

SENIOR CERTIFICATE EXAMINATION/ SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/WISKUNDE V2

2015

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 18 pages./ Hierdie memorandum bestaan uit 18 bladsye.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in ALL aspects of the marking memorandum.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die memorandum toegepas.

1.1.1	Mean/gemiddelde = $\frac{571}{15}$ = 38,07 years/jaar	$\sqrt{\frac{571}{15}}$ $\sqrt{\text{answer/}antw}$ (2)
1.1.2	Median/mediaan = 36 years/jaar	\checkmark answer/antw (1)
1.1.3	IQR/IKV = 66 - 5 = 61 years/jaar	$ \begin{array}{c} \checkmark Q_3 = 66 \\ \checkmark Q_1 = 5 \\ \checkmark \text{ answer/} antw \end{array} $ (3)
1.1.4	Standard deviation/standaardafwyking = 26,388 = 26,39 years/jaar	✓✓ answer/antw (2)
1.2	3 \$	✓ max & min ✓ median/ mediaan ✓ quartiles/ kwartiele
1.3	The data is skewed to the right/ <i>Die data is skeef na regs</i> OR/OF positively skewed/positiof skeef	✓ answer/antw
	positively skewed/positief skeef	(1) [12]

Number of Saturdays attended	12	11	10	10	9	9	7	6	5	4	12	11	6
Mark (as a %)	96	91	78	83	75	62	70	68	56	34	88	90	59

		T .
2.1	a = 22,26252159	√ 22,26
	b = 5,898100173	√5,90
	$\hat{y} = 5.90x + 22.26$	✓ equation/vgl
		(3)
2.2	r = 0.92 (0.9205276443)	✓✓ answer/antw
		(2)
2.3	There is a very strong relationship between the variables/	✓ very strong/
	Daar is 'n baie sterk verband tussen die veranderlikes.	baie sterk
		(1)
2.4	$\hat{y} \approx 69,447 = 69,45 \approx 69\%$ (accept 70%)	✓✓ answer/antw
	OR/OF	(2)
	$\hat{y} \approx 5.90(8) + 22.26$	✓ substitution/
		substitusie
	≈ 69,46 %	✓ answer/antw
	$\approx 69\%$ (accept 70%)	(2)
		[8]

3.1	$m_{RS} = \frac{2-1}{4-2}$ $= \frac{1}{2}$	✓ correct subst/ korrekte subst ✓ answer/antw (2)
3.2	PQ is $y = \frac{1}{2}x + 6$ $\therefore PQ \mid \mid RS \left(m_{PQ} = m_{RS} = \frac{1}{2} \right)$ But/maar PS QR $\therefore PQRS = \text{ parallelogram} \text{ (opp sides of quad are } \mid \mid / \text{ teenoorst } \text{ sye v vh} \mid \mid \text{)}$ $\therefore PQ^2 = RS^2 = (4 - 2)^2 + (2 - 1)^2$ $= 2^2 + 1^2$ $\therefore PQ = RS = \sqrt{5} = 2,24 \text{ (opp sides of } \text{m / teenoorst sye v } \text{m} \text{)}$	✓S ✓S/R ✓ subst of/subst v R(4; 2) and/en S(2; 1) ✓ answer/antw (4)

2.2	1.2	
3.3	$m_{\rm QR} = \frac{4-2}{0-4}$	
	$=-\frac{1}{2}$	$\checkmark m_{\mathrm{QR}}$
	2	QK
	$m_{\text{PT}} = m_{\text{QR}} = -\frac{1}{2} (\text{PS} \mid \text{QR})$	$\checkmark m_{\rm PT}$
	Equation of/Vgl van PT:	
	$y - y_1 = -\frac{1}{2}(x - x_1)$ $y = -\frac{1}{2}x + c$	
	$y-1 = -\frac{1}{2}(x-2)$ OR/OF $1 = -\frac{1}{2}(2) + c$	✓ subst of/subst v m and/en S(2; 1)
	$y - 1 = -\frac{1}{2}x + 1$ 2= c	
	$y = -\frac{1}{2}x + 2$ $y = -\frac{1}{2}x + 2$	✓ equation/vgl (4)
3.4	N(0; 2)	✓ coordinates (1)
3.5	$\tan T_2 = m_{PT} = -\frac{1}{2}$	$\checkmark \tan T_2 = -\frac{1}{2}$
	$T_2 = 153.4^{\circ}$	$\checkmark T_2 = 153,4^{\circ}$
	Equation of $/Vgl \ van \ NR: y = 2$	$\sqrt{y} = 2$
	$\therefore R\hat{N}S = N\hat{T}O (alt \angle s; NR \parallel OT)$	\sqrt{S}
	$\hat{RNS} = \hat{NTO} = 180^{\circ} - 153,4^{\circ}$ = 26,6°	✓ RÑS = 26,6°
	-7-	(5)
		[16]

4.1	A(-3;4)	$ \sqrt{x} = -3 $ $ \sqrt{y} = 4 $
		$\begin{array}{ c c c c c } \hline (2) & \hline \end{array}$
4.2	$r^2 = (3)^2 + (-4)^2$ OR $r^2 = (-3)^2 + (4)^2$	✓ substitution/
	$r^2 = 25$	$substitusie$ $\checkmark r^2 = 25$
	∴ Equation of the circle through A, B and C/ Vgl vd sirkel deur A, B	23
	$en C: x^2 + y^2 = 25$	✓answer/antw
4.2		(3)
4.3	r=5	$\sqrt{r} = 5$
	$\therefore AB = 10 \text{ units/}eenhede$	✓ answer/antw
		(2)
4.4	$AB \perp ED \ \mathbf{OR} \ A\hat{B}D = 90^{\circ} \ (radius \perp tangent/raaklyn)$	✓S/R
	$BD^2 = AD^2 - AB^2$ (Theorem of Pythagoras/st v Pythagoras)	
	$BD^2 = (\sqrt{125})^2 - (10)^2$	✓ subst into/in
	$BD^2 = 25$	Pyth th/stelling
	BD = 5 units/eenhede	✓ answer/antw
		(3)
4.5	area of/oppervlakte van $\triangle ABD = \frac{1}{2} base/basis \times \bot height/hoogte$	✓ formula/formule
	2	ı ,
	$=\frac{1}{2}(5)(10)$	✓ substitution/ substitusie
	2	✓ answer/antw
	= 25 square units/vk eenhede	$\sqrt{\text{answer/antw}}$

NSCNSS – Memorandum

$\frac{1}{5}$ $\frac{1}{5}$
5 /of $\frac{25}{}$
$\sqrt{of} \frac{25}{}$
* 4
/vgl
(0) [19]
,

5.1	$\cos \beta = -\frac{1}{2}$ and $\sin 180^{\circ} < \beta < 360^{\circ}$	sketch/skets:
	$\cos \beta = -\frac{1}{\sqrt{5}} \text{ and/en } 180^{\circ} < \beta < 360^{\circ}$	✓ correct quad/
	·	korrekte kwadr
	$(-1)^2 + y^2 = (\sqrt{5})^2$	$\checkmark x = -1$
		✓ subst into Pyth/
	$1+y^2=5$	subst in Pyth
	$y^2 = 4$ $\sqrt{5}$	
	y = -2	✓ value of/waarde
	•	van y
	(-1;y)	
	$\therefore \sin \beta = -\frac{2}{\sqrt{5}}$	✓ value of/waarde
	V3	<i>van</i> sin β
		(5)
5.2	$(-\tan x).(-\sin(90^\circ - x)$	$\sqrt{-\tan x}$
	${4\sin x}$	$\sqrt{-\sin(90^{\circ}-x)}$
	$(-\tan x).(-\cos x)$	$\sqrt{\sin x}$
	$4\sin x$	$\sqrt{-\cos x}$
		ain
	$=\frac{(-\frac{\sin x}{\cos x}).(-\cos x)}{\cos x}$	$\sqrt{\frac{\sin x}{}}$
	$=\frac{-\cos x}{4\sin x}$	$\cos x$
	$=\frac{1}{2}$	✓ answer/antw
	$=\frac{-}{4}$	(6)
5.3.1	sin A n	✓ answer/antw
0.5.1	$\tan A = \frac{\sin A}{\cos A} = \frac{p}{q}$	(1)
5.3.2	1	
3.3.2	$p^4 - q^4 = (p^2 + q^2)(p^2 - q^2)$	✓ factors/faktore
	$= (\sin^2 A + \cos^2 A)(\sin^2 A - \cos^2 A)$	
	$= (1)(\sin^2 A - \cos^2 A)$	√identity/identiteit
	$=-1(\cos^2 A - \sin^2 A)$	$\sqrt{-1}$ as CF/GF
		✓ answer/antw
	$=-\cos 2A$	(4)
5.4.1	$LHS/LK = \frac{\cos^2 \theta - \cos 2\theta}{\sin \theta - \cos \theta}$	✓ writing as single
	$LHS/LK = \frac{\cos^{2}\theta - \cos^{2}\theta}{\sin\theta \cdot \cos\theta}$	term/skryf as
		enkelterm
	$=\frac{\cos^2\theta-(\cos^2\theta-\sin^2\theta)}{\cos^2\theta-\sin^2\theta}$	✓ expansion/
	$\sin \theta . \cos \theta$	uitbreiding
	$=\frac{\cos^2\theta-\cos^2\theta+\sin^2\theta}{2}$	✓ simplify/vereenv
	$=\frac{\cos \theta \cos \theta + \sin \theta}{\sin \theta \cos \theta}$	· simping/vereenv
	$=\frac{\sin^2\theta}{\cos^2\theta}$	✓ simplify/vereenv
	$\sin \theta . \cos \theta$	
	$-\frac{\sin\theta}{1} - \tan\theta - RHS/RK$	✓ simplify/vereenv
	$= \frac{\sin \theta}{\cos \theta} = \tan \theta = RHS/RK$	(5)
	OR	

	LHS/LK = $\frac{\cos^2 \theta - \cos 2\theta}{\sin \theta \cdot \cos \theta}$ = $\frac{\cos^2 \theta - (2\cos^2 \theta - 1)}{\sin \theta \cdot \cos \theta}$ = $\frac{1 - \cos^2 \theta}{\sin \theta \cdot \cos \theta}$ = $\frac{\sin^2 \theta}{\sin^2 \theta}$	✓ writing as single term/skryf as enkelterm ✓ expansion/ uitbreiding ✓ simplify/vereenv
	$ \sin \theta \cdot \cos \theta \\ = \frac{\sin \theta}{} $	✓ identity/identiteit
	$\cos \theta$ $= \tan \theta = RHS/RK$	✓ simplify/vereenv (5)
5.4.2	Undefined when/Ongedefinieerd as: $\cos \theta = 0$, $\sin \theta = 0$ $\therefore \theta = 90^{\circ}$	✓✓ answer/antw (2)
5.5	2(2sin x. cos x) + 3 sin x = 0 4sin x. cos x + 3 sin x = 0 sin x (4cos x + 3) = 0 sin x = 0 or/of cos x = $-\frac{3}{4}$ $x = 0^{\circ} + k.360^{\circ}$ or $180^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$ OR/OF $x = k.180^{\circ}$; $k \in \mathbb{Z}$ or/of	✓ expansion/ uitbreiding ✓ factorise/ faktoriseer ✓ both equations/ beide vgls ✓ x = 0° + k.360° or 180° + k.360° OR/OF x = k.180°
	$x = 138,59^{\circ} + k.360^{\circ} \text{ or/of } 221,41^{\circ} + k.360^{\circ} \text{ ; } k \in \mathbb{Z}$ OR/OF $x = \pm 138,59^{\circ} + k.360^{\circ} \text{ ; } k \in \mathbb{Z}$	$ √138,59+k.360^{\circ} $ or $ 221,41^{\circ}+k.360 $ OR/OF $ ±138,59^{\circ}+k.360 $ $ √k∈Z$ (6) [29]

6.1	Period of/ <i>Periode van</i> $f = 120^{\circ}$	✓ 120°	
			(1)
6.2	b=3	$\checkmark b = 3$	
			(1)
6.3	$x = -45^{\circ} \text{ or}/of x = -22.5^{\circ} \text{ or}/of x = 67.5^{\circ}$	$\sqrt{x} = -45^{\circ}$	
		$\checkmark x = -22,5^{\circ}$	
		$\checkmark x = 67,5^{\circ}$	
			(3)
6.4	$x \in (-45^{\circ}; -22,5^{\circ}) \cup (67,5^{\circ}; 90^{\circ}]$	✓ critical values	
		✓ notation	
		✓ critical values	
		✓ notation	
	OR/OF		(4)
	$-45^{\circ} < x < -22.5^{\circ}$ or/of $67.5^{\circ} < x \le 90^{\circ}$	✓ kritieke waardes	
		√notasie	
		✓ kritieke waardes	
		√notasie	
			(4)
			[9]

7.1	$QR^2 = PQ^2 + RP^2 - 2.PQ.RP.\cos\hat{P}$	(acome at a vibat into
	$(\sqrt{3}x)^2 = x^2 + x^2 - 2.x.x.\cos\hat{P}$	✓ correct subst into cosine rule/korrek
	$\cos \hat{\mathbf{p}} - x^2 + x^2 - (\sqrt{3}x)^2$	subst in cos-reël
	$\frac{2x.x}{}$	√ cos P̂ as subj/
	$\cos \hat{P} = \frac{x^2 + x^2 - (\sqrt{3}x)^2}{2x \cdot x}$ $\cos \hat{P} = \frac{-x^2}{2x^2}$	onderw
	$\cos \hat{\mathbf{P}} = -\frac{1}{2}$	√simplify/vereenv
	$\hat{P} = 120^{\circ}$	✓ answer/antw
		(4)
7.2	$P\hat{R}Q = P\hat{Q}R = 30^{\circ} (\angle s \text{ opp equal sides}/\angle e \text{ teenoor gelyke sye})$	√S
	$\hat{QRS} = 150^{\circ}$ (\(\setmints \text{ on a str line} \) \(\setmints \text{ op reguitlyn} \)	✓ S
	Area of/Opp van \triangle QRS = $\frac{1}{2}$ (QR)(RS)(sin QRS)	
	$= \frac{1}{2}(\sqrt{3}x)(\frac{3}{2}x)(\sin 150^{\circ})$	✓ correct subst into area rule/korrek
	$= (\frac{3\sqrt{3}}{4}x^2)(\frac{1}{2})$	subst in opp-reël ✓ simplify/vereenv
	$=\frac{3\sqrt{3}}{8}x^2 = 0,65 x^2$	✓ answer/antw
		(5)
		[9]

8.1.1	$\hat{P}_2 = 65^{\circ}$ (\angle s opp equal	sides/∠e teenoor gelyke sye)	(2)
8.1.2	$\hat{D} = 40^{\circ}$ (ext \angle of \triangle CD) OR/O I	P/buite $\angle v \triangle CDP$) $\checkmark S \checkmark R$	
		e; sum of \angle s in Δ / vn; som v \angle e in Δ)	(2)
8.1.3	$\hat{A}_1 = 40^{\circ}$ (ext \angle of $\triangle CA$	$\Gamma/buite \angle v \triangle CAT$) $\sqrt{S} \sqrt{R}$	
		e; sum of \angle s in Δ / vn; som v \angle e in Δ)	(2)
8.2	$\hat{A}_1 = \hat{D} = 40^{\circ}$	√ _S	
	\therefore CA is a tangent to the circle (\angle between CA is 'n raaklyn aan die sirkel (\angle)	<i>'</i>	(2) [8]

9.1.1	ext∠ of cyclic quad/buite ∠ van koordevh	√R
		(1)
9.1.2	\angle at centre = 2 $\times \angle$ at circumference / midpts \angle = 2 \times omtreks \angle	✓ R
		(1)
9.2.1	$\hat{CDA} = \bar{E}_1 = x$ (corresp\(\angle s\)/ooreenk\(\angle e; EB \ DC)	✓ S ✓R
	$\therefore \hat{CDA} = \hat{C} = x$	
	$\therefore AC = AD \qquad \text{(sides opp equal } \angle s/sye \text{ teenoor gelyke } \angle e\text{)}$	✓ S ✓ (justification)
		(4)
9.2.2	$\hat{A} = 180^{\circ} - 2x$ (sum of \angle s in \triangle /som van \angle e in \triangle)	✓ S
	$\hat{O}_1 = 2x \ \mathbf{OR} \ \hat{A} + \hat{O}_1 = 180^\circ - 2x + 2x = 180^\circ$	✓ linking the 2 \angle s
	∴ ABOD is a cyclic quad/koordevh (opp∠s quad supp/	✓ R
	$teenoorst \angle e \ van \ vh \ suppl)$	(3)
	teenoorst Ze van in suppri	[9]

10.1	then the line is parallel to the third side /is die lyn ewewydi g aan	✓ S	
	die derde sy .	(1)	

10.2.1	AE _ 12 _ 3	✓ S
	$\frac{1}{AC} = \frac{1}{20} = \frac{1}{5}$	
	AD _ 3	
	$\frac{1}{AF} = \frac{1}{5}$	
	$\therefore \frac{AE}{AC} = \frac{AD}{AF}$	✓ S
	\therefore DE FC (line divides two sides of \triangle in prop/	✓ R
	lyn verdeel twee sye v Δ in dieselfde verh)	(3)
10.2.2	$\frac{BF}{BA} = \frac{8}{20}$ (prop theorem/eweredigh st; BC FE)	✓ S/R
	$\therefore BF = \frac{8}{20}(14)$	✓ substitute 14/ stel 14 in
	$\therefore BF = \frac{28}{5} \mathbf{OR}/\mathbf{OF} FB = 5\frac{3}{5} \mathbf{OR}/\mathbf{OF} FB = 5,6$	✓ answer/antw
		(3)
		[7]

OR/OF

Draw radii OA and OB. *Trek radii OA en OB*.

✓ construction/ konstruksie

Proof/Bewys:

$$\hat{OAB} + \hat{BAP} = 90^{\circ}$$
 (tangent/raaklyn \perp radius)

$$\therefore B\hat{A}P = 90^{\circ} - O\hat{A}B$$

$$\hat{OAB} = \hat{OBA}$$
 (\(\sqrt{s} \text{ opp equal sides} \) \(\sqrt{e} \text{ to gelyke sye} \)

$$A\hat{O}B = 180^{\circ} - 2O\hat{A}B$$
 (sum of \angle s in \triangle /som van \angle e in \triangle)

∴
$$A\hat{C}B = 90^{\circ} - O\hat{A}B$$
 (\angle at centre = 2 × \angle at circumference/
 $midpts \angle = 2 \times omtreks \angle$)

$$\therefore B\hat{A}P = A\hat{C}B$$

$$\checkmark$$
 S \checkmark R

$$\checkmark$$
 S

$$\checkmark$$
 S

(6)

11.2.1	$\hat{DCA} = 2x$	(EC bisector)	
	$\hat{\mathbf{P}} = \mathbf{x}$	$(\angle \text{ at centre} = 2 \times \angle \text{ at circumference})$	$\checkmark S \checkmark R$
		$midpts \angle = 2 \times omtreks \angle$	
	$\hat{\mathbf{A}}_1 = \hat{\mathbf{P}} = x$	(tangent-chord theorem/rkl-kd st)	$\checkmark S \checkmark R$
	In ΔBAD and	d ΔBCE:	
	$\hat{\mathbf{B}} = \hat{\mathbf{B}}$	(common/gemeen)	✓ S
	$\hat{A}_1 = \hat{C}_1$	(proven above)	✓ S(with justification)
	∴ΔBAD .	$\triangle BCE (\angle \angle \angle)$	✓ R
			(7)
		OR/OF	
	$\hat{DCA} = 2x$	(EC bisector)	
	$\hat{\mathbf{P}} = \mathbf{x}$	$(\angle \text{ at centre} = 2 \times \angle \text{ at circumference}/$ $midpts \angle = 2 \times omtreks \angle)$	✓ S ✓ R
	$\hat{\mathbf{A}}_1 = \hat{\mathbf{P}} = \mathbf{x}$	(tangent-chord theorem/rkl-kd st)	$\checkmark S \checkmark R$
	In $\triangle BAD$ and $\triangle BCE$:		
		(common/gemeen)	✓ S
		(proven above)	✓ S(with justification)
	$\hat{\mathbf{D}}_1 = \hat{\mathbf{E}}_1$	4	✓ S
	$ D_1 - D_1 $ $ \Delta BAD A$	ARCE	
			(7)

11.2.2(a)	BÂC = 90° (tangent/raakl \perp radius) ∴ BC ² = 8 ² +6 ² = 100 (Pythagoras theorem/stelling) BC = 10 AC = DC = 6 (radii) ∴ BD = 10 - 6 = 4 units/eenhede	✓ R ✓ substitution into Pyth theorem ✓ BC = 10 ✓ DC = 6 ✓ BD = 4 (5)
11.2.2(b)	$\frac{BA}{BC} = \frac{BD}{BE}$ $\therefore \frac{8}{10} = \frac{4}{BE}$ $\therefore BE = 5 \text{ units/eenhede}$	✓ S ✓ substitution/ substitusie ✓ BE = 5 (3)
11.2.2(c)	AE = 3 In \triangle ACE: $\tan x = \frac{3}{6}$ $\therefore x = 26,57^{\circ}$ OR/OF $\sin 2x = \frac{8}{10}$ $\therefore 2x = 53,1301$ $(2x < 90^{\circ})$ $\therefore x = 26,57^{\circ}$	✓ correct trig ratio/ korrekte trigvh ✓ correct trig eq/ korrekte trigvgl ✓ answer/antw (3) ✓ correct trig ratio/ korrekte trigvh ✓ correct trig eq/ korrekte trigvgl ✓ answer/antw (3) [24]

TOTAL/TOTAAL: 150