

Barem de corectare — proba teoretică Clasa a IX-a

Problema 1

\overrightarrow{G}_{t} \overrightarrow{F}_{C} $\overrightarrow{a}_{\min}$	1,00
Pentru viteză constantă corpul rămâne la baza planului	1,00
Pentru mişcare accelerată $ma_{\min} \cos \alpha \ge mg \sin \alpha$	1,00
$a_{\min} \ge g \operatorname{tg} \alpha$	1,00
Total 1	
Pentru o viteză de n ori mai mare decât viteza minimă corpul rămâne la ba planului.	
Pentru o accelerație $a = na_{\min}$, accelerația corpului în raport cu planul este: $a_1 = na_{\min} \cos \alpha - g \sin \alpha \Rightarrow a_1 = (n-1)g \sin \alpha$	1,00
Viteza corpului în vârful planului, în raport cu acesta, este: $v_1 = \sqrt{2(n-1)gl\sin\alpha}$	0,50
b. Timpul după care corpul ajunge în vârful planului este: $t = \sqrt{\frac{2l}{(n-1)g\sin\alpha}}$	0,50
Viteza planului în raport cu Pământul în acest moment este: $v_2 = ng \cdot tg\alpha \cdot \sqrt{\frac{2l}{(n-1)g\sin\alpha}}$	0,50
Viteza corpului în raport cu Pământul în momentul părăsirii planului este: $v = \sqrt{v_1^2 + v_2^2 - 2v_1v_2\cos\alpha}$	0,50
Total 1	b: 4,00
c. $H_{\text{max}} = l \sin \alpha + \frac{v_1^2 \sin^2 \alpha}{2g}$ $H_{\text{max}} = l \sin \alpha (\cos^2 \alpha + n \sin^2 \alpha)$	1,00
$H_{\text{max}} = l \sin \alpha (\cos^2 \alpha + n \sin^2 \alpha)$	1,00
Total 1	c: 2,00
Total problema	1: 10,00

Problema 2

	Desen corect	1,00
	Fie t_1 momentul în care apare alunecarea relativă corp-scândură. Pentru $t < t_1$: • Corpul și scândura se mișcă cu aceeași accelerație $a_1 = a_2 = a$ • Frecarea între corp și scândură este <i>statică</i> și $F_f < \mu N$	0,25
	La momentul t_1 : • Corpul și scândura se mișcă cu aceeași accelerație $a_1 = a_2 = a_0$ • Frecarea între corp și scândură este <i>statică maximă</i> și $F_f \cong \mu N$	0,25
	Fie t_2 momentul în care corpul se desprinde de scândură. Pentru $t_1 < t < t_2$: • Corpul și scândura se mișcă cu accelerații diferite $a_1 \neq a_2$ • Frecarea între corp și scândură este <i>cinetică</i> și $F_f = \mu N$	0,25
	Pentru $t < t_1$: $\begin{cases} F \cos \alpha - F_f = ma \\ F_f = Ma \end{cases} \implies a = \frac{F \cos \alpha}{m+M} = \frac{b \cos \alpha}{m+M} t$	0,50
	Pentru $t = t_1$: $\begin{cases} F_1 \cos \alpha - \mu N = ma_0 \\ N + F_1 \sin \alpha - mg = 0 \implies a_0 = \frac{F_1 \cos \alpha}{m + M} = \frac{bt_1 \cos \alpha}{m + M} \\ \mu N = Ma_0 \end{cases}$	0,50
a.	în care: $t_1 = \frac{(m+M)\mu mg}{b[M\cos\alpha + \mu(m+M)\sin\alpha]}$	0,50
	Numeric: $t_1 = 5 \text{ s}$; $a_0 = 1 \text{ m/s}^2$	0,50
	Pentru $t_1 < t < t_2$: $ \begin{cases} F \cos \alpha - \mu N = ma_1 \\ N + F \sin \alpha - mg = 0 \implies \\ \mu N = Ma_2 \end{cases} \begin{cases} a_1 = \frac{b(\cos \alpha + \mu \sin \alpha)}{m}t - \mu g \\ a_2 = -\frac{\mu b \sin \alpha}{M}t + \frac{\mu mg}{M} \end{cases} $	1,50
	Momentul desprinderii se determină din condiția $N=0$. Rezultă: $N=mg-F_2\sin\alpha=0 \implies t_2=\frac{mg}{b\sin\alpha}$	0,50
	Numeric: $t_2 = 20 \text{ s}$	0,25
	Accelerațiile corpurilor sunt funcții de timp pe intervale:	
	$a_{1}(t) = \begin{cases} \frac{b\cos\alpha}{m+M} & \text{t pentru } t \in [0,5) \text{ s} \\ \frac{b(\cos\alpha + \mu\sin\alpha)}{m} & t - \mu g \text{ pentru } t \in [5,20) \text{ s} \end{cases}$	
	$a_{2}(t) = \begin{cases} \frac{bt \cos \alpha}{m+M} & \text{pentru } t \in [0,5) \text{ s} \\ -\frac{\mu b \sin \alpha}{M} t + \frac{\mu mg}{M} & \text{pentru } t \in [5,20) \text{ s} \end{cases}$	
	$\left[-\frac{\mu v \sin \alpha}{M} t + \frac{\mu mg}{M} \right] \text{ pentru } t \in [5, 20) \text{ s}$	
	Total 2a:	5,00

	Reprezentând grafic $a_2(t)$ se obține:	
b.	$a_{2}\left(m/s^{2}\right)$ 0 5 10 15 20 $t(s)$	3,00
	Total 2b:	3,00
	Din punct de vedere geometric, viteza este dată de <i>aria</i> de sub graficul accelerației în funcție de timp.	0,50
c.	Pentru $0 \le t \le t_1$: $v_2(t) = \frac{1}{2} \frac{bt^2 \cos \alpha}{m + M}$	0,25
	Pentru $t = t_1 = 5$ s se obţine: $v_2(t_1) = 2.5$ m/s	0,25
	Pentru $t_1 < t < t_2$: $v_2(t) = v_2(t_1) - \frac{\mu mg}{M}t_1 + \frac{\mu b \sin \alpha}{2M}t_1^2 + \frac{\mu mg}{M}t - \frac{\mu b \sin \alpha}{2M}t^2$	0,50
	La momentul $t=t_2=20$ s accelerația scândurii se anulează. Din acest moment scândura se mișcă rectiliniu uniform. Rezultă $v_{max}=v_2(t_2)$: $v_2(t_2)=10$ m/s	0,50
	Total 2c:	2,00
	Total problema 2:	10,00

Problema 3

ı-		
	Masa sferei de rază R este: $M = \frac{4\pi R^3}{3} \rho$	0,50
	Masa sferei de rază r este: $m = \frac{4\pi r^3}{3} \rho$	0,50
	Intensitatea câmpului gravitațional creat de m este: $\Gamma = K \frac{m}{r^2} = K \frac{4\pi r}{3} \rho$	0,50
	Înlocuind $\rho = \frac{3M}{4\pi R^3}$ se obține: $\Gamma = K \frac{M}{R^3} r$ dacă $r < R$	0,50
	Pentru $r = R$: $\Gamma = K \frac{M}{R^2}$	0,50
	Pentru $r > R$: $\Gamma = K \frac{M}{r^2}$	0,50
A.	Reprezentând grafic: $\Gamma(r) = \begin{cases} K \frac{M}{R^3} r & \text{pentru } r \in [0, R) \\ K \frac{M}{r^2} & \text{pentru } r \in [R, \infty) \end{cases}$ se obține: $\frac{\Gamma}{K \frac{M}{R^2}}$	1,50
	Total 3A: $A = \begin{pmatrix} \mathbf{p}^3 & \mathbf{p}^3 \end{pmatrix}$	4,50
В.	Masa stratului sferic este: $M = \frac{4\pi \left(R_2^3 - R_1^3\right)}{3}\rho$	0,50
	Pentru $r < R_1$, sfera de rază r nu include substanță. Rezultă: $\Gamma = 0$	1,00
	Pentru $R_1 < r < R_2$, masa care crează câmp gravitațional este: $m = \frac{4\pi \left(r^3 - R_1^3\right)}{3} \rho = M \frac{r^3 - R_1^3}{R_2^3 - R_1^3}$	0,50
	Rezultă: $\Gamma = K \frac{m}{r^2} = K \frac{M}{R_2^3 - R_1^3} \left(r - \frac{R_1^3}{r^2} \right)$	1,00
	Pentru $r = R_2$: $\Gamma = K \frac{M}{R_2^2}$	0,50
	Pentru $r > R_2$: $\Gamma = K \frac{M}{r^2}$	0,50

