COMP 1433: Introduction to Data Analytics & COMP 1003: Statistical Tools and Applications

Lecture 1 - Data Analytics: An Introduction

Dr. Jing Li
Department of Computing
The Hong Kong Polytechnic University

Jan 11 & 13, 2022

Why you are here?

Dreaming to become part of them?

CONSULTING PARTNER

Why you are here?

- Do you want to understand what data is and explore the secretes behind?
- Do you want to understand the infrastructure and techniques of data analytics?
- Do you want to know more about the area of data mining and machine learning?

Play the data with mathematics and computing techniques ©

Roadmap

- A quick look at this course
- A tour of data analytics
 - Introduction
 - Big Data and Data Mining

Roadmap

- A quick look at this course
- A tour of data analytics
 - Introduction
 - Big Data and Data Mining

Our Promise. We will...

- provide a positive, respectful, and engaged learning environment inside and outside the classes;
- attend classes at regularly scheduled times without undue variations, and provide before term-end adequate make-ups of classes that are canceled due to leave of absence of the instructor;
- provide the course schedule (in Content File on Blackboard: learn.polyu.edu.hk);
- meet with students with a mutually convenient appointment if necessary (preferably in office hours or other time by appointment);

Our Promise. We will (cont.)

- have reasonable access to University facilities and equipment for assignments and/or objectives
- have access to guidelines on University's definition of academic misconduct, e.g., plagiarism. (*They are* strictly forbidden in this course.)
- have reasonable access to grading instruments and/or grading criteria for assignments, tests, quizzes, or exams and to review graded material
- release the latest materials and announcements on Blackboard and engage in interactions with students, online or offline.

We hope you will...

- provide a positive, respectful, and engaged learning environment inside and outside the classes;
- appear for class meetings timely;
- appear at the mutual appointments for official teaching and learning matters;
- have full attendance at lectures, quizzes, in-class tests, and tutorials;
- get prepared for class, appearing with appropriate materials and having completed assigned readings and homework;

We hope you will (cont.)

- full engagement within the classes, including focus during lectures, appropriate and relevant questions, and class discussion participations;
- cover missed material during subsequent classes if having to miss a class due to emergent issues;
- act with integrity and honesty.

Learning Outcomes

- To understand data analytics concepts.
- To capture how to manipulate, analyze, and visualize data with analytics tools.
- To understand and apply related mathematics operations.

• **Keywords**: probability, statistics, mathematics, R language programming

Textbook

- NO official textbook. Course slides will be enough to work for assessments only.
- Recommended books (for those want to learn more):
 - Beecher, K., Computational Thinking, BCS, 2017.
 - Teetor, P., R Cookbook, O' Reilley Media, 2011.
 - Wickham, H. and Grolemund G., R for Data Science, O' Reilley Media, 2017.
 - Boyd, S. and Vandenbergerghe, L., *Introduction to Applied Linear Algebra*, Cambridge University Press, 2018.
 - Stewart, J., *Calculus: Early Transcendentals*, 8th Edition, Cengage Learning, 2015.

Instructor

- Dr. Jing Li (Amelia)
 - Assistant Professor
 - Department of Computing
 - Homepage: <u>http://www4.comp.polyu.edu.hk/~jing1li/</u>
 - Email: jing-amelia.li@polyu.edu.hk
 - My connect email (jing1li@connect.polyu.hk) is a fake one!
 - Office: PQ 714
 - Office hour: Every Thursday 2:00 –
 4:00 pm (or other time by appointment)

Teaching Assistants

Mr. Da Ren

• Office: QT 404

• Email: da-cs.ren@connect.polyu.hk

• Mr. Chunpu Xu

• Office: QT 415

• Email: chun-pu.xu@connect.polyu.hk

Teaching Assistants

- Mr. Hanzhuo Tan
 - Email: hanzhuo.tan@connect.polyu.hk
- Ms. Yuji Zhang
 - Office: PQ 509
 - Email: yu-ji.zhang@connect.polyu.hk

Teaching Assistants

Mr. Feiteng Mu

Office: PQ 723

• Email: <u>feitengmu.mu@connect.polyu.hk</u>

Mr. Xiaoyang Zhang

• Office: PQ 503

• Email: xiaoyang.zhang@connect.polyu.hk

Time and Venue (Same content will be taught in the two classes!)

Two classes:

- Class 1: Tuesday 12:30 pm 3:20 pm
 - Lecture: 12:30 pm 2:20 pm
 - Tutorial: 2:30 pm 3:20 pm
- Class 2: Thursday 8:30 am 11:20 am
 - Lecture: 8:30 am 10:20 am
 - Tutorial: 10:30 am 11:20 am

Location:

- QR 403 (Class 1)
- PQ 306 (Class 2)

Prerequisites

- Better if you have the following background:
 - Probability and Statistics
 - Calculus
 - Linear Algebra
 - Programming (even with simple languages)

No worries. We'll provide the background with all the needed math and programming knowledge.

Grade Assessment Scheme (1433)

- Quiz 1 (5%): Feb 8 (Tue) and Feb 10 (Thu)
 Quiz 2 (5%): Mar 29 (Tue) and Mar 31 (Thu)
- Assignment (20%): out Mar 24 and due Apr 7
- In-class test (25%): Mar 8 (Tue) and Mar 10 (Thu)
- Final Exam (45%): in the examination period

Grade Assessment Scheme (1003)

- Quiz 1 (15%): Feb 10 (Thu)
- Assignment (30%): out Mar 24 and due Apr 7
- In-class test (55%): Mar 10

What we will learn?

- Mathematical weapons for data analytics
 - Probability and Statistics
 - Calculus (differentiation and integration)
 - Linear Algebra (vector and matrix basics)
- Programming with R language
 - Basics: to get started!
 - Data Input and Manipulation
 - Statistics
 - Data Analytics

What we will learn? (cont.)

- Advanced Data Analytics
 - Monto-Carlo Simulation
 - Regression
 - Time-Series Analysis
 - Machine Learning

Jan 11 & 13	Data Analytics: An Introduction	Hybrid
Jan 18 & 20	Probability Basics for Data Analytics	Hybrid
Jan 25 & 27	Statistics Basics for Data Analytics	Onsite
Feb 8 & 10 (<i>quiz 1</i>)	Linear Algebra Basics	Onsite
Feb 15 & 17	Calculus Basics	Onsite
Feb 22 & 24	Programming with R: Basics, Data Input	Onsite
	and Manipulation	
Mar 1 & 3	Programming with R: Statistics	Onsite
Mar 8 & 10	In-class test	Onsite
Mar 15 & 17	Data Analytics with R	Onsite
Mar 22 & 24 (assignment out)	Monto-Carlo Simulation	Onsite
Mar 29 & 31 (<i>quiz 2</i>)	Regression and Time-series Analysis	Onsite
Apr 7 (assignment due)	Machine Learning: An Introduction	Onsite
Apr 12&14	Review and Exam Q&A	Onsite
	Jan 18 & 20 Jan 25 & 27 Feb 8 & 10 (quiz 1) Feb 15 & 17 Feb 22 & 24 Mar 1 & 3 Mar 8 & 10 Mar 15 & 17 Mar 22 & 24 (assignment out) Mar 29 & 31 (quiz 2) Apr 7 (assignment due)	Jan 18 & 20 Probability Basics for Data Analytics Jan 25 & 27 Statistics Basics for Data Analytics Feb 8 & 10 (quiz 1) Linear Algebra Basics Feb 15 & 17 Calculus Basics Feb 22 & 24 Programming with R: Basics, Data Input and Manipulation Mar 1 & 3 Programming with R: Statistics Mar 8 & 10 Mar 15 & 17 Data Analytics with R Mar 22 & 24 (assignment out) Mar 29 & 31 (quiz 2) Apr 7 (assignment due) Machine Learning: An Introduction

Course Structure

Simulation

Regression

Advanced Data Analytics (3 lectures)

Machine Learning

Mathematical Basics (4 lectures)

Probability

Statistics

Calculus

Linear Algebra

Environment

Data Manipulation

Data Analytics

Roadmap

- A quick look at this course
- A tour of data analytics
 - Introduction
 - Big Data and Data Mining

Roadmap

- A quick look at this course
- A tour of data analytics
 - Introduction
 - Big Data and Data Mining

What is Data?

- Individual units of information.
- A single quality or quantity of some object or pheno menon. In analytical processes, data are represented by variables (why?).
- Data is employed in scientific research, businesses m anagement (e.g., sales data, revenue, profits, stock pr ice), finance, governance (e.g., crime rates, unemploy ment rates, literacy rates), and in virtually every other form of human organizational activity.

Data is Everywhere!

- Lots of data is being collected and warehoused
 - Web data, e-commerce
 - Purchases at department/ grocery stores
 - Bank/Credit Card transactions
 - Social Networks
 - •
 - Find COVID-19 patients
 - COVID-19 vaccine?!

Your First Impression

Popular word/phrase choices

What is Data Analytics

• Data analysis is a process of inspecting, cleaning, transfor ming, and modeling of data with the goal of discovering useful information, informing conclusion, and supporting decision-making.

--- From Wikipedia

What is Data Analytics

Characteristics:

- Data Driven (the more the better, why?)
- Interdisciplinary (mathematics + computer science)
- Discover Knowledge/Information from data

Small Sample Effects

- Subject results of COMP ????:
 - Three students
 - Continuous Assessments (CA) (40%): (D+, C+, A)
 - Final Exam (60%): (C, B, B)
- What is the mean of CA?
- What is the mean of final exam?
- What is the mean of overall grades?
- (Hint: all results should be converted to letter grades)
- Letter Grades vs. Grade Points:
 - A+: 4.5; A: 4.0; B+: 3.5; B: 3.0; C+: 2.5;
 C: 2.0; D+: 1.5; D: 1.0; F: 0.0

Discuss

A Real Story: Data Analytics Saves People's Life

A COURT FOR KING CHOLERA.

Lessons from Data Analytics

- Spawn new data analytics projects
 - Weather prediction
 - Physics research (supercollider data analytics)
 - Astronomy images (planet detection)
 - Medical research (drug interaction)

Discuss

- Can you show me more examples?
- Businesses latched onto its techniques, methodologies, and objectives

Types of Analytics at eBay

• Basically measure anything possible - A **few** examples:

Buyer Trust & Marketing Finance Experience Safety Technology Information Customer Loyalty **Operations** Service Security User Seller Finding Infrastructure Experience Behavior

Examples: Classification

What are these objects?

Horses or Vehicles?

Example: Regression

How do we know the trend of price?

Increase or *Decrease*?

How fast? Comparison?

Example: Clustering

How to segment regions?

Pixels in similar colors with their neighbors (e.g., to segment *sky*).

Example: Similarity Matching

Are they collected from the same guy?

Example: Time Series Analysis

Website Traffic

Saturday tends to have low traffic but high conversion.

Example: Image Captioning

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Example: Product Recommendation

- Main idea: Recommend items to customer x similar to previous items rated highly by x
- Example:
 - Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
 - Websites, blogs, news
 - Recommend other sites with "similar" content

Example: Spam Detection

Example: Ranking of Webpages

Computing importance of webpages.

Example: Artificial Intelligence (AI)

2000s-2010s

???

Roadmap

- A quick look at this course
- A tour of data analytics
 - Introduction
 - Big Data and Data Mining

Why data science achieves huge success in recent years?

- Better models?
 - With more variables to fit data!
 - Rule-based -> Statistical -> Deep Learning
- Better computing resource?
 - More powerful RAM, CPU, GPU, etc.
- Also importantly, more data!
 - Huge volume of data is available to do analytics and discover valuable information from it!

How Much Data?

IDC reports

- 2.7 billion terabytes in 2012, up 48 percent from 2011
- 8 billion terabytes in 2015

Sources

- Structured corporate databases
- Unstructured data from webpages, blogs, social networking messages, ...
- Countless digital sensors

Volume

- Google processes 20 PB (10¹⁵) a day of usergenerated data
- Facebook
 - 2.5B content items shared
 - 2.7B 'Likes'
 - 300M photos uploaded
 - 100+PB disk space in a single HDFS cluster
 - 105TB data scanned via Hive (30min)
 - 70,000 queries executed
 - 500+ TB (10¹²) new data ingested

Related Concept: Big Data

 Big data is a collection of data sets so large and complex that it becomes difficult to process using onhand database management tools or traditional data processing applications.

--- From Wikipedia

Characteristics of Big Data: 4V

Volume

From terabytes to exabyte to zetabytes of existing data to process

8 billion TB in 2015, 40 ZB in 2020 5.2TB per person

Velocity

Batch data, real-time data, streaming data, milliseconds to seconds to respond

facebook

New sharing over 2.5 billion per day new data over 500TB per day

<u>V</u>ariety

Structured, semistructured, unstructured, text, pictures, multimedia

Veracity

Uncertainty due to data inconsistency & incompleteness, ambiguities, deception, model approximation

The First Big Data Challenge

- 1880 census
- 50 million people
- Age, gender (sex), occupation, education level, no. of insane people in household

The First Big Data Solution

- Hollerith Tabulating
 System
- Punched cards 80 variables
- Used for 1890 census
- 6 weeks instead of 7+ years

Manhattan Project (1946 - 1949)

- \$2 billion (approx. 26 billion in 2013)
- Catalyst for "Big Science"

Space Program (1960s)

• Began in late 1950s

 An active area of big data nowadays

What is Data Mining?

- Discovery of patterns and models that are:
 - Valid: hold on new data with some certainty
 - Useful: should be possible to act on the item
 - Unexpected: non-obvious to the system
 - Understandable: humans should be able to interpret the pattern
- A particular data analytic technique

Data Mining Tasks

- Descriptive Methods
 - Find human-interpretable patterns that describe the data
 - E.g., Beers and Diapers
- Predictive Methods
 - Use some variables to predict unknown or future values of other variables
 - E.g., weather prediction.

Relation between Data Mining and Data Analytics

- Analytics include both data analysis (mining) and communication (guide decision making)
- Analytics is not so much concerned with individual analyses or analysis steps, but with the entire methodology

One Slide to Takeaway

- What is the structure of this course?
- What are data analytics?
- Examples of data analytics?
- What is big data?
- What is data mining?