

人工智能

第13讲:机器学习-强化学习 I

张晶

2023年春季

● 参考教材: 吴飞,《人工智能导论:模型与算法》,高等教育出版社

● 在线课程: https://www.icourse163.org/course/ZJU-1003377027?from=searchPage

● 本部分参考: 李宏毅, 《机器学习》课程, 台湾大学。

- 一、强化学习问题定义
- 二、基于策略的强化学习
- 三、基于价值的强化学习
- 四、Actor-Critic方法
- 五、其他强化学习方法

监督学习→强化学习

很多任务中标注数据非常困难

…… 但是可以告诉机器某个结果是好是坏

ChatGPT: 自监督预训练+强化学习微调

监督学习→强化学习

• 监督学习: 根据监督学习

Next move: **"**5-5"

Next move: **"**3-3"

•强化学习:根据经验学习

First move many moves

(Two agents play with each other.)

AlphaGo: 监督学习+强化学习

ChatGPT: 自监督学习+强化学习

- 一、强化学习问题定义
- 二、基于策略的强化学习
- 三、基于价值的强化学习
- 四、Actor-Critic方法
- 五、其他强化学习方法

机器学习≈函数拟合

例子: 视频游戏

•太空侵略者

游戏终止: 所有的外星人被杀,或太空船损坏。

例子: 视频游戏

例子: 视频游戏

例子: 围棋游戏 AlphaGO

例子: 围棋游戏 AlphaGO

寻找能够最大化期望奖励的智能体

例子: 机器人走迷宫

(序列优化)问题:

- 在下图网格中,假设有一个机器人位于 s_1 ,其每一步只能向上或向右移动一格,跃出方格会被惩罚(且游戏停止)
- 如何使用强化学习找到一种策略,使机器人从s₁到达s₉?

刻画解该问题的因素

智能主体	迷宫机器人	
环境	3×3方格	
状态	机器人当前时刻所处方格	
动作	每次移动一个方格	
奖励	到达S9时给予奖励;越界时给予惩罚	

S ₇	S ₈	3 9
s_4	8 ₅	s ₆
s_1	<i>s</i> ₂	S_3

马尔可夫决策过程(Markov Decision Process)

使用离散马尔可夫过程描述机器人移动问题

- 随机变量序列 $\{S_t\}_{t=0,1,2,\cdots}$: S_t 表示机器人第t步所在位置(即状态),每个随机变量 S_t 的取值范围为 $S = \{s_1, s_2, \cdots, s_9, s_d\}$
- 动作集合: *A* = {上,右}

下一状态只取决于当前状态

- 状态转移概率 $Pr(S_{t+1}|S_t,a_t)$: 满足马尔可夫性,其中 $a_t \in A$ 。状态转移如图所示。
- 奖励函数: $R(S_t, a_t, S_{t+1})$
- 衰退系数: γ ∈ [0,1]

- 动作集合A可以是有限的,也可以是无限的
- 状态转移可是确定(deterministic)的,也可以是随机概率性(stochastic)的。
- 确定状态转移相当于发生从 S_t 到 S_{t+1} 的转移概率为1

综合以上信息,可通过 $MDP = \{S, A, Pr, R, \gamma\}$ 来刻画马尔科夫决策过程

马尔可夫决策过程(Markov Decision Process)

在机器人移动问题中:状态、行为、衰退系数、起始/终止状态、回报、状态转移概率矩阵 的定义如下

$$S = \{s_1, s_2, \dots, s_9, s_d\}$$

 $A = \{\bot, 右\}$
 $\gamma = 0.99$

起始状态:
$$S_0 = S_1$$

终止状态:
$$S_T \in \{s_9, s_d\}$$

图7.4 机器人寻路问题的状态转移函数

如何从起始状态 到终止状态?

强化学习中的策略学习

马尔可夫决策过程 $MDP = \{S, A, Pr, R, \gamma\}$ 对环境进行了描述,那么智能主体如何与环境交

互而完成任务? 需要进行策略学习

策略函数:

- 策略函数 π : $S \times A \mapsto [0,1]$, 其中 $\pi(s,a)$ 的值表示在状态s下采取动作a的概率。
- 策略函数的输出可以是确定的,即给定s情况下,只有一个动作a使得概率 $\pi(s,a)$ 取值为1。 对于确定的策略,记为 $a=\pi(s)$ 。
- 如何进行策略学习:一个好的策略是在当前状态下采取了一个行动后,该行动能够在未来收到最大化的回报Return:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$$

强化学习分类

- 基于策略的强化学习(Policy-based)
 - 显式学习: 策略函数
 - 无价值函数
- · 基于价值的强化学习(Value-based)
 - 显式学习: 价值函数
 - 隐式得到: 策略(可以通过价值函数得出策略)
- 行动器-判别器方法(Actor-Critic)
 - 显式学习: 策略函数和价值函数

强化学习分类

- · 基于环境模型的强化学习(Model-based)
 - 显式学习:环境模型
 - 不一定需要策略函数或价值函数
- 无模型的强化学习(Model-free)
 - 显式学习:价值函数或(和)策略函数
 - 无环境模型

强化学习分类

- 一、强化学习问题定义
- 二、基于策略的强化学习
- 三、基于价值的强化学习
- 四、Actor-Critic方法
- 五、其他强化学习方法

机器学习步骤

步骤1: 定义 带有未知参 数的函数

步骤2: 从训 练数据中定 义损失函数

步骤3: 优化

步骤 1: 定义带有未知参数的函数

• 神经网络的输入: 向量或矩阵形式的状态数据

• 神经网络的输出: 每个神经元对应的动作

步骤 2: 定义损失函数

步骤 2: 定义损失函数

初始状态 s_1

状态 S_2

状态 S_3

After many turns

Game Over (spaceship destroyed)

获得奖励 r_T

动作 a_T

This is an episode(片段).

总奖励(回报):

$$G = \sum_{t=1}^{T} r_t$$

步骤 3: 优化

Trajectory (轨迹) $\tau = \{s_1, a_1, s_2, a_2, \dots\}$

•对于某个状态s,执行(或不执行)某个动作 \hat{a}

执行动作 \hat{a} : L = e

不执行动作 \hat{a} : L=-e

$$\pi^* = arg \min_{\pi} L$$

Training Data

Training Data

- 某个动作的执行会影响后续状态,进而影响后续的奖励
- 奖励延迟: 智能体需要牺牲立即奖励, 以获得长远奖励
- 在太空入侵者游戏中,只有"fire"会引起正向奖励,因此版本0会让智能体不断开火。

$$G_1 = r_1 + r_2 + r_3 + \dots + r_N$$

 $G_2 = r_2 + r_3 + \dots + r_N$
 $G_3 = r_3 + \dots + r_N$

累积奖励(cumulated reward)

Training Data

$$\{s_1, a_1\} \quad A_1 = G_1$$

$$\{s_2, a_2\}$$
 $A_2 = G_2$

$$\{s_3, a_3\}$$
 $A_3 = G_3$

$$\{s_N, a_N\}$$
 $A_N = G_N$

$$G_t = \sum_{n=t}^{N} r_n$$

Training Data

Also the credit of a_1 ?

$$G_1 = r_1 + r_2 + r_3 + \dots + r_N$$

$$G_1' = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots$$

衰退系数(Discount factor) $\gamma < 1$

$$\{s_1, a_1\}$$
 $A_1 = G'_1$
 $\{s_2, a_2\}$ $A_2 = G'_2$
 $\{s_3, a_3\}$ $A_3 = G'_3$
 \vdots \vdots

$$\{s_N, a_N\}$$
 $A_N = G'_N$

$$G_t' = \sum_{n=t}^N \gamma^{n-t} r_n$$

奖励的好坏是"相对的" 如果所有的 $r_n \geq 10$,则 $r_n = 10$ 是负奖励…

> 减去一个基线值b ??? 使得 G'_t 具有正负奖励值

Training Data

$$\{s_1, a_1\}$$
 $A_1 = G'_1 - b$
 $\{s_2, a_2\}$ $A_2 = G'_2 - b$
 $\{s_3, a_3\}$ $A_3 = G'_3 - b$
 \vdots \vdots

$$G_t' = \sum_{n=t}^N \gamma^{n-t} r_n$$

 $\{s_N, a_N\}$ $A_N = G'_N - b$

- 初始化策略网络参数 π^0
- 迭代训练 i = 1 to T
 - ■用策略网络πⁱ⁻¹ 进行交互
 - 获得训练数据 $\{s_1, a_1\}, \{s_2, a_2\}, ..., \{s_N, a_N\}$
 - 计算 A₁, A₂, ..., A_N
 - 计算损失*L*
 - $\blacksquare \pi^i \leftarrow \pi^{i-1} \eta \nabla L$

数据采集是在训练迭代过 程的"for 循环"内部完成.

每次模型的更新都需要重新采集整个训练数据集

- 初始化策略网络参数 π^0
- 迭代训练 i = 1 to T
 - ■用策略网络πⁱ⁻¹进行交互
 - 获得训练数据 $\{s_1, a_1\}, \{s_2, a_2\}, ..., \{s_N, a_N\}$
 - 计算 *A*₁, *A*₂, ..., *A*_N
 - 计算损失 *L*

$$\blacksquare \pi^i \leftarrow \pi^{i-1} - \eta \nabla L$$

不一定适合 π^i

π^{i-1} 学习的经验

One man's meat is another man's poison.

- 初始化策略网络参数 π^0
- 迭代训练 i = 1 to T
 - ■用策略网络πⁱ⁻¹ 进行交互
 - 获得训练数据 $\{s_1, a_1\}, \{s_2, a_2\}, ..., \{s_N, a_N\}$
 - 计算 *A*₁, *A*₂, ..., *A*_N
 - 计算损失 L
 - $\blacksquare \pi^i \leftarrow \pi^{i-1} \eta \nabla L$

Trajectory of π^{i-1}

May not observe by π^i

在线策略 On-policy v.s. 离线策略 Off-policy

- 待训练策略和交互策略相同 → On-policy
- 待训练策略和交互策略不同 → Off-policy → Proximal Policy Optimization (PPO)

因此, 无需每次更新一次参数后都重新采集数据.

训练数据采集:探索

actor在数据采集过程中应该具有一定随机性.

也就是要对数据进行采样的主要原因. ②

如果actor只执行"left"这个行为.

将永远无法得知采取"fire"行为 会得到何种奖励.

DeepMind - PPO(off-policy)

https://youtu.be/gn4nRCC9TwQ

OpenAl – PPO(off-policy)

https://blog.openai.com/openai-baselines-ppo/

- 一、强化学习问题定义
- 二、基于策略的强化学习
- 三、基于价值的强化学习
- 四、Actor-Critic方法
- 五、其他强化学习方法

Critic (评判器)

$$G_1' = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots$$

- Critic: 对于策略 π , 评判状态s (且执行动作a)的好坏
- 价值函数Vⁿ(s):
 - 使用 π 时,观察到状态s后未来获得的折扣累积奖励(discounted *cumulated* reward)的<mark>期望</mark>。

Critic的输出值与当前策略π有关

估计 $V^{\pi}(s)$

- ·蒙特卡洛法Monte-Carlo (MC)
 - Critic 观看π与环境进行交互。

观察到 s_a 后,

在一个片段(episode)结束后, 累积奖励为 G'_a

观察到 s_b 后, 在一个片段(episode)结束后, 累积奖励为 G'_b

$$S_b \longrightarrow V^{\pi} \longrightarrow V^{\pi}(s_b) \longleftrightarrow G'_b$$
 回归问题

・时序差分法Temporal-difference (TD)

MC v.s. TD

[Sutton, v2, Example 6.4]

• 假设critic观察到了以下8个片段(episodes)

•
$$s_a, r = 0, s_b, r = 0$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_b, r = 1$$
, END

•
$$s_b$$
, $r = 0$, END

(假设
$$\gamma = 1$$
, 并忽略动作.)

$$V^{\pi}(s_b) = 3/4$$

$$V^{\pi}(s_a) = ? 0? 3/4?$$

蒙特卡洛法:
$$V^{\pi}(s_a) = 0$$

时序差分法:
$$V^{\pi}(s_a) = V^{\pi}(s_b) + r$$
 3/4 3/4 0