Подборка экзаменов по теории вероятностей. Факультет экономики, НИУ ВШЭ

Коллектив кафедры математической экономики и эконометрики, фольклор

28 мая 2018 г.

Содержание

1	Опі	исание	5
2	Доб	рое напутствие пишущим эту подборку :)	5
3	2004	4-2005	ϵ
	3.1	Контрольная работа №2, 22.12.04	ć
	3.2	Контрольная работа №2, 22.12.04, решения	
4	2005	5-2006	8
	4.1	Контрольная работа №1, 18.10.2005	8
	4.2	Контрольная работа №1, 18.10.2005, решения	1(
	4.3	Контрольная работа №2, 21.12.2005	1(
	4.4	Контрольная работа №2, 21.12.2005, решения	12
	4.5	Контрольная работа №3, 04.03.2006	13
	4.6	Контрольная работа №3, 04.03.2006, решения	
5	2006	5 -200 7	18
	5.1	Контрольная работа №1, ??.11.2006	18
	5.2	Контрольная работа №1, ??.11.2006, решения	19
	5.3	Контрольная работа №2, 27.01.2007	20
	5.4	Контрольная работа №2, 27.01.2007, решения	
	5.5	Контрольная работа №3, 21.02.2007	24
	5.6	Контрольная работа №3, 21.02.2007, решения	27
6	2007	7-2008	29
	6.1	Контрольная работа №1, 03.11.2007	29
	6.2	Контрольная работа №1, 03.11.2007, решения	
	6.3	Контрольная работа №2, демо-версия, 21.01.2008	
	6.4	Контрольная работа №2, демо-версия, 21.01.2008, решения	
	6.5	Контрольная работа №2, 21.01.2008	
	6.6	Контрольная работа №2, 21.01.2008, решения	
	6.7	Контрольная работа №3, демо-версия, 01.03.2008	
	6.8	Контрольная работа №3, 01.03.2008	
	6.9	Контрольная работа №3 01 03 2008 решения	

7	2008	-2009 4	
	7.1	Контрольная работа №1, демо-версия, ??.11.2008	
	7.2	Контрольная работа №1, демо-версия, ??.11.2008, решения	
	7.3	Контрольная работа №1, ??.11.2008	
	7.4	Контрольная работа №1, ??.11.2008, решения	
	7.5	Контрольная работа №2, демо-версия, $26.12.2008$	
	7.6	Контрольная работа №2, демо-версия, 26.12.2008, решения	
	7.7	Контрольная работа №2, 26.12.2008	
	7.8	Контрольная работа №2, 26.12.2008, решения	5
	7.9	Контрольная работа №3, 02.03.2009	8
8	2009	-2010 6	1
	8.1	Контрольная работа №2, ??.12.2009	1
	8.2	Контрольная работа №2, ??.12.2009, решения	2
	8.3	Контрольная работа №3?, ??.??.2010?	3
	8.4	Контрольная работа №4, ??.??.2010	4
9	2010	-2011 6:	5
	9.1	Контрольная работа №1, ??.10.2010	5
	9.2	Контрольная работа №1, ??.10.2010, решения	6
	9.3	Контрольная работа №2, ??.12.2010	7
	9.4	Контрольная работа №2, ??.12.2010, решения	8
	9.5	Контрольная работа №3, ??.03.2011	0
10	2011	-2012	1
	10.1	Контрольная работа №1, 24.10.2011	1
		Контрольная работа №1, 24.10.2011, решения	4
		Контрольная работа №2, 29.12.2011	5
		Контрольная работа №2, 29.12.2011, решения	8
		Контрольная работа №3, 13.03.2012	0
		Контрольная работа №3, 13.03.2012, решения	0
	10.7	Экзамен, 26.03.2012	1
11	2012	-2013	8
	11.1	Контрольная работа №1, 14.11.2012	8
		Контрольная работа №1, 14.11.2012, решения	9
		Контрольная работа №2, 26.12.2012	0
		Контрольная работа №2, 26.12.2012, решения	2
	11.5	Демо-версия зачёта	3
	11.6	Зачёт, 15.01.2013	4
		КоКо, компьютерная контрольная №3, 13.03.13	5
		Экзамен, 26.03.2013	6
12	2013	-2014	1
		Контрольная работа №1, 5.11.2013	
		Контрольная работа №1, 5.11.2013, решения	
		Контрольная работа №1, і-поток, 15.11.2013	
		Контрольная работа №1, і-поток, 15.11.2013, решения	
		Контрольная работа №2, і-поток, 16-28.12.2013	
		Контрольная работа №2, і-поток, 16-28.12.2013, решения	
		Контрольная работа №2, 25.12.2013	

	12.8 Контрольная работа №2, 25.12.2013, решения	
	12.9 Контрольная работа 3	117
	12.10 Контрольная работа 3, і-поток, 19.03.2014.	
	12.11 Переписывание кр1, вариант 1	
	12.12 Переписывание кр1, вариант 2	
	12.13 Билеты к зачёту	
	12.14 Экзамен, 26.03.2014	
	12.14 Okoumen, 20.05.2014	120
13	2014-2015	133
13	13.1 Контрольная работа 1. Базовый поток. 30.10.2014	
	13.2 Решение кр 1. Базовый поток	
	13.3 Праздник номер 1, і-поток, 30.10.2014	
	13.4 Праздник номер 1 по теории вероятностей, і-поток. Решение	
	13.5 Контрольная работа 2. Базовый поток. 15.12.2014	
	13.6 Контрольная работа 2. Базовый поток. 15.12.2014, решение	
	13.7 Праздник номер 2, і-поток, 15.12.2014	
	13.8 Решение. Праздник номер 2, і-поток	162
	13.9 Пересдача за 1-ый семестр??	168
	13.10 Контрольная номер 3	172
	13.11 Контрольная номер 3, решение	
	13.12 Контрольная номер 4, 05.06.2015	
	13.13 Экзамен, 15.06.2015	
		1,,
14	2015-2016	182
	14.1 Контрольная номер 1, базовый поток, 26.10.2015	182
	14.2 Контрольная номер 1, базовый поток, 26.10.2015, решения	
	14.3 Праздник номер 1, исследователи, индивидуальный тур	
	14.4 Индивидуальный тур, решение	
	14.5 Регата, исследователи, командный тур	
	14.6 Регата, исследователи, командный тур, решение	
	14.7 Контрольная номер 2, поток Арктура, 12.12.2015	
	14.8 Контрольная номер 2, поток Арктура, 12.12.2015, решение	
	14.9 Контрольная номер 2, поток Риччи, 12.12.2015	
	14.10 Контрольная номер 2, поток Риччи, 12.12.2015, решение	195
	14.11 Midterm, 21.12.2015	198
	14.12 Контрольная работа 3. 1 апреля 2016	202
	14.13 Контрольная работа 3, решения	204
	14.14 Контрольная работа 3. Брутальная часть. 1 апреля 2016	206
	14.15 Контрольная 4, 09.06.2016	
	14.16 Контрольная 4, решения	
	14.17 Экзамен, 20.06.2016	
	14.17 Oksamen, 20.00.2010	211
15	2016-2017	217
13	15.1 Кр 1 базовый поток,	
	15.2 Кр 1 базовый поток, решения	
	15.3 Кр 1 ИП, 27.10.2016	
	15.4 Кр 1 ИП, 27.10.2016, решения	
	15.5 Кр 2 базовый поток, 09-12-2016	
	15.6 Кр 2 базовый поток, 09-12-2016, решения	
	15.7 CosmoWar: blue part	
	15.8 Kosmowar, blue part solutions, 24.12.2016	236

	15.9	Экзамен за 1 семестр, 24.12.2016	239
	15.10	Тренировочный вариант к кр 3, 01.04.2017	244
	15.11	Тренировочный вариант кр 3, решения	246
	15.12	Ещё один тренировочный вариант к кр 3, 01.04.2017	248
	15.13	Кр 3, демо-2, решение	250
	15.14	Kp 3. 2017-04-01	252
		Кр 3. 2017-04-01, решения	
	15.16	Кр 3. ИП. 2017-04-01	256
		Кр 4	
		Кр 4, решения	
		Экзамен	
16	2017-	-2018	266
	16.1	Теоретический минимум к кр 1	266
		Задачный минимум к кр 1	
	16.3	Контрольная работа 1, базовый поток, 24.10.2017	273
		Контрольная работа 1, базовый поток, 24.10.2017, решения	
		Контрольная работа 1, ИП, 24.10.2017	
		Контрольная работа 1, ИП, 24.10.2017, решения	
		Теоретический минимум к кр2	
		Задачный минимум кр 2	
		Контрольная работа 2, базовый поток, 09.12.2017	
		16.9.1 Минимум	
		16.9.2 Задачи	
	16.10	Контрольная работа 2, базовый поток, решения	
		Кр2 — ИП часть	
		16.11.1 Typ 1	
		16.11.2 Тур 1 — Основная часть — Дискретные распределения	
		16.11.3 Тур 1 — Основная часть — Комбинаторика	
		16.11.4 Тур 1 — Основная часть — Метод первого шага	
		16.11.5 Тур 1 — Основная часть — Неравенства Чебышёва и Маркова	
		16.11.6 Тур 1 — Основная часть — Условные вероятности	
		16.11.7 Тур 1 — студия — Ковариации и корреляции	
		16.11.8 Тур 1 — студия — Нормальное распределение	
		16.11.9 Тур 1 — студия — Непрерывные распределения	
		16.11.10Тур 1 — студия — Оптимальные стратегии	
		16.11.11Typ 2	
		16.11.12Тур 2 — Основная часть — Непрерывные распределения	
	16 12	Тур 2 — Основная часть — Ковариации и корреляции	
	10.12	16.12.1 Тур 2 — Основная часть — Нормальное распределение	
		16.12.2 Тур 2 — Основная часть — Геометрические вероятности	
		16.12.3 Тур 2 — Основная часть — Геометрические вероятности	
		16.12.4 Тур 2 — студия — ЦПТ и ЗБЧ	
		16.12.5 Тур 2 — студия — ЦПТ и 3В 1	
		16.12.6 Тур 2 — студия — Разложение в сумму	
	16 10	16.12.7 Тур 2 — студия — Пределы по вероятностям	
		Теоретический минимум к кр3	
		Задачный минимум к кр3	
	16.15	Кр3, базовая часть, 24 марта 2018	
		16.15.1 Минимум	
		16.15.2 Задачи	315

16.16 Кр3, базовая часть, 24 марта 2018, решения	16
16.17 Кр3, вторая часть для ИП, 24 марта 2018	17
16.18 Кр3, вторая часть для ИП, 24 марта 2018, решения	18

1. Описание

Свежую версию можно скачать с блога http://pokrovka11.wordpress.com/ или с github репозитория https://github.com/bdemeshev/probability_hse_exams.

Уникальное предложение для студентов факультета экономики ГУ-ВШЭ:

Найдите ошибки в этом документе или пришлите отсутствующие решения в техе и получите дополнительные бонусы! Найденные смысловые ошибки поощряются сильнее, чем просто опечатки. Замеченные ошибки и новые решения оформляйте в виде issues на https://github.com/bdemeshev/probability_hse_exams/issues/. Перед публикацией issue, пожалуйста, свертесь со свежей версией подборки.

Неполный список благодарностей:

- 1. Андрей Зубанов, решения (экзамен 26.03.2012, ...)
- 2. Кирилл Пономарёв, решения (контрольная 1, 2014)
- 3. Александр Левкун, решения (контрольная 1, 2014)
- 4. Оля Гнилова, решения (кр 3 2011, 2014, 2015, 2016, ...)
- 5. Настя Жаркова
- 6. Гарик Варданян

2. Доброе напутствие пишущим эту подборку:)

Здесь перечислены стилевые особенности коллекции и самые популярные ошибки. Узнать технические подробности по теху можно, например, в учебнике К.В. Воронцова.

- 1. Дробную часть числа отделяй от целой точкой: 3.14- хорошо, 3.14- плохо. Это нарушает русскую традицию, но облегчает копирование-вставку в любой программный пакет.
- 2. Существует длинное тире, —, которое отличается от просто дефиса и нужно, чтобы разделять части предложения. Инструкция в картинках по набору тире :)
- 3. Выключные формулы следует окружать \[...\]. Никаких \$\$...\$\$!
- 4. Про остальные окружения: для системы уравнений подойдёт cases, для формул на несколько строк multline*, для нумерации enumerate.
- 5. Русский текст внутри формулы нужно писать в \text{...}.
- 6. Для многоточий существует команда \ldots.
- 7. В преамбуле определены сокращения! Самые популярные: \P, \E, \Var, \Cov, \Corr, \cN.
- 8. Названия функций тоже идут со слэшем: \ln, \exp, \cos...
- 9. Таблицы нужно оформлять по стандарту booktabs. Самый удобный способ сделать это зайти на tablesgenerator и выбрать там опцию booktabs table style вместо default table style.
- 10. Уважай букву ё ставь над ней точки! :)

3. 2004-2005

3.1. Контрольная работа №2, 22.12.04

- 1. Вычислите вероятность $\mathbb{P}(|X \mathbb{E}(X)| > 2\sqrt{\mathrm{Var}(X)})$, если известно, что случайная величина X подчиняется нормальному закону распределения.
- 2. Определите значения математического ожидания и дисперсии случайной величины, функция плотности которой имеет вид

$$f(x) = \frac{1}{3\sqrt{2\pi}}e^{-\frac{(x+1)^2}{18}}$$

- 3. Страховая компания «Ой» заключает договор страхования от «невыезда» (невыдачи визы) с туристами, покупающими туры в Европу. Из предыдущей практики известно, что в среднем отказывают в визе одному из 130 человек. Найдите вероятность того, что из 200 застраховавшихся в «Ой» туристов, четверым потребуется страховое возмещение.
- 4. Считая вероятность рождения мальчика равной 0.52, вычислите вероятность того, что из 24 новорожденных будет 15 мальчиков.
- 5. Для случайной величины X с нулевым математическим ожиданием дисперсией 16, оцените сверху вероятность $\mathbb{P}(|X|>15)$.
- 6. Случайные величины X и Y независимы. Известно, что $\mathbb{E}(X)=0$, $\mathrm{Var}(X)=4$, $\mathbb{E}(Y)=5$. Определите значение дисперсии случайной величины Y, если известно, что случайная величина Z=2X-Y, принимает неотрицательные значения с вероятностью 0.9.
- 7. Вычислите вероятность $\mathbb{P}(|X \mathbb{E}(X)| > 2 \operatorname{Var}(X))$, если известно, что случайная величина X распределена по закону Пуассона с параметром $\lambda = 0.09$
- 8. Портфель страховой компании состоит из 1000 договоров, заключенных 1 января и действующих в течение года. При наступлении страхового случая по каждому из договоров компания обязуется выплатить 1500 рублей. Вероятность наступления страхового события по каждому из договоров предполагается равной 0.05 и не зависящей от наступления страховых событий по другим контрактам. Каков должен быть совокупный размер резерва страховой компании для того, чтобы с вероятностью 0.95 она могла бы удовлетворить требования, возникающие по указанным договорам?
- 9. В коробке лежат три купюры, достоинством в 100, 10 и 50 рублей соответственно. Они извлекаются в случайном порядке. Пусть $X_1,\,X_2$ и X_3 достоинства купюр в порядке их появления из коробки.
 - а) Верно ли, что X_1 и X_3 одинаково распределены?
 - б) Верно ли, что X_1 и X_3 независимы?
 - в) Найдите дисперсию X_2
- 10. Когда Винни-Пуха не кусают пчелы, он сочиняет в среднем одну кричалку в день. Верный друг и соратник Винни-Пуха Пятачок записал, сколько кричалок сочинялось в дни укусов. Эта выборка из 36 наблюдений перед вами:

Верно ли, что укусы пчел положительно сказываются на творческом потенциале Винни-Пуха (используйте нормальную аппроксимацию биномиального распределения)?

6

- 11. Пусть X_t количество бактерий, живущих в момент времени t. Известно, что $X_1=1$ и $X_t=A_t\cdot X_{t-1}$, где случайные величины A_t независимы и равномерно распределены на отрезке [0;2a]. Величина A_t может интерпретироваться как среднее количество потомков. Можно догадаться, что данная модель приводить к экспоненциальной динамике.
 - а) Определите долгосрочный темп роста бактерий, то есть найдите предел $\lim_{n \to \infty} \frac{\ln X_n}{n}$
 - б) При каком a темп роста будет положительным?

3.2. Контрольная работа №2, 22.12.04, решения

1.
$$\mathbb{P}\left(|X - \mathbb{E}(X)| > 2\sqrt{\operatorname{Var}(X)}\right) = \mathbb{P}\left(\frac{|X - \mathbb{E}(X)|}{\sqrt{\operatorname{Var}(X)}} > 2\right) = 2\mathbb{P}(\mathcal{N}(0, 1) > 2) \approx 0.05$$

- 2. $\mu = -1$, $\sigma^2 = 9$
- 3. $C_{200}^4 \left(\frac{1}{130}\right)^4 \left(\frac{129}{130}\right)^{196}$
- 4. $C_{20}^5 0.52^{15} 0.48^9$
- 5. $\mathbb{P}(|X| > 15) \leq \frac{16}{15^2}$
- 6. Подготовимся: $\mathbb{E}(2X Y) = -5$, Var(2X Y) = 16 + Var(Y)

$$\mathbb{P}(Z > 0) = 0.9 \Rightarrow \mathbb{P}\left(\frac{2X - Y + 5}{\sqrt{16 + \text{Var}(Y)}} > \frac{5}{\sqrt{16 + \text{Var}(Y)}}\right) \Rightarrow \frac{5}{\sqrt{16 + \text{Var}(Y)}} = 1.28$$

$$Var(Y) = 0.74$$

7.
$$\mathbb{E}(X) = \text{Var}(X) = \lambda = 0.09$$

$$\mathbb{P}(|X - 0.09| > 0.18) = 1 - \mathbb{P}(-0.18 < X - 0.09 < 0.18) \stackrel{X \geqslant 0}{=} 1 - \mathbb{P}(X = 0) = 1 - e^{-0.09}$$

8. Пусть X — случайная величина, число страховых случаев, $X \sim Bin(n=1000,p=0.05)$. S — размер резерва.

Тогда условие можно записать в виде: $\mathbb{P}(1500X\leqslant S)=0.95$

$$\mathbb{P}\left(\frac{X - 50}{\sqrt{1000 \cdot 0.05 \cdot 0.95}} \leqslant \frac{\frac{S}{1500} - 50}{\sqrt{1000 \cdot 0.05 \cdot 0.95}}\right) = 0.95 \Rightarrow \frac{\frac{S}{1500} - 50}{\sqrt{1000 \cdot 0.05 \cdot 0.95}} \approx 1.65 \Rightarrow S \approx 92058$$

- 9. а) Да
 - б) Нет
 - в) 1356
- 10. Пусть X случайная величина, число сочинённых песенок в день, когда Винни-Пуха кусает пчела, $X \sim Bin(n,p)$.

Из данной в условии выборки находим $\overline{X}=19/18$, поскольку число наблюдений достаточно велико, $\mathbb{E}(X)=np=36p=19/18$, откуда получаем $p=19/(18\cdot 36)$ и $\mathrm{Var}(X)=np(1-p)\approx 1$.

Нормальная аппроксимация: $X \sim \mathcal{N}(19/18, 1)$.

$$\mathbb{P}(X > 1) = \mathbb{P}\left(X - \frac{19}{18} > -\frac{1}{18}\right) \approx 0.52$$

11. а) Заметим, что величину X_t можно представить в виде:

$$X_t = A_t \cdot X_{t-1} = A_t \cdot A_{t-1} \cdot X_{t-1} = \dots = A_t \cdot A_{t-1} \cdot \dots \cdot A_2 \cdot X_1$$

Тогда и предел тоже можно переписать:

$$\lim_{n\to\infty}\frac{\ln X_n}{n}=\lim_{n\to\infty}\frac{\ln A_n+\ldots+\ln A_2+\ln X_1}{n}\stackrel{X_1=1}{=}\lim_{n\to\infty}\frac{\ln A_n+\ldots+\ln A_2}{n}\stackrel{\mathrm{3BY}}{=}\mathbb{E}(\ln A_1)$$

Осталось найти математическое ожидание $\ln A_1$:

$$\mathbb{E}(\ln A_1) = \int_0^{2a} \frac{1}{2a} \cdot \ln x dx = \ln(2a) - 1$$

б) Из неравенста $\ln(2a)-1>0$ получаем, что темп роста будет положительным при a>e/2.

4. 2005-2006

4.1. Контрольная работа №1, 18.10.2005

Часть І.

- 1. Если X случайная величина, то Var(X) = Var(16 X)
- 2. Функция распределения случайной величины является неубывающей
- 3. Дисперсия случайной величины не меньше, чем ее стандартное отклонение
- 4. Для любой случайной величины $\mathbb{E}\left(X^{2}\right)\geqslant\left(\mathbb{E}\left(X\right)\right)^{2}$
- 5. Если ковариация равна нулю, то случайные величины независимы
- 6. Значение функции плотности может превышать единицу
- 7. Если события A и B не могут произойти одновременно, то они независимы
- 8. Для любых событий A и B верно, что $\mathbb{P}\left(A|B\right)\geqslant\mathbb{P}\left(A\cap B\right)$
- 9. Функция плотности не может быть периодической
- 10. Для неотрицательной случайной величины $\mathbb{E}\left(X\right)\geqslant\mathbb{E}\left(-X\right)$
- 11. Я ещё не видел части с задачами, но что-то мне уже домой хочется

Часть II.

Стоимость задач 10 баллов.

- 1. Шесть студентов, три юноши и три девушки, стоят в очереди за пирожками в случайном порядке. Какова вероятность того, что юноши и девушки чередуются?
- 2. Имеется три монетки. Две «правильных» и одна с «орлами» по обеим сторонам. Петя выбирает одну монетку наугад и подкидывает ее два раза. Оба раза выпадает «орел». Какова вероятность того, что монетка «неправильная»?

3. Вася гоняет на мотоцикле по единичной окружности с центром в начале координат. В случайный момент времени он останавливается. Пусть случайные величины X и Y — это Васины абсцисса и ордината в момент остановки. Найдите $\mathbb{P}\left(X>\frac{1}{2}\right)$, $\mathbb{P}\left(X>\frac{1}{2}|Y<\frac{1}{2}\right)$. Являются ли события $A=\left\{X>\frac{1}{2}\right\}$ и $B=\left\{Y<\frac{1}{2}\right\}$ независимыми?

Подсказка: $\cos\left(\frac{\pi}{3}\right)=\frac{1}{2}$, длина окружности $l=2\pi R$

- 4. В коробке находится четыре внешне одинаковых лампочки. Две из лампочек исправны, две нет. Лампочки извлекают из коробки по одной до тех пор, пока не будут извлечены обе исправные.
 - а) Какова вероятность того, что опыт закончится извлечением трех лампочек?
 - б) Каково ожидаемое количество извлеченных лампочек?
- 5. Два охотника выстрелили в одну утку. Первый попадает с вероятностью 0.4, второй с вероятностью 0.7. В утку попала ровно одна пуля. Какова вероятность того, что утка была убита первым охотником?
- 6. a) Известно, что $\mathbb{E}\left(Z\right)=-3$ и $\mathbb{E}\left(Z^2\right)=15$. Найдите $\mathrm{Var}\left(Z\right)$, $\mathrm{Var}\left(4-3Z\right)$ и $\mathbb{E}\left(5+3Z-Z^2\right)$.
 - б) Известно, что ${\rm Var}\,(X+Y)=20$ и ${\rm Var}\,(X-Y)=10$. Найдите ${\rm Cov}\,(X,Y)$ и ${\rm Cov}\,(6-X,3Y)$.
- 7. Известно, что случайная величина X принимает три значения. Также известно, что $\mathbb{P}\left(X=1\right)=0.3; \ \mathbb{P}\left(X=2\right)=0.1$ и $\mathbb{E}\left(X\right)=-0.7.$ Определите чему равно третье значение случайной величины X и найдите $\mathrm{Var}\left(X\right).$
- 8. Известно, что функция плотности случайной величины X имеет вид:

$$p(x) = \begin{cases} cx^2, & x \in [-2; 2] \\ 0, & x \notin [-2; 2] \end{cases}$$

Найдите значение константы c, $\mathbb{P}\left(X>1\right)$, $\mathbb{E}\left(X\right)$, $\mathbb{E}\left(\frac{1}{X^3+10}\right)$ и постройте график функции распределения величины X.

- 9. Бросают два правильных игральных кубика. Пусть X наименьшая из выпавших граней, а Y наибольшая.
 - а) Рассчитайте $\mathbb{P}(X=3\cap Y=5)$
 - б) Найдите $\mathbb{E}\left(X\right)$, $\mathrm{Var}\left(X\right)$, $\mathbb{E}\left(3X-2Y\right)$
- 10. Вася решает тест путем проставления каждого ответа наугад. В тесте 5 вопросов. В каждом вопросе 4 варианта ответа. Пусть X число правильных ответов, Y число неправильных ответов и Z=X-Y .
 - а) Найдите $\mathbb{P}\left(X>3\right)$
 - б) Найдите $\mathrm{Var}\left(X\right)$ и $\mathrm{Cov}\left(X,Y\right)$
 - в) Найдите $\mathrm{Corr}\,(X,Z)$

Часть III.

Стоимость задачи 20 баллов.

Требуется решить одну из двух 11-х задач по выбору!

11-А. Петя сообщает Васе значение случайной величины, равномерно распределенной на отрезке [0;4] . С вероятностью $\frac{1}{4}$ Вася возводит Петино число в квадрат, а с вероятностью $\frac{3}{4}$ прибавляет к Петиному числу 4. Обозначим результат буквой Y.

Найдите $\mathbb{P}(Y < 4)$ и функцию плотности случайной величины Y.

Вася выбирает свое действие независимо от Петиного числа.

- 11-Б. Вы хотите приобрести некую фирму. Стоимость фирмы для ее нынешних владельцев случайная величина, равномерно распределенная на отрезке [0;1]. Вы предлагаете владельцам продать ее за называемую Вами сумму. Владельцы либо соглашаются, либо нет. Если владельцы согласны, то Вы платите обещанную сумму и получаете фирму. Когда фирма переходит в Ваши руки, ее стоимость сразу возрастает на 20%.
 - а) Чему равен Ваш ожидаемый выигрыш, если Вы предлагаете цену 0.5?
 - б) Какова оптимальная предлагаемая цена?

4.2. Контрольная работа №1, 18.10.2005, решения

1.
$$\mathbb{P}(A) = \frac{2 \cdot 3! \cdot 3!}{6!} = 1/10$$

2.
$$\mathbb{P}(A|B) = \frac{1/3}{1/3 + 2/12} = 2/3$$

3.
$$\mathbb{P}\left(X > \frac{1}{2}\right) = 1/3, \mathbb{P}\left(X > \frac{1}{2}|Y < \frac{1}{2}\right) = 1/4$$

4. a)
$$\frac{x}{\mathbb{P}(X=x)} = \frac{2}{1/6} = \frac{3}{1/3} = \frac{4}{1/2}$$

б)
$$\mathbb{E}(X) = 3\frac{1}{3}$$

5.
$$\mathbb{P}(A|B) = \frac{0.4 \cdot 0.3}{0.4 \cdot 0.3 + 0.6 \cdot 0.7}$$

6. a)
$$Var(Z) = 6$$
, $Var(4 - 3Z) = 54$, $\mathbb{E}(5 + 3Z - Z^2) = -19$

б)
$$Cov(X,Y) = 2.5$$
, $Cov(6 - X, 3Y) = -7.5$

7.
$$x = -2$$
, $Var(X) = 3.1 - 0.49 = 2.61$

8.
$$c = 3/16$$
, $\mathbb{P}(X > 1) = 13/16$, $\mathbb{E}(X) = 0$, $\mathbb{E}(1/(X^3 + 10)) = \frac{3}{8}\ln(3)$, $F(x) = \begin{cases} 0, & x < -2 \\ \frac{x^3 + 8}{16}, & x \in [-2; 2] \\ 1, & x > 2 \end{cases}$

9.
$$\mathbb{P}(X=3\cap Y=5)=2/36$$
, $\mathbb{E}(X)=91/36$, $\mathrm{Var}(X)\approx 2.1$, заметим, что $X+Y=R_1+R_2$, поэтому $\mathbb{E}(X)+\mathbb{E}(Y)=7$, и $\mathbb{E}(3X-2Y)=3\mathbb{E}(X)-2\mathbb{E}(Y)=3\mathbb{E}(X)-2(7-\mathbb{E}(X))=5\mathbb{E}(X)-14$

10.
$$\mathbb{P}(X>3)=61/1024$$
, $\mathrm{Var}(X)=15/16$, $\mathrm{Cov}(X,Y)=\mathrm{Cov}(X,5-X)=-\mathrm{Cov}(X,X)=-15/16$, $\mathrm{Corr}(X,Z)=\mathrm{Corr}(X,2X-5)=1$

4.3. Контрольная работа №2, 21.12.2005

Часть І.

- 1. Сумма двух нормальных независимых случайных величин нормальна
- 2. Сумма любых двух непрерывных случайных величин непрерывна

- 3. Нормальная случайная величина не может принимать отрицательные значения
- 4. Пуассоновская случайная величина является непрерывной
- 5. Сумма двух независимых равномерно распределенных величин равномерна
- 6. Дисперсия суммы зависимых величин всегда больше суммы дисперсий
- 7. Дисперсия пуассоновской случайной величины равна ее математическому ожиданию
- 8. Если X непрерывная случайная величина, $\mathbb{E}\left(X\right)=6$ и $\mathrm{Var}\left(X\right)=9$, то $Y=\frac{X-6}{3}\sim\mathcal{N}\left(0;1\right)$
- 9. Теорема Муавра-Лапласа является частным случаем центральной предельной
- 10. Для любой случайной величины $\mathbb{E}\left(X|X>0\right)\geqslant\mathbb{E}\left(X\right)$

Часть II.

Стоимость задач 10 баллов.

- 1. Вася, владелец крупного Интернет-портала, вывесил на главной странице рекламный баннер. Ежедневно его страницу посещают 1000 человек. Вероятность того, что посетитель портала кликнет по баннеру равна 0.003. С помощью пуассоновского приближения оцените вероятность того, что за один день не будет ни одного клика по баннеру.
- 2. Совместный закон распределения случайных величин X и Y задан таблицей:

Найдите
$$c,\mathbb{P}\left(Y>-X\right),\mathbb{E}\left(X\cdot Y^{2}\right),\mathbb{E}\left(Y|X>0\right)$$

- 3. Случайный вектор (X_1 X_2) имеет нормальное распределение с математическим ожиданием (2 -1) и ковариационной матрицей ($\begin{pmatrix} 9 & -4.5 \\ -4.5 & 25 \end{pmatrix}$). Найдите $\mathbb{P}\left(X_1+3X_2>20\right)$.
- 4. Совместная функция плотности имеет вид

$$p_{X,Y}\left(x,y\right)=\left\{\begin{array}{ll} x+y, & \text{если}\,x\in\left[0;1\right],\,y\in\left[0;1\right]\\ 0, & \text{иначе} \end{array}\right.$$

Найдите
$$\mathbb{P}\left(Y>X\right)$$
, $\mathbb{E}\left(X\right)$, $\mathbb{E}\left(X|Y>X\right)$.

- 5. В среднем 20% покупателей супермаркета делают покупку на сумму свыше 500 рублей. Какова вероятность того, что из 200 покупателей менее 21% сделают покупку на сумму менее 500 рублей?
- 6. Вася и Петя метают дротики по мишени. Каждый из них сделал по 100 попыток. Вася оказался метче Пети в 59 попытках. На уровне значимости 5% проверьте гипотезу о том, что меткость Васи и Пети одинаковая, против альтернативной гипотезы о том, что Вася метче Пети.
- 7. Найдите $\mathbb{P}(X \in [16; 23])$, если
 - а) X нормально распределена, $\mathbb{E}(X) = 20$, Var(X) = 25

- б) X равномерно распределена на отрезке [0;30]
- в) X распределена экспоненциально и $\mathbb{E}\left(X\right)=20$
- 8. Каждый день цена акции равновероятно поднимается или опускается на один рубль. Сейчас акция стоит 1000 рублей. Введем случайную величину X_i , обозначающую изменение курса акции за i-ый день. Найдите $\mathbb{E}\left(X_i\right)$ и $\mathrm{Var}\left(X_i\right)$. С помощью центральной предельной теоремы найдите вероятность того, что через сто дней акция будет стоить больше 1030 рублей.
- 9. Определите математическое ожидание и дисперсию случайной величины, если ее функция плотности имеет вид $p(t) = c \cdot \exp\left(-2 \cdot (t+1)^2\right)$.
- 10. Пусть случайные величины X и Y независимы и распределены по Пуассону с параметрами $\lambda_X=5$ и $\lambda_Y=15$ соответственно. Найдите условное распределение случайной величины X, если известно, что X+Y=50.

Часть III.

Стоимость задачи 20 баллов. Требуется решить одну из двух 11-х задач по выбору!

11-А. Допустим, что оценка X за экзамен распределена равномерно на отрезке [0;100]. Итоговая оценка Y рассчитывается по формуле $Y=\left\{ egin{array}{ll} 0, & if & X<30 \\ X, & if & X\in[30;80] \\ 100, & if & X>80 \end{array} \right.$

Найдите
$$\mathbb{E}(Y)$$
, $\mathbb{E}(X \cdot Y)$, $\mathbb{E}(Y^2)$, $\mathbb{E}(Y|Y > 0)$.

11-Б. Вася играет в компьютерную игру — «стрелялку-бродилку». По сюжету ему нужно убить 60 монстров. На один выстрел уходит ровно 1 минута. Вероятность убить монстра с одного выстрела равна 0.25. Количество выстрелов не ограничено. Сколько времени в среднем Вася тратит на одного монстра? Найдите дисперсию этого времени? Какова вероятность того, что Вася закончит игру меньше, чем за 3 часа?

4.4. Контрольная работа №2, 21.12.2005, решения

1.
$$\mathbb{P}(X=0) = e^{-0.003} \approx 0.997$$

2.
$$c = 0.3$$
, $\mathbb{P}(Y > -X) = 0.4$, $\mathbb{E}(X \cdot Y^2) = 0.5$, $\mathbb{E}(Y|X > 0) = 1/3$

3.
$$\mathbb{P}(X_1 + 3X_2 > 20) = \mathbb{P}\left(\frac{X_1 + 3X_2 + 1}{\sqrt{207}} > \frac{20 + 1}{\sqrt{207}}\right) = \mathbb{P}(\mathcal{N}(0, 1) > 1.46) = 0.0721$$

 $\mathbb{E}(X_1 + 3X_2) = -1, \operatorname{Var}(X_1 + 3X_2) = 9 + 9 \cdot 25 + 6 \cdot (-4.5) = 207$

4.
$$\mathbb{P}(Y > X) = \int_0^1 \int_x^1 (x+y) dy dx = 0.5$$

 $\mathbb{E}(X) = \int_0^1 (x+0.5) x dx = 7/12$

5.
$$\mathbb{P}(\hat{p} < 0.21) = \mathbb{P}\left(\frac{\hat{p} - 0.8}{\sqrt{\frac{0.8(1 - 0.8)}{200}}} < \frac{0.21 - 0.8}{\sqrt{\frac{0.8(1 - 0.8)}{200}}}\right) \approx 0$$

6.

B)
$$-e^{-\frac{1}{20\cdot23}} + e^{-\frac{1}{20\cdot16}} \approx 0.13$$

8. Если S — финальная стоимость акции, то $S=1000+X_1+X_2+\ldots+X_{100}$. Тогда по ЦПТ $S\sim\mathcal{N}(1000,100)$ и $\mathbb{P}(S>1030)\approx0.001$.

9.
$$\mathbb{E}(X) = -c\sqrt{\frac{\pi}{2}}, Var(X) = c\frac{5}{4}\frac{\pi}{2} - c^2\frac{\pi}{2}$$

10.

$$\mathbb{P}(X=k|X+Y=50) = \frac{\mathbb{P}(X+Y=50|X=k)\mathbb{P}(X=k)}{\mathbb{P}(X+Y=50)} = \frac{\mathbb{P}(Y=50-k)\mathbb{P}(X=k)}{\mathbb{P}(X+Y=50)} = \frac{\left(\frac{e^{-15}15^{50-k}}{(50-k)!}\right)\left(\frac{e^{-5}5^k}{k!}\right)}{\frac{e^{-(5+15)}(5+15)^{50}}{50!}} = C_{50}^k \frac{5^k \cdot 15^{50-k}}{(5+15)^{50}} = C_{50}^k \left(\frac{5}{5+15}\right)^k \left(\frac{15}{5+15}\right)^{50-k}$$

Получили биномиальное распределение с параметрами p = 1/4, n = 50.

4.5. Контрольная работа №3, 04.03.2006

Solution!

Просто из сил выбьешься, пока вдруг как-то само не уладится; что-то надо подчеркнуть, что-то — выбросить, не договорить, а где-то — ошибиться, без ошибки такая пакость, что глядеть тошно. В.А. Серов

Часть I.

Обведите верный ответ:

- 1. Если $X \sim \chi^2_n$ и $Y \sim \chi^2_{n+1}$, X и Y независимы, то X не превосходит Y. Нет.
- 2. В тесте Манна-Уитни предполагается нормальность хотя бы одной из сравниваемых выборок. Нет.
- 3. График функции плотности случайной величины, имеющей t-распределение симметричен относительно 0. Да.
- 4. Мощность больше у того теста, у которого вероятность ошибки 2-го рода меньше. Да.
- 5. Если $X \sim t_n$, то $X^2 \sim F_{1,n}$. Да.
- 6. При прочих равных 90% доверительный интервал шире 95%-го. Нет.
- 7. Несмещенная выборочная оценка дисперсии не превосходит квадрата выборочного среднего. Нет.
- 8. Если гипотеза отвергает при 5%-ом уровне значимости, то она будет отвергаться и при 1%-ом уровне значимости. Нет.
- 9. У t-распределения более толстые «хвосты», чем у стандартного нормального. Да.
- 10. Р-значение показывает вероятность отвергнуть нулевую гипотезу, когда она верна. Нет.
- 11. Если t-статистика равна нулю, то P-значение также равно нулю. Нет.
- 12. Если $X \sim \mathcal{N}(0; 1)$, то $X^2 \sim \chi_1^2$. Да.
- 13. Пусть X_i длина i-го удава в сантиметрах, а Y_i в дециметрах. Выборочный коэффициент корреляции между этими наборами данных равен $\frac{1}{10}$. Нет.

- 14. Математическое ожидание выборочного среднего не зависит от объема выборки, если X_i одинаково распределены. Да.
- 15. Зная закон распределения X и закон распределения Y можно восстановить совместный закон распределения пары (X,Y). Нет.
- 16. Если ты отвечаешь на вопросы этого теста наугад, то число правильных ответов случайная величина, имеющая биномиальное распределение с дисперсией 4. Да.

Часть II.

Стоимость задач 10 баллов.

1. Пусть случайная величина X распределена равномерно на отрезке [0;a], где a>3 . Исследователь хочет оценить параметр $\theta=\mathbb{P}\left(X<3\right)$. Рассмотрим следующую оценку

$$\hat{\theta} = \left\{ \begin{array}{l} 1, \ X < 3 \\ 0, \ X \geqslant 3 \end{array} \right.$$

- а) Объясните, что означают термины «несмещенность», «состоятельность», «эффективность».
- б) Верно ли, что оценка $\hat{\theta}$ является несмещенной?
- в) Найдите $\mathbb{E}\left(\left(\hat{ heta}- heta
 ight)^2\right)$.
- 2. Пусть $X_1, X_2, ..., X_n$ независимы и их функции плотности имеет вид:

$$f(x) = \begin{cases} (k+1)x^k, & x \in [0;1]; \\ 0, & x \notin [0;1]. \end{cases}$$

Найдите оценки параметра k:

- а) Методом максимального правдоподобия
- б) Методом моментов
- 3. У 200 человек записали цвет глаз и волос. На уровне значимости 10% проверьте гипотезу о независимости этих признаков.

Цвет глаз / волос	Светлые	Тёмные	Итого
Зелёные	49	25	74
Другие	30	96	126
Итого	79	121	200

- 4. На курсе два потока, на первом потоке учатся 40 человек, на втором потоке 50 человек. Средний балл за контрольную на первом потоке равен 78 при (выборочном) стандартном отклонении в 7 баллов. На втором потоке средний балл равен 74 при (выборочном) стандартном отклонении в 8 баллов.
 - а) Постройте 90% доверительный интервал для разницы баллов между двумя потоками
 - б) На 10%-ом уровне значимости проверьте гипотезу о том, что результаты контрольной между потоками не отличаются.
 - в) Рассчитайте точное Р-значение (P-value) теста в пункте «б»

- 5. Предположим, что время жизни лампочки распределено нормально. По 10 лампочкам оценка стандартного отклонения времени жизни оказалась равной 120 часам.
 - а) Найдите 80%-ый (двусторонний) доверительный интервал для истинного стандартного отклонения.
 - б) Допустим, что выборку увеличат до 20 лампочек. Какова вероятность того, что выборочная оценка дисперсии будет отличаться от истинной дисперсии меньше, чем на 40%?
- 6. Из 10 опрошенных студентов часть предпочитала готовиться по синему учебнику, а часть по зеленому. В таблице представлены их итоговые баллы.

Синий	76	45	57	65		
Зелёный	49	59	66	81	38	88

- а) С помощью теста Манна-Уитни (Mann-Whitney) проверьте гипотезу о том, что выбор учебника не меняет закона распределения оценки.
 - Разрешается использование нормальной аппроксимации
- б) Возможно ли в этой задаче использовать (Wilcoxon Signed Rank Test)?
- 7. Вася очень любит играть в преферанс. Предположим, что Васин выигрыш распределен нормально. За последние 5 партий средний выигрыш составил 1560 рублей, при оценке стандартного отклонения равной 670 рублям. Постройте 90%-ый доверительный интервал для математического ожидания Васиного выигрыша.
- 8. Имеется две конкурирующие гипотезы:

 H_0 : Величина X распределена равномерно на отрезке [0;100]

 H_a : Величина X распределена равномерно на отрезке [50; 150]

Исследователь выбрал такой критерей: если X < c, то использовать H_0 , иначе использовать H_a .

- а) Что такое «ошибка первого рода», «ошибка второго рода», «мощность теста»?
- б) Постройте графики зависимостей ошибок первого и второго рода от c.
- 9. На плоскости выбирается точка со случайными координатами. Абсцисса и ордината независимы и распределены $\mathcal{N}(0;1)$. Какова вероятность того, что расстояние от точки до начала координат будет больше 2.45?
- 10. С вероятностью 0.3 Вася оставил конспект в одной из 10 посещенных им сегодня аудиторий. Вася осмотрел 7 из 10 аудиторий и конспекта в них не нашел.
 - а) Какова вероятность того, что конспект будет найден в следующей осматриваемой им аудитории?
 - б) Какова (условная) вероятность того, что конспект оставлен где-то в другом месте?

Часть III.

Стоимость задачи 20 баллов.

Требуется решить одну из двух 11-х задач по выбору!

11-A. [Hardy-Weinberg theorem]

У диплоидных организмов наследственные характеристики определяются парой генов. Вспомним знакомые нам с 9-го класса горошины чешского монаха Менделя. Ген, определяющий форму горошины, имеет две аллели: 'А' (гладкая) и 'а' (морщинистая). 'А' доминирует 'а'. В популяции бесконечное количество организмов. Родители каждого потомка определяются случайным образом, согласно имеющемуся распределению генотипов. Одна аллель потомка выбирается наугад из аллелей матери, другая - из аллелей отца. Начальное распределение генотипов имеет вид: 'АА' - 30%, 'Aa' - 60%, 'aa' - 10%.

- а) Каким будет распределение генотипов в n-ом поколении?
- б) Заметив закономерность, сформулируйте и докажите теорему Харди-Вайнберга для произвольного начального распределения генотипов.
- 11-Б. В киосках продается «открытка-подарок». На открытке есть прямоугольник размером 2 на 7. В каждом столбце в случайном порядке находятся очередная буква слова «подарок» и звёздочка. Например, вот так:

П	*	*	Α	*	О	К
*	О	Д	*	P	*	*

Прямоугольник закрыт защитным слоем, и покупатель не видит, где буква, а где звёздочка. Следует стереть защитный слой в одном квадратике в каждом столбце. Можно попытаться угадать любое число букв. Если открыто n букв слова «подарок» и не открыто ни одной звёздочки, то открытку можно обменять на $50 \cdot 2^{n-1}$ рублей. Если открыта хотя бы одна звёздочка, то открытка остается просто открыткой.

- а) Какой стратегии следует придерживаться покупателю, чтобы максимизировать ожидаемый выигрыш?
- б) Чему равен максимальный ожидаемый выигрыш?

Подсказка: Думайте!

4.6. Контрольная работа №3, 04.03.2006, решения

- 1. a)
 - б) $\mathbb{E}(\hat{\theta})=1\cdot\mathbb{P}(X<3)+0\cdot\mathbb{P}(X\geqslant3)=\theta$, да является

в)
$$\mathbb{E}\left(\left(\hat{\theta}-\theta\right)^2\right) = \mathbb{E}\left(\hat{\theta}^2 - 2\theta\hat{\theta} + \theta^2\right) \stackrel{\hat{\theta}^2=\hat{\theta}}{=} \theta - 2\theta^2 + \theta^2 = \theta - \theta^2$$

- 2. a) $L = (k+1)^n (x_1 \cdot x_2 \cdot \dots \cdot x_n)^k$ $l = \ln L = n \ln(k+1) + k(\sum \ln x_i)$ $\frac{\partial l}{\partial k} = \frac{n}{k+1} + \sum \ln x_i$ $\frac{n}{\hat{k}+1} + \sum \ln x_i = 0$ $\hat{k} = -\left(1 + \frac{n}{\sum \ln x_i}\right)$
 - 6) $\mathbb{E}(X_i) = \int t \cdot p(t) dt = \int_0^1 (k+1) t^{k+1} = \frac{k+1}{k+2}$ $\frac{\hat{k}+1}{\hat{k}+2} = \bar{X}$ $\hat{k} = \frac{2\bar{X}-1}{1-\bar{X}}$

3.
$$C = \sum \frac{(X_{i,j} - n\hat{p}_{i,j})^2}{n\hat{p}_{i,j}} \sim \chi^2_{(r-1)(c-1)}$$
 $C \sim \chi^2_1$
 $C = 35$

Если
$$\alpha = 0.1$$
, то $C_{crit} = 2.706$.

Вывод: H_0 (гипотеза о независимости признаков) отвергается.

4. а) Число наблюдений велико, используем нормальное распределение.

$$\mathbb{P}\left(-1,65 < \frac{\bar{X} - \bar{Y} - \triangle}{\sqrt{\frac{\hat{\sigma}_x^2}{40} + \frac{\hat{\sigma}_y^2}{50}}} < 1,65\right) = 0.9$$

$$\triangle \in 4 \pm 1.65\sqrt{\frac{49}{40} + \frac{64}{50}}$$

$$\triangle \in [1.4; 6.6]$$

б) Используем результат предыдущего пункта: H_0 отвергается, так как число 0 не входит в доверительный интервал.

в)
$$Z = 2.505 \text{ и } P_{value} = 0.0114$$

5. a)
$$\chi_9^2 = \frac{9\hat{\sigma}^2}{\sigma^2} \in [4.17; 14.69]$$

$$\sigma^2 \in [8822.3; 31080]$$

$$\sigma \in [93.9; 176.3]$$

6)
$$\mathbb{P}(|\hat{\sigma}^2 - \sigma^2| < 0.4\sigma^2) = \mathbb{P}(0.6 < \frac{\hat{\sigma}^2}{\sigma^2} < 1.4) = \mathbb{P}(11.4 < \chi_{19}^2 < 26.6) \approx 0.8$$

6. а)
$$W_1=2+4+6+8=20$$
 или $W_2=1+3+5+7+9+10=35$ $U_1=10$ или $U_2=14$ $Z_1=-0.43=-Z_2$

Вывод: H_0 (гипотеза об отсутствии сдвига между законами распределения) не отвергается

б) Нет, т.к. наблюдения не являются парными.

7.
$$\mathbb{P}(-2.13 < t_4 < 2.13) = 0.9$$

 $\mu \in 1560 \pm 2.13 \cdot \sqrt{\frac{670^2}{5}}$
 $\mu \in [921.8; 2198.2]$

8. a)

$$\begin{array}{l} \text{6)} \ \ \mathbb{P}(\text{1 type error}) = \mathbb{P}(X > c | X \sim U[0; 100]) = \left\{ \begin{array}{l} 1, & c < 0 \\ 1 - \frac{c}{100}, & c \in [0; 100] \\ 0, & c > 100 \end{array} \right. \\ \mathbb{P}(\text{2 type error}) = \mathbb{P}(X < c | X \sim U[50; 150]) = \left\{ \begin{array}{l} 0, & c < 50 \\ \frac{c - 50}{100}, & c \in [50; 150] \\ 1, & c > 150 \end{array} \right. \\ \end{array}$$

Построение оставлено читателю в качестве самостоятельного упражнения :)

9.
$$\mathbb{P}(\sqrt{X^2 + Y^2} > 2.45) = \mathbb{P}(X^2 + Y^2 > 2.45^2) = \mathbb{P}(\chi^2 > 6) = 0.05$$

10. a) A = конспект забыт в 8-ой аудитории

B = конспект был забыт в другом месте (не в аудиториях)

C = конспект не был найден в первых 7-и

$$\mathbb{P}(A|C) = \frac{\mathbb{P}(A)}{\mathbb{P}(C)} = \frac{0.3 \cdot 0.1}{0.3 \cdot 0.3 + 0.7} = \frac{3}{79}$$

6)
$$\mathbb{P}(B|C) = \frac{\mathbb{P}(B)}{\mathbb{P}(C)} = \frac{0.7}{0.79} = \frac{70}{79}$$

11-А. О чем молчал учебник биологии 9 класса...

Если:

- а) ген имеет всего две аллели;
- б) в популяции бесконечное число организмов;
- в) одна аллель потомка выбирается наугад из аллелей матери, другая из аллелей отца;

То распределение генотипов стабилизируется уже в первом поколении (!!!).

То есть
$$AA_1 = AA_2 = \dots$$
 и $Aa_1 = Aa_2 = \dots$

Вероятность получить 'A' от родителя для рождающихся в поколении 1 равна: $p_1=0.3\cdot 1+0.6\cdot 0.5+0, 1\cdot 0=0.6$

В общем виде: $p_1 = AA_0 + 0.5 \cdot Aa_0$

$$AA_1 = p_1^2 = 0.36, Aa_1 = 2p_1(1 - p_1) = 0.48.$$

$$p_2 = AA_1 + 0.5 \cdot Aa_1 = p_1^2 + p_1(1 - p_1) = p_1$$

- 11-Б. а) Безразлично. Если я решил попробовать угадать n букв, то выигрыш вырастает, а вероятность падает в 2 раза по сравнению с попыткой угадать (n-1)-у букву.
 - б) В силу предыдущего пункта: $\mathbb{E}(X) = \frac{1}{2} \cdot 50 = 25$

5. 2006-2007

5.1. Контрольная работа №1, ??.11.2006

Вывешенное решение может содержать неумышленные опечатки. Заметил опечатку? Сообщи преподавателю!

- 1. Из семей, имеющих троих разновозрастных детей, случайным образом выбирается одна семья. Пусть событие А заключается в том, что в этой семье старший ребенок мальчик, В в семье есть хотя бы одна девочка.
 - а) Считая вероятности рождения мальчиков и девочек одинаковыми, выяснить, являются ли события A и B независимыми.
 - б) Изменится ли результат, если вероятности рождения мальчиков и девочек различны.
- 2. Студент решает тест (множественного выбора) проставлением ответов наугад. В тесте 10 вопросов, на каждый из которых 4 варианта ответов. Зачёт ставится в том случае, если правильных ответов будет не менее 5.
 - а) Найти вероятность того, что студент правильно ответит только на один вопрос
 - б) Найти наиболее вероятное число правильных ответов
 - в) Найти математическое ожидание и дисперсию числа правильных ответов
 - г) Найти вероятность того, что студент получит зачёт
- 3. Вероятность изготовления изделия с браком на некотором предприятии равна 0.04. Перед выпуском изделие подвергается упрощенной проверке, которая в случае бездефектного изделия пропускает его с вероятностью 0.96, а в случае изделия с дефектом с вероятностью 0.05. Определить:

- а) Какая часть изготовленных изделий выходит с предприятия
- б) Какова вероятность того, что изделие, прошедшее упрощенную проверку, бракованное
- 4. Вероятность того, что пассажир, купивший билет, не придет к отправлению поезда, равна 0.01. Найти вероятность того, что все 400 пассажиров явятся к отправлению поезда (использовать приближение Пуассона).
- 5. Охотник, имеющий 4 патрона, стреляет по дичи до первого попадания или до израсходования всех патронов. Вероятность попадания при первом выстреле равна 0.6, при каждом последующем уменьшается на 0.1. Найти
 - а) Закон распределения числа патронов, израсходованных охотником
 - б) Математическое ожидание и дисперсию этой случайной величины
- 6. Поезда метрополитена идут регулярно с интервалом 2 минуты. Пассажир приходит на платформу в случайный момент времени. Какова вероятность того, что ждать пассажиру придется не более полминуты. Найти математическое ожидание и дисперсию времени ожидания поезда.
- 7. Время работы телевизора «Best» до первой поломки является случайной величиной, распределённо по показательному закону. Определить вероятность того, что телевизор проработает более 15 лет, если среднее время безотказной работы телевизора фирмы «Best» составляет 10 лет. Какова вероятность, что телевизор, проработавший 10 лет, проработает ещё не менее 15 лет?
- 8. Дополнительная задача:

Пусть случайные величины X_1 и X_2 независимы и равномерно распределены на отрезках [-1;1] и [0;1], соответственно. Найти вероятность того, что $\max\{X_1,X_2\}>0.5$, функцию распределения случайной величины $Y=\max\{X_1,X_2\}$.

5.2. Контрольная работа №1, ??.11.2006, решения

- 1. a) $\mathbb{P}(A)=0.5, \mathbb{P}(B)=1-\mathbb{P}(B^c)=1-0.5^3=\frac{7}{8}, \mathbb{P}(A\cap B)=0.5\cdot(1-0.5^2)=\frac{3}{8}, \mathbb{P}(A\cap B)\neq\mathbb{P}(A)\mathbb{P}(B),$ события зависимы.
 - б) $\mathbb{P}(A)=p, \mathbb{P}(B)=1-p^3, \mathbb{P}(A\cap B)=p(1-p^2),$ независимость событий возможна только при p=0 или p=1
- 2. Пусть X число правильных ответов.
 - a) $\mathbb{P}(X=1) = C_{10}^1 \left(\frac{1}{4}\right)^1 \left(\frac{3}{4}\right)^9$
 - б) $k_{\mathbb{P}(X=k) \to \max} = \lfloor p(n+1) \rfloor = \lfloor \frac{11}{4} \rfloor = 2$ (можно, не зная формулы, просто выбрать наибольшую вероятность)
 - в) $\mathbb{E}(X)=10\mathbb{E}(X_i)=\frac{10}{4}\operatorname{Var}(X)=10\operatorname{Var}(X_i)=10\cdot\frac{1}{4}\cdot\frac{3}{4}$
 - r) $\sum_{i=5}^{10} C_{10}^i \left(\frac{1}{4}\right)^i \left(\frac{3}{4}\right)^{10-i}$
- 3. A изделие браковано, B изделие признано хорошим
 - a) $\mathbb{P}(B) = 0.96 \cdot 0.96 + 0.04 \cdot 0.05$
 - 6) $\mathbb{P}(A|B) = \frac{0.04 \cdot 0.05}{\mathbb{P}(B)}$
- 4. $\lambda = np = 4$

$$\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

$$\mathbb{P}(X=0)=e^{-4}$$

5. а) Распределение имеет вид:

\overline{x}	1		2		3	4
$\overline{\mathbb{P}(X=x)}$	0.6	(1 -	0.6) •	0.5	$(1-0.6)\cdot(1-0.5)\cdot0.4$	$1 - p_1 - p_2 - p_3$
Упростим:						
\overline{x}	1	2	3	4		
$\overline{\mathbb{P}(X=x)}$	0.6	0.2	0.08	0.12	2	
$\overline{\mathbb{E}(X)} = 1.$	7, Var	$(X) \approx$	× 1.08		_	

6.
$$\mathbb{P}(X\leqslant 0.5)=\frac{0.5}{2}=0.25, \mathbb{E}(X)=\frac{0+2}{2}=1$$
 (здравый смысл) $\mathrm{Var}(X)=\mathbb{E}(X^2)-(\mathbb{E}(X))^2$

$$\mathbb{E}(X^2) = \int_0^2 t^2 \cdot p(t)dt = \int_0^2 t^2 \cdot 0.5dt = \frac{4}{3}$$

7.
$$\mathbb{E}(X)=10=\frac{1}{\lambda}, \lambda=\frac{1}{10}, p(t)=\lambda e^{\lambda t}$$
 при $t>0$
$$\mathbb{P}(X>15)=\int_{15}^{\infty}p(t)dt=...=e^{-\frac{3}{2}}$$

$$\mathbb{P}(X>25|X>10)=\frac{\mathbb{P}(X>25)}{\mathbb{P}(X>10)}=...=e^{-\frac{3}{2}}$$

8. Функция распределения:

$$F_Y(t)=\mathbb{P}(Y\leqslant t)=\mathbb{P}(\max\{X_1,X_2\}\leqslant t)=\mathbb{P}(X_1\leqslant t\cap X_2\leqslant t)=\mathbb{P}(X_1\leqslant t)\mathbb{P}(X_2\leqslant t)=rac{t+1}{2}\cdot t$$
при $t\in[0;1].$

При t>1 получаем, что $F_Y(t)=1$ и при t<0 получаем, что $F_Y(t)=0$.

$$\mathbb{P}(\max\{X_1, X_2\} > 0.5) = 1 - \mathbb{P}(\max\{X_1, X_2\} \leqslant 0.5) = 1 - F(0.5) = \frac{5}{8}$$

5.3. Контрольная работа №2, 27.01.2007

Часть І.

Обведите верный ответ:

- 1. Сумма двух нормальных независимых случайных величин нормальна. Да.
- 2. Нормальная случайная величина может принимать отрицательные значения. Да.
- 3. Пуассоновская случайная величина является непрерывной. Нет.
- 4. Дисперсия суммы зависимых величин всегда не меньше суммы дисперсий. Нет.
- 5. Теорема Муавра-Лапласа является частным случаем центральной предельной. Да.
- 6. Пусть X длина наугад выловленного удава в сантиметрах, а Y в дециметрах. Коэффициент корреляции между этими величинами равен $\frac{1}{10}$. Нет.
- 7. Математическое ожидание выборочного среднего не зависит от объема выборки, если X_i одинаково распределены. Да.
- 8. Зная закон распределения X и закон распределения Y можно восстановить совместный закон распределения пары (X,Y). Нет.
- 9. Если X непрерывная случайная величина, $\mathbb{E}\left(X\right)=6$ и $\mathrm{Var}\left(X\right)=9$, то $Y=\frac{X-6}{3}\sim\mathcal{N}\left(0;1\right)$. Нет.

- 10. Если ты отвечать на первые 10 вопросов этого теста наугад, то число правильных ответов случайная величина, имеющая биномиальное распределение. Да.
- 11. По-моему, сегодня хорошая погода, и вместо контрольной можно было бы покататься на лыжах. Да!

Любой ответ на 11 считается правильным.

Тест не является блокирующим.

Обозначения:

 $\mathbb{E}(X)$ — математическое ожидание

Var(X) — дисперсия

Часть II.

Стоимость задач 10 баллов.

1. Совместный закон распределения случайных величин X и Y задан таблицей:

Найдите c, $\mathbb{P}(Y > -X)$, $\mathbb{E}(X \cdot Y^2)$, $\mathbb{E}(Y|X > 0)$

- 2. Случайный вектор $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ имеет нормальное распределение с математическим ожиданием $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$ и ковариационной матрицей $\begin{pmatrix} 9 & -4.5 \\ -4.5 & 25 \end{pmatrix}$. Найдите $\mathbb{P}\left(X_1+3X_2>20\right)$.
- 3. Совместная функция плотности имеет вид

Найдите $\mathbb{P}\left(Y>2X\right)$, $\mathbb{E}\left(X\right)$

4. В супермаркете «Покупан» продаются различные вина:

Вина	Доля	Средняя цена за бутылку (у.е.)	Стандартное отклонение (у.е.)
Элитные	0.1	150	24
Дорогие	0.3	40	12
Дешёвые	0.6	10	10

Чтобы оценить среднюю стоимость предлагаемого вина производится случайная выборка 10 бутылок.

- а) Какое количество элитных, дорогих и дешёвых вин должно присутствовать в выборке, для того, чтобы выборочное среднее значение цены имело минимальную дисперсию?
- б) Чему равна минимальная дисперсия?

5. Допустим, что закон распределения X_n имеет вид:

x	-1	0	2
$\overline{\mathbb{P}(X=x)}$	θ	$2\theta - 0.2$	$1.2 - 3\theta$

Имеется выборка: $X_1 = 0$, $X_2 = 2$.

- а) Найдите оценку $\hat{\theta}$ методом максимального правдоподобия
- б) Найдите оценку $\hat{\theta}$ методом моментов
- 6. В среднем 30% покупателей супермаркета делают покупку на сумму свыше 700 рублей. Какова вероятность того, что из 200 [случайно выбранных] покупателей более 33% сделают покупку на сумму свыше 700 рублей?
- 7. Пусть X_i нормально распределены и независимы. Имеется выборка из трех наблюдений: 2, 0, 1.
 - а) Найдите несмещенные оценки для математического ожидания и дисперсии, \overline{X} и $\hat{\sigma}^2$.
 - б) Найдите вероятность того, что оценка дисперсии превосходит истинную дисперсию более чем в 3 раза
- 8. Известно, что у случайной величины X есть математическое ожидание, $\mathbb{E}(X)=0$, и дисперсия.
 - а) Укажите верхнюю границу для $\mathbb{P}(X^2 > 4 \operatorname{Var}(X))$?
 - б) Найдите указанную вероятность, если дополнительно известно, что X нормально распределен
- 9. Пусть X_i независимы и экспоненциально распределены, то есть имеют функцию плотности вида $p(t)=\frac{1}{\theta}e^{-\frac{1}{\theta}t}$ при t>0.
 - а) Постройте оценку математического ожидания методом максимального правдоподобия
 - б) Является ли оценка несмещенной?
 - в) Найдите дисперсию оценки
 - г) С помощью неравенства Крамера-Рао проверьте, является ли оценка эффективной среди несмещенных оценок?
 - д) Является ли построенная оценка состоятельной?
- 10. Независимые случайные величины X_i распределены равномерно на отрезке [0;a], известно, что a>10. Исследователь хочет оценить параметр $\theta=\frac{1}{\mathbb{P}(X_i<5)}$.
 - а) Используя \overline{X}_n постройте несмещённую оценку $\hat{\theta}$ для θ
 - б) Найдите дисперсию построенной оценки
 - в) Является ли построенная оценка состоятельной?

Часть III.

Стоимость задачи 20 баллов.

Требуется решить одну из двух 11-х задач по выбору!

11-А. Каждый день Кощей Бессмертный кладет в сундук случайное количество копеек (от одной до ста, равновероятно). Сколько в среднем дней нужно Кощею, чтобы набралось не меньше рубля?

11-В. Каждый день Петя знакомится с новыми девушками. С вероятностью 0.7 ему удаётся познакомиться с одной девушкой; с вероятностью 0.2 — с двумя; с вероятностью 0.1 — не удаётся. Дни, когда Пете не удаётся познакомиться ни с одной девушкой, Петя считает неудачными.

Какова вероятность, что до первого неудачного дня Пете удастся познакомиться ровно с 30-ю девушками?

Подсказка: Думайте!

5.4. Контрольная работа №2, 27.01.2007, решения

1.
$$c = 0.3$$
, $\mathbb{P}(Y > -X) = 0.5$, $\mathbb{E}(XY^2) = 0.5$, $\mathbb{E}(Y|X > 0) = \frac{0.1}{0.4} = 0.25$

2.
$$\mathbb{E}(Y) = -1$$
, $\operatorname{Var}(Y) = 207$, $\mathbb{P}(Y > 20) = \mathbb{P}(Z > \frac{21}{\sqrt{207}}) = \mathbb{P}(Z > 1.46) = 0.07$

3.
$$\mathbb{P}(Y > 2X) = \int_0^1 \int_0^{y/2} (x+y) dx dy = \frac{5}{24}$$

 $\mathbb{E}(X) = \int_0^1 \int_0^1 x(x+y) dx dy = \frac{7}{12}$

4. Используя метод множителей Лагранжа:

$$L = \frac{(0.1 \cdot 24)^2}{a} + \frac{(0.3 \cdot 12)^2}{b} + \frac{(0.6 \cdot 10)^2}{c} + \lambda (10 - a - b - c)$$

...

$$a=2,b=3,\,c=5,$$
 можно было использовать готовую формулу $n_i=\frac{w_i\sigma_i}{\sum w_j\sigma_j}$

$$Var(\overline{X}^s) = 14.4$$

5. a)
$$(2\theta - 0.2)(1.2 - 3\theta) \to \max$$

 $\hat{\theta} = 0.25$

б)
$$2.4 - 7\hat{\theta} = 1, \hat{\theta} = 0.2$$

6.
$$\mathbb{P}(\overline{X} > 0.33) = \mathbb{P}\left(\frac{\bar{X} - 0.3}{\sqrt{\frac{0.3 \cdot 0.7}{200}}} > \frac{0.33 - 0.3}{\sqrt{\frac{0.3 \cdot 0.7}{200}}}\right) = \mathbb{P}(Z > 1.03) = 0.15$$

7.
$$\bar{X} = 1, \hat{\sigma}^2 = 1$$

$$\mathbb{P}(\hat{\sigma}^2 > 3\sigma^2) = \mathbb{P}\left(2\frac{\hat{\sigma}^2}{\sigma^2} > 6\right) = \mathbb{P}(\chi_2^2 > 6) = 0.05$$

8. a)
$$\mathbb{P}(X^2 > 4\operatorname{Var}(X)) = \mathbb{P}(|X - 0| > 2\sigma) \leqslant \frac{VarX}{4\operatorname{Var}(X)} = \frac{1}{4}$$

6)
$$\mathbb{P}(X^2 > 4 \operatorname{Var}(X)) = \mathbb{P}(|Z| > 2) = 0.05$$

- 9. a) \overline{X}
 - б) Да
 - B) $\operatorname{Var}(\overline{X}) = \frac{\theta^2}{2}$;
 - г) Да: несмещенность и предел дисперсии равный нулю

10. a)
$$\mathbb{E}(\overline{X}) = \frac{a}{2} \theta = \frac{1}{\mathbb{P}(X_i < 5)} = \frac{1}{5/a} = \frac{1}{5}a$$
 $\hat{\theta} = \frac{2}{5}\overline{X}$

б)
$$Var(\hat{\theta}_n) = (\frac{2}{5})^2 \cdot \frac{a^2}{12n}$$

в) $\lim \mathrm{Var}(\hat{\theta}_n) = 0$, оценка несмещённая, следовательно, состоятельная.

11-А. Обозначим e_n - сколько дней осталось в среднем ждать, если уже набрано n копеек.

Тогда:

$$e_{100} = 0$$

$$e_{99} = 1$$

$$e_{98} = \frac{1}{100}e_{99} + \frac{99}{100}e_{100} + 1 = 1 + \frac{1}{100}$$

$$e_{97} = \frac{1}{100}e_{98} + \frac{1}{100}e_{99} + \frac{98}{100}e_{100} + 1 = (1 + \frac{1}{100}))^2$$

$$e_{96} = \frac{1}{100}e_{97} + \frac{1}{100}e_{98} + \frac{1}{100}e_{99} + \frac{97}{100}e_{100} + 1 = (1 + \frac{1}{100})^3$$

...

По индукции легко доказать, что $e_n = (1 + \frac{1}{100})^{99-n}$

Таким образом, $e_0 = (1 + \frac{1}{100})^{99} = 2.718\dots$

11-Б.
$$p_0 = 0.1, p_1 = 0.7 \cdot 0.1;$$

 $p_n = \mathbb{P}(\mathbf{B}$ первый день Петя познакомился с одной девушкой) $p_{n-1} + \mathbb{P}(\mathbf{B}$ первый день Петя познакомился с двумя девушками) p_{n-2} ;

Разностное уравнение: $p_n = 0.7p_{n-1} + 0.2p_{n-2}$

5.5. Контрольная работа №3, 21.02.2007

Нужные и ненужные формулы:

T — сумма чего-то там.

Если
$$H_0$$
 верна, то $\mathbb{E}(T)=\frac{n}{2}$ и $\mathrm{Var}(T)=\frac{n}{4}$

T — сумма каких-то рангов.

Если
$$H_0$$
 верна, то $\mathbb{E}(T)=\frac{n(n+1)}{4}$ и $\mathrm{Var}(T)=\frac{n(n+1)(2n+1)}{24}.$

T — сумма каких-то рангов.

Если
$$H_0$$
 верна, то $\mathbb{E}(T) = \frac{n_1(n_1+n_2+1)}{2}$, $\operatorname{Var}(T) = \frac{n_1n_2(n_1+n_2+1)}{12}$.

$$\cos^2(x) + \sin^2(x) = 1$$

УДАЧИ!

Часть І.

Обведите нужный ответ

- 1. Если $X \sim \mathcal{N}(0;12), Y \sim \mathcal{N}(12,24), \mathrm{Corr}(X,Y) = 0$, то $X+Y \sim \mathcal{N}(12,36)$. Да. Нет. [любой ответ считался правильным. на самом деле верный ответ нет]
- 2. Если закон распределения X задан табличкой

$$\frac{x}{\mathbb{P}(X=x)} \quad 0.5 \quad 0.5,$$
то X - нормально распределена. Да. Нет.

- 3. Непараметрические тесты неприменимы, если выборка имеет χ^2 распределение. Да. Нет.
- 4. Р-значение показывает вероятность отвергнуть нулевую гипотезу, когда она верна. Да. Нет.

- 5. Если t-статистика равна нулю, то P-значение также равно нулю. Да. Нет.
- 6. Если гипотеза отвергает при 5%-ом уровне значимости, то она будет отвергаться и при 1%-ом уровне значимости. Да. Нет.
- 7. При прочих равных 90% доверительный интервал шире 95%-го. Да. Нет.
- 8. Значение функции плотности может превышать единицу. Да. Нет.
- 9. Для любой случайной величины $\mathbb{E}(X^2) \geqslant (\mathbb{E}(X))^2$. Да. Нет.
- 10. Если $\operatorname{Corr}(X,Y)>0$, то $\mathbb{E}(X)\mathbb{E}(Y)<\mathbb{E}(XY)$. Да. Нет.
- 11. На экзаменационной работе не шутят! Нет, шутят.

Ответ «да» означает истинное утверждение, ответ «нет» — ложное. Тест не является блокирующим.

Часть II.

Стоимость задач 10 баллов.

- 1. Из урны с 5 белыми и 7 черными шарами случайным образом вынимается 2 шара. Случайная величина X принимает значение (-1), если оба шара белые; 0, если шары разного цвета и 1, если оба шара черные.
 - а) Найдите $\mathbb{P}(X=-1)$, $\mathbb{E}(X)$, $\mathrm{Var}(X)$
 - б) Постройте функцию распределения величины X [достаточно аккуратно выписать функцию]
- 2. Случайная величина X имеет функцию распределения

$$F_X(t) = \begin{cases} 0, & t < 0 \\ ct^2, & 0 \le t < 1 \\ 1, & 1 \le t \end{cases}$$

- а) Найдите c, $\mathbb{P}(0.5 < X < 2)$, 25%-ый квантиль
- б) Найдите $\mathbb{E}(X)$, Var(X), Cov(X, -X), Corr(2X, 3X)
- в) Выпишите функцию плотности величины X
- 3. Доходности акций двух компаний являются случайными величинами X и Y с одинаковым математическим ожиданием и ковариационной матрицей $\begin{pmatrix} 4 & -2 \\ -2 & 9 \end{pmatrix}$.
 - а) Найдите Corr(X, Y)
 - б) В какой пропорции нужно приобрести акции этих двух компаний, чтобы дисперсия доходности получившегося портфеля была наименьшей?
 - в) Можно ли утверждать, что величины X + Y и 7X 2Y независимы?
 - г) Изменится ли ответ на пункт «в», если дополнительно известно, что величины X и Y в совокупности нормально распределены?

Подсказка: Если R - доходность портфеля, то $R = \alpha X + (1-\alpha)Y$

4. Проверка 40 случайно выбранных лекций показала, что студент Халявин присутствовал только на двух из них.

25

- а) Найдите 90%-ый доверительный интервал для вероятности увидеть Халявина на лекции.
- б) Укажите минимальный размер выборки, необходимый для того, чтобы с вероятностью 0.9 выборочная доля посещаемых Халявиным лекций отличалась от соответствующей вероятности не более, чем на 0.1.
- в) Какие предпосылки и теоремы использовались при ответах на предыдущие пункты?
- 5. Изучается эффективность нового метода обучения. У группы из 40 студентов, обучавшихся по новой методике, средний бал на экзамене составил 322.12, а выборочное стандартное отклонение 54.53. Аналогичные показатели для независимой выборки из 60 студентов того же курса, обучавшихся по старой методике, приняли значения 304.61 и 62.61 соответственно.
 - а) Проверьте гипотезу о равенстве дисперсий оценок в двух группах.
 - б) Какие предпосылки использовались при ответе на «а»?
 - в) Постройте 90% доверительный интервал для разницы математических ожиданий оценок в двух группах
 - г) Можно ли считать новую методику более эффективной?
- 6. В парке отдыха за час 57 человек посетило аттракцион «Чертово колесо», 48 «Призрачные гонки» и 54 «Американские горки». Можно ли на 5% уровне значимости считать, что посетители одинаково любят эти три аттракциона?
- 7. Можно ли по имеющейся таблице утверждать о независимости пола и доминирующей руки на 5% уровне значимости?

Пол / Рука	Правша	Левша
Мужчины	16	76
Женщина	25	81

- 8. Пусть X_i нормально распределены, независимы, $\mathbb{E}(X_i)=0$, $\mathrm{Var}(X_i)=\theta$.
 - а) Постройте оценку $\hat{\theta}$ методом максимального правдоподобия.
 - б) Проверьте свойства несмещенности, состоятельности, эффективности у построенной оценки.
 - в) Какая оценка более предпочтительна: построенная или привычная $\hat{\sigma}^2 = \frac{\sum (X_i \bar{X})^2}{n-1}$?
- 9. Имеются две конкурирующие гипотезы:

 H_0 : Случайная величина X распределена равномерно на (0,100)

 H_a : Случайная величина X распределена равномерно на (50,150)

Исследователь выбрал следующий критерий: если X < c, принимать гипотезу H_0 , иначе H_a .

- а) Дайте определение ошибок первого и второго рода.
- б) Постройте графики зависимостей ошибок первого и второго рода от c.
- 10. Вася измерил длину 10 пойманных им рыб. Часть рыб была поймана на левом берегу реки, а часть на правом. Бывалые рыбаки говорят, что на правом берегу реки рыба крупнее.

Левый берег	25	45	37	47	51
Правый берег	49	28	39	46	57

а) С помощью теста Манна-Уитни (Mann-Whitney) проверьте гипотезу о том, что выбор берега реки не влияет на среднюю длину рыбы против альтернативной гипотезы, что на правом берегу рыба длиннее.

Разрешается использование нормальной аппроксимации

б) [Не оценивался] Возможно ли в этой задаче использовать (Wilcoxon Signed Rank Test)?

Часть III.

Стоимость задачи 20 баллов.

Требуется решить одну из двух 11-х задач по выбору!

11-А. Имеются две монетки. Одна правильная, другая - выпадает орлом с вероятностью 0.45. Одну из них, неизвестно какую, подкинули n раз и сообщили Вам, сколько раз выпал орел. Ваша задача проверить гипотезу H_0 : «подбрасывалась правильная монетка» против H_a : «подбрасывалась неправильная монетка».

Каким должно быть наименьшее n и критерий выбора гипотезы, чтобы вероятность ошибок первого рода не превышала 10%, а вероятность ошибки второго рода не превышала 15%?

- 11-Б. Время горения лампочки экспоненциальная случайная величина с математическим ожиданием равным θ . Вася включил одновременно 20 лампочек. Величина Y обозначает время самого первого перегорания.
 - а) Найдите $\mathbb{E}(Y)$
 - б) Постройте с помощью Y несмещенную оценку для θ
 - в) Сравните по эффективности оценку построенную в пункте «б» и обычное выборочное среднее

5.6. Контрольная работа №3, 21.02.2007, решения

1. a)
$$\mathbb{P}(X = -1) = \frac{5}{12} \cdot \frac{4}{11} = \frac{5}{33}$$

$$\mathbb{E}(X) = -1 \cdot \frac{5}{33} + 0 \cdot 2 \cdot \frac{5}{12} \cdot \frac{7}{11} + 1 \cdot \frac{7}{12} \cdot \frac{6}{11} = \frac{1}{6}$$

$$\mathbb{E}(X^2) = (-1)^2 \cdot \frac{5}{33} + 1^2 \cdot \frac{7}{12} \cdot \frac{6}{11} = \frac{31}{66}$$

$$\operatorname{Var}(X) = \frac{175}{396}$$

$$6) F(x) = \begin{cases} 0, & x < -1 \\ \frac{5}{33}, & -1 \leqslant x < 0 \\ \frac{15}{22}, & 0 \leqslant x < 1 \\ 1, & x \geqslant 1 \end{cases}$$

2. a)
$$c = 1$$
, $\mathbb{P}(0.5 < X < 2) = 0.75$, 0.5

б)
$$\mathbb{E}(X)=rac{2}{3}, \mathrm{Var}(X)=rac{1}{18}, \mathrm{Cov}(X,-X)=-rac{1}{18}, \mathrm{Corr}(2X,3X)=1$$

B)
$$f(x) = \begin{cases} 0, & t < 0, t \ge 1\\ 2t, & 0 \le t < 1 \end{cases}$$

3. a)
$$Corr(X, Y) = -\frac{1}{3}$$

б)
$$\alpha = \frac{11}{17}$$

4. a)
$$\hat{p} = \frac{1}{20}$$

$$\left[\frac{1}{20} - 1.65 \cdot \sqrt{\frac{\frac{1}{20} \cdot \frac{19}{20}}{40}}; \frac{1}{20} + 1.65 \cdot \sqrt{\frac{\frac{1}{20} \cdot \frac{19}{20}}{40}} \right]$$

6)
$$\mathbb{P}(|\hat{p} - p| \le 0.1) = 0.9 \Rightarrow \mathbb{P}\left(\frac{|\hat{p} - p|}{\sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}} \le \frac{0.1}{\sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}}\right) = 0.9 \Rightarrow \frac{0.1}{\sqrt{\frac{1 \cdot 19}{20^2}}} = 1.65 \Rightarrow n \approx 13$$

5. a)
$$\gamma_{obs}=\frac{\hat{\sigma}_Y^2}{\hat{\sigma}_X^2}\approx 1.32, \gamma_{crit,0.95}\approx 1.64,$$
 оснований отвергать H_0 нет

б)
$$X_1,\dots,X_n\sim\mathcal{N}(\mu_X,\sigma_X^2),\,Y_1,\dots,Y_n\sim\mathcal{N}(\mu_Y,\sigma_Y^2)$$
 — независимые выборки

B)
$$\left[17.51 - 1.66 \cdot 59.4 \sqrt{\frac{1}{40} + \frac{1}{60}}; 17.51 + 1.66 \cdot 59.4 \sqrt{\frac{1}{40} + \frac{1}{60}} \right]$$

$$\left[-2.61; 37.64 \right]$$

$$\hat{\sigma}_0^2 = \frac{\hat{\sigma}_X^2(n_X - 1) + \hat{\sigma}_Y^2(n_Y - 1)}{n_X + n_Y - 2} \approx 59.4$$

г) Оснований считать новую методику более эффективной нет, так как 0 входит в доверительный интервал.

6.
$$\hat{p}_1=\frac{57}{159}, \hat{p}_2=\frac{48}{159}, \hat{p}_3=\frac{54}{159}$$

$$Q_{obs}=\sum_{i=1}^n\frac{(n_i-n\cdot p_i)^2}{n\cdot p_i}=\frac{42}{53}.\ Q_{crit}=3.84.\$$
Оснований отвергать нулевую гипотезу нет.

7.
$$\gamma_{obs} = \sum_{i=1}^s \sum_{j=1}^m \frac{\left(n_{ij} - \frac{n_i.n._j}{n}\right)^2}{\frac{n_i.n._j}{n}} \approx 1.15, \gamma_{crit} = 3.84$$
, оснований отвергать H_0 нет.

$$\begin{split} L(x_1,\ldots,x_n,\theta) &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{1}{2}\cdot\frac{x_i^2}{\theta}} = \frac{1}{(\sqrt{2\pi\theta})^n} e^{-\frac{1}{2\theta}\sum_{i=1}^n x_i^2} \\ l(x_1,\ldots,x_n,\theta) &= -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\theta - \frac{1}{2\theta}\sum_{i=1}^n x_i^2 \to \max_{\theta} \\ \frac{\partial l}{\partial \theta} &= -\frac{n}{2\theta} + \frac{1}{2\theta^2}\sum_{i=1}^n x_i^2 \\ \hat{\theta}_{ML} &= \frac{\sum_{i=1}^n x_i^2}{n} \end{split}$$

б)
$$\mathbb{E}(\hat{\theta}_{ML}) = \mathbb{E}\left(\frac{\sum_{i=1}^n x_i^2}{n}\right) = \frac{1}{n} \cdot n \mathbb{E}(x_1^2) = \theta$$
, оценка несмещённая.
$$\text{Var}(\hat{\theta}_{ML}) = \text{Var}\left(\frac{\sum_{i=1}^n x_i^2}{n}\right) = \frac{1}{n^2} \cdot n \, \text{Var}(x_1^2) = \frac{3\theta^2 - \theta^2}{n} \to_{n \to \infty} 0 \text{, оценка состоятельная.}$$

$$\frac{\partial^2 l}{\partial \theta^2} = \frac{n}{2\theta^2} - \frac{1}{\theta^3} \sum_{i=1}^n x_i^2$$

$$-\mathbb{E}\left(\frac{\partial^2 l}{\partial \theta^2}\right) = -\frac{n}{2\theta^2} + \frac{1}{\theta^3} \cdot n\theta = \frac{n}{2\theta^2}$$

$$\text{Var}(\hat{\theta}_{ML}) = \frac{2\theta^2}{n} = \frac{1}{\frac{n}{n+2}} = I(\theta) \text{, оценка эффективная.}$$

9. а) О1Р: выбрали H_a , но верна H_0 , то есть $X \sim [0, 100]$, но при этом $X \geqslant c$. О2Р: выбрали H_0 , но верна H_a , то есть $X \sim [50, 150]$, но при этом X > c.

$$\text{ б) } \alpha = \begin{cases} 1, & c < 0 \\ \frac{100 - c}{100}, & 0 \leqslant c \leqslant 100 \\ 0, & c > 100 \end{cases}$$

$$\beta = \begin{cases} 0, & c < 50\\ \frac{c - 50}{100}, & 50 \leqslant c \leqslant 150\\ 1, & c > 150 \end{cases}$$

10.
$$T = 2 + 4 + 6 + 8 + 10 = 30$$

$$\mathbb{E}(T) = \frac{1}{2}(n_x(n_x + n_y + 1)) = 37.5$$

$$Var(T) = \frac{1}{12}(n_x n_y (n_x + n_y)) = \frac{75}{6}$$

$$\gamma_{obs}=rac{30-37.5}{\sqrt{rac{75}{6}}}pprox -2.12,$$
 $\gamma_{crit,0.05}=-1.65,$ основная гипотеза отвергается.

6. 2007-2008

6.1. Контрольная работа №1, 03.11.2007

Quote

The 50-50-90 rule: Anytime you have a 50-50 chance of getting something right, there's a 90% probability you'll get it wrong.

Andy Rooney

Часть І.

Обведите верный ответ:

- 1. Для любой случайной величины $\mathbb{P}(X>0)\geqslant \mathbb{P}(X+1>0)$. Het.
- 2. Для любой случайной величины с $\mathbb{E}(X) < 2$, выполняется условие $\mathbb{P}(X < 2) = 1$. Нет.
- 3. Если $A\subset B$, то $\mathbb{P}(A|B)\leqslant \mathbb{P}(B|A)$. Да.
- 4. Если X случайная величина, то $\mathbb{E}(X)+1=\mathbb{E}(X+1)$. Да.
- 5. Функция распределения случайной величины является неубывающей. Да.
- 6. Для любых событий A и B, выполняется $\mathbb{P}(A|B)+\mathbb{P}(A|B^c)=1.$ Heт.
- 7. Для любых событий A и B верно, что $\mathbb{P}(A|B)\geqslant \mathbb{P}(A\cap B)$, если обе вероятности существуют. Да.
- 8. Функция плотности может быть периодической. Нет.
- 9. Если случайная величина X имеет функцию плотности, то $\mathbb{P}(X=0)=0$. Да.
- 10. Для неотрицательной случайной величины $\mathbb{E}(X)\geqslant \mathbb{E}(-X)$. Да.
- 11. Вероятность бывает отрицательной. Даже не знаю, что и сказать...

Часть II.

Стоимость задач 10 баллов.

1. На день рождения к Васе пришли две Маши, два Саши, Петя и Коля. Все вместе с Васей сели за круглый стол. Какова вероятность, что Вася окажется между двумя тезками?

- 2. Поезда метро идут регулярно с интервалом 3 минуты. Пассажир приходит на платформу в случайный момент времени. Пусть X время ожидания поезда в минутах. Найдите $\mathbb{P}(X<1)$, $\mathbb{E}(X)$.
- 3. Вы играете две партии в шахматы против незнакомца. Равновероятно незнакомец может оказаться новичком, любителем или профессионалом. Вероятности вашего выигрыша в отдельной партии, соответственно, будут равны: 0.9; 0.5; 0.3.
 - а) Какова вероятность выиграть первую партию?
 - б) Какова вероятность выиграть вторую партию, если вы выиграли первую?
- 4. Время устного ответа на экзамене распределено по экспоненциальному закону, то есть имеет функцию плотности $p(t) = c \cdot e^{-0.1t}$ при t > 0.
 - а) Найдите значение параметра c
 - б) Какова вероятность того, что Иванов будет отвечать более получаса?
 - в) Какова вероятность того, что Иванов будет отвечать еще более получаса, если он уже отвечает 15 минут?
 - г) Сколько времени в среднем длится ответ одного студента?
- 5. Годовой договор страховой компании со спортсменом-теннисистом, предусматривает выплату страхового возмещения в случае травмы специального вида. Из предыдущей практики известно, что вероятность получения теннисистом такой травмы в любой фиксированный день равна 0.00037. Для периода действия договора вычислите
 - а) Наиболее вероятное число страховых случаев
 - б) Математическое ожидание числа страховых случаев
 - в) Вероятность того, что не произойдет ни одного страхового случая
 - г) Вероятность того, что произойдет ровно 2 страховых случая
 - P.S. Указанные вероятности вычислите двумя способам: используя биномиальное распределение и распределение Пуассона.
- 6. Допустим, что закон распределения X имеет вид:

$$\frac{x}{\mathbb{P}(X=x)} \ \frac{1}{\theta} \ \frac{2}{2\theta} \ \frac{3}{1-3\theta}$$

- а) Найдите $\mathbb{E}(X)$
- б) При каких θ среднее будет наибольшим? При каких наименьшим?
- 7. Вася пригласил трех друзей навестить его. Каждый из них появится независимо от другого с вероятностью $0.9,\ 0.7$ и 0.5 соответственно. Пусть N количество пришедших гостей. Найдите $\mathbb{E}(N)$.
- 8. У спелестолога в каменоломнях сели батарейки в налобном фонаре, и он оказался в абсолютной темноте. В рюкзаке у него 6 батареек, 4 новых и 2 старых. Для работы фонаря требуется две новых батарейки. Спелестолог вытаскивает из рюкзака две батарейки наугад и вставляет их в фонарь. Если фонарь не начинает работать, то спелестолог откладывает эти две батарейки и пробует следующие две и так далее.
 - а) Найдите закон распределения числа попыток

- б) Сколько попыток в среднем потребуется?
- в) Какая попытка скорее всего будет первой удачной?

Часть III.

Стоимость задачи 20 баллов.

Требуется решить одну из двух задач (9-А или 9-Б) по выбору!

- 9-А. По краю идеально круглой столешницы отмечается наугад n точек. В этих точках к столешнице прикручиваются ножки. Какова вероятность того, что полученный столик с n ножками будет устойчивым?
- 9-Б. На окружности с центром O (не внутри окружности!) сидят три муравья, их координаты независимы и равномерно распределены по окружности. Два муравья A и B могут общаться друг с другом, если $\angle AOB < \pi/2$.

Какова вероятность того, что все три муравья смогут не перемещаясь общаться друг с другом (возможно через посредника)?

6.2. Контрольная работа №1, 03.11.2007, решения

1. Слева должен сесть тот, у кого есть тезка. $p_1 = 4/6$

Справа должен сесть его парный. $p_2 = 1/5$

Итого:
$$p = p_1 \cdot p_2 = 2/15$$

2.
$$p = 1/3, \mathbb{E}(X) = 1.5$$

3.
$$p_a = \frac{1}{3}(0.9 + 0.5 + 0.3) = \frac{17}{30}$$

 $p_b = \frac{1}{3}(0.9^2 + 0.5^2 + 0.3^2)/p_a = \frac{115}{170}$

- 4. а) либо взятие интеграла, либо готовый ответ: c=0.1
 - 6) $\int_{30}^{+\infty} p(t)dt = e^{-3} \approx 0.05$
 - в) Такой же результат, как в «б»
 - r) $1/\lambda = 10$
- 5. 6) $365 \cdot 0.00037 = 0.13505$

Следовательно, «а», ближайшее целое равно 0.

Для Пуассоновского распределения: $\lambda=0.13505$

в)
$$\mathbb{P}(N=0) = 0.99963^{365} \approx e^{-\lambda}$$

r)
$$\mathbb{P}(N=2) = C_{365}^2 0.99963^{363} 0.00037^2 \approx e^{-\lambda} \lambda^2/2$$

6.
$$\mathbb{E}(X) = 3 - 4\theta, \theta \in [0; 1/3], \theta_{max} = 0, \theta_{min} = 1/3$$

7. $N=X_1+X_2+X_3$, где X_i равно 1 или 0 в зависимости от того, пришел ли друг. Значит $\mathbb{E}(N)=\mathbb{E}(X_1)+\mathbb{E}(X_2)+\mathbb{E}(X_3)=0.9+0.7+0.5=2.1$

8.
$$\mathbb{P}(N=1) = \frac{C_4^2}{C_6^2} = 6/15$$

$$\mathbb{P}(N=3) = \frac{4\cdot 2}{C_6^2} \frac{3\cdot 1}{C_5^2} = 4/15$$

$$\mathbb{P}(N=2) = 5/15$$

$$\mathbb{E}(N) = 28/15$$
, первая.

9-А. Имеется n способов выбрать левую точку. Оставшиеся (n-1) точка должны попасть в правую полуокружность относительно выбранной левой точки.

Получаем
$$p = n \cdot (0.5)^{n-1}$$

9-Б. Будем считать координату одного за точку отсчета. На квадрате $[0;1] \times [0;1]$ нетрудно нарисовать нужное множество.

$$p = 3/8$$

6.3. Контрольная работа №2, демо-версия, 21.01.2008

Демо-версия.

В контрольной на этом месте будет 10 тестовых вопросов!

Часть II.

Стоимость задач 10 баллов.

1. Совместный закон распределения случайных величин X и Y задан таблицей:

	Y = -1	Y = 1	Y = 2
$\overline{X = -1}$	0.1	c	0.2
X = 1	0.1	0.1	0.1

Найдите c, $\mathbb{P}\left(Y>X\right)$, $\mathbb{E}\left(X\cdot Y\right)$, $\mathbb{E}\left(X|Y>0\right)$. Являются ли величины X и Y независимыми?

- 2. Случайный вектор $\binom{X_1}{X_2}$ имеет нормальное распределение с математическим ожиданием $\binom{-2}{1}$ и ковариационной матрицей $\begin{pmatrix} 9 & -4 \\ -4 & 36 \end{pmatrix}$.
 - а) Найдите $\mathbb{P}(X_1 + X_2 > 0)$.
 - б) Какое условное распределение имеет X_1 при условии, что $X_2 = -1$?
- 3. Совместная функция плотности имеет вид

$$p_{X,Y}\left(x,y\right)=\begin{cases} c(x-y), & \text{ если } x\in\left[0;1\right],\,y\in\left[0;1\right],x>y\\ 0, & \text{ иначе} \end{cases}$$

Найдите c, $\mathbb{P}(3Y > X)$, $\mathbb{E}(X)$, $\mathbb{E}(X|Y > 0.5)$.

- 4. Вероятность дождя в субботу 0.5, вероятность дождя в воскресенье 0.3. Корреляция между наличием дождя в субботу и наличием дождя в воскресенье равна r. Какова вероятность того, что в выходные вообще не будет дождя?
- 5. Автор книги получает 50 тыс. рублей сразу после заключения контракта и 5 рублей за каждую проданную книгу. Автор предполагает, что количество книг, которые будут проданы это случайная величина с ожиданием в 10 тыс. книг и стандартным отклонением в 1 тыс. книг. Чему равен ожидаемый доход автора? Чему равна дисперсия дохода автора?
- 6. Сейчас акция стоит 1000 рублей. Каждый день цена может равновероятно либо возрасти на 3 рубля, либо упасть на 5 рублей.

32

- а) Чему равно ожидаемое значение цены через 60 дней? Дисперсия?
- б) Какова вероятность того, что через 60 дней цена будет больше 900 рублей?
- 7. В данном регионе кандидата в парламент Обещаева И.И. поддерживает 60% населения. Сколько нужно опросить человек, чтобы с вероятностью 0.99 доля опрошенных избирателей, поддерживаюц Обещаева И.И., отличалась от 0.6 (истинной доли) менее, чем на 0.01?
- 8. С помощью неравенства Чебышева, укажите границы, в которых находятся величины; рассчитайте также их точное значение
 - a) $\mathbb{P}(-2\sigma < X \mu < 2\sigma), X \sim \mathcal{N}(\mu; \sigma^2)$
 - б) $\mathbb{P}(8 < X < 12), X \sim U[0; 20]$
 - в) $\mathbb{P}(-2 < X \mathbb{E}(X) < 2), X$ имеет экспоненциальное распределение с $\lambda = 1$

Часть III.

Стоимость задачи 20 баллов.

Требуется решить одну из двух 9-х задач по выбору!

9-А. Вы приехали в уездный город N. В городе кроме Вас живут M мирных граждан и U убийц. Каждый день на улице случайным образом встречаются два человека. Если встречаются два мирных гражданина, то они пожимают друг другу руки. Если встречаются мирный гражданин и убийца, то убийца убивает мирного гражданина. Если встречаются двое убийц, то оба погибают.

Каковы Ваши шансы выжить в этом городе? Зависят ли они от Вашей стратегии?

9-Б. Дед Мороз развешивает новогодние гирлянды. Аллея состоит из 2008 елок. Каждой гирляндой Дед Мороз соединяет две елки (не обязательно соседние). В результате Дед Мороз повесил 1004 гирлянды и все елки оказались украшенными. Какова вероятность того, что существует хотя бы одна гирлянда, пересекающаяся с каждой из других?

Например, гирлянда 5-123 (гирлянда соединяющая 5-ую и 123-ю елки) пересекает гирлянду 37-78 и гирлянду 110-318.

Подсказка: Думайте!

6.4. Контрольная работа №2, демо-версия, 21.01.2008, решения

1. c = 0.4

$$\mathbb{P}(Y > X) = \mathbb{P}(Y = 1, X = -1) + \mathbb{P}(Y = 2, X = -1) + \mathbb{P}(Y = 2, X = 1) = 0.7$$

$$\mathbb{E}(XY) = 0.1 - 0.4 - 0.4 - 0.4 - 0.1 + 0.1 + 0.2 = -0.5$$

$$\mathbb{E}(X|Y > 0) = -1 \cdot \frac{0.6}{0.8} + 1 \cdot \frac{0.2}{0.8} = -0.5$$

Случайны величины X и Y не являются независимыми.

2. а) Найдём распредление случайной величины $Z = X_1 + X_2$:

$$\mathbb{E}(Z) = -1, \text{Var}(Z) = \text{Var}(X_1) + \text{Var}(X_2) + 2 \text{Cov}(X_1, X_2) = 37$$

Получили, что $Z \sim \mathcal{N}(-1, 37)$, тогда

$$\mathbb{P}(Z>0) = \mathbb{P}\left(\frac{Z+1}{\sqrt{37}} > \frac{0+1}{\sqrt{37}}\right) = 0.4364$$

6)
$$\mathbb{E}(X_1|X_2=-1)=-2-4\cdot\frac{1}{36}\cdot(-1-1)=-\frac{16}{9}$$
 $\operatorname{Var}(X_1|X_2=-1)=9-(-4)\cdot\frac{1}{36}\cdot(-4)=\frac{77}{9}$ $X_1|X_2=-1\sim\mathcal{N}(-\frac{16}{9},\frac{77}{9})$

3. c = 6

$$\mathbb{P}(3Y > X) = \int_0^1 \int_0^{3y} 6(x - y) dx dy = 3$$
$$f_X(x) = \int_0^x 6(x - y) dy = 3x^2 \Rightarrow \mathbb{E}(X) = \int_0^1 3x^3 dx = 0.75$$

4. Введём следующие случайные величины:

$$X = egin{cases} 1 & ext{в субботу не будет дождя, } p = 0.5 \\ 0 & ext{иначе, } p = 0.5 \end{cases}$$
 $Y = egin{cases} 1 & ext{в воскресенье не будет дождя , } p = 0.7 \\ 0 & ext{иначе , } p = 0.3 \end{cases}$

Найдем их математические ожидания и дисперсии: $\mathbb{E}(X)=0.5$, $\mathrm{Var}(X)=0.25$, $\mathbb{E}(Y)=0.3$, $\mathrm{Var}(Y)=0.21$.

В условии дана корееляция X и Y, найдём ковариацию: $\mathrm{Cov}(X,Y) = r \cdot 0.5 \sqrt{0.21}$. По определению, $\mathrm{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$, откуда можно найти $\mathbb{E}(XY)$: $\mathbb{E}(XY) = r \cdot 0.5 \sqrt{0.21} + 0.5 \cdot 0.7$.

Заметим, что $\mathbb{E}(XY)$ — это и есть искомая вероятность, потому что при подсчёте совместного математического ожидания в сумме будет только одно слагаемое, в котором X=1 и Y=1, остальные же будут равны нулю.

5. Пусть X — случайная величина, обозначающая количество проданных книг. Будем считать, что продажи каждой книги — независимые события.

$$\mathbb{E}(50+5X) = 100, \text{Var}(50+5X) = 25$$

6. Пусть X — случайная величина, обозначающая изменение цены акции за день, а S — финальную стоимость акции.

a)
$$\mathbb{E}(S) = \mathbb{E}(1000 + 60X) = 1000 + 60(0.5 \cdot 3 + 0.5 \cdot 5) = 1240$$

 $\text{Var}(S) = \text{Var}(1000 + 60X) = 3600(0.5 \cdot 9 + 0.5 \cdot 25 - 16) = 3600$

6)
$$\mathbb{P}(S > 900) = \mathbb{P}\left(\frac{S - 1240}{60} > \frac{900 - 1240}{60}\right) = 1 - \mathbb{P}(\mathcal{N}(0, 1) < -\frac{17}{3}) \approx 1$$

7.
$$\mathbb{P}(|\hat{p} - 0.6| < 0.01) = 0.99 \Rightarrow \mathbb{P}\left(\frac{|\hat{p} - 0.6|}{\sqrt{\frac{0.6 \cdot 0.4}{n}}} < \frac{0.01}{\sqrt{\frac{0.6 \cdot 0.4}{n}}}\right) = 0.99$$

По таблице: $\frac{0.01}{\sqrt{\frac{0.6\cdot0.4}{n}}}=2.57\Rightarrow n=62$

8. a)
$$\mathbb{P}(-2 < \mathcal{N}(0,1) < 2) = 0.9544, 1 - \frac{1}{4} < \mathbb{P}(-2\sigma < X - \mu < 2\sigma) < 1$$

6)
$$\mathbb{P}(8 < X < 12) = 0.2, 1 - \frac{20^2}{12} < \mathbb{P}(-2 < X - \mathbb{E}(X) < 2) < 1$$

в)
$$\mathbb{P}(-1 < X < 3) = \int_{-1}^{3} e^{-x} dx \stackrel{x>0}{=} 1 - e^{-3}, 1 - \frac{1}{4} < \mathbb{P}(-2 < X - \mathbb{E}(X) < 2) < 1$$

9-Б. Подразумевая под точками концы гирлянды, докажем следующее утверждение.

Бросим $2n\geqslant 4$ точек X_1,X_2,\ldots,X_{2n} случайным образом на отрезок [0;1]. Пусть для $1\leqslant i\leqslant n$ J_i — это отрезок с концами X_{2i-1} и X_{2i} . Тогда вероятность того, что найдётся такой отрезок J_i , который пересекает все другие отрезки, равна 2/3 и не зависит от n. Доказательство. Бросим 2n+1 точек на окружность, тогда 2n точек образуют пары, а оставшуюся обозначим X и будем считать её и началом, и концом отрезка. Каждому получившемуся отрезку присвоим уникальное имя. Далее, будем двигаться от точки X по часовой стрелке до тех пор, пока не встретим одно и то же имя дважды, например «а». После этого пойдём в обратную сторону, и будем идти, пока не встретим какое-нибудь другое имя дважды, например, «б». Теперь посмотрим на получившуюся последовательность

между «б» и «а» на концах пути, читая её по часовой стрелке от «б» до «а». Нас интересует взаимное расположение X, второй «а» и второй «б». Зная, что «а» стоит после X, выпишем все возможные случаи, где может стоять «б»:

- i. перед X
- ii. между X и «а»
- ііі. после «а»

Покажем, что во втором и третьем случае отрезок «б» пересекает все остальные, а в первом такого отрезка вообще нет. Попутно заметим, что появление каждого и случаев равновероятно.

Действительно, если «б» стоит после X, и отрезок соответствующий этому имени, не пересекает какой-нибудь другой отрезок «в», то последовательность выглядела бы как «бввXб» или «бXввб», что противоречит описанному построению. Если «б» стоит перед X и отрезок «в» пересекает оба отрезка «а» и «б», то мы снова приходим в противоречие с построением. В итоге, получаем, что искомая вероятность равна 2/3.

6.5. Контрольная работа №2, 21.01.2008

Часть I.

Обведите верный ответ:

- 1. Сумма двух нормальных независимых случайных величин нормальна. Да.
- 2. Нормальная случайная величина может принимать отрицательные значения. Да.
- 3. Пуассоновская случайная величина является непрерывной. Нет.
- 4. Дисперсия суммы зависимых величин всегда не меньше суммы дисперсий. Нет.
- 5. Теорема Муавра-Лапласа является частным случаем центральной предельной. Да.
- 6. Пусть X длина наугад выловленного удава в сантиметрах, а Y в дециметрах. Коэффициент корреляции между этими величинами равен $\frac{1}{10}$. Нет.
- 7. Математическое ожидание выборочного среднего не зависит от объема выборки, если X_i одинаково распределены. Да.
- 8. Зная закон распределения X и закон распределения Y можно восстановить совместный закон распределения пары (X,Y). Нет.
- 9. Если X непрерывная случайная величиа, $\mathbb{E}\left(X\right)=6$ и $\mathrm{Var}\left(X\right)=9$, то $Y=\frac{X-6}{3}\sim\mathcal{N}\left(0;1\right)$. Нет.
- 10. Если ты отвечать на первые 10 вопросов этого теста наугад, то число правильных ответов случайная величина, имеющая биномиальное распределение. Да.
- 11. Раз уж выпал свежий снег, то вместо контрольной можно было бы покататься на лыжах! Да.

Любой ответ на 11 считается правильным.

Тест не является блокирующим.

Обозначения:

 $\mathbb{E}(X)$ — математическое ожидание

Var(X) — дисперсия

Часть II.

Стоимость задач 10 баллов.

1. Совместный закон распределения случайных величин X и Y задан таблицей:

	Y = -1	Y = 0	Y=2
$\overline{X} = 0$	0.2	c	0.2
X = 1	0.1	0.1	0.1

Найдите c, $\mathbb{P}(Y > -X)$, $\mathbb{E}(X \cdot Y)$, Corr(X, Y), $\mathbb{E}(Y | X > 0)$.

2. Случайный вектор $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ имеет нормальное распределение с математическим ожиданием $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$ и ковариационной матрицей $\begin{pmatrix} 9 & -4.5 \\ -4.5 & 25 \end{pmatrix}$.

$$\left(egin{array}{c}2\\-1\end{array}
ight)$$
 и ковариационной матрицей $\left(egin{array}{c}9&-4.5\\-4.5&25\end{array}
ight)$

- а) Найдите $\mathbb{P}(X_1 + 3X_2 > 20)$.
- б) Какое условное распределение имеет X_1 при условии, что $X_2 = 0$?
- 3. Совместная функция плотности имеет вид

$$p_{X,Y}\left(x,y\right)=\begin{cases} x+y, & \text{ если } x\in\left[0;1\right],\,y\in\left[0;1\right]\\ 0, & \text{ иначе} \end{cases}$$

Найдите $\mathbb{P}(Y > 2X)$, $\mathbb{E}(X)$. Являются ли величины X и Y независимыми?

4. Вася может получить за экзамен равновероятно либо 8 баллов, либо 7 баллов. Петя может получить за экзамен либо 7 баллов — с вероятностью 1/3; либо 6 баллов — с вероятностью 2/3. Известно, что корреляция их результатов равна 0.7.

Какова вероятность того, что Петя и Вася покажут одинаковый результат?

- 5. В городе Туме проводят демографическое исследование семейных пар. Стандартное отклонение возраста мужа оказалось равным 5 годам, а стандартное отклонение возраста жены — 4 годам. Найдите корреляцию возраста жены и возраста мужа, если стандартное отклонение разности возрастов оказалось равным 2 годам.
- 6. Сейчас акция стоит 100 рублей. Каждый день цена может равновероятно либо возрасти на 8%, либо упасть на 5%.
 - а) Какова вероятность того, что через 64 дня цена будет больше 110 рублей?
 - б) Чему равно ожидаемое значение логарифма цены через 100 дней?

Подсказка:
$$\ln(1.08) = 0.07696$$
, $\ln(0.95) = -0.05129$, $\ln(1.1) = 0.09531$

- 7. Допустим, что срок службы пылесоса имеет экспоненциальное распределение. В среднем один пылесос бесперебойно работает 7 лет. Завод предоставляет гарантию 5 лет на свои изделия. Предположим также, что примерно 80% потребителей аккуратно хранят все бумаги, необходимые, чтобы воспользоваться гарантией.
 - а) Какой процент потребителей в среднем обращается за гарантийным ремонтом?

36

б) Какова вероятность того, что из 1000 потребителей за гарантийным ремонтом обратится более 35% покупателей?

Подсказка: $\exp(5/7) = 2.0427$

- 8. Известно, что у случайной величины X есть математическое ожидание, $\mathbb{E}(X)=0$, и дисперсия.
 - а) Укажите верхнюю границу для $\mathbb{P}(X^2 > 2.56 \cdot \text{Var}(X))$?
 - б) Найдите указанную вероятность, если дополнительно известно, что X нормально распределен

Часть III.

Стоимость задачи 20 баллов.

Требуется решить одну из двух 9-х задач по выбору!

- 9-А. Случайная величина X распределена равномерно на отрезке [0;1]. Вася изготавливает неправильну монетку, которая выпадает «орлом» с вероятностью x и передает ее Пете. Петя, не зная x, и подкидывает монетку один раз. Она выпала «орлом».
 - а) Какова вероятность того, что она снова выпадет «орлом»?
 - б) Как выглядит ответ, если Пете известно, что монетка при n подбрасываниях k раз выпала орлом?
- 9-Б. В семье n детей. Предположим, что вероятности рождения мальчика и девочки равны. Дед Мороз спросил каждого мальчика «Сколько у тебя сестер?» и сложив эти ответы получил X. Затем Дед Мороз спросил каждую девочку «Сколько у тебя сестер?» и сложив эти ответы получил Y. Например, если в семье 2 мальчика и 2 девочки, то каждая девочка скажет, что у нее одна сестра, а каждый мальчик скажет, что у него 2 сестры, X = 4, Y = 2
 - а) Найдите $\mathbb{E}(X)$ и $\mathbb{E}(Y)$
 - б) Найдите Var(X), Var(Y)

Подсказка: Думайте!

6.6. Контрольная работа №2, 21.01.2008, решения

1.
$$c=0.2$$
, далее $\mathbb{P}\left(Y>-X\right)=0.5$ и $\mathbb{E}\left(X\cdot Y\right)=0.1$ $\mathrm{Corr}(X,Y)=\frac{-0.02}{\sqrt{0.24\cdot 1.41}}$ $\mathbb{E}\left(Y|X>0\right)=0.25$

2. a)
$$\mathbb{E}(S) = -1$$
, $Var(S) = 207$, $\mathbb{P}(Z > 1.47) = 1 - 0.9292 = 0.0708$

6)
$$p(x_1|0) \sim \exp\left(-\frac{1}{2} \begin{pmatrix} x_1 - 2 & 0 + 1 \end{pmatrix} \begin{pmatrix} 9 & -4.5 \\ -4.5 & 25 \end{pmatrix}^{-1} \begin{pmatrix} x_1 - 2 \\ 0 + 1 \end{pmatrix}\right)$$

$$p(x_1|0) \sim \exp\left(-\frac{1}{2det}(25(x_1 - 2)^2 + 9(x_1 - 2) + 9)\right)$$

$$p(x_1|0) \sim \exp\left(-\frac{1}{2\cdot 8\cdot 19}(x_1 - 1.82)^2\right)$$

$$Var(X_1|X_2 = 0) = 8.19, \mathbb{E}(X_1|X_2 = 0) = 1.82$$

Есть страшные люди, которые наизусть помнят, что:

$$\begin{aligned} & \operatorname{Var}(X_1|X_2 = x_2) = (1 - \rho^2)\sigma_1^2 \\ & \mathbb{E}(X_1|X_2 = x_2) = \mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_2 - \mu_2) \end{aligned}$$

3.
$$\mathbb{P}(Y > 2X) = \int_0^1 \int_0^{y/2} (x+y) dx dy = \frac{5}{24}$$

 $\mathbb{E}(X) = \int_0^1 \int_0^1 x(x+y) dx dy = \frac{7}{12}$

Зависимы

4. Рассмотрим X = 8 - (Васин бал) и Y = (Петин бал) - 6

Corr(X,Y) = -0.7 (т.к. при линейном преобразовании может поменяться только знак корреляции)

$$\operatorname{Var}(X) = \frac{1}{2} \left(1 - \frac{1}{2} \right)$$

$$Var(Y) = \frac{1}{3} \left(1 - \frac{1}{3} \right)$$

Интересующая нас величина - это $\mathbb{P}(X=1\cap Y=1)=\mathbb{E}(XY)=\mathrm{Cov}(X,Y)+\mathbb{E}(X)\mathbb{E}(Y)$

answer:
$$\frac{10-7\sqrt{2}}{60} \approx 0.001675$$

key point:
$$Cov = -\frac{7\sqrt{2}}{60}$$

5.
$$\frac{37}{40} = 0.925$$

6. Частая ошибка в «а» — решение другой задачи, где проценты заменены на копейки.

Пусть N — число подъемов акции.

a)

$$\begin{split} \mathbb{P}(100 \cdot 1.08^N \cdot 0.95^{64-N} > 110) &= \mathbb{P}(N \ln(1.08) + (64-N) \ln(0.95) > \ln(1.1)) = \\ &= \mathbb{P}\left(N > \frac{\ln(1.1) - 64 \ln(0.95)}{\ln(1.08) - \ln(0.95)}\right) \end{split}$$

Заметим, что N - биномиально распределена, примерно $N\left(64\cdot\frac{1}{2},64\cdot\frac{1}{4}\right)$ $Z=\frac{N-32}{4}$ - стандартная нормальная и $\mathbb{P}(Z>-1,42)=0.92$

б)
$$\mathbb{E}(N\ln(1.08) + (100-N)\ln(0.95))$$

На этот раз $\mathbb{E}(N) = 50$ и $\mathbb{E}(\ln(P_{100})) = 1.28$

7.
$$p_{break} = 1 - \exp(-5/7) = 0.51 = \int_0^5 \frac{1}{7} e^{-\frac{t}{7}} dt$$

 $p = 0.8 \cdot 0.51 \approx 0.4$

$$\mathbb{E}(S) = 1000p = 400, \text{Var}(S) = 1000p(1-p) = 240$$

$$\mathbb{P}(S > 350) = \mathbb{P}(Z > -3.23) \approx 1$$

8. a)
$$\mathbb{P}(X^2 > 2.56 \operatorname{Var}(X)) = \mathbb{P}(|X - 0| > 1.6\sigma) \leqslant \frac{VarX}{2.56 \operatorname{Var}(X)} = \frac{100}{256} \approx 0.4$$

б)
$$\mathbb{P}(X^2 > 2.56 \operatorname{Var}(X)) = \mathbb{P}(|Z| > 1.6) = 0.11$$

9-А. б) Искомая вероятность равна Prob = f(k+1, n-k)/f(k, n-k), где

$$f(a,b) = \int_0^1 x^a (1-x)^b dx$$

Проинтегрировав по частям, видим, что $f(a,b) = f(a+1,b-1) \frac{b}{a+1}$

Отсюда
$$f(a,b) = \frac{a!b!}{(a+b+1)!}$$

Подставляем, и получаем: $Prob = \frac{k+1}{n+2}$

Если кто получит этот ответ другим (более интуитивным) образом - тому большой дополнительный балл (!) - обращайтесь на boris.demeshev@gmail.com

9-Б. Занумеруем детей в порядке появления на свет. Обозначим M_i — индикатор того, что i-ый ребенок — мальчик, и F_i — индикатор того, что i-ый ребенок — девочка. Конечно, $F_i + M_i = 1$ и $F_i M_i = 0$. M, F — общее число мальчиков и девочек соответственно.

Запасаемся простыми фактами:

$$\mathbb{E}(F_i) = \mathbb{E}(M_i) = \mathbb{E}(F_i^2) = \mathbb{E}(M_i^2) = \frac{1}{2}$$

$$\begin{split} \mathbb{E}(F) &= \mathbb{E}(M) = \frac{n}{2} \\ \operatorname{Var}(F_i) &= \operatorname{Var}(M_i) = \frac{1}{4} \\ \operatorname{Var}(F) &= \operatorname{Var}(M) = \frac{n}{4} \\ \mathbb{E}(F^2) &= \mathbb{E}(M^2) = \operatorname{Var}(F) + \mathbb{E}(F)^2 = \frac{n(n+1)}{4} \\ \mathbb{E}(FF_i) &= \frac{n+1}{4} \end{split}$$

Заметим, что $X_i = X_i + M_i F_i = M_i F$. Таким образом,

$$X = MF = nF - F^2$$

$$Y_i = F - F_i - X_i$$

$$Y = (n-1)F - MF = (n-1)F - nF + F^{2} = F^{2} - F$$

Далее берем матожидание (легко) и дисперсию (громоздко): $\mathbb{E}(X) = \mathbb{E}(Y) = \frac{n(n-1)}{4}$... (если кто решил до сих пор, то наверняка, он смог и дальше решить) ...

6.7. Контрольная работа №3, демо-версия, 01.03.2008

Демо-версия кр3!

Часть I.

Здесь будет тест!

Часть II.

Стоимость задач 10 баллов.

- 1. Вася и Петя метают дротики по мишени. Каждый из них сделал по 100 попыток. Вася оказался метче Пети в 59 попытках.
 - а) На уровне значимости 5% проверьте гипотезу о том, что меткость Васи и Пети одинаковая, против альтернативной гипотезы о том, что Вася метче Пети.
 - б) Чему равно точное P-значение при проверке гипотезы в п. «а»?
- 2. Из 10 опрошенных студентов часть предпочитала готовиться по синему учебнику, а часть по зеленому. В таблице представлены их итоговые баллы.

Синий	76	45	57	65		
Зелёный	49	59	66	81	38	88

С помощью теста Манна-Уитни (Mann-Whitney) проверьте гипотезу о том, что выбор учебника не меняет закона распределения оценки.

3. Имеется случайная выборка $X_1, X_2, ..., X_n$, где все X_i имеют распределение, задаваемое табличкой:

\overline{x}	1	2	5
$\overline{\mathbb{P}(X=x)}$	\overline{a}	0.1	0.9 - 1

- а) Постройте оценку неизвестного a методом моментов
- б) Является ли построенная оценка состоятельной?

4. Имеется случайная выборка $X_1, X_2, ..., X_n$, где все X_i имеют $\mathcal{N}(27, a)$ распределение. Найдите оценку неизвестного a методом максимального правдоподобия.

Напоминалка: не забудьте проверить условия второго порядка

- 5. На курсе два потока, на первом потоке учатся 40 человек, на втором потоке 50 человек. Средний балл за контрольную на первом потоке равен 78 при (выборочном) стандартном отклонении в 7 баллов. На втором потоке средний балл равен 74 при (выборочном) стандартном отклонении в 8 баллов.
 - а) Постройте 90% доверительный интервал для разницы баллов между двумя потоками
 - б) На 10%-ом уровне значимости проверьте гипотезу о том, что результаты контрольной между потоками не отличаются.
- 6. Проверьте независимость пола респондента и предпочитаемого им сока:

	Апельсиновый	Томатный	Вишнёвый
M	69	40	23
Ж	74	62	34

- 7. На Древе познания Добра и Зла растет 6 плодов познания Добра и 5 плодов познания Зла. Адам и Ева съели по 2 плода. Какова вероятность того, что Ева познала Зло, если Адам познал Добро?
- 8. Пусть X_i независимы и имеют функцию плотности $p(t) = e^{a-t}$ при t > a, где a неизвестный параметр. В качестве оценки неизвестного a используется $\hat{a}_n = \min\{X_1, X_2, ..., X_n\}$.
 - а) Является ли предлагаемая оценка состоятельной?
 - б) Является ли предлагаемая оценка несмещенной?

Решение:

Заметим, что $\hat{a}_n \geqslant a$.

$$\begin{split} \mathbb{P}(|\hat{a}_n - a| > \varepsilon) &= \mathbb{P}(\hat{a}_n - a > \varepsilon) = \mathbb{P}(\hat{a}_n > a + \varepsilon) = \mathbb{P}(\min\{X_1, X_2, ..., X_n\} > a + \varepsilon) = \\ &= \mathbb{P}(X_1 > a + \varepsilon \cap X_2 > a + \varepsilon \cap ...) = \mathbb{P}(X_1 > a + \varepsilon) \cdot \mathbb{P}(X_2 > a + \varepsilon) \cdot ... = \left(\int_{a + \varepsilon}^{\infty} e^{a - t} dt\right)^n = (e^{-\varepsilon})^n = e^{-n\varepsilon} \end{split}$$

$$\lim_{n\to\infty} e^{-n\varepsilon} = 0$$

б) нет, не является ни при каких n, хотя смещение с ростом n убывает

Часть III.

Стоимость задачи 20 баллов.

Требуется решить одну из двух 9-х задач по выбору!

9-А. Имеются две монетки. Одна правильная, другая — выпадает орлом с вероятностью 0.45. Одну из них, неизвестно какую, подкинули n раз и сообщили Вам, сколько раз выпал орел. Ваша задача проверить гипотезу H_0 : «подбрасывалась правильная монетка» против H_a : «подбрасывалась неправильная монетка».

Каким должно быть наименьшее n и критерий выбора гипотезы, чтобы вероятность ошибок первого рода не превышала 10%, а вероятность ошибки второго рода не превышала 15%?

9-В. Пусть X_i — iid, U[-b;b]. Имеется выборка из 2-х наблюдений. Вася строит оценку для b по формуле $\hat{b}=c\cdot(|X_1|+|X_2|)$.

- а) При каком c оценка будет несмещенной?
- б) При каком c оценка будет минимизировать средне-квадратичную ошибку, $MSE = \mathbb{E}((\hat{b}-b)^2)$?

6.8. Контрольная работа №3, 01.03.2008

Часть I.

Обведите верный ответ:

- 1. Мощность теста можно рассчитать заранее, до проведения теста. Да.
- 2. Точное P-значение можно рассчитать заранее, до проведения теста. Нет.
- 3. Если гипотеза отвергает при 5%-ом уровне значимости, то она обязательно будет отвергаться и при 10%-ом уровне значимости. Да.
- 4. Мощность больше у того теста, у которого вероятность ошибки 1-го рода меньше. Нет.
- 5. Функция плотности F-распределения p(t) не определена при t < 0. Нет.
- 6. При большом k случайную величину, имеющую χ^2_k распределение, можно считать нормально распределенной. Да.
- 7. Оценки метода моментов всегда несмещенные. Нет.
- 8. Оценки метода максимального правдоподобия асимптотически несмещенные. Да.
- 9. Непараметрические тесты можно использовать, даже если закон распределения выборки неизвестен. Да.
- 10. Неравенство Крамера-Рао применимо только к оценкам метода максимального правдоподобия. Нет.

Да — истинное утверждение, Нет - ложное Тест не является блокирующим.

Обозначения:

 $\mathbb{E}(X)$ — математическое ожидание

Var(X) — дисперсия

Часть II.

Стоимость задач 10 баллов.

- 1. Школьник Вася аккуратно замерял время, которое ему требовалось, чтобы добраться от школы до дома. По результатам 90 наблюдений, среднее выборочное оказалось равным 14 мин, а несмещенная оценка дисперсии 5 мин².
 - а) Постройте 90% доверительный интервал для среднего времени на дорогу
 - б) На уровне значимости 10% проверьте гипотезу о том, что среднее время равно 14,5 мин, против альтернативной гипотезы о меньшем времени.
 - в) Чему равно точное P-значение при проверке гипотезы в п. «б»?

2. Садовник осматривал розовые кусты и записывал число цветков. Всего в саду растет 25 розовых кустов. Предположим, что количество цветков на разных кустах независимы и одинаково распределены.

Вот заметки садовника:

Проверьте гипотезу о том, что медиана количества цветков равна 19.

3. Имеется случайная выборка $X_1, X_2, ..., X_n$, где все X_i имеют распределение, задаваемое табличкой:

- а) Постройте оценку неизвестного a методом моментов
- б) Является ли построенная оценка несмещенной?
- 4. Имеется случайная выборка $X_1, X_2, ..., X_n$, где все X_i имеют N(a, 4a) распределение. Найдите оценку неизвестного a методом максимального правдоподобия.

Напоминалка: не забудьте проверить условия второго порядка

- 5. Допустим, что логарифм дохода семьи имеет нормальное распределение. В городе А была проведена случайная выборка 40 семей, показавшая выборочную дисперсию 20 (тыс.р.)². В городе Б по 30 семьям выборочная дисперсия оказалась равной 32 (тыс.р.)². На уровне значимости 5% проверьте гипотезу о том, что дисперсия (логарифма дохода) одинакова, против альтернативной гипотезы о том, что город А более однородный.
- 6. Учебная часть утверждает, что все три факультатива («Вязание крючком для экономистов», «Экономика вышивания крестиком» и «Статистические методы в макраме») одинаково популярны. В этом году на эти факультативы соответственно записалось 35, 31 и 40 человек. Правдоподобно ли заявление учебной части?
- 7. Снайпер попадает в «яблочко» с вероятностью 0.8, если в предыдущий раз он попал в «яблочко» и с вероятностью 0.7, если в предыдущий раз он не попал в «яблочко» или если это был первый выстрел. Снайпер стрелял по мишени 3 раза.
 - а) Какова вероятность попадания в «яблочко» при втором выстреле?
 - б) Какова вероятность попадания в «яблочко» при втором выстреле, если при первом снайпер попал, а при третьем промазал?
- 8. Пусть X_i независимы и распределены равномерно на [a-1;a], где a неизвестный параметр. В качестве оценки неизвестного a используется $\hat{a}_n = \max\{X_1, X_2, ..., X_n\}$.
 - а) Является ли предлагаемая оценка состоятельной?
 - б) Является ли предлагаемая оценка несмещенной?

Часть III.

Стоимость задачи 20 баллов.

Требуется решить <u>одну</u> из двух 9-х задач по выбору!

- 9-А. Два лекарства испытывали на мужчинах и женщинах. Каждый человек принимал только одно лекарство. Общий процент людей, почувствовавших улучшение, больше среди принимавших лекарство А. Процент мужчин, почувствовавших улучшение, больше среди принимавших лекарство В. Процент женщин, почувствовавших улучшение, больше среди принимавших лекарство В. Возможно ли это?
- 9-В. Есть два золотых слитка, разных по весу. Сначала взвесили первый слиток и получили результат X. Затем взвесили второй слиток и получили результат Y. Затем взвесили оба слитка и получили результат Z. Допустим, что ошибка каждого взвешивания это случайная величина с нулевым средним и дисперсией σ^2 .
 - а) Придумайте наилучшую оценку веса первого слитка.
 - б) Сравните придуманную Вами оценку с оценкой, получаемой путем усреднения двух взвешиваний первого слитка.

6.9. Контрольная работа №3, 01.03.2008, решения

- 1. a) [13.61; 14.39]
 - б) Отвергается ($Z_{observed} = -2.12, Z_{critical} = -1.28$)
 - B) $P_{value} = 0.017$
- 2. Заменяем числа на цифры 0 и 1 (0 меньше 19 цветков), (1 больше)

$$\hat{p} = \frac{8}{25} = 0.32$$

$$H_0: p = 0.5$$

$$H_a: p \neq 0.5$$

$$Z = \frac{0.32 - 0.5}{\sqrt{\frac{0.5 \cdot 0.5}{25}}} = -1.8$$

При уровне значимости 5%, $Z_{critical}=1.96.$ Значит, H_0 - не отвергается.

- 3. a) $\hat{a} = \frac{5-\bar{X}}{10}$
 - б) Да, является

4.
$$L = -\frac{n}{2}\ln(a) - \frac{na}{8} - \frac{\sum X_i^2}{8a} + c$$

$$L'=0$$
равносильно $\hat{a}^2+4\hat{a}+4=4+\frac{\sum X_i^2}{n}$

$$\hat{a} = -2 + \sqrt{4 + \frac{\sum X_i^2}{n}}$$

5.
$$F_{29.39} = \frac{32}{20} = 1.6$$

$$F_{critical} = 1.74$$

Гипотеза о том, что дисперсия одинакова не отвергается.

6.
$$\chi^2_{observed} = 1.15$$

$$\chi^2_{2.5\%} = 5.99$$

Правдоподобно.

7. a)
$$p = 0.7 \cdot 0.8 + 0.3 \cdot 0.7 = 0.77$$

6)
$$p = \frac{0.7 \cdot 0.8 \cdot 0.2}{0.7 \cdot 0.8 \cdot 0.2 + 0.7 \cdot 0.2 \cdot 0.3} = \frac{8}{11}$$

8. а) Заметим, что $\hat{a}_n \leqslant a$.

$$\mathbb{P}(|\hat{a}_n - a| > \varepsilon) = \mathbb{P}(-(\hat{a}_n - a) > \varepsilon) = \mathbb{P}(\hat{a}_n < a - \varepsilon) = \mathbb{P}(\max\{X_1, X_2, ..., X_n\} < a - \varepsilon) = \mathbb{P}(X_1 < a - \varepsilon \cap X_2 < a - \varepsilon \cap ...) = \mathbb{P}(X_1 < a - \varepsilon) \cdot \mathbb{P}(X_2 < a - \varepsilon) \cdot ... = (1 - \varepsilon)^n$$

$$\lim_{n \to \infty} (1 - \varepsilon)^n = 0$$

б) Нет, не является ни при каких n, хотя смещение с ростом n убывает

9-A. Да, http://en.wikipedia.org/wiki/Simpson's_paradox

9-Б. а) Пусть истинные веса слитков равны x, y и z.

Назовем оценку буквой \hat{x}

$$\hat{x} = aX + bY + cZ$$

Несмещенность:
$$\mathbb{E}(\hat{x})=a\mathbb{E}(X)+b\mathbb{E}(Y)+c\mathbb{E}(Z)=ax+by+c(x+y)=x$$
 $a+c=1,b+c=0$

$$\hat{x} = (1 - c)X + (-c)Y + cZ$$

Эффективность:
$$Var(\hat{x}) = ((1-c)^2 + c^2 + c^2) \cdot \sigma^2 = (3c^2 - 2c + 1)\sigma^2$$

Чтобы минимизировать дисперсию нужно выбрать c=1/3

T.e.
$$\hat{x} = \frac{2}{3}X - \frac{1}{3}Y + \frac{1}{3}Z$$

б)
$$\operatorname{Var}(\hat{x}) = \frac{2}{3}\sigma^2$$
 $\operatorname{Var}\left(\frac{X_1 + X_2}{2}\right) = \frac{1}{2}\sigma^2$

Усреднение двух взвешиваний первого слитка лучше.

7. 2008-2009

7.1. Контрольная работа №1, демо-версия, ??.11.2008

Часть І.

Обведите верный ответ:

- 1. Для любой случайной величины $\mathbb{P}(X>0)\geqslant \mathbb{P}(X+1>0)$. Да. Нет.
- 2. Для любой случайной величины с $\mathbb{E}(X) < 2$, выполняется условие $\mathbb{P}(X < 2) = 1$. Да. Нет.
- 3. Если $A \subset B$, то $\mathbb{P}(A|B) \leqslant \mathbb{P}(B|A)$. Да. Нет.
- 4. Если X случайная величина, то $\mathbb{E}(X)+1=\mathbb{E}(X+1)$. Да. Нет.
- 5. Функция распределения случайной величины является неубывающей. Да. Нет.
- 6. Для любых событий A и B, выполняется $\mathbb{P}(A|B) + \mathbb{P}(A|B^c) = 1$. Да. Нет.
- 7. Для любых событий A и B верно, что $\mathbb{P}(A|B)\geqslant \mathbb{P}(A\cap B)$, если обе вероятности существуют. Да. Нет.
- 8. Функция плотности может быть периодической. Да. Нет.
- 9. Если случайная величина X имеет функцию плотности, то $\mathbb{P}(X=0)=0$. Да. Нет.
- 10. Для неотрицательной случайной величины $\mathbb{E}(X) \geqslant \mathbb{E}(-X)$. Да. Нет.
- 11. Вероятность бывает отрицательной. Да. Нет.

Часть II.

Стоимость задач 10 баллов.

- 1. На день рождения к Васе пришли две Маши, два Саши, Петя и Коля. Все вместе с Васей сели за круглый стол. Какова вероятность, что Вася окажется между двумя тезками?
- 2. Поезда метро идут регулярно с интервалом 3 минуты. Пассажир приходит на платформу в случайный момент времени. Пусть X время ожидания поезда в минутах.

Найдите
$$\mathbb{P}(X < 1)$$
, $\mathbb{E}(X)$.

- 3. Жители уездного города N независимо друг от друга говорят правду с вероятностью $\frac{1}{3}$. Вчера мэр города заявил, что в 2014 году в городе будет проведен межпланетный шахматный турнир. Затем заместитель мэра подтвердил эту информацию. Какова вероятность того, что шахматный турнир действительно будет проведен?
- 4. Время устного ответа на экзамене распределено по экспоненциальному закону, т.е. имеет функцию плотности $p(t) = c \cdot e^{-0.1t}$ при t > 0.
 - а) Найдите значение параметра c
 - б) Какова вероятность того, что Иванов будет отвечать более получаса?
 - в) Какова вероятность того, что Иванов будет отвечать еще более получаса, если он уже отвечает 15 минут?
 - г) Сколько времени в среднем длится ответ одного студента?
- 5. Студент решает тест (множественного выбора) проставлением ответов наугад. В тесте 10 вопросов, на каждый из которых 4 варианта ответов. Зачет ставится в том случае, если правильных ответов будет не менее 5.
 - а) Найдите вероятность того, что студент правильно ответит только на один вопрос
 - б) Найдите наиболее вероятное число правильных ответов
 - в) Найдите математическое ожидание и дисперсию числа правильных ответов
 - г) Найдите вероятность того, что студент получит зачет
- 6. Совместный закон распределения случайных величин X и Y задан таблицей:

	Y = -1	Y = 0	Y = 2
$\overline{X} = 0$	0.2	c	0.2
X = 1	0.1	0.2	0.1

Найдите
$$c$$
, $\mathbb{P}\left(Y>-X\right)$, $\mathbb{E}\left(X\cdot Y\right)$, $\operatorname{Corr}(X,Y)$, $\mathbb{E}\left(Y|X>0\right)$

- 7. Вася пригласил трех друзей навестить его. Каждый из них появится независимо от другого с вероятностью 0.9, 0.7 и 0.5 соответственно. Пусть N количество пришедших гостей. Найдите $\mathbb{E}(N)$
- 8. Охотник, имеющий 4 патрона, стреляет по дичи до первого попадания или до израсходования всех патронов. Вероятность попадания при первом выстреле равна 0.6, при каждом последующем уменьшается на 0.1. Найдите
 - а) Закон распределения числа патронов, израсходованных охотником
 - б) Математическое ожидание и дисперсию этой случайной величины

Часть III.

Стоимость задачи 20 баллов.

Требуется решить одну из двух задач (9-А или 9-Б) по выбору!

9-А. У Мистера X есть n зонтиков. Зонтики мистер X хранит дома и на работе. Каждый день утром мистер X едет на работу, а каждый день вечером - возвращается домой. При этом каждый раз дождь идет с вероятностью 0.8 независимо от прошлого, (т.е. утром дождь идет с вероятностью 0.8 вне зависимости от того, что было утром). Если идет дождь и есть доступный зонтик, то мистер X обязательно возьмет его в дорогу. Если дождя нет, то мистер X поедет без зонтика.

Какой процент поездок окажется для мистера X неудачными (т.е. будет идти дождь, а зонта не будет) в долгосрочном периоде?

9-Б. Начинающая певица дает концерты каждый день. Каждый ее концерт приносит продюсеру 0.75 тысяч евро. После каждого концерта певица может впасть в депрессию с вероятностью 0.5. Самостоятельно выйти из депрессии певица не может. В депрессии она не в состоянии проводить концерты. Помочь ей могут только цветы от продюсера. Если подарить цветы на сумму $0 \leqslant x \leqslant 1$ тысяч евро, то она выйдет из депрессии с вероятностью \sqrt{x} .

Какова оптимальная стратегия продюсера?

7.2. Контрольная работа №1, демо-версия, ??.11.2008, решения

1.
$$\mathbb{P}(A) = 2/15$$

2.
$$\mathbb{P}(X < 1) = 1/3, \mathbb{E}(X) = 1.5$$

3.

4.
$$c = 0.1$$
, $\mathbb{P}(X > 30) = e^{-3}$, $\mathbb{P}(X > 45 \mid X > 15) = e^{-3}$, $\mathbb{E}(X) = 10$

5.
$$k^* = 2$$
, $Var(X) = 1.875$, $\mathbb{E}(X) = 2.5$

6.
$$c = 0.2$$
, $\mathbb{P}(Y > -X) = 0.5$, $\mathbb{E}(XY) = 0$, $Corr(X, Y) = -0.155$, $\mathbb{E}(Y|X > 0) = 1/4$

7.
$$\mathbb{E}(N) = \mathbb{E}(X_1) + \mathbb{E}(X_2) + \mathbb{E}(X_3) = 0.9 + 0.7 + 0.5 = 2.1$$

8.
$$\mathbb{E}(X) \approx 1.7, \operatorname{Var}(X) \approx 1.08$$

9-A.

9-Б. Рассмотрим совершенно конкурентный невольничий рынок начинающих певиц. Певицы в хорошем настроении продаются по V_1 , в депрессии — по V_2 . Получаем систему уравнений:

$$\begin{cases} V_1 = 0.75 + (0.5V_1 + 0.5V_2) \\ V_2 = \max_x \sqrt{x}V_1 + (1 - \sqrt{x})V_2 - x \end{cases}$$

Оптимизируем и получаем, $x^* = (V_1 - V_2)^2/4$. Из первого уравнения находим $(V_1 - V_2)/2 = 0.75$.

7.3. Контрольная работа №1, ??.11.2008

Часть I.

Верны ли следующие утверждения? Обведите ваш выбор.

- 1. Пуассоновская случайная величина является непрерывной. Нет.
- 2. Не существует случайной величины с $\mathbb{E}(X) = 2008$ и $\mathrm{Var}(X) = 2008$. Неверно.
- 3. $\mathbb{P}(A|B) = \mathbb{P}(A \cap B|B)$ для любых событий A и B . Да.
- 4. $\mathbb{E}(X/Y) = \mathbb{E}(X)/\mathbb{E}(Y)$ для любых случайных величин X и Y. Heт.
- 5. При увеличении t величина $\mathbb{P}(X \leqslant t)$ не убывает. Да.
- 6. Для любых событий A и B, выполняется $\mathbb{P}(A|B)+\mathbb{P}(A|B^c)=1.$ Het.
- 7. События A и B независимы, если они не могут наступить одновременно. Нет.
- 8. Функция плотности может принимать значения больше 2008. Да.
- 9. Если $\mathbb{P}(A) = 0.7$ и $\mathbb{P}(B) = 0.5$, то события A и B могут быть несовместными. Нет.
- 10. Если X неотрицательная случайная величина, то $\mathbb{P}(X \leqslant 0) = 0$. Нет.

Часть II.

Стоимость задач 10 баллов.

- 1. Вася купил два арбуза у торговки тети Маши и один арбуз у торговки тети Оли. Арбузы у тети Маши спелые с вероятностью 90% (независимо друг от друга), арбузы у тети Оли спелые с вероятностью 80%.
 - а) Какова вероятность того, что все три Васиных арбуза будут спелыми?
 - б) Какова вероятность того, что хотя бы два арбуза из Васиных будут спелыми?
 - в) Каково ожидаемое количество спелых арбузов у Васи?
- 2. Случайная величина X может принимать только значения 5 и 9, с неизвестными вероятностями
 - а) Каково наибольшее возможное математическое ожидание величины X?
 - б) Какова наибольшая возможная дисперсия величины X?
- 3. Предположим, что социологическим опросам доверяют 70% жителей. Те, кто доверяют, опросам всегда отвечают искренне; те, кто не доверяют, отвечают наугад. Социолог Петя в анкету очередного опроса включил вопрос «Доверяете ли Вы социологическим опросам?»
 - а) Какова вероятность, что случайно выбранный респондент ответит «Да»?
 - б) Какова вероятность того, что он действительно доверяет, если известно, что он ответил «Да»?
- 4. Случайные величины X и Y независимы и имеют функции плотности $f(x)=\frac{1}{4\sqrt{2\pi}}e^{-\frac{1}{32}(x-1)^2}$ и $g(y)=\frac{1}{3\sqrt{2\pi}}e^{-\frac{1}{18}y^2}$ соответственно. Найдите:
 - a) $\mathbb{E}(X)$, Var(X)
 - б) $\mathbb{E}(X-Y)$, Var(X-Y)

5. Закон распределения пары случайных величин X и Y задан табличкой:

	X = -1	X = 0	X = 2
Y=1	0.2	0.1	0.2
Y = 2	0.1	0.2	0.2

Найдите: $\mathbb{E}(X)$, $\mathbb{E}(Y)$, $\mathrm{Var}(X)$, $\mathrm{Cov}(X,Y)$, $\mathrm{Cov}(2X+3,-3Y+1)$

- 6. Время устного ответа на экзамене распределено по экспоненциальному закону, т.е. имеет функцию плотности $p(t) = c \cdot e^{-0.2t}$ при t > 0.
 - а) Найдите значение параметра c
 - б) Какова вероятность того, что Иванов будет отвечать более двадцати минут?
 - в) Какова вероятность того, что Иванов будет отвечать еще более двадцати минут, если он уже отвечает 10 минут?
 - г) Сколько времени в среднем длится ответ одного студента?
- 7. Полугодовой договор страховой компании со спортсменом-теннисистом, предусматривает выплату страхового возмещения в случае травмы специального вида. Из предыдущей практики известно, что вероятность получения теннисистом такой травмы в любой фиксированный день равна 0.00037. Для периода действия договора вычислите
 - а) Математическое ожидание числа страховых случаев
 - б) Вероятность того, что не произойдет ни одного страхового случая
 - в) Вероятность того, что произойдет ровно 2 страховых случая
- 8. Большой Адронный Коллайдер запускают ровно в полночь. Оставшееся время до Конца Света случайная величина X распределенная равномерно от 0 до 16 часов. Когда произойдет Конец Света, механические часы остановятся и будут показывать время Y.
 - а) Найдите $\mathbb{P}(Y < 2)$
 - б) Постройте функцию плотности для величины Y
 - в) Найдите $\mathbb{E}(Y)$, Var(Y)
 - Γ) Найдите Cov(X,Y)

Комментарий: по остановившимся механическим часам, к примеру, невозможно отличить, прошло ли от пуска Коллайдера 2.7 часа или 14.7 часа, т.к. Y принимает значения только на отрезке от 0 до 12 часов.

Часть III.

Стоимость задачи 20 баллов.

Требуется решить одну из двух задач (9-А или 9-В) по выбору!

9-А. На даче у мистера А две входных двери. Сейчас у каждой двери стоит две пары ботинок. Перед каждой прогулкой он выбирает наугад одну из дверей для выхода из дома и надевает пару ботинок, стоящую у выбранной двери. Возвращаясь с прогулки мистер А случайным образом выбирает дверь, через которую он попадет в дом и снимает ботинки рядом с этой дверью. Сколько прогулок мистер А в среднем совершит, прежде чем обнаружит, что у выбранной им для выхода из дома двери не осталось ботинок?

Источник: American Mathematical Monthly, problem E3043, (1984, p.310; 1987, p.79)

9-Б. Если смотреть на корпус Ж здания Вышки с Дурасовского переулка, то видно 70 окон расположенны прямоугольником 7×10 (7 этажей, т.к. первый не видно, и 10 окон на каждом этаже). Допустим, что каждое из них освещено вечером независимо от других с вероятностью одна вторая. Назовем «уголком» комбинацию из 4-х окон, расположенных квадратом, в которой освещено ровно три окна (не важно, какие). Пусть X - число «уголков», возможно пересекающихся, видимых с Дурасовского переулка. Найдите $\mathbb{E}(X)$ и $\mathrm{Var}(X)$

Примечание — для наглядности: - это «уголки». X X X X X X X — в этой конфигурации три «уголка»; X X — а здесь — ни одного «уголка». X X X X

7.4. Контрольная работа №1, ??.11.2008, решения

- 1. a) $0.9 \cdot 0.9 \cdot 0.8$
 - 6) $2 \cdot 0.1 \cdot 0.9 \cdot 0.8 + 0.9 \cdot 0.9 \cdot 1 = 0.9(0.16 + 0.9) = 0.9 \cdot 1.06 = 0.954$
 - B) 0.9 + 0.9 + 0.8 = 2.6
- 2. а) 9 (если взять 9 с вероятностью один)
 - б) 4 (если взять 5 и 9 равновероятно)
- 3. a) $0.7 + 0.3 \cdot 0.5 = 0.85$
 - б) $\frac{0.7}{0.85} = \frac{14}{17} \approx 0.82$
- 4. Нормальная случайная величина имеют функцию плотности $p(t)=c\cdot \exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$ Отсюда: $\mathbb{E}(X)=1$, $\mathbb{E}(Y)=0$, $\mathrm{Var}(X)=16$, $\mathrm{Var}(Y)=9$
- 5. $\mathbb{E}(X) = 0.5$, $\mathbb{E}(Y) = 1.5$, Var(X) = 1.65, Cov(X, Y) = 0.05, Cov(2X + 3, -3Y + 1) = -0.3
- 6. 0.2, $\frac{1}{e^4}$, $\frac{1}{e^4}$, 5
- 7. Любое разумное понимание «полугодовой» принимается. Т.е. подходят 182, 183, и если посчитаны только рабочие дни, и если взят пример марсианского теннисиста с указанием кол-ва дней в марсианском году и пр.

И биномиальные и пуассоновские ответы принимаются.

Для 182:

- a) $182 \cdot 0.00037 = 0.06734$
- б) $(1 0.00037)^1 82 \approx \exp(-0.06734)$
- в) $C_{182}^2 p^2 (1-p)^{180} \approx 0.5 \exp(-0.06734) 0.06734^2$
- 8. a) $\mathbb{P}(Y < 2) = 1/4$
 - б) два отрезка: на высоте 2/16 (от 0 до 4) и 1/16 (от 4 до 12)
 - B) $\mathbb{E}(Y) = 5$, Var(Y) = 12.(3)
 - r) Cov(X, Y) = 3.(3)
- 9-А. Составляется граф по которому «блуждает» мистер А. Пишутся рекуррентные соотношения. Получается 12 или 13 в зависимости от того, считать ли прогулку «босиком» или нет. Оба ответа считать правильными.

9-Б. Х раскладывается в сумму индикаторов.

Имеется $6 \cdot 9$ позиций для потенциального «уголка».

$$\mathbb{E}(X) = 6 \cdot 9 \cdot 1/4 = 13.5$$

Имеется $6 \cdot 5 + 5 \cdot 9$ «боковых» пересечений потенциальных позиций.

Имеется $5 \cdot 8$ «угловых» пересечений потенциальных позиций.

Только они и могут дать ковариацию.

$$Var(X) = 54 \cdot 1/4 \cdot 3/4 + 2 \cdot (6 \cdot 8 + 5 \cdot 9) \cdot 3/32 + 2 \cdot 5 \cdot 8 \cdot 5/64 = 541/16$$

7.5. Контрольная работа №2, демо-версия, 26.12.2008

Часть I.

Обведите верный ответ:

- 1. Сумма двух нормальных независимых случайных величин нормальна. Да. Нет.
- 2. Нормальная случайная величина может принимать отрицательные значения. Да. Нет.
- 3. Пуассоновская случайная величина является непрерывной. Да. Нет.
- 4. Дисперсия суммы зависимых величин всегда не меньше суммы дисперсий. Да. Нет.
- 5. Теорема Муавра-Лапласа является частным случаем центральной предельной. Да. Нет.
- 6. Пусть X длина наугад выловленного удава в сантиметрах, а Y в дециметрах. Коэффициент корреляции между этими величинами равен $\frac{1}{10}$. Да. Нет.
- 7. Математическое ожидание выборочного среднего не зависит от объема выборки, если X_i одинаково распределены. Да. Нет.
- 8. Зная закон распределения X и закон распределения Y можно восстановить совместный закон распределения пары (X,Y). Да. Нет.
- 9. Если X непрерывная случайная величиа, $\mathbb{E}\left(X\right)=6$ и $\mathrm{Var}\left(X\right)=9$, то $Y=\frac{X-6}{3}\sim\mathcal{N}\left(0;1\right)$. Ла. Нет.
- 10. Если ты отвечать на первые 10 вопросов этого теста наугад, то число правильных ответов случайная величина, имеющая биномиальное распределение. Да. Нет.

Обозначения:

 $\mathbb{E}(X)$ — математическое ожидание

Var(X) — дисперсия

Часть II.

Стоимость задач 10 баллов.

1. Совместная функция плотности имеет вид

$$p_{X,Y}\left(x,y\right)=\begin{cases} x+y, & \text{ если } x\in\left[0;1\right],\,y\in\left[0;1\right]\\ 0, & \text{ иначе} \end{cases}$$

Найдите $\mathbb{P}\left(Y>2X\right)$, $\mathbb{E}\left(X\right)$. Являются ли величины X и Y независимыми?

2. Случайный вектор
$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$
 имеет нормальное распределение с математическим ожиданием $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$ и ковариационной матрицей $\begin{pmatrix} 9 & -4.5 \\ -4.5 & 25 \end{pmatrix}$.

- а) Найдите $\mathbb{P}(X_1 + 3X_2 > 20)$.
- б) Какое условное распределение имеет X_1 при условии, что $X_2 = 0$?
- 3. Компания заключила 1000 однотипных договоров. Выплаты по каждому договору возникают независимо друг от друга с вероятностью 0.1. В случае наступления выплат их размер распределен экспоненциально со средним значением 1000 рублей.
 - а) Найдите дисперсию и среднее значение размера выплат по одному контракту.
 - б) Какова вероятность того, что компании потребуется более 110 тысяч рублей на выплаты по всем контрактам?
- 4. Определите, в каких границах может лежать $\mathbb{P}\left(\frac{(X-30)^2}{\mathrm{Var}(X)}<3\right)$, если известно, что $\mathbb{E}(X)=30$. Можно ли уточнить ответ, если дополнительно известно, что X экспоненциально распределена.
- 5. Предположим, что величины $X_1, X_2, ..., X_{13}$ независимы и распределены нормально $\mathcal{N}(\mu, \sigma^2)$. Найдите число a, если известно, что $\mathbb{P}(\sum (X_i \bar{X})^2 > a\sigma^2) = 0.1$.
- 6. Предположим, что оценки студентов на экзамене распределены равномерно на отрезке [0;a]. Вася хочет оценить вероятность того, что отдельно взятый студент наберет больше 30 баллов. Васе известно, что экзамен сдавали 100 человек и 15 из них набрали более 60 баллов. Помогите Васе построить несмещенную оценку!

Коля напрямую узнал у наугад выбранных 50 студентов, получили ли они больше 30 баллов. Какая оценка вероятности имеет меньшую дисперсию, Васина или Колина?

- 7. К продавцу мороженого подходят покупатели: мамы, папы и дети. Предположим, что это независимые Пуассоновские потоки с интесивностями 12, 10 и 16 чел/час.
 - а) Какова вероятность того, что за час будет всего 30 покупателей?
 - б) Какова вероятность того, что подошло одинаковое количество мам, пап детей, если за некий промежуток времени подошло ровно 30 покупателей?
- 8. Известно, что $X \sim \mathcal{N}(\mu, \sigma^2)$ и $Y = \exp(X)$. В таком случае говорят, что Y имеет лог-нормальное распределение. Найдите $\mathbb{E}(Y)$.

Часть III.

Стоимость задачи 20 баллов.

Требуется решить одну из двух 9-х задач по выбору!

9-A. There are two unfair coins. One coin has 0.7 probability head-up; the other has 0.3 probability head-up. To begin with, you have no information on which is which. Now, you will toss the coin 10 times. Each time, if the coin is head-up, you will receive \$1; otherwise you will receive \$0. You can select one of the two coins before each toss. What is your best strategy to earn more money?

9-Б. Дед Мороз развешивает новогодние гирлянды на аллее. Вдоль аллеи высажено 2008 елок. Каждой гирляндой Дед Мороз соединяет две елки (не обязательно соседние). В результате Дед Мороз повесил 1004 гирлянды и все елки оказались украшенными. Какова вероятность того, что существует хотя бы одна гирлянда, пересекающаяся с каждой из других? Например, гирлянда 5-123 (гирлянда соединяющая 5-ую и 123-ю елки) пересекает гирлянду 37-78 и гирлянду 110-318. Подсказка: Думайте!

7.6. Контрольная работа №2, демо-версия, 26.12.2008, решения

1.
$$\mathbb{P}(Y > 2X) = \int_0^{0.5} \int_{2x}^1 (x+y) dy dx = 5/24$$

 $f_X(x) = \int_0^1 (x+y) dy = x + \frac{1}{2} \Rightarrow \mathbb{E}(X) = \int_0^1 \left(x + \frac{1}{2}\right) x dx = \frac{7}{12}$

2. a)
$$\mathbb{E}(X_1 + 3X_2) = -1$$
, $\operatorname{Var}(X_1 + 3X_2) = 207$
 $\mathbb{P}(X_1 + 3X_2 > 20) = \mathbb{P}\left(\frac{X_1 + 3X_2 + 1}{\sqrt{207}} > \frac{20 + 1}{\sqrt{207}}\right) = \mathbb{P}(\mathcal{N}(0, 1) > 1.46) \approx 0.07$

6)
$$\mathbb{E}(X_1|X_2=0)=2-4.5\cdot\frac{1}{25}(0+1)=1.82, \text{Var}(X_1|X_2=0)=9-(-4.5)\cdot\frac{1}{25}\cdot(-4.5)=8.19$$
 $X_1|X_2=0\sim\mathcal{N}(1.82,8.19)$

- 3. a) $\mathbb{E}(X) = 1000$, $Var(X) = 10^6$
 - б) X случайная величина, сумма выплат по одному контракту, $X\sim \exp(0.001)$ $\mathbb{P}(1000X>110000)=\mathbb{P}(X>100)=\int_{110}^{+\infty}0.001\exp(-0.001x)dx\approx 0.9$

4.
$$\mathbb{P}\left(\frac{(X-30)^2}{\text{Var}(X)} < 3\right) = \mathbb{P}(|X-30| < \sqrt{3 \, \text{Var}(X)}) \geqslant 1 - \frac{\text{Var}(X)}{\sqrt{3 \, \text{Var}(X)}} = \frac{2}{3}$$

$$\mathbb{P}(|X-30| < \sqrt{3 \, \text{Var}(X)}) = \mathbb{P}(X < \sqrt{3 \cdot 900} + 30) = \int_0^{82} \frac{1}{30} \exp\left(-\frac{1}{30}x\right) dx \approx 0.94$$

- 5. $a \approx 1.28$
- 9-Б. Подразумевая под точками концы гирлянды, докажем следующее утверждение.

Бросим $2n\geqslant 4$ точек X_1,X_2,\ldots,X_{2n} случайным образом на отрезок [0;1]. Пусть для $1\leqslant i\leqslant n$ J_i — это отрезок с концами X_{2i-1} и X_{2i} . Тогда вероятность того, что найдётся такой отрезок J_i , который пересекает все другие отрезки, равна 2/3 и не зависит от n.

Доказательство. Бросим 2n+1 точек на окружность, тогда 2n точек образуют пары, а оставшуюся обозначим X и будем считать её и началом, и концом отрезка. Каждому получившемуся отрезку присвоим уникальное имя. Далее, будем двигаться от точки X по часовой стрелке до тех пор, пока не встретим одно и то же имя дважды, например «а». После этого пойдём в обратную сторону, и будем идти, пока не встретим какое-нибудь другое имя дважды, например, «б». Теперь посмотрим на получившуюся последовательность между «б» и «а» на концах пути, читая её по часовой стрелке от «б» до «а». Нас интересует взаимное расположение X, второй «а» и второй «б». Зная, что «а» стоит после X, выпишем все возможные случаи, где может стоять «б»:

- a) перед X
- б) между X и «а»
- в) после «а»

Покажем, что во втором и третьем случае отрезок «б» пересекает все остальные, а в первом такого отрезка вообще нет. Попутно заметим, что появление каждого и случаев равновероятно.

Действительно, если «б» стоит после X, и отрезок соответствующий этому имени, не пересекает какой-нибудь другой отрезок «в», то последовательность выглядела бы как «бввXб» или

«бXввб», что противоречит описанному построению. Если «б» стоит перед X и отрезок «в» пересекает оба отрезка «а» и «б», то мы снова приходим в противоречие с построением. В итоге, получаем, что искомая вероятность равна 2/3.

7.7. Контрольная работа №2, 26.12.2008

Часть І.

Обведите верный ответ:

- 1. Если пара величин (X,Y) имеет совместное нормальное распределение, то каждая случайная величина по отдельности также имеет нормальное распределение. Верно.
- 2. Неравенство Чебышева неприменимо к дискретным случайным величинам. Нет.
- 3. Нормальная случайная величины является дискретной. Нет.
- 4. Дисперсия любой несмещенной оценки не превосходит дисперсию любой смещенной. Нет.
- 5. При большом количестве степеней свободы хи-квадрат распределение похоже на нормальное. Верно.
- 6. Сумма ста независимых равномерных на [0;1] величин является равномерной случайной величиной на [0;100]. Нет.
- 7. Ковариация всегда больше корреляции по модулю. Нет.
- 8. Если величины X и Y одинаково распределены и $\mathbb{P}(X=Y)=0.9999$, то корреляция X и Y близка к единице. Нет.

Комментарий: корреляция показывает насколько согласованно величины изменяются. Например, взяв X с законом распределения:

\overline{x}	1/2	1	2
$\overline{\mathbb{P}(X=x)}$	0.00005	0.9999	0.00005

и Y = 1/X получим отрицательную корреляцию между X и Y.

- 9. Нормально распределенная величина X и биномиально распределенная величина Y могут быть зависимы. Запросто.
- 10. Дисперсия суммы положительных величин всегда больше суммы дисперсий. Нет.
- 11. Раз уж выпал свежий снег, то вместо контрольной можно было бы покататься на лыжах! Неплохо бы.

Часть II.

Стоимость задач 10 баллов.

1. Совместная функция плотности имеет вид

$$p_{X,Y}\left(x,y
ight) = egin{cases} rac{3}{2}x + rac{1}{2}y, & ext{ если } x \in \left[0;1
ight], \ y \in \left[0;1
ight] \\ 0, & ext{ иначе} \end{cases}$$

- а) Найдите $\mathbb{P}(Y > X)$, $\mathbb{E}(Y)$
- б) Являются ли величины X и Y независимыми?
- 2. Пусть X_i независимы и одинаково распределены, причем $\mathbb{E}(X_i)=0$, $\mathrm{Var}(X_i)=1$ и $\mathrm{Var}(X_i^2)=2$
 - а) С помощью неравенства Чебышева оцените $\mathbb{P}(|X_1+X_2+...+X_7|>14)$ и $\mathbb{P}(X_1^2+X_2^2+...+X_7^2>14)$
 - б) Найдите эти вероятности, если дополнительно известно, что X_i нормально распределены.
- 3. Случайный вектор $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ имеет нормальное распределение с математическим ожиданием $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ и ковариационной матрицей $\begin{pmatrix} 9 & -5 \\ -5 & 25 \end{pmatrix}$.
 - а) Найдите $\mathbb{P}(X_1 + 2X_2 > 20)$.
 - б) Какое условное распределение имеет X_1 при условии, что $X_2=0$?
- 4. Случайные величины X и Y независимы и равномерно распределены: X на отрезке [0;a], а Y на отрезке [0;3a]. Вася знает значение XY и хочет оценить неизвестный параметр $\beta = \mathbb{E}(X^2)$. Петя знает значение Y^2 и хочет оценить тот же параметр β
 - а) Какую несмещенную оценку может построить Вася?
 - б) Какую несмещенную оценку может построить Петя?
 - в) У какой оценки дисперсия меньше?
- 5. Вася играет в компьютерную игру, где нужно убить 80 однотипных монстров, чтобы пройти уровень. Количество патронов, которое Вася тратит на одного монстра имеет Пуассоновское распределение со средним значение 2 патрона.
 - а) Какова вероятность того, что на трех первых монстров придется потратить 6 патронов?
 - б) Какова вероятность того, на всех монстров уровня придется потратить более 200 патронов?
- 6. Допустим, что срок службы пылесоса имеет экспоненциальное распределение. В среднем один пылесос бесперебойно работает 10 лет. Завод предоставляет гарантию 7 лет на свои изделия. Предположим для простоты, что все потребители соблюдают условия гарантии.
 - а) Какой процент потребителей в среднем обращается за гарантийным ремонтом?
 - б) Какова вероятность того, что из 1000 потребителей за гарантийным ремонтом обратится более 55% покупателей?

Подсказка: $ln(2) \approx 0.7$

7. Вася и Петя решают тест из 10 вопросов по теории вероятностей (на каждый вопрос есть два варианта ответа). Петя кое-что знает по первым пяти вопросам, поэтому вероятность правильного ответа на каждый равняется 0.9 независимо от других. Остальные пять вопросов Пете непонятны и он отвечает на них наугад. Вася списывает у Пети вопросы с 3-го по 7-ой, а остальные отвечает наугад. Пусть X - число правильных ответов Пети, а Y - число правильных ответов Васи. Найдите Var(X), Var(Y), Var(X-Y).

54

8. Стоимость выборочного исследования генеральной совокупности, состоящей из 3 страт, определяет по формуле: $TC = n_1 \cdot c_1 + n_2 \cdot c_2 + n_3 \cdot c_3$, Где c_i — стоимость наблюдения из i-ой страты, n_i — число наблюдений в выборке, относящихся к страте i. Предполагая, что стоимость исследования TC фиксирована и равна 7000, определите значения n_i , при которых дисперсия соответствующего выборочного стратифицированного среднего достигает наименьшего значения, если:

Страта	1	2	3
Среднее значение	40	80	150
Стандартная ошибка	10	20	60
Bec	20%	20%	60%
Цена наблюдения	4	16	25

Примечание: Округлите полученные значения до ближайших целых.

Часть III.

Стоимость задачи 20 баллов.

Требуется решить одну из двух 9-х задач по выбору!

9-А. Усама бен Ладен хочет сделать запас в 1000 тротиловых шашек в пещере А. Тротиловые шашки производят на секретном заводе бесплатно. При транспортировке от завода до пещеры каждая шашка взрывается с небольшой вероятностью р. Если взрывается одна шашка, то взрываются и все остальные, перевозимые вместе с ней. Сам Усама при взрыве всегда чудом остается жив. Какими партиями нужно переносить шашки, чтобы минимизировать среднее число переносок?

[В стартовой пещере бесконечный запас шашек].

9-Б. У Пети нет денег, но он может сыграть 100 игр следующего типа.

В каждой игре Петя может по своему желанию:

- либо без риска получить 1 рубль,
- либо назвать натуральное число n>1 и выиграть n рублей с вероятностью $\frac{2}{n+1}$ или проиграть 1 рубль с вероятностью $\frac{n-1}{n+1}$.

Чтобы выбирать вторую альтернативу Петя должен иметь как минимум рубль. Пете позарез нужно 200 рублей. Как выглядит Петина оптимальная стратегия? *Подсказка*: Думайте!

7.8. Контрольная работа №2, 26.12.2008, решения

- 1. a) $\int_0^1 \int_x^1 p(x,y) dy dx = 5/12$ $\int_0^1 \int_0^1 y \cdot p(x,y) dy dx = 13/24$
 - б) Нет, т.к. совместная функция плотности не разлагается в произведение индивидуальных

2. a)
$$\mathbb{P}(|X_1 + X_2 + ... + X_7| > 14) \leqslant \frac{7}{14^2} = \frac{1}{28}$$
 $\mathbb{P}(X_1^2 + ... + X_7^2 > 14) = \mathbb{P}(X_1^2 + ... + X_7^2 - 7 > 7) = \mathbb{P}(|X_1^2 + ... + X_7^2 - 7| > 7) \leqslant \frac{2 \cdot 7}{7^2} = \frac{2}{7}$

6)
$$\mathbb{P}(|X_1 + \dots + X_7| > 14) = \mathbb{P}(|N(0;1)| > 14/\sqrt{7}) = \mathbb{P}(|N(0;1)| > 5.29) \approx 0$$

 $\mathbb{P}(X_1^2 + X_2^2 + \dots + X_7^2 > 14) \approx 0.05$

3. a)
$$X_1 + 2X_2 \sim \mathcal{N}(5; 89), \mathbb{P}(Z > 1.59) = 0.056$$

$$Var(X_1 + 2X_2) = Var(X_1) + 4Var(X_2) + 4Cov(X_1, X_2) = 89$$

б) Нормальное, причем $\mathcal{N}(1.4;8)$, корреляция равна -1/3

4.
$$\beta = \frac{1}{3}a^2$$

$$\mathbb{E}(XY) = \frac{3}{4}a^2$$

$$\mathbb{E}(Y^2) = 3a^2$$

$$\hat{\beta}_1 = \frac{4}{9}XY$$

$$\hat{\beta}_2 = \frac{1}{9}Y^2$$

Так как обе оценки несмещенные вместо сравнения дисперсий можно сравнить квадраты ожиданий

$$\frac{16}{81}\mathbb{E}(X^2Y^2)$$
 vs $\frac{1}{81}\mathbb{E}(Y^4)$

. . .

$$16a^4 \text{ vs } \frac{81}{5}a^4$$

Дисперсия васиной оценки меньше.

- 5. Заметим, что Пуассоновская величина с положительной вероятностью принимает значение ноль, значит бывает, что монстры дохнут от одного устрашающего взгляда Васи :)
 - а) Сумма трех независимых пуассоновских величин пуассоновская с параметром: $3\lambda=6.$

$$\mathbb{P}(X=6) = e^{-6\frac{6^6}{6!}} \approx 0.16$$

Ответ с факториалам считается полным.

б) Сумма 80 величин имеет пуассоновское распределение, но при большом количестве слагаемых пуассоновское мало отличается от нормального.

$$\mathbb{E}(S) = 160, \text{Var}(S) = 160$$

$$\mathbb{P}(S > 200) = \mathbb{P}\left(\frac{S - 160}{\sqrt{160}} > 3.16\right) \approx 0$$

- 6. a) $\lambda = 1/10$, $\mathbb{P}(X < 7) = 0.5$
 - б) $\mathbb{P}(\bar{X} > 0.55) = \mathbb{P}(N(0;1) > \frac{0.05\sqrt{1000}}{0.5}) = \mathbb{P}(N(0;1) > 3.16) \approx 0$

7.
$$Var(X) = 5 \cdot 0.1 \cdot 0.9 + 5 \cdot 0.5 \cdot 0.5 = 1.7$$

$$Var(Y) = 3 \cdot 0.1 \cdot 0.9 + 7 \cdot 0.5 \cdot 0.5 = 2.02$$

Пусть Z — число правильных ответов на вопросы с 3-го по 7-ой (у Пети и у Васи)

$$\begin{aligned} \operatorname{Cov}(X,Y) &= \operatorname{Cov}(Z + (X-Z), Z + (Y-Z)) = \operatorname{Var}(Z) + \\ &+ \operatorname{Cov}(X-Z,Z) + \operatorname{Cov}(Z,Y-Z) + \operatorname{Cov}(X-Z,Y-Z) = \operatorname{Var}(Z) \end{aligned}$$

Y-Z — это сколько правильных ответов дал лично Вася и оно не зависит от числа Z правильных списанных ответов, значит $\mathrm{Cov}(Y-Z,Z)=0$

Аналогично все остальные ковариации равны нулю.

$$Var(Z) = 3 \cdot 0.1 \cdot 0.9 + 2 \cdot 0.5 \cdot 0.5 = 0.77$$

8. Любые совпадения с курсом экономической и социальный статистики случайны и непреднамеренн Чтобы оценка среднего по всем трем стратам была несмещена, она должны строиться по формуле:

$$ar{X}=w_1ar{X}_1+w_2ar{X}_2+w_3ar{X}_3$$
 (здесь $ar{X}_i$ — среднее арифметическое по i -ой страте)

Поэтому $\mathrm{Var}(\bar{X})$ (минимизируемая функция) равняется:

$$\operatorname{Var}(\bar{X}) = \sum \frac{w_i^2 \sigma_i^2}{n_i}$$

Принцип кота Матроскина (ака бюджетное ограничение): $4n_1 + 16n_2 + 25n_3 = 7000$

Решаем Лагранжем и получаем ответ: 35, 35, 252.

Некоторые маньяки наизусть знают:

$$n_i = \frac{C}{\sum w_i \cdot \sigma_i \cdot \sqrt{c_i}} \frac{w_i \cdot \sigma_i}{\sqrt{c_i}}$$

- 9-А. Замечание: неудачные переноски считаются, так как иначе решение тривиально пробовать нести по 1000 шашек.
 - а) Так как p небольшая будем считать, что $\ln(1-p) \approx -p$. Уже страшно, да?
 - б) Допустим, что s(n) оптимальная стратегия, указывающая, сколько нужно брать сейчас шашек, если осталось перенести n шашек. Возможно, что s зависит от n. Обозначим e(n) ожидаемое количество переносов при использовании оптимальной стратегии.
 - в) Начинаем:

$$s(1) = 1, e(1) = 1/(1-p)$$

$$s(n) = \arg\min_{a} (1/(1-p)^{a} + e(n-a)), e(n) = \min_{a} (1/(1-p)^{a} + e(n-a))$$

Замечаем, что поначалу (где-то до 1/p шашек) все идет хорошо, а затем плохо...

- г) Ищем упрощенное решение вида s(n)=s. Ожидаемое число переносок равно $\frac{1000}{s}\frac{1}{(1-p)^s}$ Минимизируем по s. Получаем: $s=-1/\ln(1-p)\approx 1/p$.
- д) Для тех кому интересно, точный график (10000 шашек, p=0.01):

[Здесь оставлено место для картины Усама-Бен-Ладен будь он не ладен таскает шашки.]

ps. В оригинале мы сканировали ксерокопию учебника Микоша. Сканер был очень умный: в него нужно положить стопку листов, а на выходе он выдавал готовый pdf файл. Проблема была в том, что он иногда жевал бумагу. В этом случае, он обрывал сканирование и нужно было начинать все заново. Возник вопрос, какого размера должна быть партия, чтобы минимизиров число подходов к ксероксу.

9-Б. а) Если сейчас 0 долларов, то брать 1 доллар.

Назовем ситуацию, «шоколадной» если можно выиграть без риска. То есть если игр осталось больше, чем недостающее количество денег.

- б) Если игрок не в шоколаде, то оптимальным будет рисковать на первом ходе. Почему? Получение одного доллара можно перенести на попозже.
- в) В любой оптимальной стратегии достаточно одного успеха для выигрыша.

Почему? Допустим стратегии необходимо два успеха в двух рискованных играх. Заменим их на одну рискованную игру. Получим большую вероятность.

Оптимальная стратегия:

Если сейчас 0 долларов, то брать доллар.

Пусть d — дефицит в долларах, а k — число оставшихся попыток.

Если $d \leq k$, то брать по доллару.

Если d>k, то с риском попробовать захапнуть 1+d-k долларов.

 $^{^{1}}$ «Чтобы продать что-нибудь ненужное, нужно сначала купить что нибудь ненужное. А у нас денег нет!»

7.9. Контрольная работа №3, 02.03.2009

Часть І.

Обведите верный ответ:

- 1. Если $X \sim \mathcal{N}(0; 1)$, то $X^2 \sim \chi_1^2$. Верно. Нет.
- 2. Если $X \sim t_n$ и $Y \sim t_m$, то $\frac{X/n}{Y/m} \sim F_{n,m}$. Верно. Нет.
- 3. Если основная гипотеза отвергается при 1% уровне значимости, то она будет отвергаться и при 5% уровне значимости. Верно. Нет.
- 4. Неравенство Рао-Крамера справедливо только для оценок максимального правдоподобия. Верно. Нет.
- 5. Оценки метода максимального правдоподобия всегда несмещенные. Верно. Нет.
- 6. Ошибка второго рода происходит при отвержении основной гипотезы, когда она верна. Верно. Нет.
- 7. Из несмещенности оценки следует её состоятельность. Верно. Нет.
- 8. Длина доверительного интервала увеличивается при увеличении уровня доверия (доверительной вероятности) Верно. Нет.
- 9. Выборочное среднее независимых одинаково распределенных случайных величин с конечной дисперсией имеет асимптотически нормальное распределение. Верно. Нет.
- 10. Теорема Муавра-Лапласа является частным случаем ЦПТ. Верно. Нет.
- 11. Оценка, получаемая за эту контрольную, является несмещенной. Верно. Нет.

Любой ответ на 11 считается правильным.

Часть II-A.

Стоимость задач 10 баллов. Теория вероятностей. Нужно решить любые <u>3 (три)</u> задачи из части II-A.

- 1. При контроле правдивости показаний подозреваемого на «детекторе лжи» вероятность признать ложью ответ, не соответствующий действительности, равна 0.99, вероятность ошибочно признать ложью правдивый ответ равна 0.01. Известно, что ответы, не соответствующие действительности, составляют 1% всех ответов подозреваемого. Какова вероятность того, что ответ, признанный ложью, и в самом деле не соответствует действительности?
- 2. Предположим, что вероятность того, что среднегодовой доход наугад выбранного жителя некоторого города не превосходит уровень t, равна $\mathbb{P}(I\leqslant t)=a+be^{-t/300}$ при $t\geqslant 0$. Найдите:
 - a) Числа a и b
 - б) Средний доход жителей этого города (математическое ожидание, моду и медиану распределен Какую из данных характеристик следует использовать для рапорта о высоком уровне жизни?
- 3. Доходности акций двух компаний являются случайными величинами X и Y с одинаковым математическим ожиданием и ковариационной матрицей $\begin{pmatrix} 4 & -2 \\ -2 & 9 \end{pmatrix}$

- а) Найдите Corr(X, Y)
- б) В какой пропорции нужно приобрести акции этих двух компаний, чтобы дисперсия доходности получившегося портфеля была наименьшей?

Подсказка: Если R - доходность портфеля, то $R=\alpha X+(1-\alpha)Y$

- в) Можно ли утверждать, что величины X + Y и 7X 2Y независимы?
- 4. Волшебный Сундук

Если присесть на Волшебный Сундук, то сумма денег, лежащих в нем, увеличится в два раза. Изначально в Сундуке был один рубль. Предположим, что «посадки» на Сундук - Пуассоновский процесс с интенсивностью λ . Каково ожидаемое количество денег в Сундуке к моменту времени t?

- 5. На окружности единичной длины случайным образом равномерно и независимо друг от друга выбирают две дуги: длины 0.3 и длины 0.4.
 - а) Найдите функцию распределения длины пересечения этих отрезков.
 - б) Найдите среднюю длину пересечения.

Часть II-В.

Стоимость задач 10 баллов. Построение и свойства оценок. Нужно решить любые <u>2 (две)</u> задачи из части II-B.

- 6. Асимметричная монета подбрасывается n раз. При этом X раз выпал «орел».
 - а) Методом максимального правдоподобия найдите оценку вероятности «орла»
 - б) Проверьте является ли полученная оценка состоятельной, несмещенной и эффективной.
 - в) Считая, что n велико, укажите, в каких пределах с вероятностью 0,95 должно находиться значение оценки, если монета симметрична.
- 7. Вася попадает по мишени с вероятностью p при каждом выстреле независимо от других. Он стрелял до 3-х промахов (не обязательно подряд). При этом у него получилось X попаданий.
 - а) Постройте оценку p с помощью метода максимального правдоподобия.
 - б) Является ли полученная оценка несмещенной?
- 8. Известно, что величины $X_1,...,X_n$ независимы и равномерны на [0;b]. Пусть Y это минимум этих n величин. Вася знает n и Y.
 - а) Найдите оценку b методом моментов.
 - б) Является ли полученная оценка несмещенной?

Часть II-C.

Стоимость задач 10 баллов. Проверка гипотез и доверительные интервалы. Нужно решить любые <u>3 (три)</u> задачи из части II-C.

9. Вес выпускаемого заводом кирпича распределен по нормальному закону. По выборке из 16 штук средний вес кирпича составил 2.9 кг, выборочное стандартное отклонение 0.3. Постройте 80% доверительные интервалы для истинного значения веса кирпича и стандартного отклонения.

Примечание: можно строить односторонний интервал для стандартного отклонения, если таблицы не хватает, чтобы построить двусторонний.

- 10. В городе N за год родились 520 мальчиков и 500 девочек. Считая вероятность рождения мальчика неизменной:
 - а) Проверить гипотезу о том, что мальчики и девочки рождаются одинаково чаще против гипотезы о том, что мальчиков рождается больше, чем девочек
 - б) Вычислить р-значение (минимальный уровень значимости, при котором основная гипотеза отвергается)
 - в) Каким должен быть размер выборки, чтобы с вероятностью 0.95 можно было утверждать, что выборочная доля отличается от теоретической не более, чем на 0.02?
- 11. Проверьте гипотезу о независимости пола респондента и предпочитаемого им сока.

	Апельсиновый	Томатный	Вишнёвый
Мужчины	70	40	25
Женщины	75	60	35

- 12. Даны независимые выборки доходов выпускников двух ведущих экономических вузов A и B, по 50 выпускников каждого вуза: $\bar{X}_A=650,\,\bar{X}_B=690,\,\hat{\sigma}_A=50,\,\hat{\sigma}_B=70.$ Предполагая, что распределение доходов подчиняется нормальному закону, проверьте гипотезу об отсутствии преимуществ выпускников вуза B (уровень значимости 0.05).
- 13. Величины $X_1, X_2, ..., X_{100}$ независимы и распределены $\mathcal{N}(10, 16)$. Вася знает дисперсию, но не знает среднего. Поэтому он строит 60% доверительный интервал для истинного среднего значения. Какова вероятность того, что:
 - а) Доверительный интервал накрывает настоящее среднее?
 - б) Доверительный интервал накрывает число 9?

Часть III.

Стоимость задачи 20 баллов.

Нужно решить любую <u>1 (одну)</u> задачу из части III.

- 14-А. Набранную книгу независимо друг от друга вычитывают два корректора. Первый корректор обнаружил m_1 опечаток, второй заметил m_2 опечаток. При этом m опечаток оказались обнаруженнь и первым, и вторым корректорами.
 - а) Постройте любым методом состоятельную оценку для общего числа опечаток (замеченных и незамеченных).
 - б) Является ли построенная оценка несмещенной?
- 14-В. Вася хочет купить чудо-швабру! Магазинов, где продается чудо-швабра, бесконечно много. Любое посещение магазина связано с издержками равными c>0. Цена чудо-швабры в каждом магазине имеет равномерное распределение на отрезке [0;M]. Цены в магазинах не меняются, то есть при желании Вася может вернуться в уже посещенный им магазин для совершения покупки.
 - а) Как выглядит оптимальная стратегия Васи? (Вася нейтрален к риску).
 - б) Каковы ожидаемые Васины затраты при использовании оптимальной стратегии?
 - в) Сколько магазинов в среднем будет посещено?

Подсказка: Думайте!

8. 2009-2010

8.1. Контрольная работа №2, ??.12.2009

Часть I.

Обведите верный ответ:

- 1. Сумма двух нормальных независимых случайных величин нормальна. Да. Нет.
- 2. Нормальная случайная величина может принимать отрицательные значения. Да. Нет.
- 3. Пуассоновская случайная величина является непрерывной. Да. Нет.
- 4. Дисперсия суммы зависимых величин всегда не меньше суммы дисперсий. Да. Нет.
- 5. Теорема Муавра-Лапласа является частным случаем центральной предельной. Да. Нет.
- 6. Пусть X длина наугад выловленного удава в сантиметрах, а Y в дециметрах. Коэффициент корреляции между этими величинами равен 0,1. Да. Нет.
- 7. Для цепи Маркова невозвратное состояние это то, в которое невозможно вернуться. Да. Нет.
- 8. Последовательность независимых случайных величин является цепью Маркова. Да. Нет.
- 9. Зная закон распределения X и закон распределения Y можно восстановить совместный закон распределения пары (X,Y). Да. Нет.
- 10. Если отвечать на первые 10 вопросов этого теста наугад, то число правильных ответов случайная величина, имеющая биномиальное распределение. Да. Нет.
- 11. Если четыре причины возможного незачета устранены, то всегда найдется пятая. Да. Нет.
- 12. На дне глубокого сосуда
 Лежат спокойно эн шаров.
 Попеременно их оттуда
 Таскают двое дураков.
 Занятье это им приятно,
 Они таскают тэ минут,
 И каждый шар они обратно,
 Его исследовав, кладут.
 Ввиду занятия такого
 Как вероятность велика,
 Что был один глупей другого
 И что шаров там было ка?

вероятно Виктор Скитович, автор «Раскинулось поле по модулю пять»,

http://folklor.kulichki.net/texts/vektor.html

Часть II.

Стоимость задач 10 баллов.

1. В городе Туме проводят демографическое исследование семейных пар. Стандартное отклонение возраста мужа оказалось равным 5 годам, а стандартное отклонение возраста жены -4 годам. Найдите корреляцию возраста жены и возраста мужа, если стандартное отклонение разности возрастов оказалось равным 2 годам.

- 2. Случайныйе величины X и Y независимы и стандартно нормально распределены. Вычислите $\mathbb{P}(X<\sqrt{3})$ и $\mathbb{P}(X^2+Y^2<6)$
- 3. Про случайную величину X известно, что $\mathbb{E}(X)=16$ и $\mathrm{Var}(X)=12$.
 - а) С помощью неравенства Чебышева оцените в каких пределах лежит вероятность $\mathbb{P}(|X-16|>4)$
 - б) Найдите вероятность $\mathbb{P}(|X-16|>4)$, если известно, что X равномерна на [10;22]
 - в) Найдите вероятность $\mathbb{P}(|X-16|>4)$, если известно, что X нормально распределена
- 4. Случайный вектор (X;Y) имеет нормальное распределение с математическим ожиданием (-1;4) и ковариационной матрицей $\begin{pmatrix} 1 & -1/2 \\ -1/2 & 1 \end{pmatrix}$. Найдите $\mathbb{P}(2X+Y>1)$ и $\mathbb{P}(2X+Y>1 \mid Y=2)$
- 5. Каждый день цена акции равновероятно поднимается или опускается на один рубль. Сейчас акция стоит 1000 рублей. Введем случайную величину X_i , обозначающую изменение курса акции за i-ый день. Найдите $\mathbb{E}(X_i)$ и $\mathrm{Var}(X_i)$. С помощью центральной предельной теоремы найдите вероятность того, что через сто дней акция будет стоить больше 1010 рублей.
- 6. Дополнительная задача:

Вася и Петя подбрасывают несимметричную монету. Вероятность выпадения «орла» p=0.25. Если выпадает «орел», Вася отдает Пете 1 рубль, если «решка» — Петя отдает Васе 1 рубль. В начале игры у Васи — один рубль, у Пети — три рубля. Игра прекращается, как только у одного из игроков заканчиваются деньги.

- а) Описать множество возможных состояний (указать тип состояния) и найти матрицу переходов из состояния в состояние.
- б) Определить среднее время продолжительности игры
- в) Определить вероятность того, что игра закончится победой Васи.

8.2. Контрольная работа №2, ??.12.2009, решения

- 1. Из условия: $\mathrm{Var}(X)=5^2=25,\,\mathrm{Var}(Y)=4^2=16,\,\mathrm{Var}(X-Y)=2^2=4.$ Есть такое тождество, $\mathrm{Var}(X-Y)=\mathrm{Var}(X)+\mathrm{Var}(Y)-2\,\mathrm{Cov}(X,Y).$ Отсюда находим $\mathrm{Cov}(X,Y)=37/2$ и $\mathrm{Corr}(X,Y)=37/40.$
- 2. По таблице: $\mathbb{P}(X<\sqrt{3})=0.9582$ Заметим, что $X^2+Y^2\sim\chi_2^2$. По таблице находим искомую вероятность: $\mathbb{P}(X^2+Y^2<6)=0.95$
- 3. a) $\mathbb{P}(|X 16| > 4) \le 0.75$ 6) $\mathbb{P}(|X - 16| > 4) = 1 - \mathbb{P}(-4 < X - 16 < 4) = 1 - \mathbb{P}(12 < X < 20) = \frac{1}{3}$ B) $\mathbb{P}(|X - 16| > 4) = 1 - \mathbb{P}\left(\frac{-4}{\sqrt{12}} < \frac{X - 16}{\sqrt{12}} < \frac{4}{\sqrt{12}}\right) = 2\mathbb{P}\left(\mathcal{N}(0, 1) < \frac{4}{\sqrt{12}}\right) = 0.75$
- $$\begin{split} 4. \ \ \mathbb{E}(2X+Y) &= 2, \mathrm{Var}(2X+Y) = 3 \\ \mathbb{P}(2X+Y>1) &= 1 \mathbb{P}\left(\frac{2X+Y-2}{\sqrt{3}} < \frac{1-2}{\sqrt{3}}\right) = 1 \mathbb{P}\left(\mathcal{N}(0,1) < \frac{-1}{\sqrt{3}}\right) = 0.72 \\ \mathbb{P}(2X+Y>1 \mid Y=2) &= \mathbb{P}(2X>-1) = \mathbb{P}\left(\frac{X+1}{1} > \frac{-0.5+1}{1}\right) = 1 \mathbb{P}(\mathcal{N}(0,1) < -0.5) = 0.31 \end{split}$$
- 5. Если S финальная стоимость акции, то $S=1000+X_1+X_2+\ldots+X_{100}$. Тогда по ЦПТ $S\sim\mathcal{N}(1000,100)$ и $\mathbb{P}(S>1010)=\mathbb{P}(Z>1)$.

8.3. Контрольная работа №3?, ??.??.2010?

- 1. Имеются наблюдения -1.5, 2.6, 1.2, -2.1, 0.1, 0.9. Найдите выборочное среднее, выборочную дисперсию. Постройте эмпирическую функцию распределения.
- 2. Известно, что в урне всего n_t шаров. Часть этих шаров белые. Количество белых шаров, n_w , неизвестно. Мы извлекаем из урны n шаров без возвращения. Количество белых шаров в выборке, X, это случайная величина и $\nu = X/n$. Найдите $\mathbb{E}(\nu)$, $Var(\nu)$. Будет ли ν состоятельной оценкой неизвестной доли $p=n_w/n_t$ белых шаров в выборке? Будет ли оценка ν несмещенной? Дайте определение несмещенной оценки.
- 3. Стоимость выборочного исследования генеральной совокупности, состоящей из трёх страт определяется по формуле $TC=150n_1+40n_2+15n_3$, где n_i количество наблюдений в выборке, относящихся к i-ой страте. Стоимость исследования фиксирована. Цель исследования получить несмещенную оценку среднего по генеральной совокупности с наименьшей дисперсией. Сколько наблюдений нужно взять из каждой страты, если:

Страта	1	2	3
Стандартная ошибка	50	20	10
Bec	10%	30%	60%
Цена наблюдения	150	40	15

- 4. По выборке $X_1, X_2, ..., X_n$ найдите методом моментов оценку параметра θ равномерного распределения $U[0;\theta]$. Является ли она несмещенной? Является ли она состоятельной? Какая оценка эффективнее, оценка метода моментов или оценка $T=\frac{n+1}{n}\max\{X_1,\ldots,X_n\}$?
- 5. Неправильная монетка подбрасывается n раз. Количество выпавших орлов случайная величина X. Найдите оценку вероятности выпадения орла. Проверьте несмещенность, состоятельно и эффективность этой оценки.
- 6. «Насяльника» отправил Равшана и Джамшуда измерить ширину и длину земельного участка. Равшан и Джамшуд для надежности измеряют длину и ширину 100 раз. Равшан меряет длину, результат каждого измерения случайная величина $X_i = a + e_i$, где a истинная длина участка, а $e_i \sim \mathcal{N}(0,1)$ ошибка измерения. Джамшуд меряет ширину, результат каждого измерения случайная величина $Y_i = b + u_i$, где b истинная ширина участка, а $u_i \sim \mathcal{N}(0,1)$ ошибка измерения. Все ошибки независимы. Думая, что «насяльника» хочет измерить площадь участка, Равшан и Джамшуд каждый раз сообщают «насяльнику» только величину $S_i = X_i Y_i$.

Помогите «насяльнику» оценить параметры a и b по отдельности методом моментов. По выборке оказалось, что $\sum s_i = 3600$ сотен метров, $\sum s_i^2 = 162500$ квадратных сотен метров.

Немного решений:

6. Пусть $S_i = X_i Y_i$. Замечаем, что $\mathbb{E}(S_i) = \mathbb{E}(X_i) \mathbb{E}(Y_i) = ab$, $\mathbb{E}(S_i) = \mathbb{E}(X_i^2) \mathbb{E}(Y_i^2) = (a^2+1)(b^2+1)$. Отсюда получаем систему

$$\begin{cases} \hat{a}\hat{b} = \frac{\sum S_i}{n} \\ (\hat{a}^2 + 1)(\hat{b}^2 + 1) = \frac{\sum S_i^2}{n} \end{cases}$$

63

Для заданных чисел решением будет $\hat{a}=2$ и $\hat{b}=18$, или наоборот.

8.4. Контрольная работа №4, ??.??.2010

- 1. Сколько нужно бросить игральных костей, чтобы вероятность выпадения хотя бы одной шестерки была не меньше 0.9?
- 2. Снайпер попадает в «яблочко» с вероятностью 0.8, если он в предыдущий выстрел попал в «яблочко» и с вероятностью 0.7, если в предыдущий раз не попал в «яблочко». Вероятность попасть в «яблочко» при первом выстреле также 0.7. Снайпер стреляет 2 раза.
 - а) Определить вероятность попасть в «яблочко» при втором выстреле
 - б) Какова вероятность того, что снайпер попал в «яблочко» при первом выстреле, если известно, что он попал при втором.
- 3. Случайная величина X моделирует время, проходящее между двумя телефонными звонками в справочную службу. Известно, что X распределена экспоненциально со стандартным отклонение равным 11 минутам. Со времени последнего звонка прошло 5 минут. Найдите функцию распределения и математическое ожидание времени, оставшегося до следующего звонка.
- 4. Известно, что для двух случайных величин X и Y: $\mathbb{E}(X)=1$, $\mathbb{E}(Y)=2$, $\mathbb{E}(X^2)=2$, $\mathbb{E}(Y^2)=8$, $\mathbb{E}(XY)=1$.
 - а) Найдите ковариацию и коэффициент корреляции величин X и Y
 - б) Определить, зависимы ли величины X и Y
 - в) Вычислите дисперсию их суммы
- 5. Предположим, что время «жизни» X энергосберегающей лампы распределено по нормальному закону. По 10 наблюдениям среднее время «жизни» составило 1200 часов, а выборочное стандартное отклонение 120 часов.
 - а) Постройте двусторонний доверительный интервал для математического ожидания величины X с уровнем доверия 0.90.
 - б) Постройте двусторонний доверительный интервал для стандартного отклонения величины X с уровнем доверия 0.80.
 - в) Какова вероятность, что несмещенная оценка для дисперсии, рассчитанная по 20 наблюдениям отклонится от истинной дисперсии меньше, чем на 40%?
- 6. Учебная часть утверждает, что все три факультатива «Вязание крючком для экономистов», «Экономика вышивания крестиком» и «Статистические методы в макраме» одинаково популярны. В этом году на эти факультативы соответственно записалось 35, 31 и 40 человек. Правдоподобно ли заявление учебной части?
- 7. Имеются две конкурирующие гипотезы:
 - H_0 : Случайная величина X распределена равномерно на (0,100)
 - H_a : Случайная величина X распределена равномерно на (50,150)

Исследователь выбрал следующий критерий: если X < c, принимать гипотезу H_0 , иначе H_a .

- а) Дайте определение «ошибки первого рода», «ошибки второго рода», «мощности критерия».
- б) Постройте графики зависимости вероятностей ошибок первого и второго рода от c.
- в) Вычислите c и вероятность ошибки второго рода, если уровень значимости критерия равен 0.05.

8. Из 10 опрошенных студентов часть предпочитала готовиться по синему учебнику, а часть по зеленому. В таблице представлены их итоговые баллы.

Синий	76	45	57	65		
Зелёный	49	59	66	81	38	88

С помощью теста Манна-Уитни (Вилкоксона) проверьте гипотезу о том, что выбор учебника не меняет закона распределения оценки.

- 9. Случайная величина X, характеризующая срок службы элементов электронной аппаратуры, имеет распределение Релея: $F(x)=1-e^{-x^2/\theta}$ при $x\geqslant 0$. По случайной выборке $X_1,X_2,...,X_n$ найдите оценку максимального правдоподобия параметра θ .
- 10. По случайной выборке $X_1, X_2, ..., X_n$ из равномерного на интервале $[\theta; \theta+10]$ распределения методом моментов найдите оценку параметра θ . Дайте определение несмещенности и состоятельно оценки и определите, будет ли обладать этими свойствами найденная оценка.
- 11. При расчете страхового тарифа страховая компания предполагает, что вероятность наступления страхового случая 0.005. По итогам прошедшего года из 10000 случайно выбранных договоров страховых случаев наблюдалось 67.
 - а) Согласуются ли полученные данные с предположением страховой компании? (Альтернатива: вероятность страхового случая больше)
 - б) Определить минимальный уровень значимости, при котором основная гипотеза отвергается (p-value).

9. 2010-2011

9.1. Контрольная работа №1, ??.10.2010

Тест.

- 1. Если случайные события не могут произойти одновременно, то они независимы. Да. Нет.
- 2. Для любых случайных событий A,B,C верно что $\mathbb{P}(A\cup B\cup C)=\mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C)$. Да. Нет.
- 3. Функция плотности может быть периодической. Да. Нет.
- 4. Пусть F(x) функция распределения величины X. Тогда $\lim_{x\to\infty}F(x)=0$. Да. Нет.
- 5. Для любых величин выполняется условие $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$. Да. Нет.
- 6. Для любых величин выполняется условие Var(X + Y) = Var(X) + Var(Y). Да. Нет.
- 7. Из совместной функции распределения величин X и Y можно получить функцию распределения величины X+Y. Да. Нет.
- 8. Пусть случайная величина X длина удава в сантиметрах, а величина Y его же длина в метрах. Тогда $\mathrm{Corr}(X,Y)=100$. Да. Нет.
- 9. Если две случайные величины независимы, то их ковариация равна 0. Да. Нет.
- 10. Если ковариация случайных величин равна 0, то они независимы. Да. Нет.
- 11. Пусть функция плотности величины X имеет вид $f(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$. Тогда $\mathbb{E}(X)=0$. Да. Понятия не имею.

Задачи.

- 1. В жюри три человека, они должны одобрить или не одобрить конкурсанта. Два члена жюри независимо друг от друга одобряют конкурсанта с одинаковой вероятностью p. Третий член жюри для вынесения решения бросает правильную монету. Окончательное решение выносится большинством голосов. С какой вероятностью жюри одобрит конкурсанта? Что предпочтёт конкурсант: чтобы решение принимало данное жюри, или чтобы решение принимал один человек, одобряющий с вероятностью p?
- 2. Васю можно застать на лекции с вероятностью 0.9, если на эту лекцию пришла Маша, и с вероятностью 0.5, если Маши на лекции нет. Маша бывает в среднем на трех лекциях из четырех. Найдите вероятность застать Васю на случайно выбранной лекции. Какова вероятность, что на лекции присутствует Маша, если на лекции есть Вася?
- 3. Число изюминок в булочке распределено по Пуассону. Сколько в среднем должны содержать изюма булочки, чтобы вероятность того, что в булочке найдется хотя бы одна изюминка, была не меньше 0.99?
- 4. Правильный кубик подбрасывают до тех пор, пока накопленная сумма очков не достигнет 3 очков или больше. Пусть X число потребовавшихся подбрасываний кубика. Постройте функцию распределения величины X и найдите $\mathbb{E}(X)$ и $\mathrm{Var}(X)$.
- 5. Тест по теории вероятностей состоит из 10 вопросов, на каждый из которых предлагается 3 варианта ответа. Васе удается списать ответы на первые 5 вопросов у отличника Лёни, который никогда не ошибается, а на оставшиеся 5 он вынужден отвечать наугад. Оценка за тест, величина X число правильных ответов. Оценка «отлично» начинается с 8 баллов, «хорошо» с 6, «зачёт» с 4-х.
 - а) Найдите математическое ожидание и дисперсию величины X, вероятность того, что Вася получит «отлично»
 - б) Новый преподаватель предлагает усовершенствовать систему оценивания и вычитать бал за каждый неправильный ответ. Найти вероятность того, что Вася получит зачет по новой системе и ковариацию Васиных оценок в двух системах.
- 6. Закон распределения пары случайных величин X и Y и задан таблицей

	X = -1	X = 0	X = 2
$\overline{Y} = 1$	0.2	0.1	0.2
Y = 2	0.1	0.2	0.2

Найдите $\mathbb{E}(X)$, $\mathbb{E}(Y)$, $\mathrm{Var}(X)$, $\mathrm{Cov}(X,Y)$, $\mathrm{Cov}(2X+3,1-3Y)$

- 7. Пусть величины X_1 и X_2 независимы и равномерно распределены на интервалах [0;2] и [1;3] соответственно. Найдите
 - а) $\mathbb{E}(X_1)$, $\mathrm{Var}(X_1)$, медиану X_1
 - б) Совместную функцию распределения X_1 и X_2
 - в) Функцию распределения и функцию плотности величины $W = \max\{X_1, X_2\}$

9.2. Контрольная работа №1, ??.10.2010, решения

- 1. *p*, всё равно
- 2. $\mathbb{P}(A) = 0.8, \mathbb{P}(B|A) = 0.84$

3. $a \ge 2 \ln 10$

4.
$$\mathbb{E}(X) = 1.36$$
, $\operatorname{Var}(X) = 0.2$, $F(x) = \begin{cases} 0, & x < 1 \\ 2/3, & x \in [1; 2) \\ 35/36, & x \in [2; 3) \\ 1, & x \geqslant 3 \end{cases}$

5.
$$\operatorname{Var}(X) = 1.05$$
, $\mathbb{E}(X) = 6.5$, $P(A) = 0.3^5$; $Y = 5 + V - (5 - V) = 2V$, $\operatorname{Cov}(X, Y) = \operatorname{Cov}(5 + V, 2V) = 2\operatorname{Var}(V) = 2.1$

6.
$$\mathbb{E}(X) = 0.5$$
, $\mathbb{E}(Y) = 1.5$, $\text{Var}(X) = 1.65$, $\text{Cov}(X, Y) = 0.05$, $\text{Cov}(2X + 3, -3Y + 1) = -0.3$

7.
$$\mathbb{E}(X_1) = 1$$
, $\operatorname{Var}(X_1) = 1/3$, $\operatorname{Med}(X_1) = 1$, $f(x, y) = \begin{cases} \frac{1}{4}, & x_1 \in [0; 2], x_2 \in [1, 3] \\ 0, & \end{cases}$

9.3. Контрольная работа №2, ??.12.2010

1. Совместная плотность распределения случайных величин X и Y задана формулой:

$$f(x,y) = \frac{1}{2\pi} \frac{1}{\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} (x^2 - 2\rho xy + y^2)}$$

Найти $\mathbb{E}(X)$, Var(Y), Cov(X,Y), $\mathbb{P}(X>Y-1)$.

- 2. Случайные величины X,Y,Z независимы и стандартно нормально распределены. Вычислите $\mathbb{P}(X<\sqrt{2}), \mathbb{P}\left(\frac{|X|}{\sqrt{Y^2+Z^2}}>1\right), \mathbb{P}(X^2+Y^2>4).$
- 3. Доходности акций двух компаний являются случайными величинами X и Y, имеющими совместное нормальное распределение с математическим ожиданием $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ и ковариационной

матрицей
$$\begin{pmatrix} 4 & -2 \\ -2 & 9 \end{pmatrix}$$
.

Найти
$$\mathbb{P}(X>0\mid Y=0)$$
.

В каком соотношении нужно приобрести акции этих компаний, чтобы риск (дисперсия) получившегося портфеля был минимальным?

Подсказка: если R — доходность портфеля, то $R = \alpha X + (1 - \alpha)Y$.

Можно ли утверждать, что случайные величины X+Y и 7X-2Y независимы?

- 4. Пусть X_1, \dots, X_n независимые одинаково распределённые случайные величины с плотностью распределения $f(x) = \frac{3}{x^4}, x \geqslant 1$. Применим ли к данной последовательности закон больших чисел? С помощью неравенства Чебышева определить, сколько должно быть наблюдений в выборке, чтобы $\mathbb{P}\Big(|\overline{X} \mathbb{E}(X)| > 0.1\Big) \leqslant 0.02$.
- 5. В большом-большом городе N 80 % аудиокиосков торгуют контрафактной продукцией. Какова вероятность того, что в наугад выбранных 90 киосках более 60 будут торговать контрафактной продукцией? Каким должен быть объём выборки, чтобы выборочная доля отличалась от истинной менее чем на 0.02 с вероятностью 0.95?
- 6. У входа в музей в корзине лежат 20 пар тапочек 36-45 размера (по 2 пары каждого размера). Случайным образом из корзины вытаскивается 2 тапочка. Пусть X_1 размер первого тапочка, X_2 размер второго. Являются ли случайные величины X_1 и X_2 зависимыми? Какова их ковариация? Найти математическое ожидание и дисперсию среднего размера $\frac{X_1+X_2}{2}$.

7. В страховой компании «Ай» застрахованные автомобили можно условно поделить на 3 группы: недорогие (40%), среднего класса (50%) и дорогие (10%). Из предыдущей практики известно, что средняя стоимость ремонта автомобиля зависит от его класса следующим образом:

	Недорогие	Среднего класса	Дорогие
Математическое ожидание	1	2.5	5
Стандартная ошибка	0.3	0.5	1

В каком соотношении в выборке объёма n должны быть представлены классы автомобилей, чтобы оценка средней стоимости ремонта (стратифицированное среднее) была наиболее точной?

- 8. Реализацией выборки $X=X_1;\ldots;X_6$ являются следующие данные: -0.8;2.9;4.4;-5.6;1.1;-3.2. Найти выборочное среднее и выборочную дисперсию, вариационный ряд и построить эмпирическу функцию распределения.
- 9. По выборке $X_1; \ldots; X_n$ из равномерного распределения $\mathcal{U} \sim [0; \theta]$ с неизвестным параметром $\theta > 0$ требуется оценить θ . Будут ли оценки $T_1 = 2\bar{X}, T_2 = (n+1)X_{(1)}$ несмещёнными? Какая из них является более точной (эффективной)? Являются ли эти оценки состоятельными?
- 10. Дополнительная задача (не является обязательной).

Случайные величины
$$X$$
 и Y независимы, причём $\mathbb{P}(X=k) = \mathbb{P}(Y=k) = pq^{k-1}, \ 0 Найти $\mathbb{P}(X=k \mid X+Y=n)$, $\mathbb{P}(Y=k \mid X=Y)$.$

9.4. Контрольная работа №2, ??.12.2010, решения

1. Перед нами функция плотности двумерного нормального распределения!

Поэтому:
$$\mathbb{E}(X)=0$$
, $\mathrm{Var}(Y)=1$, $\mathrm{Cov}(X,Y)=\rho$

- 2. С помощью таблицы находим, что $\mathbb{P}(X>\sqrt{2})=1-\mathbb{P}(X<1.14)\approx 0.13$ Заметим, что $X^2+Y^2\sim \chi_2^2$, и находим искомую вероятность по таблице: $\mathbb{P}(X^2+Y^2>4)\approx 0.87$
- 3. Вспомним важные формулы:

$$\mathbb{E}(X|Y=y) = \mathbb{E}(X) + \operatorname{Cov}(X,Y) \cdot \operatorname{Var}^{-1}(Y) \cdot (y-\mu_y)$$

$$\operatorname{Var}(X|Y=y) = \operatorname{Var}(X) - \operatorname{Cov}(X,Y) \operatorname{Var}^{-1}(Y) \cdot \operatorname{Cov}(Y,X)$$

Применив их, получим: $\mathbb{E}(X|Y=0)=\frac{22}{9}$, $\mathrm{Var}(X|Y=0)=\frac{32}{9}$. Тогда:

$$\mathbb{P}(X > 0|Y = 0) = \mathbb{P}\left(\mathcal{N}(0,1) > \frac{0 - \frac{22}{9}}{\sqrt{\frac{32}{9}}}\right) \approx 0.9$$

Далее, найдём дисперсию портфеля и минимизиреум её по α :

$$\begin{split} \operatorname{Var}(\alpha X + (1-\alpha)Y) &= \alpha^2 \operatorname{Var}(X) + (1-\alpha)^2 \operatorname{Var}(Y) + 2\alpha (1-\alpha) \operatorname{Cov}(X,Y) = \\ &= 4\alpha^2 + 9(1-\alpha)^2 - 4\alpha (1-\alpha) = 17\alpha^2 - 22\alpha + 5 \to \min_{\alpha} \\ \alpha &= \frac{11}{17} \end{split}$$

Нельзя, так как из Cov(X + Y, 7X - 2Y) = 0 не следует независимость X + Y и 7X - 2Y.

4. Сначала подготовимся и найдём дисперсию случайной величины X:

$$\mathbb{E}(X) = \int_{1}^{\infty} \frac{3}{x^{4}} \cdot x dx = \frac{3x^{-2}}{-2} \Big|_{1}^{\infty} = \frac{3}{2}$$

$$\mathbb{E}(X^{2}) = \int_{1}^{\infty} \frac{3}{x^{4}} \cdot x^{2} dx = \frac{3x^{-1}}{-1} \Big|_{1}^{\infty} = 3$$

$$\text{Var}(X) = 3 - \left(\frac{3}{2}\right)^{2} = \frac{3}{4}$$

Перепишем исходное неравенство в виде: $\mathbb{P}(|\overline{X} - \mathbb{E}(X)| < 0.1) \geqslant 1 - 0.02$.

$$\frac{\mathrm{Var}(\overline{X})}{0.1^2} \leqslant 0.02 \Rightarrow \frac{\mathrm{Var}(X)}{n} \leqslant 0.0002 \Rightarrow n \geqslant 3750$$

5. Нужно найти $\mathbb{P}(\hat{p} > \frac{60}{90})$. Воспользуемся теоремой Муавра-Лапласа:

$$\mathbb{P}\left(\hat{p} > \frac{60}{90}\right) = \mathbb{P}\left(\frac{\hat{p} - 0.8}{\frac{0.8 \cdot 0.2}{90}} > \frac{2/3 - 0.8}{\frac{0.8 \cdot 0.2}{90}}\right) = \mathbb{P}(\mathcal{N}(0, 1) > -3.16) \approx 1$$

Найдём объём выборки:

$$\mathbb{P}\left(\frac{\hat{p} - 0.8}{\frac{0.8 \cdot 0.2}{n}} > \frac{0.02}{\frac{0.8 \cdot 0.2}{n}}\right) = 0.95 \Rightarrow \frac{0.02}{\frac{0.8 \cdot 0.2}{n}} = 1.65 \Rightarrow n = 33$$

6.

7. Необоходимо решить следующую систему уравнений:

$$\begin{cases} D(\overline{X}_S) = \sum_{l=1}^L \left(\frac{w_l^2 \sigma_l^2}{n_l}\right) \to \min \\ n = n_1 + n_2 + n_3 \end{cases}$$

Выпишем лагранжиан:

$$L = \sum_{l=1}^{L} \frac{w_l^2 \sigma_l^2}{n_l} - \lambda (n_1 + n_2 + n_3 - n)$$

$$\frac{\partial L}{\partial n_l} = 0 \Rightarrow n_l^o = \sqrt{\frac{w_l^2 \sigma_l^2}{-\lambda}} \Rightarrow \sum_{l=1}^{L} w_l \sigma_l = \sqrt{-\lambda} n \Rightarrow \sqrt{-\lambda} = \frac{\sum_{l=1}^{L} w_l \sigma_l}{n}$$

Тогда находим объём выборки каждой группы по формуле: $n^o = \frac{w_l \sigma_l}{\sum_{k=1}^L w_k \sigma_k} n$

- $n_{\text{недорогие}}^o = 0.255n$
- $n_{\text{средние}}^o = 0.532n$
- $n_{\text{порогие}}^o = 0.213n$
- 8. Выборочное среднее: -0.2; выборочная дисперсия: 70.98; вариационный ряд: -5.6, -3.2, -0.8, 1.1, 2.9, 4.4.

9. Для проверки свойства несмещённости найдём математические ожидания оценок:

$$\mathbb{E}(T_1) = \mathbb{E}(2\overline{X}) = 2\mathbb{E}(X_1) = \theta$$

$$\mathbb{E}(T_2) = \mathbb{E}((n+1)X_{(1)}) = (n+1)\frac{\theta}{2}$$

Несмещённой является только оценка T_1 .

Для проверки оставшихся свойств посчитаем дисперсию оценок:

$$\operatorname{Var}(T_1) = 4\operatorname{Var}(\overline{X}) = \frac{\theta^2}{3n} \to_{n \to \infty} 0$$

$$Var(T_2) = (n+1)^2 \cdot \frac{\theta^2}{12}$$

Оценка T_1 является более эффективной, и она состоятельна. T_2 не является состоятельной оценкой.

10. По формуле Байеса:

$$\mathbb{P}(X=k|X+Y=k) = \frac{\mathbb{P}(X=k\cap X+Y=n)}{\mathbb{P}(X+Y=n)} = \frac{\mathbb{P}(X+Y=k|X=k)\mathbb{P}(X=k)}{\mathbb{P}(X+Y=n)}$$

Находим числитель:

И знаменатель:

$$\mathbb{P}(X+Y=n) = \sum_{i=1}^{n} \mathbb{P}(X=i \cap Y=n-i) = \sum_{i=1}^{n} p \cdot (1-p)^{i-1} \cdot p \cdot (1-p)^{n-i-1} = \sum_{i=1}^{n} p^{2}(1-p)^{n} = np^{2}(1-p)^{n}$$

Итого:

$$\mathbb{P}(X = k | X + Y = k) = \frac{p^2 \cdot (1 - p)^{n-2}}{np^2 (1 - p)^n} = \frac{1}{n(1 - p)^2}$$

Второе выражение:

$$\mathbb{P}(Y = k | X = Y) = \frac{\mathbb{P}(Y = k \cap X = Y)}{\mathbb{P}(X = Y)} = \mathbb{P}(Y = k) = p(1 - p)^{k - 1}$$

9.5. Контрольная работа №3, ??.03.2011

Решение задач с обозначением «(MIN)» необходимо и достаточно для получения удовлетворительной оценки за данную контрольную работу.

- 1. Во время эпидемии гриппа среди привитых людей заболевают в среднем 15 %, среди непривитых -20 %. Ежегодно прививаются 10 % всего населения (прививка действует один год).
 - а) (MIN) Какой процент населения заболевает во время эпидемии гриппа?
 - б) Каков процент привитых среди заболевших людей?
- 2. Известно, что случайная величина $X \sim \mathcal{N}(3, 25)$.

- а) (MIN) Найти вероятности $\mathbb{P}(X > 4)$ и $\mathbb{P}(4 < X \le 5)$.
- б) Если известно также, что случайная величина Y имеет распределение $\mathcal{N}(1,16)$, что X и Y имеют совместное нормальное распределение и что $\mathrm{Corr}(X,Y) = 0.4$, то найти $\mathbb{P}(X-2Y<4)$.
- в) Случайная величина $Z \sim \mathcal{N}(6,49)$ обладает тем свойством, что $\mathrm{Var}\left(X-2Y+\frac{1}{\sqrt{7}}Z\right)=88.$ Найти условную вероятность $\mathbb{P}(X-2Y<4|Z>8).$
- 3. Опрос домохозяйств, проживающих в Южном и Юго-Западном административных округах города Москвы, выявил следующие результаты:

Южный AO. Доходы, тыс. руб. Первая выборка, X.

Юго-Западный АО. Доходы, тыс. руб. Вторая выборка, Ү.

Вычислены следующие суммы: $\sum_i X_i = 540, \sum_i Y_i = 480, \sum_i \frac{X_i^2}{15} = 1\,706.264, \sum_i \frac{Y_i^2}{12} = 1\,958.3,$ $\sum_i \frac{(X_i - 36)^2}{15} = 410.264, \sum_i \frac{(Y_i - 40)^2}{12} = 358.3, \sum_i \frac{(X_i - 40)^2}{15} = 426.264, \sum_i \frac{(Y_i - 36)^2}{12} = 374.3.$

- а) **(MIN)** Постройте 90 % доверительный интервал для математического ожидания дохода в Юго-Западном АО.
- б) На 5 % уровне значимости проверьте гипотезу о том, что средний доход в Юго-Западном AO не превышает среднего дохода в Южном AO, предполагая, что распределения доходов нормальны.
- в) Проверьте гипотезу о равенстве распределений доходов в двух округах, используя статистику Вилкоксона-Манна-Уитни, на 5 % уровне значимости. (Разрешается использование нормально аппроксимации.)
- 4. Вася решил проверить известное утверждение о том, что бутерброд падает маслом вниз. Для этого он провёл серию из 200 испытаний. Ниже приведена таблица с результатами:

Бутерброд	Маслом вверх	Маслом вниз
Число наблюдений	105	95

(MIN) Можно ли утверждать, что бутерброд падает маслом вниз так же часто, как и маслом вверх? (Уровень значимости 0.05.)

- 5. а) (MIN) По случайной выборке $X_1; \ldots; X_n$ из нормального распределения $\mathcal{N}(\mu_1; \mu_2 \mu_1^2)$ методом моментов оценить параметры μ_1, μ_2 . Дать определения несмещённости и состоятельности и проверить выполнение этих свойств для оценки μ_1 .
 - б) По случайной выборке $X_1; \ldots; X_n$ из нормального распределения $\mathcal{N}(\theta; 1)$ методом максимальн правдоподобия оценить параметр θ . Будет ли найденная оценка эффективной? Ответ обосновать.

10. 2011-2012

10.1. Контрольная работа №1, 24.10.2011

Quote

...all models are approximations. Essentially, all models are wrong, but some are useful. However, the

approximate nature of the model must always be borne in mind... George Edward Pelham Box

УДАЧИ!

Часть I.

Верны ли следующие утверждения? Отметьте плюсом верные утверждения, а минусом — неверные.

- 1. События A и B зависимы, если $\mathbb{P}(A|B) > \mathbb{P}(A)$. Да
- 2. При умножении случайной величины на 2, ее функция плотности умножается на 2. Нет
- 3. Ковариация всегда лежит на отрезке [-1;1]. Нет
- 4. Если $\mathbb{P}(A|B)=\mathbb{P}(B|A)$, то $\mathbb{P}(A)=\mathbb{P}(B)$. Да
- 5. Если $\mathbb{P}(A|B) > \mathbb{P}(A)$, то $\mathbb{P}(B|A) < \mathbb{P}(B)$. Нет
- 6. У экспоненциальной случайной величины может не быть функции плотности. Нет
- 7. При умножении случайной величины на 2, дисперсия домножается на 2. Нет
- 8. У нормальной случайной величины среднее и дисперсия равны. Нет
- 9. Функция распределения не может принимать значений больших 2011. Да
- 10. Если $\mathbb{P}(A) = 0.7$ и $\mathbb{P}(B) = 0.5$, то события A и B могут быть независимы. Да
- 11. Вероятность встретить на улице динозавра равна 0.5. Нет

Любой ответ на 11 вопрос считается верным.

Часть II.

Стоимость задач 10 баллов.

- 1. Из карточек составлено слово «СТАТИСТИКА». Из этих карточек случайно без возвращения выбирают 5 карточек. Найдите вероятность того, что из отобранных карточек можно составить слово «ТАКСИ».
- 2. При рентгеновском обследовании вероятность обнаружить туберкулез у больного туберкулезом равна 0.9. Вероятность принять здорового за больного равна 0.01. Доля больных туберкулезом по отношению ко всему населению равна 0.001. Найдите вероятность того, что человек здоров, если он был признан больным при обследовании.
- 3. При переливании крови надо учитывать группы крови донора и больного. Человеку, имеющему четвертую (АВ) группу крови, можно перелить кровь любой группы. Человеку со второй (А) или третьей (В) группой можно перелить кровь той же группы или первой. Человеку с первой (0) группой крови только кровь первой группы. Среди населения 33.7% имеют первую, 37.5% вторую, 20.9% третью и 7.9% четвертую группы крови.
 - а) Найдите вероятность того, что случайно взятому больному можно перелить кровь случайно взятого донора.
 - б) Найдите вероятность того, что переливание можно осуществить, если есть два донора.

- 4. Вася сидит на контрольной работе между Дашей и Машей и отвечает на 10 тестовых вопросов. На каждый вопрос есть два варианта ответа, «да» или «нет». Первые три ответа Васе удалось списать у Маши, следующие три у Даши, а оставшиеся четыре пришлось проставить наугад. Маша ошибается с вероятностью 0.1, а Даша с вероятностью 0.7.
 - а) Найдите вероятность того, что Вася ответил на все 10 вопросов правильно.
 - б) Вычислите корреляцию между числом правильных ответов Васи и Даши, Васи и Маши.

Подсказка: иногда задача упрощается, если представить случайную величину в виде суммы.

5. Случайная величина X имеет функцию плотности

$$f(x) = \begin{cases} cx^{-4}, x \geqslant 1\\ 0, x < 1 \end{cases}$$

Найдите

- а) Значение c
- б) Функцию распределения F(x)
- в) Вероятность $\mathbb{P}(0.5 < X < 1.5)$
- r) Математическое ожидание $\mathbb{E}(X)$ и дисперсию $\mathrm{Var}(X)$ случайной величины X
- 6. Случайная величина X имеет функцию плотности

$$f(x) = \begin{cases} cx^{-4}, x \ge 1\\ 0, x < 1 \end{cases}$$
 (1)

Найдите

- а) Функцию плотности случайной величины Y=1/X
- б) Корреляцию случайных величин Y и X.
- 7. Для случайной величины X, имеющей функцию плотности

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{2}$$

вычислите центральный момент порядка 2011.

- 8. Для случайных величин X и Y заданы следующие значения: $\mathbb{E}(X)=1$, $\mathbb{E}(Y)=4$, $\mathbb{E}(XY)=8$, $\mathrm{Var}(X)=\mathrm{Var}(Y)=9$. Для случайных величин U=X+Y и V=X-Y вычислите:
 - a) $\mathbb{E}(U)$, Var(U), $\mathbb{E}(V)$, Var(V), Cov(U, V)
 - б) Можно ли утверждать, что случайные величины U и V независимы?
- 9. Белка нашла 80 орехов. Каждый орех оказывается пустым независимо от других с вероятностью 0.05. Случайная величина X это количество пустых орехов у белки.
 - а) Найдите $\mathbb{E}(X)$ и Var(X)
 - б) Найдите точную вероятность $\mathbb{P}(X=5)$
 - в) Найдите вероятность $\mathbb{P}(X=5)$, используя пуассоновскую аппроксимацию.
 - r) Оцените максимальную ошибку при рассчете вероятности с использованием пуассоновской аппроксимации.

- 10. Охраняемая Сверхсекретная Зона это прямоугольник 50 на 100 метров с вершинами в точках (0;0), (100;50), (100;0) и (0;50). Охранник обходит Зону по периметру по часовой стрелке. Пусть X и Y координаты охранника в случайный момент времени.
 - а) Найдите $\mathbb{P}(X > 20), \mathbb{P}(X > 20|X > Y), \mathbb{P}(X > Y|X > 20)$
 - б) Найдите $\mathbb{E}(X)$
 - в) Постройте функцию распределения случайной величины X.
 - Γ) Верно ли, что случайные величины X и Y независимы?

Часть III.

Стоимость задачи 20 баллов.

Задача. Мы подбрасываем правильную монетку до тех пор пока не выпадет три орла подряд или три решки подряд. Если игра оканчивается тремя орлами, то мы не получаем ничего. Если игра оканчивается тремя решками, то мы получаем по рублю за каждую решку непосредственно перед которой выпадал орел. Каков средний выигрыш в эту игру?

10.2. Контрольная работа №1, 24.10.2011, решения

1.
$$\mathbb{P}(A) = \frac{3 \cdot 2^3}{C_{10}^5} = \frac{2}{21} \approx 0.095$$

2.
$$\mathbb{P}(A|B) = \frac{0.999 \cdot 0.01}{0.999 \cdot 0.01 + 0.001 \cdot 0.9} \approx 0.917$$

3. a)
$$\mathbb{P}(A_1) = 0.079 + 0.209(0.209 + 0.337) + 0.375(0.375 + 0.337) + 0.337 \cdot 0.337 \approx 0.574$$

б)
$$\mathbb{P}(A_2) \approx 0.778$$

4. a)
$$\mathbb{P}(X_v = 10) = 0.9^3 \cdot 0.3^3 \cdot 0.5^4$$

6)
$$\operatorname{Var}(X_m)=0.9$$
, $\operatorname{Var}(X_d)=2.1$, $\operatorname{Var}(X_v)=0.27+0.63+1=1.9$ $\operatorname{Corr}(X_v,X_d)=\frac{0.27}{\sqrt{1.9\cdot 2.1}}$ $\operatorname{Corr}(X_v,X_m)=\frac{0.63}{\sqrt{1.9\cdot 0.9}}$

5. a)
$$c = 3$$

6)
$$F(x) = \begin{cases} 0, & x < 1 \\ 1 - x^{-3}, & x \geqslant 1 \end{cases}$$

B)
$$\mathbb{P}(0.5 < X < 1.5) = 1 - 1.5^{-3} = \frac{19}{27} \approx 0.70$$

г) Заметим, что $\mathbb{E}(X^a)=3/(3-a)$. Поэтому $\mathbb{E}(X)=3/2$ и $\mathbb{E}(X^2)=3$. Значит $\mathrm{Var}(X)=3/4$.

6. a)
$$F(y) = \mathbb{P}(Y \leqslant y) = \mathbb{P}(1/X \leqslant y) = \mathbb{P}(X \geqslant 1/y) = \begin{cases} 0, y < 0 \\ y^3, y \in [0; 1) \\ 1, y \geqslant 1 \end{cases}$$

$$p(y) = \begin{cases} 3y^2, y \in [0; 1] \\ 0, y \notin [0; 1] \end{cases}$$

б)
$$\mathbb{E}(X)=3/2, \mathbb{E}(Y)=3/4, \mathbb{E}(XY)=\mathbb{E}(1)=1$$
, значит $\mathrm{Cov}(X,Y)=1-9/8=-1/8$ $\mathbb{E}(Y^2)=3/5, \mathrm{Var}(Y)=3/80, \mathrm{Corr}(X,Y)=-\sqrt{5}/3\approx 0.75$

7. Функция плотности симметрична около нуля, поэтому: $\mathbb{E}((X - \mathbb{E}(X))^{2011}) = \mathbb{E}(X^{2011}) = 0$

8. a)
$$\mathbb{E}(U) = 5$$
, $\mathbb{E}(V) = -3$, $Var(U) = 26$, $Var(V) = 10$, $Cov(U, V) = 0$

б) Нет, даже нулевой ковариации недостаточно для того, чтобы говорить о независимости случайных величин.

9. a)
$$\mathbb{E}(X) = 80 \cdot 0.05 = 4$$
, $Var(X) = 80 \cdot 0.05 \cdot 0.95 = 4 \cdot 0.95$

6)
$$\mathbb{P}(X=5) = C_{80}^5 0.05^5 0.95^{75}$$

B)
$$\mathbb{P}(X=5) \approx \exp(-4)4^5/5!$$

r)
$$\triangle \leq \min\{p, np^2\} = \min\{0.05, 4 \cdot 0.05\} = 0.05$$

10. a)
$$\mathbb{P}(X > 20) = \frac{80 + 80 + 50}{300} = 0.7$$

 $\mathbb{P}(X > 20|X > Y) = \frac{80 + 50 + 50}{100 + 50 + 50} = 0.9$
 $\mathbb{P}(X > Y|X > 20) = \frac{80 + 50 + 50}{80 + 80 + 50} = \frac{6}{7}$

б)
$$\mathbb{E}(X) = 50$$

в)
$$F(x)=\begin{cases} 0, & x<0 \\ \frac{1}{6}+\frac{4}{600}x, & x\in[0;100) \end{cases}$$
 У функции два скачка высотой по $1/6$, в точках $1, & x\geqslant 100$

x=0 и x=100. На остальных участках функция линейна.

г) Нет, например, если Y = 50 мы можем быть уверены в том, что $X \notin [10; 90]$.

10.3. Контрольная работа №2, 29.12.2011

Разрешается использование калькулятора.

При себе можно иметь шпаргалку А4.

Обозначения: $\mathbb{P}(A)$ — вероятность A

 $\mathbb{E}(X)$ — математическое ожидание

Var(X) — дисперсия

 \bar{A} — отрицание события A

Ouote

"Can you do addition?" the White Queen asked. "What's one and one?" "I don't know," said Alice. "I lost count." "She can't do addition," said the Red Queen.

Lewis Carroll

УДАЧИ!

Часть І.

Верны ли следующие утверждения? Отметьте плюсом верные утверждения, а минусом — неверные.

- 1. Нормальное распределение является частным случаем Пуассоновского. Нет
- 2. Оценка не может быть одновременно несмещенной и эффективной. Нет
- 3. Среднее выборочное является состоятельной оценкой для математического ожидания. Да
- 4. Из некоррелированности случайных величин, имеющих совместное нормальное распределение, следует их независимость. Да

- 5. Зная закон распределения вектора (X,Y) всегда можно найти закон распределения X. Да
- 6. Неравенство Чебышева неприменимо к нормальным случайным величинам. Нет
- 7. Сумма двух независимых стандартных нормальных величин является стандартной нормальной. Нет
- 8. Корреляция между любыми равномерными случайными величинами равна нулю. Нет
- 9. Корреляция между температурой завтра в Москве по Цельсию и по Фаренгейту равна единице. Да
- 10. Состоятельная оценка может быть смещенной. Да
- 11. Я хорошо себя вел в этом году и Дед Мороз подарит мне хорошую оценку по теории вероятностей.

Любой ответ на 11 вопрос считается верным.

Часть II.

Стоимость задач 10 баллов.

1. Совместная функция плотности величин X и Y имеет вид

$$f(x,y) = \begin{cases} 2(x^3 + y^3), \text{ если } x \in [0;1], y \in [0;1] \\ 0, \text{ иначе} \end{cases}$$
 (3)

- а) Найдите $\mathbb{P}(X+Y>1)$
- б) Найдите Cov(X, Y)
- в) Являются ли величины X и Y независимыми?
- Γ) Являются ли величины X и Y одинаково распределенными?
- 2. Величины X_1 и X_2 независимы и равномерны на отрезке [-b;b]. Вася строит оценку для b по формуле $\hat{b}=c\cdot(|X_1|+|X_2|)$.
 - а) При каком c оценка будет несмещенной?
 - б) При каком c оценка будет минимизировать средне-квадратичную ошибку, $MSE = \mathbb{E}((\hat{b}-b)^2)$?
- 3. Вася пишет 3 контрольные работы по микроэкономике, обозначим их результаты величинами X_1, X_2 и X_3 . Кроме того, Вася пишет 3 контрольные работы по макроэкономике, обозначим их результаты величинами Y_1, Y_2 и Y_3 . Предположим, что результаты всех контрольных независимы друг от друга. В среднем Вася пишет на один и тот же балл, $\mathbb{E}(X_i) = \mathbb{E}(Y_i) = \mu$. Дисперсия результатов по микро маленькая, $\mathrm{Var}(X_i) = \sigma^2$, дисперсия результатов по макро большая, $\mathrm{Var}(Y_i) = 2\sigma^2$.
 - а) Является ли оценка $\hat{\mu}_1 = (X_1 + X_2 + X_3 + Y_1 + Y_2 + Y_3)/6$ несмещенной для μ ?
 - б) Найдите самую эффективную несмещенную оценку вида $\hat{\mu}_2 = \alpha \bar{X} + \beta \bar{Y}$
- 4. Каждую весну дед Мазай плавая на лодке спасает в среднем 9 зайцев, дисперсия количества спасенных зайцев за одну весну равна 9. Количество спасенных зайцев за разные года независимые случайные величины. Точный закон распределения числа зайцев неизвестен.

- а) Оцените в каких пределах лежит вероятность того, что за три года дед Мазай спасет от 20 до 34 зайцев.
- б) Оцените в каких пределах лежит вероятность того, что за одну весну дед Мазай спасет более 11 зайцев.
- в) Используя нормальную аппроксимацию, посчитайте вероятность того, что за 50 лет дед Мазай спасет от 430 до 470 зайцев.
- 5. Вектор $\vec{X} = (X_1; X_2)$ имеет совместное нормальное распределение

$$\vec{X} \sim \mathcal{N}\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}; \begin{pmatrix} 1 & -1 \\ -1 & 9 \end{pmatrix} \right)$$
 (4)

- а) Найдите $\mathbb{P}(X_1 + X_2 > 1)$
- б) Какое совместное распределение имеет вектор $(X_1; Y)$, где $Y = X_1 + X_2$?
- в) Какой вид имеет условное распределение случайной величины X_1 , если известно что $X_2=2$?
- 6. В большом-большом городе наугад выбирается n человек. Каждый из них отвечает, любит ли он мороженое эскимо на палочке. Обозначим \hat{p} долю людей в нашей выборке, любящих эскимо на палочке.
 - а) Чему равно максимально возможное значение $Var(\hat{p})$?
 - б) Какое минимальное количество человек нужно опросить, чтобы вероятность того, что выборочная доля \hat{p} отличалась от истинной доли более чем на 0.02, была менее 10%?
- 7. Злобный препод приготовил для группы из 40 человек аж 10 вариантов, по 4 экземпляра каждого варианта. Случайная величина X_1 номер варианта, доставшийся отличнице Машеньке, величина X_2 номер варианта, доставшийся двоечнику Вовочке. Величина $\bar{X}=(X_1+X_2)/2$ среднее арифметическое этих номеров.
 - а) Найдите $\mathbb{E}(X_1)$, $\mathrm{Var}(X_1)$, $\mathrm{Cov}(X_1,X_2)$
 - б) Найдите $\mathbb{E}(\overline{X})$, $\mathrm{Var}(\overline{X})$
 - в) Являются ли X_1 и X_2 одинаково распределенными?
 - г) Являются ли X_1 и X_2 независимыми?

Подсказка:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Часть III.

Стоимость задачи 20 баллов.

8. На заводе никто не работает, если хотя бы у одного работника день рождения. Сколько нужно нанять работников, чтобы максимизировать ожидаемое количество рабочих человеко-дней в году?

10.4. Контрольная работа №2, 29.12.2011, решения

- 1. a) $\mathbb{P}(X+Y>1)=4/5$. Здесь нужно брать интеграл...
 - б) $\mathbb{E}(X) = 13/20 = 0.65$, $\mathbb{E}(XY) = 2/5 = 0.4$, Cov(X, Y) = -9/400 = -0.0225
 - в) Нет, так как функция плотности не раскладывается в произведение $h(x) \cdot g(y)$.
 - r) Да, так как функция плотности симметрична по x и y
- 2. а) Заметим, что величина $|X_i|$ распределена равномерно на [0;b], поэтому $\mathbb{E}(|X_i|)=b/2$ и $\mathrm{Var}(|X_i|)=b^2/12$. Значит $\mathbb{E}(\hat{b})=cb$ и для несмещённости c=1.
 - б) Находим MSE через b и c:

$$MSE = \operatorname{Var}(\hat{b}) + (\mathbb{E}(\hat{b}) - b)^2 = 2c^2 \cdot \frac{b^2}{12} + (c - 1)^2 \cdot b^2 = b^2 \left(\frac{7}{6}c^2 - 2c + 1\right)$$

Отсюда $c = \frac{6}{7}$.

- 3. a) $\mathbb{E}(\hat{\mu}_1) = 6\mu/6 = \mu$, несмещённая
 - б) $\mathbb{E}(\hat{\mu}_2)=\alpha\mu+\beta\mu$ и $\mathrm{Var}(\hat{\mu}_2)=\alpha^2\frac{\sigma^2}{3}+\beta^2\frac{2\sigma^2}{3}$. Для несмещённости необходимо условие $\alpha+\beta=1$. Для минимизации дисперсии получаем уравнение

$$\alpha - 2(1 - \alpha) = 0$$

Отсюда оценка имеет вид $\frac{2}{3}\bar{X}+\frac{1}{3}\bar{Y}$

4. а) $S = X_1 + X_2 + X_3$, слагаемых мало, использовать нормальное распределение некорректно. Можно использовать неравенство Чебышева, $\mathbb{E}(S) = 27$, $\mathrm{Var}(S) = 27$, поэтому

$$\mathbb{P}(S \in [20; 34]) = \mathbb{P}(|S - \mathbb{E}(X)| \le 7) \ge 1 - \frac{27}{7^2} = \frac{22}{49}$$

б) Используем неравенство Маркова:

$$\mathbb{P}(X_1 \geqslant 12) \leqslant \mathbb{E}(X_1)/12 = 9/12 = 0.75$$

в) Если $S = X_1 + \ldots + X_{50}$, то можно считать, что $S \sim \mathcal{N}(450; 450)$, поэтому

$$\mathbb{P}(S \in [430; 470]) \approx \mathbb{P}(N(0; 1) \in [-0.94; +0.94]) \approx 0.6528$$

- 5. а) Если $Y=X_1+X_2$, то $\mathbb{E}(Y)=3$ и $\mathrm{Var}(Y)=1+9-2=8$, значит $\mathbb{P}(Y>1)=\mathbb{P}(\mathcal{N}(0,1)>-2/\sqrt{8})\approx \mathbb{P}(\mathcal{N}(0,1)>-0.71)\approx 0.7602$
 - б) Находим $\mathrm{Cov}(X_1,Y)=1-1=0.$ Итого: вектор имеет совместное нормальное распределение с

$$(X_1,Y) \sim \mathcal{N}\left(\left(\begin{array}{c}1\\3\end{array}\right); \left(\begin{array}{c}1&0\\0&8\end{array}\right)\right)$$

в) Стандартизируем величины. То есть мы хотим представить их в виде:

$$\begin{cases} X_1 = 1 + aZ_1 + bZ_2 \\ X_2 = 2 + cZ_2 \end{cases}$$

Единица и двойка — это математические ожидания X_1 и X_2 . Мы хотим, чтобы величины Z_1 и Z_2 были $\mathcal{N}(0,1)$ и независимы. Получаем систему:

$$\begin{cases} Var(X_1) = 1 \\ Var(X_2) = 9 \\ Cov(X_1, X_2) = -1 \end{cases} \Leftrightarrow \begin{cases} a^2 + b^2 = 1 \\ c^2 = 9 \\ bc = -1 \end{cases}$$

Одно из решений этой системы : $c=3,\,b=-1/3,\,a=2\sqrt{2}/3$ Используя это разложение получаем:

$$(X_1 \mid X_2 = 2) \sim \left(1 + \frac{2\sqrt{2}}{3}Z_1 - \frac{1}{3}Z_2 \mid 2 + 3Z_2 = 2\right) \sim$$

$$\sim \left(1 + \frac{2\sqrt{2}}{3}Z_1 - \frac{1}{3}Z_2 \mid Z_2 = 0\right) \sim \left(1 + \frac{2\sqrt{2}}{3}Z_1\right) \sim \mathcal{N}(1; 8/9)$$

Еще возможные решения: выделить полный квадрат в совместной функции плотности, готовая формула, etc

- 6. а) $\mathrm{Var}(\hat{p}) = \frac{p(1-p)}{n}$. Максимально возможное значение p(1-p) равно 1/4, поэтому максимально возможное значение $\mathrm{Var}(\hat{p}) = 1/4n$.
 - б) У нас задано неравенство:

$$\mathbb{P}(|\hat{p} - p| > 0.02) < 0.1$$

Делим внутри вероятности на $\sqrt{\mathrm{Var}(\hat{p})}$:

$$\mathbb{P}\left(|N(0;1)| > 0.02\sqrt{4n}\right) < 0.1$$

По таблицам получаем $0.02\sqrt{4n}\approx 1.65$ и $n\approx 1691$

Если вместо ЦПТ использовать неравенство Чебышева, то можно получить менее точный результат n=6250.

- 7. а) $\mathbb{E}(X_i)=(1+10)/2=5.5, \mathbb{E}(X_1^2)=\frac{1}{10}\frac{10\cdot11\cdot21}{6}=77/2, \mathrm{Var}(X_i)=33/4=\sigma^2.$ Можно найти $\mathrm{Cov}(X_1,X_2)$ по готовой формуле, но мы пойдем другим путем. Заметим, что сумма номеров всех вариантов это константа, поэтому $\mathrm{Cov}(X_1,X_1+\ldots+X_{40})=0.$ Значит $\mathrm{Var}(X_1)+39\,\mathrm{Cov}(X_1,X_2)=0.$ В итоге получаем $\mathrm{Cov}(X_1,X_2)=-\frac{1}{39}\sigma^2$
 - 6) $\mathbb{E}(\bar{X}) = 11/2$, $Var(\bar{X}) = 4\frac{1}{52}$
 - в) Да, являются, т.к. и X_1 и X_2 это номер случайно выбираемого варианта
 - г) Нет, если известно чему равно X_1 , то шансы получить такой же X_2 падают
- 8. Если мы наняли n работников, то ожидаемое количество рабочих человеко-дней равно:

$$\mathbb{E}(X) = 365 \cdot n \cdot \left(\frac{364}{365}\right)^n$$

Для удобства берем логарифм $\ln(\mathbb{E}(X)=c+\ln(n)+n\ln(364/365)$ и получаем условие первого порядка $1/n+\ln(364/365)=0$. Пользуясь разложением в ряд Тейлора $\ln(1+t)\approx t$ получаем: $1/n-1/365\approx 0,\,n\approx 365$

10.5. Контрольная работа №3, 13.03.2012

Условия: 80 минут, без официальной шпаргалки.

- 1. Наблюдения $X_1, X_2, ..., X_n$ независимы и одинаково распределены с функцией плотности $f(x) = \lambda \exp(-\lambda x)$ при $x \geqslant 0$.
 - а) Методом максимального правдоподобия найдите оценку параметра λ
 - б) Найдите оценку максимального правдоподобия \hat{a} для параметра $a=1/\lambda$
 - в) Сформулируйте определение несмещенности оценки и проверьте выполнение данного свойства для оценки \hat{a}
 - г) Сформулируйте определение состоятельности оценки и проверьте выполнение данного свойства для оценки \hat{a}
 - д) Сформулируйте определение эффективности оценки и проверьте выполнение данного свойства для оценки \hat{a}
 - e) Оцените параметр λ методом моментов.

Подсказка: $\mathbb{E}(X_i^2) = 2/\lambda^2$

- 2. В ходе анкетирования 100 сотрудников банка «Альфа» ответили на вопрос о том, сколько времени они проводят на работе ежедневно. Среднее выборочное оказалось равно 9.5 часам при выборочном стандартном отклонении 0.5 часа.
 - а) Постройте 95% доверительный интервал для математического ожидания времени проводимого сотрудниками на работе
 - б) Проверьте гипотезу о том, что в среднем люди проводят на работе 10 часов, против альтернативной гипотезы о том, что в среднем люди проводят на работе меньше 10 часов, укажите точное Р-значение.
 - в) Сформулируйте предпосылки, которые были использованы для проведения теста
- 3. В ходе анкетирования 20 сотрудников банка «Альфа» ответили на вопрос о том, сколько времени они проводят на работе ежедневно. Среднее выборочное оказалось равно 9.5 часам при стандартном отклонении 0.5 часа. Аналогичные показатели для 25 сотрудников банка «Бета» составили 9.8 и 0.6 часа соответственно.
 - а) Проверьте гипотезу о равенстве дисперсий времени, проводимого на работе, сотрудниками банков «Альфа» и «Бета». Укажите необходимые предпосылки относительно распределения наблюдаемых значений.
 - б) Проверьте гипотезу о том, что сотрудники банка «Альфа» проводят на работе столько же времени, что и сотрудники банка «Бета». Укажите необходимые предпосылки относительно распределения наблюдаемых значений.

10.6. Контрольная работа №3, 13.03.2012, решения

1. a)
$$L(x,\lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda \sum_{i=1}^n x_i}$$

$$\ln L(x,\lambda) = n \ln \lambda - \lambda \sum_{i=1}^n x_i \to \max_{\lambda}$$

$$\frac{\partial \ln L}{\partial \lambda} = \frac{n}{\lambda} - \sum_{i=1}^n x_i \mid_{\lambda = \hat{\lambda}} = 0 \Rightarrow \hat{\lambda}_{ML} = \frac{1}{\overline{X}}$$

$$\frac{\partial^2 \ln L}{\partial \lambda^2} = -\frac{n}{\lambda^2} \mid_{\lambda = \hat{\lambda}} < 0$$

б)
$$\hat{a} = \overline{X}$$

в)
$$\mathbb{E}(\hat{a}) = \mathbb{E}(\overline{X}) = \frac{1}{\lambda} \Rightarrow$$
 несмещённая

r)
$$\mathrm{Var}(\hat{a})=\mathrm{Var}(\overline{X})=\frac{1}{n} n\,\mathrm{Var}(X_i)=\frac{1}{n\lambda^2}\to_{n\to\infty}0\Rightarrow$$
 состоятельная

д)

e)
$$\mathbb{E}(X) = \frac{1}{\lambda} \mid_{\lambda = \hat{\lambda}_{MM}} = \overline{X} \Rightarrow \lambda_{MM} = \frac{1}{\overline{X}}$$

2. а) Истинное стандартное отклонение неизвестно, поэтому используем распределение Стьюдента

$$\overline{X} - t_{0.025,99} \frac{\hat{\sigma}}{\sqrt{n}} < \mu < \overline{X} + t_{0.025,99} \frac{\hat{\sigma}}{\sqrt{n}}$$
 $9.5 - 1.98 \frac{0.5}{\sqrt{100}} < \mu < 9.5 - 1.98 \frac{0.5}{\sqrt{100}}$
 $9.4 < \mu < 9.6$

б) Значение 10 не лежит в доверительном интервале, значит, гипотеза отвергается $t_{obs} = \frac{9.5-10}{0.5/\sqrt{100}} = 10 \Rightarrow$ p-value ≈ 0

3. a)
$$\frac{\hat{\sigma}_{\alpha}^2}{\hat{\sigma}_{\beta}^2} \sim F_{n_{\alpha-1},n_{\beta-1}}$$

 $F_{obs}=\frac{0.5}{0.6}\approx 0.83,$ р-value/2 $\approx 0.35\Rightarrow$ на любом разумном уровне значимости оснований отвергать H_0 нет

6)
$$\hat{\sigma}_{0}^{2} = \frac{\hat{\sigma}_{\alpha}^{2}(n_{\alpha}-1) + \hat{\sigma}_{\beta}^{2}(n_{\beta}-1)}{n_{\alpha}+n_{\beta}-2} = \frac{0.25 \cdot 19 + 0.36 \cdot 24}{20 + 25 - 2} = 0.31$$

$$\frac{\overline{X} - \overline{Y}}{\hat{\sigma}_{0} \sqrt{\frac{1}{n_{\alpha}} + \frac{1}{n_{\beta}}}} \sim t_{n_{\alpha}+n_{\beta}-2}$$

$$t_{obs} = \frac{9.5 - 9.8}{0.56 \sqrt{\frac{1}{20} + \frac{1}{25}}} = -1.79, \text{ p-value}/2 = 0.04$$

10.7. Экзамен, 26.03.2012

Часть 1.

- 1. На каждый вопрос предлагается 5 вариантов ответа
- 2. Ровно один из ответов верный
- 3. В графу «Ответ» требуется вписать номер правильного ответа
- 4. Неправильные ответы не штрафуются.
- 5. Если Вы считаете, что на вопрос нет правильного ответа или есть несколько правильных ответов, то... возрадуйтесь! Ибо такой вопрос будет засчитан всем как верный.
- 6. Было дано 45 минут. Возможно это было много.
- 7. Удачи!
- 1. Закон распределение случайной величины задан табличкой

$$X \quad -1 \quad 0 \quad 2$$

 $\mathbb{P}(\cdot)$ 0.4 0.3 0.3

 $\mathbb{E}(X^2)$ равняется

1) 0.02 2) 1.6	3) 0.52	4) 0.04	5) 0.4	Ответ:	
----------------	---------	---------	--------	--------	--

^{*} В этой задаче p-value посчитаны в R

1) $\mathbb{E}(X^2)$ 2) $\mathbb{E}(X^2) + \mathbb{E}^2$ 3) $\mathbb{E}(X^2) - \mathbb{E}^2$ 4) $\mathbb{E}^2(X) - \mathbb{E}^2$ 5) $\mathbb{E}^2(X)$	$^{2}(X)$			Ответ:	
Если $f(x)$ — эт	го функция плотн	лости, то $\int_{-\infty}^{+\infty} f$	(x) dx равен		
1) 0	2) 1	3) E(X)	4) Var(<i>X</i>)	5) <i>F</i> (<i>x</i>)	Ответ:
Если случайна то $F(4)$ равняє	я величина X рав	номерна на отр	резке $[1;5]$ и $F(x)$) — это ее функция	я распределе
1) 0	2) 0.1	3) 0.2	4) 0.25	5) 0.75	Ответ:
Условная веро	ятность $\mathbb{P}(A\mid B)$	считается по ф	ормуле		
1) $\frac{\mathbb{P}(A)}{\mathbb{P}(B)}$	2) $\mathbb{P}(A) \cdot \mathbb{P}(B)$	3) $\frac{\mathbb{P}(A \cup B)}{\mathbb{P}(B)}$	4) $\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$	$\begin{array}{ c c } \hline \textbf{5)} \\ \mathbb{P}(A) - \mathbb{P}(B) \\ \hline \end{array}$	Ответ:
	ионетку подбрась	_	. Рассмотрим д	ва события: А —	при первом
броске выпал	«орёл», B — «орё	л» выпал хотя	бы один раз. На	йдите $\mathbb{P}(A B)$	
броске выпал 1) 0	«орёл», B — «орё. 2) 1/3	л» выпал хотя 3) 1/2	бы один раз. На 4) 2/3	йдите $\mathbb{P}(A B)$ 5) 1	Ответ:
1) 0		3) 1/2 ределена норма	$\frac{1}{4}$ 4) 2/3 ально, $Y-$ бино	$5)\ 1$ миально, $Z-$ по 1	\square
1) 0	2) 1/3 величина <i>X</i> распј	3) 1/2 ределена норма χ^2 распределен	$\frac{1}{4}$ 4) 2/3 ально, $Y-$ бино	5) 1 миально, $Z-$ по 1 ыми величинами	\square
1) 0 Известно, что з — экспоненция 1) все	(2) 1/3 величина X распрально, R — имеет	3) 1/2 ределена норма χ^2 распределен 3) X, W, R	4) $2/3$ ально, Y — бино ние. Непрерывн 4) Y , W , R	5) 1 миально, $Z-$ по \mathbb{R} ыми величинами \mathbb{R} 5) X,R	Пуассону, <i>W</i> и являются Ответ:
1) 0 Известно, что з — экспоненция 1) все	2) 1/3 величина X распрально, R — имеет $2) X, Y, Z$	3) 1/2 ределена норма χ^2 распределен 3) X, W, R	4) $2/3$ ально, Y — бино ние. Непрерывн 4) Y , W , R	5) 1 миально, $Z-$ по \mathbb{R} ыми величинами \mathbb{R} 5) X,R	Пуассону, <i>W</i> и являются Ответ:
1) 0 Известно, что 2 — экспоненция 1) все Известно, что 1) 0	2) $1/3$ величина X распрально, R — имеет 2) X,Y,Z $\mathbb{E}(X)=3$, $\mathrm{Var}(X)$	3) 1/2 ределена норма χ^2 распределен 3) X, W, R $= 16, \mathbb{E}(Y) =$ 3) 4	4) $2/3$ ально, Y — бино ние. Непрерывн 4) Y , W , R 1 , $Var(Y) = 4$, \mathbb{E}	$5)$ 1 миально, Z — по \mathbb{R} ыми величинами 5 X , R $(XY) = 6$, найдите верного ответа	Пуассону, W и являются Ответ: те $Cov(X,Y)$ Ответ:
1) 0 Известно, что 2 — экспоненция 1) все Известно, что 1) 0	$2) 1/3$ величина X распрально, R — имеет $2) X, Y, Z$ $\mathbb{E}(X) = 3, \mathrm{Var}(X)$ $2) 3$	3) 1/2 ределена норма χ^2 распределен 3) X, W, R $= 16, \mathbb{E}(Y) =$ 3) 4	4) $2/3$ ально, Y — бино ние. Непрерывн 4) Y , W , R 1 , $Var(Y) = 4$, \mathbb{E}	$5)$ 1 миально, Z — по \mathbb{R} ыми величинами 5 X , R $(XY) = 6$, найдите верного ответа	Пуассону, W являются Ответ: те $Cov(X,Y)$ Ответ:
1) 0 Известно, что регульная при	$2) 1/3$ величина X распрально, R — имеет $2) X, Y, Z$ $\mathbb{E}(X) = 3, \mathrm{Var}(X)$ $2) 3$	3) 1/2 ределена норма χ^2 распределена (X, W, R)	4) $2/3$ ально, Y — бино ние. Непрерывн 4) Y , W , R 1 , $Var(Y) = 4$, \mathbb{E} 4) 6 1 , $Var(Y) = 4$, \mathbb{E} (1) 1 0	5) 1 миально, Z — по выми величинами 5) X, R (XY) = 6, найдит 5) нет верного ответа XY) = 6, найдите верного ответа	Пуассону, W являются Ответ: Соv (X,Y) Ответ:

11. Если $X \sim \mathcal{N}(-3;25)$, то $\mathbb{P}(2X+6>0)$ равна

1) 0	2) 0.5	3) 1	4) +∞	5) верного	нет	Ответ:
				ответа		

12. Если $\mathbb{E}(X)=5$ и $\mathrm{Var}(X)=10$, то, согласно неравенству Чебышева, $\mathbb{P}(|X-5|\geqslant 5)$ лежит в интервале

1) [0; 1]	2) [0; 0.4]	3) [0.4; 1]	4) [0; 0.6]	5) [0.6; 1]	Ответ:
-----------	-------------	-------------	-------------	-------------	--------

13. Если P-значение больше уровня значимости α , то гипотеза H_0 : $\mu=\mu_0$

1) отвергается	Ответ:	
2) не отвергается		
3) отвергается только если H_a : $\mu > \mu_0$		
4) отвергается только если H_a : $\mu < \mu_0$		
5) недостаточно информации		
	1	

14. Функция плотности обязательно является

1)	2)	3) монотонно	4)	5)	Ответ:
непрерывной	непрерывной	неубывающей	кусочно-посто	я нной рицательн	юй
	справа				

15. Совместная функция распределения F(x,y) двух случайных величин X и Y это

$\mathbb{P}(X \leqslant x) \cdot \mathbb{P}(Y \leqslant y)$	Ответ:
$\mathbb{P}(X \leqslant x \mid Y \leqslant y)$ $\mathbb{P}(X \leqslant x, Y \leqslant y)$	
$\mathbb{P}(X \leqslant x) + \mathbb{P}(Y \leqslant y)$ $\mathbb{P}(X \leqslant x)/\mathbb{P}(Y \leqslant y)$	

16. Если случайная величина X, имеющая функцию распределения Q(x), и случайная величина Y, имеющая функцию распределения G(y), независимы, то для их совместной функции распределения F(x,y) справедливо

```
1) F(x,y) = Q(x) + G(y)
2) F(x,y) = Q(x)/G(y)
3) F(x,y) = Q(x)G(y)/(Q(x) + G(y))
4) F(x,y) = Q(x) \cdot G(y)
5) F(x,y) = \mathbb{E}(Q(X)G(Y))
```

17. Если X и Y независимые случайные величины, то *неверным* является утверждение:

1) $\mathbb{E}(aX) = a\mathbb{E}(X)$	Ответ:
2) $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$	
3) $\mathbb{E}(c) = c$	
4) $\mathbb{E}(X/Y) = \mathbb{E}(X)/\mathbb{E}(Y)$	
5) $\mathbb{E}(X - Y) = \mathbb{E}(X) - \mathbb{E}(Y)$	

1) $\chi^2_{\min(k,n)}$	$2) \chi^2_{\max(k,n)}$	3) χ^2_{kn}	$4) \chi_{k+n}^2$	5) χ^2_{k+n-1}	Ответ:
		ческого ожидани является оценка	_	езависимых, один	аково распр
	$2X_2 + 0.3X_3 + 0.5X_2 + 0.5X_3 + 0.5$	=		Ответ:	
Если X_i незаграспределени		нормальное рас	пределение $\mathcal{N}($	(μ,σ^2) , to $\sqrt{n}(ar{X}-ar{X})$	$-\mu)/\hat{\sigma}$ имеет
1) $\mathcal{N}(0,1)$	2) t_{n-1}	3) χ_{n-1}^2	$oxed{4)}\mathcal{N}(\mu,\sigma^2)$	5) нет верного ответа	Ответ:
$1)\mathcal{N}(0,1)$ При построен	нии доверительн	ого интервала д	пя дисперсии і	верного	наблюдений
$1)\mathcal{N}(0,1)$ При построен	нии доверительн	ого интервала д	пя дисперсии і	верного ответа	наблюдений
$1) \mathcal{N}(0,1)$ При построен при неизвест $1) N(0;1)$ Известно, что	нии доверительн ном ожидании и $2)t_{n-1}$	ого интервала дленользуется стата 3 χ^2_{n-1} $\mathcal{N}(\mu,\sigma^2)$ и незави	ля дисперсии пистика, имеющ $4) \chi_n^2$ исимы, $\sum_{i=1}^8 X$	верного ответа по выборке из n дая распределение	наблюдений $ar{e}$ Ответ: $-ar{X})^2=14$ и
$1) \mathcal{N}(0,1)$ При построен при неизвест $1) N(0;1)$ Известно, что	нии доверительн ном ожидании и $2)t_{n-1}$	ого интервала дленользуется стата 3 χ^2_{n-1} $\mathcal{N}(\mu,\sigma^2)$ и незави	ля дисперсии пистика, имеющ $4) \chi_n^2$ исимы, $\sum_{i=1}^8 X$	верного ответа по выборке из n дая распределение $t_i = 32, \sum_{i=1}^8 (X_i - t_i)$	наблюдений $ar{e}$ Ответ: $-ar{X})^2=14$ и
$1)\mathcal{N}(0,1)$ При построен при неизвест $1)N(0;1)$ Известно, что $t_{0.01;7}=3$. Лен $1)$ -0.25	нии доверительн ном ожидании и	ого интервала дленользуется стата $3) \chi_{n-1}^2$ $\mathcal{N}(\mu, \sigma^2)$ и незавито доверительног	ля дисперсии пистика, имеющ $4) \chi_n^2$ исимы, $\sum_{i=1}^8 X_i$ о интервала дл $4) 2$	верного ответа	наблюдений \bar{c} Ответ: $-\bar{X})^2=14~\mu$ вна

18. Коэффициент корреляции $\operatorname{Corr}(X,Y)$ не обладает свойством

2) Corr(X + a, Y + b) = Corr(X, Y)

2) $\mathcal{N}(0,1)$

4) $\operatorname{Corr}(X,2Y) = 2\operatorname{Corr}(X,Y)$ 5) $\operatorname{Corr}(X,Y) = \operatorname{Corr}(Y,X)$

 $Z = X^2$ имеет распределение

3) $\operatorname{Corr}(X, X) = 1$

1) $\mathcal{N}(1,0)$

1) $\operatorname{Corr}(X,Y)=0$ для независимых случайных величин X и Y

3) $F_{1,1}$

19. Если случайная величина X стандартно нормально распределена, то случайная величина

4) t_2

Ответ:

5) χ_1^2

Ответ:

26. Если X_i независимы, $\mathbb{E}(X_i) = \mu$ и $\mathrm{Var}(X_i) = \sigma^2$, то математическое ожидание величины $Y = \sum_{i=1}^n (X_i - \bar{X})^2/(n-1)$ равно

27. Если X_i независимы, $\mathbb{E}(X_i)=\mu$ и $\mathrm{Var}(X_i)=\sigma^2$, то дисперсия величины $Y=\sum_{i=1}^n X_i/n$ равна

1) 0 2) 1 3) μ 4) σ^2	5) σ^2/n	Ответ:
----------------------------------	-----------------	--------

Ответы: 1: 2, 2: 3, 3: 2, 4: 5, 5: 4, 6: 4, 7: 3, 8: 2, 9: 5, 10: 3, 11: 2, 12: 2, 13: 2, 14: 5, 15: 3, 16: 4, 17: 4, 18: 4, 19: 5, 20: 4, 21: 4, 22: 2, 23: 3, 24: 5, 25: 3, 26: 4, 27: 5.

Часть 2.

- 1. Продолжительность 2 часа.
- 2. Можно пользоваться шпаргалкой А4.
- 3. Имели право участвовать те, кто набрал на тесте удовлетворительно.
- 1. Снайпер попадает в «яблочко» с вероятностью 0.8, если в предыдущий раз он попал в «яблочко»; и с вероятностью 0.7, если в предыдущий раз он не попал в «яблочко» или если это был первый выстрел. Снайпер стрелял по мишени 3 раза.
 - а) Какова вероятность попадания в «яблочко» при втором выстреле?
 - б) Какова вероятность попадания в «яблочко» при втором выстреле, если при первом снайпер попал, а при третьем промазал?
- 2. Случайная величина Z равномерно распределена на отрезке $[0;2\pi],~X_1=\cos(Z)$ и $X_2=\sin(Z)$. Найдите $\mathbb{E}(X_1),\mathbb{E}(X_2),\mathrm{Cov}(X_1,X_2)$. Являются ли величины X_1 и X_2 независимыми?
- 3. Театр имеет два различных входа. Около каждого из входов имеется свой гардероб. Эти гардеробы ничем не отличаются. На спектакль приходит 1000 зрителей. Предположим, что зрители приходят по одиночке и выбирают входы равновероятно. Сколько мест должно быть в каждом из гардеробов для того, чтобы в среднем в 99 случаях из 100 все зрители могли раздеться в гардеробе того входа, через который они вошли?
- 4. Кот Мурзик ловит мышей. Время от одной мышки до другой распределено экспоненциально с функцией плотности $f(x)=\lambda e^{-\lambda x}$ при x>0. На поимку 20 мышей у Мурзика ушло 2 часа.
 - а) Оцените λ методом максимального правдоподобия
 - б) Найдите наблюдаемую информацию Фишера, \hat{I} , и оцените дисперсию $\hat{\lambda}$
 - в) Предположив, что оценка максимального правдоподобия имеет нормальное распределение постройте примерный 95%-ый доверительный интервал для λ
 - г) С помощью статистики отношения правдоподобия проверьте гипотезу о том, что на одну мышку в среднем уходит 9 минут на 5% уровне значимости

Hint: $ln(6) \approx 1.79, ln(9) \approx 2.20$

5. Докажите, что из некоррелированности компонент двумерного нормально распределенного случайного вектора следует их независимость.

- 6. Пусть X_i одинаково распределены и независимы с функцией плотности $f(x,\theta)$. Введем обозначения $I_1=\mathbb{E}\left(\left(\frac{\partial \ln f(X_1,\theta)}{\partial \theta}\right)^2\right)$ и $I_n=\mathbb{E}\left(\left(\frac{\partial \ln L(X_1,\dots,X_n,\theta)}{\partial \theta}\right)^2\right)$, где $L(x_1,\dots,x_n,\theta)$ функция правдоподобия. Как связаны между собой I_n и I_1 ?
- 7. Вашему вниманию представлены результаты прыжков в длину Васи Сидорова на двух тренировках На первой среди болельщиц присутствовала Аня Иванова: 1.83; 1.64; 2.27; 1.78; 1.89; 2.33. На второй Аня среди болельщиц не присутствовала: 1.26; 1.41; 2.05; 1.07; 1.59; 1.96; 1.29.

С помощью теста Манна-Уитни на уровне значимости 5% проверьте гипотезу о том, что присутствие Ани Ивановой положительно влияет на результаты Васи Сидорова. Можно считать статистику Манна-Уитни нормально распределенной.

- 8. Вася Сидоров утверждает, что ходит в кино в два раза чаще, чем в спортзал, а в спортзал в два раза чаще, чем в театр. За последние полгода он 10 раз был в театре, 17 раз в спортзале и 39 раз в кино. Проверьте гипотезу о том, что имеющиеся данные не противоречат Васиному утверждению на уровне значимости 5%.
- 9. Известно, что X_i независимы и нормальны, $N\left(\mu;900\right)$. Исследователь проверяет гипотезу H_0 : $\mu=10$ против H_A : $\mu=30$ по выборке из 20 наблюдений. Критерий выглядит следующим образом: если $\bar{X}>c$, то выбрать H_A , иначе выбрать H_0 .
 - а) Рассчитайте вероятности ошибок первого и второго рода, мощность критерия для c=25.
 - б) Что произойдет с указанными вероятностями при росте количества наблюдений ($c \in (10;30)$)?
 - в) Каким должно быть c, чтобы вероятность ошибки второго рода равнялась 0.15?

И Последняя задача...

- 10. Пирсон придумал хи-квадрат тест на независимость признаков около 1900 года. При этом он не был уверен в правильном количестве степеней свободы. Он разошелся во мнениях с Фишером. Фишер считал, что для таблицы два на два хи-квадрат статистика будет иметь три степени свободы, а Пирсон что одну. Чтобы выяснить истину, Фишер взял большое количество таблиц два на два с заведомо независимыми признаками и посчитал среднее значение хи-квадрат статистики.
 - а) Чему оно оказалось равно?
 - б) Как это помогло определить истину?

Часть решений (выверить):

1.

$$\mathbb{P}(A_2) = 0.7 \cdot 0.8 + 0.3 \cdot 0.7 = 0.56 + 0.21 = 0.77.$$

$$\mathbb{P}(A_2 \mid A_1 \cap A_3^c) = \frac{0.7 \cdot 0.8 \cdot 0.2}{0.7 \cdot 0.8 \cdot 0.2 + 0.7 \cdot 0.2 \cdot 0.3} = \frac{0.16}{0.22} = \frac{8}{11}.$$

2. Если Y=y(X), то $\mathbb{E}(Y)=\int_{-\infty}^{+\infty}y(x)f_X(x)dx$, поэтому:

$$\mathbb{E}(X_1) = \int_0^{2\pi} \cos z \frac{1}{2\pi} \, dz = 0$$

$$\mathbb{E}(X_2) = \int_0^{2\pi} \sin z \frac{1}{2\pi} dz = -\frac{\cos z}{2\pi} \bigg|_0^{2\pi} = 0$$

$$\begin{aligned} \operatorname{Cov}(X_1; X_2) &= \mathbb{E}(X_1 X_2) - \mathbb{E}(X_1) \mathbb{E}(X_2) = \mathbb{E}(X_1 X_2) = \\ &= \frac{1}{2\pi} \int_0^{2\pi} \sin z \cos z dz = \frac{1}{4\pi} \int_0^{2\pi} \sin 2z z \, dz = -\frac{1}{4\pi} \cos 2z \bigg|_0^{2\pi} = 0 \end{aligned}$$

Случайные величины зависимы, так как $\sin^2 Z + \cos^2 Z = 1$. Если, например, $\sin Z = 1$, то не может оказаться, что $\cos Z = 1/2$.

3. Пусть X_i — случайная величина, которая равна 1, если посетитель i выбрал первый вход и 0, — если второй. $X_i \sim \mathrm{Bi}(1;p)$. Тогда $\bar{X} = \sum_{i=1}^{100} X_i/1000$ — доля посетителей, вошедших через первый вход. По условию, $\mathbb{E}(X_i) = \frac{1}{2}$. $\sigma = \sqrt{\frac{\frac{1}{2} \cdot \frac{1}{2}}{1000}} = \frac{1}{20\sqrt{10}}$.

Найдем такое k, что $\mathbb{P}(\bar{X} < k) > 0.99$

$$\mathbb{P}\left(\frac{\bar{X} - 1/2}{\frac{1}{20\sqrt{10}}} < \frac{k - 1/2}{\frac{1}{20\sqrt{10}}}\right) > 0.99$$

$$\mathbb{P}(Z < 10\sqrt{10}(2k - 1)) > 0.99$$

$$10\sqrt{10}(2k - 1) > 2.33$$

$$k > 0.536841$$

Аналогичную долю получаем и для второго гардероба.

Наименьшее необходимое число мест в гардеробе будет равно $\lceil 1000k \rceil = \lceil 536.841 \rceil = 537$

4. (a)

$$L = \prod_{i=1}^{n} f_i(x) = \lambda^n e^{-\lambda \sum_{i=1}^{n} X_i} = \lambda^n e^{-\lambda n \bar{X}}$$
$$\ln L = n \ln \lambda - \lambda n \bar{X}$$
$$(\ln L)' = n/\lambda - n \bar{X}$$
$$(\ln L)'' = -n/\lambda^2 < 0$$
$$\hat{\lambda} = \frac{1}{\bar{X}}$$

(b) Ожидаемая информация Фишера: $I(x;\lambda) = -\mathbb{E}\left(\frac{\partial^2 \ln L}{\partial \lambda^2}\right) = \frac{n}{\lambda^2}$

Граница Крамера-Рао Var $\left(\hat{\lambda}\right)\geqslant \frac{1}{I}=\frac{\lambda^2}{n}$

(c) В нашем случае $\mathbb{E}(\hat{\lambda})=\lambda$ и $\mathrm{Var}\left(\hat{\lambda}\right)=\frac{\lambda^2}{n}$. Условие для нахождения доверительного интервала:

$$z_{0.025} < rac{\hat{\lambda} - \lambda}{\sqrt{\operatorname{Var}\left(\hat{\lambda}
ight)}} < z_{0.975}$$

Доверительный интервал:

5. Пользуясь некореллированностью, получаем:

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y}e^{-0.5\left(\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2}\right)} = \frac{1}{\sqrt{2\pi}\sigma_x}e^{-0.5\frac{(x-\mu_x)^2}{\sigma_x^2}} \cdot \frac{1}{\sqrt{2\pi}\sigma_y}e^{-0.5\frac{(y-\mu_y)^2}{\sigma_y^2}} = f(x) \cdot f(y),$$

Значит величины X и Y независимы, так как $f(x,y) = f(x) \cdot f(y)$.

6.

$$I_n = \mathbb{E}\left(\left(\frac{d\ln L(X_1; X_2; \dots; X_n; \lambda)}{d\lambda}\right)^2\right) = E\left(\left(\frac{\sum_{i=1}^n d\ln f(X_i; \lambda)}{d\lambda}\right)^2\right)$$

Все X_i одинаково распределены, поэтому:

$$\mathbb{E}\left(\left(\frac{d\ln f(X_1;\lambda)}{d\lambda}\right)^2\right) = \mathbb{E}\left(\left(\frac{d\ln f(X_i;\lambda)}{d\lambda}\right)^2\right)$$

Стало быть,

$$I_{n} = \mathbb{E}\left(\left(\frac{d\ln L(X_{1}; X_{2}; \dots; X_{n}; \lambda)}{d\lambda}\right)^{2}\right) = E\left(\left(\frac{d\sum_{i=1}^{n} \ln f(X_{i}; \lambda)}{d\lambda}\right)^{2}\right) = \sum_{i=1}^{n} \mathbb{E}\left(\left(\frac{d\ln f(X_{i}; \lambda)}{d\lambda}\right)^{2}\right) = n\mathbb{E}\left(\left(\frac{d\ln f(X_{i}; \lambda)}{d\lambda}\right)^{2}\right) = nI_{1} \quad (5)$$

11. 2012-2013

11.1. Контрольная работа №1, 14.11.2012

14 ноября 1936 года в СССР была создана Гидрометеорологическая служба.

- 1. Погода завтра может быть ясной с вероятностью 0.3 и пасмурной с вероятностью 0.7. Вне зависимости от того, какая будет погода, Маша даёт верный прогноз с вероятностью 0.8. Вовочка, не разбираясь в погоде, делает свой прогноз по принципу: с вероятностью 0.9 копирует Машин прогноз, и с вероятностью 0.1 меняет его на противоположный.
 - а) Какова вероятность того, что Маша спрогнозирует ясный день?
 - б) Какова вероятность того, что Машин и Вовочкин прогнозы совпадут?
 - в) Какова вероятность того, что день будет ясный, если Маша спрогнозировала ясный?
 - г) Какова вероятность того, что день будет ясный, если Вовочка спрогнозировал ясный?
- 2. Машин результат за контрольную, M, равномерно распределен на отрезке [0;1]. Вовочка ничего не знает, поэтому списывает у Маши, да ещё может наделать ошибок при списывании. Поэтому Вовочкин результат, V, распределен равномерно от нуля до Машиного результата.
 - а) Найдите $\mathbb{P}(M > 2V), \mathbb{P}(M > V + 0.1)$
 - б) Зачёт получают те, чей результат больше 0.4. Какова вероятность того, что Вовочка получит зачёт? Какова вероятность того, что Вовочка получит зачёт, если Маша получила зачёт?

Подсказка: попробуйте нарисовать нужные события в осях (V,M)

Это была задачка-неберучка!

3. Функция плотности случайной величины X имеет вид $f(x) = \begin{cases} \frac{3}{7}x^2, \ x \in [1;2] \\ 0, \ x \notin [1,2] \end{cases}$

- а) Не производя вычислений найдите $\int_{-\infty}^{+\infty} f(x) \, dx$
- б) Найдите $\mathbb{E}(X)$, $\mathbb{E}(X^2)$ и дисперсию $\mathrm{Var}(X)$
- в) Найдите $\mathbb{P}(X > 1.5)$
- r) Найдите функцию распределения F(x) и постройте её график
- 4. Совместное распределение случайных величин X и Y задано таблицей

	X = -2	X = 0	X = 2
Y = 1	0.2	0.3	0.1
Y = 2	0.1	0.2	a

- а) Определите неизвестную вероятность a.
- б) Найдите вероятности $\mathbb{P}(X > -1)$, $\mathbb{P}(X > Y)$
- в) Найдите математические ожидания $\mathbb{E}(X)$, $\mathbb{E}(X^2)$
- Γ) Найдите корреляцию Corr(X,Y)
- 5. Винни Пух собрался полакомиться медом, но ему необходимо принять решение, к каким пчелам отправиться за медом. Неправильные пчелы кусают каждого, кто лезет к ним на дерево с вероятностью 0.9, но их всего 10 штук. Правильные пчелы кусаются с вероятностью 0.1, но их 100 штук.
 - а) Определите математическое ожидание и дисперсию числа укусов Винни Пуха для каждого случая
 - б) Определите наиболее вероятное число укусов и его вероятность для каждого случая
 - в) К каким пчелам следует отправиться Винни Пуху, если он не может выдержать больше двух укусов?

11.2. Контрольная работа №1, 14.11.2012, решения

1. a)
$$\mathbb{P}(A) = 0.8 \cdot 0.3 + 0.7 \cdot 0.2 = 0.38$$

б)
$$\mathbb{P}(B) = 0.9$$

в)
$$\mathbb{P}(C|A) = \frac{0.3 \cdot 0.8}{0.38} = 0.632$$

в)
$$\mathbb{P}(C|A) = \frac{0.3 \cdot 0.8}{0.38} = 0.632$$

г) $\mathbb{P}(C|D) = \frac{0.3 \cdot (0.9 \cdot 0.8 + 0.1 \cdot 0.2)}{0.9 \cdot 0.38 + 0.1 \cdot (1 - 0.38)} = 0.55$

- 2. Это была задачка-неберучка!
- 3. a) 1

б)
$$\mathbb{E}(X) = 45/28 \approx 1.61, \mathbb{E}(X^2) = 93/35 \approx 2.66, \text{Var}(X) = 291/3920 \approx 0.07$$

B)
$$37/56 \approx 0.66$$

r)
$$F(x) = \begin{cases} 0, & x < 1 \\ \frac{x^3 - 1}{7}, & x \in [1; 2] \\ 1, & x > 1 \end{cases}$$

4. a)
$$a = 0.1$$

- 6) $\mathbb{P}(X > -1) = 0.7, \mathbb{P}(X > Y) = 0.1$
- B) $\mathbb{E}(X) = -0.2, \mathbb{E}(X^2) = 2$
- r) Corr(X, Y) = 0.117
- 5. a) Правильные: $\mathbb{E}(X) = 10$, Var(X) = 9, Неправильные: $\mathbb{E}(Y) = 9$, Var(Y) = 0.9
 - б) Наиболее вероятное число укусов равно математическому ожиданию
 - в) Лучше идти к неправильным пчёлам, так как $\mathbb{P}(X \leqslant 2) < \mathbb{P}(Y \leqslant 2)$.

11.3. Контрольная работа №2, 26.12.2012

Тест:

- 1. Зная распределение компонент случайного вектора всегда можно восстановить их совместное распределение. Да. Нет.
- 2. Пусть X длина наугад выловленного удава в сантиметрах, а Y в дециметрах. Коэффициент корреляции между этими величинами равен 0.1. Да. Нет.
- 3. Для любой случайной величины X справедливо неравенство

$$\mathbb{P}(|X - \mathbb{E}(X)| > 2\sqrt{\operatorname{Var}(X)}) \le 1/4$$

Да. Нет.

- 4. Сумма независимых нормальных случайных величин нормальна. Да. Нет.
- 5. Сумма n независимых равномерно распределенных на интервале (0,1) случайных величин асимптотически нормальна. Да. Нет.
- 6. Квадрат стандартной нормальной случайной величины имеет хи-квадрат распределение. Да. Нет.
- 7. Если ковариация компонент случайного двумерного нормального вектора равна нулю, то они независимы. Да. Нет.
- 8. Условная дисперсия всегда больше безусловной. Да. Нет.
- 9. Элементы выборки без возвращения из конечной генеральной совокупности независимы. Да. Нет.
- 10. Математическое ожидание выборочного среднего одинаково распределенных случайных величин не зависит от объема выборки. Да. Нет.
- 11. Конец света по техническим причинам переносится на показ работ по теории вероятности. Да. Может быть.

Ответы: Нет, Нет, Да, Да, Да, Да, Да, Нет, Нет (зависимы), Да (не зависит), Любой верный Задачи:

1. Купчиха Сосипатра Титовна очень любит чаёвничать. Её чаепитие продолжается случайное время S, имеющее равномерное распределение от 0 до 3 часов. Встретив Сосипатру Титовну в пассаже на Петровке, её подруга Олимпиада Карповна узнала, сколько длилось вчерашнее чаепитие Сосипатры Титовны. Решив, что такая продолжительность чаепития является максимальн возможной, Олимпиада Карповна устраивает чаепитие, продолжающееся случайное время T, имеющее равномерное распределение от 0 до S часов.

- а) Найдите совместную функцию плотности величин S и T
- б) Найдите вероятность $\mathbb{P}(S > T)$
- в) Найдите $\mathbb{E}(T^2)$
- 2. Для случайно выбранного домохозяйства случайные величины X и Y принимают значения, равные доле расходов на продукты питания и алкоголь плюс табак соответственно. Случайный вектор $(X,Y)^T$ хорошо описывается двумерным нормальным законом распределения с математиче ожиданием $(0.45,0.16)^T$ и ковариационной матрицей

$$C = 0.144 \cdot \left(\begin{array}{cc} 1 & -0.9 \\ -0.9 & 1 \end{array} \right)$$

Найдите:

- а) Вероятность того, что домохозяйство тратит более половины своих доходов на питание.
- б) Вероятность того, что домохозяйство тратит более половины своих доходов на алкогольную и табачную продукцию и продукты питания.
- в) Ожидаемую долю расходов на алкоголь и табак для домохозяйства, которое тратит на питание четверть своих доходов.
- г) Вероятность того, что домохозяйство из предыдущего пункта тратит более трети своих доходов на алкогольную и табачную продукцию.
- д) Для доли расходов на питание вычислите центральный момент 2013-го порядка.
- 3. Вычислите (или оцените) вероятность того, что по результатам 4000 бросаний симметричной монеты, частота выпадения герба будет отличаться от 0.5 не более, чем на 0.01. Решите задачу с помощью неравенства Чебышёва и с помощью ЦПТ.
- 4. Компания кабельного телевидения НВТ, Новая Вершина Телевидения, анализирует возможность присоединения к своей сети пригородов N-ска. Опросы показали, что в среднем каждые 3 из 10 семей жителей пригородов хотели бы стать абонентами сети. Стоимость работ, необходимых для организации сети в любом пригороде оценивается величиной 2 080 000 у.е. При подключении каждого пригорода НВТ надеется получить 1 000 000 у.е. в год от рекламодателей. Планируемая чистая прибыль от оплаты за кабельное телевидение одной семьей в год равна 120 у.е.

Каким должно быть минимальное количество семей в пригороде для того, чтобы с вероятностью 0.99 расходы на организацию сети в этом пригороде окупились за год?

5. Оценки за контрольную работу по теории вероятностей 6 случайно выбранных студентов оказались равны:

856739.

- а) Выпишите вариационный ряд
- б) Постройте график выборочной функции распределения
- в) Вычислите значение выборочного среднего и выборочной дисперсии.

11.4. Контрольная работа №2, 26.12.2012, решения

1. $f(s,t)=f(s)\cdot f(t|s)=\frac{1}{3s}$ при $0\leqslant t\leqslant s\leqslant 3$. Бонус тем, кто прочитал условие, $\mathbb{P}(S>T)=1$.

$$\mathbb{E}(T^2) = \int_0^3 \int_0^s \frac{t^2}{3s} \, dt \, ds = 1$$

- 2. a) $\mathbb{P}(X > 0.5) = \mathbb{P}(Z > 0.1317616) \approx 0.4475864, \sigma_X \approx 0.3794733$
 - 6) $\mathbb{P}(X+Y>0.5) = \mathbb{P}(Z>-0.6481812) \approx 0.7415661, \sigma_{X+Y}=0.1697056, \mathbb{E}(X+Y)=0.61$
 - в) X=0.25 при нормировке даёт $\tilde{X}=-0.5270463$. Получаем: $\mathbb{E}(\tilde{Y}\mid \tilde{X}=-0.5270463)=0.4743416$, $\mathrm{Var}(\tilde{Y}\mid \tilde{X}=-0.5270463)=0.19$. Значит $\mathbb{E}(Y\mid \tilde{X}=-0.5270463)=0.34$, $\mathrm{Var}(Y\mid \tilde{X}=-0.5270463)=0.02736$.

SHAUNT $\mathbb{E}(I \mid A = -0.5270405) = 0.54$, $\text{var}(I \mid A = -0.5270405) = 0.02$

- r) $\mathbb{P}(Y > 1/3 \mid \tilde{X} = -0.5270463) = \mathbb{P}(Z > -0.0403042) = 0.5160747$
- д) Ноль
- 3. $\mathbb{E}(\hat{p}) = 0.5$, $Var(\hat{p}) = 0.25/n = 1/16000$. По Чебышёву:

$$\mathbb{P}(|\hat{p} - 0.5| \le 0.01) \ge 1 - \frac{\operatorname{Var}(\hat{p})}{0.01^2} = \dots = 0.375$$

Используя нормальную аппроксимацию:

$$\mathbb{P}(|\hat{p} - 0.5| \le 0.01) = \mathbb{P}(|Z| \le 1.2649111) \approx 0.7940968$$

4. Обозначим N — количество подключенных абонентов, тогда $N \sim Bin(n,0.3)$. При больших n биномиальное распределение можно заменить на нормальное, $N \sim \mathcal{N}(0.3n,0.21n)$.

$$\mathbb{P}(120N > 1\,080\,000) = \mathbb{P}(N > 9000) = \mathbb{P}\left(Z > \frac{9000 - 0.3n}{\sqrt{0.21n}}\right) = 0.99$$

Из таблицы находим, что

$$\frac{9000 - 0.3n}{\sqrt{0.21n}} = -2.3263479$$

Решаем квадратное уравнение, находим корни, один — отрицательный, другой, $n \approx 30622$.

5. Вариационный ряд: 3, 5, 6, 7, 8, 9. $\bar{X}\approx 6.3333333, \frac{\sum (X_i-\bar{X})^2}{n-1}\approx 4.6666667, \frac{\sum (X_i-\bar{X})^2}{n}\approx 3.8888889$

11.5. Демо-версия зачёта

- 1. Двое подельников, Маша и Саша, украли десять миллионов евро. Через некоторое время Саша был найден убитым, а Маша была арестована. Из свидетельских показаний ясно следует, что Маша и Саша ругались по поводу делёжки. Защита и обвинение выясняют, убила ли Маша Сашу. Из статистических данных известно, что:
 - А 20% подельников-мужчин ругаются по поводу делёжки
 - В 20% оставшихся в живых подельников-мужчин ругаются по поводу делёжки
 - С 5% мужчин убивают
 - D 3% мужчин убивают их подельники
 - Е 90% убитых мужчин-подельников ругались по поводу делёжки

Располагая этой информацией,

- а) Найдите вероятность того, что Маша убила Сашу, если известно, что Маша и Саша ругались по поводу делёжки.
- б) Найдите вероятность того, что Маша убила Сашу, если известно, что Маша и Саша ругались по поводу делёжки, и Саша был найден убитым.
- 2. Маша подкидывает 300 игральных кубиков. Те, что выпали не на шестёрку, она перекидывает один раз. Обозначим буквой N количество шестёрок на всех кубиках после возможных перекидываний.
 - а) Найдите $\mathbb{E}(N)$, Var(N)
 - б) Какова примерно вероятность того, величина N лежит от 50 до 70?
 - в) Укажите любой интервал, в который величина N попадает с вероятностью 0.9
- 3. На лукоморье набегают волны. Кот Учёный заметил, что размер каждой волны, X_i , случайная величина, имеющая равномерное распределение от 0 до 1, а размеры волн независимы. Кот Учёный считает волну большой, если она больше предыдущей и следующей. Случайная величина R_i равна 1, если i-ая волна была большой, и 0 иначе.

- а) Найдите $\mathbb{P}(R_i=1)$, $\mathbb{E}(X_i)$
- б) Найдите $\mathbb{E}(X_i \mid R_i = 1)$
- в) Найдите $Cov(R_1, R_2)$, $Cov(R_1, R_3)$
- 4. Ермолай Лопахин решил приступить к вырубке вишневого сада. Однако выяснилось, что растут в нём не только вишни, но и яблони. Причём, по словам Любови Андреевны Раневской, среднее количество деревьев (а они периодически погибают от холода или жары, либо из семян вырастают новые) в саду распределено в соответствии с нормальным законом (X число яблонь, Y число вишен) со следующими параметрами:

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 25 \\ 125 \end{pmatrix}; \begin{pmatrix} 5 & 4 \\ 4 & 10 \end{pmatrix} \right)$$

- а) Найдите вероятность того, что Ермолаю Лопахину придется вырубить более 150 деревьев.
- б) Каково ожидаемое число подлежащих вырубке вишен, если известно, что предприимчивый и последовательный Лопахин, не затронув ни одного вишнёвого дерева, начал очистку сада с яблонь и все 35 яблонь уже вырубил? Какова при этом вероятность того, что Лопахину придется вырубить более 100 вишен?
- 5. Вопрос из интервью в Морган-Стэнли. Есть две независимых равномерных на отрезке [0;1] случайных величины, X и Y. Как их нужно преобразовать, чтобы корреляция между ними оказалась равна ρ ?

11.6. Зачёт, 15.01.2013

- 1. Самолёт упал либо в горах, либо на равнине. Вероятность того, что самолёт упал в горах, равна 0.75. Для поиска пропавшего самолёта выделено 3 вертолёта. Каждый вертолёт можно использовать только в одном месте. Как распределить имеющиеся вертолёты, если вероятность обнаружения пропавшего самолёта отдельно взятым вертолётом равна 0.6?
- 2. Совместная функция плотности величин X и Y имеет вид

$$f(x,y) = \frac{1}{x}e^{-x}$$
, при $0 < y < x$

- а) Найдите $\mathbb{P}\left(\frac{Y}{X} < 0.7\right)$
- б) Найдите $\mathbb{E}(X)$
- в) Являются ли X и Y независимыми?
- г) Как распределена величина Z = Y/X?
- 3. Величины X_1 , ..., X_n независимы и имеют биномиальное распределение, $X_i \sim Bin(10, p)$. Используя неравенство Чебышёва найдите наименьшее число t, чтобы выполнялось условие

$$\mathbb{P}(|\bar{X} - \mathbb{E}(\bar{X})| \ge t) \le 0.01$$

- 4. Допустим, что срок службы пылесоса имеет экспоненциальное распределение. В среднем один пылесос бесперебойно работает 10 лет. Завод предоставляет гарантию 7 лет на свои изделия. Предположим для простоты, что все потребители соблюдают условия гарантии.
 - а) Какой процент потребителей в среднем обращается за гарантийным ремонтом?

б) Какова вероятность того, что из 1000 потребителей за гарантийным ремонтом обратится более 55% покупателей?

Подсказка: $\ln 2 \approx 0.7$

- 5. Вася попадает мячом в корзину с вероятностью 0.2, Петя с вероятностью 0.25. Каждый из них сделал по 100 бросков мяча.
 - а) Какова вероятность того, что Петя попал на 10 раз больше Васи?
 - б) Какое минимальное количество бросков мяча нужно сделать каждому, чтобы вероятность, того, что Петя попал на 10 раз больше Васи достигла 0.99?

11.7. КоКо, компьютерная контрольная №3, 13.03.13

Продолжительность 1 час 10 минут, разрешено пользоваться конспектами, книжками, заготовками программ, нельзя общаться, использовать Интернет. Текст работы в группах с R:

- 1. Величины X и Y независимы. Величина X распределена нормально, $X \sim \mathcal{N}(4.4, 6.5)$, величина Y распределена экспоненциально, $Y \sim \exp(\lambda = 2.3)$. Используя симуляционный подход примерно посчитайте
 - a) $\mathbb{P}(X + Y > 5.2)$
 - 6) $\mathbb{E}(X/(X+6Y))$
 - \mathbf{B}) Var(XY)
 - r) Cov(XY, X/Y)
- 2. Загрузите данные по стоимости квартир в Москве, goo.gl/zL5JQ, в табличку с именем h. Обозначим буквой а ответ на первый вопрос первой задачи. Отберите индивидуальную выборку лично для себя, выполнив команды:

```
1 set.seed(round(100 * a)) # здесь "а" — это ответ на первый пункт первой задачи
2 h <- h[sample(1:nrow(h), 1000), ]
```

Постройте 90%-ый доверительный интервал для:

- а) Доли кирпичных домов, brick==1
- б) Доли кирпичных домов, brick==1, среди домов находящихся близко от метро, walk==1
- в) Разницы доли кирпичных домов среди домов расположенных близко и далеко от метро
- 3. Стенерируйте искусственные данные, выполнив команды:

```
set.seed(round(100 * a) + 42) # здесь "a" — это ответ на первый пункт первой задачи 2 x <- rexp(200, rate = 2)
```

Величины X_i независимы и имеют функцию плотности $f(x) = e^{b-xe^b}$ при x > 0.

- а) Оцените неизвестный параметр b
- б) Оцените дисперсию полученной оценки
- в) Постройте 90%-ый доверительный интервал для b
- г) Используя результат предыдущего пункта, на 10%-ом уровне значимости проверьте гипотезу H_0 : b=0.7 против альтернативной гипотезы H_a : $b\neq 0.7$.

11.8. Экзамен, 26.03.2013

1.	Вероятность	выигрыша	по лотерей:	ному биле	гу равна	0.05.	Вероятностн	того,	что	из	трёх
	купленных б	билетов рові	но два окаж	утся выигр	ышными	приг	мерно равна				

1) 0.002 2) 0.0025	3) 0.007	4) 0.1	5) 0.3	Ответ:
--------------------	----------	--------	--------	--------

2. Закон распределения случайной величины задан табличкой

$$x$$
 -1 0 1

$$\mathbb{P}(X=x) \quad 0.4 \quad 0.2 \quad ?$$

Дисперсия величины X, Var(X), равняется

	1	.) 0	2) 0.02	3) 0.3	4) 0.8	5) 2	Ответ:
--	---	------	---------	--------	--------	------	--------

3. Если f(x) — функция плотности, то $\int_{-\infty}^x f(u) \, du$ равен

$oxed{1}$ 0 $oxed{2}$ 1 $oxed{3}$ $\mathbb{E}(X)$ $oxed{4}$ $\mathrm{Var}(X)$ $oxed{5}$ $F(x)$ Ответ
--

4. События A и B называются независимыми, если

1) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$	Ответ:
$2) \mathbb{P}(A) \cdot \mathbb{P}(B) = \mathbb{P}(A \cap B)$	
3) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$	
$4) \mathbb{P}(A \cap B) = 0$	
5) нет верного	

5. Правильную монетку подбрасывают два раза. Рассмотрим два события: A — при втором броске выпала «решка», B — «орёл» выпал хотя бы один раз. Найдите $\mathbb{P}(A|B)$

1) 0 2) 1/3 3) 1/2 4) 2/3 5) 1 Other:

6. Есть пять случайных величин: $X \sim \chi^2_{10}, Y \sim F_{5,10}, T \sim t_{10}, Z \sim \mathcal{N}(0,1), W \sim \mathcal{N}(10,1).$ Какие из величин распределены симметрично относительно 0?

1) X, Y, Z 2) Z, W 3) Z, T	4) Z	5) X, Y	Ответ:
----------------------------	------	---------	--------

7. Известно, что $\mathbb{E}(X)=3$, $\mathrm{Var}(X)=1$, $\mathbb{E}(Y)=4$, $\mathrm{Var}(Y)=9$, $\mathbb{E}(XY)=13$, найдите $\mathrm{Cov}(X,Y)$

				,	· , ,
1) 0	2) -3	3) 18	4) 3	5) 1	Ответ:

8. Известно, что $\mathbb{E}(X)=3$, $\mathrm{Var}(X)=1$, $\mathbb{E}(Y)=4$, $\mathrm{Var}(Y)=9$, $\mathbb{E}(XY)=6$, найдите $\mathrm{Var}(2X+Y)$

1) 13	2) 7	3) 1	4) 17	5) верного ответа	нет	Ответ:
-------	------	------	-------	-------------------------	-----	--------

9. Если F(x) — это функция распределения, то $\lim_{x\to -\infty} F(x)$ равен

$oxed{1}$ 0 0.5 $oxed{3}$ 1 $oxed{4}$ $\mathbb{E}(X)$ $oxed{5}$ + ∞ Otbet:	1) 0	1 21 0 5	3)	\downarrow 4) $\mathbb{E}(X)$	$1.51 \pm \infty$	Ответ:
---	------	----------	----	---------------------------------	-------------------	--------

10. Если $X \sim \mathcal{N}(-4;1)$, то $\mathbb{P}(3X+571>0)$ примерно равна

1) 0	2) 0.5	3) 1	$4) + \infty$,	нет	Ответ:
				верного		
				ответа		

11. Про закон распределения величины X ничего не известно. Укажите самую точную оценку сверху для вероятности $\mathbb{P}(|X-\mathbb{E}(X)|>3\sqrt{\mathrm{Var}(X)})$

1) 0.(3)	2) 0.6(3)	3) 0.(1)	4) 1	верного	ет	Ответ:
				ответа		

12. Функция распределения, $F(x) = \mathbb{P}(X \leqslant x)$ может не являться

1)	2)	3) монотонно	4)	5)	Ответ:
непрерывной	непрерывной	неубывающей	ограниченной	неотрицательн	юй
	справа				

13. Ковариационной может быть матрица:

1)	2)	3)	4)	5)	Ответ:
$\left \begin{array}{cc} -1 & 1 \end{array} \right $	$\left(\begin{array}{cc} 1 & 0.5 \end{array}\right)$	$\left \begin{array}{ccc} 1 & -1 \end{array} \right $	$\begin{pmatrix} -1 & 1 \end{pmatrix}$		
$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\left \begin{array}{ccc} 1 & 2 \end{array} \right $	$\begin{bmatrix} -1 & 2 \end{bmatrix}$	$\left(\begin{array}{cc} 1 & -2 \end{array}\right)$	$\left \begin{array}{cc} -0.7 & 2 \end{array} \right $	

14. Если X и Y независимые случайные величины, то неверным может быть утверждение

1)
$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$$

2) $\mathbb{E}(X/Y)=\mathbb{E}(X)/\mathbb{E}(Y)$
3) $\mathbb{E}(XY)=\mathbb{E}(X)\cdot\mathbb{E}(Y)$
4) $\mathrm{Var}(X+Y)=\mathrm{Var}(X)+\mathrm{Var}(Y)$
5) $\mathrm{Cov}(X,Y)=0$

15. Известно, что $\mathrm{Cov}(X,Y)=0, \mathrm{Var}(X)=10, \mathrm{Var}(Y)=10.$ Неверным может быть утверждение

1) $Corr(X, Y) = 0$		Ответ:
$2)\operatorname{Corr}(X+a,Y+b)=0$		
3) $\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$		
4) $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(X)$	Var(Y)	
5) X и Y независимы		
	да величина $rac{Z_1\sqrt{n-2}}{\sqrt{\sum_{i=3}^n Z_i^2}}$ и	

3) $F_{1,n-2}$

1) $\mathcal{N}(0,1)$

 $2) t_n$

17. Количество страниц в книгах авторов X и Y распределено нормально с дисперсиями σ_X^2 и σ_Y^2 соответственно. Для тестирования гипотезы о равенстве дисперсий было выбрано n книг автора X и m книг — автора Y. Какое распределение имеет статистика, используемая в данном случае?

1) $\chi^2_{\min(m,n)}$ 2) $\chi^2_{\max(m,n)}$	3) $F_{m,n}$	4) $F_{m-1,n-1}$	5) $F_{m+1,n+1}$	Ответ:
---	--------------	------------------	------------------	--------

4) χ_n^2

5) t_{n-2}

Ответ:

18. Если величина X имеет χ^2_k -распределение, величина $Y-\chi^2_n$ -распределение, и они независимы, то дробь nX/(kY) имеет распределение

19. Смещённой оценкой математического ожидания по выборке независимых, одинаково распределення случайных величин X_1, X_2, X_3 является оценка

1) $(X_1 + X_2)/2$	Ответ:
2) $(X_1 + X_2 + X_3)/3$	
3) $0.7X_1 + 0.2X_2 + 0.1X_3$	
4) $0.3X_1 + 0.3X_2 + 0.3X_3$	
5) $X_1 + X_2 - X_3$	

20. Если величины X и Y независимы и равномерно распределены на [0;1], а F(x,y) — их совместная функция распределения, то F(0.5,3) равно

1) 0	2) 0.5	3) 1	4) 1.5	5) не	Ответ:
				существует	

21. Если X_i независимы и имеют нормальное распределение $\mathcal{N}(-1;2013)$, то $\sqrt{n}(1+\bar{X})/\hat{\sigma}$ имеет распределение

$\begin{array}{ c c c c c } \hline 1) \mathcal{N}(0;1) & & 2) t_n \\ \hline \end{array}$	3) χ_{n-1}^2	4) $\mathcal{N}(0; 2013/n)$	5) t_n	Ответ:
--	-------------------	-----------------------------	----------	--------

22. I	Последовательность (оценок $\hat{ heta}_1$,	$\hat{ heta}_2$,называется	состоятельной, если
-------	----------------------	--------------------------	-----------------------------	---------------------

1) $\mathbb{E}(\hat{ heta}_n) = heta$	Ответ:
2) $\operatorname{Var}(\hat{\theta}_n) \to 0$	
3) $\mathbb{P}(\hat{ heta}_n - heta > t) o 0$ для всех $t > 0$	
4) $\mathbb{E}(\hat{ heta}_n) o heta$	
5) $\operatorname{Var}(\hat{\theta}_n) \geqslant \operatorname{Var}(\hat{\theta}_{n+1})$	

23. Величины $X_1,...,X_5$ равномерны на отрезке [0;a]. Известно, что $\sum_{i=1}^5 x_i=25$. При использовании первого момента оценка методом моментов неизвестного a равна

24. При построении доверительного интервала для отношения дисперсий по двум независимым нормальным выборкам из n наблюдений каждая, используется статистика, имеющая распределение

1) $F_{n-1,n-1}$ 2) t_{n-1} 3) χ^2_{n-1} 4) χ^2_n 5) t_n Ответ:

25. Ботаники² строят доверительный интервал для математического ожидания числа иголок у ёжа. Количество иголок на одном еже предполагается нормально распределенным. Среднее число иголок у пойманных 100 ёжиков равно 1500, выборочная дисперсия — 400. На 5% уровне значимости какой примерно доверительный интервал должны построить ботаники?

1) [1499; 1501]	Ответ:
2) [1498; 1502]	
3) [1497; 1503]	
4) [1496; 1504]	
5) нет верного ответа	

26. Функция правдоподобия, построенная по случайной выборке $X_1,...,X_n$ из распределения с функцией плотности $f(x)=(\theta+1)x^\theta$ при $x\in[0;1]$ имеет вид

$1) (\theta + 1) x^{n\theta}$	$2) \sum (\theta + 1) x_i^{\theta}$	3) $(\theta+1)^{\sum x_i}$		$ \begin{array}{c} 5) \\ (\theta+1)^n \prod x_i^{\theta} \end{array} $	Ответ:
-------------------------------	-------------------------------------	----------------------------	--	--	--------

27. Если X_i независимы, $\mathbb{E}(X_i)=\mu$ и $\mathrm{Var}(X_i)=\sigma^2$, то математическое ожидание величины $Y=\sum_{i=1}^n(X_i-\bar{X})^2$ равно

1) $\hat{\sigma}^2$ 2) $(n-1)\sigma$	3) μ	4) σ^2	5) σ^2/n	Ответ:
--------------------------------------	----------	---------------	-----------------	--------

28. Если P-значение меньше уровня значимости α , то гипотеза H_0 : $\sigma=\sigma_0$

²В отличие от ботаников, зоологи точно знают, сколько иголок у ёжиков!

1) отвергается	Ответ:
2) не отвергается	
3) отвергается только если H_a : $\sigma \neq \sigma_0$	
$ $ 4) отвергается только если H_a : $\sigma < \sigma_0$	
5) недостаточно информации	

29. Если H_0 верна, то P-значение имеет распределение

1) $U[0;1]$ 2) $\mathcal{N}(0;1)$	$1) \qquad \boxed{3) t_n}$	4) t_{n-1}	5) χ_{n-1}^2	Ответ:
-----------------------------------	----------------------------	--------------	-------------------	--------

Экзамен по теории вероятностей! Суперигра!

DON'T PANIC

- 1. В группе учится 30 студентов, 20 девушек и 10 юношей. Они входят в аудиторию в случайном порядке. Рассчитайте вероятности событий:
 - а) Маша Петрова³ войдёт девятой по счёту
 - б) Девятый вошедший окажется девушкой
 - в) Перед Машей Петровой войдут ровно 5 юношей
 - r) Перед Машей Петровой войдут ровно 5 юношей, если известно, что Маша Петрова вошла девятой
 - д) Маша Петрова войдёт девятой по счёту, если известно, что перед ней вошло ровно 5 юношей
- 2. В поселке 2500 жителей. Каждый из них в среднем 6 раз в месяц ездит в город, выбирая день поездки независимо от других людей. Поезд ходит в город один раз в сутки.
 - а) Какой наименьшей вместимостью должен обладать поезд, чтобы он переполнялся в среднем не чаще 1 раза в 100 дней?
 - б) Сколько в среднем человек будет ехать в таком поезде, если предположить, что при переполнении часть людей полностью откажется от поездки?

Источник: экзамен РЭШ

- 3. Случайные величины $X_1, X_2, ..., X_n$ независимы и имеют пуассоновское распределение с неизвестным параметром λ .
 - а) С помощью метода максимального правдоподобия постройте оценки для λ и для $\exp(\lambda)$
 - б) Предположим, что исследователь не знает, чему равны X_i . Ему известно лишь, равно ли каждое из X_i нулю или нет. С помощью метода максимального правдоподобия постройте оценки для λ и для $\exp(\lambda)$. Всегда ли существуют предложенные оценки?
- 4. В таблице представлены данные по количеству пассажиров «Титаника», поделенные на группы по классу каюты:

Проверьте гипотезу о независимости шансов выжить от класса каюты.

 $^{^{3}}$ Маша Петрова — единственная и неподражаемая!

	1 класс	2 класс	3 класс
Погиб	122	167	528
Выжил	203	118	178

- 5. Перед Вами две внешне неотличимых монетки. Одна из них выпадает «орлом» вверх с вероятностью 0.7, другая с вероятностью 0.3. Вы имеете право на 4 подбрасывания. Перед каждым подбрасыванием Вы можете выбирать подбрасываемую монетку. За каждого выпавшего «орла» вы получаете 1 рубль.
 - а) Какова оптимальная стратегия?
 - б) Каков ожидаемый выигрыш при использовании оптимальной стратегии?

12. 2013-2014

12.1. Контрольная работа №1, 5.11.2013

- 1. Вероятность застать Васю на лекции зависит от того, пришли ли на лекцию Маша и Алена. Данная вероятность равна 0.18, если девушек нет; 0.9 если обе девушки пришли на лекцию; 0.54 если пришла только Маша и 0.36 если пришла только Алена. Маша и Алена посещают лекции независимо друг от друга с вероятностями 0.4 и 0.6 соответственно.
 - a) Определите вероятность того, что на лекции присутствует Алена, если в аудитории есть Вася.
 - б) Кого чаще можно застать на тех лекциях, на которых присутствует Вася: Машу или Алену?
- 2. Страховая компания страхует туристов, выезжающих за границу, от невыезда и наступления страхового медицинского случая за границей. Застраховано 100 туристов. Вероятность «невыезда» за границу случайно выбранного туриста 0.002, а страховые выплаты в этом случае 2000 у.е.; вероятность обращения за медицинской помощью за границей 0.01, а страховые выплаты 3000 у.е. Для каждого туриста рассмотрим две случайные величины: X_i , равную 1 при невыезде за границу и 0 иначе, и Y_i , равную 1 при обращении за медицинской помощью и нулю иначе. Обозначим $X = \sum_{i=1}^{100} X_i$ и $Y = \sum_{i=1}^{100} Y_i$.
 - а) Определите $\mathbb{P}(X=5)$, $\mathbb{E}(X)$, $\mathrm{Var}(X)$
 - б) Наиболее вероятное число не выехавших туристов.
 - в) Вычислите математическое ожидание и дисперсию величины совокупных страховых выплат

Подсказка: Число обращений в страховую компанию для каждого туриста может быть записано в виде $X_i + X_i Y_i$, так как медицинский страховой случай может наступить только, если турист выехал за границу. Случайные величины X_i и Y_i независимы.

3. Функция плотности случайной величины X имеет вид:

$$f(x) = \begin{cases} ce^{-x}, & x \geqslant 0 \\ ce^{x}, & x < 0 \end{cases}$$
 (6)

- а) Найдите $c, \mathbb{P}(X \in [\ln 0.5, \ln 4]), \mathbb{E}(X), \mathrm{Var}(X)$
- б) Моменты всех порядков случайной величины x

Подсказка:
$$\int_0^\infty x^n e^{-x} dx = n!$$

- 4. Известно, что $\mathbb{E}(X) = -1$, $\mathbb{E}(Y) = 1$, $\mathrm{Var}(X) = 9$, $\mathrm{Var}(Y) = 4$, $\mathrm{Corr}(X,Y) = 1$. Найдите
 - a) $\mathbb{E}(Y 2X 3)$, Var(Y 2X 3)
 - б) Corr(Y 2X 3, X)
 - в) Можно ли выразить Y через X? Если да, то запишите уравнение связи.
- 5. Совместное распределение доходов акций двух компаний Y и X задано в виде таблицы

$$X = -1 X = 0 X = 1$$

$$Y = -1 0.1 0.2 0.2$$

$$Y = 1 0.2 0.1 0.2$$

- а) Найдите частные распределения случайных величин X и Y
- б) Найдите Cov(X, Y)
- в) Можно ли утверждать, что случайные величины X и Y зависимы?
- r) Найдите условное распределение случайной величины X при условии Y=-1
- д) Найдите условное математическое ожидание $\mathbb{E}(X\mid Y=-1)$

12.2. Контрольная работа №1, 5.11.2013, решения

- 1. Введём обозначения:
 - $\mathbb{P}(\mathsf{B}|\mathsf{A}^c\cap\mathsf{M}^c)=0.18$ Вася пришёл, а девушки нет
 - $\mathbb{P}(\mathsf{B}|\mathsf{A}\cap\mathsf{M})=0.9$ пришли и Вася, и девушки
 - $\mathbb{P}(\mathsf{B}|\mathsf{A}^c\cap\mathsf{M})=0.54$ Вася пришёл, если пришла только Маша
 - $\mathbb{P}(\mathsf{B}|\mathsf{A}\cap\mathsf{M}^c)=0.36$ Вася пришёл, если пришла только Алёна
 - $\mathbb{P}(M) = 0.4 M$ аша пришла на лекцию
 - $\mathbb{P}(A) = 0.6 A$ лёна пришла на лекцию
 - а) Используя формулы Байеса и полной вероятности, получим:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

В числителе:

$$\mathbb{P}(\mathbf{B}|\mathbf{A}) \cdot \mathbb{P}(\mathbf{A}) = P(\mathbf{B}|\mathbf{A} \cap \mathbf{M}) \cdot \mathbb{P}(\mathbf{A}) \cdot \mathbb{P}(\mathbf{M}) + \mathbb{P}(\mathbf{B}|\mathbf{A} \cap \mathbf{M}^c) \cdot \mathbb{P}(\mathbf{A}) = \cdot \mathbb{P}(\mathbf{M}^c)$$
$$= 0.9 \cdot 0.4 \cdot 0.6 + 0.36 \cdot 0.6 \cdot 0.6 = 0.3456$$

А в знаменателе:

$$\begin{split} \mathbb{P}(\mathbf{B}|\mathbf{A}^{c} \cap \mathbf{M}^{c}) \cdot \mathbb{P}(\mathbf{A}^{c} \cap \mathbf{M}^{c}) + \mathbb{P}(\mathbf{B}|\mathbf{A} \cap \mathbf{M}) \cdot \mathbb{P}(\mathbf{A} \cap \mathbf{M}) + \mathbb{P}(\mathbf{B}|\mathbf{A}^{c} \cap \mathbf{M}) \cdot \mathbb{P}(\mathbf{A}^{c} \cap \mathbf{M}) + \\ + \mathbb{P}(\mathbf{B}|\mathbf{A} \cap \mathbf{M}^{c}) \cdot \mathbb{P}(\mathbf{A} \cap \mathbf{M}^{c}) &= 0.18 \cdot 0.6 \cdot 0.4 + 0.9 \cdot 0.4 \cdot 0.6 + \\ &\quad + 0.54 \cdot 0.4 \cdot 0.4 + 0.36 \cdot 0.6 \cdot 0.6 = 0.4752 \end{split}$$

Ответ:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{0.3456}{0.4752} = 0.(72)$$

б) Необходимо найти

$$\mathbb{P}(M|B) = \frac{\mathbb{P}(M \cap B)}{\mathbb{P}(B)}$$

Знаменатель этой дроби посчитан в предыдущем пункте, посчитаем числитель:

$$\mathbb{P}(\mathbf{M} \cap \mathbf{B}) = \mathbb{P}(\mathbf{B}|\mathbf{M}) \cdot \mathbb{P}(\mathbf{M}) = P(\mathbf{B}|\mathbf{M} \cap \mathbf{A}) \cdot \mathbb{P}(\mathbf{A}) \cdot \mathbb{P}(\mathbf{M}) + \\ + \mathbb{P}(\mathbf{B}|\mathbf{A}^c \cap \mathbf{M}) \cdot \mathbb{P}(\mathbf{A}^c) \cdot \mathbb{P}(\mathbf{M}) = 0.9 \cdot 0.4 \cdot 0.6 + 0.54 \cdot 0.4 \cdot 0.4 = 0.3024$$

Ответ:

$$\mathbb{P}(M|B) = \frac{\mathbb{P}(M \cap B)}{\mathbb{P}(B)} = \frac{0.3024}{0.4752} = 0.(63)$$

Если Вася на лекции, вероятность застать на ней Алёну выше.

2. $\mathbb{P}(X=5)=C_{100}^50.002^50.998^{95}, \mathbb{E}(X)=0.2, \mathrm{Var}(X)=0.2\cdot0.998,$ наиболее вероятно событие X=0

3.
$$c = 1/2, P = 5/8, \mathbb{E}(X) = 0, \text{Var}(X) = 2, \mathbb{E}(X^{2k+1}) = 0, \mathbb{E}(X^{2k}) = (2k)!$$

4. a)
$$\mathbb{E}(Y - 2X - 3) = \mathbb{E}(Y) - 2\mathbb{E}(X) - 3 = 0$$

 $\text{Var}(Y - 2X - 3) = \text{Var}(Y) + 4\text{Var}(X) - 2\text{Cov}(Y, 2X) = 16$
 $\text{Cov}(X, Y) = \text{Corr}(X, Y) \cdot \sqrt{\text{Var}(X) \cdot \text{Var}(Y)} = 6$

- б) $\operatorname{Corr}(Y-2X-3,X)=\frac{\operatorname{Cov}(Y,X)-2\operatorname{Var}(X)}{\sqrt{\operatorname{Var}(Y-2X-3)\cdot\operatorname{Var}(X)}}=-1$, или проще: можно было заметить, что случайные величины линейно связаны.
- в) Корреляция равна 1, значит, есть линейная взаимосвязь между переменными. Пусть Y+aX=b, тогда $\mathrm{Var}(Y+aX)=0$, $\mathbb{E}(Y)=-a+b=1$. Решая уравнения, находим, что a=-2/3, b=1/3.
- 5. а) Таблицы распределения имеют вид:

б)

$$\begin{aligned} \text{Cov}(X,Y) &= \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = (-1)\cdot(-1)\cdot0.1 + (-1)\cdot0\cdot0.2 + \\ &+ (-1)\cdot1\cdot0.2 + 1\cdot(-1)\cdot0.2 + 1\cdot0\cdot0.1 + 1\cdot1\cdot0.1 - 0.1\cdot0 = -0.1 \end{aligned}$$

в) Да, поскольку если случайные величины независимы, то их ковариция равна нулю.

г) Условное распределение:

$$\frac{X|Y=-1 \quad -1 \quad 0 \quad 1}{\mathbb{P}(\cdot) \qquad 0.2 \quad 0.4 \quad 0.4}$$
 д)
$$\overline{\mathbb{E}(X|Y=-1)=-1\cdot 0.2+0\cdot 0.4+1\cdot 0.4=0.2}$$

12.3. Контрольная работа №1, і-поток, 15.11.2013

Часть 1

- 1. В жюри три человека, они должны одобрить или не одобрить конкурсанта. Два члена жюри независимо друг от друга одобряют конкурсанта с одинаковой вероятностью p. Третий член жюри для вынесения решения бросает правильную монету. Окончательное решение выносится большинством голосов.
 - а) С какой вероятностью жюри одобрит конкурсанта?
 - б) Что выгоднее для конкурсанта: чтобы решение принимало данное жюри, или чтобы решение принимал один человек, одобряющий с вероятностью p?
- 2. Вероятность застать Васю на лекции зависит от того, пришли ли на лекцию Маша и Алена. Данная вероятность равна p, если девушек нет; 5p если обе девушки пришли на лекцию; 3p если пришла только Маша и 2p если пришла только Алена. Маша и Алена посещают лекции независимо друг от друга с вероятностями 0.6 и 0.3 соответственно.
 - a) Определите вероятность того, что на лекции присутствует Алена, если в аудитории есть Вася.
 - б) Кого чаще можно застать на тех лекциях, на которых присутствует Вася: Машу или Алену?
 - в) При каком значении p Вася посещает половину всех лекций?
- 3. Страховая компания страхует туристов, выезжающих за границу, от невыезда и наступления страхового медицинского случая за границей. Застраховано 100 туристов. Вероятность «невыезда» за границу случайно выбранного туриста 0.002, а страховые выплаты в этом случае 2000 у.е.; вероятность обращения за медицинской помощью за границей 0.01, а страховые выплаты 3000 у.е.
 - а) Определите вероятность того, что ровно пятеро туристов не смогут выехать за границу.
 - б) Найдите математическое ожидание, дисперсию и наиболее вероятное число не выехавших туристов.
 - в) Вычислите математическое ожидание и дисперсию величины совокупных страховых выплат
 - г) Вычислите ковариацию между выплатами по двум видам страхования.
- 4. Известно, что $\mathbb{E}(X) = -1$, $\mathbb{E}(Y) = 1$, $\mathrm{Var}(X) = 9$, $\mathrm{Var}(Y) = 4$, $\mathrm{Corr}(X,Y) = 1$. Найдите
 - a) $\mathbb{E}(Y 2X 3)$, Var(Y 2X 3)
 - б) Corr(Y 2X 3, X)
 - в) Можно ли выразить Y через X? Если да, то запишите уравнение связи.

5. Совместное распределение доходов акций двух компаний Y и X задано в виде таблицы

	X = -1	X = 0	X = 1
Y = -1	0.1	0.2	0.2
Y = 1	0.2	0.1	0.2

Найдите:

- а) Частные распределения случайных величин X и Y
- G) $\mathsf{Cov}(X,Y)$
- в) Можно ли утверждать, что случайные величины X и Y зависимы?
- г) У инвестора портфель, в котором доля акций X составляет α , а доля акций $Y-(1-\alpha)$. Каковы должны быть доли, чтобы риск портфеля (дисперсия дохода) был бы минимальным?
- д) Условное распределение случайной величины X при условии Y=-1
- е) Условное математическое ожидание $\mathbb{E}(X \mid Y = -1)$
- 6. Докажите, что из сходимости в среднем порядка s>0 следует сходимость по вероятности.

Часть 2

- 1. Муравей находится внутри спичечного коробка, в вершине A. В противоположной вершине B есть маленькая дырочка, через которую муравей сможет выбраться на поверхность. В вершине C, соседней с вершиной A, лежит крупинка сахара. Муравей ползает только по рёбрам коробка, выбирая каждый раз равновероятно одно из доступных в вершине рёбер наугад. Например, он может поползти обратно.
 - а) Какова вероятность того, что муравей найдет крупинку сахара до того, как выберется?
 - б) Сколько в среднем перемещений понадобится муравью, чтобы выбраться?
 - в) Какова дисперсия количества перемещений, которые понадобятся муравью, чтобы выбраться?
- 2. В очереди стояло 20 человек, когда касса внезапно закрылась. Поэтому 10 случайных людей из очереди решили покинуть очередь. В результате этого очередь оказалась разбита на случайное число кусков X. Найдите $\mathbb{E}(X)$, $\mathrm{Var}(X)$.
- 3. Предположим, что три возможных генотипа аа, Аа и АА изначально встречаются с частотами p_1, p_2 и p_3 , где $p_1+p_2+p_3=1$. Ген не сцеплен с полом, поэтому частоты p_1, p_2 и p_3 одинаковы для мужчин и для женщин.
 - а) У семейных пар из этой популяции рождаются дети. Назовём этих детей первым поколением. Каковы частоты для трёх возможных генотипов в первом поколении?
 - б) У семейных пар первого поколения тоже рождаются дети. Назовём этих детей вторым поколением. Каковы частоты для трёх возможных генотипов во втором поколении?
 - в) Каковы частоты для трёх возможных генотипов в n-ном поколении?
 - г) Заметив явную особенность предыдущего ответа сформулируйте теорему о равновесии Харди-Вайнберга. Прокомментируйте утверждение: «Любой рецессивный ген со временем исчезнет».

- 4. Световая волна может быть разложена на две поляризованные составляющие, вертикальную и горизонтальную. Поэтому состояние отдельного поляризованного фотона может быть описано углом α . Поляризационный фильтр описывается углом поворота θ . Фотон в состоянии α задерживается поляризационным фильтром с параметром θ с вероятностью $p=\sin^2(\alpha-\theta)$ или проходит сквозь фильтр с вероятностью 1-p, переходя при этом в состояние θ .
 - а) Какова вероятность того, что поляризованный фотон в состоянии α пройдёт сквозь фильтр с параметром $\theta=0$?
 - б) Имеется два фильтра и поляризованный фотон в состоянии α . Первый фильтр с $\theta=0$, второй с $\theta=\pi/2$. Какова вероятность того, что фотон пройдет через оба фильтра?
 - в) Имеется три фильтра и поляризованный фотон в состоянии α . Первый фильтр с $\theta=0$, второй с $\theta=\beta$, третий с $\theta=\pi/2$. Какова вероятность того, что фотон пройдет через все три фильтра? При каких α и β она будет максимальной и чему при этом она будет равна?
 - г) Объясните следующий фокус. Фокусник берет два специальных стекла и видно, что свет сквозь них не проходит. Фокусник ставит между двумя стёклами третье, и свет начинает проходить через три стекла.

Некоторые ответы:

- 1. $\mathbb{P}(A) = 2/3$
- 2. $\mathbb{E}(X) = 5.5$

12.4. Контрольная работа №1, і-поток, 15.11.2013, решения

Часть 1

1. а) Запишем все благоприятные исходы в таблицу:

Исход	Вероятност
000	$p^2 \cdot \frac{1}{2}$
ООН	$p^2 \cdot \frac{1}{2}$
ОНО	$p(1-p)\frac{1}{2}$
НОО	$(1-p)p^{\frac{1}{2}}$

Нас устраивает любой из этих исходов, так что

$$\mathbb{P}(\text{жюри одобрит конкурсанта}) = p^2 \cdot \frac{1}{2} \cdot 2 + p(1-p)\frac{1}{2} \cdot 2 = p$$

- б) Исходя из результата предыдущего пункта, получаем, что конкурсанту безразлично.
- 2. Введём обозначения:
 - $\mathbb{P}(\mathsf{B}|\mathsf{A}^c\cap\mathsf{M}^c)=p$ Вася пришёл, а девушки нет
 - $\mathbb{P}(\mathsf{B}|\mathsf{A}\cap\mathsf{M})=5p$ пришли и Вася, и девушки

 $^{^4{\}rm Ha}$ самом деле внутренний мир фотона гораздо разнообразнее.

- $\mathbb{P}(\mathsf{B}|\mathsf{A}^c\cap\mathsf{M})=3p$ Вася пришёл, если пришла только Маша
- $\mathbb{P}(\mathrm{B}|\mathrm{A}\cap\mathrm{M}^c)=2p$ Вася пришёл, если пришла только Алёна
- $\mathbb{P}(\mathbf{M}) = 0.6$ Маша пришла на лекцию
- $\mathbb{P}(A) = 0.3 A$ лёна пришла на лекцию
- а) По теореме умножения:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Выпишем числитель:

$$\mathbb{P}(\mathbf{B}|\mathbf{A}) \cdot \mathbb{P}(\mathbf{A}) = P(\mathbf{B}|\mathbf{A} \cap \mathbf{M}) \cdot \mathbb{P}(\mathbf{A}) \cdot \mathbb{P}(\mathbf{M}) + \mathbb{P}(\mathbf{B}|\mathbf{A} \cap \mathbf{M}^c) \cdot \mathbb{P}(\mathbf{A}) = \cdot \mathbb{P}(\mathbf{M}^c)$$
$$= 5p \cdot 0.6 \cdot 0.3 \cdot 0.6 + 2p0.36 \cdot 0.4 \cdot 0.3 = 1.14p$$

И знаменатель:

$$\mathbb{P}(\mathbf{B}|\mathbf{A}^c \cap \mathbf{M}^c) \cdot \mathbb{P}(\mathbf{A}^c \cap \mathbf{M}^c) + \mathbb{P}(\mathbf{B}|\mathbf{A} \cap \mathbf{M}) \cdot \mathbb{P}(\mathbf{A} \cap \mathbf{M}) + \mathbb{P}(\mathbf{B}|\mathbf{A}^c \cap \mathbf{M}) \cdot \mathbb{P}(\mathbf{A}^c \cap \mathbf{M}) + \\ + \mathbb{P}(\mathbf{B}|\mathbf{A} \cap \mathbf{M}^c) \cdot \mathbb{P}(\mathbf{A} \cap \mathbf{M}^c) = p \cdot 0.4 \cdot 0.7 + 5p \cdot 0.6 \cdot 0.3 + \\ + 3p \cdot 0.6 \cdot 0.7 + 2p \cdot 0.4 \cdot 0.3 = 2.68p$$

Ответ:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{1.14p}{2.68p} \approx 0.43$$

б) Теперь необходимо найти

$$\mathbb{P}(M|B) = \frac{\mathbb{P}(M \cap B)}{\mathbb{P}(B)}$$

Знаменатель этой дроби посчитан в предыдущем пункте, посчитаем числитель:

$$\mathbb{P}(M \cap B) = \mathbb{P}(B|M) \cdot \mathbb{P}(M) = P(B|M \cap A) \cdot \mathbb{P}(A) \cdot \mathbb{P}(M) + \\ + \mathbb{P}(B|A^c \cap M) \cdot \mathbb{P}(A^c) \cdot \mathbb{P}(M) = 5p \cdot 0.6 \cdot 0.3 + 3p \cdot 0.6 \cdot 0.7 = 2.16p$$

Ответ:

$$\mathbb{P}(M|B) = \frac{\mathbb{P}(M \cap B)}{\mathbb{P}(B)} = \frac{2.16p}{2.68p} \approx 0.8$$

Если Вася на лекции, вероятность застать на ней Машу выше.

- B) $\mathbb{P}(B) = 0.5, \mathbb{P}(B) = 2.68p \Rightarrow p \approx 0.19$
- 3. а) Перед нами биномиальное распределение! Пусть X случайная величина, число туристов, которые не выехали за границу. Тогда:

$$\mathbb{P}(X=5) = C_{100}^5 \cdot 0.002^5 \cdot 0.998^{95}$$

- $\bullet \ \mathbb{E}(X) = 2$
 - $Var(X) = 0.2 \cdot 0.998$
 - Наиболее вероятное число невыехавших -0.
- в) Пусть случайная величина S_i обозначает страховые выплаты, которые может получить один турист. Она может принимать значение 0, если турист выехал за гранцу и не обратился за медицинской помощью, 2000, когда он не выехал и 3000, когда турист выехал за границу и обратился за медицинской помощью. Тогда S_i распределена следующим образом:

$$\frac{s_i}{} 0 2000 3000$$

$$\mathbb{P}(S_i = s_i) 0.998 \cdot 0.99 0.002 0.998 \cdot 0.01$$

•
$$\mathbb{E}(S_i) = 2000 \cdot 0.002 + 3000 \cdot 0.998 \cdot 0.01 = 33.94 \Rightarrow \mathbb{E}(S) = 3394$$

•
$$\mathbb{E}(S_i^2) = 2000^2 \cdot 0.002 + 3000^2 \cdot 0.998 \cdot 0.01 = 97820$$

•
$$Var(S_i) = 97820 - 33.94^2 = 96668 \Rightarrow Var(S) = 9666800$$

r)

4. a)
$$\mathbb{E}(Y-2X-3)=\mathbb{E}(Y)-2\mathbb{E}(X)-3=0$$

$$\operatorname{Var}(Y-2X-3)=\operatorname{Var}(Y)+4\operatorname{Var}(X)-2\operatorname{Cov}(Y,2X)=16$$

$$\operatorname{Cov}(X,Y)=\operatorname{Corr}(X,Y)\cdot\sqrt{\operatorname{Var}(X)\cdot\operatorname{Var}(Y)}=6$$

- б) $\operatorname{Corr}(Y-2X-3,X)=\frac{\operatorname{Cov}(Y,X)-2\operatorname{Var}(X)}{\sqrt{\operatorname{Var}(Y-2X-3)\cdot\operatorname{Var}(X)}}=-1$, или проще: можно было заметить, что случайные величины линейно связаны.
- в) Корреляция равна 1, значит, есть линейная взаимосвязь между переменными. Пусть Y+aX=b, тогда $\mathrm{Var}(Y+aX)=0$, $\mathbb{E}(Y)=-a+b=1$. Решая уравнения, находим, что a=-2/3, b=1/3.
- 5. а) Частные распределения:

б)

$$\begin{aligned} \operatorname{Cov}(X,Y) &= \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = (-1)\cdot(-1)\cdot0.1 + (-1)\cdot1\cdot0.2 + 1\cdot(-1)\cdot0.2 + \\ &+ 1\cdot1\cdot0.2 - ((-1)\cdot0.3 + 1\cdot0.4)(-1\cdot0.5 + 1\cdot0.5) = -0.1 \end{aligned}$$

- в) Да, так как $\mathrm{Cov}(X,Y) \neq 0$
- г) Необходимо минимизировать дисперсию дохода:

$$\operatorname{Var}(\alpha X + (1 - \alpha)Y) \to \min_{\alpha}$$

$$\begin{aligned} \operatorname{Var}(\alpha X + (1-\alpha)Y) &= \alpha^2 \operatorname{Var}(X) + (1-\alpha)^2 \operatorname{Var}(Y) + 2\alpha(1-\alpha) \operatorname{Cov}(X,Y) = \\ &= 0.69\alpha^2 + (1-\alpha)^2 - 0.2\alpha(1-\alpha) \to \min_{\alpha} \\ &\frac{\partial \operatorname{Var}(\alpha X + (1-\alpha)Y)}{\partial \alpha} = 2 \cdot 0.69\alpha - 2(1-\alpha) - 0.2 + 0.4\alpha = 0 \Rightarrow \alpha \approx 0.58 \end{aligned}$$

д) Условное распределение:

12.5. Контрольная работа №2, і-поток, 16-28.12.2013

Заочная R-часть

- 1. Случайная величина X имеет t-распределение с 5-тью степенями свободы.
 - а) На одном графике постройте функцию плотности случайной величины X и функцию плотности стандартного нормального распределения.
 - б) На одном графике постройте функцию распределения случайной величины X и функцию распределения стандартной нормальной случайной величины.
 - в) Постройте график зависимости вероятности $\mathbb{P}(a < X < a + 10)$ от a. Если возможно, найдите такое число a, при котором эта вероятность равна 0.8.
 - г) Постройте график зависимости вероятности $\mathbb{P}(b < X < 2b)$ от b при b > 0. Если возможно, найдите такое число b, при котором эта вероятность равна 0.2.
 - д) С помощью 10^6 симуляций оцените $\mathbb{P}(X^3+X>3)$, $\mathbb{E}(1/(X^2+3))$, $\mathrm{Var}(1/(X^2+3))$.
 - е) На одном графике постройте гистограмму получившейся случайной выборки из 10^6 значений и функцию плотности X. Для сравнимости гистограммы и функции плотности масштаб гистограммы нужно выбрать так, чтобы площадь под ней равнялась единице.
 - ж) С помощью этой же случайной выборки найдите самый короткий интервал, куда $1/(X^2+1)$ попадает с вероятностью 0.9.
- 2. Слагаемые X_i независимы и экспоненциально распределены с параметром $\lambda=2$. Обозначим сумму буквой S_n , т.е. $S_n=X_1+\ldots+X_n$.

Для
$$n = 5$$
, $n = 10$, $n = 50$, $n = 100$:

- а) Сгенерируйте случайную выборку из 10^4 значений S_n .
- б) Постройте выборочную функцию распределения S_n .
- в) Найдите выборочное среднее и выборочную дисперсию S_n . Сравните их с настоящим математическим ожиданием $\mathbb{E}(S_n)$ и настоящей дисперсией $\mathrm{Var}(S_n)$.
- г) На одном графике в общем масштабе постройте гистограмму для S_n и функцию плотности нормально распределенной случайной величины с математическим ожиданием, равным $\mathbb{E}(S_n)$, и дисперсией, равной $\mathrm{Var}(S_n)$.
- д) Оцените по построенной случайной выборке вероятность.

$$\mathbb{P}(S_n \in [0.5\sqrt{\operatorname{Var}(S_n)}; 2\sqrt{\operatorname{Var}(S_n)}])$$

- е) Оцените ту же вероятность, используя нормальную аппроксимацию.
- ж) Сравните две полученные оценки вероятности между собой.
- 3. Вектор (X,Y) имеет совместное нормальное распределение, $\mathbb{E}(X)=\mathbb{E}(Y)=0$, $\mathrm{Var}(X)=1$, $\mathrm{Var}(Y)=9$, $\mathrm{Corr}(X,Y)=\rho$.

Для
$$\rho = -0.9$$
, $\rho = 0$, $\rho = 0.5$:

- а) Найдите ковариационную матрицу вектора (X,Y), найдите её собственные числа и собственные векторы
- б) Постройте график совместной функции плотности
- в) Найдите $\mathbb{P}(X \in [0,1], Y \in [-2,1])$
- г) Сгенерируйте случайную выборку из 10^3 пар значений (X_i, Y_i)

- д) Найдите выборочную ковариацию и выборочную корреляцию между X_i и Y_i , сравните их с истинными ковариацией и корреляцией
- е) На диаграмме рассеяния дополнительно постройте линии уровня совместной функции плотности f(x,y)
- ж) На диаграмме рассеяния дополнительно постройте собственные векторы с длинной равной корню из соответствующего собственного значения. Каков геометрический смысл собственных векторов ковариационной матрицы?
- з) Оцените $\mathbb{P}(Y>X+1)$ двумя способами: с помощью имеющейся случайной выборки и численно взяв интеграл от совместной функции плотности
- * Необязательная задача. Вдоль края стоянки идёт неразмеченная парковка длиной 100 метров. Машины приезжают по очереди и паркуются перпендикулярно тротуару на случайное место, выбираемое равномерно из возможных для парковки. Водитель считает место возможным для парковки, если расстояние до машин слева и справа не менее 50 сантиметров. Ширина автомобиля 1.7 метра.

Случайная величина N — количество машин, которые смогут припарковаться на данной парковке. С помощью 10^6 симуляций ответьте на вопросы:

- а) Сколько машин в среднем умещается на парковке?
- б) Сколько места при случайной парковке пропадает в среднем «впустую» по сравнению с максимально аккуратной «размеченной» парковкой?
- в) Чему равна дисперсия величины N?
- г) Найдите самый короткий интервал, в который N попадает с вероятностью 0.8.
- д) Похоже ли распределение N на биномиальное? Для ответа на этот вопрос постройте на одном графике выборочную гистограмму для N и гистограмму истинных вероятностей для биномиального распределения со средним и дисперсией равным оценкам среднего и дисперсии для N.

Требования к оформлению домашнего задания:

- 1. Сдается в распечатанном виде в срок. Отмазки в духе «инопланетяне украли принтер утром, когда всё уже было готово» принимаются только вместе с видео-записью гуманоидов, похищающих принтер.
- 2. Обязательно использование языка R и пакета knitr с автоматическим созданием pdf-файла из Rnw-файла. Работы со шрифтом Times New Roman будут торжественно сожжены на кафедре до проверки! Код всех команд должен быть открыт для проверки.
- 3. Работа должна быть написана на русском языке. Do You speak English? Sprechen Sie Deutsch? Parlez-Vous Français?
- 4. На графиках должны быть подписаны оси. Convincing, http://xkcd.com/833/.
- 5. Обязательно в работе должны быть указаны: фамилия, имя, номер группы, e-mail. Необязательно номер кредитной карточки с cvv кодом и сроком действия.

Очная часть, 25.12.2013

Самая важная формула:

$$\frac{1}{\left(\sqrt{2\pi}\right)^n \det(C)} \exp\left(-\frac{1}{2}(x-\mu)'C^{-1}(x-\mu)\right)$$

Неравенство Берри-Эссеена:

$$|F_n(x) - \Phi(x)| \le \frac{C_0 \mathbb{E}|X_1 - \mu|^3}{\sigma^3 \sqrt{n}}, \ 0.4 < C_0 < 0.48$$

- 1. Складываются n=120 чисел, каждое из которых округлено с точностью до 0.1. Предположим, что ошибки округления независимы и равномерно распределены в интервале (-0.05, 0.05).
 - а) Найдите пределы, в которых с вероятностью не меньшей 0.98 лежит суммарная ошибка.
 - б) Вычислите максимальную погрешность, с которой истинная вероятность попадания в найденный интервал суммарной ошибки округления отличается от 0.98.

Подсказка: Следует искать симметричный относительно нуля интервал.

- 2. Театр имеет два различных входа. Около каждого из входов имеется свой гардероб. Эти гардеробы ничем не отличаются. На спектакль приходит 1000 зрителей. Предположим, что зрители приходят поодиночке и выбирают входы равновероятно.
 - а) Сколько мест должно быть в каждом из гардеробов для того, чтобы в среднем в 99 случаях из 100 все зрители могли раздеться в гардеробе того входа, через который они вошли?
 - б) Предположим, что в каждом гардеробе ровно 500 мест. Найдите математическое ожидание числа зрителей, которым придется перейти в другой гардероб.
- 3. Рост в сантиметрах, X, и вес в килограммах, Y, взрослого мужчины является двумерным нормальным вектором Z=(X,Y) с математическим ожиданием $\mathbb{E}(Z)=(175,74)$ и ковариационно матрицей

$$\operatorname{Var}(Z) = \begin{pmatrix} 49 & 28 \\ 28 & 36 \end{pmatrix}$$

Лишний вес характеризуется случайной величиной U=X-Y. Считается, что человек страдает избыточным весом, если U<90.

- а) Определите процент мужчин, чей рост отклоняется от среднего более, чем на 10 см.
- б) Определите процент мужчин, чей вес отклоняется от среднего более, чем на 10 кг.
- в) Каково распределение величины U ? Выпишите функцию плотности
- г) Определите вероятность того, что человек страдает избыточным весом
- д) Каково условное распределение веса при фиксированном росте? Выпишите функцию плотности
- е) Какова вероятность того, что при росте 180 см человек будет обладать весом, меньшим $60~\mathrm{kr}$?

- 4. Аня, Боря и Вова сдают устный экзамен. Экзамен принимают два преподавателя. Время ответа каждого студента экспоненциальная случайная величина со средним в 20 минут. Аня и Боря начали отвечать одновременно первыми. Вова начнет отвечать, как только кто-то из них освободится. Длительности ответов независимы.
 - а) Сколько времени пройдет в среднем от начала экзамена до первого ответившего?
 - б) Какова вероятность того, что Аня закончит отвечать позже всех?
 - в) Сколько в среднем времени пройдет от начала экзамена до окончания ответа Вовы?
- 5. Вася и Петя решают тест из 10 вопросов, на каждый вопрос есть ровно два варианта ответа. Петя кое-что знает по первым пяти вопросам, поэтому вероятность правильного ответа на каждый равняется 0.9 независимо от других. Остальные пять вопросов Пете непонятны и он отвечает на них наугад равновероятно. Вася списывает у Пети вопросы с 3-го по 7-ой, а остальные отвечает наугад равновероятно.

Пусть X — число правильных ответов Пети, а Y — число правильных ответов Васи.

- а) Найдите $\mathbb{E}(X)$, $\mathbb{E}(Y)$, $\mathbb{E}(X-Y)$
- б) Найдите Var(X), Var(Y), Cov(X, Y), Var(X Y).
- 6. На плоскости закрашен круг с центром в нуле и единичным радиусом. Внутри этого круга равномерно случайно выбирается одна точка. Пусть X и Y абсцисса и ордината этой точки.
 - а) Выпишите совместную функцию плотности X и Y
 - б) Найдите частную функцию плотности X
 - в) Верно ли, что X и Y независимы?
 - г) Какова вероятность того, что X + Y > 1?
 - д) Найдите ожидаемое расстояние от точки до начала координат

12.6. Контрольная работа №2, і-поток, 16-28.12.2013, решения

1. а) Пусть Z — случанйая величина, ошибка от округления одного числа, S — случайная величина, суммарная ошибка округления, то есть S=120Z. Тогда

$$\mathbb{E}(Z) = 0 \quad \text{Var}(Z) = \frac{0.1^2}{12}$$

$$\mathbb{E}(S) = 0 \quad \operatorname{Var}(S) = 0.1$$

Теперь можно записать вероятность, данную в условии:

$$\mathbb{P}(-a \leqslant S \leqslant a) = \mathbb{P}\left(-\frac{a}{\sqrt{0.1}} \leqslant \frac{S}{\sqrt{0.1}} \leqslant \frac{a}{\sqrt{0.1}}\right) = 0.99$$

Из таблицы стандартного нормального распределения находим $a/\sqrt{0.1}=3.1\Rightarrow a=3.1\sqrt{0.1}$

б) Здесь поможет неравенство Берри-Эссеена!

$$\mathbb{E}(|X_1|^3) = \int_{-0.05}^{0.05} 10|x_1|^3 dx = 2 \cdot 10 \int_0^{0.05} x_1^3 dx = 5 \cdot (0.05)^4$$

2. а) Необходимо найти такое число мест в каждом из гардеробов, что

 $\mathbb{P}($ всем зрителям сразу хватило места)=0.99. Пусть L- случанйая величина, число человек, которые пошли в первый гардероб. Тогда данную в условии вероятность можно переписать как $\mathbb{P}(L\leqslant k,1000-L\leqslant k)=0.99,$ откуда получаем следующее: $\mathbb{P}(1000-k\leqslant L\leqslant k)=0.99,$ где k- число мест в гардеробе.

Заметим, что точный закон распределения случайной величины L — биномиальный с параметрами n=1000, p=0.5. Это значит, что $\mathbb{E}(L)=np=500$, $\mathrm{Var}(L)=np(1-p)=250$. Поскольку число зрителей достаточно велико, можно воспользоваться аппроксимацией: $L\sim\mathcal{N}(500,250)$. Тогда получим:

$$\mathbb{P}\left(\frac{1000 - k - 500}{\sqrt{250}} \leqslant \frac{L - 500}{\sqrt{250}} \leqslant \frac{k - 500}{\sqrt{250}}\right) = 0.99$$

В таблице находим нужное значение и получаем $k \approx 540$.

3. a)
$$\mathbb{P}(|X - 175| > 10) = \mathbb{P}\left(\frac{|X - 175|}{\sqrt{49}} > \frac{10}{\sqrt{49}}\right) = 0.15$$

6)
$$\mathbb{P}(Y - 74 > 10) = \mathbb{P}\left(\frac{Y - 74}{\sqrt{36}} > \frac{10}{\sqrt{36}}\right) = 0.0475$$

в) Сначала найдём матожидание и дисперсию U:

$$\mathbb{E}(U) = \mathbb{E}(X - Y) = 101 \quad \operatorname{Var}(U) = \operatorname{Var}(X) + \operatorname{Var}(Y) - 2\operatorname{Cov}(X, Y) = 29$$

Значит, $U \sim \mathcal{N}(101, 29)$ и её функция плотности имеет вид:

$$f(u) = \frac{1}{\sqrt{2\pi \cdot 29}} \exp\left(-\frac{1}{2} \frac{(u-10)^2}{29}\right)$$

r)
$$\mathbb{P}(U < 90) = \mathbb{P}\left(\frac{U - 101}{\sqrt{29}} < \frac{90 - 101}{\sqrt{29}}\right) = 0.0262$$

д) Найдём матожидание и дисперсию:

$$\mathbb{E}(Y|X=x) = 74 + 28 \cdot \frac{1}{49}(x - 175) = \frac{28}{49}x - 26$$
$$\text{Var}(Y|X=x) = 36 - 28 \cdot \frac{1}{49} \cdot 28 = 20$$

Теперь можем выписать функцию плотности:

$$f_{Y|X=x}(y,x) = \frac{1}{\sqrt{2\pi \cdot 20}} \exp\left(-\frac{1}{2} \frac{\left(y - \frac{28}{49}x + 26\right)^2}{20}\right)$$

е) Снова начнём с матожидания и дисперсии:

$$\mathbb{E}(Y|X=180) \approx 77 \quad \text{Var}(Y|X=180) = 20$$

Теперь можем считать вероятность:

$$\mathbb{P}(Y < 60|X = 180) = \mathbb{P}\left(\frac{Y - 77}{\sqrt{20}} < \frac{60 - 77}{\sqrt{20}}\right) \approx 0$$

12.7. Контрольная работа №2, 25.12.2013

Самая важная формула:

$$\frac{1}{(\sqrt{2\pi})^n \sqrt{\det(C)}} \cdot e^{-\frac{1}{2}(x-\mu)^T C^{-1}(x-\mu)}$$

Неравенство Берри-Эссеена:

$$|\hat{F}_n(x) - \Phi(x)| \le \frac{C_0 \mathbb{E}|X_n - \mu|^3}{\sigma^3 \sqrt{n}}, \quad 0.4 < C_0 < 0.48$$

Тест

- 1. Зная распределение компонент случайного вектора всегда можно восстановить их совместное распределение. Да. Нет.
- 2. Пусть X длина наугад выловленного удава в сантиметрах, а Y в дециметрах. Коэффициент корреляции между этими величинами равен 0.1. Да. Нет.
- 3. Для любой случайной величины X (с конечной дисперсией) справедливо неравенство: $\mathbb{P}(|X \mathbb{E}(X)| > 2\sqrt{\mathrm{Var}(X)} \leqslant \frac{1}{4}$. Да. Нет.
- 4. Сумма независимых нормальных случайных величин нормальна. Да. Нет.
- 5. Сумма n независимых равномерно распределенных на интервале (0,1) случайных величин асимптотически нормальна. Да. Нет.
- 6. Квадрат стандартной нормальной случайной величины имеет хи-квадрат распределение. Да. Нет.
- 7. Если ковариация компонент случайного двумерного нормального вектора равна нулю, то они независимы. Да. Нет.
- 8. Дисперсия суммы случайных величин всегда больше суммы их дисперсий. Да. Нет.
- 9. Центральная предельная теорема частный случай теоремы Муавра-Лапласа. Да. Нет.
- 10. Математическое ожидание выборочной доли не зависит от объема выборки. Да. Нет.
- 11. «Математику уже затем учить надо, что она ум в порядок приводит» (М. В. Ломоносов) Да. Нет.

Задачи

1. Совместная функция плотности случайной величины (X,Y) имеет вид:

$$f(x,y) = egin{cases} x+y & \text{при } x \in (0,1), \ y \in (0,1) \\ 0 & \text{иначе}; \end{cases}$$

Найдите:

- a) $\mathbb{P}(Y < X^2)$
- б) функцию плотности и математическое ожидание случайной величины X
- в) условную функцию плотности и условное математическое ожидание случайной величины X при условии, что Y=2
- 2. Случайный вектор $(X,Y)^T$ имеет двумерное нормальное распределение с математическим ожиданием $(0,0)^T$ и ковариационной матрицей

$$C = \begin{pmatrix} 9 & -1 \\ -1 & 4 \end{pmatrix};$$

Найдите:

- a) $\mathbb{P}(X > 1)$
- б) $\mathbb{P}(2X + Y > 3)$
- B) $\mathbb{P}(2X + Y > 3|X = 1)$
- r) $\mathbb{P}\left(\frac{X^2}{9} + \frac{Y^2}{4} > 12\right)$
- д) Запишите совместную функцию плотности $(X,Y)^T$
- 3. Вычислите:

a)
$$\mathbb{P}\left(\frac{X_1}{\sqrt{X_3^2 + X_4^2 + X_5^2}} > \frac{5}{4\sqrt{3}}\right)$$

$$\text{6) } \mathbb{P}\left(\frac{X_1 + 2X_2}{\sqrt{X_3^2 + X_4^2 + X_5^2}} < 4.5\right)$$

B)
$$\mathbb{P}\left(\frac{X_1^2}{X_2^2 + X_3^2} > 17\right)$$

- 4. Оценка за зачет по теории вероятности i-го студента неотрицательная с. в. X_i с $\mathbb{E}(X_i)=\frac{1}{2}$ и $\mathrm{Var}(X_i)=\frac{1}{12}$. Для случайной выборки из 36 студентов оцените или вычислите следующие вероятности $\left(\bar{X}=\frac{1}{n}\sum_{1}^{n}X_i\right)$:
 - a) $\mathbb{P}(|X_i 0.5| \ge 0.3)$
 - б) $\mathbb{P}(X_i \ge 0.8)$
 - B) $\mathbb{P}(\overline{X} \geqslant 0.8)$

Пусть дополнительно известно, что $X_i \sim U(0,1)$:

- г) Вычислите вероятность $\mathbb{P}(|X_i 0.5| \geqslant 0.3)$
- д) Оцените погрешность вычисленной вероятности $\mathbb{P}(\overline{X}\geqslant 0.8)$
- е) Покажите, что средняя оценка за экзамен сходится по вероятности к 0.5
- 5. При проведении социологических опросов в среднем 20 % респондентов отказываются отвечать на вопрос о личном доходе. Сколько нужно опросить человек, чтобы с вероятностью 0.99 выборочная доля отказавшихся отвечать на вопрос о доходе не превышала 0.25? Насколько изменится ответ на предыдущий вопрос, если средний процент отказывающихся отвечать неизвестен?
- 6. Оценки за контрольную работу по теории вероятностей 6 случайно выбранных студентов оказались равны: $8,\,4,\,5,\,7,\,3,\,9.$
 - а) Выпишите вариационный ряд;
 - б) Постройте выборочную функцию распределения;
 - в) Вычислите значение выборочного среднего и выборочной дисперсии.

12.8. Контрольная работа №2, 25.12.2013, решения

1. a)

$$\mathbb{P}(Y < X^2) = \int_0^1 \int_0^{x^2} (x+y) dy dx = \int_0^1 \left(xy \frac{y^2}{2} \right) \Big|_0^{x^2} dx = \int_0^1 \left(x^3 + \frac{x^4}{2} \right) dx =$$

$$= \frac{x^4}{4} + \frac{x^5}{10} \Big|_0^1 = 0.35$$

6)
$$f_X(x) = \int_0^1 (x+y)dy = xy + \frac{y^2}{2} \Big|_0^1 = x + 0.5$$

$$\mathbb{E}(X) = \int_0^1 f_X(x) \cdot x dx = \int_0^1 (x^2 + 0.5x) dx = 7/12$$

B)
$$f_{X|Y=2}(x) = \frac{f_{X,Y}(x,2)}{f_Y(2)} = \frac{x+2}{2.5}$$

2. а) Из условия находим, что $X \sim \mathcal{N}(0,9)$, тогда

$$\mathbb{P}(X > 1) = \mathbb{P}\left(\frac{X - 0}{3} > \frac{1 - 0}{3}\right) = \mathbb{P}\left(\mathcal{N}(0, 1) > \frac{1}{3}\right) = 0.37$$

б) Подготовимся: $\mathbb{E}(2X+Y)=0$, $\mathrm{Var}(2X+Y)=4\,\mathrm{Var}(X)+\mathrm{Var}(Y)+4\,\mathrm{Cov}(X,Y)=36$

$$\mathbb{P}(2X + Y > 3) = \mathbb{P}\left(\frac{2X + Y - 0}{6} > \frac{3 - 0}{6}\right) = \mathbb{P}(\mathcal{N}(0, 1) > 0.5) = 0.31$$

B)
$$\mathbb{P}(2X+Y>3|X=1)=\mathbb{P}(Y>1)=\mathbb{P}\left(\frac{Y-0}{2}>\frac{1}{2}\right)=\mathbb{P}(\mathcal{N}(0,1)>0.5)=0.31$$

- г) Заметим, что $\frac{X^2}{9}+\frac{Y^2}{4}\sim\chi_2^2$, и тогда по таблице находим, что $\mathbb{P}\left(\frac{X^2}{9}+\frac{Y^2}{4}>12\right)=0.0025$
- д) Совместная функция плотности имеет вид:

$$f(x,y) = \frac{1}{2\pi} \cdot \frac{1}{2 \cdot 3\sqrt{1 - \left(-\frac{1}{6}\right)^2}} \cdot \exp\left(-\frac{1}{2} \cdot \frac{1}{4 \cdot 9} \left(1 - \left(-\frac{1}{6}\right)^2\right) \left(9x^2 + 2xy + 4y^2\right)\right)$$

3. а) Заметим, что $\frac{X_1}{\sqrt{\frac{X_3^2 + X_4^2 + X_5^2}{3}}} \sim t_3$. По таблице находим искомую вероятность: 0.15.

б)

- в) Заметим, что $\frac{X_1^2}{X_2^2 + X_3^2} \sim F_{1,2}$. Нужное значение находим в таблице: 0.95
- 4. а) По неравенству Чебышёва: $\mathbb{P}(|X_i 0.5| \geqslant 0.3) \leqslant \frac{1/12}{9/100} = \frac{25}{27}$
 - б) По неравенству Маркова: $\mathbb{P}(X_i\geqslant 0.8)\leqslant \frac{5}{8}$

в)
$$\mathbb{E}(\overline{X}) = \frac{1}{2}$$
, $\operatorname{Var}(\overline{X}) = \frac{1}{36\cdot 12}$, $\overline{X} \sim \mathcal{N}(\frac{1}{2}, \frac{1}{36\cdot 12})$
 $\mathbb{P}(\overline{X} > 0.8) = \mathbb{P}\left(\frac{\overline{X} - \frac{1}{2}}{\sqrt{\frac{1}{36\cdot 12}}} \geqslant \frac{0.8 - 0.5}{\frac{1}{36\cdot 12}}\right) = \mathbb{P}(\mathcal{N}(0, 1) \geqslant 6.235) \approx 0$

r)
$$\mathbb{P}(|X_i - 0.5| \ge 0.3) = 1 - \mathbb{P}(|X_i - 0.5| \ge 0.3) = 1 - \mathbb{P}(-0.3 \le X_i - 0.5 \le 0.3) = 0.4$$

д) Нужно воспользоваться неравенством Берри-Ессеена.

$$\mathbb{E}(|X_1 - 0.5|^3) = \int_0^1 |x_1 - 0.5|^3 \cdot 1 dx = 2 \int_{0.5}^1 (x_1 - 0.5)^3 dx = \frac{1}{2^5}$$

e)
$$\mathbb{P}(\overline{X} - 0.5 > 0.3) = \frac{25}{27n} \to_{n \to \infty} 0$$

5.
$$\mathbb{P}(\hat{p} \leqslant 0.25) = \mathbb{P}\left(\frac{\hat{p}-0.2}{\sqrt{\frac{0.2\cdot 0.8}{n}}} \leqslant \frac{0.25}{\sqrt{\frac{0.2\cdot 0.8}{n}}}\right) = 0.99$$

По таблице:
$$\frac{0.25}{\sqrt{\frac{0.2 \cdot 0.8}{2}}} = 2.33 \Rightarrow n = 348$$

$$F(x) = \begin{cases} 0 & x < 3 \\ 1/6 & 3 < x \leqslant 4 \\ 2/6 & 4 < x \leqslant 5 \end{cases}$$

$$3/6 & 5 < x \leqslant 7 \\ 4/6 & 7 < x \leqslant 8 \\ 5/6 & 8 < x \leqslant 9 \\ 1 & x > 9 \end{cases}$$

$$B) \ \overline{X} = 6, \ \widehat{\text{Var}}(X) = 28$$

12.9. Контрольная работа 3

Вычислите константы $B_1=\{$ Цифра, соответствующая первой букве Вашей фамилии $\}$ и $B_2=\{$ Цифра, соответствующая первой букве Вашего имени $\}$. Уровень значимости для всех проверяемых гипотез 0.0α , уровень доверия для всех доверительных интервалов $(1-0.0\alpha)$, где $\alpha=1+\{$ остаток от деления B_1 на $5\}$.

A	Б	В	Γ	Д	Е	Ж	3	И	К	Л	M	Н	О
1	2	3	4	5	6	7	8	9	10	11	12	13	14
П	P	С	Т	У	Φ	X	Ц	Ч	Ш	Щ	Э	Ю	R
15	16	17	18	19	20	21	22	23	24	25	26	27	28

- 1. Вес упаковки с лекарством является нормальной случайной величиной с неизвестными математическим ожиданием μ и дисперсией σ^2 . Контрольное взвешивание $(10+B_1)$ упаковок показало, что выборочное среднее $\overline{X}=(50+B_2)$, а несмещенная оценка дисперсии равна $B_1\cdot B_2$. Постройте доверительные интервалы для математического ожидания и дисперсии веса упаковки (для дисперсии односторонний с нижней границей).
- 2. Экзамен принимают два преподавателя, случайным образом выбирая студентов. По выборкам из 85 и 100 наблюдений, выборочные доли не сдавших экзамен студентов составили соответственно $\frac{1}{B_1+1}$ и $\frac{1}{B_2+1}$. Можно ли утверждать, что преподаватели предъявляют к студентам одинаковый уровень требований? Вычислите минимальный уровень значимости, при котором основная гипотеза (уровень требований одинаков) отвергается (p-value).
- 3. Даны независимые выборки доходов выпускников двух ведущих экономических вузов A и B, по $(10+B_1)$ и $(10+B_2)$ выпускников соответственно: $\overline{X}_A=45$, $\hat{\sigma}_A=5$, $\overline{X}_B=50$, $\hat{\sigma}_B=6$. Предполагая, что распределение доходов подчиняется нормальному закону, проверьте гипотезу об отсутствии преимуществ выпускников вуза B.
- 4. По выборке независимых одинаково распределенных случайных величин X_1, \ldots, X_n с функцией плотности $f(x) = \frac{1}{\theta} x^{-1+\frac{1}{\theta}}, x \in (0,1)$, найдите оценки максимального правдоподобия параметра θ . Сформулируйте определения свойств несмещенности, состоятельности эффективности и проверьте, выполняются ли эти свойства для найденной оценки.

<u>Примечание.</u> В помощь несчастным, забывшим формулу интегрирования по частям и таблицу неопределенных интегралов, или просто ленивым студентам:

$$\int_{0}^{1} t^{\alpha} \ln(t) dt = -\frac{1}{(\alpha+1)^2}$$

12.10. Контрольная работа 3, і-поток, 19.03.2014.

- 1. Дед Мазай подбирает зайцев. Предположим, что длина левого уха зайца имеет экспоненциальное распределение с плотностью $f(x)=a\exp(-ax)$ при $x\geqslant 0$. По 100 зайцам оказалось, что $\sum x_i=2000$.
 - а) Найдите оценку \hat{a} методом моментов
 - б) Оцените стандартную ошибку $se(\hat{a})$
 - в) Постройте 90%-ый доверительный интервал для неизвестного a
 - г) На уровне значимости $\alpha=0.05$ проверьте гипотезу H_0 : a=15 против a>15. Найдите точное P-значение.
- 2. По совету Лисы Волк опустил в прорубь хвост и поймал 100 чудо-рыб. Веса рыбин независимы и имеют распределение Вейбулла, $f(x)=2\exp(-x^2/a^2)\cdot x/a^2$ при $x\geqslant 0$. Известно, что $\sum x_i^2=120$.
 - а) Найдите оценку \hat{a} методом максимального правдоподобия
 - б) Оцените стандартную ошибку $se(\hat{a})$
 - в) Постройте 90%-ый доверительный интервал для неизвестного a
 - г) На уровне значимости $\alpha=0.05$ проверьте гипотезу H_0 : a=1 против a>1. Найдите точное Р-значение.
- 3. [R] Как известно, Фрекен-Бок пьет коньяк по утрам и иногда видит привидения. За 110 дней имеются следующие статистические данные

Рюмок	1	2	3
Дней с приведениями	10	25	20
Дней без приведений	20	25	10

Вероятность увидеть привидение зависит от того, сколько рюмок коньяка было выпито утром, а именно, $p=\exp(a+bx)/(1+\exp(a+bx))$, где x — количество рюмок, а a и b — неизвестные параметры.

- а) Оцените неизвестные параметры с помощью максимального правдоподобия.
- б) На уровне значимости $\alpha=0.05$ помощью теста отношения правдоподобия проверьте гипотезу о том, что одновременно a=0 и b=0. В чем содержательный смысл этой гипотезы? Найдите точное P-значение.
- 4. Кот Васька поймал 5 воробьев, взвесил и отпустил. Предположим, что веса воробьев независимы и имеют нормальное распределение $N(\mu, \sigma^2)$. Известно, что $\sum x_i = 10$ и $\sum x_i^2 = 25$.
 - а) Постройте 90% доверительный интервал для σ^2 , симметричный по вероятности
 - б) [R] Постройте самый короткий 90% доверительный интервал для σ^2
- 5. Задача о немецких танках. Всего выпущено неизвестное количество n танков. Для упрощения предположим, что на каждом танке написан его порядковый номер⁵. В бою было подбиты 4 танка с номерами 2, 5, 7 и 12.

 $^{^5}$ В реальности во время Второй мировой войны при оценке количества танков «Пантера» выпущенных в феврале 1944 использовались номера колес. Двух подбитых танков оказалось достаточно, чтобы оценить выпуск в 270 танков. По немецким архивам фактический объем выпуска оказался равен 276 танков.

- а) Найдите оценку общего выпуска танков n с помощью метода максимального правдоподобия
- б) Является ли оценка максимального правдоподобия несмещенной?
- в) Является ли максимум из номеров подбитых танков достаточной статистикой?
- г) Является ли максимум из номеров подбитых танков полной статистикой?
- д) Постройте с помощью оценки максимального правдоподобия несмещенную эффективную оценку неизвестного n.
- 6. Гражданин Фёдор решает проверить, не жульничает ли напёрсточник Афанасий, для чего предлагает Афанасию сыграть 5 партий в напёрстки. Фёдор решает, что в каждой партии будет выбирать один из трёх напёрстков наугад, не смотря на движения рук ведущего. Основная гипотеза: Афанасий честен, и вероятность правильно угадать напёрсток, под которым спрятан шарик, равна 1/3. Альтернативная гипотеза: Афанасий каким-то образом жульничает (например, незаметно прячет шарик), так что вероятность угадать нужный напёрсток равна 1/5. Статистический критерий: основная гипотеза отвергается, если Фёдор ни разу не угадает, где шарик.
 - а) Найдите уровень значимости критерия
 - б) Найдите вероятность ошибки второго рода
- 7. [R] В службе единого окна 5 клиентских окошек. В каждое окошко стоит очередь. Я встал в очередь к окошку номер 5 ровно в 15:00, передо мной 5 человек. Предположим, что время обслуживания каждого клиента независимые экспоненциальные величины с параметром λ . Первый человек с момента моего прихода был обслужен в окошке 1 в 15:05. Второй человек с момента моего прихода был обслужен в окошке 2 в 15:10.
 - а) Оцените с помощью максимального правдоподобия параметр λ
 - б) Оцените, сколько мне еще стоять в очереди.

12.11. Переписывание кр1, вариант 1

1. Вероятности попадания в мишень для трех стрелков равны 4/5, 3/4 и 2/3 соответственно. В результате одновременного выстрела трех стрелков в мишени образовалось две пробоины. Какова вероятность того, что 3-ий стрелок попал в мишень?

Решение. Положим $A_i=\{$ «попал i-й стрелок» $\},\,i=1,2,3,$ и $B=(A_1^c\cap A_2\cap A_3)\cup (A_1\cap A_2^c\cap A_3)\cup (A_1\cap A_2\cap A_3^c).$ Имеем

$$\mathbb{P}(A_{3}|B) = \frac{\mathbb{P}(A_{3} \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A_{1}^{c} \cap A_{2} \cap A_{3}) + \mathbb{P}(A_{1} \cap A_{2}^{c} \cap A_{3})}{\mathbb{P}(A_{1}^{c} \cap A_{2} \cap A_{3}) + \mathbb{P}(A_{1} \cap A_{2}^{c} \cap A_{3}) + \mathbb{P}(A_{1} \cap A_{2} \cap A_{3}^{c})} = \frac{\mathbb{P}(A_{1}^{c})\mathbb{P}(A_{2})\mathbb{P}(A_{3}) + \mathbb{P}(A_{1})\mathbb{P}(A_{2}^{c})\mathbb{P}(A_{3})}{\mathbb{P}(A_{1}^{c})\mathbb{P}(A_{2})\mathbb{P}(A_{3}) + \mathbb{P}(A_{1})\mathbb{P}(A_{2}^{c})\mathbb{P}(A_{3}) + \mathbb{P}(A_{1})\mathbb{P}(A_{2})\mathbb{P}(A_{3}^{c})} = \frac{7}{13}$$

- 2. В лифт 11-этажного дома на первом этаже вошли 5 человек.
 - а) Найдите вероятность того, что хотя бы один из них выйдет на 6-ом этаже.
 - б) Вычислите среднее значение тех из них, кто не выйдет на 6-ом этаже.

Решение.

а) Рассмотрим случайные величины

$$X_i = egin{cases} 1, & \mbox{если i-ый пассажир вышел на 6-ом этаже,} \\ 0, & \mbox{в противном случае,} \end{cases}$$

 $i=1,\dots,5$. Поскольку в условии задачи не сказано ничего иного, считаем, что пассажиры ведут себя независимо друг от друга, и каждый из них может выйти из лифта на любом этаже со второго по одиннадцатый. Поэтому случайные величины X_1,\dots,X_5 независимы и $X_i \sim \text{Be}(1/10), i=1,\dots,5$. Случайная величина $X:=X_1+\dots+X_5$ означает число пассажиров, которые вышли на 6-ом этаже. Тогда используя то, что $X \sim \text{Bi}(5,1/10)$, получаем искомую вероятность в пункте (a)

$$\mathbb{P}(X>0) = 1 - \mathbb{P}(X=0) = 1 - C_5^0 \left(\frac{1}{10}\right)^0 \left(\frac{9}{10}\right)^5 = 1 - \left(\frac{9}{10}\right)^5.$$

- б) Заметим, что случайная величина Y=5-X означает число пассажиров, которые не вышли на 6-ом этаже. Поэтому $\mathbb{E}(Y)=5-\mathbb{E}(X)=5-5\cdot\left(\frac{1}{10}\right)=\frac{9}{2}.$
- 3. Пусть случайная величина X имеет функцию распределения

$$F_X(x) = \begin{cases} 0 & \text{при } x < -10, \\ 1/4 & \text{при } -10 \leqslant x < 0, \\ 3/4 & \text{при } 0 \leqslant x < 10, \\ 1 & \text{при } x \geqslant 10. \end{cases}$$

Найдите

- a) $\mathbb{P}(X = -10), \mathbb{P}(X = 0), \mathbb{P}(X = 10),$
- б) $\mathbb{E}(X)$,
- в) Var(X).

Решение.

а) Известно, что для любого $a \in \mathbb{R}$ имеет место

$$\mathbb{P}(X=a) = F_X(a) - \lim_{n \to \infty} F_X\left(a - \frac{1}{n}\right).$$

Поэтому
$$\mathbb{P}\left(X=-10\right)=\frac{1}{4}-0=\frac{1}{4}, \mathbb{P}\left(X=0\right)=\frac{3}{4}-\frac{1}{4}=\frac{1}{2}$$
 и $\mathbb{P}\left(X=10\right)=1-\frac{3}{4}=\frac{1}{4}.$

б) Из пункта (a) следует, что распределение случайной величины X задаётся таблицей

$$\frac{x -10 \quad 0 \quad 10}{\mathbb{P}(X=x) \quad 1/4 \quad 1/2 \quad 1/4}$$

Поэтому $\mathbb{E}(X) = -10 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2} + 10 \cdot \frac{1}{4} = 0.$

- в) Наконец, $\mathbb{E}(X^2)=(-10)^2\cdot \frac{1}{4}+0^2\cdot \frac{1}{2}+10^2\cdot \frac{1}{4}=50.$ Следовательно, $\mathrm{Var}(X)=\mathbb{E}(X^2)-(\mathbb{E}(X))^2=50.$
- 4. Плотность распределения случайной величины X имеет вид

$$f_X(x) = egin{cases} 0 & \text{при } x < 0, \\ x + 1/2 & \text{при } 0 \leqslant x \leqslant 1, \\ 0 & \text{при } x > 1. \end{cases}$$

Найдите

- a) $\mathbb{P}(X = 1/2), \mathbb{P}(X \in [1/2; 2]),$
- б) $F_X(x)$,
- \mathbf{B}) $\mathbb{E}(X)$,
- r) Var(X).

Решение.

а) Известно, что если случайная величина X является абсолютно непрерывной, то для любого множества $B\subseteq \mathbb{R}$, для которого определена вероятность $\mathbb{P}(\{X\in B\})$, имеет место формула

$$\mathbb{P}(X \in B) = \int_{B} f_X(x) dx.$$

Поэтому $\mathbb{P}(X=1/2)=\mathbb{P}(X\in[1/2;1/2])=\int_{1/2}^{1/2}f_X(x)dx=0$ и $\mathbb{P}(X\in[1/2;2])=\int_{1/2}^2f_X(x)dx=\int_{1/2}^1(x+\frac{1}{2})dx=\frac{5}{8}.$

б) Если x < 0, то

$$F_X(x) = \int_{-\infty}^x f_X(t)dt = \int_{-\infty}^x 0dt = 0.$$

Если $0 \leqslant x \leqslant 1$, то

$$F_X(x) = \int_{-\infty}^0 f_X(t)dt + \int_0^x f_X(t)dt = \int_{-\infty}^0 0dt + \int_0^x (t+1/2)dt = \frac{t^2}{2} \Big|_{t=0}^{t=x} + \frac{x}{2} = \frac{x(x+1)}{2}.$$

Если x > 1, то

$$F_X(x) = \int_{-\infty}^0 f_X(t)dt + \int_0^1 f_X(t)dt + \int_1^x f_X(t)dt = \int_{-\infty}^0 0dt + \int_0^1 (t+1/2)dt + \int_1^x 0dt = 1.$$

Витоге

$$F_X(x) = egin{cases} 0 & ext{при } x < 0, \ rac{x(x+1)}{2} & ext{при } 0 \leqslant x \leqslant 1, \ 1 & ext{при } x > 1. \end{cases}$$

B)
$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x \left(x + \frac{1}{2}\right) dx = \int_0^1 \left(x^2 + \frac{x}{2}\right) dx = \left.\frac{x^3}{3}\right|_{x=0}^{x=1} + \left.\frac{x^2}{4}\right|_{x=0}^{x=1} = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}.$$

г)
$$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_0^1 x^2 \left(x + \frac{1}{2}\right) dx = \int_0^1 \left(x^3 + \frac{x^2}{2}\right) dx = \left.\frac{x^4}{4}\right|_{x=0}^{x=1} + \left.\frac{x^3}{6}\right|_{x=0}^{x=1} = \frac{1}{4} + \frac{1}{6} = \frac{5}{12}$$
. Следовательно, $\operatorname{Var}(X) = \frac{5}{12} - \frac{49}{144} = \frac{60 - 49}{144} = \frac{11}{144}$.

5. Совместное распределение случайных величин X и Y задано при помощи таблицы

$$Y = 1 Y = 2 Y = 3$$

$$X = 0 0.2 0.1 0.2$$

$$X = 1 0.1 0.3 0.1$$

- а) Являются ли случайные величины X и Y независимыми? Ответ обоснуйте.
- б) Постройте графики функций распределения $F_X(x)$ и $F_Y(x)$.

- в) Постройте таблицу распределения случайной величины XY.
- г) Найдите $\mathbb{E}(X)$, $\mathbb{E}(Y)$, $\mathbb{E}(XY)$ и Cov(X,Y).
- д) Являются ли случайные величины X и Y некоррелированными? Ответ обоснуйте.
- е) Постройте таблицу условного распределения случайной величины Y при условии $\{X =$ 1}.
- ж) Найдите $\mathbb{E}(Y|X=1)$.

Решение.

а) Случайные величины X и Y не являются независимыми, т.к., например, $0.2 = \mathbb{P}(X = 0 \cap Y = 1) \neq \mathbb{P}(X = 0) \cdot \mathbb{P}(Y = 1) = 0.5 \cdot 0.3.$

б) Таблицы распределения случайных величин X и Y имеют вид

$$\frac{x \qquad 0 \quad 1}{\mathbb{P}(X=x) \quad 0.5 \quad 0.5} \qquad \frac{y \qquad 1 \quad 2 \quad 3}{\mathbb{P}(Y=y) \quad 0.3 \quad 0.4 \quad 0.3}$$
 Поэтому функции распределения равны

Поэтому функции распределения равны

$$F_X(x) = egin{cases} 0 & \text{при } x < 0, \\ 0.5 & \text{при } 0 \leqslant x < 1, \\ 1 & \text{при } x > 1, \end{cases}$$

$$F_Y(x) = egin{cases} 0 & \text{при } x < 1, \ 0.3 & \text{при } 1 \leqslant x < 2, \ 0.7 & \text{при } 2 \leqslant x < 3, \ 1 & \text{при } x > 3. \end{cases}$$

в) Таблица распределения случайной величины XY имеет вид

r)
$$\mathbb{E}(X) = 0 \cdot 0.5 + 1 \cdot 0.5 = 0.5$$
, $\mathbb{E}(Y) = 1 \cdot 0.3 + 2 \cdot 0.4 + 3 \cdot 0.3 = 2$, $\mathbb{E}(XY) = 0 \cdot 0.5 + 1 \cdot 0.1 + 2 \cdot 0.3 + 3 \cdot 0.1 = 1$, $\operatorname{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 1 - 0.5 \cdot 2 = 0$.

Имеется также альтернативный способ подсчета $\mathbb{E}(XY)$, который использует совместное распределение случайных величин X и Y:

$$\mathbb{E}(XY) = 0 \cdot 1 \cdot 0.2 + 0 \cdot 2 \cdot 0.1 + 0 \cdot 3 \cdot 0.2 + 1 \cdot 1 \cdot 0.1 + 1 \cdot 2 \cdot 0.3 + 1 \cdot 3 \cdot 0.1 = 1.$$

д) Поскольку Cov(X,Y) = 0, то случайные величины X и Y являются некоррелированными.

е) Находим условные вероятности

$$\mathbb{P}(Y=1|X=1) = \frac{\mathbb{P}(Y=1\cap X=1)}{\mathbb{P}(X=1)} = \frac{0.1}{0.5} = 0.2,$$

$$\mathbb{P}(Y=2|X=1) = \frac{\mathbb{P}(Y=2\cap X=1)}{\mathbb{P}(X=1)} = \frac{0.3}{0.5} = 0.6,$$

$$\mathbb{P}(Y=3|X=1) = \frac{\mathbb{P}(Y=3\cap X=1)}{\mathbb{P}(X=1)} = \frac{0.1}{0.5} = 0.2.$$

Поэтому таблица условного распределения случайной величины Y при условии $\{X=1\}$ имеет вид

$$\frac{Y|X=1}{\mathbb{P}(\cdot)} \quad 0.2 \quad 0.6 \quad 0.2$$

ж)

$$\mathbb{E}(Y|X=1) = 1 \cdot \mathbb{P}(Y=1|X=1) + 2 \cdot \mathbb{P}(Y=2|X=1) + 3 \cdot \mathbb{P}(Y=3|X=1) = 1 \cdot 0.2 + 2 \cdot 0.6 + 3 \cdot 0.2 = 2$$

12.12. Переписывание кр1, вариант 2

1. Вероятности попадания в цель для трех стрелков равны 4/5, 3/4 и 2/3 соответственно. Для поражения цели в нее нужно попасть не менее двух раз. В результате одновременного выстрела трех стрелков цель была поражена. Какова вероятность того, что 3-й стрелок попал в цель?

Решение. Положим $A_i = \{$ «i-й стрелок попал в цель» $\}, i = 1, 2, 3,$ и $B = (A_1^c \cap A_2 \cap A_3) \cup (A_1 \cap A_2^c \cap A_3) \cup (A_1 \cap A_2 \cap A_3^c) \cup (A_1 \cap A_3^c) \cup (A$

$$\mathbb{P}(A_{3}|B) = \frac{\mathbb{P}(A_{3} \cap B)}{\mathbb{P}(B)} =$$

$$= \frac{\mathbb{P}(A_{1}^{c} \cap A_{2} \cap A_{3}) + \mathbb{P}(A_{1} \cap A_{2}^{c} \cap A_{3}) + \mathbb{P}(A_{1} \cap A_{2} \cap A_{3})}{\mathbb{P}(A_{1}^{c} \cap A_{2} \cap A_{3}) + \mathbb{P}(A_{1} \cap A_{2}^{c} \cap A_{3}) + \mathbb{P}(A_{1} \cap A_{2} \cap A_{3}^{c}) + \mathbb{P}(A_{1} \cap A_{2} \cap A_{3})} =$$

$$= \frac{\mathbb{P}(A_{1}^{c})\mathbb{P}(A_{2})\mathbb{P}(A_{3}) + \mathbb{P}(A_{1})\mathbb{P}(A_{2}^{c})\mathbb{P}(A_{3}) + \mathbb{P}(A_{1})\mathbb{P}(A_{2})\mathbb{P}(A_{3})}{\mathbb{P}(A_{1}^{c})\mathbb{P}(A_{2})\mathbb{P}(A_{3}) + \mathbb{P}(A_{1})\mathbb{P}(A_{2}^{c})\mathbb{P}(A_{3}) + \mathbb{P}(A_{1})\mathbb{P}(A_{2})\mathbb{P}(A_{3}^{c}) + \mathbb{P}(A_{1})\mathbb{P}(A_{2})\mathbb{P}(A_{3})} = \frac{19}{25}$$

2. Пусть X — число единиц, а Y — число шестерок, выпадающих при подбрасывании шести игральных костей. Найдите математическое ожидание и дисперсию суммы X+Y.

Решение. Положим

$$X_i = egin{cases} 1, & \mbox{если при i-м подбрасывании выпала единица,} \\ 0, & \mbox{в противном случае,} \end{cases}$$

$$Y_i = egin{cases} 1, & \text{если при i-м подбрасывании выпала шестерка,} \\ 0, & \text{в противном случае,} \end{cases}$$

$$i=1,\ldots,6$$
. Пусть $Z_i:=X_i+Y_i$ и $Z:=Z_1+\ldots+Z_6$. Имеем

$$\mathbb{E}(Z) = \mathbb{E}(Z_1 + \ldots + Z_6) = 6\mathbb{E}(Z_1) = 6\mathbb{E}(X_1 + Y_1) = 6\mathbb{E}(X_1) + 6\mathbb{E}(Y_1) = 6 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 2,$$

$$\begin{aligned} & \operatorname{Var}(Z) = \operatorname{Var}(Z_1 + \ldots + Z_6) = 6 \operatorname{Var}(Z_1) = 6 \operatorname{Var}(X_1 + Y_1) = 6 (\operatorname{Var}(X_1) + 2 \operatorname{Cov}(X_1, Y_1) + \operatorname{Var}(Y_1)) = \\ & = 6 (\operatorname{Var}(X_1) + 2 \operatorname{\mathbb{E}}(X_1 Y_1) - 2 \operatorname{\mathbb{E}}(X_1) \operatorname{\mathbb{E}}(Y_1) + \operatorname{Var}(Y_1)) = 6 \left(\frac{1}{6} \cdot \frac{5}{6} + 2 \cdot 0 - 2 \cdot \frac{1}{6} \cdot \frac{1}{6} + \frac{1}{6} \cdot \frac{5}{6} \right) = \frac{4}{3} \end{aligned}$$

3. Пусть $\mathbb{E}(X) = -1$, $\mathbb{E}(Y) = 2$, $\mathrm{Var}(X) = 1$, $\mathrm{Var}(Y) = 2$, $\mathrm{Cov}(X,Y) = -1$. Найдите

a)
$$\mathbb{E}(2X + Y - 4)$$
,

б)
$$Var(X + Y - 1)$$
,

B)
$$Var(X - Y + 1)$$
,

r)
$$Cov(X + Y, X - Y)$$
,

д)
$$Corr(X + Y, X - Y)$$
.

Решение.

a)
$$\mathbb{E}(2X + Y - 4) = 2\mathbb{E}(X) + \mathbb{E}(Y) - 4 = -2 + 2 - 4 = -4$$
.

6)
$$Var(X + Y - 1) = Var(X + Y) = Var(X) + 2Cov(X, Y) + Var(Y) = 1 - 2 + 2 = 1$$
.

B)
$$Var(X - Y + 1) = Var(X - Y) = Var(X) - 2Cov(X, Y) + Var(Y) = 1 + 2 + 2 = 5$$
.

r)

$$\mathrm{Cov}(X+Y,X-Y) = \mathrm{Cov}(X,X) + \mathrm{Cov}(Y,X) - \mathrm{Cov}(X,Y) - \mathrm{Cov}(Y,Y) = \\ \mathrm{Var}(X) - \mathrm{Var}(Y) = 1 - 2 = -1$$

д)
$$\operatorname{Corr}(X+Y,X-Y) = \frac{\operatorname{Cov}(X+Y,X-Y)}{\sqrt{\operatorname{Var}[X+Y]}\sqrt{\operatorname{Var}[X-Y]}} = \frac{-1}{\sqrt{1}\sqrt{5}} = -\frac{1}{\sqrt{5}}$$
.

4. Плотность распределения случайной величины X имеет вид

$$f_X(x) = \begin{cases} 0 & \text{при } x < -3, \\ -x^2/36 + 1/4 & \text{при } -3 \leqslant x \leqslant 3, \\ 0 & \text{при } x > 3. \end{cases}$$

Найдите

a)
$$\mathbb{P}(X=2), \mathbb{P}(X \in [0;2]),$$

- б) $F_X(x)$,
- $\mathbb{E}(X)$,
- r) Var(X).

Решение.

а) Известно, что если случайная величина X является абсолютно непрерывной, то для любого множества $B\subseteq \mathbb{R}$, для которого определена вероятность $\mathbb{P}(X\in B)$, имеет место формула

$$\mathbb{P}(X \in B) = \int_{B} f_X(x) dx.$$

Поэтому
$$\mathbb{P}(X=2)=\mathbb{P}(X\in[2;2])=\int_2^2 f_X(x)dx=0$$
 и $\mathbb{P}(X\in[0;2])=\int_0^2 f_X(x)dx=\int_0^2 \left(-\frac{x^2}{36}+\frac{1}{4}\right)dx=-\frac{x^3}{3\cdot36}\Big|_{x=0}^{x=2}+\frac{2}{4}=-\frac{2}{27}+\frac{1}{2}=\frac{23}{54}.$

б) Если x < -3, то

$$F_X(x) = \int_{-\infty}^x f_X(t)dt = \int_{-\infty}^x 0dt = 0.$$

Если $-3 \leqslant x \leqslant 3$, то

$$F_X(x) = \int_{-\infty}^{-3} f_X(t)dt + \int_{-3}^{x} f_X(t)dt = \int_{-\infty}^{-3} 0dt + \int_{-3}^{x} \left(-\frac{t^2}{36} + \frac{1}{4}\right)dt =$$
$$= -\frac{t^3}{3 \cdot 36} \Big|_{t=-3}^{t=x} + \frac{x+3}{4} = -\frac{x^3}{108} + \frac{x}{4} + \frac{1}{2}.$$

Если x > 3, то

$$F_X(x) = \int_{-\infty}^{-3} f_X(t) dt + \int_{-3}^{3} f_X(t) dt + \int_{3}^{x} f_X(t) dt = \int_{-\infty}^{-3} 0 dt + \int_{-3}^{3} \left(-\frac{t^2}{36} + \frac{1}{4} \right) dt + \int_{3}^{x} 0 dt = 1.$$

Витоге

$$F_X(x) = \begin{cases} 0 & \text{при } x < -3, \\ -\frac{x^3}{108} + \frac{x}{4} + \frac{1}{2} & \text{при } -3 \leqslant x \leqslant 3, \\ 1 & \text{при } x > 3. \end{cases}$$

B)
$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{-3}^{3} x \left(-\frac{x^2}{36} + \frac{1}{4} \right) dx = 0.$$

 Γ

$$\mathbb{E}(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_{-3}^3 x^2 \left(-\frac{x^2}{36} + \frac{1}{4} \right) dx = \int_{-3}^3 \left(-\frac{x^4}{36} + \frac{x^2}{4} \right) dx =$$

$$= -\frac{x^5}{5 \cdot 36} \Big|_{x=-3}^{x=3} + \frac{x^3}{3 \cdot 4} \Big|_{x=-3}^{x=3} = \frac{9}{5}$$

Следовательно, $Var[X] = \frac{9}{5}$.

Пусть
$$\Omega=\{1,\ldots,8\}$$
, $\mathbb{P}(\{1\})=\ldots=\mathbb{P}(\{8\})=1/8$, $X(\omega)=\cos(\pi\omega/4)$ и $Y(\omega)=\sin(\pi\omega/4)$.

- 5. а) Являются ли случайные величины X и Y независимыми? Ответ обоснуйте.
 - б) Постройте графики функций распределения $F_X(x)$ и $F_Y(x)$.
 - в) Постройте таблицу распределения случайной величины XY.
 - г) Найдите $\mathbb{E}(X)$, $\mathbb{E}(Y)$, $\mathbb{E}(XY)$ и Cov(X,Y).
 - д) Являются ли случайные величины X и Y некоррелированными? Ответ обоснуйте.
 - е) Постройте таблицу условного распределения случайной величины Y при условии $\{X=\sqrt{2}/2\}$.
 - ж) Найдите $\mathbb{E}(Y|X=\sqrt{2}/2).$

Решение. Для дальнейшего решения случайные величины X,Y и XY удобно задать табличным способом:

Ω	1	2	3	4	5	6	7	8
X	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1	$-\frac{\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1
Y	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1	$-\frac{\sqrt{2}}{2}$	0
XY	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$	0	$-\frac{1}{2}$	0

- а) Случайные величины X и Y не являются независимыми, т.к., например, $0=\mathbb{P}(X=1\cap Y=1)\neq \mathbb{P}(X=1)\cdot \mathbb{P}(Y=1)=\frac{1}{8}\cdot \frac{1}{8}.$
- б) Таблицы распределения случайных величин X и Y имеют вид

Поэтому функции распределения равны

$$F_X(x) = \begin{cases} 0 & \text{при } x < -1, \\ \frac{1}{8} & \text{при } -1 \leqslant x < -\frac{\sqrt{2}}{2}, \\ \frac{3}{8} & \text{при } -\frac{\sqrt{2}}{2} \leqslant x < 0, \\ \frac{5}{8} & \text{при } 0 \leqslant x < \frac{\sqrt{2}}{2}, \\ \frac{7}{8} & \text{при } \frac{\sqrt{2}}{2} \leqslant x < 1, \\ 1 & \text{при } x > 1, \end{cases}$$

$$F_Y(x) = \begin{cases} 0 & \text{при } x < -1, \\ \frac{1}{8} & \text{при } -1 \leqslant x < -\frac{\sqrt{2}}{2}, \\ \frac{3}{8} & \text{при } -\frac{\sqrt{2}}{2} \leqslant x < 0, \\ \frac{5}{8} & \text{при } 0 \leqslant x < \frac{\sqrt{2}}{2}, \\ \frac{7}{8} & \text{при } \frac{\sqrt{2}}{2} \leqslant x < 1, \\ 1 & \text{при } x > 1. \end{cases}$$

в) Таблица распределения случайной величины XY имеет вид

$$\frac{XY -\frac{1}{2} \quad 0 \quad \frac{1}{2}}{\mathbb{P}(\cdot) \quad \frac{1}{4} \quad \frac{1}{2} \quad \frac{1}{4}}$$

- r) $\mathbb{E}(X) = -1 \cdot \frac{1}{8} \frac{\sqrt{2}}{2} \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} + \frac{\sqrt{2}}{2} \cdot \frac{1}{4} + 1 \cdot \frac{1}{8} = 0, \mathbb{E}(Y) = -1 \cdot \frac{1}{8} \frac{\sqrt{2}}{2} \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} + \frac{\sqrt{2}}{2} \cdot \frac{1}{4} + 1 \cdot \frac{1}{8} = 0, \mathbb{E}(XY) = -\frac{1}{2} \cdot \frac{1}{4} + 0 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4} = 0, \text{Cov}(X, Y) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y) = 0 0 \cdot 0 = 0.$
- д) Поскольку $\mathrm{Cov}(X,Y)=0$, то случайные величины X и Y являются некоррелированными.
- е) В случае, когда $X=\frac{\sqrt{2}}{2}$, случайная величина Y принимает значения $-\frac{\sqrt{2}}{2}$ и $\frac{\sqrt{2}}{2}$. Находим условные вероятности

$$\mathbb{P}\left(Y = -\frac{\sqrt{2}}{2} \mid X = \frac{\sqrt{2}}{2}\right) = \frac{\mathbb{P}\left(Y = -\frac{\sqrt{2}}{2} \cap X = \frac{\sqrt{2}}{2}\right)}{\mathbb{P}\left(X = \frac{\sqrt{2}}{2}\right)} = \frac{\frac{1}{8}}{\frac{2}{8}} = \frac{1}{2},$$

$$\mathbb{P}\left(Y = \frac{\sqrt{2}}{2} \mid X = \frac{\sqrt{2}}{2}\right) = \frac{\mathbb{P}\left(Y = \frac{\sqrt{2}}{2} \cap X = \frac{\sqrt{2}}{2}\right)}{\mathbb{P}\left(X = \frac{\sqrt{2}}{2}\right)} = \frac{\frac{1}{8}}{\frac{2}{8}} = \frac{1}{2}.$$

Поэтому таблица условного распределения случайной величины Y при условии $\left\{X=\frac{\sqrt{2}}{2}\right\}$ имеет вид

$$\frac{Y|X = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}}{\mathbb{P}(\cdot)} \quad \frac{\frac{1}{2}}{\frac{1}{2}}$$

ж)

$$\mathbb{E}\left[Y\mid X=\frac{\sqrt{2}}{2}\right] = -\frac{\sqrt{2}}{2}\cdot\mathbb{P}\left(Y=-\frac{\sqrt{2}}{2}\mid X=\frac{\sqrt{2}}{2}\right) + \frac{\sqrt{2}}{2}\cdot\mathbb{P}\left(Y=\frac{\sqrt{2}}{2}\mid X=\frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{2}\cdot\frac{1}{2} + \frac{\sqrt{2}}{2}\cdot\frac{1}{2} = 0$$

12.13. Билеты к зачёту

1. Билет 1

- а) Аксиоматика Колмогорова. Случайные величины. Функция распределения случайной величины и ее основные свойства. Функция плотности.
- б) Виды сходимости последовательности случайных величин.

2. Билет 2

- а) Основные дискретные распределения: биномиальное, Пуассона, гипергеометрическое, отрицательное биномиальное. Примеры непрерывных распределений (равномерное, экспоненциальное).
- б) Неравенство Маркова и неравенство Чебышёва. Закон больших чисел.

3. Билет 3

- а) Понятие о случайном векторе. Совместное распределение нескольких случайных величин. Независимость случайных величин. Маргинальные распределения. Условное распределение.
- б) Центральная предельная теорема.

4. Билет 4

- a) Математическое ожидание и дисперсия случайной величины и их свойства. Распределение функции от случайных величин.
- б) Многомерное нормальное распределение и его свойства.

5. Билет 5

- а) Математическое ожидание и ковариационная матрица случайного вектора. Коэффициент корреляции и его свойства.
- б) Определение и свойства Хи-квадрат распределения, распределения Стьюдента и Фишера. Их основные свойства.

6. Билет 6

- а) Условное распределение и условное математическое ожидание.
- б) Теорема Муавра Лапласа.

12.14. Экзамен, 26.03.2014

Часть 1

A posse ad esse non valet cosequentia

1. Условная вероятность $\mathbb{P}(A\mid B)$ для независимых событий равна

1) $\frac{\mathbb{P}(A)}{\mathbb{P}(B)}$ 2) $\mathbb{P}(A) \cdot \mathbb{P}(B)$	3) $\frac{\mathbb{P}(A \cup B)}{\mathbb{P}(B)}$	4) $\frac{\mathbb{P}(B)}{\mathbb{P}(A\cap B)}$	5) P(A)	Ответ:
---	---	--	---------	--------

2. События A и B называются независимыми, если

1) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$	Ответ:	
2) $\mathbb{P}(A) \cdot \mathbb{P}(B) = \mathbb{P}(A \cap B)$		
3) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$		
$4) \mathbb{P}(A \cap B) = 0$		
5) нет верного		

3. Вероятность опечатки в одном символе равна 0.01. Событие A- в слове из 5 букв будет 2 опечатки. Вероятность P(A) примерно равняется

1) 0.0001 2) 0.001 3) 0.	004 4) 0.004	5) 0.04	Ответ:
--------------------------	--------------	---------	--------

4. В урне 3 белых и 2 черных шара. Случайным образом вынимается один шар, пусть X — число вынутых черных шаров. Величина $\mathbb{E}(X)$ равняется

1) 1 2) 0.5 3) 2/3 4) 2/3 3) 1/3 Other.		1) 1	2) 0.5	3) 2/3	4) 2/5	5) 1/5	Ответ:
---	--	------	--------	--------	--------	--------	--------

5. В урне 3 белых и 2 черных шара. Случайным образом вынимается один шар, пусть X — число вынутых черных шаров. Величина $\mathrm{Var}(X)$ равняется

$\frac{1}{1}$ $\frac{1}$	1) 6/25	2) 1/25	3) 2/5	4) 2/3	5) 2/25	Ответ:
--	---------	---------	--------	--------	---------	--------

6. В урне 3 белых и 2 черных шара. Случайным образом вынимается один шар и откладывается в сторону, затем вынимается еще один шар. Событие A — второй шар — черный. Вероятность $\mathbb{P}(A)$ равняется

1) 6/25 2) 1/25 3) 2/5 4) 2/3 5) 2/25 Other:
--

7. Если f(x) — функция плотности, то $\int_{-\infty}^{+\infty} f(u)\,du$ равен

1) 0 2) 1 3) $\mathbb{E}(X)$ 4) $\mathrm{Var}(X)$ 5) $F(x)$ Отв

8. Если f(x) — функция плотности, то $\int_{-\infty}^x f(u) \, du$ равен

1) 0	2) 1	3) E(X)	4) Var(X)	5) F(r)	Ответ:
1)0	2) 1	3) L(Λ)	$ 4) \operatorname{var}(\Lambda)$	(5) F(x)	Ответ:

9.	Если случайная величина X нормальна $\mathcal{N}(0,1)$ и $F(x)$ — это ее функция распределения, то
	F(4) примерно равняется

	1) 0	2) 0.25	3) 0.5	4) 0.75	5) 1	Ответ:
--	------	---------	--------	---------	------	--------

10. Дисперсия Var(X) считается по формуле

1) $\mathbb{E}^2(X)$	Ответ:
$(2) \mathbb{E}(X^2)$	
$3) \mathbb{E}(X^2) + \mathbb{E}^2(X)$	
$4) \mathbb{E}(X^2) - \mathbb{E}^2(X)$	
$5) \mathbb{E}^2(X) - \mathbb{E}(X^2)$	

11. Дисперсия разности случайных величин X и Y вычисляется по формуле

1) $\operatorname{Var}(X - Y) = \operatorname{Var}(X) - \operatorname{Var}(Y)$	Ответ:	
$2) \operatorname{Var}(X - Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$	ı	
3) $\operatorname{Var}(X - Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) - 2\operatorname{Cov}(X, Y)$	ı	
4) $\operatorname{Var}(X - Y) = \operatorname{Var}(X) - \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y)$	ı	
5) $\operatorname{Var}(X - Y) = \operatorname{Var}(X) - \operatorname{Var}(Y) - 2\operatorname{Cov}(X, Y)$	ı	

12. Известно, что $\mathbb{E}(X)=1$, $\mathbb{E}(Y)=2$, $\mathrm{Var}(X)=4$, $\mathrm{Var}(Y)=9$, $\mathrm{Corr}(X,Y)=0.5$. Дисперсия $\mathrm{Var}(2X+3)$ равняется

1) 16	2) 8	3) 11	4) 4	5) 19	Ответ:
-------	------	-------	------	-------	--------

13. Известно, что $\mathbb{E}(X)=1,$ $\mathbb{E}(Y)=2,$ $\mathrm{Var}(X)=4,$ $\mathrm{Var}(Y)=9,$ $\mathrm{Corr}(X,Y)=0.5.$ Ковариация $\mathrm{Cov}(X,Y)$ равняется

1) 0.5 2) 18	3) 3	4) 12	5) 0	Ответ:
--------------	------	-------	------	--------

14. Известно, что $\mathbb{E}(X)=1,$ $\mathbb{E}(Y)=2,$ $\mathrm{Var}(X)=4,$ $\mathrm{Var}(Y)=9,$ $\mathrm{Corr}(X,Y)=0.5.$ Корреляция $\mathrm{Corr}(2X+3,1-Y)$ равняется

		1) 1	2) -1	3) -0.5	4) 0.5	5) 0	Ответ:
--	--	------	-------	---------	--------	------	--------

15. Совместная функция распределения F(x,y) двух случайных величин X и Y это

1) $\mathbb{P}(X \leqslant x)/\mathbb{P}(Y \leqslant y)$	Ответ:
2) $\mathbb{P}(X \leqslant x) \cdot \mathbb{P}(Y \leqslant y)$	
$ \ 3) \mathbb{P}(X \leqslant x \mid Y \leqslant y)$	
4) $\mathbb{P}(X \leqslant x, Y \leqslant y)$	
$5) \mathbb{P}(X \leqslant x) + \mathbb{P}(Y \leqslant y)$	

16. Если случайная величина X, имеющая функцию плотности a(x), и случайная величина Y, имеющая функцию плотности b(y), независимы, то для их совместной функции плотности f(x,y) справедливо

	1) $f(x,y) = a(x^2 + y^2)$ 2) $f(x,y) = a(x^2 + y^2)$ 3) $f(x,y) = a(x^2 + y^2)$ 4) $f(x,y) = a(x^2 + y^2)$ 5) $f(x,y) = \mathbb{E}(x^2 + y^2)$	(x)/b(y) $(x)b(y)/(a(x) + b(x) \cdot b(y)$	(y)		Ответ:	
17.		ичины X и Y і веет распределен		тандартно норм	ально распред	елены. Тогда
	1) $\mathcal{N}(0,1)$	2) t ₂	3) $\mathcal{N}(0,5)$	4) $\mathcal{N}(0,2)$	5) U[0;2]	Ответ:
18.	$Z_1, Z_2,, Z_n \sim$.	$\mathcal{N}(0,1)$. Тогда ве	еличина $rac{Z_1\sqrt{n-2}}{\sqrt{\sum_{i=3}^n Z_i}}$	$\frac{\overline{2}}{\overline{Z_i^2}}$ имеет распред	деление	
	1) $\mathcal{N}(0,1)$	2) t_n	3) $F_{1,n-2}$	4) χ_n^2	\int 5) t_{n-2}	Ответ:
19.	Если случайная $Z=X^2$ имеет р		андартно норма	ально распредел	ена, то случайн	ная величина
	1) $\mathcal{N}(1,0)$	$2) \mathcal{N}(0,1)$	3) F _{1,1}	4) t ₂	5) χ_1^2	Ответ:
20.		, X_n независимі ремится по расі		распределены	$U[-\sqrt{3},\sqrt{3}]$ то	при $n o\infty$
	1) вырожденно 2) $U[-\sqrt{3}, \sqrt{3}]$ 3) $U[0;1]$ 4) $\mathcal{N}(0,1)$ 5) $\mathcal{N}(0,3)$	ому с $\mathbb{P}(X=0)$ =	= 1		Ответ:	
21.	Если X_i незави распределение	симы и имеют н	нормальное расі	пределение $\mathcal{N}(\mu$	$;\sigma^2)$, то $\sqrt{n}(ar{X}-$	$-\mu)/\hat{\sigma}$ имеет
	1) $\mathcal{N}(0;1)$	2) t_{n-1}	3) χ_{n-1}^2	4) $N(\mu; \sigma^2)$	5) нет верного ответа	Ответ:
22.	Последовательн	юсть оценок $\hat{ heta}_1$,	$\hat{ heta}_2$, …называется	і состоятельной,	если	
	1) $\mathbb{E}(\hat{\theta}_n) = \theta$ 2) $\operatorname{Var}(\hat{\theta}_n) \to 0$ 3) $\mathbb{P}(\hat{\theta}_n - \theta > \theta)$ 4) $\mathbb{E}(\hat{\theta}_n) \to \theta$ 5) $\operatorname{Var}(\hat{\theta}_n) \geqslant \operatorname{Var}(\hat{\theta}_n) \geqslant V$	$t) o 0$ для всех $ ext{ar}(\hat{ heta}_{n+1})$	t > 0		Ответ:	

23. Величины $X_1,...,X_5$ равномерны на отрезке [0;2a]. Известно, что $\sum_{i=1}^5 x_i=25$. При использовании первого момента оценка методом моментов неизвестного a равна

1) 1	2) 5	3) 10	4) 20	5) нет верного ответа	Ответ:		
24. При построении доверительного интервала для дисперсии по выборке из n наблюдений при неизвестном ожидании используется статистика, имеющая распределение							
1) $\mathcal{N}(0;1)$	2) t_{n-1}	3) χ_{n-1}^2	4) χ_n^2	5) <i>t</i> _n	Ответ:		

25. Из 100 случайно выбранных человек ровно 50 ответили, что предпочитают молочный шоколад темному. Реализация 90% доверительного интервала для предпочтения молочного шоколада равна:

1) [0.42;0.58] 2) [0.45;0.55]	3) [0.30;0.70]	4) [0.49;0.51]	5) [0.48;0.52]	Ответ:
-------------------------------	----------------	----------------	----------------	--------

26. При построении доверительного интервала для отношения дисперсий по двум независимым нормальным выборкам из n наблюдений каждая, используется статистика, имеющая распределение

27. Функция правдоподобия, построенная по случайной выборке $X_1,...,X_n$ из распределения с функцией плотности $f(x)=(\theta+1)x^\theta$ при $x\in[0;1]$ имеет вид

$1) (\theta + 1) x^{n\theta}$	$2) \sum (\theta + 1) x_i^{\theta}$	3) $(\theta+1)^{\sum x_i}$		$(\theta+1)^n \prod x_i^{\theta}$	Ответ:
-------------------------------	-------------------------------------	----------------------------	--	-----------------------------------	--------

28. Если P-значение меньше уровня значимости α , то гипотеза H_0 : $\mu=\mu_0$

1) отвергается	Ответ:	l
2) не отвергается		ì
3) отвергается только если H_a : $\mu \neq \mu_0$		ì
4) отвергается только если H_a : $\mu < \mu_0$		ì
5) недостаточно информации		ì

29. Смещенной оценкой математического ожидания по выборке независимых, одинаково распределення случайных величин X_1, X_2, X_3 является оценка

1) $(X_1 + X_2)$	(3)/2	Ответ:
2) $(X_1 + X_2)$	$(2 + X_3)/3$	
3) $0.7X_1 +$	$0.2X_2 + 0.1X_3$	
4) $0.3X_1 +$	$0.3X_2 + 0.3X_3$	
$\int 5 X_1 + X_2$	$-X_3$	

30. Ошибкой первого рода является

1) Принятие неверной гипотезы
2) Отвержение основной гипотезы, когда она верна
3) Отвержение альтернативной гипотезы, когда она верна
4) Отказ от принятия любого решения
5) Необходимость пересдачи ТВ и МС

Часть 2

- 1. У тети Маши двое детей, один старше другого. Предположим, что вероятности рождения мальчика и девочки равны и не зависят от дня недели, а пол первого и второго ребенка независимы.
 - а) Известно, что старший ребенок мальчик. Какова вероятность того, что у тети Маши есть ребенок-девочка?
 - б) Известно, что хотя бы один ребенок мальчик. Какова вероятность того, что у тети Маши есть ребенок-девочка?
 - в) На вопрос: «А правда ли, что у вас есть сын, родившийся в пятницу?» тетя Маша ответила: «Да». Какова вероятность того, что у тети Маши есть ребенок-девочка?
- 2. Вася решает тест путем проставления каждого ответа наугад. В тесте 5 вопросов. В каждом вопросе 4 варианта ответа. Пусть X число правильных ответов, Y число неправильных ответов и Z = X Y .
 - а) Найдите $\mathbb{P}(X > 3)$
 - б) Найдите Var(X) и Cov(X, Y)
 - в) Найдите Corr(X, Z)
- 3. Маша подкидывает 300 игральных кубиков. Те, что выпали не на шестёрку, она перекидывает один раз. Обозначим буквой N количество шестёрок на всех кубиках после возможных перекидываний.
 - а) Найдите $\mathbb{E}(N)$, Var(N)
 - б) Какова примерно вероятность того, величина N лежит от 50 до 70?
 - в) Укажите любой интервал, в который величина N попадает с вероятностью 0.9

Математическая статистика

- 4. Карл Магнусен сыграл 100 партий в шахматы. Из них он 40 выиграл, 30 проиграл и 30 раз сыграл вничью. Используя метод максимального правдоподобия или критерий Пирсона проверьте гипотезу о том, что все три исхода равновероятны на уровне значимости 5%.
- 5. Случайные величины $X_1, X_2, ..., X_{100}$ независимы и имеют пуассоновское распределение с неизвестным параметром λ . Известно, что $\sum X_i = 150$.
 - а) С помощью метода максимального правдоподобия постройте оценку для λ и 95%-ый доверительный интервал.
 - б) Предположим, что сумма X_i неизвестна, зато известно, что количество ненулевых X_i равно 20. С помощью метода максимального правдоподобия постройте оценку для λ и 95%-ый доверительный интервал.
 - в) Являются ли полученные оценки несмещенными?

- 6. Известно, что X_i независимы и нормальны, $N\left(\mu;900\right)$. Исследователь проверяет гипотезу H_0 : $\mu=10$ против H_A : $\mu=30$ по выборке из 20 наблюдений. Критерий выглядит следующим образом: если $\bar{X}>c$, то выбрать H_A , иначе выбрать H_0 .
 - а) Рассчитайте вероятности ошибок первого и второго рода, мощность критерия для c=25.
 - б) Что произойдет с указанными вероятностями при росте количества наблюдений если известно что $c \in (10; 30)$?
 - в) Каким должно быть c, чтобы вероятность ошибки второго рода равнялась 0.15?

13. 2014-2015

13.1. Контрольная работа 1. Базовый поток. 30.10.2014

Тест

- 1. Если $A \cap B = \emptyset$, то A и B независимые события. Да. Нет.
- 2. Попарно независимые события независимы в совокупности. Да. Нет.
- 3. $\mathbb{P}(A \cap B) \leqslant \mathbb{P}(A|B)$. Да. Нет.
- 4. Для любого числа a и любой случайной величины X: $\mathbb{P}(X=a)>0$. Да. Нет.
- 5. Любая неотрицательная функция f(x), такая что $\int_{-\infty}^{+\infty} f(x) dx = 1$, может быть функцией плотности некоторой случайной величины. Да. Нет.
- 6. Функция распределения имеет не более, чем счетное, число точек разрыва. Да. Нет.
- 7. Для того, чтобы существовало математическое ожидание абсолютно непрерывной случайной величины достаточно, чтобы $\int_{-\infty}^{+\infty} x f(x) dx < \infty$. Да. Нет.
- 8. В Пуассоновском распределении математическое ожидание всегда совпадает с дисперсией. Да. Нет.
- 9. Математическое ожидание суммы случайных величин всегда равно сумме их математических ожиданий. Да. Нет.
- 10. Дисперсия суммы случайных величин всегда равна сумме их дисперсий. Да. Нет.
- 11. Хорошо, что не было вопросов про корреляцию. Да. Нет.

Задачи

- 1. Вася забыл какую-то (какую?) формулу. Он помнит, что она начинается с $\mathbb{P}(A|B)=$. Дальше была дробь, три буквы P со скобками после них и в сумме по две буквы A и B внутри этих скобок. Ещё там была вертикальная черта «|». Из этих элементов Вася случайным образом составляет формулу.
 - а) С какой вероятностью Вася напишет правильную формулу?
 - б) Напишите формулу, которую забыл Вася.

Примечание: Вася всё-таки успел сходить на пару лекций по теории вероятностей и помнит, что $\mathbb{P}(A|B)$ и $\mathbb{P}(B|A)$ — это не одно и то же, «|» должна стоять именно между буквами (то ли A|B, то ли B|A), а в скобках, которые идут после P, должно хоть что-то стоять. При этом формула должна иметь смысл, то есть $\mathbb{P}(A|B)$ не должна выражаться через себя же, и дробь не должна быть сократимой.

- 2. Точка с координатами (ξ, η) бросается наудачу в треугольник с вершинами (1, 0), (0, 0), (0, 1). Сформулируйте определение независимости двух событий и проверьте, будут ли события $A = \{\xi < 1/2\}$ и $B = \{\eta < 1/2\}$ независимыми?
- 3. На учениях три самолёта одновременно и независимо атакуют цель. Известно, что первый самолёт поражает цель с вероятностью 0.6, второй -0.4, третий -0.3. При разборе учений выяснилось, что цель была поражена только одним самолётом. Какова вероятность того, что это был первый самолёт?
- 4. Книга в 500 страниц содержит 400 опечаток. Предположим, что каждая из них независимо от остальных опечаток может с одинаковой вероятностью оказаться на любой странице книги.
 - а) Определите вероятность того, что на 13-й странице будет не менее двух опечаток, в явном виде и с помощью приближения Пуассона.
 - б) Определите наиболее вероятное число, математическое ожидание и дисперсию числа опечаток на 13-ой странице.
 - в) Является ли 13-ая страница более «несчастливой», чем все остальные (в том смысле, что на 13-ой странице ожидается большее количество очепяток, чем на любой другой)?

Подсказка. Можно считать, что опечатки «выбирают» любую из страниц для своего появления независимо друг от друга. Успех заключается в выборе 13-ой страницы. Вероятность успеха?

- 5. Вероятность того, что медицинский тест выявит наличие заболевания, когда оно действительно есть, называется чувствительностью теста. Специфичностью теста называется вероятность того, что тест покажет отсутствие заболевания, когда пациент здоров. Вероятность того, что пациент болен, когда тест показал наличие заболевания, называется прогностической силой теста. Предположим, что только 1 % всего населения страдает данным заболеванием. Чувствительно используемого теста равна 0.9, а специфичность 0.95.
 - а) Какова вероятность того, что у случайно выбранного человека тест покажет наличие заболевания?
 - б) Какова прогностическая сила теста? Что нужно сделать, чтобы её повысить?
- 6. Функция плотности случайной величины X имеет вид:

$$f(x) = \begin{cases} 1.5(x-a)^2 & , x \in [0,a] \\ 1.5(x+a)^2 & , x \in [-a,0] \\ 0 & , x \notin [-a,a] \end{cases}$$

- а) Найдите константу a, вероятность попадания в отрезок [1/2,2], математическое ожидание X и дисперсию случайной величины X.
- б) Нарисуйте функцию распределения случайной величины X.
- 7. Вася случайным образом посещает лекции по ОВП (Очень Важному Предмету). С вероятностью 0.9 произвольно выбранная лекция полезна, и с вероятностью 0.7 она интересна. Полезность и интересность независимые друг от друга и от номера лекции свойства. Всего Вася прослушал 30 лекций.

- а) Определите математическое ожидание и дисперсию числа полезных лекций и числа интересных лекций, прослушанных Васей.
- б) Определите математическое ожидание числа бесполезных и неинтересных лекций, прослушанных Васей, и числа лекций, обладающих хотя бы одним из свойств (полезность, интересность).
- 8. Пусть $\mathbb{E}(X)=1, \mathbb{E}(Y)=2, \mathbb{E}(X^2)=5, \mathbb{E}(XY)=-1.$ Найдите:
 - a) $\mathbb{E}(2X + Y 4)$
 - G) $\mathsf{Var}(X)$, $\mathsf{Var}(Y)$
 - B) Cov(X, Y), Corr(X, Y)
 - r) Var(X Y 1), Var(X + Y + 1)
 - д) Cov(X Y 1, X + Y + 1), Corr(X Y 1, X + Y + 1)
- 9. Совместное распределение случайных величин X и Y задано в виде таблицы:

$$X = 1$$
 $X = 2$
 $Y = -1$ 0.1 0.2
 $Y = 0$ 0.2 0.3
 $Y = 1$ 0 0.2

- а) Найти частные распределения Y и Y^2
- б) Найти ковариацию случайных величин X и Y
- в) Можно ли утверждать, что случайные величины зависимы?
- 10. Бонусная задача

Какова вероятность того, что наугад выбранный ответ на этот вопрос окажется верным (искомую вероятность вычислить и записать!)?

- a) 0.25
- б) 0.5
- в) 0.6
- r) 0.25

13.2. Решение кр 1. Базовый поток

- 1. Внимательно читайте примечание! Всего 6 возможных ситуаций, только 1 благоприятная. Требуемая вероятность равна 1/6.
- 2. Два события A и B независимы, если: $\mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$.

Проверим, независимы ли события $A = \{\xi < 1/2\}$ и $B = \{\eta < 1/2\}$:

 $\mathbb{P}(AB)$ ищется как отношение площади квадрата с вершинами в $(0,\,0)$; $(0,\,1/2)$; $(1/2,\,1/2)$; $(1/2,\,0)$ к площади данного треугольника, т.е.:

$$\mathbb{P}(AB) = \frac{(1/2)^2}{1/2} = \frac{1}{2}$$

 $\mathbb{P}(A)$ ищется как отношение площади трапеции с вершинами в (0,0); (0,1); (1/2,1/2); (1/2,0) к площади данного треугольника, т.е.:

$$\mathbb{P}(A) = \frac{(1/2) \cdot (3/2) \cdot (1/2)}{1/2} = \frac{3}{4}$$

 $\mathbb{P}(B)$ ищется как отношение площади трапеции с вершинами в (0,0); (1,0); (1/2,1/2); (0,1/2) к площади данного треугольника, т.е.:

$$\mathbb{P}(B) = \frac{(1/2) \cdot (3/2) \cdot (1/2)}{1/2} = \frac{3}{4}$$

$$\mathbb{P}(A) \cdot \mathbb{P}(B) = \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{16} \neq \frac{1}{2} = \mathbb{P}(AB)$$

Итак, события A и B зависимы.

3. Пусть событие $A = \{$ Цель была поражена первым самолетом $\}$, событие $B = \{$ Цель была поражена только одним самолетом $\}$. Тогда событие $AB = \{$ Первый самолет поразил цель, второй и третий — промахнулись $\}$. По формуле условной вероятности:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)} = \frac{0.6 \cdot 0.6 \cdot 0.7}{0.6 \cdot 0.6 \cdot 0.7 + 0.4 \cdot 0.4 \cdot 0.7 + 0.4 \cdot 0.6 \cdot 0.3} = \frac{0.252}{0.436} \approx 0.578$$

- 4. Удобно рассуждать следующим образом: предположим, что каждая опечатка наугад (с равными вероятностями и независимо от других опечаток) выбирает, на какую страницу ей попасть.
 - а) Пусть X число опечаток на 13 странице.

$$\mathbb{P}(X \geqslant 2) = 1 - \mathbb{P}(X = 0) - \mathbb{P}(X = 1)$$

 $\mathbb{P}(X=0)=\left(\frac{499}{500}\right)^{400}$ — каждая из 400 опечаток не должна попасть на 13 страницу. $\mathbb{P}(X=1)=400\cdot\frac{1}{500}\cdot\left(\frac{499}{500}\right)^{399}$ — ровно одна опечатка (а есть 400 вариантов) должна попасть на 13 страницу, а остальные — мимо. Соответственно:

$$\mathbb{P}(X \geqslant 2) = 1 - \left(\frac{499}{500}\right)^{400} - 400 \cdot \frac{1}{500} \cdot \left(\frac{499}{500}\right)^{399} \approx 0.1911357$$

Это если считать в явном виде. А если пользоваться приближением Пуассона:

$$p(k) = \mathbb{P}(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}$$

неплохо бы вспомнить, что параметр λ это математическое ожидание X, поэтому расчеты здесь пока оставим до лучших времен.

б) Пусть X - число опечаток на 13 странице. Введем случайную величину

$$X_i = egin{cases} 1 & \text{если i-ая опечатка попала на 13 страницу} \\ 0 & \text{если нет} \end{cases}$$

Тогда $X = \sum\limits_{i=1}^{400} X_i$. Рассмотрим отдельно X_i :

$$x$$
 1 0

$$\mathbb{P}(X=x) \quad \frac{1}{500} \quad \frac{499}{500}$$

Так как i-ая опечатка наугад выбирает одну страницу из 500 и это должна быть именно 13.

Тогда:

$$\mathbb{E}(X_i) = \frac{1}{500} = \mathbb{E}(X_i^2) \Rightarrow$$

$$\Rightarrow \text{Var}(X_i) = \mathbb{E}(X_i^2) - (\mathbb{E}(X_i))^2 = \frac{1}{500} - \left(\frac{1}{500}\right)^2 = \frac{499}{500^2}$$

Значит

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i=1}^{400} X_i\right) = \sum_{i=1}^{400} \mathbb{E}(X_i) = \frac{400}{500} = 0.8$$

$$Var(X) = Var\left(\sum_{i=1}^{400} X_i\right) = \sum_{i=1}^{400} Var(X_i) = 400 \cdot \frac{499}{500^2} = 0.8 \cdot \frac{499}{500}$$

Теперь мы знаем, что $\lambda = \mathbb{E}(X) = 0.8$ поэтому можем вернуться к пункту (a):

$$\mathbb{P}(X\geqslant 2) = 1 - \mathbb{P}(X=0) - \mathbb{P}(X=1) = 1 - \frac{0.8^0}{0!}e^{-0.8} - \frac{0.8^1}{1!}e^{-0.8} = 0.1912079$$

Осталось найти наиболее вероятное число опечаток на 13 странице:

$$\mathbb{P}(X = k) = \frac{0.8^k}{k!} e^{-0.8} \to \max_k$$

Очевидно, что эта функция убывает по k, ведь с ростом k: k! растет, а 0.8^k убывает. Значит наиболее вероятное число ошибок — X=0

- в) Ох уж эти предрассудки! 13-я страница точно такая же как и все остальные, ведь везде в решении можно просто заменить номер 13 на любой другой и ничего не изменится.
- 5. Перепишем условие задачи:

Чувствительность теста =

 $= \mathbb{P}(\mathsf{Meдицинckuй} \ \mathsf{тест} \ \mathsf{пoкaзывaeт} \ \mathsf{нaличиe} \ \mathsf{зaбoлeвahua} | \mathsf{3aбoлeвahue} \ \mathsf{ectb})$

Специфичность теста =

 $= \mathbb{P}(\text{Медицинский тест показывает отсутствие заболевания} | 3 аболевания нет)$

Прогностическая сила теста =

 $= \mathbb{P}(3$ аболевание есть Медицинский тест показывает наличие заболевания)

 $\mathbb{P}($ Заболевание есть $) = 0.01 \Rightarrow \mathbb{P}($ Заболевания нет) = 0.99

По условию чувствительность теста равна 0.9, тогда из формулы условной вероятности:

$$\mathbb{P}(ext{Мед. тест пок-ет наличие заб-ия}|3$$
аб-ие есть $)=$

$$rac{\mathbb{P}(ext{Мед. тест пок-ет наличие заб-ия, Заб-ие есть})}{\mathbb{P}(ext{Заб-ие есть})} \Rightarrow$$

 $\Rightarrow \mathbb{P}(\text{Мед. тест пок-ет наличие заб-ия, Заб-ие есть}) = 0.9 \cdot 0.01 = 0.009$

При этом очевидно, что:

$$\mathbb{P}($$
Заболевание есть $)=\mathbb{P}($ Мед. тест пок-ет наличие заб-ия, Заб-ие есть $)+$ $+\mathbb{P}($ Мед. тест пок-ет отсутствие заб-ия, Заб-ие есть $)\Rightarrow$

$$\Rightarrow \mathbb{P}(\text{Мед. тест пок-ет отсутствие заб-ия, Заб-ие есть}) = 0.01 - 0.009 = 0.001$$

По условию специфичность теста равна 0.95, тогда из формулы условной вероятности:

 $\mathbb{P}(\text{Мед. тест пок-ет отсутствие заб-ия}|3аб-ия нет) =$

$$rac{\mathbb{P}(ext{Мед. тест пок-ет отсутствие заб-ия, Заб-ия нет})}{\mathbb{P}(ext{Заб-ия нет})} \Rightarrow$$

 $\mathbb{P}(\text{Мед. тест пок-ет отсутствие заб-ия, Заб-ия нет}) = 0.95 \cdot 0.99 = 0.9405$

При этом очевидно, что:

$$\mathbb{P}(3$$
аб-ия нет) = $\mathbb{P}($ Мед. тест пок-ет наличие заб-ия, Заб-ия нет)+

$$+\mathbb{P}($$
Мед. тест пок-ет отсутствие заб-ия, Заб-ия нет $)\Rightarrow$

$$\Rightarrow \mathbb{P}(\text{Мед. тест пок-ет наличие заб-ия, Заб-ия нет}) = 0.99 - 0.9405 = 0.0495$$

Теперь мы готовы отвечать на заданные вопросы:

 $\mathbb{P}(\text{Мед. тест пок-ет наличие заб-ия}) =$ $= \mathbb{P}(\text{Мед. тест пок-ет наличие заб-ия, Заб-ия нет}) +$ $+ \mathbb{P}(\text{Мед. тест пок-ет наличие заб-ия, Заб-ие есть}) = 0.009 + 0.0495 = 0.0585$

• Прогностическая сила теста:

 $\mathbb{P}(\text{Заболевание есть}|\text{Медицинский тест показывает наличие заболевания}) = \frac{\mathbb{P}(\text{Мед. тест пок-ет наличие заб-ия, Заб-ие есть})}{\mathbb{P}(\text{Мед. тест пок-ет наличие заб-ия})} = \frac{0.009}{0.0585} \approx 0.154$

Для того, чтобы повысить прогностическую силу теста, необходимо понизить $\mathbb{P}(M$ ед. тест пока для этого необходимо повысить специфичность теста.

6. • Должно выполняться условие нормировки:

$$\int_{-a}^{0} 1.5(x+a)^{2} dx + \int_{0}^{a} 1.5(x-a)^{2} dx = 1$$

$$0.5(x+a)^{3} \Big|_{-a}^{0} + 0.5(x-a)^{3} \Big|_{0}^{a} = 1$$

$$0.5a^{3} + 0.5a^{3} = 1$$

$$a = 1$$

Теперь легко понять, как выглядит функция распределения (смотри определение функции распределения):

$$F(x) = \begin{cases} 0, & x < 1 \\ 0.5(x+1)^3, & -1 \le x < 0 \\ 1+0.5(x-1)^3, & 0 \le x < 1 \\ 1, & x \geqslant 1 \end{cases}$$

$$P\left(X \in \left[\frac{1}{2}, 2\right]\right) = F(2) - F\left(\frac{1}{2}\right) = 1 - 1 + 0.5^4 = 0.5^4$$

$$\mathbb{E}(X) = \int_{-1}^{0} x \cdot 1.5(x+1)^2 dx + \int_{0}^{1} x \cdot 1.5(x-1)^2 dx =$$

$$= 1.5 \int_{-1}^{0} \left(x^3 + 2x^2 + x\right) dx + 1.5 \int_{0}^{1} \left(x^3 - 2x^2 + x\right) dx =$$

$$= \frac{3}{8} x^4 \Big|_{-1}^{0} + x^3 \Big|_{-1}^{0} + \frac{3}{4} x^2 \Big|_{-1}^{0} + \frac{3}{8} x^4 \Big|_{0}^{1} - x^3 \Big|_{0}^{1} + \frac{3}{4} x^2 \Big|_{0}^{1} = -\frac{3}{8} + 1 - \frac{3}{4} + \frac{3}{8} - 1 + \frac{3}{4} = 0$$

А можно было заметить, что функция плотности — четная функция, поэтому сразу $\mathbb{E}(X)=0$

Вычислим $\mathbb{E}(X^2)$:

$$\mathbb{E}(X^2) = \int_{-1}^{0} x^2 \cdot 1.5(x+1)^2 dx + \int_{0}^{1} x^2 \cdot 1.5(x-1)^2 dx =$$

$$= 1.5 \int_{-1}^{0} \left(x^4 + 2x^3 + x^2 \right) dx + 1.5 \int_{0}^{1} \left(x^4 - 2x^3 + x^2 \right) dx =$$

$$= \frac{3}{10} x^5 \Big|_{-1}^{0} + \frac{3}{4} x^4 \Big|_{-1}^{0} + \frac{1}{2} x^3 \Big|_{-1}^{0} + \frac{3}{10} x^5 \Big|_{0}^{1} - \frac{3}{4} x^4 \Big|_{0}^{1} + \frac{1}{2} x^3 \Big|_{0}^{1} = \frac{1}{10}$$

$$\operatorname{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 0.1$$

- Верим, что график F(x), выписанной выше, вы построить можете :)
- 7. Пусть $A = \{$ «Лекция полезна» $\}$, $B = \{$ «Лекция интересна» $\}$. Заметим, что лекции вообще независимы друг от друга.
 - а) Пусть X_A число полезных лекций, прослушанных Васей, X_B число интересных лекций, прослушанных Васей. Введем случайную величину:

$$X_i = egin{cases} 1 & \text{если i-ая лекция была полезна} \\ 0 & \text{если нет} \end{cases}$$

Тогда $X_A = \sum\limits_{i=1}^{30} X_i$. Рассмотрим отдельно X_i :

$$\frac{x}{\mathbb{P}(X=x)} \quad \frac{1}{0.9} \quad 0.1$$

Вероятность 0.9 дана. Тогда:

$$\mathbb{E}(X_i) = 0.9 = \mathbb{E}(X_i^2) \Rightarrow$$

$$\Rightarrow \operatorname{Var}(X_i) = \mathbb{E}(X_i^2) - (\mathbb{E}(X_i))^2 = 0.9 - 0.9^2 = 0.09$$

Значит

$$\mathbb{E}(X_A) = \mathbb{E}\left(\sum_{i=1}^{30} X_i\right) = \sum_{i=1}^{30} \mathbb{E}(X_i) = 0.9 \cdot 30 = 27$$

$$\operatorname{Var}(X_A) = \operatorname{Var}\left(\sum_{i=1}^{30} X_i\right) = \sum_{i=1}^{30} \operatorname{Var}(X_i) = 0.09 \cdot 30 = 2.7$$

Аналогично для числа интересных лекций можем получить:

$$\mathbb{E}(X_B) = 0.7 \cdot 30 = 21$$

$$Var(X_A) = 0.21 \cdot 30 = 6.3$$

б) Так как интересность и полезность — независимые свойства лекций, то: $\mathbb{P}(\overline{A} \cap \overline{B}) = \mathbb{P}(\overline{A}) \cdot \mathbb{P}(\overline{B}) = 0.3 \cdot 0.1 = 0.03, \text{ где } \overline{A} \text{ значит «не } A \text{». В свою очередь: } \\ \mathbb{P}(A \cup B) = \mathbb{P}(A \cap \overline{B}) + \mathbb{P}(B \cap \overline{A}) + \mathbb{P}(A \cap B) = 1 - \mathbb{P}(\overline{A}) \cdot \mathbb{P}(\overline{B}) = 0.97, \text{ где } (A \cup B) \text{ значит } \\ \text{«A или B», а } (A \cap) B - \text{«A и B». Аналогично, путем введения бинарной случайной величины можем получить:$

$$\mathbb{E}(X_{\overline{A} \cap \overline{B}}) = 0.03 \cdot 30 = 0.9$$

$$\mathbb{E}(X_{A \cup B}) = 0.97 \cdot 30 = 29.1$$

8. Дано:
$$\mathbb{E}(X) = 1$$
, $\mathbb{E}(Y) = 2$, $\mathbb{E}(X^2) = 5$, $\mathbb{E}(Y^2) = 8$, $\mathbb{E}(XY) = -1$.

Будем использовать только свойства математического ожидания, ковариации и дисперсии, и ничего больше. Ни-че-го.

•
$$\mathbb{E}(2X + Y - 4) = 2\mathbb{E}(X) + \mathbb{E}(Y) + \mathbb{E}(-4) = 2 + 2 - 4 = 0$$

•
$$Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 5 - 1 = 4$$

•
$$\operatorname{Var}(Y) = \mathbb{E}(Y^2) - (\mathbb{E}(Y))^2 = 8 - 4 = 4$$

•
$$\operatorname{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = -1 - 2 = -3$$

•
$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} = -\frac{3}{2\cdot 2} = -0.75$$

•
$$Var(X - Y - 1) = Var(X) + Var(Y) - 2Cov(X, Y) = 4 + 4 - 2(-3) = 14$$

•
$$Var(X + Y + 1) = Var(X) + Var(Y) + 2Cov(X, Y) = 4 + 4 + 2(-3) = 2$$

$$\begin{aligned} \operatorname{Cov}(X-Y-1,X+Y+1) &= \mathbb{E}((X-Y)(X+Y)) - \mathbb{E}(X-Y)\mathbb{E}(X+Y) = \\ \mathbb{E}(X^2-Y^2) - (\mathbb{E}(X)-\mathbb{E}(Y))(\mathbb{E}(X)+\mathbb{E}(Y)) &= \mathbb{E}(X^2) - \mathbb{E}(Y^2) - ((\mathbb{E}(X))^2 - (\mathbb{E}(Y))^2) = \\ &= \operatorname{Var}(X) - \operatorname{Var}(Y) = 0 \end{aligned} \tag{7}$$

•
$$Cov(X-Y-1,X+Y+1)=0 \Rightarrow Corr(X-Y-1,X+Y+1)=0$$

9. Найдём частные распределения Y и Y^2 :

	X = 1	X = 2	\sum
Y = -1	0.1	0.2	0.3
Y = 0	0.2	0.3	0.5
Y = 1	0	0.2	0.2
Σ	0.3	0.7	
y	-1	0	1
$\mathbb{P}(Y =$	(y) 0.3	0.5	0.2

Так как Y^2 может принимать только значения 0 или 1:

$$\frac{y^2}{} 0 \frac{1}{}$$

$$\mathbb{P}(Y^2 = y^2) \quad 0.5 \quad 0.5$$

А ковариация:

$$Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = ((-1) \cdot 1 \cdot 0.1 + (-1) \cdot 2 \cdot 0.2 + 1 \cdot 2 \cdot 0.2) - (0.3 \cdot 1 + 0.7 \cdot 2) \cdot (0.3 \cdot (-1) + 0.1 \cdot 0.2) = 0.07$$

Так как $Cov(X,Y) \neq 0$ — величины зависимы

10. Бонусная задача

Предположим, что правильный ответ 0.25. Но это невозможно, потому что вариантов ответа 0.25 — два (1 и 4), значит ответ 0.5 тоже был бы правильный. Предположим, что правильный 0.5. Тогда 0.25 тоже правильный — таких вариантов два из четырех, значит вероятность попасть в 0.25, выбрав ответ наугад, равна 0.5. Ответ 0.6, очевидно, неверен, потому что вероятность попасть в него равна 0.25.

Правильный ответ: 0

13.3. Праздник номер 1, і-поток, 30.10.2014

Часть 1

- 1. Вася купил два арбуза у торговки тети Маши и один арбуз у торговки тети Оли. Арбузы у тети Маши спелые с вероятностью 90% (независимо друг от друга), арбузы у тети Оли спелые с вероятностью 70%.
 - а) Какова вероятность того, что все Васины арбузы спелые?

- б) Придя домой Вася выбрал случайным образом один из трех арбузов и разрезал его. Какова вероятность того, что это арбуз от тёти Маши, если он оказался спелым?
- в) Какова вероятность того, что второй и третий съеденные Васей арбузы были от тёти Маши, если все три арбуза оказались спелыми?
- 2. В большой большой стране живет очень большое количество n>0 семей. Количества детей в разных семьях независимы. Количество детей в каждой семье случайная величина с распределением заданным табличкой:

$$x$$
 0 1 2 3 $\mathbb{P}(X=x)$ 0.1 0.3 0.2 0.4

- а) Исследователь Афанасий выбирает одну семью из всех семей наугад, пусть X число детей в этой семье. Найдите $\mathbb{E}(X)$ и $\mathrm{Var}(X)$.
- б) Исследователь Бенедикт выбирает одного ребенка из всех детей наугад, пусть Y- число детей в семье этого ребёнка. Как распределена величина Y? Что больше, $\mathbb{E}(Y)$ или $\mathbb{E}(X)$?
- 3. Функция плотности случайной величины X имеет вид

$$f(x) = egin{cases} rac{3}{8}x^2, \ ext{если} \ x \in [0;2] \\ 0, \ ext{иначе} \end{cases}$$

- а) Не производя вычислений найдите $\int_{-\infty}^{+\infty} f(x)\,dx$
- б) Найдите $\mathbb{E}(X),\,\mathbb{E}(X^2)$ и дисперсию $\mathrm{Var}(X)$
- в) Найдите $\mathbb{P}(X>1.5), \mathbb{P}(X>1.5 \mid X>1)$
- г) При каком c функция g(x) = exf(x) будет функцией плотности некоторой случайной величины?
- 4. Известно, что $\mathbb{E}\left(Z\right)=-3$. $\mathbb{E}\left(Z^{2}\right)=15$, $\mathrm{Var}\left(X+Y\right)=20$ и $\mathrm{Var}\left(X-Y\right)=10$.
 - а) Найдите Var (Z), Var (4-3Z) и $\mathbb{E}\left(5+3Z-Z^2\right)$
 - б) Найдите $\mathrm{Cov}\left(X,Y\right)$ и $\mathrm{Cov}\left(6-X,3Y\right)$
 - в) Можно ли утверждать, что случайные величины X и Y независимы?
- 5. Листая сборник задач по теории вероятностей Вася наткнулся на задачу:

Какова вероятность того, что наугад выбранный ответ на этот вопрос окажется верным?

1) 0.25 2) 0.5 3) 0.6 4) 0.25

Чему же равна вероятность выбора верного ответа?

- 6. Книга в 500 страниц содержит 400 опечаток. Предположим, что каждая из них независимо от остальных опечаток может с одинаковой вероятностью оказаться на любой странице книги.
 - а) Определите вероятность того, что на 13-й странице будет не менее двух опечаток, в явном виде и с помощью приближения Пуассона.

- б) Определите наиболее вероятное число, математическое ожидание и дисперсию числа опечаток на 13-ой странице.
- в) Является ли 13-ая страница более «несчастливой», чем все остальные (в том смысле, что на 13-ой странице ожидается большее количество очепяток, чем на любой другой)?
- 7. Вася случайным образом посещает лекции по ОВП (Очень Важному Предмету). С вероятностью 0.9 произвольно выбранная лекция полезна, и с вероятностью 0.7 она интересна. Полезность и интересность независимые друг от друга и от номера лекции свойства. Всего Вася прослушал 30 лекций.
 - a) Определите математическое ожидание и дисперсию числа полезных лекций, прослушанных Васей
 - б) Определите математическое ожидание числа одновременно бесполезных и неинтересных лекций, прослушанных Васей, и математическое ожидание числа лекций, обладающих хотя бы одним из свойств (полезность, интересность)
- 8. Функция распределения случайной величины Х задана следующей формулой:

$$F(x) = \frac{ae^x}{1 + e^x} + b$$

Определите: константы a и b, математическое ожидание и третий начальный момент случайной величины X, медиану и моду распределения.

Часть 2

- 1. Маша подкидывает кубик до тех пор, пока два последних броска в сумме не дадут 12. Обозначим случайные величины: N количество бросков, а S сумма набранных за всю игру очков.
 - а) Найдите $\mathbb{P}(N=2)$, $\mathbb{P}(N=3)$
 - б) Найдите $\mathbb{E}(N)$, $\mathbb{E}(S)$, $\mathbb{E}(N^2)$
 - в) Пусть X_N результат последнего броска. Как распределена случайная величина X_N ?
- 2. В столовую пришли 30 студентов и встали в очередь в случайном порядке. Среди них есть Вовочка и Машенька. Пусть V это количество человек в очереди перед Вовочкой, а $M\geqslant 0$ количество человек между Вовочкой и Машенькой.
 - а) Найдите $\mathbb{P}(V=1), \mathbb{P}(M=1), \mathbb{P}(M=V)$
 - б) Найдите $\mathbb{E}(V)$, $\mathbb{E}(M)$, $\mathrm{Var}(M)$
- 3. Польский математик Стефан Банах имел привычку носить в каждом из двух карманов пальто по коробку спичек. Всякий раз, когда ему хотелось закурить трубку, он выбирал наугад один из коробков и доставал из него спичку. Первоначально в каждом коробке было по n спичек. Но когда-то наступает момент, когда выбранный наугад коробок оказывается пустым.
 - а) Какова вероятность того, что в другом коробке в этот момент осталось ровно k спичек?
 - б) Каково среднее количество спичек в другом коробке?

 $^{^6}$ Изначально вместо 12 задумывалось число 10, но опечатка была замечена поздно, поэтому решение приводится для 12.

4. Производитель чудо-юдо-йогуртов наклеивает на каждую упаковку одну из 50 случайно выбираемых наклеек. Покупатель собравший все виды наклеек получает приз от производителя. Пусть X — это количество упаковок йогурта, которое нужно купить, чтобы собрать все наклейки.

Найдите
$$\mathbb{P}(X=50)$$
, $\mathbb{E}(X)$, $\mathrm{Var}(X)$

Hint:
$$\ln(50) \approx 3.91$$
, a $\sum_{i=1}^{n} \frac{1}{i} \approx \int_{1}^{n} \frac{1}{x} dx$:)

- 5. В самолете n мест и все билеты проданы. Первой в очереди на посадку стоит Сумасшедшая Старушка. Сумасшедшая Старушка несмотря на билет садиться на случайно выбираемое место. Каждый оставшийся пассажир садится на своё место, если оно свободно и на случайное выбираемое место, если его место уже кем-то занято.
 - а) Какова вероятность того, что все пассажиры сядут на свои места?
 - б) Какова вероятность того, что последний пассажир сядет на своё место?
 - в) Чему примерно равно среднее количество пассажиров севших на свои места?

13.4. Праздник номер 1 по теории вероятностей, і-поток. Решение

Часть 1

Не претендуя на единственность, решения претендуют на правильность!

- 1. a) $\mathbb{P}(\cdot) = 0.9^2 \cdot 0.7 = 0.567$
 - б) $A = \{$ случайно выбранный арбуз от тети Маши $\}; B = \{$ случайно выбранный арбуз оказался спелым $\}.$ Формула условной вероятности:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)} = \frac{2/3 \cdot 0.9}{2/3 \cdot 0.9 + 1/3 \cdot 0.7} = \frac{18}{25}$$

в) $A = \{$ второй и третий съеденные арбузы — от тети Маши $\}$; $B = \{$ все три арбуза — спелые $\}$. Дает ли нам что-то о принадлежности арбузов к тете Маше или тете Оле то, что все арбузы — спелые $\}$? События независимы!

$$\mathbb{P}(A|B) = \mathbb{P}(A) = \frac{1}{3}$$

- 2. a) $\mathbb{E}(X) = \sum \mathbb{P}(X_i) X_i = 1.9$ $\operatorname{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 0 \cdot 0.1 + 1 \cdot 0.3 + 4 \cdot 0.2 + 9 \cdot 0.4 - 1.9^2 = 1.09$
 - б) Раз ребенок выбран, значит, в его семье дети есть! Всего детей $n\mathbb{E}(X)=1.9n$. Семей с одним ребенком -0.3n, значит, детей из семей с одним ребенком -0.3n. Аналогично, детей из семей с двумя детьми -0.4n; детей из семей с тремя детьми -1.2n.

Теперь легко построить закон распределения случайной величины Y:

$$\frac{y}{\mathbb{P}(Y=y) \quad 3/19 \quad 4/19 \quad 12/19}$$

$$\mathbb{E}(Y) = \frac{3}{19} + \frac{8}{19} + \frac{36}{19} = \frac{47}{19} > \mathbb{E}(X)$$

3. Любителям (или нелюбителям) интегралов:

а) Да это же интеграл от функции плотности на всей числовой прямой! Ответ: единица!

б)

$$\mathbb{E}(X) = \int_{0}^{2} x f(x) dx = \int_{0}^{2} \frac{3}{8} x^{3} dx = \frac{3}{32} x^{4} |_{0}^{2} = \frac{3}{2}$$

$$\mathbb{E}(X^{2}) = \int_{0}^{2} x^{2} f(x) dx = \int_{0}^{2} \frac{3}{8} x^{4} dx = \frac{3}{40} x^{5} |_{0}^{2} = \frac{12}{5}$$

Формула дисперсии:

$$Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{12}{5} - \frac{9}{4} = \frac{3}{20}$$

B) $\mathbb{P}(X > 1.5) = \int_{-2}^{2} f(x)dx = \int_{-2}^{2} \frac{3}{8}x^{2}dx = \frac{1}{8}x^{3}|_{1.5}^{2} = \frac{37}{64}$

Вычислим вероятность условия:

$$\mathbb{P}(X > 1) = \int_{1}^{2} f(x)dx = \int_{1}^{2} \frac{3}{8}x^{2}dx = \frac{1}{8}x^{3}|_{1}^{2} = \frac{7}{8}$$

$$\mathbb{P}(X > 1.5) = \frac{37}{64} = \frac{37}{8}$$

$$\mathbb{P}(X > 1.5 | X > 1) = \frac{\mathbb{P}(X > 1.5)}{\mathbb{P}(X > 1)} = \frac{37/64}{7/8} = \frac{37}{56}$$

г) Должно выполниться следующее соотношение:

$$\int_{-\infty}^{+\infty} cx f(x) dx = 1$$

Применительно к нашей задаче:

$$\frac{3c}{8} \int_{0}^{2} x^{3} dx = \frac{3c}{32} x^{4} \Big|_{0}^{2} = \frac{3c}{2} = 1 \Rightarrow c = \frac{2}{3}$$

4. You have to learn the rules of the game. And then you have to play better than anyone else. (А. Эйнштейн)

a)
$$\operatorname{Var}(Z) = \mathbb{E}(Z^2) - (\mathbb{E}(Z))^2 = 15 - 9 = 6$$

$$\operatorname{Var}(4 - 3Z) = 9\operatorname{Var}(Z) = 54$$

$$\mathbb{E}(5 + 3Z - Z^2) = 5 + 3 \cdot (-3) - 15 = -19$$

6)
$$Var(X \pm Y) = Var(X) + Var(Y) \pm 2 \cdot Cov(X, Y)$$

Отсюда получаем:

$$Var(X + Y) - Var(X - Y) = 4 Cov(X, Y) \Rightarrow Cov(X, Y) = 2.5$$

 $Cov(6 - X, 3Y) = -3 \cdot 2.5 = -7.5$

в)

$$Cov(X, Y) = 2.5 \neq 0$$

Случайные величины действительно независимы.

- 5. В условии не сказано сколько ответов являются верными. Предположим, что правильный ответ 0.25. Но это невозможно, потому что вариантов ответа 0.25 два (1 и 4), значит ответ 0.5 тоже был бы правильный. Предположим, что правильный 0.5. Тогда 0.25 тоже правильный таких вариантов два из четырех, значит вероятность попасть в 0.25, выбрав ответ наугад, равна 0.5. Ответ 0.6, очевидно, неверен, потому что вероятность попасть в него равна 0.25. Правильный ответ: 0
- 6. Удобно рассуждать следующим образом: предположим, что каждая опечатка наугад (с равными вероятностями и независимо от других опечаток) выбирает, на какую страницу ей попасть¹.
 - а) Пусть X число опечаток на 13 странице.

$$\mathbb{P}(X \geqslant 2) = 1 - \mathbb{P}(X = 0) - \mathbb{P}(X = 1)$$

 $\mathbb{P}(X=0) = \left(\frac{499}{500}\right)^{400}$ — каждая из 400 опечаток не доложна попасть на 13 страницу. $\mathbb{P}(X=1) = 400 \cdot \frac{1}{500} \cdot \left(\frac{499}{500}\right)^{399}$ — ровно одна опечатка (а есть 400 вариантов) должна попасть на 13 страницу, а остальные — мимо. Соответственно:

$$\mathbb{P}(X \geqslant 2) = 1 - \left(\frac{499}{500}\right)^{400} - 400 \cdot \frac{1}{500} \cdot \left(\frac{499}{500}\right)^{399} \approx 0.1911357$$

Это если считать в явном виде. А если пользоваться приближением Пуассона:

$$p(k) = \mathbb{P}(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}$$

неплохо бы вспомнить, что параметр λ это математическое ожидание X, поэтому расчеты здесь пока оставим до лучших времен.

б) Пусть X — число опечаток на 13 странице. Введем случайную величину

$$X_i = egin{cases} 1 & \text{если i-ая опечатка попала на 13 страницу} \\ 0 & \text{если нет} \end{cases}$$

Тогда $X = \sum\limits_{i=1}^{400} X_i$. Рассмотрим отдельно X_i :

$$\frac{x}{\mathbb{P}(X=x) \quad \frac{1}{500} \quad \frac{499}{500}}$$

Так как i-ая опечатка наугад выбирает одну страницу из 500 и это должна быть именно 13.

Тогда:

$$\mathbb{E}(X_i) = \frac{1}{500} = \mathbb{E}(X_i^2) \Rightarrow$$

$$\Rightarrow \text{Var}(X_i) = \mathbb{E}(X_i^2) - (\mathbb{E}(X_i))^2 = \frac{1}{500} - \left(\frac{1}{500}\right)^2 = \frac{499}{500^2}$$

¹Ну очень самостоятельные!

Значит

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i=1}^{400} X_i\right) = \sum_{i=1}^{400} \mathbb{E}(X_i) = \frac{400}{500} = 0.8$$

$$\operatorname{Var}(X) = \operatorname{Var}\left(\sum_{i=1}^{400} X_i\right) = \sum_{i=1}^{400} \operatorname{Var}(X_i) = 400 \cdot \frac{499}{500^2} = 0.8 \cdot \frac{499}{500}$$

Теперь мы знаем, что $\lambda = \mathbb{E}(X) = 0.8$ поэтому можем вернуться к пункту (a):

$$\mathbb{P}(X\geqslant 2) = 1 - \mathbb{P}(X=0) - \mathbb{P}(X=1) = 1 - \frac{0.8^0}{0!}e^{-0.8} - \frac{0.8^1}{1!}e^{-0.8} = 0.1012079 = 0.0019$$

Осталось найти наиболее вероятное число опечаток на 13 странице:

$$\mathbb{P}(X = k) = \frac{0.8^k}{k!} e^{-0.8} \to \max_k$$

Очевидно, что эта функция убывает по k, ведь с ростом k: k! растет, а 0.8^k убывает. Значит наиболее вероятное число ошибок — X=0

в) Ох уж эти предрассудки! 13-я страница точно такая же как и все остальные, ведь везде в решении можно просто заменить номер 13 на любой другой и ничего не изменится.

- 7. Пусть $A = \{$ «Лекция полезна» $\}$, $B = \{$ «Лекция интересна» $\}$. Заметим, что лекции вообще независимы друг от друга.
 - а) Пусть X_A число полезных лекций, прослушанных Васей, X_B число интересных лекций, прослушанных Васей. Введем случайную величину:

$$X_i = egin{cases} 1 & ext{если i-ая лекция была полезна} \\ 0 & ext{если нет} \end{cases}$$

Тогда $X_A = \sum\limits_{i=1}^{30} X_i$. Рассмотрим отдельно X_i :

$$\frac{x}{\mathbb{P}(X=x)} \quad \frac{1}{0.9} \quad 0.1$$

Вероятность 0.9 дана. Тогда:

$$\mathbb{E}(X_i) = 0.9 = \mathbb{E}(X_i^2) \Rightarrow$$

$$\Rightarrow \text{Var}(X_i) = \mathbb{E}(X_i^2) - (\mathbb{E}(X_i))^2 = 0.9 - 0.9^2 = 0.09$$

Значит

$$\mathbb{E}(X_A) = \mathbb{E}\left(\sum_{i=1}^{30} X_i\right) = \sum_{i=1}^{30} \mathbb{E}(X_i) = 0.9 \cdot 30 = 27$$

$$\operatorname{Var}(X_A) = \operatorname{Var}\left(\sum_{i=1}^{30} X_i\right) = \sum_{i=1}^{30} \operatorname{Var}(X_i) = 0.09 \cdot 30 = 2.7$$

Аналогично для числа интересных лекций можем получить:

$$\mathbb{E}(X_B) = 0.7 \cdot 30 = 21$$

$$Var(X_B) = 0.21 \cdot 30 = 6.3$$

б) Так как интересность и полезность — независимые свойства лекций, то: $\mathbb{P}(\overline{A}\cap \overline{B}) = \mathbb{P}(\overline{A})\cdot\mathbb{P}(\overline{B}) = 0.3\cdot0.1 = 0.03, \text{ где }\overline{A} \text{ значит «не }A\text{». В свою очередь:} \\ \mathbb{P}(A\cup B) = \mathbb{P}(A\cap \overline{B}) + \mathbb{P}(B\cap \overline{A}) + \mathbb{P}(A\cap B) = 1 - \mathbb{P}(\overline{A})\cdot\mathbb{P}(\overline{B}) = 0.97 \text{ , где }(A\cup B) \text{ значит «}A \text{ или }B\text{». Аналогично, путем введения бинарной случайной величины можем получить:}$

$$\mathbb{E}(X_{\overline{A} \cap \overline{B}}) = 0.03 \cdot 30 = 0.9$$

$$\mathbb{E}(X_{A \cup B}) = 0.97 \cdot 30 = 29.1$$

8. Будем пользоваться свойствами функций распределения и плотности. Для начала:

$$\lim_{x \to +\infty} F(x) = 1, \quad \lim_{x \to -\infty} F(x) = 0,$$

$$\lim_{x \to +\infty} \left(\frac{ae^x}{1 + e^x} + b \right) = a + b := 1$$

$$\lim_{x \to -\infty} \left(\frac{ae^x}{1 + e^x} + b \right) = b := 0$$

Откуда сразу получаем

$$a=1, b=0 \Rightarrow F(x)=\frac{e^x}{1+e^x}$$

Для дальнейших развлечений нам понадобится функция плотности:

$$f(x) = F'(x) = \frac{e^x}{(1+e^x)^2}$$

Заметим, что она симметрична относительно нуля:

$$f(-x) = \frac{\frac{1}{e^x}}{\left(1 + \frac{1}{e^x}\right)^2} = \frac{e^x}{(1 + e^x)^2} = f(x)$$

Из того этого следует, что математическое ожидание, а так же мода и медиана равны нулю. Более того, так как функция плотности симметрична относительно нулевого математического ожидания, центральный и начальный моменты третьего порядка равны между собой и равны нулю. Можно было выписать интегралы для математического ожидания и третьего начального момента и сослаться на нечетность функции.

Часть 2

– Это невозможно!– Нет. Это необходимо.© Interstellar

1. Алгоритм решения: рисуешь дерево ightarrow PROFIT

Комментарии к построению дерева: состояние 1 — начальное, состояние 3 — конец игры, когда выпало две «шестерки» подряд. Заметим, что выпадение любой «нешестерки» в процессе игры приводит нас к состоянию, эквивалентному начальному.

Вероятность выпадения «шестерки» равна 1/6, «нешестерки» — 5/6.

Теперь мы готовы оседлать коня!

а)
$$\mathbb{P}(N=1)=0$$
 — невозможно за ход закончить игру. $\mathbb{P}(N=2)=\frac{1}{36}$ $\mathbb{P}(N=3)=\frac{5}{6}\cdot\frac{1}{6}\cdot\frac{1}{6}=\frac{5}{216}$

б) А теперь будет видна вся сила рисования дерева:

Пусть \mathbb{E}_1 — число ходов, за которое мы ожидаем закончить игру, если игра начинается в состоянии 1, \mathbb{E}_2 — число ходов, за которое мы ожидаем закончить игру, если игра начинается в состоянии 2.

Получим два уравнения:
$$\begin{cases} \mathbb{E}_2 = \frac{1}{6} \cdot 1 + \frac{5}{6} (\mathbb{E}_1 + 1) \\ \mathbb{E}_1 = \frac{5}{6} (\mathbb{E}_1 + 1) + \frac{1}{6} (\mathbb{E}_2 + 1) \end{cases}$$

Решив эту систему, получим, что $\mathbb{E}_1 = 42$. А ведь это и есть $\mathbb{E}(N)$.

Аналогична логика для оставшихся мат. ожиданий.

Найдем математическое ожидание суммы набранных очков. Ясно, что если выпадает «не 6», то мы ждем 3 очка. Тогда переопределив \mathbb{E}_1 и \mathbb{E}_2 следующим образом: пусть \mathbb{E}_1 — число набранных очков, которое мы ожидаем получить за игру, если игра начинается в состоянии 1, \mathbb{E}_2 — число набранных очков, которое мы ожидаем получить за игру, если игра начинается в состоянии 2.

Новые два уравнения:
$$\begin{cases} \mathbb{E}_2 = \frac{1}{6} \cdot 6 + \frac{5}{6} (\mathbb{E}_1 + 3) \\ \mathbb{E}_1 = \frac{5}{6} (\mathbb{E}_1 + 3) + \frac{1}{6} (\mathbb{E}_2 + 6) \end{cases}$$

Решаем и получаем: $\mathbb{E}(S) = \mathbb{E}_1 = 147$

А можно было сделать еще круче! Выше показано, что $\mathbb{E}(N)=42$. А сколько мы ждем очков за 1 ход? 3.5! Тогда $\mathbb{E}(S)=\mathbb{E}(N)\cdot 3.5=147$

Применяя схожую логику для $\mathbb{E}(N^2)$:

$$\mathbb{E}(N^2) = \frac{5}{6} \cdot \mathbb{E}\left((N+1)^2 \right) + \frac{1}{6} \cdot \frac{5}{6} \cdot \mathbb{E}\left((N+2)^2 \right) + \frac{1}{6} \cdot \frac{1}{6} \cdot 2^2$$

Учитывая, что $\mathbb{E}(N) = 42$, получим: $\mathbb{E}(N^2) = 3414$.

в) Veni, vidi, vici

$$\begin{array}{c|cc}
x_n & 6 \\
\hline
 & \\
\mathbb{P}(X_n = x_n) & 1
\end{array}$$

2. а) $\mathbb{P}(V=1)=1/30$, т.к. именно этому равна вероятность того, что Вовочка стоит ровно вторым в очереди;

M=1 значит, что между Машенькой и Вовочкой ровно один человек в очереди. Если Вовочка находится от 3 (включительно) до 28 позиции в очереди, то для Машеньки есть две благоприятные позиции для события M=1 (например, если Вовочка стоит на 15 месте, то благоприятные позиции для Машеньки — стоять либо 13-ой, либо 17-ой). Если же Вовочка стоит на других позициях в очереди, то для Машеньки существует ровно одна благоприятная позиция:

$$\mathbb{P}(M=1) = \frac{26}{30} \cdot \frac{2}{29} + \frac{4}{30} \cdot \frac{1}{29} = \frac{56}{30 \cdot 29} = \frac{28}{435}$$

M=V произойдет только, если Машенька стоит за Вовочкой. При этом для Машеньки существует только одна благоприятная позиция и только в том случае, что Вовочка стоит до 15 позиции (включительно):

$$\mathbb{P}(M = V) = \frac{1}{2} \cdot \frac{1}{29} = \frac{1}{58}$$

150

$$\mathbb{E}(V) = \frac{0+1+\ldots+29}{30} = \frac{30\cdot 14+15}{30} = 14.5$$

Для $\mathbb{E}(M)$ можно решить в лоб, и получится красивая сумма, а можно вот так:

Сначала случайно кинем Вовочку и Машеньку на две из 30 позиций в очереди. Образуется три отрезка: точки между Вовочкой и Машенькой и два крайних отрезка (может быть, отрезок из 0 точек). Затем будем закидывать в очередь на оставшиеся позиции случайно 28 оставшихся людей (назовем их «пропавшими»). Т.к. все броски были случайны (или из соображений симметрии, как хотите), вероятность попасть в отрезок между Машенькой и Вовочкой для «пропавшего» равна 1/3, вне отрезка — соответственно 2/3, и независима от остальных бросков (!).

Введем случайную величину X_i для i-го «пропавшего», которая равна 1, если он попал в отрезок между Машенькой и Вовочкой, 0, если не попал:

$$\begin{array}{cccc}
x_i & 1 & 0 \\
\hline
\mathbb{P}(X_i = x_i) & 1/3 & 2/3
\end{array}$$

Легко считается: $\mathbb{E}(X_i)=1/3,\,\mathbb{E}(X_i^2)=1/3,\,\mathrm{Var}(X_i)=1/3-1/9=2/9.$ Ясно, что $M=\sum_1^{28}X_i.$ Тогда учитывая независимость X_i :

$$\mathbb{E}(M) = \frac{28}{3}$$
$$Var(M) = \frac{56}{9}$$

3. Биномиальное распределение — \hat{A} l 'abordage!.

Задача интерпретируется так: последний ход — это когда мы обратились к коробку, в котором нет спичек (то есть к одному коробку нужно обратиться n+1 раз).

а) Пусть ξ — это случайная величина, обозначающая число оставшихся спичек в непустом коробке перед последним ходом.

Если $0 < k \leqslant n$, будем считать успехом — попадание в коробок, к которому мы на последнем ходу игры (пустому коробку) обратились. До этого момента из него было вытащено n спичек, а из другого n-k спичек, то есть спички брались 2n-k раз. Таким образом, перед последним ходом произошло n успехов и n-k неудач.

$$\mathbb{P}(\xi = k) = C_{2n-k}^{n-k} = \left(\frac{1}{2}\right)^{n-k} \left(\frac{1}{2}\right)^n = C_{2n-k}^{n-k} \left(\frac{1}{2}\right)^{2n-k}$$

Теперь нужно учесть, что на последнем ходе был выбран именно пустой коробок. Вероятность этого события -1/2, значит, искомая вероятность равна:

$$\mathbb{P}(\texttt{в одном коробке осталось k спичек}) = C_{2n-k}^{n-k} \left(\frac{1}{2}\right)^{2n-k} \cdot \frac{1}{2} = C_{2n-k}^{n-k} \left(\frac{1}{2}\right)^{2n-k+1}$$

б) Среднее спичек в другом коробке:

$$\mathbb{E}(X) = \sum_{k=1}^{n} k \cdot C_{2n-k}^{n-k} \left(\frac{1}{2}\right)^{2n-k+1}$$

4. Для того чтобы количество упаковок, которые необходимо купить, равнялось 50, нужно чтобы ни одну из наклеек Покупатель не встретил дважды, поэтому:

$$\mathbb{P}(X = 50) = 1 \cdot \frac{49}{50} \cdot \frac{48}{50} \cdot \dots \cdot \frac{1}{50} = \frac{49!}{50^{49}} \approx 3.4 \cdot 10^{-21}$$
Dum spiro, spero! ²

Теперь введем понятие «шаг». Переход на новый шаг происходит в тот момент, когда покупатель получил наклейку, которой у него раньше не было. Начинаем с шага 0, когда нет ни одной наклейки, и шагать будем до 49, потому что в момент перехода на шаг 50 Покупатель получит последнюю необходимую наклейку и «прогулка» закончится. Введем случайную величину

 X_q равную количеству покупок в течение шага номер q. Тогда $X = \sum_{q=0}^{49} X_q$. Найдем математическое ожидание X_q :

$$\mathbb{E}(X_q) = \frac{n-q}{n} \cdot 1 + \frac{q}{n} \cdot \frac{n-q}{n} \cdot 2 + \left(\frac{q}{n}\right)^2 \cdot \frac{n-q}{n} \cdot 3 + \dots$$

здесь $\frac{n-q}{n}$ — это вероятность найти наклейку, которой еще нет, а $\frac{q}{n}$, соответственно — вероятность повториться. Вопрос теперь в том, как посчитать сумму:

$$\mathbb{E}(X_q) = \frac{n-q}{n} \left(1 + \frac{q}{n} \cdot 2 + \left(\frac{q}{n}\right)^2 \cdot 3 + \dots \right) = \frac{n-q}{n} \cdot \sum_{k=0}^{\infty} \left(\frac{q}{n}\right)^k (k+1)$$

Можем выписать в столбик несколько первых членов вышестоящей суммы:

$$1$$

$$\left(\frac{q}{n}\right)^{1} + \left(\frac{q}{n}\right)^{1}$$

$$\left(\frac{q}{n}\right)^{2} + \left(\frac{q}{n}\right)^{2} + \left(\frac{q}{n}\right)^{2}$$

$$\left(\frac{q}{n}\right)^{3} + \left(\frac{q}{n}\right)^{3} + \left(\frac{q}{n}\right)^{3} + \left(\frac{q}{n}\right)^{3}$$
...

Достаточно! Можем скомпоновать всю сумму другим способом, а именно — по столбцам. Заметим, что сумма элементов в каждом столбце это сумма бесконечно убывающей геометрической прогрессии с одним и тем же знаменателем $\frac{q}{n}$ и различными первыми членами. Соответственно:

$$\sum_{k=0}^{\infty} \left(\frac{q}{n}\right)^k (k+1) = \frac{1}{1 - \frac{q}{n}} + \frac{\frac{q}{n}}{1 - \frac{q}{n}} + \frac{\left(\frac{q}{n}\right)^2}{1 - \frac{q}{n}} + \frac{\left(\frac{q}{n}\right)^3}{1 - \frac{q}{n}} + \dots =$$

$$= \frac{1}{1 - \frac{q}{n}} \left(1 + \frac{q}{n} + \left(\frac{q}{n}\right)^2 + \left(\frac{q}{n}\right)^3 + \dots\right) = \frac{n}{n-q} \cdot \frac{n}{n-q} = \left(\frac{n}{n-q}\right)^2$$

Таким образом, получаем, что:

$$\mathbb{E}(X_q) = \frac{n-q}{n} \cdot \left(\frac{n}{n-q}\right)^2 = \frac{n}{n-q}$$

²Надежда умирает последней!

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{q=0}^{49} X_q\right) = \sum_{q=0}^{49} \mathbb{E}(X_q) = \frac{50}{50 - 0} + \frac{50}{50 - 1} + \dots + \frac{50}{50 - 49} = 50\left(\frac{1}{50} + \frac{1}{49} + \dots + 1\right) \approx$$

$$\approx 50 \int_{1}^{50} \frac{1}{x} dx = 50 \ln(50) \approx 195.5$$

А теперь ещё одно решение:

Величины X_q независимы (но по разному распределены). Если долго пришлось ждать i-го шага, это ничего не говорит о j-ом шаге. Величины X_q имеют известный закон распределения — это число опытов до первого успеха при заданной вероятности успеха. Это геометрическое распределение, математическое ожидание которого равно $\frac{1}{p}$, а дисперсия: $\frac{1-p}{p^2}$, где p — вероятность успеха.

А те, кто забыл, могут **проще решить** методом первого шага: Если X — число опытов до успеха при вероятности успеха p, то

$$\mathbb{E}(X) = p \cdot 1 + (1 - p) \cdot \mathbb{E}(X + 1)$$

Откуда $\mathbb{E}(X)=rac{1}{p}$ и дело в шляпе :) Аналогично:

$$\mathbb{E}(X^{2}) = p \cdot 1^{2} + (1 - p) \cdot \mathbb{E}((X + 1)^{2})$$

и решая, находим $\mathbb{E}(X^2)$.

5. а) Необходимое и достаточное условие — старушка не должна занять чужое место. С вероятностью $\frac{1}{n}$ она угадает свое место, значит, для каждого входящего его место будет свободно и он туда сядет. Ответ: $\frac{1}{n}$

б) Будем искать вероятность того, что последний человек не сядет на свое место. Пусть $A_i = \{$ Старушка села на место i-го $\}$, $B_{(i,j)} = \{i$ -ый пассажир сел на место j-ого $\}$

$$P[n$$
-ый не сядет на свое место] = $\mathbb{P}(A_n) + P[A_{n-1}]P[B_{(n-1,n)}] + P[A_{n-2}](P[B_{(n-2,n)}] + P[B_{(n-2,n-1)}]P[B_{(n-1,n)}]) + \dots$

Можем заметить, что:

$$\checkmark\ \mathbb{P}[A_i] = P[A_j] = \frac{1}{n}\ \forall\ i,j$$
 $\checkmark\ \mathbb{P}[B_{(n-1,n)}] = \frac{1}{2}$, потому что $n-1$ -ый выбирает из двух оставшихся мест $\checkmark\ \mathbb{P}[B_{(n-2,n)}] + \mathbb{P}[B_{(n-2,n-1)}]P[B_{(n-1,n)}] = \frac{1}{3} + \frac{1}{3}\cdot \frac{1}{2} = \frac{1}{2}$ \checkmark

$$\begin{split} \mathbb{P}[B_{(n-3,n)}] + \mathbb{P}[B_{(n-3,n-2)}] (\mathbb{P}[B_{(n-2,n)}] + \mathbb{P}[B_{(n-2,n-1)}] \mathbb{P}[B_{(n-1,n)}]) + \\ + \mathbb{P}[B_{(n-3,n-1)}] \mathbb{P}[B_{(n-1,n)}] = \frac{1}{4} + \frac{1}{4} \left(\frac{1}{3} + \frac{1}{3} \cdot \frac{1}{2}\right) + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{2} \end{split}$$

 \checkmark И так далее до того момента, пока старушка не сядет на место первого человека, который заходит после нее, — всего n-2 вариантов.

Таким образом мы получаем сумму:

$$\mathbb{P}[n$$
-ый не сядет на свое место] $= \frac{1}{n} + \frac{1}{n} \cdot \frac{1}{2} + \frac{1}{n} \cdot \frac{1}{2} + \cdots = \frac{1}{n} + \frac{1}{2n}(n-2) = \frac{1}{2}$

Значит вероятность
$$\mathbb{P}[n$$
-ый сядет на свое место $]=1-rac{1}{2}=rac{1}{2}$

А вот ещё один вариант решения:

Метод математической индукции: допустим что это утверждение доказано для одного, двух и так далее до k человек. Рассмотрим k+1 человека. Когда последний сядет на своё место? Если старушка сядет на своё место, а вероятность этого равна $\frac{1}{k+1}$ или, с вероятностью $\frac{1}{2}$ (по индукции), если старушка сядет на любое место кроме своего и последнего, то есть $\frac{1}{2} \cdot \frac{k-1}{k+1}$. В этом случае тот пассажир, чье место она заняла, становится

старушкой, и мы получаем задачу при меньшем k. Складывая эти две дроби, получаем $\frac{1}{2}$.

Чтобы найти среднее число пассажиров, разобьем эту величину в сумму индикаторов: Y_1 — сел ли первый на место, . . . , Y_n — сел ли n-ый на место (индикатор равен единице, если сел).

Стало быть
$$\mathbb{E}(Y) = \mathbb{E}(Y_1) + \mathbb{E}(Y_2) + \ldots + \mathbb{E}(Y_n)$$
. $\mathbb{E}(Y_n) = \frac{1}{2}$.

Почти аналогично можем рассуждать для предпоследнего:

База индукции: если пассажиров трое (n=3 включая старушку), то для предпоследнего вероятность сесть на своё место равна $\frac{2}{3}$.

Шаг индукции: допустим что для $3,4,\ldots n$ пассажиров эта вероятность равна $\frac{2}{3}$. Рассмотрим случай (n+1)-го пассажира. Предпоследний сядет на своё место, если:

- старушка сядет на своё место или на место последнего $\frac{2}{n+1}$
- в $\frac{2}{3}$ тех случаев, когда старушка сядет на место $2,3,\ldots,(n-1)$, т.е. $\frac{2}{3}\cdot\frac{n-2}{n+1}$ складываем, получаем $\frac{2}{3}$. То есть по индукции вероятность того, что предпоследний сядет на своё место равна $\frac{2}{3}$

И по аналогии можно увидеть, что вероятность того, что k-ый с конца пассажир сядет на своё место равна k/(k+1)

Если у насn пассажиров включая СС, то среднее количество севших на свои места (раскладывая с конца) равно

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{n-1}{n} + \frac{1}{n}$$

13.5. Контрольная работа 2. Базовый поток. 15.12.2014

1. Ежемесячные расходы студенческой семьи Маши и Васи хорошо описываются случайным вектором (X,Y), (X — расходы Маши, Y — расходы Васи), имеющим равномерное распределение в треугольнике, задаваемом ограничениями $\{0\leqslant X,\ 0\leqslant Y,\ X+Y\leqslant 1\}$.

Найлите:

- а) Вероятность того, что совокупные расходы превысят половину бюджета, $\mathbb{P}(X+Y>1/2)$
- б) Плотность распределения расходов Васи.
- в) Вероятность того, что Машины расходы составили менее трети бюджета, если известно, что Вася израсходовал более половины семейного бюджета.

- r) Условную плотность распределения и условное математическое ожидание расходов Маши, при условии, что Вася израсходовал половину бюджета.
- д) Математическое ожидание условного математического ожидания расходов Маши, $\mathbb{E}(\mathbb{E}(X|Y))$
- е) Коэффициент корреляции расходов Маши и Васи
- 2. Задана последовательность независимых случайных величин X_1, X_2, \dots

$$\begin{array}{c|ccccc}
x_n & -\sqrt{n} & 0 & \sqrt{n} \\
\hline
\mathbb{P}(X_n = x_n) & 1/2n & 1 - 1/n & 1/2n
\end{array}$$

- a) Сформулируйте закон больших чисел. Выполняется ли для данной последовательности закон больших чисел?
- б) Запишите неравенство Чебышёва. Оцените вероятность того, что модуль среднего значения по n наблюдениям не превысит $1, \mathbb{P}(|\bar{X}_n| \leqslant 1)$
- в) Сколько членов последовательности необходимо взять, чтобы вероятность того, что модуль среднего значения не превысит 1, была не менее 0.9, $\mathbb{P}(|\bar{X}_n|\leqslant 1)\geqslant 0.9$
- 3. Размер выплат каждому клиенту банка случайная величина с математическим ожиданием, равным 5000 ед. и среднеквадратическим отклонением, равным 2000 ед. Выплаты отдельным клиентам независимы. Сколько должно быть наличных денег в банке, чтобы с вероятностью 0.95 денег хватило на обслуживание 60 клиентов?
- 4. Рекламная компания хочет оценить вероятность p, с которой адресная реклама приводит к заявке. С этой целью она рассылает n рекламных проспектов. Обозначим за \hat{p} отношение числа поданных заявок к числу разосланных проспектов n. С помощью теоремы Муавра–Лапласа и неравенства Чебышёва определите:
 - а) Сколько нужно разослать рекламных проспектов, для того чтобы \hat{p} отличалось от истинной вероятности p не более, чем на 0.1 с вероятностью не меньшей 0.99
 - б) С какой точностью ε удастся оценить p с вероятностью 0.99, если разослана 1000 проспектов, т.е. $\mathbb{P}(|\hat{p}-p|\leqslant \varepsilon)\geqslant 0.99?$

13.6. Контрольная работа 2. Базовый поток. 15.12.2014, решение

1. а) Так как (X,Y) имеют совместное равномерное распределение, $\mathbb{P}\left\{X+Y>\frac{1}{2}\right\}$ можно рассчитать как отношение соответствующих площадей:

Соответственно:

$$\mathbb{P}\left(X+Y>\frac{1}{2}\right) = \frac{S_0}{S_0+S_1} = \frac{0.5-S_1}{0.5} = \frac{\frac{1}{2}-\frac{1}{8}}{\frac{1}{2}} = \frac{3}{4}$$

б)

$$f_Y(y) = \int_0^{1-y} f_{XY}(x,y) dx$$

Поэтому, нам сначала нужно найти $f_{XY}(x,y)$, которая для равномерного распределения должна быть константой. Это можно сделать из условия:

$$\int_{0}^{1} \int_{0}^{1-x} f_{XY}(x,y) dx dy = \int_{0}^{1} \int_{0}^{1-x} C dx dy = 1 \Rightarrow$$

$$\int_{0}^{1} \int_{0}^{1-x} C dx dy = \int_{0}^{1} C(1-x) dx = \left(Cx - C\frac{x^{2}}{2} \right) \Big|_{0}^{1} = \frac{C}{2} = 1$$

Откуда имеем $f_{XY}(x,y)=C=2$. Теперь можем найти плотность распределения расходов Васи:

$$f_Y(y) = \int_{0}^{1-y} 2dx = 2(1-y)$$

в) В данном случае площади немного другие, но смысл тот же:

$$\mathbb{P}\left(X < \frac{1}{3} \mid Y > \frac{1}{2}\right) = \frac{S_0}{S_0 + S_1} = \frac{\frac{1}{8} - S_1}{\frac{1}{8}} = \frac{\frac{1}{8} - \frac{1}{72}}{\frac{1}{8}} = \frac{8}{9}$$

г) При $Y=\frac{1}{2}, X$ распределен равномерно от 0 до $\frac{1}{2},$ поэтому его плотность равна

$$f_X(x) = \frac{1}{\frac{1}{2} - 0} = 2$$

Соответственно, условное математическое ожидание:

$$\mathbb{E}\left(X|Y=\frac{1}{2}\right) = \frac{1}{4}$$

д) $\mathbb{E}(\mathbb{E}(X|Y))=\mathbb{E}(X)$, а маргинальную функцию плотности для X мы можем найти так же, как искали для Y, и получим $f_X(x)=2(1-x)$. Отсюда:

$$\mathbb{E}(X) = \int_{0}^{1} 2x(1-x)dx = \left(x^{2} - \frac{2}{3}x^{3}\right)\Big|_{0}^{1} = \frac{1}{3}$$

е) Если вспомнить формулу для корреляции:

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)}{\sigma_X \sigma_Y}$$

то станет более-менее очевидно, что надо найти $\mathbb{E}(XY)$ и дисперсии X и Y.

$$\mathbb{E}(XY) = \int_{0}^{1} \int_{0}^{1-x} 2xy dx dy = \int_{0}^{1} 2x dx \int_{0}^{1-x} y dy = \int_{0}^{1} x(x^{2} - 2x + 1) dx =$$
$$= \left(\frac{x^{4}}{4} - \frac{2}{3}x^{3} + \frac{x^{2}}{2}\right) \Big|_{0}^{1} = \frac{3}{4} - \frac{2}{3} = \frac{1}{12}$$

Соответственно:

$$Cov(X, Y) = \frac{1}{12} - \frac{1}{3} \cdot \frac{1}{3} = -\frac{1}{36}$$

Найдем теперь дисперсии X и Y (они будут одинаковыми, как и математические ождания, в силу симметрии):

$$\mathbb{E}(X^2) = \int_0^1 2x^2(1-x)dx = \left(\frac{2}{3}x^2 - \frac{x_4}{2}\right)\Big|_0^1 = \frac{1}{6}$$

Поэтому:

$$Var[X] = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{1}{6} - \frac{1}{9} = \frac{1}{18}$$

Теперь наконец-то можем найти корреляцию:

$$\rho_{XY} = -\frac{\frac{1}{36}}{\sqrt{\frac{1}{18}}\sqrt{\frac{1}{18}}} = -\frac{1}{2}$$

2. а) Закон больших чисел гласит, что $\bar{X} \to \mathbb{E}(X)$ при $n \to \infty$. Проверим его выполнение в данном случае:

$$\mathbb{E}(X_n) = \frac{1}{2n}(-\sqrt{n}) + \left(1 - \frac{1}{n}\right) \cdot 0 + \frac{1}{2n}\sqrt{n} = 0$$

$$\lim_{n \to \infty} \bar{X} = \lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = 0$$

так как числитель ограничен, а знаменатель бесконечно возрастает. Видим, что ЗБЧ в данном случае, конечно, выполняется.

Как вариант, можно было сказать, что дисперсия ограничена, и из этого также следует выполнение ЗБЧ.

б) Неравенство Чебышева:

$$\mathbb{P}(|X - \mathbb{E}(X)| \geqslant \varepsilon) \leqslant \frac{\operatorname{Var}(X)}{\varepsilon^2}$$

Соответственно, искомую вероятность можем оценить следующим образом:

$$\mathbb{P}(|\bar{X}| \leqslant 1) = 1 - \mathbb{P}(|\bar{X}| \geqslant 1) \Rightarrow \mathbb{P}(|\bar{X}| \leqslant 1) \geqslant 1 - \frac{\operatorname{Var}[\bar{X}]}{1}$$

$$\operatorname{Var}[\bar{X}] = \operatorname{Var}\left(\frac{\sum\limits_{i=1}^{n} X_i}{n}\right) = \frac{1}{n^2} \sum\limits_{i=1}^{n} \operatorname{Var} X_i$$

В свою очередь:

$$\mathbb{E}(X_i^2) = 2 \cdot \frac{1}{2n} \cdot n + \left(1 - \frac{1}{n}\right) \cdot 0 = 1 \Rightarrow \operatorname{Var}[X_i] = 1 \Rightarrow \operatorname{Var}[\bar{X}] = \frac{1}{n}$$

Поэтому:

$$\mathbb{P}(|\bar{X}| \leqslant 1) \geqslant 1 - \frac{1}{n}$$

B)
$$1 - \frac{1}{n} = 0.9 \Rightarrow n = 10$$

3. Обозначим за R — необходимое количество наличных денег в банке. Пусть X — случайная величина, показывающее размер суммарной выплаты 60 (n — достаточное большое для применения ЦПТ) клиентам. Ясно, что т.к. выплаты отдельным клиентам независимы: $\mathbb{E}X = 60 \cdot 5000 = 3 \cdot 10^5$; $\mathrm{Var}\,X = 60 \cdot 2000^2 = 2.4 \cdot 10^8$; $\sigma_X = \sqrt{2.4} \cdot 10^4 \approx 1.55 \cdot 10^4$

Теперь по ЦПТ:

$$\mathbb{P}(R \geqslant X) = 0.95$$

$$\mathbb{P}\left(\frac{X - \mathbb{E}X}{\sigma_X} \leqslant \frac{R - \mathbb{E}X}{\sigma_X}\right) = 0.95$$

$$\mathbb{P}\left(Z \leqslant \frac{R - 3 \cdot 10^5}{1.55 \cdot 10^4}\right) = 0.95$$

Слева функция распределения; подставляя 95-% квантиль стандартного нормального распределения получаем:

$$\frac{R - 3 \cdot 10^5}{1.55 \cdot 10^4} = 1.64$$
$$R = 325420$$

4. а) По предельной теореме Муавра-Лапласа:

$$\frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \sim N(0, 1)$$

$$\mathbb{P}\left(\frac{|\hat{p} - p|}{\sqrt{p(1-p)/n}} \leqslant \frac{0.1}{\sqrt{p(1-p)/n}}\right) \geqslant 0.99$$

$$\mathbb{P}\left(|Z| \leqslant \frac{0.1}{\sqrt{p(1-p)/n}}\right) \geqslant 0.99$$

Из симметричности стандартного нормального распределения и зная его 99.5-% квантиль, равный приблизительно 2.58, получаем:

$$\frac{0.1}{\sqrt{p(1-p)/n}} \geqslant 2.58$$

$$\frac{\sqrt{n}}{\sqrt{p(1-p)}} \geqslant \frac{2.58}{0.1}$$

$$\sqrt{n} \geqslant \frac{2.58}{0.1} \sqrt{p(1-p)}$$

$$n \geqslant 665.64 \cdot p(1-p)$$

С помощью неравенства Чебышева:

$$\mathbb{P}(|\hat{p} - p| \le 0.1) \ge 0.99$$

$$\mathbb{P}(|\hat{p} - p| \ge 0.1) \le 0.01$$

Теперь просто смотрим на неравенство Чебышева и на строчку выше, на неравенство Чебышева и на строчку выше...

$$\frac{p(1-p)/n}{0.1^2} = 0.01$$
$$n = 10^4 p(1-p)$$

Принимаются оба ответа!

б) По предельной теореме Муавра-Лапласа:

$$\mathbb{P}\left(\frac{|\hat{p}-p|}{\sqrt{p(1-p)/n}} \leqslant \frac{\varepsilon}{\sqrt{p(1-p)/1000}}\right) \geqslant 0.99$$

$$\mathbb{P}\left(|Z| \leqslant \frac{\varepsilon}{\sqrt{p(1-p)/1000}}\right) \geqslant 0.99$$

Аналогично пункту 1:

$$\frac{\varepsilon}{\sqrt{p(1-p)/1000}} \geqslant 2.58$$

$$\varepsilon \geqslant 0.082\sqrt{p(1-p)}$$

С помощью неравенства Чебышева:

$$\mathbb{P}\left(|\hat{p} - p| \leqslant \varepsilon\right) \geqslant 0.99$$

$$\mathbb{P}\left(|\hat{p} - p| \geqslant \varepsilon\right) \leqslant 0.01$$

Аналогично пункту 1:

$$\frac{p(1-p)/1000}{\varepsilon^2} = 0.01$$

$$\varepsilon^2 = \frac{p(1-p)}{10}$$

$$\varepsilon = \sqrt{\frac{p(1-p)}{10}} \approx 0.316\sqrt{p(1-p)}$$

Нужно было показать, как мастерство владения теоремой Муавра-Лапласа, так и неравенством Чебышева.

13.7. Праздник номер 2, і-поток, 15.12.2014

Time: 180 min

1. Вася может получить за экзамен равновероятно либо 8 баллов, либо 7 баллов. Петя может получить за экзамен либо 8 баллов — с вероятностью 1/3; либо 7 баллов — с вероятностью 2/3. Известно, что корреляция их результатов равна 0.7.

Какова вероятность того, что Петя и Вася покажут одинаковый результат?

- 2. В городе Туме проводят демографическое исследование семейных пар. Стандартное отклонение возраста мужа оказалось равным 5 годам, а стандартное отклонение возраста жены 4 годам. Найдите корреляцию возраста жены и возраста мужа, если стандартное отклонение разности возрастов оказалось равным 2 годам. В каких пределах лежит вероятность того, что возраст случайно выбираемого женатого мужчины отклоняется от своего математического ожидания больше чем на 10 лет?
- 3. На окружности единичной длины случайным образом равномерно и независимо друг от друга выбирают две дуги: длины 0.3 и длины 0.4.
 - а) Найдите функцию распределения длины пересечения этих отрезков
 - б) Найдите среднюю длину пересечения

4. Совместная функция плотности величин X и Y имеет вид

$$f(x,y) = egin{cases} 2(x^3+y^3), \ \mathrm{если} \ x \in [0;1], y \in [0;1] \\ 0, \ \mathrm{иначe} \end{cases}$$

- а) Найдите $\mathbb{P}(X + Y > 1)$
- б) Найдите Cov(X, Y)
- в) Являются ли величины X и Y независимыми?
- Γ) Являются ли величины X и Y одинаково распределенными?
- 5. Изначально цена акций компании «Пумперникель» равна $X_0=1000$ рублей. Каждый последующи день в течение 100 дней цена равновероятно может вырасти на 2 рубля или упасть на 1 рубль. Обозначим цену акции через n дней как X_n .
 - а) Чему равны математическое ожидание и дисперсия изменения цены за отдельный день?
 - б) Найдите $\mathbb{E}(X_n)$, $Var(X_n)$, $Cov(X_n, X_k)$
 - в) Сформулируйте центральную предельную теорему
 - г) Примерно найдите вероятность $\mathbb{P}(X_{100} > 1060)$
 - д) Биржевой игрок Вениамин утверждает, что через 100 дней с вероятностью 95% цена акций «Пумперникель» не опустится ниже a. Чему равно a?
- 6. Сэр Фрэнсис Гальтон учёный XIX-XX веков, один из основоположников как генетики, так и статистики изучал, среди всего прочего, связь между ростом детей и родителей. Он исследовал данные о росте 928 индивидов. Обозначим X_1 рост случайного человека, а X_2 среднее арифметическое роста его отца и матери. По результатам исследования Гальтона:

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathcal{N} \begin{bmatrix} \begin{pmatrix} 68.1 \\ 68.3 \end{pmatrix}; \begin{pmatrix} 6.3 & 2.1 \\ 2.1 & 3.2 \end{pmatrix} \end{bmatrix}$$

- а) Обратите внимание на то, что дисперсия роста детей выше дисперсии среднего роста родителей. С чем это может быть связано? Учтите, что рост детей измерялся уже по достижении зрелости, так что разброс не должен быть связан с возрастными различиями.
- б) Рассчитайте корреляцию между X_1 и X_2
- в) Один дюйм примерно равен 2.54 сантиметра. Пусть X_1' и X_2' это те же X_1 и X_2 , только измеренные в сантиметрах. Найдите вектор математических ожиданий и ковариационную матрицу вектора $X' = (X_1', X_2')$.
- r) Определите, каков ожидаемый рост и дисперсия роста человека, средний рост родителей которого составляет 72 дюйма?
- д) Найдите вероятность того, что рост человека превысит 68 дюймов, если средний рост его родителей равен 72 дюймам. Подсказка: используйте предыдущий пункт и нормальность распределения!
- 7. Звонки поступают в пожарную часть согласно пуассоновскому потоку в среднем 2 раза в час. Предположим, что после получения звонка пожарная часть занята тушением пожара случайное время равномерно распределённое от получаса до часа. В это время звонки перенаправля в соседнюю пожарную часть.

Пожарная часть только-только начала работать и готова принимать звонки.

- а) Какова вероятность того, что за ближайший час не поступит звонков?
- б) Какова вероятность того, что за ближайший час не будет перенаправленных звонков?
- в) Найдите закон распределения количества звонков до первого перенаправленного звонка.

8. Судьба Дон-Жуана

У Дон-Жуана n знакомых девушек, и их всех зовут по-разному. Он пишет им n писем, но по рассеянности раскладывает их в конверты наугад. Случайная величина X обозначает количество девушек, получивших письма, адресованные лично им.

- а) Найдите $\mathbb{E}(X)$, Var(X)
- б) Какова при большом n вероятность того, что хотя бы одна девушка получит письмо, адресованное ей?

9. Игла Бюффона

Плоскость разлинована параллельными линиями через каждый сантиметр. Случайным образом на эту плоскость бросается иголка длины a < 1.

- а) Какова вероятность того, что иголка пересечёт какую-нибудь линию?
- б) Предложите вероятностный способ оценки числа π

13.8. Решение. Праздник номер 2, і-поток

1. Пусть X — оценка Пети, Y — оценка Васи. Тогда исходя из условия:

Теперь можем найти математические ожидания и дисперсии:

$$\mathbb{E}(X) = \frac{15}{2}, \quad \mathbb{E}(Y) = \frac{22}{3} \Rightarrow$$

$$\text{Var}[X] = \frac{1}{2} \cdot 64 + \frac{1}{2} \cdot 49 - \left(\frac{15}{2}\right)^2 = \frac{1}{4}$$

$$\text{Var}[Y] = \frac{1}{3} \cdot 64 + \frac{2}{3} \cdot 49 - \left(\frac{22}{3}\right)^2 = \frac{2}{9}$$

Теперь из формулы для корреляции мы можем найти $\mathbb{E}(XY)$:

$$0.7 = \frac{\mathbb{E}(XY) - \frac{15}{2} \cdot \frac{22}{3}}{\sqrt{\frac{1}{4}\sqrt{\frac{2}{9}}}} \Rightarrow \mathbb{E}(XY) \approx 55.16499$$

Можем составить табличку для совместного распределения, немножко подумав:

$$\mathbb{E}(XY) = 49p + 56\left(\frac{1}{2} - p + \frac{2}{3} - p\right) + 64\left(p - \frac{1}{6}\right) = 55.16499$$

$$\Rightarrow p \approx 0.4983233 \Rightarrow \mathbb{P}(X = Y) = p + p - \frac{1}{6} = 0.8299799$$

2. Пусть M — возраст мужа, F — возраст жены. Тогда из условия:

$$Var(M-F) = Var(M) + Var(F) - 2Cov(M,F) = 4 \Rightarrow Cov(M,F) = \frac{37}{2}$$

$$\rho_{MF} = \frac{\frac{37}{2}}{5 \cdot 4} = \frac{37}{40}$$

Согласно неравенству Чебышева:

$$\mathbb{P}(|M - \mathbb{E}(M)| \ge 10) \le \frac{\text{Var}(M)}{10^2} = 0.25$$

Поэтому данная вероятность лежит в пределах (0, 25].

3. а) Пусть X — длина пересечения. Требуется найти $\mathbb{P}(X\leqslant x)$. Рассмотрим расположение центров отрезков относительно друг друга:

Заматим, что X=0.15-(R-0.2)=0.35-R. Однако, $R\sim U\left[0,\frac{1}{2}\right]$. Можно представить, что эти точки бросают на окружность по очереди, тогда расстояние между ними не может превышать $\frac{1}{2}$ и распределено равномерно. Имеем:

$$\mathbb{P}(X \leqslant x) = \mathbb{P}(0.35 - R \leqslant x) = \mathbb{P}(R \geqslant 0.35 - x) = \frac{0.5 - 0.35 + x}{0.5} = 0.3 + 2x$$

Строго говоря, длина пересечения не может быть больше 0.3 по понятным причинам, поэтому функция распределения выглядит так:

$$F(x) = \begin{cases} 0.3 + 2x, & x < 0.3\\ 1, & x \geqslant 0.3 \end{cases}$$

163

б) Зная функцию распределения, можем найти плотность:

$$f_X(x) = \begin{cases} 2, & x < 3 \\ 0, & \text{else} \end{cases}$$

Сответственно:

$$\mathbb{E}(X) = \int_{0}^{0.3} 2x dx = x^{2} \Big|_{0}^{0.3} = 0.09$$

4. a)

$$\mathbb{P}(X+Y>1) = \iint_{\mathcal{G}} 2(x^3+y^3)dxdy = \int_{0}^{1} dx \int_{1-x}^{1} 2(x^3+y^3)dy = \dots = 0.8$$

б) Для того, чтобы найти ковариацию, придется найти:

$$\mathbb{E}(X) = \int_{0}^{1} dx \int_{0}^{1} 2x(x^{3} + y^{3}) dy = \dots = 0.65$$

$$\mathbb{E}(Y) = \int_{0}^{1} dy \int_{0}^{1} 2y(x^{3} + y^{3}) dx = \dots = 0.65$$

$$\mathbb{E}(XY) = \int_{0}^{1} dx \int_{0}^{1} 2xy(x^{3} + y^{3}) dy = \dots = 0.4$$

Hy а потом все просто: $\mathrm{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = -0.0225$

- в) Проверить свойство функций плотности $f_XY(x,y)=f_X(x)\cdot f_Y(y)$, а если $\mathrm{Cov}(X,Y)\neq 0$, то сразу зависимы. Здесь зависимы.
- г) Да, являются.
- 5. Для этой задачи аккуратно нужно писать $(\Delta X)_j$, но так как приращения цен независимы (см. биномиальная модель рынка в интернетах) будем писать ΔX .

a)
$$\mathbb{E}(\Delta X) = 2 \cdot \frac{1}{2} - 1 \cdot \frac{1}{2} = \frac{1}{2}$$

$$\mathbb{E}(\Delta X)^2 = 4 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{5}{2}$$

$$\operatorname{Var}(\Delta X) = \frac{5}{2} - \left(\frac{1}{2}\right)^2 = \frac{10 - 1}{4} = \frac{9}{4}$$

6)
$$\mathbb{E}(X_n) = \mathbb{E}\left(1000 + n\Delta X\right) = 1000 + n\mathbb{E}\Delta X = 1000 + 0.5n$$

$$\operatorname{Var}(X_n) = n\operatorname{Var}(\Delta X) = n\frac{9}{4}$$

$$\operatorname{Cov}(X_n, X_k) = \operatorname{Cov}\left(X_k, X_k + (n-k)\Delta X\right)$$

Так как цена в момент k никак не связана с последующими случайными блужданиями, то:

$$Cov(X_n, X_k) = Cov(X_k, X_k + (n - k)\Delta X) = Cov(X_k, X_k) + 0 = Var X_k = k\frac{9}{4}$$

в) Заметим, что для самих цен акций ЦПТ мы формулировать не можем ввиду того, что случайные величины коррелированы, не i.i.d. Зато мы можем сформулировать ее для независимых приращений!

 $(\Delta X)_1\,,\dots,(\Delta X)_k$ — последовательность і.і.d. случайных величин (при большом k) с конечными математическим ожиданием 1/2 и стандартным отклонением 3/2. Пусть также $S_k = \sum_{i=1}^k (\Delta X)_i$. Тогда формулировка ЦПТ:

$$\frac{S_k - k/2}{3/2\sqrt{k}} \sim \mathcal{N}(0, 1)$$

г) Воспользуемся результатом ЦПТ!

$$\mathbb{P}(X_{100} > 1060) = \mathbb{P}(1000 + S_{100} > 1060) = \mathbb{P}(S_{100} > 60) =$$

$$= \mathbb{P}\left(\frac{S_{100} - 50}{3/2 \cdot 10} > \frac{60 - 50}{3/2 \cdot 10}\right) = \mathbb{P}\left(Z > \frac{2}{3}\right) = 1 - pnorm(2/3) \approx 0.25$$

д)

$$\mathbb{P}(1000 + S_{100} > a) = 0.95$$

$$\mathbb{P}(S_{100} < a - 1000) = 0.05$$

Используя ЦПТ:

$$a - 1000 = qnorm(0.05, mean = 50, sd = 15)$$

 $a \approx 1025.33$

6.

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 68.1 \\ 68.3 \end{pmatrix}; \begin{pmatrix} 6.3 & 2.1 \\ 2.1 & 3.2 \end{pmatrix} \right)$$

а) Смотреть здесь

б)

$$Corr(X_1, X_2) = \frac{Cov(X_1, X_2)}{\sigma_{X_1} \sigma_{X_2}} = \frac{2.1}{\sqrt{6.3 \cdot 3.2}} \approx 0.47$$

в)

$$\begin{pmatrix} X_1' \\ X_2' \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \left(68.1 \cdot 2.54 \\ 68.3 \cdot 2.54 \right); \begin{pmatrix} 6.3 \cdot 2.54^2 & 2.1 \cdot 2.54^2 \\ 2.1 \cdot 2.54^2 & 3.2 \cdot 2.54^2 \end{pmatrix} \end{pmatrix}$$
$$\begin{pmatrix} X_1' \\ X_2' \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \left(172.97 \\ 173.48 \right); \begin{pmatrix} 40.65 & 13.55 \\ 13.55 & 20.61 \end{pmatrix} \end{pmatrix}$$

г) Универсальный способ:

Всегда можно представить X_1 и X_2 в следующем виде (из соображений ЛНЗ для X_1 две стандартные нормальные независимые Z_1 и Z_2):

$$X_1 = \mathbb{E}X_1 + aZ_1 + bZ_2$$
$$X_2 = \mathbb{E}X_2 + cZ_1$$

$$X_1 = 68.1 + aZ_1 + bZ_2$$
$$X_2 = 68.3 + cZ_1$$

Зная ковариационную матрицу, легко найти коэффициенты a, b, c:

$$Var X_1 = a^2 + b^2 = 6.3$$

 $Var X_2 = c^2 = 3.2$

$$Cov(X_1, X_2) = ac \operatorname{Var} Z_1 = ac = 2.1$$

Получаем $c=1.79,\,a=1.17,\,b=2.22.$ Итак:

$$X_1 = 68.1 + 1.17Z_1 + 2.22Z_2$$

$$X_2 = 68.3 + 1.79Z_1$$

Теперь легко получаем:

$$\mathbb{E}(X_1|X_2 = 72) = \mathbb{E}(68.1 + 1.17Z_1 + 2.22Z_2|68.3 + 1.79Z_1 = 72) =$$

$$= \mathbb{E}(68.1 + 1.17Z_1 + 2.22Z_2|Z_1 = 2.07) =$$

$$= \mathbb{E}(68.1 + 1.17 \cdot 2.07 + 2.22Z_2) = 70.52$$

Это кстати отражает довольно известный факт, что дети высоких родителей будут тоже высокими, но менее высокими: некий mean reversion (regression to the mean — узнаете в эконометрике).

$$Var(X_1|X_2 = 72) = Var(68.1 + 1.17 \cdot 2.07 + 2.22Z_2) = 2.22^2 = 4.93$$

д) Используем стандартизацию и факт о том, что условное распределение нормальных — нормальное:

$$\mathbb{P}(X_1 > 68 | X_2 = 72) = \mathbb{P}\left(\frac{(X_1 | X_2 = 72) - \mathbb{E}(X_1 | X_2 = 72)}{\sqrt{\text{Var}(X_1 | X_2 = 72)}} > \frac{68 - 70.52}{\sqrt{4.93}}\right) = \mathbb{P}(Z > -1.135) = 1 - pnorm(-1.135) = 0.87$$

7. a)

$$X \sim Poiss(\lambda = 2)$$

Тогда:

$$\mathbb{P}(X=0) = e^{-\lambda} = e^{-2} \approx 0.135$$

б) Учитывая закон распределения времени на тушение пожара $Z \sim U[1/2,1]$ можно однозначно сказать, что за ближайший час может не быть перенаправленных звонков только при $X \leqslant 2$. Пусть Y_1 — время между 1-ым и 2-ым звонком. Оно имеет экспоненциальное распределение $Y \sim exp(1/2)$. Итак, искомая вероятность:

$$\mathbb{P}(\cdot) = \mathbb{P}(X = 0) + \mathbb{P}(X = 1) + \mathbb{P}(X = 2)\mathbb{P}(Y_1 > Z_1)$$

Сложность в нахождении вероятности $\mathbb{P}(Y_1>Z_1)$. Предоставим путь в лоб: Совместная функция плотности случайных величин Y_1 и Z_1 , очевидно:

$$p(y,z) = p(y)p(z) = 2e^{-2y} \cdot 2 = 4e^{-2y}$$

Тогда:

$$\mathbb{P}(Y_1 > Z_1) = \int_{1/2}^{1} \int_{z}^{\infty} 4e^{-2y} dy dz = -\int_{1/2}^{1} 2e^{-2y} \Big|_{z}^{\infty} dz = \int_{1/2}^{1} 2e^{-2z} dz =$$

$$= -e^{-2z} \Big|_{1/2}^{1} = e^{-1} - e^{-2z}$$

Можно и без двойных интегралов, но более мозгоемко. Благодаря memoryless property пуассоновского потока:

$$\mathbb{P}(Y_1 > Z_1) = F_{Y_1}(1) - F_{Y_1}(1/2) = 1 - e^{-2} - (1 - e^{-1}) = e^{-1} - e^{-2}$$

Итак:

$$\mathbb{P}(\cdot) = e^{-2} + 2e^{-2} + 2e^{-2} (e^{-1} - e^{-2}) \approx 0.47$$

в) Благодаря memoryless property, вероятность перенаправления для каждого звонка, начиная со 2, равна $e^{-1}-e^{-2}$. Обозначим за Q — количество звонков до первого перенаправленного звонка.

$$Q - 1 \sim Geom(e^{-1} - e^{-2})$$

8. а) Обозначим: $X_i = \begin{cases} 1, & \text{если i-ая девушка получила свое письмо} \\ 0, & \text{иначе} \end{cases}$

Так как письма раскладывались рандомно, то: $\mathbb{P}(X_i=1)=1/n$. Тогда:

$$\mathbb{E}X_i = \frac{1}{n}$$

$$\mathbb{E}X_i^2 = \frac{1}{n}$$

$$\operatorname{Var}X_i = \frac{1}{n} - \frac{1}{n^2}$$

Легко найти:

$$\mathbb{E}X = \mathbb{E}(X_1 + \ldots + X_n) = n\mathbb{E}X_i = 1$$

Для поиска дисперсии понадобятся ковариации, так как ясно, что если одна из девушек получила свое письмо, значит, она не отняла чье-то письмо, а следовательно, повышает вероятность получения своего письма для других девушек.

$$Cov(X_i, X_j) = \mathbb{E}(X_i X_j) - (\mathbb{E}X_i)(\mathbb{E}X_j) = \mathbb{P}(X_i = 1, X_j = 1) - \frac{1}{n^2}$$

Чтобы убедиться в $\mathbb{E}(X_iX_j)=\mathbb{P}(X_i=1,X_j=1)$ можно нарисовать табличку совместного распределения этих случайных величин. Теперь если i-ая девушка получила свое письмо, то для второй девушки остается n-1 писем и одно благоприятное письмо, следовательно:

$$\mathbb{P}(X_i = 1, X_j = 1) = \frac{1}{n(n-1)}$$

Итак:

$$Cov(X_i, X_j) = \frac{1}{n(n-1)} - \frac{1}{n^2} = \frac{n-n+1}{n^2(n-1)} = \frac{1}{n^2(n-1)}$$

Остался последний шаг:

$$Var X = Var(X_1 + ... + X_n) = n Var X_i + 2C_n^2 Cov(X_i, X_j) =$$

$$= 1 - \frac{1}{n} + 2\frac{n(n-1)}{2} \cdot \frac{1}{n^2(n-1)} = 1$$

б) Т.к. $\mathbb{P}(X_i = 1) = 1/n$, то:

$$\mathbb{P}(\cdot) = \left(1 - \frac{1}{n}\right)^n$$

Первый замечательный предел!

$$\mathbb{P}(\cdot) = \frac{1}{e}$$

9. Решение внизу страницы

13.9. Пересдача за 1-ый семестр??

Вопрос 1 \clubsuit Случайным образом выбирается семья с двумя детьми. Событие A — в семье старший ребенок — мальчик, событие B — в семье только один из детей — мальчик, событие C — в семье хотя бы один из детей — мальчик. Вероятность $\mathbb{P}(C)$ равна

A 1/4

 $C \ 2/3$

3/4

B 1

D 1/2

F Нет верного ответа.

Вопрос 2 \clubsuit Случайным образом выбирается семья с двумя детьми. Событие A — в семье старший ребенок — мальчик, событие B — в семье только один из детей — мальчик, событие C — в семье хотя бы один из детей — мальчик. Вероятность $\mathbb{P}(A \cup C)$ равна

A 1/2

C 1

E 2/3

3/4

D 3/8

F Нет верного ответа.

Вопрос 3 \clubsuit Случайным образом выбирается семья с двумя детьми. Событие A- в семье старший ребенок — мальчик, событие B- в семье только один из детей — мальчик, событие C- в семье хотя бы один из детей — мальчик. Вероятность $\mathbb{P}(A|C)$ равна

2/3

C 1

E 1/2

B 1/4

 $\boxed{D} \ 3/4$

F Нет верного ответа.

Вопрос 4 \clubsuit Случайным образом выбирается семья с двумя детьми. Событие A — в семье старший ребенок — мальчик, событие B — в семье только один из детей — мальчик, событие C — в семье хотя бы один из детей — мальчик.

- События A, B, C независимы попарно, но зависимы в совокупности
- A и B независимы, A и C зависимы, B и C зависимы
- $\boxed{\mathbb{C}}$ Любые два события из A, B, C зависимы
- [E] События A, B, C независимы в совокупности
- **F** Нет верного ответа.

Вопрос 5 \clubsuit Имеется три монетки. Две «правильных» и одна — с «орлами» по обеим сторонам. Вася выбирает одну монетку наугад и подкидывает ее один раз. Вероятность того, что выпадет орел равна

A 1/2

 $C \ 3/5$

[E] 1/3

2/3

D 2/5

F Нет верного ответа.

Вопрос 8 ♣ Вася бросает 7 правильных игральных кубиков. Вероятность того, что ровно на пяти из кубиков выпадет шестёрка равна

Вопрос 9 ♣ Вася бросает 7 правильных игральных кубиков. Математическое ожидание суммы выпавших очков равно

Вопрос 10 ♣ Вася бросает 7 правильных игральных кубиков. Дисперсия суммы выпавших очков равна

Вопрос 11 \clubsuit Вася бросает 7 правильных игральных кубиков. Пусть величина X — сумма очков, выпавших на первых двух кубиках, а величина Y — сумма очков, выпавших на следующих пяти кубиках. Ковариация Cov(X,Y) равна

Вопрос 12 ♣ Число изюминок в булочке — случайная величина, имеющая распределение Пуассона. Известно, что в среднем каждая булочка содержит 13 изюминок. Вероятность того, что в случайно выбранной булочке окажется только одна изюминка равна:

В вопросах 13-16 совместное распределение пары величин X и Y задано таблицей:

	Y = -1	Y = 0	Y = 1
X = -1	1/4	0	1/4
X = 1	1/6	1/6	1/6

-1/5

B 1/10

C -1/3

 $\boxed{D} -1/12$

 $\mathbf{E} = 0$

F Нет верного ответа.

Вопрос 14 \clubsuit Вероятность того, что X=1 при условии, что Y<0 равна

2/5

|B| 5/12

C 1/3

 \boxed{D} 1/12

E 1/6

F Нет верного ответа.

Вопрос 15 \clubsuit Дисперсия случайной величины Y равна

A 1/2

B 5/12

C 1/3

D 12/5

5/6

F Нет верного ответа.

Вопрос 16 ♣ Ковариация, Cov(X, Y), равна

A 1

C -0.5

0

 $\boxed{\mathsf{B}}$ -1

D 0.5

F Нет верного ответа.

В вопросах 17-19 функция распределения случайной величины X имеет вид

$$F(x) = \begin{cases} 0, & \text{если } x < 0 \\ cx^2, & \text{если } x \in [0;1] \\ 1, & \text{если } x > 1 \end{cases}$$

Вопрос 17 \clubsuit Константа c равна

A 0.5

C 1.5

1

 \boxed{B} 2/3

D 2

F Нет верного ответа.

Вопрос 18 \clubsuit Вероятность того, что величина X примет значение из интервала [0.5, 1.5] равна

 $\boxed{A} 1/2$

 $C \ 3/2$

E 1

 $\boxed{B} \ 2/3$

3/4

F Нет верного ответа.

Вопрос 19 \clubsuit — Математическое ожидание $\mathbb{E}(X)$ равно

A 1/4

C 1/2

2/3

B 2

 $\boxed{D} \ 3/4$

F Нет верного ответа.

В вопросах 20-23 совместная функция плотности пары X и Y имеет вид

$$f(x,y) = \begin{cases} cx^2y^2, & \text{если } x \in [0;1], y \in [0;1] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 20 🐥 Константа c равна

|A| 1/2

|B| 1

D 1/4

Нет верного ответа.

Вероятность $\mathbb{P}(X < 0.5, Y < 0.5)$ равна Вопрос 21 🌲

|A| 9/16

C 1/8

|E| 1/16

1/64

 $\boxed{D} 1/4$

| F | *Нет верного ответа.*

Условная функция плотности $f_{X\mid Y=2}(x)$ равна Вопрос 22 🐥

 $\boxed{ \textbf{A} } \ f_{X|Y=2}(x) = \begin{cases} 9x^2 \text{ если } x \in [0;1] \\ 0, \text{ иначе} \end{cases}$ $\boxed{ \textbf{B} } \ f_{X|Y=2}(x) = \begin{cases} x^2 \text{ если } x \in [0;1] \\ 0, \text{ иначе} \end{cases}$

 $\boxed{\mathbf{D}} \ f_{X|Y=2}(x) = \begin{cases} 36x^2 \ \text{если} \ x \in [0;1] \\ 0, \ \text{иначе} \end{cases}$

не определена

 $\boxed{\textbf{C}} \ f_{X|Y=2}(x) = \begin{cases} 3x^2 \text{ если } x \in [0;1] \\ 0, \text{ иначе} \end{cases}$

| F | *Нет верного ответа.*

Вопрос 23 \clubsuit Математическое ожидание $\mathbb{E}(X/Y)$ равно

A 1

E 1/2

9/8

| F | *Нет верного ответа.*

В вопросах 24-25 известно, что $\mathbb{E}(X)=1$, $\mathrm{Var}(X)=1$, $\mathbb{E}(Y)=4$, $\mathrm{Var}(Y)=9$, $\mathrm{Cov}(X,Y)=-3$

Вопрос 24 🕹 Ковариация Cov(2X - Y, X + 3Y) равна

|A| 22

|E| 18

B 40

D = -18

| F | *Нет верного ответа.*

Вопрос 25 \clubsuit Корреляция Corr(2X + 3, 4Y - 5) равна

|A| 1/3

-1

|E| 1

|B| - 1/8

D 1/6

| F | *Нет верного ответа.*

Пусть случайные величины X и Y — независимы, тогда **HE BEPHЫМ** является Вопрос 26 утверждение

A $\mathbb{P}(X < a | Y < b) = \mathbb{P}(X < a)$

D | Cov(X,Y) = 0

Var(X - Y) < Var(X) + Var(Y)

 $\boxed{\mathbb{C}} \ \mathbb{P}(X < a, Y < b) = \mathbb{P}(X < a)\mathbb{P}(Y < b)$

 $|F| \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$

Вопрос 27 \clubsuit Если $\mathbb{E}(X)=0$, то, согласно неравенству Чебышева, $\mathbb{P}(|X|\leqslant 5\sqrt{\mathrm{Var}(X)})$ лежит в интервале

A [0; 0.2]

C [0.8; 1]

[E] [0; 0.04]

 \boxed{B} [0.5; 1]

[0.96; 1]

F Нет верного ответа.

Вопрос 28 ♣ Пусть X_1 , X_2 , ..., X_n — последовательность независимых одинаково распределенных случайных величин, $\mathbb{E}(X_i)=3$ и $\mathrm{Var}(X_i)=9$. Следующая величина имеет асимптотически стандартное нормальное распределение

 $\boxed{\mathbf{A}} \sqrt{n}(\bar{X}-3)$

 $\sqrt{n}\frac{\bar{X}-3}{3}$

E $\frac{\bar{X}_n-3}{3}$

 $\boxed{\mathbf{B}} \quad \frac{X_n - 3}{3}$

 $D \frac{\bar{X}_n-3}{3\sqrt{n}}$

F Нет верного ответа.

Вопрос 29 \clubsuit Случайная величина X имеет функцию плотности $f(x) = \frac{1}{3\sqrt{2\pi}} \exp\left(-\frac{(x-1)^2}{18}\right)$. Следующее утверждение НЕ ВЕРНО

 $\boxed{\mathbf{A}} \ \mathbb{E}(X) = 1$

 $\boxed{\mathbf{C}} \ \mathbb{P}(X > 1) = 0.5$

 $\boxed{\mathbf{E}} \ \mathbb{P}(X=0) = 0$

 \bigcirc B Var(X) = 9

 $\boxed{\mathbf{D}} \ \mathbb{P}(X < 0) > 0$

 \blacksquare Случайная величина X дискретна

Вопрос 30 \clubsuit Пусть $X_1, X_2, ..., X_n$ — последовательность независимых одинаково распределенных случайных величин, $\mathbb{E}(X_i) = \mu$ и $\mathrm{Var}(X_i) = \sigma^2$. Следующее утверждение в общем случае HE BEPHO:

 $lacksquare rac{X_n-\mu}{\sigma} \stackrel{F}{ o} N(0;1)$ при $n o \infty$

 $oxed{\mathsf{B}} ar{X}_n \overset{P}{ o} \mu$ при $n o \infty$

 $\boxed{\mathsf{C}} \lim_{n\to\infty} \mathsf{Var}(\bar{X}_n) = 0$

 $\boxed{\mathbf{D}} \ \bar{X}_n - \mu \overset{F}{\to} 0$ при $n \to \infty$

 $E \xrightarrow{\bar{X}_n - \mu} \xrightarrow{P} 0$ при $n \to \infty$

 $[F] \xrightarrow{\bar{X}_n-\mu} \xrightarrow{F} N(0,1)$ при $n \to \infty$

13.10. Контрольная номер 3

- 1. В студенческом буфете осталось только три булочки одинаковой привлекательности и цены, но разной калорийности: 250, 400 и 550 ккал. Голодные Маша и Саша, не глядя на калорийность, покупают по булочке. Найдите математическое ожидание и дисперсию суммы поглощенных студентами калорий.
- 2. Ресторанный критик ходит по трем типам ресторанов (дешевых, бюджетных и дорогих) города N для того, чтобы оценить среднюю стоимость бизнес-ланча. В городе N 30% дешевых ресторанов, 60% бюджетных и 10% дорогих. Стандартное отклонение цены бизнес-ланча составляет 10, 30 и 60 рублей соответственно. В ресторане критик заказывает только кофе. Стоимость кофе в дешевых/бюджетных/дорогих ресторанах составляет 150, 300 и 600 рублей соответственно, а бюджет исследования 15 000 рублей. Какое количество ресторанов каждого типа нужно посетить критику, чтобы как можно точнее оценить среднюю стоимость бизнес-ланча при заданном бюджетном ограничении (округлите полученные значения до ближайших целых)? Вычислите дисперсию соответствующего стратифицированного среднего.

3. Дана случайная выборка $X_1,...,X_n$ из некоторого распределения с математическим ожиданием μ и дисперсией σ^2 . Даны три оценки μ :

$$\hat{\mu}_1 = (X_1 + X_2)/2, \quad \hat{\mu}_2 = X_1/4 + (X_2 + \dots + X_{n-1})/(2n-4) + X_n/4, \quad \hat{\mu}_3 = \bar{X}$$

- а) Какая из оценок является несмещенной?
- б) Какая из оценок является более эффективной, чем остальные?
- 4. Случайный вектор $(X,Y)^T$ имеет двумерное нормальное распределение с математическим

ожиданием
$$(1,2)^T$$
 и ковариационной матрицей $C=\begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix}$.

- a) $\mathbb{P}(X > 1)$
- 6) $\mathbb{P}(2X + Y > 2)$
- B) $\mathbb{E}(2X + Y|X = 2)$, Var(2X + Y|X = 2), $\mathbb{P}(2X + Y > 2|X = 2)$
- r) Сравните вероятности двух предыдущих пунктов, объясните, почему они отличаются. Являются ли компоненты случайного вектора независимыми?
- 5. Величины X_1, X_2 и X_3 независимы и стандартно нормально распределены. Вычислите
 - a) $\mathbb{P}(X_1^2 + X_2^2 > 6)$
 - 6) $\mathbb{P}(X_1^2/(X_2^2+X_3^2) > 9.25)$
- 6. Дана случайная выборка $X_1, ..., X_n$ из равномерного распределения $U[0, \theta]$.
 - а) С помощью статистики $X_{(n)} = \max\{X_1,\dots,X_n\}$ постройте несмещенную оценку параметра θ вида $cX_{(n)}$ (укажите значение c).
 - б) Будет ли данная оценка состоятельной?
 - в) Найдите оценку параметра θ методом моментов
 - г) Какая из двух оценок является более эффективной?
- 7. Каждый из n биатлонистов одинакового уровня подготовки стреляет по мишеням до первого промаха. Пусть X_i число выстрелов i-го биатлониста, $\mathbb{P}(X_i=x_i)=p^{x_i-1}(1-p)$, где p вероятность попадания при одном выстреле.
 - а) Методом максимального правдоподобия найдите оценку p.
 - б) Методом максимального правдоподобия найдите оценку математического ожидания числа выстрелов.
 - в) Сформулируйте определения несмещенности, состоятельности и эффективности оценок, и проверьте выполнение данных свойств для найденной в предыдущем пункте оценки математического ожидания.

13.11. Контрольная номер 3, решение

1. Пусть случайная величина S – это сумма поглощённых калорий

s	650	800	950
$\mathbb{P}(S=s)$	1/3	1/3	1/3

Тогда $\mathbb{E}(S) = \frac{1}{3} \cdot 650 + \frac{1}{3} \cdot 800 + \frac{1}{3} \cdot 950 = 800$, $\mathrm{Var}(S) = \frac{1}{3}(650 - 800)^2 + \frac{1}{3}(800 - 800)^2 + \frac{1}{3}(950 - 800)^2 = 15000$

2.
$$\begin{cases} \operatorname{Var}(\overline{X}_S) = \frac{0.3^2 \cdot 10^2}{n_1} + \frac{0.6^2 \cdot 30^2}{n_2} + \frac{0.1^2 \cdot 60^2}{n_3} \to \min_{n_1, n_2, n_3} \\ 150 \cdot n_1 + 300 \cdot n_2 + 600 \cdot n_3 \leqslant 15000 \end{cases}$$

3. a)
$$\mathbb{E}(\mu_1) = \mathbb{E}\left(\frac{X_1 + X_2}{2}\right) = \frac{1}{2}(\mu + \mu) = \mu \Rightarrow$$
 несмещённая $\mathbb{E}(\mu_2) = \mathbb{E}\left(\frac{X_1}{4} + \frac{X_2 + \ldots + X_{n-1}}{2n-4} + \frac{X_n}{4}\right) = \frac{1}{4}\mu + \frac{n-2}{2n-4}\mu + \frac{1}{4}\mu = \mu \Rightarrow$ несмещённая $\mathbb{E}(\overline{X}) = \mathbb{E}\left(\frac{X_1 + \ldots + X_n}{n}\right) = \mu \Rightarrow$ несмещённая

6)
$$\operatorname{Var}(\mu_1) = \operatorname{Var}\left(\frac{X_1 + X_2}{2}\right) = \frac{1}{4} 2 \operatorname{Var}(X_1) = \frac{\sigma^2}{2}$$

$$\operatorname{Var}(\mu_2) = \operatorname{Var}\left(\frac{X_1}{4} + \frac{X_2 + \dots + X_{n-1}}{2n-4} + \frac{X_n}{4}\right) = \frac{\sigma^2}{16} + \frac{(n-2)\sigma^2}{(2n-4)^2} + \frac{\sigma^2}{16} = \sigma^2\left(\frac{1}{8} + \frac{1}{2(2n-4)}\right)$$

$$\operatorname{Var}(\mu_3) = \operatorname{Var}\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{1}{n^2} n \sigma^2 = \frac{\sigma^2}{n}$$

4. а) $X \sim \mathcal{N}(1;1)$ $\mathbb{P}(X>1) = 0.5,$ так как нормальное распределение симметрично относительно своего математического ожидания

6)
$$X \sim \mathcal{N}(1;1), 2X \sim \mathcal{N}(2;4), Y \sim \mathcal{N}(2,4) \Rightarrow 2X + Y \sim \mathcal{N}(4,4)$$

 $\mathbb{P}(2X + Y > 2) = 1 - \mathbb{P}(2X + Y < 1) = 1 - \mathbb{P}\left(\frac{2X + Y - 4}{2} < \frac{1 - 4}{2}\right) = 1 - 0.0668 = 0.9332$

в)
$$Y \mid X \sim \mathcal{N}\left(\mu_Y + \rho\sigma_Y \cdot \frac{X - \mu_X}{\sigma_X}; \sigma_Y^2(1 - \rho^2)\right), Y \mid X = 2 \sim \mathcal{N}(1.5, 3)$$

 $\mathbb{E}(2X + Y \mid X = 2) = 2\mathbb{E}(X \mid X = 2) + \mathbb{E}(Y \mid X = 2) = 4 + 1.5 = 5.5$

5. a)
$$X_1^2 + X_2^2 \sim \chi_2^2$$
, $\mathbb{P}(X_1^2 + X_2^2 > 6) \approx 0.05$

6)
$$\mathbb{P}\left(\frac{X_1^2}{X_2^2 + X_3^2} > 9.25\right) = \mathbb{P}\left(\frac{\frac{X_1^2}{1}}{\frac{X_2^2 + X_3^2}{2}} > 18.5\right) \approx 0.05, \frac{\frac{X_1^2}{1}}{\frac{X_2^2 + X_3^2}{2}} \sim F_{1,2}$$

6. a)

$$F_{X_{(n)}} = \mathbb{P}(\max(X_1, \dots, X_n) \leqslant x) = \mathbb{P}(X_1 \leqslant x) \cdot \dots \cdot \mathbb{P}(X_n \leqslant x) = (\mathbb{P}(X_1 \leqslant x))^n = \begin{cases} 0 & \text{при } x < 0 \\ \left(\frac{x}{\theta}\right)^n & \text{при } x \in [0, \theta] \\ 1 & \text{при } x > \theta \end{cases}$$

$$f_{X_{(n)}}(x) = egin{cases} 0 & \text{при } x < 0 \ rac{nx^{n-1}}{ heta^n} & \text{при } x \in [0, heta] \ 0 & \text{при } x > heta \end{cases}$$

$$\mathbb{E}(X_{(n)}) = \int_{-\infty}^{+\infty} x \cdot f_{X_{(n)}}(x) dx = \int_{0}^{\theta} x \cdot \frac{nx^{n-1}}{\theta^n} dx = \frac{n}{\theta^n} \cdot \frac{x^{n+1}}{n+1} \Big|_{x=0}^{x=\theta}$$
$$= \frac{n}{\theta^n} \cdot \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$$

Следовательно, $\mathbb{E}\left(\frac{n+1}{n}\cdot X_{(n)}\right)=\theta$, а значит, $\hat{\theta}=\frac{n+1}{n}\cdot X_{(n)}$ – несмещённая оценка вида $c\cdot X_{(n)}$

б)
$$\operatorname{Var}(\hat{\theta}) = \frac{(n+1)^2}{n^2} \operatorname{Var}(X_{(n)})$$

$$\mathbb{E}(X_{(n)}^2) = \int_{-\infty}^{+\infty} x^2 f_{X_{(n)}}(x) dx = \int_0^{\theta} x^2 \frac{nx^{n-1}}{\theta^n} dx = \frac{n}{\theta^n} \int_0^{\theta} x^{n+1} dx = \frac{n}{\theta^n} \cdot \frac{x^{n+2}}{n+2} \Big|_{x=0}^{x=\theta} = \frac{n}{\theta^n} \cdot \frac{\theta^{n+2}}{n+2} = \frac{n \cdot \theta^2}{n+2}$$

$$\operatorname{Var}(X_{(n)}) = \mathbb{E}(X_{(n)}^2) - (\mathbb{E}(X_{(n)}))^2 = \frac{n\theta^2}{n+2} - \frac{n^2 \cdot \theta^2}{(n+1)^2} = n\theta^2 \left(\frac{1}{n+2} - \frac{n}{(n+1)^2}\right)$$

$$\operatorname{Var}(\tilde{\theta}) = \frac{(n+1)^2}{n^2} \operatorname{Var}(X_{(n)}) = \frac{(n+1)^2}{n^2} \cdot n\theta^2 \left(\frac{n^2 + 2n + 1 - n^2 - 2n}{(n+2)(n+1)^2} \right) = \frac{\theta^2}{n(n+2)}$$

Оценка $\hat{\theta}_n$ является состоятельной, так как $\mathbb{E}(\hat{\theta}_n)=\theta$ и $\mathrm{Var}(\hat{\theta}_n)=rac{ heta^2}{n(n+2)}\underset{n o\infty}{\longrightarrow}0$

B)
$$\mathbb{E}(X_1) = \frac{\theta}{2} \Big|_{\theta = \hat{\theta}_{MM}} = \overline{X} \Rightarrow \hat{\theta}_{MM} = 2\overline{X}$$

r)
$$\operatorname{Var}(2\overline{X}) = \frac{4}{n^2} n \operatorname{Var}(X_1) = \frac{4\theta}{12n} = \frac{\theta}{3n} > \operatorname{Var}(\hat{\theta}_n)$$

7. a)
$$L(x,p) = \prod_{i=1}^{n} \mathbb{P}(X_i = x_i) = p^{\sum_{i=1}^{n} (x_i - 1)} (1 - p)^n$$

$$\ln L(x,p) = \sum_{i=1}^{n} (x_i - 1) \ln p + n \ln(1 - p)$$

$$\frac{\partial \ln L}{\partial p} = \frac{\sum_{i=1}^{n} (x_i - 1)}{p} - \frac{n}{1 - p} = 0 \Rightarrow \hat{p} = \frac{\sum_{i=1}^{n} x_i - n}{\sum_{i=1}^{n} x_i}$$

6)
$$\mathbb{E}(X) = \frac{n}{p} \Rightarrow \hat{\mathbb{E}}(X) = \frac{n \sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} x_i - n}$$

13.12. Контрольная номер 4, 05.06.2015

Задача 1 (для первого потока).

Проверка 40 случайно выбранных лекций показала, что студент Халявин присутствовал только на 16 из них.

- 1. Найдите 95% доверительный интервал для вероятности увидеть Халявина на лекции.
- 2. На уровне значимости 5% проверьте гипотезу о том, что Халявин посещает в среднем половину лекций.
- 3. Вычислите минимальный уровень значимости, при котором основная гипотеза отвергается (Р-значение).

Задача 1 (для второго потока).

Вес упаковки с лекарством является нормальной случайной величиной. Взвешивание 20 упаковок показало, что выборочное среднее равно 51 г., а несмещенная оценка дисперсии равна 4.

- 1. На уровне значимости 10% проверьте гипотезу, что в среднем вес упаковки составляет 55 г.
- 2. Контрольное взвешивание 30 упаковок такого же лекарства другого производителя показало, что несмещенная оценка дисперсии веса равна 6. На уровне значимости 10% проверьте гипотезу о равенстве дисперсий веса упаковки двух производителей.

Задача 2 (для первого потока).

В ходе анкетирования 15 сотрудников банка «Альфа» ответили на вопрос о том, сколько времени они проводят на работе ежедневно. Среднее выборочное оказалось равно 9.5 часам при выборочном стандартном отклонении 0.5 часа. Аналогичные показатели для 12 сотрудников банка «Бета» составили 9.8 и 0.6 часа соответственно.

Считая распределение времени нормальным, на уровне значимости 5% проверьте гипотезу о том, что сотрудники банка «Альфа» в среднем проводят на работе столько же времени, сколько и сотрудники банка «Бета».

Задача 2 (для второго потока).

Экзамен принимают два преподавателя, случайным образом выбирая студентов. По выборке из 85 и 100 наблюдений, выборочные доли не сдавших экзамен студентов составили соответственно 0.2 и 0.17.

- 1. Можно ли при уровне значимости в 1% утверждать, что преподаватели предъявляют к студентам одинаковый уровень требований?
- 2. Вычислите минимальный уровень значимости, при котором основная гипотеза отвергается (Р-значение).

Задача 3 (общая).

Методом максимального правдоподобия найдите оценку параметра θ для выборки $X_1,...,X_n$ из распределения с функцией плотности

$$f(x) = \begin{cases} \frac{1}{\theta^2} x e^{-\frac{x}{\theta}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

Задача 4 (общая).

Пусть $X_1,...,X_{100}$ — случайная выборка из нормального распределения с математическим ожиданием μ и дисперсией ν , где μ и ν — неизвестные параметры. По 100 наблюдениям $\sum x_i = 30, \sum x_i^2 = 146, \sum x_i^3 = 122.$

При помощи теста отношения правдоподобия протестируйте гипотезу $H_0: \nu=1$ на уровне значимости 5%.

Задача 5 (исследовательская).

Пусть $X_1,...,X_n$ — случайная выборка из нормального распределения с математическим ожиданием μ и дисперсией ν , где μ и ν — неизвестные параметры. Рассмотрим три классических теста, отношения правдоподобия, LR, множителей Лагранжа, LM и Вальда, W, для тестирования гипотезы $H_0: \mu=0$.

- 1. Сравните статистики LR, LM и W между собой. Какая наибольшая, какая наименьшая?
- 2. Изменится ли упорядоченность статистик, если проверять гипотезу $H_0: \mu = \mu_0$?

Подсказка:
$$\frac{x}{1+x} \leqslant \ln(1+x) \leqslant x \;\;$$
 при $x > -1$

Задача 6 (исследовательская).

Величины $X_1, ..., X_n$ независимы и одинаково распределены с функцией плотности

$$f(x) = \begin{cases} a^2 x e^{-ax}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

По выборке из 100 наблюдений оказалось, что $\sum x_i = 300$, $\sum x_i^2 = 1000$, $\sum x_i^3 = 3700$.

- 1. Найдите оценку неизвестного параметра a методом моментов
- 2. Используя дельта-метод или иначе оцените дисперсию полученной оценки a
- 3. Постройте 95%-ый доверительный интервал используя оценку метода моментов

13.13. Экзамен, 15.06.2015

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера!

Пусть X_1 , ..., X_n — выборка объема n из равномерного на [a,b] распределения. Вопрос 1 🐥 Оценка $X_1 + X_2$ параметра c = a + b является

- А смещенной и состоятельной
 - несмещенной
- Смещенной и несостоятельной
- В асимптотически состоятельной
- несмещенной и несостоятельной
- |С| несмещенной и состоятельной
- F Нет верного ответа.

Вопрос 2 \clubsuit Пусть $X_1,...,X_n$ — выборка объема n из равномерного на $[0,\theta]$ распределения. Оценка параметра θ методом моментов по k-му моменту имеет вид:

 $\sqrt[k]{(k+1)\overline{X^k}}$

E $\sqrt[k+1]{(k+1)\overline{X}^k}$

- $\boxed{\mathbf{B}} \sqrt[k]{(k+1)}\overline{X}^k$
- $\boxed{\mathrm{D}} \sqrt[k]{k\overline{X}^k}$

F Нет верного ответа.

Вопрос 3 \clubsuit Пусть X_1 , ..., X_{2n} — выборка объема 2n из некоторого распределения. Какая из нижеперечисленных оценок математического ожидания имеет наименьшую дисперсию?

 $\frac{1}{2n} \sum_{i=1}^{2n} X_i$

C $\frac{1}{n} \sum_{i=1}^{n} X_i$

 \mathbb{E} $\frac{1}{n} \sum_{i=n+1}^{2n} X_i$

 \mathbb{B} $\frac{X_1+X_2}{2}$

F Нет верного ответа.

Вопрос 4 🖟 Вероятностью ошибки второго рода называется

- Вероятность отвергнуть альтернативную гипотезу, когда она верна
- В Единица минус вероятность отвергнуть основную гипотезу, когда она верна
- С Единица минус вероятность отвергнуть альтернативную гипотезу, когда она верна
- |D| Вероятность отвергнуть основную гипотезу, когда она верна
- Е Вероятность принять неверную гипотезу
- | F | *Нет верного ответа.*

Вопрос 5 \clubsuit Если P-значение (P-value) больше уровня значимости α , то гипотеза $H_0: \sigma=1$

- |A| Отвергается, только если $H_a: \sigma > 1$
- [B] Отвергается, только если $H_a: \sigma < 1$
- С Отвергается

- [D] Отвергается, только если $H_a: \sigma \neq 1$
- Не отвергается
- | F | *Нет верного ответа.*

Вопрос 7 4 Имеется случал При проверке гипотезы о рав математическом ожидании испол	енстве дисперсии заданному	значению при неизвестном
	_	ліределение —
$\underline{\underline{A}} t_n$	C N(0,1)	$\stackrel{\square}{=} \chi_n^2$
$\boxed{\mathtt{B}} \ t_{n-1}$	χ^2_{n-1}	F Нет верного ответа.
Вопрос 8 \clubsuit По случайной выбор 20 и несмещенная оценка дисперальтернативной гипотезы H_a : μ	сии $\hat{\sigma}^2=25$. В рамках проверки	гипотезы $H_0: \ \mu = 15$ против
$oldsymbol{A}$ Гипотеза H_0 не отвергается п	на любом разумном уровне значи	имости
$lacksquare$ В Гипотеза H_0 отвергается на	уровне значимости 10%, но не на	уровне значимости 5%
$lue{\mathbb{C}}$ Гипотеза H_0 отвергается на	уровне значимости 20%, но не на	уровне значимости 10%
\blacksquare Гипотеза H_0 отвергается на $\mathfrak L$	пюбом разумном уровне значимо	эсти
	уровне значимости 5%, но не на у	
F Нет верного ответа.		
Вопрос 9 \clubsuit На основе случай гипотеза $H_0: X_1 \sim U[0;1]$ Рассматривается критерий: если Вероятность ошибки 2-го рода для	против альтернативной гипотех $X_1 > 0.8$, то гипотеза H_0 отвер	вы H_a : $X_1 \sim U[0.5; 1.5]$.
0.3	C 0.1	E 0.2
B 0.5	D 0.4	F Нет верного ответа.
Вопрос 10 \clubsuit Пусть X_1 , X_2 , распределения $N(\mu,9)$. Для тестир $H_a: \mu = -2$ вы используете противном случае вы отвергаете п	оования основной гипотезы H_0 : критерий: если $ar{X} \ \geqslant \ -1$, то вы	$\mu=0$ против альтернативной не отвергаете гипотезу H_0 , в
A 0.78	C 0.58	E 0.87
0.98	D 0.85	 F Нет верного ответа.
Вопрос 11 ♣ Николай Коперния раз, а маслом вверх — 105 раз. Зна вероятности данных событий рави		
A 7.5	C 0.25	0.5
B 0.75	D 2.5	 F Нет верного ответа.
	178	

Имеется случайная выборка размера n из нормального распределения. При

 $oxed{E} t_n$

F Нет верного ответа.

проверке гипотезы о равенстве математического ожидания заданному значению при известной

дисперсии используется статистика, имеющая распределение

 $\boxed{\mathtt{D}} t_{n-1}$

N(0,1)

 $\boxed{\mathbf{B}} \quad \chi^2_{n-1}$

Вопрос 12 \clubsuit Каждое утро в 8:00 Иван Андреевич Крылов, либо завтракает, либо уже позавтракал. В это же время кухарка либо заглядывает к Крылову, либо нет. По таблице сопряженности вычислите статистику χ^2 Пирсона для тестирования гипотезы о том, что визиты кухарки не зависят от того, позавтракал ли уже Крылов или нет.

	······································	
	Кухарка заходит	Кухарка не заходит
Крылов завтракает	200	40
Крылов уже позавтракал	25	100
139	C 100	
B 179	D 39	

разности элементов вектора, $\mathrm{Var}(X_1-X_2)$, равняется

Вопрос 14 \clubsuit Все условия регулярности для применения метода максимального правдоподобия выполнены. Вторая производная лог-функции правдоподобия равна $\ell''(\theta) = -100$. Дисперсия несмещенной эффективной оценки для параметра θ равна

Вопрос 15 \clubsuit Геродот Геликарнасский проверяет гипотезу $H_0: \mu=0, \ \sigma^2=1$ с помощью LR статистики теста отношения правдоподобия. При подстановке оценок метода максимального правдоподобия в лог-функцию правдоподобия он получил $\ell=-177$, а при подстановке $\mu=0$ и $\sigma=1$ оказалось, что $\ell=-211$. Найдите значение LR статистики и укажите её закон распределения при верной H_0

Вопрос 16 \clubsuit Геродот Геликарнасский проверяет гипотезу $H_0: \mu=2$. Лог-функция правдоподобия имеет вид $\ell(\mu,\nu)=-\frac{n}{2}\ln(2\pi)-\frac{n}{2}\ln\nu-\frac{\sum_{i=1}^n(x_i-\mu)^2}{2\nu}$. Оценка максимального правдоподобия для ν при предположении, что H_0 верна, равна

Вопрос 17 \clubsuit Ацтек Монтесума Илуикамина хочет оценить параметр a методом максимального правдоподобия по выборке из неотрицательного распределения с функцией плотности f(x) =

 $\frac{1}{2}a^3x^2e^{-ax}$ при $x\geqslant 0$. Для этой цели ему достаточно максимизировать функцию

Вопрос 24 👃 Датчик случайных чисел выдал следующие значения псевдо случайной величины: 0.78, 0.48. Вычислите значение критерия Колмогорова и проверьте гипотезу H_0 о соответствии распределения равномерному на [0; 1]. Критическое значение статистики Колмогорова для уровня значимости 0.1 и двух наблюдений равно 0.776.

 $oxed{A}$ 0.37, H_0 не отвергается $oxed{C}$ 0.3, H_0 не отвергается $oxed{0.48}$, H_0 не отвергается

 $oxed{B}$ 0.78, H_0 отвергается

 \square 1.26, H_0 отвергается

Вопрос 25 🗍 У пяти случайно выбранных студентов первого потока результаты за контрольную по статистике оказались равны 82, 47, 20, 43 и 73. У четырёх случайно выбранных студентов второго потока — 68, 83, 60 и 52. Вычислите статистику Вилкоксона для меньшей выборки и проверьте гипотезу H_0 об однородности результатов двух потоков. Критические значения статистики Вилкоксона равны $T_L = 12$ и $T_R = 28$.

|A| 53, H_0 отвергается

 $\boxed{\mathsf{C}}$ 20, H_0 не отвергается

24, H_0 не отвергается

[B] 65.75, H_0 отвергается

[D] 12.75, H_0 не отвергается [F] Нет верного ответа.

Производитель мороженного попросил оценить по 10-бальной шкале два вида мороженного: с кусочками шоколада и с орешками. Было опрошено 5 человек.

	Евлампий	Аристарх	Капитолина	Аграфена	Эвридика
С крошкой	10	6	7	5	4
С орехами	9	8	8	7	6

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.05 гипотезу об отсутствии предпочтения мороженного с орешками против альтернативы, что мороженное с орешками вкуснее.

|A| 1.29, H_0 отвергается

 $oxed{{\sf C}}$ 1.29, H_0 не отвергается $oxed{{\sf E}}$ 1.96, H_0 отвергается

[D] 1.34, H_0 не отвергается [D] 1.65, H_0 отвергается [F] Нет верного ответа.

Вопрос 27 \clubsuit Пусть $X_1,X_2,...,X_{11}$ — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33$, $\sum_{i=1}^{11} x_i^2 = 100$. Несмещенная оценка μ принимает значение

A 100/11

C 0.33

E 10

3

D 3.3

F Нет верного ответа.

Вопрос 28 \clubsuit Пусть $X_1,X_2,...,X_{11}$ — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33$, $\sum_{i=1}^{11} x_i^2 = 100$. Несмещенная оценка дисперсии принимает значение

|A| 10

1/10

|E| 100/11

B 1/11

D 11/100

F Нет верного ответа.

Вопрос 29 \clubsuit Если X_i независимы, $\mathbb{E}(X_i)=\mu$ и $\mathrm{Var}(X_i)=\sigma^2$, то математическое ожидание величины $Y=\sum_{i=1}^n (X_i-\bar{X})^2$ равно

 $|\mathbf{A}| \sigma^2/n$

 $(n-1)\sigma^2$

| F | *Нет верного ответа.*

Вопрос 31 \clubsuit Величины $Z_1, Z_2, ..., Z_n$ независимы и нормальны N(0,1). Случайная величина $\frac{2Z_1^2}{Z_2^2 + Z_2^2}$ имеет распределение

Вопрос 33 \clubsuit Последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, ...$ называется состоятельной, если

Вопрос 34 \clubsuit Функция правдоподобия, построенная по случайной выборке X_1 , ..., X_n из распределения с функцией плотности $f(x)=(\theta+1)x^\theta$ при $x\in[0;1]$ имеет вид

14. 2015-2016

14.1. Контрольная номер 1, базовый поток, 26.10.2015

- 1. Подбрасываются две симметричные монеты. Событие A на первой монете выпал герб, событие B на второй монете выпал герб, событие C монеты выпали разными сторонами.
 - α) Будут ли эти события попарно независимы?
 - β) Сформулируйте определение независимости в совокупности для трех событий. Являются ли события A, B, C независимыми в совокупности?
- 2. Имеются два игральных кубика:
 - красный со смещенным центром тяжести, так что вероятность выпадения «6» равняется 1/3, а оставшиеся грани имеют равные шансы на появление
 - честный белый кубик
 - α) Петя случайным образом выбирает кубик и подбрасывает его. Найдите вероятность того, что выпадет «6».

- β) Петя случайным образом выбирает кубик и подбрасывает его. Какова вероятность того, что Петя взял красный кубик, если известно, что выпала шестерка?
- 3. Все те же кубики. Петя играет с Васей в следующую игру: Петя выбирает кубик и подбрасывает его. Вася подбрасывает оставшийся кубик. Выигрывает тот, у кого выпало большее число. Если выпадает равное число очков, выигрывает тот, у кого белый кубик.

Пусть случайная величина ξ — число очков, выпавших на красном кубике, случайная величина η — число очков, выпавших на белом кубике, а величина ζ — максимальное число очков.

- α) Задайте в виде таблицы совместное распределение величин ξ и η . Отметьте (* или кружочком) все те пары значений, когда выигрывает красный кубик.
- β) Какой кубик нужно выбрать Пете, чтобы его шансы выиграть были выше?
- $\gamma)$ Сформулируйте определение функции распределения и постройте функцию распределения величины $\zeta.$
- δ) Вычислите математическое ожидание величины ζ .
- 4. Проводится исследование с целью определения процента мужчин, которые любят петь в душе. Поскольку некоторые мужчины стесняются прямо отвечать на этот вопрос, предлагается перед ответом на вопрос: «поете ли Вы, когда принимаете душ?» подбросить правильный кубик, и выбрать ответ «ДА», если выпала шестерка, ответ «НЕТ», если выпала единица, и честный ответ («ДА» или «НЕТ»), если выпала любая другая цифра.

Предположим, что по результатам исследования вероятность ответа «ДА» составляет 2/3. Каков истинный процент «певцов»?

- 5. Ваш полный тезка страдает дисграфией. При подписывании контрольной работы по теории вероятностей в своих имени и фамилии в именительном падеже Ваш тезка с вероятностью 0.1 вместо нужной буквы пишет любую другую (независимо от предыдущих ошибок).
 - α) Найдите вероятность того, что он напишет свою фамилию правильно.
 - *β*) Найдите вероятность того, что он сделает ровно 2 ошибки в своем имени.
 - γ) Вычислите наиболее вероятное число допущенных тезкой ошибок.
 - δ) Найдите вероятность того, что при подписывании работы Ваш тезка допустит хотя бы одну ошибку.
- 6. Время (в часах), за которое студенты выполняют экзаменационное задание является случайной величиной с функцией плотности

$$f(y) = \begin{cases} cy^2 + y, & \text{if } 0 \leqslant y \leqslant 1\\ 0, & \text{else} \end{cases}$$

- α) Найдите константу c.
- β) Найдите функцию распределения и постройте её.
- $\gamma)\;$ Вычислите вероятность того, что случайно выбранный студент закончит работу менее чем за полчаса.
- δ) Найдите медиану распределения.
- ϵ) Определите вероятность того, что студент, которому требуется по меньшей мере 15 минут для выполнения задания, справится с ним более, чем за 30 минут.

- 7. Вам известно, что на большом листе бумаги $1.5 \,\mathrm{m} \times 1 \,\mathrm{m}$ нарисован слон. Вам завязали глаза и выдали кисточку хвоста для слона. Вам нужно прилепить эту кисточку к листу (рисунок Вы не видели). Вы подходите к листу и произвольно приклеиваете кисточку
 - α)) Какова вероятность того, что кисточка окажется на слоне, если площадь рисунка составляет 1 м²?
 - β) Запишите вид функции совместной плотности для координат кисточки.
 - γ) Запишите вид частных функций плотности для каждой из координат кисточки.
 - б) Являются ли координаты кисточки независимыми случайными величинами?
 - є) Запишите вид функции плотности суммы координат кисточки.

Подсказка: слон не должен заслонить равномерного распределения.

8. Укажите названия букв греческого алфавита и запишите соответствующие заглавные буквы:

$$\alpha, \zeta, \eta, \theta$$

14.2. Контрольная номер 1, базовый поток, 26.10.2015, решения

- 1. α) Найдём вероятности каждого события: $\mathbb{P}(A)=1/2, \mathbb{P}(B)=1/2, \mathbb{P}(C)=1/2.$ Проверим попарную независимость:
 - $\mathbb{P}(A \cap B) = 1/4, \mathbb{P}(A) \cdot \mathbb{P}(B) = 1/2 \cdot 1/2 = 1/4$
 - $\mathbb{P}(A\cap C)=1/4$, $\mathbb{P}(A)\cdot\mathbb{P}(C)=1/2\cdot1/2=1/4$
 - $\mathbb{P}(B\cap C)=1/4$, $\mathbb{P}(B)\cdot\mathbb{P}(C)=1/2\cdot1/2=1/4$

Значит, события попарно независимы.

eta) События A_1,A_2,A_3 называются независимыми в совокупности, если $\mathbb{P}(A_1\cap A_2\cap A_3)=\mathbb{P}(A_1)\cdot \mathbb{P}(A_2)\cdot \mathbb{P}(A_3).$

В нашем случае: $\mathbb{P}(A\cap B\cap C)=0$, $\mathbb{P}(A)\cdot \mathbb{P}(B)\cdot \mathbb{P}(C)=\frac{1}{2}\cdot \frac{1}{2}\cdot \frac{1}{2}$, следовательно, события не являются независимыми в совокупности.

2. α) Воспользуемся формулой полной вероятности:

$$\begin{split} \mathbb{P}(\text{выпала «6»}) &= \mathbb{P}(\text{выпала «6»} \mid \text{взят белый кубик}) \cdot \mathbb{P}(\text{взят белый кубик}) + \\ &+ \mathbb{P}(\text{выпала «6»} \mid \text{взят красный кубик}) \cdot \mathbb{P}(\text{взят красный кубик}) = \\ &= \frac{1}{6} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{4} \end{split}$$

 β) Воспользуемся формулой условной вероятности и результатом предыдущего пункта:

$$\mathbb{P}($$
взят красный кубик $|$ выпала «6» $)=rac{\mathbb{P}($ взят красный кубик \cap выпала «6» $)}{\mathbb{P}($ выпала «6» $)}=rac{rac{1}{2}\cdotrac{1}{3}}{rac{1}{4}}=rac{2}{3}$

3. α) Совместное распределение имеет вид:

$\eta \setminus \xi$	1	2	3	4	5	6
1	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$ *	$\frac{1}{3} \cdot \frac{1}{6}$ *			
2	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$ *	$\frac{2}{15} \cdot \frac{1}{6}$ *	$\frac{2}{15} \cdot \frac{1}{6}$ *	$\frac{1}{3} \cdot \frac{1}{6}$ *
3	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$ *	$\frac{2}{15} \cdot \frac{1}{6}$ *	$\frac{1}{3} \cdot \frac{1}{6}$ *
4	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$ *	$\frac{1}{3} \cdot \frac{1}{6}$ *
5	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{1}{3} \cdot \frac{1}{6}$ *
6	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{2}{15} \cdot \frac{1}{6}$	$\frac{1}{3} \cdot \frac{1}{6}$

- $\beta) \ \mathbb{P}(\text{выиграет белый кубик}) = (6+5+4+3+2) \cdot \frac{2}{15} \cdot \frac{1}{6} + 1 \cdot \frac{1}{3} \cdot \frac{1}{6} = \frac{1}{2}.$ Значит, Пете безразлично, какой кубик брать.
- γ) $F_{\zeta}(x) = \mathbb{P}(\zeta \leqslant x)$

Выпишем таблицу распределения случайной величины ζ :

$$\frac{\zeta}{\mathbb{P}(\cdot)} \quad \frac{1}{\frac{2}{15} \cdot \frac{1}{6}} \quad \frac{2}{\frac{2}{15} \cdot \frac{1}{6} \cdot 3} \quad \frac{2}{\frac{2}{15} \cdot \frac{1}{6} \cdot 5} \quad \frac{2}{\frac{2}{15} \cdot \frac{1}{6} \cdot 7} \quad \frac{2}{\frac{2}{15} \cdot \frac{1}{6} \cdot 9} \quad \frac{1}{3} \cdot \frac{1}{6} \cdot 6 + \frac{2}{\frac{2}{15} \cdot \frac{1}{6} \cdot 5}$$

Тогда функция распределения имеет вид:

$$F_{\zeta}(x) = \begin{cases} 0 & x \leqslant 1\\ \frac{1}{45} & 1 < x \leqslant 2\\ \frac{4}{45} & 2 < x \leqslant 3\\ \frac{9}{45} & 3 < x \leqslant 4\\ \frac{16}{45} & 4 < x \leqslant 5\\ \frac{25}{45} & 5 < x \leqslant 6\\ 1 & x > 6 \end{cases}$$

$$\delta) \ \mathbb{E}(\zeta) = \frac{2}{15} \cdot \frac{1}{6} \cdot 1 + \frac{2}{15} \cdot \frac{1}{6} \cdot 3 \cdot 2 + \frac{2}{15} \cdot \frac{1}{6} \cdot 5 \cdot 3 + \frac{2}{15} \cdot \frac{1}{6} \cdot 7 \cdot 4 + \frac{2}{15} \cdot \frac{1}{6} \cdot 9 \cdot 5 + \frac{1}{3} \cdot \frac{1}{6} \cdot 6 + \frac{2}{15} \cdot \frac{1}{6} \cdot 6 = \frac{43}{9} \approx 4.8$$

4. Пусть x — вероятность того, что мужчина честно любит петь в душе.

Распишем по формуле полной вероятности вероятность получить ответ «да»:

$$\begin{split} P(\text{ответ «Да»}) &= 1 \cdot \mathbb{P}(\text{выпала «6»}) + x \cdot (\mathbb{P}(\text{выпала «2»}) + \mathbb{P}(\text{выпала «3»}) + \\ &+ \mathbb{P}(\text{выпала «4»}) + \mathbb{P}(\text{выпала «5»})) = 1 \cdot \frac{1}{6} + x \cdot \frac{4}{6} \Rightarrow x = \frac{3}{4} \end{split}$$

Тогда истинный процент «певцов» составляет 75%

- 5. Предположим, что ваше имя Студент (7 букв), а фамилия Идеальный (9 букв).
 - α) $\mathbb{P}($ напишет фаимлию правильно $) = (0.9)^9$

	β)	$\mathbb{P}(ext{poвнo 2 ошибки в имени}) = C_7^2 \cdot 0.1^2 \cdot 0.9^5$
	γ)	Наиболее вероятное число ошибок -1
	δ)	$\mathbb{P}(\text{допустит хотя бы одну ошибку}) = 1 - \mathbb{P}(\text{не допустит ни одной ошибки}) = 1 - (0.9)^{16}$
6.	α)	Из условия $\int_0^1 (cy^2 + y) dy = 1$ получаем, что $c = 3/2$.
	β)	$F_Y(y) = \begin{cases} 1 & y > 1\\ \frac{y^3 + y^2}{2} & 0 < y \le 1\\ 0 & y < 0 \end{cases}$
	γ)	$\mathbb{P}(Y < 0.5) = \int_0^{0.5} \left(\frac{3}{2}y^2 + y\right) dy = \frac{3}{16}$
	δ)	$F_Y(y) = 0.5 \Rightarrow y \approx 0.75$
	$\epsilon)$	$\mathbb{P}(Y > 0.5 \mid Y \geqslant 0.25) = \frac{\mathbb{P}(Y > 0.5)}{\mathbb{P}(Y \geqslant 0.25)} = \frac{1 - \frac{3}{16}}{\int_{0.25}^{1} \left(\frac{3}{2}y^2 + y\right) dy} = \frac{104}{123}$
7.	α)	$\mathbb{P}($ кисточка окажется на слоне $)=rac{1}{1.5}=rac{2}{3}$
	β)	$f_{\xi,\eta}(x,y) = rac{1}{1.5}$
	γ)	$f_{\xi}(x) = \int_0^1 \frac{1}{15} dy = 1.5$
		$f_{\eta}(y) = \int_{0}^{1.5} \frac{1}{1.5} dx = 1$
	δ)	Да, поскольку $f_{\xi}(x)\cdot f_{\eta}(y)=f_{\xi,\eta}(x,y)$
	$\epsilon)$	$f_{\xi+\eta}(t) = \int_{-\infty}^{+\infty} f_{\xi}(u) f_{\eta}(t-u) du$
	-	14.3. Праздник номер 1, исследователи, индивидуальный тур
1.	Для	разминки вспомним греческий алфавит!
	a)	По-гречески — $\Sigma \omega$ кр α т η ς, а по-русски —
	б)	Изобразите прописные и строчные буквы: эта, дзета, вега шо Если такой буквы в греческом нет, то поставьте прочерк.
	в)	Назовите буквы: τ , θ , ξ
2.		брасываются 2 симметричные монеты. Событие A — на первой монете выпал герб, событие на второй монете выпал герб, событие C — монеты выпали разными сторонами.
	a)	Будут ли эти события попарно независимы?
	б)	Сформулируйте определение независимости в совокупности для трех событий
	в)	Являются ли события A, B, C независимыми в совокупности?
3.	выпа	ются два игральных кубика: красный со смещенным центром тяжести, так что вероятность адения «6» равняется 1/3, а оставшиеся грани имеют равные шансы на появление и вильный <mark>белый</mark> кубик. Петя случайным образом выбирает кубик и подбрасывает его.
	a)	Вероятность того, что выпадет «6», равна
	б)	Вероятность того, что Петя взял красный кубик, если известно, что выпала шестерка, равна

в) Если бы в эксперименте Петя подбрасывал бы кубик не один раз, а 60 раз, то безусловное математическое ожидание количества выпавших шестёрок равнялось бы ______

4.	Винни-Пуху снится сон, будто он спустился в погреб, а там бесконечное количество горшков. Каждый из них независимо от других может оказаться либо пустым с вероятностью 0.8, либо с мёдом с вероятностью 0.2. Винни-Пух начинает перебирать горшки по очереди в поисках полного. Хотя у него в голове и опилки, Винни-Пух два раза в один и тот же горшок заглядывать не будет.
	а) Вероятность того, что все горшки окажутся пустыми равна
	б) Вероятность того, что полный горшок будет найден ровно с шестой попытки, равна
	в) Вероятность того, что полный горшок будет найден на шестой попытке или ранее, равна
5.	На самом деле у Винни-Пуха в погребе стоит 10 горшков. Каждый из них независимо от других может оказаться либо пустым с вероятностью 0.8 , либо с мёдом с вероятностью 0.2 .
	а) Все десять горшков окажутся пустыми с вероятностью
	б) Ровно 7 горшков из десяти окажутся пустыми с вероятностью
	в) Математическое ожидание числа горшков с мёдом равно
6.	В галактике Флатландии все объекты двумерные. На планету Тау-Слона (окружность) в случайных точках независимо друг от друга садятся три корабля. Любые два корабля могут поддерживать прямую связь между собой, если центральный угол между ними меньше прямого.
	а) Вероятность того, что первый и второй корабли могут поддерживать прямую связь равна
	б) Вероятность того, что все корабли смогут поддерживать прямую связь друг с другом равна
	в) Вероятность того, что все корабли смогут поддерживать прямую связь друг с другом, если первый и второй корабль могут поддерживать прямую связь, равна
	Подсказка: во Φ латландии хватит рисунка на плоскости, ведь координату третьего корабля можно принять за
7.	Время (в часах), за которое студенты выполняют экзаменационное задание является случайной величиной X с функцией плотности
	$f(x) = egin{cases} 3x^2, \;\; ext{если} \; x \in [0;1] \ 0, \;\; ext{иначе} \end{cases}$
	а) Φ ункция распределения случайной величины X равна
	б) Вероятность того, что случайно выбранный студент закончит работу менее чем за полчаса равна
	в) Медиана распределения равна
	г) Вероятность того, что студент, которому требуется по меньшей мере 15 минут для выполнения задания, справится с ним более, чем за 30 минут, равна
	д) Функция распределения случайной величины $Y=1/X$ равна
	е) Функция плотности случайной величины $Y=1/X$ равна

14.4. Индивидуальный тур, решение

- 1. Сократ, эта H, η , дзета Z, ζ , вега нет, шо \flat , τ тау, θ тета, ξ кси. Греческая буква шо, \flat , была введена Александром Македонским и ныне вышла из употребления. По крайней мере, в греческом :) Заглавная примерно такая же, только её utf-код 03f7 не поддерживается шрифтом Linux Libertine.
- 2. да; события независимы в совокупности, если для любого поднабора событий $A_1, ..., A_k$ выполняется равенство $\mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_k) = \mathbb{P}(A_1) \cdot \ldots \cdot \mathbb{P}(A_k)$; нет
- 3. 1/4, 2/3, 15
- 4. $0, 0.8^5 \cdot 0.2, 1 0.8^6$
- 5. 0.8^{10} , $C_{10}^3 0.2^3 0.8^7$, 2
- 6. 1/2, 3/16, 3/8

a)

$$F_X(x) = \begin{cases} 0, & x < 0 \\ x^3, & x \in [0; 1] \\ 1, & x > 1 \end{cases}$$

- б) 1/8
- B) $2^{-1/3}$
- r) 56/63

д)

$$F_Y(y) = \begin{cases} 0, \ y < 0 \\ 1 - 1/y^3, \ y > 0 \end{cases}$$

e)

$$f_Y(y) = \begin{cases} 0, \ y < 0 \\ 3y^{-4}, \ y > 0 \end{cases}$$

14.5. Регата, исследователи, командный тур

1. Восьминогий Кракен. У Кракена 8 ног-шупалец. Если отрубить одно щупальце, то в замен него с вероятностью 1/4 вырастает новое; с вероятностью 1/4 вырастает два новых; с вероятностью 1/2, слава Океану, не вырастает ничего.

Против Кракена бъётся сам Капитан! Он наносит точные удары и безупречно умело уворачивается от ударов Кракена.

- а) Какова вероятность того, что Капитан победит, отрубив ровно 10 щупалец?
- б) Какова вероятность того, что бой Кракена и Капитана продлится вечно?
- в) Сколько щупалец в среднем отрубит Капитан прежде чем победит?

- 2. Разбавленный ром. Пират Злопамятный Джо очень любит неразбавленный ром. Из-за того, что он много пьёт, у него проблемы с памятью, и он помнит не больше, чем три последних пинты. Хозяин таверны с вероятностью 1/4 разбавляет каждую подаваемую пинту рома. Если по ощущением Джо половина выпитых пинт или больше была разбавлена, то он разносит таверну к чертям собачьим.
 - а) Какова вероятность того, что хозяин таверны не успеет подать Джо третью пинту рома?
 - б) Сколько в среднем пинт выпьет Джо, прежде чем разнесёт таверну?
- 3. XY в степени Z. Чтобы поступить на службу Её Величества, пиратам предлагается следующая задача. Случайные величины X,Y и Z равномерны на отрезке [0;1] и независимы.
 - а) Найдите функцию распределения случайной величины $-\ln X$
 - б) Найдите функцию распределения случайной величины $-(\ln X + \ln Y)$
 - в) Найдите функцию распределения случайной величины $-Z(\ln X + \ln Y)$
 - г) Какое распределение имеет случайная величина $(XY)^Z$?
- 4. Тортики. Пираты очень любят тортики и праздновать день рождения! Если хотя бы у одного пирата на корабле день рождения, то все, включая капитана, празднуют и кушают тортики. Корабль в праздничный день дрейфует под действием ветра и не факт, что в нужном направлении.
 - а) Сколько пиратов нужно нанять капитану, чтобы ожидаемое количество праздничных дней было равно 100?
 - б) Сколько пиратов нужно нанять капитану, чтобы максимизировать ожидаемое количество рабочих пирато-дней (произведение числа пиратов на число рабочих дней)?
- 5. Девятый вал. На побережье пиратского острова одна за одной набегают волны. Высота каждой волны равномерная на [0;1] случайная величина. Высоты волн независимы. Пираты называют волну «большой», если она больше предыдущей и больше следующей. Пираты называют волну «рекордной», если она больше всех предыдущих волн от начала наблюдения. Обозначим события $B_i = \{i$ -ая волна была большой $\}$ и $R_i = \{i$ -ая волна была рекордной $\}$.
 - а) Найдите $\mathbb{P}(R_{100}), \mathbb{P}(B_{100})$
 - б) Капитан насчитал 100 волн. Сколько в среднем из них были «рекордными»?
 - в) Найдите $\mathbb{P}(R_{99}|R_{100}), \mathbb{P}(R_{100}|B_{100})$
- 6. Три сундука. Три пирата, Генри Рубинов, Френсис Пиастров и Эдвард Золотов играют одной командой в игру. В комнате в ряд, слева направо, стоят в случайном порядке три закрытых внешне неотличимых сундука: с рубинами, пиастрами и золотом. Общаться после начала игры они не могут, но могут заранее договориться о стратегии. Они заходят в комнату по очереди. Каждый из них может открыть два сундука по своему выбору. После каждого пирата комната возвращается уборщицей идеально точно в исходное состояние. Если Рубинов откроет коробку с рубинами, Писатров с пиастрами, а Золотов с золотом, то их команда выигрывает. Если хотя бы один из пиратов не найдёт свою цель, то их команда проигрывает.
 - а) Какова вероятность выигрыша, если все пираты пробуют открыть первый и второй сундуки?
 - б) Какова оптимальная стратегия?
 - в) Какова вероятность выигрыша при использовании оптимальной стратегии?

14.6. Регата, исследователи, командный тур, решение

1. Если отрублено 10 щупалец, значит либо был один удар породивший два новых щупальца, либо было два удара, породивших по одному новому, а все остальные удары не порождали новых щупалец.

Искомая вероятность равна: $8 \cdot 0.5^9 \cdot 0.25^1 + C_8^2 0.5^8 0.25^2$.

Вероятность вечного боя равна нулю. Достаточно доказать, что с вероятностью один за конечное время побеждается одноногий Кракен. А эта вероятность удовлетворяет уравнению: $p=\frac{1}{4}p+\frac{1}{4}p^2+\frac{1}{2}1$. Единственный осмысленный корень у этого уравнения — 1.

Замечаем, что на победу над k-шупальцевым Кракеном уходим в k раз больше ударов в среднем чем на победу на 1-щупальцевым. Отсюда:

$$e_1 = 1 + 0.5 \cdot 0 + 0.25 \cdot e_1 + 0.25 \cdot 2e_1$$

Решаем, получаем $e_1 = 4$ и $e_8 = 32$

2. Либо первая пинта разбавлена, либо первая неразбавлена, а вторая разбавлена, то есть

$$0.25 + 0.75 \cdot 0.25 = 0.4375$$

Рисуем граф:

Составляем систему (индекс — количество выпитых неразбавленных пинт):

$$\begin{cases} e_0 = \frac{1}{4} + \frac{3}{16}2 + \frac{9}{16}(2 + e_2) \\ e_2 = 1 + \frac{3}{4}e_2 + \frac{1}{4}e_0 \end{cases}$$

Находим $e_0 = 64/7 \approx 9$

3. Начало из домашки! Для t > 0:

$$\mathbb{P}(-\ln X \le t) = \mathbb{P}(\ln X > -t) = \mathbb{P}(X > e^{-t}) = 1 - e^{-t}$$

Итого,

$$F_{-\ln X}(t) = \begin{cases} 0, \ t < 0 \\ 1 - e^{-t}, \ t \geqslant 0 \end{cases}$$

Из геометрических соображений легко найти $\mathbb{P}(XY < a)$ для $a \in (0; 1)$:

$$\mathbb{P}(XY < a) = a + \int_{a}^{1} \frac{a}{x} dx = a - a \ln a$$

Переходим ко второму пункту, для t > 0:

$$\mathbb{P}(-(\ln X + \ln Y) < t) = \mathbb{P}(XY > e^{-t}) = 1 - e^{-t} - te^{-t}$$

Итого:

$$F_{-\ln X - \ln Y}(t) = \begin{cases} 0, \ t < 0 \\ 1 - e^{-t} - te^{-t}, \ t \geqslant 0 \end{cases}$$

После дифференциирования получаем функцию плотности для $S = -\ln X - \ln Y$:

$$f_S(s) = \begin{cases} 0, \ s < 0 \\ se^{-s}, \ s \geqslant 0 \end{cases}$$

Приближаемся к финальной вероятности:

$$\mathbb{P}(ZS > t) = \int_{t}^{\infty} \int_{t/s}^{1} se^{-s} \, dz \, ds = \int_{t}^{\infty} (s - t) \cdot e^{-s} \, ds = \dots = e^{-t}$$

Сравниваем результат с первым пунктом и приходим к выводу, что величина $(XY)^Z$ имеет равномерное распределение на [0;1].

4. Если нанято n пиратов, то вероятность, того, что в конкретный день все работают равна $(364/365)^n$. Следовательно, ожидаемое количество праздничных дней равно $365(1-(364/365)^n)$. Решаем уравнение

$$1 - (364/365)^n = 100/365$$

Получаем,

$$n = \frac{\ln 265 - \ln 365}{\ln 364 - \ln 365} \approx 117$$

Ожидаемое количество рабочих пирато-дней равно: $365n(364/365)^n$.

Получаем

$$n^* = 1/(\ln 365 - \ln 364) \approx 364$$

- 5. а) $\mathbb{P}(R_{100}) = 1/100$ (максимум из 100 величин должен плюхнуться на сотое место), $\mathbb{P}(B_{100}) = 1/3$ (максимум из трёх величин должен плюхнуться на второе место)
 - б) $\mathbb{E}(X)=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{100}pprox \ln 100pprox 4.6$. Т.к. $X=X_1+X_2+\ldots+X_{100}$ и $\mathbb{E}(X_i)=1/i$.
 - в) $\mathbb{P}(R_{99}|R_{100})=1/99, \mathbb{P}(R_{100}|B_{100})=3/101$ Для проверки: $\mathbb{P}(R_{99}\cap R_{100})=98!/100!$ (100! всего перестановок, 98! первые 98 можно переставлять свободно, а в конце должны идти второй наибольшое и наибольшее). $\mathbb{P}(R_{100}\cap B_{100})=1/101$ (максимум из 101 числа плюхнется на 100ое место).
- 6. Если все пираты открывают первый и второй сундуки, то вероятность выигрыша равна нулю.

Оптимальная стратегия (одна из). Три пирата заранее договариваются, о названиях сундуков. Они называют эти три сундука (ещё до игры) «рубиновым», «пиастровым» и «золотым». Генри Рубинов должен начать с открытия рубинового сундука, Френсис Пиастров — с пиастрового, Эдвард Золотов — с золотого. Далее каждый пират должен открыть тот сундук, на который указывает предмет, лежащий в первом открытом им сундуке. Например, если Генри Рубинов, открыв сначала рубиновый сундук обнаруживает там пиастры, он должен открывать пиастровый сундук.

Вероятность победы при такой стратегии легко находится перебором 6 возможных вариантов и равна...Та-дам!!! 2/3.

14.7. Контрольная номер 2, поток Арктура, 12.12.2015

Продолжительность: 1 час 20 минут

1. Функция плотности случайного вектора $\xi = (\xi_1, \xi_2)^T$ имеет вид

$$f(x,y) = egin{cases} 0.5x + 1.5y, \ ext{ecли} \ 0 < x < 1, \ 0 < y < 1 \\ 0, \ ext{uhave} \end{cases}$$

Найдите:

- а) Математическое ожидание $\mathbb{E}(\xi_1\cdot\xi_2)$
- б) Условную плотность распределения $f_{\xi_1|\xi_2}(x|y)$
- в) Условное математическое ожидание $\mathbb{E}(\xi_1|\xi_2=y)$
- г) Константу k, такую, что функция $h(x,y) = kx \cdot f(x,y)$ будет являться совместной функцией плотности некоторой пары случайных величин
- 2. На курсе учится очень много студентов. Вероятность того, что случайно выбранный студент по результатам рубежного контроля имеет хотя бы один незачет равна 0.2. Пусть ξ и η число студентов с незачетами и без незачетов в случайной группе из 10 студентов. Найдите $Cov(\xi,\eta)$, $Corr(\xi,\eta)$, $Cov(\xi-\eta,\xi)$. Являются ли случайные величины $\xi-\eta$ и ξ независимыми?
- 3. Доходности акций компаний A и B случайные величины ξ и η . Известно, что $\mathbb{E}(\xi)=1$, $E(\eta)=1$, $Var(\xi)=4$, $Var(\eta)=9$, $Corr(\xi,\eta)=-0.5$. Петя принимает решение потратить свой рубль на акции компании A, Вася 50 копеек на акции компании A и 50 копеек на акции компании B, а Маша принимает решение вложить свой рубль в портфель $R=\alpha\xi+(1-\alpha)\eta$, $(0\leqslant\alpha\leqslant1)$, обладающий минимальным риском. Найдите α , ожидаемые доходности и риски портфелей Пети, Васи и Маши.
- 4. Будем считать, что рождение мальчика и девочки равновероятны.
 - младенцев, мальчиков будет более 75%.

а) Оцените с помощью неравенства Маркова вероятность того, что среди тысячи новорожденных

- б) Оцените с помощью неравенства Чебышёва вероятность того, что доля мальчиков среди тысячи новорожденных младенцев будет отличаться от 0.5 более, чем на 0.25
- в) С помощью теоремы Муавра-Лапласа вычислите вероятность из предыдущего пункта.
- 5. Сейчас валютный курс племени «Мумба» составляет 100 оболов за один рубль. Изменение курса за один день случайная величина δ_i с законом распределения:

$$\delta_i$$
 -1 0 2
 $\mathbb{P}(\cdot)$ 0.25 0.5 0.25

Найдите вероятность того, что через полгода (171 день) рубль будет стоить более 250 оболов, если ежедневные изменения курса происходят независимо друг от друга.

6. Бонусная задача

Число посетителей, зашедших в магазин в течении дня — пуассоновская случайная величина с параметром λ . Каждый из посетителей совершает покупку с вероятностью p, не зависимо от других посетителей. Найдите математическое ожидание числа человек, совершивших покупку.

14.8. Контрольная номер 2, поток Арктура, 12.12.2015, решение

1. a)
$$\mathbb{E}(\xi_1 \cdot \xi_2) = \int_0^1 \int_0^1 xy f(x,y) \, dx \, dy = \int_0^1 \int_0^1 \frac{1}{2} \cdot x^2 y + \frac{3}{2} \cdot xy^2 \, dx \, dy = \int_0^1 \frac{y}{6} + \frac{3y^2}{4} \, dy = \frac{1}{3}$$

б)
$$f_{\xi_1|\xi_2}(x|y)=rac{f_{\xi_1,\xi_2}(x,y)}{f_{\xi_2}(y)}=rac{0.5x+1.5y}{0.25+1.5y},$$
 при $y\in(0,1)$

в)

$$\mathbb{E}(\xi_1|\xi_2=y) = \int_0^1 x f_{\xi_1|\xi_2}(x|y) dx =$$

$$= \int_0^1 x \frac{0, 5x + 1, 5y}{0, 25 + 1, 5y} dx = \frac{1}{0, 25 + 1, 5y} \left(\frac{0, 5x^3}{3} + \frac{1, 5yx^2}{2}\right) \Big|_0^1 = \frac{1/6 + 3/4y}{0, 25 + 1, 5y}$$

г) Для того, чтобы функция являлась совместной плотностью для пары случайных величин, должно выполнятся следующее:

$$\int_{\Omega} kx f(x,y) \, dx \, dy = 1$$

Вычислим, чему равняется левая часть:

$$1 = \int_{\Omega} kx f(x, y) \, dx \, dy = \int_{0}^{1} \int_{0}^{1} kx \left(\frac{x + 3y}{2}\right) dx \, dy = \int_{0}^{1} \frac{k}{6} + \frac{3ky}{4} \, dy = \frac{k}{6} + \frac{3k}{8} \Rightarrow k = \frac{24}{13}$$

2. Заметим, что $\xi + \eta = 10$, тогда $\mathrm{Cov}(\xi, \eta) = \mathrm{Cov}(\xi, 10 - \xi) = -\mathrm{Var}(\xi)$.

Представим случайную величину ξ в виде суммы случайных величин $\xi = \xi_1 + \ldots + \xi_{10}$, где

$$\xi_i = egin{cases} 1, & \text{если у студента есть хотя бы один незачёт}, p = 0.2 \\ 0, & \text{иначе}, p = 0.8 \end{cases}$$
 $i = 1, \dots, 10$

Поскольку результаты каждого из стуентов независимы, $\mathrm{Var}(\xi)=10\,\mathrm{Var}(\xi_1)$

$$Cov(\xi, \eta) = -10(1^2 \cdot 0.2 - (1 \cdot 0.2)^2) = -1.6$$

Так как случайные величины ξ и η связаны соотношением $\xi=10-\eta$, $\mathrm{Corr}(\xi,\eta)=-1$.

Подставив в $\mathrm{Cov}(\xi-\eta,\xi)$ выражение $\eta=10-\xi$, получим:

$$Cov(\xi - \eta, \xi) = 2 Cov(\xi, \xi) = 2 \cdot 0.16 = 0.32$$

Случайные величины $\xi - \eta$ и ξ не являются независиыми.

3. Найдем ожидаемую доходность и риск портфеля $R=\alpha\xi+(1-\alpha)\eta$ для любого α , тогда при $\alpha=1$ получим результаты Пети, при $\alpha=0.5$ — результаты Васи.

$$\mathbb{E} R = \alpha + (1 - \alpha) = 1 \ \forall \ \alpha \in [0, 1]$$

Находим дисперсию:

$$\operatorname{Var}(R) = \alpha^2 \cdot 4 + (1 - \alpha)^2 \cdot 9 - 6\alpha(1 - \alpha) = 19\alpha^2 - 24\alpha + 9 \to \min \Rightarrow$$

Теперь, найдем оптимальное α :

$$\alpha = \frac{24}{38}$$

Финальные цифры:

$$\begin{cases} \operatorname{Var}(R)^P = 4 \Rightarrow \sigma_P = 2 \\ \operatorname{Var}(R)^V = 1.75 \Rightarrow \sigma_V \approx 1.32 \\ \operatorname{Var}(R)^M = \frac{27}{19} \Rightarrow \sigma_M \approx 1.19 \end{cases}$$

4. а) Пусть S количество мальчиков, тогда используя неравенство Маркова получаем:

$$\mathbb{P}(S \geqslant 750) \leqslant \frac{\mathbb{E}(S)}{750} = \frac{2}{3}$$

б) Пусть, теперь, \overline{X} доля мальчиков, то есть, $\overline{X} = \sum_{i=1}^n X_i/n$, где

$$X_i = egin{cases} 1, \ ext{ecли} \ i ext{-ый ребёнок} - ext{мальчик} \ 0, \ ext{иначе} \end{cases}$$

тогда используя неравенство Чебышева получаем:

$$\mathbb{P}(|\overline{X} - 0.5| \ge 0.25) \le \frac{\text{Var}(\overline{X})}{0.25^2} = \frac{1/4000}{0.25^2} = 0.004$$

в) Вероятность из предыдущего пункта можно записать в таком виде:

$$\mathbb{P}(|\overline{X} - 0.5| \ge 0.25) = \mathbb{P}(\overline{X} \ge 0.75) + \mathbb{P}(\overline{X} \le 0.25) = 2\mathbb{P}(\overline{X} \ge 0.75) =$$

$$= 2\mathbb{P}(\mathcal{N}(0; 1) \ge 0.25\sqrt{4000}) = 2\mathbb{P}(\mathcal{N}(0; 1) \ge 15.8) = 1.3 \cdot 10^{-56} \approx 0$$

5. Пусть случайная величина S — это валютный курс через полгода. Заметим, что $S=100+\delta_1+\ldots+\delta_{171}$. Тогда по ЦПТ $S\sim\mathcal{N}(142.75,203.0625)$. Теперь можно искать нужную вероятность:

$$\mathbb{P}(S > 250) = \mathbb{P}\left(\frac{S - 142.75}{\sqrt{203.0625}} > \frac{250 - 142.75}{\sqrt{203.0625}}\right) = \mathbb{P}(\mathcal{N}(0, 1) > 7.6) \approx 0$$

14.9. Контрольная номер 2, поток Риччи, 12.12.2015

Продолжительность: 1 час 20 минут

1. Функция плотности случайного вектора $\xi = (\xi_1, \xi_2)^T$ имеет вид

$$f(x,y) = egin{cases} 0.5x + 1.5y, \ ext{ecли} \ 0 < x < 1, \ 0 < y < 1 \\ 0, \ ext{uhave} \end{cases}$$

Найдите:

- а) Математическое ожидание $\mathbb{E}(\xi_1\cdot\xi_2)$
- б) Условную плотность распределения $f_{\xi_1|\xi_2}(x|y)$
- в) Условное математическое ожидание $\mathbb{E}(\xi_1|\xi_2=y)$
- г) Константу k, такую, что функция $h(x,y) = kx \cdot f(x,y)$ будет являться совместной функцией плотности некоторой пары случайных величин

- 2. На курсе учится очень много студентов. Вероятность того, что случайно выбранный студент получит «отлично» за контрольную равна 0.2, «хорошо» 0.3. Вероятности остальных результатов неизвестны. Пусть ξ и η число отличников и хорошистов в случайной группе из 10 студентов. Найдите $\mathrm{Cov}(\xi,\eta)$, $\mathrm{Corr}(\xi,\eta)$, $\mathrm{Cov}(\xi-\eta,\xi)$. Являются ли случайные величины $\xi-\eta$ и ξ независимыми?
- 3. Доходности акций компаний A и B случайные величины ξ и η . Известно, что $\mathbb{E}(\xi)=1$, $E(\eta)=1$, $\mathrm{Var}(\xi)=4$, $\mathrm{Var}(\eta)=9$, $\mathrm{Corr}(\xi,\eta)=-0.5$. Петя принимает решение потратить свой рубль на акции компании A, Вася 50 копеек на акции компании A и 50 копеек на акции компании B, а Маша принимает решение вложить свой рубль в портфель $R=\alpha\xi+(1-\alpha)\eta$, $(0\leqslant\alpha\leqslant1)$, обладающий минимальным риском. Найдите α , ожидаемые доходности и риски портфелей Пети, Васи и Маши.
- 4. Будем считать, что рождение мальчика и девочки равновероятны.
 - а) С помощью закона больших чисел определите в каком городе, большом или маленьком, больше случается таких дней, когда рождается более 75% мальчиков.
 - б) Оцените с помощью неравенства Маркова вероятность того, что среди тысячи новорожденных младенцев мальчиков будет более 75%.
 - в) Оцените с помощью неравенства Чебышёва вероятность того, что доля мальчиков среди тысячи новорожденных младенцев будет отличаться от 0.5 более, чем на 0.25
 - г) С помощью теоремы Муавра-Лапласа вычислите вероятность из предыдущего пункта.
- 5. Сейчас валютный курс племени «Мумба» составляет 100 оболов за один рубль. Процентное изменение курса за один день случайная величина δ_i с законом распределения:

$$\delta_i = -1\% = 1\%$$
 $\mathbb{P}(\cdot) = 0.25 = 0.75$

Найдите вероятность того, что через полгода (171 день) рубль будет стоить более 271 обола, если ежедневные изменения курса происходят независимо друг от друга.

- 6. Величины $X_1, X_2, ...$ независимы и равновероятно принимают значения -1 и 3.
 - а) Найдите $\operatorname{plim}_{n \to \infty} \frac{\sum_{i=1}^n (X_i \bar{X})^2}{n}$
 - б) С помощью дельта-метода найдите примерный закон распределения $\frac{\sum_{i=1}^{100}(X_i-\bar{X})^2}{100}$

14.10. Контрольная номер 2, поток Риччи, 12.12.2015, решение

Решение: Аршак Минасян

1. a)
$$\mathbb{E}(\xi_1 \cdot \xi_2) = \int_0^1 \int_0^1 xy f(x,y) \, dx \, dy = \int_0^1 \int_0^1 \frac{1}{2} \cdot x^2 y + \frac{3}{2} \cdot xy^2 \, dx \, dy = \int_0^1 \frac{y}{6} + \frac{3y^2}{4} \, dy = \frac{1}{3}$$
6) $f_{\xi_1|\xi_2}(x|y) = \frac{f_{\xi_1,\xi_2}(x,y)}{f_{\xi_2}(y)} = \frac{0.5x + 1.5y}{0.25 + 1.5y}$, при $y \in (0,1)$
в)

$$\mathbb{E}(\xi_1|\xi_2 = y) = \int_0^1 x f_{\xi_1|\xi_2}(x|y) dx =$$

$$= \int_0^1 x \frac{0, 5x + 1, 5y}{0, 25 + 1, 5y} dx = \frac{1}{0, 25 + 1, 5y} \left(\frac{0, 5x^3}{3} + \frac{1, 5yx^2}{2} \right) \Big|_0^1 = \frac{1/6 + 3/4y}{0, 25 + 1, 5y}$$

г) Для того, чтобы функция являлась совместной плотностью для пары случайных величин, должно выполнятся следующее:

$$\int_{\Omega} kx f(x,y) \, dx \, dy = 1$$

Вычислим, чему равняется левая часть:

$$1 = \int_{\Omega} kx f(x, y) \, dx \, dy = \int_{0}^{1} \int_{0}^{1} kx \left(\frac{x + 3y}{2}\right) dx \, dy = \int_{0}^{1} \frac{k}{6} + \frac{3ky}{4} \, dy = \frac{k}{6} + \frac{3k}{8} \Rightarrow$$

$$k = \frac{24}{13}$$

2. При расчёте ковариации применим разложение случайной величины в сумму простых случайных

$$Cov(\xi, \eta) = Cov(\xi_1 + \ldots + \xi_{10}, \eta_1 + \ldots + \eta_{10}) = 10 Cov(\xi_1, \eta_1) = 10(0 - 0.2 \cdot 0.3) = -0.6$$

$$Var(\xi) = 10 \cdot 0.2 \cdot 0.8 = 1.6$$

$$Var(\eta) = 10 \cdot 0.3 \cdot 0.7 = 2.1$$

$$Var(\eta) = 10 \cdot 0.3 \cdot 0.7 = 2.1$$

$$Corr(\xi, \eta) = -0.6/\sqrt{1.6 \cdot 2.1} \approx -0.33$$

$$Cov(\xi - \eta, \xi) = Var(\xi) - Cov(\xi, \eta) \neq 0$$

Следовательно, ξ и η зависимы.

3. Найдем ожидаемую доходность и риск портфеля $R = \alpha \xi + (1 - \alpha) \eta$ для любого α , тогда при $\alpha = 1$ получим результаты Пети, при $\alpha = 0.5$ — результаты Васи.

$$\mathbb{E} R = \alpha + (1-\alpha) = 1 \ \forall \ \alpha \in [0,1]$$

Находим дисперсию:

$$\operatorname{Var}(R) = \alpha^2 \cdot 4 + (1 - \alpha)^2 \cdot 9 - 6\alpha(1 - \alpha) = 19\alpha^2 - 24\alpha + 9 \to \min_{\alpha} \Rightarrow$$

Теперь, найдем оптимальное α :

$$\alpha = \frac{24}{38}$$

Финальные цифры:

$$\begin{cases} \operatorname{Var}(R)^P = 4 \Rightarrow \sigma_P = 2 \\ \operatorname{Var}(R)^V = 1.75 \Rightarrow \sigma_V \approx 1.32 \\ \operatorname{Var}(R)^M = \frac{27}{19} \Rightarrow \sigma_M \approx 1.19 \end{cases}$$

а) По ЗБЧ имеем: 4.

$$\frac{\xi_1 + \dots + \xi_n}{n} \to \mathbb{E}(\xi_1) = \frac{1}{2},$$

Поэтому, чем больше n (количество жителей в городе), тем меньше таких дней, когда количество мальчиков больше 75%.

б) Пусть S количество мальчиков, тогда используя неравенство Маркова получаем:

$$\mathbb{P}(S \geqslant 750) \leqslant \frac{\mathbb{E}(S)}{750} = \frac{2}{3}$$

в) Пусть, теперь, \bar{X} доля мальчиков, то есть, $\overline{X} = \sum_{i=1}^n X_i/n$, где

$$X_i = egin{cases} 1, \ ext{ecли} \ i ext{-ый ребёнок} - ext{мальчик} \ 0, \ ext{иначе} \end{cases}$$

тогда используя неравенство Чебышева получаем:

$$\mathbb{P}(|\overline{X} - 0.5| \ge 0.25) \le \frac{\text{Var}(\overline{X})}{0.25^2} = \frac{1/4000}{0.25^2} = 0.004$$

г) Вероятность из предыдущего пункта можно записать в таком виде:

$$\mathbb{P}(|\overline{X} - 0.5| \ge 0.25) = \mathbb{P}(\overline{X} \ge 0.75) + \mathbb{P}(\overline{X} \le 0.25) = 2\mathbb{P}(\overline{X} \ge 0.75) = 2\mathbb{P}(\mathcal{N}(0; 1) \ge 0.25\sqrt{4000}) = 2\mathbb{P}(\mathcal{N}(0; 1) \ge 15.8) = 1.3 \cdot 10^{-56} \approx 0$$

5. Ищем вероятность

$$100 \cdot X_1 \cdot \ldots \cdot X_{171} \geqslant 271$$

Здесь X_i принимают значения 0.99 или 1.01 с вероятностями 0.25 и 0.75 Берем логарифм:

$$\sum \log X_i \geqslant 1$$

Исходим из худшего случая, когда на калькуляторе нет логарифма, тогда неплохо знать, что $\log(1+\alpha)\sim \alpha$, поэтому можно считать, что $\log X_i$ принимает значения -0.01 и 0.01.

Значит $\mathbb{E}(\log X_i) = 1/200$, $\operatorname{Var}(\log X_i) = 1/100 - 1/200^2 \approx 1/100$.

Поэтому сумма $S \sim \mathcal{N}(171/200, 171/100)$ и

$$\mathbb{P}(S \geqslant 1) = \mathbb{P}(\mathcal{N}(0, 1) \geqslant 0.11) \approx 0.46$$

6. а) Используем ЗБЧ:

$$\underset{n\to\infty}{\text{plim}}\,\frac{\sum_{i=1}^n(X_i-\bar{X})^2}{n}=\text{plim}\,\frac{\sum X_i^2}{n}-\text{plim}\,\bar{X}\cdot\bar{X}=\mathbb{E}(X_1^2)-(\mathbb{E}(X_1))^2=\text{Var}(X_1)=4$$

б) Обозначим, $Y_i = X_i^2$, тогда наше выражение можно записать в виде:

$$Q = \overline{Y} - (\overline{X})^2$$

Причём, plim $\bar{Y}=5$, plim $\bar{X}=1$.

Согласно дельта-методу заменяем его на линейную аппроксимацию в окрестности предела:

$$Q\approx 4+(\bar{Y}-5)+2(\bar{X}-1)$$

Стало быть, при больших n:

$$\mathbb{E}(Q) \approx 4$$

$$\begin{aligned} \operatorname{Var}(Q) &\approx \operatorname{Var}(\bar{Y}) + 4\operatorname{Var}(\bar{X}) + 4\operatorname{Cov}(\bar{Y},\bar{X}) = \\ &= \frac{1}{n}\left(\operatorname{Var}(Y_1) + 4\operatorname{Var}(X_1) + 4\operatorname{Cov}(X_1,Y_1)\right) = \\ &= 0.01 \cdot (16 + 4 \cdot 4 + 4 \cdot 8) = 0.64 \end{aligned}$$

Итого, $Q \approx \mathcal{N}(4; 0.64)$

14.11. Midterm, 21.12.2015

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера!

Вероятность, что он попал оба раза, если известно, что он попал хотя бы один раз из двух, равна

Вася выбирает одну монетку наугад и подкидывает её два раза. Вероятность того, что оба раза

Вероятность, что он попадёт хотя бы один раз из двух равна

A 0.9

B 0.64

Вопрос 2 🕹

|A| 1/2

A 1/3

B 3/4

2/3

выпадет орел равна

 $\boxed{\mathsf{C}}$ 0.8

C 1/3

D 3/4

C 2/3

0.96

Крошка Джон попадает в яблочко с вероятностью 0.8. Его выстрелы независимы.

Крошка Джон попадает в яблочко с вероятностью 0.8. Его выстрелы независимы.

Имеется три монетки. Две «правильных» и одна — с «орлами» по обеим сторонам.

E 0.36

E 1/4

E 1/4

F Нет верного ответа.

F Нет верного ответа.

F Нет верного ответа.

Вопрос 4 🦂	Если события A , B , C попарно незаг	висимы, то	
А Событи	я A,B,C независимы в совокупност	И	
В Событи	я A,B,C несовместны		
$\boxed{C} \ \mathbb{P}(A \cap B)$	$B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$		
D Событи	я A,B,C зависимы в совокупности		
Е Событи	е $A \cup B \cup C$ обязательно произойдёт		
Нет вер	рного ответа.		
Вопрос 5 ♣ равна	Случайная величина X равномерна	на отрезке $[0; 10]$. В	ероятность $\mathbb{P}(X>3 X<7)$
4/7	C 0.21	E	7/10
B 3/10	D 3/7	F	Нет верного ответа.
_	Имеется три монетки. Две «прася выбирает одну монетку наугад при первом подбрасывании $\}$ и $B=rac{1}{2}$	и подкидывает её	\dot{e} два раза. События $A=$
А образун	от полную группу событий	D независимы	
	воряют соотношению $\mathbb{P}(A\cap B)=$	удовлетворяю $\mathbb{P}(A)$	г соотношению $\mathbb{P}(A B)$ \geqslant
$\mathbb{P}(A)$ +	$\mathbb{P}(B) + \mathbb{P}(A \cup B)$	F Нет верного оп	пвета.

Вопрос 7 🧍	В квадрат вписан круг. Наудачу в квадрат бросают восемь точек. Пусть X — число
точек, попави	цих в круг. Математическое ожидание величины X равно

 $\boxed{\mathsf{A}} \ \pi/4$

C 4π

 2π

B

 $\boxed{D} \pi/2$

F Нет верного ответа.

Вопрос 8 \clubsuit В квадрат вписан круг. Наудачу в квадрат бросают восемь точек. Пусть X — число точек, попавших в круг. Дисперсия величины X равна

 Λ π^2

 $C 3\pi^2 - 2$

 $E \ 3\pi^2 - 4$

 $\boxed{\mathbf{B}} \pi^2 - 2\pi$

 $2\pi - \pi^2/2$

F Нет верного ответа.

Вопрос 9 \clubsuit В квадрат вписан круг. Последовательно в квадрат наудачу бросают восемь точек. Пусть Y — число точек, попавших в круг, при первых четырех бросаниях, а Z — число точек, попавших в круг, при оставшихся четырех бросаниях. Ковариация Cov(Y,Z) равна

0

 $C - \pi^2$

 $\begin{bmatrix} \mathbf{E} \end{bmatrix} - 2\pi$

 $\boxed{\mathbf{B}} 2\pi$

 $D \pi$

F Нет верного ответа.

Вопрос 10 В квадрат вписан круг. Последовательно в квадрат наудачу бросают восемь точек. Пусть Y — число точек, попавших в круг, при первых четырех бросаниях, а Z — число точек, попавших в круг, при оставшихся четырех бросаниях. Дисперсия $\mathrm{Var}(Y-Z)$ равна

A $3\pi^2 - 4$

 $C \pi^2$

 $E \pi^2 - 2\pi$

lacksquare

 $2\pi - \pi^2/2$

F Нет верного ответа.

Вопрос 11 & В квадрат вписан круг. Наудачу в квадрат бросают восемь точек. Наиболее вероятное число точек, попавших в круг, равно

 $A 2\pi$

C 6

E 5

B 4

7

F Нет верного ответа.

Вопрос 12 ♣ Всем известно, что Маша звонит Васе в среднем 10 раз в день. Число звонков, совершенных Машей, имеет распределение Пуассона. Вероятность того, что Маша ни разу не позвонит Васе в течение дня, равна

 $| A | 10 e^{-10}$

 e^{-10}

B $1 - e^{10}$

 $\frac{1}{10!}e^{-10}$

F Нет верного ответа.

В вопросах 13-16 совместное распределение пары величин X и Y задано таблицей:

$$Y = -2$$
 $Y = 1$
 $X = -1$ 0.1 0
 $X = 0$ 0.1 0.3
 $X = 1$ 0.2 0.3

$$f(x,y) = \begin{cases} (x+y)/3, & \text{если } x \in [0;1], y \in [0;2] \\ 0, & \text{иначе} \end{cases}$$

Вопрос 27 \clubsuit Если $\mathbb{E}(X) = 0$, $\mathrm{Var}(X) = 1$, то наиболее узкий интервал, в который гарантированно попадает вероятность $\mathbb{P}(|X| \geqslant 4)$, равен

[0; 0.0625]

C [0.25; 1]

E [0; 0.25]

B [0.5; 1]

D [0.0625; 1]

F | *Нет верного ответа.*

Вопрос 28 👃 Дана последовательность независимых случайных величин, имеющих равномерное на (-1,1) распределение. **НЕВЕРНЫМ** является утверждение

- $|A| \mathbb{P}(|\bar{X}| < 1/\sqrt{n}) \leq 1/3$
- |B| \bar{X} сходится по вероятности к нулю
- $\lfloor \mathbf{C} \rfloor$ Вероятность $\mathbb{P}(\bar{X}>0)$ стремится к 0.5
- $\overline{\mathrm{D}} \sqrt{3n} \bar{X}$ сходится по распределению к стандартной нормальной величине
- $|\mathsf{E}|$ Вероятность $\mathbb{P}(\bar{X}=0)$ стремится к 0
- $ar{X}$ сходится по распределению к равномерной на (-1,1) величине

 Φ ункция плотности случайной величины X имеет вид Вопрос 29 🌲

$$f(x) = \frac{1}{\sqrt{8\pi}}e^{-(x-3)^2/8}$$

НЕВЕРНЫМ является утверждение

 $\boxed{\mathbf{A}} \ \mathbb{P}(X=0) = 0$

Var(X) = 8

 $\boxed{\mathbf{E}} \max f(x) = \frac{1}{2\sqrt{2\pi}}$

 $B \mid \mathbb{E}(X) = 3$

 $\boxed{\mathbf{D}} \ \mathbb{P}(X < 0) > 0$

 $\boxed{\mathsf{F}} \ \mathbb{P}(X > 3) = 0.5$

Вопрос 30 \clubsuit Величины X_1, X_2, \dots независимы и одинаково распределены с $\mathbb{E}(X_i) = \mu,$ $\operatorname{Var}(X_i) = \sigma^2$. К стандартному нормальному распределению сходится последовательность случайных величин

 $\frac{n\mu)/(\sqrt{n}\sigma)}{\sqrt{n}(\bar{X}-\mu)/\sigma}$ A $(\bar{X} - n\mu)/(\sqrt{n}\sigma)$

 $|\mathbf{E}| (\bar{X} - \mu)/(\sqrt{n}\sigma)$

 \overline{D} $(\bar{X} - \mu)/\sigma$

F Нет верного ответа.

14.12. Контрольная работа 3. 1 апреля 2016

Ищите и обрящете, толцыте и отверзется

Лука 11:9

- 1. В студенческом буфете осталось только три булочки одинаковой привлекательности и цены, но разной калорийности: 250, 400 и 550 ккал. Голодные Маша и Саша, не глядя на калорийность, покупают по булочке. Найдите математическое ожидание и дисперсию суммы поглощенных студентами калорий.
- 2. Дана реализация случайной выборки независимых одинаково распределенных случайных величин: 11, 4, 6.
 - а) Выпишите вариационный ряд;

- б) Постройте выборочную функцию распределения;
- в) Найдите выборочную медиану распределения;
- г) Вычислите выборочное среднее и несмещенную оценку дисперсии.
- 3. Найдите математическое ожидание, дисперсию и коэффициент корреляции случайных величин X и Y, совместное распределение которых имеет функцию плотности

$$f(x,y) = \frac{5}{4\pi\sqrt{6}} \exp\left(-\frac{25}{48} \left((x-1)^2 - 0.4(x-1)y + y^2\right)\right)$$

4. Рост и размер обуви (X,Y) взрослого мужчины хорошо описывается двумерным нормальным распределением с математическим ожиданием (178,42) и ковариационной матрицей C=

$$\begin{pmatrix} 49 & 5.6 \\ 5.6 & 1 \end{pmatrix}.$$

- а) Какой процент мужчин обладает ростом выше 185 см?
- б) Являются ли рост и размер обуви случайно выбранного мужчины независимыми? Обоснуйте ответ.
- в) Среди мужчин с ростом 185 см, каков процент тех, кто имеет размер обуви, меньший сорок второго $\mathbb{P}(Y < 42 \mid X = 185)$?
- 5. Дана случайная выборка $X_1, ..., X_n$ из равномерного распределения $U[0; 2\theta]$.
 - а) С помощью первого момента найдите оценку параметра θ методом моментов;
 - б) Сформулируйте определения несмещенности, состоятельности и эффективности оценок;
 - в) Проверьте, будет ли найденная в пункте (а) оценка несмещенной и состоятельной.
 - г) С помощью статистики $X_{(n)} = \max\{X_1,\dots,X_n\}$ постройте несмещенную оценку параметра θ вида $cX_{(n)}.$ Укажите значение c.
 - д) Проверьте, будет ли данная оценка состоятельной;
 - е) Какая из двух оценок является более эффективной? Обоснуйте ответ.
- 6. Вовочка хочет проверить утверждение организаторов юбилейной лотереи «Метро-80 лет в ритме столицы», что почти треть всех билетов выигрышные. Для этого он попросил n своих друзей купить по 10 лотерейных билетов. Пусть X_i число выигрышных билетов друга i и p вероятность выигрыша одного билета.
 - а) Какое распределение имеет величина X_i ?
 - б) Запишите функцию правдоподобия L(p) для выборки $X_1, ..., X_n$;
 - в) Методом максимального правдоподобия найдите оценку p;
 - г) Найдите информацию Фишера для одного наблюдения i(p);
 - д) Для произвольной несмещенной оценки $T(X_1,\ldots,X_n)$ запишите неравенство Рао-Крамера-Фр
 - e) Будет оценка \hat{p}_{ML} эффективной?
 - ж) Найдите оценку максимального правдоподобия математического ожидания и дисперсии выигранных произвольным другом билетов;
 - з) Дана реализация случайной выборки 5 Вовочкиных друзей. Число выигрышных билетов оказалось равно (3,4,0,2,6). Найдите значение точечной оценки вероятности выигрыша p. Как Вы думаете, похоже ли утверждение организаторов на правду?

7. Дана выборка $X_1, X_2, ..., X_n$ независимых одинаково распределенных величин из распределения с функцией плотности

$$f(x) = \begin{cases} (1+\theta)x^{\theta}, \text{ если } 0 < y < 1, \theta+1 > 0 \\ 0, \text{ иначе} \end{cases}.$$

Методом максимального правдоподобия найдите оценку параметра θ .

8. Пробег (в 1000 км) автомобиля «Лада Калина» до капитального ремонта двигателя является нормальной случайной величиной с неизвестным математическим ожиданием μ и известной дисперсией 49. По выборке из 20 автомобилей найдите значение доверительного интервала для математического ожидания пробега с уровнем доверия 0.95.

14.13. Контрольная работа 3, решения

1. Пусть случайная величина S – это сумма поглощённых калорий

$$S$$
 650 800 950 $\mathbb{P}(\cdot)$ 1/3 1/3 1/3

Тогда

$$\mathbb{E}(S) = \frac{1}{3} \cdot 650 + \frac{1}{3} \cdot 800 + \frac{1}{3} \cdot 950 = 800$$
$$\operatorname{Var}(S) = \frac{1}{3} (650 - 800)^2 + \frac{1}{3} (800 - 800)^2 + \frac{1}{3} (950 - 800)^2 = 15000$$

- 2. Вариационный ряд: 4,6,11; медиана: 6; выборочное среднее: 7; несмещённая оценка дисперсии: 13
- 3. Фунуция плотности двумерного нормального распределения имеет вид:

$$\begin{split} f(x,y) &= \frac{1}{2\pi} \cdot \frac{1}{\sigma_x \sigma_y \sqrt{1-\rho^2}} \cdot \\ &\quad \cdot \exp\left\{-\frac{1}{2} \frac{1}{\sigma_x^2 \sigma_y^2 (1-\rho^2)} \left[\sigma_x^2 (x-\mu_x)^2 - 2\rho \sigma_x \sigma_y (x-\mu_x) (y-\mu_y) + \sigma_y^2 (y-\mu_y)^2\right]\right\} \end{split}$$

Откуда: $\mu_X = 1$, $\mu_Y = 0$, $\sigma_X = 1$, $\sigma_Y = 1$, $\rho = 0.2$

4. a)

$$X \sim \mathcal{N}(178, 49), \mathbb{P}(X > 185) = 1 - \mathbb{P}(X < 185) =$$

$$= 1 - \mathbb{P}\left(\frac{X - 178}{7} < \frac{185 - 178}{7}\right) = 1 - 0.8413 = 0.1587$$

б) Нет, так как $Cov(X, Y) = 5.6 \neq 0$

B)
$$Y \mid X \sim \mathcal{N}\left(\mu_Y + \rho \sigma_Y \cdot \frac{X - \mu_X}{\sigma_X}; \sigma_Y^2 (1 - \rho^2)\right)$$

 $Y \mid X = 185 \sim \mathcal{N}(42.8; 0.36)$
 $\mathbb{P}(Y < 42 \mid X = 185) = \mathbb{P}\left(\frac{Y - 42.8}{0.6} < \frac{42 - 42.8}{0.6} \mid X = 185\right) = 0.9082$

5. a)
$$\mathbb{E}(X) = \frac{0+2\theta}{2} \mid_{\hat{\theta}} = \overline{X}, \, \hat{\theta}_{MM} = \overline{X}$$

б) $\forall \theta \in \Theta : \mathbb{E}(\hat{\theta}) = \theta \Rightarrow \hat{\theta}$ – несмещённая. $\forall \theta \in \Theta, \forall \epsilon > 0 : \mathbb{P}(|\widehat{\theta}_n - \theta| > \epsilon) \to 0 \Rightarrow \widehat{\theta}_n$ – состоятельная. $\forall \theta \in \Theta : I_n^{-1}(\theta) = \mathrm{Var}(\hat{\theta}) \Rightarrow \hat{\theta}$ – эффективная.

в) $\mathbb{E}(\theta)=\mathbb{E}(\overline{X})=\mathbb{E}(X_1)=\theta\Rightarrow \hat{\theta}$ – несмещённая оценка $\mathrm{Var}(\hat{\theta_n})=\mathrm{Var}(\overline{X})=\frac{\mathrm{Var}(X_1)}{n}=\frac{4\theta^2}{12\cdot n}\underset{n\to\infty}{\to}0;$ из условий $\mathbb{E}(\hat{\theta}_n)=\theta$ и $\mathrm{Var}(\hat{\theta}_n)\underset{n\to\infty}{\to}0$ следует, что $\hat{\theta}_n\stackrel{\mathbb{P}}{\to}\theta$ при $n\to\infty$, т.е. $\hat{\theta}_n$ является состоятельной.

r)

$$\begin{split} F_{X_{(n)}} &= \mathbb{P}(\max(X_1,\dots,X_n) \leqslant x) = \mathbb{P}(X_1 \leqslant x) \cdot \dots \cdot \mathbb{P}(X_n \leqslant x) = (\mathbb{P}(X_1 \leqslant x))^n = \\ &= \begin{cases} 0 & \text{при } x < 0 \\ \left(\frac{x}{2\theta}\right)^n & \text{при } x \in [0,2\theta] \\ 1 & \text{при } x > 2\theta \end{cases} \end{split}$$

$$f_{X_{(n)}}(x) = egin{cases} 0 & \text{при } x < 0 \ rac{nx^{n-1}}{2^n heta^n} & \text{при } x \in [0, 2 heta] \ 0 & \text{при } x > 2 heta \end{cases}$$

$$\mathbb{E}(X_{(n)}) = \int_{-\infty}^{+\infty} x \cdot f_{X_{(n)}}(x) dx = \int_{0}^{2\theta} x \cdot \frac{nx^{n-1}}{2^{n}\theta^{n}} dx = \frac{n}{2^{n}\theta^{n}} \cdot \frac{x^{n+1}}{n+1} \Big|_{x=0}^{x=2\theta}$$
$$= \frac{n}{2^{n}\theta^{n}} \cdot \frac{2^{n+1} \cdot \theta^{n+1}}{n+1} = \frac{n2\theta}{n+1}$$

Следовательно, $\mathbb{E}\left(\frac{n+1}{2n}\cdot X_{(n)}\right)=\theta$, а значит, $\tilde{\theta}=\frac{n+1}{2n}\cdot X_{(n)}$ – несмещённая оценка вида $c\cdot X_{(n)}$

д) $\operatorname{Var}(\tilde{\theta}) = \frac{(n+1)^2}{4n^2} \operatorname{Var}(X_{(n)})$

$$\mathbb{E}(X_{(n)}^2) = \int_{-\infty}^{+\infty} x^2 f_{X_{(n)}}(x) dx = \int_0^{2\theta} x^2 \frac{nx^{n-1}}{2^n \theta^n} dx = \frac{n}{2^n \theta^n} \int_0^{2\theta} x^{n+1} dx =$$

$$= \frac{n}{2^n \theta^n} \cdot \frac{x^{n+2}}{n+2} \Big|_{x=0}^{x=2\theta} = \frac{n}{2^n \theta^n} \cdot \frac{2^{n+2} \cdot \theta^{n+2}}{n+2} = \frac{n \cdot 4 \cdot \theta^2}{n+2}$$

$$\operatorname{Var}(X_{(n)}) = \mathbb{E}(X_{(n)}^2) - (\mathbb{E}(X_{(n)}))^2 = \frac{4n\theta^2}{n+2} - \frac{4n^2 \cdot \theta^2}{(n+1)^2} = 4n\theta^2 \left(\frac{1}{n+2} - \frac{n}{(n+1)^2}\right)$$

$$\operatorname{Var}(\tilde{\theta}) = \frac{(n+1)^2}{4n^2} \operatorname{Var}(X_{(n)}) = \frac{(n+1)^2}{4n^2} \cdot 4n\theta^2 \left(\frac{n^2 + 2n + 1 - n^2 - 2n}{(n+2)(n+1)^2} \right) = \frac{\theta^2}{n(n+2)}$$

Оценка $\tilde{\theta}_n$ является состоятельной, так как $\mathbb{E}(\tilde{\theta}_n)=\theta$ и $\mathrm{Var}(\tilde{\theta}_n)=\frac{\theta^2}{n(n+2)}\underset{n\to\infty}{\longrightarrow}0$

- e) Поскольку $\mathrm{Var}(\widehat{\theta}_n) = \frac{\theta^2}{3n}$, $\mathrm{Var}(\widetilde{\theta}_n) = \frac{\theta^2}{n(n+2)}$ при достаточно большом $n \, \mathrm{Var}(\widetilde{\theta}_n) < \mathrm{Var}(\widehat{\theta}_n)$. Значит, при таких n оценка $\widetilde{\theta}_n$ будет более эффективной по сравнению с оценкой $\widehat{\theta}_n$.
- 6. a) $X_i \sim Bin(n = 10, p)$

6)
$$L(p) = \prod_{i=1}^{n} C_{10}^{x_i} p^{x_i} (1-p)^{10-x_i}$$

B)
$$\ln L(p) = \sum_{i=1}^{n} \ln C_{10}^{x_i} + \sum_{i=1}^{n} x_i \ln p + \sum_{i=1}^{n} (10 - x_i) \ln (1 - p) \to \max_p \frac{\partial \ln L}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{\sum_{i=1}^{n} (10 - x_i)}{1 - p} \Big|_{p = \hat{p}} = 0 \Rightarrow \hat{p} = \frac{\overline{X}}{n} = \frac{\sum_{i=1}^{n} x_i}{10n} \frac{\partial^2 \ln L}{\partial p^2} = -\frac{\sum_{i=1}^{n} x_i}{p^2} - \frac{\sum_{i=1}^{n} (10 - x_i)}{(1 - p)^2}$$

r)
$$I(p) = -\mathbb{E}\left(\frac{\partial^2 \ln L}{\partial p^2}\right) = \mathbb{E}\left(\frac{\sum_{i=1}^n x_i}{p^2} + \frac{\sum_{i=1}^n (10 - x_i)}{(1 - p)^2}\right) = \frac{10np}{p^2} + \frac{10n - 10np}{(1 - p)^2} = \frac{10n}{p(1 - p)}$$

 $i(p) = \frac{I(p)}{n} = \frac{10}{p(1 - p)}$

д)
$$Var(T) \geqslant \frac{1}{ni(T)}$$

e)
$$\operatorname{Var}(\hat{p}_{ML}) = \operatorname{Var}\left(\frac{\sum_{i=1}^{n} x_i}{10n}\right) = \frac{1}{(10n)^2} n \operatorname{Var}(X_i) = \frac{1}{100n} 10 p (1-p) = \frac{p(1-p)}{10n}$$
 $\frac{p(1-p)}{10n} = \frac{1}{\frac{10n}{p(1-p)}} \Rightarrow \text{да}$

ж)
$$\mathbb{E}(X_i) = 10p \Rightarrow \widehat{\mathbb{E}(X_i)} = 10\hat{p}_{ML} = \overline{X}$$
 $\operatorname{Var}(X_i) = 10p(1-p) \Rightarrow \widehat{\operatorname{Var}(X_i)} = \overline{X}\left(1 - \frac{\overline{X}}{10}\right)$

3)
$$\hat{p} = \frac{3+4+0+2+6}{10\cdot 5} = 0.3$$

7.
$$\begin{split} L(x,\theta) &= \prod_{i=1}^n (1+\theta) x_i^\theta = (1+\theta)^n \prod_{i=1}^n x_i^\theta \to \max_\theta \\ &\ln L(x,\theta) = n \ln(1+\theta) + \theta \sum_{i=1}^n \ln x_i \to \max_\theta \\ &\frac{\partial \ln L}{\partial \theta} = \frac{n}{1+\theta} + \sum_{i=1}^n \ln x_i \mid_{\theta = \hat{\theta}} = 0 \Rightarrow \hat{\theta}_{ML} = -\frac{1}{\sum_{i=1}^n \ln x_i} - 1 \end{split}$$

8.
$$\overline{X} - 1.96 \frac{7}{\sqrt{20}} < \mu < \overline{X} + 1.96 \frac{7}{\sqrt{20}}$$

14.14. Контрольная работа 3. Брутальная часть. 1 апреля 2016

Правила: 3 часа, всем можно пользоваться, интернетом тоже. Все семь задач решать вовсе не обязательно, выбирайте любые пять! При самостоятельной работе можно всем пользоваться!!! :)

1. Случайные величины $X_1,...,X_n$ независимо и одинаково распределены с функцией плотности $f(x)=2ax\exp(-ax^2)$ при x>0.

По 100 наблюдениям известно, что $\sum X_i = 170, \sum X_i^2 = 350.$

- а) Оцените параметр a методом максимального правдоподобия.
- б) Оцените дисперсию оценки \hat{a}_{ML}
- в) Постройте 95%-ый доверительный интервал для a с помощью оценки максимального правдоподобия
- г) Оцените параметр a методом моментов
- д) Оцените дисперсию оценки \hat{a}_{MM}
- е) Постройте 95%-ый доверительный интервал для a с помощью оценки метода моментов
- 2. Для того, чтобы люди давали правдивый ответ на деликатный вопрос (скажем, «Берёте ли Вы взятки?») при опросе используется рандомизация. Вопрос допускает всего два ответа «да» или «нет». Перед ответом респондент подбрасывает монетку, и только респондент видит результат подбрасывания. Если монетка выпадет «орлом», то респондент отвечает правду. Если «решкой», то респондент отвечает наоборот («да» вместо «нет» и «нет» вместо «па»).

Монетка выпадает орлом с вероятностью 0.4. Из 500 опрошенных 300 ответили «да».

- а) Какова вероятность того, что человек берёт взятки, если он ответил «да» в анкете?
- б) Постройте оценку для доли людей берущих взятки
- в) Постройте 95%-ый доверительный интервал для доли людей берущих взятки
- 3. Винни-Пух хочет измерить высоту Большого дуба, d. Для этого Винни-Пух три раза в случайное время дня измерил длину тени Большого Дуба: 8.9, 13.2, 25.2.

Предположим, что в дни измерений траектория движения Солнца проходила ровно через зенит :)

- а) Найдите функцию плотности длины тени
- б) Если возможно, постройте оценку метода моментов
- в) Если возможно, постройте оценку метода максимального правдоподобия
- г) Где живёт Винни-Пух и какого числа 2016 года он проводил измерения?
- 4. Встроенный в R набор данных morley содержит результаты 100 опытов Майкельсона и Морли. В 1887 году они проводили измерения скорости света, чтобы понять, зависит ли она от направления.
 - а) Постройте 95%-ый доверительный интервал для скорости света
 - б) Выпишите использованные формулы и алгоритм построения интервала
 - в) Чётко сформулируйте все гипотезы при которых данный алгоритм даёт корректный результат
 - г) Накрывает ли построенный доверительный интервал фактическую скорость света?

Полезные команды: morley, help("morley"), mean, sd, qnorm, pnorm

5. Исследователь Вениамин дрожащей от волнения рукой рисует прямоугольники размера $a \times b$. Поскольку Вениамин очень волнуется прямоугольники де-факто выходят со случайными сторонами $a + u_i$ и $b + v_i$. Случайные ошибки u_i и v_i независимы и одинаково распределены $\mathcal{N}(0;1)$.

Вениамин нарисовал 400 прямоугольничков и посчитал очень аккуратно площадь каждого. Оказалась, что средняя площадь равна $1200\,\mathrm{cm}^2$, а выборочное стандартное отклонение площади $-50\,\mathrm{cm}^2$. Вениамин считает, что зная только площади прямоугольничков невозможно оценить оценить каждую из сторон.

Если возможно, то оцените параметры a и b подходящим методом. Если невозможно, то докажите.

6. На поле D4 шахматной доски стоит конь. Ли Седоль переставляет коня наугад, выбирая каждый возможный ход равновероятно.

Сколько в среднем пройдет ходов прежде чем Ли Седоль снова вернёт коня на D4?

7. В «Киллер» играли n человек. После окончания игры, когда были убиты все, кто может быть убит, встретились два игрока (возможно убитых) и оказалось, что один убил 5 человек, а другой — 7 человек.

Оцените n подходящим методом

14.15. Контрольная 4, 09.06.2016

- 1. Сформулируйте определения несмещённости, состоятельности и эффективности оценок.
- 2. На курсе учится 250 человек. Предположим, что число студентов, не явившихся на экзамен, хорошо описывается законом Пуассона.
 - а) Методом максимального правдоподобия найдите оценку параметра распределения Пуассона.
 - б) Проверьте выполнение свойств несмещенности, эффективности и состоятельности для данной оценки.
 - в) Найдите оценку максимального правдоподобия для вероятности стопроцентной явки студентов на экзамен.
 - г) Используя дельта-метод, постройте для этой вероятности асимптотический доверительный интервал.
- 3. Фармацевтическая компания выпустила новое лекарство от бессонницы, утверждая, что оно помогает 80% людей, страдающих бессонницей. Чтобы проверить утверждение компании, случайным образом выбираются 20 человек, страдающих бессонницей. Обозначим за Y количество человек из выборки, которым лекарство помогло. Основная гипотеза, H_0 : p=0.8, альтернативная гипотеза H_a : p=0.6. Критическая область: $\{Y<12\}$.
 - а) В терминах этой задачи сформулируйте, что является ошибкой первого рода. Найдите уровень значимости, соответствующий заданной критической области.
 - б) В терминах этой задачи сформулируйте, что является ошибкой второго рода. Найдите вероятность ошибки второго рода.
 - в) Найдите такое значение c, что вероятность ошибки первого рода $\alpha \approx 0.1$ при критической области вида $\{Y < c\}$. Найдите соответствующее значение вероятности ошибки второго рода.
 - г) Каким должен быть размер выборки, чтобы выборочная доля страдающих бессонницей отличалась от истинной вероятности не более, чем на 0.01 с вероятностью не менее, чем 0.95?
- 4. Вася Сидоров утверждает, что ходит в кино в два раза чаще, чем на лекции по статистике, на лекции по статистике в два раза чаще, чем в спортзал. За последние полгода он 10 раз был в спортзале, 1 раз на лекциях по статистике и 39 раз в кино.
 - При помощи критерия хи-квадрат Пирсона на уровне значимости 0.05 проверьте, правдоподобно ли Васино утверждение.
- 5. У Евдокла есть случайная выборка из экспоненциального распределения с неизвестным параметром λ в 50 наблюдений, $X_1, X_2, ..., X_{50}$. Оказалось, что $\bar{X}=1.1$. Евдокл хочет проверить гипотезу о равенстве $\lambda=1$ против альтернативной гипотезы о неравенстве $\lambda\neq 1$ на уровне значимости 0.1.
 - Помогите Евдоклу и проверьте гипотезу с помощью критерия отношения правдоподобия. Пачка логарифмов: $\ln 50 \approx 3.9$, $\ln 55 \approx 4.0$, $\ln 11 \approx 2.4$, $\ln 60 \approx 4.1$, $\ln 12 \approx 2.5$
- 6. Американский демографический журнал опубликовал исследование, в котором утверждается, что посетители крупных торговых центров за одно посещение тратят в выходные дни больше, чем в будние. Наибольшие расходы приходятся на воскресенье в период с 4 до 6 часов вечера. Для двух независимых выборок посетителей средние расходы и выборочные стандартные отклонения расходов составили

	Выходные	Рабочие дни
Число наблюдений	21	19
Средние расходы (\$)	78	67
Выборочное стандартное отклонение (\$)	22	20

- а) Проверьте гипотезу о равенстве дисперсий расходов
- б) Предполагая, что дисперсии расходов одинаковы, проверьте гипотезу об отсутствии разницы в расходах в выходные и будние дни.
- в) Сформулируйте все необходимые для проверки гипотез предыдущих пунктов предпосылки.
- 7. Винни Пух знает, что пчёлы и мёд бывают правильные и неправильные. По результатам 100 попыток добыть мёд Винни Пух составил таблицу сопряженности признаков.

	Мёд правильный	Мёд неправильный
Пчёлы правильные	12	36
Пчёлы неправильные	32	20

На уровне значимости 0.05 проверьте гипотезу о независимости характеристик пчёл и мёда.

14.16. Контрольная 4, решения

2. a)

$$\begin{split} L(x,\lambda) &= \prod_{i=1}^{250} e^{-\lambda} \frac{\lambda^{x_i}}{x_i!} = e^{-250\lambda} \lambda^{\sum_{i=1}^{250} x_i} \prod_{i=1}^{250} \frac{1}{x_i!} \\ l(x,\lambda) &= -250\lambda + \ln \lambda \sum_{i=1}^{250} x_i - \sum_{i=1}^{250} \ln x_i! \\ \frac{\partial l}{\partial \lambda} &= -250 + \frac{1}{\lambda} \sum_{i=1}^{250} x_i \\ \hat{\lambda}_{ML} &= \overline{X} \end{split}$$

- б) $\mathbb{E}(\hat{\lambda}_{ML}) = \mathbb{E}(\overline{X}) = \lambda \Rightarrow$ оценка несмещённая. $\mathrm{Var}(\hat{\lambda}_{ML}) = \mathrm{Var}(\overline{X}) = \frac{1}{n^2} \cdot n \, \mathrm{Var}(X_1) = \frac{\lambda}{n} \to_{n \to \infty} 0 \Rightarrow$ оценка состоятельная. $\frac{\partial^2 l}{\partial \lambda^2} = -\frac{1}{\lambda^2} \sum_{i=1}^n x_i, \; I(\lambda) = -\mathbb{E}\left(-\frac{1}{\lambda^2} \sum_{i=1}^n x_i\right) = \frac{n}{\lambda}.$ Так как $\mathrm{Var}(\hat{\lambda}_{ML}) = \frac{1}{I(\lambda)}$, оценка является эффективной.
- в) $\mathbb{P}(X=0) = \frac{\lambda^0 e^{-\lambda}}{0!} = e^{-\lambda} \Rightarrow \widehat{\mathbb{P}(X=0)} = e^{-\hat{\lambda}} = e^{-\overline{X}}$
- г) В данном случае: $g(\hat{\lambda})=e^{-\hat{\lambda}}$, $g'(\hat{\lambda})=-e^{-\hat{\lambda}}$. И доверительный интервал имеет вид:

$$\left[e^{-\overline{X}} - 1.96\sqrt{\frac{e^{-2\overline{X}}\overline{X}}{n}}; e^{-\overline{X}} + 1.96\sqrt{\frac{e^{-2\overline{X}}\overline{X}}{n}}\right]$$

3. a) $\hat{p} \stackrel{as.}{\sim} \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$

O1P: лекарство помогает в 80% случаев, но в данной выборке оно помогло менее чем 12 людям.

$$\alpha = \mathbb{P}(\text{O1P}) = \mathbb{P}\left(\hat{p} < \frac{12}{20}|p = 0.8\right) = \mathbb{P}\left(\frac{\hat{p} - 0.8}{\sqrt{\frac{0.8 \cdot 0.2}{20}}} < \frac{\frac{12}{20} - 0.8}{\sqrt{\frac{0.8 \cdot 0.2}{20}}}\right) = 0.0125$$

б) O2P: лекарство помогает в 60% случаев, но $Y \geqslant 12$.

$$\hat{p} \sim \mathcal{N}\left(0.6, \frac{0.6 \cdot 0.4}{20}\right)$$
$$\beta = \mathbb{P}\left(\hat{p} \geqslant \frac{12}{20}\right) = \frac{1}{2}$$

в) $\mathbb{P}(Z < a) = 0.1$, из таблицы находим, что a = -1.28.

$$a = \frac{\frac{c}{20} - 0.8}{\sqrt{\frac{0.8 \cdot 0.2}{20}}} = -1.28 \Rightarrow c \approx 13.7$$

г) $\mathbb{P}(|\hat{p}-p|\leqslant 0.01)\geqslant 0.95$, будем считать, что p=0.6.

$$\mathbb{P}(|\hat{p} - p| \leqslant 0.01) = \mathbb{P}(-0.01 \leqslant \hat{p} - p \leqslant 0.01) = \mathbb{P}\left(-\frac{0.01}{\sqrt{\frac{0.6 \cdot 0.4}{n}}} \leqslant Z \leqslant \frac{0.01}{\sqrt{\frac{0.6 \cdot 0.4}{n}}}\right) = 0.95$$

Из таблицы находим

$$\frac{0.01}{\sqrt{\frac{0.6 \cdot 0.4}{n}}} = 1.96 \Rightarrow n = \frac{0.6 \cdot 0.4 \cdot 1.96^2}{0.01^2}$$

4.
$$H_0: p_{\mathrm{c}} = \frac{1}{7}, p_{\mathrm{ff}} = \frac{2}{7}, p_{\mathrm{K}} = \frac{4}{7}$$

$$Q = \sum_{i=1}^{s=3} \frac{(\nu_i - np_i)^2}{np_i} \sim \chi_{s-k-1}^2 = \chi_2^2$$

$$Q_{obs} = \frac{\left(10 - 70\frac{1}{7}\right)^2}{70\frac{1}{7}} + \frac{\left(1 - 70\frac{2}{7}\right)^2}{70\frac{2}{7}} + \frac{\left(39 - 70\frac{4}{7}\right)^2}{70\frac{4}{7}} = 18.075$$

$$Q_{crit} = 5.99, Q_{crit} < Q_{obs} \Rightarrow \text{гипотеза отвергается}$$

5. $LR \sim \chi_1^2$, так как основная гипотеза содержит одно уравнение

$$L(x,\lambda) = \prod_{i=1}^{n=50} \lambda e^{-\lambda x} = \lambda^{50} e^{-\lambda \sum_{i=1}^{n=50} x_i}$$

$$\ln L(x,\lambda) = 50 \ln \lambda - \lambda \sum_{i=1}^{n=50} x_i \to \max_{\lambda}$$

$$\frac{\partial \ln L}{\partial \lambda} = \frac{50}{\lambda} - \sum_{i=1}^{n=50} x_i \mid_{\lambda=\hat{\lambda}} = 0 \Rightarrow \hat{\lambda}_{ML} = \frac{1}{\overline{X}} = \frac{10}{11}$$
 При верной $H_0: \lambda = 1$, тогда $\ln L(\lambda = 1) = 50 \ln 1 - 1 \cdot 1.1 \cdot 50 = -55$ При верной $H_1: \lambda = \lambda_{ML}$, тогда $\ln L\left(\lambda = \frac{10}{11}\right) = 50 \ln \frac{10}{11} - \frac{10}{11} \cdot 50 \cdot 1.1 = -54.77$
$$LR_{obs} = 2(\ln L(H_1) - \ln(H_0)) = 2(-54.77 - (-55)) = 0.46$$

 $LR_{crit}=2.71, LR_{crit}>LR_{obs}\Rightarrow$ оснований отвергать H_0 нет

6. Будем проверять гипотезы на уровне значимости 0.05

а)
$$\hat{\sigma}_{\text{B}}^2=484, \hat{\sigma}_{\text{p}}^2=400$$
 $\frac{\hat{\sigma}_{\text{B}}^2}{\hat{\sigma}_{\text{p}}^2}\sim F_{21-1,19-1}$ $F_{obs}=\frac{484}{400}=1.21, F_{crit,left}=0.4, F_{crit,right}=2.6\Rightarrow$ оснований отвергать H_0 нет б) $\hat{\sigma}_0^2=\frac{484\cdot(21-1)+400\cdot(19-1)}{21+19-2}\approx 444$ $t_{obs}=\frac{78-67}{\sqrt{444}\sqrt{\frac{1}{21}+\frac{1}{19}}}\approx 1.8$ $t_{crit}\sim t_{21+19-2}=t_{38}, t_{crit}=\pm 2.02\Rightarrow$ нет оснований отвергать H_0

7.
$$\gamma = \sum_{i=1}^{s} \sum_{j=1}^{m} \frac{\left(n_{ij} - \frac{n_i \cdot n_{\cdot j}}{n}\right)^2}{\frac{n_i \cdot n_{\cdot j}}{n}} \sim \chi^2_{(s-1)(m-1)}$$

$$\gamma_{obs} = \frac{\left(12 - \frac{44 \cdot 48}{100}\right)^2}{\frac{44 \cdot 48}{100}} + \frac{\left(36 - \frac{56 \cdot 48}{100}\right)^2}{\frac{56 \cdot 48}{100}} + \frac{\left(32 - \frac{140}{100}\right)^2}{\frac{44 \cdot 52}{100}} + \frac{\left(20 - \frac{50 \cdot 52}{100}\right)^2}{\frac{50 \cdot 52}{100}} \approx 12$$

$$\gamma_{crit} = 3.84 \Rightarrow \text{гипотеза отвергается}$$

14.17. Экзамен, 20.06.2016

Случайные величины X и Y распределены нормально. Для тестирования гипотезы о равенстве дисперсий выбирается m наблюдений случайной величины X и n наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?

Требуется проверить гипотезу о равенстве математических ожиданий в двух нормальных выборках размером m и n. Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

Вопрос 9 \clubsuit Величины X_1, \dots, X_n выборка из нормально распределенной случайной
величины с неизвестным математическим ожиданием и известной дисперсией. На уровне
значимости α проверяется гипотеза H_0 : $\mu=\mu_0$ против H_a : $\mu\neq\mu_0$. Обозначим φ_1 и φ_2
вероятности ошибок первого и второго рода соответственно. Между параметрами задачи всегда
выполнено соотношение

 $\boxed{\mathbf{A}} \ \varphi_2 = 1 - \alpha$

 $\varphi_1 = \alpha$

 $\boxed{\mathbf{E}} \ \varphi_2 = \alpha$

 $\boxed{\mathbf{B}} \ \varphi_1 = 1 - \alpha$

 $\boxed{\mathbf{D}} \ \varphi_1 + \varphi_2 = \alpha$

F Нет верного ответа.

Вопрос 10 \clubsuit По случайной выборке из 200 наблюдений было оценено выборочное среднее $\bar{X}=25$ и несмещённая оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:\mu=20$ против $H_a:\mu>20$ можно сделать вывод, что гипотеза H_0

- А Гипотезу невозможно проверить
- отвергается при любом разумном значении lpha
- $\boxed{\mathsf{C}}$ отвергается при $\alpha=0.01$, не отвергается при $\alpha=0.05$
- $\boxed{\mathrm{D}}$ отвергается при lpha=0.05, не отвергается при lpha=0.01
- |E| не отвергается при любом разумном значении α
- **F** Нет верного ответа.

Вопрос 11 \clubsuit По выборке X_1, \ldots, X_n из нормального распределения строятся по стандартным формулам доверительные интервалы для математического ожидания. Получен интервал (a_1, a_2) при известной дисперсии и интервал (b_1, b_2) при неизвестной дисперсии. Всегда справедливы следующие соотношения:

 $|a_1 - b_1| = |a_2 - b_2|$

 $\boxed{\mathbf{D}} \ a_2 - a_1 > b_2 - b_1$

 $\boxed{\mathbf{B}} \ a_1 > 0, b_1 > 0, a_2 > 0, b_2 > 0$

 $\boxed{\mathbf{E}} \ a_1 < 0, b_1 < 0, a_2 > 0, b_2 > 0$

 $C a_2 - a_1 < b_2 - b_1$

F Нет верного ответа.

Вопрос 12 Величины X_1,\dots,X_n --- выборка из нормального распределения. Статистика $U=\frac{5-\bar{X}}{5/\sqrt{n}}$ применима для проверки

- $\boxed{\mathbf{A}}$ гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при любых n
- В гипотезы $H_0: \mu=5$ при известной дисперсии, равной 5, при больших n
- гипотезы H_0 : $\mu=5$ при известной дисперсии, равной 25, при любых n
- \square гипотезы $H_0: \sigma = 5$
- Е гипотезы $H_0: \mu=5$ при известной дисперсии, равной 25, только при больших n
- **F** Нет верного ответа.

Вопрос 13 ♣ Дана реализация выборки: 3, 1, 2. Выборочный начальный момент первого порядка равен

A 14/3

C 1

E 0

B 3

2

F Нет верного ответа.

Вопрос 14 👫 Дана реализация выборки: 3, 1, 2. Несмещённая оценка дисперсии равна A 1/2 E 2/3 1 **F** Нет верного ответа. B 2 D 1/3 Вопрос 15 🖟 Выберите НЕВЕРНОЕ утверждение про эмпирическую функцию распределения $F_n(x)$ A $\mathbb{E}(F_n(x)) = F(x)$

 $F_n(x)$ является невозрастающей функцией

|C| $F_n(x)$ асимптотически нормальна

 $\boxed{\mathrm{D}}$ $F_n(x)$ имеет разрыв в каждой точке вариационного ряда

|E| Var $(F_n(x)) = F(x)(1 - F(x))/n$

Вопрос 16 👫 Ирий Петров утверждает, что обычно посещает половину занятий по Статистике. За последние полгода из 36 занятий он не посетил ни одного. Вычислите значение критерия хи-квадрат Пирсона для гипотезы, что утверждение Юрия Петрова истинно и укажите число степеней свободы

A
$$\chi^2 = 2, df = 2$$

$$E \chi^2 = 24, df = 1$$

$$\chi^2 = 36, df = 1$$

$$D \chi^2 = 14, df = 1$$

F Нет верного ответа.

Вопрос 17 🖡 Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Точное P-значение (P-value) статистики теста знаков равно

1/2

C 1/3

E 1/8

B 2/3

D 3/8

| F | *Нет верного ответа.*

Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.1 гипотезу о том, что фломастеры имеют одинаковое качество.

 $0.58, H_0$ не отвергается

C 1.65, H_0 отвергается

[E] 0.58, H_0 отвергается

[B] 0.43, H_0 не отвергается

 $\boxed{ ext{D}}$ 1.96, H_0 отвергается

F Нет верного ответа.

Вопрос 19 \clubsuit Пусть $X = (X_1, \dots, X_n)$ --- случайная выборка из биномиального распределения Bi(5,p). Известно, что $\mathbb{P}(X=x)=C_n^xp^x(1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна:

 $\boxed{\mathbf{A}} \quad \frac{n}{p(1-p)}$

 $\frac{5n}{p(1-p)}$ $D \frac{5p(1-p)}{n}$

 $\boxed{\mathsf{E}} \quad \frac{p(1-p)}{5n}$

 $\begin{bmatrix} \mathbf{B} \end{bmatrix} \frac{n}{5n(1-n)}$

F Нет верного ответа.

Пусть $X = (X_1, \dots, X_n)$ --- случайная выборка из экспоненциального Вопрос 20 🌲 распределения с плотностью

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{x}{\theta}) \text{ при } x \geqslant 0, \\ 0 \text{ при } x < 0. \end{cases}$$

Информация Фишера $I_n(p)$ равна:

 $A n\theta^2$

 $\frac{n}{\theta^2}$

 $\begin{bmatrix} \mathbf{B} \end{bmatrix} \frac{n}{a}$

 $D \frac{\theta}{\theta}$

F Нет верного ответа.

Пусть $X = (X_1, \dots, X_n)$ --- случайная выборка из равномерного на $(0, \theta)$ распределения. При каком значении константы c оценка $\hat{\theta} = c\bar{X}$ является несмещённой?

 $A \frac{1}{n}$

 $|C|_n$

D 1

F Нет верного ответа.

Вопрос 22 Последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, ...$ называется состоятельной, если

 $A \operatorname{Var}(\hat{\theta}_n) \to 0$

 $\boxed{\mathbf{D}} \mathbb{E}(\hat{\theta}_n) \to \theta$

 $P(|\hat{ heta}_n - heta| > t) o 0$ для всех t > 0

 $\boxed{\mathbf{E}} \ \mathbb{E}(\hat{\theta}_n) = \theta$

 $C \operatorname{Var}(\hat{\theta}_n) \geqslant Var(\hat{\theta}_{n+1})$

F Нет верного ответа.

вопрос 23 \clubsuit Пусть $X=$ распределения. Оценка $\hat{\theta}=X$		оорка из равномерного на $(0,2\theta)$
А Состоятельная	D Нелине	йная
В Асимптотически нормал	тьная Несмеш	ённая
С Эффективная	F Нет вер	ного ответа.
	(X_1,\dots,X_n) случайная выборка называется эффективной, если	а и $I_n(heta)$ информация Фишера.
$\boxed{\mathbf{A}} \ I_n^{-1}(\theta) \leqslant \mathrm{Var}(\hat{\theta})$	$\operatorname{Var}(\hat{\theta}) \cdot I_n(\theta) = 1$	$\boxed{\mathtt{E}} \ \operatorname{Var}(\hat{ heta}) \leqslant I_n(heta)$
		F Нет верного ответа.
Вопрос 25 ♣ Выберите НЕ (ММП):	ВЕРНОЕ утверждение про мето	д максимального правдоподобия
А ММП применим для зав:	исимых случайных величин	
В ММП применим для оце	нивания двух и более параметро	В
С При выполнении технич	иеских предпосылок оценки MMI	I состоятельны
Оценки ММП асимтотич	чески нормальны $\mathcal{N}(0;1)$	
Е ММП оценки не всегда с	овпадают с оценками метода мог	ментов
Вопрос 26 \clubsuit Если величи дельта-методу, $\hat{\theta}^2$ имеет приме	на $\hat{ heta}$ имеет нормальное распре, ерно нормальное распределение	деление $\mathcal{N}(2;0.01^2)$, то, согласно
$oxed{A} \ \mathcal{N}(4; 4\cdot 0.01^2)$	$\mathcal{N}(4;16\cdot 0.01^2)$	$lacksquare$ $\mathcal{N}(2; 4 \cdot 0.01^2)$
$\boxed{\mathbf{B}} \ \mathcal{N}(4; 2 \cdot 0.01^2)$	$\boxed{D} \ \mathcal{N}(4; 8 \cdot 0.01^2)$	F Нет верного ответа.
Вопрос 27 🗘 Случайные вел	ичины X_1,X_2 и X_3 независимы	и одинаково распределены,
	X_i 3 5	
	$\mathbb{P}(\cdot)$ p $1-p$	
Имеется выборка из трёх набли методом максимального прав,		ценка неизвестного p , полученная
A 1/4	С Метод неприменим	1/3
B 2/3	D 1/2	F Нет верного ответа.

Вопрос 28 🕹 Случайные величины X_1, X_2 и X_3 независимы и одинаково распределены,

X_i	3	5
$\mathbb{P}(\cdot)$	p	1-p

По выборке оказалось, что $\bar{X}=4.5$. Оценка неизвестного p, полученная методом моментов, равна:

А Метод неприменим

C 1/3

1/4

|B| 1/2

D 2/3

F Нет верного ответа.

Вопрос 29 \clubsuit Величины $X_1, X_2, ..., X_{2016}$ независимы и одинаково распределены, $\mathcal{N}(\mu; 42)$. Оказалось, что $\bar{X}=-23$. Про оценки метода моментов, $\hat{\mu}_{MM}$, и метода максимального правдоподобия, $\hat{\mu}_{ML}$, можно утверждать, что

Вопрос 30 🕹 Выберите НЕВЕРНОЕ утверждение про логарифмическую функцию правдоподобия $\ell(\theta)$

- |A| Функция $\ell(\theta)$ может принимать положительные значения
- |B| Функция $\ell(\theta)$ может иметь несколько экстремумов
- $|\mathsf{C}|$ Функция $\ell(\theta)$ может принимать значения больше единицы
- $|\mathrm{D}|$ Функция $\ell(\theta)$ может принимать отрицательные значения
- Функция $\ell(\theta)$ имеет максимум при $\theta=0$

15. 2016-2017

15.1. Кр 1 базовый поток,

- 1. Из семей, имеющих двоих разновозрастных детей, случайным образом выбирается одна семья. Известно, что в семье есть девочка (событие A).
 - а) Какова вероятность того, что в семье есть мальчик (событие B)?
 - б) Сформулируйте определение независимости событий и проверьте, являются ли события A и B независимыми?
- 2. Система состоит из N независимых узлов. При выходе из строя хотя бы одного узла, система дает сбой. Вероятность выхода из строя любого из узлов равна 0.000001. Вычислите максимально возможное число узлов системы, при котором вероятность её сбоя не превышает 0.01.
- 3. Исследование состояния здоровья населения в шахтерском регионе «Велико-кротовск» за пятилетний период показало, что из всех людей с диагностированным заболеванием легких, 22% работало на шахтах. Из тех, у кого не было диагностировано заболевание легких, только 14% работало на шахтах. Заболевание легких было диагностировано у 4% населения региона.

- а) Какой процент людей среди тех, кто работал в шахте, составляют люди с диагностированным заболеванием легких?
- б) Какой процент людей среди тех, кто НЕ работал в шахте, составляют люди с диагностированны заболеванием легких?
- 4. Студент Петя выполняет тест (множественного выбора) проставлением ответов наугад. В тесте 17 вопросов, в каждом из которых пять вариантов ответов и только один из них правильный. Оценка по десятибалльной шкале формируется следующим образом:

где ЧПО означает число правильных ответов.

- а) Найдите наиболее вероятное число правильных ответов.
- б) Найдите математическое ожидание и дисперсию числа правильных ответов.
- в) Найдите вероятность того, что Петя получит «отлично» (по десятибалльной шкале получит 8, 9 или 10 баллов).
 - Студент Вася также выполняет тест проставлением ответов наугад.
- г) Найдите вероятность того, что все ответы Пети и Васи совпадут.

- 5. Продавец высокотехнологичного оборудования контактирует с одним или двумя потенциальными покупателями в день с вероятностями 1/3 и 2/3 соответственно. Каждый контакт заканчивается «ничем» с вероятностью 0.9 и покупкой оборудования на сумму в $50\,000$ у. е. с вероятностью 0.1. Пусть ξ случайная величина, означающая объем дневных продаж в у. е.
 - а) Вычислите $\mathbb{P}(\xi = 0)$.
 - б) Сформулируйте определение функции распределения и постройте функцию распределения случайной величины ξ .
 - в) Вычислите математическое ожидание и дисперсию случайной величины ξ .
- 6. Интервал движения поездов метро фиксирован и равен b минут, т. е. каждый следующий поезд появляется после предыдущего ровно через b минут. Пассажир приходит на станцию в случайный момент времени. Пусть случайная величина ξ , означающая время ожидания поезда, имеет равномерное распределение на отрезке [0; b].
 - а) Запишите плотность распределения случайной величины ξ .
 - б) Найдите константу b, если известно, что в среднем пассажиру приходится ждать поезда одну минуту, т. е. $\mathbb{E}(\xi)=1$.
 - в) Вычислите дисперсию случайной величины ξ .
 - г) Найдите вероятность того, что пассажир будет ждать поезд менее одной минуты.
 - д) Найдите квантиль порядка 0.25 распределения случайной величины ξ .
 - е) Найдите центральный момент порядка 2017 случайной величины ξ .
 - ж) Постройте функцию распределения случайной величины ξ . Марья Ивановна из суеверия всегда пропускает два поезда и садится в третий.
 - з) Найдите математическое ожидание и дисперсию времени, затрачиваемого Марьей Ивановной на ожидание «своего» поезда.
 Глафира Петровна не салится в поезд. если видит в нем подозрительного человека.
 - Глафира Петровна не садится в поезд, если видит в нем подозрительного человека. Подозрительные люди встречаются в каждом поезде с вероятностью 3/4.
 - и) Найдите вероятность того, что Глафире Петровне придется ждать не менее пяти минут, чтобы уехать со станции.
 - к) Найдите математическое ожидание времени ожидания «своего» поезда для Глафиры Петровны.
- 7. (Бонусная задача) На первом этаже десятиэтажного дома в лифт заходят 9 человек. Найдите математическое ожидание числа остановок лифта, если люди выходят из лифта независимо друг от друга.

15.2. Кр 1 базовый поток, решения

1. $\Omega = \{(M, M), (M, Д), (Д, M), (Д, Д)\}, \mathcal{F}$ – система всех подмножеств в Ω .

$$\mathbb{P}((\mathsf{M},\mathsf{M})) = \frac{1}{2} \cdot \frac{1}{2}, \quad \mathbb{P}((\mathsf{M},\mathsf{\Pi})) = \frac{1}{2} \cdot \frac{1}{2}$$

$$\mathbb{P}((\mathbf{Д},\mathbf{M})) = \frac{1}{2} \cdot \frac{1}{2}, \quad \mathbb{P}((\mathbf{Д},\mathbf{Д})) = \frac{1}{2} \cdot \frac{1}{2}$$

 $A = \{ \text{«в семье есть девочка»} \} = \{ (M, Д), (Д, M), (Д, Д) \},$

 $B = \{$ «в семье есть мальчик» $\} = \{(M, M), (M, Д), (Д, M)\}$

a)
$$\mathbb{P}(B \mid A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)} = \frac{\mathbb{P}((M, \Pi), (\Pi, M))}{\mathbb{P}(A)} = \frac{2/4}{3/4} = \frac{2}{3}$$

- б) События A и B называются независимыми, если $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$ В нашем случае: $\mathbb{P}(A \cap B) = \mathbb{P}((M, Д), (Д, M)) = \frac{2}{4}, \mathbb{P}(A) \cdot \mathbb{P}(B) = \frac{3}{4} \cdot \frac{3}{4}$. Следовательно, $\mathbb{P}(A \cap B) \neq \mathbb{P}(A) \cdot \mathbb{P}(B)$, значит, события A и B не являются независимыми.
- 2. $A_i:=\{$ « i- ый узел системы дал сбой» $\},\,i=1,\ldots,N$ $B_N:=\{$ «система дала сбой» $\}=\cup_{i=1}^N A_i;$ $\mathbb{P}(A_i)=\frac{1}{100},\,i=1,\ldots,N;$

Требуется найти такое максимальное $N \in \mathbb{N}$, при котором

$$\mathbb{P}(B_N) \leqslant \frac{1}{10^2}$$

$$\begin{split} \mathbb{P}(B_N) &= \mathbb{P}\left(\cup_{i=1}^n A_i\right) = 1 - \mathbb{P}(\left(\cup_{i=1}^n A_i\right)^c\right) \overset{\text{ф-ла де Моргана}}{=} 1 - \mathbb{P}\left(\cup_{i=1}^N A_i^c\right) \overset{A_1, \dots, A_{N^-} \text{ независ.}}{=} \\ &= 1 - \mathbb{P}(A_1^c) \cdot \dots \cdot \mathbb{P}(A_N^c) = 1 - \left(1 - \frac{1}{10^6}\right)^N \end{split}$$

Итак, требуется найти такое максимальное $N \in \mathbb{N}$, при котором

$$1 - \left(1 - \frac{1}{10^6}\right)^N \leqslant \frac{1}{10^2}$$

Имеем

$$\begin{aligned} 1 - \left(1 - \frac{1}{10^6}\right)^N \leqslant \frac{1}{10^2} &\Leftrightarrow 1 - \frac{1}{10^2} \leqslant \left(1 - \frac{1}{10^6}\right)^N \Leftrightarrow \\ &\Leftrightarrow \ln\left(1 - \frac{1}{10^2}\right) \leqslant N \ln\left(1 - \frac{1}{10^6}\right) \Leftrightarrow N \leqslant \frac{\ln\left(1 - \frac{1}{10^2}\right)}{\ln\left(1 - \frac{1}{10^6}\right)} \approx 10050.33 \end{aligned}$$

Ответ: N = 10050

3. $A = \{$ «заболевание лёгких» $\}$

 $B = \{$ «работал в шахте» $\}$

$$\mathbb{P}(B \mid A) = 0.22, \mathbb{P}(B \mid A^c) = 0.14, \mathbb{P}(A) = 0.04$$

a)
$$\mathbb{P}(B) = \mathbb{P}(B \mid A)\mathbb{P}(A) + \mathbb{P}(B \mid A^c)\mathbb{P}(A^c) = 0.22 \cdot 0.04 + 0.14 \cdot 0.96 = 0.1432$$

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)} \cdot \frac{\mathbb{P}(A)}{\mathbb{P}(B)} = \mathbb{P}(B \mid A) \cdot \frac{\mathbb{P}(A)}{\mathbb{P}(B)} = 0.22 \cdot \frac{0.04}{0.1432} \approx 0.0615$$

б)

$$\mathbb{P}(A \mid B^c) = \frac{\mathbb{P}(A \cap B^c)}{\mathbb{P}(B^c)} = \frac{\mathbb{P}(B^c \cap A)}{\mathbb{P}(A)} \cdot \frac{\mathbb{P}(A)}{\mathbb{P}(B^c)} = \mathbb{P}(B^c \mid A) \cdot \frac{\mathbb{P}(A)}{\mathbb{P}(B^c)} =$$
$$= (1 - \mathbb{P}(B \mid A)) \cdot \frac{\mathbb{P}(A)}{1 - \mathbb{P}(B)} = (1 - 0.22) \cdot \frac{0.04}{1 - 0.1432} \approx 0.0364$$

4. $X_i := egin{cases} 1, & \text{если на i-ый вопрос теста Петя дал верный ответ} \\ 0, & \text{иначе} \end{cases}$ $i=1,\dots,17$

 $X_i \sim Be\left(p=\frac{1}{5}\right),\,X_1,\ldots,X_{17}$ – независимы, $X:=X_1+\ldots+X_{17}$ – общее число верных ответов, $X\sim Bi\left(n=17,p=\frac{1}{5}\right)$.

- а) Наибольшее вероятное число правильных ответов m_0 может быть нвйдено по формуле:
 - 1) если число $(n\cdot p-q)$ не целое, где q:=1-p, то

$$m_0 = [np - q] + 1,$$

2) если число $(n \cdot p - q)$ – целое, то наиболее вероятных значений m_0 два:

$$m_0' = np - q$$
 и $m_0'' = np - q + 1$

Итак, поскольку $np-q=17\cdot\frac{1}{5}-\frac{4}{5}=2.6$ – не целое, наиболее вероятное число верных ответов m_0 может быть найдено по формуле из пункта (1):

$$m_0 = [np - q] + 1 = [2.6] + 1 = 3$$

6)
$$\mathbb{E}(X) = np = 17 \cdot \frac{1}{5} = 3.4$$

$$Var(X) = npq = 17 \cdot \frac{1}{5} \cdot \frac{4}{5} = 2.72$$

в)

$$\begin{split} \mathbb{P}(\text{Петя получит «отлично»}) &= \mathbb{P}(X \geqslant 15) = \mathbb{P}(X = 15) + \mathbb{P}(X = 16) + \\ &+ \mathbb{P}(X = 17) = C_{17}^{15} \cdot \left(\frac{1}{5}\right)^{15} \cdot \left(\frac{4}{5}\right)^2 + C_{17}^{16} \cdot \left(\frac{1}{5}\right)^{16} \cdot \left(\frac{4}{5}\right)^1 + C_{17}^{17} \cdot \left(\frac{1}{5}\right)^{17} \cdot \left(\frac{4}{5}\right)^0 = \\ &= 136 \cdot \frac{16}{5^{17}} + 17 \cdot \frac{4}{5^{17}} + \frac{1}{5^{17}} \approx 2.94 \cdot 10^{-9} \end{split}$$

г) Рассмотрим первый вопрос теста. Петя может выбрать первый ответ с вероятностью 1/5, и Вася может выбрать первый ответ с вероятностью 1/5. Тогда они оба выберут одинаковый ответ с вероятностью 1/25. Вариантов ответа в каждом вопросе 5, значит, вероятность совпадения ответа в одном вопросе равна 1/5. Всего вопросов 17, тогда получаем

$$\mathbb{P}($$
все ответы Пети и Васи совпадают $)=\left(rac{1}{5}
ight)^{17}$

5. Введём случайную велчину η , которая означает число потенциальных покупателей, с которыми контактировал продавец оборудования. По условию задачи, η имеет таблицу распеределения:

$$\eta$$
 1 2

$$\mathbb{P}_{\eta}$$
 1/3 2/3

Случайная величина ξ может принимать значения 0,50000 и 100000

а) Найдём $\mathbb{P}(\xi=0)$. По формуле полной вероятности, имеем:

$$\mathbb{P}(\xi = 0) = \mathbb{P}(\xi = 0 \mid \eta = 1) \cdot \mathbb{P}(\eta = 1) + \mathbb{P}(\xi = 0 \mid \eta = 2) \cdot \mathbb{P}(\eta = 2) = 0.9 \cdot \frac{1}{3} + 0.9 \cdot 0.9 \cdot \frac{2}{3} = 0.84$$

б) Найдём $\mathbb{P}(\xi = 50000)$ и $\mathbb{P}(\xi = 100000)$:

$$\mathbb{P}(\xi = 50000) = \mathbb{P}(\xi = 50000 \mid \eta = 1) \cdot \mathbb{P}(\eta = 1) + \mathbb{P}(\xi = 50000 \mid \eta = 2) \cdot \mathbb{P}(\eta = 2) = 0.1 \cdot \frac{1}{3} + 2 \cdot 0.1 \cdot 0.9 \cdot \frac{2}{3} = 0.15(3)$$

$$\mathbb{P}(\xi = 100000) = \mathbb{P}(\xi = 100000 \mid \eta = 1) \cdot \mathbb{P}(\eta = 1) + \mathbb{P}(\xi = 100000 \mid \eta = 2) \cdot \mathbb{P}(\eta = 2) = 0 \cdot \frac{1}{3} + 0.1 \cdot 0.1 \cdot \frac{2}{3} = 0.00(6)$$

Таблица распределения случайной величина ξ имеет вид:

$$\xi$$
 0 5000 100000

 \mathbb{P}_{ε} 0.84 0.15(3) 0.00(6)

Стало быть функция распределения случайной величины ξ имеет вид:

$$F_{\xi}(X) = \begin{cases} 0 & \text{при } x < 0 \\ 0.84 & \text{при } 0 \leqslant x < 50000 \\ 0.84 + 0.15(3) & \text{при } 50000 \leqslant x < 100000 \\ 1 & \text{при } x > 100000 \end{cases}$$

Опр.: $F_{\xi} = \mathbb{P}(\xi \leqslant x), x \in \mathbb{R}$

B)
$$\mathbb{E}(X) = 0 \cdot 0.84 + 50000 \cdot 0.15(3) + 100000 \cdot 0.00(6) = 8333.(3)$$

$$Var(X) = (0 - 8333.(3))^{2} \cdot 0.84 + (50000 - 8333.(3))^{2} \cdot 0.15(3) + (100000 - 8333.(3))^{2} \cdot 0.00(6) = 380555555.(5)$$

- 6. a) $f_{\xi}(x)=egin{cases} \frac{1}{b} & \text{при } x\in[0,b] \\ 0 & \text{при } x\notin[0,b] \end{cases}$
 - б) Известно, что если $\xi \sim U[a,b]$, то $\mathbb{E}(\xi) = \frac{a+b}{2}$. Стало быть, из уравнения $\mathbb{E}(\xi) = 1$ получаем $\frac{b}{2} = 1$, то есть b = 2.
 - в) Известно, что если $\xi \sim U[a,b]$, то $\mathrm{Var}(\xi) = \frac{(b-a)^2}{12}$. Значит, $\mathrm{Var}(\xi) = \frac{2^2}{12} = \frac{1}{3}$
 - r) Воспользуемся формулой $\mathbb{P}(\xi \in B) = \int_B f_\xi(x) dx$. Имеем:

$$\mathbb{P}(\xi > 1) = \mathbb{P}(\xi \in (1, +\infty)) = \int_{1}^{+\infty} f_{\xi}(x) dx = \int_{1}^{2} \frac{1}{2} dx = \frac{1}{2}$$

д) Требуется найти такое минимальное число $q_{0.25}$, что $\int_{-\infty}^{q_{0.25}} f_{\xi}(x) dx = 0.25$. Итак:

$$\int_{-\infty}^{q_{0.25}} f_{\xi}(x) dx = 0.25 \Leftrightarrow \int_{-\infty}^{q_{0.25}} \frac{1}{2} dx = 0.25 \Leftrightarrow \frac{1/2}{q_{0.25}} = 0.25 \Leftrightarrow$$
$$q_{0.25} = 2 \cdot 0.25 = 0.5$$

e)

$$\mathbb{E}[(\xi - \mathbb{E}(\xi))^{2017}] = \int_{-\infty}^{+\infty} (x - \mathbb{E}(\xi))^{2017} \cdot f_{\xi}(x) dx = \int_{-\infty}^{+\infty} (x - 1)^{2017} f_{\xi}(x) dx =$$

$$= \int_{0}^{2} (x - 1)^{2017} \cdot \frac{1}{2} dx = \frac{(x - 1)^{2018}}{2018} \cdot \frac{1}{2} \Big|_{x=0}^{x=2} = 0$$

ж)
$$F_{\xi}(x) = \begin{cases} 0 & \text{при } x < 0 \\ \frac{x}{2} & \text{при } 0 \leqslant x \leqslant 2 \\ 1 & \text{при } x > 2 \end{cases}$$

- з) Согласно условиям задачи, время до прихода 1-го поезда есть ξ ; время до прихода 2-го поезда равно $\xi+b$; время до прихода 3-го (заветного) поезда есть $\xi+2b$. Таким образом, Марья Ивановна в среднем ожидает «своего» поезда $\mathbb{E}(\xi+2b)=1+2b=1+2\cdot 2=5$ минут. При этом $\mathrm{Var}(\xi+2b)=\mathrm{Var}(\xi)=1/3$
- к) Пусть τ наименьший номер поезда без «подозрительных лиц». По условию задачи, таблица распределения случайной величины τ имеет вид:

$$\tau$$
 1 2 3 4 ...

 \mathbb{P}_{τ} 1/4 3/4 · 1/4 (3/4)² · 1/4 (3/4)³ · 1/4 ...

То есть случайная величина τ имеет геометрическое распределение с параметром p=1/4 ($\tau\sim G(p=1/4)$).

Несложно сообразить, что время ожидания Глафирой Петровной «своего» поезда составляет: $\eta:=\xi+b(\tau-1)$. Стало быть, $\mathbb{E}(\eta)=\mathbb{E}(\xi)+b\cdot(\mathbb{E}(\tau)-1)=1+2\cdot(4-1)=7$ минут.

Здесь мы воспользовались тем фактом, что если $\eta \sim G(p)$, то $\mathbb{E}(\eta) = 1/p$

и) Найдём теперь вероятность $\mathbb{P}(\eta \geqslant 5)$. Для нахождения искомой вероятности воспользуемся формулой полной вероятности:

$$\mathbb{P}(\eta \geqslant 5) = \mathbb{P}(\eta \geqslant 5, \tau < 3) + \mathbb{P}(\eta \geqslant 5, \tau = 3) + \mathbb{P}(\eta \geqslant 5, \tau > 3)$$

Если Глафира уехала на первом или втором поезде, то ждать больше 5 минут она не могла, то есть $\mathbb{P}(\eta \geqslant 5, \tau < 3) = 0$.

Если Глафира уехала на третьем поезде, то чтобы ждать больше пяти минут, ей нужно ждать первый поезд больше минуты, то есть $\mathbb{P}(\eta\geqslant 5,\tau=3)=0.5\mathbb{P}(\tau=3).$

Если Глафира уехала на четвертом поезде или позже, то она точно ждала больше 5 минут, $\mathbb{P}(\eta\geqslant 5, \tau>3)=\mathbb{P}(\tau>3).$

$$\mathbb{P}(\eta \geqslant 5) = 0.5\mathbb{P}(\tau = 3) + \mathbb{P}(\tau > 3) = 0.5 \cdot (3/4)^2 \cdot (1/4) + (3/4)^3 = 63/128$$

7. Пусть ξ — случайная величина, обозначающая число остановок лифта. Предствим её в виде суммы $\xi = \xi_2 + \ldots + \xi_{10}$, где ξ_i — индикатор того, что лифт остановился на i-ом этаже, то есть

$$\xi_i = egin{cases} 1 & \text{если лифт остановился} \ 0 & \text{иначе} \end{cases} \quad \forall i=2,\dots,10$$

Найдём соответсвующие вероятности:

$$\mathbb{P}(\xi_i = 0) = \left(\frac{8}{9}\right)^9$$

$$\mathbb{P}(\xi_i = 1) = 1 - \mathbb{P}(\xi = 0) = 1 - \left(\frac{8}{9}\right)^9$$

Тогда $\mathbb{E}(\xi_i)=\mathbb{P}(\xi_i=0)\cdot 0+\mathbb{P}(\xi_i=1)\cdot 1=1-\left(\frac{8}{9}\right)^9$, и в итоге получаем:

$$\mathbb{E}(\xi) = 9 \cdot \mathbb{E}(\xi_i) = 9 \cdot \left(1 - \left(\frac{8}{9}\right)^9\right)$$

15.3. Кр 1 ИП, 27.10.2016

1. Задача о макаронинах

В тарелке запутавшись лежат много-много макаронин. Я по очереди связываю попарно все торчащие концы макаронин.

- а) Какова примерно вероятность того, что я свяжу все макаронины в одно большое кольцо?
- б) Сколько в среднем колец образуется?
- в) Каково среднее число колец длиной в одну макаронину?

2. Планета Плюк

На планету Плюк, окружность, в случайных точках садятся n пепелацев. Радиосвязь между двумя точками на планете Плюк возможна, если центральный угол между этими двумя точками меньше $\pi/2$.

- а) Какова вероятность того, что из любой точки планеты можно связаться хотя бы с одним пепелацем?
- б) Какова вероятность того, что при n=3 все три пепелаца смогут поддерживать связь друг с другом (необязательно напрямую, возможно через посредника)?
- в) Как изменятся ответы, если планета Плюк это сфера?

3. Чайник Рассела

Вокруг Солнца по эллиптической орбите вращается абсолютно плоский чайник Рассела с площадью $42\,\mathrm{cm}^2$. Летающий Макаронный Монстр проецирует чайник Рассела на случайную плоскость.

Чему равна ожидаемая площадь проекции?

4. Чак Норрис против Брюса Ли

Чак Норрис хватается за верёвку в форме окружности в произвольной точке. Брюс Ли берёт мачете и с завязанными глазами разрубает верёвку в двух случайных независимых местах. Чак Норрис забирает себе тот кусок, за который держится. Брюс Ли забирает оставшийся кусок. Вся верёвка имеет единичную длину.

- а) Чему равна ожидаемая длина куска верёвки, доставшегося Брюсу Ли?
- б) Вероятность того, что у Брюса Ли верёвка длиннее?

5. Истеричная певица

Начинающая певица дает концерты каждый день. Каждый её концерт приносит продюсеру 0.75 тысяч евро. После каждого концерта певица может впасть в депрессию с вероятностью 0.5. Самостоятельно выйти из депрессии певица не может. В депрессии она не в состоянии проводить концерты. Помочь ей могут только хризантемы от продюсера. Если подарить цветы на сумму $0 \leqslant x \leqslant 1$ тысяч евро, то она выйдет из депрессии с вероятностью \sqrt{x} .

Какова оптимальная стратегия продюсера, максимизирующего ожидаемую прибыль?

6. Гадалка

Джульетта пишет на бумажках два любых различных натуральных числа по своему выбору. Одну бумажку она прячет в левую руку, а другую — в правую. Ромео выбирает любую руку Джульетты. Джульетта показывает число, написанное на выбранной бумажке. Ромео высказывает свою догадку о том, открыл ли он большее из двух чисел или меньшее. Ромео выигрывает, если он угадал.

Приведите пример стратегии Ромео, дающей ему вероятность выигрыша строго больше 0.5 против любой стратегии Джульетты.

7. Мудрецы

В ряд друг за другом за бесконечным столом сидит счётное количество Мудрецов, постигающих Истину. Первым сидит Абу Али Хусейн ибн Абдуллах ибн аль-Хасан ибн Али ибн Сина:

Рис. 1: *
«Коль смолоду избрал к заветной правде путь,
С невеждами не спорь, советы их забудь».

Каждый Мудрец может постигнуть Истину самостоятельно с вероятностью 1/9 или же от соседа⁷. Независимо от способа постижения Истины, просветлённый Мудрец поделится Истиной с соседом слева с вероятностью 2/9 и с соседом справа также с вероятностью 2/9 (независимо от соседа слева).

- а) Какова вероятность того, что Абу Али Хусейн ибн Абдуллах ибн аль-Хасан ибн Али ибн Сина постигнет Истину?
- б) Как изменится ответ, если ряд Мудрецов бесконечен в обе стороны?

15.4. Кр 1 ИП, 27.10.2016, решения

1. а) Для удобства занумеруем макаронины и выделим у каждой левый и правый конец. Взяли правый конец первой макаронины и подвязали случайной. Взяли свободный конец только что подвязанной макаронины и подвязали случайно. И так далее.

$$\frac{2n-2}{2n-1} \cdot \frac{2n-4}{2n-3} \cdot \ldots \cdot \frac{2}{3} \cdot 1$$

⁷Студенты постигают Истину примерно также!

б) Допустим, что при n макаронинах в среднем образуется e_n колец. После первого соединения задача сводится к меньшему числу макаронин, важно только учесть, образовалось ли кольцо при первом соединении:

$$e_n = \frac{1}{2n-1}(e_{n-1}+1) + \frac{2n-2}{2n-1}e_{n-1} = e_{n-1} + \frac{1}{2n-1}$$

- в) Количество коротких колец можно разбить в сумму, $X=Z_1+\ldots+Z_n$. Вероятность завязывания конкретной макаронины в кольцо равна 1/(2n-1): «левый конец» надо привазять именно к «правому». Значит, $\mathbb{E}(X)=n/(2n-1)$.
- 2. a) Рассмотрим обратную ситуацию: на планете есть точка, из которой связаться хотя бы с одним пепелацем нельзя. Такое возможно, если все, кроме одного, сели в одну полуокружности

$$\mathbb{P}(\text{есть точка без связи}) = n \cdot \left(rac{1}{2}
ight)^{n-1} \Rightarrow \mathbb{P}(\text{из любой точки есть связь}) = 1 - n \cdot \left(rac{1}{2}
ight)^{n-1}$$

- б) Зафиксируем координату посадки первого пепелаца и возьмём её за точку отсчёта. Изобразим на плоскости возможные значения центральных углов между первым пепелацем и оставшимися и закрасим нужные участки. Получим 3/8.
- в) Зафиксируем координату посадки первого пепелаца. Обозначим центральный угол между первым и вторым пепелацами α . Функция плотности имеет вид: $p(\alpha) = \frac{\sin(\alpha)}{2}$ Итог: $\int_0^{\pi/2} p(\alpha) \frac{\alpha+\pi}{2\pi} d\alpha + \int_{\pi/2}^{\pi} p(\alpha) \frac{\pi-\alpha}{2\pi} d\alpha = \frac{\pi+2}{4\pi}$
- 3. Вспомним для начала, что площадь круга равна πr^2 , а площадь сферы равна $4\pi r^2$. Составим из маленьких треугольничков многогранник очень похожий на сферу с единичным радиусом. Площадь этого многогранника будет примерно равна 4π . Проекция многогранника представляет собой примерно круг единичного радиуса. Проекция имеет два слоя. С учётом обоих слоёв площадь проекции равна 2π . Значит отношение площади проекции к площади многогранника равно 1/2.

От взаимного расположения треугольничков в пространстве ожидаемая площадь проекции не зависит в силу аддитивности математического ожидания.

Ответ: 21 см^2 .

- 4. а) Мысленно отметим на окружности три точки: места ударов Брюса Ли и точку, где схватился Чак Норрис. Можно считать, что эти три точки равномерно и независимо распределены по окружности. Следовательно, среднее расстояние между соседними точками равно 1/3. Чак Норрис берёт два кусочка, слева и справа от своей точки. Значит ему в среднем достаётся 2/3 окружности.
 - б) Объявим точку, где схватился Чак Норрис нулём. Координаты двух ударов изобразим на плоскости. Закрашиваем подходящий участок. Вероятность того, что кусок Брюса Ли длиннее, равна 1/4.
- 5. Рассмотрим совершенно конкурентный невольничий рынок начинающих певиц. Певицы в хорошем настроении продаются по V_1 , в депрессии по V_2 . Получаем систему уравнений:

$$\begin{cases} V_1 = 0.75 + (0.5V_1 + 0.5V_2) \\ V_2 = \max_x \sqrt{x}V_1 + (1 - \sqrt{x})V_2 - x \end{cases}$$

Оптимизируем и получаем, $x^* = (V_1 - V_2)^2/4$. Из первого уравнения находим $(V_1 - V_2)/2 = 0.75$.

- 6. Да. Например, такая. До общения с Джульеттой подкидывать монетку до выпадения первого орла и запомнить число потребовавшихся подбрасываний. Пусть это будет число X. Открыть равновероятно левую или правую руку Джульетты. Если открытое число больше X, то сказать, что оно большее, иначе сказать, что меньшее.
- 7. Если γ вероятность самостоятельного познания Истины, а α передачи Истины отдельно в каждую из сторон, то

$$p = \gamma + (1 - \gamma)p\alpha.$$

To есть
$$p = \gamma/(1 - \alpha(1 - \gamma))$$
.

Для решения второго пункта наложим на Абу Али Хусейн ибн Абдуллах ибн аль-Хасан ибн Али ибн Сина обет молчания. Это не повлияет на вероятность постижения им Истины, однако превратит задачу в две уже решённых :) Получаем

$$q = \gamma + (1 - \gamma)(2p\alpha - p^2\alpha^2)$$

15.5. Кр 2 базовый поток, 09-12-2016

Неравенства Берри–Эссеена: Для любых $n \in \mathbb{N}$ и всех $x \in \mathbb{R}$ имеет место оценка:

$$\left| F_{S_n^*}(x) - \Phi(x) \right| \leqslant 0.48 \cdot \frac{\mathbb{E}(|\xi_i - \mathbb{E}\xi_i|^3)}{\operatorname{Var}^{3/2}(\xi_i) \cdot \sqrt{n}},$$

где
$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
, $S_n^* = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}}$, $S_n = \xi_1 + \ldots + \xi_n$

Распределение Пуассона: Случайная величина ξ имеет распределение Пуассона с параметром $\lambda>0$, если она принимает целые неотрицательные значения с вероятностями $\mathbb{P}(\{\xi=k\})=\frac{\lambda^k}{k!}e^{-\lambda}$. Приличным студентам должно быть известно, что в этом случае $\mathbb{E}(\xi)=\mathrm{Var}(\xi)=\lambda$.

- 1. Пусть $\mathbb{E}(\xi)=1$, $\mathbb{E}(\eta)=-2$, $\mathrm{Var}(\xi)=1$, $\mathbb{E}(\eta^2)=8$, $\mathbb{E}(\xi\eta)=-1$. Найдите
 - a) $\mathbb{E}(2\xi \eta + 1)$, $Cov(\xi, \eta)$, $Corr(\xi, \eta)$, $Var(2\xi \eta + 1)$;
 - 6) $Cov(\xi + \eta, \xi + 1)$, $Corr(\xi + \eta, \xi + 1)$, $Corr(\xi + \eta 24, 365 \xi \eta)$, $Cov(2016 \cdot \xi, 2017)$.
- 2. Совместное распределение доходностей акций двух компаний задано с помощью таблицы:

$$\eta = -1$$
 $\eta = 1$
 $\xi = -1$ 0.1 0.2
 $\xi = 0$ 0.2 0.2
 $\xi = 2$ 0.2 0.1

- а) Найдите частные распределения случайных величин ξ и η .
- б) Найдите $Cov(\xi, \eta)$.
- в) Сформулируйте определение независимости дискретных случайных величин.
- г) Являются ли случайные величины ξ и η независимыми?

- д) Найдите условное распределение случайной величины ξ , если $\eta = 1$.
- е) Найдите условное математическое ожидание случайной величины ξ , если $\eta=1$.
- ж) Найдите математическое ожидание и дисперсию величины $\pi = 0.5 \, \xi + 0.5 \, \eta$.
- з) Рассмотрим портфель, в котором α доля акций с доходностью ξ и $(1-\alpha)$ доля акций с доходностью η . Доходность этого портфеля есть случайная величина

$$\pi(\alpha) = \alpha \xi + (1 - \alpha)\eta.$$

Найдите такую долю $\alpha \in [0;\,1]$, при которой доходность портфеля $\pi(\alpha)$ имеет наименьшую дисперсию.

- 3. Число посетителей сайта pokrovka11.wordpress.com за один день имеет распределение Пуассона с математическим ожиданием 250.
 - а) Сформулируйте неравенство Маркова. При помощи данного неравенства оцените вероятность того, что за один день сайт посетят более 500 человек.
 - б) Сформулируйте неравенство Чебышева. Используя данное неравенство, определите наименьшее число дней, при котором с вероятностью не менее 99% среднее за день число посетителей будет отличаться от 250 не более чем на 10.
 - в) Решите предыдущий пункт с помощью центральной предельной теоремы.
 - г) Сформулируйте закон больших чисел. Обозначим через ξ_i число посетителей сайта за i-ый день. Найдите предел по вероятности последовательности $\frac{\xi_1^2+\ldots+\xi_n^2}{n}$ при $n\to\infty$.
- 4. Отведав медовухи, Винни–Пух совершает случайное блуждание на прямой. Он стартует из начала координат и в каждую следующую минуту равновероятно совершает шаг единичной длины налево или направо. Передвижения Винни-Пуха схематично изображены на следующем рисунке.

Рис. 2: Случайные бродилки.

- а) Сформулируйте центральную предельную теорему.
- б) При помощи центральной предельной теоремы оцените вероятность того, что ровно через час блужданий Винни-Пух окажется в области $(-\infty; -5]$.
- в) Используя неравенство Берри–Эссеена оцените погрешность вычислений предыдущего пункта.

5. Случайные величины ξ и η означают время безотказной работы рулевого управления и двигателя автомобиля соответственно. Время измеряется в годах. Совместная плотность имеет вид:

$$f_{\xi,\eta}(x,\,y) = egin{cases} 0.005\,e^{-0.05\,x-0.1\,y} & \text{при } x>0,y>0, \\ 0 & \text{иначе.} \end{cases}$$

- а) Найдите частные плотности распределения случайных величин ξ и η .
- б) Являются ли случайные величины ξ и η независимыми?
- в) Найдите вероятность того, что двигатель прослужит без сбоев более пяти лет.
- r) Найдите вероятность того, что двигатель прослужит без сбоев более восьми лет, если он уже проработал без сбоев три года.
- д) Найдите условное математическое ожидание безотказной работы рулевого управления, если двигатель проработал без сбоев пять лет, $\mathbb{E}(\xi|\eta=5)$.
- е) Найдите вероятность того, что рулевое управление проработает без сбоев на два года больше двигателя, $\mathbb{P}(\{\xi-\eta>2\}).$
- 6. Бонусная задача

Случайная величина ξ имеет плотность распределения

$$f_{\xi}(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-1)^2}{2}} + \frac{1}{2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{(x+1)^2}{2}}.$$

- а) Найдите $\mathbb{E}(\xi)$, $\mathbb{E}(\xi^2)$, $\mathrm{Var}(\xi)$.
- б) Покажите, что функция $f_{\xi}(x)$, действительно, является плотностью распределения.

15.6. Кр 2 базовый поток, 09-12-2016, решения

1. a)
$$\begin{split} \mathbb{E}(2\xi - \eta + 1) &= 2\mathbb{E}(\xi) - \mathbb{E}(\eta) + 1 = 2 \cdot 1 - (-2) + 1 = 5 \\ &\operatorname{Cov}(\xi, \eta) = \mathbb{E}(\xi\eta) - \mathbb{E}(\xi)\mathbb{E}(\eta) = -1 - \cdot 1 \cdot (-2) = 1 \\ &\operatorname{Corr}(\xi, \eta) = \frac{\operatorname{Cov}(\xi, \eta)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}} = \frac{1}{\sqrt{1 \cdot (8 - (-2)^2)}} = \frac{1}{2} \\ &\operatorname{Var}(2\xi - \eta + 1) = 4\operatorname{Var}(\xi) + \operatorname{Var}(\eta) - 2\operatorname{Cov}(2\xi, \eta) = 4 \cdot 1 + 4 - 4 \cdot 1 = 4 \end{split}$$

δ)
$$\begin{aligned} & \text{Cov}(\xi+\eta,\xi+1) = \text{Cov}(\xi) + \text{Cov}(\xi,1) + \text{Cov}(\eta,\xi) + \text{Cov}(\eta,1) = 1 + 1 = 2 \\ & \text{Corr}(\xi+\eta,\xi+1) = \frac{\text{Cov}(\xi+\eta,\xi+1)}{\sqrt{\text{Var}(\xi+\eta)\cdot\text{Var}(\xi+1)}} = \frac{2}{\sqrt{(1+4+2\cdot1)\cdot1}} = \frac{2}{\sqrt{7}} \\ & \text{Corr}(\xi+\eta-24,365-\xi-\eta) = -1 \\ & \text{Cov}(2016\cdot\xi,2017) = 0 \end{aligned}$$

2. a)
$$\frac{\xi - 1 \quad 0 \quad 2}{\mathbb{P}(\cdot) \quad 0.3 \quad 0.4 \quad 0.3} \qquad \frac{\eta \quad -1 \quad 1}{\mathbb{P}(\cdot) \quad 0.5 \quad 0.5}$$

$$\overline{\mathbb{E}(\xi) = -1 \cdot 0.3 + 0 \cdot 0.4 + 2 \cdot 0.3 = 0.3}$$

$$\mathbb{E}(\xi^2) = (-1)^2 \cdot 0.3 + 0^2 \cdot 0.4 + 2^2 \cdot 0.3 = 1.5$$

$$\operatorname{Var}(\xi) = \mathbb{E}(\xi^2) - (\mathbb{E}(\xi))^2 = 1.5 - 0.3^2 = 1.41$$

$$\mathbb{E}(\eta) = -1 \cdot 0.5 + 1 \cdot 0.5 = 0$$

$$\mathbb{E}(\eta^2) = (-1)^2 \cdot 0.5 + 1^2 \cdot 0.5 = 1$$

$$\operatorname{Var}(\eta) = \mathbb{E}(\eta^2) - (\mathbb{E}(\eta))^2 = 1 - 0^2 = 1$$

6)
$$\frac{\xi \cdot \eta - 2 - 1 \quad 0 \quad 1 \quad 2}{\mathbb{P}(\cdot) \quad 0.2 \quad 0.2 \quad 0.4 \quad 0.1 \quad 0.1}$$

$$\overline{\mathbb{E}(\xi \cdot \eta) = (-2) \cdot 0.2 + (-1) \cdot 0.2 + 0 \cdot 0.4 + 1 \cdot 0.1 + 2 \cdot 0.1 = -0.3}$$

$$Cov(\xi, \eta) = \mathbb{E}(\xi \cdot \eta) - \mathbb{E}(\xi) \cdot \mathbb{E}(\eta) = -0.3 - 0.3 \cdot 0 = -0.3$$

- в) Пусть случайная величина X принимает значения a_1, \ldots, a_m , случайная веилчина Y принимает значения b_1, \ldots, b_n . Тогда случйаня величина X и Y называются независимыми, если $\forall i=1,\ldots,m \quad \forall j=1,\ldots,n: \mathbb{P}(X=a_i\cap Y=b_j)=P(X=a_i)\cdot P(Y=b_j)$
- г) Заметим, что $\mathbb{P}(\xi=-1\cap\eta=-1)=0.1$, $\mathbb{P}(\xi=-1)=0.3$ и $\mathbb{P}(\eta=-1)=0.5$. Тогда поскольку $\mathbb{P}(\xi=-1\cap\eta=-1)\neq\mathbb{P}(\xi=-1)\cdot\mathbb{P}(\eta=-1)$, случайные величины ξ и η не являются независимыми.

д)
$$\mathbb{P}(\xi = -1 \cap \eta = 1) = \frac{\mathbb{P}(\xi = -1 \cap \eta = 1)}{\mathbb{P}(\eta = 1)} = \frac{0.2}{0.5} = \frac{2}{5}$$

$$\mathbb{P}(\xi = 0 \cap \eta = 1) = \frac{\mathbb{P}(\xi = 0 \cap \eta = 1)}{\mathbb{P}(\eta = 1)} = \frac{0.2}{0.5} = \frac{2}{5}$$

$$\mathbb{P}(\xi = 2 \cap \eta = 1) = \frac{\mathbb{P}(\xi = 2 \cap \eta = 1)}{\mathbb{P}(\eta = 1)} = \frac{0.1}{0.5} = \frac{1}{5}$$

Следовательно, условное распределение случайной величины ξ при условии $\{\eta=1\}$ может быть описано следующей таблицей:

e)
$$\overline{\mathbb{E}(\xi \mid \eta = 1) = -1 \cdot \frac{2}{5} + 0 \cdot \frac{2}{5} + 2 \cdot \frac{1}{5} = 0}$$

ж)
$$\mathbb{E}(\pi) = \mathbb{E}(0.5\xi + 0.5\eta) = 0.5\mathbb{E}(\xi) + 0.5\mathbb{E}(\eta) = 0.15$$

$$\begin{aligned} \operatorname{Var}(\pi) &= \operatorname{Var}(0.5\xi + 0.5\eta) = \operatorname{Var}(0.5\xi) + \operatorname{Var}(0.5\eta) + 2\operatorname{Cov}(0.5\xi, 0.5\eta) = \\ &= 0.25\operatorname{Var}(\xi) + 0.25\operatorname{Var}(\eta) + 2\cdot 0.5\cdot 0.5\operatorname{Cov}(\xi, \eta) = \\ &= 0.25\cdot 1.41 + 0.25\cdot 1 + 2\cdot 0.5\cdot 0.5\cdot (-0.3) = 0.4525 \end{aligned}$$

3)

$$\begin{split} \operatorname{Var}(\pi(\alpha)) &= \operatorname{Var}(\alpha \xi + (1-\alpha)\eta) = \alpha^2 \operatorname{Var}(\xi) + (1-\alpha)^2 \operatorname{Var}(\eta) + \\ &+ 2\alpha(1-\alpha)\operatorname{Cov}(\xi,\eta) = 1.41 \cdot \alpha^2 + 1 \cdot (1-\alpha)^2 + 2\alpha(1-\alpha) \cdot (-0.3) = \\ &= 1.41 \cdot \alpha^2 + (1-\alpha)^2 - 0.6 \cdot (\alpha-\alpha^2) \to \min_{\alpha} \alpha \end{split}$$

$$\begin{split} \frac{\partial}{\partial \alpha} \operatorname{Var}(\pi(\alpha)) &= 2 \cdot 1.41 \cdot \alpha - 2(1-\alpha) - 0.6 \cdot (1-2\alpha) = \\ &= 2.82 \cdot \alpha - 2 + 2\alpha - 0.6 + 1.2 \cdot \alpha = 6.02 \cdot \alpha - 2.6 = 0 \\ \alpha &= \frac{2.6}{6.02} = 0.4319 \end{split}$$

3. а) Для любой неотрицательной случайной величины X и любого числа $\lambda>0$ справедлива оценка: $\mathbb{P}(X>\lambda)\leqslant \frac{\mathbb{E}(X)}{\lambda}$

Пусть случайная величина ξ_i означает число посетителей сайта за i-ый день. По условию, $\xi_i \sim Pois(\lambda = 250)$. Известно, что если $\xi \sim Pois(\lambda)$, то $\mathbb{E}(\xi) = \mathrm{Var}(\xi) = \lambda$.

Имеем:

$$\mathbb{P}(\xi_i > 500) \leqslant \mathbb{P}(\xi_i \geqslant 500) \leqslant \frac{\mathbb{E}(\xi_i)}{500} = \frac{250}{500} = \frac{1}{2}$$

б) Для любой случайной величины X с конечным $\mathbb{E}(X)$ и любого положительного числа $\epsilon>0$ имеет место неравенство: $\mathbb{P}(X-\mathbb{E}(X)\geqslant\epsilon)\leqslant \frac{\mathrm{Var}(X)}{\epsilon^2}$

Обозначим $\bar{\xi}_n := \frac{1}{n} \left(\xi_1 + \ldots + \xi_n \right)$ – среднее число посетителей сайта за n дней. Тогда

$$\mathbb{E}(\bar{\xi}_n) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n \xi_i\right) = \frac{1}{n}\sum_{i=1}^n \mathbb{E}(\xi_i) = \frac{1}{n} \cdot n \cdot \lambda = \lambda = 250$$

$$\operatorname{Var}(\bar{\xi}_n) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^n \xi_i\right) = \frac{1}{n^2}\sum_{i=1}^n \operatorname{Var}(\xi_i) = \frac{n \cdot \lambda}{n^2} = \frac{\lambda}{n} = \frac{250}{n}$$

Оценим вероятность

$$\mathbb{P}(|\bar{\xi}_n - 250| > 10) \leqslant \frac{\operatorname{Var}(\bar{\xi}_n)}{100} = \frac{250}{100 \cdot n}$$

Следовательно, $1 - \frac{250}{100 \cdot n} \leqslant \mathbb{P}(|\bar{\xi}_n - 250| \leqslant 10).$

Найдём наименьшее целое n, при котором левая часть неравенства ограничена снизу $0.99 \leqslant 1 - \frac{250}{100 \cdot n}$.

Имеем:

$$0.99 \leqslant 1 - \frac{250}{100 \cdot n} \Leftrightarrow \frac{250}{100 \cdot n} \Leftrightarrow n \geqslant \frac{250}{100 \cdot 0.01} \Leftrightarrow n \geqslant 250$$

Стало быть, n=250 – наименьшее число дней, при котором с вероятностью не менее 99% среднее число посетителей будет отличаться от 250 не более чем на 10.

в) Требуется найти наименьшее целое n, при котором $\mathbb{P}(|\bar{\xi}_n-250|\leqslant 10)=0.99$ Имеем:

$$\mathbb{P}(|\bar{\xi}_n - 250| \leq 10) = 0.99 \Leftrightarrow \mathbb{P}(-10 \leq \bar{\xi}_n - 250 \leq 10) = 0.99 \Leftrightarrow \\ \Leftrightarrow \mathbb{P}(-10n \leq S_n - 250n \leq 10n) = 0.99$$

$$\mathbb{E}(S_n) = \mathbb{E}(\xi_1 + \dots + \xi_n) = \mathbb{E}(\xi_1) + \dots + \mathbb{E}(\xi_n) = 250 \cdot n$$

$$\operatorname{Var}(S_n) = \operatorname{Var}(\xi_1 + \dots + \xi_n) = \operatorname{Var}(\xi_1) + \dots + \operatorname{Var}(\xi_n) = 250 \cdot n$$

$$\mathbb{P}\left(\frac{-10n}{\sqrt{250n}} \leqslant \frac{S_n - \mathbb{E}(S_n)}{\sqrt{\text{Var}(S_n)}} \leqslant \frac{10n}{\sqrt{250n}}\right) = 0.99 \Leftrightarrow 2\Phi\left(\frac{10n}{\sqrt{250n}}\right) - 1 = 0.99$$

$$\Phi\left(\frac{10n}{\sqrt{250n}}\right) = \frac{1 + 0.99}{2} \Leftrightarrow \frac{10n}{\sqrt{250n}} = 2.58 \Leftrightarrow \sqrt{n} = 2.58 \cdot \frac{\sqrt{250}}{10} \Leftrightarrow n = 16.641$$

Следовательно, наименьшее целое n, есть n = 17.

г) Пусть $X_1, X_2, \ldots, X_n, \ldots$ – последовательность независимых случайных величин с одинаковых конечными математическими ожиданимяи и фиксированными конечными дисперсиями.

Тогда $\xrightarrow[n]{X_1+\ldots+X_n} \xrightarrow{\mathbb{P}} \mathbb{E}(X_i)$ при $n \to \infty$.

В нашем случае случаные величины $\xi_1^2,\xi_2^2,\dots,\xi_n^2,\dots$ – независимы, $\mathbb{E}(\xi_1^2)=\dots=\mathbb{E}(\xi_n^2)=\dots<+\infty$ и $\mathrm{Var}(\xi_1^2)=\dots=\mathrm{Var}(\xi_n^2)=\dots<+\infty$. Поэтому в соответствии с ЗБЧ имеем:

$$\frac{\xi_1^2 + \ldots + \xi_n^2}{n} \xrightarrow{\mathbb{P}} \mathbb{E}(\xi_i^2) = \text{Var}(\xi_i) + \mathbb{E}(\xi_i)^2 = \lambda + \lambda^2 = \lambda(\lambda + 1) = 250 \cdot 251 = 62750$$

- 4. а) Пусть $X_1, X_2, \dots, X_n, \dots$ последовательность независимых, одинаково распределённых случайных величин с $0 < \mathrm{Var}(X_i) < \infty, i \in \mathbb{N}$. Тогда для любого (борелевского) множества $B \subseteq R$ имеет место $\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n \mathbb{E}(S_n)}{\sqrt{\mathrm{Var}(S_n)}} \in B\right) = \int_B \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$, где $S_n := X_1, \dots, X_n, n \in \mathbb{N}$.
 - б) Введём случайную величину

$$X_i = egin{cases} 1, & \text{если на i-ом шаге Винни-Пух пошёл направо} \ -1, & \text{если пошёл налево} \end{cases}$$
 $i=1,\dots,n;$

Тогда $S_n := X_1 + \ldots + X_n$ означает местоположение Винни-Пуха в n-ую минуту его блужданий по прямой.

$$\begin{split} \mathbb{E}(X_i) &= -1 \cdot 1/2 + 1 \cdot 1/2 = 0, \\ \mathbb{E}(X_i^2) &= (-1)^2 \cdot 1/2 + (1)^2 \cdot 1/2 = 1, \\ \mathrm{Var}(X_i) &= \mathbb{E}(X_i^2) - \mathbb{E}(X_i)^2 = 1, \\ \mathbb{E}(S_n) &= \mathbb{E}(X_1 + \ldots + X_n) = \mathbb{E}(X_1) + \ldots + \mathbb{E}(X_n) = 0, \\ \mathrm{Var}(S_n) &= \mathrm{Var}(X_1 + \ldots + X_n) = \mathrm{Var}(X_1) + \ldots + \mathrm{Var}(X_n) = n \end{split}$$

$$\mathbb{P}(S_n \in (-\infty, -5]) = \mathbb{P}(S_n \leqslant -5) = \mathbb{P}\left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\text{Var}(S_n)}} \leqslant \frac{-5 - 0}{\sqrt{n}}\right) \stackrel{n=60}{=}$$

$$= \mathbb{P}\left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\text{Var}(S_n)}} \leqslant -0.6454\right) \approx \int_{-\infty}^{-0.6454} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt =$$

$$= \Phi(-0.6454) = 1 - \Phi(0.6454) \approx 0.2593$$

в) Для любых $n \in \mathbb{N}$ и всех $x \in \mathbb{R}$ имеет место оценка:

$$\left| F_{S_n^*}(x) - \Phi(x) \right| \leqslant 0.48 \cdot \frac{\mathbb{E}(|\xi_i - \mathbb{E}\xi_i|^3)}{\operatorname{Var}^{3/2}(\xi_i) \cdot \sqrt{n}},$$

где
$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
, $S_n^* = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}}$, $S_n = \xi_1 + \ldots + \xi_n$

В нашем случае:

$$\mathbb{P}\left(\frac{S_{60} - \mathbb{E}(S_{60})}{\sqrt{\operatorname{Var}(S_{60})}} \leqslant -0.6454\right) = \mathbb{P}(S_{60}^* \leqslant -0.6454) = F_{S_{60}^*}(-0.6454)$$

Согласно неравенству Берри-Эссеена, погрешность $|F_{S_{60}^*}(-0.6454) - \Phi(-0.6454)|$ оценивается сверху величиной

$$0.48 \cdot \frac{\mathbb{E}(|X_i - \mathbb{E}(X_i)|^3)}{\operatorname{Var}(X_i)^{3/2} \cdot \sqrt{n}} = 0.48 \cdot \frac{\mathbb{E}(|X_i|^3)}{1 \cdot \sqrt{60}} = \frac{0.48}{\sqrt{60}} \approx 0.062$$

5. а) Сначала найдём плотность распределения случайной величины X. Пусть $x\leqslant 0$, тогда $f_X(X)=\int_{-\infty}^{+\infty}f_{X,Y}(x,y)dy=0;$ Пусть x>0, тогда

$$f_X(X) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy = \int_{0}^{+\infty} 0.005 e^{-0.05x - 0.1y} dy =$$

$$= 0.005 e^{-0.05x} \int_{0}^{+\infty} e^{-0.1y} dy = 0.005 e^{-0.05x} \cdot \left(-10e^{-0.1y}\right) \Big|_{y=0}^{y=+\infty} = 0.05 e^{-0.05x}$$

Таким образом, имеем:

$$f_X(x) = \begin{cases} 0.05e^{-0.05x} & \text{при } x > 0 \\ 0 & \text{при } x \leqslant 0 \end{cases}$$

То есть $X \sim Exp(\lambda=0.05)$ – случайная величина X имеет показательное распределение с параметром $\lambda=0.05$.

Теперь найдём плотность распределения случайной величины Y.

Пусть $y \leqslant 0$, тогда $f_Y(y) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx = 0$.

Пусть y > 0, тогда

$$f_Y(y) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx = \int_{0}^{+\infty} 0.005 e^{-0.05x - 0.1y} dx =$$

$$= 0.005 e^{-0.1y} \int_{0}^{+\infty} e^{-0.05x} dx = 0.005 e^{-0.1y} \cdot \left(-20e^{-0.05x}\right) \Big|_{x=0}^{x=+\infty} = 0.1e^{-0.1y}$$

Таким образом, имеем:

$$f_Y(y) = egin{cases} 0.1e^{-0.1y} & ext{при } y > 0 \ 0 & ext{при } y \leqslant 0 \end{cases}$$

То есть $Y \sim Exp(\lambda=0.1)$ – случайная величина Y имеет показательное распределение с параметром $\lambda=0.1$.

- б) Поскольку для любых точек $x,y \in \mathbb{R}$ справедливо равенство $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$, случайные величины X и Y являются независимыми.
- в) Найдём вероятность $\mathbb{P}(Y > 5)$:

$$\mathbb{P}(Y > 5) = \int_{5}^{+\infty} f_Y(y) dy = \int_{5}^{+\infty} 0.1e^{-0.1y} dy = 0.1 \cdot (-10e^{-0.1x}) \Big|_{y=5}^{y=+\infty} = e^{-0.5} \approx 0.6065$$

г) Требуется найти условную вероятность $\mathbb{P}(Y>8\mid Y\geqslant 3)$. Для этого предварительно найдём вероятности $\mathbb{P}(Y>8)$ и $\mathbb{P}(y\geqslant 3)$:

$$\mathbb{P}(Y > 8) = \int_{8}^{+\infty} f_Y(y) dy = \int_{8}^{+\infty} 0.1e^{-0.1y} dy = 0.1 \cdot (-10e^{-0.1x}) \Big|_{y=8}^{y=+\infty} = e^{-0.8}$$

$$\mathbb{P}(Y \geqslant 3) = \int_{3}^{+\infty} f_Y(y) dy = \int_{3}^{+\infty} 0.1e^{-0.1y} dy = 0.1 \cdot (-10e^{-0.1x}) \Big|_{y=3}^{y=+\infty} = e^{-0.3}$$

Теперь находим требуемую условную веростность:

$$\mathbb{P}(Y > 8 \mid Y \geqslant 3) = \frac{\mathbb{P}((Y > 8) \cap (Y \geqslant 3))}{\mathbb{P}(Y \geqslant 3)} = \frac{\mathbb{P}(Y > 8)}{\mathbb{P}(Y \geqslant 3)} = \frac{e^{-0.8}}{e^{-0.3}} = e^{-0.5} \approx 0.6065$$

д) Сначала найдём условную плотность распределения случайной величины X при условии Y=y:

$$f_{X|Y}(x\mid y) = \begin{cases} \frac{f_{X|Y}(x,y)}{f_{Y}(y)} & \text{при } f_{Y}(y)0 \\ 0 & \text{иначе} \end{cases} = \begin{cases} \frac{0.005e^{-0.05x-0.1y}}{0.1e^{-0.1y}} & \text{при } x>0, \quad y>0 \\ 0 & \text{иначе} \end{cases} = \begin{cases} 0.05e^{-0.05x} & \text{при } x>0, \quad y>0 \\ 0 & \text{иначе} \end{cases} = \begin{cases} f_{X}(x) & \text{при } y>0 \\ 0 & \text{при } y\leqslant 0 \end{cases}$$

Теперь находим условное математическое ожидание

$$\mathbb{E}(X \mid Y = 5) = \int_{-\infty}^{+\infty} x f_{X|Y}(x \mid 5) dx = \int_{-\infty}^{+\infty} x f_X(x) dx = \mathbb{E}(X) = \frac{1}{0.05} = 20$$

Здесь мы воспользовались известным фактом, что если $X \sim Exp(\lambda)$, то $\mathbb{E}(X) = \frac{1}{\lambda}$

е) Требуется найти вероятность $\mathbb{P}(X-Y>2)$. Для этого введём множества $B:=\{(x,y)\in\mathbb{R}:y< x-2\}$ и $C:=\{(x,y)\in\mathbb{R}:y< x-2,x>0,y>0\}$. Заметим, что искомая вероятность $\mathbb{P}(X-Y>2)$ может быть записана в виде

$$\mathbb{P}(X - Y > 2) = \mathbb{P}((X, Y) \in B) = \int \int_{B} f_{X,Y}(x, y) dx dy = \int \int_{C} f_{X,Y}(x, y) dx dy$$

Стало быть, искомая вероятность

$$\mathbb{P}(X - Y > 2) = \int \int_{C} f_{X,Y}(x,y) dx dy = \int_{2}^{+\infty} \left[\int_{0}^{x-2} f_{X,Y}(x,y) dy \right] dx =
= \int_{2}^{+\infty} \left[\int_{0}^{x-2} 0.005 e^{-0.05x - 0.1y} dy \right] dx = \int_{2}^{+\infty} \left[0.005 e^{-0.05x} \cdot (-10e^{-0.1y}) \Big|_{y=0}^{y=x-2} \right] dx =
= \int_{2}^{+\infty} \left[0.005 e^{-0.05x} \cdot (1 - e^{-0.1(x-2)}) \right] dx = \int_{2}^{+\infty} 0.005 e^{-0.05x} dx -
- \int_{2}^{+\infty} 0.005 e^{-0.05x - 0.1x + 0.2} dx = 0.05 \cdot \left(-\frac{1}{0.05} e^{-0.05x} \right) \Big|_{x=2}^{x=+\infty} -
- e^{0.02} \cdot 0.05 \cdot \left(\frac{1}{0.15} e^{-0.15x} \right) \Big|_{x=2}^{x=+\infty} = e^{-0.1} - \frac{1}{3} e^{-0.1} = \frac{2}{3} e^{-0.1} \approx 0.6032$$

6. Для решения задачи воспользуемся хорошо известными соотношениями:

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1$$

$$\int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \mu$$

$$\int_{-\infty}^{+\infty} x^2 \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \mu^2 + \sigma^2$$

а) Указанная в задании функция f_X является плотностью распределения, так как она удовлетворяет двум условиям: f_X является неотрицательной и интеграл от функции f_X в пределах от $-\infty$ до $+\infty$ равен единице:

$$\int_{-\infty}^{+\infty} f_X(x) dx = \frac{1}{2} \cdot \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-1)^2}{2}} dx + \frac{1}{2} \cdot \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x+1)^2}{2}} dx = 1$$

6)
$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \frac{1}{2} \cdot \int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-1)^2}{2}} dx + \frac{1}{2} \cdot \int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi}} e^{-\frac{(x+1)^2}{2}} dx = 1 - 1 = 0$$

 $\mathbb{E}(X^2) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx = \frac{1}{2} \cdot \int_{-\infty}^{+\infty} x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-1)^2}{2}} dx + \frac{1}{2} \cdot \int_{-\infty}^{+\infty} x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{(x+1)^2}{2}} dx = \frac{1}{2} (1^2 + 1^2 + (-1)^2 + 1^2) = 2$

r)
$$Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 2 - 0^2 = 2$$

B)

15.7. CosmoWar: blue part

ЭРА І

1. Исследуя образцы грунта планеты Броуни, межгалактическая экспедиция обнаружила в нем простейшую, но очень интересную одноклеточную форму жизни. От одной материнской клетки рождаются два потомка, причем сразу после рождения они начинают независимо двигаться вдоль одной и той же прямой и могут без проблем проходить друг через друга. Собрав статистику их передвижений, исследователи поняли, что X_t , положение клетки относительные места рождения в момент ее жизни t, распределено межгалактически нормально: $X_t \sim \mathcal{N}(0;t)$. Как далеко друг от друга в среднем оказываются потомки в момент t?

Подсказка: межгалактическое нормальное распределение совпадает с земным и имеет плотность

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

- 2. В Солнечной системе есть по крайней мере 5 карликовых планет: Плутон (до 2006 года считавшийся девятой планетой), Макемаке, Хаумеа, Эрида и Церера. Допустим, что Незнайка думает, что расстояние между Макемаке и Эридой равно 1; X --- расстояние между Макемаке и Церерой --- равномерно распределенная на отрезке от 0 до 2 случайная величина; Y --- расстояние между Эридой и Церерой --- экспоненциальная случайная величина с параметром $\lambda=1$. Также Незнайка думает, что X и Y независимы. Найдите в представлении Незнайки вероятность того, что отрезки с длинами X,Y и Y образуют треугольник.
- 3. В системе Акаика-02 находится p планет. Всю жизнь Пульпик путешествует с одной планеты на другую. При этом путь его лежит всегда через космическую станцию. Там он равновероятно выбирает новую планету, отправляется на её исследование и возвращается обратно. Пульпик начинает свою одиссею с космической станции. Пусть $A_0^{(n)}$ это количество посещений космической станции через n шагов, а $A_i^{(n)}$ --- количество посещений i-й планеты.
 - а) Найдите $\operatorname{plim}_{n \to \infty} \frac{A_0^{(n)}}{n}$
 - б) Найдите $\operatorname{plim}_{n \to \infty} \frac{A_i^{(n)}}{n}$

ЭРА II

- 1. Пусть на Марсе живет n семей, у каждой марсианской семьи есть некоторое количество марсианских детишек. ξ_1,\dots,ξ_n --- количество марсианских детишек в марсианских семьях --- независимые одинаково распределенные случайные величины. Пусть $\vartheta_i = \frac{\xi_i}{\sum_{j=1}^n \xi_j}$ --- уровень счастья i-й марсианской семьи. Найдите:
 - а) Математическое ожидание счастья i-й семьи.
 - б) Найдите $Corr(\vartheta_i, \vartheta_j)$
- 2. Пусть на Марсе по-прежнему живет n семей, у каждой марсианской семьи есть некоторое количество марсианских детишек. Y_i средний рост ребенка в i-ой марсианской семье -- независимые равномерно распределенные на отрезке [0;1] случайные величины. Марсианские ученые всерьез озаботились проблемой старения роста марсианского населения, но не знали, с чего начать свои исследования, поэтому сперва решили посчитать следующую величину: $\varepsilon_n = \min\{Y_1, \dots, Y_n\}$.
 - а) Найдите $\mathbb{P}(\varepsilon_n \leqslant x)$

- б) Найдите $\lim_{n\to\infty} \mathbb{P}(n\varepsilon_n \leqslant x)$
- 3. Астроном смотрит на случайно выбираемую звезду. Её яркость --- случайная величина ξ . Число A --- некоторая константа, выдуманная учеными для упрощения жизни, а именно для того, чтобы минимизировать выражение $\mathbb{E}(|\xi-A|)$. Найдите, чему равно A.

ЭPAIII

- 1. Между планетами Кин и Дза существует небольшой торговый путь, по которому регулярно следуют грузовые шаттлы. Производство в секторе небольшое, так что больше одного грузового шаттла на пути не бывает. В неизвестный заранее момент пути торгового корабля в произвольном месте маршрута появляется пиратский звездолёт с излучателем, способным дистанционно и мгновенно похитить груз. Галактическая полиция на планете Кин тут же получает сигнал о присутствии пиратского корабля и может также мгновенно остановить ограбление, но только если расстояние от нее до звездолёта пиратов или шаттла торговцев меньше, чем между шаттлом торговцев и звездолётом пиратов. Что случается чаще --- ограбления или спасения кораблей? Покажите формально.
- 2. Пусть имеется последовательность случайных величин X_1,\ldots,X_n , где X_i равновероятно принимает значения $1,2,\ldots,100$. Пусть $A_0=\varnothing$, тогда с вероятностью 1/3: $A_n=A_{n-1}\backslash X_n$ и с вероятностью 2/3: $A_n=A_{n-1}\cup X_n$.
 - а) Найдите математическое ожидание мощности множества A_n
 - б) Найдите $\lim_{n\to\infty} \mathbb{E}(|A_n|)$
- 3. Пульпик после долгих скитаний решил заняться наукой на планете Кондисиус. Однажды во время научных изысканий ему повстречались случайные матричные операторы. Но он никак не может посчитать, чему равно математическое ожидание длины отображенного вектора. ПОМОГИТЕ ПУЛЬПИКУ! Пусть $A_{s\times s}$ это случайная матрица, где каждый элемент имеет нормальное распределение с параметрами 0 и 1/s. Пусть имеется некоторый вектор $v_{s\times 1}$. Докажите, что $\mathbb{E}(||Av||^2) = ||v||^2$.

15.8. Kosmowar, blue part solutions, 24.12.2016

- 1. Здесь могло быть ваше решение
- 2. По неравенству треугольника должны быть выполнены следующие условия

$$\begin{cases} X+Y > 1\\ X+1 > Y\\ Y+1 > X \end{cases}$$

Получаем некоторую область на плоскости. Осталось посчитать вероятность оказаться там. Совместная функция плотности

$$f(x,y) = \frac{e^{-y}}{2}$$

Считаем интеграл

$$\frac{1}{2} \left(\int_0^1 \int_{1-x}^{1+x} e^{-y} dy dx + \int_1^2 \int_{-1+x}^{1+x} e^{-y} dy dx \right)$$

Первое слагаемое:

$$\int_{0}^{1} \int_{1-x}^{1+x} e^{-y} dy dx = -\int_{0}^{1} e^{-y} \Big|_{1-x}^{1+x} dx = -\int_{0}^{1} e^{-1-x} - e^{-1+x} dx =$$

$$= \int_{0}^{1} e^{-1} e^{x} dx - \int_{0}^{1} e^{-1} e^{-x} dx = \left(1 - \frac{1}{e}\right)^{2}$$

Второе слагаемое:

$$\int_{1}^{2} \int_{-1+x}^{1+x} e^{-y} dy dx = -\int_{1}^{2} e^{-y} \Big|_{-1+x}^{1+x} dx = \int_{1}^{2} e^{1-x} - e^{-1-x} dx =$$

$$= e \int_{1}^{2} e^{-x} dx - e^{-1} \int_{1}^{2} e^{-x} dx = \left(e - \frac{1}{e}\right) \left(1 - \frac{1}{e}\right) \frac{1}{e} = \left(1 + \frac{1}{e}\right) \left(1 - \frac{1}{e}\right)^{2}$$

Итого:

$$\frac{1}{2} \left(\int_0^1 \int_{1-x}^{1+x} e^{-y} dy dx + \int_1^2 \int_{-1+x}^{1+x} e^{-y} dy dx \right) = \frac{1}{2} \left(2 + \frac{1}{e} \right) \left(1 - \frac{1}{e} \right)^2$$

- 3. Всё просто. Мы посещаем центр после каждой планеты, последовательно посещений будет выглядеть так: $A_0, A_i, A_0, A_j, \ldots$, значит для центр это половина всех посещенных мест. Значит в первом пункте ответ 1/2. Все остальные планеты симметричны и посещения равномерно между ними распределяются, во втором пункте получаем $\frac{1}{2n}$.
- 4. Заметим, что $\sum_{i=1}^n \vartheta_i = 1$. Взяв матожидание слева и справа получаем $\mathbb{E}\vartheta_i = \frac{1}{n}$. Корреляцию считаем также, заметим что

$$\begin{aligned} &\operatorname{Corr}(\sum_{i=1}^n \vartheta_i, \vartheta_j) = 0 \\ &\sum_{i=1}^n \operatorname{Corr}(\vartheta_i, \vartheta_j) = 0 \\ &\sum_{i\neq j}^n \operatorname{Corr}(\vartheta_i, \vartheta_j) = -1 \\ &(n-1)\operatorname{Corr}(\vartheta_i, \vartheta_j) = -1 \\ &\operatorname{Corr}(\vartheta_i, \vartheta_j) = \frac{-1}{n-1} \end{aligned}$$

5.

$$\mathbb{P}(\varepsilon_n \leqslant x) = 1 - \mathbb{P}(\varepsilon_n > x) = 1 - \prod_{i=1}^n \mathbb{P}(Y_i > x) = 1 - (1 - x)^n.$$

Теперь второй пункт:

$$\lim_{n \to \infty} \mathbb{P}(n\varepsilon_n \leqslant x) = \lim_{n \to \infty} \mathbb{P}(\varepsilon_n \leqslant x/n) = \lim_{n \to \infty} 1 - \left(1 - \frac{x}{n}\right)^n = 1 - \lim_{n \to \infty} \left(1 - \frac{x}{n}\right)^n = 1 - e^{-x}$$

6.
$$\mathbb{E}|\xi - a| = \int_{-\infty}^{a} (a - x)dP(x) + \int_{a}^{\infty} (x - a)dP(x)$$

Воспользуемся формулой Ньютона — Лейбница и возьмём производную по a. Мы имеем право это сделать, так как интеграл сходится.

$$\frac{\partial \mathbb{E}|\xi - a|}{\partial a} = \int_{-\infty}^{a} dP(x) - \int_{a}^{\infty} dP(x) = 0$$
$$\mathbb{P}(\xi \leqslant a) = \mathbb{P}(\xi > a)$$

Следовательно a это медиана.

- 7. Здесь могло быть ваше решение.
- 8. Рассмотрим поведение отдельного числа. С какой вероятностью оно будет присутствовать во множестве? С вероятностью p_{n-1} оно уже было внутри, его уберут от туда с вероятностью $1/100 \cdot 1/3$, если его не было, то его добавят с вероятностью $1/100 \cdot 2/3$. Получаем

$$p_n = \frac{299}{300}p_{n-1} + \frac{2}{300}(1 - p_{n-1})$$
$$p_n = \frac{297}{300}p_{n-1} + \frac{2}{300}$$

Получаем разностное уравнение, $\lambda = \frac{297}{300}$. Частное решение $C = \frac{2}{3}$. Начальное условие $p_0 = 0$.

$$p_0 = A + \frac{2}{3} = 0$$
$$A = -\frac{2}{3}$$

Решение:

$$p_n = -\frac{2}{3} \cdot \left(\frac{297}{300}\right)^n + \frac{2}{3}$$

Отлично, через индикаторы матожидание можно разложить на сумму вероятностей. Получаем:

$$\mathbb{E}|A_n| = 100p_n = -\frac{2 \cdot 100}{3} \cdot \left(\frac{297}{300}\right)^n + \frac{2 \cdot 100}{3}$$

Берём предел и получаем

$$\frac{2 \cdot 100}{3}$$

9.

$$\mathbb{E}(||Av||^2) = \mathbb{E}\left(\sum_{i=1}^{s} (Av)_i^2\right) = \sum_{i=1}^{s} \mathbb{E}(Av)_i^2 = s\mathbb{E}(Av)_i^2$$
$$(Av)_i = \sum_{j=1}^{s} \xi_{i,j} v_j$$

Так как мы умножаем, то нормально распределенную случайную величину на константу, её дисперсия становится равной $\frac{v_j^2}{s}$. Сумма нормальных величин будет иметь дисперсию: $\frac{1}{s}\sum_{i=1}^s v_i^2$. Тогда $\mathbb{E}(Av)_i^2 = \frac{1}{s}\sum_{i=1}^s v_i^2$. Умножаем на s и получаем норму вектора v в квадрате.

15.9. Экзамен за 1 семестр, 24.12.2016

Граф Сен-Жермен извлекает карты в случайном порядке из стандартной колоды в 52 карты без возвращения. Рассмотрим три события: A — «первая карта — тройка»; B — «вторая карта — семёрка»; C — «третья карта — дама пик».

- События A и B зависимы, события B и C зависимы.
- |B| События A и B независимы, события B и C независимы.
- |C| События A и B независимы, события B и C зависимы.
- |D| События A и B зависимы, события B и C независимы.
- |E| События A и независимы, события B и C зависимы.
- | F | *Нет верного ответа.*

Вопрос 2 🐥 Монетку подбрасывают три раза. Рассмотрим три события: A — «хотя бы один раз выпала решка»; B — «хотя бы один раз выпал орёл»; C — «все три раза выпал орёл».

- [A] События A и B совместны, события A и C совместны.
- В События A и B несовместны, события B и C несовместны.
- |C| События A и B несовместны, события B и C совместны.
- $\boxed{\mathsf{D}}$ События A и B несовместны, события A и C совместны.
- События A и B совместны, события A и C несовместны.
- | F | *Нет верного ответа.*

В школе три девятых класса: 9A, 9Б и 9В. В 9A классе - 50% отличники, в 9Б -30%, в 9В — 40%. Если сначала равновероятно выбрать один из трёх классов, а затем внутри класса равновероятно выбрать школьника, то вероятность выбрать отличника равна

A
$$(3+4+5)/3$$

G Нет верного ответа.

$$\boxed{\mathbf{B}} \ 3/(3+4+5)$$

$$\boxed{\mathsf{C}}$$
 0.5

Вопрос 4 \clubsuit Если $\mathbb{P}(A)=0.2, \mathbb{P}(B)=0.5, \mathbb{P}(A|B)=0.3,$ то

$$\boxed{\mathbf{A}} \ \mathbb{P}(A \cup B) = 0.8$$

$$\mathbb{P}(A \cap B) = 0.15$$

$$\boxed{\mathbf{B}} \ \mathbb{P}(B \cup A) = 0.3$$

$$\boxed{\mathbf{D}} \ \mathbb{P}(A \cap B) = 0.05$$

F Нет верного ответа.

Вопрос 5 👫 Монетка выпадает орлом с вероятностью 0.2. Вероятность того, что при 10 подбрасываниях монетка выпадет орлом хотя бы один раз, равна

A $C_{10}^1 0.8^1 0.2^9$

|D| 2/10

G Нет верного ответа.

 $1 - 0.8^{10}$

 $\begin{bmatrix} E \end{bmatrix} 0.2^{10}$

C 1/2

 $[F] C_{10}^1 0.2^1 0.8^9$

Вопрос 6 🖡 Среди покупателей магазина мужчин и женщин поровну. Женщины тратят больше 1000 рублей с вероятностью 60%, а мужчины — с вероятностью 30%. Только что был пробит чек на сумму 1234 рубля. Вероятность того, что покупателем была женщина равна

|A| 1/3

|C| 0.3

2/3

D = 0.5

| F | *Нет верного ответа.*

Вопрос 7 \clubsuit Если $F_X(x)$ — функция распределения случайной величины, то

 $\overline{|\mathsf{A}|}$ величина X дискретна

 $\blacksquare \mathbb{P}(X \in (a; b] = F_X(b) - F_X(a)$

 $oxed{\mathbb{C}}$ величина X непрерывна

 $\boxed{\mathrm{D}} \ F_X(x)$ может принимать отрицательные

значения

 $oxed{\mathsf{E}}\ F_X(x)$ может принимать значение 2016

 $\boxed{\mathbf{F}} \lim_{x \to -\infty} F_X(x) = 1$

[G] Нет верного ответа.

Вопрос 8 🗘 Функцией плотности случайной величины может являться функция

 $f(x) = \begin{cases} \frac{1}{x^2}, x \in [1, +\infty) \\ 0, \text{ иначе} \end{cases}$

 $left[\mathbf{B}]$ $f(x) = egin{cases} -1, x \in [-1, 0] \\ 0, \ \mathbf{иначe} \end{cases}$

 $\boxed{\textbf{C}} \ f(x) = \begin{cases} x - 1, x \in [0, 1 + \sqrt{3}] \\ 0, \text{ иначе} \end{cases}$

 $D f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2}$

- $[E] f(x) = \begin{cases} x^2, x \in [0, 2] \\ 0, \text{ иначе} \end{cases}$
- **F** Нет верного ответа.

A 0

C 2

E 6

8

D 5

F Нет верного ответа.

Вопрос 10 \clubsuit Известно, что $\mathbb{E}(X)=3$, $\mathbb{E}(Y)=2$, $\mathrm{Var}(X)=12$, $\mathrm{Var}(Y)=1$, $\mathrm{Cov}(X,Y)=2$. Корреляция $\mathrm{Corr}(X,Y)$ равна

 $\boxed{A} \frac{1}{\sqrt{12}}$

C $\frac{2}{\sqrt{13}}$

 $\frac{1}{\sqrt{2}}$

 $\boxed{\mathbf{B}} \quad \frac{2}{12}$

 $\boxed{D} \frac{1}{12}$

F Нет верного ответа.

Вопрос 11 \clubsuit Известно, что $\mathbb{E}(X)=3$, $\mathbb{E}(Y)=2$, $\mathrm{Var}(X)=12$, $\mathrm{Var}(Y)=1$, $\mathrm{Cov}(X,Y)=2$. Дисперсия $\mathrm{Var}(2X-Y+4)$ равна

A 53

C 49

E 45

B 57

41

F Нет верного ответа.

Вопрос 12 \clubsuit Если случайные величины X и Y имеют совместное нормальное распределение с нулевыми математическими ожиданиями и единичной ковариационной матрицей, то

- $\overline{\mathbf{A}}$ распределение X может быть дискретным
- \fbox{B} существует такое a>0, что $\Bbb P(X=a)>0$
- $\boxed{\mathsf{C}} \ \mathsf{Corr}(X,Y) > 0$
- $\boxed{\mathsf{D}} \ \forall \alpha \in [0,1] : \mathsf{Var}(\alpha X + (1-\alpha)Y) = 0$
- $oxed{E}$ $\operatorname{Corr}(X,Y) < 0$
- X и Y независимы
- G Нет верного ответа.

Вопрос 13 🦂	Если $\operatorname{Corr}(X,Y) =$	0.5 и $\mathrm{Var}(X)=$	= Var(Y), to $Corr(Z)$	(X+Y,2Y-7) равна	
$ \begin{array}{c c} A & 0 \\ B & \sqrt{2}/3 \\ \hline C & 1/2 \\ \hline & \sqrt{3}/2 \\ \end{array} $	$oxed{E} \sqrt{3}/3$ $oxed{F} 1$ $oxed{G}$ Нет верного ответа.				
Вопрос 14 👫	Известно, что $\xi \sim$	$U[0;\ 1]$. Вероятн	ность $\mathbb{P}(0.2 < \xi <$	0.7) равна	
$ \begin{array}{c} \boxed{A} \ 1/4 \\ \boxed{B} \ \int_0^1 \frac{1}{\sqrt{2\pi}} e^{-} \end{array} $	$t^{2/2} dt$	$ \begin{array}{ c c }\hline C & 0.17 \\\hline D & \int_{0.2}^{0.7} \frac{1}{\sqrt{2\pi}} e^{-} \end{array} $	$t^{2/2} dt$	 1/2 F Нет верного ответа.	
Вопрос 15 👫	Случайные величи	ны $\xi_1, \ldots, \xi_n, $	независимы и і	имеют таблицы распределения	
		$egin{array}{ c c c c } \xi_i & - & & & & & & & & & & & & & & & & & $	$\begin{array}{c c} 1 & 1 \\ \hline 2 & 1/2 \end{array}$		
Если $S_n = \xi_1 +$	$\ldots + \xi_n$, то предел	$\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n - \mathbb{E}[S_n]}{\sqrt{\operatorname{Var}(S_n)}}\right)$	>1) равен		
$\boxed{\mathbf{A}} \int_{-\infty}^{1} \frac{1}{\sqrt{2\pi}} \epsilon$	$e^{-t^2/2} dt$	$C \int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-t}$	$dt^{2/2} dt$	E 0.5	
$\boxed{\mathbf{B}} \int_{1}^{+\infty} \frac{1}{2} e^{-i\mathbf{r}}$	$^{t/2} dt$	$\int_1^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{\pi}{2}}$	$-t^2/2 dt$	F Нет верного ответа.	
величиной с м		данием 400 и д	исперсией 400. Ве	неотрицательной случайной роятность того, что за 100 дней вна	
A 0.9772		0.0227		E 0.3413	
B 0.1359		D 0.0553		F Нет верного ответа.	
	математическим	ожиданием 10	000 рублей. Сог	неотрицательной случайной гласно неравенству Маркова, ограничена сверху числом	
A 0.3413			E 0.5		
В неравенс0.2	тво Маркова здесь і	неприменимо	F 0.1359		
D 0.4			G Нет верного	ответа.	
Вопрос 18 • Размер выплаты страховой компанией является неотрицательной случайной величиной с математическим ожиданием 50 000 рублей и стандартным отклонением 10 000 рублей. Согласно неравенству Чебышёва, вероятность того, что очередная выплата будет отличаться от своего математического ожидания не более чем на 20 000 рублей, ограничена снизу числом					
3/4			E 1/4		
	тво Чебышёва здесі	неприменимо			
D 1/2			G Нет верного	ответа.	
		24	1		

Вопрос 19 \clubsuit Вероятность порвеличина ξ_i равна 1, если при i -Предел по вероятности последова	- -ом выстреле было попадание. 1	и равна 0 в противном случае.
	C 3/4D 2/5	■ 3/5 F Нет верного ответа.
Вопрос 20 👫 Правильный куб	ик подбрасывается 5 раз. Вероят	ность того, что ровно два раза
	$C 25/(2^53^5)$ $D 1/36$	$ E 1/(2^5 3^5) $ $ Hem верного ответа. $
Вопрос 21 ♣ Правильный куби числа выпавших шестерок равны		ическое ожидание и дисперсия
A 5/6 и 1/36 В 0 и 5/6 С 5/6 и 5/36	D 5/6 и 1/5E 1 и 5/6F 0 и 1	Нет верного ответа.
Вопрос 22 ♣ Правильный куб равняется	ик подбрасывается 5 раз. Наибо	лее вероятное число шестерок
A 5/6B только 0	С 5D только 1	0 и 1F Нет верного ответа.
Вопрос 23 ♣ Правильный кус выпавших очков равно	бик подбрасывается 5 раз. Мате	ематическое ожидание суммы
A 3.5B 18.5	17.5 D 18	E 21F Нет верного ответа.
Вопрос 24 ♣ Случайнь $\mathcal{N}\left(\begin{pmatrix}0\\0\\0\end{pmatrix};\begin{pmatrix}1&1/2\\1/2&1\end{pmatrix}\right)$ и фун При этом	нкцию плотности $f_{\xi,\eta}(x,y) =$	$\frac{1}{2\pi a} \exp\left(-\frac{1}{2a^2}(x^2 - bxy + y^2)\right).$
A $a = \sqrt{3/4}, b = 0$ B $a = 1, b = 0$	$C \ a = 1, b = 1$ $D \ a = 1/2, b = 1$	$a = \sqrt{3}/2, b = 1$ F Нет верного ответа.

Вопрос 25 Случайный вектор $(\xi,\eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$. Если случайный вектор z определён как $z=(\xi-0.5\eta,\eta)^T$, то

 $\boxed{\mathbf{A}} \ \xi - 0.5\eta \sim \mathcal{N}(0;1)$

$$\boxed{\mathbf{B}} \ z \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

вектором

- $\boxed{\mathrm{D}}$ компоненты вектора z коррелированы
- $\boxed{\mathbf{E}} \ (\xi 0.5\eta)^2 + 2\eta^2 \sim \chi_2^2$
- $\overline{\mathbf{F}}$ компоненты вектора z зависимы
- z является двумерным нормальным $\overline{\mathsf{G}}$ Hem верного ответа.

Вопрос 26 • Случайный вектор $(\xi,\eta)^T$ имеет нормальное распределение $\mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}\right)$. Условное математическое ожидание и условная дисперсия равны

- $\mathbb{E}(\xi|\eta=1) = 1/2, \text{Var}(\xi|\eta=1) = 3/4$
- $\boxed{\mathbb{E}} \ \mathbb{E}(\xi|\eta=1)=1, \mathrm{Var}(\xi|\eta=1)=1$
- $\boxed{\mathbb{B}} \ \mathbb{E}(\xi|\eta=1)=1, \mathrm{Var}(\xi|\eta=1)=1/2$
- $\boxed{\mathbf{F}} \ \mathbb{E}(\xi|\eta=1) = 0, \mathrm{Var}(\xi|\eta=1) = 1$
- C $\mathbb{E}(\xi|\eta=1) = 1/2, \text{Var}(\xi|\eta=1) = 1$
- G Нет верного ответа.

 $\boxed{\mathbb{D}} \ \mathbb{E}(\xi|\eta=1) = 1/2, \operatorname{Var}(\xi|\eta=1) = 1/4$

В вопросах 27–30 совместное распределение пары величин X и Y задано таблицей:

$$Y = -1$$
 $Y = 0$ $Y = 1$
 $X = 0$ 0 1/6 1/6
 $X = 2$ 1/3 1/6 1/6

Вопрос 27 \clubsuit Математическое ожидание случайной величины X при условии Y=0 равно

 \boxed{A} -1

C 1/6

E 1/3

1

D 0

F Нет верного ответа.

Вопрос 28 \clubsuit Вероятность того, что X=0 при условии Y<1 равна

1/4

C 1/2

E 3/4

B 1/6

D 0

F Нет верного ответа.

Вопрос 29 \clubsuit — Дисперсия случайной величины Y равна

A 1

 $E \, 1/3$

 $\boxed{\mathbf{B}}$ -1

2/3

F Нет верного ответа.

Вопрос 30 Ковариация случайных величин X и Y равна:

-1/3

 $\begin{bmatrix} \mathbf{C} \end{bmatrix} 0$

E - 2/3

 $\boxed{B} \ 2/3$

D 1/3

F Нет верного ответа.

В вопросах 31 и 32 совместное распределение пары величин X и Y задается функцией плотности

$$f(x) = \begin{cases} 9x^2y^2, x \in [0,1], y \in [0,1] \\ 0, \text{ иначе} \end{cases}$$

Вопрос 31 Вероятность того, что X < 0.5, Y < 0.5 равна:

A 1/128

C 1/96

E 1/4

B 1/16

1/64

F Нет верного ответа.

Вопрос 32 \clubsuit Условное распределение X при условии Y=1 имеет вид

 $f(x) = \begin{cases} 3x^2, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$

 $\boxed{\mathbf{D}} \ f(x) = \begin{cases} 9x, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$

В Не определено

 $[E] \ f(x) = \begin{cases} 9x^2, x \in [0, 1] \\ 0, \ \text{иначе} \end{cases}$

 $\boxed{\mathbf{C}} \ f(x) = \begin{cases} 3x, x \in [0, 1] \\ 0, \text{ иначе} \end{cases}$

F Нет верного ответа.

15.10. Тренировочный вариант к кр 3, 01.04.2017

- 1. Даны значения случайной выборки $x_1=5,\,x_2=3,\,x_3=4,\,x_4=4,\,x_5=11.$
 - а) Выпишите вариационный ряд.
 - б) Найдите выборочные моду, медиану, среднее.
 - в) Найдите несмещённую оценку дисперсии X_i .
 - г) Выпишите и нарисуйте выборочную функцию распределения.
- 2. В обозримой части Вселенной водится всего пять Лиловых кальмароандроидов. Храбрый исследователь глубокого космоса Юрий поймал трёх из них. После поимки Юрий измерил их гипнопотенциал (в рунах): $x_1 = 2.5$, $x_2 = 9.5$, $x_3 = 6$.
 - а) Помогите Юрию построить несмещённую оценку для неизвестных науке $\mathbb{E}(X_i)$ и $\mathrm{Var}(X_i)$.
 - б) Как изменились бы ответы на предыдущий вопрос, если бы Юрий после отлова очередного кальмароандроида отпускал бы его обратно на просторы Вселенной?
- 3. Исследователь Юрий начал собирать данные о довольно распространённых Саблезубых хомозоидах Их гипнопотенциал имеет нормальное распределение. По выборке из 10 хомозоидов оказалось, что средний выборочный гипнопотенциал равен 5 рун с выборочным стандартным отклонением в 2 руны.
 - а) Постройте 90%-ый доверительный интервал для математического ожидания гипнопотенциала хомозоида.
 - б) Постройте 90%-ый доверительный интервал для дисперсии гипнопотенциала хомозоида.
- 4. Величины X_1, X_2, \dots независимы и имеют экпоненциальное распределение с параметром λ . По выборке из 100 наблюдений оказалось, что $\sum x_i = 150$ и $\sum x_i^2 = 1500$. Исследователь Афанасий хочет оценить параметр λ .

- а) Найдите оценку λ методом максимального правдоподобия.
- б) Оцените теоретическую информацию Фишера *I*.
- в) Постройте 95%-ый доверительный интервал для λ с помощью λ_{ML} .
- г) Также исследователь Афанасий хочет оценить параметр $\theta = \mathbb{P}(X_i > 1)$. Найдите θ_{ML} и постройте 95%-ый доверительный интервал для θ .
- 5. Согласно опросу ВЦИОМ 2011 года 8 из 1600 опрошенных россиян 32% согласны с утверждением «Солнце вращается вокруг Земли».
 - а) Постройте 90%-ый доверительный интервал для доли россиян, согласных с данным утверждением.
 - б) В 2007 году при том же размере выборке согласных с утверждением о Солнце было 28%. Постройте 95%-ый доверительный интервал для изменения доли согласных с утверждением.
 - в) (*) Что подразумевает ВЦИОМ под фразой «Статистическая погрешность не превышает 3,4%»?
- 6. Величины $X_1, X_2, ...$ независимы и имеют биномиальное распределение Bin(n=20, p).
 - а) Найдите оценку p методом моментов.
 - б) Найдите дисперсию оценки \hat{p}_{MM} .
 - в) Является ли данная оценка несмещённой? состоятельной?
 - r) Найдите информацию Фишера для отдельного наблюдения i(p).
 - д) Сформулируйте неравенство Рао-Крамера для данного случая.
 - е) Является ли оценка \hat{p}_{MM} эффективной среди несмещённых?
 - ж) Постройте 95%-ый доверительный интервал для p.
- 7. Величины $X_1, X_2, ...$ независимы и распределены нормально $\mathcal{N}(0;4)$.
 - а) Как распределены величины $Y=(X_1^2+X_2^2+X_3^2)/4,\,Z=(X_1^2+X_2^2)/(X_3^2+X_4^2)$ и $W=X_1/\sqrt{X_2^2+X_3^2}$?
 - б) Для каждой из величин Y, Z и W найдите с помощью таблиц такое пороговое число a, которое величина превышает с вероятностью 0.05.
- 8. Ресторанный критик ходит по трём типам ресторанов (дешевых, бюджетных и дорогих) города N для того, чтобы оценить среднюю стоимость бизнес-ланча. В городе 30% дешевых ресторанов, 60% бюджетных и 10% дорогих. Стандартное отклонение цены бизнес-ланча составляет 10, 30 и 60 рублей соответственно. В ресторане критик заказывает только кофе. Стоимость кофе в дешевых/бюджетных/дорогих ресторанах составляет 150, 300 и 600 рублей соответственно, а бюджет исследования 30 000 рублей.
 - а) Какое количество ресторанов каждого типа нужно посетить критику, чтобы как можно точнее оценить среднюю стоимость бизнес-ланча при заданном бюджетном ограничении (округлите полученные значения до ближайших целых)?
 - б) Вычислите дисперсию соответствующего стратифицированного среднего.

 $^{^8}$ более свежий я на скорую руку не нашёл, https://wciom.ru/index.php?id=236&uid=111345.

9. Величины X_i независимы и одинаково распределены. Предлагается три оценки математического ожидания:

$$\hat{\mu}_A = \frac{2X_1 + X_2 + X_3 + X_4 + \dots + X_n}{n+1}$$

$$\hat{\mu}_B = \frac{2X_1 - X_2 + X_3 + X_4 + \dots + X_n}{n}$$

$$\hat{\mu}_C = \frac{X_1 + 2X_2 + 3X_3 + 4X_4 + \dots + nX_n}{n(n+1)}$$

- а) Какие оценки являются несмещёнными? состоятельными?
- б) Какая из несмещённых оценок является эффективной?

15.11. Тренировочный вариант кр 3, решения

- 1. a) 3, 4, 4, 5, 11
 - б) Мода: 4, медиана: 4, среднее: 5.4
 - **B**)

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}^2 \right) = \frac{1}{5-1} ((3-5.4)^2 + (4-5.4)^2 \cdot 2 + (5-5.4)^2 + (11-5.4)^2) = 10.3$$

2. a)
$$\overline{X} = \frac{1}{3}(2.5 + 9.5 + 6) = 6$$

$$\hat{\sigma}^2 \cdot \frac{N-n}{N-1} = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}^2 \right) \frac{N-n}{N-1} = \frac{1}{3-1} ((2.5-6)^2 + (9.5-6)^2 + (6-6)^2) \cdot \frac{5-3}{5-1} = 6.125$$

- б) Оценка мат. ожидания не изменится, для оценки дисперсии не нужно делать поправку на конечную генеральную совокупность
- 3. a) $5 1.83 \frac{2}{\sqrt{10}} < \mu < 5 + 1.83 \frac{2}{\sqrt{10}}$ $3.84 < \mu < 6.16$

6)
$$\frac{4 \cdot (10-1)}{\chi_{0.95;9}^2} < \sigma^2 < \frac{4 \cdot (10-1)}{\chi_{0.05;9}^2}$$

 $\frac{4 \cdot (10-1)}{16.919} < \sigma^2 < \frac{4 \cdot (10-1)}{3.325}$
 $2.13 < \sigma^2 < 10.83$

4. a)
$$L(x,\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda \sum_{i=1}^{n} x_i} \\ \ln L(x,\lambda) = n \ln \lambda - \lambda \sum_{i=1}^{n} x_i \to \max_{\lambda} \\ \frac{\partial \ln L}{\partial \lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} x_i|_{\lambda = \hat{\lambda}} = 0 \Rightarrow \hat{\lambda} = \frac{1}{X} = \frac{2}{3} \\ \frac{\partial^2 \ln L}{\partial \lambda^2} = -\frac{n}{\lambda^2}|_{\lambda = \hat{\lambda}} < 0$$

б)
$$\hat{I}_{\text{reop}} = -\mathbb{E}\left(\frac{\partial^2 \ln L}{\partial \lambda^2}\right) = \frac{n}{\hat{\lambda}^2} = n\overline{X}^2 = 100\frac{9}{4} = \frac{900}{4}$$

B)
$$\frac{1}{\overline{X}} - 1.96\sqrt{\frac{1}{n\overline{X}^2}} < \lambda < \frac{1}{\overline{X}} + 1.96\sqrt{\frac{1}{n\overline{X}^2}}$$
 $\frac{2}{3} - 1.96\frac{2}{30} < \lambda < \frac{2}{3} + 1.96\frac{2}{30}$

r)
$$\mathbb{P}(X_i > 1) = \int_1^\infty \lambda e^{-\lambda x} dx = \lambda \frac{e^{-\lambda x}}{-\lambda} = -e^{-\lambda x} \mid_1^\infty = e^{-\lambda} = \theta$$
$$e^{-\lambda} = \theta \Rightarrow \hat{\lambda} = -\ln \hat{\theta}$$
$$\hat{\theta}_{ML} = e^{-\frac{2}{3}}$$

$$\begin{split} f(\hat{\theta}) &= -\ln \theta - \frac{1}{\theta}(\hat{\theta} - \theta) + o(\hat{\theta}) \\ \operatorname{Var}(\hat{\lambda}) &= \frac{1}{\theta^2} \operatorname{Var}(\hat{\theta}) \\ \widehat{\operatorname{Var}}(\hat{\lambda}) &\approx \frac{1}{\hat{\theta}^2} \widehat{\operatorname{Var}}(\hat{\theta}) \\ \frac{9}{400} &\approx \frac{1}{e^{-\frac{4}{3}}} \widehat{\operatorname{Var}}(\hat{\theta}) \Rightarrow \widehat{\operatorname{Var}}(\hat{\theta}) \approx \frac{9}{400} e^{-\frac{4}{3}} \\ e^{-\frac{2}{3}} &- 1.96 \sqrt{\frac{9}{400}} e^{-\frac{4}{3}} < \theta < e^{-\frac{2}{3}} + 1.96 \sqrt{\frac{9}{400}} e^{-\frac{4}{3}} \end{split}$$

5. a)
$$0.32 - 1.65\sqrt{\frac{0.32 \cdot (1 - 0.32)}{1600}} $0.3$$$

6)
$$0.04 - 1.96\sqrt{\frac{0.32 \cdot 0.68 + 0.28 \cdot 0.72}{1600}} < p_1 - p_2 < 0.04 + 1.96\sqrt{\frac{0.32 \cdot 0.68 + 0.28 \cdot 0.72}{1600}}$$

 $0.0083 < p_1 - p_2 < 0.07$

6. Пусть всего имеется m случайных величин X_1, X_2, \dots, X_m

a)
$$\mathbb{E}(X_i) = np, \, n\hat{p} = \overline{X}, \, \hat{p}_{MM} = \frac{\overline{X}}{n} = \frac{\sum_{i=1}^{m} X_i}{nm}$$

6)
$$\operatorname{Var}(\hat{p}_{MM}) = \operatorname{Var}\left(\frac{\sum_{i=1}^{m} X_i}{nm}\right) = \frac{1}{n^2 m^2} \operatorname{Var}(X_1 + \ldots + X_m) = \frac{m \operatorname{Var}(X_i)}{n^2 m^2} = \frac{n m p (1-p)}{n^2 m^2} = \frac{p (1-p)}{n m}$$

в)
$$\mathbb{E}(\hat{p}_{MM}) = \mathbb{E}\left(\frac{\sum_{i=1}^{m}X_{i}}{nm}\right) = \frac{1}{nm}m\mathbb{E}(X_{i}) = \frac{mnp}{nm} = p \Rightarrow$$
 оценка является несмещённой Проверим состоятельность несмещённой оценки с помощью неравенства Чебышёва: $\mathrm{Var}(\hat{p}_{MM}) = \frac{p(1-p)}{nm} \to_{m \to \infty} 0 \Rightarrow$ оценка является состоятельной

$$\begin{split} \text{r)} \ \ P(X=x) &= C_n^x p^x (1-p)^{n-x} \\ &\ln P(x,p) = \ln C_n^x + x \ln p + (n-x) \ln (1-p) \to \max_p \\ &\frac{\partial \ln P}{\partial p} = \frac{x}{p} - \frac{n-x}{1-p} \mid_{p=\hat{p}} = 0 \\ &\frac{\partial^2 \ln P}{\partial p^2} = -\frac{x}{p^2} - \frac{n-x}{(1-p)^2} \\ &i(p) = -\mathbb{E} \left(\frac{\partial^2 \ln P}{\partial p^2} \right) = \mathbb{E} \left(\frac{x}{p^2} + \frac{n-x}{(1-p)^2} \right) = \frac{np}{p^2} + \frac{n-np}{(1-p)^2} = \frac{n}{p(1-p)} \end{split}$$

д)
$$\operatorname{Var}(\hat{p})\geqslant \frac{1}{ni(p)}$$
, подставим найденное значение информации Фишера: $\frac{p(1-p)}{nm}\geqslant \frac{p(1-p)}{nm}$

е) Да

ж)
$$\frac{\sum_{i=1}^{m} X_i}{20m} - 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{mn}}$$

7.
$$Y \sim \chi_3^2$$
, $\mathbb{P}(Y > 7.815) = 0.05$, $Z \sim F_{2,2}$, $\mathbb{P}(Z > 19) = 0.05$, $\sqrt{2}W \sim t_2$, $\mathbb{P}(W > 2.91/\sqrt{2}) = 0.05$

$$8. \begin{cases} \operatorname{Var}(\overline{X}_S) = \frac{0.3^2 \cdot 10^2}{n_1} + \frac{0.6^2 \cdot 30^2}{n_2} + \frac{0.1^2 \cdot 60^2}{n_3} \to \min_{n_1, n_2, n_3} \\ 150 \cdot n_1 + 300 \cdot n_2 + 600 \cdot n_3 \leqslant 30000 \end{cases}$$

9. a)
$$\mathbb{E}(\mu_A) = \mathbb{E}\left(\frac{2X_1 + X_2 + \ldots + X_n}{n+1}\right) = \frac{1}{n+1}\left(2\mu + \underbrace{\mu + \ldots + \mu}_{n-1 \text{ pas}}\right) = \mu \Rightarrow$$
 несмещённая
$$\operatorname{Var}(\mu_A) = \operatorname{Var}\left(\frac{2X_1 + X_2 + \ldots + X_n}{n+1}\right) = \frac{1}{(n+1)^2}\left(4\sigma^2 + \sigma^2 + \ldots + \sigma^2\right) = \frac{n+3}{(n+1)^2}\sigma^2 \to_{n\to\infty} 0 \Rightarrow$$
 состоятельная

$$\mathbb{E}(\mu_B) = \mathbb{E}\left(\frac{2X_1 - X_2 + X_3 + X_4 + \ldots + X_n}{n}\right) = \frac{1}{n}\left(2\mu - \mu + \underbrace{\mu + \mu + \ldots + \mu}_{n-2 \text{ раза}}\right) = \frac{n-1}{n}\mu \Rightarrow \text{смещённая},$$

но асимптотически несмещённая

$$\mathrm{Var}(\mu_B) = \mathrm{Var}\left(\frac{2X_1 - X_2 + X_3 + X_4 + \ldots + X_n}{n}\right) = \frac{1}{n^2}\left(4\sigma^2 + \sigma^2 + \ldots + \sigma^2\right) = \frac{n+3}{n^2}\sigma^2 \to_{n\to\infty} 0 \Rightarrow$$
 состоятельная

$$\mathbb{E}(\mu_C) = \mathbb{E}\left(rac{X_1 + 2X_2 + 3X_3 + 4X_4 + \ldots + nX_n}{n(n+1)}
ight) = rac{rac{1}{2}n(n+1)\mu}{n(n+1)} = rac{1}{2}\mu \Rightarrow$$
 смещённая

$$\operatorname{Var}(\mu_C) = \operatorname{Var}\left(\frac{X_1 + 2X_2 + 3X_3 + 4X_4 + \dots + nX_n}{n(n+1)}\right) = \frac{1}{n^2(n+1)^2}(\sigma^2 + 4\sigma^2 + 9\sigma^2 \dots + n^2\sigma^2) = \frac{\frac{1}{6}n(n+1)(2n+1)\sigma^2}{n^2(n+1)^2} \to_{n\to\infty} 0$$

 \Rightarrow plim $\mu_C = \frac{1}{2}\mu \neq \mu \Rightarrow$ оцнека не является состоятельной.

15.12. Ещё один тренировочный вариант к кр 3, 01.04.2017

- 1. Для реализации случайной выборки $x=(-2,\,1,\,0,\,-1,\,2,\,-2)$ найдите:
 - а) выборочное среднее,
 - б) неисправленную выборочную дисперсию,
 - в) исправленную выборочную дисперсию,
 - г) выборочный второй начальный момент,
 - д) вариационный ряд,
 - е) первый член вариационного ряда,
 - ж) последний член вариационного ряда,
 - з) график выборочной функции распределения.
- 2. Случайные векторы $X=(X_1,\,X_2)$, $Y=(Y_1,\,Y_2)$ и $Z=(Z_1,\,Z_2)$ имеют следующие таблицы распределения:

	$X_2 = 1$	$X_2 = 2$		$Y_2 = 3$	$Y_2 = 4$	_		$Z_2 = 1$	$Z_2 = 2$
$X_1 = 1$	0.3	0.2	$Y_1 = 1$	0.25	0.25	2	$Z_1 = 1$	0.25	0.25
$bX_1 = 2$	0.2	0.3	$Y_1 = 2$	0.25	0.25	2	$Z_1 = 2$	0.25	0.25

- а) Является ли вектор $X=(X_1,\,X_2)$ случайной выборкой? Обоснуйте ответ!
- б) Является ли вектор $Y=(Y_1,Y_2)$ случайной выборкой? Обоснуйте ответ!
- в) Является ли вектор $Z = (Z_1, Z_2)$ случайной выборкой? Обоснуйте ответ!
- 3. Пусть $X=(X_1,\,\dots,\,X_n)$ случайная выборка из дискретного распределения с таблицей распределения

$$X \qquad -4 \qquad 0 \qquad 3$$

$$\mathbb{P}(\cdot) \quad 3/4 - \theta \quad 1/4 \quad \theta$$

- а) При помощи метода моментов, используя второй начальный момент, найдите оценку $\hat{\theta}$ неизвестного параметра θ .
- б) Для реализации случайной выборки $x=(0,\,0,\,-4,\,3,\,0)$ найдите числовое значение $\hat{\theta}.$

4. Пусть $X = (X_1, \, \dots, \, X_n)$ — случайная выборка из распределения с плотностью распределения

$$f(x;\,\theta)=\left\{ \begin{array}{ll} \frac{1}{\theta}xe^{-\frac{x}{\sqrt{\theta}}} & \text{при } x>0,\\ \\ 0 & \text{при } x\leqslant0, \end{array} \right.$$

где $\theta>0$ — неизвестный параметр распределения.

- а) При помощи метода максимального правдоподобия найдите оценку $\hat{\theta}$ неизвестного параметра $\theta.$
- б) Для реализации случайной выборки $x=(2,\,1,\,3,\,1)$ найдите числовое значение $\hat{ heta}.$
- 5. Пусть $X = (X_1, \, \dots, \, X_n)$ случайная выборка из распределения с плотностью распределения

$$f(x; \, \theta) = \left\{ egin{array}{ll} rac{6x(heta-x)}{ heta^3} & ext{при } x \in [0; \, heta], \ 0 & ext{при } x
otin [0; \, heta], \end{array}
ight.$$

где $\theta>0$ — неизвестный параметр распределения. Пусть $\hat{\theta}=\overline{X}.$

- а) Найдите $\mathbb{E}(\hat{\theta})$.
- б) Дайте определение несмещенной оценки.
- в) Является ли оценка $\hat{\theta} = \overline{X}$ несмещенной оценкой параметра θ ?
- г) Подберите константу c так, чтобы оценка $\widetilde{\theta}=c\widehat{\theta}$ была несмещенной оценкой параметра $\theta.$
- 6. Пусть $X = (X_1, \, \dots, \, X_n)$ случайная выборка из распределения с плотностью распределения

$$f(x;\,\theta) = \left\{ \begin{array}{ll} \frac{6x(\theta-x)}{\theta^3} & \text{при } x \in [0;\,\theta], \\ \\ 0 & \text{при } x \not\in [0;\,\theta], \end{array} \right.$$

где $\theta>0$ — неизвестный параметр распределения. Пусть $\hat{\theta}_n=\overline{X}_n$.

- а) Найдите предел по вероятности $\mathrm{plim}_{n \to \infty} \hat{\theta}_n$.
- б) Дайте определение состоятельной оценки.
- в) Является ли оценка $\hat{\theta}_n$ состоятельной оценкой параметра θ ?
- 7. Пусть $X=(X_1,\,X_2,\,X_3)$ случайная выборка из нормального распределения с неизвестным математическим ожиданием μ и известной дисперсией $\sigma^2=1$. Пусть $\hat{\theta}=\frac{X_1+X_3}{2}$.
 - а) Найдите информацию Фишера о параметре μ , заключенную в одном наблюдении случайной выборки.
 - б) Является ли оценка $\hat{\theta}$ несмещенной?
 - в) Сформулируйте неравенство Рао--Крамера.
 - г) Дайте определение эффективной оценки.
 - д) Является ли оценка $\hat{\theta}$ эффективной?

8. Для некоторой отрасли проведено исследование об оплате труда мужчин и женщин. Их зарплаты (тыс. руб. в месяц) приведены ниже:

мужчины	35	40	45	45	50
женщины	30	30	30	45	60

Предположим нормальность и независимость выборок для мужчин и женщин, а также равенство соответствующих дисперсий. Постройте 95%-й доверительный интервал для разности математическо ожиданий зарплат мужчин и женщин.

9. Стоимость выборочного исследования генеральной совокупности, состоящей из трех страт, определяется по формуле $TC = c_1n_1 + c_2n_2 + c_3n_3$, где c_i — цена наблюдения в i-й страте, а n_i — число наблюдений, которые приходятся на i-ю страту. Найдите n_1 , n_2 и n_3 , при которых дисперсия стратифицированного среднего достигает наименьшего значения, если бюджет исследования составляет 8000 и имеется следующая информация:

Страта	1	2	3
Среднее значение	30	40	50
Стандартная ошибка	5	10	20
Bec	25%	25%	50%
Цена наблюдения	1	5	10

15.13. Кр 3, демо-2, решение

1. a) $\frac{1}{3}$

б)

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{6} \left(\left(-2 + \frac{1}{3} \right)^{2} + \left(1 + \frac{1}{3} \right)^{2} + \left(0 + \frac{1}{3} \right)^{2} + \left(-1 + \frac{1$$

B)
$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = 2\frac{2}{9}$$

r)
$$\hat{\alpha}_2 = \frac{\sum_{i=1}^n X_i^2}{n} = \frac{1}{6}(4+1+0+1+4+4) = 2\frac{1}{3}$$

$$\mathbf{g}$$
) $-2, -2, -1, 0, 1, 2$

- e) -2
- **ж**) 2
- 2. а) Нет, так как X_1 и X_2 не являются независимыми
 - б) Нет, так как X_1 и X_2 принимают разные множества значений

3. a)
$$\mathbb{E}(X_i^2) = (-4)^2 \cdot \left(\frac{3}{4} - \theta\right) + 0 \cdot \frac{1}{4} + 3^2 \cdot \theta = 12 - 7\theta$$

 $\frac{1}{n} \sum_{i=1}^n X_i^2 = 12 - 7\theta, \hat{\theta}_{MM} = \frac{1}{7} \left(12 - \frac{\sum_{i=1}^n X_i^2}{n}\right)$

6)
$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}=\frac{1}{5}(0+0+16+9+0)=5, \hat{\theta}_{MM}=\frac{1}{7}(12-5)=1$$

4. a)
$$L(x,\theta) = \prod_{i=1}^{n} \frac{1}{\theta} x_i e^{\frac{-x_i}{\sqrt{\theta}}} = \frac{1}{\theta^n} e^{-\frac{1}{\sqrt{\theta}} \sum_{i=1}^{n} x_i} \prod_{i=1}^{n} x_i \ln L(x,\theta) = -n \ln \theta + \sum_{i=1}^{n} \ln x_i - \frac{1}{\sqrt{\theta}} \sum_{i=1}^{n} x_i \to \max_{\theta} \frac{\partial \ln L}{\partial \theta} = -\frac{n}{\theta} + \frac{1}{2\theta^{\frac{3}{2}}} \sum_{i=1}^{n} x_i \mid_{\hat{\theta}=\theta} = 0 \Rightarrow \hat{\theta}_{ML} = \frac{1}{4} \overline{X}^2$$

6)
$$\overline{X} = \frac{7}{4} \Rightarrow \hat{\theta}_{ML} = \frac{49}{64}$$

5. a)

$$\mathbb{E}(\hat{\theta}) = \mathbb{E}(\overline{X}) = \mathbb{E}\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{1}{n} \cdot n\mathbb{E}(X_1) = \int_{-\infty}^{+\infty} f(x)xdx = \int_0^{\theta} \frac{6x(\theta - x)}{\theta^3}xdx = \frac{6}{\theta^3} \int_0^{\theta} \left(x^2\theta - x^3\right) = \dots = \frac{1}{2}\theta$$

б)
$$\mathbb{E}(\hat{\theta}) = \theta$$

- в) Нет
- r) c = 2

6. a)
$$\operatorname{plim}_{n\to\infty} \hat{\theta}_n = \operatorname{plim}_{n\to\infty} \overline{X} = \mathbb{E}(X_1) = \frac{1}{2}\theta$$

6)
$$\hat{\theta} \stackrel{P}{\underset{n \to \infty}{\longrightarrow}} \theta$$

в) Так как $\mathrm{plim}_{n \to \infty} \, \hat{\theta}_n \neq \theta$, оценка не является состоятельной.

7. a)
$$f(x,\mu) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-\mu)^2}$$

$$\ln f(x,\mu) = -\frac{1}{2} \ln 2\pi - \frac{1}{2}(x-\mu)^2 \to \max_{\mu} \frac{\partial \ln f}{\partial \mu} = x - \mu \mid_{\mu = \hat{\mu}} = 0$$

$$\frac{\partial^2 \ln f}{\partial \mu^2} = -1 \Rightarrow i(\mu) = 1$$

б)
$$\mathbb{E}\left(\frac{X_1+X_2}{2}\right) = \frac{1}{2} \cdot 2 \cdot \mu = \mu \Rightarrow да$$

в)
$$\operatorname{Var}(\hat{p}) \geqslant \frac{1}{ni(p)}$$

8.
$$\overline{X}_{\rm M} = \frac{1}{5} \left(35 + 40 + 45 + 45 + 50\right) = 43$$

$$\overline{X}_{\rm K} = \frac{1}{5} \left(30 + 30 + 30 + 45 + 60\right) = 39$$

$$\hat{\sigma}_0^2 = \frac{(35 - 43)^2 + (40 - 43)^2 + (45 - 43)^2 \cdot 2 + (50 - 43)^2 + (30 - 39)^2 \cdot 3 + (45 - 39)^2 + (60 - 39)^2}{5 + 5 - 2} = 106.25$$

$$43 - 39 - 2.306\sqrt{106.25}\sqrt{\frac{1}{5} + \frac{1}{5}} < \mu_{\rm M} - \mu_{\rm K} < 43 - 39 + 2.306\sqrt{106.25}\sqrt{\frac{1}{5} + \frac{1}{5}}$$

$$-11 < \mu_{\rm M} - \mu_{\rm K} < 19$$

9.
$$\begin{cases} \operatorname{Var}(\overline{X}_S) = \frac{0.25^2 \cdot 5^2}{n_1} + \frac{0.25^2 \cdot 10^2}{n_2} + \frac{0.5^2 \cdot 20^2}{n_3} \to \min_{n_1, n_2, n_3} \\ n_1 + 5 \cdot n_2 + 10 \cdot n_3 \leqslant 8000 \end{cases}$$

15.14. Kp 3. 2017-04-01

- 1. Дана реализация случайной выборки: 1, 10, 7, 4, -2. Выпишите определения и найдите значения следующих характеристик:
 - а) вариационного ряда,
 - б) выборочного среднего,
 - в) выборочной дисперсии,
 - г) несмещенной оценки дисперсии,
 - д) выборочного второго начального момента.
 - е) Постройте выборочную функцию распределения.
- 2. Мама дяди Фёдора каждое лето приезжает в Простоквашино с тремя вечерними платьями. Средняя стоимость и дисперсия цены случайно выбранного платья (из трех) составляет 11 тысяч и 3 тысячи рублей соответственно. Рачительный кот Матроскин случайным образом выбирает одно из платьев и продаёт его как ненужное. Вычислите математическое ожидание и дисперсию стоимости двух оставшихся платьев.
- 3. Ресторанный критик ходит по трём типам ресторанов (дешевых, бюджетных и дорогих) города N для того, чтобы оценить среднюю стоимость бизнес-ланча. В городе 40% дешевых ресторанов, 50% бюджетных и 10% дорогих. Стандартное отклонение цены бизнес-ланча составляет 10, 30 и 60 рублей соответственно. В ресторане критик заказывает только кофе. Стоимость кофе в дешевых/бюджетных/дорогих ресторанах составляет 150, 300 и 600 рублей соответственно, а бюджет исследования 30 000 рублей.
 - а) Какое количество ресторанов каждого типа нужно посетить критику, чтобы как можно точнее оценить среднюю стоимость бизнес-ланча при заданном бюджетном ограничении (округлите полученные значения до ближайших целых)?
 - б) Вычислите дисперсию соответствующего стратифицированного среднего.
- 4. В «акции протеста против коррупции» в Москве 26.03.2017 по данным МВД приняло участие 8 000 человек. Считая, что население Москвы составляет 12 300 000 человек, постройте 95% доверительный интервал для истинной доли желающих участвовать в подобных акциях жителей России. Можно ли утверждать, что эта доля статистически не отличается от нуля?
- 5. Для некоторой отрасли проведено исследование об оплате труда мужчин и женщин. Их зарплаты (тыс. руб. в месяц) приведены ниже:

мужчины	50	40	45	45	35
женщины	60	30	30	35	30

- а) Считая, что распределение заработных плат мужчин хорошо описывается нормальным распределением, постройте
 - і. 99%-ый доверительный интервал для математического ожидания заработной платы мужчин,
 - іі. 90%-ый доверительный интервал для стандартного отклонения заработной платы мужчин.
- б) і. Сформулируйте предпосылки, необходимые для построения доверительно интервала для разности математических ожиданий заработных плат мужчин и женщин.

- іі. Считая предпосылки выполненными, постройте 90%-ый доверительный интервал для разности математических ожиданий заработных плат мужчин и женщин.
- ііі. Можно ли считать зарплаты мужчин и женщин одинаковыми?
- 6. Пусть $X = (X_1, \dots, X_n)$ случайная выборка из нормального распределения с нулевым математическим ожиданием и дисперсией θ .
 - а) Используя второй начальный момент, найдите оценку параметра θ методом моментов.
 - б) Сформулируйте определение несмещённости оценки и проверьте выполнение данного свойства для оценки, найденной в пункте а).
 - в) Сформулируйте определение состоятельности оценки и проверьте выполнение данного свойства для оценки, найденной в пункте а).
 - \mathbf{r}) Найдите оценку параметра θ методом максимального правдоподобия.
 - д) Вычислите информацию Фишера о параметре θ , заключенную в n наблюдениях случайной выборки.
 - е) Сформулируйте неравенство Рао-Крамера-Фреше.
 - ж) Сформулируйте определение эффективности оценки и проверьте выполнение данного свойства для оценки, найденной в пункте г).
- 7. Аэрофлот утверждает, что 10% пассажиров, купивших билет, не являются на рейс. В случайной выборке из шести рейсов аэробуса А320, имеющего 180 посадочных мест, число не явившихся оказалось: 5, 10, 25, 0, 17, 30. Пусть число пассажиров X, не явившихся на рейс, хорошо описывается распределением Пуассона $\mathbb{P}(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}, k\in\{0,1,2,\ldots\}$. При помощи метода максимального правдоподобия найдите:
 - а) оценку $\mathbb{E}(X)$ и её числовое значение по выборке,
 - б) оценку дисперсии X и её числовое значение по выборке,
 - в) оценку стандартного отклонения X и её числовое значение по выборке,
 - r) оценку вероятности того, что на рейс явятся все пассажиры, а также найдите её числовое значение по выборке.
 - д) Используя асимптотические свойства оценок максимального правдоподобия, постройте 95% доверительный интервал для $\mathbb{E}(X)$.
 - e) С помощью дельта-метода найдите 95% доверительный интервал для вероятности полной загруженности самолёта.

15.15. Кр 3. 2017-04-01, решения

- 1. a) -2, 1, 4, 7, 10
 - б) 4

B)
$$S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = 18$$

r)
$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = 22.5$$

д)
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = 34$$

e)
$$F_n(x) = \begin{cases} 0, & x < -2\\ \frac{1}{5}, & -2 \le x < 1\\ \frac{2}{5}, & 1 \le x < 4\\ \frac{3}{5}, & 4 \le x < 7\\ \frac{4}{5}, & 7 \le x < 10\\ 1, & x \geqslant 1 \end{cases}$$

2.
$$E(X_1+X_2)=2\cdot 11000=22000$$

$$\operatorname{Var}(X_1+X_2)=\operatorname{Var}(X_1)+\operatorname{Var}(X_2)+2\operatorname{Cov}(X_1,X_2)=\operatorname{Var}(X_1)+\operatorname{Var}(X_2)-\frac{2\operatorname{Var}(X_1)}{N-1}=2\cdot 3000-\frac{2\cdot 3000}{3-1}=3000$$

3. а) Необходимо решить следующую задачу:

$$\begin{cases} \frac{0.4^2 \cdot 10^2}{n_1} + \frac{0.5^2 \cdot 30^2}{n_2} + \frac{0.1^2 \cdot 60^2}{n_3} \to \min_{n_1, n_2, n_3} \\ 150n_1 + 300n_2 + 600n_3 \leqslant 30000 \end{cases}$$

Выпишем функцию Лагранжа и найдём её частные производные по $n_1,\,n_2$ и n_3 :

$$L(n_1, n_2, n_3, \lambda) = \frac{0.4^2 \cdot 10^2}{n_1} + \frac{0.5^2 \cdot 30^2}{n_2} + \frac{0.1^2 \cdot 60^2}{n_3} + \lambda(150n_1 + 300n_2 + 600n_3 - 30000)$$

$$\frac{\partial L}{\partial n_1} = -\frac{0.4^2 \cdot 10^2}{n_1^2} + 150\lambda \quad \Rightarrow \quad 150\lambda = \frac{0.4^2 \cdot 10^2}{n_1^2}$$

$$\frac{\partial L}{\partial n_2} = -\frac{0.5^2 \cdot 30^2}{n_2^2} + 300\lambda \quad \Rightarrow \quad 150\lambda = \frac{0.5^2 \cdot 30^2}{2n_2^2}$$

$$\frac{\partial L}{\partial n_2} = -\frac{0.1^2 \cdot 60^2}{n_3^2} + 600\lambda \quad \Rightarrow \quad 150\lambda = \frac{0.1^2 \cdot 60^2}{4n_3^2}$$

Выразим n_2 и n_3 через n_1 :

$$\frac{0.4 \cdot 10}{n_1} = \frac{0.5 \cdot 30}{\sqrt{2}n_2} \Rightarrow n_2 = \frac{15n_1}{4\sqrt{2}}$$
$$\frac{0.4 \cdot 10}{n_1} = \frac{0.1 \cdot 60}{2n_3} \Rightarrow n_3 = \frac{6n_1}{8}$$

Подставим всё в бюджетное ограничение:

$$150n_1 + 300 \cdot \frac{15n_1}{4\sqrt{2}} + 600 \cdot \frac{6n_1}{8} = 30000$$

Откуда получаем: $n_1 = 21.5 \approx 22$, $n_2 \approx 57$, $n_3 \approx 16$.

6)
$$\operatorname{Var}(\overline{X}_S) = \sum_{l=1}^L \frac{w_l^2 \cdot \sigma_l^2}{n_l} = \frac{0.4^2 \cdot 10^2}{22} + \frac{0.5^2 \cdot 30^2}{57} + \frac{0.1^2 \cdot 60^2}{16} \approx 6.92$$

4.
$$\hat{p} = \frac{8000}{12300000} = \frac{2}{3075}$$
, $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \approx 7.27 \cdot 10^{-6}$, $z_{\frac{\alpha}{2}} = 1.96$
 $\frac{2}{3075} - 1.96 \cdot 7.27 \cdot 10^{-6}
 $0.00064$$

Поскольку 0 не входит в доверительный интервал, утверждать, что доля статистически не отличается от нуля нельзя.

$$\begin{array}{ll} \text{5.} & \text{a)} & \text{i.} \ \, \overline{Y} = 43, \, \hat{\sigma}_Y^2 = 32.5, \, t_{0.005,4} = 4.6 \\ & 43 - 4.6 \cdot \sqrt{\frac{32.5}{5}} < \mu < 43 + 4.6 \cdot \sqrt{\frac{32.5}{5}} \\ & 31.27 < \mu < 54.72 \\ & \text{ii.} \ \, \chi_{0.95,4}^2 = 9.49, \, \chi_{0.05,4}^2 = 0.71 \\ & \frac{32.5 \cdot 4}{9.49} < \sigma^2 < \frac{32.5 \cdot 4}{0.71} \\ & 13.7 < \sigma^2 < 183 \end{array}$$

б) і.
$$X_1, \dots, X_{n_X} \sim \mathcal{N}(\mu_X, \sigma_X^2), Y_1, \dots, Y_{n_Y} \sim \mathcal{N}(\mu_Y, \sigma_Y^2), \sigma_X^2 = \sigma_Y^2 = \sigma_0^2$$
, выборки независимы

ii.
$$\overline{Y} - \overline{X} = 43 - 37 = 6$$

 $\hat{\sigma}_0^2 = \frac{\sum_{i=1}^{n_X} (X_i - \overline{X})^2 + \sum_{i=1}^{n_Y} (Y_i - \overline{Y})^2}{n_X + n_Y - 2} = \frac{680 + 130}{5 + 5 - 2} = 101.25$
 $t_{0.95,8} = 1.86$
 $6 - 1.86\sqrt{101.25}\sqrt{\frac{1}{5} + \frac{1}{5}} < \mu_Y - \mu_X < 6 + 1.86\sqrt{101.25}\sqrt{\frac{1}{5} + \frac{1}{5}}$
 $-5.83 < \mu_Y - \mu_X < 17.83$

ііі. Да, так как ноль входит в доверительный интервал.

- 6. а) Выборочный второй начальный момент: $\frac{1}{n}\sum_{i=1}^n X_i^2$. Теоретический второй начальный момент: $\mathbb{E}(X^2)=\mathrm{Var}(X)+(\mathbb{E}X)^2=\theta$ $\hat{\theta}_{MM}=\frac{1}{n}\sum_{i=1}^n X_i^2$
 - б) $\mathbb{E}(\hat{\theta}_{MM}) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i^2) = \theta$ оценка несмещённая.
 - в) $\operatorname{Var}(\hat{\theta}_{MM}) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i}^{2}) = \frac{3\theta^{2}-\theta^{2}}{n} \underset{n\to\infty}{\longrightarrow} 0$ оценка состоятельная ($\mathbb{E}(X^{4}) = 3\theta^{2}$).

г)

$$\begin{split} L(x,\theta) &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\theta}} \exp\left(-\frac{1}{2}\frac{x_i^2}{\theta}\right) = \frac{1}{(\sqrt{2\pi\theta})^n} \exp\left(-\frac{1}{2\theta}\sum_{i=1}^n x_i^2\right) \\ l(x,\theta) &= -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\theta - \frac{1}{2\theta}\sum_{i=1}^n x_i^2 \\ \frac{\partial l}{\partial \theta} &= -\frac{n}{2\theta} + \frac{1}{2\theta^2}\sum_{i=1}^n x_i^2 \\ \hat{\theta}_{ML} &= \frac{\sum_{i=1}^n x_i^2}{n} \end{split}$$

д)

$$\begin{split} \frac{\partial^2 l}{\partial \theta^2} &= \frac{n}{2\theta^2} - \frac{1}{\theta^3} \sum_{i=1}^n x_i^2 \\ -\mathbb{E}\left(\frac{\partial^2 l}{\partial \theta^2}\right) &= -\frac{n}{2\theta^2} + \frac{1}{\theta^3} \cdot n\theta = \frac{n}{2\theta^2} \\ I(\theta) &= \frac{n}{2\theta^2} \end{split}$$

- e) $Var(\hat{\theta}) \geqslant \frac{1}{I(\theta)}$
- ж) $\operatorname{Var}(\hat{\theta}_{ML}) = \operatorname{Var}\left(\frac{\sum_{i=1}^n x_i^2}{n}\right) = \frac{1}{n^2} \cdot n \operatorname{Var}(X_1^2) = \frac{1}{n} (\mathbb{E}(X_1^4) \mathbb{E}(X_1^2)^2) = \frac{2\theta^2}{n}$ Так как $\operatorname{Var}(\hat{\theta}_{ML}) = \frac{1}{I(\theta)}, \, \hat{\theta}_{ML}$ эффективная оценка.
- 7. а) Вспомним, что для распределения Пуассона $\mathbb{E}(X) = \mathrm{Var}(X) = \lambda$

$$\begin{split} L(x,\lambda) &= \prod_{i=1}^n e^{-\lambda} \frac{\lambda^{x_i}}{x_i!} = e^{-n\lambda} \lambda^{\sum_{i=1}^n x_i} \prod_{i=1}^n \frac{1}{x_i!} \\ l(x,\lambda) &= -n\lambda + \ln \lambda \sum_{i=1}^n x_i - \sum_{i=1}^n \ln x_i! \\ \frac{\partial l}{\partial \lambda} &= -n + \frac{1}{\lambda} \sum_{i=1}^n x_i \\ \hat{\lambda}_{ML} &= \overline{X} \end{split}$$

Значение по выборке: $\overline{X} = 14.5$

б) см. предыдущий пункт

B)
$$\hat{\sigma}^2 = \sqrt{\lambda_{ML}} = \sqrt{14.5}$$

r)
$$\mathbb{P}(X=0) = \frac{\lambda^0 e^{-\lambda}}{0!} = e^{-\lambda} \Rightarrow \widehat{\mathbb{P}(X=0)} = e^{-\hat{\lambda}} = e^{-\overline{X}}$$

- д) $\left[14.5-1.96\sqrt{\frac{14.5}{6}};14.5+1.96\sqrt{\frac{14.5}{6}}\right]$, где 1.96 критическое значение $\mathcal{N}(0;1)$. Конечно, этот результат верен только при больших n. Мы усиленно делаем вид, что n=6 велико. Полученный нами интервал может быть довольно далёк от 95%-го.
- е) В данном случае: $g(\hat{\lambda}) = e^{-\hat{\lambda}}$, $g'(\hat{\lambda}) = -e^{-\hat{\lambda}}$. И доверительный интервал имеет вид:

$$\left[e^{-\overline{X}} - 1.96\sqrt{\frac{e^{-2\overline{X}}\overline{X}}{n}}; e^{-\overline{X}} + 1.96\sqrt{\frac{e^{-2\overline{X}}\overline{X}}{n}}\right]$$
$$\left[e^{-14.5} - 1.96\sqrt{\frac{e^{-29}14.5}{6}}; e^{-14.5} + 1.96\sqrt{\frac{e^{-29}14.5}{6}}\right]$$

Снова отметим, что наш интервал может на самом деле быть далеко не 95%-ым, так наше n=6 мало для серьёзного применения метода максимального правдоподобия.

15.16. Кр 3. ИП. 2017-04-01

Главная мораль: байесовский подход — это всего лишь формула условной вероятности.

1. Задача о целебных лягушках:)

У одного вида лягушек самки обладают целебными свойствами. Самцы и самки встречаются равновероятно. Неподалёку видны аж две лягушки данного вида, но издалека неясно кто.

Определите вероятность того, что среди этих лягушек есть хотя бы одна целебная, в каждой из ситуаций:

- а) Самцы квакают, самки нет, со стороны лягушек слышно кваканье, но не разобрать, одной лягушки или двух.
- б) Самцы и самки квакают по разному, но одинаково часто. Только что послышался отдельный квак одной из лягушек и это квак самца.

2. Яичный бой

Саша и Маша играют в «яичный бой». Перед ними корзина яиц. В начале боя они берут по одному яйцу и бьют их острыми концами. Каждое яйцо в корзине обладает своей «силой», все силы — разные. Более сильное яйцо разбивает более слабое. Внешне яйца не отличимы. Сила яйца не убывает при ударах. Разбитое яйцо выбрасывают, побеждённый берёт новое, а победитель продолжает играть прежним.

Какова вероятность того, что Маша победит в 11-ом раунде, если она уже победила 10 раундов подряд?

3. Классика жанра

Перед нами определение бета-распределения $Beta(\alpha, \beta)$:

$$f(x) \propto egin{cases} x^{lpha-1} (1-x)^{eta-1}, \ ext{если} \ x \in [0;1] \ 0, \ ext{иначе}. \end{cases}$$

Блондинка Анжелика хочет оценить неизвестную вероятность встретить динозавра, p. Она предполагает, что динозавры встречаются каждый день независимо от других с постоянной вероятностью. Априорно Анжелика считает, что неизвестное p имеет бета-распределение Beta(2,3). За 20 дней Анжелика 5 раз видела динозавра. Для краткости обозначим вектором y все имеющиеся наблюдения. Величина y_i — результат i-го дня: 1, если динозавр встретился, и 0 иначе.

- а) Чему, по-мнению Анжелики, равны априорные $\mathbb{E}(p)$, мода распределения p?
- б) Найдите апостериорное распределение f(p|y).
- в) Найдите апостериорные ожидание $\mathbb{E}(p|y)$ и моду.
- ${\bf r}$) Найдите условное распределение y_{21} с учётом имеющихся данных.
- 4. Рассмотрим следующий код в stan.

```
1 data {
  int<lower=1> N x;
   int<lower=1> N y;
   real y[N_y];
   real x[N_x];
7 parameters {
   real mu x;
   real mu_y;
   real<lower=0> sigma_x;
   real<lower=0> sigma y;
12 }
13 model {
   for (n \times in 1:N \times)
    x[n_x] \sim normal(mu_x, sigma_x);
15
16
   for (n_y in 1:N_y) {
    y[n_y] ~ normal(mu_y, sigma_y);
19
   mu_x \sim normal(0, 100);
   mu_y \sim normal(0, 100);
   sigma_x \sim exponential(50);
   sigma_y ~ exponential(50);
23
24 }
25 generated quantities {
   delta = mu_x - mu_y;
   ratio = sigma_x / sigma_y;
28
```

- а) Выпишите предполагаемую модель для данных.
- б) Выпишите априорное распределение.
- в) Байесовский интервал для каких величин позволяет построить данный код?
- г) Какие предпосылки мешают применить в данном случае классический доверительный интервал для разности математических ожиданий, основанный на F-распределении?

5. Просто красивая задача про выборку:)

Есть неизвестное количество чисел. Среди этих чисел одно число встречается строго больше 50% раз. Ведущий показывает числа исследователю Акану в некотором порядке. Когда все числа закончатся, ведущий скажет «всё». Задача Акана — определить, какое число встречается чаще всех. Проблема в том, что Акан так готовился к контрольной по теории вероятностей, что устал. И больше 10 чисел запомнить не в состоянии.

Предложите алгоритм, которой позволит Акану определить искомое число.

15.17. Kp 4

I. Теоретический минимум

В пунктах 1, 3, 11 и 12 предполагается, что $X=(X_1,\ldots,X_n)$ и $Y=(Y_1,\ldots,Y_m)$ — две независимые случайные выборки из нормальных распределений $N(\mu_X,\sigma_X^2)$ и $N(\mu_Y,\sigma_Y^2)$ соответственно.

- 1. Приведите формулу статистики, при помощи которой можно проверить гипотезу H_0 : $\sigma_X^2 = \sigma_Y^2$. Укажите распределение этой статистики при верной гипотезе H_0 .
- 2. Приведите формулу информации Фишера о параметре θ , содержащейся в одном наблюдении случайной выборки.
- 3. Приведите формулу статистики, при помощи которой можно проверить гипотезу $H_0\colon \mu_X-\mu_Y=\Delta_0$ при условии, что дисперсии σ_X^2 и σ_Y^2 неизвестны, но равны между собой. Укажите распределение этой статистики при верной гипотезе H_0 .
- 4. Дайте определение критической области.
- 5. Приведите формулу плотности нормального распределения $\mathcal{N}(\mu, \sigma^2)$.
- 6. Приведите формулы границ доверительного интервала с уровнем доверия $(1-\alpha)$, $\alpha \in (0; 1)$, для вероятности появления успеха в случайной выборке $X = (X_1, \ldots, X_n)$ из распределения Бернулли с параметром $p \in (0; 1)$.
- 7. Дайте определение несмещенной оценки $\hat{\theta}$ для неизвестного параметра $\theta \in \Theta$.
- 8. Дайте определение эффективной оценки $\hat{\theta}$ для неизвестного параметра $\theta \in \Theta$.
- 9. Приведите формулу выборочной дисперсии.
- 10. Приведите формулу выборочной функции распределения.
- 11. Приведите формулы границ доверительного интервала с уровнем доверия $(1-\alpha), \alpha \in (0;\ 1),$ для μ_X при условии, что дисперсия σ_X^2 известна.
- 12. Укажите распределение статистики $\frac{\overline{X} \mu_X}{\sigma / \sqrt{n}}$.

II. Задачи

- 1. В ходе анкетирования ста сотрудников банка «Альфа» были получены ответы на вопрос о том, сколько времени они проводят на работе ежедневно. Среднее выборочное оказалось равным 9.5 часам, а выборочное стандартное отклонение 0.5 часа.
 - а) На уровне значимости 5 % проверьте гипотезу о том, что сотрудники банка «Альфа» в среднем проводят на работе 10 часов, против альтернативной гипотезы о том, что сотрудники банка «Альфа» в среднем проводят на работе менее 10 часов.

- б) Найдите точное P-значение для наблюдаемой статистики из пункта (а).
- в) Сформулируйте предпосылки, которые были использованы вами для выполнения пункта (a).
- г) На уровне значимости 5 % проверьте гипотезу о H_0 : $\sigma^2 = 0.3$.
- 2. Проверка сорока случайно выбранных лекций показала, что студент Халявин присутствовал только на 16 из них. На уровне значимости 5 % проверьте гипотезу о том, что Халявин посещает в среднем половину лекций.
- 3. В ходе анкетирования двадцати сотрудников банка «Альфа» были получены ответы на вопрос о том, сколько времени они проводят на работе ежедневно. Среднее выборочное оказалось равным 9.5 часам, а выборочное стандартное отклонение 0.5 часа. Аналогичные показатели для 25 сотрудников банка «Бета» составили 9.8 и 0.6 часа соответственно.
 - а) На уровне значимости 5 % проверьте гипотезу о равенстве математических ожиданий времени, проводимого на работе сотрудниками банков «Альфа» и «Бета».
 - б) Сформулируйте предпосылки, которые были использованы вами для выполнения пункта (а).
 - в) На уровне значимости 5 % проверьте гипотезу о равенстве дисперсий времени, проводимого на работе сотрудниками банков «Альфа» и «Бета».
- 4. Вася решил проверить известное утверждение о том, что бутерброд падает маслом вниз. Для этого он провел серию из 200 испытаний. Ниже приведена таблица с результатами:

Бутерброд	Маслом вниз	Маслом вверх
Число наблюдений	105	95

Можно ли утверждать, что бутерброд падает маслом вниз так же часто, как и маслом вверх? При ответе на вопрос используйте уровень значимости $5\,\%$.

5. Пусть $X=(X_1,\ldots,X_{100})$ — случайная выборка из нормального распределения с математическим ожиданием μ и дисперсией ν . Оба параметра μ и ν неизвестны. Используя следующие данные $\sum_{i=1}^{100} x_i = 30, \sum_{i=1}^{100} x_i^2 = 146$ и $\sum_{i=1}^{100} x_i^3 = 122$ с помощью теста отношения правдоподобия проверьте гипотезу H_0 : $\nu=1$ на уровне значимости 5 %.

15.18. Кр 4, решения

1. a)
$$t_{obs} = \frac{\overline{X} - \mu}{\hat{\sigma} / \sqrt{n}} = \frac{9.5 - 10}{0.5 / \sqrt{100}} = -10$$

В таблице для $t_{0.975;100-1}$ находим $-t_{crit}=-1.66$.

Поскольку $t_{obs} < -t_{crit}$, основная гипотеза отвергается.

б)
$$p - value \approx 0$$

B)
$$X_1, ..., X_{100} \sim \mathcal{N}(\mu, \sigma^2)$$

r)
$$\gamma_{obs} = \frac{\hat{\sigma^2}}{\sigma_0^2}(n-1) = \frac{0.5}{0.3}(100-1) = 165$$

В таблице находим нужное значение $\chi^2_{0.975;100-1}$, $\gamma_{crit}=128$.

Так $\gamma_{obs} > \gamma_{crit}$, основная гипотеза отвергается.

2. $\hat{p} = \frac{16}{40} = 0.4$, проверять будем двустороннюю гипотезу.

$$z_{obs} = \frac{\hat{p}-p}{\sqrt{\hat{p}(1-\hat{p})/n}} = \frac{0.4-0.5}{0.4\cdot0.6/40} = -16.(6)$$

В таблице нормального распределения находим значение $z_{0.975}$, $z_{crit}=1.96$.

Так как $|t_{obs}| > t_{crit}$, основная гипотеза отвергается.

3. a)
$$\hat{\sigma}_0^2 = \frac{\hat{\sigma}_{\alpha}^2(n_{\alpha}-1) + \hat{\sigma}_{\beta}^2(n_{\beta}-1)}{n_{\alpha}+n_{\beta}-2} = \frac{0.25 \cdot 19 + 0.36 \cdot 24}{20 + 25 - 2} = 0.31$$

$$\frac{\overline{X} - \overline{Y}}{\hat{\sigma}_0 \sqrt{\frac{1}{n_{\alpha}} + \frac{1}{n_{\beta}}}} \sim t_{n_{\alpha}+n_{\beta}-2}$$

$$t_{obs} = \frac{9.5 - 9.8}{0.56 \sqrt{\frac{1}{20} + \frac{1}{25}}} = -1.79$$

$$t_{crit} = 2.02$$

Поскольку $|t_{obs}| < t_{crit}$, нет оснований отвергать H_0 .

б) Выборки независимы, дисперсии неизвестны, но равны, $X_1, \dots, X_{n_\alpha} \sim \mathcal{N}(\mu_X, \sigma_X^2)$, $X_1, \dots, Y_{n_\beta} \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$.

B)
$$\frac{\hat{\sigma}_{\alpha}^2}{\hat{\sigma}_{\beta}^2} \sim F_{n_{\alpha-1},n_{\beta-1}}$$

$$F_{obs} = \frac{0.5}{0.6} \approx 0.83$$

$$F_{crit,0.975} = 2.35, F_{crit,0.025} = 0.41$$

Поскольку $F_{crit,0.025} < F_{obs} < F_{crit,0.975}$, нет оснований отвергать H_0 .

4. $H_0: p=0.5$, где p- вероятность того, что бутерброд упадёт маслом вниз.

$$\begin{split} \hat{p} &= \frac{105}{200} = 0.525 \\ z_{obs} &= \frac{\hat{p} - p}{\sqrt{\hat{p}(1 - \hat{p})/n}} = \frac{0.525 - 0.5}{(0.525 \cdot 0.475/200)} = 20 \\ z_{crit} &= 1.96 \end{split}$$

Так как $t_{obs} > t_{crit}$, основная гипотеза отвергается.

5. $LR \sim \chi_1^2$, так как в основной гипотезе одно уравнение. Выпишем функцию правдоподобия и найдём $\hat{\mu}_{ML}$ и $\hat{\nu}_{ML}$.

$$L = \prod_{i=1}^{100} \frac{1}{\sqrt{2\pi\nu}} \exp\left(-\frac{1}{2} \frac{(x_i - \mu)^2}{\nu}\right) = \frac{1}{(\sqrt{2\pi\nu})^{100}} \exp\left(-\frac{1}{2\nu} \sum_{i=1}^{100} (x_i - \mu)^2\right)$$

$$l = -\frac{100}{2} \ln(2\pi) - \frac{100}{2} \ln\nu - \frac{1}{2\nu} \sum_{i=1}^{100} (x_i - \mu)^2$$

$$\frac{\partial l}{\partial \mu} = \frac{1}{\nu} \sum_{i=1}^{100} (x_i - \mu) \Rightarrow \hat{\mu}_{ML} = \frac{\sum_{i=1}^{100} x_i}{100} = 0.3$$

$$\frac{\partial l}{\partial \nu} = -\frac{100}{2\nu} + \frac{1}{2\nu^2} \sum_{i=1}^{100} (x_i - \mu)^2 \Rightarrow \hat{\nu}_{ML} = 1.37$$

Тогда $LR = 2(l(\hat{\mu}_{ML}, \hat{\nu}_{ML}) - l(\hat{\mu}_{ML}, \nu = 1))$ имеет вид:

$$Q_{obs} = 2\left(-50\ln(2\pi) - 50\ln 1.37 - \frac{1}{2\cdot 1.37}\cdot 137 + 50\ln(2\pi) + 0 + \frac{1}{2}\cdot 137\right) = 5.5$$

Из таблицы: $Q_{crit}=3.84$. Поскольку $Q_{obs}>Q_{crit}$, основная гипотеза отвергается.

A χ^2_{m+n-2}

 $C t_{m+n-2}$

 $\mid \mathbf{E} \mid F_{m,n-2}$

 $F_{m,n}$

 $\boxed{\mathbf{D}} F_{m+1,n+1}$

F Нет верного ответа.

Вопрос 2 🕹 Для построения доверительного интервала для разности математических ожиданий по двум независимым нормальным выборкам размера m и n в случае неизвестных равных дисперсий используется распределение

 $A \mathcal{N}(0; m+n-2)$

 $\boxed{\mathsf{E}} t_{m+n}$

 $\boxed{\mathrm{B}} \chi^2_{m+n-2}$

F Нет верного ответа.

Для проверки гипотезы о равенстве дисперсий используются две независимые Вопрос 3 🌲 нормальные выборки размером 25 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 36, по второй -49. Тестовая статистика может быть равна

A 2.13

C 1.56

1.36

D 1.17

F *Нет верного ответа.*

Вопрос 4 🖡 При проверке гипотезы о равенстве долей можно использовать распределение

A χ^2_{m+n-2}

 $\mathcal{N}(0;1)$

 $\lfloor E \rfloor t_{m-1,n-1}$

 $|B| t_{m+n}$

 $\boxed{\mathrm{D}} t_{m+n-2}$

F Нет верного ответа.

Пусть $\hat{\sigma}_1^2$ и $\hat{\sigma}_2^2$ — несмещённые оценки дисперсий, полученные по независимым нормальным выборкам размером m и n соответственно. Тогда статистика $\hat{\sigma}_1^2/\hat{\sigma}_2^2$ имеет распределение

 $|A| F_{m+1,n+1}$

 $\boxed{\mathsf{C}} t_{m+n-2}$

 $[E] F_{m,n}$

 $B F_{m,n-2}$

 $\boxed{\mathbf{D}} \chi^2_{m \perp n-2}$

Нет верного ответа.

Требуется проверить гипотезу о равенстве математических ожиданий по независимым нормальным выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

|A| 1/2

1/4

E 1/14

B 1/7

D 1/49

F Нет верного ответа.

Вопрос 7 🐥 В методе главных компонент

А первая главная компонента сильнее всего коррелирована с первой переменной

выборочная корреляция первой и второй главных компонент равна нулю

С выборочная дисперсия первой главной компоненты равна единице

D выборочная корреляция первой и второй главных компонент равна единице

Е выборочная дисперсия первой главной компоненты минимальна

| F | *Нет верного ответа.*

Функция правдоподобия пропоры пропорциональна			1 \ / 1
$\exp(-a^2)$	$\boxed{C} \exp(-a^2 + a^2)$	$a(a) - \exp(-a)$	$\boxed{E} \; \exp(a^2 + 2a)$
$\boxed{\mathrm{B}} \ \exp(-a) + \exp(-a^2 + a)$	$\boxed{\mathrm{D}} \exp(-a) - \mathrm{e}$	$\exp(-a^2 + a)$	F Нет верного ответа.
Вопрос 9 \clubsuit Величины $X_1, X_2,$ Оказалось, что $\bar{X}_{10}=3$. Оценка $\hat{\theta}_M$			иную выборку с $\mathbb{E}(X_i) = 2\theta - 1$
А Недостаточно данных	2		E 15.5
B 3	D 1		F Нет верного ответа.
Вопрос 10 \clubsuit Величины $X_1, X_2,$ Оказалось, что $\bar{X}_{10}=3$. Оценка $\hat{\theta}_{N}$			
A 1	C 2		Недостаточно данных
B 15.5	D 3		F Нет верного ответа.
Вопрос 11 👫 Нелогарифмирова	нная функция пр	равдоподобия	
 А возрастает по оцениваемому п В убывает по оцениваемому п С асимпотитически распредел может принимать значе Вопрос 12 ♣ Оценка метода мо А не применима для дискретновеличин В всегда несмещённая С эффективнее оценки м правдоподобия 	араметру $ heta$ лена $\mathcal{N}(0;1)$ ения больше ментов	значения F Нет верного D не может бы	ыть получена в малой выборке т знания точного закона ния
-		оена оценка мак	симального правдоподобия \hat{a}
A 5	C 1		E 3
<u> </u>	D 4		F Нет верного ответа.
Вопрос 14 ♣ Есть два неизвестн против альтернативной гипотезы утверждение об асимптотическом	о том, что хотя бі	ы одно из равенс	
$oxed{A}$ И при H_0 , и при H_a , $LR\sim\chi$	2	$lacksquare$ $lacksquare$ И при H_0 , и	при $H_a, LR \sim \chi_2^2$
Если верна H_0 , то $LR \sim \chi_2^2$		Е Если верна	H_0 , то $LR \sim \chi_1^2$
$oxed{\mathbb{C}}$ Если верна H_a , то $LR \sim \chi_2^2$		F Нет верного	ответа.

дисперсией 1, проверяется гипотеза $H_0: \mu = 10$ против $H_a: \mu > 10$. Выборочное среднее оказалось равно 9. Тогда нулевая гипотеза

- |A| отвергается при $\alpha=0.05$, не отвергается при $\alpha=0.01$
- |B| отвергается при $\alpha=0.01$, не отвергается при $\alpha = 0.05$
- С Отвергается на любом разумном уровне значимости
- |D| отвергается при $\alpha = 0.1$, не отвергается при $\alpha = 0.05$
- Не отвергается на любом разумном уровне значимости
- | F | *Нет верного ответа.*

Вопрос 22 🐥

По выборке из 5 наблюдений X_1, \dots, X_5 , имеющей экспоненциальное распределение, для проверки гипотезы о математическом ожидании $H_0: \mu = \mu_0$ против $H_a: \mu \neq \mu_0$, можно считать, что величина $\frac{\bar{X}-\mu_0}{\sqrt{\hat{\sigma}^2/n}}$ имеет распределение

 $A t_5$

 $E \mid \mathcal{N}(0,1)$

B χ_4^2

 $D \chi_5^2$

Нет верного ответа.

Вопрос 23 🕹

Вася 25 раз подбросил монетку, 10 раз она выпала «орлом», 15 раз — «решкой». При проверке гипотезы о том, что монетка — «честная», Вася может получить следующее значение тестовой статистики

C 1.02

E -1.02

B 0.4

F | *Нет верного ответа.*

Вопрос 24 🐥

По выборке X_1,\ldots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии H_0 : $\sigma^2=30$ против H_a : $\sigma^2\neq 30$. Известно, что $\sum_{i=1}^{n} (X_i - \bar{X})^2 = 270$. Тестовая статистика может быть равна

А Не хватает данных

F Нет верного ответа.

Вопрос 25 🕏

По выборке X_1,\ldots,X_n , имеющей нормальное распределение с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии H_0 : $\sigma^2 = 30$ против H_a : $\sigma^2 \neq 30$. Тестовая статистика будет иметь распределение

 $A \mid t_n$

 χ^2_{n-1}

 $\begin{array}{|c|c|}\hline C & \chi_n^2 \\\hline D & \mathcal{N}(0,1) \end{array}$

F Нет верного ответа.

Вопрос 26 🕹

Дана реализация выборки: 7, -1, 3, 0. Первая порядковая статистика принимает значение

 $|\mathbf{A}| 0$

C 7

|E|3

-1

D 2.25

| F | *Нет верного ответа.*

Вопрос 27 🐥

Дана реализация выборки: 7, -1, 3, 0. Выборочная функция распределения в точке 0 принимает значение

0.5

 $C \mid 0.75$

 $E \mid 0.25$

| F | *Нет верного ответа.*

Вопрос 28 🦂

Трёх случайно выбранных студентов 2-го курса попросили оценить сложность Теории вероятностей и Статистики по 10 бальной шкале

	Аким	Ариадна	Темуужин
Теория вероятностей	6	7	8
Статистика	5	6	10

Тест знаков отвергает гипотезу о том, что Статистика и Теории вероятностей одинаково сложны в пользу альтернативы, что Статистика проще при уровне значимости

1/2

B 3/8

C 1/3

D 0.05

E 0.1

F Нет верного ответа.

Вопрос 29 ૈ

Преподаватель в течение 10 лет ведет статистику о посещаемости лекций. Он заметил, что перед контрольной работой посещаемость улучшается. Преподаватель составил следующую таблицу сопряженности

	Контрольная будет	Контрольной не будет
Пришло больше половины курса	35	80
Пришло меньше половины курса	5	200

Если T — статистика Пирсона, а k — число степеней свободы её распределения, то

 $\boxed{A} T < 52, k = 1$

C T > 52, k = 3

[E] T < 52, k = 4

B T > 52, k = 2

T > 52, k = 1

F Нет верного ответа.

Вопрос 30 🌲

Экзамен принимают два преподавателя: Б.Б. Злой и Е.В. Добрая. Они поставили следующие оценки:

Е.В. Добрая 6 4 7 8

Б.Б. Злой 2 3 10 8 3

Значение статистики Вилкоксона для гипотезы о совпадении распределений оценок равно

22.5

B 7.5

C 20

D 19

E 20.5

F Нет верного ответа.

16. 2017-2018

16.1. Теоретический минимум к кр 1

- 1. Классическое определение вероятности
- 2. Определение условной вероятности
- 3. Определение независимости случайных событий
- 4. Формула полной вероятности
- 5. Формула Байеса
- 6. Функция распределения случайной величины. Определение и свойства.
- 7. Функция плотности. Определение и свойства.
- 8. Математическое ожидание. Определения для дискретного и абсолютно непрерывного случаев. Свойства.
- 9. Дисперсия. Определение и свойства.
- 10. Законы распределений. Определение, $\mathbb{E}(X)$, $\mathrm{Var}(X)$:
 - а) Биномиальное распределение
 - б) Распределение Пуассона
 - в) Геометрическое распределение
 - г) Равномерное распределение
 - д) Экспоненциальное распределение

16.2. Задачный минимум к кр 1

- 1. Пусть $\mathbb{P}(A) = 0.3, \mathbb{P}(B) = 0.4, \mathbb{P}(A \cap B) = 0.1.$ Найдите
 - a) $\mathbb{P}(A|B)$
 - б) $\mathbb{P}(A \cup B)$
 - в) Являются ли события A и B независимыми?
- 2. Пусть $\mathbb{P}(A) = 0.5, \mathbb{P}(B) = 0.5, \mathbb{P}(A \cap B) = 0.25$. Найдите
 - a) $\mathbb{P}(A|B)$
 - б) $\mathbb{P}(A \cup B)$
 - в) Являются ли события A и B независимыми?
- 3. Карлсон выложил кубиками слово КОМБИНАТОРИКА. Малыш выбирает наугад четыре кубика и выкладывает их в случайном порядке. Найдите вероятность того, что при этом получится слово КОРТ.
- 4. Карлсон выложил кубиками слово КОМБИНАТОРИКА. Малыш выбирает наугад четыре кубика и выкладывает их в случайном порядке. Найдите вероятность того, что при этом получится слово РОТА.

- 5. В первой урне 7 белых и 3 черных шара, во второй урне 8 белых и 4 черных шара, в третьей урне 2 белых и 13 черных шаров. Из этих урн наугад выбирается одна урна. Какова вероятность того, что шар, взятый наугад из выбранной урны, окажется белым?
- 6. В первой урне 7 белых и 3 черных шара, во второй урне 8 белых и 4 черных шара, в третьей урне 2 белых и 13 черных шаров. Из этих урн наугад выбирается одна урна. Какова вероятность того, что была выбрана первая урна, если шар, взятый наугад из выбранной урны, оказался белым?
- 7. В операционном отделе банка работает 80% опытных сотрудников и 20% неопытных. Вероятность совершения ошибки при очередной банковской операции опытным сотрудником равна 0.01, а неопытным 0.1. Найдите вероятность совершения ошибки при очередной банковской операции в этом отделе.
- 8. В операционном отделе банка работает 80% опытных сотрудников и 20% неопытных. Вероятность совершения ошибки при очередной банковской операции опытным сотрудником равна 0.01, а неопытным 0.1. Известно, что при очередной банковской операции была допущена ошибка. Найдите вероятность того, что ошибку допустил неопытный сотрудник.
- 9. Пусть случайная величина X имеет таблицу распределения:

$$\mathbb{P}_{X}$$
 0.25 c 0.25

- а) константу c
- б) $\mathbb{P}(\{X \geqslant 0\})$
- B) $\mathbb{P}(\{X < -3\}])$
- r) $\mathbb{P}(\{X \in [-\frac{1}{2}; \frac{1}{2}]\})$
- д) функцию распределения случайной величины X
- е) имеет ли случайная величина X плотность распределения?
- 10. Пусть случайная величина X имеет таблицу распределения:

$$\mathbb{P}_{X}$$
 0.25 c 0.25

Найдите

- а) константу c
- \mathfrak{G}) $\mathbb{E}(X)$
- B) $\mathbb{E}(X^2)$
- Γ) Var(X)
- \mathbf{z}) $\mathbb{E}(|X|)$

11. Пусть случайная величина X имеет таблицу распределения:
X -1 0 1
\mathbb{P}_X 0.25 c 0.5
—————————————————————————————————————
a) константу c
6) $\mathbb{P}(\{X\geqslant 0\})$
в) $\mathbb{P}(\{X < -3\}])$
r) $\mathbb{P}(\{X \in [-\frac{1}{2}; \frac{1}{2}]\})$
д) функцию распределения случайной величины X
e) имеет ли случайная величина X плотность распределения?
12. Пусть случайная величина X имеет таблицу распределения:
X -1 0 1 \mathbb{P}_{X} 0.25 c 0.5
Найдите
a) константу c
6) $\mathbb{E}(X)$
в) $\mathbb{E}(X^2)$
r) $Var(X)$
д) $\mathbb{E}(X)$
13. Пусть случайная величина X имеет биномиальное распределение с параметрами $n=4$ и $\mathbb{P}=\frac{3}{4}.$ Найдите
a) $\mathbb{P}(\{X=0\})$
6) $\mathbb{P}(\{X > 0\})$
в) $\mathbb{P}(\{X<0\})$
r) $\mathbb{E}(X)$
д) $Var(X)$
e) наиболее вероятное значение, которое принимает случайная величина X

14. Пусть случайная величина X имеет биномиальное распределение с параметрами n=5 и $\mathbb{P}=\frac{2}{5}.$ Найдите

- a) $\mathbb{P}(\{X = 0\})$
- б) $\mathbb{P}(\{X>0\})$
- B) $\mathbb{P}(\{X < 0\})$
- r) $\mathbb{E}(X)$
- д) Var(X)

- e) наиболее вероятное значение, которое принимает случайная величина X
- 15. Пусть случайная величина X имеет распределение Пуассона с параметром $\lambda=100$. Найдите
 - a) $\mathbb{P}(\{X = 0\})$
 - б) $\mathbb{P}(\{X > 0\})$
 - в) $\mathbb{P}(\{X < 0\})$
 - r) $\mathbb{E}(X)$
 - \mathbf{g}) Var(X)
 - е) наиболее вероятное значение, которое принимает случайная величина X
- 16. Пусть случайная величина X имеет распределение Пуассона с параметром $\lambda = 101$. Найдите
 - a) $\mathbb{P}(\{X = 0\})$
 - б) $\mathbb{P}(\{X>0\})$
 - B) $\mathbb{P}(\{X < 0\})$
 - r) $\mathbb{E}(X)$
 - \mathbf{g}) Var(X)
 - е) наиболее вероятное значение, которое принимает случайная величина X
- 17. В лифт 10-этажного дома на первом этаже вошли 5 человек. Вычислите вероятность того, что на 6-м этаже выйдет хотя бы один человек.
- 18. В лифт 10-этажного дома на первом этаже вошли 5 человек. Вычислите вероятность того, что на 6-м этаже не выйдет ни один человек.
- 19. При работе некоторого устройства время от времени возникают сбои. Количество сбоев за сутки имеет распределение Пуассона. Среднее количество сбоев за сутки равно 3. Найти вероятность того, что в течение суток произойдет хотя бы один сбой.
- 20. При работе некоторого устройства время от времени возникают сбои. Количество сбоев за сутки имеет распределение Пуассона. Среднее количество сбоев за сутки равно 3. Найти вероятность того, что за двое суток не произойдет ни одного сбоя.
- 21. Пусть случайная величина X имеет плотность распределения

$$f_X(x) = egin{cases} c, \ ext{при} \ x \in [-1;1] \ 0, \ ext{при} \ x
otin [-1;1] \end{cases}$$

- а) константу c
- б) $\mathbb{P}(\{X \leqslant 0\})$
- в) $\mathbb{P}(\{X \in [\frac{1}{2}; \frac{3}{2}]\})$
- r) $\mathbb{P}(\{X \in [2;3]\}$
- д) $F_X(x)$

22. Пусть случайная величина X имеет плотность распределения

$$f_X(x) = egin{cases} c, \ \text{при} \ x \in [-1;1] \\ 0, \ \text{при} \ x
otin [-1;1] \end{cases}$$

Найдите

- а) константу c
- б) $\mathbb{E}(X)$
- в) $\mathbb{E}(X^2)$
- Γ) Var(X)
- \mathbf{g}) $\mathbb{E}(|X|)$
- 23. Пусть случайная величина X имеет плотность распределения

$$f_X(x) = egin{cases} cx, \ \mathrm{при} \ x \in [0;1] \ 0, \ \mathrm{при} \ x
otin [0;1] \end{cases}$$

Найдите

- а) константу c
- б) $\mathbb{P}(\{X\leqslant \frac{1}{2}\})$
- B) $\mathbb{P}(\{X \in [\frac{1}{2}; \frac{3}{2}]\})$
- r) $\mathbb{P}(\{X \in [2;3]\}$
- д) $F_X(x)$
- 24. Пусть случайная величина X имеет плотность распределения

$$f_X(x) = egin{cases} cx, & \text{при } x \in [0;1] \\ 0, & \text{при } x \notin [0;1] \end{cases}$$

Найдите

- а) константу c
- б) $\mathbb{E}(X)$
- в) $\mathbb{E}(X^2)$
- \mathbf{r}) $\mathrm{Var}(X)$
- \mathbf{g}) $\mathbb{E}(\sqrt{X})$

Ответы

- 1. a) 0.25
 - б) 0.6
 - в) нет
- 2. a) 0.5
 - б) 0.75

- в) нет
- 3. $\frac{4}{10 \cdot 11 \cdot 12 \cdot 13}$
- 4. $\frac{4}{10 \cdot 11 \cdot 12 \cdot 13}$
- 5. 0.5
- 6. 0.42
- 7. 0.028
- 8. $\frac{5}{7}$
- 9. a) 0.5
 - б) 0.75
 - в) 0
 - r) 0.5
- 10. a) 0.5
 - б) 0
 - в) 0.5
 - r) 0.5
 - д) 0.5
- 11. a) 0.25
 - б) 0.75
 - в) 0
 - r) 0.5
- 12. a) 0.25
 - б) 0.25
 - в) 0.75
 - r) 0.5
 - д) 0.75
- 13. a) $(\frac{1}{4})^4$
 - б) $1 \left(\frac{1}{4}\right)^4$
 - в) 0
 - г) 3
 - д) 0.75
 - e) 2, 3
- 14. a) $(\frac{3}{5})^5$
 - б) $1 (\frac{3}{5})^5$
 - в) 0
 - r) 2

- д) 1.2
- e) 2
- 15. a) e^{-100}
 - б) $1 e^{-100}$
 - в) 0
 - г) 100
 - д) 100
- 16. a) e^{-101}
 - б) $1 e^{-101}$
 - в) 0
 - г) 101
 - д) 101
- 17. $1 \frac{8^5}{9^5}$
- 18. $\frac{8^5}{9^5}$
- 19. $1 e^{-3}$
- 20. e^{-3}
- 21. a) 0.5
 - б) 0.25
 - в) 0.125
 - г) 1
- 22. a) 0.5
 - б) 0.5
 - B) $\frac{1}{3}$
 - r) $\frac{1}{12}$
 - д) 1
- 23. a) 2
 - б) 0.25
 - **B**) $\frac{3}{4}$
 - г) 1
- 24. a) 2
 - б) 0.5
 - в) 0.5
 - г) 0
 - д) 0.8

16.3. Контрольная работа 1, базовый поток, 24.10.2017

Минимум

- 1. Функция распределения случайной величины: определения и свойства.
- 2. Экспоненциальное распределение: определение, математическое ожидание и дисперсия.
- 3. В операционном отделе банка работает 80% опытных сотрудников и 20% неопытных. Вероятность совершения ошибки при очередной банковской операции опытным сотрудником равна 0.01, а неопытным -0.1. Известно, что при очередной банковской операции была допущена ошибка. Найдите вероятность того, что ошибку допустил неопытный сотрудник.
- 4. При работе некоторого устройства время от времени возникают сбои. Количество сбоев за сутки имеет распределение Пуассона. Среднее количество сбоев за сутки равно 3. Найдите вероятность того, что за двое суток не произойдет ни одного сбоя.

Задачи

- 1. Правильный кубик подбрасывают один раз. Событие A выпало чётное число, событие B выпало число кратное трём, событие C выпало число, большее трёх.
 - а) Сформулируйте определение независимости двух событий;
 - б) Определите, какие из пар событий A, B и C будут независимыми.
- 2. Теоретический минимум (ТМ) состоит из 10 вопросов, задачный (ЗМ) из 24 задач. Каждый вариант контрольной содержит два вопроса из ТМ и две задачи из ЗМ. Чтобы получить за контрольную работу оценку 4 и выше, необходимо и достаточно правильно ответить на каждый вопрос ТМ и задачу ЗМ доставшегося варианта. Студент Вася принципиально выучил только k вопросов ТМ и две трети ЗМ.
 - а) Сколько всего можно составить вариантов, отличающихся хотя бы одним заданием в ТМ или ЗМ части? Порядок заданий внутри варианта не важен.
 - б) Найдите вероятность того, что Вася правильно решит задачи ЗМ;
 - в) Дополнительно известно, что Васина вероятность правильно ответить на вопросы ТМ, составляет 1/15. Сколько вопросов ТМ выучил Вася?
- 3. Производитель молочных продуктов выпустил новый низкокалорийный йогурт Fit и утверждает, что он вкуснее его более калорийного аналога Fat. Четырем независимым экспертам предлагают выбрать наиболее вкусный йогурт из трёх, предлагая им в одинаковых стаканчиках в случайном порядке два Fat и один Fit. Предположим, что йогурты одинаково привлекательны. Величина ξ число экспертов, отдавших предпочтение Fit.
 - а) Какова вероятность, что большинство экспертов выберут Fit?
 - б) Постройте функцию распределения величины ξ ;
 - в) Каково наиболее вероятное число экспертов, отдавших предпочтение йогорту Fit?
 - r) Вычислите математическое ожидание и дисперсию ξ .
- 4. Дядя Фёдор каждую субботу закупает в магазине продукты по списку, составленному котом Матроскином. Список не изменяется, и в него всегда входит 1 кг сметаны, цена которого является равномерно распределённой величиной α , принимающей значения от 250 до 1000 рублей. Стоимость остальных продуктов из списка в тысячах рублей является случайной величиной ξ с функцией распределения

$$F(x) = \begin{cases} 1 - \exp(-x^2), \text{ если } x \geqslant 0 \\ 0, \text{ иначе.} \end{cases}$$

- а) Какую сумму должен выделить кот Матроскин дяде Фёдору, чтобы её достоверно хватало на покупку сметаны?
- б) Какую сумму должен выделить кот Матроскин дяде Фёдору, чтобы Дядя Фёдор с вероятностью 0.9 мог оплатить продукты без сметаны?
- в) Найдите математическое ожидание стоимости продуктов без сметаны;
- г) Найдите математическое ожидание стоимости всего списка.
- д) Какова вероятность того, что общие расходы будут в точности равны их математическому ожиданию?

Подсказка: $\int_0^\infty \exp(-x^2) dx = \sqrt{\pi}/2.$

5. Эксперт с помощью детектора лжи пытается определить, говорит ли подозреваемый правду. Если подозреваемый говорит правду, то эксперт ошибочно выявляет ложь с вероятностью 0.1. Если подозреваемый обманывает, то эксперт выявляет ложь с вероятностью 0.95.

В деле об одиночном нападении подозревают десять человек, один из которых виновен и будет лгать, остальные невиновны и говорят правду.

- а) Какова вероятность того, что детектор покажет, что конкретный подозреваемый лжёт?
- б) Какова вероятность того, что подозреваемый невиновен, если детектор показал, что он лжёт?
- в) Какова вероятность того, что эксперт точно выявит преступника?
- г) Какова вероятность того, что эксперт ошибочно выявит преступника, то есть покажет, что лжёт невиновный, а все остальные говорят правду?

16.4. Контрольная работа 1, базовый поток, 24.10.2017, решения

- 1. а) События называются независимыми, если $\mathbb{P}(A\cap B)=\mathbb{P}(A)\cdot\mathbb{P}(B)$
 - б) Запасёмся всеми нужными вероятностями:

$$\mathbb{P}(A) = \frac{1}{2}$$

$$\mathbb{P}(B) = \frac{1}{3}$$

$$\mathbb{P}(C) = \frac{1}{2}$$

 $\mathbb{P}(A\cap C)=\frac{1}{3}$ — выпадет чётое число больше трёх

 $\mathbb{P}(A\cap B)=\frac{1}{6}$ — выпадет чётное число, кратное трём

 $\mathbb{P}(A\cap C)=\frac{1}{6}$ — выпадет число, большее трёх и кратное трём

Теперь можно проверять независимость:

 $\mathbb{P}(A\cap C)\neq \mathbb{P}(A)\cdot \mathbb{P}(C)\Rightarrow$ не являются независимыми

 $\mathbb{P}(A\cap B)=\mathbb{P}(A)\cdot\mathbb{P}(B)\Rightarrow$ являются независимыми

 $\mathbb{P}(B\cap C)=\mathbb{P}(B)\cdot\mathbb{P}(C)\Rightarrow$ являются независимыми

- 2. а) Количество возможных вариантов ТМ: C_{10}^2 , количество возможных вариантов ЗМ: C_{24}^2 . Количество их возможных сочетаний: $C_{10}^2 \cdot C_{24}^2$, где $C_n^k = \frac{n!}{k!(n-k)!}$.
 - б) По классическому определению вероятностей, предполагая исходы равновероятными, искомая вероятность равна $\frac{C_{16}^2}{C_{24}^2}$

в) По тому же принципу:

$$\frac{C_k^2}{C_{10}^2} = \frac{1}{15} \Rightarrow \frac{\frac{k!}{2!(k-2)!}}{\frac{10!}{2! \cdot 8!}} = \frac{1}{15} \Rightarrow \frac{(k-1)k}{2} \frac{2}{9 \cdot 10} = \frac{1}{15}$$

Получаем квадратное уравнение вида $k^2-k-6=0$ с корнями -2 и 3. Так как k не может быть отрицательным, ответ 3.

3. а) Если эксперт отдаёт предпочтение Fit, то это можно интерпретировать как «успех» в схеме Бернулли. Так как ξ - количество успехов, $k \in [0;4]$, $p=\frac{1}{3}$, то

$$\mathbb{P}(\xi = k) = C_n^k(p)^k (1 - p)^{n - k}$$

Большинство означает, что либо три, либо четыре эксперта выбрали Fit.

$$\mathbb{P}(\xi = 3) = C_4^3 \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^1 = \frac{8}{81}$$

$$\mathbb{P}(\xi = 4) = C_4^4 \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^0 = \frac{1}{81}$$

$$\mathbb{P}(\xi > 2) = \frac{9}{81}$$

б) Аналогично:

$$\mathbb{P}(\xi = 0) = C_4^0 \left(\frac{1}{3}\right)^0 \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$\mathbb{P}(\xi = 1) = C_4^1 \left(\frac{1}{3}\right)^1 \left(\frac{2}{3}\right)^3 = \frac{32}{81}$$

$$\mathbb{P}(\xi = 2) = C_4^2 \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^2 = \frac{24}{81}$$

Рис. 3: Функция распределения

в) Все вероятности посчитаны, видим, что наибольшая достигается при $\xi=1$.

r)
$$\mathbb{E}(X) = np = \frac{4}{3}, Var(X) = npq = \frac{8}{9}$$

- 4. а) Так как указано, что цена сметаны распределена равномерно на отерзке [250, 1000], максимальное значение цены -1000, это и есть необходимая сумма.
 - б) Вспомним, что функция распределения $F(x) = \mathbb{P}(X \leqslant x)$, нужно найти такой x, что $\mathbb{P}(X \leqslant x) = 0.9$:

$$0.9 = 1 - \exp(-x^2) \Rightarrow \exp(-x^2) = 0.1 \Rightarrow -x^2 = \ln(0.1) \Rightarrow x = \sqrt{-\ln(0.1)}$$

в) Взяв производную от функции распределения списка без сметаны, получим функцию плотности:

$$f_X(x) = \begin{cases} 2x \exp(-x^2) & x \geqslant 0\\ 0 & \text{иначе} \end{cases}$$

Найдём математическое ожидание:

$$\int_{0}^{+\infty} 2x^{2} \exp(-x^{2}) dx = -x \exp(-x^{2}) \Big|_{0}^{+\infty} + \int_{0}^{+\infty} \exp(-x^{2}) dx = \frac{\sqrt{\pi}}{2}$$

- г) Математическое ожидание суммы случайных величин равно сумме математических ожиданий случайных влечин, если они существуют. Математическое ожидание от цены сметаны равно: $\frac{1000+250}{2}=625$ Математическое ожидание списка без сметаны было найдено в предыдущем пункте, его осталось перевести в рубли. Получаем ответ: $625+\frac{\sqrt{\pi}}{2}\cdot 1000$.
- д) Так как обе величины имеют абсолютно непрерывные распределения, вероятность попасть в конкретную точку равна нулю.
- 5. а) $\mathbb{P}($ детектор показл ложь и подозреваемый лжёт $)=0.9\cdot0.1+0.1\cdot0.95=0.185$
 - б) $\mathbb{P}(\text{невниовен}|\text{детектор показал ложь}) = \frac{0.9 \cdot 0.1}{0.185} = \frac{90}{185}$
 - в) $\mathbb{P}($ эксперт точно выявит преступника $)=(0.9)^9\cdot 0.95$
 - г) $\mathbb{P}($ эксперт ошибочно выявит преступника $) = 9 \cdot 0.1 \cdot 0.9^8 \cdot 0.05$

16.5. Контрольная работа 1, ИП, 24.10.2017

Ровно 272 года назад императрица Елизавета повелела завезти во дворцы котов для ловли мышей.

- 1. В отсутствии кота Леопольда мыши Белый и Серый подкидывают по очереди игральный додекаэдр. Сыр достаётся тому, кто первым выкинет число 6. Начинает подкидывать Белый.
 - а) Какова вероятность того, что сыр достанется Белому?
 - б) Сколько в среднем бросков продолжается игра?
 - в) Какова дисперсия числа бросков?
- 2. Микки Маус, Белый и Серый решили устроить труэль из любви к мышки Мии. Сначала стреляет Микки, затем Белый, затем Серый, затем снова Микки и так до тех пор, пока в живых не останется только один.

Прошлые данные говорят о том, что Микки попадает с вероятностью 1/3, Белый — с вероятностью 2/3, а Серый стреляет без промаха.

Найдите оптимальную стратегию каждого мыша.

3. Микки Маус, Белый и Серый пойманый злобным котом Леопольдом до начала труэли. И теперь Леопольд будет играть с ними в странную игру.

В комнате три закрытых внешне неотличимых коробки: с золотом, серебром и платиной. Общаться после начала игры мыши не могут, но могут заранее договориться о стратегии.

Правила игры таковы. Кот Леопольд будет заводить мышей в комнату по очереди. Каждый из мышей может открыть две коробки по своему выбору. Перед следующим мышом коробки закрываются.

Если Микки откроет коробку с золотом, Белый — с серебром, а Серый — с платиной, то они выигрывают. Если хотя бы один из мышей не найдёт свой металл, то Леопольд их съест.

- а) Какова оптимальная стратегия?
- б) Какова вероятность выигрыша при использовании оптимальной стратегии?
- 4. Накануне войны Жестокий Тиран Мышь очень большой страны издал указ. Отныне за каждого новорождённого мыша-мальчика семья получает денежную премию, но если в семье рождается вторая мышка-девочка, то всю семью убивают. Бедные жители страны запуганы и остро нуждаются в деньгах, поэтому в каждой семье мыши будут появляться до тех пор, пока не родится первая мышка-девочка.
 - а) Каким будет среднее число детей в мышиной семье?
 - б) Какой будет доля мышей-мальчиков в стране?
 - в) Какой будет средняя доля мышей-мальчиков в случайной семье?
 - г) Сколько в среднем мышей-мальчиков в случайно выбираемой семье?
- 5. Вальяжный кот Василий положил на счёт в банке на Гаити один гурд. Сумма на счету растёт непрерывно с постоянной ставкой в течение очень длительного промежутка времени. В случайный момент этого промежутка кот Василий закрывает свой вклад.

Каков закон распределения первой цифры полученной Василием суммы?

16.6. Контрольная работа 1, ИП, 24.10.2017, решения

1. і. Обозначим вероятность того, что сыр достанется Белому за b, если игра начинается с его броска. Получаем уравнение

$$b = \frac{1}{12} + \frac{11}{12} \frac{11}{12} b$$

Пояснение: Как Белый может победить в исходной игре? Либо сразу выкинуть 6 с вероятностью 1/12. Либо передать ход Серому (11/12), получить ход снова (11/12) и выиграть в продолжении игры. Продолжение игры по сути совпадает с исходной игрой.

іі. Игра продолжаєтся до тех пор, пока кто-то не выкинет «6». Для нахождения среднего количества бросков воспользуемся методом первого шага. Обозначим среднее количество бросков нашей игры за S. Когда Белый бросает кубик, с вероятностью $\frac{1}{12}$ игра закончится за один бросок, а с вероятностью $\frac{11}{12}$ игра продолжится и ход перейдёт к Серому. Но та игра, которая начнётся, когда бросать будет Серый, ничем не отличается от предыдущей, поэтому среднее количество бросков в ней будет равно S. Однако мы попадём в эту игру, «потратив» один бросок. Таким образом мы получаем:

$$S = \frac{1}{12} \cdot 1 + \frac{11}{12}(S+1)$$

Получается, что S=12, значит игра длится в среднем 12 бросков.

3. Для того, чтобы выжить, мышам нужно ещё до начала игры договориться о стратегии, которая позволит им с наибольшей вероятностью открыть нужные сундуки. Если хотя бы две мыши выберут одинаковый сундук, то их в любом случае съедят. Поэтому одной из оптимальных стратегий будет ещё до начала игры мышам договориться и назвать левый сундук золотым, сундук посередине серебряным, а правый — платиновым. Каждый мышонок должен открыть тот сундук, в честь которого назван необходимый ему металл. Если внутри он обнаруживает свой металл, то он выбирает этот сундук, если внутри находится не тот металл, мышонок открывает тот сундук, на который указывает лежащий внутри предмет.

Например, первым заходит Микки Маус. Он открывает золотой (левый) ящик. Если внутри лежит золото, то он выходит из комнаты. Если же внутри лежит, например, серебро, то Микки Маус открывает сундук посередине. Путём несложного перебора можно посчитать, что в 4 случаях из 6 мыши смогут найти нужный металл, поэтому вероятность выигрыша при данной стратегии равна $\frac{2}{3}$.

5. Функция распределения дохода кота Василия, положившего один гурд на вклад, представляется в виде $m_t = 1 \cdot e^{rt}$, где r — процентная ставка, а t — прошедшее время. Момент закрытия вклада Т равномерно распределён на отрезке от 0 до a, который очень велик, поэтому сумма, которую получит Василий, представима в виде $Z = e^Y$, где $Y \sim v[0; ra]$. Вероятность того, что первая цифра будет равна 1, равна вероятности того, что доход Василия будет лежать в пределах от 1 до 2 гурдов, плюс вероятность того, что он лежит в пределах от 10 до 20 гурдов и т.д. Таким образом, можно представить эту вероятность, как:

$$\mathbb{P}(N=1) = \mathbb{P}(e^Y \in [1;2)) + \mathbb{P}(e^Y \in [10;20)) + \dots$$

Это выражение можно преобразовать таким образом:

$$\mathbb{P}(N=1) = \mathbb{P}(Y \in [\ln 1; \ln 2)) + \mathbb{P}(Y \in [\ln 10; \ln 20)) + \dots$$

Так как Y — равномерно распределённая величина, то $\mathbb{P}(Y \in [\ln 1; \ln 2)) = \frac{\ln 2 - \ln 1}{ra}$. Для последующих слагаемых вероятность рассчитывается таким же образом. Воспользовавшись свойством логарифма, можно заметить, что $\frac{\ln 20 - \ln 10}{ra} = \frac{\ln 2}{ra}$. Поэтому вероятность того, что на первом месте суммы вклада стоит единица, равна $n \cdot \frac{\ln 2}{ra}$, где n — количество слагаемых. Путём аналогичных рассуждений получаем, что вероятность того, что на первом месте стоит двойка, равна $n \cdot \frac{\ln 3 - \ln 2}{ra}$. Из-за того, что a велико, можно считать, что число слагаемых одинаково.

Т.к. на первом месте обязательно будет находиться какая-то цифра, то сумма вероятностей будет равна 1. Получаем:

$$\frac{n}{ra}(\ln\frac{2}{1} + \ln\frac{3}{2} + \ldots + \ln\frac{10}{9}) = 1$$

Таким образом $\frac{n}{ra} = \frac{1}{\ln 10}$. Получается, что вероятность того, что на первом месте стоит единица, равна:

$$\mathbb{P}(N=1) = \frac{\ln 2}{\ln 10}$$

Закон распределения первой цифры выводится сложением соответствующих вероятностей.

16.7. Теоретический минимум к кр2

- 1. Сформулируйте определение независимости событий, формулу полной вероятности.
- 2. Приведите определение условной вероятности случайного события, формулу Байеса.
- 3. Сформулируйте определение и свойства функции распределения случайной величины.
- 4. Сформулируйте определение и свойства функции плотности случайной величины.
- 5. Сформулируйте определение и свойства математического ожидания для абсолютно непрерывной случайной величины.
- 6. Сформулируйте определение и свойства математического ожидания для дискретной случайной величины.
- 7. Сформулируйте определение и свойства дисперсии случайной величины.
- 8. Сформулируйте определения следующих законов распределений: биномиального, Пуассона, шеометрического, равномерного, экспоненциального, нормального. Укажите математическое ожидание и дисперсию.
- 9. Сформулируйте определение функции совместного распределения двух случайных величин, независимости случайных величин. Укажите, как связаны совместное распределение и частные распределения компонент случайного вектора.
- 10. Сформулируйте определение и свойства совместной функции плотности двух случайных величин, сформулируйте определение независимости случайных величин.
- 11. Сформулируйте определение и свойства ковариации случайных величин.
- 12. Сформулируйте определение и свойства корреляции случайных величин.
- 13. Сформулируйте определение и свойства условной функции плотности.
- 14. Сформулируйте определение условного математического ожидания $\mathbb{E}(Y|X=x)$ для совместного дискретного и совместного абсолютно непрерывного распределений.
- 15. Сформулируйте определение математического ожидания и ковариационной матрицы случайного вектора и их свойства.
- 16. Сформулируйте неравенство Чебышёва и неравенство Маркова.
- 17. Сформулируйте закон больших чисел в слабой форме.
- 18. Сформулируйте центральную предельную теорему.
- 19. Сформулируйте теорему Муавра—Лапласа.
- 20. Сформулируйте определение сходимости по вероятности для последовательности случайных величин.

16.8. Задачный минимум кр 2

1. Пусть задана таблица совместного распределения случайных величин X и Y.

Найдите

- a) $\mathbb{P}(X = -1)$
- б) $\mathbb{P}(Y = -1)$
- в) $\mathbb{P}(X = -1 \cap Y = -1)$
- Γ) Являются ли случайные величины X и Y независимыми?
- д) $F_{X,Y}(-1,0)$
- e) Таблицу распределения случайной величины X
- ж) Функцию $F_X(x)$ распределения случайной величины X.
- з) Постройте график функции $F_X(x)$ распределения случайной величины X.
- 2. Пусть задана таблица совместного распределения случайных величин X и Y.

$$\begin{array}{c|ccccc} X \backslash Y & -1 & 0 & 1 \\ \hline -1 & 0.2 & 0.1 & 0.2 \\ 1 & 0.2 & 0.1 & 0.2 \\ \end{array}$$

Найдите

- a) $\mathbb{P}(X = 1)$,
- б) $\mathbb{P}(Y = 1)$,
- **B)** $\mathbb{P}(X = 1 \cap Y = 1)$
- г) Являются ли случайные величины X и Y независимыми?
- д) $F_{X,Y}(1,0)$
- е) Таблицу распределения случайной величины Y
- ж) Функцию $F_Y(y)$ распределения случайной величины Y
- з) Постройте график функции $F_Y(y)$ распределения случайной величины Y.
- 3. Пусть задана таблица совместного распределения случайных величин X и Y.

$X \setminus Y$	-1	0	1
-1	0.2	0.1	0.2
1	0.1	0.3	0.1

- a) $\mathbb{E}(X)$,
- б) $\mathbb{E}(X^2)$,
- в) Var(X),
- r) $\mathbb{E}(Y)$,
- \mathbf{Z}) $\mathbb{E}(Y^2)$,
- e) Var(Y),
- ж) $\mathbb{E}(XY)$,
- 3) Cov(X,Y)
- и) Corr(X, Y)
- к) Являются ли случайные величины X и Y некоррелированными?
- 4. Пусть задана таблица совместного распределения случайных величин X и Y.

$X \setminus Y$	-1	0	1
-1	0.2	0.1	0.2
1	0.2	0.1	0.2

Найдите

- a) $\mathbb{E}(X)$,
- б) $\mathbb{E}(X^2)$,
- \mathbf{B}) Var(X),
- r) $\mathbb{E}(Y)$,
- \mathbf{g}) $\mathbb{E}(Y^2)$,
- e) Var(Y),
- ж) $\mathbb{E}(XY)$,
- 3) Cov(X, Y)
- и) Corr(X, Y)
- к) Являются ли случайные величины X и Y некоррелированными?
- 5. Пусть задана таблица совместного распределения случайных величин X и Y.

$X \backslash Y$	-1	0	1
-1	0.2	0.1	0.2
1	0.1	0.3	0.1

a)
$$\mathbb{P}(X = -1|Y = 0)$$

б)
$$\mathbb{P}(Y = 0 | X = -1)$$

- в) таблицу условного распределения случайной величины Y при условии X=-1
- r) условное математическое ожидание случайной величины Y при X=-1
- д) условную дисперсию случайной величины Y при условии X=-1
- 6. Пусть задана таблица совместного распределения случайных величин X и Y.

$$X \setminus Y$$
 -1 0 1
-1 0.2 0.1 0.2
1 0.2 0.1 0.2

Найдите

a)
$$\mathbb{P}(X = 1 | Y = 0)$$

б)
$$\mathbb{P}(Y = 0 | X = 1)$$

- в) таблицу условного распределения случайной величины Y при условии X=1
- r) условное математическое ожидание случайной величины Y при X=1
- д) условную дисперсию случайной величины Y при условии X=1

7. Пусть
$$\mathbb{E}(X) = 1$$
, $\mathbb{E}(Y) = 2$, $\mathrm{Var}(X) = 3$, $\mathrm{Var}(Y) = 4$, $\mathrm{Cov}(X,Y) = -1$. Найдите

a)
$$\mathbb{E}(2X + Y - 4)$$

б)
$$Var(3Y + 3)$$

в)
$$Var(X - Y)$$

r)
$$Var(2X - 3Y + 1)$$

д)
$$Cov(X + 2Y + 1, 3X - Y - 1)$$

e)
$$Corr(X + Y, X - Y)$$

ж) Ковариационную матрицу случайного вектора Z=(X-Y)

8. Пусть
$$\mathbb{E}(X) = -1$$
, $\mathbb{E}(Y) = 2$, $\mathrm{Var}(X) = 1$, $\mathrm{Var}(Y) = 2$, $\mathrm{Cov}(X,Y) = 1$. Найдите

a)
$$\mathbb{E}(2X + Y - 4)$$

б)
$$Var(2Y + 3)$$

- в) Var(X Y)
- r) Var(2X 3Y + 1)
- д) Cov(3X + Y + 1, X 2Y 1)
- e) Corr(X + Y, X Y)
- ж) Ковариационную матрицу случайного вектора $Z=\begin{pmatrix} X & Y \end{pmatrix}$
- 9. Пусть случайная величина X имеет стандартное нормальное распределение.

- a) $\mathbb{P}(0 < X < 1)$
- б) $\mathbb{P}(X > 2)$
- в) $\mathbb{P}(0 < 1 2X \leqslant 1)$
- 10. Пусть случайная величина X имеет стандартное нормальное распределение.

Найдите

- a) $\mathbb{P}(-1 < X < 1)$
- б) $\mathbb{P}(X < -2)$
- B) $\mathbb{P}(-2 < -X + 1 \leq 0)$
- 11. Пусть случайная величина $X \sim \mathcal{N}(1,4)$. Найдите $\mathbb{P}(1 < X < 4)$
- 12. Пусть случайная величина $X \sim \mathcal{N}(2,4)$. Найдите $\mathbb{P}(-2 < X < 4)$
- 13. Случайные величины X и Y независимы и имеют нормальное распределение, $\mathbb{E}(X)=0$, $\mathrm{Var}(X)=1, \mathbb{E}(Y)=2, \mathrm{Var}(Y)=6.$ Найдите $\mathbb{P}(1< X+2Y<7).$
- 14. Случайные величины X и Y независимы и имеют нормальное распределение, $\mathbb{E}(X)=0$, $\mathrm{Var}(X)=1$, $\mathbb{E}(Y)=3$, $\mathrm{Var}(Y)=7$. Найдите $\mathbb{P}(1<3X+Y<7)$.
- 15. Игральная кость подбрасывается 420 раз. При помощи центральной предельной теоремы приближенно найти вероятность того, что суммарное число очков будет находиться в пределах от 1400 до 1505?
- 16. При выстреле по мишени стрелок попадает в десятку с вероятностью 0.5, в девятку 0.3, в восьмерку 0.1, в семерку 0.05, в шестерку 0.05. Стрелок сделал 100 выстрелов. При помощи центральной предельной теоремы приближенно найти вероятность того, что он набрал не менее 900 очков?
- 17. Предположим, что на станцию скорой помощи поступают вызовы, число которых распределено по закону Пуассона с параметром $\lambda=73$, и в разные сутки их количество не зависит друг от друга. При помощи центральной предельной теоремы приближенно найти вероятность того, что в течение года (365 дней) общее число вызовов будет в пределах от 26500 до 26800.
- 18. Число посетителей магазина (в день) имеет распределение Пуассона с математическим ожиданием 289. При помощи центральной предельной теоремы приближенно найти вероятность того, что за 100 рабочих дней суммарное число посетителей составит от 28550 до 29250 человек.
- 19. Пусть плотность распределения случайного вектора (X,Y) имеет вид

$$f_{X,Y}(x,y) = egin{cases} x+y, & \text{при } (x,y) \in [0;1] imes [0;1] \ 0, & \text{при } (x,y)
otin [0;1] imes [0;1] \end{cases}$$

- a) $\mathbb{P}(X \leqslant \frac{1}{2} \cap Y \leqslant \frac{1}{2}),$
- б) $\mathbb{P}(X \leqslant Y)$,
- $\mathbf{B}) \ f_X(x),$
- r) $f_Y(y)$,
- д) Являются ли случайные величины X и Y независимыми?
- 20. Пусть плотность распределения случайного вектора (X,Y) имеет вид

$$f_{X,Y}(x,y) = \begin{cases} 4xy, & \text{при } (x,y) \in [0;1] \times [0;1] \\ 0, & \text{при } (x,y) \not \in [0;1] \times [0;1] \end{cases}$$

Найдите

- a) $\mathbb{P}(X \leqslant \frac{1}{2} \cap Y \leqslant \frac{1}{2})$,
- 6) $\mathbb{P}(X \leqslant Y)$,
- $\mathbf{B}) \ f_X(x),$
- r) $f_Y(y)$,
- д) Являются ли случайные величины X и Y независимыми?
- 21. Пусть плотность распределения случайного вектора (X,Y) имеет вид

$$f_{X,Y}(x,y) = \begin{cases} x+y, & \text{при } (x,y) \in [0;1] \times [0;1] \\ 0, & \text{при } (x,y) \not \in [0;1] \times [0;1] \end{cases}$$

Найдите

- a) $\mathbb{E}(X)$,
- б) $\mathbb{E}(Y)$,
- B) $\mathbb{E}(XY)$,
- r) Cov(X, Y),
- д) Corr(X, Y).
- 22. Пусть плотность распределения случайного вектора (X,Y) имеет вид

$$f_{X,Y}(x,y) = egin{cases} 4xy, & \text{при } (x,y) \in [0;1] imes [0;1] \ 0, & \text{при } (x,y)
ot\in [0;1] imes [0;1] \end{cases}$$

Найдите

- a) $\mathbb{E}(X)$,
- б) $\mathbb{E}(Y)$,
- \mathbf{B}) $\mathbb{E}(XY)$,
- r) Cov(X, Y),
- д) Corr(X, Y).

23. Пусть плотность распределения случайного вектора (X,Y) имеет вид

$$f_{X,Y}(x,y) = egin{cases} x+y, & \text{при } (x,y) \in [0;1] imes [0;1] \ 0, & \text{при } (x,y)
ot\in [0;1] imes [0;1] \end{cases}$$

Найдите

- a) $f_Y(y)$,
- 6) $f_{X|Y}(x|\frac{1}{2})$
- B) $\mathbb{E}\left(X|Y=\frac{1}{2}\right)$
- r) $\operatorname{Var}\left(X|Y=\frac{1}{2}\right)$

24. Пусть плотность распределения случайного вектора (X,Y) имеет вид

$$f_{X,Y}(x,y) = egin{cases} 4xy, & \text{при } (x,y) \in [0;1] imes [0;1] \ 0, & \text{при } (x,y)
otin [0;1] imes [0;1] \end{cases}$$

Найдите

- a) $f_Y(y)$,
- 6) $f_{X|Y}(x|\frac{1}{2})$
- B) $\mathbb{E}\left(X|Y=\frac{1}{2}\right)$
- r) $Var\left(X|Y=\frac{1}{2}\right)$

Ответы

- 1. a) 0.5
 - б) 0.3
 - в) 0.2
 - г) нет
 - д) 0.3

e)
$$\frac{X - 1 \quad 1}{\mathbb{P}(\cdot) \quad 0.5 \quad 0.5}$$

ж)
$$F_X(x) = \begin{cases} 0, & \text{при } x < -1 \\ 0.5, & \text{при } x \in [-1;1) \\ 1, & \text{при } x \geqslant 1 \end{cases}$$

- 2. a) 0.5
 - б) 0.4
 - в) 0.2
 - г) да
 - д) 0.6

e)
$$\frac{Y - 1 \quad 0 \quad 1}{}$$

$$\mathbb{P}(\cdot)$$
 0.4 0.2 0.4

ж)
$$F_Y(y)= egin{cases} 0, & \text{при } y<-1 \\ 0.4, & \text{при } y\in[-1;0) \\ 0.6, & \text{при } y\in[0;1) \\ 1, & \text{при } y\geqslant 1 \end{cases}$$

- 3. a) 0
 - б) 1
 - в) 1
 - r) 0
 - д) 0.6
 - e) 0.6
 - **ж**) 0
 - **3**) 0
 - **и)** 0
 - к) да, являются некоррелированными, но нельзя утверждать, что являются независимыми
- **4**. **a**) 0
 - б) 1
 - **B**) 1
 - r) 0
 - д) 0.8
 - e) 0.8
 - ж) 0
 - **3**) 0
 - **u**) 0
 - к) да, являются некоррелированными, но нельзя утверждать, что являются независимыми
- 5. a) 0.25
 - б) 0.2

в)
$$Y \mid \{X = -1\}$$
 -1 0 1 $\mathbb{P}(\cdot)$ 0.4 0.2 0.4

- r) 0
- д) 0.8
- 6. a) 0.5
 - б) 0.2

$$Y \mid \{X = 1\} -1 0 1$$

$$\mathbb{P}(\cdot)$$

 $0.4 \quad 0.2 \quad 0.4$

- r) 0
- д) 0.8
- 7. a) 0
 - б) 36
 - **B)** 9
 - r) 60
 - $_{\rm J}$) -4
 - e) $\frac{-1}{3\sqrt{5}}$

ж)
$$\begin{pmatrix} 3 & -1 \\ -1 & 4 \end{pmatrix}$$

- 8. a) -4
 - б) 8
 - в) 1
 - r) 10
 - д) -6
 - e) $\frac{-1}{\sqrt{5}}$

ж)
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

- 9. a) 0.3413
 - б) 0.0228
 - в) 0.1915
- 10. a) 0.6826
 - б) 0.0228
 - в) 0.1574
- 11. 0.4332
- 12. 0.8185
- **13.** 0.4514
- 14. 0.5328
- 15. ≈ 0.8185

- 16. ≈ 0.9115
- 17. ≈ 0.6422
- 18. ≈ 0.9606
- 19. a) 0.125
 - б) 0.5
 - в) $f_X(x) = \begin{cases} x + \frac{1}{2}, & \text{при } x \in [0;1] \\ 0, & \text{при } x \not\in [0;1] \end{cases}$
 - r) $f_Y(y) = egin{cases} y + rac{1}{2}, & \text{при } y \in [0;1] \\ 0, & \text{при } y
 otin [0;1] \end{cases}$
 - д) нет
- a) $\frac{1}{16}$ 20.

 - в) $f_X(x) = \begin{cases} 2x, & \text{при } x \in [0;1] \\ 0, & \text{при } x \not\in [0;1] \end{cases}$
 - г) $f_Y(y) = egin{cases} 2y, & \text{при } y \in [0;1] \\ 0, & \text{при } y
 otin [0;1] \end{cases}$
 - д) да
- a) $\frac{7}{12}$ 21.
 - б) $\frac{7}{12}$
 - B) $\frac{1}{3}$
 - r) $-\frac{1}{144}$
 - д) $-\frac{1}{11}$
- a) $\frac{2}{3}$ 6) $\frac{2}{3}$ 22.

 - \mathbf{B}) $\frac{4}{9}$
 - r) 0
 - д) 0
- а) $f_Y(y) = egin{cases} y + rac{1}{2}, & \text{при } y \in [0;1] \\ 0, & \text{при } y
 otin [0;1] \end{cases}$ 23.
 - б) $f_{X|Y}(x|\frac{1}{2}) = egin{cases} x + \frac{1}{2}, & \text{при } x \in [0;1] \\ 0, & \text{при } x
 otin [0;1] \end{cases}$
 - B) $\frac{7}{12}$
 - r) $\frac{11}{144}$
- 24. a) $f_Y(y) = egin{cases} 2y, & \text{при } y \in [0;1] \\ 0, & \text{при } y
 otin [0;1] \end{cases}$

б)
$$f_{X|Y}(x|\frac{1}{2})=egin{cases} 2x, & \text{при } x\in[0;1] \\ 0, & \text{при } x
ot\in[0;1] \end{cases}$$

- B) $\frac{2}{3}$
- r) $\frac{1}{18}$

16.9. Контрольная работа 2, базовый поток, 09.12.2017

16.9.1. Минимум

- 1. Приведите определение условной вероятности случайного события, формулу Байеса.
- 2. Сформулируйте определение и свойства функции плотности случайной величины.
- 3. Сформулируйте определение условного математического ожидания $\mathbb{E}(Y|X=x)$ для совместного дискретного и совместного абсолютно непрерывного распределений.
- 4. Сформулируйте неравенство Чебышёва и неравенство Маркова.
- 5. Задана таблица совместного распределения случайных величин X и Y.

$$Y = -1$$
 $Y = 0$ $Y = 1$
 $X = 0$ 0.2 0.1 0.3
 $X = 1$ 0.2 0.1 0.1

- а) Найдите $F_{X,Y}(0,0)$;
- б) Найдите $\mathbb{E}(X)$, $\mathbb{E}(X^2)$, $\mathbb{E}(Y)$, $\mathbb{E}(Y^2)$;
- в) Найдите Var(X), Var(Y);
- г) Найдите $\mathrm{Cov}(X,Y)$, $\mathrm{Corr}(X,Y)$
- 6. Плотность распределения случайного вектора (X,Y) имеет вид

$$f_{X,Y}(x,y) = \begin{cases} \frac{4x+10y}{7}, & \text{при } (x,y) \in [0;1] \times [0;1] \\ 0, & \text{при } (x,y) \not \in [0;1] \times [0;1] \end{cases}$$

- а) Найдите $\mathbb{P}(X \leqslant Y)$;
- б) Найдите функцию плотности $f_X(x)$;
- в) Найдите $\mathbb{E}(X)$, $\mathbb{E}(Y)$ и Cov(X,Y);
- Γ) Являются ли случайные величины X и Y независимыми?

16.9.2. Задачи

- 7. Статистика авиакомпании «А» за много лет свидетельствует о том, что 10% людей, купивших билет на самолет, не являются на рейс. Авиакомпания продала 330 билетов на 300 мест.
 - а) Какова вероятность, что всем явившимся на рейс пассажирам хватит места?
 - б) Укажите наибольшее число билетов, которое можно продавать на 300 мест, чтобы случаи переполнения случались не чаще, чем на одном из десяти рейсов.

- 8. Сегодня акция компании «Ух» стоит 1 рубль. Каждый день акция может с вероятностью 0.7 вырасти на 1%, с вероятностью 0.2999 упасть на 1% и с вероятностью 0.0001 обесцениться (упасть на 100%).
 - а) Считая изменение цены акции независимыми, найдите математическое ожидание её стоимости через 20 торговых дней.
 - б) Найдите предел по вероятности среднего изменения цены акции в процентах на бесконечном промежутке времени (Ответ обоснуйте).
 - в) Найдите математическое ожидание цены акции на бесконечном промежутке времени.
 - r) Инвестор вложил все свои средства в акции компании «Ух». Найдите вероятность его разорения на бесконечном промежутке времени.

16.10. Контрольная работа 2, базовый поток, решения

7. а) Всем хватит места, если число явившихся на рейс пассажиров (X) не превысит 300, то есть нужно найти $\mathbb{P}(X\leqslant 300)$. Найдём матожидание и дисперсию случайной величины X:

$$\mathbb{E}(X) = np = 330 \cdot 0.9 = 297$$

$$Var(X) = np(1 - p) = 330 \cdot 0.9 \cdot 0.1 = 29.7$$

Теперь посчитаем нужную вероятность:

$$\mathbb{P}(X \leqslant 300) = \mathbb{P}\left(\frac{X - 297}{\sqrt{29.7}} \leqslant \frac{300 - 297}{\sqrt{29.7}}\right) = \mathbb{P}(\mathcal{N}(0, 1) \leqslant 0.55) \approx 0.709$$

б) Вероятность переполнения не должна превышать 0.1:

$$\mathbb{P}(X > 300) < 0.1$$

$$\mathbb{P}\left(\frac{X - 0.9 \cdot n}{\sqrt{0.9 \cdot 0.1 \cdot n}} > \frac{300 - 0.9 \cdot n}{\sqrt{0.9 \cdot 0.1 \cdot n}}\right) < 0.1$$

$$\frac{300 - 0.9 \cdot n}{\sqrt{0.9 \cdot 0.1 \cdot n}} > 1.28$$

$$300 - 0.9n > 1.28 \cdot 0.3\sqrt{n}$$

$$n < 325.6$$

8. а) Выпишем случайную величину X_i — цену акции после i-ого дня:

$$X_i = \begin{cases} 1.01, & p = 0.7 \\ 0.99, & p = 0.2999 \\ 0, & p = 0.0001 \end{cases}$$

Нужно посчитать ожидание цены акциии после 20 дней:

$$\mathbb{E}(X_1 \cdot \ldots \cdot X_{20}) \stackrel{\text{незав-ть}}{=} \mathbb{E}(X_1) \cdot \ldots \cdot \mathbb{E}(X_{20}) = 1.004^{20} \approx 1.083$$

б) По ЗБЧ:

$$\underset{n\to\infty}{\text{plim}} \frac{1}{n} \sum_{i=1}^{n} X_i = \mathbb{E}(X_i) = 1.004$$

в) Аналогично пункту (а):

$$\mathbb{E}(X_1 \cdot \ldots \cdot X_n) = (\mathbb{E}(X_1))^n = 1.004^n$$

И понятно, что $1.004^n \to_{n\to\infty} +\infty$.

r)

$$\mathbb{P}(\text{разорения}) = 1 - \mathbb{P}(X_1 > 0, \dots, X_n > 0) = 1 - \prod_{i=1}^n \mathbb{P}(X_i > 0)$$

$$= 1 - (1 - 0.0001)^n \to_{n \to \infty} 1$$

16.11. Кр2 — ИП часть

16.11.1. Typ 1

16.11.2. Тур 1 — Основная часть — Дискретные распределения

- А1. После смерти Мориарти на крыше Шерлоку нужно срочно вспомнить заранее обговорённое для такого исхода кодовое слово. Однако Шерлок так расстроился от смерти Джима, что совсем забыл то самое слово! К счастью, у Шерлока есть чертоги разума, в которых есть картинка кодового слова, но, почему-то, на греческом: Λ άζαρος . К сожалению, Шерлок не изучал теорию вероятностей на экономе Вышки и плохо помнит греческий алфавит, вероятность вспомнить аналог буквы на латинице равна 0.8, а раскладку на своём Blackberry он поменять не может.
 - а) Напишите кодовое слово русскими буквами.
 - б) Найдите вероятность того, что Шерлок отправит неправильное смс и не спасётся.

Внимание! Это задача-сюрприз! Забираем в студию, если задача решена неверно.

Лазарос (Лазарь), $1 - 0.8^7$

- А2. Мориарти объявил начало «Большой игры» в течение n дней каждый день его криминальными бандами будет свершаться преступление с вероятностью p (независимо друг от друга). Бравые детективы Шерлок и Джон раскрывают каждое преступление с вероятностью r (тоже независимо от предыдущих дней).
 - а) Найдите функцию распределения количества совершенных преступлений.
 - б) Найдите функцию распределения количества раскрытых преступлений.

$$\mathbb{P}(X=k) = C_n^{\ k}(p)^k (1-p)^{n-k}, \ \mathbb{P}(Y=k) = C_n^{\ k}(pr)^k (1-rp)^{n-k}$$

А3. Шерлок и Джон соперничают всю неделю и хотят выяснить, кто быстрее догадывается о личности настоящего убийцы. Пусть выигрывает тот, кто первым отгадал убийцу 4 раза подряд. p — вероятность, что Джон оказался догадливее Шерлока и в конкретном деле быстрее вычислил виновного. Найдите вероятность того, что Джон выиграл во всей игре.

$$\mathbb{P}(Д$$
жон выигрывает) = $C_7^4 p^4 q^3 + C_7^5 p^5 q^2 + C_7^6 p^6 q + p^7$

А4. Ирэн и Шерлок очень любят писать друг другу смски, но стесняются показать свою привязанность. Шерлок подбрасывает монетку n раз, а Ирэн -n+1 раз. Оба придерживаются следующей стратегии: когда выпадает орёл, он/она отправляют смску, когда решка — ничего не отправляют. Найдите вероятность того, что Ирэн отправила больше смсок, чем Шерлок.

1/2

- А5. Шерлок пытается найти нужную информацию в чертогах разума. Пусть он находит её с вероятностью p за одну попытку и не находит с вероятностью q=1-p. X число попыток, которое понадобилось Шерлоку. Найдите $\mathbb{E}\left(\frac{1}{X+1}\right)$.
 - $-\frac{p}{q}\ln p$

16.11.3. Тур 1 — Основная часть — Комбинаторика

В1. ОБН прослушивает телефон Джесси Пинкмана, поэтому он решил отправить закодированное послание мистеру Уайту, чтобы сохранить в секрете место следующей встречи. Для дополнительной секретности он составляет текст на русском языке, а потом кодирует каждую букву последовательно из нулей и единиц длины n. Он хочет отправить послание как можно скорее и исключить неоднозначность раскодирования, поэтому выбирает наименьшее подходящее n. Чему оно равно?

6

В2. Хэнк и Уолтер решили сыграть в следующую игру: каждый по очереди называет такую расстановку пяти ладей на шахматной доске, что ни они не бьют друг друга. Начинает Хэнк. Сколько ходов возможно сделать в этой игре, если играть до самого конца, а повторять уже названные расстановки нельзя.

```
64 \cdot 49 \cdot 36 \cdot 25 \cdot 16 или 45158400
```

В3. Вернемся к сюжету из первой задачи. Все понимают, что Джесси может иногда совершить ошибку, пока кодирует свое послание. Поэтому теперь мистер Уайт и Джесси хотят так кодировать символ, чтобы даже при совершении Джесси ошибки в одном знаке можно было правильно раскодировать символ. Какого n им будет достаточно сейчас?

Внимание! Это задача-сюрприз! Предлагаем на выбор: частичный балл за какую-нибудь задачу / освобождение участника из студии

9

В4. Уолт поспорил с сыном, сможет ли он расставить числа от 1 до 2016 по кругу так, чтобы все суммы соседних чисел были разными. Выиграет ли он в споре и почему?

Ответ: да, выиграет

Решение: Рассмотрим расстановку $1,2,3,\ldots,2014,2016,2015$. Выпишем суммы соседних чисел: $1+2=3,2+3=5,3+4=7,\ldots,2013+2014=4027,2014+2016=4030,2016+2015=4029,2015+1=2016$. В этом списке по одному разу появятся нечетные числа $3,5,\ldots,4027,4029$ и четные 4030,2016.

В5. Уолт собирается оставить свой уличный бизнес одному из 3 бывших учеников. У первого ученика есть два наследника, у второго — три, а у третьего — пять. Всем известно, что Уолт скоро объявит, кто именно сменит его на уличном престоле. На какое наименьшее количество районов можно разделить город так, чтобы при любом выборе Уолта, новый властитель мог бы раздать все округа своим наследникам, и каждому из них досталась бы территория одинаковой площади?

8

16.11.4. Тур 1 — Основная часть — Метод первого шага

С1. Джоуи решил посмотреть телевизор после очередных неудачных проб на роль в сериале. Сейчас по телевизору идут новости. Джоуи переключает каналы в поисках футбольного матча, при этом известно, что на каждом канале показывают футбол с вероятностью p=0.7 и новости с вероятностью 1-p=0.3. Пусть X- это количество каналов, которые посмотрел Джоуи, прежде чем нашёл футбольный матч. Найдите $\mathbb{E}(X), \mathbb{E}(X^2), \mathrm{Var}(X)$ методом первого шага.

$$\frac{10}{7}, \frac{130}{49}, \frac{30}{49}$$

С2. Фиби и Чендлер решили посмотреть телевизор после ссоры с Джоуи. Они включают телевизор и видят, что сейчас как раз идет фильм с ним. Фиби переключает каналы в поисках мультиков, при этом при переключении каналов действует следующее правило: при нечётном переключении канала Фиби попадёт на мультики с вероятностью p=0.5 и на фильм с Джоуи с вероятностью 1-p=0.5, а при чётном — с вероятностями p=0.75 и 1-p=0.25 соответственно. Пусть X — это количество каналов, которые посмотрела Фиби, прежде чем нашла мультики. Найдите $\mathbb{E}(X), \mathbb{E}(X^2), \mathrm{Var}(X)$ методом первого шага.

$$\frac{12}{7}, \frac{164}{49}, \frac{20}{49}$$

С3. Росс подкидывает правильную монетку. Если монетка выпадает орлом, Росс генерирует случайную величину $X \sim \mathcal{N}(1,\sigma^2)$, если монетка выпадает решкой, Росс> подкидывает монетку заново. Если монетка на этот раз выпадает орлом, Чендлер генерирует случайную величину $X \sim \mathcal{N}(\frac{1}{2},\frac{1}{4}\sigma^2)$, иначе подкидывает монетку заново. В общем случае если монетка выпадает орлом на n-тое подкидывание, Чендлер генерирует случайную величину $X \sim \mathcal{N}\left(\frac{1}{2^{n-1}},\frac{1}{4^{n-1}}\sigma^2\right)$. Найдите $\mathbb{E}(X),\mathbb{E}(X^2)$ методом первого шага.

Ответ:
$$\frac{2}{3}$$
, $\frac{4(\sigma^2+1)}{7}$

Решение: Заметим, что на n-том шаге случайную величину X можно представить как: $X=\frac{1}{2^{n-1}}+\frac{1}{2^{n-1}}\sigma^\cdot \varepsilon, \ \ \varepsilon \sim \mathcal{N}(0,1),$ поэтому

$$\mathbb{E}(X) = 0.5 \cdot \mathbb{E}(1 + \sigma \cdot \mathcal{N}(0, 1)) + 0.5 \cdot \mathbb{E}\left(\frac{X}{2}\right) \to \mathbb{E}(X) = \frac{2}{3}$$

$$\mathbb{E}(X^2) = 0.5 \cdot \mathbb{E}((1 + \sigma \cdot \mathcal{N}(0, 1))^2) + 0.5 \cdot \mathbb{E}\left(\frac{X^2}{4}\right) \to \mathbb{E}(X^2) = \frac{4(\sigma^2 + 1)}{7}$$

$$(Z \sim \mathcal{N}(\mu, \sigma^2) \to \mathbb{E}(Z^2) = \mu^2 + \sigma^2)$$

С5. На свадьбе у Рэйчел женская часть гостей выстроились в линию чтобы ловить букет. В линии в случайном порядке стоят n девушек, все разного роста. Моника опаздывает и не успевает встать в ряд, поэтому ей удаётся посмотреть на всю линию только сбоку. Сколько в среднем жаждущих выйти замуж девушек увидит Моника?

$$1 + \frac{1}{2} + \dots + \frac{1}{n}$$

16.11.5. Тур 1 — Основная часть — Неравенства Чебышёва и Маркова

D1. Вы Раджеш Кутрапали и у вас проблемы в общении с девушками. Если вы не выпьете алкоголь, то вы не можете разговаривать с женщинами. Каждые пол минуты вы равновероятно делаете глоток пива или нет. Если вы сделаете более 25 глотков, то вы дойдёте до нужной кондиции. Оцените сверху вероятность того, что через 20 минут Раджеш сможет говорить с прекрасной половиной человечества.

$$\mathbb{P}(\text{Радж готов} = True) \leqslant 0.8$$

D2. Вы команда кафедры теоретической физики по страйкболу, вы должны защитить честь кафедры на чемпионате по страйкболу ведь в нём участвуют географы, биологи и, что самой ужасное, гуманитарии. В вашей команде четверо человек. В команде гуманитариев 6 человек. Говорят, что на одного павшего в страйкболе приходится в среднем 100 шариков. Сколько нужно вам взять шариков в среднем на человека, чтобы оценка сверху убийства не менее 6 человек в неравенстве Маркова была равна 1? Для простоты считайтйе, что вы все переживёте эту бойню.

Внимание! Это задача-сюрприз! Предлагаем на выбор: -5 минут от времени клада / -5 очков команде-сопернику

Не менее 150 на человека.

D3. Вы Говард Воловиц инженер с всего лишь степенью магистра. Вы конструируете робота, у которого имеется 100 узлов, которые могут сломаться за время автономной работы с вероятностью в 10%. Оцените сверху вероятность того, что число поломанных узлов будет отличаться от ожидаемого более чем на 5 узлов.

$$\mathbb{P}(|\mathsf{Поломок} - \mathbb{E}(\mathsf{Поломок})| > 5) \leqslant 9/25$$

D4. Вы Пенни, весьма милая девушка без высшего образования. Но вы переобщались с Шелдоном Купером. Из-за этого в вашей голове возникла задачка. Вы знаете, что каждые 20 минут у вас на работе заказывают два сырника с вероятностью 1/4 и с такой же не заказывают, с оставшейся вероятностью у вас берут один сырник. Ваша смена длится 6 часов. Вы хотите оценить сверху вероятность того, что у вас закажут более 24 или менее 12 сырников.

$$\mathbb{P}(|\mathsf{C}\mathsf{ы}\mathsf{p}\mathsf{h}\mathsf{u}\mathsf{k}\mathsf{o}\mathsf{b}$$
 за смену $-\mathbb{E}(\mathsf{C}\mathsf{ы}\mathsf{p}\mathsf{h}\mathsf{u}\mathsf{k}\mathsf{o}\mathsf{b}$ за смену) $|>6)\leqslant 1/4$

D5. Вы Бернадетт Мэри Энн Ростенковски-Воловиц, микробиолог и вы скрестили Эболу с гриппом, но этого не было. Вы знаете что за условный период времени число бактерий возрастает либо в 2.71 раз либо в 7.39 раз равновероятно. Оцените снизу вероятность того что число бактерий за 20 условных периодов возрастет от e^{25} до e^{35} раз.

$$\mathbb{P}(e^{25} \leqslant \text{Poct} \leqslant e^{35}) \geqslant 0.8$$

16.11.6. Тур 1 — Основная часть — Условные вероятности

E1. Мы знаем, что кроме Элевен в Национальной лаборатории Хоукинса были еще дети. Предположим, в самом начале экспериментов было двое детей, один из которых был мальчиком. Если предположить, что Доктор Бреннан мог похитить равновероятно мальчика или девочку, то какова вероятность, что второй ребенок тоже был мальчиком?

 $\frac{1}{3}$

E2 Из 100 опрошенных жителей Хоукинса, 30 работают в Национальной лаборатории Хоукинса, из которых 10 знают о том, что был открыт проход на «ту сторону». Какова вероятность, что если опрошенный житель работает в лаборатории, то он знает о проходе?

 $\frac{1}{3}$

- Е3. Встретившись лицом к лицу с Демогоргном, Дастин Лукас и Майк используют против него единственное оружие, которое у них есть рогатки. Все трое напуганы и стреляют независимо. Дастин попадает с вероятностью $\frac{1}{4}$, Майк с вероятностью $\frac{1}{6}$, А Лукас с вероятностью $\frac{1}{3}$.
 - а) Какова вероятность, что только один из них попадет в монстра?
 - б) Каковая вероятность, что попадет Лукас, если попал только один из ребят?
 - a) $\frac{31}{72}$; б) $\frac{15}{31}$
- E4. Дастин, Лукас, Майк и Уилл играют в Dungeons and Dragons в подвале у Майка. Из 25 игральных карт, дающих специальные способности, 5 карты дают рунные заклинания, которые помогут пройти сквозь лес с демодогами. Ребята вытягивают карты по очереди. У кого больше вероятность вытащить счастливый билет: у Уилла (он тянул первый), или Лукаса (тянул вторым)?

Внимание! Это задача-сюрприз! Предлагаем на выбор: стикеры / возможность открыть клетку, к которой нет пути (десант!)

$$\mathbb{P}(L|W)=rac{4}{24},\mathbb{P}(L|W^c)=rac{5}{24},\mathbb{P}(W)=rac{1}{5},\mathbb{P}(W^c)=rac{4}{5}$$
 $\mathbb{P}(L)=rac{4}{24}rac{1}{5}+rac{5}{24}rac{4}{5}=rac{1}{5}=\mathbb{P}(W).$ Вероятность одинаковая.

Е5. Дастин и Макс играют в игровые автоматы. Дневной матч состоит из серии игр, причем p — вероятность Дастина выиграть каждую игру (независимо). Первый, кто выигрывает на две игры больше противника, становится победителем дня. Какова вероятность того, что Дастин выиграет дневной матч (в терминах p)?

$$\mathbb{P}(D) = \frac{p^2}{1-2pq} = \frac{p^2}{p^2+q^2}$$

16.11.7. Тур 1 — студия — Ковариации и корреляции

А1. Создатель правой палочки и создатель левой палочки Twix бросают одновременно правильный десятигранный шоколадный кубик. Пусть X и Y значения, которые выпали создателю правой и левой палочки соответственно.

Найдите ковариацию между X + Y и X - Y.

$$Cov(X + Y, X - Y) = 0$$

А2. Вы пошли на интервью, для того, чтобы сниматься в рекламе Альпен Гольда. Вы очень понравились жюри, но они хотят проверить ваше знание статистики. Вам дают такую задачу.

Пусть
$$\mathbb{E}(X)=3$$
, $\mathbb{E}(\lambda)=-2$, $\mathrm{Var}(X)=1$, $\mathbb{E}(\lambda^2)=8$, $\mathbb{E}(X\lambda)=-1$ Найдите $\mathrm{Cov}(X,\lambda)$, $\mathrm{Corr}(X,\lambda)$ Cov $(X,\lambda)=5$, $\mathrm{Corr}(X,\lambda)=2.5$.

- А3. Верны ли следующие утверждения?
 - а) Некоррелированные нормально распределенные случайные величины независимы.
 - б) Случайные величины X и Y зависимы, Y и Z зависимы. Верно ли, что случайные величины X и Z зависимы?
 - а) Нет, б) Нет
- А4. Вы пытаетесь оценивать зависимость между продажами Сникерса и печенья. Вам известно количество продаж в 100 магазинах (нарисованы на графике). По оси OX количество проданных Сникерсов, по оси OY продажи печенья.

Существует ли зависимость между продажами Сникерса и печенья? Какой знак у корреляции?

X и Y зависимы, но корреляция равна 0.

16.11.8. Тур 1 — студия — Нормальное распределение

В1. Микрофинансовая организация «Рабочие деньги» обычно предлагает займы под 144% годовых. По случаю своего дня рождения она решила устроить акцию: для одного счастливчика ставка будет равна не 144% годовых, а реализации случайной величины $X \sim \mathcal{N}(144; 1296)$. Найдите вероятность того, что ставка для счастливчика превысит 180% годовых.

 ≈ 0.1586553

В2. Директор «Рабочих денег» Иннокентий, пытается оценить, как распределены доходы его заёмщиков. Он считает, что распределение нормальное, но не уверен, какие у него параметры. Иннокентий нарисовал две функции распределения: $\mathcal{N}(10000, 5000)$ и $\mathcal{N}(12500, 15)$. Воспроизведит схематично рисунок Иннокентия.

 $\mathcal{N}(10000,5000)$ — колокол, симметричный относительно прямой x=10000, с маленьким горбом; $\mathcal{N}(12500,15)$ — колокол, симметричный относительно прямой x=12500 с очень острым и узким горбом.

ВЗ. На номер 8 800-555-35-35 поступил звонок от Валерия. Как хорошо, что Иннокентий заранее определился с распределением доходов своих клиентов! Доход каждого – случайная величина, распределённая нормально с математическим ожиданием 15000. Проведя беглый опрос, Иннокенти прикинул вероятность того, что истинный доход Валерия лежит в интервале (12000, 13000). По его оценке, она равна 0.3. А какова вероятность того, что истинный доход Валерия лежит в интервале (17000, 18000)?

0.3

В4. Иннокентий снова делает квартальный отчёт. В этот раз он уверен, что распределение доходов заёмщиков – нормальное с матожиданием 20000 и стандартным отклонением 1000. Но он совсем забыл функцию плотности нормального распределения, поэтому написал смс жене: «Котя, напомни функцию плотности нормального распределения, плз». Помогите Иннокентию, плз.

$$f(x) = \frac{1}{\sqrt{2\pi 1000^2}} e^{-\frac{1}{2} \cdot \frac{(x - 20000)^2}{1000^2}}$$

16.11.9. Тур 1 — студия — Непрерывные распределения

С1. Количество сиреневых конфет Skittles в каждой пачке – равномерная на отрезке $[0;\pi]$ случайная величина. Найдите $\mathbb{P}(\min\{X_1,\dots,X_{1000}\}>e)$.

$$\left(\frac{\pi - e}{\pi}\right)^{1000}$$

C2. Растаман в рекламе Skittles доит жирафа. Доля конфет красного цвета в надое – случайная величина и имеет следующую функцию распределения:

$$F(x) = \begin{cases} C_1, & x < 0\\ 0.5x^2 + 0.5x + C_3, & x \in [0, 1]\\ C_2, & x > 1 \end{cases}$$

Найдите C_3 .

0

- С3. Количество сахара в граммах в конфете Skittles случайная величина с функцией распределения $F(x)=\frac{1}{2}+\frac{\arctan(x)}{\pi}$. Найдите $\mathbb{P}(0< X<1)$.
- С4. Чтобы рассмотреть всю радугу, жирафу, стоящему прямо перед ней, нужно наклонять голову вправо или влево. Угол наклона головы случайная величина X с функцией плотности:

$$f(x) = egin{cases} rac{2}{\pi}\cos^2 x & x \in \left[-rac{\pi}{2},rac{\pi}{2}
ight] \\ 0 & ext{иначе} \end{cases}$$

Жираф наклоняет трижды. Найдите вероятность того, что ровно два раза угол наклона будет лежать в интервале $\left(0,\frac{\pi}{4}\right)$.

$$C_3^2 \left(\frac{2+\pi}{4\pi}\right)^2 \frac{3\pi-2}{4\pi}$$

16.11.10. Тур 1 — студия — Оптимальные стратегии

D1. Леонид Якубович подбрасывает неправильную монетку и каждый раз пытается угадать, как она выпадет. В качестве прогноза на следующий бросок он использует результат предыдущего броска. Монетка выпадает орлом с вероятностью p.

Если Якубович угадывает, он получает от игрока Поле Чудес один евро, если не угадывает, то платит игроку один евро.

При каком p стратегия Якубовича приносит игроку наибольшую ожидаемую прибыль? Чему она при этом будет равна?

D1. E(X) = -1 + 4p(1-p). Максимизируем, получаем p = 0.5. Наибольшая прибыль игрока E(X) = 0.

D2. Леонид Якубович выдаёт шкатулки по новым правилам :) Деньги лежат только в одной из четырёх предлагаемых шкатулок. Марь-Ивановна из деревни Невероятная Глушь слышит:

Вы, Марь-Ивановна, можете выбрать любую из четырёх шкатулок. Затем я открою одну пустую шкатулку (кроме Вашей) и снова дам Вам право выбора. Вы сможете сменить выбор шкатулки или настоять на прежнем. После этого, Марь-Ивановна, Вы получите содержимое шкатулки.

Как выглядит оптимальная стратегия Марь-Ивановны и чему равна вероятность выигрыша? D2. Правильно будет сменить выбор. Вероятность удачи тогда будет равна 3/8.

D3. Леонид Якубович подкидывает кубик. Если выпадает тройка, или Якубович говорит «стоп», то игра оканчивается, если нет, то начинается заново. Выигрыш Леонид Аркадьевича - последнее выпавшее число.

Как выглядит оптимальная стратегия и чему равен наибольший ожидаемый выигрыш? D3. Говорить «стоп» на 3, 5, 6. Выигрыш равен (3+5+6)/3 = 4+2/3.

D4. Приз в Поле Чудес X равномерно распределен от 0 до 1 миллиона рублей. Лингвист Вася имеет право заранее выбрать порог b. Если X окажется больше порога b, то лингвист Вася получает X. Если X окажется меньше порога b, то Вася не получает ничего.

Какой порог следует выбрать Василию?

D4. Очевидно 0, лучше всегда что-то получать:)

16.11.12. Тур 2 — Основная часть — Непрерывные распределения

А1. Марта и Доктор заперты в старом особняке, куда их привела ТАРДИС. А еще в этом особняке заперты Плачущие Ангелы, передвигающиеся со скоростью X м/с. Функция плотности величины X имеет вид:

$$f(t) = \begin{cases} 0, & t < 1 \\ t - a, & t \in [1, 2) \\ 0, & t \ge 2 \end{cases}$$

Найдите a, $\mathbb{E}(X)$.

$$a = \frac{1}{2}, \mathbb{E}(X) = \frac{19}{12}$$

А2. Сливины с планеты Раксакорикофаллапаториус и сонтаранцы с планеты Сонтар не могут решить, какой народ уродливее, и устраивают войну. Сонтар - планета воинов, у них преимущество в данной схватке. Пусть случайная величина X - прибыль сонтаранцев от войны. Функция плотности случайной величины X имеет вид:

$$f(x) = \begin{cases} cx + 3, & -3 \leqslant x \leqslant -2\\ 3 - cx, & 2 \leqslant x \leqslant 3\\ 0, & \text{иначе} \end{cases}$$

Найдите константу c, функцию распределения случайной величины X.

Внимание! Это задача-сюрприз! Предлагаем на выбор: -5 минут от времени клада / -5 очков команде-сопернику

$$c = 1, F(x) = \begin{cases} 0, & x \leqslant -3\\ \frac{(x+3)^2}{2}, & -3 \leqslant x < -2\\ \frac{1}{2}, & -2 \leqslant x < 2\\ 1 - \frac{(x+3)^2}{2}, & 2 \leqslant x < 3\\ 1, & x \geqslant 3 \end{cases}$$

А3. Всем известно, что ТАРДИС внутри на самом деле круглая. Пока Доктор спал, Эми решила наконец удовлетворить свое любопытство по поводу настоящего размера будки–машины времени и измерила ее диаметр x. x измерен приближённо, причём $a\leqslant x\leqslant b$. Рассматривая диаметр как случайную величину X, распределённую равномерно в интервале (a,b), найти математическое ожидание и дисперсию площади ТАРДИС.

$$\frac{\pi(b^2+ab+a^2)}{12}$$
, $\left(\frac{\pi^2}{720}\right)(b-a)^2(4b^2+7ab+4a^2)$

А4. Далеки считают, что вся сила Доктора заключена в его звуковой отвертке единичной длины. Предводитель Далеков Даврос уличил момент, когда отвертка осталась незащищённой, закричал «EXTERMINATE» и выстрелил в неё из энергетической пушки. Место, где отвёртка сломалась, – случайная величина $U \sim U(0,1)$. Найдите функцию распределения длины большего куска и его ожидаемую длину.

$$F_L(l) = 2l - 1, \mathbb{E}(L) = 3/4$$

А5. Доктор и Роуз только что закончили приключение в Вифлееме в 0 году н.э. Они заходят в ТАРДИС и Роуз вбивает в компьютер время следующего пункта назначения, однако упрямая ТАРДИС не любит Роуз и выбирет год, куда (или когда?...) они действительно полетят случайным образом. Разница лет, между которыми путешествуют Доктор и Роуз, имеет распределение Гумбеля и имеет вид $-\log X$, где $X \sim Exp(1)$.

- а) Найдите функцию распределения случайной величины $-\log X$, где $X \sim Exp(1)$.
- б) Пусть X_1, X_2, \ldots независимые случайные величины, $X_i \sim Exp(1)$, а $M_n = \max\{X_1, \ldots, X_n\}$. К какому распределению сходится функция распределения величины $M_n \ln n$ при $n \to \infty$?

 $\mathbb{P}(G < t) = e^{-e^{-t}}$, к распределению Гумбеля

16.12. Тур 2 — Основная часть — Ковариации и корреляции

В1. Пусть X это случайная величина, которая принимает значение -1, если Джон Сноу умер в великой войне и 1, если он остался жив. Y — сколько раз во время войны Дейнерис Таргариен сказала слово «Дракарис». Пусть таблица совместного распределения случайных величин X и Y такая:

$X \setminus Y$	0	3	10
-1	0.3	0.2	0
1	0.1	0.1	c

- а) Найдите Cov(X, Y).
- б) Известно, что Джон Сноу выжил. Сколько раз в среднем Дейнерис произнесла слово Дракарис?

$$Cov(X, Y) = 2.8, \mathbb{E}(Y|X > 0) = 3.3$$

В2. Для того, чтобы покорить сердце Сансы Старк, Питр Бейлиш должен с первой попытки ответить правильно на все её вопросы. Сансу с детства мучал один вопрос. Пусть бублик задаётся неравенствами $x^2+y^2\geqslant 4$ и $x^2+y^2\leqslant 9$. Случайным образом равномерно на бублике выбирается точка с координатами X и Y. Чему равна корреляция между X и Y? Зависимы ли X и Y?

$$Corr(X, Y) = 0$$
, X и Y зависимы.

В3. Кроме бубликов Сансе Старк также очень нравится распределение Пуассона. Её второй вопрос такой: Пусть X=V+W и Y=V+Z, где $V,W,Z\sim Pois(\lambda)$ и независимы.

Найдите Cov(X, Y)

$$Cov(X, Y) = \lambda$$

В4. Пусть X и Y, координаты нахождения Дракариса, распределены независимо и имеют стандартное нормальное распределение. Для драконов их мать (Дейнерис бурерожденная) всегда находится в центре Вестероса (то есть X и Y считаются относительно места нахождения Дейнериса).

Найдите ковариацию между координатой X и квадратом расстояния Дракариса от Дейнериса. Являются ли X и квадрат расстояния независимыми величинами?

Нет, не являются независимыми. $\mathrm{Cov}(R^2,X)=0$

В5. Пусть плотность распределения случайной величины X – доли выживших в красной свадьбе – имеет вид:

$$f(x) = \begin{cases} 2x, & \text{если } x \in (0;1] \\ 0, & \text{иначе} \end{cases}$$

Y — доля предателей из севера связан с X таким уравнением:

$$Y = \ln(X\sqrt{e^2 - 1})$$

Найдите плотность распределения Y.

Добрый Ходор решил помочь храбрым исследователям и исследовательницам. Говоря Ходор, он имеет в виду, что вы должны использовать дифференциальные формы :)

Внимание! Это задача-сюрприз! Предлагаем на выбор: стикеры / возможность открыть клетку, к которой нет пути (десант!)

$$f(y) = egin{cases} rac{2e^{2y}}{e^2-1}, & ext{если } y \in (0;1] \\ 0, & ext{иначе} \end{cases}$$

16.12.1. Тур 2 — Основная часть — Нормальное распределение

С1. По будням выигрыши в казино «Серебряный мустанг» имеют нормальное распределение с математическим ожиданием 0 (честное казино!) и стандартным отклонением 1000 \$ (но дорогое!). Оцените вероятность того, что Даги Джонс, придя в казино в будний день, выиграет не менее $425\,000$ \$.

Внимание! Это задача-сюрприз! Заберём в студию, если задача решена неверно $\leqslant \frac{1}{361250}$.

С2. Злой двойник Дейла Купера, разгадывая очередную загадку, понял, что ему необходимо достичь важной точки в окрестности города. Он почувствует ее, если приблизится к ней хотя бы на километр. В его распоряжении две координаты, которые ему дал бывший агент Филлип Джеффрис. Если по этим координатам он не почувствует точку, то уедет искать ее по другой наводке. Известно (но не двойнику), что координаты, которые дает Джеффрис, распределены нормально, независимы, в среднем указывают в правильное место, но обе имеют стандартное отклонение в 1 километр. Найдите (оцените в таблице) вероятность того, что злой двойник не найдет нужную точку. Считайте, что почувствовать ее по пути невозможно.

За правильный ответ принимается любой промежуток, содержащий число 0.6065307, или близкая точка.

С4. Джеймс Хёрли едет по загородному шоссе на своем байке со скоростью 120 км/ч. На участке стоят полицейские с радаром и останавливают всех, кто едет быстрее 100 км/ч. Их радар в среднем замеряет скорость точно, но его показания имеют дисперсию $100 \, \frac{\text{км}^2}{\text{ч}^2}$. Какова вероятность того, что Джеймса остановят?

Ответ: ≈ 0.9772499

Решение:
$$\mathbb{P}(\nu > 100) = \mathbb{P}\left(\frac{\nu - 120}{10} > \frac{100 - 120}{10}\right) = \mathbb{P}(\mathcal{N}(0, 1) > -2) = 0.9772499$$

- С5. Агенту Куперу во время его пребывания в городе Твин Пикс часто снился один и тот же сон, в котором менялась одна маленькая деталь: перед самым его пробуждением Человек из другого места показывал ему кольцо, на котором были написаны два числа, однако числа были разные и на самом деле были реализациями некоторых случайных величин. Мистически-анал склад ума позволил Куперу установить, что первая величина --- $X \sim \mathcal{N}(0;1)$, а вторая величина --- Y = |Z|sign(X), где $Z \sim \mathcal{N}(0;1)$, причем величины X и Z независимы. Чувствуя, что разгадка убийства Лоры Палмер кроется в распределении этих величин, Агент Купер тут же задался вопросами:
 - а) Является ли Y стандартной нормальной величиной?
 - б) Коррелированы ли X и Y?
 - в) Является ли их совместное распределение нормальным?

Помогите Агенту Куперу раскрыть убийство Лоры Палмер. Да. Да. Нет.

16.12.2. Тур 2 — Основная часть — Геометрические вероятности

D1. Пусть X — вещественное число между 0 и 10, номер парковочного места на полицейском участке, куда детектив Мартин Харт ставит свою машину.

Найдите вероятность того, что $\frac{X}{2}$ будет ближе к 0, чем к 6.

0.6

D2. Детектив Растин Коул нелегально тренируется дома стрелять. У него есть мишень круглой формы с радиусом r, в которую он стреляет. Найдите вероятность того, что пуля попадет ближе к центру круга, чем к границам.

Ответ: 0.25

Решение: Общая площадь круга πr^2 . Точки в этом круге, которые находятся ближе к центру, чем к границам, находятся в радиусе $\frac{r}{2}$. Получается это тоже круг с радиусом $\pi(\frac{r}{2})^2$.

Получаем: $\mathbb{P}($ брошенный дротик будет ближе к центру $)=\frac{\pi(\frac{r}{2})^2}{\pi r^2}=\frac{1}{4}=0.25$

D3. Детективы Коул и Харт договорились, что встретятся у леса, где было совершено убийство, чтобы вместе искать улики. Каждый из них приезжает в случайное время от 12:00 до 13:00. Преступление должно пролить свет на все преыдущие убийства, поэтому они ждут друг друга пять минут и потом в спешке уходят и расследуют одни. Найдите вероятность того, что они будут искать улики вместе.

0.1597

D4. Раст Коул грустно филосовствует о тленности и безысходности бытия всегда, когда курит. После очередной неудачи в расследовании Харт жутко злится на Коула, отбирает у него сигарету и разламывают ее в двух заранее намеченных случайным образом местах. Какова вероятность того, что три полученные части образуют треугольник?

 $\frac{1}{4}$

D5. Мартин Харт хочет поставить любимую песню (Single Ladies Бейонсе) в автомате в местной забегаловке. Монета в один цент — это диск диаметром 4/5. Он бросает монету случайным образом на квадратную решётку, образованную линиями, отстоящими друг от друга на расстоянии 1. Если монета покрывает часть линии, он теряет свой цент. Если нет — он всё равно теряет свой цент, но автомат испоняет любимую песню детектива.

Какова веротяность того, что детектив сможет послушать Бейонсе?

 $\frac{1}{25}$

16.12.3. Тур 2 — Основная часть — Оптимальные стратегии

- E1. a) При каких p дисперсия биномиального распределения будет максимальной?
 - б) При каких p дисперсия биномиального распределения будет минимальной?
 - в) При каких p математическое ожидание биномиального распределения будет максимальным?
 - a) 1/2
 - б) 0 и 1
 - в) 1

E2. Мэтью Кроули лежит на дороге после аварии, он смертельно ослаб. Спасти его может только один вид целебной лягушки. Целебные у этого вида только самцы. Самцы и самки встречаются равновероятно. Слева в 100 метрах от него одна лягушка целебного вида, но не ясно, самец или самка. Справа в 100 метров аж две лягушки целебного вида, но тоже издалека неясно кто. От двух лягушек в твою сторону дует ветер, поэтому он можешь их слышать.

Самки постоянно квакают, самцы — никогда, со стороны правых двух лягушек ты слышишь кваканье, но не разобрать, одной лягушки или двух.

В какую сторону стоит ползти из последних сил и какова вероятность его спасения?

- Е2. Ползти вправо, справа условная вероятность спасения при условии кваканья равна 2/3, что больше 1/2 слева.
- Е3. Два охотника Граф Гиллингем и мистер Блейк поехали на охоту и хотят убить одну утку чтобы завоевать сердце леди Мэри. Престижно сделать это не позже соперника. Стартуют охотники в точке ноль и с единичной скоростью идут в точку с координатой один, где сидит утка. Вероятность попадания графа Гиллингема равна a(x) = x. Вероятность попадания мистера Блейка $b(x) = \min\{1, 2x\}$, где x координата охотника.

Как выглядит оптимальная стратегия каждого охотника?

Внимание! Это задача-сюрприз! Предлагаем на выбор: частичный балл за задачу / освобождение участника из студии

- Е3. Оптимальная стратегия обоих игроков выстрелить в момент a(x)+b(x)=1. В данном случае это x+2x=1. Оба выстрелят в момент x=1/3. Если, скажем, Граф Гиллингем задержит выстрел на δt , то мистеру Блейку выгодно задержать на $\delta t/2$.
- Е4. Графиня Кроули не может решить, кому оставить наследство, и решает поступить следующим образом: она выдаёт внучкам шкатулки по новым правилам:) Деньги лежат только в одной из четырёх предлагаемых шкатулок. Леди Эдит слышит: Вы, леди Эдит, можете выбрать любую из четырёх шкатулок. Затем я открою одну пустую шкатулку (кроме Вашей) и снова дам Вам право выбора. Вы сможете сменить выбор шкатулки или настоять на прежнем. После этого, леди Эдит, я открою ещё одну пустую шкатулку (кроме Вашей текущей). Затем я снова дам Вам право сменить выбор или настоять на выбранной шкатулке. Затем Вы получите содержимое Вашей шкатулки.

Как выглядит оптимальная стратегия леди Эдит и чему равна вероятность выигрыша?

- Е4. Оптимальная стратегия настоять затем сменить приносить выигрыш 3/4. По остальным стратегиям: настоять-настоять даёт 1/4, сменить-настоять даёт 3/8 и сменить-сменить даёт 5/8.
- Е5. Леди Роуз страдает и потому испытывает отрицательную полезность $-0.0008 = -8 \cdot 10^{-4}$ миллионов долларов каждый день. Каждый вечер она знакомится с новым миллиардером в ночном клубе и может тут же выскочить за него замуж. Каждый миллиардер характеризуется благосостоянием X, которое Роуз получит в день свадьбы с ним. Величина X распределено равномерно на [0;1] миллиона долларов. Ежедневная полезность Роуз от замужнего состояния после дня свадьбы равна 0.

Сметливый глаз Роуз может прекрасно оценить X сразу при знакомстве. Роуз выходит замуж один раз и максимизирует суммарную жизненную полезность.

При какой сумме X Роуз стоит выскакивать замуж?

E5. Пусть V суммарный выигрыш и Роуз использует порог t, тогда

$$V = t(-c+V) + (1-t)\frac{1+t}{2}$$

Отсюда

$$V = \frac{1 - 2tc - t^2}{1 - t}$$

Максимизируем, находим $\alpha = 1 - \sqrt{2c} = 0.96$.

16.12.4. Тур 2 — студия — ЦПТ и ЗБЧ

- А1. Для идеальной картинки режиссёру рекламы грузовиков Volvo требуется 60 дублей. В каждом Жан Клод ван Дамм садится на шпагат. Пусть U_1, U_2, \ldots, U_{60} независимо распределённые случайные величины, сколько сантиметров актёру не хватает до идеальной параллели, $U_i \sim U(0,1)$, и $X=U_1+\ldots+U_{60}$.
 - а) К какому распределению очень близко распределение случайной величины X? Укажите его параметры.
 - б) Найдите, чему приблизительно равна $\mathbb{P}(X>20)$.

$$X \sim \mathcal{N}(30, 5), \approx 1$$

А2. Пусть X_1, X_2, \ldots независимо распределённые случайные величины, число дублей в каждом съёмочном дне, которые не идеальны по вине водителя левого грузовика Volvo, $\mathbb{E}(X_i)=2,\,Y_1,Y_2,\ldots$ независимо распределённые случайные величины, сколько дублей испортил водитель второго грузовика за каждый съёмочный день, $\mathbb{E}(Y_i)=4$. К какому числу сходится случайная величина $\frac{X_1+X_2+\ldots+X_n}{Y_1+Y_2+\ldots+Y_n}$, если режиссёр-перфекционист не ограничен во времени и деньгах, то есть при $n\to\infty$?

0.5

А3. В рекламе задействовано два грузовика. Расход топлива за і-ый день (в л/100 км) у левого – случайная величина X_i , у правого – случайная величина Y_i , X_i и Y_i независимы $\forall i$. Известно, что $\mathbb{E}(X_i)=20$, $\mathrm{Var}(X_i)=1$, $\mathbb{E}(Y_i)=18$, $\mathrm{Var}(Y_i)=4$.

За один съёмочный день грузовики проезжают по 100 км. Поскольку сначала надо отрепетировать трюк без Жан Клода ван Дамма, а потом с ним, грузовики будут нужны в 40 съёмочных днях. Какова вероятность того, что за всё время репетиций и съёмок понадобится более 1550 литров топлива?

$$\approx 0.017$$

А4. После выхода рекламы компания Volvo провела опрос 10000 дальнобойщиков. У каждого спросили, считает ли он модель Volvo XC40 более стильной, чем модель Volvo V90. Дальнобойщики отвечали «да» или «нет» равновероятно. Оцените вероятность того, что число положительных ответов отличалось от 5000 меньше, чем на 100.

$$\geqslant \frac{3}{4}$$

16.12.5. Тур 2 — студия — Комбинаторика

В1. У вас есть всего один фонарик, в который помещается 2 батарейки, и есть 10 батареек, из которых 5 батареек Дюрасел и 5 обычных. За одну попытку можно вставить в фонарик 2 батарейки. Он будет светить только когда обе батарейки — от Дюрасел. Сколько попыток понадобится, чтобы наверняка добиться света в фонарике и прорваться сквозь мрак невежества?

8

В2. На каждой батарейке Дюрасел написано натуральное число — серийный номер. Серийный номер называется замечательным, если он — самое маленькое среди всех натуральных чисел с такой же, как у него, суммой цифр. Сколько существует трёхзначных замечательных серийных номеров?

9

В3. Зайцы Дюрасел могут передвигаться по городу из точки в точки только по проводам. На карте города нарисовано n точек — местоположения фабрик Дюрасел, причем никакие три не лежат на одной прямой. Сколько имеется треугольников, образованных проводами между фабриками?

 C_n^k

В4. Сколько слов-модных названий для новой серии батареек Дюрасел можно составить из пяти букв А и не более чем трех букв М? (Слово в данном случае --- просто уникальная комбинация букв, не обязательно имеющая смысл).

$$C_6^0 + C_6^1 + C_6^2 + C_6^3$$
 или 42

16.12.6. Тур 2 — студия — Разложение в сумму

С1. В кругу стоят 30 детей, среди которых слива, вишня, томат. Вместе они фруктовый сад. Будем считать ребёнка высоким, если он выше обоих соседей. Пусть X — число высоких детей в кругу. Найдите $\mathbb{E}(X)$.

10

C2. Яблоко, абрикос, дыня, ананас и огурец играют в Тайного Санту. Они пишут свои имена на бумажках и складывают их в шляпу сливы (сама слива не участвует в игре). Затем каждый достаёт наугад бумажку из шляпы. Найдите ожидаемое число детей, которые вытащат бумажку со своим именем.

1

С3. После съёмок в рекламе Вася и Петя пошли в школу. Там их ждал тест по математике из 20 вопросов. Естественно, оба не готовились, поэтому они будут угадывать ответы. Известно, что Вася – правнук ясновидящей, поэтому он угадывает верный ответ с вероятностью 0.6, а Петя — с вероятностью 0.3. Найдите математическое ожидание числа совпадающих ответов, то есть таких, где оба ответили верно или оба ответили неверно.

9.2

С4. За хорошую работу детям раздают шоколадки. В мешке лежат 15 сникерсов и 10 твиксов. Петя берёт не глядя 6 шоколадок. Найдите математическое ожидание числа взятых сникерсов. 3.6

16.12.7. Тур 2 — студия — Пределы по вероятностям

D1. Пусть X — случайная величина такая, что

$$p_{X_n}(x) = egin{cases} rac{1}{n}, & x = n^2 \\ 1 - rac{1}{n}, & x = 0 \\ 0, & ext{иначе} \end{cases}$$

Найдите $plim X_n$, $plim \mathbb{E}(X_n)$. $plim X_n = 0$, $plim \mathbb{E}(X_n) \to \infty$

- D2. Пусть X_1, X_2, \ldots независимые случайные величины, $X_i \sim U(0,1)$. $Y_n = \frac{1}{1+\overline{X_n}}$. Найдите $plimY_n$.
- D3. К какому распределению сходится по распределению X_n , если

$$F_{X_n} = 1 - \left(1 - \frac{x}{n}\right)^n, \quad 0 < x \le n$$

exp(1)

D4. Пусть X_1, X_2, \ldots независимые случайные величины, $X_i \sim U(0,1)$. Найдите $plim \frac{\cos(X_1) + \ldots + \cos(X_n)}{2n+7}$ $\frac{1}{2} \left(\cos(1) \cdot \frac{1}{2} + \frac{1}{2}\right)$

16.13. Теоретический минимум к кр3

- 1. Дайте определение нормально распределённой случайной величины. Укажите диапазон возможных значений, функцию плотности, ожидание, дисперсию. Нарисуйте функцию плотности.
- 2. Дайте определение хи-квадрат распределения. Укажите диапазон возможных значений, выражение через нормальные распределения, математическое ожидание. Нарисуйте функцию плотности при разных степенях свободы.
- 3. Дайте определение распределения Стьюдента. Укажите диапазон возможных значений, выражение через нормальные распределения. Нарисуйте функцию плотности распределения Стьюдента при разных степенях свободы на фоне нормальной стандартной функции плотности.
- 4. Дайте определение распределения Фишера. Укажите диапазон возможных значений, выражение через нормальные распределенеия. Нарисуйте возможную функцию плотности.

Для следующего блока вопросов предполагается, что имеется случайная выборка $X_1, X_2, ..., X_n$ из распределения с функцией плотности $f(x, \theta)$, зависящей от от параметра θ . Дайте определение каждого понятия из списка или сформулируйте соответствующую теорему:

- 5. Выборочное среднее и выборочная дисперсия;
- 6. Формула несмещённой оценки дисперсии;
- 7. Выборочный начальный момент порядка k;
- 8. Выборочный центральный момент порядка k;
- 9. Выборочная функция распределения;
- 10. Несмещённая оценка $\hat{\theta}$ параметра θ ;
- 11. Состоятельная последовательность оценок $\hat{\theta}_n$;
- 12. Эффективность оценки $\hat{\theta}$ среди множества оценок $\hat{\Theta}$;
- 13. Неравенство Крамера-Рао для несмещённых оценок;
- 14. Функция правдоподобия и логарифмическая функция правдоподобия;
- 15. Информация Фишера о параметре θ , содержащаяся в одном наблюдении;

- 16. Оценка метода моментов параметра θ при использовании первого момента, если $\mathbb{E}(X_i)=g(\theta)$ и существует обратная функция g^{-1} ;
- 17. Оценка метода максимального правдоподобия параметра θ ;

Для следующего блока вопросов предполагается, что величины $X_1, X_2, ..., X_n$ независимы и нормальны $\mathcal{N}(\mu; \sigma^2)$.

- 18. Укажите закон распределения выборочного среднего, величины $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$, величины $\frac{\hat{X}-\mu}{\hat{\sigma}/\sqrt{n}}$, величины $\frac{\hat{\sigma}^2(n-1)}{\sigma^2}$;
- 19. Укажите формулу доверительного интервала с уровнем доверия $(1-\alpha)$ для μ при известной дисперсии, для σ^2 ;

16.14. Задачный минимум к кр3

1. Рост в сантиметрах (случайная величина X) и вес в килограммах (случайная величина Y) взрослого мужчины является нормальным случайным вектором Z=(X,Y) с математическим ожиданием $\mathbb{E}(Z)=(175,74)$ и ковариационной матрицей

$$\operatorname{Var}(Z) = \begin{pmatrix} 49 & 28 \\ 28 & 36 \end{pmatrix}$$

Лишний вес характеризуется случайной величиной U=X-Y. Считается, что человек страдает избыточным весом, если U<90.

- а) Определите вероятность того, что рост мужчины отклоняется от среднего более, чем на 10 см.
- б) Укажите распределение случайной величины U. Выпишите её плотность распределения.
- в) Найдите вероятность того, что случайно выбранный мужчина страдает избыточным весом.
- 2. Рост в сантиметрах, случайная величина X, и вес в килограммах, случайная величина Y, взрослого мужчины является нормальным случайным вектором Z=(X,Y) с математическим ожиданием $\mathbb{E}(Z)=(175,74)$ и ковариационной матрицей

$$\operatorname{Var}(Z) = \begin{pmatrix} 49 & 28 \\ 28 & 36 \end{pmatrix}$$

- а) Найдите средний вес мужчины при условии, что его рост составляет 170 см.
- б) Выпишите условную плотность распределения веса мужчины при условии, что его рост составляет $170~{\rm cm}.$
- в) Найдите условную вероятность того, что человек будет иметь вес, больший $90~\rm kr$, при условии, что его рост составляет $170~\rm cm$.
- 3. Для реализации случайной выборки x = (1, 0, -1, 1) найдите:

- а) выборочное среднее,
- б) неисправленную выборочную дисперсию,
- в) исправленную выборочную дисперсию,
- г) выборочный второй начальный момент,
- д) выборочный третий центральный момент,
- 4. Для реализации случайной выборки x = (1, 0, -1, 1) найдите:
 - а) вариационный ряд,
 - б) первый член вариационного ряда,
 - в) последний член вариационного ряда,
 - г) график выборочной функции распределения.
- 5. Пусть $X=(X_1,\dots,X_n)$ случайная выборка из дискретного распределения, заданного с помощью таблицы

Рассмотрите оценку $\hat{\theta} = \frac{\bar{X} + 2}{5}$.

- а) Найдите $\mathbb{E}[\hat{\theta}]$.
- б) Является ли оценка $\hat{\theta}$ несмещенной оценкой неизвестного параметра θ ?
- 6. Пусть $X = (X_1, \dots, X_n)$ случайная выборка из распределения с плотностью распределения

$$f(x,\theta) = \begin{cases} \frac{6x(\theta-x)}{\theta^3} & \text{при } x \in [0;\theta], \\ 0 & \text{при } x \not\in [0;\theta], \end{cases}$$

где $\theta>0$ — неизвестный параметр распределения и $\hat{\theta}=\bar{X}.$

- а) Является ли оценка $\hat{\theta} = \bar{X}$ несмещенной оценкой неизвестного параметра θ ?
- б) Подберите константу c так, чтобы оценка $\tilde{\theta}=c\bar{X}$ оказалась несмещенной оценкой неизвестного параметра $\theta.$
- 7. Пусть $X=(X_1,X_2,X_3)$ случайная выборка из распределения Бернулли с неизвестным параметром $p\in(0,1)$. Какие из следующих ниже оценкой являются несмещенными? Среди перечисленных ниже оценок найдите наиболее эффективную оценку:

•
$$\hat{p}_1 = \frac{X_1 + X_3}{2}$$
,

•
$$\hat{p}_2 = \frac{1}{4}X_1 + \frac{1}{2}X_2 + \frac{1}{4}X_3$$
,

•
$$\hat{p}_3 = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$$
.

8. Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из распределения с плотностью

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} \ e^{-\frac{x}{\theta}} & \text{при } x \geqslant 0, \\ 0 & \text{при } x < 0, \end{cases}$$

где $\theta>0$ — неизвестный параметр. Является ли оценка $\hat{\theta}_n=\frac{X_1+...+X_n}{n+1}$ состоятельной?

9. Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из распределения с плотностью распределения

$$f(x,\theta) = \begin{cases} \frac{6x(\theta-x)}{\theta^3} & \text{при } x \in [0;\theta], \\ 0 & \text{при } x \not\in [0;\theta], \end{cases}$$

где $\theta>0$ — неизвестный параметр распределения. Является ли оценка $\hat{\theta}_n=\frac{2n+1}{n}\bar{X}_n$ состоятельной оценкой неизвестного параметра θ ?

10. Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из распределения с плотностью распределения

$$f(x,\theta) = \begin{cases} \frac{6x(\theta-x)}{\theta^3} & \text{при } x \in [0;\theta], \\ 0 & \text{при } x \not\in [0;\theta], \end{cases}$$

где $\theta>0$ — неизвестный параметр распределения. Используя центральный момент 2-го порядка, при помощи метода моментов найдите оценку для неизвестного параметра θ .

11. Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка. Случайные величины X_1,\ldots,X_n имеют дискретное распределение, которое задано при помощи таблицы

Используя второй начальный момент, при помощи метода моментов найдите оценку неизвестного параметра θ . Для реализации случайной выборки x=(0,0,-3,0,2) найдите числовое значение найденной оценки параметра θ .

12. Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из распределения с плотностью распределения

$$f(x,\theta) = \begin{cases} \frac{2x}{\theta} \; e^{-\frac{x^2}{\theta}} & \text{при } x > 0, \\ 0 & \text{при } x \leqslant 0, \end{cases}$$

где $\theta > 0$. При помощи метода максимального правдоподобия найдите оценку неизвестного параметра θ .

13. Пусть $X = (X_1, \dots, X_n)$ – случайная выборка из распределения Бернулли с параметром $\mathbb{P} \in (0;1)$. При помощи метода максимального правдоподобия найдите оценку неизвестного параметра \mathbb{P} .

14. Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из распределения с плотностью

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} \ e^{-\frac{x}{\theta}} & \text{при } x \geqslant 0, \\ 0 & \text{при } x < 0, \end{cases}$$

где $\theta>0$ — неизвестный параметр. Является ли оценка $\hat{\theta}=\bar{X}$ эффективной?

15. Стоимость выборочного исследования генеральной совокупности, состоящей из трех страт, определяется по формуле $TC = c_1n_1 + c_2n_2 + c_3n_3$, где c_i — цена одного наблюдения в i-ой страте, а n_i — число наблюдений, которые приходятся на i-ую страту. Найдите n_1 , n_2 и n_3 , при которых дисперсия стратифицированного среднего достигает наименьшего значения, если бюджет исследования 8000 и имеется следующая информация:

Страта	1	2	3
Среднее значение	30	40	50
Стандартная ошибка	5	10	20
Bec	25%	25%	50%
Цена наблюдения	1	5	10

Ответы:

1. a)
$$\approx 0.15$$

6)
$$U \sim \mathcal{N}(101, 29), f(u) = \frac{1}{\sqrt{2\pi \cdot 29}} e^{-\frac{1}{2} \frac{(u-101)^2}{29}}$$

$$\approx 0.02$$

6)
$$f(y|x=170) = \frac{1}{\sqrt{2\pi \cdot 20}} e^{-\frac{1}{2} \frac{(y-71.14)^2}{20}}$$

$$B$$
) ≈ 0

- 3. a) 0.25
 - б) 0.6875
 - в) 0.91(6)
 - r) 0.75
 - μ) -0.28125

4. a)
$$-1, 0, 1, 1$$

- 6) -1
- **B**) 1

$$\mathbf{r}) \ f(x) = \begin{cases} 0, & x < -1 \\ 0.25, & -1 \le x < 0 \\ 0.5, & 0 \le x < 1 \\ 1, & x \geqslant 1 \end{cases}$$

- 5. a) θ
 - б) да
- 6. а) нет, оценка смещена
 - б) c = 2
- 7. а) все оценки несмещенные
 - б) \hat{p}_3 наиболее эффективная
- 8. да
- 9. да

10.
$$\hat{\theta}_{MM} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2 \cdot 20}{n}}$$

11.
$$\hat{\theta}_{MM} = \frac{1}{5} \left(6 - \frac{1}{n} \sum_{i=1}^{n} X_i^2 \right), \, \hat{\theta}_{MM} = 0.68$$

12.
$$\hat{\theta}_{ML} = \frac{\sum_{i=1}^{n} x_i^2}{n}$$

13.
$$\hat{p}_{ML} = \frac{\sum_{i=1}^{n} x_i}{n}$$

- 14. да
- 15. $n_1 \approx 260, n_2 \approx 232, n_3 \approx 658$

16.15. Кр3, базовая часть, 24 марта 2018

16.15.1. Минимум

- 1. Дайте определение выборочной функции распределения.
- 2. Предположим, что величины $X_1,\,X_2,\,...,\,X_n$ независимы и нормальны $\mathcal{N}(\mu;\sigma^2)$. Укажите закон распределения выборочного среднего, величины $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$, величины $\frac{\bar{X}-\mu}{\hat{\sigma}/\sqrt{n}}$, величины $\frac{\hat{\sigma}^2(n-1)}{\sigma^2}$.
- 3. Рост в сантиметрах, случайная величина X, и вес в килограммах, случайная величина Y, взрослого мужчины является нормальным случайным вектором Z=(X,Y) с математическим ожиданием $\mathbb{E}(Z)=(175,75)$ и ковариационной матрицей

$$\operatorname{Var}(Z) = \begin{pmatrix} 49 & 28 \\ 28 & 36 \end{pmatrix}$$

- а) Найдите средний вес мужчины при условии, что его рост составляет 172 см.
- б) Выпишите условную плотность распределения веса мужчины при условии, что его рост составляет 172 см.
- в) Найдите условную вероятность того, что человек будет иметь вес, больший 92 кг, при условии, что его рост составляет 172 см.
- 4. Стоимость выборочного исследования генеральной совокупности, состоящей из трех страт, определяется по формуле $TC = c_1n_1 + c_2n_2 + c_3n_3$, где c_i цена одного наблюдения в i-ой страте, а n_i число наблюдений, которые приходятся на i-ую страту. Найдите n_1 , n_2 и n_3 , при которых дисперсия стратифицированного среднего достигает наименьшего значения, если бюджет исследования 8000 и имеется следующая информация:

Страта	1	2	3
Среднее значение	30	40	50
Стандартная ошибка	5	10	20
Bec	25%	25%	50%
Цена наблюдения	2	5	8

16.15.2. Задачи

- 5. Пусть $X_1, ..., X_n$ выборка из нормального распределения $N(\mu, 1)$.
 - а) Выпишите функцию правдоподобия;
 - б) Методом максимального правдоподобия найдите оценку $\hat{\mu}$ математического ожидания μ ;
 - в) Проверьте состоятельность и несмещённость оценки $\hat{\mu}$;
 - г) Вычислите информацию Фишера о параметре μ , содержащуюся во всей выборке;
 - д) Для произвольной несмещённой оценки μ выпишите неравенство Рао-Крамера-Фреше;
 - е) Проверьте свойство эффективности оценки $\hat{\mu}$;
 - ж) Найдите оценку максимального правдоподобия $\hat{\theta}$ для второго начального момента;
 - з) Проверьте свойства несмещенности и асимптотической несмещенности оценки $\hat{\theta}$;
 - и) С помощью дельта-метода вычислите, примерно, дисперсию оценки $\hat{\theta}$;
 - к) Проверьте состоятельность оценки $\hat{\theta}$.
- 6. Пусть $X_1, ..., X_n$ выборка из распределения с функцией плотности:

$$f(x) = \begin{cases} \frac{2}{\theta^2}(\theta - x), & \text{при } x \in [0, \theta] \\ 0, & \text{при } x \notin [0, \theta] \end{cases}$$

- а) Методом моментов найдите оценку параметра θ ;
- б) Приведите определение состоятельности оценки и проверьте, будет ли найденная оценка состоятельной.
- 7. В прихожей лежат четыре карты «тройка». На двух из них нет денег, на двух других 30 и 500 рублей. Вовочка не помнит, на какой из карт есть деньги, поэтому берет три карточки.
 - а) Найдите математическое ожидание и дисперсию средней по выбранным карточкам суммы денег;
 - б) Определите, какова вероятность того, что Вовочке удастся войти в метро, если стоимость проезда по тройке составляет 35 рублей.
- 8. По выборочному опросу студенческих семейных пар о расходах на ланч были получены следующие результаты:

Номер семьи	1	2	3	4
Расходы мужа	450	370	170	200
Расходы жены	210	350	250	180

Считая, что разница в расходах мужа и жены хорошо описываются нормальным распределением, постройте 95%-ый доверительный интервал для разницы математических ожиданий расходов супругов. Есть ли основания утверждать, что расходы одинаковы?

- 9. Наблюдатель Алексей Недопускальный решил проверить честность выборов. Ему удалось подглядеть, как проголосовали 60 избирателей. Из них 42 выбрали действующего президента.
 - а) Постройте 95%-ый доверительный интервал для истинной доли избирателей, проголосовавши «за» действующего президента.
 - б) По результатам ЦентрИзберКома «за» действующего президента проголосовало 76.67% населения. Согласуются ли эти данные с данными Алексея?
 - в) Сколько бюллетеней нужно подглядеть Алексею, чтобы с вероятностью 0.95 отклонение от выборочной доли проголосовавших «за» действующего президента от истинной не превышало 0.01?

16.16. Кр3, базовая часть, 24 марта 2018, решения

- 5. a) $L(X_1,\ldots,X_n,\mu) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\sum_{i=1}^n (X_i-\mu)^2}$
 - б) $\hat{\mu}_{ML} = \bar{X}$
 - в) $\mathbb{E}(\hat{\mu}_{ML})=\mathbb{E}(\bar{X})=\mu\Rightarrow$ оценка несмещённая $\mathrm{plim}\,\hat{\mu}_{ML}=\mathrm{plim}\,\bar{X}=\mu\Rightarrow$ оценка состоятельная
 - r) $I(\mu) = n$
 - д) $Var(\theta) \geqslant \frac{1}{I(\theta)}$
 - е) ${\rm Var}(\hat{\mu}_{ML})=\frac{1}{n}$, так как неравенство Рао-Крамера выполнено как равенство, оценка является эффективной.
 - ж) $\theta=\mathbb{E}(X^2)={\rm Var}(X)+\mu^2=1+\mu^2.$ Тогда в силу инвариантности оценок максимального правдоподобия: $\hat{\theta}_{ML}=1+\hat{\mu}^2.$
 - 3) $\mathbb{E}(\hat{\theta}_{ML}) = 1 + \mathbb{E}(\hat{\mu}^2) = 1 + \mathbb{E}((\bar{X})^2)$

Пользуясь соотношением $\mathbb{E}((\bar{X})^2)=\mathrm{Var}(\bar{X})+(\mathbb{E}(\bar{X}))^2$, получим: $\mathbb{E}(\hat{\theta}_{ML})=1+\frac{1}{n}+\mu^2$, то есть оценка смещена.

Однако, $\lim_{n\to\infty} \left(1+\frac{1}{n}+\mu^2\right)=1+\mu^2$, значит, оценка асимптотически несмещена.

- и) $\hat{\theta}_{ML} \approx 1 + \mu^2 + 2\mu(\hat{\mu} \mu)$ $\operatorname{Var}(\hat{\theta}_{ML}) \approx 4\mu^2 \operatorname{Var}(\hat{\mu}) = \frac{4\mu^2}{n}$
- к) Так как $\hat{\theta}_{ML}$ асимптотически несмещена, то для проверки состоятельности достаточно показать, что $\mathrm{Var}(\hat{\theta}_{ML})=\frac{4\mu^2}{n}\to_{n\to\infty}0.$
- 6. a) $\mathbb{E}(X_1) = \int_0^\theta \frac{2}{\theta^2} (\theta x) x dx = \frac{\theta}{3}$ $\frac{\hat{\theta}_{MM}}{3} = \bar{X} \Rightarrow \hat{\theta}_{MM} = 3\bar{X}$

- б) Оценка $\hat{\theta}$ состоятельна. если plim $\hat{\theta}_n=\theta$. plim $\hat{\theta}_{MM}=$ plim $3\bar{X}=3\mathbb{E}(X_1)=\theta\Rightarrow$ оценка состоятельна.
- 7. a) $\mathbb{E}\left(\frac{X_1+X_2+X_3}{3}\right)=\frac{1}{3}\cdot 3\mathbb{E}(X_1)=132.5$ $\operatorname{Var}\left(\frac{X_1+X_2+X_3}{3}\right)=\frac{1}{9}\operatorname{Var}(X_1+X_2+X_3)=\frac{1}{9}(\operatorname{Var}(X_1)+\operatorname{Var}(X_2)+\operatorname{Var}(X_3)+2\operatorname{Cov}(X_1,X_2)+2\operatorname{Cov}(X_1,X_2)+2\operatorname{Cov}(X_1,X_3)+2\operatorname{Cov}(X_2,X_3))=\frac{1}{9}(3\operatorname{Var}(X_1)+6\operatorname{Cov}(X_1,X_2))$ $\operatorname{Var}(X_1)=\mathbb{E}(X_1^2)-\mathbb{E}(X_1)^2=\frac{1}{4}\cdot 30^2-\frac{1}{4}\cdot 500^2-132.5^2=45168.75$ $\operatorname{Cov}(X_1,X_1+\ldots+X_4)=\operatorname{Var}(X_1)+3\operatorname{Cov}(X_1,X_2)=0\Rightarrow \operatorname{Cov}(X_1,X_2)=-\frac{45168.75}{3}=-15056.25$ $\operatorname{Var}\left(\frac{X_1+X_2+X_3}{3}\right)=5018.75$ 6) 3/4
- 8. $\Delta_i = X_i Y_i \sim \mathcal{N}(\mu_x \mu_y, \sigma^2)$ $\bar{X} = 297.5, \, \bar{Y} = 247.5, \, \bar{\Delta} = \bar{X} - \bar{Y} = 50$ $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (\Delta_i - \bar{\Delta})^2 = 18266.(6).$

Критическое значение — $t_{0.975,3}=3.182$ и доверительный интервал имеет вид:

$$50 - 3.182\sqrt{\frac{18266.(6)}{3}} < \mu_x - \mu_y < 50 + 3.182\sqrt{\frac{18266.(6)}{3}}$$

Так как 0 входит в доверительный интервал, нельзя отвергнуть предположение о равенстве расхожов.

- 9. a) $0.7 1.96\sqrt{\frac{0.7 \cdot 0.3}{60}}$
 - б) Да, так как 0.7667 входит в доверительный интервал.
 - в) $\mathbb{P}(|p \hat{p}| \le 0.01) = 0.95$ $\mathbb{P}\left(\frac{|0.7 - p|}{\sqrt{\frac{0.7 \cdot 0.3}{n}}} < \frac{0.01}{\sqrt{\frac{0.7 \cdot 0.3}{n}}}\right) = 0.95$ $\frac{0.01}{\sqrt{\frac{0.7 \cdot 0.3}{n}}} = 1.96 \Rightarrow n \approx 8068$

16.17. Кр3, вторая часть для ИП, 24 марта 2018

24 марта 2018 года — Комоедица, день пробуждения медведя.

- 1. Медведь Михайло-Потапыч уснул в берлоге и ему снится сон про n-мерное пространство. Особенно ярко ему снится вектор $X=(X_1,X_2,\ldots,X_n)$ и вектор $e=(1,1,1,\ldots,1)$.
 - а) Изобразите векторы X и e в n-мерном пространстве;
 - б) Изобразите проекцию X на $\mathrm{Lin}\{e\}$, обозначим её \hat{X} ;
 - в) Изобразите проекцию X на $\mathrm{Lin}^\perp\{e\}$, обозначим её \hat{X}^\perp ;
 - r) Выпишите явно вектора \hat{X} и \hat{X}^{\perp} , и найдите их длины;
 - д) Сформулируйте теорему Пифагора для нарисованного прямоугольного треугольника;
 - е) Изобразите на рисунке такой угол α , что обычная t-статистика, используемая при построении доверительного интервала для μ , имела бы вид $t=\sqrt{n-1}\cdot {\rm ctg}\ \alpha$.
- доверительного интервала для μ , имела оы вид $t = \sqrt{n-1} \cdot \operatorname{ctg} \alpha$.

 2. Исследователь Михаил предполагает, что все виды медведепришельцев встречаются равновероятно Отправившись на охоту в район Малой Медведицы Михаил поймал двух лиловых кальмаромедведе

Помогите Михаилу оценитель общее количество видов медведепришельцев с помощью метода максимального правдоподобия.

одного двурога медведеспинного и одного медведезавра ящероголового.

- 3. Помотавшись по просторам Вселенной Михаил изменил своё мнение. Никто кроме кальмаромедвед двурогов и медведезавров не попадается, однако попадаются они явно с разной вероятностью. Из 300 отловленных пришельцев оказалось 150 кальмаромедведей, 100 двурогов и 50 медведезавров. Михаил считает, что медведепришельцы встречаются независимо, p_1 вероятность встретить кальмаромедведя, p_2 двурога.
 - а) Оцените вектор $p = (p_1, p_2)$ методом максимального правдоподобия;
 - б) Оцените ковариационную матрицу $Var(\hat{p})$;
 - в) Оцените дисперсию $Var(\hat{p}_1 \hat{p}_2)$;
 - г) Постройте доверительный интервал для разницы долей $p_1 p_2$.
- 4. Винни-Пух лично измерил количество мёда (в кг) на 100 деревьях и обнаружил, что $\bar{X}=10$ и $\hat{\sigma}^2=4$. По мнению Кролика, состоятельная оценка для параметра α правильности мёда имеет вид $\hat{\alpha}=\bar{X}+\sqrt{\bar{X}+6}$.
 - а) «Халява, сэр!» Найдите точечную оценку параметра α ;
 - б) Найдите 95%-ый доверительный интервал для α , симметричный относительно $\hat{\alpha}$.
- 5. Фотографы Андрей и Белла независимо друг от друга пытаются фотографировать кадьяков. Андрею удаётся сфотографировать одного кадьяка в неделю с вероятностью 0.5, а Белле с вероятностью p, независимо друг от друга и от прошлого. За 100 недель они вместе сфотографировали 130 кадьяков.
 - а) Оцените p и постройте 95%-ый доверительный интервал для p;
 - б) Оцените p и постройте 95%-ый доверительный интервал для p, если дополнительно известно, что один фотограф опередил другого на 10 фото.

Просто красивая задачка. Эту задачу не нужно решать на кр :)

Медведю Мишутке никак не удаётся заснуть в берлоге, и потому он подбрасывает правильную монетку n раз. Обозначим вероятность того, что ни разу не идёт двух решек подряд буквой q_n .

- а) Найдите 2^8q_8 и назовите это число;
- б) Найдите $\lim 2q_{n+1}/q_n$ и назовите это число.

16.18. Кр3, вторая часть для ИП, 24 марта 2018, решения

1а) - в) См. картинку:)

г)
$$\hat{X} = e \cdot \bar{X}$$

 $\|\hat{X}\| = \sqrt{n} \cdot \bar{X}$
 $\hat{X}^{\perp} = X - e \cdot \bar{X} = (X_1 - \bar{X}, \dots, X_n - \bar{X})$
 $\|\hat{X}^{\perp}\| = \sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2}$
д) $\|X\|^2 = \|\hat{X}^{\perp}\|^2 + \|\hat{X}\|^2$

 $\sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 + n\bar{X}^2$

e) t-статистика для построения доверительного интервала для μ имеет вид:

$$t = \frac{\bar{X} - \mu}{\sqrt{\bar{\sigma}^2/n}} = \frac{\bar{X} - \mu}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 / (n \cdot (n-1))}}$$
$$= \sqrt{n-1} \cdot \frac{\sqrt{n} \cdot (\bar{X} - \mu)}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2}} = \sqrt{n-1} \cdot \frac{\|\hat{X}\| - \sqrt{n} \cdot \mu}{\|\hat{X}^\perp\|}$$

Заметим, что ctg α есть отношение прилежащего катета к противолежащему, таким образом, нужный нам угол α образуется между векторами X и \hat{X} . Зметим однако, что в нашем случае

$$t = \sqrt{n-1} \cdot \operatorname{ctg} \alpha = \frac{\|\hat{X}\|}{\|\hat{X}^{\perp}\|},$$

то есть наша статистика подойдёт только для проверки гипотезе о равенстве матожидания нулю.

Замечание. $t = \sqrt{n-1} \cdot \operatorname{ctg} \alpha$ будет t-статистикой только в том случае, если X_i будут н.о.р.с.в. с нормальным распределением, о чём в условие сказано не было.

2. Выпишем функцию правдоподобия для выборки из трёх видов, два из которых совпадают. Первый медведепришелец будет нового вида с вероятностью 1. Вероятность, что вид второго пойманного медведепришельца совпадёт с первмым, составляет 1/n. После этого нужно поймать медведепришельца нового вида – это произойдёт с вероятностью (n-1)/n, и ещё одного нового вида – вероятность этого (n-2)/n. Поскольку медведепришелец, вид которого встречается дважды, мог встретить на любой из трёх позиций, функцию правдоподобия необходимо домножить на C_3^1 . Таким образом, функция правдоподобия имеет вид:

$$L(n) = C_3^1 \cdot 1 \cdot \frac{1}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n}, n \geqslant 3.$$

Максимизируя её, внутри области определения получаем $\hat{n} = 5$.

Так как количество медведей велико и все они встречаются равновероятно, то $p_1=p_2=p_3=1/n$. Так же из выборки известно, что число видов космомедведей не меньше трёх. Потому $\hat{n}\geqslant 3$.

Найдите хитрую ошибку в предложенном решении:

$$L(n) = \left(\frac{1}{n}\right)^2 \cdot \frac{1}{n} \cdot \frac{1}{n} = n^{-4}$$
$$\frac{\partial L(n)}{\partial n} = -4 \cdot n^{-5} = 0$$

Данное уравнение не имеет решений при конечных n, но заметим, что при всех $n\geqslant 3$ выполняется $\frac{\partial L(n)}{\partial n}=-4\cdot n^{-5}<0$, таким образом максимальное значение находится в граничных точках.

$$\lim_{n \to \infty} \frac{1}{n^{-4}} = 0 < \frac{1}{3^{-4}}$$

Таким образом получаем, что $\hat{n}=3$.

3. a)
$$L(p_1,p_2)=p_1^{150}\cdot p_2^{100}\cdot (1-p_1-p_2)^{50}$$

$$\ell(p_1,p_2)=150\ln p_1+100\ln p_2+50\ln (1-p_1-p_2)$$

$$\begin{cases} \frac{\partial\ell(p_1,p_2)}{\partial p_1}=\frac{150}{p_1}-\frac{50}{1-p_1-p_2}=0\\ \frac{\partial\ell(p_1,p_2)}{\partial p_2}=\frac{100}{p_2}-\frac{50}{1-p_1-p_2}=0 \end{cases}$$
 Откуда получаем:
$$\begin{cases} \hat{p}_1=1/2\\ \hat{p}_2=1/3 \end{cases}$$

б) Найдём, какие значения должны стоять в теоретической ковариационной матрице. Заметим, что случайная величина найти кальмаромедведя (X) или двурога (Y) есть бернулевская случайная величина с параметром $p_{1+2}=p_1+p_2$ и дисперсией $p_{1+2}\cdot(1-p_{1+2})$, но тогда: $\mathrm{Var}(X+Y)=\mathrm{Var}(X)+\mathrm{Var}(Y)+2\cdot\mathrm{Cov}(X,Y)$ $\mathrm{Cov}(X,Y)=\frac{1}{2}\cdot(\mathrm{Var}(X+Y)-\mathrm{Var}(X)-\mathrm{Var}(Y))=\frac{1}{2}\cdot((p_1+p_2)\cdot(1-p_1-p_2)-p_1\cdot(1-p_1)-p_2\cdot(1-p_2))=-p_1\cdot p_2$

Тогда подставляя в теоретическую ковариационную матрицу оценки параметров и домнажая всё на 1/300, так как \hat{p}_1 и \hat{p}_2 являются средними, получим:

$$\operatorname{Var}(\hat{p}) = \frac{1}{n} \begin{pmatrix} \hat{p}_1 \cdot (1 - \hat{p}_1) & -\hat{p}_1 \cdot \hat{p}_2 \\ -\hat{p}_1 \cdot \hat{p}_2 & \hat{p}_1 \cdot (1 - \hat{p}_1) \end{pmatrix} = \frac{1}{300} \begin{pmatrix} 1/4 & -1/6 \\ -1/6 & 2/9 \end{pmatrix}$$

в) Для начала, найдём теоретическую дисперсию $\mathrm{Var}(X-Y)$. $\mathrm{Var}(X-Y)=\mathrm{Var}(X)+\mathrm{Var}(Y)-2\cdot\mathrm{Cov}(X,Y)=p_1\cdot(1-p_1)+p_2\cdot(1-p_2)+2\cdot p_1\cdot p_2$ Тогда подставляя оценки для p_1 и p_2 и учитывая, что это оценки среднего, получим оценку:

$$Var(\hat{p}_1 - \hat{p}_2) = 1/300 \cdot (1/4 + 2/9 + 2 \cdot 1/6) = 29/(36 \cdot 300)$$

г) Так как выборка достаточно велика, то статистика $\hat{p}_1 - \hat{p}_2$, являясь средним, будет иметь примерно нормальное распределение, и тогда:

$$\begin{split} &\frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\text{Var}(\hat{p}_1 - \hat{p}_2)}} \sim \mathcal{N}(0, 1) \\ &\hat{p}_1 - \hat{p}_2 - z_{1 - \frac{\alpha}{2}} \cdot \sqrt{\text{Var}(\hat{p}_1 - \hat{p}_2)} \leqslant p_1 - p_2 \leqslant \hat{p}_1 - \hat{p}_2 - z_{\frac{\alpha}{2}} \cdot \sqrt{\text{Var}(\hat{p}_1 - \hat{p}_2)} \end{split}$$

- 4. a) $\hat{\alpha} = \bar{X} + \sqrt{\bar{X} + 6} = 10 + \sqrt{10 + 6} = 14$
 - б) Так как \bar{X} сходится по распределению к нормальному распределению и $\hat{\alpha}=g(\bar{X})$, где $g(\bar{X})$ гладкая по \bar{X} функция при $\bar{X}\geqslant 0$, а также \bar{X} сходится по вероятности к матожиданию, то можно абсолютно спокойно применить дельта-метод. Тогда:

$$(\alpha - g(\bar{X})) \sim N(0; \sigma^2(g'(\mathbb{E}(X_1)))^2/n)$$

Но так как $\hat{\alpha}$ является состоятельной оценкой, то можно заменить $g'(\mathbb{E}(X_1))$ на $g'(\bar{X})$:

$$g'(\bar{X}) = 1 + \frac{1}{2 \cdot \sqrt{\bar{X} + 6}} = 1 + \frac{1}{2 \cdot 4} = \frac{9}{8} = 1.125$$

и тогда можно построить ассимтотический доверительный интервал:

$$\hat{\alpha} - z_{97.5\%} \cdot \sqrt{\sigma^2 \cdot (g'(\bar{X}))^2/n} \leqslant \alpha \leqslant \hat{\alpha} - z_{2.5\%} \cdot \sqrt{\sigma^2 \cdot (g'(\bar{X}))^2/n}$$

$$16 - 1.96 \cdot 2 \cdot 9/(8 \cdot 10) \leqslant \alpha \leqslant 16 + 1.96 \cdot 2 \cdot 9/(8 \cdot 10)$$

$$13.559 \leqslant \alpha \leqslant 14.441$$

5. а) Так как не известно точно, кто сколько фотографий сделал, и так как метод оценки не указан, то воспользуемся методом моментов для построения оценки.

$$N = \mathbb{E}(\text{«фото Андрея»}) + \mathbb{E}(\text{«фото Беллы»})$$
 $130 = 100 \cdot 0.5 + p \cdot 100$ $\hat{p} = 0.8$

Так как выборка достаточно велика, то $\frac{\hat{p}-p}{\sqrt{\hat{p}\cdot(1-\hat{p})/W}}\sim\mathcal{N}(0,1)$

$$\hat{p} - z_{97.5\%} \sqrt{\hat{p} \cdot (1 - \hat{p})/W} \leq p \leq \hat{p} - z_{2.5\%} \sqrt{\hat{p} \cdot (1 - \hat{p})/W}$$

$$0.8 - 1.96 \cdot \sqrt{0.8 \cdot 0.2/100} \leq p \leq 0.8 + 1.96 \cdot \sqrt{0.8 \cdot 0.2/100}$$

$$0.72 \leq p \leq 0.88$$

б) Так как неизвестно, кто больше снимков сделал, то рассмотрим два случая: Андрей сделал 60 фото и Белла — 70 фото, Андрей сделал 70 фото и Белла — 60 фото. В каждом случае при помощи метода максимального правдоподобия оценим вероятность p, после чего сравним значения функции правдоподобия с оценёнными параметрами для каждого случая.

$$L(p) = C_{100}^{60} \cdot 0.5^{60} \cdot 0.5^{40} \cdot C_{100}^{70} \cdot p^{70} \cdot (1-p)^{30}$$

$$\ell(p) = const + 70 \ln p + 30 \ln(1-p)$$

$$\frac{\partial \ell(p)}{\partial p} = \frac{70}{p} - \frac{30}{1-p} = 0$$

$$\hat{p}_1 = 0.7$$

Аналогично для второго случая получим оценку: $\hat{p}_2 = 0.6$.

Для простоты, будем сравнивать логарифмическии функции правдоподобия $l_1(p_1)$ и $l_2(p_2)$ и тогда получим:

$$l_1(p_1) = const + 70 \ln 0.7 + 30 \ln 0.3 \approx const - 70 \cdot 0.357 - 30 \cdot 1.204 = const - 61.11$$

 $l_2(p_2) = const + 60 \ln 0.6 + 40 \ln 0.4 \approx const - 60 \cdot 0.511 - 40 \cdot 0.916 = const - 67.3$

Так как -67.3 < -61.11, то более вероятно, что $\hat{p} = 0.7$

Тогда анологично предыдущему пункту получим доверительный интервал:

$$0.7 - 1.96 \cdot \sqrt{0.7 \cdot 0.3/100} \le p \le 0.7 + 1.96 \cdot \sqrt{0.7 \cdot 0.3/100}$$

 $0.61 \le p \le 0.79$