1

ASSIGNMENT-4

T.Naveena

Download all python codes from

https://github.com/ThurpuNaveena/Assignment-4/blob/main/Assignment-4.py

and latex-tikz codes from

https://github.com/ThurpuNaveena/Assignment-4/blob/main/main.tex

1 Question No 2.25

Find the discriminant of the quadratic equation $3x^2 - 2x + \frac{1}{3} = 0$ hence find the nature of its roots.

2 SOLUTION

Given $3x^2 - 2x + \frac{1}{3} = 0$ can be expressed as

$$\mathbf{x}^T \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -2 & -1 \end{pmatrix} \mathbf{x} + \frac{1}{3} = 0 \tag{2.0.1}$$

Compare given quadratic equation $3x^2 - 2x + \frac{1}{3} = 0$ with $ax^2 + bx + c = 0$, we get

$$a = 3, b = -2, c = \frac{1}{3}$$
 (2.0.2)

$$Discriminant(D) = b^2 - 4ac (2.0.3)$$

$$= (-2)^2 - 4(3)(\frac{1}{3}) \qquad (2.0.4)$$

$$=4-4$$
 (2.0.5)

$$= 0 \quad (:D = 0)$$
 (2.0.6)

Discriminant is zero and the nature of roots of equation $3x^2 - 2x + \frac{1}{3} = 0$. From the graph the quadratic equation will have intersect x-axis. If the discriminant is equal to zero,this means that the quadratic equation has two real,identical roots.

The roots are

$$\frac{-b}{2a}, \frac{-b}{2a} \tag{2.0.7}$$

$$\mathbf{x} = \frac{1}{3}, \frac{1}{3} \tag{2.0.8}$$

Fig. 2.1: Roots of $3x^2 - 2x + 1/3 = 0$