Jaehoon Shim Seongyeop Jeong Ilkueon Kang Wookje Han Jinsol Park (snucsl.ta@gmail.com)

Systems Software & Architecture Lab.
Seoul National University

Fall 2022

4190.308:

Computer Architecture

Lab. I

Image Compression

What is PNG Filtering?

- PNG file format supports a precompression step called filtering
- Filtering is a method of reversibly transforming the image data so that the main compression engine can operate more efficiently

Simplified Image Compression

- The input will be a grayscale image
 - Pixel in grayscale image represents only an amount of light
 - Use unsigned integers with 8 bits per pixel (0~255)
- We will use a simplified Paeth filtering algorithm in the PNG format
 - Paeth filtering: record only the difference from the neighboring pixel values, since value of pixels changes gradually in most cases

Phases for Simple Image Compression

 Phase I:Apply a simplified Paeth filtering algorithm to the grayscale image to reduce the range of pixel values

Phase 2: Encode those values in a more compact binary representation

Phase I: Simplified Paeth Filtering

- Find the average of three neighboring pixels in left, upper, and upperleft positions
- When neighboring pixel doesn't exist, exclude it from the calculation

Phase I: Simplified Paeth Filtering

- 2. Get the filtered value by computing the difference between pixel value and average value
 - To prevent getting a negative value, if pixel value is smaller than average value, add
 256 before subtracting

Example: Phase I

0	0	0	0
50	75	100	120
75	100	120	0

Input Image S

$$Avg[0][0] = 0$$

 $Avg[0][1] = 0/1 = 0$
 $Avg[0][2] = 0/1 = 0$
 $Avg[0][3] = 0/1 = 0$

Filter[0][0] = 0 - 0 = 0

Filter[0][1] = 0 - 0 = 0

Filter[0][2] = 0 - 0 = 0

Filter[0][3] = 0 - 0 = 0

Avg[1][0] =
$$0/1 = 0$$
 Avg[2][0] = $50/1 = 50$
Avg[1][1] = $(50 + 0 + 0)/3 = 16$ Avg[2][1] = $(75 + 75 + 50)/3 = 66$
Avg[1][2] = $(75 + 0 + 0)/3 = 25$ Avg[2][2] = $(100 + 100 + 75)/3 = 91$
Avg[1][3] = $(100 + 0 + 0)/3 = 33$ Avg[2][3] = $(120 + 120 + 100)/3 = 113$

Filter[1][0] =
$$50 - 0 = 50$$

Filter[1][1] = $75 - 16 = 59$
Filter[1][2] = $100 - 25 = 75$
Filter[1][3] = $120 - 33 = 87$

Filter[2][0] =
$$75 - 50 = 25$$

Filter[2][1] = $100 - 66 = 34$
Filter[2][2] = $120 - 91 = 29$
Filter[2][3] = $0 - 113 = -113$
S[2][3] < Avg[2][3]

Avg[2][0] = 50/1 = 50

Filter[2][3] =
$$0 + 256 - 113 = 143$$

$$113 + 143 = 256 = 100000000(2)$$

3. Use minimum filtered value as base value of the row & calculate the deltas from the base value

Input Image S[3][4]

0	0	0	0	
50	59	75	87	
25	34	29	143	

Filter[3][4]

base(0): 0	0	0	0	0
base(1): 50	37	25	9	0
base(2): 25	118	4	9	0

Delta[3][4]

4. Find the number of bits needs for representing the delta

Can be calculated from the maximum delta value for each row

n(i) = 0 if $max(Delta[i]) == 0$,				
1	else if max(Delta[i]) == 1,			
2	else if max(Delta[i]) < 4,			
3	else if max(Delta[i]) < 8,			
4	else if max(Delta[i]) < 16,			
5	<pre>else if max(Delta[i]) < 32,</pre>			
6	<pre>else if max(Delta[i]) < 64,</pre>			
7	else if max(Delta[i]) < 128,			
8	otherwise			

of bits n(i) needs to encode delta values with unsigned integers

				•
0	0	0	0	n(0) = 0
0	9	25	37	n(I) = 6
0	9	4	118	n(2) = 7
	Delta	•		

5. Now encode each row at a time using the format below

Delta[3][4]

0	0	0	0
0	9	25	37
0	9	4	118

base(0) = 0, n(0) = 0

base(1) = 50, n(1) = 6

base(2) = 25, n(2) = 7

base(i) n(i)

Row 0: 00000000 0000

Row 1: 00110010 0110 000000 001001 011001 100101

6. If the total number of output bits is not a multiple of 8, pad 0's until it becomes a multiple of 8

base(i) n(i)

Row 0: 0000000 0000

Row 1: 00110010 0110 000000 001001 011001 100101

```
row 2
row 0
             row
                            00000000 10010110 01100101
                                                         00011001
         00000011
                                                                  01110000 00000010 01000010
                                                                                               01110110
0x00
         0x02
                   0x26
                            0x00
                                      0x96
                                               0x65
                                                         0x19
                                                                  0x70
                                                                            0x02
                                                                                               0x76
                                                                                      0x42
```

Example (2)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Input Image S[5][10]

Filter[5][10]

```
base(i) n(i)
```

Row 0: 00000000 0000

Row 1: 0000000 0000

Row 2: 0000000 0000

Row 3: 00000000 0000

Row 4: 00000000 0000

Padding

Specification

- All you need to do is to write encode() function given in pal.c
- int encode(const u8* src, const int width, const int height, u8* dst); { /* fill this function */}
 - src points to the memory address of the input data
 - width and height are the width & height of input data (in bytes)
 - dst points to the memory address for encoded result
 - It returns the length of the output (in bytes)
 - If width or height is zero, return zero

Restrictions

Contents of the buffer after the encoded output should not be corrupted

- You are not allowed to use any array
- You are not allowed to use any library functions
- Your solution should finish within a reasonable time

Submission

- Due: I I:59PM, September 18 (Sunday)
 - 25% of the credit will be deducted for every single day delay
- Only submit the pal.c file to the submission server
 - You don't have to write a report in this assignment

Slip Days

- You can use up to 4 slip days during this semester
 - To use slip days, please post how many slip days you want to use on QnA board
- We highly recommend to save slip days for next projects!

<Scoring ratio for last semester>
Projects 40%
Project #1 5%
Project #2 8%

Project #3 13%

Project #4 14%

X It is not for this semester.

Account Registration

How to Access the Submission Server

- http://sys.snu.ac.kr
- Need to access via in-school IP or authorized IP
 - In-school IP: 147.46.X.X or 147.47.X.X

How to Get My IP Authorized?

Please submit your IP through Google Form (https://forms.gle/rbWD2ZV2mAxRTIAr5)

- To get your IP address, search "what is my ip" in Google
 - Note that virtual IP addresses are not valid
 - $-10.0.0.0 \sim 10.255.255.255$
 - 172.16.0.0 \sim 172.31.255.255
 - $-192.168.0.0 \sim 192.168.255.255$

How to Register an Account?

- You should make an account to submit your assignments
- Please make an account with correct name and student number

How to Register an Account?

- Don't worry if there's "No class" on the screen
- We will join you to class as soon as possible

We recommend the Google Chrome web browser.

© SNU Systems Software & Architecture Laboratory

Thank You!

Don't forget to read detailed description before you start your assignment

 If you have any question about the assignment, feel free to ask via email or eTL

■ This file will be uploaded after the lab session ©