Choosing a Flipflop

R-S Clocked Latch:

used as storage element in narrow width clocked systems its use is not recommended! however, fundamental building block of other flipflop types

J-K Flipflop:

versatile building block can be used to implement D and T FFs usually requires least amount of logic to implement $f(\ln,Q,Q+)$ but has two inputs with increased wiring complexity

because of 1's catching, never use master/slave J-K FFs edge-triggered varieties exist

D Flipflop:

minimizes wires, much preferred in VLSI technologies simplest design technique best choice for storage registers

T Flipflops:

don't really exist, constructed from J-K FFs usually best choice for implementing counters

Preset and Clear inputs highly desirable!!

Characteristic Equations:

R-S:
$$Q+=S+\overline{R}Q$$

D:
$$Q+=D$$

J-K:
$$Q+=J\overline{Q}+\overline{K}Q$$

T:
$$Q+=T\overline{Q}+\overline{T}Q$$

Derived from the K-maps for
$$Q+=f(Inputs, Q)$$

Implementing One FF in Terms of Another

Activity

Characteristic Equations:

R-S:
$$Q+=S+\overline{R}Q$$

D:
$$Q+=D$$

J-K:
$$Q+=J\overline{Q}+\overline{K}Q$$

T:
$$Q+=T\overline{Q}+\overline{T}Q$$

Excitation Tables: What are the necessary inputs to cause a particular kind of change in state?

Q	Q+	R	S	J	K	T	D
0	0		-				-
0	1						
1	0						
1	1						

Design Procedure

Excitation Tables: What are the necessary inputs to cause a particular kind of change in state?

Q	Q+	R	S	J		Т	D
0	0	X 0	0	0	X X	0	0
0	1	0	1	1	Χ	1	1
1	0	1 1	0	Χ	1	1	0
1	1	0	X	X X	0	0	1

Implementing D FF with a J-K FF:

- 1) Start with K-map of Q+ = f(D, Q)
- 2) Create K-maps for J and K with same inputs (D, Q)
- 3) Fill in K-maps with appropriate values for J and K to cause the same state changes as in the original K-map

Design Procedure (Continued)

Implementing J-K FF with a D FF:

- 1) K-Map of Q+ = F(J, K, Q)
- 2,3) Revised K-map using D's excitation table its the same! that is why design procedure with D FF is simple!

Resulting equation is the combinational logic input to D to cause same behavior as J-K FF. Of course it is identical to the characteristic equation for a J-K FF.