圆锥曲线概念技巧总结

1. 圆锥曲线的定义:

要**重视"括号"内的限制条件**: **椭圆中**,与两个定点 F_1 , F_2 的距离的和等于常数 2a ,且此**常数** 2a 一定要大于 $|F_1F_2|$, 当常数等于 $|F_1F_2|$ 时,轨迹是线段 F_1F_2 , 当常数小于 $|F_1F_2|$ 时,无轨迹; **双曲线中**,与两定点 F_1 , F_2 的距离的差的绝对值等于常数 2a ,且此常数 2a 一定要小于 $|F_1F_2|$, 定义中的"绝对值"与 2a < $|F_1F_2|$ 不可忽视。若 2a = $|F_1F_2|$,则轨迹是以 F_1 , F_2 为端点的两条射线,若 2a > $|F_1F_2|$,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。**如(1)**已知定点 $F_1(-3,0),F_2(3,0)$,在满足下列条件的平面上动点 P 的轨迹中是椭圆的是A. $|PF_1|+|PF_2|=4$ B. $|PF_1|+|PF_2|=6$ C. $|PF_1|+|PF_2|=10$ D. $|PF_1|^2+|PF_2|^2=12$ (答:又曲线的左支)

- **2. 圆锥曲线的标准方程**(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程)**:**
- (1) **椭圆**: 焦点在 x 轴上时 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0),焦点在 y 轴上时 $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$ (a > b > 0)。方程 $Ax^2 + By^2 = C$ 表示椭圆的充要条件是什么?(ABC $\neq 0$,且 A,B,C 同号,A \neq B)。**如(1)**已知方程 $\frac{x^2}{3+k} + \frac{y^2}{2-k} = 1$ 表示椭圆,则 k 的取值范围为____(答: $(-3, -\frac{1}{2}) \cup (-\frac{1}{2}, 2)$);
- (2) 若 $x, y \in R$,且 $3x^2 + 2y^2 = 6$,则 x + y 的最大值是____, $x^2 + y^2$ 的最小值是____(答: $\sqrt{5}, 2$)
- (2) **双曲线**: 焦点在 x 轴上: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, 焦点在 y 轴上: $\frac{y^2}{a^2} \frac{x^2}{b^2} = 1$ (a > 0, b > 0)。 方程 $Ax^2 + By^2 = C$ 表示双曲线的充要条件是什么? (ABC $\neq 0$, 且 A, B 异号)。 **如(1)**双曲线的离心率等于 $\frac{\sqrt{5}}{2}$,且与椭圆 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 有公共焦点,则该双曲线的方程______(答: $\frac{x^2}{4} y^2 = 1$);
- **(2)** 设中心在坐标原点 O ,焦点 F_1 、 F_2 在坐标轴上,离心率 $e=\sqrt{2}$ 的双曲线 C 过点 $P(4,-\sqrt{10})$,则 C 的方程为_____ (答: $x^2-y^2=6$)
- (3) **抛物线**: 开口向右时 $y^2 = 2px(p > 0)$,开口向左时 $y^2 = -2px(p > 0)$,开口向上时 $x^2 = 2py(p > 0)$,开口向下时 $x^2 = -2py(p > 0)$ 。
 - 3. **圆锥曲线焦点位置的判断**(首先化成标准方程,然后再判断):
- (1) **椭圆**:由 x^2 , y^2 分母的大小决定,焦点在分母大的坐标轴上。**如**已知方程 $\frac{x^2}{|m|-1} + \frac{y^2}{2-m} = 1$ 表示焦点在y轴上的椭圆,则m的取值范围是__(答:($-\infty$,-1) \cup (1, $\frac{3}{2}$))
 - (2) **双曲线**: 由 x^2 , y^2 项系数的正负决定,焦点在系数为正的坐标轴上;
 - (3) 抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

特别提醒: **(1)** 在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点 F_1 , F_2 的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数 a,b,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件,在求解抛物线问题时,首先要判断开口方向; (2) 在椭圆中,a最大, $a^2 = b^2 + c^2$,在双曲线中,c最大, $c^2 = a^2 + b^2$ 。

4. 圆锥曲线的几何性质:

(1) **椭圆**(以 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)为例):①范围: $-a \le x \le a, -b \le y \le b$;②焦点:两个焦点($\pm c, 0$);③对称性:两条对称轴x = 0, y = 0,一个对称中心(0, 0),四个顶点

 $(\pm a,0),(0,\pm b)$,其中长轴长为 2a,短轴长为 2b;④准线: 两条准线 $x=\pm \frac{a^2}{c}$;⑤离心率: $e=\frac{c}{a}$,椭圆 $\Leftrightarrow 0 < e < 1$,e 越小,椭圆越圆; e 越大,椭圆越扁。**如(1)**若椭圆 $\frac{x^2}{5} + \frac{y^2}{m} = 1$ 的离心率 $e = \frac{\sqrt{10}}{5}$,则 m 的值是___(答: 3 或 $\frac{25}{3}$);(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为 1 时,则椭圆长轴的最小值为___(答: $2\sqrt{2}$)

- (2) **双曲线**(以 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0)为例):①范围: $x \le -a$ 或 $x \ge a, y \in R$;②焦点:两个焦点($\pm c, 0$);③对称性:两条对称轴x = 0, y = 0,一个对称中心(0, 0),两个顶点($\pm a, 0$),其中实轴长为 2a,虚轴长为 2b,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 $x^2 y^2 = k, k \ne 0$;④准线:两条准线 $x = \pm \frac{a^2}{c}$;⑤离心率: $e = \frac{c}{a}$,双曲线 $\Leftrightarrow e > 1$,等轴双曲线 $\Leftrightarrow e = \sqrt{2}$,e 越小,开口越小,e 越大,开口越大;⑥两条渐近线: $y = \pm \frac{b}{a}x$ 。如(1)双曲线的渐近线方程是 $3x \pm 2y = 0$,则该双曲线的离心率等于______(答: $\frac{\sqrt{13}}{2}$ 或 $\frac{\sqrt{13}}{3}$);(2)双曲线 $ax^2 by^2 = 1$ 的离心率为 $\sqrt{5}$,则 a:b =_______(答:4 或 $\frac{1}{4}$);(3)设双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a>0,b>0)中,离心率 $e \in [\sqrt{2},2]$,则两条渐近线夹角 θ 的取值范围是_______(答: $\left[\frac{\pi}{3},\frac{\pi}{2}\right]$);
- (3) **抛物线**(以 $y^2 = 2px(p > 0)$ 为例): ①范围: $x \ge 0, y \in R$; ②焦点: 一个焦点($\frac{p}{2}, 0$),其中 p 的几何意义是: 焦点到准线的距离; ③对称性: 一条对称轴 y = 0,没有对称中心,只有一个顶点(0,0); ④准线: 一条准线 $x = -\frac{p}{2}$; ⑤离心率: $e = \frac{c}{a}$, 抛物线 $\Leftrightarrow e = 1$ 。**如**设 $a \ne 0, a \in R$,则抛物线 $y = 4ax^2$ 的焦点坐标为______(答: $(0, \frac{1}{16a})$);

5、点 $P(x_0, y_0)$ 和椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的关系: (1) 点 $P(x_0, y_0)$ 在椭圆外 $\Leftrightarrow \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} > 1$; (2) 点 $P(x_0, y_0)$ 在椭圆上 $\Leftrightarrow \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$; (3) 点 $P(x_0, y_0)$ 在椭圆内 $\Leftrightarrow \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} < 1$

6. 直线与圆锥曲线的位置关系:

 (3)相离: $\Delta < 0 \Leftrightarrow$ 直线与椭圆相离; $\Delta < 0 \Leftrightarrow$ 直线与双曲线相离; $\Delta < 0 \Leftrightarrow$ 直线与抛物线相离。

特别提醒: (1) 直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 外一点 $P(x_0, y_0)$ 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。**如** (1) 过点 (2,4) 作直线与抛物线 $y^2 = 8x$ 只有一个公共点,这样的直线有

为_____(答: $\left\{\pm\frac{4}{3},\pm\frac{4\sqrt{5}}{3}\right\}$); **(3)** 过双曲线 $x^2-\frac{y^2}{2}=1$ 的右焦点作直线 l 交双曲线于 A、B 两点,

7、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题: 常利用第一定义和正弦、余弦定理求解。设椭圆或双曲线上的一点 $P(x_0,y_0)$ 到两焦点 F_1,F_2 的距离分别为 r_1,r_2 ,焦点 $\Delta F_1 P F_2$ 的面积为 S ,则在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 中, ① $\theta = \arccos(\frac{2b^2}{r_1 r_2} - 1)$,且当 $r_1 = r_2$ 即 P 为短轴端点时, θ 最大为 $\theta_{\max} = \arccos\frac{b^2 - c^2}{a^2}$;② $S = b^2 \tan\frac{\theta}{2} = c \mid y_0 \mid$,当 $\mid y_0 \mid = b$ 即 P 为短轴端点时, S_{\max} 的最大值为 bc;对于双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的焦点三角形有:① $\theta = \arccos\left(1 - \frac{2b^2}{r_1 r_2}\right)$;

- **8、抛物线中与焦点弦有关的一些几何图形的性质**:(1)以过焦点的弦为直径的圆和准线相切;(2)设 AB 为焦点弦, M 为准线与 x 轴的交点,则 \angle AMF= \angle BMF;(3)设 AB 为焦点弦,A、B 在准线上的射影分别为 A_1 , B_1 ,若 P 为 A_1B_1 的中点,则 PA \bot PB;(4)若 AO 的延长线交准线于 C,则 BC 平行于 x 轴,反之,若过 B 点平行于 x 轴的直线交准线于 C 点,则 A,O,C 三点共线。

特别提醒:因为 $\Delta > 0$ 是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验 $\Delta > 0$!

12. 你了解下列结论吗?

- (1) 双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ 的渐近线方程为 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 0$;
- (2)以 $y = \pm \frac{b}{a}x$ 为渐近线(即与双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ 共渐近线)的双曲线方程为 $\frac{x^2}{a^2} \frac{y^2}{b^2} = \lambda(\lambda)$ 为

参数, $\lambda \neq 0$)。**如**与双曲线 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ 有共同的渐近线,且过点 $(-3,2\sqrt{3})$ 的双曲线方程为_____

(答:
$$\frac{4x^2}{9} - \frac{y^2}{4} = 1$$
)

- (3) 中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为 $mx^2 + ny^2 = 1$;
- (4) 椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为 $\frac{2b^2}{a}$,焦准距(焦点到相应准线的
- 距离)为 $\frac{b^2}{c}$, 抛物线的通径为2p, 焦准距为p;
 - (5) 通径是所有焦点弦(过焦点的弦)中最短的弦;
 - (6) 若抛物线 $y^2 = 2px(p > 0)$ 的焦点弦为 AB, $A(x_1, y_1), B(x_2, y_2)$,则① $|AB| = x_1 + x_2 + p$;

$$(2) x_1 x_2 = \frac{p^2}{4}, y_1 y_2 = -p^2$$

(7) 若 OA、OB 是过抛物线 $y^2 = 2px(p > 0)$ 顶点 O 的两条互相垂直的弦,则直线 AB 恒经过定点 (2p,0)

13. 动点轨迹方程:

- (1) 求轨迹方程的步骤: 建系、设点、列式、化简、确定点的范围;
- (2) 求轨迹方程的常用方法:
- ①直接法: 直接利用条件建立 x, y 之间的关系 F(x,y) = 0; **如**已知动点 P 到定点 F(1,0) 和直线 x = 3 的距离之和等于 4, x P 的轨迹方程. (答: $y^2 = -12(x-4)(3 \le x \le 4)$ 或 $y^2 = 4x(0 \le x < 3)$);

⑤参数法: 当动点 P(x, y) 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将 x, y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。**如(1)**AB 是圆 0 的直径,

且 |AB|=2a,M 为圆上一动点,作 $MN \perp AB$,垂足为 N,在 OM 上取点 P ,使 |OP|=|MN| ,求点 P 的 轨迹。(答: $x^2+y^2=a \mid y \mid$); **(2)** 若点 $P(x_1,y_1)$ 在圆 $x^2+y^2=1$ 上运动,则点 $Q(x_1y_1,x_1+y_1)$ 的轨迹方程是____(答: $y^2=2x+1(\mid x \mid \leq \frac{1}{2})$); **(3)** 过抛物线 $x^2=4y$ 的焦点 F 作直线 I 交抛物线 F A、B 两点,则弦 AB 的中点 M 的轨迹方程是

注意:①如果问题中<u>涉及到平面向量知识</u>,那么应从已知向量的特点出发,考虑选择向量的几何形式进行"摘帽子或脱靴子"转化,还是选择向量的代数形式进行"摘帽子或脱靴子"转化。**如**

已知椭圆
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$
 的左、右焦点分别是 F_1 ($-c$, 0)、 F_2

(c, 0),Q 是椭圆外的动点,满足 $|\overrightarrow{F_1Q}|=2a$.点 P 是线段 F_1Q 与该椭圆的交点,点 T 在线段 F_2Q 上,并且满足 $\overrightarrow{PT}\cdot\overrightarrow{TF_2}=0$, $|\overrightarrow{TF_2}|\neq 0$. (1) 设 x 为点 P 的横坐标,证明 $|\overrightarrow{F_1P}|=a+\frac{c}{a}x$;(2) 求点 T 的轨迹 C 的方

程;(3)试问:在点 T 的轨迹 C 上,是否存在点 M,使 \triangle F₁MF₂的面积 S= b^2 .若存在,求 \angle F₁MF₂的正切值;若不存在,请说明理由.(答:(1)略;(2) $x^2+y^2=a^2$;(3)当 $\frac{b^2}{c}>a$ 时不存在;

当
$$\frac{b^2}{c} \le a$$
时存在,此时 $\angle F_1MF_2 = 2$)

②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上 **特殊点**对轨迹的"完备性与纯粹性"的影响.

③在与圆锥曲线相关的综合题中,**常借助于**"平面几何性质"数形结合(如角平分线的双重身份——对称性、利用到角公式)、"方程与函数性质"化解析几何问题为代数问题、"分类讨论思想"化整为零分化处理、"求值构造等式、求变量范围构造不等关系"等等.

④如果在一条直线上**出现"三个或三个以上的点**",那么**可选择应用"斜率或向量"为桥梁**转化.

14、解析几何与向量综合时可能出现的向量内容:

- (1) 给出直线的方向向量 $\vec{u} = (1,k)$ 或 $\vec{u} = (m,n)$;
- (2) 给出 $\overrightarrow{OA} + \overrightarrow{OB}$ 与 \overrightarrow{AB} 相交,等于已知 $\overrightarrow{OA} + \overrightarrow{OB}$ 过 \overrightarrow{AB} 的中点;
- (3) 给出 $\overrightarrow{PM} + \overrightarrow{PN} = \overrightarrow{0}$,等于已知 $P \in MN$ 的中点;
- (4) 给出 $\overrightarrow{AP} + \overrightarrow{AQ} = \lambda (\overrightarrow{BP} + \overrightarrow{BQ})$,等于已知P,Q与AB的中点三点共线;
- (5) 给出以下情形之一: ① $\overrightarrow{AB}//\overrightarrow{AC}$; ②存在实数 λ ,使 $\overrightarrow{AB} = \lambda \overrightarrow{AC}$; ③若存在实数 α , β , 且 $\alpha + \beta = 1$,使 $\overrightarrow{OC} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB}$,等于已知 A, B, C 三点共线.

(6) 给出
$$\overrightarrow{OP} = \frac{\overrightarrow{OA} + \lambda \overrightarrow{OB}}{1 + \lambda}$$
, 等于已知 $P \not\in \overrightarrow{AB}$ 的定比分点, λ 为定比,即 $\overrightarrow{AP} = \lambda \overrightarrow{PB}$

(7) 给出 $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$,等于已知 $MA \perp MB$,即 $\angle AMB$ 是直角,给出 $\overrightarrow{MA} \cdot \overrightarrow{MB} = m < 0$,等于已知 $\angle AMB$ 是钝角,给出 $\overrightarrow{MA} \cdot \overrightarrow{MB} = m > 0$,等于已知 $\angle AMB$ 是锐角,

(8) 给出
$$\lambda \left(\frac{\overrightarrow{MA}}{|\overrightarrow{MA}|} + \frac{\overrightarrow{MB}}{|\overrightarrow{MB}|} \right) = \overrightarrow{MP}$$
,等于已知 MP 是 $\angle AMB$ 的平分线/

- (9) 在平行四边形 ABCD 中,给出 $(\overrightarrow{AB} + \overrightarrow{AD}) \cdot (\overrightarrow{AB} \overrightarrow{AD}) = 0$,等于已知 ABCD 是菱形;
- (10) 在平行四边形 ABCD 中,给出 $|\overrightarrow{AB} + \overrightarrow{AD}| = |\overrightarrow{AB} \overrightarrow{AD}|$,等于已知 ABCD 是矩形;
- (11) 在 $\triangle ABC$ 中,给出 $\overrightarrow{OA}^2 = \overrightarrow{OB}^2 = \overrightarrow{OC}^2$,等于已知 $O \neq \triangle ABC$ 的外心(三角形外接圆的

圆心,三角形的外心是三角形三边垂直平分线的交点);

- (12) 在 $\triangle ABC$ 中,给出 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$,等于已知 O 是 $\triangle ABC$ 的重心(三角形的重心 是三角形三条中线的交点);
- (13) 在 $\triangle ABC$ 中,给出 $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OB} \cdot \overrightarrow{OC} = \overrightarrow{OC} \cdot \overrightarrow{OA}$,等于已知 $O \not\in \triangle ABC$ 的垂心(三角形的垂心是三角形三条高的交点);
- (14) 在 $\triangle ABC$ 中,给出 $\overrightarrow{OP} = \overrightarrow{OA} + \lambda (\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|})$ ($\lambda \in R^+$) 等于已知 \overrightarrow{AP} 通过 $\triangle ABC$ 的内心;
- **(15)** 在 $\triangle ABC$ 中,给出 $a \cdot \overrightarrow{OA} + b \cdot \overrightarrow{OB} + c \cdot \overrightarrow{OC} = \overrightarrow{0}$,等于已知 $O \neq \triangle ABC$ 的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);
 - (16) 在 $\triangle ABC$ 中,给出 $\overrightarrow{AD} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$,等于已知 AD 是 $\triangle ABC$ 中 BC 边的中线;