# Szimuláció 2: Ising model

Nagy Péter M07ILF

## Tartalomjegyzék

|    | A mérés hibája     | Q |
|----|--------------------|---|
|    | 1.1. Mágnesezetség | 3 |
| 1. | Mérések            | 3 |

#### 1. Mérések

A mérés során a mellékelt forráskód segítségével 4 különbőző paraméter esetében vizsgáltam a sztohasztikus rendszer viselkedését. A szimulált rendszer egy-dimenziós Ising modellre vonatkozott, ahol az N darab rácspontban ±1 értékű spinek találhatók. A spinek energiáját a következő képlet adja meg:

$$E(s_1, s_2, ....s_N) = -J \sum_{i=1}^{N-1} s_i s_{i+1}$$
(1)

A szimuláció paraméterei:

• lépések száma: 10000

#### 1.1. Mágnesezetség

A szimuláciokat elég ideig futatve feltételezhetjük, hogy egyensúlyhoz relakszált a rendszer, így mérhetjük a mágnesezetséget. A fekete oszlopok a kezdeti eloszlást, a piros oszlopok a forgatás utáni eloszlását mutatják a spineknek. Azt figyelhetjük meg, hogy ahogyan növeljük  $\beta$  értékét úgy egyre inkább egyenletesen fognak eloszlani a spinek. Ezt azzal lehet magyarázni, hogy az algoritmusban a magas energiájú pontok, ahol több spin azonos irányba néz, inkább tudnak átfordulni és a megadott paraméternek a növelésével kisebb valószinüséget engedünk a spontán átfogásnak mivel az exponens tag értéke csökken és ezzel álítjuk a küszöböt.

$$m = \frac{1}{N} \sum_{i}^{N} s_i \tag{2}$$

$$\langle m \rangle = \langle s_i \rangle \qquad \langle m^2 \rangle = \langle s_i^2 \rangle \tag{3}$$

## beta=0.05



1. ábra. Az elfoglalt helyzetek eloszlása

$$< m >= 0.02$$
 (4)  
 $< m^2 >= 1$  (5)

$$\langle m^2 \rangle = 1 \tag{5}$$





2. ábra. Az elfoglalt helyzetek eloszlása

$$\langle m \rangle = -0.02$$
 (6)

$$\langle m^2 \rangle = 1 \tag{7}$$

### beta=0.22



3. ábra. Az elfoglalt helyzetek eloszlása

$$< m >= 0.02$$
 (8)  
 $< m^2 >= 1$  (9)

$$\langle m^2 \rangle = 1 \tag{9}$$

### beta=0.8



4. ábra. Az elfoglalt helyzetek eloszlása

$$< m >= 0$$
 (10)  
 $< m^2 >= 1$  (11)

$$\langle m^2 \rangle = 1 \tag{11}$$

#### 2. A mérés hibája

A szimuláció statisztikus hibáját egy esetben vizsgáltam ( $\beta=0.05)$  majd ezt az értéket általánosnak tekintettem.

A megismételt mérésekre kapott < m >:

- 0.02
- $\bullet$  -0.02
- 0
- -0.02
- -0.02
- 0

A kapott hiba:  $\pm 0.00857$