

A taxonomy of analytics

Descriptive Analytics

Predictive Analytics

Automated Analytics

Automated Analytics

Prescriptive Analytics

Automated Analytics

Politectic Milano 1863

Internet of things - Velocity

Home has a new hub

Machine Learning © Carlo Verzellis

POLITECNICO MILANO 1863

ç

1	<i>"</i>										
area	numin	timein	numout	Pothers	Pmob	Pland	numsms	numserv	numeall	diropt	churner
3	32	8093	45	0.14	0.75	0.12	18	1	0	0	0
3	277	157842	450	0.26	0.35	0.38	9	3	0	1	0
1	17	15023	20	0.37	0.23	0.40	1	1	0	0	0
1	46	22459	69	0.10	0.39	0.51	33	1	0	0	0
1	19	8640	9	0.00	0.00	1.00	0	0	0	0	0
2	17	7652	66	0.16	0.42	0.43	1	3	0	1	0
3	47	17768	11	0.45	0.00	0.55	0	0	0	0	0
3	19	9492	42	0.18	0.34	0.48	3	1	0	0	1
1	1	84	9	0.09	0.54	0.37	0	0	0	0	1
2	119	87605	126	0.84	0.02	0.14	12	1	0	0	0
4	24	6902	47	0.25	0.26	0.48	4	1	0	0	0
1	3.2	28072	43	0.28	0.66	0.06	0	1	0	0	0
3	103	112120	24	0.61	0.28	0.11	24	2	0	0	0
3	45	21921	94	0.34	0.47	0.19	45	2	0	1	0
1	8	25117	89	0.02	0.89	0.09	189	1	3	0	0
3	-4	945	16	0.00	0.00	1.00	0	0	0	0	1
2	83	44263	83	0.00	0.00	0.67	0	0	0	0	1
2	22	15979	59	0.05	0.53	0.41	5	2	0	1	1
2	0	0	57	0.00	1.00	0.00	15	1	1	0	1
4	162	114108	273	0.18	0.15	0.41	2	3	0	1	1
4	21	4141	70	0.14	0.58	0.28	0	1	0	1	1
4	33	10066	45	0.12	0.21	0.67	0	0	0	0	1
4	.5	965	40	0.41	0.27	0.32	64	1	0	0	
							1/8				Targ

Machine learning - input data

Dataset: Two dimensional tables

- In a dataset:
- Rows are the observations
- Columns are the data that characterize each observation: features, attributes variables
- Attribute types:
 - Categorical attributes
 - Binary True/False or 0/1
 - Nominal attribute without a natural sorting
 - · Ordinal attribute with a natural sorting
 - Numerical attributes
 - Discrete attribute
 - · Continuous attribute

THE CHILLS

17

Dataset

A dataset
$$\mathcal D$$
 is represented by a $m \times n$ matrix $\mathbf X = [x_{ij}], \quad i \in \mathcal M = \{1,2,\ldots,m\}, \quad j \in \mathcal N = \{1,2,\ldots,n\},$ $\mathbf a_j = (x_{1j},x_{2j},\ldots,x_{mj}),$ $\mathbf a_j = (x_{1j},x_{2j},\ldots,x_{mj}),$

$$\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{in}),$$

$$\mathbf{a}_j = (x_{1j}, x_{2j}, \dots, x_{mj}),$$