Übungsblatt 6 zur Homologischen Algebra I

- Garben organisieren lokale Daten. -

Aufgabe 1. Beispiele für Garben

Sei X ein topologischer Raum. Das fundamentale Beispiel für eine Garbe auf X ist durch die Zuordnung

a)
$$\mathcal{E}: U \longmapsto \{s: U \to E \mid s \text{ stetig mit } \pi \circ s = \mathrm{id}|_U\}$$

und den gewöhnlichen Einschränkungsabbildungen gegeben. Dabei ist $\pi: E \to X$ eine feste stetige Abbildung. Zeige, dass $\mathcal E$ tatsächlich eine Garbe ist.

Welche der folgenden Setzungen mit den gewöhnlichen Einschränkungsabbildungen führen zu Prägarben? Welche sogar zu Garben?

- b) \mathcal{C} : $U \longmapsto \{f : U \to \mathbb{R} \mid f \text{ stetig}\}$
- c) $C_{\text{const.}}: U \longmapsto \{f: U \to \mathbb{R} \mid f \text{ konstant}\}$
- d) $C_{l.c.}$: $U \longmapsto \{f : U \to \mathbb{R} \mid f \text{ lokal konstant}\}$
- e) C_0 : $U \longmapsto \{f : U \to \mathbb{R} \mid f \text{ hat kompakten Träger in } U\}$
- f) $C_{\text{bounded}}: U \longmapsto \{f: U \to \mathbb{R} \mid f \text{ beschränkt}\}$

Wie steht es um folgende Zuordnung, wobei M feste Menge und $x_0 \in X$ ein fester Punkt ist? Als Einschränkungsabbildungen sollen Identitäten oder geeignete konstante Abbildungen dienen (welche?). (Wie sieht eine intuitionistisch sinnvolle Definition aus?)

g)
$$\mathcal{F}$$
 : $U \longmapsto \begin{cases} M, & \text{falls } x_0 \in U, \\ \{\star\}, & \text{sonst.} \end{cases}$

Aufgabe 2. Der Totalraum einer (Prä-)Garbe

Sei \mathcal{F} eine Prägarbe auf einem topologischen Raum X. Der zugehörige Totalraum F ist als Menge die disjunkt-gemachte Vereinigung aller Halme \mathcal{F}_x , $x \in X$, und man topologisiert ihn über die gröbste Topologie, in der für alle lokalen Schnitte $s \in \Gamma(U, \mathcal{F})$, $U \subseteq X$ offen, die Teilmengen

$$F(s) := \{(x, s_x) \in F \mid x \in U\} \subseteq F$$

offen sind. Sei $\pi: F \to X$ die kanonische Projektionsabbildung mit $(x, u) \mapsto x$.

- a) Zeige, dass π stetig ist.
- b) Zeige weiter, dass π ein lokaler Homöomorphismus ist: Das heißt, dass für alle Punkte $z \in F$ eine offene Umgebung $V \subseteq F$ existiert, sodass die Bildmenge $\pi[V] \subseteq X$ offen und die eingeschränkte Abbildung $\pi|_V : V \to \pi[V]$ ein Homöomorphismus ist.
- c) Zeige, dass die Fasern von π , also die Mengen $\pi^{-1}[\{x\}]$ für $x \in X$, diskrete Räume sind: Das heißt, dass alle Teilmengen bezüglich der Teilraumtopologie offen sind.
- d) Wieso ist im Allgemeinen der Totalraum der Garbe \mathcal{E} aus Aufgabe 1a) nicht homöomorph zum dortigen Raum E?

Aufgabe 3. Exakte Sequenzen von Garben

Eine Sequenz $\mathcal{F} \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} \mathcal{H}$ von Garben abelscher Gruppen auf einem topologischen Raum X heißt genau dann exakt (bei \mathcal{G}), wenn für jede offene Teilmenge $U \subseteq X$ folgende Bedingungen erfüllt sind:

- "im \subseteq ker". Für jeden Schnitt $s \in \Gamma(U, \mathcal{F})$ gilt $\beta_U(\alpha_U(s)) = 0 \in \Gamma(U, \mathcal{H})$.
- "im \supseteq ker". Für jeden Schnitt $t \in \Gamma(U, \mathcal{G})$ mit $\beta_U(t) = 0 \in \Gamma(U, \mathcal{H})$ existieren eine offene Überdeckung $U = \bigcup_{i \in I} U_i$ und Schnitte $s_i \in \Gamma(U_i, \mathcal{F})$ mit $\alpha_{U_i}(s_i) = t|_{U_i}$ für alle $i \in I$. Man sagt auch: Der Schnitt t soll lokal Urbilder besitzen.

Der Begriff der Exaktheit einer Sequenz von *Prä*garben abelscher Gruppen wurde anders definiert. Beide Definitionen fallen nicht vom Himmel, in ihrem jeweiligen Kontext (Garben bzw. Prägarben) sind sie jeweils genau die richtigen. Das werden wir noch verstehen.

- a) Zeige, dass eine Sequenz von Garben abelscher Gruppen genau dann exakt ist, wenn sie halmweise exakt ist, wenn also die induzierten Sequenzen $\mathcal{F}_x \to \mathcal{G}_x \to \mathcal{H}_x$ von abelschen Gruppen für alle $x \in X$ exakt sind.
- b) Sei $\mathcal{F} \to \mathcal{G} \to \mathcal{H}$ eine exakte Sequenz von $Pr\ddot{a}$ garben. Seien \mathcal{F} , \mathcal{G} und \mathcal{H} aber trotzdem sogar Garben. Zeige, dass die Sequenz dann auch als Sequenz von Garben exakt ist.
- c) Sei $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ eine kurze exakte Sequenz von $Pr\ddot{a}$ garben auf einem topologischen Raum. Seien \mathcal{F} und \mathcal{H} sogar Garben. Zeige, dass \mathcal{G} ebenfalls eine Garbe ist.
- d) Schnitte nehmen ist linksexakt. Sei $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ eine kurze exakte Sequenz von Garben abelscher Gruppen. Sei $U \subseteq X$ eine offene Teilmenge. Zeige, dass die induzierte Sequenz

$$0 \longrightarrow \Gamma(U, \mathcal{F}) \longrightarrow \Gamma(U, \mathcal{G}) \longrightarrow \Gamma(U, \mathcal{H}) \longrightarrow 0$$

noch exakt ist. Wieso geht die Surjektivität hinten verloren? (Wenn dem nicht so wäre, gäbe es übrigens das gesamte Teilgebiet der *Garbenkohomologie* nicht.)

Aufgabe 4. Inneres Hom

Seien \mathcal{F} und \mathcal{G} Prägarben auf einem topologischen Raum X. Dann definieren wir eine weitere Prägarbe durch die Setzung

$$\Gamma(U, \mathcal{H}om(\mathcal{F}, \mathcal{G})) := \{\alpha : \mathcal{F}|_U \to \mathcal{G}|_U \text{ Morphismus von Prägarben auf } U\}$$

und die offensichtlichen Einschränkungsabbildungen (welche?).

Zeige: Ist \mathcal{G} sogar eine Garbe, so ist $\mathcal{H}om(\mathcal{F},\mathcal{G})$ ebenfalls eine Garbe.

 $\textit{Bemerkung:} \text{ Im Allgemeinen ist die kanonische Abbildung } \mathcal{H} \text{om}(\mathcal{F},\mathcal{G})_x \rightarrow \text{Hom}(\mathcal{F}_x,\mathcal{G}_x) \text{ weder injektiv noch surjektiv.}$

Aufgabe 5. Welke Garben

Eine Garbe \mathcal{F} auf einem topologischen Raum X heißt genau dann welk (engl. flabby, franz. flasque), wenn die Einschränkungsabbildungen $\Gamma(X,\mathcal{F}) \to \Gamma(U,\mathcal{F})$ für alle offenen Teilmengen $U \subseteq X$ surjektiv sind.

- a) Zeige durch ein explizites Beispiel, dass die Garbe \mathcal{C} der stetigen Funktionen auf \mathbb{R} aus Aufgabe 1b) nicht welk ist.
- b) Sei $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ eine kurze exakte Sequenz von Garben abelscher Gruppen auf einem topologischen Raum X. Sei \mathcal{F} welk. Sei $U \subseteq X$ eine offene Teilmenge. Zeige, dass dann auch die induzierte Sequenz

$$0 \longrightarrow \Gamma(U, \mathcal{F}) \longrightarrow \Gamma(U, \mathcal{G}) \longrightarrow \Gamma(U, \mathcal{H}) \longrightarrow 0$$

exakt ist. Wegen dieser besonderen Eigenschaft sind welke Garben für die homologische Algebra wichtig.

Tipp: Opfere eine Katze, um geeignete maximale Fortsetzungen zu konstruieren.

- c) Sei $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ eine kurze exakte Sequenz von Garben abelscher Gruppen auf einem topologischen Raum. Seien \mathcal{F} und \mathcal{G} welk. Zeige, dass auch \mathcal{H} welk ist.
- d) Sei $\pi: E \to X$ eine stetige Surjektion. Zeige, dass die Garbe $\widetilde{\mathcal{E}}$ aller Schnitte von $E \xrightarrow{\pi} X$, also die Garbe mit $\Gamma(U, \widetilde{\mathcal{E}}) = \{s: U \to E \mid \pi \circ s = \mathrm{id}|_U\}$ und den gewöhnlichen Einschränkungsabbildungen, welk ist.
- e) Zeige, dass man jede Garbe auf einem topologischen Raum in eine geeignete welke Garbe einbetten kann.

Aufgabe 6. Weiche Garben

Eine Garbe \mathcal{F} auf einem topologischen Raum X heißt genau dann weich (engl. soft, franz. mou), wenn die Abbildungen $\Gamma(X,\mathcal{F}) \to \Gamma(A,\mathcal{F})$ für alle abgeschlossenen Teilmengen $A \subseteq X$ surjektiv sind. Zur Erinnerung: $\Gamma(A,\mathcal{F}) := \operatorname{colim}_{U \subseteq X \text{ offen}, A \subseteq U} \Gamma(U,\mathcal{F})$.

Weiche Garben werden vor allem auf parakompakten Hausdorffräumen studiert. Ein topologischer Raum ist genau dann parakompakt, wenn jede offene Überdeckung $X = \bigcup_i U_i$ eine lokal endliche Verfeinerung $X = \bigcup_j V_j$ besitzt: Jede der offenen Teilmengen V_j soll in einer der Mengen U_i enthalten sein, und jeder Punkt von X soll in nur endlich vielen Mengen V_j liegen. Parakompakte Hausdorffräume haben ferner folgende besondere Eigenschaft: Zu jeder offenen Überdeckung $X = \bigcup_i U_i$ existieren offene Mengen V_i mit $\overline{V_i} \subseteq U_i$, welche immer noch X überdecken.

- a) Zeige, dass die Garbe \mathcal{C} der stetigen Funktionen auf \mathbb{R} aus Aufgabe 1b) weich ist.
- b) Zeige, dass welke Garben stets weich sind.
- c) Sei X ein parakompakter Hausdorffraum. Zeige die analoge Behauptung wie bei Aufgabe 5b), nur mit " \mathcal{F} weich" statt " \mathcal{F} welk" und mit " $A\subseteq X$ abgeschlossen" statt " $U\subseteq X$ offen".
- d) Sei X ein parakompakter Hausdorffraum. Zeige die analoge Behauptung wie bei Aufgabe 5c), nur mit "weich" statt "welk".

Aufgabe 7. Feine Garben

Eine Garbe \mathcal{F} abelscher Gruppen auf einem topologischen Raum X heißt genau dann fein (engl. fine, franz. fin), wenn für je zwei disjunkte abgeschlosse Mengen $A_1, A_2 \subseteq X$ ein Morphismus $\alpha : \mathcal{F} \to \mathcal{F}$ von Garben abelscher Gruppen existiert, sodass α auf einer offenen Umgebung von A_1 Null und auf einer offenen Umgebung von A_2 die Identität ist.

(Das bedeutet, dass es offene Mengen $U_1 \supseteq A_1$ und $U_2 \supseteq A_2$ gibt, sodass α_V für alle offenen Teilmengen $V \subseteq U_1$ die Nullabbildung und sodass α_V für alle offenen Teilmengen $V \subseteq U_2$ die Identitätsabbildung ist.)

- a) Zeige, dass feine Garben auf parakompakten Hausdorffräumen stets weich sind.
- b) Zeige, dass eine Garbe \mathcal{F} abelscher Gruppen auf einem parakompakten Hausdorffraum genau dann fein ist, wenn die Hom-Garbe $\mathcal{H}om(\mathcal{F},\mathcal{F})$ welk ist.

Tipp: Parakompakte Hausdorffräume sind normal, das heißt je zwei disjunkte abgeschlossene Teilmengen besitzen offene disjunkte Umgebungen.

Aufgabe 8. Affine Schemata II

Sei A ein kommutativer Ring (mit Eins). Wir definieren auf den standardoffenen Teilmengen $D(f) \subseteq \operatorname{Spec} A$ die Zuordnung

$$\mathcal{O}: D(f) \longmapsto A[S_f^{-1}],$$

wobei S_f das multiplikative System $S_f = \{g \in A \mid f \in \sqrt{(g)}\}$ ist. Die Elemente des lokalisierten Rings $A[S_f^{-1}]$ sind formale Brüche $\frac{g}{s}$ mit $g \in A$ und $s \in S_f$; zwei solche Brüche $\frac{g}{s}$, $\frac{h}{t}$ gelten genau dann als gleich, wenn ush = utg für ein $u \in S_f$.

- a) Zeige, dass die Setzung wohldefiniert ist, dass also die Menge S_f nur von D(f), nicht aber von der konkreten Repräsentantenwahl f abhängt.
- b) Überlege, wie man sinnvolle Restriktionsabbildungen $\mathcal{O}(D(f)) \to \mathcal{O}(D(g))$ für $D(g) \subseteq D(f)$ definieren kann. Zeige mit deiner Definition, dass \mathcal{O} zu einer Prägarbe wird welche aber nicht allen offenen Teilmengen, sondern nur den standardoffenen Teilmengen Schnittmengen zuweist.
- c) Zeige, dass die so definierte "Prägarbe" bezüglich offener Überdeckungen der Form $D(f) = \bigcup_i D(g_i)$ die Garbenaxiome erfüllt.

Tipp: Der Spezialfall f=1 ist in der technischen Ausführung etwas einfacher und immer noch interessant genug. Es gilt $D(f)=\bigcup_i D(g_i)$ genau dann, wenn $\sqrt{(f)}=\sqrt{(g_i)_i}$. Ist $1=\sum_i s_i$ eine Zerlegung der Eins in einem kommutativen Ring, so gibt es für jede natürliche Zahl n auch eine Zerlegung der Form $1=\sum_i a_i s_i^n$ mit gewissen Ringelementen a_i .

d) Wir wollen nun eine Fortsetzung von \mathcal{O} zu einer auf ganz Spec A definierten Garbe $\mathcal{O}_{\operatorname{Spec} A}$ konstruieren. Da sich jede beliebige offene Teilmenge $U \subseteq \operatorname{Spec} A$ als Vereinigungen $U = \bigcup_i D(f_i)$ von standardoffenen Teilmengen schreiben lässt, können wir

$$\mathcal{O}_{\operatorname{Spec} A}: U \longmapsto \{(s_i)_i \mid s_i \in \mathcal{O}(D(f_i)),$$

$$s_i|_{D(f_if_j)} = s_j|_{D(f_if_j)} \in \mathcal{O}(D(f_if_j)) \text{ für alle } i,j\}$$

definieren. Überlege, wie diese Setzung zu einer wohldefinierten Prägarbe wird. Weise dann die Garbenaxiome nach.

e) Zeige, dass für die Halme an Punkten $\mathfrak{p} \in \operatorname{Spec} A$ gilt:

$$(\mathcal{O}_{\operatorname{Spec} A})_{\mathfrak{p}} \cong A_{\mathfrak{p}} := A[(A \setminus \mathfrak{p})^{-1}].$$

Die Garbe $\mathcal{O}_{\operatorname{Spec} A}$ ist sogar eine Ringgarbe. Ihre Schnitte stellt man sich als "gute" Funktionen auf Spec A vor – so, wie man etwa bei glatten Mannigfaltigkeiten von glatten Funktionen spricht. Einem A-Modul M kann man über eine Konstruktion, die der obigen sehr ähnelt, dann eine $\mathcal{O}_{\operatorname{Spec} A}$ -Modulgarbe M^{\sim} zuordnen (im Spezialfall M=A erhält man $\mathcal{O}_{\operatorname{Spec} A}$ zurück). Auf diese Weise erhält der Ausspruch "sei M ein A-Modul" geometrische Bedeutung. Diese Begriffe bilden die Grundlage moderner algebraischer Geometrie.