

BEST AVAILABLE COPY

5104/04045

INVESTOR IN PEOPLE

The Patent Office

Concept House

Cardiff Road

Newport

South Wales

NP10 8QX REC'D 13 OCT 2004

WIPO

PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, p.l.c. or plc.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 1 October 2004

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

26SEP03 E040127-1/002481
P01/7700 0300-0322538.0

The Patent Office

Cardiff Road
Newport
South Wales
NP10 8QQ

NEWPORT Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

1. Your reference

P34801-ILI/KJO

2. Patent application number

(The Patent Office will fill in this part)

0322538.0

3. Full name, address and postcode of the or of each applicant (underline all surnames)

The Queen's University of Belfast
University Road
Belfast
BT7 1NN
United Kingdom

Patents ADP number (if you know it)

772798001

If the applicant is a corporate body, give the country/state of its incorporation

United Kingdom

4. Title of the invention

"Phase Conjugate Circuit"

5. Name of your agent (if you have one)

Murgitroyd & Company

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Scotland House
165-169 Scotland Street
Glasgow
G5 8PL

Patents ADP number (if you know it)

1198015 ✓

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or. each application number

Country

Priority application number
(if you know it)

Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:
a) any applicant named in part 3 is not an inventor, or
b) there is an inventor who is not named as an applicant, or
c) any named applicant is a corporate body.
See note (d))

Yes

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description 16

Claim(s)

Abstract

Drawing(s)

3 + 3

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (*Patents Form 7/77*)Request for preliminary examination and search (*Patents Form 9/77*)Request for substantive examination
(*Patents Form 10/77*)Any other documents
(please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature

Date

25 September 2003

Murgitroyd & Company

12. Name and daytime telephone number of person to contact in the United Kingdom

KEITH JONES

0141 307 8400

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

1 Phase Conjugate Circuit

2

3 This invention relates generally to phase conjugate
4 circuits and specifically, but not exclusively, to
5 phase conjugate circuits containing phase locked
6 loop circuits.

7

8 Phase conjugation of a particular signal is useful
9 in numerous applications. One example is in retro-
10 directive antenna arrays, where an incoming signal
11 is automatically re-transmitted in the same
12 direction as it was incident on the array by
13 transmitting the phase conjugate of the incoming
14 signal. Another example is in LINC (Linear
15 Amplification using Non-Linear Components)
16 amplifiers, where an amplitude modulated signal is
17 firstly converted to a phase modulated signal and a
18 phase conjugate modulated signal before being

1 amplified by non-linear amplifiers. The two
2 amplified signals are then recombined to provide an
3 amplified version of the original signal.

4
5 In both these applications obtaining the phase
6 conjugate of the incoming signal is an essential
7 part of the electrical circuit.

8
9 Phase conjugation circuitry, to some extent, has
10 limited the commercialisation of both Retro-
11 directive antenna arrays and LINC circuit
12 architectures. For example, prior art phase
13 conjugate circuits for retro-directive arrays use a
14 heterodyning approach involving a signal mixer which
15 relies on a local oscillator (LO) operating at twice
16 the desired input RF (Radio Frequency) frequency. As
17 the RF signal and the signal from the output IF
18 (Intermediate Frequency) ports are the same, or very
19 nearly the same, direct leakage from the RF signal
20 to the IF ports causes significant problems. In
21 addition the LO frequency must be twice the RF
22 frequency so that the down-converted IF output
23 signal is the phase conjugate of the RF input
24 signal. This can be disadvantageous when the RF
25 signal is required to be of very high frequency such
26 as for anti-collision vehicular radars operating at
27 77 GHz. In this case, the LO frequency would have to
28 be 154GHz which would be difficult to construct
29 using currently available technology.

30
31 LINC amplifiers suffer from general circuit
32 complexity in the phase conjugate sections.

1 Subsequently, LINC amplifiers have not been
2 successfully operated at frequencies of greater than
3 a few 10's of Megahertz mainly for this reason.

4
5 Additional problems exist with the prior art
6 associated with phase conjugation circuitry
7 prominent amongst these are the requirement for:
8 • sophisticated mixer balancing techniques required
9 to prevent unwanted leakage signals corrupting
10 the phase conjugation process. This leads to
11 weak output signal levels since conventional
12 mixer circuits are either passive (and therefore
13 lossy) or limited to the few dB conversion gain
14 that can be achieved with conventional active
15 mixers; and
16 • the need for a local oscillator signal operating
17 at twice the RF signal (as mentioned above).

18
19 Other applications for retrodirective (self
20 tracking) array technology include simplex and
21 duplex communication with low earth orbiting, non-
22 geosynchronous satellites and as a low cost means
23 for automatic beamforming as required for modern
24 spatial division multiple access mobile phone
25 wireless communication systems. Further examples are
26 the use of a self-tracking array for automatic
27 alignment of ground stations with high altitude
28 communications platforms or in the creation of agile
29 radar crossection modification.

30
31 Phase locked loop circuits have been widely used
32 since first being proposed in 1922. Since that time,

1 PLL's have been used in instrumentation, space
2 telemetry and many other applications requiring a
3 high degree of noise immunity and narrow bandwidth.

4

5 A standard phase lock loop circuit comprises a phase
6 detector, a low-pass filter, and an oscillator,
7 usually a voltage-controlled oscillator (VCO). In
8 the case where the oscillator is a VCO, the phase
9 detector outputs a voltage proportional to the phase
10 difference between a PLL input and a feedback signal
11 from the output of the VCO. The low-pass filter acts
12 as an integrator and provides a filtered voltage
13 signal or an error signal which controls the VCO.
14 When the error signal is zero, the VCO operates at a
15 set frequency, known as the free running frequency.
16 When the error signal is not zero, the phase of the
17 PLL input and the feedback signal are no longer in
18 balance and the VCO reacts to the error signal by
19 modifying its output to track the PLL input.

20

21 It is an object of the present invention to obviate
22 or mitigate the problems identified above in
23 relation to phase conjugation circuits.

24

25 According to a first aspect of the present invention
26 there is provided a method of deriving phase
27 conjugation information from an input signal of a
28 given first frequency, the method comprising mixing
29 the input signal with the output of an oscillator
30 forming part of a phase locked loop (PLL) circuit
31 having a reference input signal of a second

1 frequency which is proportional to the first
2 frequency.

3
4 According to a second aspect of the present
5 invention there is provided a circuit arrangement
6 for deriving phase conjugation information from a
7 main input signal of a given frequency comprising:
8 at least one phase locked loop circuit
9 comprising a reference input signal, a feedback
10 signal, at least one phase detecting means and an
11 oscillator having a main output signal;
12 at least one heterodyne mixer;
13 wherein the phase detection means detects any
14 phase difference between the reference input signal
15 and the feedback signal and provides a phase control
16 signal to the oscillator, and the heterodyne mixer
17 mixes the main input signal and the main output
18 signal to provide the feedback signal.

19
20 Preferably the oscillator is a voltage controlled
21 oscillator (VCO).

22
23 Preferably the feedback signal is the up-converted
24 mixing product of the heterodyne mixer.

25
26 Preferably, the frequency of the reference input
27 signal is scaled to match the frequency of the
28 feedback signal.

29
30 Further preferably, the feedback signal is scaled.

1 Preferably, the phase detection means is a digital
2 phase detector.

3

4 In one form of the invention, the phase detection
5 means also detects any phase difference between the
6 main output signal and the reference signal thereby
7 creating a further phase locked loop.

8

9 Preferably, the phase detection means comprises:
10 a first phase detector which detects any phase
11 difference between the reference input signal and
12 the feedback signal;

13 a second phase detector which detects any phase
14 difference between the reference input signal and
15 the main output signal;

16 an integrator integrating the first phase
17 detector output;

18 a heterodyne mixer mixing the integrator output
19 and the second phase detector output;

20 wherein the mixer output is the phase detection
21 means output providing a control signal for the
22 oscillator.

23

24 In an alternative form of the invention, the phase
25 detection means comprises:

26 a first phase detection heterodyne mixer mixing
27 the reference input signal and the feedback signal
28 and having a first phase detection mixer output
29 wherein the first mixer output is the down-converted
30 mixing product of the first mixer;

31 a second phase detection heterodyne mixer
32 mixing the reference input signal and the first

1 phase detection mixer output and having a second
2 phase detection mixer output wherein the second
3 phase detection mixer output is the down-converted
4 mixing product of the second phase detection mixer
5 and the phase detection means output providing a
6 control signal for the oscillator.

7

8 Embodiments of the present invention will now be
9 described with reference to the accompanying
10 drawings, in which;

11

12 Fig. 1 shows a schematic diagram of a frequency
13 offset phase conjugating phase locked loop (PLL)
14 circuit;

15

16 Fig. 2 shows a schematic diagram of a practical
17 implementation of the phase conjugating PLL circuit
18 of Fig. 1;

19

20 Fig. 3 shows a graphical representation of
21 experimentally derived phase angle of signals in the
22 phase conjugating PLL circuit of Fig. 2;

23

24 Fig. 4 shows a schematic diagram of an integrator
25 based phase conjugating PLL circuit;

26

27 Fig. 5 shows a schematic diagram of a heterodyne
28 mixer based phase conjugating PLL circuit.

29

30 Referring now to Fig. 1, a frequency offset phase
31 conjugating PLL circuit 100 has a main input signal
32 102 ($F_{in}+\phi$) and a reference input signal 104 (F_{REF}). A

1 reference divider 106 divides the reference input
2 signal 104 and a main divider 108 divides a feedback
3 signal 109 such that a phase detector 110 receives
4 the divided reference input signal and the divided
5 feedback signal at the same frequency. The phase
6 detector outputs a phase control signal representing
7 a phase difference between the reference input
8 signal and the feedback signal 109. A low-pass loop
9 filter 112 filters, or integrates, the phase control
10 signal to provide a DC control signal. A voltage
11 controlled oscillator (VCO) 114 receives the phase
12 control signal and outputs a VCO signal 116 of a
13 particular frequency (F_{vco}) and a phase angle (ϕ)
14 determined by the phase control signal. The VCO
15 signal 116 is also a phase conjugate signal of the
16 main input signal 102 as explained below. A
17 heterodyne mixer 118 mixes the VCO signal 116 and
18 the main input signal 102 to produce the feedback
19 signal 109 which in this case is filtered by a band
20 pass filter 120 to allow selection of the up-
21 converted mixing product of the mixer 118.

22

23 The frequency offset phase conjugating PLL circuit
24 100 works in the following manner:

25

26 Up-converted Phase locked Loop without reference
27 divider 106 and main divider 108

28

29 Output of mixer 118 : $F_{IN+\phi} + F_{vco+\phi}$

30 Reference Input 104 : $F_{REF} = F_{IN} + F_{vco}$

31 At position C : $F_{IN} + F_{vco} = F_{IN+\phi} + F_{vco+\phi}$

32 : $F_{IN} + F_{vco} - F_{IN-\phi} + F_{vco-\phi} = 0$

1 : $-\phi - \Phi = 0$
2 : $\Phi = -\phi$
3 VCO signal 116 : $F_{VCO} + \Phi = F_{VCO} - \Phi$

4
5 Therefore, if $F_{VCO} = F_{IN}$, the VCO signal 116 is the
6 phase conjugate of the main input signal 102.

7 If $F_{VCO} \neq F_{IN}$ then the VCO signal 116 is the offset
8 phase conjugate of the main input signal 102.

9
10 The reference divider 106 and the main divider 108
11 allow the possibility of reducing the required
12 frequency of the reference input signal 104. The
13 phase detector 110 is intended to detect any
14 difference in phase between the feedback signal 109
15 and the reference input signal 104.

16
17 For example:

18 $F_{IN} = 1000\text{Mhz}$
19 $F_{VCO} = 990\text{Mhz}$
20 $F_{REF} = 10\text{Mhz}$
21 Input to Main divider (up-converted) = 1990Mhz
22 Output from Main divider = $1990/9950 = 0.2\text{MHz}$
23 Input to Reference divider = 10Mhz
24 Output from Reference divider = $10/50 = 0.2\text{MHz}$

25
26 Using this arrangement, the reference input signal
27 104 at a much smaller frequency than the main input
28 signal 102 is required.

29
30 Referring now to Fig. 2, a phase conjugating PLL
31 circuit 200, that is an experimental implementation
32 of the frequency offset phase conjugating PLL

1 circuit of Fig. 1, is shown. A main input signal 202
2 and a reference input signal 204 are generated from
3 a first signal synthesiser 206. A phase shifter 203
4 is introduced to the main input signal 202 so that
5 the main input signal 202 has a different phase
6 angle than that of the reference input signal 204. A
7 first power splitter 205 splits the main input
8 signal 202 so that an oscilloscope 230 can visually
9 display the signal 202 without any losses. A
10 Philips® UMA1021M PLL chip contains a reference
11 input divider 210, a main input divider 212 and a
12 phase detector 214. In this example, the reference
13 input divider 210 divides the reference input signal
14 204 which is then inputted to the phase detector
15 214. The main input divider 212 divides a feedback
16 signal 216 which is then also inputted to the phase
17 detector 214. The phase detector produces a phase
18 control signal 218 which represents the phase
19 difference between the reference input signal 204
20 and the feedback signal 216. A loop filter 220
21 integrates the phase control signal 218. A unity
22 gain non-inverting summing amplifier 222 ensures the
23 phase control signal 218 is isolated from the phase
24 detector 214 and also allows the phase control
25 signal 218 to be offset as necessary. A Voltage
26 Controlled Oscillator (VCO) 224 has an output signal
27 226 at a predetermined frequency. The VCO can vary
28 the phase of the output signal 226 dependent on the
29 phase control signal 218. A second power splitter
30 228 allows the output signal 226 to be displayed on
31 the oscilloscope 230 without any losses within the
32 circuit 200. The output signal 226, when the circuit

1 200 is phase locked, is now a phase conjugate signal
2 of the main input signal 202. A heterodyne mixer 232
3 mixes the output signal 226 and the main input
4 signal 202 to produce the feedback signal 216. A
5 band-pass filter 234 filters the feedback signal 216
6 such that only the up-converted mixing product from
7 the mixer 232 remains. A third power splitter 236
8 allows the feedback signal to be analysed by a
9 microwave transition analyser (MTA) 238 as well as
10 being connected to the main divider 212 without any
11 losses to the circuit 200. A second signal
12 synthesiser 240 provides a comparison signal 242 to
13 the oscilloscope 230 and the MTA 238 as required.
14 The main input signal 202 and the comparison signal
15 242 are phase locked to the reference input signal.
16
17 In use, the first signal synthesiser 206 synthesised
18 the main input signal 202 at a frequency of 1.05GHz
19 and the reference input signal 204 at 0.01GHz. The
20 phase shifter 203 introduces a different phase angle
21 to the main input signal 202 than that of the
22 reference input signal 204. The main input signal
23 202 is then viewed on the oscilloscope 230 via the
24 first power splitter 205. The main output signal 226
25 is generated by the VCO 224 at a frequency of
26 0.94GHz and is also viewed on the oscilloscope 230
27 via the second power splitter 228. The mixer 232
28 mixes the main input signal 202 and the main output
29 signal 226. The band-pass filter 234 ensures that
30 only the up-converted mixing product forms the
31 feedback signal 216 at a frequency of 1.99Ghz. The
32 feedback signal 216 is viewed on the MTA 238 via the

1 third power splitter 236. The main input divider 212
2 divides the feedback signal 216 by 9950 producing a
3 signal of 200KHz. The reference divider divide the
4 reference input signal 204 by 50 to also produce a
5 signal of 200KHz. The phase detector 214 then
6 detects the phase difference between the divided
7 feedback signal 216 and the divided reference input
8 signal 204 to produce the phase control signal 218
9 which ultimately controls the VCO's 224 phase angle.
10 The second signal synthesiser 240 is used to
11 generate different signals as required for
12 comparison purposes. Therefore, the comparison
13 signal 242 is set to 0.94GHz for comparison with the
14 main output signal. As the comparison signal 242 is
15 phase locked to the reference input signal 202, the
16 main output signal 226 should be a phase conjugate
17 of the comparison signal and therefore the phase
18 difference can be measured to confirm this. To
19 measure the actual phase of the main input signal
20 202 after it had been phase shifted by the phase
21 shifter 203, the second synthesised source 240 is
22 set to produce a comparison signal 242 of 1.05GHz.
23 To further validate that phase conjugation was
24 operating correctly it was important that the
25 feedback signal 216 had constant phase. The second
26 synthesised source 240 is set to produce a
27 comparison signal 242 of 1.99GHz and the MTA 238
28 used to analyse the feedback signal 216.
29
30 Referring now to Fig. 3 a graphical representation
31 of a non-conjugated phase angle 302 (representing
32 the main input signal 202 of Fig.2) is matched

1 substantially equally and oppositely to a conjugated
2 angle 304 (representing the output signal 226 of
3 Fig. 2). A conjugation error 306 is also shown
4 representing the error in phase angle in the
5 conjugated angle 304. It can be clearly seen from
6 Fig. 3 that the conjugated angle 304 has only a
7 small conjugation error 306 at any time and that the
8 practical implementation circuit 202 effectively
9 produces a frequency offset phase conjugated output.

10
11 Referring now to Fig. 4, an alternative embodiment
12 of a phase conjugation PLL circuit 400 is shown. The
13 circuit 400 has a PLL 402 and a loop 404. A
14 reference signal 406 supplies a reference signal to
15 both the PLL 402 and the loop 404. The PLL 402 has a
16 first phase detector 408 which compares a first
17 feedback signal 410 with the reference signal 406. A
18 summer 412 receives a first phase error signal 414
19 and a second phase error signal 416 to produce a
20 composite phase control signal 418. A VCO 419
21 produces an output signal 420 with a phase dependent
22 on the phase control signal 418. A second heterodyne
23 mixer 422 mixes a main input signal 424 with the
24 output signal 420 to produce a second feedback
25 signal 426. A second phase detector 428 compares the
26 phase of the second feedback signal and the
27 reference signal 406 producing a second phase
28 detector output 430. An integrator 432 integrates
29 the second phase detector output 430 producing the
30 second phase error signal 416.

1 In use, the circuit 400 has a fast acting PLL 402
2 that establishes a frequency lock. The loop 404 is
3 relatively slower because of the integrator's 432
4 transfer characteristics. The loop 404 then forces
5 the output signal 420 to the conjugate phase of the
6 main input signal 424.

7

8 Referring now to Fig. 5, an alternative embodiment
9 of a phase conjugation PLL circuit 500 is shown. A
10 first heterodyne mixer 502 mixes a main input signal
11 504 and an output signal 506 to produce a feedback
12 signal 508. The feedback signal 508 is the up-
13 converted mixing product of the first heterodyne
14 mixer 502. A second heterodyne mixer 510 mixes a
15 reference signal 512 with the feedback signal 508
16 producing an intermediate signal 514. The
17 intermediate signal 514 is the down-converted mixing
18 product of the second heterodyne mixer 510. A third
19 heterodyne mixer 516 mixes the intermediate signal
20 514 with the reference signal 512 producing a phase
21 control signal 518. The phase control signal 518 is
22 the down-converted mixing product of the third
23 heterodyne mixer 516. A VCO 520 produces an output
24 signal 506 with a phase dependent on the phase
25 control signal 518.

26

27 The operation of the circuit 500 is explained below.

28

29 Assuming that the circuit 500 is phase locked and
30 the main input signal (RF_{IN}) 504, the output signal
31 (RF_{OUT}) 506 and the reference signal (RF_{REF}) 512 are
32 all the same frequency ω .

1 The feedback signal 508 is RF_F , the intermediate
2 signal 514 is RF_I and the phase control signal 518
3 is RF_C .

4

5 $RF_{REF} = \omega + \theta_{REF}$

6 $RF_{IN} = \omega + \theta_{IN}$

7 $RF_{OUT} = \omega + \theta_{OUT}$

8 $RF_F = 2\omega + \theta_{OUT} + \theta_{IN}$

9 $RF_I = \omega + \theta_{OUT} + \theta_{IN} - \theta_{REF}$

10 $RF_C = \theta_{OUT} + \theta_{IN} - \theta_{REF} - \theta_{REF} = c$

11 $\theta_{OUT} = c + 2\theta_{REF} - \theta_{IN}$

12

13 In the equation above it is shown that the output
14 signal phase is conjugated to the main input signal
15 phase ($\theta_{OUT} = -\theta_{IN}$). The term $c + 2\theta_{REF}$ represents a
16 static phase error introduced by the reference input
17 signal's 512 oscillator. The $2\theta_{REF}$ term may be
18 trimmed removed by filtering. The term c represents
19 the control voltage for the VCO 520 and therefore
20 will always be present except where the output
21 frequency is equal to the free-running frequency of
22 the VCO 520. The term c will change as the circuit
23 500 tracks changes in the main input signal 504
24 frequency.

25

26 For retrodirective antenna arrays this does not pose
27 a problem as relative phase states are important,
28 not absolute phase states. For LINC type amplifier
29 applications any phase error caused by the term c
30 can be accounted for by a prior calibration process

1 across the expected frequency operating range of the
2 circuit.

3

4 The circuit 500 can instantaneously phase conjugate
5 as the circuit is made up of heterodyne mixers and
6 does not include integrators or phase detectors
7 which have a finite time determined by the loop
8 dynamics in order to establish a phase lock. As the
9 heterodyne mixers act as the phase detectors, the
10 circuit 500 can operate directly at the microwave
11 and millimetre wave frequencies without the need for
12 dividers or digital phase detection circuitry.

13

14

Figure 1 Frequency Offset Phase Conjugating PLL

Figure 2 Experimental Set-up for Phase Conjugating PLL

Figure 3 Frequency Offset Phase Conjugating Results

Figure 4 Integrator-based approach

Figure 5 Mixer-based approach

PCT/GB04/004045

23/9/04

MURB11040 & CO.

PCT/GB2004/004045

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.