🖵 Maths - Feuille d'exos n° 24 =

Intégration

I. Cours

On pourra aussi penser aux astuces suivantes:

- dans une intégrale dépendant d'un paramètre entier, une intégration par partie peut permettre d'obtenir une relation de récurrence;
- $\bullet\,$ lorsqu'on cherche un équivalent d'une intégrale, une intégration par partie peut là encore être utile;
- $linéariser\ les\ polynômes\ trigonométriques\ à l'aide\ des\ formules\ d'Eu-$
- décomposer les fractions rationnelles en éléments simples (voir exercice 24.4);
- exprimer $\cos(x), \sin(x)$ et $\tan(x)$ en fonction de $t = \tan(\frac{x}{2})$ puis effectuer un changement de variable;
- exprimer ch(x), sh(x) et th(x) en fonction de $u=e^x$ puis effectuer un changement de variable.

Ex. 24.1 (Cor.) Calculer
$$I_1(x) = \int_0^x \frac{\sinh t}{1 + \cosh t} dt$$

et
$$I_2(x) = \int^x \sqrt{1+t^2} dt$$

Ex. 24.2 (Cor.) On appelle intégrales de Wallis les intégrales de la

$$W_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx \quad \text{et} \quad W'_n = \int_0^{\frac{\pi}{2}} \cos^n(x) dx$$

- a. Calculer W_0, W_1, W_0' et W_1' .
- b. Montrer que pour tout $n \in \mathbb{N}$, $W_n = W'_n$.
- c. Obtenir une formule de récurrence à l'aide d'une intégration par partie

Ex. 24.3 (Cor.) Montrer que
$$\int_2^x \frac{dt}{\ln t} \approx \frac{x}{\ln x}.$$

Ex. 24.4 (Cor.) Calculer
$$J = \int_{-\infty}^{x} \frac{t^2 + 1}{(t - 1)(t^2 + 2t + 5)} dt$$

Méthode : Règles de Bioche

Dans une intégrale de la forme $\int f(\cos(t), \sin(t), \tan(t))dt$:

- si $t \leftrightarrow -t$ laisse $f(\cos(t), \sin(t), \tan(t)) dt$ invariante, le changement de variable $u = \cos(t)$ peut s'avérer intéressant; • si $t \leftrightarrow \pi - t$ laisse $f(\cos(t), \sin(t), \tan(t))$ dt invariante, le changement
 - de variable $u = \sin(t)$ peut s'avérer intéressant; si $t \leftrightarrow \pi + t$ laisse $f(\cos(t), \sin(t), \tan(t))dt$ invariante, le changement
 - de variable $u = \tan(t)$ peut s'avérer intéressant.

Dans le cas d'intégrales de fonctions hyperboliques, les mêmes règles s'appliquent en remplaçant cos par ch, etc...

 $\overline{\mathbf{Ex. 24.5}}$ (Cor.) Calculer des primitives de

$$f: x \mapsto \frac{\cos x}{\cos x + \sin x}$$
 et $g: x \mapsto \frac{\sin x}{\cos x + \sin}$

en indiquant l'ensemble de validité des primitives obtenues.

Théorème 24.1

Si f est une fonction continue sur [a;b] alors

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \underset{n \to +\infty}{\longrightarrow} \int_{a}^{b} f(t) \mathrm{d}t$$

Ce théorème peut servir :

- pour calculer une intégrale :
- pour déterminer la limite d'une somme.

Ex. 24.6 (Cor.) Calculer la limite lorsque $n \to +\infty$ de

$$u_n = \ln\left(1 + \frac{1}{n}\right) \sum_{k=0}^{n-1} \frac{n}{n+k}.$$

II. Primitives et intégrales

Ex. 24.7 Soit f continue sur \mathbb{R} et $a, b \in \mathbb{R}$.

a. Montrer que si
$$f$$
 est paire, alors $\int_{-a}^{a} f(t)dt = 2 \int_{0}^{a} f(t)dt$.

b. Montrer que si
$$f$$
 est impaire, alors $\int_{a}^{a} f(t)dt = 0$.

c. Montrer que si
$$f$$
 est T -périodique, alors
$$\int_a^{a+T} f(t) \mathrm{d}t = \int_b^{b+T} f(t) \mathrm{d}t.$$

Ex. 24.8 Linéariser $\cos^3(x)$ et en déduire une primitive de $x \mapsto \cos^3(x)$.

Ex. 24.9 Calculer:
$$I = \int_0^1 \sqrt{t}(2-t) dt$$
 $J = \int_0^3 |t-2| dt$ d. $J = \int_0^3 \frac{t^2}{1+t^2} dt$ $J = \int_0^3 \frac{t^2}{1+t^2} dt$ $J = \int_0^3 \frac{t^2}{1+t^2} dt$ $J = \int_0^3 \frac{dt}{1+t^2} dt$ $J = \int_0^3 \frac{d$

 $\overline{\mathbf{Ex.}} \ 24.10$ Soit $n \in \mathbb{N}$ et $I_n = \left((\ln x)^n \, \mathrm{d}x \right)$.

- a. Calculer I_0 et I_1 .
- b. Exprimer pour tout $n \in \mathbb{N} I_{n+1}$ en fonction de I_n .
- c. Calculer I_2 , I_3 et I_4 .
- d. Montrer qu'il existe une suite d'entiers positifs $(a_n)_{n\in\mathbb{N}}$ telle que $I_n=(-1)^n\,(a_ne-n!)$.
 - e. Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante positive.
- f. En déduire que $\forall n \in \mathbb{N}^*, a_n = \left\lfloor \frac{n!}{e} + \frac{1}{2} \right\rfloor$.
- g. Calculer $\lim_{n\to +\infty} \frac{n!}{a_n}$ et en déduire une approximation rationnelle de $e \ a \ 10^{-3} \ près.$

- a. Montrer que $F: x \in \mathbb{R} \mapsto F(x) = \int [t] dt$ est bien définie.
- b. Montrer que F est continue sur \mathbb{R} .
- c. Déterminer les expressions de F sur [0;2]
- d. Montrer que ${\cal F}$ n'est pas partout dérivable.

Ex. 24.12 (Cor.) Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables

$$f'(t) - f(t) = e^t \int_0^1 f(u) du$$

Ex. 24.13 (Cor.) Résoudre l'équation différentielle $tf'(t) - f(t) + 3t^2 f(t)^2 = 0$ en donnant les intervalles sur lesquels la solution est valable.

[Indication : montrer d'abord que sur tout intervalle où f ne s'annule pas, $g(t)=\frac{t}{f(t)}$ vérifie une équation différentielle linéaire du premier

III. Sommes de Riemann, méthodes numériques

 $\overline{\mathbf{Ex.}}$ 24.14 Déterminer les limites des suites :

$$u_n = \sum_{k=1}^n \frac{1}{n+k} \quad v_n = \sum_{k=1}^n \frac{n}{(n+k)^2} \quad w_n = \sum_{k=1}^n \frac{\sqrt{k}}{n\sqrt{n}}$$
$$x_n = \sum_{k=0}^n \frac{k}{k^2 + n^2} \quad y_n = \sum_{k=0}^n \frac{k}{k^2 + n^2}$$

Ex. 24.15 Soit f une fonction de classe C^1 .

- a. Démontrer le théorème de convergence des sommes de Riemann.
 - b. Méthode des rectangles

Majorer l'erreur commise en approximant $\int_a^b f(t)dt$ par

$$R_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + \frac{(2k+1)(b-a)}{2n}\right).$$

c. Méthode des trapèzes

Majorer l'erreur commise en approximant $\int_{-t}^{t} f(t)dt$ par

$$T_n = \frac{b-a}{n} \sum_{k=0}^{n-1} \frac{f(a+k\frac{(b-a)}{n}) + f(a+(k+1)\frac{(b-a)}{n})}{2}.$$

IV. Pour finir

Ex. 24.16 Soient $f: x \in]0; +\infty[\mapsto f(x) = \frac{\ln x}{1+x^2}$ et

$$F: x \in]0; +\infty[\mapsto \int_{1}^{x} f(t) dt.$$

- a. Montrer que F est bien définie, continue et dérivable sur $|0;+\infty[$.
 - b. Étudier F et montrer que $\forall x \in]0; +\infty[, F(x) \geq 0.$

- c. Montrer que $\forall x \in]0; +\infty[, F\left(\frac{1}{x}\right) = F(x).$

Montrer que
$$\forall x \in]0;1],$$

$$\frac{1+x\ln(x)-x}{2} \leqslant F(x) \leqslant 1+x\ln(x)-x.$$

e. En déduire que $\lim_{x\to 0} F(x)$ existe et donner un encadrement de

Dans la suite, on note $C = \lim_{x \to 0} F(x)$. Elle est connue sous le nom de **constante de Catalan**.

- f. Montrer que $C = \lim_{x \to +\infty} F(x)$.
- g. Montrer que $\forall x \in]0; +\infty[$, $F(x) = \operatorname{Arctan}(x) \ln(x) \int_{1}^{x} \frac{\operatorname{Arctan}(t)}{t} dt.$
- h. Montrer que $C = \int_0^1 \frac{\operatorname{Arctan}(t)}{t} dt$. i. Montrer que $\forall t \in [0; 1], \forall n \in \mathbb{N},$ $\sum_{k=0}^{2n+1} \frac{(-1)^k t^{2k+1}}{2k+1} \leqslant \operatorname{Arctan}(t) \leqslant \sum_{k=0}^{2n} \frac{(-1)^k t^{2k+1}}{2k+1}.$
 - j. En déduire que $C = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2}$.
 - k. Représenter graphiquement F.

 $\overline{\text{Ex. } 24.17}$ (Cor.) Centrale 98[**] Étudier la fonction $I: x \mapsto c^{x^2}$ $\frac{\mathrm{d}t}{\ln(t)}$ (notamment ensemble de définition, dérivée, limites aux

Tracer sa représentation graphique.