اضيات	مادة الري
بيية بمسائكها	العلوم التجــــــــــــــــــــــــــــــــــــ
لية بمسلكيها	العلوم التكنولوج
_ المعامل <u> 7</u>	مدة الانجاز <u>3h</u>

التمرين الأول: (3 ن)

A(1,1,-1) النقط ($\mathcal{O},\vec{\imath},\vec{j},\vec{k}$) نعتبر في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر $x^2 + y^2 + z^2 - 2x - 2z - 1 = 0$ و الفلكة (3) التي معادلتها و C(3,2,1) و الفلكة (3) التي معادلتها

> بين أن مركز الفلكة (\mathcal{S}) هو النقطة $\Omega(1,0,1)$ و أن شعاعها يساوي $\sqrt{3}$. 0,50 ن

(ABC) بين أن $\overrightarrow{AB} \wedge \overrightarrow{AC}$ و تحقق من أن $\overline{AB} \wedge \overline{AC} = 0$ هي معادلة ديكارتية للمستوى 0,75 ن

يقطع الفلكة $d(\Omega,(ABC))=\sqrt{2}$ تحقق من أن $d(\Omega,(ABC))=\sqrt{2}$ ثم بين أن المستوى $d(\Omega,(ABC))=\sqrt{2}$ 1,00 دائرة (٢) شعاعها 1.

> (ABC) المستقيم المار من النقطة Ω العمودي على المستوى (Δ) . 3

. (Δ) يمثيل بارامتري للمستقيم $\begin{cases} x=1+t \\ y=0 \end{cases}$ $;\;\;(t\epsilon\mathbb{R})\;|\;\;:$ بين أن $[\mathbf{3}]$

. (2,0,0) هو (ABC) و المستوى (Δ) و المستوى (ABC) هو <u>0,25 ن</u> 0,25 ن

 $oldsymbol{\overline{c}}$ استنتج مرکز الدائرة $oldsymbol{\overline{c}}$.

0,25 ن

التمرين الثانى: (3 ن)

 $z^2 - 12z + 61 = 0$: المعادلة (العقدية الأعداد العقدية) المعادلة 0,75 ن 1

نعتبر المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر $(\mathcal{O}, \overrightarrow{e_1}, \overrightarrow{e_2})$ النقط A و B و Bc=2+i و b=4-2i و a=6-5i . روم و a بحيث a=6-5i

> و استنتج أن النقط A و B و استنتج أن النقط A و B و $\frac{a-c}{b-c}$ <u>0,50</u> ن

(1+5i) هو \vec{u} حيث لحق \vec{u} هو نعتبر الإزاحة T ذات المتجهة

. d=3+6 هو T هو C صورة النقطة D صورة النقطة T هو T هو T0,50 ن

-1+i بين أن $\frac{3\pi}{4}$ و أن $\frac{d-c}{b-c}=-1+i$ عمدة للعدد العقدي ${f 2}$ 0,75 ن

> . $(\overrightarrow{CB},\overrightarrow{CD})$ استنتج قياسا للزاوية الموجهة [2] 0,50 ن

التمرين الثالث: (3ن)

نسحب عشوائيا و في آن واحد ثلاث بيدقات من الكيس و نعتبر الأحداث التالية:

A: " الحصول على ثلاث بيدقات تحمل أعدادا مختلفة مثنى مثنى ".

B: " مجموع الأعداد التي تحملها البيدقات المسحوبة يساوى B:

C: " مجموع الأعداد التي تحملها البيدقات المسحوبة يساوي C

 $p(C) = \frac{3}{8}$ و $p(B) = \frac{5}{56}$ و $p(A) = \frac{5}{28}$: بين أن 3,00 ن

(10	12	لمعرفة بما يلو ($u_n)_{n\in\mathbb{N}}$ ة	التمرين الرابع: (3ن)
$\left \begin{cases} u_{n+1} = \frac{1}{11} u_n \end{cases} \right $	$+rac{1}{11}$; $(orall n\epsilon \mathbb{N})$: ς	ة $(u_n)_{n\in\mathbb{N}}$ المعرفة بما يلو	نعتبر المتتالية العددي
$u_0 = 11$			
2ROUPE EXCEL	$(\forall n \in \mathbb{N})$; u	11	1 تحقق من أن : (2. — —
EXCEL			2 من بالترجع أن : 2
		1 1 2 2 3 1 2 2 6 3	internal of the land

0,25 ن

0,75 ن

. تزایدیهٔ قطعا بین أن المتتالیهٔ $(u_n)_{n\in\mathbb{N}}$ بین أن المتتالیه المتتالیه بین أن المتتالیه المتالیه المتالیه المتالیه المتتالیه المتالیه ا 0,50 ن

استنتج أن المتتالية $(u_n)_{n\in\mathbb{N}}$ متقاربة. 20,25 ن

 $(orall n \epsilon \mathbb{N})$; $v_n = u_n - 12$: لتكن المتتالية العددية بحيث [

. n بدلالة v_n بين أن المتتالية v_n هندسية أساسها v_n هندسية أساسها أين أن المتتالية مرابعة v_n بدلالة v_n 0,75 ن

 $\lim_{n\to\infty} u_n$ ثم أحسب النهاية ($orall n \in \mathbb{N}$) ; $u_n=12-\left(rac{10}{11}
ight)^n$: ثم أحسب النهاية

التمرين الخامس: (8ن)

 $(x^2 - 1)$.]0; 1 و $(x^2 - 1)$ لهما نفس الإشارة على ا 0,75 ن∥ I

 $\forall \ x \in]0;1] \ ; \ g(x) \leq 0 \ :$ ثم استنتج أن

 $[1;+\infty]$ بين أن (x^2-1) و $2x^2\ln x$ لهما نفس الإشارة على 0,75 ن 🛘 🗗 🗘 🗗

 $\forall x \in [1; +\infty[; g(x) \ge 0 : ثم استنتج أن$

$$f(x)=(x^2-1)\ln x$$
 : نعتبر الدالة العددية f المعرفة على $+\infty$ المعرفة على $0;+\infty$ المعرفة على $[]$

و ليكن (\mathcal{C}) المنحنى الممثل للدالة f في معلم متعامد ممنظم $(\mathcal{C},\vec{\imath},\vec{\jmath})$ و ليكن

و أوِّل النتيجة هندسيا . $\lim_{x \to 0^+} f(x) = +\infty$ و أوِّل النتيجة هندسيا .

 $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty \quad \text{if } \lim_{x \to +\infty} f(x) \quad \text{المال نال المال الم$

و استنتج أن المنحنى (ك) يقبل فرعا شلجميا بجوار ∞+ يتم تحديد اتجاهه .

 $(f^{'}(1)=0)$ بين أن $\frac{g(x)}{x}=\frac{g(x)}{x}$ (و أوَّل هندسيا النتيجة $\frac{g(x)}{x}=\frac{g(x)}{x}$).

. $[1;+\infty[$ استنتج أن الدالة f تناقصية على المجال [0;1] و تزايدية على المجال الدالة الدا

. $\forall \ x \in]0;+\infty[\ ;\ f(x)\geq 0:$ ان $[\mathbf{c}]$ إعط جدول تغيرات الدالة f على f على f ثم بين أن $[\mathbf{c}]$ الحالة الحالة الدالة الدالة

. $(\mathcal{O},\vec{\imath},\vec{\jmath})$ في المعلم (\mathcal{C}) في المعلم أنشئ المنحنى المعلم $\boxed{3}$

 $\int_{0}^{2} (x^{2} - 1) \ln x \, dx = \frac{2}{9} (1 + 3 \ln 2)$: باستعمال مكاملة بالأجزاء، بين أن نا 1,00 ن الستعمال مكاملة بالأجزاء،

مساحة حيز المستوى المحصور بين المنحنى ($m{\mathscr{C}}$) و محور الأفاصيل مساحة حيز المستوى المحصور بين المنحنى ($m{\mathscr{C}}$) و محور الأفاصيل و المستقيمين اللذين معادلتاهما x=2 و x=1

وزارة التربية الوطنية والتعليم العالى وتكوين الأطر والبحث العلمي

المملكة المغربية

شعبة العلوم التجريبية بمسالكها و شعبة العلوم والتكنولوجيا بمسلكيها

مادة الرياضيات مدة الانجاز: 3 ساعات المعامل: 7

المركز الوطني للتقويم والامتحانات

التمرين الأول: (3 ن)

0.25 + 0.25 : $r = \sqrt{3}$ لنبين أن مركز الفلكة (S) هي النقطة $\Omega(1,0,1)$ و أن شعاعها (S) لنبين أن مركز الفلكة

(S) معادلة ديكارتية للفلكة $x^2 + y^2 + z^2 - 2x - 2z - 1 = 0$

 $(S):(x-1)^2-1+(y-0)^2+(z-1)^2-1-1=0$ ومنه $(S):x^2-2x+y^2+z^2-2z-1=0$

 $r = \sqrt{3}$ يساوي (S) و بالتالى مركز الفلكة (S) هي النقطة المختصرة للفلكة (S) و شعاعها يساوي

0,5 $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} - \overrightarrow{k}$ أ- \checkmark (2)

C(3,2,1) ; B(0,1,-2) ; A(1,1,-1) : لدينا

 $\overrightarrow{\mathsf{AB}}\left(-1,0,-1
ight)$ اِذن: $\overrightarrow{\mathsf{AB}}\left(0-1,1-1,-2+1
ight)$ ومنه: $\overrightarrow{\mathsf{AB}}\left(x_{\mathsf{B}}-x_{\mathsf{A}},y_{\mathsf{B}}-y_{\mathsf{A}},z_{\mathsf{B}}-z_{\mathsf{A}}\right)$

 \overrightarrow{AC} (2,1,2) \overrightarrow{AC} (3 – 1,2 – 1,1 + 1) ومنه: \overrightarrow{AC} ($x_C - x_A, y_C - y_A, z_C - z_A$) و

 $\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{pmatrix} -1 & 2 \\ 0 & 1 \\ -1 & 2 \end{pmatrix}$ إذن:

 $\overrightarrow{\mathsf{AB}} \wedge \overrightarrow{\mathsf{AC}} = \begin{vmatrix} 0 & 1 \\ -1 & 2 \end{vmatrix} \vec{i} - \begin{vmatrix} -1 & 2 \\ -1 & 2 \end{vmatrix} \vec{j} + \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} \vec{k} = (0+1)\vec{i} - (-2+2)\vec{j} + (-1-0)\vec{k}$

 $\overrightarrow{\mathsf{AB}} \wedge \overrightarrow{\mathsf{AC}} = \overrightarrow{i} - \overrightarrow{k}$ و بالتالي:

0,25:(ABC) لنستنتج أن x-z-2=0 هي معادلة ديكارتية للمستوى

طريقة 1: لدينا $\overrightarrow{AB} \wedge \overrightarrow{AC}(1,0,-1)$ متجهة منظمية على المستوى

(ABC) معادلة ديكارتية للمستوى (ABC) 1x + 0y - 1z + d = 0

و بما أن A = (ABC) فإن مثلوث إحداثياتها يحقق المعادلة الديكارتية للمستوى (ABC).

d = -2 إذن 2 + d = 0 أي $A(1,1,-1) \in (ABC) \Leftrightarrow 1 - (-1) + d = 0$

وبالتالي z - z - 2 = 0 هي معادلة ديكارتية للمستوى

طريقة 2: لدينا $\vec{n} = \overrightarrow{AB} \wedge \overrightarrow{AC}(1,0,-1)$ متجهة منظمية على المستوى

 $M(x,y,z) \in (ABC): \overrightarrow{n}.\overrightarrow{AM} = 0 \Leftrightarrow \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} x-1 \\ y-1 \\ z+1 \end{pmatrix} = 0$ إذن:

 $M(x,y,z) \in (ABC) \Leftrightarrow 1(x-1)+0(y-1)-1(z+1)=0 \Leftrightarrow x-1-z-1=0$

و بالتالى: x-z-2=0 هي معادلة ديكارتية للمستوى (ABC).

: r=1 المعاعها (S) وفق دائرة (S) بطع الفلكة (ABC) بقطع الفلكة (ABC) ثم لنبين أن المستوى (ABC) بقطع الفلكة $d\left(\Omega,(ABC)\right)=\sqrt{2}$ لدينا x-z-2=0 هي معادلة ديكارتية للمستوى (ABC) و

$$d\left(\Omega, (\mathrm{ABC})\right) = \frac{\left|1 \times 1 + 0 - 1 \times 1 - 2\right|}{\sqrt{1^2 + 0^2 + \left(-1\right)^2}} = \frac{\left|1 + 0 - 1 - 2\right|}{\sqrt{1 + 1}} = \frac{2}{\sqrt{2}} = \sqrt{2}$$
 ومنه
$$d\left(\Omega, (\mathrm{ABC})\right) = \frac{\left|ax_\Omega + by_\Omega + cz_\Omega + d\right|}{\sqrt{a^2 + b^2 + c^2}}$$
 إذني

إذن $\Omega = \frac{1}{2}$ وفق (S) يقطع الفلكة (ABC) إذن $\Omega = \frac{1}{2}$ وبما أن $\Omega = \frac{1}{2}$ وبما أن $\Omega = \frac{1}{2}$ وفق المستوى (ABC) يقطع الفلكة (S) وفق

$$0,25+0,25+0,5$$
 . $R=\sqrt{d^2-r^2}=\sqrt{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}=1$ دائرة (Γ) شعاعها و دائرة

$$(ABC)$$
 تمثیل بارامتري للمستقیم نان (Δ) والعمودي على المستوى $x=1+t$ تمثیل بارامتري للمستقیم (Δ) المار من (Δ) والعمودي على المستوى (Δ) : $z=1-t$

بما أن المستقيم (Δ) عمودي على المستوى (ABC) فإن $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} - \overrightarrow{k}$ المتجهة المنظمية على (ABC) هي متجهة موجهة للمستقيم (Δ) و (Δ) و (Δ)

$$\begin{cases} x-1=t \\ y-0=0 \\ z-1=-t \end{cases} \stackrel{}{\underset{\longrightarrow}{}} M \in \left(\Delta\right) \Leftrightarrow \exists t \in \mathbb{R} \, / \, \overrightarrow{\Omega M} \begin{pmatrix} x-1 \\ y-0 \\ z-1 \end{pmatrix} = t \, \overrightarrow{AB} \wedge \overrightarrow{AC} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \stackrel{}{\underset{\longrightarrow}{}} M \left(x,y,z\right) \in \left(\Delta\right)$$

$$(0,25)$$
 يازن $x=1+t$ يازن $x=1+t$ تمثيل بارامتري للمستقيم $z=1-t$ يازن $z=1-t$

0,25 : (2;0;0) هو (ABC) و المستقيم (Δ) و المستقيم (Δ) انطع المستقيم (Δ) عطة تقاطع المستقيم (Δ)

$$egin{cases} x=1+t \ y=0 \ z=1-t \ 1+t-1+t-2=0 \end{cases}$$
 ومنه $(t\in\mathbb{R})$ ومنه $z=1+t \ z=1-t \ x-z-2=0 \end{cases}$

و بالتالي مثلوث إحداثيات H نقطة تقاطع المستقيم (Δ) و المستوى (ABC) هو (2;0;0).

0,25 : (Γ) الدائرة مركز الدائرة -

(S) مركز الفلكة (ABC) مركز الفلكة (ABC) مركز الفلكة (ABC) مركز الفلكة (S) مركز الفلكة (S) مركز الفلكة (C) بقطع المستوى (ABC) وفق دائرة فإن H(2;0;0) هي مركز الدائرة (C) .

وزارة التربية الوطنية والتعليم العالى وتكوين الأطر والبحث العلمي

المملكة المغربية

شعبة العلوم التجريبية بمسالكها و شعبة العلوم والتكنولوجيا بمسلكيها

المعامل: 7 مادة الرياضيات مدة الانجاز: 3 ساعات المركز الوطنى للتقويم والامتحانات

التمرين الثاني: (3 ن)

 $z^2 - 12z + 61 = 0$ انحل في \mathbb{C} مجموعة الأعداد العقدية المعادلة: \mathbb{C}

0,25 $\Delta = b^2 - 4ac = (-12)^2 - 4 \times 1 \times 61 = 144 - 244 = -100$ و a = 1; b = -12; c = 61

بما أن $0 \neq \Delta$ فإن المعادلة تقبل حلين مترافقين

$$z_{2} = \frac{-b - i\sqrt{-\Delta}}{2a} = \frac{12 - 10i}{2 \times 1} = \frac{2(6 - 5i)}{2} \quad \text{3} \quad z_{1} = \frac{-b + i\sqrt{-\Delta}}{2a} = \frac{12 + 10i}{2 \times 1} = \frac{2(6 + 5i)}{2}$$

و بالتالي: $z_1 = 6 + 5i$ و $z_2 = 6 - 5i$ و بالتالي: $z_2 = 6 - 5i$ و بالتالي: $z_1 = 6 + 5i$

0.25 + 0.25 : و لنستنتج أن النقط A و B و A و لنستنتج أن النقط (2 و الستنتج أن النقط (2 المستقيمية:

لدينا $2 = \frac{a-c}{b-c} = \frac{a-c}{4-2i-2-i} = \frac{4-6i}{2-3i} = \frac{2(2-3i)}{2-3i} = 2$ لدينا $2 = \frac{a-c}{b-c} = \frac{a-c}{4-2i-2-i} = \frac{4-6i}{2-3i} = \frac{2(2-3i)}{2-3i} = 2$

 \vec{u} (1+5i) هو \vec{u} (1+5i) هو \vec{u} (1+5i) هو \vec{u} (1+5i) هو \vec{u} (1+5i) بالإزاحة

$$\mathsf{T}(\mathsf{C}) = \mathsf{D} \Leftrightarrow \overrightarrow{\mathsf{CD}} = \overrightarrow{\mathsf{u}} \Leftrightarrow d - c = 1 + 5i \Leftrightarrow d = 1 + 5i + c = 1 + 5i + 2 + i = 3 + 6i$$
 لاينا

0.25 + 0.25 . d = 3 + 6i هو $\vec{u}(1 + 5i)$ هو $\vec{u}(1 + 5i)$ هو $\vec{u}(1 + 5i)$ المتجهة $\vec{u}(1 + 5i)$ هو بالتالى لحق النقطة

$$0.5$$
 $\frac{d-c}{b-c} = -1+i$: ننبین أن 4

$$\frac{d-c}{b-c} = \frac{3+6i-2-i}{4-2i-2-i} = \frac{1+5i}{2-3i} = \frac{(1+5i)(2+3i)}{(2-3i)(2+3i)} = \frac{2+3i+10i-15}{2^2+3^2} = \frac{-13+13i}{13} = \frac{13(-1+i)}{13}$$

$$\frac{d-c}{b-c} = -1+i$$
 و منه

$$\frac{d-c}{b-c} = \frac{3+6i-2-i}{4-2i-2-i} = \frac{1+5i}{2-3i} = \frac{(1+5i)(-1+i)}{(2-3i)(-1+i)} = \frac{(1+5i)(-1+i)}{-2+2i+3i+3} = \frac{(1+5i)(-1+i)}{1+5i} = -1+i$$

$$0,25$$
: $-1+i$ عمدة للعدد العقدي $\frac{3\pi}{4}$ عمدة للعدد العقدي

$$\left|\frac{d-c}{b-c}\right| = \sqrt{\left(-1\right)^2 + 1^2} = \sqrt{2}$$
 ومنه $\frac{d-c}{b-c} = -1 + i$ لدينا %

$$sin(arg(-1+i)) = \frac{Im(-1+i)}{|-1+i|} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
 $games cos(arg(-1+i)) = \frac{Re(-1+i)}{|-1+i|} = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$ $games cos(arg(-1+i)) = \frac{Re(-1+i)}{|-1+i|} = -\frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}}$

$$-1+i$$
 و بالتالي $\frac{3\pi}{4}$ عمدة للعدد العقدي $\arg(-1+i) = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$ و بالتالي يا

$$0,25+0,25$$
 : $(\overrightarrow{\overline{CB};\overline{CD}})$ الموجهة الم

$$\left(\overline{\overrightarrow{\mathsf{CB}};\overrightarrow{\mathsf{CD}}}\right) = \frac{3\pi}{4}[2\pi]$$
 و بالتالي $\left(\overline{\overrightarrow{\mathsf{CB}};\overrightarrow{\mathsf{CD}}}\right) = \arg\left(\frac{d-c}{b-c}\right) = \arg\left(-1+i\right)$

وزارة التربية الوطنية والتعليم العالى وتكوين الأطر والبحث العلمى

المملكة المغربية

شعبة العلوم التجريبية بمسالكها و شعبة العلوم والتكنولوجيا بمسلكيها

المعامل: 7

0.5 + 0.5

مادة الرياضيات مدة الانجاز: 3 ساعات

المركز الوطنى للتقويم والامتحانات

التمرين الثالث: (3 ن)

00 00 00 0

نسحب عشوائيا تأنيا ثلاث بيدقات من كيس يضم ثمان بيدقات

 $: p(A) = \frac{5}{28}$ ننبين أن (1

A: " نحصل على ثلاث بيدقات تحمل أرقاما مختلفة مثنى " : (0;1;2)

 $\rho(A) = \frac{5}{28}$ و بالنالي $\rho(A) = \frac{card(A)}{card(\Omega)} = \frac{C_1^1 \times C_5^1 \times C_2^1}{C_8^3} = \frac{1 \times 5 \times 2}{56} = \frac{10}{56}$

 $: p(B) = \frac{5}{56}$ ننبین أن (2

B: " نحصل على ثلاث بيدقات تحمل أرقاما مجموعها يساوي 5 ": {1;2;2}

 $p(B) = \frac{5}{56}$ و بالنالي $p(B) = \frac{card(B)}{card(\Omega)} = \frac{C_5^1 \times C_2^2}{C_8^3} = \frac{5 \times 1}{56}$

: $p(C) = \frac{3}{8}$ ننبین أن (3

C: " نحصل على ثلاث بيدقات تحمل أرقاما مجموعها يساوي 4 ": {1;1;2} أو {0;2;2}

 $\rho(C) = \frac{3}{8} \quad \text{e p(C)} = \frac{card(C)}{card(\Omega)} = \frac{C_1^1 \times C_2^2 + C_5^2 \times C_2^1}{C_8^3} = \frac{1 + 10 \times 2}{56} = \frac{21}{56}$

التمرين الرابع: (3 ن)

$$0,25$$
 $\mathbb N$ لنتحقق من أن: $u_{\mathsf{n}+1} - 12 = \frac{10}{11}(u_{\mathsf{n}} - 12)$ لكل $u_{\mathsf{n}+1} - 12 = \frac{10}{11}(u_{\mathsf{n}} - 12)$

$$\forall n \in \mathbb{N}; u_{n+1} - 12 = \frac{10}{11} (u_n - 12)$$
 وبالثالي $u_{n+1} - 12 = \frac{10}{11} u_n + \frac{12}{11} - 12 = \frac{10u_n + 12 - 132}{11} = \frac{10u_n - 120}{11}$

$$oldsymbol{u}_0 < 12$$
 اذن $u_0 < 12$ الدينا $u_0 = 11$ انتحقق من أن $u_0 < 12$ الدينا $a_0 < 12$

: u_{n+1} < 12 و نبین أن u_n < 12 نفترض أن a_n

$$\frac{10}{11}(u_n-12)<0$$
 و $u_n-12<0$ و منه $u_n<12$ و منه $u_n<12$ لدينا حسب فرضية الترجع

. N من n من $u_{\rm n} < 12$ نستنتج أن $u_{\rm n} < 12$ لكل n من $u_{\rm n+1} < 12$

$$(u_n)$$
 تزايدية قطعا :n تزايدية قطعا (u_n) تزايدية قطعا

$$u_{n+1} - u_n = \frac{10}{11}u_n + \frac{12}{11} - u_n = \frac{10u_n + 12 - 11u_n}{11} = \frac{1}{11}(12 - u_n)$$
 لدينا

 $\frac{1}{11}(12-u_n)>0:\mathbb{N}$ من $u_n<12$ و $0<12-u_n$ و منه $u_n<12$ لدينا $u_n<12$

.n من $u_{\rm n}$ تزایدیة قطعا n من الکل $u_{\rm n+1}-u_{\rm n}>0$

$$(u_n)$$
 متقاربة $-$ المتتالية (u_n) متقاربة $-$

. متقاربة (u_n) متقالية (u_n) متقالية ومكبورة بالعدد 12 إذن المتتالية (u_n) متقاربة الدينا مما سبق أن المتتالية (u_n)

$$(v_n)$$
 انبين أن المتتالية (v_n) هندسية أساسها $= \frac{10}{11}$

$$v_{n+1} = \frac{10}{11}$$
 و $v_n = u_n - 12$ و $v_{n+1} = \frac{10}{11}$ و $v_n = u_n - 12$ و $v_{n+1} = u_{n+1} - 12 = \frac{10}{11}(u_n - 12)$ لدينا $v_n = u_n - 12$ و $v_{n+1} = u_{n+1} - 12 = \frac{10}{11}(u_n - 12)$ د نكتب $v_n = u_n - 12$

$$0,25$$
 . \mathbb{N} نکل $v_n = v_0 \times q^n = -1 \times \left(\frac{10}{11}\right)^n$ و $0,25$ $v_0 = u_0 - 12 = 11 - 12 = -1$ لکینا

0,25 :
$$\mathbb{N}$$
 من $u_n = 12 - \left(\frac{10}{11}\right)^n$ نبین أن $4 - \sqrt{11}$

$$\mathbb N$$
 من $\mathbf v_n = -\left(\frac{10}{11}\right)^n$ و منه $\mathbf v_n = \mathbf v_n + 12$ و منه $\mathbf v_n = u_n - 12$ لكل

.
$$\mathbb{N}$$
 من $u_n = 12 - \left(\frac{10}{11}\right)^n$ إذن

:(U_n) لنحسب نهاية المتتالية ★

$$0,25$$
 $\lim_{n\to+\infty} u_n = 12$ و $1 < 10$ و 1

وزارة التربية الوطنية والتعليم العالى وتكوين الأطر والبحث العلمي

المملكة المغربية

شعبة العلوم التجريبية بمسالكها و شعبة العلوم والتكنولوجيا بمسلكيها

مادة الرياضيات مدة الانجاز: 3 ساعات المعامل: 7

المركز الوطنى للتقويم والامتحانات

التمرين الخامس: (8 ن)

0,25 + 0,25 :]0;1[

0,25:]0;1] من $g(x) \le 0$ لكل $g(x) \le 0$

.]0;1 من $g(x) \le 0$ کل g(x)

 $0,25+0,25:]1;+\infty[$ lلمجال $]1;+\infty[$ lbanl نفس الإشارة على المجال $]1;+\infty[$ $]1;+\infty[$ lbanl $]1;+\infty[$ lbanl ibanl $]1;+\infty[$ lbanl ibanl ibanl $]1;+\infty[$ lbanl ibanl ibanl ibanl ibanl ibanl ibanl ibanl ibanl $]1;+\infty[$ lbanl ibanl ibanl

0,25: [1; + ∞ من x من $g(x) \ge 0$ لكل $g(x) \ge 0$

من \mathfrak{g} و \mathfrak{G} نستنتج أن إشارة $(x)^2 + 2x^2 \ln(x)$ موجبة على المجال $[1; +\infty]$ أي $(x)^2 + 2x^2 \ln(x)$ من $(x)^2 + 2x^2 \ln(x)$

 $[1;+\infty]$ من $g(x) \ge 0$ الكل g(x)

0.25 + 0.25 النبين أن: 0.25 + 0.25 ولنؤول النتيجة مبيانيا: 0.25 + 0.25 + 0.25 النبين أن: 0.25 + 0.25 + 0.25

. x=0 منحنى الدالة f يقبل مقاربا عموديا معادلته (C)

 $0,25: \lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x)$ ب — لنحسب

$$\lim_{x\to +\infty} \left(x^2-1\right) \ell n(x) = \left(+\infty\right) \times \left(+\infty\right) = +\infty \quad \text{i.i.} \quad \ell n(x) = +\infty \quad$$

 $0.25 + 0.5 : + \infty$ لنبين أن 0.00 + 0.5 = 0.00 و لنستنتج أن المنحنى (C) يقبل فرعا شلجميا بجوار 0.000 + 0.000 و لنستنتج أن المنحنى

$$\lim_{x \to +\infty} \left(\frac{x^2 - 1}{x} \right) \ell n(x) = + \infty \quad \text{if } \ell n(x) = +$$

-1 (2. + ∞ وبالتالي $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ وبالتالي ومنه نستنتج أن المنحنى (C) يقبل فرعا شلجميا اتجاهه محور الأراتيب بجوار

1 :]0;+ ∞ [نحل x من $f'(x) = \frac{g(x)}{x}$ الكل x

 $f(x) = (x^2 - 1) \ell n(x)$:]0;+ ∞ [من x من

$$f'(x) = (x^2 - 1)' \ln(x) + (x^2 - 1)(\ln(x))' = 2x \ln(x) + (x^2 - 1)(\frac{1}{x}) = \frac{x^2 - 1 + 2x^2 \ln(x)}{x}$$
ومنه

. $]0;+\infty[$ من x لكل $f'(x)=\frac{g(x)}{x}$ وبالتالي $g(x)=x^2-1+2x^2\ell n(x)$ و

0,25: f'(1) = 0 لنؤول هندسيا النتيجة e

A(1,0) و منه يقبل المنحنى (C) مماسا أفقيا في النقطة f'(1) = 0

0,25 + 0,25: $[1,+\infty[$ المجال]0,1] و تزايدية على المجال $[1,+\infty[$ المجال]0,25 + 0,25

:
$$]0;+\infty[$$
 كن x من $g(x)$ هي نفس إشارة $f'(x)$ هي نفس $g(x)$ كن $f'(x)=\frac{g(x)}{x}$ لدينا

.]0,1] و بالتالي f تتاقصية على المجال $g(x) \le 0$ فإن $g(x) \le 0$ أي $g(x) \le 0$ و بالتالي f

. $[1,+\infty[$ فإن $0 \leq (x) \geq 0$ أي $f'(x) \geq 0$ و بالتالي f تزايدية على المجال $x \in [1,+\infty[$

0.25: f لننجز جدول تغيرات الدالة

Х	,0,	1	+ ∞
f'(x)	_	0	+
f(x)	+ ∞	0	→ +∞

0,25: $]0;+\infty[$ من x ککل $f(x) \ge 0$ لنبین أن x

 $[0;+\infty]$ لكل x من $f(x)\geq 0$ لكل x=1 عند f عند الدالة f عند الدالة عند الدالة عند الدالة ال

 $0, 5 : \mathbb{R}$ على $x \mapsto x^2 - 1$ دالة أصلية للدالة $u : x \mapsto \frac{x^3}{3} - x$ على $u : x \mapsto \frac{x^3}{3} - x$

1 $\int_{1}^{2} (x^{2}-1) \ell n(x) dx = \frac{2}{9} (1+3\ell n(2))$: $\ell n(x) = \frac{2}{9} (1+3\ell n(2))$

$$\begin{cases} u(x) = \frac{x^3}{3} - x \\ v'(x) = \frac{1}{x} \end{cases} e^{-\frac{1}{2}} \begin{cases} u'(x) = x^2 - 1 \\ v(x) = \ell n(x) \end{cases}$$

$$\int_{1}^{2} (x^{2} - 1) \ln(x) dx = \left[\left(\frac{x^{3}}{3} - x \right) \ln(x) \right]_{1}^{2} - \int_{1}^{2} \left(\frac{x^{3}}{3} - x \right) \left(\frac{1}{x} \right) dx = \left[\left(\frac{x^{3}}{3} - x \right) \ln(x) \right]_{1}^{2} - \int_{1}^{2} \left(\frac{1}{3} x^{2} - 1 \right) dx \quad \text{i.i.}$$

$$\int_{1}^{2} (x^{2} - 1) \ln(x) dx = \left[\left(\frac{x^{3}}{3} - x \right) \ln(x) \right]_{1}^{2} - \left[\frac{x^{3}}{9} - x \right]_{1}^{2} = \left(\frac{8}{3} - 2 \right) \ln(2) - \left(\frac{1}{3} - 1 \right) \ln(1) - \left(\frac{8}{9} - 2 - \frac{1}{9} + 1 \right) \text{i.i.}$$

$$\int_{1}^{2} (x^{2} - 1) \ln(x) dx = \frac{2}{9} (1 + 3 \ln(2)) \quad \text{e. this } \int_{1}^{2} (x^{2} - 1) \ln(x) dx = \frac{2 \ln(2)}{3} - 0 + \frac{2}{9} \text{i.i.}$$

ج- لنحسب ب cm^2 مساحة حيز المستوى المحصور بين المنحنى (C) و محور الأفاصيل و المستقيمين اللذين معادلتا هما x=1 معادلتا هما x=1 و x=2 عادلتا هما x=1 معادلتا هما x=1 المستقيمين اللذين

$$S = 2(1+3\ell n(2))cm^2$$
 و بالتالي $S = \int_1^2 f(x) dx = \int_1^2 (x^2-1)\ell n(x) dx = \frac{2}{9}(1+3\ell n(2)) \times 9$ لدينا