	集合	概念	一组对象的全	元素特点: 互异性、无序性、确定性				
集合		关系	子集	$x \in A \Rightarrow x \in B \Leftrightarrow A \subseteq B$ $\emptyset \subseteq A$				
			真子集	$x \in A \Longrightarrow x \in B, \exists x_0 \in B, x_0 \notin A \Longleftrightarrow A \subset B$			$A \subseteq B, E$	$B \subseteq C \Rightarrow A \subseteq C$
			相等	$A \subseteq B, B \subseteq A \Leftrightarrow A = B$			n 个元素集	集合子集数 2"
		运算	交集	$A \cap B = \{x \mid x \in A, \exists x \in B\}$	3}	$C_U(A \cup B)$	$=(C_UA)$	$\bigcap(C_UB)$
			并集	$A \cup B = \{x \mid x \in A, \vec{\boxtimes} x \in B\}$ $C_U(A \cap B) = 0$			$)=(C_{U}A)$	$\bigcup (C_U B)$
			补集	$C_U A = \{ x \mid x \in U \perp \exists x \notin A \}$		$C_U(C_UA) = A$		
	常用逻辑用语	命题	概念	能够判断真假的语句	语句			
常用逻辑用语				原命题: 若 p , 则 q	J.	原命题与逆命题, 否命题与逆否命题互逆; 原		
			四种	逆命题: 若 q ,则 p 命题与否命题、			逆命题与这	产否命题互否; 原命
			命题	否命题:若 $\neg p$,则 $\neg q$				<u></u>
				逆否命题:若 $\neg q$,则 $\neg p$	7	为逆否的命题等价		
		充要 条件	充分条件	$p \Rightarrow q$, $p 是 q$ 的充分条件	1	若命题 p 对应集合 A ,命题 q 对应集合 B ,		
			必要条件	$p \Rightarrow q$, $q \in p$ 的必要条件	J	$]$ 则 $p \Rightarrow q$ 等价于 $A \subseteq B$, $p \Leftrightarrow q$ 等价于		
			充要条件	$p \Leftrightarrow q$, p,q 互为充要条件 $A=B$ 。				
		逻辑连接词	或命题	$p\lor q$, p,q 有一为真即为真 , p,q 均为假时才为假 类比集合的并			类比集合的并	
			且命题	$p \wedge q$, p,q 均为真时才为真, p,q 有一为假即为假			类比集合的交	
			非命题	$\neg p$ 和 p 为一真一假两个互为对立的命题				类比集合的补
		量词	全称量词	∀ , 含全称量词的命题叫全称命题, 其否定为特称命题				
			存在量词	3,含存在量词的命题叫特称命)题,	其否定为全称命	题	

- 1		告扫		, 123, 313, 121, 121, 131, 141, 141, 141, 141, 141, 141, 14		
	量词		存在量词	3, 含存在量词的命题叫特称命题, 其否定为全称命题		
复数		Ą	虚数单位	规定: $i^2=-1$; 实数可以与它进行四则运算,并且运算时原有的加、乘运算律仍成立。 $i^{4k}=1, i^{4k+1}=i, i^{4k+2}=-1, i^{4k+3}=-i(k\in {\bf Z})$ 。		
	相	贬念	复数	形如 $a+bi(a,b\in\mathbf{R})$ 的数叫做复数, a 叫做复数的实部, b 叫做复数的虚部。 $b\neq 0$ 时叫虚数、 $a=0,b\neq 0$ 时叫纯虚数。		
		1	夏数相等	$a+bi=c+di(a,b,c,d\in\mathbf{R}) \Leftrightarrow a=c,b=d$		
		ŧ	共轭复数	文部相等,虚部互为相反数。即 $z=a+bi$,则 $z=a-bi$ 。		
			加减法	$(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i, (a,b,c,d \in \mathbf{R}).$		
	17	三 算	乘法	$(a+bi)(c+di) = (ac-bd) + (bc+ad)i, (a,b,c,d \in \mathbf{R})$		
	Æ	≐ 77	除法	$(a+bi) \div (c+di) = \frac{ac+bd}{c^2+d^2} + \frac{bc-da}{c^2+d^2} i(c+di \neq 0, a, b, c, d \in \mathbf{R})$		
	Л	何	复数	i数 $z=a+bi$ \longleftrightarrow \to 复平面内的点 $Z(a,b)$ \longleftrightarrow 向量 \overrightarrow{OZ}		
	意	义	向量 \overrightarrow{OZ} 的模叫做复数的模, $ z =\sqrt{a^2+b^2}$			

- 1	向	显	既有大小又有方向的量,表示向量的有向线段的长度	即做该向量的模。			
重			-				
要							
概	1 13:						
念	四重光用						
	投影		$<\vec{a},\vec{b}>= heta$, $ \vec{b} \cos heta$ 叫做 \vec{b} 在 \vec{a} 方向上的投影。【注意:投影是数量】				
重	基本定理		$\vec{e_1},\vec{e_2}$ 不共线,存在唯一的实数对 (λ,μ) ,使 $\vec{a}=\lambda\vec{e_1}+\mu\vec{e_2}$ 。若 $\vec{e_1},\vec{e_2}$ 为 x,y 轴上的单位				
要法则定			正交向量, (λ,μ) 就是向量 \overline{a} 的坐标。				
			一般表示	坐标表示 (向量坐标上下文理解)			
	共线条件		\vec{a}, \vec{b} ($\vec{b} \neq \vec{0}$ 共线 \Leftrightarrow 存在唯一实数 λ , $\vec{a} = \lambda \vec{b}$	$(x_1, y_1) = \lambda(x_2, y_2) \Leftrightarrow x_1 y_2 = x_2 y_1$			
理	垂直条件		$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$	$x_1 y_1 + x_2 y_2 = 0$			
	加法运算	法则	$\vec{a} + \vec{b}$ 的平行四边形法则、三角形法则	$\vec{a} + \vec{b} = (x_1 + x_2, y_1 + y_2)$			
		算律	$\vec{a} + \vec{b} = \vec{b} + \vec{a}$, $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$	与加法运算有同样的坐标表示			
	减法 运算	法则	$\vec{a}-\vec{b}$ 的三角形法则	$\vec{a} - \vec{b} = (x_1 - x_2, y_1 - y_2)$			
		分解	$\overrightarrow{MN} = \overrightarrow{ON} - \overrightarrow{OM}$	$\overrightarrow{MN} = (x_N - x_M, y_N - y_M)$			
各种运算	数乘运算	概念	$\lambda \cdot a$ 为向量, $\lambda > 0$ 与 a 方向相同,	$\lambda \vec{a} = (\lambda x, \lambda y)$			
			$\lambda < 0$ 与 \vec{a} 方向相反, $\left \lambda \vec{a}\right = \left \lambda\right \left \vec{a}\right $				
		算律	$\lambda(\mu a) = (\lambda \mu) \vec{a}, \ (\lambda + \mu) \vec{a} = \lambda \vec{a} + \mu \vec{a},$				
			$\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$	与数乘运算有同样的坐标表示			
		概念	$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} \cos \langle \vec{a}, \vec{b} \rangle$	$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2$			
	数量积运算	主要性质		$ \vec{a} = \sqrt{x^2 + y^2} ,$			
			$\vec{a} \cdot \vec{a} = \vec{a} ^2$, $ \vec{a} \cdot \vec{b} \le \vec{a} \cdot \vec{b} $	$\left x_1 x_2 + y_1 y_2 \right \le \sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}$			
		算律	$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$, $(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$,	与上面的数量积、数乘等具有同样的坐标			
			$(\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b}) = \lambda (\vec{a} \cdot \vec{b})$	表示方法。			
- 基本 2	要概念 重要法则定理 各种运	重要概念 重要法则定理	重要概念 重要法则定理 10 行量 投 基 共 加运 減运 数运 数积算 基 共 基 共 基 其 分 概 量 基 基 基	下の自由			