Sensorimotor Integration

Eye Movements

- 1. Function and Organization of the Oculomotor System
- 2. Types of Eye Movements
- 3. Neural Control of VOR and Gaze Shifting

thats how we look at a face and analyze it. the brain picks it itself.

salient stimuli: stimuli that are interesting and highly analyzed (here nose, eyes and ear)

Recording Eye Movements

Stabilizing Eye Movements

Nature Reviews | Neuroscience

many animals dont actually have a fovea. humans focus always with the fovea since it has the highest concentration of photoreceptors => highest resolution

those are the fastest muscles (in the eyes) and they cannot fatigue (basically) control is very precise

3 antagonistic muscle pairs: lateral and medial rectus superior and inferior rectus superior and inferior oblique

the way it's controlled

CN III:

medial, superior, inferior rectus Inferior oblique

CN IV:

superior oblique

CN VI:

lateral rectus

CN III also innervates *levator palpebrae superioris* and parasympathetic from Edinger-Westphal nucleus (pupil constriction)

Types of Eye Movements:

Stabilizing:

- 1. Vestibulo-ocular Movements (VOR)
- 2. Optokinetic Eye Movements (OKR)

reflexes (not under conscious control)

Shifting:

3. Saccades

- conscious control
- 4. Smooth Pursuit
- 5. Vergence

saccades: fast movements when you look left/right => nearly no information to brain during the movement called saccadic depression smooth pursuit: just following an object. imagination of following a movement: doesnt work normally, looks like saccades then vergence: object somes nearer or farther away (change in distance). How much vergence is used by eyes correlates with how far away an object is

Stabilizing Eye Movements

high speeds (efficitent)

Vestibulo-ocular Reflex

surroundings line of sight remains fixed counter-rotation of eyes head rotation head rotation <10 ms position eye counter-rotation time

small speed (efficient)

Optokinetic Response

gain: eyes follow at the right speed the object = 1 obj moves twice as fast as eyes can follow => gain > 1

Saccadic Eye Movements

balistic, used in gaze shifting (foveation)

Smooth Pursuit Movements

maintains foveation, voluntary but difficult without visual target

Saccades

old new target target rapid change in eye position eye position ~400 deg/s eye velocity ~100 ms

Smooth Pursuit

Vergence Movements

Disconjugative eye movements

Neuronal Control of the Vestibular Ocular Reflex

Neuronal Control of Gaze Shifting Eye Movements

How to move the eyes to the right

2 gaze shifting centers:

lec: dont learn tha PRPE (paramedian pontine reticular formation)

Rostral interstitial nucleus

horizontal gaze shifts vertical gaze shifts

"An Unexpected Visitor"

"Give the ages of the people."

"Surmise what the family had been doing before the arrival of the unexpected visitor."

What guides eye movements?

Superior Colliculus

Frontal eye field (Brodmann 8)

The Superior Colliculus Integrates (Multimodal) Sensory Input and Motor Output

superior colliculus important before there was a cortex even in humans still, but cortex also took over some functions

Sensory and Motor Map in the Superior Colliculus are Aligned

red line: stimulation leads to horiz movement 1: up and right, 4: down and left

Electric stimulation of point 8 gives eye movement to the left Light stimulation of position 0°/30 ° yield activation of recording electrode on point 8

Projections from the deep layers of the Superior Colliculus to the Gaze Centers Initiate Appropriate Eye Movements

voluntary movement: information from PFC

.... and you thought this was complicated?

Frontal eye field is part of premotor cortex gets direct input from SC

and vestibular nuclei

cerebellum: check if movements are done right. the developing brain has to practice the movements PD: not a perfect eye movement control like healthy people