himanshu-lodha-eda

February 2, 2025

1 Task 1: Exploratory Data Analysis (EDA) and Business Insights

- 1.0.1 1. Perform EDA on the provided dataset.
- 1.0.2 2. Derive at least 5 business insights from the EDA.

Write these insights in short point-wise sentences (maximum 100 words per insight).

```
[2]: import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns

[3]: # Load the datasets
  customers = pd.read_csv('Customers.csv')
  products = pd.read_csv('Products.csv')
  transactions = pd.read_csv('Transactions.csv')
```

```
[4]: # Merge datasets for comprehensive analysis

df = pd.merge(transactions, customers, on='CustomerID')

df = pd.merge(df, products, on='ProductID')
```

```
[5]: # Basic EDA
print(df.info())
print(df.describe())
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000 entries, 0 to 999
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	TransactionID	1000 non-null	object
1	CustomerID	1000 non-null	object
2	ProductID	1000 non-null	object
3	${\tt TransactionDate}$	1000 non-null	object
4	Quantity	1000 non-null	int64
5	TotalValue	1000 non-null	float64
6	Price_x	1000 non-null	float64
7	CustomerName	1000 non-null	object
8	Region	1000 non-null	object
9	SignupDate	1000 non-null	object

```
10ProductName1000 non-nullobject11Category1000 non-nullobject12Price_y1000 non-nullfloat64
```

dtypes: float64(3), int64(1), object(9)

memory usage: 109.4+ KB

None

	Quantity	TotalValue	Price x	Price_y
count	1000.000000	1000.000000	1000.00000	1000.00000
mean	2.537000	689.995560	272.55407	272.55407
std	1.117981	493.144478	140.73639	140.73639
min	1.000000	16.080000	16.08000	16.08000
25%	2.000000	295.295000	147.95000	147.95000
50%	3.000000	588.880000	299.93000	299.93000
75%	4.000000	1011.660000	404.40000	404.40000
max	4.000000	1991.040000	497.76000	497.76000

2 Business Insights

```
[6]: # Insight 1: Most popular product categories
plt.figure(figsize=(10, 6))
sns.countplot(y='Category', data=df, order=df['Category'].value_counts().index)
plt.title('Most Popular Product Categories')
plt.show()
```


[7]: <AxesSubplot:title={'center':'Total Sales by Region'}, xlabel='Region'>


```
[8]: # Insight 3: Customer signups over time

customers['SignupDate'] = pd.to_datetime(customers['SignupDate'])

customers.set_index('SignupDate', inplace=True)

customers.resample('M').size().plot(figsize=(10, 6), title='Customer Signups

→Over Time')
```

[8]: <AxesSubplot:title={'center':'Customer Signups Over Time'}, xlabel='SignupDate'>


```
[9]: # Insight 4: Average transaction value by product category

avg_transaction_value = df.groupby('Category')['TotalValue'].mean().

sort_values(ascending=False)

avg_transaction_value.plot(kind='bar', figsize=(10, 6), title='Average

Transaction Value by Product Category')
```

[9]: <AxesSubplot:title={'center':'Average Transaction Value by Product Category'},
 xlabel='Category'>


```
[10]: # Insight 5: Customer lifetime value (CLV) by region

clv = df.groupby('CustomerID')['TotalValue'].sum().reset_index()

clv = pd.merge(clv, customers.reset_index()[['CustomerID', 'Region']],

on='CustomerID')

clv.groupby('Region')['TotalValue'].mean().sort_values(ascending=False).

oplot(kind='bar', figsize=(10, 6), title='Customer Lifetime Value by Region')
```


[]: