A wavelet based approach to climate biome clustering

Derek Desantis

University of Nebraska - Lincoln

August 7, 2018

Туре	Description	Criterion
A Af Am As Aw	Equatorial climates Equatorial rainforest, fully humid Equatorial monsoon Equatorial savannah with dry summer Equatorial savannah with dry winter	$\begin{split} T_{min} &\geq +18 \text{ °C} \\ P_{min} &\geq 60 \text{ mm} \\ P_{ann} &\geq 25 (100 - P_{min}) \\ P_{min} &< 60 \text{ mm in summer} \\ P_{min} &< 60 \text{ mm in winter} \end{split}$
B BS BW	Arid climates Steppe climate Desert climate	$\begin{aligned} P_{ann} &< 10 P_{th} \\ P_{ann} &> 5 P_{th} \\ P_{ann} &\leq 5 P_{th} \end{aligned}$
C Cs Cw Cf	Warm temperate climates Warm temperate climate with dry summer Warm temperate climate with dry winter Warm temperate climate, fully humid	-3 °C $<$ T_{min} $<$ $+18$ °C P_{smin} $<$ P_{wmin} , P_{wmax} $>$ 3 P_{smin} and P_{smin} $<$ 40 mm P_{wmin} $<$ P_{smin} and P_{smax} $>$ 10 P_{wmin} neither Cs nor Cw
D Ds Dw Df	Snow climates Snow climate with dry summer Snow climate with dry winter Snow climate, fully humid	$\begin{array}{l} T_{min} \leq -3~^{\circ}C \\ P_{smin} < P_{wmin}, P_{wmax} > 3~P_{smin} \text{ and } P_{smin} < 40~mm \\ P_{wmin} < P_{smin} \text{ and } P_{smax} > 10~P_{wmin} \\ \text{neither Ds nor Dw} \end{array}$
E ET EF	Polar climates Tundra climate Frost climate	$\begin{array}{l} T_{max} < +10~^{\circ}C \\ 0~^{\circ}C \leq T_{max} < +10~^{\circ}C \\ T_{max} < 0~^{\circ}C \end{array}$

A wavelet based approach to climate biome clustering

Learning Climate Biomes

Köppen-Gieger Model

Problem		

A wavelet based approach to climate biome clustering

Learning Climate Biomes

Köppen-Gieger Model

Problem

■ Only applies to land data

- Only applies to land data
- Only uses precipitation and temperature data

- Only applies to land data
- Only uses precipitation and temperature data
- As the climate changes, so must the biomes

- Only applies to land data
- Only uses precipitation and temperature data
- As the climate changes, so must the biomes
- Köppen-Gieger is just a heuristic

- Only applies to land data
- Only uses precipitation and temperature data
- As the climate changes, so must the biomes
- Köppen-Gieger is just a heuristic

Goal

■ Cluster on any chosen variables

- Only applies to land data
- Only uses precipitation and temperature data
- As the climate changes, so must the biomes
- Köppen-Gieger is just a heuristic

Goal

- Cluster on any chosen variables
- Detect where biomes are shifting

- Only applies to land data
- Only uses precipitation and temperature data
- As the climate changes, so must the biomes
- Köppen-Gieger is just a heuristic

Goal

- Cluster on any chosen variables
- Detect where biomes are shifting
- Want a data driven model

Example

Given an image of a leaf, determine which tree (from a predetermined list) it came from.

Example

Given an image of a leaf, determine which tree (from a predetermined list) it came from.

Unsupervised Learning: Discover classes hidden in the data - Data does **not** come with labels.

Example

Given an image of a leaf, determine which tree (from a predetermined list) it came from.

Unsupervised Learning: Discover classes hidden in the data - Data does **not** come with labels.

Example

Given images of leaves, automatically sort images into bins based of features (not set or necessarily known).

A wavelet based approach to climate biome clustering

Coarse Overview of ML

Difficulty in ML

Remark

■ Determining biomes directly from data is unsupervised

Remark

- Determining biomes directly from data is unsupervised
- Generically speaking, supervised is "easier" than unsupervised

Remark

- Determining biomes directly from data is unsupervised
- Generically speaking, supervised is "easier" than unsupervised
- Large scale unsupervised learning is notoriously difficult (AKA prohibitively expensive):

K-means $\sim \mathcal{O}(K * number data * dim)$

$$\blacksquare \ Let \ f = [1, 1, 2, 2, .5, 0, 0, 0, 3, 1].$$

- Let f = [1, 1, 2, 2, .5, 0, 0, 0, 3, 1].
- Taking the wavelet transform yields two new signals:
 - Approximation Information Averages of pairs of points
 - 2 Detail Information Differences from averages

- Let f = [1, 1, 2, 2, .5, 0, 0, 0, 3, 1].
- Taking the wavelet transform yields two new signals:
 - Approximation Information Averages of pairs of points
 - 2 Detail Information Differences from averages
- \blacksquare Taking DWT:

$$g_1 = [1, 2, 0.25, 0, 2]$$

 $h_1 = [0, 0, 0.25, 0, 1]$

- Let f = [1, 1, 2, 2, .5, 0, 0, 0, 3, 1].
- Taking the wavelet transform yields two new signals:
 - Approximation Information Averages of pairs of points
 - 2 Detail Information Differences from averages
- \blacksquare Taking DWT:

$$g_1 = [1, 2, 0.25, 0, 2]$$

 $h_1 = [0, 0, 0.25, 0, 1]$

L_{Select Variables}

LOCA Data: 1950-1970

LOCA Data: 1950-1970

Choose wavelets:

■ Space: Haar

■ Time: db2

Prec Data: t=0

Prec Data: t=0

Interpolate Nan:

Interpolate Nan:

∟_{Take DWT of Data}

DWT: 2 space, 0 time

A wavelet based approach to climate biome clustering LClustering Biomes LClustering

■ Locate data values corresponding to non-NAN values (with ϵ boundary)

- Locate data values corresponding to non-NAN values (with ϵ boundary)
- Cluster the approximation coefficients for each variable

- Locate data values corresponding to non-NAN values (with ϵ boundary)
- Cluster the approximation coefficients for each variable
 - Settled on K-means
 - Determined number of clusters using silhouette and Calinski Harabaz scores
 - Used 3 clusters for Prec, 4 clusters for Tmin and Tmax

Map Clusters Back To Data

Data Clusters (1,0): 1950-1970

└Map Clusters Back To Data

Data Clusters (1,0): 1950-1970

└Map Clusters Back To Data

Data Clusters (1,0): 1950-1970

Data Clusters (1,0): 1950-1970

└Final Clusters

Combined Data Clusters (1,0): 1950-1970

North America Köppen-Gieger Model

└_Clusters Change

Combined Data Clusters (1,0): 1950-1970

└_Clusters Change

Combined Data Clusters (1,0): 1993-2013

Biome Shift

Find Correlation Between Clusters

Correlation Between 1950-1970 Clusters and 1993-2013 Clusters

Biome Shift

Find Correlation Between Clusters

Sorted Correlation Between 1950-1970 Clusters and 1993-2013 Clusters

Find Correlation Between Clusters

Reindex Combined Data Clusters (1,0): 1950-1970

Find Correlation Between Clusters

Combined Data Clusters (1,0): 1993-2013

Find Correlation Between Clusters

Difference Between 1950-1970 Clusters and 1993-2013 Clusters

A wavelet based approach to climate biome clustering Luture Work

1 Add other variables (e.g. wind)

- 1 Add other variables (e.g. wind)
- 2 Parallelism and optimization

- 1 Add other variables (e.g. wind)
- 2 Parallelism and optimization
- 3 Perform an analytical comparison to the Köppen-Gieger Model

- 1 Add other variables (e.g. wind)
- 2 Parallelism and optimization
- 3 Perform an analytical comparison to the Köppen-Gieger Model
- 4 Apply this clustering method to the ocean data