

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	21/01/2006	16:30

0750056021001006000000 75.056 21 01 06 EX

Espacio para la etiqueta identificativa con el código personal del **estudiante**. Examen

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura de la cual estás matriculado.
- Debes pegar una sola etiqueta de estudiante en el espacio de esta hoja destinado a ello.
- No se pueden realizar las pruebas con lápiz o rotulador.
- Tiempo total 2 horas
- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuál o cuáles pueden consultar?:
- Valor de cada pregunta: Problema 1: 30%; Problema 2: 20%; Problema 3: 20%; Problema 4: 30%
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de este examen

Enunciados

Problema 1

a) Utilizando la atribución de significado a símbolos de átomos que se indica, formalizad el siguiente razonamiento:

T: tengo prisa; D: disfruto del paisaje; S: salgo a pasear; M: he madrugado

Si no tengo prisa disfruto del paisaje, cuando salgo a pasear. Para que no tenga prisa es necesario que haya madrugado. De esto se puede concluir que si he madrugado entonces sucede que o bien no tengo prisa, o bien disfruto del paisaje o bien las dos cosas pasan a la vez

b) Utilizando la atribución de significado a símbolos de predicados atómicos que se indica, formalizad el siguiente razonamiento:

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	21/01/2006	16:30

V(x): x es un vehículo; E(x): x es de carácter experimental; P(x): x tiene una puntuación de 7 en el test euro NCAP; S(x): x es un sensor de lluvia; S(x): x está equipado con y

Ningún vehículo de carácter experimental tiene una puntuación de 7 en el test euro NCAP. Todos los vehículos de carácter experimental equipados con sensor de lluvia tienen una puntuación de 7 en el test euro NCAP. Luego, todos los vehículos que tienen una puntuación 7 en el test euro NCAP son de carácter no experimental.

$$\neg \exists_{x} (V(x) \land E(x) \land P(x))$$

$$\forall_{x} (V(x) \land E(x) \land \exists_{y} (S(y) \land T(x, y)) \rightarrow P(x))$$

$$\vdots$$

$$\forall_{x} (V(x) \land P(x) \rightarrow \neg E(x))$$

Problema 2

Demostrar, utilizando la deducción natural, que el siguiente razonamiento es correcto

$$Q^{\wedge} \neg P {\rightarrow} T, \ \neg Q {\rightarrow} P, \ T {\rightarrow} \neg Q \ \therefore \ P$$

1	$Q^{\uparrow}P\rightarrow T$		P
2	$\neg Q \rightarrow P$ $T \rightarrow \neg Q$		P
3	T→¬Q		P
4		¬P	I
5		$\neg P \rightarrow Q$	ED2
6		Q	E _→ 4,5
7		$Q \rightarrow \neg T$	ED3
8		¬T	E _→ 6,7
9		¬T→¬(Q^¬P)	ED1
10		¬(Q^¬P)	E _→ 8,9
11		¬Q [∨] P	ED10
12		Q→P	ED11
13		Q	It 6
14		P	E _→ 12,13
15		¬P	It 4
16	٦P		I ₋ 4,14,15
17	P		E _¬ 16

Problema 3

Demostrad, utilizando el método de resolución, que el siguiente razonamiento es correcto:

$$\forall x[P(x)^{\land}\exists yQ(x,y)\rightarrow R(x)], \ \forall x\exists yQ(x,y), \ \neg\exists xR(x) \ \therefore \ \forall x\neg P(x))$$

a) En primer lugar hallamos las formas normales de Skolem

FNS(
$$\forall x[P(x)^{\land}\exists yQ(x,y)\rightarrow R(x)]$$
)= $\forall x(\neg P(x)^{\lor}\neg Q(x,y)^{\lor}R(x))$)
FNS($\forall x\exists yQ(x,y)$)= $\forall x Q(x, f(x))$
FNS($\neg \exists xR(x)$)= $\forall x(\neg R(x))$
FNS($\neg \forall x\neg P(x)$)=P(a)

El conjunto de cláusulas resultantes es:

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	21/01/2006	16:30

S={
$$\neg P(x)^{\lor} \neg Q(x,y)^{\lor} R(x), Q(x,f(x)), \neg R(x), P(a)$$
}

b) Cambiamos el nombre de las variables de las cláusulas:

S={
$$\neg P(x)^{\lor} \neg Q(x,y)^{\lor} R(x), Q(u,f(u)), \neg R(w), P(a)$$
}

c) Aplicamos la resolución

$\neg P(x)^{\lor} \neg Q(x,y)^{\lor} R(x)$	¬R(w)	x/w
$\neg P(w)^{\vee} \neg Q(w,y)$	P(a)	w/a
¬ Q(a,y)	Q(u,f(u))	u/a, y/f(u)
•		

Hemos llegado a la contradicción por tanto el razonamiento es correcto.

Problema 4

Observad la siguiente tabla de verdad, completad la columna correspondiente al enunciado $P \rightarrow Q^Y R$ y responded a las preguntas que se formulan, **justificando brevemente la respuesta** en términos de lo observado. A ser posible, responded en los espacios que quedan entre las preguntas

P	Q	R	P→Q [∨] R	¬(P ^v Q)	R	Q [∨] (P→R)	(P→Q) ^v P
V	V	V	V	F	V	V	V
V	V	F	V	F	F	V	V
V	F	V	V	F	V	V	V
V	F	F	F	F	F	F	V
F	V	V	V	F	V	V	V
F	V	F	V	F	F	V	V
F	F	V	V	V	V	V	V
F	F	F	V	V	F	V	V

a. ¿Qué relación existe entre los enunciados $P \rightarrow Q^{V}R$ y $Q^{V}(P \rightarrow R)$?

Son equivalentes deductivamente, ya que sus tablas de verdad son idénticas.

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	21/01/2006	16:30

b. ¿El razonamiento $\neg [(P \rightarrow Q) \ ^{\vee} \ P]$.: R es correcto?

 $(P \rightarrow Q)^{-\gamma}$ P es un teorema, y de la negación de un teorema se desprende una contradicción. A partir de esta contradicción podemos deducir R:

1	¬((P→Q) , P)		P
2		¬R	I
3		(P→Q) [∨] . P	Τ
4		¬((P→Q) [∨] . P)	It 1
5	R		I ₋ 2,3,4

c. ¿Es correcto el razonamiento

 $P\rightarrow Q^{V}R$, $\neg(P^{V}Q)$, R, $Q^{V}(P\rightarrow R)$.. $P^{A}Q^{A}R$?

El razonamiento no es correcto, ya que para que lo fuera todas las interpretaciones que hacen verdad a las premisas debería hacer verdad la conclusión. Pero esto no ocurre así, las premisas se hacen verdad simultáneamente cuando P y Q son falsas y R verdadera (línea 7 de la tabla de verdad), ahora bien, con estos valores la conclusión se hace falsa, y debería hacerse cierta.

P	Q	R	P→Q [∨] R	¬(P ^v Q)	R	Q ^v (P→R)	P ^Q R
V	V	V	V	F	V	V	V
V	>	F	V	F	F	V	F
V	F	V	V	F	V	V	F
V	F	F	F	F	F	F	F
F	V	V	V	F	V	V	F
F	V	F	V	F	F	V	F
F	F	V	V	V	V	V	F
F	F	F	V	V	F	V	F

d. ¿Cuantos contraejemplos se pueden hallar del razonamiento

 $R : Q^{V}(P \rightarrow R)$? ¿Cuáles son? ¿Es correcto este razonamiento?

Este razonamiento es correcto, ya que en este caso todas las interpretaciones que hacen ciertas a la premisa hacen ciertas a la conclusión.

P	Q	R	R	Q [∨] (P→R)
V	V	V	V	V
V	V	F	F	V
V	F	V	V	V
V	F	F	F	F
F	V	V	V	V
F	V	F	F	V
F	F	V	V	V
F	F	F	F	V

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	21/01/2006	16:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	21/01/2006	16:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	21/01/2006	16:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	21/01/2006	16:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	21/01/2006	16:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	21/01/2006	16:30