Уравнения от първи ред

Дефиниция: f(x,y) е липшицова по y в Π , ако $\exists K>0$, за което е изпълнено следното неравенство:

$$|f(x, y_1) - f(x, y_2)| \le K|y_1 - y_2|$$

където $(x, y_1), (x, y_2) \in \Pi$ са произволни.

Лема: Ако $f(x,y), f_y'(x,y) \in C(\Pi) \implies f(x,y)$ е липшицова по y в Π .

Теорема (Локална теорема за единственост и съществуване): Нека f(x,y) е непрекъсната и липшицова по y в $\Pi:=\{(x,y)\in\mathbb{R}:|x-x_0|\leq a,|y-y_0|\leq b\}.$ Тогава съществува единствено решение на задачата на Коши

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

в интервала $[x_0-h,x_0+h]$, където $h=\min\left\{a,\frac{b}{M}\right\}$ и $M=\max_\Pi |f(x,y)|$.

Дефиниция: Решението на уравнението f(x,y,y')=0 е **особено решение**, ако всички точки от графиката на решението са особени.

Теорема (**Теорема за редукцията**): Нека $(x_0,y_0)\in D$ е обикновена точка за уравнението f(x,y,y')=0. Тогава в достатъчно малка околност $U\in D$ на точката (x_0,y_0) съществуват функции $f_j(x,y)\quad j=1,2,\ldots,m$ такива, че $f_j,(f_j)_y'\in C(U)\quad f_j(x_0,y_0)=z_j$ и всяко решение на задачата на Коши:

$$\begin{cases} f(x, y, y') = 0 \\ f(x_0) = y_0 \end{cases}$$

е решение на някоя от задачите на Коши:

$$\begin{cases} y' = f_j(x, y) \\ f(x_0) = y_0 \end{cases}$$