# Modelovanje podataka



#### Model podataka - osnovne komponente

- Podatak je kodirana činjenica iz realnog sistema, on je nosilac informacije.
- Informacija je protumačeni (interpretirani) podatak.
- Interpretacija podataka se vrši na osnovu <u>strukture podataka</u>, <u>semantičkih ograničenja</u> na njihove vrednosti i preko <u>operacija</u> koje se nad njima mogu izvršiti.

# Modeliranje sistema

- SSA strukturna sistem analiza modeliranje funkcija i procesa
- Modeliranje podataka
- UML Jedinstveni jezik modelovanja

## Model podataka - komponente

- Model podataka poseduje tri osnovne komponente:
  - Struktura modela, skup koncepata za opis objekata sistema, njihovih atributa i međusobnih veza.
  - Ograničenja na vrednosti podataka koja u svakom stacioniranom stanju moraju biti zadovoljena. Nazivaju se statičkim pravilima integriteta modela podataka.
  - 3. Operacije nad konceptima strukture.

#### APSTRAKCIJE U MODELU PODATAKA

- KLASIFIKACIJA (tipizacija)
- GENERALIZACIJA
- AGREGACIJA

#### PRIMER APSTRAKCIJA



# Vrste modela

- Model Objekti Veze
- Relacioni model

- Istorija
  - –Hijerarhijski model
  - -Mrežni (CODASYL) model

# Model Objekti-Veze (MOV)

E-R Model, Entity-Relationship Model

- Objekat (entitet) grupa (skup) sadržaja sa karakteristikama koje su bitne za celinu.
- kandidati za objekte:
  - Fizički objekti (vozila, mašine,...)
  - Osobe
  - Lokacije (mesta, adrese, koordinate...)
  - Organizacije
  - Grupe/klase/tipovi (proizvoda, poslova...)
  - Dokumenta
  - Pridruženja (zadatak-osoba, vozilo-vožnja)
  - Pripadnost/članstvo

#### Objekti po PMOV sintaksi



#### Objekti po IDEF1x standardu



# MOV – vrste objekata

- Nezavisan objekat ima osobinu koja ga može jednoznačno identifikovati (ne zavisi od drugih objekata).
- Zavisan objekat je onaj čija egzistencija i identifikacija zavise od drugog (ili drugih) objekata.

#### Postoje:

- karakterističan objekat (slab objekat) – onaj koji se ponavlja više puta za određeni nezavisni objekat;
- asocijativni objekat, koji predstavlja vezu više objekata;



# MOV - atributi

 Atributi su karakteristike ili osobine iskazane kao jedna ili više vrednosti koje opisuju objekat. Svaki atribut ima svoje ime.



#### Viseznacni atributi





#### Viseznacni atributi



# Ključ objekta

- •Ključ je vrsta atributa koji jedinstveno identifikuje svaki primerak objekta.
- Od atributa kandidata za ključeve bira se jedan koji postaje **primarni ključ**.
- Nijedan deo primarnog ključa ne može biti prazan ili nedostajući.



# Ključevi

- Ako ključ čini samo jedan atribut, onda je prost ključ; u suprotnom je složen.
- Alternativni ključ predstavlja atribut ili grupa atributa koji
  jedinstveno identifikuju primerke entiteta, ali postoje objekti
  za koje taj atribut nije definisan
- Preneseni ključ (Foreign Key) je atribut koji povezuje objekat 'dete' sa objektom 'roditelj'

# Veze po PMOV sintaksi





# Veze po IDEF1x i IE standardu



# **Veze** (Relationship)

- identifikujuće (dete roditelj)
- neidentifikujuće
  - obavezne
  - neobavezne
- rekurzivne (na sebe samog)
  - primer : radnik šef

### VERZIJE MOV-a: IDEF1x standard



#### Kardinalnost veza

#### Kardinalnost veza roditelj - dete

- nula, jedan ili više
- jedan ili više
- nula ili jedan
- tačno n (primer : godišnja doba, posada aviona)

#### Kardinalnost veza dete - roditelj

- dozvoljena nula
- nije dozvoljena nula

Veza "više prema više"



# Referencijalni integritet

- Omogućava korektno povezivanje objekata
- Definiše se za svaku vezu, posebno za roditelja, posebno za dete
- Dolazi do izražaja kod održavanja modela
- Realizuje se putem ograničenja, operacija i akcija

# Ograničenja

- Nad strukturom
  - Integritet entiteta
  - Nad standardnim domenom
  - Tip, dužina podataka
- Nad vrednošću domena
  - Dozvoljene vrednosti
- Na kardinalnost
  - (0,1,n), (1,n), (0,1), (Exactly)

#### Specifikacija tipa ograničenja u MP

- TipO oznaka tipa ograničenja
- -T(t) definicija tipa logičke strukture obeležja
  - » s uključenim kritičnim operacijama i mogućim akcijama
- TOd specifikacija oblasti definisanosti
- TOi specifikacija oblasti interpretacije
- TFz definicija formule za zapisivanje
- TPi definicija pravila za interpretaciju

### Mogući tipovi ograničenja u RMP

s pridruženim oznakama (*TipO*)

• ograničenje domena (*DomCon*)

ograničenje vrednosti obeležja (AttValCon)

• ograničenje torke (*TupleCon*)

prošireno ograničenje torke (ExTupleCon)

ograničenje ključa (KeyCon)

ograničenje jedinstvenosti (UniqueCon)

zavisnost sadržavanja (InCon)

proširena zavisnost sadržavanja (ExInCon)

selektivna zavisnost sadržavanja (SelInCon)

selektivna proširena zavisnost sadrž. (SelExInCon)

## Primer – tip ograničenja

| - |   |
|---|---|
| - | 7 |
|   |   |
|   | _ |

| TipO | RefInCon                                  |                                                                   | ograničenje referencijalnog integriteta |   |                    |       |                     |   |
|------|-------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---|--------------------|-------|---------------------|---|
|      | Role <sub>1</sub>                         | referencing                                                       | Mult <sub>1</sub>                       | 1 | AtStr <sub>1</sub> | array | AtMult <sub>1</sub> | * |
|      | ins                                       | NoAction, SetNull, SetDefault, < <userdef>&gt;</userdef>          |                                         |   |                    |       |                     |   |
| T(t) | upd                                       | NoAction, SetNull, SetDefault, < <userdef>&gt;</userdef>          |                                         |   |                    |       |                     |   |
|      | Role <sub>2</sub>                         | referenced                                                        | Mult <sub>m</sub>                       | 1 | AtStr <sub>m</sub> | array | AtMult <sub>m</sub> | * |
|      | del                                       | NoAction, Cascade, SetNull, SetDefault, < <userdef>&gt;</userdef> |                                         |   |                    |       |                     |   |
|      | upd                                       | NoAction, Cascade, SetNull, SetDefault, < <userdef>&gt;</userdef> |                                         |   |                    |       |                     |   |
| TOd  | 2                                         | višerelaciono ograničenje ("dvorelaciono")                        |                                         |   |                    |       |                     |   |
| TOi  | m                                         | međurelaciono ograničenje                                         |                                         |   |                    |       |                     |   |
| TFz  | $N_i[X] \subseteq N_j[Y]$ , $Key(N_j, Y)$ |                                                                   |                                         |   |                    |       |                     |   |
| TPi  | $\pi_X(r(N_i)) \subseteq \pi_Y(r(N_j))$   |                                                                   |                                         |   |                    |       |                     |   |

# Operacije

- nad konceptima strukture, po ograničenjima
  - INSERT (ubacivanje)
  - REPLEACE (ključ, deo ključa)
  - DELETE (objekat, veza, roditelj)

# Dinamička pravila integriteta

- Dinamičkim pravilima se održava integritet podataka pri izvršenju operacija održavanja baze podataka (insert, update, delete).
- Jedno dinamičko pravilo integriteta čini trojka
   OPERACIJA, OGRANIČENJE, AKCIJA>
- Akcije koje se preduzimaju su:
  - Restrict
  - Cascade
  - Nullifies (SetNull)
  - SetDefault

# Akcije

- Restrict odbija operaciju koja narušava integritet
- Cascade prosleđuje operaciju
- Default kreira pretpostavljeni objekat
- Set null nepoznato pojavljivanje
- None nema ograničenja

#### Implementacija ograničenja šeme BP

#### deklarativni mehanizmi

- aktivnosti provere važenja ograničenja i očuvanja konzistentnosti se, većim delom, podrazumevaju
  - SQL klauzula CONSTRAINT
  - CREATE DOMAIN, CREATE ASSERTION

#### - proceduralni mehanizmi

- aktivnosti provere važenja ograničenja i očuvanja konzistentnosti se, većim delom, programiraju
  - putem proceduralnog jezika
  - CREATE TRIGGER
  - CREATE PROCEDURE, CREATE FUNCTION
  - CREATE PACKAGE, CREATE PACKAGE BODY

#### Deklarativni mehanizmi (SQL:2006)

- SQL klauzula CONSTRAINT
  - opšti oblik sintakse

```
[CONSTRAINT NazivOgr] SpecifikacijaTipaOgraničenja
[INITIALLY {DEFERRED | IMMEDIATE}
[ [NOT] DEFERRABLE] ]
```

- SpecifikacijaTipaOgraničenja
  - NOT NULL- ograničenje nula vrednosti
  - PRIMARY KEY ... ograničenje primarnog ključa
  - UNIQUE ... ograničenje jedinstvenosti
  - CHECK ... ograničenje torke
  - FOREIGN KEY ... ograničenje stranog ključa

Sintaksa za definisanje trigera (PL/SQL)

```
CREATE [OR REPLACE] TRIGGER NazivTrigera
  BEFORE | AFTER | INSTEAD OF
    INSERT | DELETE | UPDATE [OF ListaObeležja]
   [ OR INSERT | DELETE | UPDATE [ OF ListaObeležja ] ... ]
  ON NazivTabele
  [ FOR EACH ROW [WHEN (LogičkiUslovPokretanjaTrigera)]]
  [ REFERENCING OLD NazivOld AS NEW AS NazivNew ]
  [ DECLARE
    Deklarativni deo - lokalne deklaracije
  BEGIN
    Izvršni deo - proceduralni deo, specifikacija aktivnosti
  [ EXCEPTION
    Deo za obradu izuzetaka ]
  END NazivTrigera
```

Sintaksa za kreiranje procedure (PL/SQL)

```
CREATE [OR REPLACE] PROCEDURE NazivProcedure
  [ (ListaFormalnihParametara) ]
  AS | IS
    Deklarativni deo - lokalne deklaracije procedure
             - tipovi podataka
             - konstante i promenljive
             - procedure i funkcije
             - kursorska područja
             - izuzeci
  BEGIN
    Izvršni deo - proceduralni deo, specifikacija aktivnosti
  [ EXCEPTION
    Deo za obradu izuzetaka ]
  END NazivProcedure
```

#### Sintaksa za kreiranje funkcije (PL/SQL)

```
CREATE [OR REPLACE] FUNCTION NazivFunkcije

[ (ListaFormalnihParametara) ]

RETURN TipPodatkaPovratneVrednostiFunkcije

AS | IS

Deklarativni deo - lokalne deklaracije funkcije

BEGIN

Izvršni deo - proceduralni deo, specifikacija aktivnosti

/* Zahteva pojavljivanje naredbe oblika RETURN Izraz */

[ EXCEPTION

Deo za obradu izuzetaka ]

END NazivFunkcije
```

 Sintaksa za kreiranje paketa i tela paketa (PL/SQL)

```
CREATE [OR REPLACE] PACKAGE NazivPaketa
  AS | IS
    Deklarativni deo – javne deklaracije paketa
             - tipovi podataka
             - konstante i promenljive
             - zaglavlja procedura i funkcija
             - kursorska područja
             - izuzeci
  [ BEGIN
    Deo za inicijalizaciju - proceduralni, specifikacija aktivnosti
END NazivPaketa
```

# NORMALIZACIJA BAZE PODATAKA

- Normalizacija je postupak projektovanja logičke strukture baze podataka, gde se nastoji otkloniti redudansa podataka bez gubitka informacija.
- Redundansa predstavlja višestruko memorisanje iste informacije u bazi podataka.
- Cilj:
  - kontrolisana redundansa podataka
  - jednostavno korišćenje i menjanje podataka (održavanje podataka)

- Definisano je šest normalnih formi (NF):
  - prva normalna forma (1NF),
  - 2. druga normalna forma (2NF),
  - treća normalna forma (3NF),
  - Boyce/Coddova normalna forma (BCNF),
  - četvrta normalna forma (4NF),
  - 6. peta normalna forma (5NF).



# Postupak normalizacije

"jedna činjenica na jednom mestu" - uklanjanje redundanse\*!

- Prva normalna forma
  - Svaki od atributa ima jedno značenje i ne više od jedne vrednosti za svaki primerak (instancu)
- Druga normalna forma
  - Svaki atribut koji nije ključ potpuno zavisi od primarnog ključa
- Treća normalna forma
  - Svaki atribut koji nije ključ mora da zavisi jedino od primarnog ključa

<sup>\*</sup> redundansa – višestruko ponavljanje istog podatka u bazi

### 1NF - primer

#### **RADNIK**

| Šifra radnika               |
|-----------------------------|
| Prezime                     |
| Ime                         |
| Kvalifikacija               |
| Dat.zaposl. ili dat.odlaska |

| 123 | Petar Perić | Programer  | <b>Ø</b> 1.11.1998 |  |
|-----|-------------|------------|--------------------|--|
| 124 | Ana Ilić    | Projektant | 20.05.2005         |  |
| 125 | Milan Milić | Operater   | 15.09.2004         |  |

1NF: Jednoznačna upotreba atributa; Svaki od atributa ima jedno značenje i ne više od jedne vrednosti za svaki primerak (instancu)

### 2NF - Primer

#### **ISPLATA**

Šifra radnika Br. isplate Datum zaposlenja Isplata

| 123 | 1 | 01.10.1997 | 20000 |  |
|-----|---|------------|-------|--|
| 123 | 2 | 01.10.1997 | 22500 |  |
| 123 | 3 | 01.10.1997 | 22000 |  |
| 123 | 4 | 01.10.1997 | 25000 |  |

2NF: Svaki atribut koji nije ključ mora potpuno da zavisi od primarnog ključa, inače ga treba premestiti u nadređeni entitiet

### 3NF - Primer

#### Radna lista

Broj liste Br. časova Cena časa Iznos

| 321 | 10 | 100 | 1000 |
|-----|----|-----|------|
| 322 | 2  | 80  | 160  |
| 323 | 3  | 150 | 450  |
|     | -  |     |      |

3NF: Svaki atribut koji nije ključ mora da zavisi jedino od primarnog ključa; Ne koristiti atribute čija se vrednost može izračunati

# MODEL OBJEKTI - VEZE

### Model podataka

- Model objekti-veze služi za prikazivanje objekata sistema, njihovih međusobnih veza i atributa koji ih opisuju.
- Predstavlja model podataka kojim se opisuju statičke karakteristike sistema i definiše se logička struktura baze podataka.



### Model podataka

- Objekat (entitet) u modelu može biti:
  - √ fizički objekat sistema (proizvod, radnik),
  - ✓ koncept, događaj i dr. (konferencija, plata, kasa).
- Objekti u sistemu se opisuju preko svojih svojstava (atributa).
- Atribut je elementarni podatak, nosilac informacija, koji uzima vrednosti samo iz svog domena.

| Kadrovi                            |                  |  |  |
|------------------------------------|------------------|--|--|
| ime                                | Characters (256) |  |  |
| Prezime                            | Characters (256) |  |  |
| Stručna sprema                     | Characters (256) |  |  |
| Godine iskustva                    | Integer          |  |  |
| Datum zaposlenja                   | Date             |  |  |
| Datum zaposlenja<br>ID. Kadra P.K. | Date             |  |  |

### **MOV** objekti

- Razlikujemo jake i slabe objekte.
- Slabi objekat u sistemu je zavisan egzistencijalno (ne može da postoji) i identifikaciono (ne može da se identifikuje) od njemu nadređenog objekta.



### Apstrakcija podataka

- Apstrakcija je kontrolisano uključivanje detalja, odnosno "izvlačenje" opštih karakteristika u opisivanju nekog sistema.
- Apstrakcije podataka:
  - 1. Klasifikacija (tipizacija)
  - 2. Generalizacija i specijalizacija
  - 3. Agregacija i dekompozicija

 Klasifikacija ili tipizacija je apstrakcija u kojoj se skup sličnih objekata predstavlja jednom klasom objekata, odnosno svaki objekat iz posmatranog skupa odgovarajućim tipom objekta.

#### Primer klasifikacije:

Matematika, Uvod u informacione sisteme, Operaciona istraživanja su <u>Ispiti</u>.

- Generalizacija je apstrakcija u kojoj se skup sličnih tipova objekata predstavlja opštijim generičkim tipom (nadtipom).
- Slični tipovi objekata su oni tipovi koji imaju jedan broj istih (zajedničkih) atributa, veza i/ili operacija.



 Agregacija je apstrakcija u kojoj se skup tipova objekata i njihovih veza tretira kao jedinstveni agregirani tip objekta.



#### **MOV** - veze

 Veza opisuje međusoban odnos objekata, odnosno učešće jednog objekta u drugom.

- Tipovi veza:
  - Neidentifikujuća
  - Identifikujuća

- Nasleđivanje
- Asocijacija





### Ključni atributi

- Primarni ključ je atribut ili skup atributa koji jedinstveno identifikuje jedno pojavljivanje tipa objekta.
- Spoljni ključ je atribut koji predstavlja identifikator entiteta prema kome dati entitet ima preslikavanje.
- Kandidati za ključ su atributi identifikatori koji jedinstveno određuju jedno pojavljivanje tipa objekta.

Nastavnik (SifraNast, Ime, Titula)

Predmet (SifraPredmeta, Naziv, Opis, NacinPolaganja, SifraNast)

### Kardinalnost

- Svaka binarna veza definiše dva preslikavanja.
- Preslikavanja određuju uloge objekta u vezi.
- Kardinalnost preslikavanja (E1 → E2) definiše najmanji mogući (DG) i najveći mogući (GG) broj pojavljivanja tipa objekta E2, za jedno pojavljivanje tipa objekta E1.

DG e [0,1,2,3,...], GG e [1,..M] → DG ≤ GG

#### NEIDENTIFIKUJUĆA VEZA

• 
$$(0,1)$$
 -  $(1,M)$ 

• (0,1) - (0,M)





#### IDENTIFIKUJUĆA VEZA

• 
$$(1,1) - (1,M)$$



# MODELIRANJE IS

- Tradicionalne metode:
  - modelovanje podataka
  - modelovanje procesa
- Objektno-orijentisane metode
  - podaci i procesi enkapsulirani u okviru klasa (atributi i metode)
- U praksi se ravnopravno koriste oba pristupa

# Mendix – low-code platforma



Definisanje logike



### Modelovanje podataka

- Obično na:
- logičkom (konceptualnom) nivou
  - nezavisno od korišćene platforme
  - ne mora čak ni imati fizičku implementaciju
  - postoje različite notacije
- fizičkom nivou
  - unose se i detalji konkretne platforme (Oracle, MySQL, MS-SQL server, Progress...)

# Primer konceptualnog i fizičkog modela





Logičko-Konceptualni model

Fizički model

- ✓ izolovati tipove entiteta
  - bitni pojmovi koje korisnici spominju, imenice u rečenicama...
    - Student, predmet, kurs, preduzeće, narudžbenica, mašina, pogon...
  - mogu biti fizički objekti u realnom sistemu ali i dokumenti
- ✓ izolovati atribute
  - obično se prvo otkriju samo osnovni, kasnijom analizom se vrši dopunjavanje

#### Atributi

- naziv
- tip podatka
- dužina
- preciznost
- obaveznost unosa vrednosti (mandatory)
- inicijalna vrednost
- ograničenja na vrednosti (D:G donje i gornje granice, nabrojani skup vrednosti)
- ✓ Odrediti ključeve

- ✓ Odrediti veze i njihove osobine
  - glagoli u rečenicama
    - Proizvod se sastoji od materijala i poluproizvoda
    - Student pohađa kurs
  - vrsta veze (jaka, slaba)
  - kardinalitet
  - atributi veze

### ✓ Odrediti ograničenja

- neka ograničenja se mogu projektovati sredstvima modela podataka
  - nabrojane vrednosti
  - donja i gornja granica vrednosti atributa
  - obaveznost unosa vrednosti nekog atributa
- neka se mogu samo zabeležiti i kasnije programski implementirati
- postoje i specijalni jezici za modelovanje ograničenja
  - npr. OCL



# Dileme kod projektovanja entiteta

- Da li je neki pojam entitet ili atribut?
  - Npr. državljanstvo, mesto rođenja, opština....
- Da li uvesti atribut ili definisati nabrojani tip

Npr. Status radnika: zaposlen, prekinuo rad, u

penziji



### Dilema kod izbora ključeva - zaključak

#### Prirodni

- bliži realnom sistemu
- lakše sprovesti reinženjering (prenos postojećih podataka)
- korisnici poslovnih sistema su često navikli na prirodne ključeve
- prirodni ključevi sa puno komponenti mogu da loše utiču na performansu baze podataka

### Surogat ključevi

 većina sistema za implementaciju srednjeg sloga preporučuje korišćenje surogat ključeva

### Dileme kod projektovanja veza

- Identifikaciona (jaka veza) ili ne?
- veza više-na-više ili entitet?
- generalizacija ili ne?
- kada koristiti vezu sa kardinalitetom 1-1?

# Identifikaciona veza (utiče na kluč)



Dijagram klasa Konceptualni Fizički

# Veza koja nije identifikaciona



Konceptualni

Fizički

### Veza "više-na-više"

#### Konceptualni



#### Fizički



### Veza "više-na-više"





### Veza 1-1

- Kada ima smisla koristiti je?
- Da li je ovo dobro?



# Veza generalizacije







Dijagram klasa

Konceptualni

Fizički

# PowerDesigner – dva načina za specificiranje generalizacije



# Dilema kod modelovanja - primer

#### Sa nasleđivanjem:



#### Bez nasleđivanja:

| Zaposleni         |                  |                          |                |  |
|-------------------|------------------|--------------------------|----------------|--|
| <u>ID</u>         | <u><pi></pi></u> | <u>Integer</u>           | <u><m></m></u> |  |
| Ime               |                  | Variable characters (20) |                |  |
| Prezime           |                  | Variable characters (20) |                |  |
| JMBG              |                  | Characters (13)          |                |  |
| Pol               |                  | Characters (1)           |                |  |
| Devojačko prezime |                  | Variable characters (20) |                |  |

### Dilema kod modelovanja – zaključak

- Ako naslednici nemaju puno atributa, više se "isplati" (sa stanovišta performanse, lakoće implementacije klijentske aplikacije, lakoće korišćenja)
  - sve atribute staviti u jednu klasu/entitet
  - dodati atribut koji omogućava klasifikaciju
    - na prethodnom primeru, to je bio pol









# REČNIK PODATAKA

### Rečnik podataka - uvod

 Rečnik podataka opisuje sadržaj i strukturu svih tokova i skladišta podataka.

- Koncepti:
  - 1. Polje i domen
  - 2. Struktura

#### Rečnik podataka – Polje i domen

 Polje je elementarna (atomska) struktura koja se dalje ne dekomponuje i ima svoju vrednost.
 Na primer: Brlndeksa, Status, Ocena.

 Polja svoje vrednosti uzimaju iz skupova vrednosti koji se nazivaju domenima.

naziv polja : domen [ograničenje]

### Rečnik podataka – Polje i domen

- Domeni mogu biti:
  - "predefinisani" standardni programsko-jezički domeni, kao što su: INTEGER, REAL, CHARACTER, DATE i LOGICAL.
  - "semantički"- definišu se posebno preko svoga imena, predefinisanog domena i, eventualno, ograničenja na mogući skup vrednosti predefinisanog domena.
    - SEMESTRI DEFINED\_AS INTEGER (2)
- Dva polja su semantički slična samo ako su definisana nad istim domenom.

#### Rečnik podataka – Polje i domen

 Primeri polja i vrednosti koje polje uzima iz nekog domena:

- NazivPredmeta: CHAR (20)
- Ocena: INT(2) IN (5,6,7,8,9,10)
- Prosek: REAL (2,2) < 10.00</li>
- Semestar: SEMESTRI

## MOV PRIMER

#### **MOV** - primer

#### Verbalni opis:

- Po proceduri i politici preduzeća Deko u sektoru za ljudske resurse, izemeđu ostalog, vodi se evidencija o zaposlenim osobama. Zaposleni su kategorizovani po polu i funkciji (rukovodilac, radnik, itd.).
- Vodi se evidencija o odeljenju u kome zaposleni radi, kao i o radnom mestu na kome je zadužen (radno mesto nije striktno određeno odeljenjem u kome se zaposleni nalazi).
- Čuvaju se informacije o isplatama (zaradama) zaposlenih, a bitno je da se zna stepen korišćenja stranog jezika.



## KRAJ