Title

D. Zack Garza

Table of Contents

Contents

Table of Contents	
1 Lecture 09	

Table of Contents

Lecture 09

1 | Lecture 09

Last time:

- The Čech-to-derived spectral sequence,
- The Mayer Vietoris LES,
 - Computes the étale cohomology of a scheme using a Zariski open cover.
- Étale cohomology of quasicoherent sheaves,
 - Agrees with Zariski cohomology, first legitimate computation!
 - Use this to compute:
- Étale cohomology of \mathbb{F}_p in characteristic p.

Last time we had a scheme $X_{/\mathbb{F}_p}$ and the Artin-Schreier exact sequence of sheaves of $X_{\text{\'et}}$:

$$0 \to \mathbb{F}_p \to \mathcal{O}_X^{\text{\'et}} \xrightarrow{t \mapsto t^p - t} \mathcal{O}_X^{\text{\'et}} \to 0.$$

The map appearing here is referred to as the Artin-Schreier map f This works over arbitrary fields of characteristic p, with a modified definition replacing t^p .

Exercise 1.0.1(?): Check that this is an additive homomorphism of abelian sheaves. This follows from the fact that Frobenius itself is.

Recall that we had a theorem last time showing that the étale cohomology of quasicoherent sheaves is equivalent to the usual Zariski cohomology. From this we got a long exact sequence:

$$H^{i}(X_{\operatorname{\acute{e}t}}, \underline{\mathbb{F}_{p}}) \xrightarrow{\delta} H^{i}(X, \mathcal{O}_{X}) \xrightarrow{f} H^{i}(X, \mathcal{O}_{X})$$
 $\cdots \longrightarrow H^{i-1}(X, \mathcal{O}_{X})$

We don't know how to compute $H^i(X_{\text{\'et}}, \mathbb{F}_p)$ generally, but the affine case is easy. For X affine, $H^{>0}(X, \mathcal{O}_X) = 0$, which in facts holds for any quasicoherent sheave replacing \mathcal{O}_X , and $H^0(X, \mathbb{F}_p) = (\mathbb{F}_p)^{|\pi_0 X|}$ where the exponent is the number of connected components of X. So we get an exact sequence

$$H^{i}(X_{\operatorname{\acute{e}t}}, \underline{\mathbb{F}_{p}}) \xrightarrow{\delta} \mathcal{O}_{X}(X) \xrightarrow{f} \mathcal{O}_{X}(X)$$
 $\cdots \longrightarrow H^{i-1}(X, \mathcal{O}_{X})$

Lecture 09 3