chapter 6: PACKET STRING DATA

packet string data: imp human readable data

- -considered as partial packet capture
- -collected from same source fro, which nsm sensor gathering other data
- -collect as much app layer data from clear text protocols as long term storage will permit

fpc data rentention is in terms of hours and days, session data in terms of quarter years or years pstr is in between that is weeks or months.

-no of freee and open source tools available for pstr data collection and generation.

-- in pstr only data you care about is human readable

URL SNARF

-part of d sniff suite

-passivley collects HTTP request data and stores it in common log format(CLF)

-passivley listen on interface and dump collected data to stdout, visible in terminal window

defualt listen on tcp port 3128\8080\80 interface eth0

HTTPRY

- -specialized packet sniffer for displaying and logging http traffic only.
- -allow for capture and output of any http header in any order.
- -ability to customize output.

JUSTNIFFER

- -full fledged protocol analysis tool that allow for completely customizable output.
- -includes python script, which extract files transferred during http communication -can be extended to do perfromance measures , response times and connection times.

VIEWING PSTR DATA

-potential solution that can parse view and interact to pstr data are:

*logstash

*Raw text parsing with bash tool

logstash

- -log parsing engine
- -allow both single and multiline logs
- -also a powerful log collector
- -can confgiure logstash to parse log that are collected with url snarf
- -logstash 1.2.2 includes kibana interface for viewing logs.

Raw text parsing with bash tool

- -parsing raw data using **sed**, **awk**, **and grep** can sometimes carry a mystical aura of fear that is not entirely desrved
- -we can search for every host seen in the data by simply performing search for host field.

CHAPTER 7: DETECTION MECHANISMS, INDICATORS OF COMPROMISE AND SIGNATURES

DETCTION MECHANISMS

- -detection is function of software that parses through collected dtaa to generate alert data, this is refferd to as detection mechanism
- 2 primary categories:
- 1) signature based detection
- 2) Anamly based detection

SIGNATURE BASED

- -we look for matches of specfic patterns in data.
- -patterns can be simple like ip, text string
- -patterns can be complex like specified number of null bytes occurring occurring after a specific string.
- -when these pattens are broken down into objective platform independent pieces of data they become INDICATOR OF COMPROMISE
- -when they are expressed in form of platform specific language of detectin mehanism, they becoime signatures.

ANAMOLY BASED DETCTION

- -relies upon observing anamoulous traffic through heuristics and statistics.
- -ability to recognize attack patterns that deviate from normal network beahviour.
- -a new evolving subset of this is honey pot based detection mechanisms.

IOC'S AND SIGNATURES

- -IOC is a piece of info, that objectively describe a network intrusion, expressed in platform idependent way.
- -could be simple indicator like IP address of command and controls server,
- -could be complex like mail server is being used as a malicious SMTP relay.
- -When IOC is taken and used as platform sepcifc language i.e snort rule it becomes part of signature.

IOC AND SIGNATURES

- -signature can contain 1 or mores IOC.
- -indicators can be classified as
- -host and network indicators
- -static indicators
- -variable indicators

-host and network indicators

- -basic level of classfication helps frame the indicator to plan detection mechanism it will be used with.
- -host based ioc is piece of info that is found on host and objectively describes and intrusion, common examples
- -registery key
- -file name
- -text string
- -process name
- -mutex
- -file hash
- -user account
- -diectory path

examples of network based IOC are

- -ipv4/ipv6 address
- -x509 certificate
- -domain name
- -text string
- -protocol
- -file name

STATIC INDICATORS

- -for which values are explicitly defined
- -3 variations

- *atomic
- *computed
- *behavioural

atomic indicators

- -smaller and specific
- -cannot be broken down to smaller components
- examples are:
- -ip
- -text string
- -host name
- -email address

computed indictors

- -derived from incident data
- -examples
- -hash values
- -regular expressions
- -statistics

behavioural indicators

- -collection of computed and atomic indicators
- -paired together often with some form of logic, to provide useful context
- -examples include
- *filename with hash values
- *combination of text string and regular expression

variable indicators

- -indicators for which values are not known.
- -examines thoratical attack rather that one already occured

indicatos and signature evolution

- they have shlef life

immature mature retired

immature indicator:

that is newly discoverd as a result of some form of inteligence

- -also include variable indicators, that are not yet evealated fully.
- -confidence upon them may vary depending upon source
- -may change frequently

Mature indicator:

- -once an indicator or signature is proven that it is useful in NSM environment, it is considered to be mature.
- -considered as reliable and stable
- -combine with other indicators in order to make more granular behavioural indicators resulting in advance signature.
- -any change to them should be documented

Retired indicator:

that is no longer being actively used is considered retired.

-it isn't currently used by a detection mechanism.

TUNNING SIGNATURES

- -ensures that signatures on which indicators rely are being used reliably and effectively
- -while determining maturity and confidence level of a signature 4 data points should be considered

true/false positive/negative

TP: alert that correctly identifies an activity

FP: alert that incorrectly identifies an activity

TN: alert is incorrectly not been generated when a specific activity has not been

occured

FN:alert is incorrectly not being generated when specific activity has occurred.

PRECISION

- -precision of signature refers to ability to identify positive results.
- -can be determined by proportion of tp against all positive results.

precision = tp / (tp + fp)

- -can also help us to find probabilty that, given an alert being generated, activity that has been detected has truly occured.
- -signature has high precision, alert is genrated, then activity is very likely occured

CRITICAL INDICATOR AND SIGNATURE CRITERIA

- -indicator or signature without context is not useful.
- -on receiving alert analyst examine supporting context of indicator and signature