

SÉRIOVÁ KOMUNIKACE

Modbus

Úvod

Než se pustíme do Modbusu je nutno si vysvětlit následující pojmy:

- Protokol (komunikační)
- SCADA

Protokol (komunikační)

- Protokol můžeme chápat, jako soubor pravidel. V případě komunikačního protokolu se jedná o soubor pravidel a pokynů, jak komunikovat a přenášet data mezi zařízeními. Tyto pravidla mohou zahrnovat následující:
 - Pravidla pro syntaxi
 - Pravidla pro sémantiku
 - Pravidla pro synchronizaci vzájemné komunikace
- Protokoly mohou být realizovány hardwarově, softwarově a nebo jejich kombinací.
- Mezi protokoly patří například TCP/IP, Modbus, HTTP, DHCP, ...

SCADA

- SCADA = Supervisory Control And Data Acquisition
- SCADA systémy nezastávájí funkci plnohodnotných řídících systémů, ale zaměřují se spíše na dohled, řízení a sběr dat o celém systému (např. celé výrobní lince).
- Zvládnou tedy kombinovat více komunikačních technologií dohromady (např. Ethernet, RS232, RS485, ...) a následně s nimi pracovat. –> Využívají komunikační protokoly.

Modbus

- Otevřený komunikační protokol Modbus je založen na architektuře master/slave.
- Máme dva hlavní režimy:
 - Po sériové lince přenos informací probíhá prostřednictvím sériové linky, obvykle rozhraní RS232 nebo RS485
 - Modbus RTU
 - Modbus ASCII
 - Přes Ethernet přenos informací probíhá prostřednictvím TCP/IP
 - Modbus TCP
- Komunikace pomocí Modbusu funguje na principu Request/Response (Požadavek/Odpověď).

Request (Master to Slave)

- Modbus master může posílat zprávu buď individuálním zařízením v síti nebo všem najednou (broadcast).
- Zpráva se skládá z:
 - Přidaná adresa = slave adresa nebo broadcast adresa
 - Kód funkce = funkce, kterou má Slave provést + instrukce Read/Write
 - Datová část = data pro zapsání do paměti (pokud jsou potřeba) nebo instrukce pro provedení funkce
 - Kontrolní součet = zajištuje kontrolu zda je zpráva správně

Response (Slave to Master)

- Slave může jen odpovídat na zprávy
- Zpráva se skládá z:
 - Části pro ověření zda Request přišel správně (buď stejný kód funkce, který přišel nebo chybový kód)
 - Dat, které si Master vyžádal
 - Kontrolní části

Datový model

 Datový model MODBUSu je založen na sadě tabulek, s charakteristickým významem. Definovány jsou čtyři základní tabulky:

Označení	Význam	
Discrete Input	Jeden bit určený pouze ke čtení. Např. binární vstup.	
Coil	Jeden bit, který lze číst i zapisovat. Např. cívka relé, lze ji ovládat i zjišťovat její stav.	
Input Register	16bitový registr určený pouze ke čtení. Např. analogový vstup.	
Holding Register	16bitový registr, který lze číst i zapisovat. Např. čítač, lze jej nastavit i číst jeho hodnotu.	

Základní funkce Modbus

Základní funkce

Kód	Název funkce	Popis
01	Read Coils	Čtení jednoho nebo více bitů
02	Read Discrete Inputs	Čtení jednoho nebo více bitů
03	Read Holding Registers	Čtení jednoho nebo více 16bitových registrů
04	Read Input Registers	Čtení jednoho nebo více 16bitových registrů
05	Write Single Coil	Zápis jednoho bitu
06	Write Single Register	Zápis jednoho 16bitového registru
15	Write Multiple Coils	Zápis více bitů
16	Write Multiple Registers	Zápis více 16bitových registrů

Příklad

Požadavek

Kód funkce	1 byte	0x01
Počáteční adresa	2 byty	0x0000 až 0xFFFF
Počet cívek	2 byte	1 až 2000 (0x7D0)

Odpověď

Kód funkce	1 byte	0x01
Počet bytů	1 byte	N
Stavy cívek	N bytů	

 \mathbf{N} = počet cívek / 8, je-li zbytek po dělení nenulový, \mathbf{N} = \mathbf{N} + 1

Chyba

Kód funkce	1 byte	0x81
Chybový kód	1 byty	01, 02, 03 nebo 04

Domácí práce

- 1. Zhlédnout následující videa:
 - 1. What is Modbus and How does it Work?
 - 2. How does Modbus Communication Protocol Work?
- Podpůrné materiály:
 - Přehled protokolu MODBUS