1.4: The Limit of a Function

Date: _____

The notation $\lim_{x \to a} f(x) = L$ means that

the value of f(x) can be made $\frac{arbitracily}{arbitracily}$ close to L

by choosing x Sufficiently close to a (but not equal to a)

However, $\lim_{x \to a} f(x)$ exists if and only if

the limiting value from the _____equals the limiting value from the _____ight

Note: The above is an intuitive explanation of the limit of a function. A rigorous definition is important for more advanced work, but is not necessary for our purposes.

Just for fun, here is the rigorous definition of a limit:

$$\lim_{x \to a} f(x) = L \text{ means that}$$

for each real $\xi > 0$, there exists a real $\delta > 0$ such that

for all x with $0 \le |x - \alpha| \le \delta$ we have $|f(x) - L| \le \xi$.

Symbolically we write:

 $\forall \chi \in O(|\chi-a|L_0) |f(\chi)-L| < \varepsilon$

Ex1. Consider the function $f(x) = \sqrt{25 - x^2}$.

x -5 -4 -3 0 3 4 5 y 0 3 4 5 4 3 0

Determine each limit by graphing

- a. $\lim_{x \to 3} f(x) = \frac{4}{3}$
- b. $\lim_{x \to 5^-} f(x) = \bigcirc$
- c. $\lim_{x\to 5} f(x)$ DNE b/c $\lim_{x\to 5^{-}} F(x)$ DNE.

Ex2. Determine $\lim_{x \to 2} \frac{x-2}{x^2-4}$ by using a table.

x approaches 2 from the					x approaches 2 from the right			
х	1.9	1.99	1.999	2	2.001	2.01	2.1	
x - 2 x - 4	0.256	0.251	0.250	undefined	0.250	0.249	0.244	
	$\frac{x-2}{x^2-4}$	from above		$\frac{x-2}{x^2-4}$ approaches $\frac{1}{\cancel{\psi}}$		from below		

Since
$$\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} f(x) = \frac{1}{y}$$

Ex3. Sketch the graph of the piecewise function
$$f(x) = \begin{cases} (x-4)^2 + 2, & x < 4 \\ -4, & x = 4 \end{cases}$$
 and determine
$$\lim_{x \to 4} f(x).$$

$$\lim_{x \to y^-} f(x) = (y-y)^2 + \lambda$$

$$x \to y^- = \lambda$$

Thus,
$$\lim_{x \to 4} f(x) = \lambda$$

Even though $f(4) = NOT \lambda$

Ex4. Answer true or false.

a.
$$\lim_{x \to a} f(x)$$
 may exist even if $f(a) \neq \lim_{x \to a} f(x)$ and even if $f(a)$ does not exist.

b. If
$$\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$$
, then $\lim_{x \to a} f(x) = L$

c. If
$$\lim_{x \to a} f(x) = L$$
, then $f(a) = L$.

d. If
$$\lim_{x \to a} f(x) = f(a)$$
, then the graph of $y = f(x)$ "flows" through the point $(a, f(a))$.

Ex5. Calculate each limit and include a quick sketch of the corresponding function to support your answer.

a.
$$\lim_{x \to 2^+} (x-3) = \lambda - 3$$

b.
$$\lim_{x \to 1^+} \frac{-2}{x^2 - 9} = \frac{-2}{1 - 9}$$

c. $\lim_{x \to 5} \frac{1}{(x-5)^{2}} \quad \text{DNE}$

Homefun: Page 37 # 1, 3→12, 14, 15
Mid-Chapter Reviewfun: Page 32 # 1d, 2e, 3e, 4d, 5(**ag**wai-2-1), 6c, 7, 8, 9b, 10, 11b, 12

$$\begin{aligned}
\frac{1}{125} & = \frac{1}{125} & = \frac{1}{125} \\
\frac{1}{125} & = \frac{1}{125} & = \frac{1}{125} & = \frac{1}{125} \\
\frac{1}{125} & = \frac{1}{125} & = \frac{1}{125} & = \frac{1}{125} & = \frac{1}{125} \\
\frac{1}{125} & = \frac{1}{125}$$

QIS a)
$$f(x) = -x^2 + 2x + 3$$
, $(-2, x)$
 $M = \lim_{x \to -2} \frac{f(x) - f(-2)}{x - (-2)}$
 $= \lim_{x \to -2} \frac{-x^2 + 2x + 3}{x + 2}$
 $= \lim_{x \to 2} \frac{-(x^2 - 2x - 8)}{(x + 2)}$
 $= \lim_{x \to 2} \frac{-(x - 4)(x + 2)}{(x + 2)}$