

P4X266E Chipset

VT8753E

Single-Chip North Bridge for Pentium 4 CPUs with 533 / 400 MHz FSB and 4x AGP Bus plus Advanced ECC Memory Controller supporting PC2100 / PC1600 DDR SDRAM and PC133 / PC100 SDR SDRAM for Desktop PC Systems

> Revision 1.02 July 19, 2002

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2001, 2002 VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

VT8233, VT8233C, VT8703, VT8751, VT8751A, VT8753A, VT8753A, VT8753E, P4M266, P4M266A, P4X266, P4X266A, P4X266E, and P4N266 may only be used to identify products of VIA Technologies.

Intel™, Pentium™ and MMX™ are registered trademarks of Intel Corp.

Cyrix™, Cyrix6_x86™ and WinChip™ are registered trademarks of VIA Technologies

Athlon™, AMD5_k86™, AMD6_k86™, AMD-K5™, and AMD-K6™ are registered trademarks of Advanced Micro Devices Corp.

Windows XP™. Windows 2000™. Windows ME™, Windows 98™, Windows 95™ and Plug and Play™ are registered trademarks of Microsoft Corp.

PCI™ is a registered trademark of the PCI Special Interest Group.

PS/2™ is a registered trademark of International Business Machines Corp.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies, Inc. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated USA Office: 440 Mission Court, Suite 220 Fremont, CA 94539 USA Tel: 510-683-3300

FAX: 510-683-3301 or 510-687-4654 Home Page: http://www.viatech.com VIA Technologies Incorporated Taiwan Office: 8th Floor, No. 533 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC Tel: 886-2-2218-5452

FAX: 886-2-2218-5453

Home page: http://www.via.com.tw

REVISION HISTORY

Document Release	Date	Revision	Initials
1.02	7/19/02	Initial release based on P4X266A data sheet rev 1.02	DH

TABLE OF CONTENTS

REVISION HISTORY	l
TABLE OF CONTENTS	II
LIST OF FIGURES	IV
LIST OF TABLES	IV
PRODUCT FEATURES	1
OVERVIEW	
PINOUTS	5
PIN DESCRIPTIONS	
REGISTERS	
REGISTER OVERVIEW	
MISCELLANEOUS I/O	21
CONFIGURATION SPACE I/O	21
DEVICE 0 REGISTER DESCRIPTIONS	22
Device 0 Host Bridge Header Registers	22
Device 0 Host Bridge Device-Specific Registers	24
V-Link Control	24
Host CPU Control	
DRAM Control	
PCI Bus Control	
CPU-to-Memory Access Control	
AGP Control	
AGP Control (continued)	
V-Link Control	42
DRAM Interface Control	43
Power Management	43
ECC Error Control	
AGTL+ I/O Control	
Frame Buffer Control	
DRAM Above 4G Control	
BIOS Scratch DEVICE 1 REGISTER DESCRIPTIONS	
Device 1 PCI-to-PCI Bridge Header Registers	
Device 1 PCI-to-PCI Bridge Device-Specific Registers	
FUNCTIONAL DESCRIPTION	
CONFIGURATION STRAPPING	
ELECTRICAL SPECIFICATIONS	
ABSOLUTE MAXIMUM RATINGS	
DC CHARACTERISTICS	
Power Characteristics	53

AC TIMING SPECIFICATIONS	. 54	ļ
MECHANICAL SPECIFICATIONS	55	

LIST OF FIGURES

FIGURE 1.	P4X266E CHIPSET SYSTEM BLOCK DIAGRAM	. 3
FIGURE 2.	VT8753E / P4X266E BALL DIAGRAM (TOP VIEW)	5
	GRAPHICS APERTURE ADDRESS TRANSLATION	
	MECHANICAL SPECIFICATIONS - 664-PIN BALL GRID ARRAY PACKAGE	

LIST OF TABLES

TABLE 1. VT8753E PIN LIST (NUMERICAL ORDER)	6
TABLE 2. VT8753E PIN LIST (ALPHABETICAL ORDER)	7
TABLE 3. VT8753E / P4X266E PIN DESCRIPTIONS	8
TABLE 4. VT8753E / P4X266E REGISTERS	17
TABLE 5. SYSTEM MEMORY MAP	29
TABLE 6. DEVICE 0 RX58 MA MAP TYPE ENCODING	
TABLE 7. MEMORY ADDRESS MAPPING TABLE	
TABLE 8. DIMM MODULE CONFIGURATION	
TABLE 9. VGA/MDA MEMORY/IO REDIRECTION	
TABLE 10. ABSOLUTE MAXIMUM RATINGS	
TABLE 11. DC CHARACTERISTICS	
TABLE 12. POWER CHARACTERISTICS – INTERNAL AND INTERFACE DIGITAL LOGIC	
TABLE 13. POWER CHARACTERISTICS – ANALOG AND REFERENCE VOLTAGES	
TABLE 14. AC TIMING MIN / MAX CONDITIONS	

P4X266E CHIPSET

VT8753E

Single-Chip North Bridge for Pentium 4 CPUs with 533 /400 MHz Front Side Bus and 4x AGP Bus plus Advanced ECC Memory Controller supporting PC2100 / PC1600 DDR SDRAM and PC133 / PC100 SDR SDRAM for Desktop PC Systems

PRODUCT FEATURES

• Defines Integrated Solutions for Value PC Desktop Designs

- High performance North Bridge with 533 MHz Front Side Bus for Pentium™ 4 plus AGP 4x external bus
- 64-bit Advanced ECC Memory controller supporting PC2100/PC1600 DDR and PC100/PC133 SDR SDRAM
- Combines with VIA VT8233 V-Link South Bridge for integrated LAN, Audio, ATA100 IDE, and 6 USB ports
- 2.5V Core and AGTL+ I/O
- 37.5 x 37.5mm PBGA package with 664 balls

High Performance CPU Interface

- Support for Intel™ Pentium 4 processors with 533 MHz (133 MHz QDR) CPU Front Side Bus (FSB)
- Built-in Phase Lock Loop circuitry for optimal skew control within and between clocking regions
- Thirteen outstanding transactions (twelve In-Order Queue (IOQ) plus one output latch)
- Dynamic deferred transaction support

• Full Featured Accelerated Graphics Port (AGP) Controller

- Supports 266 MHz 4x and 133 MHz 2x transfer modes for AD and SBA signaling
- AGP specification v2.0 compliant
- Pseudo-synchronous with the host CPU bus with optimal skew control
- Supports SideBand Addressing (SBA) mode (non-multiplexed address / data)
- AGP pipelined split-transaction long-burst transfers up to 1GB/sec
- Eight level read request queue
- Four level posted-write request queue
- Thirty-two level (quadwords) read data FIFO (256 bytes)
- Sixteen level (quadwords) write data FIFO (128 bytes)
- Intelligent request reordering for maximum AGP bus utilization
- Supports Flush/Fence commands
- Graphics Address Relocation Table (GART)
 - One level TLB structure
 - Sixteen entry fully associative page table
 - LRU replacement scheme
 - Independent GART lookup control for host / AGP / PCI master accesses
- Windows 95 OSR-2 VXD and integrated Windows 98 / Windows 2000 miniport driver support

Advanced High-Performance DDR / SDR DRAM Controller

- DRAM interface pseudo-synchronous with host CPU (133/100 MHz) for most flexible configuration
- DRAM interface may be faster than CPU by 33 MHz to allow use of 133 MHz memory with 100 MHz FSB clock
- Concurrent CPU, AGP, and V-Link access
- Supports SDR and DDR SDRAM memory types
- Clock Enable (CKE) control for SDRAM power reduction in high speed systems
- Mixed 16M / 32M / 64M x 8/16/32 DRAMs
- Supports 8 banks up to 4 GB DRAMs (512Mb x8/x16 DRAM technology)
- Flexible row and column addresses. 64-bit data width only
- LVTTL 3.3V DRAM interface with 5V-tolerant inputs for SDR SDRAM and 2.5V SSTL-2 DRAM interface for DDR SDRAM
- Programmable I/O drive capability for MA, MD, and command signals
- Dual copies of MA and control signals for improved drive
- Optional ECC (single-bit error correction and multi-bit error detection) or EC (error checking only) for DRAM integrity
- Two-bank interleaving for 16Mbit SDRAM support
- Two-bank and four bank interleaving for 64Mb, 128Mb, 256Mb and 512Mb SDRAM support
- Supports maximum 16-bank interleave (i.e., 16 pages open simultaneously); banks are allocated based on LRU
- Seamless DRAM command scheduling for maximum DRAM bus utilization
 - (e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU to DRAM write buffers
- Four cache lines of CPU to DRAM read prefetch buffers
- Read around write capability for non-stalled CPU read
- Speculative DRAM read before snoop result
- Burst read and write operation
- Burst length 4 and 8 for SDR and DDR
- Supports DDR SDRAM CL 2/2.5/3 and 1T per command
- 1T and 2T command rate for SDR and DDR which can be specified bank by bank
- Decoupled and burst DRAM refresh with staggered RAS timing (CAS before RAS or self refresh)

High Bandwidth 266MB/S 8-bit V-Link Host Controller

- Supports 66MHz V-Link Host interface with peak bandwidth of 266MB/S
- Operates at 2X or 4X modes
- Full duplex commands with separate command / strobe
- Request / Data split transaction
- Configurable outstanding transaction queue for Host to V-Link Client accesses
- Supports Defer / Defer-Reply transactions
- Transaction assurance for V-Link Host to Client access eliminates V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to eliminate data wait-state / throttle transfer latency
- All V-Link transactions for both Host and Client have a consistent view of transaction data depth and buffer size to avoid data overflow
- Highly efficient V-Link arbitration with minimum overhead
- All V-Link transactions have predictable cycle length with known command / data duration

• Advanced System Power Management Support

- Power down of SDRAM (CKE)
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and self-refresh power down
- Low-leakage I/O pads
- ACPI 1.0B and PCI Bus Power Management 1.1 compliant

OVERVIEW

The P4X266E (VT8753E North Bridge plus VT8233 South Bridge) is a high performance, cost-effective and energy efficient chip set for the implementation of desktop personal computer systems with 533 MHz (133 MHz QDR) CPU host bus ("Front Side Bus") based on 64-bit Intel Pentium-4 super-scalar processors. The chipset VT8753E north bridge (described in this document) supports both 533 MHz and 400 MHz FSB speeds and is pin compatible with the VT8753 north bridge which supports 400 MHz FSB Pentium-4 CPUs.

Figure 1. P4X266E Chipset System Block Diagram

The P4X266E chip set consists of the VT8753E North Bridge (664 pin BGA) and the VT8233 V-Link South Bridge (376 pin BGA). The VT8753 and VT8753E (sometimes also called "Host System Controllers") are updates of VIA's VT8653 Apollo Pro266T system controller that adds CPU bus extensions to support Pentium 4 CPUs. The VT8753E provides superior performance between the CPU, DRAM, V-Link bus and AGP 4x graphics controller bus with pipelined, burst, and concurrent operation. The VT8233 (which may also be referred to as a "V-Link Client Controller") is a highly integrated PCI / LPC controller. Its internal bus structure is based on a 66 MHz PCI bus that provides 2x bandwidth compared to previous generation PCI bridge chips. The VT8233 also provides a 266MB/sec bandwidth Host / Client V-Link interface with V-Link-PCI and V-Link-LPC controllers. It supports five PCI slots of arbitration and decoding for all integrated functions and LPC bus.

The VT8753E supports eight banks of SDR / DDR SDRAMs up to 4 GB. The DRAM controller supports PC2100 / PC1600 Double-Data-Rated (DDR) SDRAM but can also support standard PC133 / PC100 Synchronous DRAM (SDR SDRAM). The DDR / SDR DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 133 / 100 MHz. The different banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16M / 32M / 64M x 8/16/32 DRAMs. The DRAM controller also supports optional ECC (single-bit error correction and multi-bit detection) or EC (error checking) capability. The DRAM controller can run either synchronous or pseudo-synchronous with the host CPU bus.

The VT8753E supports a high speed 8-bit 66 MHz Quad Data Transfer interconnect (V-Link) to the VT8233 South Bridge. The chip also contains a built-in bus-to-bus bridge to allow simultaneous concurrent operations on each bus. Five levels (doublewords) of post write buffers are included to allow for concurrent CPU and V-Link operation. For V-Link Host operation, forty-eight levels (doublewords) of post write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent V-Link bus and DRAM/cache accesses. When combined the V-Link Host / Client controllers, it realizes a complete PCI sub-system and

supports enhanced PCI bus commands such as "Memory-Read-Line", "Memory-Read-Multiple" and "Memory-Write-Invalid" commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

The 376-pin Ball Grid Array VT8233 Client V-Link PCI / LPC controller supports four levels (doublewords) of line buffers, type F DMA transfers and delay transaction to allow efficient PCI bus utilization and (PCI-2.1 compliant). The VT8233 integrated PCI controller and PCI arbitration for up to five PCI slots. One of the PCI REQ / GNT pair can be configured as high-priority to better support a low latency PCI bus master device. The VT8233 integrated networking MAC controller with standard MII interface to an external PHY for 10/100Mb base-T Ethernet or 1/10Mb PNA home networking.

The VT8233 also includes an integrated keyboard controller with PS2 mouse support, integrated DS12885 style real time clock with extended 256 byte CMOS RAM, integrated master mode enhanced IDE controller with full scatter / gather capability and extension to UltraDMA-33/66/100 for 33/66/100 MB/sec transfer rate, integrated USB interface with root hubs and six functional ports with built-in physical layer transceivers, Distributed DMA support, and OnNow / ACPI compliant advanced configuration and power management interface.

For sophisticated power management, the P4X266E chipset provides independent clock stop controls for the CPU / SDRAM and AGP bus plus Dynamic CKE control for powerdown of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation. Coupled with the VT8233 south bridge chip, a complete power conscious PC main board can be implemented with no external TTLs.

PINOUTS Figure 2. VT8753E / P4X266E Ball Diagram (Top View)

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
A	NC	GCMP N0	GND QQ	VCC QQ	NC	NC	NC	NC	NC	NC	NC	NC	NC	HD61	HD58	HD56	HD62	HD48	HD47	HD44	HD35	HD40	HD32	HD36	HD16	HD18	HDS 1	HD22	HD27
В	GNT	GND	GCMP N1	GND	NC	NC	NC	NC	NC	NC	NC	NC	NC	HD63	HD55	GND	HDS 3#	HD49	HD46	HD45	HD43	HDBI 2#	HD39	HD33	HD19	HD29	HDS 1#	GND	HD23
C	G REQ	SBA 1	SBA 0	GND	NC	NC	NC	NC	NC	NC	GND	NC	NC	GND	HD59	GND	HDS 3	HD51	HD50	HD41	GND	GND	HD38	HD28	HDBI 1#	HD26	HD25	HD20	HD31
D	SBS#	SBS	SBA 4	SBA 3	GND	NC	NC	NC	NC	NC	NC	NC	NC	HD 60	GND	HDBI 3#	HD54	GND	GND	HDS 2	GND	HD37	HD30	GND	HD21	GND	HD17	HD24	HD13
E	SBA 5	GND	SBA 6	SBA 2	ST0	NC	NC	NC	NC	NC	NC	NC	NC	CPU RST#	HD57	VTT	HD53	HD52	GND TT	HDS 2#	HD42	HD34	VTT	GND	GND	GND	HD12	HD4	HD7
F	GD3	NC	SBA 7	GND	ST1	GND	GND	GND	VCC 25	VCC 25	VCC 25	GND	GND	VCC 25	VCC 25	HD VREF	VTT	VTT	HD VREF	VCC 25	VCC 25	HD VREF	VTT	HD VREF	HR COMP	HD3	HD9	HD11	HD1
G	GD2	GD27	GD29	GD30	G PIPE#	AGP VREF	F7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	G23	HCMP VREF	HD14	GND	HDBI 0#	HDS 0	HDS 0#
Н	GD24	GND	GD25	GD28	G RBF#	VCC 25	Н	CRT	Pins						0,								Н	VCC 25	HD5	HD15	GND	GND	HD10
J	GD23	GDS 1#	GDS 1	GND	ST2	VCC 25	J		·	<u> </u>						-						CPU	J	VCC 25	HITM#	HD6	HD2	HD0	HD8
K	GD2	GD19	GD20	GD22	GBE 3#	VCC AGP	K		VCC AGP	GND	NC	NC	NC	VTT	VTT	VTT	VTT	VTT	VTT	VTT		Pins	K	VTT	D BSY#	GND	RS2#	RS0#	RS1#
L	GD18	GND	GD17	G FRM#	G WBF#	VCC AGP	L	AGP	VCC AGP	VCC AGP	L11	12	13	14	15	16	17	18	L19	VTT			L	GTL VREF	H LOCK#	B REQ#	HIT#	GND	B PRI#
M	GI RDY:	GBE 2#	GD16	GND	NC	VCC AGP	M	Pins	VCC AGP	VCC AGP	M	GND	GND	GND	GND	GND	GND	GND	M	VTT			M	GND HCK	H CLK#	HT RDY#	DE FER#	D RDY#	BNR#
N	GD14	GD15	GBE 1#	G DSEL#	GD13	VCC 25	N		VCC AGP	VCC AGP	N	GND	GND	GND	GND	GND	GND	GND	N	VTT			N	VCC HCK	H CLK	GND	HREQ 2#	HA7	HA3
P	GD10	GND	GD11	GD12	GT RDY#	VCC 25	P		VCC AGP	VCC AGP	P 4	GND	GND	GND	GND	GND	GND	GND	P	VTT			P	GND TT	ADS#	HREQ 4#	HREQ 1#	GND	HREQ 3#
R	GBE 0#	GD9	GD8	GND	G STOP#	AGP VREF	R		VCC AGP	VCC AGP	R	GND	GND	GND	GND	GND	GND	GND	R	VTT			R	HA VREF	HREQ 0#	HA5	HA4	HA11	HA6
Т	GD6	GD7	GD4	GDS 0	GDS 0#	VCC AGP	T		VCC AGP	VCC AGP	T	GND	GND	GND	GND	GND	GND	GND	Т	VTT			T	VTT	HAS 0#	GND	HA9	HA15	HA8
U	GD2	GND	GD5	G PAR	G CLK	VCC AGP	U		VCC VL	VCC VL	U	GND	GND	GND	GND	GND	GND	GND	U	VTT			U	VTT	GND	HA16	GND	HA12	HA13
v	GD3	GD0	GD1	GND	VBE#	VCC AGP	\mathbf{V}		VCC VL	VCC VL	V	GND	GND	GND	GND	GND	GND	GND	\mathbf{v}	VCC MEM			\mathbf{v}	HA VREF	HA10	HA14	HA19	HA18	HA17
W	VAD: strap	3 VAD5 strap	VAD1 strap	GND	VAD0 strap	VCC 25	W	_	VCC VL	VCC MEM	W11	12)	13	14	15	16	17	18	W19	VCC MEM			\mathbf{w}	VCC 25	TEST IN#	GND	HA25	HA22	HA24
Y	UP CME	GND	UP STB#	GND	VL VREF	VCC 25	Y	Vlink	VCC VL	VCC MEM	VCC MEM	VCC MEM	VCC MEM	VCC MEM	VCC MEM	VCC MEM	VCC MEM	VCC MEM	VCC MEM	VCC MEM			Y	VCC 25	VTT	HA30	HAS 1#	GND	HA29
AA	DN STB	DN CMD	DN STB#	UP STB	VAD4 strap	VCC 25	AA	Pins	VCC MEM	VCC MEM	VCC MEM	VCC MEM	VCC MEM	VCC MEM	VCC MEM		VCC MEM	VCC MEM	VCC MEM	VCC MEM			AA	VTT	HA23	HA26	HA21	HA20	HA28
AB	VAD	VAD	VAD2 strap	VL COMP	VSUS 25	GND	AB						7	Mem	Pins								AB	VTT	GND	GND	HA33	HA31	HA27
AC	PWR OK	GND	RE SET#	SUS ST#	MD59	GND	AC7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	AC23	GND MCK	MCLK	GND	HA32	GND	MD0
AD	MD5	8 MD62	DQS 7#	DQM 7	MD63	GND	MEM VREF	NC	VCC 25	VCC 25	VCC 25	MEM VREF	VCC 25	VCC 25	GND MDLL	SCAS B#	SWE B#	MEM VREF	SRAS B#	VCC 25	VCC 25	VCC 25	MEM VREF	VCC MCK	MCLK F	MD2	MD1	MD5	MD4
AE	MD5	7 MD61	MD56	GND	CS6#	CS7#	MD41	NC	CS0#	SCAS A#	MAB 10	CS4#	MECC 7	SWE A#	VCC MDLL	MAA 1	GND	GND	GND	MAA 6	MAA 5	MAA 7	MAB 8	MAB 7	MAA 13	MAB 13	MD6	DQM 0	DQS 0#
AF	MD5	GND	MD60	MD54	MD43	MD45	GND	CS1#	MD38	GND	CS5#	MAA 0	GND	MECC 1	MECC 0	GND	MAA 4	MD30	GND	MD25	MAB 5	GND	MD18	MD17	GND	MAA 9	MAB 9	GND	MD7
AG	MD5	MD50	MD52	MD49	MD42	MD40	CS3#	MD39	MD34	MD33	MD36	MAA 12	MECC 3	DQS 8#	MAB 1	SRAS A#	MAA 3	MD27	MAB 6	MD29	MAB 14	MAA 8	MD22	MD21	MD10	MD15	MD9	MD8	MD3
AH	DQS 6#	GND	MD48	GND	DQM 5	CS2#	GND	MAB 11	DQS 4#	GND	MD32	MAA 10	GND	MECC 2	MECC 4	GND	MAB 3	MD31	GND	DOS 3#	MD24	GND	MD19	DQS 2#	GND	MD11	DQM	GND	MD12
AJ	DQM	MD53	MD47	MD46	DQS 5#	MD44	MAA 11	MD35	DQM 4	MD37	MAB 12	MAB 0	MECC 6	DQM 8	MECC 5	MAB 2	MAA 2	MAB 4	MD26	DQM 3	MD28	MAA 14	MD23	DQM 2	MD16	MD20	MD14	DQS 1#	MD13

Table 1. VT8753E Pin List (Numerical Order)

Pin#		Pin Name	Pin #		Pin Name	Pin#		Pin Name	Pin #		Pin Name	Pin#		Pin Names	Pin #		Pin Name
A01	_	NC	C25	Ю	HDBI1#	G28	Ю	HDS0	R26	Ю	HA05	AD02	Ю	MD62	AG09	Ю	MD34
	ΑI	GCOMPN0	C26	Ю	HD26	G29	Ю	HDS0#	R27	Ю	HA04	AD03	IO	DQS7# / CKE7	AG10	Ю	MD33
A03		GNDQQ	C27	IO	HD25	H01	IO	GD24	R28	IO	HA11	AD04	O	DOM7 / CKE7	AG11	Ю	MD36
A04	P	VCCQQ	C28	Ю	HD20	H03	Ю	GD25	R29	Ю	HA06	AD05	Ю	MD63	AG12	O	MAA12
A05	_	NC	C29	IO	HD31	H04	Ю	GD28	T01	Ю	GD6	AD07	P	MEMVREF	AG13	Ю	MECC3 / CKE3
A06	_	NC	D01	I	SBS#	H05	I	GRBF#	T02	Ю	GD7	AD08	-	NC	AG14	Ю	DQS8#
A07	_	NC	D02	I	SBS	H25	Ю	HD05	T03	Ю	GD4	AD12	P	MEMVREF	AG15	О	MAB01
A08	-	NC	D03	I	SBA4	H26	IO	HD15	T04	IO	GDS0	AD15	P	GNDMDLL	AG16	О	SRASA#
A09	-	NC	D04	I	SBA3	H29	IO	HD10	T05	IO	GDS0#	AD16	O	SCASB#	AG17	O	MAA03
A10	-	NC NG	D06	_	NC	J01	IO	GD23	T25	IO	HAS0#	AD17	O	SWEB#	AG18	IO	MD27
All	_	NC NC	D07	_	NC NC	J02	IO	GDS1#	T27 T28	IO	HA09	AD18	P	MEMVREF	AG19	0	MAB06
A12 A13	_	NC NC	D08 D09	_	NC NC	J03 J05	IO O	GDS1 ST2	T29	IO IO	HA15 HA08	AD19 AD23	O P	SRASB# MEMVREF	AG20 AG21	IO O	MD29 MAB14
A14	IO	HD61	D10		NC NC	J25	I	HITM#	U01	IO	GD2	AD24	P	VCCMCK	AG21	o	MAA08
	IO	HD58	D10	_	NC	J26	IO	HD06	U03	IO	GD5	AD25	Ī	MCLKF	AG23	Ю	MD22
	IO	HD56	D12	_	NC	J27	IO	HD02	U04	IO	GPAR	AD26	IO	MD02	AG24	IO	MD21
	IO	HD62	D13	_	NC	J28	IO	HD00	U05	I	GCLK	AD27	IO	MD01	AG25	Ю	MD10
	Ю	HD48	D14	Ю	HD60	J29	Ю	HD08	U26	Ю	HA16	AD28	IO	MD05	AG26	Ю	MD15
A19	IO	HD47	D16	IO	HDBI3#	K01	Ю	GD21	U28	Ю	HA12	AD29	IO	MD04	AG27	Ю	MD09
A20	IO	HD44	D17	Ю	HD54	K02	Ю	GD19	U29	Ю	HA13	AE01	IO	MD57	AG28	Ю	MD08
	IO	HD35	D20	IO	HDS2	K03	IO	GD20	V01	IO	GD3	AE02	IO	MD61	AG29	IO	MD03
	IO	HD40	D22	IO	HD37	K04	IO	GD22	V02	IO	GD0	AE03	IO	MD56	AH01	IO	
	IO	HD32	D23	IO	HD30	K05	IO	GBE3#	V03	IO	GD1	AE05	0	CS6#	AH03	IO	MD48
	IO	HD36	D25	IO	HD21	K25	IO	DBSY#	V05	IO P	VBE#	AE06	0	CS7#	AH05	0	DQM5 / CKE5
-	IO	HD16	D27	IO	HD17 HD24	K27	IO	RS2#	V24	- 0	HAVREF HA10	AE07	IO	MD41	AH06	0	CS2#
	IO IO	HD18 HDS1	D28 D29	IO	HD13	K28 K29	IO	RS0# RS1#	V25 V26	IO	HA14	AE08 AE09	o	NC CS0#	AH08 AH09	O	MAB11 DQS4# / CKE4
	IO	HD22	E01	I	SBA5	L01	IO	GD18	V27	Ю	HA19	AE10	ŏ	SCASA#	AH11	IO	MD32
		HD27	E03	Ī	SBA6	L03	IO	GD17	V28	IO	HA18	AE11	ŏ	MAB10	AH12	o	MAA10
B01	0	GGNT#	E04	Ī	SBA2	L04	IO	GFRM#	V29	Ю	HA17	AE12	ŏ	CS4#	AH14	IO	MECC2 / CKE2
	ΑI	GCOMPN1	E05	О	ST0	L05	I	GWBF#	W01	Ю	VAD3 / strap	AE13	IO	MECC7 / CKE7	AH15	Ю	MECC4 / CKE4
B05	_	NC	E06	_	NC	L24	P	GTLVREF	W02	Ю	VAD5 / strap	AE14	0	SWEA#	AH17	О	MAB03
B06	_	NC	E07	-	NC	L25	I	HLOCK#	W03	IO	VAD1 / strap	AE15	P	VCCMDLL	AH18	Ю	MD31
B07	-	NC	E08	-	NC	L26	О	BREQ#	W05	Ю	VAD0 / strap	AE16	O	MAA01	AH20	IO	DQS3# / CKE3
B08	-	NC	E09	_	NC	L27	IO	HIT#	W06	P	VCCAGP	AE20	0	MAA06	AH21	IO	MD24
B09	-	NC	E10	_	NC	L29	IO	BPRI#	W25	I	TESTIN#	AE21	0	MAA05	AH23	IO	MD19
B10	_	NC NC	E11	_	NC NC	M01	IO	GIRDY#	W27	IO	HA25	AE22	0	MAA07	AH24	IO	DQS2# / CKE2
B11 B12	_	NC NC	E12 E13	_	NC NC	M02 M03	IO	GBE2# GD16	W28 W29	IO	HA22 HA24	AE23 AE24	0	MAB08 MAB07	AH26 AH27	IO O	MD11 DQM1 / CKE1
B12	_	NC NC	E13	0	CPURST#	M05	10	NC NC	Y01	I	UPCMD	AE25	o	MAA13	AH29	Ю	MD12
	IO	HD63	E15	Ю	HD57	M24	P	GNDHCK	Y03	I	UPSTB#	AE26	ŏ	MAB13	AJ01	0	DQM6 / CKE6
	IO	HD55	E17	IO	HD53	M25	Ī	HCLK#	Y05	P	VLVREF	AE27	IO	MD06	AJ02	Ю	MD53
	Ю	HDS3#	E18	Ю	HD52	M26	Ю	HTRDY#	Y26	Ю	HA30	AE28	O	DQM0 / CKE0	AJ03	Ю	MD47
B18	IO	HD49	E19	P	GNDTT	M27	Ю	DEFER#	Y27	Ю	HAS1#	AE29	Ю	DQS0# / CKE0	AJ04	Ю	MD46
B19	IO	HD46	E20	Ю	HDS2#	M28	Ю	DRDY#	Y29	IO	HA29	AF01	IO	MD51	AJ05	Ю	DQS5# / CKE5
	IO	HD45	E21	IO	HD42	M29	IO	BNR#	AA01	0	DNSTB	AF03	IO	MD60	AJ06	IO	MD44
		HD43	E22	IO	HD34	N01	Ю	GD14	AA02	0	DNCMD	AF04	IO	MD54	AJ07	O	MAA11
	IO	HDBI2#	E27	IO	HD12	N02	IO	GD15	AA03	O	DNSTB#	AF05	IO	MD43	AJ08	IO	MD35
		HD39	E28	IO	HD04	N03	IO	GBE1#	AA04	I	UPSTB	AF06	IO	MD45	AJ09	0	DQM4 / CKE4
	IO IO	HD33 HD19	E29 F01	IO	HD07 GD31	N04 N05	IO	GDEVSEL# GD13	AA05 AA25	IO IO	VAD4 / strap HA23	AF08 AF09	O	CS1#	AJ10 AJ11	IO	MD37 MAB12
		HD19 HD29	F01 F02	10	NC	N24	P	VCCHCK	AA26	IO	HA26	AF11	0	MD38 CS5#	AJ11 AJ12	0	MAB00
	IO	HDS1#	F03	I	SBA7	N25	I	HCLK	AA27	IO	HA21	AF12	ŏ	MAA00	AJ12 AJ13	Ю	MECC6 / CKE6
		HD23	F05	Ó	ST1	N27	IO	HREQ2#	AA28	IO	HA20	AF14	Ю	MECC1 / CKE1	AJ14	o	DQM8
C01		GREQ#	F16	P	HDVREF	N28	IO	HA07	AA29		HA28	AF15		MECC0 / CKE0		Ю	
C02		SBA1	F19	P	HDVREF	N29					VAD6 / strap			MAA04	AJ16		MAB02
C03	I	SBA0	F22	P	HDVREF	P01	IO	GD10	AB02		VAD7	AF18	IO	MD30	AJ17	О	MAA02
C05		NC	F24	P	HDVREF	P03	IO	GD11	AB03		VAD2 / strap	AF20	IO		AJ18	О	MAB04
C06		NC	F25	ΑI	HRCOMP	P04	Ю	GD12	AB04	ΑI	VLCOMP	AF21	О	MAB05	AJ19	IO	
C07		NC	F26	IO	HD03	P05	IO	GTRDY#	AB05	P	VSUS25	AF23	IO		AJ20	O	DQM3 / CKE3
C08	-	NC NG	F27	IO	HD09	P24	P	GNDTT	AB27	IO	HA33	AF24	IO		AJ21	IO	
C09	_	NC NC	F28	IO	HD11	P25	IO	ADS#	AB28			AF26	0	MAA09	AJ22	0	MAA14
C10 C12		NC NC	F29 G01	IO	HD01 GD26	P26 P27	IO	HREQ4# HREQ1#	AB29 AC01	I	HA27 PWROK	AF27 AF29	O IO	MAB09 MD07	AJ23 AJ24	IO	MD23 DQM2 / CKE2
C12		NC NC	G01 G02	IO	GD26 GD27	P27 P29	IO	HREQ1# HREQ3#	AC01 AC03	I	RESET#	AG01	IO	MD07 MD55	AJ24 AJ25	Ю	
		HD59	G02 G03	IO	GD27 GD29	R01	IO	GBE0#	AC04	I	SUSST#	AG01	IO		AJ25 AJ26	IO	
		HDS3	G03	IO	GD29 GD30	R02	IO	GD9	AC04	IO		AG02 AG03		MD50 MD52	AJ20 AJ27	IO	
		HD51	G05	I	GPIPE#	R03	IO	GD8	AC24	P	GNDMCK	AG04		MD49	AJ28	IO	
		HD50	G06	P	AGPVREF	R05	IO	GSTOP#	AC25	ō	MCLK	AG05			AJ29	IO	
		HD41	G24	P	HCMPVREF	R06	P	AGPVREF	AC27	IO	HA32	AG06					
		HD38	G25	Ю	HD14	R24	P	HAVREF	AC29	Ю	MD00	AG07	О	CS3#	l	1	
	Ю	HD28	G27	IO	HDBI0#	R25	Ю	HREQ0#	AD01	IO	MD58	AG08	Ю	MD39	<u> </u>	L	

VCC25 Pins (26 pins): F9-11,14-15,20-21, H6,24, J6,24, N6, P6, W6,24, Y6,24, AA6, AD9-11,13-14,20-22

VCCMEM Pins (26 pins): V20, W10,20, Y10-20, AA9-20

 $VCCAGP \ Pins \ (19 \ pins): \quad K6,9, L6,9-10, M6,9-10, N9-10, P9-10, R9-10, T6,9-10, U6, V6$

VCCVL (4 pins): U9-10, V9-10, W9, Y9

VTT Pins (25 pins): E16, E23, F17-18,23, K14-20,24, L20, M20, N20, P20, R20,T20,24, U20,24, Y25, AA24, AB24

GND Pins (133 pins): B2,4,16,28, C4,11,14,16,21-22, D5,15,18-19,21,24,26, E2,24-26, F4,6-8,12-13, G26, H2,27-28, J4, K10,26, L2,28, M4,12-18, N12-18,26, P2,12-18,28, R4,12-18, T12-18,26, U2,12-18,25,27, V4,12-18, W4,26, Y2,4,28, AB6,25-26,

AC2,6,26,28, AD6, AE4,17-19, AF2,7,10,13,16,19,22,25,28, AH2,4,7,10,13,16,19,22,25,28

Table 2. VT8753E Pin List (Alphabetical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin #		Pin Name
P25	Ю	ADS#	G01	Ю	GD26	J26	Ю	HD06	F22	P	HDVREF	AJ21	Ю	MD28	C10	-	NC
G06	P	AGPVREF	G02	Ю	GD27	E29	Ю	HD07	F24	P	HDVREF	AG20	Ю	MD29	C12	_	NC
R06	P	AGPVREF	H04	Ю	GD28	J29	IO	HD08	L27	Ю	HIT#	AF18	IO	MD30	C13	_	NC
M29	Ю	BNR#	G03	Ю	GD29	F27	IO	HD09	J25	I	HITM#	AH18	Ю	MD31	D06	_	NC
L29	IO	BPRI#	G04	IO	GD30	H29	IO	HD10	L25	I	HLOCK#	AH11	Ю	MD32	D07	_	NC
L26	0	BREQ#	F01	IO	GD31	F28	IO	HD11	F25	AI	HRCOMP	AG10	IO	MD33	D08	_	NC
E14		CPURST#	T04 T05	IO	GDS0 GDS0#	E27 D29	IO	HD12	R25 P27	IO	HREQ0#	AG09	IO	MD34 MD35	D09	_	NC NC
AE09 AF08	0	CS0# CS1#	J03	IO	GDS0# GDS1	G25	IO	HD13 HD14	N27	IO	HREQ1# HREQ2#	AJ08 AG11	IO	MD36	D10 D11	_	NC NC
AH06	ŏ	CS2#	J02	IO	GDS1#	H26	IO	HD15	P29	IO	HREQ3#	AJ10	Ю	MD37	D11	_	NC NC
AG07	ŏ	CS3#	N04	IO	GDEVSEL#	A25	IO	HD16	P26	IO	HREQ4#	AF09	Ю	MD38	D13	_	NC
AE12	O	CS4#	L04	Ю	GFRM#	D27	Ю	HD17	M26	IO	HTRDY#	AG08	Ю	MD39	E06	_	NC
AF11	О	CS5#	B01	O	GGNT#	A26	IO	HD18	AF12	О	MAA00	AG06	Ю	MD40	E07	_	NC
AE05	О	CS6#	M01	Ю	GIRDY#	B25	IO	HD19	AE16	O	MAA01	AE07	Ю	MD41	E08	_	NC
AE06	О	CS7#	M24	P	GNDHCK	C28	IO	HD20	AJ17	O	MAA02	AG05	Ю	MD42	E09	_	NC
K25	IO	DBSY#	AC24	P	GNDMCK	D25	IO	HD21	AG17	0	MAA03	AF05	IO	MD43	E10	_	NC
M27	IO	DEFER#	AD15	P	GNDMDLL	A28 B29	IO	HD22	AF17	0	MAA04	AJ06	IO	MD44	E11	-	NC NC
AA02 AA01	0	DNCMD DNSTB	A03 E19	P P	GNDQQ GNDTT	D28	IO	HD23 HD24	AE21 AE20	0	MAA05 MAA06	AF06 AJ04	IO IO	MD45 MD46	E12 E13	_	NC NC
AA01	ŏ	DNSTB#	P24	P	GNDTT	C27	IO	HD25	AE22	ŏ	MAA07	AJ03	Ю	MD47	F02	_	NC NC
AE28	Ö	DQM0 / CKE0	U04	IO	GPAR	C26	Ю	HD26	AG22	ŏ	MAA08	AH03	Ю	MD48	M05	_	NC
AH27	-	DQM1 / CKE1	G05	I	GPIPE#	A29	IO	HD27	AF26	ŏ	MAA09	AG04	Ю	MD49	AD08	-	NC
AJ24	О	DQM2 / CKE2	H05	I	GRBF#	C24	Ю	HD28	AH12	O	MAA10	AG02	Ю	MD50	AE08	-	NC
AJ20	О	DQM3 / CKE3	C01	I	GREQ#	B26	Ю	HD29	AJ07	O	MAA11	AF01	Ю	MD51	AC01	I	PWROK
AJ09	О	DQM4 / CKE4	R05	Ю	GSTOP#	D23	IO	HD30	AG12	O	MAA12	AG03	Ю	MD52	AC03	I	RESET#
AH05	0	DQM5 / CKE5	L24	P	GTLVREF	C29	IO	HD31	AE25	0	MAA13	AJ02	IO	MD53	K28	IO	RS0#
AJ01		DQM6 / CKE6	P05	IO I	GTRDY#	A23 B24	IO	HD32	AJ22	0	MAA14	AF04	IO	MD54	K29	IO	RS1#
AD04 AJ14	0	DQM7 / CKE7 DQM8	L05 N29	IO	GWBF# HA03	E22	IO	HD33 HD34	AJ12 AG15	0	MAB00 MAB01	AG01 AE03	IO	MD55 MD56	K27 C03	I	RS2# SBA0
AE29	Ю	DQS0# / CKE0	R27	IO	HA04	A21	IO	HD35	AJ16	Ö	MAB02	AE01	Ю	MD57	C02	I	SBA1
AJ28		DOS1# / CKE1	R26	IO	HA05	A24	IO	HD36	AH17	ŏ	MAB03	AD01	Ю	MD58	E04	Ī	SBA2
AH24	IO	DQS2# / CKE2	R29	Ю	HA06	D22	IO	HD37	AJ18	O	MAB04	AC05	IO	MD59	D04	I	SBA3
AH20	Ю	DQS3# / CKE3	N28	Ю	HA07	C23	Ю	HD38	AF21	O	MAB05	AF03	IO	MD60	D03	I	SBA4
AH09		DQS4# / CKE4	T29	Ю	HA08	B23	IO	HD39	AG19	O	MAB06	AE02	IO	MD61	E01	I	SBA5
AJ05		DQS5# / CKE5	T27	IO	HA09	A22	IO	HD40	AE24	O	MAB07	AD02	IO	MD62	E03	I	SBA6
AH01		DQS6# / CKE6	V25	IO	HA10	C20		HD41	AE23	0	MAB08	AD05	IO	MD63	F03	I	SBA7
AD03 AG14		DQS7# / CKE7 DQS8#	R28 U28	IO	HA11 HA12	E21 B21	IO	HD42 HD43	AF27 AE11	0	MAB09 MAB10	AF15 AF14	IO	MECC0 / CKE0 MECC1 / CKE1	D02 D01	I I	SBS SBS#
M28		DRDY#	U29	IO	HA13	A20	IO	HD44	AH08	o	MAB11	AF14 AH14	IO	MECC1 / CKE1 MECC2 / CKE2	AE10	O	SCASA#
R01	IO	GBE0#	V26	IO	HA14	B20	IO	HD45	AJ11	Ö	MAB12	AG13	IO	MECC2 / CKE2 MECC3 / CKE3	AD16	o	SCASB#
N03	IO	GBE1#	T28	IO	HA15	B19	IO	HD46	AE26	ŏ	MAB13	AH15	IO	MECC4 / CKE4	AG16	Ö	SRASA#
M02	IO	GBE2#	U26	IO	HA16	A19	IO	HD47	AG21	ŏ	MAB14	AJ15	IO	MECC5 / CKE5	AD19	ŏ	SRASB#
K05	Ю	GBE3#	V29	Ю	HA17	A18	Ю	HD48	AC25	О	MCLK	AJ13	Ю	MECC6 / CKE6	E05	О	ST0
U05	I	GCLK	V28	Ю	HA18	B18	Ю	HD49	AD25	L	MCLKF	AE13	Ю	MECC7 / CKE7	F05	О	ST1
A02		GCOMPN0	V27	IO	HA19	C19	IO	HD50	AC29	IO	MD00	AD07	P	MEMVREF	J05	О	ST2
B03	AI	GCOMPN1	AA28	IO.	HA20	C18	10	HD51	AD27	IO	MD01	AD12	P	MEMVREF	AC04	I	SUSST#
V02	IO	GD0	AA27	IO	HA21	E18	IO IO	HD52	AD26	IO	MD02	AD18	P	MEMVREF	AE14	0	SWEA#
V03 U01	IO IO	GD1 GD2	W28 AA25	IO	HA22 HA23	E17 D17	10	HD53 HD54	AG29 AD29	IO	MD03 MD04	AD23 A01	P -	MEMVREF NC	AD17 W25	O	SWEB# TESTIN#
V01	IO	GD2 GD3	W29	10	HA24	B15	Ю	HD55	AD28	Ю	MD05	A05	_	NC NC	Y01	I	UPCMD
T03	IO	GD4	W27	IO	HA25	A16	IO	HD56	AE27	IO	MD06	A06	_	NC	AA04	Ī	UPSTB
U03	Ю	GD5	AA26	Ю	HA26	E15	Ю	HD57	AF29	Ю	MD07	A07	_	NC	Y03	I	UPSTB#
T01	Ю	GD6	AB29	Ю	HA27	A15	IO	HD58	AG28	IO	MD08	A08	_	NC	W05	IO	VAD0 / strap
T02	IO	GD7	AA29	IO	HA28	C15	IO	HD59	AG27	IO	MD09	A09	_	NC	W03	IO	
R03		GD8	Y29		HA29	D14		HD60	AG25	IO	MD10	A10	-	NC	AB03	IO	VAD2 / strap
R02		GD9	Y26		HA30	A14		HD61	AH26		MD11	A11	-	NC	W01		VAD3 / strap
P01	IO	GD10	AB28		HA31	A17		HD62	AH29		MD12	A12	-	NC	AA05		VAD4 / strap
P03 P04	IO IO	GD11 GD12	AC27 AB27		HA32 HA33	B14 G27		HD63 HDBI0#	AJ29 AJ27	IO IO	MD13 MD14	A13 B05	_	NC NC	W02 AB01	IO IO	
N05		GD12 GD13	T25		HAS0#	C25		HDBI1#	AG26	IO	MD14 MD15	B05	_	NC NC	AB01 AB02	IO	
N01		GD14	Y27		HAS1#	B22		HDBI2#	AJ25	Ю	MD16	B07	_	NC	V05		VBE#
N02		GD15	R24		HAVREF	D16		HDBI3#	AF24	IO	MD17	B08	_	NC	N24	P	VCCHCK
M03		GD16	V24	P	HAVREF	G28		HDS0	AF23	Ю	MD18	B09	-	NC	AD24	P	VCCMCK
L03	Ю	GD17	N25	I	HCLK	G29	Ю	HDS0#	AH23	Ю	MD19	B10	-	NC	AE15	P	VCCMDLL
L01		GD18	M25	I	HCLK#	A27		HDS1	AJ26	Ю	MD20	B11	-	NC	A04	P	VCCQQ
K02	Ю	GD19	G24	P		B27		HDS1#	AG24	Ю	MD21	B12	_	NC	AB04		VLCOMP
K03		GD20	J28	IO	HD00	D20		HDS2	AG23	IO	MD22	B13	-	NC	Y05	P	VLVREF
K01		GD21	F29		HD01	E20		HDS2#	AJ23	IO	MD23	C05	_	NC	AB05	P	VSUS25
K04		GD22	J27	IO	HD02	C17		HDS3	AH21	IO	MD24	C06	-	NC NC			
J01		GD23	F26		HD03	B17		HDS3#	AF20	IO	MD25	C07	_	NC NC			
H01 H03		GD24 GD25	E28 H25		HD04 HD05	F16 F19	P P	HDVREF HDVREF	AJ19 AG18		MD26 MD27	C08 C09	_	NC NC			
1103	Ю	ODZS			H6.24, J6.24, N							C09	_	INC	<u> </u>		<u> </u>

VCC25 Pins (26 pins): F9-11,14-15,20-21, H6,24, J6,24, N6, P6, W6,24, Y6,24, AA6, AD9-11,13-14,20-22

VCCMEM Pins (26 pins): V20, W10,20, Y10-20, AA9-20

 $VCCAGP \ Pins \ (19 \ pins): \quad K6,9, L6,9-10, M6,9-10, N9-10, P9-10, R9-10, T6,9-10, U6, V6$

VCCVL (4 pins): U9-10, V9-10, W9, Y9

VTT Pins (25 pins): E16, E23, F17-18,23, K14-20,24, L20, M20, N20, P20, R20,T20,24, U20,24, Y25, AA24, AB24

GND Pins (133 pins): B2,4,16,28, C4,11,14,16,21-22, D5,15,18-19,21,24,26, E2,24-26, F4,6-8,12-13, G26, H2,27-28, J4, K10,26, L2,28,

 $\begin{array}{l} M4,12-18, N12-18,26, P2,12-18,28, R4,12-18, T12-18,26, U2,12-18,25,27, V4,12-18, W4,26, Y2,4,28, AB6,25-26, AC2,6,26,28, AD6, AE4,17-19, AF2,7,10,13,16,19,22,25,28, AH2,4,7,10,13,16,19,22,25,28 \end{array}$

PIN DESCRIPTIONS

Table 3. VT8753E / P4X266E Pin Descriptions

			CPU Interface							
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description							
HA[33:3]#	(see pinout tables)	IO	Host CPU Address Bus. Connect to the address bus of the host CPU. Inputs during CPU cycles and driven by the VT8753E during cache snooping operations. HA[33:32] re reserved for future use in supporting up to 16 Gbytes of real memory.							
HAS[1:0]#	Y27, T25	IO	Inst CPU Address Strobe. Source synchronous strobes used to transfer HA[31:3]# and IREQ[4:0]# at a 2x transfer rate. HAS1# is the strobe for HA[31:17]# and HAS0# is the trobe for HA[16:3] and HREQ[4:0]#.							
HD[63:0]#	(see pinout tables)	IO	Host CPU Data. These signals are connected to the CPU data bus.							
HDBI[3:0]#	D16, B22, C25, G27	IO	Host CPU Dynamic Bus Inversion. Driven along with HD[63:0]# to indicate if the associated signals are inverted or not. Used to limit the number of simultaneously switching signals to 8 for the associated 16-bit data pin group (HDBI3# for HD[63:48]#, HDBI2# for HD[47:32]#, HDBI1# for HD[31:16]#, and HDBI0# for HD[15:0]#). HDBIn# is asserted such that the number of data bits driven low for the corresponding group does not exceed 8.							
HDS[3:0] HDS[3:0]#	C17, D20, A27, G28 B17, E20, B27, G29	IO	Host CPU Differential Data Strobes. Source synchronous strobes used to transfer HD[63:0]# and HDBI[3:0]# at a 4x transfer rate. HDS3 / HDS3# are the strobes for HD[63:48]# and HDBI3#; HDS2 / HDS2# are the strobes for HD[47:32]# and HDBI2#; HDS1 / HDS1# are the strobes for HD[31:16]# and HDBI1#; and HDS0 / HDS0# are the strobes for HD[15:0]# and HDBI0#.							
ADS#	P25	IO	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.							
DBSY#	K25	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.							
DRDY#	M28	IO	Data Ready. Asserted for each cycle that data is transferred.							
HIT#	L27	Ю	Hit . Indicates that a caching agent holds an unmodified version of the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.							
HITM#	J25	I	Hit Modified . Asserted by the CPU to indicate that the address is modified in the L1 cache and needs to be written back.							
HLOCK#	L25	I	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.							
HREQ[4:0]#	P26, P29, N27, P27, R25	IO	Request Command . Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the complete transaction type.							
HTRDY#	M26	Ю	Host Target Ready . Indicates that the target of the processor transaction is able to enter the data transfer phase.							
RS[2:0]#	K27, K29, K28	IO	Response Signals. Indicates the type of response per the table below:RS[2:0]#Response typeRS[2:0]#Response type000Idle State100Hard Failure001Retry Response101Normal Without Data010Defer Response110Implicit Writeback011Reserved111Normal With Data							

Note: Clocking of the CPU interface is performed with HCLK and HCLK#.

Note: Internal pullup resistors are provided on all AGTL+ interface pins. If the CPU does not have internal pullups, these north bridge internal pullups may be enabled to allow the interface to meet AGTL+ bus interface specifications (see VAD3 strap).

	CPU Interface (continued)											
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description									
BREQ#	L26	О	Bus Request. Bus request output to CPU.									
BPRI#	L29	IO	Priority Agent Bus Request . The owner of this signal will always be the next bus owner. This signal has priority over symmetric bus requests and causes the current symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted. The VT8753E drives this signal to gain control of the processor bus.									
BNR#	M29	IO	Block Next Request . Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.									
DEFER#	M27	IO	Defer . The VT8753E uses a dynamic deferring policy to optimize system performance. The VT8753E also uses the DEFER# signal to indicate a processor retry response.									
CPURST#	E14	О	CPU Reset. Reset output to CPU. External pullup and filter capacitor to ground should be provided per CPU manufacturer's recommendations.									

The pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

	DR	RAM	Interface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
MD[63:0]	(see pin lists)	IO	Memory Data. These signals are connected to the DRAM data bus. Output drive strength may be set by Device 0 Rx6D[1-0].
MECC[7:0] / CKE[7:0]	AE13, AJ13, AJ15, AH15, AG13, AH14, AF14, AF15	Ю	DRAM ECC or EC Data: when ECC is enabled. Clock Enables: For each DRAM bank for powering down the SDRAMs in notebook applications. Also used in desktop systems for clock control to reduce power usage and for reducing heat/temperature in high-speed memory systems.
MAA[14:0]	AJ22, AE25, AG12, AJ7, AH12, AF26, AG22, AE22, AE20, AE21, AF17, AG17, AJ17, AE16, AF12	О	Memory Address A. DRAM address lines (two sets for better drive). Output drive strength may be set by Device 0 Rx6C[7-6].
MAB[14:0]	AG21, AE26, AJ11, AH8, AE11, AF27, AE23, AE24, AG19, AF21, AJ18, AH17, AJ16, AG15, AJ12	О	Memory Address B. DRAM address lines (two sets for better drive). Output drive strength may be set by Device 0 Rx6C[5-4].
SRASA#, SCASA#, SWEA#	AG16, AE10, AE14	0	Row Address, Column Address and Write Enable Command Indicator Set A. (two sets for better drive). Output drive strength may be set by Device 0 Rx6C[7-6].
SRASB#, SCASB#, SWEB#	AD19, AD16, AD17	O	Row Address, Column Address and Write Enable Command Indicator Set B. (two sets for better drive). Output drive strength may be set by Device 0 Rx6C[5-4].
CS[7:0]#	AE6, AE5, AF11, AE12, AG7, AH6, AF8, AE9	O	Chip Select. Chip select of each bank. Output drive strength may be set by Device 0 Rx6D[3-2].
DQM[8], DQM[7:0] / CKE[7:0]	AJ14, AD4, AJ1, AH5, AJ9, AJ20, AJ24, AH27, AE28	0	Data Mask. Data mask of each byte lane plus DQM8 for ECC byte. Output drive strength may be set by Device 0 Rx6D[5-4].
DQS[8], DQS[7:0]# / CKE[7:0]	AG14, AD3, AH1, AJ5, AH9, AH20, AH24, AJ28, AE29	IO	DDR Data Strobe. Data strobe of each byte lane plus DQS8# for ECC byte. Output drive strength may be set by Device 0 Rx6C[3-2].
CKE[7:0] / MECC[7:0] -or- CKE[7:0] / DQM[7:0] -or- CKE[7:0] / DQS[7:0]#	(see above)	O,	Clock Enables. Clock enables for each DRAM bank for powering down the SDRAM or clock control for reducing power usage and for reducing heat / temperature in high-speed memory systems. See Device 0 Rx78[0] for CKE function enable.

			AGP Bus Interface
Signal Name	Pin#	<u>I/O</u>	Signal Description
GD[31:0]	(see pin list)	IO	Address / Data Bus. Address is driven with GDS assertion for AGP-style transfers and with GFRM# assertion for PCI-style transfers.
GBE[3:0]#	K5, M2, N3, R1	IO	Command / Byte Enable. AGP: These pins provide command information (different commands than for PCI) driven by the master (graphics controller) when requests are being enqueued using GPIPE#. These pins provide valid byte information during AGP write transactions and are driven by the master. The target (this chip) drives these lines to "0000" during the return of AGP read data. PCI: Commands are driven with GFRM# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
GPAR	U4	IO	AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0].
GDS0, GDS0#	T4, T5	IO	Bus Strobe 0. Source synchronous strobes for GD[15:0] (the agent that is providing the data drives these signals). GDS0 provides timing for 2x data transfer mode; GDS0 and GDS0# provide timing for 4x transfer mode.
GDS1, GDS1#	J3, J2	Ю	Bus Strobe 1. Source synchronous strobes for GD[31:16] (i.e., the agent that is providing the data drives these signals). GDS1 provides timing for 2x data transfer mode; GDS1 and GDS1# provide timing for 4x transfer mode.
GFRM#	L4	IO	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
GIRDY#	M1	IO	Initiator Ready. AGP: For write operations, the assertion of this pin indicates that the master is ready to provide all write data for the current transaction. Once this pin is asserted, the master is not allowed to insert wait states. For read operations, the assertion of this pin indicates that the master is ready to transfer a subsequent block of read data. The master is never allowed to insert a wait state during the initial block of a read transaction. However, it may insert wait states after each block transfers. PCI: Asserted when the initiator is ready for data transfer.
GTRDY#	P5	IO	Target Ready. AGP: Indicates that the target is ready to provide read data for the entire transaction (when the transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block of data when the transfer requires more than four clocks to complete. The target is allowed to insert wait states after each block transfer for both read and write transactions. PCI: Asserted when the target is ready for data transfer.
GSTOP#	R5	IO	Stop (PCI transactions only). Asserted by the target to request the master to stop the current transaction.
GDEVSEL#	N4	Ю	Device Select (PCI transactions only). This signal is driven by the VT8753E when a PCI initiator is attempting to access main memory. It is an input when the VT8753E is acting as PCI initiator. Not used for AGP cycles.
GPIPE#	G5	I	Pipelined Request. Asserted by the master (the external graphics controller) to indicate that a full-width request is to be enqueued by the target VT8753E. The master enqueues one request each rising edge of GCLK while GPIPE# is asserted. When GPIPE# is deasserted no new requests are enqueued across the AD bus.

	AGP Bus Interface (continued)					
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description			
GRBF#	Н5	I	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When GRBF# is asserted, the VT8753E will not return low priority read data to the graphics controller.			
GWBF#	L5	I	Write Buffer Full.			
SBA[7:0]	F3, E3, E1, D3, D4, E4, C2, C3	Ι	SideBand Address. Provides an additional bus to pass address and command information from the master (graphics controller) to the target (VT8753E north bridge logic). These pins are ignored until enabled.			
SBS, SBS#	D2, D1	I	Sideband Strobe. Driven by the master to provide timing for SBA[7:0]. SBS is used for AGP 2x while SBS and SBS# are used together for AGP 4x.			
ST[2:0]	J5, F5, E5		 Status (AGP only). Provides information from the arbiter to a master to indicate what it may do. Only valid while GGNT# is asserted. 000 Indicates that previously requested low priority read or flush data is being returned to the master (graphics controller). 001 Indicates that previously requested high priority read data is being returned to the master. 010 Indicates that the master is to provide low priority write data for a previously enqueued write command. 011 Indicates that the master is to provide high priority write data for a previously enqueued write command. 100 Reserved. (arbiter must not issue, may be defined in the future). 101 Reserved. (arbiter must not issue, may be defined in the future). 110 Reserved. (arbiter must not issue, may be defined in the future). 111 Indicates that the master (graphics controller) has been given permission to start a bus transaction. The master may enqueue AGP requests by asserting PIPE# or start a PCI transaction by asserting GFRM#. ST[2:0] are always outputs from the target (north bridge logic) and inputs to the master (graphics controller). 			
GREQ#	C1	I	Request. Master (graphics controller) request for use of the AGP bus.			
GGNT#	B1	0	Grant. Permission is given to the master (graphics controller) to use the AGP bus.			

Note: For PCI operation on the AGP bus, the following pins are not required:

- PERR# (parity and error reporting not required on transient data devices such as graphics controllers)
- LOCK# (no lock requirement on AGP)
- IDSEL (internally connected to AD16 on AGP-compliant masters)

Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA-B#.

Note: The AGP bus supports only one master directly (REQ[3:0]# and GNT[3:0]# are not provided). External logic is required to implement additional master capability. Note that the arbitration mechanism on the AGP bus is different from the PCI bus.

Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses)

Note: Two mechanisms are provided by the AGP bus to enqueue master requests: GPIPE# (to send addresses multiplexed on the AD lines) and the SBA port (to send addresses unmultiplexed). AGP masters implement one or the other or select one at initialization time (they are not allowed to change during runtime). Therefore only one of the two will be used and the signals associated with the other will not be used. Therefore the VT8753E has an internal pullup on GRBF# to maintain it in the de-asserted state in case it is not implemented on the master device.

V-Link Interface						
Signal Name	Pin#	<u>I/O</u>	Signal Description			
VAD7,	AB2	IO	Address / Data Bus. <u>Connection</u> <u>Register</u> <u>8233 Pin</u>			
VAD6 / strap,	AB1	IO	VAD6 strap – Auto-Configure L=Disable, H=Enable Rx54[5] SDA2			
VAD5 / strap,	W2	IO	VAD5 strap – AGTL+ Drive Strength 4x L=1x, H=4x SDA1			
VAD4 / strap,	AA5	IO	VAD4 strap – AGTL+ Drive Strength 2x L=1x, H=2x SDA0			
VAD3 / strap,	W1	IO	VAD3 strap – Internal AGTL+ Pullups L=Enable, H=Disable Rx52[5] SA19			
VAD2 / strap,	AB3	IO	VAD2 strap – IOQ Depth Msb LL=1-level, LH=4-level Rx50[7] SA18			
VAD1 / strap,	W3	IO	VAD1 strap – IOQ Depth Lsb HL=8-level, HH=12-level Rx50[6] SA17			
VAD0 / strap	W5	IO	VAD0 strap – CPU FSB Frequency L=100 MHz, H=133 MHz Rx54[6] SA16			
			(note: VAD1 strap was added in VT8753E. VT8753 implemented only 1- and 8-level IOQ)			
			(note: VAD0 strap was added in VT8753E. VT8753 was fixed to 100 MHz FSB)			
VBE#	V5	IO	Byte Enable.			
UPCMD	Y1	I	Command from Client-to-Host.			
UPSTB	AA4	I	Strobe from Client-to-Host.			
UPSTB#	Y3	I	Complement Strobe from Client-to-Host.			
DNCMD	AA2	O	Command from Host-to-Client.			
DNSTB	AA1	О	Strobe from Host-to-Client.			
DNSTB#	AA3	О	Complement Strobe from Host-to-Client.			
DNSTB AA1 O Strobe from Host-to-Client.						

Clocks, Resets, Power Control, General Purpose I/O, Interrupts and Test					
Signal Name	Pin #	I/O	Signal Description		
HCLK	N25	I	Host Clock. This pin receives the host CPU clock (100 / 133 MHz). This clock is used by all P4X266E logic that is in the host CPU domain.		
HCLK#	M25	I	Host Clock Complement. Used for Quad Data Transfer on host CPU bus.		
MCLK	AC25	О	Memory (SDRAM) Clock. Output from internal clock generator to the external clock buffer.		
MCLKF	AD25	I	Memory (SDRAM) Clock Feedback. Input from the external clock buffer.		
GCLK	U5	I	Graphics Clock. Clock for AGP bus interface.		
RESET#	AC3	I	Reset. Input from the South Bridge chip. When asserted, this signal resets P4X266E and sets all register bits to the default value. The rising edge of this signal is used to sample all power-up strap options		
PWROK	AC1	I	Power OK. Connect to South Bridge and Power Good circuitry.		
SUSST#	AC4	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pullup to disable.		
TESTIN#	W25	I	Test In. This pin is used for testing and must be left unconnected or tied high on all board designs.		
NC	(see pin list	-	No Connect.		
TESTIN# W25 I Test In. This pin is used for testing and must be left unconnected or tied high on all board designs. NC (see pin - No Connect.					

	Reference Voltages			
Signal Name	Pin#	<u>I/O</u>	Signal Description	
GTLVREF	L24	P	ost CPU Interface AGTL+ Voltage Reference. 2/3 VTT ±2% typically derived ing a resistive voltage divider. See P4X266 Design Guide.	
HDVREF	F16, F19, F22, F24	P	Host CPU Data Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See P4X266 Design Guide.	
HAVREF	R24, V24	P	Host CPU Address Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See P4X266 Design Guide.	
HCMPVREF	G24	P	lost CPU Compensation Voltage Reference. 1/3 VTT ±2% typically derived using resistive voltage divider. See P4X266 Design Guide.	
MEMVREF	AD7, AD12, AD18, AD23	P	lemory Voltage Reference. 1/2 VCC25 ±2% typically derived using a resistive obltage divider. See P4X266 Design Guide.	
VLVREF	Y5	P	V-Link Voltage Reference. 0.9V derived using a resistive voltage divider consisting of 2K Ω 1% to VCC25 and 1.13K Ω 1% to ground.	
AGPVREF	G6, R6	P	AGP Voltage Reference. 0.4 VCCQQ (1.32V) when VCCQQ is 3.3V and 0.5 VCCQQ (0.75V) when VCCQQ is 1.5V. Check the VT8753E Design Guide for additional information.	

Compensation						
Signal Name	Signal Name Pin # I/O Signal Description					
HRCOMP	F25	AI	Host CPU Compensation. Connect 20.5Ω 1% resistor to ground. Used for Host CPU interface I/O buffer calibration.			
VLCOMP	AB4	AI	Vlink P-Channel Compensation. Connect 70Ω 1% resistor to ground.			
GCOMPN0	A2	AI	GP N-Channel Compensation 0.			
GCOMPN1	В3	AI	AGP N-Channel Compensation 1.			

Analog Power / Ground			
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
VCCHCK	N24	P	Power for Host CPU Clock PLL (2.5V ±5%)
GNDHCK	M24	P	Ground for Host CPU Clock Circuitry. Connect to main ground plane through a
			ferrite bead.
VCCMCK	AD24	P	Power for Memory Clock PLL (2.5V ±5%)
GNDMCK	AC24	P	Ground for Memory Clock Circuitry. Connect to main ground plane through a
			ferrite bead.
VCCMDLL	AE15	P	Power for Memory Strobe DLL (2.5V ±5%)
GNDMDLL	AD15	P	Ground for Memory Strobe DLL Circuitry. Connect to main ground plane through
			a ferrite bead.

	Digital Power / Ground					
Signal Name	Pin #	<u>I/O</u>	Signal Description			
VTT	E16,23, F17-18,23, K14-20,24, L20, M20, N20, P20, R20, T20,24,	P	Power for CPU I/O Interface Logic (25 Pins). Voltage is CPU dependent.			
GNDTT	U20,24, Y25, AA24, AB24 E19, P24	P	Ground for CPU I/O Interface Logic (2 Pins).			
VCCMEM	V20, W10,20, Y10-20, AA9-20	P	Power for Memory I/O Interface Logic (26 Pins). 2.5 / 3.3V ±5%.			
VCCVL	U9-10, V9-10, W9, Y9	P	Power for V-Link I/O Interface Logic (6 Pins). 2.5V ±5%			
VCCAGP	K6,9, L6,9-10, M6,9-10, N9-10, P9- 10, R9-10, T6,9-10, U6, V6	P	Power for AGP Bus I/O Interface Logic (19 Pins). 1/5 / 3.3V ±5% (Device 0 RxB2[1] should be set to indicate the voltage).			
VCCQQ	A4	P	AGP Quiet Power. Connect to main AGP power (VCCAGP) through a ferrite bead.			
GNDQQ	A3	P	Ground for AGP Quiet Power. Connect to main ground plane.			
VCC25	F9-11,14-15,20-21, H6,24, J6,24, N6, P6, W6,24, Y6,24, AA6, AD9-11,13-14,20-22	P	Power for Internal Logic (26 Pins). $2.5V \pm 5\%$			
VSUS25	AB5	P	Suspend Power. 2.5V ±5%			
GND	B2,4,16,28, C4,11,14,16,21-22, D5,15,18-19,21,24,26, E2,24-26, F4,6-8,12-13, G26, H2,27-28, J4, K10,26, L2,28, M4,12-18, N12-18,26, P2,12-18,28, R4,12-18, T12-18,26, U2,12-18,25,27, V4,12-18, W4,26, Y2,4,28, AB6,25-26, AC2,6,26,28, AD6, AE4,17-19, AF2,7,10,13,16,19,22,25,28, AH2,4,7,10,13,16,19,22,25,28	P	Digital Ground (133 Pins)			
	JAR CO					

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the P4X266E. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "-" for reserved / used (essentially the same as RO), RWC (or just WC) (Read / Write 1's to Clear individual bits), and W1 (Write Once then Read / Only after that). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

Table 4. VT8753E / P4X266E Registers

P4X266E I/O Ports

read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.								
The graphics registers are described in a separ	The graphics registers are described in a separate document.							
Table 4. VT8753E / P4X266E R	egisters							
P4X266E I/O Ports	10, 32, 9							
Port # I/O Port	Default Acc							
22 PCI / AGP Arbiter Disable	00 RW							
CFB-8 Configuration Address	0000 0000 RW							
CFF-C Configuration Data	0000 0000 RW							

P4X266E Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3128	RO
5-4	Command	0006	RW
7-6	Status	0210	WC
8	Revision ID	0n	RO
9	Program Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	06	RO
С	-reserved-	00	
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	0000 0008	RW
14-2B	-reserved-	00	
2D-2C	Subsystem Vendor ID	0000	W 1
2F-2E	Subsystem ID	0000	W1
30-33	-reserved-	00	
37-34	Capability Pointer	0000 00A0	RO
38-3F	-reserved-	00	
	·		

Device-Specific Registers

Offset	V-Link Control	<u>Default</u>	Acc
40	V-Link Revision ID	00	RO
41	V-Link NB Capability	18	RO
42	V-Link NB Downlink Command	88	RW
44-43	V-Link NB Uplink Status	8280	RW
45	V-Link NB Bus Timer	44	RW
46	V-Link Misc NB Control	00	RW
47	V-Link Control) 00	RW
48	V-Link NB/SB Configuration	18	RW
49	V-Link SB Capability	18	RO
4A	V-Link SB Downlink Status	88	RO
4C-4B	V-Link SB Uplink Command	8280	RW
4D	V-Link SB Bus Timer	44	RW
4E	CCA Master High Priority	00	RW
4F	V-Link SB Miscellaneous Control	00	RW

Offset	Host CPU Protocol Control	<u>Default</u>	Acc
50	CPU Interface Request Phase Control	00	RW
51	CPU Interface Basic Control	00	RW
52	CPU Interface Advanced Control	00	RW
53	CPU Interface Arbitration Control	03	RW
54	CPU Frequency	40	RW

Device-Specific Registers (continued)

Offset	DRAM Control	Default	Acc
55	DRAM Control	00	RW
56-57	(see below)		
59-58	MA Map Type	2222	RW
5F-5A	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[31:24])	01	RW
5B	Bank 1 Ending (HA[31:24])	01	RW
5C	Bank 2 Ending (HA[31:24])	01	RW
5D	Bank 3 Ending (HA[31:24])	01	RW
5E	Bank 4 Ending (HA[31:24])	01	RW
5F	Bank 5 Ending (HA[31:24])	01	RW
56	Bank 6 Ending (HA[31:24])	01	RW
57	Bank 7 Ending (HA[31:24])	01	RW
60	DRAM Type	00	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for All Banks	E4	RW
65	DRAM Arbitration Timer	00	RW
66	DRAM Arbitration Control	00	RW
67	DRAM DQS/SDR/MD Read Delay	00	RW
68	DRAM DDR Control	00	RW
69	DRAM Clock Select	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	00	RW
6C	DRAM Drive Control 1	00	RW
6D	DRAM Drive Control 2	00	RW
6E	ECC Control	00	RW
6F	ECC Status	00	WC

Offset	PCI Bus Control	<u>Default</u>	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control	48	WC
72	-reserved-	00	
73	PCI Master Control	00	RW
74	-reserved-	00	
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77-7F	-reserved-	00	

Device 0 Device-Specific Registers (continued)

Offset	GART/TLB Control	Default	Acc
83-80	GART/TLB Control	0000 0000	RW
84	Graphics Aperture Size	00	RW
85	CPU-to-Memory Write Policy	00	RW
86	CPU-to-Memory Bandwidth Timer	00	RW
87	CPU-to-Memory Bandwidth Limit	00	RW
8B-88	Gr. Aperture TLB Base Register Base	0000 0000	RW
8C-9F	-reserved-	00	_

Offset	AGP Control	<u>Default</u>	Acc
A0	AGP ID	02	RO
A1	AGP Next Item Pointer	C0	RO
A2	AGP Specification Revision	20	RO
A3	-reserved-	00	
A7-A4	AGP Status	1F00 0201	RO
AB-A8	AGP Command	0000 0000	RW
AC	AGP Control	00	RW
AD	AGP Miscelleneous Control	02	RW
AE	AGP Miscellaneous Control	00	RW
AF	-reserved-	00	
B0	AGP Compensation Control / Status	8x	RW
B1	AGP Output Drive Strength	63	RW
B2	AGP Pad Drive & Delay Control	08	RW
В3	AGP Strobe Drive Strength	63	RW

Offset	V-Link Control	Default	Acc
B4	V-Link NB Compensation Control	00	RW
B5	V-Link NB Drive Control	00	RW
B6-B7	-reserved-	00	
В8	V-Link SB Compensation Control	00	RW
В9	V-Link SB Drive Control	00	RW
BA-BD	-reserved-	00	₽

Offset	DRAM Interface Control	<u>Default</u>	Acc
BE	MECC Drive Strength	-00	RW
BF	MA / SCMD Pad Toggle Reduction	00	RW

Offset	Power Mgt. &Misc. Control	<u>Default</u>	Acc
C0	Power Management Capability	01	RO
C1	Power Management Next Pointer	00	RO
C2	Power Management Capabilities I	02	RO
C3	Power Management Capabilities II	00	RO
C4	Power Management Control/Status	00	RW
C5	Power Management Status	00	RO
C6	PCI-to-PCI Bridge Support Extension	00	RO
C7	Power Management Data	00	RO
C8-CF	-reserved-	00	

Device 0 Device-Specific Registers (continued)

Offset	ECC Error Control	Default	Acc
D3-D0	ECC Error Address	XX	RO
D4	ECC Error Syndrome Bit	XX	RO
D5-D7	-reserved-	00	

Offset	AGTL+ I/O Control	<u>Default</u>	Acc
D8	Host Address (2x) Pullup Drive	00	RW
D9	Host Address (2x) Pulldown Drive	00	RW
DA	Host Data (4x) Pullup Drive	00	RW
DB	Host Data (4x) Pulldown Drive	00	RW
DC	AGTL+ Output Delay / Stagger Ctrl	00	RW
DD	AGTL+ I/O Control	00	RW
DE	AGTL+ Compensation Status	00	RW
DF	AGTL+ AutoCompensation Offset	00	RW

	Offset	UMA Control	Default	Acc
	E0	CPU Direct Access FB Base	00	RW
	E1	CPU Direct Access FB Size	00	RW
	E2	VGA Arbitration Timer 1	00	RW
(E3	VGA Arbitration Timer 2	00	RW

	Offset	DRAM Above 4G Control	<u>Default</u>	Acc
	E4	Low Top Address Low	00	RW
	E5	Low Top Address High	FF	RW
	E6	SMM / APIC Decoding	01	RW
7	E7-EF	-reserved-	00	_

	Offset	Test, BIOS Scratch, Miscellaneous	Default	Acc
1	F0-F2	Reserved (Do Not Program)	00	RW
-	F3-F4	BIOS Scratch Registers	00	RW
	F5-FF	Reserved (Do Not Program)	00	RW

P4X266E Device 1 Registers - PCI-to-PCI Bridge

Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc		Offset	AGP Bus Control
1-0	Vendor ID	1106	RO		40	CPU-to-AGP Flow Contr
3-2	Device ID	B091	RO		41	CPU-to-AGP Flow Contr
5-4	Command	0007	RW		42	AGP Master Control
7-6	Status	0230	WC		43	AGP Master Latency Tim
8	Revision ID	nn	RO		44	Reserved (Do Not Progra
9	Program Interface	00	RO		45	Fast Write Control
A	Sub Class Code	04	RO		47-46	PCI-to-PCI Bridge Devic
В	Base Class Code	06	RO		48-7F	-reserved-
С	-reserved-	00			80	Capability ID
D	Latency Timer	00	RO		81	Next Pointer
Е	Header Type	01	RO		82	Power Management Capa
F	Built In Self Test (BIST)	00	RO		83	Power Management Capa
10-17	-reserved-	00			84	Power Management Cont
18	Primary Bus Number	00	RW		85	Power Management Statu
19	Secondary Bus Number	00	RW		86	PCI-PCI Bridge Support
1A	Subordinate Bus Number	00	RW	7	87	Power Management Data
1B	Secondary Latency Timer	00	RO		88-FF	-reserved-
1C	I/O Base	F0	RW		K	
1D	I/O Limit	00	RW			
1F-1E	Secondary Status	0000	RO			
21-20	Memory Base	FFF0	RW			
23-22	Memory Limit (Inclusive)	0000	RW			
25-24	Prefetchable Memory Base	FFF0	RW			
27-26	Prefetchable Memory Limit	0000	RW			
28-33	-reserved-	00	<u> </u>			
34	Capability Pointer	80	RO			
35-3D	-reserved-	00				
3F-3E	PCI-to-PCI Bridge Control	00	RW			
	1		V			

Device-Specific Registers

Offset	AGP Bus Control	Default	Acc
40	CPU-to-AGP Flow Control 1	00	RW
41	CPU-to-AGP Flow Control 2	08	RW
42	AGP Master Control	00	RW
43	AGP Master Latency Timer	22	RW
44	Reserved (Do Not Program)	00	RW
45	Fast Write Control	72	RW
47-46	PCI-to-PCI Bridge Device ID	0000	RW
48-7F	-reserved-	00	_
80	Capability ID	01	RO
81	Next Pointer	00	RO
82	Power Management Capabilities 1	02	RO
83	Power Management Capabilities 2	00	RO
84	Power Management Control / Status	00	RW
85	Power Management Status	00	RO
86	PCI-PCI Bridge Support Extensions	00	RO
87	Power Management Data	00	RO
88-FF	-reserved-	00	

Miscellaneous I/O

One I/O port is defined in the P4X266E: Port 22.

of Device 0 Configuration Register 78.

Port 22 – PCI / AGP Arbiter DisableRW		
7-2	Reserved always reads 0	
1	AGP Arbiter Disable	
	0 Respond to GREQ# signaldefault	
	1 Do not respond to GREQ# signal	
0	PCI Arbiter Disable	
	0 Respond to all REQ# signalsdefault	
	1 Do not respond to any REQ# signals,	
	including PREQ#	
This po	rt can be enabled for read/write access by setting bit-7	

Configuration Space I/O

All registers in the P4X266E (listed above) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Do not respond to GREQ# signal		
Arbiter Disable	D . CI	TRACTIC COMMITTEE TO THE TRACTIC COMMITTEE TOR
Respond to all REQ# signalsdefault	Port CI	FB-CF8 - Configuration AddressRW
Do not respond to any REQ# signals,	31	Configuration Space Enable
including PREQ#		0 Disableddefault
be enabled for read/write access by setting bit-7 onfiguration Register 78.		1 Convert configuration data port writes to configuration cycles on the PCI bus
omiguration register 70.	30-24	Reserved always reads 0
	23-16	PCI Bus Number
		Used to choose a specific PCI bus in the system
	15-11	Device Number
		Used to choose a specific device in the system
	7	(devices 0 and 1 are defined for the P4X266E)
	10-8	Function Number
	X	Used to choose a specific function if the selected device supports multiple functions (only function 0 is defined for the P4X266E).
	7_2	Register Number (also called the "Offset")
		Used to select a specific DWORD in the P4X266E configuration space
C, Y	1-0	Fixedalways reads 0
	_	
	Port Cl	FF-CFC - Configuration DataRW
· · · · · · · · · · · · · · · · · · ·		
	D 0	
		PCI Bus Specification Version 2.2 for further details
	on opera	ation of the above configuration registers.
,		

Device 0 Register Descriptions

Device 0 Host Bridge Header Registers

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number, and <u>device number</u> equal to <u>zero</u>.

Device (0 Offs	et 1-0 - Vendor ID (1106h)RO		
15-0	• ID Code (reads 1106h to identify VIA Technologies)			
		et 3-2 - Device ID (3128h)RO		
15-0	ID C	ode (reads 3128h to identify the P4X266E)		
Device (0 Offs	et 5-4 - Command (0006h)RW		
15-10	Rese			
9	Fast	Back-to-Back Cycle EnableRO		
	0	Fast back-to-back transactions only allowed to		
		the same agentdefault		
	1	Fast back-to-back transactions allowed to		
		different agents		
8	SER	R# EnableRO		
	0	SERR# driver disableddefault		
	1	SERR# driver enabled		
		R# is used to report ECC errors).		
7	Addr	ress / Data SteppingRO		
	0	Device never does steppingdefault		
	1	Device always does stepping		
6	Parit	y Error ResponseRW		
	0	Ignore parity errors & continuedefault		
	1	Take normal action on detected parity errors		
5	VGA	Palette SnoopRO		
	0	Treat palette accesses normallydefault		
	1	Don't respond to palette accesses on PCI bus		
4	Mem	ory Write and Invalidate Command RO		
	0	Bus masters must use Mem Writedefault		
	1	Bus masters may generate Mem Write & Inval		
3	Speci	ial Cycle MonitoringRO		
	0	Does not monitor special cyclesdefault		
	1	Monitors special cycles		
2		Bus MasterRO		
	0	Never behaves as a bus master		
	1	Can behave as a bus masterdefault		
1		ory SpaceRO		
	0	Does not respond to memory space		
	1	Responds to memory spacedefault		
0		SpaceRO		
	0	Does not respond to I/O spacedefault		
	1	Responds to I/O space		

Device	Offset 7-6 – Status (0210h)RWC
15	Detected Parity Error
	0 No parity error detecteddefault
	1 Error detected in either address or data phase.
	This bit is set even if error response is disabled
	(command register bit-6)write one to clear
14	Signaled System Error (SERR# Asserted)
	always reads 0
13	Signaled Master Abort
	0 No abort received default
	1 Transaction aborted by the master
10	write one to clear
12	Received Target Abort
	0 No abort received
	1 Transaction aborted by the target
11	write one to clear Signaled Target Abortalways reads 0
11	0 Target Abort never signaled
10-9	DEVSEL# Timing
1059	00 Fast
	01 Mediumalways reads 01
	10 Slow
	11 Reserved
8	Data Parity Error Detected
	0 No data parity error detected default
	1 Error detected in data phase. Set only if error
	response enabled via command bit-6 = 1 and
,	P4X266E was initiator of the operation in
	which the error occurredwrite one to clear
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capable always reads 0
4	Supports New Capability listalways reads 1
3-0	Reserved always reads 0
Device	Offset 8 - Revision ID (0nh)RO
7-0	Chip Revision Codealways reads 0nh
	-
Device	Offset 9 - Programming Interface (00h)RO
7-0	Interface Identifieralways reads 00h
Dovice	Officet A. Sub Class Code (00b) PO
	O Offset A - Sub Class Code (00h)RO
7-0	Sub Class Code reads 00 to indicate Host Bridge
Device	Offset B - Base Class Code (06h)RO
7-0	Base Class Code reads 06 to indicate Bridge Device
	_
	Offset D - Latency Timer (00h)RW
Specifie	s the latency timer value in PCI bus clocks.
7-3	Guaranteed Time Slice for CPUdefault=0
2-0	$\textbf{Reserved} \ (fixed \ granularity \ of \ 8 \ clks) \ always \ read \ 0$
	These bits are writeable but read 0 for PCI
	specification compatibility. The programmed value
	may be read back in Rx75[6-4] (PCI Arbitration 1).

Device 0 Host Bridge Header Registers (continued)

Device	0 Offset E - Header Type (00h)RO
7-0	Header Type Code reads 00: single function
Device	0 Offset F - Built In Self Test (BIST) (00h)RO
7	BIST Supportedreads 0: no supported functions
6-0	Reserved always reads 0

<u>Device 0 Offset 13-10 - Graphics Aperture Base</u> (00000008h)RW

31-28 Upper Programmable Base Address Bits def=0
27-20 Lower Programmable Base Address Bits def=0
These bits behave as if hardwired to 0 if the corresponding Graphics Aperture Size register bit (Device 0 Offset 84h) is 0.

27 26 25 24 23 22 21 20 (This Register) (Gr Aper Size) 7 6 5 4 3 2 1 RW RW RW RW RW RW RW 1M RWRWRWRWRWRW 0 2MRWRWRWRWRW 0 4M RWRWRWRW 0 0 8M 0 RWRWRWRW 0 16M RWRWRW 0 0 0 32M RWRW 0 0 0 0 64M 0 0 0 0 0 0 128M RW 0 0 0 0 256M

register are prefetchable.

<u>Device 0 Offset 2D-2C – Subsystem Vendor ID (0000h)R/W1</u>

15-0 Subsystem Vendor IDdefault = 0 This register may be written once and is then read only.

Device 0 Offset 2F-2E - Subsystem ID (0000h)......R/W1

15-0 Subsystem IDdefault = 0 This register may be written once and is then read only.

Device 0 Offset 37-34 - Capability Pointer (000000A0h) RO

Contains an offset from the start of configuration space.

31-0 AGP Capability List Pointer always reads A0h

Device 0 Host Bridge Device-Specific Registers

These registers are normally programmed once at system initialization time.

V-Link Control

Device	Offset 40 – V-Link Specification ID (00h)RO		
7-0	Specification Revision always reads 00		
Device (0 Offset 41 – NB V-Link Capability (18h)RO		
7-6	Reserved always reads 0		
5	16-bit Bus Width SupportedRO		
	0 Not Supporteddefault		
	1 Supported		
4	8-Bit Bus Width SupportedRO		
	0 Not Supported		
	1 Supporteddefault		
3	4x Rate SupportedRO		
	0 Not Supported		
	1 Supporteddefault		
2	2x Rate SupportedRO		
	0 Not Supporteddefault		
	1 Supported		
1-0	Reserved always reads 0		
Device	O Offset 42 – NB Downlink Command (88h)RW		
7-4	DnCmd Max Request Depth (0=1 DnCmd) . def = 8		
3-0	DnCmd Write Buffer Size (doublewords) def = 8		
	0 Offset 44-43 – NB Uplink Status (8280h)RO		
15-12	UpCmd P2C Write Buffer Size (max lines) def = 8		
11-8	UpCmd P2P Write Buffer Size (max lines) def = 2		
7-4	UpCmd Max Request Depth (0=1 UpCmd) . def = 8		
3-0	Reserved always reads 0		

evice	0 Offset 45 -NB V-Link Bus Timer (44h) RW
7-4	Timer for Normal Priority Requests from SB
	0000 Immediate
	0001 1*4 VCLKs
	0010 2*4 VCLKs
	0011 3*4 VCLKs
	0100 4*4 VCLKs default
	0101 5*4 VCLKs
	0110 6*4 VCLKs
	0111 7*4 VCLKs
	1000 8*4 VCLKs
	1001 16*4 VCLKs
V	1010 32*4 VCLKs
-	1011 64*4 VCLKs
	11xx Own the bus for as long as there is a request
3-0	Timer for High Priority Requests from SB
	0000 Immediate
	0001 1*2 VCLKs
	0010 2*2 VCLKs
	0011 3*2 VCLKs
/	0100 4*2 VCLKs default
	0101 5*2 VCLKs
	0110 6*2 VCLKs
. (2	0111 7*2 VCLKs
	1000 8*2 VCLKs
	1001 16*2 VCLKs
	1010 32*2 VCLKs
	1011 64*2 VCLKs

11xx Own the bus for as long as there is a request

Device	0 Offset 46 - NB V-Link Misc Control (00h)RW	Device	0 Offset 48 - NB/SB V-Link Configur	ration (18h)RW
7	Downstream High Priority	7	Reserved	always reads 0
	0 Disable High Priority Down Commandsdef	6	Rest Bus Width Supported	
	1 Enable High Priority Down Commands		0 Not Supported	default
6	Downlink Priority		1 Supported	
	0 Treat Downlink Cycles as Normal Priority.def	5	16-bit Bus Width Supported	
	1 Treat Downlink Cycles as High Priority		0 Not Supported	default
5-4	Combine Multiple STPGNT Cycles Into One V-		1 Supported	
	Link Command	4	8-Bit Bus Width Supported	
	00 Compatible, 1 command per V-Link cmddef		0 Not Supported	
	01 2 commands per V-Link command		1 Supported	default
	10 3 commands per V-Link command	3	4x Rate Supported	
	11 4 commands per V-Link command		0 Not Supported	
3-2	V-Link Master Access Ordering Rules		1 Supported	default
	00 High priority read, pass normal read (not pass	2	2x Rate Supported	
	write)default		0 Not Supported	default
	01 Read (high/normal) pass write (HR>LR>W)		1 Supported	
	1x Read / write in order	1-0	Reserved	always reads 0
1-0	Reserved always reads 0	Device	0 Offset 49 – SB V-Link Capability (1	18h) RO
ъ.				
Device	0 Offset 47 – V-Link Control (00h)RW	7-6	Reserved	always reads 0
7-3	0 Offset 47 – V-Link Control (00h) RW Reserved always reads 0	7-6 5		•
			16-bit Bus Width Supported	RO
7-3	Reserved always reads 0			RO
7-3	Reserved always reads 0 Auto-Disconnect		16-bit Bus Width Supported	RO default
7-3	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable		16-bit Bus Width Supported	RO default
7-3	Reserved always reads 0 Auto-Disconnect 0 Disable default		16-bit Bus Width Supported	RO default
7-3	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable V-Link Disconnect Cycle for HALT cycle		1 Supported	RO default RO default
7-3	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable V-Link Disconnect Cycle for HALT cycle 0 Disable default 1 Enable	5	16-bit Bus Width Supported	RO default RO default
7-3 2	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable V-Link Disconnect Cycle for HALT cycle 0 Disable default	5	16-bit Bus Width Supported	RO default RO default RO default
7-3 2	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable V-Link Disconnect Cycle for HALT cycle 0 Disable default 1 Enable V-Link Disconnect Cycle for STPGNT Cycle	5	16-bit Bus Width Supported	RO default RO default default default default
7-3 2	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable V-Link Disconnect Cycle for HALT cycle 0 Disable default 1 Enable V-Link Disconnect Cycle for STPGNT Cycle 0 Disable default	5	16-bit Bus Width Supported	RO default RO default RO default RO default RO
7-3 2	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable V-Link Disconnect Cycle for HALT cycle 0 Disable default 1 Enable V-Link Disconnect Cycle for STPGNT Cycle 0 Disable default	5	16-bit Bus Width Supported	RO default RO default RO default RO default default default
7-3 2	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable V-Link Disconnect Cycle for HALT cycle 0 Disable default 1 Enable V-Link Disconnect Cycle for STPGNT Cycle 0 Disable default	5	16-bit Bus Width Supported	RO default RO default RO default RO default default default
7-3 2	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable V-Link Disconnect Cycle for HALT cycle 0 Disable default 1 Enable V-Link Disconnect Cycle for STPGNT Cycle 0 Disable default	5 4 3	16-bit Bus Width Supported	RO default RO default RO default RO default default default
7-3 2	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable V-Link Disconnect Cycle for HALT cycle 0 Disable default 1 Enable V-Link Disconnect Cycle for STPGNT Cycle 0 Disable default	5 4 3	16-bit Bus Width Supported	RO default RO default RO default RO default default default
7-3 2	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable V-Link Disconnect Cycle for HALT cycle 0 Disable default 1 Enable V-Link Disconnect Cycle for STPGNT Cycle 0 Disable default	5 4 3	16-bit Bus Width Supported	RO default RO default RO default RO default default default
7-3 2	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable V-Link Disconnect Cycle for HALT cycle 0 Disable default 1 Enable V-Link Disconnect Cycle for STPGNT Cycle 0 Disable default	5 4 3	16-bit Bus Width Supported	RO default RO default RO default RO default default default
7-3 2	Reserved always reads 0 Auto-Disconnect 0 Disable default 1 Enable V-Link Disconnect Cycle for HALT cycle 0 Disable default 1 Enable V-Link Disconnect Cycle for STPGNT Cycle 0 Disable default	5 4 3	16-bit Bus Width Supported	RO default RO default RO default RO default default default

Device	0 Offset 4A – SB Downlink Status (88h)RO	Device	0 Offset 4E - CCA Master Priority (
7-4	DnCmd Max Request Depth (0=1 DnCmd) . def = 8	7	1394 High Priority
3-0	DnCmd Write Buffer Size (doublewords) def = 8		0 Low priority
ъ.	O OCC (AC AD CD H H L C L (O2001) DW		1 High priority
	0 Offset 4C-4B – SB Uplink Command (8280h). RW	6	LAN / NIC High Priority
	UpCmd P2C Write Buffer Size (max lines) $def = 8$		0 Low priority
11-8	UpCmd P2P Write Buffer Size (max lines) $def = 2$		1 High priority
7-4	UpCmd Max Request Depth (0=1 UpCmd) . def = 8	5	Reserved
3-0	Reserved always reads 0	4	USB High Priority
Device	0 Offset 4D – SB V-Link Bus Timer (44h)RW		0 Low priority
7-4	Timer for Normal Priority Requests from SB		 High priority
/-4	0000 Immediate	3	Reserved
	0001 1*4 VCLKs	2	IDE High Priority
	0001 1.4 VCLKs 0010 2*4 VCLKs		0 Low priority
	0010 2*4 VCLKs 0011 3*4 VCLKs		1 High priority
	0110 4*4 VCLKsdefault	1	AC97-ISA High Priority
	0100 4 4 VCLKs default		0 Low priority
	0110 6*4 VCLKs		1 High priority
	0111 7*4 VCLKs	0	PCI High Priority
	1000 8*4 VCLKs		0 Low priority
	1001 16*4 VCLKs		1 High priority
	1010 32*4 VCLKs	Device	0 Offset 4F - SB V-Link Misc Contro
	1011 64*4 VCLKs	7	Upstream Command High Priority
	11xx Own the bus for as long as there is a request	/	0 Disable high priority up comm
3-0	Timer for High Priority Requests from SB		1 Enable high priority up comma
	0000 Immediate	6-1	Reserved
	0001 1*2 VCLKs	0	Down Cycle Wait for Up Cycle
	0010 2*2 VCLKs		(Except Down Cycle Post Write)
	0011 3*2 VCLKs		0 Disable
	0100 4*2 VCLKsdefault		1 Enable
	0101 5*2 VCLKs		
	0110 6*2 VCLKs		
	0111 7*2 VCLKs	y	
	1000 8*2 VCLKs		
	1001 16*2 VCLKs	,	
	1010 32*2 VCLKs		
	1011 64*2 VCLKs		
	11xx Own the bus for as long as there is a request		

evice	0 Offs	et 4E – CCA Master Priority (00h)RW
7	1394	High Priority
	0	Low prioritydefault
	1	High priority
6	LAN	/ NIC High Priority
	0	
	1	High priority
5	Rese	rvedalways reads 0
4	USB	High Priority
	0	Low prioritydefault
	1	High priority
3	Rese	rvedalways reads 0
2	IDE :	High Priority
	0	Low prioritydefault
		High priority
1		7-ISA High Priority
	J	Low prioritydefault
		High priority
0		High Priority
		Low prioritydefault
	1	High priority
ovice.	Λ Offe	ot 1E SDV Link Miss Control (00h) DW
	_	et 4F – SB V-Link Misc Control (00h) RW
7		ream Command High Priority
	0	Disable high priority up commands default
	1	Enable high priority up commands
6-1	Rese	3
0		n Cycle Wait for Up Cycle Write Flush
		ept Down Cycle Post Write) Disabledefault
		Enable Gerault
	1	Lilaule

Host CPU Control

Device 0 Offset 50 - Request Phase Control (00h)RW <u>Device 0 Offset 51 – CPU Interface Basic Control (00h)RW</u> **CPU Hardwired IOQ (In Order Queue) Size CPU Read DRAM Fast Ready** Default set from the inverse of the VAD2 and VAD1 0 Medium / Slow Ready (see bit 0)...... default Fast Ready (bit-0 of this register is ignored) straps. This register can be written 00 to restrict the chip to one level of IOQ. **Read Around Write** 00 1-Level (both straps pulled high) 0 Disable......default 01 4-Level 1 Enable 10 8-Level 5 **DRO Control** 11 12-Level (both straps pulled low) 0 Non pipelined similar to VT8633...... default Bit-6 was added in the VT8753E. In the VT8753, Pipelined 1 only bit-7 was available to select 1 and 8-level IOQ. **CPU to PCI Read Defer Fast DRAM Access** Disable.......default 5 0 Disabledefault Enable **Two Defer / Retry Entries** 1 Enable 0 Disable......default **Dynamic Defer Snoop Stall Count** 4-0 (granularity = 2T, normally set to 01000b)Enable Two Defer / Retry Entries Shared Each entry is dedicated to 1 CPU default 1 PA O CPU (this A 1 Each entry is shared by 2 CPUs **PCI Master Pipelined Access** 0 Disable......default Enable **CPU Read DRAM Medium Ready** (this bit is ignored if bit-7 = 1) Slow Ready default Medium Ready

Device	0 Offset 52 – CPU Interface Advanced Ctrl (00h)RW	Device	0 Offset 54 – CPU Frequency (40h) RW
7	CPU RW DRAM 0WS for Back-to-Back Pipeline	7	Reservedalways reads 0
	Access	6	CPU FSB Frequency Set from VAD0 Strap
	0 Disabledefault		0 100 MHz (strap pulled low)
	1 Enable		1 133 MHz (strap pulled high) default
6	HREQ High Priority		(The 8753 was fixed to 100 MHz FSB)
	0 Disabledefault	5	Auto Configure Set from VAD6 Strap
	1 Enable		0 Disable (strap pulled low)
5	AGTL+ Pullups (<u>VT8753E Only</u>)		1 Enable (strap pulled high). AGTL+ Drive
	Default set from the inverse of the VAD3 strap.		settings and other chip configuration settings
	Bit-5 of this register was reserved in the VT8753 (the		are stored in ROM, transferred from the south
	function of this bit was performed by Rx50[6])		bridge (via the V-Link bus), and loaded into
	0 Disable (strap pulled high)		the VT8753E automatically after system reset.
	1 Enable (strap pulled low)		Refer to the VT8753E BIOS Porting Guide for
4	Dynamic Snoop Stall for CPU FIFO Full		layout of the AutoConfigure settings in ROM
	0 Disabledefault		and for recommended bit settings.
	1 Enable	4	SDRAM Burst Length of 8
3	Write Retire Policy After 2 Writes		0 Disabledefault
	0 Disabledefault	0, 2	1 Enable
_	1 Enable	3	Rx85, 86, and 87 Writable (VT8753E Only)
2	Reserved always reads 0		0 Disabledefault
1	Consecutive Speculative Read	9	1 Enable
	0 Disabledefault	2	PCI Master 8QW Operation
0	1 Enable	N.	0 Disabledefault
0	Speculative Read		1 Enable
	0 Disabledefault		AGP Capability Header Support 0 Disabledefault
	1 Enable		0 Disable default 1 Enable
Device	0 Offset 53 – CPU Arbitration Control (03h)RW	0	VPX Mode
7-4	Host Timer default = 0	U	0 Disable (AGP Mode)default
3-0	BPRI Timer (units of 4 HCLKs) default = 3		1 Enable (VPX Mode)
			1 Eliable (VI A Wode)
		,	

DRAM Control

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory (refer to the VIA Technologies VT8753E BIOS porting guide for details).

Table 5. System Memory Map

~	G	~ •	4.1.1 D	a		U	Disacto
Space DOS	Start 0	<u>Size</u> 640K	Address Range 00000000-0009FFFF	<u>Comment</u> Cacheable	3	1 DOM	Enable Remova
VGA	640K	128K	000A0000-000BFFFF	Used for SMM		0	Disable
BIOS BIOS BIOS BIOS BIOS BIOS	768K 784K 800K 816K 832K 848K 864K 880K	16K 16K 16K 16K 16K 16K 16K	000C0000-000C3FFF 000C4000-000C7FFF 000C8000-000CBFFF 000CC000-000CFFFF 000D0000-000D3FFF 000D4000-000D7FFF 000D8000-000DBFFF 000DC000-000DFFFF	Shadow Ctrl 1 Shadow Ctrl 1 Shadow Ctrl 1 Shadow Ctrl 1 Shadow Ctrl 2	2	0 1 Auto 0 1	Enable Output Disable Enable Precharg Disable Enable Enable Recover
BIOS BIOS	896K 960K	64K 64K	000E0000-000EFFFF 000F0000-000FFFFF	Shadow Ctrl 3 Shadow Ctrl 3		1	2T
Sys Bus Init	1MB D Top 4G-64K	64K	00100000-DRAM Top DRAM Top-FFFEFFF FFFEFFFF-FFFFFFFF	Can have hole 000Fxxxx alias			

Device	0 Offset 55 - DRAM Control (00h) RW
7	0WS Back-to-Back Write to Different DDR Bank
	0 Disabledefault
	1 Enable
6	Reserved always reads 0
5	DQS Input DLL Adjustment
	0 Disabledefault
	1 Enable
4	DQS Output DLL Adjustment
	0 Disabledefault
	1 Enable
3	DQM Removal (Always Perform 4-Burst RW)
	0 Disabledefault
	1 Enable
2	DQS Output
	0 Disabledefault
	1 Enable
1	Auto Precharge for TLB Read or CPU WriteBack
7	0 Disabledefault
	1 Enable
0	Write Recovery Time
k	0 1Tdefault
	1 2T

Device () Offse	et 59	<u> 9-58 - DRAM MA Map Type (222)</u>	<u>2h).RW</u>
15-13	Bank	5/4	MA Map Type (see table below)	
12	Bank	5/4	1T Command Rate	
	0	2T	Command	default
	1	1T	Command	
11-9	Bank	7/6	MA Map Type (see table below)	
8	Bank	7/6	1T Command Rate	
	0	2T	Command	default
	1	1T	Command	
7-5	Bank	1/0	MA Map Type (see table below)	
4	Bank	1/0	1T Command Rate	
	0	2T	Command	default
	1	1T	Command	
3-1	Bank	3/2	MA Map Type (see table below)	
0	Bank	3/2	1T Command Rate	
	0	2T	Command	default
	1	1T	Command	

Table 6. Device 0 Rx58 MA Map Type Encoding

000	<u>16Mb</u>	8-bit, 9-bit, 10-bit Column Address
001	64/128Mb	8-bit Column Addressdefault
010	64/128Mb	9-bit Column Address
011	64/128Mb	10/11-bit Column Address
100		-reserved-
101	<u>256Mb</u>	8-bit Column Address
110	<u>256Mb</u>	9-bit Column Address
111	<u>256Mb</u>	10/11-bit Column Address

Device 0 Offset 5F-5A – DRAM Row Ending Address:

Offset 5A – Bank 0 Ending (HA[31:24]) (01h)
Offset 5B - Bank 1 Ending (HA[31:24]) (01h) RW
Offset 5C - Bank 2 Ending (HA[31:24]) (01h) RW
Offset 5D – Bank 3 Ending (HA[31:24]) (01h) RW
Offset 5E – Bank 4 Ending (HA[31:24]) (01h) RW
Offset 5F – Bank 5 Ending (HA[31:24]) (01h) RW
Offset 56 – Bank 6 Ending (HA[31:24]) (01h)
Offset 57 – Bank 7 Ending (HA[31:24]) (01h) RW

Note: BIOS is required to fill the ending address registers for all banks even if no memory is populated. The endings have to be in incremental order.

Device 0 Offset 60 - DRAM Type (00h).....RW

- 7-6 DRAM Type for Bank 7/6
- 5-4 DRAM Type for Bank 5/4
- 3-2 DRAM Type for Bank 3/2
- 1-0 DRAM Type for Bank 1/0
 - 00 SDR SDRAM......default
 - 01 -reserved- (do not program)
 - 10 DDR SDRAM
 - 11 -reserved-

Table 7. Memory Address Mapping Table

SDR / DDR SDRAM (x4 DRAMs supported by SDR only)

. 1	M	A:	14	<u>13</u>	<u>12</u>	11	<u>10</u>	9	8	7	6	<u>5</u>	4	3	2	1	0	
	16Mb			24	9	13	12	11	14	22	21	20	19	18	17	16	15	12 row
	(000)					13	PC	24	23	10	9	8	7	6	5	4	3	10,9,8 col
	64/128N	<u>1b</u>		N	_													x16 (14,8)
	2K pag	e	14	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (14,8)
	001			27	14	13	PC	26	25	10	9	8	7	6	5	4	3	x8 (14,9)
	4K pag	e	14	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (14,9)
	010			27	14	13	PC	26	11	10	9	8	7	6	5	4	3	x4 (14,10)
	8K pag	e	14	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x8 (14,10)
	011			27	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (14,11)
	256Mb)																
	2K pag	e	25	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (15,8)
	101			27	14	13	PC	26	25	10	9	8	7	6	5	4	3	
	4K pag	e	26	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (15,9)
	110			27	14	13	PC	26	11	10	9	8	7	6	5	4	3	
	8K pag	e	27	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x8 (15,10)
	111			28	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (15,11)

Device	0 Offs	et 61 - Shadow RAM Control 1 (00h)RW	Device	0 Offs	et 63 - Shadow RAM	Control 3 (00h) RW
7-6	CC0	00h-CFFFFh	7-6	E000	0h-EFFFFh	_
	00	Read/write disabledefault				default
	01	Write enable		01	Write enable	
	10	Read enable		10	Read enable	
	11	Read/write enable		11	Read/write enable	
5-4		0h-CBFFFh	5-4	F000	0h-FFFFFh	
	00	Read/write disabledefault		00	Read/write disable	default
	01	Write enable		01	Write enable	
	10	Read enable		10	Read enable	
		Read/write enable		11	Read/write enable	
3-2		0h-C7FFFh	3-2	Mem	ory Hole	
		Read/write disabledefault		00	None	default
		Write enable		01	512K-640K	
		Read enable		10	15M-16M (1M)	
		Read/write enable		11	14M-16M (2M)	
1-0		0h-C3FFFh	1-0	SMI	Mapping Control	
		Read/write disabledefault			<u>SMM</u>	Non-SMM
	01	Write enable		9	Code Data	<u>Code</u> <u>Data</u>
		Read enable		00	DRAM DRAM	PCI PCI
	11	Read/write enable		01	DRAM DRAM	DRAM DRAM
Device	0 Offs	et 62 - Shadow RAM Control 2 (00h)RW	90	10	DRAM PCI	PCI PCI
7-6	DC0	00h-DFFFFh		11	DRAM DRAM	DRAM DRAM
		Read/write disabledefault				
	01	Write enable				
	10	Read enable		Y	0.4	
	11	Read/write enable				
5-4	D800	0h-DBFFFh				
	00	Read/write disabledefault				
	01	Write enable				
	10	Read enable				
	11	Read/write enable	45			
3-2	D400	0h-D7FFFh				
		Read/write disabledefault				
		Write enable				
		Read enable				
	11	Read/write enable				
1-0	D 000	0h-D3FFFh				
	00	Read/write disabledefault				

01 Write enable 10 Read enable 11 Read/write enable

Device				ming for A			Device	0 Offset 67 – DDR Strobe
7				to Active (Comman	d Period		DDR:
	0						7-6	CS Early Clock Select
	1						5-0	DQS Input Delay
6				Precharge (Comman	d Period		(if Rx66[7]=0, read DLL
	0	TRAS						
	1					default		CDD.
5-4	CAS	Laten	ey				7.5	SDR: Reserved
		<u>SDR</u>	<u>DDR</u>				7-5 4	Reserved MD Latch Clock Select
	00	1T	-				4	0 Internal clock
	01	2T	2T					
	10	3T				default	2	1 External feedback c
	11	-	3T				3	Reserved
3	Rese	rved			alwa	ys reads 0	2-0	MD Latch Delay
2	ACT	IVE to	CMD					
	0	2T					Device	0 Offset 68 – DDR Strobe
	1	3T				default	7-0	DDR DQS Output Delay
1-0	Bank	k Interl	eave				, ,	Den e qui output eta,
	00	No In	terleave			default		7
	01	2-way	1					
	10	4-way	1					
	11	Reser	ved				6	
	For 1	6Mb S	DRAMs b	ank interlea	ve is alwa	ays 2-way		
							X	
ъ.	0.000		DD 434 4	* *	T. 40	DIV.		
				rbitration [
7-4				MCLKs).				
3-0			Ì	MCLKs)				
				rbitration (Control (00h)RW		
7			back Clo					
		DQS	D-C7	lay Setting ls DLL cali	1	144 4.6		
	0							
	1		A ' Y /	eads DQS i		• /		
6				Output D	•	_ /		
	0 1		*		•••••	derauit		
		Manu		Tii	<			
6	0	2T		ccess Timir	_	default		
	1			or 133 MHz				
<i>5</i> 4					Z DKAWI	CIOCK)		
5-4			Parking 1	owner		dafault		
	00 01		at CPU	owner	•••••	uciauit		
	10 11	Park a						
3-0				units of 4 N	(CLVa)			
3-0	AGP	CPU	1 HOFILY (uiiits 01 4 N	iclns)			

Device	0 Offset 67 – DDR Strobe Input Delay (00h) RW
	DDR:
7-6	CS Early Clock Select default = 0
5-0	DQS Input Delay default = 0
	(if Rx66[7]=0, read DLL calibration result)
	SDR:
7-5	Reserved always reads 0
4	MD Latch Clock Select
	0 Internal clockdefault
	1 External feedback clock
3	Reserved always reads 0
2-0	MD Latch Delay
Device	0 Offset 68 – DDR Strobe Output Delay (00h) RW
7-0	DDR DQS Output Delay default = 0

Device 7	0 Offset 69 – DRAM Clock Select (00h)RW Reserved (Do Not Program) (VT8753E) default = 0	Device 0 Offset 6A - Refresh Counter (00h)RW 7-0 Refresh Counter (in units of 16 MCLKs)
6	DRAM Operating Frequency Faster Than CPU	00 DRAM Refresh Disabled default
	0 DRAM Same As or Equal to CPUdefault	01 32 MCLKs
	1 DRAM Faster Than CPU by 33 MHz	02 48 MCLKs
	·	03 64 MCLKs
	$\underline{CPU/DRAM}$ $\underline{Rx54[6]}$	04 80 MCLKs
	0 100 / 100 0default	05 96 MCLKs
	1 100 / 133 0	
	0 133 / 133 1	The programmed value is the desired number of 16-
	All other combinations are reserved.	MCLK units minus one.
5	Dynamic CKE (VT8753)	Device 0 Offset 6B - DRAM Arbitration Control (00h) RW
	0 Disabledefault	7 Fast Read to Write Turn-around
	1 Enable	0 Disabledefault
4	Reserved (VT8753) always reads 0	1 Enable
		6 Page Kept Active When Cross Bank
5	DRAM Ctrlr Queue Greater Than 2 (VT8753E)	0 Disabledefault
	0 Disabledefault	1 Enable
	1 Enable	5 Burst Refresh
4	DRAM Ctrlr Queue Not Equal To 4 (VT8753E)	0 Disabledefault
	0 Disabledefault	1 Enable
	1 Enable	4 CKE Function
		0 Disabledefault
3	DRAM 8K Page Enable	1 Enable
	0 Disabledefault	3 HA14/HA22 Swap
_	1 Enable	0 Normaldefault
2	DRAM 4K Page Enable	1 Swap to improve performance
	0 Disabledefault	2-0 SDRAM Operation Mode Select
	1 Enable	000 Normal SDRAM Mode default
1	DIMM Type	001 NOP Command Enable
	0 Unbuffereddefault	010 All-Banks-Precharge Command Enable
	1 Registered	(CPU-to-DRAM cycles are converted
0	Multiple Page Mode	to All-Banks-Precharge commands).
	0 Disabledefault	011 MSR Enable
	1 Enable	CPU-to-DRAM cycles are converted to
		commands and the commands are driven on
		MA[14:0]. The BIOS selects an appropriate
		host address for each row of memory such that
	/	the right commands are generated on
		MA[14:0].
		100 CBR Cycle Enable (if this code is selected,
		CAS-before-RAS refresh is used; if it is not
		selected, RAS-Only refresh is used)
		101 Reserved

11x Reserved

Device	0 Offs	et 6C - DRAM Drive Control 1 (00h)RW
7-6	SDR	AM A Drive – SRASA/SCASA/SWEA, MAA
	00	Lowestdefault
	01	
	10	
	11	Highest
5-4	SDR	AM B Drive – SRASB/SCASB/SWEB, MAB
	00	Lowestdefault
	01	
	10	
	11	Highest
3-2	DDR	DQS Drive
	00	Lowestdefault
	01	
	10	
	11	Highest
1-0	MD/I	MECC/DQM/CKE Early Clock Select
	00	Latestdefault
	01	
	10	
	11	Earliest

Refer to the VT8753E BIOS Porting Guide for SDRAM configuration algorithms and recommended settings for these bits for typical memory system configurations.

Device	0 Offset 6D - DRAM Drive Control 2 (00h) RW
7-6	Early Clock Select for SCMD, MA Output (for 1T
	Command)
	00 Latestdefault
	01
	10
	11 Earliest
5-4	DQM Drive
	00 Lowestdefault
	01
	10
	11 Highest
3-2	CS# Drive
	00 Lowestdefault
	01
	10
	11 Highest
1-0	Memory Data Drive (MD, MECC)
	00 Lowest
	01
y	10
0	11 Highest

Note: Refer to the VT8753E BIOS Porting Guide for SDRAM configuration algorithms and recommended settings ror these bits for for these bits for typical memory system configurations.

Device 0 Offset 6E - ECC Control (00h)RW ECC / EC Mode Select 0 ECC Checking and Reporting.....default ECC Checking, Reporting, and Correcting Perform Read-Modify-Write for Partial Write 6 0 Disabledefault 1 Enable 5 **Enable SERR# on ECC / EC Multi-Bit Error** 0 Don't assert SERR# for multi-bit errorsdef Assert SERR# for multi-bit errors **Enable SERR# on ECC / EC Single-Bit Error** 0 Don't assert SERR# for single-bit errorsdef 1 Assert SERR# for single-bit errors

- 3 ECC / EC Enable Bank 7/6 (DIMM 3)
 - O Disable (no ECC or EC for banks 7/6)...default
 - 1 Enable (ECC or EC per bit-7)
- 2 ECC / EC Enable Bank 5/4 (DIMM 2)
 - 0 Disable (no ECC or EC for banks 5/4)...default
 - 1 Enable (ECC or EC per bit-7)
- 1 ECC / EC Enable Bank 3/2 (DIMM 1)
 - 0 Disable (no ECC or EC for banks 3/2)...default
 - 1 Enable (ECC or EC per bit-7)
- 0 ECC / EC Enable Bank 1/0 (DIMM 0)
 - 0 Disable (no ECC or EC for banks 1/0)...default
 - 1 Enable (ECC or EC per bit-7)

Error checking / correction may be enabled bank-pair by bank-pair (DIMM by DIMM) by using bits 0-3 above. Bank pairs must be populated with 72-bit memory to enable for EC or ECC since the additional data bits must be present in either case. For this reason, if 64-bit memory is populated in a particular bank pair, the corresponding bit 0-3 should be set to 0 to disable both EC and ECC for that bank pair. For those bank pairs that have 72-bit memory available (and have the corresponding bit 0-3 set), either EC or ECC may be selected via bit-7 above (i.e., all enabled bank pairs will use EC or all will use ECC).

If error checking / reporting only (EC) is selected, all read and write cycles will use normal timing. Partial writes (with EC or ECC enabled) will use read-modify-write cycles to maintain correct error correction codes in the additional 8 data bits. If EC and ECC are disabled for a particular bank pair, partial writes to that bank pair will use the byte enables to write only the selected bytes (using normal write cycles and cycle timing). If error correction (ECC) is selected, the first read of a transaction will always have one additional cycle of latency.

<u>Bit-7</u>	Bits 3-0	$\underline{\mathbf{RMW}}$	Error Checking	Error Correction
0/1	0	No	No	No
0	1	Yes	Yes	No
1	1	Yes	Yes	Yes

Devi	e 0 Offset 6F - ECC Status (00h)RWC
7	Multi-bit Error Detected write of '1' resets
6-4	Multi-bit Error DRAM Bankdefault=0
	Encoded value of the bank with the multi-bit error.
3	Single-bit Error Detected write of '1' resets
2-0	Single-bit Error DRAM Bankdefault=0
	Encoded value of the bank with the single-bit error.

(see RxD0-4 for ECC Error Address and Error Syndrome)

Table 8. DIMM Module Configuration

Rx6B	Rx6E	Rx6E	Rx55				
[4]	[3-0]	[6]	[3]	DIMM	MECC	DQM	DQS#
CKE	ECC	RMW	No	Module	[7-0]	[8-0]	[8-0]
<u>Ena</u>	<u>Ena</u>	<u>Ena</u>	<u>DQM</u>	Configuration	<u>Pins</u>	<u>Pins</u>	<u>Pins</u>
1	1	0	1	DDR Only x8 with ECC	MECC[7-0]	CKE[7-0]	DQS[8-0]#
1	0	0	0	DDR Only x8 no ECC	CKE[7-0]	DQM[7-0]	DQS[7-0]#
0	0	0	0	184-Pin DDR/SDR Mix	CKE[7-0]	DQM[8-0]	DQS[8-0]#
1	1	X	0	168-Pin SDR Only	MECC[7-0]	DQM[8-0]	CKE[7-0]
1	0	0	1	2 DDR + 2 SDR (SDR Installed)	CKE[7-0]	-	DQS[7-0]#
1	0	0	0	2 DDR + 2 SDR (DDR Installed)	CKE[7-0]	DQM[7-0]	DQS[7-0]#

PCI Bus Control

These registers are normally programmed once at system initialization time.

Device	0 Offset 70 - PCI Buffer Control (00h)RW	Device 0 Offset 73 - PCI M	Iaste
7	CPU to PCI Post-Write	7 Reserved	
	0 Disabledefault	t 6 PCI Master 1-Wa	ıit-St
	1 Enable	0 Zero wait st	ate T
6	Reserved always reads 0	1 One wait sta	ite T
5-4	PCI Master to DRAM Prefetch	5 PCI Master 1-Wa	ıit-St
	00 Always prefetchdefault	t 0 Zero wait st	ate T
	x1 Never prefetch	1 One wait sta	ite T
	10 Prefetch only for Enhance command	4 WSC#	
3-2	Reserved always reads 0	0 Disable	
1	Delay Transaction	1 Enable	
	0 Disabledefault	t 3-1 Reserved	
	1 Enable	0 PCI Master Brok	en T
0	Reserved always reads 0	0 Disable	
ъ.	A COS A RELIGIOUS POLICIES CONTRACTOR DE LA LACION DIVIGIO	1 Enable. For	ce in
	0 Offset 71 - CPU to PCI Flow Control (48h)RWC	I ICHILII I	6 PC
7	Retry StatusRWC		
	0 No retry occurreddefault	5	
	1 Retry occurred		7
6	Retry Timeout Action		
	0 Retry forever (record status only)		
	1 Flush buffer or return FFFFFFFh for reads		
	default		
5-4	Retry Count and Retry Backoff		
	00 Retry 2 times, backoff CPUdefault		
	01 Retry 16 times		
	10 Retry 4 times		
	11 Retry 64 times		
3	PCI Burst	,	
	0 Disable		
	1 Enabledefault	•	
2	Reserved always reads 0)	
1	Compatible Type#1 Configuration Cycles		
	0 Disable (fixed AD31)default	t	
	1 Enable		
0	IDSEL Control		
	0 AD11, AD12default	t	

Do	evice	0 Offset 73 - PCI Master Control (00h)RW
	7	Reserved always reads 0
	6	PCI Master 1-Wait-State Write
		0 Zero wait state TRDY# response default
		1 One wait state TRDY# response
	5	PCI Master 1-Wait-State Read
		0 Zero wait state TRDY# response default
		1 One wait state TRDY# response
	4	WSC#
		0 Disabledefault
		1 Enable
	3-1	Reservedalways reads 0
	0	PCI Master Broken Timer Enable
	0	7 0 Disabledefault
4		1 Enable. Force into arbitration when there is no
		FRAME# 16 PCICLK's after the grant.

AD30, AD31

ъ.	A OCT A TO DOLLA LIVE AL ALONDO	ъ.	O OCC ARC DOLLAR A COOL
	0 Offset 75 - PCI Arbitration 1 (00h)RW		0 Offset 76 - PCI Arbitration 2 (00h)RW
7	Arbitration Mode	7	I/O Port 22 Access
	0 REQ-based (arbitrate at end of REQ#)default		0 CPU access to I/O address 22h is passed on to
	1 Frame-based (arbitrate at FRAME# assertion)		the PCI bus
6-4	Latency Timerread only, reads Rx0D bits 2:0		1 CPU access to I/O address 22h is processed
3	Reserved always reads 0	_	internally
2-0	PCI Master Bus Time-Out	6	Reservedalways reads 0
	(force into arbitration after a period of time)	5-4	Master Priority Rotation Control
	000 Disabledefault		00 Disabledefault
	001 1x16 PCICLKs		01 Grant to CPU after every PCI master grant
	010 2x16 PCICLKs		10 Grant to CPU after every 2 PCI master grants
	011 3x16 PCICLKs		11 Grant to CPU after every 3 PCI master grants
	100 4x16 PCICLKs		Setting 01: the CPU will always be granted access
			after the current bus master completes, no matter how
	111 7x16 PCICLKs		many PCI masters are requesting.
			Setting 10: if other PCI masters are requesting during
			the current PCI master grant, the highest priority
			master will get the bus after the current master
			completes, but the CPU will be guaranteed to get the
			bus after that master completes.
			Setting 11: if other PCI masters are requesting, the
		9	highest priority will get the bus next, then the next
			highest priority will get the bus, then the CPU will
			get the bus.
			In other words, with the above settings, even if
			multiple PCI masters are continuously requesting the
			bus, the CPU is guaranteed to get access after every
			master grant (01), after every other master grant (10)
			or after every third master grant (11).
		3-2	Select REQn# to REQ4# mapping
			00 REQ4#default
	` >		01 REQ0#
			10 REQ1#
		7	11 REQ2#
		1	Reservedalways reads 0
		0	REQ4# is High Priority Master

0 Disable.....default

1 Enable

GART / Graphics Aperture Control

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable in the P4X266E.

This scheme is shown in the figure below.

Figure 3. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The TLB in the P4X266E contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc). The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register group (offsets 84 and 88 respectively) along with various control bits.

Device (<u>) Offset 83-80 - GART/TI</u>	<u> LB Control (000000000h) RV</u>
31-16	Reserved	always reads 0
15-8	Reserved (test mode stat	us)RO
7	Flush Page TLB	
	0 Disable	default
	1 Enable	
6-0	Reserved	always reads 0

Note: For any master access to the Graphics Aperture range, snoop will not be performed.

Device 0 Offset 84 - Graphics Aperture Size (00h)...... RW

7-0 Graphics Aperture Size

11111111 1M 1111000 16M 11111110 2M 1110000 32M 11111100 4M 11000000 64M 11111000 8M 10000000 128M 00000000 256M

(See Next Page for Rx85-87)

Offset 8B-88 - GA Translation Table Base (00000000h) RW

31-12 Graphics Aperture Translation Table Base.

Pointer to the base of the translation table in system memory used to map addresses in the aperture range (the pointer to the base of the "Directory" table).

11-2 Reservedalways reads 0

Graphics Aperture Enable

0 Disable.....default

1 Enable

Note: To disable the Graphics Aperture, set this bit to 0 and set all bits of the Graphics Aperture Size to 0. To enable the Graphics Aperture, set this bit to 1 and program the Graphics Aperture Size to the desired aperture size.

0 Reservedalways reads 0

CPU-to-Memory Access Control

Offset 87 - CPU-to-Memory Bandwidth Limit ... RO / RW†

This register is only available in the VT8753E

7-3 Reserved always reads 0

- 2-1 Bandwidth Limit
 - 00 Disable (same operation as VT8753).....default
 - 01 Fixed DRAM bandwidth limit
 - 10 Fixed CPU bandwidth limit
 - 11 Dynamically toggle between two CPU / DRAM bandwidth limits (two timers Rx86[7-4] and Rx86[3-0] are used)
- 0 CPU Access DRAM Read After Write
 - 0 Normaldefault
 - 1 Improved

Rx85, 86 and 87 should be programmed to optimum values recommended by VIA to increase system performance.

† Rx85, 86 and 87 are Write Enabled via Rx54[3]

AGP Control

Device	0 Offset A3-A0 - AGP Capability Identifier	Device 0 Offset AC - AGP Control (00h)RW
(0020C)	002h)RO	7 AGP DisableRO
31-24	Reserved always reads 00	
	Major Specification Revision always reads 0010	
23 20	Major rev # of AGP spec to which device conforms	This bit is latched from MA9 at the rising edge of
10 16	Minor Specification Revision always reads 0000	
19-10	Minor rev # of AGP spec to which device conforms	
15 0	-	
	Pointer to Next Item always reads C0h (last item)	
7-0	AGP ID (always reads 02 to indicate it is AGP)	
Device	0 Offset A7-A4 - AGP Status (1F000201h)RO	5 AGP Read Snoop DRAM Post-Write Buffer 0 Disabledefault
	Maximum AGP Requests always reads 1F	0 Disaute
31 21	Max # of AGP requests the device can manage (32)	1 Elitere
23_10	Reserved	4 GREQ# Priority Becomes Higher When Arbiter is
9	Supports SideBand Addressing always reads 1	
8-6	Reserved	0 Disabledefault
	4G Supported	A P I Eliabit
5		T T
4	Fast Write Supported (can be written at RxAE[4]	0 2 150010
3	Reserved always reads 0	I Zimore
2	4X Rate Supportedalways reads 0	
1	2X Rate Supported always reads 0	y - same to provide a supply of
0	1X Rate Supported always reads 1	executed out of orderdefault
		1 Enable – all normal priority AGP operations
		will be executed in order
Device	0 Offset AB-A8 - AGP Command (00000000h)RW	1 AGP Grant Parking Policy
	Request Depth (reserved for target) always reads 0s	0 Non-Parking Grant – if GFRM# or GPIPE# is
		1 Parking Grant – if GFRM# or GPIPE# is
9	SideBand Addressing Enable	asserted, GGNT# is not de-asserted until
	0 Disabledefault	GREQ# is deasserted or timeout
	1 Enable	0 AGP to PCI Master or CPU to PCI Turnaround
8	AGP Enable	Cycle
	0 Disabledefault	0 2T or 3T Timingdefault
	1 Enable	1 1T Timing
7-6	Reservedalways reads 0s	
5	4G Enable	
	0 Disabledefault	
	1 Enable	
4	Fast Write Enable	
	0 Disabledefault	
	1 Enable	
3	Reserved always reads 0s	
2	4X Mode Enable	
	0 Disabledefault	
	1 Enable	
1	2X Mode Enable always reads 0 (disable)	
0	1X Mode Enable always reads 0 (disable)	
U	111 111040 Dilabie always reads o (alsable)	

AGP Control (continued)

Device	0 Offset AD – AGP Miscellaneous Control (02h)RW	Device	0 Offset B1 – AGP Drive Strength (63h)RW
7-6	Reserved always reads 0	7-4	AGP Output Buffer Drive Strength N Ctrldef=6
5	Input on AGP GD / GBE Pads	3-0	AGP Output Buffer Drive Strength P Ctrldef=3
	0 Disabledefault		
	1 Enable		
4	Choose First or Last Ready of DRAM	<u>Device</u>	0 Offset B2 – AGP Pad Drive & Delay Ctrl (08h)RW
	0 Last ready chosendefault	7	GD/GDS/GDS#/GBE Pad Controldefault = 0
	1 First ready chosen		SA / SBS = GD / GBE / GDS
3-0	AGP Data Phase Latency Timer default = 02h		0 VDDQ=1.5V: Normal Normal
ъ.	a occ . A F. A CD M. H		VDDQ=3.3V: Delayed Normal
	0 Offset AE – AGP Miscellaneous Control (00h)RW		1 VDDQ=1.5V: Normal Delayed
7-6	Reserved always reads 0		VDDQ=3.3V Delayed Delayed
5	4G Supported	6-5	Reservedalways reads 0
	0 4G not supporteddefault	4	GD[31:16] Output Stagger Delay
	1 4G supported		0 No delay
4	Fast Write Supported		1 Delay GD[31:16] by 1 ns
	0 Fast Write not supporteddefault	3	
	1 Fast Write supported		0 Disable
3	Reserved always reads 0	80.	1 Enabledefault
2	4X Rate Supported	2	GD, GDS, GDS# Preamble Control
	0 Disabledefault	k	0 Disabledefault
1.0	1 Enable		1 Enable
1-0	Reserved always reads 0	1	AGP Bus Voltage
Device	0 Offset B0 – AGP Pad Control / Status (8xh) RW		0 1.5Vdefault 1 3.3V
7	AGP 4x Strobe VREF Control	0	GDS Output Delay
	This bit is valid only when $RxA8[2] = 1$ (4x transfer	U	0 No delay default
	mode enabled), otherwise, STB VREF is AGPVREF.		1 Delay GDS by 400 ps
	0 STB VREF is STB# and vice versa		(GDS & GDS# will be delayed 1 ns more if bit- $4 = 1$)
	1 STB VREF is AGPVREFdefault	1	(
	The reference voltage is also determined by setting of		
	RxB2[1] (AGP Bus Voltage):		
	AGP Voltage This Bit Strobe Reference Voltage	-	0 Offset B3 – AGP Strobe Drive Strength (63h) RW
	3.3V don't care $AGPVREF = 0.4 \times 3.3V$	7-4	•
	1.5V 1 AGPVREF = $0.5 \times 1.5 \text{V}$	3-0	AGP Strobe Output Drive Strength P Ctrldef=3
	1.5V 0 STB / STB#		
6	AGP 4x Strobe & GD Pad Drive Strength		
	0 Drive strength set to compensation circuit		
	defaultdefault		
	1 Drive strength controlled by RxB1[7-0]		
5-3	AGP Compensation Circuit N Control Output.RO		
2-0	AGP Compensation Circuit P Control Output.RO		

V-Link Control

Device	0 Offset B4 – V-Link NB Compensation Ctrl (00h)RW	Device	0 Offset B8 – V-Link SB Compensation Ctrl (00h)RW
7-6	V-Link Autocomp Output Value always reads 0	7-6	V-Link Autocomp Output Value always reads 0
5	Pullup Compensation Selection	5	Pullup Compensation Selection
	O Auto Comp (use values in bits 7-6)default		O Auto Comp (use values in bits 7-6) default
	1 Manual Comp (use values in bits 3-2)		1 Manual Comp (use values in bits 3-2)
4	Pulldown Compensation Selection	4	Pulldown Compensation Selection
	0 Auto Comp (use values in bits 7-6)default		0 Auto Comp (use values in bits 7-6) default
	1 Manual Comp (use values in bits 1-0)		1 Manual Comp (use values in bits 1-0)
3-2	Pullup Compensation Manual Setting $def = 0$	3-2	Pullup Compensation Manual Setting $def = 0$
1-0	Pulldown Compensation Manual Setting def = 0	1-0	Pulldown Compensation Manual Settingdef = 0
	•		
	0 Offset B5 – V-Link NB Drive Control (00h)RW		0 Offset B9 – V-Link SB Drive Control (00h) RW
7-6	NB V-Link Strobe Pullup Manual Setting	7-6	SB V-Link Strobe Pullup Manual Setting
5-4	NB V-Link Strobe Pulldown Manual Setting	5-4	SB V-Link Strobe Pulldown Manual Setting
3-1	Reserved always reads 0	3-1	Reservedalways reads 0
0	NB V-Link Slew Rate Control	0	SB V-Link Slew Rate Control
	0 Disabledefault	%	0 Disabledefault
	1 Enable		1 Enable

DRAM Interface Control

Device	0 Offset BE – MECC Drive Strength (00h)RW	Device	0 Offset C0 – F
7-6	MECC Drive Strength default = 0	7-0	Capability ID
5-0	Reservedalways reads 0		
	•	Device	<u> 0 Offset C1 – F</u>
Device	0 Offset BF – DRAM Pad Toggle Reduction (00h)RW	7-0	Next Pointer.
7	MA / SCMD Pin Toggle Reduction	D	0 Off4 C2 - F
	0 Disabledefault		<u>0 Offset C2 – F</u>
	1 Enable (MA and S command pins won't	7-0	Power Manag
	toggle if not accessed)	Device	0 Offset C3 – F
6	Slew Rate Control for MA / SCMD Group A	7-0	Power Manag
	0 Disabledefault	/-0	Power Manag
	1 Enable	Device	0 Offset C4 – F
5	Slew Rate Control for MA / SCMD Group B	7-2	Reserved .
	0 Disabledefault	1-0	Power State
	1 Enable	- 0	00 D0 .
4	Reserved always reads 0		01 -reserve
3	DIMM #3 MAA / MAB Select	%	10 -reserve
	0 MAAdefault		11 D3 Hot
	1 MAB		
2	DIMM #2 MAA / MAB Select 0 MAAdefault		<u> 0 Offset C5 – F</u>
		7-0	Power Manag
1	1 MAB	D	
1	DIMM #1 MAA / MAB Select 0 MAAdefault		<u>0 Offset C6 – F</u>
	1 MAB	7-0	P2P Bridge S
0	DIMM #0 MAA / MAB Select	Device	0 Offset C7 – F
U	0 MAAdefault		Power Manag
	1 MAB	/-0	Tower Manag
	1 MAD		
	· · · · · · · · · · · · · · · · · · ·		
		ECC E	rror Control
		7	
		Device	0 Offset D3-D0
		_	
		Device	<u>0 Offset D4 – F</u>
	y		

Power Management

<u>Device</u>	<u> U Offset Cu – Power Management Capability IDRO</u>
7-0	Capability IDalways reads 01h
Device	0 Offset C1 – Power Management Next Pointer. RO
7-0	Next Pointer always reads 00h ("Null" Pointer)
Device	0 Offset C2 – Power Mgmt Capabilities IRO
7-0	Power Management Capabilities always reads 02h
Device	0 Offset C3 – Power Mgmt Capabilities II RO
7-0	Power Management Capabilities always reads 00h
Device	0 Offset C4 – Power Mgmt Control / Status RW
7-2	Reservedalways reads 0
1-0	Power State
	00 D0default
0	201 -reserved-
	10 -reserved-
	11 D3 Hot
Device	0 Offset C5 – Power Management StatusRO
	Power Management Statusalways reads 00h
Device	0 Offset C6 – PCI-to-PCI Bridge Support Ext RO
7-0	
Device	0 Offset C7 – Power Management DataRO
7-0	Power Management Dataalways reads 00h

Device 0 Offset D3-D0 - ECC Error Address (xxh) RO
Device 0 Offset D4 – ECC Error Syndrome (xxh)RO

AGTL+ I/O Control

Device	0 Offset D8 – Host Address (2x) Pullup DriveRW	Device	0 Offset DD – AGTL+ I/O Control (00h) RW
7	Reserved always reads 0	7	AGTL+ 4x Input Increase Delay to Filter Noise
6-4	Strobe Pullup Drive (HAS#) default = 0		0 Disabledefault
3	Reserved always reads 0		1 Enable
2-0	Address Pullup Drive (HA,HREQ#) default = 0	6	AGTL+ 2x Input Increase Delay to Filter Noise
	• , , , , , , , , , , , , , , , , , , ,		0 Disabledefault
Device	0 Offset D9 – Host Address (2x) Pulldown DriveRW		1 Enable
7	Reserved always reads 0	5	AGTL+ Slew Rate Control
6-4	Strobe Pulldown Drive (HAS#) default = 0		0 Disabledefault
3	Reserved always reads 0		1 Enable
2-0	Address Pulldown Drive (HA,HREQ#) . $default = 0$	4	Reserved always reads 0
Davias	0 Officet DA Host Data (Av.) Bullum Duives DW	3	Input Pullup
	0 Offset DA – Host Data (4x) Pullup DriveRW		0 Disabledefault
7	Reserved always reads 0		1 Enable
6-4	Strobe Pullup Drive (HDS,HDS#) default = 0	2	AGTL+ Strobe Internal Termination Pullups
3	Reserved always reads 0		0 Disabledefault
2-0	Address Pullup Drive (HD,HDBI#) default = 0	• \	1 Enable
Device	0 Offset DB – Host Data (4x) Pulldown Drive RW	1	AGTL+ Data Internal Termination Pullups
7	Reservedalways reads 0	20	0 Disabledefault
6-4	Strobe Pulldown Drive (HDS,HDS#) default = 0		1 Enable
3	Reservedalways reads 0	0	AGTL+ Dynamic Compensation
2-0	Address Pulldown Drive (HD,HDBI#) default = 0		0 Disabledefault
2-0			1 Enable
Note:	Refer to the VT8753E BIOS Porting Guide for	Davigo	0 Offset DE – AGTL+ Comp Status (00h) RW
recomn	nended settings for these bits for typical system	Device	
	rrations.	7	Select AutoCompensation Drive
configu	urations.		Select AutoCompensation Drive 0 Disabledefault
configu Device	o Offset DC – Output Delay / Stagger ControlRW		Select AutoCompensation Drive 0 Disable
configu	orations. O Offset DC – Output Delay / Stagger ControlRW Data / Strobe Relative Delay	7	Select AutoCompensation Drive 0 Disable
configu Device	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay O Data delay = strobe delay + 150 psecdefault	7	Select AutoCompensation Drive 0 Disable
configu Device	Data / Strobe Relative Delay O Data delay = strobe delay + 150 psecdefault Data delay = strobe delay	7	Select AutoCompensation Drive 0 Disable
configu Device	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec	7	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec	6-4	Select AutoCompensation Drive 0 Disable
configu Device	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger	7	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault	6-4	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	6-4 3 2	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault 1 1 nsec delay HA[31:17] Output Stagger	6-4	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	6-4 3 2	Select AutoCompensation Drive O Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2	Select AutoCompensation Drive O Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	6-4 3 2	Select AutoCompensation Drive O Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0	Select AutoCompensation Drive O Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0	Select AutoCompensation Drive 0 Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay default 1 Insec delay HA[31:17] Output Stagger 0 No delay default 1 Insec delay HDS / HDS# Output Extra Delay 00 No delay default 01 150 psec delay 10 300 psec delay	7 6-4 3 2 1 0 Device	Select AutoCompensation Drive O Disable
5 4 3-2	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay default 1 1 nsec delay HA[31:17] Output Stagger 0 No delay default 1 1 nsec delay HDS / HDS# Output Extra Delay 00 No delay default 01 150 psec delay 10 300 psec delay 11 450 psec delay	7 6-4 3 2 1 0 Device	Select AutoCompensation Drive O Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0 Device 7-4	Select AutoCompensation Drive O Disable
5 4 3-2	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0 Device 7-4	Select AutoCompensation Drive 0 Disable
5 4 3-2	Data / Strobe Relative Delay O Data / Strobe Relative Delay O Data delay = strobe delay + 150 psecdefault O Data delay = strobe delay O Data delay = strobe delay Data delay = strobe delay - 150 psec Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger No delay	7 6-4 3 2 1 0 Device 7-4	Select AutoCompensation Drive 0 Disable
5 4 3-2	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0 Device 7-4	Select AutoCompensation Drive 0 Disable

DRAM Above 4G Control

Frame Buffer Control

Device 0 Offset E0 - CPU Direct Access FB Base (00h) RW Device 0 Offset E4 - Low Top Address Low (00h) RW CPU Direct Access FB Base Address[27:21] . def=0 **Low Top Address Low.....** default = 0**DRAM Granularity** 0 **CPU Direct Access Frame Buffer** 3-0 0 16M Total DRAM less than 4G default Disabledefault 1 Enable 1 32M Total DRAM less than 8G 64M Total DRAM less than 16G 2 Device 0 Offset E1 - CPU Direct Access FB Size (00h)..RW 128M Total DRAM less than 32G Internal VGA 4 256M Total DRAM less than 64G 0 Disabledefault 5-7 -reserved-1 Enable Frame Buffer Size Device 0 Offset E5 – Low Top Address High (FFh) RW **Low Top Address High**.....default = FFh 000 Nonedefault 001 Reserved Device 0 Offset E6 – SMM / APIC Decoding (01h) RW 010 Reserved Reservedalways reads 0 011 8MB Reserved (Do Not Program) default = 0 100 16MB I/O APIC Decoding 101 32MB 0 FECxxxxx accesses go to PCI..... default 11x -reserved-1 FEC00000 to FEC7FFFF accesses go to PCI 3-0 CPU Direct Access FB Base Address[31:28] . def=0 FEC80000 to FECFFFFF accesses go to AGP Device 0 Offset E2 - VGA Arbitration Timer 1 (00h) ... RW MSI (Processor Message) Support VGA High Priority Timer (units of 16 MCLKs)def=0 Disable (master access to FEExxxxx will go to 3-0 VGA Timer (units of 16 MCLKs)...... default = 0 PCI) default Enable (master access to FEExxxxx will be Device 0 Offset E3 – VGA Arbitration Timer 2 (00h) ... RW passed to host side to do snoop) **Timer to Promote Graphics Priority** Top SMM (units of 16 MCLKs) default = 0 0 Disable.....default 1 Enable 3-2always reads 0 Reserved **Probing Signal Select.....** default = 0 1-0 High SMM Disable......default Enable 1 Compatible SMM Disable 0 Enable......default **BIOS Scratch**

Device 1 Register Descriptions

Device 1 PCI-to-PCI Bridge Header Registers	
All registers are located in PCI configuration space	e. They
should be programmed using PCI configuration med	hanism 1
through CF8 / CFC with bus number of 0 and functio	n number
equal to 0 and device number equal to one.	

<u>Device 1 Offset 1-0 - Vendor ID (1106h)RO</u>					
15-0	ID C	ode (reads 1106h to identify VIA Technologies)			
Device	Device 1 Offset 3-2 - Device ID (B091h)RO				
15-0	ID C	ode (reads B091h to identify the P4X266E PCI-			
		CI Bridge device)			
ъ.	1 0 00	A TALL COLLABORATION DAVI			
		et 5-4 – Command (0007h)RW			
15-10		- · · · · · · · · · · · · · · · · · · ·			
9		Back-to-Back Cycle EnableRO			
	0	Fast back-to-back transactions only allowed to			
		the same agentdefault			
	1	Fast back-to-back transactions allowed to			
0	CEDI	different agents			
8		R# EnableRO SERR# driver disableddefault			
	0				
	_	SERR# driver enabled R# is used to report ECC errors).			
7	(SEK	ress / Data SteppingRO			
,	Auui ()	Device never does steppingdefault			
	1	Device always does steppingdefault			
6		y Error ResponseRW			
U	0	Ignore parity errors & continuedefault			
	1	Take normal action on detected parity errors			
5	Rese				
4		ory Write and Invalidate Command RO			
-	0	Bus masters must use Mem Writedefault			
	1	Bus masters may generate Mem Write & Inval			
3	Speci	ial Cycle MonitoringRO			
	0	Does not monitor special cyclesdefault			
	1	Monitors special cycles			
2	Bus I	MasterRW			
	0	Never behaves as a bus master			
	1	Enable to operate as a bus master on the			
		primary interface on behalf of a master on the			
		secondary interfacedefault			
1	Mem	ory SpaceRW			
	0	Does not respond to memory space			
	1	Enable memory space accessdefault			
0	I/O S				
	0	Does not respond to I/O space			
	1	Enable I/O space accessdefault			

Device	1 Offset 7-6 - Status (Primary Bus) (0230h)RWC
15	Detected Parity Error always reads 0
14	Signaled System Error (SERR#)always reads 0
13	Signaled Master Abort
	0 No abort received
	1 Transaction aborted by the master with
	Master-Abort (except Special Cycles)
	write 1 to clear
12	Received Target Abort
	0 No abort receiveddefault
	1 Transaction aborted by the target with Target-
	Abort write 1 to clear
11	Signaled Target Abortalways reads 0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumalways reads 01
. 2	10 Slow
	11 Reserved
8	Data Parity Error Detected always reads 0
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capable always reads 1
4	Supports New Capability listalways reads 1
3-0	Reserved always reads 0
<u>Device</u>	1 Offset 8 - Revision ID (00h)RO
Device 7-0	
7-0	1 Offset 8 - Revision ID (00h)RO P4X266E Chip Revision Code (00=First Silicon)
7-0 Device	1 Offset 8 - Revision ID (00h)RO P4X266E Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO
7-0 Device This reg	1 Offset 8 - Revision ID (00h)RO P4X266E Chip Revision Code (00=First Silicon)
7-0 Device This reg	1 Offset 8 - Revision ID (00h)
7-0 Device This reclass Class C 7-0	1 Offset 8 - Revision ID (00h)
7-0 Device This reclass Class C 7-0	1 Offset 8 - Revision ID (00h)
7-0 Device This reclass C 7-0 Device 7-0	1 Offset 8 - Revision ID (00h)
7-0 Device This reclass C 7-0 Device 7-0	1 Offset 8 - Revision ID (00h)
7-0 Device This reclass C 7-0 Device 7-0 Device 7-0	1 Offset 8 - Revision ID (00h)
7-0 Device This reclass C 7-0 Device 7-0 Device 7-0 Device 7-0	1 Offset 8 - Revision ID (00h)
7-0 Device This reclass C 7-0 Device 7-0 Device 7-0	1 Offset 8 - Revision ID (00h)
7-0 Device This report Class C 7-0 Device 7-0 Device 7-0 Device 7-0	1 Offset 8 - Revision ID (00h)
7-0 Device This report Class C 7-0 Device 7-0 Device 7-0 Device 7-0	1 Offset 8 - Revision ID (00h)
7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0	1 Offset 8 - Revision ID (00h)
7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0	1 Offset 8 - Revision ID (00h)
7-0 Device 7-0	1 Offset 8 - Revision ID (00h)
7-0 Device This report Class C 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 This report Class C 7-0 Device 7-0 Device 7-0 Device 7-0	1 Offset 8 - Revision ID (00h)

Device 1 Offset 18 - Primary Bus Number (00h)RW	Device	1 Offset 3F-3E – PCI-to-PCI Bridge Control
7-0 Primary Bus Number default = 0	(0000h)	RW
This register is read write, but internally the chip always uses	15-4	Reserved always reads 0
bus 0 as the primary.	3	VGA-Present on AGP
		0 Forward VGA accesses to PCI Bus default
Device 1 Offset 19 - Secondary Bus Number (00h)RW		1 Forward VGA accesses to AGP Bus
7-0 Secondary Bus Number default = 0		Note: VGA addresses are memory A0000-BFFFFh
Note: AGP must use these bits to convert Type 1 to Type 0.		and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-
		3DFh (10-bit decode). "Mono" text mode uses
Device 1 Offset 1A - Subordinate Bus Number (00h) RW		B0000-B7FFFh and "Color" Text Mode uses B8000-
7-0 Primary Bus Number default = 0		BFFFFh. Graphics modes use Axxxxh. Mono VGA
Note: AGP must use these bits to decide if Type 1 to Type 1		uses I/O addresses 3Bx-3Cxh and Color VGA uses
command passing is allowed.		3Cx-3Dxh. If an MDA is present, a VGA will not
		use the 3Bxh I/O addresses and B0000-B7FFFh memory space; if not, the VGA will use those
Device 1 Offset 1B – Secondary Latency Timer (00h)RO		addresses to emulate MDA modes.
7-0 Reserved always reads 0	2	Block / Forward ISA I/O Addresses
Device 1 Offset 1C - I/O Base (f0h)RW		0 Forward all I/O accesses to the AGP bus if
		they are in the range defined by the I/O Base
7-4 I/O Base AD[15:12] default = 1111b 3-0 I/O Addressing Capability default = 0		and I/O Limit registers (device 1 offset 1C-
5-0 I/O Addressing Capability default – 0		(1D)
Device 1 Offset 1D - I/O Limit (00h)RW	40	default
7-4 I/O Limit AD[15:12] default = 0		1 Do not forward I/O accesses to the AGP bus
3-0 I/O Addressing Capability default = 0	X	that are in the 100-3FFh address range even if
		they are in the range defined by the I/O Base
Device 1 Offset 1F-1E - Secondary StatusRO		and I/O Limit registers.
15-0 Secondary Status	1-0	Reserved always reads 0
Rx44[4] = 0: these bits read back 0000h		
Rx44[4] = 1: these bits read back same as $Rx7-6$		
Device 1 Offset 21-20 - Memory Base (fff0h)RW		
15-4 Memory Base AD[31:20]default = FFFh		
3-0 Reservedalways reads 0		
	7	
Device 1 Offset 23-22 - Memory Limit (Inclusive) (0000h) RW	7	
15-4 Memory Limit AD[31:20] default = 0		
3-0 Reserved always reads 0		
Device 1 Offset 25-24 - Prefetchable Memory Base (fff0h) RW		
15-4 Prefetchable Memory Base AD[31:20]default = FFFh		
3-0 Reservedalways reads 0		
Device 1 Offset 27-26 - Prefetchable Memory Limit		
(0000h)RW		
15-4 Prefetchable Memory Limit AD[31:20]. default = 0		
3-0 Reserved always reads 0		
Device 1 Offset 34 - Capability Pointer (80h)RO		
Contains an offset from the start of configuration space.		
7-0 AGP Capability List Pointer always reads 80h		

Device 1 PCI-to-PCI Bridge Device-Specific Registers

AGP Bus Control

7	CPU-AGP Post Write	
	0 Disabledefa	ult
	1 Enable	
6	Reserved always read	s 0
5	CPU-AGP One Wait State Burst Write	
	0 Disabledefa	ult
	1 Enable	
4-3	Read Prefetch Control	
	00 Always prefetchdefa	ult
	x1 Never prefetch	
	10 Prefetch only for Enhance command	
2	MDA Present on AGP	
	0 Forward MDA accesses to AGPdefa	ult
	1 Forward MDA accesses to PCI	
	Note: Forward despite IO / Memory Base / Limit	
	Note: MDA (Monochrome Display Adapt	
	addresses are memory addresses B0000h-B7FF	
	and I/O addresses 3B4-3B5h, 3B8-3BAh, and 3B	
	(10-bit decode). 3BC-3BE are reserved for printers	
	Note: If Rx3E bit-3 is 0, this bit is a don't care (MI	ЭA
	accesses are forwarded to the PCI bus).	
1	AGP Master Read Caching	
	0 Disabledefa	ult
_	1 Enable	
0	AGP Delay Transaction	
	0 Disabledefa	.ult
	1 Enable	
Т	ble 9. VGA/MDA Memory/IO Redirection	

Table 9. VGA/MDA Memory/IO Redirection

3E[3]	40[2]	VGA	MDA	Axxxx,	<u>B0000</u>	3Cx,	
<u>VGA</u>	MDA ^e	<u>is</u>	is	B8xxx	-B7FFF	3Dx	<u>3Bx</u>
<u>Pres.</u>	Pres.	on	<u>on</u>	Access	Access	<u>I/O</u>	I/O
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

Dovice	1 Offset 41 CDII to ACD Flow Control 2 (60h) DW
	1 Offset 41 - CPU-to-AGP Flow Control 2 (08h) RW
7	Retry Status
	0 No retry occurred default
6	1 Retry Occurredwrite 1 to clear
O	Retry Timeout Action
	0 No action taken except to record status def1 Flush buffer for write or return all 1s for read
5-4	Retry Count
. .	00 Retry 2, backoff CPU default
	01 Retry 4, backoff CPU
	10 Retry 16, backoff CPU
	11 Retry 64, backoff CPU
3	CPU-to-AGP Bursting Timeout
	0 Disable
	1 Enabledefault
2	Reservedalways reads 0
1	CPU-to-PCI/AGP Cycles Invalidate PCI/AGP
	Buffered Read Data
	0 Disabledefault
K	1 Enable
0	Reserved always reads 0
	1 Offset 42 - AGP Master Control (00h)RW
7	Reserved (Must Be Programmed to 1) $def = 0$
	When this bit is set, the P4X266E will automatically
	resolve the problem of AGP master cycles being
	blocked by PCI Master Cycles.
6	AGP Master One Wait State Write
	0 Disabledefault
_	1 Enable
5	AGP Master One Wait State Read
	0 Disabledefault
	1 Enable
4	Break Consecutive PCI Master Accesses
	0 Disabledefault 1 Enable
•	
3	Reserved
2	Claim I/O R/W and Memory Read Cycles 0 Disabledefault
	1 Enable
1	
1	Claim Local APIC FEEx xxxx Cycles 0 Disabledefault
	1 Enable
0	
U	Snoop Write Enable 2T Rate, Support Host Side Snoop Cycles at 2T Rate
	0 Disabledefault
	1 Enable
	1 Eliauic

-4		to AGP Time slot	7			le to be QW Aligned
	0	Disable (no timer)		(if Rx45[6		
	1	16 GCLKs				default
	2	32 GCLKsdefau	lt		able	
			6			Transactions Into One Fast
	F	128 GCLKs		Write Bu	rst Transact	ion
-0	AGP	Master Time Slot			sable	
	0	Disable (no timer)				default
	1	16 GCLKs	5	Merge M	Iultiple CPU	J Write Cycles To Memory
	2	32 GCLKsdefau	lt	Offset 23	-20 Into Fas	t Write Burst Cycles
				(if Rx45[6	[6] = 0	
	F	128 GCLKs		0 Dis	able	
				1 En	able	default
			4	Merge	Multiple	CPU Write Cycles To
				Prefetcha	ble Memor	ry Offset 27-24 Into Fast
				Write Bu	rst Cycles (i	f Rx45[6] = 0)
				0 Dis	able	
				1 En	able	default
			3			always reads 0
			2	Fast Wri	te Burst 4T 1	Max (No Slave Flow Control)
			30	0 Dis	able	default
				1 En		
			1)	Fast Wri	te Fast Back	to Back
				0 Dis	sable	
						default
			0	Fast Wri	te Initial Blo	ck 1 Wait State
				0 Dis	sáble	default
				1 En:	able	
			Y			
			Rx45	CPU Write	CPU Write	
		· •	Bits	Address	Address	
		~ ~ ~	<u>7-4</u>	in Mem1	in Mem2	Fast Write Cycle Alignment
			x1xx	-	-	QW aligned, burstable
			0000	-	-	DW aligned, nonburstable
			x010	0	0	n/a
			0010	0	1	DW aligned, non-burstable

x010

x001

x001

0001

x011

x011

x011

1000

1010

1001

1

0

1

0

1

0

0

1

0

1

0

0

1

1

0

n/a

QW aligned, burstable

QW aligned, burstable

QW aligned, burstable

QW aligned, burstable

DW aligned, non-burstable

QW aligned, non-burstable

QW aligned, non-burstable

QW aligned, non-burstable

Device	1 Offset 47-46 – PCI-to-PCI Bridge Device IDRW	Device 1 Offset 84 – Power Mgmt C
15-0	PCI-to-PCI Bridge Device ID default = 0000	7-2 Reserved 1-0 Power State 00 D0
Device	1 Offset 80 – Capability ID (01h)RO	01 -reserved-
7-0	Capability IDalways reads 01h	10 -reserved- 11 D3 Hot
	1 Offset 81 – Next Pointer (00h)RO	Device 1 Offset 85 – Power Mgmt St
7-0	Next Pointer: Null always reads 00h	7-0 Power Mgmt Status
		Device 1 Offset 86 – P2P Br. Suppor
Device	1 Offset 82 – Power Mgmt Capabilities 1 (02h)RO	7-0 P2P Bridge Support Extension
7-0	Power Mgmt Capabilities always reads 02h	Device 1 Offset 87 – Power Manager
Device	1 Offset 83 – Power Mgmt Capabilities 2 (00h)RO	7-0 Power Management Data
7-0	Power Mgmt Capabilities always reads 00h	

Device	1 Offset 84 – Power Mgmt Ctrl/Status (00h) RW
7-2	Reserved always reads 0
1-0	Power State
	00 D0default
	01 -reserved-
	10 -reserved-
	11 D3 Hot
Device	1 Offset 85 – Power Mgmt Status (00h)RO
7-0	Power Mgmt Statusdefault = 00
Device	1 Offset 86 – P2P Br. Support Extensions (00h). RO
7-0	P2P Bridge Support Extensionsdefault = 00
Device	1 Offset 87 – Power Management Data (00h) RO
7-0	Power Management Data default = 00

FUNCTIONAL DESCRIPTION

Configuration Strapping

TBD

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Table 10. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
$T_{\rm C}$	Case operating temperature	0	85	оС	1
T_{S}	Storage temperature	-55	125	oC	1
$V_{\rm IN}$	Input voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2
V _{OUT}	Output voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2

Note 1. Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

Note 2. V_{RAIL} is defined as the V_{CC} level of the respective rail. The CPU interface can be 3.3V or 2.5V. Memory can be 3.3V only. PCI can be 3.3V or 5.0V. Video can be 3.3V or 5.0V. Flat Panel can be 3.3V only. AGP can be 1.5V (4x transfer mode) or 3.3V (2x transfer mode).

DC Characteristics

 $\overline{T_C} = 0-85^{\circ}C$, $V_{RAIL} = V_{CC} + -5\%$, $V_{CORE} = 2.5V + -5\%$, GND=0V

Table 11. DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$ m V_{IL}$	Input Low Voltage	-0.50	0.8	V	
V_{IH}	Input High Voltage	2.0	V _{CC} +0.5	V	
V_{OL}	Output Low Voltage	-	0.55	V	I _{OL} =4.0mA
V_{OH}	Output High Voltage	2.4	V-	V	I _{OH} =-1.0mA
${ m I}_{ m IL}$	Input Leakage Current	4	+/-10	uА	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate Leakage Current	- 7	+/-20	uA	$0.55 < V_{OUT} < V_{CC}$

Drive strength for selected output pins is programmable. See Device 0 Rx6D, B0[6], B1, B3, BE[7-6] and straps VAD4-5 for details.

Power Characteristics

 $T_C = 0-85^{\circ}C$, $V_{RAIL} = V_{CC}$ +/- 5%, $V_{CORE} = 2.5V$ +/- 5%, GND=0V

Table 12. Power Characteristics – Internal and Interface Digital Logic

Symbol	Parameter	Тур	Max	Unit	Condition
I_{TT}	Power Supply Current – VTT			mA	Full-On Operation
I _{TTPOS}	Power Supply Current – VTT			mA	POS
I _{TTSTR}	Power Supply Current – VTT			mA	STR
I_{TTSOF}	Power Supply Current – VTT			mA	Soft-Off
I_{CCG}	Power Supply Current – VCCAGP			mA	Full-On Operation
I _{CCGPOS}	Power Supply Current – VCCAGP			mA	POS
I_{CCGSTR}	Power Supply Current – VCCAGP			mA	STR
I_{CCGSOF}	Power Supply Current – VCCAGP			mA	Soft-Off
I_{CCV}	Power Supply Current – VCCVL		Y	mA	Full-On Operation
I _{CCVPOS}	Power Supply Current – VCCVL		7	mA	POS
I _{CCVSTR}	Power Supply Current – VCCVL			mA	STR
I_{CCVSOF}	Power Supply Current – VCCVL			mA	Soft-Off
I_{CCM}	Power Supply Current – VCCMEM		. 5	mA	Full-On Operation
I _{CCMPOS}	Power Supply Current – VCCMEM	K		mA	POS
I _{CCMSTR}	Power Supply Current – VCCMEM			mA	STR
I_{CCMSOF}	Power Supply Current – VCCMEM			mA	Soft-Off
I_{CC25}	Power Supply Current – VCC25			mA	Full-On Operation
I _{CC25POS}	Power Supply Current – VCC25	V		mA	POS
I _{CC25STR}	Power Supply Current – VCC25		,	mA	STR
I _{CC25SOF}	Power Supply Current – VCC25			mA	Soft-Off
I_{SUS25}	Power Supply Current – VSUS25			mA	Full-On Operation
I _{SUS25POS}	Power Supply Current – VSUS25			mA	POS
I _{SUS25STR}	Power Supply Current – VSUS25			mA	STR
I _{SUS25SOF}	Power Supply Current – VSUS25			mA	Soft-Off
I_{CCQQ}	Power Supply Current – VCCQQ			mA	Max operating frequency
P_{D}	Power Dissipation			W	Max operating frequency

Table 13. Power Characteristics – Analog and Reference Voltages

Symbol	Parameter	Тур	Max	Unit	Condition
I_{CCGTL}	Power Supply Current – GTLVREF			mA	Max operating frequency
I _{CCHAREF}	Power Supply Current – HAVREF			mA	Max operating frequency
I _{CCHDREF}	Power Supply Current – HDVREF			mA	Max operating frequency
I _{CCHCREF}	Power Supply Current – HCMPVREF			mA	Max operating frequency
I _{CCMREF}	Power Supply Current – MEMVREF			mA	Max operating frequency
I _{CCGREF}	Power Supply Current – AGPVREF			mA	Max operating frequency
I _{CCVLREF}	Power Supply Current – VLVREF			mA	Max operating frequency
I_{CCHCK}	Power Supply Current – VCCHCK			mA	Max operating frequency
I _{CCMCK}	Power Supply Current – VCCMCK		.0	mA	Max operating frequency
I _{CCMDLL}	Power Supply Current – VCCMDLL			mA	Max operating frequency

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 14. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
3.3V Power (I/O Pads, VCCQ for 2x transfer mode)	3.135	3.465	Volts
2.5V Power (Internal Logic)	2.375	2.625	Volts
1.5V Power (VCCQ for 4x transfer mode)	1.425	1.575	Volts
Case Temperature	0	85	оС

Drive strength for selected output pins is programmable and may effect AC timing specifications. See Device 0 Rx6D, B0[6], B1, B3, BE[7-6] and straps VAD4-5 for details.

MECHANICAL SPECIFICATIONS

Figure 4. Mechanical Specifications - 664-Pin Ball Grid Array Package