Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

> Лабораторная работа №5 Асинхронный обмен данными с ВУ Вариант 3202

> > Группа: Р3132

Выполнил: Овчаренко Александр Андреевич

Проверил: Саржевский Иван Анатольевич

г. Санкт-Петербург

2022 г.

Оглавление

Задание	3
Выполнение работы	4
1	
Итог	8

Задание

По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

- 1. Программа осуществляет асинхронный ввод данных с ВУ-2
- 2. Программа начинается с адреса 0CE16. Размещаемая строка находится по адресу 64916.
- 3. Строка должна быть представлена в кодировке КОИ-8.
- 4. Формат представления строки в памяти: АДР1: СИМВ1 СИМВ2 АДР2: СИМВ3 СИМВ4 ... СТОП СИМВ.
- 5. Ввод или вывод строки должен быть завершен по символу с кодом 0A (NL). Стоп символ является обычным символом строки и подчиняется тем же правилам расположения в памяти что и другие символы строки.

Выполнение работы

Текст исходной программы

Адрес	Команда	Мнемоника	Комментарий					
0CE	0649	ADDR	Адрес ячейки, в которую запишется					
			следующие два символа					
0CF	0A00	NL	Стоп-символ					
0D0	?	W1	Вспомогательная переменная для					
			сохранения первого из двух символов					
0D1	0200	CLA	Очистка аккумулятора					
0D2	1205	IN 5	Проверка готовности ВУ-2					
0D3	2F40	AND #0x40						
0D4	F0FD	BEQ 0D2						
0D5	1204	IN 4	Чтение данных					
0D6	0680	SWAB	Обмен старшим и младшим байтами					
0D7	7EF7	CMP NL	Проверка, является ли этот символ					
			стоп-символом					
0D8	F00B	BEQ E4						
0D9	EEF6	ST W1	Сохранение во вспомогательной					
			переменной					
0DA	1205	IN 5	Проверка готовности ВУ-2					
0DB	2F40	AND #0x40						
0DC	F0FD	BEQ ODA						
0DD	1204	IN 4	Чтение данных					
0DE	7F0A	CMP #0x0A	Проверка, является ли этот символ					
			стоп-символом					
0DF	F003	BEQ 0E3						
0E0	4EEF	ADD W1	Объединение первого и второго					
			символа					
0E1	EAEC	ST (ADDR)+	Сохранение					
0E2	CEEF	JUMP 0D2	Переход на начало цикла считывания					
0E3	4EEC	ADD W1	Объединение первого и второго					
			символа					
0E4	EAE9	ST (ADDR)+	Сохранение					
0E5	0100	HLT	Конец программы					

ORG 0x0CE

ADDR: WORD 0x649

NL: WORD 0x0A00

W1: WORD?

START: CLA

S1: IN 5

```
AND #0x40
           BEQ S1
           IN 4
           SWAB
           CMP NL
           BEQ S4
           ST W1
S2:
     IN 5
           AND #0x40
           BEQ S2
           IN 4
           CMP #0x0A
           BEQ S3
           ADD W1
           ST (ADDR)+
           JUMP S1
S3:
     ADD W1
S4:
     ST (ADDR)+
           HLT
```

Описание программы

Приведенная программа осуществляет посимвольный ввод данных с ВУ-2. Символы хранятся в памяти в компактном виде. Выполнение программы завершается по вводу символа с кодом 0x0A

Расположение в памяти БЭВМ программы и исходных данных:

Ячейка 0x0CE – адрес записи следующих двух символов Ячейка 0x0CF – запись стоп-символа в старшем байте Ячейка 0x0D0 – в данной ячейки храниться первый из двух символов. Нужна для осуществления компактного хранения символов в памяти

Ячейки 0x0D1 - 0x0E5 - код программы

Ячейки 0х649 - ... - хранение вводимых данных

Область представления:

Ячейка 0x0CE – 11-разрядное беззнаковое число

Ячейка 0x0D0 – символ в кодировке КОИ-8

Ячейки 0х649 - ... - пары символов в кодировке КОИ-8

Область допустимых значений:

Ограничение на количество введенных символов: quantity_{max} = (0x7FF - 0x649 + 1 + 0x0CE) * 2 - 1, где 0x7FF - кол-во ячеек памяти БЭВМ, 0x649 - адрес первой ячейки для записи. Максимальное количество введенных символов вдове больше количества доступных ячеек памяти, но последним символом должен быть стоп символ.

 $0 \le \text{quantity} \le 1289$

Трассировка

Полученные символы: ю, т

Символы в кодировке UTF-8: 0х44Е, 0х442

Символы в кодировке UTF-16: 0x044E, 0x0442

Символы в кодировке КОІ-8: 0хС0, 0хD4

Адр	Знач	IP	CR	AR	DR	BR	AC	PS	NZVC	Адр	Знач
орт 0D1	0200	0D2	0200	0D1	0200	00D1	0000	004	0100	ДДР	31144
0D1 0D2	1205	0D2 0D3	1205	0D1 0D2	1205	00D1	0040	004	0100		
0D2 0D3	2F40	0D3 0D4	2F40	0D2 0D3	0040	0040	0040	000	0000		
0D4	F0FD	0D5	F0FD	0D4	FOFD	00D4	0040	000	0000		
0D5	1204	0D6	1204	0D5	1204	00D5	00C0	000	0000		
0D6	0680	0D7	680	0D6	0680	00D6	C000	800	1000		
0D7	7EF7	0D8	7EF7	0CF	0A00	FFF7	C000	009	1001		
0D8	F00B	0D9	F00B	0D8	F00B	00D8	C000	009	1001		
0D9	EEF6	0DA	EEF6	0D0	C000	FFF6	C000	009	1001	0D0	C000
0DA	1205	0DB	1205	0DA	1205	00DA	0040	005	0101		
0DB	2F40	0DC	2F40	0DB	0040	0040	0040	001	0001		
0DC	F0FD	0DD	F0FD	0DC	F0FD	00DC	0040	001	0001		
0DD	1204	0DE	1204	0DD	1204	00DD	00D4	001	0001		
0DE	7F0A	0DF	7F0A	0DE	000A	000A	00D4	001	0001		
0DF	F003	0E0	F003	0DF	F003	00DF	00D4	001	0001		
0E0	4EEF	0E1	4EEF	0D0	C000	FFEF	COD4	800	1000		
0E1	EAEC	0E2	EAEC	649	COD4	FFEC	C0D4	800	1000	0CE	064A
0E2	CEEF	0D2	CEEF	0E2	00D2	FFEF	COD4	800	1000		
0D2	1205	0D3	1205	0D2	1205	00D2	C040	800	1000		
0D3	2F40	0D4	2F40	0D3	0040	0040	0040	000	0000		
0D4	F0FD	0D5	F0FD	0D4	F0FD	00D4	0040	000	0000		
0D5	1204	0D6	1204	0D5	1204	00D5	000A	000	0000		
0D6	0680	0D7	0680	0D6	6080	00D6	0A00	000	0000		
0D7	7EF7	0D8	7EF7	0CF	0A00	FFF7	0A00	005	0101		
0D8	F00B	0E4	F00B	0D8	F00B	000B	0A00	005	0101		
0E4	EAE9	0E5	EAE9	64A	0A00	FFE9	0A00	005	0101	0CE	064B
0E5	0100	0E6	0100	0E5	0100	00E5	0A00	005	0101		

В ячейке 0х649: 0хС0D4, 0х64А: 0х0А00

Итог

В результате выполнения лабораторной работы были изучены способ асинхронного обмена БЭВМ и ВУ. Я познакомился с организацией ввода-вывода в БЭВМ, командами ввода-вывода.