## Lista de Exercícios 2..3...4 — Revisão de Introdução a Programação em Java Prof. Luiz Mário Lustosa Pascoal

## Estruturas de Seleção (IF-ELSE, IF-ELSE-IF e Switch-Case)

- 1. Crie um programa para determinar se um número inteiro A é divisível por outro número B. Os valores devem ser fornecidos pelo usuário.
- 2. Crie um algoritmo que peça a idade do eleitor e o mesmo informe se o eleitor é facultativo (entre 16 e 17 anos) ou obrigatório (entre 18 a 65) ou dispensado (acima de 65).
- 3. Escreva um programa que leia o valor da compra e imprima o valor da venda de acordo com a tabela a seguir. Cuidado com valor inválido de compra:

| Valor da Compra                | Valor da Venda |
|--------------------------------|----------------|
| Valor < R\$ 10,00              | Lucro de 70%   |
| R\$ 10,00 <= Valor < R\$ 30,00 | Lucro de 50%   |
| R\$ 30,00 <= Valor < R\$ 50,00 | Lucro de 40%   |
| Valor >= R\$ 50,00             | Lucro de 30%   |

- 4. Desenvolver um programa que calcule o salário bruto e o salário líquido de um funcionário.
  - Dados de Entrada: Matrícula do funcionário (int); Quantidade de horas-extras trabalhadas.
  - Constantes: Salário Mínimo = R\$ 788.00; Valor da Hora-Extra = R\$ 10.00. Sabe-se:
    - Salário hora-extra = horas-extras \* Valor da Hora-Extra;
    - Salário bruto = 3 \* Salário Mínimo + Salário hora-extra;
    - Desconto INSS = 12 % do salário bruto, se salário bruto for maior que R\$ 1500,00;
    - Desconto do Imposto de Renda = 20 % do Salário Bruto, se o mesmo for maior que R\$ 2000,00; Salário líquido = salário bruto deduções.
- 5. Escrever um programa que leia o número de identificação, as 3 notas obtidas por um aluno nas 3 verificações e a média dos exercícios que fazem parte da avaliação. Valide para que todas as entradas sejam 0 ≤ nota ≤ 10. Calcule a média de aproveitamento do aluno, usando a fórmula:

$$M\'edia = \frac{(nota1 + nota2 * 2 + nota3 * 3 + media dos exercicios)}{7}$$

E o seu conceito, usando a tabela a seguir:

| Média de Aproveitamento | Conceito |
|-------------------------|----------|
| >= 9.0 e <= 10          | A        |
| >= 7.5 e < 9.0          | В        |
| >= 6.0 e < 7.5          | С        |
| >= 4.0 e < 6.0          | D        |
| < 4.0                   | Е        |

O programa deve escrever o número do aluno, suas notas, a média dos exercícios, a média de aproveitamento, o conceito correspondente e a mensagem: **APROVADO** se o conceito for A, B ou C e **REPROVADO**, se o conceito for D ou E.

6. Escreva um algoritmo que leia o código de um determinado produto e mostre a sua classificação de acordo com a tabela apresentada a seguir:

| Código                | Classificação                   |
|-----------------------|---------------------------------|
| 1                     | Alimento não-perecível          |
| 2, 3 ou 4             | Alimento perecível              |
| 5 ou 6                | Vestuário                       |
| 7                     | Higiene pessoal                 |
| 8 até 15              | Limpeza e utensílios domésticos |
| Qualquer outro código | Inválido                        |

7. Faça um algoritmo que receba o salário e um código correspondente ao cargo de um funcionário e imprima seu cargo, o salário, e o valor do aumento segundo o percentual de aumento ao qual este funcionário tem direito segundo a tabela a seguir e o valor do aumento baseado no salário. Ao final, mostre o salário com o aumento.

| Código | Cargo        | Percentual % |  |
|--------|--------------|--------------|--|
| 1      | Escriturário | 50           |  |
| 2      | Secretário   | 35           |  |
| 3      | Caixa        | 20           |  |
| 4      | Gerente      | 10           |  |
| 5      | Diretor      | 0            |  |

Obs. O programa deverá informar ao usuário caso ele digite um código inválido.

8. Faça um programa que leia um código, x e y e calcule f(x,y) de acordo com as equações abaixo:

| Código | Equação                                                   |  |  |
|--------|-----------------------------------------------------------|--|--|
| 1      | $f(x,y) = \sqrt{x^3 + \frac{(x(2y-x))}{y^2}}$             |  |  |
| 2      | $f(x,y) = \frac{\sqrt{(x^3 + y^3) + (x^3 - y^3)}}{x * y}$ |  |  |
| 3      | $f(x,y) = 2x + \sqrt{x * y}$                              |  |  |
| 4      | $f(x,y) = \sin(x) + \cos(y)$                              |  |  |

<sup>\*</sup>Obs. Cuidado com operações inválidas!

## Estruturas de Repetição (For, While e Do-While)

- 9. Escreva um programa que receba dois números x e y e calcule x<sup>y</sup>. Sem utilizar a biblioteca Math.
- 10. Escreva um programa que calcule o fatorial de um número inteiro N fornecido pelo usuário. Cuidado com valores inválidos!

11. Escrever um programa que calcule todos os números inteiros divisíveis por um certo valor indicado pelo usuário, e compreendidos em um intervalo também especificado pelo usuário. O usuário deve entrar com um primeiro valor correspondente ao divisor e após ele vai fornecer o valor inicial do intervalo, seguido do valor final deste intervalo.

Exemplo: Valor do divisor: 3;

Inicio do Intervalo: 17; Fim do Intervalo: 29;

Saída-> Números divisíveis por 3 no intervalo de 17 a 29: 18, 21, 24, 27.

12. Faça um programa que Leia o Nome e duas notas de uma pessoa e ao final, o programa deve calcular a média aritmética entre as duas notas. O programa deve ser capaz de validar se a nota informada é válida (0.0 ≤ nota ≤ 10), caso contrário o sistema deve informar ao usuário o erro e pedir para ler novamente. Usar um laço Faça-Enquanto na leitura das notas, e gerar uma saída conforme o exemplo de tela de saída abaixo:

Entre com o nome do aluno: Fulano da Silva

Entre com o grau A: 15.3

ERRO: Nota invalida! Digite novamente a nota.

Entre com o grau A: 5.0 Entre com o grau B: 6.0

O aluno Fulano da Silva tem uma media: 5.66

Continuar (sim/nao)? nao

- 13. Faça um programa que leia uma senha (número inteiro). Em seguida, pergunte ao usuário a senha informada, caso a senha esteja errada imprima "Senha incorreta, tente novamente" e leia novamente a senha. Caso o usuário digite a senha correta, imprima "Senha correta! Bem-vindo ao sistema".
- 14. Faça um programa que receba 2 notas (valide as notas, onde  $0.0 \le \text{nota} \le 10$ ) de um número indeterminado de alunos. Calcule e mostre:
  - a. A média aritmética das 2 notas lidas;
  - b. Uma mensagem de acordo com as regras: Até 3 (Reprovado); Entre 3 e 7 (Exame); de 7 para cima (Aprovado);
  - c. O total de alunos;
  - d. Quantidade de alunos Aprovados, Reprovados e de Exame.
  - e. A Média da classe.
  - f. O nome e a média dos Alunos com a maior e menor média da classe.
- 15. Escreva um programa que apresente quatro opções: (a) consulta saldo, (b) saque e (c)depósito e (d) sair. O saldo deve iniciar em R\$ 0,00. A cada saque ou depósito o valor do saldo deve ser atualizado.
  Exemplo:

```
Opções:
(a) consulta saldo
(b) saque
(c) depósito
      R$ 0.00
Opções:
(a) consulta saldo
(b) saque
(c) depósito
> c
      valor: 20.00
Opções:
(a) consulta saldo
(b) saque
(c) depósito
>a
      R$ 20.00
```

- 16. Faça um programa que leia um numero inteiro N e mostre todos os números primos entre 1 e N. Número primo é aquele que é divisível apenas por 1 e ele mesmo.
  - Ex. 17 é um número primo, pois só é divisível por 1 e por ele mesmo.
- 17. Faça um programa que leia o código dos produtos pedidos e as quantidades desejadas; calcule e mostre o valor a ser pago por produto (preço \* quantidade) e o total do pedido. Considere que o cliente deve informar quando o pedido deve ser encerrado.

| Produto         | Código | Preço (unitário) |
|-----------------|--------|------------------|
| Cachorro quente | 1      | R\$ 1,50         |
| Hamburger       | 2      | R\$ 2,00         |
| Cheeseburger    | 3      | R\$ 2,50         |
| Eggcheeseburger | 4      | R\$ 3,00         |
| Refrigerante    | 5      | R\$ 1,50         |

18. Desenhe a seguinte pirâmide de asteriscos. O usuário deve determinar a quantidade de linhas.



19. Altere o programa anterior para que dessa vez seja desenhado o triângulo abaixo:

```
*

* *

* *

* * *

* * *

* * *

* * *

* *

* *

* *

* *

* *

* *

* *
```

## Vetores (Arrays) e Métodos (Funções)

- 20. Faça um programa que leia um vetor de inteiros, de 10 posições. A seguir, encontre o menor elemento (X) e o maior elemento (Y) do vetor. Imprima uma mensagem mostrando: "O menor elemento do vetor é", X, "e sua posição dentro do vetor é: V[x]. Já o maior elemento é ", Y," e está na posição V[y]". Assuma que os elementos informados no vetor são todos diferentes entre si.
- 21. Escreva um programa que receba quinze números inteiros e armazene em um vetor a raiz quadrada de cada número. Caso o valor digitado seja menor do que zero, o número -1 deve ser atribuído ao elemento do vetor. Após isso, imprima todos os valores armazenados.
- 22. Faça um programa que preencha um vetor com 10 números inteiros. Calcule e mostre a quantidade de números superiores a 25 e suas respectivas posições. O programa deverá mostrar uma mensagem se não existir nenhum número nessa condição.
- 23. Faça um programa que leia um primeiro vetor com dez números inteiros e um segundo vetor com cinco números inteiros. Mostre uma lista dos números do primeiro vetor com seus respectivos divisores armazenados no segundo vetor, bem como suas posições.

Ex.:

Num [ 5 12 4 7 10 3 2 6 23 16 ]

Divis [ 3 11 5 8 2]

Saída:

Número 5:

Divisível por 5 na posição 2

Número 12:

Divisível por 3 na posição 0

Divisível por 2 na posição 4

Número 4:

Divisível por 2 na posição 4

. . .

- 24. Faça um programa que leia um código inteiro e um vetor de 10 posições de números reais. Se o código for zero, termine o programa. Se for 1, mostre o vetor na ordem direta. Se for 2, mostre o vetor na ordem inversa.
- 25. Escreva um programa que leia dois vetores V1 e V2 cada um com N (N<=10) valores reais e um terceiro vetor Op com N valores do tipo caracter. Seu programa deve gerar um vetor Resul como sendo o resultado das operações de V1 com V2, onde o código da operação está no vetor Op nas respectivas posições.

| V1    |    |    |    |    |    |
|-------|----|----|----|----|----|
|       | 4  | 7  | 10 | 12 | 3  |
| V2    |    |    |    |    |    |
|       | 8  | 13 | 10 | 18 | 30 |
| Op    |    |    |    |    |    |
|       | +  | -  | /  | +  | *  |
| Resul |    |    |    |    |    |
|       | 12 | -6 | 1  | 30 | 90 |
|       |    |    |    |    |    |

- 26. Faça um programa que leia um vetor de inteiros de 10 posições e garanta que todos os elementos presentes no vetor sejam todos distintos entre si.
- 27. Crie 2 vetores de inteiros A e B de tamanho 10 preenchidos aleatoriamente. Para tal, utilize método: **int sorteia (int limitInf, int limitSup)** descrito abaixo que recebe por parâmetro os limites inferior e superior dos valores gerados, tais limites deverão ser informados pelo usuário (valide para que o limitInf seja menor que o limitSup), e retorne um número neste intervalo. Em seguida crie vetores auxiliares que sejam preenchidos pelos:
  - a. O vetor Soma deverá ser preenchido pela soma dos elementos de A e B. Ex. A{1, 5} B{3, 4} Soma {4, 9}.
  - b. O vetor Intersecção deverá ser preenchido com os valores que estão em A e B ao mesmo tempo. Ex. A{1, 5}, B{3, 5}, Intersecção{5}.
  - c. O vetor Diferença deverá ser preenchido com valores que estão em A mas não estão em B. Ex. A{1, 5}, B{3, 5}, Diferenca{1}.
  - d. O vetor Intercalação deverá ser preenchido com a intercalação dos vetores A e B. Ex. A {1, 5} e B {3, 4} Intercalação {1, 3, 5, 4}.

```
public static int sorteia (int limiteInferior, int limiteSuperior) {
   Random rd = new Random();
   return rd.nextInt(limiteSuperior - limiteInferior + 1) + limiteInferior;
}
```

28. Faça um programa que calcule o Arranjo e Combinação de N tomados de P a P,  $A_n^p$  e  $C_n^p$ . Para tal, crie um método que calcule o fatorial de um número. Crie também outros

dois métodos, uma para calcular  $A_n^p$ e outra para calcular  $C_n^p$  conforme as equações abaixo, e ao final mostre os resultados.

$$A_n^p = \frac{n!}{(n-p)!}$$
  $C_n^P = \frac{n!}{p!(n-p)!}$ 

29. Utilize o método sorteia que retorna um número aleatório de limiteInferior até limiteSuperior para gerar um número aleatório neste intervalo. O número gerado pelo sorteia deverá ser colocado em um vetor de 1000 posições. Leia limiteInferior e limiteSuperior e preencha o vetor de 1000 posições, garantindo que todos os valores presentes no vetor são distintos entre si.