Minimum Wages in the UK

Searching for Non-linearities

David Zentler-Munro

UCL

April 2018

Motivation

Introduction Motivation

Model

Workers Environment - Firms

Calibration

D 1

Conclusion

Minimum wages are an increasingly popular policy response to low wage growth for low paid workers.

Motivation

Introduction

Motivation Methodolog Literature

Environment -Workers

Calibratio

Roculte

- Political logic behind minimum wage (MW) increases in UK seems to be: "introduction of MW doesn't seem to have hit unemployment, so let's put it up some more"
- This is risky: is it a linear relationship or are there nonlinearities to be wary of?
- ▶ To answer this, **we need a model** to forecast impacts.
- ▶ The model presented here can, eventually, help to address this and a wide range of questions:
 - 1. Are there significant nonlinearities in minimum wage impacts?
 - 2. How does minimum wage compare to other redistributive policies?
 - 3. What are likely long term impacts on e.g. productivity, capital use, income and wealth inequality?

Preview of Results

Introduction

Motivation

Methodolog

Model

Workers
Environment - Firm

Calibrati

Results

- We develop a model that combines search frictions with a production function featuring several margins of substitution between factor inputs.
- Nonlinear unemployment reaction in model from:
 - 1. Exogenous nonlinearities:
 - Non-uniform distribution of skills.
 - 2. Endogenous nonlinearities:
 - Vacancy creation with Cobb-Douglas matching function
 - Imperfect substitution between capital and labour and between labour types
- ▶ When calibrated to the UK economy, we find:
 - 1. quantitatively, imperfect substitution between inputs is most important endogenous source of nonlinearities
 - nonlinearity in unemployment lies within range of minimum wages planned in UK over next two years.

Outline

Introduction

Motivation Methodology/

. . . 1

Workers

Calibration

- 1 Introduction
- 2 Model
- 3 Calibration
- 4 Results
- **6** Conclusion

Methodology: Key Ingredients

Introduction Motivation Methodology/ Literature

Environment -Workers

Environment - Firn

Results

- 1. **Frictional Labour Markets**. Search frictions can help explain findings of small impacts of UK minimum wage on employment and firm exit.
- 2. **Capital.** How does the minimum wage affect firms' choice of capital vs. labour?
- 3. **Heterogeneous Agents.** Will minimum wage hikes cause companies to substitute towards higher skill workers?

Methodology: Ingredients Missing...

Introduction

Motivation

Methodology/
Literature

Environment -Workers

Calibrati

Roculte

- 1. **Hours Worked**. Labour is entirely discrete, but model could be extended to include hours worked, as chosen by firms and workers.
- 2. **Participation Margin**. We do not consider positive impact of minimum wage on labour market participation. Again useful extension.
- 3. Firm Heterogeneity. All firms use same technology in this model. But could there be a useful role for minimum wage in eliminating low productivity firms?
- 4. Business Cycles. Should minimum wage increase in recession to provide stimulus to high MPC workers, or decrease to support labour demand?

Related Literature

Introduction Motivation

Motivation
Methodology/
Literature

Environment -Workers

Environment - Firms

Conclusio

1. Structural literature on optimum minimum wage

- ► Search with wage posting van den Berg and Ridder (1998): no unemployment effects until minimum wage equals productivity level then match is destroyed
- Search with wage bargaining Flinn (2006): if vacancy creation is present then smooth unemployment response until minimum wage equals productivity level then match is destroyed
- Contribution: Introduction of decreasing returns to labour in search frameworks, removes cliff-edge effects.
- 2. Empirical literature on UK minimum wage Small employment effects, decrease in firm profits and limited price effects e.g. Leonard et al (2014), Draca and Machin (2011).
 - Contribution: Developing a model consistent with these findings, but also capable of examining future risks.

ntroduction Motivation Methodology/

Model Environment -Workers

Environment - Firms

Cambran

Results

Conclusion

Workers.

- Workers differ in observable skill level, which is given (not chosen).
- ► Two broad skill types unskilled and skilled (*u* and *s*).
- Within broad skill types workers, workers differ by unobservable productivitiy level.
- ▶ Unobservable productivity, indexed by i, of a skilled (unskilled) worker is denoted $x_{s,i}$ ($x_{u,i}$), for i = 1..M
- ▶ Productivity is distributed exogenously according to the pdf $l_s(x_{s,i})$ ($l_u(x_{u,i})$)
- Both workers and firms have a common discount factor, β and are risk neutral

Introduction

Motivation

Methodology/
Literature

Model
Environment -

Environment - Firms

Results

Conclusion

Firms

- ▶ We wish to allow for both capital to labour substitution in production and substitution between skill types.
- ▶ Not easy in pure search/match framework.
- ▶ Proposed solution is to have two sectors of production:
 - 1. Intermediate sector with search frictions.
 Intermediate firms hire labour and sell it onto a final good producer think of hiring agencies.
 - One segmented intermediate sector for each skill and productivity level of workers.
 - Final good sector that combines labour hired in intermediate sector and capital, with no frictions.
 Capital-skill complementarity as per Krusell et al (2000)
 "KORV" production function.

ntroductior Motivation Methodology/

Model

Environment -Workers

Environment - Firms

Calibration

Introduction

Motivation

Methodology/

Model

Workers Environment - Firms

Results

Conclusion

Final Good Firms

- Competitive firms which produce using technology shown below. Inputs used:
 - K_{eq} is amount of capital equipment, K_{st} is amount of capital structures
 - ➤ U is effective amount of goods purchased from the low skill intermediate sectors, S is total effective labour from high skill intermediate sectors

$$Y = AK_{st}^{\alpha} \left[\mu U^{\sigma} + (1 - \mu)(\lambda K_{eq}^{\rho} + (1 - \lambda)S^{\rho})^{\frac{\sigma}{\rho}}\right]^{\frac{1-\alpha}{\sigma}}$$
(1)

$$U = \left(\sum_{i=1}^{M} (x_{i,u}h_{i,u})^{\frac{\Psi_{u}-1}{\Psi_{u}}}\right)^{\frac{\Psi_{u}}{\Psi_{u}-1}}, S = \left(\sum_{i=1}^{M} (x_{i,s}h_{i,s})^{\frac{\Psi_{s}-1}{\Psi_{s}}}\right)^{\frac{\Psi_{s}}{\Psi_{s}-1}}$$
(2)

Introduction

Motivation

Methodology/

Model

Workers Environment - Firms

0.111

D 1:

Results

Conclusion

Intermediate Firms

Notation: j will be a vector valued index containing both the broad skill index (u, s) and productivity index (1..M) of a worker.

- One intermediate sector for each worker type j.
- One intermediate firm for every worker (so density of intermediate firms = density of workers)
- Number of matches given by matching function $M(S_j, V_j)$. $S_j =$ number of effective type m job searchers. $V_j =$ vacancies.
- $\theta_j \equiv V_j/S_j$ denotes labour market tightness
- ► Contact rate for type j firms is $q(\theta_j) \equiv M(S_j, V_j) / V_j$, and $(\theta_j q(\theta_j), \chi \theta_j q(\theta_j))$ are the contact rates for unemployed and employed workers respectively.
- Vacancies determined by free entry: i.e. firms issue a vacancy until expected profit equals vacancy cost.

Introduction Motivation Methodology/

Model
Environment Workers

Environment - Firms

Calibrati

Results

Conclusion

Intermediate Firms: Wage Setting

- Assume that firms and unemployed workers engage in Nash bargaining - the minimum wage acts as a constraint to the Nash maximisation.
- When workers gets poached, incumbent and rival bid-up the wage until the value of employing a poached worker equals the value of carrying a vacancy i.e. zero (Postel-Vinay and Robin (2002))
- ▶ Therefore poached workers will get paid their marginal product in final good production.
- Minimum Wage reduces expected profit from employing not-poached worker, and decreases vacancy creation

ntroductior Motivation Methodology/ Literature

Model

Workers Environment - Firms

Calibration

Roculte

Conclusion

Workers

A worker of a given type j exist in one of three states:

- unemployed, receiving flow income b, with lifetime value function denoted V_i^{ue}
- employed but not poached, receiving the higher of Nash bargained wage w_j^b and the minimum wage m_w , with value function V_j^{np} ;
- employed and poached, receiving wage w_j^p , with value function V_j^p

$$V_j^{ue} = b + \beta [\theta_j q(\theta_j) V_j^{np} + (1 - \theta_j q(\theta_j)) V_j^{u}]$$
(3)

$$V_j^{np} = \max(w_j^b, m_w) +$$

$$\beta \left[\delta_i V_i^{ue} + (1 - \delta_i) \left[\chi \theta_i q(\theta_i) V_i^p + (1 - \chi \theta_i q(\theta_i)) V_i^{np} \right] \right]$$

$$V_{i}^{p} = w_{i}^{p} + \beta [\delta_{i} V_{i}^{ue} + (1 - \delta_{i}) V_{i}^{p}]$$
(5)

(4)

ntroduction Motivation Methodology/ Literature

Model

Workers

Environment - Firms

Calibrat

Results

Conclusion

Final Good Producers

▶ The firm's profit maximisation problem is:

$$\max_{K_{st}, K_{eq}, h_{i,u}, h_{i,s} \forall i \in 1..M} \Pi = AK_{st}^{\alpha} \left[\mu U^{\sigma} + (1 - \mu) (\lambda K_{eq}^{\rho} + (1 - \lambda) S^{\rho})^{\frac{\sigma}{\rho}} \right]^{\frac{1 - \alpha}{\sigma}} \\
- \sum_{i=1}^{M} p_{i,u} h_{i,u} - \sum_{i=1}^{M} p_{i,s} h_{i,s} - r_{st} K_{st} - r_{eq} K_{eq} \tag{6}$$

$$U = \left(\sum_{i=1}^{M} (x_{i,u} h_{i,u})^{\frac{\Psi_{u} - 1}{\Psi_{u}}} \right)^{\frac{\Psi_{u}}{\Psi_{u} - 1}}, S = \left(\sum_{i=1}^{M} (x_{i,s} h_{i,s})^{\frac{\Psi_{s} - 1}{\Psi_{s}}} \right)^{\frac{\Psi_{s}}{\Psi_{s} - 1}}$$

Since final good producer is assumed to be competitive, all inputs are chosen to equalise marginal product is with the price of input.

ntroduction

Motivation

Methodology/
Literature

Model

Workers

Environment - Firms

Calibrat

Roculte

Conclusion

Intermediate Firms

- Exist in one of three states:
 - carrying a vacancy, with firm value denoted by J_i^v ,
 - employing a not-poached worker, J_i^{np} , and
 - employing a poached worker, with value J_j^p .

$$J_{j}^{v} = -\kappa_{j} + \beta [q(\theta_{j})\{s^{n}p_{j}J_{j}^{p} + (1 - s_{j}^{u})J_{j}^{p}\} + (1 - q(\theta_{j}))J_{j}^{v}]$$

$$J_{j}^{np} = p_{j} - \max(w_{j}^{b}, m_{w}) + \beta \left[(1 - \delta_{j})\{\chi\theta_{j}q(\theta_{j})J_{j}^{v} + (1 - \chi\theta_{j}q(\theta_{j}))J_{j}^{np}\} + \delta_{j}J_{j}^{v} \right]$$

$$(7)$$

$$J_{j} = p_{j} - \max(w_{j}, m_{w}) + p \left[(1 - \delta_{j}) \left\{ \chi \sigma_{j} q(\sigma_{j}) J_{j} + (1 - \chi \sigma_{j} q(\sigma_{j})) J_{j}^{-} \right\} + \delta_{j} \right]$$

$$(8)$$

 $J_{j}^{p} = p_{j} - w_{j}^{p} + \beta [(1 - \delta_{j})J_{j}^{p} + \delta_{j}J_{j}^{v}]$ (9)

ntroduction

Motivation

Methodology/
Literature

Model

Workers

Environment - Firms

Cambran

Results

Conclusion

Intermediate Firms

- Free entry, so $J_j^v = 0$, and Betrand competition between employers implies $J_j^p = 0$ so $w_j^p = p_j$.
- ▶ From these we get no entry condition:

$$\kappa_j = \beta q(\theta_j) s_j^u \frac{p_j - \max(w_j^b, m_w)}{1 - \beta(1 - \delta_j)(1 - \chi \theta_j q(\theta_j))}$$
(10)

The bargained wage is given below (Φ is the nash bargaining parameter):

$$w_{j}^{b} = \underset{w_{j}^{b}}{\operatorname{argmax}} (V_{j}^{np} - V_{j}^{u})^{\Phi_{j}} (J_{j}^{np})^{1 - \Phi_{j}}$$

$$= \Phi_{j} p_{j} + (1 - \Phi_{j}) (V_{j}^{u} (1 - \beta) - \beta (1 - \delta_{j}) \chi \theta_{j} q(\theta_{j}) (V_{j}^{p} - V_{j}^{u}))$$
(11)

The Model: Equilibrium

Introduction Motivation Methodology/

Model

Environment -Workers

Environment - Firms

Calibrat

Dooulko

Conclusion

Equilibrium: a sketch

Steady State in Labour Markets

$$\delta_j(1 - e_j^{ue}) = \theta_j q(\theta_j) e_j^{ue} \tag{12}$$

$$(\delta_j + \chi \theta_j q(\theta_j)) e_j^{np} = \theta_j q(\theta_j) e_j^{ue}$$
 (13)

- Solving gives us steady state unemployment and labour market tightness: $e_i^{ue^{ss}}$, θ_i^{ss}
- ▶ Intermediate goods market clearing:

$$p_j^s = \max(w_j^b, m_w) + \frac{\kappa_j \left(1 - (\beta(1 - \delta_j)(1 - \chi \theta_j^{ss} q(\theta_j^{ss})))\right)}{\beta q(\theta_j^{ss}) s_i^u}$$
(14)

$$p_j^d = \frac{\partial Y}{\partial h_i(e_i^{ue^{ss}})} \tag{15}$$

The Model: Minimum Wage Impacts

Introduction

Motivation

Methodology/

Model

Environme

Environment - Firms

Calibrat

Doordto

Conclusion

▶ From equilibrium conditions:

$$\max(w_j^b, m_w) = \frac{\partial Y}{\partial h_j(e_j^{ue^{ss}})} - \frac{\kappa_j \left(1 - (\beta(1 - \delta_j)(1 - \chi \theta_j^{ss} q(\theta_j^{ss})))\right)}{\beta q(\theta_j^{ss}) s_j^u}$$
(16)

- ► So wages = marginal product of labour minus recruitment costs
- Minimum wage increase implies:
 - intermediate firms to decrease vacancies. CD matching function: probability of filling remaining vacancies increaes reducing recruitment cost.
 - reducing vacancies decreases employment, increasing marginal product of labour.

Calibration Approach

Introduction

Motivation

Methodology/

Model
Environment Workers

Calibration

Cumprum

Results

- Standard(ish) macro story: borrow some parameters from literature, estimate others (by SMM).
- We focus on estimating parameters for:
 - exogenous distributions of worker productivity (log normal), with seperate distributions for unskilled and skilled.
 - ► Empirical Targets: Variance of Log Wages and p90-10 ratios
 - 2. the elasticities of substitution between workers within these two skill classes, ψ_u , ψ_s ,
 - Empirical Targets: Unemployment Rates
 - 3. recruitment costs κ_u , κ_s
 - ▶ Empirical Targets: Unemployment Rates
 - **4**. the share parameter, μ , in the KORV production function.
 - ► Empirical Targets: Graduate Wage Premium

Calibration Approach: Detail

Introduction

Motivation

Methodology/

Model
Environment Workers
Environment - Firms

Calibration

Results

Conclusion

▶ Denote the parameters to be estimated as $\Phi = (\psi_u, \psi_s, \kappa_u, \kappa_s, A, \sigma_{u.x}, \sigma_{s.x}, \mu)$.

- Remaining parameters are taken from the literate, data or legislation and are denoted by Ω .
- Estimate the parameters in Φ by SMM, targeting the following empirical moments for unskilled and skilled:
 - median wages,
 - variance of log wages,
 - ▶ p90/10 and p50/10 ratios.
 - unemployment rates.
- Let \hat{M} denotes vector of the empirical moments above, and $M(\Phi, \Omega)$ denote the model predictions of these moments. Then:

$$\Phi^{SMM} = \underset{\Phi}{\operatorname{argmin}} (M(\Phi, \Omega) - \hat{M})'(M(\Phi, \Omega) - \hat{M}) \quad (17)$$

Calibrated Parameters

Introduction Motivation

. . . .

Environment -Workers

Environment - Firm

Calibration

Dooralko

Conclusion

Table: Estimation Results

Moment	Model Moment	Empirical Moment	% Deviation (Model -
			Data)
Median Hourly Wage: Unskilled	9.93	9.5	4.44
Median Hourly Wage: Skilled	16.01	15.71	1.94
Var Log Wages: Unskilled	0.45	0.49	-8.29
Var Log Wages: Skilled	0.54	0.57	-5.35
p90/50 Wages: Unskilled	2.01	1.92	4.57
p90/50 Wages: Skilled	2.02	1.96	3.12
p50/10 Wages: Unskilled	1.57	1.57	0.24
p50/10 Wages: Skilled	2.07	2.07	0.19
Min Wage Coverage: Un- skilled	0.16	0.16	0.25
Min Wage Coverage: Skilled	0.06	0.06	0.03
Unemployment: Un- skilled	0.07	0.07	0.51
Unemployment: Skilled	0.03	0.03	0.76

Calibrated Parameters

ntroduction

Motivation
Methodology/

Model

Workers

Calibration

ixesuits

Conclusion

Table: Estimated Parameters

Parameter	Description	Source	Value	
Ψ_u	Elasticity of substitution between unskilled work- ers	SMM Estimation	8.251	
Ψ_s	Elasticity of substitution between skilled workers	SMM Estimation	14.833	
μ	Share parameter determining skill premium in KORV production function	SMM Estimation	0.361	
A	Total Factor Productivity	SMM Estimation	6.765	
η_u	Variance parameter of worker ability distribu- tion: unskilled workers	SMM Estimation	0.454	
η_s	Variance parameter of worker ability distribu- tion: skilled workers	SMM Estimation	0.452	
ϕ_u	Nash Bargaining Parame- ter for unskilled workers	SMM Estimation	0.189	
ϕ_s	Nash Bargaining Parame- ter for skilled workers	SMM Estimation	0.153	
κ_u	Hiring cost: unskilled workers	SMM Estimation	162.182	
K_S	Hiring cost: skilled work- ers	SMM Estimation	3369.239	

Calibrated Parameters

ntroduction

Motivation

Motivation

Methodology/
Literature

Model

Workers
Environment - Firm

Calibration

n 1.

Conclusion

Table: Calibrated Parameters

Parameter	Description	Source	Value
δ_u	Job destruction rate: un- skilled	LFS 2013q4-2014q3	0.011
δ_s	Job destruction rate: skilled	LFS 2013q4-2014q3	0.007
Χu	Relative search intensity of employed to unem- ployed: unskilled	LFS 2013q4-2014q3 (ratio of employer change rate to unemployment exit)	0.112
Χs	Relative search intensity of employed to unem- ployed: unskilled	LFS 2013q4-2014q3 (ratio of employer change rate to unemployment exit)	0.075
b	Monthly Unemployment benefits (job seekers al- lowance)	Legislative level 2013-14	313.492
m_w	Hourly minimum wage	Legislative level 2013-14	6.31
σ	Elasticity of substitution between unskilled and skilled workers	Krusell et al. (2000)	0.401
ρ	Elasticity of substitution between skilled workers and capital equipment	Krusell et al. (2000)	-0.495
α	Capital Structures Parameter	Krusell et al. (2000)	0.117
λ	Input share parameter for capital equipment and skilled labour	Krusell et al. (2000)	0.3
γ	Matching Parameter	Hagedorn and Manovskii	0.407

Results: Matching Reduced Form Evidence

Introduction

Motivation Methodology/

Model

Workers

Environment - Firm

Cambrai

Results

Conclusion

Table: Replicating Reduced Form Evidence

	Dependent Variable		
	Change in ln(average wage)	Abs Change in Profit Margin	% Change in Profit Margin
Results from Model:			
Dummy: Low Wage Firm	0.081	-0.003	-18.3
	(0.0147)	(0.0005)	
-ln(initial average wage)	0.1899	-0.0069	
	(0.0156)	(0.0005)	
Results from Draca et al. (2011):			
Dummy: Low Wage Firm	0.09	-0.029	-22.66
-	(0.026)	(0.012)	
-ln(initial average wage)	0.188	-0.032	
	(0.033)	(-0.015)	

Results: Searching for Nonlinearities

Results

Results: Drivers of Nonlinearities

introduction

Motivation Methodology/

Model

Environment -Workers

Environment - Firm

Calibrat

Results

Conclusions and Next Steps

Introduction

Motivation

Methodology/

Environment - Workers

Calibration

Roculte

- We develop a model that combines search frictions with a production function featuring several margins of substitution between factor inputs.
- Nonlinear unemployment reaction in model from:
 - 1. Exogenous nonlinearities:
 - Non-uniform distribution of skills.
 - 2. Endogenous nonlinearities:
 - Vacancy creation with Cobb-Douglas matching function
 - Imperfect substitution between capital and labour and between labour types
- ▶ When calibrated to the UK economy, we find:
 - 1. quantitatively, imperfect substitution between inputs is most important endogenous source of nonlinearities
 - nonlinearity in unemployment lies within range of minimum wages planned in UK over next two years.