IEEE Floating Point

Let's aim to represent numbers of the following scientific-notation-like format:

$$\chi * 2^{y}$$

With this format, 32-bit floats represent numbers in the range $\sim 1.2 \times 10^{-38}$ to $\sim 3.4 \times 10^{38}$! Is every number between those representable? **No**.

IEEE Single Precision Floating Point

s exponent (8 bits)

fraction (23 bits)

Exponent (Binary)	Exponent (Base 10)
1111111	
11111110	;
11111101	?
11111100	;
•••	;
0000011	?
0000010	?
0000001	?
0000000	?

s exponent (8 bits)

fraction (23 bits)

Exponent (Binary)	Exponent (Base 10)
1111111	RESERVED
1111110	?
11111101	?
11111100	?
•••	?
0000011	?
0000010	?
0000001	?
0000000	RESERVED

s exponent (8 bits)

fraction (23 bits)

Exponent (Binary)	Exponent (Base 10)
1111111	RESERVED
11111110	127
11111101	126
11111100	125
•••	•••
0000011	-124
0000010	-125
0000001	-126
0000000	RESERVED

s exponent (8 bits) fraction (23 bits)

- The exponent is **not** represented in two's complement.
- Instead, exponents are sequentially represented starting from 000...1 (most negative) to 111...10 (most positive). This makes bit-level comparison fast.
- Actual value = binary value 127 ("bias")

11111110	254 - 127 = 127
11111101	253 - 127 = 126
•••	•••
0000010	2 - 127 = -125
0000001	1 - 127 = -126

Fraction

s exponent (8 bits) fraction (23 bits) $x * 2^{y}$

• We could just encode whatever x is in the fraction field. But there's a trick we can use to make the most out of the bits we have.

An Interesting Observation

In Base 10:

$$42.4 \times 10^5 = 4.24 \times 10^6$$

$$324.5 \times 10^5 = 3.245 \times 10^7$$

$$0.624 \times 10^5 = 6.24 \times 10^4$$

We tend to adjust the exponent until we get down to one place to the left of the decimal point.

In Base 2:

$$10.1 \times 2^5 = 1.01 \times 2^6$$

$$1011.1 \times 2^5 = 1.0111 \times 2^8$$

$$0.110 \times 2^5 = 1.10 \times 2^4$$

Observation: in base 2, this means there is always a 1 to the left of the decimal point!

Representing Zero

The float representation of zero is all zeros (with any value for the sign bit)

Sign	Exponent	Fraction
any	All zeros	All zeros

• This means there are two representations for zero! 😊

Representing Small Numbers

If the exponent is all zeros, we switch into "denormalized" mode.

Sign	Exponent	Fraction
any	All zeros	Any

- We now treat the exponent as -126, and the fraction as without the leading 1.
- This allows us to represent the smallest numbers as precisely as possible.

Representing Exceptional Values

If the exponent is all ones, and the fraction is all zeros, we have +- infinity.

Sign	Exponent	Fraction
any	All ones	All zeros

- The sign bit indicates whether it is positive or negative infinity.
- Floats have built-in handling of over/underflow!
 - Infinity + anything = infinity
 - Negative infinity + negative anything = negative infinity
 - Etc.

Representing Exceptional Values

If the exponent is all ones, and the fraction is nonzero, we have **Not a Number (NaN)**

Sign	Exponent					Fraction	
any	1	•••	•••	•••	•••	1	Any nonzero

- NaN results from computations that produce an invalid mathematical result.
 - Sqrt(negative)
 - Infinity / infinity
 - Infinity + -infinity
 - Etc.

Number Ranges

- 32-bit integer (type int):
 - > -2,147,483,648 to 2147483647
 - > Every integer in that range can be represented
- 64-bit integer (type long):
 - > -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
- 32-bit floating point (type **float**):
 - $\sim 1.2 \times 10^{-38}$ to $\sim 3.4 \times 10^{38}$
 - Not all numbers in the range can be represented (not even all integers in the range can be represented!)
 - Gaps can get quite large! (larger the exponent, larger the gap between successive fraction values)
- 64-bit floating point (type double):
 - $\sim 2.2 \times 10^{-308}$ to $\sim 1.8 \times 10^{308}$

Precision options

• Single precision: 32 bits

• Double precision: 64 bits

Extended precision: 80 bits (Intel only)

Visualization: Floating Point Encodings

Dynamic Range (Positive Only)

	s	exp	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers	0	0000	110	-6	6/8*1/64 = 6/512
		0000		-6	7/8*1/64 = 7/512 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 largest norm
	0	1111	000	n/a	inf

 $v = (-1)^s M 2^E$ n: E = Exp - Biasd: E = 1 - Bias

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Arithmetic

Is this just overflowing? It turns out it's more subtle.

```
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14
```

Let's look at the binary representations for 3.14 and 1e20:

	31	30 23	22 0
3.14:	0	10000000	10010001111010111000011
	31	30 23	22 0
1e20:	0	11000001	01011010111100011101100

Floating Point Arithmetic

Is this just overflowing? It turns out it's more subtle.

```
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14
```

Floating point arithmetic is not associative. The order of operations matters!

- The first line loses precision when first adding 3.14 and 1e20, as we have seen.
- The second line first evaluates 1e20 1e20 = 0, and then adds 3.14

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - •double double precision
- Conversions/Casting
 - •Casting between int, float, and double changes bit representation
 - double/float > int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

```
• x == (int)(float) x
                                      False
• x == (int)(double) x
                                     True
• f == (float)(double) f
                                     True
• d == (float) d
                                      False
• f == -(-f);
                                     True
\cdot 2/3 == 2/3.0
                                     False
• d < 0.0 \Rightarrow ((d*2) < 0.0)
                                     True (OF?)
• d > f \Rightarrow -f > -d
                                     True
• d * d >= 0.0
                                     True (OF?)
• (d+f)-d == f
                                     False
```