AMATH 561 Assignment 2

Tyler Chen

Exercise 2.1

Let $\Omega = \{a, b, c, d\}$ and $\mathcal{F} = 2^{\Omega}$ (the set of all subsets of Ω). We define a probability measure \mathbb{P} as follows

$$\mathbb{P}(a) = 1/6,$$
 $\mathbb{P}(b) = 1/3,$ $\mathbb{P}(c) = 1/4,$ $\mathbb{P}(d) = 1/4$

Next, define three random variables,

$$X(a) = 1,$$
 $X(b) = 1,$ $X(c) = -1,$ $X(d) = -1$
 $Y(a) = 1,$ $Y(b) = -1,$ $Y(c) = 1,$ $Y(d) = -1,$

and Z = X + Y.

- (a) List the sets in $\sigma(X)$.
- (b) What are the values of $\mathbb{E}[Y|X]$ for $\{a,b,c,d\}$? Verify the partial averaging property: $\mathbb{E}[\mathbb{1}_A\mathbb{E}[Y|X]] = \mathbb{E}[\mathbb{1}_AY]$.
- (c) What are the values of $\mathbb{E}[Z|X]$ for $\{a,b,c,d\}$? Verify the partial averaging property.

Solution

(a) Recall that
$$\sigma(X) = \{\{X \in A\} \subseteq \Omega : A \in \mathcal{B}(\mathbb{R})\} = \{\{w : X(w) \in A\} : A \in \mathcal{B}(\mathbb{R})\}$$
. Therefore, $\sigma(X) = \{\emptyset, \{a, b\}, \{c, d\}, \Omega\}$

(b) We compute,

$$\begin{split} \mathbb{E}[Y|X](a) &= \mathbb{E}[Y|X = X(a)] = \mathbb{E}[Y|X = 1] = \frac{1\mathbb{P}(a) - 1\mathbb{P}(b)}{\mathbb{P}(a) + \mathbb{P}(b)} = -\frac{1}{3} \\ \mathbb{E}[Y|X](b) &= \mathbb{E}[Y|X = X(b)] = \mathbb{E}[Y|X = 1] = \frac{1\mathbb{P}(a) - 1\mathbb{P}(b)}{\mathbb{P}(a) + \mathbb{P}(b)} = -\frac{1}{3} \\ \mathbb{E}[Y|X](c) &= \mathbb{E}[Y|X = X(c)] = \mathbb{E}[Y|X = -1] = \frac{1\mathbb{P}(c) - 1\mathbb{P}(d)}{\mathbb{P}(c) + \mathbb{P}(d)} = 0 \\ \mathbb{E}[Y|X](d) &= \mathbb{E}[Y|X = X(d)] = \mathbb{E}[Y|X = -1] = \frac{1\mathbb{P}(c) - 1\mathbb{P}(d)}{\mathbb{P}(c) + \mathbb{P}(d)} = 0 \end{split}$$

For each set $A \in \sigma(X)$ we verify that $\mathbb{E}[\mathbb{1}_A \mathbb{E}[Y|X]] = \mathbb{E}[\mathbb{1}_A Y]$ as follows,

(c) Write,

$$Z(a) = 2,$$
 $Z(b) = 0,$ $Z(c) = 0,$ $Z(d) = -2$

We compute,

$$\begin{split} \mathbb{E}[Z|X](a) &= \mathbb{E}[Z|X = X(a)] = \mathbb{E}[Z|X = 1] = \frac{2\mathbb{P}(a) + 0\mathbb{P}(b)}{\mathbb{P}(a) + \mathbb{P}(b)} = \frac{2}{3} \\ \mathbb{E}[Z|X](b) &= \mathbb{E}[Z|X = X(b)] = \mathbb{E}[Z|X = 1] = \frac{2\mathbb{P}(a) + 0\mathbb{P}(b)}{\mathbb{P}(a) + \mathbb{P}(b)} = \frac{2}{3} \\ \mathbb{E}[Z|X](c) &= \mathbb{E}[Z|X = X(c)] = \mathbb{E}[Z|X = -1] = \frac{0\mathbb{P}(c) + 2\mathbb{P}(d)}{\mathbb{P}(c) + \mathbb{P}(d)} = -1 \\ \mathbb{E}[Z|X](d) &= \mathbb{E}[Z|X = X(d)] = \mathbb{E}[Z|X = -1] = \frac{0\mathbb{P}(c) + 2\mathbb{P}(d)}{\mathbb{P}(c) + \mathbb{P}(d)} = -1 \end{split}$$

For each set $A \in \sigma(X)$ we verify that $\mathbb{E}[\mathbb{1}_A \mathbb{E}[Z|X]] = \mathbb{E}[\mathbb{1}_A Z]$ as follows,

Exercise 2.2

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let Y be a square integrable random variable: $\mathbb{E}Y^2 < \infty$ and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Show that

$$\mathbb{V}(Y - \mathbb{E}[Y|\mathcal{G}]) \le \mathbb{V}(Y - X) \qquad \forall X \in \mathcal{G}$$

Solution

Suppose further $\mathbb{E}[(Y-X)^2] < \infty$ (we make this assumption so that $\mathbb{V}[Y-X]$ exists).

Clearly $(\mathbb{E}[Y|\mathcal{G}] - X) \in \mathcal{G}$. Then, by partial averaging, $\mathbb{E}[(\mathbb{E}[Y|\mathcal{G}] - X)\mathbb{E}[Y|\mathcal{G}]] = \mathbb{E}[(\mathbb{E}[Y|\mathcal{G}] - X)Y]$. Therefore,

$$\begin{split} \mathbb{E}[(\mathbb{E}[Y|\mathcal{G}] - X)(Y - \mathbb{E}[Y|\mathcal{G}])] &= \mathbb{E}[(\mathbb{E}[Y|\mathcal{G}] - X)Y] - \mathbb{E}[(\mathbb{E}[Y|\mathcal{G}] - X)\mathbb{E}[Y|\mathcal{G}]] \\ &= \mathbb{E}[(\mathbb{E}[Y|\mathcal{G}] - X)Y] - \mathbb{E}[(\mathbb{E}[Y|\mathcal{G}] - X)Y] \\ &= 0 \end{split}$$

Then, since $\mathbb{E}[(Y-X)^2]$, exists,

$$\begin{split} \mathbb{E}[(Y-X)^2] &= \mathbb{E}[((Y-\mathbb{E}[Y|\mathcal{G}]) + (\mathbb{E}[Y|\mathcal{G}] - X))^2] \\ &= \mathbb{E}[(Y-\mathbb{E}[Y|\mathcal{G}])^2] + \mathbb{E}[(\mathbb{E}[Y|\mathcal{G}] - X)^2] + 2\mathbb{E}[(Y-\mathbb{E}[Y|\mathcal{G}])(\mathbb{E}[Y|\mathcal{G}] - X)] \\ &= \mathbb{E}[(Y-\mathbb{E}[Y|\mathcal{G}])^2] + \mathbb{E}[(\mathbb{E}[Y|\mathcal{G}] - X)^2] \end{split}$$

Again by partial averaging, $\mathbb{E}[\mathbb{E}[Y|\mathcal{G}]] = \mathbb{E}[\mathbb{1}_{\Omega}\mathbb{E}[Y|\mathcal{G}]] = \mathbb{E}[\mathbb{1}_{\Omega}Y] = \mathbb{E}[Y]$ so that $\mathbb{E}[Y - \mathbb{E}[Y|G]] = 0$. Then,

$$\begin{split} \mathbb{E}[Y-X]^2 &= \mathbb{E}[Y-\mathbb{E}[Y|\mathcal{G}] + \mathbb{E}[Y|\mathcal{G}] - X]^2 \\ &= \left(\mathbb{E}[Y-\mathbb{E}[Y|\mathcal{G}]] + \mathbb{E}[\mathbb{E}[Y|\mathcal{G}] - X]\right)^2 \\ &= \mathbb{E}[Y-\mathbb{E}[Y|\mathcal{G}]]^2 + \mathbb{E}[\mathbb{E}[Y|\mathcal{G}] - X]^2 + 2\mathbb{E}[Y-\mathbb{E}[Y|\mathcal{G}]]\mathbb{E}[\mathbb{E}[Y|\mathcal{G}] - X] \\ &= \mathbb{E}[Y-\mathbb{E}[Y|\mathcal{G}]]^2 + \mathbb{E}[\mathbb{E}[Y|\mathcal{G}] - X]^2 \end{split}$$

Thus, subtracting this result from the first,

$$\mathbb{E}[(Y-X)^2] - \mathbb{E}[Y-X]^2 = \mathbb{E}[(Y-\mathbb{E}[Y|\mathcal{G}])^2] - \mathbb{E}[Y-\mathbb{E}[Y|\mathcal{G}]]^2 + \mathbb{E}[(\mathbb{E}[Y|\mathcal{G}]-X)^2] - \mathbb{E}[\mathbb{E}[Y|\mathcal{G}]-X]^2$$

$$\mathbb{V}[Y-X] = \mathbb{V}[Y-\mathbb{E}[Y|\mathcal{G}]] + \mathbb{V}[\mathbb{E}[Y|\mathcal{G}]-X]$$

Therefore, since $\mathbb{V}[\mathbb{E}[Y|\mathcal{G}-X] \geq 0$, for any $X \in \mathcal{G}$,

$$\mathbb{V}[Y - X] \ge \mathbb{V}[Y - \mathbb{E}[Y|\mathcal{G}]] \qquad \Box$$

Exercise 2.3Give an example of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable X and a function f such that $\sigma(f(X))$ is strictly smaller than $\sigma(X)$ but $\sigma(f(X)) \neq \{\emptyset, \Omega\}$. Give a function g such that $\sigma(g(X)) = \{\emptyset, \Omega\}$.

Let $\Omega = \{a, b, c\}$ and $\mathcal{F} = 2^{\Omega}$. Define $\mathbb{P}(a) = \mathbb{P}(b) = \mathbb{P}(c) = 1/3$.

Define X as X(a) = 0, X(b) = -1, X(c) = 1.

Thus, $\sigma(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}, \{a, b\}, \Omega\}$

Since $X(\Omega) \subset \mathbb{R}$, define $f, g : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$ and g(x) = 0. Then f(X(a)) = 0, f(X(b)) = f(X(c)) = 1 and g(Y(a)) = g(Y(b)) = g(Y(c)) = 0.

Therefore $\sigma(f(X)) = \{\emptyset, \{a\}, \{b, c\}, \Omega\}$ so $\sigma(f(X)) \subsetneq \sigma(X)$ so $\sigma(f(X))$ is strictly smaller than $\sigma(X)$. Similarly, $\sigma(g(X)) = \{\emptyset, \Omega\}$.

Exercise 2.4

On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ define random variables X and $Y_0, Y_1, Y_2, ...$ and suppose $\mathbb{E}[X] < \infty$. Define $F_n := \sigma(Y_0, Y_1, ..., Y_n)$ and $X_n = \mathbb{E}[X|F_n]$. Show that the sequence $X_0, X_1, X_2, ...$ is a martingale under \mathbb{P} with respect to the filtration $(F_n)_{n \geq 0}$.

Solution

Since $(F_n)_{n\geq 0}$ is a filtration, then F_n is a sub σ -algebra of F_{n+1} . Therefore, by iterated conditioning,

$$\mathbb{E}[X_{n+1}|F_n] = \mathbb{E}[\mathbb{E}[X|F_{n+1}]|F_n] = \mathbb{E}[X|F_n] = X_n$$

This proves the sequence $X_0, X_1, X_2, ...$ is a martingale under \mathbb{P} with respect to the filtration $(F_n)_{n\geq 0}$.

Exercise 2.5

Let $X_0, X_1, ...$ be i.i.d Bernoulli random variables with parameter p (i.e., $P(X_i = 1) = p$). Define $S_n = \sum_{i=1}^n X_i$ where $S_0 = 0$. Define

$$Z_n := \left(\frac{1-p}{p}\right)^{2S_n - n}$$
 $n = 0, 1, 2, \dots$

Let $\mathcal{F}_n := \sigma(X_0, X_1, ..., X_n)$. Show that Z_n is a martingale with respect to this filtration.

Solution

Observe,

$$Z_{n+1} = \left(\frac{1-p}{p}\right)^{2S_{n+1}-(n+1)} = \left(\frac{1-p}{p}\right)^{2S_n-n} \left(\frac{1-p}{p}\right)^{2X_{n+1}-1} = Z_n \left(\frac{1-p}{p}\right)^{2X_{n+1}-1}$$

Then, since X_{n+1} is independent of all other X_j , X_{n+1} is is independent of F_n . Thus, using the definition of expectation of a discrete random variable,

$$\mathbb{E}\left[\left(\frac{1-p}{p}\right)^{2X_{n+1}-1} \middle| F_n\right] = \mathbb{E}\left[\left(\frac{1-p}{p}\right)^{2X_{n+1}-1}\right]$$
$$= (p)\left(\frac{1-p}{p}\right)^{2\cdot 1-1} + (1-p)\left(\frac{1-p}{p}\right)^{2\cdot 0-1}$$
$$= (1-p) + p$$
$$= 1$$

Therefore, by taking out what is known,

$$\mathbb{E}[Z_{n+1}|F_n] = \mathbb{E}\left[Z_n((1-p)/p)^{2X_{n+1}-1}|F_n\right] = Z_n\mathbb{E}\left[((1-p)/p)^{2X_{n+1}-1}|F_n\right] = Z_n$$

This proves $(Z_n)_{n\geq 0}$ is a martingale with respect to this filtration.