Contents

0.1	Traces	-
0.2	Properties of traces	1
0.3	Trace trick	1

0.1 Traces

The trace of a matrix is the sum of its diagonal components.

$$Tr(M) = \sum_{i}^{n} m_{ii}$$

The trace of a matrix is equal to the sum of its eigenvectors.

0.2 Properties of traces

Traces commute

$$Tr(AB) = Tr(BA)$$

Traces of 1×1 matrices are equal to their component.

$$Tr(M) = m_{11}$$

0.3 Trace trick

If we want to manipulate the scalar:

$$v^T M v$$

We can use properties of the trace.

$$v^T M v = Tr(v^T M v)$$

$$v^T M v = Tr([v^T][Mv])$$

$$v^T M v = Tr([Mv][v^T])$$

$$v^T M v = Tr(M v v^T)$$