Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №10 "Исследование математической модели электромеханического объекта управления"

Вариант - 5

Выполнил		(фамилия, и.о.)	(подпись)
Проверил		(фамилия, и.о.)	(подпись)
п п	_ 20r.	Санкт-Петербург,	20r.
Работа выполнена с	оценкой		
Дата защиты "'	' 20	0г.	

Цель работы. Изучение математических моделей и исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения.

Исходные данные: Представлены в таблице 1

Таблица 1 - Исходные данные

U_H , B	n_0 , об/мин	I_H , A	M_H , Нм	<i>R</i> , Ом	$T_{\rm я}$, мс	$J_{\scriptscriptstyle m I}$, кг \cdot м 2	T_y , мс	i_p	$J_{\scriptscriptstyle m M},\;$ кг \cdot м 2
120	6000	21	4	0.53	8	$1.9 \cdot 10^{-3}$	8	40	5.75

Рассчет необходимых параметров модели:

$$\begin{split} J_{\rm p} &= 0.2 \cdot J_{\rm A} = 3.8 \cdot 10^{-4} \\ w_0 &= n_0 \cdot \frac{2\pi}{60} = 628 \\ k_e &= \frac{U_H}{w_0} = 0.191 \\ k_{\rm M} &= \frac{M_H}{I_H} = 0.1905 \\ J_{\sum} &= J_{\rm A} + J_{\rm p} + \frac{J_{\rm M}}{i_p^{\ 2}} = 0.0059 \\ K_y &= \frac{U_H}{U_m} = 12 \\ K &= \frac{K_y}{k_e \cdot i_p} = 1.57 \\ K_f &= \frac{R}{k_m \cdot k_e \cdot i_p^{\ 2}} = 0.0091 \\ T_M &= \frac{R \cdot J_{\sum}}{k_m \cdot k_e} = 0.085 \end{split}$$

Коэффициенты передачи измерительных устройств:

$$K_u = 0.1667$$

 $K_i = 0.1119$
 $K_w = 0.0318$
 $K_\alpha = 1.4047$

1 Исследование полной математической модели ЭМО

Схема моделирования представлена на рисунке 1

Рисунок 1 - Схема моделирования

Графики переходных процессов при U=5 и $M_{\scriptscriptstyle{\mathrm{CM}}}=0$ представлены на рисунке 2

Рисунок 2 - Переходные процессы

1.1 Исследование влияния момента сопротивления $M_{\rm cm}$ на вид переходных процессов

Графики переходных процессов при различных $M_{\rm cm}$ для каждого из исследуемых значений представлены на рисунке 3

Рисунок 3 - Переходные процессы: а) угол поворота, b) скорость вращения, c) напряжение, d) сила тока

Рассчитаем значения времени переходного процесса $t_{\rm II}$ и установившееся значение при различных $M_{\rm CM}$ для w и I. Результаты представлены в таблице 2

Таблица 2 – Экспериментальные данные

$M_{ ext{cm}}$	t	п	Установившееся значение		
IVI CM	w	I	w	I	
0	0.25	0.5	9.98	0.03	
53	0.25	0.43	9.36	0.8	
106	0.25	0.39	8.75	1.6	
160	0.25	0.36	8.13	2.37	

1.2 Исследование влияния момента инерции механизма $J_{\scriptscriptstyle \rm M}$ на вид переходных процессов

Графики переходных процессов при различных $J_{\scriptscriptstyle \rm M}$ для каждого из исследуемых значений представлены на рисунке 4

Рисунок 4 - Переходные процессы: а) угол поворота, b) скорость вращения, c) напряжение, d) сила тока

Рассчитаем значения времени переходного процесса $t_{\rm II}$ и установившееся значение при различных $J_{\rm M}$ для w и I. Результаты представлены в таблице 3

Таблица 3 – Экспериментальные данные

$J_{\scriptscriptstyle m M}$	t	п	Установившееся значение		
J _M	w	I	w	I	
2.875	0.17	0.49	9.99	0	
4.6	0.22	0.49	9.99	0	
6.9	0.27	0.49	9.96	0.06	
8.625	0.31	0.49	9.13	0.12	

1.3 Исследование влияния передаточного числа i_p на вид переходных процессов при $M_{\rm cm}=0$ и $M_{\rm cm}=80$

При $M_{\mathrm{cm}}=0$

Графики переходных процессов при различных i_p для каждого из исследуемых значений представлены на рисунке 5

Рисунок 5 - Переходные процессы: а) угол поворота, b) скорость вращения, c) напряжение, d) сила тока

Рассчитаем значения времени переходного процесса $t_{\rm II}$ и установившееся значение при различных i_p для w и I. Результаты представлены в таблице 4

Таблица 4 – Экспериментальные данные

i	$t_{\scriptscriptstyle \Pi}$		Установившееся значение		
i_p	w	I	w	I	
10	2.58	5.95	10	0	
32	0.34	3.45	10	0	
48	0.2	2	10	0	
70	0.14	1.37	10	0	

При $M_{\mathrm{cm}}=80$

Графики переходных процессов при различных i_p для каждого из исследуемых значений представлены на рисунке 6

Рисунок 6 - Переходные процессы: а) угол поворота, b) скорость вращения, c) напряжение, d) сила тока

Рассчитаем значения времени переходного процесса $t_{\rm II}$ и установившееся значение при различных i_p для w и I. Результаты представлены в таблице 5

Таблица 5 – Экспериментальные данные

i_p	$t_{\scriptscriptstyle \Pi}$		Установившееся значение		
	w	I	w	I	
10	2.59	3	6.28	4.71	
32	0.34	0.56	8.84	1.47	
48	0.2	0.36	9.23	0.98	
70	0.14	0.27	9.47	0.67	

2 Исследование упрощенной математической модели ЭМО

Схема моделирования представлена на рисунке 7

Рисунок 7 - Схема моделирования

Графики переходных процессов для w и α при U=5 и $M_{\rm cm}=0$ для упрошенной модели и полной при различных значениях $T_{\rm g}$ и T_y представлены на рисунках 8 и 9 соответственно.

Рисунок 8 – Переходные процессы w

Рисунок 9 – Переходные процессы*а*

3 Вывод математических моделей вход-состояние-выход

Полная модель

Полная модель данного ЭМО может быть описана следующей системой:

$$\begin{cases} \dot{X} = A \cdot X + B \cdot u \\ y = C \cdot X + D \cdot u \end{cases}$$

Возьмем в качестве вектора состояния $X = \begin{bmatrix} U_y \\ I \\ w \\ \alpha \end{bmatrix}$, а за вектор возмущающих воздействий $u = \begin{bmatrix} U \\ M_{\text{cm}} \end{bmatrix}$

Выходная величина $y=\alpha \Rightarrow C=\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$ D=0 Матрицы A и B найдем, используя схему модели. Получаем:

$$A = \begin{bmatrix} -\frac{1}{T_y} & 0 & 0 & 0\\ \frac{K_{\mathbb{A}}}{T_{\mathbb{R}}} & -\frac{1}{T_{\mathbb{R}}} & -\frac{K_e \cdot K_{\mathbb{A}}}{T_{\mathbb{R}}} & 0\\ 0 & \frac{K_M}{J_{\Sigma}} & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} -\frac{K_y}{T_y} & 0\\ 0 & 0\\ 0 & -\frac{1}{i_p \cdot J_{\Sigma}}\\ 0 & 0 \end{bmatrix}$$

Упрощенная модель

Упрощенная модель данного ЭМО может быть описана следующей системой:

$$\begin{cases} \dot{X} = A \cdot X + B \cdot u \\ y = C \cdot X + D \cdot u \end{cases}$$

Возьмем в качестве вектора состояния $X = \begin{bmatrix} w \\ \alpha \end{bmatrix}$, а за вектор возмущающих воздействий $u = \begin{bmatrix} U \\ M_{\mathsf{cM}} \end{bmatrix}$

Выходная величина $y=\alpha \Rightarrow C=\begin{bmatrix} 0 & 1 \end{bmatrix}$ D=0

Матрицы A и B найдем, используя $\overline{\text{схему}}$ упрощенной модели. Получаем:

$$A = \begin{bmatrix} -\frac{1}{T_M} & 0\\ 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} \frac{K}{T_M} & -\frac{K_f}{T_M}\\ 0 & 0 \end{bmatrix}$$

Выводы

В данной работе была исследована математическая модель электромеханического объекта управления. Были выявлены зависимости переходных процессов от различных параметров. Так, при увеличении момента сопротивления установившееся значение тока якоря увеличивается, а скорости - уменьшается. При увеличении момента инерции механизма время переходного процесса скорости увеличивается и среднее значение тока за этот время. При уменьшении передаточного числа редуктора при нулевом моменте сопротивления увеличивается время переходных процессов. А при ненулевом моменте сопротивления увеличивается значение установившегося тока и уменьшается значение скорости.

Также было произведено сравнение упрощенной и полной модели ЭМО. Было экспериментально доказано, что если электрические постоянные времени малы по сравнению с механическими, то ими можно пренебречь и перейти от полной к упрощенной модели ЭМО. Также был произведен рассчет математических моделей вход-состояние-выход обеих моделей.