MT22-10

TD-Fonctions de plusieurs variables : corrigé

Exercice 1

Soit $f(x,y) = \frac{x^2}{x^2 + y^2}$. Calculer les limites suivantes, et conclure :

$$\lim_{y \to 0} [\lim_{x \to 0} f(x, y)], \lim_{x \to 0} [\lim_{y \to 0} f(x, y)], \lim_{(x, y) \to (0, 0)} f(x, y)$$

Exercice 2

- 1. Soit $f(x,y)=\frac{x^2y}{x^4+y^2}$. Etudier la limite de f au point (0,0) quand (x,y) parcourt
 - (a) Une droite passant par l'origine
 - (b) La parabole $y = x^2$.
- 2. Conclure.

Corrigé

- 1. Cela revient à prendre $y=\lambda x$, d'où $f(x,\lambda x)=\frac{\lambda x^3}{x^4+\lambda^2 x^2}\to 0$ lorsque $x\to 0$
- 2. $f(x, x^2) = \frac{x^4}{2x^4} \to \frac{1}{2} lorsque \ x \to 0$
- 3. f n'a pas de limite en (0,0) (Non unicité de la limite)

Exercice 3

1. Les fonctions suivantes ont-elles une limite lorsque (x,y) tends vers (0,0)?

$$f_1(x,y) = \frac{x^2 - y^2}{x^2 + y^2}, \quad f_2(x,y) = \frac{|x+y|}{x^2 + y^2}, \quad f_3(x,y) = \frac{x^3 y^3}{x^2 + y^2}, \quad f_4(x,y) = \frac{x^2 + y^3}{x^2 + y^2},$$
$$f_5(x,y) = \frac{1 - \cos(\sqrt{x^2 + y^2})}{x^2 + y^2}, \quad f_6(x,y) = \frac{1 - \cos(x)}{x^2 + y^2}.$$

2. Peut-on les prolonger par continuité en (0,0)?

Corrigé

- 1. $f_1(x,y) \to (\cos^2(\theta) \sin^2(\theta))$, elle ne peut être prolongée par continuité.
- 2. $f_2(x,y) \rightarrow (|\cos(\theta) + \sin(\theta))|$, elle ne peut être prolongée par continuité.
- 3. $f_3(x,y) \to 0$, donc elle peut être prolongée par continuité en posant f(0,0) = 0
- 4. $f_4(x,y) \to \cos^3(\theta)$, elle ne peut être prolongée par continuité.
- 5. $f_5(x,y) = \frac{1-\cos(r)}{r^2} \to \frac{1}{2}$ (il faut utiliser le développement limité de $\cos(r)$ au voisinage de 0), elle peut être prolongée par continuité en posant $f(0,0) = \frac{1}{2}$
- 6. $f_6(x,y) \to \frac{1}{2}\cos^2(\theta)$, elle ne peut être prolongée par continuité.

Exercice 4

Dans chacun des cas suivants, déterminer les dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ de la fonction f

$$f(x,y) = x^2 \sin(xy), f(x,y) = x \cos(x^2 + y^2), f(x,y) = \frac{1}{1 + x^2 y^2} exp(xy^2)$$

Exercice 5

Soit f la fonction définie par :

$$\begin{array}{rcl} f(x,y) & = & xy\frac{x^2 - y^2}{x^2 + y^2} & si & (x,y) \neq (0,0) \\ f(0,0) & = & 0 \end{array}$$

- 1. Etudier la continuité de f en (0,0)
- 2. Etudier la continuité des dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ en (0,0)
- 3. f est-elle différentiable?

2 MT22-A10

Corrigé

- 1. La limite de f en (0,0) est égale à 0. Donc f est y est continue.
- 2. Il faut calculer $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$. Calculer les $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$ pour $(x,y) \neq (0,0)$. Ensuite étudier la limte de $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$ lorsque $(x,y) \to (0,0)$. On obtient, par exemple, $\frac{\partial f}{\partial x}(x,y) \to 0$ lorsque $(x,y) \to (0,0)$.
- 3. f est donc différentiable (voir cours : continuité des dérivées partielles premières)

Exercice 6

Soit f la fonction définie par :

$$\begin{array}{lcl} f(x,y) & = & (x^2+y^2)\sin(\frac{1}{\sqrt{x^2+y^2}}) & si & (x,y) \neq (0,0) \\ f(0,0) & = & 0 \end{array}$$

- 1. Calculer les dérivée partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ en (0,0)
- 2. Etudier la continuité des dérivée partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ en (0,0)
- 3. Montrer que f est différentiable en (0,0)
- 4. Conclure.

Corrigé

- 1. $\frac{f(h,0)-f(0,0)}{h}=h\sin(\frac{1}{h})\to 0$ lorsque h tend vers 0 (la fonction sin est bornée). On peut faire la même chose pour $\frac{\partial f}{\partial y}$ en (0,0)
- 2. Un calcul direct de la derivée partielle par rapport à x donne $\frac{\partial f}{\partial x}(x,y) = 2x\sin(\frac{1}{\sqrt{x^2+y^2}}) x(x^2+y^2)\cos(\frac{1}{\sqrt{x^2+y^2}}).\frac{1}{(x^2+y^2)^{\frac{3}{2}}}$. Par conséquent $\frac{\partial f}{\partial x}$ n'est pas continue en (0,0) (on obtient la même chose pour $\frac{\partial f}{\partial y}$.
- 3. En étudiant la limite de la fonction $\frac{f(h,k)-h\frac{\partial f}{\partial x}(0,0)-k\frac{\partial f}{\partial y}(0,0)}{\sqrt{h^2+k^2}}$, on montre que f est différentiable en (0,0)
- 4. La continuité des dérivées partielles est une condition suffisante de différentiabilité, mais non nécessaire.

Exercice 7 (exemple proposé par Peano) Soit f la fonction définie dans l'exercice 5.

- 1. Calculer les dérivée partielles secondes $\frac{\partial^2 f}{\partial xy}$ et $\frac{\partial^2 f}{\partial yx}$ en (0,0)
- 2. La fonction $\frac{\partial^2 f}{\partial xy}$ est elle continue en (0,0)? (voire le théoréme de SCHWARZ, chapitre 1, page 16) orrigé
- 1. En reprenant les calculs de l'exercice 5, on montre que $\frac{\partial^2 f}{\partial xy}(0,0) \neq \frac{\partial^2 f}{\partial yx}(0,0)$
- 2. Le théorème de SCHWARZ implique que $\frac{\partial^2 f}{\partial xy}$ n'est pas continue en (0,0)

Exercice 8 (*Exercice supplémentaire à laisser aux étudiants pour qu'ils le fassent chez eux*) Soit la fonction f définie par :

$$\begin{array}{lcl} f(x,y) & = & xy\frac{x^3-y^3}{x^2+y^2} & si & (x,y) \neq (0,0) \\ f(0,0) & = & 0 \end{array}$$

- 1. Etudier la continuité de f sur \mathbb{R}^2
- 2. Etudier la continuité de f sur \mathbb{R}^2 des fonctins $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$
- 3. En quels points de \mathbb{R}^2 la fonction f est elle de classe C^1 (dérivées partielles premières continues)?

Exercice 9 (Exercice supplémentaire à laisser aux étudiants pour qu'ils le fassent chez eux) il faut remplacer $(x-y)^p$ par $(x-3)^p$!! Soit la fonction f définie par :

$$\begin{array}{rcl} f(x,y) & = & \frac{(x-3)^p}{(x-3)^2 + (y-1)^2} & si & (x,y) \neq (3,1) \\ f(3,1) & = & 0 \end{array}$$

Pour quelles valeurs de p

MT22-10 3

- 1. f est elle contnue?
- 2. f admet elle des dérivée partielles en tout point de \mathbb{R}^2 ? Si oui, sont elles contnues?
- 3. f est ele différentiable?

Corrigé

- 1. On pose $x-3=r\cos(\theta)$ et $y-1=r\sin(\theta)$. D'où $f(x,y)=r^{p-2}\cos^p(\theta)$. Si $p\leq 2$, la fonction f n'est pas continue, s p>2 elle l'est.
- 2. Le reste s'en suit

Exercice 10 Soit f la fonction défine de \mathbb{R}^2 dan \mathbb{R}^2 par

$$f(x,y) = (r(x,y), s(x,y))$$

avec
$$r(x, y) = x^2$$
 et $s(x, y) = y^2$.

Soit maintenant la fonction g définie de \mathbb{R}^2 dans \mathbb{R} par

$$g(r,s) = r^2 - s^2$$

Calculer les dérivées partielles premières et secondes de la fonction gof de deux manières différebtes (diectement et au moyen des formules de dérivation de fonctions composées). Corrigé

1. Soit h(x,y) = gof(x,y) = g(f(x,y)) = g(r(x,y),s(x,y)). Par suite $\frac{\partial h}{\partial x}(x,y) = \frac{\partial g}{\partial r}(r(x,y),s(x,y))\frac{\partial r}{\partial x} + \frac{\partial g}{\partial s}(r(x,y),s(x,y))\frac{\partial s}{\partial x}$. Pour finir il suffit de calculer $\frac{\partial g}{\partial s}(r(x,y),s(x,y))$, $\frac{\partial g}{\partial r}(r(x,y),s(x,y))$, $\frac{\partial r}{\partial x}$, $\frac{\partial s}{\partial x}$ et remplacer. Le calcul de $\frac{\partial h}{\partial y}(x,y)$ se fait de façon similaire.

Exercice 11

- 1. On considére la fonction $g(r,\theta) = f(r\cos(\theta), r\sin(\theta))$, calculer $\frac{\partial g}{\partial r}$ et $\frac{\partial g}{\partial \theta}$
- 2. Donner une expression de $\frac{\partial f}{\partial x}$ en fonction de r et θ que l'on notera $g_1(r,\theta)$.
- 3. De méme, calculer $\frac{\partial g_1}{\partial r}$ et $\frac{\partial g_1}{\partial \theta}$, puis en déduire une expression de $\frac{\partial^2 f}{\partial x^2}$ en fonction de r et θ . Comparer avec l'expression obtenue en I.
- 4. Soit la fonction f définie par $f(x,y)=(x^2+y^2)^{\frac{3}{2}}$. Calculer $\frac{\partial^2 f}{\partial x^2}$ directement et retrouver le résultat en utilisant les dérivées de fonctions composées.

Corrigé

1. Cet exercice est corrigé en TD.

Exercice 12

On considére la fonction f définie sur \mathbb{R}^2 par $f(x,y) = x^2y - 9y - 2$

- 1. Donner la condition nécessaire d'extremum local
- 2. Résoudre le système obtenu
- 3. Les solutions correspondent elles à des extrema?

Corrigé

- 1. C.N. $\frac{\partial f}{\partial x}(x,y) = 2xy = 0$ et $\frac{\partial f}{\partial y}(x,y) = x^2 9 = 0$
- 2. $M_1 = (3,0)$ et $M_2 = (-3,0)$ sont les deux points critiques.
- 3. Il faut calculer les dérivées partielles secondes en M_1 et M_2 et appliquer le théorème de Lagrange. Après calcul, on obtient des points selles.

Exercice 13 (Exercice supplémentaire à laisser aux étudiants pour qu'ils le fassent chez eux)

On considére les fonctions f, g définie sur \mathbb{R}^2 par $f(x,y) = x^3y^2(1-x-y)$ et $g(x,y) = x^2 + x^2y + y^3$. Donner leurs points critiques et vérifier s'ils correspondent à des extréma locaux. Corrigé

1. Suivre la démarche de l'exercice ci-dessus.

4 MT22-A10

Exercice 14

Montrer que l'équation

$$e^x + e^y + x + y = 2$$

définit au voisinage de l'origine, une fonction implicite de x dont on calculera le développement limité d'ordre trois en 0

Corrigé

1. Il faut appliquer le théorème des fonctions implicites à la fonction $F(x,y)=e^x+e^y+x+y-2=0$. Vérifier que F(0,0)=0, Calculer la dérivée partielle de F par rapport à y et vérifier quelle ne s'annule pas en (0,0). Sous ces conditions on sait qu'il exite un voisinage de 0 et une fonction φ définie dans ce voisinage telle que $y=\varphi(x)$. On peut donc écrire $F(x,\varphi(x)=0)$, et par application de la dérivation de fonctions composées, on obtient $\varphi'(x)\frac{\partial f}{\partial y}(x,\varphi(x))+\frac{\partial f}{\partial x}(x,\varphi(x))=0$. D'où $\varphi'(x)=-\frac{\frac{\partial f}{\partial x}(x,\varphi(x))}{\frac{\partial f}{\partial y}(x,\varphi(x))}$. Cette dernière formule vous permet de calculer $\varphi'(0),\varphi''(0),\varphi^{(3)}$. Comme $\varphi(0)=0$ vous pouvez obtenir le développement limité de $\varphi(x)$ à l'ordre 3.