PFS Target Database (targetDB)

Release 2021

Masato Onodera

CONTENTS:

1	Inpu	t larget List
	1.1	Inputs from observers
	1.2	Inputs from the observatory
	1.3	File format
		Notes on future development
2	Indic	es and tables

INPUT TARGET LIST

1.1 Inputs from observers

1.1.1 Proposal-related information

The following information is required for each proposal.

name	datatype	description	required	default
proposal_id	str	Proposal ID (e.g., S22A-QN001)	*	

1.1.2 Target-related information

The following information is required for each *target*.

name	datatype	description rec	
obj_id	int64	Object ID	*
ra	float	RA (ICRS, degree) *	
dec	float	Dec (ICRS, degree)	*
epoch	str	Epoch (e.g., J2000.0, J2016.0)	
tract	int	Same definition as HSC-SSP	
patch	int	Same definition as HSC-SSP	
input_catalog	str	Input catalog name (e.g., hscssp_pdr3_wide)	
fiber_mag_g	float	g-band magnitude within a fiber (AB mag)	
fiber_mag_r	float	r-band magnitude within a fiber (AB mag)	
fiber_mag_i	float	i-band magnitude within a fiber (AB mag)	
fiber_mag_z	float	z-band magnitude within a fiber (AB mag)	
fiber_mag_y	float	y-band magnitude within a fiber (AB mag)	
fiber_mag_j	float	J band magnitude within a fiber (AB mag)	
psf_mag_g	float	g-band PSF magnitude (AB mag)	
psf_mag_r	float	r-band PSF magnitude (AB mag)	
psf_mag_i	float	i-band PSF magnitude (AB mag)	
psf_mag_z	float	z-band PSF magnitude (AB mag)	
psf_mag_y	float	y-band PSF magnitude (AB mag)	
psf_mag_j	float	J band PSF magnitude (AB mag)	
psf_flux_g	float	g-band PSF flux (nJy)	
psf_flux_r	float	r-band PSF flux (nJy)	

continues on i

Table 1 – continued from previous page

name	datatype	description	required
osf_flux_i	float	i-band PSF flux (nJy)	
psf_flux_z	float	z-band PSF flux (nJy)	
psf_flux_y	float	y-band PSF flux (nJy)	
osf_flux_j	float	J band PSF flux (nJy)	
priority	float	Priority defined by the observer within the proposal	*
effective_exptime	float	Requested effective exposure time (s)	
is_medium_resolution	bool	True if the medium resolution mode is requested	
qa_relative_throughput	float	Relative throughput to the reference value requested by the observer	
qa_relative_noise	float	Relative noise to the reference value requested by the observer	
qa_reference_lambda float Reference wavelength to evaluate effective exposure time (angstrom or nm?)			
effective_exptime is_medium_resolution qa_relative_throughput qa_relative_noise	float bool float float	Requested effective exposure time (s) True if the medium resolution mode is requested Relative throughput to the reference value requested by the observer	

Notes

tract, patch

If the look-up tract and patch from the coordinates is not expensive, it is possible for the observatory to automatically fill these information without asking inputs from observers.

input_catalog

Currently, the following catalogs are considered, and the list can be easily expanded.

```
input_catalog_id,input_catalog_name,input_catalog_description
0,"simulated","simulated catalog"
1,"gaia_dr1","Gaia Data Release 1"
2,"gaia_dr2","Gaia Data Release 2"
3,"gaia_edr3","Gaia Early Data Release 3"
4,"gaia_dr3","Gaia Data Release 3"
5,"hscssp_pdr1_wide","HSC-SSP Public Data Release 1 (Wide)"
6,"hscssp_pdr1_dud","HSC-SSP Public Data Release 1 (Deep+UltraDeep)"
7,"hscssp_pdr2_wide","HSC-SSP Public Data Release 2 (Wide)"
8,"hscssp_pdr2_dud","HSC-SSP Public Data Release 2 (Deep+UltraDeep)"
9,"hscssp_pdr3_wide","HSC-SSP Public Data Release 3 (Wide)"
10,"hscssp_pdr3_dud","HSC-SSP Public Data Release 3 (Deep+UltraDeep)"
11,"hscssp_pdr4_wide","HSC-SSP Public Data Release 4 (Wide)"
12,"hscssp_pdr4_dud","HSC-SSP Public Data Release 4 (Deep+UltraDeep)"
```

For individual proposals, either assigning a new input_catalog_id (e.g., s22a-qn0001_00001 with input_catalog_id=10001) or allow them to use pre-assigned input_catalog should work.

1.2 Inputs from the observatory

In the background, the observatory needs to populate the rest of tables such as proposal_category, proposal, target_type, input_catalog, and fluxstd.

1.2.1 proposal_category

Currently, proposal_category contains the following information.

```
proposal_category_id,proposal_category_name,proposal_category_description
1,"openuse","Subaru openuse proposal"
2,"keck","Subaru/Keck time exchange proposal"
3,"gemini","Subaru/Gemini time exchange proposal"
4,"uh","University of Hawaii proposal"
```

1.2.2 target_type

Currently, target_type contains teh following entries as defined by the datamodel.

```
target_type_id,target_type_name,target_type_description

1,"SCIENCE","the fiber is intended to be on a science target"

2,"SKY","the fiber is intended to be on blank sky, and used for sky subtraction"

3,"FLUXSTD","the fiber is intended to be on a flux standard, and used for flux_
calibration"

4,"UNASSIGNED","the fiber is not targeted on anything in particular"

5,"ENGINEERING","the fiber is an engineering fiber"

6,"SUNSS_IMAGING","the fiber goes to the SuNSS imaging leg"

7,"SUNSS_DIFFUSE","the fiber goes to the SuNSS diffuse leg"
```

1.2.3 proposal

The proposal table's schema is the following.

name	type	pri-	autoincre-	comment
		mary_key	ment	
proposal_id	VAR-	True	False	Unique identifier for proposal (e.g, S21B-
	CHAR			OT06?)
group_id	VAR-	False	False	Group ID in STARS (e.g., o21195?)
	CHAR			
pi_first_name	VAR-	False	False	PI's first name
	CHAR			
pi_last_name	VAR-	False	False	PI's last name
	CHAR			
pi_middle_name	VAR-	False	False	PI's middle name
	CHAR			
rank	FLOAT	False	False	TAC score
grade	VAR-	False	False	TAC grade (A/B/C/F in the case of HSC
	CHAR			queue)
allocated_time	FLOAT	False	False	Total fiberhours allocated by TAC (hour)
pro-	INTEGER	False	False	
posal_category_id				
created_at	DATE-	False	False	Creation time [YYYY-MM-DDThh:mm:ss]
	TIME			(UTC)
updated_at	DATE-	False	False	Update time [YYYY-MM-DDThh:mm:ss]
	TIME			(UTC)

1.2.4 Other tables

There are more tables which are still under development such as sky and cluster.

1.3 File format

As a target list contains proposal-specific and target-specific information, a file format which can handle metadata would be preferable.

A couple of candidates can be recommended.

- 1. FITS binary table
- 2. ECSV (Enhanced CSV)

Both can be easily prepared with Astropy.

1.3.1 Example

Prepare a list for targets.

(continues on next page)

(continued from previous page)

If you have a similar list as pandas. DataFrame, the following should work.

```
tb = Table.from_pandas(df)
tb.meta['proposal_id'] = "S22A-QN001"
```

You can save the object into a file.

```
tb.write('targets_s22a-qn001.fits', format='fits')
tb.write('targets_s22a-qn001.ecsv', format='ascii.ecsv')
```

Reading the data is easy.

```
tb2 = Table.read('targets_s22a-qn001.fits')
tb2 = Table.read('targets_s22a-qn001.ecsv')
print(tb2.meta["proposal_id"])
print(tb2)
```

1.4 Notes on future development

- Currently, only creating entries in targetDB is tested. Updating and removing them need to be implemented in the future.
- Also, the script/function to create entries is still as of the 2021 November commissioning. This will be modified accordingly.

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search