Meeting Agenda (Week 3)

11th March 2019, 1 PM - 2 PM

Attendance:

Member	Attendance
Ben Li	Yes
Jiawei	Yes
Jireh	Yes
Jordan He	Yes
Jose	Yes
Link Geng	Yes
Minh Doan	Yes
Frederick Chew	Yes

Main objectives:

- 1. Discuss and review project scope with client
- 2. Development of timeframe
- 3. Present and proposed project budget
- 4. Delegation of

Critical decision made:

Project Outcome:

This project will develop a 360-degree camera system for web conferencing, allowing clients to focus on the appropriate parties based on sound localisation. The task will be done by combining several physical devices and potentially existing open source libraries.

Initial Project Timeline

Task	Description	Expected Completion
Initial components acquisition	Order the initial products such as raspberry-pi, microphone	Week 3
	array and webcam	
Obtaining funding	Receiving microgrant from	Week 4
	CECS and client	
Conceptual prototype	Develop a conceptual	Week 4
	prototype with technical	
	drawings for visualisation	
Methodology	Develop an initial	Week 4

	methodology for tackling the problem	
Direction of arrival (DOA) algorithm	Developing and testing DOA algorithm for sound localisation	Week 4
Multiple camera setup	Setting up multiple video inputs on the Raspberry Pi	Week 5
Video and sound synchronisation	Ensure the sound and video inputs are synchronised with one another.	Week 6
Video switching	Switching camera input based Week 6 on sound localisation	
Noise cancellation	Filtering out external noises and interferences from sound inputs	Week 7
Interface design	Design a unified interface for video output template from Raspberry Pi	Week 7
System optimisation	Optimise the data transmission between Raspberry Pi and computer to reduce overhead	Week 8
Prototype assembly	Assembling the final prototype and ensure the design is appropriate	Week 8
Prototype testing	Conduct testing of the 360o Week 10 web conferencing device	
Handover document	Compilation of handover documents and ensure a guide is create for future assembly	Week 11

Summary:

Client's requirements:

- 1. Powered by USB is preferable, if not then AC current or battery for portability.
- 2. The Raspberry Pi output the video in H264 video format.
- 3. The video quality should be 1080p, if not 720p is acceptable.
- 4. Ability to reduce noise from external sources to avoid sound feedback.
- 5. The device does not cost more than \$300 in total.
- 6. Plug and play with no extra software needed.
- 7. Combine multiple sources of videos and present multiple viewpoints at once.
- 8. The project should be open sourced.
- 9. It should be simple to build and operate.
- 10. Proper documentation to ensure it is replicable.
- 11. Source code should allow easy update.
- 12. The device should be easy to upgrade in the future.

Importance Notice:

- Client will be away from 6th of April until 6th of May, will still be available for video conference.
- This product could possibly be presented at an ASCILITE conference at the end of the year.

Project Risks:

- 1. Failure of ReSpeaker 4-Mic Array
- 2. Delay in deliveries of components
- 3. DOA algorithm is not supported on the ReSpeaker 4-Mic Array
- 4. Video stream exceeds the Raspberry Pi USB bandwidth
- 5. 4 cameras set-up is not sufficient for 360o conferencing
- 6. Processing of videos cause input lag
- 7. Images and sounds are not synchronised.
- 8. Physical failures of components

Funding Expectations:

- 1. CECS Funding \$100
- 2. Client Funding \$200

IP Consideration:

GNU GPL will be applied to the project to ensure it is open sourced

Team Member Responsibility:

The following group roles and tasks for the project were delegated based on each student's engineering major.

Sound (Direction of Arrival) - John, Jose

I/O (File Conversion) – Link, Hongjian, Ben

Image (Processing) – Link, Hongjian, Ben

Assembly (Modelling/manufacturing) - Minh, Jireh

Documentation - Minh. Jireh

Goals

Crash Goal

Camera switching based on sound input

Stretch Goals

Fully functioning 360o web conferencing camera (real time, high quality) Facial recognition
Image Stitching

Audit Goals

	Sound	Image	I/O	Assembly
Audit 1	Sound	Multiple video	Analysis of I/O	Interfacing
	localisation	inputs	standards	microphone array
	algorithm	_		with raspberry pi
Audit 2	Input clarity	Video switching	Unified	Combining multiple
	Synchronisation	based on sound	standards	cameras with sound
	with video input	inputs		system
Audit 3	Noise	Image stitching	Optimisation of	Produce prototype
	cancellation	(Interface	data	housing
		design)	transmissions	

Task delegation:

Task	Delegation	Due Date	Comment
License File	Jordan	Friday, 15 th Mar	
Contingencies	Minh, Jordan, Link, Ben, Jose, John	Friday, 15 th Mar	
WBS and Timeline	Minh, Jordan	Friday, 15 th Mar	
Concept Design/Methodology	Link, Ben	Friday, 15 th Mar	
Design Drawing	Jireh, Jose, John	Friday, 15 th Mar	
Concept of Operations	Minh, Link, Ben	Friday, 15 th Mar	