8.

等效电阻、 戴维宁定理和诺顿定理

邹建龙

主要内容

- 等效电阻
- 戴维宁定理和诺顿定理的作用
- 戴维宁定理和诺顿定理的内容
- 戴维宁定理和诺顿定理的证明
- 戴维宁定理和诺顿定理的关系
- 戴维宁和诺顿等效电路的求解

等效电阻

若一端口内仅含线性电阻和受控源,该一端口可等效为一个电阻,我们称之为等效电阻。

注意:一端口内不能含有独立源!!!

思考:为什么不含独立源的一端口可以等效为 一个电阻???

满足绵的明白与电流到地的超值、当即断相似的性质

等效电阻的求解

两种方法:

のお決勝可以直接当昨日

- 1. 用眼睛看(观察法) 等、从对为虚符号问题
- 2. 外加电源法(一定要是非关联参考方向,思考为什么?等效电阻可能为负电阻,为什么?)

等效电阻的求解-例题1技巧:分如、A就源、长明生的自己的水解-例题1

答案:5欧

等效电阻的求解-例题2

求等效电阻 R_{eq} (输入电阻 R_{in})

答案: -1欧

戴维宁定理和诺顿定理的作用

作用: 简化电路

多级为一个战源和一个战争且

可将一个复杂的一端口网络等效为两个元件!!

如此

我们就可以腾出手来去关心一下我们需要关心的

戴维宁定理和诺顿定理的内容

一般的意识路多串联优先戴维宁、多并联优先满顿

戴维宁定理和诺顿定理的证明

根据叠加定理可分解为两个电路:

戴维宁定理和诺顿定理的关系

绝大多数情况下二者可以互换

思考: 什么情况下不能互换, 只存在

一种等效电路?

思考: 什么情况下不能互换,只存在 一种等效电路?

O Peg=+00时、相当于断路、此时戴维与等效失效、是清洁频等效、且活顿Pag=0

D Reg=0时、比流源被玩店,此时活版 等放头效、只有戴销等效、且其 Reg=0

安放花计算中可能体现为 ①一午量算得两个不同的值 ②出现类似"0=2"的矛盾式>

反对投一种等款即

戴维宁等效电路的求解方法

第一步: 求开路电压

第二步: 求等效电阻

戴维宁等效电路的求解-例1

求戴维宁等效电路

一种"

放戴维宁等效用路为

答案:开路电压0.5V,等效电阻0.5欧姆。

戴维宁等效电路的求解-例2

求戴维宁等效电路

答案: 开路电压-1V, 等效电阻1.5欧姆。

诺顿等效电路的求解

设有戴维宁等效,其Reg=+∞

求诺顿等效电路

该电路是否有戴维宁等效电路,为什么?

答案: 短路电流3A; 无戴维宁等效电路, 因开路电压无穷大。

作业-1

阿拉 外格ARM

求等效电阻 R_{eq} (输入电阻 R_{in})

作业-2

解外接的概点原

求等效电阻 R_{eq} (输入电阻 R_{in})得 $R_{eq} = -|\Omega|$

作业-3

求戴维宁等效电路和 诺顿等效电路 為 :

1=4/12+21=1A hoc=5-2=1V 好了1A的城市. 分村14A的城市

、 戴排气等助的路为

港城等知明路为

