

The Design and Analysis of Algorithms

Introduction to The Design & Analysis of Algorithms 3RD EDITION

Vice President and Editorial Director, ECS Marcia Horton

> Editor-in-Chief Michael Hirsch Acquisitions Editor Matt Goldstein Editorial Assistant Chelsea Bell

Vice President, Marketing Patrice Jones

Marketing Manager Yezan Alayan Senior Marketing Coordinator Kathryn Ferranti

Marketing Assistant Emma Snider

Vice President, Production Vince O'Brien Managing Editor Jeff Holcomb

Production Project Manager Kayla Smith-Tarbox

Senior Operations Supervisor Alan Fischer Manufacturing Buyer Lisa McDowell

Art Director Anthony Gemmellaro

Text Designer Sandra Rigney

Cover Designer Anthony Gemmellaro

Cover Illustration Jennifer Kohnke

Media Editor Daniel Sandin

Full-Service Project Management Windfall Software

Composition Windfall Software, using ZzT_EX

Printer/Binder Courier Westford Cover Printer Courier Westford

Text Font Times Ten

Copyright © 2012, 2007, 2003 Pearson Education, Inc., publishing as Addison-Wesley. All rights reserved. Printed in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

This is the eBook of the printed book and may not include any media, Website access codes or print supplements that may come packaged with the bound book.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Levitin, Anany.

Introduction to the design & analysis of algorithms / Anany Levitin. — 3rd ed.

Includes bibliographical references and index.

ISBN-13: 978-0-13-231681-1

ISBN-10: 0-13-231681-1

algorithms.

QA76.9.A43L48 2012

005.1-dc23 2011027089

15 14 13 12 11—CRW—10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-231681-1

ISBN 13: 978-0-13-231681-1

Introduction to The Design & Analysis of Algorithms 3RD EDITION

Anany Levitin

Villanova University

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Brief Contents

	New to the Third Edition	xvii
	Preface	xix
1	Introduction	1
2	Fundamentals of the Analysis of Algorithm Efficiency	41
3	Brute Force and Exhaustive Search	97
4	Decrease-and-Conquer	131
5	Divide-and-Conquer	169
6	Transform-and-Conquer	201
7	Space and Time Trade-Offs	253
8	Dynamic Programming	283
9	Greedy Technique	315
0	Iterative Improvement	345
1	Limitations of Algorithm Power	387
2	Coping with the Limitations of Algorithm Power	423
	Epilogue	471
۱PI	PENDIX A Useful Formulas for the Analysis of Algorithms	475
ΔPI	PENDIX B	170
\ 1 1	Short Tutorial on Recurrence Relations	479
	References	493
	Hints to Exercises	503
	Index	5/17

Contents

	New to the Third Edition	xvii
	Preface	xix
1	Introduction	1
1.1	What Is an Algorithm?	3
	Exercises 1.1	7
1.2	Fundamentals of Algorithmic Problem Solving	9
	Understanding the Problem	9
	Ascertaining the Capabilities of the Computational Device	9
	Choosing between Exact and Approximate Problem Solving	11
	Algorithm Design Techniques	11
	Designing an Algorithm and Data Structures	12
	Methods of Specifying an Algorithm	12
	Proving an Algorithm's Correctness	13
	Analyzing an Algorithm	14
	Coding an Algorithm	15
	Exercises 1.2	17
1.3	Important Problem Types	18
	Sorting	19
	Searching	20
	String Processing	20
	Graph Problems	21
	Combinatorial Problems	21
	Geometric Problems	22
	Numerical Problems	22
	Evereigns 1 3	23

viii Contents

1.4	Fundamental Data Structures Linear Data Structures Graphs Trees Sets and Dictionaries Exercises 1.4 Summary	25 25 28 31 35 37 38
2	Fundamentals of the Analysis of Algorithm Efficiency	41
2.1	The Analysis Framework Measuring an Input's Size Units for Measuring Running Time Orders of Growth Worst-Case, Best-Case, and Average-Case Efficiencies Recapitulation of the Analysis Framework Exercises 2.1	42 43 44 45 47 50
2.2	Asymptotic Notations and Basic Efficiency Classes Informal Introduction <i>O</i> -notation Ω-notation Θ-notation Useful Property Involving the Asymptotic Notations Using Limits for Comparing Orders of Growth Basic Efficiency Classes Exercises 2.2	52 52 53 54 55 55 56 58
2.3	Mathematical Analysis of Nonrecursive Algorithms Exercises 2.3	61 67
2.4	Mathematical Analysis of Recursive Algorithms Exercises 2.4	70 76
2.5	Example: Computing the <i>n</i> th Fibonacci Number Exercises 2.5	80 83
2.6	Empirical Analysis of Algorithms Exercises 2.6	84 89
2.7	Algorithm Visualization	91 94

	Contents	Κİ
3	Brute Force and Exhaustive Search	97
3.1	Selection Sort and Bubble Sort Selection Sort Bubble Sort Exercises 3.1	98 98 100 102
3.2	Sequential Search and Brute-Force String Matching Sequential Search Brute-Force String Matching Exercises 3.2	104 104 105 10 6
3.3	Closest-Pair and Convex-Hull Problems by Brute Force Closest-Pair Problem Convex-Hull Problem Exercises 3.3	108 108 109 113
3.4	Exhaustive Search Traveling Salesman Problem Knapsack Problem Assignment Problem Exercises 3.4	115 116 116 119 120
3.5	Depth-First Search and Breadth-First Search Depth-First Search Breadth-First Search Exercises 3.5 Summary	122 122 125 128 130
4	Decrease-and-Conquer	131
4.1	Insertion Sort Exercises 4.1	134 136
4.2	Topological Sorting Exercises 4.2	138 142
4.3	Algorithms for Generating Combinatorial Objects Generating Permutations Generating Subsets	14 4

148

Exercises 4.3

x Contents

4.4	Binary Search	1 50 150
	Fake-Coin Problem	152
	Russian Peasant Multiplication	153
	Josephus Problem	154
	Exercises 4.4	156
4.5	Variable-Size-Decrease Algorithms	157
	Computing a Median and the Selection Problem	158
	Interpolation Search	161
	Searching and Insertion in a Binary Search Tree	163
	The Game of Nim	164
	Exercises 4.5	166
	Summary	167
5	Divide-and-Conquer	169
5.1	Mergesort	172
	Exercises 5.1	174
5.2	Quicksort	176
	Exercises 5.2	181
5.3	Binary Tree Traversals and Related Properties	182
	Exercises 5.3	185
5.4	Multiplication of Large Integers and	
	Strassen's Matrix Multiplication	186
	Multiplication of Large Integers	187
	Strassen's Matrix Multiplication	189
	Exercises 5.4	191
5.5	The Closest-Pair and Convex-Hull Problems	
	by Divide-and-Conquer	192
	The Closest-Pair Problem	192
	Convex-Hull Problem	195
	Exercises 5.5	197
	Summary	198

Contents	VI
COLLEIUS	XI

6	Transform-and-Conquer	201
	Presorting Exercises 6.1	202 205
6.2	Gaussian Elimination LU Decomposition Computing a Matrix Inverse Computing a Determinant Exercises 6.2	208 212 214 215 216
6.3	Balanced Search Trees AVL Trees 2-3 Trees Exercises 6.3	218 218 223 225
6.4	Heaps and Heapsort Notion of the Heap Heapsort Exercises 6.4	226 227 231 233
6.5	Horner's Rule and Binary Exponentiation Horner's Rule Binary Exponentiation Exercises 6.5	234 234 236 239
6.6	Problem Reduction Computing the Least Common Multiple Counting Paths in a Graph Reduction of Optimization Problems Linear Programming Reduction to Graph Problems Exercises 6.6 Summary	240 241 242 243 244 246 248 250
7	Space and Time Trade-Offs	253
7.1	Sorting by Counting Exercises 7.1	254 257
7.2	Input Enhancement in String Matching Horspool's Algorithm	258 259

xii Contents

	Boyer-Moore Algorithm Exercises 7.2	263 267
7.3	Hashing Open Hashing (Separate Chaining) Closed Hashing (Open Addressing) Exercises 7.3	269 270 272 274
7.4	B-Trees Exercises 7.4 Summary	276 279 280
8	Dynamic Programming	283
	Three Basic Examples Exercises 8.1	285 290
8.2	The Knapsack Problem and Memory Functions Memory Functions Exercises 8.2	292 294 296
8.3	Optimal Binary Search Trees Exercises 8.3	297 303
8.4	Warshall's and Floyd's Algorithms Warshall's Algorithm Floyd's Algorithm for the All-Pairs Shortest-Paths Problem Exercises 8.4 Summary	304 304 308 311 312
9	Greedy Technique	315
9.1	Prim's Algorithm Exercises 9.1	318 322
9.2	Kruskal's Algorithm Disjoint Subsets and Union-Find Algorithms Exercises 9.2	325 327 331
9.3	Dijkstra's Algorithm Exercises 9.3	333 337

	Contents	s xiii
9.4	Huffman Trees and Codes Exercises 9.4 Summary	338 342 344
10	Iterative Improvement	345
10.1	The Simplex Method Geometric Interpretation of Linear Programming An Outline of the Simplex Method Further Notes on the Simplex Method Exercises 10.1	346 347 351 357 359
10.2	The Maximum-Flow Problem Exercises 10.2	361 371
10.3	Maximum Matching in Bipartite Graphs Exercises 10.3	372 378
10.4	The Stable Marriage Problem Exercises 10.4 Summary	380 383 384
11	Limitations of Algorithm Power	387
	Lower-Bound Arguments Trivial Lower Bounds Information-Theoretic Arguments Adversary Arguments Problem Reduction Exercises 11.1	388 389 390 390 391 393
11.2	Decision Trees Decision Trees for Sorting Decision Trees for Searching a Sorted Array Exercises 11.2	394 395 397 399
11.3	P, NP, and NP-Complete Problems P and NP Problems NP-Complete Problems Exercises 11.3	401 402 406 409

xiv Contents

11.4	Challenges of Numerical Algorithms Exercises 11.4 Summary	412 419 420
12	Coping with the Limitations of Algorithm Power	423
	Backtracking n-Queens Problem Hamiltonian Circuit Problem Subset-Sum Problem General Remarks Exercises 12.1	424 425 426 427 428 430
12.2	Branch-and-Bound Assignment Problem Knapsack Problem Traveling Salesman Problem Exercises 12.2	432 433 436 438 440
12.3	Approximation Algorithms for NP-Hard Problems Approximation Algorithms for the Traveling Salesman Problem Approximation Algorithms for the Knapsack Problem Exercises 12.3	441 443 453 457
12.4	Algorithms for Solving Nonlinear Equations Bisection Method Method of False Position Newton's Method Exercises 12.4 Summary	459 460 464 464 467 468
	Epilogue	471
APPE	INDIX A	
	Useful Formulas for the Analysis of Algorithms Properties of Logarithms Combinatorics Important Summation Formulas Sum Manipulation Rules	475 475 475 476 476

	Contents	xv
Appr	oximation of a Sum by a Definite Integral	477
Floor	and Ceiling Formulas	477
Misc	ellaneous	477
APPENDI	ХВ	
Sho	ort Tutorial on Recurrence Relations	479
Sequ	iences and Recurrence Relations	479
Meth	nods for Solving Recurrence Relations	480
Com	mon Recurrence Types in Algorithm Analysis	485
Ref	erences	493
Hin	ts to Exercises	503
Inde	ex	547

New to the Third Edition

- Reordering of chapters to introduce decrease-and-conquer before divideand-conquer
- Restructuring of chapter 8 on dynamic programming, including all new introductory material and new exercises focusing on well-known applications
- More coverage of the applications of the algorithms discussed
- Reordering of select sections throughout the book to achieve a better alignment of specific algorithms and general algorithm design techniques
- Addition of the Lomuto partition and Gray code algorithms
- Seventy new problems added to the end-of-chapter exercises, including algorithmic puzzles and questions asked during job interviews

Preface

The most valuable acquisitions in a scientific or technical education are the general-purpose mental tools which remain serviceable for a life-time.

—George Forsythe, "What to do till the computer scientist comes." (1968)

Recognition of this fact has led to the appearance of a considerable number of textbooks on the subject. By and large, they follow one of two alternatives in presenting algorithms. One classifies algorithms according to a problem type. Such a book would have separate chapters on algorithms for sorting, searching, graphs, and so on. The advantage of this approach is that it allows an immediate comparison of, say, the efficiency of different algorithms for the same problem. The drawback of this approach is that it emphasizes problem types at the expense of algorithm design techniques.

The second alternative organizes the presentation around algorithm design techniques. In this organization, algorithms from different areas of computing are grouped together if they have the same design approach. I share the belief of many (e.g., [BaY95]) that this organization is more appropriate for a basic course on the design and analysis of algorithms. There are three principal reasons for emphasis on algorithm design techniques. First, these techniques provide a student with tools for designing algorithms for new problems. This makes learning algorithm design techniques a very valuable endeavor from a practical standpoint. Second, they seek to classify multitudes of known algorithms according to an underlying design idea. Learning to see such commonality among algorithms from different application areas should be a major goal of computer science education. After all, every science considers classification of its principal subject as a major if not the central point of its discipline. Third, in my opinion, algorithm design techniques have utility as general problem solving strategies, applicable to problems beyond computing.

Unfortunately, the traditional classification of algorithm design techniques has several serious shortcomings, from both theoretical and educational points of view. The most significant of these shortcomings is the failure to classify many important algorithms. This limitation has forced the authors of other textbooks to depart from the design technique organization and to include chapters dealing with specific problem types. Such a switch leads to a loss of course coherence and almost unavoidably creates a confusion in students' minds.

New taxonomy of algorithm design techniques

My frustration with the shortcomings of the traditional classification of algorithm design techniques has motivated me to develop a new taxonomy of them [Lev99], which is the basis of this book. Here are the principal advantages of the new taxonomy:

- The new taxonomy is more comprehensive than the traditional one. It includes several strategies—brute-force, decrease-and-conquer, transform-and-conquer, space and time trade-offs, and iterative improvement—that are rarely if ever recognized as important design paradigms.
- The new taxonomy covers naturally many classic algorithms (Euclid's algorithm, heapsort, search trees, hashing, topological sorting, Gaussian elimination, Horner's rule—to name a few) that the traditional taxonomy cannot classify. As a result, the new taxonomy makes it possible to present the standard body of classic algorithms in a unified and coherent fashion.
- It naturally accommodates the existence of important varieties of several design techniques. For example, it recognizes three variations of decrease-and-conquer and three variations of transform-and-conquer.
- It is better aligned with analytical methods for the efficiency analysis (see Appendix B).

Design techniques as general problem solving strategies

Most applications of the design techniques in the book are to classic problems of computer science. (The only innovation here is an inclusion of some material on numerical algorithms, which are covered within the same general framework.) But these design techniques can be considered general problem solving tools, whose applications are not limited to traditional computing and mathematical problems. Two factors make this point particularly important. First, more and more computing applications go beyond the traditional domain, and there are reasons to believe that this trend will strengthen in the future. Second, developing students' problem solving skills has come to be recognized as a major goal of college education. Among all the courses in a computer science curriculum, a course on the design and analysis of algorithms is uniquely suitable for this task because it can offer a student specific strategies for solving problems.

I am not proposing that a course on the design and analysis of algorithms should become a course on general problem solving. But I do believe that the

Preface xxi

unique opportunity provided by studying the design and analysis of algorithms should not be missed. Toward this goal, the book includes applications to puzzles and puzzle-like games. Although using puzzles in teaching algorithms is certainly not a new idea, the book tries to do this systematically by going well beyond a few standard examples.

Textbook pedagogy

My goal was to write a text that would not trivialize the subject but would still be readable by most students on their own. Here are some of the things done toward this objective.

- Sharing the opinion of George Forsythe expressed in the epigraph, I have sought to stress major ideas underlying the design and analysis of algorithms. In choosing specific algorithms to illustrate these ideas, I limited the number of covered algorithms to those that demonstrate an underlying design technique or an analysis method most clearly. Fortunately, most classic algorithms satisfy this criterion.
- In Chapter 2, which is devoted to efficiency analysis, the methods used for analyzing nonrecursive algorithms are separated from those typically used for analyzing recursive algorithms. The chapter also includes sections devoted to empirical analysis and algorithm visualization.
- The narrative is systematically interrupted by questions to the reader. Some of them are asked rhetorically, in anticipation of a concern or doubt, and are answered immediately. The goal of the others is to prevent the reader from drifting through the text without a satisfactory level of comprehension.
- Each chapter ends with a summary recapping the most important concepts and results discussed in the chapter.
- The book contains over 600 exercises. Some of them are drills; others make important points about the material covered in the body of the text or introduce algorithms not covered there at all. A few exercises take advantage of Internet resources. More difficult problems—there are not many of them—are marked by special symbols in the Instructor's Manual. (Because marking problems as difficult may discourage some students from trying to tackle them, problems are not marked in the book itself.) Puzzles, games, and puzzle-like questions are marked in the exercises with a special icon.
- The book provides hints to all the exercises. Detailed solutions, except for programming projects, are provided in the Instructor's Manual, available to qualified adopters through Pearson's Instructor Resource Center. (Please contact your local Pearson sales representative or go to www.pearsonhighered.com/irc to access this material.) Slides in PowerPoint are available to all readers of this book via anonymous ftp at the CS Support site: http://cssupport.pearsoncmg.com/.

Changes for the third edition

There are a few changes in the third edition. The most important is the new order of the chapters on decrease-and-conquer and divide-and-conquer. There are several advantages in introducing decrease-and-conquer before divide-and-conquer:

- Decrease-and-conquer is a simpler strategy than divide-and-conquer.
- Decrease-and-conquer is applicable to more problems than divide-and-conquer.
- The new order makes it possible to discuss insertion sort before mergesort and quicksort.
- The idea of array partitioning is now introduced in conjunction with the selection problem. I took advantage of an opportunity to do this via the onedirectional scan employed by Lomuto's algorithm, leaving the two-directional scan used by Hoare's partitioning to a later discussion in conjunction with quicksort.
- Binary search is now considered in the section devoted to decrease-by-aconstant-factor algorithms, where it belongs.

The second important change is restructuring of Chapter 8 on dynamic programming. Specifically:

- The introductory section is completely new. It contains three basic examples that provide a much better introduction to this important technique than computing a binomial coefficient, the example used in the first two editions.
- All the exercises for Section 8.1 are new as well; they include well-known applications not available in the previous editions.
- I also changed the order of the other sections in this chapter to get a smoother progression from the simpler applications to the more advanced ones.

The other changes include the following. More applications of the algorithms discussed are included. The section on the graph-traversal algorithms is moved from the decrease-and-conquer chapter to the brute-force and exhaustive-search chapter, where it fits better, in my opinion. The Gray code algorithm is added to the section dealing with algorithms for generating combinatorial objects. The divide-and-conquer algorithm for the closest-pair problem is discussed in more detail. Updates include the section on algorithm visualization, approximation algorithms for the traveling salesman problem, and, of course, the bibliography.

I also added about 70 new problems to the exercises. Some of them are algorithmic puzzles and questions asked during job interviews.

Prerequisites

The book assumes that a reader has gone through an introductory programming course and a standard course on discrete structures. With such a background, he or she should be able to handle the book's material without undue difficulty.

Preface **xxiii**

Still, fundamental data structures, necessary summation formulas, and recurrence relations are reviewed in Section 1.4, Appendix A, and Appendix B, respectively. Calculus is used in only three sections (Section 2.2, 11.4, and 12.4), and to a very limited degree; if students lack calculus as an assured part of their background, the relevant portions of these three sections can be omitted without hindering their understanding of the rest of the material.

Use in the curriculum

The book can serve as a textbook for a basic course on design and analysis of algorithms organized around algorithm design techniques. It might contain slightly more material than can be covered in a typical one-semester course. By and large, portions of Chapters 3 through 12 can be skipped without the danger of making later parts of the book incomprehensible to the reader. Any portion of the book can be assigned for self-study. In particular, Sections 2.6 and 2.7 on empirical analysis and algorithm visualization, respectively, can be assigned in conjunction with projects.

Here is a possible plan for a one-semester course; it assumes a 40-class meeting format.

Lecture	Торіс	Sections
1	Introduction	1.1–1.3
2, 3	Analysis framework; O, Ω, Θ notations	2.1, 2.2
4	Mathematical analysis of nonrecursive algorithms	2.3
5, 6	Mathematical analysis of recursive algorithms	2.4, 2.5 (+ App. B)
7	Brute-force algorithms	3.1, 3.2 (+ 3.3)
8	Exhaustive search	3.4
9	Depth-first search and breadth-first search	3.5
10, 11	Decrease-by-one: insertion sort, topological sorting	4.1, 4.2
12	Binary search and other decrease-by-a-constant- factor algorithms	4.4
13	Variable-size-decrease algorithms	4.5
14, 15	Divide-and-conquer: mergesort, quicksort	5.1-5.2
16	Other divide-and-conquer examples	5.3 or 5.4 or 5.5
17–19	Instance simplification: presorting, Gaussian elimination, balanced search trees	6.1–6.3
20	Representation change: heaps and heapsort or Horner's rule and binary exponentiation	6.4 or 6.5
21	Problem reduction	6.6
22–24	Space-time trade-offs: string matching, hashing, B-trees	7.2–7.4
25–27	Dynamic programming algorithms	3 from 8.1–8.4

xxiv Preface

28–30	Greedy algorithms: Prim's, Kruskal's, Dijkstra's, Huffman's	9.1–9.4
31–33	Iterative improvement algorithms	3 from 10.1–10.4
34	Lower-bound arguments	11.1
35	Decision trees	11.2
36	P, NP, and NP-complete problems	11.3
37	Numerical algorithms	11.4 (+ 12.4)
38	Backtracking	12.1
39	Branch-and-bound	12.2
40	Approximation algorithms for NP-hard problems	12.3

Acknowledgments

I would like to express my gratitude to the reviewers and many readers who have shared with me their opinions about the first two editions of the book and suggested improvements and corrections. The third edition has certainly benefited from the reviews by Andrew Harrington (Loyola University Chicago), David Levine (Saint Bonaventure University), Stefano Lombardi (UC Riverside), Daniel McKee (Mansfield University), Susan Brilliant (Virginia Commonwealth University), David Akers (University of Puget Sound), and two anonymous reviewers.

My thanks go to all the people at Pearson and their associates who worked on my book. I am especially grateful to my editor, Matt Goldstein; the editorial assistant, Chelsea Bell; the marketing manager, Yez Alayan; and the production supervisor, Kayla Smith-Tarbox. I am also grateful to Richard Camp for copyediting the book, Paul Anagnostopoulos of Windfall Software and Jacqui Scarlott for its project management and typesetting, and MaryEllen Oliver for proofreading the book.

Finally, I am indebted to two members of my family. Living with a spouse writing a book is probably more trying than doing the actual writing. My wife, Maria, lived through several years of this, helping me any way she could. And help she did: over 400 figures in the book and the Instructor's Manual were created by her. My daughter Miriam has been my English prose guru over many years. She read large portions of the book and was instrumental in finding the chapter epigraphs.

Anany Levitin anany.levitin@villanova.edu June 2011

Introduction to The Design & Analysis of Algorithms 3RD EDITION

Introduction

Two ideas lie gleaming on the jeweler's velvet. The first is the calculus, the second, the algorithm. The calculus and the rich body of mathematical analysis to which it gave rise made modern science possible; but it has been the algorithm that has made possible the modern world.

—David Berlinski, The Advent of the Algorithm, 2000

Why do you need to study algorithms? If you are going to be a computer professional, there are both practical and theoretical reasons to study algorithms. From a practical standpoint, you have to know a standard set of important algorithms from different areas of computing; in addition, you should be able to design new algorithms and analyze their efficiency. From the theoretical standpoint, the study of algorithms, sometimes called *algorithmics*, has come to be recognized as the cornerstone of computer science. David Harel, in his delightful book pointedly titled *Algorithmics: the Spirit of Computing*, put it as follows:

Algorithmics is more than a branch of computer science. It is the core of computer science, and, in all fairness, can be said to be relevant to most of science, business, and technology. [Har92, p. 6]

But even if you are not a student in a computing-related program, there are compelling reasons to study algorithms. To put it bluntly, computer programs would not exist without algorithms. And with computer applications becoming indispensable in almost all aspects of our professional and personal lives, studying algorithms becomes a necessity for more and more people.

Another reason for studying algorithms is their usefulness in developing analytical skills. After all, algorithms can be seen as special kinds of solutions to problems—not just answers but precisely defined procedures for getting answers. Consequently, specific algorithm design techniques can be interpreted as problem-solving strategies that can be useful regardless of whether a computer is involved. Of course, the precision inherently imposed by algorithmic thinking limits the kinds of problems that can be solved with an algorithm. You will not find, for example, an algorithm for living a happy life or becoming rich and famous. On

the other hand, this required precision has an important educational advantage. Donald Knuth, one of the most prominent computer scientists in the history of algorithmics, put it as follows:

A person well-trained in computer science knows how to deal with algorithms: how to construct them, manipulate them, understand them, analyze them. This knowledge is preparation for much more than writing good computer programs; it is a general-purpose mental tool that will be a definite aid to the understanding of other subjects, whether they be chemistry, linguistics, or music, etc. The reason for this may be understood in the following way: It has often been said that a person does not really understand something until after teaching it to someone else. Actually, a person does not really understand something until after teaching it to a computer, i.e., expressing it as an algorithm . . . An attempt to formalize things as algorithms leads to a much deeper understanding than if we simply try to comprehend things in the traditional way. [Knu96, p. 9]

We take up the notion of algorithm in Section 1.1. As examples, we use three algorithms for the same problem: computing the greatest common divisor. There are several reasons for this choice. First, it deals with a problem familiar to everybody from their middle-school days. Second, it makes the important point that the same problem can often be solved by several algorithms. Quite typically, these algorithms differ in their idea, level of sophistication, and efficiency. Third, one of these algorithms deserves to be introduced first, both because of its age—it appeared in Euclid's famous treatise more than two thousand years ago—and its enduring power and importance. Finally, investigation of these three algorithms leads to some general observations about several important properties of algorithms in general.

Section 1.2 deals with algorithmic problem solving. There we discuss several important issues related to the design and analysis of algorithms. The different aspects of algorithmic problem solving range from analysis of the problem and the means of expressing an algorithm to establishing its correctness and analyzing its efficiency. The section does not contain a magic recipe for designing an algorithm for an arbitrary problem. It is a well-established fact that such a recipe does not exist. Still, the material of Section 1.2 should be useful for organizing your work on designing and analyzing algorithms.

Section 1.3 is devoted to a few problem types that have proven to be particularly important to the study of algorithms and their application. In fact, there are textbooks (e.g., [Sed11]) organized around such problem types. I hold the view—shared by many others—that an organization based on algorithm design techniques is superior. In any case, it is very important to be aware of the principal problem types. Not only are they the most commonly encountered problem types in real-life applications, they are used throughout the book to demonstrate particular algorithm design techniques.

Section 1.4 contains a review of fundamental data structures. It is meant to serve as a reference rather than a deliberate discussion of this topic. If you need

a more detailed exposition, there is a wealth of good books on the subject, most of them tailored to a particular programming language.

1.1 What Is an Algorithm?

Although there is no universally agreed-on wording to describe this notion, there is general agreement about what the concept means:

An *algorithm* is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

This definition can be illustrated by a simple diagram (Figure 1.1).

The reference to "instructions" in the definition implies that there is something or someone capable of understanding and following the instructions given. We call this a "computer," keeping in mind that before the electronic computer was invented, the word "computer" meant a human being involved in performing numeric calculations. Nowadays, of course, "computers" are those ubiquitous electronic devices that have become indispensable in almost everything we do. Note, however, that although the majority of algorithms are indeed intended for eventual computer implementation, the notion of algorithm does not depend on such an assumption.

As examples illustrating the notion of the algorithm, we consider in this section three methods for solving the same problem: computing the greatest common divisor of two integers. These examples will help us to illustrate several important points:

- The nonambiguity requirement for each step of an algorithm cannot be compromised.
- The range of inputs for which an algorithm works has to be specified carefully.
- The same algorithm can be represented in several different ways.
- There may exist several algorithms for solving the same problem.

FIGURE 1.1 The notion of the algorithm.

Algorithms for the same problem can be based on very different ideas and can solve the problem with dramatically different speeds.

Recall that the greatest common divisor of two nonnegative, not-both-zero integers m and n, denoted gcd(m, n), is defined as the largest integer that divides both m and n evenly, i.e., with a remainder of zero. Euclid of Alexandria (third century B.c.) outlined an algorithm for solving this problem in one of the volumes of his *Elements* most famous for its systematic exposition of geometry. In modern terms, *Euclid's algorithm* is based on applying repeatedly the equality

$$gcd(m, n) = gcd(n, m \mod n),$$

where $m \mod n$ is the remainder of the division of m by n, until $m \mod n$ is equal to 0. Since gcd(m, 0) = m (why?), the last value of m is also the greatest common divisor of the initial m and n.

For example, gcd(60, 24) can be computed as follows:

$$gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12.$$

(If you are not impressed by this algorithm, try finding the greatest common divisor of larger numbers, such as those in Problem 6 in this section's exercises.)

Here is a more structured description of this algorithm:

Euclid's algorithm for computing gcd(m, n)

return m

- **Step 1** If n = 0, return the value of m as the answer and stop; otherwise, proceed to Step 2.
- **Step 2** Divide m by n and assign the value of the remainder to r.
- **Step 3** Assign the value of n to m and the value of r to n. Go to Step 1.

Alternatively, we can express the same algorithm in pseudocode:

```
ALGORITHM Euclid(m, n)

//Computes gcd(m, n) by Euclid's algorithm

//Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n \neq 0 do

r \leftarrow m \mod n

m \leftarrow n

n \leftarrow r
```

How do we know that Euclid's algorithm eventually comes to a stop? This follows from the observation that the second integer of the pair gets smaller with each iteration and it cannot become negative. Indeed, the new value of n on the next iteration is $m \mod n$, which is always smaller than n (why?). Hence, the value of the second integer eventually becomes 0, and the algorithm stops.

Just as with many other problems, there are several algorithms for computing the greatest common divisor. Let us look at the other two methods for this problem. The first is simply based on the definition of the greatest common divisor of m and n as the largest integer that divides both numbers evenly. Obviously, such a common divisor cannot be greater than the smaller of these numbers, which we will denote by $t = \min\{m, n\}$. So we can start by checking whether t divides both m and n: if it does, t is the answer; if it does not, we simply decrease t by 1 and try again. (How do we know that the process will eventually stop?) For example, for numbers 60 and 24, the algorithm will try first 24, then 23, and so on, until it reaches 12, where it stops.

Consecutive integer checking algorithm for computing gcd(m, n)

- **Step 1** Assign the value of $min\{m, n\}$ to t.
- **Step 2** Divide *m* by *t*. If the remainder of this division is 0, go to Step 3; otherwise, go to Step 4.
- **Step 3** Divide *n* by *t*. If the remainder of this division is 0, return the value of *t* as the answer and stop; otherwise, proceed to Step 4.
- **Step 4** Decrease the value of *t* by 1. Go to Step 2.

Note that unlike Euclid's algorithm, this algorithm, in the form presented, does not work correctly when one of its input numbers is zero. This example illustrates why it is so important to specify the set of an algorithm's inputs explicitly and carefully.

The third procedure for finding the greatest common divisor should be familiar to you from middle school.

Middle-school procedure for computing gcd(m, n)

- **Step 1** Find the prime factors of m.
- **Step 2** Find the prime factors of n.
- **Step 3** Identify all the common factors in the two prime expansions found in Step 1 and Step 2. (If p is a common factor occurring p_m and p_n times in m and n, respectively, it should be repeated min $\{p_m, p_n\}$ times.)
- **Step 4** Compute the product of all the common factors and return it as the greatest common divisor of the numbers given.

Thus, for the numbers 60 and 24, we get

$$60 = 2 \cdot 2 \cdot 3 \cdot 5$$
$$24 = 2 \cdot 2 \cdot 2 \cdot 3$$
$$\gcd(60, 24) = 2 \cdot 2 \cdot 3 = 12.$$

Nostalgia for the days when we learned this method should not prevent us from noting that the last procedure is much more complex and slower than Euclid's algorithm. (We will discuss methods for finding and comparing running times of algorithms in the next chapter.) In addition to inferior efficiency, the middle-school procedure does not qualify, in the form presented, as a legitimate algorithm. Why? Because the prime factorization steps are not defined unambiguously: they

require a list of prime numbers, and I strongly suspect that your middle-school math teacher did not explain how to obtain such a list. This is not a matter of unnecessary nitpicking. Unless this issue is resolved, we cannot, say, write a program implementing this procedure. Incidentally, Step 3 is also not defined clearly enough. Its ambiguity is much easier to rectify than that of the factorization steps, however. How would you find common elements in two sorted lists?

So, let us introduce a simple algorithm for generating consecutive primes not exceeding any given integer n > 1. It was probably invented in ancient Greece and is known as the *sieve of Eratosthenes* (ca. 200 B.C.). The algorithm starts by initializing a list of prime candidates with consecutive integers from 2 to n. Then, on its first iteration, the algorithm eliminates from the list all multiples of 2, i.e., 4, 6, and so on. Then it moves to the next item on the list, which is 3, and eliminates its multiples. (In this straightforward version, there is an overhead because some numbers, such as 6, are eliminated more than once.) No pass for number 4 is needed: since 4 itself and all its multiples are also multiples of 2, they were already eliminated on a previous pass. The next remaining number on the list, which is used on the third pass, is 5. The algorithm continues in this fashion until no more numbers can be eliminated from the list. The remaining integers of the list are the primes needed.

As an example, consider the application of the algorithm to finding the list of primes not exceeding n = 25:

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
2	3		5		7		9		11		13		15		17		19		21		23		25
2	3		5		7				11		13				17		19				23		25
2	3		5		7				11		13				17		19				23		

For this example, no more passes are needed because they would eliminate numbers already eliminated on previous iterations of the algorithm. The remaining numbers on the list are the consecutive primes less than or equal to 25.

What is the largest number p whose multiples can still remain on the list to make further iterations of the algorithm necessary? Before we answer this question, let us first note that if p is a number whose multiples are being eliminated on the current pass, then the first multiple we should consider is $p \cdot p$ because all its smaller multiples $2p, \ldots, (p-1)p$ have been eliminated on earlier passes through the list. This observation helps to avoid eliminating the same number more than once. Obviously, $p \cdot p$ should not be greater than n, and therefore p cannot exceed \sqrt{n} rounded down (denoted $\lfloor \sqrt{n} \rfloor$ using the so-called *floor function*). We assume in the following pseudocode that there is a function available for computing $\lfloor \sqrt{n} \rfloor$; alternatively, we could check the inequality $p \cdot p \leq n$ as the loop continuation condition there.

ALGORITHM Sieve(n)

```
//Implements the sieve of Eratosthenes
//Input: A positive integer n > 1
//Output: Array L of all prime numbers less than or equal to n
```

```
for p \leftarrow 2 to n do A[p] \leftarrow p
for p \leftarrow 2 to |\sqrt{n}| do
                              //see note before pseudocode
     if A[p] \neq 0
                               //p hasn't been eliminated on previous passes
          j \leftarrow p * p
          while j \leq n do
                A[j] \leftarrow 0
                               //mark element as eliminated
                j \leftarrow j + p
//copy the remaining elements of A to array L of the primes
i \leftarrow 0
for p \leftarrow 2 to n do
     if A[p] \neq 0
          L[i] \leftarrow A[p]
          i \leftarrow i + 1
return L
```

So now we can incorporate the sieve of Eratosthenes into the middle-school procedure to get a legitimate algorithm for computing the greatest common divisor of two positive integers. Note that special care needs to be exercised if one or both input numbers are equal to 1: because mathematicians do not consider 1 to be a prime number, strictly speaking, the method does not work for such inputs.

Before we leave this section, one more comment is in order. The examples considered in this section notwithstanding, the majority of algorithms in use today—even those that are implemented as computer programs—do not deal with mathematical problems. Look around for algorithms helping us through our daily routines, both professional and personal. May this ubiquity of algorithms in today's world strengthen your resolve to learn more about these fascinating engines of the information age.

Exercises 1.1

- 1. Do some research on al-Khorezmi (also al-Khwarizmi), the man from whose name the word "algorithm" is derived. In particular, you should learn what the origins of the words "algorithm" and "algebra" have in common.
- **2.** Given that the official purpose of the U.S. patent system is the promotion of the "useful arts," do you think algorithms are patentable in this country? Should they be?
- **3. a.** Write down driving directions for going from your school to your home with the precision required from an algorithm's description.
 - **b.** Write down a recipe for cooking your favorite dish with the precision required by an algorithm.
- **4.** Design an algorithm for computing $\lfloor \sqrt{n} \rfloor$ for any positive integer n. Besides assignment and comparison, your algorithm may only use the four basic arithmetical operations.

- 5. Design an algorithm to find all the common elements in two sorted lists of numbers. For example, for the lists 2, 5, 5, 5 and 2, 2, 3, 5, 5, 7, the output should be 2, 5, 5. What is the maximum number of comparisons your algorithm makes if the lengths of the two given lists are m and n, respectively?
- **6. a.** Find gcd(31415, 14142) by applying Euclid's algorithm.
 - **b.** Estimate how many times faster it will be to find gcd(31415, 14142) by Euclid's algorithm compared with the algorithm based on checking consecutive integers from $min\{m, n\}$ down to gcd(m, n).
- 7. Prove the equality $gcd(m, n) = gcd(n, m \mod n)$ for every pair of positive integers m and n.
- **8.** What does Euclid's algorithm do for a pair of integers in which the first is smaller than the second? What is the maximum number of times this can happen during the algorithm's execution on such an input?
- **9. a.** What is the minimum number of divisions made by Euclid's algorithm among all inputs $1 \le m$, $n \le 10$?
 - **b.** What is the maximum number of divisions made by Euclid's algorithm among all inputs $1 \le m$, $n \le 10$?
- **10. a.** Euclid's algorithm, as presented in Euclid's treatise, uses subtractions rather than integer divisions. Write pseudocode for this version of Euclid's algorithm.
 - **b.** Euclid's game (see [Bog]) starts with two unequal positive integers on the board. Two players move in turn. On each move, a player has to write on the board a positive number equal to the difference of two numbers already on the board; this number must be new, i.e., different from all the numbers already on the board. The player who cannot move loses the game. Should you choose to move first or second in this game?
- 11. The *extended Euclid's algorithm* determines not only the greatest common divisor d of two positive integers m and n but also integers (not necessarily positive) x and y, such that mx + ny = d.
 - **a.** Look up a description of the extended Euclid's algorithm (see, e.g., [KnuI, p. 13]) and implement it in the language of your choice.
 - **b.** Modify your program to find integer solutions to the Diophantine equation ax + by = c with any set of integer coefficients a, b, and c.
- 12. Locker doors There are n lockers in a hallway, numbered sequentially from 1 to n. Initially, all the locker doors are closed. You make n passes by the lockers, each time starting with locker #1. On the ith pass, $i = 1, 2, \ldots, n$, you toggle the door of every ith locker: if the door is closed, you open it; if it is open, you close it. After the last pass, which locker doors are open and which are closed? How many of them are open?

1.2 Fundamentals of Algorithmic Problem Solving

Let us start by reiterating an important point made in the introduction to this chapter:

We can consider algorithms to be procedural solutions to problems.

These solutions are not answers but specific instructions for getting answers. It is this emphasis on precisely defined constructive procedures that makes computer science distinct from other disciplines. In particular, this distinguishes it from theoretical mathematics, whose practitioners are typically satisfied with just proving the existence of a solution to a problem and, possibly, investigating the solution's properties.

We now list and briefly discuss a sequence of steps one typically goes through in designing and analyzing an algorithm (Figure 1.2).

Understanding the Problem

From a practical perspective, the first thing you need to do before designing an algorithm is to understand completely the problem given. Read the problem's description carefully and ask questions if you have any doubts about the problem, do a few small examples by hand, think about special cases, and ask questions again if needed.

There are a few types of problems that arise in computing applications quite often. We review them in the next section. If the problem in question is one of them, you might be able to use a known algorithm for solving it. Of course, it helps to understand how such an algorithm works and to know its strengths and weaknesses, especially if you have to choose among several available algorithms. But often you will not find a readily available algorithm and will have to design your own. The sequence of steps outlined in this section should help you in this exciting but not always easy task.

An input to an algorithm specifies an *instance* of the problem the algorithm solves. It is very important to specify exactly the set of instances the algorithm needs to handle. (As an example, recall the variations in the set of instances for the three greatest common divisor algorithms discussed in the previous section.) If you fail to do this, your algorithm may work correctly for a majority of inputs but crash on some "boundary" value. Remember that a correct algorithm is not one that works most of the time, but one that works correctly for *all* legitimate inputs.

Do not skimp on this first step of the algorithmic problem-solving process; otherwise, you will run the risk of unnecessary rework.

Ascertaining the Capabilities of the Computational Device

Once you completely understand a problem, you need to ascertain the capabilities of the computational device the algorithm is intended for. The vast majority of

FIGURE 1.2 Algorithm design and analysis process.

algorithms in use today are still destined to be programmed for a computer closely resembling the von Neumann machine—a computer architecture outlined by the prominent Hungarian-American mathematician John von Neumann (1903–1957), in collaboration with A. Burks and H. Goldstine, in 1946. The essence of this architecture is captured by the so-called *random-access machine* (*RAM*). Its central assumption is that instructions are executed one after another, one operation at a time. Accordingly, algorithms designed to be executed on such machines are called *sequential algorithms*.

The central assumption of the RAM model does not hold for some newer computers that can execute operations concurrently, i.e., in parallel. Algorithms that take advantage of this capability are called *parallel algorithms*. Still, studying the classic techniques for design and analysis of algorithms under the RAM model remains the cornerstone of algorithmics for the foreseeable future.

Should you worry about the speed and amount of memory of a computer at your disposal? If you are designing an algorithm as a scientific exercise, the answer is a qualified no. As you will see in Section 2.1, most computer scientists prefer to study algorithms in terms independent of specification parameters for a particular computer. If you are designing an algorithm as a practical tool, the answer may depend on a problem you need to solve. Even the "slow" computers of today are almost unimaginably fast. Consequently, in many situations you need not worry about a computer being too slow for the task. There are important problems, however, that are very complex by their nature, or have to process huge volumes of data, or deal with applications where the time is critical. In such situations, it is imperative to be aware of the speed and memory available on a particular computer system.

Choosing between Exact and Approximate Problem Solving

The next principal decision is to choose between solving the problem exactly or solving it approximately. In the former case, an algorithm is called an *exact algorithm*; in the latter case, an algorithm is called an *approximation algorithm*. Why would one opt for an approximation algorithm? First, there are important problems that simply cannot be solved exactly for most of their instances; examples include extracting square roots, solving nonlinear equations, and evaluating definite integrals. Second, available algorithms for solving a problem exactly can be unacceptably slow because of the problem's intrinsic complexity. This happens, in particular, for many problems involving a very large number of choices; you will see examples of such difficult problems in Chapters 3, 11, and 12. Third, an approximation algorithm can be a part of a more sophisticated algorithm that solves a problem exactly.

Algorithm Design Techniques

Now, with all the components of the algorithmic problem solving in place, how do you design an algorithm to solve a given problem? This is the main question this book seeks to answer by teaching you several general design techniques.

What is an algorithm design technique?

An *algorithm design technique* (or "strategy" or "paradigm") is a general approach to solving problems algorithmically that is applicable to a variety of problems from different areas of computing.

Check this book's table of contents and you will see that a majority of its chapters are devoted to individual design techniques. They distill a few key ideas that have proven to be useful in designing algorithms. Learning these techniques is of utmost importance for the following reasons.

First, they provide guidance for designing algorithms for new problems, i.e., problems for which there is no known satisfactory algorithm. Therefore—to use the language of a famous proverb—learning such techniques is akin to learning

to fish as opposed to being given a fish caught by somebody else. It is not true, of course, that each of these general techniques will be necessarily applicable to every problem you may encounter. But taken together, they do constitute a powerful collection of tools that you will find quite handy in your studies and work.

Second, algorithms are the cornerstone of computer science. Every science is interested in classifying its principal subject, and computer science is no exception. Algorithm design techniques make it possible to classify algorithms according to an underlying design idea; therefore, they can serve as a natural way to both categorize and study algorithms.

Designing an Algorithm and Data Structures

While the algorithm design techniques do provide a powerful set of general approaches to algorithmic problem solving, designing an algorithm for a particular problem may still be a challenging task. Some design techniques can be simply inapplicable to the problem in question. Sometimes, several techniques need to be combined, and there are algorithms that are hard to pinpoint as applications of the known design techniques. Even when a particular design technique is applicable, getting an algorithm often requires a nontrivial ingenuity on the part of the algorithm designer. With practice, both tasks—choosing among the general techniques and applying them—get easier, but they are rarely easy.

Of course, one should pay close attention to choosing data structures appropriate for the operations performed by the algorithm. For example, the sieve of Eratosthenes introduced in Section 1.1 would run longer if we used a linked list instead of an array in its implementation (why?). Also note that some of the algorithm design techniques discussed in Chapters 6 and 7 depend intimately on structuring or restructuring data specifying a problem's instance. Many years ago, an influential textbook proclaimed the fundamental importance of both algorithms and data structures for computer programming by its very title: *Algorithms* + *Data Structures* = *Programs* [Wir76]. In the new world of object-oriented programming, data structures remain crucially important for both design and analysis of algorithms. We review basic data structures in Section 1.4.

Methods of Specifying an Algorithm

Once you have designed an algorithm, you need to specify it in some fashion. In Section 1.1, to give you an example, Euclid's algorithm is described in words (in a free and also a step-by-step form) and in pseudocode. These are the two options that are most widely used nowadays for specifying algorithms.

Using a natural language has an obvious appeal; however, the inherent ambiguity of any natural language makes a succinct and clear description of algorithms surprisingly difficult. Nevertheless, being able to do this is an important skill that you should strive to develop in the process of learning algorithms.

Pseudocode is a mixture of a natural language and programming language-like constructs. Pseudocode is usually more precise than natural language, and its

usage often yields more succinct algorithm descriptions. Surprisingly, computer scientists have never agreed on a single form of pseudocode, leaving textbook authors with a need to design their own "dialects." Fortunately, these dialects are so close to each other that anyone familiar with a modern programming language should be able to understand them all.

This book's dialect was selected to cause minimal difficulty for a reader. For the sake of simplicity, we omit declarations of variables and use indentation to show the scope of such statements as **for**, **if**, and **while**. As you saw in the previous section, we use an arrow "←" for the assignment operation and two slashes "//" for comments.

In the earlier days of computing, the dominant vehicle for specifying algorithms was a *flowchart*, a method of expressing an algorithm by a collection of connected geometric shapes containing descriptions of the algorithm's steps. This representation technique has proved to be inconvenient for all but very simple algorithms; nowadays, it can be found only in old algorithm books.

The state of the art of computing has not yet reached a point where an algorithm's description—be it in a natural language or pseudocode—can be fed into an electronic computer directly. Instead, it needs to be converted into a computer program written in a particular computer language. We can look at such a program as yet another way of specifying the algorithm, although it is preferable to consider it as the algorithm's implementation.

Proving an Algorithm's Correctness

Once an algorithm has been specified, you have to prove its *correctness*. That is, you have to prove that the algorithm yields a required result for every legitimate input in a finite amount of time. For example, the correctness of Euclid's algorithm for computing the greatest common divisor stems from the correctness of the equality $gcd(m, n) = gcd(n, m \mod n)$ (which, in turn, needs a proof; see Problem 7 in Exercises 1.1), the simple observation that the second integer gets smaller on every iteration of the algorithm, and the fact that the algorithm stops when the second integer becomes 0.

For some algorithms, a proof of correctness is quite easy; for others, it can be quite complex. A common technique for proving correctness is to use mathematical induction because an algorithm's iterations provide a natural sequence of steps needed for such proofs. It might be worth mentioning that although tracing the algorithm's performance for a few specific inputs can be a very worthwhile activity, it cannot prove the algorithm's correctness conclusively. But in order to show that an algorithm is incorrect, you need just one instance of its input for which the algorithm fails.

The notion of correctness for approximation algorithms is less straightforward than it is for exact algorithms. For an approximation algorithm, we usually would like to be able to show that the error produced by the algorithm does not exceed a predefined limit. You can find examples of such investigations in Chapter 12.

Analyzing an Algorithm

We usually want our algorithms to possess several qualities. After correctness, by far the most important is *efficiency*. In fact, there are two kinds of algorithm efficiency: *time efficiency*, indicating how fast the algorithm runs, and *space efficiency*, indicating how much extra memory it uses. A general framework and specific techniques for analyzing an algorithm's efficiency appear in Chapter 2.

Another desirable characteristic of an algorithm is *simplicity*. Unlike efficiency, which can be precisely defined and investigated with mathematical rigor, simplicity, like beauty, is to a considerable degree in the eye of the beholder. For example, most people would agree that Euclid's algorithm is simpler than the middle-school procedure for computing gcd(m, n), but it is not clear whether Euclid's algorithm is simpler than the consecutive integer checking algorithm. Still, simplicity is an important algorithm characteristic to strive for. Why? Because simpler algorithms are easier to understand and easier to program; consequently, the resulting programs usually contain fewer bugs. There is also the undeniable aesthetic appeal of simplicity. Sometimes simpler algorithms are also more efficient than more complicated alternatives. Unfortunately, it is not always true, in which case a judicious compromise needs to be made.

Yet another desirable characteristic of an algorithm is *generality*. There are, in fact, two issues here: generality of the problem the algorithm solves and the set of inputs it accepts. On the first issue, note that it is sometimes easier to design an algorithm for a problem posed in more general terms. Consider, for example, the problem of determining whether two integers are relatively prime, i.e., whether their only common divisor is equal to 1. It is easier to design an algorithm for a more general problem of computing the greatest common divisor of two integers and, to solve the former problem, check whether the gcd is 1 or not. There are situations, however, where designing a more general algorithm is unnecessary or difficult or even impossible. For example, it is unnecessary to sort a list of n numbers to find its median, which is its $\lceil n/2 \rceil$ th smallest element. To give another example, the standard formula for roots of a quadratic equation cannot be generalized to handle polynomials of arbitrary degrees.

As to the set of inputs, your main concern should be designing an algorithm that can handle a set of inputs that is natural for the problem at hand. For example, excluding integers equal to 1 as possible inputs for a greatest common divisor algorithm would be quite unnatural. On the other hand, although the standard formula for the roots of a quadratic equation holds for complex coefficients, we would normally not implement it on this level of generality unless this capability is explicitly required.

If you are not satisfied with the algorithm's efficiency, simplicity, or generality, you must return to the drawing board and redesign the algorithm. In fact, even if your evaluation is positive, it is still worth searching for other algorithmic solutions. Recall the three different algorithms in the previous section for computing the greatest common divisor: generally, you should not expect to get the best algorithm on the first try. At the very least, you should try to fine-tune the algorithm you

already have. For example, we made several improvements in our implementation of the sieve of Eratosthenes compared with its initial outline in Section 1.1. (Can you identify them?) You will do well if you keep in mind the following observation of Antoine de Saint-Exupéry, the French writer, pilot, and aircraft designer: "A designer knows he has arrived at perfection not when there is no longer anything to add, but when there is no longer anything to take away."

Coding an Algorithm

Most algorithms are destined to be ultimately implemented as computer programs. Programming an algorithm presents both a peril and an opportunity. The peril lies in the possibility of making the transition from an algorithm to a program either incorrectly or very inefficiently. Some influential computer scientists strongly believe that unless the correctness of a computer program is proven with full mathematical rigor, the program cannot be considered correct. They have developed special techniques for doing such proofs (see [Gri81]), but the power of these techniques of formal verification is limited so far to very small programs.

As a practical matter, the validity of programs is still established by testing. Testing of computer programs is an art rather than a science, but that does not mean that there is nothing in it to learn. Look up books devoted to testing and debugging; even more important, test and debug your program thoroughly whenever you implement an algorithm.

Also note that throughout the book, we assume that inputs to algorithms belong to the specified sets and hence require no verification. When implementing algorithms as programs to be used in actual applications, you should provide such verifications.

Of course, implementing an algorithm correctly is necessary but not sufficient: you would not like to diminish your algorithm's power by an inefficient implementation. Modern compilers do provide a certain safety net in this regard, especially when they are used in their code optimization mode. Still, you need to be aware of such standard tricks as computing a loop's invariant (an expression that does not change its value) outside the loop, collecting common subexpressions, replacing expensive operations by cheap ones, and so on. (See [Ker99] and [Ben00] for a good discussion of code tuning and other issues related to algorithm programming.) Typically, such improvements can speed up a program only by a constant factor, whereas a better algorithm can make a difference in running time by orders of magnitude. But once an algorithm is selected, a 10–50% speedup may be worth an effort.

I found this call for design simplicity in an essay collection by Jon Bentley [Ben00]; the essays deal
with a variety of issues in algorithm design and implementation and are justifiably titled *Programming Pearls*. I wholeheartedly recommend the writings of both Jon Bentley and Antoine de Saint-Exupéry.

A working program provides an additional opportunity in allowing an empirical analysis of the underlying algorithm. Such an analysis is based on timing the program on several inputs and then analyzing the results obtained. We discuss the advantages and disadvantages of this approach to analyzing algorithms in Section 2.6.

In conclusion, let us emphasize again the main lesson of the process depicted in Figure 1.2:

As a rule, a good algorithm is a result of repeated effort and rework.

Even if you have been fortunate enough to get an algorithmic idea that seems perfect, you should still try to see whether it can be improved.

Actually, this is good news since it makes the ultimate result so much more enjoyable. (Yes, I did think of naming this book *The Joy of Algorithms*.) On the other hand, how does one know when to stop? In the real world, more often than not a project's schedule or the impatience of your boss will stop you. And so it should be: perfection is expensive and in fact not always called for. Designing an algorithm is an engineering-like activity that calls for compromises among competing goals under the constraints of available resources, with the designer's time being one of the resources.

In the academic world, the question leads to an interesting but usually difficult investigation of an algorithm's *optimality*. Actually, this question is not about the efficiency of an algorithm but about the complexity of the problem it solves: What is the minimum amount of effort *any* algorithm will need to exert to solve the problem? For some problems, the answer to this question is known. For example, any algorithm that sorts an array by comparing values of its elements needs about $n \log_2 n$ comparisons for some arrays of size n (see Section 11.2). But for many seemingly easy problems such as integer multiplication, computer scientists do not yet have a final answer.

Another important issue of algorithmic problem solving is the question of whether or not every problem can be solved by an algorithm. We are not talking here about problems that do not have a solution, such as finding real roots of a quadratic equation with a negative discriminant. For such cases, an output indicating that the problem does not have a solution is all we can and should expect from an algorithm. Nor are we talking about ambiguously stated problems. Even some unambiguous problems that must have a simple yes or no answer are "undecidable," i.e., unsolvable by any algorithm. An important example of such a problem appears in Section 11.3. Fortunately, a vast majority of problems in practical computing *can* be solved by an algorithm.

Before leaving this section, let us be sure that you do not have the misconception—possibly caused by the somewhat mechanical nature of the diagram of Figure 1.2—that designing an algorithm is a dull activity. There is nothing further from the truth: inventing (or discovering?) algorithms is a very creative and rewarding process. This book is designed to convince you that this is the case.

Exercises 1.2

1. Old World puzzle A peasant finds himself on a riverbank with a wolf, a goat, and a head of cabbage. He needs to transport all three to the other side of the river in his boat. However, the boat has room for only the peasant himself and one other item (either the wolf, the goat, or the cabbage). In his absence, the wolf would eat the goat, and the goat would eat the cabbage. Solve this problem for the peasant or prove it has no solution. (Note: The peasant is a vegetarian but does not like cabbage and hence can eat neither the goat nor the cabbage to help him solve the problem. And it goes without saying that the wolf is a protected species.)

- 2. New World puzzle There are four people who want to cross a rickety bridge; they all begin on the same side. You have 17 minutes to get them all across to the other side. It is night, and they have one flashlight. A maximum of two people can cross the bridge at one time. Any party that crosses, either one or two people, must have the flashlight with them. The flashlight must be walked back and forth; it cannot be thrown, for example. Person 1 takes 1 minute to cross the bridge, person 2 takes 2 minutes, person 3 takes 5 minutes, and person 4 takes 10 minutes. A pair must walk together at the rate of the slower person's pace. (Note: According to a rumor on the Internet, interviewers at a well-known software company located near Seattle have given this problem to interviewees.)
- **3.** Which of the following formulas can be considered an algorithm for computing the area of a triangle whose side lengths are given positive numbers *a*, *b*, and *c*?
 - **a.** $S = \sqrt{p(p-a)(p-b)(p-c)}$, where p = (a+b+c)/2
 - **b.** $S = \frac{1}{2}bc \sin A$, where A is the angle between sides b and c
 - **c.** $S = \frac{1}{2}ah_a$, where h_a is the height to base a
- **4.** Write pseudocode for an algorithm for finding real roots of equation $ax^2 + bx + c = 0$ for arbitrary real coefficients a, b, and c. (You may assume the availability of the square root function sqrt(x).)
- **5.** Describe the standard algorithm for finding the binary representation of a positive decimal integer
 - a. in English.
 - b. in pseudocode.
- **6.** Describe the algorithm used by your favorite ATM machine in dispensing cash. (You may give your description in either English or pseudocode, whichever you find more convenient.)
- **7. a.** Can the problem of computing the number π be solved exactly?
 - b. How many instances does this problem have?
 - **c.** Look up an algorithm for this problem on the Internet.

- **8.** Give an example of a problem other than computing the greatest common divisor for which you know more than one algorithm. Which of them is simpler? Which is more efficient?
- **9.** Consider the following algorithm for finding the distance between the two closest elements in an array of numbers.

```
ALGORITHM MinDistance(A[0..n-1])

//Input: Array A[0..n-1] of numbers

//Output: Minimum distance between two of its elements dmin \leftarrow \infty

for i \leftarrow 0 to n-1 do

for j \leftarrow 0 to n-1 do

if i \neq j and |A[i] - A[j]| < dmin

dmin \leftarrow |A[i] - A[j]|
```

Make as many improvements as you can in this algorithmic solution to the problem. If you need to, you may change the algorithm altogether; if not, improve the implementation given.

10. One of the most influential books on problem solving, titled *How To Solve It* [Pol57], was written by the Hungarian-American mathematician George Pólya (1887–1985). Pólya summarized his ideas in a four-point summary. Find this summary on the Internet or, better yet, in his book, and compare it with the plan outlined in Section 1.2. What do they have in common? How are they different?

1.3 Important Problem Types

In the limitless sea of problems one encounters in computing, there are a few areas that have attracted particular attention from researchers. By and large, their interest has been driven either by the problem's practical importance or by some specific characteristics making the problem an interesting research subject; fortunately, these two motivating forces reinforce each other in most cases.

In this section, we are going to introduce the most important problem types:

- Sorting
- Searching
- String processing
- Graph problems
- Combinatorial problems
- Geometric problems
- Numerical problems

These problems are used in subsequent chapters of the book to illustrate different algorithm design techniques and methods of algorithm analysis.

Sorting

The *sorting problem* is to rearrange the items of a given list in nondecreasing order. Of course, for this problem to be meaningful, the nature of the list items must allow such an ordering. (Mathematicians would say that there must exist a relation of total ordering.) As a practical matter, we usually need to sort lists of numbers, characters from an alphabet, character strings, and, most important, records similar to those maintained by schools about their students, libraries about their holdings, and companies about their employees. In the case of records, we need to choose a piece of information to guide sorting. For example, we can choose to sort student records in alphabetical order of names or by student number or by student grade-point average. Such a specially chosen piece of information is called a *key*. Computer scientists often talk about sorting a list of keys even when the list's items are not records but, say, just integers.

Why would we want a sorted list? To begin with, a sorted list can be a required output of a task such as ranking Internet search results or ranking students by their GPA scores. Further, sorting makes many questions about the list easier to answer. The most important of them is searching: it is why dictionaries, telephone books, class lists, and so on are sorted. You will see other examples of the usefulness of list presorting in Section 6.1. In a similar vein, sorting is used as an auxiliary step in several important algorithms in other areas, e.g., geometric algorithms and data compression. The greedy approach—an important algorithm design technique discussed later in the book—requires a sorted input.

By now, computer scientists have discovered dozens of different sorting algorithms. In fact, inventing a new sorting algorithm has been likened to designing the proverbial mousetrap. And I am happy to report that the hunt for a better sorting mousetrap continues. This perseverance is admirable in view of the following facts. On the one hand, there are a few good sorting algorithms that sort an arbitrary array of size n using about $n \log_2 n$ comparisons. On the other hand, no algorithm that sorts by key comparisons (as opposed to, say, comparing small pieces of keys) can do substantially better than that.

There is a reason for this embarrassment of algorithmic riches in the land of sorting. Although some algorithms are indeed better than others, there is no algorithm that would be the best solution in all situations. Some of the algorithms are simple but relatively slow, while others are faster but more complex; some work better on randomly ordered inputs, while others do better on almost-sorted lists; some are suitable only for lists residing in the fast memory, while others can be adapted for sorting large files stored on a disk; and so on.

Two properties of sorting algorithms deserve special mention. A sorting algorithm is called *stable* if it preserves the relative order of any two equal elements in its input. In other words, if an input list contains two equal elements in positions i and j where i < j, then in the sorted list they have to be in positions i' and j',

respectively, such that i' < j'. This property can be desirable if, for example, we have a list of students sorted alphabetically and we want to sort it according to student GPA: a stable algorithm will yield a list in which students with the same GPA will still be sorted alphabetically. Generally speaking, algorithms that can exchange keys located far apart are not stable, but they usually work faster; you will see how this general comment applies to important sorting algorithms later in the book.

The second notable feature of a sorting algorithm is the amount of extra memory the algorithm requires. An algorithm is said to be *in-place* if it does not require extra memory, except, possibly, for a few memory units. There are important sorting algorithms that are in-place and those that are not.

Searching

The *searching problem* deals with finding a given value, called a *search key*, in a given set (or a multiset, which permits several elements to have the same value). There are plenty of searching algorithms to choose from. They range from the straightforward sequential search to a spectacularly efficient but limited binary search and algorithms based on representing the underlying set in a different form more conducive to searching. The latter algorithms are of particular importance for real-world applications because they are indispensable for storing and retrieving information from large databases.

For searching, too, there is no single algorithm that fits all situations best. Some algorithms work faster than others but require more memory; some are very fast but applicable only to sorted arrays; and so on. Unlike with sorting algorithms, there is no stability problem, but different issues arise. Specifically, in applications where the underlying data may change frequently relative to the number of searches, searching has to be considered in conjunction with two other operations: an addition to and deletion from the data set of an item. In such situations, data structures and algorithms should be chosen to strike a balance among the requirements of each operation. Also, organizing very large data sets for efficient searching poses special challenges with important implications for real-world applications.

String Processing

In recent decades, the rapid proliferation of applications dealing with nonnumerical data has intensified the interest of researchers and computing practitioners in string-handling algorithms. A *string* is a sequence of characters from an alphabet. Strings of particular interest are text strings, which comprise letters, numbers, and special characters; bit strings, which comprise zeros and ones; and gene sequences, which can be modeled by strings of characters from the four-character alphabet {A, C, G, T}. It should be pointed out, however, that string-processing algorithms have been important for computer science for a long time in conjunction with computer languages and compiling issues.

One particular problem—that of searching for a given word in a text—has attracted special attention from researchers. They call it *string matching*. Several algorithms that exploit the special nature of this type of searching have been invented. We introduce one very simple algorithm in Chapter 3 and discuss two algorithms based on a remarkable idea by R. Boyer and J. Moore in Chapter 7.

Graph Problems

One of the oldest and most interesting areas in algorithmics is graph algorithms. Informally, a *graph* can be thought of as a collection of points called vertices, some of which are connected by line segments called edges. (A more formal definition is given in the next section.) Graphs are an interesting subject to study, for both theoretical and practical reasons. Graphs can be used for modeling a wide variety of applications, including transportation, communication, social and economic networks, project scheduling, and games. Studying different technical and social aspects of the Internet in particular is one of the active areas of current research involving computer scientists, economists, and social scientists (see, e.g., [Eas10]).

Basic graph algorithms include graph-traversal algorithms (how can one reach all the points in a network?), shortest-path algorithms (what is the best route between two cities?), and topological sorting for graphs with directed edges (is a set of courses with their prerequisites consistent or self-contradictory?). Fortunately, these algorithms can be considered illustrations of general design techniques; accordingly, you will find them in corresponding chapters of the book.

Some graph problems are computationally very hard; the most well-known examples are the traveling salesman problem and the graph-coloring problem. The *traveling salesman problem (TSP)* is the problem of finding the shortest tour through *n* cities that visits every city exactly once. In addition to obvious applications involving route planning, it arises in such modern applications as circuit board and VLSI chip fabrication, X-ray crystallography, and genetic engineering. The *graph-coloring problem* seeks to assign the smallest number of colors to the vertices of a graph so that no two adjacent vertices are the same color. This problem arises in several applications, such as event scheduling: if the events are represented by vertices that are connected by an edge if and only if the corresponding events cannot be scheduled at the same time, a solution to the graph-coloring problem yields an optimal schedule.

Combinatorial Problems

From a more abstract perspective, the traveling salesman problem and the graph-coloring problem are examples of *combinatorial problems*. These are problems that ask, explicitly or implicitly, to find a combinatorial object—such as a permutation, a combination, or a subset—that satisfies certain constraints. A desired combinatorial object may also be required to have some additional property such as a maximum value or a minimum cost.

Generally speaking, combinatorial problems are the most difficult problems in computing, from both a theoretical and practical standpoint. Their difficulty stems from the following facts. First, the number of combinatorial objects typically grows extremely fast with a problem's size, reaching unimaginable magnitudes even for moderate-sized instances. Second, there are no known algorithms for solving most such problems exactly in an acceptable amount of time. Moreover, most computer scientists believe that such algorithms do not exist. This conjecture has been neither proved nor disproved, and it remains the most important unresolved issue in theoretical computer science. We discuss this topic in more detail in Section 11.3.

Some combinatorial problems can be solved by efficient algorithms, but they should be considered fortunate exceptions to the rule. The shortest-path problem mentioned earlier is among such exceptions.

Geometric Problems

Geometric algorithms deal with geometric objects such as points, lines, and polygons. The ancient Greeks were very much interested in developing procedures (they did not call them algorithms, of course) for solving a variety of geometric problems, including problems of constructing simple geometric shapes—triangles, circles, and so on—with an unmarked ruler and a compass. Then, for about 2000 years, intense interest in geometric algorithms disappeared, to be resurrected in the age of computers—no more rulers and compasses, just bits, bytes, and good old human ingenuity. Of course, today people are interested in geometric algorithms with quite different applications in mind, such as computer graphics, robotics, and tomography.

We will discuss algorithms for only two classic problems of computational geometry: the closest-pair problem and the convex-hull problem. The *closest-pair problem* is self-explanatory: given *n* points in the plane, find the closest pair among them. The *convex-hull problem* asks to find the smallest convex polygon that would include all the points of a given set. If you are interested in other geometric algorithms, you will find a wealth of material in such specialized monographs as [deB10], [ORo98], and [Pre85].

Numerical Problems

Numerical problems, another large special area of applications, are problems that involve mathematical objects of continuous nature: solving equations and systems of equations, computing definite integrals, evaluating functions, and so on. The majority of such mathematical problems can be solved only approximately. Another principal difficulty stems from the fact that such problems typically require manipulating real numbers, which can be represented in a computer only approximately. Moreover, a large number of arithmetic operations performed on approximately represented numbers can lead to an accumulation of the round-off