$Solutions \ Exercices \ MP/MP^*$

Table des matières

1 Suites et séries de fonctions

2

1 Suites et séries de fonctions

Solution 1.1. Pour $x \ge 0$, on a $F_n(x) > 0$, on a

$$\ln\left(F_n(x)\right) = \frac{1}{n} \sum_{k=1}^n \ln\left(1 + \frac{kx}{n}\right) \xrightarrow[n \to +\infty]{} \int_0^1 \ln\left(1 + tx\right) dt = G(x)$$
(1.1)

On a G(0) = 0 et pour x > 0, on a

$$G(x) = \left[\left(t + \frac{1}{x} \right) \ln(1 + tx) \right]_0^1 - \int_0^1 \frac{x}{1 + tx} \left(t + \frac{1}{x} \right) dt$$
 (1.2)

$$= \frac{x+1}{x}\ln(1+x) - 1 \tag{1.3}$$

(utiliser le fait que G est continue sur [0,1] et que $\ln(1+x) \underset{x\to 0}{\sim} x$).

Ainsi,
$$\lim_{n \to +\infty} F_n(0) = 1 = F(0)$$
. Pour $x > 0$, $\lim_{n \to +\infty} F_n(x) = (1+x)^{\frac{x+1}{x}} \times \frac{1}{e} = F(x)$.

F est continue sur [0,1]. Soit $x \ge 0$. On écrit

$$|F_n(x) - F(x)| = |e^{G_n(x)} - e^{G(x)}|$$
 (1.4)

On a d'après l'inégalité des accroissements finis :

$$|F_n(x) - F(x)| \le e^{G_n(x)} |G_n(x) - G(x)| \le e^{G_n(x)} \times \frac{x}{2n}$$
 (1.5)

Si $f(t) = \ln(1+tx)$, on a $f'(t) = \frac{x}{1+tx} \ge 0$. Donc f est croissante et $G_n(x) = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \le \ln(1+x)$. Finalement,

$$|F_n(x) - F(x)| \le \frac{x(1+x)}{2n}$$
 (1.6)

On a donc convergence uniform sur [0, A] pour tout $A \ge 0$.

Solution 1.2.

1. Si x = 0, on a $u_n(0) = 0$ donc $\sum u_n(0)$ converge. Si $x \neq 0$, on a

$$\left| \frac{U_{n+1}(x)}{U_n(x)} \right| = \frac{2n+1}{2n+1+\alpha} |x| \xrightarrow[n \to +\infty]{} |x| \tag{1.7}$$

Ainsi, si |x| < 1, d'après la règle de d'Alembert, $\sum u_n(x)$ converge absolument. Si |x| > 1, il existe un rang n_0 à partir duquel $|U_{n+1}(x)| > |U_n(x)|$, donc $(U_n(x))_{n \in \mathbb{N}}$ ne converge pas vers $0 : \sum u_n(x)$ diverge.

Si x=1, il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geq N_0$, on a $\frac{U_{n+1}(1)}{U_n(1)} > 0$ donc $(u_n)_{n \geq N_0}$ gare un signe constant. On a

$$\frac{u_{n+1}(1)}{u_n(1)} = \frac{2n+1}{2n+1+\alpha} = 1 - \frac{\alpha}{2n+1+\alpha} = 1 - \frac{\alpha}{2n} + O\left(\frac{1}{n^2}\right)$$
(1.8)

Ainsi, d'après la règle de Raabe-Duhamel, on a

$$|U_n(1)| \underset{n \to +\infty}{\sim} \frac{C}{n^{\frac{\alpha}{2}}} \tag{1.9}$$

Ainsi, on a convergence si et seulement si $\alpha > 2$.

Si x=-1, on a toujours $|U_n(-1)|=|U_n(1)|\underset{n\to+\infty}{\sim}\frac{C}{n^{\frac{\alpha}{2}}}$. Si $\sum u_n(-1)$ converge, on a $\alpha>0$. Réciproquement, si $\alpha>0$, on a $|U_n(-1)|\xrightarrow[n\to+\infty]{}0$ et $\sum u_n(-1)$ est une série alternée. On a donc

$$\left| \frac{u_{n+1}(-1)}{u_n(-1)} \right| = \frac{2n+1}{2n+1+\alpha} < 1 \tag{1.10}$$

donc $(|u_n(-1)|)_{n\in\mathbb{N}}$ est décroissante : d'après le critère spéciale des séries alternées, $\sum u_n(-1)$ converge. Ainsi, $\sum u_n(-1)$ converge si et seulement si $\alpha > 0$.

2. Supposons la convergence uniforme sur [0,1[. Comme pour tout $n \ge 1$, $\lim_{x\to 1^-} u_n(x) = u_n(1)$, d'après le théorème d'interversion des limites, comme il ya convergence uniforme au voisinage de $1, \sum u_n(1)$ converge. Donc d'après ce qui précède, on a $\alpha > 2$.

Réciproquement, si $\alpha > 2$, pour tout $x \in [0,1]$, on a $|u_n(x)| \leq |u_n(1)|$ (terme général d'une série à termes positifs convergente). Donc on a convergence normale sur [0,1].

3. Supposons convergence uniforme sur]-1,0]. Comme pour tout $n \ge 1$, $\lim_{x\to -1^+} u_n(x) = u_n(-1)$. D'après le théorème d'interversion des limites, comme il y a convergence uniforme au voisinage de -1, $\sum u_n(-1)$ converge. D'après ce qui précède, on a $\alpha > 0$.

Réciproquement, si $\alpha > 0$, soit $x \in [-1, 0]$, $\sum u_n(x)$ est alternée dont le terme général décroît en valeur absolue (et tend vers 0). Donc pour tout $N \ge 1$, on a

$$\left| \sum_{n=N}^{+\infty} u_n(x) \right| \leqslant |u_N(x)| \leqslant |u_N(-1)| \xrightarrow[N \to +\infty]{} 0 \tag{1.11}$$

On a donc convergence uniforme de $\sum u_n(x)$ sur [-1,0]

Remarque 1.1. Pour rappel, on redonne la règle de Raabe-Duhamel : si $(v_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+)^{\mathbb{N}}$ et

$$\frac{v_{n+1}}{v_n} = 1 - \frac{\beta}{n} + \frac{1}{n^2}$$
 (1.12)

alors il existe C > 0 telle que $v_n \underset{n \to +\infty}{\sim} \frac{C}{n^{\beta}}$. En effet, on écrit

$$\ln\left((n+1)^{\beta}v_{n+1}\right) - \ln\left(n^{\beta}v_{n}\right) = \beta\ln\left(1+\frac{1}{n}\right) + \ln\left(\frac{v_{n+1}}{v_{n}}\right) = \underset{n\to+\infty}{O}\left(\frac{1}{n^{2}}\right)$$
(1.13)

 $donc \ (n^{\beta}v_n)_{n\in\mathbb{N}} \ converge \ dans \ \mathbb{R}_+^*.$

Remarque 1.2. On peut aussi éviter la règle de Raabe-Duhamel. On forme

$$\ln\left(|u_n(1)|\right) = \sum_{k=1}^n \ln\left|\frac{2k-1}{2k-1+\alpha}\right| = -\frac{\alpha}{2} \sum_{k=1}^n \frac{1}{k} + \sum_{k=1}^n O\left(\frac{1}{k^2}\right) = -\frac{\alpha}{2} \ln(n) - \frac{\gamma\alpha}{2} + K + O\left(\frac{1}{n}\right)$$
(1.14)

 $donc |u_n(1)| \underset{n \to +\infty}{\sim} \frac{C}{n^{\frac{\alpha}{2}}} avec C > 0.$

Solution 1.3. Pour $k \ge \lfloor x \rfloor$, on a

$$\arctan(k+x) - \arctan(k) \in \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$$
 (1.15)

On a

$$f_k(x) = \arctan\left(\frac{x}{1 + k(k+x)}\right) = \arctan\left(\frac{x}{k^2} + o_{k \to +\infty}\left(\frac{1}{k^2}\right)\right) \underset{k \to +\infty}{\sim} \frac{x}{k^2}$$
 (1.16)

Pour tout $x \in \mathbb{R}$, $\sum_{k \in \mathbb{N}} f_k(x)$ converge absolument et f définie sur \mathbb{R} . Pour tout $k \in \mathbb{N}$, f_k est \mathcal{C}^1 sur \mathbb{R} et

$$f'_k(x) = \frac{1}{1 + (k+x)^2} \tag{1.17}$$

On fixe $[a, b] \subset \mathbb{R}$, pour tout $x \in [a, b]$, pour tout $k \in \mathbb{N}$, on a

$$|k+x| \geqslant k - |x| \geqslant k - \underbrace{\max(|a|,|b|)}_{=M} \geqslant 0 \tag{1.18}$$

pour $k \geqslant \lfloor M + 1 \rfloor$.

On a de plus $0 \le f'_k(x) \le \frac{1}{1+(k-M)^2}$ (terme général d'une série à termes positifs convergente). On $\sum_{k\ge |M|+1} f'_k$ converge normalement sur [a,b]. Enfin,

$$f - \sum_{k=1}^{\lfloor M \rfloor} f_k = \sum_{k=\lfloor M \rfloor + 1}^{+\infty} f_k \tag{1.19}$$

est donc \mathcal{C}^1 sur [a, b] d'après le théorème de dérivation terme à terme, donc f est \mathcal{C}^1 sur [a, b] (car $\sum_{k=1}^{\lfloor M \rfloor} f_k$ est une somme finie de fonctions \mathcal{C}^1 donc est \mathcal{C}^1 sur \mathbb{R}). Ainsi f est \mathcal{C}^1 sur \mathbb{R} .

Soit $n \in \mathbb{N}$ et $N \in \mathbb{N}$, on a

$$\sum_{k=0}^{N} f_k(n) = \sum_{k=0}^{N} \arctan(k+n) - \arctan(k)$$
 (1.20)

$$= \sum_{k=n}^{n+N} \arctan(k) - \sum_{k=0}^{N} \arctan(k)$$
(1.21)

$$= \sum_{k=N+1}^{n+N} \arctan(k) - \sum_{k=0}^{n-1} \arctan(k)$$
 (1.22)

$$\xrightarrow[N \to +\infty]{} n\frac{\pi}{2} - \sum_{k=0}^{n-1} \arctan(k) = \frac{\pi}{2} + \sum_{k=1}^{n-1} \arctan(\frac{1}{k}) = f(n)$$
 (1.23)

On a $\arctan\left(\frac{1}{k}\right) \underset{k \to +\infty}{\sim} \frac{1}{k} > 0$, d'après le théorème de comparaison des sommes partielles de séries à termes positifs divergente, donc $f(n) \underset{n \to +\infty}{\sim} \ln(n)$. Par ailleurs, f est croissante sur \mathbb{R} , donc pour tout $x \geqslant 0$, on a

$$\ln|x| \underset{x \to +\infty}{\sim} f(\lfloor x \rfloor) \leqslant f(x) \leqslant f(\lfloor x \rfloor + 1) \underset{x \to +\infty}{\sim} \ln(x) \tag{1.24}$$

donc
$$f(x) \underset{x \to +\infty}{\sim} \ln(x)$$
.

Solution 1.4. Soit t > 0, on a $\ln(1 - e^{-nt}) \sim -e^{-nt}$ car $\lim_{n \to +\infty} -e^{nt} = 0$ (terme général d'une série à termes positifs convergente car t > 0).

On définit

$$g_+: \mathbb{R}_+^* \to \mathbb{R}$$

$$x \mapsto -\ln(1 - e^{-xt}) \geqslant 0$$

On a $-f(t) = \sum_{n=1}^{+\infty} g_t(x)$. De plus, $g_t'(x) = -\frac{te^{-xt}}{1-e^{-xt}} \leq 0$. g_+ est décroissante, et on a

$$\int_{n}^{n+1} g_{+}(x)dx \leqslant g_{+}(x) \leqslant \int_{n-1}^{n} g_{+}(x)dx \tag{1.25}$$

On somme de n=1 à $+\infty$ (on admet l'existence pour n=0). On obtient

$$-\ln(1 - e^{-xt}) = \int_{1}^{+\infty} g_{+}(x)dx \leqslant -f(t) \leqslant \int_{0}^{+\infty} -\ln(1 - e^{-xt}) dx$$
 (1.26)

On pose u = xt et $dx = \frac{du}{t}$ car t > 0. On a

$$\int_{1}^{+\infty} -\ln\left(1 - e^{-xt}\right) dx = \frac{1}{t} \int_{t}^{+\infty} -\ln\left(1 - e^{u}\right) du \underset{t \to 0}{\sim} \frac{1}{t} I \tag{1.27}$$

et

$$\int_0^{+\infty} -\ln\left(1 - e^{-xt}\right) dx = \frac{1}{t} \int_0^{+\infty} -\ln\left(1 - e^{-u}\right) du = \frac{I}{t}$$
 (1.28)

donc

$$f(t) \underset{t \to +0^+}{\sim} -\frac{I}{t} \tag{1.29}$$

Solution 1.5.

1. On a $||f_n||_{\infty} = \frac{1}{2}$ donc

$$\left| \frac{1}{2^p} f_n(x - a_p) \right| \le \frac{1}{2^{p+1}},$$
 (1.30)

et $g_n(x)$ est définie. Soit $x \in \mathbb{R}$, on pose

$$F_p: \mathbb{N} \to \mathbb{R}$$

$$n \mapsto \frac{1}{2^p} f_n(x - a_p)$$

On a $|F_p(n)| \leq \frac{1}{2^{p+1}}$ et pour p fixé, $\lim_{n \to +\infty} F_p(n) = 0$. Donc $\sum_{p \geq 0} F_p$ converge normalement sur \mathbb{N} . D'après le théorème d'interversion des limites, on a

$$\lim_{x \to +\infty} f_n(x) = 0. \tag{1.31}$$

2. S'il existe $p_0 \in \mathbb{N}$ tel que $a_{p_0} \in [a, b]$, alors il existe $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$, $a_{p_0} + \frac{1}{n}$ ou $a_{p_0} - \frac{1}{n} \in [a, b]$ et $g_n(a_{p_0} \pm \frac{1}{n}) \geqslant \frac{1}{2^{p_0+1}}$ (série à termes positifs).

Si pour tout $p \in \mathbb{N}$, $a_p \notin [a, b]$, soit $\varepsilon > 0$. Il existe $N_0 \in \mathbb{N}$ tel que $\sum_{p=N_0+1}^{+\infty} \frac{1}{2^{p+1}} \leqslant \frac{\varepsilon}{2}$. Alors pour tout $x \in [a, b]$, on a

$$0 \leqslant \sum_{p=N_0+1}^{+\infty} \frac{1}{2^p} f_n(x - a_p) \leqslant \frac{\varepsilon}{2}.$$
 (1.32)

Notons α) $\min_{\substack{0 \leqslant p \leqslant N_0 \\ x \in [a,b]}} |x-a_p| > 0$. Pour tout $x \in [a,b]$, pour tout $p \in [0,N_0]$, $|x-a_p| \geqslant \alpha$ et il existe $N_1 \in \mathbb{N}$ tel que pour tout $n \geqslant N_1$, $\frac{1}{n} \leqslant \alpha$. Alors pour tout $x \in [a,b]$, pour tout $p \in [0,N_0]$, $f_n(x-a_p) \leqslant f_n(\alpha)$ et

$$0 \leqslant \sum_{p=0}^{N_0} \frac{1}{2^p} f_n(x - a_p) \leqslant \sum_{p=0}^{N_0} \frac{1}{2^p} f_n(\alpha) \xrightarrow[n \to +\infty]{} 0.$$
 (1.33)

Ainsi, il existe $N_2 \in \mathbb{N}$ tel que pour tout $n \geqslant N_2$, pour tout $x \in [a, b]$, $\sum_{p=0}^{N_0} \frac{1}{2^p} f_n(x - a_p) \leqslant \frac{\varepsilon}{2}$. Donc il existe $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$, pour tout $x \in [a, b]$, $0 \leqslant g_n(x) \leqslant \varepsilon$. D'où le résultat.

Solution 1.6. f_n est définie car $\frac{1}{x^2+n^2} \leqslant \frac{1}{n^2}$. Soit a > 0. Sur [-a,a], $|f_n(x)| \leqslant \frac{|a|}{n^2}$, terme général d'une série à termes positifs convergente. Il y a donc convergence normale sur [-a,a], et f_n est continue pour tout $n \in \mathbb{N}$ donc f l'est aussi. Soit $g_n(x) = \frac{1}{x^2+n^2}$. On a $g'_n(x) = -\frac{2x}{(x^2+n^2)^2}$ et pour tout $x \in [-a,a]$, $|g'_n(x)| \leqslant \frac{2|a|}{n^4}$. Il y a à nouveau convergence normale sur [-a,a] pour tout $a \in \mathbb{R}$ et donc $g(x) = \sum_{n=1}^{+\infty} g_n(x)$ est \mathcal{C}^1 et donc f aussi.

Sur [-1,1], on peut intervertir les limites :

$$\lim_{x \to 0} f(x) = \sum_{n=1}^{+\infty} \lim_{x \to 0} f_n(x) = 0.$$
 (1.34)

Fixons x>0, on pose $\psi_x(t)=\frac{x}{x^2+t^2}$. ψ_x est positive décroissante. Ainsi, pour tout $n\geqslant 1$,

$$\int_{n}^{n+1} \psi_x(t) dt \leqslant \psi_x(n) \leqslant \int_{n-1}^{n} \psi_x(t) dt. \tag{1.35}$$

On a

$$\int_{A}^{X} \frac{x dt}{x^2 + t^2} = \int_{A}^{X} \frac{\frac{dt}{x}}{1 + \left(\frac{t}{x}\right)^2} \xrightarrow[X \to +\infty]{} \frac{\pi}{2} - \arctan\left(\frac{A}{x}\right). \tag{1.36}$$

Ainsi, en sommant pour $n \in \mathbb{N}^*$, on a

$$\int_{1}^{+\infty} \psi_x(t) dt \leqslant \sum_{n=1}^{+\infty} \psi_x(n) \leqslant \int_{0}^{+\infty} \psi_x(t) dt.$$
 (1.37)

Donc $\lim_{x \to +\infty} f(x) = \frac{\pi}{2}$.

En 0, on a f(x) = xg(x) avec convergence normale sur \mathbb{R} pour g, g continue sur \mathbb{R} et $g(0) = \frac{\pi^2}{6}$. Ainsi,

 $f(x) \underset{x \to 0}{\sim} x \frac{\pi^2}{6}. \tag{1.38}$

Solution 1.7. Les f_n sont M-Lipschitziennes. Soient $x, y \in [a, b]$. On a $|f_n(x) - f_n(y)| \leq M |x - y|$ donc par passage à la limite, f est M-Lipschitzienne.

Soit $\varepsilon > 0$, on considère la subdivision (a_1, \ldots, a_N) de [a, b] de pas δ . Soit $x \in [a, b]$ et $K \in [0, N-1]$ tel que $x \in [a_K, a_{K+1}]$. Pour tout $n \in \mathbb{N}$, on a

$$|f_n(x) - f(x)| \le |f_n(x) - f_n(a_K)| + |f_n(a_K) - f(a_K)| + |f(a_K) - f(x)| \le M\delta + |f_n(a_K) - f(a_K)| + M\delta.$$
(1.39)

On s'impose $\delta \leqslant \frac{\varepsilon}{3M}$. Il existe $N_1 \in \mathbb{N}$ tel que pour tout $n \geqslant N_1$, on a pour tout $k \in [0, N]$, $|f_n(a_k) - f(a_k)| \leqslant \frac{\varepsilon}{3}$. Alors pour tout $x \in [a, b]$, pour tout $n \geqslant N_1$, $|f_n(x) - f(x)| \leqslant \varepsilon$.

Remarque 1.3. L'existence de M est nécessaire, cf $f_n: [0,1] \to \mathbb{R}$ avec $f_n(x) = x^n$.

Remarque 1.4. f n'est pas nécessairement dérivable, cf f_n : $[-1,1] \to \mathbb{R}$ avec $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$ converge uniformément vers $x \mapsto |x|$ et

$$|f'_n(x)| = \left| \frac{x}{\sqrt{x^2 + \frac{1}{n}}} \right| \le 1.$$
 (1.40)

Solution 1.8. Si x=2, on a

$$f_n(2) = \frac{1}{n} \sum_{p=1}^n \frac{1}{\sqrt{1 + \left(\frac{p}{n}\right)^2}} \xrightarrow[n \to +\infty]{} \int_0^1 \frac{\mathrm{d}t}{\sqrt{1 + t^2}} = \left[\ln\left(t + \sqrt{1 + t^2}\right) \right]_0^1 = \ln(2).$$
 (1.41)

Si x < 2, on a pour tout $n \ge 1$, pour tout $p \in [1, n]$,

$$\frac{1}{\sqrt{n^2 + n^x}} \leqslant \frac{1}{\sqrt{n^2 + p^x}} \leqslant \frac{1}{n}.\tag{1.42}$$

On somme pour obtenir

$$\frac{n}{\sqrt{n^2 + n^x}} \leqslant f_n(x) \leqslant 1 \tag{1.43}$$

et donc

$$\lim_{n \to +\infty} f_n(x) = 1. \tag{1.44}$$

De plus, soit a < 2, pour tout $x \in]-\infty, a]$, on a

$$0 \leqslant 1 - f_n(x) \leqslant 1 - \frac{n}{\sqrt{n^2 + n^x}} \leqslant 1 - \frac{n}{\sqrt{n + n^a}} \xrightarrow[n \to +\infty]{} 0.$$
 (1.45)

Donc $(f_n)_{n\geqslant 1}$ converge uniformément vers 1 sur $]-\infty,a]$.

Si x > 2, soit $\alpha \in [0, 1]$, on a

$$f_n(x) = \sum_{p=1}^{\lfloor n^{\alpha} \rfloor} \frac{1}{\sqrt{n^2 + p^x}} + \sum_{p=\lfloor n^{\alpha} \rfloor + 1}^{n} \frac{1}{\sqrt{n^2 + p^x}}.$$
 (1.46)

On a

$$\sum_{p=1}^{\lfloor n^{\alpha} \rfloor} \frac{1}{\sqrt{n^2 + p^x}} \leqslant \frac{n^{\alpha}}{\sqrt{1 + n^2}} n^{\alpha - 1}, \tag{1.47}$$

et

$$\sum_{p=\lfloor n^{\alpha}\rfloor+1}^{n} \frac{1}{\sqrt{n^2 + p^x}} \leqslant \frac{n}{\sqrt{n^2 + n^{x\alpha}}} = \frac{1}{\sqrt{1 + n^{x\alpha - 2}}}.$$
 (1.48)

On choisit α tel que $\alpha < 1$ et $x\alpha - 2 > 0$ (possible car x > 2). Si a > 2, pour $\alpha = \left(1 + \frac{2}{a}\right) \times \frac{1}{2}$, si $x \geqslant a$, on a $\frac{2}{x} \leqslant \frac{2}{a} < \alpha < 1$ donc

$$0 \leqslant f_n(x) \leqslant \frac{n^{\alpha}}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{1 + n^{\alpha x - 2}}} \xrightarrow[n \to +\infty]{} 0. \tag{1.49}$$

Il y a donc convergence uniforme vers 0 sur $[a, +\infty[$.

Solution 1.9.

1. Pour tout $(n,k) \in \mathbb{N} \times [0,n]$,

$$\frac{1}{n^k} \binom{n}{k} = \frac{1}{k!} \frac{n(n-1)\dots(n-k+1)}{n \times n \times \dots \times n} \leqslant \frac{1}{k!}.$$
 (1.50)

Ainsi,

$$\left\| \sum_{k=0}^{n} \frac{a^k}{k!} - f_n(a) \right\| = \left\| \sum_{k=0}^{n} \frac{a^k}{k!} - \sum_{k=0}^{n} \binom{n}{k} \frac{a^k}{n^k} \right\|, \tag{1.51}$$

$$\leqslant \sum_{k=0}^{n} \left(\frac{1}{k!} - \binom{n}{k} \frac{1}{n^k} \right) \left\| a \right\|^k, \tag{1.52}$$

$$= \sum_{k=0}^{n} \frac{\|a\|^{k}}{k!} - \left(1 + \frac{\|a\|}{n}\right)^{n} \xrightarrow[n \to +\infty]{} 0. \tag{1.53}$$

On a bien $\lim_{n\to+\infty} f_n(a) = \exp(a)$.

Soit $R \geqslant 0$, pour tout $a \in \overline{B(0,R)}$,

$$\|\exp(a) - f_n(a)\| \le \left\| \sum_{k=0}^n \frac{a^k}{k!} - \sum_{k=0}^n \binom{n}{k} \frac{a^k}{n^k} \right\| + \left\| \sum_{k=n+1}^{+\infty} \frac{a^k}{k!} \right\|$$
 (1.54)

$$\leqslant \sum_{k=0}^{n} \left(\frac{1}{k!} - \binom{n}{k} \frac{1}{n^k} \right) R^n \xrightarrow[n \to +\infty]{} 0. \tag{1.55}$$

 $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers $\exp(a)$ sur les compacts.

- 2. D'après ce qui précède, $(P_n)_{n\in\mathbb{N}}$ converge simplement vers $z\mapsto \frac{\mathrm{e}^{\mathrm{i}z}-\mathrm{e}^{-\mathrm{i}z}}{2\mathrm{i}}=\sin(z)$. Et on a convergence sur les compacts.
- 3. On peut déjà dire que $\deg(P_n) \leq 2n+1$. Le coefficient en X^{2n+1} de P_n est

$$\alpha = \frac{\left(\frac{i}{2n+1}\right)^{2n+1} - \left(\frac{-i}{2n+1}\right)^{2n+1}}{2i} = \frac{1}{(2n+1)^{2n+1}} \times \frac{(-1)^n}{2i} [i - (-i)] \neq 0$$
 (1.56)

et donc $deg(P_n) = 2n + 1$.

Le coefficient en X est $\frac{(2+1)\left(\frac{\mathrm{i}}{2n+1}-\left(\frac{-\mathrm{i}}{2n+1}\right)\right)}{2\mathrm{i}}=1.$

Soit $z \in \mathbb{C}$, on a

$$P_n(z) = 0 \iff \left(1 + \frac{iz}{2n+1}\right)^{2n+1} = \left(1 - \frac{iz}{2n+1}\right)^{2n+1},\tag{1.57}$$

$$\iff \exists k \in \llbracket 0, 2n \rrbracket, \ 1 - \frac{\mathrm{i}z}{2n+1} = \left(1 + \frac{\mathrm{i}z}{2n+1}\right) \exp\left(\frac{2\mathrm{i}k\pi}{2n+1}\right),\tag{1.58}$$

$$\iff \exists k \in \llbracket 0, 2n \rrbracket, \ 1 - \exp\left(\frac{2\mathrm{i}k\pi}{2n+1}\right) = \frac{\mathrm{i}z}{2n+1} \left(1 + \exp\left(\frac{2\mathrm{i}k\pi}{2n+1}\right)\right), \quad (1.59)$$

$$\iff \exists k \in \llbracket 0, 2n \rrbracket, \ z = (2n+1) \times (-\mathrm{i}) \times \frac{(-2\mathrm{i}) \sin\left(\frac{k\pi}{2n+1}\right)}{2\cos\left(\frac{k\pi}{2n+1}\right)},\tag{1.60}$$

$$\iff \exists k \in \llbracket 0, 2n \rrbracket, = -(2n+1) \tan \left(\frac{k\pi}{2n+1} \right). \tag{1.61}$$

On a

$$P_n = aX \times \prod_{k=1}^{2n} \left(X + (2n+1) \tan \left(\frac{k\pi}{2n+1} \right) \right), \tag{1.62}$$

$$= aX \prod_{k=1}^{n} \left(X + (2n+1) \tan \left(\frac{k\pi}{2n+1} \right) \right) \times \prod_{k=n+1}^{2n} \left(X + (2n+1) \tan \left(\frac{k\pi}{2n+1} \right) \right),$$
(1.63)

(1.64)

$$= aX \prod_{k=1}^{n} \left(X^2 - (2n+1)^2 \tan^2 \left(\frac{k\pi}{2n+1} \right) \right), \tag{1.64}$$

$$= a'X \prod_{k=1}^{n} \left(1 - \frac{X^2}{(2n+1)^2 \tan^2\left(\frac{k\pi}{2n+1}\right)} \right). \tag{1.65}$$

Comme le coefficient de X vaut 1, on a a'=1, d'où le résultat.

- 4. Soit $f_n : \mathbb{N} \to \mathbb{C}$ telle que $f(p) = a_{n,p}$. D'après (i), $\sum f_n$ converge normalement sur \mathbb{N} , et d'après (ii), on peut intervertir et $\lim_{p \to +\infty} \sum_{n=0}^{+\infty} a_{n,p} = \sum_{n=0}^{+\infty} \beta_n$.
- 5. tan est impaire, et $\tan'' = 2\tan(1+\tan^2) > 0 \operatorname{sur} \left[0, \frac{\pi}{2}\right]$, donc tan est convexe et $\tan(t) > t$ sur $\left[0, \frac{\pi}{2}\right]$, et c'est bon par imparité.

Pour tout $k \in [1, n]$, $0 \leqslant \frac{x^2}{(2n+1)^2 \tan^2(\frac{k\pi}{2n+1})} \leqslant \frac{x^2}{k^2\pi^2}$. Il existe $k_0 \in \mathbb{N}$ tel que pour tout $k \geqslant k_0$, $\frac{x^2}{k^2\pi^2} \leqslant \frac{1}{2}$, alors pour tout $n \geqslant k_0$, pour tout $k \in [\![k_0, n]\!]$, $1 - \frac{x^2}{(2n+1)^2 \tan^2\left(\frac{k\pi}{2n+1}\right)} \geqslant \frac{1}{2} > 0$. Alors

$$0 \leqslant -\ln\left(\prod_{k=k_0}^n \left(1 - \frac{x^2}{(2n+1)^2 \tan^2\left(\frac{k\pi}{3n+1}\right)}\right)\right) = \sum_{k=k_0}^n -\ln\left(1 - \frac{x^2}{(2n+1)^2 \tan^2\left(\frac{k\pi}{2n+1}\right)}\right). \tag{1.66}$$

On a

$$0 \leqslant -\ln\left(1 - \frac{x^2}{(2n+1)^2 \tan^2\left(\frac{k\pi}{2n+1}\right)}\right) \leqslant -\ln\left(1 - \frac{x^2}{k^2\pi^2}\right) = O(\frac{1}{k^2}), \quad (1.67)$$

terme général d'une série à termes positifs convergente.

Si $g_n(x) = -\ln\left(\prod_{k=k_0}^n \left(1 - \frac{x^2}{(2n+1)^2 \tan^2(\frac{k\pi}{3n+1})}\right)\right)$, alors $g_n(x) = \sum_{k=k_0}^{+\infty} a_{n,k}$ où l'on définit pour tout $k \ge k_0, n \ge k_0$,

$$a_{n,k} = -\ln\left(1 - \frac{x^2}{(2n+1)^2 \tan^2\left(\frac{k\pi}{2n+1}\right)}\right)$$
 (1.68)

si $k \le n$, et 0 sinon. On pose aussi $\alpha_k = -\ln\left(1 - \frac{x^2}{k^2\pi^2}\right)$. On a bien $|a_{n,k}| \le \alpha_k$ terme général d'une série à termes positifs convergente.

Pour $k \ge k_0$ fixé, pour $n \ge k$, on a

$$a_{n,k} \xrightarrow[n \to +\infty]{} \alpha_k.$$
 (1.69)

On peut donc appliquer ce qui précède, et on a

$$\lim_{n \to +\infty} g_n(x) = \sum_{k=k_0}^{+\infty} \alpha_k, \tag{1.70}$$

d'où

$$\lim_{n \to +\infty} \prod_{k=k_0} \left(1 - \frac{x^2}{(2n+1)^2 \tan^2\left(\frac{k\pi}{2n+1}\right)} \right) = \prod_{k=k_0}^{+\infty} \left(1 - \frac{x^2}{k^2 \pi^2} \right). \tag{1.71}$$

Soit $R_n(x) = x \prod_{k=1}^{k_0} \left(1 - \frac{x^2}{(2n+1)^2 \tan^2(\frac{k\pi}{2n+1})} \right) \xrightarrow[n \to +\infty]{} x \prod_{k=1}^{k_0} \left(1 - \frac{x^2}{k^2\pi^2} \right)$. Finalement, on a bien

$$\sin(x) = x \prod_{k=1}^{+\infty} \left(1 - \frac{x^2}{k^2 \pi^2} \right).$$
 (1.72)

Solution 1.10.

1. Soit $\alpha \in [a, b]$. f est strictement croissante sur $\left[0, \frac{1}{2}\right]$. On a $f\left([0, 1]\right) \subset \left[0, \frac{1}{2}\right]$. Pour tout $x \in \left[0, \frac{1}{2}\right]$, $f(x) \geqslant x$. $(f_n(x))_{n\geqslant 1}$ est strictement croissante, majorée par $\frac{1}{2}$, donc converge vers $\frac{1}{2}$ seul point fixe de f (continue). Ainsi (f_n) converge simplement vers $\frac{1}{2}$ sur [a, b].

Pour tout $n \ge 1$,

$$\left| f_n(x) - \frac{1}{2} \right| = \frac{1}{2} - f_n(x) \leqslant \max\left(\frac{1}{2} - f_n(a), \frac{1}{2} - f_n(b)\right) \xrightarrow[n \to +\infty]{} 0. \tag{1.73}$$

Donc $(f_n)_{n\geqslant 0}$ converge uniformément sur [a,b].

On a $f_n(0) = f_n(1) = 0 \neq \frac{1}{2}$, on n'a donc pas la continuité de la limite simple. Donc il ne peut y avoir convergence uniforme sur [0,1] (même sur [0,1]).

2. Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X]$. Q_2 est dense dans \mathbb{R} , donc pour tout $k \in [0, n]$, il existe $(\alpha_{k,m})_{m \in \mathbb{N}} \in \mathbb{Q}_2^{\mathbb{N}}$ telle que $\lim_{n} \alpha_{k,m} = a_k$. Soit $Q_n = \sum_{k=0}^{n} \alpha_{k,m} X^k \in \mathbb{Q}_2[X]$. Pour tout $x \in [a, b]$ on a

$$|P(x) - Q(x)| \le \sum_{k=0}^{n} |a_k - \alpha_{k,m}| |x|^k \le \sum_{k=0}^{n} |a_k - \alpha_{k,m}| \xrightarrow[m \to +\infty]{} 0$$
 (1.74)

donc il existe $M \in \mathbb{N}$, si $Q = Q_M$, alors $||P - Q||_{\infty} \leqslant \varepsilon$.

3. Soit $f \in \mathcal{C}^0([a,b],\mathbb{R})$, soit $\varepsilon > 0$. D'après le théorème de Weierstrass, il existe $P \in \mathbb{R}[X]$, tel que $\|f - P\|_{\infty,[a,b]} \leqslant \frac{\varepsilon}{3}$. Si $Q = \sum_{k=0}^n \frac{p_k}{2^{n_k}} X^k$, soit pour $m \in \mathbb{N}$, $Q_m = \sum_{k=0}^n p_k (f_m)^{n_k} X^k$ converge uniformément vers Q sur [a,b] (n est fixé), et $Q_m \in \mathbb{Z}[X]$ car pour tout $n \in \mathbb{N}$, $f_n \in \mathbb{Z}[X]$. Il existe $n_0 \in \mathbb{N}$ tel que $\|Q_{n_0} - Q\|_{\infty,[a,b]} \leqslant \frac{\varepsilon}{3}$. Si $A = Q_{n_0} \in \mathbb{Z}[X]$, on a bien $\|f - A\|_{\infty,[a,b]} \leqslant \varepsilon$.

Sur [0,1], on n'a pas de suite de polynômes dans $\mathbb{Z}[X]$ qui converge uniformément sur [0,1] vers $f=\frac{1}{2}$ car pour tout $P\in\mathbb{Z}[X],\ P(0)\in\mathbb{Z}$.

Solution 1.11.

1. Par croissance des taux d'accroissements (en un point fixé) :

$$\frac{u_n(y) - u_n(x)}{y - x} \leqslant \frac{u_n(y) - u_n(b)}{y - b} \leqslant \frac{u_n(\beta) - u_n(b)}{\beta - b},\tag{1.75}$$

et de même

$$\frac{u_n(y) - u_n(x)}{y - x} \geqslant \frac{u_n(\alpha) - u_n(a)}{\alpha - a}.$$
(1.76)

Finalement, on a

$$\left| \frac{u_n(x) - u_(y)}{x - y} \right| \leqslant \max \left(\left| \frac{u_n(\alpha) - u_n(a)}{\alpha - a} \right|, \left| \frac{u_n(\beta) - u_n(b)}{\beta - b} \right| \right), \tag{1.77}$$

qui sont des suites bornées car convergent. D'où l'existence de A.

2. Par passage à la limite (simple), u est A-Lipschitzienne sur [a, b]. Soit $\varepsilon > 0$. Soit $(a_k)_{1 \le k \le N}$ une subdivision de pas d de [a, b]. Pour tout $x \in [a, b]$, il existe $k \in [1, N - 1]$ tel que $x \in [a_k, a_{k+1}]$. Alors pour tout $n \in \mathbb{N}$, on a

$$|u_n(x) - u(x)| \le |u_n(x) - u_n(a_k)| + |u_n(a_k) - u(a_k)| + |u(a_k) - u(x)|, \tag{1.78}$$

$$\leqslant 2Ad + |u_n(a_k) - u(a_k)|. \tag{1.79}$$

On choisit d tel que $2Ad \leqslant \frac{\varepsilon}{2}$. Par convergence simple, il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geqslant N_0$, pour tout $k \in [1, N]$, $|u_n(a_k) - u(a_k)| \leqslant \frac{\varepsilon}{2}$. Ainsi, pour tout $n \geqslant N_0$, pour tout $x \in [a, b]$, $|u_n(x) - u(x)| \leqslant \varepsilon$. Donc (u_n) converge uniformément vers u sur [a, b].

Remarque 1.5. C'est faux si I = [a, b], cf $f_n: [0, 1] \to \mathbb{R}$ donnée par $f_n(x) = x^n$.

Solution 1.12. Soit $f \in E$ et $(f_n)_{n \in \mathbb{N}}$ qui converge uniformément vers f. Si φ est une fonction polynômiale, $\varphi = \sum_{k=0}^{N} \alpha_k X^k$. Pour tout $k \in [0, N]$, (f_n^k) converge uniformément vers f^k sur [a, b]. Par combinaison linéaire, $(\varphi \circ f_n)_{n \in \mathbb{N}}$ converge uniformément vers $\varphi \circ f$ sur [a, b]. $(\|f_n\|_{\infty})$ est bornée (car converge), donc il existe $A \geqslant 0$ telle que pour tout $n \in \mathbb{N}$, $\|f_n\|_{\infty} \leqslant A$ et $\|f\|_{\infty} \leqslant A$.

Soit $\varepsilon > 0$, il existe $P \in \mathbb{R}[X]$ telle que $\|\varphi - P\|_{\infty,[-A,A]} \leqslant \frac{\varepsilon}{3}$ d'après le théorème de Weierstrass. Ainsi, pour tout $x \in [a,b]$,

$$\left| \left(\varphi \circ f_n \right) (x) - \left(\varphi \circ f \right) (x) \right| \leqslant \left| \left(\varphi \circ f_n \right) (x) - \left(P \circ f_n \right) (x) \right| \tag{1.80}$$

$$+ |P \circ f_n(x) - P \circ f(x)| + |P \circ f(x) - \varphi \circ f(x)|, \qquad (1.81)$$

$$\leq 2\frac{\varepsilon}{3} + \|P \circ f_n - P \circ f\|_{\infty,[a,b]} \tag{1.82}$$

et le dernier terme tend vers 0 donc est plus petit que $\frac{\varepsilon}{3}$ pour n suffisamment grand. D'où le résultat.

Remarque 1.6. Pour la deuxième partie du raisonnement, on peut aussi invoquer la continuité uniforme de φ sur [-A, A].

Table des figures