

Lista 4. Bases e Coordenadas

Sejam OABC um tetraedro e M o ponto médio do segmento \overline{BC} .

- (a) Explique por que o conjunto $\mathcal{E} = \{\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}\}\$ é uma base para V^3 .
- (b) Determine as coordenadas do vetor \overrightarrow{AM} em relação à base acima.

Exercício 2.....

Seja $\mathcal{E} = \{\vec{u}, \vec{v}, \vec{w}\}$ uma base ordenada de V^3 e \vec{x} um vetor qualquer de V^3 . Sabemos que existem únicos $a, b, c \in \mathbb{R}$ tais que $\vec{x} = (a, b, c)_{\mathcal{E}}$. Mostre que o conjunto

$$\{\vec{u} + \vec{x}, \vec{v} + \vec{x}, \vec{w} + \vec{x}\}\$$

é LI se, e somente se, $a+b+c+1\neq 0$.

Exercício 3.....

Fixe uma base ordenada \mathcal{E} de V^3 . Encontre o valor de $m \in \mathbb{R}$ para que, em cada um dos itens, os vetores sejam LD.

- (a) $(3,5,1)_{\mathcal{E}}, (2,0,4)_{\mathcal{E}}, (1,m,3)_{\mathcal{E}}.$
- **(b)** $(1,3,5)_{\mathcal{E}}, (2,m+1,10)_{\mathcal{E}}.$

Exercício 4....

Sejam \mathcal{E} uma base ordenada, $\vec{u} = (2, -2, -4)_{\mathcal{E}}, \vec{v} = (0, -1, -3)_{\mathcal{E}}$. Os vetores $\vec{w} = (1, -2, 3)_{\mathcal{E}}$ e $\vec{x} = (4, 0, 13)_{\mathcal{E}}$ podem ser escritos como combinação linear de \vec{u} e \vec{v} ? Justifique sua resposta.

Exercício 5.....

Sejam \mathcal{E} uma base ordenada de V^3 , $\vec{u} = (1,2,2)_{\mathcal{E}}$, $\vec{v} = (m-1,1,m-2)_{\mathcal{E}}$ e $\vec{w} = (m+1,m-1,2)_{\mathcal{E}}$. Determine $m \in \mathbb{R}$, se possível, para que:

- (a) \vec{u} seja combinação linear de \vec{v} e \vec{w} .
- (b) $\vec{u}, \vec{v} \in \vec{w}$ sejam LD.

Exercício 6.....

Seja \mathcal{E} uma base ordenada de V^3 . Determine $m \in \mathbb{R}$, se possível, para que os vetores em cada item abaixo sejam LD.

(a) $(m, 1, m)_{\mathcal{E}}, (1, m, 1)_{\mathcal{E}}.$

- (c) $(m, 1, m + 1)_{\mathcal{E}}, (1, 2, m)_{\mathcal{E}}, (1, 1, 1)_{\mathcal{E}}.$
- **(b)** $(1-m^2, 1-m, 0)_{\mathcal{E}}, (m, m, m)_{\mathcal{E}}.$
- (d) $(m, 1, m + 1)_{\mathcal{E}}, (0, 1, m)_{\mathcal{E}}, (0, m, 2m)_{\mathcal{E}}.$

Exercício 7.....

Sejam $\mathcal{E} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ uma base ordenada de V^3 e defina

$$\vec{f_1} = \vec{e_1} + \vec{e_2} + \vec{e_3}, \quad \vec{f_2} = \vec{e_1} + \vec{e_2}, \quad \vec{f_3} = \vec{e_1}.$$

Mostre que $\mathcal{F}=\{\vec{f_1},\vec{f_2},\vec{f_3}\}$ é uma base ordenada de V^3 e encontre as coordenadas do vetor $\vec{u} = -3\vec{e}_1 - \vec{e}_3$ em relação às bases \mathcal{E} e \mathcal{F} .

Exercício 8..... Sejam \mathcal{E} uma base ordenada de V^3 , $\vec{f_1} = \vec{e_1} + \vec{e_2} + \vec{e_3}$, $\vec{f_2} = m\vec{e_1} + 2m\vec{e_2} - \vec{e_3}$ e $\vec{f_3} = 4\vec{e_2} + 3\vec{e_3}$.

(a) Para quais valores de $m \in \mathbb{R}$ o conjunto $\mathcal{F} = \{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$ forma uma base ordenada de V^3 ?

(b) Encontre $m \in \mathbb{R}$, se possível, para o qual o vetor $\vec{u} = (1, 2, -1)_{\mathcal{E}}$ satisfaça $\vec{u} = (0, 1, 0)_{\mathcal{F}}$.

Exercício 9

Sejam $\mathcal{E} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ uma base ordenada de V^3 , $\vec{f}_1 = \vec{e}_1 - \vec{e}_2$, $\vec{f}_2 = \vec{e}_2 - \vec{e}_3$ e $\vec{f}_3 = 3\vec{e}_3$.

- (a) Mostre que $\mathcal{F} = \{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$ é uma base ordenada de V^3 .
- (b) Encontre m, se possível, para que os vetores $\vec{u} = (0, m, 1)_{\mathcal{E}}$ e $\vec{v} = (0, 1, -1)_{\mathcal{F}}$ sejam LD.

Exercício 10.....

Sejam $\mathcal{E} = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ uma base ordenada de V^3 , $\vec{f_1} = \vec{e_1} - \vec{e_2} - \vec{e_3}$, $\vec{f_2} = \vec{e_1} + 2\vec{e_2} + \vec{e_3}$ e $\vec{f_3} = 2\vec{e_1} + \vec{e_2} + 4\vec{e_3}$.

- (a) Verifique que \mathcal{F} é uma base ordenada de V^3 .
- (b) Encontre a matriz mudança de base de \mathcal{E} para \mathcal{F} .
- (c) Sendo $\vec{u} = 3\vec{e}_1 5\vec{e}_2 + 4\vec{e}_3$, encontre a expressão do vetor \vec{u} na base \mathcal{F} .

Exercício 11....

Sejam \mathcal{E} e \mathcal{F} duas bases ordenadas de V^3 e $\vec{u} = (x_1, x_2, x_3)_{\mathcal{E}} = (y_1, y_2, y_3)_{\mathcal{F}}$. Suponha que

$$\begin{cases} x_1 = y_1 - y_2 - y_3, \\ x_2 = y_1 + 2y_2 + y_3, \\ x_3 = 2y_1 + y_2 + 4y_3. \end{cases}$$

Determine, se possível, a matriz mudança de base de \mathcal{E} para \mathcal{F} .

Exercício 12....

Seja \mathcal{E} uma base ordenada de V^3 . Qual o valor de $x \in \mathbb{R}$ para que os vetores $\vec{u} = (3, -x, -2)_{\mathcal{E}}$, $\vec{v} = (3, 2, x)_{\mathcal{E}}$ e $\vec{w} = (1, -3, 1)_{\mathcal{E}}$ sejam paralelos a um mesmo plano no espaço?

Exercício 13.....

Seja \mathcal{E} uma base ordenada de V^3 .

- (a) Para quais valores de $a, b \in \mathbb{R}$ os vetores $\vec{u} = a\vec{e}_1 + b\vec{e}_2 + 3\vec{e}_3$ e $\vec{v} = 2\vec{e}_1 + (a-b)\vec{e}_2 + \vec{e}_3$ são LI em V^3 ?
- (b) Encontrar uma base ordenada $\mathcal{F} = \{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$ de V^3 tal que se $\vec{u} = (1, 2, 3)_{\mathcal{E}}$, tenhamos $\vec{u} = (1, 0, 0)_{\mathcal{F}}$.
- (c) Qual a relação deve haver entre $\alpha, \beta \in \mathbb{R}$ para que os vetores $\vec{u} = (1, 1, 1)_{\mathcal{E}}, \vec{v} = (1, \alpha, \alpha^2)_{\mathcal{E}}$ e $\vec{w} = (1, \beta, \beta^2)$ sejam LD?

Exercício 14.....

Sejam \mathcal{E} base ordenada de V^3 , $\mathcal{F} = \{(1,1,1)_{\mathcal{E}}, (1,2,0)_{\mathcal{E}}, (1,1,0)_{\mathcal{E}}\}$ e $\mathcal{G} = \{(2,1,-1)_{\mathcal{E}}, (3,0,1)_{\mathcal{E}}, (2,0,1)_{\mathcal{E}}\}$.

- (a) Mostre que \mathcal{F} e \mathcal{G} são bases ordenadas de V^3 .
- (b) Determine as matrizes mudança de base de \mathcal{E} para \mathcal{F} e de \mathcal{E} para \mathcal{G} .
- (c) Se $\vec{u} = (m, 2, 1)_{\mathcal{E}}$, $\vec{v} = (1, 1, 1)_{\mathcal{F}}$ e $\vec{w} = (2, -1, 1)_{\mathcal{G}}$, determine se possível $m \in \mathbb{R}$ para o qual os vetores \vec{u} , \vec{v} e \vec{w} não formem uma base ordenada de V^3 .

2