$X = \{R \text{-alg. Maps } h : \longrightarrow M_2(R)\}$, $G = GL_{2,Q}$. Can identify X as G(R)-conj. class $X \subseteq Homl C^{\times}$, G(R). We saw last time that, given $k \leq GL_2(M_{\odot})$ compact open, [If we instead had $GL_2(A_f)$ how would we even know there is an action as desired?!] G(Q) \ X x G(Ag) / K ~ {isom. classes of elliptic curves E/C w/ k-orbit [n] = k·n = Ison (fE, 22) }.

Digression on Level Stanture

E elliptic curve / field F, NEZ+ coprime to charlf). Recall that a level N structure is EIN] = (Z/N)2. Same as $E[NJ(F) \cong (Z/N)^2$ (by copoint condition). Same as $Gal(F^{sep}/F)$ -inv. isom. $E[NJ(F^{sep})]$ $\cong (\mathbb{Z}/N)^2$ (most have trivial action!). Assume now char(F) = 0 (so no fungary business of adelic Take . Isom. E[N](F39) ≥ (Z/N) chas k(N) := kec (Gl2(2) -> Gl2(Z/N)) - or bit of The Galois invariance condition says correspond k(N)-orbit TE'= 22 E[N](FSP) =(Z/N)2 is Gal(FSP/F)-stable.

SESch of geom. pt. s. We get Tiet (S,s). This generalizes the abs. Gatois gcp. (to geom. setting).

Suppose E-> 5 elliptic curve by 5 con. Let p prime by pe 05 (so inv. in the borse).

- (1) $s \in S$ geom, pt. ~ monodition of $\pi(s,s)$ on TpE_s (p-adic Tate module cel. to s).
- (2) s'ES another geom. pt. ~, distinguished set of isoms. in Isom (TpEs, TpEs,) which is single orbit for induced actions of both $\pi_i^{\text{ef}}(S,s')$ and $\pi_i^{\text{ef}}(S,s')$.

Def: $K \leq GL_2(2)$ compact open, $E \rightarrow S$ elliptic evere / cons. Q-schene, $s \rightarrow S$ geom. pt. Level-K-structure on E is K-orbit in Ison (TEs, 2) that is stable under Tiet (5,5) - action.

Remark: In this setting, giving the bata at geom. pt. uniquely gives bata at every goom. pt. So, choice of goom. pt. does not matter.

Thm: $k \leq GL_2(2)$ suff. small compact open (e.g. $k \in K(N) \cup N \geq 3$). The functor

Yk: Sch a -> Set, S -> { ison. classes of elliptic curver E-> S M K-level-structure gis rep. by smooth quasi-proj. Q-schene M $Y_{K}(\mathbb{C}) \cong Gl_{2}(\mathbb{Q}) \setminus X \times Gl_{2}(\mathbb{A}_{\mathbf{F}})/k$.

If: Choose N?3 s.t. $k(N) \le k$. Level - k(N) -storehore is some as level - N-storehore. So, $Y_k(N) = Y(N)$ is representable by earlier work. GL_2($\mathbb{Z}(N)$) acts on Y(N) (by changing level storehores), hence $k/k(N) \le GL_2(\mathbb{Z}(N))$ acts as well. Check that quotient of $Y_k(N)$ by k/k(N) represents Y_k . Detation: E elliptic curve / alg. closed field of chase. O has $\hat{V} = \hat{T} = \hat{T} \otimes \hat{Q}$.

 $k \leq Gl_2(A_f)$ compact given $\longrightarrow k$ -level-structure on E is k-orbit in $Lso_Q(\hat{V}E, \hat{Q}^2)$. Extend to $E \rightarrow S$ as before ("snear at the fibers").

Thm: Yk defined as before is representable as before. [Isomorphism gives new to isogeny...]

Pacadox: We have two! modeli interpretations for $K \subseteq GL_2(\hat{\mathbb{Z}})$ compact open. We are classifying both isom. classes and isogeny classes. What's going on ?! [blutial student topic for the end of the senester.]