

Hardware Triggered Scanning: Introduction

Philip Taylor, Emma Arandjelovic Observatory Sciences Limited

Course Aims

- 1. Get to know the functionality provided by the hardware triggered scanning stack
- 2. Understand the architecture, and acquire basic knowledge of all the components
- 3. Get hands-on experience of setting up scans
- 4. Learn how to debug common problems!

Course Content

- 1. Introduction and demo
- 2. Overview of the hardware
- 3. Low level control and data acq. concepts
- 4. Scan configuration
- 5. Experiment control and data processing
- 6. Practical exercises

Grid Scanning Overview

- Move sample in X and Y to scan it through the beam
- Rewind at the end of each row or reverse direction ('alternate/snake' scan)

Data acquisition can be done using:

- 1. Software step scan
- 2. Hardware step scan
- 3. Continuous scan

Continuous scans are much faster! But also complex...

Framework Motivation

- Growing need for fast, continuous scanning
- Complex trajectories not just grids!

- Need for on-the-fly visualization of data
- Desire for a generic solution

Motion trajectory control

Motion trajectory control

Data capture

Motion trajectory control

Flexible triggering, and fast position capture

Data capture

Motion trajectory control

Flexible triggering, and fast position capture

Data capture

Software Components

Data Analysis WorkbeNch
- Analysis and visualization

Generic Data Acquisition - Experiment setup and supervision

Malcolm - Scan configuration

Experimental Physics & Industrial Control System
- Low level control of hardware

System Architecture Control Flow

System Architecture Data Flow

Test Rig

Test Rig

- Beamline in a box!
 - Light illuminated 'sample'
 - Two stepper motors (θ and X)
 - DT Turbo Clipper controller
 - Allied Vision Mako camera
 - PandA electronics
 - PC with full software stack for testing and training

Test Rig

AutoRestart Toggle Show IOC Output

prieServ - \$149P-6A-IOC-01

proceery Control - SLASP-EA-IOC-01

IDTOR:

Position

Direction

Mare 1,000 STOP

Device - MOTORS

MOTORS Top

Motor - 8L47P-MO-MAP-03/STAGEX - 0 x

Ready

FE Limit

Missed

Use

Links Status Exit

ion not

Reverse Forward

Roverso Forward

Sync VAL = RBV

Variable | Use Encoder

Pos SelUse

20.000 mm

Tweak Slep 1.000 mm

Demo Application

- Grid scan in θ and X
- 'Snake' style

Camera View

- Camera configured to capture a thin slice each image is 1936 x 20 array
- Images used to reconstruct the sample

Stage 1: Setup scan

Open DET panel from the Test Rig panel and select MJPG tab

Stage 2: Start scan

- Hit 'Queue scan'
- Motors move to initial positions
- Scan starts
- Images are acquired
- Watch the data acq. in GDA

Stage 3: Check the data

To improve the image:

- Higher resolution (AKA more images)
 - Increase stagea points → 180
 - Increase stagex points → 40
- Process the image
- If you see "jaggy edges" on the sinogram, try turning off alternating

Stage 4: Check the data

10th October 2018

Stage 5: Add processing

/dls_sw/htss/software/gda_var/processingTemplates/mean_integrate.nxs

Stage 6: Check the data

Stage 7: visualhulls

App Name must be **exactly** "visualhulls" Config File: \$HOME/vh.json

Stage 7: visualhulls

- Right click on the visualhulls .nxs in Mapped Data
- Transfer > DataVis
- 3. Check the visualhulls.nxs file just created in *Data Files*
- Select
 /processed/result and
 Plot Type "Volume" in
 Datasets

Stage 8: Check the data

Stage 9: Improve visualhulls

```
vh.json
 Open -
                            Save
                                           ×
1 {
2
           "step": 10,
3
           "start": 400,
           "stop": 1390,
5
           "threshold": 230.
           "cor": 0.8
7 }
  Tab Width: 8 -
                      Ln 1, Col 1
                                         INS
```


height/2 = cor

