### TD – Logique Séquentielle

### L1 S2

### Partie 1: Utilisation des bascules

#### **Bascule RS**

1) La table de vérité de la bascule RS asynchrone est donnée par :



Compléter les chronogrammes suivants.





2) Donner la table de vérité de la bascule RS synchrone. Soit le circuit de la figure cidessous. On suppose qu'initialement Q=0. Tracer la forme d'onde de la sortie Q.



#### **Bascule JK**

3) Bascule JK synchrone

On donne le schéma suivant, avec initialement, Q1 = Q2 = 0. Les entrées K1 et K2 sont fixées à 1.



- a) Donner la table de vérité de la bascule JK et calculer les expressions de J1 et de J2.
- b) Remplir le tableau suivant :

| N° | J1 | K1 | J2 | K2 | Q1 | Q2 |
|----|----|----|----|----|----|----|
| 0  |    | 1  |    | 1  | 0  | 0  |
| 1  |    | 1  |    | 1  |    |    |
| 2  |    | 1  |    | 1  |    |    |
| 3  |    | 1  |    | 1  |    |    |
| 4  |    | 1  |    | 1  |    |    |
| 5  |    | 1  |    | 1  |    |    |

- c) Établir le chronogramme sur cinq périodes d'horloge de ce système.
- 4) Bascule JK. Compléter sur la feuille le chronogramme du circuit suivant. Q est initialement à 1.  $\,$  RAU



5) Compléter le chronogramme du circuit suivant. Q est initialement à 0.



6) Représenter l'allure de Q2 et donner sa fréquence. On supposera Q1 = Q2 = 0 initialement. On prendra un retard  $\tau$ .



### **Bascule D**

7) Représenter le signal de sortie Y en fonction du signal d'entrée D et de l'horloge H. On prendra un retard  $\tau$ .



## Diviseurs de fréquence

8) Décrire le fonctionnement des montages suivants et représenter leurs chronogrammes.



### Partie 2: Compteurs

#### **Compteur synchrone**

1) On considère le système suivant :



Toutes les bascules JK sont pilotées par la même horloge H (non représentée ici)

- a) rappeler la table de fonctionnement de la bascule JK
- b) les sorties Q1, Q2 et Q3 sont initialisées à l'état bas.
- tracer le chronogramme des sorties Q1, Q2 et Q3 (il sera tenu compte des temps de propagation).
  - quelle est la longueur N du cycle [Q1, Q2, Q3] (que l'on appellera cycle principal) ?
- c) tracer les chronogrammes qui correspondent à toutes les initialisations possibles de (Q1, Q2, Q3) qui ne correspondent pas à un des états du cycle principal (il y a trois possibilités).
- d) compléter le tableau suivant, en indiquant le cycle principal et les cycles secondaires, dont on indiquera la longueur.

| Q1 | Q2 Q3 | 00 | 01 | 11 | 10 |
|----|-------|----|----|----|----|
| 0  |       |    |    |    |    |
| 1  |       |    |    |    |    |

#### **Compteur asynchrone**

2) On considère le montage suivant. Les sorties sont initialement à l'état bas. Présenter le chronogramme des sorties  $Q_2$ ,  $Q_1$  et  $Q_0$ .



#### Synthèse de compteur

3) Effectuer la synthèse d'un compteur binaire modulo 6 en bascules D.

# Partie 3: Registres

#### Registre à décalage

Donner la table de vérité de la bascule D. On considère le montage (a).



L'horloge H est sur front montant. SR signifie entrée série droite et SL entrée série gauche. Que réalise ce montage ?

On considère le montage (b). Que réalise ce montage?



On combine les deux fonctions précédentes selon le schéma (c) ci-dessous. Les opérateurs M sont des multiplexeurs. S0 est une commande.



Voici le schéma des multiplexeurs. Expliquer leur fonctionnement en fonction de S0.

Quelle est la fonction réalisée par le montage (c) ?

