Programa Métodos Econométricos Dinámicos

Maestría en Economía Internacional

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Año 2019

Profesores: Dante Amengual (amengual@cemfi.es)

Elizabeth Bucacos (ebucacos@bcu.gub.uy) Fernando Borraz (fborraz@bcu.gub.uy)

Duración: 40 horas

I. Objetivo del curso

El curso será de nivel intermedio-avanzado y presentará los elementos teóricos y los métodos para el análisis estadístico-econométrico de modelos dinámicos multivariados orientados al análisis económico aplicado. Se revisarán modelos de series de tiempo con variables estacionarias y no estacionarias y el concepto de cointegración en sistemas multivariantes. Al finalizar cada tema se realizarán aplicaciones en STATA y MATLAB. El curso permitirá a los estudiantes realizar investigaciones aplicadas utilizando técnicas de econometría avanzadas y comprender trabajos econométricos.

Al final del curso el alumno deberá ser capaz de:

- a. Aplicar conceptos y técnicas de econometría a problemas prácticos. En particular conocer y aplicar técnicas multivariadas indispensables para un adecuado análisis de la coyuntura económica.
- Utilizar los métodos econométricos reconociendo sus limitaciones y formular las modificaciones necesarias para una correcta utilización de variables provenientes de procesos integrados, evitando la formulación de regresiones espurias e incorrectas.
- c. Comprender técnicas de dinámica en econometría considerando las relaciones de cointegración entre series de tiempo.
- e. Realizar análisis de artículos aplicados que utilizan temas de econometría avanzados que marcan la utilidad que el cuerpo teórico estudiado tendrá en su vida profesional.
- f. Implementar los modelos econométricos y las pruebas de diagnósticos desarrolladas en programas de computación econométricos como MATLAB y STATA.

II. Programa

1. Modelos multivariantes estacionarios

- 1.1 Modelos de vectores autoregresivos (VAR)
- 1.2 Identificación, modelos de vectores autoregresivos estructurales (SVAR)
- 1.3 Causalidad
- 1.4 Funciones de impulso respuesta (FIR) y descomposición de varianzas (DV)

2. Modelos multivariantes no estacionarios

- 2.1 Cointegración
- 2.2 Pruebas de cointegración: Engle-Granger, Johansen
- 2.3 Mecanismo de corrección de errores

3. Desarrollos recientes en modelos multivariantes estacionarios. Especificación, estimación y aplicaciones.

- 3.1 Modelos de vectores autoregresivos con factores aumentados (FAVAR)
- 3.2 Modelos Panel VAR (pVAR)
- 3.3 Modelos Global VAR (GVAR)
- 3.4 Evaluación

4. Inferencia con observaciones dependientes

- 4.1 Métodos de estimación
- 4.2 Identificación
- 4.3 Propiedades asintóticas de los extremum estimators y pseudo-ML
- 4.4 Eficiencia. Estimadores secuenciales
- 4.5 Pruebas de hipótesis clásicas (LR, W y LM)
- 4.6 Contrastes de especificación

5. Estimación de modelos de regresión de series temporales

- 5.1 Modelos autoregresivos
- 5.2 Raíces unitarias y cointegración
- 5.3 Modelos dinámicos de regresión
- 5.4 Heteroscedasticidad y autocorrelación

III. Evaluación

La evaluación del curso será mediante la realización de trabajos, actitud y particpación en clase y un examen final. La distribución de puntos para aquellos que se presenten en la primera convocatoria será de acuerdo a la siguiente tabla:

a. Ejercicios domiciliaros	30 puntos
b. Examen final primera convocatoria	60 puntos
c. Actitud y participación en clase	10 puntos

Para aprobar la materia el estudiante deberá tener un mínimo de 50% en exámen y al menos 60% en el total.

Se entregarán dos ejercicios domiciliarios, cada uno con un puntaje de 15 puntos. En la tabla siguiente se indican las fechas y los temas correspondientes:

Temas	Fecha entrega enunciado	Fecha entrega
1	13/6	27/6
2	A definir	A definir

Los ejercicios domiciliarios serán en grupos de hasta 3 alumnos. Las entregas fuera de plazo o hechas por grupos de más de 3 alumnos recibirán cero como calificación.

IV. CRONOGRAMA DETALLADO DEL CURSO

Semana	Fecha	Tema	Horario	Profesor
Semana 1:	Martes 4/6	1	8 a 10	FB
	Jueves 6/6	1	8 a 10	FB
Semana 2:	Martes 11/6	1	8 a 10	FB
	Jueves 13/6	1	8 a 10	FB
Semana 3:	A definir			EB
	A definir			EB
Semana 4:	Martes 25/6	2	8:30 a 10:30	EB
	Jueves 27/6	2	8:30 a 10:30	EB
Semana 5:	Martes 2/7	2	8:30 a 10:30	EB
	Jueves 4/7	2	8:30 a 10:30	EB
Semana 6:	Martes 9/7	2	8:30 a 10:30	EB
	Jueves 11/7	3	8:30 a 10:30	EB
Semana 7:	Martes 16/7	3	8:30 a 10:30	EB
Semana 8:	Martes 23/7	4	8:00 a 10:30	DA
	Miércoles 24/7	4	8:00 a 10:30	DA

	Viernes 26/7	4	8:00 a 10:00	DA
Semana 9:	Lunes 29/7	4	8:00 a 10:30	DA
Semana 10:	Lunes 5/8 Martes 6/8	5 5	8:00 a 10:30 8:00 a 10:00	DA DA

V. Bibliografía

Los textos del curso son:

Enders, W. (2014). Applied Econometric Time Series. John Wiley & Sons, 4a. edición.

Hamilton, J. (1994): Time Series Analysis, Princeton University Press.

Los artículos recomendados son:

Acemoglu, D., S. Johnson, y J. A. Robinson, 2001, "The Colonial Origins of Comparative Development: An Empirical Investigation," The American Economic Review, Vol. 91 No. 5.

Bernanke, B., J. Boivin y P. Elizas (2005). "Measuring the Effects of Monetary Policy: Factor-Augmented Vector Autoregressive (FAVAR) Approach", *The Quarterly Journal of Economics*, 120 (1), 387-422.

Chudik, A. y M. Hashem Pesaran (2011). "Infinite Dimensional VARs and Factor Models", Journal of Econometrics, 163, 2011, 4-22.

Dees, S., F. di Mauro, V. Smith, and H. Pesaran. (2007) "Exploring the International Linkages of the Euro Area: A Global VAR Analysis." *Journal of Applied Econometrics*, 22, 1–38.

Textos complementarios:

Hansen, B.E. (2016). Econometrics. University of Wisconsin. Hayashi, F. (2000). Econometrics. Princeton University Press.