- 18 A spherical polystyrene bead is immersed in oil. The bead has diameter 4.00×10^{-3} m. The bead is released and moves upwards through the oil at a constant velocity.
 - (a) Complete the free body force diagram below to show all the forces acting on the polystyrene bead.

(2)

(b) Show that the upthrust the oil exerts on the bead is about 3.1×10^{-4} N.

density of oil = $930 \,\mathrm{kg}\,\mathrm{m}^{-3}$

(3)

- (c) Stokes' law shows how the viscous drag on a sphere is related to its velocity through a fluid. Stokes' law is only valid if the bead is moving sufficiently slowly through the oil.
 - (i) State the reason for this condition.

(1)

(ii)	For Stokes'	law to	be valid	the speed	of the	bead	through	the oil	must	be l	les
	than $v_{\rm R}$, wh	ere									

$$v_{\rm R} = \frac{10 \times \text{viscosity of oil}}{\text{density of oil} \times \text{diameter of the bead}}$$

Deduce whether Stokes' law can be applied to this bead.

viscosity of oil = 4.90×10^{-2} Pas weight of polystyrene bead = 1.05×10^{-5} N

(Total for Question 18 = 11 marks)

(5)