### **INTEGRATED CIRCUITS**

# DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

# HEF40245B buffers Octal bus transceiver with 3-state outputs

Product specification
File under Integrated Circuits, IC04

January 1995





## Octal bus transceiver with 3-state outputs

# HEF40245B buffers

#### **DESCRIPTION**

The HEF40245B is an octal bus transmitter/receiver designed for 8-line asynchronous, 2-way data communication between data buses. It features output stages with high current output capability suitable for driving highly capacitive loads.

The direction input (DR) controls transmission of data from bus A to bus B, or bus B to bus A, depending on its logic level. The 3-state outputs are controlled by the enable input  $\overline{EO}$ . A HIGH on  $\overline{EO}$  causes the outputs to assume a high impedance OFF-state. The device also features hysteresis on all inputs to improve noise immunity.

Schmitt-trigger action in the inputs makes the circuit highly tolerant to slower input rise and fall times.

The HEF40245B is pin and functionally compatible with the TTL '245' device.



#### **PINNING**

 $A_0$  to  $A_7$  data input/output  $B_0$  to  $B_7$  data input/output DR direction input

EO output enable input (active LOW)

HEF40245BP(N): 20-lead DIL; plastic (SOT146-1)

HEF40245BD(F): 20-lead DIL; ceramic (cerdip) (SOT152)

HEF40245BT(D): 20-lead SO; plastic (SOT163-1)

(): Package Designator North America



#### FAMILY DATA, I<sub>DD</sub> LIMITS category buffers

See Family Specifications.

## Octal bus transceiver with 3-state outputs

# HEF40245B buffers



#### **FUNCTION TABLE**

| INP | UTS | INPUTS/OUTPUTS |                |  |  |  |
|-----|-----|----------------|----------------|--|--|--|
| ΕO  | DR  | A <sub>n</sub> | B <sub>n</sub> |  |  |  |
| L   | L   | A = B          | input          |  |  |  |
| L   | Н   | input          | B = A          |  |  |  |
| Н   | Х   | Z              | Z              |  |  |  |

#### **Notes**

- 1. H = HIGH state (the more positive voltage)
  - L = LOW state (the less positive voltage)
  - X = state is immaterial
  - Z = high impedance OFF-state



- (1) P-channel MOS transistor conducting.
- (2) P-channel MOS transistor and bipolar n-p-n transistor conducting.

Fig.4 Typical output source current characteristic.



Philips Semiconductors Product specification

# Octal bus transceiver with 3-state outputs

HEF40245B buffers

#### **RATINGS**

Limiting values in accordance with the Absolute Maximum System (IEC 134) See Family Specifications, except for:

| D.C. current into any input                 | $\pm I_{I}$ | max. | 10 mA  |
|---------------------------------------------|-------------|------|--------|
| D.C. source or sink current into any output | $\pm I_{O}$ | max. | 25 mA  |
| D.C. current into the supply terminals      | ±Ι          | max. | 100 mA |

#### **DC CHARACTERISTICS**

 $V_{SS} = 0 V$ 

|                                       | V <sub>DD</sub> | V <sub>OH</sub> | V <sub>OL</sub> | SYMBOL                         | T <sub>amb</sub> (°C) |      |      |      |      |      |      |    |
|---------------------------------------|-----------------|-----------------|-----------------|--------------------------------|-----------------------|------|------|------|------|------|------|----|
|                                       | V               | V               | V               | STWIBOL                        | <b>-40</b>            |      | + 25 |      |      | + 85 |      |    |
|                                       |                 |                 |                 |                                | MIN.                  | MAX. | MIN. | TYP. | MAX. | MIN. | MAX. |    |
| Output current                        | 5               | 4,6             |                 |                                | 0,75                  |      | 0,6  | 1,2  |      | 0,45 |      | mA |
| HIGH                                  | 10              | 9,5             |                 | -l <sub>OH</sub>               | 1,85                  |      | 1,5  | 3,0  |      | 1,1  |      | mA |
|                                       | 15              | 13,5            |                 |                                | 14,5                  |      | 15   | 50   |      | 15,5 |      | mA |
| Output current                        | 5               | 3,6             |                 |                                | 9,3                   |      | 10   | 24   |      | 10,7 |      | mA |
| HIGH                                  | 10              | 8,4             |                 | -l <sub>OH</sub>               | 14,4                  |      | 15   | 46   |      | 15,0 |      | mA |
|                                       | 15              | 13,2            |                 |                                | 19,5                  |      | 20   | 62   |      | 19,8 |      | mA |
| Output current                        | 5               |                 | 0,4             |                                | 2,9                   |      | 2,3  | 5,4  |      | 1,75 |      | mA |
| LOW                                   | 10              |                 | 0,5             | I <sub>OL</sub>                | 9,5                   |      | 7,6  | 17   |      | 5,50 |      | mA |
|                                       | 15              |                 | 1,5             |                                | 30,0                  |      | 25   | 45   |      | 19,0 |      | mA |
| Hysteresis                            | 5               |                 |                 |                                |                       |      |      | 220  |      |      |      | mV |
| voltage                               | 10              |                 |                 | V <sub>H</sub>                 |                       |      |      | 250  |      |      |      | mV |
| (any input)                           | 15              |                 |                 |                                |                       |      |      | 320  |      |      |      | mV |
| 3-state input/output                  |                 |                 |                 |                                |                       |      |      |      |      |      |      |    |
| leakage current                       | 15              |                 |                 | I <sub>OZ</sub> <sup>(1)</sup> | _                     | 1,6  | _    | _    | 1,6  | _    | 12   | μΑ |
| pins A <sub>n</sub> or B <sub>n</sub> |                 |                 |                 |                                |                       |      |      |      |      |      |      |    |

#### Note

1. Relevant output in OFF-state;  $A_n$  at  $V_{SS}$  or  $V_{DD}$ ;  $B_n$  at  $V_{SS}$  or  $V_{DD}$ .

Philips Semiconductors Product specification

# Octal bus transceiver with 3-state outputs

HEF40245B buffers

#### **AC CHARACTERISTICS**

 $V_{SS}$  = 0 V;  $T_{amb}$  = 25 °C;  $C_L$  = 50 pF; input transition times  $\leq$  20 ns

|                                      | V <sub>DD</sub> | SYMBOL           | MIN. TYP. | MAX. |    | TYPICAL EXTRAPOLATION FORMULA       |
|--------------------------------------|-----------------|------------------|-----------|------|----|-------------------------------------|
| Propagation delays                   |                 |                  |           |      |    |                                     |
| $A_n \to B_n$                        | 5               |                  | 95        | 190  | ns | 83 ns + (0,24 ns/pF) C <sub>L</sub> |
| HIGH to LOW                          | 10              | t <sub>PHL</sub> | 40        | 80   | ns | 35 ns + (0,10 ns/pF) C <sub>L</sub> |
|                                      | 15              |                  | 30        | 60   | ns | 26 ns + (0,07 ns/pF) C <sub>L</sub> |
| $A_n \to B_n$                        | 5               |                  | 85        | 170  | ns | 82 ns + (0,06 ns/pF) C <sub>L</sub> |
| LOW to HIGH                          | 10              | t <sub>PLH</sub> | 40        | 80   | ns | 38 ns + (0,03 ns/pF) C <sub>L</sub> |
|                                      | 15              |                  | 30        | 60   | ns | 29 ns + (0,02 ns/pF) C <sub>L</sub> |
| Output transition                    | 5               |                  | 40        | 80   | ns |                                     |
| times                                | 10              | t <sub>THL</sub> | 20        | 40   | ns |                                     |
| HIGH to LOW                          | 15              |                  | 15        | 30   | ns | see Fig.6                           |
|                                      | 5               |                  | 30        | 60   | ns | See Fig.0                           |
| LOW to HIGH                          | 10              | t <sub>TLH</sub> | 20        | 40   | ns |                                     |
|                                      | 15              |                  | 15        | 30   | ns |                                     |
| 3-state propagation delays           |                 |                  |           |      |    |                                     |
| Output disable times                 |                 |                  |           |      |    |                                     |
| $\overline{EO} \to A_n,B_n$          | 5               |                  | 100       | 200  | ns |                                     |
| HIGH                                 | 10              | t <sub>PHZ</sub> | 50        | 100  | ns |                                     |
|                                      | 15              |                  | 40        | 80   | ns |                                     |
|                                      | 5               |                  | 100       | 200  | ns |                                     |
| LOW                                  | 10              | t <sub>PLZ</sub> | 60        | 120  | ns |                                     |
|                                      | 15              |                  | 50        | 100  | ns |                                     |
| Output enable times                  |                 |                  |           |      |    |                                     |
| $\overline{EO} \rightarrow A_n, B_n$ | 5               |                  | 100       | 200  | ns |                                     |
| HIGH                                 | 10              | t <sub>PZH</sub> | 45        | 90   | ns |                                     |
|                                      | 15              |                  | 35        | 70   | ns |                                     |
|                                      | 5               |                  | 115       | 230  | ns |                                     |
| LOW                                  | 10              | t <sub>PZL</sub> | 55        | 110  | ns |                                     |
|                                      | 15              |                  | 45        | 90   | ns |                                     |

| ALL BUFFERS<br>SWITCHING | V <sub>DD</sub> | TYPICAL FORMULA FOR P (μW)                    |                                          |
|--------------------------|-----------------|-----------------------------------------------|------------------------------------------|
| Dynamic power            | 5               | 4 250 $f_i + \sum (f_o C_L) \times V_{DD}^2$  | where                                    |
| dissipation per          | 10              | 17 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$ | f <sub>i</sub> = input freq. (MHz)       |
| package (P)              | 15              | 46 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$ | $f_0$ = output freq. (MHz)               |
|                          |                 |                                               | C <sub>L</sub> = load capacitance (pF)   |
|                          |                 |                                               | $\sum (f_o C_L) = \text{sum of outputs}$ |
|                          |                 |                                               | V <sub>DD</sub> = supply voltage (V)     |

# Octal bus transceiver with 3-state outputs

HEF40245B buffers

