Machine Learning

Ravi Kumar Tiwari 14 June 2016

```
library(caret)
library(rpart.plot)
library(rattle)
library(calibrate)
library(randomForest)
library(e1071)
library(class)
library(knitr)
library(party)
library(gda)
library(gbm)
library(leaps)
```

Regression

Used for predicting continuous variable

1. Code to Build the model object

```
lmModel <- lm(mpg ~ wt, data = mtcars)</pre>
```

2. Code to obtain the model parameters

```
sumModel <- summary(lmModel)
sumModel$coefficients</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.285126 1.877627 19.857575 8.241799e-19
## wt -5.344472 0.559101 -9.559044 1.293959e-10
```

3. Prediction of response using the regression model

```
predValue <- predict(lmModel, data.frame(wt = mtcars$wt))</pre>
```

- 4. Assessing the accuracy of the model
- Visual Inspection

• R-squared value

```
sumModel <- summary(lmModel)
sumModel$r.squared</pre>
```

[1] 0.7528328

• F-statistics

sumModel\$fstatistic

```
## value numdf dendf
## 91.37533 1.00000 30.00000
```

5. Code to build linear regression model using multiple predictors

```
 lmModel2 <- lm(mpg ~ wt+hp+disp, data = mtcars) \# wt, hp, and disp will be used as predictor \\ lmModel3 <- lm(mpg~ ., data = mtcars) \# All the variable will be used
```

6. Code to do subset selection

identifies the best model that contains a given number of predictors, where best is quantified using RSS

```
fwdSelection <- regsubsets(mpg ~ ., data = mtcars, method = "forward")</pre>
sumFwdSel <- summary(fwdSelection)</pre>
names(sumFwdSel)
                                  "adjr2" "cp"
                                                             "outmat" "obj"
## [1] "which"
                "rsq"
                         "rss"
                                                    "bic"
sumFwdSel$outmat
##
            cyl disp hp
                         drat wt qsec vs
                                           am
      (1)""
      (1)"*"
      (1)
      (1)"*"
## 8 (1) "*"
sumFwdSel$rsq
## [1] 0.7528328 0.8302274 0.8431500 0.8490314 0.8580721 0.8659105 0.8675989
## [8] 0.8684657
which.max(sumFwdSel$adjr2)
## [1] 6
coef(fwdSelection,6)
## (Intercept)
                       cyl
                                  disp
                                                hp
## 20.05169952 -0.50206577 0.01396099 -0.01956054 -3.99773180 0.81017782
##
##
   2.94074955
  7. Challenge
```

- Use backward selection model to find the best model for mpg $\,$

Tree based algorithm

Used both for classification and regression

Problem Description

Use Iris dataset to predict the Species based on Sepal.Length, Sepal.Width, Petal.Length, Petal.Width

head(iris)

##		Sepal.Length	Sepal.Width	Petal.Length	${\tt Petal.Width}$	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa

Decision tree: splitting rule

4

Decision tree: partitioned area

Create data partition

```
set.seed(100)
inTrain <- createDataPartition(iris$Species, p = 0.6, list = FALSE)
trainData <- iris[inTrain,]
testData <- iris[-inTrain,1:4]
testClass <- iris[-inTrain,5]</pre>
```

Build a decision tree model and use it for prediction on test data set

```
treeModel <- train(Species ~ ., data = trainData, method = "rpart")
predClass <- predict(treeModel, newdata = testData)
cMatrix <- confusionMatrix(predClass, testClass)
cMatrix$table</pre>
```

##	Reference					
##	Prediction	setosa	${\tt versicolor}$	virginica		
##	setosa	20	0	0		
##	versicolor	0	19	2		
##	virginica	0	1	18		

Look at what are the important variables

varImp(treeModel)

```
## rpart variable importance
##
## Overall
## Petal.Width 100.00
## Petal.Length 89.53
## Sepal.Length 18.24
## Sepal.Width 0.00
```

Add some challenge

Advantages of decision tree

Easy to interpret

Problem with the decision tree

Lower prediction accuracy

Solution

Aggregate many decision trees (bagging, random forest, boosting)

random Forest

Need to decorrelate the trees. Making it more accurate

ntree

mtry

Decorrelate the trees a random sample of m predictors is chosen as split candidates from the full set of p predictors.

Random Forest classifier

Individual tree

random forest example

```
rfModel <- randomForest(Species ~ ., data=trainData, mtry=3, ntree=15)
predClass <- predict(rfModel, newdata = testData)
table(predClass, testClass)</pre>
```

```
##
               testClass
## predClass
                 setosa versicolor virginica
                     20
##
     setosa
                                 0
##
     versicolor
                      0
                                 19
                                            2
##
     virginica
                      0
                                 1
                                           18
```

varImpPlot(rfModel)

rfModel

Add some challenge

Boosting

Illustration

example

The argument n.teees = 5000 indicates that we want 5000 trees, and the option interaction.depth = 4 limits the depth of each tree

knn

```
myIris <- iris[,3:5]</pre>
head(myIris)
     Petal.Length Petal.Width Species
##
## 1
               1.4
                           0.2 setosa
## 2
               1.4
                           0.2 setosa
## 3
               1.3
                           0.2 setosa
## 4
               1.5
                           0.2 setosa
## 5
               1.4
                           0.2 setosa
               1.7
## 6
                           0.4 setosa
inTrain <- createDataPartition(myIris$Species, p = 0.6, list = FALSE)</pre>
trainData <- myIris[inTrain,1:2]</pre>
trainClass <- myIris[inTrain,3]</pre>
testData <- myIris[-inTrain,1:2]</pre>
testClass <- myIris[-inTrain,3]</pre>
predClass <- knn(trainData, testData, cl = trainClass, k = 3)</pre>
table(predClass, testClass)
##
                testClass
## predClass
                 setosa versicolor virginica
                     20
##
     setosa
                                  0
                                             2
##
     versicolor
                      0
                                 19
     virginica
                      0
                                  1
                                            18
```


clustering example

kmeans clustering

##	8	group		
##	predGroupC	${\tt setosa}$	${\tt versicolor}$	virginica
##	setosa	14	0	0
##	versicolor	0	8	1
##	virginnica	0	2	10

hierarchichal clustering

Cluster Dendrogram

disM hclust (*, "complete")

Cross-validation

5 fold cross validation illustration

baye's theorem

#head(Titanic)

 \mathbf{svm}

#svmModel <- svm()