PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-129472

(43)Date of publication of application: 10.05.1994

(51)Int.CI.

F16F 13/00

(21)Application number: 04-301669

(71)Applicant: TOYODA GOSEI CO LTD

(22)Date of filing:

14.10.1992

(72)Inventor: TAKEO SHIGEKI

NONOGAKI HARUHIKO

(54) LIQUID SEAL VIBRATION ISOLATOR

(57)Abstract:

PURPOSE: To make device height yet lower as well as to bring a good vibro- isolating capacity into full play in compact form.

CONSTITUTION: One end opening of a cylindrically molded thin rubber membrane 2 is connected to a lower end opening of a cylindrical side plate 3. This thin rubber membrane 2 is turned over outwards along the circumference of this side plate 3, connecting the other end opening to an upper end circumference of the side plate 3, and a sub-liquid chamber B is formed in space between the rubber membrane 2 and the side plate 3. In succession, the lower end opening of the side plate 3 is closed by a bottom plate 4 formed in a passage 51, forming an inner part of this closed space into a main liquid chamber A, and the main liquid chamber A and the sub-liquid chamber B are connected to each other by the throttle passage 51. Since the thin rubber member 2 of the sub-liquid chamber B, where a sealing solution comes in, is expanded outwards in the radial direction.

device height is thus lowerable, and a heavy noise or the like is reduced too.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顯公開番号

特開平6-129472

(43)公開日 平成6年(1994)5月10日

(51)Int.CL⁵

識別配号 庁内整理番号 FΙ

技術表示箇所

F16F 13/00

B 9031-3 J

審査請求 未請求 請求項の数1(全 5 頁)

(21)出願番号

特顯平4-301669

(22)出題日

平成4年(1992)10月14日

(71)出願人 000241463

豊田合成株式会社

愛知県西春日井郡春日町大字落合字長畑1

(72)発明者 竹尾 茂樹

愛知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内

(72)発明者 野々垣 晴彦

受知県西春日井郡春日町大字落合字長畑1

番地 豊田合成株式会社内

(74)代理人 弁理士 伊藤 求馬

(54)【発明の名称】 液封入防振装置

(57)【要約】

【目的】 装置高を低くでき、コンパクトな形状で良好 な防振性能を発揮する。

【構成】 筒状側板3の下端開口に、筒状に成形した薄 肉ゴム膜2の一端開口を接合連結する。薄肉ゴム膜2を 側板3の外周に沿って外方へ反転せしめてその他端開口 を側板3の上端外周に接合し、薄肉ゴム膜2と側板3間 に副液室Bを形成する。流路51を形成した底板4によ り側板3の下端開口を閉鎖して閉鎖空間内を主液室Aと なし、絞り流路51で主液室Aと副液室Bを結ぶ。封入 液が流入する副液室Bの薄肉ゴム膜2は径方向外方へ膨 張するから装置髙を低くでき、こもり音等が低減され る。

【特許請求の範囲】

【請求項1】 振動体を支持する防振ゴム体により上端 開口が閉鎖されて主液室の側壁を構成する筒状側板を設 け、該側板の下端開口に、筒状に成形した薄肉ゴム膜の 一端開口を接合連結するとともに、該薄肉ゴム膜を側板 の外周に沿って外方へ反転せしめてその他端開口を側板 の上端外周に接合して、薄肉ゴム膜と側板間に形成され る環状密閉空間を副液室となし、絞り流路を形成した底 板により上記側板の下端開口を閉鎖して閉鎖空間内を上 記主液室となして、上記絞り流路の一端を上記主液室に 連通せしめるとともに、他端を上記副液室に連通せしめ たことを特徴とする液封入防振装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は液封入防振装置に関し、 特にコンパクトで防振特性にも優れる液封入防振装置に 関するものである。

[0002]

- 【従来の技術】図6には従来の防振装置の一例を示す。図において、下方へ開放する浅い容器状の厚肉防振ゴム体1には外周に筒状の側板3が接合され、その筒開口は仕切板8により閉鎖されて内部が主液室Aとなっている。仕切板8に沿う下方に薄肉ゴム膜2が配設され、該ゴム膜2は外周縁を仕切板8の外周下面に密接せしめて容器状底板4の開口縁にカシメにより固定されており、薄肉ゴム膜2により密閉された空間内を副液室Bとしてある。

【0003】上記主液室Aと副液室Bは仕切板8の外周面に形成した絞り流路81により互いに連通しており、底板4に設けたボルト92により防振装置が車両フレーム等に固定されるとともに、防振ゴム体1の頂面に接合した上板9にエンジン等の振動体を載置してボルト91により固定する。

【0004】エンジン振動が入力すると、防振ゴム体1が上下方向へ変形し、この時の主液室Aの容積増減に伴って封入液が仕切板8の絞り流路81を流通して振動減衰作用を発揮する。

[0005]

【発明が解決しようとする課題】ところで、高周波振動入力時の動バネ定数の増大を避けるために防振ゴム体1のゴム材として軟らかいものを使用すると、振幅の大きい低周波振動入力時に防振ゴム体1が大きく変形して、流入する大量の封入液により薄肉ゴム膜2が大きく下方へ彫張する。そこで、従来の装置では、この膨張を保証するために底板4を深くしているが、これによると防振装置の全高が高くなり、振動の入力方向に対して装置が縦長となって剛性が低くなる。このため、装置全体の共振点が低くなって、こもり音や透過音に対する防振特性が悪化するという問題がある。

【0006】本発明はかかる課題を解決するもので、装 50

置高を低くでき、コンパクトな形状で良好な防振特性を 得ることが可能な液封入防振装置を提供することを目的 とする。

[0007]

【課題を解決するための手段】本発明の構成を説明すると、振動体を支持する防振ゴム体1により上端開口が閉鎖されて主液室Aの側壁を構成する筒状側板3を設け、該側板3の下端開口に、筒状に成形した薄肉ゴム膜2の一端開口を接合連結するとともに、該薄肉ゴム膜2を側板の外周に沿って外方へ反転せしめてその他端開口を側板3の上端外周に接合して、薄肉ゴム膜2と側板3間に形成される環状密閉空間を副液室Bとなし、絞り流路51を形成した底板4により上記側板3の下端開口を閉鎖して閉鎖空間内を上記主液室Aとなして、上記絞り流路51の一端を上記主液室Aに連通せしめるとともに、他端を上記副液室Bに連通せしめたものである。

[8000]

【作用】上記構成の装置においては、主液室Aからの封入液が流入する副液室Bを側板3の外周に沿う位置に形成したから、主液室Aから大量の封入液が流入しても薄肉ゴム膜2は径方向外方へ膨張する。したがって、副液室Bの容積を充分確保しても装置高を高くする必要はなく、装置の剛性が高く維持されて、こもり音等の伝達が防止される。

[0009] また、側板3の外方で環状に副液室Bを形成するから、装置の高さ方向で副液室Bの容積を確保するのに比べて、同一容積を確保するのに装置径の増大は比較的少なくて済み、コンパクト化が図られる。

[0010]

【実施例1】図1および図2において、防振装置の底板4は上方へ開放する大径の容器状をなし、その環状側壁42の内方位置に略く字断面の筒状側板3が配設されて、環状の閉鎖空間が形成されている。上記側板3の傾斜する上半部内周には、下方へ開放する容器状をなした厚肉防振ゴム体1の開口縁が接合されて側板3の内空間を閉鎖し、主液室Aを形成している。防振ゴム体1の一部は、側板3の内周面に沿って一定厚のシールゴム11となって延び、底板4上には外周をシールゴム11に密着せしめてリング状の絞り部材5が設けてある。

【0011】側板3と底板側壁42との間に形成された閉鎖空間内には、これを内外に区画して筒状の薄肉ゴム膜2が配設してあり、該ゴム膜2は下端開口縁が側板3の下端に接合され、上端開口縁のリング枠21が底板側壁42と側板3とのカシメ部に一体に固定されている。かくして、薄肉ゴム膜2の内方空間内は副液室Bとなり、外方空間内は空気室Cとなっている。

【0012】上記薄肉ゴム膜2は、図3に示す如く、防 振ゴム体1およびこれに続くシールゴム11と同時に射 出成形されて、その一端が側板3の下端に接合される。

そして、底板4の組付け時に、薄肉ゴム膜2の他端開口

3

を側板3の外周に沿って外方へ反転せしめて図1の状態とする。この薄肉ゴム膜2は、防振ゴム体1と同一材料でこれと連続的に成形しても良く、また、防振ゴム体1は低助バネのもの、薄肉ゴム膜2は耐オゾン性に優れるものとして、別材料で成形しても良い。

【0013】上記絞り部材5は逆U字断面をなし、底板4で閉鎖された環状の内部空間は周方向の一箇所で栓部材52により区画されて絞り流路51となり、該絞り流路51は栓部材52を挟んだ一端が開口511により主液室Aに連通し、他端が開口512により副液室Bに連10通している。

【0014】防振ゴム体1には中心に連結金具6が埋設してあり、その下面からは支持棒71が主液室A内に突出して、傘状の撹拌板7を支持している。この撹拌板7の外周はゴム材よりなり、上方の側板屈曲部31下面と下方の絞り部材5上面にそれぞれ所定間隔で対向して、ストッパ板を兼ねている。

【0015】防振装置は底板4の中心下面に突出形成したボルト部41により車両フレームに固定され、エンジンは連結部材6の中心上面に突出形成したボルト部61 20により固定載置される。

【0016】上記構成の防振装置において、エンジンより低周波の大振幅振動が入力すると、防振ゴム体1は上下に変形し、この時の主液室Aの容積変化に伴い封入液が絞り流路51を経て副液室Bへ流通する。側板3の外周に沿って形成された副液室Bへの液流通に伴って、その室壁を構成する薄肉ゴム膜2は径方向へ膨張収縮する。

【0017】過大な振動が入力すると、攪拌板7の外周 が側板3の屈曲部31下面ないし絞り部材5の上面に当 30 接して、防振ゴム体1の過度の変形が規制される。

【0018】高周波振動が入力すると攪拌板7の振動により主液室A内で液共振が生じて、振動の吸収がなされる

【0019】かかる構造によれば、副液室Bが側板3の外方に存在するから、封入液が流入しても副液室Bは径方向へ膨張し、装置高を高くする必要はない。したがって、上下方向の剛性が大きくなり、こもり音等の伝達が低減される。また、副液室Bを側板3外方の環状空間としたから、装置径をそれほど大きくすることなく充分な 40 容積を確保することができる。

[0020]

【実施例2】図4に示す如く、攪拌板7の支持棒71の 先端にストッパゴム体72を設けて、下向き振動が入力 した場合にはストッパゴム体72が底板4面に当接する ようにしても良い。これによれば、大きな荷重が加わる 下向き振動時の初期にストッパゴム体72の変形による クッション作用がなされて、異音や衝撃の発生が防止さ れる。

[0021]

【実施例3】図5において、シールゴム11が延びる側板3の下半部には適宜箇所に抜き孔32が形成されており、この部分でシールゴム11の背後は低圧の副液室Bに面している。他の構造は上記各実施例と同一である。【0022】かかる構造によれば、上記実施例の効果に加えて、特に高周波の微小振動が入力して主液室Aの内圧が脈動すると、これを吸収するように抜き孔32に面するシールゴム11部が変形し、振動が吸収される。【0023】

【発明の効果】以上の如く、本発明の被封入防振装置によれば、装置高を低くして剛性を高めることができるから、エンジンこもり音や透過音は充分小さくなる。また、装置径がやや増加する代わりに装置高は大きく低下するから、全体としてコンパクトなものとなる。

【図面の簡単な説明】

【図1】本発明の実施例1における防振装置の全体垂直 断面図である。

【図2】防振装置の水平断面図で、図1のII-II線に沿う断面図である。

【図3】防振装置の製造過程における断面図である。

【図4】本発明の実施例2 における防振装置の全体垂直 断面図である。

【図5】本発明の実施例3における防振装置の全体垂直 断面図である。

【図6】従来の防振装置の全体垂直断面図である。 【符号の説明】

- 1 防振ゴム体・
- 2 薄肉ゴム膜
- 3 側板
- 4 底板
- 5 絞り部材
- 51 絞り流路
- A 主液室
- B 副液室

