.11 Infrastructure

- Wireless Acces Point oder Router bilden Basis
- Senden von "Beacons": Grundlage für Verbindung

Beacon

Beacon:

- Kleines Datenpaket
 - Enthält Informationen über das Netzwerk
 - Wird in festen Intervallen verschickt
 - Wird mit 1MBit/s versendet
 - Kann auch Aufschluss über Signalstärke geben
 - Garantiert keine stabile Verbindung

Beacon

Beacon enthält grundsätzlich 3 Informationen:

- Netzwerkname (SSID)
- Liste unterstützter Übertragungsraten
- Art der Verschlüsselung

Beacon

- Broadcasting kann deaktiviert werden
 - → Router wird unsichtbar
- Clienten nehmen aktiv die Verbindung auf
- gespeicherten Netzwerknamen suchen
- Risiko: Simulation des Netzwerkes durch Angreifer

- WLAN Sicherungsschicht: gleiche Adressierung wie Ethernet
- AccessPoint kann leicht Verbindung zu kabelgebundenen Netzen herstellen
- Es muss zwischen 802.11 (WLAN) und 802.3 (Ethernet) konvertiert werden

Verbindungsaufnahme

- IEEE 802.11: drei verschiedene Frame-Typen
- Control-, Management- und Daten-Frames
- WLAN-Adapter müssen nicht alle verstehen
- AccesPoints müssen alle verstehen

Verbindungsaufnahme

Verbindungsaufnahme

- Ethernetpaket wird in WLAN-Paket eingebettet
- Ethernetpaket kann dabei größer sein als normal

Aufbau größerer WLANs mit mehreren
 Basisstationen führt in der Praxis zu Problemen

- Frequenzbereich der Basisstationen überlappen sich
 - führt zu Störungen
- Kein Datenaustausch zwischen den Basisstationen

Lösungen:

- → Verlagerung der Kontrollfunktion in Basisstation oder Netzwerk
- → Zentrale Instanz kann Frequenzen und Übertragunsraten besser steuern

- Basisstation verliert somit Teil ihrer Funktion
- Muss mit zentraler Instanz kommunizieren können
- An entsprechenden Geräteklassen und Protokollen wird gearbeitet

 Offene Standards wie z.B. Lightweight Asses Point Control

 Problematik: Welches Gerät übernimmt welche Funktion?

- · Keine zentrale Station
- Alle sind gleichwertig
- · Leicht und schnell aufzubauen

IEEE 802.11 ad hoc Netzwerk

Vorraussetzungen:

- · Alle Stationen benutzen die gleiche SSID
- · Optional: die gleiche Verschlüsselung

- Kein Acces Point mit koordinierender Funktion
- Endgeräte müssen diese übernehmen

- Weiterleiten von Datenpaketen zwischen einzelnen Stationen ist nicht vorgesehen
- Auch nicht ohne Weiteres möglich

- Keine Netzwerk-Überblicks-gebenden Informationen werden ausgetauscht
- Nur kleine Reichweite
- Nur für geringe Anzahl von Endgeräten sinnvoll
 - In unmittelbarer Nähe zueinander

- Routing-Fähigkeiten auf den Endgeräten
- Aufwertung: Mobiles Ad-hoc Netzwerk

Moblies Ad-hoc

- Viel Forschung
 - Experimentelle Protokolle
 - Standardisierungsvorschläge
 - Kommerzielle Lösungen

Institute of Electrical and Electronics Engineers

- Kurz IEEE (gespr.: I tripple E)
- Berufsverband
- Gegründet 1963

IEEE Standard 802

- Standardisierung des LAN und MAN
- 25 Hauptstandards
- OSI-Modell: Data Link und Physical Layer
- z.B.: Ethernet(.3), WLAN(.11), Bluetooth(.15.1)

OSI Schichtenmodell

	OSI-Schicht	Einordnung	DoD-Schicht	Einordnung	Protokollbeispiel	Einheiten	Kopplungselemente	
-	Anwendungen (Application)		Anwendung	Ende zu Ende (Multihop)	HTTP FTP	Daten		
6	Darstellung (Presentation)	Anwendungs- orientiert			HTTPS SMTP		Gateway, Content-Switch, Layer-4-7-Switch	
4	Sitzung (Session)				LDAP NCP			
4	Transport (Transport)		Transport		TCP UDP SCTP SPX	TCP = Segmente UDP = Datagramme		
4	Vermittlung (Network)	Transport- orientiert	Vermittlung	Punkt zu Punkt	ICMP IGMP IP IPsec IPX	Pakete	Router, Layer-3-Switch	
4	Sicherung (Data Link)		Netzzugriff		Ethernet Token Ring	Rahmen (Frames)	Bridge, Switch	
	Bitübertragung (Physical)				FDDI ARCNET	Bits, Symbole, Pakete	Repeater, Hub	

IEEE 802.11

- ISM-Bänder
- Unterstandards(z.B. b,g,n,ac)
- mehrere Kanäle
- CSMA/CA

802.11 Protokolle

TABLE 1: IEEE 802.11 PHY STANDARDS										
Release date	Standard	Band (GHz)	Bandwidth (MHz)	Modulation	Advanced antenna technologies	Maximum dala rale				
1997	802.11	2.4	20	DSSS, FHSS	N/A	2 Mbits/s				
1999	802.11b	2.4	20	DSSS	N/A	11 Mbits/s				
1999	802.11a	5	20	OFDM	N/A	54 Mbits/s				
2003	802.11g	2.4	20	DSSS, OFDM	N/A	54 Mbits/s				
2009	802.11n	2.4,5	20, 40	OFDM	MIMO, up to four spatial streams	600 Mbits/s				
2013	802.11ac	5	80	OFDM	MIMO, MU-MIMO, up to eight spatial streams	6.93 Gbits/s				

Kanäle

802.11n

- 2,4 und 5Ghz Band
- Höhere Bandbreite
- MIMO Technologie
- Ab- und Aufwärtskompatibel
- Bis zu 600Mbit/s brutto

Carrier Sense Multiple Access/Collision Avoidance

- Kurz CSMA/CA
- CSMA/CD nicht für Funk geeignet
- CSMA: Erkennung der Kollision
- CA:
 - Verschickt alle Daten
 - Wartet auf Bestätigung

Hidden-/Exposed-Station-Problem

RTS/CTS

- Löst das Hidden-Station-Problem
- Verschickt "Request to Send" Signal
- Schickt Daten erst bei Erhalt des "Clear to Send" Signals

RTS/CTS

15.05.2014

Sicherheiten

• RC4

• WEP

• WPA/WPA2

• Gesundheit

RC4

Auch bekannt unter ARC4 / Arcfour

- Stromverschlüsselung
- Wird in HTTPS, SSH1, WEP und WPA verwendet
- Marke von RSA Security
- Veröffentlichung 1994

RC4: Funktionsweise

- Zufallsfolge wird aus einmaligem Schlüssel erzeugt
- Klartext anschließend Bit für Bit XOR-verknüpft
- Verwendung höchstwahrscheinlich unsicher

WEP

- Keystream = Schlüssel + Initialisierungsvektor IV
- Für jede Nachricht neuer IV

WEP Datenpakete

Nutzdaten + 32-Bit Prüfsumme ("Integrity Value Check")

 Datenpaket: 32-Bit Prüffolge (mittels IV-WEP-Schlüsselkombination + Initialisierungsvektor) + verschlüsselte Daten

WEP - Angriffsmöglichkeiten

- Aktive Teilnehmer erleichtern den Angriff
- Mitlauschen des Gesamtverkehrs
- Daraus lässt sich unverschlüsselter IV ablesen

WEP - Angriffsmöglichkeiten

- Bei Shared Key Authentification:
- "Challenge Response System"
 - Server schickt Challenge
 - Client verschlüsselt und antwortet mit
 IV1 + Ciphertext

WEP - Angriff

- Angreiferin Trudy
 - Hat Challenge1, IV1 und Ciphertext1 mitgelauscht
 - Errechnet sich mittels XOR den Keystream

- Challenge2 beantwortet sie selbst:
- Ciphertext2 = Challenge2 XOR Keystrem
- Erfolgreiche Authentifizierung

Wi-Fi Protected Access (WPA)

- Pseudostandard, statt IEEE 802.11i
- Seit 2003
- Architektur von WEP + Temporal Key Integrity Protocol (TKIP)

WPA

- Durch TKIP: per-packet-key
 - dynamisch pro Paket ein 128-bit-Key
- Außerdem: Message Integrity Check

WPA2

- Implementiert IEEE 802.11i und
- integriert AES
 - Erweiterung von RC4
 - Blockchiffre
 - Einzelne Blöcke werden mit verschiedenen Teilen des Originalschlüssel verschlüsselt
- Authentifizierung: Hauptsächlich als PSK (Pre Shared Key)
 - "personal"

WPA2 Schwachstellen

- Unsichere Passwörter
 - Durch Brute-Force-Attacken zu knacken
- Sichere Passwörter:
 - Groß-/Kleinbuchstaben, Sonderzeichen, "sinnlos"
 - Size matters!! (Je länger, desto sicherer)
 - z.B. RM1gIJSNzivJ9uQB3MP

Gesundheit

- Von Anfang an Bedenken
 - Angeblich Schlaflosigkeit, Schwindel, Kopfschmerzen,...

- Langzeitstudien kaum möglich: zu junge Technologie
- Bisher keine einschlägigen, sich nicht widersprechende Studien

Zusammenfassung/Aussicht

- WLAN hat längst den Weg in unseren Alltag gefunden
 - Kaum noch wegzudenken
 - Relevanz und Verbreitung steigt weiter
 - Hardware wird immer günstiger
- Zukunft: Auch HDMI, USB, SATA über WLAN?
 - 802.11ad in Entwicklung

Vorführung

Quellen

- www.iept.tu-clausthal.de/fileadmin/homes/it-team/vortraege/WLAN.pdf
- IEEE Tabelle: http://electronicdesign.com/site-files/electronicdesign.com/files/archive/electronicdesign.com/content/content/74186/74186 table1.gif
- http://en.wikipedia.org/wiki/IEEE
- http://en.wikipedia.org/wiki/IEEE_802
- http://de.wikipedia.org/wiki/OSI-Modell
- DKR-Skript
- http://www.pcwelt.de/
- http://de.wikipedia.org/wiki/802.11n
- http://upload.wikimedia.org/wikipedia/de/b/b7/WEP-DPaket.PNG
- http://upload.wikimedia.org/wikipedia/de/5/53/WEP-Paket.PNG
- http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/WEP.svg/400px-WEP.svg.png