

Tema 5. Distribuciones de probabilidad

Percepción (PER)

Curso 2021/2022

Departamento de Sistemas Informáticos y Computación

Índice

- 1 Introducción y motivación ⊳ 3
- 2 Distribución de Bernoulli > 11
- 3 Distribución multinomial ▷ 20
- 4 Distribución Gaussiana ▷ 28

Índice

- 1 Introducción y motivación ▷ 3
 - 2 Distribución de Bernoulli > 11
 - 3 Distribución multinomial ▷ 20
 - 4 Distribución Gaussiana ▷ 28

Clasificador de Bayes (datos vectoriales):

$$\begin{split} c^*(\mathbf{x}) &= \underset{c=1,...,C}{\operatorname{argmax}} \ P(c \mid \mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ \frac{P(c) \, p(\mathbf{x} \mid c)}{p(\mathbf{x})} \\ &= \underset{c=1,...,C}{\operatorname{argmax}} \ P(c) \, p(\mathbf{x} \mid c) = \underset{c=1,...,C}{\operatorname{argmax}} \ \log P(c) + \log \, p(\mathbf{x} \mid c) \end{split}$$

donde

- P(c): probabilidad a priori
- ullet $p(\mathbf{x} \mid c)$: función de densidad (f.d.) de probabilidad condicional para clase c

En la práctica, se usan **estimaciones** de P(c) y $p(\mathbf{x} \mid c)$:

$$c^*(\mathbf{x}) \approx \underset{c=1,...,C}{\operatorname{argmax}} \log \hat{P}(c) + \log \hat{p}(\mathbf{x} \mid c)$$

 $\hat{P}(c)$ y $\hat{p}(\mathbf{x} \mid c)$ se estiman desde N muestras etiquetadas, $(\mathbf{x}_1, c_1), \ldots, (\mathbf{x}_N, c_N)$, extraídas de $p(\mathbf{x}, c)$ aleatoria e independientemente.

Estimación de la probabilidad a priori:

$$\hat{P}(c) = \frac{N_c}{N} \qquad N_c = \sum_{n: c_n = c} 1$$

Estimación de la condicional $\hat{p}(\mathbf{x} \mid c)$: a partir de las muestras \mathbf{x}_n con $c_n = c$

Forma habitual: se asume un *tipo de distribución* sobre los datos de la clase y *se estiman sus parámetros*

Estudiaremos tres tipos de distribución de probabilidad $p(\mathbf{x} \mid c)$ que son aplicables en función de los datos a modelizar:

- Bernoulli: datos binarios (vectores binarios)
- Multinomial: datos que son contadores (vectores de enteros positivos)
- Gaussiana: datos que son números reales (vectores reales)

Bernoulli: Motivación

Algunas tareas de RF conllevan objetos representados como un vector de bits.

Ejemplo: imágenes binarias de $5 \times 5 \rightarrow$ vectores de bits de 25 dimensiones

Idea: distribuciones de Bernoulli para modelar la condicional $p(\mathbf{x} \mid c)$

Multinomial: Motivación

Algunas tareas de RF representan objetos como vectores de cuentas

Ejemplo: Texto representado como *bag-of-words*

Idea: usar la *distribución multinomial* para modelizar la condicional $p(\mathbf{x} \mid c)$

Gaussiana: Motivación

Algunas tareas representan objetos por *vectores de características reales* (\mathbb{R}^D)

Ejemplo: Señal acústica mediante vectores de coeficientes cepstrales

Idea: usar la distribución gaussiana para modelizar la condicional $p(\mathbf{x} \mid c)$

Page 5.9

Para cada distribución de probabilidad veremos:

- Su definición formal
- El clasificador asociado
- La estimación de sus parámetros por máxima verosimilitud (MV)
- Las técnicas de suavizado de sus parámetros

Índice

- 1 Introducción y motivación ⊳ 3
- 2 Distribución de Bernoulli ▷ 11
 - 3 Distribución multinomial ▷ 20
 - 4 Distribución Gaussiana ▷ 28

Definición: Bernoulli unidimensional

Sea $p \in [0,1]$ y q = 1 - p.

Sea x una variable aleatoria binaria que sigue una distribución de Bernoulli de parámetro p ($x \sim Be(p)$)

La f.d. de x es:

$$p(x) = \begin{cases} p & \text{si } x = 1 \\ q & \text{si } x = 0 \end{cases} = px + q(1 - x) = p^x q^{1 - x}$$

Nota: $0^0 = 1$ y $0 \log 0 = 0$

Definición: Bernoulli multidimensional

Sean $x_1 \sim Be(p_1), \ldots, x_D \sim Be(p_D)$ independientes

En ese caso, $\mathbf{x} = (x_1, \dots, x_D)^t$ sigue una Bernoulli D-dimensional de parámetro $\mathbf{p} = (p_1, \dots, p_D)^t$

La f.d. de x es:

$$p(\mathbf{x}) = \prod_{d=1}^{D} p(x_d) = \prod_{d=1}^{D} p_d x_d + q_d (1 - x_d) = \prod_{d=1}^{D} p_d^{x_d} q_d^{(1 - x_d)}$$

Clasificador Bernoulli

Clasificador Bernoulli: clasificador de Bayes en el caso particular en que la f.d. condicional $p(\mathbf{x}|c)$ es una Bernoulli:

$$p(\mathbf{x} \mid c) \sim Be_D(\mathbf{p}_c), \quad c = 1, \dots, C$$

Por tanto:

$$\begin{split} c^*(\mathbf{x}) &= \underset{c=1,...,C}{\operatorname{argmax}} \; \log \, P(c) + \log \, p(\mathbf{x} \mid c) \\ &= \underset{c=1,...,C}{\operatorname{argmax}} \; \log \, P(c) + \log \, \prod_{d=1}^D p_{cd}^{x_d} (1 - p_{cd})^{(1 - x_d)} \\ &= \underset{c=1,...,C}{\operatorname{argmax}} \; \log \, P(c) + \sum_{d=1}^D x_d \log p_{cd} + (1 - x_d) \log (1 - p_{cd}) \end{split}$$

Clasificador Bernoulli

Agrupando términos dependientes e independientes de x_d :

$$c^*(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \left(\sum_{d=1}^{D} x_d (\log p_{cd} - \log(1 - p_{cd})) \right) + \left(\log P(c) + \sum_{d=1}^{D} \log(1 - p_{cd}) \right)$$

Reescribimos la expresión anterior como:

$$c^*(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \sum_{d=1}^{D} w_{cd} x_d + w_{c0}$$

donde

$$w_{cd} = \log p_{cd} - \log(1 - p_{cd})$$
 $w_{c0} = \log P(c) + \sum_{d=1}^{D} \log(1 - p_{cd})$

Clasificador Bernoulli

Por tanto, es un *clasificador lineal* sobre x:

$$c^*(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ g_c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ \sum_{d=1}^D w_{cd} \, x_d + w_{c0}$$

Reescribiendo la expresión anterior como un producto escalar de dos vectores:

$$c^*(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{argmax}} \mathbf{w}_c^t \mathbf{x} + w_{c0}$$

donde

$$\mathbf{w}_c = \log \mathbf{p}_c - \log(1 - \mathbf{p}_c)$$

Entrenamiento por máxima verosimilitud

Sean un conjunto de entrenamiento de N muestras independientes e idénticamente distribuidas (i.i.d.) extraídas aleatoriamente de C distribuciones Bernoulli:

$$\{(\mathbf{x}_n, c_n)\}_{n=1}^N$$
 i.i.d. $p(\mathbf{x}, c) = P(c) p(\mathbf{x}|c), p(\mathbf{x}|c) \sim Be_D(\mathbf{p}_c)$

Conjunto de parámetros a estimar Θ :

- Probabilidades a priori: $P(1) \dots, P(C)$
- Parámetros de las Bernoulli para cada clase c: \mathbf{p}_c , $c=1,\ldots,C$

Por criterio de máxima verosimilitud (MV), se estima Θ como:

$$\hat{P}(c) = \frac{N_c}{N} \qquad c = 1, \dots, C$$

$$\hat{\mathbf{p}}_c = \frac{1}{N_c} \sum_{n : c_n = c} \mathbf{x}_n \qquad c = 1, \dots, C$$

Suavizado de la distribución Bernoulli

Problema: muchos criterios de entrenamiento (incluído MV) pueden generar clasificadores sobreentrenados

Soluciones:

- Cambiar el criterio de aprendizaje
- Suavizar los parámetros estimados

Opciones de suavizado en Bernoulli:

- Truncamiento simple
- Muestra ficticia

Suavizado de la distribución Bernoulli

Truncamiento simple

Dado ϵ , $0 \le \epsilon \le 0.5$, redefinir \hat{p}_{cd} como:

$$ilde{p}_{cd} = egin{cases} \epsilon & ext{si } \hat{p}_{cd} < \epsilon \ 1 - \epsilon & ext{si } \hat{p}_{cd} > 1 - \epsilon \ \hat{p}_{cd} & ext{en otro caso} \end{cases}$$

Muestra ficticia

Añadir al conjunto de aprendizaje $(\mathbf{0},c)$ y $(\mathbf{1},c)$, $c=1,\ldots,C$.

Equivale a redefinir la estimación de $\hat{\mathbf{p}}_c$ como:

$$\tilde{\mathbf{p}}_c = \frac{1}{N_c + 2} \left(\mathbf{1} + \sum_{n: c_n = c} \mathbf{x}_n \right)$$

Índice

- 1 Introducción y motivación ⊳ 3
- 2 Distribución de Bernoulli > 11
- 3 Distribución multinomial ▷ 20
 - 4 Distribución Gaussiana ▷ 28

Definición: distribución multinomial

Sea $\mathcal Y$ un conjunto de D tipos de elemento cuya proporción viene dada por

$$\mathbf{p} = (p_1, \dots, p_D)^t \in [0, 1]^D$$
 con $\sum_{d=1}^D p_d = 1$

Sea una secuencia de L elementos formada por extracción aleatoria con reemplazamiento desde $\mathcal Y$ de acuerdo a $\mathbf p$

$$w_1^L = w_1 \, w_2 \, \cdots \, w_L$$

El número de secuencias distintas de longitud L que se pueden generar con D tipos de elementos es:

$$VR_{D,L} = D^L$$

Definición: distribución multinomial

Asumiendo independencia entre elementos, $p(w_1^L)$ se define como:

$$p(w_1^L) = p_{w_1} p_{w_2} \cdots p_{w_L}$$

 $p(w_1^L)$ no depende del orden de los elementos, sino del número de ocurrencias de cada tipo de elemento

Si x_d es el número de ocurrencias del tipo de elemento d en w_1^M :

$$p(w_1^L) = p_1^{x_1} \cdots p_D^{x_D} = \prod_{d=1}^D p_d^{x_d}$$

Para un $\mathbf{x} = (x_1, \dots, x_D)^t$ (vector de ocurrencias) dado, el número de secuencias diferentes posible es un *coeficiente multinomial*:

$$\begin{pmatrix} L \\ \mathbf{x} \end{pmatrix} = \begin{pmatrix} L \\ x_1, \dots, x_D \end{pmatrix} = \frac{L!}{x_1! \cdots x_D!}$$

Definición: distribución multinomial

Distribución multinomial: se define sobre el espacio de vectores de ocurrencias

La probabilidad de x es la suma de probabilidades de todas las secuencias con vector de ocurrencias x:

$$p(\mathbf{x}) = \begin{pmatrix} L \\ \mathbf{x} \end{pmatrix} \prod_{d=1}^{D} p_d^{x_d}$$

 $p(\mathbf{x})$ es una f.d. multinomial:

- *D*-dimensional
- Longitud $L = \sum_{d=1}^{D} x_d$
- Prototipo p

De ahora en adelante, usaremos $x_+ = L$

Clasificador multinomial

Clasificador multinomial: clasificador de Bayes donde la f.d. condicional $p(\mathbf{x}|c)$ es una multinomial

$$p(\mathbf{x} \mid c) \sim Mult_D(x_+, \mathbf{p}_c), \quad c = 1, \dots, C$$

Por tanto:

$$c^*(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \log P(c) + \log p(x \mid c)$$

$$= \underset{c=1,...,C}{\operatorname{argmax}} \log P(c) + \log \frac{x_{+}!}{x_{1}! \cdots x_{D}!} \prod_{d=1}^{D} p_{cd}^{x_{d}}$$

$$= \underset{c=1,...,C}{\operatorname{argmax}} \log P(c) + \log \frac{x_{+}!}{x_{1}! \cdots x_{D}!} + \sum_{d=1}^{D} x_{d} \log p_{cd}$$

Clasificador multinomial

Eliminando el término independiente de *c*:

$$c^*(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \log P(c) + \sum_{d=1}^{D} x_d \log p_{cd}$$

Expresando el sumatorio en forma de producto escalar:

$$c^*(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} (\log \mathbf{p}_c)^t \mathbf{x} + \log P(c)$$

En forma de clasificador lineal:

$$c^*(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ g_c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ \mathbf{w}_c^t \mathbf{x} + w_{c0}$$

Con:

$$\mathbf{w}_c = \log \mathbf{p}_c \qquad w_{c0} = \log P(c)$$

Entrenamiento por máxima verosimilitud

Sean N muestras de entrenamiento aleatoriamente extraídas de C distribuciones multinomiales independientes:

$$\{(\mathbf{x}_n, c_n)\}_{n=1}^N$$
 i.i.d. $p(\mathbf{x}, c) = P(c) p(\mathbf{x}|c), p(\mathbf{x}|c) \sim Mult_D(x_+, \mathbf{p}_c)$

Conjunto de parámetros a estimar Θ :

- Probabilidades a priori: $P(1) \dots, P(C)$
- Prototipos de las multinomiales para cada clase c: \mathbf{p}_c , $c=1,\ldots,C$

Por $criterio\ de\ m\'{a}xima\ verosimilitud\ (MV)$, se estima Θ como:

$$\hat{P}(c) = \frac{N_c}{N} \qquad \hat{\mathbf{p}}_c = \frac{1}{\sum_{\substack{n: c_n = c \\ d = 1}} \sum_{\substack{n: c_n = c \\ d = 1}} \mathbf{x}_{nd}} \sum_{\substack{n: c_n = c \\ d = 1}} \mathbf{x}_n \qquad c = 1, \dots, C$$

Suavizado de la distribución multinomial

Laplace: suma una constante $\epsilon > 0$ a cada parámetro y renormaliza

Descuento Absoluto (DA):

- 1. Descuenta una constante $\epsilon > 0$ (pequeña) a cada parámetro mayor que cero
- 2. Distribuir la probabilidad descontada según una distribución generalizada:
 - Entre todos los parámetros nulos (backing-off)
 - Entre todos los parámetros (interpolación)

Índice

- 1 Introducción y motivación ⊳ 3
- 2 Distribución de Bernoulli > 11
- 3 Distribución multinomial ▷ 20
- 4 Distribución Gaussiana > 28

Definición: distribución gaussiana unidimensional

Sea x una variable aleatoria unidimensional

Gaussiana unidimensional estandarizada

 $x \sim \mathcal{N}(0,1)$ presenta una distribución de probabilidad

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right)$$

Gaussiana unidimensional general

 $x\sim \mathcal{N}(\mu,\sigma^2)$, con media $\mu\in\mathbb{R}$ y varianza $\sigma^2\in\mathbb{R}^+$, presenta una distribución de probabilidad

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

Definición: distribución gaussiana multidimensional

Sea $\mathbf{x} = (x_1, \dots, x_D)^t$ una variable aleatoria D-dimensional

Gaussiana estandarizada

 $\mathbf{x} \sim \mathcal{N}_D(\mathbf{0}, I_D)$, donde $x_1, \dots, x_D \sim \mathcal{N}(0, 1)$ independientes, presenta una distribución de probabilidad:

$$p(\mathbf{x}) = (2\pi)^{-\frac{D}{2}} \exp\left(-\frac{1}{2}\mathbf{x}^t\mathbf{x}\right)$$

Definición: distribución gaussiana multidimensional

Gaussiana general

Sean:

- $\mathbf{z} \sim \mathcal{N}_D(\mathbf{0}, I_D)$
- $m{\mu} \in \mathbb{R}^D$
- $\blacksquare A \in \mathbb{R}^{D \times D} : |A| \neq 0$
- $\Sigma = AA^t$ (simétrica y definida positiva) con:
 - $\bullet \ A = W\Delta^{\frac{1}{2}}$
 - ullet W vectores propios de Σ
 - ullet Δ valores propios de Σ
- $\mathbf{x} = A\mathbf{z} + \boldsymbol{\mu}$

 $\mathbf{x} \sim \mathcal{N}_D(\boldsymbol{\mu}, \Sigma)$, con media $\boldsymbol{\mu}$ y matriz de covarianzas Σ , presenta una distribución de probabilidad:

$$p(\mathbf{x}) = (2\pi)^{-\frac{D}{2}} |\Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^t \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Clasificador gaussiano

Clasificador gaussiano: clasificador de Bayes donde la f.d. condicional $p(\mathbf{x}|c)$ es una gaussiana

$$p(\mathbf{x} \mid c) \sim \mathcal{N}_D(\boldsymbol{\mu}_c, \Sigma_c), \quad c = 1, \dots, C$$

Por tanto:

$$\begin{split} c^*(\mathbf{x}) &= \underset{c=1,\ldots,C}{\operatorname{argmax}} \; \log \, P(c) + \log \, p(\mathbf{x} \mid c) \\ &= \underset{c=1,\ldots,C}{\operatorname{argmax}} \; \log \, P(c) - \frac{D}{2} \log 2\pi - \frac{1}{2} \log \, |\Sigma_c| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_c)^t \Sigma_c^{-1} (\mathbf{x} - \boldsymbol{\mu}_c) \\ &= \underset{c=1,\ldots,C}{\operatorname{argmax}} \; \log P(c) - \frac{1}{2} \log \, |\Sigma_c| - \frac{1}{2} \mathbf{x}^t \Sigma_c^{-1} \mathbf{x} + \boldsymbol{\mu}_c^t \Sigma_c^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^t \Sigma_c^{-1} \boldsymbol{\mu}_c \\ &= \underset{c=1,\ldots,C}{\operatorname{argmax}} \; - \frac{1}{2} \mathbf{x}^t \Sigma_c^{-1} \mathbf{x} + \boldsymbol{\mu}_c^t \Sigma_c^{-1} \mathbf{x} + \left(\log P(c) - \frac{1}{2} \log \, |\Sigma_c| - \frac{1}{2} \boldsymbol{\mu}_c^t \Sigma_c^{-1} \boldsymbol{\mu}_c \right) \end{split}$$

Clasificador gaussiano

$$c^*(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \ -\frac{1}{2}\mathbf{x}^t \boldsymbol{\Sigma}_c^{-1}\mathbf{x} + \boldsymbol{\mu}_c^t \boldsymbol{\Sigma}_c^{-1}\mathbf{x} + \left(\log P(c) - \frac{1}{2}\log \,|\boldsymbol{\Sigma}_c| - \frac{1}{2}\boldsymbol{\mu}_c^t \boldsymbol{\Sigma}_c^{-1}\boldsymbol{\mu}_c\right)$$

Clasificador *cuadrático* con x:

$$c^*(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} g_c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \mathbf{x}^t W_c \mathbf{x} + \mathbf{w}_c^t \mathbf{x} + w_{c0}$$

Con:

$$W_c = -\frac{1}{2}\Sigma_c^{-1} \quad \mathbf{w}_c = \Sigma_c^{-1} \boldsymbol{\mu}_c$$

$$w_{c0} = \log P(c) - \frac{1}{2} \log |\Sigma_c| - \frac{1}{2} \mu_c^t \Sigma_c^{-1} \mu_c$$

Clasificador gaussiano

Caso particular: matriz de covarianzas común, $\Sigma_c = \Sigma$

En ese caso, tanto $-\frac{1}{2}\mathbf{x}^t\Sigma^{-1}\mathbf{x}$ como $-\frac{1}{2}\log\,|\Sigma|$ son independientes de c

$$c^*(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{argmax}} \ \boldsymbol{\mu}_c^t \boldsymbol{\Sigma}^{-1} \mathbf{x} + \left(\log P(c) - \frac{1}{2} \boldsymbol{\mu}_c^t \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c \right)$$

El clasificador gaussiano es lineal:

$$c^*(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} g_c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{argmax}} \mathbf{w}_c^t \mathbf{x} + w_{c0}$$

Con:

$$\mathbf{w}_c = \Sigma^{-1} \boldsymbol{\mu}_c \qquad w_{c0} = \log P(c) - \frac{1}{2} \boldsymbol{\mu}_c^t \Sigma^{-1} \boldsymbol{\mu}_c$$

Entrenamiento por máxima verosimilitud

Sean N muestras de entrenamiento aleatoriamente extraídas de C distribuciones gaussianas independientes

$$\{(\mathbf{x}_n, c_n)\}_{n=1}^N$$
 i.i.d. $p(\mathbf{x}, c) = P(c) p(\mathbf{x}|c), p(\mathbf{x}|c) \sim \mathcal{N}_D(\boldsymbol{\mu}_c, \Sigma_c)$

Conjunto de parámetros a estimar Θ :

- Probabilidades a priori: $P(1), \dots, P(C)$
- Medias para cada clase: μ_1, \ldots, μ_C
- Matrices de covarianza para cada clase: $\Sigma_1, \ldots, \Sigma_C$

Por criterio de máxima verosimilitud (MV), se estima Θ como:

$$\hat{P}(c) = \frac{N_c}{N} \qquad (1) \qquad \qquad \hat{\mu}_c = \frac{1}{N_c} \sum_{n:c_n = c} \mathbf{x}_n \qquad (2)$$

$$\hat{\Sigma}_c = \frac{1}{N_c} \sum_{n: c_n = c} (\mathbf{x}_n - \hat{\boldsymbol{\mu}}_c) (\mathbf{x}_n - \hat{\boldsymbol{\mu}}_c)^t = \left(\frac{1}{N_c} \sum_{n: c_n = c} \mathbf{x}_n \mathbf{x}_n^t \right) - \hat{\boldsymbol{\mu}}_c \hat{\boldsymbol{\mu}}_c^t \qquad (3)$$

Entrenamiento por máxima verosimilitud

En el caso de Σ común para todas las clases ($\Sigma_c = \Sigma$), el conjunto de parámetros a estimar Θ es:

- Probabilidades a priori: $P(1), \dots, P(C)$
- Medias para cada clase: μ_1, \ldots, μ_C
- Matriz de covarianza común: Σ

Por criterio de máxima verosimilitud, la estimación de Θ se calcula como en el caso general (Ecuaciones (1) y (2) para $\hat{P}(c)$ y $\hat{\mu}_c$ respectivamente) y:

$$\hat{\Sigma} = \sum_{c} \hat{P}(c) \,\hat{\Sigma}_{c} = \frac{1}{N} \sum_{n} \mathbf{x}_{n} \mathbf{x}_{n}^{t} - \sum_{c} \hat{P}(c) \,\hat{\boldsymbol{\mu}}_{c} \hat{\boldsymbol{\mu}}_{c}^{t} \tag{4}$$

Con $\hat{\Sigma}_c$ calculada según Ecuación (3)

Suavizado

Umbralizado de covarianza [Duda01, pág. 113]

Covarianzas con magnitud de la correlación no cercana a uno valen cero:

$$\tilde{\sigma}_{cdd'}^2 = \begin{cases} \hat{\sigma}_{cdd'}^2 & \text{si } |\hat{\rho}_{cdd'}| > 1 - \epsilon \\ 0 & \text{otro caso} \end{cases} \qquad \forall c, d, d' = 1, \dots, D; \ d \neq d'$$

Donde:

- ullet es una constante pequeña no negativa $(\epsilon=0
 ightarrow \Sigma$ diagonal)
- Coeficiente de correlación: $\hat{\rho}_{cdd'} = \frac{\hat{\sigma}_{cdd'}^2}{\hat{\sigma}_{cdd}\,\hat{\sigma}_{cd'd'}}$

Flat smoothing

Combinación lineal de cada $\hat{\Sigma}_c$ y $\tilde{\Sigma}$ (matriz de covarianza global suavizada):

$$\tilde{\Sigma}_c = \alpha \, \hat{\Sigma}_c + (1 - \alpha) \, \tilde{\Sigma} \qquad \forall c \ \alpha \in [0, 1]$$

Donde:
$$\tilde{\Sigma} = \beta \hat{\Sigma} + (1-\beta)I$$
, $\beta \in [0,1]$

