Linear Models Punt	os totales 100/120 ?	
Se ha registrado el correo del encuestado (0224969@up.edu.mx) al enviar este formulario.		
✓ It is a linear model to predict a numerical output (reg on numerical inputs *	gression) based 10/10	
✓ Linear regression	✓	
Logistic regression		
Support vector machines		
✓ Feature normalization consists in *	10/10	
Transform the variables for having a range based on the norm $(x-avr(x))/std(x)$	mal distribution x = 🗸	
Using only the values of variables in the interquartile range		
Using only the variables with a correlation higher than 0.7		
X The tecnique of classification one vs all consists in *	0/10	
One classifier is fitted by class. If we have 3 classes, we have	3 classifiers	
Only one classifier is created but each iteration the classifier locals	learns a specific 💢	
Respuesta correcta		
One classifier is fitted by class. If we have 3 classes, we have	3 classifiers	

Nombre completo * Luis Eduardo Robles Jiménez	
✓ Which one of the following techniques calculate a hyperplane that divides the classes by maximizing the margin between the classes *	10/10
C Linear regression	
Logistic regression	
Support vector machines	✓
✓ The kernel trick allows to *	10/10
Incorporate polynomial functions to linear models	
Transform the data from an vectorial space to another using similarities among samples	
Reduce overfitting of models	

✓ The goal of the second term (red) in the following equation is *

10/10

$$\min_{\theta} J(\theta) = \frac{1}{2} \sum_{i=1}^{m} Cost(h(x^{(i)}), y^{(i)}) + \lambda \sum_{j=1}^{n} \theta_{j}^{2}$$

- Minimize the error of predictions
- To reduce overfitting

Este formulario se creó en Universidad Panamericana.

Google Formularios

