Recall:

d nonempty collection I with (+, .), the rules for Carrying out addition of a elements of I and for multiplying a real Scalar with the element

of V respectively and that
Obeys properties (i)...(x)

is a called as a vector

Space over R

Every element of V is called
as a vector.

Let &, B be Real Scalars Examples: (1) $\mathcal{L} = \left\{ \begin{pmatrix} \chi_1 \\ 2\chi_1 \end{pmatrix}, \chi_1 \in \mathbb{R} \right\}$ (i) $\vec{u} + \vec{v} = (u_1) + (v_1) = (u_1 + v_1)$ $(2u_1) + (2v_1) = (u_1 + 2v_1)$ is a vector space. $\vec{u} + \vec{v} \in V \rightarrow \text{Closed under } VA$ Suppose $\vec{u} \times \vec{r}$ are elements of U, then $\vec{v}: (v_1)$ $2u_1$ (ii) $\alpha \rightarrow \text{real } \text{Scalar}$ $\alpha \cdot \vec{u} = \alpha \left(u_{1} \right) = \left(\alpha u_{1} \right) = \left(\alpha u_{1} \right) \in V$

Use closed under Scalar multiplication. (iii) $\vec{u} = (u_1)$, $\vec{v} = (v_1)$, $\vec{v} = (v_1 + v_1)$, $\vec{v} = (v$

$$(iv) \quad \mathcal{U}_{1}, v_{1}, w$$

$$u+(v+w) = \left(u_{1} + \left(v_{1} + w_{1}\right)\right)$$

$$= \left(u_{1} + v_{1} + w_{2}\right)$$

$$\left(u+v\right) + w = \left(u_{1} + v_{1}\right)$$

$$\left(u+v\right) + w = \left(u+v\right) + w$$

$$\left(u+v\right) + w$$

(iv) $\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 2(0) \end{pmatrix} \in \mathbb{V}$.

Please Check other properties. $\Rightarrow \mathbb{V} = \frac{2}{2} \begin{pmatrix} x_1 \\ 2x_1 \end{pmatrix}, x_1 \in \mathbb{R}^{2}$ is a Vector space.

Ex(2).
$$V = \begin{cases} 0 \\ 0 \end{cases}$$
 is a vector space.

Ex(3). Set of all diagonal matrices with diagonal elements from R.

$$\mathcal{Z}^{2\times 2} = \begin{cases} (d_1 \ 0), \ d_1, d_2 \in \mathbb{R} \end{cases}$$

is à vector space over R.

Ex: 4: Set of all polynomials Check if J_2 is a vector space of degree ≤ 2 with real usual vector addition x.

Coeffecients: Let this set be scalar multiplication.

denoted as J_2 . J_2 Set contains polynomials of the form J_2 J_3 J_4 J_5 J_5 J_6 J_7 J_8 J_8

Closure under addition: ap: a0 + a1 x + a2 x2 bp: bo + b1 x + b2 x2 $a_{\beta} + b_{\beta} = (a_0 + b_0) + (a_1 + b_1) \times + (a_2 + b_2) \times^2$ Sum of any & polynomials of deg ≤ 2 is also a polynomial of deg ≤ 2 :

Scalar Multiplicⁿ: Let & be a seal no

Let α be a seal no & α_{5} : $\alpha_{0} + \alpha_{1} x + \alpha_{2} x^{2}$.

 $\alpha_{0} = \alpha \left(\alpha_{0} + \alpha_{1} x + \alpha_{2} x^{2} \right)$ $= \alpha_{0} + (\alpha_{0}) x + (\alpha_{2}) x^{2} \in \mathcal{P}_{2}.$

Verify other properties & establish

p is a vector space.

Ex5. A plane in \mathbb{R}^3 that det \mathbb{W} be the plane passing theo' passes through the oxigin. The oxigin in 3D.

Let \vec{z} and \vec{y} be any & vectors on the plane. The parallelogram formed by \vec{z} & \vec{y} is entirely in the plane and.

The initial point of all vectors in \vec{z} + \vec{y} \rightarrow Diagonal of the is at the oxigin \mathbb{R}^3 parallelogram is also is \mathbb{W} .

Rest of the properties hold good. W is closed under Vector addition Any plane passing thro' Scalar Mutiplica: Let & be any Scalar & il be a vector in W the Origin in R3 is a Vector du → either parallel to il or equal to the zero vector. Space. Since the plane passes thro' the Origin if Xu:3, it is in w

(i) Any line passing thro' the Origin is a Vector space. (ii) dry plane passing thro' the Origin is a vector space.