

FMEA - Failure Modes and Effects Analysis FMECA - Failure Modes, Effects and Criticality Analysis

Marcantonio Catelani – Facoltà di Ingegneria Firenze Dipartimento di Elettronica e Telecomunicazioni Via S. Marta, 3 – 50139 Firenze marcantonio.catelani@unifi.it

Qualità : una definizione attuale

QUALITA': grado in cui un insieme di caratteristiche soddisfa i requisiti

[UNI EN ISO 9000:2000 - Sistemi di Gestione per la Qualità - Fondamenti e Terminologia]

Requisito: esigenza o aspettativa del cliente che può essere espressa, implicita o cogente.

- Esempi: requisito di servizio, requisito di prodotto, requisito di sicurezza, requisito di processo, ecc.
- ✓ Un "requisito specificato" è un requisito che è precisato in un documento (specifica)
- Il mancato soddisfacimento di un requisito rappresenta una non conformità

i Requisiti sono tradotti in Caratteristiche

Caratteristica: elemento distintivo di un prodotto/processo/servizio

- ✓ La caratteristica deriva da un requisito
- ✓ Una caratteristica può essere intrinseca (presente, in genere, in maniera permanente) o assegnata (es: il prezzo di un prodotto), qualitativa o quantitativa.
- ✓ Le caratteristiche possono essere: *fisiche* (meccaniche, elettriche, ecc.), *funzionali* (velocità, consumo,ecc.), *temporali* (affidabilità, disponibilità, ecc.), *comportamentali* (cortesia, ecc.), *ergonomiche*.
- ✓ La caratteristica deve essere "<u>individuabile</u>" e "<u>misurabile</u>" per controllarne la rispondenza alle esigenze

Un esempio di Sistema di Gestione per la Qualità - Approccio per Processi -

Processo

Qualsiasi attività, o insieme di attività, che utilizza risorse per trasformare elementi in entrata in elementi in uscita può considerarsi un "processo"

Approccio per processi

L'identificazione e la gestione sistematica dei processi adottati da un'organizzazione, con <u>particolare riferimento</u> <u>alle loro interazioni</u>

Quale vantaggio?

Nell'ambito del sistema dei processi, consente di mantenere, con continuità, un controllo sui legami tra i singoli processi, come pure sulle loro combinazioni ed interazioni.

In un Sistema di Gestione per la Qualità, l'approccio per processi pone enfasi su:

- ✓ corretta individuazione e comprensione dei requisiti e loro osservanza
- ✓ necessità di valutare i processi in termini di valore aggiunto
- ✓ conseguimento dei risultati relativi alle prestazioni e all'efficacia dei processi
- ✓ miglioramento continuo dei processi sulla base di misurazioni oggettive

Occorre individuare metodi (incluse le tecniche statistiche) applicabili fino dalle prime fasi del ciclo di vita del prodotto/servizio per:

- Selezionare ed interpretare correttamente le esigenze espresse e implicite (QFD)
- Progettare correttamente il prodotto/servizio sulla base delle esigenze individuate (QFD, FMEA-FMECA)
- Misurare e valutare la conformità ai requisiti progettuali del prodotto/servizio realizzato (foglio raccolta dati, istogrammi, diagramma di Pareto, analisi di conformità, diagramma causa-effetto, tecniche statistiche)
- Monitorare la capacità dei processi e le cause di variabilità (Analisi della variabilità e della capability)
- Verificare il conseguimento degli obiettivi preposti e migliorare il target (... tutte)
- Misurare la soddisfazione del cliente in merito al prodotto fornito/servizio erogato (questionari, istogrammi, analisi di Pareto, diagramma causaeffetto, diagrammi di correlazione)

FMEA - Failure Modes and Effects Analysis

Analisi delle modalità di guasto e dei relativi effetti

FMEA è:

- ✓ uno strumento di prevenzione, non di correzione. Può essere usato per migliorare le caratteristiche di un prodotto (servizio) già esistente
- ✓ una tecnica di analisi induttiva (DOWN TOP), dal particolare al generale, per acquisire informazioni qualitative sulle caratteristiche del prodotto (prestazioni del servizio)
- ✓ Occorre identificare tutti gli elementi del prodotto (componenti del servizio) e le relative interazioni (interazione tra i processi), la tipologia dei guasti (non conformità di servizio) e gli effetti del loro manifestarsi a livello locale e finale (di sistema per il prodotto, di erogazione per il servizio).

- ✓ Se l'analisi è estesa allo <u>studio della gravità delle conseguenze</u> che si possono avere per la presenza di un guasto (nascita di una non conformità) (analisi delle criticità di guasto o della NC), il metodo è detto FMECA (Failure Modes, Effects and Criticality Analysis).
- ✓ Si usa il concetto di criticità per definire la gravità delle conseguenze di un guasto (o di una NC potenziale/effettiva).

La criticità è definita mediante più categorie o livelli, in funzione:

- dei pericoli e dei danni subiti dalle persone (ferimento, morte);
- della perdita della (delle) funzione (i) di sistema;
- dell'impatto sull'ambiente e dei danni a cose.

Alla criticità degli eventi è normalmente associata la loro probabilità di accadimento.

Le tipologie

- ✓ FMEA di Servizio : evidenzia e <u>rileva le eventuali NC</u> associate alla progettazione di un servizio. Consente di analizzare gli effetti che tali NC generano in fase di erogazione del servizio. Obiettivo è individuare i punti critici del servizio e l'eliminazione delle NC per la customer satisfaction.
- ✓ FMEA di Sistema: si analizza la propagazione degli effetti di possibili guasti su componente attraverso i livelli funzionali del sistema. Obiettivo è la minimizzazione degli effetti di tali guasti e la ricerca dei punti critici su cui intervenire per l'incremento delle prestazioni di disponibilità del sistema.
- ✓ FMEA di Progetto: si effettua in fase di progettazione di prodotto, prima dell'attivazione del processo produttivo. Stesso obiettivi di FMEA di Sistema.
- FMEA di Processo: evidenzia le criticità di processo e la loro influenza sulla realizzazione del prodotto (Es. criticità/guasti/avarie sul processo produttivo che potrebbero generare NC di prodotto). Valuta gli effetti che questi guasti possono avere sulla funzionalità e sulla sicurezza del prodotto stesso. Obiettivo consiste nell'individuare i punti critici del processo da tenere sotto controllo, individuare le eventuali cause di guasto minimizzandone gli effetti sul prodotto, migliorare le prestazioni di disponibilità di processo.

Definizioni

Modo di Guasto (NC): descrive il modo secondo cui un prodotto/processo/servizio <u>può non adempiere</u> alla funzione richiesta (fallire nel raggiungimento dell'obiettivo) necessaria per soddisfare i requisiti, bisogni, aspettative richieste dal cliente (manifestazione del guasto o della NC)

Il modo di guasto (NC) è l'evidenza oggettiva della presenza di un guasto (non conformità).

Esempi di modi di guasto

Prodotto Auto

non parte non si accendono i fari funzionamento intermittente gomma a terra

Servizio internet

sportello chiuso
PC sconnesso
assenza di collegamento
assenza di personale tecnico

Causa di guasto (NC): le circostanze legate al progetto, alla realizzazione, all'erogazione o all'uso del prodotto (servizio) che hanno generato il guasto (non conformità).

Meccanismo di guasto (NC): il processo chimico, fisico (o di altra natura) che ha dato origine al guasto (non conformità).

Cliente: Il cliente, sia esso un dipartimento o un'entità ben definita interna o esterna, è colui che risulta "danneggiato" da un'eventuale manifestazione del guasto (non conformità).

Funzione: tutto ciò che deve fare un prodotto/processo/servizio

Effetti dei guasti e delle non conformità

Devono essere valutati gli **Effetti** (anche a cascata) provocati dall'insorgenza di un guasto (*non conformità*)

Questa operazione deve essere il frutto di un lavoro di Brainstorming!

Effetti locali, gli effetti che interessano lo specifico elemento del prodotto (specifico processo del servizio)

Effetti finali, valutano l'impatto del guasto (non conformità) a livello più alto di sistema.

Parametri FMEA

Severity (S): impatto o gravità/criticità del guasto (non conformità). E' espressa attraverso "Livelli di criticità"

Occurrence (O): probabilità che si verifichi il guasto (*la non conformità*) durante la "vita utile" del prodotto (*servizio*)

Detection (D): possibilità di diagnosticare (o rilevare) e prevenire l'insorgenza del guasto (della non conformità)

Severity, Occurrence, Detection

In fase di progettazione del prodotto/processo/servizio possono essere combinati per valutare, numericamente, il "livello di rischio" associato all'eventuale insorgenza di un guasto (*non conformità*).

RPN (Risk Priority Number) = (S)x(O)x(D)

Classificazione (scala) della Criticità - S

Livello di criticità (Classe)	Condizioni che definiscono la criticità	Valore della criticità
Classe IV CATASTROFICA	Evento che potrebbe causare la perdita di una o più funzioni essenziali per il sistema provocando danni importanti al sistema stesso o al suo ambiente e/o tale da causare morte o menomazione. E' compromessa la sicurezza e/o la conformità alla legislazione e comunque lascia il cliente in una condizione critica.	10 - 9
Classe III CRITICA	Evento che potrebbe causare la perdita di una o più funzioni essenziali per il sistema provocando danni importanti al sistema stesso o al suo ambiente e/o ma con un rischio trascurabile di morte o menomazione. Non è compromessa la conformità ai requisiti di sicurezza e/o la conformità alla legislazione; forte insoddisfazione del cliente.	8 - 7
Classe II MARGINALE	Evento che interviene sul corretto funzionamento del sistema senza tuttavia causare danni notevoli al sistema né presentare rischi importanti per l'operatore. Il cliente avverte la degradazione delle prestazioni del sistema.	6 – 5 - 4
Classe I MINORE	Evento che interviene sul corretto funzionamento del sistema, con danni trascurabili al sistema; assenza di rischi importanti. Il cliente non è in grado di rilevare il degrado delle prestazioni del sistema.	3 – 2 - 1

Da CEI 56 – 1:

Tabella "Severity" (esempio per il prodotto)

Effetto	Criteri : Severity degli effetti per la DFMEA	Grado
Critica senza Preavviso	Il prodotto non è conforme alle normative e/o direttive ed il guasto incide sulla sicurezza del prodotto stesso senza avviso	10
Critica	Il prodotto non è conforme alle normative e/o direttive ed il guasto incide sulla sicurezza del prodotto stesso, ma con avviso	9
Molto Alta	Il prodotto è inutilizzabile con perdita di funzionalità principale	8
Alta	il prodotto è utilizzabile, ma ad un livello di prestazioni ridotto	7
Moderata	Il prodotto è utilizzabile ma con perdita di funzionalità contenuta (Totale perdita di Comfort & Accessories)	6
Bassa	Il prodotto è utilizzabile ma con perdita di funzionalità molto contenuta (parziale perdita di Comfort & Accessories)	5
Molto Bassa	Le rifiniture di prodotto presentano non conformità che la maggior parte dei clienti nota	4
Trascurabile	Le rifiniture di prodotto presentano non conformità visibili solo da parte di clienti attenti	3
Molto Trascurabile	Le rifiniture di prodotto presentano non conformità che solo clienti particolarmente attenti e preparati notano	2
Assente	Nessun effetto	1

Classificazione (scala) della Probabilità di accadimento - O

Categoria	Valore	Probabilità di accadimento
A ⇒ Frequente	10	> 1/10
La probabilità che si verifichi il guasto è molto alta	9	< 1/10
B ⇒ Probabile La probabilità che si verifichi il guasto è alta; l'evento si è ripetutamente verificato in progetti simili.	8 7	< 1/20 < 1/100
C ⇒ Raro E' riferita ad un evento che si è occasionalmente verificato in progetti simili.	6 5 4	< 1/200 < 1/1.000 < 1/2.000
D → Molto raro La probabilità che si verifichi il guasto, anche in progetti simili, è bassa.	3 2	< 1/10.000 < 1/20.000
E ⇒ Improbabile E' molto improbabile che si verifichi il guasto.	1	< 1/100.000

Tabella "Occurrence" (esempio per il prodotto)

Probabilità di Guasto DFMEA	Tasso di Guasto	Grado
Molto alta: Il guasto è inevitabile	>= 1 su 2	10
Wolle and. If gaaste e mevitablie	1 su 3	9
Alta: Eventi di guasti ripetuti	1 su 8	8
Ana. Eventi di gaasti ripetati	1 su 20	7
	1 su 80	6
Moderata: Guasti occasionali	1 su 400	5
	1 su 2,000	4
Bassa: Relativamente pochi guasti	1 su 15,000	3
bassa. Nelativallierite pocili guasti	1 su 150,000	2
Remota: Il guasto è improbabile	<= 1 su 1,500,000	1

Classificazione (scala) dell'indice di Diagnosticabilità - D

Diagnosticabilità	Valore	Probabilità di rilevare
Bassissima Assoluta incertezza sul rilevamento di un guasto da parte dei sistemi di controllo esistenti oppure non è previsto nessun sistema di controllo.	10 9	0 > 1%
Bassa I sistemi di controllo/diagnosi correnti hanno scarsa probabilità di rilevare il guasto.	8 7	> 5% > 10%
Media I sistemi di controllo/diagnosi correnti possono rilevare il guasto.	6 5	> 20% > 50%
Elevata Buona probabilità che i sistemi di controllo/diagnosi correnti rilevino l'esistenza del guasto.	4 3	> 90% > 95%
Altissima I controlli correnti quasi certamente rilevano la condizione di guasto.	2 1	> 99% certezza

Tabella "Detection" (esempio per il prodotto)

Detection	cection Criteri: Grado di individuazione tramite controllo di progetto DFMEA			
Incertezza assoluta	Il controllo di Progetto non è in grado di rilevare una causa di guasto e/o il suo modo di guasto; non esiste controllo di progetto	10		
Molto remota	Opportunità molto rara di rilevare una causa di guasto e/o il suo modo di guasto	9		
Remota	Opportunità rara di rilevare una causa di guasto e/o il suo modo di guasto	8		
Molto bassa	Opportunità molto bassa di rilevare una causa di guasto e/o il suo modo di guasto	7		
Bassa	Opportunità bassa di rilevare una causa di guasto e/o il suo modo di guasto	6		
Moderata	Opportunità moderata di rilevare una causa di guasto e/o il suo modo di guasto	5		
Moderatamente alta	Opportunità moderatamente alta di rilevare una causa di guasto e/o il suo modo di guasto	4		
Alta	Opportunità alta di rilevare una causa di guasto e/o il suo modo di guasto	3		
Molto alta	Opportunità molto alta di rilevare una causa di guasto e/o il suo modo di guasto	2		
Quasi certa	Quasi certezza di rilevare una causa di guasto e/o il suo modo di guasto	1		

Tabella FMEA

Sistema /	Prodotto	/ Serviz	io :			
Functione	svolta :					
	Modi di guasto					
Serial Modo di guasto		Causa	Frequenza di accadimento (O)			

Tabella FMEA (segue)

Numero identificativo FMECA								
Data								
Analista	Analista							
Effetti del guasto - Non conformità								
Effetti locali Effetti finali		Metodo di diagnosi	Severity (S)	Probabilità di diagnosi <mark>(D)</mark>				

Criticità Azioni correttive						
Criticity value RPN		Modifiche di progetto	Modifiche di processo	Modalità di verifica modifiche	RPN modificato	

- le caratteristiche -

Vantaggi:

- ✓ identificare quei guasti che, quando si producono da soli, hanno effetti inaccettabili o significativi e determinare i modi di gusto che possono avere conseguenze gravi sul funzionamento desiderato o richiesto;
- ✓ determinare la necessità di ridondanze, sovradimensionamenti, semplificazioni di progetto;
- ✓ scelta opportuna dei materiali, parti, dispositivi;
- ✓ identificare le conseguenze gravi dei guasti e conseguente revisione progettuale;
- ✓ individuare i rischi per la sicurezza o sollevare problemi di responsabilità legale e scoprire le NC ai requisiti stabiliti per legge;
- ✓ stabilire le attività di manutenzione preventiva/correttiva;
- ✓ individuare i servizi richiesti dal sistema.

Svantaggi:

✓ normalmente gli errori umani non sono compresi nell'analisi. L'esame delle interazioni uomo-macchina è condotto, normalmente, con metodi particolari (es. analisi dei compiti, analisi cause-conseguenze).

La FMEA può comunque individuare i componenti più vulnerabili agli errori umani.

✓ non prende in considerazione gli effetti dovuti all'ambiente.