Expressivity and Complexity of Description Logics with Concrete Domains

Carsten Lutz

TU Dresden, Germany

Description Logics

- Description Logics (DLs) originated in Artificial Intelligence as a tool for the representation of conceptual knowledge.
 - e.g. "a father is a human which is male and has at least one child"
- Technically, DLs are very closely related to modal logics
 Today lively exchange between these two fields
- Strong emphasis on reasoning: DLs should be decidable,
 preferably of low complexity, implementable
- Many interesting applications: KR, semantic web, databases,...

Description Logics II

Knowledge represented in terms of concepts: $(\approx formulas)$

- Human □ Male □ ∃child.Human
- Workshop □ ∀papers.∃has-topic.(ML □ DL)

Most important reasoning tasks:

- concept satisfiability
 - **⇒** check for modelling mistakes
- subsumption

is each instance of a concept C also an instance of a concept D?

 $(\approx \text{ validity of implications } C \rightarrow D)$

⇒ arrange concepts in a hierarchy w.r.t. generality

Subsumption can easily be reduced to (un)satisfiability.

u resden

Motivating Concrete Domains

Many applications need to define concepts with reference to

concrete qualities of real-world objects

such as sizes, heights, and temporal and spatial extensions

Examples:

- People that are 2 meters tall
- People which are taller than their parents
- Countries whose territory is crossed by the equator
- **⇒** Appropriate extension of "classical" DLs needed!
- Nowadays generally accepted approach: Concrete Domains [BaaderHanschke91].

The Description Logic ALC

ALC is the smallest propositionally closed Description Logic

```
Atomic types: concept names A,B,\ldots (unary predicates) role names R,S,\ldots (binary relations)

Constructors: -\neg C (negation) -C \sqcap D (conjunction) -C \sqcup D (disjunction)
```

(existential restriction)

(universal restriction)

Example concept: Human □ Male □ ∃child.Human

 $-\exists R.C$

- $\forall R.C$

The Description Logic ALC

ALC is the smallest propositionally closed Description Logic

and a notational variant of multi-modal K.

Atomic types: concept names $A, B, \ldots \approx$ propositional variables

role names $R, S, \ldots \approx$ names for accessibility relations

Constructors: $\neg C$

- $C\sqcap D$

- $C \sqcup D$

- $\exists R.C$ $pprox \mathsf{modal} \ \mathsf{diamond} \ \lozenge_R \varphi$

Example concept: Human □ Male □ ∃child.Human

 \approx Human \land Male $\land \lozenge_{child}$ Human

ALC Semantics

Semantics based on interpretations $(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\cdot^{\mathcal{I}}$ maps

- each concept name A to a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$.
- each role name R to a binary relation $R^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$.

pprox Kripke structure with set of worlds $\Delta^{\mathcal{I}}$

Semantics of complex concepts:

$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$
 $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$
 $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$
 $(\exists R.C)^{\mathcal{I}} = \{d \in \Delta^{\mathcal{I}} \mid \exists e : (d,e) \in R^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}}\}$
 $(\forall R.C)^{\mathcal{I}} = \{d \in \Delta^{\mathcal{I}} \mid \forall e : (d,e) \in R^{\mathcal{I}} \text{ implies } e \in C^{\mathcal{I}}\}$

Concrete Domains

A concrete domain $\mathcal{D}=(\Delta_{\mathcal{D}},\Phi_{\mathcal{D}})$ consists of

- ullet a set $\Delta_{\mathcal{D}}$ and
- a set $\Phi_{\mathcal{D}}$ of predicate names; each $P \in \Phi_{\mathcal{D}}$ is equipped with an arity n a fixed extension $P^{\mathcal{D}} \subseteq \Delta^n_{\mathcal{D}}$.

Examples:

- 1. the natural numbers $\mathbb N$ and predicates $=_n$, <, >, =
- 2. the real numbers \mathbb{R} and predicates <, >, =, +, *
- 3. the subsets of \mathbb{R}^2 and "spatial" predicates $=_{\text{polygon}}$, overlaps, etc.

U resden

8

The Description Logic $\mathcal{ALC}(\mathcal{D})$

New atomic types:

- ullet abstract features f are functional roles
- ullet concrete features g are interpreted as partial functions $g^{\mathcal{I}}:\Delta^{\mathcal{I}} o \Delta_{\mathcal{D}}$

Path: sequence of features $u=f_1\cdots f_n g$ with f_1,\ldots,f_n abstract and g concrete

New concept constructor:

 $\mathcal{ALC}(\mathcal{D})$: extension of \mathcal{ALC} with concrete domain \mathcal{D}

An Example $\mathcal{ALC}(\mathcal{D})$ Concept

Engine □ ∃cylinder1.Cylinder □ ∃cylinder2.Cylinder

$$\sqcap =_{42}(\mathsf{power})$$

 $\sqcap = ((cylinder1 \circ power), (cylinder2 \circ power))$

 \sqcap +((cylinder1 \circ power), (cylinder2 \circ power), power)

Expressivity and Complexity of DLs

DL research goal:

Identify DLs that are sufficiently expressive for a given application and for which reasoning is "practicable".

"practicable": implemented algorithms perform sufficiently well on realistic problems.

→ Reasoning should be decidable! But what complexity is ok?

Tradeoff between expressivity and computational complexity!

Reasoning with $\mathcal{ALC}(\mathcal{D})$

Decidability/complexity results should be general.

Theorem [BaaderHanschke91]. $\mathcal{ALC}(\mathcal{D})$ -concept satisfiability is decidable if \mathcal{D} -satisfiability is decidable.

D-satisfiability: satisfiability of finite conjunctions

$$P_1(x_1^{(1)},\ldots,x_{n_1}^{(1)}) \wedge \cdots \wedge P_k(x_1^{(k)},\ldots,x_{n_k}^{(k)})$$

interface between DL and concrete domain

Theorem [L_99]. $\mathcal{ALC}(\mathcal{D})$ -concept satisfiability is PSPACE-complete if \mathcal{D} -satisfiability is in PSPACE.

 \Longrightarrow Reasoning with $\mathcal{ALC}(\mathcal{D})$ is not harder than reasoning with \mathcal{ALC} .

U resden

12

$\mathcal{ALC}(\mathcal{D})$ with Numerical Concrete Domains

All concrete domains based on the rational numbers:

$=_q$	int	<, <u><</u> ,=,	+	*	\mathcal{D} -sat.	$\mathcal{ALC}(\mathcal{D})$ sat.
×	×	×	×	×	undecidable	undecidable
×		×	×	×	ExpTime-c.	in NEXPTIME
×	×	×	×		NP-c.	PSPACE-c.
×		×	×		PTIME	PSPACE-c.

Why Functionality?

Why restrict the concrete domain constructor to functional roles?

"A man that is older than all of his neighbors"

Alternative: admit operators

$$\exists U_1, \ldots, U_n.P$$
 and $\forall U_1, \ldots, U_n.P$ with U_i of the form $R_1 \cdots R_k g$.

Resulting logic: $\mathcal{ALCP}(\mathcal{D})$

Two Problems of $\mathcal{ALCP}(\mathcal{D})$ I

Expressive power of $\mathcal{ALCP}(\mathcal{D})$ not satisfactory:

"A man that is older than all of his neighbors"

Male $\sqcap \forall$ neighbor \circ age, age. <

"A man that has a neighbor who is a pensioner and younger than him."

Male \sqcap \exists neighbor. Pensioner \sqcap \exists neighbor \circ age, age. <

Possible solution: role hierarchies

Two Problems of $\mathcal{ALCP}(\mathcal{D})$ lb

Role hierarchy (RH): finite set of role inclusions $R \sqsubseteq S$

Interpretation ${\mathcal I}$ is a model of RH ${\mathcal H}$ if

$$R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$$
 for all $R \sqsubseteq S \in \mathcal{H}$.

Concept satisfiability w.r.t. role hierarchies:

Do C and \mathcal{H} have a common model?

"A man that has a neighbor who is a pensioner and younger than him."

Male $\sqcap \exists p$ -neighbor. Pensioner $\sqcap \exists p$ -neighbor \circ age, age. <

RH: {p-neighbor ☐ neighbor}

functional

Two Problems of $\mathcal{ALCP}(\mathcal{D})$ II

Theorem [L_02]. There exists a concrete domain \mathcal{D} such that \mathcal{D} -satisfiability is in PTIME and $\mathcal{ALCP}(\mathcal{D})$ -concept satisfiability is NEXPTIME-hard.

Proof by reduction of a NEXPTIME-complete variant of the Post Correspondence Problem (PCP).

Matching upper bound if \mathcal{D} -satisfiability is in NP [L_02].

NEXPTIME-hardness also arises with "natural" concrete domains:

- ullet $\Delta_{\mathcal{D}}$ contains the natural numbers
- there is a unary predicate $=_0$
- there is a binary predicate =
- there are ternary predicates "+" and "*"

⇒arithmetic concrete domains

U reso

Concrete Functionality

Do concrete features have to be functional?

"My telephone numbers are 0351/46339171 and 0160/98386681"

Just replacing concrete features by concrete roles is not convincing:

People have only one age, weight, size, etc.

General approach: allow number restrictions on concrete roles [HorrocksPan02]

$$- (\leq n F) \quad (\geq n F)$$
 F: concrete role

$$- (\leq n F_1, \ldots, F_k \cdot P) \qquad (\geq n F_1, \ldots, F_k \cdot P)$$

Decidability and complexity:

Resulting logic "behaves" like $\mathcal{ALC}(\mathcal{D})$ / $\mathcal{ALCP}(\mathcal{D})$.

Back to the roots!

Let's go back to the basic formalism:

- ullet $\mathcal{ALC}(\mathcal{D})$ with basic concrete domain constructor $P(u_1,\ldots,u_n)$
- only abstract and concrete features (both functional!) in concrete domain constructor
- no role hierachies

Next important step: extend our logic with TBoxes

U resd

TBoxes

TBoxes are used to capture background knowledge:

Father ☐ Human ☐ Male ☐ ∃child.Human Human ☐ ☐ Orphan ☐ Adam ☐ Eve

TBox: finite set of concept implications $C \sqsubseteq D$

Interpretation $\mathcal I$ is a model of TBox $\mathcal T$ if $C^\mathcal I\subseteq D^\mathcal I$ for all $C\sqsubseteq D\in \mathcal T$.

Concept satisfiability w.r.t. TBoxes:

Do C and \mathcal{T} have a common model?

Closely related to the universal modality:

$$C$$
 sat w.r.t. \mathcal{T} iff $C \wedge \bigwedge_{D \sqsubseteq E \in \mathcal{T}} \Box_u(D o E)$ sat

Reasoning with TBoxes

Theorem [BaaderHanschke92/L_01] $\mathcal{ALC}(\mathcal{D})$ -concept satisfiability w.r.t.

TBoxes is undecidable if \mathcal{D} satisfies the following:

- ullet $\Delta_{\mathcal{D}}$ contains the natural numbers
- there is a unary predicate $=_0$
- there are binary predicates = and +1

Proof by reduction of the unconstrained PCP.

There are (at least) three ways around this problem:

- 1. use acyclic TBoxes
- 2. disallow paths in concrete domain constructor
- 3. carefully choose the concrete domain

U resc

Acyclic TBoxes

A TBox \mathcal{T} is called acyclic if

- in each concept implication $C \sqsubseteq D$, C is a concept name
- it contains no cycles:

$$\{A_0 \sqsubseteq A_1 \sqcap C \ A_1 \sqsubseteq \exists R.A_2 \ A_2 \sqsubseteq A_0\}$$

Acyclic TBoxes can be unfolded:

Theorem $ACC(\mathcal{D})$ -concent satisfiability wiret acyclic TRoyes is decidable Female \sqcap \exists married-to.(Father \sqcap Human \sqcap Male \sqcap \neg Female \sqcap \exists child.Human) IT \mathcal{D} -satisfiability is decidable.

Acyclic TBoxes: Complexity

Acyclic TBoxes are usually believed to be "harmless" w.r.t. complexity:

 \mathcal{ALC} -concept satisfiability w.r.t. acyclic TBoxes is PSPACE complete.

But this is **not** true:

Theorem [L_01]. For every arithmetic concrete domain \mathcal{D} , $\mathcal{ALC}(\mathcal{D})$ -concept satisfiability w.r.t. acyclic TBoxes is NEXPTIME-hard.

Proof: reduction of a NEXPTIME-complete variant of the PCP.

Matching upper bound if \mathcal{D} -satisfiability is in NP [L_01].

Note: Although acyclic TBoxes don't really contribute to the expressive power, they yield succinctness

Path-freeness

A pragmatic approach for reasoning with full TBoxes:

disallow paths of length >1 in concrete domain constructor.

Approach has been taken in the RACER system.

Theorem [HaarslevMöller01/L__02]. Path-free $\mathcal{ALC}(\mathcal{D})$ -concept satisfiability w.r.t. general TBoxes is ExpTime-complete if \mathcal{D} -satisfiability is in ExpTime.

"A square has same width and height."

Square
$$\sqsubseteq = (width, height)$$

"Humans are born after their mothers"

$$\mathsf{Human} \sqsubseteq \mathsf{>}(\mathsf{bdate},(\mathsf{mother} \circ \mathsf{bdate}))$$

) U

24

Expressivity of Path-freeness

Path free concrete domains can be "simulated" by concept names:

- ullet let input concept C and $\mathsf{TBox}\ \mathcal{T}$ be given
- ullet replace each concept $P(g_1,\ldots,g_k)$ with a concept name $A_{P(g_1,\ldots,g_k)}$
- ullet call a set Φ of "relevant" concepts $P(g_1,\ldots,g_k)$ inconsistent if

$$igwedge_{P(g_1,...,g_k)\in\Phi} P(x_{g_1},\ldots,x_{g_k})$$
 is unsatisfiable

ullet for each inconsistent Φ , add the concept equation

$$oldsymbol{\perp} \doteq igcap_{P(g_1,...,g_k) \in \Phi} oldsymbol{A}_{P(g_1,...,g_k)}$$

⇒ In some sense, path-free concrete domains do not extend expressive power

o resden

Reasoning with Full TBoxes

What if we really need more expressive power?

Consider a "weak" concrete domain C:

- ullet $\Delta_{\mathsf{C}}=\mathbb{Q}$
- unary predicate $=_q$ for each $q \in \mathbb{Q}$
- binary comparison predicates <, \le , =, \ne , \ge , >

No arithmetics!

Theorem [L_01]. $\mathcal{ALC}(C)$ -concept satisfiability w.r.t. TBoxes is ExpTime-complete. Proof via automata-theoretic approach.

Can be (simultaneously) extended with

- qualifying number restricions (≈ graded modalities)
- inverse roles, transitive roles, and role hierarchies

and the result \mathbb{Q} - \mathcal{SHIQ} is still in ExpTime [L_02].

U res

26

Reasoning with Conceptual Database Models

Entity Relationship (ER) diagrams are predominant formalism for conceptual database modelling

Description Logics can be used for reasoning about them (e.g. consistency checking)

Numerical Attribute Dependencies

Company $\sqsubseteq \forall$ employs.Employee $\sqcap (\geq 1 \text{ employs})$

Employee $\sqsubseteq \forall \text{employs}^-.\text{Company} \sqcap (= 1 \text{ employs}^-)$

Manager

☐ Employee

Concrete Features as Keys

"Americans are uniquely identified by their social security number"

Add keybox, i.e., sets of expressions

$$u_1,\ldots,u_n$$
 keyfor C

- For example ssecnum keyfor American.
- ullet Closely related to nominals: $=_0(g)$ is nominal for keybox "g keyfor \top "
- Very useful in database applications

Theorem [Areces et al.02] $\mathcal{ALC}(\mathcal{D})$ -concept satisfiability w.r.t. keyboxes is undecidable for some concrete domains \mathcal{D} .

Concrete Features as Keys

"Americans are uniquely identified by their social security number"

Add keybox, i.e., sets of expressions

$$u_1,\ldots,u_n$$
 keyfor C

For example ssecnum keyfor American.

A keybox is called Boolean if only Boolean combinations of concept names occur inside key definitions.

Theorem [Areces et al.02] $\mathcal{ALC}(\mathcal{D})$ -concept satisfiability w.r.t. Boolean keyboxes is NExpTime-complete if \mathcal{D} -satisfiability is in NP.

Adding Aggregation

"An engine whose power is the sum of the powers of its individual cylinders."

Allow aggregation expressions inside the concrete domain constructor:

Other aggregation functions: min, max, count, average, etc.

Theorem [BaaderSattler98]. $\mathcal{ALC}(\mathcal{D}^{agg})$ -concept satisfiability is decidable for the aggregation functions min and max.

But: Most interesting cases are undecidable!

For example $ACC(\mathcal{D}^{agg})$ with min max sum

For example $\mathcal{ALC}(\mathcal{D}^{agg})$ with min, max, sum [BaaderSattler98].

Conclusion

Concrete domains

- allow to integrate "concrete qualities" into DLs
- useful in many application areas
- "typically Description Logic"

Not all concrete domains are numerical:

- **x** temporal concrete domains based on Allen's interval algebra
- **x** spatial concrete domains based on the RCC-8 relations

There is interesting interaction with other operators as well.

(nominals, inverse roles, etc.)