```
Assembly Code Example<sup>(1)</sup>
   WDT_off:
     ; Turn off global interrupt
     ; Reset Watchdog Timer
     wdr
     ; Clear WDRF in MCUSR
     in
            r16, MCUSR
     andi r16, (0xff & (0<<WDRF))</pre>
           MCUSR, r16
     ; Write logical one to WDCE and WDE
     ; Keep old prescaler setting to prevent unintentional time-out
     lds r16, WDTCSR
            r16, (1<<WDCE) | (1<<WDE)
     sts WDTCSR, r16
     ; Turn off WDT
           r16, (0<<WDE)
     ldi
     sts WDTCSR, r16
     ; Turn on global interrupt
     sei
     ret
C Code Example<sup>(1)</sup>
   void WDT_off(void)
     __disable_interrupt();
     __watchdog_reset();
     /* Clear WDRF in MCUSR */
     MCUSR &= \sim (1 << WDRF);
```

Note: 1. See "Code Examples" on page 7.

__enable_interrupt();

/* Turn off WDT */
WDTCSR = 0x00;

Note: If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out condition, the device will be reset and the Watchdog Timer will stay enabled. If the code is not set up to handle the Watchdog, this might lead to an eternal loop of time-out resets. To avoid this situation, the application software should always clear the Watchdog System Reset Flag (WDRF) and the WDE control bit in the initialisation routine, even if the Watchdog is not in use.

/* Keep old prescaler setting to prevent unintentional time-out */

/* Write logical one to WDCE and WDE */

WDTCSR = (1 << WDCE) | (1 << WDE);