位运算

按位这算

·C有这些按位运算的运算符:

- ・ 接位的与
- 按位的或
- •~ 按位取反
- ^ 按位的异或
- ·<< 左移
- ·>> 右移

按位与&

- •如果 $(x)_{i} == 1 并且(y)_{i} == 1, 那么(x & y)_{i} = 1$
- •否则的话 $(x & y)_i = 0$
- •按位与常用于两种应用:
 - ·让某一位或某些位为0: x & 0xFE
 - ·取一个数中的一段: x & 0xFF

接位或

- •如果 $(x)_i == 1 或 (y)_i == 1, 那么 (x | y)_i = 1$
- •否则的话, (x y)_i == 0
- •按位或常用于两种应用:
 - ·使得一位或几个位为1: x | 0x01
 - •把两个数拼起来: OxOOFF | OxFF00

按位取反~

- $(\sim x)_i = 1 (x)_i$
- ·把1位变0,0位变1
- •想得到全部位为1的数: ~0
- •7的二进制是0111, x | 7使得低3位为1, 而
- •x & ~7, 就使得低3位为0

逻辑运算VS接位运算

- 对于逻辑运算,它只看到两个值: 0和1
- 可以认为逻辑运算相当于把所有非0值都变成1,然后 做按位运算
 - 5 & 4 —>4 而 5 & 4 —> 1 & 1 —> 1
 - 5 | 4 —> 5 而 5 | 4 —> 1 | 1 —> 1
 - ~4 —> 3面!4 —> !1 —> 0

按位异或个

- ·如果(x)_i == (y)_i, 那么(x ^ y)_i = 0
- ·否则的话, (x ^ y); == 1
- ·如果两个位相等,那么结果为0;不相等,结果为1
- ·如果x和y相等,那么x^y的结果为0
- •对一个变量用同一个值异或两次,等于什么也没做
 - •x ^ y ^ y —> x

左移 <<

- ·i << j
- ·i中所有的位向左移动j个位置,而右边填入0
- ·所有小于int的类型,移位以int的方式来做,结果是int
- ·x <<= 1 等价于x *= 2
- ·x <<= n 等价于 x *= 2ⁿ.

右移 >>

- •i >> j
- ·i中所有的位向右移j位
- ·所有小于int的类型,移位以int的方式来做,结果是int
- ·对于unsigned的类型,左边填入0
- ·对于signed的类型,左边填入原来的最高位(保持符号不变)
- 'x >>= 1 等价于 x /= 2
- ·x >>= n 等价于 x /= 2ⁿ.

no zuo no die

• 移位的位数不要用负数,这是没有定义的行为

```
• x << -2 //!!N0!!
```

输出一个数的二进制

```
#include <stdio.h>
int main(int argc, char const *argv[])
    int number;
    scanf("%d", &number);
    unsigned mask = 1u << 31;
    for ( ; mask ; mask >>=1 ) {
        printf("%d", number & mask?1:0);
    printf("\n");
    return 0;
```

MCU的SFR

Table 70: UART0 Line Control Register (U0LCR - 0xE000C00C)

U0LCR	Function	Description	
1:0	Word Length Select	00: 5 bit character length 01: 6 bit character length 10: 7 bit character length 11: 8 bit character length	0
2	Stop Bit Select	0: 1 stop bit 1: 2 stop bits (1.5 if U0LCR[1:0]=00)	0
3	Parity Enable	0: Disable parity generation and checking 1: Enable parity generation and checking	0
5:4	Parity Select	00: Odd parity 01: Even parity 10: Forced "1" stick parity 11: Forced "0" stick parity	0
6	Break Control	0: Disable break transmission 1: Enable break transmission. Output pin UART0 TxD is forced to logic 0 when U0LCR6 is active high.	0
7	Divisor Latch Access Bit	0: Disable access to Divisor Latches 1: Enable access to Divisor Latches	0

MCU的SFR

Table 70: UART0 Line Control Register (U0LCR - 0xE000C00C)

U0LCR	Function	Description		Reset Value	
1:0	Word Length Select	00: 5 bit character length01: 6 bit character length10: 7 bit character length11: 8 bit character length		0	
2	Stop Bit Select	0: 1 stop bit 1: 2 stop bits (1.5 if U0LCR[1:0]=00)	 const unsign 	ed in	t SBS = 1u << 2;
3	Parity Enable	0: Disable parity generation and checking 1: Enable parity generation and checking			+ DF 4 4.2.
5:4	Parity Select	00: Odd parity 01: Even parity 10: Forced "1" stick parity 11: Forced "0" stick parity	 Const unsign UOLCR = SE 	0	t PE = 1u << 3; E;
6	Break Control	O: Disable break transmission 1: Enable break transmission. Output pin UART0 TxD is forced to logic 0 when U0LC O: Disable access to Divisor Latches	ros is botion high. R &= ~	SBS;	
7	Divisor Latch Access Bit	0: Disable access to Divisor Latches 1: Enable access to Divisor Latches	• U0LCR &= ~	0	

位段

```
·把一个int的若干位组合成一个结构
struct {
  unsigned int leading: 3;
  unsigned int FLAG1: 1;
  unsigned int FLAG2: 1;
   int trailing: 11;
```

位段

- 可以直接用位段的成员名称来访问
 - 比移位、与、或还方便
- 编译器会安排其中的位的排列,不具有可移植性
- 当所需的位超过一个int时会采用多个int