# Data Wrangling

**INFO 201** 

# d3.unconf()





# Today's Objectives

Consider how to map from analytical steps to programming tasks

Understand how use DPLYR's data manipulation verbs to wrangle data

Practice chaining methods together by using the *pipe operator* 

Analytical steps

# Steps for Data Analysis

Articulate a research question of interest

Translate your questions into code

Execute your program

|    |                           | · · · · · · · · · · · · · · · · · · · |            |                  |      |           |
|----|---------------------------|---------------------------------------|------------|------------------|------|-----------|
| 6  | Clinton, Hillary Rodham   | GEORGE, BETTY                         | KENT       | N/A              | \$55 | 20-Apr-16 |
| 7  | Clinton, Hillary Rodham   | EULER, JOHN                           | SEATTLE    | HERITAGE BANK    | \$19 | 17-Apr-16 |
| 8  | Sanders, Bernard          | LLOYD, LYNN J                         | LAKEBAY    | NOT EMPLOYED     | \$10 | 6-Mar-16  |
| 9  | Clinton, Hillary Rodham   | HOLT, JULIE                           | SHORELINE  | SELF-EMPLOYED    | \$71 | 20-Apr-16 |
| 10 | Sanders, Bernard          | KOB, L                                | GIG HARBOR | NOT EMPLOYED     | \$10 | 4-Mar-16  |
| 11 | Cruz, Rafael Edward 'Ted' | KOOY, KYLE MR.                        | LYNDEN     | REICHHARDT & EBE | \$25 | 5-Apr-16  |

What are 5 questions that you have about this dataset?

contbr\_city

**PUYALLUP** 

SEATTLE

**AUBURN** 

SEATTLE

LYNDEN

B

DISNUTE, CHRISTOPHER

contbr\_nm

KERR, DONNA

JOHNSON, DAVID

LIEBERMAN, DAN

KOB, L

KOOY, KYLE MR.

downloaded here

E

amount

\$25

\$27

\$35

\$50

\$10

D

SMARTTHINGS, INC.

REICHHARDT & EBE

contbr employer

N/A

GIG HARBOR NOT EMPLOYED

NONE

**RETIRED** 

F

24-Apr-16

4-Mar-16

11-Apr-16

6-Mar-16

6-Mar-16

8-Apr-16

date

Sanders, Bernard

Cruz, Rafael Edward 'Ted'

A

Clinton, Hillary Rodham

Cruz, Rafael Edward 'Ted'

Sanders, Bernard

Sanders, Bernard

cand\_nm

# Sample Questions

Who donated the most money?

Which city did the largest donation come from?

When was the smallest donation made?

# Sample Questions

Who donated the most money?

Which city did the largest donation come from?

When was the smallest donation made?

Select a **column** of interest

# Sample Questions

Who donated the **most money**?

Which city did the **largest donation** come from?

When was the **smallest donation** made?

Filter down to a specific **row** 

### Grammar of Data Manipulation

**Select** particular columns

Filter down to specific rows

**Arrange** (sort) your dataset by values

Mutate your dataframe to add a column

Summarise your dataframe (calculate summary info, mean)

module 9 exercise-1

# **DPLYR**

#### **DPLYR**

"A grammar for data manipulation"

Provides verbs for common tasks

Make your code easier to write and read

Written by Hadley Wickham



# select()

#### storms

| storm   | wind | pressure | date       |
|---------|------|----------|------------|
| Alberto | 110  | 1007     | 2000-08-12 |
| Alex    | 45   | 1009     | 1998-07-30 |
| Allison | 65   | 1005     | 1995-06-04 |
| Ana     | 40   | 1013     | 1997-07-01 |
| Arlene  | 50   | 1010     | 1999-06-13 |
| Arthur  | 45   | 1010     | 1996-06-21 |



| storm   | pressure |
|---------|----------|
| Alberto | 1007     |
| Alex    | 1009     |
| Allison | 1005     |
| Ana     | 1013     |
| Arlene  | 1010     |
| Arthur  | 1010     |

storms <- select(storms, storm, pressure)</pre>

# filter()

#### storms

| storm   | wind | pressure | date       |
|---------|------|----------|------------|
| Alberto | 110  | 1007     | 2000-08-12 |
| Alex    | 45   | 1009     | 1998-07-30 |
| Allison | 65   | 1005     | 1995-06-04 |
| Ana     | 40   | 1013     | 1997-07-01 |
| Arlene  | 50   | 1010     | 1999-06-13 |
| Arthur  | 45   | 1010     | 1996-06-21 |



| storm   | wind | pressure | date       |
|---------|------|----------|------------|
| Alberto | 110  | 1007     | 2000-08-12 |
| Ana     | 40   | 1013     | 1997-07-01 |

storms <- filter(storms, storm %in% c('Ana', 'Alberto'))</pre>

# mutate()

| storm   | wind | pressure | date       |
|---------|------|----------|------------|
| Alberto | 110  | 1007     | 2000-08-12 |
| Alex    | 45   | 1009     | 1998-07-30 |
| Allison | 65   | 1005     | 1995-06-04 |
| Ana     | 40   | 1013     | 1997-07-01 |
| Arlene  | 50   | 1010     | 1999-06-13 |
| Arthur  | 45   | 1010     | 1996-06-21 |

| storm   | wind | pressure | date       | ratio | inverse |
|---------|------|----------|------------|-------|---------|
| Alberto | 110  | 1007     | 2000-08-12 | 9.15  | 0.11    |
| Alex    | 45   | 1009     | 1998-07-30 | 22.42 | 0.04    |
| Allison | 65   | 1005     | 1995-06-04 | 15.46 | 0.06    |
| Ana     | 40   | 1013     | 1997-07-01 | 25.32 | 0.04    |
| Arlene  | 50   | 1010     | 1999-06-13 | 20.20 | 0.05    |
| Arthur  | 45   | 1010     | 1996-06-21 | 22.44 | 0.04    |

storms <- mutate(storms, ratio = pressure/wind, inverse = 1/ratio)</pre>

# arrange()

#### storms

| storm   | wind | pressure | date       |
|---------|------|----------|------------|
| Alberto | 110  | 1007     | 2000-08-12 |
| Alex    | 45   | 1009     | 1998-07-30 |
| Allison | 65   | 1005     | 1995-06-04 |
| Ana     | 40   | 1013     | 1997-07-01 |
| Arlene  | 50   | 1010     | 1999-06-13 |
| Arthur  | 45   | 1010     | 1996-06-21 |



| storm   | wind | pressure | date       |
|---------|------|----------|------------|
| Ana     | 40   | 1013     | 1997-07-01 |
| Alex    | 45   | 1009     | 1998-07-30 |
| Arthur  | 45   | 1010     | 1996-06-21 |
| Arlene  | 50   | 1010     | 1999-06-13 |
| Allison | 65   | 1005     | 1995-06-04 |
| Alberto | 110  | 1007     | 2000-08-12 |

storms <- arrange(storms, wind)</pre>

| city     | particle<br>size | amount<br>(µg/m³) |
|----------|------------------|-------------------|
| New York | large            | 23                |
| New York | small            | 14                |
| London   | large            | 22                |
| London   | small            | 16                |
| Beijing  | large            | 121               |
| Beijing  | small            | 56                |



summary <- summarise(pollution, median = median(amount))</pre>

module 9 exercise-2

# Chaining Methods

# Chaining Methods

What are the steps for answering this question of the mtcars dataset:

Which 4-cylinder car gets the best milage per gallon?

#### Actually a few steps:

- 1. **Filter** down the dataset to only 4 cylinder cars
- 2. Of the 4 cylinder cars, **filter** down to the one with the highest mpg
- 3. **Select** the car name of the car from step 2.

```
# Add a column that is the car name
mtcars.named <- mutate(mtcars, car.name = row.names(mtcars))</pre>
# Filter down to only four cylinder cars
four.cyl <- filter(mtcars.named, cyl == 4)
# Get the best four cylinder car
best.four.cyl <- filter(four.cyl, mpg == max(mpg))</pre>
# Get the name of the car
best.car.name <- select(best.four.cyl, car.name)</pre>
```

```
# Add a column that is the car name
mtcars.named <- mutate(mtcars, car.name = row.names(mtcars))</pre>
# Write a nested operation to return the best car name
# Select name from the filtered data
best.car.name <- select(</pre>
                   # Filter the 4 cylinder data down by MPG
                   filter(
                     # Filter down to 4 cylinders
                     filter(
                       mtcars.named,
                       cyl == 4
                     mpg == max(mpg)
                   ), car.name
```

# The Pipe Operator

Takes the *result from one function* and passes it in as the *first argument* to the next function

Part of the DPLYR package

Written in R as %>% (use the shortcut)

This will completely simplify your code

module 9 exercise-3

### Upcoming...

By Thursday: Be comfortable with module 9

Due Tuesday, 10/25 (before class): a4-data-wrangling