第一章 磁学基础知识

- 1.1 磁场、磁性和基本磁学量
- 1.2 孤立原子的磁性
- 1.3 宏观物质的磁性质
- 1.4 磁性体的热力学基础

姜书1.1-1,6节

本章回顾总结《电磁学》、《原子物理》等基础课程中的磁性知识,明确和统一相关物理量的定义、符号、单位及公式,建立起深入学习的平台;归纳和总结物质磁性的宏观表现,明确本课程要解决的问题。这些内容都是最基础的,最常用的,也是大家必须掌握和熟悉的。

1.1 磁场、磁性和基本磁学量

磁场: 在场内运动的电荷会受到作用力的物理场。

电磁学给出的定义: (见胡有秋等电磁学p202)

$$\vec{F} = \vec{qv} \times \vec{B}$$

F: 运动电荷 q 受到的力;

q:电荷量;

V: 电荷运动速度;

B 称作**磁通密度**或**磁感应强度**,是表征磁场方向和大小的物理量。其**SI**单位是:特斯拉($T = N A^{-1}m^{-1} = Wb m^{-2}$)。

物质的磁化状态:磁化强度矢量

$$ec{M} = rac{\sum ec{\mu}_i}{\Delta V}$$

 $(A m^{-1})$

空间总磁场是传导电流和磁化电流产生的磁感应强度之矢量和。

上述磁场定义下,磁场强度 H 是一个辅助矢量。

$$\overrightarrow{H} = \frac{\overrightarrow{B}}{\mu_0} - \overrightarrow{M}$$

M: 物质的磁化强度;

 μ_0 : 真空磁导率:

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{N} \cdot \mathrm{A}^{-2} (\mathrm{H} \cdot \mathrm{m}^{-1})$$

没有磁介质存在(M=0)只有传导电流产生的磁场时,表述磁场的两个物理量之间才存在着简单关系: $B=\mu_0H$ 磁场强度的单位是: A \mathbf{m}^{-1} 。

介质方程: 给出磁化状态和磁场的关系

$$\vec{M} = \chi \vec{H}$$

χ是物质的磁化率,一般是温度和磁场的函数,偶尔是常数。

磁性:

磁性是物质的一种基本属性,正像物质具有质量一样,它的特征是:物质在非均匀磁场中要受到磁力的作用。在具有梯度的磁场中,物质受力的大小和方向反映着物质磁性的特征。

$$\vec{F} = (\vec{\mu} \cdot \vec{\nabla})\vec{B}$$
$$\vec{\mu} = \Delta V \cdot \chi \vec{H}$$

磁化率的正负和大小反映出物质磁性的特征。大体可以分为: (通常人们习惯说有磁物质和无磁物质是不科学的)

强磁性物质: $\chi>1$, 例: 铁, Fe_3O_4

弱磁性物质:

顺磁性物质: $0<\chi<<1$, 例: 氧气,铝

磁性被定义为物质在不均匀磁场中会受到磁力作用的一种属 性,显然不能再定义磁场就是使物质受到磁力作用的场,这样相 互定义是不科学的,因此磁场是由在场内运动着的带电粒子所受 到的力来确定的,这种力称作洛伦兹(Lorentz)力,它的作用 是使带电粒子的路径发生弯曲,洛伦兹力的大小正比于电荷量 q, 电荷运动速度 v和磁通密度 B的乘积,其方向则垂直于 v和 B所形成的平面,它和磁性物质在不均匀磁场中受到的磁力相比, 性质上是完全不相同的,这就避免了又用磁性定义磁场所产生的 问题。

历史上曾用**磁荷**受力来定义磁场,所以先有了**磁场强度**的 定义,在确定用运动电荷受力确定磁场后,就只能选用磁通密 度(磁感应强度)来表述磁场了。 磁化强度M和磁极化强度J:都是表述物质磁化状态的量。

磁化强度 M 定义为物质单位体积的磁矩: (Sommerfeld)

$$\overrightarrow{M} = \frac{\sum_{\iota} \overrightarrow{\mu}_m}{V}$$

 μ_m 是一个面积为 s 的电流为 i 的环形电流的磁矩。单位是 $\mathbf{A} \cdot \mathbf{m}^2$,因此<mark>磁化强度的单位是 $\mathbf{A} \cdot \mathbf{m}^{-1}$,它和磁场强度 H 的单位是一样的。</mark>

磁极化强度 J 定义为物质单位体积的磁偶极矩: (Kennelly)

$$\vec{J} = \frac{\sum_{l} \vec{j}_{m}}{V}$$

 $j_{\rm m}$ 是一个长度为 l , 磁荷为 $\pm q_{\rm m}$ 的磁偶极子, 其单位是: Wb · m,因此磁极化强度的单位是: Wb · m⁻² (和磁感应强度 B 单位 T 一致)

两个物理量之间的关系为:

$$\overrightarrow{J} = \mu_0 \overrightarrow{M}$$

有些文献中两个量的名称不加区别,但我们可以从它 使用的单位中加以区分。 磁化强度 M 和磁场强度 H 之间的关系是:

$$\overrightarrow{M} = \chi \overrightarrow{H}$$

该关系中,磁化强度和磁场强度是同量纲的,所以这里的磁化率是无量纲的,是一个纯粹的数字,但应注意到由于磁化强度定义为单位体积的磁矩,所以公式中的磁化率χ暗含着**单位体积**磁化率的意义。

在理论推导和测量中,常常使用另外两种定义:

$$\chi_m = \frac{\chi}{d} d$$
 是材料的密度(kg·m⁻³) m³/kg

摩尔磁化率:

$$\chi_{\text{mol}} = n\chi_m = n\frac{\chi}{d}$$
 n 为mol质量(kg · mol⁻¹) m³/mol

在查阅文献资料时要注意到几种磁化率的不同使用。

在文献中常使用比磁化强度σ的概念: 单位: $A \cdot m^2 \cdot kg^{-1}$

$$\sigma = \frac{M}{d} = \chi_m H$$

d 是物质的密度, σ 实际是单位质量物质的磁矩矢量和。

有磁介质时上述物理量之间的关系:

$$\overrightarrow{B} = \mu_0(\overrightarrow{H} + \overrightarrow{M}) = \mu_0 \overrightarrow{H} + \overrightarrow{J}$$

$$\overrightarrow{B} = \mu_0(1 + \chi)\overrightarrow{H} = \mu_0 \mu \overrightarrow{H}$$

$$\overrightarrow{M} = \chi \overrightarrow{H}$$

 $\mu \mu_0$ 称作绝对磁导率, $\mu = 1 + \chi$ 称作相对磁导率,是一个无量纲量,为简便起见,也称它为(介质)磁导率。

磁化率 χ 和磁导率 μ 以不同方式表述了材料对外磁场的响应,反映了材料最重要的性质。因为是两个矢量之间的关系,所以一般情况下它们都是张量。

单位制问题:

电磁学的单位由于历史的原因曾有过多种,有静电制 (CGSE),电磁制(CGSM),高斯制,以及目前规定通用的国际单位制 (MKSA),加之历史上对磁性起源有过不同的认识,至目前为止,磁学量单位的使用上仍存在着一些混乱,早期 文献当然使用高斯制,目前虽建议采用国际单位制,但高斯单位制仍相当常见。因此必须熟悉两种单位制之间的换算:

1 CGSM
$$(q)=10 C \cong 3 \times 10^{10} CGSE (q)$$

国际单位制(SI)

高斯单位制 (EMU)

$$B=\mu_0(H+M)$$

$$(Gs) B=H+4\pi M$$

$$M = \chi H$$

$$(Gs) M = \chi_1 H(Oe)$$

没有μ₀!

$$\mu=1+\chi$$

$$\mu = 1 + 4\pi \chi_1$$

$$B = \mu \mu_0 H$$

$$B=\mu H$$

CGSE、CGSM间电流单位的转换

MKS	A 制	高期	折制					
电流观点	磁荷观点	电流观点	磁荷观点					
$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2}$	$d\vec{H} = \frac{1}{4\pi\mu_0} \frac{dq_m}{r^2} \hat{r}$	$d\vec{B} = \frac{1}{c} \frac{Id\vec{l} \times \hat{r}}{r^2}$	$d\bar{H} = \frac{dq_m}{r^2}\hat{r}$					
$\vec{m} = I\vec{S}$	$\bar{p}_{\scriptscriptstyle m}=q_{\scriptscriptstyle m}\bar{l}$	$\vec{m} = \frac{1}{c} \vec{IS}$	$\vec{p}_{\scriptscriptstyle m} = q_{\scriptscriptstyle m} \vec{l}$					
$\vec{B} = \mu_0 (\vec{H} + \vec{M})$	$\vec{B}=\mu_0\vec{H}+\vec{J}$	$\vec{B} = \vec{H} + 4\pi \vec{M}$	$\vec{B} = \vec{H} + 4\pi \vec{J}$					
$\vec{M} = \chi \vec{H}$	$\vec{J}=\chi\mu_0\vec{H}$	$\vec{M}=\chi\vec{H}$	$\vec{J} = \chi \vec{H}$					
$\vec{B} = \mu$	$\mu_0 \vec{H}$	$\vec{B} = \mu \vec{H}$						
$\mu = 1$	1 + χ	$\mu = 1 + 4\pi\chi$						

MKSA 制	高斯制
$\varepsilon = -\frac{d\Phi_{B}}{dt}$	$\varepsilon = -\frac{1}{c} \frac{d\Phi_B}{dt}$
$\vec{\nabla}\cdot\vec{D}=\rho_{\epsilon 0}$	$\vec{\nabla}\cdot\vec{D}=4\pi\rho_{e0}$
$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$\vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$
$\vec{\nabla} \cdot \vec{B} = 0$	$\vec{\nabla} \cdot \vec{B} = 0$
$\vec{\nabla} \times \vec{H} = \vec{j}_0 + \frac{\partial \vec{D}}{\partial t}$	$\vec{\nabla} \times \vec{H} = \frac{4\pi}{c} \vec{j}_0 + \frac{1}{c} \frac{\partial \vec{D}}{\partial t}$

提示:

$1 \text{ CGSM } (q) = 10 \text{ C} \cong 3 \times 10^{10} \text{ CGSE } (q)$

1. 高斯单位制中,因为μ₀=1,磁偶极矩和磁矩是没有区别的,磁化强度和磁极化强度也是没有区别的,都称作磁化强度,单位是:高斯(Gs),但在国际单位制里,两者是不同的,所以换算关系不同:

$$J: 1 \text{ Gs} = 4\pi \times 10^{-4} \text{ T}$$

$$M: 1 \text{ Gs}=10^3 \text{ A m}^{-1}$$

而磁感应强度 B 在两个单位制中的变换是:

这是由于两个物理量在两种单位制中的关系不同造成的。

2. 从实用观点看,单位制问题,主要就是两种单位制之间的 换算问题,解决办法就是建立一个换算表。

磁学量	符号	SI单位制	高斯单位	emu→SI
磁场强度	H	$A \cdot m^{-1}$	Oe	$ imes 10^3/4\pi$
磁感应强度	В	T	Gs	× 10 ⁻⁴
磁化强度	M	$A \cdot m^{-1}$	Gs	$\times 10^3$
磁通量	Φ	Wb	Mx	×10-8
磁矩	$\mu_{ m m}$	$A \cdot m^2$	emu	×10 ⁻³
磁偶极矩	$j_{ m m}$	Wb · m	emu	$\times 4\pi \times 10^{-10}$
磁化率	X			$\times 4\pi$
磁导率	μ			×1
磁极化强度	J	Т	Gs	$\times 4\pi \times 10^{-4}$

附表 主要磁学量在两种单位制中的换算关系

			·			T
7. 24 县	然 旦.	S	I	Co	GS	由 SI 单位 换算成 CGS
磁学量	符号	单位名称	单位符号	单位名称	单位符号	单位时的 相乘因数
磁场强度	Н	安培/米	A/m	奥斯特	Oe	$4\pi \times 10^{-3}$
磁感应强度 (磁通量密度)	В	特斯拉	Т	高斯	Gs	104
磁化强度	M	安培/米	A/m	高斯	Gs	10-3
磁极化强度	J	特斯拉	T	高斯	Gs - A	104
磁极强度	m	韦伯	Wb	电磁单位	i di	$10^{8}/4\pi$
磁通量	Φ	韦伯	Wb	麦克斯韦	Mx /	108
磁偶极矩	j_m	韦伯・米	Wb·m	电磁单位		$10^{10}/4\pi$
磁矩	μ	安培平方米	A·m ²	电磁单位		10 ³
磁化率(相对)	χ					$1/4\pi$
磁导率(相对)	μ		of the garden of the			1
真空磁导率	μ_0	亨利/米	H/m			$10^{7}/4\pi$

摘自姜书p471

应为: $\frac{1}{4\pi} \times 10^4$

磁学量的换算-MKSA 和 CGS 制

		~~ , <u>~</u>	E H 3 17 C 3 C			
				转	奂比	
	量	符号	MKSA	MKSA 值	CGS 值	_ CGS 单位
			单位	CGS 值	MKSA 值	
	磁极	m	Wb	1.257×10^{-7}	7.96×10^6	
	磁通	Φ	Wb	1×10^{-8}	1×10^8	麦克斯韦(Mx)
>	磁矩	Μ	Wb m	1.257×10^{-9}	7.96×10^{8}	
>	磁化强度	I	T	1.257×10^{-3}	7.96×10^2	G
	磁通密度	\boldsymbol{B}	T	1×10^{-4}	1×10^4	G
	磁场强度	H	A m ⁻¹	7.96×10	1.257×10^{-2}	Oe
	磁势	$oldsymbol{\phi}_{\mathrm{m}}$				±/6/0015
	磁通势	$V_{\mathfrak{m}}$	Α	7.96×10^{-1}	1.257	吉伯(Gilbert)(Gb)
	磁化率	χ	H m ⁻¹	1.579×10^{-5}	6.33×10^4	
	相对磁化率	$\frac{\overline{\chi}}{\chi}$		$=4\pi\chi$ (CGS)		
	磁导率		H m ⁻¹	1.257×10^{-6}	7.96×10^{5}	
	相对磁导率	$\frac{\mu}{\mu}$		$=\mu$ (CGS)		
	真空磁导率	μ_0 =4 π ×	10 ⁻⁷ H m ⁻¹			=1
	退磁因子	N		7.96×10^{-1}	1.257×10	
	瑞利常数	η	H/A	1.579×10^{-8}	6.33×10^{7}	Oe ⁻¹
	磁阻	$R_{ m m}$	\mathbf{H}^{-1}	7.96×10^{7}	1.257×10^{-8}	吉伯/麦克斯韦
	电感	L	H	1×10^{-9}	1×10^9	绝对亨利
	各向异性常数	K	3	1 > 2 10-1		
	能量密度	$E_{ m m}$	J m ⁻³	1×10 ⁻¹	10	erg cm ⁻³
	正常霍尔系数	R	$\mathbf{M}^2 \mathbf{A}^{-1}$	1.257×10^{-4}	7.96×10^3	Ω cm Oe ⁻¹

Wb-韦伯,T-特斯拉,A-安培,H-亨利,J-焦耳, Ω -欧姆,Mx-麦克斯韦,G-高斯 Oe-奥斯特

$$1.257 = 4\pi/10, \ 7.96 = 10^2/4\pi, \ 1.579 = (4\pi)^2/10^2, 6.33 = 10^3/(4\pi)^2$$

磁偶极矩 磁极化强度

B. D. Cullity, Introduction to magnetic materials

TABLE A3.1

<i>Н</i> Ф	$\frac{\text{Oe}}{\text{A} \cdot \text{m}^{-1}} = \frac{10^3}{4\pi} = 79.6$ $\frac{\text{Mx}}{\text{Wb}} = \frac{\text{Mx}}{\text{V} \cdot \text{s}} = 10^{-8}$
-	$\frac{Mx}{Wb} = \frac{Mx}{V \cdot s} = 10^{-8}$
B	
	$\frac{G}{T} = \frac{G}{Wb \cdot m^{-2}} = 10^{-4}$
m	$\frac{emu}{A \cdot m^2} = \frac{erg \cdot Oe^{-1}}{A \cdot m^2} = \frac{10A \cdot cm^2}{A \cdot m^2} = \frac{emu}{J \cdot T^{-1}} = 10^{-3}$
M	$\frac{\text{emu} \cdot \text{cm}^{-3}}{\text{A} \cdot \text{m}^{-1}} = \frac{(\text{erg} \cdot \text{Oe}^{-1}) \cdot \text{cm}^{-3}}{\text{A} \cdot \text{m}^{-1}} = 10^{3}$
σ	$\frac{emu \cdot g^{-1}}{(A \cdot m^2) \cdot kg^{-1}} = \frac{(erg \cdot Oe^{-1}) \cdot g^{-1}}{(A \cdot m^2) \cdot kg^{-1}} = 1$
J	$\frac{\text{emu} \cdot \text{cm}^{-3}}{\text{T}} = \frac{(\text{erg} \cdot \text{Oe}^{-1}) \cdot \text{cm}^{-3}}{\text{T}} = 10^{3} \mu_{0} = 4\pi \cdot 10^{-1}$
χν	$\frac{(emu \cdot Oe^{-1}) \cdot cm^{-3}}{(A \cdot m^2) \cdot (A \cdot m^{-1})^{-1} \cdot m^{-3}} = 4\pi$
Хм	$\frac{(\text{emu} \cdot \text{Oe}^{-1}) \cdot \text{g}^{-1}}{(\text{A} \cdot \text{m}^2) \cdot (\text{A} \cdot \text{m}^{-1})^{-1} \cdot \text{kg}^{-1}} = 4\pi \cdot 10^{-3}$
$\mu=rac{B}{H}$	$\frac{G \cdot Oe^{-1}}{T \cdot (A \cdot m^{-1})^{-1}} = \mu_0 = 4\pi \cdot 10^{-7}$
$\mu_{ m r}$	$rac{\mu_{ ext{SI}}}{\mu_0} = \mu_{ ext{r}} = \mu_{ ext{cgs}}$
W	$\frac{\text{erg} \cdot \text{cm}^{-3}}{\text{J} \cdot \text{m}^{-3}} = 0.1$
N	$rac{N_{ m cgs}}{N_{ m SI}} = 4\pi$
(BH)	$\frac{G \cdot Oe}{T \cdot (A \cdot m^{-1})} = \frac{G \cdot Oe}{J \cdot m^{-3}} = 4\pi \cdot 10^{1} = 126$
	$\frac{\text{MG} \cdot \text{Oe}}{\text{kJ} \cdot \text{m}^{-3}} = 4\pi \cdot 10^{-2} = 0.126$
•	M σ J $\chi_{\rm V}$ $\chi_{\rm M}$ $\mu=\frac{B}{H}$ $\mu_{\rm r}$ W

Mx = maxwell, G = gauss, Oe = oersted, Wb = weber, V = volt, s = second, T = tesla, m = meter, A = ampere, J = joule, kg = kilogram, g = gram, cm = centimeter, $\mu_0 = 4\pi \times 10^{-7}$.

附录三

重要的物理常数*

光速	$c = 2.99792458 \times 10^8 \text{ m} \cdot \text{s}^{-1}$
重力加速度	$g = 9.80665 \mathrm{m/s^2}$
万有引力常数	$G = 6.67259 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
普朗克常数	$h = 6.6260755 \times 10^{-34} \text{ J} \cdot \text{s}$
	$\hbar = h/2\pi = 1.05457266 \times 10^{-34} \text{ J} \cdot \text{s}$
热功当量	$J = 4.1840 \mathrm{J}(15^{\circ}\mathrm{cal})^{-1}$
玻尔兹曼常数	$k = 1.380658 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$
0° C 时的能量 kT 的值	$kT_0 = 3.771 \times 10^{-21} \mathrm{J}$
阿伏加德罗常数	$N = 6.0221367 \times 10^{23} \text{ mol}^{-1}$
电子质量	$m = 9.1093897 \times 10^{-31} \text{ kg}$
电子电荷 (绝对值)	$e = 1.60217733 \times 10^{-19} $ C
电子荷质比	$e/m = 1.75881962 \times 10^{11} \text{ C} \cdot \text{kg}^{-1}$
法拉第常数	$F = Ne = 9.6485309 \times 10^4 \text{C} \cdot \text{mol}^{-1}$
玻尔磁子	$M_{\rm B} = 1.16540715 \times 10^{-29} \text{Wb·m}$ 9.2732×10 ⁻²⁴ A·m ²
旋磁比	$v = 1.10509896 \times 10^5 \text{ g} \cdot \text{mA}^{-1} \cdot \text{s}^{-1}$
磁通量子	$\Phi_0 = h/2e = 2.06783461 \times 10^{-15} \text{ Wb}$

^{*}大多数数据来自 1986 年的 CODATA

各种能量单位的换算*

eV	cm ⁻¹	K	J	cal	MA/m ⁺
1	$=0.80655 \times 10^4$	$=1.1604\times10^4$	$=1.60218\times10^{-19}$	$=3.8292\times10^{-20}$	$=1.37477 \times 10^4$
1.23985×10^{-4}	= 1	=1.43872	$=1.98646\times10^{-23}$	$=4.7476\times10^{-24}$	=1.70450
0.86177×10^{-4}	=0.69506	= 1	$=1.38071\times10^{-23}$	$=3.2999\times10^{-24}$	=1.18473
0.62415×10^{19}	$=0.50341\times10^{23}$	$=0.72426\times10^{23}$	= 1	$=2.3900\times10^{-1}$	$=8.5806\times10^{22}$
2.61151×10^{19}	$=2.10631\times10^{23}$	$=3.03040\times10^{23}$	= 4.1840	= 1	$=3.5901\times10^{23}$
7.27396×10 ⁻⁵	=0.58668	= 0.84407	$=1.16542\times10^{-23}$	$=2.7854\times10^{-24}$	= 1

^{*}此表的数据是根据 CODATA 工作小组 1973 年的推荐。参见 CODATA Bulletin 11, 7, Table IV(1973)

 $^{^+}$ 这列表示磁场 H 的值,当该场作用在一个玻尔磁子 $(M_{_{
m B}})$ 上时,给出的相应的能量为 $M_{_{
m B}}H$ 。

各种磁场单位的换算

A m ⁻¹ (安培/米)	Oe(奥斯特)	T* (特斯拉)	备注
1 mA m ⁻¹	$=1.26\times10^{-5}\mathrm{Oe}$	$=1.26\times10^{-9}\mathrm{T}$	1×10 ⁻⁵ G=1 γ (gamma)
10 mA m ⁻¹	$=1.26\times10^{-4}\mathrm{Oe}$	$=1.26\times10^{-8}\mathrm{T}$	
100 mA m ⁻¹	=1.26 mOe	$=1.26\times10^{-7}\mathrm{T}$	
1 A m ⁻¹	=12.6 mOe	=1.26 μ T	
10 A m ⁻¹	=0.126 Oe	=12.6 μ T	地磁场=0.15-0.30Oe
100 A m ⁻¹	=1.26 Oe	=0.126 mT	
1 kA m ⁻¹	=12.6 Oe	=1.26 mT	
10 kA m ⁻¹	=126 Oe	=12.6 mT	可由永磁体产生
100 kA m ⁻¹	=1.26 kOe	$=0.126 \text{ T}^{-3}$	可田水磁件/王
1 MA m ⁻¹	=12.6 kOe	=1.26 T	可由电磁铁产生
10 MA m ⁻¹	=126 kOe	=12.6 T	可由超导螺线管产生
100 MA m ⁻¹	≃1.26 MOe	=126 T	可由磁通压缩产生

T 是磁通密度的单位,但有时也用作磁场的单位。在这种情况下应采用 $\mu_0 H$ 且最好称为"感应场"。

此表中H与B的对应值是在真空中的,几乎可用于弱磁介质。

1.2 孤立原子的磁性

关于物质磁性起源曾有过分子电流学说和磁偶极矩学, 现代科学认为物质的磁性来源于组成物质中原子的磁性:

- 1. 原子中外层电子的轨道磁矩
- 2. 电子的自旋磁矩
- 3. 原子核的核磁矩

由于质量关系,电子磁矩比原子核磁矩大3个量级,因此 宏观物质的磁性主要由电子磁矩所决定。本节考虑孤立原子 的磁矩。凝聚态物质中构成原子的磁矩在第2章中介绍。

一、电子轨道运动产生的轨道磁矩

经典地看:一个绕原子核运动的电子,相当于一个环形电流,其**轨道磁矩**为:

$$\mu_l = i \cdot A = \frac{e}{T}A$$
 A 是环形轨道面积,

电子具有质量 m,其轨道运动同时具有角动量 p_l ,在圆形轨道近似下 $p_l = m\omega r^2$, $\mu_l = \frac{1}{2}e\omega r^2$

计入方向

$$\vec{\mu}_l = -\frac{e}{2m} \vec{p}_l = -\gamma_l \vec{p}_l$$

$$\gamma_l = \frac{e}{2m}$$
 称作**轨道旋磁比**

原子中的电子应该服从量子力学规律, 其运动状态应

该由波函数 $\Psi_{nlm,m_s}(r)$ 确定,**角动量是量子化的**,当电子运 动的主量子数为n时,

角动量的绝对值为: $p_l = \hbar \sqrt{l(l+1)}$ 其中 l 是角量子数,

式中, l 的可能值为: $l = 0, 1, 2, \dots (n-1)$

所以电子的轨道磁矩为:

$$\mu_l = \sqrt{l(l+1)} \frac{e\hbar}{2m}$$

$$\mu_{B} = \frac{e\hbar}{2m}$$

 $\mu_B = \frac{e\hbar}{2m}$ 可以作为原子磁矩的基本单位,称作**玻尔磁子**

$$\mu_B = 9.2726 \times 10^{-24} \,\mathrm{A \cdot m}^2$$

如果使用磁偶极矩的 概念,其单位是:

$$\mu_B = \frac{\mu_0 e\hbar}{2m} = 1.16528 \times 10^{-29} \,\text{Wb} \cdot \text{m}$$

l = 0时 s 态时电子的轨道角动量/磁矩都等于0,这是一种特殊的状态。而 $l \neq 0$ 时电子轨道磁矩不为 0,但其绝对值并不是玻尔磁子的整数倍。另外,轨道角动量/磁矩的空间取向也是量子化的,由磁量子数 $m_1 = 0$, ± 1 , ± 2 , ± 3 ,…, $\pm l$ 的(2l + 1)个分立值确定,所以,磁矩在磁场方向的投影是玻尔磁子的整数倍

电子的 內 空间量子化

二、电子的自旋磁矩

电子磁矩的第二个来源是电子具有**自旋磁矩,它是电子的本征性质,电子的自旋角动量取决于自旋量子数**, $s = \frac{1}{2}$ 自旋角动量的绝对值: $p_s = \sqrt{s(s+1)}\hbar = \frac{\sqrt{3}}{2}\hbar$

而自旋角动量在外场中的分量只取决于自旋量子数 $m_s = \pm \frac{1}{2}$

$$\therefore p_s \big|_z = m_s \hbar = \pm \frac{1}{2} \hbar$$

实验表明:与自旋角动量相联系的自旋磁矩μς 在外磁场方向上的投影刚好等于一个玻尔磁子。

$$\therefore \mu_s = -\gamma_s p_s, \quad \gamma_s = \frac{e}{m} \quad \text{称作自旋旋磁比}$$
 (两倍于轨道的)

电子具有自旋磁矩清楚而直接的证明是 Stern-Gerlah所做的使原子束在不均匀磁场中偏转的实验,而理论证明则是 Dirac建立的相对论量子力学。

一直有人把电子自旋看作是电子的自转运动(如图所示,把原子中电子绕原子核做轨道运动和自旋运动比作行星绕太阳做轨道运动和自转运动。这样理解是错误的,电子具有自旋及自旋磁矩是相对论量子力学的结果,是包括电子在内的微观粒子(例如中子)都具有的内禀性质。

把电子的自旋磁矩看作是电子 自转运动产生的磁矩,除去理论计 算难以解决外,也难以解释电子自 旋磁矩的空间量子化,而在相对论 量子力学里它们都可以得到很好的 解释。

---见李书p27-28

从上面的讨论中,不难看到:不论是自旋磁矩,还是轨道磁矩,**在外磁场中的观察数值**都是玻尔磁子μ_B的整数倍。这就是选它做磁矩单位的理由。

知道了电子的轨道磁矩和自旋磁矩后,还需要知道它们是<mark>如何耦合</mark>的,才能计算出原子的磁矩,特别在核外电子多于一个的情况下,还必须考虑电子的分布规律。

在多电子原子中,决定电子所处状态的准则有两条:

- **1. Pauli不相容原理:** 在已知体系中,同一(n, l, m_l, m_s)量子态上只能有一个电子。
- 2. 能量最小原理: 体系能量最低时, 体系最稳定。

三、原子的电子分布

核外电子结构用四个量子数 $n.l.m_l.m_s$ 表征: (多电子体系)电子轨道大小由主量子数 n 决定

$$n = 1, 2, 3, 4,....$$
的轨道群
又称为 $K, L, M, N,....$ 的电子壳层

轨道的形状由角动量量子数1决定

$$l = 0, 1, 2, 3, \dots n-1$$

又称为s, p, d, f, g,电子

当施加磁场在一个原子上时,平行于磁场的角动量分量也是量子化的。l在磁场方向上的分量由磁量子数 m_l 决定

$$m_l = l, l-1, l-2,.....0,....-(l-1), -l$$
 共有(2 $l+1$)个值

电子**自旋量子数** 由 m_s 决定 $S = \pm \frac{1}{2}$

属于 M 电子壳层的各种电子态

基态原子的电子在原子轨道中填充的顺序是:

1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d

Table 3.1. Electronic configuration of elements.

									L	evels	and r	numbe	rofs	tates												
	K 2				M 18		M 18		M 18		N 32						O 50			P 72					Q	
ents	1 s 2	2 s 2	2p 6	35	3p 6	3 <i>d</i> 10	45	4 <i>p</i> 6	4 <i>d</i> 10	4 <i>f</i> 14	5 <i>s</i> 2	5 <i>p</i>	5 <i>d</i> 10	5 <i>f</i> 14	5g 18	6s 2	6 <i>p</i>	6 <i>d</i> 10	6 <i>f</i> 14	6g 18	6 <i>h</i> 22	7s ··· 2	Ground terms			
1 H 2 He	1 2																						${}^{2}S_{1/2}$ ${}^{1}S_{0}$			
3 Li :	2	1																					$^{2}S_{1/2}$			
10 Ne	2	2	6	1																			1S ₀ 2S _{1/2}			
:	:	:	:	:	6																		150			
19 K 20 Ca	2	2	6	2	6		1 2																2S _{1/2}			
21 Sc 22 Ti 23 V 24 Cr	2 2 2 2	2 2 2 2	6 6 6	2 2 2 2	6 6 6	1 2 3 5	2 2 2 1																² D _{3/2} ³ F ₂ ⁴ F _{3/2} ⁷ S ₃ ⁶ S _{5/2} ⁵ D ₄			
26 Fe 27 Co 28 Ni 29 Cu	2 2 2 2	2 2 2 2	6 6 6	2 2 2 2	6 6 6	6 7 8 10	2 2 2 1																${}^{3}F_{4}$ ${}^{2}S_{1/2}$			
:	:	:	:	:	:	:	:	6															1S ₀			
37 Rb 38 Sr 39 Y 40 Zr 41 Nb	2 2 2 2 2	2 2 2 2 2	6 6 6 6	2 2 2 2 2	6 6 6 6	10 10 10 10 10	2 2 2 2 2	6 6 6 6	1 2 4 5		1 2 2 2 1 1												2S _{1/2} 1S ₀ 2D _{3/2} 3F ₂ 6D _{1/2} 7S ₃ 6S _{5/2} 5F ₅ 4F _{9/2}			
43 Tc 44 Ru 45 Rh 46 Pd 47 Ag :	2 2 2 2 2 2	2 2 2 2 2 2	6 6 6 6	2 2 2 2 2 2	6 6 6 ::	10 10 10 10 10	2 2 2 2 2 2	6 6 6 6 :	5 7 8 10 10		1 1 0 1												6S _{5/2} 5F ₅ 4F _{9/2} 1S ₀ 2S _{1/2} :			
	1 H 2 He 3 Li 10 Ne 11 Na 11 Na 11 Sc 12 Ti 22 Ti 23 Cr 24 Cr 25 Mn 26 Fc 27 Co 28 Ni 29 Cu 30 Zn 36 Kr 37 Rb 38 Sr 39 Y 40 Nb 42 Mo 43 Tc 44 Rh 45 Rh 46 Pd	2 1s ents 2 1 H 1 2 He 2 3 Li 2 10 Ne 2 11 Na 2 11 Sc	2 1s 2s 2s 2s 2s 2s 2s 2	2 8 2s 2p 2s 2 6 1 H 1 2 He 2 3 Li 2 1 :	2 8 1s 2s 2p 3s 2s 2 6 2 1 H 1 2 He 2 3 Li 2 1 :	2 8 18 1s 2s 2p 3s 3p 2 1 H 1 2 He 2 3 Li 2 1 1 Na 2 2 6 1 1 Na 2 2 6 1 1 Na 2 2 6 2 6 11 Na 2 2 6 2 6 11 Sc 2 2 6 2 6 21 Sc 2 2 6 2 6 22 Ti 2 2 6 2 6 23 V 2 2 6 2 6 24 Cr 2 2 6 2 6 25 Mn 2 2 6 2 6 26 Fe 2 2 6 2 6 27 Co 2 2 6 2 6 28 Ni 2 2 6 2 6 29 Cu 2 2 6 2 6 20 Ca 2 2 6 2 6 21 Sc 2 6 2 6 22 Ti 2 6 6 6 23 V 2 6 6 6 24 Cr 2 6 6 6 25 Mn 2 7 6 7 26 Co 2 7 6 7 27 Co 2 8 6 7 28 Ni 8 8 7 29 Cu 2 8 6 7 30 Zn 2 8 6 8 7 31 Nb 2 8 6 8 7 32 6 6 6 7 33 Sr 2 8 6 8 7 34 Sr 2 8 6 8 7 35 Sr 2 8 6 8 7 36 Kr 2 8 6 8 7 37 Rb 2 8 6 8 7 38 Sr 2 8 6 8 7 39 Y 8 8 8 7 20 6 8 7 30 Zn 2 8 6 8 7 31 Nb 2 8 6 8 7 32 6 8 6 8 7 33 Sr 2 8 6 8 7 34 Sr 2 8 6 8 7 35 Sr 2 8 6 8 7 36 Sr 2 8 6 8 7 37 Rb 2 8 6 8 7 38 Sr 2 8 6 8 7 39 Y 8 8 8 7 30 Sr 2 8 6 8 7 31 Sr 2 8 6 8 7 32 6 8 8 7 33 Sr 2 8 6 8 8 7 34 Sr 2 8 6 8 8 8 8 7 35 Sr 2 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 8 18 1s 2s 2p 3s 3p 3d 2 10 1 H 1 2 He 2 3 Li 2 1 :	The color of the	The color of the	R	R	R	R	R	2 8 18 32 50 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 2 2 6 2 6 10 2 6 10 14 2 6 10 14 1 H 1 2 He 2 3 Li 2 1 :	R	R	R	R	R	R	No. No.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			

Table 3.1. (contd.)

											I	Levels a	nd n	umbe	r of st	ates									
			K 2		L 8		M 18		N 32			O 50							2						
Element		s	1s 2	2s 2	2 <i>p</i> 6	3s 2	3 <i>p</i> 6	3 <i>d</i> 10	48	4 <i>p</i> 6	4 <i>d</i> 10	4 <i>f</i> 14	5s 2	5 <i>p</i> 6	5 <i>d</i> 10	5 <i>f</i> 14	5g 18	6 <i>s</i> 2	6 <i>p</i>	6 <i>d</i> 10	6 <i>f</i> 14	6g 18	6 <i>h</i> 22	7s ··· 2	Ground terms
	55 56	Cs Ba	2	2	6	2	6	10	2	6	10		2	6				1							² S _{1/2}
Kare earth elements	57 58 59 60 61 62 63 64 65 66 67 68	La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6	10 10 10 10 10 10 10 10 10 10 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6	10 10 10 10 10 10 10 10 10 10	1 (3) 4 (5) 6 7 7 8 (9) (10) (11)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6	1 (0) 0 (0) 0 0 1 1 (1) (1)			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							² D _{3/2} ³ H ₄ ⁵ I ₄ ⁷ F ₄ ⁸ S _{7/2} ⁹ D ₂ ⁸ H _{17/2}
5d transition elements	70 71 72 73 74 75 76 77 78 79 80 :	Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 10 10 10 10 10 10 10 10 10 10 10 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6 6	10 10 10 10 10 10 10 10 10 10 10 10 10	13 14 14 14 14 14 14 14 14 14 14 14 14	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6 6 6	0 0 1 2 3 4 5 6 7 9 10 10 10			2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2	6					1	² F _{7/2} ¹ S ₀ ² D _{3/2} ³ F ₂ ⁴ F _{3/2} ⁵ D ₀ ⁶ S _{5/2} ⁵ D ₄ ⁴ F _{9/2} ³ D ₃ ² S _{1/2} ¹ S ₀ ² S _{1/2}
	102	No	:	:	6	:	6	10	:	6	10	14	:	6	10	(13)		:	6	(1)				:	51/2

占满电子的支壳层对原子磁矩无贡献

当电子填满某一支电子壳层时,各电子的轨道运动和自旋取向就占据了所有可能方向,形成一个球形对称集合,这样电子自身具有的动量矩和磁矩必然相互抵消,因而,凡是占满电子的支壳层,其总动量矩和总磁矩都为零。只有未填满电子的支壳层上的电子才会对原子磁矩作出贡献。这种未满支壳层称为磁性电子壳层。

当某未满支壳层中包含多个电子时,该支壳层的电子按角动量耦合原则耦合成一个总角动量。原子磁矩是和这个总角动量相联系的。

电子角动量耦合的方式有两种:

1. *L*—*S*耦合: 适用于原子序数较小的原子,在这类原子中,不同电子之间的轨道-轨道耦合和自旋-自旋耦合较强,而同一电子的轨道-自旋耦合较弱,因而,各个电子的轨道角动量和自旋角动量先分别合成为一个总轨道角动量和总自旋角动量,然后,总轨道角动量和总自旋角动量再耦合成为该支壳层电子的总角动量。

$$\vec{P}_L = \sum_{l} p_{ll} \quad \vec{P}_S = \sum_{l} p_{sl} \quad \vec{P}_J = \vec{P}_L + \vec{P}_S$$

2. *j-j* 耦合:适用于原子序数 Z>82 的原子,在这类原子中,同一电子的轨道-自旋耦合较强,每个电子的轨道角动量和自旋角动量先合成为电子的总角动量,然后各个电子的总角动量再合成为该电子壳层的总角动量。

原子序数 Z≤32的元素都采用第一种耦合方式,原子序数Z >32到 Z=82 之间元素角动量的耦合方式将逐渐地从第一种方式转变为第二种方式。

所以原子序数不太大的原子的基态和低激发态,均可使用第一种耦合(简称 L-S 耦合),我们以后经常讨论到的3d族和4f族元素都可以使用L-S耦合方式。

下面以原子某一壳层包含两个电子为例说明 L-S 的耦合方法:

设两个电子的轨道角动量量子数分别为: *l*₁, *l*₂则其总轨道角动量量子数的可取值为:

$$L = l_1 + l_2, l_1 + l_2 - 1, ..., |l_1 - l_2|$$

$$\therefore P_L = \sqrt{L(L+1)}\hbar, \qquad \mu_L = \sqrt{L(L+1)}\mu_B$$

自旋情况相同: $S = s_1 + s_2, s_1 + s_2 - 1, ..., s_1 - s_2$

$$P_{S} = \sqrt{S(S+1)}\hbar, \qquad \mu_{S} = 2\sqrt{S(S+1)}\mu_{B}$$

两个电子的总角动量量子数:

$$\vec{J} = \vec{L} + \vec{S}$$

如果 L>S, J 的取值为:

$$J = L + S, L + S - 1, \bullet \bullet \bullet, L - S$$
 (共2S+1个值)

如果 L < S, J 的取值为:

$$J = L + S, L + S - 1, \bullet \bullet \bullet, S - L$$
 (共2L+1个值)

其总角动量:

$$P_J = \sqrt{J(J+1)}\hbar$$

在磁场方向上的投影是量子化的,多值的。

此时不能立即给出两个电子的总磁矩。因为总动量矩

和总磁矩的方向是不重合的。

$$P_L = \sqrt{L(L+1)}\hbar, \qquad \mu_L = \sqrt{L(L+1)}\mu_B$$

$$P_S = \sqrt{S(S+1)}\hbar, \qquad \mu_S = 2\sqrt{S(S+1)}\mu_B$$

显然,合成后的 P_J 和 μ_{L-S} 不在同一方向上,为了得到 μ_J ,必须将 μ_{L-S} 投影到 P_J 方向上。

$$\mu_J = \mu_L \cos(P_L \bullet P_J) + \mu_S \cos(P_S \bullet P_J)$$

可以证明:
$$\mu_J = g_J \sqrt{J(J+1)} \mu_B$$

$$g_{J} = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$

$$= \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)} \qquad \mu_{J}^{z} = g_{J} m_{J} \mu_{B}$$

四、基态的确定---洪德法则

从上面的例子中可以看出,L, S, J 有多种取值方式,这就导致有多个 P_J 和 μ_J 值,它们中的哪一组数值对应于系统的最低能量因而是稳定状态下的取值?洪德依据对原子光谱分析给出了一个经验法则:

- 1. 在泡利原理许可的条件下,总自旋量子数 $S = \sum_{\iota} m_{s\iota}$ 取最大值。
- 2. 在满足条件 1 的前提下,总轨道量子数 $L = \sum_{\iota} m_{\iota\iota}$ 取最大值。
- 3. 当电子数未达到电子壳层总电子数的一半时, 总角量子数: *J=L-S* 当电子数达到或超过电子壳层总电子数的一半时, 总角量子数取: *J=L+S*

常将原子的量子态用光谱学的方法来标记:

$$^{2S+1}L_{J}$$

将总自旋量子数、总角量子数的数字填入相应位置即可,总轨道量子数 L=0,1,2,3,4,5,6,....,分别记为: S,P,D,F,G,H,I,

例如:某元素的基态记作: ${}^4F_{9/2}$

即指该元素基态的总自旋量子数: S = 3/2

总轨道量子数: L=3 总角量子数: J=9/2

 $(1s)^2$, $(2s)^2$, $(2p)^6$, $(3s)^2$, $(3p)^6$, $(4s)^2$, $(3d)^{10}$, $(4p)^6$, $(5s)^2$, $(4d)^{10}$, $(5p)^6$, $(6s)^2$, $(4f)^{14}$, $(5d)^{10}$,

五、原子磁矩计算举例

1. Fe 原子: Z = 26, 电子分布是: -- · · · 3d⁶

根据洪德法则1,5个电子自旋占据5个 $+\frac{1}{2}$ 的 $m_{\rm S}$ 状态,

另一个只能占据 $-\frac{1}{2}$ 的 $m_{\rm S}$ 状态,所以总自旋:

$$S = 5 \times \frac{1}{2} - 1 \times \frac{1}{2} = 2$$

$$L = \sum m_{l_l} = 2 + 1 + 0 + (-1) + (-2) + 2 = 2$$
 (根据法则 2)

$$J=L+S=4$$
 (根据法则 3,电子数超过一半) 基态 5D.

 $g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)} = 1.5$

$$\mu_{J} = g_{j} \sqrt{J(J+1)} \mu_{B} = 6.7 \mu_{B}$$

$$\mu_S = 2\sqrt{S(S+1)}\mu_B = 4.9\mu_B$$

$$\mu_J^z = g_J m_J \mu_B = 6\mu_B$$

$$\mu_S^z = g_S m_S \mu_B = 4\mu_B$$

2. Cr+3 离子: Cr 原子 Z= 24, Cr+3 电子组态为.... 3d3

$$S = 3 \times \frac{1}{2} = \frac{3}{2}$$

 $(1s)^2,(2s)^2,(2p)^6,(3s)^2,(3p)^6,(4s)^2,(3d)^{10},(4p)^6,$ $(5s)^2,(4d)^{10},(5p)^6,(6s)^2,(4f)^{14},(5d)^{10},$

$$L = 2 + 1 + 0 = 3$$

$$J = L - S = \frac{3}{2}$$

电子数不到半满,

基态

 ${}^{4}F_{3/2}$

$$g_J = 0.4$$

$$\mu_{J} = g_{J} \sqrt{J(J+1)} \mu_{B} = 0.7746 \mu_{B} \qquad \mu_{J}^{z} = g_{J} m_{J} \mu_{B} = 0.6 \mu_{B}$$

$$\mu_{S} = 2 \sqrt{S(S+1)} \mu_{B} = 3.87 \mu_{B} \qquad \mu_{S}^{z} = g_{S} m_{S} \mu_{B} = 3 \mu_{B}$$

与实验值相比, μ_s 更接近,这是因为受到晶场作用,轨道角动量被冻结的缘故,只有自旋磁矩起作用。

离子磁距计算与实验的比较

表 1 三价镧系离子的有效磁子数 p (接近室温) 1 表 1 和 1 表 1 表 1 和 1 表 1 和 1

离 子	组态	基态	$p($ 计算 $)=g[J(J+1)]^{\frac{1}{2}}$	p(实验)近似结果
Ce ³⁺	$4f^15s^2p^6(5d^16s^2)$	$^{2}F_{5/2}$	2. 54	2. 4
Pr ³⁺	$4f^25s^2p^6$	$^3\mathrm{H_4}$	3. 58	3.5
Nd^{3+}	$4f^35s^2p^6$	$^4\mathrm{I}_{9/2}$	3.62	3.5
Pm ³⁺	$4f^45s^2p^6$	$^5 { m I_4}$	2. 68	- 14 : vet
Sm ³⁺	$4 f^5 5 s^2 p^6$	$^6{ m H}_{5/2}$	0.84	1.5
Eu^{3+}	$4f^65s^2p^6$	$^{7}F_{0}$	0	3. 4
Gd^{3+}	$4f^75s^2p^6$	⁸ S _{7/2}	7. 94	8. 0
Tb ³⁺	$4f^85s^2p^6$	7 F_{6}	9. 72	9.5% 使用
Dy ³⁺	$4f^95s^2p^6$	$^{6}\mathrm{H}_{15/2}$	10.63	10. 6
Ho ³⁺	$4f^{10}5s^2p^6$	$\mathbf{I_8}$	10. 60	10. 4
Er ³⁺	$4f^{11}5s^2p^6$	⁴ I _{15/2}	9. 59	9.5
Tm ³⁺	$4f^{12}5s^2p^6$	3H_6	7.57	7.34 19 19 16
Yb^{3+}	$4f^{13}5s^2p^6$	$^{2}F_{7/2}$	4.54	4.5

黄昆《固体物理学》p403-404

4f元素: 与总J符合不错。

表、铁族离子的有效磁子数

离 子	组态	基态	$p(\mathbf{计算}) = g[J(J+1)]^{\frac{1}{2}}$	$p($ 计算 $)=2[S(S+1)]^{\frac{1}{2}}$	p(实验) ^①		
Ti^{3+}, V^{4+}	$3d^1$	$^{2}D_{3/2}$	1.55	1. 73	1.8		
V^{3+}	$3d^2$	3 F ₂	1.63	2.83	2.8		
Cr^{3+}, V^{2+}	$3d^3$	⁴ F _{3/2}	0.77	3,87	3.8		
Mn ³⁺ ,Cr ²⁺	3d⁴	$^{5}\mathrm{D}_{0}$	0	4. 90	5.4		
Fe^{3+} , Mn^{2+}	$3d^5$	⁶ S _{5/2}	5. 92	5. 92	5.9		
Fe ²⁺	$3d^6$	$^{5}D_{4}$	= (8 + 6.70) + -1	4.90	5.4		
Co ²⁺	3d ⁷	⁴ F _{9/2}	6,63	好 ·	4.8		
Ni ²⁺	3d ⁸	³ F ₄	5. 59	2.83	3. 2		
Cu ²⁺	3d ⁹	$^{2}D_{5/2}$	3. 55	1.73	1. 9		

① 表示代表性数值。

姜书p34 有相同表

3d元素: 只是自旋S磁矩的贡献

这不是自由原/离子!

2-2 表 (a) 遷移金属元素 (7 + 7) の 3 = 2 配置によるスピンと軌道の関係 $p_{eff}(S) = 2\sqrt{S(S+1)}$: スピンによる有効磁子数

		-	•	•	<u> </u>						
m _z	0	1	2	3	4	5	6	7	8	9	10
2	*****	-	^	^	+	1	1 +	++	++	1 +	++
1			1	1	1	†	1	++	$\uparrow \downarrow$	$\uparrow \downarrow$	++
0				†	+	+	+	-	1 +	++	++
-1					1	*	1	+	†	++	++
-2						+	+	+	+	+	++
$S = \sum s_{\mathbf{z}}$	_	1/2	1	3/2	2	5/2	2	3/2	1	1/2	
$L = \sum m_{\alpha}$	0	2	3	3	2	0	2	3	3	2	0
$J=L\pm S$	0	3/2	2	3/2	0	5/2	4	9/2	4	5/2	0
$p_{\text{eff}}(S)$		1.732	2.828	3.873	4.899	5.916	4.899	3.873	2.828	1.732	_
基底状態	¹ S ₀	$^{2}D_{3/2}$	³ F ₂	⁴ F _{3/2}	5D0	⁶ S _{5/2}	5D4	⁴ F _{9/2}	³ F ₄	$^{2}D_{5/2}$	¹S₀
$\lambda (\text{cm}^{-1})$	_	154	104	87	57	_	-100	-180	-335	-850	
· · · · · · · · · · · · · · · · · · ·	Sc3+	Ti ³⁺	V ³⁺	Cr³+	Cr2+	Fe³+	Fe²+	Co2+	Ni ²⁺	Cu2+	Zn ²⁺
イオン	Ti4+	V ⁴⁺	Ti ²⁺	Mn^{4+}	Mn^{3+}	Mn ²⁺	Co3+				

 $3d^4$ 的J为零,但有 $4\mu_B$ 磁矩,因为3d电子轨道角动量被冻结

2-2表 (b) 希土類元素 R^{3+} の $4f^{n}$ 電子配位におけるスピンと軌道の関係。 Landé 因子 g_{I} と de Gennes 因子 $dG = (g_{I}-1)^{2}J(J+1)$ 。

															
m _z	0	i	2	3	4	5	6	7	8	9	10	11	12	13	14
3	<u> </u>	+	†	†	†	+	+	<u></u>	+↓	1 ↓	1-1	++	↑ ↓	++	1 +
2			+	1	1	1	*	1	+	1 ↓	1 +	++	1 ↓	++	++
1		—		1	+	+	1	+	+	+	++	++	1 +	++	1 +
0		<u> </u>			+	1	+	†	+	+	1	++	1 +	1 +	1 +
-1						1	^	+	┿	1	+	†	++	1 +	1
-2							+	+	1	+	+	1		++	1 +
-3								+	†	+	+	1	1	+	↑↓
$S = \sum s_k$	0	1/2	1	3/2	2	5/2	3 -	7/2	3	5/2	2	3/2	1	1/2	0
$L = \sum m_z$	0	3	5	6	6	5	3	0	3	5	6	6	. 5	3	0
J = L + S	0	5/2	4	9/2	4	5/2	0	7/2	6	15/2	8	15/2	6	7/2	0
P est	_	2.54	3.58	3.62	2.68	0.845	_	7.94	9.72	10.63	10.58	9.59	7. 5 5	4.54	_
gj		6/7	4/5	8/11	3/5	2/7	_	2	3/2	4/3	5/4	6/5	7/6	8/7	_
gıJ	_	15/7	16/5	36/11	12/5	5/7	_	7	9	10	10	9	7	4	_
dG		5/28	4/5	81/44	16/5	125/28	_	63/4	21/2	85/12	9/2	51/20	7/6	9/28	_
λ(cm ⁻¹)	0	640	360	290	260	240	230		-290	-380	-520	-820	-1290	-2940	_
基底状態	^L S ₀	$^{2}F_{5/2}$	³H₄	2/ملام	۰Į۰	$^6\mathrm{H}_{\mathrm{s/2}}$	$^{7}F_{0}$	*S _{7/2}	F6	$^{6}H_{15/2}$	5] ₄	$^{4}I_{18/2}$	³H₅	$^{2}_{s}F_{7/2}$	¹ S ₀
イオン	La3+	Ce ^{a+}	Pr ^{a+}	Nd3+	Pm³+	Sm³+	Eu ¹⁺	Gd*+	Tb^{s+}	Dy ¹⁺	Ho3+	Er3+	Tm^{3+}	Yb³+	Lu ³⁺
•							(Sm ²⁺)	(Eu2+)							

1 cm = 1,24x15 eV

2-4 図 (a) 遷移金属元素 (イオン) の d^n 配位における S, L, J と p_{eff} (S:スピン角運動量, L: 軌道角運動量, J: 全角運動量, p_{eff} : 有効磁子数, λ :スピン - 軌道結合定数) (b) 希土類元素 f^n 配位における S, L, J, p_{eff} (λ : (a) と同じ, g_J : ランデの g 因子, dG: de Gennes 因子)

习题

- 1.1 列表给出主要磁学量的国际单位和高斯单位,并给出它们之间的换算关系。铁磁金属Ni的室温饱和磁化强度常被写为 $M_s\cong 52$ emu/g,请换算为标准形式。
- 1.2 按照洪德法则计算下列自由离子的磁距, Cr+3, Fe+2, Nd+3, Tb+3
- 1.3 证明:

$$\mu_{J} = g_{J} \sqrt{J(J+1)} \mu_{B}$$

$$g_{J} = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$

$$= \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$$

轨道分布

氢原子核外电子的D函数分布