Optimization for Machine Learning

James Martens (DeepMind)

Overview

Topics:

- Gradient descent
- Momentum methods
- 2nd-order methods
- Stochastic optimization

Motivation

- Numerical optimization methods enable models to learn from data by adapting their parameters
 - They are the basic engine behind all machine learning techniques
- They solve the problem of minimizing some (given) objective function that quantifies the performance of the model
 - E.g. prediction error, mistakes on some task, etc
- Usually work by making small incremental changes to parameters that slowly decrease objective towards (local) minimum
 - This strategy works only if the objective functions are nicely behaved (smooth, etc)

Notation

• Parameters: θ

• Objective function : $h(\theta)$

• Goal: $\theta^* = \argmin_{\theta} h(\theta)$

Some standard technical assumptions

• $h(\theta)$ has Lipschitz continuous derivatives (i.e. is "Lipschitz smooth"):

$$\|\nabla h(\theta) - \nabla h(\theta')\| \le L\|\theta - \theta'\|$$

(an "upper bound" on the curvature)

• $h(\theta)$ is strongly convex (perhaps only near some local min):

$$h(\theta + d) \ge h(\theta) + \nabla h(\theta)^{\top} d + \frac{\mu}{2} ||d||^2$$

(a "lower bound" on the curvature)

 And for now: Gradients and other quantities are computed exactly (i.e. not stochastic)

Gradient descent

Definition

Basic gradient descent iteration:

$$\theta_{k+1} = \theta_k - \alpha_k \nabla h(\theta_k)$$

Step size: α_k

(aka "learning rate")

Gradient:
$$\nabla h(\theta) =$$

$$\frac{\partial h(\theta)}{\partial [\theta]_1}$$

$$\frac{\partial h(\theta)}{\partial [\theta]_2}$$

$$\vdots$$

$$\frac{\partial h(\theta)}{\partial [\theta]_n}$$

Gradient Descent

Intuition / motivation

$$\theta_{k+1} = \theta_k - \alpha_k \nabla h(\theta_k)$$

Why should this work?

• Gradient direction gives greatest reduction in $h(\theta)$ per unit of change* in θ

$$\bullet \quad \text{Formally:} \ \frac{-\nabla h}{\|\nabla h\|} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \underset{d: \|d\| \le \epsilon}{\arg\min} \, h(\theta + d)$$

• Due to smoothness of $h(\theta)$, $\nabla h(\theta)$ will keep pointing down-hill as long as we don't go too far from the current θ

Gradient Descent

Intuition / motivation

Motivation from local approximations:

• 1st-order Taylor series for $h(\theta)$ around current θ is:

$$h(\theta + d) \approx h(\theta) + \nabla h(\theta)^{\top} d$$

- ullet Lipschitz smoothness says: "this approximation won't be too bad for small enough d"
- ullet Gradient update computed by minimizing this within a sphere of radius r:

$$-\alpha \nabla h(\theta) = \underset{d:||d|| \le r}{\arg \min} \left(h(\theta) + \nabla h(\theta)^{\top} d \right)$$

where
$$r = \alpha \|\nabla h(\theta)\|$$

Problems with gradient descent

Failure case

• Standard "failure case" for gradient descent is a simple two-dimensional

Problems with gradient descent

Failure case

- Convergence can be slow for functions whose curvature varies wildly depending on which direction you point
- There is no "sweet-spot" step-size to use. You either have:
 - Large oscillations along directions of high curvature causing divergence
 - Very slow progress along directions of small curvature

Problems with gradient descent

Technical explanation of failure

ullet Gradient descent minimizes local *quadratic* approximation to h(heta):

$$h(\theta + d) \approx h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d$$

$$\approx h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} (LI) d = h(\theta) + \nabla h(\theta)^{\top} d + \frac{L}{2} ||d||^{2}$$

$$-\frac{1}{L}\nabla h(\theta) = \underset{d}{\operatorname{arg\,min}} \left(h(\theta) + \nabla h(\theta)^{\top} d + \frac{L}{2} \|d\|^{2}\right)$$

- LI is a very conservative / pessimistic approximation to $H(\theta)$ that treats all directions as having the same (very high) curvature.
 - o This helps explain why it struggles on problems where curvature varies a lot

Upper bounds for gradient descent

If $h(\theta)$ is Lipschitz smooth and (locally) strongly convex, and θ^* is the (local) minimizer, gradient descent entertains the bound:

$$h(\theta_k) - h(\theta^*) \le \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} \|\theta_0 - \theta^*\|^2 \quad \text{for } \alpha_k = \frac{2}{L + \mu}$$

where, $\kappa = \frac{1}{\mu}$ is a "condition number" = ratio of highest curvature to lowest curvature.

Number of iterations to achieve $h(\theta_k) - h(\theta^*) \le \epsilon$: $k \in \mathcal{O}\left(\kappa\log\frac{1}{\epsilon}\right)$

Warnings, caveats, etc.

- These bounds must work for all objective functions in a given class
 - this includes worst-case examples
 - o real problems are seldom worst-case
 - thus bounds are often pessimistic / unrealistic
- They often do not take into account all the useful structure in the real objective. e.g. the condition number ignores:
 - clustered eigenvalues in Hessian
 - low-curvature directions that are completely flat (i.e. not important to optimize)

Warnings, caveats, etc.

- Bounds only accurately describe asymptotic performance
 - often we stop before asymptotics "kick-in" to prevent overfitting or because we have a fixed computational budget
 - early-stage optimization can behave much different than late-stage (travelling in a roughly consistent direction vs bouncing around local min)
- Provide no global guarantees for non-convex objectives
- The design/choice of an optimizer should always be informed by practice more than anything else. But, good theory can help guide the way and build intuitions.

Momentum

Motivation and intuition

- A very simple way to "accelerate" gradient descent (and other optimizers)
- Motivation:
 - the direction of descent (gradient) can vary with each iterations]
 - o some directions may flip back and forth between pointing uphill and downhill
 - we saw this behavior for gradient descent applied to "failure case" example
- Solution:
 - accelerate along directions that point down-hill consistently
- How?:
 - treat optimizer like as a "ball" rolling around the "surface" defined by the objective function - i.e. let it accumulate velocity like physical objects do

Gradient descent with momentum

Defining equations

Classical Momentum:

$$v_{k+1} = \eta_k v_k - \alpha_k \nabla h(\theta_k)$$

$$\theta_{k+1} = \theta_k + v_{k+1}$$

Learning rate: α_k

Friction constant: η_k

Nesterov's version (aka Nesterov's accelerated gradient descent):

$$v_{k+1} = \eta_k v_k - \alpha_k \nabla h(\theta_k + \eta_k v_k)$$

$$\theta_{k+1} = \theta_k + v_{k+1}$$

Failure case revisited

Momentum helps a lot

Comparing the variants of GD w/ momentum

- Nesterov's version:
 - has stronger theoretical guarantees
 - exhibits better properties on certain real and synthetic example problems
 - o however, performs almost the same in practice many practical problems
- ullet Differences are bigger when lpha is large
- The two variants become identical as $\alpha \to 0$

1st-order methods and lower bounds

 A "first-order method" is defined as one where each update is given by a linear combination of the gradients at previous iterates, i.e.:

$$\theta_{k+1} - \theta_k = d \in \text{Span}\{\nabla h(\theta_0), \nabla h(\theta_1), \dots, \nabla h(\theta_k)\}\$$

- This definition includes:
 - gradient descent with and without and momentum
 - more complex methods like Conjugate Gradients (CG)
- Does not include:
 - Any method that multiplies the gradient by some non-trivial matrix (e.g. 2nd-order methods)

1st-order methods and lower bounds (cont.)

The following objective function is Lipschitz smooth and strongly convex:

$$h(\theta) = \frac{L - \mu}{8} \left([\theta]_1 + \sum_{i=1}^{\infty} ([\theta]_{i+1} - [\theta]_i)^2 - 2[\theta]_1 \right) + \frac{\mu}{2} \|\theta\|^2$$

And any first-order method applied to it satisfies:

$$h(\theta_k) - h(\theta^*) \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2k} \|\theta_0 - \theta^*\|^2$$

Number of iterations to achieve $h(\theta_k) - h(\theta^*) \leq \epsilon$: $k \in \Omega\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$

Upper bounds for Nesterov's variant

If $h(\theta)$ is Lipschitz smooth and (locally) strongly convex, θ^* is the (local) minimizer, and α_k and η_k are carefully chosen, then gradient descent w/ Nesterov's momentum entertains the bound:

$$h(\theta_k) - h(\theta^*) \leq L\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa}}\right)^k \|\theta_0 - \theta^*\|^2$$
 where, $\kappa = \frac{L}{-}$ is a "condition number" = ratio of highest curvature to lowest

curvature. μ

Number of iterations to achieve
$$h(\theta_k) - h(\theta^*) \le \epsilon : k \in \mathcal{O}\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$$

Comparison of iteration counts

To achieve $h(\theta_k) - h(\theta^*) \le \epsilon$ the number of iterations k satisfies:

- (Worst-case) lower bound for 1st-order methods: $k \in \Omega\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$
- Upper bound for gradient descent: $k \in \mathcal{O}\left(\kappa\log\frac{1}{\epsilon}\right)$
- Upper bound for GD w/ Nesterov's momentum: $k \in \mathcal{O}\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$

2nd-order methods

Formulation

ullet Approximate h(heta) by its 2nd-order Taylor series around current heta :

$$h(\theta + d) \approx h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d$$

Minimize this local approximation to compute update:

$$-H(\theta)^{-1}\nabla h(\theta) = \operatorname*{arg\,min}_{d} \left(h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d\right)$$

Update current iterate:

$$\theta_{k+1} = \theta_k - H(\theta)^{-1} \nabla h(\theta_k)$$

Failure case revisited (again)

2nd-order methods help even more

Problems with naive 2nd-order methods

Breakdown of local approximation

- ullet Approximation is only trustworthy in a local region around current heta
- Unlike gradient descent, which implicitly approximates $LI \approx H(\theta)$ (recall: L upper-bounds the global curvature), the real $H(\theta)$ may underestimate curvature along some directions as we move away from current θ (curvature may even be *negative!*)
- ullet Solution: Constrain update d to lie in some local region R around 0 where approximation remains a good one

$$\underset{d \in R}{\operatorname{arg\,min}} \left(h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d \right)$$

Trust-regions and Tikhonov regularization/damping

• If we take $R = \{d : ||d||_2 \le r\}$ then computing

$$\underset{d \in R}{\operatorname{arg\,min}} \left(h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d \right)$$

is often equivalent to computing

$$-(H(\theta) + \lambda I)^{-1} \nabla h(\theta) = \operatorname*{arg\,min}_{d} \left(h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} (H(\theta) + \lambda I) d \right)$$
 for some λ .

• λ is a complicated function of r, but fortunately we can just work with λ directly. There are effective heuristics for adapting lambda such as the "Levenberg-Marquardt" method.

Alternative curvature matrices

Another solution to the model trust problem:

 In place of the Hessian we can use a matrix with more forgiving properties that tends to upper-bound the curvature over larger regions

(LI is a poor choice because it says "all directions have equal curvature")

- Very important effective technique in practice if used alongside previously discussed trust-region / regularization / damping techniques
- Some important examples
 - Generalized Gauss-Newton matrix
 - Fisher information matrix
 - Empirical Fisher information matrix

Generalized Gauss-Newton

Definition

To use the GGN we must assume that

$$h(\theta) = \sum_{i} h_i(\theta) = \sum_{i} \ell(y_i, f(x_i, \theta))$$

 $\ell(y,z)$ is a loss that is convex in z, and

 $f(x,\theta)$ is some high-dimensional function (e.g. neural network w/ input x)

The GGN is given by

where

$$G = \sum_i J_i^ op H_i J_i$$
 where J_i is Jacobian of $f(x_i, \theta)$ w.r.t. $heta$ and H_i is the Hessian of $\ell(y_i, z_i)$ w.r.t. $z_i = f(x_i, \theta)$

Generalized Gauss-Newton

Derivations and relationship to Fisher

• G is equal to the Hessian of $h(\theta)$ if we replace each $f(x_i, \theta)$ with its local 1st-order approximation centered at current θ :

$$f(x_i, \theta') \approx f(\theta) + J_i(\theta' - \theta)$$

- When $\ell(y,z)=\|y-z\|^2/2$ we have $H_i=I$ and so $\mathbf{G}=\sum_i J_i^\top J_i$ o this is the matrix used in the well-known Gauss-Newton approach for optimizing nonlinear least squares
- When $\ell(y,z) = -\log p(y|z)$ for a "natural" conditional density p(y|z), G becomes equivalent to Fisher information matrix associated with $p(y|f(x,\theta))$ o In this case $G^{-1}\nabla h(\theta)$ is equal to the well-known "natural gradient"

The GGN matrix has the following nice properties:

- it always PSD (i.e. models the curvature in all directions as non-negative)
- it is usually more conservative than the Hessian, but won't always be larger in all directions
- an optimizer using $d=-\alpha G^{-1}\nabla h(\theta)$ as its update will be invariant to any smooth reparameterization of
- and most importantly... works much better than the Hessian in practice for neural networks

Updates computed using the GGN make 100s-1000s times more progress than gradient updates. Unfortunately there is no know way to efficiently compute such updates exactly in high dimensions...

More problems with naive 2nd-order methods

High-dimensional objectives

- ullet For neural networks, $heta \in {\rm I\!R}^n$ can have 10s of millions of dimensions
- We simply cannot compute and store an $n \times n$ matrix for such an n, let alone invert it! $(\mathcal{O}(n^3))$
- Thus we must approximate the curvature matrix using one of a number of techniques that simplify its structure to allow for efficient
 - computation,
 - storage,
 - and inversion

Diagonal approximations:

- Approximate curvature matrix B by its own diagonal: $\hat{B} = \operatorname{diag}(B)$
- Storage cost: $\mathcal{O}(n)$
- Cost to apply inverse (i.e. compute $\hat{B}^{-1}v$): $\mathcal{O}(n)$
- Can be slightly tricky to compute \hat{B} for certain \hat{B} 's, although reasonably efficient estimation methods are available (e.g. "Curvature Propagation")
- ullet Will only be reasonably accurate if eigenvectors of B are closely aligned with the coordinate axes
- ullet A popular choice for B is the "empirical Fisher", which is defined by

$$\sum_{i} \nabla h_i(\theta) \nabla h_i(\theta)^{\top}$$

Several popular diagonal methods use this choice, including "RMS-prop" and "Adam", because the alg to compute the diagonal is simple

Low-rank approximations

• Approximate $\hat{B} \approx B$ (or $\hat{B}^{-1} \approx B^{-1}$) as diagonal + rank-r corrections:

$$\sum_{j=1}^{r} u_j u_j^{\top} + \operatorname{diag}(u_0)$$

- Moderately easy to store: $\mathcal{O}(rn)$ Moderately easy to apply inverse: $\mathcal{O}(rn)$
- Moderately easy to compute approx: Usually $\mathcal{O}(rn)$
- Less effective if real B has many important eigenvectors with large eigenvalues
- Most well-known example is L-BFGS

Block-diagonal approximations:

- Take \hat{B} to be block-diagonal of B (block size: $b \times b$)
- For neural nets, blocks could correspond to:
 - weights on connections going into a given unit
 - weights on connections going out of a given unit
 - all the weights for a given layer
- Storage cost: $\mathcal{O}(bn)$
- Cost to apply inverse: $\mathcal{O}(b^2n)$ (just invert each diagonal block)
- Similar difficulty to computing diagonal (and similar methods apply)
- ullet Can only be realistically applied for small block size b
- Well-known example developed for neural nets: TONGA

Kronecker-product approximations:

- Block-diagonal approximation of GGN/Fisher where blocks correspond to layers
- Each block is additionally approximated as a Kronecker product two much smaller matrices:

$$A \otimes C = \begin{bmatrix} [A]_{1,1}C & \cdots & [A]_{1,k}C \\ \vdots & \ddots & \vdots \\ [A]_{k,1}C & \cdots & [A]_{k,k}C \end{bmatrix}$$

- Derived by treating unit activations and back-propagated errors as uncorrelated when computing Fisher (= covariance of gradients)
- Storage and computation cost : $\mathcal{O}(n)$ Cost to apply inverse: $\mathcal{O}(b^{0.5}n)$ (uses $(A\otimes C)^{-1}=A^{-1}\otimes C^{-1}$)
- Current state-of-the-art for neural network optimizers

Stochastic Optimization

Motivation

 Typical objectives in machine learning are an average over training cases of case-specific losses:

$$h(\theta) = \frac{1}{m} \sum_{i=1}^{m} h_i(\theta)$$

ullet can be **very** big and so computing the gradient is extremely expensive

$$\nabla h(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla h_i(\theta)$$

Mini-batching

- ullet Fortunately there is often significant statistical overlap between $h_i(heta)$'s
- Especially early in optimization, when "coarse" features of the data are still being learned, many $\nabla h_i(\theta)$'s will point in roughly the same direction
- Idea: randomly sub-sample a "mini-batch" of training cases $S \subset \{1,2,...,m\}$ of size $b \ll m$ and compute the mini-batch gradient:

$$\widetilde{\nabla}h(\theta) = \frac{1}{b} \sum_{i \in S} \nabla h_i(\theta)$$

Stochastic gradient descent

• In stochastic gradient descent (SGD) we replace $\nabla h(\theta)$ with the mini-batch version $\widetilde{\nabla} h(\theta)$ and then compute update as usual:

$$\theta_{k+1} = \theta_k - \alpha_k \widetilde{\nabla} h(\theta_k)$$

- To ensure convergence we need to do one of several things
 - Use a decay step-size schedule satisfying:

$$\sum_{k=1}^{\infty} \alpha_k^2 < \infty \quad \sum_{k=1}^{\infty} \alpha_k = \infty \qquad \text{e.g. } \alpha_k = 1/k$$

Use Polyak averaging:

$$\overline{\theta}_k = \frac{1}{k+1} \sum_{i=0}^k \theta_i$$
 or in practice: $\overline{\theta}_k = (1-\beta)\theta_k + \beta \overline{\theta}_{k-1}$

More recently: use variance reduction methods like SAG and SVRG

Stochastic 2nd-order and momentum methods

- ullet For 2nd-order methods also need to compute curvature matrix B without going over whole training set
 - \circ But just computing B on current mini-batch is often not good enough
 - \circ Solution is often to use an exponentially decayed average over time of mini-batch computed B 's (similar to Polyak averaging)
 - This works pretty well, although "staleness" can be a problem
- Momentum can be easily applied to SGD and helps in practice. However:
 - \circ extra care must to be taken with the parameters α and η
 - o common practice is to stop using (or lower decay param η) as optimizer gets close to local min

Some convergence theory

 One way to formalize stochastic methods is to treat the stochastic gradient as the random variable

$$\widetilde{\nabla}h(\theta) = \nabla h(\theta) + \varepsilon$$

where $\mathcal E$ is some 0-mean noise variable. Often $\mathcal E\sim N(0,\Sigma)$ Note that $E[\widetilde{\nabla}h(\theta)]=\nabla h(\theta)$

• For strongly-convex quadratic objectives stochastic SGD and basic 2nd-order methods, $E[\theta_k]$ behaves the same as the non-stochastic version of the iterate θ_k

Some convergence theory (cont.)

The theory says:

- There is no asymptotic advantage to using 2nd-order methods or momentum over plain SGD w/ Polyak averaging
- \circ Actually, SGD w/ Polyak averaging is **asymptotically optimal** among any system that tries to estimate parameters of a statistical model by minimizing the loss over bk training cases. The asymptotic rate is:

$$E[h(\theta_k)] - h(\theta^*) \in \mathcal{O}\left(\frac{1}{k}\operatorname{tr}\left(H(\theta^*)^{-1}\Sigma\right)\right)$$

- However, pre-asymptotically there can still be an advantage to using 2nd-order updates and/or momentum
- Because we care more about pre-asymptotic performance in practice, they are still very useful

References/sources

Solid introductory texts:

- Numerical Optimization -- by Nocedal & Wright
- Introductory Lectures on Convex Optimization: A Basic Course by Nesterov

Some possibly relevant papers:

- The Importance of Initialization and Momentum in Deep Learning -- by Sutskever et al.
- New insights and perspectives on the natural gradient method -- Martens

