Markov Chain Monte Carlo

Galin L. Jones

School of Statistics

University of Minnesota

Draft: February 19, 2023

Contents

1	Introduction	1
2	Markov Chains	2
	2.1 Stability	4
3	Metropolis-Hastings	5
E	xercises	5
\mathbf{A}	ppendix	6

1 Introduction

Later.

2 Markov Chains

Let (X, \mathcal{B}) be a measurable space. A sequence of X-valued random variables $\{X_1, X_2, X_3, \ldots\}$ is a Markov chain if for all g

$$E[g(X_{n+1}, X_{n+2}, \ldots) \mid X_n, X_{n-1}, \ldots, X_1] = E[g(X_{n+1}, X_{n+2}, \ldots) \mid X_n].$$

Then P is a Markov kernel if $P: \mathsf{X} \times \mathcal{B} \to \mathbb{R}$ satisfying (i) for each fixed $x \in \mathsf{X}$, $P(x, \cdot)$ is a probability measure and (ii) for each fixed $B \in \mathcal{B}$, $P(\cdot, B)$ is a measurable function.

When X is a discrete set a Markov kernel can be represented as a square matrix whose entries are nonnegative and whose rows sum to 1.

Example 2.1. Suppose

$$P = \begin{pmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{pmatrix}$$

Then P is a Markov matrix on two states $\{0,1\}$, say. The first row for example, is interpreted as the probability of moving in one step from state 0 to state 0 is 1/2 which is the same as the probability of moving in one step from state 0 to state 1.

Example 2.2. Let $X = \mathbb{Z}$ and let $0 < \theta < 1$. If $x \ge 1$, then a Markov kernel is defined by the matrix P with elements

$$P(x, x + 1) = P(-x, -x - 1) = \theta,$$
 $P(x, 0) = P(-x, 0) = 1 - \theta,$

and P(0,1) = P(1,0) = 1/2.

Often X will be uncountable and \mathcal{B} will be countably generated. If X is topological, then \mathcal{B} will be the Borel σ -algebra generated by X.

Example 2.3. Let X = (0,1) and consider the Markov chain that evolves as follows. Draw $U \sim \text{Uniform}(0,1)$. If $u \leq 0.5$, $X_{n+1} \sim \text{Uniform}(0,X_n)$, but if u > 0.5, $X_{n+1} \sim \text{Uniform}(X_n,1)$. Then if $X_n = x$ and $B \in \mathcal{B}$

$$P(x,B) = \int_{B} \left[\frac{1}{2} \frac{1}{x} I_{y}((0,x)) + \frac{1}{2} \frac{1}{1-x} I_{y}(x,1) \right] dy.$$

In Example 2.3, the integrand in the Markov kernel is a conditional density on X. This is a setting that will be encountered repeatedly throughout. If there is a conditional density $k(y \mid x)$ such that the Markov kernel satisfies for $B \in \mathcal{B}$

$$P(x,B) = \int_{B} k(y \mid x) dy$$

then say k is a Markov transition density.

Example 2.4. Suppose f(x, y) is a joint density with support \mathbb{R}^2 and conditional densities $f_{X|Y}(x \mid y)$ and $f_{Y|X}(y \mid x)$. Then

$$k(x', y' \mid x, y) = f_{X|Y}(x' \mid y) f_{Y|X}(y' \mid x')$$

is a Markov transition density. The Markov chain evolves from $(X_k = x, Y_k = y)$ to (X_{k+1}, Y_{k+1}) by drawing $X_{k+1} \sim F_{X|Y}(\cdot \mid y)$ followed by $Y_{k+1} \sim F_{Y|X}(\cdot \mid X_{k+1})$. This is a special case of the so-called two-variable Gibbs sampler.

Suppose λ is a positive measure on (X, \mathcal{B}) , define

$$\lambda P(B) = \int_{X} \lambda(\mathrm{d}x) P(x, B). \tag{1}$$

When λ is a probability measure, the encouraged interpretation is that $X_{n+1} \mid X_n \sim P(X_n, \cdot)$ and $X_n \sim \lambda$, the product $\lambda(\mathrm{d}x)P(x, \cdot)$ is the joint distribution of (X_n, X_{n+1}) and λP is the marginal distribution of X_{n+1} .

Since Markov kernels act to the left on measures (1),

$$P^{2}(x,B) = \int_{X} P(x, \mathrm{d}x_{k}) P(x_{k}, B).$$

Continuing in this fashion obtain for every $n \geq 2$

$$P^n(x,B)$$
 $\int_{\mathsf{X}} P(x,\mathrm{d}x_k) P(x_k,\mathrm{d}x_{k+1}) \cdots P(x_{k+n-2},B).$

More generally, the so-called Chapman-Kolmogorov equations hold for $n \geq m \geq 0$

$$P^{n}(x,B)\int_{\mathbf{X}}P^{m}(x,\mathrm{d}y)P^{n-m}(y,B).$$

If $\lambda = \lambda P$, then λ is invariant for P. Notice that if λ is invariant for P and $X_n \sim \lambda$, then $X_{n+1} \sim \lambda$. That is, the marginal distribution does not depend upon n in which case the Markov chain is stationary.

Example 2.5.

Example 2.6. Recall the Markov chain defined in Example (2.4)

One common way of establishing invariance of MCMC Markov chains is to verify a *detailed* balance condition; see Exercise 3.1. Detailed balance holds if

$$\lambda(\mathrm{d}x)P(x,\mathrm{d}y) = \lambda(\mathrm{d}y)P(y,\mathrm{d}x). \tag{2}$$

When λ is a probability measure, one interpretation is that the joint distribution of (X_k, X_{k+1}) is the same as the distribution of (X_{k+1}, X_k) so that this is also often called the *reversibility condition*. Another name often encountered is that P is λ -symmetric.

2.1 Stability

MCMC applications typically are constructed so that a specific probability distribution F is invariant. However, in applications where MCMC is required it is typically difficult to simulate from the invariant distribution. The most that can be hoped for is that the simulation will eventually produce a representative sample from F. This long-run behavior is in no way guaranteed without additional assumptions.

Example 2.7. Suppose F lives on $\{1,2\}$ with F(1)=1-F(2)=1/4 and

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Since the Markov chain moves deterministically between the two states, it will over represent state 1 and underrepresent state 2 no matter how many iterations there are.

3 Metropolis-Hastings

Exercises

Exercise 3.1. Prove that if Equation 2 holds, then λ is invariant for P.

Exercise 3.2. What is the invariant distribution of the Markov chain defined in Example 2.7?

Appendix

References