Time Series and Dynamic Time Warping

CSE 4309 – Machine Learning
Vassilis Athitsos
Computer Science and Engineering Department
University of Texas at Arlington

Sequential Data

- Sequential data, as the name implies, are sequences.
- What is the difference between a sequence and a set?
- A sequence X is a set of elements, together with a total order imposed on those elements.
 - A **total order** describes, for any two elements x_1, x_2 , which of them comes before and which comes after.
- Examples of sequential data:
 - Strings: sequences of characters.
 - Time series: sequences of vectors.

Time Series

• A <u>time series</u> is a <u>sequence</u> of observations made over time.

• Examples:

- Stock market prices (for a single stock, or for multiple stocks).
- Heart rate of a patient over time.
- Position of one or multiple people/cars/airplanes over time.
- Speech: represented as a sequence of audio measurements at discrete time steps.
- A musical melody: represented as a sequence of pairs (note, duration).

Applications of Time Series Classification

- Predicting future prices (stock market, oil, currencies...).
- Heart rate of a patient over time:
 - Is it indicative of a healthy heart, or of some disease?
- Position of one or multiple people/cars/airplanes over time.
 - Predict congestion along a route suggested by the GPS.
- Speech recognition.
- Music recognition.
 - Sing a tune to your phone, have it recognize the song.
 - Recognize the genre of a song based on how it sounds.

Time Series Example: Signs

- 0.5 to 2 million users of American Sign Language (ASL) in the US.
- Different regions in the world use different sign languages.
 - For example, British Sign Language (BSL) is different than American Sign Language.
- These languages have vocabularies of thousands of signs.
- We will use sign recognition as our example application, as we introduce methods for time series classification.

Example: The ASL Sign for "again"

Example: The ASL Sign for "bicycle"

Representing Signs as Time Series

- A sign is a video (or part of a video).
- A video is a sequence of frames.
 - A sequence of images, which, when displayed rapidly in succession, create the illusion of motion.
- At every frame i, we extract a **feature vector** x_i .
 - How should we define the feature vector? This is a (challenging) computer vision problem.
 - The methods we will discuss work with any choice we make for the feature vector.
- Then, the entire sign is represented as time series $X = (x_1, x_2, ... x_D)$.
 - -D is the length of the sign video, measured in frames.

 Finding good feature vectors for signs is an active research problem in computer vision.

 We choose a simple approach: the feature vector at each frame is the (x, y) pixel location of the right hand at that frame.

Frame 1: Feature vector $x_1 = (192,205)$

 We choose a simple approach: the feature vector at each frame is the (x, y) pixel location of the right hand at that frame.

Frame 2: Feature vector $x_2 = (190,201)$

 We choose a simple approach: the feature vector at each frame is the (x, y) pixel location of the right hand at that frame.

Frame 3: Feature vector $x_3 = (189,197)$

Time Series for a Sign

 Using the previous representation, for sign "AGAIN" we end up with this time series:

```
((192, 205),(190, 201),(190, 194),(191, 188),(194, 182),(205, 183), (211, 178),(217, 171),(225, 168),(232, 167),(233, 167),(238, 168), (241, 169),(243, 176),(254, 177),(256, 179),(258, 186),(269, 194), (271, 202),(274, 206),(276, 207),(277, 208)).
```

• It is a sequence of 22 2D vectors.

Time Series for a Sign

 Using the previous representation, for sign "AGAIN" we end up with this time series:

```
((192, 205),(190, 201),(190, 194),(191, 188),(194, 182),(205, 183), (211, 178),(217, 171),(225, 168),(232, 167),(233, 167),(238, 168), (241, 169),(243, 176),(254, 177),(256, 179),(258, 186),(269, 194), (271, 202),(274, 206),(276, 207),(277, 208))
```

• It is a sequence of 22 2D vectors.

Training sign for "AGAIN".

Training sign for "BICYCLE".

Suppose our training set only contains those two signs: "AGAIN" and "BICYCLE".

We get this test sign.

Does it mean "AGAIN", or "BICYCLE"?

Does this test sign mean "AGAIN", or "BICYCLE"?

We can use nearest-neighbor classification.

Big question: what distance measure should we choose?

Visualizing a Time Series

- Here is a visualization of one time series X.
- Each feature vector (as before) is a point in 2D.
- The time series has eight elements. $X = (x_1, x_2, ... x_D)$.
- For example, x_4 indicates the position of 2D point x_4 .

Comparing Time Series

- Here is a visualization of two time series, X and Y.
- How do we measure the distance between two time series?

Comparing Time Series

- We could possibly use the Euclidean distance.
 - The first time series is a 16-dimensional vector.
 - The second time series is an 18-dimensional vector.
- However, there are issues...

- The two vectors have different numbers of dimensions.
- We could fix that by "stretching" the first time series to also have 9 elements.

- Here, the time series on the left has been converted to have nine elements, using interpolation.
 - We will not explore that option any further, because...

- Bigger problem: the two time series correspond to a similar pattern being performed with <u>variable speed</u>.
 - The first five elements of the first time series visually match the first seven elements of the second time series.

- So, the first time series had a faster speed than the second time series initially.
 - It took 5 time ticks for the first time series, and seven time ticks for the second time series, to move through approximately the same trajectory.

- Similarly, the last four elements of the first time series visually match the last three elements of the second time series.
- So, the first time series had a faster speed than the second time series in the last part.
 - 4 time ticks for the first time series, 3 time ticks for the second one.

- An alignment is a correspondence between elements of two time series.
- To reliably measure the similarity between two time series, we need to figure out, for each element of the first time series, which elements of the second time series it **corresponds** to.

• An alignment A between X and Y is a sequence of pairs of indices:

$$\mathbf{A} = ((a_{1,1}, a_{1,2}), (a_{2,1}, a_{2,2}), \dots, (a_{R,1}, a_{R,2}))$$

• Element $(a_{i,1}, a_{i,2})$ of alignment A specifies that element $x_{a_{i,1}}$ of X corresponds to element $y_{a_{i,2}}$ of the other time series.

- For example, here is a "good" alignment between the two series:
 ((1,1), (2,2), (2,3), (3,4), (4,5), (4,6), (5,7), (6,7), (7,8), (8,9))
- We will discuss later how to find such an alignment automatically.

- Alignment:
 - ((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- According to this alignment:
 - x_1 corresponds to y_1 .

- Alignment:
 - ((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- According to this alignment:
 - x_2 corresponds to y_2 .

- Alignment:
 - ((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
 - According to this alignment:
 - x_2 also corresponds to y_3 .

- x_2 also corresponds to y_3 .
- One element from one time series can correspond to <u>multiple</u> consecutive elements from the other time series.
 - This captures cases where one series moves slower than the other.
 - For this segment, the first series moves faster than the second one.

- Alignment:
 - ((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- According to this alignment:
 - x_3 corresponds to y_4 .

- Alignment:
 - ((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- According to this alignment:
 - x_4 corresponds to y_5 .

- Alignment:
 - ((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- According to this alignment:
 - x_4 also corresponds to y_6 .

- x_4 also corresponds to y_6 .
 - As before, for this segment, the first time series is moving faster than the second one.

- Alignment:
 - ((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- According to this alignment:
 - $-x_5$ corresponds to y_7 .

- Alignment:
 - ((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- According to this alignment:
 - x_6 also corresponds to y_5 .

- Alignment:
 ((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- Here, the first time series is moving slower than the second one, and thus x_5 and x_6 are both matched to y_7 .

- Alignment:
 - ((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- According to this alignment:
 - x_7 corresponds to y_8 .

- Alignment:
 - ((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))
- According to this alignment:
 - $-x_8$ corresponds to y_9 .

The Cost of an Alignment

An alignment A is defined as a sequence of pairs

$$\mathbf{A} = ((a_{1,1}, a_{1,2}), (a_{2,1}, a_{2,2}), \dots, (a_{R,1}, a_{R,2}))$$

• If we are given an alignment A between two time series X and Y, we can compute the cost $C_{X,Y}(A)$ of that alignment as:

$$C_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{A}) = \sum_{i=1}^{K} \operatorname{Cost}(\boldsymbol{x}_{a_{i,1}}, \boldsymbol{y}_{a_{i,2}})$$

The Cost of an Alignment

An alignment is defined as a sequence of pairs:

$$\mathbf{A} = ((a_{1,1}, a_{1,2}), (a_{2,1}, a_{2,2}), \dots, (a_{R,1}, a_{R,2}))$$

• If we are given an alignment A between two time series X and Y, we can compute the cost $C_{X,Y}(A)$ of that alignment as:

$$C_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{A}) = \sum_{i=1}^{R} \operatorname{Cost}(\boldsymbol{x}_{a_{i,1}}, \boldsymbol{y}_{a_{i,2}})$$

- In this formula, $Cost(x_{a_{i,1}}, y_{a_{i,2}})$ is a black box.
 - You can define it any way you like.
 - For example, if $x_{a_{i,1}}$ and $y_{a_{i,2}}$ are vectors, $\mathrm{Cost}(x_{a_{i,1}},y_{a_{i,2}})$ can be the Euclidean distance between $x_{a_{i,1}}$ and $y_{a_{i,2}}$.

44

The Cost of an Alignment

An alignment is defined as a sequence of pairs:

$$\mathbf{A} = ((a_{1,1}, a_{1,2}), (a_{2,1}, a_{2,2}), \dots, (a_{R,1}, a_{R,2}))$$

• If we are given an alignment A between two time series X and Y, we can compute the cost $C_{X,Y}(A)$ of that alignment as:

$$C_{X,Y}(A) = \sum_{i=1}^{R} \operatorname{Cost}(\boldsymbol{x}_{a_{i,1}}, \boldsymbol{y}_{a_{i,2}})$$

- Notation $C_{X,Y}(A)$ indicates that the cost of alignment A depends on the specific pair of time series that we are aligning.
 - The cost of an alignment A depends on the alignment itself, as well as the two time series X and Y that we are aligning.

Rules of Alignment

- Should alignment ((1, 5), (2, 3), (6, 7), (7, 1)) be legal?
- It always depends on what makes sense for your data.
- Typically, for time series, alignments have to obey certain rules, that this alignment violates.

Rules of Alignment

- We will require that legal alignments obey three rules:
 - Rule 1: Boundary Conditions.
 - Rule 2: Monotonicity.
 - Rule 3: Continuity
- The next slides define these rules.

Rule 1: Boundary Conditions

- Illegal alignment (violating boundary conditions):
 - -((1,5),...,(7,1)).
 - $-((s_1,t_1),(s_2,t_2),...,(s_R,t_R))$
- Alignment rule #1 (boundary conditions):
 - $s_1 = 1, t_1 = 1.$
 - $-s_R=M=$ length of first time series
 - $-t_R = N =$ length of second time series

first elements match last elements match

Rule 2: Monotonicity

- Illegal alignment (violating monotonicity):
 - -(...,(3,5),(4,3),...).
 - $-((s_1,t_1),(s_2,t_2),...,(s_R,t_R))$
- Alignment rule #2: sequences $s_1, ..., s_R$ and $t_1, ..., t_R$ are monotonically increasing.
 - $(s_{i+1} s_i) \ge 0$
 - $-(t_{i+1}-t_i)\geq 0$

The alignment cannot go backwards.

Rule 3: Continuity

- Illegal alignment (violating continuity):
 - -(...,(3,5),(6,7),...).
 - $-((s_1,t_1),(s_2,t_2),...,(s_R,t_R))$
- Alignment rule #3: sequences $s_1, ..., s_R$ and $t_1, ..., t_R$ cannot increase by more than one at each step.
 - $(s_{i+1} s_i) \le 1$
 - $-(t_{i+1}-t_i) \leq 1$

The alignment cannot skip elements.

Visualizing a Warping Path

• Warping path is an alternative term for an alignment

Visualizing a Warping Path

$$A = ((1,1),(2,2),(2,3),(3,4),(4,5),(4,6),(5,7),(6,7),(7,8),(8,9))$$

- We can visualize a warping path A in 2D as follows:
- An element of A corresponds to a colored cell in the 2D table.

	y_1	y ₂	y_3	y_4	y ₅	y ₆	y ₇	y 8	y ₉
x_1									
\boldsymbol{x}_2									
\boldsymbol{x}_3									
x_4									
x_5									
\boldsymbol{x}_6									
x_7									
x ₈									

Dynamic Time Warping

- <u>Dynamic Time Warping</u> (DTW) is a distance measure between time series.
- The DTW distance is the cost of the **optimal legal alignment** between the two time series.
- The alignment must be legal: it must obey the three rules of alignments.
 - Boundary conditions.
 - Monotonicity.
 - Continuity.
- The alignment must minimize $C_{X,Y}(A) = \sum_{i=1}^{R} \operatorname{Cost}(\boldsymbol{x}_{a_{i,1}}, \boldsymbol{y}_{a_{i,2}})$
- So:

$$DTW(X,Y) = \min_{A} C_{X,Y}(A)$$

where \boldsymbol{A} ranges over all legal alignments between \boldsymbol{X} and \boldsymbol{Y} .

- $X = (x_1, x_2, ... x_M)$.
 - -X is a time series of length M.
- $Y = (y_1, y_2, ... y_N).$
 - -Y is a time series of length N.
- Each x_i and each y_i are feature vectors.

- $X = (x_1, x_2, ... x_M)$.
- $Y = (y_1, y_2, ... y_N).$
- We want to find the optimal alignment between $m{X}$ and $m{Y}$.
- Dynamic programming strategy:
 - Break problem up into a 2D array of smaller, interrelated problems (i, j), where $1 \le i \le M$, $1 \le j \le N$.
- Problem(*i*, *j*):
 - find optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_i)$.
- We need to solve every problem(i, j) for every i and j.
- Then, the optimal alignment between X and Y is the solution to problem(M,N).

- $X = (x_1, x_2, ... x_M)$.
- $Y = (y_1, y_2, ... y_N).$
- We want to find the optimal alignment between X and Y.
- We break up the problem into a 2D array of smaller, interrelated problems (i, j), where $1 \le i \le M$, $1 \le j \le N$.
- Problem(*i*, *j*):
 - find optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_j)$.
- How do we start computing the optimal alignment?

- $X = (x_1, x_2, ... x_M)$.
- $Y = (y_1, y_2, ... y_N).$
- We want to find the optimal alignment between X and Y.
- We break up the problem into a 2D array of smaller, interrelated problems (i, j), where $1 \le i \le M$, $1 \le j \le N$.
- Problem(*i*, *j*):
 - find optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_j)$.
- Solve problem(1, 1):
 - How is problem(1, 1) defined?

- $X = (x_1, x_2, ... x_M)$.
- $Y = (y_1, y_2, ... y_N).$
- We want to find the optimal alignment between X and Y.
- We break up the problem into a 2D array of smaller, interrelated problems (i, j), where $1 \le i \le M$, $1 \le j \le N$.
- Problem(*i*, *j*):
 - find optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_i)$.
- Solve problem(1, 1):
 - Find optimal alignment between (x_1) and (y_1) .
 - What is the optimal alignment between (x_1) and (y_1) ?

- $X = (x_1, x_2, ... x_M)$.
- $Y = (y_1, y_2, ... y_N).$
- We want to find the optimal alignment between X and Y.
- We break up the problem into a 2D array of smaller, interrelated problems (i, j), where $1 \le i \le M$, $1 \le j \le N$.
- Problem(*i*, *j*):
 - find optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_i)$.
- Solve problem(1, 1):
 - Find optimal alignment between (x_1) and (y_1) .
 - The optimal alignment is the **only legal alignment**: ((1,1)).

Alignment for Problem (1, 1)

$$A = ((1,1))$$

	y_1	y ₂	y_3	y_4	y ₅	y ₆	y ₇	y 8	y ₉
x_1									
\boldsymbol{x}_2									
\boldsymbol{x}_3									
x_4									
x_5									
\boldsymbol{x}_6									
x_7									
x ₈									

- $X = (x_1, x_2, ... x_M)$.
- $Y = (y_1, y_2, ... y_N).$
- We want to find the optimal alignment between X and Y.
- We break up the problem into a 2D array of smaller, interrelated problems (i, j), where $1 \le i \le M$, $1 \le j \le N$.
- Problem(*i*, *j*):
 - find optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_i)$.
- Solve problem(1, j):
 - How is problem(1, j) defined?

- $X = (x_1, x_2, ... x_M)$.
- $Y = (y_1, y_2, ... y_N).$
- We want to find the optimal alignment between X and Y.
- We break up the problem into a 2D array of smaller, interrelated problems (i, j), where $1 \le i \le M$, $1 \le j \le N$.
- Problem(*i*, *j*):
 - find optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_i)$.
- Solve problem(1, j):
 - Find optimal alignment between (x_1) and $(y_1, ... y_j)$.
 - What is the optimal alignment between (x_1) and $(y_1, ..., y_i)$?

- $X = (x_1, x_2, ... x_M)$.
- $Y = (y_1, y_2, ... y_N).$
- We want to find the optimal alignment between X and Y.
- We break up the problem into a 2D array of smaller, interrelated problems (i, j), where $1 \le i \le M$, $1 \le j \le N$.
- Problem(*i*, *j*):
 - find optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_j)$.
- Solve problem(1, j):
 - Find optimal alignment between (x_1) and $(y_1, ... y_j)$.
 - Optimal alignment: ((1, 1), (1, 2), ..., (1, j)).
 - Here, x_1 is matched with each of the first j elements of Y.

Alignment for Problem (1,5)

$$A = ((1,1), (1,2), (1,3), (1,4), (1,5))$$

	y_1	y ₂	y_3	y_4	y ₅	y ₆	y ₇	y 8	y ₉
x_1									
\boldsymbol{x}_2									
\boldsymbol{x}_3									
x_4									
x_5									
\boldsymbol{x}_6									
x_7									
x ₈									

- $X = (x_1, x_2, ... x_M)$.
- $Y = (y_1, y_2, ... y_N).$
- We want to find the optimal alignment between X and Y.
- We break up the problem into a 2D array of smaller, interrelated problems (i, j), where $1 \le i \le M$, $1 \le j \le N$.
- Problem(*i*, *j*):
 - find optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_i)$.
- Solve problem(i, 1):
 - How is problem(i, 1) defined?

- $X = (x_1, x_2, ... x_M)$.
- $Y = (y_1, y_2, ... y_N).$
- We want to find the optimal alignment between X and Y.
- We break up the problem into a 2D array of smaller, interrelated problems (i, j), where $1 \le i \le M$, $1 \le j \le N$.
- Problem(*i*, *j*):
 - find optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_i)$.
- Solve problem(i, 1):
 - Find optimal alignment between $(x_1, ... x_i)$ and (y_1) .
 - What is the optimal alignment between $(x_1, ... x_i)$ and (y_1) ?

- $X = (x_1, x_2, ... x_M)$.
- $Y = (y_1, y_2, ... y_N).$
- We want to find the optimal alignment between X and Y.
- We break up the problem into a 2D array of smaller, interrelated problems (i, j), where $1 \le i \le M$, $1 \le j \le N$.
- Problem(*i*, *j*):
 - find optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_j)$.
- Solve problem(i, 1):
 - Find optimal alignment between $(x_1, ... x_i)$ and (y_1) .
 - Optimal alignment: ((1, 1), (2, 1), ..., (i, 1)).
 - Here, y_1 is matched with each of the first i elements of X.

Alignment for Problem (5, 1)

$$A = ((1,1), (2,1), (3,1), (4,1), (5,1))$$

	y_1	\boldsymbol{y}_2	y ₃	y_4	y ₅	y ₆	y ₇	y 8	y ₉
x_1									
\boldsymbol{x}_2									
\boldsymbol{x}_3									
x_4									
\boldsymbol{x}_5									
\boldsymbol{x}_6									
x_7									
x ₈									

- $Y = (y_1, y_2, ... y_N)$.
- $X = (x_1, x_2, ... x_M)$.
- We want to find the optimal alignment between X and Y.
- We break up the problem into a 2D array of smaller, interrelated problems (i, j), where $1 \le i \le M$, $1 \le j \le N$.
- Problem(*i*, *j*):
 - find optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_i)$.
- Solve problem(i, j):
 - Here is where dynamic programming comes into play.
 - The solution can be obtained from the solutions to problem (i, j 1), problem (i 1, j), problem (i 1, j 1).

- Solving problem(i, j):
- Look at the following three alignments:
 - Let $A_{i,i-1}$ be the solution to problem(i,j-1).
 - Let $A_{i-1,j}$ be the solution to problem(i-1,j).
 - Let $A_{i-1,j-1}$ be the solution to problem(i-1,j-1).
- Let $A^*_{i,j}$ be the alignment among $A_{i,j-1}$, $A_{i,j-1}$, and $A_{i-1,j-1}$ with the smallest cost.
- Then, the solution to problem(i,j) is obtained by appending pair (i,j) to the end of $A^*_{i,j}$.

Computing DTW(X, Y)

• Input:

- $-X = (x_1, x_2, ... x_M).$ -Y = (y₁, y₂, ... y_N).
- Initialization:
 - -C = zeros(M, N). % Zero matrix, of size $M \times N$.
 - $-C(1,1) = Cost(x_1, y_1).$
 - For i = 2 to m: $C(i, 1) = C(i 1, 1) + Cost(x_i, y_1)$.
 - For j = 2 to n: $C(1,j) = C(1,j-1) + Cost(x_1, y_j)$.
- Main loop:
 - For i = 2 to m, for j = 2 to n: $C(i,j) = \min\{C(i-1,j), C(i,j-1), C(i-1,j-1)\} + \text{Cost}(x_i, y_j).$
- Return C(M, N).

Cost vs. Alignment

- Note: there are two related but different concepts here: optimal alignment and optimal cost.
 - We may want to find the optimal <u>alignment</u> between two time series, to visualize how elements of those two time series correspond to each other.
 - We may want to compute the DTW distance between two time series X and Y, which means finding the <u>cost</u> of the optimal alignment between X and Y. We can use such DTW distances, for example, for nearest neighbor classification.
- The pseudocode in the previous slide computes the cost of the optimal alignment, without explicitly outputing the optimal alignment itself.

Cost vs. Alignment

- If you want to compute both the cost of the optimal alignment, and the optimal alignment itself, there are two ways you can modify the pseudocode to do that:
- Option 1: Maintain an **alignment array** W of size $M \times N$.
 - Every time we save a cost at C(i,j), we should save the corresponding optimal alignment at W(i,j).
 - This alignment is obtained by adding pair (i, j) to the **end** of the optimal alignment stored at one of W(i-1, j), W(i, j-1), W(i-1, j-1).
- Option 2: Maintain a **backtrack array** B of size $M \times N$.
 - Every time we save a cost to C(i,j), we should record at B(i,j) the choice, among (i-1,j), (i,j-1), (i-1,j-1), that we made.
 - When we are done computing C(M, N), we use array B to **backtrack** and recover the optimal alignment between X and Y.

DTW Complexity

	y_1	\boldsymbol{y}_2	y ₃	y_4	y ₅	y ₆	y_7	y 8	y ₉
x_1									
\boldsymbol{x}_2									
\boldsymbol{x}_3									
x_4				K	1				
x ₅				\	?				
x ₆									
x_7									
x ₈									

- For each (*i*, *j*):
 - Compute optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_j)$.
 - The solution is computed based on the solutions for (i-1,j), (i,j-1), (i-1,j-1).
 - Time complexity?

DTW Complexity

	y_1	\boldsymbol{y}_2	\boldsymbol{y}_3	y_4	y_5	y ₆	y_7	y ₈	y_9
x_1									
\boldsymbol{x}_2									
\boldsymbol{x}_3									
x_4				K	^				
x ₅				\downarrow	?				
x ₆									
\boldsymbol{x}_7									
x ₈									

- For each (*i*, *j*):
 - Compute optimal alignment between $(x_1, ..., x_i)$ and $(y_1, ... y_j)$.
 - The solution is computed based on the solutions for (i-1,j), (i,j-1), (i-1,j-1).
 - Time complexity? Linear to the size of the C array $(M \times N)$.

DTW Complexity

	y_1	\boldsymbol{y}_2	\boldsymbol{y}_3	y_4	y ₅	y ₆	y ₇	y ₈	y ₉
x_1									
\boldsymbol{x}_2									
\boldsymbol{x}_3									
x_4				K	^				
x_5				\downarrow					
x_6									
x_7									
x ₈									

- Assume that both time series have approximately the same length M.
- Then, the time complexity of DTW is $O(M^2)$.
 - Improvements and variations have been proposed, with lower time complexity.

• Proof:

- Proof: by induction.
- Base cases:

- Proof: by induction.
- Base cases:
 - i = 1 OR j = 1.

- Proof: by induction.
- Base cases:
 - -i = 1 OR i = 1.
- Proof of claim for base cases:
 - For any problem(1, j) and problem(i, 1), only one legal warping path exists.
 - Unless we consider warping paths with repetitions, like ((1,1),(1,1),(1,2)), which are legal, but can never have lower cost than their non-repeating versions, like ((1,1),(1,2)).
 - Therefore, DTW finds the optimal path for problem (1, j) and problem (i, 1).
 - It is optimal since it is the *only one*.

- Proof: by induction.
- General case:
 - -(i, j), for $i \ge 2, j \ge 2$.
- Inductive hypothesis:

- Proof: by induction.
- General case:
 - -(i, j), for $i \ge 2, j \ge 2$.
- Inductive hypothesis:
 - What we want to prove for (i, j) is true for (i-1, j), (i, j-1), (i-1, j-1):

- Proof: by induction.
- General case:
 - -(i,j), for $i \ge 2, j \ge 2$.
- Inductive hypothesis:
 - What we want to prove for (i, j) is true for (i-1, j), (i, j-1), (i-1, j-1):
 - DTW has computed optimal solutions for problems (i-1,j), (i,j-1), (i-1,j-1).

- Proof: by induction.
- General case:
 - -(i, j), for $i \ge 2, j \ge 2$.
- Inductive hypothesis:
 - What we want to prove for (i, j) is true for (i-1, j), (i, j-1), (i-1, j-1):
 - DTW has computed optimal solutions for problems (i-1,j), (i,j-1), (i-1,j-1).
- Proof by contradiction:

- Proof: by induction.
- General case:
 - -(i, j), for $i \ge 2, j \ge 2$.
- Inductive hypothesis:
 - What we want to prove for (i, j) is true for (i-1, j), (i, j-1), (i-1, j-1):
 - DTW has computed optimal solutions for problems (i-1,j), (i,j-1), (i-1,j-1).
- Proof by contradiction:
 - Summary: if solution for (i, j) is not optimal, then one of the solutions for (i 1, j), (i, j 1), or (i 1, j 1) was not optimal, which violates the inductive hypothesis.

- Let $A_{i,j}$ be the DTW solution to problem(i,j).
 - We want to prove that $A_{i,j}$ is optimal, using the inductive hypothesis.
- Let $A^*_{i,j}$ be the alignment among $A_{i,j-1}$, $A_{i,j-1}$, and $A_{i-1,j-1}$ with the smallest cost.
- Then, $A_{i,j} = A^*_{i,j} \oplus (i,j)$.
 - $-\mathbf{Q} \oplus r$ is the result of appending item r to the end of list \mathbf{Q} .
- Let $B_{i,j}$ be the <u>optimal</u> solution to problem(i,j).
- $B_{i,j} = B^*_{i,j} \oplus (i,j)$ for some B^* .
- Assume contradiction $(B_{i,j} \neq A_{i,j})$.

DTW solution for problem(i, j):

$$A_{i,j} = ((a_{1,1}, a_{1,2}), (a_{2,1}, a_{2,2}), ..., (a_{R,1}, a_{R,2}))$$

Optimal solution for problem(i, j):

$$\boldsymbol{B}_{i,j} = ((b_{1,1}, b_{1,2}), (b_{2,1}, b_{2,2}), \dots, (b_{S,1}, b_{S,2}))$$

• Assume contradiction: $A_{i,j}$ is not optimal. Then,

$$C_{X,Y}(\boldsymbol{A}_{i,j}) > C_{X,Y}(\boldsymbol{B}_{i,j})$$

- Why?
 - Because $\boldsymbol{B}_{i,j}$ is optimal and $\boldsymbol{A}_{i,j}$ is not optimal.

•
$$A_{i,j} = ((a_{1,1}, a_{1,2}), (a_{2,1}, a_{2,2}), ..., (a_{R,1}, a_{R,2}))$$

•
$$\mathbf{B}_{i,j} = ((b_{1,1}, b_{1,2}), (b_{2,1}, b_{2,2}), \dots, (b_{S,1}, b_{S,2}))$$

$$C_{X,Y}(A_{i,j}) > C_{X,Y}(B_{i,j}) \Rightarrow$$

$$\sum_{i=1}^{R} \text{Cost}(\mathbf{x}_{a_{i,1}}, \mathbf{y}_{a_{i,2}}) > \sum_{i=1}^{S} \text{Cost}(\mathbf{x}_{b_{i,1}}, \mathbf{y}_{b_{i,2}})$$

- Why?
 - We are just using the definition of the cost of an alignment.

- $A_{i,j} = ((a_{1,1}, a_{1,2}), (a_{2,1}, a_{2,2}), ..., (a_{R,1}, a_{R,2}))$
- $\mathbf{B}_{i,j} = ((b_{1,1}, b_{1,2}), (b_{2,1}, b_{2,2}), \dots, (b_{S,1}, b_{S,2}))$

$$\sum_{i=1}^{R} \text{Cost}(x_{a_{i,1}}, y_{a_{i,2}}) > \sum_{i=1}^{S} \text{Cost}(x_{b_{i,1}}, y_{b_{i,2}}) \Rightarrow$$

$$\sum_{i=1}^{R-1} \text{Cost}(\mathbf{x}_{a_{i,1}}, \mathbf{y}_{a_{i,2}}) > \sum_{i=1}^{S-1} \text{Cost}(\mathbf{x}_{b_{i,1}}, \mathbf{y}_{b_{i,2}})$$

- Why? The last element of both $A_{i,j}$ and $B_{i,j}$ is (i,j).
 - Both $A_{i,j}$ and $B_{i,j}$ align $(x_1,...,x_i)$ with $(y_1,...y_j)$.

•
$$A_{i,j} = ((a_{1,1}, a_{1,2}), (a_{2,1}, a_{2,2}), ..., (a_{R,1}, a_{R,2}))$$

•
$$\mathbf{B}_{i,j} = ((b_{1,1}, b_{1,2}), (b_{2,1}, b_{2,2}), \dots, (b_{S,1}, b_{S,2}))$$

$$\sum_{i=1}^{R-1} \text{Cost}(\mathbf{x}_{a_{i,1}}, \mathbf{y}_{a_{i,2}}) > \sum_{i=1}^{S-1} \text{Cost}(\mathbf{x}_{b_{i,1}}, \mathbf{y}_{b_{i,2}}) \Rightarrow$$

$$C_{X,Y}(A^*_{i,j}) > C_{X,Y}(B^*_{i,j})$$

- Why? We are just using the definitions of $A^*_{i,j}$ and $B^*_{i,j}$.
 - $-A_{i,j}=A^*_{i,j}\oplus(i,j).$
 - $-\mathbf{B}_{i,j}=\mathbf{B}^*_{i,j}\oplus(i,j)$

- $A_{i,j} = ((a_{1,1}, a_{1,2}), (a_{2,1}, a_{2,2}), ..., (a_{R,1}, a_{R,2}))$
- $\mathbf{B}_{i,j} = ((b_{1,1}, b_{1,2}), (b_{2,1}, b_{2,2}), \dots, (b_{S,1}, b_{S,2}))$

$$C_{X,Y}(A^*_{i,j}) > C_{X,Y}(B^*_{i,j}) \Rightarrow$$

$$\min(C_{X,Y}(A_{i,j-1}), C_{X,Y}(A_{i-1,j}), C_{X,Y}(A_{i-1,j-1})) > C_{X,Y}(B^*_{i,j})$$

• Why? We are just using the definitions of $A^*_{i,j}$ and $B^*_{i,j}$.

$$-A^*_{i,j} = \operatorname{argmin}(C_{X,Y}(A_{i,j-1}), C_{X,Y}(A_{i-1,j}), C_{X,Y}(A_{i-1,j-1}))$$

$$\min(C_{X,Y}(A_{i,j-1}),C_{X,Y}(A_{i-1,j}),C_{X,Y}(A_{i-1,j-1})) > C_{X,Y}(B^*_{i,j})$$

Contradiction!!!

- The inductive hypothesis was that alignments $A_{i,j-1}$, $A_{i-1,j}$, $A_{i-1,j-1}$ were the optimal alignments for problems (i-1,j), (i,j-1), (i-1,j-1).
- However, ${\pmb B}^*{}_{i,j}$ is also an alignment for one of the three problems.
 - Otherwise, $B_{i,j}$ would break one of the three rules of legal alignments.
- Plus, $B^*_{i,j}$ has a lower cost than each of $A_{i,j-1}$, $A_{i-1,j}$, $A_{i-1,j-1}$, so one of those three alignments is not optimal..
- This contradicts the inductive hypothesis.

Visualizing $\mathbf{B}^*_{i,j}$ for i=4, j=5

	y_1	y ₂	y_3	y_4	y ₅	y ₆	y ₇	y 8	y ₉
<i>x</i> ₁									
x ₂									
x ₃				K	1				
x ₄				\	Ś				
x ₅									
x ₆									
<i>x</i> ₇									
x ₈									

- $\boldsymbol{B}_{i,j}$ aligns $(\boldsymbol{x}_1,...,\boldsymbol{x}_i)$ with $(\boldsymbol{y}_1,...\boldsymbol{y}_j)$.
- $B^*_{i,j}$ is the result of removing the last element from $B_{i,j}$.
- Based on the rules of continuity and monotonicity, the last element of $\mathbf{B}^*_{i,j}$ must be (i-1,j),(i,j-1), or (i-1,j-1).

DTW Optimality Proof - Recap

- Proof: by induction.
- The base cases are easy to prove.
- The tricky part is to prove the inductive case.
 - I.e., prove that $A_{i,i}$, which is the DTW solution problem (i, j), is indeed the optimal alignment for that problem.
- We prove the inductive case by contradiction:
 - Inductive hypothesis: alignments $A_{i,i-1}$, $A_{i-1,i}$, $A_{i-1,i-1}$ were the optimal alignments for problems (i-1,j), (i,j-1), (i-1,j-1).
 - If $A_{i,j}$ is not optimal, then we prove that one of alignments $A_{i,i-1}$, $A_{i-1,i}$, $A_{i-1,i-1}$ must not be optimal, which contradicts the inductive hypothesis.

Dynamic Time Warping, Recap

- It is oftentimes useful to use nearest neighbor classification to classify time series.
 - Especially when we have very few training examples per class, or, in the extreme, only one training example per class.
- However, to use nearest neighbor classification, we need to define a meaningful distance measure between time series.
- The Euclidean distance works poorly because even slight misalignments can lead to large distance values.
- Dynamic Time Warping is based on computing an optimal alignment between two time series, and thus it can tolerate even large misalignments.
- The complexity of Dynamic Time Warping is quadratic to the length of the time series, but more efficient variants can also be used.

Other Distance Measures

- There are more distance measures that can be used on time series data. For example:
 - Edit Distance with Real Penalty (ERP).

Lei Chen and Raymond Ng. "On the marriage of lp-norms and edit distance." In *International Conference on Very Large Data Bases (VLDB)*, pp. 792-803, 2004.

Time Warp Edit Distance (TWED).

Pierre-François Marteau. "Time warp edit distance with stiffness adjustment for time series matching." *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, 31, no. 2 (2009): 306-318.

Move-Split-Merge (MSM).

Alexandra Stefan, Vassilis Athitsos, and Gautam Das. "The move-split-merge metric for time series." *IEEE Transactions on Knowledge and Data Engineering (TKDE)*, 25, no. 6 (2013): 1425-1438.