Universidad del Valle de Guatemala

Facultad de Ingeniería

Departamento de Ingeniería Electrónica

IE2011 - Electrónica Digital I

Kurt Kellner

Nombre: Pablo Dardón

1

4

16384 32768

Carnet: 17320 Seccion 21

Laboratorio #01

Este laboratorio será trabajado de forma individual y se entregará de forma digital al finalizar los períodos asignados. Haga los ejercicios **SIN** usar una calculadora (a menos que se le indique lo contrario). Deberá identificar su entrega con su nombre, carné y sección.

Ejercicio 0000₂

Convierta los números con la base indicada a decimal:

1. 4310 ₅	Base 10
2. 198 ₁₂	1. 580
3. 435 ₈	2. 260 3. 285
4. 345 ₆	4. 137

Ejercicio 0001₂

¿Cuál es el binario más grande que se puede expresar en 16 bits? Escriba el decimal y hexadecimal equivalente.

1111 1111 1111 1111₂ = 2^{16} -1 = 65535_{10} = FFFF

Ejercicio 0010₂

Convierta los siguientes hexadecimales a binario y a decimal.

	Binario	Decimal
 0x64CD hED3A 	1. 0110 0100 1 <mark>100 1101</mark> 2. 1110 1101 0011 1010	1. 25805 2. 60730
3. 403FB01 ₁₆	3. 0100 0000 0011 1111 1011 0000 0001	3. 67369729
4. 0x7C	4. 0111 1100	4. 124
Ejercicio 0011 ₂		

Convierta el número decimal **431**₁₀ a binario de **dos** formas diferentes:

1. Directo a binario

110101111

2. Primero a hexadecimal y luego a binario

0x1AF 110101111

3. ¿Cuál método es más sencillo?

Es mas sensillo en primero dado que solo hay que ir sumando bits

Ejercicio 0100₂

Sume los siguientes números sin convertirlos a decimal. Recuerde que para los números binario podría ser que estén en binario normal **0** en complemento a 2. Los hexadecimales son **sólo** positivos. Deje indicado si hay o no *overflow* (desbordamiento):

	Binario 0	Complemento a2
1. 1011 ₂ + 101 ₂	1110	10000
2. 2E ₁₆ + 34 ₁₆ 62 ₁₆		
3. C2 ₁₆ + A4 ₁₆ 166 ₁₆		
4. 1001 1001 ₂ + 0100 0100 ₂	1101 1101	1101 1101

Ejercicio 0101₂

Encuentre el complemento a 1 y complemento a 2 de los siguientes números:

	complemento a1	complemento a2
1. 0001 0000	1. 1110 1111	1. 1111 0000
2. 0000 0000	2. 1111 1111	2. 1 0000 0000
3. 1101 1010	3. 0010 0101	3. 0010 0110
4. 1010 1010	4. 0101 0101 5. 0111 1010	4. 0101 0110 5. 0111 1011
5. 1000 0101	6. 0000 0000	6. 0000 0001
6. 1111 1111		

Ejercicio 0110₂

Convierta los siguientes números decimales a su representación en ASCII en hexadecimal.

•	6514	0x36 0x35 0x31 0x34	
•	97	0x39 0x37	0x61
•	63	ende end.	
•	1988	0x36 0x33	0x3F
		0x31 0x39 0x38 0x38	

Ejercicio 0111₂

Escriba la expresión "G. Boole" en ASCII, usando códigos de 8 bits. Incluya el punto y el espacio. El bit más significativo es de paridad, y en el código debe de ser siempre impar (ie. si el numero es 101₂ este se escribe 1000 0101₂ para que exista una cantidad impar de bits). La paridad sirve para revisar que un código se envió y se recibió correctamente. Puede ver más información de paridad aquí: https://en.wikipedia.org/wiki/Parity_bit

Decodifique el siguiente código ASCII:

Convierta los siguientes números decimales a binarios a un número binario de 6 bits en complemento a dos. Luego súme los números. Deje indicado si hay o no *overflow* (desbordamiento).

Binario a2 Suma overflow

1. 16 + 9

2. 27 + 31

3. -4 + 19

4. 3 + -32