## Dynamic programming

Chapter 15 from textbook

#### Algorithmic Paradigms

- Divide-and-conquer. Break up a problem into sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.
  - **Example:** Merge sort, Binary search
- Greedy. Build up a solution incrementally, myopically optimizing some local criterion.
  - Example: Shortest path using Dijkstra's algorithm, MST using Prim's/Kruskal's algorithm
- Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.
  - Example: Rod cutting, Matrix multiplication, Largest common subsequence, Edit distance, All pair shortest path

#### **Dynamic Programming History**

- Bellman. Pioneered the systematic study of dynamic programming in the 1950s.
- Etymology.
  - Dynamic programming = planning over time.
  - Secretary of Defense was hostile to mathematical research.
  - Bellman sought an impressive name to avoid confrontation.
    - "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

## Dynamic programming

- In Divide-and-conquer approach
  - We partition the problem into "independent" subproblems
  - Solve the subproblems recursively
  - Then combine the solutions to solve the original problem
- Dynamic programming is applicable when
  - We have "overlapping" subproblems
  - Naïve recursive method would solve these overlapping subproblems many many times resulting in exponential (in problem size) running time
  - Dynamic programming avoids this by solving subproblems in a particular order from smaller to larger subproblems such that each subproblem is solved exactly once and saves this in a table for later reuse

#### Introduction

- Dynamic Programming(DP) applies to optimization problems
  - Such problems can have many possible solutions
  - Each solution has a value and we wish to find a solution having optimal (minimum or maximum) value
  - We call such a solution as an optimal solution as oposed to the optimal solution, since there may be sevaral solutions that achieve the optimal value.
- When we develop dynamic programming algorithm we follow a sequence of four steps
  - Characterize the structure of an optimal solution
  - Recursively define the value of an optimal solution
  - Compute the value of an optimal solution in a bottom-up fashion
  - Construct an optimal solution from computed information

#### **Dynamic Programming Applications**

- Areas.
  - Bioinformatics.
  - Control theory.
  - Information theory.
  - Operations research.
  - Computer science: theory, graphics, AI, systems, ....
- Some famous dynamic programming algorithms.
  - Viterbi for hidden Markov models.
  - Unix diff for comparing two files.
  - Smith-Waterman for sequence alignment.
  - Ford-Marshall algorithm for all pair shortest path
  - Cocke-Kasami-Younger for parsing context free grammars.

#### Problem #1: Fibonacci numbers

- Let's consider calculating the Fibonacci numbers:
  - 0,1,1,2,3,5,8,13,21,44,65,...
  - Any number is sum of the previous two numbers
- A naïve recursive algorithm will look something like this:

#### Recursive Algorithm:

```
Fib(n)
{
    if (n == 0)
        return 0;
    if (n == 1)
        return 1;
    Return Fib(n-1)+Fib(n-2)
}
```

What is the problem here?

#### Problem #1: Fibonacci numbers

- Same subproblems are solved repeatedly many times resulting in exponential running time
- T(n)=?



#### Problem #1: Fibonacci numbers

- Better solution is obtained by
  - Observing optimal substructure F(n)=F(n-1)+F(n-2)
  - And solving subproblems in particular order smaller subproblems first and reusing these results
- To compute F(n), maintain an array M[0,1,...,n]
  - Set M[0]=0, M[1]=1
  - For i=2 to nM[n]=M[n-1]+M[n-2]
- Note that this is not an optimization problem but illustrates the main idea

• Suppose a company buys long rods and sells by cutting them into small pieces for a profit as per the following table

- Question: We are given a rod of length *n*, and want to maximize revenue, by cutting up the rod into pieces and selling each of the pieces.
- **Example:** we are given a 4 inches rod. What is the best solution to cut up?

• **Example:** we are given a 4 inches rod. Best solution to cut up? We'll first list the solutions:

- 1.) Cut into 2 pieces of length 2:  $p_2 + p_2 = 5 + 5 = 10$
- 2.) Cut into 4 pieces of length 1:  $p_1 + p_1 + p_1 + p_1 = 1 + 1 + 1 + 1 = 4$
- **3-4.**) Cut into 2 pieces of length 1 and 3 (3 and 1):  $p_3 + p_1 = 8 + 1 = 9$
- **5.**) Keep length 4:  $p_4 = 9$
- **6-8.**) Cut into 3 pieces, length 1, 1 and 2 (and all the different orders)  $p_1 + p_1 + p_2 = 7$   $p_1 + p_2 + p_1 = 7$   $p_2 + p_1 + p_1 = 7$
- **Total:** 8 cases for n = 4 (=  $2^{n-1}$ ). We can slightly reduce by always requiring cuts in non-decreasing order. But still a lot!

- **Note:** We've computed a brute force solution; all possibilities for this simple small example. But we want more optimal solution!
  - One possible solution is as follows:

recurse on further i n-i

- What are we doing?
  - Cut rod into length *i* and *n-i*
  - Only remainder *n-i* can be further cut (recursed)
- We need to define:
  - a.) Maximum revenue for rod of size n:  $r_n$  (that is the solution we want to find).
  - b.) **Revenue (price)** for single rod of length  $i: p_i$

- **Note:** We've computed a brute force solution; all possibilities for this simple small example. But we want more optimal solution!
  - One possible solution is as follows:

recurse on further i n-i

- Revenue:  $p_i + r_{n-i}$  can be seen by recursing on n-i
- There many possible choices for i

$$r_n = \max \left\{ \begin{array}{c} p_1 + r_{n-1} \\ p_1 + r_{n-2} \\ \cdots \\ p_n + r_0 \end{array} \right\}$$

• Consider naïve recursive (top-down approach)

```
CUT-Rod (p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-Rod}(p, n - i))

6 return q
```

- Problem? Slow runtime (it's essential brute force)!
- Why? Cut-rod calls itself repeatedly with the same parameter values (tree):
  - Node label: size of the subproblem called on
  - Can be seen by eye that many subproblems are called repeatedly (subproblem overlap)
  - Number of nodes exponential in n i.e.,  $(2^n)$ . therefore exponential number of calls.

- We have seen, recursive solution is inefficient, since it repeatedly calculates a solution of the same subproblem (overlapping subproblem).
- Instead, solve each subproblem only once AND save its solution. Next time we encounter the subproblem look it up in a hash table or an array
  - This is called recursive **top-down solution with memoization**
- We will also talk about a second solution where we save the solution of subproblems of increasing size (i.e. in order) in an array.
  - Each time we will fall back on solutions that we obtained in previous steps and stored in an array (**bottom-up solution**).

- Recursive top-down solution: Cut-Rod with Memoization
  - Step 1: Initialization

```
MEMOIZED-CUT-ROD (p, n)

1 let r[0..n] be a new array

2 for i = 0 to n

3 r[i] = -\infty

4 return MEMOIZED-CUT-ROD-AUX (p, n, r)

Creates array for holding memoized results, and initialized to minus infinity. Then calls the main auxiliary function.
```

• Step 2: The main auxiliary function, which goes through the lengths, computes answers to subproblems and memoizes if subproblem not yet encountered:

```
MEMOIZED-CUT-ROD-AUX(p, n, r)

1 if r[n] \ge 0

2 return r[n]

3 if n == 0

4 q = 0

5 else q = -\infty

6 for i = 1 to n

7 q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))

8 r[n] = q

9 return q
```

- Running time of Recursive top-down solution with Memoization
  - Running time is  $\theta(n^2)$ 
    - Recursive call to a previously solved problem runs immediately.
    - Memoized-Cut-Rod solves each subproblem just once
    - It solves subproblem of size 0,1,2,...,n
    - To solve a subproblem of size n, line 6-7 iterates n times
    - Thus, total number of iterations of this for loop, over all recursive calls of Memoized-Cut-Rod forms an arithmetic series giving a total  $\theta(n^2)$  iterations

- Bottom-up solution is even simpler
- Each time we reuse previously computed values stored in an array

```
BOTTOM-UP-CUT-ROD (p, n)

1 let r[0..n] be a new array

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 q = \max(q, p[i] + r[j - i])

7 r[j] = q

8 return r[n]

Compute maximum revenue if it hasn't already been computed.
```

• Running time is  $\theta(n^2)$ 

#### Problem #3: Matrix-Chain Multiplication

**Problem**: given a sequence  $\langle A_1, A_2, ..., A_n \rangle$ , compute the product:

$$A_1 \cdot A_2 \cdots A_n$$

• Matrix compatibility:

$$\begin{aligned} C &= A \cdot B & C &= A_1 \cdot A_2 \cdots A_i \cdot A_{i+1} \cdots A_n \\ &\operatorname{col}_A = \operatorname{row}_B & \operatorname{col}_i = \operatorname{row}_{i+1} \\ &\operatorname{row}_C = \operatorname{row}_A & \operatorname{row}_C = \operatorname{row}_{A1} \\ &\operatorname{col}_C = \operatorname{col}_B & \operatorname{col}_C = \operatorname{col}_{An} \end{aligned}$$

#### MATRIX-MULTIPLY(A, B)

```
if columns[A] \neq rows[B]
   then error "incompatible dimensions"
   else for i \leftarrow 1 to rows[A]
                                                             rows[A] · cols[A] · cols[B]
              do for j \leftarrow 1 to columns[B]
                                                                  multiplications
                         do C[i, j] = 0
                                for k \leftarrow 1 to columns[A]
                                       do C[i, j] \leftarrow C[i, j] + A[i, k] B[k, j]
                                                                                   cols[B
                                                  cols[B]
 rows[A]
                                                              rows[A]
```

## Matrix-Chain Multiplication

• In what order should we multiply the matrices?

$$A_1 \cdot A_2 \cdots A_n$$

 Parenthesize the product to get the order in which matrices are multiplied

E.g.: 
$$A_1 \cdot A_2 \cdot A_3 = ((A_1 \cdot A_2) \cdot A_3)$$
  
=  $(A_1 \cdot (A_2 \cdot A_3))$ 

- Which one of these orderings should we choose?
  - The order in which we multiply the matrices has a significant impact on the cost of evaluating the product

#### Example

$$A_1 \cdot A_2 \cdot A_3$$

- $A_1$ : 10 x 100
- A<sub>2</sub>: 100 x 5
- $A_3$ : 5 x 50

1. 
$$((A_1 \cdot A_2) \cdot A_3)$$
:  $A_1 \cdot A_2 = 10 \times 100 \times 5 = 5,000 \quad (10 \times 5)$   
 $((A_1 \cdot A_2) \cdot A_3) = 10 \times 5 \times 50 = 2,500$ 

Total: 7,500 scalar multiplications

2. 
$$(A_1 \cdot (A_2 \cdot A_3))$$
:  $A_2 \cdot A_3 = 100 \text{ x 5 x 50} = 25,000 (100 \text{ x 50})$   
 $(A_1 \cdot (A_2 \cdot A_3)) = 10 \text{ x 100 x 50} = 50,000$ 

Total: 75,000 scalar multiplications

one order of magnitude difference!!

## Matrix-Chain Multiplication: Problem Statement

• Given a chain of matrices  $\langle A_1, A_2, ..., A_n \rangle$ , where  $A_i$  has dimensions  $\mathbf{p}_{i-1} \times \mathbf{p}_i$ , fully parenthesize the product  $A_1 \cdot A_2 \cdots A_n$  in a way that minimizes the number of scalar multiplications.

$$A_1 \cdot A_2 \cdot A_i \cdot A_{i+1} \cdot A_n$$
 $p_0 \times p_1 \cdot p_1 \times p_2 \cdot p_{i-1} \times p_i \cdot p_i \times p_{i+1} \cdot p_{n-1} \times p_n$ 

# What is the number of possible parenthesizations?

- Exhaustively checking all possible parenthesizations is not efficient!
- It can be shown that the number of parenthesizations grows as  $\Omega(4^n/n^{3/2})$

(see page 333 in your textbook)

#### The Structure of an Optimal Parenthesization

• Notation:

$$A_{i...j} = A_i A_{i+1} \cdots A_j, i \leq j$$

• Suppose that an optimal parenthesization of  $A_{i...j}$  splits the product between  $A_k$  and  $A_{k+1}$ , where  $i \le k < j$ 

$$A_{i...j} = A_i A_{i+1} \cdots A_j$$

$$= A_i A_{i+1} \cdots A_k A_{k+1} \cdots A_j$$

$$= A_{i...k} A_{k+1...j}$$

#### **Optimal Substructure**

$$A_{i...j} = A_{i...k} A_{k+1...j}$$

- The parenthesization of the "prefix"  $A_{i...k}$  must be an optimal parentesization
- If there were a less costly way to parenthesize  $A_{i...k}$ , we could substitute that one in the parenthesization of  $A_{i...j}$  and produce a parenthesization with a lower cost than the optimum  $\Rightarrow$  contradiction!
- An optimal solution to an instance of the matrix-chain multiplication contains within it optimal solutions to subproblems

#### 2. A Recursive Solution

- Subproblem: determine the minimum cost of parenthesizing  $A_{i...j} = A_i A_{i+1} \cdots A_j$  for  $1 \le i \le j \le n$
- Let m[i, j] = the minimum number of multiplications needed to compute  $A_{i...i}$ 
  - full problem  $(A_{1..n})$ : m[1, n]
  - $i = j: A_{i...i} = A_i \Rightarrow m[i, i] = 0 \text{ for } i=1, 2, ..., n$

#### 2. A Recursive Solution

Consider the subproblem of parenthesizing

$$A_{i...j} = A_i A_{i+1} ... A_j \qquad \text{for } 1 \le i \le j \le n$$

$$= A_{i...k} A_{k+1...j} \qquad \text{for } i \le k < j$$

$$m[i, k] m[k+1,j]$$

Assume that the optimal parenthesization splits the

product 
$$A_i$$
  $A_{i+1}$  ···  $A_j$  at  $k$   $(i \le k < j)$ 

$$m[i, j] = m[i, k] + m[k+1, j] + p_{i-1}p_kp_j$$

min # of multiplications to compute  $A_{i...k}$ 

min # of multiplications to compute  $A_{k+1...i}$ 

# of multiplications to compute  $A_{i...k}A_{k...i}$ 

#### 2. A Recursive Solution (cont.)

$$m[i, j] = m[i, k] + m[k+1, j] + p_{i-1}p_kp_j$$

- We do not know the value of k
  - There are j i possible values for k: k = i, i+1, ..., j-1
- Minimizing the cost of parenthesizing the product  $A_i A_{i+1} \cdots A_j$  becomes:

## 3. Computing the Optimal Costs

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

- Computing the optimal solution recursively takes exponential time!  $\frac{1}{2} = \frac{3}{3}$
- How many subproblems?  $\Rightarrow \Theta(n^2)$ 
  - Parenthesize  $A_{i...j}$ for  $1 \le i \le j \le n$
  - One problem for each choice of i and j



## 3. Computing the Optimal Costs (cont.)

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

- How do we fill in the tables m[1..n, 1..n]?
  - Determine which entries of the table are used in computing m[i, j]

$$A_{i...j} = A_{i...k} A_{k+1...j}$$

- Subproblems' size is one less than the original size
- <u>Idea:</u> fill in **m** such that it corresponds to solving problems of increasing length

## 3. Computing the Optimal Costs (cont.)

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

- Length = 1: i = j, i = 1, 2, ..., n
  - m[1, n] gives the optimal solution to the problem

Compute rows from bottom to top and from left to right



#### Example: min $\{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\}$

$$m[2, 5] = min \begin{cases} m[2, 2] + m[3, 5] + p_1p_2p_5 & k = 2 \\ m[2, 3] + m[4, 5] + p_1p_3p_5 & k = 3 \\ m[2, 4] + m[5, 5] + p_1p_4p_5 & k = 4 \end{cases}$$



 Values m[i, j] depend only on values that have been previously computed

#### Example min $\{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\}$

225000

0

<sup>2</sup> 7500

5000

Compute 
$$A_1 \cdot A_2 \cdot A_3$$

• 
$$A_1$$
: 10 x 100  $(p_0 \times p_1)$ 

• 
$$A_2$$
: 100 x 5  $(p_1 x p_2)$ 

• 
$$A_3$$
: 5 x 50  $(p_2 x p_3)$ 

$$m[i, i] = 0$$
 for  $i = 1, 2, 3$ 

$$m[1, 2] = m[1, 1] + m[2, 2] + p_0 p_1 p_2$$
  $(A_1 A_2)$   
= 0 + 0 + 10 \*100\* 5 = 5,000

$$m[2, 3] = m[2, 2] + m[3, 3] + p_1p_2p_3$$
  $(A_2A_3)$   
= 0 + 0 + 100 \* 5 \* 50 = 25,000

$$m[1, 3] = \min \begin{cases} m[1, 1] + m[2, 3] + p_0 p_1 p_3 = 75,000 & (A_1(A_2A_3)) \\ m[1, 2] + m[3, 3] + p_0 p_2 p_3 = 7,500 & ((A_1A_2)A_3) \end{cases}$$

## Matrix-Chain-Order(p)

```
MATRIX-CHAIN-ORDER (p)
  1 \quad n \leftarrow length[p] - 1
  2 for i \leftarrow 1 to n
                                                                         O(N^3)
            do m[i,i] \leftarrow 0
 4 for l \leftarrow 2 to n \Rightarrow l is the chain length.
            do for i \leftarrow 1 to n-l+1
                     do j \leftarrow i + l - 1
 7
8
                         m[i, j] \leftarrow \infty
                         for k \leftarrow i to j-1
                              do q \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_kp_j
10
                                  if q < m[i, j]
11
                                     then m[i, j] \leftarrow q
12
                                           s[i,j] \leftarrow k
13
     return m and s
```

#### 4. Construct the Optimal Solution

- In a similar matrix s we keep the optimal values of k
- s[i, j] = a value of ksuch that an optimal parenthesization of  $A_{i...j}$ splits the product between  $A_k$  and  $A_{k+1}$



## 4. Construct the Optimal Solution

- s[1, n] is associated with the entire product  $A_{1..n}$ 
  - The final matrix multiplication will be split at k = s[1, n]
    A<sub>1..n</sub> = A<sub>1..s[1, n]</sub> · A<sub>s[1, n]+1..n</sub>
  - For each subproduct recursively find the corresponding value of k that results in an optimal parenthesization



## 4. Construct the Optimal Solution

• s[i, j] = value of k such that the optimal parenthesization of  $A_i$   $A_{i+1}$  ···  $A_j$  splits the product between  $A_k$  and  $A_{k+1}$ 

|   | 1               | 2 | 3 | 4 | 5 | 6 |
|---|-----------------|---|---|---|---|---|
| 6 | (3)             | 3 | 3 | 5 | 5 | - |
| 5 | 3               | 3 | 3 | 4 | - |   |
| 4 | 3               | 3 | 3 |   |   |   |
| 3 | $(\overline{})$ | 2 | ı |   |   |   |
| 2 | 1               |   |   |   |   |   |
| 1 | -               |   |   |   |   |   |

• 
$$s[1, 6] = 3 \Rightarrow A_{1..6} = A_{1..3} A_{4..6}$$

• 
$$s[1, 3] = 1 \Rightarrow A_{1..3} = A_{1..1} A_{2..3}$$

• 
$$s[4, 6] = 5 \Rightarrow A_{4..6} = A_{4..5} A_{6..6}$$

### 4. Construct the Optimal Solution (cont.)

```
PRINT-OPT-PARENS(s, i, j)

if i = j

then print "A";

else print "("

PRINT-OPT-PARENS(s, i, s[i, j])

PRINT-OPT-PARENS(s, s[i, j] + 1, j)

print ")"
```

|   | 1 | 2 | 3 | 4 | 5 | 6 | _ |
|---|---|---|---|---|---|---|---|
| 6 | က | 3 | 3 | 5 | 5 | ı |   |
| 5 | 3 | 3 | 3 | 4 | - |   |   |
| 4 | 3 | 3 | 3 | - |   |   |   |
| 3 | 1 | 2 | - |   |   |   | J |
| 2 | 1 | - |   |   |   |   |   |
| 1 | - |   |   |   |   |   |   |
|   |   |   |   | • |   |   |   |

# Example: $A_1 \cdot \cdot \cdot A_6$ (( $A_1$ ( $A_2$ $A_3$ ))(( $A_4$ $A_5$ ) $A_6$ ))

```
5
                                                                                                 6
                                                                       3
                                                                                    5
PRINT-OPT-PARENS(s, i, j)
                                      s[1..6, 1..6]
if i = j
                                                           5
                                                                       3
                                                                                    4
  then print "A";
                                                                             3
                                                                       3
  else print "("
        PRINT-OPT-PARENS(s, i, s[i, j])
                                                           3
        PRINT-OPT-PARENS(s, s[i, j] + 1, j)
       print ")"
 P-O-P(s, 1, 6) s[1, 6] = 3
 i = 1, j = 6 "(" P-O-P (s, 1, 3) s[1, 3] = 1
                      i = 1, j = 3 "(" P-O-P(s, 1, 1) \Rightarrow "A<sub>1</sub>"
                                            P-O-P(s, 2, 3) <math>s[2, 3] = 2
                                            i = 2, j = 3 "(" P-O-P (s, 2, 2) \Rightarrow "A<sub>2</sub>"
                                                                       P-O-P (s, 3, 3) \Rightarrow "A<sub>3</sub>"
```

#### Memoization

- Top-down approach with the efficiency of typical dynamic programming approach
- Maintaining an entry in a table for the solution to each subproblem
  - memoize the inefficient recursive algorithm
- When a subproblem is first encountered its solution is computed and stored in that table
- Subsequent "calls" to the subproblem simply look up that value

#### Memoized Matrix-Chain

#### Alg.: MEMOIZED-MATRIX-CHAIN(p)

- 1.  $n \leftarrow length[p] 1$
- 2. for  $i \leftarrow 1$  to n
- 3. do for  $j \leftarrow i$  to n
- 4. do m[i, j]  $\leftarrow \infty$

5. return LOOKUP-CHAIN(p, 1, n)  $\leftarrow$  Top-down approach

Initialize the *m* table with large values that indicate whether the values of *m[i, j]* have been computed

#### Memoized Matrix-Chain

```
Alg.: LOOKUP-CHAIN(p, i, j)
                                                                 Running time is O(n^3)
      if m[i, j] < \infty
          then return m[i, j]
      if i = j
3.
        then m[i, j] \leftarrow 0
        else for k \leftarrow i to j - 1
5.
                      do q \leftarrow LOOKUP-CHAIN(p, i, k) +
6.
                               LOOKUP-CHAIN(p, k+1, j) + p_{i-1}p_kp_i
                          if q < m[i, j]
7.
                               then m[i, j] \leftarrow q
8.
      return m[i, j]
9.
```

## Longest Common Subsequence

Given two sequences

$$X = \langle x_1, x_2, ..., x_m \rangle$$
$$Y = \langle y_1, y_2, ..., y_n \rangle$$

find a maximum length common subsequence (LCS) of X and Y

• *E.g.*:

$$X = \langle A, B, C, B, D, A, B \rangle$$

- Subsequences of X:
  - A subset of elements in the sequence taken in order  $\langle A, B, D \rangle$ ,  $\langle B, C, D, B \rangle$ , etc.

## Example

$$X = \langle A, B, C, B, D, A, B \rangle$$
  $X = \langle A, B, C, B, D, A, B \rangle$   $Y = \langle B, D, C, A, B, A \rangle$   $Y = \langle B, D, C, A, B, A \rangle$ 

\langle B, C, B, A \rangle and \langle B, D, A, B \rangle are longest common subsequences of X and Y (length = 4)

• (B, C, A), however is not a LCS of X and Y

#### **Brute-Force Solution**

- For every subsequence of X, check whether it's a subsequence of Y
- There are 2<sup>m</sup> subsequences of X to check
- Each subsequence takes  $\Theta(n)$  time to check
  - scan Y for first letter, from there scan for second, and so on
- Running time:  $\Theta(n2^m)$

## Making the choice

$$X = \langle A, B, D, E \rangle$$
  
 $Y = \langle Z, B, E \rangle$ 

• Choice: include one element into the common sequence (E) and solve the resulting subproblem

$$X = \langle A, B, D, G \rangle$$
  
 $Y = \langle Z, B, D \rangle$ 

 Choice: exclude an element from a string and solve the resulting subproblem

#### **Notations**

• Given a sequence  $X = \langle x_1, x_2, ..., x_m \rangle$  we define the ith prefix of X, for i = 0, 1, 2, ..., m

$$X_i = \langle x_1, x_2, ..., x_i \rangle$$

• c[i, j] = the length of a LCS of the sequences  $X_i = \langle x_1, x_2, ..., x_i \rangle$  and  $Y_i = \langle y_1, y_2, ..., y_i \rangle$ 

#### A Recursive Solution

Case 1: 
$$x_i = y_j$$
  
e.g.:  $X_i = \langle A, B, D, E \rangle$   
 $Y_j = \langle Z, B, E \rangle$   
 $c[i, j] = c[i - 1, j - 1] + 1$ 

- Append  $x_i = y_j$  to the LCS of  $X_{i-1}$  and  $Y_{j-1}$
- Must find a LCS of  $X_{i-1}$  and  $Y_{j-1} \Rightarrow$  optimal solution to a problem includes optimal solutions to subproblems

#### A Recursive Solution

Case 2: 
$$x_i \neq y_j$$

e.g.:  $X_i = \langle A, B, D, G \rangle$ 
 $Y_j = \langle Z, B, D \rangle$ 
 $c[i, j] = max \{ c[i - 1, j], c[i, j-1] \}$ 

- Must solve two problems
  - find a LCS of  $X_{i-1}$  and  $Y_j$ :  $X_{i-1} = \langle A, B, D \rangle$  and  $Y_j = \langle Z, B, D \rangle$
  - find a LCS of  $X_i$  and  $Y_{j-1}$ :  $X_i = \langle A, B, D, G \rangle$  and  $Y_j = \langle Z, B \rangle$
- Optimal solution to a problem includes optimal solutions to subproblems

## Overlapping Subproblems

- To find a LCS of X and Y
  - We may need to find the LCS between  $\boldsymbol{X}$  and  $\boldsymbol{Y}_{n\text{-}1}$  and that of  $\boldsymbol{X}_{m\text{-}1}$  and  $\boldsymbol{Y}$
  - Both the above subproblems has the subproblem of finding the LCS of  $X_{m-1}$  and  $Y_{n-1}$
- Subproblems share subsubproblems

### 3. Computing the Length of the LCS



#### Additional Information



#### A matrix b[i, j]:

- For a subproblem [i, j] it tells us what choice was made to obtain the optimal value
- If  $x_i = y_j$ b[i, j] = "
- Else, if  $c[i 1, j] \ge c[i, j-1]$  $b[i, j] = " \uparrow "$

else

$$b[i, j] = " \leftarrow "$$

## LCS-LENGTH(X, Y, m, n)

```
for i \leftarrow 1 to m
                                           The length of the LCS if one of the sequences
          do c[i, 0] \leftarrow 0
                                          is empty is zero
     for j \leftarrow 0 to n
      \mathbf{do} \ \mathbf{c}[0, \mathbf{j}] \leftarrow \mathbf{0}
     for i \leftarrow 1 to m
           do for j \leftarrow 1 to n
                                                                                 Case 1: x_i = y_j
                     do if x_i = y_i
7.
                             then c[i, j] \leftarrow c[i-1, j-1] + 1

b[i, j] \leftarrow "
8.
9.
                             else if c[i-1,j] \ge c[i,j-1]
10.
                                        then c[i, j] \leftarrow c[i - 1, j]
11.
                                                                                 Case 2: x_i \neq y_i
                                                b[i,j] \leftarrow "\uparrow"
12.
                                        else c[i, j] \leftarrow c[i, j - 1]
13.
                                               b[i, j] \leftarrow \text{``} \leftarrow \text{"Running time: } \Theta(mn)
14.
15. return c and b
```

## Example

|                            |                         |            |       | 0     |          |              | _          | if         | i = 0                | orj              | = 0 |
|----------------------------|-------------------------|------------|-------|-------|----------|--------------|------------|------------|----------------------|------------------|-----|
| •                          | $B, C, B, D, A \rangle$ | c[i, j]    | 7 = { | c[i-1 | ', j-1]  | + 1          |            |            | $x_i = x_i$          |                  |     |
| $Y = \langle B, L \rangle$ | (A, B, A)               |            |       | max   | (c[i, j  | [-1], c      | [i-1, ]    | j]) it     | $X_i \neq \emptyset$ | $\mathbf{y}_{i}$ |     |
|                            |                         |            |       | 0     | 1        | 2            | 3          | 4          | 5                    | <i>6</i>         |     |
| If $x_i =$                 | $y_i$                   |            |       | $y_j$ | В        | D            | С          | Α          | В                    | A                |     |
|                            | , j] = "\"              | 0          | $X_i$ | 0     | 0        | 0            | 0          | 0          | 0                    | 0                |     |
| Else i                     | f                       | 1          | A     | 0     | ↑<br>O   | $ \uparrow $ | <i>↑ 0</i> | 1          | ←1                   | 1                |     |
| c[i                        | $-1, j] \geq c[i, j]$   | -1] 2      | В     | 0     | 1        | <i>←1</i>    | ←1         | <i>î</i>   | 2                    | ←2               |     |
|                            | b[i, j] = " ↑           | <i>"</i> 3 | C     | 0     | <b>1</b> | <b>1</b>     | ~ 2        | ←2         | <b>1 2</b>           | <b>1 2</b>       |     |
| else                       |                         | 4          | В     | 0     | 1        | <i>1</i>     | <b>1</b> 2 | <b>1</b> 2 | 3                    | <i>←3</i>        |     |
|                            | <i>b[i, j] = "←</i>     | <i>"</i> 5 | D     | 0     | <b>1</b> | ~ 2          | 12         | <b>1</b> 2 | <i>† 3</i>           | <b>†</b> 3       |     |
|                            |                         | 6          | A     | 0     | 1        | 12           | 12         | 3          | <i>3</i>             | 4                |     |
|                            |                         | 7          | В     | 0     | 1        | <u> </u>     | 12         | <i>† 3</i> | 4                    | <b>4</b>         |     |

## 4. Constructing a LCS

- Start at b[m, n] and follow the arrows
- When we encounter a "\" in  $b[i, j] \Rightarrow x_i = y_j$  is an element of the LCS

|   |       | 0          | 1          | 2              | 3          | 4                | 5                 | 6          |
|---|-------|------------|------------|----------------|------------|------------------|-------------------|------------|
|   |       | <b>y</b> i | В          | D              | C          | A                | В                 | A          |
| 0 | $X_i$ | 0          | 0          | 0              | 0          | 0                | 0                 | 0          |
| 1 | A     | 0          | <b>↑</b> 0 | <b>↑</b> 0     | 0          | 1                | <i>←1</i>         | 1          |
| 2 | В     | 0          | 1          | $\leftarrow 1$ | ←1         | <b>1</b>         | × 2               | ←2         |
| 3 | C     | 0          | <b>1</b>   | ^<br>1         | 2          | <del>(2</del> )  | 12                | 12         |
| 4 | В     | 0          | 1          | <b>1</b>       | <u>\_2</u> | ) <del>\</del> 2 | <b>(</b> 3)       | <i>←3</i>  |
| 5 | D     | 0          | <b>1</b>   | × 2            | 12         | 12               | <b>₹</b> (3)      | <b>7 3</b> |
| 6 | A     | 0          | <i>1</i>   | 12             | <b>^2</b>  | × 3              | ) <del>{</del> ~% | 4          |
| 7 | В     | 0          | 1          | <b>^2</b>      | <b>^2</b>  | <b>^3</b>        | 4                 | 4          |

## PRINT-LCS(b, X, i, j)

```
if i = 0 or j = 0
                                      Running time: \Theta(m + n)
      then return
    if b[i, j] = "\"
       then PRINT-LCS(b, X, i - 1, j - 1)
4.
            print Xi
5.
    elseif b[i, j] = "↑"
6.
            then PRINT-LCS(b, X, i - 1, j)
7.
            else PRINT-LCS(b, X, i, j - 1)
8.
```

Initial call: PRINT-LCS(b, X, length[X], length[Y])

## Improving the Code

- What can we say about how each entry c[i, j] is computed?
  - It depends only on c[i -1, j 1], c[i 1, j], and c[i, j 1]
  - Eliminate table b and compute in O(1) which of the three values was used to compute c[i, j]
  - We save  $\Theta(mn)$  space from table b
  - However, we do not asymptotically decrease the auxiliary space requirements: still need table **c**

## Improving the Code

- If we only need the length of the LCS
  - LCS-LENGTH works only on two rows of c at a time
    - The row being computed and the previous row
  - We can reduce the asymptotic space requirements by storing only these two rows