Final Project

TrafficLight

I. Objectives:

Final project為一個紅綠燈控制系統,會運用到同學們在本學期實驗課中所實做的各個module,並對一些module做延伸,最後組合成完整的紅綠燈控制電路。本次project會訓練同學們設計電路、整合module的能力,了解電路設計從小module整合成完整大電路的過程。

II. Theory and Procedure:

紅綠燈控制系統完整功能的詳細敘述如下,同學們須依照此敘述設計出對應的電路。

1. Phase 與 螢幕之燈號輸出說明

本紅綠燈控制系統控制了一個十字路口中,南北向的行車燈號與行人燈號, 行車燈號共有紅黃綠3個燈,行人燈號共有小紅人與小綠人2個燈,因此本系統 共需要控制5個燈。紅綠燈控制系統配合交通的運行,各個燈號會有5種組合方 式,稱為5個phase,如表一中所示。

phase	車紅	車黄	車綠	人紅	人綠	說明
0	X	X	О	X	慢走	車與行人皆為綠燈,小綠
						人為正常行走。
1	X	X	О	X	快走	車綠燈,行人即將變紅燈
						(小紅人),小綠人開始快
						走。
2	X	X	О	О	X	車綠燈,行人燈為小紅
						人。
3	X	О	X	О	X	車 黄燈,行人燈為小紅
						人。
4	О	X	X	О	X	車紅燈,行人燈為小紅
						人。

表一:5個phase所對應的燈號行為,O為燈號開啟,X為燈號關閉。

此5個燈號會在透過VGA顯示在螢幕上,如圖一所示,圖一為phase=0時的輸出情形,可以看到車燈亮綠燈,行人燈亮小綠人。

圖一:螢幕所顯示之phase=0時的紅綠燈燈號。

2. 紅綠燈秒數運行、設定

要達成紅綠燈的功能,必須要有時間倒數的功能,並在時間倒數結束後,切換到下一個phase,每一個phase必須要記錄一個各自phase應持續的時間,而這個時間要能由外在設定。系統共分為兩個mode,運行與設定,由一個switch來切換mode。以下舉例來說明整個系統的運行。

假設phase_0_t為phase=0時要持續的時間,phase_1_t為phase=1時要持續的時間,以此類推,假設目前各個phase_x_t的值如表二中所示,規定在reset的sw被撥動時,每個phase_x_t都被reset成4。

phase_0_t	phase_1_t	phase_2_t	phase_3_t	phase_4_t
1	2	3	4	5

表二: set後各個phase_x_t的值。

在運行的mode下,假設目前在phase=0,系統會從1秒(phase_0_t)開始倒數,倒數到0時,phase會往下跳到phase=1,再重新從2秒(phase_1_t)開始倒數,依此類推,當phase=4時,會從5秒(phase_4_t)開始倒數,接下來會跳回phase=0,如此循環的運行下去。注意在運行的mode下,有強制切換的功能,即按下「左按鈕」時,會強制切換到下一個phase,按下「右按鈕」,會強制切換到上一個phase。

在設定的mode下,此時系統不會啟動時間倒數的功能,此時我們可以設定phase_x_t的值,設定的方法是用「左右按鈕」來調整到想設定之phase_x_t,再用「上下按鈕」調整該phase_x_t,此值的範圍是1-9,當phase_x_t為9時,向上按鈕不可再增加值,當phase_x_t為1時,向下按鈕不可再減少值。舉例來說,假設我們想把phase_2_t改為8,我們先利用「左右按鈕」調整到phase_2_t後,再用「上按鈕」把phase_2_t從3增加到8。

3. Switch、按鈕、七段顯示器說明

switch與按鈕是本紅綠燈控制系統的input,而七段顯示器與螢幕是本系統的 output。

有兩個switch控制訊號,一個switch控制系統是否reset,一個switch控制系統目前的mode是運行還是設定。

按鈕會用到上下左右4個按鈕,在運行與設定兩種不同mode時,有不同的功能,如表三。

按鈕	運行mode	設定mode
上	無功用。	將目前的phase_x_t加1。
		當phase_x_t=9時會停在9。
下	無功用。	將目前的phase_x_t減1。
		當phase_x_t=1時會停在1。
左	強制切換到下一個phase。	切换到下一個phase_x_t。
	當phase =4時會到()。	當phase =4時會停在4。
右	強制切換到上一個phase。	切换到上一個phase_x_t。
	當phase =0時會到4。	當phase =0時會停在0。

表三:4個按鈕在兩種mode中的功能。

七段顯示器共有4個顯示數字的位置,會用到其中兩個位置(位置1與位置2)來顯示數字,如圖二中所標示。

圖二:七段顯示器位置標示。

位置1與位置2在運行與設定兩種不同mode時,會顯示不同的值,如表四。

七段顯示器	運行mode	設定mode
位置1	目前正在哪個phase。(0-4)	目前正在設定哪個phase_x_t,0
		代表目前正在設定phase_0_t,由
		「左右按鈕」切換。(0-4)
位置2	目前phase剩下的時間,會	目前phase_x_t的值,按下「上下
	從phase_x_t倒數到0。(1-9)	按鈕」時會加/減值。(1-9)

表四:七段顯示器要顯示之值

III. Existing Module Description

Final project中,同學們所需完成的部份為3個module: MP_TimerController、DisplayController、TrafficLight,此3個module同學們**需以gate-level的寫法來完成**。其餘在src/don't touch資料夾中的module皆為助教以RTL完成的module,同學們不需更動,但會需要使用到這些module的功能,此處會詳述各個已完成的module之電路功能與pin腳資訊。

1. SevenSegment.v (LAB6)

SevenSegment使用了ssDecoder與ssDisplayer兩個module,ssDecoder即同學們在LAB6所實作的binary to decimal decoder。ssDisplayer為處理七段顯示器多個數字同時顯示的電路。num3-0,mask如下表的敘述,控制七段顯示器要顯示的數字及位置。seg、dp_on、an為FPGA上七段顯示器的pins,同學們直接對接即可。

Name	I/O	Bits	Description
clk	I	1	25MHz clock訊號
rst	I	1	非同步reset訊號,rst=1時為reset,由1個switch控
			制。
num3	I	4	要顯示在七段顯示器最左邊的數字。(0-9)
num2	I	4	要顯示在七段顯示器左二邊的數字。(0-9)
num1	I	4	要顯示在七段顯示器右二邊的數字。(0-9)
num0	I	4	要顯示在七段顯示器最右邊的數字。(0-9)
mask	I	4	七段顯示器的4個數字中,要顯示數字。Ex.
			mask=4'b1001代表中間兩個要顯示,最左邊跟最
			右邊不顯示。
seg	О	7	FPGA板上七段顯示器的pins。
dp_on	О	1	FPGA板上七段顯示器的pins。
an	O	4	FPGA板上七段顯示器的pins。

2. Timer.v (LAB9)

此module即同學們在LAB9中所實作的module, Timer中要存一個目前的秒數。Timer有兩個mode, set=1時為設定mode, 會把Timer所存之秒數設定成new_sec, set=0為運行mode, 會從此秒數倒數, cur_sec為此時倒數的秒數。

Name	I/O	Bits	Description
clk	I	1	25MHz clock訊號
rst	I	1	非同步reset訊號,rst=1時為reset,由1個switch控
			制。

set	I	1	set =0為運行mode,set=1設定mode,由1個switch
			控制。
new_sec	I	4	要設定的新秒數。
cur_sec	О	4	目前倒數的秒數。

3. ButtonFSM.v (LAB10)

此module即同學們在LAB10中所實作的module,其功能為按鈕的 debouncing,當按鈕被按下一次時,debounced這個output訊號會有1個cycle的 logic 1,其餘時候為logic 0。

Name	I/O	Bits	Description
clk	I	1	25MHz clock訊號
rst	I	1	非同步reset訊號,rst=1時為reset,由1個switch控
			制。
button	I	1	來自FPGA板上按鈕來的電位訊號,button=1為
			logic1 °
debounced	О	1	Debouncing後的訊號, debounced=1代表按鈕被按
			下,請注意每當按鈕被按下1次時,debounced應
			該只會有1個cycle是logic1,其餘皆為logic0。

4. VGADisplayer.v (LAB12)

此module即同學們在LAB12中所使用到的module,但除了man_state外,多了car_state的參數。如同LAB12,man_state控制了小紅人、小綠人的顯示。car_state控制了三個行車燈號:紅燈、黃燈、綠燈,開啟與關閉,詳見下表說明。vgaRed、vgaBlue、vgaGreen、Hsync、Vsync為FPGA上VGA的pins,同學們直接對接即可。

Name	I/O	Bits	Description
clk	I	1	25MHz clock訊號
rst	I	1	非同步reset訊號,rst=1時為reset,由1個switch控
			制。
car_state	I	3	每個bit代表1個行車燈號的開關。car_state[2]為紅
			燈,car_state[1]為黃燈,car_state[0]為綠燈。該bit
			為1時螢幕顯示該燈開啟,0時螢幕顯示該燈關
			閉。Ex. car_state = 3'b100,為紅燈開,黃燈綠燈
			關。
man_state	I	4	0-8的數字,0為顯示小紅人,小綠人關閉。1-8為
			顯示8張小綠人的分解圖。(詳細參照LAB12)
vgaRed	О	4	FPGA板上VGA的pins。
vgaBlue	О	4	FPGA板上VGA的pins。

vgaGreen	О	4	FPGA板上VGA的pins。
Hsync	O	1	FPGA板上VGA的pins。
Vsync	О	1	FPGA板上VGA的pins。

IV. Required Module Description

此部分詳述,同學們所需完成的部份為3個module: MP_TimerController、DisplayController、TrafficLight,功能與pin腳的定義。

1. MP_TimerController (LAB11之延伸)

此module為LAB8的bi-phase timer setting與LAB9的timer的延伸,主要控制的變數為cur_phase與phase_x_t,詳見II.2中提到的紅綠燈秒數運行、設定,buttonU/D/L/R會用來控制cur_phase和phase_x_t的設定,其在運行與設定兩個mode有不同的作用,詳見II.3的表三。

cur_phase為目前的phase,須用到Timer的倒數功能來協助cur_phase的設定,每當Timer倒數到0時,需要把Timer重新設定成下一個phase_x_t,cur_phase向下一個,Timer再重新開始倒數。seven_num是要顯示在七段顯示器的位置2之數字,詳見II.3。

cur_phase與seven_num在運行與設定兩個mode所代表的意義不同,詳見下表。

Name	I/O	Bits	Description
clk	I	1	25MHz clock訊號
rst	Ι	1	非同步reset訊號,rst=1時為reset,由1個switch控
			制。
set	Ι	1	set =0為運行mode,set=1設定mode,由1個switch控
			制。
buttonU	I	1	Debounced後的按鈕訊號,向上的按鈕。
buttonD	I	1	Debounced後的按鈕訊號,向下的按鈕。
buttonL	I	1	Debounced後的按鈕訊號,向左的按鈕。
buttonR	I	1	Debounced後的按鈕訊號,向右的按鈕。
cur_phase	О	3	運行mode時,為目前的運行到的phase。設定mode
			時,為目前正在設定的phase_x_t。請詳見II.2。
seven_num	О	4	即II.3中,要顯示在七段顯示器的位置2之數字。運
			行mode時,為目前phase剩下的時間。設定mode
			時,為目前正在設定的phase_x_t之值。請詳見
			II.3 °

2. DisplayController (LAB12之延伸)

此module為LAB12的延伸,會處理七段顯示器的顯示與VGADisplayer module的溝通。

七段顯示器的部份,詳見II.3的表四,應依據MP_TimerController送來的 cur_phase與seven_num來決定七段顯示器的顯示內容,再使用SevenSegment module來協助顯示。

與VGADisplayer溝通的部份,應依據MP_TimerController送來的cur_phase,實現II.1中表一,各個phase對應到的燈號顯示。車燈的部份,car_state是代表紅黃綠三個燈的開闢,詳見III.4中的說明。小綠人與小紅人用man_state來控制,同LAB12,詳見III.4中的說明。

LAB12所實作的小綠人動畫為phase=0時的"小綠人慢走",但在phase=1時,須實現"小綠人快走"的動畫,請同學們自行設計如何利用同樣的8張分解圖讓小綠人能出現"快走"的動畫。

Name	I/O	Bits	Description
clk	I	1	25MHz clock訊號
rst	I	1	非同步reset訊號,rst=1時為reset
cur_phase	I	3	來自MP_TimerController的訊號。
seven_num	I	4	來自MP_TimerController的訊號。
car_state	O	3	每個bit代表1個行車燈號的開關。car_state[2]為
			紅燈,car_state[1]為黃燈,car_state[0]為綠燈。
			該bit為1時螢幕顯示該燈開啟,0時螢幕顯示該燈
			關閉。Ex. car_state = 3'b100,為紅燈開,黃燈綠
			燈關。
man_state	O	4	0-8的數字,0為顯示小紅人,小綠人關閉。1-8
			為顯示8張小綠人的分解圖。(詳細參照LAB12)
seg	O	7	FPGA板上七段顯示器的pins。
dp_on	O	1	FPGA板上七段顯示器的pins。
an	O	4	FPGA板上七段顯示器的pins。
led	О	16	16個LED燈, led[15]為最左邊的LED, led[0]為
			最右邊的LED,供同學debug使用。

3. TrafficLight

此module為考驗同學們整合電路的能力,即為所有電路的連接,透過此TrafficLight將各個子module連在一起後,才能實現整個完整的電路。

因此同學們需要先畫出如先前LAB的system diagram後,參照先前LAB中的LAB12.v等檔案(即各LAB的最大module),完成TrafficLight。

Department of Electrical Engineering National Taiwan University

Name	I/O	Bits	Description	
clk	I	1	100MHz clock訊號	
clk25		1	降頻為25MHz的clock訊號,用來輸入到各個	
			module °	
sw	I	16	sw[15]為最左邊的switch,sw[0]為最右邊的	
			switch。須有一個sw做為rst,一個做為set輸入到	
			各module中。	
btnU	I	1	尚未debounced的按鈕訊號,向上按鈕。	
btnD	I	1	尚未debounced的按鈕訊號,向下按鈕。	
btnL	I	1	尚未debounced的按鈕訊號,向左按鈕。	
btnR	I	1	尚未debounced的按鈕訊號,向右按鈕。	
vgaRed	О	4	FPGA板上VGA的pins。	
vgaBlue	О	4	FPGA板上VGA的pins。	
vgaGreen	О	4	FPGA板上VGA的pins。	
Hsync	О	1	FPGA板上VGA的pins。	
Vsync	О	1	FPGA板上VGA的pins。	
seg	О	7	FPGA板上七段顯示器的pins。	
dp_on	О	1	FPGA板上七段顯示器的pins。	
an	О	4	FPGA板上七段顯示器的pins。	
led	О	16	16個LED燈, led[15]為最左邊的LED, led[0]為最	
			右邊的LED,供同學debug使用。	

由於TrafficLight為最大的module,其對外溝通的pin腳都是從FPGA板上來的 真實訊號,有許多訊號會在已完成的module中被處理,因此同學若看到以下訊 號,直接對接module中同名字的pin腳即可。

Pin腳名稱		所屬device	使用到的module
seg	dp_on	七段顯示器	DisplayController
an			SevenSegment / ssDisplayer
vgaRed	vgaBlue		VGADisplayer
vgaGreen	Hsync	VGA	
Vsync			