DHANAMANJURI UNIVERSITY

Examination-2024 (December)

M.Sc.1 st Semester

Name of Programme : M.Sc. Mathematics

Paper Type : Theory
Paper Code : MAT-504

Paper Title : Complex Analysis-I

Full Marks: 80

Pass Marks: 32 Duration: 3 Hours

The figures in the margin indicate full marks for the questions.

UNIT-1

Answer any three questions:

 $10 \times 3 = 30$

1

- 1. a) Define continuity of a complex function at a plane.
 - b) Let $f(z) = \begin{cases} \frac{1}{z}, & z \neq 0, \\ \infty, & z = 0, \end{cases}$. Prove that f(z) is continuous in the extended $0, & z = \infty$ complex plane.

2. Let f(z) be defined in neighborhood of z = a + ib; u_x, u_y, v_x, v_y are continuous at (a,b) and satisfy $u_x = v_y, u_y = -v_x$. Then prove that f'(x) exists at z = a + ib.

- 3. Let u(x,y) be a function that is harmonic in a simple connected domain Ω and let C: |S| = R be any circle contained in Ω . Then prove that u(x,y) has integral representation $u(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 r^2}{R^2 2Rr\cos(t \theta) + r^2} u(Re^{it}) dt, 0 < r < R.$ 10
- 4. Let f(z) be analytic in a domain Ω and let y be a simple closed contour in Ω , taken in positive sense. Then for all z interior to y prove that $f'(z) = \frac{1}{2\pi i} \int_y \frac{f(s)}{(s-z)^2} ds$.
- 5. a) If a function is continuous on a domain D and $\int_y f(z)dz = 0$ for every closed contour y in D, then prove that f(z) is analytic throughout D.
 - b) Suppose f(z) is analytic in a domain Ω and $C=\{z:|z-a|=R\}$ contained in Ω . Then prove that $|f^{(n)}(a)|\leq \frac{n!M_R}{R^n},=0,1,2,...$ where $M_R=max_{z\in C}|f(z)|.$
 - c) State and prove Liouville's Theorem.

UNIT-II

Answer any three questions:

 $10 \times 3 = 30$

6. a) Suppose that a function f is analytic in the angular region $R_1 < |z-a| < R_2$. Let C denote any positively oriented circle around a and lying in the domain. Then f(z) can be expanded about any point in the annular domain

$$R_1 < |z-a| < R_2 \text{ as } f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-a_n)^n} \text{ where }$$

$$a_n = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(s)}{(s-a)^{n+1}} ds, n = 0, 1, 2, \dots$$

and
$$b_n = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(s)}{(s-a)^{-n+1}} ds, n = 1, 2, ...$$
 6

- b) Obtain the Laurent series expansion of $f(z) = \frac{z}{z^2 4z + 3}$.
- 7. Define the following with an example:

10

i) Singular Point

- ii)Isolated Singularity
- iii) Non-isolated Singularity
- iv) Removable singularity

- v) Pole
- 8. Find the singularities, their types and hence the corresponding Residues of the 10 following functions:

i)
$$\frac{z^2+16}{(z-1)^2(z+3)}$$
 ii) $\frac{\pi \cot \pi z}{z^2}$.

- 9. Let f(z) be analytic in |z| < 1 with a zero of order n at the origin. Suppose that $|f(z)| \le 1$ for all z in $|z| \le 1$. Then $|f(z)| \le |z|^n$ for |z| < 1 and $|f^{(n)}(0)| \le n!$. The equality holds if $f(z) = cz^n$, |c| = 1.
- 10. State and prove Taylor Series Theorem for a Complex Function.

10

UNIT-III

Answer any three questions:

 $10 \times 2 = 20$

- 11. State and prove the necessary condition for conformality of a transformation. 10
- 12. Find all the bilinear transformations of the half plane Im $z \ge 0$ into the circle $|w| \le 1$.
- 13. Show that the inversion map $w = \frac{1}{z}$ transforms circles and lines into circles and lines.
- 14. Find the fixed points and the normal form of the bilinear transformation $w = \frac{(2+i)z-2}{2-i}$. And classify their nature.
