```
# Carque de Librerías básicas
1
2
    import pandas as pd
3
    import matplotlib.pyplot as plt
4
    import seaborn as sns
5
6
    # Importar tensorflow
7
    import tensorflow as tf
    print("TF version : ", tf.__version__)
8
9
10
    # Necesitaremos GPU
    print("GPU available: ", tf.config.list_physical_devices('GPU'))
11
12
13
    # keras version is 2.11.0
14
    import keras
15
    print("Keras version : ", keras.__version__)
```

→ TF version : 2.15.0 GPU available: []

Keras version : 2.15.0

```
#-----#
debido a que estoy usando COLAB #
#-----#

from google.colab import drive
drive.mount('/content/drive') #/content/drive/MyDrive/pec2/data/xl.pickle
print("GPU available: ", tf.config.list_physical_devices('GPU'))
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call GPU available: []

```
1
   import pandas as pd
2
3
   home = '/content/drive/MyDrive/TFM/'
4
5
   file_path = home + "2017_2023DSTrabajo.xlsx"
6
7
   dsXls = pd.read excel(file path)
   dsXls.head(5)
8
9
   dsXls.info()
10
11
```

```
12 # LIMPIEZA DE DATOS
13
   #1. validar duplicados
14
   dsXls.nunique()
15
16
   #2. validar nulos, rellenar valores faltantes con la mediana
17
   #dsXls.isnull().sum()
18
   dsXls['Dist'].fillna(dsXls['Dist'].median(), inplace=True)
19
   dsXls['Attendance'].fillna(dsXls['Attendance'].median(), inplace=True)
20
21
   dsXls.isnull().sum()
22
23
24
   25
   # ESTADISTICAS
26
   27
   #dsXls.describe().T
28
   dsXls.iloc[:,1:].describe()
29
```


<class 'pandas.core.frame.DataFrame'> RangeIndex: 4092 entries, 0 to 4091 Data columns (total 21 columns):

#	Column	Non-Null Count	
0	Date	4092 non-null	
1	Round	4092 non-null	
2		4092 non-null	
3	_	4092 non-null	_
4	Result	4092 non-null	object
5	GF	4092 non-null	float64
6	GA	4092 non-null	float64
7	Opponent	4092 non-null	object
8	xG	4092 non-null	float64
9	xGA	4092 non-null	float64
10	Poss	4092 non-null	float64
11	Attendance	3212 non-null	float64
12	Season	4092 non-null	int64
13	Team	4092 non-null	object
14	Sh	4092 non-null	float64
15	SoT	4092 non-null	float64
16	Dist	4089 non-null	float64
17	SCA	4092 non-null	float64
18	KP	4092 non-null	float64
19	PPA	4092 non-null	float64
20	CrsPA	4092 non-null	float64

dtypes: datetime64[ns](1), float64(13), int64(1), object(6)

memory usage: 671.5+ KB

	GF	GA	хG	хGA	Poss	Attendance	
count	4092.000000	4092.000000	4092.000000	4092.000000	4092.000000	4092.000000	4(
mean	1.377810	1.377810	1.346163	1.346163	50.001222	36912.650049	20
std	1.277631	1.277631	0.796551	0.796551	12.726702	15301.262664	
min	0.000000	0.000000	0.000000	0.000000	18.000000	2000.000000	20
25%	0.000000	0.000000	0.700000	0.700000	41.000000	29296.000000	20
50%	1.000000	1.000000	1.200000	1.200000	50.000000	32092.500000	20
75%	2.000000	2.000000	1.800000	1.800000	59.000000	51237.000000	20
max	9.000000	9.000000	5.900000	5.900000	82.000000	83222.000000	20

```
#APLICAR PCA
2
    from sklearn.decomposition import PCA
3
    from sklearn.preprocessing import StandardScaler
4
    import numpy as np
5
6
    # Preparando los datos para PCA, excluyendo columnas no numéricas y la variabl
    features = dsXls.select dtypes(include=[np.number])
7
8
9
    # Normalizando los datos antes de aplicar PCA
10
    scaler = StandardScaler()
11
    features_scaled = scaler.fit_transform(features)
12
13
    # Aplicando PCA
14
    pca = PCA(n_components=0.95) # Conservar el 95% de la varianza explicada
15
    principal_components = pca.fit_transform(features_scaled)
16
17
    # Porcentaje de varianza explicada por cada componente principal
18
    explained_variance = pca.explained_variance_ratio_
19
    cumulative_variance = pca.explained_variance_ratio_.cumsum()
20
21
    # Creando un DataFrame para los resultados de PCA
22
    pca_results = pd.DataFrame({
23
         'Componente': range(1, len(explained variance) + 1),
24
         'Explained Variance': explained variance,
25
        'Cumulative Variance': cumulative_variance
26
    })
27
28
    print(pca results)
29
    print("Número de componentes principales:", principal_components.shape[1])
```

```
→
       Componente Explained Variance Cumulative Variance
    0
                 1
                              0.404537
                                                     0.404537
                 2
    1
                              0.100658
                                                     0.505195
                 3
                              0.099203
                                                     0.604398
    3
                 4
                              0.080980
                                                     0.685378
    4
                 5
                              0.070068
                                                     0.755446
    5
                 6
                              0.066543
                                                     0.821989
    6
                 7
                              0.044109
                                                     0.866098
    7
                 8
                              0.041575
                                                     0.907673
    8
                 9
                              0.025706
                                                     0.933379
                10
                              0.024218
                                                     0.957597
    Número de componentes principales: 10
```

```
1 import pandas as pd
2 import numpy as np
```

```
3 import matplotlib.pyplot as plt
4 from sklearn.decomposition import PCA
5 from sklearn.preprocessing import StandardScaler
7 # features es el DataFrame de variables numéricas
8 scaler = StandardScaler()
9 features_scaled = scaler.fit_transform(features)
10
11 # Aplicando PCA conservando primeros 10 componentes
12 pca = PCA(n_components=10)
13 principal_components = pca.fit_transform(features_scaled)
14
15 # Cargando la matriz
16 loadings = pca.components_.T * np.sqrt(pca.explained_variance_)
17
18 # Creando un DataFrame para visualizar mejor los loadings
19 loading_matrix = pd.DataFrame(loadings, columns=['PC1', 'PC2', 'PC3', 'PC4', '
20
21 # Visualizando los loadings para las primeras cinco componentes
22 plt.figure(figsize=(12, 6))
23 sns.heatmap(loading_matrix, annot=True, cmap='coolwarm')
24 plt.title('PCA Loadings')
25 plt.show()
26
27 # Imprimiendo los loadings
28 print(loading_matrix)
```



```
PC1
                           PC2
                                      PC3
                                                PC4
                                                          PC5
                                                                     PC6
                                                     0.033161 -0.161368
            0.518957
                      0.048783 -0.666046
                                           0.018556
GF
GA
           -0.340169
                      0.797295
                                 0.136528
                                          0.079332 - 0.005586 - 0.204991
                      0.114307 - 0.351056 - 0.105445
                                                      0.025049 - 0.070701
хG
            0.794587
xGA
                      0.720574
                                 0.000147
                                           0.038831 -0.055531 -0.152533
           -0.504854
            0.684264 - 0.112295
                                 0.302805
                                          0.094130 - 0.072134
Poss
                                                                0.069099
Attendance
            0.055375
                      0.297137 - 0.168285
                                           0.370409 0.376225
                                                                0.772818
            0.021273
                      0.178692 - 0.108585 - 0.399230 - 0.770466
Season
                                                                0.444412
                                 0.110905 0.139268 -0.093101 -0.050760
Sh
            0.925240
                      0.116836
            0.757153
                      0.133350 - 0.368912 0.107265 - 0.045426 - 0.130394
SoT
Dist
           -0.203574 -0.130605
                                 0.274611 0.754660 -0.394007 -0.072572
                                 0.132500 0.147059 -0.085477 -0.039803
SCA
            0.930257
                      0.116548
ΚP
            0.908465
                      0.122749 0.111658 0.105117 -0.064749 -0.017976
PPA
            0.770612
                      0.073877
                                 0.334235 -0.101472
                                                     0.082740
                                                                0.095452
CrsPA
            0.408126
                      0.154175
                                 0.553484 - 0.407298
                                                     0.227309
                                                                0.010713
                 PC7
                           PC8
                                      PC9
                                               PC10
GF
            0.147854
                      0.414199
                                 0.020427 - 0.055723
GA
            0.199415
                      0.026805 - 0.366835 - 0.029726
хG
           -0.011218
                      0.009837
                                 0.012241 - 0.343443
           -0.014511 -0.068538
                                 0.425605
xGA
                                          0.014795
Poss
            0.573262 - 0.035994
                                 0.018695
                                           0.084743
Attendance -0.037478
                      0.043305 - 0.016982
                                          0.004307
                      0.064010 -0.032028
Season
           -0.011274
                                          0.012695
Sh
           -0.165947 -0.162927 -0.030221 -0.030435
SoT
                      0.035678 - 0.008706
           -0.080635
                                           0.442140
Dist
           -0.097305
                      0.338153
                                0.034717 -0.068335
           -0.143690 -0.150752 -0.027559 -0.054815
SCA
ΚP
           -0.172417 -0.172072 -0.016517 -0.022139
PPA
            0.252168
                     0.107760
                                0.195521 - 0.041721
                                          0.057363
           -0.260922
                      0.437878 - 0.024068
CrsPA
```

```
1 from sklearn.decomposition import PCA
2 from sklearn.preprocessing import StandardScaler
3 import pandas as pd
4
5
6 # Estandarizando los datos
```

```
7 scaler = StandardScaler()
 8 features scaled = scaler.fit transform(features)
10 # Aplicando PCA
11 pca = PCA()
12 principal_components = pca.fit(features_scaled)
13
14 # Obteniendo la varianza explicada
15 explained_variance_ratio = pca.explained_variance_ratio_
16
17 # Convirtiendo la varianza explicada en porcentaje
18 explained_variance_percent = explained_variance_ratio * 100
19
20 # Creando un DataFrame para visualizar la varianza explicada por cada componen
21 variance_df = pd.DataFrame({
22
       'Component': range(1, len(explained_variance_percent) + 1),
23
       'Explained Variance (%)': explained_variance_percent
24 })
25
26 print(variance_df)
27
28
29 import matplotlib.pyplot as plt
30
31 plt.figure(figsize=(10, 6))
32 plt.bar(variance_df['Component'], variance_df['Explained Variance (%)'], color
33 plt.xlabel('Componentes Principales')
34 plt.ylabel('Porcentaje de Varianza Explicada (%)')
35 plt.title('Varianza Explicada por Cada Componente Principal')
36 plt.show()
```

	Component	Explained	Variance	(%)
0	1		40.453	3701
1	2		10.065	5772
2	3		9.920	342
3	4		8.097	7951
4	5		7.006	828
5	6		6.654	1295
6	7		4.410	897
7	8		4.157	7499
8	9		2.570	0607
9	10		2.421	L779
10	11		1.917	7171
11	12		1.672	2561
12	13		0.512	2914
13	14		0.137	7685
	1 2 3 4 5 6 7 8 9 10 11	0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13	0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13	0 1 40.453 1 2 10.065 2 3 9.926 3 4 8.097 4 5 7.006 5 6 6.654 6 7 4.416 7 8 4.157 8 9 2.576 9 10 2.427 10 11 1.917 11 12 1.672 12 13 0.512

Varianza Explicada por Cada Componente Principal

1 from sklearn.model_selection import train_test_split

```
2 from sklearn.neighbors import KNeighborsClassifier
3 from sklearn.preprocessing import StandardScaler
4 from sklearn.metrics import accuracy score
5 from sklearn.metrics import classification_report, confusion_matrix, accuracy
6 from sklearn.model_selection import cross_val_score
7
8
9 #y = dsXls['Result']
10 #X_pca = pca.fit_transform(X_scaled)
12 # Dividir los datos en conjuntos de entrenamiento y prueba
13 #X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.2,
14
15
16
17 X = features_scaled
18 y = dsXls['Result']
19
20 # Estandarización de los datos
21 scaler = StandardScaler()
22 X_scaled = pca.fit_transform(X) #scaler.fit_transform(X)
23
24 # Dividir los datos en entrenamiento y prueba
25 X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.
26
27 # Crear el modelo KNN con distancia Euclidiana
28 knn = KNeighborsClassifier(n_neighbors=13, metric='euclidean')
29 #10 0.7851037851037851
30 #8 0.7924297924297924
31 #5 0.7887667887667887
32 #2 0.7081807081807082
33
34 # Entrenar el modelo
35 knn.fit(X_train, y_train)
36
37 # Predecir y evaluar el modelo
38 y pred = knn.predict(X test)
39 accuracy = accuracy_score(y_test, y_pred)
40 print("Accuracy:", accuracy)
42 import matplotlib.pyplot as plt
43 from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
44
45 # debido a que y_pred y y_test definidos
```

```
46 # Matriz de confusión
47 cm = confusion_matrix(y_test, y_pred)
48 disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['W','L','D
49 disp.plot()
50 plt.show()
51
52 # Reporte de clasificación
53 print("Classification Report:\n", classification_report(y_test, y_pred))
54
55 # Validación cruzada
56 cross_val_accuracy = cross_val_score(knn, X_scaled, y, cv=13, scoring='accura 57 print("Cross-validated Accuracy:", cross_val_accuracy.mean())
```


Accuracy: 0.8192918192918193

Classification Report:

Classification	precision	recall	f1-score	support
D	0.63	0.57	0.60	185
${f L}$	0.84	0.90	0.87	289
W	0.89	0.89	0.89	345
accuracy			0.82	819
macro avg	0.79	0.78	0.79	819
weighted avg	0.81	0.82	0.82	819

Cross-validated Accuracy: 0.8105947131424838