

F.E. (Sem. – II) Examination, May/June 2010 BASIC ELECTRONICS ENGG. (RC in 2007-08)

Duration: 3 Hours Total Marks: 100

Instructions: 1) Attempt any 5 questions selecting at least one from each Module.

2) Assume suitable data only if necessary.

MODULE - I

1. a) Draw the V-I characteristics of a p-n junction diode. Explain the piecewise linear equivalent circuit of a diode.

6

b) Explain the phenomenon of avalanche and zener breakdown in a diode.

6

6

c) Over what range of i/p voltage will the zener circuit shown maintain 30 V across the 2 k Ω load assuming that series resistance R = 200 Ω . Zener current rating is 25 mA.

Explain the CE configuration of a non transistor. Draw the input and output characteristics.

(b) What is the need for big Technication to a few and the configuration to a few a few and the Load Line Analysis for a Fixed Base circus. What is the significance of a load line.

(d) Determine the Q point AS sircuit show a load line.

(e) Determine the Q point AS sircuit show a load line.

- d) What are the advantages of using a silicon diode over germanium diode? 2
- a) With neat diagram explain the working of center-tapped full wave rectifier.
 Derive the expressions for Ripple factor, Ratio of rectification and T.U.F.

5

3

5

5

b) Determine V_{01} and V_{02} for the network shown below:

- c) A diode having internal resistance $R_f = 20\Omega$ is used for half ware rectification. The applied voltage at the input of the rectifier is $v = 50 \sin \omega t$ and $R_L = 800\Omega$. Find I_m , I_{dc} , I_{rms} , η , V_{dc} and T.U.F.
- d) Determine the output for the following circuit for the input shown:

MODULE - II

- 3. a) Explain the CE configuration of a npn transistor. Draw the input and output characteristics.
 - b) What is the need for bias stabilisation in a transistor?
 - c) Explain the Load Line Analysis for a Fixed Bias circuit. What is the significance of a load line.
 - d) Determine the Q point for the circuit shown below:

- 4. a) Explain the voltage divider biasing method for a transistor.
- 6
- b) Determine the stability factor $S(I_{co})$ for the emitter stabilised bias.
- 8
- c) Determine the stability factor S (V_{BE}) and change in I_C from 25°C to 100°C if corresponding V_{BE} are 0.65 and 0.48 respectively for the following bias arrangements:
 - a) Fixed bias $R_B = 240 \text{ k}\Omega$ and $\beta = 100$
 - b) Emitter bias with $R_B = 240 \text{ k}\Omega$, $R_E = 1 \text{ k}\Omega$, $\beta = 100$
 - c) Emitter bias with $R_B = 47 \text{ k}\Omega$, $R_E = 4.7 \text{ k}\Omega$, $\beta = 100$

6

and output characteristics. III - 3JUCOM

5. a) Explain the working and characteristics of a enhancement type n-channel MOSFET.

6

b) Determine I_{DQ} , V_{GSQ} , V_{D} , V_{S} , V_{DS} and V_{DG} for the network shown below :

8

c) With the help of neat diagram explain the self bias configuration of a JFET.

6

6. a) For the network shown below determine V_{GSQ} , I_{DQ} , V_{DS} , V_D , V_G and V_S .

8

 $I_{DSS} = 10mA$

VP = -8V

b) Explain the working of a n-channel JFET. Draw the transfer characteristics and output characteristics.

7

c) With the help of neat diagram explain the feedback biasing arrangement of a MOSFET.

5

b) Determine Inc. VCsc. Vn. VI - AJUDOM for the network shown below:

7. a) Explain the construction and working of a reflective type field effect LCD.

6

8

b) Explain the working and use of solar cells.

c) Describe the various methods of transistor fabrication.

6

8. a) Give the working and characteristics of SCR. Give two applications.

7

b) Explain the working of an Oscillator. What is the significance of Barkhausen's criteria?

_

7

c) Write short notes on any two:

6

a) CRO

- b) OPAMP
- c) Photoconductive cell
- d) IR Emitters.