# Αλγόριθμοι και πολυπλοκότητα

2020-2021

Χρωματισμός γράφων

Παύλος Αλέξανδρος Λιάφος

15342

Τμήμα Πληροφορικής και Τηλεπικοινωνίων, Πανεπιστήμιο Ιωάννινων

#### Περιεχόμενο

- 1. Περίληψη
- 2. Εισαγωγή και περιγραφή προβλήματος
- 3. Προσέγγιση και επίλυση προβλήματος
- 4. Αποτελέσματα
- 5. Βιβλιογραφία

### 1. Περίληψη

Στην εργασία θα προσπαθήσουμε να επιλύσουμε ένα πρόβλημα χρωματισμού γραφήματος το οποίο είναι NP-Hard πρόβλημα συνδυαστικής βελτιστοποίησης. Στο πρόβλημα αυτό πρέπει να αναθέσουμε ένα χρώμα σε κάθε κορυφή ενός γραφήματος έτσι ώστε γειτονικές κορυφές να χρωματίζονται με διαφορετικό χρώμα παράλληλα θα πρέπει να χρησιμοποιείται ο ελάχιστος αριθμός χρωμάτων. Στην εργασία αυτή θα χρησιμοποιήσουμε τέσσερις αλγορίθμους για την επίλυση του προβλήματος.



#### 2. Εισαγωγή και περιγραφή του προβλήματος

Τα υπολογιστικά προβλήματα χωρίζονται σε υποκατηγορίες (κλάση P,NP,NP-Complete,NP-Hard). Τα προβλήματα κλάσης P περιλαμβάνουν όλα τα προβλήματα που μπορούν να λυθούν σε πολυωνυμικό χρόνο, συχνά συνδέουμε την κλάση P με αποδοτικότητα αυτό βασίζεται στο ότι ένας πολυωνυμικός αλγόριθμος για ένα πρόβλημα βασίζεται σε κάποια βαθύτερη ιδιότητα του προβλήματος και επιτρέπει την γρήγορη λύση του. Η κλάση πολυπλοκότητας NP αντιστοιχεί στα προβλήματα για τα οποία υπάρχει πολυωνυμικός μη ντετερμινιστικός αλγόριθμος, επίσης ένα πρόβλημα P ανήκει στην κλάση NP αν έχει την ιδιότητα της πολυωνυμικής επαληθευσιμότητας. Η κλάση NP-Complete είναι ένα υποσύνολο της κλάσης NP. Για να δείξουμε ότι ένα πρόβλημα είναι NP-Complete πρέπει να δείξουμε ότι ανήκει στην κλάση NP κατασκευάζοντας έναν πολυωνυμικό επαληθευτή και μετά να δείξουμε ότι κάθε πρόβλημα στην κλάση NP ανάγεται σε ένα πρόβλημα Π. Τα NP-Hard προβλήματα θα πρέπει να είναι τουλάχιστον τόσο δύσκολα όσο το πιο δύσκολο πρόβλημα NP. Ένα πρόβλημα είναι NP-Hard όταν για κάθε πρόβλημα Λ στην κλάση NP μπορεί να λυθεί σε πολυωνυμικό χρόνο.

Το πρόβλημα του χρωματισμού γραφήματος είναι ένα NP-hard πρόβλημα συνδυαστικής βελτιστοποίησης. Ο χρωματισμός γράφων είναι η διαδικασία αναθέσεις ενός χρώματος σε κάθε κορυφή ενός γραφήματος G έτσι ώστε καμία γειτονική κορυφή να έχει το ίδιο χρώμα. Ο στόχος είναι να ελαχιστοποιηθεί ο αριθμός χρωμάτων που θα χρησιμοποιήσουμε. Το πρόβλημα συναντάται σε μεγάλο αριθμό πρακτικών εφαρμογών όπως ο χρονοπρογραμματισμός εκπαιδευτικών ιδρυμάτων (educational timetabling), ο χρονοπρογραμματισμός αθλητικών γεγονότων (sports scheduling), η ανάθεση συχνοτήτων (frequency assignment), η ανάθεση καταχωρητών στους μεταγλωττιστές (compiler register allocation) και άλλα.

#### 3. Προσέγγιση και επίλυση προβλήματος

Τα δεδομένα που θα χρησιμοποιήσουμε σε αυτό το πρόβλημα είναι τα δεδομένα χρονοπρογραμματισμού εξετάσεων <u>Toronto</u>. Οι αλγόριθμοι που θα χρησιμοποιήσουμε είναι o first fit,DSATUR,RLF,backtracking DSATUR. Οι αλγόριθμοι έχουν υλοποιηθεί σε C# στο Visual Studio Code.

O first fit είναι greedy αλγόριθμος ο οποίος ελέγχει τις κορυφές μια μια και αναθέτει σε κάθε μια το μικρότερο νούμερο(χρώμα) που δεν χρησιμοποιείται από κάποια γειτονική κορυφή.

O DSATUR επίσης χρωματίζει τις κορυφές με την σειρά και στην συνέχεια ελέγχει ποιες από τις υπολειπόμενες κορυφές έχει τον μεγαλύτερο αριθμό χρωμάτων και δεν έχει χρωματιστεί και χρωματίζει αυτήν την κορυφή.

Ο RLF βάζει χρώμα αρχικά στην κορυφή με το μέγιστο βαθμό και στην συνέχεια στις κορυφές με μικρότερο βαθμό.

O backtracking DSATUR έχει έναν επιπλέον τελεστή για να βάζει δυναμικά στην σωστή θέση τις κορυφές τις οποίες ξανά επισκεπτόμαστε.

### 4. Αποτελέσματα

Τα στατιστικά στοιχεία αναγράφονται στο παρακάτω πίνακα :

| Πρόβλημα | Εξετάσεις | Φοιτητές | Εγγραφές | Κορυφές | Πυκνότητα | Min | Median | Max | Mean   | CV      |
|----------|-----------|----------|----------|---------|-----------|-----|--------|-----|--------|---------|
| Car-f-92 | 543       | 18419    | 55522    | 543     | 0.137     | 0   | 64     | 381 | 74.788 | 75.345  |
| Car-s-91 | 682       | 16926    | 56877    | 682     | 0.128     | 0   | 77     | 472 | 87.431 | 70.910  |
| Ear-f-83 | 190       | 1125     | 8109     | 190     | 0.265     | 4   | 45     | 134 | 50.452 | 56.113  |
| Hec-s-92 | 81        | 2823     | 10632    | 81      | 0.415     | 9   | 33     | 62  | 33.654 | 36.326  |
| Kfu-s-93 | 461       | 5349     | 25113    | 461     | 0.055     | 0   | 18     | 247 | 25.566 | 119.986 |
| Lse-f-91 | 381       | 2726     | 10918    | 381     | 0.062     | 0   | 16     | 134 | 23.784 | 93.155  |
| Pur-s-93 | 2419      | 30032    | 120681   | 2419    | 0.029     | 0   | 47     | 857 | 71.319 | 129.479 |
| Rye-s-93 | 486       | 11483    | 45051    | 486     | 0.075     | 0   | 24     | 274 | 36.510 | 111.760 |
| Sta-f-83 | 139       | 611      | 5751     | 139     | 0.142     | 7   | 16     | 61  | 19.870 | 67.364  |
| Tre-s-92 | 261       | 4362     | 14901    | 261     | 0.180     | 0   | 45     | 145 | 46.980 | 59.618  |
| Uta-s-92 | 622       | 21266    | 58979    | 622     | 0.125     | 1   | 65     | 303 | 77.971 | 73.671  |
| Ute-s-92 | 184       | 2750     | 11793    | 184     | 0.084     | 2   | 13     | 58  | 15.543 | 69.135  |
| Yor-f-83 | 181       | 941      | 6034     | 181     | 0.287     | 7   | 51     | 117 | 52     | 35.226  |

#### Τα αποτελέσματα του First-Fit είναι :

| Πρόβλημα | FF |  |  |
|----------|----|--|--|
| Car-f-92 | 44 |  |  |
| Car-s-91 | 48 |  |  |
| Ear-f-83 | 29 |  |  |
| Hec-s-92 | 22 |  |  |
| Kfu-s-93 | 25 |  |  |
| Lse-f-91 | 22 |  |  |
| Pur-s-93 | 54 |  |  |
| Rye-s-93 | 28 |  |  |
| Sta-f-83 | 13 |  |  |
| Tre-s-92 | 29 |  |  |
| Uta-s-92 | 43 |  |  |
| Ute-s-92 | 13 |  |  |
| Yor-f-83 | 27 |  |  |

## 5. Βιβλιογραφία

https://en.wikipedia.org/wiki/Greedy coloring

https://en.wikipedia.org/wiki/DSatur

https://nvlpubs.nist.gov/nistpubs/jres/84/jresv84n6p489 A1b.pdf

http://orca.cf.ac.uk/11330/1/LewisWide-RangingComputational2012.pdf

https://tel.archives-ouvertes.fr/tel-01867956/document

https://www.tutorialspoint.com/the-graph-coloring