Feuille d'exercice n° 07 : Suites de fonctions

I. Convergences simple et uniforme

Exercice 1 () On pose $f_n(x) = x^n \ln x$ avec $x \in]0,1]$ et $f_n(0) = 0$. Étudier la convergence uniforme de (f_n) sur [0,1].

Exercice 2 () Soit $\alpha \in \mathbb{R}$ et $f_n : [0,1] \to \mathbb{R}$ définie par $f_n(x) = n^{\alpha}x(1-x)^n$.

- 1) Étudier la limite simple de (f_n) .
- 2) Pour quels $\alpha \in \mathbb{R}$ y a-t-il convergence uniforme?

Exercice 3 () Étudier la convergence (simple, uniforme, uniforme sur tout segment) de la suite de fonctions

$$b_n: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{2nx^2}{1+n^2x^4}.$$

Exercice 4 () Étudier (convergence simple, convergence uniforme, convergence uniforme sur des parties de l'ensemble de départ) les suites d'applications suivantes :

1)
$$f_n: [0;1] \longrightarrow \mathbb{R}, x \longmapsto n(1-x) \left(\sin \frac{\pi x}{2}\right)^n, n \in \mathbb{N};$$

2)
$$f_n : \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto \sin\left(\frac{n+1}{n}x\right), n \in \mathbb{N}^*$$
;

3)
$$f_n: [0; +\infty[\longrightarrow \mathbb{R}, x \longmapsto \ln\left(1 + \frac{nx^2}{1 + nx}\right), n \in \mathbb{N};$$

4) $f_n:]0; +\infty[\longrightarrow \mathbb{R}, x \longmapsto (nx)^{\frac{x}{n}}, n \in \mathbb{N}^*.$

Exercice 5 On pose $f_n(x) = \frac{x^n}{1 + x + \dots + x^n}$ pour $x \ge 0$. Donner l'allure du graphe de f_n . Étudier la convergence simple puis convergence uniforme de la suite (f_n) .

Exercice 6 (Pour tout entier naturel non nul n et tout réel positif x, on définit $f_n(x) = \left(1 - \frac{x}{n}\right)^n$ si $x \le n$ et $f_n(x) = 0$ si x > n. Étudier la convergence de cette suite de fonctions.

Exercice 7 Soit $f: x \mapsto 2x(1-x)$ de [0,1] dans lui-même. On définit par récurrence $: f_0 = \text{Id}$ et, pour tout $n \in \mathbb{N}$, $f_{n+1} = f \circ f_n$. La suite (f_n) converge-t-elle simplement? uniformément?

Exercice 8 Soit $f: \mathbb{R} \to \mathbb{R}$, on pose pour tout $n \in \mathbb{N}$:

$$g_n: x \mapsto n\left(f\left(x + \frac{1}{n}\right) - f(x)\right).$$

- 1) Si f est dérivable, montrer que (g_n) converge simplement vers une fonction g, à définir.
- 2) Si f est \mathscr{C}^2 et à dérivée seconde bornée, montrer que cette convergence est uniforme.
- 3) Si f est \mathscr{C}^1 , montrer que cette convergence est uniforme sur tout segment.

Exercice 9

Soient X un ensemble non vide, $(f_n: X \longrightarrow \mathbb{R}_+)_{n \in \mathbb{N}}$ une suite d'applications, $f: X \longrightarrow \mathbb{R}_+$ une application. On suppose $: f_n \xrightarrow[n \to +\infty]{C.U} f$.

Montrer :
$$\ln(1+f_n) \xrightarrow[n \to +\infty]{C.U} \ln(1+f)$$
.

Exercice 10

Soit $f_0: \mathbb{R} \longrightarrow \mathbb{R}$, bornée, ≥ 0 . Étudier la convergence simple et la convergence uniforme de la suite d'applications $(f_n: \mathbb{R} \longrightarrow \mathbb{R})_{n \in \mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \quad f_{n+1}(x) = \ln(1 + f_n(x))$$

II. Régularité de la limite d'une suite de fonctions

Exercice 11 Sur [0,1], on définit $f_n: x \mapsto \frac{x}{1+n^2x^2}$.

- 1) Montrer que (f_n) converge vers une limite f. Comment ?
- 2) Montrer que (f'_n) converge vers une limite g. Comment?

III. Interversion limite - intégrale

Exercice 12 (\circlearrowleft) Trouver un équivalent simple, lorsque l'entier n tend vers l'infini, de :

1)
$$\int_0^1 x^n \ln(1+x^n) \, \mathrm{d}x$$

$$2) \int_0^{+\infty} \frac{\ln\left(1+\frac{x}{n}\right)}{x\left(1+x^2\right)} \mathrm{d}x.$$

Exercice 13 Former un développement asymptotique à la précision $o\left(\frac{1}{n}\right)$ de $I_n = \int_0^1 \frac{nx^n}{1+x^{2n}} dx$, lorsque l'entier n tend vers l'infini. On laissera un des coefficients sous forme d'une intégrale.

Exercice 14 (\blacktriangle) On définit $(u_n)_n$ suite de fonctions définies sur [0,1] par :

$$u_0(x) = 1$$
 et $u_{n+1}(x) = 1 + \int_0^x u_n(t - t^2) dt$.

1) Montrer que, pour tout $x \in [0,1]$:

$$0 \leqslant u_{n+1}(x) - u_n(x) \leqslant \frac{x^{n+1}}{(n+1)!}$$

- 2) En déduire, pour tout $x \in [0,1]$, la convergence de la suite $(u_n(x))_n$.
- 3) Établir que la suite $(u_n)_n$ converge uniformément vers une fonction u non nulle, vérifiant :

$$u'(x) = u\left(x - x^2\right).$$

