Data set 8

In [1]:

import numpy as np
import pandas as pd

In [3]:

a=pd.read_csv(r"C:\Users\user\Downloads\8_BreastCancerPrediction.csv")

To print top rows:

In [4]:

a.head()

Out[4]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	(
2	84300903	М	19.69	21.25	130.00	1203.0	(
3	84348301	М	11.42	20.38	77.58	386.1	(
4	84358402	М	20.29	14.34	135.10	1297.0	(
5 rows × 33 columns							

To print Last rows:

In [5]:

a.tail()

Out[5]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness
564	926424	М	21.56	22.39	142.00	1479.0	
565	926682	М	20.13	28.25	131.20	1261.0	(
566	926954	М	16.60	28.08	108.30	858.1	(
567	927241	М	20.60	29.33	140.10	1265.0	
568	92751	В	7.76	24.54	47.92	181.0	(
5 row	/s × 33 c	olumns					

Statistical Summary:

In [6]:

a.describe()

Out[6]:

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.00
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.09
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.0
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.0
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	30.0
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.09
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.10
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.16

8 rows × 32 columns

To print no of rows and columns

In [7]:

a.shape

Out[7]:

(569, 33)

To print no of elements

In [8]:

a.size

Out[8]:

18777

Missing no of values

In [9]:

a.isna()

Out[9]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
0	False	False	False	False	False	False	
1	False	False	False	False	False	False	
2	False	False	False	False	False	False	
3	False	False	False	False	False	False	
4	False	False	False	False	False	False	
564	False	False	False	False	False	False	
565	False	False	False	False	False	False	
566	False	False	False	False	False	False	
567	False	False	False	False	False	False	
568	False	False	False	False	False	False	
569 rows × 33 columns							

In [10]:

import matplotlib.pyplot as pp

In [11]:

```
b=a[['radius_mean','perimeter_mean']]
b
```

Out[11]:

	radius_mean	perimeter_mean
0	17.99	122.80
1	20.57	132.90
2	19.69	130.00
3	11.42	77.58
4	20.29	135.10
564	21.56	142.00
565	20.13	131.20
566	16.60	108.30
567	20.60	140.10
568	7.76	47.92

569 rows × 2 columns

In [12]:

a.plot.line()

Out[12]:

<AxesSubplot:>

In [13]:

a.plot.bar()

Out[13]:

<AxesSubplot:>

In [14]:

a.plot.area()

Out[14]:

<AxesSubplot:>

In [15]:

a.plot.hist()

Out[15]:

<AxesSubplot:ylabel='Frequency'>

In [16]:

```
a.plot.box()
```

Out[16]:

<AxesSubplot:>

In [17]:

```
a.plot.scatter(x='texture_mean',y='radius_mean')
```

Out[17]:

<AxesSubplot:xlabel='texture_mean', ylabel='radius_mean'>

In [19]:

```
a.plot.pie(y='radius_mean',figsize=(5,5))

Out[19]:

<AxesSubplot:ylabel='radius_mean'>

In []:
```