Likert analysis

Contents

Packages	1
Dataset	2
cleaning the date	2
	3
EDA	3
Ohip by age and gender	4
OHIP	5
OHIP by gender	5
Regression analysis	7
OHIP by age	8
Analysis each question	9
Likert plot with sjPlot	.1
Men and Women Likert	.3
Data cleaning, data wrangling and Likert analysis	

Packages

```
theme_set(theme_minimal())
```

Dataset

```
df <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vS8G_1WOroX3Bj1FSI-aV7qcMc3bb4osbttxy-g
## Rows: 132 Columns: 33

## -- Column specification ------
## Delimiter: ","
## chr (15): Gender, Difficulty pronouncing words, Diminished sense of taste, ...
## dbl (17): Count, Birth year, Difficulty pronouncing words Weighted, Diminis...
## date (1): Datum

##
## i Use 'spec()' to retrieve the full column specification for this data.</pre>
```

i Specify the column types or set 'show_col_types = FALSE' to quiet this message.

Create a new column with the year and calculate the age

cleaning the date

Clean the age

```
df <- df %>%
  mutate(Year_actual = format(as.Date(Datum, format="%d/%m/%Y"),"%Y")) %>%
  relocate(Year_actual, .after = Datum) %>%
  # Convert to int
  mutate(`Birth year` = as.integer(`Birth year`)) %>%
  mutate(Year_actual = as.integer(Year_actual)) %>%
  # calculate the age
  mutate(Age = Year_actual - `Birth year`) %>%
  relocate(Age, .after = `Birth year`) %>%
  select(-c(Year_actual, `Birth year`, Datum))
```

EDA

How many patients?

```
df %>%
  janitor::tabyl(Gender) %>%
  adorn_pct_formatting() %>%
  adorn_totals("row")
```

```
## Gender n percent
```

```
## Man 60 45.5%
## Woman 72 54.5%
## Total 132 -
```

summary(df\$Age)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 21.00 28.00 32.00 32.97 37.00 61.00
```

Ohip by age and gender

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Age distribution

Table

```
df %>%
  select(Age, Gender, OHIP) %>%
  gtsummary::tbl_summary(by = Gender) %>%
  gtsummary::add_p()
```

```
## Table printed with 'knitr::kable()', not \{gt\}. Learn why at
## http://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
## To suppress this message, include 'message = FALSE' in code chunk header.
```

Characteristic	Man , N = 60	Woman, $N = 72$	p-value
Age	35 (31, 38)	30 (27, 34)	< 0.001
OHIP	2.2(0.9, 6.6)	5.0 (3.6, 8.3)	< 0.001

2.2 (0.9, 6.6) 5.0 (3.6, 8.3)

OHIP

OHIP by gender

```
df %>%
  ggplot(aes(x = OHIP,
            fill = Gender)) +
 geom_histogram() +
 facet_wrap(Gender ~ .)
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Regression analysis

```
df %>%
  with(glm(OHIP ~ Age + Gender))  %>%
  gtsummary::tbl_regression()
```

```
## Table printed with 'knitr::kable()', not {gt}. Learn why at
## http://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
## To suppress this message, include 'message = FALSE' in code chunk header.
```

Characteristic	Beta	95% CI	p-value
Age	-0.08	-0.18, 0.02	0.14
Gender			
Man			
Woman	2.0	0.64, 3.3	0.005

```
df %>%
  with(glm(OHIP ~ Age + Gender)) %>%
  report::report()
```

Warning: 'effectsize::interpret_d' is deprecated.

```
df %>%
  with(glm(OHIP ~ Age + Gender)) %>%
  sjPlot::plot_model()
```


OHIP by age

```
geom_jitter() +
labs(title = "OHIP and Age by Gender")
```

OHIP and Age by Gender

Analysis each question

Data summary

```
df_long_likert_summary <- df_long_likert %>%
  group_by(likert_item, likert_value) %>%
  count(name = "n_answers") %>%
  group_by(likert_item) %>%
```

```
mutate(percent_answers = n_answers / sum(n_answers)) %>%
ungroup() %>%
mutate(percent_answers_label = percent(percent_answers, accuracy = 1))
```

head(df_long_likert_summary)

```
## # A tibble: 6 x 5
    likert_item
                        likert_value n_answers percent_answers_l~
##
    <chr>
                                         <int>
                                                        <dbl> <chr>
                                                       0.0152 2%
## 1 Difficulty doing us~ Fairly often
                                            2
## 2 Difficulty doing us~ Hardly ever
                                           29
                                                       0.220 22%
## 3 Difficulty doing us~ Never
                                           93
                                                       0.705 70%
## 4 Difficulty doing us~ Occasionally
                                           8
                                                       0.0606 6%
## 5 Difficulty eating f~ Fairly often
                                            7
                                                       0.0530 5%
## 6 Difficulty eating f~ Hardly ever
                                                       0.258 26%
                                           34
```

```
df_long_likert_summary %>%
ggplot(aes(x = likert_item,
            y = percent_answers,
            fill = likert_value)) +
geom_col() +
geom_text(aes(label = percent_answers_label),
           position = position_stack(vjust = 0.5),
           color = "white",
           fontface = "bold") +
coord flip() +
scale_x_discrete() +
scale_fill_viridis_d() +
labs(title = "Title",
     x = NULL,
     fill = NULL) +
theme minimal() +
theme(axis.text.x = element_blank(),
      axis.title.x = element_blank(),
      panel.grid = element_blank(),
      legend.position = "top")
```


71%

70%

31%

26%

Likert plot with sjPlot

Difficulty doing usual jobs

Difficulty eating food

Difficulty pronouncing words

% 14%

65%

%6%

13%

22%

34%

```
df_for_likert <- df %>%
  # select some columns
  select(Age:`Totally unable to function`) %>%
  # create an ID to not to mess with the pivot_wider afterwards
  mutate(id = row_number()) %>%
  relocate(id, .before = Age) %>%
  # reshape for easy wrangling
  pivot_longer(cols = -c(id, Age, Gender)) %>%
  # reorder the levels
  mutate(value = fct_relevel(value,
                                  "Never",
                                  "Hardly ever",
                                  "Occasionally",
                                   "Fairly often",
                                  "Very often")) %>%
  # convert to a numeric variable
  # mutate(value_num = case_when(
  # value == "Never" ~ "1",
  # value == "Hardly ever" ~ "2",
  # value == "Occasionally" ~ "3",
```

```
# value == "Fairly often" ~ "4",
 # TRUE ~ "5"
  # )) %>%
  # mutate(value_num = as.integer(value_num)) %>%
  # select only these columns
# collapse categories
mutate(value = case_when(
  value == "Fairly often" ~ "Very often",
  TRUE ~ as.character(as.character(value))
)) %>%
  # select(id, name, value_num) %>%
  select(id, name, value) %>%
  # reshape for the graph
  pivot_wider(names_from = name,
          values_from = value)
df_for_likert %>%
```

```
df_for_likert %>%
    select(-id) %>%
    dplyr::mutate_all(., ~ ordered(., levels = c("Very often", "Occasionally", "Hardly ever", "Never")))
#    janitor::tabyl(`Pain experience`)

plot_likert(
    # grid.range = c(1.2, 1.4),
# expand.grid = FALSE,
    sort.frq = "pos.desc",
    values = "sum.outside"
    #show.prc.sign = TRUE
)
```


Men and Women Likert

Men

```
"Very often")) %>%
  # convert to a numeric variable
  # mutate(value_num = case_when(
  # value == "Never" ~ "1",
  # value == "Hardly ever" ~ "2",
  # value == "Occasionally" ~ "3",
  # value == "Fairly often" ~ "4",
  # TRUE ~ "5"
  # )) %>%
  # mutate(value_num = as.integer(value_num)) %>%
  # select only these columns
# collapse categories
mutate(value = case_when(
  value == "Fairly often" ~ "Very often",
  TRUE ~ as.character(as.character(value))
)) %>%
  # select(id, name, value_num) %>%
  select(id, name, value) %>%
  # reshape for the graph
  pivot_wider(names_from = name,
             values_from = value)
men_plot <- df_for_likert_man %>%
  select(-id) %>%
  dplyr::mutate_all(., ~ ordered(., levels = c("Very often", "Occasionally", "Hardly ever", "Never")))
 # janitor::tabyl(`Pain experience`)
plot_likert(
  # grid.range = c(1.2, 1.4),
 # expand.grid = FALSE,
 sort.frq = "pos.desc",
 values = "sum.outside"
  \#show.prc.sign = TRUE
  labs(title = "Men")
```

```
Women Likert
```

```
df_for_likert_women <- df %>%
filter(Gender == "Woman") %>%
```

ggsave("likert_man.pdf", width = 23, height = 15, units = "cm")

```
# select some columns
  select(Age: Totally unable to function) %>%
  # create an ID to not to mess with the pivot_wider afterwards
  mutate(id = row_number()) %>%
  relocate(id, .before = Age) %>%
  # reshape for easy wrangling
 pivot_longer(cols = -c(id, Age, Gender)) %>%
  # reorder the levels
  mutate(value = fct_relevel(value,
                                  "Never",
                                  "Hardly ever",
                                  "Occasionally",
                                  "Fairly often",
                                  "Very often")) %>%
  # convert to a numeric variable
  # mutate(value_num = case_when(
  # value == "Never" ~ "1",
  # value == "Hardly ever" ~ "2",
  # value == "Occasionally" ~ "3",
  # value == "Fairly often" ~ "4",
  # TRUE ~ "5"
  # )) %>%
  # mutate(value_num = as.integer(value_num)) %>%
  # select only these columns
# collapse categories
mutate(value = case_when(
 value == "Fairly often" ~ "Very often",
  TRUE ~ as.character(as.character(value))
)) %>%
  # select(id, name, value_num) %>%
  select(id, name, value) %>%
  # reshape for the graph
  pivot_wider(names_from = name,
             values_from = value)
```

```
women_plot <- df_for_likert_women %>%
  select(-id) %>%
  dplyr::mutate_all(., ~ ordered(., levels = c("Very often", "Occasionally", "Hardly ever", "Never")))
# janitor::tabyl(`Pain experience`)

plot_likert(
```

```
# grid.range = c(1.2, 1.4),
# expand.grid = FALSE,
sort.frq = "pos.desc",
values = "sum.outside"
#show.prc.sign = TRUE
) +
labs(title = "Women")
```

```
ggsave("likert_woman.pdf", width = 23, height = 15, units = "cm")
```