MANAGEMENT AND ENTREPRENEURSHIP

Course Code: IM51 Credits: 04
L: P: T: S: 4: 0: 0: 0 CIE Marks: 50
Exam Hours: 03 SEE Marks: 50

Total Hours: 50

COURSE OBJECTIVES:

1. Understand the underlying principles of management.

2. To analyze and identify the functions of entrepreneurial activities and its prerequisites under practical conditions.

3. To develop and enhance one's decision making skills amidst competitive business market.

Course Outcomes: After completion of the course, the graduates will be able to

CO1	understand and apply the principles of management			
CO2	Use the entrepreneurial qualities and skill under real world practical conditions			
CO3	Analyse the functions of management and entrepreneurship and apply them to practical situations.			
CO4	Ascertain various channels provided by government of India to initiate business enterprise			
CO5	Initiate and develop small scale industries			
CO6	Evaluate management and entrepreneurship skills and develop decision making skills and entrepreneurial personality.			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	1	3	2	3	3	3	3	3	3
CO2	1	1	2	1	3	2	3	3	3	3	3	3
CO3	1	2	2	1	1	2	3	3	3	2	3	3
CO4	1	2	3	1	2	3	3	3	3	3	3	3
CO5	1	2	3	2	2	3	3	3	3	3	3	3
CO6	2	2	3	2	2	3	3	3	3	3	3	3

Unit	Course Content	Hours	COs
1	MANAGEMENT: Introduction – Meaning – nature and characteristics of Management, Scope and Functional areas of management – Management as a science, art of profession – Management & Administration – Roles of Management, Levels of Management, Development of Management Thought – early management approaches . PLANNING: Nature, importance and purpose of planning process – Objectives – Types of plans (Meaning Only) – Decision making – Importance of planning. (Case studies discussion)	09	CO1 CO2
2	ORGANIZING AND STAFFING: Nature and purpose of organization – Principles of organization – types of organization – Departmentation – Committees- Centralization Vs Decentralization of authority and responsibility – Span of control – MBO and MBE (Meaning Only) Nature and importance of staffing. (Case studies discussion)	10	CO1 CO2
3	DIRECTING & CONTROLLING: Meaning and nature of directing – Leadership styles, Maslow's theory of motivation, Communication – Meaning and importance – coordination, meaning and importance and Techniques of Co–Ordination. Meaning and steps in controlling – Essentials of a sound control system – Methods of establishing control (in brief). (case studies discussion)	10	CO3 CO4
4	ENTREPRENEUR: Meaning of Entrepreneur; Evolution of the Concept, Functions of an Entrepreneur, Types of Entrepreneur, Entrepreneur – an emerging Class. Concept of Entrepreneurship – Evolution of Entrepreneurship, Development of Entrepreneurship; Stages in entrepreneurial process; Role of entrepreneurs in Economic Development; Entrepreneurship in India; Entrepreneurship – its Barriers. (Case studies discussion, role play / group discussion)	10	CO3 CO4
5	SMALL SCALE INDUSTRY: Definition; Characteristics; Need and rationale: Objectives; Scope; role of SSI in Economic Development. Advantages of SSI, Steps to start an SSI, Impact of Liberalization, Privatization, Globalization on S.S.I, Effect of WTO/GATT. Startup India: Benefits, Policies. Action plan- simplification and Handholding, Funding Support and incentives, Industry-Academia Partnership and Incubation. Salient features of Karnataka Startup Policy 2015-2020, Strategies encouraging entrepreneurship through NAIN. Venture capitalist, SSI funding schemes by banks and financial institutions, Government of India Initiatives on Thrust Areas, overview of detailed project report/profile. (Related case studies, supporting videos and group discussion)	11	CO5 CO6

SELF-STUDY COMPONENT:

Preparation of Project report/Profile

Note:

- 1. At the end of the course students should have cultivated the ability to prepare project profile based on their selected business idea.
- 2. One Credit is allocated to project profile prepared by students.
- 3. Project profile/report shall be submitted before the end of the course.

Contents /Structure of mini project report/profile:

- 1. Introduction
- 2. Market potential
- 3. Basis and pre assumptions
- 4. Implementation schedule
- 5. Technical aspects
- 6. Financial aspects and analysis
- 8. Details of machinery and equipment/ service suppliers

TEXT BOOKS:

- 1. Principles of Management P.C. Tripathi, P.N. Reddy Tata McGraw Hill.
- 2. Dynamics of Entrepreneurial Development & Management Vasant Desai Himalaya Publishing House.
- 3. Entrepreneurship Development Poornima.M.Charantimath Small Business Enterprises Pearson Education 2006 (2 & 4).
- 4. Management & Entrepreneurship-N V R Naidu, IK International, 2008

REFERENCE BOOKS:

- 1 Management Fundamentals Concepts, Application, Skill Development Robers Lusier Thomson.
- 2. Entrepreneurship Development S.S.Khanka S.Chand & Co.
- 3. Management Stephen Robbins Pearson Education/PHI 17th Edition, 2003.
- 4. http://www.startupindia.gov.in/
- 5. http://startup.karnataka.gov.in/docs/Startup_Policy_Karnataka.pdf

Assessment Pattern:

CIE – Continuous Internal Evaluation Theory (50 Marks)

Bloom's Category	Tests	Preparation of Project Report/ Profile
Marks (Out of 50)	30	20
Remember		02
Understand	10	02
Apply	10	04
Analyze	05	04
Evaluate	05	03
Create		05

SEE –Semester End Examination Theory (50 Marks)

Bloom's Category	Marks Theory(50)
Remember	10
Understand	10
Apply	10
Analyze	10
Evaluate	10
Create	

Geotechnical Engineering - I

Course Code: CV52Credits: 3L:P:T:S: 3:0:0:0CIE Marks: 50Exam Hours: 03SEE Marks: 50Hours/Week: 03Total hours: 40

Course Objectives:

- 1. To enable the students to acquire the knowledge of basics of soil mechanics
- 2. To understand the origin of soil, classification, basic terms and properties of soil
- 3. To design of civil engineering sub structures

Course Outcomes: At the end of the course the students will be able to:

	Course Outcome
CO 1	Identify and classify the soils
CO 2	Determine various index and engineering properties of soil
CO 3	Compute settlements under footings and loaded areas
CO 4	Analyse the soil parameters which are useful in the design of sub-structures
CO 5	Determine the shear strength and consolidation of soil
CO 6	Analyse the compaction properties of soil.

		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		2									
CO2	1	1	2									
CO3		2										
CO4		2	3									
CO5				1								
CO6		2										

Unit	Content	Hours	Co's
1	History of soil mechanics, Definition. Phase Diagram, Voids ratio, Porosity, Percentage Air Voids, Air content, Degree of saturation, Water content, Specific Gravity of soil solids and soil mass, Densities and Unit weights - Bulk, Dry, Saturated & Submerged and their inter relationships.		
	INDEX PROPERTIES OF SOIL AND THEIR DETERMINATION: Index Properties of soil- Water content, Specific Gravity, Particle size distribution, Relative Density, Consistency limits and indices, insitu density,	8	CO1 CO2
	Activity of Clay, Laboratory methods of determination of index properties of soil: Water content (Oven Drying method & Rapid Moisture method), Particle size distribution (Sieve analysis), Liquid Limit- (Casagrande and Cone penetration methods), Plastic limit and shrinkage limit. Particle size distribution (hydrometer)		
2	CLASSIFICATION OF SOILS: Purpose of soil classification, Particle size classification – MIT classification and IS classification. IS classification - Plasticity chart and its importance, Field identification of soils.	8	CO1 CO3
	CLAY MINERALOGY AND SOIL STUCTURE: Single grained, honey combed, flocculent and dispersed structures, Valence bonds, Soil-Water system, Electrical diffuse double layer, adsorbed water, base-exchange capacity, Isomorphous substitution. Common clay minerals in soil and their structures- Kaolinite, Illite and Montmorillonite		COS
3	FLOW OF WATER THROUGH SOILS: Darcy's law- assumption and validity, coefficient of permeability and its determination (laboratory and field), factors affecting permeability, permeability of stratified soils, Seepage Velocity, and coefficient of percolation, quick sand phenomena, Capillary Phenomena.		CO3
	SHEAR STRENGTH OF SOIL: Concept of shear strength, Mohrcoulomb theory, conventional and modified failure envelops, Effective stress concept of total stress, Concept of pore pressure, Total and effective shear strength parameters, factors affecting shear strength of soils, Sensitivity and Thixotropy of clay.	8	CO4
4	COMPACTION OF SOIL: Definition, Principle of compaction, Standard and Modified proctor's compaction tests, factors affecting compaction, effect of compaction on soil properties, Field compaction control – compactive effort & method, lift thickness and number of passes, Proctor's needle,	8	CO1 CO5

	CONSOLIDATION OF SOIL: Definition, Mass-spring analogy, Terzaghi's one dimensional consolidation theory-assumption and limitations (no derivation), Normally consolidated, under consolidated and over consolidated soils, pre-consolidation pressure and its determination by Casagrande's method. Consolidation characteristics of soil (Cc, av, mv and Cv).		
5	DETERMINATION OF SHEAR STRENGTH AND CONSOLIDATION OF SOIL : Measurement of shear parameters-Direct shear test, unconfined compression test and Triaxial compression test, Test under different drainage conditions. Laboratory one dimensional consolidation test, Determination of consolidation characteristics of soils-compression index and coefficient of consolidation (square root of time fitting method, logarithmic time fitting method).	8	CO1 CO6

NOTE:

- 1. Questions for CIE and SEE not to be set from self-study component.
- 2. Assignment Questions should be from self-study component only.

	Self Study Component					
Unit	Contents of the unit	CO's				
1	INDEX PROPERTIES OF SOIL AND THEIR	CO1,CO2				
	DETERMINATION: Origin of soil and					
	formation of soil, Specific gravity of soil solids					
	(Pycnometer and density bottle method)					
2	CLAY MINERALOGY AND SOIL	CO1,CO3				
	STUCTURE: Textural classification					
3	COMPACTION OF SOIL: Superficial	CO3,CO4				
	velocity, effective stress and Neutral stress					
4	COMPACTION OF SOIL: Compacting	CO1,CO5				
	equipment					
5	DETERMINATION OF SHEAR STRENGTH	CO1,CO6				
	AND CONSOLIDATION OF SOIL: Vane	ŕ				
	shear test					

TEXT BOOKS:

- 1. Soil Mechanics and Foundation Engg.-Punmia B.C. (2005), Laxmi Publications Co., New Delhi.
- 2. Principles of Soil Mechanics and Foundation Engineering- Murthy V.N.S. (1996), 4th Edition, UBS Publishers and Distributors, New Delhi.

REFERENCES BOOKS:

- 1. Foundation Analysis and Design-Bowles J.E. (1996), 5th Edition, McGraw Hill Pub. Co. New York.
- 2. Soil Engineering in Theory and Practice- Alam Singh and Chowdhary G.R. (1994), CBS Publishers and Distributors Ltd., New Delhi.
- 3. Basic and Applied Soil Mechanics- GopalRanjan and Rao A.S.R. (2000), New Age International (P) Ltd., Newe Delhi.
- 4. Geotechnical Engineering- Donold P Coduto Phi Learning Private Limited, New Delhi
- 5. Geotechnical Engineering- Shashi K. Gulathi&ManojDatta. (2009), "TataMcGraw Hill.
- 6. Text Book of Geotechnical Engineering- Iqbal H. Khan (2005),, 2nd Edition, PHI, India.
- 7. Numerical Problems, Examples and objective questions in Geotechnical Engineering-NarasimhaRao A. V. & Venkatrahmaiah C. (2000), Universities Press., Hyderabad.

Assessment Pattern:

CIE: Continuous Internal Evaluation Pattern for theory: (50 Marks)

Blooms Category	Tests	Assignments	AAT 1	AAT 2
Marks (out of 50)	30	10	05	05
Remembrance	10	2	1	1
Understand	5	2	1	1
Apply	5	2	1	1
Analyze	5	2	1	1
Evaluate	5	2	1	1
Create				

^{*}AAT 1– Alternate Assessment Tool 1

SEE – Sem End Examination Theory (50 Marks)

Blooms Category	Theory Marks (50)
Remembrance	10
Understand	10
Apply	10
Analyze	10
Evaluate	10
Create	

AAT 2 - Alternate Assessment Tool 2

TRANSPORTATION ENGINEERING -I

 Course Code
 : CV53
 Credits
 : 3

 L:P:T:S
 : 3:0:0:0
 CIE Marks
 : 50

 Exam Hours
 : 03
 SEE Marks
 : 50

 Hours/Week
 : 03
 Total hours
 : 40

Course Objectives:

- 1. To understand the basic concepts of Transportation engineering.
- 2. To classify the need of modes of transportation systems
- 3. To develop highway drainage system, principles of pavement design

Course Outcomes: At the end of the course the student will be able to

	Course Outcome
CO 1	Analyse the concept of transportation Engineering and its role in Nation development
CO 2	Classify the need of modes of transportation systems, principles of highway alignment design, realignment, drawings
CO 3	Distinguish the principle of planning, surveys, collection of data and design principles of various highway components
CO 4	Evaluate the concept of construction, equipments, material specifications as per IRC, maintenance of highways, economics and drainage aspects
CO 5	Develop highway drainage system, principles of pavement design
CO 6	Estimate the highway economics by different methods, vehicle operation cost calculation for economics calculation

Маррі							PO9	PO10	PO11	PO12
CO1	2									
CO2		1	3							
CO3	1		2							
CO4			3							
CO5			2	1						
CO6		2	3							

Unit	Content	Hours	Co's
1	PRINCIPLES OF TRANSPORTATION ENGINEERING: Importance of transportation, Different modes of transportation and comparison, Characteristics of road transport Jayakar committee recommendations, and its implementation – Central Road Fund, Indian Roads Congress, Central Road Research Institute. HIGHWAY DEVELOPMENT AND PLANNING: Road types and classification, road patterns, planning surveys, master plan – saturation system of road planning, phasing road development in India, problems on best alignment among alternate proposals Salient Features of 3rd and 4th twenty year road development plans and Policies.	8	CO1 CO2 CO3
2	HIGHWAY ALIGNMENT AND SURVEYS: Ideal Alignment, Factors affecting the alignment, Engineering surveys-Map study, Reconnaissance, Preliminary and Final location & detailed survey, Reports and drawings for new and re-aligned projects HIGHWAY GEOMETRIC DESIGN — I: Importance, Terrain classification, Design speed, Factors affecting geometric design, Cross sectional elements-Camber- width of pavement Shoulders- Width of formation- Right of way, typical cross sections	8	CO2 CO3
3	HIGHWAY GEOMETRIC DESIGN – II: Sight Distance Restrictions to sight distance-Stopping sight distance & Overtaking sight distance-overtaking zones- Examples on SSD, OSD and ISD- Sight distance at intersections, Horizontal alignment-Radius of Curve- Superelevation – Extra widening Transition curve and its length, setback distance – Examples, Vertical alignment-Gradient-summit and valley curves with examples. PAVEMENT MATERIALS: Subgrade soil – functions and desirable properties-HRB soil classification-determination of CBR and modulus of subgrade reaction with corrections, Aggregates- Desirable properties and list of tests, Bituminous materials- Desirable properties of bitumen, bitumen, cutback and emulsion-List of tests and its importance	8	CO2 CO3 CO4
4	PAVEMENT DESIGN: Pavement types, component parts of flexible and rigid pavements and their functions, design factors, ESWL for duel wheel assemble and its determination-Examples, Design of flexible pavements as per IRC:37-2012-Examples, Rigid pavement-Westergaard's equations for load and temperature stresses	8	CO5

5	PAVEMENT CONSTRUCTION: Earthwork: cutting-Filling,		
	Preparation of subgrade, Specification and construction of i) Granular		
	Sub base, ii) WBM Base, iii) WMM base, iv) Bituminous Concrete, and		
	PQC v) concrete roads	8	CO6
	HIGHWAY DRAINAGE: Significance and requirements, Surface	0	COU
	drainage system and design-Examples, sub surface drainage system,		
	design of filter materials		
	Č		

NOTE: 1. Questions for CIE and SEE not to be set from self-study component.

3. Assignment Questions should be from self-study component only.

	Self Study Component					
Unit	Contents of the unit	CO's				
1	PRINCIPLES OF TRANSPORTATION	CO1,CO2,CO3				
	ENGINEERING: present development in					
	transportation sector					
2	HIGHWAY ALIGNMENT AND SURVEYS:	CO2,CO3				
	Application of GIS in surveying					
3	PAVEMENT MATERIALS: Modern methods	CO2,CO3,CO4				
	of construction practice					
4	PAVEMENT DESIGN: Design of slab	CO5				
	thickness only as per IRC:58-2015					
5	PAVEMENT CONSTRUCTION: modern	CO6				
	method of pavement construction and					
	construction equipments used in practice					

Text Books:

- 1. Highway Engineering, S K Khanna and C E G Justo, Nem Chand Bros, Roorkee.
- 2. Highway Engineering, L R Kadiyali, Khanna Publications, New Delhi

References:

- 1. Transportation Engineering, K P Subramanium, Scitech Publications, Chennai.
- 2. Transportation Engineering, James H Banks, Mc. Graw Hill Publications, New Delhi
- 3. Highway Engineering, R Sreenivasa Kumar, University Press Pvt Ltd, Hyderabad
- 4. Transportation Engineering, C JotinKhisty, B Kent Lal, PHI Learning Pvt Ltd, New Delhi
- 5. Indian Road Congress (IRC) 58-2002, IRC 37-2001
- 6. Specifications for Roads and Bridges MoRT&H, IRC, New Delhi

Assessment Pattern:

CIE: Continuous Internal Evaluation Pattern for theory: (50 Marks)

Blooms Category	Tests	Assignments	AAT 1	AAT 2
Marks (out of 50)	30	10	05	05
Remembrance	10	2	1	1
Understand	5	2	1	1
Apply	5	2	1	1
Analyze	5	2	1	1
Evaluate	5	2	1	1
Create				

*AAT 1- Alternate Assessment Tool 1

AAT 2 - Alternate Assessment Tool 2

 $SEE-Sem\ End\ Examination\ Theory\ (50\ Marks)$

Blooms Category	Theory Marks (50)
Remembrance	10
Understand	10
Apply	10
Analyze	10
Evaluate	10

STRUCTURAL ANALYSIS - II

Course Code: CV54Credits: 4L:P:T:S: 4:0:0:0CIE Marks: 50Exam Hours: 03SEE Marks: 50Hours/Week: 04Total hours: 52

Course Objectives:

1. To analyze structures for different loading and support conditions.

2. To determine the appropriate method of analysis for structures with increased number of degrees of freedom.

3. To understand the concept of analysis for rolling loads and development of Influence Line Diagrams.

Course Outcomes: At the end of the course the students will be able to

	Course Outcome				
CO 1	Analyze different structural elements both determinate and indeterminate				
CO 2	Understand of rolling load and influence lines.				
CO 3	Analyse indeterminate beams and frames using Slope Deflection method				
CO 4	Analyse indeterminate beams and frames using Moment Distribution method				
CO 5	Analyze indeterminate beams and frames using Kani's method				
CO 6	Analyze indeterminate beams and frames using flexibility and stiffness matrix method of				
	analysis				

		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2									
CO2	1	2	3									
CO3	2	1	3									
CO4	1	2	3	2								
CO5	2	1	2									
CO6	1	2	3									

Unit	Content	Hours	Co's
1	SLOPE DEFLECTION METHOD: Introduction, Sign convention, Development of slope deflection equations and Analysis of Beams and Orthogonal Rigid jointed plane frames (non-sway) with kinematic redundancy ≤ 3 . (Members to be axially rigid)Analysis of rigid jointed plane frames (sway, members assumed to be axially rigid and kinematic redundancy ≤ 3)	12	CO1 CO3
2	MOMENT DISTRIBUTION METHOD: Introduction, Definition of terms, Distribution factor, Carry over factor, Development of method and Analysis of beams and orthogonal rigid jointed plane frames (non-sway) with kinematic redundancy less than/equal to three. (Members to be axially rigid)Analysis of rigid jointed plane frames (sway, members assumed to be axially rigid and kinematic redundancy ≤ 3)	12	CO1 CO4
3	KANI'S METHOD: Introduction, Basic Concept, Analysis of Continuous beams and Analysis of rigid jointed non-sway plane frames.	10	CO1 CO5
4	MATRIX METHOD OF STRUCTURAL ANALYSIS (System Approach): Introduction, Development of flexibility and stiffness matrix for plane truss elements and axially rigid plane framed structural elements. Analysis of axially rigid plane frames by flexibility and stiffness methods with static indeterminacy ≤ 3	12	CO1 CO6
5	ROLLING LOAD AND INFLUENCE LINES: Rolling load analysis for simply supported beams for several point loads and UDL. Influence line diagram for reaction, SF and BM at a given section	6	CO2

NOTE:

1. Questions for CIE and SEE not to be set from self-study component.

2. Assignment Questions should be from self-study component only.

	Self Study Component	
Unit	Contents of the unit	CO's
1	SLOPE DEFLECTION METHOD: Slope deflection method for beams with kinematic	CO1,CO3
	redundancy >3	
2	MOMENT DISTRIBUTION METHOD: Moment distribution method for beams with kinematic redundancy > 3	CO1,CO4
3	KANI'S METHOD: Kani's method for sway analysis	CO1,CO5
4	MATRIX METHOD OF STRUCTURAL ANALYSIS: Introduction to Finite Element Analysis.	CO1,CO6

5	ROLLING LOAD AND INFLUENCE LINES:	CO2
	Classification of loads as per IRC	

Text Books

- 1. Theory of Structures, Pandit and Guptha, Vol. II, Tata McGraw Hill, New Delhi.
- 2. Basic Structural Analysis, Azmi Ibrahim, K. U. Muthu, M. Vijay Anand, and MagantiJanardhana, I K International Publishing House Pvt. Ltd, 2001

References

- 1. Theory of Structures, S P Thimoshenko& D H Young, 2nd Edition, International Student Edition
- 2. Elementary Structural Analysis, Norris and Wilbur, International Student Edition. McGraw Hill Book Co: New York
- 3. Structural Analysis, DevdasMenon, Narosa Publications
- 4. Analysis of Structures, Thandava Murthy, Oxford University Press, Edition 2005
- 5. Structural Analysis, Russell C Hibbeler, Maxwell Machmillan International Editions.
- 6. Basic Structural Analysis, Reddy C. S., Tata McGraw Hill, New Delhi.

Assessment Pattern:

CIE: Continuous Internal Evaluation Pattern for theory: (50 Marks)

Blooms Category	Tests	Assignments	AAT 1	AAT 2
Marks (out of 50)	30	10	05	05
Remembrance	10	2	1	1
Understand	5	2	1	1
Apply	5	2	1	1
Analyze	5	2	1	1
Evaluate	5	2	1	1
Create				

^{*}AAT 1- Alternate Assessment Tool 1

SEE – SEM End Examination Theory (50 Marks)

Blooms Category	Theory Marks (50)
Remembrance	10
Understand	10
Apply	10
Analyze	10
Evaluate	10
Create	

AAT 2 - Alternate Assessment Tool 2

DESIGN OF REINFORCED CONCRETE STRUCTURES

 Course Code
 : CV55
 Credits
 : 4

 L:P:T:S
 : 4:0:0:0
 CIE Marks
 : 50

 Exam Hours
 : 03
 SEE Marks
 : 50

 Hours/Week
 : 04
 Total hours
 : 52

Course Objective:

1. To understand the basic concepts of behavior of reinforced concrete systems and elements

2. To learn the concept of design procedure of RC elements

	Course Outcome
CO 1	Incorporate the knowledge of different principles for designing RC elements
CO 2	Paraphrase the behaviour of concrete and reinforced steel in combination
CO 3	Interpret and use of relevant Indian Standard codes
CO 4	Differentiate the structural elements with respect to its behaviour under different loading conditions.
CO 5	Discriminate between uniaxial and biaxial moments prior to structural design.
CO 6	Design different structural elements manually with respect to field conditions

	PO1	PO2	PO3	PO4			PO7		PO9	PO10	PO11	PO12
CO1	3	3	3	2	ı	2	1	3	3	3	1	3
CO2	3	3	3	3	ı	2	ı	3	3	3	1	3
CO3	3	3	3	3	-	2	-	3	3	3	1	3
CO4	3	3	3	3	-	2	-	3	3	3	1	3
CO5	3	3	3	3	-	2	-	3	3	3	-	3
CO6	3	3	3	3	-	2	-	3	3	3	2	3

Unit				Cor	itent				Ho	ours	(Co's
1	GENER. Introduct Concrete Limit S Characte strength. PRINCII ULTIMA aspects of limit state reinforce doubly 1 strength sections, Concepts example sections,	e and Constant of Ultimes of design of single state of the constant of the con	Design Code in Design nd des OF TRENO nate st llapse, ngular se ged sec nate to velopm ngly re	Loads require require require ign loa LIMIT GTH (rength Ultima section tangula tions, orsiona nent len	s, Matements. aciples. aciples. STA OF R.O , Stress ate flex s, Ultima I strement ar section	Designerials Factorials TE Interpretation of the sheat of	for R n Philo or of ristic an DESIGN c paran rength exural s Ultimate r streng f RC norage, nforce	einforces osophy Safe nd desi N Al Gene neters of sing trength e flexu gth of l sectio Analy	eed ty, ign ND tral for gly of tral RC ns, rsis	12	CO	
2	FLEXUIT General requirem of bars. (in IS: 4: method). Calculate DESIGN sections for dev Design beams for	Specification of dependent of the second of	ze of be aspection, Calling effection BEAM ment and the second se	for flex eam, c ts of sealculation in strons and tS: De and shear gth, l	cure de over to erviceal ion of ructural crack esign pars. And Reinfordy sup	sign of reinfo bility, l deflect l cond width procedu chorage reemen ported	beams remer Deflect ion (T) crete res fo es of ba t requ and (a-praction limit-spaction limited heoretic member criticars, chemicars, chemi	cal ing nits cal ers, cal eck nts,	12		D1, D2, D3
3	DESIGN slabs,	Rectang	gular	slabs	span	ning	one	directi	on,	10		D1, D3, D4

	boundary conditions. Design of simply supported, cantilever and continuous slabs as per IS: 456 – 2000 DESIGN OF STAIRCASES: General features, types of staircase loads on stair cases, effective span as per IS code provisions, distribution of loading on stairs, Design of dog legged and open-well staircases with waist slabs		
4	DESIGN OF COLUMNS: General aspects, effective length of column, loads on columns, slenderness ratio for columns, minimum eccentricity, design of short axially loaded columns, design of column subject to combined axial load and uniaxial moment and biaxial moment using SP – 16charts	10	CO1, CO3, CO4, CO5
5	DESIGN OF FOOTINGS: Introduction, load for footing, Design basis for limit state method, Design of isolated rectangular footing for axial load and uniaxial moment, design of pedestal	08	CO1, CO3, CO4, CO5

NOTE:

- 1. Questions for CIE and SEE not to be set from self-study component.
- 2. Assignment Questions should be from self-study component only

	Self Study Component	
Unit	Contents of the unit	CO's
1	PRINCIPLES OF LIMIT STATE DESIGN	CO1,CO3
	AND ULTIMATE STRENGTH OF R.C.	
	SECTION: Concept of WSM and Ultimate	
	load method	
2	DESIGN OF BEAMS: Detailing according	CO1,CO2,CO3
	with $SP - 34$, types of cracks in beams	
3	DESIGN OF SLABS: Introduction to flat	CO1,CO3,CO4
	slab, waffle slabs and its detailing	
4	DESIGN OF COLUMNS: Concept of floating	CO1,CO3,CO4,CO5
	columns	
5	DESIGN OF FOOTINGS: Concept of raft,	CO1,CO3,CO4,CO5
	eccentric	,

Text Books:

- 1. Reinforced Concrete Design, Pillai and Menon, TMH Education Pvt. Ltd, 3rd Edition, 2009
- 2. Limit State Design of Reinforced Concrete, Krishnaraju, CBS Publications

References:

- 1. Design of reinforced concrete structures, S Ramamrutham
- 2. Reinforced concrete design, B C Punmia, Jain & Jain
- 3. Reinforced Concrete Design, W H Mosley and J H Bungey, 4th Edition
- 4. Reinforced Concrete Analysis and Design, S S Ray, Blackwell Science Publications,
- 5. IS 456-2000, Indian Standard code for Plain and Reinforced Concrete
- 6. SP-16 & SP -34 Design Aids for Reinforced Concrete

Assessment Pattern:

CIE: Continuous Internal Evaluation Pattern for theory: (50 Marks)

Blooms Category	Tests	Assignments	AAT 1	AAT 2
Marks (out of 50)	30	10	05	05
Remembrance	10	2	1	1
Understand	5	2	1	1
Apply	5	2	1	1
Analyze	5	2	1	1
Evaluate	5	2	1	1
Create				

^{*}AAT 1– Alternate Assessment Tool 1

SEE – SEM End Examination Theory (50 Marks)

Blooms Category	Theory Marks (50)
Remembrance	10
Understand	10
Apply	10
Analyze	10
Evaluate	10
Create	

AAT 2 - Alternate Assessment Tool 2

COMPUTER AIDED DESIGN AND DRAFTING LABORATORY

CADD LAB

Course Code : CVL57 Credits : 2 L:P:T:S : 0:3:0:0 CIE Marks : 50 Exam Hours : 03 SEE Marks : 50 Hours/Week : 03 Total hours : 40

Course Objectives:

- 1. To learn the basic building drawing and components of building
- 2. To give an exposure to the bye laws, orientations, building standards
- 3. To prepare students for future Engineering positions
- 4. To make them efficient to use MS Excel when a repetitive work arises

Course Outcomes: At the end of the course the students will be able to

	Course Outcome
CO 1	Utilize Auto cad basic tools for building drawing.
CO 2	Model two dimensional drawings with Auto CAD
CO 3	Adapt suitable building standards for planning and designing of buildings.
CO 4	Identify the bye laws and building design as per government norms.
CO 5	Convert sketches into engineered drawings (Structural Drawings).
CO 6	Analyse the behavior of different types of beams using MS Excel.

		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2								
CO2	3	3	3	2								
CO3	3	3	3	2								
CO4	3	3	3	1								

CO5	3	3	3	1				
CO6	3	3	3	1				

Unit	Content	Hours	Co's
1	INTRODUCTION TO BUILDING DRAWING: 1.1 Preparing geometrical drawing of component of buildings i) Stepped wall footing and isolated RCC column footing ii) Continuous beam iii) RCC dog legged and open well stairs (Manual) 1.2 Functional design of building (Residential, Public and Industrial), positioning of various components of buildings, orientation of buildings, building standards, bye laws, set back distances and calculation of carpet area, plinth area and floor area ratio.	10	CO3 CO4 CO5
2	 Basics of AUTOCAD: 2.1 Drawing tools: Line, Ray, Construction line, Multiline, Polyline, 3D Polyline, Polygon, Rectangle, Helix, Arc, Circle, Donut, Spline, Ellipse, Block, Table, Point, Point, Hatch, Boundary, Region, text. 2.2 Modify tools: Erase, Copy, Mirror, Offset, Array, Move, Rotate, Scale, Stretch, Lengthen, Trim, Extend, Break, Chamfer and Fillet, Using Text: Single line text, Multiline text, Spelling, Edit text, Special Features: View tools, Layers concept, Dimension tools, Hatching, Customizing toolbars, Working with multiple drawings. 2.3 View Commands: Zoom, Pan, Dynamic, Zoom Previous, Zoom realtime, Drawing Settings and Aids, Snap, Grid, OSnap, OTrack. 2.4 Dimension Command: Formatting Dimension Style and Multi-leader Style. 2.5 Drawing Settings and Aids: Layers, Load Line types, Match properties, World UCS and User-defined UCS, Drawing limits and units, Blocks, Attributes. 2.6 Saving and Plotting: Paper space, Layout space and Viewports, Pen assignments and Printer setup. 	10	CO1 CO2 CO3 CO4
3	Preparation of AUTOCAD Drawings 3.1 Using Auto Cad Development of plan, elevation, section and schedule of openings from the given line diagram of two bed room residential buildings and to show the C/S of foundation, lintel & chejja. 3.2 Using Auto cad developing the Functional design of building using inter connectivity diagrams (bubble diagram), development of line	20	CO1 CO2 CO3 CO4

diagram only for following building i) Primary health center, ii) Primary school building, iii) College canteen	
3.2 Using Auto CAD For a given single line diagram, preparation of water supply, sanitary and electrical layouts	

References

- 1. National Building Code, BIS, New Delhi.
- 2. IS SP34, BIS New Delhi
- 3. "Building Drawing", by Shah M. H. And Kale C. M., Tata McGraw Hill Publishing Co
- 4. CAD Laboratory M A Jayaram, D S Rajendraprasad, Sapna Publications.

Assessment Pattern:

CIE: Continuous Internal Evaluation Pattern for LAB: (50 Marks)

Blooms Category	CIA	Internals
Marks (out of 50)	30	20
Remembrance	5	4
Understand	5	4
Apply	10	4
Analyze	5	4
Evaluate	5	4
Create		

SEE – Sem End Examination LAB (50 Marks)

Blooms Category	LAB Marks (50)
Remembrance	10
Understand	10
Apply	10
Analyze	10
Evaluate	10
Create	

HYDRAULICS AND HYDRAULIC MACHINE LABORATORY

Course Code: CVL58Credits: 2L:P:T:S: 0:2:0:0CIE Marks: 50Exam Hours: 03SEE Marks: 50Hours/Week: 03Total hours: 40

Course Objectives:

1. Students are expected to learn basic experiments of fluid mechanics.

2. Students shall introduce to get exposure with turbines, pumps as practical application.

Course Outcomes: At the end of the course the students will be able to:

	Course Outcome		
CO 1	Analyse application on fluid mechanics.		
CO 2	Calibrate of fluidic components.		
CO 3	Verify Bernoulli's equations.		
CO 4	Verify Darcy's wesibach equations.		
CO 5	Evaluate practical application of pumps.		
CO 6	Analyse practical application of turbines.		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1									
CO2	1	1	2									
CO3	1	1	3									
CO4	1	1	2									
CO5	1	2	1									
CO6	2	1	3									

Unit	Content	Hours	Co's
1	 1. Verification of Bernoulli's equation 2. Calibration of 90° V-notch 3. Calibration of Trapezoidal notch 	10	CO1
2	 Calibration of Venturiflume Determination of Hydraulic coefficients of a vertical orifice. 	8	CO2 CO3
3	1.Calibration of Venturimeter2.Determination of Darcy's friction factor for a straight pipe	8	CO4 CO3
4	1.Determination of vane coefficients for a flat vane 2.Performance characteristics of a single stage centrifugal pump	8	CO5
5	 Performance characteristics of a Kaplan turbine Performance characteristics of a Pelton turbine 	6	CO6

References:

- 1. Experiments in fluid mechanics Sarbjit Singh, PHI Pvt Ltd, New Delhi 2009
- 2. Hydraulics and Hydraulic Mechines Laboratory Manual Dr. N. Balasubramanya **Assessment Pattern:**

CIE: Continuous Internal Evaluation Pattern for LAB: (50 Marks)

Blooms Category	CIA	Internals
Marks (out of 50)	30	20
Remembrance	5	4
Understand	5	4
Apply	10	4
Analyze	5	4
Evaluate	5	4
Create		_

^{*}AAT 1– Alternate Assessment Tool 1

AAT 2 - Alternate Assessment Tool 2

SEE – Sem End Examination Practical (50 Marks)

Blooms Category	lab Marks (50)
Remembrance	

Understand	10
Apply	10
Analyze	30
Evaluate	
Create	