ChE 597 Computational Optimization

Homework 9

March 22nd 11:59 pm

1. For the pooling problem you implemented in Homework 8, replace all the bilinear terms with the McCormick envelopes. Solve the McCormick relaxation using Gurobi. Compare the McCormick relaxations of the P formulation, Q formulation, and the PQ formulation.

Solution: The code is in . .. The objective with the McCormick relaxation for the P formulation is -599.48, for the Q formulation is -2450 and for the PQ formulation is -500.

2. Consider the following nonconvex quadratic constraint

$$-x_1^2 + x_2^2 + 4x_1x_2 \le 7$$

Let

$$f(x) := -x_1^2 + x_2^2 + 4x_1x_2$$

- (a) Write this nonconvex constraint as a difference of convex function, f(x) = p(x) q(x) where both p and q are convex. Hint: using uniform perturbation of the Hessian.
- (b) Relax the concave function -q(x) by McCormick envelopes. You can assume $0 \le x_1 \le 3, 0 \le x_2 \le 5$
- (c) Take the relaxation you derived, solve the problem with Gurobi using the objective $\min x_1 2x_2$

Solution: We can write $f(x), x \in \mathbb{R}^2$ in the following way:

(a)
$$f(x) := -x_1^2 + x_2^2 + 4x_1x_2 = x^TQx + q^Tx$$

$$Q = \frac{\nabla^2 f}{2} = \begin{bmatrix} -1 & 2\\ 2 & 1 \end{bmatrix}$$

$$q^{T}x = f(x) - x^{T}Qx = -x_1^2 + x_2^2 + 4x_1x_2 = 0 \implies q = 0$$

The eigenvalues of Q are $\pm\sqrt{5}$. We use the uniform perturbation of the Hessian.

$$f(x) = x^T Q x + q^T x + \mu \sum_i x_i^2 - \mu \sum_i x_i^2$$

We let $\mu = -\lambda_{\min}(Q) = \sqrt{5}$.. Therefore $p(x) = -x_1^2 + x_2^2 + 4x_1x_2 + \sqrt{5}(x_1^2 + x_2^2), q(x) = \sqrt{5}(x_1^2 + x_2^2)$.

(b) Let $-q(x) = z + y, z = -\mu x_1 x_1, y = -\mu x_2 x_2$. Let us consider the function $g = -\mu x_i x_i$.

$$x_i^L \le x_i \le x_i^U$$

$$-\mu x_i^U \le -\mu x_i \le -\mu x_i^L$$

We relax g using McCormick envelopes. We get the following inequalities:

$$g \ge -\mu x_i x_i^L - \mu x_i x_i^U + \mu x_i^U x_i^L$$
$$g \le -2\mu x_i x_i^L + \mu (x_i^L)^2$$
$$g \le -2\mu x_i x_i^U + \mu (x_i^U)^2$$

Using the above we can write the following:

$$-q(x) = z + y$$

$$z \ge -3\sqrt{5}x_1$$

$$z \le 0$$

$$z \le -6\sqrt{5}x_1 + 9\sqrt{5}$$

$$y \ge -5\sqrt{5}x_2$$

$$y \le 0$$

$$y \le -10\sqrt{5}x_2 + 25\sqrt{5}$$

The optimum objective we obtain is -7.99

3. Assume the following constraint is in a convex relaxation of an optimization problem

$$x_1 = 2x_2 - x_3$$

where $0 \le x_2 \le 2$, $-1 \le x_3 \le 1$. Given $0 \le x_1 \le 1$, try using FBBT to tighten the bounds of x_2 and x_3 .

Solution: We are given the constraint

$$x_1 = 2x_2 - x_3$$

with the following bounds:

$$x_1 \in [0,1], \quad x_2 \in [0,2], \quad x_3 \in [-1,1].$$

We can write the equation as

$$x_1 = a_0 + a_1 x_2 + a_2 x_3$$

with

$$a_0 = 0$$
, $a_1 = 2 (> 0)$, $a_2 = -1 (< 0)$.

Thus, the index sets are

$$J^+ = \{1\}$$
 (corresponding to x_2), $J^- = \{2\}$ (corresponding to x_3).

The FBBT update formulas for the bounds are given by:

For
$$a_{j} > 0$$
: $l'_{j} = \frac{1}{a_{j}} \left(l_{k} - \left(a_{0} + \sum_{i \in J^{+} \setminus \{j\}} a_{i} u_{i} + \sum_{i \in J^{-}} a_{i} l_{i} \right) \right),$

$$u'_{j} = \frac{1}{a_{j}} \left(u_{k} - \left(a_{0} + \sum_{i \in J^{+} \setminus \{j\}} a_{i} l_{i} + \sum_{i \in J^{-}} a_{i} u_{i} \right) \right),$$
For $a_{j} < 0$: $l'_{j} = \frac{1}{a_{j}} \left(u_{k} - \left(a_{0} + \sum_{i \in J^{+}} a_{i} l_{i} + \sum_{i \in J^{-} \setminus \{j\}} a_{i} u_{i} \right) \right),$

$$u'_{j} = \frac{1}{a_{j}} \left(l_{k} - \left(a_{0} + \sum_{i \in J^{+}} a_{i} u_{i} + \sum_{i \in J^{-} \setminus \{j\}} a_{i} l_{i} \right) \right).$$

In our case, k = 1 (corresponding to x_1), and we update x_2 (with $a_1 = 2 > 0$) and x_3 (with $a_2 = -1 < 0$).

Updating the bound for x_2 :

Since x_2 has a positive coefficient ($a_1 = 2$), we have

$$l_2' = \frac{1}{2} \Big(l_1 - \Big(\sum_{i \in J^+ \setminus \{1\}} a_i u_i + \sum_{i \in J^-} a_i l_i \Big) \Big),$$

$$u_2' = \frac{1}{2} \left(u_1 - \left(\sum_{i \in J^+ \setminus \{1\}} a_i l_i + \sum_{i \in J^-} a_i u_i \right) \right).$$

Since $J^+ \setminus \{1\}$ is empty, these simplify to:

$$l_2' = \frac{1}{2} \left(0 - \left((-1)(-1) \right) \right) = \frac{1}{2} (0 - 1) = -0.5,$$

$$u_2' = \frac{1}{2} \left(1 - \left((-1)(1) \right) \right) = \frac{1}{2} (1 + 1) = 1.$$

Since the original bounds for x_2 are [0,2], the new (tighter) bounds are:

$$x_2 \in \left[\max\{0, -0.5\}, \min\{2, 1\}\right] = [0, 1].$$

Updating the bound for x_3 :

Since x_3 has a negative coefficient ($a_2 = -1$), the update formulas become:

$$l_3' = \frac{1}{-1} \Big(u_1 - \Big(\sum_{i \in J^+} a_i l_i + \sum_{i \in J^- \setminus \{2\}} a_i u_i \Big) \Big),$$

$$u_3' = \frac{1}{-1} \Big(l_1 - \Big(\sum_{i \in J^+} a_i u_i + \sum_{i \in J^- \setminus \{2\}} a_i l_i \Big) \Big).$$

Here, $J^+ = \{1\}$ and $J^- \setminus \{2\}$ is empty. Thus,

$$l_3' = \frac{1}{-1} (1 - (2 \cdot 0)) = -(1 - 0) = -1,$$

$$u_3' = \frac{1}{-1} (0 - (2 \cdot 1)) = -(0 - 2) = 2.$$

Given the original bounds $x_3 \in [-1, 1]$, the new bounds are:

$$x_3 \in \left[\max\{-1, -1\}, \min\{1, 2\}\right] = [-1, 1].$$

Summary of Tightened Bounds:

$$x_2 \in [0,1]$$
 and $x_3 \in [-1,1]$.

4. Derive a valid convex relaxation of the following nonconvex optimization problem using factorization and convex envelopes of univariate functions.

$$\min x_1 + x_2$$

s.t.
$$\exp(x_2\sqrt{x_1x_2} + \log(x_1)) \le x_1^2$$

$$1 < x_1 < 2, 0 < x_2 < 1$$

Solution: We need to convexify the terms $\exp(x_2\sqrt{x_1x_2} + \log(x_1))$ and x_1^2 . We introduce the following variables and relations:

$$y_1 = x_1^2$$

$$y_2 = log(x_1)$$

$$y_3 = x_1x_2$$

$$y_4 = \sqrt{y_3}$$

$$y_5 = x_2y_4$$

$$y_6 = y_5 + y_2$$

$$y_7 = exp(y_6)$$

We need $y_7 \le y_1$. The convex relaxations using the envolopes is as follows:

$$y_1 \ge 2x_1 - 1, y_1 \ge 4x_1 - 4, y_1 \le 3x_1 - 2$$

$$y_2 \ge log(1) + \frac{(log(2) - log(1))}{2 - 1} (x_1 - 1) = log(2)(x_1 - 1)$$

$$y_2 \le log(x_1)$$

$$y_3 \ge x_1 + 2x_2 - 2, y_3 \ge x_2, y_3 \le x_2 + x_1 - 1, y_3 \le 2x_2$$

The least value of y_3 is 0 and the highest value of y_3 is 2.

$$y_4 \ge \sqrt{0} + \frac{\sqrt{2} - \sqrt{0}}{2 - 0}(y_3 - 0) = \frac{1}{\sqrt{2}}y_3$$
$$y_4 \le \sqrt{y_3}$$

We have $0 \le x_2 \le 1, 0 \le y_4 \le \sqrt{2}$.

$$y_5 \ge 0, y_5 \ge y_4 + \sqrt{2}x_2 - \sqrt{2}, y_5 \le \sqrt{2}x_2, y_5 \le y_4$$

 $y_6 \le y_5 + y_2, y_6 \ge y_5 + y_2$

We have $0 \le y_2 \le log(2), 0 \le y_5 \le \sqrt{2} \implies 0 \le y_6 \le log(2) + \sqrt{2}$ The below is true due to the convexity of the exponential function

$$y_7 \ge e^0 + e^0(y_6 - 0) = 1 + y_6$$

 $y_7 \le 2exp(\sqrt{2})$

5. Consider the following convex relaxation,

$$2x_{1} + x_{2} - x_{3} - 2x_{4} = 1$$

$$3x_{2} + x_{4} = 5$$

$$0 \le x_{1} \le 4$$

$$-1 \le x_{2} \le 2$$

$$0 \le x_{3} \le 3$$

$$-1 \le x_{4} \le 1$$

Use OBBT to tighten the bounds of all the variables. You can solve the LPs using Gurobi.

Solution: OBBT involves finding tighter bound for the variables. Let us define the set *S* in the following way:

$$S = \begin{cases} x \in \mathbb{R}^4 \\ 2x_1 + x_2 - x_3 - 2x_4 = 1 \\ 3x_2 + x_4 = 5 \\ x : 0 \le x_1 \le 4 \\ -1 \le x_2 \le 2 \\ 0 \le x_3 \le 3 \\ -1 \le x_4 \le 1 \end{cases}$$

For each variable x_i , i = 1, 2, ..., 4, updated lower and upper bounds can be computed by solving the following optimization problems:

$$l'_i = \min\{x_i : x \in S\}; \quad u'_i = \max\{x_i : x \in S\}.$$

The tightened bounds are as follows

Variable	Lower bound	Upper bound
$\overline{x_1}$	0	2.33
x_2	1.33	2
x_3	0	3
<i>x</i> ₄	-1	1