0.1 Problem Types

\mathbf{LP}

standard, inequality, general forms

$$\min_{x} c^{T} x \ s.t. :$$

$$Ax = b$$

$$x \succeq 0$$

$$\min_{x} c^{T} x \ s.t. :$$
$$Ax \leq b$$

$$\min_{x} c^{T} x + d \ s.t. :$$

$$Gx \le h$$

$$Ax = b$$

 \mathbf{QP}

$$\min_{x} \frac{1}{2} x^{T} P x + q^{T} x + r \ s.t. :$$

$$Gx \le h$$

$$Ax = b$$

QCQP

$$\min_{x} \frac{1}{2} x^{T} P_{0} x + q_{0}^{T} x + r_{0}, s.t. :$$

$$\frac{1}{2} x^{T} P_{i} x + q_{i}^{T} x + r_{i} \leq 0, \forall i$$

$$Ax = b$$

SOCP

$$A_{i}x + b_{i2} \le c_{i}^{T}x + d_{i}, \forall i$$

$$Fx = g$$

$$(\forall i)b_{i} = 0 \implies LP$$

$$(\forall i)c_{i} = 0 \implies QCQP$$

 $\min_{x} f^T x \ s.t.$:

GP

$$\begin{aligned} \min_{x} f_0(x) \ s.t.: \\ f_i(x) &\leq 1, \forall i \\ h_i(x) &= 1, \forall i \\ f_i \ is \ a \ posynomial := \sum_i h_i \\ h_i \ is \ a \ monomial := cx_1^{a_1} x_2^{a_2}.., c > 0, a_i \in \mathbb{R} \end{aligned}$$

Use transform of objective and constraint functions:

$$y_i = log x_i, x_i = e^{y_i}$$

 $\tilde{h_i}$ becomes exponential of affine function

 $\hat{f}_i = log(f_i)$ becomes log sum exp (convex)

If all constraints and objective are monomials, reduces to LP after transform.

SDP

general, standard, inequality forms

$$\min_{x} c^{T} x \ s.t. :$$

$$LMI : \sum_{i}^{n} x_{i}F_{i} + G \leq_{K} 0$$

$$Ax = b$$

$$x \in \mathbb{R}^{n}$$

$$F_{i}, G \in S^{m}, K \in S^{m}_{+}$$

$$\min_{X} tr(CX)s.t. :$$

$$tr(A_{i}X) = b_{i}, \forall i$$

$$X \succeq 0$$

$$\min_{x} c^{T} x \ s.t. :$$

$$\sum_{i}^{n} x_{i}A_{i} \leq_{K} B$$

$$Ax = b$$

$$B, A_{i} \in S^{m}, K \in S^{m}_{+}$$

concatenating constraints:

$$F^{(i)}(x) = \sum_{j} x_{j} F_{i}^{(i)} + G^{(i)} \leq 0$$

$$Gx \leq h$$

$$\Longrightarrow$$

$$diag(Gx - h, F^{(1)}(x), ..., F^{(m)}(x)) \leq 0$$

if all matrices are diagonal, reduces to LP

0.2 Convexity/Concavity

0.2.1 log det X, concave

$$\begin{split} let \ X &= Z + tV \succ 0 \\ f &= logdet(Z + tV) \\ f &= logdet(Z^{-0.5}(I + tZ^{-0.5}VZ^{0.5})Z^{0.5}) \\ f &= log(det(Z^{-0.5})det(I + tZ^{-0.5}VZ^{0.5})det(Z^{0.5})) \\ f &= log(det(Z^0)det(I + tZ^{-0.5}VZ^{0.5})) \\ f &= logdet(I + tZ^{-0.5}VZ^{0.5}) \\ f &= log\Pi_i(1 + \lambda_i t) \\ f &= \sum_i log(1 + \lambda_i t) \\ \frac{\partial f}{\partial t} &= \sum_i \frac{\lambda_i}{1 + \lambda_i t} \\ \frac{\partial^2 f}{\partial t^2} &= \sum_i \frac{-\lambda_i^2}{(1 + \lambda_i t)^2} &= -\sum_i \frac{\lambda_i^2}{(1 + \lambda_i t)^2} \leq 0 \\ \nabla^2 f &\leq 0 \iff f \ concave \end{split}$$

0.2.2 log $\sum_{i} exp(x_i)$, convex

$$\nabla^2 f = \frac{1}{(1^T z)^2} (1^T z diag(z) - z z^T)$$

$$v^T z z^T v = det(v^T z z^T v) = det(v v^T z z^T)$$

$$v^T z z^T v = \sum_j \sum_i z_j z_i v_j v_i$$

$$v^T z z^T v = (\sum_j z_j z_j) (\sum_i z_i v_i)$$

$$v^T z z^T v = (\sum_i z_i v_i)^2$$

$$use \ Holder's \ Inequality:$$

$$\|a\|_2^2 \|b\|_2^2 \ge |a^T b|^2$$

$$let \ a = z_i^{0.5}, b = v_i z_i^{0.5}$$

$$1^T z (\sum_i v_i^2 z_i) - (\sum_i z_i v_i)^2 \ge 0$$

$$v^T \nabla^2 f v = \frac{1}{(1^T z)^2} \left(1^T z (\sum_i v_i^2 z_i) - (\sum_i z_i v_i)^2 \right) \ge 0$$

$$\nabla^2 f \ge 0 \iff f \ convex$$

0.2.3 geometric mean on R_{++}^n , concave

$$f = (\Pi_{i}x_{i})^{\frac{1}{n}}$$

$$\frac{\partial}{\partial x_{i}}f = \frac{1}{n}(\Pi_{i}x_{i})^{\frac{1}{n}-1}\Pi_{j\neq i}x_{j}$$

$$\frac{\partial^{2}}{\partial x_{i}^{2}}f = \frac{1}{n}(\frac{1}{n}-1)(\Pi_{i}x_{i})^{\frac{1}{n}-2}(\Pi_{j\neq i}x_{j})^{2}$$

$$\frac{\partial^{2}}{\partial x_{i}^{2}}f = \frac{1}{n}(\frac{1}{n}-1)\frac{(\Pi_{i}x_{i})^{\frac{1}{n}}}{x_{i}^{2}}$$

$$\frac{\partial^{2}}{\partial x_{i}x_{k}}f = \frac{1}{n^{2}}\frac{(\Pi_{i}x_{i})^{\frac{1}{n}}}{x_{i}x_{k}}, i \neq k$$

$$\frac{\partial^{2}}{\partial x_{i}x_{k}}f = \frac{1}{n^{2}}\frac{(\Pi_{i}x_{i})^{\frac{1}{n}}}{x_{i}x_{k}} - \delta_{ik}\frac{1}{n}\frac{(\Pi_{i}x_{i})^{\frac{1}{n}}}{x_{i}^{2}}$$

$$v^{T}\nabla^{2}fv = \frac{-(\Pi_{i}x_{i})^{\frac{1}{n}}}{n^{2}}(n\sum_{i}\frac{v_{i}^{2}}{x_{i}^{2}} - (\sum_{i}\frac{v_{i}}{x_{i}})^{2})$$

$$apply Cauchy Schwartz Inequality:$$

$$let \ a = \mathbf{1}, b_{i} = \frac{v_{i}}{x_{i}}$$

$$\|\mathbf{1}\|_{2}^{2}(\sum_{i}\frac{v_{i}^{2}}{x_{i}}) \geq (\sum_{i}\frac{v_{i}}{x_{i}})^{2} \geq 0$$

$$v^{T}\nabla^{2}fv \leq 0 \iff f \ concave$$

0.2.4 quadratic over linear, convex

$$f(x,y) = \frac{h(x)}{g(y)}, g(y) \ linear, g(y) \in R_+$$

$$\nabla^2 f = vv^T \ is \ PSD \iff f \ convex$$

todo..

- 0.2.5 affine mapping
- 0.2.6 pointwise supremum over convex functions
- 0.2.7 norm
- 0.2.8 non-negative weighted sum and expectation of convex/concave functions
- 0.3 Definitions
- 0.3.1 dual norm
- 0.3.2 operator norm
- 0.3.3 dual cone

$$K \text{ is a cone}$$

$$K^* = \{y: x^Ty \geq 0, \forall x \in K\}$$

- 0.3.4 support function of a set
- 0.4 Composition of functions

$$f = h(g(x))$$

$$f' = g'(x)h'(g(x))$$

$$f'' = g''(x)h'(g(x)) + (g'(x))^{2}h''(g(x))$$

h convex & non-decreasing, g convex \Longrightarrow f convex $h'' \geq 0, g''(x) \geq 0, h'(g(x)) \geq 0 \Longrightarrow f'' \geq 0$ h convex & non-increasing, g concave \Longrightarrow f convex $h'' \geq 0, g''(x) \leq 0, h'(g(x)) \leq 0 \Longrightarrow f'' \geq 0$ h concave & non-decreasing, g concave \Longrightarrow f concave $h'' \leq 0, g''(x) \leq 0, h'(g(x)) \geq 0 \Longrightarrow f'' \leq 0$ h concave & non-increasing, g convex \Longrightarrow f concave $h'' \leq 0, g''(x) \geq 0, h'(g(x)) \leq 0 \Longrightarrow f'' \leq 0$

- 0.5 Inequalities
- 0.5.1 geometric mean inequality
- 0.6 Identities