

Chapter 5.

상관분석과 회귀분석

- 1. 상관분석
- 2. 회귀분석

■ 상관분석이란?

- 상관분석(Correlation analysis)은 연속형인 두 변수 간에 어떤 선형적인(Linear) 또는 비선형적인(Non-linear) 관계를 갖고 있는지 분석하는 방법
- 두 변수 간의 관계는 상관계수(Correlation coefficient)로 나타내고, -1~1 사이의 값을 갖으며 (-)부호일 경우 반비례 관계인 음의 상관관계, (+)부호일 경우 비례 관계인 양의 상관관계를 나타냄
- 일반적인 판정기준은 아래와 같으며 상관계수는 두 변수 간의 연관된 정도를 나타내는 것이지 인과관계를 설명하는 것은 아님

1-2. 데이터 불러와서 확인하기

■ 데이터 불러와서 확인

- 분석 목적 : 병아리의 성장에 영향을 미치는 인자 확인
- ch5-1.csv 데이터 셋의 경우 부화한 지 1주일 된 병아리 몸무게(weight), 종란 무게(egg_weight), 하루 평균 이동거리(movement), 하루 평균 사료 섭취량(food) 데이터가 포함되어 있으며 총 5개의 열(변수)과 30개의 행으로 구성되어있음

코딩실습								
In [1]:	'	# pandas 패키지 불러오기 및 pd라는 약어로 지칭하기 import pandas as pd						
In [2]:	w = po	d.read_cs\	/('ch5-1	.csv') # w 5	변수에 데이터	1셋 입력		
In [3]:	w.hea	w.head() # 위에서 부터 5개 데이터 확인						
Out [3]:	cl	hick_nm	weight	egg_weight	movement	food		
	0	a01	140	65	146	14		
	1	a02	128	62	153	12		
	2	a03	140	65	118	13		
	3	a04	135	65	157	13		
	4	a05	145	69	157	13		

In [4]:	w.info() # 데이터 구조 및 자료형 확인
Out [4]:	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 30 entries, 0 to 29 Data columns (total 5 columns): # Column Non-Null Count Dtype 0 chick_nm 30 non-null object 1 weight 30 non-null int64 2 egg_weight 30 non-null int64 3 movement 30 non-null int64 4 food 30 non-null int64 dtypes: int64(4), object(1) memory usage: 1.3+ KB</class></pre>

■ 별도 데이터 셋 구성

■ 첫 번째 열(chick_nm)이 문자(object)라 상관분석이 되지 않기 때문에 첫 번째 열을 제외하고 별도의 데이터 셋 구성

코딩실습							
In [5]:	W_I	# w 데이터셋에서 1~4열 데이터만 가져오기 w_n = w.iloc[:,1:5] w_n.head()					
Out [5]:		weight	egg_weight	movement	food		
	0	140	65	146	14		
	1	128	62	153	12		
	2	140	65	118	13		
	3	135	65	157	13		
	4	145	69	157	13		

■ 상관분석

■ 첫 번째 열(chick_nm)이 문자(object)라 상관분석이 되지 않기 때문에 첫 번째 열을 제외하고 별도의 데이터 셋 구성

코딩실습							
In [6]:		# 상관분석 실시 v_cor = w_n.corr(method = ' <mark>pearson</mark> ') v_cor					
Out [6]:		weight	egg_weight	movement	food		
	weight	1.000000	0.957169	0.380719	0.877574		
	egg_weight	0.957169	1.000000	0.428246	0.808147		
	movement	0.380719	0.428246	1.000000	0.319011		
	food	0.877574	0.808147	0.319011	1.000000		

상관계수	대상
피어슨	수치적 데이터 변수의 상관 분석(선형관계)
스피어만	순서적 데이터 변수의 상관 분석(비선형관계)

.. 병아리 몸무게(weight)와 가장 상관관계가 큰 변수는 종란 무게(egg_weight)로 0.957의 상관계수를 갖고 있으며 다음으로 하루 평균 사료 섭취량 (food), 하루 평균 이동거리(movement) 순임

■ 상관분석 결과 시각화

■ 상관분석의 결과는 주로 산점도(Scatter plot)도 나타내며 seaborn 패키지 pairplot() 함수 이용

코딩실습	
In [7]:	# 상관관계 시각화를 위한 패키지 불러오기 import matplotlib.pyplot as plt import seaborn as sns
In [8]:	# 산점도 그리기 sns.pairplot(w_n)
In [9]:	# 상관행렬도 그리기 plt.figure(figsize = (10,7)) sns.heatmap(w_cor, annot = True, cmap = 'Blues') plt.show()

<상관행렬도>

Chapter 5.

상관분석과 회귀분석

- 1. 상관분석
- 2. 회귀분석

2-1. 회귀분석이란?

■ 회귀분석

- 회귀분석(Regression analysis)은 연속형 변수들에 대해 두 변수 사이의 관계를 수식으로 나타내는 분석 방법
- x라는 독립변수, y라는 종속변수가 존재할 때 이 두 변수 사이의 관계를 y = ax + b와 같은 형태의 수식으로 나타낼 수 있는 방법

※ 회귀분석의 5가지 가정

- 선형성 : 독립변수(x)와 종속변수(y)의 관계가 선형관계가 있음
- 독립성: 잔차(Residual)와 독립변수의 값이 관련없어야함
- 등분산성 : 독립변수의 모든 값에 대한 오차들의 분산이 일정해야함
- 비상관성: 관측치들의 잔차들끼리 상관이 없어야 함
- 정상성: 잔차항이 정규분포를 이뤄야 함

2-2. 단순 선형 회귀분석

■ 단순 선형 회귀분석

- 분석 목적 : 병아리의 몸무게 예측 모델 개발
- 병아리 몸무게(weight)와 가장 상관계수가 컸던 종란 무게(egg_weight)로 statsmodels.formula.api 모듈의 ols() 함수 이용
- 회귀분석 결과는 summary() 메소드를 이용해 확인

코딩실습	
In [10]:	# 회귀분석 수행을 위한 모듈 불러오기 및 smf로 지칭하기 import statsmodels.formula.api as smf # 종란무게 - 병아리 몸무게 단순선형회귀모델 구축 model_lm = smf.ols(formula = 'weight ~ egg_weight', data = w_n)
In [11]:	# 모델 학습 result_lm = model_lm.fit()
In [12]:	# 모델 결과 확인 result_lm.summary()

2-2. 단순 선형 회귀분석

■ 단순 선형 회귀분석

■ 회귀분석 결과 해석

[결과 해석]

- ① 회귀모델이 통계적으로 유의한지 확인
- : F통계량의 p-value(p값)가 0.05 보다 작으면 유의수준 5%(신뢰수준 95%) 하에서 추정된 회귀모델이 통계적으로 유의한 것으로 판단 → 1.32e-16(1.32 x 10⁻¹⁶)으로 통계적으로 유의
- ② 개별 독립변수가 통계적으로 유의한지 확인
- : 개별 독립변수의 p값이 0.05 보다 작으면 유의수준 5% 하에서 통계적으로 유의한 것으로 판단
- → 종란 무게(egg_weight)가 0으로 통계적으로 유의하다고 판단하며 상수(Intercept)의 p값은 의미 없음
- ③ 결정계수(R-squared)가 높은지 확인
- : R²는 1에 가까울수록 회귀모델의 성능(설명력)이 뛰어나다고 판단 → 0.9162로 매우 높음
- ④ 회귀모델은 coef(coefficient)값으로 구할 수 있음
- : Intercept는 y절편(상수)을 뜻하며 각 독립변수에 해당되는 coef값은 해당 독립변수의 계수(기울기)를 나타냄
- → weight = 2.3371*egg_weight 14.5475

0.916

2-2. 단순 선형 회귀분석

■ 단순 선형 회귀분석

■ print() 함수 이용 시 보고서 형태로 출력 가능

코딩실습	
In [13]:	# 보고서 형태로 모델 결과 출력 print(result_lm.summary())

OLS Regression Results

weight R-squared:

Model: OLS Method: Least Squares Date: Tue, 01 Mar 2022 Time: 18:32:04 No. Observations: 30 Df Residuals: 28 Df Model: 1 Covariance Type: nonrobust		ares 2022 32:04 30 28 1	F—sta Prob	R-squared: atistic: (F-statistic ikelihood:):	0.913 306.0 1.32e-16 -63.148 130.3 133.1	
	coef	std err	=====	t	P> t	======================================	0.975]
Intercept -14 egg_weight 2					0.106 0.000	-32.380 2.063	3.285 2.611
Omnibus: Prob(Omnibus): Skew: Kurtosis:		(5.078).001).032 .518				1.998 2.750 0.253 1.51e+03

Notes:

Dep. Variable:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.51e+03. This might indicate that there are strong multicollinearity or other numerical problems.

■ 단순 선형 회귀분석 결과 확인 - 산점도

■ summary() 메소드를 이용한 결과해석 외에도 산점도나 잔차의 히스토그램을 그려서 모델이 데이터를 잘 대표하는지 확인

```
In [14]: # 종란무게에 따른 병아리 몸무게 산점도
plt.figure(figsize = (10,7))
plt.scatter(w.egg_weight, w.weight, alpha = .5)
plt.plot(w.egg_weight, w.egg_weight*2.3371 - 14.5475, color = 'red')
plt.text(66, 132, 'weight = 2.3371egg_weight - 14.5475', fontsize = 12)
plt.title('Scatter Plot')
plt.xlabel('egg_weight')
plt.ylabel('weight')
plt.show()
```


→ 빨간색 회귀직선이 데이터의 분포를 잘 대표하고 있음

2-2. 단순 선형 회귀분석

■ 단순 선형 회귀분석 결과 확인 – 잔차 히스토그램

■ result_lm의 속성에 잔차(residual)를 포함하고 있어 이를 이용해 잔차 히스토그램을 그릴 수 있음

코딩실습	
In [15]:	# 잔차 5개만 확인 result_lm.resid.head()
Out [15]:	0 2.633714 1 -2.354880 2 2.633714 3 -2.366286 4 -1.714829 dtype: float64
In [16]:	# 전차 히스토그램 그리기 plt.figure(figsize = (10,7)) plt.hist(result_lm.resid, bins = 7) plt.show()

→ 잔차(실제값 - 계산된 값) 결과가 0을 중심으로 종모양의 분포가 나오지 않아 다소 아쉬운 결과임

2-3. 다중 회귀분석

■ 다중 회귀분석 실시

■ ols() 함수에 모든 변수를 추가해서 다중 회귀분석 실시

코딩실습	
In [17]:	# 병아리 몸무게 예측을 위한 다중회귀분석 실시 model_mlm = smf.ols(formula = 'weight ~ egg_weight + food + movement', data = w_n)
In [18]:	result_mlm = model_mlm.fit()
In [19]:	result_mlm.summary()

2-3. 다중 회귀분석

■ 다중 회귀분석 실시

■ 다중 회귀분석 결과 해석

OLS Regression Results

Kurtosis:

2.311

Cond. No. 4.31e+03

[결과 해석]

- ① 회귀모델이 통계적으로 유의한지 확인
- : F통계량의 p-value(p값)가 0.05 보다 작으면 유의수준 5%(신뢰수준 95%) 하에서 추정된 회귀모델이 통계적으로 유의한 것으로 판단 → 8.46e-17(8.46 x 10⁻¹⁷)으로 통계적으로 유의
- ② 개별 독립변수가 통계적으로 유의한지 확인
 - : 개별 독립변수의 p값이 0.05 보다 작으면 유의수준 5% 하에서 통계적으로 유의한 것으로 판단 → 종란 무게(egg_weight)와 하루 평균 사료 섭취량(food)만 통계적으로 유의
- ③ 조정된 결정계수(Adjusted R-squared)가 높은지 확인
- : R²는 1에 가까울수록 회귀모델의 성능(설명력)이 뛰어나다고 판단 → 0.942로 매우 높음
- ④ 회귀모델은 coef(coefficient)값으로 구할 수 있음
- : Intercept는 y절편(상수)을 뜻하며 각 독립변수에 해당되는 coef값은 해당 독립변수의 계수(기울기)를 나타냄
- → weight = 1.7763*egg_weight -0.0087*movement + 1.5847*food + 2.9748

■ 다중 회귀분석 실시 – 유의하지 않은 독립변수 제거

■ p값이 0.05보다 높아 유의수준 5%에서 유의하지 않은 독립변수인 하루 평균 이동거리(movement) 변수를 제외하고 다중 회귀분석 실시

코딩실습	
In [20]:	# 병아리 몸무게 예측을 위한 다중회귀분석 실시2 model_mlm2 = smf.ols(formula = 'weight ~ egg_weight + food', data = w_n)
In [21]:	result_mlm2 = model_mlm2.fit()
In [22]:	result_mlm2.summary()

2-3. 다중 회귀분석

■ 다중 회귀분석 실시 – 유의하지 않은 독립변수 제거

■ 다중 회귀분석 결과 해석

[결과 해석]

- ① 회귀모델이 통계적으로 유의한지 확인
- : F통계량의 p-value(p값)가 0.05 보다 작으면 유의수준 5%(신뢰수준 95%) 하에서 추정된 회귀모델이 통계적으로 유의한 것으로 판단 → 2.2e-16(2.2 x 10⁻¹⁶)으로 통계적으로 유의
- ② 개별 독립변수가 통계적으로 유의한지 확인
- : 개별 독립변수의 p값이 0.05 보다 작으면 유의수준 5% 하에서 통계적으로 유의한 것으로 판단
- → 종란 무게(egg weight)와 하루 평균 사료 섭취량(food) 통계적으로 유의
- ③ 조정된 결정계수(Adjusted R-squared)가 높은지 확인
- : R²는 1에 가까울수록 회귀모델의 성능(설명력)이 뛰어나다고 판단
- → 0.9435로 movement 변수가 있을 때 보다 더 높아졌음
- ④ 회귀모델은 coef(coefficient)값으로 구할 수 있음
- : Intercept는 y절편(상수)을 뜻하며 각 독립변수에 해당되는 coef값은 해당 독립변수의 계수(기울기)를 나타냄
- → weight = 1.7453*egg_weight + 1.5955*food + 3.6638

■ 다중공선성

- 다중 회귀분석에서 많은 독립변수들 간의 강한 상관관계가 발생할 경우 다중공선성(Multicollinearity) 문제가 있다고 함
- 다중공선성 문제는 분산팽창요인(VIF, Variance Inflation Factor)을 계산해 구할 수 있으며 10 이상이면 있다고 판단하며 30을 초과하면 심각함
- statsmodels.stats.outliers_influence 모듈에서 variance_inflation_factor() 함수 이용

코딩실습	
In [23]:	# 다중공선성 확인을 위한 함수 불러오기 from statsmodels.stats.outliers_influence import variance_inflation_factor
In [24]:	# 회귀모델 외생변수이름 속성 model_mlm2.exog_names
Out [24]:	['Intercept', 'egg_weight', 'food']
In [25]:	# 첫 번째 변수(egg_weight) vif 계산 vif1 = variance_inflation_factor(model_mlm2.exog, 1)
In [26]:	# 두 번째 변수(food) vif 계산 vif2 = variance_inflation_factor(model_mlm2.exog, 2)
In [27]:	print(vif1, vif2)
In [28]:	# 잔차 히스토그램 그리기 plt.figure(figsize = (10,7)) plt.hist(result_mlm2.resid, bins = 7) plt.show()

→ 단순 선형 회귀분석 대비 잔차의 히스토그램이 0을 중심으로 한 형태의 종모양에 가까워졌음

∴ 두 변수 모두 10보다 매우 작기 때문에 다중공선성 문제는 없는 것으로 판단됨

2-5. 비선형 회귀분석

■ 데이터 불러오기 및 확인하기

- 분석 목적 : 성장기간에 따른 병아리의 몸무게 변화 예측 모델 개발
- 독립변수(x)와 종속변수(y)가 비선형 관계일 때 사용하는 분석 방법으로 독립변수에 로그(log)나 거듭제곱 등을 취해서 적합한 모델을 찾아야함
- ch5-2.csv 데이터 셋은 성장 기간(일자)에 따른 병아리의 몸무게(weight) 변화를 기록한 데이터로 총 70일간 관찰하였음

코딩실습				
In [29]:	w2 = pd.read_csv('ch5-2.csv') # w2 변수에 데이터셋 입력			
In [30]:	w2.head()			
Out [30]:		day	weight	
	0	1	43	
	1	2	55	
	2	3	69	
	3	4	86	
	4	5	104	

In [31]:	w2.info()
Out [31]:	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 70 entries, 0 to 69 Data columns (total 2 columns): # Column Non-Null Count Dtype 0 day 70 non-null int64 1 weight 70 non-null int64 dtypes: int64(2) memory usage: 1.2 KB</class></pre>

2. 회귀분석

■ 데이터 불러오기 및 확인하기

■ 성장기간에 따른 병아리 몸무게 변화 산점도 그리기

```
코딩실습
In [32]: # 성장기간에 따른 몸무게 변화
plt.figure(figsize = (10,7))
plt.scatter(w2.day, w2.weight, alpha = .5)
plt.title('Scatter Plot')
plt.xlabel('day')
plt.ylabel('weight')
plt.show()
```


<성장기간에 따른 병아리 몸무게 변화 산점도>

2-5. 비선형 회귀분석

■ 선형 회귀분석 실시

■ 선형 회귀분석으로 적합(fitting)시켜 보기

코딩실습	
In [33]:	# 성장기간에 따른 병아리의 몸무게 변환 선형 회귀분석 실시 model_lm2 = smf.ols(formula = 'weight ~ day', data = w2)
In [34]:	result_lm2 = model_lm2.fit()
In [35]:	result_lm2.summary()

■ 선형 회귀분석 실시

■ 회귀모델 적합 결과 산점도에 표시해보기

```
코딩실습
In [36]: # 성장기간에 따른 몸무게 변화
plt.figure(figsize = (10,7))
plt.scatter(w2.day, w2.weight, alpha = .5)
plt.plot(w2.day, w2.day*56.8216 - 295.8671, color = 'red')
plt.text(40, 500, 'weight = 56.8216day - 295.8671', fontsize = 12)
plt.title('Scatter Plot')
plt.xlabel('day')
plt.ylabel('weight')
plt.show()
```


<성장기간에 따른 병아리 몸무게 변화 산점도 및 회귀직선>

∴ 회귀모델 및 개별 독립변수 모두 95% 신뢰수준에서 통계적으로 유의하며 R²도 0.9791로 매우 높으나 회귀직선의 형태가 적합하지 않음

2-5. 비선형 회귀분석 _{2.회귀분석}

■ 비선형 회귀분석 실시

■ 비선형 회귀분석으로 적합(fitting)시켜 보기

코딩실습	
In [37]:	# 성장기간에 따른 병아리의 몸무게 변환 비선형 회귀분석 실시 model_nlm = smf.ols(formula = 'weight ~ l(day**3) + l(day**2) + day', data = w2)
In [38]:	result_nlm = model_nlm.fit()
In [39]:	result_nlm.summary()

■ 선형 회귀분석 실시

■ 회귀모델 적합 결과 산점도에 표시해보기

```
코딩실습
In [40]: # 성장기간에 따른 몸무게 변화
plt.figure(figsize = (10,7))
plt.scatter(w2.day, w2.weight, alpha = .5)
plt.plot(w2.day, (w2.day**3)*(-0.0253) + (w2.day**2)*2.6241 +
w2.day*(-15.2978) + 117.0141, color = 'red')
plt.text(0, 3200, 'weight = -0.0253(day^3) + 2.6241(day^2) -
15.2978day + 117.0141', fontsize = 12)
plt.title('Scatter Plot')
plt.xlabel('day')
plt.ylabel('weight')
plt.show()
```


<성장기간에 따른 병아리 몸무게 변화 산점도 및 회귀곡선>

∴ 선형회귀모델 대비 R²도 1으로 매우 높아졌으며 산점도와 회귀곡선이 거의 일치함 weight = -0.0253*day³ + 2.6241*day² - 15.2978*day + 117.0141