Ceci n'est pas d'intelligence

Logica en formele systemen

Predikaatlogica

Semantiek

Prof. dr. Marjon Blondeel Academiejaar 2024-2025

Inhoud predikaatlogica

- Inleiding
- Syntaxis
- Semantiek
- Geldig gevolg
- Afleidingen
- Metatheorie

Inleidend voorbeeld

$\forall x \exists y (Rxy \land Ay)$

Enkele voorbeelden van interpretaties:

domein	Rxy	Ay	Interpretatie formule
N	x is kleiner dan y	y is even	Voor elk natuurlijk getal bestaat er een groter getal dat even is.
mensen	x is de moeder van y	y is een vrouw	Elk persoon is moeder van een vrouw.

Structuur: inleiding

Een structuur kan je zien als een domein waarop relaties en operaties/functies gedefinieerd zijn.

Voorbeeld: het domein van de natuurlijke getallen №

- relaties: <, =, ...
- functies: +,*,...

Informeel:

- relaties corresponderen met beweringen (waar/vals)
- functies leveren andere objecten op

Structuur: definitie

Een structuur D is een drietal $\langle D, R, O \rangle$ bestaande uit een nietlege verzameling D (het domein), een verzameling R van relaties op D en een verzameling O van operaties op D.

Relationele structuur: een structuur met $\mathbf{R} \neq \emptyset$.

- by $D = \{1,2,3\}$ met 1 relatie kleiner dan
- Operationele structuur: een structuur met $\mathbf{0} \neq \emptyset$.
- bv groepen, ringen (algebra)

Structuur: voorbeeld

$$\langle \mathbb{N}, \{<\}, \{0, +, \cdot\} \rangle$$

(met 0 de nul van de natuurlijke getallen -> speciaal object, nul plaatsige operatie)

 $\langle D, R, O \rangle$: domein, relaties en operaties

Interpretatiefunctie: definitie

Laat $\mathbf{D} = \langle D, R, O \rangle$ een structuur zijn. Een interpretatiefunctie I kent aan

- elke individuele constante c een speciaal object $I(c) \in \mathbf{0}$ toe (nulplaatsige operatie)
- elke predikaatletter P een relatie $I(P) \in \mathbb{R}$ toe (van zelfde plaatsigheid)
- elke functieletter f een operatie $I(f) \in \mathbf{0}$ (van zelfde plaatsigheid)

Interpretatiefunctie: voorbeeld

$$\langle \mathbb{N}, \{<\}, \{0, +, \cdot\} \rangle$$

Stel P is een 2-plaatsige predikaatletter, f is een 2-plaatsige functieletter, g is een 2-plaatsige functieletter en a is een constante.

voorbeeld interpretatiefunctie

- I(P) = <
- I(f) = +
- $I(g) = \cdot$
- I(a) = 0

Model: definitie

Een paar (D, I) met D een structuur en I een interpretatiefunctie heet een model.

Een (on)eindig model is een model met een (on)eindig domein.

Model: voorbeeld

$$M = (\mathbf{D}, I)$$
 waar $\mathbf{D} = \langle \mathbb{N}, \{<\}, \{0, +, \cdot\} \rangle$ en I gedefinieerd als $I(P) = <$, $I(f) = +$, $I(g) = \cdot$, $I(a) = 0$

$$Px_1x_2 \wedge Pf(a, x_9)g(x_5, x_9)$$

wordt dan geïnterpreteerd als

$$x_1 < x_2 \text{ en } x_9 < (x_5 \cdot x_9)'$$

Bedeling: definitie

Een bedeling b is een functie die aan elke variabele x een object $b(x) \in D$ toekent.

Bedeling: voorbeeld

$$M = (\mathbf{D}, I)$$
 waar $\mathbf{D} = \langle \mathbb{N}, \{<\}, \{0, +, \cdot\} \rangle$ en I gedefinieerd als $I(P) = <, I(f) = +, I(g) = \cdot, I(a) = 0$

Voorbeeld bedeling
$$b(x_i) = i$$
 $(i = 1,2,3,...)$
 $Px_1x_2 \wedge Pf(a,x_9)g(x_5,x_9)$

wordt dan geïnterpreteerd als

Notatie

- $\langle \mathbb{N}, \{<\}, \{0, +, \cdot\} \rangle$ wordt ook als $\langle \mathbb{N}, <, 0, +, \cdot \rangle$ genoteerd, zolang duidelijk is wat de relaties en wat de functies zijn
- $b[x \mapsto d]$ is de bedeling b die d aan de variabele x toekent, ongeacht wat b(x) ervoor was. Stel $b(x_i) = i$ (i = 1,2,3,...), dan
 - $b[x_1 \mapsto 10](x_1) = 10$
 - $b[x_1 \mapsto 10](x_2) = 2$

Herinner: definitie term

De termen van de predikaatlogica worden als volgt geconstrueerd:

- 1. individuele variabelen en constanten zijn termen
- 2. als f een k-plaatsige functieletter is en $t_1, ..., t_k$ zijn termen, dan is $f(t_1, ..., t_k)$ ook een term
- 3. niets anders is een term

Waardering van termen: definitie

Laat M = (D, I) een model zijn en b een bedeling. De semantische waardering $V_{M,b}$ van termen is alsvolgt gedefinieerd:

- $V_{M,b}(a) = I(a)$ voor constanten a
- $V_{M,b}(x) = b(x)$ voor variabelen x
- $V_{M,b}(f(t_1, ..., t_k)) = I(f)(V_{M,b}(t_1), ..., V_{M,b}(t_k))$

Waardering van termen: voorbeeld

```
M=(\textbf{\textit{D}},I) waar \textbf{\textit{D}}=\langle \mathbb{N},\{<\},\{0,+,\cdot\}\rangle en I gedefinieerd als I(P)=<,I(f)=+,I(g)=\cdot,I(a)=0 bedeling b(x_i)=i (i=1,2,3,...)
```

$$V_{M,b}(f(a,x_1)) = I(f)(V_{M,b}(a), V_{M,b}(x_1)) = I(f)(I(a), b(x_1)) = +(I(a), b(x_1)) = +(0,1) = 1$$

Herinner: definitie formule

De formules van de predikaatlogica worden als volgt gedefinieerd:

- 1. als P een k-plaatsige predikaatletter is en $t_1, ..., t_k$ zijn termen, dan is $P(t_1, ..., t_k)$ een formule
- 2. als φ en ψ formules zijn, dan zijn $\neg \varphi$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \rightarrow \psi)$ en $(\varphi \leftrightarrow \psi)$ ook formules
- 3. als φ een formule is en x een variabele, dan zijn $\forall x \varphi$ en $\exists x \varphi$ ook formules
- 4. niets anders is een formule

Waardering van formules: definitie

Laat M = (D, I) een model zijn en b een bedeling. De waarheidswaarden van formules zijn alsvolgt gedefinieerd:

- $V_{M,b}(P(t_1,...,t_k)) = 1 \Leftrightarrow I(P)(V_{M,b}(t_1),...V_{M,b}(t_k))$ geldt
- $V_{M,b}(\neg \varphi) = 1 \Leftrightarrow V_{M,b}(\varphi) = 0$ en gelijkaardig voor de andere connectieven
- $V_{M,b}$ ($\exists x \varphi$) = 1 \Leftrightarrow er is een $d \in D$ zodat $V_{M,b[x \mapsto d]}(\varphi) = 1$
- $V_{M,b}$ $(\forall x \varphi) = 1 \Leftrightarrow \text{voor alle } d \in D \text{ geldt } V_{M,b[x \mapsto d]}(\varphi) = 1$

Waardering van formules: notatie

Het is gebruikelijk om $M, b \models \varphi$ te schrijven in plaats van $V_{M,b}(\varphi) = 1$.

Het is gebruikelijk om $M, b \not\models \varphi$ te schrijven in plaats van $V_{M,b}(\varphi) = 0$.

Als er geen verwarring mogelijk is schrijven we $V(\varphi)$ in plaats van $V_{M,b}(\varphi)$.

Opmerking: model

Propositielogica: een model is een waardering die de formule waarmaakt.

Predikaatlogica: een model is een paar (D, I)

Toch is het een passende generalisatie. We blijven zeggen dat een paar $\mathbf{M} = (\mathbf{D}, I)$ een model van een formule φ is indien voor elke bedeling b geldt $V_{M,b}(\varphi) = 1$.

Semantiek: voorbeeld

 $M = (\mathbf{D}, I)$ waar $\mathbf{D} = \langle \mathbb{Q}, \langle \rangle$ en I gedefinieerd als $I(R) = \langle$ met bedeling $b(x_1) = 4$

```
\begin{split} V_{M,b}(\forall y(Rx_1y\to\exists z(Rx_1z\land Rzy))) &= 1\\ \operatorname{desda} \operatorname{voor} \operatorname{alle} q\in\mathbb{Q}\colon V_{M,b[y\mapsto q]}(Rx_1y\to\exists z(Rx_1z\land Rzy)) &= 1\\ \operatorname{desda} \operatorname{voor} \operatorname{alle} q\in\mathbb{Q}\colon \operatorname{als} V_{M,b[y\mapsto q]}(Rx_1y) &= 1 \operatorname{dan} V_{M,b[y\mapsto q]}(\exists z(Rx_1z\land Rzy)) &= 1\\ \operatorname{desda} \operatorname{voor} \operatorname{alle} q\in\mathbb{Q}\colon \operatorname{als} I(R)(V_{M,b[y\mapsto q]}(x_1),V_{M,b[y\mapsto q]}(y)) &= 1 \operatorname{dan} \operatorname{er} \operatorname{bestaat} \operatorname{een} q'\in\mathbb{Q}\colon V_{M,b[y\mapsto q][z\mapsto q']}(Rx_1z\land Rzy) &= 1\\ \operatorname{desda} \operatorname{voor} \operatorname{alle} q\in\mathbb{Q}\colon \operatorname{als} 4<\operatorname{q} \operatorname{dan} \operatorname{er} \operatorname{bestaat} \operatorname{een} q'\in\mathbb{Q}\colon V_{M,b[y\mapsto q][z\mapsto q']}(Rx_1z) &= 1 \operatorname{en} V_{M,b[y\mapsto q][z\mapsto q']}(Rzy) &= 1\\ \operatorname{desda} \operatorname{voor} \operatorname{alle} q\in\mathbb{Q}\colon \operatorname{als} 4<\operatorname{q} \operatorname{dan} \operatorname{er} \operatorname{bestaat} \operatorname{een} q'\in\mathbb{Q}\colon 4< q' \operatorname{en} q'< q \end{split}
```


Gelijkheid van termen

De gelijkheidsrelatie is niet standaard gedefinieerd. Indien nodig moeten we dit expliciet definiëren.

Voorbeeld definitie:

$$V_{M,b}(t_1=t_2)=1$$
 desda $V_{M,b}(t_1)=V_{M,b}(t_2)$ voor alle M en b

Object in domein!

Object in domein!

Gelijkheid van termen: voorbeeld

Zij
$$M = (D, I)$$
 waar $D = \langle \mathbb{N}, +, \cdot \rangle$ en $I(f) = \cdot, I(g) = +$ Stel

$$t_1 = f(x, g(y, z))$$
 en $t_2 = g(f(x, y), f(x, z))$
Voor elke bedeling b hebben we $V_{M,b}(t_1) = V_{M,b}(t_2)$

Dit geldt echter niet voor $I(f) = +, I(g) = \cdot$, behalve voor de bedelingen b waarvoor b(x) = 0

Eigenschap waarheidsfunctie

Laat $x_1, ... x_k$ de vrije variabelen van φ zijn, b_1 en b_2 bedelingen zodat $b_1(x_i) = b_2(x_i)$ voor alle i = 1, ..., k en een model M. Dan geldt $V_{M,b_1}(\varphi) = V_{M,b_2}(\varphi)$.

zonder bewijs

Waarheidswaarde enkel afhankelijk van de bedeling van de vrije variabelen!

Eigenschap

Waarheidwaarde gesloten formules

Herinner: een zin of een gesloten formule is een formule zonder vrije variabelen.

- $\forall x (Ax \rightarrow \exists y (Rxy \land \forall x Sxy))$
- Pa

→ bedeling doet er niet toe voor zinnen, enkel waar of onwaar in het model

Eigenschap substitutie

Voor alle termen t en t' en een variabele x geldt

$$V_{M,b}([t/x]t') = V_{M,b[x \mapsto V_{M,b}(t)]}(t')$$

voor alle M en b.

bewijs later

Eigenschap

Oefening (deel 1)

Toon $V_{M,b}([t/x]t') = V_{M,b[x\mapsto V_{M,b}(t)]}(t')$ voor t=a (een constante) en t'=f(x,y).

$$V_{M,b}([t/x]t') = V_{M,b}([a/x]f(x,y)) = V_{M,b}([a,y]) = I(f)(V_{M,b}(a), V_{M,b}(y)) = I(f)(I(a), b(y))$$

Oefening (deel 2)

Toon $V_{M,b}([t/x]t') = V_{M,b[x\mapsto V_{M,b(t)}]}(t')$ voor t = a (een constante) en t' = f(x,y).

$$V_{M,b[x\mapsto V_{M,b}(t)]}(t')$$
= $V_{M,b[x\mapsto V_{M,b}(a)]}(f(x,y))$
= $I(f)(V_{M,b[x\mapsto V_{M,b}(a)]}(x), V_{M,b[x\mapsto V_{M,b}(a)]}(y))$
= $I(f)(V_{M,b}(a), b(y))$
= $I(f)(I(a), b(y))$

Geldig gevolg: definitie

Laat Σ een verzameling formules zijn en ψ een formule. Dan zeggen we dat ψ een geldig gevolg is van Σ (notatie $\Sigma \models \psi$) indien voor elk model M en elke bedeling b geldt

als voor elke $\varphi \in \Sigma$ geldt dat $V_{M,b}(\varphi) = 1$ dan geldt ook $V_{M,b}(\psi) = 1$

Definitie¹

Geldig gevolg: voorbeelden

- $\forall x (Rx \rightarrow Px), \exists x Rx \vDash \exists x Px$
- $\forall x \exists y Rxy, \forall x \forall y (Rxy \rightarrow Ryx), \forall x \forall y \forall z ((Rxy \land Ryz) \rightarrow Rxz) \vDash \forall x Rxx$

Geldig gevolg: oefening

$$\forall x (Rx \rightarrow Px), \exists x Rx \vDash \exists x Px$$

Neem M, b willekeurig en gegeven: $V_{M,b} (\forall x (Rx \rightarrow Px)) = 1$ en $V_{M,b} (\exists x Rx) = 1$:

- 1. voor alle $d \in D$: $V_{M,b[x \mapsto d]}(Rx \rightarrow Px) = 1$
- 2. er bestaat $d' \in D$: $V_{M,b[x \mapsto d']}(Rx) = 1$

Uit 2 volgt I(R)(d') = 1. In het bijzonder (neem d = d') volgt uit 1 $V_{M,b[x \mapsto d']}(Rx \to Px) = 1$: als I(R)(d') = 1, dan volgt I(P)(d') = 1. We weten dus dat I(P)(d') = 1. We concluderen $V_{M,b}(\exists x \ Px) = 1$.

Universeel geldig: definitie

Laat ψ een formule zijn. We zeggen dat een formule ψ universeel geldig is indien

$$\models \psi$$

Notatie $\models \Sigma$ betekent dat minstens één van de formules in Σ universeel geldig is.

Universeel geldig: voorbeeld

- $\models Ta \rightarrow \exists x Tx$
- $\models \forall x \ K(x,x) \ \text{met} \ K$ "gelijk aan"

Universeel geldig: oefening

$$\models Ta \rightarrow \exists x Tx$$

Neem M, b willekeurig, we tonen $V_{M,b}(Ta \to \exists x Tx) = 1$. Om dit te tonen nemen we als gegeven $V_{M,b}(Ta) = 1$, en we tonen $V_{M,b}(\exists x Tx) = 1$. Het volstaat te tonen dat er een $d \in D$ bestaat zodat $V_{M,b[x\mapsto d]}(Tx) = 1$, hetgeen voldaan is voor d = a.

Universeel geldig: oefening

 $\models \forall x \ K(x,x) \ \text{met} \ K \text{ "gelijk aan"}$

Neem M, b willekeurig, we tonen $V_{M,b}(\forall x \ K(x,x)) = 1$. We nemen hiervoor $d \in D$ willekeurig en tonen $V_{M,b[x\mapsto d]}(K(x,x)) = 1$ ofwel I(K)(d,d) = 1. Dit is automatisch voldaan.

Logisch equivalent: definitie

Als voor formules φ en ψ geldt dat $\models \varphi \leftrightarrow \psi$ dat heten φ en ψ logisch equivalent.

Merk op: φ en ψ zijn logisch equivalent indien voor elk model M en elke bedeling b geldt dat $V_{M,b}(\varphi) = V_{M,b}(\psi)$.

Logisch equivalent: voorbeelden

- $\forall x \, Rx \, \text{en} \, \neg \exists x \, \neg Rx$
- $\forall x (Rx \land Ax) \text{ en } (\forall x Rx \land \forall x Ax)$

Logisch equivalent: oefening (deel 1)

 $\forall x \ Rx \ \text{en} \ \neg \exists x \ \neg Rx \ \text{zijn logisch equivalent}$ Neem M, b willekeurig, we tonen $V_{M,b}(\forall x \ Rx) = V_{M,b}(\neg \exists x \ \neg Rx)$.

1. Stel $V_{M,b}(\forall x Rx) = 1$. Dan voor alle $d \in D$: $V_{M,b[x\mapsto d]}(Rx) = 1$, of $V_{M,b[x\mapsto d]}(\neg Rx) = 0$. Er bestaat dus geen $d' \in D$ zodat $V_{M,b[x\mapsto d']}(\neg Rx) = 1$. Dit betekent $V_{M,b}(\exists x \neg Rx) = 0$. Dus $V_{M,b}(\neg \exists x \neg Rx) = 1$.

Logisch equivalent: oefening (deel 2)

 $\forall x \ Rx \ \text{en} \ \neg \exists x \ \neg Rx \ \text{zijn logisch equivalent}$ Neem M, b willekeurig, we tonen $V_{M,b}(\forall x \ Rx) = V_{M,b}(\neg \exists x \ \neg Rx)$.

2. Stel $V_{M,b}(\forall x Rx) = 0$. Dan is het niet zo dat voor alle $d \in D$: $V_{M,b[x\mapsto d]}(Rx) = 1$. Er bestaat dus een $d' \in D$ zodat $V_{M,b[x\mapsto d']}(Rx) = 0$, ofwel $V_{M,b[x\mapsto d']}(\neg Rx) = 1$. Dit betekent $V_{M,b}(\exists x \neg Rx) = 1$ en dus $V_{M,b}(\neg \exists x \neg Rx) = 0$.

Theorieën en axiomas: inleiding

Herinner: voor zinnen φ (formules zonder vrije variabelen) geldt voor alle bedelingen b_1 en b_2 dat $V_{M,b_1}(\varphi) = V_{M,b_2}(\varphi)$ voor alle M.

We kunnen dus ondubbelzig spreken over de waarheidswaarde van een zin in een model. Voor geldig gevolg is dus ook enkel het model belangrijk.

- Vragen: Gegeven een model, welke zinnen zijn waar?
 - Gegeven een zin, welke modellen maken de zin waar?

Theorie: definitie

De theorie van een model M is gedefinieerd als $Th(M) = \{\varphi | \varphi \ een \ zin \ en \ M \models \varphi\}$

Axiomaverzameling: definitie

Een formuleverzameling Σ axiomatiseert Th(M) als voor alle zinnen φ geldt:

$$\varphi \in Th(M) \Leftrightarrow \Sigma \vDash \varphi$$

We noemen Σ een axiomatiek of axiomaverzameling voor Th(M).

Opmerking Th(M) is een axiomatiek voor Th(M).

Een goede axiomatiek geeft de essentiële kenmerken weer van het model.

Definitie¹

Modelverzameling: definitie

De modelverzameling van een zin φ is gedefinieerd als $MOD(\varphi) = \{M | M \models \varphi\}$

De modelverzameling van een verzameling zinnen Σ is gedefineerd als

$$MOD(\Sigma) = \{M | M \models \varphi \ voor \ alle \ \varphi \in \Sigma\}$$

