$Thema09_Log$

Marcel Setz

Contents

Introduction	2
Research Question	2
Data exploration	2
Codebook & Reading the data	2
Summary	2
Visualization	5
Distribution plots	5
Plotting the data	6
Scatterplots	6
Comparing two variables	9
Data mining	10
Quality metrics	10
Algorithms	11
Conclusion & Discussion	13
Sources	14

Introduction

A CpG island or CpG site is a part of the DNA where the GC content is greater than 50%. In this dataset methylation values of certain CpG sites are displayed with also the age, gender and smoking status for 671 people.

Research Question

Is it possible to identify a person's gender, age or status of smoking given their methylation values on CpG islands?

Data exploration

Codebook & Reading the data

```
myData <- read.csv("data/Smoker_Epigenetic_df.csv")
myData <- myData %>% drop_na()

columns = colnames(myData[1:4])
columns <- append(columns, "Columns 5-24")
names <- c("Sample Accessions numbers", "Smoking status", "Gender", "Age", "CG Island")
type <- c("chr", "chr", "int", "num")
unit <- c(NA, "current/never", "f/m", NA, NA)
descriptions = c("GSM identifier testsubject", "Wether the person is smoking or not", "Gender", "Age",
codebook <- data.frame(columns, names, type, descriptions)
write.csv(codebook, "Codebook.csv", row.names = FALSE)
knitr::kable(codebook)</pre>
```

columns	names	type	descriptions
GSM	Sample Accessions numbers	chr	GSM identifier testsubject
Smoking.Status	Smoking status	chr	Wether the person is smoking or not
Gender	Gender	chr	Gender
Age	Age	int	Age
Columns 5-24	CG Island	num	Methylation Rate of CG Island

Summary

```
subsetdata <- head(myData)
dataset <- subsetdata[1:7]
knitr::kable(dataset) %>%
  row_spec(0, bold = TRUE) %>%
  column_spec(1, bold = TRUE)
```

GSM	Smoking.Status	Gender	\mathbf{Age}	cg00050873	cg00212031	cg00213748
GSM1051525	current	f	67	0.6075634	0.4228427	0.3724549
GSM1051526	current	f	49	0.3450542	0.5686615	0.5005995
GSM1051527	current	f	53	0.3213497	0.3609091	0.3527315
GSM1051528	current	f	62	0.2772675	0.3044371	0.4752352
GSM1051529	never	f	33	0.4135991	0.1312511	0.3675446
GSM1051530	current	f	59	0.6228599	0.5016849	0.2632270

dataset <- subsetdata[c(1, 8:13)]
knitr::kable(dataset) %>%
 row_spec(0, bold = TRUE) %>%
 column_spec(1, bold = TRUE)

GSM	cg00214611	cg00455876	cg01707559	cg02004872	cg02011394	cg02050847
GSM1051525	0.6215619	0.2907773	0.2671431	0.1791439	0.4802517	0.3276078
GSM1051526	0.4986067	0.3745909	0.1902743	0.1559775	0.4180809	0.3464627
GSM1051527	0.3738240	0.2306740	0.3147052	0.1057448	0.6151030	0.2375392
GSM1051528	0.4862581	0.2951815	0.2957931	0.1112862	0.3010196	0.3045353
GSM1051529	0.7611667	0.2357703	0.2505265	0.1691084	0.3929746	0.3062257
GSM1051530	0.4157459	0.4751891	0.2539041	0.2607587	0.5097921	0.4052457

dataset <- subsetdata[c(1, 14:19)]
knitr::kable(dataset) %>%
 row_spec(0, bold = TRUE) %>%
 column_spec(1, bold = TRUE)

GSM	cg02233190	cg02494853	cg02839557	cg02842889	cg03052502	cg03155755
GSM1051525	0.2411204	0.0670696	0.2469934	0.4692396	0.4002466	0.4150313
GSM1051526	0.1754907	0.0469389	0.2367423	0.3074666	0.3770313	0.3973715
GSM1051527	0.2464092	0.0382371	0.2446117	0.3577526	0.3050442	0.5212775
GSM1051528	0.1770279	0.0267163	0.0016414	0.4457390	0.2714746	0.4344920
GSM1051529	0.3017014	0.0370164	0.3343197	0.3950396	0.3265530	0.4300966
GSM1051530	0.3852716	0.0258346	0.3092102	0.3218573	0.5333670	0.5715522

dataset <- subsetdata[c(1, 20:24)]
knitr::kable(dataset) %>%
 row_spec(0, bold = TRUE) %>%
 column_spec(1, bold = TRUE)

GSM	cg03244189	cg03443143	cg03683899	cg03695421	cg03706273
GSM1051525	0.2214331	0.4758258	0.2077242	0.2091974	0.1299826
GSM1051526	0.2171221	0.5444690	0.1844462	0.1937732	0.0985327
GSM1051527	0.1850495	0.5370600	0.3931231	0.2680030	0.0402481
GSM1051528	0.1654187	0.5079167	0.2812089	0.2178572	0.1015163
GSM1051529	0.1811352	0.4054791	0.3107944	0.2800708	0.0778571
GSM1051530	0.2109749	0.3778239	0.4693609	0.3433317	0.0457791

##	GSM	Smoking.Status	Gender	Age
##	Length:621	Length:621	. 0	Min. :18.00
##	Class :character	Class :character	r Class :charact	ter 1st Qu.:46.00
##	Mode :character	Mode :character	r Mode :charact	ter Median:54.00
##				Mean :52.59
##				3rd Qu.:61.00
##				Max. :70.00
##	cg00050873	cg00212031	cg00213748	cg00214611
##	Min. :0.1186	Min. :0.006949	Min. :0.0000	Min. :0.01247
##	1st Qu.:0.4131	1st Qu.:0.063172	1st Qu.:0.3635	1st Qu.:0.06946
##	Median :0.5052	Median :0.365545	Median :0.4713	Median :0.41575
##	Mean :0.5600	Mean :0.309601	Mean :0.5191	Mean :0.34106
##	3rd Qu.:0.8144	3rd Qu.:0.459813	3rd Qu.:0.7278	3rd Qu.:0.49745
##	Max. :0.8989	Max. :0.709992	Max. :0.9236	Max. :0.80606
##	cg00455876	cg01707559	cg02004872	cg02011394
##	Min. :0.05917	Min. :0.04333	Min. :0.002616	S Min. :0.0000
##	1st Qu.:0.29300	1st Qu.:0.11080	1st Qu.:0.042835	1st Qu.:0.4261
##	Median :0.37968	Median :0.23873	Median :0.149332	Median :0.5157
##	Mean :0.44718	Mean :0.21435	Mean :0.155417	Mean :0.6058
##	3rd Qu.:0.66283	3rd Qu.:0.28061	3rd Qu.:0.242627	7 3rd Qu.:0.9412
##	Max. :0.85443	Max. :0.46999	Max. :0.473844	Max. :0.9792
##	cg02050847	cg02233190	cg02494853	cg02839557
##	Min. :0.05234	Min. :0.008632	Min. :0.01162	2 Min. :0.00000
##	1st Qu.:0.33963	1st Qu.:0.088375	1st Qu.:0.02865	1st Qu.:0.06384
##	Median :0.42754	Median :0.259817	Median :0.03695	Median :0.35042
##	Mean :0.54369	Mean :0.232498	Mean :0.04077	
##	3rd Qu.:0.95558	3rd Qu.:0.337023	3rd Qu.:0.04677	7 3rd Qu.:0.45786
##	Max. :0.98320	Max. :0.511730	Max. :0.28947	Max. :0.82739
##	cg02842889	cg03052502	cg03155755	cg03244189
##	Min. :0.01346	Min. :0.0000	Min. :0.2020	Min. :0.02972
##	1st Qu.:0.05483	1st Qu.:0.4025	1st Qu.:0.4245	1st Qu.:0.11976
##	Median :0.39757	Median :0.4940	Median :0.4962	Median :0.20397
##	Mean :0.32362	Mean :0.5907	Mean :0.5895	Mean :0.19552
##	3rd Qu.:0.47385	3rd Qu.:0.9631	3rd Qu.:0.8988	3rd Qu.:0.24921
##	Max. :0.85625	Max. :0.9902	Max. :0.9696	Max. :0.54074
##	cg03443143	cg03683899	cg03695421	cg03706273
##	Min. :0.06496	Min. :0.00788	Min. :0.0949	Min. :0.01120
##	1st Qu.:0.40963	1st Qu.:0.06159	1st Qu.:0.2566	1st Qu.:0.03413
##	Median :0.48314	Median :0.34422	Median :0.3208	Median :0.04961
##	Mean :0.56841	Mean :0.28442	Mean :0.3978	Mean :0.05769
##	3rd Qu.:0.85436	3rd Qu.:0.41866	3rd Qu.:0.5965	3rd Qu.:0.06916
##	Max. :0.93589	Max. :0.65925	Max. :0.8433	Max. :0.34380

Visualization

Distribution plots

Below there are some histograms which visualizes the distribution of smoking status, age and gender.

```
ggplot(myData, aes(x=Smoking.Status)) +
  geom_histogram(stat="count", fill = c("pink", "lightblue"), col = "black") +
  ylim(0, 600) +
  labs(caption = "Figure 1: Number of people who are smoking") +
  theme(plot.caption = element_text(size=16)) +
  theme(plot.caption = element_text(size=16, face="italic")) +
  theme(axis.text = element_text(size = 20)) +
  theme(axis.title = element_text(size = 20, face="bold"))
```


Figure 1: Number of people who are smoking

```
ggplot(myData, aes(x=Gender)) +
  geom_histogram(stat="count", fill = c("pink", "lightblue"), col = "black") +
  ylim(0, 600) +
  labs(caption = "Figure 2: Gender distribution") +
  theme(plot.caption = element_text(size=16)) +
  theme(plot.caption = element_text(size=16, face="italic")) +
  theme(axis.text = element_text(size = 20)) +
  theme(axis.title = element_text(size = 20, face="bold"))
```


Figure 2: Gender distribution

```
ggplot(myData, aes(x=Age)) +
  geom_histogram(fill = "lightgrey", col = "black") +
  labs(caption = "Figure 3: Age distribution") +
  theme(plot.caption = element_text(size=16, face="italic")) +
  theme(axis.text = element_text(size = 20)) +
  theme(axis.title = element_text(size = 20, face="bold"))
```


Figure 3: Age distribution

Plotting the data

Scatterplots

These are all the CpG sites plotted against age, with smokin status as color groups and gender as shape groups. A few of the CpG islands have been removed, becaused they looked very similar. What stands out here is that you see two groups in almost every graph, one of men and one of women, so apparently the cg methylation rate is different between men and women.

```
plotfunction <- function(cg){
    ggplot(data = myData, mapping = aes_string(x = "Age", y = cg)) +
        geom_point(aes(shape = factor(Gender), color = factor(Smoking.Status))) +
        labs(caption = paste(cg, ": Scatterplot visualizing the methylation rate on this CpG island of diff
        theme(plot.caption = element_text(size=14, face="italic")) +
        theme(axis.text = element_text(size = 20)) +
        theme(axis.title = element_text(size = 20, face="bold")) +
        theme(legend.text = element_text(size = 16)) +
        theme(legend.title = element_text(size=16)) +
        ylab(paste("CpG Island: ", cg))
}
lapply(names(myData[c(5, 6, 7, 9, 10, 15, 20)]), plotfunction)</pre>
```


cg00050873: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

cg00212031: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

cg00213748: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

cg00455876: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

cg01707559: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

cg02494853: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

cg03244189: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

Comparing two variables

With the age distribution in mind, let's try to plot 2 methylation rates with the age factored as groups.

cg00050873: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

```
ggplot(data = myData, mapping = aes(x = ClassAge, y = cg03706273, fill = Smoking.Status)) +
    geom_boxplot() +
    labs(caption = paste("cg03706273: Scatterplot visualizing the methylation rate on this CpG island o
    theme(plot.caption = element_text(size=14, face="italic")) +
    theme(axis.text = element_text(size = 20)) +
    theme(axis.title = element_text(size = 20, face="bold")) +
    theme(legend.text = element_text(size = 16)) +
    theme(legend.title = element_text(size=16)) +
    ylab(paste("CpG Island: cg03706273")) +
    xlab("Age")
```


cg03706273: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

Data mining

Quality metrics

In this week we define the best algorithm for our data with true positive, false positive, true negative and false negative.

Algorithms

The algorithms we are going to compare are: ZeroR, OneR, J48, NaiveBayes, IBK, Simple Logistics, SMO and Random Forest. Below you can see a table with the most important results of all algorithms.

```
ML_dataLoc_Smoke <- "data/Smoker_Epigenetic_dfExperimentSmoke.csv"</pre>
ML dataLoc Gender <- "data/Smoker Epigenetic dfExperimentGender.csv"
files <- list(ML_dataLoc_Smoke, ML_dataLoc_Gender)</pre>
count <- 0
for (ML_dataLoc in files)
  count <- count + 1
  if (count == 1)
    file <- "Smoke"
  else
  {
    file <- "Gender"
  ML_data <- read.csv(ML_dataLoc)</pre>
  ML ZeroR \leftarrow ML data[c(1:100),]
  ML_OneR <- ML_data[c(101:200),]</pre>
  ML_J48 <- ML_data[c(201:300),]
  ML_IBK <- ML_data[c(301:400),]</pre>
  ML_NaiveBayes <- ML_data[c(401:500),]</pre>
  ML_SimpleLog <- ML_data[c(501:600),]</pre>
  ML_SMO <- ML_data[c(601:700),]
  ML_RandomForest <- ML_data[c(701:800),]</pre>
  algos <- list(ML_ZeroR, ML_OneR, ML_J48, ML_IBK, ML_NaiveBayes, ML_SimpleLog, ML_SMO, ML_RandomForest
  avgs_pc <- list()</pre>
  avgs_pi <- list()</pre>
  avgs_tp <- list()</pre>
  avgs_fp <- list()</pre>
  avgs_tn <- list()</pre>
  avgs_fn <- list()</pre>
  avgs_pr <- list()</pre>
  avgs_rc <- list()</pre>
  avgs_roc <- list()</pre>
  for (algo in algos) {
    percent_correct <- algo[3]</pre>
    avg <- lapply(percent_correct, mean)</pre>
    avgs_pc[[length(avgs_pc) + 1]] <- avg</pre>
  for (algo in algos) {
    percent_incorrect <- algo[4]</pre>
    avg <- lapply(percent_incorrect, mean)</pre>
    avgs_pi[[length(avgs_pi) + 1]] <- avg</pre>
  for (algo in algos) {
```

```
TP <- algo[5]
  avg <- lapply(TP, sum)</pre>
  avgs_tp[[length(avgs_tp) + 1]] <- avg</pre>
for (algo in algos) {
  FP <- algo[6]
  avg <- lapply(FP, sum)</pre>
  avgs_fp[[length(avgs_fp) + 1]] <- avg</pre>
for (algo in algos) {
  TN <- algo[7]
  avg <- lapply(TN, sum)</pre>
  avgs_tn[[length(avgs_tn) + 1]] <- avg</pre>
for (algo in algos) {
  FN <- algo[8]
  avg <- lapply(FN, sum)</pre>
  avgs_fn[[length(avgs_fn) + 1]] <- avg</pre>
for (algo in algos) {
  precision <- algo[9]</pre>
  avg <- lapply(precision, mean)</pre>
  avgs_pr[[length(avgs_pr) + 1]] <- avg</pre>
for (algo in algos) {
  recall <- algo[10]
  avg <- lapply(recall, mean)</pre>
  avgs_rc[[length(avgs_rc) + 1]] <- avg</pre>
for (algo in algos) {
  roc_area <- algo[11]</pre>
  avg <- lapply(roc_area, mean)</pre>
  avgs_roc[[length(avgs_roc) + 1]] <- avg</pre>
avgs_df <- data.frame(row.names = c("ZeroR", "OneR", "J48", "IBK", "NaiveBayes", "SimpleLogistics", "
vec_pc <- unlist(avgs_pc)</pre>
vec_pi <- unlist(avgs_pi)</pre>
vec_tp <- unlist(avgs_tp)</pre>
vec_fp <- unlist(avgs_fp)</pre>
vec_tn <- unlist(avgs_tn)</pre>
vec_fn <- unlist(avgs_fn)</pre>
vec_pr <- unlist(avgs_pr)</pre>
vec_rc <- unlist(avgs_rc)</pre>
vec_roc <- unlist(avgs_roc)</pre>
avgs_df$percent_correct_avgs <- vec_pc</pre>
avgs_df$percent_incorrect_avgs <- vec_pi</pre>
avgs_df$TP_sum <- vec_tp</pre>
avgs_df$FP_sum <- vec_fp</pre>
avgs_df$TN_sum <- vec_tn</pre>
avgs_df$FN_sum <- vec_fn</pre>
avgs_df$precision_avgs <- vec_pr</pre>
```

```
avgs_df$recall_avgs <- vec_rc
avgs_df$ROC_Area_avgs <- vec_roc

knitr::kable(avgs_df)
filepath <- paste("data/Smoker_Epigenetic_df_Summary_", file, ".csv", sep = "")

write.csv(avgs_df, file = filepath)
}</pre>
```


Figure 1: The generated tree of the J48 algorithm with the smoking status as class. Apparently these CpG islands say the most about whether a person smokes or not.

Conclusion & Discussion

So far we don't have a concrete answer to the research question, because the algorithms aren't extremely overwhelming. So for now it isn't really possible to determine whether someone is smoking or not, because the data is too much spreaded out and not really divided into groups.

It's quite obvious that the percentage of correctly classified instances of every algorithm except for NaiveBayes are very close to eachother, the only significant lower scores according to weka are NaiveBayes and OneR, the best (not really significant) algorithm are surprisingly ZeroR, J48, SimpleLogistics and SMO. However it's quite remarkable that the ROC-area and the precision are the highest on NaiveBayes. So even though the results are disappointing, this is the best algorithm according to these quality metrics.

The Data with the gender as class is quite more interesting, these algorithms have a way higher area under the curve and correctly classified instance percentage. For the Java wrapper, it is probably the best to use the data with the gender class, because this is way more reliable than the smoking status. Even though it sounds a bit odd to predict gender with the methylation rate of certain CpG islands.

One possible purpose for the use of the gender class may be for forensic research. If some suspect need to be found, it's a way to find out if the suspect is male or female.

After some research I found out what the reason for this remarkable difference is. These differences have everything to do with the diversity of the transcriptomic and proteomic profiles in the two sexes. [1]

Figure 2: The ROC curve of the J48 algorithm using the current class. Not much is going on here, this algorithms gives almost no information.

Sources

[1] Yusipov, I., Bacalini, M. G., Kalyakulina, A., Krivonosov, M., Pirazzini, C., Gensous, N., Ravaioli, F., Milazzo, M., Giuliani, C., Vedunova, M., Fiorito, G., Gagliardi, A., Polidoro, S., Garagnani, P., Ivanchenko, M., & Franceschi, C. (2020). Age-related DNA methylation changes are sex-specific: a comprehensive assessment. Aging, 12(23), 24057–24080. https://doi.org/10.18632/aging.202251

Figure 3: The ROC curve of the NaiveBayes algorithm using the current class. It's still quite straight, but not as straight as the J48 ROC curve