MATH 20510 Lecture 21

May 12, 2025

Theorem 0.1. T is a C^1 map of an open set $E \subseteq \mathbb{R}^n$ into an open set $V \subseteq \mathbb{R}^m$, S is a C^1 map of V into an open set $W \subseteq \mathbb{R}^\ell$, ω is a k-form on W (ω_S is a k-form on V, (ω_S) $_T$ is a k-form on E, ω_{ST} is a k-form on E). Then

$$(\omega_S)_T = \omega_{ST}$$
.

Theorem 0.2. Suppose ω is a k-form on an open set $E \subseteq \mathbb{R}^n$, ϕ is a k-surface in E with parameter domain $D \subseteq \mathbb{R}^k$ and Δ is the trivial k-surface, $\Delta : D \to \mathbb{R}^k$, $\Delta(u) = u$. Then

$$\int_{\phi} \omega = \int_{\Lambda} \omega_{\phi}.$$

Proof. It suffices to prove thei in the case when

$$\omega = adx_I = adx_{i_1} \wedge \cdots \wedge dx_{i_k}.$$

Let ϕ_1, \ldots, ϕ_n denote the components of ϕ . Then $\omega_{\phi} = a(\phi)d\phi_{i_1} \wedge \cdots \wedge d\phi_{i_k}$. It suffices to prove

$$d\phi_{i_1} \wedge \dots \wedge d\phi_{i_k} = J(u)du_1 \wedge \dots \wedge du_k \tag{1}$$

where $J(u) = \frac{\partial(x_{i_1}, \dots, x_{i_k})}{\partial(u_1, \dots, u_k)}$. Assuming (1),

$$\int_{\Delta} \omega_{\phi} = \int_{\Delta} a(\phi) d\phi_{i_1} \wedge \dots \wedge d\phi_{i_k}$$

$$= \int_{\Delta} a(\phi) J(u) du_1 \wedge \dots \wedge du_k$$

$$= \int_{D} a(\phi(u)) J(u) du$$

$$= \int_{\phi} \omega.$$

Let [A] be the $k \times k$ matrix with entries

$$\alpha(p,q) = D_q \phi_{i_p}(u), \qquad p,q = 1, \dots, k.$$

Note. det(A) = J(u).

Since $d\phi_{i_p} = \sum_q \alpha(p,q) du_q$, we have

$$d\phi_{i_1} \wedge \cdots \wedge d\phi_{i_k} = \sum \alpha(1, q_1) \dots \alpha(k, q_k) du_{q_1} \wedge \cdots \wedge du_{q_k},$$

where the sum ranges over all $q_1, \ldots, q_k \in \{1, \ldots, k\}$. Rearranging each $duq_1 \wedge \cdots \wedge du_{q_k}$ we get

$$d\phi_{i_1} \wedge \cdots \wedge d\phi_{i_k} = \det(A)du_1 \wedge \cdots \wedge du_k$$
$$= J(u)du_1 \wedge \cdots \wedge du_k.$$

Theorem 0.3. Suppose T is a C^1 map of an open set $E \subseteq \mathbb{R}^n$ into an open set $V \subseteq \mathbb{R}^n$, ϕ is a k-surface in E, ω is a k-form on V. Then

$$\int_{T\phi} \omega = \int_{\phi} \omega_T.$$

Proof. Let D be the parameter domain of ϕ (and therefore of $T\phi$ as well). Let Δ be the trivial k-surface on D, i.e., $\Delta(u) = u$. Then

$$\int_{T\phi} \omega = \int_{\Delta} \omega_{T\phi} = \int_{\Delta} (\omega_T)_{\phi} = \int_{\phi} \omega_T.$$

Definition 0.4. A map f from a vector space X to a vector space Y is called *affine* if f - f(0) is linear, i.e.,

$$f(x) = f(0) + Ax$$
, $A: X \to Y$ is linear.

Remark 0.5. An affine map $f: \mathbb{R}^k \to \mathbb{R}^n$ is determined by f(0) and $f(e_i)$ for i = 1, ..., k.

Definition 0.6. The k-simplex in \mathbb{R}^k is $Q^k \subseteq \mathbb{R}^k$,

$$Q^k = \{x = (x_1, \dots, x_k) : x_i \ge 0, x_1 + \dots + x_k \le 1\}.$$