Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions

Congra	atulations! You passed! Next Ite	em
~	1/1 points	
	notation would you use to denote the 3rd layer's activations when the input is a example from the 8th minibatch?	
	$a^{[8]\{3\}(7)}$	
	$a^{[3]\{7\}(8)}$	
	$a^{[8]\{7\}(3)}$	
0	$a^{[3]\{8\}(7)}$	
Corr	ect	
	1/1	ı
	points	
2. Which	of these statements about mini-batch gradient descent do you agree with?	
	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.	
	You should implement mini-batch gradient descent without an explicit for-	

loop over different mini-batches, so that the algorithm processes all mini-

One iteration of mini-batch gradient descent (computing on a single mini-

batch) is faster than one iteration of batch gradient descent.

batches at the same time (vectorization).

Correct

Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions

1/1

	points			
3. Why is the best mini-batch size usually not 1 and not m, but instead something inbetween?				
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.			
Un-se	Un-selected is correct			
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.			
Un-selected is correct				
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.			
Correct				
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.			
Correct				
~	1 / 1 points			

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions

Which of the following do you agree with?

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
 If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

1/1 points

5.

Suppose the temperature in Casablanca over the first three days of January are the

Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $\theta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$igcup v_2=7.5$$
 , $v_2^{corrected}=7.5$

$$v_2=7.5$$
, $v_2^{corrected}=10$

Correct

$$igcup v_2=10$$
, $v_2^{corrected}=10$

$$v_2=10$$
, $v_2^{corrected}=7.5$

1/1 points

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha = 0.95^t lpha_0$$

$$\alpha = \frac{1}{1+2*t} \alpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$\bigcap \quad \alpha = e^t \alpha_0$$

Correct

7.

Optimization also print points tially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions

1/1 points

3. Santalanda

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

1/1 points

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function

	Try tuning the learning rate $lpha$
Corre	ect
	Try using Adam
Corr	ect
	Try initializing all the weights to zero
Un-s	elected is correct
	Try mini-batch gradient descent
Corr	ect
	Try better random initialization for the weights
Corr	ect
~	1 / 1 points
10.	
Which	of the following statements about Adam is False?
0	Adam should be used with batch gradient computations, not with minibatches.
Corr	ест
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=10^{-8}$)