mpi* - lycée montaigne informatique

DM1

Exercice 1

Un mot est une suite de lettres $a_0 \dots a_{n-1}$ d'un alphabet fini $A = \{a, b, \dots\}$. Les éléments de A^* , c'est-à-dire les mots sur A, sont dénotés par u,v,u',u'',u_1,u_2 , etc. On note ε pour le mot vide et |u| pour la longueur de u, de sorte que |arepsilon|=0. Si un mot u se décompose sous la forme $u=u_1vu_2$, alors v est un facteur de u, et même un préfixe (ou un suffixe) si $u_1=\varepsilon$ (ou si $u_2=\varepsilon$) dans cette décomposition. Dans le cas d'un mot $u=a_0\dots a_{n-1}$, on écrit u[i,j[, sous la condition $0 \le i \le j \le n$, pour désigner le facteur $a_i \dots a_{i-1}$. Cette notation s'étend à $u[i \dots [$ et u[i] pour désigner, respectivement, u[i, n[et u[i, i + 1[.

Dans la suite, un sous-mot de u correspond à la notion classique de sous-suite, ou de suite extraite, et ne doit pas être confondu avec un facteur. Formellement, pour $u=a_0\dots a_{n-1}$, on dit qu'un mot v de longueur m est un sous-mot de u, ce que l'on notera $v \preccurlyeq u$, s'il existe une suite strictement croissante $0 \leqslant p_0 < p_1 < \dots < p_{m-1} < n$ telle que

 $v=a_{p_0}a_{p_1}\dots a_{p_{m-1}}. \text{ Par exemple, cam1} \preccurlyeq \text{bechame1}.$ Pour tout $n\in\mathbb{N},[n]$ désigne l'ensemble $\{0,1,2,\dots,n-1\}$, de sorte que la suite p_0,p_1,\dots,p_{m-1} peut être vue comme une application strictement croissante $p:[m] \to [n]$. Pour une telle application, on note $v=u \circ p$ pour dire que v est le sous-mot extrait de u via p. On dit que p est un plongement de v dans u, noté $p:v \preceq u$. Il peut exister plusieurs façons différentes de plonger v dans u.

Ouestion 1.

 \square 1.1. Montrer que pour deux mots u et u' et deux lettres a et a', on a l'équivalence suivante.

$$ua \preccurlyeq u'a' \iff ua \preccurlyeq u' \text{ ou } (a = a' \text{ et } u \preccurlyeq u')$$
 (1)

□ 1.2. Programmer une fonction teste_sous_mot : string -> string -> bool décidant en temps polynomial si un mot v est sous-mot d'un mot u. Détailler et justifier votre analyse de complexité.

Question 2. On note $\binom{u}{v}$ le nombre de plongements de v dans u, de sorte que $v \preccurlyeq u$ si et seulement si $\binom{u}{v} > 0$. Notons en particulier que $\binom{u}{\varepsilon} = 1$ pour tout mot $u \in A^*$ car il n'existe qu'une injection de [0], c'est-à-dire \emptyset , dans $\{0,1,\dots|u|-1\}$ et cette injection est bien un plongement.

- **2.1.** Montrer que $\binom{\mathsf{abab}}{\mathsf{ab}} = 3$.
- □ 2.2. Que vaut $\binom{a^n}{a^m}$ quand $a \in A$ est une lettre? On rappelle que a^n est le mot constitué de n occurrences de la lettre a. □ 2.3. Montrer que $\binom{ua}{va} = \binom{u}{va} + \binom{u}{v}$ pour tous mots $u, v \in A^*$ et toute lettre $a \in A$.

Question 3. Pour calculer $\binom{u}{v}$ on considère la fonction suivante.

```
let nb_plongements (v:string) (u:string) =
let rec aux i j =
  if i = 0 then 1
  else if j = 0 then 0 else if v.[i-1] = u.[j-1] then (aux (i-1) (j-1)) + (aux i (j-1))
  else aux i (j-1)
in aux (String.length v) (String length u);;
```

- □ **3.1.** Prouver sa terminaison.
- \square 3.2. Justifier sa correction, c'est-à-dire, expliquer pourquoi elle renvoie bien la valeur $\binom{u}{u}$.

Question 4. Soit T(v, u) le nombre d'appels à la fonction aux lors du calcul de nb_plongements v u.

- □ **4.1.** Montrer qu'il existe une constante C_1 telle que $T(v,u) < 2^{|u|} \cdot C_1$.
- \square **4.2.** Montrer que l'on ne peut pas majorer T(v,u) par une fonction polynomiale de $\binom{u}{v}$.
- □ **4.3.** Montrer qu'il existe une constante C_2 telle que $T(v,u) \ge 2\binom{u}{v} + C_2$.

Question 5. La fonction nb_plongements précédente requiert parfois un temps de calcul exponentiel en la taille |u|+|v| de ses arguments. De meilleurs algorithmes existent. Proposer une nouvelle fonction nb_plongements_rapide qui calcule $\binom{u}{v}$ en temps polynomial en |u|+|v|. Détailler votre analyse de complexité en temps et en espace.

Rappels OCaml. Une chaine de caractères s a le type string, sa longueur est obtenue avec String.length s et son i-ième caractère avec s. [i], les caractères étant indexés à partir de 0. Un tableau t a le type τ array, où τ est le type des éléments. Sa longueur est obtenue avec Array.length t. Son i-ième élément est obtenu avec t. (i) et modifié avec t.(i) <- val, les éléments étant indexés à partir de 0. L'expression Array.make n val construit un tableau de taille n dont les éléments sont initialisés avec la valeur val. Une matrice est un tableau de tableaux de même taille. L'expression Array.make_matrix n m val construit une matrice de n lignes et m colonnes, dont les éléments sont tous initialisés avec la valeur val.

mpi* - lycée montaigne informatique

Exercice 2

Question 1. Montrer que le nombre c_n de comparaisons effectuées par le tri fusion sur une liste des n éléments vérifie $c_1=0 \text{ et la récurrence suivante}: \forall n\geqslant 2 \quad c_n=c_{\lfloor n/2\rfloor}+c_{\lceil n/2\rceil}+n. \text{ En déduire la valeur de } c_{2^p}.$

Question 2. On pose $d_n = c_{n+1} - c_n$.

- \square 2.1. Quelle relation de récurrence définit la suite (d_n) ?
- \square **2.2.** Montrer que $d_n = 2 + \lfloor \log_2 n \rfloor$.
- \square 2.3. En déduire une expression $\tilde{\text{de }}c_n$.

Question 3.

- \square 3.1. Combien faut-il de bits $\nu(k)$ pour coder un entier k? Parmi les entiers $1, 2, \ldots, n-1$, combien ont au moins (p+1) bits dans leur représentation binaire? \square 3.2. On pose $c_n'=\sum_{k=1}^{n-1}\nu(k)$. Montrer que :

$$c_n' = \sum_{p\geqslant 0} (n-2^p)$$

la somme s'arrêtant au dernier terme positif.

 $\hfill\Box$ 3.3. Que représente finalement $c_n-(n-1)$? En déduire c_n .

Question 4.

 $\hfill \mbox{\bf 4.1.}$ Montrer que c_n peut s'écrire :

$$c_n = n\log_2 n + n\varphi(1 - \{\log_2 n\})$$

où $\{x\} = x - \lfloor x \rfloor$ est la partie fractionnaire de x et φ est une fonction à déterminer.

 \square **4.2.** Tracer l'allure de la courbe représentative de φ sur [0,1].