We imagined an instance of problem...

Red edges = E' edges that merged in Step 4 Orange edges = E' edges that became intra-category "for free"

Red edges = E' edges that merged in Step 4 Orange edges = E' edges that became intra-category for free

Red edges = E' edges that merged in Step 4 Orange edges = E' edges that became intra-category for free

Red edges = E' edges that merged in Step 4 Orange edges = E' that became intra-category for free in Step 4

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Proceeding with the proof: compare G to a **different** optimal solution O

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Example: \mathcal{O} is in green.

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Example: \mathcal{O} is in green.

Which edge defines $Cost(\mathcal{O})$?

A. (C,F)

B. (E,F)

C. Another red edge

D. Impossible to determine

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Example: \mathcal{O} is in green. (C,F) defines $Cost(\mathcal{O})$. How does the weight of (C,F) compare to the weight (E,F)?

- A. weight(C,F) \leq weight(E,F)
- B. weight(C,F) \geq weight(E,F)
- C. Impossible to determine

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Example: \mathcal{O} is in green. (C,F) defines $Cost(\mathcal{O})$, and has equal or greater weight than the blue edge:

 $\rightarrow \text{Cost}(\mathcal{G}) \leq \text{Cost}(\mathcal{O})$

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Case 2: all edges of E' are intra-category in O

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Case 2: all edges of E' are intra-category in \mathcal{O}

...Then \mathcal{O} can't have **extra** intra-category edges that were inter-category in \mathcal{G} .

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Case 2: all edges of E' are intra-category in \mathcal{O}

...Then \mathcal{O} can't have **extra** intra-category edges that were inter-category in \mathcal{G} . \rightarrow all inter-category edges

 \rightarrow all inter-category edges in $\mathcal G$ are inter-category in $\mathcal O$

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Case 2: all edges of E' are intra-category in O

...Then \mathcal{O} can't have **extra** intra-category edges that were inter-category in \mathcal{G} .

 \rightarrow all inter-category edges in \mathcal{G} are inter-category in \mathcal{O}^*

*With a few extra steps, we can actually prove G = O

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Case 2: all edges of E' are intra-category in \mathcal{O}

...Then \mathcal{O} can't have **extra** intra-category edges that were inter-category in \mathcal{G} .

- → all inter-category edges in
- $\mathcal G$ are inter-category in $\mathcal O^*$
- $\rightarrow \text{Cost}(\mathcal{G}) \leq \text{Cost}(\mathcal{O})$

*With a few extra steps, we can actually prove G = O

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Summary

When some edges of E' are inter-category in \mathcal{O} : $Cost(\mathcal{G}) \leq Cost(\mathcal{O})$

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Summary

When **some** edges of E' are inter-category in \mathcal{O} : $\operatorname{Cost}(\mathcal{G}) \leq \operatorname{Cost}(\mathcal{O})$ When **no** edges of E' are inter-category in \mathcal{O} : $\operatorname{Cost}(\mathcal{G}) \leq \operatorname{Cost}(\mathcal{O})$

red edges = E' edges merged in Step 4 Orange = E' edges covered for free

Summary

When **some** edges of E' are inter-category in \mathcal{O} : $\operatorname{Cost}(\mathcal{G}) \leq \operatorname{Cost}(\mathcal{O})$ When **no** edges of E' are inter-category in \mathcal{O} : $\operatorname{Cost}(\mathcal{G}) \leq \operatorname{Cost}(\mathcal{O})$

....QED, $Cost(G) \leq Cost(O)$, which means G is optimal.

red edges = E' edges merged in Step 4 Orange = E' edges covered for free