Libraries

```
In [63]:
         # Basic Libraries
         import numpy as np
         import pandas as pd
         from warnings import filterwarnings
         from collections import Counter
         # Visualizations Libraries
         import matplotlib.pyplot as plt
         import seaborn as sns
         import plotly
         import plotly.offline as pyo
         import plotly.express as px
         import plotly.graph objs as go
         pyo.init notebook mode()
         import plotly.figure factory as ff
         #import missingno as msno
         # Data Pre-processing Libraries
         from sklearn import preprocessing
         from sklearn.preprocessing import StandardScaler, MinMaxScaler
         from sklearn.model selection import train test split
         from sklearn.impute import SimpleImputer
         # Modelling Libraries
         from sklearn.linear model import LogisticRegression, RidgeClassifier, SGDClassifier, Passiv
         from sklearn.linear model import Perceptron
         from sklearn.svm import SVC,LinearSVC,NuSVC
         from sklearn.neighbors import KNeighborsClassifier, NearestCentroid
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier,AdaBoostClassifier,GradientBoostingC
         from sklearn.naive bayes import GaussianNB, BernoulliNB
         from sklearn.ensemble import VotingClassifier
         # Evaluation & CV Libraries
         from sklearn.metrics import precision score, accuracy score
         from sklearn.model selection import RandomizedSearchCV, GridSearchCV, RepeatedStratifiedKF
         from sklearn import model selection, svm
         from sklearn.linear model import LogisticRegression
         from sklearn.metrics import confusion matrix, classification report, accuracy score, roc au
         from sklearn.preprocessing import RobustScaler,MinMaxScaler,StandardScaler
         df = pd.read csv("water potability.csv")
In [65]:
Out[65]:
                  ph
                       Hardness
                                     Solids Chloramines
                                                         Sulfate Conductivity Organic carbon Trihalomethane
```

NaN 204.890455 20791.318981 7.300212 368.516441 564.308654 10.379783 86.99097 **1** 3.716080 129.422921 18630.057858 592.885359 15.180013 56.32907 6.635246 NaN 8.099124 224.236259 19909.541732 9.275884 418.606213 16.868637 66.42009 NaN **3** 8.316766 214.373394 22018.417441 8.059332 356.886136 363.266516 18.436524 100.34167 **4** 9.092223 181.101509 17978.986339 6.546600 310.135738 398.410813 11.558279 31.99799

•••								
3271	4.668102	193.681735	47580.991603	7.166639	359.948574	526.424171	13.894419	66.68769
3272	7.808856	193.553212	17329.802160	8.061362	NaN	392.449580	19.903225	Naf
3273	9.419510	175.762646	33155.578218	7.350233	NaN	432.044783	11.039070	69.84540
3274	5.126763	230.603758	11983.869376	6.303357	NaN	402.883113	11.168946	77.48821
3275	7.874671	195.102299	17404.177061	7.509306	NaN	327.459760	16.140368	78.69844

3276 rows × 10 columns

```
In [66]: df.describe().transpose()
```

Out[66]:

	count	mean	std	min	25%	50%	75%	
ph	2785.0	7.080795	1.594320	0.000000	6.093092	7.036752	8.062066	14.(
Hardness	3276.0	196.369496	32.879761	47.432000	176.850538	196.967627	216.667456	323.1
Solids	3276.0	22014.092526	8768.570828	320.942611	15666.690297	20927.833607	27332.762127	61227.
Chloramines	3276.0	7.122277	1.583085	0.352000	6.127421	7.130299	8.114887	13.1
Sulfate	2495.0	333.775777	41.416840	129.000000	307.699498	333.073546	359.950170	481.(
Conductivity	3276.0	426.205111	80.824064	181.483754	365.734414	421.884968	481.792304	753.3
Organic_carbon	3276.0	14.284970	3.308162	2.200000	12.065801	14.218338	16.557652	28.3
Trihalomethanes	3114.0	66.396293	16.175008	0.738000	55.844536	66.622485	77.337473	124.0
Turbidity	3276.0	3.966786	0.780382	1.450000	3.439711	3.955028	4.500320	6.7
Potability	3276.0	0.390110	0.487849	0.000000	0.000000	0.000000	1.000000	1.0

```
In [67]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3276 entries, 0 to 3275
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	ph	2785 non-null	float64
1	Hardness	3276 non-null	float64
2	Solids	3276 non-null	float64
3	Chloramines	3276 non-null	float64
4	Sulfate	2495 non-null	float64
5	Conductivity	3276 non-null	float64
6	Organic_carbon	3276 non-null	float64
7	Trihalomethanes	3114 non-null	float64
8	Turbidity	3276 non-null	float64
9	Potability	3276 non-null	int64

dtypes: float64(9), int64(1)
memory usage: 256.1 KB

```
In [68]: df['Potability'].value_counts()
```

Out[68]: 0 1998 1 1278

Name: Potability, dtype: int64

```
fig1, ax1 = plt.subplots(figsize=[15,6])
ax1.pie(data, labels=labels,explode=[0.05]*2, autopct='%1.1f%%',pctdistance=0.5, shadow=
plt.title("Water Potability", fontsize=20);
plt.show()
```

Water Potability

Correlation Matrix

Out[18]: <AxesSubplot:>

Distributions of Different Atrributes

```
In [21]: df = pd.read_csv("water_potability.csv")

In [22]: plt.figure(figsize=(15,10))
    for i,col in enumerate(df.columns,1):
        plt.subplot(4,3,i)
        plt.title(f"Distribution of {col} Attribute")
        sns.histplot(df[df['Potability']==0][col],kde=True, color='blue', label='Class 0')
        sns.histplot(df[df['Potability']==1][col],kde=True, color='red', label='Class 1')
        plt.legend()
        plt.legend()
        plt.tight_layout()
        plt.plot()
```


Multiple Pairwise Bivariate Distributions

```
In [24]:
         plt.figure(figsize=(15,10))
         sns.pairplot(df,hue="Potability")
         plt.title("Looking for Insites in Data")
         plt.legend("Potability")
         plt.tight layout()
         plt.plot()
         []
```

Out[24]:

<Figure size 1080x720 with 0 Axes>

Data Pre-processing

Outliers

```
In [17]: fig, ax = plt.subplots(3,3, figsize = (20,15))
fig.tight_layout()
k = 0
for i in range(3):
    for j in range(3):
        sns.boxplot(x="Potability", y=df.columns[k], data=df,ax=ax[i,j])
```

```
k = k+1 plt.show
```

Out[17]: <function matplotlib.pyplot.show(close=None, block=None)>

Handling Null Values:

plt.title('Missing Data in Percentages');

```
# Checking for NULLs in the data
In [25]:
         df.isnull().sum()
                             491
         ph
Out[25]:
         Hardness
                               0
         Solids
                               0
         Chloramines
                               0
         Sulfate
                             781
         Conductivity
                               0
         Organic carbon
                               0
         Trihalomethanes
                             162
                               0
         Turbidity
                               0
         Potability
         dtype: int64
         df.isnull().mean().plot.bar(figsize=(12,6))
In [26]:
         plt.ylabel('Percentage of missing values')
         plt.xlabel('Features')
```


Pre-processing pipeline

```
In [48]: df = pd.read_csv('water_potability.csv')

X = df.drop('Potability',axis = 'columns')
y = df['Potability']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20,stratify=y, ran
```

procesing test and train separately

```
In [49]:
         #filling missing valueswith median
         imputer = SimpleImputer(strategy='median') # median imputation ('mean' for mean and 'mos
         imputer.fit(X train) # SimpleImputer() learns the median values from the train data
         X train = imputer.transform(X train) # replace missing values with medians
         X test = imputer.transform(X test) # replace missing values with medians
         X test=pd.DataFrame(X test)
         X train= pd.DataFrame(X train)
         # standardazing
         # Import the StandardScaler class
         from sklearn.preprocessing import StandardScaler
         # Create a StandardScaler instance
         scaler = StandardScaler()
         # Fit the StandardScaler to the training data
         scaler.fit(X train)
         # Transform the training and test data using the trained StandardScaler
         X train = scaler.transform(X train)
         X test = scaler.transform(X test)
         X test=pd.DataFrame(X test)
```

```
#balancing
# Create a SMOTE instance
from imblearn.over_sampling import SMOTE
smote = SMOTE(sampling_strategy='minority')
# Use SMOTE to balance the training data
X_train, y_train = smote.fit_resample(X_train, y_train)
X_train= pd.DataFrame(X_train)

# Concatenate the input and target data
X_train.reset_index(drop=True, inplace=True)
y_train.reset_index(drop=True, inplace=True)
X_test.reset_index(drop=True, inplace=True)
y_test.reset_index(drop=True, inplace=True)
Train = pd.concat([X_train, y_train], axis=1)
Test = pd.concat([X_test, y_test], axis=1)
```

```
Train
In [70]:
Out[70]:
                                                3
                                                                  5
                                                                                             8 Potability
                                                                                       1.259188
            0 -1.088364
                        0.674203 -0.844800 -0.961589 -0.014877
                                                            0.571636 -1.131057
                                                                              0.430003
                                                                                                      1
            1 -0.029623 -0.311281
                                1.548195
                                                                              0.913298 -0.726151
                                                                                                      1
            2 0.298865 -0.111338 -0.566485
                                          0.482451
                                                                              1.076931
                                                                                       0.452490
                                                                                                      0
            3 -2.006272 -2.507406 2.115127 -0.406610 -0.014877 -0.420901
                                                                     0.441209
                                                                              0.155565 -0.583976
            4 -2.072732 0.217984
                                 2.320486   0.909951   -1.504019   0.952174   -0.172799
                                                                            -1.272073 0.272115
                                                                                                      0
               1.291870 2.591026 -1.106425 -0.863377
                                                                                     -0.263795
         3191
                                                                              1.194495
                                                                                                      1
         3192
               0.302798 -1.040034 -0.300742
                                          0.893572 -1.194109
                                                            0.202403 -0.267737
                                                                              0.955277 -0.403189
         3193 0.716068 -0.337339
                                1.509527
                                          0.420437 -1.268638
                                                            0.362636 -2.193536
                                                                              0.220455 -0.750824
                                                                                                      1
         3194 -1.021976 -1.476991 -0.118880
                                          0.650817 1.455481
                                                            0.129922 0.439317
                                                                              0.237674 -0.034308
         3195 -0.167317 -0.941181 1.134763 -0.992641 -1.263371 -0.447529 -1.395001 0.011099 1.444503
                                                                                                      1
```

3196 rows × 10 columns

```
In [44]: Train.to_csv('./Train2.csv', index=False)
In [29]: Test.to_csv('./Test2.csv', index=False)
In []:
```