Medindo Desempenho nos Computadores

DCA0104 - Arquitetura de Computadores Diogo Pedrosa diogo@dca.ufrn.br DCA - CT - UFRN

- Quais parâmetros devem ser usados?
 - Memória principal, capacidade de armazenamento em massa, processador mais novo, ...
- Situação
 - Usuário final tempo usado para executar um programa
 - o Gerente de sistemas total de trabalho em um intervalo de tempo
- Tempo de execução e vazão
- Métrica é decidida por comparação
- Quão rápido um programa pode ser executado em um dado computador?

- O que impacta na execução:
 - Algoritmo determina o número de instruções do código-fonte e o número de operações de E/S realizadas
 - Linguagem de programação, compilador e arquitetura determina o número de instruções de máquina para cada instrução em alto nível (comandos em código-fonte)
 - Processador e sistemas de memória determina a velocidade em que as instruções podem ser executadas
 - Sistemas de E/S (hardware e SO) determina a velocidade em que as operações de E/S podem ser executadas

- Necessário determinar o tempo usado pelo computador para executar um determinado programa
- Tempo do ciclo de clock (período)

Elementos sequenciais do computador têm suas mudanças de estado sincronizadas pelo sinal de *clock* do sistema.

Contagem do número de instruções executadas em um programa
 contagem do número TOTAL de ciclos de *clock* usados neste

 Instruções diferentes de uma mesma arquitetura têm quantidades de ciclos de clock diferentes - valor médio chamado de CPI (ciclos de clock por instrução)

$$CPI = \frac{N_{ciclos}}{N_{instruc}}$$
 Contagem das instruções executadas na execução do programa

• Usando *CPI* para calcular o tempo de execução...

$$CPU_{time} = N_{instruc} \times CPI \times T$$
Período do ciclo de *clock*

• Usando *CPI* para calcular o tempo de execução...

$$CPU_{time} = \frac{N_{instruc} \times CPI}{f_{clk}}$$

 Os conjuntos de instruções têm classes que agregam instruções de uma mesma categoria (por exemplo, instruções que requerem operações na ULA, instruções que acessam a memória principal, instruções de desvio, ...)

 Supondo que um programa, executando em um processador de uma determinada arquitetura, com n classes diferentes de instruções, mas com CPI de cada classe conhecida...

$$CPI = \frac{\sum_{i=1}^{n} CPI_i \times I_i}{N_{instruc}}$$

 $CPI_i \rightarrow$ total de ciclos de *clock* por instrução de cada classe *i* do conjunto de instruções na execução do programa

 $l_i \rightarrow$ número de vezes que uma instrução do tipo i foi executada no programa

Calcular o valor de *CPI* para uma máquina *A* na qual as seguintes medidas de desempenho foram gravadas quando executou-se um determinado conjunto de programas de avaliação. A frequência do *clock* da CPU é de 200 MHz.

Categoria de instrução	Porcentagem de ocorrência (%)	Nº de ciclos de <i>clock</i> por instrução
Operação na ULA	38	1
Acesso à memória	15	3
Desvios	42	4
Outros	5	5

Assumindo um total de *N_instruc* instruções executadas...

$$CPI_A = \frac{\sum_{i=1}^{4} CPI_i \times I_i}{N_{instruc}}$$

$$CPI_{A} = \frac{0,38N_{instruc} \times 1 + 0,15N_{instruc} \times 3 + 0,42N_{instruc} \times 4 + 0,05N_{instruc} \times 5}{N_{instruc}}$$

$$CPI_A = 0,38 \times 1 + 0,15 \times 3 + 0,42 \times 4 + 0,05 \times 5$$

$$CPI_{A} = 2,76$$

Observações

- *CPI* reflete a organização e a arquitetura do processador
- Contagem de instruções reflete a arquitetura e o compilador usado
- Outro parâmetro: milhões de instruções por segundo

$$MIPS = \frac{N_{instruc}}{CPU_{time} \times 10^6} = \frac{f_{clk}}{CPI \times 10^6}$$

Considerando que o mesmo conjunto de programas de avaliação tenha sido testado em uma máquina *B*, com coleta de medidas apresentada a seguir, qual é a taxa *MIPS* para essa máquina *B* e, também, *A*? Considere que ambas têm uma frequência de 200 MHz.

Categoria de instrução	Percentual de ocorrência (%)	Nº de ciclos de clock por instrução
Operações na ULA	35	1
Acesso à memória	30	2
Desvios	15	3
Outros	20	5

$$CPI_{A} = 2,76$$

$$MIPS_A = \frac{f_{clkA}}{CPI_A \times 10^6} = \frac{200 \times 10^6}{2,76 \times 10^6} = 70,24$$

$$CPI_B = 0,35 \cdot 1 + 0,30 \cdot 2 + 0,20 \cdot 5 + 0,15 \cdot 3 = 2,40$$

$$MIPS_B = \frac{f_{clkB}}{CPI_B \times 10^6}$$

$$MIPS_B > MIPS_A$$

$$MIPS_B = \frac{200 \times 10^6}{2,4 \times 10^6} = 83,67$$

Observações

 Evita-se o uso da taxa MIPS para medida de desempenho quando se tem máquinas de arquiteturas diferentes

Calcular o tempo de execução e taxa MIPS para os computadores testados a seguir. Considerar uma frequência de 200 MHz.

Categoria	Núm. instruções (em milhões)	Núm. ciclos de <i>clock</i> por instrução		
Máquina A				
ULA	8	1		
Memória	4	3		
Desvios	2	4		
Outros	4	3		
Máquina B				
ULA	10	1		
Memória	8	2		
Desvios	2	4		
Outros	4	3		

Ver exemplo resolvido no Octave.

```
C:\Octave\OCTAVE~1.0\mingw64\bin\octave-gui.exe
octave:1> sum = (8 * 1 + 4 * 3 + 2 * 4 + 4 * 3)*10^6
sum = 40000000
octave: 2 \times 10^{-6}
N inst = 18000000
octave:3> CPI A = sum/N inst
CPI A = 2.2222
octave:4> f A = 200*10^6
f A = 2000000000
octave:5> MIPS A = f A / (CPI A * 10^6)
MIPS A = 90.000
octave:6> CPU A = (N inst * CPI A)/f A
CPU A = 0.20000
octave:7> sum = (10*1 + 8*2 + 4*4 + 2*4)*10^6
sum = 50000000
octave:8> N_{inst} = (10+8+4+2)*10^6
N inst = 24000000
octave:9> CPI B = sum/N inst
CPI B = 2.0833
octave:10> f B = f A
f B = 200000000
octave:11> MIPS B = f B/(CPI B * 10^6)
MIPS B = 96.000
octave:12>
octave:12> CPU_B = (N_inst * CPI_B)/f_B
CPU B = 0.25000
octave:13> _
```

- Outra taxa: MFLOPS
- Milhões de instruções de ponto flutuante executados por segundo
- Somente para instruções de ponto flutuante
- $\begin{array}{c} \bullet \quad \text{N\'{a}o consistente} \\ \hline N\'{u}mero \ \text{de instru\'{c}\'{o}es} \ \text{de ponto flutuante executadas} \\ \hline MFLOPS = \frac{N^{fp}_{instruc}}{CPU^{fp}_{time} \times 10^6} \\ \hline \text{Tempo de execu\'{c}\'{a}o das} \\ \text{instru\'{c}\'{o}es} \ \text{de ponto flutuante} \end{array}$

Com programas de avaliação

Com programas de avaliação

Lei de Amdahl

- Equação que dá o incremento de velocidade em uma máquina após a realização de uma melhoria em seu projeto.
- Gene Amdahl, 1967
- Focado em processamento paralelo (múltiplos processadores)

Lei de Amdahl

 Se considerarmos a aplicação para processadores simples e paralelos...

Lei de Amdahl

- Considerando...
 - \circ f fração do tempo de execução de um programa que pode ser paralelizável
 - (1 f) fração do tempo de execução de um programa que não pode ser paralelizado
 - T tempo de execução do programa
 - *N* número de processadores paralelos

$$Speedup = \frac{T(1-f) + Tf}{T(1-f) + \frac{Tf}{N}} = \frac{1}{(1-f) + \frac{f}{N}}$$

Se f for próximo de 0, não há incremento de velocidade com a adoção de processamento paralelo.

Se N for grande, o incremento de velocidade fica limitado a 1/(1-f)

Referências

- Livro do Stallings: capítulo 2, seção 2.5 ("Avaliação de Desempenho")
- Livro do Patterson: capítulo 4 ("Avaliando e Compreendendo o Desempenho")
- Livro "Fundamentals of Computer Organization and Architecture" (Abd-El-Barr e El-Rewini): capítulo 1, seção 1.4 ("Performance Measures")

Com programas de avaliação

