Question Number	Answer	Mark
16(a)	They act on the same object (1)	
	They are not the same type of force (1)	2
16(b)(i)	Use of $\varepsilon = \frac{\Delta x}{x}$ (1)	
	Use of $F = k\Delta x$ and $\sigma = \frac{F}{A}$ (1)	
	Use of $E = \frac{\sigma}{\varepsilon}$ [allow a method using $E = \frac{kx}{A}$ for 3 marks] (1)	
	$E = 2.1 \times 10^{11} \mathrm{Pa} \tag{1}$	4
	Example calculation $\Delta x = 3 \times 10^{-4} \times 3.8 \text{ m} = 1.14 \times 10^{-3} \text{ m}$ $F = 2.8 \times 10^7 \text{ N m}^{-1} \times 1.14 \times 10^{-3} \text{ m} = 3.19 \times 10^4 \text{ N}$ $\sigma = \frac{3.19 \times 104 \text{ N}}{5.1 \times 10^{-4} \text{ m}^2} = 6.26 \times 10^7 \text{ Pa}$ $E = \frac{6.26 \times 10^7 \text{ Pa}}{3.0 \times 10^{-4}} = 2.09 \times 10^{11} \text{ Pa}$	
16(b)(ii)	Area under graph = elastic strain energy (can be indicated on graph) (1)	
	Weight of electromagnet is still exerted on cable after object falls (can be indicated on graph) (1)	
	So change in elastic strain energy = area under graph between total weight (of electromagnet and steel object) and weight of electromagnet (can be shown on graph or given as an algebraic equivalent using $E_{el} = \frac{1}{2}F\Delta x$) (1)	
	And change in gravitational potential energy of electromagnet is weight of electromagnet × change in extension (can be indicated on graph) (1)	
	So the change in elastic strain energy stored > change in gravitational potential energy of the electromagnet (1)	5
	Example of graph F	
	total weight of electromagnet and steel object Area of small triangle plus rectangle = change in elastic strain energy	
	weight of electromagnet Area of rectangle represents change in GPE	
	extension	
	Total for question 16	11