

Travail et puissance d'une force constante

I) Travail d'une force constante en translation rectiligne :

1) Définition d'une force constante

On dit qu'une force \vec{F} est constante ; si son vecteur garde :

- **✓** Même direction.
- ✓ Même sens.
- **✓** Même intensité.

Exemple: Le poids d'un corps solide, la réaction du sol sur le corps (s)

2) Notion de travail d'une force :

En physique, le travail est une notion liée aux *forces* et aux *déplacements* de leurs points d'application.

On dit qu'un force travaille, quand son point d'application de déplace.

3) Expression du travail d'une force :

Résumé:

M

II) Travail d'une force constante en translation curviligne :

On découpe la trajectoire en petit segment δl infiniment petit. On note par $uW_i(\vec{F})$ le travail élémentaire correspondant au déplacement Uli:

Le travail total de la force est égale à la somme des travaux élémentaire

$$\sum \, \mathsf{u} \, W_i(\vec{F}\,) = \sum \, \vec{F} \, . \overrightarrow{\mathsf{u} \, l_i} = \vec{F} \, . \sum \, \overrightarrow{\mathsf{u} \, l_i}$$

Donc:

$$W(\vec{F}) = \vec{F}.\overrightarrow{AB}$$

M

III) Travail d'un ensemble de force :

Le travail d'un ensemble de force $\vec{r}_1; \vec{r}_2; \vec{r}_3;; \vec{r}_n$ appliquer à un même solide en translation est égale au produit scalaire de l'ensemble de vecteurs par le même vecteur déplacement

$$W_{A\to B} = (\vec{F}_1 + \vec{F}_2 + \vec{F}_3 + ... + \vec{F}_n).\overrightarrow{AB}$$

$$W_{A \rightarrow B} = \overset{\rightarrow}{F_1}.\overset{\rightarrow}{AB} + \overset{\rightarrow}{F_2}.\overset{\rightarrow}{AB} + + \overset{\rightarrow}{F_n}.\overset{\rightarrow}{AB} = \vec{W} \begin{pmatrix} \overset{\rightarrow}{F_1} \end{pmatrix} + \vec{W} \begin{pmatrix} \overset{\rightarrow}{F_2} \end{pmatrix} + + \vec{W} \begin{pmatrix} \overset{\rightarrow}{F_n} \end{pmatrix}$$

Exemple:

$$\vec{R} = \vec{f} + \vec{R}_{N}$$

$$W_{A \to B} (\vec{R}) = \vec{R} \cdot \vec{AB}$$

$$\mathbf{W}(\vec{\mathbf{R}}) = (\vec{f} + \vec{\mathbf{R}}_N) \overrightarrow{\mathbf{A}} = \vec{f} \cdot \overrightarrow{\mathbf{A}} + \overrightarrow{\mathbf{R}}_N \cdot \overrightarrow{\mathbf{A}}$$

$$\mathbf{W}_{A\to B} \left(\vec{\mathbf{R}} \right) = \mathbf{W}_{A\to B} \left(\vec{f} \right) + \mathbf{W}_{A\to B} \left(\vec{\mathbf{R}}_{N} \right)$$

IV) Applications:

1) Le travail de \vec{P} poids d'un solide

Cas N°1:

$$W(\overrightarrow{P}) = \overrightarrow{P} \cdot \overrightarrow{G_1} G_2$$

$$\overrightarrow{G_1G_2} = (x_2 - x_1)\overrightarrow{I} + (y_2 - y_1).\cancel{L} z_2 - z_1)\overrightarrow{K}$$

$$\vec{P} = P_x \cdot \vec{I} + P_y \cdot \vec{J} + P_z \cdot \vec{K} \Rightarrow \vec{P} = -m \times g \cdot \vec{K}$$

$$W_{G_1 \to G_2}(\vec{P}) = -m.g.\vec{K}.(z_2 - z_1).\vec{K}$$

$$W_{G_1 \to G_2}(\vec{P}) = \text{m.g.}(z_1 - z_2) = \text{m.g.}h$$

$$W_{G_1 \rightarrow G_2}(\vec{P}) = m.g.h$$

Conclusion:

- ☐ le travail du poids ne dépend pas de la position de départ » ni de la position d'arrivée
- **□** A la descente travail du poids est moteur : $W(\vec{P})_{G_1 \to G_2} > 0$

$$W_{G_1 \to G_2}(\vec{P}) = m.g.h$$

☐ A la montée travail du poids est résistant : $W(\vec{P})_{G_1 \to G_2} < 0$

$$W_{G_1 \rightarrow G_2}(\vec{P}) = -m.g.h$$

Donc:

$$W(\vec{P}) = \pm m.g.h$$

$$W(\overrightarrow{P}) = m.g.h$$

$$h = AB.sin()$$

$$W(\overrightarrow{P}) = m \cdot g \cdot A \cdot B \cdot (\alpha)$$

■Cas N°2: méthode 2

$$W_{A\to B}(\vec{P}) = \vec{P} \cdot \vec{AB}$$
 avec $\vec{P} = \vec{P}x + \vec{P}y$

$$W_{A\to B}(\vec{P}) = (\vec{P}x + \vec{P}y) \cdot \vec{AB} = \vec{P}x \cdot \vec{AB} + (\vec{P}y \cdot \vec{AB})$$

$$W_{A\to B}(\vec{P}) = \vec{P}x.\vec{AB}$$

$$\sin(\) = \frac{Px}{P}$$
 \longrightarrow $Px = P.\sin(\)$

$$W(\overrightarrow{P}) = m \cdot g \cdot A \cdot B \cdot (\alpha)$$

Cas N°3:

$$\overrightarrow{W(P)} = m \cdot g \cdot R \cdot (1 - c \circ \Gamma)$$

2) Le travail de \vec{R} action du plan

2-1/ sans frottement

Cas d'un plan horizontal

$$W(\overrightarrow{R} = \overrightarrow{R} \cdot \overrightarrow{AB} = R \cdot AB \cdot c \otimes \overrightarrow{\pi}) = 0$$

Cas d'un plan incliné

$$W(\overrightarrow{R} = \overrightarrow{R} \cdot \overrightarrow{AB} = R \cdot AB \cdot c \circ (\cancel{\pi}) = 0$$

Cas d'un plan curviligne

$$W(\overrightarrow{R} = \overrightarrow{R} \cdot \overrightarrow{AB} = 0$$

2-2/ Avec frottement

$$\Rightarrow$$
 k = tan($\{ \} = \frac{f}{R_{xx}}$

Cas d'un plan horizontal

$$W(\overrightarrow{R} = \overrightarrow{R} \cdot \overrightarrow{AB} = (\overrightarrow{R}_N \not \Vdash \overrightarrow{)} \cdot \overrightarrow{AB}$$

Angle de frottement

Travail résistant

$$W(\overrightarrow{R} = \overrightarrow{R}_{N}. \overrightarrow{A}B \not = -f . AB$$

$$W(\overrightarrow{R} = -f \cdot AB)$$

Cas d'un plan incliné

$$W(\overrightarrow{R} = -f \cdot AB)$$

Cas d'un plan curviligne

$$W(\overrightarrow{R} = -f \cdot \overrightarrow{AB} = -f \cdot r.\theta)$$

 $W(\vec{F}) = M(\vec{F})$

Travail (J)

Angle de rotation (rad)

Moment (N.m)

M

VI) Puissance d'une force :

□ Puissance moyenne:

La puissance moyenne d'une force est le quotient du travail de cette force par la durée Δt pour réaliser ce travail.

$$P_m = \frac{W}{\Delta t}$$

L'unité de la puissance dans le système international est le watt

□ Puissance instantanée :

Si la force \vec{F} réalise un travail élémentaire UW pendant une durée très petite $_{Ut}$ donc la puissance instantanée de cette force :

$$P = \frac{\mathsf{u} \, W}{\mathsf{u} \, t}$$

$$uW = \vec{F}.\vec{ul} \qquad \qquad \qquad P = \vec{F}.\frac{\vec{u}.\vec{l}}{u.t}$$

$$P = \vec{F} \cdot \vec{V}$$

VI) Puissance d'une force de moment constant :

$$P = \frac{W(\vec{F})}{t} \quad ; \quad W(\vec{F}) = M(\vec{F}) \times$$

