25 Spring ECEN 720: High-Speed Links: Circuits and Systems Pre-lab Report

Lab2: Channel Models

Name: Yu-Hao Chen

UIN:435009528

Section:700

Professor: Sam Palermo

TA: Srujan Kumar Kaile

Pre-Lab

- 1. Plot S11 and S21 for the circuit shown in Figure 10 using Cadence (RT= 50Ω).
- a. Td=0ps (no t-line), C1=0pF, L1=0nH, C2=1pF
- b. Td=0ps (no t-line), C1=3pF, L1=2nH, C2=1pF
- c. Td=300ps , C1=3pF, L1=2nH, C2=1pF

Comment on the results.

Figure 10 S-parameters Simulation Circuit

S-Parameter	Definition	Physical Meaning
S11	b1/a1	Input Reflection
		Coefficient (Return Loss
		at Port 1)
S22	b2/a2	Output Reflection
		Coefficient (Return Loss
		at Port 2)
<mark>S21</mark>	b2/a1	Forward Transmission
		(Insertion Loss, Gain, or
		Attenuation from Port 1
		to Port 2)
S12	b1/a2	Reverse Transmission
		(Isolation or Reverse Gain
		from Port 2 to Port 1)

Case1

For low frequence C= open, no reflection RS = RT For high frequency C= short, reflection=-1 RT=0

Case 2

Same condition with case1 with LC in the middle (bandpass filter will have high transmission at certain frequencies and may produce large reflections at other frequencies.)

Case 3 transmission line adds signal delay, but even without this wire, the LC element will still affect the impedance match, causing reflections to exist.

- In high-frequency circuits, even if there are no transmission lines, impedance matching design still needs to be considered to reduce reflections and improve signal integrity (SI).
- 2. Briefly compare the difference between AC and DC coupled termination schemes.

Feature	AC Coupled Termination	DC Coupled Termination
Definition	Uses a capacitor in series to	Direct electrical connection
	block DC components while	without capacitive isolation,
	allowing AC signals to pass.	passing both AC and DC
		components.
DC Biasing	Blocks DC, requiring separate	Directly maintains DC bias from
	biasing networks for proper	the source, simplifying circuit
	voltage levels at the receiver.	design.
Impedance	Provides impedance matching	Provides continuous
Matching	only for AC signals . Requires	impedance matching for both
	external biasing resistors to	AC and DC signals, ensuring
	maintain termination	signal integrity.
	impedance.	
Complexity	Requires additional biasing	Simpler implementation since
	networks, making design more	no additional biasing is needed.

	complex.	
Common	High-speed digital signals (e.g.,	Low-frequency or DC-coupled
Applications	LVDS, HDMI, PCIe, RF circuits),	systems (e.g., TTL, CMOS,
	where DC biasing differs	differential signaling like USB,
	between transmitter and	DDR memory), where
	receiver.	maintaining DC level is crucial.