M 431: Assignment 13

Nathan Stouffer

Page 163 — Problem 3

Problem. Find the greatest common divisor of the following polynomials over \mathbb{Q} , the field of rational numbers.

(a)
$$x^3 - 6x + 7$$
 and $x + 4$

(b)
$$x^2 - 1$$
 and $2x^7 - 4x^5 + 2$

(c)
$$3x^2 + 1$$
 and $x^6 + x^4 + x + 1$

(d)
$$x^3 - 1$$
 and $x^7 - x^4 + x^3 - 1$

Proof.

(a) Here, x + 4 is irreducible so we only need to test if x + 4 divides $x^3 - 6x + 7$. Using long division, I found that this was not the case. So the greatest common divisor is the polynomial 1.

(b) Here $x^2 - 1 = (x+1)(x-1)$. Using long divion again, I found that x-1 divides $2x^7 - 4x^5 + 2$ but x+1 does not so the greatest common divisor is x-1.

(c) For this problem, I found the zeros of $3x^2 + 1$ in the complex plane then computed their output in the polynomial $x^6 + x^4 + x + 1$. Neither resulted in 0, so $3x^2 + 1$ does not divide $x^6 + x^4 + x + 1$ and the greatest common divisor is 1. So $3x^2 + 1$ is irreducible in $\mathbb{R}[x]$ so it is certainly irreducible in $\mathbb{Q}[x]$.

(d) For this one, $x^7 - x^4 + x^3 - 1 = x^4(x^3 - 1) + 1(x^3 - 1) = (x^4 + 1)(x^3 - 1)$ so $x^3 - 1$ is the greatest common divisor!

Page 164 — Problem 5

Problem. In the previous problem, let $I = \{f(x)a(x) + g(x)b(x)\}$ where f(x), g(x) run over $\mathbb{Q}[x]$ and a(x) is the first polynomial and b(x) is the second one in each part of the problem. Find d(x) so that I = (d(x)) for each part.

Proof. In the proof of Theorem 4.5.7 in the textbook, it is noted that for an ideal $I = \{f(x)a(x) + g(x)b(x) \mid f(x), g(x) \in \mathbb{Q}[x]\}$ with fixed a(x), b(x) that I = (d(x)) where (a(x), b(x)) = d(x) the greatest common divisor. Thus the d(x) that we search for in this problem is given by the answers to the last problem.

Page 164 — Problem 10

Problem. Show that the following polynomials are irreducible over the field F indicated.

(a)
$$x^2 + 7$$
 over \mathbb{R}

(b)
$$x^3 - 3x + 3$$
 over \mathbb{Q}

(c)
$$x^2 + x + 1$$
 over \mathbb{Z}_2

(d)
$$x^2 + 1$$
 over \mathbb{Z}_{19}

(e)
$$x^3 - 9$$
 over \mathbb{Z}_{13}

(e)
$$x^3 - 9$$
 over \mathbb{Z}_{13}
(f) $x^4 + 2x^2 + 2$ over \mathbb{Q}

Proof.

(a) Using the bijection between real numbers $x \mapsto \sqrt{7}y$, map $x^2 + 7$ to $(\sqrt{7}y)^2 + 7 = 7y^2 + 7 = 7(y^2 + 1)$. Then, by the result in the next problem $\mathbb{R}[y]/(y^2+1)$ is a field so (y^2+1) is maximal which means y^2+1 is irreducible over \mathbb{R} . This implies that $x^2 + 7$ is irreducible in $\mathbb{R}[x]$.

(b) For $x^3 - 3x + 3$, note that p = 3 satisfies the Eisenstein criterion so the polynomial is irreducible in $\mathbb{Z}[x]$. Then Gauss' lemma tells us that the same polynomial is irreducible over \mathbb{Q} .

(c) For this one, just plug in the two options to $p(x) = x^2 + x + 1$. We have p(0) = p(1) = 1 so p(x) is irreducible over \mathbb{Z}_2 .

(d) Looking at $x^2 + 1$ over \mathbb{Z}_{19} , we know $x^2 + 1$ is irreducible in $\mathbb{R}[x]$ so it is also irreducible in $\mathbb{Z}_{19}[x]$.

(e) For $x^3 - 9$ over \mathbb{Z}_{13} , has no zeros in \mathbb{Z}_{13} so it is irreducible.

(f) Here we use the Eisenstein criterion with p=2 to show that x^4+2x^2+2 is irreducible over $\mathbb Z$ and Gauss' lemma tells us that the same polynomial is irreducible over \mathbb{Q} .

Page 164 — Problem 13

Problem. Let \mathbb{R} be the field of real numbers and \mathbb{C} that of complex numbers. Show that $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$.

Proof. We will show this with the first isomorphism theorem. To do this, we need a surjective homomorphism $\varphi: \mathbb{R}[x] \longrightarrow \mathbb{C}$ with $\ker \varphi = (x^2+1)$. Consider the map $\varphi: \mathbb{R}[x] \longrightarrow \mathbb{C}$ defined by taking the polynomial $a_k x^k + \cdots + a_1 x + a_0$ to the complex number $a_k i^k + \cdots + a_1 i + a_0$.

That φ is a surjection is immediate by choosing $bx+a\in\mathbb{R}[x]$ for the complex number $a+ib\in\mathbb{C}$. Now we verify that φ is a homomorphism. The addition component can be checked easily. For multiplication, pick $a(x),b(x)\in\mathbb{R}[x]$. Then we have $\varphi(a_0+\cdots+a_kx^k)\varphi(b_0+\cdots+b_lx^l)=(a_0+\cdots+a_ki^k)(b_0+\cdots+b_li^l)$ and $\varphi(a(x)b(x))=\varphi((a_0+\cdots+a_kx^k)(b_0+\cdots+b_lx^l))$ where multiplying the polynomials has the same "structure" as multiplying the complex numbers (ie foiling) so the multiplicative property of the homomorphism φ holds.

Now to check that $\ker \varphi = (x^2+1)$. Going to the left, pick any $p(x) \in (x^2+1) \Longrightarrow$ there exists some $f(x) \in \mathbb{R}[x]$ such that $p(x) = f(x)(x^2+1) \Longrightarrow \varphi(p(x)) = \varphi(f(x)(x^2+1)) = \varphi(f(x))\varphi(x^2+1) = \varphi(f(x))(i^2+1) = \varphi(f(x))0 = 0$ so $p(x) \in \ker \varphi$. Now going to the right, fix any $p(x) \in \ker \varphi$. Then $\varphi(p(x)) = p_0 + p_1 i + \cdots + p_n i^n = 0$. Now let p take any complex number as an input instead of just real inputs $(p \text{ is a member of } \mathbb{C}[z]$ as well as $\mathbb{R}[x]$. In the context of \mathbb{C} , this means that p(i) = 0, which is to say that $z^2 + 1 \mid p(z)$. But then all the coefficients are real so we must also have $x^2 + 1 \mid p(x) \Longrightarrow p(x) \in (x^2 + 1)$.

Thus we have all the requirements for φ to be the map in the first isomorphism theorem and we can conclude that $\mathbb{R}[x]/(x^2+1)\cong\mathbb{C}$.

Page 165 — Problem 16

Problem. Let $F = \mathbb{Z}_p$ for some prime number p and $q(x) \in F[x]$ where q(x) is irreducible with degree n. Show that F[x]/(q(x)) has exactly p^n elements.

Proof. I couldn't quite prove equality on this one, maybe I'm missing something super obvious. I did prove that the set F[x]/(q(x)) has at least p^n elements. Since q(x) has degree n we know that $q(x) = a_0 + a_1x + \cdots + a_nx^n$ with $a_n \neq 0$ and the irreducibility implies that the ideal (q(x)) contains only one element (0) that has degreen less than n. Thus each p(x) with $\deg p(x) < n$ produces a unique element of F[x]/(q(x)). The polynomial $p(x) \in \mathbb{Z}_p$ has the form $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$ where each a_i (of which there are n) has $|\mathbb{Z}_p| = p$ options. Thus we have at least p^n elements in the set F[x]/(q(x)). I look forward to reading the solutions to learn how to show the upper bound.

Page 171 — Problem 6

Problem. Let F be the field and φ an automorphism of F[x] such that $\varphi(a) = a$ for all $a \in F$. If $f(x) \in F[x]$, prove that f(x) is irreducible in F[x] if and only if $g(x) = \varphi(f(x))$ is.

Proof. If $\varphi(f(x)) = f(x)$ then this problem is trivial. Let's show that this is the case. Since φ is an automorphism, it is an isomorphism from $F[x] \longrightarrow F[x]$. Fix $f(x) = a_0 + a_1x + \cdots + a_nx^n \in F[x]$ and consider the following

$$\varphi(f(x)) = \varphi(a_0 + a_1 x + \dots + a_n x^n)$$

$$= \varphi(a_0) + \varphi(a_1 x) + \dots + \varphi(a_n x^n)$$

$$= \varphi(a_0) + \varphi(a_1)\varphi(x) + \dots + \varphi(a_n)\varphi(x^n)$$

$$= a_0 + a_1 \varphi(x) + \dots + a_n \varphi(x)^n$$

$$= a_0 + a_1 x + \dots + a_n x^n = f(x)$$

where made several crucial steps based on the fact that φ is a homomorphism with the property that $\varphi(a) = a$ for any $a \in F$. Note that all the $a_i \in F$ and $x \in F$ so our steps were justified.