

Modern Data Analytics: A Case Study

Mapping and Mitigating Noise Levels in Leuven

Ngoc-Thien Nguyen (r0774196)
Wenting Jiang (r0824739)
Frida Trepca (r0730756)
Christian Daniel Sepulveda Arzuza (r0821283)
Rebecca Gösker (r0923036)

Overview

The City of Leuven wants to tackle the noise problem in the Naamsestraat neighborhood.

Aim: To find a balance between vibrant nightlife and ensuring residents can enjoy a peaceful night's sleep.

Methodology: mapping of night-time noise levels Via sound monitors and implementing behavioral interventions; promotion of noise reduction strategies.

Problem Statement

ANALYSIS

Which factors contribute to the noise level of Leuven?

ANALYSIS

How can we identify patterns, trends, and potential correlations with various factors, such as weather conditions

APPLICATION

How to design
transportation networks,
impose restrictions in
certain populated locations,
coordinate event
dates/locations,
construction of the new
properties/streets, etc.

Locations

Noise data

Weather data

Data Overview 2022

EXISTING DATA

EXTRA DATA

Meteorological

- Wind strength
- Wind direction
- Rain
- Green coverage

Noise events

Local events

- World Cup 2022
- Concerts
- Festivals

Nearby facilities

- Restaurants/ Cafes
- Bars
- Churches
- Bus stops
- Theaters

Noise level at 6 locations in Leuven

Shape of data XX

Distribution of noise data over month, day and hour

Distribution of Rain, Temperature, and Maximum Sound Level

Data Visualization

Data Preprocessing

- The weather data was combined with noise using relative distance
- Noise aggregated on hour-date basis
- Two locations with almost no data were removed

Modelling

Random Forest Regression Model

Model description

Random Forest Regression: a supervised learning algorithm and bagging technique that uses an ensemble learning method for regression in machine learning.

SHapley Additive exPlanations (SHAP): an explanation technique used to predict noise levels for a single location, based on the available features

Features taken into account:

- Location
- Time
- Noise Level
- Weather Factors
- Events

Model MSE: 49.32860170698673 R-squared: 0.34605321763918784

Model performance

SHAP value

Results

- The model provides a good prediction input considering all the data
- R-squared is fairly low
- Traffic and public transport surprisingly unimportant
- Most important features in the prediction:
 - Humidity, location, temperature, time
 - Higher level of humidity lead to higher noise levels
 - Higher levels of temperature lead to higher noise level

Noise Mapping App

App

The app displays a heatmap of max noise levels in the locations. It accepts user input and displays the heatmap according to that input.

App

A changing bar plot allows to visualize how the max noise levels change with the days.

The app has been deployed with AWS Elastic Beanstalk:

http://mydashapp-env.eba-eg g3ihi2.eu-north-1.elasticbean stalk.com/