Маголего «Анализ данных»

Гаврилина Александра,

магистратура «Суперкомпьютерное моделирование в науке и инженерии», группа MCKM191

<u>aagavrilina@edu.hse.ru</u> <u>gavrilinasanya@gmail.com</u>

- 1. Откройте файл experim.dta. Подберите подходящий тест для ответа на вопросы ниже. Обоснуйте свой выбор, сформулируйте гипотезы и выводы.
- 1.1. Кто испытывает большие опасения по отношению к статистике в момент времени 1 (fear of statistics at time 1), мужчины или женщины?

Гипотеза H0: средние значения переменной fost1 для мужчин и женщин не отличаются Гипотеза H1: средние значения переменной fost1 для мужчин и женщин отличаются

Сравним средние значения переменной fost1 в двух группах (мужчины/женщины). Анализируемая переменная fost1 интервальная.

Проверка переменной fost1 на нормальность:

swilk fost1

. swilk fost1

Shapiro-Wilk W test for normal data

	Variable	Obs	W	V	z	Prob>z
Ī	fostl	30	0.97841	0.686	-0.779	0.78189

Значимость p-value = 0.78189 > 0.05, значит, не значимо отличается от нормального распределения.

В выборе 30 наблюдений. Наблюдения не влияют друг на друга.

Применим t-test для независимых выборок, выполнив команду:

ttest fost1, by(sex)

Результат:

. ttest fost1, by(sex)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
male	15	41.2	1.467749	5.684566	38.05199	44.34801
female	15	39.13333	1.170538	4.533473	36.62278	41.64389
combined	30	40.16667	.9420976	5.160081	38.23986	42.09347
diff		2.066667	1.87735		-1.778911	5.912245
diff =	= mean(male)	- mean(fem	nale)		t	= 1.1008
Ho: diff =	= 0			degrees	of freedom	= 28
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
Pr/T < t	= 0.8598	Pr(I	TI > [t]) = [0.2803	Pr(T > t)) = 0.1402

Вывод: не принимаем гипотезу Н1.

1.2. Произошли ли изменения в ощущении уверенности студентами по отношению к статистике после внешнего воздействия, произошедшего с момента времени 1 до момента времени 2 (confidence time1 (confid1) и confidence time2 (confid2))?

Гипотеза H0: изменений в ощущении уверенности не произошло Гипотеза H1: изменения в ощущении уверенности произошли

Переменная интервальная, выборка 30.

Тест на нормальность для выборки меньше 100 (тест Шапиро-Уилка): swilk confid1 swilk confid2

. swilk confid1

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	z	Prob>z
confidl	30	0.95259	1.507	0.848	0.19824

. swilk confid2

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	z	Prob>z
confid2	30	0.97317	0.853	-0.329	0.62900

В обоих случаях значимость p-value > 0.05, следовательно, распределение переменных не значимо отличается от нормального.

Используем t-test для двух связанных переменных по одной и той же выборке:

ttest confid1 == confid2

. ttest confid1 == confid2

Paired t test

iable Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
nfidl 30	19	. 980265	5.369133	16.99513	21.00487
nfid2 30	21.86667	1.021306	5.593921	19.77786	23.95547
diff 30 -	-2.866667	.8679919	4.754188	-4.641909	-1.091424
mean(diff) = mean	(confid1 -	confid2)		t:	-3.3026
mean(diff) = 0			degrees	of freedom :	= 29
mean(diff) < 0	На	mean(diff)	!= 0	Ha: mean	(diff) > 0
(T < t) = 0.0013	Pr(1	[> t) = (0.0025	Pr(T > t)	0.9987

P(|T| > |t|) = 0.0025 < 0.05 - принимаем гипотезу H1.

Вывод: принимаем гипотезу Н1 (изменения в ощущении уверенности произошли).

1.3. Изменялся ли уровень депрессии в разные моменты измерения?

Переменные depress1, depress2, depress3.

Попарно сравним уровни депрессии:

ttest depress1 == depress2

Гипотеза H0: изменений нет Гипотеза H1: изменения есть

. ttest depress1 == depress2

Paired t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
depress1	30 30	42.53333 40.73333	.8383527 1.007938	4.591847 5.520703	40.81871 38.67187	44.24796 42.7948
diff	30	1.8	. 4558685	2.496895	.8676442	2.732356
	(diff) = mea (diff) = 0	an (depress1	- depress2)	degrees	t of freedom	
	(diff) < 0 = 0.9998		: mean(diff) T > t) =			(diff) > 0 () = 0.0002

Pr(|T|) > |t|) = 0.0005 < 0.05 - принимаем гипотезу H1 о различном уровне депрессии.

ttest depress2 == depress3

Гипотеза H0: изменений нет Гипотеза H1: изменения есть

. ttest depress2 == depress3

Paired t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
depress2	30	40.73333	1.007938	5.520703	38.67187	42.7948
depress3	30	39.2	.9289717	5.088188	37.30004	41.09996
diff	30	1.533333	.3415089	1.870521	.8348691	2.231798
mean	(diff) = mea	an (depress2	- depress3)		t	= 4.4899
Ho: mean	(diff) = 0			degrees	of freedom	= 29
Ha: mean	(diff) < 0	На	: mean(diff)	!= 0	Ha: mean	(diff) > 0
Pr(T < t)	= 0.9999	Pr(T > t) =	0.0001	Pr(T > t) = 0.0001

Pr(|T|) > |t|) = 0.0001 < 0.05 — принимаем гипотезу H1 о различном уровне депрессии.

ttest depress1 == depress3

Гипотеза H0: изменений нет Гипотеза H1: изменения есть

. ttest depress1 == depress3

Paired t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
depressl	30	42.53333	.8383527	4.591847	40.81871	44.24796
depress3	30	39.2	.9289717	5.088188	37.30004	41.09996
diff	30	3.333333	.4632056	2.537081	2.385972	4.280695
mean	(diff) = mea	an (depress1	- depress3)		t	= 7.1962
Ho: mean	(diff) = 0			degrees	of freedom	= 29
Ha: mean	(diff) < 0	Ha	: mean(diff)	!= 0	Ha: mean	(diff) > 0
Pr (T < t)) = 1.0000	Pr(T > t) =	0.0000	Pr(T > t) = 0.0000

Pr(|T|) > |t|) = 0.0000 < 0.05 - принимаем гипотезу H1 о различном уровне депрессии.

2. Откройте файл reading.dta. Проведите однофакторный дисперсионный анализ с использованием следующих переменных:

Зависимая переменная: score Независимая переменная: class

Гипотеза H0: скорость чтения у учеников разных классов одинаковая Гипотеза H1: скорость чтения у учеников разных классов разная

Однофакторный дисперсионный анализ (One-Way ANOVA): oneway score class, scheffe

. oneway score class, scheffe

	Analysis	of Va	riance		
Source	SS	df	MS	F	Prob > F
Between groups	3458.2	4	864.55	3.25	0.0125
Within groups	78544.7167	295	266.253277		
Total	82002.9167	299	274.257246		

Bartlett's test for equal variances: chi2(4) = 0.8657 Prob>chi2 = 0.929

Prob > F: 0.0125 < 0.05, значит, имеются различия. Отвергаем гипотезу H0, принимаем H1.

Проведите апостериорный тест. Сформулируйте гипотезы. Интерпретируйте результаты анализа.

Comparison of reading score by class nested in program (Scheffe)

Row Mean- Col Mean	1	2	3	4
2	-3.41667 0.859			
3	-2.66667 0.938	.75 1.000		
4	.1 1.000	3.51667 0.845	2.76667 0.930	
5	6.23333 0.359	9.65 0.035	8.9 0.066	6.13333 0.377

Вывод: различие в скорости чтения наблюдается для 2 и 5 классов — значимость менее 0.05 (0.035).

- 3. Откройте файл survey.dta. Подберите подходящий статистический тест для ответа на вопросы ниже. Обоснуйте свой выбор теста, сформулируйте гипотезы и выводы.
- 3.1. Оцените отличаются ли значения переменной «Total of perceived stress (tpstress)» в разных возрастных группах, представленных переменной «age 5 groups (agegp5)».

Гипотеза H0: средние значения переменной tpstress не отличаются в разных возрастных группах Гипотеза H1: средние значения переменной tpstress отличаются в разных возрастных группах

Для сравнения средних величин в трех и более группах (в данном случае 5) используем однофакторный дисперсионный анализ (One-Way ANOVA).

Выполним команду: oneway tpstress agegp5, scheffe

Результат:

. oneway tpstress agegp5, scheffe

	Analysis	of Va	riance		
Source	SS	df	MS	F	Prob > F
Between groups	500.761358	4	125.19034	3.75	0.0051
Within groups	14271.0816	428	33.3436486		
Total	14771.843	432	34.1940809		

Bartlett's test for equal variances: chi2(4) = 5.3065 Prob>chi2 = 0.257

Prob > F: 0.0051 < 0.05. Значит, есть различия: отвергаем гипотезу H0, принимаем гипотезу H1.

Апостериорный тест:

Comparison of Total perceived stress by age 5 groups (Scheffe) Row Mean-Col Mean 25 - 32 -2.95099 0.021 33 - 40 -1.83386 1.11713 0.357 0.814 41 - 49 -1.9811 .96989 0.239 0.866 -.14724 0.866 1.000 -2.8489 .102084 -1.01505 -.867806 0.038 1.000 0.873 0.916 50+

Вывод: различия есть между группами (значимость менее 0.05):

- 18-24 и 50+ (0.038);
- 18-24 и 25-32 (0.021).

3.2. Испытывают ли курильщики больший стресс, чем некурящие люди? Переменные: smoke и Total perceived stress (tpstress).

Гипотеза H0: курильщики не испытывают больший стресс, чем некурящие люди Гипотеза H1: курильщики испытывают больший стресс, чем некурящие люди

Первое, что пришло в голову – провести t-test аналогично заданию 1.1, для этого нужно проверить, имеются ли какие-то ограничения на проведение теста.

Переменная tpstress должна быть интервальной – это выполняется.

В выборе больше 30 наблюдений – выполняется.

Наблюдения не влияют друг на друга.

Распределение значений не должно значимо отличаться от нормального распределения, проверим это. Размер выборки больше 100. Проверим переменную tpstress на нормальность с помощью теста Колмогорова-Смирнова. Создадим вспомогательные переменные tpstress_mu и tpstress_s:

```
. egen tpstress_mu = mean(tpstress)
. egen tpstress s = sd(tpstress)
```

. ksmirnov tpstress = normprob((tpstress-tpstress mu)/tpstress s)

One-sample Kolmogorov-Smirnov test against theoretical distribution normprob((tpstress-tpstress_mu)/tpstress_s)

Smaller group	D	P-value
tpstress:	0.0691	0.016
Cumulative:	-0.0326	0.398
Combined K-S:	0.0691	0.032

Note: Ties exist in dataset; there are 34 unique values out of 433 observations.

Значимо не отличается от нормального. Можно также построить график и убедиться:

Однако число наблюдений в сравниваемых подгруппах (курильщики/некурящие) не является равнозначным (курильщиков в 4 раза меньше). Поэтому t-test использовать не можем. В таком случае рекомендовано использование аналогичных непараметрических тестов, например, Wilcoxon Rank sum Test.

Выполним команду:

ranksum tpstress, by(smoke) porder

Результат:

. ranksum tpstress, by(smoke) porder

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

xpected	ex	k sum	ranl	obs	smoke
18102 74563		18704 73961		84 346	YES NO
92665		92665	9	430	combined

Ho: tpstress(smoke==YES) = tpstress(smoke==NO)
$$z = 0.590$$

$$Prob > |z| = 0.5551$$

P{tpstress(smoke==YES) > tpstress(smoke==NO)} = 0.521

P(|T|) > |t| = 0.521 > 0.05 – не принимаем гипотезу H1, принимаем H0.

Вывод:

Принимаем гипотезу Н0 о том, что курильщики не испытывают больший стресс.

3.3. Наблюдаются ли различные результаты прохождения теста по самооценке в трёх разных возрастных группах? Переменные: Total self esteem (tslfest) и agegp3.

Гипотеза Н0: различий результатов прохождения теста в разных возрастных группах нет Гипотеза Н1: различия результатов прохождения теста в разных возрастных группах есть

Для сравнения величин в трех и более группах применяется однофакторный дисперсионный анализ (One-Way ANOVA).

Выполним команду: oneway tslfest agegp3, scheffe

Результат:

. oneway tslfest agegp3, scheffe

Analysis of Variance						
Source	SS	df	MS	F	Prob > F	
Between groups	258.075226	2	129.037613	4.51	0.0116	
Within groups	12402.4752	433	28.6431299			
Total	12660.5505	435	29.1047137			

Bartlett's test for equal variances: chi2(2) = 0.9962 Prob>chi2 = 0.608

Prob > F: 0.0116 < 0.05, значит, имеются различия в группах. Отвергаем гипотезу H0, принимаем H1. Посмотрим, в каких группах имеются отличия:

Comparison of Total Self esteem by age 3 groups (Scheffe)

Row Mean-		
Col Mean	18 - 29	30 - 44
30 - 44	.988211	
	0.278	
45+	1.90639	.918177
	0.012	0.350

Вывод: различие наблюдается между группами 18-29 и 45+ (значимость 0.012 < 0.05).