

OSLO Verkeersmetingen: Thematische werkgroep 3

Welkom!

Dinsdag 30 mei 2023 Virtuele werkgroep – Microsoft Teams

We starten om 09:05

Praktische afspraken

Geluid van het publiek is standaard **gedempt**.

Gebruik het **handje** als je iets wilt zeggen.
Interactie wordt aangemoedigd!

Vragen, opmerkingen en voorstellen kunnen via de chatfunctie meegedeeld worden. Interactie wordt aangemoedigd!

ja/nee vragen kunnen beantwoord worden via de chat:

Akkoord = +1
Niet akkoord = -1
Onverschillig = 0

Opname?

Doel van vandaag

Voorstelling van het datamodel aan de hand van use cases.

Samenvatting van de tweede thematische werkgroep

Presentatie en discussie over aanpassingen data model

Voorstelling datamodel & capteren van input adhv interactieve oefening

Agenda

09u00 - 09u10	Welkom en agenda
09u10 - 09u20	Samenvatting vorige werkgroep
09u15 - 09u25	Overzicht van aanpassingen
09u35 - 09u45	Definities klassen en attributen
09u45 - 10u45	Overzicht model adhv storylines
10u45 - 11u00	Pauze
11u00 - 11u15	LDES
11u15 - 11u45	Codelijsten
11u45 - 12u00	Q&A en volgende stappen

Wie is wie?

MURAL-LINK

Samenvatting tweede thematische werkgroep

Topics vorige werkgroep?

Verfijning van het model

Intro netwerkreferentie

Vervolg op de use cases

- Individuele voertuigmetingen, ADR codes op vrachtwagens
- Metadata van metingen en metingverzameling
- Herkomst bestemming met een afslagbeweging op een kruispunt
- Capteren noden rond meettoestellen

Aanpassingen aan het model

- Relatie 'Verkeersmeting' en 'Observatieprocedure'
- 'Meetinstallatie', 'Meetinstrument'
 en 'Meettechniek' aangepast naar
 'Toestel', 'Sensor' en 'Observatieprocedure'

Scope van het project

Ontwikkel een semantisch framework voor het in kaart brengen van Verkeersmetingen en het delen van data

Ontwikkel een duurzaam **applicatieprofiel** en **vocabularium** voor Verkeersmetingen.

We volgen de OSLO methodiek, wat betekent dat:

We starten van use cases

We definiëren zelf zaken waar nodig

We aligneren zoveel mogelijk met bestaande standaarden

Vervolg van traject - Engels

- 1 Finaliseren van OSLO Verkeersmetingen in Nederlands (27/06)
- 2 Uitvoeren publieke review & Engelstalige vertaling voorzien (eind augustus)
- 3 Engelstalige vertaling delen, kans om feedback te geven (begin september)
- 4 Extra werkgroep eind september om Engelse vertaling te bespreken
- 5 Ambitie om standaard mee te nemen in projecten op Europees niveau

Klasse	Definitie	Gebruik
Verkeersmeting	Het vaststellen van de waarde van een bepaald kenmerk van het wegverkeer op een bepaald tijdstip of tussen twee tijdstippen.	Het gaat om schattingen van de waarde, maw op de waarde zit een zekere foutmarge. Voorbeelden zijn aantal, snelheid, Dit is verschillend van waarden die zijn toegekend en dus geen schattingen zijn zoals naam of prijs.
Wegverkeer	De verplaatsing van mensen, dieren en/of objecten, die over een weg gebeurt.	
Verkeerskenmerk	Klasse die kenmerken van instanties van wegverkeer vertegenwoordigt.	In de context van verkeersmetingen is dit een kenmerk van het geobseveerdObject (of van het bemonsterdObject of een onderdeel daarvan) en in principe van alle instanties van dat type geobserveerdObject. Bv Aantal, snelheid,

Klasse	Definitie	Gebruik
Verkeersmetingverzameling	Aantal bij elkaar horende verkeersmetingen.	Bv een reeks metingen die allemaal op dezelfde dag hebben plaatsgevonden of die allemaal over hetzelfde verkeerskenmerk gaan.
Verkeersmeetpunt	Een meetlocatie die de vorm aanneemt van een punt.	Van het Object dat men wil observeren wordt in dat geval een representatief puntvormig deel beschouwd. Voorbeeld is een (Meet)Station.
Verkeersmeettraject	Een meetlocatie die de vorm aanneemt van een lijn of traject	Van het Object dat men wil observeren wordt in dat geval een representatief trajectvormig deel beschouwd. Voorbeeld is een doorsnede van een rijvak.

^{*} Van alle overige klassen erven we de definitie en gebruik over van andere OSLO trajecten.

Attribuut	Definitie	Gebruik
VerkeerskenmerkType	Type van verkeerskenmerk dat men wil meten	Bv aantal, snelheid,
VoertuigType (of ResourceType?)	Type van voertuig dat men wil meten	Bv auto, fiets, voetganger,

Overige definities

De overige definities (van attributen, enumeraties en datatypes) zullen terug te vinden zijn op GitHub.

Feedback is welkom!

Feedback/input kan gegeven worden via GitHub:

OSLO Verkeersmetingen

Onze aanpak

Onze aanpak

We starten van use cases

We definiëren zelf zaken waar nodig

We aligneren zoveel mogelijk met bestaande standaarden

Vertrekken van use cases

> Opdeling van use cases/concepten in verschillende categorieën:

Binnen scope	Buiten scope	Feature / implementatie
Meting (Tellingen (Fiets, Auto,), Snelheid,)	Looplijnen passanten P+R	Privacy
Rijstrook telling	Bezetting (OV)	Data aggregatie
Kruistpunt telling / Herkomst -> bestemming	Verkeersovertredingen	LDES
Ty pe v erv oers middel	(bijna) ongevallen	Modal Shift
Metadata Meetinstrument (bv Kwaliteit meting sensor bij regenweer,)	Floating car data	Verkeersdrukte / beleidsindicatoren
Meettechnieken (inductie, camera, glasvezel, radar,)	Gedetailleerde codelijsten van bv fietscategorieën?	Gebruikersov ereenkomst v oor data
Data publisher / Data owner	Inname openbaar domein	Liv e monitoring
Locatie verkeersmeting		Gebruik in alle bestuurslagen
Meetsy steem(Telraam, ANPR camera,)		
Moment / Periode / Tijd		

OSLO Observaties en metingen

- Bevat al heel wat rond observaties / metingen
- Dit applicatieprofiel is gebaseerd op <u>ISO 19156:2011</u>.

Linked open data

Wat is linked data?

Linked Data gaat over het **publiceren en verbinden van gestructureerde gegevens op het web**

- Door een verbinding te maken tussen twee elementen, weten we meer over beide elementen
- Het maken van verbindingen tussen verschillende elementen in een dataset geeft computers en mensen een pad om meer informatie te verkrijgen.
- Door een link te leggen tussen twee elementen, is het meteen duidelijk over welke elementen het gaat. Hiermee neem je veel ambiguiteit weg.

Wat is linked data?

Om gegevens te verbinden en structureren maakt linked data gebruik van de volgende drie principes:

- Geef alle dingen (bijv. mensen, dieren of objecten) een unieke identificatielink (URI) die mensen kunnen opzoeken via bijv. een browser.
- Wanneer iemand een URI opzoekt, geef dan nuttige informatie, gestructureerd aan de hand van een vooraf afgesproken datastandaard (RDF*, SPARQL);
- Maak zoveel mogelijk zinvolle verbindingen tussen deze unieke identificatielinken, zodat mensen en machines kunnen 'doorklikken' en op die manier verbanden kunnen leggen.

Wat is het nut van linked data voor de Vlaamse overheid?

- Data heeft de neiging om gestructureerd en bijgehouden te worden op een manier die aansluit bij een bepaald computersysteem of kennisgebied.
- Door linked data en bijbehorende datamodellen kunnen we de aan deze verschillende domeinen verbonden informatiesilo's doorbreken.
- Data kan hierdoor makkelijker worden gebruikt en uitgebreid met behulp van al bestaande datamodellen
- Data-integratie en doorbladeren van complexe gegevens wordt gemakkelijker en heel wat efficiënter

De bouwstenen van Linked Open Data

Aan de hand van de principes van Linked Open Data onderscheiden we drie basale bouwstenen: Een 'iets' met een URI, een eigenschap en een relatie.

URI

Elk object, ding, mens, dier of soort object heeft een unieke link waar men naar kan verwijzen

Synoniem: Entiteit, ding, object

Eigenschap

Een stuk informatie dat een beschrijving geeft van een URI

Synoniemen: Attribuut, kenmerk

Relatie

Een stuk informatie dat een relatie aangeeft tussen twee verschillende URI's

Label: Agentschap Binnenlands Bestuur URI: https://www.yaanderen.be/agentschap-binnenlands-bestuur

URI

Agentschap Binnenlands Bestuur https://www.vlaanderen.be/agentschap-binnenlands-bestuur

URI

tps://www.viaanderen.be/agentschap-bilineniands-

"is een agentschap van"

"heeft als visie"

Het verbinden en versterken burgers en bestuur

https://www.vlaanderen.be/agentschap-binnenlands-bestuur/overabb/mssie-en-visie

Eigenschap

de Vlaamse Overheid

https://www.vlaanderen.be/

Relatie

Hoe passen we Linked Open Data toe?

Stap 1: Modelleren

- In samenw erking met alle belanghebbenden in een bepaald domein stellen we een datamodel op.
- Zoals bijvoorbeeld het datamodel 'Verkeersmetingen'

Stap 2: Data opslaan

- Informatie w aar het datamodel op van toepassing is w ordt opgeslagen in RDFformaat.
- Dit formaat stelt ons in staat om op een relatief simpele manier de eigenschappen en relaties vanuit het datamodel te vatten.

Stap 3: Bevragen

 Om de informatie die w e in stap 2 hebben gevat te kunnen bevragen, maken w e gebruik van SPARQL-queries.

Overzicht model

Sneuvelmodel

Kwaliteit van de meting

Interpolatie van metingen

Afgeleide meting gebaseerd op andere metingen

Kwaliteitselement

Verkeersmeting

 Kwaliteit van een verkeersmeting kan toegevoegd worden aan 'kwaliteitselement'

Willen we overige aspecten van kwaliteit meenemen? Zijn er overige aspecten van belang?

Kwaliteitselement

```
"@context": [
    "https://data.vlaanderen.be/doc/applicatieprofiel/datakwaliteit/kandidaat
standaard/2022-10-17/context/datakwaliteit-ap.jsonld",
            "qudt-schema": "https://qudt.org/schema/qudt/"
    "@graph": |
"http://def.isotc211.org/iso19157/2013/DataQuality 2#DQ CompletenessOmission"
            "DO Element.resultaat": {
                "@type": "DQ KwantitatiefResultaat",
                "DQ KwantitatiefResultaat.waarde": 20,
                "DO KwantitatiefResultaat.waardeEenheid": {
                    "@tvpe": "gudt-schema:Unit",
                    "@id": "https://qudt.org/vocab/unit/PERCENT"
            "DO Element.maat": {
                "@tvpe": "DO Maatreferentie",
                "DQ MaatReferentie.maatIdentificatie": {
                    "@type": "MD Identificator",
                    "MD Identificator.code": "7",
                    "MD Identificator.beschrijving": "Maatid uit ISO19157:2013"
                "DO MaatReferentie.maatnaam": "Aandeel ontbrekende items"
            "DQ Element.evaluatiemethode": {
                "@type": "DQ Evaluatiemethode",
                "DO Evalatiemethode.evaluatiemethodeBeschrijving": "Het
Perecentage geeft aan hoeveel van de data niet opgemeten of gereconstreerd kon
worden. Het deel niet opgemeten data volgt uit de status van de sensor, byb 100%
als de sensor stuk is. Daarvan wordt afgetrokken welk deel daarvan gereconstrueerd
kon worden bvb door interpolatie, is dat 80% dan is de omissiefout 20%."
```


VerkeersmetingDatavoorbeeld in JSON-LD

Meetsysteem vult metingen aan (bv door interpolatie)

Observatieprocedure

Door gebruik te maken van de observatieprocedure kan bij een meting aangegeven worden hoe deze tot stand gekomen is. In dit geval is één van de metingen via interpolatie tot stand gekomen.

Het is hier ook nog mogelijk om bij de observatieprocedure extra info mee te geven.

Een meetsysteem meet snelheden en berekent de V85 waarde.

Metingen

Naast de basismetingen kunnen metingen ook afgeleid zijn van andere metingen. In dit geval is de V85 meting afgeleid van de snelheidsmetingen.

Een meetsysteem telt verschillende types voertuigen, meet snelheden en berekent de V85 waarde.

Een slimme camera detecteert de ADR codes op een voertuig.

Resultaat:

90/8032

Een vrachtwagen rijdt op een wegsegment *wgs001* en de ADR code (90/8032) op de vrachtwagen wordt gelezen. ADR code is een gevarenklasse voor vervoer gevaarlijke stoffen.

De camera heeft zicht op rijstrook 4 over de breedte van het volledige wegsegment, we weten niet precies waar de meting plaatsvindt. Dit kan om het even waar zijn op het wegsegment op rijstrook 4.

Dit voorbeeld toont aan dat we individuele voertuigmetingen kunnen weergeven in het model.

Opmerking: het is perfect mogelijk de exacte locatie van de meting op de rijstrook van dit wegsegement weer te geven in het model.

Een slimme camera detecteert de ADR codes op een voertuig.

Verkeerskenmerk die gemeten wordt is de ADR code. De meting zelf gebeurd op een meetpunt (rijstrook 4 op wegsegment wgs001) door een Camera.

De meting wordt aan een individueel voertuig toegekend.

Deze ADR codes worden later gebruikt om te aggregeren en tunnelcodes te bepalen voor de voertuigen.

ADR voorbeeld in JSON-LD

```
"@context": [
            "adms": "http://www.w3.org/ns/adms#".
            "cl-kmt": "https://example.com/concept/kenmerktype/",
            "cl-idt": "https://example.com/concept/identificatortype/",
            "cl-trt": "https://example.com/concept/toepassingsrichtingtype/",
            "cl-mit": "https://example.com/concept/meetinstrumenttype/"
    ],
"@graph": [
            "@id": " :vmt001",
            "@type": "Verkeersmeting",
            "Observatie.geobserveerdKenmerk": {
                "@type": "Verkeerskenmerk",
                "Verkeerskenmerk.type": "cl-kmt:adr-code"
            "Observatie.geobserveerdObject": " :mpt001",
            "Observatie.fenomeentijd": {
                "@type": "time:Instant",
                "time:inXSDDateTime": {
                    "@type": "xml-schema:dateTime",
                    "@value": "2013-10-17T02:23:52.000"
            "Observatie.resultaat": "90/3082",
            "Observatie.uitgevoerdMet": " :mti001"
            "@id": " :mpt001",
            "@type": "Verkeersmeetpunt".
            "Bemonsteringsobject.identificator": {
                "@tvpe": "Identificator",
                "Identificator.identificator": {
                   "@value": "BAA-HRO-02-1-1re-R1-0k01i-1-0-
riBreda_20131017_0200_20131018 0159",
                    "@type": "cl-idt:verkeersmeetpuntid"
            "Verkeersmeetpunt.rijstrook": " rst001",
            "Bemonsteringsobject.bemonsterdObject": {
                "@type": "Voertuig"
        },
```


Datavoorbeeld

Dit is hoe een datavoorbeeld rond het ADR voorbeeld van vorige keer er in JSON-LD uit ziet.

Storyline

ADR voorbeeld in JSON-LD

```
"@id": "_rst001",
"@type": "Rijstrook",
"adms:identifier": {
    "@type": "adms:Identifier",
   "skos:notation": {
       "@type": "cl-idt:rijstrookidentificator",
        "@value": "HRO/lre"
"Rijstrook.netwerkreferentie": {
    "@type": "LineaireReferentie",
   "Linkreferentie.element": "_:wgs001",
   "Linkreferentie.toepassingsrichting": "cl-trt:beide",
    "Puntreferentie.vanPositie": {
       "@type": "Lengte",
       "KwantitatieveWaarde.waarde": "0",
       "KwantitatieveWaarde.standaardEenheid": {
           "@value": "m",
            "@type": "ucum:ucumunit"
    "Puntreferentie.totPositie": {
       "@type": "Lengte",
       "KwantitatieveWaarde.waarde": "600",
       "KwantitatieveWaarde.standaardEenheid": {
            "@value": "m",
            "@type": "ucum:ucumunit"
"Rijstrook.rijstrooknummer": 4
"@id": " wgs001",
"@type": "Wegsegment"
"@id": " mti001",
"@type": "Meetinstrument",
"Sensor.type": "mit:camera'
```


Datavoorbeeld

Dit is hoe een datavoorbeeld rond het ADR voorbeeld van vorige keer er in JSON LD uit ziet.

Storyline

Beschrijving van het toestel en de gebruikte procedure

Gebaseerd op de info die we tot nu toe hebben ontvangen lijkt dit zeker voldoende om alles te capteren.

Zijn er zaken die mogelijks toch ontbreken?

Vrijheden model

Een korte oplijsting van vrijheden in het model die nog afspraken behoeven voor een uniforme implementatie.

- Types verkeersmetingen
 - o Intensiteit, Snelheden,...
- Verkeerskenmerk
 - o Wat wil je allemaal meten?
 - o Snelheid, Aantal, ...
- Voertuigtype
 - Welke voertuigclassificaties wil je meten?
 - Auto, fiets,...
- Sensortype
 - Welke types van sensor wil je gebruiken?
 - Telslang, camera,...
- Netwerkreferentie
 - Welke wegsegmenten gebruik je om naar te verwijzen?
 - OSM, Wegenregister,...
 - Afspraken rond rijrichting
 - Afspraken rond rijstroken

Versie 2 - Model OSLO Verkeersmetingen

LDES

LDES

Linked Data Event Streams

EEN VERZAMELING VAN ONVERANDERLIJKE OBJECTEN WAARBIJ JE DE DATASET ZELF NIET WIJZIGT MAAR AANGEEFT WAT ER GEWIJZIGD IS

De data gebruiker 'abonneert' zich op de datastroom en haalt de data binnen. Daarna worden enkel de wijzigingen (aanvullingen) binnen gehaald.

LDES

Linked Data Event Streams

EEN VERZAMELING VAN ONVERANDERLIJKE OBJECTEN WAARBIJ JE DE DATASET ZELF NIET WIJZIGT MAAR AANGEEFT WAT ER GEWIJZIGD IS

De data gebruiker 'abonneert' zich op de datastroom en haalt de data binnen. Daarna worden enkel de wijzigingen (aanvullingen) binnen gehaald.

Codelijsten

Voertuigtype

Telraam	AWV	Mapping AWV	AWV2	Straatvinken
Voetgangers	Motoren	Licht	Personenwagens	Alle types vrachtwagens, tractoren, graafmachines,
Tweewielers	Personenauto's	Licht	Eénledige vrachtwagens	Bus en tram
Auto's	Bestelauto's	Licht	Personenwagens met aanhangwagen	Kleine bestelwagen en minibus
Vrachtwagens	Ongeleed vrachtverkeer	Medium	Meerdere vrachtwagens	Auto, zware motor, lichte bromfiets, (elektrische) scooter
	Bussen	Medium	Andere voertuigen	Fiets, elektrische fiets/pedelec, tandem, skateboard, hooverboard, rolschaatsen, schootmobiel, ruiter op paard
	Geleed vrachtverkeer	Zwaar		Voetganger, rolstoel, kinderwagen

Voertuigtype - Asconfiguratie

Asconfiguratie (AWV)	Aggregatie
2 assen, 2 asstellen, kort	Licht
2 assen, 2 asstellen, lang	Medium
3 assen, 2 asstellen	Medium
3 assen, 3 asstellen, kort	Licht
3 assen, 3 asstellen, lang	Zwaar
4 assen, 2 asstellen	Medium
4 assen, 3 asstellen	Zwaar
4 assen, 4 asstellen	Zwaar
5 assen, 3 asstellen	Zwaar
5 assen, 4 asstellen	Zwaar
6 assen, 3 asstellen	Zwaar
6 assen, 4 asstellen	Zwaar

Meettechniek

Meettechniek	Telsystemen (Stad Gent)	
Radartellingen	Manuele tellingen	
Rubberslang	Telslangen	
Piëzotellingen	Telradar	
Glasvezeltellingen	Fietstelpalen	
Andere sensoren	ANPR-camera's	
Camera	Andere cameratellingen	
Manuele tellingen	Andere	

Rijrichting – Rijstrook

Rijrichting	Richting (Signco)	Rijstrook	Rijstrook (Signco)
Noord	Hoofdrichting	1 (rechter)	Rijstrook 1
Zuid	Tegenrichting	2 (midden rechts)	Rijstrook 2
		3 (midden links)	Doorgaand
		4 (linker)	Rechtsaf
			Rechtsaf 2

Overige

Tunnelcode	ADR_positie	Eurovalue
В	voorkant	0
С	zijkant_01	1
D	zijkant_02	2
Е	zijkant_03	3
X	zijkant_04	4
	zijkant_05	5
	zijkant_06	6
	zijkant_07	

Q&A en Next Steps

Volgende stappen

Verwerken van alle input uit de thematische werkgroep.

Rondsturen van een verslag van deze werkgroep. Feedback is zeker welkom.

Feedback capteren via GitHub.

Aangepaste versie van semantisch model publiceren op GitHub en data.vlaanderen.be. Hier is feedback ook zeker welkom.

OSLO tijdslijn

Thematische werkgroep 4 op **dinsdag 27 juni: 9u00 - 12u00** (Fysiek VAC Gent) - Broodjeslunch voorzien

Schrijf u hier in

Ecosysteem werkgroep aansluitend op dinsdag 27 juni: 13u00 - 16u00

Feedback & Samenwerking OSLO

Feedback kan per e-mail worden gegeven aan de volgende personen:

- digitaal.vlaanderen@vlaanderen.be
- laurens.vercauteren@vlaanderen.be
- yaron.dassonneville @ vlaanderen.be
- pieter.desmijter@vlaanderen.be

Feedback Ecosysteem aan:

• steven.logghe@vlaanderen.be tel: 0473/895257

yanick.vanhoeymissen@imec.be

tel: 0490/651832

Feedback/input kan gegeven worden via GitHub:

OSLO thema verkeersmetingen

Via het aanmaken van issues

<u>Issue #1: Input rond codelijsten</u>

Waarom doen we...?

Moeten we niet ... toevoegen?

Kunnen we niet beter ...?

Hoe zit het met ...?

Bedankt

