Tutorium 8

Max Springenberg, 177792

8.1

CNF1

(i) Entfernen der Nicht erzeugenden Variablen $V_e = \{S, A, B, D, E\}$

Daraus folgt G':

(ii) Erreichbarkeitsgraph

erreichbar nur S,A,D,B

Daraus folgt G_1 :

CNF2

CNF3

CNF4

 $V' = \{S, A, B, D\}$ $S \rightarrow W_a B b \mid W_b S_1$ $S_1 \rightarrow D S_2$ $S_2 \rightarrow W_b W_b$ $B \rightarrow W_a$ $D \rightarrow B$

CNF5

 $\begin{array}{ccc} U = \{(B,W_a),(D,B)\} \\ S & \rightarrow & W_a B b & |W_b S_1 \\ S_1 & \rightarrow & D S_2 \\ S_2 & \rightarrow & W_b W_b \\ D & \rightarrow & W_a \end{array}$

CNF6

8.2

CNF analog zu 1.

8.3

gegeben: $G \text{ mit: } S \quad \rightarrow \qquad aSa \quad |bSa \quad |bSb \quad |\epsilon$

 $L = \{w \in \{a, b\}^* | |w| \text{gerade}\}$

8.3.1 $L(G) \subseteq L$

Aussage:

 $k, w, \text{ mit } S \Rightarrow^k w : w \in L$

Induktion über Abgleitungslänge k.

I.A.

k = 1:

Es gibt genau eine Ableitung der Länge k = 1, mit

$$S \Rightarrow^1 \epsilon$$

Es gilt $|\epsilon| = 0$, ferner ist 0 gerade und damit die Aussage für k = 1 erfüllt.

I.V.

Die Aussage gelte für $k \in \mathbb{N}$ beliebig, aber fest

I.S.

k = k' + 1

Für Ableitungen der Länge $k \geq 1$ müssen folgende Regeln betrachtet werden:

 $(i)S \rightarrow aSa$

 $(ii)S \rightarrow aSb$

 $(iii)S \rightarrow bSa$

 $(iii)S \rightarrow bSb$

(i`

 $S \to aSa$, ergibt sich zu $w \stackrel{\text{def}}{=} ava$, mit $S \Rightarrow^{k'} v$, ferner gilt aus I.V., dass |v| gerade ist und damit dann |w| = |ava| = |v| + 2 auch.

(ii) - (iv) analog.

8.3.2 $L \subseteq L(G)$

Aussage:

 $i,\,\mathrm{mit}\ |w|=i,w\in L:w\in L(G)$

Induktion über Wortlänge i.

Dabei muss die Wortlänge nach definition aus $N_{|w|=2n}=\{2n|n\in\mathbb{N}_0\}$ sein.

Ferner inkrementiert die Wortlänge damit in der Induktion um 2.

I.A.

i = 0

Nur das leere Wort ϵ hat die Wortlänge 0.

 $S \Rightarrow \epsilon$ ist aus G ableitbar, damit ist $\epsilon \in G$ und die Aussage für i = 0 erfüllt.

I.V.

Die Aussage gelte für $k \in N_{|w|=2n}$ beliebig, aber fest.

I.S.

$$i = i' + 2$$

 Σ_L sei das Alphabet der Sprache L.

Wir betrachten das Wort $w \stackrel{\text{def}}{=} \sigma v \sigma'$, mit $|w| = i, |v| = i', (i, i' \in N_{|w|=2n}), (\sigma, \sigma' \in \Sigma_L)$.

Nach I.V. gilt, dass v aus G ableitbar ist.

Nun bleibt zu zeigen, dass:

- $(i)w_{(i)} \stackrel{\text{def}}{=} ava$ $(ii)w_{(ii)} \stackrel{\text{def}}{=} avb$ $(iii)w_{(iii)} \stackrel{\text{def}}{=} bva$
- $(iv)w_{(iv)} \stackrel{\text{def}}{=} bvb$

aus G abgeleitet werden können.

nach I.V. gilt $S \Rightarrow^* v$, dann gilt auch $S \Rightarrow^* ava$, aufgrund der Regel $S \to aSa$

(ii) - (iv) analog.

8.4

G (mindestens ein b) mit:

$$S \rightarrow TS \mid b$$

$$T \rightarrow ST \mid a$$

$$\begin{array}{cccc} G_{Greibach} \text{ mit:} \\ S & \rightarrow & aS & |bS'| & |b \\ S' & \rightarrow & aS'| & |bS'| & |a| & |b \end{array}$$

$$S' \rightarrow aS' |bS'| |a| |b$$