

Basic Knowledge About Computer Vision—Based On Chapter13 of *Dive into Deep Learning*

Speaker: Qiqi Gong

Personal Introduction

Name: Gong Qiqi

• Hometown: Xuzhou, Jiangsu Province

• Education Experience:

• 2017- Beijing Jiaotong University, Weihai Campus Communication Engineering

CONTENTS

- **01** Image Augmentation
- 02 Fine-tuning
- 03 Object Detection

01 Image Augmentation

Image Augmentation

- Produce similar but different traing examples
- Expand traning dataset
- Imporve the capability for generalization (reduce the dependence on a certain property, e.g. brightness, color and etc.)

- Flipping and cropping
 - pytorch syntax (Flipping):
 - torchvision.transforms.RandomHorizontalFlip(p=0.5) # randomly L-R flip
 - torchvision.transforms.RandomVerticalFlip(p=0.5) # randomly U-D flip

- Flipping and cropping
 - pytorch syntax (Cropping):
 - torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1), ratio=(0.75, 1.33333333333333))
 - size : output size
 - scale: random scale of origin input from low-boud to up-bound
 - ratio : w/h of cropping region

- Assume the area of cropping window is s, then s= S*scale
- w=sqrt(sr), h=sqrt(s/r)

- Color change
 - torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0)
 - parameters vary between [max(0 , 1 ParaVal), 1 + ParaVal]
 - 亮度、对比度、饱和度、色调

- Composing change
 - torchvision.transforms.Compose([transform list])
 - compose kinds of transforms

02 Fine tuning

Fine-tuning - A kind of transfer learning tech.

- Pre-train a neural network model, i.e., the source model, on a source dataset;
- Create a new neural network model, i.e., the target model;
- Randomly initialize parameters for output layer;
- Train on target dataset and fine-tune para. for each layer

03 Object Detection

Object Detection - What is Object Detection?

Computer Vision Tasks

Object Detection - Application

Object Detection - Challenge

- Environment
 - Illumination
 - Fuzzy
- Crowded (密集)
- Occluded (遮挡)
- Overlapped (重叠)
- Multi-scale
 - Extremely small
 - Large
- Rare Samples (e.g. fire detection) Few shot
- Actual Use(device size, power, computation)

Object Detection - History

Bounding Box

- Describe the position of an object
- Predicting box, anchor box, Rol, ground-truth...
- Describe with LU coordinate and RL coordinate

Anchor Box

- Multiple bounding boxes with different sizes and aspect ratios(宽高比) while centering on each pixels produced by design
- Called **prior box** (先验框) in SSD (Single Shot Multiple Detection, 单发多框检测)

- IoU Intersection over Union
 - Assess the quality of a predicting box, the greater, the better
- Rol Region of Interest
- Region Proposal
 - 两阶段方法:
- RPI ✓ 先使用anchor回归候选目标框,划分前 景和背景
 - ✓ 使用候选目标框进一步回归和分类,输
 - 出最终目标框和对应的类别

- NMS Non-Maximum Suppression, 非极大值抑制
 - "去同存异"
 - Remove similar boxes and remain different boxes

Synthesis

- 1. Generate anchor boxes
 - Assume the size of input image is h^*w , areas of anchor boxes are $(s_1, s_2, s_3, ... s_n)$ and $s_i \in (0,1]$, aspect ratios are $(r_1, r_2, r_3, ... r_m)$ and $r_i > 0$
 - Thus, the width and height of the anchor box are $ws\sqrt{r}$ and hs/\sqrt{r} respectively
 - This will make computation complexed (*hwmn anchor boxes*) although ground-truch bounding boxes will be included. So, we only focuse on a combination containing s1 or r1 sizes and aspect ratios. I.e. $(s_1, r_1), (s_1, r_2), \ldots, (s_1, r_m), (s_2, r_1), (s_3, r_1), \ldots, (s_n, r_1)$.

$$w\sqrt{sr}$$
 $h\sqrt{s/r}$

- Synthesis
 - 2. Labeling traing set anchor boxes
 - Labeling two labels for each a-box: i) category; ii) Relative offset of GT box to a-box (offset)

- Synthesis
 - 3. Output predicting boxes (NMS)
 - Many anchor boxes could be produced
 - Remove similar ones


```
def nms(dets, thresh):
  # boxes 位置
  x1 = dets[:, 0]
  v1 = dets[:, 1]
  x2 = dets[:, 2]
  y2 = dets[:, 3]
  # boxes scores
  scores = dets[:, 4]
  areas = (x2 - x1 + 1) * (y2 - y1 + 1) # 各 box 的面积
  order = scores.argsort()[::-1] # boxes 的按照 score 排序
  keep = [] # 记录保留下的 boxes
  while order.size > 0:
    i = order[0] # score 最大的 box 对应的 index
    keep.append(i) # 将本轮 score 最大的 box 的 index 保留
    # 计算剩余 boxes 与当前 box 的重叠程度 IoU
    xx1 = np.maximum(x1[i], x1[order[1:]])
    yy1 = np.maximum(y1[i], y1[order[1:]])
    xx2 = np.minimum(x2[i], x2[order[1:]])
    yy2 = np.minimum(y2[i], y2[order[1:]])
    w = np.maximum(0.0, xx2 - xx1 + 1)
    h = np.maximum(0.0, yy2 - yy1 + 1)
    inter = w * h
    # IoU
    ovr = inter / (areas[i] + areas[order[1:]] - inter)
    # 保留 IoU 小于设定阈值的 boxes
    inds = np.where(ovr <= thresh)[0]
    order = order[inds + 1]
  return keep
```

- mAP mean Average Precision
 - TP: No. of detecting boxes when IoU >= Thresh
 - FP: No. of detecting boxes when IoU < Thresh
 - TN: No. of non-detected gound-truth objects
 - Precision(P) = TP/(TP+FP) = 正确检测的个数/所有检测到的个数
 - Recall (R) = TP/(TP+TN) = 正确检测的个数/实际有的(人工标注)的个数
 - E.g.
 - There should be 10 boxes for a certain category, 8 are predicted among which 6 are right
 - P = 6 / 8 and R = 6 / 10

- mAP mean Average Precision
 - P-R Curve: P-y axis, R-x axis
 - Sort the predicting boxes for a certain category according to their confidence from High to Low
 - Calculate Precision and Recall accumulatively

• mAP - Example

image	Detections	confidences	TP	FP	累积 TP	累积 FP	Precision	Recall
Image3	J	91%	1	0	1	0	1.000	0.143
Image1	Α	88%	0	1	1	1	0.500	0.143
Image1	С	80%	0	1	1	2	0.333	0.143
Image2	F	74%	0	1	1	3	0.250	0.143
Image2	D	71%	0	1	1	4	0.200	0.143
Image1	В	70%	1	0	2	4	0.333	0.286
Image3	н	67%	0	1	2	5	0.286	0.286
Image2	E	54%	1	0	3	5	0.375	0.429
Image3	K	44%	0	1	3	6	0.333	0.429
Image3	1	38%	0	1	3	7	0.300	0.429
Image3	G	18%	0	1	3	8	0.273	0.429

• mAP - Example

image	Detections	confidences	TP	FP	累积 TP	累积 FP	Precision	Recall
Image3	J	91%	1	0	1	0	1.000	0.143
lmage1	Α	88%	0	1	1	1	0.500	0.143
lmage1	С	80%	0	1	1	2	0.333	0.143
Image2	F	74%	0	1	1	3	0.250	0.143
Image2	D	71%	0	1	1	4	0.200	0.143
lmage1	В	70%	1	0	2	4	0.333	0.286
Image3	н	67%	0	1	2	5	0.286	0.286
Image2	E	54%	1	0	3	5	0.375	0.429
Image3	K	44%	0	1	3	6	0.333	0.429
Image3	1	38%	0	1	3	7	0.300	0.429
Image3	G	18%	0	1	3	8	0.273	0.429

- AP: areas under the PR curve for a certain category
- mAP: AP for all categories

$$AP = A1 + A2$$

$$A1 = (0.143 - 0) \times 1 = 0.143$$

$$A2 = (0.429 - 0.143) \times 0.375 = 0.107$$

$$AP = 0.143 + 0.107 = 0.250 = 25\%$$

- R-CNN (Region-based CNN)
 - Extract about 2k region proposals for an input image;
 - Each region will be wrapped into the size that the CNN (a pre-trained network) requires, outputing the features extracted from the proposed regions;
 - Use theses features to train several SVM classifiers, each SVM is used to determine whether an example blongs to a certain category(Y or N);
 - Train a linear regression model for ground-truth bounding box prediction with region features.

R-CNN: Regions with CNN features

warped region

person? yes.

tymonitor? no.

1. Input image proposals (~2k)

CNN features

4. Classify regions

- R-CNN Selective Search
 - Divide the image into small regions
 - Merge similar regions (until form the image)
 - Color
 - Pattern (纹理)
 - Small regions first
 - Output all the regions once existed (region proposals)
- R-CNN Extract features
 - Adjust the size of region proposals, inputting into CNN

- R-CNN Classification
 - Train several SVM classifiers to determine whether the object belongs to a certain category
- R-CNN Adjust b-box position bounding box regression

- R-CNN Drawbacks
 - Training process is multi-stage: adjust ConvNet when putting region proposals, training SVMs, b-box aggression
 - High temporal and spatral cost
 - Low quality of extrated regions
 - Slow: 47" per image with VGG on GPU

Fast R-CNN

- Take the entire image as the input into a convolutional network;
- Project multiple regions of interest(RoI) on the feature map;
- Introduce Rol pooling layer* to produce fixed-size feature maps and then converted into feature vectors with full-connected layers(FCs)
- One Rol pooling outputs two vectors: one for predict category and the

other for predict b-box

• Fast R-CNN - Stage1

- Fast R-CNN Stage2 :Rol pooling
 - Assume the size of Rol is h*w
 - Set hyper-parameters for the size of output of RoI pooling layer as H*W
 - Rol is divided into several sub-windows whose sizes are (h/H)*(w/W)
 - e.g.

0.98	0.53	0.44	0.88	0.79	0.05	0.20	0.30	0.61	0.92
0.73	0.68	0.39	0.83	0.75	0.80	0.90	0.99	0.35	0.60
0.40	0.59	0.28	0.68	0.61	0.39	0.40	0.06	0.44	0.35
0.16	0.38	0.98	0.70	0.10	0.74	0.48	0.05	0.69	0.33
0.05	0.83	0.84	0.38	0.50	0.71	0.31	0.11	0.91	0.88
0.39	0.13	1.00	0.72	0.79	0.14	0.97	0.62	0.38	0.97
0.31	0.13	0.40	0.72	0.09	0.95	0.57	0.87	0.97	0.78
0.91	0.01	0.29	0.13	0.45	0.59	0.58	0.67	0.91	0.35
0.26	0.37	0.34	0.50	0.96	0.03	0.78	0.78	0.91	0.33
0.85	0.64	0.62	0.88	0.36	0.93	0.72	0.52	0.36	0.96

0.98	0.99
1.00	0.97

(2,1,7,7)

Fast R-CNN - Stage3 & 4

Fast R-CNN - Stage3 & 4

Fast R-CNN - Ads. and Disads.

Ads

- Instead input region proposals, Fast R-CNN use the whole image as the input
- Construct multi-task loss
- Higher quality (mAP) compared with R-CNN
- Faster than R-CNN

	Training Time	Testing Time		
R-CNN	84 H	47 sec		
Fast R-CNN	9.5 H	0.32 sec		

DisAds

Still use Selective Search to produce region proposals

Faster R-CNN

• Replace "Selective search" part with a RPN (Region Proposal Network)

Reference

- Dive into Deep Learning, Chapter 13
- RCNN 论文阅读记录, https://zhuanlan.zhihu.com/p/42643788
- Fast RCNN 论文阅读记录, https://zhuanlan.zhihu.com/p/43037119
- 【目标检测】Fast RCNN算法详解, https://blog.csdn.net/shenxiaolu1984/article/details/51036677