Cheat Sheet: Linear and Logistic Regression

Comparing different regression types

Model Name	Description	Code Syntax
SIMPLE LINEAR REGRESSION	Purpose: To predict a dependent variable based on one independent variable. Pros: Easy to implement, interpret, and efficient for small datasets. Cons: Not suitable for complex relationships; prone to underfitting. Modeling equation: $y = B_0 + B_1 x$	<pre>from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X, y)</pre>
POLYNOMIAL REGRESSION	$\label{eq:purpose: To capture nonlinear relationships} \\ \text{Between variables.} \\ \textbf{Pros: Better at fitting nonlinear data} \\ \textbf{compared to linear regression.} \\ \textbf{Cons: Prone to overfitting with high-degree polynomials.} \\ \textbf{Modeling equation: } \textbf{y} = \textbf{b}_0 + \textbf{b}_1\textbf{x} + \textbf{b}_2\textbf{x}^2 + \\ \end{cases}$	<pre>from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression poly = PolynomialFeatures(degree=2) X_poly = poly.fit_transform(X) model = LinearRegression().fit(X_poly, y)</pre>
MULTIPLE LINEAR REGRESSION	$\label{eq:purpose: To predict a dependent variable based on multiple independent variables. \\ \textbf{Pros: Accounts for multiple factors influencing the outcome.} \\ \textbf{Cons: Assumes a linear relationship between predictors and target.} \\ \textbf{Modeling equation: } \textbf{y} = \textbf{b}_0 + \textbf{b}_1\textbf{x}_1 + \textbf{b}_2\textbf{x}_2 + \dots \\ \end{bmatrix}$	<pre>from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X, y)</pre>
Logistic regression	$\label{eq:purpose:topredict} \begin{split} & \textbf{Purpose:} \text{ To predict probabilities of } \\ & \text{categorical outcomes.} \\ & \textbf{Pros:} \text{ Efficient for binary classification } \\ & \textbf{Pros:} \text{ Efficient for binary classification } \\ & \textbf{Problems.} \\ & \textbf{Cons:} \text{ Assumes a linear relationship between independent variables and log-odds.} \\ & \textbf{Modeling equation:} \text{Log(p/(1-p))} = \textbf{B}_0 + \textbf{B}_1\textbf{X}_1 + \end{split}$	from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X, y)

Associated functions commonly used

Function/Method Name	Brief Description	Code Syntax
TRAIN_TEST_SPLIT	SPLITS THE DATASET INTO TRAINING AND TESTING SUBSETS TO EVALUATE THE MODEL'S PERFORMANCE.	<pre>from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)</pre>
STANDARDSCALER	STANDARDIZES FEATURES BY REMOVING THE MEAN AND SCALING TO UNIT VARIANCE.	<pre>from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_scaled = scaler.fit_transform(X)</pre>
LOG_LOSS	CALCULATES THE LOGARITHMIC LOSS, A PERFORMANCE METRIC FOR CLASSIFICATION MODELS.	from sklearn.metrics import log_loss loss = log_loss(y_true, y_pred_proba)
MEAN_ABSOLUTE_ERROR	CALCULATES THE MEAN ABSOLUTE ERROR BETWEEN ACTUAL AND PREDICTED VALUES.	from sklearn.metrics import mean_absolute_error mae = mean_absolute_error(y_true, y_pred)
MEAN_SQUARED_ERROR	COMPUTES THE MEAN SQUARED ERROR BETWEEN ACTUAL AND PREDICTED VALUES.	<pre>from sklearn.metrics import mean_squared_error mse = mean_squared_error(y_true, y_pred)</pre>
ROOT_MEAN_SQUARED_ERROR	CALCULATES THE ROOT MEAN SQUARED ERROR (RMSE), A COMMONLY USED METRIC FOR REGRESSION TASKS.	from sklearn.metrics import mean_squared_error import numpy as np rmse = np.sqrt(mean_squared_error(y_true, y_pred))
R2_SCORE	COMPUTES THE R-SQUARED VALUE, INDICATING HOW WELL THE MODEL EXPLAINS THE VARIABILITY OF THE TARGET VARIABLE.	from sklearn.metrics import r2_score r2 = r2_score(y_true, y_pred)

Author(s)

JEFF GROSSMAN ABHISHEK GAGNEJA

