Generating continuous random variables

Math 276 Actuarial Models

Spring 2008 semester

EA Valdez University of Connecticut - Storrs Lecture Weeks 4-5

Generating continuous random variables

FA Valdez

The inverse transform

Some examples Simulating exponentials in

Gamma distribution

Simulating gamma in R Poisson distribution

The rejection method

Simulating half-normal in R

Generating Normal

random variables Box-Muller transformations

- continued

Illustrating Box-Muller in R The polar method

Illustrating polar method in

Generating a Poisson

Introduction

Generating the first T time units

Simulating a Poisson process in R

Alternative approach

Nonhomogeneous Poisson process

page 1

• Proposition: Let $U \sim U(0,1)$. For any continuous CDF F, the random variable X defined by

$$X = F^{-1}(U)$$

has distribution function F.

- Proof: in class.
- So long as we can derive the explicit form for F^{-1} , we can use this result to generate from a continuous distribution with CDF F.

Step 1: generate a random number *U*.

Step 2: set $X = F^{-1}(U)$ and you are done.

Some examples Simulating exponentials in

Gamma distribution Simulating gamma in R Poisson distribution

The rejection method Simulating half-normal in R

Generating Normal random variables

Box-Muller transformations - continued Illustrating Box-Muller in R

The polar method Illustrating polar method in

Generating a Poisson

Introduction Generating the first T time units Simulating a Poisson

process in R Alternative approach

$$F(x) = x^n, 0 < x < 1.$$

We can generate from this distribution by setting $X = U^{1/n}$ after generating U.

2 Exponential Suppose X comes from an $Exp(\lambda)$ with PDF

$$f(x) = \lambda e^{-\lambda x}, x > 0.$$

We can generate from this distribution by setting $X = -\frac{1}{3} \log U$ where *U* is the generated random number.

Weibull A random variable X is said to have a Weibull(α , β) distribution if its CDF has the form

$$F(x) = 1 - \exp(-\alpha x^{\beta}), \quad x > 0.$$

Describe a method to generate from this distribution.

Generating continuous random variables

FA Valdez

The inverse transform

Some examples

Simulating exponentials in Gamma distribution

Simulating gamma in R Poisson distribution

The rejection method Simulating half-normal in R

Generating Normal random variables

Box-Muller transformations - continued

Illustrating Box-Muller in R The polar method

Illustrating polar method in

Generating a Poisson

Introduction

Generating the first T time units

Simulating a Poisson process in R

Alternative approach

Simulating exponentials in R
The following executes commands in R to simulate from exponential with $\lambda = 5$.

```
> urandom <- runif(5000)
> lambda <- 5
> x.exp <- -log(urandom)/lambda
> x.exp[1:20]
 [1] 0.44388841 0.03379772 0.09910273 0.15201846 0.03336014 0.01021211
 [7] 0.22211658 0.14559882 0.49368172 0.18587106 0.01590227 0.07396419
[13] 0.19668067 0.38644089 0.05817653 0.16742193 0.10366767 0.06664743
[19] 0.21755809 0.29353129
> summary(x.exp)
     Min. 1st Qu.
                       Median
                                   Mean
                                          3rd On.
                                                       Max.
3.168e-05 5.675e-02 1.321e-01 1.975e-01 2.692e-01 1.479e+00
> hist(x.exp,br=25,xlab="",ylab="",main="5,000 simulations from Exponential")
```

5,000 simulations from Exponential

Generating continuous random variables

FA Valdez

The inverse transform algorithm

Some examples Simulating exponentials in

Gamma distribution

Simulating gamma in R Poisson distribution

The rejection method

Simulating half-normal in R Generating Normal

random variables

Box-Muller transformations

- continued Illustrating Box-Muller in R

The polar method Illustrating polar method in

Generating a Poisson

Introduction

Generating the first T time units

Simulating a Poisson process in R

Alternative approach

The inverse transform Some examples

Simulating exponentials in

Gamma distribution Simulating gamma in R

Poisson distribution The rejection method

Simulating half-normal in R Generating Normal

random variables Box-Muller transformations

- continued Illustrating Box-Muller in R

The polar method Illustrating polar method in

Generating a Poisson

Introduction

Generating the first T time units

Simulating a Poisson process in R

Alternative approach

Nonhomogeneous Poisson process

- For a Gamma (n, λ) random variable, note that because we cannot write an explicit form for the expression of the F^{-1} , it is diffcult to directly apply inverse transform method.
- However, recall that the sum of independent Exponentials leads us to a Gamma distribution.
- We can generate from a Gamma distribution by generating n random numbers U_1, U_2, \dots, U_n and then setting

$$X = -\frac{1}{\lambda} \log U_1 - \dots - \frac{1}{\lambda} \log U_n$$
$$= -\frac{1}{\lambda} \log(U_1 \dots U_n).$$

This works provided n is a positive integer.

> urandom1 <- runif(5000)

Simulating gamma in R
The following executes commands in R to simulate from gamma with n = 5 and $\lambda = 5$.

```
> urandom2 <- runif(5000)
> urandom3 <- runif(5000)
> urandom4 <- runif(5000)
> urandom5 <- runif(5000)
> u.prod <- urandom1*urandom2*urandom3*urandom4*urandom5
> lambda <-5
> x.gamma <- -log(u.prod)/lambda
> summary(x.gamma)
  Min. 1st Qu. Median Mean 3rd Qu.
                                          Max.
0.1140 0.6689 0.9277 0.9998 1.2490 3.9810
> hist(x.gamma,br=25,xlab="",ylab="",main="5,000 simulations from Gamma")
```

5.000 simulations from Gamma

Generating continuous random variables

FA Valdez

The inverse transform

Some examples Simulating exponentials in

Gamma distribution

Simulating gamma in R

Poisson distribution

The rejection method Simulating half-normal in R

Generating Normal

random variables Box-Muller transformations

- continued Illustrating Box-Muller in R

The polar method Illustrating polar method in

Generating a Poisson

Introduction

Generating the first T time units

Simulating a Poisson process in R

Alternative approach

Generating a Poisson random variable

- Exploit the property of a Poisson process.
- Recall that for a Poisson process with rate λ , the times between successive events are independent exponentials with rate λ , and the number of events by time 1, N(1), is Poisson with mean λ .
- Thus, to generate from a Poisson with mean λ , we can
 - generate n successive interarrival times which are exponentials, X_1, X_2, \ldots, X_n .
 - determine the number of events by time 1 using

$$N(1) = \max\left(n: \sum_{i=1}^n X_i \le 1\right).$$

Generating continuous random variables

EA Valdez

The inverse transform algorithm

Some examples Simulating exponentials in

Gamma distribution Simulating gamma in R Poisson distribution

The rejection method

Simulating half-normal in R

Generating Normal random variables

Box-Muller transformations

- continued Illustrating Box-Muller in R

The polar method
Illustrating polar method in

Generating a Poisson process

Introduction

Generating the first T time units

Simulating a Poisson process in R

Alternative approach

continued

• Equivalently, we generate U_1, \ldots, U_n, \ldots and set

$$N = \max \left(n : \sum_{i=1}^{n} -\frac{1}{\lambda} \log U_{i} \le 1 \right)$$

$$= \max \left(n : \sum_{i=1}^{n} \frac{1}{\lambda} \log U_{i} \ge -\lambda \right)$$

$$= \max(n : \log(U_{1} \cdots U_{n}) \ge -\lambda)$$

$$= \max(n : U_{1} \cdots U_{n} \ge e^{-\lambda})$$

This is also equivalent to setting

$$N = \min(n: U_1 \cdots U_n < e^{-\lambda}) - 1.$$

Generating continuous random variables

FA Valdez

The inverse transform

Some examples

Simulating exponentials in

Gamma distribution Simulating gamma in R

Poisson distribution

The rejection method Simulating half-normal in R

Generating Normal random variables

Box-Muller transformations - continued

Illustrating Box-Muller in R

The polar method Illustrating polar method in

Generating a Poisson

Introduction

Generating the first T time units

Simulating a Poisson

process in R Alternative approach

The inverse transform algorithm

Some examples

Simulating exponentials in R

Gamma distribution
Simulating gamma in R

The rejection method

Simulating half-normal in R

Generating Normal random variables

andom variables

Box-Muller transformations

- continued

The polar method

Illustrating polar method in

Generating a Poisson process

Introduction

Generating the first T time units

Simulating a Poisson

process in R

Alternative approach

Nonhomogeneous Poisson process

- Suppose we wish to generate X from a distribution with PDF f(x).
- Assume that we are able to generate Y from a distribution with PDF g(y) and that there is a constant c such that

$$\frac{f(y)}{g(y)} \le c$$
, for all y .

- According to the rejection method, we can generate X using the following steps:
- Step 1: generate Y from distribution with density g.

Step 2: generate a random number *U*.

Step 3: if $U \leq \frac{f(Y)}{cg(Y)}$, set X = Y.

Step 4: else, return to step 1.

The inverse transform algorithm

Some examples Simulating exponentials in

Gamma distribution

Simulating gamma in R

The second second second

Simulating half-normal in R

Oilidiating Hail-Hoffila III I

Generating Normal

random variables
Box-Muller transformations

Box-Muller transformation: - continued

Illustrating Box-Muller in R
The polar method

Illustrating polar method in

Generating a Poisson

process

Introduction

Generating the first T time

units Simulating a Poisson

process in R

Alternative approach

Nonhomogeneous Poisson process

Theorem:

- The random variable X generated by the rejection method has density f.
- The number of iterations required for the rejection algorithm has a geometric distribution with mean c.

Proof: to be discussed in class.

Generating continuous random variables

EA Valdez

The inverse transform algorithm

Some examples

Simulating exponentials in R

Simulating gamma in R Poisson distribution

The rejection method

Simulating half-normal in R
Generating Normal

random variables Box-Muller transformations

Box-Muller transformation - continued

Illustrating Box-Muller in R The polar method Illustrating polar method in

Generating a Poisson process

Introduction
Generating the first T time

units Simulating a Poisson

process in R

Alternative approach

Nonhomogeneous Poisson process

Example 5d: Use the rejection method to generate from

$$f(x) = 20x(1-x)^3, \ 0 < x < 1.$$

 Example 5e: Use the rejection method to generate from a Gamma(3/2, 1) density with

$$f(x) = Kx^{1/2}e^{-x}, x > 0,$$

where
$$K = 1/\Gamma(3/2) = 2/\sqrt{\pi}$$
.

- Example 5f: Suggest a rejection method for generating from a standard Normal random variable Z ~ N(0, 1).
- Example 5g: Suggest a rejection method for generating from a truncated Gamma(2,1), conditional on its value exceeding 5.
- These examples to be discussed in details in class.

Simulating half-normal with the rejection method in R

- The following is a routine in R to simulate from the absolute value of a standard Normal random variable, using the rejection method.
- Function is called simhalfnorm.R.

```
# function to generate from a half-Normal distribution
# i.e. absolute value of a standard Normal
simhalfnorm <- function(n.gen) {
    sim.vector <- rep(0,n.gen)
# to start, generate 2 independent exponentials with rate 1
    for(i in 1:n.gen) {
        urandom <- runif(2); y <- -log(urandom)
        while(y[2] < (y[1]-1)^2/2) {
        urandom <- runif(2); y <- -log(urandom)
    }
    sim.vector[i] <- y[1]
}
# output
sim.vector</pre>
```

Generating continuous random variables

EA Valdez

The inverse transform algorithm

Some examples Simulating exponentials in

R Gamma distribution

Simulating gamma in R Poisson distribution

The rejection method

Simulating half-normal in R

Generating Normal

Box-Muller transformations - continued

Illustrating Box-Muller in R The polar method

Illustrating polar method in R

Generating a Poisson process

Introduction

Generating the first T time units

Simulating a Poisson process in R

Alternative approach

Executing the simulation

```
> source("C:\\...\\Math276-Spring2008\\Rcodes-2008\\Week4\\simhalfnorm.R")
> out1 <- simhalfnorm(1000)
> out1[1:20]
 [11 0.30606099 1.03767270 0.95139082 1.89421610 0.41375272 1.09521146
 [7] 0.98360575 0.60245821 0.47552683 0.60963746 0.84500891 1.17122770
[13] 1.39765356 0.80675612 1.00840132 1.17619377 0.40388706 0.33065198
[19] 0.01615143 0.94438367
> summary(out1)
     Min.
          1st Ou.
                       Median
                                   Mean
                                          3rd Ou.
                                                       May
0.0008065 0.3058000 0.6472000 0.7694000 1.0780000 3.2830000
> sd(out1)
[11 0.5799377
> hist(out1,br=25,xlab="",ylab="",main="1,000 simulations from half-normal")
```

1,000 simulations from half-normal

Generating continuous random variables

EA Valdez

The inverse transform algorithm

Some examples Simulating exponentials in

R Gamma distribution

Simulating gamma in R

Poisson distribution

The rejection method Simulating half-normal in R

Generating Normal

random variables

Box-Muller transformations

- continued

Illustrating Box-Muller in R
The polar method

Illustrating polar method in R

Generating a Poisson process

Introduction

Generating the first T time units

Simulating a Poisson

process in R

Alternative approach

The inverse transform algorithm

Some examples Simulating exponentials in

Gamma distribution
Simulating gamma in R

The rejection method
Simulating half-normal in R

Generating Normal

random variables

Box-Muller transformations

Illustrating Box-Muller in R

Illustrating polar method in R

Generating a Poisson process

Introduction
Generating the first T time

units Simulating a Poisson

process in R

Alternative approach

Nonhomogeneous Poisson process

 Suppose X and Y are independent standard Normal random variables with R and θ their corresponding polar coordinates:

$$R^2 = X^2 + Y^2$$

 $\tan \theta = \frac{Y}{X}$

• It can be shown that R^2 and Θ has joint density

$$f(d, \theta) = \frac{1}{2} \frac{1}{2\pi}, 0 < d < \infty, 0 < \theta < 2\pi.$$

- R^2 and Θ are independent with the following marginals:
 - R² is exponential with mean 2, and
 - Θ is Uniform over $(0, 2\pi)$.

- continued

• The idea then is to first generate their polar coordinates and then transform back to rectangular coordinates.

• This can be done with the following steps:

Step 1: generate two random numbers U_1 and U_2 .

Step 2: compute $R^2 = -2 \log U_1$ and $\theta = 2\pi U_2$.

Step 3: then set

$$X = R \cos \Theta = \sqrt{-2 \log U_1} \cos(2\pi U_2)$$

$$Y = R \sin \Theta = \sqrt{-2 \log U_1} \sin(2\pi U_2)$$

These are known as Box-Muller transformations.

Generating continuous random variables

EA Valdez

The inverse transform algorithm

Some examples

Simulating exponentials in

Gamma distribution

Simulating gamma in R Poisson distribution

The rejection method

Simulating half-normal in R
Generating Normal

random variables

Box-Muller transformations

Illustrating Box-Muller in R The polar method Illustrating polar method in

Generating a Poisson

Generating a Poisson process

Introduction

Generating the first T time units

Simulating a Poisson

process in R

Alternative approach

Simulating standard normal using Box-Muller in R

- The following is a routine in R to simulate from standard normal using the Box-Muller transformations.
- Function is called simpormbm.R.
- # function to generate standard Normal using the Box-Muller transformations

```
simnormbm <- function(n.gen) {
  urandom1 <- runif(n.gen)
  urandom2 <- runif(n.gen)
  Rsq <- -2*log(urandom1)
  theta <- 2*p1*urandom2
  x <- sqrt(Rsq)*cos(theta)
  y <- sqrt(Rsq)*sin(theta)
  y <- sqrt (xyq)*sin(theta)
  y <- (x+yy)/sqrt(2)
  # outbput
  z
  i</pre>
```

Generating continuous random variables

EA Valdez

The inverse transform algorithm

Some examples Simulating exponentials in

Gamma distribution

Simulating gamma in R

The rejection method

Simulating half-normal in R

Generating Normal random variables

Box-Muller transformations

Illustrating Box-Muller in R

The polar method Illustrating polar method in

Generating a Poisson process

Introduction

Generating the first T time units

> Simulating a Poisson process in R

Alternative approach

Executing the simulation

> curve(dnorm(x),from=-4,to=4,col="blue",add=TRUE)

```
> source("C:\\...\\Math276-Spring2008\\Rcodes-2008\\Week4\\simnormbm.R")
> out1 <- simnormbm(2000)
> out1[1:20]
[1] -0.56867837 2.20613520 -0.46835432 -0.55154500 -2.17445397 2.33841314
[71 1.12578412 0.36733281 -1.24346577 -0.41904992 -0.17311589 -0.95007900
[13] -0.04571634 2.75877598 -0.86521717 0.88587815 -0.92575967 -1.70796891
[19] -0.50454892 -1.11563401
> summary(out1)
     Min.
             1st Ou.
                         Median
                                      Mean
                                              3rd Ou.
                                                            Max.
-3.298e+00 -6.694e-01 6.473e-05 1.055e-02 6.969e-01 3.246e+00
> sd(out1)
[11 0.9935784
```

2.000 simulations from Normal using Box-Muller

Generating continuous random variables

EA Valdez

The inverse transform algorithm

Some examples Simulating exponentials in

[1] 0.9935784 Samma distribution from Normal using Box-Muller",freg=FALSE)

Simulating gamma in R
Poisson distribution

The rejection method
Simulating half-normal in R

Generating Normal

Box-Muller transformations

Illustrating Box-Muller in R

The polar method

Illustrating polar method in

Generating a Poisson process

Introduction

Generating the first T time

units Simulating a Poisson

process in R
Alternative approach

Nonhomogeneous Poisson

process

Some examples Simulating exponentials in

Gamma distribution

Simulating gamma in R Poisson distribution

The rejection method
Simulating half-normal in R

Generating Normal random variables

Box-Muller transformations - continued

Illustrating Box-Muller in R

The polar method Illustrating polar method in

Illustrating polar method in R

Generating a Poisson process

Introduction

Generating the first T time

units Simulating a Poisson

Simulating a Poiss process in R

Alternative approach Nonhomogeneous Poisson process

 The Box-Muller transformation is believed to be computationally inefficient because of the computation of the sine and cosine functions.

 The Polar method avoids these computations by generating random numbers U₁ and U₂ and setting

$$V_1 = 2U_1 - 1$$
 and $V_2 = 2U_2 - 1$.

ullet Compute $S=R^2=V_1^2+V_2^2$ and then set

$$X = V_1 \sqrt{\frac{-2 \log S}{S}}$$

$$Y = V_2 \sqrt{\frac{-2 \log S}{S}}$$

Details in class. Algorithm is given on pages 81-82.

Simulating standard normal using the polar method in R

- The following is a routine in R to simulate from standard normal using the polar method.
- Function is called simnormpolar.R.

```
# function to generate standard normal using the Polar method
simnormpolar <- function(n.gen) {
sim.vector <- rep(0,n.gen)
for (i in 1:n.gen) {
urandom <- runif(2)
v1 <- 2*urandom[1]-1; v2 <- 2*urandom[2]-1
s <- v1^2 + v2^2
while(s > 1){
urandom <- runif(2)
 v1 <- 2*urandom[1]-1; v2 <- 2*urandom[2]-1
s < -v1^2 + v2^2
insq < -2*log(s)/s
x <- sqrt(insq)*v1
v <- sart(insa) *v2
sim.vector[i] <- (x+y)/sqrt(2)
# output
sim.vector
```

Generating continuous random variables

EA Valdez

The inverse transform algorithm

Some examples

Simulating exponentials in

Gamma distribution

Simulating gamma in R

The rejection method

Simulating half-normal in R

Generating Normal random variables

Box-Muller transformations - continued

Illustrating Box-Muller in R
The polar method

Illustrating polar method in

Generating a Poisson process

Introduction

Generating the first T time units

Simulating a Poisson process in R

Alternative approach

Executing the simulation

> curve(dnorm(x),from=-4,to=4,col="blue",add=TRUE)

[11 1.000975

```
> source("C:\\...\\Math276-Spring2008\\Rcodes-2008\\Week4\\simnormpolar.R")
> out1 <- simnormpolar(2000)
> out1[1:20]
 [11 -0.53573046 0.58419468 -1.56107977 0.27961148 -1.37491965 -1.33070593
[71 0.09831912 -0.88206048 1.17231397 0.44666004 0.90755589 -1.38911674
    1.24109777 0.34494397 0.46953717 1.03635509 -0.53338976 1.18540414
[19] 0.29707077 -0.71940887
> summary(out1)
     Min.
          1st Ou.
                      Median
                                  Mean
                                         3rd Ou.
                                                      May
-2.926000 -0.704400 -0.008467 0.017280 0.720300 3.390000
> sd(out1)
```

2.000 simulations from Normal using polar method

Generating continuous random variables

EA Valdez

The inverse transform algorithm

Some examples Simulating exponentials in

Gamma distribution
> hist(out1,br=25,xlab="",ylab="",main="2,000 simulations from Normal using polar method",freq=FALES
Smulating gamma in R

Poisson distribution

The rejection method Simulating half-normal in R

Generating Normal

random variables
Box-Muller transformations

- continued Illustrating Box-Muller in R

The polar method

Illustrating polar method in R

Generating a Poisson process

Introduction

Generating the first T time units

Simulating a Poisson process in R

Alternative approach

Nonhomogeneous Poisson process

page 20

The inverse transform Some examples Simulating exponentials in

Gamma distribution

Simulating gamma in R Poisson distribution

The rejection method Simulating half-normal in R

Generating Normal random variables Box-Muller transformations

- continued Illustrating Box-Muller in R

The polar method Illustrating polar method in

Generating a Poisson

Introduction

Generating the first T time units

Simulating a Poisson process in R

Alternative approach

- To generate a Poisson process with rate λ , use the fact that the times between successive events are independent exponentials each with rate λ .
- Generate *n* random numbers U_1, \ldots, U_n and set $X_i = -\frac{1}{3} \log U_i$, the time between the (i-1)st and the *i*th event.
- The sum $\sum_{i=1}^{j} X_i$, for j = 1, ..., n then gives the actual time of the ith event.
- To generate then the first T time units of the process, follow the previous procedure and stopping when the sum then exceeds T.

B

The inverse transform algorithm

Some examples

Simulating exponentials in R

Gamma distribution Simulating gamma in R

The rejection method
Simulating half-normal in R

Generating Normal

random variables
Box-Muller transformations

- continued Illustrating Box-Muller in R

The polar method

Illustrating polar method in

Illustrating polar r R

Generating a Poisson process

Introduction

Generating the first T time units

process

Simulating a Poisson process in R

Alternative approach
Nonhomogeneous Poisson

In the following algorithm,

t refers to time.

I is the number of events occurring by time t, and S(I) is the most recent event time.

 Generating the first T time units of a Poisson process with rate λ:

Step 1: start with t = 0, I = 0.

Step 2: generate a random number U.

Step 3: set $t = t - \frac{1}{\lambda} \log U$ and STOP if t > T.

Step 4: reset I = I + 1, S(I) = t.

Step 5: return to Step 2.

• The values $S(1), S(2), \ldots, S(I)$ are the I event times in increasing order.

Simulating the arrival times of a Poisson process in R

Generating continuous random variables

FA Valdez

- The following is a routine in R to simulate the arrival times of a Poisson process.
- Function is called simpproc.R.

```
# simulating the arrival times of a Poisson process
# inputs are: number of simulations and lambda parameter
simpproc <- function(n.gen,lambda){
x \leftarrow rep(0, n.gen)
# generate exponential inter-arrival times
for(i in 1:n.gen){
urandom <- runif(1)
x[i] <- -log(urandom)/lambda
# computing the time of the n-th arrival
arrival.times <- c(0, cumsum(x))
# plotting the process
nn <- c(0:n.gen)
plot(arrival.times,nn,type="s",ylab="",xlab="arrival times", main="Simulated Poisson Process")
```

The inverse transform

Some examples Simulating exponentials in

Gamma distribution

Simulating gamma in R

Poisson distribution

The rejection method

Simulating half-normal in R

Generating Normal random variables

Box-Muller transformations

- continued Illustrating Box-Muller in R

The polar method Illustrating polar method in

Generating a Poisson

Introduction

Generating the first T time

units Simulating a Poisson

process in R

Alternative approach

Executing the simulation

- > source("C:\\...\Math276-Spring2008\\Rcodes-2008\\Week4\\simpproc.R")
- > simpproc(10,1.5)

Simulated Poisson Process

Generating continuous random variables

EA Valdez

The inverse transform algorithm

Some examples

Simulating exponentials in

Gamma distribution

Simulating gamma in R Poisson distribution

The rejection method Simulating half-normal in R

Generating Normal

random variables

Box-Muller transformations - continued

Illustrating Box-Muller in R The polar method

Illustrating polar method in

Generating a Poisson

Introduction

Generating the first T time units

Simulating a Poisson

process in R

Alternative approach

Several simulations

- > source("C:\\...\Math276-Spring2008\\Rcodes-2008\\Week4\\simpprocs.R")
- > simpprocs(100,1.2)

Several Simulated Poisson Processes

Generating continuous random variables

EA Valdez

The inverse transform algorithm

Some examples

Simulating exponentials in

Gamma distribution Simulating gamma in R

Poisson distribution

The rejection method Simulating half-normal in R

Generating Normal

random variables Box-Muller transformations

- continued Illustrating Box-Muller in R

The polar method Illustrating polar method in

Generating a Poisson process

Introduction Generating the first T time

units Simulating a Poisson

process in R

Alternative approach

The inverse transform

Some examples Simulating exponentials in

Gamma distribution Simulating gamma in R Poisson distribution

The rejection method

Simulating half-normal in R Generating Normal random variables

Box-Muller transformations - continued Illustrating Box-Muller in R

The polar method Illustrating polar method in

Generating a Poisson

Introduction Generating the first T time

units

Simulating a Poisson

process in R

Alternative approach

Nonhomogeneous Poisson process

• Recall that for a Poisson process with rate λ , the total number of events that occur by time t, N(T), is Poisson with mean λT .

- The following general steps can then be followed:
 - **1** generate N(T) from a Poisson with mean λT .
 - **2** generate N(T) random numbers $U_1, \ldots, U_{N(T)}$.
 - 0 $TU_1, TU_2, \ldots, TU_{N(T)}$ are taken as the event times by time T of the Poisson process.
- This works more efficiently than simulating from exponentials, provided all we are interested in were on the set of event times of the process.
- Often such is not the case however, we would also like the event times in increasing order.

The inverse transform Some examples

Simulating exponentials in

Gamma distribution Simulating gamma in R

Poisson distribution

The rejection method Simulating half-normal in R

Generating Normal random variables

Box-Muller transformations - continued

Illustrating Box-Muller in R

The polar method Illustrating polar method in

Generating a Poisson

Introduction

Generating the first T time

units Simulating a Poisson

process in R

Alternative approach process

Nonhomogeneous Poisson

 In the nonhomogeneous Poisson process, the rate depends on time t, where $\lambda(t)$ is called the intensity function.

- One approach is called the thinning approach:
 - start by choosing a λ such that

$$\lambda(t) \leq \lambda$$
, for all $t \leq T$.

- randomly select the event times of a Poisson process with rate λ .
- If an event of a Poisson process with rate λ is counted with probability $\lambda(t)/\lambda$, then the process of counted events is the desired nonhomogeneous Poisson process.

Algorithm with the thinning approach

Generating continuous random variables

FA Valdez

The inverse transform Some examples

Simulating exponentials in Gamma distribution

Simulating gamma in R Poisson distribution

The rejection method Simulating half-normal in R

Generating Normal random variables

Box-Muller transformations - continued

Illustrating Box-Muller in R The polar method

Illustrating polar method in

Generating a Poisson

Introduction Generating the first T time

units Simulating a Poisson

process in R Alternative approach

Nonhomogeneous Poisson process

 Applying the thinning approach, the following algorithm provides generating the first T time units of a nonhomogeneous Poisson process with intensity $\lambda(t)$:

Step 1: set t = 0, I = 0.

Step 2: generate a random number *U*.

Step 3: set $t = t - \frac{1}{\lambda} \log U$ and if t > T, STOP. Step 4: generate another random number *U*.

Step 5: if $U \le \lambda(t)/\lambda$, set I = I + 1, S(I) = t.

Step 6: return to Step 2.

• The final value of I is the number of events by time T with the event times $S(1), \ldots, S(I)$.

The inverse transform algorithm

Some examples Simulating exponentials in

Gamma distribution Simulating gamma in R Poisson distribution

The rejection method Simulating half-normal in R

Generating Normal random variables

Box-Muller transformations - continued

Illustrating Box-Muller in R The polar method Illustrating polar method in

Generating a Poisson

Introduction Generating the first T time

units Simulating a Poisson

process in R

Alternative approach

- An improvement to the approach, though less efficient, is to break up the whole interval into subintervals and then use the thinning procedure over each subinterval.
- In effect, determine suitable values k. $0 = t_0 < t_1 < t_2 < \cdots < t_k < t_{k+1} = T, \lambda_1, \ldots, \lambda_{k+1}$ such that

$$\lambda(s) \leq \lambda_i$$
, if $t_{i-1} \leq s < t_i$, $i = 1, \ldots, k+1$.

- Over each time interval (t_{i-1}, t_i) , generate exponentials with rate λ_i and accept the generated event with probability $\lambda(s)/\lambda_i$.
- This works because of the memoryless property.
- See page 85 for the algorithmic steps using subintervals.

The inverse transform Some examples

Simulating exponentials in Gamma distribution Simulating gamma in R

Poisson distribution The rejection method

Simulating half-normal in R Generating Normal

random variables Box-Muller transformations continued

Illustrating Box-Muller in R The polar method

Illustrating polar method in

Generating a Poisson

Introduction

Generating the first T time units

Simulating a Poisson

process in R

Alternative approach

- An alternative approach is to generate event times S_1, S_2, \ldots directly.
- This may be accomplished by generating first S_1 from distribution function F_0 ; then generate S_2 by adding S_1 to a generated value from F_{s_1} ; then generate S_3 by adding S_2 to a generated value from F_{s_2} , and so on.
- This alternative procedure works in cases where there are known efficient procedures for simulating from the F's, e.g. inverse transform.
- Suppose an event occurs at time s, additional time until the next event has distribution function:

$$F_s(x) = P(\text{time from } s \text{ until next event } \le x | \text{ event at s})$$

$$= 1 - \exp\left(-\int_0^x \lambda(s+y)dy\right).$$

Example 5h

- Consider the example in Example 5h, pages 86-87.
- Suggest simulation procedure for a nonhomogeneous Poisson process with intensity function given by

$$\lambda(t) = \frac{1}{t+a}$$
, for $t \ge 0$.

Details in class.

Generating continuous random variables

EA Valdez

The inverse transform algorithm

Some examples Simulating exponentials in

Gamma distribution

Simulating gamma in R Poisson distribution

The rejection method

Simulating half-normal in R

Generating Normal random variables

Box-Muller transformations

- continued

Illustrating Box-Muller in R
The polar method

Illustrating polar method in R

Generating a Poisson process

Introduction

Generating the first T time units

Simulating a Poisson

process in R

Alternative approach