合肥工业大学研究生考试试卷(A)

一、计算题 (每小题 5 分, 满分共 30 分)

4. 直接验证梯形求积公式具有1次代数精度。

2. 设S是函数f在区间[0,2]上的三次样条:

$$S(x) = \begin{cases} 1 + 2x - x^{3}, & 0 \le x \le 1; \\ 2 + b(x - 1) + c(x - 1)^{2} + (x - 1)^{3}, & 1 \le x \le 2. \end{cases}$$

求b、c.

订

线

5. 证明: 求解初值问题
$$\begin{cases} y'(t) = f(t,y), & a \leq t \leq b; \\ y(a) = \alpha \end{cases}$$
 的 Euler 方法是 1 阶方法。

3. 设函数 f(2.0)=1.3673, f(2.2)=1.6797, f(2.4)=1.3046, 用三点数值微分公式 计算 f'(2.2)、 f''(2.2) .

6. 设 $x_0, x_1, \cdots x_n$ 是区间 [a,b] 中彼此互异的点,且 f(x) 是次数不超过 n 的多项式,证明:在 $x_0, x_1, \cdots x_n$ 上关于 f(x) 的 lagrange 插值多项式就是 f(x) .

二、(本題满分 10 分) (1) 设 $f \in C[a,b]$,且 f(a)f(b) < 0 , x^* 是方程 f(x) = 0 在区间 (a,b) 内的唯一根。若 $\{x_n\}$ 是由二分法产生的逼近 x^* 的序列,证明: $\left|x_n - x^*\right| \leq \frac{b-a}{2^n}$, $n = 1, 2, \cdots$ (设 $[a,b] = [a_1,b_1]$)

(2) 设 $x_{10} = 2.467053$ 是由二分法产生的 x^* 的近似值,求它至少具有几位有效数字?

三、(本题满分10分) 已知线性方程组

$$\begin{cases} x_1 + 2x_2 - 2x_3 = 1, \\ x_1 + x_2 + x_3 = 1, \\ 2x_1 + 2x_2 + x_3 = 1. \end{cases}$$

- (1) 分别写出求解上述方程组的 Jacobi 迭代格式和 Gauss-Seidel 迭代格式。
- (2) 分别判断求解上述方程组的 Jacobi 迭代格式和 Gauss-Seidel 迭代格式是否收敛?

四、(本题满分 10 分) (1) 下表是函数 y = f(x) 的差商表

$$x_0 = 0.0$$
 $f[x_0]$
 $x_1 = 0.4$ $f[x_1]$ $f[x_0, x_1]$
 $x_2 = 0.7$ $f[x_2] = 6$ $f[x_1, x_2] = 10$ $f[x_0, x_1, x_2] = 50/7$

求表中缺失的项的值。

(2) 根据上述差商表,求出相应的 Newton 插值多项式。

五、(本题满分 10 分) 求拟合下列表中数据的 1 次最小二乘多项式 $p_{_{\rm I}}(x)$,取权 $\rho_{_i}=1$, i=0,1,2,3,4 ,并计算总误差 Q .

i	0	1	2	3	4
x_{i}	2	3	5	7	10
y_i	-0.5	1.2	3.1	4.5	6.0

六、(本题满分 10 分) 用两点古典 Gauss 公式计算 $I=\int_{-1}^{1} \frac{\sin x}{2+x} \, \mathrm{d}x$ 的近似值。

七、(本题满分10分) 设 x^* 是方程f(x) = 0的 $m(m \ge 2)$ 重根,

(1) 证明:
$$x^*$$
是方程 $\mu(x) = 0$ 的单根, 其中 $\mu(x) = \frac{f(x)}{f'(x)}$ 。

(2) 已知
$$x^*$$
 方程 x^3 $-3x^2$ $+4=0$ 的唯一重根,利用(1)的结果,用Newton迭代法求 x^* 的 近似值 x_1 、 x_2 (初值 x_0 =1.5)。

八、(本题满分 10 分) 用改进的 Euler 方法求下列初值问题(取步长 h=0.5)

$$\begin{cases} y'(t) = -y(t) - ty^{2}(t), & 0 < t \le 1, \\ y(0) = 1. \end{cases}$$