A Practical Introduction to Data Science

Part 3 Introduction to Supervised Learning

Course Agenda

l.	Introduction to Data Science
II.	Business and Data Understanding
III.	Introduction to Supervised Learning
IV.	Advanced Supervised Learning
V.	Unsupervised Learning
VI.	Time Series Analysis
VII.	Deep Learning
VIII.	Machine Learning Operations

The ML Development Pipeline

EDA

Preprocessing

- Target and Sample Preprocessing
 - Target Definition
 - Sampling and Splitting
- Feature Preprocessing
 - Feature Cleaning
 - Feature Engineering
 - Feature Encoding
 - Feature Selection

Model Building

- Training a Baseline Model
- Training Challenger Models
 - Hyperparameter optimization
 - Cross-Validation

Evaluation

- Performance Evaluation
- Calibration Testing
- Explainability

Deployment & Monitoring

Target Definition

Challenges of Data Labelling:

- 1. Reliability
 - E.g. images, fraud
- 2. Cost and time of labeling
 - E.g. (medical) images
- 3. Measurability
 - E.g. customer satisfaction, fraud
- 4. Multiple Definitions or Proxies
 - Default or fraud definition
 - Performance Window trade-offs (number of cases, time delay, business need)
- 5. Class Imbalance
 - Undersampling or Oversampling
 - Different Proxy
 - Class weights
 - Model selection

Sampling and Splitting

- The goal is future inference (generalization)
- Choosing Train, Validation and Test Samples
 - Not too old, but not too small
 - Consider economic cycles, yearly seasonality etc.
 - Random split and out-of-time test
- Time Periods and Snapshots
- Observation Window
- Performance Window
- Data Leakage
 - Temporal leak
 - Grouped/redundant data
 - Preprocessing

Feature Cleaning

Missing Values

- Consider business meaning
- Removing columns or rows
- Filling Missing Values: zero, mean, mode, separate category
- Avoid imputation leakage

Outliers

- Remove or Replace
- Feature Engineering
- Choice of Algorithm

Feature Engineering and Encoding

Aggregation over time

- Time since last event
- Frequency (number of events)
- Total/average value during the period
- Time or frequency of change
- Stability, trend

Calculated variables

- Distance or Similarity
- Diversity
- Ratios instead of absolute values

Feature crosses

Numerical features:

- Binning and clipping
- Logarithmic transformation
- Min-Max Normalization
- Standard Scaling

Categorical features:

- Merging (categorical)
- One-hot encoding (dummy variables)
- Weight of evidence transformation
- Target encoding

Feature Selection

Too many features increase complexity and add noise

- 1. Initial feature selection:
 - Business meaning
 - Target leakage
 - Predictive power
 - Multicollinearity
 - Stability
- 2. Training-time feature selection (discussed in the following lecture)

The ML Development Pipeline

EDA

Preprocessing

- Target and Sample Preprocessing
 - Target Definition
 - Sampling and Splitting
- Feature Preprocessing
 - Feature Cleaning
 - Feature Engineering
 - Feature Encoding
 - Feature Selection

Model Building

- Training a Baseline Model
- Training Challenger Models
 - Hyperparameter optimization
 - Cross-Validation

Evaluation

- Performance Evaluation
- Calibration Testing
- Explainability

Deployment & Monitoring

Fundamental Models

Linear Regression

- Isaac Newton, 1700
- Continuous target variable
- Assumes linear relationship between input features (predictors) and the target variable
- Model training: estimate the coefficients (betas) to minimize the loss
- OLS minimizes the sum of the squared differences between observed and predicted values.

$$Y = \beta_0 + \sum_{i=1}^{p} \beta_i X_i + \epsilon_i = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Linear Regression

- Model coefficients (betas) are easy to interpret
- Simple model
- Cannot recognize complex patterns
- Sensitive to outliers
- Coefficient of determination (R²) explained variance
- Assumptions:
 - Linear relationship
 - No multicollinearity
 - Residuals:
 - Normality
 - No autocorrelation
 - Homoskedasticity

$$SST = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y}_i)^2$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SSR}{SST}$$

Logistic Regression

• Based on linear regression, adjusted for classification

• Binary Target: $Y \in \{0, 1\}$

• Model Output: $P(Y = 1 | X) \in (0, 1)$

• Linear equation: $Z = \beta_0 + \sum_{i=1}^p \beta_i X_i$

• Sigmoid transformation: $P = \frac{1}{1 + e^{-Z}}$

• Binary Output: $\hat{Y} = I(P > cutoff)$

Z is called log odds or logit

$$Z = logit(P) = \log\left(\frac{P}{1 - P}\right)$$

Logistic Regression

- Model training: estimate the coefficients (betas) to minimize the loss
- Logloss = $-\frac{1}{N}\sum_{i=1}^{N}(Y_i \ln P_i + (1 Y_i) \ln(1 P_i))$
- Linear model: The decision boundary is a hyperplane
- Model coefficients (betas) are easy to interpret
- $P(rain) = sigmoid(-1 + 2X_1 3X_2) = 0.8$
- Great benchmark and good for small data
- Less prone to overfitting
- Cannot recognize complex patterns

Decision Tree

- CART 1984
- Non-linear model
- Splitting Criteria:
 Gini Impurity, Entropy
- Tree depth, leaf size
- Easy to understand and interpret
- Handles both numerical and categorical data
- Less sensitive to outliers
- Bad extrapolation
- Prone to overfitting

k-Nearest Neighbors

- Instance-based learning
- No explicit training phase, makes predictions using the entire dataset.
- Choose a distance metric (Euclidean, Manhattan)
- Choose k (number of neighbors)
- Simple and intuitive, for both classification and regression
- Computationally expensive
- Sensitive to irrelevant features

Source: CS 221 - Reflex-based Models Cheatsheet

Naive Bayes Classifier

- Based on Bayes' Theorem
- Predicts the probability of a class given the input features
- Assumes conditional independence between predictor variables given the class
- Easy to implement and efficient on large datasets
- Used in text classification, spam filtering, sentiment analysis
- Limitation: independence assumption

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)}$$

$$P(X|C) \approx P(X_1|C) \cdot P(X_2|C) \cdot \dots \cdot P(X_n|C)$$

Support Vector Machines

- Linear classifier with the maximum margin hyperplane
- 2. Soft margin (cost: C)
- 3. Nonlinear kernel
- Effective in complex and high-dimensional data
- Computationally expensive

The ML Development Pipeline

EDA

Preprocessing

- Target and Sample Preprocessing
 - Target Definition
 - Sampling and Splitting
- Feature Preprocessing
 - Feature Cleaning
 - Feature Engineering
 - Feature Encoding
 - Feature Selection

Model Building

- Training a Baseline Model
- Training Challenger Models
 - Hyperparameter optimization
 - Cross-Validation

Evaluation

- Performance Evaluation
- Calibration Testing
- Explainability

Model Performance Evaluation

- Choose proper evaluation metrics
- Compare performance on train/validation/test samples
- A huge performance drop indicates overfitting
- Test sample should be out-of-time
- Still just a proxy for the future inference performance

Regression Evaluation

• MSE =
$$\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$
 penalizing large errors

• MAE =
$$\frac{1}{n}\sum_{i=1}^{n}|y_i - \hat{y}_i|$$
 simple average error

• MAPE =
$$\frac{1}{n}\sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{v_i} \right|$$
 percentage, useful for comparison

•
$$R^2 = 1 - \frac{SSE}{SST} = \frac{SSR}{SST}$$
 explained variance

- Adjusted R² penalizing more predictors, useful for comparison
- Evaluate overall performance, performance within business segments and over time (if possible)

• Binary Target: $Y \in \{0, 1\}$

• Model Output: $P(Y = 1 | X) \in (0, 1)$

• The estimated probabilities give a ranking of the test sample

• $\hat{y} = I(P > cutoff)$

Confusion matrix		Prediction	
		Negative	Positive
Observed Label	Negative	True Negatives	False Positives
	Positive	False Negatives	True Positives

•
$$Accuracy = \frac{Correctly\ Classified\ observations}{All\ observations}$$

• Which classification is better?

Accuracy = 98%		Prediction	
		Negative	Positive
Observed Label	Negative	1000	10
	Positive	10	0

A cours o	, – 05 69/	Prediction	
Accuracy = 95.6%		Negative	Positive
Observed Label	Negative	970	40
	Positive	5	5

• Recall (TPR) =
$$\frac{\text{True Positives}}{\text{Actual positives}}$$

• Precision =
$$\frac{\text{True Positives}}{\text{Predicted as positives}}$$

•
$$F_1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

	Recall = 50% Precision = 11%		Prediction	
			Negative	Positive
	Observed Label	Negative	960	40
		Positive	5	5

- Imbalanced data
- Different misclassification costs

- There is a trade-off between the two types of error. Which one is more important?
- Changing the cut-off influences these metrics but does not affect the ranking of the model!

ROC-AUC evaluates the ranking:

- Calculate and plot TPR vs FPR for every possible cut-off value
- AUC: area under the curve
- Not relying on the cut-off
- Good for comparison
- Random model: AUC ~ 0.5
- Perfect model: AUC = 1
- Use **PR-AUC** for imbalanced datasets (prioritizes positive class detection)

- 1. Optimize the ranking
 - minimize the loss function during training,
 - evaluate and compare models based on ROC and AUC (or similar)
- 2. Choose the cut-off value
 - Consider the misclassification costs
 - Interpret results with the confusion matrix and derived metrics
- 3. Evaluate overall performance, performance within business segments and over time (if possible)

Calibration for Classification

- Predicted probabilities should match the actual probabilities observed in the data
- Methods:
 - Platt scaling: fit a logistic regression model to the scores
 - Scaling the log odds:

$$\log \text{ odds} = \alpha + \log \text{ odds}$$

$$\log \text{ odds} = \frac{\log \text{ odds}}{T}$$

Calibration of business segments and over time

Calibration plots

Source: 1.16. Probability calibration — scikit-learn 1.6.1 documentation

Business Impact Estimation

Examples:

- Saved subscriptions
- Market growth
- Profit, e.g.

$$Profit = 500 * TP - 100 * FP$$

• Credit Risk Example:

$$EL = \sum (EAD * LGD * PD)$$

Cut-off choice:

- Metric based
- Profit based
- Resource/business based (percentiles)

Explainability

As a model of a complex system becomes more complete, it becomes less understandable. (Bonini's paradox)

- Model Coefficients
- Feature Importances
- SHAP values
- Model Confidence and Out-of-Distribution Data

The ML Development Pipeline

EDA

Preprocessing

- Target and Sample Preprocessing
 - Target Definition
 - Sampling and Splitting
- Feature Preprocessing
 - Feature Cleaning
 - Feature Engineering
 - Feature Encoding
 - Feature Selection

Model Building

- Training a Baseline Model
- Training Challenger Models
 - Hyperparameter optimization
 - Cross-Validation

Evaluation

- Performance Evaluation
- Calibration Testing
- Explainability

Thank you for your attention!

Your feedback would be much appreciated:

Any Questions?

