Decrease-by-one algorithms: Topological Sort

- Read 4.2, pages 138-141
 - How does DFS for a directed graph differ from one for an undirected graph?
 - * Are cross edges in this section the same as the cross edges for BFS?
 - True or False: The presence of a forward edge indicates the presence of a directed cycle.
 - What graphs to do we call **directed acyclic graphs** (dag)?
 - Explain how we can represent the set of courses a student has to take for a major as dag.
 - What do we refer to as a **topological sort** of a dag?
 - * Why does this only make sense for dags and not for all directed graphs?
 - Give some real life examples where a topological sort might be needed.
 - Construct at least two different topological sorts of the dag in Figure 4.6.
 - * How many different topological sorts can you construct?
 - Explain how DFS can help us construct a topological sort. Make sure to also explain why the resulting order is for sure a topological sort.
 - Describe the decrease-by-one-and-conquer algorithm to performing a topological sort.
 - * What vertex do we need to find in each step of the algorithm?
 - * What do we do with that vertex after we find it?
 - * How do we obtain the resulting topological sort order?
 - * What's the name of this algorithm?
 - Some questions about this decrease-and-conquer algorithm:
 - * Are we certain that every dag has a source?
 - * How would we find such a vertex in a graph represented as an adjacency list? What is the time efficiency of that step?
 - How can we implement the decrease-and-conquer algorithm in time O(|V| + |E|)?
 - Work out problem 4.2.9 about **strongly connected components**.