# Case Study 00: This is a template

#### Author 1 and Author 2

March 00, 2015

```
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
```

## Descrição do Problema

O IMC é uma medida utilizada na área de saúde como um indicador simples capaz de encontrar correlações entre o peso e altura do paciente com doenças decorrentes de obesidade, sendo inclusive capaz de classificar em diferentes grupos para obter maior precisão na análise em questão [ADD. REF].

Apesar dos problemas decorrentes da simplicidade do teste [ADD REF.] e métodos mais robustos tais como a bioimpedância [ADD REF.] estarem presentes, continua sendo uma medida interessante pela facilidade e baixo custo de encontrá-la. A partir de tal importância médica, muitas questões naturalmente surgem relacionadas a testes entre diferentes populações.

Neste estudo, serão propostos três testes de forma a compreender possíveis relações e diferenças presentes na amostragem realizada nos anos de 2016 e 2017 no Departamento de Engenharia da UFMG. Os testes propostos são:

- Diferença entre IMC de Homens e Mulheres:
- Diferença de IMC entre os dois anos em estudo;
- Diferença entre alunos de Graduação e Pós-Graduação em 2017.

Por meio destes testes, podemos obter informações relevantes capazes de compreender diferenças baseadas em idade, sexo e ano de estudo.

#### Design dos Experimentos

#### 1. The easy way

Use RStudio as your editor, open the .Rmd file and click the Knit PDF button at the top of the editor.

#### 2. The slightly-less-easy way

If you're using any other R editor (such as the basic R editor), you have to use the *render()* function from the **rmarkdown** package:

```
install.packages("devtools")  # you only have to install it once
library(devtools)
install_github("rstudio/rmarkdown")  # you only have to install it once
library(rmarkdown)
render("report_template.Rmd","pdf_document")  # this renders the pdf
```

# Design dos Experimentos

#### Diferença entre IMC de Homens e Mulheres

Dada a suposta natureza

$$\begin{cases} H_0: \mu = 10 \\ H_1: \mu < 10 \end{cases}$$

including the reasons behind your choices of the value for  $H_0$  and the directionality (or not) of  $H_1$ .

This is also the place where you should discuss (whenever necessary) your definitions of minimally relevant effects ( $\delta^*$ ), sample size calculations, choice of power and significance levels, and any other relevant information about specificities in your data collection procedures.

#### Description of the data collection

Whenever needed, you can also include an (optional) subsection describing the actual data collection, how it was performed, any adaptations or unexpected events that may have occurred, etc. Subsections like this can also be used for the sample size calculations or any other aspect that requires a longer discussion.

### **Exploratory Data Analysis**

The first step is to load and preprocess the data. For instance,

```
data(mtcars)
fc<-c(2,8:11)
for (i in 1:length(fc)){mtcars[,fc[i]]<-as.factor(mtcars[,fc[i]])}
levels(mtcars$am) <- c("Automatic","Manual")</pre>
```

To get an initial feel for the relationships between the relevant variables of your experiment it is frequently interesting to perform some preliminary (exploratory) analysis. This is frequently referred to as *getting a feel* of your data, and can suggest procedures (such as outlier investigation or data transformations) to experienced experimenters.

Your preliminary analysis should be described together with the plots. In this example, two facts are immediately clear from the plots: first, **mpg** tends to correlate well with many of the other variables, most intensely with **drat** (positively) and **wt** (negatively). It is also clear that many of the variables are highly correlated (e.g., **wt** and **disp**). Second, it seems like manual transmission models present larger values of **mpg** than the automatic ones. In the next section a linear model will be fit to the data in order to investigate the significance and magnitude of this possible effect.

#### Statistical Analysis

Your statistical analysis should come here. This is the place where you should fit your statistical model, get the results of your significance test, your effect size estimates and confidence intervals.

```
model<-aov(mpg~am*disp,data=mtcars)
summary(model)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## am 1 405.2 405.2 47.948 1.58e-07 ***
## disp 1 420.6 420.6 49.778 1.13e-07 ***
```

# MPG by transmission type



Figure 1: Exploring the effect of car transmission on mpg values

```
## am:disp 1 63.7 63.7 7.537 0.0104 *
## Residuals 28 236.6 8.4
## ---
## Signif. codes: 0 '*** 0.001 '** 0.05 '.' 0.1 ' ' 1
```

#### **Checking Model Assumptions**

The assumptions of your test should also be validated, and possible effects of violations should also be explored.

```
par(mfrow=c(2,2), mai=.3*c(1,1,1,1))
plot(model,pch=16,lty=1,lwd=2)
```

#### Conclusions and Recommendations

The discussion of your results, and the scientific/technical meaning of the effects detected, should be placed here. Always be sure to tie your results back to the original question of interest!



Figure 2: Residual plots for the anova model