

Usecases hackathon 2016

<u>Presentation of the application CYCLONE UC2:</u>

Cloud virtual pipeline for microbial genomes analysis

Thomas Lacroix - INRA MalAGE - Novembre 2016

Overview of the application "Bacterial genomics"

- Scientific field: genomics
- <u>Usage</u>: analysis / navigation among abundant homologies
 & syntenies data
- <u>Domains of application</u>: niche-specific genes, inference of functions, phylogenetic profiling, evolutionary events
- <u>Audience</u>: biologist, bioinformatician
 - Private projects: ~37 created 2013-2016
 - Public version : ~110 users/month

Public / private dataset with "Bacterial genomics"

	Public dataset	Virtual machine for private dataset	
		Standalone	"In the cloud" (IFB)
Description	2688 complete bacteria ~1.85 billion singleton orthologs ~140 mil syntenies (~550 mil orthologs and ~190 mil homologs)	Private analysis in a local environment (i.e VirtualBox) Customize genomes to compare, blast parameters, etc.	Private analysis "in the cloud" (appliance "Bacterial genomics"). Customize genomes to compare, blast parameters, etc
Url	http://genome.jouy.inra.fr/Insyght/	https://migale.jouy.inra.fr/recmine/projects/insyght/news	http://www.france- bioinformatique.fr/fr/core/cellule -infrastructure/cloud
Collaborators	E-biothon platform, IDRIS-CNRS (intensive computation)		IFB (cloud infrastructure)

Fichiers génomes annotés .embl, .gbk, ou .gbff

Pipeline:

- Comparaison protéines (blastp)
- Synténies (programmation dynamique)

Stockage BDD:

- Iaire (gènes, etc...)
- -II^{aire} (homologies)
- -IIIaire (synténies)

Analyse Insyght

IFB appliance's components

 a complete computing cluster with a master and several nodes to perform data-intensive analyses

To do with SlipStream?

- a relational postgreSQL database
- a user web interface served through Apache httpd & tomcat

Use of IFB's infrastrcture

Use of NFS server to provide defaut demo dataset if no dataset is supplied

Use of IFB's infrastrcture

Data mining and visualization: Insyght

Published online 23 September 2014

Nucleic Acids Research, 2014, Vol. 42, No. 21 e162 doi: 10.1093/nar/gku867

Insyght: navigating amongst abundant homologues, syntenies and gene functional annotations in bacteria, it's that symbol!

Thomas Lacroix^{1,*}, Valentin Loux¹, Annie Gendrault¹, Mark Hoebeke² and Jean-François Gibrat¹

¹INRA, UR 1077 Mathématique Informatique et Génome, 78352 Jouy-en-Josas, France and ²CNRS, UPMC, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France

Insyght In a nutshell (http://genome.jouy.inra.fr/Insyght/)

- helps navigate among abundant homologies, syntenies and genes annotations
- Domains of application: evolutionary events, inference gene functions, analysis of niche-specific genes / core genome, phylogenetic profiling

END

ANNEXES

Insyght In a nutshell: ortholog table view

Insyght In a nutshell: ortholog table view

- * Orthologs table view: A spreadsheet to browse orthologs
 - Familiar layout: genes as columns, organisms as rows
 - Info on annotations, alignments, location, etc. at your fingertip
 - Genes in adjacent columns with similar background color = synteny
 - Multiple "off shoots" homologs stacked in 1 cell
 - Build your own gene set
 - And more: sort the table, quickly navigate genes, etc.

Insyght In a nutshell: Annotation comparator

Insyght In a nutshell: Annotation comparator

- * Annotations comparator: The orthologs' functional annotations are classified into 3 categories: Shared, Missing, and Unique
- Browse those 3 categories and subcategories: functional annotation, homologous genes, sequence alignment, etc.
 - Restrict the set of organisms considered, filter homologs, etc.

Insyght In a nutshell: Genomic organisation

Insyght In a nutshell: Genomic organisation

- ☼ Genomic context view: A new way to visualize genomic rearrangements
- Browse syntenies, loci insertions, etc. as symbols along the genomes; Visualize genomic rearrangements simultaneously
 - Synchronize the navigation among multiple compared genomes
 - And more: expands genes within syntenies, find genes, etc.

Insyght In a nutshell: interconnection

- ☼ The 3 above views are interconnected:
- Transfer genes from a synteny to the orthologs table: evaluate their conservations in other species
 - Check the genomic context of a gene from the orthologs table
- In short, transfer genes from one view to the other by double clicking on symbols

What are syntenies

- Synthénie conservée = co-localisation de loci homologues
- Si ordre des gènes preservé = synthénie colinéaire

How useful are syntenies?

- Information supplémentaire pour confirmer les homologies
 - → conservation putative de la fonction biologique
- Peut indiquer une relation entre les produits des gènes à l'intérieur d'une synthénie:
 - → Corrélation de l'activité transcriptionelle [1]
 - → Couplage fonctionnel [2]
 - → Intéraction protéine-protéine [3]

^[1] Roy et al. (2002) Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature, 418, 975-979.

^[2] Overbeek et al. (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci.

^[3] Dandekar et al. (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci, 23, 324-328.