Calculus-Unit 1 Applied Computer Science for AI

Written exam- Birindelli

Final grade

Esercizes	Grade
1	4.4
2	3
3	4+
4	67
Mult. Ans.	15
Totale	32-

KFamily name: SEYEDMOHAMMADI

Name: MOBIN

Matricol

Es. 1 [1+2+1 +0 Points] Given the sequence a_n defined in the following way

$$\begin{cases} a_0 = 10 \\ a_{n+1} = \frac{a_n}{4} + 1 \end{cases}$$

a) Compute a_1 and a_2 .

b) Prove by induction that the sequence is monotone decreasing.

c) Determine the only possible value of the limit.

d) (Optional) Determine for which different value of a_o the sequence is increasing.

a)
$$a_1 = a_1 + 1 = \frac{5}{2} + 1 = \frac{7}{2}$$
 $a_2 = \frac{a_1}{4} + 1 = \frac{7}{8} + 1 = \frac{15}{8}$ X

b) a_{n+1} ($a_n \quad a_{n+1}$ ($a_n \quad a_{n+1}$) ($a_n \quad a_{n+1}$)

C) a $a_n = \frac{a_n}{4} + 1$ $\frac{3}{4} a_n = 1$ $a_n = \frac{4}{3}$

and f(x) := f(x+1), f(x) := f(x) and f(x) :=

\tau_Es 5 [2 o -1 points] The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \sqrt{1-x^2}$

- 1. Has a minimum but no maximum
- 2. Doesn't have a maximum or a minimum
- 3. Has a maximum but no minimum

4. Has a minimum and a maximum

Es 6 [2 o -1 punti] The derivative of $f(x) = \sin(2x) \log(\cos(2x))$ is:

1.
$$f'(x) = 2\left(\cos(2x)\log(\cos(2x)) - \frac{1}{\cos(2x)}\right)$$

- 2. $f'(x) = -2\sin(2x)$
- 3. $f'(x) = 2\left(\cos(2x)\log(\cos(2x)) + \frac{\cos^2(2x)}{\sin(2x)}\right)$
- $4. f'(x) = 2\left(\cos(2x)\log(\cos(2x)) \frac{\sin^2(2x)}{\cos(2x)}\right)$
- None of the other answers is correct

Es 7 [1/2 each answer] Let $f: [-1,1] \to \mathbb{R}$ be a continuous function. Then

- 1. The graph of the function f is symmetric since the domain is symmetric T
- 2. If f(-1) = f(1) then there exists x_o in the open interval such that $f(x_o) = f(1)$ T
- 3. If f is invertible then it is monotone \bigcirc \bigcirc
- f(x) = f(x) 4. The function reaches only the values between f(x) = f(x) and f(x) = f(x)
 - 5. The function reaches all the values between f(-1) and f(0)

Es 8 [1/2 each answer] Given the value $z_1 = 1 - 3i$ in C

- 1. $\frac{1}{z_1} = \frac{1}{10}(1+3i)$
- 2. $(3+i)z_1 = 6 8i$ **T F**
- 3. $(z_1)^3 = 1 9i$ **T F**
- 4. $|z_1| = 4$ TF

Es 9 [3 o -1 punti] Let a_n be a bounded sequence. Then necessarily

- 1. There exists a converging subsequence T
- —2. The sequence is monotone T F
- 3. All subsequences converge T
- 4. The sequence has a limit T F

Es 10 Let $f(x) = x^2 \cos(3x)$. Then $T_5(x) = a_0 + a_1x + a_2x^+a_3x^3 + a_4x^4 + a_5x^5$, the Taylor's polynomial of order 5 centered in zero is:

$$a_0 = 0$$
 , $a_1 = 0$, $a_2 = 1$, $a_3 = 0$, $a_4 = 4.5$, $a_5 = 0$