

Introducción a Modelos Psicométricos Clase 7 Análisis de Ítems en un Marco Clásico

Iwin Leenen y Ramsés Vázquez-Lira

Facultad de Psicología, UNAM

Programa de Licenciatura y Posgrado en Psicología Semestre 2019–1

Índice

- 1 Índices psicométricos de los ítems
- 2 Método gráfico
- 3 Consideraciones finales

Introducción al análisis cuantitativo de ítems

- Se han desarrollados varias herramientas para conocer las propiedades de los ítems de un test.
- En principio, estos métodos no requieren los supuestos de la Teoría Clásica.
 - → No se utilizan los conceptos de "puntuación verdadera" o "puntuación error"
 - → No se define o calcula una "confiabilidad"
- Generalmente, estos métodos se utilizan de dos maneras:
 - Durante la fase de la construcción de un test
 - Después de una medición de alto impacto para evaluar/garantizar la calidad del instrumento.
- Consideramos dos tipos de métodos:
 - Basados en índices psicométricos
 - Basados en gráficas

Importante: Los índices y las gráficas se obtienen para cada ítem.

Introducción al análisis cuantitativo de ítems

- Se han desarrollados varias herramientas para conocer las propiedades de los ítems de un test.
- En principio, estos métodos no requieren los supuestos de la Teoría Clásica.
 - → No se utilizan los conceptos de "puntuación verdadera" o "puntuación error".
 - ightarrow No se define o calcula una "confiabilidad".
- Generalmente, estos métodos se utilizan de dos maneras:
 - Durante la fase de la construcción de un test
 - Después de una medición de alto impacto para evaluar/garantizar la calidad del instrumento.
- Consideramos dos tipos de métodos:
 - Basados en índices psicométricos
 - Basados en gráficas

Importante: Los índices y las gráficas se obtienen para cada ítem.

Introducción al análisis cuantitativo de ítems

- Se han desarrollados varias herramientas para conocer las propiedades de los ítems de un test.
- En principio, estos métodos no requieren los supuestos de la Teoría Clásica.
 - → No se utilizan los conceptos de "puntuación verdadera" o "puntuación error".
 - \rightarrow No se define o calcula una "confiabilidad".
- Generalmente, estos métodos se utilizan de dos maneras:
 - Durante la fase de la construcción de un test
 - Después de una medición de alto impacto para evaluar/garantizar la calidad del instrumento.
- Consideramos dos tipos de métodos:
 - Basados en índices psicométricos
 - Basados en gráficas

Importante: Los índices y las gráficas se obtienen para cada ítem.

Introducción al análisis cuantitativo de ítems

- Se han desarrollados varias herramientas para conocer las propiedades de los ítems de un test.
- En principio, estos métodos no requieren los supuestos de la Teoría Clásica.
 - → No se utilizan los conceptos de "puntuación verdadera" o "puntuación error".
 - \rightarrow No se define o calcula una "confiabilidad".
- Generalmente, estos métodos se utilizan de dos maneras:
 - Durante la fase de la construcción de un test
 - Después de una medición de alto impacto para evaluar/garantizar la calidad del instrumento.
- Consideramos dos tipos de métodos:
 - Basados en índices psicométricos
 - Basados en gráficas

Importante: Los índices y las gráficas se obtienen para cada ítem.

Introducción al análisis cuantitativo de ítems

- Se han desarrollados varias herramientas para conocer las propiedades de los ítems de un test.
- En principio, estos métodos no requieren los supuestos de la Teoría Clásica.
 - → No se utilizan los conceptos de "puntuación verdadera" o "puntuación error".
 - \rightarrow No se define o calcula una "confiabilidad".
- Generalmente, estos métodos se utilizan de dos maneras:
 - Durante la fase de la construcción de un test
 - Después de una medición de alto impacto para evaluar/garantizar la calidad del instrumento.
- Consideramos dos tipos de métodos:
 - Basados en índices psicométricos
 - Basados en gráficas

Importante: Los índices y las gráficas se obtienen para cada ítem.

Ejemplo 1: Ítems dicotómicos

La siguiente matriz contiene la respuestas de 8 personas en un test que consiste en 5 preguntas de opción múltiple (con tres opciones de respuesta cada una):

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5
René	С	В	С	С	В
Ricardo	В	Α	C	C	Α
Milania	В	Α	С	С	Α
Gema	В	С	В	Α	В
Yenny	В	Α	С	С	В
Luisa	В	С	Α	В	Α
Cristóbal	Α	Α	С	Α	С
Benjamín	В	В	С	С	В

Ejemplo 1: Ítems dicotómicos

La siguiente matriz contiene la respuestas de 8 personas en un test que consiste en 5 preguntas de opción múltiple (con tres opciones de respuesta cada una):

	Ítem 1	ĺtem 2	Ítem 3	Ítem 4	Ítem 5	
	В	Α	С	С	Α	← Clave
René	С	В	С	С	В	
Ricardo	В	Α	С	С	Α	
Milania	В	Α	С	С	Α	
Gema	В	С	В	Α	В	
Yenny	В	Α	С	С	В	
Luisa	В	С	Α	В	Α	
Cristóbal	Α	Α	С	Α	С	
Benjamín	В	В	С	С	В	

Ejemplo 1: Ítems dicotómicos

La siguiente matriz contiene la respuestas de 8 personas en un test que consiste en 5 preguntas de opción múltiple (con tres opciones de respuesta cada una):

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	
	В	Α	С	С	Α	\leftarrow
René	0	0	1	1	0	
Ricardo	1	1	1	1	1	
Milania	1	1	1	1	1	
Gema	1	0	0	0	0	
Yenny	1	1	1	1	0	
Luisa	1	0	0	0	1	
Cristóbal	0	1	1	0	0	
Benjamín	1	0	1	1	0	

Ejemplo 2: Preguntas abiertas

La siguiente matriz contiene las puntuaciones de 10 personas en un test que consiste en 4 preguntas abiertas:

	Ítem 1	Ítem 2	Ítem 3	Ítem 4
Paco	6	2	3	3
Bárbara	4	0	3	0
Rita	4	2	3	4
Luciano	5	3	0	4
Vera	4	3	1	4
Marcela	5	2	4	3
Eric	7	3	5	4
Fausto	5	2	4	2
Paloma	4	1	3	1
Haydée	3	1	2	4

Ejemplo 2: Preguntas abiertas

La siguiente matriz contiene las puntuaciones de 10 personas en un test que consiste en 4 preguntas abiertas:

	Ítem 1	Ítem 2	Ítem 3	Ítem 4
	7	3	6	4
Paco	6	2	3	3
Bárbara	4	0	3	0
Rita	4	2	3	4
Luciano	5	3	0	4
Vera	4	3	1	4
Marcela	5	2	4	3
Eric	7	3	5	4
Fausto	5	2	4	2
Paloma	4	1	3	1
Haydée	3	1	2	4

Índice

- 1 Índices psicométricos de los ítems
 - El índice de dificultad
 - La desviación estándar del ítem
 - El índice de discriminación del ítem
 - La correlación ítem-test
 - La correlación ítem-resto
- 2 Método gráfico
- 3 Consideraciones finales

Índices de dificultad y discriminación

- 1. Índices de dificultad
 - p_i: El índice de dificultad
- 2 Índices de discriminación
 - s_i: La desviación estándar
 - *D_i*: El índice de discriminación
 - r_{it}: La correlación ítem-test
 - r_{ir}: La correlación ítem-resto

Índices de dificultad y discriminación

- Índices de dificultad:
 - p_i: El índice de dificultad
- 2. Índices de discriminación:
 - s_i: La desviación estàndar
 - *D_i*: El índice de discriminación
 - r_{it}: La correlación ítem-test
 - r_{ir}: La correlación ítem-resto

Índices de dificultad y discriminación

- 1. Índices de dificultad:
 - p_i: El índice de dificultad
- 2. Índices de discriminación:
 - s_i: La desviación estándar
 - D_i: El índice de discriminación
 - r_{it}: La correlación ítem-test
 - r_{ir}: La correlación ítem-resto

Índices de dificultad y discriminación

- 1. Índices de dificultad:
 - p_i: El índice de dificultad
- 2. Índices de discriminación:
 - s_i: La desviación estándar
 - D_i: El índice de discriminación
 - r_{it}: La correlación ítem-test
 - r_{ir}: La correlación ítem-resto

Clase 7 - Análisis de ítems

Índices psicométricos de los ítems

El índice de dificultad

Índice

- 1 Índices psicométricos de los ítems
 - El índice de dificultad
 - La desviación estándar del ítem
 - El índice de discriminación del ítem
 - La correlación ítem-test
 - La correlación ítem-resto
- 2 Método gráfico
- 3 Consideraciones finales

El índice de dificultad de un ítem

Definición

El índice de dificultad del ítem i se define como:

■ Si se trata de un ítem dicotómico (con puntuaciones 0 y 1), entonces:

$$p_i = \frac{N_{i1}}{N_{i0} + N_{i1}},$$

donde N_{i1} es el número de personas en la muestra con puntuación 1 en el ítem i y N_{i0} es el número de personas en la muestra con puntuación 0 en el ítem i.

Es decir, p_i es la proporción de personas en la muestra que aciertan el ítem.

■ En otros tipos de ítems (para los cuales la puntuación mínima es igual a 0):

$$p_i' = \frac{\overline{x}_i}{\text{MaxScore}_i}$$

donde x_i es la media aritmética de las puntuaciones observadas en el ítem i y MaxScore $_i$ es la puntuación máxima que se puede obtener en el ítem i.

El índice de dificultad de un ítem

Definición

El índice de dificultad del ítem i se define como:

■ Si se trata de un ítem dicotómico (con puntuaciones 0 y 1), entonces:

$$p_i = \frac{N_{i1}}{N_{i0} + N_{i1}},$$

donde N_{i1} es el número de personas en la muestra con puntuación 1 en el ítem i y N_{i0} es el número de personas en la muestra con puntuación 0 en el ítem i.

Es decir, p_i es la proporción de personas en la muestra que aciertan el ítem.

En otros tipos de ítems (para los cuales la puntuación mínima es igual a 0):

$$p_i' = \frac{\overline{x}_i}{\text{MaxScore}_i},$$

donde x_i es la media aritmética de las puntuaciones observadas en el ítem i y MaxScore $_i$ es la puntuación máxima que se puede obtener en el ítem i.

Clase 7 — Análisis de ítems

— Índices psicométricos de los ítems

El índice de dificultad

El índice de dificultad de un ítem

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5
René	0	0	1	1	0
Ricardo	1	1	1	1	1
Milania	1	1	1	1	1
Gema	1	0	0	0	0
Yenny	1	1	1	1	0
Luisa	1	0	0	0	1
Cristóbal	0	1	1	0	0
Benjamín	1	0	1	1	0

Clase 7 — Análisis de ítems

— Índices psicométricos de los ítems

El índice de dificultad

El índice de dificultad de un ítem

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5
René	0	0	1	1	0
Ricardo	1	1	1	1	1
Milania	1	1	1	1	1
Gema	1	0	0	0	0
Yenny	1	1	1	1	0
Luisa	1	0	0	0	1
Cristóbal	0	1	1	0	0
Benjamín	1	0	1	1	0
р	<u>6</u> 8	<u>4</u> 8	<u>6</u> 8	<u>5</u> 8	<u>3</u>

El índice de dificultad de un ítem

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5
René	0	0	1	1	0
Ricardo	1	1	1	1	1
Milania	1	1	1	1	1
Gema	1	0	0	0	0
Yenny	1	1	1	1	0
Luisa	1	0	0	0	1
Cristóbal	0	1	1	0	0
Benjamín	1	0	1	1	0
р	.750	.500	.750	.625	.375

El índice de dificultad de un ítem

Ejemplo 2: Preguntas abiertas

	f	í. a	í. a	f
	Item 1	İtem 2	İtem 3	Item 4
	7	3	6	4
Paco	6	2	3	3
Bárbara	4	0	3	0
Rita	4	2	3	4
Luciano	5	3	0	4
Vera	4	3	1	4
Marcela	5	2	4	3
Eric	7	3	5	4
Fausto	5	2	4	2
Paloma	4	1	3	1
Haydée	3	1	2	4

El índice de dificultad de un ítem

Ejemplo 2: Preguntas abiertas

	Ítem 1	Ítem 2	Ítem 3	Ítem 4
	7	3	6	4
Paco	6	2	3	3
Bárbara	4	0	3	0
Rita	4	2	3	4
Luciano	5	3	0	4
Vera	4	3	1	4
Marcela	5	2	4	3
Eric	7	3	5	4
Fausto	5	2	4	2
Paloma	4	1	3	1
Haydée	3	1	2	4
p'	<u>4.7</u>	<u>1.9</u> 3	<u>2.8</u>	<u>2.9</u> 4

El índice de dificultad de un ítem

Ejemplo 2: Preguntas abiertas

	Ítem 1	Ítem 2	Ítem 3	Ítem 4
	7	3	6	4
Paco	6	2	3	3
Bárbara	4	0	3	0
Rita	4	2	3	4
Luciano	5	3	0	4
Vera	4	3	1	4
Marcela	5	2	4	3
Eric	7	3	5	4
Fausto	5	2	4	2
Paloma	4	1	3	1
Haydée	3	1	2	4
p'	.671	.633	.467	.725

El índice de dificultad de un ítem

Propiedades e interpretación

Por definición:

$$0 \leqslant p_i \leqslant 1,$$

 $0 \leqslant p'_i \leqslant 1.$

■ p_i aplica también para ítems dicotómicos. En este caso:

$$p_i' = p_i$$

■ En cuanto a la interpretación:

$$ho_i$$
 alto \implies ítem fácil ho_i bajo \implies ítem difícil

De hecho, p_i (y también p'_i) es un índice de facilidad.

El índice de dificultad de un ítem

Propiedades e interpretación

Por definición:

$$0 \leqslant p_i \leqslant 1,$$

 $0 \leqslant p'_i \leqslant 1.$

■ p_i aplica también para ítems dicotómicos. En este caso:

$$p_i' = p_i$$
.

■ En cuanto a la interpretación:

$$p_i$$
 alto \implies item fácil p_i bajo \implies item difíci

De hecho, p_i (y también p'_i) es un índice de facilidad.

El índice de dificultad de un ítem

Propiedades e interpretación

Por definición:

$$0 \leqslant p_i \leqslant 1,$$

 $0 \leqslant p'_i \leqslant 1.$

■ p_i aplica también para ítems dicotómicos. En este caso:

$$p_i' = p_i$$
.

■ En cuanto a la interpretación:

$$p_i$$
 alto \implies item fácil p_i bajo \implies item difícil

De hecho, p_i (y también p'_i) es un índice de facilidad.

El índice de dificultad de un ítem

Reflexión crítica

• ¿Qué significaría si para un ítem de opción múltiple

$$p_i \leqslant \frac{1}{m}$$

donde m es el número de opciones de respuesta del ítem?

La desviación estándar del ítem

Índice

- 1 Índices psicométricos de los ítems
 - El índice de dificultad
 - La desviación estándar del ítem
 - El índice de discriminación del ítem
 - La correlación ítem-test
 - La correlación ítem-resto
- 2 Método gráfico
- 3 Consideraciones finales

La desviación estándar de un ítem

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5
René	0	0	1	1	0
Ricardo	1	1	1	1	1
Milania	1	1	1	1	1
Gema	1	0	0	0	0
Yenny	1	1	1	1	0
Luisa	1	0	0	0	1
Cristóbal	0	1	1	0	0
Benjamín	1	0	1	1	0

La desviación estándar de un ítem

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5
René	0	0	1	1	0
Ricardo	1	1	1	1	1
Milania	1	1	1	1	1
Gema	1	0	0	0	0
Yenny	1	1	1	1	0
Luisa	1	0	0	0	1
Cristóbal	0	1	1	0	0
Benjamín	1	0	1	1	0
Si	.433	.500	.433	.484	.484

La desviación estándar de un ítem

Ejemplo 2: Preguntas abiertas

	Ítem 1	Ítem 2	Ítem 3	Ítem 4
	7	3	6	4
Paco	6	2	3	3
Bárbara	4	0	3	0
Rita	4	2	3	4
Luciano	5	3	0	4
Vera	4	3	1	4
Marcela	5	2	4	3
Eric	7	3	5	4
Fausto	5	2	4	2
Paloma	4	1	3	1
Haydée	3	1	2	4

La desviación estándar de un ítem

Ejemplo 2: Preguntas abiertas

	Ítem 1	Ítem 2	Ítem 3	Ítem 4
	7	3	6	4
Paco	6	2	3	3
Bárbara	4	0	3	0
Rita	4	2	3	4
Luciano	5	3	0	4
Vera	4	3	1	4
Marcela	5	2	4	3
Eric	7	3	5	4
Fausto	5	2	4	2
Paloma	4	1	3	1
Haydée	3	1	2	4
s _i	1.100	0.943	1.400	1.375

La desviación estándar de un ítem

Propiedades e interpretación

- ¿Por qué es útil la desviación estándar?
 - ightarrow Para que haya discriminación, debe haber variación.
- En caso de ítems dicotómicos, la desviación estándar está directamente relacionada con el índice de dificultad:

$$s_i = \sqrt{p_i \left(1 - p_i\right)}$$

 \Rightarrow s_i es máximo cuando $p_i = .50$.

Reflexión crítica:

Algunos autores recomiendan no incluir ítems en un test con $p_i < .10$ o $p_i > .90$. ¿Cuándo sí y cuándo no sería oportuno incluir ítems con un valor extremo para el índice de dificultad?

La desviación estándar de un ítem

Propiedades e interpretación

- ¿Por qué es útil la desviación estándar?
 - → Para que haya discriminación, debe haber variación.
- En caso de ítems dicotómicos, la desviación estándar está directamente relacionada con el índice de dificultad:

$$s_i = \sqrt{p_i (1 - p_i)}$$

 $\Rightarrow s_i$ es máximo cuando $p_i = .50$.

Reflexión crítica:

Algunos autores recomiendan no incluir ítems en un test con $p_i < .10$ o $p_i > .90$. ¿Cuándo sí y cuándo no sería oportuno incluir ítems con un valor extremo para el índice de dificultad?

La desviación estándar de un ítem

La relación entre la desviación estándar y el índice de dificultad de un ítem

$$s_i = \sqrt{p_i (1 - p_i)}$$

La desviación estándar de un ítem

Propiedades e interpretación

- ¿Por qué es útil la desviación estándar?
 - → Para que haya discriminación, debe haber variación.
- En caso de ítems dicotómicos, la desviación estándar está directamente relacionada con el índice de dificultad:

$$s_i = \sqrt{p_i (1 - p_i)}$$

 \Rightarrow s_i es máximo cuando $p_i = .50$.

Reflexión crítica:

Algunos autores recomiendan no incluir ítems en un test con $p_i < .10$ o $p_i > .90$. ¿Cuándo sí y cuándo no sería oportuno incluir ítems con un valor extremo para el índice de dificultad?

La desviación estándar de un ítem

Propiedades e interpretación

- ¿Por qué es útil la desviación estándar?
 - → Para que haya discriminación, debe haber variación.
- En caso de ítems dicotómicos, la desviación estándar está directamente relacionada con el índice de dificultad:

$$s_i = \sqrt{p_i (1 - p_i)}$$

 \Rightarrow s_i es máximo cuando $p_i = .50$.

Reflexión crítica:

Algunos autores recomiendan no incluir ítems en un test con $p_i < .10$ o $p_i > .90$. ¿Cuándo sí y cuándo no sería oportuno incluir ítems con un valor extremo para el índice de dificultad?

Índices psicométricos de los ítems

El índice de discriminación del ítem

Índice

- 1 Índices psicométricos de los ítems
 - El índice de dificultad
 - La desviación estándar del ítem
 - El índice de discriminación del ítem
 - La correlación ítem-test
 - La correlación ítem-resto
- 2 Método gráfico
- 3 Consideraciones finales

El índice de discriminación de un ítem

Definición

- El índice de discriminación *Di* se define únicamente para ítems dicotómicos.
- Para calcular D_i de un ítem i, se aplica el siguiente procedimiento de tres pasos

Paso 1: Se divide la muestra en dos

- Una submuestra de evaluados con una puntuación alta en el test
- Una submuestra de evaluados con una puntuación baja en el test

Por ejemplo

- → El 50 % de los evaluados con puntuaciones más altas versus el 50 % de los evaluados con puntuaciones más bais
- → El 27 % de los evaluados con puntuaciones más altas versus el 27 % de los evaluados con puntuaciones más bajas
- Paso 2: Se calcula en ambos submuestras, la proporción de evaluados que aciertan el ítem i:
 - $p_i^{(alt)}$: proporción de aciertos en la submuestra de evaluados con puntuación alta;
 - $p_i^{\text{(baj)}}$: proporción de aciertos en la submuestra de evaluados con puntuación baja.

$$p_i = p_i^{(alt)} - p_i^{(baj)}$$
.

El índice de discriminación de un ítem

Definición

- El índice de discriminación *D_i* se define únicamente para ítems dicotómicos.
- \blacksquare Para calcular D_i de un ítem i, se aplica el siguiente procedimiento de tres pasos

Paso 1: Se divide la muestra en dos

- Una submuestra de evaluados con una puntuación alta en el test
- Una submuestra de evaluados con una puntuación baja en el test

Por ejemplo:

- → El 50 % de los evaluados con puntuaciones más altas versus el 50 % de los evaluados con puntuaciones más baia:
- → El 27 % de los evaluados con puntuaciones más altas versus el 27 % de los evaluados con puntuaciones más bajas
- Paso 2: Se calcula en ambos submuestras, la proporción de evaluados que aciertan el ítem i:
 - $p_i^{(alt)}$: proporción de aciertos en la submuestra de evaluados con puntuación alta;
 - $p_i^{(\text{baj})}$: proporción de aciertos en la submuestra de evaluados con puntuación baja.

$$p_i = p_i^{(alt)} - p_i^{(baj)}$$

El índice de discriminación de un ítem

Definición

- El índice de discriminación *D_i* se define únicamente para ítems dicotómicos.
- Para calcular D_i de un ítem i, se aplica el siguiente procedimiento de tres pasos:

Paso 1: Se divide la muestra en dos

- Una submuestra de evaluados con una puntuación alta en el test
- Una submuestra de evaluados con una puntuación baja en el test

Por ejemplo

- → El 50 % de los evaluados con puntuaciones más altas versus el 50 % de los evaluados con puntuaciones más bajas
- → El 27 % de los evaluados con puntuaciones más altas versus el 27 % de los evaluados con puntuaciones más baias
- Paso 2: Se calcula en ambos submuestras, la proporción de evaluados que aciertan el ítem i:
 - $p_i^{(alt)}$: proporción de aciertos en la submuestra de evaluados con puntuación alta;
 - $p_i^{(baj)}$: proporción de aciertos en la submuestra de evaluados con puntuación baja.

$$D_i = p_i^{(alt)} - p_i^{(baj)}$$

El índice de discriminación de un ítem

Definición

- El índice de discriminación *D_i* se define únicamente para ítems dicotómicos.
- Para calcular D_i de un ítem i, se aplica el siguiente procedimiento de tres pasos:
 - Paso 1: Se divide la muestra en dos:
 - Una submuestra de evaluados con una puntuación alta en el test
 - Una submuestra de evaluados con una puntuación baja en el test

Por ejemplo

- → El 50 % de los evaluados con puntuaciones más altas versus el 50 % de los evaluados con puntuaciones más baias
- → El 27 % de los evaluados con puntuaciones más altas versus el 27 % de los evaluados con puntuaciones más baias
- Paso 2: Se calcula en ambos submuestras, la proporción de evaluados que aciertan el ítem i:
 - $p_i^{(alt)}$: proporción de aciertos en la submuestra de evaluados con puntuación alta;
 - $p_i^{(\text{baj})}$: proporción de aciertos en la submuestra de evaluados con puntuación baja.

$$D_i = p_i^{(alt)} - p_i^{(baj)}$$

Índices psicométricos de los ítems

El índice de discriminación del ítem

El índice de discriminación de un ítem

Definición

- El índice de discriminación *D_i* se define únicamente para ítems dicotómicos.
- Para calcular D_i de un ítem i, se aplica el siguiente procedimiento de tres pasos:
 - Paso 1: Se divide la muestra en dos:
 - Una submuestra de evaluados con una puntuación alta en el test
 - Una submuestra de evaluados con una puntuación baja en el test

Por ejemplo:

- → El 50 % de los evaluados con puntuaciones más altas versus el 50 % de los evaluados con puntuaciones más bajas
- → El 27 % de los evaluados con puntuaciones más altas versus el 27 % de los evaluados con puntuaciones más bajas

Paso 2: Se calcula en ambos submuestras, la proporción de evaluados que aciertan el ítem i

- $p_i^{(alt)}$: proporción de aciertos en la submuestra de evaluados con puntuación alta;
- $p_i^{(baj)}$: proporción de aciertos en la submuestra de evaluados con puntuación baja.

$$D_i = p_i^{(alt)} - p_i^{(baj)}$$

Índices psicométricos de los ítems

El índice de discriminación del ítem

El índice de discriminación de un ítem

Definición

- El índice de discriminación *D_i* se define únicamente para ítems dicotómicos.
- Para calcular D_i de un ítem i, se aplica el siguiente procedimiento de tres pasos:
 - Paso 1: Se divide la muestra en dos:
 - Una submuestra de evaluados con una puntuación alta en el test
 - Una submuestra de evaluados con una puntuación baja en el test

Por ejemplo:

- → El 50 % de los evaluados con puntuaciones más altas versus el 50 % de los evaluados con puntuaciones más bajas
- → El 27 % de los evaluados con puntuaciones más altas versus el 27 % de los evaluados con puntuaciones más bajas
- Paso 2: Se calcula en ambos submuestras, la proporción de evaluados que aciertan el ítem i:
 - p_i^(alt): proporción de aciertos en la submuestra de evaluados con puntuación alta;
 - p_i^(baj): proporción de aciertos en la submuestra de evaluados con puntuación baja.

El índice de discriminación de un ítem

Definición

- El índice de discriminación *Di* se define únicamente para ítems dicotómicos.
- Para calcular D_i de un ítem i, se aplica el siguiente procedimiento de tres pasos:

Paso 1: Se divide la muestra en dos:

- Una submuestra de evaluados con una puntuación alta en el test
- Una submuestra de evaluados con una puntuación baja en el test

Por ejemplo:

- → El 50 % de los evaluados con puntuaciones más altas versus el 50 % de los evaluados con puntuaciones más bajas
- → El 27 % de los evaluados con puntuaciones más altas versus el 27 % de los evaluados con puntuaciones más bajas

Paso 2: Se calcula en ambos submuestras, la proporción de evaluados que aciertan el ítem i:

- p_i^(alt): proporción de aciertos en la submuestra de evaluados con puntuación alta;
- p_i^(baj): proporción de aciertos en la submuestra de evaluados con puntuación baja.

$$D_i = p_i^{(alt)} - p_i^{(baj)}$$
.

El índice de discriminación de un ítem

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5
René	0	0	1	1	0
Ricardo	1	1	1	1	1
Milania	1	1	1	1	1
Gema	1	0	0	0	0
Yenny	1	1	1	1	0
Luisa	1	0	0	0	1
Cristóbal	0	1	1	0	0
Benjamín	1	0	1	1	0

Índices psicométricos de los ítems

El índice de discriminación del ítem

El índice de discriminación de un ítem

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	Total
René	0	0	1	1	0	2
Ricardo	1	1	1	1	1	5
Milania	1	1	1	1	1	5
Gema	1	0	0	0	0	1
Yenny	1	1	1	1	0	4
Luisa	1	0	0	0	1	2
Cristóbal	0	1	1	0	0	2
Benjamín	1	0	1	1	0	3

El índice de discriminación de un ítem

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	Total
Ricardo	1	1	1	1	1	5
Milania	1	1	1	1	1	5
Yenny	1	1	1	1	0	4
Benjamín	1	0	1	1	0	3
René	0	0	1	1	0	2
Luisa	1	0	0	0	1	2
Cristóbal	0	1	1	0	0	2
Gema	1	0	0	0	0	1

El índice de discriminación de un ítem

		Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	Total
	Ricardo	1	1	1	1	1	5
Alfo A	Milania	1	1	1	1	1	5
۲₹	Yenny	1	1	1	1	0	4
į	Benjamín	1	0	1	1	0	3
	René	0		1	1		2
Bajo	Luisa	1	0	0	0	1	2
mäj	Cristóbal	0	1	1	0	0	2
	Gema	1	0	0	0	0	1

El índice de discriminación de un ítem

-		Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	Total
	Ricardo	1	1	1	1	1	5
Alto	Milania	1	1	1	1	1	5
₹ ի	Yenny	1	1	1	1	0	4
į	Benjamín	1	0	1	1	0	3
	René	0		1	1		2
Bajo	Luisa	1	0	0	0	1	2
m)	Cristóbal	0	1	1	0	0	2
	Gema	1	0	0	0	0	1
	$p_i^{(alt)}$	1.00	0.75	1.00	1.00	0.50	
	$ ho_i^{(extsf{baj})}$	0.50	0.25	0.50	0.25	0.25	

El índice de discriminación de un ítem

		Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	Total
ſ	Ricardo	1	1	1	1	1	5
Alto	Milania	1	1	1	1	1	5
₹ ۱	Yenny	1	1	1	1	0	4
Į	Benjamín	1	0	1	1	0	3
	René	0	0	1	1		2
Bajo	Luisa	1	0	0	0	1	2
m)	Cristóbal	0	1	1	0	0	2
l	Gema	1	0	0	0	0	1
	$p_i^{(alt)}$	1.00	0.75	1.00	1.00	0.50	
	$p_i^{(\text{baj})}$	0.50	0.25	0.50	0.25	0.25	
	D _i	0.50	0.50	0.50	0.75	0.25	

El índice de discriminación de un ítem

Propiedades e interpretación

Por definición:

$$-1 \leq D_i \leq +1$$
.

■ Sin embargo, en la práctica:

Los posibles valores para D_i están limitados por el valor en el índice p_i

En particular:

Conforme el índice de dificultad asume un valor más extremo (cercano a 0 o cercano a 1), el posible rango de D_i es más restringido.

- Al reportar D_i, hay que incluir el porcentaje (p.ej. 27 %, 33 %, 50 %) que se utilizó para establecer los grupos de desempeño alto y bajo.
- En cuanto a la interpretación:

 $D_i \approx 0 \implies$ el ítem no discrimina entre personas de desempeño alto y bajo;

 $\triangleright D_i \gg 0 \implies$ el ítem discrimina en la dirección correcta

ho $D_i \ll 0 \implies$ el ítem discrimina en la dirección errónea.

El índice de discriminación de un ítem

Propiedades e interpretación

Por definición:

$$-1 \leqslant D_i \leqslant +1.$$

■ Sin embargo, en la práctica:

Los posibles valores para D_i están limitados por el valor en el índice p_i

En particular:

Conforme el índice de dificultad asume un valor más extremo (cercano a 0 o cercano a 1), el posible rango de D_i es más restringido.

- Al reportar D_i, hay que incluir el porcentaje (p.ej. 27 %, 33 %, 50 %) que se utilizó para establecer los grupos de desempeño alto y bajo.
- En cuanto a la interpretación:

 $D_i \approx 0 \implies$ el ítem no discrimina entre personas de desempeño alto y bajo;

 $D_i \gg 0 \implies$ el ítem discrimina en la dirección correcta

 $D_i \ll 0 \implies$ el ítem discrimina en la dirección errónea.

El índice de discriminación de un ítem

Propiedades e interpretación

Por definición:

$$-1 \leqslant D_i \leqslant +1.$$

■ Sin embargo, en la práctica:

Los posibles valores para D_i están limitados por el valor en el índice p_i .

En particular:

Conforme el índice de dificultad asume un valor más extremo (cercano a 0 o cercano a 1), el posible rango de D_i es más restringido.

- Al reportar D_i, hay que incluir el porcentaje (p.ej. 27 %, 33 %, 50 %) que se utilizó para establecer los grupos de desempeño alto y bajo.
- En cuanto a la interpretación:
 - $D_i \approx 0 \implies$ el ítem no discrimina entre personas de desempeño alto y bajo;
 - $D_i \gg 0 \implies$ el ítem discrimina en la dirección correcta
 - $D_i \ll 0 \implies$ el ítem discrimina en la dirección errónea

El índice de discriminación de un ítem

Propiedades e interpretación

Por definición:

$$-1 \leqslant D_i \leqslant +1.$$

■ Sin embargo, en la práctica:

Los posibles valores para D_i están limitados por el valor en el índice p_i .

En particular:

Conforme el índice de dificultad asume un valor más extremo (cercano a 0 o cercano a 1), el posible rango de D_i es más restringido.

- Al reportar D_i, hay que incluir el porcentaje (p.ej. 27 %, 33 %, 50 %) que se utilizó para establecer los grupos de desempeño alto y bajo.
- En cuanto a la interpretación
 - $D_i \approx 0 \implies$ el ítem no discrimina entre personas de desempeño alto y bajo;
 - $D_i \gg 0 \implies$ el ítem discrimina en la dirección correcta
 - $D_i \ll 0 \implies$ el ítem discrimina en la dirección errónea

Propiedades e interpretación

Por definición:

$$-1 \leqslant D_i \leqslant +1$$
.

■ Sin embargo, en la práctica:

Los posibles valores para D_i están limitados por el valor en el índice p_i .

En particular:

Conforme el índice de dificultad asume un valor más extremo (cercano a 0 o cercano a 1), el posible rango de D_i es más restringido.

- Al reportar D_i, hay que incluir el porcentaje (p.ej. 27 %, 33 %, 50 %) que se utilizó para establecer los grupos de desempeño alto y bajo.
- En cuanto a la interpretación:
 - $\triangleright D_i \approx 0 \implies$ el ítem no discrimina entre personas de desempeño alto y bajo;
 - $D_i \gg 0 \implies$ el ítem discrimina en la dirección correcta;
 - $\triangleright D_i \ll 0 \implies$ el ítem discrimina en la dirección errónea.

Índices psicométricos de los ítems

La correlación ítem-test

Índice

- 1 Índices psicométricos de los ítems
 - El índice de dificultad
 - La desviación estándar del ítem
 - El índice de discriminación del ítem
 - La correlación ítem-test
 - La correlación ítem-resto
- 2 Método gráfico
- 3 Consideraciones finales

Índices psicométricos de los ítems

La correlación ítem-test

La correlación ítem-test

Definición

■ La correlación ítem-test *r_{it}* para un ítem *i* se define por:

La correlación de Pearson entre la puntuación en el ítem y la puntuación total en el tes

Aplica tanto a ítems dicotómicos como a ítems no dicotómicos.

Índices psicométricos de los íten

La correlación ítem-test

La correlación ítem-test

Definición

■ La correlación ítem-test *r_{it}* para un ítem *i* se define por:

La correlación de Pearson entre la puntuación en el ítem y la puntuación total en el test.

Aplica tanto a ítems dicotómicos como a ítems no dicotómicos.

Índices psicométricos de los ítem

La correlación ítem-test

La correlación ítem-test

Definición

■ La correlación ítem-test *r*_{it} para un ítem *i* se define por:

La correlación de Pearson entre la puntuación en el ítem y la puntuación total en el test.

Aplica tanto a ítems dicotómicos como a ítems no dicotómicos.

La correlación ítem-test

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	
Paco	6	2	3	3	
Bárbara	4	0	3	0	
Rita	4	2	3	4	
Luciano	5	3	0	4	
Vera	4	3	1	4	
Marcela	5	2	4	3	
Eric	7	3	5	4	
Fausto	5	2	4	2	
Paloma	4	1	3	1	
Haydée	3	1	2	4	

La correlación ítem-test

Ítem 1	Ítem 2	Ítem 3	Ítem 4	Total
6	2	3	3	14
4	0	3	0	7
4	2	3	4	13
5	3	0	4	12
4	3	1	4	12
5	2	4	3	14
7	3	5	4	19
5	2	4	2	13
4	1	3	1	9
3	1	2	4	10
	6 4 4 5 4 5 7 5	6 2 4 0 4 2 5 3 4 3 5 2 7 3 5 2 4 1	6 2 3 4 0 3 4 2 3 5 3 0 4 3 1 5 2 4 7 3 5 5 2 4 4 1 3	6 2 3 3 4 4 0 3 0 4 4 2 3 4 5 3 0 4 4 5 2 4 3 7 3 5 4 5 2 4 2 4 1 3 1

La correlación ítem-test

			$r_{it} = .82$		
			,	,	_
	Item 1	Ítem 2	İtem 3	İtem 4	Total
Paco	6	2	3	3	14
Bárbara	4	0	3	0	7
Rita	4	2	3	4	13
Luciano	5	3	0	4	12
Vera	4	3	1	4	12
Marcela	5	2	4	3	14
Eric	7	3	5	4	19
Fausto	5	2	4	2	13
Paloma	4	1	3	1	9
Haydée	3	1	2	4	10
r _{it}	.82				

La correlación ítem-test

	$r_{it} = .76$					
					_	
	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Total	
Paco	6	2	3	3	14	
Bárbara	4	0	3	0	7	
Rita	4	2	3	4	13	
Luciano	5	3	0	4	12	
Vera	4	3	1	4	12	
Marcela	5	2	4	3	14	
Eric	7	3	5	4	19	
Fausto	5	2	4	2	13	
Paloma	4	1	3	1	9	
Haydée	3	1	2	4	10	
r _{it}	.82	.76				

La correlación ítem-test

				$r_{it} = .45$	
		,			_
	İtem 1	İtem 2	İtem 3	İtem 4	Total
Paco	6	2	3	3	14
Bárbara	4	0	3	0	7
Rita	4	2	3	4	13
Luciano	5	3	0	4	12
Vera	4	3	1	4	12
Marcela	5	2	4	3	14
Eric	7	3	5	4	19
Fausto	5	2	4	2	13
Paloma	4	1	3	1	9
Haydée	3	1	2	4	10
r _{it}	.82	.76	.45		

La correlación ítem-test

				$r_{it} =$.62
	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Total
Paco	6	2	3	3	14
Bárbara	4	0	3	0	7
Rita	4	2	3	4	13
Luciano	5	3	0	4	12
Vera	4	3	1	4	12
Marcela	5	2	4	3	14
Eric	7	3	5	4	19
Fausto	5	2	4	2	13
Paloma	4	1	3	1	9
Haydée	3	1	2	4	10
r _{it}	.82	.76	.45	.62	

Índices psicométricos de los ítems

La correlación ítem-test

La correlación ítem-test

Propiedades e interpretación

■ Por definición:

$$-1 \leqslant r_{it} \leqslant +1$$

Notese que, para items dicotómicos, r_{it} es una correlación punto-biserial.

La correlación punto-biserial se define *de forma general en la estadística* como:

la correlación de Pearson entre una variable de nivel intervalo y una variable dicotómica.

Para ítems dicotómicos, se puede calcular ri

- con las fórmulas habituales de la correlación
- por la siguiente fórmula equivalente:

$$r_{it} = \frac{\overline{x}_1 - \overline{x}_0}{s} \sqrt{p_i(1 - p_i)},$$

onde: \overline{x}_1 es la puntuación total en el test de las personas que acertaron el ítem i, \overline{x}_0 es la puntuación total en el test de las personas que fallaron el ítem i; s_X es la desviación estándar de las puntuaciones en el test; p_i es el índice de dificultad del ítem i (0 < p_i < 1).

La correlación ítem-test

Propiedades e interpretación

Por definición:

$$-1 \leqslant r_{it} \leqslant +1.$$

■ Nótese que, para ítems dicotómicos, *r_{it}* es una correlación punto-biserial.

La correlación punto-biserial se define de forma general en la estadística como:

la correlación de Pearson entre una variable de nivel intervalo y una variable dicotómica.

Para ítems dicotómicos, se puede calcular ra

- con las fórmulas habituales de la correlación
- por la siguiente fórmula equivalente:

$$r_{it} = \frac{\overline{x}_1 - \overline{x}_0}{s_{xx}} \sqrt{p_i(1-p_i)},$$

donde: \overline{X}_1 es la puntuación total en el test de las personas que acertaron el ítem i: \overline{X}_0 es la puntuación total en el test de las personas que fallaron el ítem i; s_X es la desviación estándar de las puntuaciones en el test; p_i es el índice de dificultad del ítem i (0 < p_i < 1).

La correlación ítem-test

Propiedades e interpretación

Por definición:

$$-1 \leqslant r_{it} \leqslant +1.$$

■ Nótese que, para ítems dicotómicos, r_{it} es una correlación punto-biserial.

La correlación punto-biserial se define de forma general en la estadística como:

la correlación de Pearson entre una variable de nivel intervalo y una variable dicotómica.

Para ítems dicotómicos, se puede calcular r_i

- con las fórmulas habituales de la correlación
- por la siguiente fórmula equivalente:

$$r_{it} = \frac{\overline{x}_1 - \overline{x}_0}{s_x} \sqrt{p_i(1 - p_i)},$$

donde: \overline{X}_1 es la puntuación total en el test de las personas que acertaron el ítem i; \overline{X}_0 es la puntuación total en el test de las personas que fallaron el ítem i; s_X es la desviación estándar de las puntuaciones en el test; o_i es el índice de dificultad del ítem i ($0 < o_i < 1$).

La correlación ítem-test

Propiedades e interpretación

Por definición:

$$-1 \leqslant r_{it} \leqslant +1$$
.

lacktriangle Nótese que, para ítems dicotómicos, r_{it} es una correlación punto-biserial.

La correlación punto-biserial se define de forma general en la estadística como:
la correlación de Pearson entre una variable de nivel intervalo
y una variable dicotómica.

Para ítems dicotómicos, se puede calcular ra

- con las fórmulas habituales de la correlación.
- por la siguiente fórmula equivalente:

$$r_{it} = \frac{\overline{x}_1 - \overline{x}_0}{s_{v}} \sqrt{p_i(1 - p_i)},$$

donde: \overline{X}_1 es la puntuación total en el test de las personas que acertaron el ítem i; \overline{X}_0 es la puntuación total en el test de las personas que fallaron el ítem i; s_X es la desviación estándar de las puntuaciones en el test; v_i es el índice de difícultad del ítem i ($0 < v_i < 1$)

Propiedades e interpretación

Por definición:

$$-1 \leqslant r_{it} \leqslant +1$$
.

■ Nótese que, para ítems dicotómicos, *r*_{it} es una correlación punto-biserial.

La correlación punto-biserial se define de forma general en la estadística como:

la correlación de Pearson entre una variable de nivel intervalo y una variable dicotómica.

Para ítems dicotómicos, se puede calcular r_{it}

- con las fórmulas habituales de la correlación;
- por la siguiente fórmula equivalente:

$$r_{it} = \frac{\overline{x}_1 - \overline{x}_0}{s_v} \sqrt{p_i(1 - p_i)},$$

donde: \overline{x}_1 es la puntuación total en el test de las personas que acertaron el ítem i; \overline{x}_0 es la puntuación total en el test de las personas que fallaron el ítem i; s_χ es la desviación estándar de las puntuaciones en el test; p_i es el índice de dificultad del ítem i (0 < p_i < 1).

La correlación ítem-test

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	Total
René	0	0	1	1	0	2
Ricardo	1	1	1	1	1	5
Milania	1	1	1	1	1	5
Gema	1	0	0	0	0	1
Yenny	1	1	1	1	0	4
Luisa	1	0	0	0	1	2
Cristóbal	0	1	1	0	0	2
Benjamín	1	0	1	1	0	3

$$s_X = 1.414$$

La correlación ítem-test

				$r_{it} = .41$		
	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	Total
René	0	0	1	1	0	2
Ricardo	1	1	1	1	1	5
Milania	1	1	1	1	1	5
Gema	1	0	0	0	0	1
Yenny	1	1	1	1	0	4
Luisa	1	0	0	0	1	2
Cristóbal	0	1	1	0	0	2
Benjamín	1	0	1	1	0	3
r _{it}	.41					$s_X = 1.414$

$$r_{it} = \frac{x_1 - x_0}{s_{\chi}} \sqrt{\rho_i (1 - \rho_i)}$$
$$= \frac{3.333 - 2.000}{1.414} \sqrt{0.750(1 - 0.750)} = .41$$

La correlación ítem-test

Ejemplo 1: İtems dicotómico

				$r_{it} = 0$	71	
	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	Total
René	0	0	1	1	0	2
Ricardo	1	1	1	1	1	5
Milania	1	1	1	1	1	5
Gema	1	0	0	0	0	1
Yenny	1	1	1	1	0	4
Luisa	1	0	0	0	1	2
Cristóbal	0	1	1	0	0	2
Benjamín	1	0	1	1	0	3
r _{it}	.41	.71				$s_X = 1.414$

$$r_{it} = \frac{x_1 - x_0}{s_{\chi}} \sqrt{\rho_i (1 - \rho_i)}$$

$$= \frac{4.000 - 2.000}{1.414} \sqrt{0.500(1 - 0.500)} = .71$$

La correlación ítem-test

					$r_{it} = .61$	
	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	Total
René	0	0	1	1	0	2
Ricardo	1	1	1	1	1	5
Milania	1	1	1	1	1	5
Gema	1	0	0	0	0	1
Yenny	1	1	1	1	0	4
Luisa	1	0	0	0	1	2
Cristóbal	0	1	1	0	0	2
Benjamín	1	0	1	1	0	3
r _{it}	.41	.71	.61			$s_X = 1.414$

$$r_{it} = \frac{x_1 - x_0}{s_{\chi}} \sqrt{p_i (1 - p_i)}$$
$$= \frac{3.500 - 1.500}{1.414} \sqrt{0.750(1 - 0.750)} = .61$$

La correlación ítem-test

					$r_{it} = .73$	
	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	Total
René	0	0	1	1	0	2
Ricardo	1	1	1	1	1	5
Milania	1	1	1	1	1	5
Gema	1	0	0	0	0	1
Yenny	1	1	1	1	0	4
Luisa	1	0	0	0	1	2
Cristóbal	0	1	1	0	0	2
Benjamín	1	0	1	1	0	3
r _{it}	.41	.71	.61	.73		$s_X = 1.414$

$$r_{it} = \frac{x_1 - x_0}{s_{\chi}} \sqrt{p_i(1 - p_i)}$$
$$= \frac{3.800 - 1.667}{1.414} \sqrt{0.625(1 - 0.625)} = .73$$

La correlación ítem-test

					r _{it}	= .55
	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	Total
René	0	0	1	1	0	2
Ricardo	1	1	1	1	1	5
Milania	1	1	1	1	1	5
Gema	1	0	0	0	0	1
Yenny	1	1	1	1	0	4
Luisa	1	0	0	0	1	2
Cristóbal	0	1	1	0	0	2
Benjamín	1	0	1	1	0	3
r _{it}	.41	.71	.61	.73	.55	$s_X = 1.414$

$$r_{it} = \frac{x_1 - x_0}{s_\chi} \sqrt{p_i(1 - p_i)}$$
$$= \frac{4.000 - 2.400}{1.414} \sqrt{0.375(1 - 0.375)} = .55$$

- Índices psicométricos de los ítems

La correlación ítem-test

La correlación ítem-test

Propiedades e interpretación (continuación)

Para el caso de ítems dicotómicos

Los posibles valores para la correlación r_{il} (o la correlación punto-biserial) están limitados por el valor en el índice p_i .

En particular:

Conforme el índice de dificultad asume un valor más extremo (cercano a 0 o 1), e posible rango de r_{il} suele ser más restringido.

Nota: aplicó una afirmación similar a Di

→ la correlación biseria

Índices psicométricos de los ítems

La correlación ítem-test

La correlación ítem-test

Propiedades e interpretación (continuación)

Para el caso de ítems dicotómicos:

Los posibles valores para la correlación r_{it} (o la correlación punto-biserial) están limitados por el valor en el índice p_i .

En particular

Conforme el índice de dificultad asume un valor más extremo (cercano a 0 o 1), el posible rango de r_{it} suele ser más restringido.

Nota: aplicó una afirmación similar a Di

→ la correlación biseria

Clase 7 — Análisis de ítems

Índices psicométricos de los ítems

La correlación ítem-test

La correlación ítem-test

Propiedades e interpretación (continuación)

Para el caso de ítems dicotómicos:

Los posibles valores para la correlación r_{it} (o la correlación punto-biserial) están limitados por el valor en el índice p_i .

En particular:

Conforme el índice de dificultad asume un valor más extremo (cercano a 0 o 1), el posible rango de r_{it} suele ser más restringido.

Nota: aplicó una afirmación similar a D

→ la correlación biseria

Clase 7 — Análisis de ítems

Índices psicométricos de los ítems

La correlación ítem-test

La correlación ítem-test

Propiedades e interpretación (continuación)

Para el caso de ítems dicotómicos:

Los posibles valores para la correlación r_{it} (o la correlación punto-biserial) están limitados por el valor en el índice p_i .

En particular:

Conforme el índice de dificultad asume un valor más extremo (cercano a 0 o 1), el posible rango de r_{it} suele ser más restringido.

Nota: aplicó una afirmación similar a D_i .

→ la correlación biserial

La correlación ítem-test

Nota: La correlación biserial

Además de la correlación punto-biserial existe la correlación biserial:

- La correlación biserial, igual que la correlación punto-biserial, se aplica cuando una variable (X) es de nivel intervalo y la otra (Y) es dicotómica.
- Idea de la correlación biserial.
 - Subyace una variable continua latente Y* a la variable dicotómica observada Y, que cumple que:

$$\left\{egin{array}{ll} {\sf Si} \ Y^{\star} < au, & {\sf entonces} \ Y = 0 \ {\sf Si} \ Y^{\star} \geqslant au, & {\sf entonces} \ Y = 1 \end{array}
ight.$$

para algún umbral latente au.

- Se supone que Y* tiene una distribución normal en la población de la cual se ha extraído la muestra con puntuaciones observadas en Y.
- La correlación biserial es una estimación de la correlación de Pearson entre X y Y* en esta población.

La correlación ítem-test

Nota: La correlación biserial

Además de la correlación punto-biserial existe la correlación biserial:

- La correlación biserial, igual que la correlación punto-biserial, se aplica cuando una variable (X) es de nivel intervalo y la otra (Y) es dicotómica.
- Idea de la correlación biserial:
 - Subyace una variable continua latente Y* a la variable dicotómica observada Y, que cumple que:

$$\begin{cases} \text{ Si } Y^{\star} < \tau, & \text{ entonces } Y = 0 \\ \text{ Si } Y^{\star} \geqslant \tau, & \text{ entonces } Y = 1 \end{cases}$$

para algún umbral latente au.

- Se supone que Y* tiene una distribución normal en la población de la cual se ha extraído la muestra con puntuaciones observadas en Y.
- La correlación biserial es una estimación de la correlación de Pearson entre X y Y* en esta población.

La correlación ítem-test

Nota: La correlación biserial

Además de la correlación punto-biserial existe la correlación biserial:

- La correlación biserial, igual que la correlación punto-biserial, se aplica cuando una variable (X) es de nivel intervalo y la otra (Y) es dicotómica.
- Idea de la correlación biserial:
 - Subyace una variable continua latente Y* a la variable dicotómica observada Y, que cumple que:

$$\left\{ \begin{array}{ll} \text{Si } Y^{\star} < \tau, & \text{entonces } Y = 0 \\ \text{Si } Y^{\star} \geqslant \tau, & \text{entonces } Y = 1 \end{array} \right.$$

para algún umbral latente τ .

- Se supone que Y* tiene una distribución normal en la población de la cual se ha extraído la muestra con puntuaciones observadas en Y.
- La correlación biserial es una estimación de la correlación de Pearson entre X y Y* en esta población.

La correlación ítem-test

Nota: La correlación biserial

Además de la correlación punto-biserial existe la correlación biserial:

- La correlación biserial, igual que la correlación punto-biserial, se aplica cuando una variable (X) es de nivel intervalo y la otra (Y) es dicotómica.
- Idea de la correlación biserial:
 - Subyace una variable continua latente Y* a la variable dicotómica observada Y, que cumple que:

$$\begin{cases} \text{Si } Y^{\star} < \tau, & \text{entonces } Y = 0 \\ \text{Si } Y^{\star} \geqslant \tau, & \text{entonces } Y = 1 \end{cases}$$

para algún umbral latente τ .

- Se supone que Y* tiene una distribución normal en la población de la cual se ha extraído la muestra con puntuaciones observadas en Y.
- La correlación biserial es una estimación de la correlación de Pearson entre X y Y* en esta población.

La correlación ítem-test

Nota: La correlación biserial (continuación)

■ Representación gráfica de la variable continua Y* y su relación con la variable dicotómica Y:

La correlación biserial entre la puntuación del ítem i y la puntuación total se puede calcular por:

$$r_{it}^{\text{bis}} = \frac{\overline{x}_1 - \overline{x}_0}{s_v} \frac{p_i(1 - p_i)}{u}$$

La correlación ítem-test

Nota: La correlación biserial (continuación)

■ Representación gráfica de la variable continua Y* y su relación con la variable dicotómica Y:

La correlación biserial entre la puntuación del ítem i y la puntuación total se puede calcular por:

$$r_{it}^{\text{bis}} = \frac{\overline{x}_1 - \overline{x}_0}{s_v} \frac{p_i(1 - p_i)}{u},$$

La correlación ítem-test

Nota: La correlación biserial (continuación)

■ Representación gráfica de la variable continua Y* y su relación con la variable dicotómica Y:

La correlación biserial entre la puntuación del ítem i y la puntuación total se puede calcular por:

$$r_{it}^{\text{bis}} = \frac{\overline{x}_1 - \overline{x}_0}{s_v} \frac{p_i(1 - p_i)}{u},$$

Nota: La correlación biserial (continuación)

■ Representación gráfica de la variable continua Y* y su relación con la variable dicotómica Y:

La correlación biserial entre la puntuación del ítem i y la puntuación total se puede calcular por:

$$r_{it}^{\text{bis}} = \frac{\overline{x}_1 - \overline{x}_0}{s_v} \frac{p_i(1 - p_i)}{u},$$

La correlación ítem-test

Nota: La correlación biserial (continuación)

■ Representación gráfica de la variable continua Y* y su relación con la variable dicotómica Y:

La correlación biserial entre la puntuación del ítem i y la puntuación total se puede calcular por:

$$r_{it}^{\text{bis}} = \frac{\overline{x}_1 - \overline{x}_0}{s_v} \frac{p_i(1 - p_i)}{u},$$

La correlación ítem-test

Nota: La correlación biserial (continuación)

Nótese que:

$$r_{it}^{\text{bis}} = r_{it} \frac{\sqrt{p_i(1-p_i)}}{u}$$

y que para cualquier pi:

$$\frac{\sqrt{p_i(1-p_i)}}{u}>1.25.$$

lo cual directamente implica que:

$$|r_{it}^{\mathsf{bis}}|\geqslant |r_{it}|$$

Índices psicométricos de los íter

La correlación ítem-test

La correlación ítem-test

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Ítem 5	Total
René	0	0	1	1	0	2
Ricardo	1	1	1	1	1	5
Milania	1	1	1	1	1	5
Gema	1	0	0	0	0	1
Yenny	1	1	1	1	0	4
Luisa	1	0	0	0	1	2
Cristóbal	0	1	1	0	0	2
Benjamín	1	0	1	1	0	3
r _{it}	.41	.71	.61	.73	.55	
r _{it} bis	.56	.89	.83	.93	.70	

La correlación ítem-test

Propiedades e interpretación (continuación)

■ En cuanto a la interpretación:

$$>r_{ii} \approx 0 \implies$$
 el ítem no discrimina entre personas de desempeño alto v baio:

$$r_{it} \gg 0 \implies$$
 el ítem discrimina en la dirección correcta:

Una puntuación alta en el test \longleftrightarrow una puntuación alta en el ítem

Una puntuación baja en el test $\,\longleftrightarrow\,$ una puntuación baja en el ítem

$$hd r_{it} \ll 0 \implies$$
 el ítem discrimina en la dirección errónea.

Una puntuación alta en el test ←→ una puntuación baja en el ítem

Una puntuación baja en el test $\,\longleftrightarrow\,$ una puntuación alta en el ítem

 Sobre todo cuando hay pocos ítems, r_{it} puede dar una imagen distorsionada va que la puntuación en el ítem contribuye directamente a la puntuación del test

→ la correlación ítem-resto.

La correlación ítem-test

Propiedades e interpretación (continuación)

En cuanto a la interpretación:

ho $r_{it} \approx 0 \implies$ el ítem no discrimina entre personas de desempeño alto y bajo;

ho $r_{it} \gg 0 \implies$ el ítem discrimina en la dirección correcta;

Una puntuación alta en el test \longleftrightarrow una puntuación alta en el ítem Una puntuación baja en el test \longleftrightarrow una puntuación baja en el ítem

ho $r_{it} \ll 0 \implies$ el ítem discrimina en la dirección errónea.

Una puntuación alta en el test ←→ una puntuación baja en el ítem
Una puntuación baja en el test ←→ una puntuación alta en el ítem

- Sobre todo cuando hay pocos ítems, r_{it} puede dar una imagen distorsionada ya que la puntuación en el ítem contribuye directamente a la puntuación del test.
 - → la correlación ítem-resto.

La correlación ítem-test

Propiedades e interpretación (continuación)

■ En cuanto a la interpretación:

$$ho$$
 $r_{it} \approx 0 \implies$ el ítem no discrimina entre personas de desempeño alto y bajo;

$$ho$$
 $r_{it} \gg 0 \implies$ el ítem discrimina en la dirección correcta;

Una puntuación alta en el test ←→ una puntuación alta en el ítem

Una puntuación baja en el test $\ \longleftrightarrow \$ una puntuación baja en el ítem

$$ho$$
 $r_{it} \ll 0 \implies$ el ítem discrimina en la dirección errónea.

Una puntuación alta en el test $\ \longleftrightarrow \$ una puntuación baja en el ítem

Una puntuación baja en el test $\ensuremath{\longleftrightarrow}$ una puntuación alta en el ítem

- Sobre todo cuando hay pocos ítems, r_{it} puede dar una imagen distorsionada ya que la puntuación en el ítem contribuye directamente a la puntuación del test.
 - → la correlación ítem-resto.

Clase 7 — Análisis de ítems

Índices psicométricos de los ítems

La correlación ítem-resto

Índice

- 1 Índices psicométricos de los ítems
 - El índice de dificultad
 - La desviación estándar del ítem
 - El índice de discriminación del ítem
 - La correlación ítem-testLa correlación ítem-resto
- 2 Método gráfico
- 3 Consideraciones finales

— Índices psicométricos de los ítems

La correlación ítem-resto

La correlación ítem-resto

Definición

■ La correlación ítem-resto *r_{ir}* para un ítem *i* se define por:

La correlación de Pearson entre la puntuación en el ítem y la puntuación resto.

La "puntuación resto" es la puntuación total en el resto de los ítems;
 es decir, la puntuación total después de restarle la puntuacion del ítem i:

$$Resto_i = Total - X_i$$

Nótese que la puntuación resto es específica para cada ítem.

La correlación ítem-resto

Definición

■ La correlación ítem-resto r_{ir} para un ítem i se define por:

La correlación de Pearson entre la puntuación en el ítem y la puntuación resto.

La "puntuación resto" es la puntuación total en el resto de los ítems;
 es decir, la puntuación total después de restarle la puntuacion del ítem i:

$$Resto_i = Total - X_i$$

Nótese que la puntuación resto es específica para cada ítem.

La correlación ítem-resto

Definición

■ La correlación ítem-resto r_{ir} para un ítem i se define por:

La correlación de Pearson entre la puntuación en el ítem y la puntuación resto.

La "puntuación resto" es la puntuación total en el resto de los ítems;
 es decir, la puntuación total después de restarle la puntuacion del ítem i:

$$Resto_i = Total - X_i$$

Nótese que la puntuación resto es específica para cada ítem.

La correlación ítem-resto

	Ítem 1	ĺtem 2	Ítem 3	Ítem 4	Total	
Paco	6	2	3	3	14	
Bárbara	4	0	3	0	7	
Rita	4	2	3	4	13	
Luciano	5	3	0	4	12	
Vera	4	3	1	4	12	
Marcela	5	2	4	3	14	
Eric	7	3	5	4	19	
Fausto	5	2	4	2	13	
Paloma	4	1	3	1	9	
Haydée	3	1	2	4	10	
r _{it}	.82	.76	.45	.62		

La correlación ítem-resto

	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Total	Resto ₁
Paco	6	2	3	3	14	8
Bárbara	4	0	3	0	7	3
Rita	4	2	3	4	13	9
Luciano	5	3	0	4	12	7
Vera	4	3	1	4	12	8
Marcela	5	2	4	3	14	9
Eric	7	3	5	4	19	12
Fausto	5	2	4	2	13	8
Paloma	4	1	3	1	9	5
Haydée	3	1	2	4	10	7
r _{it}	.82	.76	.45	.62		

La correlación ítem-resto

	4					_
	Ítem 1	ĺtem 2	Ítem 3	Ítem 4	Total	Resto ₁
Paco	6	2	3	3	14	8
Bárbara	4	0	3	0	7	3
Rita	4	2	3	4	13	9
Luciano	5	3	0	4	12	7
Vera	4	3	1	4	12	8
Marcela	5	2	4	3	14	9
Eric	7	3	5	4	19	12
Fausto	5	2	4	2	13	8
Paloma	4	1	3	1	9	5
Haydée	3	1	2	4	10	7
r _{it}	.82	.76	.45	.62		
r _{ir}	.63					

La correlación ítem-resto

				$r_{ir} = .58$		
	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Total	Resto ₂
Paco	6	2	3	3	14	12
Bárbara	4	0	3	0	7	7
Rita	4	2	3	4	13	11
Luciano	5	3	0	4	12	9
Vera	4	3	1	4	12	9
Marcela	5	2	4	3	14	12
Eric	7	3	5	4	19	16
Fausto	5	2	4	2	13	11
Paloma	4	1	3	1	9	8
Haydée	3	1	2	4	10	9
r _{it}	.82	.76	.45	.62		
r _{ir}	.63	.58				
r _{ir}	.63	.58				

La correlación ítem-resto

	$r_{ir}=.00$						
	Ítem 1	Ítem 2	Ítem 3	Ítem 4	Total	Resto ₃	
Paco	6	2	3	3	14	11	
Bárbara	4	0	3	0	7	4	
Rita	4	2	3	4	13	10	
Luciano	5	3	0	4	12	12	
Vera	4	3	1	4	12	11	
Marcela	5	2	4	3	14	10	
Eric	7	3	5	4	19	14	
Fausto	5	2	4	2	13	9	
Paloma	4	1	3	1	9	6	
Haydée	3	1	2	4	10	8	
-r _{it}	.82	.76	.45	.62			
r _{ir}	.63	.58	.00				

La correlación ítem-resto

	ĺtem 1	Ítem 2	Ítem 3	Ítem 4	Total	Resto ₄
Paco	6	2	3	3	14	11
Bárbara	4	0	3	0	7	7
Rita	4	2	3	4	13	9
Luciano	5	3	0	4	12	8
Vera	4	3	1	4	12	8
Marcela	5	2	4	3	14	11
Eric	7	3	5	4	19	15
Fausto	5	2	4	2	13	11
Paloma	4	1	3	1	9	8
Haydée	3	1	2	4	10	6
r _{it}	.82	.76	.45	.62		
r _{ir}	.63	.58	.00	.22		

Propiedades e interpretación

$$-1 \leqslant r_{ir} \leqslant +1$$
.

- Para ítems dicotómicos:
 - r_{ir} es una correlación punto-biserial;
 - Se puede calcular también r_{ir}^{bis} (la correlación biserial entre el ítem y el resto).
- Para distintos ítems, la variable "Resto" es diferente.
 - \Rightarrow Dificulta comparar distintos ítems con respecto a r_{ii}
- La interpretación de r_{ir} es similar a la de r_{it} .

La correlación ítem-resto

Propiedades e interpretación

$$-1 \leqslant r_{ir} \leqslant +1.$$

- Para ítems dicotómicos
 - r_{ir} es una correlación punto-biserial;
 - Se puede calcular también r_{ir}^{bis} (la correlación biserial entre el ítem y el resto).
- Para distintos ítems, la variable "Resto" es diferente.
 - \Rightarrow Dificulta comparar distintos ítems con respecto a r_{ir}
- La interpretación de r_{ir} es similar a la de r_{it} .

La correlación ítem-resto

Propiedades e interpretación

$$-1 \leqslant r_{ir} \leqslant +1$$
.

- Para ítems dicotómicos:
 - r_{ir} es una correlación punto-biserial;
 - ullet Se puede calcular también r_{ir}^{bis} (la correlación biserial entre el ítem y el resto).
- Para distintos ítems, la variable "Resto" es diferente.
 - \Rightarrow Dificulta comparar distintos ítems con respecto a r_{ir}
- La interpretación de r_{ir} es similar a la de r_{it} .

Propiedades e interpretación

$$-1 \leqslant r_{ir} \leqslant +1.$$

- Para ítems dicotómicos:
 - r_{ir} es una correlación punto-biserial;
 - Se puede calcular también r_{ir}^{bis} (la correlación biserial entre el ítem y el resto).
- Para distintos ítems, la variable "Resto" es diferente.
 - \Rightarrow Dificulta comparar distintos ítems con respecto a r_{ir}
- La interpretación de r_{ir} es similar a la de r_{it} .

La correlación ítem-resto

Propiedades e interpretación

$$-1 \leqslant r_{ir} \leqslant +1.$$

- Para ítems dicotómicos:
 - r_{ir} es una correlación punto-biserial;
 - Se puede calcular también r_{ir}^{bis} (la correlación biserial entre el ítem y el resto).
- Para distintos ítems, la variable "Resto" es diferente.
 - \Rightarrow Dificulta comparar distintos ítems con respecto a r_{ir} .
- La interpretación de r_{ir} es similar a la de r_{it} .

La correlación ítem-resto

Propiedades e interpretación

$$-1 \leqslant r_{ir} \leqslant +1.$$

- Para ítems dicotómicos:
 - r_{ir} es una correlación punto-biserial;
 - Se puede calcular también r_{ir}^{bis} (la correlación biserial entre el ítem y el resto).
- Para distintos ítems, la variable "Resto" es diferente.
 - \Rightarrow Dificulta comparar distintos ítems con respecto a r_{ir} .
- La interpretación de r_{ir} es similar a la de r_{it} .

Tabla de resumen

Índices psicométricos de los ítems: Resumen

Ejemplo 1: Ítems dicotómicos

Resumiendo los índices en una tabla da

1/B*						.11						
1/C	.125	.331										
						.44						
				204								
					834							
	.125	.331										
					.834							
					834							
4/B	.125	.331				12						
4/C*		.484										
		.484										
				354		10						
	.125	.331				19						

Tabla de resumen

Índices psicométricos de los ítems: Resumen

Ejemplo 1: Ítems dicotómicos

Resumiendo los índices en una tabla da:

	Dificultad		Discriminación									
Ítem/Opción	p_i	Si	Di	r _{it}	r _{it} bis	r _{ir}						
1/A	.125	.331	250	267	429	073						
1/B*	.750	.433	.500	.408	.556	.111						
1/C	.125	.331	250	267	429	073						
2/A*	.500	.500	.500	.707	.886	.447						
2/B	.250	.433	.000	204	278	.000						
2/C	.250	.433	500	612	834	516						
3/A	.125	.331	250	267	429	079						
3/B	.125	.331	250	535	859	394						
3/C*	.750	.433	.500	.612	.834	.361						
4/A	.250	.433	500	612	834	455						
4/B	.125	.331	250	267	429	128						
4/C*	.625	.484	.750	.730	.932	.494						
5/A*	375	.484	.250	.548	.699	.238						
5/B	.500	.500	.000	354	443	103						
5/C	.125	.331	250	267	429	194						

Índice

- 1 Índices psicométricos de los ítems
- 2 Método gráfico
- 3 Consideraciones finales

- Aunque se puede aplicar a cualquier tipo de pregunta, el método gráfico es más común para ítems de opción múltiple.
- Procedimiento

Paso 1: Se divide la muestra total en *k* grupos de nivel

- de aproximadamente el mismo tamaño,
- con base en la puntuación total (o la puntuación resto).

Por eiemplo, para k = 5

- → Grupo 1: El 20 % de personas con las puntuaciones más bajas;
- ightarrow Grupo 2: El 20 % de personas con las siguientes puntuaciones más bajas;

- → Grupo 5: El 20 % de personas con las puntuaciones más altas.
- Paso 2: Se calcula, para cada grupo, la proporción de personas que elige las respectivas opciones de respuesta.

Paso 3: Se representan dichas proporciones gráficamente en un diagrama con

- en la abscisa los grupos de nivel
- en la ordenada las proporciones.

- Aunque se puede aplicar a cualquier tipo de pregunta, el método gráfico es más común para ítems de opción múltiple.
- Procedimiento:
 - **Paso 1:** Se divide la muestra total en *k* grupos de nivel
 - de aproximadamente el mismo tamaño,
 - con base en la puntuación total (o la puntuación resto).

Por ejemplo, para k = 5:

- → Grupo 1: El 20 % de personas con las puntuaciones más bajas:
- → Grupo 2: El 20 % de personas con las siguientes puntuaciones más bajas;

- → Grupo 5: El 20 % de personas con las puntuaciones más altas.
- Paso 2: Se calcula, para cada grupo, la proporción de personas que elige las respectivas opciones de respuesta.
- Paso 3: Se representan dichas proporciones gráficamente en un diagrama con:
 - en la abscisa los grupos de nivel
 - en la ordenada las proporciones.

- Aunque se puede aplicar a cualquier tipo de pregunta, el método gráfico es más común para ítems de opción múltiple.
- Procedimiento:
 - **Paso 1:** Se divide la muestra total en *k* grupos de nivel
 - de aproximadamente el mismo tamaño,
 - con base en la puntuación total (o la puntuación resto).

Por ejemplo, para k = 5:

- → Grupo 1: El 20 % de personas con las puntuaciones más bajas;
- $\,\rightarrow\,$ Grupo 2: El 20 % de personas con las siguientes puntuaciones más bajas;

- → Grupo 5: El 20 % de personas con las puntuaciones más altas.
- Paso 2: Se calcula, para cada grupo, la proporción de personas que elige las respectivas opciones de respuesta.
- Paso 3: Se representan dichas proporciones gráficamente en un diagrama con
 - en la abscisa los grupos de nivel
 - en la ordenada las proporciones.

- Aunque se puede aplicar a cualquier tipo de pregunta, el método gráfico es más común para ítems de opción múltiple.
- Procedimiento:
 - **Paso 1:** Se divide la muestra total en *k* grupos de nivel
 - de aproximadamente el mismo tamaño,
 - con base en la puntuación total (o la puntuación resto).

Por ejemplo, para k = 5:

- → Grupo 1: El 20 % de personas con las puntuaciones más bajas;
- $\,\rightarrow\,$ Grupo 2: El 20 % de personas con las siguientes puntuaciones más bajas;

:

- → Grupo 5: El 20 % de personas con las puntuaciones más altas.
- Paso 2: Se calcula, para cada grupo, la proporción de personas que elige las respectivas opciones de respuesta.
- Paso 3: Se representan dichas proporciones gráficamente en un diagrama con
 - en la abscisa los grupos de nivel
 - en la ordenada las proporciones.

- Aunque se puede aplicar a cualquier tipo de pregunta, el método gráfico es más común para ítems de opción múltiple.
- Procedimiento:
 - **Paso 1:** Se divide la muestra total en *k* grupos de nivel
 - de aproximadamente el mismo tamaño,
 - con base en la puntuación total (o la puntuación resto).

Por ejemplo, para k = 5:

- → Grupo 1: El 20 % de personas con las puntuaciones más bajas;
- $\,\rightarrow\,$ Grupo 2: El 20 % de personas con las siguientes puntuaciones más bajas;

:

- $\,\rightarrow\,$ Grupo 5: El 20 % de personas con las puntuaciones más altas.
- Paso 2: Se calcula, para cada grupo, la proporción de personas que elige las respectivas opciones de respuesta.
- Paso 3: Se representan dichas proporciones gráficamente en un diagrama con:
 - en la abscisa los grupos de nivel;
 - en la ordenada las proporciones.

					Ít	tems					
	1	2	3	4	5	6	7		49	50	Total
Estudiante 1	D	С	С	В	D	С	В		D	В	32
Estudiante 2	D	В	В	D	С	С	Α		Α	Α	21
Estudiante 3	В	D	С	В	С	С	Α		Α	С	30
Estudiante 4	В	Α	С	В	С	D	D		В	В	22
Estudiante 5	D	С	С	В	С	Α	В		D	В	33
Estudiante 6	Α	С	С	В	С	С	Α		С	В	22
Estudiante 7	D	D	D	В	В	С	D		Α	Α	27
Estudiante 8	D	D	С	В	С	С	В		С	Α	33
Estudiante 9	Α	D	С	В	С	D	В		С	Α	30
Estudiante 10	Α	D	С	В	С	С	С		С	Α	26
Estudiante 11	D	D	Α	В	С	В	В		С	D	28
<u>:</u>	1	:	:	:	:	:	:	٠	:		:
Estudiante 558	С	С	С	В	С	С	D		С	В	32
Estudiante 559	Α	D	С	В	С	С	Α		Α	С	31
Estudiante 560	D	D	С	В	В	С	В		С	В	28

					Ít	tems					
	1	2	3	4	5	6	7		49	50	Total
Estudiante 205	D	D	Α	D	С	В	D		D	Α	11
Estudiante 158	Α	С	С	С	Α	Α	Α		Α	D	18
Estudiante 72	D	D	В	В	С	Α	С		Α	С	19
Estudiante 135	D	Α	Α	В	В	С	В		Α	Α	19
Estudiante 2	D	В	В	D	С	С	Α		Α	Α	21
Estudiante 71	D	С	В	Α	С	Α	D		Α	D	21
Estudiante 76	D	С	Α	С	D	В	D		Α	В	21
Estudiante 78	В	D	Α	В	С	Α	Α		Α	В	21
Estudiante 83	D	С	В	В	С	В	С		Α	Α	21
Estudiante 138	D	С	Α	В	В	D	С		Α	Α	21
Estudiante 196	D	С	С	В	С	Α	С		С	В	21
<u>:</u>	:	:	:	:	:	:	:	٠.,	:	:	:
Estudiante 385	D	D	С	С	С	С	В		С	С	41
Estudiante 232	D	D	С	В	С	С	В		Α	С	42
Estudiante 235	D	D	С	В	С	С	В		Α	С	42

					Í	tems						
	1	2	3	4	5	6	7		49	50	Total	
Estudiante 205	D	D	Α	D	С	В	D		D	Α	11)	
Estudiante 158	Α	С	С	С	Α	Α	Α		Α	D	18	-
Estudiante 72	D	D	В	В	С	Α	С		Α	С	19	Grupo
:	- 1	- :	÷	- 1	- 1	- 1	- 1	1.		:	:	G
Estudiante 480	D	D	С	В	С	С	D		Α	D	26	
Estudiante 7	D	D	D	В	В	С	D		Α	Α	27	0
Estudiante 14	D	D	В	В	В	С	D		Α	Α	27	Grupo
:	÷	÷	÷	÷	÷	÷	÷	100	:	:	: (ত
Estudiante 548	D	С	С	В	С	В	В		С	С	29	
:	÷	÷	÷	÷	÷	÷	÷	٠	:	:	:	
Estudiante 51	D	D	С	В	С	В	В		Α	В	35	
Estudiante 52	D	D	С	В	С	D	В		С	Α	35	2
Estudiante 119	D	С	Α	В	В	С	В		С	С	35	Grupo
:		÷	÷	÷	÷	÷	÷	**.	÷	÷	:	G
Estudiante 235	D	D	С	В	С	С	В		Α	С	42	

					ĺ	tems						-
	1	2	3	4	5	6	7		49	50	Total	_
Estudiante 205	D	D	A	D	С	В	D		D	Α	11)
Estudiante 158	Α	С	/ c \	C	Α	Α	Α		Α	D	18	-
Estudiante 72	D	D	В	В	С	Α	С		Α	С	19	Grupo
:	:	:	\ : ,	l :			:	1.	- 1	:	:	g
Estudiante 480	D	D		В	С	С	D		Α	D	26	
Estudiante 7	D	D	D	В	В	С	D		Α	Α	27	~
Estudiante 14	D	D	В	В	В	С	D		Α	Α	27	Grupo
:	:	: \	:] :	:	:	:	1.	. :	:	:	ر ق
Estudiante 548	D	С	\c/	В	С	В	В		С	С	29	j
:	:	÷	- :	:	:	:	:	1.	:	:	:	
Estudiante 51	D	D	(C)	В	С	В	В		Α	В	35))
Estudiante 52	D	D	/ c \	В	С	D	В		С	Α	35	2 2
Estudiante 119	D	С	Α	В	В	С	В		С	С	35	Grupo
1	:	:	: ,	:	÷	÷	÷	11.	÷	:		Q
Estudiante 235	D	D	\c/	В	С	С	В		Α	С	42	

Ejemplo

Para el ítem 3, la siguiente tabla resume esta información por grupo de nivel:

	Орс	Opciones de respuesta									
Grupo de nivel	A	В	C*	D							
1 (11–26; <i>n</i> = 104)	.356	.125	.471	.048							
2 (27–29; <i>n</i> = 112)	.295	.107	.545	.053							
3 (30–31; <i>n</i> = 98)	.275	.082	.633	.010							
4 (32–34; <i>n</i> = 141)	.199	.085	.695	.021							
5 (35–42; <i>n</i> = 105)	.190	.029	.762	.019							

Índice

- 1 Índices psicométricos de los ítems
- 2 Método gráfico
- 3 Consideraciones finales

- ¿Cómo tratar a las respuestas faltantes (preguntas sin contestar)?
 - → Depende de las razones por las que no se contestaron.
- En preguntas de opción múltiple, a veces se aplica una "corrección por adivinar".
 - → Respuestas incorrectas reciben una puntuación negativa, mientras que "no contestar" resulta en una puntuación de 0.
- La exposición y los ejemplos fueron más orientados a preguntas de rendimiento óptimo.
 - ¿Qué diferencias habrá para tests de rendimiento típico Por ejemplo: ítems con formato de respuesta tipo Likert
- Sobre todo para ítems no dicotómicos, es recomendable revisar (histrogramas con) la distribución de respuestas en el ítem.
- ¡Siempre tomar en cuenta los contenidos sustantivos de los ítems!

- ¿Cómo tratar a las respuestas faltantes (preguntas sin contestar)?
 - → Depende de las razones por las que no se contestaron.
- En preguntas de opción múltiple, a veces se aplica una "corrección por adivinar".
 - → Respuestas incorrectas reciben una puntuación negativa, mientras que "no contestar" resulta en una puntuación de 0.
- La exposición y los ejemplos fueron más orientados a preguntas de rendimiento óptimo.
 - ¿Qué diferencias habrá para tests de rendimiento típico? Por ejemplo: ítems con formato de respuesta tipo Likert
- Sobre todo para ítems no dicotómicos, es recomendable revisar (histrogramas con) la distribución de respuestas en el ítem.
- ¡Siempre tomar en cuenta los contenidos sustantivos de los ítems!

- ¿Cómo tratar a las respuestas faltantes (preguntas sin contestar)?
 - → Depende de las razones por las que no se contestaron.
- En preguntas de opción múltiple, a veces se aplica una "corrección por adivinar".
 - → Respuestas incorrectas reciben una puntuación negativa, mientras que "no contestar" resulta en una puntuación de 0.
- La exposición y los ejemplos fueron más orientados a preguntas de rendimiento óptimo.
 - ¿Qué diferencias habrá para tests de rendimiento típico? Por ejemplo: ítems con formato de respuesta tipo Likert
- Sobre todo para ítems no dicotómicos, es recomendable revisar (histrogramas con) la distribución de respuestas en el ítem.
- ¡Siempre tomar en cuenta los contenidos sustantivos de los ítems!

- ¿Cómo tratar a las respuestas faltantes (preguntas sin contestar)?
 - → Depende de las razones por las que no se contestaron.
- En preguntas de opción múltiple, a veces se aplica una "corrección por adivinar".
 - → Respuestas incorrectas reciben una puntuación negativa, mientras que "no contestar" resulta en una puntuación de 0.
- La exposición y los ejemplos fueron más orientados a preguntas de rendimiento óptimo.
 - ¿Qué diferencias habrá para tests de rendimiento típico? Por ejemplo: ítems con formato de respuesta tipo Likert
- Sobre todo para ítems no dicotómicos, es recomendable revisar (histrogramas con) la distribución de respuestas en el ítem.
- Siempre tomar en cuenta los contenidos sustantivos de los ítems

- ¿Cómo tratar a las respuestas faltantes (preguntas sin contestar)?
 - → Depende de las razones por las que no se contestaron.
- En preguntas de opción múltiple, a veces se aplica una "corrección por adivinar".
 - → Respuestas incorrectas reciben una puntuación negativa, mientras que "no contestar" resulta en una puntuación de 0.
- La exposición y los ejemplos fueron más orientados a preguntas de rendimiento óptimo.
 - ¿Qué diferencias habrá para tests de rendimiento típico? Por ejemplo: ítems con formato de respuesta tipo Likert
- Sobre todo para ítems no dicotómicos, es recomendable revisar (histrogramas con) la distribución de respuestas en el ítem.
- Siempre tomar en cuenta los contenidos sustantivos de los ítems

- ¿Cómo tratar a las respuestas faltantes (preguntas sin contestar)?
 - ightarrow Depende de las razones por las que no se contestaron.
- En preguntas de opción múltiple, a veces se aplica una "corrección por adivinar".
 - → Respuestas incorrectas reciben una puntuación negativa, mientras que "no contestar" resulta en una puntuación de 0.
- La exposición y los ejemplos fueron más orientados a preguntas de rendimiento óptimo.
 - ¿Qué diferencias habrá para tests de rendimiento típico? Por ejemplo: ítems con formato de respuesta tipo Likert
- Sobre todo para ítems no dicotómicos, es recomendable revisar (histrogramas con) la distribución de respuestas en el ítem.
- ¡Siempre tomar en cuenta los contenidos sustantivos de los ítems!